Web Databases

CSCI 3000 Web Programming

Dr. Luis A. Cueva-Parra

Introduction

- Databases are important components of information systems.
- □ It is particularly important when we use them as part of web applications.
- □ In this course we will try to answer some questions like:
 - Why do we need a database?
 - What problems do we face if we do not have one?
 - What are the available database software options?

Understanding Databases

- What are databases? They are tools for solving certain problems.
- □ Those problems arise from having data that need to be stored.
- Data or information may include information about customers, products, employees, orders, details about the visits to your website, etc.

Understanding Databases

- The data could be in text format, it could be names and descriptions, or numeric amounts, or dates, or this could be document files or images, audio, or video.
- □ You can store some of this data in files and/ or spreadsheets. If they are documents you can store them in folders.
- Having data is not a good enough reason to need a database.
- Having data is not the problem.

Potential Problems Related to Data

- Problems with data:
 - Size of the data is a potential problem.
 - Ease of updating your data
 - Accuracy of it
 - Security of it
 - Redundancy in it
 - Importance of the data.
- □ These are the reasons of having a database

Potential Solutions

- □ The database can make the data:
 - Scalable
 - Accessible
 - Accurate
 - Secure
 - Consistent
 - Permanent
- Databases give us structure. It imposes rules on the data.

Database Management Systems (DBMS)

- Oracle
- SQL Server
- MySQL
- PostgreSQL
- MongoDB

DBMS are software that need to be installed

Database and DBMS

- □ The **database** is your data and your rules about that data.
- □ The database management system, the DBMS, is the program or the set of programs that surround and manage it, to make sure your rules are applied.

Relational DBMS

- Oracle
- □ SQL Server
- □ DB2
- MySQL
- PostgreSQL
- □ SQLite
- MS Access
- Relational DBMS are the most common

Relational DBMS

- Relational DBMS are the most widely used
- They use the same principles across all offerings
- Are foundational for understanding other systems.

Database Fundamentals

- Features of Relational Database:
 - Consists of Tables as main building blocks
- □ Tables: Rows and Columns

Tables

Table Design

□ Apply structure to data defining how the information will be stored in the table.

FirstName	LastName	HireDate	Grade	Salary
Alice	Mann	4/4/2012	5	80000
James	Black	3/7/2016	4	75000
Calista	Guerra	8/15/2008	7	90000
Fay	Fitzgerald	11/5/2014	5	80000

Table Design

- By deciding what the columns are, and defining them, we are imposing rules on the data.
- Once we describe these rules, the database management system will not let us break them.
- □ **Tables** and **columns** are defined up front.
- Day-to-day use is in creating and updating rows.

Unique Values and Primary Keys

- All tables in a database will require a key.
- A key identifies one particular row in a table.
- □ The **key** will be in a defined column, which contains *unique values* per row.
- Examples of keys are ISBN numbers, SS numbers, employee ID numbers, etc.
- The main key in a database is called primary key.

Unique Values and Primary Keys

- □ If natural unique values are not suitable for being keys (e.g. SS numbers) then the DBMS generates a primary key (e.g. customer number)
- Generated primary keys are also called synthetic keys or surrogate keys.

Defining Table Relationships

Customer Table

ID	fisrtName	lastName	email	address
367	Carl	Brown	br@a	22 Stone Ct
368	Vincent	Scott	sc@b	123 River Rd
369	Lynn	Allen	all@c	47 Main st.

Order table

orderID	Date	Quantity	Total	ID
367	2/11/2018	23	\$956.00	367
368	6/23/2017	14	\$580.00	368
369	5/11/2016	56	\$1590.00	367

One to Many Relationship

One customer can have multiple orders.

Many to Many Relationship

Multiple authors can publish multiple books.

One to One Relationship

Employee Table

EmployeeID	FirstName	LastName
27	Susan	Brandt
28	Jeremy	Buck
29	Elizabeth	Miller

Contact Info Table

EmployeeID	Email	Address
27	sbrandt@	127 Main St.
28	jbuck@	221 State St.
29	emiller@	340 Adams Ave.

Transactions and the ACID Test

∩ 9~∩~~~∩ °...

Banking Transaction

Account	AccountType	Balance
A2354542	Savings	\$6000

Account	AccountType	Balance
C9876567	Checking	\$12

Transaction

- \$2000

+ \$2000

ACID Test

- A transaction should be:
 - Atomic
 - Consistent
 - Isolated
 - Durable
- □ This can be guaranteed by the DBMS after we provide the definition of the transaction.

Introduction to SQL

- SQL stands for Structured Query Language.
 - -SQL
 - Microsoft SQL Server
 - -MySQL
 - PostgreSQL
 - SQLite
 - -T-SQL
 - -PL-SQL
 - etc

Introduction to SQL

- SQL is a declarative query language, not a procedural, imperative language.
- SQL is small and focused.
- Example:
 - If we have a bookstore database
 - "I want all books with list price more than \$40"
 - SQL: SELECT * FROM BooksWHERE ListPrice > 40

Introduction to SQL

- □ SQL
 - Create
 - Read
 - Update
 - Delete

data from the database.

An SQL can be used to create, not just your data, but to define the databases themselves.

