

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corsi di Laurea in Informatica e in IBML

Esercizi di Analisi Matematica

Esercizi del 2 ottobre 2021

- 1. Nella rappresentazione decimale di un numero irrazionale non c'è nessun blocco di 5 cifre che si ripeta infinite volte. O sì? E per un numero razionale?
- 2. Chiamiamo x il numero decimale infinito ottenuto giustapponendo le rappresentazioni in base dieci dei numeri naturali in questo modo: x = 0.12345678910111213141516... Dimostrare che x non è periodico. Questo numero ha persino un nome: costante di Champernowne.
- **3.** Chiamiamo x il numero decimale infinito ottenuto facendo sequenze crescenti di zeri e di uni in questo modo: x = 0,101100111100011110000... Dimostrare che x non è periodico.
- 4. Interpretare i puntini nelle seguenti espressioni:

5. Trovare il quadrato successivo della sequenza seguente:

e poi rappresentare il generico n-esimo quadrato.

6. Vero, falso, senza senso?

$$-\frac{1+\sqrt{2}}{2} = \frac{-1+\sqrt{2}}{2}, \qquad \frac{\log(1+x)}{x} = \log\frac{(1+x)}{x},$$
$$\frac{3+x}{2-\sqrt{x}} \cdot \frac{2+\sqrt{x}}{2+\sqrt{x}} = \frac{3+x}{4-x} \cdot 2 + \sqrt{x},$$
$$\sqrt{2x+1}\sqrt{2x+1} = \sqrt{\sqrt{2x+1}},$$
$$\frac{\log(x)}{x} = \log\frac{(x)}{x}, \qquad \sin(1-x)(1+x) = \sin(1-x^2),$$
$$\frac{\cos(a-b)(a+b)}{a+b} = \cos(a-b), \qquad \cos 1 = 0,$$

$$\frac{\log\left(1+x\right)}{x} \qquad -\frac{1+\sqrt{2}}{2} = \frac{-1+\sqrt{2}}{2}$$

$$-\frac{1+\sqrt{2}}{2} = \frac{-1+\sqrt{2}}{2}, \qquad -\frac{1+\sqrt{2}}{2} = \frac{-1-\sqrt{2}}{2}$$

$$\frac{a}{b+1} \frac{b}{a+b+3} \cdot \frac{b}{b+1} = \frac{ab}{a+b+3}, \qquad (a-b)(a+b) = a^2 - b^2,$$

$$(a+b-c)(a-b+c) = a^2 - b^2 - c^2, \qquad (a+b-c)(a+b+c) = a^2 + b^2 - c^2$$

7. Discutere l'eventuale corrispondenza di queste formule scritte a mano

con quest'altra:

$$\frac{\log\left(1 + \frac{2x - \sqrt{x^2 - 2x}}{2x - \sqrt{x^2 + 2x}} - 1\right)}{\frac{2x - \sqrt{x^2 - 2x}}{2x - \sqrt{x^2 + 2x}} - 1} \cdot \left(\frac{2x - \sqrt{x^2 - 2x}}{2x - \sqrt{x^2 + 2x}} - 1\right).$$

8. Nelle formule seguenti scritte a mano, si estraggono le radici quadrate di cosa?

Esercizi del 2 ottobre 2021

9. Dimostrare che l'insieme dei numeri positivi dispari è numerabile.

- 10. Dimostrare che l'insieme delle potenze di 2 è numerabile.
- 11. Dimostrare che l'insieme $\mathbb{N} \times \mathbb{N}$ è numerabile.

I connettivi logici che useremo sono \neg la negazione (not), \lor la disgiunzione (or), \land la congiunzione (and), \Rightarrow l'implicazione (if...then...), \Leftarrow l'implicazione inversa, \iff la doppia implicazione o equivalenza (iff). Si rammenta la tabella di verità:

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftarrow q$	$p \iff q$
vero	vero	falso	vero	vero	vero	vero	vero
vero	falso	falso	falso	vero	falso	vero	falso
falso	vero	vero	falso	vero	vero	falso	falso
falso	falso	vero	falso	falso	vero	vero	vero

12. Di ciascuna delle seguenti espressioni dire innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso), e, se sì, quale:

$$1+1=2,\quad 4-1=3,\quad \frac{4}{3}+\frac{1}{4}=\frac{5}{7},\quad 3-7,\quad 5-4=4-5,$$

$$3-(2-1)=(3-2)-1,\quad \frac{51}{\frac{13}{7}}=\frac{51}{7}\cdot 13,\quad \frac{17}{\frac{9}{7}}=\frac{\frac{17}{9}}{7},\quad \frac{11}{\frac{3}{4}},$$

$$\frac{1}{\frac{2}{3}+\frac{2}{5}}=\frac{3}{2}+\frac{5}{2},\quad \frac{1/2}{3/5}=2\cdot \frac{3}{5},\quad \frac{3/2}{5/7}=\frac{2}{3}\cdot \frac{7}{5},\quad \frac{3/2}{5/7}=\frac{3}{2}\cdot \frac{7}{5},\quad 3-2\geq 1,$$

$$7\geq 4+3,\quad (-1)^5<(-1)^4,\quad -1<3-2<2,\quad 1+2+3+4,\quad \frac{7}{2>1},\quad 1>\pm\sqrt{3}$$

$$1+1=2\vee 2+2=3,\quad 1-1=2\wedge 2+2=3,\quad 3\geq \pi\vee 3<\pi,\quad 3\geq \pi\wedge 3<\pi,$$

$$1\in\mathbb{Q},\quad 1\subset\mathbb{Q},\quad \frac{2}{3}\in\{\mathbb{R}\},\quad \{-1\}\in\{\mathbb{Z}\},\quad \{1,-1/2\}\subset\mathbb{Q}.$$

13. Di ciascuna delle seguenti espressioni discutere innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso) per valori reali generici delle variabili, e, se sì, quale:

$$a+b=b+a, a-b=b-a, a-b=-b+a,$$

$$(a-2x)^2, \frac{1}{x-y} = \frac{-1}{y-x}, (a+b+c)(a-b-c) = a^2-b^2-c^2$$

$$\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}, \frac{\frac{a}{b}}{\frac{c}{d+e}} = \frac{b}{a} \cdot \frac{c}{d+e}, \frac{\frac{a}{b}}{\frac{c}{d+e}} = \frac{a}{b} \cdot c(d+e),$$

$$\frac{\frac{a}{b}}{\frac{c}{d+e}} = \frac{a}{b} \cdot \frac{d+e}{c}, \frac{1}{\frac{a}{b}-\frac{c}{d}} = \frac{b}{a} - \frac{d}{c}, \frac{1}{\frac{a}{b}+\frac{c}{d}} = \frac{b}{a} + \frac{d}{c},$$

$$x^4 - 2x + 1 = x\left(x^{4-1} - 2 + \frac{1}{x}\right), x - 2b = \frac{x+2b}{x^2-4b^2}.$$

14. Un quiz apparso in rete:

$$9-3\div\frac{1}{3}+1=$$

15. Discutere la gestione dell'ordine delle operazioni in questo calcolatore:

16. Supponiamo di sapere che vagono le implicazioni seguenti

Se p_1 è vero, quali altri sono necessariamente veri? Se p_7 è vero, quali altri sono veri? Se p_4 è vero, quali altri lo sono? E per p_8 ? E se p_2 è falso, quali altri sono falsi?

17. Di ciascuna delle seguenti espressioni dire innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso), e, se sì, quale (la variabile x si intende reale):

$$7 \vee 8 - 1, \quad \neg(-1), \quad \neg(1 > 3), \quad 4 < 2 \vee \text{vero}, \quad \text{vero} \land 3 > 4, \quad \text{vero} + 1,$$

$$\text{falso} \Rightarrow 1 - 1, \quad 1 + 2 + 3 \Rightarrow 1 + 2 + 3 + 4, \quad \text{vero} \Leftarrow \text{falso}, \quad \text{falso} \Rightarrow 1 + 2 = 4.,$$

$$2 < 3 \iff 4 = 2 + 2, \quad 2 \le 2 \iff 2 = 2, \quad \text{falso} \iff \text{falso},$$

$$-3 \in \{-3, -2\}, \quad \{1, -1\} \Rightarrow 0, \quad x + 1 = x - 1 \iff x \in \emptyset,$$

$$x^2 < 0 \iff x \in \{\emptyset\}, \quad (x - 1)^2 \ge 0 \iff \mathbb{R}, \quad (x < 0 \land x > 1) \iff x = \emptyset$$

$$(0 < x \le 1 \lor 1 \le x \le 3) \iff 0 < x \le 1 \le x \le 3.$$

18. Di ciascuna delle seguenti espressioni discutere innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso) per valori reali generici delle variabili, e, se sì, quale:

$$3x + 1 < y \Rightarrow 3x + 3 < y + 2, \quad 3x + 1 < y \Leftarrow 3x + 3 < y + 2,$$

$$3x \le 2 \iff x \le 2/3, \quad -3x \le 2 \Leftarrow -x \le 2/3, \quad \left(x < 2 \lor x < -1\right) \iff x + 1 < 0,$$

$$x > 3 \iff 3x > 9, \quad \left(x > -2 \lor x < 1\right) \iff \text{vero}, \quad \left(x < 1 \land x \ge 2\right) \iff \text{falso}$$

$$x > 0 \iff x^2 > 0, \quad x > -1 \Rightarrow x^2 > (-1)^2, \quad x > 1 \Leftarrow x^2 > 1,$$

$$x > 2 \lor x < (-1)^2, \quad x^2 \ge -x, \quad x \le \pm \sqrt{2}, \quad x = \pm 5, \quad \pm \frac{1}{\sqrt{2}} < x \le \mp \sqrt{8},$$

$$\left(x < 0 \lor x > 1\right) \iff 0 < x > 1$$

19. Vero, falso, malformato, senza senso?

$$a = b \Rightarrow -b = -a, \quad x^2 + 2x - 3 = 2 \iff x^2 - 3 = 2 - 2x$$

$$x = 2 \lor x = 1 \quad \Rightarrow \quad (x - 2)(x - 1) = 0,$$

$$\begin{cases} a + b = c \\ a - b = c \end{cases} \Rightarrow \quad a = c, \quad \begin{cases} a + b = c \\ a - b = c \end{cases} \iff a = c,$$

$$\begin{cases} a + b = c \\ a - b = c \end{cases} \iff a = c$$

- 20. Ai tempi delle trasvolate oceaniche, attorno al 1930, fu coniato un motto di cui ho trovato in rete tre versioni. Una è "Chi vola vale, chi non vale non vola, chi vale e non vola è un vile". Un'altra è "Chi vola vale, chi non vola non vale, chi vale e non vola è un vile". La terza è "Chi vale vola. Chi vola vale. Chi vale e non vola è un vile!". Farne l'analisi logica.
- **21.** Formalizzare la frase inglese "I have also never had an exam where all of the students failed to correctly answer any one question". Ci saranno per esempio insiemi e variabili per esami, studenti, domande, e il predicato "x risponde correttamente a y", e quantificatori \forall , \exists .
- **22.** La frase " $\mathcal{P}(n)$ non è vera per ogni n" è equivalente a " $\mathcal{P}(n)$ è falsa per ogni n"?
- 23. Discutere la validità delle implicazioni di questa catena:

