USO DA REALIDADE AUMENTADA COM MARCADORES DINÂMICOS

Aluno(a): Everton da Silva

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Requisitos
- Especificação
- Implementação
- Resultados
- Conclusão e sugestão
- Demonstração

Introdução

- Interação Homem-Máquina
- Realidade Aumentada
- Marcadores

Objetivo

 Permitir que qualquer pessoa mesmo sem conhecimento em tecnologia, possa criar cenas usando Realidade Aumentada

Objetivos específicos

- Importar um arquivo 3D (.fbx)
- Mover e rotacionar na posição desejada
- Gerar bordas do objeto selecionado
- Sobrepor as bordas na tela do dispositivo
- Comparar e detectar desenho feito pelo usuário com o objeto selecionado
- Sobrepor objeto 3D sobre o desenho

Fundamentação Teórica

- OpenCV
- OpenCV For Unity (Enox Software)
- Homografia E Transformação De Perspectiva
- Filtro De Canny
- Transformação Morfológica

Trabalhos Correlatos

- iAR (Jonathan Hess)
- ANIMAR (Ricardo Filipe Reiter)
- Estudo e implementação de técnicas de realidade aumentada (Anderosn Kumagai)

Requisitos Funcionais

- permitir selecionar um objeto predefinido no aplicativo
- permitir selecionar um arquivo localizado no dispositivo
- permitir selecionar um objeto já desenhado anteriormente
- permitir rotacionar um objeto na tela do dispositivo
- permitir gerar cena
- gerar as bordas do objeto selecionado
- comparar desenho do usuário com bordas do objeto selecionado
- sobrepor na tela do dispositivo as bordas do objeto selecionado

Requisitos Não Funcionais

- ser desenvolvida para iOS e Android
- utilizar o ambiente Unity para desenvolvimento
- utilizar as bibliotecas ArUco para detectar marcadores
- utilizar biblioteca OpenCV for Unity para reconhecimento de imagens
- utilizar recurso Unity para salvar informações no dispositivo

Especificação

Diagrama de Casos de Uso

Especificação

Diagrama de arquitetura

Especificação

Diagrama de atividade - sem marcador predefinido

Gerar bordas

Dilatação

Método GetTransparentTexture

```
150
               public Texture2D GetTransparentTexture(Texture2D texture)
151
                   Color transparentColor = new Color(1.0f, 1.0f, 1.0f, 0f);
154
                   for (int y = 0; y < texture.height; y++)
155
156
                        for (int x = 0; x < texture.width; x++)
157
158
                            if (!Color.black.Equals(texture.GetPixel(x, y)))
159
                                texture.SetPixel(x, y, transparentColor);
160
161
162
163
164
165
                    texture.Apply();
166
                    return texture;
167
```


Método GetTransparentTexture

Análise dos Resultados

- Testes dos assets (OpenCVForUnity)
 - ArUco
 - Marker Less AR
- Teste de funcionalidade

Análise dos Resultados

- Teste de usabilidade
 - Dificuldade em importar arquivos em tempo de execução
 - Dificuldade em detectar bordas

Análise dos Resultados

 Pontos detectados nas bordas do objeto selecionado

Conclusões

- Os objetivos propostos foram alcançados
- Ferramenta Unity3D
- Biblioteca OpenCV integrado no asset OpenCVForUnity

Sugestões

- Melhorar a detecção do desenho
- Alterar as cores do objeto 3D, conforme o usuário pinte o desenho na folha de papel
- Melhorar o desempenho da câmera
- Importar outros formatos de arquivos 3D
- Adicionar mais de um objeto 3D na cena

DemosntraçãoAplicativo Celular

