

Введение в методы интеллектуального анализа данных (Data Mining)

к.ф.-м.н. М.И. Петровский (michael@cs.msu.su), SAS Certified Data Scientist

лаборатория «Технологий программирования» ВМиК МГУ им. М.В. Ломоносова

M

Задачи курса

- Познакомить с предметной областью:
 - дать основные определения и терминологию, обсудить прикладные задачи
- Рассмотреть основные задачи Data Mining:
 - и популярные алгоритмы на основе методов машинного обучения для их решения
 - меньше теории, больше алгоритмов и понимания как их настраивать и использовать
- Дать практический опыт решения задач Data mining:
 - □ Практические задания на Питоне:

Содержание курса (1/3)

- 1. Введение
- Выявление структур в данных (обучения без учителя)
 - □ Поиск ассоциативных правил (алгоритмы apriori и fp-tree) и тематическое моделирование (методы главных компонент, неотрицательная матричная факторизация)
 - Кластеризация (иерархическая, метрическая, вероятностная)

Содержание курса (2/3)

- з. Задача прогнозирования (обучение с учителем)
 - Виды задач прогнозирования, проблема переобучения, оценка и сравнение моделей, простейшие методы прогнозирования (kNN и Naïve Bayes)
 - Методы на основе деревьев решений и их ансамблей
 - Регрессионные модели (отбор и преобразование пространства признаков, регуляризация, обобщенные линейные модели)

Содержание курса (3/3)

- з. Задача прогнозирования (обучение с учителем)
 - □ Нейронные сети (MLP, RBF, борьба с переобучением, SOM, задачи глубинного обучения)
 - Методы опорных векторов для задач классификации и регрессии
 - Моделе-независимая визуализация зависимостей
- Выявление аномалий

м

Интуитивное определение ИИ

Искусственный интеллект – проблема определения термина

- Нет общепризнанного научного определения
- Сильный коммерческий **«хайп»**, смещающий акценты
- Часто термин ИИ неправильно используется в очень узком смысле, как машинное обучение, или даже нейросети, или даже глубокое обучение нейросетей
- Надо делать акцент на слово «искусственный»

Пример определения:

«ИИ - междисциплинарная область знаний, занимающаяся исследованием и разработкой методов и артефактов (устройств или программ), которые способны имитировать интеллектуальную (разумную/рациональную) деятельность (мышление/принятие решение) человека»

как человек рационально

м

Почему «думать» и «делать» это разные области в ИИ?

«Думать» («мыслить») – оперировать знаниями

- Есть формальное **представление знаний** и интеллектуальная система, способная на их основе **генерировать** новые непротиворечивые знания или **проверять** утверждения, в том числе в условиях неопределенности
- Примеры задач ИИ из категории «думать»
 «рационально» автоматическое доказательство теорем
 «как человек» распознавание эмоций по фото или видео

«Действовать» - взаимодействовать с окружающей средой (интеллектуальный агент)

- производит действия, получает отклик среды,
- самокорректируется (учится) с определенной целью
- Примеры задач ИИ из категории «действовать» «рационально» - беспилотный автомобиль «как человек» - чат-бот, голосовой помощник, игровой ИИ

v

Почему человек нерационален и плохо ли это?

Что значит «рационально»?

- Достижение заданной цели эффективным (а лучше оптимальным) непротиворечивым путем
- По сути **задача оптимизации** (даже там, где это неочевидно, например, системы автоматических рассуждений не используют полный перебор вариантов)

Причины нерациональности человека:

- Недостаток информации
- Огромное пространство перебора при поиске решений (шахматы)
- Невозможность задать целевую функцию (помогает теория полезности)
- Биологические особенности работы мозга человека

Механизмы принятия решений человеком (все моделируются в ИИ):

- Рефлексные (не используют мозг, например, отдернуть обожженную руку)
- Интуитивные/эмоциональные/спонтанные (используют лимбическую систему, поощряются гормонально, приносят удовольствие) «золотая жила» для ИИ (Эмоциональная экономика)
- Рациональные (работает неокортекс, ничего приятного, сильно устаешь, никто не любит думать)

Искусственный Интеллект

Общий ИИ (AGI)

- Философские и этические вопросы ИИ
- Футуристика
- Исследования принципов работы биологического интеллекта
- Вопросы создания универсального автономного интеллектуального агента («скайнеты» и прочие «матрицы»)

Большинство ученых считает, что в обозримом будущем в этой области **прогресс маловероятен:**

- нет работающих теорий, инструментов и проблема «общечеловеческого бэкграунда» или «здравого смысла» ограниченность знаний любой интеллектуальной системы
- **Ho** есть надежда на **Big Data**!

