Since

$$1A^3 + 3A^4 + 2A^5 = Au_0 = b$$

for any $\theta \in \mathbb{R}$, we have

$$b = 1A^{3} + 3A^{4} + 2A^{5} - \theta A^{1} + \theta A^{1}$$

$$= 1A^{3} + 3A^{4} + 2A^{5} - \theta(-A^{3} + A^{4}) + \theta A^{1}$$

$$= \theta A^{1} + (1 + \theta)A^{3} + (3 - \theta)A^{4} + 2A^{5},$$

and

$$b = 1A^{3} + 3A^{4} + 2A^{5} - \theta A^{2} + \theta A^{2}$$

= $1A^{3} + 3A^{4} + 2A^{5} - \theta (A^{3} + A^{5}) + \theta A^{2}$
= $\theta A^{2} + (1 - \theta)A^{3} + 3A^{4} + (2 - \theta)A^{5}$.

In the first case, the vector $(\theta, 0, 1 + \theta, 3 - \theta, 2)$ is a feasible solution iff $0 \le \theta \le 3$, and the new value of the objective function is θ .

In the second case, the vector $(0, \theta, 1 - \theta, 3, 2 - \theta, 1)$ is a feasible solution iff $0 \le \theta \le 1$, and the new value of the objective function is also θ .

Consider the first case. It is natural to ask whether we can get another vertex and increase the objective function by setting to zero one of the coordinates of $(\theta, 0, 1 + \theta, 3 - \theta, 2)$, in this case the fouth one, by picking $\theta = 3$. This yields the feasible solution (3, 0, 4, 0, 2), which corresponds to the basis (A^1, A^3, A^5) , and so is indeed a basic feasible solution, with an improved value of the objective function equal to 3. Note that A^4 left the basis (A^3, A^4, A^5) and A^1 entered the new basis (A^1, A^3, A^5) .

We can now express A^2 and A^4 in terms of the basis (A^1, A^3, A^5) , which is easy to do since we already have A^1 and A^2 in term of (A^3, A^4, A^5) , and A^1 and A^4 are swapped. Such a step is called a *pivoting step*. We obtain

$$A^2 = A^3 + A^5$$

 $A^4 = A^1 + A^3$.

Then we repeat the process with $u_1 = (3, 0, 4, 0, 2)$ and the basis (A^1, A^3, A^5) . We have

$$b = 3A^{1} + 4A^{3} + 2A^{5} - \theta A^{2} + \theta A^{2}$$

= $3A^{1} + 4A^{3} + 2A^{5} - \theta (A^{3} + A^{5}) + \theta A^{2}$
= $3A^{1} + \theta A^{2} + (4 - \theta)A^{3} + (2 - \theta)A^{5}$,

and

$$b = 3A^{1} + 4A^{3} + 2A^{5} - \theta A^{4} + \theta A^{4}$$

= $3A^{1} + 4A^{3} + 2A^{5} - \theta (A^{1} + A^{3}) + \theta A^{4}$
= $(3 - \theta)A^{1} + (4 - \theta)A^{3} + \theta A^{4} + 2A^{5}$.