I max
$$z = 2x_1 + 3x_2$$
 inheasible inhounded
S. to a) $x_1 + x_2 \le 2$ b) $x_1 + x_2 \le -2$ c) $x_1 + x_2 \ge 2$ d) $x_1 + x_2 \ge -2$
 $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$

c) anth usual technique:

conth excess vons.

$$x_1 + x_2 > 2$$
 $x_1 + x_2 - e_1 = 2$ $x_1 + x_2 - e_1 + a_1 = 2$

d) with would technique:

$$x_1 + x_2 > -2$$
 $x_1 - x_2 - x_2 \le 2$ $x_1 - x_1 - x_2 + S_1 = 2$

with etcess var.s.

$$x_{1} + x_{2} = -2$$
 my $x_{1} + x_{2} - e_{1} = -2$ my $-x_{1} - x_{2} + e_{1} = 2$

a) anth would technique:

$$x_1+x_2 \in 2$$
 ~ 7 $x_1+x_2+S_1=2$

with etcess var.s.

e) anth would technique: sluke. an. ver.

$$x_1 + x_2 \le -2$$
 $x_1 + x_2 + s_1 = -2$ $x_2 - x_2 - s_1 = 2$

with exacs vo:

	7	X	Xz	S_{λ}	This	basis
	1	-2	-3	O	0	2
	\bigcirc	1	4	1	2	Sa
•	1	1	O	3	6	₹ × ₂
	\mathbb{O}	ノ	ノ	1	5	\times_2
					2	_

$$x_{1} = 0, x_{2} = 2, z = 6$$

$$x_1 + 3x_2$$

S.to $x_1 + x_2 \le -2$ ~ ort. $y_2 = x_1 + x_2 \le 0$

$$\begin{array}{lll}
(=) & \max \bar{z} = 4x - 4 & \bar{z} = -2 \\
2x + 3y + 5_{x} & = 6 \\
2x - 4 & + 5_{z} = 2
\end{array}$$

	7	×	y	S~	Sz	rhs	basis	ralib
	ノ	-4	1	0	0	0	2	
	\wp	2	3	1	\bigcirc	6	S1	3
	\bigcirc	2	- イ	\bigcirc	1	2	Sz	4
•	1	0	-1	•	2	4	2	_
	\bigcirc	•	\sim	1		4	Si	
	\sim	1	-16	(~)	1/5	1	X	

Norther 1: X=Y=0 => Sx=6, Sz=Z value 2: S2=0, y=0 => x=1, s,=4 rules 3: 5,=5,=0 => opt. sol. x=3, y=1 m/of M: x=0, y=2=> s,=0, s=4 report 5: 3=0, y=-2 & weles 6: 5, =0, y=0 => x=3 &s2=-4 &

$$\binom{m+n}{m} = \binom{4}{2} = \frac{4\cdot 3}{2} = 6.$$

1001/47/45 2 0 0 1 1/4 -1/4 1 4 0 1 0 118 3/8 3/2 X $x = \frac{3}{2}$, y = 1, $\overline{2} = 5$ = 2 = -5 $S_{\lambda} = S_{2} = 0$ corr. to watex 3. last $\overline{2} - 10\omega$: $\overline{2} = -\frac{1}{4}s_1 - \frac{2}{4}s_2 + 5$ (=) 2= 4 S1+7525 How many potential basic solutions? $\begin{cases}
S_1 = S_2 = 0 & (=> \times = \frac{3}{2}, y = 1) \\
(=> 2 \text{ maximal} \\
(=> 2 \text{ mbulmal}) \\
(=> 2 \text{ mbulmal})$ (=> 2 mbulmal)