ИИ в узком смысле (ANI)

Не интересуется общими вопросами, а изучает и развивает инструменты и приложения ИИ:

- Автоматические рассуждения
- Машинное обучение (сейчас ключевой инструмент)
- Поиск и оптимизация
- Человеко-машинное взаимодействие «Дополненный» интеллект: **не Al, а IA** (Intelligence amplification) – не замена, а

усиление

Бурное **развитие приложений** и алгоритмов из-за развития вычислительной техники

Но по сути застой в теории –последние фундаментальные результаты **20+ лет назад**

Предыстория ИИ (античность и средние века)

Какие проблемы волновали:

- Можно ли получать новые знания «механически» без опыта, а на основе уже доступных знаний?
- Могут ли «думать» неживые системы?

Античная Греция:

- Силлогизмы Аристотеля (4 в. до н.э.) основы формальной логики и процедуры доказательства
- «отец пневматики» Ктесибий (3 в. до н.э.) «умные» механизмы, включая водяные часы (календарь) с саморегулирующимся потоком воды

Первые вычислительные средства

- «концептуальные колеса» («механический пролог») Раймунд Луллий (14в.) + Томас Гоббс (17в.)
- «механический арифмометр» Леонардо да Винчи (15 в.) + Блез Паскаль (17 в.)
- «Концептуальный калькулятор» Готфрид Вильгельм Лейбниц (17 в.)

M

Предыстория ИИ (Новое время 17-19 вв.)

Какие проблемы волновали:

- Понять природу появления знаний
- Развить аппарат формальной логики, в том числе с учетом неопределенности
- Сделать обратную связь в механизмах, чтобы они могли работать под собственным управлением

Основные вехи:

- Дуализм Р. Декарта (17в.) «мысль (душа) отдельно, материя отдельно». Альтернатива дуализму материализм = свобода воли есть результат перебора решений в рамках некоторого материального процесса.
- Поиск источника знаний и принципов их формирования: Эмпиризм - Фрэнсис Бэкон (16в.), Принцип индукции - Дэвид Юм (17в.), Логический позитивизм — Венский кружок (19в.)
- **Томас Байес (18в.)** правило обновления вероятностей с учетом новых фактов, Байесовский вывод в условиях неопределенности
- Джордж Буль (19в.) логика высказываний
- Готлоб Фреге (19в.) логика первого порядка = булева логика + отношения + высказывания

Саморегулируемые (**с обратной связью**) механизмы: термостат (17в.), регулятор паровой машины (19в.)

Предыстория ИИ (20в.) в психологии и лингвистике

Какие проблемы волновали:

- Как думают и действуют живые существа?
- Как речь связана с интеллектом?

На рубеже 19 и 20 вв. господствовал бихейвиористический (поведенческий) подход:

- отрицал понятия «мысли», «знания», «мышление» как неизмеримые, а потому ненаучные
- оперировал только со стимулами и откликами
- более или менее работал на простых животных, почти не работал на людях и высших животных

Как ответы-опровержения, пытавшиеся закрыть пробелы «бихейвиористов», появились:

- когнитивная психология (1910), рассматривающая мозг (даже в процессе распознавания визуальных образов) как устройство обработки информации, работающее на «скрытых» логических правилах
- синтаксические модели естественных языков (1950е), **теория** формальных грамматик Хомского и позже компьютерная лингвистика

Предыстория ИИ (20в.) в математике

Проблемы сложности и вычислимости, связанные с ИИ:

- Доказано, что существует эффективная процедура проверки истинности любого высказывания в логике 1 порядка
- Теорема Гёделя о неполноте, в логике первого порядка нельзя выразить принцип мат. индукции, существуют функции от целых чисел, которые нельзя вычислить (нельзя доказать их истинность или ложность)
- Тезис вычислимости Черча-Тьюринга любую вычислимую функцию можно вычислить с помощью машины Тьюринга, но есть невычислимые функции
- Экспоненциальная сложность и неразрешимость задач, NP-полнота и NP-трудность

