SBML Model Report

Model name: "Lei2001_Yeast_Aerobic_Metabolism"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at March 25th 2010 at 2:28 a. m. and last time modified at June third 2010 at 10:40 a. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	11
events	0	constraints	0
reactions	20	function definitions	0
global parameters	42	unit definitions	8
rules	6	initial assignments	0

Model Notes

This the model from the article:

A biochemically structured model for Saccharomyces cerevisiae.

Lei F, Rotbll M, Jrgensen SB. <u>J Biotechnol.</u> 2001 Jul 12;88(3):205-21. PMID: 11434967 ,DOI: 10.1016/S0168-1656(01)00269-3

¹EMBL-EBI, lukas@ebi.ac.uk

Abstract:

A biochemically structured model for the aerobic growth of Saccharomyces cerevisiae on glucose and ethanol is presented. The model focuses on the pyruvate and acetaldehyde branch points where overflow metabolism occurs when the growth changes from oxidative to oxidoreductive. The model is designed to describe the onset of aerobic alcoholic fermentation during steady-state as well as under dynamical conditions, by triggering an increase in the glycolytic flux using a key signalling component which is assumed to be closely related to acetaldehyde. An investigation of the modelled process dynamics in a continuous cultivation revealed multiple steady states in a region of dilution rates around the transition between oxidative and oxidoreductive growth. A bifurcation analysis using the two external variables, the dilution rate, D, and the inlet concentration of glucose, S(f), as parameters, showed that a fold bifurcation occurs close to the critical dilution rate resulting in multiple steady-states. The region of dilution rates within which multiple steady states may occur depends strongly on the substrate feed concentration. Consequently a single steady state may prevail at low feed concentrations, whereas multiple steady states may occur over a relatively wide range of dilution rates at higher feed concentrations.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2010 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of ten unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name gram

Definition g

2.2 Unit time

Name hours

Definition 3600 s

2.3 Unit volume

Name liter

Definition 1

2.4 Unit per_h

Name per hour

Definition $(3600 \text{ s})^{-1}$

2.5 Unit g_per_1

Name gram per liter

Definition $g \cdot l^{-1}$

2.6 Unit 1_per_g

Name liter per gram

Definition $g^{-1} \cdot 1$

2.7 Unit g_per_l_per_h

Name gram per liter per hour

Definition $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$

2.8 Unit mmole_per_g_per_h

Name mmole per gram BM per hour

Definition $mmol \cdot (3600 \text{ s})^{-1} \cdot g^{-1}$

2.9 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
env cell	environment	0000290 0000290	3 3	1 1	litre litre	1	

3.1 Compartment env

This is a three dimensional compartment with a constant size of one litre.

Name environment

SBO:0000290 physical compartment

3.2 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

4 Species

This model contains eleven species. The boundary condition of five of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s_glu	Glucose	env	$g \cdot l^{-1}$		
s_pyr	Pyruvate	env	$g \cdot l^{-1}$		
$s_acetate$	Acetate	env	$g \cdot l^{-1}$		
$s_acetald$	Acetaldehyde	env	$g \cdot l^{-1}$		
s_EtOH	EtOH	env	$g \cdot l^{-1}$		
x	BM	env	$g \cdot l^{-1}$		
a	BM(active)	env	$g \cdot l^{-1}$		
AcDH	BM(AcDH)	env	$g \cdot l^{-1}$		
C02	CO2	env	$g \cdot l^{-1}$		
Red	Red. Equ. (NADH)	env	$g \cdot l^{-1}$		$ \overline{\checkmark} $
$S_{-}f$	Glucose(feed)	env	$g \cdot l^{-1}$	\Box	

5 Parameters

This model contains 42 global parameters.