24. Nelle espressioni seguenti, si possono cancellare delle coppie di parentesi in modo che rimanga inalterato il valore?

$$-(a+b), \quad 2(a-x), \quad \frac{(ab)+1}{a(b+1)}, \quad \sqrt{\left(1+\sqrt{2}\right)},$$

$$\frac{x-2}{x^2+3}(x^2-3), \quad (\log x)y, \quad (\cos x^2)2x, \quad (\tan x)-(\tan y), \quad \sec 2(x+\pi),$$

$$2^{(x-y)}, \quad 3^{(x^2)}, \quad (a+2)^{a-2}, \quad 1/(2x), \quad x/(x-2), \quad 2^{(n-1)/(n+1)}.$$

25. Al posto dei punti interrogativi inserire il più appropriato fra $=, \Rightarrow, \Leftarrow, \iff$, o niente:

$$x = x^{2} - 1 \quad ? \quad x + 1 = x^{2},$$

$$x^{2} - 1 \quad ? \quad (x - 1)(x + 1),$$

$$2x - 1 = \sqrt{2} \quad ? \quad (2x - 1)^{2} = 2,$$

$$x > \sqrt{2} \quad ? \quad x + 1 > \sqrt{2},$$

$$2x - 1 < \sqrt{2} \quad ? \quad (2x - 1)^{2} < 2,$$

$$x < 3 \land a < 1 \quad ? \quad x + a < 4,$$

$$\begin{cases} x < 1 \\ 1 > y \end{cases} \quad ? \quad x > y,$$

```
x > 2 \lor x < 4 ? x > 4,
                      x > x ? (-1)^2 = -1.
                 2 < x > 4 ? 2 < x < 4,
                 2 < x > 4 ? x > 4,
                 2 > x < 4 ? x < 2.
                 2 > x < 4 ? x < 4,
(x^3 - 2x + 5)(3x^2 - 1) = 0 ? (x^3 - 2x + 5) = 0 \lor (3x^2 - 1) = 0
                     n^2 < 0 ? n^2 - 1 < 0
                    xy \le ab ? x \le a \land y \le b,
                    xy \le ab ? x \le a \lor y \le b,
                   0 < a = b ? a^2 = b^2,
                   0 < a < b ? a^2 < b^2,
                   0 \le a \ge b ? a^2 \ge b^2,
                      n \in \mathbb{Z} ? n < \frac{1}{3} \lor n \ge 1,
                      n \in \mathbb{Z} ? n^2 \in \mathbb{Z}.
                x^2 + y^2 \le 4 ? x^2 + y^2 \le 1x^2 + y^2 \le c ? y^2 \le c,
                x^2 + y^2 < 0 ? x^2 + y^2 < -1.
```

26. Al posto dei punti interrogativi inserire il più appropriato fra \Rightarrow , \Leftarrow , \Longleftrightarrow , o niente:

- **27.** Cerchiamo regole di trasformazione per le disuguaglianze del tipo $x \neq y$. Si può aggiungere la stessa quantità ad ambo i membri? Si può moltiplicare per la stessa quantità ambo i membri? Si possono sommare membro a membro? In altre parole, da $x \neq y \land z \neq t$ segue $x + z \neq y + t$? Si possono moltiplicare membro a membro?
- **28.** Devo esprimere in formule l'idea che i quattro numeri x_1, x_2, x_3, x_4 sono distinti. Va bene se scrivo $x_1 \neq x_2 \neq x_3 \neq x_4$?

Di seguito diamo degli esempi di come rappresentare graficamente semplici insiemi di numeri reali. Il grafico ha in alto i valori cardine della variabile. In basso i pallini pieni significano punti che appartengono all'insieme, i pallini vuoti sono per punti che non appartengono all'insieme, le linee continue indicano che tutti i loro punti (esclusi forse gli estremi) appartengono all'insieme. Le linee continue che proseguono come tratteggiate si intende che si estendono fino all'infinito.

Un modo per indicare un insieme è la forma compatta che non contiene variabili, come per esempio [0,1]:

Un'altra notazione è l'insieme degli x reali che verificano certe condizioni, come per esempio $\{x \in \mathbb{R} \mid 0 \le x < 1\}$:

valore di x 0 1 insieme $\{x \in \mathbb{R} : 0 \le x < 1\}$

Un altro modo ancora è l'insieme delle soluzioni di una disequazione, per esempio $0 \le x < 1$:

Altri esempi:

Nel grafico precedente non sono state rispettate le proporzioni delle distanze fra i valori di x. Se serve si possono anche rispettare:

valore di
$$x$$
 -2 -1 1 $\frac{3}{2}$ 2 insieme $\left\{x \in \mathbb{R} : x < -2 \bigvee -1 < x \le 1 \bigvee x > 2 \bigvee x = \frac{3}{2}\right\}$ \bullet \bullet \bullet

Quando l'insieme è formato da infiniti punti discreti e si rispettano le proporzioni i punti si possono accavallare:

valore di
$$x$$

$$\frac{11}{54} \frac{1}{2} \qquad 1$$
 insieme $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$

29. Dare una rappresentazione grafica dei seguenti insiemi di numeri reali:

30. Vero, falso, malformato?

$$\forall x \in \{0, 1, 2, 3\} \quad x^2 > 1; \qquad \exists x \in \{0, 1, 2, 3\} \text{ tale che } x^2 > 1;$$
$$\exists ! x \in \{0, 1, 2, 3\} \text{ tale che } x^2 > 1; \qquad \forall n \in \mathbb{N} \quad n^2 + 2n - 1;$$
$$\forall x \in \mathbb{R} \quad x > 1 \Rightarrow x > 2; \qquad \exists x \in \mathbb{R} \text{ tale che } x > 1 \Rightarrow x > 2;$$
$$\forall x \in \mathbb{R} \quad x > 1 \Rightarrow x \geq 0; \qquad (\forall x \in \mathbb{R} \quad x > 1) \Rightarrow (\forall x \in \mathbb{R} \quad x > 0).$$

31. Delle seguenti espressioni dire quali hanno senso compiuto, e in tal caso se sono vere o false o altro:

$$\forall x \in \mathbb{R} \text{ tale che } x < 0,$$

$$\exists x \in \mathbb{R} \text{ tale che } x^2 < 0,$$

$$\forall x \in \mathbb{R} : (x - 1)^2 \ge 0,$$

$$\forall x < 1,$$

$$\{\forall x < 1\},$$

$$\{\forall x \in \mathbb{R} \mid x > 0\},$$

$$\{x^2 - 1 \mid \forall x \in \mathbb{R}\},$$

$$\{\exists x \mid x^2\},$$

$$\{\exists x \in \mathbb{R}\},$$

$$\{x \in \mathbb{R} \mid [0, 1] \cup [3, 5]\},$$

$$\forall x > 0 \lor \forall n \in \mathbb{N},$$

$$\forall x \in \mathbb{R} \land \forall n \in \mathbb{Z}.$$

32. Vogliamo formalizzare l'affermazione "tutti gli uomini hanno gli stessi diritti". Sia U l'insieme di tutti gli uomini. Quale delle formulazioni seguenti è corretta?

$$\forall U \quad U$$
 ha gli stessi diritti,
$$\forall x \in U \quad x \text{ ha gli stessi diritti},$$

$$\forall x \in U \quad x \text{ ha gli stessi diritti di } U,$$

$$\forall x, y \in U \quad x \text{ ha gli stessi diritti di } y.$$

33. Ho trovato su un libro la frase "c'è qualcuno che vince la lotteria ogni settimana". Come si potrebbe formalizzare con predicati e quantificatori?

34. Vogliamo formalizzare l'affermazione "gli esseri umani sono tutti diversi". Sia U l'insieme di tutti gli esseri umani. Qualcuna delle formulazioni seguenti è corretta?

$$\forall x \in U \quad x \text{ è diverso,}$$

 $\forall x \in U \quad x \text{ è diverso da } U,$
 $\forall x, y \in U \quad x \neq y.$

35. Dare una rappresentazione grafica degli insiemi di numeri reali x che verificano le condizioni seguenti:

$$x < 1 \lor x > 3$$
, $x < 1 \land x > 3$, $\neg(x < 0)$, $x < 2 \land x = -1$, $x < 1 \Rightarrow 2x < 2$, $x < 1 \iff x < 0$, $x > 2 \Rightarrow x^2 > 4$, $x \in \mathbb{R} \setminus \{-2, 1\}$.

36. Sia A l'insieme che comprende i numeri reali > 2 e quelli < -1, e nessun altro. Dire quali dei seguenti insiemi coincidono con A:

$$\{x \in \mathbb{R} \mid x > 2 \land x < -1\}, \qquad \{x \in \mathbb{R} \mid x > 2 \lor x < -1\},$$

$$\{x \in \mathbb{R} \mid (x - 2)(x + 1) > 0\}, \qquad \{(x - 2)(x + 1) \mid x \in \mathbb{R}, (x - 2)(x + 1) > 0\},$$

$$|-\infty, -1[\cup]2, +\infty], \qquad |-\infty, -1[\cap]2, +\infty]$$

- **37.** Usando le regole di base delle disuguaglianze, dimostrare che se a, b, c > 0 allora a/(b+c) < a/b < (a+c)/b. Cioè se si parte da una frazione positiva, questa aumenta se si aumenta il numeratore, ma cala se si aumenta il denominatore.
- **38.** Dimostrare che $x/(1+x^2) \le x$ quando $x \ge 0$, usando i principi base dei numeri reali.
- **39.** La sottrazione è commutativa? È associativa? La divisione è commutativa? È associativa? L'elevamento a potenza è commutativo? È associativo? Come vanno interpretate espressioni come 1-2-3, 1/2/3, 2^{3^4} , a/bc?
- **40.** Risolvere le seguenti disequazioni:

$$\begin{split} \max\{x,2\} &< 2x\,, \quad \max\{x,2x\} > 1-x\,, \quad \min\{x-1,1-x\} \geq 0\,, \\ \min\{x,-2x\} &< \max\{1+2x,-1\}\,, \quad \min\{x,3|x-1|\} < \frac{x}{2}\,, \\ & \big(|x|+|x-1|-1\big)(x^2-2x) \geq 0\,. \end{split}$$

41. Vero o falso? (Per ogni valore reale delle variabili che renda sensata l'espressione).

$$2\max\{x,y\} = \max\{2x,y\}\,,\quad 3\max\{x,y\} = \max\{3x,3y\}\,,\\ \max\{x,y\} = \frac{x+y+|x-y|}{2},\quad \min\{x,y\} = \frac{x+y-|x-y|}{2},\\ \min\{x+y,x-y\} = x-y\,,\quad \max\{x/y,y/x\} = (x+y)/(x-y)\,,\\ \min\{x,y,z\} = -\max\{x,\max\{y,z\}\}\,,\quad \max\{x,-y\} = -\min\{-x,y\},\\ \min\{-x,-y\} = -\max\{x,y\},\quad \max\{x+z^2,y+z^2\} = z^2 + \max\{x,y\}\,,\\ \max\{\frac{1}{x^2},\frac{1}{y^2}\} = \frac{1}{\min\{x^2,y^2\}},\quad x < \min\{x,y\},\quad x \ge \max\{x-1,x+1\},\\ \max\{x,2y\} = \max\{2x,y\},\quad \min\{x,2y\} = 2\min\{x,y\},\\ \max\{x,y\} + \max\{z,t\} = \max\{x+z,y+t\}\,.\\ \max\{1/x,1/y\} = 1/\min\{x,y\}\,,\quad \max\{x,1/x\} \ge 1\,.$$

