Lecture 07: Convolutional Neural Networks

박사과정 김성빈 <u>chengbinjin@inha.edu</u>, 지도교수 김학일 교수 <u>hikim@inha.ac.kr</u> 인하대학교 컴퓨터비전 연구실

Recall From the Last Class

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- Forward prop it through the graph, get loss
- **3.** Backward to calculate the gradients
- **Update** the parameters using the gradient

Parameter Updates

We covered:

- SGD
- Momentum,
- NAG,
- Adagrad,
- Rmsprop,
- Adam (not in this vis),

We did not cover <u>adadelta</u>

Regularization: Dropout

Inverted dropout:

def predict(X): # ensembled forward pass H1 = np.maximum(0, np.dot(W1, X) + b1)H2 = np.maximum(0, np.dot(W2, H1) + b2)out = np.dot(W3, H2) + b3

U1 = (np.random.rand(*H1.shape) < p) / p

Convolutional Neural Networks

Hubel & Wiesel, 1960s

- Recording visual cortex of cat in the first visual area of processing in the back of brain called v1
- Winning a Nobel Prize
- The cells excited for edges of particular orientation

Hierarchical Organization

- Cortex has a kind of <u>hierarchical organization</u>
- A simple cells that <u>are feeding to other cells</u> called complex cells and etc.
- These cells are <u>building</u> on top of each other
- The simple cells <u>have some local receptive fields</u> and then are built up <u>more</u> and more complex representations in the brain

Convolutional Neural Networks

First without the brain stuff

32x32x3 image

32x32x3 image

5x5x3 filter (kernel)

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Hubel & Wiesel, 1960s

Example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1 n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

See a closer look at spatial dimensions:

32x32x3 image 5x5x3 filter 32 convolve (slide) over all spatial locations 32

activation map

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd filters applied with stride 1

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd filters applied with stride 1

=> 5x5xk output

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd

See a closer look at spatial dimensions:

7

7x7xd input (spatially) assume k 3x3xd filters applied with stride 2

=> 3x3xk output

See a closer look at spatial dimensions:

7

Question: 7x7xd input (spatially) assume

k 3x3xd filters applied with stride 3?

See a closer look at spatial dimensions:

7

Question: 7x7xd input (spatially) assume

3x3xd filter applied with stride 3?

See a closer look at spatial dimensions:

7

Question: 7x7 input (spatially) assume

3x3 filter applied with stride 3?

Doesn't fit!

Cannot apply 3x3xd filter on 7x7xd input with stride 3.

N

Output size:

$$(N - F) / stride + 1$$

Stride
$$1 \Rightarrow (7 - 3) / 1 + 1 = 5$$

Stride
$$2 \Rightarrow (7-3)/2 + 1 = 3$$

Stride
$$3 \Rightarrow (7-3)/3 + 1 = 2.33 - -!$$

➤ In practice different implementation might deal with this differently, some might throw an exception, some might give you a two by two output and ignore some parts of the input.

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0			9.				
0							
0		=					
	9.						

e.g. input 7x7xd

k 3x3xd filters, applied with **stride 1**

pad with 1 pixel border => what is the output?

Recall:

$$(N - F) / stride + 1$$

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0			95			6.	
0							
0		=					
	9.						

e.g. input 7x7xd k 3x3xd filters, applied with **stride 1** pad with 1 pixel border => what is the output? 7x7xk output!

In practice: Common to **zero pad** the border

0	0	0	0	0	0		
0							
0			95				
0							
0							
		-					

e.g. input 7x7xd k 3x3xd filters, applied with **stride 1** pad with 1 pixel border => what is the output?

7x7xk output!

➤ In general, common to see <u>CONV layers with</u> stride 1, filters to size FxF, and zero-padding with (F-1)/2. (will preserve size spatially).

F = 3 => zero pad with 1

 $F = 5 \Rightarrow zero pad with 2$

 $F = 7 \Rightarrow \text{ zero pad with } 3$

Question: why pad zero in the boundary? Not other values.

