DATA STRUCTURE AND ALGORITHMS

Lecture 03, 04: Arrays, Sparse Matrix, String

ADDRESSING VARIABLES

指標就是用位置去處理資料

- Every variable residing in memory has an address!
- What doesn't have an address?
 - register variables
 - constants/literals/preprocessor defines
 - expressions (unless result is a variable)
- How to find an address of a variable? The & operator

```
int n = 4;
double pi = 3.14159; 這個a代表了位置(地址)
int *pn = &n; /* address of integer n */
double *ppi = π /* address of double pi */
```

*pn = &n 有個pointer叫做pn 這個pointer裡面存了n的位置 a+b 會把a先存到暫存器1 把b加到暫存器1 所以暫存器1現在存著a+b 再把這個內容存到指標c裡面

r,=atb

C-

Memor

12

DEREFERENCING POINTERS

 Accessing/modifying addressed variable: dereferencing/indirection operator *

- Dereferenced pointer like any other variable
- null pointer, i.e. 0 (NULL): pointer that does not reference anything

global變數,大家都可以看得到,大家都可以去改, 所以只要有一個地方寫錯了,整個就會算錯。

當程式多的時候,你想要改變某些記憶體裡的資料,我們可以透過pointer去找到位置,

ACCESSING CALLER'S VARIABLES

利用pointer來做swap(兩個變數互換)

- write function to swap two integers
- Need to modify variables in caller to swap them
- Pointers to variables as arguments

Calling swap() function:

```
int a = 5 , b = 7;
swap(&a , &b); /* now , a = 7 , b = 5 */
```

要呼叫的時候,用swap(&a, &b),這個時候a裡面存的是原本的b,b裡面存的是原本的a(兩者已交換)

EXAMPLE

Consider the Fibonacci Function that is written previously.

```
#include <stdio.h>
int iterFib(int);
int recurFib(int);
int main() {
    int n;
                                                                                int recurFib(int n) { /* recursive version */
    while (1) {
                                                                                    if ((n == 0) || (n == 1)) return n;
        printf("n:(>=0): ");
                                                                                    return recurfib(n - 1) + recurfib(n - 2);
        scanf("%d", &n);
        while (n < 0) {
           /* error loop */
                                                                                int iterFib(int n) { /* find the factorial,
            if (n == -999) return 0;
                                                                                return as a double to keep it from overflowing */
            printf("invalid number.\nn:(>=0), exit program by entering -999: ")
                                                                                    int i;
            scanf("%d", &n);
                                                                                    int fib, fib1, fib2;
                                                                                    if ((n == 0) || (n == 1)) {
                                                                                        return n;
        printf("iterFib(%d) Fibonacci is %d. ", n, iterFib(n));
                                                                                    } else {
        printf("recurFib(%d) Fibonacci is %d. \n\n", n, recurFib(n));
                                                                                        fib1 = 0;
                                                                                        fib2 = 1;
                                                                                        for (i = 2; i <= n; i++) {
                                                                                            fib = fib1 + fib2;
                                                                                            fib2 = fib1;
                                                                                            fib1 = fib;
                                                                                        return fib;
```

INTRODUCE STEP COUNT GLOBALLY

return 前要+1

```
#include <stdio.h> global變數宣告step count,在副程式
致成0初始化了
int stepCount = 0; (自訂函式)裡面就可以直接用來算
/* a global step-count for iterative Fibonacci */
int iterFib(int);
int recurFib(int);
int main() {
   int n;
   while (1) {
       printf("n:(>=0): ");
       scanf("%d", &n);
       while (n < 0) {
           /* error loop */
           if (n == -999) return 0;
           printf("invalid number.\nn:(>=0), exit program by entering -9
           scanf("%d", &n);
       stepCount = 0; /*initialize step-count */
       printf("iterFib(%d) Fibonacci is %d. ", n, iterFib(n));
       printf("Step count is %d. \n", stepCount);
       printf("recurFib(%d) Fibonacci is %d. \n\n", n, recurFib(n));
```

