Computação Gráfica Unidade 2

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

Unidade 02

Conceitos básicos de computação gráfica

- Estruturas de dados para geometria
- Sistemas de coordenadas no JOGL
- Primitivas básicas (vértices, linhas, polígonos)

- Objetivos Específicos
 - Aplicar os conceitos básicos de sistemas de referências e modelagem geométrica em computação gráfica 2D
- Procedimentos Metodológicos
 - Aula expositiva dialogadaMaterial programado
 - Atividades em grupo (laboratório)
- Instrumentos e Critérios de Avaliação
 - Trabalhos práticos (avaliação 2)

1. A GeForce GTX 1080Ti é a "palavra final" em placas de vídeo

E se você quer investir pesado e está procurando a melhor placa de vídeo do momento, a GeForce GTX 1080Ti oferece a tecnologia mais avançada, com 11GB de memória dedicada e um desempenho fora de série. Para suportar todo esse poder de processamento, é essencial que ela seja combinada com outros componentes de ponta, como os processadores i7 7700K ou Ryzen 7 1800X, uma combinação que permite fazer modelagens em 3D com uma performance até 20% superior em relação à GTX 1080, o que é um resultado surpreendente, considerando o alto poder de processamento dessas unidades gráficas. Ela também é a única placa de vídeo que consegue manter taxas próximas a 60FPS para quem é alucinado por gráficos e quer jogar em 4K.

Características da placa de vídeo:

- · Memória dedicada: 11GB GDDR5X
- · Conexões: DisplayPort, DVI e HDMI
- Compatível com G-Sync
- Ótima performance em jogos "Triplo A" (4K) e em Realidade Virtual

GEFORCE GTX 1080 Ti

Especificações do mecanismo da placa de vídeo:

NVIDIA CUDA" Cores	3584
Clock básico (MHz)	1582

Especificações de memória:

velocidade da memória	11 Gbps
Configuração de memória padrão	11 GB GDDR5X
Largura da interface de memória	352-bit
Largura de banda de memória (GB/s)	484

Software de interface para o hardware gráfico

OpenGL - Open Graphics Library

- Interface: aplicações de "renderização" gráfica
 - imagens coloridas de alta qualidade
 - primitivas geométricas (2D e 3D) e
 - por imagens
 - independência de sistemas de janelas
 - independência de sistemas operacionais
 - compatível com quase todas as arquiteturas
 - interface gráfica dominante

OpenGL - Open Graphics Library

http://www.opengl.org/about/overview/

renderização

- primitivas geométricas (2D e 3D) e
- por imagens

OpenGL – "Renderizador"

- Primitivas geométricas
 - pontos, linhas e polígonos
- Primitivas de imagens
 - imagens e bitmaps
 - canais independentes: geometria e imagem
 - ligação via mapeamento de textura
- "Renderização" dependente do estado
 - cores, materiais, fontes de luz, etc.

OpenGL - Sistema de Janelas

- Trata apenas de "renderização"
 - independente do sistema de janelas
 - X, Win32, Mac O/S
 - não possui funções de entrada
- Necessita interagir com o sistema operacional e o sistema de janelas
 - interface dependente do sistema é mínima
 - realizada através de bibliotecas adicionais : GLX, AGL, WGL

OpenGL - GLU, OpenGL Utility Library

- Funções para auxiliar a tarefa de produzir imagens complexas
 - manipulação de imagens
 - polígonos não-convexos
 - curvas
 - superfícies
 - esferas
 - etc.

OpenGL - GLUT, OpenGL Utility Toolkit

- API de janelas para o OpenGL
 - independente do sistema de janelas
 - indicado para programas:
 - pequeno e médio porte
 - processamento orientado à chamada de eventos (callbacks)
 - dispositivos de entrada
 - não pertence oficialmente ao OpenGL

API: Interface para Programação de Aplicações

OpenGL - Prefixos

- OpenGL
 - gl, GL, GL_
 - para comandos, tipos e constantes, respectivamente
- GLU
 - glu, GLU, GLU_
- GLUT
 - glut, GLUT, GLUT_

OpenGL -, Passos Básicos

- Configurar e abrir janela (canvas)
- Inicializar o estado do OpenGL
- Registrar funções de entrada de callback
 - desenho ("renderização")
 - redimensionamento do canvas
 - entrada: mouse, teclado, etc.

Programação Convencional

Programação por Eventos

Aplicação

Gerenciador de Callbacks

OpenGL: exemplos CG-N2

constantes.h

Algumas constantes e rotinas usadas em todos os códigos

CG-N2_HelloWorld

Exemplo simples usando OpenGL para desenhar um segmento de reta e tendo como referência o SRU

CG-N2_Teclado

Exemplo usando o CallBack do teclado no OpenGL

CG-N2_Mouse

Exemplo usando o CallBack do mouse no OpenGL

CG-N2_OnIdle

Exemplo usando o *CallBack OnIdle* (thread) no OpenGL

CG-N2_Point4D

Exemplo usando a classe Point4D (V-ART) para manipular um ponto no espaço 2D

CG-N2_BBox

Exemplo usando a classe BoundingBox (V-ART) para tratar a BBox de um objeto gráfico

OpenGL: exemplos CG-N2

constantes.h

Algumas constantes e rotinas usadas em todos os códigos

CG-N2_HelloWorld

Exemplo simples usando OpenGL para desenhar um segmento de reta e tendo como referência o SRU

CG-N2_Teclado

Exemplo usando o CallBack do teclado no OpenGL

CG-N2_Mouse

Exemplo usando o CallBack do mouse no OpenGL

CG-N2_OnIdle

Exemplo usando o *CallBack OnIdle* (thread) no OpenGL

CG-N2_Point4D

Exemplo usando a classe Point4D (V-ART) para manipular um ponto no espaço 2D

CG-N2_BBox

Exemplo usando a classe BoundingBox (V-ART) para tratar a BBox de um objeto gráfico

Exemplos Projetos+fontes http://gcg.inf.furb.br/cg/e2j

__GIT __ https://bitbucket.org/gcgfurb/ gcg-cg

OpenGL - Especificação de Primitivas Geométricas

primitivas são especificadas usando

```
glBegin( tipo_primitiva );
glEnd( );
```

tipo_primitiva: especifica como os vértices serão agrupados

```
gl.glColor3f( 0.0f, 0.0f, 0.0f );
gl.glBegin( GL.GL_LINES );
gl.glVertex2f( 0.0f, 0.0f );
gl.glVertex2f( 20.0f, 20.0f );
glEnd();
```


OpenGL - Primitivas Geométricas

Especificadas por vértices GL LINES GL POLYGON GL LINE LOOP GL_LINE_STRIP GL POINTS GL TRIANGLES GL_QUADS GL_QUAD_STRIP GL TRIANGLE FAN GL TRIANGLE STRIP

-(x,y)

-(x,y,z)

OpenGL - Formato, Especificação do Vértice

glVertex3fv(v) tipo do dado número de vetor componentes b - byte omitir "v" para ub - unsigned byte forma escalar - short us - unsigned short glVertex2f(x, y) -(x,y,z,w)- int

ui - unsigned int

- float

- double

Splines

- Splines (ou curva polinomial)
 - origem:

- desenvolvida: De Casteljau em 1957 (P. De Casteljau, Citroen)
- formalizado: Bézier 1960 (Pierre Bézier)
- aplicações CAD/CAM
- pontos de controle
- bastante utilizada em modelagem tridimensional

178379
005.1, Z91em, MO (Anote para localizar o material)
Zoz, Jeverson
Estudo de metodos e algoritmos de Splines Bezier, Casteljau e B-Spline /Jeverson Zoz 1999. xii, 64p. :il.
Orientador: Dalton Solano dos Reis.