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Question: output volume size?

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Question: output volume size?

$$(32 + 2 * 2 - 5) / 1 + 1 = 32$$
 spatially, so

32x32x10

$$(N + 2 * P - F) / S + 1$$

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Question: Number of parameters in this layer?

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Question: Number of parameters in this layer?

Each filter has 5 * 5 * 3 + 1 = 76 params (+1 for bias)

(btw, 1x1 convolution layers make perfect sense)

Summary to Convolution Layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - ➤ Number of filters *K*
 - Their spatial extent F,
 - > The stride S.
 - > The amount of zero padding P.

```
tf.nn.conv2d(
    input,
    filter,
    strides.
    padding.
    use_cudnn_on_gpu=True,
    data_format='NHWC',
    dilations=[1, 1, 1, 1],
    name=None
```

- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P) / S + 1$
 - $\rightarrow H_2 = (H_1 F + 2P) / S + 1$ (i.e. width and height are computed equally by symmetry)
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Summary to Convolution Layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - ➤ Number of filters *K*
 - \triangleright Their spatial extent F,
 - \triangleright The stride S,
 - \triangleright The amount of zero padding P.

Common settings:

```
K = (powers of 2, e.g. 32, 64, 128, 256, ...)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
```

- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P) / S + 1$
 - $\rightarrow H_2 = (H_1 F + 2P) / S + 1$ (i.e. width and height are computed equally by symmetry)
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Example: CONV layer in Torch

SpatialConvolution

```
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
```

Applies a 2D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width).

The parameters are the following:

- nInputPlane: The number of expected input planes in the image given into forward().
- noutputPlane: The number of output planes the convolution layer will produce.
- . kw : The kernel width of the convolution
- . kH: The kernel height of the convolution
- . dw : The step of the convolution in the width dimension. Default is 1.
- dH: The step of the convolution in the height dimension. Default is 1.
- padw: The additional zeros added per width to the input planes. Default is 0, a good number is (kw-1)/2.
- padH: The additional zeros added per height to the input planes. Default is padw, a good number is (κH-1)/2.

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - \circ their spatial extent F,
 - the stride S.
 - the amount of zero padding P.

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor nInputPlane x height x width, the output image size will be noutputPlane x oheight x owidth where

```
owidth = floor((width + 2*padW - kW) / dW + 1)
oheight = floor((height + 2*padH - kH) / dH + 1)
```


Example: CONV layer in Caffe

```
layer {
 name: "convl"
 type: "Convolution"
 bottom: "data"
 top: "convl"
 # learning rate and decay multipliers for the filters
 param { Ir mult: 1 decay mult: 1 }
 # learning rate and decay multipliers for the biases
 param { Ir mult: 2 decay mult: 0 }
 convolution param {
   num output: 96
                      # learn 96 filters
   kernel size: 11 # each filter is 11x11
                      # step 4 pixels between each filter application
   stride: 4
    weight filler {
     type: "gaussian" # initialize the filters from a Gaussian
     std: 0.01
                      # distribution with stdev 0.01 (default mean: 0)
   bias filler {
     type: "constant" # initialize the biases to zero (0)
     value: 0
```

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K.
 - \circ their spatial extent F,
 - \circ the stride S.
 - the amount of zero padding P.

