Computergrafik SS 2014 Oliver Vornberger

Vorlesung vom 12.05.2014 Kapitel 8:

Farbenlehre

Zunächst am Licht entsteht uns eine Farbe, die wir Gelb nennen, eine andere zunächst an der Finsternis, die wir mit dem Worte Blau bezeichnen. Diese beiden, wenn wir sie in ihrem reinsten Zustand dergestalt vermischen, dass sie sich völlig das Gleichgewicht halten, bringen eine dritte hervor, welche wir Grün heißen.

http://www.farben-welten.de

~cg/2014/farben/beispiele-falscher-dreifarben-theorien.html

elektromagnetische Schwingungen

Licht

- Wellenlänge · Frequenz = Lichtgeschwindigkeit ≈ 300.000 km/sec
- Spektralfarben haben genau eine Frequenz
- natürliches Licht enthält Mix von Frequenzen
- Verteilung von Frequenzen heißt Spektrum

Spektrum

Charakterisierung

Hue = Farbton dominante

Wellenlänge

Luminance = Helligkeit A + B

Saturation = Sättigung A / (A+B)

Mensch:

- 100 Farbtöne
- 50 Helligkeitsstufen
- 20 Sättigungsgrade

Menschliches Sehen

Тур		Anzahl	Schwelle
S/W:	Stäbchen	125.000.000	1 Photon
Farbe:	Zäpfchen	5.000.000	100 Photonen

2D-Farbgrafik

Wähle drei Grundfarben R_{ot} , $G_{rün}$, B_{lau} normiere Mischungsverhältnis auf 1 = R+G+B Notiere Farbe bei P=(R,G)

Tristimulus

CIE-Farbdiagramm

Commission Internationale L'Éclairage, 1913

Montior-Gamut

R = (0.628, 0.346)

G = (0.268, 0.588)

B = (0.150, 0.070)

Printer-Gamut

Farbkodierung

```
wähle 3 Grundfarben
```

```
[0..1] \rightarrow [0..255]
Zahl der Farben = 256 \cdot 256 \cdot 256
= 16777216
```

RGB-Modell

Grundfarben rot grün blau (1,0,0) (0,1,0) (0,0,1)

(x,y,z) mische x Anteile Rot y Anteile Grün z Anteile Blau

- additiv
- geeignet f
 ür Monitor

RGB-Modell

Mischen im RGB-Modell

- (1,0,0) Rot
- (0,1,0) Grün
- (1,1,0) Gelb

- (0,1,0) Grün
- (0,0,1) Blau
- (0,1,1) Cyan

- \blacksquare (1,0,0) Rot
- (0,0,1) Blau
- (1,0,1) Magenta

CMY-Modell

Auge empfängt vom Farbdruck die Lichtanteile, die reflektiert werden:

```
(x,y,z) absorbiert x Anteile Rot
y Anteile Grün
z Anteile Blau
```

subtraktiv

geeignet für Drucker

Grundfarben Cyan, Magenta, Yellow

CMY-Modell

Mischen im CMY-Modell

- (0,1,0) Magenta
- (0,0,1) Gelb
- (0,1,1) Rot

- (1,0,0) Cyan
- (0,0,1) Gelb
- (1,0,1) Grün

- (1,0,0) Cyan
- (0,1,0) Magenta
- (1,1,0) Blau

$RGB \leftrightarrow CMY$

$$\begin{pmatrix}
C \\
M
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix} - \begin{pmatrix}
R \\
G \\
B
\end{pmatrix}$$

$$\begin{pmatrix}
R \\
G \\
B
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix} - \begin{pmatrix}
C \\
M \\
Y
\end{pmatrix}$$

CMYK-Modell

verwende zusätzlich schwarze Farbe

Näherung:

```
K := min(C,M,Y)
```

$$C' := C - K$$

$$M' := M - K$$

$$Y' := Y - K$$

YUV-Modell

Motivation: S/W-Fernsehen → Farbfernsehen

kodiere Luminanz Y und Farbdifferenzen U,V

$$Y := 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

$$U := 0.493 \cdot (B-Y)$$

$$V := 0.877 \cdot (R-Y)$$

$$R := 1.140 \cdot V + Y$$

$$G := Y - 0.579 \cdot V - 0.393 \cdot U$$

$$B := 2.028 \cdot U + V$$

YUV-Beispiel

HSV-Modell

HSV nach RGB

Color Naming System

- Farbton:
 red, orange, yellow, green, blue, purple
- Helligkeit very dark, dark, medium, light, very light
- Sättigung grayish, moderate, strong, vivid

"medium strong green"

Color Data Base

indian red	205	92	92	
lawn green	124	252	0	
midnight blue	25	25	112	
chocolate	210	105	30	

~cg/2014/farben/webfarben.html

Java-Applet zu Farbe

~cg/2014/skript/Applets/Farben/App.html

Adobe Photoshop

Kapitel 9: Pixeldateien

Auflösung

gemessen in dots per inch (dpi)

- Scanner-Auflösung
- Scan-Auflösung
- Bild-Auflösung
- Monitor-Auflösung
- Drucker-Auflösung
- Druck-Auflösung

Monitor-Auflösung

Dia-Auflösung

Abzug vom Dia

- Dia, eingescannt mit 2500 dpi
- 3.60 / 2.54 * 2500 = 3543 Pixel
- 2.40 / 2.54 * 2500 = 2362 Pixel
- gedruckt mit 300 dpi ergibt
 - = 3543 / 300 inch x 2362 / 300 inch
 - $= 30 \text{ cm } \times 20 \text{ cm}$
 - = DIN-A4