How about the recursive one?

```
int recurFib(int n) { /* recursive version */

Stipcount; if ((n == 0) || (n == 1)) return n;

Stipcount; return recurFib(n - 1) + recurFib(n - 2);
```

```
int iterFib(int n) { /* find the factorial, return
as a double to keep it from overflowing */
   int i:
   int fib, fib1, fib2;
   stepCount++; /* count for if-condition */
   if ((n == 0) || (n == 1)) {
       stepCount++; /* count for return */
       return n:
   } else {
       fib1 = 0;
       stepCount++; /* count for assignment */
       fib2 = 1:
       stepCount++; /* count for assignment */
       for (i = 2; i <= n; i++) {
           stepCount++; /* count for for-loop */
           fib = fib1 + fib2;
           fib2 = fib1:
           stepCount += 3; /* count for assignments */
       stepCount++; /* count for last for-loop */
       stepCount++; /* count for return */
       return fib;
         賦值 後要+1
         if判斷 前要+1
         for迴圈 內要+1
         for迴圈 外(出來後)要+1
```

EXAMPLE

用pointer來做iterative的Fibonacci

What if using a pointer?

```
#include <stdio.h>
void iterFib(int, int*, int*);
int recurFib(int);
int main(){
  int n;
  int count1;
   int ifib;
   while (1){
       printf("n:(>=0): ");
    scanf("%d", &n);
    while (n < 0)
    { /*error loop */
       if(n==-999) return 0;
       printf("invalid number.\nn:(>=0), exit program by entering -999: ");
       scanf("%d", &n);
    iterFib(n, &ifib, &count1);
    printf("iterFib(%d) Fibonacci is %d. Step count is %d. \n", n, ifib,count1);
    printf("recurFib(%d) Fibonacci is %d. \n\n", n, recurFib(n));
```

The calling function shall be modified. Try!!

ARRAYS AND POINTERS

list

- Array: a set of index and value
- Data structure
 - For each index, there is a value associated with that index.
- Representation (possible)
 - Implemented by using consecutive memory.
- int list[5]: list[0], ..., list[4], each contains an integer

list[5]

0	1	2	3	4

ADT是一個虛擬的資料型態

• Structure Array is

objects: A set of pairs <index, value> where for each value of index

there is a value from the set item. Index is a finite ordered set of one or

more dimensions, for example, $\{0, ..., n-1\}$ for one dimension, $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)\}$ for two dimensions, etc.

Functions:

for all $A \in Array$, $i \in index$, $x \in item$, j, size $\in integer$

Array Create(j, list) ::= **return** an array of **j** dimensions where list is a

j-tuple whose ith element is the size of the

ith dimension. Items are undefined.

Item Retrieve(A, i) ::= if ($i \in index$) return the item associated with

index value i in array A

else return error

Array Store (A, i, x) ::= if (i in index)

return an array that is identical to array A except the new pair <i, x> has been inserted else return error

end array

*Structure 2.1: Abstract Data Type Array (p.50)

ARRAY IN C

- int list[5], *plist[5]
- list[5]: five integers
 list[0], list[1], list[2], list[3], list[4]
- *plist[5]: five pointers to integer

list[5]	0	1	2	3	4

ARRAY IN C (CONT'D)

Implementation of 1-D array

```
| list[0] | base address = a |
| list[1] | a + 1*sizeof(int) |
| list[2] | a + 2*sizeof(int) |
| list[3] | a + 3*sizeof(int) |
| list[4] | a + 4*sizeof(int) |
```

Compare int *list1 and int list2 in C

same: list1 and list2 are pointers difference: list2 reserve five locations

Notations:

```
list2 - a pointer to list2[0]
(list2 + i) - a pointer to list2[i] (&list2[i])

[list2 + i] - list2[i]

取到的是list2+i這個位址的值
```

EXAMPLE: 1-DIMENSION ARRAY ADDRESSINNG

```
int one[] = {0, 1, 2, 3, 4};
Goal: print out address and value
```

```
void print1 (int *ptr, int rows)
/* print out a one-dimensional array using a
pointer*/
  int i;
  printf("Address Contents\n");
  for (i = 0; i < rows; i++)
     printf("%8u%5d\n", ptr+i, *(ptr+i));
  printf("\n")
```

EXAMPLE: 1-DIMENSION ARRAY ADDRESSINNG (CONT'D)

Call print1 (&one[0],5)

Address	Contents
1228	0
1230	1
1232	2
1234	3
1236	4

*Figure 2.1: One-dimensional array addressing (p.53)

STRUCTURES (RECORDS)