Example: CONV layer in Lasagne

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F,
 - · the stride S.
 - \circ the amount of zero padding P.

class lasagne.layers.Conv2DLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0, untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, flip_filters=True, convolution=theano.tensor.nnet.conv2d, "kwargs) [source] 2D convolutional layer Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity. Parameters: incoming: a Layer instance or a tuple The layer feeding into this layer, or the expected input shape. The output of this layer should be a 4D tensor, with shape (batch_size, num_input_channels, input_rows, input_columns) . num_filters: int The number of learnable convolutional filters this layer has. filter size: int or iterable of int An integer or a 2-element tuple specifying the size of the filters, stride: int or iterable of int An integer or a 2-element tuple specifying the stride of the convolution operation. pad: int. iterable of int, 'full', 'same' or 'valid' (default: 0) By default, the convolution is only computed where the input and the filter fully overlap (a valid convolution). When stride-1, this yields an output that is smaller than the input by filter size - 1. The pad argument allows you to implicitly pad the input with zeros, extending the output size. A single integer results in symmetric zero-padding of the given size on all borders, a tuple of two integers allows different symmetric padding per dimension. 'full' pads with one less than the filter size on both sides. This is equivalent to computing the convolution wherever the input and the filter overlap by at least one position. 'same' pads with half the filter size (rounded down) on both sides. When stride=1 this results in an output size equal to the input size. Even filter size is not supported. 'valid' is an alias for o (no padding / a valid convolution).

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

 x_0

 w_0

The neurons receptive fields is 5 by 5

The brain/neuron view of CONV Layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the <u>input</u>
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Sharing weights can constrain capacity to control overfitting

- Makes the representations smaller and more manageable
- Operates over each activation map <u>independently</u>:

- Max pooling
- Average pooling

- Max pooling
- Average pooling

6	8

- Max pooling
- Average pooling

6	8
3	

- Max pooling
- Average pooling

6	8
3	4

Summary to Pooling Layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires three hyperparameters:
 - > their spatial extent F,
 - > the stride S.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:

$$W_2 = (W_1 - F) / S + 1$$

$$\rightarrow H_2 = (H_1 - F) / S + 1$$

$$\rightarrow D_2 = D_1$$

- Introduces zero parameters (weights) since it computes a fixed function of the input
- Note that it is not common to use **zero-padding** for pooling layers

Summary to Pooling Layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires three hyperparameters:
 - \triangleright their spatial extent F,
 - \triangleright the stride S.

Common settings:

$$F = 2, S = 2$$

$$F = 3, S = 2$$

Produces a volume of size $W_2 \times H_2 \times D_2$ where:

$$W_2 = (W_1 - F) / S + 1$$

$$\rightarrow H_2 = (H_1 - F) / S + 1$$

$$\rightarrow D_2 = D_1$$

- Introduces zero parameters (weights) since it computes a fixed function of the input
- Note that it is <u>not common to use zero-padding for pooling layers</u>

Fully Connected Layer (FC Layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural **Networks**

Demo

ConvNetJS demo: training on CIFAR-10

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Case Study

First without the brain stuff

Case Study: LeNet-5

- Conv filters were <u>5x5</u>, applied a stride <u>1</u>
- Subsampling (pooling) layers were <u>2x2 applied at stride 2</u>
- i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Two steams (historical reason)

Input 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

Question: what is the output volume size? Hint: (227 - 11) / 4 + 1 = 55

Input 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

Question: what is the output volume size? Hint: (227 - 11) / 4 + 1 = 55

⇒ Output volume [55x55x96]

Question: what is the total number of parameters in this layers?

Input 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

Question: what is the output volume size? Hint: (227 - 11) / 4 + 1 = 55

⇒ Output volume [55x55x96]

Question: what is the total number of parameters in this layers?

Input 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Question: what is the output volume size? Hint: (55 - 3) / 2 + 1

Input 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Question: what is the output volume size? Hint: (55 - 3) / 2 + 1

Output volume: 27x27x96

Input 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Question: what is the number of parameters in this layer?