Table 4: Properties of each parameter.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Id	Name	SBO	Value	Unit	Constant
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q02			0.000	` ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	qC02			0.000	$\text{mmol} \cdot (3600 \text{ s})^{-1} \cdot$	\Box
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X_a	X_a		0.100	dimensionless	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X_AcDH	$X_{-}AcDH$		0.008	dimensionless	
K.1h 0.012 $g \cdot 1^{-1}$ \checkmark k.11 1.430 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark K.1e 47.100 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark K.1e 0.120 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark K.1i 14.200 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.2 0.501 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.2 0.101 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.2i 0.101 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.3 5.810 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.3 5.10^{-7} $g \cdot 1^{-1}$ \checkmark k.4 4.800 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.5 0.010 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.5 0.010 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.5e 0.100 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.5e 0.100 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.5e 0.100 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k.6e <td< td=""><td>$k_{-}1h$</td><td></td><td></td><td>0.584</td><td>$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$</td><td></td></td<>	$k_{-}1h$			0.584	$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_{-}1h$			0.012	$g \cdot l^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k_11			1.430	$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K_11			0.940		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	k_1e			47.100	$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_{-}1e$			0.120	$g \cdot 1^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K_{-} 1i			14.200	$g^{-1} \cdot 1$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k_2			0.501		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K_2			$2 \cdot 10^{-5}$	$g \cdot l^{-1}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K_2i			0.101	$g^{-1} \cdot 1$	
k_4 4.800 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not K_4 $2.64 \cdot 10^{-4}$ $g \cdot 1^{-1}$ \not k_5 0.010 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not K_5e 0.010 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not K_5e 0.100 $g \cdot 1^{-1}$ \not K_5i 440.000 $g^{-1} \cdot 1$ \not k_6 2.820 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not k_6e 0.034 $g \cdot 1^{-1}$ \not k_6e 0.057 $g \cdot 1^{-1}$ \not k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not k_7 0.010 $g \cdot 1^{-1}$ \not k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \not K_9 10^{-6} $g \cdot 1^{-1}$ \not	k_3			5.810	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K_3			$5 \cdot 10^{-7}$	_	
K_4 $2.64 \cdot 10^{-4}$ $g \cdot 1^{-1}$ \checkmark k_5 0.010 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark K_5 0.010 $g \cdot 1^{-1}$ \checkmark k_5e 0.775 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark K_5i 440.000 $g \cdot 1^{-1}$ \checkmark k_6 2.820 $g \cdot 1^{-1} \cdot (3600 s)^{-1}$ \checkmark k_6e 0.034 $g \cdot 1^{-1}$ \checkmark k_6e 0.013 dimensionless \checkmark k_7 0.013 $0.$	$k_{-}4$			4.800		
K_5 0.010 $g \cdot l^{-1}$ \checkmark k_5e 0.775 $g \cdot l^{-1} \cdot (3600 s)^{-1}$ \checkmark K_5e 0.100 $g \cdot l^{-1}$ \checkmark K_5i 440.000 $g^{-1} \cdot l$ \checkmark k_6 2.820 $g \cdot l^{-1} \cdot (3600 s)^{-1}$ \checkmark K_6e 0.034 $g \cdot l^{-1}$ \checkmark k_6e 0.057 $g \cdot l^{-1}$ \checkmark k_7 1.203 $g \cdot l^{-1} \cdot (3600 s)^{-1}$ \checkmark K_7 0.010 $g \cdot l^{-1}$ \checkmark k_8 0.589 $g \cdot l^{-1} \cdot (3600 s)^{-1}$ \checkmark k_9 0.008 $g \cdot l^{-1} \cdot (3600 s)^{-1}$ \checkmark K_9 10^{-6} $g \cdot l^{-1}$ \checkmark	$K_{-}4$			$2.64 \cdot 10^{-4}$		
k_5e 0.775 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_5e 0.100 $g \cdot 1^{-1}$ \checkmark K_5i 440.000 $g^{-1} \cdot 1$ \checkmark k_6 2.820 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_6e 0.034 $g \cdot 1^{-1}$ \checkmark k_7e 0.013 dimensionless \checkmark k_7e 0.057 $g \cdot 1^{-1}$ \checkmark k_7e 0.010 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	$k_{-}5$			0.010		
K_5e 0.100 $g \cdot 1^{-1}$ \checkmark K_5i 440.000 $g^{-1} \cdot 1$ \checkmark k_6 2.820 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_6e 0.034 $g \cdot 1^{-1}$ \checkmark k_6e 0.057 $g \cdot 1^{-1}$ \checkmark k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_7 0.010 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	K_5			0.010		
K_5i 440.000 $g^{-1} \cdot 1$ \checkmark k_6 2.820 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_6 0.034 $g \cdot 1^{-1}$ \checkmark k_6r 0.013 dimensionless \checkmark K_6e 0.057 $g \cdot 1^{-1}$ \checkmark k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_7 0.010 $g \cdot 1^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	k_5e			0.775		
k_6 2.820 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_6 0.034 $g \cdot 1^{-1}$ \checkmark k_6r 0.013 dimensionless \checkmark K_6e 0.057 $g \cdot 1^{-1}$ \checkmark k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_7 0.010 $g \cdot 1^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	K_5e			0.100		
K_6 0.034 $g \cdot 1^{-1}$ \checkmark k_6r 0.013 dimensionless \checkmark K_6e 0.057 $g \cdot 1^{-1}$ \checkmark k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_7 0.010 $g \cdot 1^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	K_5i			440.000	_	
k_6r 0.013 dimensionless K_6e 0.057 $g \cdot 1^{-1}$ k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ K_7 0.010 $g \cdot 1^{-1}$ k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ K_9 10^{-6} $g \cdot 1^{-1}$	$k_{-}6$			2.820	_ , , , ,	
K_6e 0.057 $g \cdot 1^{-1}$ \checkmark k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_7 0.010 $g \cdot 1^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	K_6				C	
k_7 1.203 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_7 0.010 $g \cdot 1^{-1}$ \checkmark k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark						
K_7 0.010 $g \cdot 1^{-1}$ \mathbf{Z} k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \mathbf{Z} k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \mathbf{Z} K_9 10^{-6} $g \cdot 1^{-1}$ \mathbf{Z}	K_6e				_	
k_8 0.589 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark k_9 0.008 $g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$ \checkmark K_9 10^{-6} $g \cdot 1^{-1}$ \checkmark	k_7				$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	
k_9 $0.008 g \cdot 1^{-1} \cdot (3600 s)^{-1}$	K_7					
$10^{-6} \text{ g} \cdot 1^{-1}$	k_8					
$10^{-6} \text{ g} \cdot 1^{-1}$					$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	
k_9e $0.075 g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	K_9			10^{-6}		
	$k_{-}9e$			0.075	$g \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$	