把有關的東西都存放在一個結構裡

用struct設定出一個queue或是stack

CREATE STRUCTURE DATA TYPE

```
typedef struct human_being {
          char name[10];
         int age;
         float salary;
         };
Or
typedef struct {
          char name[10];
         int age;
         float salary;
         } human_being;
Human_being person1, person2;
```

```
新建一個structure的方式:
typedef struct 名稱{
                    name
                      age
                      salary
                      name
                      age
                      salam
```

ORDERED LIST

- Ordered (linear) list:
 - (item1, item2, item3,..., itemK)
- Examples
 - (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)
 - (2, 3, 4,5, 6, 7, 8, 9, 10, ,Jack, Queen, King, Ace)
 - (1941, 1942, 1943, 1944, 1945)
 - (a₁, a₂, a₃, ..., a_{n-1}, a_n)

OPERATIONS ON ORDERED LIST

- (1) Find the length, n, of the list.
- (2) Read the items from left to right (or right to left).
- (3) Retrieve the ith element.
- (4) Store a new value into the ith position.

其他花O(1)

- (5) Insert a new element at the position i, causing elements numbered i, i+1, ..., n to become numbered i+1, i+2, ..., n+1
- (6) Delete the element at position i, causing elements numbered i+1, ..., n to become numbered i, i+1, ..., n-1

用array的話做插入&刪除會很慢,會花O(n)的時間

IMPLEMENTATION ON ORDERED LIST

- Implementing ordered list by array
 - Sequential mapping
 - (1)~(4) O
 - (5)~(6) X
- Performing operations 5 and 6 requires data movement
 - Costly
- This overhead motivates us to consider non-sequential mapping of order lists in Chapter 4
 - Linked list

插入跟刪除可以用linked list來做,花費時間O(1)

- The largest exponent of a polynomial is called degree
- A polynomial is called **sparse** when it has many zero terms
- Implement polynomials by arrays

C(x) x d(x) ラ 會有22項(21次方項和常數項),因此array要給他22個以上的空間

Polynomials $A(X)=3X^{20}+2X^5+4$, $B(X)=X^4+10X^3+3X^2+1$

• Structure Polynomial is **objects**: $p(x) = a_1 x^{e_1} + ... + a_n x^{e_n}$; a set of ordered pairs of $\langle e_i, a_i \rangle$ where a_i in Coefficients and e_i in Exponents, e_i are integers ≥ 0

用電腦來表示多項式(polynomials)的時候,把係數抓出來存就好

functions:

for all poly, poly1, poly2: Polynomial, coef: Coefficients,

expon: Exponents

::= return the polynomial, Polynomial Zero()

p(x) = 0

Boolean IsZero(poly)

::= if (poly) return FALSE else return TRUE

Coefficient Coef(poly, expon)

::= if (expon 2 poly) return its coefficient else return Zero

Exponent Lead_Exp(poly)

::= **return** the largest exponent

Vloa

Polynomial Attach(poly,coef, expon) ::= if (expon 2 poly) return error

else return the polynomial

poly

with the term <coef, expon> inserted

ADT:說出這個物件是什麼,以及他對應可以做的事情是什麼 ADT跟語言沒有關係,不是C語言裡面特定的資料結構/型態

Polynomial Remove(poly, expon)

::= if (expon @ poly) return the polynomial poly with the term whose exponent is expon deleted

else return error

Polynomial SingleMult(poly, coef, expon) ::= return the polynomial

poly • coef • xexpon

Polynomial Add(poly1, poly2)

::= return the polynomial

poly1 +poly2

Polynomial Mult(poly1, poly2)

::= **return** the polynomial

poly1 • poly2

End Polynomial

*Structure 2.2: Abstract data type Polynomial (p.61)

Polynomial Addition

```
data structure 1:
                          #define MAX DEGREE 101
                          typedef struct {
                              int degree;
                              float coef[MAX_DEGREE];
                              } polynomial;

    /* d =a + b, where a, b, and d are polynomials */

 d = Zero()
                                      如果a不是0而且b也不是0,才要執行下面的動作
 while (! IsZero(a) &&! IsZero(b)) do {
   switch COMPARE (Lead_Exp(a), Lead_Exp(b)) {
     case -1: d =
       Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));
       b = Remove(b, Lead_Exp(b));
       break:
     case 0: sum = Coef (a, Lead_Exp (a)) + Coef (b, Lead_Exp(b));
       if (sum) {
         Attach (d, sum, Lead_Exp(a));
         a = Remove(a, Lead_Exp(a));
         b = Remove(b , Lead_Exp(b));
       break;
```

```
case 1: d =
     Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a));
     a = Remove(a, Lead_Exp(a));
    }
}
insert any remaining terms of a or b into d
```

advantage: easy implementation

disadvantage: waste space when sparse

會預留很多空間給實際不<mark>存在於多項式中的次方項</mark>

*Program 2.4: Initial version of padd function(p.62)

