

Otimização Multi-Objetivo de Rotores com Considerações de Eficiência e Ruído

Pedro Henrique Steganha Luta

Relatório Final de Trabalho de Graduação em Engenharia Aeroepacial pela Universidade Federal do ABC

Pedro Henrique Steganha Luta

Otimização Multi-Objetivo de Rotores com Considerações de Eficiência e Ruído

Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Trabalho de Graduação em Engenharia Aeroespacial

Orientador: Marcelo Tanaka Hayashi

São Bernado do Campo - SP Dezembro de 2022

Resumo

Métodos de parametrização e simulação de rotores, juntamente a modelagem de ruído são implementados com o objetivo final de realizar uma otimização da forma em planta de um rotor. O principal método utilizado para a simulação do rotor é o elemento de pá e quantidade de movimento (BEMT), enquanto a modelagem de ruído foi realizada através de um modelo semi-empírico. Para a otimização, foi utilizado um algoritmo genético multi-objetivo (NSGA-II) para levantar indivíduos na curva de Pareto conjuntamente ao critério de menor perda para escolher o melhor indivíduo dentre os levantados. Segundo análise da curva de Pareto, o indivíduo que obteve a melhor performance em voo pairado e o indivíduo que obteve o menor ruído têm características diferentes. Entende-se que o indivíduo escolhido como ótimo tem características médias dos dois extremos da curva e, por consequência, tem performance mediana nas duas funções objetivo, sendo assim considerada uma solução de compromisso.

Palavras-chaves: Rotor; Hélice; Voo pairado; Ruído; Eficiência; Potência; Área em planta; Corda; Passo; Elemento de pá; Otimização; Algoritmo genético; Critério de menor perda.

Abstract

Rotor parameterization and simulation methods, together with noise modeling are implemented with the final objective of accomplishing an optimization of the planform shape of a rotor. The main method utilized for rotor simulation was blade element and momentum theory (BEMT), while the noise modeling was accomplished via semi-empiric model. For the optimization, a multi-objective non-sorting genetic algorithm (NSGA-II) was used to obtain the individuals along the Pareto curve, while the criterium for minimum loss was used to obtain the optimized individual within the obtained curve. According to the analysis of the obtained Pareto curve, the individual with best performance in hover and the individual with lowest noise have discerning characteristics. It is understood that the chosen optimum individual has median characteristics between the two extremes of the curve and, by consequence, has median performance on both of the objective functions, being considered a trade-off solution.

Keywords: Rotor, noise, efficiency, BEMT, optimization.

Lista de abreviaturas e siglas

CFD Dinâmica de Fluidos Computacional (Computational Fluid Dynamics)

eVTOL Veículo Elétrico de Decolagem e Pouso Vertical (electrical Vertical Take-Off and Landing Vehicle)

Lista de símbolos

J Razão de Avanço

Lista de ilustrações

Figura 1 – Aeronaves e hélices do início do século XX: (a) Wright Flyer, dos irmãos	
Wright; (b) Demoiselle, de Santos Dumont	11
Figura 2 – Exemplo da discretização associada à Teoria do Elemento de Pá	15
Figura 3 – Modificação do escoamento devido à ação de tração e torque segundo	
a Teoria da Quantidade de Movimento	15
Figura 4 $-$ Fluxograma do funcionamento geral de um algoritmo BEMT. \cdot	16
Figura 5 – Exemplo de espectro sonoro. (TACK et al., 2006)	17
Figura 6 – (a) Capacidade de audição do ouvido humano; (b) Ganho para pon-	
deração A (KUTTRUFF, 2007)	18
Figura 7 – Bandas de um terço de oitava	18
Figura 8 – Fontes de ruído em veículos de UAM Fonte: (RIZZI et al., 2020). $$	19
Figura 9 – (a) Representação de indivíduos dominados e não-dominados; (b) Apro-	
ximação do conjunto de Pareto (MARTINS; NING, 2021)	23
Figura 10 – (a) $Crowding$: Uma medida de proximidade com relação a soluções	
vizinhas; (b) O processo de criação de uma nova população (DEB et	
al., 2002)	25
Figura 11 – Cálculo da solução de menor perda (ROCCO; SOUZA; PRADO, 2003).	26
Figura 12 – Aerofólio ClarkY normalizado pela corda.	28
Figura 13 – Comparação do método de ruído implementado com os valores originais	
(PEGG, 1979)	29
Figura 14 — Verificação da implementação do algoritmo NSGA-II com um problema	
teste (BINH; KORN, 1997)	31
Figura 15 – (a) Exemplo simples de distribuição de corda; (b) Exemplo de distri-	
buição de corda com dupla inversão de derivada	32
Figura 16 – Exemplo de distribuições de incidência com o método proposto	33
Figura 17 – Adaptação do perfil de certificação	36
Figura 18 – (a) Curva de Pareto final; (b) Comparação da distribuição de corda;	
(c) Comparação da distribuição de incidência	37
Figura 19 – Análises de influência dos parâmetros e grandezas nas variáveis objetivo.	39

Lista de tabelas

Tabela 1 –	Exemplo de declaração de problema de otimização	22
Tabela 2 –	Caso de otimização teste (BINH; KORN, 1997)	30
Tabela 3 –	Parâmetros e seus limites	33
Tabela 4 –	Dados levantados do mercado de UAM (BACCHINI; CESTINO, 2019)	
	(FUKUMINE, 2022)	35
Tabela 5 –	Dados para estudo de caso	35
Tabela 6 –	Variáveis de projeto de três indivíduos na curva de Pareto	37
Tabela 7 –	Grandezas de três indivíduos na curva de Pareto	37

Sumário

	Lista de ilustrações	1
	Lista de tabelas	8
	Sumário	g
1	INTRODUÇÃO	11
1.1	Motivação	12
1.2	Objetivos	13
2	REVISÃO BIBLIOGRÁFICA	14
2.1	Simulação de rotores	14
2.1.1	A Teoria do Elemento de Pá e Quantidade de Movimento	14
2.2	Som e ruído	16
2.2.1	A sensibilidade do ouvido humano	17
2.2.2	Bandas	18
2.2.3	Fontes de ruído em aeronaves	19
2.2.4	Minimização de ruído	20
2.2.4.1	OASPL	20
2.2.4.2	PNL	20
2.3	Métodos de otimização	21
2.3.1	Variáveis de projeto	21
2.3.2	Funções objetivo	22
2.3.3	Requisitos e restrições	22
2.3.4	Declaração de problema de otimização	22
2.3.5	Algoritmos multiobjetivo, soluções dominadas e critério de optimalidade	22
2.3.6	Local vs. global	23
2.3.7	Algoritmos genéticos	24
2.3.8	NSGA-II	24
2.3.8.1	Critério de parada	25
2.3.8.2	Critério de escolha	25
2.4	Projeto de Rotores	26
2.4.1	Modelagem paramétrica	27
3	DESENVOLVIMENTO	28
3.1	Modelo de simulação	28

Sumário 10

3.2	Modelo de ruído
3.3	Método de otimização
3.4	Parametrização
3.5	Funções objetivo
3.5.1	Eficiência
3.5.2	Ruído
4	ESTUDO DE CASO
4.1	Perfil de referência
4.2	Resultados
4.3	Análises de influência
5	CONCLUSÃO
6	SUGESTÕES PARA TRABALHOS FUTUROS
	REFERÊNCIAS

1 Introdução

A história das hélices é mais antiga do que a da aviação. O princípio da hélice para transporte de fluidos e geração de potência remonta à Grécia Antiga com o uso do parafuso de Arquimedes, assim como na China Antiga há registros de brinquedos datados de 400 A.C. que utilizam o conceito helicoidal para geração de tração. O século XVIII marcou o início do uso de hélices em aplicações aeronáuticas na forma de dirigíveis e balões, mas não foi até o final do século XIX e início do século XX que a teoria de hélices foi pesquisada mais à fundo durante a corrida para desenvolver e construir os primeiros aviões, protagonizada pelos irmãos Wright e Santos Dumont. Algumas das hélices utilizadas nesses projetos são ilustradas na Figura 1.

