Cryptanalyse différentielle et linéaire

Pierre-Alain Fouque

Réseau SP

- Schéma de chiffrement par bloc de taille nm
- Réseau de Substitution-Permutation (SPN)
- Soit n et m deux entiers
- Longueur du clair et chiffré: nm
- Deux composants π_S et π_P :
 - $\pi_S: \{0,1\}^n \rightarrow \{0,1\}^n$ une substitution (S-box)
 - π_P : [I,nm] \rightarrow [I,nm] une permutation

Notations

- $x=(x_1,...,x_{nm})=x_{(1)}||...||x_{(m)}\in\{0,1\}^{nm}$, avec $x_{(i)}\in\{0,1\}^n$
- (K^I,...,K^{e+I}) les (e+I) sous-clés
- u^k l'entrée des Sbox à l'étage k
- v^k la sortie des Sbox à l'étage k=entrée permutation
- w^k la sortie de la permutation à l'étage k
- S^k_i: i-ième Sbox de l'étage k

Z	0	I	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
$\pi_{S}(z)$	E	4	D		2	F	В	8	3	Α	6	С	5	9	0	7
Z	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_P(z)$	I	5	9	13	2	6	10	14	3	7	П	15	4	8	12	16

Diversification de clé

- Décalage des bits: Pas bonne méthode, mais exemple
- $K = 0011 1010 1001 0100 1101 0110 0011 1111 \in \{0,1\}^{32}$
- K¹=0011 1010 1001 0100
- $K^2=1010100101001101$
- $K^3 = 1001010011010110$
- K⁴=0100 1101 0110 0011
- K⁵=||0||0||0||0||1|||

X u u^2 S^2_3 u^3 S^3 S^3 S³3 S⁴₃

SPN

- Cryptanalyse linéaire:
 - Supposons qu'on trouve une relation linéaire probabiliste entre un ensemble de bits du texte clair x et un sousensemble des bits de l'état v4 (il existe des variables dont le ⊕ vaut 0 avec probabilité ≠ 1/2)
 - Si on a suffisamment de messages chiffrés avec une clé K, alors on peut retrouver la clé K
 - Pour chaque chiffré, on déchiffre le dernier étage et on vérifie la relation avec des compteurs

Lemme d'empilement

- X₁ et X₂ deux variables aléatoires sur {0, I}
- $Pr[X_i=0]=p_i$ et $Pr[X_i=1]=1-p_i$, i=1,2
- i≠j, X_i et X_j indépendants,
 - $Pr[X_i=0, X_j=0]=p_ip_j$
 - $Pr[X_i=0, X_j=1]=p_i(1-p_j)$
 - $Pr[X_i=I, X_j=0]=(I-p_i)p_j$
 - $Pr[X_i=0, X_j=0]=(I-p_i)(I-p_j)$
 - $Pr[X_i \oplus X_j = 0] = p_i p_j + (I p_i)(I p_j)$
 - $Pr[X_i \oplus X_j = I] = p_i(I p_j) + (I p_i)p_j$

Biais et lemme (suite)

- Biais de X_i : $\varepsilon_i = p_i 1/2$, $-1/2 \le \varepsilon_i \le 1/2$
- $Pr[Xi=0]=1/2+\epsilon_i \text{ et } Pr[Xi=1]=1/2-\epsilon_i$
- Soit i I,...,ik k v.a. Quel est le biais de $X_{i1} \oplus ... X_{ik}$ $\epsilon_{i1,...,ik}$ en fonction des ϵ_i ?
- Lemme: $\varepsilon_{i1,..,ik} = 2^{k-1} \prod_{j=1}^{k} \varepsilon_{ij}$ (par récurrence)
- Corollaire: Si ε_{ij} =0 pour un des j, $\varepsilon_{i1,...,ik}$ =0 (One-Time-Pad)
- Attention: Résultat pas vrai si pas indépendant: $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$, $\varepsilon_{1,2} = \varepsilon_{2,3} = \varepsilon_{1,3} = 1/8$, alors que $2\varepsilon_{1,2} \times \varepsilon_{2,3} = 1/32$

Approximation Sbox

- Sbox n bits vers n bits
- n variables aléatoires en entrée Xi
- $Pr[X_1=x_1,...X_n=x_n]=1/2^n$
- $y=(y_1,...,y_n)$ les n bits de sorties
- $Pr[X_1=x_1,...,X_n=x_n,Y_1=y_1,...,Y_n=y_n]=0$ si $y \neq \pi_S(x)$ et 2^{-n} sinon.
- Quel est le biais de $X_{i1} \oplus ... \oplus X_{ik} \oplus Y_{j1} \oplus ... \oplus Y_{jl}$?

