Sylow Theorems

$$|X| = \sum_{x \in X} |orb(x)|$$
 $|X/G| = \{distinct orbits\}$

$$|X| = |X_G| + \sum_{[x] \in X/G} [G:G_x]$$

$$|X| = |X_G| + \sum_{[x] \in X/G} [G:G_x]$$

Where here
$$X_G = \{x \in X \mid g \cdot x = x \quad \forall g \in G\}$$

```
$ G
                                                                                            4 446 thm N(H)=G.
                      N(H)
                           A/H
    Lemma: Let H be a p-subgroup of a group Q.
                   Then the normalizer N(H) of H m & satisfies
                    N(H) & H. If p[[G:H], them p[[N(H):H]
   Proof:
Let X = G/H and let H act on X by
                                                h · gH = hgt.
                                       |X| = |X| + \sum_{x \in X/H} |A| + \sum_{x \in X/H} |A| + |A| 
     Thus if p/[G:H] then p/ XH.
            Take alt eXH. Then half = alt y helt

⇒ a haH = H

                                                                                              ⇔ a ha e H ⇔ a le N(H)

⇔ a ∈ N(H)
:. alte N(H)/H.

XH = N(H)/H and P(IX4)
                                we get p / N(H)/H = [N(H):H]
    First Sylves Theorem: Let G be a group of order p'm where ptm. Then
        (A) G has a p-subgroup of order pi for all léjér
```

(B) If H is a p-subgroup of order pi and j<T, Hun there is a p-subgroup H of order pit w/ H ≥ H.

Proof: (B) S'pore HKG and [H] = p' w/jer.
Proof: (B) S'pose H&G and [H] = p' w) jer. Then by the previous lemma p [N(H):H].
N(H)/H is a group o and p N(H)/H . Cauchy's Theorem says there exists y E N(H)/H of order p.
$\pi: N(H) \longrightarrow N(H)/H$ $\times \longmapsto y$
The armen agreemented by x and H (xxxxH)
The group generated by x and H (xx>vH) is a subgroup of G of order pit1.
(A) Canony says 3 xeg (3) (~/ -+.
(A) Cauchy says $\frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$ • $\frac{1}{2} \rightarrow \frac{1}{2} = \frac{1}{2}$ • $\frac{1}{2} \rightarrow \frac{1}{2} = \frac{1}{2}$
· · · · · · · · · · · · · · · · · · ·
P
Second Sylows Theorem: G =p^m
Second Sylows Theorem: G =p^m
Second Sylow Theorem: G =p^n If B, P' are Sylow p-subgroups of G, thun P'= g'Zg' for some g E G.
Second Sylow Theorem: G =p^n If B, P' are Sylow p-subgroups of G, thun P'= g'Zg' for some g E G.
Second Sylow Theorem: If B, P'are Sylow p-subgroups of G, thun P'= g'Sg' for some g \in G. Proof: Let P, P' be Sylow p-subgroups of G.
Second Sylow Theorem: If B, P'are Sylow p-subgroups of G, thun P'= g'Sg' for some g \in G. Proof: Let P, P' be Sylow p-subgroups of G.
Second Sylow Theorem: If B, P' are Sylow p-subgroups of G, thun P'= g'gg' for some g \in G. Proof: Let P, P' be Sylow p-subgroups of G. X = G/P' P act on X by a. gP' = agP'.
Second Sylow Theorem: If B, P' are Sylow p-subgroups of G, thun P'= g'gg' for some g \in G. Proof: Let P, P' be Sylow p-subgroups of G. X = G/P' P act on X by a. gP' = agP'.
Second Sylow Theorem: If B, P are Sylow p-subgroups of G, thun P'= g?g-' for some g e G. Proof: Let P, P be Sylow p-subgroups of G. X = G/P' P act on X by a. gP' = agP'. Then

If
$$P' \in X_P$$
 thun $P \in N(P')$
Since $P' \leq N(P')$ 2^{n^3} Sylas theorem
Says P' , P with be conjugated in $N(P')$

$$P = qPq' q' , q \in N(P')$$

$$= P'$$

$$X_P = P'$$

$$|X| = |X_P| + \sum_{[x] \in P_G} |P_P|^2$$

$$|X| = |X_P| + \sum_{[x] \in P_G} |P_P|^2$$

$$|X| = 1 \text{ modulo } P$$