42. Disegnare il grafico delle funzioni seguenti:

$$f(x) := \max\{x - 1, 2 - x\}, \quad f(x) := \min\{2x, 3x + 1\},$$

$$f(x) := \max\{1 - x, 3 + x, 2\}, \quad f(x) := \min\{x^2 - 1, 2 - 2x^2\},$$

$$f(x) := x + \max\{x, \min\{2x, 3x\}\}, \quad f(x) := |x^2 - 3x + 1|,$$

$$f(x) := \max\{2x^2 - 1, 5 - x\}, \quad f(x) := \min\{2x^2 - 1, 5 - x\}$$

Quando si chiede di studiare graficamente il segno di un'espressione, bisogna indicare in forma grafica per quali valori della variabile l'espressione è > 0, quando è = 0, quando è < 0, ed eventualmente quando non ha senso. La convenzione grafica in questo corso è che i tratti continui indicano zone in cui l'espressione è > 0, tratti tratteggiati zone in cui è < 0, pallini sono punti in cui è = 0, e quadratini vuoti e linee a zigzag punti in cui l'espressione non esiste. Sono ammissibili convenzioni diverse, in particolare quella con segni + e - invece di tratti continui o tratteggiati, ma comunque bisogna che ci sia un modo chiaro di indicare quando l'espressione vale 0 o non esiste, cosa che molti studenti non hanno imparato a fare bene alle superiori.

I casi base dello studio del segno sono quando l'espressione è un polinomio di primo o secondo grado. Prima di tutto raccomando di trovare dove il polinomio si annulla, segnando il punto sulla retta, e poi di assegnare linea continua o tratteggiata in cui viene divisa la retta, aiutandosi con un disegnino della funzione polinomio. Quando il grado è 1, cioè quando l'espressione è del tipo mx + q, il tratteggio è a sinistra se m < 0 e a destra se m > 0. Quando il grado è 2, cioè $ax^2 + bx + c$, bisogna vedere se la parabola incontra o no l'asse x, e in quanti punti.

Quando l'espressione è il reciproco di un polinomio di primo o secondo grado, gli zeri del polinomio sono punti di non esistenza dell'espressione. Questi punti si segnalano vistosamente nel grafico con un quadratino vuoto e una linea a zigzag verticale. Per il resto il reciproco ha lo stesso segno del polinomio.

43. Tracciare lo schema grafico del segno delle espressioni seguenti:

$$x+2$$
, $3x-1$, $3-x$, $2x^2-3x$, $(3x-1)^2$, x^2-x-2 , $(x-1)\sqrt{x}$
 $-2x^2+1$, $1+2x-x^2$, $1/(x-2)$, $\frac{1}{x^2+2x-1}$, $\frac{1}{2x^2-x-1}$.

Quando si chiede di studiare il segno di un'espressione che è il prodotto di fattori di primo o secondo grado (o loro reciproci), si applica la regola dei segni. Lo schema grafico riporta il segno dei singoli fattori, e poi il segno risultante.

44. Fare lo schema grafico del segno delle espressioni seguenti:

$$(x^{2} - 2x - 1)(2x^{2} + 1), \quad (x + 3)(1 - 3x + x^{2}), \quad (-2x^{2} + 1)(x^{2} + x + 1),$$
$$\frac{1 - 2x}{1 + 2x - x^{2}}, \quad \frac{-2x^{2} + 1}{x^{2} + x - 2}, \quad x + 2 \cdot \frac{x - 1}{x + 1}.$$

45. Risolvere le disequazioni razionali seguenti:

$$\frac{1}{3+4x} < -1 \,, \qquad \frac{6+3x}{6x+1} - \frac{3}{x+5} > 0 \,, \qquad \frac{x}{3x+4} \ge \frac{5+6x}{3x+4} \,,$$
$$\frac{x-1}{2-x} + \frac{6}{x} \le 0 \,, \qquad \frac{x^2+2x-3}{x^2+1} < 0 \,, \qquad \frac{2-3x}{1+x} \le \frac{1+x}{5-x} \,.$$

46. Risolvere le disequazioni con valori assoluti seguenti:

$$|5+3x| < 1, |2-x| \ge 4, |1+4x| - x < 0, |x-3| \ge x+1,$$

$$-\frac{1}{2}|-2x-6| < 0, \frac{|5+3x|}{3x+6} < 0, \frac{|6x+1|}{4x+1} > 0,$$

$$|-1-3x| - 4 \cdot |x| \le 2x, 5|x| > -1-2x, \frac{|5x+3|}{2x+5} > \frac{5x+2}{|1+2x|}.$$

47. Risolvere i seguenti sistemi di disequazioni:

$$\begin{cases} 1+x>0\\ 2-3x<0 \end{cases} \begin{cases} 6x^2+x-1<0\\ x^2<4 \end{cases} \begin{cases} \frac{5+6x}{2x+1} \le \frac{3x+2}{6x+6}\\ \frac{x}{x+1} < 1 \end{cases}$$
$$\begin{cases} 3x \ge |4x+4|-6\\ x^2-x>0 \end{cases} \begin{cases} (4x-3)|5x+6| < 0\\ \frac{1}{x+2} > 0 \end{cases} \begin{cases} 5(x-4)<0\\ |3x+3| \ge 6+5x\\ |x^2+x-1| < 1 \end{cases}$$

- **48.** Da $a^2 < b^2$ segue che a < b? Segue che |a| < |b|?
- **49.** Vero o falso:

$$\forall n \in \mathbb{N} \text{ si ha che } n^2 - 5n + 6 \ge 0,$$

$$\forall n \in \mathbb{Z} \text{ si ha che } \frac{1 - 3n}{4n + 1} < 1,$$

$$\exists n \in \mathbb{N} \text{ tale che } \frac{3n^2 - 2}{2n^2 + 1} \ge 1.$$

50. Riscrivere le formule seguenti usando connettivi logici $(\vee, \wedge \ldots)$ e disuguaglianze $<, \geq \ldots$, ma senza usare simboli di insiemi o intervalli, presupponendo sempre che la variabile x sia ambientata in \mathbb{R} (esempio: $x \in [0,1]$ diventa $0 \leq x \leq 1$):

$$x \in \mathbb{R} \setminus \{-1,0\}, \quad x \in]2, +\infty[, \quad x \in]2, +\infty[\setminus \{5\},$$

 $x \in]-\infty, -1[\cup]-1, 1[, \quad x \in \mathbb{R}.$

51. Per ognuna dei predicati seguenti, scrivere l'insieme degli $x \in \mathbb{R}$ che lo rendono vero, usando le notazioni degli intervalli, e senza usare la variabile x (esempio: x > 1 diventa $]1, +\infty[$):

$$x < 3, \qquad x < 0 \lor x \ge 2, \qquad x \ne 2, \qquad x \ne 1 \lor x \ne -1, \qquad x \ne 1 \land x \ne -1,$$

$$(\forall y > 0 \text{ si ha che } x < y), \qquad (\forall y > 0 \text{ si ha che } x \le y), \qquad (\exists y \in \mathbb{Z} \text{ tale che } x \ge y).$$

52. Studiare il segno delle espressioni seguenti, cioè dire per quali x sono positive, negative, nulle, non esistenti:

$$(1-x)(2x^2+x-3)$$
, $\frac{1}{3} + \frac{3}{8x+16} - \frac{11}{24(3x-2)}$, $\frac{4x^2+7x-2}{(5-x)^3}$, $1-|x-3|$, $1+|x+3|-3|x|$, $\frac{|3x+1|}{x+4} + \frac{4x+4}{|6+x|}$, x^4+x^2-1 .

53. Supponiamo di dover risolvere una disequazione algebrica del tipo $f(x)/g(x) \le 0$ e di aver stabilito che $f(x) \ge 0 \iff x < -2$, che $g(x) > 0 \iff x < 0 \lor x > 1$, e che $g(x) = 0 \iff x \in \{0,1\}$. Quali sono le soluzioni della disequazione iniziale?

Esercizi del 30 novembre 2021

I tipi di equazioni irrazionali che abbiamo trattato:

$$\sqrt{A} \ge B \iff \begin{cases} A \ge B^2 \\ B \ge 0 \end{cases} \vee \begin{cases} B < 0 \\ A \ge 0, \end{cases} \qquad \sqrt{A} \le B \iff \begin{cases} A \le B^2 \\ B \ge 0 \\ A \ge 0, \end{cases}$$

$$\sqrt{A} > B \iff \begin{cases} A > B^2 \\ B \ge 0 \end{cases} \vee \begin{cases} B < 0 \\ A \ge 0, \end{cases} \qquad \sqrt{A} < B \iff \begin{cases} A < B^2 \\ B \ge 0 \\ A > 0 \end{cases}$$

54. Risolvere le seguenti disequazioni irrazionali:

$$2x + 1 < \sqrt{x+2}, \quad x+4 \le \sqrt{x+1}, \quad x+4 \le \sqrt{2x+7}, \quad 1-2x > \sqrt{x+1},$$

$$x+3 < \sqrt{2x^2+20}, \quad 4-x > \sqrt{x^2-1}, \quad (2-x)\left(\sqrt{x^2-1}-1\right) < 0,$$

$$\sqrt{\frac{x^3-2}{x-1}} < x, \quad \begin{cases} x+1 \ge \sqrt{x^2-8} \\ 2x < 7 \end{cases} \qquad \begin{cases} 2x-1 \ge \sqrt{3x^2-1} \\ \frac{2x+1}{x-1} \ge 0 \end{cases}$$

55. Studiare il segno delle funzioni irrazionali seguenti, usando la regola dei segni:

$$\sqrt{x-1}$$
, $(x+2)\sqrt{1-x}$, $\frac{x+2}{(x-1)\sqrt{x^2-x}}$, $\sqrt[3]{x+2}$, $\frac{\sqrt{|x-2|}}{x-1}$, $\left|\sqrt{x^2+2x}\right|(x+1)$

56. Risolvere le disequazioni irrazionali seguenti, usando la regola dei segni:

$$\sqrt{x-1} > 0,$$
 $(x+2)\sqrt{1-x} \le 0,$ $\frac{x+2}{(x-1)\sqrt{x^2-x}} < 0,$ $\sqrt[3]{x+2} \ge 0,$ $\frac{\sqrt{|x-2|}}{x-1} \le 0,$ $\left|\sqrt{x^2+2x}\right|(x+1)$

57. (Avanzato) Mostrare che la disuguaglianza $\sqrt{A} + \sqrt{B} \ge C$ è equivalente alla seguente espressione in cui non compaiono radici quadrate:

$$\begin{cases} A \ge 0 \\ B \ge 0 \\ C < 0 \end{cases} \lor \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ C^2 - A - B < 0 \end{cases} \lor \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ C^2 - A - B \ge 0 \\ 4AB \ge (C^2 - A - B)^2. \end{cases}$$

Si può omettere una delle disuguaglianze del sistema? Come va modificato il sistema se la disuguaglianza di partenza è $\sqrt{A} + \sqrt{B} > C$?

