Manish Shrivastava

The sigmoid layer outputs numbers between 0-1 determine how much each component should be let through. Pink X gate is point-wise multiplication.

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

i_t decides what componentis to be updated.C'_t provides change contents

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Updating the cell state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Decide what part of the cell state to output

RNN vs LSTM

Peephole LSTM

Naïve RNN vs LSTM

c changes slowly ct is ct-1 added by something

h changes faster ht and ht-1 can be very different

Information flow of LSTM

Information flow of LSTM

Information flow of LSTM

Information flow of LSTM

GRU – gated recurrent unit

(more compression)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

It combines the forget and input into a single update gate. It also merges the cell state and hidden state. This is simpler than LSTM. There are many other variants too.

X,*: element-wise multiply

LSTM and GRU

GRUs also takes x_t and h_{t-1} as inputs. They perform some calculations and then pass along h_t . What makes them different from LSTMs is that GRUs don't need the cell layer to pass values along. The calculations within each iteration insure that the h_t values being passed along either retain a high amount of old information or are jump-started with a high amount of new information.

Feed-forward vs Recurrent Network

- 1. Feedforward network does not have input at each step
- 2. Feedforward network has different parameters for each layer

$$a^{t} = f(a^{t-1}, x^{t}) = \sigma(W^{h} a^{t-1} + W^{i} x^{t} + b^{i})$$

We will turn the recurrent network 90 degrees.

GRU → Highway Network

No input x^t at each step

No output y^t at each step

a^{t-1} is the output of the (t-1)-th layer

at is the output of the t-th layer

No reset gate

Highway Network at = z @ at-1 + (1-z) @ h

$$h'=\sigma(Wa^{t-1})$$

$$z=\sigma(W'a^{t-1})$$

$$a^{t}=z\odot a^{t-1}+(1-z)\odot h$$

Highway Network

Training Very Deep Networks https://arxiv.org/pdf/1507.0622 8v2.pdf

Residual Network

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

- Translation model
- Input is Segmented in Phrases
- Each Phrase is Translated into English
- Phra

Language Model

```
Goal of the Language Model: Detect good English P(e)
Standard Te Mary did not slap the green witch
           Mary => p(Mary)
           Mary did => p(did | Mary)
           Mary did not => p(not | Mary did)
                did not slap => p(slap | did not)
                    not slap the => p(the not slap)
                        slap the green => p(green slap the)
                             the green witch => p(witch | the green)
```

Decoding


```
e:
f: -----
p: l
```

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

- Prune out Weakest Hypotheses
 - by absolute threshold (keep 100 best)
 - by relative cutoff

- Future Cost Estimation
 - compute expected cost of untranslated words

Sutskever et al.,2014

Sequence to Sequence Learning with Neural Networks

Model

Model

Model-

Cho: From Sequence Modeling to Translation e = (Economic, growth, has, slowed, down, in, recent, years, .)

• Model- encoder Recurrent State Word Representation Continuous-space (1)1-of-K coding \mathbf{W}_{i} e = (Economic, growth, has, slowed, down, in, recent, years, .)

• Model- encoder

• Model- encoder

e = (Economic, growth, has, slowed, down, in, recent, years, .)

• Model- de

e = (Economic, growth, has, slowed, down, in, recent, years, .)

f= (La, croissance, économique, s'est, ralentie, ces, dernières, années, .) • Model- dec Word Ssample \mathbf{u}_i Word Probability Recurrent State

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Cho: From Sequence Modeling to Translation

• Model- decoder

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Cho: From Sequence Modeling to Translation

• RNN

```
h_t = \operatorname{sigm} (W^{\operatorname{hx}} x_t + W^{\operatorname{hh}} h_{t-1})y_t = W^{\operatorname{yh}} h_t
```

RNN

Vanishing gradient

$$\frac{\partial C_t}{\partial \mathbf{W}} = \sum_{t'=1}^t \frac{\partial C_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t'}} \frac{\partial h_{t'}}{\partial \mathbf{W}}, \text{ where } \frac{\partial h_t}{\partial h_{t'}} = \prod_{k=t'+1}^t \frac{\partial h_k}{\partial h_{k-1}}$$

Cho: From Sequence Modeling to Translation

• LSTM

• LSTM

Problem: Exploding gradient

• LSTM

Problem: Exploding gradient

Solution: Scaling gradient

Results
 BLEU score (Bilingual Evaluation Understudy)

Candidate	the	the	the	the	the	the	the
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	a	cat	on	the	mat

$$P = m/w = 7/7 = 1$$

Results
 BLEU score (Bilingual Evaluation Understudy)

Candidate	the	the	the	the	the	the	the
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	a	cat	on	the	mat

P = 2/7

Results

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Results

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Cho et al. [5]	34.54
Best WMT'14 result [9]	37.0
Rescoring the baseline 1000-best with a single forward LSTM	35.61
Rescoring the baseline 1000-best with a single reversed LSTM	35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
Oracle Rescoring of the Baseline 1000-best lists	~45

Model Analysis

Sutskever et al. 2014

Long sentences

Bahdanau et al.,2014

Neural Machine Translation by Jointly Learning to Align and Translate

Long sentences

Fixed length representation maybe the cause

Attention mechanism

Attention mechanism

$$e_{ij} = a(s_{i-1}, h_j)$$

$$e_{ij} = a(s_{i-1}, h_j)$$

Long sent

