SCRUM Domain Optimization Model (derived from Entities, Relationships, Goals, Conditions, Decision Variables CSVs)

Generated Model

August 12, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	4
3	3. Goals	4
4	4. Conditions	6
5	5. DecisionVariables	7

1 1. Sets (Entities)

- Projects: *P* (from Project)
- Teams: T (from Team)
- ullet Workers: W (from Worker)
- Features: *F* (from Feature)
- Skills: S (from Skill)
- Roles: R (from Role)
- Product Owners: PO (from ProductOwner)
- Scrum Masters: SM (from ScrumMaster)
- Product Backlogs: *PB* (from ProductBacklog)
- Sprints: SP (from Sprint)
- Sprint Planning meetings: SPP (from SprintPlanning)
- Daily Scrums: DS (from DailyScrum)
- Sprint Reviews: SR (from SprintReview)
- Sprint Retrospectives: SRE (from SprintRetrospective)
- Sprint Backlogs: *SBL* (from SprintBacklog)
- Sprint Goals: SG (from SprintGoal)
- Epics: *E* (from Epic)
- User Stories: *US* (from UserStory)
- Tasks: TSK (from Task)
- Development Snapshots: DEV (from DevelopmentSnapshot)
- Blockers: BL (from Blocker)
- Stakeholders: SH (from Stakeholder)
- Velocities: VEL (from Velocity)
- Release Plans: REP (from ReleasePlan)
- Roadmaps: RM (from Roadmap)
- Scrum Boards: SCB (from ScrumBoard)
- Feature Docs: FED (from FeatureDocumentation)

Relationship-induced index sets (from Relationships.csv).

- Team \rightarrow Project assignment: $A^{TP} \subseteq T \times P$ (is_assigned_to_project)
- Worker \rightarrow Team membership: $A^{WT} \subseteq W \times T$ (belongs_to_team, mapping Employee \rightarrow Worker)
- Worker \rightarrow Skill: $A^{WS} \subseteq W \times S$ (has_skill)
- $\bullet \;\; \mathrm{Worker} {\rightarrow} \mathrm{Role} {:} \;\; A^{WR} \subseteq W \times R \; (\mathtt{takes_on_role})$
- PO \leftrightarrow PB bijection: $A^{PO,PB} \subseteq PO \times PB$ (manages_backlog)
- Team \leftrightarrow SM: $A^{T,SM} \subseteq T \times SM$ (is_supported_by)
- PB \rightarrow Feature: $A^{PB,F} \subseteq PB \times F$ (contains_feature)
- PB \rightarrow Epic: $A^{PB,E} \subseteq PB \times E$ (contains_epic)
- Epic \rightarrow UserStory: $A^{E,US} \subseteq E \times US$ (contains_user_story)
- UserStory \rightarrow Task: $A^{US,TSK} \subseteq US \times TSK$ (consists_of_tasks)
- UserStory \leftrightarrow SprintBacklog: $A^{US,SBL} \subseteq US \times SBL$ (is_in_sprint_backlog)
- SprintBacklog \leftrightarrow Sprint: $A^{SBL,SP} \subseteq SBL \times SP$ (belongs_to_sprint)
- Sprint \leftrightarrow SprintGoal: $A^{SP,SG} \subseteq SP \times SG$ (pursues_goal)
- ScrumBoard \rightarrow Task: $A^{SCB,TSK} \subseteq SCB \times TSK$ (contains_tasks)
- FeatureDocumentation \leftrightarrow Feature: $A^{FED,F} \subseteq FED \times F$ (documents_feature)
- Task \leftrightarrow Blocker: $A^{TSK,BL} \subseteq TSK \times BL$ (is_blocked_by)
- Stakeholder \leftrightarrow SprintReview: $A^{SH,SR} \subseteq SH \times SR$ (participates_in; "SprintReview" \rightarrow SprintReview)
- SM \rightarrow SprintRetrospective: $A^{SM,SRE} \subseteq SM \times SRE$ (moderates_retrospective)
- Velocity \leftrightarrow Team: $A^{VEL,T} \subseteq VEL \times T$ (refers_to_team)
- ReleasePlan \rightarrow Feature: $A^{REP,F} \subseteq REP \times F$ (plans_release)
- ReleasePlan \leftrightarrow Roadmap: $A^{REP,RM} \subseteq REP \times RM$ (is_part_of_roadmap)
- Sprint \leftrightarrow DevelopmentSnapshot: $A^{SP,DEV} \subseteq SP \times DEV$ (generates_snapshot)

