Quiz 3.7: Proving Statements on Triangle Congruence

Multiple Choice: Choose the letter that corresponds to the correct answer. Write the answer in your answer sheet.

- 1. "If two angles of a triangle are congruent, then the sides opposite those angles are also congruent." This is stated in:
 - A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem
- 2. The congruent sides of an isosceles triangle are called:
- A. Base
- B. Base angles
- C. Legs
- D. Vertex angle
- 3. A triangle in which all three sides have the same length is called:
 - A. Equiangular
- B. Equilateral
- C. Isosceles
- D. Right
- 4. A triangle which has all three interior angles congruent is called:
- A. Equiangular
- B. Equilateral
- C. Isosceles
- D. Right
- 5. Which theorem states that if two sides of a triangle are congruent, then the angles opposite those sides are congruent?

 - A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
 - D. LL Triangle Congruence Theorem
- 6. The angles opposite the congruent sides of an isosceles triangle are called:
- A. Base
- B. Base angles
- C. Legs

C. Parallel

D. Vertex angle

- 7. A triangle is isosceles if two of its sides are:
- A. Congruent
- B. Intersecting

- D. Perpendicular
- 8. In $\triangle EBI$, let N be the midpoint of \overline{IE} and $\overline{BN} \perp \overline{IE}$. What theorem or postulate can justify that $\triangle BNI \cong \triangle BNE$?

- A. AAS
- B. ASA
- C. LL

- D. HL
- 9. $\triangle ABC$ and $\triangle DEF$ are isosceles right triangles. If $\overline{AB} \cong \overline{DE}$ and $\overline{AC} \cong \overline{DF}$, which of the following statements is true by CPCTC?
 - A. $\overline{AC} \cong \overline{EF}$
- B. $\overline{BC} \cong \overline{EF}$
- C. $\overline{CA} \cong \overline{EF}$
- $\mathbf{D}. \ \overline{CB} \cong \overline{FD}$
- 10. Let $\triangle XYZ$ be an equilateral triangle. What theorem or postulate can justify that $\triangle XYZ$ is also equiangular?

- A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem
- 11. Let $\triangle XYZ$ be an equiangular triangle. What theorem or postulate can justify that $\triangle XYZ$ is also equilateral?

- A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem

Quiz 3.7: Proving Statements on Triangle Congruence

Multiple Choice: Choose the letter that corresponds to the correct answer. Write the answer in your answer sheet.

- 1. "If two angles of a triangle are congruent, then the sides opposite those angles are also congruent." This is stated in:
- A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem
- 2. The congruent sides of an isosceles triangle are called:
- A. Base
- B. Base angles
- C. Legs
- D. Vertex angle
- 3. A triangle in which all three sides have the same length is called:
- A. Equiangular
- B. Equilateral
- C. Isosceles
- D. Right
- 4. A triangle which has all three interior angles congruent is called:
- A. Equiangular
- B. Equilateral
- C. Isosceles
- D. Right
- 5. Which theorem states that if two sides of a triangle are congruent, then the angles opposite those sides are congruent?
 - A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem
- 6. The angles opposite the congruent sides of an isosceles triangle are called:
 - A. Base
- B. Base angles
- C. Legs
- D. Vertex angle

- 7. A triangle is isosceles if two of its sides are:
- A. Congruent
- B. Intersecting
- C. Parallel
- D. Perpendicular
- 8. In $\triangle EBI$, let N be the midpoint of \overline{IE} and $\overline{BN} \perp \overline{IE}$. What theorem or postulate can justify that $\triangle BNI \cong \triangle BNE$?

- A. AAS
- B. ASA
- C. LL

- D. HL
- 9. $\triangle ABC$ and $\triangle DEF$ are isosceles right triangles. If $\overline{AB} \cong \overline{DE}$ and $\overline{AC} \cong \overline{DF}$, which of the following statements is true by CPCTC?
 - A. $\overline{AC} \cong \overline{EF}$
- B. $\overline{BC} \cong \overline{EF}$
- C. $\overline{CA} \cong \overline{EF}$
- $\mathbf{D}. \ \overline{CB} \cong \overline{FD}$
- 10. Let $\triangle XYZ$ be an equilateral triangle. What theorem or postulate can justify that $\triangle XYZ$ is also equiangular?

- A. Isosceles Triangle Theorem
- C. AAS Triangle Congruence Theorem
- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem
- 11. Let $\triangle XYZ$ be an equiangular triangle. What theorem or postulate can justify that $\triangle XYZ$ is also equilateral?

- B. Converse of Isosceles Triangle Theorem
- D. LL Triangle Congruence Theorem