

Detecting False Data Injection attacks in Smart Grid

Zakaria El Mrabet, Daisy Flora Selvaraj, and Prakash Ranganathan School of Electrical Engineering and Computer Science (SEECS)

Introduction

 Globally, utilities loss 96\$ billion per year due to nontechnical loss – typically electricity theft, fraud, billing errors, and other loss revenue.

What is an FDI attack?

False data injection attack (FDI) is regarded as a fraud that manipulates maliciously and illegally the actual energy consumption.

How an FDI attack is conducted?

The attacker injects malicious packets in the wireless network by either hijacking the communication channel or compromising the smart meters.

Who is the attacker? Legal customer, intruder.

Goal

The purpose of this research is to develop a machine learning based approach for detecting accurately the FDI attack in Smart Grid.

Methodology

Data set

The data set used in this project includes the electricity demand profiles for 200 households for the Midwest region of the United States.

Features

The relevant features selected from this data set are:

- Electricity demand for each Household
- Date of consumption
- Time of consumption

Additionally, another feature is included related to the cost per kWh (time-of-use).

Attack model

To model the FDI attack, several membership functions are used to falsify the legitimate data set. Example of these functions are given below:

Fig. 4 Example membership function used to falsify the data

Machine learning approach

- Train an Artificial Neural Network (ANN) classifier with various activation functions.
- Compare the ANN model with Support Vector Machine (SVM) and Random Forest (RF).

Preliminary Results

Algorithm	Accuracy	P _d	P _{md}	P _{fa}
SVM- RBF	86%	72.7%	27.3%	1.8%
SVM- Sigmoid	84.3%	80.5%	19.5%	12.3%
SVM- Polynomial	82.9%	66.9%	33.1%	2.7%
ANN- Relu (100 neuron nodes)	99%	99.4%	0.6%	0,9%
RF (10 trees)	92.8%	85.9%	14.1%	1.1%
RF (100 trees)	94.3%	88.2%	11.8%	0.2%

Conclusion

The experimental results indicate that ANN is an optimal approach for detecting the falsified injected data over other approaches.

References

- Northeast Group LLC, "Electricity Theft and Non-Technical Losses: Global Markets, Solutions, and Vendors," 2017.
- Z. El Mrabet, et al. "Cyber-security in smart grid: Survey and challenges," Computers & Electrical Engineering, Volume 67, 2018.
- Z. El Mrabet et al. "Detection of the False Data Injection Attack in the Home Area Network using ANN" submitted to IEEE EIT conference, 2019.