Core parameters (selected attributes used by goals/conditions).

- ullet $prio_f^F$ (Feature.priority), $prio_u^{US}$ (UserStory.priority), sp_u^{US} (UserStory.story_points)
- eff_k^{TSK} (Task.effort), sev_b^{BL} (Blocker.severity)
- $\bullet \ ach_g^{SG} \ ({\tt SprintGoal.achievement_status}) \\$
- • bud_p^P current budget cap parameter (from Project.budget)
- $teamsize_t$ (Team.team_size)
- att_r^{SR} (SprintReview.attendees_count) (optional plan/forecast)
- dur_d^{DS} (DailyScrum.duration)

- $avgSP_v^{VEL}$, $trend_v^{VEL}$ (Velocity.avg._story_points, Velocity.trend)
- Binary admissibility indicators for categorical filters (status/type etc.), e.g.:
 - $-\alpha_f^F \in \{0,1\}$: feature status acceptable
 - $\alpha_k^{TSK,stat} \in \{0,1\}$: task status allowed (e.g. not blocked)
 - $\alpha_k^{TSK,type} \in \{0,1\}$: task type allowed
 - $-\alpha_t^{T,type} \in \{0,1\}$: team type allowed
 - $-\alpha_h^{PB} \in \{0,1\}$: product backlog status acceptable
 - $-\alpha_c^{SCB} \in \{0,1\}$: scrum board type required
 - $-\alpha_w^{W,avail} \in \{0,1\}$: worker available
- Derived incidence helper sets: $BL(k) = \{b \in BL \mid (k,b) \in A^{TSK,BL}\}, US(k) = \{u \in US \mid (u,k) \in A^{US,TSK}\}, PB(f) = \{b \in PB \mid (b,f) \in A^{PB,F}\}, SP(SBL) = \{s \in SP \mid (SBL,s) \in A^{SBL,SP}\}, \text{ etc.}$

2 2. Indices

- $p \in P$ (project), $t \in T$ (team), $w \in W$ (worker)
- $f \in F$ (feature), $e \in E$ (epic), $u \in US$ (user story), $k \in TSK$ (task)
- $b \in BL$ (blocker), $g \in SG$ (sprint goal), $r \in SR$ (sprint review), $d \in DS$ (daily scrum)
- $v \in VEL$ (velocity measure), $c \in SCB$ (scrum board), $bpb \in PB$ (product backlog)
- $rep \in REP$ (release plan), $rm \in RM$ (roadmap), $sm \in SM$ (scrum master), $po \in PO$ (product owner)

3 3. Goals

• G0 maximize_velocity_avg_story_points (max, weight 1.0)

Logical: Prefer teams with higher historical velocity.

Mathematical:

$$\max \sum_{v \in VEL} avgSP_v^{VEL}$$

• G1 minimize_sprint_total_effort (min, weight 1.0)

Logical: Reduce total effort of planned/assigned tasks.

Mathematical:

$$\min \sum_{k \in TSK} e_k \cdot s_k \quad \text{with } s_k = \sum_{w \in W} a_{k,w} \in \{0,1\}$$

• G2 minimize_blocker_severity (min, weight 1.0)

Logical: Minimize cumulative severity of blockers on selected tasks.

Mathematical:

$$\min \sum_{k \in TSK} s_k \cdot \left(\sum_{b \in BL(k)} sev_b^{BL} \right)$$

• G3 maximize_feature_priority (max, weight 0.8)

Logical: Prefer including high-priority features in the sprint.