Id	Name	SBO	Value	Unit	Constant
K_9e			13.000	$g \cdot 1^{-1}$	
${\tt K_9i}$			25.000	$g^{-1} \cdot 1$	
k_9c			0.004	$g \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$	
$k_{-}10$			0.392	$g \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$	
$K_{-}10$			0.002	$g \cdot l^{-1}$	
$k_{-}10e$			0.003	$g \cdot 1^{-1} \cdot (3600 \text{ s})^{-1}$	
$K_{-}10e$			0.002	$g \cdot l^{-1}$	\square
$k_{-}11$			0.020	$g \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$	
D	Dilutionrate		0.100	$(3600 \text{ s})^{-1}$	

6 Rules

This is an overview of six rules.

6.1 Rule a

Rule a is an assignment rule for species a:

$$\mathbf{a} = [\mathbf{x}] \cdot \mathbf{X}_{-}\mathbf{a} \tag{1}$$

Derived unit $\,g\cdot l^{-1}$

6.2 Rule AcDH

Rule AcDH is an assignment rule for species AcDH:

$$AcDH = [x] \cdot X_AcDH \tag{2}$$

Derived unit $g \cdot l^{-1}$

6.3 Rule X_a

Rule X_a is a rate rule for parameter X_a:

$$\frac{d}{dt}X_{-a} = \frac{(0.732 \cdot r7 + 0.619 \cdot r8) \cdot (1 - X_{-a}) - r9 - r10}{[x] \cdot vol(env)}$$
(3)

