File System Management

File System Introduction

Lecture 10

Overview

File System

- Definition
- Vs Memory Management
- Motivation

File

- Metadata
- Operations

Directory

- Directory Structure
- I/O Scheduling

File System: Motivation

- Physical memory is volatile
 - Use external storage to store persistent information
- Direct access to the storage media is not portable:
 - Dependent on hardware specification and organization
- File System provides:
 - An abstraction on top of the physical media
 - A high level resource management scheme
 - Protection between processes and users
 - Sharing between processes and users

File System: General Criteria

Self-Contained:

- Information stored on a media is enough to describe the entire organization
- Should be able to "plug-and-play" on another system

Persistent:

Beyond the lifetime of OS and processes

Efficient:

- Provides good management of free and used space
- Minimum overhead for bookkeeping information

Memory Management vs File Management

	Memory Management	File System Management
Underlying Storage	RAM	Disk
Access Speed	Constant	Variable disk I/O time
Unit of Addressing	Physical memory address	Disk sector
Usage	Address space for process Implicit when process runs	Non-volatile data Explicit access
Organization	Paging/Segmentation: determined by HW & OS	Many different FS: ext* (Linux), FAT* (Windows), HFS* (Mac OS)etc.

Key Topics

File System Abstraction

- Discuss the logical entities present in file system
- E.g. Files / Directories

File System Implementation

- Common implementation schemes
- Discuss pros/cons
- Case studies

You mean files and folders are not real?

FILE SYSTEM ABSTRACTIONS

File System Abstraction

- File System:
 - Consists of a collection of files and directory structures
 - File: An abstract storage of data
 - Directory (Folder): Organization of files
 - Provides an abstraction of accessing and using the above

- Look at the two abstractions closely next:
 - File
 - Directory (Folder)

File: Overview

Basic Definition

File Metadata

- File Data
 - File structure
 - Access Methods

File Operations

File: Basic Description

- Represent a logical unit of information created by process
- An abstraction
 - Essentially an Abstract Data Type:
 - A set of common operations with various possible implementation
- Contains:
 - Data: Information structured in some ways
 - Metadata: Additional information associated with the file
 - Also known as file attributes

File Metadata

Name:	A human readable reference to the file	
Identifier:	A unique id for the file used internally by FS	
Type:	Indicate different type of files E.g. executable, text file, object file, directory etc	
Size:	Current size of file (in bytes, words or blocks)	
Protection:	Access permissions, can be classified as reading, writing and execution rights	
Time, date and owner information:	Creation, last modification time, owner id etc	
Table of content:	Information for the FS to determine how to access the file	

File Name

- Different FS has different naming rule
 - To determine valid file name

- Common naming rule:
 - Length of file name
 - Case sensitivity
 - Allowed special symbols
 - File extension
 - Usual form Name.Extension
 - On some FS, extension is used to indicate file type

File Type

- An OS commonly supports a number of file types
- Each file type has:
 - An associated set of operations
 - Possibly a specific program for processing
- Common file types:
 - Regular files: contains user information
 - Directories: system files for FS structure
 - Special files: character/block oriented

Two Major Types of Regular Files

ASCII files:

- Example: text file, programming source codes, etc
- Can be displayed or printed as is

Binary files:

- Example: executable, Java class file, pdf file, mp3/4, png/jpeg/bmp etc
- Have a predefined internal structure that can be processed by specific program
 - JVM to execute Java class file
 - PDF reader for pdf file etc

Distinguishing File Type

- 1. Use file extension as indication:
 - Used by Windows OS
 - e.g. XXX.docx → Words document
 - Change of extension implies a change in file type!

dows is also has case insensitive file names

2. Use embedded information in the file:

- Used by Unix
- Usually stored at the beginning of the file
- Commonly known as magic number

File Protection

Controlled access to the information stored in a file

Type of access:

- Read: Retrieve information from file
- Write: Write/Rewrite the file
- Execute: Load file into memory and execute it
- Append: Add new information to the end of file
- Delete: Remove the file from FS
- List: Read metadata of a file

File Protection: How?

