

High-order FEM implementation in AMReX with PETSc

Alex Grant, Olha Ivanyshyn Yaman, Karthik Chockalingam

Motivation for FEM in AMReX

Many possible applications for FEM, but primary driver is Fusion Computing Lab collaboration with UKAEA

- UKAEA want to explore FEM for plasma edge modelling, however most FEM packages use unstructured grids
- Structured grids (like AMReX) should have some advantages in scaling and performance
- Want to use particles (PIC) too difficult to keep track of on unstructured grids. AMReX has native particle support.
- One drawback is support for complex geometry AMReX has Embedded Boundary (cut cell methods) for this.

Level 0

Level 1 (8x refinement)

AMReX data structures

Cell-centered data

Nodal data (first order)

- For FEM, we use cell-centered boxes to iterate over elements, nodal boxes to store data, interpolate between levels, and indexing
- For higher-order elements, can map cell-centered boxes to higher resolution nodal data (up to the implementation, not AMReX)

AMReX data structures

Cell-centered data

Nodal data (second order)

- For FEM, we use cell-centered boxes to iterate over elements, nodal boxes to store data, interpolate between levels, and indexing
- For higher-order elements, can map cell-centered boxes to higher resolution nodal data (up to the implementation, not AMReX)

PETSc - indexing

- Simplest way to generate a global node index for PETSc is to use the nodal position, i.e. global_id = i * n_cells_i + j
 - Problematic at higher levels
 - PETSc domain decomposition wants ID's in order within each MPI process, leading to a mismatch
- Box-based indexing scheme solves both these issues
 - Global ID based on node position within a box, with duplicates pinned
 - Can use AMReX for MPI communication

PETSc - indexing

- Simplest way to generate a global node index for PETSc is to use the nodal position, i.e. global_id = i * n_cells_i + j
 - Problematic at higher levels
 - PETSc domain decomposition wants ID's in order within each MPI process, leading to a mismatch
- Box-based indexing scheme solves both these issues
 - Global ID based on node position within a box, with duplicates pinned
 - Can use AMReX for MPI communication


```
9 11 15 0, 1, 2, 3

1 3 7 4, 5, 6, 7

8, 9, 10, 11

0 2 6 12, 13, 14, 15
```

```
auto mask = amrex::OwnerMask(mf_node[level],
model_geom[level].periodicity());

mf_node[level].OverrideSync(*mask,
model_geom[level].periodicity());
```

PETSc – block matricies

- Moving from simple poisson problem to multi-component cases, expected to have to rewrite code to avoid copy-paste
- Used PETSc block matrix type instead
 - Each element of the block matrix is an n x n submatrix, where n is the blocksize
- Note not all solvers support this

Non-linear Newton solve

$$\mathbf{J}(\vec{u}_{n}) \, \delta \vec{u}_{n+1} = -\vec{R}(\vec{u}_{n}),$$

$$\vec{u}_{n+1} = \vec{u}_{n} + \delta \vec{u}_{n+1},$$

$$\begin{bmatrix} \frac{\partial R_{u_{1}}^{I}}{\partial u_{1}^{I}} & \cdots & \frac{\partial R_{u_{1}}^{I}}{\partial u_{N}^{I}} \\ \vdots & \ddots & \vdots \\ \frac{\partial R_{u_{N}}^{I}}{\partial u_{1}^{I}} & \cdots & \frac{\partial R_{u_{N}}^{I}}{\partial u_{N}^{I}} \end{bmatrix} \begin{bmatrix} \delta u_{1}^{J} \\ \vdots \\ \delta u_{N}^{J} \end{bmatrix} = -\begin{bmatrix} R_{u_{1}}^{I} \\ \vdots \\ R_{u_{N}}^{I} \end{bmatrix},$$

```
MatCreate(PETSC_COMM_WORLD, &A[level]);
MatSetType(A[level], MATMPIBAIJ);
MatSetSizes(A[level], locN*blocksize, ...
MatSetBlockSize(A[level], blocksize);
```