Exemple Sbox

X_{I}	X_2	X ₃	X ₄	Yı	Y 2	Y ₃	Y ₄
0	0	0	0	I	I		0
0	0	0	I	0	I	0	0
0	0		0	I	I	0	I
0	0	I	I	0	0	0	I
0		0	0	0	0	I	0
0	I	0	I	I	I	I	I
0	I	I	0	I	0	I	I
0		I	I	I	0	0	0
I	0	0	0	0	0	I	I
I	0	0	I	I	0	I	0
1	0	I	0	0	I	I	0
1	0	I	I	I	I	0	0
I	I	0	0	0	I	0	I
1		0		I	0	0	I
1			0	0	0	0	0
I				0	I		I

Soit $X_1 \oplus X_4 \oplus Y_2$ $Pr[X_1 \oplus X_4 \oplus Y_2 = 0]$ = 1/2 $Pr[X_1 \oplus X_4 \oplus Y_2 = 1]$ = 1/2

Biais de X₃⊕X₄⊕Y₁⊕Y₄: -3/8

Représentation résultat

- $2^8=256$ biais à évaluer de la forme $(\bigoplus_{i=1}^4 a_i X_i) \oplus (\bigoplus_{i=1}^4 b_i Y_i)$ avec $a_i \in \{0,1\}$ et $b_i \in \{0,1\}$ pour i=1,...,4 qu'on représente de façon compacte (a_1,a_2,a_3,a_4) et (b_1,b_2,b_3,b_4) en hexa
 - Ex: $X_1 \oplus X_4 \oplus Y_2$ entrée (1,0,0,1)=9 hexa et sortie (0,1,0,0)=4 en hexa
- Pour chacune, on compte le nombre de ligne qui satisfait la relation $\mathcal{E}(a,b)=(N_L(a,b)-8)/16$
 - Ex: $N_L(9,4)=8$, $\varepsilon(9,4)=0$
 - cf. Table d'approximation linéaire

Cryptanalyse linéaire SPN

- Les Sbox qui ont une entrée avec une flèche entrante sont appelées actives
- dans S_2^1 , v.a. $T_1 = U_5^1 \oplus U_7^1 \oplus U_8^1 \oplus V_6^1$: biais = 1/4 dans S_2^2 , v.a. $T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$: biais = -1/4,
- dans S_{2}^{3} , v.a. $T_{3}=U_{6}^{3}\oplus V_{6}^{3}\oplus V_{8}^{3}$: biais=-1/4
- dans S^3_4 , v.a. $T_4 = U^3_{14} \oplus V^3_{14} \oplus V^3_{16}$: biais = -1/4
- T₁,T₂,T₃,T₄ ont un biais important en valeur absolue

Un peu de calcul ...

- Supposons que ces variables aléatoires soient indépendantes ...
- le lemme d'empilement dit que le biais de $T_1 \oplus T_2 \oplus T_3 \oplus T_4$ est $2^3(1/4)(-1/4)^3 = -1/32$
- On remarque que T₁⊕T₂⊕T₃⊕T₄ s'exprime en fonction de x, u⁴ et de bits de clés
- $T_1 = U_5 \oplus U_7 \oplus U_8 \oplus V_6 = X_5 \oplus K_5 \oplus X_7 \oplus K_7 \oplus X_8 \oplus K_8 \oplus V_6$
- $T_2=U^2_6\oplus V^2_6\oplus V^2_8=V^1_6\oplus K^2_6\oplus V^2_6\oplus V^2_8$
- $T_3 = U^3_6 \oplus V^3_6 \oplus V^3_8 = V^2_6 \oplus K^3_6 \oplus V^3_6 \oplus V^3_8$...

