STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019

EEL2216 - CONTROL THEORY

(All sections / Groups)

22 OCTOBER 2018 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of SIX pages including cover page with FOUR questions only.
- 2. Answer ALL questions and print all your answers in the answer booklet provided.
- 3. All questions carry equal marks and the distribution of the marks for each question is given. The table of Laplace Transform Pairs is given in the Appendix.

Question 1

(a) A system is described by the differential equation as given by:

$$2\frac{d^2}{dt^2}y(t) + 14\frac{d}{dt}y(t) + 24y(t) = 2\frac{d}{dt}x(t) + 4x(t)$$

where x(t) and y(t) are the input and output of the system, respectively. Assuming zero initial conditions, do the following:

(i) Find the system transfer function H(s).

[3 marks]

(ii) Find the response of y(t), given that x(t) is a unit step function.

[8 marks]

(b) Using Laplace transform, write the modeling equations for the two-mass mechanical system shown in Figure Q1(b). Note that f(t) is the applied force.

[4 marks]

Figure Q1(b)

(c) Using Mason's rule, obtain a single transfer function T(s) = C(s)/R(s) for the signal flow graph shown in Figure Q1(c). [10 marks]

Figure Q1(c)

Question 2

Figure Q2 shows the control system of an industrial plant.

Figure Q2

- (a) Evaluate the static error constants and determine the steady-state error for the unit step, ramp, and parabolic inputs. [6 marks]
- (b) Determine the following:
 - (i) The starting and ending points.

[2 marks]

(ii) Behaviour at infinity.

[3 marks]

(iii) Root loci on the real axis.

[1 mark]

(iv) Intersection with imaginary axis.

[5 marks]

(v) Break-away point.

- [4 marks]
- (vi) Based on your answers in (i) to (v), sketch the root locus. Show all the critical points. [4 marks]

Question 3

(a) Explain briefly the Nyquist stability criterion.

[3 marks]

(b) A system has the following transfer function:

$$G(s) = \frac{64}{(s+4)^2}$$

- (i) Calculate the magnitude and phase of the system at $\omega = 0$ rad/s, 4 rad/s and ∞ . [4 marks]
- (ii) Sketch the polar plot for this system.

[3 marks]

(iii) Resketch the polar plot if one of the poles is removed.

[6 marks]

(c) Consider the following transfer function:

$$G(s) = \frac{5(s+1)}{s(s+3)}.$$

List out all the basic factors and their corresponding corner frequencies and magnitudes/slopes. [9 marks]

Question 4

- (a) A controller/compensator is an additional component or circuit that is inserted into a control system to compensate for a deficient performance.
 - (i) State the main function of Proportional Integral (PI) controller, Proportional Derivative (PD) controller and Lag-Lead controller. [4 marks]
 - (ii) Highlight one advantage and one disadvantage of ideal compensator over non-ideal compensator. [2 marks]
- (b) The unity feedback system shown in Figure Q4(b) has a controller $G_C(s)$ and a plant transfer function G(s) given by:

$$G(s) = \frac{5}{(s+3)(s+7)}$$

Figure Q4(b)

- (i) Design a Proportional Integral (PI) controller, $G_C(s) = K_P + \frac{K_I}{s}$ such that it meets the following specifications:
 - The steady-state error is no more than 5% for a unit ramp input
 - The system is stable (or on the boundary of stability)

[15 marks]

(ii) If the zero of the PI controller is set at s = -5, and both the proportional constant and integral constant are as obtained in part (i), is the closed loop system stable? Justify your answer. [4 marks]

Appendix - Laplace Transform Pairs

f(t)	F(s)
Unit impulse $\delta(t)$	1
Unit step 1(t)	1
, t	1 2
$\frac{t^{n-1}}{(n-1)!} (n=1, 2, 3, \ldots)$ $t^{n} (n=1, 2, 3, \ldots)$	$ \frac{\frac{1}{s}}{\frac{1}{s^2}} $ $ \frac{1}{s^n} $
$t^n \ (n=1, 2, 3, \ldots)$	$\frac{n!}{s^{n+1}}$
e ^{-al}	1
te ^{-ai}	$\frac{s+a}{(s+a)^2}$
$\frac{t^{n-1}}{(n-1)!}e^{-at} (n=1,2,3,\ldots)$ $t^{n}e^{-at} (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$
$t^n e^{-at} \ (n=1,2,3,\ldots)$	$\frac{n!}{(s+a)^{n+1}}$
$\sin \omega t$	0
cos at	$\frac{s^2 + \omega^2}{s^2 + \omega^2}$
sinh <i>wt</i>	$\frac{\omega}{s^2-\omega^2}$
cosh ωt	$\frac{\omega}{s^2 - \omega^2}$ $\frac{s}{s^2 - \omega^2}$
$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
$\frac{1}{ab}\left[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\right]$	$\frac{1}{s(s+a)(s+b)}$

Appendix - Laplace Transform Pairs (continued)

<u> </u>	
$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{\sigma(\tau+\sigma)^2}$
1	$s(s+a)^2$
$\frac{1}{a^2}(at-1+e^{-at})$	1
a	$s^2(s+a)$
$e^{-at}\sin \omega t$	ω
	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-at}\cos\omega t$	
	$\frac{s+a}{(s+a)^2+\omega^2}$
$\frac{\omega_n}{\omega_n} e^{-\zeta \omega_n t} \sin \omega \sqrt{1-\zeta^2} t$	ω^2
$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$ $-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	
$-\frac{1}{\sqrt{1-\zeta^2}}e^{-t}\sin(\omega_n\sqrt{1-\zeta^2}t-\varphi)$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$\sqrt{1-\mathcal{E}^2}$	
$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	
5	
$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
$\sqrt{1-\zeta^2}$	$s(s^2 + 2\zeta\omega_n s + \omega_n^2)$
$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	
$\phi = \tan^{-1} \frac{\sqrt{-3}}{\zeta}$	
$1-\cos \omega t$	
1 005 601	ω^2
	$s(s^2+\omega^2)$
$\omega t - \sin \omega t$	$\frac{\omega}{s(s^2 + \omega^2)}$ $\frac{\omega^3}{s^2(s^2 + \omega^2)}$
	$\overline{s^2(s^2+\omega^2)}$
$\sin \omega t - \omega t \cos \omega t$	2003
	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
1 .	s
$\frac{1}{2\omega}t\sin\omega t$	$\frac{s}{(s^2+\omega^2)^2}$
t cos at	2 2
12.22	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
1	$(s^- + \omega^-)^-$
$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \ (\omega_1^2 \neq \omega_2^2)$	\$
$\omega_2 - \omega_1$	$(s^2 + \omega_1^2)(s^2 + \omega_2^2)$
$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	s^2
20	$\frac{s^2}{(s^2+\omega^2)^2}$

End of Paper

2		

Ä