Problem 1.5 - Uncertainty Analysis, Case B

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{\mathbf{p}}{\rho_{\text{H2O}}\,\mathbf{g}} \quad \mapsto \quad \begin{pmatrix} \rho_{\text{H2O}} & 998 \pm 0.5 & \text{Uniform}\mathcal{D} \\ \mathbf{g} & 9.80665 \\ \mathbf{p} & 101 \times 10^3 \pm 0.5 \times 10^3 & \text{Uniform}\mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{x_3}{x_1 x_2}$$

Va	riable	Uncertainty Interval	Distribution	∂f/∂x _i
x ₁	ρ _{H2O}	(9.980 ± 0.005) × 10 ²	Uniform	1.03405×10^{-2}
x ₂	g	9.80665 × (exact) 10 ⁰		1.05232
X 3	p	$(1.010 \pm 0.005) \times 10^5$	Uniform	1.02176×10 ⁻⁴

У	10.3197732976724	
Ymin Ymax	10.2635432553111 10.3760597110035	= y - 0.05623 = y + 0.0562864
ε_{max} y ± ε_{max}	$0.056258213725183 (1.032 \pm 0.006) \times 10^{1}$	$= 0.545 \%$ $= 1.032(6) \times 10^{1}$
u _c y ± u _c	$0.0296463242544561 (1.032 \pm 0.003) \times 10^{1}$	$= 0.287 \%$ $= 1.032(3) \times 10^{1}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]| \varepsilon_{i}; \quad \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
10.3197732976724 ± 0.0562582

\in [10.26352; 10.37603]

\simeq (1.032 \pm 0.006) \times 10^{1} = 1.032(6) \times 10^{1}
```

Combined Standard Uncertainty

$$\mathbf{u}_{\text{c}} = \left(\sum_{\text{i=1}}^{n} \left(\partial_{\mathbf{x}_{\text{i}}} \mathbf{f}[\mathbf{x}]\right)^{2} \mathbf{u}_{\text{i}}^{2}\right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_{\text{c}} \text{ // QUCA}$$

```
10.3197732976724 ± 0.0296463

\in [10.29013; 10.34942]

\simeq (1.032 \pm 0.003) \times 10^{1} = 1.032(3) \times 10^{1}
```

Monte Carlo Simulation

```
Block[{data, trials = 10<sup>6</sup>},
    data = f@@Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
    Mean[data] ± StandardDeviation[data]] // QUCA

10.319779478191 ± 0.0296612
    ∈ [10.29012; 10.34944]
    ≃ (1.032 ± 0.003) × 10<sup>1</sup> = 1.032(3) × 10<sup>1</sup>
```