- Most common approach:
 - Restrict access base on the user identity
- Most general scheme:
 - Access Control List
 - A list of user identity and the allowed access types
 - Pros: Very customizable
 - Cons: Additional information associated with file
- A common condensed file protection scheme is discussed next

File Protection: Permission Bits

- Classified the users into three classes:
 - 1. Owner: The user who created the file
 - 2. Group: A set of users who need similar access to a file
 - 3. Universe: All other users in the system
- Example (Unix)
 - Define permission of three access types (Read/Write/Execute) for the 3 classes of users
 - Use "ls -1" to see the permission bits for a file

File Protection: Access Control List

- In Unix, Access Control List (ACL) can be:
 - Minimal ACL (the same as the permission bits)
 - Extended ACL (added named users / group)

Operations on File Metadata

Rename:

Change filename

Change attributes:

- File access permissions
- Dates
- Ownership
- etc

Read attribute:

Get file creation time

File Data: Structure

Array of bytes:

- The traditional Unix view
- No interpretation of data: just raw bytes
- Each byte has a unique offset (distance) from the file start

Fixed length records:

- Array of records, can grow/shrink
- Can jump to any record easily:

Offset of the Nth record = size of Record * (N-1)

Variable length records

Flexible but harder to locate a record

suffer from external framgentation

this will be similar to memory management - suffering from internal fragmentation

File Data: Access Methods

Sequential Access:

- Data read in order, starting from the beginning
- Cannot skip but can be rewound

Random Access:

- Data can be read in any order
- Can be provided in two ways:
 - Read (Offset): Every read operation explicitly state the position to be accessed
 - 2. Seek (Offset): A special operation is provided to move to a new location in file reposition based on a specific offset from 3 ways:
 - 1: from the beginning of the file
 - E.g. Unix and Windows uses (2)
 2: from the current location of the file
 - 3: from the end of the file

File Data: Access Methods (cont)

Direct Access:

- Used for file contains fixed-length records
- Allow random access to any record directly
- Very useful where there is a large amount of records
 - e.g. In database
- The basic random access method can be view as a special case:
 - Where each record == one byte

can easily move and reposition

File Data: Generic Operations

Create:	New file is created with no data
Open:	Performed before further operations To prepare the necessary information for file operations later
Read:	Read data from file, usually starting from current position
Write:	Write data to file, usually starting from current position
Repositioning:	Also known as seek Move the current position to a new location No actual Read/Write is performed
Truncate:	Removes data between specified position to end of file

File Operations as System Calls

- OS provides file operations as system calls:
 - Provide protection, concurrent and efficient access
 - Maintain information

- Information kept for an opened file:
 - File Pointer: Current location in file
 - Disk Location: Actual file location on disk
 - Open Count: How many times has this file opened?
 - Useful to determine when to remove the entry in table

File Information in the OS

Consider:

- Several processes can open the same file
- Several different files can be opened at any time

Common approach – uses 3 tables:

- Per-process open-file table:
 - To keep track of the open files for a process
 - Each entry points to the system-wide open-file table entries
- System-wide open-file table:
 - To keep track of all the open files in the system
 - Each entry points to a -node entry
- System-wide V-node(virtual node) table
 - To link with the file on physical drive
 - Contains the information about the physical location of the file.