Blob2D – fully coupled, fully implicit

Implemented the 'Blob2D' fusion test case

$$egin{aligned} rac{\partial n_e}{\partial t} &= - \,
abla \cdot (n_e \mathbf{v}_{E imes B}) +
abla \cdot rac{1}{e} \mathbf{j}_{sh} \ p_e &= e n_e T_e \end{aligned} \ egin{aligned} rac{\partial \omega}{\partial t} &= - \,
abla \cdot (\omega \mathbf{v}_{E imes B}) +
abla \left(p_e
abla imes rac{\mathbf{b}}{B}
ight) +
abla \cdot \mathbf{j}_{sh} \end{aligned} \ egin{aligned}
abla \cdot \left(rac{1}{B^2}
abla_\perp \phi
ight) &= \omega \end{aligned} \ egin{aligned}
abla \cdot \mathbf{j}_{sh} &= rac{n_e \phi}{L_{||}} \end{aligned}$$

Solve for the electron density, vorticity, connection length

• Currently, only implemented on the base level, with no refinement

Blob2D

Multi-level hp-adaptivity with arbitrary hanging nodes

AMReX

AMReX solves by levels, which is not the case in most convectional FE codes

Reference

Multi-level hp-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes – Nils Dietrisch Zander (2016)

Science and Technology Facilities Council
Hartree Centre

Principle of superposition is widely used to model fracture using XFEM

$$u(\boldsymbol{x}) = \sum_{i} N_i(\boldsymbol{x}) \hat{u}_i + \sum_{i} N_i(\boldsymbol{x}) \psi(\boldsymbol{x}) \hat{a}_i.$$

Base mesh solution u_b

Overlay solution u_o

Final solution u

Multi-level hp-adaptivity with arbitrary hanging nodes

AMReX

AMReX solves by levels, which is not the case in most convectional FE codes

Reference Multi-level hp-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes – Nils Dietrisch Zander (2016)

- (1) In refine-by-superposition approach, the global continuity is ensured by applying homogeneous Dirichlet boundary conditions on the overlay solution.
- (2) The second important aspect to be considered is that the overlay mesh must not introduce a linear dependence between the shape functions of the two refinement levels.

Demonstrated for wave propagation Zander (2016)

High-order Hierarchical basis functions using Integrated Legendre polynomials

$$u(\boldsymbol{x}) = \sum_i N_i(\boldsymbol{x}) \hat{u}_i + \sum_i N_i(\boldsymbol{x}) \psi(\boldsymbol{x}) \hat{a}_i.$$

Legendre polynomials (Spectral elements)

$$L_0(r) = 1$$

$$L_1(r) = r$$

$$L_i(r) = \frac{1}{n} \left[(2i - 1)rL_{i-1}(r) - (i - 1)L_{i-2}(r) \right] \quad i = 2, 3, \dots, p,$$

$$\int_{-1}^{1} L_i L_j \, dr = \begin{cases} \frac{2}{2i+1}, & \text{if } i = j \\ 0, & \text{else} \end{cases}$$

Integrated Legendre polynomials (Hierarchical elements)

$$P_i(r) = \sqrt{\frac{2i-1}{2}} \int_{-1}^r L_{i-1}(t)dt = \frac{1}{\sqrt{4i-2}} (L_i(r) - L_{i-2}(r)) \quad i = 2, 3, \dots$$

$$\int_{-1}^{1} P_i'(x)P_j'(x)dx = 0, \quad \text{if} \quad i \neq j$$

Hierarchical basis functions can be extended to solve electromagnetic problems (High Order Finite Element Methods for Electromagnetic Field Computation, Zaglmayr, 2006)

Next steps

- Main aim for this year is expected to be replacing the external solvers (PETSc -> Hypre/MUMPS) with the internal AMReX MLMG solver, or Hypre directly, for improved performance, as well as portability to GPUs.
- (Arbitrary) higher order implementation
- Test case with adaptive mesh refinement

MLMG reference

A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier–Stokes Equations

- Almgren et al. (1998)

Hartree Centre

The Team at Hartree:

Karthik Chockalingam, Alex Grant, Olha Ivanyshyn Yaman

External Collaborators:

UKAEA – FARSCAPE/NEPTUNE Brandon Runnels, Professor, Iowa State

Thank you

