Versuch E12 Abdul Matin Mohammadi

Date: 2023-06-05

Tags: E12

Created by: Abdul Mohammadi

Versuch E12

	Matrikelnummer
Person 1:	621238
Person 2:	619926

Beachten Sie: Das Formelzeichen k wird für zwei verschiedene Größen genutzt.

- Koeffizient *k* für *B(I) = k⋅I*
- Kantenlänge des Quadrats auf dem Leuchtschirm

Beachten Sie: Das Formelzeichen e wird für zwei verschiedene Größen genutzt.

- Elementarladung
- Auslenkung des Elektronenstrahls auf dem Leuchtschirm
- wir hatten ohne Spannungen U-K = 5,23V

Beachten Sie weiterhin: Der Übersichtlichkeit halber gibt es kiene separaten Felder für die Unsicherheiten. Diese müssen aber für alle gemessenen und berechneten Werte angebenen werden.

O. Rohdaten und Auswertung

Aufgabe 2 - Koeffizient k für $B(I) = k \cdot I$

Tabelle 1 Daten von dem Magnet-Feld

physikalische Größe mit Einheit	Werte
k in mT·A [□] (aus Datenblatt)	$(2,19\pm0,01)$

Aufgabe 4 - versuchsrelevante Größen

Tabelle 2 Technische Daten der Spule

physikalische Größe mit Einheit	Werte
N	320

D [mm] Durchmesser der Spule	136
k in $mT \cdot A^{-1}$ (berechnet)	pprox 2,12
Kantenlänge des Quadrats k in mm (Anleitung)	$(80\pm0,5)$
d in mm Plattenabstand	8

Aufgabe 6 - Messungen der Elektronenkreisbahn der Thomson-Röhre

Tabelle 3 Messungen für Bestimmung der Radius

Beschleunigungsspannung $U_{\!\scriptscriptstyle A}$ der Elektronen in V	Auslenkung e des Strahls auf dem Leuchtschirm in mm	Radius <i>r</i> des Elektronenstrahls in mm	u_r in mm	Stromstärke / mit dem das Magnetfeld der Spulen betrieben wird in mA	magnetische Flussdichte $\it B$ der Helmholtz-Spule im $\it \mu T$	u_B in μT
3000	50	209.77	9.49	0.368	0.80	0.0126
3000	48	192.33	8.22	0.401	0.87	0.0137
3000	46	177.1	7.18	0.439	0.96	0.0150
3000	44	163.7	6.31	0.474	1.038	0.0162
3000	42	151.9	5.58	0.507	1.11	0.0174
3000	40	141.4	4.96	0.553	1.21	0.0189
3000	38	132.1	4.42	0.592	1.29	0.0203
3000	36	123.68	3.96	0.636	1.39	0.0218
3000	34	116.15	3.57	0.674	1.47	0.0231
3000	32	109.36	3.22	0.718	1.572	0.0246
4000	50	209.77	9.48	0.423	0.926	0.01452
4000	48	192.33	8.22	0.467	1.022	0.0160
4000	46	177.11	7.18	0.504	1.103	0.0173
4000	44	163.73	6.31	0.544	1.191	0.0186
4000	42	151.95	5.58	0.588	1.287	0.0201
4000	40	141.42	4.96	0.631	1.381	0.0216
4000	38	132.06	4.42	0.682	1.493	0.0234

4000	36	123.68	3.96	0.73	1.598	0.0250
4000	34	116.15	3.57	0.78	1.70	0.0267
4000	32	109.36	3.22	0.826	1.80	0.0283
5000	50	209.77	9.48	0.455	0.99	0.0156
5000	48	192.33	8.22	0.501	1.097	0.0172
5000	46	177.11	7.18	0.551	1.206	0.0189
5000	44	163.73	6.3	0.601	1.316	0.0206
5000	42	151.92	5.58	0.649	1.421	0.0222
5000	40	141.4	4.96	0.703	1.539	0.0241
5000	38	132.06	4.42	0.753	1.649	0.0258
5000	36	123.68	3.96	0.808	1.769	0.0277
5000	34	116.15	3.57	0.860	1.883	0.0295
5000	32	109.36	3.22	0.922	2.019	0.0316