Теория полезности (объективной и субъективной, численной и порядковой) – позволяет формализовать оптимизационную поисковую задачу, в том числе в приложениях ИИ **Теория игр** – аппарат для принятия решений:

- важный с точки зрения ИИ «философский» результат есть ситуации, когда рациональный интеллектуальный агент должен принимать случайные решения (смешанные стратегии)
- отдельная область в машинном обучении обучение с подкреплением

Исследование операций и Марковские процессы принятия (последовательных) решений

Алан Тьюринг (Англия):

- (1940) Heath Robinson дешифратор для энигмы,
- (1943) Colossus компьютер общего назначения, на лампах, но без программ

Конрад Цузе (Германия):

• (1943) Z-3 – с программами, языком, плавающей точкой, но на механических реле

Джон Атанасов (США)

- (1942) ABC без программ, с двоичной арифметикой Джон Экерт, Джон Мочли (США)
- (1945) ENIAC

Норберт Винер – «отец» кибернетики, а вообще-то и ИИ, и оптимального управления (вместе с Беллманом и Понтрягиным):

• Управление (в том числе саморегуляция) как оптимизация некоторой целевой функции, возможно во времени (стохастическое управление)

М

Предыстория ИИ (20в.) в неврологи

Результаты к рубежу 19 и 20 вв.:

- Мозг орган мышления, разные части отвечают за разные функции («спасибо» войнам и ранениям)
- Метод Гольджи (1873!!) окрашивание клеток нервной ткани для наблюдения
- В мозге более 10¹¹ специальных клеток (**нейронов**)
- Каждый нейрон соединен через синапсы (около 10¹⁴) с другими нейронами
- Мозг может: обучаться, адаптироваться, распознавать образы, осознавать «себя», устойчив к шуму, травмам и ошибкам
- Нейрон имеет «входные» отростки (**дендриты**) и «выходные» (**аксоны**)
- Информация (сигнал, «нервный импульс») идет от дендритов к аксону через тело (ядро) клетки
- Аксоны соединяются с дендритами (других клеток) через синоптический переход (щель), в нем через нейромедиаторы электрический сигнал преобразуется в химический и наоборот

Искусственный нейрон

(1943) Мак-Каллок и Питс - Искусственная нейросеть

- грубая модель биологического нейрона + логика высказываний + теория вычислений Тьюринга
- сетью бинарных искусственных нейронов можно описать функции алгебры логики

Дональд Хэбб (нейрофизиолог) предложил правило «обучения»

 $\Delta w_{ij} = \eta \ \hat{y}_i x_j$

(1951) Аспиранты М. Минский и Д. Эдмондс собрали первый обучаемый нейро-компьютер Snarc:

- 40 нейронов, с обучением, на 3000 лампах + автопилот от бомбардировщика
- им не хотели присуждать Ph.D. «это не математика! где теоремы?»
- но вступился фон Нейман «это математика будущего»

$$\hat{y} = f\left(w_0 + \sum_{i=1}^d w_i x_i\right)$$

×

Рождение ИИ и ранние успехи (1950e-1970e)

(1950) Краеугольная работа Тьюринга «Computing Machinery and Intelligence»:

• Тест Тьюринга, принципы машинного обучения, генетические и другие поисковые алгоритмы, обучение с подкреплением

(1956) **Дартмутский семинар** (2 месяца, 10 человек), итоги – «развод» с кибернетикой и теорией управления:

- 1. ИИ не математика, а информатика (без компьютера нельзя)
- 2. ИИ моделирует и изучает поведение и мышление человека (в том числе нерациональное) Череда **успехов**:
- Изначальный список Тьюринга «машина никогда не сможет ...» сокращался очень быстро
- Разработаны «универсальные» решатели (Logic Theorist, General Problem Solver, Prolog и др.)
- Разработан LISP, показал возможности символьного решения задач (в том числе математических)
- Усовершенствование методов обучения нейросетей (обратное распространение ошибки)
- Персептрон Розенблатта и теорема о его сходимости
- Прикладные успехи: экспертные системы в медицине, управлении и инженерии на основе сложных моделей представления знаний (типа фреймов), машинный перевод и распознавание образов

м

Зима ИИ (с 1960х до 80х)

«Зима ИИ» - сокращение финансирования и интереса общества, отток специалистов, коммерческий и научный провал многих проектов, оказалось, что многое **«без ИИ лучше и дешевле»** плюс **проблема здравого смысла** (common sense):