Figura 1 – Aeronaves e hélices do início do século XX: (a) Wright Flyer, dos irmãos Wright; (b) Demoiselle, de Santos Dumont.

As hélices foram o principal meio de propulsão aeronáutica até a metade do século XX, um período marcado por grandes avanços no projeto, manufatura e utilização, chegando em eficiências propulsivas de 90% em velocidades de até 200 m/s em aeronaves desenvolvidas para a Segunda Guerra Mundial (KINNEY, 2017). Dentre as contribuições para esse aumento de desempenho, pode-se citar o trabalho de William F. Durand e Everett P. Lesley, dois professores da Universidade de Stanford que conduziram diversos experimentos para um entendimento sobre a influência de variações geométricas no desempenho da hélice (VINCENTI, 1979).

No período pós-guerra, o desenvolvimento e aprimoramento de sistemas de propulsão para aplicações de alta velocidade foi mais aprofundado, onde as hélices foram eventualmente trocadas por métodos de propulsão mais eficientes como os *turbofans*. No entanto, atualmente há uma crescente demanda por avanços tecnológicos na melhoria da performance das hélices, especialmente no que diz respeito à redução do ruído e aumento da eficiência.

O crescimento da demanda de transporte aéreo fez com que cada vez mais aviões e helicópteros sejam operados em grandes cidades, causando uma rejeição da população devido às consequências sonoras advindas da operação aeronáutica. Um dos exemplos dessa rejeição é a descontinuação das operações da aeronave Concorde, que produzia ruídos devido a ondas de choque advindas de escoamentos acima da velocidade do som (LYTH, 2014). Desse modo, cada vez mais atenção está sendo necessária em relação à redução do ruído aeronáutico e sua aceitação pelas comunidades.

O emergente mercado de mobilidade áerea urbana (UAM) intensifica essa necessidade devido ao aumento de operações semelhantes às realizadas por helicópteros, sendo necessário às empresas ouvir e endereçar preocupações da comunidade com relação ao ruído produzido por suas aeronaves de modo à obter uma aceitação de suas operações (RIZZI et al., 2020). Como a maioria dos veículos sendo desenvolvidos utilizam hélices e rotores como meio principal de geração de tração e sustentação, esses componentes são parte essencial do processo de otimização.

Como um outro problema a ser resolvido, a utilização de soluções elétricas para o armazenamento e utilização de energia no ramo aeronáutico é uma questão que demanda soluções de compromisso, como por exemplo para a obtenção de uma alta autonomia, cuja solução primária é carregar muita energia acarreta em aumento de peso de baterias, consequentemente, faz-se necessário o trade-off entre a quantidade de baterias necessárias e o consequente peso dessas baterias. Naturalmente, surge um novo desafio para design de veículos elétricos que operam em cidades: Além de necessitarem de uma baixa poluição sonora, seus sistemas devem ser extremamente eficientes para aproveitar ao máximo a energia disponível. Nesse contexto, hélices e rotores são componentes essenciais a serem considerados no projeto de aeronaves pois são fontes primárias de tração e sustentação, respectivamente.

1.1 Motivação

A necessidade de otimizações multi-objetivo com relação a eficiência e ruído abrange diversas etapas do projeto de uma aeronave, desde o projeto conceitual até detalhamento. Enquanto a consideração de métodos alternativos como pontas enflechadas e diedro é reservada a etapas avançadas de projeto, onde são utilizados métodos de alta fidelidade e demanda computacional, as etapas iniciais do projeto de rotores abrange a conceitualização de uma pá através de métodos de menos fidelidade e custo computacional, como por exemplo métodos empíricos.

Diversos métodos de baixo custo computacional existem para a predição de eficiência e ruído de rotores e hélices, dado que a utilização desses métodos em conjunto proporcionaria um projeto conceitual de rotores efetivo que auxiliaria no desenvolvimento de

veículos aeronáuticos.

1.2 Objetivos

Esse trabalho tem como objetivo desenvolver um método de otimização de rotores com considerações em relação à sua eficiência e ruído com foco na utilização de modelos de baixo custo computacional.

Essa ferramenta deve possuir a capacidade de, dentro de limites impostos, fornecer a hélice que melhor desempenhe nas características de eficiência e ruído, considerando fatores como número de pás, diâmetro, distribuição de corda e passo para utilização em projetos conceituais de rotores.

2 Revisão Bibliográfica

2.1 Simulação de rotores

A simulação aerodinâmica não é um assunto simples. Diversos métodos já foram propostos, implementados e validados com o intuito de prever diversos tipos de escoamento sobre diversos tipos de superfície. Alguns dos métodos mais conhecidos para simulação aerodinâmica de aeronaves são a *Lifting Line Theory* (LLT), o *Vortex Lattice Method* (VLM) e soluções baseadas na resolução numérica das equações de Navier-Stokes, também conhecidas como soluções em *Computational Fluid Dynamics* (CFD).

Embora as mesmas soluções possam ser aplicadas para simulação aerodinâmica de rotores com performance similar, um método adicional é popular para simulação aerodinâmica exclusivamente de rotores: A Teoria do Elemento de Pá e Quantidade de Movimento (*Blade-Element and Momentum Theory* - BEMT), que oferece uma fidelidade baixa, no entanto com custo computacional extremamente baixo, tornando-o uma ótima ferramenta em fases conceituais de desenvolvimento.

2.1.1 A Teoria do Elemento de Pá e Quantidade de Movimento

A Teoria do Elemento de Pá e Quantidade de Movimento (BEMT) é uma teoria que permite a descrição da performance de rotores em diversas condições de operação à partir de inputs geométricos. Seu desenvolvimento parte primeiramente da Teoria do Elemento de Pá, na qual o rotor é discretizado em seções transversais, como apresentado na Figura 2, de modo a solucioná-las bidimensionalmente na seção considerada. Para isso, alguns modelos de escoamento bidimensional podem ser utilizados, como por exemplo coeficientes linearizados, polares bidimensionais previamente calculadas ou métodos de solução de escoamento bidimensionais, como por exemplo o software XFoil (DRELA, 1989)

Figura 2 – Exemplo da discretização associada à Teoria do Elemento de Pá.

A segunda teoria que compreende o BEMT é a Teoria do Disco Atuador, também conhecida como a Teoria da Quantidade de Movimento, apresentada primeiramente no final do século XIX por Rankine (RANKINE, 1865), cujo principal objetivo foi descrever a perturbação no escoamento causada por um rotor, fazendo-se o uso de teorias de conservação de quantidade de movimento e de energia, desse modo, as grandezas de tração, torque e velocidade do escoamento à montante e jusante do rotor são atreladas segundo esta teoria segundo a Figura 3.

Figura 3 – Modificação do escoamento devido à ação de tração e torque segundo a Teoria da Quantidade de Movimento.

