CSCE-629 Homework 2

Wang, Han-Yi wanghy917@email.tamu.edu

August 28, 2020

Problem 2-2

- (a) In addition to provie $A'[1] \leq A'[2] \leq \cdots \leq A'[n]$, we also need to prove that A' contains the same elements as in A.
- (b) Loop invariant for the inner loop (lines 2–4): At the start of each iteration, the position of the smallest element of A[i..n] is at most at j.
 - Initialization: When j = n, it is trivial that the smallest element is at most at n.
 - Maintenance: In each iteration,
 - If the smallest item is A[j], it will exchange with A[j-1], so the smallest item is at most at j-1 after the iteration, where j-1=i.
 - If the smallest item is not A[j], its index is already less than or equal to j-1, where $j-1 \geq i$.
 - Termination: The inner loop (lines 2–4) terminates when j is equal to i. Before it terminate, A[i+1] will exchange with A[i] if A[i+1] < A[i] in the last iteration. Therefore, A[i] will be the smallest item in A[i..n] when the algorithm terminate.
- (c) Loop invariant for the outer loop (lines 1–4): At the start of each iteration, the subarray A[1..i-1] contains the 1_{st} to $(i-1)_{th}$ smallest elements of A in sorted order.
 - Initialization: Before the first iteration, i = 1, A[1..0] is empty, so it is sorted.
 - Maintenance: From (b), when the inner loop terminates, the smallest item in A[i..n] is in position i. Also the $(i-1)_{th}$ smallest elements of A are already in A[1...i-1], so A[i] is the i_{th} smallest element of A. Therefore A[1...i] is sorted and it contains the 1_{st} to i_{th} smallest elements of A.
 - Termination: The outer loop (line 1-4) terminates when i is equal to n. After the last iteration, the subarray A[1..n-1] contains the 1_{st} to $(n-1)_{th}$ elements originally in A, so the n_{th} element is at the n_{th} location, and A is sorted.
- (d) The outer loop runs n-1 iterations, and the inner loop runs n-i iterations in the i_{th} iteration of outer loop with constant execution time. Therefore, the worst case is:

$$T(n) = \sum_{i=1}^{n-1} (n-i) = \frac{(n-1) \times (n-1)}{2} = \Theta(n^2)$$
 (1)

, where the worst-case running time is the same as the insertion sort.

Exercise 4.3-1

We guess $T(n) \leq cn^2$, and we have

$$T(n) \le c(n-1)^2 + n$$

$$= cn^2 - 2cn + c + n$$

$$= cn^2 + n(1-2c) + c$$

$$\le cn^2 + 1(1-2c) + c$$

$$= cn^2 + 1 - c$$

$$\le cn^2$$
(2)

, where the 4_{th} step holds for $c \geq \frac{1}{2}$ and $n \geq 1$, and the last step holds for $c \geq 1$.

Exercise 4.3-2

We guess $T(n) \leq clg(n-2)$, and we have

$$T(n) \le c \lg(\lceil n/2 \rceil - 2) + 1$$

$$\le c \lg(n/2 + 1 - 2) + 1$$

$$= c \lg((n-2)/2) + 1$$

$$= c \lg(n-2) - c \lg 2 + 1$$

$$\le c \lg(n-2)$$
(3)

, where the last step holds for $c \ge 1$.

Exercise 4.3-8

First, we guess $T(n) \leq cn^2$, and we have

$$T(n) = 4T(n/2) + n$$

$$\leq 4\left(c(n/2)^2\right) + n$$

$$= cn^2 + n$$
(4)

, where we can not find a constant c to make the last step holds. We then make another guess that $T(n) \leq cn^2 - n$, and we have

$$T(n) = 4T(n/2) + n$$

$$\leq 4 (c(n/2)^2 - n/2) + n$$

$$= cn^2 - 2cn + n$$

$$\leq cn^2$$
(5)

, where the last step holds for $c \ge \frac{1}{2}$.

Exercise 4.5-1

$$a = 2, b = 4, log_b a = \frac{1}{2}$$

(a) •
$$\frac{1}{2} > 0$$

• $T(n) = \Theta\left(n^{\log_4 2}\right) = \Theta(\sqrt{n})$

(b) •
$$\frac{1}{2} = \frac{1}{2}$$

• $T(n) = \Theta\left(n^{\log_4 2} lg(n)\right) = \Theta(\sqrt{n} lg(n))$

$$\begin{aligned} (\mathbf{c}) & \quad \bullet \ \ \frac{1}{2} < 1 \\ & \quad \bullet \ T(n) = \Theta(n) \end{aligned}$$

(d) •
$$\frac{1}{2} < 2$$

• $T(n) = \Theta(n^2)$

Exercise 15.1-2

i	0	1	2	3	4
p[i]	0	1	5	8	9
d[i]	0	1	2.50	2.67	2.25
r[i] (DP)	0	1	5	8	10
r[i] (Greedy)	0	1	5	8	8+1=9

Given price and length in the above table. The density of each length are d[1] = 1, d[2] = 2.50, d[3] = 2.67 and d[4] = 2.25. When n = 4, the greedy algorithm will first add the price of length 3, which has the highest density, then, it can only add the piece of length 1. As a result, the revenue r[4] = p[3] + p[1] = 9. However, the highest revenue is 5 + 5 = 10 when we applied dynamic programming, so the result of greedy algorithm is incorrect.