File Operations: Unix Illustration

Process make file system calls, usually with file descriptor **fd**

System Calls

File1.abc
Inode 2106

File2.def
Inode 3210

Physical drive (disk)

Process Sharing File in Unix: Case 1

- A file is opened twice from two processes:
 - 2 file descriptors
 - 2 entries in the system-wide open file table
 - I/O can occur at independent offsets
- When:
 - Two process open the same file
 - Same process open the file twice

File.abc

The shared file

Process Sharing File in Unix: Case 2

- Two file descriptors pointing to the same entry in the system-wide open file table
 - Only one offset → I/O changes the offset for the other process
- When:
 - fork() after file is opened
 - dup () within the same process

Just your regular folders

DIRECTORY

Directory: Basics

- Directory (folder) is used to:
 - Provide a logical grouping of files
 - The user view of directory
 - Keep track of files
 - The actual system usage of directory
- Several ways to structure directory:
 - Single-Level
 - Tree-Structure
 - Directed Acyclic Graph (DAG)
 - General Graph

Directory Structure: Single-Level

— [CS2106 L10 - AY2122 S1] — **32**

Directory Structure: Tree-Structured

Directory Structure: Tree-Structured

General Idea:

- Directories can be recursively embedded in other directories
- Naturally forms a tree structure
- Two ways to refers to a file:
 - Absolute Pathname:
 - Directory names followed from root of tree + final file
 - i.e. the Path from root directory to the file

Relative Pathname:

- Directory names followed from the current working directory (CWD)
- CWD can be set explicitly or implicitly changed by moving into a new directory under shell prompt

Directory Structure: **DAG**

Directory Structure: **DAG**

- If a file can be shared:
 - Only one copy of actual content
 - "Appears" in multiple directories
 - With different path names
- Then tree structure → DAG

- Two implementations in Unix:
 - Hard Link
 - Not allowed for directories
 - Symbolic Link
 - This has an "interesting" effect....

DAG: Unix Hard Link

Consider:

- Directory A is the owner of file F
- Directory B wants to share F
- Hard Link:

modifying the entries to create a link to the inode for the actual file

- A and B has separate pointers point to the actual file F in disk
- Pros:
 - Low overhead, only pointers are added in directory
- Cons:
 - Deletion problems:
 - e.g. If B deletes F? If A deletes F?
 - Ref. count is needed
- Unix Command: "In "

DAG: Unix Symbolic Link

Symbolic Link:

symbolic link will create a new file with the path to the actual file that we want

- The symbolic link is a special link file, G
 - contains the path name of F
- When G is accessed:
 - Find out where is F, then access F
- Pros:
 - Simple deletion:
 - If the symbolic link is deleted: G deleted, not F
 - If the linked file is deleted: F is gone, G remains (but not working)
- Cons:
 - Larger overhead:
 - Special link file take up actual disk space
- □ Unix Command: "ln -s"

Directory Structure: General Graph

Directory Structure: General Graph

- General Graph Directory Structure is not desirable:
 - Hard to traverse
 - Need to prevent infinite looping
 - Hard to determine when to remove a file/directory
- In Unix:
 - Symbolic link is allowed to link to directory
 - General Graph can be created

I'm afraid you have to wait.....

I/O SCHEDULING

Magnetic Disk in One Glance

— [CS2106 L10 - AY2122 S1] — **42**

Disk Scheduling: The Problem

- Due to the significant seek and rotational latency, OS should schedule the disk I/O requests
- I/O (disk) scheduling:
 - Intention of reducing overall waiting time
 - As rotational latency is hard to mitigate, we focus on reducing the seeking time
 - Balance the need for high throughput while trying to fairly share I/O requests amongst processes

Disk Scheduling: Algorithms

- Consider the following disk I/O requests indicated by only the track number (magnetic disks):
 - **13**, 14, 2, 10, 17, 31, 21, 7
- A few obvious candidates:
 - FCFS
 - SSF (Shortest Seek First)
 - "SJF" modified for the disk context
 - The SCAN family (aka Elevator):
 - Bi-Direction [Innermost ← → Outermost] (SCAN)
 - 1-Direction [Outermost→ Innermost] (C-SCAN)
 - Very intuitive: Imagine the tracks are floors in a building, and the disk head is the elevator servicing the floors (Figure out the algorithm before lecture ©)

SCAN: Disk Head Movement

disk I/O requests indicated by only the track number : [13, 14, 2, 10, 17, 31, 21, 7]

