Introduction to Bioinformatics 3. Sequence Alignment #1

Department of

Computer Science and

Electronics

Gadjah Mada University

© Afiahayati

Recap - Why Align Sequences?

- DNA sequences (4 letters in alphabet)
 - GTAAACTGGTACT...
- Amino acid (protein) sequences (20 letters)
 - SSHLDKLMNEFF...
- Align them so we can search databases
 - To help predict structure/function of new genes
 - In particular, look for homologues (evolutionary relatives)
- 3D-pssm (Imperial College Structure Prediction)
 - http://www.sbg.bio.ic.ac.uk/servers/3dpssm
 - Give it a gene sequence
 - It predicts the protein structure

Recap - Example matches

- 1. gattcagacctagct (no indels) gtcagatcct
- 2. gattcaga-cctagct (with indels) g-t-cagatcct
- 3. gattcagacctagc-t g-t---cagatcct
- Need to come up with algorithms producing:
 - Ways of scoring alignments
 - Ways to search for high scoring alignments
- Concentrate today on alignments without indels

Word of Warning

- These algorithms are still very much in flux
 - Both the techniques and the ways of assessing them (the statistics) change all the time
- Various parameters in algorithm have defaults
 - But you can change these defaults
 - So you need to know exactly how the algorithm works
- Always read the manual

Hamming Distances

- Suppose we have
 - Query sequence Q and database sequence D
- Hamming distance:
 - Number of places where Q and D are <u>different</u> (distance)
- Example (stars mark differences)
 - SSHLDKLMNEFF
 - * ** *
 - HSHLKLLMKEFFHDMN
 - Scores 4 for Hamming distance (sometimes worry about ends)
- Simple alignment algorithm: slide Q along D
 - Remember where the Hamming distance was minimised

Scoring Schemes (Amino Acids)

- Hamming distance doesn't take into account
 - Likelihood of one amino acid changing to another
 - Some amino acid substitutions are disastrous
 - So they don't survive evolution
 - Some substitutions barely change anything
 - Because the two amino acids are chemically quite similar
- Scoring schemes address this problem
 - Give scores to the chances of each substitution
- 2 possibilities:
 - Use empirical evidence
 - Of actual substitutions in known homologues (families)
 - Use theory from chemistry (hydrophobicity, etc.)

BLOSUM62 Scheme

- Blocks Amino Acid Substitution Matrices
- Empirical method
 - Based on roughly 2000 amino acid patterns (blocks)
 - Found in more than 500 families of related proteins
- Calculate the Log-odds scores for each pair (R₁, R₂)
 - Let O = observed frequency R₁ <=> R₂
 - Let E = expected frequency $R_1 \le R_2$ [happening by chance]
 - I.e., Score = round($2 * log_2(O/E)$)
- To calculate the score for an alignment of two sequences
 - Add up the pairwise scores for residues
 - We've calculated <u>log</u> odds

BLOSUM62 Substitution Matrix

Zero: by chance

- + more than chance
- less than chance

Arranged by

- Sidegroups
- So, high scoring in the end boxes

Example

- M,I,L,V
- Interchangeable

Example Calculation

- Total score = -1+4+8+4+-1+-2+4+5+-2 = 21
- Write Blosum(Query, Dbase) = 21
 - Not standard to do this

BLAST Algorithm Basic Local Alignment Search Tool

- Fast alignment technique(s)
 - Similar to FASTA algorithms (not used much now)
 - There are more accurate ones, but they're slower
 - BLAST makes a big use of lookup tables
- Idea: statistically significant alignments (hits)
 - Will have regions of at least 3 letters same
 - Or at least high scoring with respect to BLOSUM matrix

more likely than

Based on small local alignments

BLAST Overview

- Given a query sequence Q
- Seven main stages
 - Remove (filter) low complexity regions from Q
 - Harvest k-tuples (triples) from Q
 - Expand each triple into ~50 high scoring words
 - Seed a set of possible alignments
 - Generate high scoring pairs (HSPs) from the seeds
 - Test significance of matches from HSPs
 - Report the alignments found from the HSPs

BLAST Algorithm Part 1 Removing Low-complexity Segments

- Imagine matching
 - HHHHHHHHKMAY and HHHHHHHHURHD
 - The KMAY and URHD are the interesting parts
 - But this pair score highly using BLOSUM
- It's a good idea to remove the HHHHHHHHs
 - From the query sequence (low complexity)
- SEG program does this kind of thing
 - Comes with most BLAST implementations
 - Often doesn't do much, and it can be turned off

Removing Low-complexity Segments

- Given a segment of length L
 - With each amino acid occurring n₁ n₂ ... n₂₀ times
- Use the following measure for "compositional complexity":

$$K = \frac{1}{L} log_{20} \left(\frac{L!}{\prod_{i=1}^{20} n_i!} \right)$$

- To use this measure
 - Slide a "window" of ~12 residues along Query Sequence Q
 - Use a threshold to determine low complexity windows
 - Use a minimise routine to replace the segment
 - With an optimal minimised segment (or just an X)
- Will do an example calculation in tutorial

BLAST Algorithm Part 2 Harvesting k-tuples

- Collect all the k-tuples of elements in Q
 - k set to 3 for residues and 11 for DNA (can vary)
 - Triples are called 'words'. Call this set W

```
STSLSTSDKLMR

STSL

TSL

SLS

LST

LST
```

