T AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-007736

(43)Date of publication of application: 13.01.1998

(51)Int.CI.

C08F210/02

(21)Application number: 08-160286

(71)Applicant: MITSUI PETROCHEM IND LTD

(22)Date of filing:

20.06.1996

(72)Inventor: KAWASAKI MASAAKI

TSUTSUI TOSHIYUKI

(54) UNSATURATED ETHYLENE COPOLYMER AND ITS PRODUCTION

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an unsaturated ethylene copolymer which has high chemical reactivity, easiness of grafting and excellent adhesiveness, coatability, printability, etc., by subjecting an aolefin, a specified cycloolefin and a specified linear—polyenic norbornene compound to random copolymerization.

SOLUTION: This copolymer is a random copolymer comprising ethylene (A), a 3-20 C a-olefin (B) and a linear polyenic norbornene compound (C) represented by formula I (wherein n is an integer of 1-5; R1 is a 1-5 C alkyl; and R2 and R3 are each H or a 1-5 C alkyl). The copolymer comprises 92-99.9mol% structural units derived from A, 0 to below 8mol% structural units derived from B, and 0.1 to below 8mol% structural units derived from C. The structural units derived from C has a structure represented by formula II (wherein n and R1 to R3 are each as defined in formula I).

Щ

]

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

EST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-7736

(43)公開日 平成10年(1998) 1月13日

(51) Int. Cl. 6 C08F210/02 識別記号 MJG

FI

C08F210/02

MJG

審査請求 未請求 請求項の数4 OL (全32頁)

(21)出願番号

(22)出願日

特願平8-160286

平成8年(1996)6月20日

(71)出願人 000005887

三井化学株式会社

東京都千代田区霞が関三丁目2番5号

(72)発明者 川 崎 雅 昭

千葉県市原市千種海岸3番地 三井石油化

学工業株式会社内

(72)発明者 筒 井 俊 之

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(74)代理人 弁理士 鈴木 俊一郎

(54) 【発明の名称】不飽和性エチレン系共重合体およびその製造方法

(57) 【要約】

【解決手段】(i) エチレンと、(ii) 炭素数 3~200 α ーオレフィンと、(iii) 特定の式で表される少なくとも 1種の鎖状ポリエン基含有ノルボルネン化合物とのランダム共重合体であり、(i) 単位が92モル%を超えて99.9モル%以下で、(ii) 単位が0モル%以上でかつ8モル%未満で、(iii) 単位が0.1モル%以上でかつ8モル%未満で、上記鎖状ポリエン基含有ノルボルネン化合物単位が特定の式で表される構造を有しており、135℃のデカリン中で測定した極限粘度[η]が0.05~10dl/gである不飽和エチレン系共重合体およびその製造方法。

【効果】化学反応性に富み、したがってグラフト変性が容易で、しかも接着性、塗装性、印刷性、帯電防止性などに優れた新規な不飽和性エチレン系共重合体が得られる。

【特許請求の範囲】

【請求項1】(i) エチレンと、(ii) 炭素数 3~20 の α ーオレフィンと、(iii)下記一般式 [I] で表される少な くとも1種の鎖状ポリエン基含有ノルボルネン化合物と のランダム共重合体であり、(a)エチレンから誘導され る構成単位が92モル%を超えて99.9モル%以下で あり、(b) 炭素数 $3 \sim 200 \alpha - オレフィンから誘導さ$ れる構成単位が0モル%以上でかつ8モル%未満であ り、(c)下記一般式[I]で表される鎖状ポリエン基含有 ノルボルネン化合物から誘導される構成単位が 0. 1モ ル%以上でかつ8モル%未満であり、(d)下記一般式

[1] で表される鎖状ポリエン基含有ノルボルネン化合 物から誘導される構成単位が下記式[II]で表される構 造を有しており、(e)135℃、デカリン中で測定した 極限粘度 [η] が 0. 05~10 dl/gであることを特 徴とする不飽和エチレン系共重合体:

一般式[1]:

(化1)

[式 [I] 中、nは1~5の整数であり、R'は炭素数1 ~5のアルキル基であり、R'およびR'はそれぞれ独立 して水素原子または炭素数1~5のアルキル基であ る。]

一般式[11]:

【化2】

[式[II]中、nは1~5の整数であり、R'は炭素数

1~5のアルキル基であり、R'およびR'はそれぞれ独 立して水素原子または炭素数1~5のアルキル基であ る。]。

【請求項2】(i) エチレンと、(ii) 炭素数3~20のα ーオレフィンと、(iii)上記一般式 [I] で表される少な くとも1種の鎖状ポリエン基含有ノルボルネン化合物と を、

遷移金属化合物(4)と、

有機アルミニウム化合物および/またはイオン化イオン 性化合物(ロ)と、から形成される触媒の存在下に共重合 させて、請求項1に記載の不飽和性エチレン系共重合体 を得ることを特徴とする不飽和性エチレン系共重合体の 製造方法。

【請求項3】(i)エチレンと、(ii)炭素数3~2000c ーオレフィンと、(iii)上記式 [I] で表される少なくと も1種の鎖状ポリエン基含有ノルボルネン化合物、およ び該鎖状ポリエン基含有ノルボルネン化合物 [1] に比 して少量の下記式 [I-a] で表わされる少なくとも1 種の鎖状ポリエン基含有ノルボルネン化合物と、のラン 20 ダム共重合体であって、(a)エチレンから誘導される構 成単位が92モル%を超えて99.9モル%以下であ り、(b) 炭素数 $3 \sim 20$ の $\alpha -$ オレフィンから誘導され る構成単位が0モル%以上でかつ8モル%未満であり、 (c)上記一般式 [I] で表される鎖状ポリエン基含有ノル ボルネン化合物から誘導される構成単位と、該鎖状ポリ エン基含有ノルボルネン化合物[I]に比して少量の下 記一般式[I-a]で表される鎖状ポリエン基含有ノル ボルネン化合物から誘導される構成単位とが合計で0. 1モル%以上でかつ8モル%未満であり、(d)上記一般 30 式[1]で表される鎖状ポリエン基含有ノルボルネン化 合物から誘導される構成単位が上記式「11]で表され、 下記一般式「Iーa」で表される鎖状ポリエン基含有ノ ルポルネン化合物から誘導される構成単位が下記一般式 [II-a] で表され、(e) 135℃デカリン中で測定さ れる極限粘度 [η] が、0.05~10d1/gである ことを特徴とする不飽和エチレン系共重合体: [化3]

$$CH_2 - CH = C \rightarrow CH_2 \rightarrow C = C$$

$$R^3$$

$$R^1$$

$$R^2$$

· • • [1-a]

[式 [I-a] 中、n、R'、R'およびR'はそれぞれ式 [1] の場合と同様である。] (化4)

$$\begin{array}{c}
3 \\
CH_{2}-CH=C \rightarrow CH_{3} \rightarrow C=C \\
CH_{3}
\end{array}$$

[式 [II-a] 中、n、R'、R'およびR'はそれぞれ 式[II]の場合と同様である。]。

【請求項4】(i)エチレンと、

(ii) 炭素数 $3 \sim 20$ の α ーオレフィンと、

(iii)上記一般式 [1] で表わされる少なくとも1種の鎖 状ポリエン基含有ノルボルネン化合物、および上記一般 式[I-a]で表わされる鎖状ポリエン基含有ノルボル ネン化合物 [I-a] とを、

遷移金属化合物(4)と、

有機アルミニウム化合物および/またはイオン化イオン 性化合物(ロ)と、から形成される触媒の存在下に共重合 させて請求項3に記載の不飽和性エチレン系共重合体を 得ることを特徴とする不飽和エチレン系共重合体の製造 方法。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、不飽和性エチレン系共重 合体およびその製造方法に関し、さらに詳しくは化学反 応性に富み、したがってグラフト変性が容易で、しかも 接着性、塗装性、印刷性、帯電防止性などに優れた新規 な不飽和性エチレン系共重合体およびその製造方法に関 する。

[0002]

【発明の技術的背景】結晶性エチレン系重合体は、透明 性、耐熱性、表面光沢性などに優れており、フィルム、 シートなど広い分野での用途に利用されている。

【0003】しかしながら結晶性エチレン系重合体は、 極性基を有さずしかも飽和炭化水素重合体であるため、 化学反応性に劣り、グラフト変性が容易ではなく、また 接着性、塗装性、印刷性、帯電防止性などに劣るという 問題点があり、このためこれらの特性に優れたエチレン 系重合体が用途によっては求められている。

【0004】化学反応性に富んだポリエチレンとして、 エチレンとエチリデンノルボルネンとを共重合させて得 られる共重合体(独国特許公開第2,001,702号)、エチ レンとプタジエンとを共重合させて得られる共重合体

(特公昭50-32270号公報)、エチレンと4-メチ ル-1,4-ヘキサジエンとを共重合させて得られる共重合 体 (特開昭56-30413号公報) などが提案されて いる。

【0005】ところがこれらの不飽和エチレン系共重合 体では、分子量制御が困難であったり、化学反応性が必 ずしも充分ではなかったりするという問題点があった。

本発明者は、上記のような従来技術に鑑みて不飽和性エ チレン系共重合体について鋭意研究した結果、エチレ ン、αーオレフィンおよび特定の鎖状ポリエン基含有ノ ルボルネン化合物から誘導される構成単位を有し、かつ 不飽和性結合を有する不飽和性エチレン共重合体は、化 学反応性に富み、グラフト変性が容易でしかも接着性、 塗装性、印刷性、帯電防止性などに優れていることを見 出して、本発明を完成するに至った。

[0006]

【発明の目的】本発明は、上記のような従来技術に伴う 問題点を解決しようとするものであって、化学反応性に 富み、グラフト変性が容易でしかも接着性、塗装性、印 刷性などに優れた不飽和性エチレン系共重合体およびそ の製造方法を提供することを目的としている。

[0007]

【発明の概要】本発明に係る不飽和性エチレン系共重合 体は、(i) エチレンと、(ii) 炭素数3~20のα-オレ フィンと、(iii)下記一般式[I]で表される少なくとも 1種の鎖状ポリエン基含有ノルボルネン化合物とのラン ダム共重合体であり、(a)エチレンから誘導される構成 20 単位が92モル%を超えて99.9モル%以下であり、 (b) 炭素数 $3 \sim 20$ の α ーオレフィンから誘導される構 成単位が0モル%以上でかつ8モル%未満であり、(c) 下記一般式[1] で表される鎖状ポリエン基含有ノルボ ルネン化合物から誘導される構成単位が 0. 1モル%以 上でかつ8モル%未満であり、(d)下記一般式[I]で表 される鎖状ポリエン基含有ノルボルネン化合物から誘導 される構成単位が下記式 [II] で表される構造を有して おり、(e)135℃、デカリン中で測定した極限粘度 [n] が0.05~10dl/gであることを特徴として いる。

【0008】合計は100モル%とする。以下同様であ る。

一般式[1]:

[0009]

【化5】

30

【0010】 [式 [1] 中、nは1~5の整数であり、 R'は炭素数 $1 \sim 5$ のアルキル基であり、R'およびR'はそれぞれ独立して水素原子または炭素数1~5のアル キル基である。〕

一般式[11]:

[0011]

【化6】

50

【0012】 [式 [II] 中、nは1~5の整数であり、 R^1 は炭素数1~5のアルキル基であり、 R^1 および R^1 はそれぞれ独立して水素原子または炭素数1~5のアルキル基である。]。

【0013】本発明では、このような不飽和エチレン系 共重合体は、(i) エチレンと、(ii) 炭素数 $3\sim200\alpha$ ーオレフィンと、(iii)上記一般式 [I] で表される少なくとも1種の鎖状ポリエン基含有ノルボルネン化合物とを、遷移金属化合物(イ)と、有機アルミニウム化合物および/またはイオン化イオン性化合物(ロ)と、から形成される触媒の存在下に共重合させて製造することが好ましい。

【0014】本発明に係る不飽和エチレン系共重合体においては、上記(iii)には、上記式 [I] で表される少なくとも1種の鎖状ポリエン基含有ノルボルネン化合物

10 (鎖状ポリエン基含有ノルボルネン化合物 [I]) に加 えて、下記式 [I-a]:

[0015]

[化7]

$$CH_{2}-CH=C \rightarrow CH_{2} \rightarrow CH_{2} \rightarrow C=C$$

30

40

· · · · [I-a]

【0016】 [式 [I-a] 中、n、R'、R' およびR' はそれぞれ式 [I] の場合と同様である。] で表わされる少なくとも1種の鎖状ポリエン基含有ノルボルネン化合物 (鎖状ポリエン基含有ノルボルネン化合物 [I-a]) が、上記化合物 [I] に比して少量、好ましくは [I] + [I-a] の合計100モル%中に、該化合物 [I-a] が50モル%未満、さらに好ましくは40モル%以下、特に好ましくは35モル%以下の量で含まれていてもよい。

【0017】このようなランダム共重合体では、(a)エ チレンから誘導される構成単位が92モル%を超えて9 9. 9モル%以下であり、(b) 炭素数3~20のα-オ レフィンから誘導される構成単位が0モル%以上でかつ 8モル%未満であり、(c)上記一般式[I]で表される鎖 状ポリエン基含有ノルボルネン化合物から誘導される構 成単位[II]と、上記鎖状ポリエン基含有ノルボルネン 化合物 [I-a] から誘導される下記式で示される構成 単位[II-a]とが、合計で、上記鎖状ポリエン基含有 ノルボルネン化合物 [11] 単独の場合と同様の量、すな わち0.1モル%以上でかつ8モル%未満であり、上記 構成単位[II]と上記構成単位[II-a]は、構成単位 [II] と [II-a] との合計 100 モル%中に、該構成 単位 [II-a] が50モル%未満、さらに好ましくは4 0モル%以下、特に好ましくは35モル%以下の量で共 重合されている。

【0018】このような共重合体では、(d)上記一般式 [I] で表される鎖状ポリエン基含有ノルポルネン化合・物から誘導される構成単位が上記式 [II] で表され、上記一般式 [I-a] で表される鎖状ポリエン基含有ノルポルネン化合物から誘導される構成単位が下記一般式 [II-a] で表され、(e) 135℃デカリン中で測定さ

20 れる極限粘度 [η] が、0.05~10dl/gである。

[0019] [化8] CH2—CH2—CH2—CR2—CR2

+ + + + [II-a]