- Провал методов машинного перевода (с русского, кстати) и закрытие гос. финансирования, из-за проблемы **семантической неоднозначности**: «the spirit is willing, but the flesh is weak»

 «the vodka is good, but the meat is rotten»
- комбинаторный взрыв проблемы сложности вычислений в системах логического вывода и автоматических рассуждений (в принципе решит, но лет через 100)
- Провал идеи **«эволюции программ»** самопрограммирующиеся программы по принципу генетических алгоритмов
- Принципиальные ограничения персептронов (например, задача XOR для однослойного), книга Минского и Пейперта с критикой ⇒ смерть Френка Розенблатта (возможно, покончил с собой)
- **Крах** рынка **LISP машин** оказались хороши в науке, плохи в бизнес-приложениях
- Провал идеи «**компьютера 5 поколения»** «интеллектуального компьютера», например на прологе
- **Неэффективность экспертных систем** на основе фреймворков и семантических сетей: сложно описывать, долго настраивать, низкая точность, противоречивость

м

Причины краха больших надежд

Основная причина – **изоляционизм** специалистов по ИИ от остальных компьютерных наук:

- Изначальная уверенность, что символьные вычисления, логические методы и формальные грамматики есть основа разумной деятельности и они решат все проблемы
- Оказалось, что «умение решать» математические задачи школьного уровня или проходить тест на IQ не делает умнее не только человека, но и компьютер
- Сложные модели представления знаний (фреймворки и семантические сети) не принесли существенной пользы в реальных задачах
- Машинное обучение не следует отделять от теории информации и прикладной статистики
- Рассуждения в условиях неопределенности нельзя изолировать от теории вероятности, байесовских методов принятия решений и других классических математических дисциплин
- Поиск в пространстве состояний на самом деле раздел классической оптимизации
- Автоматизированное формирование рассуждений не должно трактоваться как независимое от формальных логических методов

Стало понятно, что в будущем будут востребованы **гибридные интеллектуальные системы**:

• сочетающие в себе несколько методов ИИ или классические математические методы и ИИ, например машинное обучение + оптимальное управление

М

Оттепель ИИ (90е)

Многие классические методы успешно пережили «зиму», например:

- Экспертные системы в медицине, логистике, проектировании и других областях
- Интеллектуальное планирование и распределение ресурсов в задачах управления
- Системы нечеткого вывода в задачах управления механизмами (автоматические коробки передач)
- Обучение с подкреплением для обнаружения и разрешения конфликтов в воздушном движении
- Нейросети в задачах распознавания визуальных и звуковых образов
- Системы на основе поиска в пространстве состояний в компьютерных играх
- Робототехника

Рывок в методах машинного обучения и интеллектуального анализа данных:

- В 80х заново «переизобрели» все, что было в нейросетях 50х, включая разные формы Back Propagation
- Архитектуры Deep Learning (CNN, RNN, AE, LSTM, ...) и методы их обучения (да, да, им более 20 лет)
- Бустинг слабых моделей и другие ансамбли
- Метод опорных векторов «убийца нейросетей», который так и не смог их убить
- Скрытые Марковские модели и обучаемые сети Байеса

Бум ИИ в 21 веке, связь с ML и Data Science

Застой в теории - ничего принципиально нового уже больше 20 лет **Прорыв в практике**, почему? **Вычислительная техника** стала мощной и дешевой!

- Дешево накапливать и хранить большие объемы данных
- Можно просчитывать сложные модели за разумное время
- Математика подстраивается под вычислительную технику

В бизнес-сообществе часто термин ИИ используют как синоним Data Science или ML

Машинное обучение подраздел ИИ, изучающий методы построения алгоритмов, способных обучаться на прецедентах для решения задач: прогнозирования (классификации, ранжирования, регрессии), поиска скрытых структур в данных (ассоциаций, корреляций, кластеризации), обнаружения аномалий.

Data Science (наука о данных) - раздел информатики, изучающий проблемы анализа, обработки (в том числе интеллектуальной) и представления данных в цифровой форме.

Тесно связано с понятием больших данных.

Большие данные

В научной среде термин используется с 1990х (2008) «Как могут повлиять на будущее науки технологии, открывающие возможности работы с большими объёмами данных?», Клиффорд Линч (редактору журнала Nature)

(2011) «Big Data: The next frontier for innovation, competition and productivity», McKinsey Global Institute

(2015) - термин Data Science

20+ экзабайт в сутки!