BLAST Algorithm Part 3 Finding High Scoring Triples

- Given a word w from W
 - Find all other words w' of same length (3), which:
 - Appear in some database sequence
 - Blosum(w,w') > a threshold T
- Choose T to limit number to around 50
 - Call these the high scoring triples (words) for w
- Example: letting w=PQG, set T to be 13
 - Suppose that PQG, PEG, PSG, PQA are found in database
 - Blosum(PQG,PQG) = 18, Blosum(PQG,PEG) = 15
 - Blosum(PQG,PSG) = 13, Blosum(PQG,PQA) = 12
 - Hence, PQG and PEG only are kept

Finding High Scoring Triples

- For each w in W, find all the high scoring words
 - Organise these sets of words
 - Remembering all the places where w was found in Q
- Each high scoring triple is going to be a seed
 - In order to generate possible alignment(s)
 - One seed can generate more than one alignment
- End of the first half of the algorithm
 - Going to find alignments now

BLAST Algorithm Part 4 Seeding Possible Alignments

- Look at first triple V in query sequence Q
 - Actually from Q (not from W which has omissions)
 - Retrieve the set of ~50 high scoring words
 - Call this set H_V
 - Retrieve the list of places in Q where V occurs
 - Call this set P_v
- For every pair (word, pos)
 - Where word is from H_V and pos is from P_V
 - Find all the database sequences D
 - Which have an exact match with word at position pos'
 - Store an alignment between Q and D
 - With V matched at pos in Q and pos' in D
- Repeat this for the second triple in Q, and so on

Seeding Possible Alignments Example

- Suppose Q = QQGPHUIQEGQQG
- Suppose V = QQG, H_V = {QQG, QEG}
 - Then $P_{V} = \{1, 11\}$
- Suppose we are looking in the database at:
 - D = PKLMMQQGKQEG
- Then the alignments seeded are:

QQGPHUIQEGQQG word=QQG	QQGPHUIQEGQQG word=QQG
PKLMMQQCKQEG pos=1	PKLMMQQGKQEG pos=11
OOCPHILLOECOOC WORD-OFC	OOGPHIITOECOOC WORD-OEC

BLAST Algorithm Part 5 Generating High Scoring Pairs (HSPs)

- For each alignment A
 - Where sequences Q and D are matched
 - Original region matching was M
- Extend M to the left
 - Until the Blosum score begins to decrease
- Extend M to the right
 - Until the Blosum score begins to decrease
- Larger stretch of sequence now matches
 - May have higher score than the original triple
 - Call these high scoring pairs
- Throw away any alignments for which the score S of the extended region M is lower than some cutoff score

Extending Alignment Regions Example

QQGPHUIQEGQQGKEEDPP	Blosum(QQG,QQG) = 16
PKLMMQQGKQEGM	
QQGPHUIQEGQQGKEEDPP	Blosum(QQGK,QQGK) = 21
PKLMM <u>QQGKQ</u> EGM	
QQGPHUIQEGQQGKEEDPP	Blosum(QQGKE,QQGKQ) = 23
PKLMMQQGKQEGM	
QQGPHUIQEGQQGKEEDPP	Blosum(QQGKEE,QQGKQE) = 28
PKLMMQQGKQEGM	
QQGPHUIQEGQQGKEEDPP	Blosum(QQGKEED,QQGKQEG) = 27
PKLMMQQGKQEGM	

So, the extension to the right stops here HSP (before left extension) is QQGKEE, scoring 28

BLAST Algorithm Part 6 Checking Statistical Significance

- Reason we extended alignment regions
 - Give a more accurate picture of the probability of that BLOSUM score occurring by chance
- Question: is a HSP significant?
- Suppose we have a HSP such that
 - It scores S for a region of length L in sequences Q & D
- Then the probability of two random sequences Q' and D' scoring S in a region of length L is calculated
 - Where Q' is same length as Q and D' is same length as D
- This probability needs to be low for significance
- We cover the statistics (briefly) later

BLAST Algorithm Part 7 Reporting the Alignments

- For each statistically significant HSP
 - The alignment is reported
- If a sequence D has two HSPs with Query Q
 - Two different alignments are reported
- Later versions of BLAST
 - Try and unify the two alignments

NCBI BLAST Server (protein-protein)

http://www.ncbi.nlm.nih.gov/BLAST/

Real Example

- MRPQAPGSLVDPNEDELRMAPWYWGRISREEAKSILHGKPDGSFLVRDAL SMKGEYTLTLMKDGCEKLIKICHMDRKYGFIETDLFNSVVEMINYYKENS LSMYNKTLDITLSNPIVRAREDEESQPHGDLCLLSNEFIRTCQLLQNLEQ NLENKRNSFNAIREELQEKKLHQSVFGNTEKIFRNQIKLNESFMKAPADA PSTEAGGAGDGANAAASAAANANARRSLQEHKQTLLNLLDALQAKGQVLN HYMENKKKEELLLERQINALKPELQILQLRKDKYIERLKGFNLKDDDLKM ILQMGFDKWQQLYETVSNQPHSNEALWLLKDAKRRNAEEMLKGAPSGTFL IRARDAGHYALSIACKNIVQHCLIYETSTGFGFAAPYNIYATLKSLVEHY ANNSLEEHNDTLTTTLRWPVLYWKNNPLQVQMIQLQEEMDLEYEQAATLR PPPMMGSSAPIPTSRSREHDVVDGTGSLEAEAAPASISPSNFSTSQ
- A gene taken from a fruit fly (Drosophila Melanogaster)
 - We'll alter this a little
 - And see if the NCBI BLAST server can find it for us