Robocode bot evolválása genetikus programozással

PETŐ ZOLTÁN BMMNO9

MÉRNÖK-INFORMATIKUS 3. ÉVFOLYAM, INTELLIGENS RENDSZEREK ÁGAZAT <u>PEZO1919@GMAIL.COM</u>

KONZULENS: KOVÁCS DÁNIEL LÁSZLÓ

BME-VIK-MIT

DKOVACS@MIT.BME.HU

2014.05.16

Tartalom

- ► A Robocode
- Evolúciós számítási módszerek
- Rendszerterv
- Megvalósítás, felhasznált eszközök
- Kiértékelés, futási eredmények
- Demo
- Összefogalalás, kiértékelés

A Robocode robotok

- mint intelligens ágensek

- A Robocode alapjai, szabályok, célok
 - ► Mit tud egy robot?
- Online versenyek, értékelés, pontozás
 - http://literumble.appspot.com/
 - Versenyszámok
 - ► RoboRumble (1v1)
 - ▶ MeeleRumble (10 bot, FFA)
 - ► TeamRumble (5∨5)
 - ► TwinDuel (2v2)
 - Kategóriák méret szerint
 - ► Korábbi próbálkozások

Az evolúciós optimalizálási módszerek

- Globális optimumot meghatározó sztochasztikus keresőeljárások Crossover
 - Fitnesst, azaz "jósági mércét" használnak az eljárás során.
- Genetikus Algoritmusok az egyedek bitfüzérek
 Genetikus Programozás az egyedek program-fák (bottom-up kiértékelés)

- Az evolúció lépései
 - Szelekció a populációból kiválasztódnak a köv. populáció egyedei általában a fitnesst figyelembe véve
 - Mutáció egy egyed (programja, vagy bitfüzére) részben megváltozik
 - Keresztezés két (vagy több) ős egyedből létrejön(nek) utód egyedek

Rendszerterv I.

- Érzékelések:
 - Ellenfél sebessége, saját sebesség, ellenféltől való távolság, ellenfél energiája, saját energia

Döntéshozás

(Belső csomópontok)

- Ellenfél iránya a tank törzséhez képest
- Saját pozíció
- Tudásbázis
 - Ellenfel sebessege / tavolsag
 - Ellenfel atlagsebessege, Sajat atlagsebesseg
 - Ellenfél közeledése/távolodása
 - Sajat energia, ellenfel energiaja
 - Falaktól való távolság (x,y)
- Döntéshozás
 - "Tavolabb van-e a fal "e" egysegnel?"
 - "Nagyobb-e a sebességem "s"-nél?
- Beavatkozás
 - > 3 fa: Lövés erőssége, Fordulás iránya és mértéke, Gyorsítás iránya és mértéke

Rendszertery II.

- Fitness az ellenfél megmaradt energiája alapján
- Az evolúciós keretrendszer egy kezdeti populációt és egy kezdeti fitness függvényt alapul véve újabb és újabb populációt hoz létre az evolúciós operátorokkal:
 - rulett alapú szelekció, (opcionális) elitizmus, mutáció (egy adott részfa helyén új részfa születik), kereszteződés (két részfa kicserélődik a szülők megfelelő fáiban)

A megvalósítás, eszközök – miért éppen ezek?

Platformválasztás – Java – a Robocode Java alapú

- ▶ IDE: IntelliJ Idea 13.1.1 Community Edition
- Windows 8, 64bit
- Intel Core 2 Duo 2.26 Ghz, 4GB ram
- ► A Watchmaker (v.0.7.1) keretrendszer
 - Szelekció, mutáció, kereszteződés és paramétereik
 - További evolúciós paraméterek
 - Elitizmus, populáció méret, stb.
 - ▶ 100 turnre "emlékszünk"
- Beépített botok Walls, SpinBot, VelociRobot, Fire
- Versenyző bot DrussGT

Kiértékelés, futási eredmények

- A beépített botok ellen könnyen győzedelmesedik a robot, de ez betudható a "Head-On" targeting mechanizmusnak.
- Bár a DrussGT ellen nagyon kis esély van győzedelmeskedni ez még sem lehetetlen. Ehhez szükség van az ellenfél óriási hibáját kihasználni. (A demoban ez látható lesz.)
- A célzási mechanizmusból és a fitness függvényből következik, hogy azok a robotok fognak jól szerepelni, akik sikeresen kikerülik az ellenfél lövedékeit, a bevitt találatok csupán elenyészően számítanak. Látható, hogy egészen jó mozgáskultúra fejlődött ki DrussGT ellen.

pm	Max mélység	Belső Node esély	Körök száma/Meccs	Populáció méret	Elitek	Generáció	Futási idő (min)	Normált fitness
0.1	4	0.75	10	20	10	25	25	51.9
0.2	6	0.82	10	20	10	31	22	68.7
0.3	3	0.65	10	10	3	26	21	73.6
0.2	6	0.65	10	20	5	28	22	12.4!
0.2	10	0.85	5	20	5	80	20	64.2

Demo

Összefoglalás, kiértékelés

- Az önálló laboratórium során:
 - Megterveztem egy Robocode bot-ok GP-alapú evolúciós optimalizációját biztosító rendszert
 - Érzékelés, Tudásbázis, Döntéshozás, Beavatkozás
 - Implementáltam a rendszert a Watchmaker framework felhasználásával
 - Többféleképp teszteltem az így elkészített rendszert
- Továbbfejlesztési lehetőségek:
 - A 4. fa optimalizálása: további érzékelések és a tudásbázis bővítésével
 - Head-On targeting helyett bizonyos szöggel az ellenfél elé célzás.
 - Ellenfélmodellezés
 - GP kiegészítése Neurális Hálózatokkal koevolúció
 - Az párhuzamosan futó evolúciók felváltva billenthetik ki egymást egy lokális minimumból
 - Többi Robocode versenyszámban való részvétel (több vs több)
 - Evobot saját maga ellen játszatása (öntanulás)

Köszönöm a figyelmet!

Kérdések?