Кто виноват и что делать с Большими данными?

Виноваты жесткие диски:

Что делать?

Вертикальное масштабирование:

- дорого, технологически ограниченно
- НО относительно легко переносить аналитические алгоритмы

Горизонтальное масштабирование:

- дешево, потенциально технологически неограниченно
- НО сложно переносить аналитические алгоритмы

Индустрия выбирает MPP, а «математики» к этому не готовы

Отличие аналитики Больших данных от традиционной

Кто такой Data Scientist?

«три в одном»:

- Аналитик прикладникпонимает предметную область, в которой строит модель
- Математик владеет методами прикладной статистики и ИИ
- Программист может писать код для эффективной обработки больших объемов сложно структурированных данных

BI and

Analytics

м

Успехи современного ИИ

Адаптируемый (с обучением) **ИИ + Большие данные + мощная** вычислительная техника = заявка на **AGI**

Еще 10 лет назад ученые были уверены, что все, что перечислено ниже, невозможно:

- Нейросети глубокого обучения распознают лица людей лучше чем сами люди
- Самообучающийся ИИ для игр (шахматы и го) обыгрывает любого человека, причем играет «по-человечески» (технически не всегда рационально), пример

 – претензии Каспарова к Deep Blue
- Алгоритмы выявления ключевых слов, аннотирования текстов, ответов на вопросы, обученные на больших корпусах (например, Wikipedia) работают все лучше, а используют лингвистику все меньше
- Многоязыковые переводчики учатся на одном наборе пар языков и успешно переводят другие пары (Google Multilingual Neural Machine Translation), используют языково-независимое представление
- Беспилотные автомобили на реальных дорогах

ИИ в современной индустрии

Что делает компанию ИИ-компанией:

- Сформулированная обоснованная общекорпоративная **стратегия** внедрения и использования ИИ, которую поддерживает руководство
- Непрерывная работа по развитию **ИИ команды** и ее экспертизы (обучение, наем, мотивация, централизованное управление)
- Фреймворк и процедуры для поддержки жизненного цикла ИИ средств и моделей
- Ответственная и надежная **работа с данными** (сохранение, очистка, нормализация, валидация)

Что мешает внедрению ИИ в компании - люди, люди и еще раз люди:

- Руководство, не понимающее, что такое ИИ, но желающее его использовать
- От неаккуратности до скрытого саботажа рядовыми сотрудниками в процессе внедрения
 ИИ если и не принесет прибыль, то «косяки» с хранением и обработкой данных, неверной
 отчётностью и неэффективным управлением «найдет» точно

Страх безработицы при внедрении ИИ (как и любых инноваций) сильно преувеличен:

• «безработица, порождаемая автоматизацией, не является более предметом предположений – она стала одной из животрепещущих проблем современного общества» (Норберт Винер, **70 лет назад**)

Современная индустрия ИИ и Больших данных

¹ See appendix for detailed definitions and metrics used for each of the criteria. SOURCE: McKinsey Global Institute analysis

Gartner 2021 Magic Quadrant for Data Science and Machine Learning Platforms.

м

Эволюция технологий хранения и обработки данных

- ... 1960-e:
 - □ Файлы и файловые архивы
- 1960-e:
 - □ Первые СУБД, иерархические, сетевые и т.д.
- <u>1970-e</u>:
 - □ Реляционная модель данных, реляционные СУБД
- <u>1980-e:</u>
 - □ «Продвинутые» СУБД (объектно-реляционные и объектные, «расширенные» реляционные, дедуктивные и др.)
 - □ «Специализированные» СУБД (гео-,научные, инженерные и др.)
- <u>1990-e ...:</u>
 - □ Мультимедийные БД, WWW, хранилища,
 - □ витрины данных,OLAP, <u>Data Mining</u>

Актуальность и необходимость интеллектуального анализа данных (ИАД)

- Проблема больших объемов («Data explosion»):
 - □ Средства автоматического сбора данных, повсеместное внедрение СУБД, электронный документооборот, WWW, мультимедийные архивы и т.д. приводят к росту объемов и усложнению структуры хранимой информации.
- Традиционные средства не справляются:
 - □ Информационный поиск и стат. анализ не везде помогают много данных, сложная структура и нужно знать точно, что искать.
 - □ Вывод: много данных, но мало информации для аналитика.
- Необходимо:
 - Наличие программных средств автоматизированного анализа данных большого объема и сложной структуры.