6.4 Rule X_AcDH

Rule X_AcDH is a rate rule for parameter X_AcDH:

$$\frac{d}{dt}X_AcDH = \frac{r9 - r11 - (0.732 \cdot r7 + 0.619 \cdot r8) \cdot X_AcDH}{[x] \cdot vol(env)}$$
(4)

6.5 Rule q02

Rule q02 is an assignment rule for parameter q02:

$$\begin{aligned} & qO2 \\ &= \frac{\frac{1000}{32} \cdot (0.178 \cdot r1 + 0.908 \cdot r2 + 0.363 \cdot r4 + 1.066 \cdot r5 - 0.363 \cdot r6 + 0.063 \cdot r7 + 0.214 \cdot r8)}{[x] \cdot vol \, (env)} \end{aligned}$$

6.6 Rule qC02

Rule qC02 is an assignment rule for parameter qC02:

$$qCO2 = \frac{\frac{1000}{44.01} \cdot (1.499 \cdot r2 + 0.5 \cdot r3 + 1.466 \cdot r5 + 0.127 \cdot r7 + 0.325 \cdot r8)}{[x] \cdot vol\,(env)} \tag{6}$$

7 Reactions

This model contains 20 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
	10	Tunic		
1	r1	glycolysis	$s_glu \xrightarrow{s_acetald, x} 0.978 s_pyr + 0.178 Red$	0000205
2	r2	TCA (pyruvate)	$s_p yr \xrightarrow{x, s_g lu} 1.499 CO2 + 0.908 Red$	0000205
3	r3	Pyruvate Dehydrogenase	$s_pyr \xrightarrow{X} 0.5 s_acetald + 0.33 CO2$	0000200
4	r4	Acetald. dehydrogenase	s_acetald $\xrightarrow{x, s_EtOH} 1 \cdot 363 \text{ s_acetate} + 0 \cdot 363 \text{ Red}$	0000200
5	r5	TCA (acetate)	s_acetate $\xrightarrow{x, s_g lu} 1 \cdot 446 CO2 + 1 \cdot 066 Red$	0000205
6	r6	ADH	$s_acetald + 0 \cdot 363 \text{ Red} \stackrel{X}{\rightleftharpoons} 1 \cdot 045 s_EtOH$	0000200
7	r7	BM growth (gluc)	$s_g lu \xrightarrow{X} 0.732 x + 0.127 CO2 + 0.063 Red$	0000205
8	r8	BM growth (acetate)	s_acetate $\xrightarrow{x, s_glu} 0.619 x + 0.325 CO2 +$	0000205
			0 · 214 Red	
9	r9	Acdh production	$a \xrightarrow{x, s_glu, s_EtOH} AcDH$	0000184
10	r10	active BM degradation	$a \xrightarrow{x, s_glu, s_EtOH} \emptyset$	0000179
11	r11	Acdh degradation	$AcDH \xrightarrow{X} \emptyset$	0000179
12	s_glu_in	Glucose inflow	$Sf \longrightarrow sglu$	0000185
13	s_glu_out	Glucose outflow	$s_glu \longrightarrow \emptyset$	0000185
14	s_pyr_out	Pyruvate outflow	$s_pyr \longrightarrow \emptyset$	0000185
15	s_acetate_out	Acetate outflow	$s_acetate \longrightarrow \emptyset$	0000185
16	$s_acetald_out$	Acetaldehyde outflow	s _acetald $\longrightarrow \emptyset$	0000185
17	s_EtOH_out	EtOH outflow	$s_EtOH \longrightarrow \emptyset$	0000185
18	a_{out}	active BM outflow	$a \longrightarrow \emptyset$	0000185

Nº	Id	Name	Reaction Equation	SBO
19	$x_{-}out$	BM outflow	$x \longrightarrow \emptyset$	0000185
20	$\texttt{AcDH}_\texttt{out}$	AcDH BM outflow	$AcDH \longrightarrow \emptyset$	0000185

7.1 Reaction r1

This is an irreversible reaction of one reactant forming two products influenced by two modifiers.

