(Xn) new independent. Ex Xn converges almost swely in 1R for A>0

If: (1) (71) (711) hold for A>0

- (i) Fin (P(|Xn|>H) converges
- (ii) E A [Xn I [|Xn | ≤ A]] enverges.
- (iii) E Var (Xn I (Xn) EA) conterges.

Thm. Folmogorou's maximal inequality

Suppose $x_i \cdots x_n$. It with $\overline{t}x_i = 0$ $Var(x_i) < 0$ $S_n = x_i + x_2 + \cdots + x_n$.

If $(\max_{1 \le k \le n} |S_k| \ge x) \le x^{-2} Var(S_n)$

Thm. When Ex Xnw Conterges?

Suppose X, X2 ... If I I Xi = 0 = Var(Xn) < 00 - then.

with. Probability one = Xn(w) converges.

Iserdo Pf:

Ain. Snew is a Cauchy sequence.

> lim Snew) exists.

WM = SUP / Sm-Sn/

1P (wm > 20) = 1 (sup | Sm - Sm | > E) → 0

Thm. Kolmogorov.'s three-sewes. Thm.

X1, X2--- 4 Yi = Xi I(1xi1=4)

I Xn anverges a.s. (7) (1). Ellar (7) co.

(ii) 是世(ji) converges

(iii) \$ (| XN >4) <0

Then. The strong Law of Large Number. $x_1 \times x_2 - \cdots = i$ i.i.d $f(x_i) = x_i + \cdots = x_i$ Then. $\frac{s_n}{n} = x_i$ has

Rate of Convergence.

Thm. elementary Rate.

Thm. second Rute

 $x_1 x_2 \cdots$ iid. r.u. with $f(x_1) = 0$ $f(x_1)^2 < \infty$ $1
<math display="block">f(x_1) = x_1 + \cdots + x_n. \qquad \text{then. } f(x_1) = 0 \text{ a.s.}$

PINT 1490 Rates of Convergence (Berry-Biseen.) $\stackrel{>}{\sim}$ Thm. $\times - i7d$. With $\overrightarrow{B} \times i = 0$ $\overrightarrow{B} \times i^2 = b^2$ $\overrightarrow{B} / \times i1^3 = f = \infty$ If First is +. Lef of $(\times + \cdots + \times \times) / bTn$ and $N(\times)$ is S+d then. $|F_n(\times + N(\times))| \leq 3f^n / b^3 \cdot \sqrt{n}$.