Unsicherheiten der Anodenspannung:

Unsicherheit Beschleunigungsspannung $u_{U_A}=2.5\%\cdot U_A+0.1~\mathrm{V}$ (Geräteklasse + Anzeigegenauigkeit)

Unsicherheit Stromstärke $u_I=1.5\%\cdot I+0.0005A$ (Geräteinformationen)

Aufgabe 7 - Messungen nach der Kompensationsmethode

Tabelle 4 Messungen für die Kopensationsmethode

Beschleunigungsspannung $U_{\!\scriptscriptstyle A}$ der Elektronen in V	Kompensationspannung $U_{\rm K}$ am Plattenkondensator in V	u_{U_K} in ${\sf V}$	Stromstärke / mit dem das Magnetfeld der Spulen betrieben wird in A	magnetische Flussdichte <i>B</i> der Helmholtz- Spule im mT	u_T in mT
3000	105.5	6.0475	0.19	0.4161	0.006524287
3000	129.16	6.1658	0.241	0.52779	0.008275543
3000	157.83	6.30915	0.302	0.66138	0.010370183
3000	180.44	6.4222	0.347	0.75993	0.011915409
3000	202.41	6.53205	0.401	0.87819	0.01376968
3000	227.38	6.6569	0.456	0.99864	0.015658289
3000	250.06	6.7703	0.506	1.10814	0.017375207
3000	272.39	6.88195	0.555	1.21545	0.019057786
3000	295.15	6.99575	0.6	1.314	0.020603012

3000	317.41	7.10705	0.658	1.44102	0.022594636
4000	137.09	6.20545	0.195	0.42705	0.006695979
4000	162.4	6.332	0.242	0.52998	0.008309881
4000	192.02	6.4801	0.295	0.64605	0.010129814
4000	218.45	6.61225	0.35	0.7665	0.012018424
4000	238.39	6.71195	0.403	0.88257	0.013838356
4000	265.39	6.84695	0.448	0.98112	0.015383582
4000	292.61	6.98305	0.506	1.10814	0.017375207
4000	323.85	7.13925	0.552	1.20888	0.018954771
4000	351.88	7.2794	0.603	1.32057	0.020706027
4000	373.97	7.38985	0.654	1.43226	0.022457283
5000	164.66	6.3433	0.198	0.43362	0.006798994
5000	200.55	6.52275	0.256	0.56064	0.008790618
5000	225.05	6.64525	0.303	0.66357	0.010404521
5000	254.88	6.7944	0.351	0.76869	0.012052762
5000	274.56	6.8928	0.396	0.86724	0.013597988
5000	301.51	7.02755	0.453	0.99207	0.015555274
5000	341.19	7.22595	0.505	1.10595	0.017340868
5000	366.09	7.35045	0.547	1.19793	0.018783079
5000	397	7.505	0.6	1.314	0.020603012
5000	427.5	7.6575	0.649	1.42131	0.022285591

Aufgabe 8 - Bestimmung der Geschwindigkeit der Elektronen

Tabelle 5 Analyse der Geschwindigkeiten

Beschleunigungsspannung $U_{\rm A}$ der Elektronen in V	Geschwindigkeit v der Elektronen nach durchlaufen der Beschleunigungsspannung in m·s ¹¹	Verhältnis der Geschwindigkeit v der Elektronen zu Vakuumlichgeschwindigkeit c (einheitenlos)
3000	28460498,94	0,095
4000	33941125,5	0,11
5000	39115214,43	0,13

1. Theorie

Elektrische Ladungen werden in elektrischen und magnetischen Feldern Kräften ausgesetzt. Dabei wirkt auf eine elektrische Ladung im elektrischen Feld die Kraft

$$\overrightarrow{F_C} = -e \cdot \vec{E}$$
 (1)

und auf eine bewegte Ladung im magnetischen Feld die Kraft (Lorentzkraft)

$$\overrightarrow{F_L} = -e \cdot \vec{v} imes \vec{B}$$
 (2).

