1	(a)	The diameter d of a cylinder is measured as 0.0125 m \pm 1.6%.
		Calculate the absolute uncertainty in this measurement.
		absolute uncertainty = m [1]
	(b)	The cylinder in (a) stands on a horizontal surface. The pressure p exerted on the surface by the cylinder is given by
		$p = \frac{4W}{\pi d^2}.$
		The measured weight W of the cylinder is 0.38 N \pm 2.8%.
		(i) Calculate the pressure <i>p</i> .
		<i>p</i> = N m ⁻² [1]
		(ii) Determine the absolute uncertainty in the value of p .
		absolute uncertainty = N m ⁻² [2]
		[Total: 4]

2 (a) State Newton's second law of motion.

_____[1]

(b) A car of mass 850 kg tows a trailer in a straight line along a horizontal road, as shown in Fig. 2.1.

Fig. 2.1

The car and the trailer are connected by a horizontal tow-bar.

The variation with time *t* of the velocity *v* of the car for a part of its journey is shown in Fig. 2.2.

Fig. 2.2

(1)	Gai	curate the distance travelled by the car from time $t = 0$ to $t = 10$ s.
		distance = m [2]
(ii)		time $t = 10 \text{s}$, the resistive force acting on the car due to air resistance and friction is 0 N. The tension in the tow-bar is 440 N.
		the car at time $t = 10 s$:
	1.	use Fig. 2.2 to calculate the acceleration
		acceleration = ms^{-2} [2]
	2.	use your answer to calculate the resultant force acting on the car
		resultant force = N [1]
	3.	show that a horizontal force of 1300 N is exerted on the car by its engine
		[1]
	4.	determine the useful output power of the engine.
		output power = W [2]
		σαιραι ροννοι – VV [2]

(c)	A short time later, the car in (b) is travelling at a constant speed and the tension in the tow-bar is $480\mathrm{N}$.
	The tow-bar is a solid metal rod that obeys Hooke's law. Some data for the tow-bar are listed below.
	Young modulus of metal = $2.2 \times 10^{11} \text{Pa}$
	original length of tow-bar = 0.48 m
	cross-sectional area of tow-bar = $3.0 \times 10^{-4} \text{m}^2$
	Determine the extension of the tow-bar.
	extension = m [3]
(d)	The driver of the car in (b) sees a pedestrian standing directly ahead in the distance. The driver operates the horn of the car from time $t = 15 \text{s}$ to $t = 17 \text{s}$. The frequency of the sound heard by the pedestrian is 480Hz . The speed of the sound in the air is 340m s^{-1} .
	Fig. 2.2 to calculate the frequency of the sound emitted by the horn.
	frequency = Hz [2]
	[Total: 14]
	[Total: 14]

3	(a)	State what is meant by the <i>centre of gravity</i> of a body.	
			• • • • •
			[1]

(b) A uniform square sign with sides of length 0.68 m is fixed at its corner points A and B to a wall. The sign is also supported by a wire CD, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The sign has weight W and centre of gravity at point E. The sign is held in a vertical plane with side BC horizontal. The wire is at an angle of 35° to side BC. The tension in the wire is 54N.

The force exerted on the sign at B is only in the vertical direction.

(i) Calculate the vertical component of the tension in the wire.

	vertical component of tension =	N [1]
(ii)	Explain why the force on the sign at B does not have a moment about point A.	
		F4.1

	(iii)	By taking moments about point A, show that the weight <i>W</i> of the sign is 150 N.
		[2]
	(iv)	Calculate the total vertical force exerted by the wall on the sign at points A and B.
		total vertical force = N [1]
(c)	thro	e sign in (b) is held together by nuts and bolts. One of the nuts falls vertically from rest ough a distance of $4.8\mathrm{m}$ to the pavement below. The nut lands on the pavement with a ed of $9.2\mathrm{ms^{-1}}$.
	Det	ermine, for the nut falling from the sign to the pavement, the ratio
		change in gravitational potential energy
		final kinetic energy
		ratio =[4]
		[Total: 10]

(a)		a progressive water wave, state what is meant by:
	(i)	displacement
		[1]
	(ii)	amplitude.
		[1]
(b)	the	coherent waves X and Y meet at a point and superpose. The phase difference between waves at the point is 180° . Wave X has an amplitude of $1.2\mathrm{cm}$ and intensity I . Wave Y an amplitude of $3.6\mathrm{cm}$.
	Cal	culate, in terms of I , the resultant intensity at the meeting point.
		intensity =[2]
(c)	(i)	Monochromatic light is incident on a diffraction grating. Describe the diffraction of the light waves as they pass through the grating.
		[2]

(ii)	A parallel beam of light consists of two wavelengths 540 nm and 630 nm. The light is incident normally on a diffraction grating. Third-order diffraction maxima are produced for each of the two wavelengths. No higher orders are produced for either wavelength.
	Determine the smallest possible line spacing <i>d</i> of the diffraction grating.
	d = m [3]
(iii)	The beam of light in (c)(ii) is replaced by a beam of blue light incident on the same diffraction grating.
	State and explain whether a third-order diffraction maximum is produced for this blue light.
	[2]
	[Total: 11]

5 (a) State Kirchhoff's second law.

_____[ź

(b) A battery of electromotive force (e.m.f.) 5.6 V and internal resistance *r* is connected to two external resistors, as shown in Fig. 5.1.

Fig. 5.1

The reading on the voltmeter is 4.8 V.

- (i) Calculate:
 - 1. the combined resistance of the two resistors connected in parallel

combined resistance = Ω [2]

2. the current in the battery.

current = A [2]

(ii) Show that the internal resistance r is 2.5Ω .

	(iii)	Detern	nine	the	ratio
--	---	------	--------	------	-----	-------

power dissipated by internal resistance *r* total power produced by battery

ratio =		[3]	ĺ
---------	--	-----	---

(c) The battery in (b) is now connected to a battery of e.m.f. 7.2 V and internal resistance 3.5Ω . The new circuit is shown in Fig. 5.2.

Fig. 5.2

Determine the current in the circuit.

current = A [2]

[Total: 13]

6	(a)	Sta	State what is meant by a field line (line of force) in an electric field.					
			[1]					
	(b)		electric field has two different regions X and Y. The field strength in X is less than that in Y. scribe a difference between the pattern of field lines (lines of force) in X and in Y.					
			[1]					
	(c)	Ар	article P has a mass of $0.15\mathrm{u}$ and a charge of $-1e$, where e is the elementary charge.					
		(i)	Particle P and an α -particle are in the same uniform electric field. Calculate the ratio					
			magnitude of acceleration of particle P					
			magnitude of acceleration of α -particle					
			ratio =[3]					
		(ii)	Particle P is a hadron composed of only two quarks. One of them is a down (d) quark.					
			By considering charge, determine a possible type (flavour) of the other quark. Explain your working.					
			[3]					
			[Total: 8]					