Name glycolysis

SBO:0000205 composite biochemical process

Reaction equation

$$s_glu \xrightarrow{s_acetald, x} 0.978 s_pyr + 0.178 Red$$
 (7)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
s_glu	Glucose	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
$s_acetald$	Acetaldehyde	
х	BM	

Products

Table 8: Properties of each product.

Id	Name	SBO
s_pyr Red	Pyruvate Red. Equ. (NADH)	

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \left(\frac{k_11 \cdot [s_glu]}{[s_glu] + K_11} + \frac{k_1h \cdot [s_glu]}{[s_glu] + K_1h} + \frac{k_1e \cdot [s_acetald] \cdot [s_glu]}{[s_glu] \cdot (K_1i \cdot [s_acetald] + 1) + K_1e}\right) \quad (8)$$

$$\cdot [x] \cdot X_a \cdot vol (env)$$

7.2 Reaction r2

This is an irreversible reaction of one reactant forming two products influenced by two modifiers.

Name TCA (pyruvate)

SBO:0000205 composite biochemical process

Reaction equation

$$s_p yr \xrightarrow{x, s_g lu} 1.499 CO2 + 0.908 Red$$
 (9)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
s_pyr	Pyruvate	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
x	BM	
s_glu	Glucose	

Products

Table 11: Properties of each product.

	1	<u> </u>
Id	Name	SBO
C02	CO2	_
Red	Red. Equ. (NADH)	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \frac{k_{-}2 \cdot [s_{-}pyr]}{([s_{-}pyr] + K_{-}2) \cdot (K_{-}2i \cdot [s_{-}glu] + 1)} \cdot [x] \cdot X_{-}a \cdot vol(env)$$
 (10)

7.3 Reaction r3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Pyruvate Dehydrogenase

SBO:0000200 redox reaction

Reaction equation

$$s_pyr \xrightarrow{X} 0.5 s_acetald + 0.33 CO2$$
 (11)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
s_pyr	Pyruvate	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
х	BM	

Products

Table 14: Properties of each product.

Id	Name	SBO
s_acetald CO2	Acetaldehyde CO2	

Kinetic Law

Derived unit $g^2 \cdot 1^{-1} \cdot \left(3600 \ s\right)^{-1}$

$$v_{3} = \frac{k_{-}3 \cdot [s_{-}pyr]^{4}}{[s_{-}pyr]^{4} + K_{-}3} \cdot [x] \cdot X_{-}a \cdot vol(env)$$
 (12)

7.4 Reaction r4

This is an irreversible reaction of one reactant forming two products influenced by two modifiers.

Name Acetald. dehydrogenase

SBO:0000200 redox reaction

Reaction equation

s_acetald
$$\xrightarrow{x, s_EtOH} 1.363 \text{ s_acetate} + 0.363 \text{ Red}$$
 (13)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
s_acetald	Acetaldehyde	

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
x	BM	
s_EtOH	EtOH	

Products

Table 17: Properties of each product.

Id	Name	SBO
s_acetate Red	Acetate Red. Equ. (NADH)	

Kinetic Law

Derived unit $g^2 \cdot 1^{-1} \cdot \left(3600 \text{ s}\right)^{-1}$

$$v_4 = \frac{k_4 \cdot [s_acetald]}{[s_acetald] + K_4} \cdot [x] \cdot X_a \cdot X_AcDH \cdot vol (env)$$
 (14)

7.5 Reaction r5

This is an irreversible reaction of one reactant forming two products influenced by two modifiers.

Name TCA (acetate)

SBO:0000205 composite biochemical process

Reaction equation

s_acetate
$$\xrightarrow{x, s_g lu} 1.446 CO2 + 1.066 Red$$
 (15)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
s_acetate	Acetate	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
x	BM	
s_glu	Glucose	

Products

Table 20: Properties of each product.

	1	<u> </u>
Id	Name	SBO
C02	CO2	
Red	Red. Equ. (NADH)	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \left(\frac{k_5 \cdot [s_acetate]}{[s_acetate] + K_5} + \frac{k_5e \cdot [s_acetate]}{([s_acetate] + K_5e) \cdot (1 + K_5i \cdot [s_glu])}\right) \cdot [x] \cdot X_a \cdot vol (env)$$

$$(16)$$

7.6 Reaction r6

This is a reversible reaction of two reactants forming one product influenced by one modifier.