 \vec{v} ist die Geschwindigkeit des Elektrons in Magnetfeld.

Wird nun die Bewegung eines Elektrons im magnetischen Feld bzw. in gekreuzten elektrischen und magentsichen Feld beobachtet, lässt sich die die spezifische Ladung $\frac{e}{m}$

des Elektrons bestimmen. Dabei ist e die Elementraladung und m die Masse des Elektrons.

Hier werden nun ein homogenes elektrisches Feld und ein homogenes magentische Feld genutzt. Ein homogenes elektrisches Feld \vec{E}

wird näherungsweise in einem Plattenkondensator erzeugt. Damit vereinfacht sich die in Gleichung (1) angegeben Kraft dem Betrage nach bei Benutzung der am Plattenkondensator angelegten Spannung U_K auf

$$F_C = -e \cdot rac{U_K}{d}$$
 (3).

Wobei d Abstand der Platten und e die Ladung des Elektrons ist.

Für ein homogenes Magnetfeld kann eine Helmholtz-Spule genutzt werden. Die magnetische Flussdichte \vec{B} ist in einem engen Bereich homogen und lässt sich aus der Stromstärke / berechnen zu

$$egin{align} B(I) &= \mu_0 \cdot rac{N \cdot I}{2 \cdot R} \cdot \left(rac{4}{5}
ight)^{rac{3}{2}} \ B(I) &= k \cdot I ext{ mit } k = \mu_0 \cdot rac{N}{2 \cdot R} \cdot \left(rac{4}{5}
ight)^{rac{3}{2}} \end{aligned}$$
 (4).

wobei $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \; \mathrm{N} \cdot \mathrm{A}^{-2}$ die magnetische Feldkonstante ist.

Werden Elektronen nach dem Durchlaufen einer Beschleunigungspannung U_A in ein homogenes Feld senkrecht

zu der Richtung der magnetischen Flussdichte mit Betrag *B* geleitet, werden diese durch die Lorentz-Kraft auf eine Kreisbahn mit dem Radius *r* abgelenkt. Der Radius ergibt sich zu

$$r=rac{m\cdot v}{e\cdot B}$$
 (5).

Dabei hängt die Geschwindigkeit wie folgt von der Beschelunigungsspannung ab:

$$v=\sqrt{rac{2\cdot e\cdot U_A}{m}}$$
 (6).

In dem hier verwendeten Aufbau wird nur ein Teil des Kreises der Elektronenbahn sichtbar. Daher wird der Radius über die Auslenkung des Elektronenstrahls e auf eine Leuchtschirm der Kantenlänge k (siehe Skizze in Abb. 1) bestimmt durch

$$r=rac{k^2+e^2}{\sqrt{2}\cdot(k-e)}$$
 (7)

mit
$$k = (80, 0 \pm 0, 5)$$
mm.

Abb.1: Skitzze zur Bestimmung von Bahnradius der Elektronen

Werden Elektronen nach dem Durchlaufen einer Beschleunigungspannung U_A nun in ein homogenes Feld senkrecht zu der Richtung der magnetischen Flussdichte mit Betrag B und einem elektrischen Feld eines Plattenkondensators mit senkrecht dazu gerichtem elektrischen Feld geleitet, so wird die Auslenkung durch das Magnetfeld kompensiert und der Wert der Kompensationsspannung U_K , welche am Plattenkondensator anliegt, ist bestimmt durch

$$U_K(B) = \sqrt{2 \cdot rac{e}{m} \cdot U_A} \cdot d \cdot B$$
 (8).

