МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Вычислительный центр ФРАНК Л.С, РАМИЛЬ АЛЬВАРЕС X.

ПОДПРОГРАММА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ ДЛЯ ИП-2.

Серия:

Математическое обслуживание машины «Сетунь»

Под общей редакцией Е. А. Жоголева Выпуск 3

Москва — 1964 г.

Содержание

Предисловие
§1. Обращение в подпрограмме
§2. Некоторые требования к информации
§3. Описание метода, реализованного в подпрограмме7
§4. Блок-схема подпрограммы12
§5. Ввод подпрограммы15
§6. Таблица остановов16
Литература:17
Подпрограмма:18

Предисловие

Подпрограмма вычисления значений определенных интегралов была разработана и составлена в 1961 г. Франком Л.С. В связи с некоторыми изменениями, произведенными в машине "Сетунь", подпрограмму потребовалось несколько изменить. Эту работу выполнил Рамиль Альварес Х. В процессе проверки этой подпрограммы им обнаружены некоторые неточности в ее первоначальном варианте и внесены в связи с этим соответствующие изменения в алгоритм. Кроме подпрограмме был сделан ряд изменений, приведших к ее сокращению, и был присоединен второй вход в подпрограмму, требующий другую форму задания подпрограммы вычисления подынтегральной функции. В результате всех этих изменений появился новый вариант подпрограммы, значительно отличающийся от первоначального варианта.

§1. Обращение в подпрограмме.

Настоящая подпрограмма предназначена для вычисления значений определенных интегралов при работе в системе ИП-2. Предполагается, что при обращении к данной подпрограмме она вместе с ИП-2 и стандартными подпрограммами действий типа сложения, умножения и деления находится на магнитном барабане и ИП-2 находится в рабочем состоянии [1].

Подпрограмма имеет два входа: J-I и J-II, каждому из которых соответствует свой способ организации подпрограммы вычисления подынтегральной функции (подробнее см. 2.5). Обращение к подпрограмме вычисления значений определенных интегралов имеет следующий вид:

$$(x_0)$$
: $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{1}$ $\overline{3}$ (x_1) : $\overline{1}$ $\overline{4}$ $\overline{2}$ $\overline{00}$ обощенный переход к подпрограмме (x_2) : A_j (x_3) : A_f (x_4) : A_a (x_5) : A_b (x_6) : A_h (x_7) : A_ε (x_8) : A_y

A_J — обобщенный адрес соответствующего входа подпрограммы вычисления значений определенных интегралов; при обращении к входу J-I.

$$A_i = 0.22 \, \overline{2} \, \overline{3} (0.22 \, YX),$$

при обращении к входу

$$A_j = 0.2 \, \overline{4} \, \overline{3} \, 0 \, (0.2 \, \text{W} \, X0),$$

A_f — обобщенный адрес начала подпрограммы вычисления подынтегральной функции;

A_a и A_b — обобщенные адреса значений, соответственно, нижнего и верхнего пределов интегрирования;

A_h — обобщенный адрес значения начального шага интегрирования;

 A_{ϵ} — обобщенный адрес значения погрешности, с которой требуется вычислить значение интеграла;

A_v — обобщенный адрес результата.

В начале работы подпрограммы происходит запоминание состояния зоны Φ_0 оперативной памяти в зону M_0 (при M_0 <> 0) магнитного барабана. По окончании работы подпрограммы в зоне Φ_0 оперативной памяти будет находится зона магнитного барабана, которой соответствует обобщенный адрес A_v .

- §2. Некоторые требования к информации.
- 2.1. Адреса A_a , A_b , A_h и A_ϵ не могут быть обобщенными адресами величин и и ν , а также обобщенными адресами оперативной памяти, т.е. если

$$A_Z = \Pi_Z M_Z \Delta_Z$$
,

где z ∈ $\{a, b, h, \epsilon\}$, то

$$\Pi_z = 0$$
,

$$M_z \neq 0, M_z \neq 1\bar{3}, M_z \neq 1\bar{4};$$

- 2.2. Величина h начального шага интегрирования должна быть отлична от нуля. Если h=0, то в подпрограмме интеграла произойдет останов Ω_3 (см. §4).
- 2.3. Если заданная величина начального шага интегрирования по модулю больше длины отрезка [a, b], то за начальный шаг берется длина всего отрезка [a, b].
- 2.4. Вычисляемое по подпрограмме значение подынтегральной функции в нормальном представлении (см. (7.2) в работе [1]) должно быть помещено на место величины u.