比較有效率的做法是開兩個array,一個用來存係數(coeff),一個用來存指數(explo)見下頁

DATA STRUCTURE 2: USE ONE GLOBAL ARRAY TO STORE ALL POLYNOMIALS

specification poly A B representation <start, finish> <0,1> <2,5>

- storage requirements: start, finish, 2*(finish-start+1)
- nonparse: twice as much as (1)
- when all the items are nonzero

```
MAX_TERMS 100 /* size of terms array */
typedef struct {
      float coef;
      int expon;
      } polynomial;
polynomial terms[MAX_TERMS];
int avail = 0;
```

D

Add two polynomials: D = A + B

```
void padd (int starta, int finisha, int startb, int finishb, int * startd,
             int *finishd)
                                                           availible
                                                   finish b
/^* add A(x) and B(x) to obtain/D(x)^*/
  float coefficient;
                                                                   10
 *startd = avail:
                                                              4
                                                        000
 while (starta <= finisha && startb <= finishb)
   switch (COMPARE(terms[starta].expon,
                        terms[startb].expon)) {
                                           finish b後的下一個格子開始,會開始存放答案
   case -1: /* a expon < b expon */
         attach(terms[startb].coef, terms[startb].expon);
         startb++
         break;
```

$$A(X)=2X^{1000}+1$$

 $B(X)=X^4+10X^3+3X^2+1$

$$A(X)=2X^{1000}+1$$

 $B(X)=X^4+10X^3+3X^2+1$

```
/* add in remaining terms of A(x) */
for(; starta <= finisha; starta++)
    attach(terms[starta].coef, terms[starta].expon);
/* add in remaining terms of B(x) */
for(; startb <= finishb; startb++)
    attach(terms[startb].coef, terms[startb].expon);
*finishd =avail -1;
}</pre>
```

Analysis:

O(n+m) where n, m are the number of nonzeros in A, B, respectively.

*Program 2.5: Function to add two polynomial (p.64)

```
• void attach(float coefficient, int exponent)
{
   /* add a new term to the polynomial */
   if (avail >= MAX_TERMS) {
      fprintf(stderr, "Too many terms in the polynomial\n");
      exit(1);
   }
   terms[avail].coef = coefficient;
   terms[avail++].expon = exponent;
}
```

*Program 2.6:Function to add anew term (p.65)

Problem: Compaction is required

when polynomials that are no longer needed.

(data movement takes time.)

DISADVANTAGES OF REPRESENTING POLYNOMIALS BY ARRAYS

- The value of free is continually incremented until it tries to exceed MaxTerms
- What should we do when free is going to exceed MaxTerms?
 - Either quit or reuse the space of unused polynomials by compacting the global array
 - It is costly!
- A more elegant solution is proposed in Chapter 4 by employing linked list

SPARSE MATRIX

$$\begin{bmatrix} -27 & 3 & 4 \\ 6 & 82 & -2 \\ 109 & -64 & 11 \\ 12 & 8 & 9 \\ 48 & 27 & 47 \end{bmatrix}$$

5x**3** mat [5] [3]

只有8個位置在存值, 所以浪費了28個位置在存0

SPARSE MATRIX (CONT'D)

- A general matrix consists of m rows and n columns of numbers
 - An m×n matrix
 - It is natural to store a matrix in a two dimensional array, say A[m][n]
- A matrix is called sparse if it consists of many zero entries
 - Implementing a spare matrix by a two dimensional
- array waste a lot of memory
 - Space complexity is O(m×n)

一個很稀疏(充滿0)的矩陣,如果用dimensional array來存會很佔記憶體

傳統的man 矩陣,時間複雜度會是O(m*n)