Интеллектуальный анализ данных (Data Mining)

Системы *интеллектуального анализа данных* (ИАД) — класс программных систем поддержки принятия решений, задачей которых является <u>поиск</u> *скрытых, ранее неизвестных, содержательных и потенциально полезных* <u>закономерностей</u> в *больших объемах разнородных, сложно структурированных данных*.

Han J., Kamber M. Data Mining: Concepts and Techniques // Morgan Kaufmann, 2000

1

Краткая история ИАД

- 1989 IJCAI Workshop on Knowledge Discovery in Databases (Piatetsky-Shapiro)
 - ☐ Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - □ Journal of Data Mining and Knowledge Discovery (1997)
- 1998 ACM SIGKDD, SIGKDD'1999-2001 conferences, and SIGKDD Explorations
- Другие конференции по data mining
 - □ PAKDD, PKDD, SIAM-Data Mining, (IEEE) ICDM, etc.

Mecto Data mining среди современных подходов анализа данных

Обратите внимание на пересечения областей!

Процесс ИАД (1)

- Анализ предметной области:
 - выявление и формулировка необходимых априорных знаний о предметной области, целей анализа, задач приложения, сценариев использования
- Формирование и подготовка данных для анализа:
 - □ поиск (или выбор) «сырых» данных, возможно, реализация подсистемы сбора (консолидации)
 - □ предобработка данных (нормализация, дискретизация, обработка пропущенных значений, удаление артефактов, проверка консистентности)
 - уменьшение размерности, выбор значимых характеристик, расчет интегральных показателей и инвариантов
- Определение типа решаемой задачи анализа:
 - классификация, прогнозирование, кластеризация, поиск исключений, ассоциативный анализ и т.д.

Процесс ИАД (2)

- Выбор (или разработка) алгоритма анализа:
 - определение ограничений и требований к алгоритму по точности, размеру, интерпретируемости, скорости построения и применения получаемых моделей, по типу исходных данных
- Непосредственно «Data mining»:
 - □ применение выбранного алгоритма анализа для поиска закономерностей выбранного типа и построение моделей
- Проверка моделей и представление результатов анализа:
 - визуализация, преобразование, удаление избыточности, оценка точности, достоверности моделей и т.д.
- Применение построенных моделей:
 - □ Descriptive data mining информирование аналитика, «описательные» модели, основная цель визуализация
 - □ Predictive data mining прогнозирование неизвестных значений или характеристик в «новых» данных с помощью построенных моделей, основная цель прогноз

Место ИАД в процессе поддержки принятия решений

Основные типы исходных данных

■ Транзакционные

□ Объекты анализа – «события» различной структуры с числовыми и категориальными атрибутами и с временной меткой

■ Табличные

- □ Объекты анализа представлены в виде реляционных таблиц, возможно взаимосвязанных (заданно ER-схемой), имеют разнотипные атрибуты
- Временные ряды и числовые данные большого объема
 - Обработка результатов наблюдений, научных экспериментов, характеристик технологических процессов
- Электронные тексты на естественном языке
 - □ анализ содержимого документов
- Графовые данные
 - □ Анализ взаимосвязей (SNA)
- Специализированные данные
 - □ Мультимедия, геоданные, ДНК, программный код и многое другое

м

Данные для анализа

- Объект анализа (или прецедент, или кейс, или наблюдение, ...)
 задается набором признаков (или атрибутов, или свойств, ...)
- Признаки по типам бывают:
 - □ Категориальные нет расстояний, не задан порядок
 - Ординальные (порядковые) нет расстояний
 - □ Числовые есть расстояние
- «Размеченный» набор данных для каждого объекта выделен один или более признаков, которые могут быть неизвестны и которые нужно предсказывать, тогда задача обучения «с учителем», иначе «без учителя» («неразмеченный» набор данных):
 - □ «Выходные» признаки нужно предсказывать (они же отклики, или «зависимые переменные», или …)
 - «Входные» признаки, которые считаются всегда известными (они же входы, или «независимые переменные», или регрессоры, …)

м

Обучение «с учителем» и «без»