Это будет автоматически выполнено, если значения подынтегральной функции получаются в результате обращения к стандартной программе системы ИП-2.

2.5. Каждому входу подпрограммы интеграла соответствуют свои требования на подпрограмму вычисления подынтегральной функции.

При обращении к входу J-1 подпрограмма подынтегральной функции вызывается и выполняется в зоне Φ_1 оперативной памяти. При этом она составляется в системе ИП-2 и заканчивается обобщенным переходом по адресу:

0 22 04,

т.е. пишутся три стандартные строки (обязательно в одной зоне подпрограммы)

 $\begin{bmatrix}
 Z Y3 Z3 \\
 Z WY 00 \\
 0 22 04
 \end{bmatrix}$

При обращении к входу J-II подпрограмма подынтегральной функции вызывается и выполняется в зоне Ф₀ оперативной памяти. При этом она должна удовлетворять всем требованиям стандартной программы библиотеки ИП-2 (см. §7 в работе [1]).

Обращение к входу J-I упрощает составление подпрограммы подынтегральной функции (допускается полная интерпретация), но в этом случае вычисление интеграла может занимать больше машинного времени, чем при обращении к входу J-II. Если в программе производятся обращения только к входу J-II подпрограммы вычисления значений определенных интегралов, то одну зону данной подпрограммы, расположенной в зоне 22 магнитного барабана можно считать свободной и использовать в программе для других целей.

§3. Описание метода, реализованного в подпрограмме.

Вычисление значения определенного интеграла производится по квадратурной формуле, которая полу-

чается интегрированием интерполяционного многочлена Лагранжа [2] 3-ей степени для функции f(x) на отрезке $[x_0, x_0 + 3h]$. Остаточный член формулы получается интегрированием погрешности аппроксимации функции f(x) многочленом Лагранжа 3-ей степени. Эта квадратурная формула имеет локальную погрешность порядка h^5 при условии, что f(x) имеет непрерывную производную IV порядка.

$$\int_{x_0}^{x_0+3h} f(x) dx = \frac{3}{8} h[f(x_0) + 3f(x_0+h) + \\
+3f(x_0+2h) + 3f(x_0+3h) - 0,045 h^5 f^{IV}(\eta)], \\
\eta \in [x_0, x_0+3h]$$
(1)

Если применять формулу (1) на отрезке [a, a+h], разделенному на 3N частей (h'=h/(3N)), к каждому частичному интервалу (X_{3K} , X_{3K+3}), то получим:

$$\int_{a}^{a+h} f(x) dx = \frac{3}{8} h' [f_0 + f_{3N} + \frac{3}{8} h' [f_0 + f_0 + \frac{3}{8} h']] + C(h')^4)} \right],$$
(2)

Величина C((h')⁴) может быть оценена:

$$C((h')^{4}) = -0.045(h')^{5} \sum_{i=1}^{N} f^{IV}(\eta_{i}) \approx$$

$$\approx -0.045(h')^{4} \int_{a}^{a+h} f^{IV}(\eta) d\eta.$$

Отсюда

$$|C((h')^4)| \leq 0.045 \cdot h \cdot (h')^4 \cdot \max |f^{IV}(x)|,$$

$$x \in [a, a+h]$$
(3)

Возьмем N=3^m, где m — номер итерации. Тогда при каждой последующей итерации будет происходить дробление каждого частичного интеграла на три равные части. Приближенное значение интеграла при m-ой итерации обозначим через J_m. При m=0 приближенное значение интеграла вычисляется по формуле трапеции, т.е.:

$$J_{0} = [f(a) + f(a+h)] \cdot h/2$$

$$J_{m} = \frac{3}{8} \cdot h \cdot 3^{-m} \cdot \{f(a) + f(a+h) + \frac{1}{3} \cdot \sum_{k=1}^{3^{m-1}} [f(a) + f(a + \frac{h}{3^{m}} \cdot (3k-2)) + \frac{1}{3} \cdot \sum_{k=1}^{3^{m-1}-1} f(a + \frac{h}{3^{m}} \cdot (3k-1))] + 2 \cdot \sum_{k=1}^{3^{m-1}-1} f(a + \frac{h}{3^{m-1}} \cdot k) \}.$$
(4)

