Detecting Multi-Layer Layout Hotspots with Adaptive Squish Patterns

Haoyu Yang¹, Piyush Pathak², Frank Gennari², Ya-Chieh Lai², Bei Yu¹

¹The Chinese University of Hong Kong ²Cadence Design Systems Inc.

cādence

Outline

Introduction

The Algorithm

Results

Outline

Introduction

The Algorithm

Results

Moore's Law to Extreme Scaling

Lithography Proximity Effect

- ▶ What you see \neq what you get
- Diffraction information loss

- RET: OPC, SRAF, MPL
- ➤ Worse on designs under 10nm or beyond

Machine Learning based Hotspot Detection

Machine Learning based Hotspot Detection

- Predict new patterns
- Decision-tree, ANN, SVM, Boosting, Deep Neural Networks
- [Drmanac+,DAC'09] [Ding+,TCAD'12] [Yu+,JM3'15] [Matsunawa+,SPIE'15] [Yu+,TCAD'15][Zhang+,ICCAD'16][Yang+,DAC'17][Yang+,TCAD]

Multi-Layer Hotspots

- More complicated patterns
- More failure types (e.g. Metal-to-Via failure)

Layout Representations

Density-based features [Matsunawa+,SPIE'15]

Concentric circle sampling [Zhang+,ICCAD'16]

► Feature tensor extraction [Yang+,TCAD]

Squish patterns [Gennari+, US Patent]

Squish Patterns

A simple multilayer pattern example with scan lines.

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix},$$

$$\vec{S} = \begin{bmatrix} 0.2 & 0.072 & 0.06 & 0.06 \end{bmatrix}$$

$$\vec{\delta}_x = \begin{bmatrix} 0.2 & 0.072 & 0.06 & 0.048 \end{bmatrix},$$

$$\vec{\delta}_y = \begin{bmatrix} 0.013 & 0.06 & 0.017 & 0.137 & 0.09 \end{bmatrix}.$$

- Lossless
- Storage-friendly
- Incompatible with most machine learning engines. Squish representation does not guarantee a fixed tensor dimensionality for a given clip size.

Outline

Introduction

The Algorithm

Results

An Alternative of Padding

Legacy padding induces large fraction of zeros that are not informative to CNNs.

- Instead of padding, we repeat certain rows or columns of squish topologies.
- \blacktriangleright $\vec{\delta}{\rm s}$ are adjusted accordingly to make the pattern unchanged.

Which Rows/Columns Are to Be Duplicated/Repeated?

- In machine learning, if some entries of the input are too large/small, there will be bias related to those entries.
- Subtract RGB means in conventional image classification tasks.
- Duplicate rows/columns with larger deltas.

Adaptive Squish Problem:

$$\min_{\vec{s}} \ ||\vec{\delta}'||_{\infty} \tag{1a}$$

s.t.
$$\delta_i' = \delta_i/s_i, \forall i,$$
 (1b)

$$s_i \in \mathbb{Z}^+, \forall i,$$
 (1c)

$$\sum_{i} s_i = d. \tag{1d}$$

Repeat Elements

RepeatElements: $\vec{M}' = \text{RepeatElements}(\vec{M}, \vec{s}, a)$, which duplicates the columns (a=0) or rows (a=1) of a matrix $\vec{M} \in \mathbb{R}^{a_1 \times a_2}$ by certain times such that the shape of the new matrix \vec{M}' will be increased to a desired value.

a = 0 :

$$\vec{m}'_k = \vec{m}_j, \forall \sum_{i=1}^{j-1} s_i < k \le \sum_{i=1}^{j} s_i.$$
 (2)

a = 1 :

RepeatElements
$$(\vec{M}, \vec{s}, 1)$$
 = RepeatElements $(\vec{M}^{\top}, \vec{s}, 0)^{\top}$. (3)

.

Repeat Elements

For example, if we let $\vec{s}=\begin{bmatrix}1&1&2&1\end{bmatrix}^{\top}$ and a=0, then the <code>RepeatElements</code> operation on the topology matrix \vec{T} will result in

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \vec{T}' = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 3 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}. \tag{4}$$

Adaptive Squish: Solution 1

Algorithm 1 Obtaining adaptive squish patterns with a greedy procedure.

```
Input: T, \delta, a, d_0, d;

Output: T, \delta;

1: while d_0 < d do

2: s \leftarrow 1 \in \mathbb{R}^{d_0}, i \leftarrow \arg\max_i \{\delta_i | i = 1, 2, ..., d_0 - 1\};

3: s_i \leftarrow 2, \delta_i \leftarrow \delta_i / 2, \forall i;

4: \delta \leftarrow \text{RepeatElements}(\delta, s, 1);

5: T \leftarrow \text{RepeatElements}(T, s, a);

6: d_0 \leftarrow d_0 + 1;

7: end while
```

Extend a 3×3 squish topology to shape 3×6 .

