Notations

- num_topics = k (number of topics)
- D = corpus (collection of |D| documents)
- $num_docs = |D|$ (number of documents)
- $voc_size = |V|$ (vocabulary size)
- dirich_param: an estimate of the parameter of the dirichlet distribution which generates the parameter for the (multinomial) probability distribution over topics in the document.

 $size(\alpha) = number of topics$

• word_prob_given_topic: an array of size (nb topics, vocabulary size) which gives the (estimated) probability that a given topic will generate a certain word.

$$\beta_{ij} = p(w^j = 1|z^i = 1)$$

 $size(\beta) = number of topics \times vocabulary size$

The following variables depend on the document d.

- doc_size = $|N_d|$ (number of words in the document d)
- var_dirich: the variational parameter for the dirichlet distribution, For a document d, size($\gamma^{(d)}$) = number of topics
- var_multinom: the variational parameter for the multinomial distribution

 For a document d, $\operatorname{size}(\phi^{(d)}) = \operatorname{number}$ of words in document $d \times \operatorname{number}$ of topics $\phi_{ni}^{(d)}$ depends on the relation between the word in position n of the document and the topic i of the list of topics.
- word_incidences: an array containing the number of times each word in the vocabulary appears in the document.

For a document d, size $(w^{(d)})$ = number of words in document $d \times vocabulary$ size

 $w_{nj}^{(d)} = \begin{cases} 1 & \text{if the word in position } n \text{ of the document is the word in position } j \text{ of the dictionary} \\ 0 & \text{otherwise} \end{cases}$

Algorithms

$\overline{\textbf{Algorithm 1:}} \ \overline{\textbf{E-step for}} \ \text{a document} \ d$

Data: word_incidences $(w^{(d)})$, dirich_param (α) , word_prob_given_topic (β)

Result: var_dirich $(\gamma^{(d)})$, var_multinom $(\phi^{(d)})$

Algorithm 2: M-step

 $\overline{\mathbf{Data}} \colon \{ \mathbf{word_incidences} \ (w^{(d)}), \ \mathbf{var_dirich} \ (\gamma^{(d)}), \ \mathbf{var_multinom} \ (\phi^{(d)}), \ d \in D \}$

 $\mathbf{Result} \colon \mathtt{dirich_param} \ (\alpha), \ \mathtt{word_prob_given_topic} \ (\beta)$

begin

$$\beta_{ij} \propto \sum_{d \in D} \sum_{n=1}^{N_d} \phi_{ni}^{(d)} w_{nj}^{(d)}$$
Until convergence:

$$\alpha \leftarrow \alpha - H(\alpha)^{-1}g(\alpha) \text{ where } g(\alpha) = \left(\frac{\partial L}{\partial \alpha_i}\right)_i \text{ and } H(\alpha) = \left(\frac{\partial L}{\partial \alpha_i \partial \alpha_j}\right)_{ij}$$

$$\left\{ \frac{\partial L}{\partial \alpha_i} = |D| \left[\Psi\left(\sum_{j=1}^k \alpha_j\right) - \Psi(\alpha_i)\right] + \sum_{d \in D} \left[\Psi(\gamma_i^{(d)}) - \Psi\left(\sum_{j=1}^k \gamma_j^{(d)}\right)\right] \right\}$$

$$\left\{ \frac{\partial L}{\partial \alpha_i \partial \alpha_j} = \delta_{ij} |D| \Psi'(\alpha_i) - \Psi'\left(\sum_{j=1}^k \alpha_j\right) \right\}$$

We note that $H(\alpha) = \operatorname{diag}(h) - 1z1^{\top}$ where:

$$h = (|D|\Psi'(\alpha_i))_i$$
 and $z = \left(\Psi'\left(\sum_{p=1}^k \alpha_p\right)\right)_{i,j}$

Then
$$(H^{-1}(\alpha)g(\alpha))_i = \frac{\frac{\partial L}{\partial \alpha_i} - c}{\frac{\partial^2 L}{\partial \alpha_i^2}}$$
 where $c = \frac{\sum_{j=1}^k \frac{\frac{\partial L}{\partial \alpha_j}}{\frac{\partial^2 L}{\partial \alpha_j^2}}}{z^{-1} + \sum_{j=1}^k \left(\frac{\partial^2 L}{\partial \alpha_i^2}\right)^{-1}}.$