Обозначим через SJ_m следующее выражение:

$$SJ_{m} = f(a) + f(a+h) + 3 \cdot \sum_{k=1}^{3^{m-1}} \left[f(a + \frac{h}{3^{m}} \cdot (3k-2)) + f(a + \frac{h}{3^{m}} \cdot (3k-1)) \right] + 2 \cdot \sum_{k=1}^{3^{m-1}-1} f(a + \frac{h}{3^{m-1}} k).$$
(5)

и через $SJ_m'=3^m\cdot SJ_m$, тогда

$$J_m = \frac{3}{8} hSJ_m'$$
.

Если ввести еще одно новое обозначение:

$$Sf_{m} = \sum_{k=1}^{3^{m-1}} \left[f\left(a + \frac{h}{3^{m}} \cdot (3k-2)\right) + f\left(a + \frac{h}{3^{m}} \cdot (3k-1)\right) \right],$$

то справедлива следующая рекуррентная формула:

$$SJ_{m+1} = SJ_m - Sf_m + 3Sf_{m+1}$$
 (6)

Если обозначить $SJ_m - Sf_m$ через S_m , то формула (6) примет следующий вид:

$$SJ_{m+1} = S_m + 3Sf_{m+1} S_{m+1} = SJ_{m+1} - Sf_{m+1}$$
(7)

Для m=0 формулы (7) нужно доопределить следующим образом:

$$SJ_0 = \frac{4}{3} [f(a) + f(a+h)]$$

$$S_0 = f(a) + f(a+h)$$
(7')

Формулы (7') и (7) положены в основу алгоритма, реализованного в подпрограмме интеграла. Итерационный процесс на отрезке [A1,A1+h1] заканчивается, если выполняется следующее условие:

$$|SJ'_{m-1} - SJ'_m| < \frac{\varepsilon}{|b-a|},\tag{8}$$

и в этом случае J_m принимается за значение

$$\int_{AI}^{AI+hI} f(x) dx,$$

а итерационный процесс применяется к отрезку

$$[A1+h1, A1+h1+9h\frac{1}{3^m}].$$

Если на отрезке [A1, A1+h1] после семи итераций условие (8) не выполнено, то итерационный процесс применяется заново, но уже к отрезку [A1, A1+h1/3⁷]

§4. Блок-схема подпрограммы.

В дальнейшем изложении символы, начинающиеся с заглавных букв*, (например: М, SJ' и т.д.), обозначают величины, представленные с фиксированной запятой. Символы, начинающиеся с маленьких букв, обозначают величины, представленные с плавающей запятой в системе ИП-2. Например:

$$sJ' = SJ' \cdot 3^{PsJ'}$$

где SJ' — мантисса величины sJ', а PsJ' — троичный порядок этой величины (см. §6 в работе [1]). Символ := означает, что величине, стоящей перед ним, надо присвоить значение выражения, стоящего после него. Группа операторов, заключенная в прямоугольник, обозначает безусловный составной оператор. Символ вили \mathfrak{p} обозначает, что при выполнении условия В нужно продолжать вычисление по вертикальновыходящей стрелке, а при невыполнении — по горизонтально-выходящей стрелке. Символ $\mathfrak{h}\cdot \mathfrak{3}^k$ обозначает машинный сдвиг на \mathfrak{k} разрядов величины \mathfrak{k} , а символ — машинное логическое умножение величин \mathfrak{k} и \mathfrak{E}_m ; $\mathfrak{N}(\mathfrak{D})$ обозначает число сдвигов при выполнении машинной операции нормализации величины \mathfrak{D} .

^{*} Исключение составляет символ J, обозначающий величину с плавающей запятой в системе ИП-2.