58. (Avanzato) Mostrare che la disuguaglianza $\sqrt{A} + \sqrt{B} \leq C$ è equivalente al seguente sistema in cui non compaiono radici quadrate:

$$\begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ C^2 - A - B \ge 0 \\ 4AB < (C^2 - A - B)^2 \end{cases}$$

Si può omettere una delle disuguaglianze del sistema? Come va modificato il sistema se la disuguaglianza è $\sqrt{A} + \sqrt{B} < C$?

- **59.** (Avanzato) In analogia con gli esercizi precedenti, "eliminare" le radici quadrate dalle disuguaglianze $A\sqrt{B} \leq C, \ A\sqrt{B} \geq C, \ A/\sqrt{B} \geq C, \ \sqrt{A} \sqrt{B} \geq C, \ \sqrt{A} \sqrt{B} \leq C.$
- **60.** Fra le soluzioni della disequazione $x\sqrt{x-1} < 1$ c'è anche x = 0?
- **61.** (Avanzato) Dimostrare che le seguenti uguaglianze sono vere per ogni $x \in \mathbb{R}$, disegnando anche un grafico dei due membri:

$$\begin{aligned} \max\{x,-x\} &= |x|, \quad \max\{x,0\} = \frac{x+|x|}{2}, \quad \min\{x,1\} = \frac{x+1-|x-1|}{2}, \\ \max\{x-1,2-x\} &= \left|x-\frac{3}{2}\right| + \frac{1}{2}, \quad \min\{\max\{x,0\},1\} = \frac{2+x+|x|-\left|x-2+|x|\right|}{4}. \\ \max\left\{x-1,-x-1,\min\{1-x,1+x\}\right\} &= \left||x|-1\right|. \end{aligned}$$

62. (Avanzato) Stabilire se le disuguaglianze seguenti sono vere o false per via simbolica (elevando al quadrato o al cubo ambo i membri e rimaneggiando, quando lecito, senza calcoli approssimati in virgola mobile):

$$\sqrt{5} < 1 + \sqrt{2}, \quad \sqrt{2} + \sqrt{4} < 2\sqrt{3}, \quad \sqrt[3]{3} > \sqrt{2},$$

$$\sqrt{1 + \sqrt{2}} < \sqrt[3]{2}, \quad 1 - \sqrt{3} < \sqrt{5} - \sqrt{2}.$$

63. Discutere la validità della formula

$$\frac{\sqrt{x+1}}{x-1} = \sqrt{\frac{x+1}{x-1}}.$$

64. Per ognuno dei seguenti grafici decidere se si tratta di una funzione, e, qualora lo sia, se è iniettiva o no:

65. Per ognuno dei seguenti grafici di funzioni trovarne un altro, se c'è, che sia il grafico della funzione inversa:

66. Disegnare il grafico cartesiano della seguente funzione, e quello della funzione inversa:

67. Trovare la formula della funzione inversa delle seguenti funzioni:

$$f(x) = 3x - 1,$$
 $f(x) = \frac{2x + 1}{x - 3},$ $f(x) = 5 - 2^{x+1}.$

68. Supponendo che f, g siano invertibili, trovare la formula della funzione inversa della funzione h definita come $h(x) := g(1/f(x^3))$.

Ripasso su esponenziali e logaritmi

Per le disuguaglianze, usare il fatto che quando a > 1 valgono le equivalenze $x < y \iff a^x < a^y \iff \log_a x < \log_a y$.

A volte viene comoda la notazione alternativa per gli esponenziali: $\exp_a x = a^x$, che si coordina bene con la notazione usuale per i logaritmi.

69. Vero o falso? O senza senso?

$$\begin{split} 2^{\log_2 3} &= 3, \quad 3^{\log_2 3} = 2, \quad \log_2 4 = 2, \quad \log_3 (-3)^2 = -3, \quad 3^{\sqrt{2}} < \sqrt{27}, \\ \sqrt{2^x} &= 2^{x/2}, \quad \sqrt{e^{x^2}} = e^x, \quad a^{x^2} - a^{-x^2} = a^{x^2} \left(1 - \frac{1}{a^{x^4}}\right), \quad (\log x) \log \frac{1}{x} = \log^2 \frac{x}{x}, \\ \log 2x^3 &= 3 \log 2x, \quad \log^2 x = 2 \log x, \quad \sqrt{2^x} = \left(\sqrt{2}\right)^x, \quad \log_2 \sqrt[3]{2} = \frac{1}{3}, \\ 5^{\log_2 3} &< 5^{\log_2 5}, \quad 6^{\log_2 a} = a 3^{\log_2 a}, \quad 3^{1/x} = \frac{1}{3^x}, \quad 2^{-x} = \frac{2}{x}, \quad 2^n 3^m = 6^{n+m}, \\ \log_2 \frac{\sqrt{2} + \sqrt{3}}{2} &> \frac{1}{2} \log_2 6, \quad \log_a \left(\sqrt{2} + \sqrt{3}\right) = \frac{1}{2} \log_a 2 + \log_a \left(1 + \sqrt{3/2}\right), \\ \log_a (x^2) &= (\log_a x)^2, \quad \log_a b^a = b^{\log_a b}, \quad \log_a (\log_b x) = \log_{ab} x, \\ \log_{ab} x &= \frac{\log_a x}{1 + \log_a b}, \quad \sqrt{\log x} = (\log x)^{1/2} = \frac{1}{2} \log x, \quad \log_{-1} (-1)^n = n, \\ \log_0 0 &= 1, \quad \log_1 1^2 = 2, \quad \log_{-a} x = \frac{1}{\log_a x}, \quad \log_\sqrt{a}(x) = 2 \log_a x, \\ \log_{(a^x)}(x) &= \frac{\log_a x}{x}, \quad \log_a (x^2) = 2 \log_a x, \quad \log_a (\log_a x) = (\log_a x)^2, \\ \frac{\log x}{\log(1 + x)} &= \log x - \log(1 + x), \quad (1 + x)^{1/x^2} = \left((1 + x)^{1/x}\right)^2, \end{split}$$

$$\log(a+b)\log(a-b) = \log(a^{2}-b^{2}), \quad (\log(e+x))^{1/x} = \frac{1}{x}\log(e+x),$$

$$\log_{a}(x^{2}) = 2\log_{a}|x|, \quad \log_{a}x = y \iff x = \exp_{a}y,$$

$$\log_{a}x < y \iff x < \exp_{a}y, \quad \exp_{(a^{x})}y = \exp_{(a^{y})}x = \exp_{a}(xy),$$

$$\exp_{a}(\exp_{b}x) = \exp_{ab}x, \quad (\exp_{a}x)(\exp_{b}x) = \exp_{ab}x,$$

$$\exp_{a}(\exp_{b}x) = \exp_{b}(\exp_{a}x), \quad a^{b^{c}} = a^{c^{b}}.$$

- **70.** Mostrare che $\log_a x$ ha lo stesso segno di x-1, quando x>0, a>1. Analogamente a^x-1 ha lo stesso segno di x, $\sqrt{x}-2$ ha lo stesso segno di...
- 71. Risolvere le disequazioni seguenti:

$$2^x \ge 4^{1-2x}, \quad \sqrt{3^{x+1}} < 9^{x-1}, \quad \log_2 x \le 3, \quad \sqrt{\log_2 x} < 4,$$
 $\log_2 \sqrt{x} > \sqrt{2}, \quad \log_3 (1-x) < \log_3 (1+x).$

72. Studiare il segno delle espressioni seguenti:

$$2^{x+1}(x^2-2x)$$
, 3^x-9^x , $(x-2)\log_3(x+1)$, $\frac{\log_2 x - \log_2 x^2}{x-3}$.

73. Trovare l'insieme di definizione delle formule seguenti (quando per i logaritmi non è indicata la base, fate conto che qui non abbia importanza):

$$2^{1/x}, \quad \log|x|, \quad \log(x+\sqrt{x-1}), \quad \log x - \log(1-x), \quad \log \frac{x}{1-x},$$

$$\frac{1}{2-3^x}, \quad \log(2-3^x), \quad \frac{1}{\log(2-3^x)},$$

$$\log((\log_2 x)^2 - 1), \quad \log(1-2x+\sqrt{1+x}), \quad \sqrt{x+2-\sqrt{x+1}},$$

$$\log(\min\{x-1,2-x\}), \quad \frac{1}{1-\sqrt[3]{x^2-1}}, \quad \frac{1}{\min\{-3,-n-1\}}.$$

74. Quali delle seguenti funzioni sono esponenziali di x o di n? Quali sono potenze di x o di n? Quali sono polinomi in x o in n?

$$x^{4}, \quad \frac{1}{2^{x}}, \quad \frac{x^{2}}{1+x^{3}}, \quad n!, \quad 2^{n!}, \quad n^{n},$$

$$3^{n}/5^{n}, \quad 2^{3\log_{2}x}, \quad x^{n}, \quad (n+x)^{n}, \quad 2^{n}+3^{n}, \quad 1^{n}+2^{n}+\cdots+n^{n},$$

$$x^{2}+3x^{3}, \quad 2x^{3}+x2^{x}, \quad (n-1)(n-2), \quad \frac{1}{4^{x}}.$$

- **75.** Dire se questo conto è giusto: $2^{n^2} = (2^n)^2 = 2^{n \cdot 2} = 2^{2 \cdot n} = (2^2)^n = 4^n$.
- **76.** (Avanzato) Dimostrare che $\log_2 3$ è irrazionale.
- 77. (Avanzato, per chi conosce i numeri complessi) Partiamo dall'uguaglianza vera $e^{2\pi i} = 1 = e^0$, eleviamo primo e ultimo membro alla i e ricaviamo $(e^{2\pi i})^i = (e^0)^i$. Cosa succede applicando la nota regola delle potenze $(a^x)^y = a^{xy}$? Possiamo fidarci di questa regola quando gli esponenti sono complessi?

78. Vero, falso o senza senso?

79. Cosa ne pensate di questo calcolo:

$$\arcsin(0) = \arcsin(\sin(0)) = \arcsin(0) = \arcsin(\cos(\pi/2)) = \arccos(\pi/2) = \cos^{-1}(\pi/2) = \frac{1}{\cos(\pi/2)} = \frac{1}{0} = \infty.$$

80. Dire quali delle seguenti espressioni sono predicati, nel senso che diventano vere o false a seconda del valore numerico che diamo alla variabile n:

$$(n+1)^2 \ge n+5$$
, $\max\{n, n-2, n^2-4n\}$, $|n^2-4n+1|$, $(n+4>n^2) \Rightarrow n<3$, $(n-1)/3 \in \mathbb{Z}$, $\min\{1-n, 2n-4\} \ge 3$, $n!-n^2$.