Em 1935, Glauert (GLAUERT, 1935) apresentou a teoria conjunta do Elemento de Pá e Quantidade de Movimento, associando o elemento de pá à sua consequente aceleração do escoamento, seu funcionamento geral é apresentado na Figura 4

Em suma, o método consiste na discretização geométrica da pá do rotor e especificação de sua condição de operação. Subsequentemente, a solução bidimensional do escoamento de cada seção é computada (Elemento de Pá), considerando a indução local causada pela própria hélice (Teoria da Quantidade de Movimento), empregando um método iterativo para determinar a contribuição de cada seção. Após definidos os carregamentos das seções bidimensionais, emprega-se uma integração radial, somando-se as contribuições de modo a obter a tração e torque total oferecidos pela hélice.

Figura 4 – Fluxograma do funcionamento geral de um algoritmo BEMT.

2.2 Som e ruído

A geração, propagação e percepção de som podem ser atreladas a vibrações mecânicas (KUTTRUFF, 2007), caso as vibrações mecânicas relacionadas a esses fenômenos cessem, o som não é mais percebido. A produção do som pode vir de diversas fontes vibratórias diferentes, no entanto, a propagação do som se dá através de fluidos ou sólidos por meio da colisão de partículas, que em fluidos pode se caracterizar por alterações pequenas, momentâneas e periódicas de pressão que se propagam como uma onda. Adicionalmente, em fluidos é possível aplicar a métrica decibel (dB), que mede a amplitude do sinal sonoro em relação a uma pressão padronizada internacionalmente em uma escala logarítmica, como explicitado na equação 2.1.

$$L = 20 \cdot log_{10} \left(\frac{\bar{p}}{p_b}\right) dB \tag{2.1}$$

onde L é a intensidade do som em decibéis, também conhecida como Sound Pressure Level (SPL), \bar{p} é o Root Mean Square (RMS) do sinal sonoro em Pa e p_b é uma pressão de referência padronizada em $2 \cdot 10^{-5}$ Pa.

Ondas de som são caracterizadas por sua frequência, que por sua vez deriva-se pela periodicidade do sinal sonoro. Um sinal sonoro, por sua vez, pode ser composto de sons em diversas frequências, desse modo, uma caracterização importante do som é o seu espectro, que apresenta as frequências sonoras em Hertz (Hz) e suas respectivas intensidades, em dB que compõem o sinal sonoro, como demonstrado na Figura 5.

Figura 5 – Exemplo de espectro sonoro. (TACK et al., 2006)

Ruído, embora seja definido exatamente da mesma forma que som, é geralmente o nome dado a sinais sonoros indesejados, tendo-se por objetivo final filtrá-lo de sinais ou minimizar sua produção.

2.2.1 A sensibilidade do ouvido humano

O ser humano tem diferentes sensibilidades para diferentes frequências (KUTTRUFF, 2007), como pode ser visto na Figura 6(a). Desse modo, faz-se necessário a ponderação das frequências para que ruídos com espectros focados em regiões de baixa frequência sejam descontados de um certo valor, dado que uma perturbação em frequências de 2 a 5 mil Hz são mais irritantes ao ouvido humano do que frequências de 20 a 200 Hz. Com o intuito de realizar tal ponderação, o processo de A-Weighting modifica a amplitude do espectro sonoro em um valor fixo, como pode ser visto na Figura 6(b). Após a aplicação dos ganhos, o resultado é um espectro mais condizente com a capacidade de audição do ser humano e a sua tendência de se irritar com o sinal sonoro.

Figura 6 – (a) Capacidade de audição do ouvido humano; (b) Ganho para ponderação A (KUTTRUFF, 2007).

2.2.2 Bandas

De modo a trabalhar com espectros sonoros, as frequências são geralmente subdivididas em bandas, tal que uma frequência que se encontra dentro dos limites da banda é representada pela frequência central, como representado na Figura ??. Dois sistemas altamente utilizados são o sistema de oitavas e o de um terço de oitavas (ETB, 2010), que subdividem o espectro em bandas discretas, sendo que o sistema de um terço de oitavas, por separar o espectro em mais bandas, oferece uma precisão e fidelidade maior em relação ao espectro contínuo. O sistema de um terço de oitava é exemplificado na Figura 7.

Figura 7 – Bandas de um terço de oitava.

2.2.3 Fontes de ruído em aeronaves

O ruído aeronáutico pode ser originado de diversos componentes da aeronave. As origens de ruído de veículos sendo projetados para serem utilizados no mercado de Mobilidade Aérea Urbana (*Urban Air Mobility* - UAM) diferem das origens de ruído de helicópteros (RIZZI et al., 2020), no sentido de que os veículos atuais fazem o uso de diversos rotores para produzirem sustentação e tração, em contrapartida a um ou dois rotores utilizados nos helicópteros. Além disso, a velocidade de rotação dos rotores dos veículos novos podem eventualmente variar, enquanto que a dos helicópteros geralmente não. Desse modo, faz-se necessário discretizar as origens de cada perturbação sonora para entender as características relacionadas à sua geração.

Como pode ser visto na Figura 8, algumas das fontes de ruído podem ser listadas como:

- Blade-Airframe Interaction (BAI), que engloba a interação dos rotores com fuselagem e componentes estruturais;
- Blade-Vortex Interaction (BVI) que engloba a interação do rotor com vórtices, sejam eles induzidos pelo próprio rotor ou por outras superfícies;
- Fuselage-Wake Interaction (FWI) que engloba a interação da fuselagem com a esteira de rotores ou superfícies sustentadoras;
- Motor;
- Carregamento e espessura (fontes estacionárias).

Figura 8 – Fontes de ruído em veículos de UAM Fonte: (RIZZI et al., 2020).

Parte da complexidade da predição de ruído se dá devido ao grande número de fontes, juntamente aos mecanismos responsáveis pelo fenômeno, que requerem simulações de alta fidelidade para serem descritos. No entanto, entende-se que certas fontes de ruído listadas acima não dependem do projeto do rotor, sendo esse responsável por fontes estudadas e compiladas em métodos semi-empíricos, tornando seu desenvolvimento mais fácil.

Em um trabalho de revisão, Pegg sumarizou os métodos semi-empíricos disponíveis para a contabilização de ruído de rotores (PEGG, 1979) até o final da década de 80, sendo esses largamente utilizados desde então. O trabalho de Pegg fornece equações que descrevem o espectro gerado por rotores por diversos mecanismos em diversos escoamentos, incluindo ruído rotacional de carregamento estacionário ou não estacionário, ruído rotacional de arrasto induzido por compressibilidade (ondas de choque), ruído de espessura, interações da pá com vórtices e ruído de banda-larga (complexo, de origens diversas).

2.2.4 Minimização de ruído

De modo a considerar ruídos em otimizações, é necessário transformar o espectro em um escalar para que seja avaliado segundo critérios de otimização. Desse modo, dois possíveis métodos de representação do espectro são o *Overall Sound Pressure Level* (OASPL) e o *Perceived Noise Level* (PNL).

2.2.4.1 OASPL

O cálculo do OASPL parte de um espectro sonoro, preferencialmente em bandas de um terço de SPL, cujas intensidades de cada banda são somadas através da equação (2.2), onde L_i representa a intensidade de cada banda, obtendo-se ao final um valor escalar que representa o espectro sonoro como um todo.

$$L = 10 \cdot \log_{10} \sum 10^{\frac{L_i}{10}} \tag{2.2}$$

2.2.4.2 PNL

O cálculo do PNL se baseia no procedimento aplicado em certificações de aeronaves pela FAA (FAA, 1969a), cujos requisitos sonoros giram em torno do EPNLT (Effective Perceived Noise Level Tone-Corrected). O cálculo do EPNLT parte de um espectro sonoro, ao qual aplica-se uma tabela de perturbação do ouvido humano para obtér o PNL, que passa por uma correção de tom para a consideração de falhas e descontinuidades no espectro sonoro, chegando-se ao PNLT (Perceived Noise Level Tone-Corrected). Caso necessário, a duração do espectro sonoro pode ser levada em consideração, obtendo-se o EPNLT.