2. Aufbau

Abbildung 2 zeigt ein Foto des Aufbaus, auf dem die Messplatznummer zu sehen ist und die einzelnen Teile beschriftet sind.

3. Auswertung

Aufgabe 1

Abb. 3 Theoretischer radialer Verlauf der magnetischen Flussdichte B in der Helmholtz-Spule (aus der Aufgabenstellung)

Abbildung 3 zeigt die magnetische Feldstärke im Inneren der Spule in Abhängigkeit von der relativen Position. Da die Richtung für die weitere Auswertung nicht relevant ist, werte ich sie nur für die rechte Seite aus. In Abbildung 3 sehen wir, dass die Homogenität des B-Feldes im inneren Bereich (-R/2, R/2) hinreichend gut überlagert ist. Dies deutet darauf hin, dass unser Magnetfeld weitgehend homogen ist. Es ist jedoch zu erkennen, dass die Homogenität vor allem am Rand am geringsten ist und im R/2 um etwa 5 % abnimmt. Ab diesem Punkt nimmt sie noch stärker ab, was zu einer Fehlerquelle führt. Aufgrund dieser Abweichungen konnten wir trotz Kompensation mit dem Kondensator keinen geraden Elektronenstrahl erhalten.

Für die Unsicherheit von r erhalten wir aus der Gleichung 7:

Für die Unsicherheit von
$$r$$
 erhalten wir $rac{\partial r}{\partial k} = rac{k^2 - 2ek - e^2}{\sqrt{2}(k-e)^2} \ rac{\partial r}{\partial e} = -rac{e^2 - 2ek - k^2}{\sqrt{2}(e-k)^2} \ u_r = \sqrt{\left(rac{\partial r}{\partial k} \cdot u_k
ight)^2 + \left(rac{\partial r}{\partial e} \cdot u_e
ight)^2}$

Die Unsicherheit des Radiuses wird durch die Gaußsche Fehlerfortpflanzung und die Gleichung 7 bestimmt. Die Kantenlänge des Quadrats beträgt $k=(80,0mm\pm0,5mm)$. Der Elektronenstrahl liegt genau in der Mitte, ohne Ablenkung durch das Magnetfeld, sodass keine Anpassungen der Messwerte oder der Gleichung 7

erforderlich sind. Um die Auslenkung e abzulesen, wird eine Unsicherheit von $u_e = 600$ mm abgeschätzt, was einem Viertel einer Skaleneinheit entspricht. Anhand der Gaußschen Fehlerfortpflanzung und Gleichung 7 kann nun die Unsicherheit des Radius berechnet werden.

$$u_r = \sqrt{\left(rac{(k^2 - 2ek - e^2)}{\sqrt{2}(k - e)^2} \cdot u_k
ight)^2 + \left(rac{(k^2 + 2ek - e^2)}{\sqrt{2}(k - e)^2} \cdot u_e
ight)^2} = \sqrt{rac{1}{4} \ ext{mm}^2 \left(rac{(k^2 - 2ek - e^2)^2 + (k^2 + 2ek - e^2)^2}{2(k - e)^4}
ight)^2}$$

Somit ergibt sich für die relative Messunsicherheit $u_{
m rel}$ des Radius mit Gleichung 7 und der obigen Relation:

$$u_{rel}=\frac{1~\mathrm{mm}}{2}~\frac{k^2+e^2}{(k-e)^2}~\frac{\sqrt{2}(k-e)}{k^2+e^2}=\frac{1~\mathrm{mm}}{\sqrt{2}(k-e)}=\frac{1~\mathrm{mm}}{\sqrt{2}(80~\mathrm{mm}-e)}$$

Die in diesem Versuch gemessenen Auslenkungen ${\rm (da\ 32\ mm\ \leqslant \it e} \leqslant 50\ {\rm (mm)}$, sodass sich die relativen Unsicherheiten des berechneten Radius von $0,015\ {\rm mm\ \leqslant \it u}_{\rm rel} \leqslant 0,024\ {\rm mm}$ erstrecken, was etwa 1,5% bis 2,4% entspricht.