Блок-схема подпрограммы:

Как видно из блок-схемы, если $H \cdot M = 0$, то происходит останов Ω_3 . В подпрограмме останов Ω_3 происходит по команде:

0 02 2X

или по команде:

1 30 2X,

при этом величина Н будет находится в регистре R, а содержимое регистра C равно

044.

§5. Ввод подпрограммы.

Подпрограмма вычисления значений определенных интегралов, отперфорированная вместе с программой "Ввод с контролем", вводится с фототрансмиттера № І в автоматическом режиме нажатием кнопки "начальный пуск". При правильном вводе всей подпрограммы происходит останов Ω₁ по команде:

0 01 2X.

При неправильном вводе какой-либо зоны происходит останов Ω_2 по команде

0 42 2X.

Для повторения ввода неправильно введенной зоны необходимо на фототрансмиттере №І передвинуть перфоленту на одну зону назад и нажать кнопку "пуск". При повторном неправильном вводе необходимо повторить ввод с самого начала.

§6. Таблица остановов.

 Ω_1 — останов при правильной вводе всей подпрограммы.

 Ω_2 — останов при неправильном вводе зоны.

 Ω_3 — останов при работе подпрограммы, когда

 $H \cdot M = 0$

Литература:

- [1] Жоголев Е.А. Математическое обслуживание для машины "Сетунь", Отчет ВЦ МГУ, 1961 г.
- [2] Березин И.С. и Жидков Н.П. методы вычислений, т.1, Физматгиз, 1959 г.

Подпрограмма: Ввод с контролем

$\begin{array}{llllllllllllllllllllllllllllllllllll$
NI 2 12 4A] 04 0 21 00 DH • •
7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
W4 1 11 33J 11 0 2X 1X 311-2 •
XY Z 4W YY
$x_1 + x_2 \neq 0$ $x_1 + x_2 \neq 0$ $x_2 + x_3 \neq x_4 = x_$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
YZ YO O OO OZ Y1 1 XO OX Σ 22 3Y O 4X YO C_{2} S A
¥2 ¥3 0 00 00 € steuku 3Z 30 0 42 33 (\$)+Σ ⇒ (\$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2Y Z 00 00 -81e _A 34 0 3X 1X Y∏-Z ! 7 2Z ZO 0 41 ZO M⇒(F) 4 ¹² 4W 4X 0 20 13 Y∏-1 F ²
Z1 0 41 2X (F)+M \Rightarrow (F) 4Y 0 13 20 $e_A \Rightarrow$ (F) Z2 Z3 0 41 ZX (F)+M \Rightarrow (F) 4Z 40 0 24 00 6 Π $f \in$
$z_4 \circ y_2 \ni (S) - (3M + y_2) \Rightarrow (S)$ 41 0 21 00 M
0x 0 42 2x Ω ₂ 44 1 2x w3 2 ·
0Z 00 0 14 00 $\boxed{5}$ $\boxed{7}$ $\boxed{7}$ KC 0 00 02 01 0 2W X3 $\boxed{9}$ $\boxed{9}$ $\boxed{2}$ $\boxed{2}$ $\boxed{2}$ 4X