- **81.** Titolo di giornale: "in tre settimane i contagi si sono triplicati". Quindi in due settimane si sono raddoppiati? In una settimana si sono...
- **82.** Quanti sono i numeri interi da n+2 a 2n+1?
- 83. Come proseguireste questa sequenza?

$$1+2$$
 $2+3+4$
 $3+4+5+6$
 $4+5+6+7+8$
 $5+6+7+8+9+10$

Come esprimereste il termine generico n-esimo usando la notazione con i puntini "...", oppure con la notazione di sommatoria?

84. Come proseguireste questa sequenza?

$$1$$

$$1^{2} + 2^{2}$$

$$1^{3} + 2^{3} + 3^{3}$$

$$1^{4} + 2^{4} + 3^{4} + 4^{4}$$

$$1^{5} + 2^{5} + 3^{5} + 4^{5} + 5^{5}$$

Come esprimereste il termine generico n-esimo usando la notazione con i puntini "...", oppure con la notazione di sommatoria?

85. Interpretare (quando sensate) le seguenti espressioni contenenti i puntini di sospensione, dire quanti addendi o fattori ci sono, calcolare quanto valgono per n = 1, 2, 3, 4, tradurli nella notazione della sommatoria (o produttoria):

$$1+2+3+\cdots+n, \quad \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}, \quad \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{n}{n+1},$$

$$1+2+3+\cdots+\frac{n}{2}, \quad 1^2+2^2+3^2+\cdots+2^n, \quad 2^1+2^2+2^3+\cdots+n^n,$$

$$n+(n-1)+(n-2)+\cdots, \quad 1^n+2^n+3^n+\cdots+k^n,$$

$$1+2+3+4+\cdots+n^2, \quad 1+2+3+4+\cdots+(n-1)^{n-1}+n^n,$$

$$1\cdot 2\cdot 3\cdots n^2>n, \quad 1+2+3+4+\cdots+4+3+2+1,$$

$$1+1+1+\cdots+3, \quad 2n+3n+4n+\cdots+n^2,$$

$$1+2+3+\cdots+n+n^2, \quad 1+2+3+\cdots+(n+n^2),$$

$$(1+2+3+\cdots+n)+n^2, \quad \frac{1\cdot 2\cdot 3\cdot 4\cdots n^2}{n}=1\cdot 2\cdot 3\cdots n,$$

$$\frac{(2n)(2n-1)(2n-2)\cdots n!}{n!}=2n(2n-1)(2n-2)\cdots$$

86. Vero o falso?

$$\frac{2n+1}{3} \cdot \frac{2n}{3} \cdot \frac{2n-1}{3} \cdot \dots \cdot \frac{n}{3} \cdot \frac{n-1}{3} = \frac{(2n+1)!}{(n-2)! \cdot 3^{n+3}},$$

$$(3n)^2 = 3n+3n+3n+\dots+3n,$$

$$3^{n} = 9 \cdot 9 \cdot 9 \cdot \dots 9,$$

$$2^{2^n} = 2 \cdot 2 \cdot 2 \cdot \dots 2,$$

$$x^{n^3} = x^n \cdot x^n \cdot x^n \cdot x^n \cdot \dots x^n.$$

- **87.** Poniamo $f(x) := x^{-n} + x^{-n+1} + \dots + x^{n-1} + x^n$. Quanto vale f(1)?
- **88.** Per ciascuna delle seguenti definizioni calcolare esplicitamente a_0, a_1, a_2, a_3 , quando si riesce a dare un senso:

$$a_n := (2n+1) + (2n+2) + (2n+3) + \dots + (4n-3),$$

$$a_n := \underbrace{n+n+n+\dots+n}_{n+1 \text{ addendi}},$$

$$a_n := \underbrace{\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots + \sqrt{1 + \sqrt{1}}}}}}_{n \text{ radici}},$$

89. Riscrivere le seguenti espressioni (quando sensate) usando i puntini "..." invece della sommatoria, e calcolare quanto valgono per n = 1, 2, 3, 4:

$$\sum_{k=0}^{n} \frac{n}{2}, \quad \sum_{k=1/2}^{1/8} 2, \quad \sum_{k=1}^{n} \frac{2}{n}, \quad \sum_{k=n+1}^{2n} k^2, \quad \sum_{k=1}^{n^2} k, \quad \sum_{k=n}^{k} (n-k)^2,$$

$$\sum_{k=-n}^{n} (n-k), \quad \sum_{k=\text{sen } n}^{\cos n} \operatorname{arcsen} k, \quad \sum_{k=1}^{4} n^{-k}, \quad \sum_{k=2}^{n} (-k)^n.$$

Esercizi del 13 dicembre 2021

Cautela: ci possono essere esercizi sull'induzione che sornionamente chiedono di dimostrare cose false.

Un predicato $\mathcal{P}(n)$ si dice *induttivo*, o *ereditario*, se vale l'implicazione $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$ per ogni n.

90. Dimostrare che per $n \geq 1$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$
.

91. Dimostrare che per ogni $n \ge 1$

$$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n2^n = 2 + (n-1)2^{n+1}$$

- **92.** Dimostrare che la disuguaglianza $n! \ge 3^{n-2}$ è induttiva (cioè implica la disuguaglianza che si ottiene sostituendo n con n+1) almeno per $n \ge 2$. Per quali n è vera?
- **93.** Dimostrare che $4 \cdot 5^n \ge 5 \cdot 4^n$ per $n \ge 1$. Verificato poi che $2^n + 4 \cdot 5^n > 4 \cdot 5^n \ge 5 \cdot 4^n > 2 \cdot 3^n + 3 \cdot 4^n$, dimostrare che

$$2^n + 5^n > 3^n + 4^n \quad \forall n > 1.$$

(Per il passo induttivo sommare membro a membro con $2^n + 4 \cdot 5^n \ge 2 \cdot 3^n + 3 \cdot 4^n$).

- **94.** Dimostrare che $(2n)! > 4^{n-1}n!(n-1)!$ per $n \ge 1$.
- **95.** Dimostrare che $1 + 2 + 3 + 4 + \cdots + n^n < n^{n+1}$ per n > 1.
- **96.** Dimostrare per induzione che $1+2+3+4+\cdots+n\neq (n+2)(n-1)/2$ per $n\geq 1$.

- **97.** Dimostrare per induzione che $1 2 + 3 4 + 5 \dots + (-1)^n n = ((2n+1)(-1)^n 1)/4$ per $n \ge 1$.
- 98. Dimostrare che $5^n \ge 2^n n^2$ per $n \ge 1$. (Moltiplicare membro a membro per $5 \ge 2(n+1)^2/n^2$, che è vera per...).
- **99.** Dimostrare che se $n \in \mathbb{N}$ e $x \geq 0$ allora

$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2.$$

(Se si conosce la formula del binomio di Newton c'è una scorciatoia rispetto all'induzione). La disuguaglianza è vera anche per gli x fra -1 e 0?

100. Dimostrare per induzione su n che se $n \in \mathbb{N}$ e x > -1 allora

$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3.$$

(Le espressioni algebriche vengono lunghe e una macchina può giovare).

101. Dimostrare per induzione su $n \ge 1$ che

$$27(27-1)(27-2)(27-3)\cdots(27-n+1)(27-n) = \frac{27!}{(27-n-1)!}.$$

102. (Esercizio avanzato) Trovare delle condizioni sui coefficienti a, b, c (che possono dipendere da x ma non da n) in modo che la formula P(n) seguente

$$1 \cdot x + 2x^2 + 3x^3 + \dots + nx^n = a + (bn + c)x^{n+1}$$

sia induttiva rispetto a n (cioè $P(n) \Rightarrow P(n+1)$) per $n \geq 1$. Trovare per quali coefficienti P(n) è vera per ogni $n \geq 1$. (Scrivere la formula di P(n+1), rimpiazzarne una parte usando P(n), semplificare e imporre che il risultato valga per ogni n, x...)

103. (Esercizio avanzato) Trovare delle condizioni sui coefficienti a, b, c, d (indipendenti da n) in modo tale che la formula P(n) seguente

$$1^{2} \cdot 2^{1} + 2^{2} \cdot 2^{2} + 3^{2} \cdot 2^{3} + \dots + n^{2} 2^{n} = a + (bn^{2} + cn + d)2^{n+1}$$

sia ereditaria rispetto a n (cioè $P(n) \Rightarrow P(n+1)$) per $n \geq 1$. Trovare per quali coefficienti P(n) è vera per ogni $n \geq 1$. (Scrivere la formula di P(n+1), rimpiazzarne una parte usando P(n), semplificare e imporre che il risultato valga per ogni $n \dots$)

104. Trovare una formula per la somma degli elementi delle matrici seguenti:

sapendo che è un polinomio di terzo grado in n. Dare una dimostrazione per induzione della formula trovata.

- **105.** Esiste una funzione $f: \mathbb{N} \to \mathbb{R}$ tale che $f(1) + f(2) + \cdots + f(n) = n^3$ per ogni $n \ge 1$?
- **106.** Esiste una funzione $f: \mathbb{N} \to \mathbb{R} \setminus \{0\}$ tale che $f(1) + f(2) + \cdots + f(n) = f(n)^2$ per ogni $n \ge 1$?
- 107. Dimostriamo per induzione che n! è un polinomio di grado n nella variabile n. Per n=0 abbiamo 0!=1, che è una costante, e quindi un polinomio in n di grado 0. Supponendo che la tesi sia vera per n, abbiamo che (n+1)! è di grado n+1, in quanto è il prodotto di (n+1), che ha grado 1, con n! che per ipotesi ha grado n. Si può anche dimostrare senza induzione: cominciando a moltiplicare i fattori $n(n-1)(n-2)\cdots 2\cdot 1$ da sinistra a destra si ottengono successivamente n, n(n-1), n(n-1)(n-2), che hanno gradi 1, 2, 3 e così via; quando saremo arrivati all'ultimo fattore avremo il grado n. Tutto chiaro? Il ragionamento fila? Nessuna perplessità?
- **108.** Vogliamo dimostrare per induzione che $(1-\pi)^n \ge 1 n\pi$ per ogni $n \ge 1$. Sia $\mathcal{P}(n)$ il predicato $(1-\pi)^n \ge 1 n\pi$. Per n = 1 viene $(1-\pi)^1 \ge 1 \pi$, che è vero. Per il passo induttivo supponiamo che sia vero $\mathcal{P}(n)$ per un $n \ge 1$, e scriviamo $\mathcal{P}(n+1)$:

$$(1-\pi)^{n+1} \ge 1 - (n+1)\pi,$$

che si può riscrivere come

$$(1-\pi)^n \cdot (1-\pi) \ge 1 - (n+1)\pi.$$

Sostituiamo $(1-\pi)^n$ con $1-n\pi$ usando la $\mathcal{P}(n)$ supposta vera, ottenendo

$$(1 - n\pi)(1 - \pi) \ge 1 - (n+1)\pi,$$

che diventa

$$1 - \pi - n\pi + n\pi^2 \ge 1 - (n+1)\pi,$$

che si semplifica in

$$n\pi^2 > 0$$
,

che è vero. Quindi $\mathcal{P}(n)$ è vera per ogni n. O no?