Mathematical:

$$\max \sum_{f \in F} x_f \cdot prio_f^F$$

• G4 minimize_task_effort (min, weight 1.0)

Logical: Keep assigned efforts low.

Mathematical:

$$\min \sum_{k \in TSK} e_k$$

ullet G5 maximize_sprint_goal_achievement (max, weight 1.0)

Logical: Maximize achievement of sprint goals.

Mathematical:

$$\max \sum_{g \in SG} ach_g^{SG}$$

• G6 minimize_project_budget (min, weight 0.9)

Logical: Spend as little project budget as possible.

Mathematical:

$$\min \sum_{p \in P} b_p^P$$

• G7 maximize_user_story_points (max, weight 1.0)

Logical: Deliver more story points via selected user stories.

Mathematical:

$$\max \sum_{u \in US} y_u \cdot sp_u^{US}$$

• G8 minimize_number_of_tasks (min, weight 0.7)

Logical: Reduce count of planned tasks.

Mathematical:

$$\min \sum_{k \in TSK} s_k$$

• G9 maximize_review_attendance (max, weight 0.6)

Logical: Increase planned Sprint Review attendance.

Mathematical:

$$\max \ \sum_{r \in SR} \widehat{att}_r^{SR} \quad \text{(using either parameter } att_r^{SR} \text{ or decision } att_r^{SR} \text{ if planned)}$$

• G10 minimize_daily_scrum_duration (min, weight 0.5)

Logical: Keep daily scrums short.

Mathematical:

$$\min \sum_{d \in DS} dur_d^{DS}$$

• G11 maximize_team_size (max, weight 0.4)

Logical: Favor allocations that yield greater available team capacity.

Mathematical:

$$\max \sum_{(t,p)\in T\times P} u_{t,p} \cdot team size_t$$

Multi-objective aggregation (weighted sum, optional). Let \mathcal{G}_{max} be the set of maximizing goals and \mathcal{G}_{min} the minimizing ones, each with weight $w_g > 0$ and expression Z_g . One can solve

$$\max \sum_{g \in \mathcal{G}_{\text{max}}} w_g Z_g - \sum_{g \in \mathcal{G}_{\text{min}}} w_g Z_g$$

after scaling Z_g to comparable magnitudes if desired.

4 4. Conditions

• C0 require_feature_status (Must-Match)

Logical: Only consider features with acceptable status.

Constraint:

$$x_f \le \alpha_f^F \quad \forall f \in F$$

• C1 cannot_use_blocked_tasks (Cannot-Match)

Logical: Exclude tasks whose status is blocked.

Constraint:

$$s_k \le \alpha_k^{TSK,stat} \quad \forall k \in TSK$$

• C2 require_task_type (Must-Match)

Logical: Only include tasks of an allowed type.

Constraint:

$$s_k \le \alpha_k^{TSK,type} \quad \forall k \in TSK$$

• C3 prefer_high_priority_user_stories (May-Match)

Logical: Prefer higher priority user stories.

Soft term in objective (bonus):

$$\max \sum_{u \in US} \lambda_{C3} y_u \cdot prio_u^{US}, \quad \lambda_{C3} > 0$$

• C4 cap_project_budget (May-Match / soft cap)

Logical: Prefer projects staying within a budget cap B_p^{cap} .

Soft/Hard constraint:

$$b_p^P \le B_p^{cap}$$
 (hard) or $\min \sum_p (b_p^P - B_p^{cap})_+$ (soft)

• C5 limit_review_duration (May-Match)

Logical: Prefer Sprint Reviews within timebox D^{cap} .

Constraint (soft or hard):

$$dur_r^{SR} \le D^{cap} \quad \forall r \in SR$$

• C6 require_team_type (Must-Match)

Logical: A team must be of a required type to be chosen for a project.

Constraint:

$$u_{t,p} \le \alpha_t^{T,type} \quad \forall (t,p) \in T \times P$$

• C7 cannot_assign_unavailable_worker (Cannot-Match)

Logical: Workers with zero availability cannot be assigned tasks.