Name ADH

SBO:0000200 redox reaction

Reaction equation

$$s_acetald + 0.363 Red \stackrel{X}{\rightleftharpoons} 1.045 s_EtOH$$
 (17)

Reactants

Table 21: Properties of each reactant.

Id	Name	SBO
s_acetald Red	Acetaldehyde Red. Equ. (NADH)	

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
x	BM	

Product

Table 23: Properties of each product.

Id	Name	SBO
s_EtOH	EtOH	

Kinetic Law

Derived unit $g^2 \cdot l^{-1} \cdot (3600 \ s)^{-1}$

$$\nu_6 = \frac{k_6 \cdot ([s_acetald] - k_6r \cdot [s_EtOH])}{[s_acetald] + K_6 + K_6e \cdot [s_EtOH]} \cdot [x] \cdot X_a \cdot vol(env) \tag{18}$$

7.7 Reaction r7

This is an irreversible reaction of one reactant forming three products influenced by one modifier.

Name BM growth (gluc)

SBO:0000205 composite biochemical process

Reaction equation

$$s_{glu} \xrightarrow{X} 0.732 + 0.127 + 0.063 \text{ Red}$$
 (19)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
s_glu	Glucose	

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
х	BM	

Products

Table 26: Properties of each product.

	•	
Id	Name	SBO
	BM CO2 Red. Equ. (NADH)	
neu	Red. Equ. (NADII)	

Kinetic Law

Derived unit $g^2 \cdot l^{-1} \cdot (3600 \ s)^{-1}$

$$v_7 = \frac{k_7 \cdot [s_glu]}{[s_glu] + K_7} \cdot [x] \cdot X_a \cdot vol (env)$$
(20)

7.8 Reaction r8

This is an irreversible reaction of one reactant forming three products influenced by two modifiers.

Name BM growth (acetate)

SBO:0000205 composite biochemical process

Reaction equation

s_acetate
$$\xrightarrow{x, s_g lu} 0.619 x + 0.325 CO2 + 0.214 Red$$
 (21)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
s_acetate	Acetate	

Modifiers

Table 28: Properties of each modifier.

Id	Name	SBO
x	BM	
s_glu	Glucose	

Products

Table 29: Properties of each product.

		I
Id	Name	SBO
	BM CO2 Red. Equ. (NADH)	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \frac{k_8 \cdot [s_acetate]}{([s_acetate] + K_5e) \cdot (1 + K_5i \cdot [s_glu])} \cdot [x] \cdot X_a \cdot vol (env) \tag{22}$$

7.9 Reaction r9

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name Acdh production

SBO:0000184 translation

Reaction equation

$$a \xrightarrow{x, s_glu, s_EtOH} AcDH$$
 (23)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
a	BM(active)	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
х	BM	
$\mathtt{s_glu}$	Glucose	
s_EtOH	EtOH	

Product

Table 32: Properties of each product.

Id	Name	SBO
AcDH	BM(AcDH)	

Kinetic Law

Derived unit contains undeclared units

$$v_{9} = \left(\frac{\frac{k_9 \cdot [s_glu]}{[s_glu] + K_9} + \frac{k_9e \cdot [s_EtOH]}{[s_EtOH] + K_9e}}{K_9i \cdot [s_glu] + 1} + \frac{k_9c \cdot [s_glu]}{[s_glu] + K_9}\right) \cdot X_a \cdot [x] \cdot vol(env)$$
(24)

7.10 Reaction r10

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name active BM degradation

SBO:0000179 degradation

Reaction equation

$$a \xrightarrow{x, s_glu, s_EtOH} \emptyset$$
 (25)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
a	BM(active)	

Modifiers

Table 34: Properties of each modifier.

