2021 年河北省普通高中学业水平选择性考试

注意事项:

- 1、答卷前、考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在 答题卡上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量: H1 Li7 B11 C12 O16 Na 23 P31 S32 Cl 35.5 K 39 Pb 207

- 一、单项选择题:本题共9小题,每小题3分,共27分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
- 1. "灌钢法"是我国古代劳动人民对钢铁冶炼技术的重大贡献,陶弘景在其《本草经 集注》中提到"钢铁是杂炼生钵作刀镰者"。"灌钢法"主要是将生铁和熟铁(含 碳量约 0.1%) 混合加热, 生铁熔化灌入熟铁, 再锻打成钢。下列说法错误的是
 - A. 钢是以铁为主的含碳合金
 - B. 钢的含碳量越高, 硬度和脆性越大
 - C. 生铁由于含碳量高,熔点比熟铁高
- D. 冶炼铁的原料之一赤铁矿的主要成分为 Fe₂O₃
- 2. 高分子材料在生产生活中应用广泛。下列说法错误的是
 - A. 芦苇可用于制造黏胶纤维, 其主要成分为纤维素
 - B. 聚氯乙烯通过加聚反应制得,可用于制作不粘锅的耐热涂层
 - C. 淀粉是相对分子质量可达几十万的天然高分子物质
 - D. 大豆蛋白纤维是一种可降解材料
- . 下列操作规范且能达到实验目的的是

A. 测定醋酸浓度

- B. 测定中和热
 - C. 稀释浓硫酸
 - D. 萃取分离碘水中的碘

化学试题第1页(共9页)

搅拌棒 硬纸板

- 4. 硫和氮及其化合物对人类生存和社会发展意义重大,但硫氧化物和氮氧化物造成的
 - 环境问题也日益受到关注。下列说法正确的是
 - A. NO:和SO。均为红棕色且有蓟素性气味的气体,是酸雨的主要成因
 - B. 汽车尾气中的主要大气污染物为 NO、SO₂和 PM₂5
 - C. 植物直接吸收利用空气中的 NO 和 NO;作为配料,实现氦的固定
 - D. 工业度气中的 SO₂ 可采用石灰法进行股除
 - 5. 用中子轰击 4X 原子产生 α 粒子 (即复核 4He) 的核反应为: ${}^2_zX + {}^1_0n \to {}^2Y + {}^4_2He$.

已知元素 Y 在化合物中呈+1 价。下列说法正确的是

A. HaXO。可用于中和最在皮肤上的 NaOH 溶液

- B. Y 阜原在空气中是旋的产物是 Y:O2
- C. X 和复元素形成离子化合物
- D. 约和7万为同意异形依
- 6. BiOCI 是一种具有导珠光泽的材料,利用金属 Bi 制备 BiOCI 的工艺流程如图:

- A、酸是工序中分次加入器 HNO。可降低反应剧烈程度
- R. 转化工序中加入稀 HCI 可抑制生成 BiONOs
- C. 水能工序中加入少量 CH₃COON₂(s)可提高 Bi²¹水解程度
- D. 水解工序中加入少量 NHLNO₃(s)有利于 BiOCI 的生成
- 7. Na 是阿伏加德罗常数的值。下列说法结误的是
 - N. 224L (标准状况) 氧气所含的质子数为 18Na (
 - B. 1 mol 鎮蓋气和 1 mol 氢气在密闭容器中充分反应, 生成的碘化氢分子数小于 2N。
- C. 电解饱和食益水时,若阴阳两极产生气体的总质量为73g,则转移电子数为NA
- D. 1L1 mol·L⁻¹ 溴化铵水溶液中NH;与H⁻¹ 离子数之和大于N_A
- 8. 苯并降冰片烯是一种重要的药物台成中间体,结构简式如图。关于该化合物,下列 说法正确的是
- 4. 是苯的同系物
- B. 分子中量多 8 个碳原子共平面
- C. 一氢代物有6种(不考虑立体异构)
- D. 分子中含有 4 个碳碳双键

化学试题第2页(共9页)

- 9. K-O₂电池结构如图, a和b为两个电极, 其中之一为单质钾片。关于该电池, 下列说 油错误的是
 - A. 隔膜允许K+通过,不允许O₂通过
 - R. 放电时, 电流由b电极沿导线流向a电极; 充电时, b电极为阳极
 - C. 产生1 Ah电量时,生成KO2的质量与 消耗O2的质量比值约为2.22