【0020】 [式 [II-a] 中、n、R¹、R¹およびR¹はそれぞれ式 [II] の場合と同様である。]。本発明では、このような不飽和エチレン系共重合体は、(i)エチレンと、(ii)炭素数3~20のα-オレフィンと、(ii)上記一般式 [I] で表わされる少なくとも1種の鎖状ポリエン基含有ノルボルネン化合物、および上記一般式 [I-a] で表わされる鎖状ポリエン基含有ノルボルネン化合物 [I-a] とを、遷移金属化合物(4)と、有機アルミニウム化合物および/またはイオン化イオン性化合物(ロ)と、から形成される触媒の存在下に共重合させて製造することが好ましい。

【0021】上記のような本発明に係る不飽和性エチレン系共重合体は、化学反応性に富み、グラフト変性が容易で、しかも接着性、塗装性、印刷性、帯電防止性などに優れている。

[0022]

【発明の具体的説明】以下、本発明に係る不飽和性エチレン系共重合体およびその製造方法について具体的に説明する。

50 <u>[不飽和性エチレン系共重合体]</u> 本発明に係る不飽和性

エチレン系共重合体は、(i) エチレンと、(ii) 炭素数 3 $\sim 2000\alpha$ ーオレフィンと、(iii)下記一般式 [I] で表される少なくとも 1種の鎖状ポリエン基含有ノルボルネン化合物(および必要により含まれる一般式 [I-a] で表わされる少なくとも 1種の鎖状ポリエン基含有ノルボルネン化合物)と、のランダム共重合体である。

【0023】 $\underline{[\alpha-オレフィン(ii)]}$ このような(ii) 炭素数 $3\sim20$ の $\alpha-オレフィンとしては、具体的には、プロピレン、<math>1$ -プテン、1-ペンテン、1-ヘキセン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ペンテン、4-ジメチル-1-ペンテン、4-ジメチル-1-ペキセン、4-エチル-1-ペキセン、4-エチル-1-ヘキセン、4-エチル-1-ヘキセン、4-エチル-1-ヘキセン、4-オクテ

ン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられ、好ましくはプロピレン、1-プテン、1-ヘキセン、1-オクテンが用いられる。これらのα-オレフィンは、単独であるいは2種以上組み合わせて用いられる。

【0024】 「鎖状ポリエン基含有ノルポルネン化合物 (iii) 本発明においては、上記(iii)の鎖状ポリエン基 含有ノルポルネン化合物 (非共役ポリエン(iii)) は、10 上述したように下記一般式[1] で表される。

【0025】 【化9】

【0026】式 [I] 中、nは1~5の整数であり、 R^1 は炭素数1~5のアルキル基であり、 R^1 および R^1 はそれぞれ独立して水素原子または炭素数1~5のアルキル基である。なお、数字1~7およびn+3等は、炭素番号(置換基位置)を示す。

【0027】炭素数 $1\sim5$ のアルキル基としては、具体的に、メチル基、エチル基、n-プロピル基、i-プロピル基、i-プチル基、t-プチル基、t-プチル基、t-プチル基、t-プチル基、t-ペンチル基などが挙げられる。

【0028】このような式 [I] で表わされる鎖状ポリエン基含有ノルボルネン化合物 (以下、鎖状ポリエン基含有ノルボルネン化合物 [I] ともいう) としては、具体的に下記 (1) \sim (24) に例示するような化合物が挙げられ、好ましくは、 (5)、 (6)、 (9)、 (11)、 (14)、 (19)、 (20) が用いられる。

- (1):5-(2-エチリデン-4-ヘキセニル)-2-ノルボルネン、
- (2):5-(2-エチリデン-5-メチル-4-ヘキセニル)-2-ノルボルネン、
- (3):5-(2-エチリデン-5-メチル-4-ヘプテニル)-2-ノルボルネン、
- (4):5-(2-エチリデン-5-エチル-ヘプテニル)-2-ノルボルネン、
- (5):5-(2-エチリデン-4, 5-ジメチル-4-ヘキセニル)-2-ノルボルネン、
- (6):5-(2-エチリデン-4, 5-ジメチル-4-ヘプ テニル)-2-ノルボルネン、
- (7):5-(2-エチリデン-4-オクテニル)-2-ノルボルネン、
- (8):5-(2-エチリデン-5-メチル-4-オクテニ

- ル)-2-ノルボルネン、
- (9):5-(2-エチリデン-4-プロピル-5-メチル-4-ヘキセニル)-2-ノルボルネン、
- (10):5-(2-エチリデン-5-ヘプテニル)-2-ノ ルボルネン、
- (11):5-(2-エチリデン-6-メチル-5-ヘプテニル)-2-ノルボルネン、
- (12):5-(2-エチリデン-6-ノネニル)-2-ノルボルネン、
- 30 (13):5-(2-エチリデン-6-メチル-5-ノネニル)-2-ノルボルネン、
 - (14):5-(2-エチリデン-5, 6-ジメチル-5-ヘプテニル)-2-ノルボルネン、
 - (15):5-(2-エチリデン-5, 6-ジメチル-5-オクテニル)-2-ノルボルネン、
 - (16):5-(2-エチリデン-5, 6-ジメチル-5-/ ネニル)-2-ノルボルネン、
 - (17): 5-(2-エチリデン-5-エチル-6-メチル-5-ノネニル)-2-ノルボルネン、
- 40 (18):5-(2-エチリデン-5, 6-ジエチル-5-オ クテニル)-2-ノルボルネン、
 - (19):5-(2-エチリデン-7-メチル-6-オクテニル)-2-ノルボルネン、
 - (20):5-(2-エチリデン-6, 7-ジメチル-6-オ クテニル)-2-ノルボルネン、
 - (21):5-(2-エチリデン-8-メチル-7-ノネニル)-2-ノルボルネン、
 - (22):5-(2-エチリデン-7,8-ジメチル-7-ノネニル)-2-ノルボルネン、
- 50 (23):5-(2-エチリデン-9-メチル-8-デセニ

ル)-2-ノルボルネン、

とめて以下に示す。

(24):5-(2-エチリデン-8,9-ジメチル-8-デ

[0030]

セニル) -2-ノルボルネンなど。

【化10】

【0029】上記化合物(1)~(24)の化学式をま

$$\begin{array}{c|c}
 & C & H & C & H & G$$

$$CH_{2}-C-CH_{2}-CH=C$$

$$CH_{2}-C+CH_{3}-CH_{2}-CH_{2}-CH_{3}$$

[0031]

【化11】

[0032]

【化12】

【0033】このような鎖状ポリエン基含有ノルボルネ ン化合物[1]は、後述する不飽和エチレン系共重合体 の製造用モノマーとして、(i)エチレン、(ii)炭素数3 ~20のα-オレフィン、と共に用いられるが、その際 には、該鎖状ポリエン基含有ノルボルネン化合物 [1] は、立体異性体の内の1種例えばトランス体単独または シス体単独であってもよく立体異性体混合物、例えばト ランス体およびシス体の混合物であってもよい。

【0034】このような鎖状ポリエン基含有ノルボルネ ン化合物[1]を用いてなる不飽和エチレン系共重合体 では、後述するように、化学反応性に富み、グラフト変 性しやすく、接着性、塗装性、印刷性などに優れる。

【0035】次に、このような新規の鎖状ポリエン基含 30 有ノルボルネン化合物 [1] の製造方法について、具体 的に説明する。

[鎖状ポリエン基含有ノルボルネン化合物 [I] の製 造] 以下に、この鎖状ポリエン基含有ノルボルネン化合 物[I] (および[I-a])の製造方法について詳説す る。

【0036】鎖状ポリエン基含有ノルボルネン化合物 [1] は、下記のようにして製造される。 [0037]

【化13】

40

【0038】すなわち、上記鎖状ポリエン基含有ノルボルネン化合物 [I] は、本願出願人が先に提案した特願平6-154952号明細書(平成6年(1994)7月6日出願)に記載されているように、まず、エチレンと式[III-a]:

[0039]

【化14】

· • • • [||-a]

【0040】(式 [III-a] 中、nは $1\sim5$ の整数であり、 R^1 は炭素数 $1\sim5$ のアルキル基であり、 R^1 および R^1 はそれぞれ独立して水素原子または炭素数 $1\sim5$ のアルキル基である。)で表わされる共役ジェン化合物 [III-a] とを、遷移金属化合物および有機アルミウニウム化合物からなる触媒の存在下に反応させることによ

20 り、式[III]: 【0041】

【化15】

$$H_{8} C = CH - CH_{2} - C - CH_{2} + \frac{R^{3}}{n} C = C$$

$$CHCH_{3}$$

¹ は上記 [III-a] の場合と同様のものを示す。) で表わされる分岐鎖状ポリエン化合物 [III] を合成し、次いで、特願平6-322099号明細書(平成6年12月26日出願) に記載されているように、この分岐鎖状ポリエン化合物 [III] とシクロペンタジエンとを反応

【0042】 (式 [III] 中、n、R¹、R² およびR

(ディールス・アルダー反応) させることにより、上記鎖状ポリエン基含有ノルボルネン化合物 [1] が得られ

【0043】以下、この鎖状ポリエン基合有ノルボルネン化合物[1]の上記製造工程に沿ってさらに詳細に順次説明する。

[分岐鎖状ポリエン化合物 [III] の製造] 上記分岐鎖 状ポリエン化合物 [III] は、上記式 [III-a] で示され る共役ジエンを有する化合物 (以下共役ジエン化合物 [III-a] ともいう) と、エチレンとを反応させること により製造することができる。

【0044】上記式 [III-a] 中で、炭素数1~5のア

ルキル基としては、前述したようなものが挙げられる。 このような式 [III-a] で示される共役ジエン化合物と しては、具体的にたとえば、下記 (1) ~ (24) に例 示するような化合物が挙げられる。

(1):3-メチレン-1,5-ヘプタジエン、

. . . . [1113]

- (2):6-メチル-3-メチレン-1,5-ヘプタジエン、
- (3):6-メチル-3-メチレン-1,5-オクタジエン、
- 40 (4):6-エチル-3-メチレン-1,5-オクタジエン、
 - (5):5,6-ジメチル-3-メチレン-1,5-ヘプタジエン、
 - (6):5,6-ジメチル-3-メチレン-1,5-オクタジエン、
 - (7):3-メチレン-1,5-ノナジエン、
 - (8):6-メチル-3-メチレン-1,5-ノナジエン、
 - (9):6-メチル-5-プロピル-3-メチレン-1,5-ヘプタ ジエン、
 - (10): 3-メチレン-1,6-オクタジエン、
 - (11): 7-メチル-3-メチレン-1,6-オクタジエン、
 - (12):3-メチレン-1,6-デカジエン、
- 50 (13): 7-メチル-3-メチレン-1,6-デカジエン、

(14): 6,7-ジメチル-3-メチレン-1,6-オクタジエン、

(15):6,7-ジメチル-3-メチレン-1,6-ノナジエン、

(16):6,7-ジメチル-3-メチレン-1,6-デカジエン、

(17): 7-メチル-6-エチル-3-メチレン-1, 6-デカジ エン、

(18):6,7-ジエチル-3-メチレン-1,6-ノナジエン、

(19):8-メチル-3-メチレン-1,7-ノナジエン、

(20): 7,8-ジメチル-3-メチレン-1,7-ノナジエン、

(21):9-メチル-3-メチレン-1,8-デカジエン、

(22):8,9-ジメチル-3-メチレン-1,8-デカジエン、

(23):10-メチル-3-メチレン-1,9-ウンデカジエ

ン、

(24):9,10-ジメチル-3-メチレン-1,9-ウンデカジ エン。

【0045】上記反応によると、分岐鎖状ポリエン化合物 [III] は、通常、トランス体とシス体との混合物として得られる。分岐鎖状ポリエン化合物 [III] の構造によっては、蒸留によってトランス体とシス体とを分離することができる。

【0046】また上記反応によれば、分岐鎖状ポリエン 化合物[III]とともに一般式[III-b]で示される下記 0ような鎖状ポリエン化合物も副生することがある。

[0047]

【化16】

 $H_{2}C = CH - CH_{2} - CH = C(CH_{3}) - (CH_{2})_{n} - CR^{3} = CR^{2}R^{1}$

· · · · [|||-b]

【0048】このような副生物としては、具体的には、例えば、7-メチル-3-メチレン-1, 6-オクタジエン ($\beta-$ ミルセン)とエチレンとの反応により、EMN (4-エチリデン-8-メチル-1, 7-ノナジエン)を合成する際に副生する5, 9-ジメチル-1, 4, 8-デカトリエンが挙げられる。

【0049】このような副生物は、通常、蒸留によって分離することができる。上記のような共役ジエン化合物 [III-a] とエチレンとの反応は、共役ジエン化合物 [III-a] の種類によっても異なるが、通常 $50 \sim 200$ で好ましく $70 \sim 150$ での温度で、エチレン圧 $1 \sim 10$ 0 kg/cm² 好ましくは $10 \sim 70$ kg/cm² の圧力下に、0.5 ~ 30 時間行われる。

【0050】反応は、窒素、アルゴンなどの不活性ガス 雰囲気下で行ってもよい。また溶媒を使用しないで反応 を行なうことができるが、ヘキサン、ヘプタン、オクタ ン、ノナン、デカン、ウンデカン、ドデカン、トリデカ ン、トルエン、キシレンなどの不活性な炭化水素系溶媒 の共存下に反応を行なうこともできる。

【0051】この反応は、通常触媒の存在下に行なわれる。特に反応を、遷移金属化合物と有機アルミニウム化合物とからなる触媒の存在下に行なうと、分岐鎖状ポリエン化合物[III]が効率よく得られる。

【0052】このような遷移金属化合物としては、具体的に、鉄、ルテニウムなどの鉄族、コバルト、ロジウム、イリジウムなどのコバルト族、ニッケル、パラジウムなどのニッケル族から選ばれる遷移金属の塩化物、臭化物、アセチルアセトナート塩、1,1,1,5,5,5-ヘキサフルオロアセチルアセトナート塩、ジピバロイルメタン塩などが挙げられる。これらのうち、コバルト、鉄、ニッケル、ロジウム、パラジウムの塩化物が好ましく、特にコバルト化合物の塩化物が好ましい。

【0053】このような遷移金属化合物(たとえば遷移

金属塩化物)は、そのままでも反応に用いることができるが、この遷移金属化合物に有機配位子が配位した遷移 20 金属錯体として用いることが好ましい。すなわちこの遷移金属化合物とともに遷移金属の配位子となりうる有機化合物(配位化合物)を反応系に共存させるか、あるいは予め遷移金属化合物と上記のような配位化合物とから遷移金属錯体を形成して使用するのが好ましい。