- **109.** Dimostrare per induzione su $n \ge 2$ che $(1-2)(1-3)(1-4)\cdots(1-n) \ge 1-(n+2)(n-1)/2$.
- **110.** Dimostrare che il predicato $\mathcal{P}(n) := (n+10 > 2^n)$ ha la proprietà che $\mathcal{P}(n) \Rightarrow \mathcal{P}(n-1)$ per ogni $n \in \mathbb{N}$. Per quali n è vero?
- **111.** Definiamo per ricorrenza $a_0 := 5$, $a_{n+1} := 2\sqrt{a_n}$. Dimostrare per induzione che $a_{n+1} \le a_n$ per ogni $n \ge 1$.
- **112.** Definiamo per ricorrenza $a_0 := 1$, $a_{n+1} = 1 a_n/2$. Dimostrare per induzione che $a_{n+2} a_{n+1}$ ha sempre segno opposto a $a_{n+1} a_n$.
- **113.** Sia data la successione ricorsiva $a_0 = a_1 = 1$, $a_{n+2} = 2a_n + a_{n+1}$. Trovare un numero c > 0 tale che $a_n \le c^n$ per ogni $n \ge 0$. (Imporre che scatti l'induzione).
- **114.** Consideriamo la successione di Fibonacci $F_0=0,\ F_1=1,\ F_{n+2}=F_n+F_{n+1}.$ Dimostrare che $F_n\neq n^2$ per $n\geq 2.$
- **115.** Dimostriamo che per ogni $n \ge 1$ vale l'uguaglianza $1(n-1) + 2(n-1) + 3(n-1) + \cdots + n(n-1) = (n+2)(n^2-2n+1)/2$. Nel caso base n=1 viene 0=0, che è vero. Supponiamo vera l'uguaglianza per n e raccogliamo n-1 al primo membro

$$(n-1)(1+2+3\cdots+n) = \frac{(n+2)(n^2-2n+1)}{2}.$$

Ricaviamo $1+2+3\cdots+n=(n+2)(n^2-2n+1)/(2(n-1))$ e sostituiamo nell'uguaglianza per n+1:

$$(n+1-1)\underbrace{\left(\underbrace{1+2+3\cdots+n}_{2(n-1)}+(n+1)\right)}_{=\underbrace{\frac{(n+2)(n^2-2n+1)}{2(n-1)}}} + (n+1)\underbrace{\left(\frac{n+1+2}{(n+1)^2-2(n+1)+1}\right)}_{2}.$$

Si ottiene

$$(n+1-1)\left(\frac{(n+2)(n^2-2n+1)}{2(n-1)}+(n+1)\right)=\frac{(n+1+2)\left((n+1)^2-2(n+1)+1\right)}{2},$$

che è identicamente vera, come si verifica facilmente.

116. Dimostriamo per induzione che vale il seguente predicato $\mathcal{P}(n)$:

$$1+2+3+\cdots+n=n.$$

Il caso base $\mathcal{P}(1)$ è evidentemente vero. Dimostriamo il passo induttivo. Supponiamo che $\mathcal{P}(n)$ sia vero per un certo n e aggiungiamo 1 ad ambo i membri, ottenendo

$$(1+2+3+\cdots+n)+1=n+1.$$

Per la proprietà associativa della somma possiamo riscrivere la formula precedente come

$$1+2+3+\cdots+(n+1)=n+1$$
,

che è esattamente $\mathcal{P}(n+1)$. Il passo induttivo è quindi dimostrato. Corollario: sottraendo n da ambo i membri di $\mathcal{P}(n)$ si ottiene che $1+2+3+\cdots=0$.

Esercizi del 21 dicembre 2021

- 117. (Avanzato) Scrivere un programma con cui studiare "sperimentalmente" la stabilizzazione delle cifre decimali della successione $a_n := (n+1)^2/(2n^2+1)$.
- 118. (Avanzato) Scrivere un programma con cui studiare "sperimentalmente" la stabilizzazione (o meno) delle cifre decimali della successione $r_n := a_{n+1}/a_n$, dove a_n è definito da $a_1 := 1$, $a_2 := 2$, $a_{n+2} := 3a_{n+1} a_n$.
- 119. Tradurre le espressioni seguenti nella notazione $\lim_{x\to x_0} f(x) = \ell$:

$$n^2 \to +\infty$$
 per $n \to +\infty$,
il limite di $(\operatorname{sen} x)/x$ per x che tende a 0 è 1,
 $g(x)$ tende a ℓ quando x si avvicina a $-\infty$
per n che tende a $+\infty$, $n^2 - 2n \to +\infty$.

120. (Teorico) Verificare che la definizione di limite $\forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall x \in \text{dom} \ f: \ x > N \Rightarrow |f(x) - L| < \varepsilon$ resta soddisfatta nei seguenti casi con le date scelte di N:

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \quad \text{con } N = 1/\varepsilon,$$

$$\lim_{x \to +\infty} \frac{x+1}{2x} = \frac{1}{2} \quad \text{con } N = 1/(2\varepsilon),$$

$$\lim_{x \to +\infty} \frac{x^2 - 1}{2x^2} = \frac{1}{2} \quad \text{con } N = 1/\sqrt{2\varepsilon},$$

$$\lim_{x \to +\infty} \frac{1}{2^x} = 0 \quad \text{con } N = -\log_2 \varepsilon.$$

121. (Teorico) Verificare che la definizione di limite $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \text{dom } f: 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$ resta soddisfatta nei seguenti casi con le date scelte di δ :

$$\lim_{x\to 2}(x-1)=1 \quad \text{con } \delta=\varepsilon,$$

$$\lim_{x\to -1}(2x+1)=-1 \quad \text{con } \delta=\varepsilon/2,$$

$$\lim_{x\to -1}\frac{2x^2-2x}{x-1}=2 \quad \text{con } \delta=\varepsilon/2,$$

$$\lim_{x\to 0}2^x=1 \quad \text{con } \delta=\begin{cases} \log_2(1+\varepsilon) & \text{se } \varepsilon\geq 1,\\ \min\left\{\log_2(1+\varepsilon),-\log_2(1-\varepsilon)\right\} & \text{se } 0<\varepsilon<1. \end{cases}$$

122. (Teorico) Verificare che la definizione di $\lim_{x\to x_0} f(x) = +\infty$, cioè $\forall M \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in \text{dom } f: \ 0 < |x-x_0| < \delta \Rightarrow f(x) > M$ resta soddisfatta nei seguenti casi con le date scelte di δ :

$$\lim_{x\to 0}\frac{2}{x^2}=+\infty\quad \text{con }\delta=\begin{cases} \text{positivo, non importa quanto,} & \text{se }M\le 0,\\ \sqrt{2/M} & \text{se }M>0 \end{cases}$$

$$\lim_{x\to 2}\frac{1}{(x-2)^2}=+\infty\quad \text{con }\delta=\begin{cases} \text{positivo, non importa quanto,} & \text{se }M\le 0,\\ 1/\sqrt{M} & \text{se }M>0 \end{cases}$$

$$\lim_{x\to -1}\frac{1}{|x+1|}=+\infty\quad \text{con }\delta=\begin{cases} \text{positivo, non importa quanto,} & \text{se }M\le 0,\\ 1/M & \text{se }M>0 \end{cases}$$

123. (Teorico) Verificare che la definizione di $\lim_{x\to+\infty} f(x) = +\infty$, cioè $\forall M \in \mathbb{R} \ \exists N \in \mathbb{R} \ \forall x \in \text{dom} \ f: \ x > N \Rightarrow f(x) > M$, resta soddisfatta nei seguenti casi con le date scelte di N:

$$\lim_{x\to +\infty} x = +\infty \quad \text{con } N = M$$

$$\lim_{x\to +\infty} x^2 = +\infty \quad \text{con } N = \begin{cases} \text{non importa quanto,} & \text{se } M < 0, \\ \sqrt{M} & \text{se } M \geq 0 \end{cases}$$

$$\lim_{x\to +\infty} 2^x = +\infty \quad \text{con } N = \begin{cases} \text{non importa quanto,} & \text{se } M \leq 0, \\ \log_2 M & \text{se } M > 0 \end{cases}$$

$$\lim_{x\to +\infty} \frac{x^2}{2x+1} = +\infty \quad \text{con } N = \begin{cases} -1/2 & \text{se } M \leq 0, \\ M + \sqrt{M+M^2} & \text{se } M > 0 \end{cases}$$

124. (Teorico) Trovare δ o N appropriati per la definizione di limite nei seguenti casi:

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty, \qquad \lim_{x \to 1^-} \frac{1}{x-1} = -\infty, \qquad \lim_{x \to -\infty} x^2 = +\infty,$$

$$\lim_{x \to 2} |x+1| = 3, \qquad \lim_{x \to 0} \sqrt[3]{x} = 0, \qquad \lim_{x \to -1} \max\{x, 1-x\} = 2.$$

125. Analizzare la seguente cartolina di San Valentino:

Esercizi del 10 gennaio 2022

126. Vero, falso, ambiguo, malformato, senza senso?

$$-\sqrt{2}^{+} < -\sqrt{2}, \qquad 1^{-} < 0, \qquad , 3 \cdot (-2)^{-} = -(3 \cdot 2^{-}), \qquad (1^{-})^{2} = 1^{+}$$

$$-(2^{+}) = (-2)^{+}, \qquad 1^{+} - (2^{+}) = (-1)^{-},$$

$$(0^{-})^{2} = 0^{+}, \qquad ((-2)^{-})^{2} = 4^{-},$$

$$((1 - \sqrt{2})^{+})^{2} - 2(1 - \sqrt{2})^{+} - 1 = 0^{+}, \qquad ((-1)^{+})^{-} = -1^{+} = (-1)^{+}, \qquad (a^{-})^{-} = a^{+},$$

$$1^{-} - 1^{+} = 1^{-} + (-1)^{-} = 0, \qquad a^{+} - b^{-} = (a - b)^{+}.$$

$$per \ x \to -2^{-} \text{ si ha che } x^{2} + 2x = 4^{+} - 4^{+} = 0^{+},$$

$$per \ x \to 0^{+} \text{ si ha che } x^{2} - x = 0^{+} - 0^{+} = 0^{+},$$

$$per \ x \to 0^{+} \text{ si ha che } x^{2} - x^{3} = 0^{+} - 0^{+} = 0^{+},$$

$$\lim_{n \to +\infty} \left((-1)^{n} \right)^{2} = \left(\lim_{n \to +\infty} (-1)^{n} \right)^{2}, \qquad \lim_{n \to +\infty} \cos\left((-1)^{n} \right) = \cos\left(\lim_{n \to +\infty} (-1)^{n} \right),$$

$$\lim_{x \to +\infty} \frac{\sin x}{x} \Rightarrow 0.$$

127. Supponiamo di sapere che $f(x) \to 0$ per $x \to x_0$, e che non è vero che $f(x) \to 0^+$ per $x \to x_0$. Possiamo concludere che $f(x) \to 0^-$ per $x \to x_0$?

