Nanophotonic Computational Design

Jesse Lu* and Jelena Vučković

Stanford University, Stanford, California, USA. jesselu@stanford.edu

Abstract: In contrast to designing nanophotonic devices by tuning a handful of device parameters, we have developed a computational method which utilizes the full parameter space to design linear nanophotonic devices. We show that our method may indeed be capable of designing any linear nanophotonic device by demonstrating designed structures which are fully three-dimensional and multi-modal, exhibit novel functionality, have very compact footprints, exhibit high efficiency, and are manufacturable. In addition, we also demonstrate the ability to produce structures which are strongly robust to wavelength and temperature shift, as well as fabrication error. Critically, we show that our method does not require the user to be a nanophotonic expert or to perform any manual tuning. Instead, we are able to design devices solely based on the user's desired performance specification for the device.

© 2013 Optical Society of America

OCIS codes: 230.75370, 130.3990.

References and links

1. Introduction

Currently, almost all nanophotonic components are designed by hand-tuning a small number of parameters (e.g. waveguide widths and gaps, hole and ring sizes). However, the realization of increasingly complex, dense, and robust on-chip optical networks will require utilizing increasing numbers of parameters when designing nanophotonic components.

Opening the design space to include many more parameters allows for smaller footprint, higher performance devices by definition; since original designs are still included in this parameter space. Unfortunately, the lack of intuition for what such designs might look like and the inability to manually search such a large parameter space have greatly hindered the ability to employ anything even close to the available parameter space for designing nanophotonic components.

For this reason, we have developed and implemented a computational method which is able to use the full parameter space to design linear nanophotonic components in three dimensions. Critically, our method requires no user intervention or manual tuning. Instead, a *design-by-specification* scheme is used to produce designs based solely on a user's performance specification.

We show that our method can indeed produce designs which are extremely compact, and, at the same time, highly efficient. Furthermore, we demonstrate that devices with novel functionality are easily designed. We also show that our method can be used to produce designs with extreme robustness to wavelength and temperature shift, as well as fabrication error.

Lastly, since all our results are produced by simply specifying the functionality and performance of the desired device, our results suggest that our method may indeed by able to design all linear nanophotonic devices.

2. Method

minimize
$$\sum_{i}^{M} ||A_{i}(z)x_{i} - b_{i}||^{2}$$
 (1a) subject to $\alpha_{ij} \leq |c_{ij}^{\dagger}x_{i}| \leq \beta_{ij}$, for $i = 1, ..., M$ and $j = 1, ..., N_{i}$ (1b)

subject to
$$\alpha_{ij} \le |c_{ij}^{\dagger}x_i| \le \beta_{ij}$$
, for $i = 1, ..., M$ and $j = 1, ..., N_i$ (1b)

$$z_{\min} \le z \le z_{\max} \tag{1c}$$

- Results
- Conclusion