м

Задачи ИАД = типы выявляемых закономерностей

- Классификация («Обучение с учителем»)
 - □ Отнесение объектов к заранее определенным категориям
- Ранжирование («Обучение с учителем»)
 - Оценка степени соответствия объектов одной или более заранее определенным категориям
- Прогнозирование («Обучение с учителем»)
 - □ На основании известных значений атрибутов анализируемого объекта определяются значения неизвестных атрибутов
- Ассоциации («Обучение без учителя»)
 - Выявление зависимостей между атрибутами в виде правил или аналитических зависимостей, выявление скрытых свойств объектов
- Кластеризация («Обучение без учителя»)
 - □ Выделение компактных подгрупп «похожих» объектов
- Выявление исключений («Обучение с учителем и без»)
 - □ Поиск объектов, которые своими характеристиками значительно отличаются от остальных

Классификация

- Дано:
 - «размеченный» тренировочный набор для каждого объекта известен его класс
- Цель:
 - □ Построить классификатор функцию или алгоритм, который в зависимости от свойств объекта предсказывает его класс
- Приложения в медицине:
 - □ Компьютерная безопасность
 - □ Производство- прогнозирование качества изделий
 - □ Распознавание образов

Ранжирование

Дано:

«размеченный» тренировочный набор – для каждого объекта
 известен его класс или несколько не взаимоисключающих классов

■ Цель:

- □ Построить функцию или алгоритм ранжирования, который в зависимости от свойств объекта вычисляет степень его соответствия классам
- □ Результат ранжирования: в рамках каждого класса можно упорядочить объекты по степени соответствия данному классу, и наоборот, в рамках каждого объекта можно упорядочить классы по степени соответствия данному объекту

Приложения:

- Документооборот и информационный поиск рубрикация документов
- □ Кредитование оценка заемщика
- □ Рекомендательные системы

Прогнозирование

Дано:

 «размеченный» тренировочный набор – для каждого объекта известно значение некой числовой величины, которое необходимо спрогнозировать

■ Цель:

□ Построить функцию, которая в зависимости от свойств объекта предсказывает значение данной величины

Приложения:

- Финансы прогноз курсов валют, цен на нефть и др., оценка ожидаемых доходов или убытков предприятия
- Маркетинг прогнозирование числа новых клиентов или убыли старых
- □ Прогноз электропотребления

Поиска ассоциаций

Дано:

 «не размеченный» тренировочный набор – для каждого объекта известны только значения его свойств (атрибутов)

Цель:

- □ Найти зависимости между значениями атрибутов
- Найти аналитические зависимости между атрибутами и выявить скрытые признаки и характеристики

■ Приложения:

- Маркетинг и рекомендательные системы анализ зависимостей между покупаемыми товарами или услугами
- □ Финансовый анализ поиск зависимостей между значениями индексов и другими финансовыми параметрами
- □ Латентно-семантический анализ текстов

Кластеризация

- Дано:
 - «не размеченный» тренировочный набор для каждого объекта известны только значения его свойств (атрибутов)
- Цель:
 - □ Найти «непохожие» группы «похожих» объектов
- Приложения:
 - Маркетинг сегментация клиентов, товаров и т.д.
 - □ Производство выявление типовых состояний и ситуаций
 - □ Индексирование документов

Выявление исключений

- Дано:
 - □ тренировочный набор («размеченный» или нет) для каждого объекта известны значения его свойств
- Цель:
 - □ Построить модель и найти наиболее «не типичные» объекты
- Приложения:
 - □ Безопасность подозрительные финансовые транзакции, звонки, люди, организации
 - Производство выявление нештатных ситуаций
 - Медицина диагностика

Большие данные

В научной среде термин используется с 1990х (2008) «Как могут повлиять на будущее науки технологии, открывающие возможности работы с большими объёмами данных?», Клиффорд Линч (редактору журнала Nature)

(2011) «Big Data: The next frontier for innovation, competition and productivity», McKinsey Global Institute

(2015) - термин Data Science

20+ экзабайт в сутки!

данных.

графы, медиа и

другие

данных.

Кто виноват и что делать с Большими данными?

Виноваты жесткие диски:

(10Гб/сек) **50**X

1ГБ/сек

Что делать?

