Examples of some single object allocation mechanisms

- 1) Constant allocation rule non-decreasing, payment = constant (e.g., 0)
- 2) Dictatorial give The object only to The dictator mon-leversing, payment = constant/zero.
- 3 Second price auction

$$f_{i}(0,\underline{t}_{i}) + t_{i} f_{i}(t_{i},\underline{t}_{i}) - \int_{0}^{t_{i}} f_{i}(x,\underline{t}_{i}) dx$$

step function

4) Efficient allocation with a reserve price in also non decreasing. If the highest value is below a reserve price is, nobody gets the object. Otherwise, the item goes to the highest bidder.

allocated to i if $v_i > \max \{ \{ \{ \}_i^{(2)}, \} \}$. payment = $\max \{ \{ \{ \}_i^{(2)}, \} \}$

(5) Not so common allocation rule: $N = \{1, 2\}$, $A = \{a_0, a_1, a_2\}$ unsold given to 1

Given a type profile $t = (t_1, t_2)$, The seller computes $U(t) = \max\{2, t_1^2, t_2^3\}$ - select a_0, a_1, a_2 depending on which of the three expressions is the maxima - break ties in favor of o>1>2.

Player 1 gets The Object if $t_2 > \sqrt{\max\{2, t_2^3\}}$ both monotone. Player 2 gets The Object if $t_3 > 3 / \max\{2, t_1^2\}$

Individual Rationality

Defn: A mechanism $(f, \frac{1}{2})$ is expost individually national if $t_i f_i(t_i, \underline{t}_i) - p_i(t_i, \underline{t}_i) \geqslant 0$, $\forall t_i \in T_i$, $\forall \underline{t}_i \in T_i$, $\forall i \in N$.

Ex-post: even after all agents have revealed their types, participating is weakly preferred.

Lemma: In the single object allocation setting, consider a DSIC mechanism (f, \flat) .

1) It is IR iff tien and the E Ti, to (0, ti) < 0.

2) It is IR and satisfies no subsidy, i.e., $p_i(t_i,t_i) > 0$, $\forall t_i,t_i \forall i \in N$ $\forall i \in N$, $t_i \in T_i$, $p_i(0,t_i) = 0$.

Proof: (Port 1) Suppose $(f, \frac{1}{2})$ is IR, Then $0 - \frac{1}{2}(0, \frac{1}{2}) > 0$ hence $\frac{1}{2}(0, \frac{1}{2}) < 0$.

conversely, if $\beta_i(0,\pm_i) \leq 0$, then the payoff of i is

$$t_i f_i(t_i, \underline{t}_i) - p_i(t_i, \underline{t}_i)$$

= $t_i f_i(t_i, \underline{t}_i) - \frac{1}{t_i}(0, \underline{t}_i) - t_i f_i(t_i, \underline{t}_i) + \int_{0}^{t_i} f_i(z, \underline{t}_i) dz > 0$

 $(Part 2): IR \Rightarrow p_i(0,\underline{t_i}) \leq 0, \forall p_i(\underline{t_i},\underline{t_i}) \geq 0 \quad \forall t_i \Rightarrow p_i(0,\underline{t_i}) = 0.$

Clearly if $p_i(0, t_i) = 0 \Rightarrow (f, t_i)$ in IR and no-subsidy.

Some non-Vickrey auctions - focus: budget balance

- 1) The object goes to the highest bilder, but the payment is such that everyone is compensated some amount.
- highest and second highest bidders are compensated in of the third highest bid. $|p_1(0,t_1)| = |p_2(0,t_2)| = -\frac{1}{h}t_3$
- everyone else receives $\frac{1}{n}$ of the second highest bid $p_i(0,t_i) = -\frac{1}{n} \text{ second highest in } \{t_j, j \neq i\}$

WLOG t1>t2>... >tn

Agent 1 pays = $-\frac{1}{n}t_3 + t_1 - \frac{t_1}{s}f_1(x, \underline{t}_1) dx = -\frac{1}{n}t_3 + t_2$ 2 pays = $-\frac{1}{n}t_3$, all others = $-\frac{1}{n}t_2$

total payments = $-\frac{1}{n}t_3+t_2-\frac{1}{n}t_3-\frac{n-2}{n}t_2=\frac{2}{n}(t_2-t_3)$ tends to 0 for large m.

deterministic mechanism that redistributes The money.

2) Allocate the object w.p. $(1-\frac{1}{n})$ to the highest bidder w.p. $\frac{1}{n}$ to the second highest bidder $\frac{1}{n}$; $(0,\pm i) = -\frac{1}{n}$ second highest bid in $\{\pm i, j \neq i\}$

 $| pays = -\frac{1}{n} t_3 + (1 - \frac{1}{n}) t_1 - \frac{1}{n} (t_2 - t_3) - (1 - \frac{1}{n}) (t_1 - t_2)$ $= (1 - \frac{2}{n}) t_2$

2 pays = $-\frac{1}{n} t_3 + \frac{1}{n} t_2 - \frac{1}{n} (t_2 - t_3) = 0$ all others = $-\frac{1}{n} t_2$. Together = 0.