Зона настройки по входам J-I и J-II Возврат

		Зона МБ	2W
Адрес	Команда	Адрес	Команда
$\Pi_{\Phi}=1$		$\Pi_{\Phi}=1$	
XW WX	Z 4¥ 03 (c) ⇒(4) } 412	02 03 0 0X	30 (A ≥ i) ⇒ (S)
MT	Z M3 00 PU 1,8x1	04 1 XX	13 (β) ⇒ (θ ₁)
wz wo	0 22 32 A ₃ }J⇒(A ₃)	1W 1X Z 4Y	
W1	Z 00 Y1	1Y Z W3	
W2 W3	0 00 00 4 y	1Z 10 0 00	00 AB \ (AB) ⇒ B
W4	2 Y3 23 (c)+3e _A → (F)	11 Z 00	Y1
XW XX		47 12 13 0 2Z	,
XX	0 00 00 (01)	T 14 Z W3	
XZ XO	Z 4Y 03 (c) ⇒ (d)		$OO(Aa)(Aa) \Rightarrow \infty$
X1	Z W3 00 511 18x1 (343)=((S) 2Y Z 00	Y1 (
X2 X3	Z 00 32 Av	22 20 0 22	•
X. 4	0 1W 20	21 Z w3	
XM XX	1 31 Y3 (\$) ⇒ Af		oo A_{ε} $(A_{\varepsilon}) \Rightarrow \varepsilon$
XX	$\begin{bmatrix} 2 & 4Y & 03 \\ 0 & 20 & 00 \end{bmatrix} (2\ell_4) \Rightarrow (S)$	24 Z 00	¥1
YZ YO	0 20 00 (004)	3W 3X 0 21	_
Y 1	1 2x y3 $(S) \Rightarrow A_{\alpha}$	3Y Z w3	i
X5 X3	$\left(2^{4}\right)\left(2^{6}\right)\left(2^{6}\right)\Rightarrow\left(3\right)$	32 30 0 2Z	4 5 T(A) 77 TT
¥ 4	0 20 00)	31 0 00	J
ZW ZX	1 10 Y3 (S) ⇒ AB	32 33 0 2Y	,
ZY	$z \stackrel{\text{Y}}{=} 03$ $(2\ell_6) \Rightarrow (5)$	34 Z W3	
2Z Z0	0 20 00]		$OOAR$ AR $\Rightarrow R$
Z1	$\begin{array}{c} 1 & 4X & Y3 & (S) \Rightarrow AR \\ 7 & 4Y & 93 \end{array}$	4Y Z 00	L
Z2 Z3		4Z 40 0 2Z	
24	0 20 00	41 1 31	· · · · · · · · · · · · · · · · · · ·
ON OX	1 23 ¥3 (\$) ⇒ Aε	42 43 O YY	21. 1 A 18
01	$\begin{bmatrix} 2 & 4Y & 03 \\ 0 & 20 & 00 \end{bmatrix} (\mathcal{H}_g) \Rightarrow (S)$	44 Z WX.	•
02 00	0 20 00)	KC 0 00	
01	1 W3 Y3 $(S) \Rightarrow A_3$	Z XY	70

Зона МБ 2Х

Адрес	Команда	Адрес	Команда
Π₀=1		$\Pi_{\Phi}=1$	
WW WX 0.42 30 WY 1 XX 10	X ⇒ (\$) *)	02 03 Z 4¥	x3 (१)⇒(५) x3 (१)⇒(५)
WZ WO O 3Z 30			30 H⇒(g) 선4
W1 1 TO 10 W2 W3 0 33 30	$P8 \Rightarrow (S)$	1Y 0 44 1Z 10 Z 4Y	10 Cl (Z) Hz (x) ⇒(Z) ←13
W4 0 43 3X XW XX 1 X1 1X	$AU - X \downarrow_8 \leftarrow_1 e$ $(Y) - b^{-} \Rightarrow (Y)$	11 0 14 12 13 0 2Z	40 (3): 2 = (3)
XY 0 44 40	$-(S) \Rightarrow (S)$	14 Z 4Y	03
XZ XO 1 WX ZO X1 Z 4Y Y3	$(\zeta) \Rightarrow (\zeta) \leftrightarrow \zeta$	2W 2X Z W3 2Y 0.21	1 F
X2 X3 0 Y2 31 X4 Z 4Y Y0	(0 Y2+(F)) ⇒ (S) Cgb(S') Ha (L) ⇒ (S)	2Z 20 0 1Z 21 0 21	
YW YX O Y2 Y4	$(S) \Rightarrow (OY2+(F))$	22 23 Z W3	00)
YY 0 32 30 YZ YO 0 42 3X	$(S)-X \Rightarrow (S) \leftrightarrow \emptyset$	24 Z 00 3W 3X 1 2Z	4X
Y1 1 40 10 Y2 Y3 Z 4Z Y3	yп-0 !⁴ (ऽ') ⇒ V	3Y Z 4Y 3Z 30 1 04	A 1 - A - A A
14 Z 32 YX	Hopm(S) ⇒ U	31 Z 4Z	30 V ⇒ (\$)
Zw ZX Z 4Y Y3 Zy Z 32 30	(\$) ⇒ (&) U ⇒ (\$)	32 33 1 13 34 0 00	00 св. ятейка
22 ZO 0 44 20 21 0 14 13	$(\mathcal{S}) \otimes 0 \times 0 \times 0 \Rightarrow (\mathcal{S})$ $(\mathcal{S}) \Rightarrow \mathcal{L}$	4W 4X 1 24 4Y 0 3W	
Z_ Z3 1 00 3Z	$(100 - (F)) \Rightarrow (S)$	42 40 2 XX	zo 0⇒ (F) ←14
OW OX 2 45 Y3		41 0 32 42 43 0 1Y	ox (F) ⇒ M _T 23 0 ww ⇒ (F)
OY 0 23 30 OZ 00 0 43 3X	Ph → (s') (s') - Px → (s')	44 0 4X KC 0 00	$ox (F) = P_3$
01 1 3¥ 13	प्रत-1 °2	1 11	

