CS & IT ENGINEERING

THEORY OF COMPUTATION

Pushdown Automata

Lecture - 04

Recap of Previous Lecture

Topics to be Covered

Push down automat

Topic

?? CFL Detection

Detection

Topic

?? Closure properties of CFL & DCFL

not closed { Closure properties of Regular. }

- (1) Subset op
- 2) Infinite Union
- (3) Infinite Intersection

Topic: Pushdown Automata

Topic: Pushdown Automata

1) Every finite dangular -> Regular -> CFL

```
Consider the following languages: L_1 = \{a^n \ b^m \ c^{n+m} : m, n \ge 1\} \longrightarrow \text{CFL}
L_2 = \{a^n \ b^n \ c^{2n} : n \ge 1\} \longrightarrow \text{Non CFL}
Which one of the following is TRUE?
```

[2016(Set-2): 2 Marks]

- A Both L₁ and L₂ are context-free.
- L_1 is context-free while L_2 is not context-free
- C L_2 is context-free while L_1 is not context-free
- Neither L₁ nor L₂ is context-free

Consider the following language over the alphabet $\Sigma = \{a, b, c\}$.

Let
$$L_1 = \{a^n b^n c^m \mid m, n \ge 0\}$$
 and CFL
 $L_2 = \{a^m b^n c^n \mid m, n \ge 0\}$. CFL

Which of the following are context-free languages?

I.
$$L_1 \cup L_2 \longrightarrow CFL$$

II.
$$L_1 \cap L_2 \rightarrow \{anbnch\} non cfl$$

[2017(Set-1): 2 Marks]

- A I only
- B II only
- C I and II
- D Neither I nor II

Let L_1 , L_2 be any two context-free languages and R be any regular language. Then which of the following is/are CORRECT?

- I. $(L_1 \cup L_2)$ is context-free $\rightarrow \vee$
- II. \overline{L}_1 is context-free \nearrow
- III. L₁ R is context-free ____
- IV. $L_1 \cap L_2$ is context-free \times

[2017(Set-2): 1 Marks]

- A I, II and IV only
- B Yand III only
- C II and IV only
- D I only

Consider the following languages: $L_1 = \{a^p \mid p \text{ is a prime number}\}$ $L_2 = \{a^n b_1^m, c^{2m} | n \ge 0, m \ge 0\} \longrightarrow CF$ $L_3 = \{a^n b^n c^{2n} | n \ge 0\}$ $L_{A} = \{a^{n} b^{n} \mid n \geq 1\} \longrightarrow CFL & DCFL$ Which of the following are CORRECT? L_1 is context-free but not regular. L₂ is not context-free. III. L₃ is not context-free but recursive. IV L_4 is deterministic context-free.

[2017(Set-2): 2 Marks]

A I, II and IV only

B II and III only

C I and IV only

III and IV only

Suppose that L_1 is a regular language and L_2 is a context-free language. Which one of the following languages is NOT necessarily context-free?

[2021(Set-1): 2 Marks]

closure properties

Unim of two DCFL may conmay not DCFL Hence DCFL not closed for Unim of

Intersection of $\frac{2^{n} \ln n \cdot m}{DCFL} = \left\{ \frac{a^{n} \ln n}{n} \right\}$ abc, 2122, 2363c3, 2464c4--}= CFL not closed for Intersection op.

Intersection with Regular Always CFL. may (or) may not Regular Chomsky Hierarchy

CFLARy + Regn S A sub -> Complement of CFL is may (or) may not CFL.

-> Complement of DCFL is always DCFL.

Lategular

Which of the following in false.

CFLU CFL L3U Ly = CFL->true.

(b) L3 --> DCFL}-sfalse

C) L3 NLy -> DCFL}-sfalke

(g) vers

	CFL	DCFL
(3) Intersection with Regular		
(8) Difference	*	人,一しっこし,八しっ
9 d-Regular		L-Regt LARg=LARg=L
(10) Regular-L	Ry ACFL =	Ry n DCFL = Ryndory DCFL
(1) Reversal (1th)		X
(12) Quotient	X	X

	CFL	DCFL
(3) Substitution		×
(14) Homomorphism		X
(B) Inverse Homomorphism		
(16) L U Regular	CFLJ Reg= (FL	PCFLURy-DCFL
(7) Prefix		
(8) Suffix		X
(19) Subset	X	X

@aaa - - - -

$$\delta(q_0, \alpha, \alpha) = (q_0, \alpha\alpha)(\alpha)(q_1, \epsilon)$$

Lizcel Lz, Luzregular always CFL. (5) (L1-L2) CFL ARD (L3-Ly) => always CFL (6) (L₁-l₃) CFL / (L₂. L_u)^R may (a) may not CFL. Ry -> C (F) (L, ML3) (L2 MLy) => may (n) may not CFL (8) (L1 L3) - (FL) may (m) may not CFL CFL- CFL

(CFLARegular), always CFL (farb) / (ab) - (ab)

2 mins Summary

THANK - YOU