【0054】このような配位子となりうる化合物としては、たとえば、ピス(ジフェニルホスフィノ)メタン、1,2-ピス(ジフェニルホスフィノ)エタン、1,3-ピス(ジフェニルホスフィノ)プロパン、1,4-ピス(ジフェニルホスフィノ)ブタン、トリエチルホスフィン、トリプチルホスフィン、トリフェニルホスフィン、シクロオクタジエン、シクロオクタテトラエンなどが挙げられる

【0055】また予め遷移金属化合物に有機配位子が配位された錯体としては、 [1,2-ビス (ジフェニルホスフィノ) エタン] コパルト(II)クロリド、 [1,2-ビス (ジフェニルホスフィノ) エタン] ニッケル(II)クロリド、ビス (トリフェニルホスフィン) ニッケル(II)クロリドなどが好ましく用いられる。

【0056】また有機アルミニウム化合物としては、後 40 述する不飽和性エチレン系共重合体の製造時に用いられ るようなものを挙げることができ、トリエチルアルミニ ウムが好ましく用いられる。有機アルミニウム化合物 は、そのまま用いてもよく、またトルエン溶液あるいは ヘキサン溶液にして用いることもできる。

【0057】上記の共役ジエン化合物 [III-a] とエチレンとの反応においては、遷移金属化合物は、共役ジエン化合物 [III-a] に対して、好ましくは0.001~10モル%の量で、特に好ましくは0.01~1モル%の量で用いられる。また配位化合物は、遷移金属化合物に対して、0~20モル倍の量で用いられることが好まし

く、特に $0.1\sim5$ モル倍の量で用いられることが好ましい。

【0058】有機アルミニウム化合物は、遷移金属化合物に対して、 $1\sim200$ モル倍の量で用いられることが好ましく、特に $3\sim100$ モル倍の量で用いられることが好ましい。

【0059】本発明では、上記のような遷移金属化合物 (または遷移金属錯体) と有機アルミニウム化合物とを 予め接触させた後に、上記反応(共役ジエン化合物 [II I-a] とエチレンとの反応)用の触媒として用いることが好ましい。

【0060】上記のような共役ジエン化合物 [III-a] とエチレンとの反応によれば、下記のような分岐鎖状ポリエン化合物 [III]:

[0061]

【化17】

$$H_{2} C = CH - CH_{2} - C - (CH_{2}) + \frac{R^{3}}{C - C} + \frac{R^{1}}{R^{2}}$$

【0062】 (式 [III] 中、n、R¹、R²およびR²は 前記式 [III-a] の場合と同じ意味である。) が得られ

【0063】このような分岐鎖状ポリエン化合物 [II I] としては、具体的に下記(1)~(24)に例示するような化合物が挙げられ、好ましくは、(5)、

- (6)、(9)、(11)、(14)、(19)、(2 0)が用いられる。
- (1):4-エチリデン-1,6-オクタジエン、
- (2):7-メチル-4-エチリデン-1,6-オクタジエン、
- (3): 7-メチル-4-エチリデン-1,6-ノナジエン、
- (4): 7-エチルー-4-エチリデン-1,6-ノナジエン、
- (5): 6, 7-ジメチル-4-エチリデン-1, 6-オクタジエン、
- (6):6,7-ジメチル-4-エチリデン-1,6-ノナジエン、
- (7):4-エチリデン-1,6-デカジエン、
- (8): 7-メチル-4-エチリデン-1,6-デカジエン、
- (9):7-メチル-6-プロピル-4-エチリデン-1,6-オクタジエン、
- (10):4-エチリデン-1,7-ノナジエン、
- (11):8-メチル-4-エチリデン-1,7-ノナジエン(EMN)、
- (12):4-エチリデン-1,7-ウンデカジエン、
- (13): 8-メチル-4-エチリデン-1,7-ウンデカジエン、

(14):7,8-ジメチル-4-エチリデン-1,7-ノナジエン、

• • • • [111]

(15):7,8-ジメチル-4-エチリデン-1,7-デカジエン、

(16):7,8-ジメチル-4-エチリデン-1,7-ウンデカジ 20 エン、

(17):8-メチル-7-エチル-4-エチリデン-1,7-ウン デカジエン、

(18): 7,8-ジエチル-4-エチリデン-1,7-デカジエン、

(19):9-メチル-4-エチリデン-1,8-デカジエン、

(20):8,9-ジメチル-4-エチリデン-1,8-デカジエン、

(21):10-メチル-4-エチリデン-1,9-ウンデカジエン、

30 (22):9,10-ジメチル-4-エチリデン-1,9-ウンデカ ジエン、

(23):11-メチル-4-エチリデン-1,10-ドデカジエン、

(24):10,11-ジメチル-4-エチリデン-1,10-ドデカ ジエン。

【0064】上記化合物(1)~(24)の化学式をまとめて以下に示す。

[0065]

【化18】

[0066]

[0067]

$$H_2C=CH-CH_2-C-CH_2CH_2-C$$
 (CH₂) =C (CH₂) =C (CH₂) =C (CH₂) +C (CH

$$H_2G=CH-CH_2-C-CH_3CH_2-C$$
 (C2H3) = C (17)
 GH (CH2) CH_2CH_3

[0068]

【0069】これら分岐鎖状ポリエン化合物 [III] は、鎖状ポリエン基含有ノルボルネン化合物 [I] の調製の際に、単独であるいは2種以上組み合わせて用いられる。上記した分岐鎖状ポリエン化合物 [III] は、トランス体およびシス体の混合物であってもよく、トランス体単独またはシス体単独であってもよい。

【0070】 <u>「鎖状ポリエン基含有ノルボルネン化合物</u> <u>[1] の製造</u> 本発明では、次いで、上記にようにして 得られた分岐鎖状ポリエン化合物 (「非共役トリエン化合物」とも言う) [III]:

[0071] [化22]

$$H_{2} C = CH - CH_{2} - C - (CH_{2}) + \frac{R^{3}}{n} C = C$$

$$R^{3}$$

$$CHCH_{3}$$

【0072】(式 [III] 中、n、R'、R'およびR'は ブチル基、sec-ブチル基、tert-プチル基、 前記と同じ意味である。)と、シクロペンタジエンとを 50 -ペンチル基、イソペンチル基等を挙げることができ

反応 (ディールス・アルダー反応) させることにより、 鎖状ポリエン基含有ノルボルネン化合物 [1]:

[0073] [化23]

$$\begin{array}{c}
 & \stackrel{R}{\longrightarrow} CH_2 \xrightarrow{-C} \xrightarrow{-C} H_2 \xrightarrow{-C} \xrightarrow{R^2} \\
 & \stackrel{R}{\longrightarrow} CH_2 \xrightarrow{R^2}
\end{array}$$

• • • • [1

【0074】(式 [I] 中、nは $1\sim5$ の整数を示し、R'は、炭素数 $1\sim5$ のアルキル基を示し、R'及びR'は、それぞれ独立に水素原子又は炭素数 $1\sim5$ のアルキル基を示す。) が得られる。

【0075】上記一般式 [I] において、R'、R'又はR'が、炭素数1~5のアルキル基であるとき、このようなアルキル基として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソプチル基、sec-プチル基、tert-プチル基、n-ペンチル基、イソペンチル基等を挙げることができ

27

る。

【0076】上記反応において用いられる分岐鎖状ポリエン化合物 [III] の内では、R'及びR'は、炭素数 $1\sim 3$ のアルキル基であり、特に好ましくはメチル基であり、R'は、水素であることが望ましい。

【0077】シクロペンタジエンは、通常、その二量体であるジシクロペンタジエンを160℃以上で熱分解蒸留することによって得られるので、本発明においては、シクロペンタジエンと分岐鎖状ポリエン化合物 [III] との反応において、採用される反応温度によっては、シクロペンタジエンに代えてジシクロペンタジエンを用い、このジシクロペンタジエンを反応系内で熱分解させてシクロペンタジエンを発生させ、このシクロペンタジエンを上記分岐鎖状ポリエン化合物 [III] との反応に用いてもよい。

【0078】このようなシクロペンタジエンと上記分岐鎖状ポリエン化合物 [III] との反応は、用いられる分岐鎖状ポリエン化合物 [III] によっても異なるが、好ましくは、窒素、アルゴン等の不活性ガス雰囲気下、分岐鎖状ポリエン化合物 [III] 1重量部に対して、シクロペンタジエン0.2~4重量部、好ましくは0.5~3重量部を、50~250℃好ましくは100~200℃の範囲の温度にて、1~100kg/cm¹好ましくは5~70kg/cm²の圧力下に、0.5~30時間程度、加熱攪拌することによって行われる。

【0079】反応は、必要に応じて、ハイドロキノン等のラジカル重合禁止剤の存在下に行ってもよい。シクロペンタジエンと分岐鎖状ポリエン化合物 [III] との反応において、反応溶媒は、特に用いる必要はないが、用いてもよい。

【0080】反応溶媒を用いる場合には、反応溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、トルエン、キシレン等の炭化水素系溶媒、ジクロロメタン、ジクロロエタン、ジクロロベンゼン等のハロゲン系炭化水素、テトラヒドロフラン、ジオキサン等のエーテル系

溶媒、メタノール、エタノール、イソプロパノール、 t ープタノール等のアルコール系溶媒を用いることができる。また、反応溶媒として、水も用いることができる。 【0081】このようにして得られる鎖状ポリエン基合有ノルボルネン化合物 [1] は、前記式 [1] で示され、またこのような鎖状ポリエン基含有ノルボルネン化合物 [1] としては、前述したようなものが例示できる。

【0082】このようにして得られる鎖状ポリエン基含有ノルボルネン化合物 [I] は、通常、立体異性構造 (ノルボルネン骨格に対する鎖状ポリエンの結合の仕方に基づくエンド体およびエキソ体並びに鎖状ポリエンの 二重結合の置換の仕方に基づくトランス体及びシス体) またまる

【0083】このような鎖状ポリエン基含有ノルボルネン化合物 [I] の構造は、質量分析、赤外線吸収スペクトル、プロトンNMRスペクトル等を測定することによって決定することができる。

【0084】本発明発明においては、このような鎖状ポリエン基含有ノルボルネン化合物 [1] を、後述するよ うな不飽和エチレン系共重合体、並びに該不飽和エチレン系共重合体を含有するゴム組成物の製造に用いる場合は、上記立体異性構造を有する前述したような種々のノルボルネン化合物の混合物であってもよく、また、いずれか1種の立体異性体単独であってもよい。

【0085】なお、上記の反応によれば、鎖状ポリエン基含有ノルボルネン化合物 [1] は、通常、エンド体とエキソ体との混合物として得られ、場合によっては、蒸留によって分離することができる。

【0086】なお、鎖状ポリエン基含有ノルボルネン化30 合物[I]の調製の際に用いられるポリエン化合物原料に、上記分岐鎖状ポリエン化合物[III]以外に、この分岐鎖状ポリエン化合物[III]の合成過程で生じた副生物[III-b]:

[0087] [化24]

 H_2 C=CH-CH₂-CH=C (CH₃)-(CH₂) $_{\rm R}$ -CR³=CR² R¹

· · · · [III-b]

【0088】が含有されていると、この副生物 [III-b] とシクロペンタジエンとの反応により、鎖状ポリエン基含有ノルボルネン化合物 [I-a]:

40 【0089】 【化25】

$$CH_{2} - CH = C - CH_{2} \rightarrow C = C$$

$$CH_{3}$$

· · · · [I-8]

【0090】 (式 [I-a] 中、R¹, R², R², nは、式 [I] の場合と同様である。) が副生してくる。後述

するように、本発明に係る不飽和エチレン系共重合体の 50 製造に際しては、このような鎖状ポリエン基含有ノルポ ルネン化合物 [I] とともに少量の鎖状ポリエン基含有 ノルボルネン化合物 [I-a] が含まれた鎖状ポリエン 基含有ノルボルネン化合物含有物(化合物 [I] と [Ia] との混合物)を用いることもできる。

【0091】このように、上記鎖状ポリエン基含有ノルボルネン化合物 [1] に加えて、副生物の鎖状ポリエン基含有ノルボルネン化合物 [1-a] をも含有するもの([1] と [1-a] との混合物)を、後述するような、エチレン(i)と、炭素数3~2000~オレフィン(ii)と、(iii)鎖状ポリエン基含有ノルボルネン化合物との反応の際に、この(iii)鎖状ポリエン基含有ノルボルネン化合物として用いると、得られる不飽和性エチレン系共重合体には、鎖状ポリエン基含有ノルボルネン化合物由来の構成単位として、上記ノルボルネン化合物 [1]由来の下記に示す構成単位 [11] に加えて、ノルボルネン化合物 [1-a] 由来の構成単位 [11-a] が含まれたものが得られる。

[0092] [11]:

[0093]

[化26]

【0094】 [式 [II] 中、nは $1\sim5$ の整数であり、 R^1 は炭素数 $1\sim5$ のアルキル基であり、 R^1 および R^1 はそれぞれ独立して水素原子または炭素数 $1\sim5$ のアルキル基である。]

[ll-a]:

• • • • [||-a']

【0100】が前述したような量(少量)で含まれたものが得られる。なお、前記式[I-a]で表わされる鎖状ポリエン基含有ノルボルネン化合物自体は、特願平7-75288号明細書(平成7年(1995)3月31日出願)に記載の方法で得ることもできる。

【0 1 0 1】すなわち、シクロペンタジエンと、一般式(a):

[0102]

【化30】

$$H_2 C = CH - (CH_2) \xrightarrow{R} C = C \longrightarrow CH_2 \xrightarrow{R} C = C$$

10 【0096】(式 [II-a]中、n、R¹、R²およびR³はそれぞれ前記 [II] の場合と同様である。) 例えば、上記鎖状ポリエン基含有ノルボルネン化合物として、[I]:EMHN {:5-(2-エチリデン-6-メチル-5-ヘプテニル)-2-ノルボルネン}の他に、少量の副生成物 [I-a]:(5-[3,7-ジメチル-2,6-オクタジエニル]-2-ノルボルネン)を含有する「EMHN含有物」を用いると、EMHN由来の構成単位 [II']:

[0097]

【0098】に加えて、上記副生物 [I-a] 由来の構 30 成単位 [II-a']:

