2. Kinematic foundations

Mechanics of Manipulation

Matt Mason

matt.mason@cs.cmu.edu

http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7
- 1.5 Bibliographic notes 8
 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88
 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117
 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139
 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Briefly dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237

Kinematic foundations.

We will focus on rigid motions in

the Euclidean plane (\mathbb{E}^2)

Euclidean three space (\mathbb{E}^3)

the sphere (\mathbb{S}^2)

Why the sphere? Rigid motions of the sphere correspond to rotations about a given point in \mathbb{E}^3 .

Kinematics foundations: some definitions

First, some general definitions. Let X be the *ambient space*, either \mathbb{E}^2 , \mathbb{E}^3 , or \mathbb{S}^2 .

- A system is a set of points in the space X.
- A configuration of a system is the location of every point in the system.
- Configuration space is a metric space comprising all configurations of a given system. (What kind of space is configuration space? Devise a metric.) (Note: Every metric for cspace is sort of defective.)
- The degrees of freedom of a system is the dimension of the configuration space. (A less precise but roughly equivalent definition: the minimum number of real numbers required to specify a configuration.)

Kinematics foundations: systems, DOFs

System	Configuration	DOFs
point in plane	x, y	2
point in space	x, y, z	3
rigid body in plane	x, y, θ	3
rigid body in space	$x, y, z, \phi, \theta, \psi$	6

Kinematics foundations: rigid bodies, displacement

Definitions:

A *displacement* is a change of configuration that does not change the distance between any pair of points, nor does it change the handedness of the system.

A *rigid body* is a system that is capable of displacements only.

Transformations, rigid and otherwise.

Kinematics foundations: moving and fixed planes

We will consider displacements to apply to every point in the ambient space. E.g., displacements are described as motion of moving plane relative to fixed plane.

Moving and fixed planes.

Kinematics foundations: rotations and translatio

A *rotation* is a displacement that leaves at least one point fixed. A *translation* is a displacement for which all points move equal distances along parallel lines.

Rotation about *O*

Rotation about a point on the body

Rotation about a point not on the body

Kinematics foundations: digression for group the

A *group* is a set of elements X and a binary operator \circ satisfying the following properties:

Closure: for all x and y in X, $x \circ y$ is in X.

Associativity: for all x, y, and z in X, $(x \circ y) \circ z$ is equal to $x \circ (y \circ z)$.

Identity: there is some element, called 1, such that for all x in X $x \circ 1 = 1 \circ x = x$.

Inverses: for all x in X, there is some element called x^{-1} such that $x \circ x^{-1} = x^{-1} \circ x = 1$.

(Did I remember them all?)

Some groups are commutative (Abelian) and some are not. The integers with addition are a commutative group. Nonsingular k by k matrices with matrix multiplication are a noncommutative group.

Kinematics foundations: Displacements as a ground

Every displacement D can be described as an operator on the ambient space \mathbb{X} , mapping every point x to some new point D(x) = x'.

The product of two displacements is the composition of the corresponding operators, i.e. $(D_2 \circ D_1)(\cdot) = D_2(D_1(\cdot))$.

The inverse of a displacement is just the operator that maps every point back to its original position.

The identity is the null displacement, which maps every point to itself.

In other words:

The displacements, with functional composition, form a group.

Kinematics foundations: SE(2), SE(3), and SO(3)

These groups of displacements have names:

SE(2): The special Euclidean group on the plane.

SE(3): The special Euclidean group on \mathbb{E}^3 .

SO(3): The special orthogonal group.

Whence the names?

Special: they preserve handedness.

Orthogonal: referring to the connection with orthogonal matrices, which will be covered later.

Kinematics foundations: do displacements comm

Does **SO**(3) commute? **NO!** No, no, no. (If you have found a commutative way of representing spatial rotations, you are confused.)

Kinematics foundations: do displacements comm

Does SE(3) commute?

Does SE(2) commute?

Does SO(2) commute?

Time for a digression . . .

Next we look at SE(2), SO(3), and SE(3).

First, it helps if we contemplate the infinite . . .

The projective plane.

The basic idea:

Start with the Euclidean plane \mathbb{E}^2 .

Add some points, the **ideal points** or the **points at infinity**.

Call the new structure the **projective plane**— \mathbb{P}^2 .

You can do it formally by defining an ideal point for each set of parallel lines, but we will employ a more concrete method using **homogeneous coordinates**.

Homogeneous coordinates.

Let the Cartesian coordinates of some point in \mathbb{E}^2 be

$$(\eta, \nu)$$

Then we will say that

$$(x, y, w) \triangleq (w\eta, w\nu, w)$$

are the homogeneous coordinates of the point, provided

$$w \neq 0$$

To go from homogeneous to Cartesian:

$$\begin{pmatrix} x \\ y \\ w \end{pmatrix} \mapsto \begin{pmatrix} x/w \\ y/w \end{pmatrix}, w \neq 0 \tag{1}$$

Point in \mathbb{E}^2 versus line through origin of \mathbb{E}^3

Scaling the homogeneous coordinates does not change the point!

$$\begin{pmatrix} ax \\ ay \\ aw \end{pmatrix} \mapsto \begin{pmatrix} ax/aw \\ ay/aw \end{pmatrix} = \begin{pmatrix} x/w \\ y/w \end{pmatrix}, a, w \neq 0$$
 (2)

So, homogeneous coordinates represent a point in \mathbb{E}^2 by a line through the origin of \mathbb{E}^3 .

$$\left(\begin{array}{c} x \\ y \end{array}\right) \leftrightarrow \left\{ \left(\begin{array}{c} wx \\ wy \\ w \end{array}\right) \middle| w \neq 0 \right\}$$

Central projection

The Euclidean plane can be embedded as the w=1 plane. We can also embed a sphere of points satisfying $x^2+y^2+w^2=1$. A line through the origin of \mathbb{E}^3

intersects the sphere in antipodal points

intersects the w=1 plane at the appropriate point (x/w,y/w).

These constructions are **central projection**, either to the sphere or to the plane.

Ideal points

The original idea: extend \mathbb{E}^2 by adding some ideal points.

Euclidean point: line through origin of \mathbb{E}^3 intersecting w=1 plane.

Ideal point: line through origin of \mathbb{E}^3 parallel to w=1 plane.

With Cartesian coords, no place to put ideal points. With homogeneous coordinates, there's a big gaping hole!

The projective plane

So ...

define the projective plane \mathbb{P}^2 to be the set of lines through the origin of \mathbb{E}^3 .

A line in \mathbb{E}^2 is represented by plane through origin of \mathbb{E}^3 .

The ideal points form a line! The **line at infinity**. The equator of the embedded sphere.

"Parallel lines" intersect at infinity.

Duality. Two points determine a line. Two lines determine a point. Every axiom of the projective plane has a dual axiom by switching "line" and "point".

Noneuclidean geometry!!!

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7
- 1.5 Bibliographic notes 8
 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88
 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117
 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Brie y dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237

Mechanics of Manipulation - p.21