王婷 数据科学家 宜人贷

个人简介

- 计算机专业PH.D.
- ■近5年从事数据挖掘、大规模社交网络分析、社会计算、知识图谱等机器学习算法实践工作
- ■现任宜人贷数据科学家,从事反欺诈建模和创新技术自动化风控系统,已成功申请2项反欺诈技术专利

- O FinTech金融科技企业面临的欺诈风险
- 在线反欺诈中的数据科学实践
- 用户全流程欺诈风险评分体系

- O FinTech金融科技企业面临的欺诈风险
- 在线反欺诈中的数据科学实践
- 〇 用户全流程欺诈风险评分体系

金融科技-个人对个人的信用贷款

宜人贷借款APP

宜人理财APP

宜人贷官方网站

宜人贷:极速信任-自动化信用评估

全流程线上借款与理财咨询服务

场景不同 人群不同 数据获取方式不同 数据维度不同 数据深度不同 信用评估机制不同

欺诈风险

是互联网金融 线上信贷工厂模式 最大的挑战

金融科技企业面临的欺诈风险

风险	遇到的问题	业界通常解决方法	业界的方法为什么无效
信用风险	还款能力	收集收入水平、消费 水平、负债情况等对 用户进行风险评分	无权威数据、数据收集 难度大、传统评分卡有 效特征挖掘难度大
欺诈风险	伪冒申请和 欺诈交易	人工审查、信用黑名 单、基于规则	人工效率低、无权威黑 名单、无法自动发现异 常、欺诈手段更新快

人群团体化

地区集中化

方式多样化

工具智能化

- O FinTech金融科技企业面临的欺诈风险
- 在线反欺诈中的数据科学实践
- 〇 用户全流程欺诈风险评分体系

反欺诈也是一种机器学习过程

- ■Y目标: Benchmark选取
 - 好、坏用户定义
 - 训练、测试和跨时间验证样本
- ■X变量: 特征工程
 - 人工特征工程
 - 图谱特征挖掘技术
 - ✓知识图谱技术
 - ✓图挖掘技术

风险控制数据金字塔

构建金融知识图谱: FinGraph

FinGraph 平台系统

- 10种实体
 - 电话、身份证、银行卡、信用卡、IP、 设备号、地理位置等
- 约2.3亿节点
- 约10亿边关系

应用场景层面 智能搜索、反欺诈、贷后管理、营销分析、运营支撑等

系统支持层面 特征工程、模型开发、异常监控、推荐系统 等 Spark+Hadoop+GraphX+Mllib+Streaming+TensorFlow

数据整合层面 信用数据、金融消费数据、行为数据、社交数据、 网络安全、第三方数据等 图数据库neo4j

反欺诈建模中的数据科学

- O FinTech金融科技企业面临的欺诈风险
- 在线反欺诈中的数据科学实践
- 用户全流程欺诈风险评分体系

为什么反欺诈需要体系化?

- ▶ 背景:
 - 很多欺诈机制在申请初期就可以发现
 - 后端反欺诈决策不能满足实时发现欺诈的需求
 - 反欺诈工作需要体系化
- 挑战:欺诈行为的技术含量日益升级

Model: Oppo R7

- ▶ 结果:提升对欺诈的响应能力
 - 用户和我们一开始接触就有一定的欺诈风险鉴定
 - 之后流程中持续提供用户的欺诈风险鉴定,打入标签体系,引导流程

用户SDK数据全流程反欺诈

设备数据

- ✓ 手机品牌
- ✓ 手机型号
- ✓ 操作系统
- ✓ 本机号码
- ✓ 设备ID
- ✓ App安装列表

行为数据

- ✓ 账号登录
- ✓ 页面进入
- ✓ 按钮点击
- ✓ 信息输入
- ✓ 广告浏览
- ✓ 操作时间

位置数据

✓ GPS

✓ IP

反欺诈平台工作流程

引入反欺诈调查员提升反馈效率

- ▶利于实时新增欺诈标注,快速反馈回模型训练(6个月->1天)
- > 结合图谱挖掘,利于快速发现欺诈团伙

根据调查认定的欺诈用户,寻 找联系紧密的用户团体

用一手行为数据和图谱信息创造商业价值

挑战

初步历史行为数据分析体现了显著的欺诈区分能力。怎样实时捕捉,上传,处理,和分析行为数据?

解决方案:

- 一行代码 埋点SDK
- 自动实时/准实时上传用户 行为
- Flume+Kafka实时处理分析

挑战:

申请行为的数据量大, 纬度多, 实时性要求高。怎样储存, 关联, 挖掘, 查询数据中的欺诈倾向?

解决方案:

- SparkStreaming 流式处理
- HBase KV 查询输出
- Neo4j 集群 关联、存储、 挖掘

挑战:

反欺诈调研时效性差,需要实时自动提报疑似欺诈案例,及时发现欺诈事件/团伙,来主动拦截?

解决方案:

- Go做为高效开发和运行基础
- Python连接自动提报后台
- SKLearn、GBDT、事件识别
- Cypher图谱关系挖掘

Thank You!