【0099】 【化29】

【0103】 [式 (a) 中、m, n はそれぞれ独立して 1~5の整数を示し、R', R', R'並びにR', R'は、それぞれ上記式 [I] の場合と同様に、水素または 炭素数 1~5のアルキル基を示す。但し、R', R', R'は、同時に水素であることはない。) で表わされる鎖

31

状非共役トリエン化合物とを反応させることにより、下記式(b): 【0104】

【化31】

$$\begin{array}{c|c}
& & R^{a}R^{b} \\
& \downarrow & \downarrow & \downarrow \\
& & \downarrow &$$

· · · · (b)

【0106】なお、本明細書中においては、特にその趣旨に反しない限り、単に、「鎖状ポリエン基含有ノルボルネン化合物」と言うときは、鎖状ポリエン基含有ノルボルネン化合物 [I] および鎖状ポリエン基含有ノルボルネン化合物 [Iーa] の両者を含む意味で用い、また、「鎖状ポリエン基含有ノルボルネン化合物から誘導される構成単位」と言うときは、鎖状ポリエン基含有ノルボルネン化合物 [I] および鎖状ポリエン基含有ノルボルネン化合物 [Iーa] から誘導される構成単位 [IIーa] の両者を含む意味で用いる。

【0107】本発明に係る不飽和性エチレン系共重合体は、上記(i) エチレンから誘導される構成単位を、92 モル%を越えて99.9モル%以下、好ましくは92.5~99.5モル%、さらに好ましくは92.5~99.0モル%の量で、(ii)炭素数3~20の α -オレフィンから誘導される構成単位を、0モル%以上でかつ8モル%未満、0.1~7.0モル%、さらに好ましくは0.5~7.0モル%の量で、また(iii)上記一般式 [I] で表される鎖状ポリエン基含有ノルボルネン化合物から誘導される構成単位を0.1モル%以上でかつ8モル%未満、好ましくは0.2~7.0モル%、さらに好ましくは0.3~5.0モル%の量で含有している。

【0108】エチレン単位(i)が92モル%以下では、 共重合体の剛性、耐熱性が低下する傾向があり、99 9モル%を超えると化学反応性が低下する傾向がある。 α-オレフィン単位(iii)が8モル%を超えると共重合体 の剛性、耐熱性が低下する傾向がある。

【0109】(iii)鎖状ポリエン基含有ノルボルネン化合物成分がこのような範囲にあると、化学反応性に富み、グラフト変 性が容易で、しかも接着性、塗装性、印刷性などに優れた不飽和性エチレン系共重合体樹脂が得られるので好ましい。

【0110】このような本発明に係る不飽和性エチレン ン系触媒、 [a-2] 可溶性パナジウム化合物と、 [b-1] 系共重合体において、(iii) 前記一般式 [l] で表される 50 有機アルミニウム化合物とからなるパナジウム系触媒、

鎖状ポリエン基含有ノルボルネン化合物から誘導される 構成単位は、実質的に前記一般式[II]で表される構造 を有している。

【0111】なお鎖状ポリエン基含有ノルボルネン化合物から誘導される構成単位が上記構造を有していることは、その共重合体の「C-NMRスペクトルを測定することによって確認することができる。

【0112】本発明に係る不飽和性エチレン系共重合体 20 は、135 $^{\circ}$ 、デカリン中で測定した極限粘度 [n] が 0.05 $^{\circ}$ 10 $^{\circ}$ 1 $^{\circ}$ 10 $^{\circ}$ 1 $^{\circ}$ 2 $^{\circ}$ 5 $^{\circ}$ 10 $^{\circ}$ 2 $^{\circ}$ 5 $^{\circ}$ 10 $^{\circ}$ 10 $^{\circ}$ 2 $^{\circ}$ 5 $^{\circ}$ 10 $^{\circ}$ 2 $^{\circ}$ 2

【0113】この極限粘度 [n] が0.05dl/g以下では共重合体の機械物性が低下する傾向があり、10dl/gを超えると成形性に劣る傾向がある。上記のような本発明に係る不飽和性エチレン系共重合体は、化学反応性に優れ、グラフト変性が容易となり、接着性、塗装性、印刷性に優れている。

【0114】このような不飽和性エチレン系共重合体 は、樹脂改質剤として、用いることができる。具体的に は、本発明に係る不飽和性エチレン系共重合体を樹脂改 質剤として、たとえばポリプロピレン、ポリエチレン、 ポリプテン、ポリスチレンなどに添加すると、グラフト 変性が容易となり、接着性、塗装性、印刷性などが飛躍 的に向上する。

【0115】 [<u>不飽和性エチレン系共重合体の製造</u>] 上 記のような本発明に係る不飽和性エチレン系共重合体 は、(i) エチレンと、(ii)炭素数3~20のα-オレフ ィンと、(iii) 上記鎖状ポリエン基含有ノルポルネン化 40 合物とを、触媒の存在下に共重合させて得られる。

【0116】このような触媒としては、[a] パナジウム (V)、ジルコニウム (Zr)、チタニウム (Ti) などの遷移金属化合物 (f) と、[b] 有機アルミニウム 化合物 (f) 化合物 (f) 化合物 (f) と、からなる触媒などが 使用できる。

【0117】具体的には、[a-1] 固体状チタン触媒成分と、[b-1] 有機アルミニウム化合物とからなるチタン系触媒、[a-2] 可溶性パナジウム化合物と、[b-1] 有機アルミニウム化合物とからなるパナジウム系動機

あるいは [a-3] 周期律表第IVB族から選ばれる遷移金 属のメタロセン化合物と、[b-2] 有機アルミニウムオ キシ化合物および/またはイオン化イオン性化合物とか らなるメタロセン系触媒、が特に好ましく用いられる。 【0118】本発明で用いられる固体チタン触媒成分 [a-1] は、下記のようなマグネシウム化合物、チタン 化合物、および電子供与体を接触させることにより調製

【0119】本発明において、固体チタン触媒成分 [a-1] の調製に用いられるチタン化合物としては、たとえ ばTi(OR)、X、、、(Rは炭化水素基、Xはハロゲン 原子、0≦g≦4)で示される4価のチタン化合物を挙 げることができる。

【0120】これらの中で、ハロゲン含有チタン化合 物、特にテトラハロゲン化チタンが好ましい。中でも、 四塩化チタンが特に好ましく用いられる。また、本発明 では、3価のチタン化合物、4価のチタン化合物が用い られるが、特に4価のチタン化合物が好ましい。

【0121】本発明において、固体チタン触媒成分 [a-1] の調製に用いられるマグネシウム化合物としては、 還元性を有するマグネシウム化合物および還元性を有し ないマグネシウム化合物を挙げることができる。

【0122】ここで還元性を有するマグネシウム化合物 としては、たとえばマグネシウム・炭素結合あるいはマ グネシウム・水素結合を有するマグネシウム化合物を挙 げることができる。

【0123】これら還元性を有しないマグネシウム化合 物は、上述した還元性を有するマグネシウム化合物から 誘導した化合物あるいは触媒成分の調製時に誘導した化 合物であってもよい。

【0124】なお本発明において、マグネシウム化合物 は上記の還元性を有するマグネシウム化合物および還元 性を有しないマグネシウム化合物の他に、上記のマグネ シウム化合物と他の金属との錯化合物、複化合物あるい は他の金属化合物との混合物であってもよい。さらに上 記の化合物を2種以上組み合わせた混合物であってもよ 61

R, Si (OR') 4-8

(式中、RおよびR'は炭化水素基であり、nは0<n <4を満たす数である。)

さらに電子供与体触媒成分として、下記のような一般式

 SiR^1R^2 (OR³),-

(式中、R' はシクロペンチル基もしくはアルキル基を 有するシクロペンチル基であり、R¹ はアルキル基、シ クロペンチル基およびアルキル基を有するシクロペンチ ル基からなる群より選ばれる基であり、R'は炭化水素 基であり、mは0≤m≤2を満たす数である。)

上記式[2]において、R' はシクロペンチル基もしく はアルキル基を有するシクロペンチル基であり、シクロ ペンチル基以外には、たとえば、2-メチルシクロペンチ 50 が予備重合されていてもよい,予備重合の際、オレフィ

【0125】本発明においては、これらの中でも、還元 性を有しないマグネシウム化合物が好ましく、特に好ま しくはハロゲン含有マグネシウム化合物であり、さら に、これらの中でも塩化マグネシウム、アルコキシ塩化 マグネシウム、アリロキシ塩化マグネシウムが好ましく 用いられる。

【0126】本発明において、固体チタン触媒成分 [a-1] の調製に用いられる電子供与体としては、有機カル ボン酸エステル、多価カルボン酸エステルなどが挙げら 10 れる。

【0127】固体チタン触媒成分 [a-1] は、上記した ようなマグネシウム化合物(もしくは金属マグネシウ ム)、電子供与体およびチタン化合物を接触させること により製造することができる。固体チタン触媒成分 [a-1] を製造するには、マグネシウム化合物、チタン化合 物、電子供与体から高活性チタン触媒成分を調製する公 知の方法を採用することができる。なお、上記の成分 は、たとえばケイ素、リン、アルミニウムなどの他の反 応試剤の存在下に接触させてもよい。

【0128】本発明で用いられる有機アルミニウム化合 20 物触媒成分 [b-1] としては、少なくとも分子内に1個 のA1ー炭素結合を有する化合物が利用できる。このよ うな化合物としては、たとえば、(i)一般式(R¹)。 Al(O(R¹))。H,X、(式中、R¹およびR¹は炭素 原子を通常1~15個、好ましくは1~4個含む炭化水 素基であり、これらは互いに同一でも異なってもよい。 Xはハロゲン原子を表わし、mは0<m≤3、nは0≤ n<3、pは0≤p<3、qは0≤q<3を満たす数で あって、しかも、m+n+p+q=3である) で表わさ 30 れる有機アルミニウム化合物、(ii) 一般式 (M') Al (R'), (式中、M'はLi、Na、Kであり、R' は前記(i)におけるR'と同じ)で表わされる第 I 属 金属とアルミニウムとの錯アルキル化物などを挙げるこ とができる。

【0129】また電子供与体として、下記のような一般 式[II]で示される有機ケイ素化合物を用いることも できる。

... [1]

[2] で示される有機ケイ素化合物を用いることもでき 40 る。

[0130]

... [2]

ル基、3-メチルシクロペンチル基、2-エチルシクロペン チル基、2,3-ジメチルシクロペンチル基などのアルキル 基を有するシクロペンチル基を挙げることができる。

【0131】本発明で用いられるチタン系触媒は、固体 チタン触媒成分 [a-1] と、有機アルミニウム化合物触 媒成分 [b-1] と、必要に応じて電子供与体触媒成分と から形成されるが、これら触媒成分にはα-オレフィン

36 基、フルオレニル基などが挙げられる。

ン重合用触媒 1 g 当り、 $0.1\sim500$ g、好ましくは $0.3\sim300$ g、特に好ましくは $1\sim100$ gの量で α - オレフィンあるいは高級 α - オレフィンを予備重合させる。

【0132】予備重合は、不活性炭化水素媒体にオレフィンあるいは高級 α - オレフィンおよび上記の触媒成分を加え、温和な条件下に行うことが好ましい。予備重合で使用される高級 α - オレフィンは、後述する本重合で使用される高級 α - オレフィンと同一であっても、異なってもよい。

【0133】本発明で用いられるパナジウム系触媒を形成する[a-2] 可溶性パナジウム化合物は、具体的には、下記一般式で表される。

VO (OR) 、X、 または V (OR) 、X。 式中、Rは炭化水素基であり、Xはハロゲン原子であり、a、b、c、dはそれぞれ0 $\leq a$ ≤ 3 、0 $\leq b$ ≤ 3 、2 $\leq a$ + b ≤ 3 、0 $\leq c$ ≤ 4 、0 $\leq d$ ≤ 4 、3 $\leq c$ + d ≤ 4 を満たす。

【0134】また上記可溶性バナジウム化合物は、電子供与体を接触させて得られる、これらの可溶性バナジウム化合物の電子供与体付加物として用いることもできる。バナジウム系触媒を形成する [b-1] 有機アルミニウム化合物は、チタン系触媒を形成する [b-1] 有機アルミニウム化合物と同様のものを用いることができる。

【0135】次に本発明で用いられるメタロセン系触媒を形成する [a-3] メタロセン化合物と [b-2] 有機アルミニウムオキシ化合物またはイオン化イオン性化合物とからなる触媒について説明する。

【0136】メタロセン系触媒を形成する [a-3] 周期 律表第IVB族から選ばれる遷移金属のメタロセン化合物 は、具体的には、次式 [V] で表される。

MLx ... [V]

式[V]中、Mは周期律表第IVB族から選ばれる遷移金属であり、具体的にジルコニウム、チタンまたはハフニウムであり、xは遷移金属の原子価である。

【0137】Lは遷移金属に配位する配位子であり、これらのうち少なくとも1個の配位子Lはシクロペンタジエニル骨格を有する配位子であり、このシクロペンタジエニル骨格を有する配位子は置換基を有していてもよい。

【0138】シクロペンタジエニル骨格を有する配位子としては、たとえば、シクロペンタジエニル基、メチルシクロペンタジエニル基、ロー、基、ローまたはi-プロピルシクロペンタジエニル基、ロー、i-、sec-、i-、プチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、メチルプロピルシクロペンタジエニル基、メチルプチルシクロペンタジエニル基、メチルペンジルシクロペンタジエニル基などのアルキルまたはシクロアルキル置換シクロペンタジエニル基、さらにインデニル基、4,5,6,7-テトラヒドロインデニル

【0139】これらの基は、ハロゲン原子、トリアルキルシリル基などで置換されていてもよい。式 [V] で示される化合物が配位子Lとしてシクロペンタジエニル骨格を有する基を2個以上有する場合には、そのうち2個のシクロペンタジエニル骨格を有する基同士は、エチレン、プロピレンなどのアルキレン基、イソプロピリデン、ジフェニルメチレンなどの置換アルキレン基、シリレン基またはジメチルシリレン基、ジフェニルシリレン基、メチルフェニルシリレン基などの置換シリレン基などを介して結合されていてもよい。

【0140】シクロペンタジエニル骨格を有する配位子以外のLとしては、炭素数1~12の炭化水素基、アルコキシ基、アリーロキシ基、スルホン酸含有基(-SOR')、ハロゲン原子または水素原子(ここで、Rはアルキル基、ハロゲン原子で置換されたアルキル基、アリール基またはハロゲン原子またはアルキル基で置換されたアリール基である。)などが挙げられる。