Aufgabe 2

GemäB der Gleichung (10) in der Versuchsanleitung gilt:

Der Wert von k kann mit der folgenden Formel berechnet werden:

$$k=\mu_0\cdotrac{N}{2\cdot R}\cdot\left(rac{4}{5}
ight)^{rac{3}{2}}$$

Hierbei ist N die Windungszahl der Helmholtzspulen und beträgt 320, R ist der Radius und entspricht der Hälfte des Durchmessers D, also $78 \mathrm{mm}$. Der Wert von μ_0 wurde als $4\pi \cdot 10^{-7} N \cdot A^{-2}$ gegeben. Damit ergibt sich der Wert von k als:

$$k \approx 2.1157089072310897mT \cdot A^{-1}$$

Es ist zu beachten, dass die Gleichung (10) in der Versuchsanleitung verwendet wurde, um den Wert von k zu berechnen. Dieser Wert wurde anschließend mit einer Genauigkeit von mehreren Dezimalstellen angegeben. Die Angabe von Dezimalstellen suggeriert eine hohe Präzision des Ergebnisses. Allerdings sollten wir uns bewusst sein, dass die tatsächliche Unsicherheit des berechneten Wertes nicht angegeben wurde und daher die Richtigkeit der angegebenen Dezimalstellen fraglich ist.

Um eine genauere Aussage über den Wert von k treffen zu können, wäre es notwendig, die Unsicherheiten von N, D und μ_0 zu berücksichtigen und eine Fehlerfortpflanzung durchzuführen. Ohne diese Informationen ist es jedoch nicht möglich, eine genaue Unsicherheit für k anzugeben.

In Anbetracht dieser Unsicherheit und um konsistent mit anderen Messungen und Datenblättern zu sein, verwenden wir den Wert aus dem Datenblatt mit $k=(2.19\pm0.01)mT\cdot A^{-1}$ für unsere weiteren Berechnungen und Analysen.

Desweiteren gilt für die Unsicherheit der magnetischen Flussdichte:

$$u_B = \sqrt{\left(k_s \cdot u_I
ight)^2 + \left(I \cdot u_{k_s}
ight)^2}$$

Mit der systematischen Unsicherheiten:

Digitalhandmultimeter	±(1,2% + 5
VOLTCRAFT VC-840	LSD)

Digitales	
Tischmultimeter	±(0.5 % +
VOLTCRAFT	10 digits)
VC650BT	_

Mit diesen Informationen vervollständige ich Tabelle 3 und 4.

Aufgabe 6

In Abbildung 4 wird der Zusammenhang zwischen dem Bahnradius der Elektronen und dem reziproken Wert der Stromstärke bzw. der magnetischen Flussdichte für drei verschiedene Beschleunigungsspannungen zusammen mit eine Anpassung durch jeweils einer Ursprungsgeraden gezeigt.

Nutzen wir nun die folgende Formel und mit $B=k\cdot I_H$, so folgt:

$$r\left(B
ight) =\sqrt{rac{2\cdot U_{A}}{rac{e}{m}}}\cdotrac{1}{B}$$

$$f(x) = n \cdot x \quad ext{ mit } x = rac{1}{B}$$

$$n^2=rac{2\cdot U_A}{rac{e}{m}}$$

$$rac{e}{m} = rac{2 \cdot U_A}{n^2}$$

Mit der Unsicherheit:

$$u_{\left(rac{e}{m}
ight)} = \sqrt{\left(rac{2}{n^2} \cdot u_{U_A}
ight)^2 + \left(rac{4 \cdot U_A}{n^3} \cdot u_n
ight)^2}$$