suite des calculs

- $X_5 \oplus X_7 \oplus X_8 \oplus V^3_6 \oplus V^3_8 \oplus V^3_{14} \oplus V^3_{16} \oplus K^1_5 \oplus K^1_7$ $\oplus K^1_8 \oplus K^2_6 \oplus K^3_6 \oplus K^3_{14}$ a un biais de -1/32
- On remplace V_i^3 par U_i^4 et $V_i^3 = U_i^4 \oplus K_i^4$, $V_i^3 = U_i^4 \oplus K_i^4 + V_i^3 = U_i^4 \oplus K_i^4$, $V_i^3 = U_i^4 \oplus K_i^4$, $V_i^3 = U_i^4 \oplus K_i^4$
- Comme les bits de clés ont une valeur fixe pour tous les messages, la variable aléatoire X₅⊕X₇⊕X⁸⊕U⁴₆⊕U⁴₈⊕U⁴₁₄⊕U⁴₁₆ a un biais de -1/32

Algorithme

- Si on devine les 8 bits de la dernière sousclé correctement, alors on pourra calculer le biais de la variable aléatoire
- Si on n'a pas la bonne valeur de clé, la variable aléatoire aura un biais proche de 0
- En utilisant des compteurs, on trouvera le biais (maximal) et on déduira qu'on a alors la bonne valeur pour ces 8 bits de clé
- On retrouvera les autres avec une recherche exhaustive

Un peu de statistique...

- Si on a un biais de ε, alors il faudra c/ε²
 messages pour le détecter avec c une petite
 constante
- Dans notre cas, si on prend T=8000 messages, on aura $c \approx 8$ car $1/\epsilon^2 = 1024$
- Comment faire mieux avec moins de messages ...

Cryptanalyse différentielle

- C'est une attaque à messages choisis
- Si on a des messages qui satisfont une x'=x⊕x* différence fixée en entrée, au bout d'un certain nombre de tours, la différence de sorties y'=y⊕y* vaudra une valeur fixe avec bonne probabilité
- Notation: $\Delta(x') = \{(x,x \oplus x'): x \in \{0,1\}^m\}$
- $\Delta(1011)=\{(0000,1011),(0001,1010),...,(1111,0100)\}$
- Pour chaque valeur de Δ(1011), on peut calculer les différences de sorties

0		2	3	4	5	6	7	8	9	Α	В	U	О	ш	F
0	0	8	0	0	2	0	2	0	0	0	0	0	2	0	2

Cryptanalyse différentielle

- On notera $N_D(x',y') = \#\{(x,x^*) \in \Delta(x') : \pi_S(x) \oplus \pi_S(x^*) = y'\}$
- et avec des notations adaptées comme pour la cryptanalyse linéaire, on calcule la table des différences N_D(a',b') avec a',b' en hexa
- L'addition de clé ne pose pas de problème
- Rapport de propagation $R_p(a',b')=N_D(a',b')/2m$
- R_p(a',b')=Pr[xor de sortie=b'|xor entrée=a']

Piste différentielle

- dans S_{2} , Rp(1011,0010)=1/2
- dans S^2_3 , Rp(0100,0110)=3/8
- dans S_{2} , Rp(0010,0101)=3/8
- dans S^3_3 , Rp(0010,0101)=3/8
- Rp(0000 1011 0000 0000,0000 0101 0101 0000) = $1/2*(3/8)^3 = 27/1024$
- x'= 0000 1011 0000 0000, donne (v³)'= 0000 0101 0101 0000 avec probabilité 27/1024
- et $(u^4)'=0000 0110 0000 0110$

Opération de filtrage

- L'algorithme est similaire à celui pour la cryptanalyse linéaire (on a des compteurs qui vont déterminer 8 bits de la dernière sous-clés) et on augmente les compteurs si la caractéristique différentielle est satisfaite
- En plus, on ne conserve dans le calcul que les «bonnes paires», celles où on n'a pas de différences sur (u(1)⁴)' et (u(3)⁴)'
- T \approx c/ ϵ , avec c une petite constante et T entre 50 et 100 permet de retrouver la clé car $1/\epsilon \approx 38$.

Conclusion: Construction AES

- AES a été construit en connaissant ces attaques
- Les concepteurs ont montré qu'il n'y avait pas d'attaque car les pistes différentielles ont une probabilité de l'ordre de 2-128 au bout de 5 tours
- Les marges de sécurité font que dans certains cas, on peut remonter plusieurs étages