SPARSE MATRIX REPRESENTATION

- Represented by a two-dimensional array.
 - Sparse matrix wastes space.
- Use triple <row, column, value>
 - Store triples row by row
 - For all triples within a row, their column indices are in ascending order.
 - Must know the numbers of rows and columns and the number of nonzero elements

ADT OF SPARSE MATRIX

Structure Sparse_Matrix is

objects: a set of triples, <*row*, *column*, *value*>, where *row* and *column* are integers and form a unique combination, and *value* comes from the set *item*.

functions:

for all $a, b \in Sparse_Matrix, x \in item$,

i, j, max_col, max_row ∈ index

Sparse_Marix Create(max_row, max_col) ::=

return a Sparse_matrix that can hold up to

max_items = max _row 1 max_col and

whose maximum row size is max_row and

whose maximum column size is max col.

ADT OF SPARSE MATRIX (CONT'D)

Sparse_Matrix Transpose(a) ::=

return the matrix produced by interchanging the row and column value of every triple.

Sparse_Matrix Add(a, b) ::=

if the dimensions of a and b are the same **return** the matrix produced by adding corresponding items, namely those with identical row and column values.

else return error

Sparse_Matrix Multiply(a, b) ::=

if number of columns in a equals number of rows in b

return the matrix d produced by multiplying a by b according to the formula: d [i] [j] = $\mathbb{Q}(a[i][k] \cdot b[k][j])$ where d (i, j) is the (i,j)th element

else return error.

會先把同一個row存完

	rov		l value					ol valu	<u>ie</u>
		- # (↓	ot rows	(columns) # of nor	nzero	term	1S		
a[0]	6	6	8	t	[0]	6	6	8	
[1]	0	0	15		[1]	0	0	(5	
[2]	0	3	22		[2]	0	4	91	
[3]	0	5	-15	transpasa	[3]			-	
[4]	1	1	11 _	transpose	- [4]				
[5]	1	2	3		[5]				
[6]	2	3	-6		[6]				
[7]	4	0	91		[7]				
[8]	5	2	28		[8]	(1)			
row,	column i	(a) n asc	cending	order		(b)			

*Figure 2.4:Sparse matrix and its transpose stored as triples (p.69)

```
Sparse_matrix Create(max_row, max_col) ::=

#define MAX_TERMS 101 /* maximum number of terms +1*/
    typedef struct {
        int col;
        int row;
        int value;
        } term;
    term a[MAX_TERMS]
# of rows (columns)
# of nonzero terms
```

TRANSPOSE A MATRIX

要思考他的動作什麼規律?有規律才能用程式實作出來

- (1) For each row I
 - take element <i, j, value> and
 - store it in element <j, i, value> of the transpose.

difficulty: where to put <j, i, value>

$$(0, 0, 15) \rightarrow (0, 0, 15)$$

$$(0, 3, 22) \rightarrow (3, 0, 22)$$

$$(0, 5, -15) \rightarrow (5, 0, -15)$$

$$(1, 1, 11) \rightarrow (1, 1, 11)$$

Move elements down very often.

- (2) For all elements in column j,
 - place element <i, j, value> in element <j, i, value>

term a是原本的矩陣, team b 是轉換過後矩陣

```
void transpose (term a[], term b[])
/* b is set to the transpose of a */
  int n, i, j, currentb;
  n = a[0].value; /* total number of elements */
  b[0].row = a[0].col; /* rows in b = columns in a */
  b[0].col = a[0].row; /*columns in b = rows in a */
  b[0].value = n;
  if (n > 0) {
             /*non zero matrix */
    currentb = 1;
    for (i = 0; i < a[0].col; i++) 針對 columns 去做操作
    /* transpose by columns in a */
       for( j = 1; j <= n; j++)
        /* find elements from the current column */
        if (a[i].col == i) {
       /* element is in current column, add it to b */
```

```
columns
elements

b[currentb].row = a[j].col;
b[currentb].col = a[j].row;
b[currentb].value = a[j].value;
currentb++
}
```

* Program 2.7: Transpose of a sparse matrix (p.71)

兩層迴圈,所以O(columns*element的數量)

Scan the array "#columns" times.
The array has "#elements" elements. ==> O(columns*elements)

COMPARE WITH 2-DIMENSIONAL ARRAY REPRESENTATION

- Discussion: compared with 2-D array representation
 - O(columns×elements) versus O(columns×rows)
 - elements → columns×rows when non-sparse
 - → O(columns²×rows) when non-sparse

如果今天的矩陣不是這麼稀疏(sparse matrix),就不能用這個方法,不然時間複雜度會變成O(columns^2 * rows)

- Problem: Scan the array "#columns" times.
- Solution:
 - Determine the number of elements in each column of the original matrix.
 - Determine the starting positions of each row in the transpose matrix.