195268

006.6, S586pt, MO (Anote para localizar o material)

Silva, Fernanda Andrade Bordallo da

Prototipo de um ambiente para geracao de superficies 3D com uso de Spline Bezier /Fernanda Andrade Bordallo da Silva. - 2000. ix, 51p. :il.
Orientador: Dalton Solano dos Reis.

Splines

Tudo pode ser modelado por fórmulas, o problema é o custo envolvido

http://blog.wolframalpha.com/data/uploads/2013/07/Batman_lamina - Wolfram_Alpha.png

Unidade 02 - Conceitos Básicos

Prof. Dalton Reis

```
function SPLINE_Inter(A,B,t,desenha)
     R = vec2(0,0)
     R.x = A.x + (B.x - A.x) * t/qtdPontos
     R.y = A.y + (B.y - A.y) * t/qtdPontos
     if desenha == 1 then
         stroke(0, 0, 255)
         rect(R.x-2,R.y-2,4,4)
     end
     return R
end
function SPLINE_Desenha()
     if CurrentTouch.state == MOVING then
         ListaPtos[Ponto].x = CurrentTouch.x
         ListaPtos[Ponto].y = CurrentTouch.y
     end
     Pant = ListaPtos[1]
     for t = 0, qtdPontos do
         P1P2 = SPLINE_Inter(ListaPtos[1], ListaPtos[2], t, 1)
         P2P3 = SPLINE_Inter(ListaPtos[2],ListaPtos[3],t,1)
         P3P4 = SPLINE_Inter(ListaPtos[3],ListaPtos[4],t,1)
         P1P2P3 = SPLINE_Inter(P1P2, P2P3, t, 1)
         P2P3P4 = SPLINE_Inter(P2P3, P3P4, t, 1)
         stroke(0,255,255)
         P1P2P3P4 = SPLINE_Inter(P1P2P3, P2P3P4, t, 0)
         line(Pant.x,Pant.y,P1P2P3P4.x,P1P2P3P4.y)
         Pant = P1P2P3P4
     end
```

a end

http://www.ibiblio.org/e-notes/Splines/Intro.htm

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Splines (Casteljau)

Para o primeiro ponto calculado, t = 0.5: x=80 e y=100

Splines (Casteljau)

Segue os passos:

- Inicialmente devem-se definir os pontos de controle (poliedro de controle);
- Calcular o ponto pertencente à spline;
- Os pontos intermediários são utilizados para definir dois novos poliedros de controle, que deverão ser usados num processo recursivo.

Expressão de Cálculo:

$$\frac{A_x + B_x}{2} \quad \frac{B_x + C_x}{2} \quad \frac{B_x + C_x}{2} \quad \frac{C_x + D_x}{2}$$

$$\frac{\frac{A_{y} + B_{y}}{2} - \frac{B_{y} + C_{y}}{2}}{2} - \frac{\frac{B_{y} + C_{y}}{2} - \frac{C_{y} + D_{y}}{2}}{2} - \frac{2}{2}$$

Splines (Bezier)

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \ t \in [0,1].$$

$$B_x(0,5) = 0.125 * 30 + 0.375 * 30 + 0.375 * 130 + 0.125 * 130 = 80$$

 $B_y(0,5) = 0.125 * 20 + 0.375 * 100 + 0.375 * 130 + 0.125 * 20 = 100$

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
Р3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Pesos	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900	1,000
P0	1,000	0,729	0,512	0,343	0,216	0,125	0,064	0,027	800,0	0,001	0,000
P1	0,000	0,243	0,384	0,441	0,432	0,375	0,288	0,189	0,096	0,027	0,000
P2	0,000	0,027	0,096	0,189	0,288	0,375	0,432	0,441	0,384	0,243	0,000
P3	0,000	0,001	800,0	0,027	0,064	0,125	0,216	0,343	0,512	0,729	1,000
Soma	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000


```
X1
X2
X3
X4
Xr1 = x1 + (x2 - x1)t
Xr2 = x2 + (x3 - x2)t
Xr3 = x3 + (x4 - x3)t
Xrr1 = Xr1 + (Xr2 - Xr1)t
Xrr1 = (x1 + (x2 - x1)t) + ((x2 + (x3 - x2)t) - (x1 + (x2 - x1)t))t
Xrr1 = (x1 + x2t - x1t) + (x2 + x3t - x2t)t + (-x1 - x2t + x1t)t
Xrr1 = x1 + x2t - x1t + x2t + x3t \le -x2t \le -x1t - x2t \le +x1t \le
Xrr1 = x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le
Xrr2 = Xr2 + (Xr3 - Xr2)t
Xrr2 = x2 + 2(x3 - x2)t + (x4 - 2x3 + x2)t \le
Xrrr = Xrr1 + (Xrr2 - Xrr1)t
Xrrr = (x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le) + ((x2 + 2(x3 - x2)t + (x4 - 2x3 + x2)t \le) - (x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le))t
Xrrr = x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le + (x2 + 2(x3 - x2)t + (x4 - 2x3 + x2)t \le)t - (x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le)t
Xrrr = x1 + 2(x2 - x1)t + (x3 - 2x2 + x1)t \le + (x2 + 2x3t - 2x2t + x4t \le -2x3t \le + x2t \le)t - (x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le)t
Xrrr = x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le + x2t + 2x3t \le -2x2t \le + x4t \ge -2x3t \ge + x2t \ge -(x1t + 2x2t \le -2x1t \le + x3t \ge -2x2t \ge + x1t \ge)
Xrrr = x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le + x2t + 2x3t \le -2x2t \le + x4t \ge -2x3t \ge + x2t \ge + (-x1t - 2x2t \le + 2x1t \le -x3t \ge + 2x2t \ge -x1t \ge)
Xrrr = x1 + 2x2t - 2x1t + x3t \le -2x2t \le + x1t \le + x2t + 2x3t \le -2x2t \le + x4t \ge -2x3t \ge + x2t \ge -x1t - 2x2t \le +2x1t \le -x3t \ge +2x2t \ge -x1t \ge -x1t \ge -x1t \le -x3t \ge -x1t \le -
Xrrr = x1 - 3x1t + 3x1t \le -x1t \ge +3x2t - 6x2t \le +3x2t \ge +3x3t \le -3x3t \ge +x4t \ge
Xrrr = x1(1 - 3t + 3t \le - t \ge) + x2(3t - 6t \le + 3t \ge) + x3(3t \le - 3t \ge) + x4t \ge
Xrrr = x1(1 - 3t + 3t \le -t \ge) + 3x2t(1 - 2t + t \le) + 3x3t \le (1-t) + x4t \ge
Xrrr = x1((1-t)(1-t)(1-t)) + 3x2t((1-t)(1-t)) + 3x3t \le (1-t) + x4t \ge x
Xrrr = (1 - t) \ge x1 + 3t(1 - t) \le x2 + 3t \le (1 - t)x3 + t \ge x4
```