2.3 Métodos de otimização

Um problema de otimização pode ser resolvido de diversas maneiras, como por exemplo a busca exaustiva, que consiste em testar todas as combinações possíveis das variáveis do problema e compará-las. Esse método, no entanto, é de alta demanda computacional, podendo assim ser um fator impeditivo para o uso em certas aplicações. Desse modo, com o intuito de garantir uma exploração do problema de otimização que seja tanto efetiva quanto computacionalmente acessiva, diversos métodos de otimização foram criados e são utilizados com diferentes intuitos. Neste capítulo serão discutidos os conceitos e funcionamento geral relacionados a métodos de otimização diversos (MARTINS; NING, 2021).

2.3.1 Variáveis de projeto

Variáveis de projeto são parâmetros do problema que podem ser variados para que seu comportamento em relação à função objetivo seja explorado. Dentro do modelo utilizado, uma combinação de variáveis de projeto define um indivíduo, do mesmo modo que uma diferente combinação de variáveis define um indivíduo distinto, como representado na equação (2.3).

$$x = [x_1, x_2, ..., x_n] (2.3)$$

Quanto mais variáveis de projeto um problema possuir, mais tempo computacional será demandado pelo algoritmo de busca ao explorar o domínio e fornecer soluções ótimas, sendo necessário alto cuidado na definição destas para não introduzir um fator computacional impeditivo no projeto.

Essencialmente, as variáveis objetivo devem ser independentes umas das outras e o algoritmo de otimização em questão deve ser livre para determinar as variáveis de um indivíduo de maneira independente. Na definição das variáveis de projeto, é importante também ter em mente se as variáveis escolhidas são discretas ou contínuas, dado que a abordagem do algoritmo de otimização será distinta, dependendo da resposta, caracterizando um problema de otimização contínuo ou discreto. Por último, na definição do problema de otimização em conjunto com as variáveis de projeto, é aconselhável a determinação de valores mínimos e máximos das variáveis objetivo, sejam esses escolhidos de modo a explorar um domínio pré-determinado de variáveis ou simplesmente para fornecer base teórica, como por exemplo uma restrição de valores negativos para variáveis que representam comprimento ou peso.

2.3.2 Funções objetivo

Funções objetivo são métodos que avaliam a solução proposta, comparando, assim, as diferentes combinações de variáveis. Uma função objetivo deve ser uma variável escalar que seja inteiramente computável à partir de um vetor de variáveis de projeto. A escolha da função objetivo é crucial para a performance da otimização como um todo, dado que, se a função não representa a verdadeira intenção do projetista, o resultado nunca será satisfatório de um ponto de vista de engenharia (MARTINS; NING, 2021).

A intrínseca relação entre diversos pontos de interesse em um projeto de engenharia é um dos fatores que motivam a otimização multiobjetivo, que não fornece apenas um indivíduo ótimo, mas sim uma gama de indivíduos que representam diferentes soluções de compromisso entre as variáveis objetivo.

2.3.3 Requisitos e restrições

Em certos problemas de otimização, também é interessante a utilização de funções análogas às funções objetivo com o intuito de limitar a ação do algoritmo de otimização a regiões viáveis do domínio. É necessário ter cuidado, no entanto, para que o problema de otimização proposto em conjunto com as restrições forneça possibilidades de soluções viáveis, dado que, se não propostas cuidadosamente, as restrições podem deixar o problema sem solução. Portanto, o número de restrições de igualdade deve ser menor ou igual ao número de variáveis objetivo, sendo que as restrições de desigualdade não têm limite de imposição (MARTINS; NING, 2021).

2.3.4 Declaração de problema de otimização

Dadas as definições anteriores, um problema de otimização pode então ser descrito através da declaração de problema de otimização, como exemplificado na Tabela 1 para problemas de objetivo único.

Tabela 1 – Exemplo de declaração de problema de otimização.

Objetivo	minimizar f(x)
Variável	por variar $x_i < x < x_f$
Requisitos	sujeito a $x < 0$
	sujeito a $f(x) < 0$

2.3.5 Algoritmos multiobjetivo, soluções dominadas e critério de optimalidade

Em problemas de otimização com múltiplas funções objetivo, um conceito constantemente utilizado é a dominação de soluções. Dentre vários indivíduos gerados e avaliados pelas funções objetivo, pode-se determinar que um indivíduo domina o outro caso o primeiro possua pontuação melhor que o segundo em todas as funções objetivo (MARTINS; NING, 2021). Na Figura 9(a), pode-se observar que o indivíduo A tem performance melhor (menor) que todos os indivíduos que eventualmente se encontrarem na região escurecida, desse modo, o indivíduo A domina todos os indivíduos nessa região, incluindo o indivíduo B, mas não domina o indivíduo C pois tem uma performance pior (maior) na função objetivo f_2 .

Em um grupo de soluções idealizadas que representam todo o domínio das funções, o conjunto de indivíduos que não é dominado por nenhum outro indivíduo é chamado de conjunto de *Pareto*. Em um grupo de indivíduos finito, o conjunto de indivíduos que não é dominado por nenhum outro indivíduo da população pode ser considerado como uma aproximação do conjunto de *Pareto*, sendo esse o critério de optimalidade utilizado para definir os melhores indivíduos dentro de uma população, como indicado em vermelho na Figura 9(b).

Figura 9 – (a) Representação de indivíduos dominados e não-dominados; (b) Aproximação do conjunto de *Pareto* (MARTINS; NING, 2021).

2.3.6 Local vs. global

Os diversos métodos de busca podem ser classificados como locais ou globais. Uma pesquisa local toma um vetor de variáveis de projeto como ponto de partida e segue uma trilha de pontos que eventualmente converge a um ótimo local, enquanto uma pesquisa global tem o objetivo principal de explorar inteiramente o domínio definido pelas variáveis de projeto, na esperança de achar o ótimo global. A escolha do tipo de busca recai sobre a natureza do problema e suas variáveis (MARTINS; NING, 2021).

2.3.7 Algoritmos genéticos

Dentre os diversos métodos de otimização que utilizam os conceitos apresentados acima, os algoritmos genéticos se destacam por serem os mais antigos e bem-conhecidos. Esse tipo de método é baseado em populações de indivíduos, que em cada iteração evolui com base em processos inspirados pela reprodução e evolução biológica usando três passos principais:

- Seleção: baseada na seleção natural, onde indivíduos da população são avaliados segundo sua adaptação às funções objetivo e aqueles com características mais favoráveis têm maior probabilidade de se reproduzirem;
- 2. **Crossover**, inspirado pelo *crossover* de cromossomos, fonte de troca de material genético entre indivíduos que se reproduzem;
- 3. Mutação, a mudança permanente da sequência genética que ocorre naturalmente.

A população seguinte, também chamada de geração seguinte, é composta por indivíduos com origens na geração anterior e, como os três passos principais são desempenhados com o intuito de aproximar cada vez mais a população das soluções ótimas, também pode ser considerada mais otimizada.