- **128.** Supponiamo di sapere che non esiste né $\lim_{x\to x_0} f(x)$ né $\lim_{x\to x_0} g(x)$. Che dire di $\lim_{x\to x_0} (f(x)+g(x))$ e di $\lim_{x\to x_0} f(x)g(x)$?
- **129.** Sapendo che le funzioni costanti sono continue, e che la funzione $x \mapsto x$ è continua (cioè tende a x_0 per $x \to x_0$), tende a $+\infty$ per $x \to +\infty$ e tende a $-\infty$ per $x \to -\infty$, e usando le regole su somma, prodotto e quoziente dei limiti, calcolare i limiti seguenti

$$\lim_{x \to 0} 2x, \quad \lim_{x \to 1} (x-1), \quad \lim_{x \to -2} (x^2-1), \quad \lim_{x \to +\infty} -x, \quad \lim_{x \to -1} \frac{x}{x-1}$$

$$\lim_{x \to -\infty} x^3, \quad \lim_{x \to -\infty} (2x-4), \quad \lim_{x \to +\infty} \frac{1}{x+1}, \quad \lim_{x \to +\infty} \frac{2}{x^2+x},$$

$$\lim_{x \to +\infty} x^2 \left(1 - \frac{1}{x}\right), \quad \lim_{x \to +\infty} (x^2-x), \quad \lim_{x \to -\infty} x^3 \left(1 + \frac{1}{x}\right), \quad \lim_{x \to -\infty} (x^3+x^2),$$

$$\lim_{x \to +\infty} \frac{x(1+\frac{1}{x})}{x}, \quad \lim_{x \to +\infty} \frac{x+1}{x}, \quad \lim_{x \to +\infty} \frac{x^2(1-\frac{1}{x}+2\frac{1}{x^2})}{x(\frac{1}{x}-1)}, \quad \lim_{x \to +\infty} \frac{x^2-x+2}{1-x},$$

$$\lim_{x \to -\infty} \frac{x(2+\frac{1}{x})}{(\frac{2}{x}+3)x^2}, \quad \lim_{x \to -\infty} \frac{2x+1}{2x+3x^2}, \quad \lim_{x \to +\infty} \left(x - \frac{x^2-1}{x}\right), \quad \lim_{x \to -\infty} \left(\frac{x^2-x}{x+2} + \frac{x^3+x^2+1}{1-x^2}\right),$$

$$\lim_{x \to 0} \frac{3}{x^2}, \quad \lim_{x \to 0} \frac{x(1+x)}{2x(1-2x)}, \quad \lim_{x \to 0} \frac{x+x^2}{2x-4x^2}, \quad \lim_{x \to 0} \frac{x^2(x+3)}{x(1-x)}, \quad \lim_{x \to 0} \frac{x^3+3x^2}{x-x^2},$$

$$\lim_{x \to 1} \frac{-x}{1+x}, \quad \lim_{x \to 1} \frac{x(x-1)}{(1-x)(1+x)}, \quad \lim_{x \to 1} \frac{x^2-x}{1-x^2}, \quad \lim_{x \to -1} \frac{x(x+1)}{(x+1)(x^2-x+1)},$$

$$\lim_{x \to -1} \frac{x^2+x}{x^3+1}, \quad \lim_{x \to 2} \frac{(x-2)^2}{(x+1)(x-2)}, \quad \lim_{x \to 2} \frac{x^2-4x+4}{x^2-x-2}, \quad \lim_{x \to 0^+} \frac{x+1}{x},$$

$$\lim_{x \to 0^-} \frac{x+1}{x}, \quad \lim_{x \to 0} \frac{x+1}{x}, \quad \lim_{x \to 0} \frac{x-1}{x^2}, \quad \lim_{x \to 1^-} \frac{x}{x-1}, \quad \lim_{x \to 1^+} \frac{x}{x-1},$$

$$\lim_{x \to 1^-} \frac{x}{x-1}, \quad \lim_{x \to 1^-} \frac{x+1}{x}, \quad \lim_{x \to 2} \frac{x+1}{(x-2)^2}, \quad \lim_{x \to 2^+} \frac{(x+1)(x-2)}{(x-2)^2}, \quad \lim_{x \to 2^-} \frac{x^2-x-2}{x^2-4x+4}.$$

130. Sapendo che la radice quadrata è continua e che \sqrt{x} tende a $+\infty$ per $x \to +\infty$, calcolare i limiti seguenti:

$$\lim_{x \to +\infty} \sqrt{x^3 - 3x}, \quad \lim_{x \to -\infty} \sqrt{x^2 + 2x}, \quad \lim_{x \to +\infty} \sqrt{\frac{x - 1}{x + 1}}, \quad \lim_{x \to 1} \frac{x + \sqrt{x}}{x - 1},$$

$$\lim_{x \to +\infty} (\sqrt{x + 1} - \sqrt{x + 2}), \quad \lim_{x \to +\infty} (\sqrt{x - 2} - \sqrt{x + 1}), \quad \lim_{x \to +\infty} (\sqrt{2x - 2} - \sqrt{x + 1}),$$

$$\lim_{x \to +\infty} \frac{x(2 + \frac{1}{x})}{\sqrt{x}\sqrt{2 - \frac{1}{x}}}, \quad \lim_{x \to +\infty} \frac{2x + 1}{\sqrt{2x - 1}}, \quad \lim_{x \to +\infty} \frac{x(1 + \frac{1}{\sqrt{x}})}{x(1 - \frac{1}{x})}, \quad \lim_{x \to +\infty} \frac{x + \sqrt{x}}{x - 1},$$

$$\lim_{x \to +\infty} \frac{x}{\sqrt{x}\left(\sqrt{1 + \frac{1}{x}} + \sqrt{2 - \frac{1}{x}}\right)}, \quad \lim_{x \to +\infty} \frac{x}{\sqrt{x + 1} + \sqrt{2x - 1}},$$

$$\lim_{x \to +\infty} (\sqrt{x^2 - 2x + 1} - \sqrt{x^2 - 2x}), \quad \lim_{x \to +\infty} (\sqrt{x^2 - 2x + 1} - \sqrt{x^2 + x}),$$

$$\lim_{x \to +\infty} (\sqrt{x^2 - 2x + 1} + \sqrt{2x^2 - 3x}), \quad \lim_{x \to +\infty} \frac{x}{x\sqrt{1 + \frac{1}{x^2}}}, \quad \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1}},$$

$$\lim_{x \to -\infty} \frac{x}{|x|\sqrt{1 + \frac{1}{x^2}}}, \quad \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1}}.$$

131. Il seguente conto è corretto?

$$\begin{split} &\lim_{x\to +\infty} \frac{\sqrt{4x^4-3x^3+1}-\sqrt[3]{8x^6+x^5-1}}{\sqrt{x^4+2x^3}-x^2} = \\ &= \lim_{x\to +\infty} \frac{\sqrt{4x^4-3x^3+1}-\sqrt[3]{x^6(8+x^{-1}-x^{-6})}}{(x^4+2x^3)-x^4} \left(\sqrt{x^4+2x^3}+x^2\right) = \\ &= \lim_{x\to +\infty} \frac{\sqrt{4x^4-3x^3+1}-x^2\sqrt[3]{8+x^{-1}-x^{-6}}}{2x^3} \left(\sqrt{x^4(1+2x^{-1})}+x^2\right) = \\ &= \lim_{x\to +\infty} \frac{\sqrt{4x^4-3x^3+1}-x^2\sqrt[3]{8+0-0}}{2x^3} \left(\sqrt{x^4(1+0)}+x^2\right) = \\ &= \lim_{x\to +\infty} \frac{\sqrt{4x^4-3x^3+1}-2x^2}{2x^3}2x^2 = \\ &= \lim_{x\to +\infty} \frac{4x^4-3x^3+1-2x^2}{x(\sqrt{4x^4-3x^3+1}+2x^2)} = \\ &= \lim_{x\to +\infty} \frac{-3x^3+1}{x(\sqrt{x^4(4-3x^{-1}+x^{-4})}+2x^2)} = \\ &= \lim_{x\to +\infty} \frac{x^3(-3+x^{-3})}{x(x^2\sqrt{4-3x^{-1}+x^{-4}}+x^2)} = \\ &= \lim_{x\to +\infty} \frac{x^2(-3+0)}{x^2\sqrt{4-0+0}+2x^2} = \frac{-3}{2+2} = -\frac{3}{4}. \end{split}$$

132. Ricordando che seno e coseno sono sempre compresi fra -1 e 1, e usando il teorema del confronto, calcolare i limiti seguenti:

$$\lim_{x \to +\infty} (x^2 - \cos x), \quad \lim_{x \to -\infty} (x + \sin x - \cos x), \quad \lim_{x \to +\infty} \frac{\sin x}{x}, \quad \lim_{x \to +\infty} \frac{\sqrt{x} + \sin x}{x},$$

$$\lim_{x \to +\infty} \frac{\cos(x - 1)}{x^2}, \quad \lim_{x \to -\infty} \frac{x^2 + \cos(x - 1)}{\sqrt{x^4 + 1}}, \quad \lim_{x \to 0} \left(\frac{1}{x^2} + \sin \frac{1}{x}\right),$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + x}{x - 2} + \cos(x^3 - 2^x)\right), \quad \lim_{x \to -\infty} (x + 1)\left(2 + \sin\sqrt{x^2 - 1}\right).$$

133. Ricordando la continuità e i limiti agli estremi delle funzioni esponenziali e logaritmiche, e i limiti di a^x/x^n e $(\ln_a x)/x$ per $x \to +\infty$, oltre alle regole già viste prima, calcolare i seguenti limiti:

$$\lim_{x \to +\infty} (3^{x} - x), \quad \lim_{x \to -\infty} 2^{x-1}, \quad \lim_{x \to +\infty} (5^{x} - x4^{x}), \quad \lim_{x \to +\infty} \frac{x \log_{2} x}{3^{x}},$$

$$\lim_{x \to -\infty} \frac{\sin 2^{x}}{3^{x}}, \quad \lim_{x \to +\infty} \frac{x^{2} - 3^{x} + 1}{x^{3} - 2x + 2^{x}}, \quad \lim_{x \to -\infty} \frac{2x^{2} + 3^{x} - 1}{x^{2} + x - 3^{x}},$$

$$\lim_{x \to 0^{+}} 3^{1/x}, \quad \lim_{x \to 0^{-}} 2^{2/x}, \quad \lim_{x \to +\infty} 2^{x} 3^{-x+1}, \quad \lim_{x \to 0} 2^{(x-1)/x^{2}},$$

$$\lim_{x \to +\infty} \log_{2} (x^{2} - 1), \quad \lim_{x \to +\infty} \log_{3} (3^{x} - 2^{x}), \quad \lim_{x \to 0^{+}} \frac{\log_{2} x}{x},$$

$$\lim_{x \to +\infty} \log_{2} \frac{1 + x}{x - 1}, \quad \lim_{x \to +\infty} (\log_{2} (x + 1) - \log_{2} x), \quad \lim_{x \to 0^{+}} 2^{-\log_{2} x},$$

$$\lim_{x \to +\infty} \frac{\log_2 \sqrt{x}}{\log_2 x}, \quad \lim_{x \to +\infty} \frac{\log_2 \sqrt{x}}{x}, \quad \lim_{x \to +\infty} \frac{(\log_2 x)^2}{x},$$

$$\lim_{x \to +\infty} \frac{\log_2 (x^2) - \log_2 x}{\log_2 x}, \quad \lim_{x \to 0^+} \frac{\log_2 x}{1/x}, \quad \lim_{x \to +\infty} \log_3 (3^x - 2^x).$$

