Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Visualização dos dados em R

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Hadley Wickham

"The Grammar of Graphics"

Adiciona camadas nos gráficos para melhor visualização dos dados;

library(ggplot2)

Geometries

Camada que indica a forma como os dados devem ser apresentados no gráfico.

ggplot(mtcars, aes(x=mpg, y=wt)) + geom_point()

A sintaxe do ggplot

```
ggplot(data = <DATA>) +
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
     stat = \langle STAT \rangle,
     position = <POSITION>
  ) +
  <COORDINATE_FUNCTION> +
  <FACET_FUNCTION>
```

```
Data
                                 {variables of interest}
                             colour
                  x-axis
                                         size
                                                    alpha
                                                              line width
 Aesthetics
                               fill
                                        labels
                                                    shape
                                                              line type
                  y-axis
Geometries
                   point
                                      histogram
                              line
                                                     bar
                                                               boxplot
    Themes non-data ink
   Statistics
                  binning
                           smoothing descriptive inferential
Coordinates
                 cartesian
                              fixed
                                         polar
                                                    limits
      Facets
                 columns
                              rows
```

r4ds.had.co.nz/

Iris dataset

```
data(iris)
                                             Iris Versicolor
                                                               Iris Virginica
                                                       Iris Setosa
str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num   0.2   0.2   0.2   0.2   0.4   0.3   0.2   0.1   ...
 $ Species
           : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1
 1 1 1 1 1 1 1 . . .
```

Exercício

Adicione uma coluna na tabela **iris** que corresponda a um identificador único de cada observação.

```
> iris$Flower <- 1:nrow(iris)</pre>
```

Crie uma tabela onde as variáveis Length e Width estejam cada uma em uma coluna, como abaixo.

```
Species Flower part Length Width

1 setosa 1 Petal 1.4 0.2

2 setosa 1 Sepal 5.1 3.5
```

Exercício

```
> library(tidyr)
> iris$Flower <- 1:nrow(iris)</pre>
> iris.wide <- gather(iris, part measure, val, -Species, -Flower )</pre>
> iris.wide <- separate(iris.wide, part measure,</pre>
c("part", "measure"))
> iris.wide <- spread(iris.wide, measure, val)</pre>
```

Exercício

Plote um gráfico abaixo usando o ggplot2:

Exercício

Plote um gráfico abaixo usando o ggplot2:

> ggplot(iris.wide, aes(Length,
Width, col = Species, shape =
part)) + geom_point()

Exercício

Plote um gráfico abaixo usando o ggplot2:

> ggplot(iris.wide, aes(Species, Width)) + geom_point()

ggplot(iris.wide, aes(Species, Width)) + geom_point(position =

"jitter")

position:

- identity
- jitter
- dodge
- stack
- fill

> ggplot(iris.wide, aes(Species, Width)) + geom_jitter()

> ggplot(iris.wide, aes(Species, Width)) +
geom_jitter(aes(col=part))

ggplot2 - facet

ggplot(iris.wide, aes(Length, Width, col = part, shape = Species))
+ geom_point() + facet_grid(~Species)

ggplot(iris.wide, aes(Length, Width, col = part, shape = Species))

+ geom_point() + facet grid(part~Species)

ggplot2 - adicionando camadas

> ggplot(iris, aes(x = Petal.Length, y = Petal.Width, col =
Species)) + geom_point()

Como adicionar a média do comprimento e da largura de cada espécie?

ggplot2 - adicionando camadas

```
> library(dplyr)
> iris.group <- group by(iris, Species)</pre>
> iris.group <- summarise(iris.group, PLM = mean(Petal.Length),</pre>
PWM = mean(Petal.Width))
> str(iris.group)
> g <- ggplot(iris, aes(x = Petal.Length, y = Petal.Width, col =</pre>
Species)) +
  geom point()
> g + geom point(data = iris.group, aes(x = PLM, y = PWM), size =
5)
```