Es gilt außerdem:

$$U_{A_1} = (3 \pm 0,075) \mathrm{kV}$$

$$U_{A_2}=(4\pm0,1)k~\mathrm{V}$$

$$U_{A_3} = (5 \pm 0, 125) \mathrm{kV}$$

Abb.4: Radius der Elektronenbahn in Abhängigkeit der reziproken Wert der magnetischen Flussdichte, mit linearen Fit

$$\begin{split} &\frac{e}{m} = \frac{6kV}{(170,8)^2 \frac{V \cdot kg}{C}} \\ &\frac{e}{m} = \frac{6000 \text{ V}}{\left(170,8 \cdot 10^{-6}\right)^2 (\text{mT})^2} \approx 2,06 \cdot 10^{11} \frac{\text{C}}{\text{kg}} \\ &u_{\frac{e}{m}} = \sqrt{\left(\frac{2 \cdot (75V)}{\left(170,8 \cdot 10^{-6}mT\right)^2}\right)^2 + \left(\frac{4 \cdot (3kV) \cdot 2\mu mT}{(170,8\mu mT)^3}\right)^2} \approx 0,07 \cdot 10^{11} \frac{\text{C}}{\text{kg}} \end{split}$$
 Insgesamt gilt für die spezifische Ladung des Elektrons bei Beschleunigungsspanung

Insgesamt gilt für die spezifische Ladung des Elektrons bei Beschleunigungsspanung 3kV: $\frac{e}{m}_{3\mathrm{kV}}=(2,06\pm0,07)\cdot10^{11}\frac{\mathrm{C}}{\mathrm{kg}}$

Abb.5: Radius der Elektronenbahn in Abhängigkeit der reziproken Wert der magnetischen Flussdichte, mit linearen Fit

Mit anologen Rechnungen erhalte ich insgesamt folgende Werte:

Beschleunigungsspannung U_A	$rac{e}{m}$ in $10^{11}rac{ m C}{ m kg}$
3kV	$\boxed{(2,06\pm0,07)}$
4kV	$\boxed{(2,07\pm0,07)}$
5kV	$\boxed{(2,13\pm0,07)}$

Der Referenzwert $\frac{e}{m}=175,882,001,076\mathrm{C/kg}$ (Versuchsanleitung) liegt außerhalb der Unsicherheitsbereichen, der durch die Messungen bei verschiedenen Spannungen bestimmt wurde. Diese Abweichung war zu erwarten, da das Modell eine Vereinfachung darstellt und annimmt, dass das Magnetfeld vollständig homogen ist, was jedoch nur in einem begrenzten Bereich gilt (siehe Formel (11) in der Versuchsanleitung). Darüber hinaus ist die Schuster-Methode (wie in der Versuchsanleitung beschrieben) nicht besonders präzise, da wir die Strahlbreite in Millimetern auf einer Skala im Millimeterbereich messen. Trotz dieser Einschränkungen zeigen die Werte interne Konsistenz, da die Werte in Größenordnung übereinstimmen.

Aufgabe 7

In Abbildung 4 wird der Zusammenhang zwischen der Kompensationsspannung und dem Wert der Stromstärke bzw. der magnetischen Flussdichte für drei verschiedene Beschleunigungsspannungen zusammen mit eine Anpassung durch jeweils einer Ursprungsgeraden gezeigt.

Abb.4: Abhängigkeit der magnetischen Flussdichte mit Kondensatorspannung der der Messwerte aus der Komensationsmethode, gefittet mit einer Ursprungsgerade

Für die Kompensationsmethode hatten wir nun versucht ein U_K für ein I_H zu wählen, sodass sich ein Kräftegleichgewicht einstellt. Es erwies sich für die Hochspannungen größer als $U_A=3\mathrm{kV}$ als äußerst schwierig, worauf wir später weiter eingehen.