2.3.8 NSGA-II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) é um algoritmo genético normalmente aplicado em problemas de otimização multiobjetivo. O método consiste na priorização de indivíduos não-dominados na criação da próxima geração, sendo esses denominados front 1, enquanto os dominados apenas por um indivíduo são denominados front 2 e assim por diante. Além disso, um segundo ranqueamento de indivíduos leva em conta a proximidade desse indivíduo com seus vizinhos, favorecendo-se indivíduos que se encontrem mais distantes uns dos outros em um esforço de preservar a diversidade da população, um procedimento chamado de crowding, exemplificado na Figura 10(a). A sequência de eventos para a determinação de uma geração subsequente segue então da seguinte forma:

- A população inicial é duplicada segundo ranqueamento atual;
- A nova população é re-ranqueada segundo todos os indivíduos atuais;
- Os indivíduos do front 1 são inteiramente colocados na geração subsequente;
- Indivíduos dos próximos *fronts* são inteiramente colocados na geração subsequente até um número de indivíduos igual à população inicial seja atingido, como explicitado na Figura 10(b);

• Caso o número total de indivíduos na população seja atingido enquanto um *front* não se esgotou, os indivíduos com maior distância para seus vizinhos serão priorizados.

Figura 10 – (a) *Crowding*: Uma medida de proximidade com relação a soluções vizinhas; (b) O processo de criação de uma nova população (DEB et al., 2002).

2.3.8.1 Critério de parada

O processo descrito acima segue iterativamente até que um critério de parada seja atingido. Um possível e simples critério a ser aplicado é a limitação de gerações máximas que o algoritmo pode iterar, no entanto, não é um método ótimo, dado que a solução não é consultada quanto à sua convergência.

Outro método que pode ser aplicado é o cálculo do hipervolume (WHILE et al., 2006) descrito pelo primeiro front da população. O hipervolume de um conjunto de pontos é o tamanho total da região que todos os indivíduos no conjunto dominam, analogamente, se um problema de otimização é composto por duas funções objetivo, o hipervolume de um conjunto de pontos seria a integral sobre a curva descrita por todos os pontos. Uma vez que esse cálculo fornece resultados semelhantes com relação a gerações subsequentes, pode-se considerar que a população não evoluiu, sendo assim atingida uma convergência na solução.

2.3.8.2 Critério de escolha

Uma vez que o algoritmo cessa a iteração, a população final é apresentada, à partir da qual deve ser tomada uma decisão em relação a qual dos indivíduos é o mais adequado ao problema de otimização.

O método denominado *Smallest Loss Criterion* (ROCCO; SOUZA; PRADO, 2003) calcula a solução que apresenta a menor perda em relação aos indivíduos de maior performance em cada função objetivo. O procedimento segue a seguinte ordem:

- Listar todas as soluções extremas, ou seja, os indivíduos que têm melhor performance em cada função objetivo;
- Calcular o ponto equivalente ao baricentro da figura formada pelos pontos listados, como por exemplo o centroide do triângulo exemplificado na Figura 11;
- Calcular o indivíduo mais próximo do centroide, esse indivíduo será considerado a solução ótima.

Figura 11 – Cálculo da solução de menor perda (ROCCO; SOUZA; PRADO, 2003).

loss in relation to the objective 2

2.4 Projeto de Rotores

Normalmente, o projeto de um sistema propulsor protagonizado por rotores segue um fluxo de desenvolvimento que envolve a determinação de características geométricas para operação otimizada em certo ponto de projeto, enquanto as características fora do ponto de projeto são determinadas posteriormente. Um dos métodos utilizados para dimensionamento de hélices é o critério de Mínima Perda Induzida descrito por Adkins (ADKINS; LIEBECK, 1994), que consiste em fornecer parâmetros de operação como entrada, de modo a obter características geométricas para mínima perda induzida nesse ponto de operação. Uma vez determinada a geometria ótima on-design, as características off-design, em outros pontos de operação do envelope, são computadas à partir destas. Um rotor ótimo geralmente engloba um balanço entre a performance on-design e off-design, fornecendo um envelope de operação otimizado.

2.4.1 Modelagem paramétrica

De modo a considerar a geometria do rotor dentro da otimização, faz-se necessário a descrição desta à partir de parâmetros que serão variados segundo o algoritmo de otimização escolhido. Partindo desta premissa, certos parâmetros geométricos são facilmente descritos à partir de valores escalares, como por exemplo diâmetro, um parâmetro contínuo, e número de pás, um parâmetro discreto. Outras definições geométricas, no entanto, não podem ser representadas por apenas um parâmetro, como por exemplo a área em planta da pá, que precisa ser determinada à partir da distribuição de corda e incidência dos perfis ao longo do raio. Dada esta necessidade, estratégias de parametrização de curvas devem ser empregadas para determinar a área em planta da pá sem a necessidade de utilizar muitos parâmetros.

3 Desenvolvimento

3.1 Modelo de simulação

Muitas implementações do algoritmo geral do método descrito pelo BEMT são possíveis. De modo a simplificar a aplicação dessa parte do projeto, o programa QPROP (DRELA, 2006) foi estudado e traduzido de Fortran para Python, de modo a ser utilizado como método de simulação para o algoritmo de otimização.

O método de avaliação de eficiência escolhido foi a determinação da potência requerida pelo rotor ao produzir uma tração de referência, desse modo, um processo iterativo foi implementado de modo a obter a rotação necessária para a obtenção da tração de referência.

Como método de solução bidimensional, o aerofólio ClarkY, apresentado na Figura 12, foi escolhido como aerofólio principal, sendo assim simulado através do software XFoil (DRELA, 1989) para diversos escoamentos, incluindo ângulos de ataque de -10 a 20 graus, Machs de 0 a 0.6 graus e Reynolds de 100 mil a 4 milhões, correspondentes ao envelope médio de um rotor típico do mercado de mobilidade aérea urbana. Os resultados foram então organizados em formato tabular, de modo a compor o *DataBank* aerodinâmico para interpolação do método BEMT.

Figura 12 – Aerofólio ClarkY normalizado pela corda.

3.2 Modelo de ruído

A modelagem de ruído seguiu dois métodos semi-empíricos descritos por Pegg (PEGG, 1979), o modelo de ruído banda-larga (broadband) e o modelo de ruído de carregamento com fonte rotacional. Os métodos implementados fornecem Sound Pressure Levels (SPLs) em bandas de um terço de oitava, portanto foi implementada uma biblioteca para processamento de espectros em um terço de oitava.

De modo a validar a implementação dos métodos de predição de ruído, o exemplo de cálculo 1 descrito no artigo de Pegg (PEGG, 1979) foi replicado, fornecendo computações dos ruídos causados pelo rotor principal de um helicóptero em voo pairado. A partir da comparação dos valores do método implementado com os cálculos originais na Figura 13, é possível observar que o algoritmo implementado fornece mais bandas do que o método original, isso se deve à ausência de cálculos de bandas no exemplo original, dado que, se o cálculo de todas as bandas é similar, não se fez necessário ao autor calcular todas as bandas possíveis de serem calculadas. Além disso, é possível observar que no cálculo do ruído rotacional apresentado na Figura 13(a) há uma pequena discrepância nos valores de SPL. Esses erros podem ser considerados erros de interpolação, tanto do autor que performou as interpolações através dos gráficos originais quanto da digitalização das curvas, não sendo de grande significância para a otimização.

Figura 13 – Comparação do método de ruído implementado com os valores originais (PEGG, 1979).

3.3 Método de otimização

Com o intuito de explorar ao máximo o domínio das parametrizações, foi implementado o método NSGA-II de otimização, que é um algoritmo de busca global que prioriza a diversidade das populações de indivíduos, como citado na seção 2.3.8. O critério de

parada implementado foi baseado no cálculo de hipervolume e o critério de seleção do indivíduo ótimo foi baseado no critério de mínima perda, descritos, respectivamente, nas seções 2.3.8.1 e 2.3.8.2.