【0141】炭素数1~12の炭化水素基としては、ア ルキル基、シクロアルキル基、アリール基、アラルキル 基などが挙げられ、より具体的には、メチル基、エチル 基、n-プロピル基、イソプロピル基、n-ブチル基、イソ ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基、フェニル基、トリル基などのアリール基、ベンジル基、ネオフィル基などのアラルキル基が 挙げられる。

【0142】また、アルコキシ基としては、メトキシ 基、エトキシ基、n-プロポキシ基などが挙げられる。ア リーロキシ基としては、フェノキシ基などが挙げられ、 スルホン酸含有基(-SO,R')としては、メタンス ルホナト基、p-トルエンスルホナト基、トリフルオロメ タンスルホナト基、p-クロルベンゼンスルホナト基など が挙げられる。

【0143】ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。上記式で表されるメタロセン化合物は、たとえば遷移金属の原子価が4である場合、より具体的には下記式[VI]で表される。

40 【0144】R', R', R', R', M [VI] 式 [VI] 中、Mは上記遷移金属であり、R' はシクロペンタジエニル骨格を有する基(配位子)であり、R'、R' およびR' は、それぞれ独立にシクロペンタジエニル骨格を有する基または上記一般式 [V] 中のシクロペンタジエニル骨格を有する配位子以外のLと同様である。kは1以上の整数であり、k+1+m+n=4である。

【0145】以下に、Mがジルコニウムであり、かつシ クロペンタジエニル骨格を有する配位子を少なくとも2 50 個合むメタロセン化合物を例示する。ビス(シクロペン

タジエニル) ジルコニウムモノクロリドモノハイドライド、ビス(シクロペンタジエニル) ジルコニウムジクロリド、ビス(1-メチル-3-ブチルシクロペンタジエニル) ジルコニウムビス(トリフルオロメタンスルホナト)、ビス(1,3-ジメチルシクロペンタジエニル) ジルコニウムジクロリドなど。

【0146】上記の1,3-位置換シクロペンタジエニル基を1,2-位置換シクロペンタジエニル基に置換えた化合物を本発明で用いることもできる。また上記式
[VI]において、R¹、R¹、R¹ およびR¹の少な 10
くとも2個、例えばR¹およびR¹がシクロペンタジエニル骨格を有する基(配位子)であり、この少なくとも2個の基はアルキレン基、置換アルキレン基、シリレン基または置換シリレン基などを介して結合されているブリッジタイプのメタロセン化合物を例示することもできる。このときR¹およびR²はそれぞれ独立に式[V]中で説明したシクロペンタジエニル骨格を有する配位子以外のLと同様である。

【0147】このようなブリッジタイプのメタロセン化合物としては、エチレンピス(インデニル)ジメチルジルコニウム、エチレンピス(インデニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニルーフルオレニル)ジルコニウムジクロリド、ジフェニルシリレンピス(インデニル)ジルコニウムジクロリド、メチルフェニルシリレンピス(インデニル)ジルコニウムジクロリドなどが挙げられる。

【0148】さらに、下記式 [A] で示される特開平4-268307号公報に記載のメタロセン化合物が挙げられる。

[0149]

【化32】

· · · · [A]

【0151】R'およびR'は、互いに同じでも異なっていても良く、水素原子、ハロゲン原子好ましくは弗素原子、塩素原子または臭素原子、ハロゲン化されていてもよい炭素原子数1~10好ましくは1~4のアルキル基、炭素原子数6~10好ましくは6~8のアリール20 基、-NR'。、-SR'。、-OSiR'。、-SiR'。, または-PR'。,基であり、その際R'。はハロゲン原子好ましくは塩素原子、または、炭素原子数1~10好ましくは1~3のアルキル基、または炭素原子数6~10好ましくは6~8のアリール基である。

【0152】R'およびR'は特に水素原子であることが好ましい。R'およびR'は互いに同じでも異なっていてもよく、好ましくは同じであり、R'およびR'は水素原子でないという条件のもとでR'およびR'について記載した意味を有する。R'およびR'は、好ましくはハロゲ30ン化されていてもよい炭素原子数1~4のアルキル基、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基またはトリフルオロメチル基等が挙げられ、メチル基が好ましい。

【0153】R'は、下記:

[0154]

【化33】

R 1 2

R12 R12

 $[0155] = BR^{11}, = A1R^{11}, -Ge-, -Sn$ -, -O-, -S-, =SO, =SO, =NR 11 , =CO、=PR¹¹または=P(O)R¹¹であり、その際R ''、R''およびR''は互いに同じでも異なっていてもよ く、水素原子、ハロゲン原子、炭素数1~10好ましく は1~4のアルキル基さらに好ましくはメチル基、炭素 原子数 $1 \sim 10$ のフルオロアルキル基好ましくはCF, 基、炭素原子数6~10好ましくは6~8のアリール 基、炭素原子数6~10のフルオロアリール基好ましく はペンタフルオロフェニル基、炭素原子数1~10好ま しくは1~4のアルコキシ基特に好ましくはメトキシ 基、炭素原子数2~10好ましくは2~4のアルケニル 基、炭素原子数7~40好ましくは7~10のアリール アルキル基、炭素原子数8~40好ましくは8~12の アリールアルケニル基、または炭素原子数7~40好ま しくは7~12のアルキルアリール基であり、また「R ''とR''」または「R''とR''」とは、それぞれそれら が結合する炭素原子と一緒になって環を形成してもよ

39

R 1 2

【0156】M'は珪素、ゲルマニウムまたは錫、好ま しくは珪素またはゲルマニウムである。R'は、=CR 11 R^{12} , = S i R^{11} R^{12} , = G e R^{11} R^{12} , -O-, -S-.=SO.=PR'' $\exists ct=P(O)R''$ $\neg ct=P(O)R''$ とが好ましい。

【0157】R'およびR'は互いに同じであっても異な っていてもよく、R¹¹について記載したと同じ意味を有 する。mおよびnは互いに同じであっても異なっていて もよく、0、1または2、好ましくは0または1であ り、m+nは0、1または2、好ましくは0または1で ある。

【0158】このような化合物の内でも、下記の化合物 がある。 rac-エチレン (2-メチル-1-インデニル) z-ジルコニウム-ジクロライド、rac-ジメチルシリレ ン(2-メチル-1-インデニル),-ジルコニウム-ジクロ ライド。

【0159】このようなメタロセンの製造方法について は、従来より公知の方法にて製造することができる (例:特開平4-268307号公報参照)。本発明で

ン化合物)を用いることもできる。 [0160] 【化34】

· · · [B]

【0161】式 [B] 中、Mは周期律表第IVB族の遷移 金属原子を示し、具体的には、チタニウム、ジルコニウ ム、ハフニウムである。R'およびR'は、それぞれ独 立に、水素原子、ハロゲン原子、炭素数1~20の炭化 水素基、炭素数1~20のハロゲン化炭化水素基、ケイ 30 素含有基、酸素含有基、イオウ含有基、窒素含有基また はリン含有基を示し、具体的には、フッ素、塩素、臭 素、ヨウ素などのハロゲン原子;メチル、エチル、プロ ピル、プチル、ヘキシル、シクロヘキシル、オクチル、 ノニル、ドデシル、アイコシル、ノルボルニル、アダマ ンチルなどのアルキル基、ピニル、プロペニル、シクロ ヘキセニルなどのアルケニル基、ベンジル、フェニルエ チル、フェニルプロピルなどのアリールアルキル基、フ エニル、トリル、ジメチルフェニル、トリメチルフェニ ル、エチルフェニル、プロピルフェニル、ピフェニル、 40 ナフチル、メチルナフチル、アントラセニル、フェナン トリルなどのアリール基などの炭素数1から20の炭化 水素基;前記炭化水素基にハロゲン原子が置換したハロ ゲン化炭化水素基;メチルシリル、フェニルシリルなど のモノ炭化水素置換シリル、ジメチルシリル、ジフェニ ルシリルなどのジ炭化水素置換シリル、トリメチルシリ ル、トリエチルシリル、トリプロピルシリル、トリシク ロヘキシルシリル、トリフェニルシリル、ジメチルフェ ニルシリル、メチルジフェニルシリル、トリトリルシリ ル、トリナフチルシリルなどのトリ炭化水素置換シリ は、下記式 [B] で示される遷移金属化合物(メタロセ 50 ル、トリメチルシリルエーテルなどの炭化水素置換シリ

ルのシリルエーテル、トリメチルシリルメチルなどのケ イ素置換アルキル基、トリメチルシリルフェニルなどの ケイ素置換アリール基、などのケイ素含有基;ヒドロオ キシ基、メトキシ、エトキシ、プロポキシ、ブトキシな どのアルコキシ基、フェノキシ、メチルフェノキシ、ジ メチルフェノキシ、ナフトキシなどのアリローキシ基、 フェニルメトキシ、フェニルエトキシなどのアリールア ルコキシ基などの酸素含有基;前記酸素含有基の酸素が イオウに置換した置換基などのイオウ含有基:アミノ 基、メチルアミノ、ジメチルアミノ、ジエチルアミノ、 ジプロピルアミノ、ジブチルアミノ、ジシクロヘキシル アミノなどのアルキルアミノ基、フェニルアミノ、ジフ ェニルアミノ、ジトリルアミノ、ジナフチルアミノ、メ チルフェニルアミノなどのアリールアミノ基またはアル キルアリールアミノ基などの窒素含有基;ジメチルフォ スフィノ、ジフェニルフォスフィノなどのフォスフィノ 基などのリン含有基である。

【0162】これらのうち R^1 は炭化水素基であることが好ましく、特にメチル、エチル、プロピルの炭素数 $1\sim3$ の炭化水素基であることが好ましい。また R^1 は水 20素、炭化水素基が好ましく、特に水素あるいは、メチル、エチル、プロピルの炭素数 $1\sim3$ の炭化水素基であることが好ましい。

【0163】 R^1 、 R^4 、 R^4 および R^6 は、それぞれ 独立に、水素原子、ハロゲン原子、炭素数 $1\sim20$ の炭 化水素基、炭素数 $1\sim20$ のハロゲン化炭化水素基を示し、このうち水素、炭化水素基またはハロゲン化炭化水素基であることが好ましい。 R^1 と R^4 、 R^4 と R^6 、 R^6 と R^6 のうち少なくとも 1 組は、それらが結合している炭素原子と一緒になって、単環の芳香族環を形成していてもよい。

【0164】また芳香族環を形成する基以外の基は、炭化水素基またはハロゲン化炭化水素基が2種以上ある場合には、これらが互いに結合して環状になっていてもよい。なおR⁶ が芳香族基以外の置換基である場合、水素原子であることが好ましい。

【0165】ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン化炭化水素基として、具体的には、前記R'およびR'と同様の基が例示できる。R'とR'、R'とR'、R'とR'のうち少なくとも1組が互いに結合して形成する単環の芳香族環を含む、Mに配位する配位子としては以下に示すようなものが挙げられる。

[0166] [化35]

【0167】これらのうち上記式(1)で示されるものが好ましい。本発明においては、また下記式[C]で示される遷移金属化合物(メタロセン化合物)を用いることもできる。

[0168] [化36]

【0169】式 [C] 中、M、R'、R'、R'、R'、R'、R'、R'、R'、R'、およびR'としては、前記式 [B] の場合と同様なものが挙げられる。R'、R'、R'、 R' およびR'30 のうち、R'を含む2個の基が、アルキル基であることが好ましく、R'とR'、またはR'とR'がアルキル基であることが好ましい。このアルキル基は、2級または3級アルキル基であることが好ましい。また、このアルキル基は、ハロゲン原子、ケイ素含有基で置換されていてもよく、ハロゲン原子、ケイ素含有基としては、R'、R'で例示した置換基が挙げられる。

【0170】R²、R⁴、R⁴ およびR⁴で示される基のうち、アルキル基以外の基は、水素原子であることが好ましい。炭素数1~20の炭化水素基としては、メチ40 ル、エチル、n-プロピル、i-プロピル、n-プチル、i-プチル、sec-プチル、tert-プチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、ドデシル、アイコシル、ノルボルニル、アダマンチルなどの直鎖状、分岐状アルキル基および環状アルキル基;ベンジル、フェニルエチル、フエニルプロピル、トリルメチルなどのアリールアルキル基などが挙げられ、2重結合、3重結合を含んでいてもよい。

【0171】またR'、R'、R'およびR'から選ばれる2種の基が互いに結合して芳香族環以外の単環ある いは多環を形成していてもよい。ハロゲン原子として、

40

具体的には、前記R' およびR' と同様の基が例示できる。

【0172】X'、X'、YおよびR'としては、前記式

- [B] の場合と同様のものが挙げられる。以下に上記式
- [C] で示されるメタロセン化合物 (遷移金属化合物) の具体的な例を示す。

【0173】rac-ジメチルシリレン-ピス(4,7-ジメチル-1-インデニル)ジルコニウムジクロリド、rac-ジメチルシリレン-ピス(2,4,7-トリメチル-1-インデニル)ジルコニウムジクロリド、rac-ジメチルシリレン-ピス(2,4,6-トリメチル-1-インデニル)ジルコニウムジクロリド。

【0174】本発明では、上記のような化合物においてジルコニウム金属を、チタニウム金属、ハフニウム金属に置き換えた遷移金属化合物を用いることもできる。上記遷移金属化合物は、通常ラセミ体として用いられるが、R型またはS型を用いることもできる。

【0175】本発明では、また式 [C] で示される遷移 金属化合物 (メタロセン化合物) として、他の態様には 下記のものがある。 R¹としては、炭化水素基であることが好ましく、特にメチル、エチル、プロピル、プチルの炭素数1~4の炭化水素基であることが好ましい。

【0176】また、X'、X'としては、ハロゲン原子、 炭素数 $1 \sim 20$ の炭化水素基であることが好ましい。 R 'は、炭素数 $6 \sim 16$ のアリール基を示し、具体的に は、フェニル、 α -ナフチル、 β -ナフチル、アントラセニル、フェナントリル、ピレニル、アセナフチル、フェナレニル(ペリナフテニル)、アセアントリレニルなどである。これらのうちフェニル、ナフチルであることが 好ましい。これらのアリール基は、前記 R' と同様のハロゲン原子、炭素数 $1 \sim 20$ のハロゲン化炭化水素基で置換されていてもよい。