ggplot2 - adicionando camadas

ggplot2 - Camada Geométrica

37 geometrias

abline	contour	errorbarh	line	polygon	segment	vline
area	crossbar	freqpoly	linerange	quantile	smooth	
bar	density	hex	map	raster	step	
bin2d	density2d	histogram	path	rect	text	
blank	dotplot	hline	point	ribbon	tile	
boxplot	errorbar	jitter	pointrange	rug	violin	

```
data(iris)
str(iris)
ggplot(iris, aes(Species)) + geom_bar()
```



```
data(iris)
str(iris)
ggplot(iris, aes(Sepal.Width)) + geom_bar()
```



```
data(iris)
str(iris)
ggplot(iris, aes(Sepal.Width, fill = Species)) + geom_bar()
```



```
ggplot(iris, aes(x = Sepal.Width)) + geom_histogram()
# default: bins = 30, position = stacks;
ggplot(iris, aes(x = Sepal.Width)) + geom_histogram(binwidth = 0.1)
ggplot(iris, aes(x = Sepal.Width)) + geom_histogram(bins = 20)
```


ggplot(iris, aes(x = Sepal.Width, fill = Species)) +
geom_histogram(bins = 20)

ggplot(iris, aes(x = Sepal.Width, fill = Species)) +
geom_histogram(bins = 20, position = "dodge")

ggplot(iris, aes(x = Sepal.Width, fill = Species)) +
geom_histogram(bins = 20, position = "fill")

ggplot2 - gráfico de linha

4e+05-

Capture

```
load("fish.RData")
str(fish.tidy)
ggplot(fish.tidy,aes(x=Year, y=Capture, linetype = Species)) +
geom_line()
```

1980

Year

2000

1960

Species

Chum

Sockeye Coho Rainbow Chinook Atlantic

ggplot2 - gráfico de linha

```
load("fish.RData")
str(fish.tidy)
ggplot(fish.tidy,aes(x=Year, y=Capture, col = Species)) +
geom_line()
                         6e+05-
                                                                 Species
                                                                    Pink
                         4e+05-
                                                                    Chum
                        Capture
                                                                    Sockeye
                                                                    Coho
                                                                    Rainbow
                         2e+05-
                                                                    Chinook
                                                                    Atlantic
                         0e+00
                                   1960
                                             1980
                                                       2000
                                             Year
```

Exercício

Plote o gráfico abaixo usando o **ggplot2** e os dados **fish.tidy**:


```
load(fish.RData)
str(fish.tidy)
ggplot(fish.tidy,aes(x=Year, y=Capture, fill = Species)) +
```

geom_area()

Exercício

Plote o gráfico abaixo usando o **ggplot2** e os dados **fish.tidy**:


```
load(fish.RData)
str(fish.tidy)
ggplot(fish.tidy,aes(x=Year,
geom_area(position = "fill")
```

ggplot(fish.tidy,aes(x=Year, y=Capture, fill = Species)) +

Boas Práticas

Cor

- Incompatível com daltônicos (principalmente vermelho e verde)
- Paleta incorreta para o tipo de dados (sequencial, qualitativa e divergente)
- Grupos indistinguíveis (cores muito semelhantes)
- Feio (cores primárias de alta saturação)

Texto

- Ilegível (resolução muito pequena e baixa)
- Não descritivo (i.e., "comprimento" de quê? Quais unidades?)
- Ausência de texto

Conteúdo informativo

- Muita informação
- Pouca informação
- Nenhuma mensagem ou finalidade clara

Eixos

- Relação de aspecto ruim
- Supressão da origem
- Eixos x ou y quebrados
- Comum, mas não alinhado

Estatísticas

Visualização não corresponde às estatísticas reais

Boas Práticas

Geometrias

- Tipo de plotagem errado
- Orientação incorreta

Non-data ink (tudo o que não é do próprio dado)

Uso inadequado

Gráficos 3D

- Problemas perceptivos
- Terceiro eixo inútil

Use seu bom senso:

Existe algo no meu gráfico que obscurece uma leitura clara do dados ou a mensagem?

Referências

- Aula baseada no curso "**Data Visualization with ggplot2 (Part 1)**" de Rick Scavetta: https://www.datacamp.com/courses/data-visualization-with-ggplot2-1
- Ciência de Dados com R IBPAD: https://www.ibpad.com.br/o-que-fazemos/publicacoes/introducao-ciencia-de-dados-com-r/
- Tidyverse: https://ggplot2.tidyverse.org/index.html (link para cheat sheet!)
- R for data Science: https://r4ds.had.co.nz/
- https://skillgaze.com/2017/10/31/understanding-different-visualization-layers-of-ggplot/