- D. 用此电池为铅酸蓄电池充电,消耗3.9 g钾时,
- 二、不定项选择题: 本题共 4 小题, 每小题 4 分, 共 16 分。在每小题给出的四个选项 中,有一项或两项符合题目要求。若正确答案只包括一个选项,多选时,该小题得 0分;若正确答案包括两个选项,只选一个且正确的得2分,选两个且都正确的得 4分,但只要选错一个,该小题得0分。
- 10. 关于非金属含氧酸及其盐的性质,下列说法正确的是 A、浓H2SO4具有强吸水性,能吸收糖类化合物中的水分并使其炭化
 - NaClO、KClO3等氯的含氧酸盐的氧化性会随溶液的 pH 减小而增强
 - C. 加热 NaI 与浓 HaPO4 混合物可制备 HI, 说明 HaPO4 比 HI 酸性强
 - D. 浓HNO3和稀HNO3与Cu反应的还原产物分别为NO2和NO,故稀HNO3氧化性更强
- 11. 下图所示的两种化合物可应用于阻燃材料和生物材料的合成。其中 W、X、Y、Z 为原子序数依次增大的短周期元素, X 和 Z 同主族, Y 原子序数为 W 原子价电子 数的 3 倍。下列说法正确的是

- A. X和Z的最高化合价均为+7价
- B、HX 和 HZ 在水中均为强酸, 电子式可表示为H: X:与H: Z:
- C. 四种元素中, Y 原子半径最大, X 原子半径最小
- D. Z、W 和氢三种元素可形成同时含有离子键和共价键的化合物

化学试题第3页(共9页)

12. 香木整體具有一定的抗炎、抗患活性,结构简式如图。下列说法(目)为77年/(

人 1 mol 克勒斯与足量货币 NaHCOs 客液反应。可放出

2241 (包含化) 00: B. 一定量的运物复分到与足量 No. NaOH 反应,消耗二 者物质的量之比为5:1

- C. Imol 法物质是多可与 Imol Hi 发生加度反应
- Q、流物原可被整性 RMbO。答该氧化
- 13. 宝盖下,某事被初始时仅等有 M 和 N 且浓度相等,同时发生以下两个反应:
 - ① M-N=X-Y; ② M+N=X+Z。 反应①的速率可表示为 n, = k,c²(M), 反应②的基本可表示为 n = Lc*(M) (人, 人, 为, 支率常数)。反应体系中组分 M、Z

A. 0-30 mm 时间段内, Y 的平均反应速率为 6.57 x 10" mol - L" - min"

B. 后应开始后, 体系中 Y 和 Z 的浓度之比保持不变

C. 世東丘应能进行到底。反应结束时 62.5%的 M 转 を行工

- 0、反应①的运化能比反应②的运化能大
- 三、李进报题: 共 57 分。第 14-16 题为必考题。每个试题考生都必须作答。第 17-18 **夏为近考夏。考生根据要求作答。**
- (一) 必考置: 共口分。

14. (14 %)

化工专家保護機发明的侵氏制輸法为我国纯碱工业和国民经济发展做出了重要贡 献。某处学兴趣小型在实验室中模拟并改进侯氏制碱法制各 NaHCO3,进一步处理得到 产品NaCO。和NACO。实验流程如图:

化学过题第4页(共9页)

(1) 从 A~E 中选择合适的仪器制备 NaHCO1. 正确的连接顺序是 气流方向,用小写字母表示)。为使 A 中分液漏斗内的稀盐酸顺利滴下,可将分液漏斗 上部的玻璃塞打开或 饱和食盐水 饱和NaHCO、溶液 NaOH溶液 H-O 饱和氢盐水 (2) B 中使用雾化装置的优点是 (3) 牛成 NaHCO3 的总反应的化学方程式为 (4) 反应完成后,将B中U形管内的混合物处理得到固体 NaHCO: 和滤液: ①对固体 NaHCOs 充分加热,产生的气体先通过足量浓硫酸,再通过足量 NacOs, Na₂O₂ 增重 0.14 g,则固体 NaHCO₃ 的质量为 ②向滤液中加入 NaCl 粉末,存在 NaCl(s) + NH, Cl(aq) → NaCl(aq) + NH, Cl(s) 过 程。为使 NH₄Cl 沉淀充分析出并分离,根据 NaCl 和 NH₄Cl 溶解度曲线,需采用的操作 为、洗涤、干燥。 50 70 90 100 (5) 无水 Na₂CO₃ 可作为基准物质标定盐酸浓度。称量前,若无水 Na₂CO₃ 保存不 当, 吸收了一定量水分, 用其标定盐酸浓度时, 会使结果_____(填标号)。 A. 偏高 B. 偏低 C. 不变 15. (14分)