【0177】このような遷移金属化合物(メタロセン化合物)の具体的な例を示す。 rac-ジメチルシリレン-ビス(4-フェニル-1-インデニル)ジルコニウムジクロリド、 rac-ジメチルシリレン-ピス(2-メチル-4-フェニル-1-インデニル)ジルコニウムジクロリド、 rac-ジメチルシリレン-ピス(2-メチル-4-(α -ナフチル)-1-インデニル)ジルコニウムジクロリド、 rac-ジメチルシリレン-ピス(2-メチル-4-(β -ナフチル)-1-インデニル)ジルコニウムジクロリド、 rac-ジメチルシリレン-ピス(2-メチル-4-(1-アントラセニル)-1-インデニル)ジルコニウムジクロリドなど。

【0178】本発明では、上記のような化合物においてジルコニウム金属を、チタニウム金属、ハフニウム金属 に置き換えた遷移金属化合物を用いることもできる。また本発明では、下記式 [E-1] で示されるメタロセン 化合物を用いることもできる。

 $\{0179\}$ L'MX, \cdots $\{E-1\}$

(Mは、周期率表第 IV族またはランタニド系列の金属で

あり、L・は、非局在化π結合基の誘導体であり、金属 M活性サイトに拘束幾何形状を付与しており、Xは、それぞれ独立に水素、ハロゲンまたは20以下の炭素、ケイ素またはゲルマニウムを含有する炭化水素基、シリル 基またはゲルミル基である。)このような式 [E-1]で示される化合物のうちでも、具体的に、下記式 [E-2]で示される化合物が好ましい。

44

[0180]

【化37】

【0181】式中、Mはチタン、ジルコニウムまたはハフニウムであり、Xは、上記と同様である。CpはMに π結合しており、かつ置換基Zを有する置換シクロペン 20 タジエニル基である。

【0182】Zは酸素、イオウ、ホウ素または周期率表第IVA族の元素(たとえばケイ素、ゲルマニウムまたは 錫)であり、Yは窒素、リン、酸素またはイオウを含む 配位子であり、ZとYとで縮合環を形成してもよい。

【0183】このような式 [E-2] で示される化合物 としては、具体的に、(ジメチル(t-ブチルアミド) (テトラメチル-n⁶-シクロペンタジエニル) シラン) チタンジクロリド、((t-ブチルアミド) (テトラメチル-n⁶-シクロペンタジエニル) -1, 2-エタンジイ 30 ル) チタンジクロリドなどが挙げられる。

【0184】本発明では、上記のようなメタロセン化合物は、2種以上組合わせて用いることもできる。上記説明においては、メタロセン化合物としてチタン化合物について例示したが、チタンを、ジルコニウムまたはハフニウムに置換えた化合物を例示することもできる。

【0185】これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本発明では、上記メタロセン化合物 [E-1] および [E-2] としては、中心の金属原子がジルコニウムであり、少なくとも2個のシクロペンタジエニル骨格を含む配位子を有するジルコノセン化合物が好ましく用いられる。なお前記のメタロセン化合物 [V1] では、中心の金属原子がチタンであることが好ましい。

【0186】これらメタロセン化合物は、炭化水素あるいはハロゲン化炭化水素に希釈して用いてもよい。また上記のようなメタロセン化合物は、粒子状担体化合物と接触させて用いることもできる。

【0187】担体化合物としては、SiO,、Al,O,、B,O,、MgO、ZrO,、CaO、TiO,、ZnOO、SnO,、BaO、ThOなどの無機担体化合物、ポ

リエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ4-メチル-1-ペンテン、スチレン-ジピニルベンゼン共重合 体などの樹脂を用いることができる。これらの担体化合 物は、二種以上組み合わせて用いることもできる。

45

【0188】次に本発明でメタロセン系触媒を形成する 際に用いられる [b 2]有機アルミニウムオキシ化合物お よびイオン化イオン性化合物について説明する。本発明 で用いられる有機アルミニウムオキシ化合物は、従来公 知のアルミノオキサンであってもよく、またペンゼン不 溶性の有機アルミニウムオキシ化合物であってもよい。 【0189】このような従来公知のアルミノオキサン は、具体的には、下記一般式で表される。

[0190] 【化38】

【0191】(上記一般式において、Rはメチル基、エ チル基、プロピル基、ブチル基などの炭化水素基であ り、好ましくはメチル基、エチル基、とくに好ましくは メチル基であり、mは2以上、好ましくは5~40の整 数である。)

表わされるアルキルオキシアルミニウム単位および式 (OAI(R¹)) で表わされるアルキルオキシアルミニ ウム単位[ここで、R'およびR'はRと同様の炭化水 素基を例示することができ、R'およびR'は相異なる 基を表わす〕からなる混合アルキルオキシアルミニウム

【0192】なお本発明で用いられる有機アルミニウム オキシ化合物は、少量のアルミニウム以外の金属の有機 化合物成分を含有していてもよい。イオン化イオン性化 合物としては、ルイス酸、イオン性化合物、ボラン化合 物およびカルボラン化合物を例示することができる。

単位から形成されていてもよい。

【0193】ルイス酸としては、BR, (Rは、フッ 素、メチル基、トリフルオロメチル基などの置換基を有 していてもよいフェニル基またはフッ素である。) で示 される化合物が挙げられ、たとえばトリフルオロボロ ン、トリフェニルポロン、トリス(4-フルオロフェニ ル) ボロン、トリス (3.5-ジフルオロフェニル) ボロ ン、トリス(4-フルオロメチルフェニル)ポロン、トリ ス(ペンタフルオロフェニル)ポロン、トリス (p-トリ ル) ポロン、トリス (o-トリル) ポロン、トリス (3,5- 50 ジメチルフェニル)ボロンなどが挙げられる。

【0194】イオン性化合物としては、トリアルキル置 換アンモニウム塩、N, N-ジアルキルアニリニウム塩、ジ アルキルアンモニウム塩、トリアリールホスフォニウム 塩などを挙げることができる。

【0195】具体的に、トリアルキル置換アンモニウム 塩としては、たとえばトリエチルアンモニウムテトラ (フェニル) ホウ素、トリプロピルアンモニウムテトラ (フェニル) ホウ素、トリ (n-プチル) アンモニウムテ 10 トラ (フェニル) ホウ素などが挙げられる。

【0196】ジアルキルアンモニウム塩としては、たと えばジ(1-プロピル)アンモニウムテトラ(ペンタフル オロフェニル)ホウ素、ジシクロヘキシルアンモニウム テトラ(フェニル)ホウ素などが挙げられる。

【0197】さらにイオン性化合物として、トリフェニ ルカルペニウムテトラキス (ペンタフルオロフェニル) ボレート、N, N-ジメチルアニリニウムテトラキス(ペン タフルオロフェニル) ボレート、フェロセニウムテトラ キス (ペンタフルオロフェニル) ボレートなどを挙げる 20 こともできる。

【0198】さらに、ボラン化合物としては、下記のよ うな化合物を挙げることもできる。即ち、具体的には、 ボラン化合物としては、デカボラン(14):ビス[ト リ (n-ブチル) アンモニウム) ノナボレート、ビス (ト リ (n-プチル) アンモニウム] デカボレート、ピス (ト リ (n-プチル) アンモニウム) ピス (ドデカハイドライ ドドデカボレート)ニッケル酸塩(III)などの金属ボラ ンアニオンの塩などが挙げられる。

【0199】また、カルポラン化合物としては、4-カル ここで、このアルミノオキサンは式(OAl(R¹))で 30 パノナボラン(14)、1,3-ジカルパノナボラン(1 3)、ビス [トリ (n-プチル) アンモニウム] ビス (ウ ンデカハイドライド-7-カルパウンデカボレート)ニッ ケル酸塩(IV)などの金属カルボランアニオンの塩など が挙げられる。

> 【0200】上記のようなイオン化イオン性化合物は、 2種以上組合わせて用いてもよい。本発明においては、 有機アルミニウムオキシ化合物および/または上記イオ ン化イオン性化合物は、上述した担体化合物に担持させ て用いることもできる。

【0201】また触媒 [b] を形成するに際しては、有 40 機アルミニウムオキシ化合物および/またはイオン化イ オン性化合物とともに前述した有機アルミニウム化合物 を用いてもよい。

【0202】本発明では、上記のような触媒の存在下に (i) エチレン、(ii)炭素数3~20のα-オレフィンお よび(iii)上記鎖状ポリエン基含有ノルボルネン化合物 を、通常液相で共重合させる。この際、一般に炭化水素 溶媒が用いられるが、プロピレン等のα-オレフィンを 溶媒として用いてもよい。

【0203】(i) エチレンと(ii) 炭素数3~20のα-

48

オレフィンと(iii)上記鎖状ポリエン基含有ノルボルネ ン化合物とは、バッチ法、あるいは連続法いずれの方法 で共重合さ れてもよい。共重合を連続法で実施するに 際しては、上記触媒は以下のような濃度で用いられる。 【0204】本発明において、[a-1]固体状チタン触媒 成分と、[b-1]有機アルミニウム化合物とからなる触媒 が用いられる場合には、固体状チタン触媒成分は、重合 容積1リットル当たり、チタン原子に換算して、通常は 約0.001~約1.0ミリモル、好ましくは約0.00 5~0.5ミリモルの量で用いられる。また、有機アル ミニウム触媒成分は、固体状チタン触媒成分中のチタン 原子1モルに対し、有機アルミニウム化合物触媒成分中 の金属原子は、通常約10~500モル、好ましくは約 20~200モルとなるような量で用いられる。さら に、電子供与体触媒成分は、必要により有機アルミニウ ム化合物触媒成分中の金属原子1モル当たり、通常は約 0.001~10モル、好ましくは0.01~2モル、特 に好ましくは0.05~1モルとなるような量で用いら れる。

【0205】本発明において、[a-2] 可溶性バナジウム 化合物と[b-1] 有機アルミニウム化合物とからなる触媒 が用いられる場合には、重合系内の可溶性バナジウム化合物の濃度は、通常、0.01~5ミリモル/リットル (重合容積)、好ましくは0.05~3ミリモル/リットルである。この可溶性バナジウム化合物は、重合系内に存在する可溶性バナジウム化合物の濃度の10倍以下、好ましくは1~7倍、さらに好ましくは1~5倍の 濃度で供給されることが望ましい。また有機アルミニウムに合物は、重合系内のバナジウム原子に対するアルミニウム原子のモル比(Al/V)で、2以上、好ましくは2~50、さらに好ましくは3~20の量で供給される。

【0206】可溶性パナジウム化合物および有機アルミニウム化合物は、通常、上述の炭化水素溶媒および/または液状のαーオレフィンおよび(iii)上記鎖状ポリエン基含有ノルボルネン化合物で希釈されて供給される。この際、該可溶性パナジウム化合物は上述した濃度に希釈されることが望ましいが、有機アルミニウム化合物は重合系内における濃度のたとえば50倍以下の任意の濃度に調整して重合系内に供給されることが望ましい。

【0207】また[a-3] メタロセン化合物と[b-2] 有機アルミニウムオキシ化合物またはイオン化イオン性化合物(イオン性イオン化化合物、イオン性化合物ともいう。)とからなる触媒[b]が用いられる場合には、重合系内のメタロセン化合物の濃度は、通常、0.0005~0.1ミリモル/リットル(重合容積)、好ましくは0.0001~0.05ミリモル/リットルである。また有機アルミニウムオキシ化合物は、重合系内の遷移金属であるメタロセン化合物に対するアルミニウム原子のモル比(A1/遷移金属)で、1~10000、

好ましくは10~50000量で供給される。 【0208】イオン化イオン性化合物の場合は、重合系内のメタロセン化合物に対するイオン化イオン性化合物

のモル比(イオン化イオン性化合物/メタロセン化合物)で、0.5~20、好ましくは1~10の量で供給される。

【0209】また有機アルミニウム化合物が用いられる場合には、通常、約0~5ミリモル/リットル(重合度積)、好ましくは約0~2ミリモル/リットルとなるような量で用いられる。

20 【0211】本発明において、(i) エチレンと(ii) αーオレフィンと(iii)上記鎖状ポリエン基含有ノルボルネン化合物とを、可溶性パナジウム化合物と有機アルミニウム化合物とからなる触媒の存在下に共重合させる場合には、共重合反応は、通常、温度が-50℃~100℃、好ましくは-30℃~80℃、さらに好ましくは-20℃~60℃で、圧力が0を超えて~50 kg/cm²、好ましくは0を超えて~20 kg/cm²の条件下に行われる。

【0212】また本発明において、(i) エチレンと(ii) α -オレフィンと(iii)上記鎖状ポリエン基含有ノルボルネン化合物とを、メタロセン化合物と、有機アルミニウムオキシ化合物および/またはイオン化イオン性化合物と、からなる触媒の存在下に共重合させる場合には、共重合反応は、通常、温度が-20 $^{\circ}$ $^{\circ}$ 150 $^{\circ}$ $^{\circ}$ 、好ましくは0 $^{\circ}$ $^{\circ}$ $^{\circ}$ 120 $^{\circ}$ $^{\circ}$ 0%に好ましくは0 $^{\circ}$ $^{\circ}$ 100 $^{\circ}$ $^{\circ}$ 0%は0 $^{\circ}$ 40%に行なわれる。

【0213】また反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常、5分~5時間、好ましくは10分~3時間である。

【0214】本発明では、(i) エチレン、(ii) αーオレフィンおよび(iii)上記鎖状ポリエン基含有ノルボルネン化合物は、上述のような特定組成の不飽和性エチレン系共重合体が得られるような量で重合系に供給される。さらに共重合に際しては、水素などの分子量調節剤を用いることもできる。

【0215】上記のようにして(i) エチレン、(ii) α-オレフィンおよび(iii)上記鎖状ポリエン基含有ノルボ 50 ルネン化合物を共重合させると、不飽和性エチレン系共

重合体は通常これを含む重合液として得られる。この重 合液は、常法により処理され、不飽和性エチレン系共重 合体が得られる。

【0216】 [不飽和性エチレン系共重合体のグラフト変性物] 本発明に係る不飽和性エチレン系共重合体は、該不飽和性エチレン系共重合体に極性モノマーをグラフト重合させることにより、変性して用いることができる。

【0217】本発明のグラフト変性された不飽和性エチレン系共重合体(グラフト変性不飽和性エチレン系共重合体ともいう)は、ラジカル開始剤の存在下あるいは不存在下に、上記のような不飽和性エチレン系共重合体と、後述するような極性モノマーとを反応させることにより得ることができる。