^{*) (}F) = 1WX

Зона МБ 2Ү

Адрес		Команда	Адрес	Команда
$\Pi_{\Phi} = 1$			$\Pi_{\Phi} = 1$	
WW WX.	0 YY 30 1 21 Y3	$A_{i}f \Rightarrow (S)$ $(S) \Rightarrow A_{2}f$	02 03 0	4z 3x (\$)-X⇒(\$) 2z x3 (\$)⇒H
WZ WO	1 20 00	6U 1-10	1W 1X 0	4z 30 X⇒(S) ←141
W2 W3	0 00 00 2 4Y 03	св. ячейка } 🕹 🕹		2w x3 (\$) ⇒A1 23 23 010 ⇒(F)
W4 XW XX	Z XY 00 1 2Z 1X	, Di i ·	11 0	2Z 33 (\$)+H⇒ (\$) 4Z x3 (\$)⇒X
XX	1 32 30	27 اے		$4x \text{ ox } (F) \Rightarrow E_m$
XZ X.0 X.1	1 42 Y3 1 4X 30	g ⇒ vf1		4Y 03 W3 00
X2 X3	1 43 ¥3		2Z 20 0	00 42 00 00 A2f
X4 Yw YX	Z 4Y 03'		21 0 22 23 Z	00 00 A2 f
YY Y7 Y0	0 20 WW	} v·s]'⇒v	2 4 Z	W3 00)
YZ YO Y1	0 1Z WO 2 00 4Z	L	3W 3X 1	00 4Z 1Y X3 \ v+vf1⇒5
¥2 ¥3 ¥4		I .	3Z 30 0	20 W2
ZW ZX.	0 1Y X3	7 ~ + J - J J	31 0 32 33 0	∞ ∞ }c }
ZY ZZ ZO	0 2Z 32 0 WY ZO	·	34 0	00 00 8
Z 1	0 32 30	B ⇒ (≲)	4¥ 0	2W WX const
22 Z3 24	0 4Z 3X. Z WY 10	(\$)-X⇒(\$) yn-0 r°8×v (r12)	4Z 40 0 41 0	00 00 } Vf1 }
XO WO	0 2 % 3%	(S)-H⇒(S)	42 43 0	00 00 Pvf1
OY OZ OO	0 14 40 1 1X 1X	3U-5 L 37 (2)·X⇒(2)		40 00 ¥ 00 02
01		$B \Rightarrow (S)$		AW YY