Constraint:

$$a_{k,w} \le \alpha_w^{W,avail} \quad \forall k \in TSK, \ w \in W$$

• C8 require_board_type (Must-Match)

Logical: Only the required board type is used when setting WIP.

Constraint (big-M activation):

$$wip_c \le M \cdot \alpha_c^{SCB} \quad \forall c \in SCB$$

• C9 prefer_positive_velocity_trend (May-Match)

Logical: Prefer teams with improving velocity.

Soft term in objective:

$$\max \sum_{(v,t) \in A^{VEL,T}} \lambda_{C9} \mathbb{1}[trend_v^{VEL} > 0] \cdot avgSP_v^{VEL}$$

• C10 require_product_backlog_status (Must-Match)

Logical: Features must originate from acceptable Product Backlogs.

Constraint:

$$x_f \le \max_{bpb \in PB(f)} \alpha_{bpb}^{PB} \quad \forall f \in F$$

• C11 prefer_release_planned_date (May-Match)

Logical: Prefer features planned for earlier release dates.

Soft objective bonus using a time-decay score $q_{rep} \geq 0$:

$$\max \sum_{(rep,f)\in A^{REP,F}} \lambda_{C11} \, q_{rep} \, x_f$$

5 5. Decision Variables

- DV0 select_feature_for_sprint: $x_f \in \{0,1\}$ for each $f \in F$ (feature included in upcoming sprint)
- DV1 assign_user_story_to_sprint: $y_u \in \{0,1\}$ for each $u \in US$
- DV2 allocate_task_to_worker: $a_{k,w} \in \{0,1\}$ for each $(k,w) \in TSK \times W; s_k = \min\{1, \sum_w a_{k,w}\}$
- DV3 set_task_effort: $e_k \in \mathbb{Z}$ with $0 \le e_k \le 40$ for each $k \in TSK$
- ullet DV4 allocate_budget_to_project: $b_p^P \in \mathbb{R}_+$ with $0 \leq b_p^P \leq 1{,}000{,}000$ for each $p \in P$
- ullet DV5 choose_team_for_project: $u_{t,p} \in \{0,1\}$ for each $(t,p) \in T \times P$

- ullet **DV6** set_user_story_priority: $pr_u^{US} \in \mathbb{Z}$ with $1 \leq pr_u^{US} \leq 5$ for each $u \in US$
- ullet DV7 schedule_daily_scrum_time: $h_d \in \mathbb{R}$ with $0 \le h_d \le 24$ for each $d \in DS$
- DV8 select_epic_for_roadmap: $r_e \in \{0,1\}$ for each $e \in E$
- DV9 set_scrum_board_wip_limit: $wip_c \in \mathbb{Z}_+$ with $0 \le wip_c \le 25$ for each $c \in SCB$
- DV10 decide_review_attendees_count: $\widehat{att}_r^{SR} \in \mathbb{Z}_+$ with $0 \leq \widehat{att}_r^{SR} \leq 50$ for each $r \in SR$
- DV11 set_velocity_target: $vtarget_t \in \mathbb{R}_+$ with $0 \le vtarget_t \le 200$ for each $t \in T$

Coupling constraints (link entities via relationships).

- Task–Story consistency: $s_k \leq \sum_{u \in US(k)} y_u \quad \forall k \in TSK$
- Feature–Backlog consistency: $x_f \leq \sum_{bpb \in PB(f)} \alpha_{bpb}^{PB} \quad \forall f \in F$
- Team assignment feasible only if team belongs to some project per A^{TP} : $u_{t,p} \leq \mathbb{1}[(t,p) \in A^{TP}] \quad \forall (t,p)$
- Worker can be assigned only if in a team assigned to some project (using A^{WT}): $a_{k,w} \leq \sum_{t:(w,t)\in A^{WT}} \sum_{p} u_{t,p} \quad \forall k,w$