I/O Scheduling: Newer Algorithms

- Deadline 3 queues for I/O requests:
 - □ Sorted improve by increasing the priority for reading so that will read first since it is faster than write
 - Read FIFO read requests stored chronologically
 - Write FIFO write requests stored chronologically
- noop (No-operation) no sorting
- cfq (Completely Fair Queueing) time slice and perprocess sorted queues
- bfq (Budget Fair Queuing) (Multiqueue) fair sharing based on the number of sectors requested

process which requires alot more sectors will have a lower priority

Summary

Covered basics of file system from a user point of view

Understand the basic requirements of a FS

- Understand the components of a FS:
 - File and Directory

Discussed OS responsibility in I/O scheduling

For your reference only

UNIX FILE OPERATIONS

File Operations Example: Unix System Calls

- Header Files:
 - #include <sys/types.h>
 - #include <sys/stat.h>
 - #include <fcntl.h>
- File related Unix System Calls
 - open(), read(), write(), lseek(), close()
- General Information:
 - Opened file has an identifier
 - File Descriptor: Integer
 - Used for other operations
 - File is access on a byte-by-byte basis
 - No interpretation of data

Opening Files: open ()

Function Call:

```
int open( char *path, int flags )
```

- Return:
 - -1: Failed to open file
 - □ >=0: file descriptor, a unique index for opened file
- Parameters:
 - path: File path
 - flags: Many options can be set using bit-wise-OR
 - Read, Write or Read+Write mode
 - Truncation, Append mode
 - Create file if no exists
 - ... Many many more ©

Opening Files: open () (cont)

Example:

```
int fd; //file descriptor

//Open an existing file for read only
fd = open( "data.txt", O_RDONLY );

//Create the file if not found, open for read + write
fd = open("data.txt", O_RDWR | O_CREAT );
```

- By convention:
 - Default file descriptors:
 - STDIN (0), STDOUT (1), STDERR (2)

[CS2106 L10 - AY2122 S1]

Read Operation: read()

Function Call:

```
int read(int fd, void *buf, int n)
```

- Purpose:
 - reads up to n bytes from current offset into buffer buf
- Return:
 - number of bytes read, can be 0...n
 - <n : end of file is reached</p>
- Parameters:
 - fd: file descriptor (must be opened for read)
 - buf: An array large enough to store n bytes
- read() is sequential read:
 - starts at current offset and increments offset by bytes read

Write Operation: write()

Function Call:

```
int write(int fd, void *buf, int n)
```

- Purpose:
 - writes up to n bytes from current offset from buffer buf
- Return:
 - **-1:** Error
 - >= 0: Number of bytes written
- Parameters:
 - fd: file descriptor (must be opened for write)
 - buf: An array of at least n bytes with values to be written
- Possible errors:
 - exceeds file size limit, quota, disk space, etc.
- write() is sequential write:
 - starts at current offset and increments offset by bytes written
 - □ can increase file size beyond EOF → append new data

Repositioning: lseek()

Function Call:

```
off_t lseek(int fd, off_t offset, int whence)
```

- Purpose:
 - Move current position in file by offset
- Return:
 - **-1:** Error
 - >= 0: Current offset in file
- Parameters:
 - fd: file descriptor (must be opened)
 - offset: positive = move forward, negative = move backward
 - whence: Point of reference for interpreting the offset
 - SEEK_SET: absolute offset (count from the file start)
 - SEEK_CUR: relative offset from current position (+/-)
 - SEEK_END: relative offset from end of file (+/-)
- Can seek anywhere in file, even beyond end of existing data

Closing Files: close()

Function Call:

```
int close( int fd )
```

- Return:
 - **-1:** Error
 - O: Successful
- Parameters:
 - fd: file descriptor (must be opened)
- With close():
 - fd no longer used anymore
 - Kernel can remove associated data structures
 - The identifier fd can be reused later
- By default:
 - Process termination automatically closes all open files