Зона МБ 2Z

Адрес	Команда		Адрес	Команда
$\Pi_{\Phi}=1$			$\Pi_{\Phi}=1$	
AW WW	1 4x 33 (S) + $E_m \Rightarrow$ (S)	02	03 1 W	x.00 5∏ P17 418 x.30 M⇒(S) ←144
WZ WO	131′13 (S) ⇒ M	1 W	1X 1 4	4 33 (\$)-1 = (\$)
W1 W2 W3 W4		1Z	10 Z 4	Y 03)
XX XX	1 2Z 30 $H \Rightarrow (S)$ 1 3Y 40 $(S) \Rightarrow (R)$; $(R) \cdot M \Rightarrow (S)$ 0 44 10 $\Im (R - 0)$	12	13 0 2	Y 00 } 611 123
XZ XO	/A\	2 W	5 X 0 0	0 00 }
X2 X3 X4	•••		20 0 0	0 00 } H } k
YW YX. YY	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		23 0 0	o oo Ph } St} st
YZ Y0 Y1	z 00 4z	3₩		0 00 Psf)
Y2 Y3 Y4	1 3x 30 $P_{S}f \Rightarrow (S)$ 2 43 3x $(S) - P_{Y} \Rightarrow (S)$	32		0 00 B B B B B B B B B B B B B B B B B
ZW ZX ZY	·		33 0 0	0 00 Pf } M ₃ } 7
ZZ ZO Z1	(=1		4X. 0 0	0 00 P ₃
Z2 Z3 Z4	1100 (m) > (d)	4 Z	40 0 0	0 00 0 00 X } ∞
OW OX.	z 4z 34 (\$)+(₹4₹+(F))⇒(\$)	4 2	43 0 0	لِ⊶ 0 00 P
02 00 01	1 22 YX Hopm (S) → Sf 2 43 34 (S)+(Z43+(F))→(S) ; 1 3X Y3 (S) → Psf	ĶC	0 0	0 00 -1 0 1w Z 40

3она МБ 20

Адрес	Команда	Адрес	Команда
$\Pi_{\Phi} = 0$		$\Pi_{\Phi}=0$	
WW WX.	° ° ° ° ° ° °] \$7'] \$7'	02 03 0 WO Y	$_{3}(S)\Rightarrow P_{S}J'$
WY WZ WA	0 00 00 SJ SJ' 0 00 00 PsJ'	04 1 22 3 1W 1X 0 W1 4	o S{ ⇒ (S) -
	0 20 00 -\frac{1}{3}	1W 1A 0 W1 44	o -₹ (2)+27'⇒(2)
	0 00 00 0 00 00}\$}\$}\$	1Z 10 0 W2 Y	E Hopm (S) ⇒ S
W4	0 00 00 3 3 3	11 0 XX 3	2 (\$)+(0XX-(F))⇒(\$)
XA YM ÝY	0 00 00 P ₃ J	12 13 0 XX Y	3 (S)⇒P₁ 3 700→(S)
XZ XO	Z 4Z Y3	2W 2Y 1 3w 0	o Z00 ⇒ (F) x (F) ⇒ P _{sf;} 0 ⇒ M
X1	O WW 30 Z 4Z Y3 O WO 30 SJ'⇒v	2¥ 1 2W 3	2 (1,475), 0 4 11 2 } A1 → X
X2 X3		2Z 20 1 4Z Y	* ₃ } A1 → X
X.4	$z = 20 \times 20 O \Rightarrow (F)$	21 7 AV 0	a 1
XX MX	1 3x 30 Psf \Rightarrow (S) Z W1 33 (S) + $e_A \Rightarrow$ (S)	22 23 Z W3 O) (EU 1:81
YY .	$Z \text{ W1 } 33 \text{ (S)} + e_A \Rightarrow \text{(S)}$	24 0 00 W	BILLE
12 10	1 3x 13 (S) \Rightarrow Psf 0 xx 3x (S) - P ₃ \Rightarrow (S)	3W 3X 0 21 W	4)
15 13	0 21 1X AU-X 1,50	3Y 0 W2 30	o' S⇒(S) ←13
. Y4	1 44 40 -(S) ⇒(S)	יו אינו ח 1.5 של אל אוני ח	> ¾ (S) ⇒(S) C Hopm (S) ⇒ SJ'
$z_{W} z_{X}$	$0.44 z_0 130 \Rightarrow (F)$	32 33 0 XX 33	$(s) + P_s \Rightarrow (s)$
27	$z \leftrightarrow x \rightarrow (\mathcal{S}) \Rightarrow (\mathcal{L}) \leftrightarrow^{20}$	34 O WO Y	ß) ⇒PsJ'
2Z 20	1 22 31 (122+(F)) → (S)	4W 4X Z 4Z 30)) ·
21	Z 4Y YO (S) H2 (L) => (S)	4Y 1 32 Y	3 (
Z2 Z3	1 22 $\times 4 (S) \Rightarrow (122+(F))$	42 40 Z 43 30	23 4122 29 PU LB×∆ (1,513) 29 A → 8
24	0 W2 32 (S) + (0 W2 - (F)) \Rightarrow (0 WW Y3 (S) \Rightarrow ST'	S) 41 1 4X Y) co ee.7 (this)
OM OY	1 4¥ 30 Em ⇒(\$)	42 43 Z WX 00) Pili, px = (1,55)
	2 32 YK Hopm (S) ⇒ U	KC 0 00 0:	- 3£3 *
01	0 XX 32 (S)+(0 XX-(F)) → (S)	1 WX 02	
- *	= = 3 : 0 ; (: (1) : (4)	1 114 07	•

