Complete the following from Exercises 1.1: 1a, 2a, 7, 5(i), 5(iii).

- 1. Let $X = \{a, b, c, d, e, f\}$. Determine whether or not each of the following collections of subsets of X is a topology on X:
 - (a) $\tau_1 = \{X, \emptyset, \{a\}, \{a, f\}, \{b, f\}, \{a, b, f\}\}.$

 τ_1 is not a topology on X. Notice, $\{b, f\} \cap \{a, f\} = \{f\}$ and $\{f\} \notin \tau_1$. Thus, τ_1 does not satisfy Definition 1.1.1 (iii).

- 2. Let $X = \{a, b, c, d, e, f\}$. Which of the following collections of subsets of X is a topology on X?
 - (a) $\tau_1 = \{X, \emptyset, \{c\}, \{b, d, e\}, \{b, c, d, e\}, \{b\}\}.$

 τ_1 is not a topology on X. Notice, $\{c\} \cup \{b\} = \{c, b\}$ and $\{c, b\} \notin \tau_1$. Thus, τ_1 does not satisfy Definition 1.1.1 (ii).

7. List all possible topologies on the following sets:

(a)
$$X = \{a, b\}$$
;

i.
$$\{X,\emptyset\}$$
,

ii.
$$\{X, \emptyset, \{a\}\},\$$

iii.
$$\{X,\emptyset,\{b\}\},$$

iv.
$$\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}.$$

(b)
$$Y = \{a, b, c\}.$$

i.
$$\{X,\emptyset\}$$
,

ii.
$$\{X, \emptyset, \{a\}\},\$$

iii.
$$\{X, \emptyset, \{b\}\},\$$

iv.
$$\{X, \emptyset, \{c\}\}\$$
,

v.
$$\{X, \emptyset, \{a, c\}\},\$$

vi.
$$\{X, \emptyset, \{b, c\}\},\$$

vii.
$$\{X, \emptyset, \{a, b\}\}\$$
,

viii.
$$\{X, \emptyset, \{a\}, \{a, c\}\},\$$

ix.
$$\{X, \emptyset, \{b\}, \{a, c\}\},\$$

$$\mathbf{x.}\ \{X,\emptyset,\{c\},\{a,c\}\},$$

xi.
$$\{X,\emptyset,\{a\},\{b,c\}\},$$

xii.
$$\{X, \emptyset, \{b\}, \{b, c\}\},\$$

xiii.
$$\{X, \emptyset, \{c\}, \{b, c\}\},\$$

xiv.
$$\{X, \emptyset, \{a\}, \{a, b\}\},\$$

xv.
$$\{X, \emptyset, \{b\}, \{a, b\}\},\$$

xvi.
$$\{X, \emptyset, \{c\}, \{a, b\}\},\$$

xvii.
$$\{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\},\$$

xviii.
$$\{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\},\$$

xix.
$$\{X, \emptyset, \{c\}, \{a, c\}, \{b, c\}\},\$$

$$xx. \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\},\$$

xxi.
$$\{X, \emptyset, \{b\}, \{c\}, \{b, c\}\},\$$

xxii.
$$\{X,\emptyset,\{a\},\{b\},\{a,b\}\},$$

xxiii.
$$\{X,\emptyset,\{a\},\{c\},\{a,c\},\{b,c\}\},$$

xxiv.
$$\{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, a\}\},\$$

xxv.
$$\{X, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}\},\$$

xxvi.
$$\{X, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}\},\$$

xxvii.
$$\{X,\emptyset,\{a\},\{b\},\{a,b\},\{a,c\}\},$$

xxviii.
$$\{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}\},\$$

xxix.
$$\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$$

- 5. Let \mathbb{R} be the set of all real numbers. Prove that each of the following collections of subsets of \mathbb{R} is a topology.
 - (i) τ_1 consists of \mathbb{R} , \emptyset , and every interval (-n, n), for $n \in \mathbb{Z}^+$, where (-n, n) denotes the set $\{x \in \mathbb{R} : -n < x < n\}$;

Proof. Let $k, l \in \mathbb{Z}^+$ be given. By definition, the sets (-k, k) and (-l, l) are in τ_1 . We now proceed to check the three possible relations between k and l; that is, (i.) k < l, (ii.) k = l, (iii.) k > l.

- (i.) Suppose k < l. Then, $(-k, k) \cup (-l, l) = (-l, l)$ which is in τ_1 . Also notice, $(-k, k) \cap (-l, l) = (-k, k)$ which is in τ_1 .
- (ii.) Suppose k = l. Then, $(-k, k) \cup (-l, l) = (-k, k)$ which is in τ_1 . Also notice, $(-k, k) \cap (-l, l) = (-k, k)$ which is in τ_1 .
- (iii.) Suppose k > l. Then, $(-k, k) \cup (-l, l) = (-k, k)$ which is in τ_1 . Also notice, $(-k, k) \cap (-l, l) = (-l, l)$ which is in τ_1 .

We also notice $\bigcup_{n\in\mathbb{Z}^+}(-n,n)=\mathbb{R}$. Thus, we satisfy Definition 1.1.1 (i) by including \mathbb{R} and \emptyset , Definition 1.1.1 (ii) by considering any combination of finite unions and infinite unions, and Definition 1.1.1 (iii) by considering any two intersections. Therefore, τ_1 is a topology on \mathbb{R} .

(iii) τ_3 consists of \mathbb{R} , \emptyset , and every interval $[n, \infty)$, for $n \in \mathbb{Z}^+$, where $[n, \infty)$ denotes the set $\{x \in \mathbb{R} : n \leq x\}$.

Proof. Let $k, l \in \mathbb{Z}^+$ be given. By definition, the sets $[k, \infty)$ and $[l, \infty)$ are in τ_3 . We now proceed to check the three possible relations between k and l; that is, (i.) k < l, (ii.) k = l, (iii.) k > l.

- (i.) Suppose k < l. Then, $[k, \infty) \cup [l, \infty) = [k, \infty)$ which is in τ_3 . Also notice, $[k, \infty) \cap [l, \infty) = [l, \infty)$ which is in τ_3 .
- (ii.) Suppose k = l. Then, $[k, \infty) \cup [l, \infty) = [k, \infty)$ which is in τ_3 . Also notice, $[k, \infty) \cap [l, \infty) = [k, \infty)$ which is in τ_3 .
- (iii.) Suppose k > l. Then, $[k, \infty) \cup [l, \infty) = [l, \infty)$ which is in τ_3 . Also notice, $[k, \infty) \cap [l, \infty) = [k, \infty)$ which is in τ_3 .

We also notice $\bigcup_{n\in\mathbb{Z}^+}=[1,\infty)$ which is in τ_3 . Thus, we satisfy Definition 1.1.1 (i) by including \mathbb{R} and \emptyset , Definition 1.1.1 (ii) by considering any combination of finite unions and infinite unions, and Definition 1.1.1 (iii) by considering any two intersections. Therefore, τ_3 is a topology on \mathbb{R} .