【0218】極性モノマーとしては、水酸基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、エポキシ基含有エチレン性不飽和化合物、芳香族ビニル化合物、不飽和カルボン酸あるいはその誘導体、ビニルエステル化合物、塩化ビニルなどが挙げられる。

【0219】具体的には、水酸基含有エチレン性不飽和 化合物としては、ヒドロキシエチル (メタ) アクリレー ト、2-ヒドロキシプロピル (メタ) アクリレート、3-ヒ ドロキシプロピル (メタ) アクリレート、2-ヒドロキシ -3-フェノキシープロピル (メタ) アクリレート、3-ク ロロ-2-ヒドロキシプロピル (メタ) アクリレート、グ リセリンモノ (メタ) アクリレート、ペンタエリスリト ールモノ(メタ)アクリレート、トリメチロールプロパ ンモノ (メタ) アクリレート、テトラメチロールエタン モノ (メタ) アクリレート、ブタンジオールモノ (メ タ) アクリレート、ポリエチレングリコールモノ (メ タ) アクリレート、2-(6-ヒドロキシヘキサノイルオキ シ) エチルアクリレートなどの (メタ) アクリル酸エス テル;10-ウンデセン-1-オール、1-オクテン-3-オー ル、2-メタノールノルボルネン、ヒドロキシスチレン、 ヒドロキシエチルビニルエーテル、ヒドロキシブチルビ ニルエーテル、N-メチロールアクリルアミド、2-(メ タ) アクロイルオキシエチルアシッドフォスフェート、 グリセリンモノアリルエーテル、アリルアルコール、ア リロキシエタノール、2-プテン-1,4-ジオール、グリセ リンモノアルコールなどが挙げられる。

【0220】アミノ基含有エチレン性不飽和化合物は、エチレン性二重結合とアミノ基を有する化合物であり、このような化合物としては、次式で表わされるアミノ基または置換アミノ基を少なくとも1種類有するビニル系単量体を挙げることができる。

[0221] 【化39】

$$-N$$
 R^{1}

【0222】式中、 R^1 は水素原子、メチル基またはエチル基であり、 R^2 は、水素原子、炭素数 $1\sim12$ 、好ましくは炭素数 $1\sim8$ のアルキル基、炭素数 $6\sim12$ 、好ましくは $6\sim8$ のシクロアルキル基である。なお上記のアルキル基、シクロアルキル基は、さらに置換基を有10 してもよい。

【0223】このようなアミノ基含有エチレン性不飽和 化合物としては、具体的には、 (メタ) アクリル酸アミ ノエチル、(メタ)アクリル酸プロピルアミノエチル、 メタクリル酸ジメチルアミノエチル、 (メタ) アクリル 酸アミノプロピル、メタクリル酸フェニルアミノエチル およびメタクリル酸シクロヘキシルアミノエチルなどの アクリル酸またはメタクリル酸のアルキルエステル系誘 導体類; N-ピニルジエチルアミンおよびN-アセチルピニ ルアミンなどのビニルアミン系誘導体類; アリルアミ ン、メタクリルアミン、N-メチルアクリルアミン、N,N-ジメチルアクリルアミン、およびN, N-ジメチルアミノプ ロピルアクリルアミンなどのアリルアミン系誘導体;ア クリルアミドおよびN-メチルアクリルアミドなどのアク リルアミド系誘導体;p-アミノスチレンなどのアミノス チレン類;6-アミノヘキシルコハク酸イミド、2-アミノ エチルコハク酸イミドなどが用いられる。

【0224】エポキシ基含有エチレン性不飽和化合物 は、1分子中に重合可能な不飽和結合およびエポキシ基 を少なくとも1個以上有するモノマーであり、このよう 30 なエポキシ基含有エチレン性不飽和化合物としては、具 体的には、グリシジルアクリレート、グリシジルメタク リレートなど、マレイン酸のモノおよびジグリシジルエ ステル、フマル酸のモノおよびジグリシジルエステル、 クロトン酸のモノおよびジグリシジルエステル、テトラ ヒドロフタル酸のモノおよびジグリシジルエステル、イ タコン酸のモノおよびジグリシジルエステル、プテント リカルボン酸のモノおよびジグリシジルエステル、シト ラコン酸のモノおよびジグリシジルエステル、エンド-シス-ビシクロ [2.2.1] ヘ プト-5-エン-2.3-ジカルボ 40 ン酸(ナジック酸**) のモノおよびジグリシジルエステ ル、エンド-シス-ピシクロ[2.2.1] ヘプト-5-エン-2-メチル-2,3-ジカルボン酸(メチルナジック酸**)のモ ノおよびジグリシジルエステル、アリルコハク酸のモノ およびジグリシジルエステルなどのジカルボン酸モノお よびジアルキルグリシジルエステル(モノグリシジルエ ステルの場合のアルキル基の炭素数1~12)、 p-スチ レンカルボン酸のアルキルグリシジルエステル、アリル グリシジルエーテル、2-メチルアリルグリシジルエーテ ル、スチレン-p-グリシジルエーテ ル、3,4-エポキシ-1 50 -プテン、3,4-エポキシ-3-メチル-1-プテン、3,4-エポ

52

キシ-1-ペンテン、3,4-エポキシ-3-メチル-1-ペンテ ン、5,6-エポキシ-1-ヘキセン、 ビニルシクロヘキセン モノオキシドなどを例示することができる。

51

【0225】芳香族ピニル化合物としては、下記式で表 わされる化合物が挙げられる。

[0226] 【化40】

【0227】上記式において、R'およびR'は、それぞ れ独立に、水素原子または炭素原子数1~3のアルキル 基を表わし、具体的には、メチル基、エチル基、プロピ ル基およびイソプロピル基を挙げることができる。ま た、R³は炭素原子数 $1\sim3$ の炭化水素基またはハロゲ ン原子を表わし、具体的には、メチル基、エチル基、プ ロピル基およびイソプロピル基並びに塩素原子、臭素原 子およびヨウ素原子などを挙げることができる。また、 nは通常は $0\sim5$ 、好ましくは $1\sim5$ の整数を表す。

【0228】このような芳香族ピニル化合物の具体的な 例としては、スチレン、α-メチルスチレン、o-メチル スチレン、p-メチルスチレン、m-メチルスチレン、p-ク ロロスチレン、n-クロロスチレンおよびp-クロロメチル スチレンが挙げられる。複素環芳香族ビニル化合物も使 用することができ、たとえば4-ビニルピリジン、2-ビニ ルピリジン、5-エチル-2-ビニルピリジン、2-メチル-5-ビニルピリジン、2-イソプロペニルピリジン、2-ビニル キノリン、3-ビニルイソキノリン、N-ビニルカルバゾー ル、N-ピニルピロリドンなどを挙げることができる。

【0229】不飽和カルポン酸としては、アクリル酸、 メタクリル酸、マレイン酸、フマル酸、テトラヒドロフ タル酸、イタコン酸、シトラコン酸、クロトン酸、イソ クロトン酸、ノルボルネンジカルボン酸、ビシクロ[2, 2,1] ヘプト-2-エン-5,6-ジカルボン酸などの不飽和力 ルボン酸、またはこれらの酸無水物あるいはこれらの誘 導体(例えば酸ハライド、アミド、イミド、エステルな ど) が挙げられる。具体的な化合物の例としては、塩化 マレニル、マレニルイミド、無水マレイン酸、無水イタ コン酸、無水シトラコン酸、テトラヒドロ無水フタル 酸、ビシクロ[2,2,1] ヘプト-2-エン-5,6-ジカルボン 酸無水物、マレイン酸ジメチル、マレイン酸モノメチ ル、マレイン酸ジエチル、フマル酸ジエチル、イタコン 酸ジメチル、シトラコン酸ジエチル、テトラヒドロフタ ル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル、ヒドロキシエチル (メタ) アク リレート、ヒドロキシプロピル (メタ) アクリレート、 グリシジル(メタ)アクリレート、メタクリル酸アミノ エチルおよびメタクリル酸アミノプロピルなどを挙げる

ことができる。これらの中では、(メタ)アクリル酸、 無水マレイン酸、ヒドロキシエチル(メタ)アクリレー ト、グリシジルメタクリレート、メタクリル酸アミノプ ロピルが好ましい。

【0230】ビニルエステル化合物の例としては、酢酸 ビニル、プロピオン酸ビニル、n-酪酸ビニル、イソ酪酸 ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサ ティック酸ピニル、ラウリル酸ピニル、ステアリン酸ビ ニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、サ 10 リチル酸ピニル、シクロヘキサンカルボン酸ピニルなど を挙げることができる。

【0231】上記極性モノマーは、上記不飽和性エチレ ン系共重合体100重量部に対して、通常は、0.1~ 100重量部、好ましくは0.5~80重量部の量で使 用される。

【0232】ラジカル開始剤としては、有機過酸化物あ るいはアゾ化合物などを挙げることができる。有機過酸 化物の具体的な例としては、ジクミルパーオキサイド、 ジ-t-プチルパーオキサイド、2,5-ジメチル-2,5-ビス(t 20 -プチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス (t-プチルパーオキシ)ヘキシン-3、1,3-ビス(t-プチル パーオキシイソプロピル) ベンゼン、1,1-ビス(t-ブチル パーオキシ)バラレート、ベンゾイルパーオキサイド、 t -ブチルパーオキシベンゾエート、アセチルパーオキサ イド、イソプチリルパーオキサイド、オクタノイルパー オキサイド、デカノイルパーオキサイド、ラウロイルパ ーオキサイド、3,5,5-トリメチルヘキサノイルパーオキ サイドおよび2,4-ジクロロベンゾイルパーオキサイド、 m-トルイルパーオキサイドなどを挙げることができる。 また、アゾ化合物としてはアゾイソブチロニトリル、ジ メチルアゾイソプチロニトリルなどを挙げることができ る。

【0233】このようなラジカル開始剤は、上記不飽和 性エチレン系共重合体100重量部に対して、一般に は、0.001~10重量部の量で使用されることが望

【0234】ラジカル開始剤は、そのまま不飽和性エチ レン系共重合体および極性モノマーと混合して使用する こともできるが、このラジカル開始剤を少量の有機溶媒 40 に溶解して使用することもできる。ここで使用される有 機溶媒としては、ラジカル開始剤を溶解し得る有機溶媒 であれば特に限定することなく使用することができる。 【0235】このような有機溶媒としては、ペンゼン、 トルエンおよびキシレンなどの芳香族炭化水素溶媒;ペ ンタン、ヘキサン、ヘプタン、オクタン、ノナンおよび デカンなどの脂肪族炭化水素系溶媒:シクロヘキサン、 メチルシクロヘキサンおよびデカヒドロナフタレンのよ うなの脂環族炭化水素系溶媒;クロルベンゼン、ジクロ ルベンゼン、トリクロルベンゼン、塩化メチレン、クロ 50 ロホルム、四塩化炭素およびテトラクロルエチレンなど

の塩素化炭化水素;メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノールおよびtert-ブタノールなどのアルコール系溶媒;アセトン、メチルエチルケトンおよびメチルイソプチルケトンなどのケトン系溶媒;酢酸エチルおよびジメチルフタレートなどのエステル系溶媒;ジメチルエーテル、ジエチルエーテル、ジーn-アミルエーテル、テトラヒドロフランおよびジオキシアニソールのようなエーテル系溶媒を挙げることができる。

53

【0236】また本発明において、不飽和性エチレン系 共重合体をグラフト変性するに際して、還元性物質を用 いてもよい。還元性物質は、得られるグラフト変性不飽 和性エチレン系共重合体におけるグラフト量を向上させ る作用を有する。

【0237】 選元性物質としては、鉄(II) イオン、クロムイオン、コバルトイオン、ニッケルイオン、パラジウムイオン、亜硫酸塩、ヒドロキシルアミン、ヒドラジンなどのほか、-SH、-SO,H、-NHNH,、-COCH(OH)-などの基を含む化合物が挙げられる。

【0238】このような還元性物質としては、具体的には、塩化第一鉄、重クロム酸カリウム、塩化コパルト、ナフテン酸コパルト、塩化パラジウム、エタノールアミン、ジエタノールアミン、N,N-ジメチルアニリン、ヒドラジン、エチルメルカプタン、ベンゼンスルホン酸、p-トルエンスルホン酸などが挙げられる。

【0239】上記の還元性物質は、上記の不飽和性エチレン系共重合体100重量部に対して、通常は、0.001~5重量部、好ましくは0.1~3重量部の量で使用される。

【0240】不飽和性エチレン系共重合体のグラフト変性は、従来公知の方法で行うことができ、例えば不飽和性エチレン系共重合体を有機溶媒に溶解し、次いで極性モノマーおよびラジカル開始剤などを溶液に加え、70~200℃、好ましくは80~190℃の温度で、0.5~15時間、好ましくは1~1.0時間反応させることにより行われる。

【0241】不飽和性エチレン系共重合体をグラフト変性する際に用いられる有機溶媒は、不飽和性エチレン系 共重合体を溶解し得る有機溶媒であれば特に限定することなく使用することができる。

【0242】このような有機溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒などが挙げられる。

【0243】また、押出機などを使用して、無溶媒で、不飽和性エチレン系共重合体と極性モノマーとを反応させて、グラフト変性不飽和性エチレン系共重合体を製造することができる。反応温度は、通常不飽和性エチレン系共重合体の融点以上、具体的には120~250℃の範囲である。このような温度条件下における反応時間

は、通常0.5~10分間である。

【0244】このようにして調製されたグラフト変性不飽和性エチレン系共重合体中における極性モノマーから誘導されるグラフト基のグラフト量は、通常は0.1~50重量%、好ましくは0.2~30重量%の範囲内にある。

【0245】このようにして得られた変性不飽和性エチレン系共重合体は、金属および極性樹脂との接着性に優れる。また、該変性不飽和性エチレン系共重合体を極性樹脂とプレンドすることにより、その耐衝撃性、低温耐衝撃性を改良することができる。

【0246】また変性不飽和性エチレン系共重合体(変性エチレン系ランダム共重合体)を成型して得られた成形体では、その成形体表面への印刷性、塗装性に優れている。

【0247】また、ポリオレフィンにガラス繊維、無機化合物などの充填剤と共に該変性不飽和性エチレン系共重合体(変性エチレン系ランダム共重合体)をプレンドすることにより、充填剤の分散性が改良された樹脂組成物を得ることができる。このようにすれば、充填剤を配合する場合の利点が保持され、しかも機械強度が向上した樹脂組成物を得ることができる。