Als Modellfunktion für das Fitten unserer Messwerte nutzen wir die Gleichung (8), welche uns mit $B=k\cdot I_H$ (vorher berechnet) liefert.

$$U_{K}\left(I_{H}
ight)=\sqrt{2\cdot U_{A}\cdotrac{e}{m}}\cdot d\cdot B$$

Es gilt also:

$$egin{aligned} f(B) &= n \cdot B \ n^2 &= 2U_A \cdot rac{e}{m} \cdot d^2 \ rac{e}{m} &= rac{n^2}{2 \cdot U_A \cdot d^2} \end{aligned}$$

Mit der Unsicherheit:

$$u_{rac{e}{m}} = \sqrt{\left(rac{n}{U_A d^2} \cdot u_n
ight)^2 + \left(rac{n^2}{2U_A^2 d^2} \cdot u_{U_A}
ight)^2 + \left(rac{n^2}{U_A \cdot d^3} \cdot u_d
ight)^2}$$

Es ist wichtig zu beachten, dass der Term U_d in den folgenden Berechnungen vernachlässigt wird, da er deutlich kleiner ist und daher keinen signifikanten Beitrag zur Unsicherheit liefert.

Es ergibt sich somit:

Anodenspannung U_A	$rac{e}{m}$ in $10^{11} rac{ m C}{ m kg}$
3kV	$\boxed{(1,35\pm0,04)}$
4kV	$\boxed{(1,44\pm0,04)}$
5kV	$\boxed{(1,53\pm0,05)}$

Die Bestimmung der spezifischen Ladung hat zu signifikanten Verbesserungen geführt. Dennoch weichen die ermittelten Werte immer noch vom tatsächlichen Wert ab. Dies konnte auf das Vorliegen systematischer Fehler hindeuten, da es in Abbildung 4 deutlich erkennbar ist, dass eine Fitgerade mit einem Absatz besser geeignet wäre. Eine weitere Fehlerquelle wurde bereits in Aufgabe 6 angesprochen.

Aufgabe 8

Diskutieren Sie die Geschwindigkeit der Elektronen.

Es gilt:

$$v=\sqrt{2\cdot rac{e}{m}\cdot U_A}$$

Mit der Unsicherheit:

$$u_v = \sqrt{\left(\left(\sqrt{0.5 \cdot U_A} \cdot rac{1}{\sqrt{e/m}} \cdot u_{e/m}
ight)^2 + \left(\sqrt{0.5 \cdot rac{e}{m}} \cdot rac{1}{\sqrt{U_A}} \cdot u_{U_A}
ight)^2
ight)}$$

Die Ergebnisse in Tabelle 6 zeigen übereinstimmend, dass die Geschwindigkeit mit steigender Spannung zunimmt.

Berechnen wir nun den Lorentzfaktor γ nach [Matthias Bartelmann: Theoretische Physik von Matthias Bartelmann, Björn Feuerbacher,

Timm Krüger, Dieter Lüst, Anton Rebhan, Andreas Wipf. ger. Berlin, Heidelberg, 2015.

isbn: 9783642546181] mit

$$\gamma_i = \sqrt{1-rac{v_i^2}{c^2}}$$

so ergibt sich für v_1 , dann $\gamma_1 \approx 0,9954 \approx 1$, für v_2 folgt $\gamma_2 \approx 0,994 \approx 1$ und v_3 mit $\gamma_3 \approx 0,992 \approx 1$. Also sehen wir, dass die Korrekturen keinen merklichen Unterschied machen und somit vernachlässigbar sind.

Aufgabe 9

Diskissuion der Ergebnisse.

Die Kompensationsmethode bietet bei der Bestimmung der spezifischen Ladung des Elektrons klare Vorteile gegenüber der Schustermethode, wie in der Diskussion der Aufgaben 6 und 7 der Auswertung erläutert wurde. Diese Methode ermöglicht eine höhere Genauigkeit und Präzision bei der Messung. Insbesondere die Möglichkeit, die Werte direkt und einfach abzulesen, trägt dazu bei, potenzielle Fehlerquellen zu minimieren.

