# Johns Hopkins Engineering

**Methods in Neurobiology** 

Organotypic Slices Cultures



### Acute tissue slices

- Acute cultures
- Organotypic cultures

| List of organs for ex vivo tissue slice |
|-----------------------------------------|
| Liver                                   |
| Pancreas                                |
| Heart                                   |
| Brain                                   |
| Tumors                                  |
| Intestine                               |
| Lung                                    |
|                                         |

# Organotypic brain slices



### Tissue slices cultures vs cell cultures

| Tissue slices culture                                                                                                                                | Dissociated cell cultures                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Maintain the cytoarchitecture, i.e. the structure and organization of the organ                                                                      | Cell cultures are dissociated, isolated cells. Derived from tissues but in certain cases do not retain original properties |
| Greater access to and visibility of deep structures, not clearly visible in the whole organ                                                          | No layers                                                                                                                  |
| Observe structural and morphological changes such as in the case of brain slices neuronal (cellular) migration, axon outgrowth or synapse formation. | Structural or morphological changes are limited                                                                            |
| Slices come often from established animal models                                                                                                     | Extremely versatile in terms of generation of models for gene expression                                                   |
| Limited number of slices per organ                                                                                                                   | Constantly regenerate through subculture                                                                                   |

## Hippocampal slices in microfluid chambers





#### Gut slice cultures

#### A range of gastrointestinal functions can be explored in human tissues



#### Tissue baths

 Motility. Smooth muscle contractility (e.g. stomach, intestines or gallbladder)

Nerve-muscle interaction



Ussing chambers

\*Epithelial secretion, ion channel function/diarrhoea \*Epithelial barrier integrity



Perfusion myographs

- ·Vascular regulation
- Vascular leakage/ permeability



Ex vivo cultures/ Precision-cut slices

- Gl injury potential
- Inflammatory processes (e.g. cytokines)



## References

| Slide | Reference                                                                                                                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | Doussau, F., Dupont, J-L., Neel, D., Schneider, A., Poulain, B., Bossu., J.L. 2017 Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opinion on Drug Discovery. 12:10, 1011-1022 |
| 5     | Berdichevsky Y., Staley K., Yarmush, M. 2010 Building and manipulating neural pathways with microfluidics. Lab on a Chip. 10(8), pp. 999-1004.<br>https://pubs.rsc.org/en/content/articlelanding/2010/LC/b922365g#!divAbstract     |
| 6     | Linkedin SlideShare (n.d.) Assessing gastrointestinal toxicity using human tissues. Biopta. https://www.slideshare.net/davidbunton/assessing-gastrointestinal-toxicity-using-human-tissues-biopta                                  |

