60.3.10.1 Compliance to clinker specification

Description

This indicator measures the percentage of the clinker volume where all clinker specifications have been fulfilled.

Purpose

This KPI measures the percentage of clinker meeting the specified quality requirements.

The indicator is used for internal benchmark.

Calculation

The indicator is normally calculated per kiln and per clinker type produced in each kiln, and then aggregated over all kilns and clinker types.

For kiln 1 and clinker A

For actual month k

Compliant clinker A in kiln 1 :
$$CClin_{1Ak}$$
 [%] = $\frac{V_{cpl1Ak}}{V_{1Ak}} * 100$

Where:

Total volume of clinker A in kiln 1 [t]: V_{1Ak} Compliant volume of clinker A in Kiln 1[t]: V_{cpl1Ak}

For year to date (months 1 to k)

Compliant clinker A in kiln 1 :
$$CClin_{1A\ YTD}$$
 [%] = $\frac{\sum\limits_{1}^{k} V_{cpl1Ak}}{\sum\limits_{1}^{k} V_{1Ak}} * 100$

For 12 months rolling

Compliant clinker A in kiln 1 :
$$CClin_{1A\ 12mr}$$
 [%] = $\frac{\sum\limits_{k=12}^{i}V_{cpl1Ak}}{\sum\limits_{k=12}^{i}V_{1Ak}}*100$

Aggregation to overall Compliance to Clinker Specification

For actual month k

Overall compliance of clinker A produced in kilns 1 to z

$$Overall \ compliant \ clinker \ A : CClin_{Ak} \ [\%] = \frac{\sum\limits_{1}^{z} V_{zAk} * CClin_{zAk}}{\sum\limits_{1}^{z} V_{zAk}}$$

Overall compliance of all clinker types A to M

Overall compliant clinker:
$$CClin[\%] = \frac{\sum\limits_{A}^{M} CClin_{Ak*}V_{A}}{\sum\limits_{A}^{M} V_{Ak}}$$

For year to date

Total volume produced in month
$$k: V_k[t] = \sum_{A=1}^{M} \sum_{1}^{z} V_{zAk}$$

Overall compliance of clinker in month k: CClink

$$Overall \ compliance \ of \ clinker \ for \ year \ to \ date \ : CClin_{YTD} \ [\%] = \frac{\sum\limits_{1}^{k} CClin_{ks} V_{k}}{\sum\limits_{1}^{k} V_{k}}$$

For 12 months rolling

Overall compliance of clinker for 12 months rolling :
$$CClin_{12mr}$$
 [%] =
$$\frac{\sum\limits_{k=12}^{k} CClin_{k*}V_k}{\sum\limits_{k=12}^{k} V_k}$$

Unit of measure:

Compliance to clinker Specifications is measured as a %.

Examples:

The indicator is normally calculated per kiln and per clinker type produced in each kiln. The main product per kiln as well as the overall compliance to clinker specification will be reported.

Quality criteria

The quality criteria and limits for acceptance have to be established for each clinker type on the following two levels:

First level (mandatory for all plants):

Kiln #	Clinker type		Free Lime		Lime saturation					
		target	Acceptance	e range	toract	Acceptance range				
			min	max	target	min	max			
Kiln 1	Clinker A	T_{FI}	$T_{FI} - 0.5$	T _{FI} + 1.0	T _{LS}	T ₁₈ - 2.5	T _{LS} + 2.5			

Target free lime T_{FL}: to be set by the plant

Second level (plant-specific parameters and ranges)

Additional specifications of selected parameters, that are critical and relevant for the plant with regard to product quality or operations

Examples: C₃A, Na₂O-eq.,SO₃ alkali/sulfur ratio, MgO, P₂O₅ etc.

Example:

Kiln#	Clinker		C ₃ A		Na₂O-eq					
		target	Acceptano	e range	torgot	Acceptance range				
	type		min	max	target	min	max			
Kiln 1	Clinker A	7	5	8	0.50	n.d.	0.60			

The percentage of compliant clinker has to be recorded independently of whether or not non-compliant clinker is stored separately. In case that non-compliant clinker is stored separately, it is usually re-introduced in small rates to the cement grinding process.

Sampling frequency

Clinker should be tested regularly (e.g. 1 hourly to 4 hourly) for the specified parameters. A pro-rata tonnage has to be allocated for each sample tested

Clinker volume

For each tested clinker sample, the clinker volume produced during the pertinent period has to be allocated (from production data records, or pro rata from daily production)

Typical targets for free lime are any values between 0.8 and 1.6% CaO_f

Target lime saturation T_{LS}: to be set by the plant

Typical targets for lime saturation are any values between 92 and 100

In case the clinker volume per individual clinker sample (1 hourly to 4 hourly) cannot readily be determined, it is acceptable to calculate the compliance to clinker specifications as the percentage of clinker samples tested and meeting all specifications with respect to the total number of clinker samples tested. Provided that a constant frequency of testing is maintained, the difference between volume compliance and sample compliance is typically within a few %.

			Previous year														
Kiln	Product			Month		1	2	3	4	5	6	7	8	9	10	11	12
Kiln 1	l a	√olume produced		V _{1Ak}	1000 t	100	30	100	120	0	145	150	145	140	100	140	110
	_ ^	Volume in compliance		VcampilAk	1000 t	100	25	95	118	0	140	140	145	140	95	135	108
Killi	В	√olume produced		V _{1Ek}	1000 t	0	0	0	60	140	0	0	0	0	40	140	30
		Volume in compliance		Veampilisk	1000 t	0	0	0	55	135	0	0	0	0	40	135	26
	A	√olume produced		V _{2Ak}	1000 t	0	0	0	0	0	25	70	70	75	25	0	0
Kiln 2	_ ^	Volume in compliance		VcompiZAk	1000 t	0	0	0	0	0	25	68	68	75	20	0	0
Kiin 2	В	√olume produced		V _{2Ek}	1000 t	60	60	10	50	60	30	0	0	0	25	60	10
	8	Volume in compliance		Vcompizek	1000 t	58	60	10	48	58	30	0	0	0	23	59	9
		Total √olume		V _k		160	90	110	230	200	200	220	215	215	190	340	150
	A	Compliance of clinker A	month	C Clin _{Ak}	%	100.0	83.3	95.0	98.3		97.1	94.5	99.1	100.0	92.0	96.4	98.2
			ytd	C Clin _{Ayld}	%	100.0	96.2	95.7	96.6	96.6	96.7	96.1	96.8	97.4	96.8	96.8	96.9
			12mr	C Clin _{Ak}	%												96.9
	В	Compliance of clinker B	month	CClinex	%	96.7	100.0	100.0	93.6	96.5	100.0				96.9	97.0	87.5
			ytd	C Clin _{Eyld}	%	96.7	98.3	98.5	96.3	96.4	96.6	96.6	96.6	96.6	96.6	96.7	96.3
			12mr	C Cling 12mrk	%												96.3
	Overall	Overall compliance of clinker	month	CClin _a	%	98.8	94.4	95.5	96.1	96.5	97.5	94.5	99.1	100.0	93.7	96.8	95.3
			ytd	C Clin _{vtd}	%	98.8	97.2	96.7	96.4	96.5	96.7	96.3	96.7	97.1	96.8	96.8	96.7
			12mr	CClin _{12mm}	%												96.7