Im Gegensatz dazu kann die Schustermethode bei Messreihen fehleranfälliger sein. Die Messung der Werte, insbesondere der Strahlbreite, erfolgt auf einer Skala im Millimeterbereich, was zu Ungenauigkeiten führen kann. Dies kann sich negativ auf die Genauigkeit der Messergebnisse auswirken, wie in Aufgabe 6 der Auswertung diskutiert wurde.

Daher ist es ratsam, bei der Durchführung von Messreihen das Modell der Kompensationsmethode zu wählen, da sie eine bessere Genauigkeit bietet und die Werte genau und unkompliziert abgelesen werden können. Dies trägt dazu bei, präzisere Ergebnisse zu erzielen und die Auswirkungen potenzieller Fehlerquellen zu minimieren, wie es bei der Schustermethode der Fall sein könnte, wie in Aufgabe 6 der Auswertung beschrieben.

Um zukünftige Messungen zu verbessern, sollten wir die Omm-Verschiebung der Strahlauslenkung berücksichtigen, die möglicherweise einen systematischen Fehler verursacht hat. Dies könnte durch die Verwendung einer geeigneten Anpassungsmethode, wie beispielsweise einer allgemeinen Geraden, um diesen Effekt zu korrigieren, erreicht werden. Indem wir diesen systematische ehler herausrechnen, können wir genauere und zuverlässigere Ergebnisse für die spezifische Ladung des Elektrons erhalten. Es ist wichtig, dass zukünftige Versuchsdurchführungen diese Anpassungen berücksichtigen, um die Genauigkeit der Messungen weiter zu verbessern.

4. Fazit

Fassen Sie die wichtigsten Erkenntnisse in max. zwei Sätzen zusammen!

Die Kompensationsmethode ist aufgrund ihrer höherer nauigkeit und der Möglichkeit, die Werte genau und

unkompliziert abzulesen, der Schustermethode bei der Bestimmung der spezifischen Ladung des Elektrons vorzuziehen. Letztere kann bei Messreihen fehleranfälliger sein, insbesondere aufgrund der Messung der Strahlbreite auf einer Skala im Millimeterbereich.

Attached files

20230605144610-timestamped.zip (Timestamp archive by Grigory Kornilov) sha256: cfa753ccecb815eb00194be7c3835bf18891024287c95aae8fa14b03d8bb9e4c

unknown.png

sha256: 13eb3d9c5331c787f1cc52b6f129aaaa4348414bdc50530632cdeac34d1f7d85

unknown.png

sha256: 8c79b4b2e78f44855bad8f867fc9d35a0784e07076363aa83d33b5021136d203

image.png

sha256: 32078c780920d979ea7d1b57d85a2f1f7e81fdb104f1ace25be2129c2478b753

unknown.png

sha256: 3871a1f2b887b3c3e48324620d999b3e7db5005639125df0721c95f6f989151a

2.png

sha256: ca1db33772522026cd75eecc8b40568365ded1c3e7a1cadf107e2563388c026b

3.png

sha256: 29ec3305f9cf4808f1da2df20883387875b47ebf515046709d8e44aa7a9b5174

unknown.png

sha256: 7eaeac3610b94c84eb697ecef38cb856358fe784efb7445c8130cccb419d97ee

unknown.png

sha256: 7772d65c89825ae5c9b8c35c7f1d4be7a240e3df6bd450e0d9482913ec0abff2

 $\label{line:condition} \begin{tabular}{ll} Unique e Lab ID: 20230605-907749b1cf9798be20455ffa4fe2e1833f2eb223 \\ Link: https://elab ftw.physik.hu-berlin.de/experiments.php?mode=view&id=1572 \\ \end{tabular}$