3она МБ 21

Адрес Команда Адрес Команда	
$\Pi_{\Phi} = 0$ $\Pi_{\Phi} = 0$	
WW WX 0 11 11 $\}$ 02 03 1 22 Y3 $(S) \Rightarrow H$ W1 0 33 33 $\}$ 04 2 Y3 23 $]$	
WZ WO 0 00 00 ε W1 0 00 00 ε 1 W 1X Z WY 00 5 5 Γ Γ 25	
W2 W3 0 00 00 P₂ W4 Z 20 Z0 $0 \Rightarrow (F) \leftarrow 121$ 12 10 0 02 00 $-e_A$ 11 Z 32 30 $2 \Rightarrow (S) \leftarrow 121$	124
XW XX Z 43 30 P \Rightarrow (S) 12 13 0 WZ 3X (S) $-\mathcal{E} \Rightarrow$ (S) XY Z 4X 3X (S) - P \Rightarrow (S) 14 Z 32 40 (S) \Rightarrow (R) \cup 2	
IZ XO O X4 1 YII- Z 2W 2X O WZ 43 (S)+(R). $E \Rightarrow$ (S	7)
12 X3 0 Z0 Z3 $OZ3 \Rightarrow (F)$ 2Z 20 1 2W 30 $A1 \Rightarrow (S) \Rightarrow (S)$	3 ·
YN IX Z 4Z 31 (₹4₹+(F)) ⇒(S) 22 23 1 4Z Y3 (S) ⇒ X	
YY Z 4Y YO $C_06(S)$ Ha $(A) \Rightarrow (S)$ 24 1 2Z 30 $H \Rightarrow (S)$ YZ YO Z 32 3W $(S) - (Z32 - (F)) \Rightarrow (S)$ 3W 3X 0 WW 40 $(S) \Rightarrow (R)$; $\frac{3}{8}$ (R)	⇒ (\$)
11 0 20 10 311 31 3 42 YX Hopm (S) \Rightarrow V Y2 Y3 Z 32 YX Hopm (S) \Rightarrow U 3Z 30 1 43 33 (S) + $P_{x} \Rightarrow$ (S)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
21 0 11 10 3/1-0 1-24 34 0 44 10 Cgf (5) Ha 2 => (22 20 0 20 1X 3/1-7 1-23 414 4X 1 34 4X M+(5)-(R) => (5)	S) 1 *)
Z1 1 4Y 30 $E_m \Rightarrow (S)$ 4Y 1 2Z Y3 $(S) \Rightarrow H$. Z2 23 0 10 Y0 $C_n f(S) = A \Rightarrow (S)$ 4Z A0 2 Y3 Z3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
OY 1 WX 13 917-1 P17 44 0 02 2X \Q3 445	
07 00 1 2Z 30 $H \Rightarrow (S)$ KC 0 00 02 01 Z 20 40 $(S) \cdot 3^7 \Rightarrow (S)$ Z 01 XX	

^{*)} M=0

Издано:

ВЫПУСК 1.

ЖОГОЛЕВ Е.А. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ И МАТЕМАТИЧЕСКОЕ ОБСЛУЖИВАНИЕ ДЛЯ МАШИНЫ "СЕТУНЬ".

выпуск 2.

ФУРМАН Г.А. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ДЛЯ ДЕЙСТВИЙ С КОМПЛЕКСНЫМИ ЧИСЛАМИ.

ГОТОВИТСЯ ВЫПУСК 4:

ЖОГОЛЕВ Е.А., ЕСАКОВА Л.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-3