Id	Name	SBO
x s_glu s EtOH	BM Glucose EtOH	

Kinetic Law

Derived unit $g^2 \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$

$$v_{10} = \left(\frac{k_{-}10 \cdot [s_{-}glu]}{[s_{-}glu] + K_{-}10} + \frac{k_{-}10e \cdot [s_{-}EtOH]}{[s_{-}EtOH] + K_{-}10e}\right) \cdot X_{-}a \cdot [x] \cdot vol(env)$$
 (26)

7.11 Reaction r11

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Acdh degradation

SBO:0000179 degradation

Reaction equation

$$AcDH \xrightarrow{X} \emptyset$$
 (27)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
AcDH	BM(AcDH)	

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
x	BM	

Kinetic Law

Derived unit $g^2 \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$

$$v_{11} = k_{-}11 \cdot X_{-}AcDH \cdot [x] \cdot vol(env)$$
(28)

7.12 Reaction s_glu_in

This is an irreversible reaction of one reactant forming one product.

Name Glucose inflow

SBO:0000185 transport reaction

Reaction equation

$$S_{\underline{f}} \longrightarrow s_{\underline{g}} lu$$
 (29)

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
S_f	Glucose(feed)	

Product

Table 38: Properties of each product.

Id	Name	SBO
s_glu	Glucose	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{12} = [S_f] \cdot D \cdot \text{vol}(\text{env})$$
(30)

7.13 Reaction s_glu_out

This is an irreversible reaction of one reactant forming no product.

Name Glucose outflow

SBO:0000185 transport reaction

Reaction equation

$$s_glu \longrightarrow \emptyset$$
 (31)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
s_glu	Glucose	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{13} = [s_glu] \cdot D \cdot vol (env)$$
(32)

7.14 Reaction s_pyr_out

This is an irreversible reaction of one reactant forming no product.

Name Pyruvate outflow

SBO:0000185 transport reaction

Reaction equation

$$s_pyr \longrightarrow \emptyset$$
 (33)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
s_pyr	Pyruvate	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{14} = [s_pyr] \cdot D \cdot vol(env)$$
(34)

7.15 Reaction s_acetate_out

This is an irreversible reaction of one reactant forming no product.

Name Acetate outflow

SBO:0000185 transport reaction

Reaction equation

$$s_acetate \longrightarrow \emptyset$$
 (35)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
s_acetate	Acetate	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{15} = [s_acetate] \cdot D \cdot vol(env)$$
 (36)

7.16 Reaction s_acetald_out

This is an irreversible reaction of one reactant forming no product.

Name Acetaldehyde outflow

SBO:0000185 transport reaction

Reaction equation

$$s_{-}acetald \longrightarrow \emptyset$$
 (37)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
s_acetald	Acetaldehyde	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{16} = [s_acetald] \cdot D \cdot vol(env)$$
(38)

7.17 Reaction s_EtOH_out

This is an irreversible reaction of one reactant forming no product.

Name EtOH outflow

SBO:0000185 transport reaction

Reaction equation

$$s_EtOH \longrightarrow \emptyset$$
 (39)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
s_EtOH	EtOH	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{17} = [s_EtOH] \cdot D \cdot vol(env)$$
 (40)

7.18 Reaction a_out

This is an irreversible reaction of one reactant forming no product.

Name active BM outflow

SBO:0000185 transport reaction

Reaction equation

$$a \longrightarrow \emptyset$$
 (41)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
a	BM(active)	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{18} = [a] \cdot D \cdot vol(env) \tag{42}$$

7.19 Reaction x_out

This is an irreversible reaction of one reactant forming no product.

Name BM outflow

SBO:0000185 transport reaction

Reaction equation

$$x \longrightarrow \emptyset$$
 (43)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
х	BM	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{19} = [\mathbf{x}] \cdot \mathbf{D} \cdot \text{vol}(\text{env}) \tag{44}$$

7.20 Reaction AcDH_out

This is an irreversible reaction of one reactant forming no product.