Splines

Splines

Ver exemplo: http://www.ibiblio.org/e-notes/Splines/http://www.ibiblio.org/e-notes/Splines/animation.html

Splines

WireFrame bordas ocultas

WireFrame uv isolinhas

Face WireFrame

Face Shaded

Shaded

Linhas de reflexão

Imagem refletida

Box

Box

Box

Tabela senos/cosenos e Teorema de Pitágoras

SEN	COS	grau
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	30°
$\frac{\sqrt{2}}{2}$	$\sqrt{2}/2$	45°
$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	60°
SEN	COS	grau
1	0	90°
0	1	0°

 $a^2 = b^2 + c^2$

-ângulo qq

hipotenusa


```
return (5 * Math.cos(Math.PI * a / 180.0));
}

public double RetornaY(double a){
    return (5 * Math.sin(Math.PI * a / 180.0));
}
```


Computational Geometry Algorithms Library - CGAL http://www.cgal.org/

Theoretical Computer Science Chest Sheet					
Definitions		Series			
f(n) = O(g(n))	iff 3 positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$			
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge c_0(n) \ge 0 \ \forall n \ge n_0$.	In general:			
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$			
f(n)=o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$			
$\lim_{n\to\infty}a_n=a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:			
sup S	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{c=0}^{n} c^{c} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{c=0}^{m} c^{c} = \frac{1}{1-c}, \sum_{c=1}^{m} c^{c} = \frac{c}{1-c}, c < 1,$			
inf S	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{m} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$			
liminf a.	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$			
lim sup a _n	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	1=1 1=1			
(%)	Combinations: Size k sub- sets of a size n set.	$\sum_{i=1}^{n} H_{i} = (n+1)H_{n} - n, \sum_{i=1}^{n} {i \choose m} H_{i} = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1}\right).$			
[n]	Stirling numbers (1st kind): Arrangements of an n ele- ment set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,			
{2}	Stirling numbers (2nd kind): Partitions of an n element	4. $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$, 5. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$,			
(%)	set into k non-empty sets. 1st order Eulerian numbers:	$6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad 7. \sum_{k=0}^{\infty} \binom{r+k}{k} = \binom{r+n+1}{n},$			
\A/	Permutations $\pi_1\pi_1\pi_n$ on $\{1, 2,, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}$, 9. $\sum_{k=0}^{n} {r \choose k} {n \choose n-k} = {r+s \choose n}$,			
(%)	2nd order Eulerian numbers.	$10. \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, 11. \binom{n}{1} = \binom{n}{n} = 1,$			
C _n	Catalan Numbers: Binary tress with n + 1 vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,			
$14. \begin{bmatrix} \mathbf{n} \\ \mathbf{i} \end{bmatrix} = (n-1)!, \qquad 18. \begin{bmatrix} \mathbf{n} \\ \mathbf{i} \end{bmatrix} = (n-1)!H_{n-1}, \qquad 16. \begin{bmatrix} \mathbf{n} \\ \mathbf{n} \end{bmatrix} = 1, \qquad 17. \begin{bmatrix} \mathbf{n} \\ \mathbf{k} \end{bmatrix} \ge \begin{Bmatrix} \mathbf{n} \\ \mathbf{k} \end{Bmatrix},$					
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, 19. \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}, 20. \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n\mathbf{J}, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$					
$22. \ \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = 1, \qquad 23. \ \left\langle {n\atop k}\right\rangle = \left\langle {n\atop n-1-k}\right\rangle, \qquad 24. \ \left\langle {n\atop k}\right\rangle = (k+1)\left\langle {n-1\atop k}\right\rangle + (n-k)\left\langle {n-1\atop k-1}\right\rangle,$					
$26. \begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ $26. \begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ $27. \begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$					
$26. \ \left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{cccc} 1 & \text{if } k=0, \\ 0 & \text{otherwise} \end{array} \right. \\ 26. \ \left\langle \begin{array}{c} n \\ 1 \end{array} \right\rangle = 2^n - n - 1, \\ 28. \ x^n = \sum_{k=0}^n \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \left(\begin{array}{c} x+k \\ n \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = \sum_{k=0}^n \left(\begin{array}{c} n+1 \\ k \end{array} \right) (m+1-k)^n (-1)^k, \\ 20. \ ml \left\{ \begin{array}{c} n \\ m \end{array} \right\} = \sum_{k=0}^n \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \left(\begin{array}{c} k \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = \sum_{k=0}^n \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \left(\begin{array}{c} k \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = \sum_{k=0}^n \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \left(\begin{array}{c} k \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ m \end{array} \right\rangle = \sum_{k=0}^n \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right), \\ 29. \ \left\langle \begin{array}{c} n \\ n-m \end{array} \right\rangle \left(\begin{array}{c} n \\ n-m \end{array} \right)$					
31. $\binom{n}{m} = \sum_{k=0}^{n}$	$\binom{n}{k}\binom{n-k}{m}(-1)^{n-k-m}H$	32. $\binom{n}{0} - 1$, 33. $\binom{n}{n} - 0$ for $n \neq 0$,			
34. $\binom{n}{k} = (k+1)$	$+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n}{k}$	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $36. \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} = \frac{(2n)^k}{2^n}$,			
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{7}{2}$	$\sum_{i=0}^{n} {n \choose k} {x+n-1-k \choose 2n},$	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k}$			

Theoretical Computer Science Cheat Sheet	
Identities Cont.	Trees
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	edges. Kraft inequality: If the depths of the leaves of a binary tree are d_1, \dots, d_n : $\sum_{i=1}^{n} 2^{-d_i} \le 1,$ and equality holds
_	

Recurrences

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1,b>1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_2 n - \epsilon})$

$$T(n) = \Theta(n^{\log_2 n}).$$

If
$$f(n) = \Theta(n^{\log_2 n})$$
 then
 $T(n) = \Theta(n^{\log_2 n} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_k n + \epsilon})$. and $\exists c < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{c+1} = 2^{2^k} \cdot T_c^2$$
, $T_1 = 2$.

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2*+1 we get

$$\frac{t_{s+1}}{2^{s+1}} = \frac{2^s}{2^{s+1}} + \frac{t_s}{2^s}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \quad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{\tilde{G}^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 2T(n/2) = n$$
.

Now expand the recurrence, and choose a factor which makes the left side "telescope?

$$1(T(n) - 3T(n/2) = n)$$

 $3(T(n/2) - 3T(n/4) = n/2)$
 $\vdots \quad \vdots \quad \vdots$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_1 3 \approx 1.88496$. Summing the right side we get

 $3^{\log_2 n - 1} (T(2) - 2\Gamma(1) = 2)$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} J^i = n \sum_{i=0}^{m-1} \left(\frac{2}{2}\right)^i.$$

Let $c = \frac{9}{8}$. Then we have

$$\begin{split} n \sum_{i=0}^{m-1} c^i &= n \left(\frac{c^m - 1}{c - 1} \right) \\ &= 2n (c^{\log_2 n} - 1) \\ &= 2n (c^{(k-1)\log_2 n} - 1) \\ &= 2n^k - 2n, \end{split}$$

and so $T(n) = 2n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0} T_j$$
, $T_0 = 1$

Note that

$$T_{i+1} = 1 + \sum_{j=1}^{c} T_{j}$$
.

