last time

waitpid

wait for + collect status info of child process works regardless of whether child process finished

file descriptors

table of pointers to files (interpreted broadly) conventional numbers for stdin/stdout/stderr close: NULL out pointer

dup2: assigning file descriptors

pipe(): get pair of connected file descriptors

anonymous feedback (1)

"I feel like this course could be broken up into two different courses and some of the material (especially OS topics) could be parceled out to a "CSO3" without really duplicating material. When you mentioned last week that this class took parts from comp arch, OS, and networks, that made it clearer to me. It just seems like this class has too much material in it to reasonably cover in one semester. I want to make it very clear that my issue is with how the course is set up, not with you as an instructor-I find your lecturing style to be excellent and engaging, and I think the way CSO2 is set up is also unfair to you. I have found my CSO2 experience to be much worse than my time in CSO1, with all of the difficulty (and more) and none of the payoff. I thought I was prepared for this class, but now I'm seriously concerned about my ability to pass. Could there be any way that the CS department considers splitting

anonymous feedback (2)

"Hey professor, you mentioned something a few weeks ago that still kind of sits with me when we were going over one of the quizzes, you said "oh sorry I make so many mistakes because I don't spend much time reviewing/writing these quizzes." I find it really frustrating that you would say and do that when you see students on average spending several hours on each guiz and the average before you curve all your mistakes is like a 60% on each quiz. I don't understand why you would think it's okay to make guizzes take that much time for each student when you clearly aren't interested in putting effort into the quizzes. Thanks"

"spend much time" = hours to write quiz each quiz generally reviewed by a couple TAs but one-day turnaround b/c of variation in how far Thurs lecture gets not like multiple days for final exam most quiz issues are interpretations I/TA didn't anticipate

lab tomorrow

on synchronization

in-person checkoff only

if can't do that, contact me

why threads?

```
concurrency: different things happening at once one thread per user of web server? one thread per page in web browser? one thread to play audio, one to read keyboard, ...? ...
```

parallelism: do same thing with more resources multiple processors to speed-up simulation (life assignment)

single and multithread processes

single-threaded process

multi-threaded process


```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
    pthread_t pi_thread, list_thread;
    pthread_create(&pi_thread, NULL, ComputePi, NULL);
    pthread_create(&list_thread, NULL, PrintClassList, NULL);
    ... /* more code */
     main()
pthread create
                                          ComputePi
pthread create
                          PrintClassList
```

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
    pthread t pi thread, list thread;
    pthread_create(&pi_thread, NULL, ComputePi, NULL);
    pthread create(&list thread, NULL, PrintClassList, NULL);
    ... /* more code */
pthread create arguments:
thread identifier
function to run thread starts here, terminates if this function returns
```

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
    pthread_t pi_thread, list_thread;
    pthread_create(&pi_thread, NULL, ComputePi, NULL);
    pthread_create(&list_thread, NULL, PrintClassList, NULL);
    ... /* more code */
}
pthread create arguments:
```

thread identifier

function to run thread starts here, terminates if this function returns

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
    pthread t pi thread, list thread;
    pthread_create(&pi_thread, NULL, ComputePi, NULL);
    pthread create(&list thread, NULL, PrintClassList, NULL);
    ... /* more code */
pthread create arguments:
```

thread identifier

function to run thread starts here, terminates if this function returns

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
    pthread t pi thread, list thread;
    pthread_create(&pi_thread, NULL, ComputePi, NULL);
    pthread create(&list thread, NULL, PrintClassList, NULL);
    ... /* more code */
pthread create arguments:
thread identifier
function to run thread starts here, terminates if this function returns
```

a threading race

```
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {
    printf("In the thread\n"); return NULL;
int main() {
    printf("About to start thread\n");
    pthread_t the_thread;
    pthread_create(&the_thread, NULL, print_message, NULL);
    printf("Done starting thread\n");
    return 0;
```

My machine: outputs In the thread about 4% of the time. What happened?