【0248】 [<u>不飽和性エチレン系共重合体を含む組成物</u>] 上記のような不飽和性エチレン系共重合体を含有する本発明に係る組成物は、必要に応じて種々の添加剤たとえば酸化防止剤、充填剤などを含有することができる。

[0249]

【発明の効果】本発明によれば、化学反応性富み、グラ 30 フト変性しやすく、接着性、塗装性、印刷性などに優れ た不飽和性エチレン系共重合体が得られる。

[0250]

【実施例】以下、本発明を実施例によってさらに具体的 に説明するが、本発明はこれらの実施例によって何等限 定されるものではない。

(1) なお、以下のポリマー製造の実施例では、例え

- ば、EMHN {:5-(2-エチリデン-6-メチル-5-ヘプテニル)-2-ノルボルネン} として、下記モノマー合成の実施例で得られるEMHN(真のEMHN)の他 に、少量の副生成物(5-[3,7-ジメチル-2,6-オクタジエニル]-2-ノルボルネン)を含有する「EMHN含有物」を用いており、特にその趣旨に反しない限り、単に、EMHNなどというときは、真のEMHNと副生生物との混合物(EMHN含有物)を意味し、またエチレン・プロピレン・EMHN共重合体などと言うときは、このEMHN単位には、真のEMHN単位と副生成物由来の単位とが含まれているもの(EMHN含有単位)を意味する場合がある。
- (2) 主成分のEMHN [I] 由来の構成単位 [II] 50 と、副生成物 [I-a] 由来の構成単位 [II-a] の割

• • • [1]

55

合は、以下の方法で求めた。

装置及び測定条件

[装置] NMR:日本電子(株) 製,GSH-270型, FT-NMR

「主な装置条件〕

[!] H測定

観測範囲:5400Hz (20ppm) パルス幅: 7. 3μsec (45°)

溶媒: ヘキサクロロプタジエン ロック溶剤: 重水素化ペンゼン

測定モード:プロトンノンデカップリング

測定温度:120℃

濃度:50mg/0.4cc 積算回数:1000~3000回

[計算方法] 5.07~5.17ppm領域の面積をS 1とする。

【0251】5. 17~5. 35ppm領域の面積をS 2とする。主成分の化合物 [I] 由来の構成単位 [II]

と、副生成物 [I-a] 由来の構成単位 [II-a] の割 合(mol%)は次式より求まる。

[0252]

[II] : $[S2\times2/(S1+S2)]\times100$

[II-a] : $[(SI-S2) / (SI+S2)] \times 100$

[1]:

[0253]

【化41】

[0254][I-a]:

[0255]

【化42】

$$CH_2 - CH_2 - CH_2 \xrightarrow{R} C = C$$

· · · · [| - a]

[0256]

【参考例1】

[触媒の調製] アルゴン雰囲気下、スターラー攪拌子を 入れた50m1フラスコ中に、無水塩化コバルト(II)4 3mg(0.33ミリモル)、1,2-ビス(ジフェニルホ スフィノ) エタン263mg (0.66ミリモル) およ び無水デカン23mlを仕込み、25℃で2時間攪拌し た。次いでこの温度(25℃)において、濃度1モル/

リットルのトリエチルアルミニウム/トルエン溶液17 m1 (トリエチルアルミニウム17ミリモル) を加えて 2時間攪拌することにより触媒を調製した。

【0257】 [4-エチリデン-8-メチル-1,7- ノナジエ ン (EMN) の合成] 下記式:

[0258]

【化43】

【0259】で表わされるEMNを、以下のようにして 合成した。300ml容量のステンレス (SUS31 ル-3-メチレン-1,6- オクタジエン (β-ミルセン) 1 00g(734ミリモル)と、上記のようにして調製さ れた触媒を全量加えて密閉した。

【0260】次いでオートクレープにエチレンボンベを 接続(直結)して、オートクレープ内の圧力が35 kg/ cm になるまでエチレンを導入した。次いで95℃に加 熱して反応を行った。この間、消費されたエチレンを間 欠的に5回補充(追加)して、合計で15時間反応を行 った。

後、該オートクレープを開放し、得られた反応混合物を 水100ml中に注いで有機層と水層とに分離した。そ 6) 製オートクレープ中に、アルゴン雰囲気下、7-メチ 40 こで、この分離された有機層を分液し、エパポレータに て低沸点物を除去した後、20段の精密減圧蒸留を行っ て、目的物であるEMNが83g得られた(収率69 %、β-ミルセン転化率90%)。

> 【0262】また反応副生物として、5,9-ジメチル-1, 4,8- デカトリエンが16g生成した(収率13%)。 上記で得られた4-エチリデン-8-メチル-1,7-ノナジエン (EMN) の分析結果を以下に示す。

[0263]

(1) 沸 点:103~105℃/30mmHg

【0261】反応終了後にオートクレープ内を冷却した 50 (2) GC-MS (ガスクロマトグラフィー質量分析):

m/z 164 (M'分子イオンピーク)、149、1 23、95、69、41、27

[ガスクロマトグラフィ測定条件:

カラム: J & W サイエンティフィック社キャピラリカ

ラムDB-1701 (0.25mm×30m)

気化温度 :250℃

カラム温度:60℃で5分間保持後、200℃まで10

℃/分で昇温]

(3) 赤外線吸収スペクトル (ニート、cm⁻¹)

吸収ピーク:3080、2975、2925、285 0、1670、1640、1440、1380、123 5、1110、995、910、830。

[0264]

(4) 「H-NMRスペクトル(溶媒: CDC1,)吸収ピークを下記に示す。

【0265】 【表1】

表1

ppm (8)	(プロトン数、ピーク)
1. 59	(3H. doublet, J=THz)
1.80	(3H, singlet)
1. 6 B	(3H, singlet)
2.00	(2H, multiplet)
2. 06	(2H, multiplet)
2. 80	(2H. doublet, J=7Hz)
4. 9~5. 2	(3H, multiplet)
5.30	(1H. quartet, J=7Hz)
5. 75	(1H, multiplet)
ł	{

[0266]

【参考例2】

【5-(2-エチリデン-6-メチル-5-ヘプテニル) -2-ノルボルネン [:EMHN、先に例示した鎖状ポリエン 基含有ノルボルネン化合物 (11) の合成] } 参考例 1 で得られた4-エチリデン-8-メチル-1, 7-ノナジエン (EMN) 240.7g (1.156モル) を1リットル容量のステンレス製オートクレーブに入れ、2kg/cm²の窒素加圧下、190℃の温度にて加熱攪拌しながら、シクロペンタジエン153.0g (2.314 モル)を5時間かけて加えた。

【0267】この後、さらに、190℃の温度にて1時間加熱攪拌し、その後、室温まで冷却し、オートクレープを開放した。このようにして得られた反応混合物を減圧留去して、低沸点留分を除去した後、残留物について、40段の精密減圧蒸留を行って、目的とするEMHN{:5-(2-エチリデン-6-メチル-5-ヘプテニル)-2-ノルボルネン}53.8gを得た。収率は、4-エチリデン-8-メチル-1,7-ノナジエン基準で20.2%であった。

【0268】また、副生成物である [5-(3, 7-3)] メチル-2, 6-オクタジエニル)]-2-ノルボルネンは、<math>10.1g 得られた。よって、EMHNと副生生物

との比率は、5.33/1であった。

【0269】EMHNの物理化学的データを以下に示す

30 (1)沸点:138℃/3mmHg

(2)ガスクロマトグラフィー-質量分析:

m/z 230 (M'), 215, 187, 123, 9 1, 69

ガスクロマトグラフィー測定条件:

カラム: J&W サイエンティフィック社, キャピラリカラムDB-1701 (0.25mm×30m)

気化温度:250℃

カラム温度:40℃で5分間保持後、200℃まで5℃ /分で昇温

40 (3)赤外線吸収スペクトル (ニート、cm⁻¹)

3050, 2960, 2925, 2850, 1660,

1630, 1570, 1440, 1375, 1345,

1330, 1250, 1220, 1100, 980, 9

25, 900, 820, 780, 715.

(4) プロトンNMRスペクトル (CDC1, 溶媒) 吸収ピークを下記に示す。

[0270]

【表2】

表2

ppm (5)	(プロトン塾、ピーク)
0.55	(1H. multiplet)
1. 1~2. 3	(10H, multiplet)
1.55	(3H, doublet, J=7Hz)
1. 80	(3H, ainglet)
1. B7	(3H, singlet)
2. 7	(2H, multiplet)
5. 1 B	(1H, multiplet)
5. 2 D	(1H, quartet. J=7Hz)
5. 9~6. 2	(2H, multiplet)

[0271]

【参考例3】ジシクロペンタジエン153.0g(1. 157モル)と4ーエチリデン-8-メチル-1,7-ノナジエン240.7g(1.156モル)を1リット ル容量のステンレス製オートクレープに入れ、2kg/ c m³の窒素加圧下に温度190℃で6時間加熱撹拌し て反応を行なった。

【0272】反応終了後、室温まで冷却してオートクレ ープを開放した。このようにして得られた反応混合物を 減圧留去して、低沸点留分を除去した後、残留物につい て、40段の精密減圧蒸留を行なって、目的とするEM HN48. 7gを得た。収率は4-エチリデン-8-メ チルー1、7ーノナジエン基準で18.3%であった。 【0273】また、副生成物である、5-[3,7-ジ メチルー2,6ーオクタジエニル]-2ーノルボルネン を9.7g得た。よって、EMHNと副生物との比率は 5.02/1であった。

<参考>

<u>[5-(3,7-ジメチル-2,6-オクタジエニル]</u> -2-ノルポルネン:

(1)プロトンNMRスペクトル (CDC1,溶媒):

- 0. 55 (1H, multiplet)
- 1. 0~2. 3 (8H, multiplet)
- 1. 60 (6H, singlet)
- 1. 68 (3H, singlet)
- 2. 7 (2H, multiplet)
- 5. 1 (2H, multiplet)

5. $9 \sim 6$. 2 (2H, multiplet) (2)赤外線吸収スペクトル (ニート、cm⁻¹):

3050, 2960, 2925, 2860, 1670, 1640, 1450, 1380, 1340, 1250,

1105, 900, 830, 720.

[0274]

【実施例1】

<触媒溶液の調製>充分に窒素置換されたガラス製フラ 20 スコに、ピス(1, 3-ジメチルシクロペンタジエニ ル) ジルコニウムジクロリドを5.2mg加え、次いで メチルアルミノキサンのトルエン溶液 (Witco社製 メチルアルミノキサンを乾固し、トルエンに再溶解した もの。A1:1.1モル/リットル) 4.1ml、およ びトルエン3. 4mlを添加することにより、触媒溶液 を得た。

<重合>充分に窒素置換された内容積2リットルのステ ンレス製オートクレープにヘキサン700m1、1-ブ テン200ml、および参考例2で得られた5-(2-エ 30 チリデン-6-メチル-5-ヘプテニル)-2-ノルボルネン (EMHN) 含有物20mlを装入し、系内の温度を7 0℃に昇温した。引き続き、トリイソプチルアルミニウ ム:1ミリモル(1mmol)および上記で調製した触 媒溶液2.5ml(Zrとして0.005ミリモル)を エチレンで圧入することにより、重合を開始した。

【0275】その後、エチレンのみを連続的に供給する ことにより全圧を8kg/cm'Gに保ち、70℃で3 0分間重合を行った。少量のエタノールを系内に添加す ることにより、重合を停止した後、未反応のエチレンを 40 パージした。得られたポリマー溶液を大過剰のメタノー ル中に投入することにより、ポリマーを析出させた。

【0276】ポリマーを濾過にて回収し、安定剤[Ir ganox1010(チパガイギー製)25mgおよび Mark329K (旭電化製) 25mg] を混合した 後、130℃で減圧下に一晩乾燥した。その結果、極限 粘度 [n] が1.8 d l/gであり、エチレン単位が9 4. 8モル%であり、1-プテン単位が4. 4モル%で あり、EMHN含有物単位が0.8モル%であるエチレ ン・1-プテン・EMHN含有物共重合体を29.5g

50 得た。また、このEMHN含有物構成単位0.8モル%

は、0.57モル%のEMHN構成単位と、0.23モル%の副生物 { [5-(3,7-ジメチル-2,6-オクタジエニル)] -2-ノルボルネン} 構成単位とから成っていた。

[0277]

【実施例2】

<触媒溶液の調製>充分に窒素置換されたガラス製フラ スコに rac -ジメチルシリレンピス {1-(2-メチル-4-イソプロピル-7-メチルインデニル) } ジルコニウ ムジクロリドを6.3mg加え、次いで、メチルアルミ ノキサンのトルエン溶液 (Witco社製メチルアルミ ノキサンを乾固し、トルエンに再溶解したもの。A1: 1. 1モル/リットル) 2. 9ml、およびトルエン 2. 5mlを添加することにより、触媒溶液を得た。 【0278】〈重合〉充分に窒素置換された内容積2リ ットルのステンレス製オートクレープにヘキサン900 ml、1-オクテン100ml、および参考例2で得ら れた5-(2-エチリデン-6-メチル-5-ヘプテニル)-2-ノルボルネン (EMHN) 含有物 15 m l を装入 し、系内の温度を80℃に昇温した。引き続き、トリイ ソプチルアルミニウム:1ミリモル(1mmol)およ び上記で調製した触媒溶液1ml(Zrとして0.00

2ミリモル)をエチレンで圧入することにより、重合を 開始した。

【0279】その後、エチレンのみを連続的に供給することにより全圧を8kg/cm Gに保ち、80℃で50分間重合を行った。少量のエタノールを系内に添加することにより、重合を停止した後、未反応のエチレンをパージした。得られたポリマー溶液を大過剰のメタノール中に投入することにより、ポリマーを析出させた。

【0280】ポリマーを濾過にて回収し、安定剤 [Irganox1010 (チバガイギー製) 25mgおよび Mark329K (旭電化製) 25mg] を混合した後、130℃で減圧下に一晩乾燥した。

【0281】その結果、極限粘度 [n] が3.2 d 1/ gであり、エチレン単位が92.9モル%であり、1-オクテン単位が6.5モル%であり、EMHN含有物単位が0.6モル%であるエチレン・1-オクテン・EMHN含有物共重合体を41.5 g 得た。また、このEMHN含有物構成単位0.6モル%は、0.41モル%のEMHN構成単位と、0.19モル%の副生物 { $[5-(3,7-ジメチル-2,6-オクタジエニル)] -2-ノルボルネン} 構成単位とから成っていた。$

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

BADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.