De modo a testar a efetividade do código implementado, um problema teste foi proposto utilizando-se como auxílio a biblioteca pymoo (Blank; Deb, 2020) em Python, que é uma biblioteca voltada a funções utilitárias para o desenvolvimento de otimizações multiobjetivo. O problema simulado foi proposto por Mobes e Binh (BINH; KORN, 1997) e consiste na definição descrita na Tabela 2.

Tabela 2 – Caso de otimização teste (BINH; KORN, 1997).

minimizar
$$f_1(x) = 4x_1^2 + 4x_2^2$$

$$f_2(x) = (x_1 - 5)^2 + (x_2 - 5)^2$$
sujeito a
$$0 \le x_1 \le 5$$

$$0 \le x_2 \le 5$$

$$(x_1 - 5)^2 + x_2^2 \le 25$$

$$(x_1 - 8)^2 + (x_2 + 3)^2 \ge 7.7$$

Pelos resultados da simulação, pode-se observar que os valores principais do algoritmo NSGA-II são preservados, como por exemplo a priorização de indivíduos mais próximos à curva de *Pareto* na criação de novas gerações, demonstrado nas Figuras 14(a), (b) e (c), e a preservação da diversidade da população. Além disso, quando compara-se a população final à curva de *Pareto* fornecida pela biblioteca *pymoo* (Blank; Deb, 2020) na Figura 14(d), pode-se observar que se encontram exatamente sobrepostas, comprovando assim a efetividade do método.

(a) Geração 1 (b) Geração 2 (c) Geração 3

(d) Geração final

Figura 14 – Verificação da implementação do algoritmo NSGA-II com um problema teste (BINH; KORN, 1997).

3.4 Parametrização

A parametrização escolhida para representação da geometria da pá foi uma curva polinomial para a determinação da distribuição de corda e a definição de passo e coletivo para a determinação da distribuição de incidência.

120

A curva polinomial para descrição da distribuição de corda adimensionalizada pelo raio é definida entre 0 e 1, sendo essas abscissas representadas por valores radiais, onde 0 é a posição radial da primeira seção aerodinâmica contabilizada (Spinner Cut-Off) e 1 representa a ponta da pá. Quatro parâmetros foram propostos para a definição da curva: A corda na raiz da pá, a cordaa na ponta da pá, a posição de máxima corda e a corda na posição de máxima corda. Com quatro variáveis, um polinômio de terceiro grau é determinado analiticamente para representar a distribuição de corda à partir da equação (3.1), baseada no método proposto por Lowry (LOWRY, 1999), onde cR é o valor da corda adimensionalizada pelo raio, a, b, c, e d são os coeficientes da curva e s é o valor adimensional da posição radial. Os quatro coeficientes determinados acima então fornecem as restrições para determinação dos coeficientes, podendo-se plotar a curva ao longo do raio, como mostrado na Figura 15(a).

$$cR(s) = \sqrt{as^3 + bs^2 + cs + d} \tag{3.1}$$

Essa definição, no entanto, necessita de restrições complementares para evitar distribuições de corda com duas inversões de derivada, formando indivíduos não viáveis estruturalmente, como descrito na Figura 15(b). Desse modo, as restrições (3.2) e (3.3), baseadas nos valores da derivada da curva em 0 e 1 foram impostas:

Figura 15 – (a) Exemplo simples de distribuição de corda; (b) Exemplo de distribuição de corda com dupla inversão de derivada.

$$cR'(0) \ge 0 \tag{3.2}$$

$$cR'(1) \le 0 \tag{3.3}$$

A curva para descrição da distribuição de incidência ao longo da pá é definida a partir da equação (3.4), onde β é a incidência local da pá, Passo é um valor escalar que determina o quão torcido o rotor será, r é o valor em metros da posição radial atual e Coletivo é um valor escalar a ser adicionado a todas as seções da pá. Três exemplos de distribuição de passo são dados na Figura 16

$$\beta(r) = atan\left(\frac{Passo}{\pi r}\right) + Coletivo \tag{3.4}$$

Figura 16 – Exemplo de distribuições de incidência com o método proposto.

Os parâmetros foram então organizados e seus limites de variação foram impostos segundo Tabela 3.

Parâmetro	Mín.	Máx.
C_{root}	0.02	0.3
C_{tip}	0.02	0.4
C_{max}	0.02	0.4
S_{max}	0	1
Passo	D/10	2D
Coletivo	0	30

Tabela 3 – Parâmetros e seus limites.

3.5 Funções objetivo

3.5.1 Eficiência

Como a operação escolhida considera uma tração fixa, é possível calcular diretamente a eficiência do rotor à partir da potência demandada pelo rotor na tração especificada. Desse modo, após o processo iterativo para determinação da rotação, a potência demandada pelo rotor é calculada à partir da equação (3.5) utilizando os dados fornecidos pelo método BEMT, onde P é a potência requerida, Q é o torque requerido e ω é a velocidade de rotação do rotor em radianos por segundo. Desse modo, o rotor que necessitar de menos potência para gerar a tração alvo é determinado o mais eficiente.

$$P = Q \cdot \omega \tag{3.5}$$

3.5.2 Ruído

Embora o método PNLT seja diretamente utilizado para certificação, sua aplicação é relativamente complexa e pouco material foi encontrado para validação de sua aplicação. Desse modo, devido à sua simplicidade, o método OASPL foi escolhido para utilização como função objetivo. Antes de ser processado pelo método OASPL, o espectro produzido pelo rotor passa por uma ponderação devido ao método A-Weighting, desse modo, o método é então chamado de OASPL-A.

4 Estudo de caso

De modo a testar a plataforma de otimização criada, uma pesquisa de mercado foi conduzida com o intuito de levantar os diâmetros, número de pás e máximo peso de decolagem (MTOW) típicos de aeronaves sendo desenvolvidas para o mercado de UAM. As informações obtidas se encontram na Tabela 4.

Esses dados foram levantados com o intuito de determinar os três *inputs* do código: O diâmetro do rotor, o número de pás do rotor e a tração objetivo a serem considerados durante a otimização.

Tabela 4 – Dados levantados do mercado de UAM (BACCHINI; CESTINO, 2019) (FU-KUMINE, 2022).

Aeronave	Diam. rotores (m)	Num. rotores	Num. pás rotores	MTOW (kg)
Joby S4	2.9	6	5	2177
Volocity	2.3	15	2	900
Alia 250	4.0	4	2	3175
E-Hang 184	1.6	8	2	360
Cora	1.3	12	2	1400

Desse modo, utilizando como critério a média dos diâmetros, a moda do número de pás e a média de tração por rotor em voo pairado, os dados para o estudo de caso foram calculados e são apresentados na Tabela 5.

Tabela 5 – Dados para estudo de caso.

Diam.	Pás	Tração
2 m	2	2700 N

4.1 Perfil de referência

Como uma implementação inicial, decidiu-se realizar a otimização do rotor em voo pairado, desse modo, utilizando como referência perfis da FAA de certificação de ruído para helicópteros (FAA, 1969b), que são perfis de decolagem, aproximação e *fly-over* foram realizadas adaptações aos perfis descritos. O perfil de *fly-over* ilustrado na Figura 17(a) foi então adaptado para um caso de voo pairado, que consiste em um um microfone posicionado a uma distância vertical e horizontal de 150 metros da aeronave, como descrito na Figura 17(b).

(a) Perfil original

(b) Perfil adaptado

M

M

Measured Flyover Path

G

Reference Flyover Path

A

Reference Flyover Path

Frojection

(b) Perfil adaptado

(b) Perfil adaptado

Figura 17 – Adaptação do perfil de certificação.