a race

```
returning from main exits the entire process (all its threads)
     same as calling exit; not like other threads
race: main's return 0 or print message's printf first?
                                                              time
  main: printf/pthread_create/printf/return
                               print message: printf/return
                                return from main
                                 ends all threads
                                  in the process
```

fixing the race (version 1)

```
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {
    printf("In the thread\n");
    return NULL;
int main() {
    printf("About to start thread\n");
    pthread t the thread;
    pthread_create(&the_thread, NULL, print_message, NULL);
    printf("Done starting thread\n");
    pthread join(the_thread, NULL); /* WAIT FOR THREAD */
    return 0;
```

fixing the race (version 2; not recommended)

```
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {
    printf("In the thread\n");
    return NULL;
int main() {
    printf("About to start thread\n");
    pthread_t the_thread;
    pthread_create(&the_thread, NULL, print_message, NULL);
    printf("Done starting thread\n");
   pthread_exit(NULL);
```

pthread_join, pthread_exit

pthread_join: wait for thread, retrieves its return value
 like waitpid, but for a thread
 return value is pointer to anything

pthread_exit: exit current thread, returning a value
 like exit or returning from main, but for a single thread
 same effect as returning from function passed to pthread_create

sum example (only globals)

```
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {
    int sum = 0;
    for (int i = 0; i < 512; ++i) { sum += values[i]; }
    results[0] = sum;
    return NULL;
}
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum_all() {
    pthread_t sum_front_thread, sum_back_thread;
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

sum example (only globals)

```
values, results: global variables — shared
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {
    int sum = 0;
    for (int i = 0; i < 512; ++i) { sum += values[i]; }
    results[0] = sum;
    return NULL;
}
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum_all() {
    pthread_t sum_front_thread, sum_back_thread;
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

sum example (only globals) two different functions

```
int values[1024];
                      happen to be the same except for some numbers
int results[2];
void *sum_front(void *ignored_argument) {
    int sum = 0;
    for (int i = 0; i < 512; ++i) { sum += values[i]; }
    results[0] = sum;
    return NULL;
}
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum_all() {
    pthread_t sum_front_thread, sum_back_thread;
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

```
values returned from threads
        via global array instead of return value
int valu
         (partly to illustrate that memory is shared,
void *su partly because this pattern works when we don't join (later))
    int
    for (int i = 0; i < 512; ++i) { sum += values[i]; }</pre>
    results[0] = sum;
    return NULL;
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }</pre>
    results[1] = sum;
    return NULL;
int sum_all() {
    pthread_t sum_front_thread, sum_back_thread;
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

thread_sum memory layout

thread_sum memory layout

sum example (to global, with thread IDs)

```
int values[1024];
int results[2];
void *sum_thread(void *argument) {
    int id = (int) argument;
    int sum = 0;
    for (int i = id * 512; i < (id + 1) * 512; ++i) {
        sum += values[i];
    results[id] = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        pthread_create(&threads[i], NULL, sum_thread, (void *) i);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return results[0] + results[1];
```

sum example (to global, with thread IDs)

```
int values[1024];
                              values, results: global variables — shared
int results[2];
void *sum_thread(void *argumenc) t
    int id = (int) argument;
    int sum = 0;
    for (int i = id * 512; i < (id + 1) * 512; ++i) {
        sum += values[i];
    results[id] = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        pthread_create(&threads[i], NULL, sum_thread, (void *) i);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return results[0] + results[1];
```

```
int values[1024];
struct ThreadInfo {
    int start, end, result;
};
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
    my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

```
int values[1024]; values: global variable — shared
struct ThreadInfo
    int start, end, result;
};
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
   my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

```
int values[1024];
struct ThreadInfo {
    int start, end, result;
};
void *sum_thread(void *argument) {
    ThreadInfo *my_info = _(ThreadInfo *) argument:
    int sum = 0:
                           my_info: pointer to sum_all's stack ues[i]; }
    for (int i = my_info->
   my_info->result = sum; only okay because sum all waits!
    return NULL;
int sum_all() {
    pthread_t thread[2]; ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

```
int values[1024];
struct ThreadInfo {
    int start, end, result;
};
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
    my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

thread_sum memory layout (info struct)


```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

program memory (to main stack)

sum example (on heap)

```
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result
void *sum thread(void *argument) {
    . . .
ThreadInfo *start_sum_all(int *values) {
    ThreadInfo *info = new ThreadInfo[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);
    return info;
int finish_sum_all(ThreadInfo *info) {
    for (int i = 0; i < 2; ++i)
        pthread join(info[i].thread, NULL);
    int result = info[0].result + info[1].result;
   delete[] info;
    return result;
```

sum example (on heap)

```
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result
void *sum thread(void *argument) {
    . . .
ThreadInfo *start_sum_all(int *values) {
    ThreadInfo *info = new ThreadInfo[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);
    return info;
int finish_sum_all(ThreadInfo *info) {
    for (int i = 0; i < 2; ++i)
        pthread_join(info[i].thread, NULL);
    int result = info[0].result + info[1].result;
   delete[] info;
    return result;
```

sum example (on heap)

```
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result
void *sum thread(void *argument) {
    . . .
ThreadInfo *start_sum_all(int *values) {
    ThreadInfo *info = new ThreadInfo[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);
    return info;
int finish_sum_all(ThreadInfo *info) {
    for (int i = 0; i < 2; ++i)
        pthread_join(info[i].thread, NULL);
    int result = info[0].result + info[1].result;
   delete[] info;
    return result;
```

thread_sum memory (heap version)

what's wrong with this?