42

```
6 6 8
a[0]
        0 0 15
a[1]
        0 3 22
a[2]
        0 5 -15
a[3]
        1 1 11
a[4]
        1 2 3
a[5]
        2 3 -6
a[6]
        4 0 91
a[7]
        5 2 28
a[8]
```

```
INDEX [0] [1] [2] [3] [4] [5] ROW_TERMS = 2 1 2 2 0 1 STARTING_POS = 1
```

FAST MATRIX TRANSPOSING

- Store some information to avoid scanning all terms back and forth
- FastTranspose requires more space than Transpose
 - RowSize
 - RowStart

FAST MATRIX TRANSPOSING (CONT'D)

```
void fast_transpose(term a[], term b[])
         /* the transpose of a is placed in b */
          int row_terms[MAX_COL], starting_pos[MAX_COL];
          int i, j, num_cols = a[0].col, num_terms = a[0].value;
           b[0].row = num\_cols; b[0].col = a[0].row;
           b[0].value = num_terms;
          if (num_terms > 0){ /*nonzero matrix*/
            for (i = 0; i < num\_cols; i++)
columns
                row_terms[i] = 0;
            for (i = 1; i <= num_terms; i++)
elements
                row_term [a[i].col]++
            starting_pos[0] = 1;
            for (i = 1; i < num\_cols; i++)
columns
                starting_pos[i]=starting_pos[i-1] +row_terms [i-1];
```

```
elements

for (i=1; i <= num_terms, i++) {
    j = starting_pos[a[i].col]++;
    b[j].row = a[i].col;
    b[j].col = a[i].row;
    b[j].value = a[i].value;
    }
}

*Program 2.8:Fast transpose of a sparse matrix
```

```
Compared with 2-D array representation
O(columns+elements) vs. O(columns*rows)
elements --> columns * rows
O(columns+elements) --> O(columns*rows)

Cost: Additional row_terms and starting_pos arrays are required.
Let the two arrays row_terms and starting_pos be shared.
```

MATRIX MULTIPLICATION

• Definition: Given A and B, where A is $m \times n$ and B is $n \times p$, the product matrix Result has dimension $m \times p$. Its [i] [j] element is

$$result_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

for $0 \le i < m$ and $0 \le j < p$

REPRESENTATION OF ARRAYS

 Multidimensional arrays are usually implemented by one dimensional array via either row major order or column major order.

Example: One dimensional array

TWO DIMENSIONAL ARRAY - ROW MAJOR ORDER

two dimensional array存放方式有兩種:

1. row major order

						Ż	後	的	內智	学不	考									

GENERALIZING ARRAY REPRESENTATION

• The address indexing of Array A[i₁],[i₂],...,[i_n] is

$$a + i_1 U_2 U_3 ... U_n$$

 $+ i_2 U_3 U_4 ... U_n$
 $+ i_3 U_4 U_5 ... U_n$
 \cdot
 \cdot
 \cdot
 $+ i_{n-1} U_n$
 $+ i_n$

$$=\alpha+\sum_{j=1}^{n}i_{j}a_{j}$$
 , where $\begin{cases} a_{j}=\prod_{k=j+1}^{n}u_{k}$, $1\leq j\leq n$ $a_{n}=1$

STRING

- Usually string is represented as a character array.
- General string operations include comparison, string concatenation, copy, insertion, string matching, printing, etc.

Note: '\0' is a null character, which is used to represent the end of a string.

Н	е	I	I	0	W	0	r	I	d	\0
1			I							

STRING MATCHING: STRAIGHTFORWARD SOLUTION

- Algorithm: Simple string matching
- **Input**: P and T, the pattern and text strings; m, the length of P. The pattern is assumed to be nonempty.
- Output: The return value is the index in T where a copy of P begins, or 1 if no match for P is found.

