PCA and Correlation in Data Analysis

Dr. Shailesh Sivan

June 10, 2025

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ り へ ()

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

June 10, 202

1/1

Steps in PCA

- Center the data (subtract the mean).
- 2 Compute the covariance matrix.
- Ompute eigenvalues and eigenvectors of the covariance matrix.
- Sort eigenvectors by decreasing eigenvalues.
- \odot Select top k eigenvectors for dimensionality reduction.
- Project data onto new basis.

What is PCA?

- PCA (Principal Component Analysis) is a statistical technique used for dimensionality reduction.
- It transforms the data to a new coordinate system:
 - Axes = directions of maximum variance (principal components).
 - First few PCs capture most information.
- Commonly used in preprocessing for ML models and visualizations.

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

June 10, 202

2 / 18

Mathematical Formulation

- Let $X \in \mathbb{R}^{m \times n}$ be a centered data matrix.
- Covariance matrix:

$$\Sigma = \frac{1}{m} X^T X$$

• Eigen decomposition:

$$\Sigma \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- Principal components are the eigenvectors \mathbf{v}_i .
- Projected data:

$$Z = XV_k$$

Numerical Example of PCA

- Dataset: 2D data points (10 samples).
- Step 1: Center data by subtracting mean.
- Step 2: Compute covariance matrix.
- Step 3: Find eigenvalues & eigenvectors.
- Step 4: Project data onto top 1 PC (1D).

Projected Point

$$Z = X_{\mathsf{centered}} \cdot \mathbf{v}_1$$

4 D > 4 D > 4 E > 4 E > E 990

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

June 10, 2025

5 / 18

Sample Dataset (2D)

Sample	<i>x</i> ₁	<i>x</i> ₂
Α	2.5	2.4
В	0.5	0.7
C	2.2	2.9
D	1.9	2.2
Ε	3.1	3.0
F	2.3	2.7
G	2.0	1.6
Н	1.0	1.1
	1.5	1.6
J	1.1	0.9

PCA Visualization

• The figure below shows the centered data and two principal directions.

→□▶→□▶→重▶→重→の9

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

June 10, 2025

6/1

Step 1: Mean Centering

$$\mu = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 1.81 \\ 1.91 \end{bmatrix}$$

$$X_{\text{centered}} = X - \mu$$

Each value in the dataset is adjusted:

$$x_{ij}^{\text{centered}} = x_{ij} - \mu_j$$

Step 2: Covariance Matrix

$$\Sigma = \frac{1}{n-1} X^T X = \begin{bmatrix} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{bmatrix}$$

Covariance matrix represents feature variances and their correlations.

4□ → 4回 → 4 = → 4 = → 9 Q (~)

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

June 10, 20:

9 / 18

Step 4: Project Data onto PC1

• Project each centered point onto **v**₁:

$$z_i = \mathbf{x}_i^{\text{centered}} \cdot \mathbf{v}_1$$

• Projected 1D values:

$$Z = \begin{bmatrix} 0.82797 \\ -1.77758 \\ 0.9922 \\ 0.27421 \\ 1.6758 \\ 0.91295 \\ 0.0991 \\ -1.1446 \\ -0.43805 \\ -1.2238 \end{bmatrix}$$

Step 3: Eigen Decomposition

• Eigenvalues:

$$\lambda_1 = 1.2840, \quad \lambda_2 = 0.0490$$

Corresponding Eigenvectors:

$$\mathbf{v}_1 = egin{bmatrix} 0.6779 \\ 0.7352 \end{bmatrix}, \quad \mathbf{v}_2 = egin{bmatrix} -0.7352 \\ 0.6779 \end{bmatrix}$$

Principal Component: Direction of maximum variance.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Dr. Shailesh Siva

PCA and Correlation in Data Analysis

June 10, 202!

10 / 1

Step 5: Variance Retained

- Total variance = sum of eigenvalues.
- Retained variance from PC1:

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{1.2840}{1.2840 + 0.0490} \approx 0.963$$

• PCA with 1 component retains about 96.3% of the original variance.

Applications of PCA

- PCA reduces dimensionality while preserving most of the variance.
- In this example:
 - Data reduced from 2D to 1D.
 - 96.3% variance retained.
- PCA is powerful for visualization, noise reduction, and ML preprocessing.

- Dimensionality reduction (e.g., reduce from 1000 to 50 features).
- Visualization of high-dimensional data.
- Noise filtering and compression.
- Speeding up ML algorithms.
- Removing correlated features.

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

Dr. Shailesh Sivan PCA and Correlation in Data Analysis

Correlation Analysis

• Measures the strength and direction of linear relationship between two variables.

Pearson Correlation Coefficient:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}}$$

• $r \in [-1, 1]$: +1 perfect positive, -1 perfect negative, 0 no correlation

Positive and Negative Correlation

Direct Problem: Compute Correlation

• Let X = [1, 2, 3, 4, 5], Y = [2, 4, 5, 4, 5]

• Mean: $\bar{X}=3$, $\bar{Y}=4$

• Numerator:

$$\sum (x_i - 3)(y_i - 4) = (1 - 3)(2 - 4) + \ldots = 6$$

• Denominator:

$$\sqrt{\sum (x_i - 3)^2} = \sqrt{10}, \quad \sqrt{\sum (y_i - 4)^2} = \sqrt{6}$$

• $r = \frac{6}{\sqrt{60}} \approx 0.77$

Dr. Shailesh Sivan

PCA and Correlation in Data Analysis

June 10 20

17 / 10

Zero Correlation Example

Dr. Shailesh Sivan

- Let X = [1, 2, 3, 4, 5], Y = [2, 2, 2, 2, 2]
- $Var(Y) = 0 \Rightarrow$ correlation is undefined or zero.
- No relationship can be detected using Pearson correlation.

PCA and Correlation in Data Analysis June