Вертикальное масштабирование:

- дорого, технологически ограниченно
- НО относительно легко переносить аналитические алгоритмы

Горизонтальное масштабирование:

- дешево, потенциально технологически неограниченно
- НО сложно переносить аналитические алгоритмы

Индустрия выбирает MPP, а «математики» к этому не готовы

Отличие аналитики Больших данных от традиционной

Кто такой Data Scientist? «три в одном»:

- Аналитик прикладникпонимает предметную область, в которой строит модель
- Математик владеет методами прикладной статистики и ИИ
- Программист может писать код для эффективной обработки больших объемов сложно структурированных данных

Data scientist

BI and

Современный подход к организации жизненного цикла аналитических моделей

Визуализация данных

Внедрение моделей

Принятие решений

Управление данными

Обработка текстов на естественном языке

Компьютерное зрение

DATAOPS

Заимствуя методы Agile разработки программного обеспечения, DataOps обеспечивает гибкий подход к организации доступа к данным, управлению их качеством, и визуализации. Это обеспечивает большую надежность, адаптируемость, скорость и совместную работу в ваших усилиях по внедрению данных и аналитических рабочих процессов.

Доступ

Организация эффективного доступа к данным любого объема и структуры

Подготовка

Преобразование сырых данных в том числе с использованием Al

Визуализация

Выявление и наглядное представление основных зависимостей в данных

Управление

Построение хранилища очищенных и доверенных данных с учетом истории пополнения

Моделирование

Специалисты по обработке данных используют комбинацию методов для анализа данных и построения прогнозных моделей. Они используют статистику, машинное обучение, глубокое обучение, обработку естественного языка, компьютерное зрение, прогнозирование, оптимизацию и другие методы, чтобы решать реальные задачи.

Моделирование

Построение моделей с использованием различных методов ИИ для решения реальных задач

Автоматизация

Автоматизация рутинных задач по формированию признакового пространства и тьюнингу моделей

Взаимодействие

Групповая разработка моделей

Интеграция

Совмещение возможностей разных платформ

MODELOPS

ModelOps фокусируется на том, чтобы как можно быстрее получить модели ИИ через этапы проверки, тестирования и развертывания, обеспечивая при этом качественные результаты. Он также основан на постоянном мониторинге, дообучении и управлении моделями для обеспечения максимальной производительности и прозрачности

Валидация

Объективная оценка качества моделей моделей

Внедрение

Внедрение моделей в операционные процессы и организация их мониторинга

Управление

Подтверждение надежности, достоверности и безопасности решений на основе ИИ моделей

Интеграция

Комбинация бизнес-правил и ИИ для принятие решений в режиме близком к реальному времени

Использование ИИ на разных стадиях

Оценка и исправление качества данных, обеспечение безопасности, жизненный цикл данных

Построение, сравнение и оценка качества моделей, интерпретируемость моделей

Мониторинг производительности моделей, поддержка принятия надежных и достоверных решений

Отличия ИАД систем (1)

■ Наличие «обучения»

- □ база знаний формируются на основе анализируемых данных, а не экспертных знаний (в отличие от традиционных экспертных систем и систем информационного поиска)
- структура модели и искомые зависимости заранее не известны (в отличие от статистических пакетов, ориентированных на расчет статистик, проверку гипотез и оценку параметров распределений)

Отличия ИАД систем (2)

- Наличие большого объема данных сложной структуры
 - □ зачастую скорость работы алгоритмов в ИАД важнее отклонений по точности ("quick and dirty solution")
 - □ большинство алгоритмов работают с исходными данными в виде числовой матрицы признаков, сложная структура реальных объектов в ИАД приводит к необходимости решать задачу построения пространства характеристик и отображения в него свойств исходных объектов
 - □ перечисленные особенности отличают ИАД системы от традиционных систем машинного обучения, в которых, как правило, решается обратная задача – построение достоверной модели в условиях малой обучающей выборки

Отличия ИАД систем (3)

- Наличие человека аналитика как оконечного потребителя результатов работы ИАД системы
 - □ в сценарии работы любой системы ИАД всегда присутствует аналитик, даже если полученная в результате модель далее используется для автоматической классификации
 - аналитик формирует тренировочные наборы, производит настройку алгоритмов, обучение и дообучение, анализирует полученные модели и принимает решения об их дальнейшем использовании
 - □ таким образом, системы автоматической классификации, кластеризации и распознавания образов, даже использующие возможность дообучения, не являются системами ИАД

Литература

http://www-stat.stanford.edu/~tibs/ElemStatLearn