Subtracting we find

$$T_{c+1} - T_c = 1 + \sum_{j=0}^{c} T_j - 1 - \sum_{j=0}^{c-1} T_j$$

And so
$$T_{s+1} = 2T_s = 2^{s+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^4 .
- 2. Sum both sides over all i for which the equation is walld. 3. Choose a generating function
- G(x). Usually $G(x) = \sum_{i=0}^{m} x^{i}g_{i}$. 3. Rewrite the equation in terms of the generating function G(x).
- Solve for G(x).
- 5. The coefficient of x^* in G(x) is g_{ψ} Example

$$g_{i+1} = 2g_i + 1$$
, $g_0 = 0$.

Multiply and sum:

$$\sum_{i \ge 0} g_{i+1} x^i = \sum_{i \ge 0} 2g_i x^i + \sum_{i \ge 0} x^i.$$

We choose $G(x) = \sum_{Q \in \mathbb{D}} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - y_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$
 Solve for $G(x)$:

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}$$

Expand this using partial fractions:

$$F(x) = x \left(\frac{1-2x}{1-x} - \frac{1-x}{1-x} \right)$$

= $x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$
= $\sum_{i \ge 0} (2^{i+1} - 1)x^{i+1}$.

So
$$g_i = 2^{\epsilon} - 1$$
.