```
/* omitted: headers */
#include <string>
using std::string;
void *create string(void *ignored argument) {
  string result;
  result = ComputeString();
  return &result:
int main() {
  pthread_t the_thread;
  pthread create(&the thread, NULL, create string, NULL);
  string *string_ptr;
  pthread_join(the_thread, (void*) &string_ptr);
  cout << "string is " << *string ptr:</pre>
```

program memory

Used by OS main thread stack second thread stack third thread stack Heap / other dynamic Code / Data

0xffff Ffff Ffff Ffff
0xffff 8000 0000 0000
0x7f...

dynamically allocated stacks string result allocated here string_ptr pointed to here

...stacks deallocated when threads exit/are joined

0x0000 0000 0040 0000

program memory

Used by OS
main thread stack
second thread stack
third thread stack
Heap / other dynamic
Code / Data

dynamically allocated stacks string result allocated here string_ptr pointed to here

...stacks deallocated when threads exit/are joined

0x0000 0000 0040 0000

thread resources

to create a thread, allocate:

new stack (how big???)

thread control block

deallocated when ...

thread resources

new stack (how big???)

```
to create a thread, allocate:
```

thread control block

deallocated when ...

can deallocate stack when thread exits

but need to allow collecting return value same problem as for processes and waitpid

pthread_detach

```
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {
    pthread_t show_progress_thread;
    pthread_create(&show_progress_thread, NULL,
                   show progress, NULL);
    /* instead of keeping pthread_t around to join thread later: */
    pthread detach(show progress thread);
int main() {
    spawn show progress thread();
    do other stuff();
           detach = don't care about return value, etc.
            system will deallocate when thread terminates
```

starting threads detached

setting stack sizes

a note on error checking

from pthread_create manpage:

ERRORS

EAGAIN Insufficient resources to create another thread, or a system-imposed limit on the number of threads was encountered. The latter case may occur in two ways: the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits the number of process for a real user ID, was reached; or the kernel's system-wide limit on the number of threads, /proc/sys/kernel/threadsmax, was reached.

EINVAL Invalid settings in attr.

EPERM No permission to set the scheduling policy and parameters specified in attr.

special constants for return value

same pattern for many other pthreads functions will often omit error checking in slides for brevity

error checking pthread_create

```
int error = pthread_create(...);
if (error != 0) {
    /* print some error message */
}
```

backup slides

thread versus process state

```
thread state
     registers (including stack pointer, program counter)
process state
     address space
     open files
     process id
     list of thread states
```

process info with threads

parent process info

```
thread 0: {PC = 0x123456, rax = 42, rbx = ...}
thread 1: {PC = 0x584390, rax = 32, rbx = ...}

page tables

open files
fd 0: ...
fd 1: ...
```

Linux idea: task_struct

```
Linux model: single "task" structure = thread pointers to address space, open file list, etc. pointers can be shared
```

e.g. shared open files: open fd 4 in one task \rightarrow all sharing can use fd 4

```
fork()-like system call "clone": choose what to share
    clone(0, ...) — similar to fork()
    clone(CLONE_FILES, ...) — like fork(), but sharing open files
    clone(CLONE_VM, new_stack_pointer, ...) — like fork(),
    but sharing address space
```

Linux idea: task_struct

Linux model: single "task" structure = thread pointers to address space, open file list, etc.

pointers can be shared

e.g. shared open files: open fd 4 in one task \rightarrow all sharing can use fd 4

```
fork()-like system call "clone": choose what to share
    clone(0, ...) — similar to fork()
    clone(CLONE_FILES, ...) — like fork(), but sharing open files
    clone(CLONE_VM, new_stack_pointer, ...) — like fork(),
    but sharing address space
```

advantage: no special logic for threads (mostly) two threads in same process = tasks sharing everything possible

aside: alternate threading models

we'll talk about kernel threads

OS scheduler deals directly with threads

alternate idea: library code handles threads

kernel doesn't know about threads w/in process

hierarchy of schedulers: one for processes, one within each process

not currently common model — awkward with multicore