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}_x = \begin{bmatrix} 28 & 18 & 2 \end{bmatrix}, \vec{\delta}_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

$$\vec{T}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}'_x = \begin{bmatrix} 7 & 7 & 14 & 9 & 9 & 2 \end{bmatrix}, \vec{\delta}'_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

Adaptive Squish: Solution 2

Algorithm 2 Deriving an approximate solution of Formula (8) that will be used for generating adaptive squish patterns.

```
will be used for generating adaptive squish patterns.

Input: \delta, d_0, d;

Output: s;

1: l \leftarrow \sum_l \delta_i;

2: t \leftarrow l/(d-1);

3: s_i \leftarrow \max\{1, \inf(\delta_i/t)\}, \forall i;

4: while \sum_i s_i < d-1 do

5: \delta'_i \leftarrow \delta_i/s_i, \forall i;

6: i \leftarrow \arg\max_i \{\delta_i|i=1,2,...,d_0-1\};

7: s_i \leftarrow s_i+1;

8: end while

9: \delta_i \leftarrow \delta_i/s_i, \forall i;

10: \delta \leftarrow \text{RepeatElements}(\delta, s, 1);

11: T \leftarrow \text{RepeatElements}(T, s, a);
```

Extend a 3×3 squish topology to shape 3×6 .

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}_x = \begin{bmatrix} 28 & 18 & 2 \end{bmatrix}, \vec{\delta}_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

$$\vec{T}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}'_x = \begin{bmatrix} 9.33 & 9.33 & 9.33 & 9 & 9 & 2 \end{bmatrix}, \vec{\delta}'_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

Adaptive Squish: Data Preparation

The squish topology and $\vec{\delta}$ s will be stacked together into a 3D tensor $[\vec{T}'; \vec{\delta}'_X; \vec{\delta}'_Y]$ that will be fed into neural networks for training and inference, where,

ResNet Block

- Gradient vanishing problem.
- Allows gradient to be easily backpropagated to early layers.
- Feature reuse.

The Neural Network Architecture

	JM	13 [Yang+,	JM3'17]				Ours		
Layer	Filter	Stride	Output	Parameter	Layer	Filter	Stride	Output	Paramete
conv1-1	3×3×4	2	160×160×4	36	conv1-1	5×5×128	2	32×32×128	9600
conv1-2	3×3×4	2	$80 \times 80 \times 4$	144	conv1-2	5×5×128	1	$32 \times 32 \times 128$	409600
conv2-1	3×3×8	1	$80\times80\times8$	288	conv1-3	5×5×128	1	$32 \times 32 \times 128$	409600
conv2-2	3×3×8	1	$80\times80\times8$	576	conv1-4	5×5×128	1	$32 \times 32 \times 128$	409600
conv2-3	3×3×8	1	$80\times80\times8$	576	conv2-1	5×5×256	2	$16 \times 16 \times 256$	819200
pool2	2×2	2	$40\times40\times8$		conv2-2	5×5×256	1	$16 \times 16 \times 256$	1638400
conv3-1	3×3×16	1	$40\times40\times16$	1152	conv2-3	5×5×256	1	$16 \times 16 \times 256$	1638400
conv3-2	3×3×16	1	$40\times40\times16$	2304	conv2-4	5×5×256	1	16×16×256	1638400
conv3-3	3×3×16	1	$40\times40\times16$	2304	conv3-1	5×5×512	2	$8\times8\times512$	3276800
pool3	2×2	2	20×20×16		conv3-2	5×5×512	1	8×8×512	6553600
conv4-1	3×3×32	1	$20\times20\times32$	4608	conv3-3	5×5×512	1	8×8×512	6553600
conv4-2	3×3×32	1	$20\times20\times32$	9216	conv3-4	5×5×512	1	8×8×512	6553600
conv4-3	3×3×32	1	$20\times20\times32$	9216	conv4-1	5×5×1024	2	$4\times4\times1024$	1310720
pool4	2×2	2	$10 \times 10 \times 32$						
conv5-1	3×3×32	1	10×10×32	9216					
conv5-2	3×3×32	1	10×10×32	9216					
conv5-3	3×3×32	1	10×10×32	9216					
pool5	2×2	2	$5\times5\times32$						
fc1			2048	1638400	fc1			1024	1677721
fc2			512	1048576	fc2			2	2048
fc3			2	1024					
Summary	1			2746068	1	1			5979686

Outline

Introduction

The Algorithm

Results

The Dataset & Configurations

► 14nm metal layer, M3, V3, V4

	Train	Test	Image	Squish	
Hotspot	3073	6015 320×3		64×64×3	
Nonhotspot	973197	1457830			

Initial learning rate: 0.001

Decay: 0.7 per 2000 steps

Weight normalization: 0.001

Xavier, Adam

Results

- ► Hit : # of hotspot patterns that are predicted as hotspots
- False Alarm: # of good patterns that are predicted as hotspots

Item	JM3 [Yang+,JM3'17]	Algorithm 1	Algorithm 2
Accuracy (%)	98.87	97.51	99.24
False Alarm Rate (%)	4.81	5.05	4.52
Hit	5947	5865	5969
False Alarm	70193	73645	65926
Precision (%)	7.81	7.38	8.30

Receiver Operating Characteristics

- ▶ JM3 behaves even better than Algorithm 2 in terms of area under curve.
- AUC advantages of JM3 comes from the region where the decision threshold is above 0.9.
- Higher confidence on hotspot patterns that can be correctly predicted by classifiers is not necessary.

Outline

Introduction

The Algorithm

Results

- Adaptive Squish Pattern. Attains good properties of squish patterns and compatible with most learning machines.
- Multilayer Hotspot Detection.
 First time consider metal-to-via failure.
- ResNet.
 Allow better convergence and model generality.

