Lec – 3a Introduction to

Assignment Project Exam Help CTVDTOSTADNY https://powcoder.com

Add WeChat powcoder

Overview

- Security vs Cryptography
- Key terminologies
- CIA and Cryptographent Project Exam Help
- Algorithms/Ciphers and Keys

 https://powcoder.com
- Kerchoff's principle
- Secret key or symmetriv ecyptography Drawbacks
- Ring puzzle
- Public key or asymmetric cryptography

Principles – CIA + AA

Information system assets

Assignment Project Exam Help
Malware
https://powcoder.com

Add WeChat powcoder

- Authentication is the first line of defence,
 (will be covering password policies later)
- Cryptography used in authentication

Security vs Cryptography

- What is cryptography? The science of secret writing
- What is security? Protect systems against inappropriate use.
 Examples:
 - Withdraw money from someone else's account
 - Alter your exarhtmarks ow the eniversity database
- Security is a broad subject; physical, platform, network,...
- Cryptography security; cryptography is only one way of ensuring certain aspects of security
- Every system can be broken (given enough resources) Security cost should be proportional to value being protected

Some Terminologies

- Cryptography: the science of secret writing
- Cryptanalysis: the science of code-breaking
- Cryptology = Cryptography + Cryptanalysis
- A cipher is an algorithm that turns readable messages (plaintext) into unreadable messages (ciphertext). This process is called encryption. The reverse process is called decryption

Brief overview of crypto

- Algorithm A finite sequence of well-defined, computerimplementable instructions, typically to solve a problem
- Ciphers are algorithms

 Assignment Project Exam Help

 A cipher is used to encrypt the plaintext
- The result of encryption is cipilertext
- We decrypt ciphertext to recover plaintext
- A key is used to configure a cryptosystem
- A private/symmetric key cryptosystem uses the same key to encrypt as to decrypt
- A public/asymmetric key cryptosystem uses a public key to encrypt and a private key to decrypt

Basic idea of encryption/decryption • Caesar, 2000 years ago

Suppose we knownto accomplete has been used in this example and it is a shift by three characters

Given ciphertext! VSR&JAwcoder

Plaintext: sponge

Shift by n for some n memberOf {0,1,2,...,25}

Then key is n

Example: key n = 2

Ciphertext: uwuugz plaintext

- Another simple cipher is: Rot13
- Replace every letter with the letter 13 places down the alphabet
- Example: hello world -> uryyb jbeyq
 - How to decrypt "grpelcg"?

 Assignment Project Exam Help
 - Rot13 is not a good cipher, why?
 - If an attacker knows Rot 13 is being used, the message can easily be decoded oder
- What about Rot-n? (shift n positions)
 - Better
 - But still easy to decode (try all 26 values of n)

Algorithms & Keys

- Ciphers usually use keys
- Key is a secret value
- One algorithm, many different keys
- Encrypting the same plaintext using different keys (but the same algorithm) gives different ciphertexts
- Ciphertext can only be decrypted using the correct key (using an incorrect key decrypts into a mess)
- Only the key need to be kept secret (algorithm can be publicly known; see next slide)
- Example: in Rot-n, the value of n is the key 26 different possible keys

Kerchoff's principle

Assignment Project Exam Help

A **cryptographic** system should be secure even if everything about the system, except the key, is public knowledge

Add WeChat powcoder

Secret/Symmetric key cryptography

- Also called symmetric cryptography
- Since ancient times
- Same key for encryption and decryption (to be kept secret)

Symmetric

Analogy: locked box

To send a secret letter/Diamond, Alice locks it in a box and sends the locked box to Bob. Only Alice and Bob have the key to open the box

Think about, how Alice needs to send the secret key in a secure way? Options: Post, Special Jet, Commercially these options are not viable.

Problems in Secret/Symmetric key cryptography Assignment Project Exam Help

1) Key Distribution Problem – A drawback in symmetric https://powcoder.com

Keys are usually shorter than the message and can be reused. Still, it is difficult to distribute keys securely

Add WeChat powcoder

2) In a system with many components:

Using one key for everything: risk the whole system collapsing upon a security breach Use a (different) key for each pair: distribution headache

Solution to key distribution problem: key agreement protocols; public key cryptography

Symmetric ciphers

- AES (Advanced Encryption Standard)
- DES (Data Encryption Standard)
- 3DES (Triples Description of the State of
- IDEA (International Data Encryption Algorithm)
- Blowfish (Drop-in replacement for DES or IDEA)
- RC4 (Rivest Ciphdr WeChat powcoder)
- RC5 (Rivest Cipher 5)
- RC6 (Rivest Cipher 6)