绿色化学在推动社会可持续发展中发挥着重要作用。某科研团队设计了一种熔盐液 相氧化法制备高价铬盐的新工艺,该工艺不消耗除铬铁矿、氢氧化钠和空气以外的其他 原料,不产生废弃物,实现了 Cr-Fe-Al-Mg 的深度利用和 Na⁺内循环。工艺流程如下: 化学试题第5页(共9页)

四本下列问题:

- (填元素符号)。 (1) 海湿连续氢化工序中被氧化的元素是
- (2) 工序(1)的名称为
- (3) 建酒油主要成分是 (境化学式)。
- (4) 工序③中发生反应的离子方程式为
- (5) 物质 V 可代替高温连续氧化工序中的 NaOH, 此时发生的主要反应的化学方 ______,可代替 NaOH 的化学试剂还有____(填化学式)。
- (6) 热鲜工序产生的混合气体最适宜返回工序 (填"①""②""③"或"④") 意志改善贫。
- (7) 工序 3 序意中的超元素恰好完全转化为沉淀的 pH 为______。(通常认为溶 差中离子浓度小于 10^{-7} mol·L·· 为沉淀完全: Al(OH)₃ + OH' \longrightarrow Al(OH)₄ $K = 10^{0.63}$; L = 10th; L. [Al(OH):] = 10th) 16. (14 4)

当今。世界多国相继接过了硕达峰、碳中和的时间节点。因此,研发二氧化碳利用 日末。肾延空气中二氢化藤含量成为研究热点。

(4) 大气宁的二氧化碳主要来自于煤。石油及其他含碳化合物的燃烧。已知 25℃ 时,相关物质的燃烧热数据如下表:

物展			
	Hx(g)	C(石墨, s)	C ₆ H ₆ (I)
燃烧热 ΔΗ (13 mol⁻¹)		-393.5	
到 25°C时 Hde 新 C/工程	272.3		-3267.5

则 25°C时 社纪和 C(石墨,均生成 Call d1)的热化学方程式为

(2) 需求中含有来自大气的 CO2。 络于水中的 CO2进一步和水反应,发生电离;

$$\mathcal{D}CO_{p}(\mathbf{g}) = CO_{p}(\mathbf{aq})
\mathcal{D}CO_{p}(\mathbf{aq}) + H_{p}O(1) = H'(\mathbf{aq}) + HCO_{p}(\mathbf{aq})$$

25℃时,反应②的平衡常数为 K.

弯逐中CO;的难度与其在空气中的分压成正比(分压=总压×物质的量分数),比例 系数为pand ListPari。当太气压强为ptPa,大气中 CO/(E)的物质的量分数为x时,裕 化学试歴第6页(共9页)

(3) 105°C时,将足量的某碳酸氢盐(MHCO₅)固体置于真空恒容容器中,存在 如下平衡:

$$2MHCO_{1}(s) \triangleq M_{2}CO_{1}(s) + H_{2}O(g) + CO_{2}(g)$$

上述反应达平衡时体系的总压为 46 kPa。

保持温度不变,开始时在体系中先通入一定量的 $CO_2(g)$,再加入足量 $MHCO_3(s)$, 欲使平衡时体系中水蒸气的分压小于 5 kPa,CO₂(g)的初始压强应大于_____kPa。

- (4) 我国科学家研究 Li-CO₂ 电池, 取得了重大科研成果。回答下列问题:
- ①Li-CO2 电池中, Li 为单质锂片, 则该电池中的 CO2在____(填"正"或"负") 极发生电化学反应。研究表明,该电池反应产物为碳酸锂和单质碳,且 CO2 电还原后与 锂离子结合形成碳酸锂按以下4个步骤进行,写出步骤 Ⅲ 的离子方程式。

