Accuracy of "original" MPM

Lisa Wobbes, Roel Tielen December 15, 2015

Outline

- "Original" MPM
- Numerical accuracy
- Benchmarks
 - Vibrating bar
 - Oedometer
- Sources of spatial errors
 - Analogy with FEM
 - Grid crossing
- Outlook

"Original" MPM

- Modified Lagrangian algorithm
- Euler-Cromer time integration
- Piecewise linear basis functions
- No additional interventions

"Original" MPM

- Modified Lagrangian algorithm
- Euler-Cromer time integration
- Piecewise linear basis functions
- No additional interventions
- Own MATLAB implementation
- 1D (UL)FEM/MPM
- Simplified version of Deltares' code

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n) + O(\Delta t^m)$$

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n)$$

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n)$$

Spatial accuracy

$$n$$
 Grid size Error Δx E 1 $\Delta x/2$ $E/2$

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n)$$

Spatial accuracy

n Grid size Error Δx *E* 2 $\Delta x/2$ *E*/4

TUDelft

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n)$$

Spatial accuracy

n Grid size Error
$$\Delta x$$
 E $k \Delta x/2$ $E/2^k$

Numerical Approximation

$$u_{ex} = u_{num} + O(\Delta x^n)$$

Spatial accuracy

n Grid size Error Δx E $k \Delta x/2$ $E/2^k$

RMS Error

$$Error_{RMS} = \sqrt{\frac{1}{n_p} \sum_{p=1}^{n_p} \left(u_{num}(x_p, t) - u_{ex}(x_p, t) \right)^2}$$

Temporal accuracy

MPM is first order accurate in time, i.e. m = 1.

Temporal accuracy

MPM is first order accurate in time, i.e. m = 1.

Spatial accuracy

Order o	f spatia	l accuracy	Source
---------	----------	------------	--------

2 Gong (2015); Steffen (2008)

0.5 - 1 Tran (2010)

lack of spatial convergence Gong (2015); Steffen (2008)

Vibrating bar

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}$$

Boundary conditions:

$$u(0,t)=0$$

$$\frac{\partial u}{\partial x}(L,t)=0$$

Initial conditions:

$$u(x,0)=0$$

$$\frac{\partial u}{\partial t}(x,0) = v_0 \sin\left(\frac{\pi x}{2L}\right)$$

Oedometer

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial^2 y} - g$$

Boundary conditions:

$$u(0,t)=0$$

$$\frac{\partial u}{\partial y}(H,t) = \frac{p_0}{E}$$

Initial conditions:

$$u(y,0)=0$$

$$\frac{\partial u}{\partial t}(y,0) = 0$$

Accuracy: vibrating bar

Accuracy: vibrating bar

Accuracy: oedometer

Richardson's extrapolation

The order of accuracy *n* is obtained from

$$\frac{u_{num}(2h) - u_{num}(4h)}{u_{num}(h) - u_{num}(2h)} = 2^{n}.$$

Accuracy: oedometer

Richardson's extrapolation

The order of accuracy n is obtained from

$$\frac{u_{num}(2h) - u_{num}(4h)}{u_{num}(h) - u_{num}(2h)} = 2^n.$$

Conclusion

Lack of spatial convergence.

FEM: oedometer

Theoretical order of accuracy

2nd order accurate for PW basis functions when integrated using Gauss rule with 1 Gauss point per element¹.

¹Van Kan (2008)

FEM: oedometer

Theoretical order of accuracy

2nd order accurate for PW basis functions when integrated using Gauss rule with 1 Gauss point per element¹.

Observations

- Lack of spatial convergence
- Problems arise due to external forces

$$\mathbf{M}\frac{d\mathbf{v}}{dt} = \mathbf{F}_{ext} - \mathbf{F}_{int}$$

¹Van Kan (2008)

FEM: vibrating bar

Grid crossing

Grid crossing: properties of shape functions

Grid crossing: internal force

Grid crossing: vibrating bar

Figure: No grid crossing (30 elements).

Grid crossing: vibrating bar

Figure: Grid crossing (60 elements).

Grid crossing: oedometer

Depenence on PPC: vibrating string

Depenence on PPC: oedometer

Main sources of spatial errors

Presented today

- Errors arising due to external forces
- Grid crossing errors

Other sources²

- Mass mapping error
- Momentum mapping error
- Force mapping error

²Tran (2010)

Conclusions

Vibrating bar

Second order accuracy: unless particles cross element boundaries.

Conclusions

Vibrating bar

Second order accuracy: unless particles cross element boundaries.

Oedometer

Lack of convergence: due to external forces and grid crossing.

Conclusions

Vibrating bar

Second order accuracy: unless particles cross element boundaries.

Oedometer

Lack of convergence: due to external forces and grid crossing.

Both problems

Other error sources can be involved.

Outlook

- External forces: further analysis
- Projection errors: MLS
- Grid crossing: higher order interpolation functions
- 2D MPM code in MATLAB
- Deltares' implementation: analysis and recommendations

References

- Gong M. *Improving the Material Point Method.* The University of New Mexico, July, 2015.
- Van Kan J., Segal A., Vermolen F. *Numerical methods in scientific computing*. Delft University of Technology, 2008.
- Steffen M., Kirby R. M., Berzins M. *Analysis and reduction of quadrature errors in the material point method (MPM).* International Journal for Numerical Methods in Engineering 76, pp. 922-946, 2008.
- Tran L.T., Kim J., Berzins M. Solving time-dependent PDEs using the material point method, a case study from gas dynamics. International Journal for Numerical Methods in Fluids 62, pp. 709-732, 2010.

Grid crossing: internal force

$$\begin{split} F_{i+1}^{int} &\approx \sum_{p=1}^{n_i} \nabla N_i(\xi_p) \sigma_p \Omega_p + \sum_{p=1}^{n_{i+1}} \nabla N_i(\xi_p) \sigma_p \Omega_p \\ F_{i+1}^{int} &\approx \sigma \Omega(n_i - n_{i+1}) \\ \begin{cases} F_{i+1}^{int} &= 0, & \text{if } n_i = n_{i+1} \\ F_{i+1}^{int} &\neq 0, & \text{otherwise} \end{cases} \end{split}$$

Depenence on PPC: vibrating string

Depenence on PPC: oedometer

Settings: vibrating bar

	Symbol	Value	Unit
Length	L	25	m
Tension	Ε	100	Pa
Density	ρ	1	kg/m ³
Maximum velocity	v_0	0.1	m/s
Time step	Δt	$1\cdot 10^{-3}$	S
Measurement time ¹	t	0.5	s
PPC^2		4	

Settings: oedometer

	Symbol	Value	Unit
Height	L	1	m
Young's modulus	Ε	$1\cdot 10^5$	Pa
Density	ρ	$1 \cdot 10^3$	kg/m ³
Load	p_0	0	Pa
Gravitational acceleration	g	9.81	m/s^2
Time step	Δt	$1\cdot 10^{-3}$	S
Measurement time ¹	t	0.5	S
Position particle ¹	x_p	≈ 0.5	m
Number of elements ²	,	30	
PPC^2		10	

Settings: Steffen

	Symbol	Value	Unit
Length	L	1	m
Tension	Ε	100	Pa
Density	ρ	100	kg/m ³
Load	p_0	0.7	Pa
Gravitational acceleration	8	0	m/s^2
Time step	Δt	$1 \cdot 10^{-2}$	S
Domain		1.15	m
Number of elements		20	
PPC		10	