A possible solution to key distribution

A possible solution to key distribution		
Bob		Alice
Bob	Bob puts the letter / diamond ring inside the box, put his lock and sends it Alice	
	Assignment Project Exam Help Alice receives the box and puts another lock on it and sends the double locked box back of Bowcoder.com Add WeChat powcoder	Bob
Bob	Bob removes his lock and sends the (still locked) box to Alice	
	Alice opens her lock and gets the secret letter / ring	Alice

Asymmetric/Public key cryptography

- Suppose Alice wants to send Bob a message
- Bob generated his keypair before hand
- Alice encrypts the message using Bob's public key
- Bob decrypts Abeimessage Pusing this cown private key
- Only Bob can decrypt the message since only he has his own private key https://powcoder.com

Add WeChat powcoder

Properties of Public and Private Keys

We need the following mathematical properties:

- Easy to generate a pair of public/private keys
- Easy to encrypt knowing the public key
- Easy to decrypt knowing the private key
- Computationally difficult to get the private key from the public key
- Computationally difficult to decrypt without knowing the private key
 https://powcoder.com
- (Preferably) can encrypt with phyate key and decrypt with public key (i.e. key roles exchanged)

Is there really such a nice thing?

Some mathematical problems are believed to have these properties

Asymmetric ciphers examples

- RSA
- El Gamal
- Diffie-Hellmanignment Project Exam Help
- Elliptic curve cryptography used in Bitcoins

Add WeChat powcoder

Hybrid systems

- Combines symmetric and asymmetric ciphers
- First, the two parties use an asymmetric cipher to negotiate a session key(a secret key for this conversation)

Then, encrypt the conversation using the session key as a secretikey/oravsydmetric cipher

Add WeChat powcoder

Combines virtues of both kinds of ciphers:

- Use the slow asymmetric cipher to exchange a small amount of data only
- The conversation can then be encrypted using a fastsymmetric cipher

Concepts of cipher attacks

- "Breaking" a cipher means decrypt plaintext without the key
- Possible when plaintext language has some "meaning" for attacks to be possible
 - e.g. English sentences, excel file, exe program, ...
 - Otherwise, noswigy toedistinguish correct decryption

https://powcoder.com

Two types of attacks dd Worlerst powcoder

- Brute-force
- Cryptanalysis

Note: breaking a cipher is not the only way of compromising the cryptosystem

Brute force attack

Try all possible keys, one by one

- Strength of cipher can be increased by using longer keys
- E.g. Rot-n having only 26 possible keys is too small
- An n-bit key length gives 2ⁿ different possible keys

Cryptanalysis

- Exploit the mathematical properties of the algorithm
- Strength of cipher depends on design of algorithm
- Secret key ciphers: cryptanalysis is possible if structure (statistical properties) of plaintext remains in ciphertext
- Public key ciphers: cryptanalysis usually focuses on the mathematical relationships between public and private keys
- "Perfect" cipher does not admit cryptanalysis is better than brute force

Types of cryptanalysis attack

Type of Attack	Known to Cryptanalyst	
Ciphertext only	•Encryption algorithm	
	•Ciphertext to be decoded	
Known plaintext	•Encryption algorithm	
	•Ciphertext to be decoded	
	•One or more plaintext-ciphertext pairs formed with the secret	
Assign	ment Project Exam Help	
Chosen plaintext	•Encryption algorithm	
ht	•Ciphertext to be decoded	
III	Phinte Phessage Cheen by Cryptanalyst, together with its	
	corresponding ciphertext generated with the secret key	
Chosen ciphertext A	dend the Calmathe powcoder	
	•Ciphertext to be decoded	
	•Purported ciphertext chosen by cryptanalyst, together with its	
	corresponding decrypted plaintext generated with the secret key	
Characteristics		
Chosen text	•Encryption algorithm	
	•Ciphertext to be decoded	
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key	
	•Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key	

Types of cryptanalysis attack examples

```
Ciphertext-only: only have (a large amount of) encrypted data
```

Example: Sgd pthAssignmenttProjectsExam Help?

Known plaintext: in addition, some plaintext-ciphertext pairs are known

Example: sgd = The, Add WeChathpowcodernw = ?

Email headers, guessed keywords in message, etc

Chosen plaintext: attacker can choose to encrypt a few plaintext

Example: Encrypt "Example"? => Dwzlokd

Cryptography

Classified along three independent Assignment Project Exam Help

The type of operations used for transforming plaintext to ciphertext

- Substitution each element in the plaintext is mapped into another element
- Transposition elements in plaintext are rearranged

The number of keys

used

- Sender and receiver use same key – symmetric
- Sender and receiver each use a different key asymmetric

The way in which the plaintext is processed

- Block cipher processes input one block of elements at a time
- Stream cipher processes the input elements continuously