4.2 Resultados

Após o algoritmo ser executado, a curva de Pareto obtida e o indivíduo ótimo são apresentados na Figura 18(a), enquanto suas propriedades geométricas são apresentadas e comparadas aos indivíduos extremos da curva de Pareto nas Figuras 18(b) e 18(c), onde é possível observar que o individuo de menor ruído tem seus parâmetros de corda, passo e coletivo maximizados, enquanto o indivíduo de menor potência apresenta uma combinação mais balanceada de todos os fatores, chamando atenção principalmente à sua minimização de corda na ponta. O indivíduo ótimo, no entanto, apresenta características dos dois indivíduos extremos, na forma de maximização da corda ao longo da pá e minimização da corda na ponta, enquanto a distribuição de incidência foi marcada pela diminuição do passo e o aumento do coletivo, como observado na Tabela 6.

Valores de operação e performance para os três indivíduos em questão são apresentados na Tabela 7, onde é possível observar que o indivíduo com menor potência requerida apresenta valores maiores de Mach na ponta de pá (M_{tip}) e menores de Cl médio ao longo da pá. Os valores baixos de Cl médio podem ser explicados devido a maiores razões L/D em coeficientes de sustentação menores, desse modo, garantindo uma operação onde seus perfis atuam em alta razão de sustentação por arrasto, o torque é minimizado, consequentemente minimizando a potência requerida. Os valores de alto M_{tip} se devem a combinação de alguns fatores, começando pela operação em Cl relativamente baixo, seria necessário uma maior velocidade de rotação ou uma maior área da pá para produção da mesma tração, mas como a área desse indivíduo também é baixa, a falta de tração é compensada pelo aumento da velocidade de rotação, que por sua vez aumenta o ruído.

Figura 18 – (a) Curva de Pareto final; (b) Comparação da distribuição de corda; (c) Comparação da distribuição de incidência.

Tabela 6 – Variáveis de projeto de três indivíduos na curva de Pareto.

Indivíduo	C_{root}	C_{max}	S_{max}	C_{tip}	Passo (m)	Coletivo (°)
Mín. potência	0.22	0.30	0.29	0.02	0.67	2.5
Mín. ruído	0.26	0.40	0.64	0.39	0.84	19.6
Sol. ótima	0.26	0.40	0.49	0.10	0.47	19.1

Tabela 7 – Grandezas de três indivíduos na curva de Pareto.

Indivíduo	M_{tip}	Área (m^2)	Cl médio	Pot. Req. (W)	OASPL-A (dB)
Mín. potência	0.63	0.181	0.87	61922	91.68
Mín. ruído	0.36	0.298	1.32	82336	71.24
Sol. ótima	0.38	0.269	1.32	72203	75.52

4.3 Análises de influência

Motivado pelas observações acima, diversas análises de influência dos parâmetros na performance do rotor foram realizadas, podendo ser observadas na Figura 19. à partir

delas, é possível observar que a área da pá e o Cl médio são inversamente proporcionais ao ruído produzido, enquanto o Mach de ponta de pá é diretamente proporcional. Além disso, com relação às variáveis de projeto, pode-se observar que o C_{max} , que representa a corda máxima da pá, não tem grande influência nos parâmetros, dado que a maioria dos indivíduos apresenta um C_{max} parecido, com exceção de indivíduos com baixa potência, que apresentam valores 25% menores do que o resto da população. Também é possível observar que a variável C_{root} , que representa a corda na raiz da pá, não afeta o resultado significativamente. No entanto, os valores de C_{tip} , que representam a corda na ponta da pá, são muito sensíveis em relação às variáveis objetivo, mas apresentam uma descontinuidade no Pareto, quase não havendo uma presença de valores por volta de 0.2, possivelmente sendo um problema de parametrização e impossibilidade de gerar indivíduos válidos com essa corda na ponta. O valor de S_{max} , que representa a posição ao longo do raio onde a pá apresenta seu valor máximo, também é correlacionado às variáveis objetivo diretamente, dado que quanto mais próximo da ponta, menos ruído a hélice produz. Os valores de coletivo e passo obtiveram um resultado interessante na análise, primeiramente, o coletivo tem relação direta com a produção de ruído e potência requerida, dado que quanto maior o coletivo, menor o ruído e maior a potência requerida, enquanto o valor do passo permanece relativamente constante ao longo da curva de Pareto, com exceção de uma região isolada onde apresenta valores baixos, de onde, coincidentemente, foi selecionado o indivíduo ótimo.

Figura 19 – Análises de influência dos parâmetros e grandezas nas variáveis objetivo.

5 Conclusão

O objetivo principal do projeto foi criar uma plataforma de otimização com o intuito de dimensionar uma pá de rotor para voo pairado com base em uma análise multi-objetivo considerando quesitos relacionados à eficiência e ruído.

Uma parametrização das pás dos rotores foi efetuada à partir de seis parâmetros contínuos independentes. Quatro parâmetros eram utilizados para determinar uma curva polinomial de terceiro grau que descrevia a distribuição de corda ao longo do raio da pá e os outros dois parâmetros eram utilizados para descrever a distribuição de passo na forma de um valor de passo geométrico e um de coletivo. Um aerofólio foi pré-determinado e simulado para representar o envelope de operação da otimização. Juntamente a informações pré-determinadas de número de pás e diâmetro, essas informações eram suficientes para determinar um rotor a ser simulado.

A condição de operação para a otimização foi o voo pairado e, de modo a acatar as necessidades de simulação do projeto, um modelo de elemento de pá e momento (BEMT) baseado no software QPROP foi aplicado e utilizado para ambas as considerações de eficiência e ruído. Na simulação, um processo iterativo foi aplicado, variando a velocidade de rotação para obter uma tração pré-determinada. Uma vez convergido o estado da simulação, a eficiência é então avaliada diretamente à partir da potência consumida pelo sistema, enquanto diversos outputs são alimentados ao modelo semi-empírico de ruído para a obtenção do espectro produzido pelo rotor. O espectro era então pós-processado para considerar frequências relevantes para o ouvido humano, de modo a descontar os níveis de frequências por quais o ser humano é menos irritado, um processo conhecido como A-Weighting. O espectro pós-processado era então submetido a um processo para determinação do Overall Sound Pressure Level (OASPL), que é uma forma de descrever o espectro sonoro através de um valor escalar a ser considerado na otimização.

Um algoritmo genético multi-objetivo (NSGA-II) foi aplicado de modo a explorar o domínio imposto aos parâmetros geométricos e iterar para obter os indivíduos presentes na curva de Pareto. Ao obter a curva de Pareto, o critério de mínima perda foi aplicado para obter um indivíduo que não seja dominado por nenhuma das duas funções objetivo, sendo considerada, assim, uma solução ótima de compromisso.

Um estudo de caso foi conduzido com valores de diâmetro, número de pás e tração de referência típicos de rotores do mercado de mobilidade aérea urbana de modo a testar a robustez do método proposto. Notou-se que os indivíduos que minimizavam a produção de ruído apresentavam uma maximização da área em planta e passo em uma tentativa de diminuir ao máximo a rotação, enquanto os indivíduos de menor potência minimizavam a distribuição de corda na ponta da pá em uma tentativa de diminuir a influência dos

vórtices de ponta de pá e minimizavam o Cl de operação da pá, de modo a operar em uma região do perfil mais eficiente. Ambos comportamentos corroboram com o conhecimento difundido sobre produção de ruído e eficiência de hélices, o que indica um bom desempenho do código em prever regiões do domínio interessantes para a solução de compromisso, no entanto, dada a natureza heurística do algoritmo, é impossível dizer o quão distante a curva obtida está da curva de Pareto do domínio trabalhado.