Input 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

Case Study: AlexNet

Input 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

Cause Study: AlexNet

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 91 11x11 filters at stride 4, ad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- First use of ReLU
- Used Norm layers (not common anymore)
- Heavy data augmentation
- Dropout 0.5
- Batch size 128
- SGD momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when validation accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Case Study: ZFNet

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3, 4, 5: instead of <u>384, 384, 256 filters use 512, 1024, 512</u>

ImageNet top 5 error: 15.4% -> 14.8%

- "FC7" features
- Zeiler created a company ,and worked on this a bit more and ended up with 11.7%

Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

Best model

		ConvNet C	onfiguration		-	
A	A-LRN	В	C	D	E 19 weight layers	
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers		
	i	nput (224 \times 2	24 RGB imag	e)	,	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	
		max	pool			
conv3-128	onv3-128 conv3-128		conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	
	•	max	pool			
conv3-256 conv3-256	conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256	
		max	pool			
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512	
	16	max	pool			
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512	
		max	pool		•	
			4096			
		73.700	4096			
			1000			
		soft	-max			

11.2% top 5 error in ILSVRC 2013 -> **7.3** top 5 error

Most memory is in early CONV

Case Study: VGGNet

INPUT: [224x224x3] memory: 224*224*3=150k

CONV3-64: [224x224x64] memory: **224*224*64=3.2M**

CONV3-64: [224x224x64] memory: 224*224*64=3.2M

POOL2: [112x1112x64] memory: 112*112*64=800K

CONV3-128: [112x112x128] memory: 112*112*128=1.6M

CONV3-128: [112x112x128] memory: 112*112*128=1.6M

POOL2: [56x56x128] memory: 56*56*128=400K

CONV3-256: [56x56x256] memory: 56*56*256=800K

CONV3-256: [56x56x256] memory: 56*56*256=800K

CONV3-256: [56x56x256] memory: 56*56*256=800K

POOL2: [28x28x256] memory: 28*28*256=200K

CONV3-512: [28x28x512] memory: 28*28*512=400K

CONV3-512: [28x28x512] memory: 28*28*512=400K

CONV3-512: [28x28x512] memory: 28*28*512=400K

POOL2: [14x14x512] memory: 14*14*512=100K

CONV3-512: [14x14x512] memory: 14*14*512=100K

CONV3-512: [14x14x512] memory: 14*14*512=100K

CONV3-512: [14x14x512] memory: 14*14*512=100K

POOL2: [7x7x512] memory: 7*7*512=25K

FC: [1x1x4096] memory: 4096

FC: [1x1x4096] memory: 4096

FC: [1x1x1000] memory: 1000

TOTAL memory: 24M * 4 bytes ~= 93MB/image (only forward!

~*2 for backward)

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224 × 2	24 RGB image	3	
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	C
	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		Г
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		- 8
FC-	4096		- 10
FC-	4096		
FC-	1000		- 8
soft	-max		

[Simonyan and Zisserman 2014] 77

Case Study: VGGNet

TOTAL params: 138M parameters

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224 × 2	24 RGB image		
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	C
	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		Г
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
	5		co
	pool		- 8
	4096		
N. O. Carlotte	4096		
FC-	1000		

Most params are in late FC

[Simonyan and Zisserman 2014] 78

Case Study: GoogLeNet

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Fun features:

➤ Only 5 million params! (removes most heavy FC layer)

Compared to AlexNet:

- > 12x less params
- > 2x more compute
- > 6.67% (vs. 15.4%)

ILSVRC 2015 winner (3.6% top 5 error)

Microsoft Research Asia

Kaiming He 何恺明

Research Scientist

Facebook Al Research (FAIR), Menlo Park, CA

kaiminghe@fb.com

research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

CIFAR-10 experiments

ILSVRC 2015 winner (3.6% top 5 error)

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

In Batch-norm paper claims that if you use bath-norm, there's less of a need for dropout...

Summary

- ConvNets stack CONV, POOL, FC layers
- Trend towards <u>smaller filters</u> and <u>deeper architectures</u>
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architecture look like
 - ➤ [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 - ➤ Where N is usually up to ~5, M is large, 0<=K<=2. (but recent advances such as ResNet/GooLeNet challenge this paradigm)

Thank you for your attention!