I.
$$2CO_2 + 2e^- = C_2O_4^{2-}$$

II.
$$C_2O_4^{2-} = CO_2 + CO_2^{2-}$$

III.
$$CO_3^{2-} + 2Li^+ = Li_2CO_3$$

- ②研究表明,在电解质水溶液中,CO2气体可被电化学还原。
- I. CO·在碱性介质中电还原为正丙醇(CH₂CH₂CH₂OH)的电极反应方程式为。
- II. 在电解质水溶液中,三种不同催化剂 (a、b、c) 上 CO2 电还原为 CO 的反应进 程中(H^+ 电还原为 H_2 的反应可同时发生),相对能量变化如图。由此判断, CO_2 电还原 为CO从易到难的顺序为 (用a、b、c字母排序)。

- (二) 选考题: 共 15 分。请考生从 2 道题中任选一题作答, 并用 2B 铅笔将答题卡上所 选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的 首题进行评分;不涂,按本选考题的首题进行评分。
- 17. [选修3: 物质结构与性质] (15分)

KH₂PO₄ 晶体具有优异的非线性光学性能。我国科学工作者制备的超大 KH₂PO₄ 晶 体已应用于大功率固体激光器,填补了国家战略空白。回答下列问题:

- (1) 在 KH₂PO₄ 的四种组成元素各自所能形成的简单离子中,核外电子排布相同的是 (填离子符号)。
- (2) 原子中运动的电子有两种相反的自旋状态,若一种自旋状态用 $+\frac{1}{2}$ 表示,与之相反的用 $-\frac{1}{2}$ 表示,称为电子的自旋磁量子数。对于基态的磷原子,其价电子自旋磁量子数的代数和为
 - (3) 己知有关氦、磷的单键和三键的键能(kJ·mol-1)如下表:

36.	N-N	N≡N	P-P	P≡P
T	193	946	197	489

从能量角度看, 氦以 N₂、而白磷以 P₄(结构式可表示为P)形式存在的原因是__

- (4) 已知 KH₂PO₂ 是次磷酸的正盐,H₃PO₂ 的结构式为_____,其中 P 采取____杂 化方式。
 - (5) 与PO+电子总数相同的等电子体的分子式为____。
 - (6) 磷酸通过分子间脱水缩合形成多磷酸, 如:

如果有 n 个磷酸分子间脱水形成环状的多磷酸,则相应的酸根可写为____

(7)分别用○、●表示H₂PO₄和 K+, KH₂PO₄晶体的四方晶胞如图 (a) 所示,图 (b)、图 (c) 分别显示的是H₂PO₄、K+在晶胞 xz 面、yz 面上的位置:

②晶胞在 x 轴方向的投影图为_____(填标号)。

化学试题第 8 页(共 9 页)

18. [选修 5: 有机化学基础] (15 分)

丁苯酞(NBP)是我国拥有完全自主知识产权的化学药物,临床上用于治疗缺血性脑卒中等疾病。ZJM-289 是一种 NBP 开环体(HPBA)衍生物,在体内外可经醇促或化学转变成 NBP 和其它活性成分,其合成路线如下:

已知信息:

$$R^{1}$$
 $C=O+R^{2}CH_{2}COOH$ $CH_{3}COON_{2}$ R^{1} $C=C$ R^{2} $(R^{1}=芳基)$

回答下列问题:

- (1) A 的化学名称为
- (2) D 有多种同分异构体,其中能同时满足下列条件的芳香族化合物的结构简式为____、__。
 - ①可发生银镜反应,也能与FeCl3溶液发生显色反应;
 - ②核磁共振氢谱有四组峰,峰面积比为1:2:2:3。
 - (3) E→F 中步骤 1) 的化学方程式为__
- (4) G→H 的反应类型为____。若以 NaNO3 代替 AgNO3,则该反应难以进行,AgNO3对该反应的促进作用主要是因为
- (5) HPBA 的结构简式为____。通常酯化反应需在酸催化、加热条件下进行,对比HPBA 和NBP 的结构,说明常温下HPBA 不稳定、易转化为NBP 的主要原因____。
- (6) W 是合成某种抗疟疾药物的中间体类似物。设计由 2,4- 二 氯 甲 苯 (CI ← CH₂) 和 对 三 氟 甲 基 苯 乙 酸 (F₂C ← CH₂COOH) 制备 W 的合成路线 ______。(无机试剂和口个碳以下的有机试剂任选)

