1 Introduction

One of the central cellular processes underlying development is transcriptional regulation. During development, changes in transcription factor activity induce chromatin modifications, chromatin remodelling and ultimately a differential recruitment of the basal transcriptional machinery[1]. Modelling the dynamics of gene regulation is therefore essential to better understand why a cellular dynamic processes progresses through several steps, and what goes wrong in the case of disease.

The dynamics of gene regulation has classically been studied using time series data[2]. When dynamic processes progress asynchronously, such as in hematopoiesis, time series data are usually obtained by sorting different transition states and assessing bulk gene expression and transcription factor binding within the population[3, 4, 5, 6]. Alternatively, time series data can also be generated by synchronizing the dynamic process between cells. However, issues with time-resolution, heterogeneity and good in vivo synchronization models can often limit the predictive power of the dynamic models of gene regulation which can be constructed[2].

One of the main advantages of single-cell transcriptomics is the ability to quantify the exact cellular state of thousands of cells per experiment. The intercellular heterogeneity caused by naturally occurring biological stochasticity [7] can be exploited to predict regulatory interactions between transcription factors (TFs) and their target genes. The computational tools that infer gene regulatory networks (GRNs) from omics datasets are called network inference (NI) methods.

Several studies have highlighted how some regulatory interactions can be very dynamic while others show evidence of being static during consecutive developmental stages[8, 9]. Since regulatory interactions are context-dependent[10], attempting to create an accurate model of those processes by inferring a static regulatory network may have limited relevance.

Case-specific NI (CSNI) methods avoid predicting a global GRN and instead produce one GRN per case in the dataset. The sample-specific GRNs – or 'sample-specific regulomes' – can be used in much the same way as single-cell transcriptomi

Kuijjer et al. [11] LOO. Liu et al. [personalizedcharacterizationdiseases]. Aibar et al. SCENIC [12] use global method and post-process.

NI methods that take into account the dynamic aspect of gene regulation instead produce network models with variable regulatory activity.

To this end, several approaches have been proposed, which can be broadly classified in three different classes, depending on the output structure they produce: differential NI, dynamic NI, and profile-specific NI (Figure ??).

With each of these methodologies, it should be noted that while they produce networks specific for only certain subsets of the cell's profiles, they still use the information from all available profiles. If a method is to infer a network from cells in only a certain condition, it will infer interactions from noise in the data, rather than the changes that separate that condition from any other. As such, a context-dependent network inferred from only a subset of the

profiles is likely to be less accurate than a static network trained on all profiles.

2 Results

Figure 1: A

3 Discussion

4 Methods

5 References

- [1] Antoine Coulon et al. "Eukaryotic Transcriptional Dynamics: From Single Molecules to Cell Populations". In: *Nature Reviews Genetics* 14 (July 9, 2013), p. 572. URL: https://doi.org/10.1038/nrg3484.
- [2] Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon. "Studying and Modelling Dynamic Biological Processes Using Time-Series Gene Expression Data". In: *Nat. Rev. Genet.* 13.8 (Aug. 2012), pp. 552–564.
- [3] Noa Novershtern et al. "Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis". In: *Cell* 144.2 (2011), pp. 296–309.
- [4] Gillian May et al. "Dynamic Analysis of Gene Expression and Genome-Wide Transcription Factor Binding during Lineage Specification of Multipotent Progenitors". In: *Cell Stem Cell* 13.6 (2013), pp. 754–768.
- [5] Vladimir Jojic et al. "Identification of Transcriptional Regulators in the Mouse Immune System". In: *Nat. Immunol.* 14.6 (2013), pp. 633–643. DOI: 10.1038/ni.2587.Identification.
- [6] Debbie K Goode et al. "Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation". In: *Dev. Cell* 36.5 (2016), pp. 572–587.
- [7] Olivia Padovan-Merhar and Arjun Raj. "Using Variability in Gene Expression as a Tool for Studying Gene Regulation". In: *Wiley Interdisciplinary Reviews. Systems Biology and Medicine* 5.6 (Nov. 2013), pp. 751–759. ISSN: 1939-005X. DOI: 10.1002/wsbm.1243. pmid: 23996796.
- [8] Victoria Moignard et al. "Characterization of Transcriptional Networks in Blood Stem and Progenitor Cells Using High-Throughput Single-Cell Gene Expression Analysis". In: *Nat. Cell Biol.* 15.4 (Apr. 2013), pp. 363–372.
- [9] Cristina Pina et al. "Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis." In: *Cell reports* 11.10 (2015), pp. 1503–1510. ISSN: 2211-1247. DOI: 10.1016/j.celrep.2015.05.016. pmid: 26051941.
- [10] Balázs Papp and Stephen Oliver. "Genome-Wide Analysis of the Context-Dependence of Regulatory Networks". In: *Genome Biology* 6.2 (Jan. 27, 2005), p. 206. ISSN: 1474-760X. DOI: 10.1186/gb-2005-6-2-206.
- [11] Marieke Lydia Kuijjer et al. "Estimating Sample-Specific Regulatory Networks". In: *iScience* 14 (Mar. 28, 2019), pp. 226–240. ISSN: 2589-0042. DOI: 10.1016/j.isci.2019.03.021. pmid: 30981959.
- [12] Sara Aibar et al. "SCENIC: Single-Cell Regulatory Network Inference and Clustering". In: Nature Methods (Oct. 2017). ISSN: 1548-7091. DOI: 10.1038/nmeth.4463.