Name AcDH BM outflow

SBO:0000185 transport reaction

Reaction equation

$$AcDH \longrightarrow \emptyset \tag{45}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
AcDH	BM(AcDH)	

Kinetic Law

Derived unit $g \cdot (3600 \text{ s})^{-1}$

$$v_{20} = [AcDH] \cdot D \cdot vol(env) \tag{46}$$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species s_glu

Name Glucose

SBO:0000247 simple chemical

Initial concentration $15~\mathrm{g\cdot l^{-1}}$

This species takes part in nine reactions (as a reactant in r1, r7, s_glu_out and as a product in s_glu_in and as a modifier in r2, r5, r8, r9, r10).

$$\frac{d}{dt}s_{-g}lu = v_{12} - |v_1| - |v_7| - v_{13}$$
(47)

8.2 Species s_pyr

Name Pyruvate

SBO:0000247 simple chemical

Initial concentration $0 g \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r2, r3, s_pyr_out and as a product in r1).

$$\frac{d}{dt}s_{pyr} = 0.978 v_1 - v_2 - v_3 - v_{14}$$
(48)

8.3 Species s_acetate

Name Acetate

SBO:0000247 simple chemical

Initial concentration $0 g \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r5, r8, s_acetate_out and as a product in r4).

$$\frac{d}{dt}s_acetate = 1.363 v_4 - v_5 - v_8 - v_{15}$$
 (49)

8.4 Species s_acetald

Name Acetaldehyde

SBO:0000247 simple chemical

Initial concentration $0 g \cdot l^{-1}$

This species takes part in five reactions (as a reactant in r4, r6, s_acetald_out and as a product in r3 and as a modifier in r1).

$$\frac{d}{dt}s_{-a}cetald = 0.5 v_3 - v_4 - v_6 - v_{16}$$
 (50)

8.5 Species s_EtOH

Name EtOH

SBO:0000247 simple chemical

Initial concentration $0 g \cdot l^{-1}$

This species takes part in five reactions (as a reactant in s_EtOH_out and as a product in r6 and as a modifier in r4, r9, r10).

$$\frac{d}{dt}s \text{.EtOH} = 1.045 \ v_6 - v_{17} \tag{51}$$

8.6 Species x

Name BM

SBO:0000240 material entity

Initial concentration $0.0020 \text{ g} \cdot 1^{-1}$

This species takes part in 14 reactions (as a reactant in x_out and as a product in r7, r8 and as a modifier in r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = 0.732 \,\nu_7 \,+ 0.619 \,\nu_8 \,- \nu_{19} \tag{52}$$

8.7 Species a

Name BM(active)

SBO:0000241 functional entity

Initial concentration $0 g \cdot l^{-1}$

Involved in rule a

This species takes part in three reactions (as a reactant in r9, r10, a_out). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.8 Species AcDH

Name BM(AcDH)

SBO:0000241 functional entity

Initial concentration $0 \text{ g} \cdot 1^{-1}$

Involved in rule AcDH

This species takes part in three reactions (as a reactant in r11, AcDH_out and as a product in r9). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.9 Species CO2

Name CO2

SBO:0000247 simple chemical

Initial concentration $0 g \cdot l^{-1}$

This species takes part in five reactions (as a product in r2, r3, r5, r7, r8), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO2} = 0\tag{53}$$

8.10 Species Red

Name Red. Equ. (NADH)

SBO:0000247 simple chemical

Initial concentration $0 g \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in r6 and as a product in r1, r2, r4, r5, r7, r8), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Red} = 0\tag{54}$$

8.11 Species S_f

Name Glucose(feed)

SBO:0000247 simple chemical

Initial concentration $15 \text{ g} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in s_glu_in), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{S}_{\cdot}\mathbf{f} = 0 \tag{55}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000179 degradation: Complete disappearance of a physical entity

SBO:0000184 translation: Process in which a polypeptide chain is produced from a messenger RNA

SBO:0000185 transport reaction: Movement of a physical entity without modification of the structure of the entity

SBO:0000200 redox reaction: Chemical process in which atoms have their oxidation number (oxidation state) changed

SBO:0000205 composite biochemical process: Process that involves the participation of chemical or biological entities and is composed of several elementary steps or reactions.

SBO:0000240 material entity: A real thing that is defined by its physico-chemical structure.

SBO:0000241 functional entity: A real thing, defined by its properties or the actions it performs, rather than it physico-chemical structure

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany