Mehr Bauelemente

• Gordon Moore 1975 (1965): Die Anzahl der Bauelemente pro Chip verdoppelt sich alle 18 (12) Monate.

Gründe

- Größere Chips
- Kleinere Strukturen

Auswirkung auf die Geschwindigkeit

- Die Schaltzeiten sinken mit dem Quadrat der Strukturgröße.
- Die Übermittlungszeiten bleiben gleich (wenn man sonst nichts ändert)

Hauptspeicher

Prozessoren

Takt- Code-

300MHz Klamath

1000MHz Coppermine Pentium III

600MHz Katmai

frequenz name

150MHz P6

offizieller

Pentium II

Pentium III

Name

Jahr	Größe	Durchsatz	Zugriffszeit
1982	64Kb	2MB/s	≈500ns
2000	256Mb	1066MB/s	100ns-200ns

Struktur-

größe

1995 0.35μm

1997 0.25μm

1999 0.18μm

2001 $0.13 \mu m$

 $0.5 \mu m$

Jahr

Festplatten

Jahr	Größe	Durchsatz	Zugriffszeit
1993	340MB	20MB/s	
1996	8GB	7MB/s	13ms
2000	73GB	38MB/s	5ms

Was macht man mit mehr Bauelementen?

- Mehr Funktionen
- Mehr Integration, weniger Chips, geringere Kosten
- Leistungssteigernde Techniken

Aufbau eines aktuellen PCs

Wie werden Computer schneller?

M. Anton Ertl

anton@mips.complang.tuwien.ac.at

http://www.complang.tuwien.ac.at/anton/

Institut für Computersprachen

Technische Universität Wien

Aufbau eines Prozessors Speicher-Rechen-Caches, Register zugriffseinheit Chipset einheit Steuer-Instruction Befehlszeiger Cache einheit

Ein Maschinenprogramm

131, 198, 4, 133, 219, 117, 20, 3, 109, 0, 139, 30

add	\$0x4,%esi	131, 198,
test	%ebx,%ebx	133, 219
jne	0x804a120	117, 20
add	0x0(%ebp),%ebp	3, 109, 0
mov	(%esi),%ebx	139, 30

Architektur

- Auf Maschinenprogrammebene sichtbar
- Nur nutzbar durch Programmänderung
- Beispiel: SIMD-Erweiterungen (MMX, 3DNow, SSE, Altivec)
- Beispiel: IA-64

- Zeitlich: die gleiche Stelle mehrmals
- Räumlich: nah beieinanderliegende Stellen

Mikroarchitektur

- Nur durch Änderung der Geschwindigkeit sichtbar
- Programmänderungen helfen oft
- Beispiel: Caches, Pipelines, superskalar.

Speicherhierarchie

Lokalität der Zugriffe

	Große	Zugriffszeit	Durchsatz
Register	96B-512B	0-1T	50GB/s
L1 cache	8KB-64KB	2-3T	10GB/s
L2 cache	256KB-8MB	10-20T	16GB/s
Hauptspeicher	64MB-1.5GB	100-200ns	1GB/s
Festplatte	15 GB-80 GB	5ms–16ms	38MB/s

Befehlsabarbeitung

Parallelismus auf Maschinenbefehlsebene

- alle Abhängigkeiten: Parallelismus≈2
- nur Datenflußabhängigkeiten: Parallelismus>100

- Befehl holen
- Befehl dekodieren (Steuersignale erzeugen)
- Register auslesen
- Operation ausführen
- · Resultat in Register schreiben

Fließbandverarbeitung (Pipelining)

- Pro Zyklus ein Befehl
- Bypasses
- Branch prediction

	Prozessor	Stufer
	486, Pentium	5
•	K6	7
	P6, Athlon	≈ 10
	Pentium IV	≈20

	Determen	
Prozessor	Zyklus	Umordnung
486	1	nein
Pentium	2	nein
K6	2	ja
P6, Athlon	3	ja
Pentium-IV	' 3	ja

Superskalar

• Mehrere Befehle pro Zyklus

Umordnung von Befehlen

- Abschluß der Befehle in ursprünglicher Reihenfolge
- Sprungvorhersage
- Vorauseilende Ausführung
- Umbenennung von Registern

	Befehle/	
Prozessor	Zyklus	Umordnung
486	1	nein
Pentium	2	nein
K6	2	ja
P6, Athlon	3	ja
Pentium-IV	3	ja

IA-64 (64-bit Intel Architektur)

- Umordnung in Software statt in Hardware
- Architektur unterstützt Umordnung in Software
- Software kann besser umordnen
- Software hat andere Grenzen
- Weniger komplexe Steuereinheit, schneller?
- Beispiel: Umbenennung von Registern: 128 Register, software-gesteuerte Umbenennung

Steuerungsabhängigkeiten

Warum werden Computer langsamer?

- Neue Software braucht mehr Leistung weil
- sie mehr kann, oder
- sie so entwickelt wurde

Ziele bei kommerzieller Software

- kommerzieller Erfolg
- wenig Entwicklungskosten
- schnelle Entwicklung
- "besser" als Konkurrenz/Vorgänger
- nicht zu viele Fehler
- nicht zu langsam

Produkt				Zeilen
MS Basic				
MS Word	1982	27 000	1996	2 000 000

Zusammenfassung

- Miniaturisierung
- Lokalität, Parallelismus
- Mikroarchitektur: Caches, Pipelining, superskalar, Umordnung
- Architektur: mehr Register, SIMD, Umordnung in Software
- Software passt sich der Hardware an