134. Ricordando che seno e coseno sono continui, che $(\operatorname{sen} x)/x \to 1$ e $(1 - \cos x)/x^2 \to 1/2$ per $x \to 0$, (più la regola del cambio di variabile, prodotti notevoli, scomposizioni in fattori...), calcolare i seguenti limiti:

$$\lim_{x \to 0} \frac{\sin(x^2)}{x}, \quad \lim_{x \to 0} \frac{x^2 - x}{\sin x}, \quad \lim_{x \to 0} \frac{\sin(2x - x^2)}{x}, \quad \lim_{x \to 1} \frac{x - x^2}{\sin(x - 1)},$$

$$\lim_{x \to 0} \frac{\tan x}{x}, \quad \lim_{x \to \pi} \frac{\sin x}{x - 1}, \quad \lim_{x \to +\infty} x \sin \frac{1}{x}, \quad \lim_{x \to +\infty} x \sin \frac{x - 1}{x^2},$$

$$\lim_{x \to -\infty} \frac{x^2 + 2}{x - 1} \sin \frac{1}{x^2}, \quad \lim_{x \to 0} \frac{(\cos 2x) - 1}{x^2}, \quad \lim_{x \to 0^+} \frac{1 - \cos x}{x^3}, \quad \lim_{x \to 0} \frac{1 - \cos x}{x^3},$$

$$\lim_{x \to 0^+} \frac{1 - \cos \sqrt{x}}{x(x - 2)}, \quad \lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x}, \quad \lim_{x \to 0} \frac{x \sin x}{1 - \cos^3 x}, \quad \lim_{x \to 0} \frac{\cos^2 x + \cos x - 2}{x^3 - 2x}.$$

- 135. (Semplificazioni nei limiti: regole e pseudoregole) È vero che se $f(x) \to \ell$ allora vale anche l'uguaglianza $\lim(f(x)+g(x)) = \lim(\ell+g(x))$, nel senso che qualora uno dei due membri esista, esiste anche l'altro e sono uguali? Se $f(x) \to \ell$ allora $\lim f(x)g(x) = \lim \ell g(x)$? Se $f(x) \to \ell$ allora $\lim(f(x)g(x)+h(x)) = \lim(\ell g(x)+h(x))$? Se $f(x) \to \ell$ allora $\lim(f(x)+g(x))h(x) = \lim(\ell+g(x))h(x)$? Se $f(x) \to \ell$ allora $\lim(f(x)+g(x))h(x) = \lim(\ell+g(x))h(x)$? Se $f(x) \to \ell$ allora $\lim(f(x)+g(x))h(x) = \lim(\ell+g(x))h(x)$? Se $f(x) \to \ell$ allora $\lim(f(x)+g(x))h(x) = \lim(\ell+g(x))h(x)$?
- 136. Consideriamo il $\lim_{n\to+\infty} (-1)^{2n}$. Facendo il cambio di variabile 2n=m otteniamo $\lim_{n\to+\infty} (-1)^{2n}=\lim_{m\to+\infty} (-1)^m$. Sappiamo che il $\lim_{m\to+\infty} (-1)^m$ non esiste, perché funzione oscillante. Quindi anche il limite iniziale $\lim_{m\to+\infty} (-1)^{2n}$ non esiste. Sicuro?
- 137. Vogliamo calcolare il

$$\lim_{n \to +\infty} \left(\frac{1}{e^{1/n} - 1} - n \right).$$

Il limite si presenta nella forma indeterminata $+\infty - \infty$. Ispirandoci al limite notevole $(e^x - 1)/x \to 1$ per $x \to 0$, procediamo così:

$$\lim_{n \to +\infty} \left(\frac{1}{e^{1/n} - 1} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{\frac{e^{1/n} - 1}{1/n} \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1}{1 \cdot \frac{1}{n}} - n \right) = \lim_{n \to +\infty} \left(\frac{1$$

Giusto?

Nel seguito i logaritmi in cui non viene indicata la base si devono assumere in base e, ossia $\log x = \log_e x = \ln x$.

138. Ricordando che esponenziale e logaritmo sono continui, che $(\ln(1+x))/x \to 1$, $(e^x - 1)/x \to 1$ per $x \to 0$, (più la regola del cambio di variabile, prodotti notevoli, scomposizioni in fattori, limiti notevoli precedenti...), calcolare i seguenti limiti:

$$\lim_{x \to 0} \frac{1 - e^x}{x}, \quad \lim_{x \to 0} \frac{e^{2x} - 1}{x^2}, \quad \lim_{x \to 0} \frac{\log(1 - x^2)}{x^2 + 2x^3}, \quad \lim_{x \to 1} \frac{x - x^2}{\log x},$$

$$\lim_{x \to 0} \frac{\sin x}{1 - e^x}, \quad \lim_{x \to -1} \frac{\log|x|}{x^2 - 1}, \quad \lim_{x \to +\infty} x \log \frac{x + 1}{x}, \quad \lim_{x \to +\infty} x(1 - e^{1/x}),$$

$$\lim_{x \to 0} \frac{(\cos 2x) - 1}{x \log(x + 1)}, \quad \lim_{x \to 0^+} \frac{e^{x^2} - 1}{x^3}, \quad \lim_{x \to 0} \frac{e^{x^2} - 1}{x^3}, \quad \lim_{x \to 0^+} \frac{\log(1 - \sqrt{x})}{x(x - 2)},$$

$$\lim_{x \to 0} \frac{\sin^2 x}{(1 - e^x)(1 - e^{2x})}, \quad \lim_{x \to 0} \frac{\log(1 + x) - \log(1 - x)}{x^2}, \quad \lim_{x \to 0} \frac{e^x - \log(e + x)}{x^3 - 2x}.$$

139. Esercizi di ricapitolazione:

$$\lim_{x \to +\infty} \left(\sqrt{2^x + x} - \sqrt{2^x - x} \right), \quad \lim_{x \to 1} 2^{1/(x-1)}, \quad \lim_{x \to 0} \frac{\sec 2^{1/x}}{2^{1/x}},$$

$$\lim_{x \to +\infty} \left(x^2 - \log_2 x + 2^{x-1} \right), \quad \lim_{x \to -\infty} 3^x (1 - \cos 3^{-x}), \quad \lim_{x \to +\infty} 2^{x + \sin x},$$

$$\lim_{x \to -\infty} \frac{x^2}{2 + \sin^2 x}, \quad \lim_{x \to 0} \frac{\sec (\sec x)}{x}, \quad \lim_{x \to 0} \frac{1 - \cos (\sec x)}{1 - \cos x},$$

$$\lim_{x \to 0} \frac{2x - \sec x}{x^2 - 2x}, \quad \lim_{x \to 0} \frac{1 - x^2 - \cos x}{\sec^2 x}, \quad \lim_{x \to +\infty} (x^4 - 2^x + \cos x),$$

$$\lim_{x \to +\infty} \left(2x - x^2 \sec \frac{1}{x} \right), \quad \lim_{x \to 0} \frac{2x - \sec x \cos x}{1 - \cos x}, \quad \lim_{x \to +\infty} \frac{\log_3 (3^x - 2^x + x)}{\log_2 x},$$

$$\lim_{x \to 0^+} \frac{x + 1 - \cos \sqrt{x}}{\sec x}, \quad \lim_{x \to 0} \frac{\cos(x^2) - \cos x}{\sec^2 x}, \quad \lim_{x \to 0} \frac{(1 - \sec x)(1 - \cos x)}{\sec x}.$$

Dare per noti la continuità di esponenziale e logaritmo, nonché i limiti di $(1+1/x)^x$ per $x \to \pm \infty$; di $(1+x)^{1/x}$, $(\ln(1+x))/x$, $(e^x-1)/x$ per $x \to 0$.

140. Calcolare i seguenti limiti, usando per esempio la formula $a^b = e^{b \ln a}$:

$$\lim_{x \to 0} (1 + \sin x)^{1/x}, \quad \lim_{n \to +\infty} \left(1 + \frac{1}{n+2}\right)^{n-1}, \quad \lim_{n \to +\infty} \left(1 + \frac{n+1}{2n^2+1}\right)^n,$$

$$\lim_{n \to +\infty} \left(\frac{2n+3}{n^2+1}\right)^{n/2}, \quad \lim_{n \to +\infty} \left(\frac{2n^2+3}{n^2+1}\right)^{n/2}, \quad \lim_{n \to +\infty} \left(\frac{n^2+3}{n^2+1}\right)^{n/2},$$

$$\lim_{x \to 0} \left(\ln(e+x)\right)^{1/x}, \quad \lim_{x \to 0} \ln\left((e+x)^{1/x}\right), \quad \lim_{x \to 0} \left(1 + x + x^2\right)^{1/x},$$

$$\lim_{x \to 0} \left(\cos x\right)^{1/x}, \quad \lim_{x \to 0} \left(\cos x\right)^{1/x^2}, \quad \lim_{x \to 0} \left(\cos x - \sin x\right)^{1/x},$$

$$\lim_{x \to 0} \left(e^x + e^{2x} - 1\right)^{1/\sin x}, \quad \lim_{x \to 0} \left(2^x + 3^x - 1\right)^{1/\ln(1+x)}, \quad \lim_{x \to 0} \left(e^x + \sin x\right)^{1/x}.$$

141. (Avanzato: semplificazioni nei limiti con esponenziali, regole e pseudoregole) È vero che se $f(x) \to \ell$ allora $\lim f(x)^{g(x)} = \lim \ell^{g(x)}$? Se $f(x) \to \ell$ allora $\lim f(x)^{g(x)} h(x) = \lim \ell^{g(x)} h(x)$? Se $f(x) \to \ell$ allora $\lim f(x)^{g(x)} / h(x)$? Se $f(x) \to \ell$ allora $\lim f(x)^{g(x)} / h(x)$? Se $f(x) \to \ell$ allora $\lim f(x)^{g(x)} / h(x) = \lim \ell^{g(x)} / h(x)$? Tutti vanno intesi in questo senso: quando esiste il limite al secondo membro allora esiste anche il limite al primo membro e sono uguali. Possono aiutare ipotesi supplementari su ℓ come che $0 < \ell < +\infty \land \ell \neq 1$?

142. (Avanzato) Calcolare i limiti seguenti:

$$\lim_{x \to +\infty} x \left(x - 1 - \sqrt{x^2 - 2x}\right), \qquad \lim_{x \to +\infty} \left(x - \sqrt{x^2 - 2x}\right)^x.$$

143. (Avanzato) Calcolare i limiti seguenti:

$$\lim_{x \to +\infty} x \left(-1 + \sqrt{x^2 + 3x} - \sqrt{x^2 + x} \right), \qquad \lim_{x \to +\infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 + x} \right)^x.$$