• VP: ABABC ABABC ABABC

↓↓↓↓↓↓

T: ABABABCCA ABABABCCA ABABABCCA

↑

Successful match

KMP ALGORITHM

- KMP Algorithm
 - Proposed by Knuth, Morris and Pratt
- Concept
 - Use the characteristic of the pattern string
- Phase 1:
 - Generate an array to indicate the moving direction
- Phase 2:
 - Use the array to move and match string

THE FIRST CASE FOR THE KMP ALGORITHM

THE SECOND CASE FOR THE KMP ALGORITHM

THE THIRD CASE FOR THE KMP ALGORITHM

KMP ALGORITHM (CONT'D)

Failure Function

Action

KMP ALGORITHM (CONT'D)

- Definition:
 - If $p = p_0 p_1 \dots p_{n-1}$ is a pattern, then its failure function, f, is defined as

$$f(j) = \begin{cases} largest \ k < j \ such \ that \ p_0p_1 \dots p_k = p_{j-k}p_{j-k+1} \dots p_j, if \ such \ a \ k \geq 0 \ exists \\ -1, \qquad otherwise \end{cases}$$

• If a partial match is found such that $s_{i-j} \dots s_{i-1} = p_0 p_1 \dots p_{j-1}$ and $s_i \neq p_j$ then matching may be resumed by comparing s_i and $p_{f(j-1)+1}$ if $j \neq 0$. if j = 0, then we may continue by comparing s_{i+1} and p_0 .

FAST MATCHING EXAMPLE: FAILURE FUNCTION CALCULATION

- The largest k such that
 - 1. k < j
 - 2. $K \ge 0$
 - 3. $p_0 p_1 \dots p_k = p_{j-k} p_{j-k+1} \dots p_j$
- j = 0
 - Since k < 0 and $k \ge 0$ \rightarrow no such k exists.
 - f(0) = -1
- j = 1
 - Since k < 1 and $k \ge 0$, k may be 0.
 - When k=0, $p_0=a$, and $p_1=b \Rightarrow x$
 - f(1) = -1

	j	0	1	2	3	4	5	6	7	8	9
_	р	а	b	С	а	b	С	а	С	а	В
	f	-1	-1								

FAST MATCHING EXAMPLE: FAILURE FUNCTION CALCULATION (CONT'D)

•
$$j = 2$$

- Since k < 2 and $k \ge 0$, k may be 0, 1.
- When k=1, $p_0p_1=ab$, and $p_1p_2=bc$
- When k=0, $p_0=a$, and $p_2=c$

•
$$f(2) = -1$$

•
$$j = 3$$

•

•

•

•

•
$$f(3) = 0$$

j										
р	а	b	С	а	b	С	а	С	а	В
f	-1	-1	-1	0						

FAST MATCHING EXAMPLE: FAILURE FUNCTION CALCULATION (CONT'D)

- j = 4
 - Since k < 4 and $k \ge 0$, k may be 0, 1, 2, 3.
 - When k=3, $p_0p_1p_2p_3=abca$, and $p_1p_2p_3p_4=bcab$
 - When k=2, $p_0p_1p_2=abc$, and $p_2p_3p_4=cab$
 - When k=1, $p_0p_1=ab$, and $p_3p_4=ab$ \rightarrow ok!
 - When k=0, $p_0=a$, and $p_4=b$
 - f(4) = 1

j										
р										
f	-1	-1	-1	0	1	2	3	-1	0	1

FAST MATCHING EXAMPLE: FAILURE FUNCTION CALCULATION (CONT'D)

• A restatement of failure function $-1, if \ j = 0$ $f(j) = \begin{cases} f^m(j-1) + 1, \text{ where } m \text{ is the least integer } k \text{ for which } P_{f^k(j-1)+1} = P_j \\ -1, \text{ if there is no } k \text{ satisfying the above} \end{cases}$

•
$$f^1(j) = f(j)$$
 and $f^m(j) = f^m(f^{m-1}(j))$

FAST MATCHING EXAMPLE: STRING MATCHING

a

a

С

Ś

...

2: check failure function f (posP-1)

7

Ś

а

k

b

Ś

С

а

С

a b

•

3: move pattern accordingly

1: fail at posP = 4

а

b

а

b

С

а

b

posP = pat.f[posP-1]+1

THE ANALYSIS OF THE KMP ALGORITHM

- O(m+n)
 - O(m) for computing function f
 - O(n) for searching P