Unidade 02 – Conceitos Básicos

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Theoretical Computer Science Cheat Sheet				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
2		$\pi \approx 3.14159$,	e ≈ 2.7	1828, $\gamma \approx 0.87721$, $\phi = \frac{2.7\sqrt{3}}{2} \approx$	1.81803, $\phi = \frac{1-\gamma}{2} \approx61803$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	2*	Pr		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		3		$Pr[a < X < b] = \int_{-\infty}^{\infty} p(x) dx$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	_	ab	/a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\log_{\mathbf{L}} x = \frac{\log_{\mathbf{L}} x}{1 - \epsilon}, \frac{-b \pm \sqrt{b^2 - 4ac}}{2 - \epsilon}.$	Pr[X < a] = P(a),
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			2 1 12 120	$P(a) = \int p(x) dx.$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\lim_{n\to\infty} \left(1+\frac{1}{n}\right) = \epsilon^{*}.$	/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		$(1+\frac{1}{a})^n < \epsilon < (1+\frac{1}{a})^{n+1}$.	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		(1 . 1)n _ e . 11e _0(1)	E(g/A /) - 2 g/2/21/A - 2).
Harmonic numbers: $ 1, \frac{1}{2}, \frac{11}{12}, $				$(1+\frac{1}{n}) = e - \frac{1}{2n} + \frac{1}{24n^2} - O(\frac{1}{n^2})$	If X continuous then
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	32,768	47	1, 2, W, 12, WF, 30, 14T, 280, 2630,	7-m 7-m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	65,536	63	$\ln n < H_n < \ln n + 1$.	$VAR[X] = E[X^2] - E[X]^2,$
19	17	131,072	t9		$\sigma = \sqrt{VAR(X)}$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	262,144	61	$H_n = \inf + \gamma + O\left(\frac{-}{n}\right)$.	For events A and B:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	524,288	67	Factorial, Stirling's approximation:	$Pr[A \vee B] = Pr[A] + Pr[B] - Pr[A \wedge B]$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1,048,576	71	1, 2, 4, 24, 120, 720, 1840, 48928, 342888,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	2,097,182	73	—(n)*/ (1))	iff A and B are independent.
Acternative function and inverse $24 - 16,777,216 - 89 \ 26 - 31,864,432 - 97 \ a(i,j) = \begin{cases} 2^j & i = 1 \ a(i-1,2) & j=1 \ a(i-1,2) & j=1 \end{cases}$ $26 - 67,108,864 - 100 \ 27 - 134,217,728 - 103 \ a(i) = \min\{j \mid a(j,j) \geq i\}.$ 28 - 268,428,496 - 107 - Binomial distribution: 29 - 538,670,912 - 109 30 - 1,072,741,824 - 113 31 - 2,147,483,648 - 127 32 - 4,294,967,296 - 131 - Pr[X = k] = $\binom{n}{k}p^kq^{n-k}$, $q=1-p$, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				$nl = \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right) \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	$Pr[A B] = \frac{Pr[A \wedge B]}{A \wedge B}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Adarmann's function and inverse	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$a(i,j) = \begin{cases} a(i-1,2) & j-1 \\ a(i-1,a(i,i-1)) & i,j \ge 2 \end{cases}$	
28				$a(i) = \min\{i \mid a(i, i) \geq i\}.$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.5	Bayes' theorems
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\Pr[X = k] = \binom{n}{k} p^n q^{n-n}, q = 1 - p,$	$Pr[A_i B] = \frac{Pr[B A_i]Pr[A_i]}{Pr[A_i]}$
Pascal's Triangle Poisson distribution: $\Pr[X=k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathop{\mathrm{E}}[X] = \lambda.$ Normal (Gaussian) distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(n-\mu)^2/2\sigma^2}, \mathop{\mathrm{E}}[X] = \mu.$ Normal (Gaussian) distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(n-\mu)^2/2\sigma^2}, \mathop{\mathrm{E}}[X] = \mu.$ The "coupon collector": We are given a random coupon each day, and there are n different types of coupons. The distribution for coupons is uniform. The expected number of days to pass before we to collect all n types is $nH_n.$ $\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathop{\mathrm{E}}[X] = \lambda.$ $\sum_{k=1}^n (-1)^{k+1} \sum_{n < -n < k} \Pr\left[\bigwedge_{j=1}^n X_{nj}\right].$ $\Pr[X = k] = \sum_{i=1}^n \Pr[X_i] + \sum_{i=1}^n \Pr[X_i] $					
Pascal's Triangle Poisson distribution: $\Pr[X=k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathop{\mathrm{E}}[X] = \lambda.$ Normal (Gaussian) distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(n-\mu)^2/2\sigma^2}, \mathop{\mathrm{E}}[X] = \mu.$ Normal (Gaussian) distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(n-\mu)^2/2\sigma^2}, \mathop{\mathrm{E}}[X] = \mu.$ The "coupon collector": We are given a random coupon each day, and there are n different types of coupons. The distribution for coupons is uniform. The expected number of days to pass before we to collect all n types is $nH_n.$ $\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \mathop{\mathrm{E}}[X] = \lambda.$ $\sum_{k=1}^n (-1)^{k+1} \sum_{n < -n < k} \Pr\left[\bigwedge_{j=1}^n X_{nj}\right].$ $\Pr[X = k] = \sum_{i=1}^n \Pr[X_i] + \sum_{i=1}^n \Pr[X_i] $				$E[X] = \sum_{k=1}^{n} k \binom{k}{k} p^n q^{n-1} = np.$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Poisson distribution:	$\Pr\left[\bigvee X_i\right] = \sum \Pr[X_i] +$
Normal (Gaussian) distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$ 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 25 25 21 7 1 1 8 28 56 70 56 28 8 1 1 9 26 84 126 18 84 26 9 1 Normal (Gaussian) distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$ $E[X] = \frac{1}{nccm}\Pr\left[\bigwedge X_{eq}\right].$ Moment inequalities: $\Pr\left[X \ge \lambda E[X]\right] \le \frac{1}{\lambda},$ $\Pr\left[X - E[X] \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$ Geometric distribution: $\Pr[X - E[X]] = \frac{1}{\lambda^2}.$ Geometric distribution: $\Pr[X - E[X]] = \frac{1}{\lambda^2}.$ $Pr[X - E[X]] = \frac{1}{\lambda^2}.$				$Pr[X = k] = \frac{e^{-\lambda} \lambda^{\lambda}}{2}, g[X] = \lambda.$	
1 2 1 $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(n-\mu)^2/2\sigma^2}, E[X] = \mu.$ 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 25 25 21 7 1 1 8 28 56 70 56 28 8 1 1 9 26 84 126 18 84 26 9 1 $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(n-\mu)^2/2\sigma^2}, E[X] = \mu.$ Moment inequalities: $\Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda},$ $\Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda},$ Pr $[X \ge \lambda E[X]] \le \frac{1}{\lambda}$ Geometric distribution: $\Pr[X = E[X] = pq^{k-1}, q = 1 - p,$ $nH_n.$ $E[X] = \sum_{i=1}^{k-1} ne^{-(n-\mu)^2/2\sigma^2}, E[X] = \mu.$ $\Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda},$ Geometric distribution: $\Pr[X = k] = pq^{k-1}, q = 1 - p,$ $E[X] = \sum_{i=1}^{k-1} kpq^{k-1} = \frac{1}{\pi}.$		11			$\sum_{(-1)^{k+1}} \sum_{r} \Pr[\bigwedge X_{rr}].$
The "coupon collector": We are given a random coupon each day, and there are n different types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is $nH_n.$ $Pr [X \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda},$ $Pr [X - \operatorname{E}[X] \ge \lambda \cdot \sigma] \le \frac{1}{\lambda^2}.$ Geometric distribution: $Pr[X = k] = pq^{k-1}, q = 1 - p,$ $Pr[X - \operatorname{E}[X]] \ge \lambda \operatorname{E}[X] = \sum_{k=1}^{n} kpq^{k-1} = \frac{1}{n}.$		121			$h=2$ $m<\cdots < h$ $j=4$
1 S 10 10 S 1 1 S 10 10 S 1 1 S 15 20 15 S 1 1 S 25 56 70 56 28 S 1 1 9 26 S 4 126 126 S 4 26 9 1 1 S 25 56 70 56 28 S 2 1 1 S 25 56 70 56 28 S 2 1 1 S 25 56 70 56 28 S 2 1 1 S 25 56 70 56 28 S 2 1 1 S 25 56 70 56 28 S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1331		$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)/2\pi\sigma}$, $E[X] = \mu$.	
1 6 15 20 15 6 1 1 7 21 25 25 21 7 1 1 8 25 56 70 56 28 8 1 1 9 26 84 126 126 84 26 9 1 different types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is nH_n . nH_n . $Pr[X - E[X] \ge \lambda \cdot \sigma] \le \frac{1}{\lambda^2}$. Geometric distribution: $Pr[X = k] = pq^{k-1}$, $q = 1 - p$, $E[X] = \sum_{n=0}^{\infty} kpq^{k-1} = \frac{1}{n}$.		14641			$Pr[X \ge \lambda E[X]] \le \frac{1}{\lambda}$
tion of coupons is uniform. The expected number of days to pass before we to collect all n types is 1 7 21 26 26 28 21 7 1 1 8 28 56 70 56 28 8 1 1 9 26 84 126 126 84 26 9 1 tion of coupons is uniform. The expected number of days to pass before we to collect all n types is nH_n . Geometric distribution: $Pr[X = k] = pq^{k-1}, q = 1 - p,$ $E[X] = \sum_{n=0}^{\infty} kpq^{k-1} = \frac{1}{n}.$					$\Pr[X - \mathbb{P}[X] > \lambda \cdot \sigma] \leq \frac{1}{\epsilon}$
1 7 21 26 28 21 7 1 1 8 25 56 70 56 28 8 1 1 9 26 84 126 126 84 26 9 1 ramber of days to pass before we to collect all n types is nH_n . nH_n . Coordinate intercution: $Pr[X = k] = pq^{k-1}, q = 1 - p,$ $E[X] = \sum_{n=0}^{\infty} kpq^{k-1} = \frac{1}{n}.$					
1 9 36 84 126 126 84 36 9 1 nH_n . $E[X] = \sum_{i=1}^{n} k_{i} p_i q^{k-1} = \frac{1}{n}$.					PriX = $E = re^{k-1}$, $\alpha = 1 - n$.
1 9 26 84 126 126 84 36 9 1 1 10 46 120 210 222 210 120 46 10 1 $E[X] = \sum_{k=1}^{nM_n} k_{pq}^{k-1} = \frac{1}{p}$					
1 10 45 120 210 282 210 120 45 10 1				nH _n .	$E[X] = \sum kpq^{k-1} = \frac{1}{p}.$
	1 10 48	5 120 210 282 210 1	20 45 10 1		k=i *

Theor
Number Theory
The Chinese remainder theorem: There ex- ists a number C such that:
$C \equiv r_1 \mod m_2$
$C \equiv r_n \mod m_n$
if m_i and m_j are relatively prime for $i \neq j$.
Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x . If $\prod_{i=1}^n p_i^{n_i}$ is the prime fac- torization of x then
$\phi(x) = \prod_{i=1} p_i^{a_i-1}(p_i-1).$
Euler's theorem: If a and b are relatively prime then $1 = a^{\phi(b)} \mod b.$
Fermat's theorem: $1 \equiv a^{p-1} \mod p$.
The Euclidean algorithm: if $a > b$ are in- tegers then $gcd(a, b) = gcd(a \mod b, b)$.
If $\prod_{i=1}^{n} p_i^{a_i}$ is the prime factorization of x then
$S(x) = \sum_{i \mid i} d = \prod_{i=1}^{n} \frac{p_i^{n+1} - 1}{p_i - 1}.$
Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.
Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1, \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$
If $G(a) = \sum_{\mathbf{d} a} F(\mathbf{d})$,
then $F\left(a\right) = \sum_{d a} \mu(d) G\left(\frac{a}{d}\right).$
Prime numbers:
$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$
$+O\left(\frac{n}{\ln n}\right),$ $-n = n = 2n$
$\pi(\mathbf{n}) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2\ln}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$
((ln n)4)

etical Compe	ster Science Cheat Sheet				
Graph Theory					
Definitions:	•	Notation:			
Leep	An edge connecting a ver- tex to itself.	E(G) Edge set V(G) Vertex se			
Directed	Each edge has a direction.	c(G) Number of			
Simple	Graph with no loops or multi-edges.	G[S] Induced a deg(v) Degree of			
Walk	A sequence upcare, erus.	$\delta(G)$ Maximum $\delta(G)$ Minimum			
Trad Path	A walk with distinct edges. A trail with distinct	$\chi(G)$ Chromati			
	vertices.	$\chi_{\mathbf{E}}(G)$ Edge dire			
Connected	A graph where there exists	G= Complem K _n Complete			
	a path between any two vertices.	K_{n_0,n_0} Complete			
Component	A maximal connected	r(k, l) Ramsey :			
Thee	subgraph. A connected acyclic graph.	Geom			
Free tree	A tree with no root.	Projective coord (x, y, z), not all x			
DAG	Directed acyclic graph.	(x, y, z) = (cx, c)			
Eulerian	Graph with a trail visiting each edge exactly once.	Cartesian Pr			
Hamiltonian	Graph with a cycle visiting	(x, y) (x,			
	each vertex exactly once.	y = mx + b (m.			
Cut	A set of edges whose re-	x = c (1,			
	moval increases the num- ber of components.	Distance formula metric:			
Cut-set	A minimal cut.	$\sqrt{(x_1 - x_0)^2}$			
Cut edge	A size 1 cut.	$[x_1 - x_0 ^p + y_0 ^p]$			
k-Connected	A graph connected with the removal of any $k - 1$				
	vertices.	$\lim_{p\to\infty} [x_1-x_0 ^p +$			
k-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $.	Area of triangle (and (x_2, y_2) :			
k-Regular	A graph where all vertices have degree k.	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 \\ x_2 - x_0 \end{vmatrix}$			
k-Factor	A k-regular spanning subgraph	Angle formed by			
Matching	A set of edges, no two of which are adjacent.				
Clique	A set of vertices, all of	200			
Ind. set	which are adjacent. A set of vertices, none of which are adjacent.	$(0, 0)$ $\cos \theta = \frac{(x_1, y_1)}{2}$			
Vertez cover	A set of vertices which				
Planar grapi	cover all edges. A graph which can be em- beded in the plane.	Line through two and (x_1, y_1) :			
Plane graph	An embedding of a planar graph	z1 y1 z1 y1			
2	$\deg(v) = 2m$.	Area of circle, vol $A = \pi r^2$,			
If G is plans	then $n-m+f=2$, so	If I have seen furth			
$f \le 2$	it is because I hav				
Any planar g gree ≤ 5.	paph has a vertex with de-	shoulders of giants – Issue Newton			

E(G) Edge set
V(G) Vertex set
c(G) Number of components
G[S] Induced subgraph dog(v) Degree of v
$\Delta(G)$ Maximum degree $\delta(G)$ Minimum degree
χ(G) Chromatic ramber
$\chi_{E}(G)$ Edge chromatic number
G Complement graph
K _n Complete graph
K_{n_0,n_0} Complete bipartite graph
$r(k, \ell)$ Ramsey number
Geometry
Projective coordinates: triples
(x, y, z), not all x , y and z zero.
$(x, y, z) = (cx, cy, cx) \forall c \neq 0.$
Cartesian Projective
(x, y) $(x, y, 1)$
y = mx + b $(m, -1, b)$
z = c (1,0,-c)
Distance formula, L_p and L_m metric:
$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$,
$[x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p},$
$[x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p},$ $\lim_{p \to \infty} [x_1 - x_0 ^p + y_1 - y_0 ^p]^{1/p}.$
Area of triangle (x_0, y_0) , (x_1, y_1)
and (x2, 92):
$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.
Analy Committee Alexandria
Angle formed by three points:
/(x2.v2)
/-
/ °
(x_2, y_2) t_2 $(0, 0)$ t_1 (x_1, y_1)
$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\epsilon}$
6162
Line through two points (x_0, y_0) and (x_1, y_1) :
x y 1
$x_1 y_2 1 = 0.$
x ₁ y ₁ 1
Area of circle, volume of sphere:
$A = \pi r^2$, $V = \frac{4}{3}\pi r^3$.
If I have seen further than others,
it is because I have stood on the
shoulders of giants. – Issue Newton
- 1200 1100 000

Theoretical Computer Science Chest Sheet Walliv identity: $\pi = 2 \cdot \frac{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$ Brounder's continued fraction expansion: $8.\ \frac{d(\ln u)}{dx}=\frac{1}{u}\frac{du}{dx},$ Gregory's series: $\frac{\pi}{3} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{7} + \frac{1}{9} - \cdots$ Newton's series: 11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$ 12. $\frac{d(\cot u)}{dx} = \cot^2 u \frac{du}{dx},$ Sharp's series: $\mathbf{16.}\ \frac{d(\texttt{arccoe}\,\mathbf{u})}{dx} = \frac{-1}{\sqrt{1-\mathbf{u}^2}}\frac{d\mathbf{u}}{dx},$ $17. \ \frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx},$ $18. \ \frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx},$ Euler's series: 20. $\frac{d(\operatorname{arccsc} u)}{du} = \frac{-1}{u} \frac{du}{du}$ 19. $\frac{d(arcsecu)}{d} = \frac{1}{1 - \frac{du}{2}}$ $dx = u\sqrt{1-u^2} dx$ $21.\ \frac{d(\sinh u)}{dr}=\cosh u\frac{du}{dr},$ 22. $\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$, Partial Fractions $24. \ \frac{d(\coth u)}{dz} = - \cosh^2 u \frac{du}{dz},$ $29. \ \frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx},$ Let N(x) and D(x) be polynomial functions of x. We can break down 26. $\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$ $26. \ \frac{d(\cosh u)}{dr} = -\cosh u \ \coth u \frac{du}{dr},$ N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater $28. \ \frac{d(\operatorname{arrcosh} u)}{dx} = \frac{1}{\sqrt{u^2-1}} \frac{du}{dx},$ $27. \ \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$ than or equal to the degree of D, divide N by D, obtaining $\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$ $90. \ \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2-1}\frac{du}{dx},$ $29. \ \frac{d(\arctan h\, u)}{dz} = \frac{1}{1-u^2} \frac{du}{dz},$ $\label{eq:discrete_signal_state} \text{S1.} \ \frac{d(arcsechu)}{dz} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dz},$ $32. \ \frac{d(\operatorname{arcech} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}}\frac{du}{dx}.$ where the degree of N' is less than that of D. Second, factor D(x). Use the following rules. For a non-repeated factor: $\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$ 1. $\int cu\,dx = c\int u\,dx, \qquad \qquad 2. \int (u+v)\,dx = \int u\,dx + \int v\,dx,$ $3. \ \int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1, \qquad 4. \ \int \frac{1}{x} dx = \ln x, \qquad 8. \ \int e^x \, dx = e^x,$ 6. $\int \frac{dx}{1+x^2} = \arctan x$, 7. $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$, For a repeated factor: 8. $\int \sin x \, dx = -\cos x$, 9. $\int \cos x \, dx = \sin x$, 10. $\int \tan x \, dx = -\ln|\cos x|$, 11. $\int \cot x \, dx = \ln|\cos x|$, 13. $\int \csc x \, dx = \ln |\csc x + \cot x|$, 12. $\int \sec x dx = \ln|\sec x + \tan x|$, The reasonable man adapts himself to the world; the unreasonable persists in trying 14. $\int \arcsin \frac{\pi}{a} dx = \arcsin \frac{\pi}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$ to adapt the world to himself. Therefore all progress depends on the unreasonable. George Bernard Shaw

Theoretical Computer Science	- Charl Short
	ce Cheat Sheet
Calculus Cont.	
16. $\int \operatorname{arccos} \frac{\pi}{a} dx = \operatorname{arccos} \frac{\pi}{a} - \sqrt{a^2 - x^2}, a > 0,$	$\int \arctan \frac{\pi}{a} dx = x \arctan \frac{\pi}{a} - \frac{\pi}{2} \ln(a^2 + x^2), a > 0,$
17. $\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$	18. $\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$
19. $\int \sec^2 x dx = \tan x,$	$20. \int \cot^2 x dx = -\cot x,$
21. $\int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-1} x dx$, 22.	$\int \cos^n x dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-1} x dx,$
23. $\int \tan^n x dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1,$ 24	$\int \cot^n x dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-1} x dx, n \neq 1,$
25. $\int \sec^n x dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, n \neq 1,$	
28. $\int \csc^n x dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \cot^{n-2} x dx, n \neq 1,$ 2	7. $\int \sinh x dx = \cosh x$, 28. $\int \cosh x dx = \sinh x$,
29. $\int \tanh x dx = \ln \cosh x $, 30. $\int \coth x dx = \ln \sinh x $, 31. $\int \sec x dx = \ln \sinh x $	
33. $\int \sinh^2 x dx = \frac{1}{4} \sinh(2\pi) - \frac{1}{2}x$, 34. $\int \cosh^2 x dx = \frac{1}{4}x$	$\sinh(2x) + \frac{4}{2}x$, 35. $\int \operatorname{soch}^2 x dx = \tanh x$,
98. $\int \operatorname{arcsinh} \frac{\pi}{a} dx = x \operatorname{arcsinh} \frac{\pi}{a} - \sqrt{x^2 + a^2}, a > 0,$	-
98. $\int \operatorname{arccosh} \frac{\pi}{a} d\mathbf{r} = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} > 0 \text{ and} \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{\pi}{a} < 0 \text{ and} \end{cases}$	a > 0, a > 0,
39. $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left(x + \sqrt{a^2 + x^2}\right), a > 0,$	
40. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{a}{a}, a > 0,$ 41.	$\int \sqrt{a^2-x^2}\mathrm{d}x = \frac{s}{2}\sqrt{a^2-x^2} + \frac{s^2}{2}\arcsin\frac{s}{s}, a>0,$
42. $\int (a^2 - x^2)^{3/2} dx = \frac{\pi}{6} (\delta a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{\pi}{a}, a > 0,$	
43. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{\pi}{a}, a > 0,$ 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln a $	$\frac{a+x}{a-x}$, $\frac{dx}{(a^2-x^2)^{3/2}} = \frac{x}{a^2\sqrt{a^2-x^2}}$,
48. $\int \sqrt{a^2 \pm x^2} dx = \frac{\pi}{2} \sqrt{a^2 \pm x^2} \pm \frac{\pi^2}{2} \ln x + \sqrt{a^2 \pm x^2} ,$	47. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln x + \sqrt{x^2 - a^2} , a > 0,$
48. $\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left \frac{x}{a + bx} \right ,$	49. $\int x\sqrt{a+bx} dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{1bb^2}$,
80. $\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$	S1. $\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0,$
82. $\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right $	89. $\int x \sqrt{a^2 - x^2} dx = -\frac{i}{3} (a^2 - x^2)^{3/2},$
54. $\int x^2 \sqrt{a^2 - x^2} dx = \frac{\pi}{6} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{\pi^4}{6} \arcsin \frac{\pi}{4}, a > 0,$	55. $\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{4} \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right $
2 4	7. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi^2}{2} \arcsin \frac{\pi}{a}, a > 0,$
88. $\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right ,$ 69	0. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, a > 0,$
60. $\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{2}(x^2 \pm a^2)^{2/2}$,	61. $\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right ,$

Theoretical Computer Science Cheat	Sheet
Calculus Cont.	Finite Calculus
12. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{ x }, a > 0,$ 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2x},$ 14. $\int \frac{x dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$ 68. $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^2},$ $\int \frac{1}{\sqrt{x^2 \pm a^2}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{a^2x} \right , \text{if } b^2 > 4ac,$	Difference, shift operators: $\Delta f(x) = f(x+1) - f(x),$ $Ef(x) = f(x+1).$ Fundamental Theorem: $f(x) = \Delta F(x) \Leftrightarrow \sum f(x) \delta x = F(x) +$
16. $\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$ 17. $\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$	$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$ Differences: $\Delta(ca) = c\Delta u, \Delta(u+v) = \Delta u + \delta$ $\Delta(uv) = u\Delta v + \mathbf{E}v\Delta u,$ $\Delta(x^{\underline{u}}) = nx^{\underline{u}-1},$
18. $\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\Delta(H_{\sigma}) = x^{-1},$ $\Delta(2^{\sigma}) =$ $\Delta(c^{\sigma}) = (c-1)c^{\sigma},$ $\Delta\binom{\sigma}{m} = \binom{\sigma}{m}$ Sums:
19. $\int \frac{x dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$	$\sum c u \delta x = c \sum u \delta x,$ $\sum (u + v) \delta x = \sum u \delta x + \sum v \delta x,$
$10. \int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$	$\sum u\Delta v \delta x = uv - \sum E v \Delta u \delta x,$ $\sum x^{n} \delta x = \frac{n+1}{m+1}, \qquad \sum x^{-1} \delta x = I$ $\sum c^{n} \delta x = \frac{c^{n}}{i-1}, \qquad \sum \binom{n}{m} \delta x = \binom{n}{m+1}$
11. $\int x^3 \sqrt{x^2 + a^2} dx = (\frac{1}{3}x^2 - \frac{1}{13}a^2)(x^2 + a^2)^{3/2},$	Falling Factorial Powers: $x^n = x(x-1) \cdots (x-n+1), n > 0$
72. $\int x^n \sin(ax) dx = -\frac{1}{a}x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$,	$x^{2} = 1,$ $x^{n} = \frac{1}{(x + 1) \cdots (x + n)}, n < 0,$
79. $\int x^n \cos(\alpha x) dx = \frac{1}{\alpha} x^n \sin(\alpha x) - \frac{n}{\alpha} \int x^{n-1} \sin(\alpha x) dx,$ $x^n e^{nx}$	$x^{n+m} = x^m(x-m)^n$. Rising Factorial Powers:
74. $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$,	$x^{N} = x(x + 1) \cdots (x + n - 1), n > x^{0} = 1,$
78. $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$ 78. $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x- n)}, n < 0,$ $x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$ Conversion:
$z^{1} = z^{1} = z^{2}$ $z^{2} = z^{2} + z^{3} = z^{2} - z^{2}$	$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$ = $1/(x + 1)^{-n}$,
$a^{2} = x^{2} + 3x^{2} + x^{4}$ = $x^{2} - 3x^{2} + x^{2}$ $a^{2} = x^{2} + 6x^{2} + 7x^{2} + x^{4}$ = $x^{2} - 6x^{2} + 7x^{2} - x^{2}$	$x^{N} = (-1)^{n}(-x)^{n} = (x + n - 1)^{n}$ = $1/(x - 1)^{-n}$,
$a^{3} = -xh + 18xh + 28xh + 10xh + xh$ = $-xh - 18x^{2} + 28x^{3} - 10x^{2} + x^{2}$ $a^{2} = -x^{4}$ $x^{4} = -x^{4}$	$x^n = \sum_{k=1}^{n} {n \brace k} x^k = \sum_{k=1}^{n} {n \brace k} (-1)^{n-k}$
$\vec{r} = x^{2} + x^{4}$ $x^{3} = x^{2} - x^{4}$ $\vec{r} = x^{3} + 3x^{2} + 2x^{4}$ $x^{3} = x^{2} - 3x^{2} + 2x^{4}$	$x^n = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^k,$
$x^{4} = x^{4} + 6x^{2} + 11x^{2} + 6x^{4}$ $x^{4} = x^{4} - 6x^{3} + 11x^{2} - 6x^{4}$ $x^{5} = x^{5} + 10x^{4} + 35x^{2} + 50x^{2} + 24x^{4}$ $x^{5} = x^{5} - 10x^{4} + 35x^{3} - 50x^{2} + 24x^{4}$	$x^{n} = \sum_{k=1}^{n} {n \brack k} x^{k}$.

•	Theoretical	Computer Science	Cheat Sheet	
---	-------------	------------------	-------------	--

Series

Taylor's series:

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2}f''(a) + \dots = \sum_{i=0}^m \frac{(x-a)^i}{i!}f^{(i)}(a).$$

Expansions:

Ordinary power series:

$$A(x) = \sum_{i=1}^{m} a_i x^i$$
.

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x}{i!}$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{m} \frac{a_i}{i^*}$$

Binomial theorems

$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^k.$$

$$aA(x) + \beta B(x) = \sum_{i=0}^{m} (aa_i + \beta b_i)x^i$$

$$x^k A(x) = \sum_{i=k}^m a_{i-k} x^i$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{m} a_{i+k} x^i$$

$$A(\alpha x) = \sum_{\alpha=0}^{\infty} c^{\alpha} a_{\alpha} x^{\alpha},$$

$$A'(x) = \sum_{i=0}^{m} (i+1)\alpha_{i+1}x^{i}$$

$$xA^{i}(x) = \sum_{i=1}^{m} ia_{i}x^{i}$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} \alpha_{ii} x^{2i}$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{m} a_{2i+1}x^{2i+1}.$$

Summation: If $b_k = \sum_{i=0}^{k} a_i$ then

$$B(x) = \frac{1}{1-x}A(x)$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{m} \left(\sum_{j=0}^{i} a_{j}b_{i-j} \right) x^{i}$$

God made the natural numbers: all the rest is the work of man. Leopold Kronecker

Theoretical Computer Science Cheat Sheet

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=1}^{m} (H_{n+i} - H_n) \binom{n+i}{i} x^i,$$

$$x^n = \sum_{i=1}^{m} \binom{n}{i} x^i,$$

$$\left(\ln \frac{1}{1-x} \right)^n = \sum_{i=1}^{m} \binom{i}{n} \frac{n! x^i}{i!},$$

$$n! x^n = \sum_{i=1}^{m} \binom{n}{i} \frac{n! x^i}{i!},$$

$$n! x^n = \sum_{i=1}^{m} \binom{n}{i} \frac{n! x^i}{i!},$$

tan z =
$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!}$$
,

$$\frac{1}{\zeta(x)}$$
 = $\sum_{i=1}^{i-1} \frac{\mu(i)}{i^x}$,

$$\zeta(x) = \prod_{p} \frac{1}{1 - p^{-x}},$$

$$\zeta^{2}(x)$$
 = $\sum_{i=1}^{m} \frac{d(i)}{x^{i}}$ where $d(n) = \sum_{d|n} 1$,

$$\zeta(x)\zeta(x-1)$$
 = $\sum_{i=1}^{\infty} \frac{S(i)}{x^i}$ where $S(n) = \sum_{i|n} d$

$$\zeta(2n) = \frac{|D_{2n}|}{(2n)!} \pi^{2n}, n \in \mathbb{N},$$

$$\frac{x}{1 + 2n!} = \sum_{i=1}^{m} (-1)^{i-1} \frac{(4^i - 2)B_{2i}x^{2i}}{(4^i - 2)B_{2i}x^{2i}}.$$

$$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n = \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!}x^i,$$

$$e^{x} \sin x = \sum_{i=1}^{m} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^{i},$$

$$\sqrt{\frac{1 - \sqrt{1 - x}}{x}} = \sum_{i=0}^{\infty} \frac{(4i)!}{16i\sqrt{2}(2i)!(2i + 1)!}x^i,$$

$$(\frac{\arcsin x}{x})^2 = \sum_{i=0}^{\infty} \frac{4^ii!^2}{16i\sqrt{2}(2i)!(2i + 1)!}x^i,$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2$
 \vdots

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then $x_i = \frac{\det A_i}{\det A}.$

 $a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$

$$z_i = \frac{\operatorname{det} A_i}{\operatorname{det} A}$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. William Blake (The Marriage of Heaven and Hell)

$$-\sum_{i=1}^{n} \left\{ \frac{i}{n} \right\} z^{i}$$

$$(e^x - 1)^n = \sum_{i=0}^m \left\{ \begin{array}{l} i \\ n \end{array} \right\} \frac{i!x^i}{i!},$$

 $\sum_{i=0}^m \left(-4 \right)^i B_{2i} x^{2i}.$

$$\zeta(x) = \sum_{i=1}^{n-1} \frac{1}{i^n},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{n-1} \frac{\phi(i)}{i^x},$$

Stielties Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{x} G(x) dF(x)$$

exists. If $a \le b \le c$ then

$$\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

21 32 49 54 65 00 10 69 05 58

42 m3 64 On 16 20 31 58 19 87

The Fibonacci number system:

Every integer n has a unique

 $n = F_{k_0} + F_{k_0} + \cdots + F_{k_m}$,

where $k_i \ge k_{i+1} + 2$ for all i,

 $1 \le i < m$ and $k_m \ge 2$.

representation.

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d[F(x) + H(x)] = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d[c \cdot F(x)] = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at point in [a, b] then

$$\int_{-1}^{1} G(x) dF(x) = \int_{-1}^{1} G(x)F'(x) dx.$$

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . Definitions:

$$F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$$

 $F_{-i} = (-1)^{i-1}F_i,$
 $F_i = \frac{1}{\sqrt{3}} \left(\phi^i - \dot{\phi}^i \right),$

Cassini's identity: for i > 0: $F_{s+1}F_{s-1} - F_s^2 = (-1)^s$.

Additive rule:

 $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$ $F_{2n} = F_n F_{n+1} + F_{n-1} F_n$. Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

Computação Gráfica Unidade 02

prof. Dalton S. dos Reis dalton.reis@gmail.com

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital http://www.inf.furb.br/gcg/

