Topics in Combinatorics

Exam III (out of 10 marks) (Date: 14 Dec 2020. Timing: 12:00 to 13:05 hours)

1. Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a polynomial and S_1, \ldots, S_n be non-empty subsets of \mathbb{F} , for some field \mathbb{F} . Let (s_1, s_2, \ldots, s_n) be a point in $S_1 \times S_2 \times \cdots \times S_n$. It is given that, $\forall (a_1, a_2, \ldots, a_n) \in S_1 \times S_2 \times \cdots \times S_n$, $f(a_1, a_2, \ldots, a_n) \neq 0$ if and only if $(a_1, a_2, \ldots, a_n) = (s_1, s_2, \ldots, s_n)$. That is, f vanishes on all but one point (, which is (s_1, \ldots, s_n) ,) in $S_1 \times \cdots \times S_n$. Show that $\deg(f) \geq \sum_{i=1}^n (|S_i| - 1)$.

Answer:

For the sake of contradiction, assume that $\deg(f) < \sum_{i=1}^{n} (|S_i| - 1)$. Consider the polynomials.

$$H_i(x_i) = \prod_{s \in S_i \setminus \{s_i\}} (x_i - s).$$
$$G(x_1, \dots, x_n) = \prod_{i=1}^n H_i(x_i).$$

Note that $\deg(G)$ is $\sum_{i=1}^{n}(|S_i|-1)$. Let $f(s_1,\ldots,s_n)=c_1$ and $G(s_1,\ldots,s_n)=c_2$. Note that $c_2\neq 0$ since none of the H_i 's vanish at this point. Then, the polynomial c_2f-c_1G vanishes on all points of $S_1\times\cdots\times S_n$. However, c_2f-c_1G has degree $\sum_{i=1}^{n}(|S_i|-1)$: the monomial $x_1^{|S_1|-1}\cdots x_n^{|S_n|-1}$ has $-c_1$ as its coefficient. Using Combinatorial Nullstellensatz, there exists at least one point in $S_1\times\cdots\times S_n$ where c_2f-c_1G is non-zero which is a contradiction.