À partir da curva de Pareto levantada, uma análise da influência dos parâmetros foi realizada e a influência de cada indivíduo nas duas variáveis objetivo foi analisada individualmente.

Uma vez determinada a curva de indivíduos ótimos, o critério de seleção de menor perda foi implementado para escolher um dentre os diversos indivíduos apresentados. O indivíduo obtido apresenta características parecidas com os indivíduos de mínima potência e mínimo ruído, no entanto de uma forma moderada, por exemplo a tendência de maximização da área em planta presente nos indivíduos de mínimo ruído conjuntamente à tendência de minimização da corda na ponta dos indivíduos de menor potência. Por consequência de sua geometria, o indivíduo escolhido obteve um desempenho mediano nas duas funções objetivo, sendo assim considerada uma solução ótima de compromisso.

Em geral, os objetivos do projeto foram atingidos. Um método de otimização multiobjetivo foi proposto, implementado e verificado à partir de um estudo de mercado.

6 Sugestões para trabalhos futuros

No desenvolvimento desse trabalho, foram notadas dificuldades e possíveis melhorias de processo que não foram exploradas, portanto seguem como sugestões para trabalhos futuros:

- O método de simulação utilizado baseou-se no software QPROP e não possui capacidade para simulação de escoamento no plano do rotor. O método semi-empírico para predição de ruído prevê escoamento no plano do rotor, mas não foi utilizado por causa da impossibilidade de simulação nesse tipo de escoamento. Na revisão bibliográfica relacionada a ruído, foi descoberto que uma parte substanciável do ruído de rotores de helicóptero é advinda desse tipo de escoamento, então para realizar um projeto que engloba a maior quantidade de fontes de ruído possível, recomendase a implementação de outros modelos de simulação, como por exemplo o software OpenVSP, que é uma solução em *Vortex Lattice Method* (VLM) ou até métodos de elemento de pá e momento que ofereçam correções para escoamento no plano;
- Observou-se que o critério de convergência utilizado no algoritmo genético não obteve uma performance adequada. Muitas vezes a curva de indivíduos ótimos apresentava uma clara estagnação, mas o algoritmo não decretava convergência. Uma sugestão para trabalhos futuros seria um estudo para melhor utilização do critério presente ou uma revisão de critérios alternativos para convergência do algoritmo genético;
- Nesse trabalho, optou-se por utilizar um *Databank* de aerofólio fixo, que embora represente um envelope grande de escoamento, acabou sendo um fator computacional limitante para a otimização devido ao número grande de interpolações necessárias (Reynolds, Mach e ângulo de ataque). Além disso, a escolha de apenas um aerofólio limita a otimização, portanto recomenda-se a utilização de outros métodos para escoamento bidimensional de aerofólios, como por exemplo a solução utilizada pelo próprio software QPROP, que apresenta uma série de coeficientes lineares para representação do comportamento de aerofólios que limitariam menos a otimização e o tempo computacional;
- Um grande empecilho para a otimização foi a validade das curvas polinomiais paramétricas obtidas para a distribuição de corda. Muitas vezes a curva obtida cruzava o zero ou apresentava duas inversões de derivada dentro do raio da pá, o que não representa uma pá de rotor válida e apresentaria sérios problemas estruturais, respectivamente. Para trabalhos futuros, recomenda-se a utilização de outro método

- de parametrização para a curva de distribuição de corda. Uma família de curvas que forneceria uma estabilidade maior é a família de curvas $B\'{e}zier$;
- O método de parametrização de incidência apresentou descontinuidades na curva de Pareto final, podendo ser um indício de que não é um método adequado para a otimização, recomenda-se a utilização de curvas Bézier para a parametrização do passo também;

Referências

- ADKINS, C. N.; LIEBECK, R. H. Design of optimum propellers. *Journal of Propulsion and Power*, v. 10, n. 5, p. 676–682, 1994.
- BACCHINI, A.; CESTINO, E. Electric vtol configurations comparison. *Aerospace*, MDPI, v. 6, n. 3, p. 26, 2019.
- BINH, T. T.; KORN, U. Mobes: A multiobjective evolution strategy for constrained optimization problems. In: *The third international conference on genetic algorithms* (Mendel 97). [S.l.: s.n.], 1997. v. 25, p. 27.
- Blank, J.; Deb, K. pymoo: Multi-objective optimization in python. *IEEE Access*, v. 8, p. 89497–89509, 2020.
- DEB, K. et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii. *IEEE transactions on evolutionary computation*, IEEE, v. 6, n. 2, p. 182–197, 2002.
- DRELA, M. Xfoil: An analysis and design system for low reynolds number airfoils. In: Low Reynolds number aerodynamics. [S.l.]: Springer, 1989. p. 1–12.
- DRELA, M. *QPROP Formulation*. 2006. Disponível em: (https://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf).
- ETB, E. T. Octave Band Frequencies. 2010. Disponível em: (https://www.engineeringtoolbox.com/octave-bands-frequency-limits-d_1602.html).
- FAA. Part 36—noise standards: Aircraft type certification, appendix a. FAA, 1969.
- FAA. Part 36—noise standards: Aircraft type certification, appendix h. FAA, 1969.
- FUKUMINE, Z. L. Y. Estimation of evtop flight performance using rotorcraft theory. *International Council of the Aeronautical Sciences* 33, 2022.
- GLAUERT, H. Airplane propellers. In: *Aerodynamic theory*. [S.l.]: Springer, 1935. p. 169–360.
- KINNEY, J. R. The power for flight: Nasa's contributions to aircraft propulsion. NASA Aeronautical Book Series, 2017.
- KUTTRUFF, H. Acoustics: an introduction. [S.l.]: CRC Press, 2007.
- LOWRY, J. T. Performance of light aircraft. American Institute of Aeronautics and Astronautics. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1999.
- LYTH, P. Afterburner glory: Concorde and the rise and fall of supersonic travel. In: T^2M conference in Philadelphia. [S.l.: s.n.], 2014.
- MARTINS, J. R.; NING, A. Engineering design optimization. [S.l.]: Cambridge University Press, 2021.

Referências 45

PEGG, R. J. A summary and evaluation of semi-empirical methods for the prediction of helicopter rotor noise. [S.l.], 1979.

RANKINE, W. J. M. On the mechanical principles of the action of propellers. *Transactions of the Institution of Naval Architects*, v. 6, 1865.

RIZZI, S. A. et al. Urban air mobility noise: Current practice, gaps, and recommendations. [S.l.], 2020.

ROCCO, E. M.; SOUZA, M.; PRADO, A. Multi-objective optimization applied to satellite constellations i: Formulation of the smallest loss criterion. In: *Proceedings of the 54st International Astronautical Congress (IAC'03), Bremen, Germany.* [S.l.: s.n.], 2003.

TACK, J. et al. Development of a double-membrane sound generator for application in a voice-producing element for laryngectomized patients. *Annals of biomedical engineering*, Springer, v. 34, p. 1896–1907, 2006.

VINCENTI, W. G. The air-propeller tests of wf durand and ep lesley: A case study in technological methodology. *Technology and Culture*, JSTOR, v. 20, n. 4, p. 712–751, 1979.

WHILE, L. et al. A faster algorithm for calculating hypervolume. *IEEE transactions on evolutionary computation*, IEEE, v. 10, n. 1, p. 29–38, 2006.