$12n_{0254} \ (K12n_{0254})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.85386 \times 10^{22} u^{20} - 1.50646 \times 10^{23} u^{19} + \dots + 1.12972 \times 10^{24} b + 1.18141 \times 10^{25}, \\ &\quad 4.93819 \times 10^{24} u^{20} - 2.24476 \times 10^{25} u^{19} + \dots + 2.48538 \times 10^{25} a + 6.80715 \times 10^{26}, \\ &\quad u^{21} - 5u^{20} + \dots + 528u - 64 \rangle \\ I_2^u &= \langle -271u^5a^3 - 2553u^5a^2 + \dots + 3664a - 2027, \ -2u^5a^3 + u^5a^2 + \dots - 4a - 2, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \\ I_3^u &= \langle -17u^{10} + 21u^9 + 46u^8 + 6u^7 - 188u^6 - 125u^5 + 284u^4 + 136u^3 + 86u^2 + 356b - 512u + 71, \\ &\quad -617u^{10} + 202u^9 + \dots + 178a - 1470, \ u^{11} - 3u^9 + 2u^7 + 5u^6 + u^5 - 4u^4 + 6u^3 - 2u^2 + u + 1 \rangle \end{split}$$

$$I_1^v = \langle a, b + 2v + 2, 4v^2 + 6v + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 2.85 \times 10^{22} u^{20} - 1.51 \times 10^{23} u^{19} + \dots + 1.13 \times 10^{24} b + 1.18 \times 10^{25}, \ 4.94 \times 10^{24} u^{20} - \\ 2.24 \times 10^{25} u^{19} + \dots + 2.49 \times 10^{25} a + 6.81 \times 10^{26}, \ u^{21} - 5u^{20} + \dots + 528u - 64 \rangle \end{matrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.198690u^{20} + 0.903187u^{19} + \dots + 168.839u - 27.3888 \\ -0.0252617u^{20} + 0.133349u^{19} + \dots + 44.8453u - 10.4576 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0389223u^{20} + 0.169523u^{19} + \dots + 22.6922u - 1.25931 \\ -0.204843u^{20} + 0.945787u^{19} + \dots + 195.515u - 36.3690 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.256774u^{20} + 1.17458u^{19} + \dots + 228.962u - 39.2339 \\ -0.169105u^{20} + 0.785773u^{19} + \dots + 165.000u - 30.9802 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.126591u^{20} + 0.558334u^{19} + \dots + 86.6544u - 10.5130 \\ 0.416280u^{20} - 1.91677u^{19} + \dots - 391.813u + 72.1250 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.223951u^{20} + 1.03654u^{19} + \dots + 213.684u - 37.8464 \\ -0.0252617u^{20} + 0.133349u^{19} + \dots + 44.8453u - 10.4576 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.500539u^{20} + 2.28989u^{19} + \dots + 447.169u - 77.8622 \\ -0.373948u^{20} + 1.73156u^{19} + \dots + 360.515u - 67.3492 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.126591u^{20} + 0.558334u^{19} + \dots + 86.6544u - 10.5130 \\ 0.373948u^{20} - 1.73156u^{19} + \dots + 360.515u + 67.3492 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0720983u^{20} - 0.344853u^{19} + \dots - 82.1841u + 17.8758 \\ 0.441542u^{20} - 2.05012u^{19} + \dots - 436.659u + 82.5826 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{59011690898372144363232697}{49707567109353239097754688}u^{20} - \frac{278177987921238114159260841}{49707567109353239097754688}u^{19} + \dots - \frac{15717053070456132195264300185}{12426891777338309774438672}u + \frac{380289254330637407319519649}{1553361472167288721804834}$

Crossings	u-Polynomials at each crossing
c_1	$u^{21} + 11u^{20} + \dots + 2416u + 256$
c_{2}, c_{4}	$u^{21} - 3u^{20} + \dots - 12u + 16$
c_{3}, c_{8}	$u^{21} + 5u^{20} + \dots + 528u + 64$
c_5, c_7, c_{11}	$u^{21} - u^{20} + \dots - 2u + 1$
c_6, c_9, c_{12}	$u^{21} - 15u^{19} + \dots + 3u - 1$
c_{10}	$u^{21} - 19u^{20} + \dots + 96u - 64$

Crossings	Riley Polynomials at each crossing
c_1	$y^{21} + y^{20} + \dots - 37120y - 65536$
c_2, c_4	$y^{21} - 11y^{20} + \dots + 2416y - 256$
c_{3}, c_{8}	$y^{21} - 9y^{20} + \dots + 54016y - 4096$
c_5, c_7, c_{11}	$y^{21} + 13y^{20} + \dots + 46y^2 - 1$
c_6, c_9, c_{12}	$y^{21} - 30y^{20} + \dots + 41y - 1$
c_{10}	$y^{21} - 11y^{20} + \dots + 115712y - 4096$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.121943 + 0.682474I		
a = 0.563394 - 0.200224I	-0.472540 - 0.941822I	-7.59562 + 7.26185I
b = 0.242967 + 0.329112I		
u = -0.121943 - 0.682474I		
a = 0.563394 + 0.200224I	-0.472540 + 0.941822I	-7.59562 - 7.26185I
b = 0.242967 - 0.329112I		
u = 0.603944		
a = 0.453168	-1.50093	-5.01190
b = 0.799712		
u = 0.536882 + 1.288830I		
a = 0.332371 + 0.204687I	-7.32268 + 3.73921I	-2.18512 - 2.93436I
b = -0.203835 - 0.523003I		
u = 0.536882 - 1.288830I		
a = 0.332371 - 0.204687I	-7.32268 - 3.73921I	-2.18512 + 2.93436I
b = -0.203835 + 0.523003I		
u = -0.45031 + 1.42697I		
a = 0.401321 - 0.196262I	-0.856656 + 0.283512I	-6.72739 - 0.35031I
b = -0.169622 + 1.002850I		
u = -0.45031 - 1.42697I		
a = 0.401321 + 0.196262I	-0.856656 - 0.283512I	-6.72739 + 0.35031I
b = -0.169622 - 1.002850I		
u = 1.39749 + 0.58008I		
a = 0.000890 + 1.116300I	-3.89482 + 3.14186I	-8.38778 - 3.45220I
b = 0.416233 - 1.089790I		
u = 1.39749 - 0.58008I		
a = 0.000890 - 1.116300I	-3.89482 - 3.14186I	-8.38778 + 3.45220I
b = 0.416233 + 1.089790I		
u = 0.452501		
a = 2.15908	-2.05646	-0.974600
b = -0.287661		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
	u = 0.68409 + 1.39512I		
	a = 0.435024 + 0.190053I	-2.93350 - 6.63406I	-8.79219 + 4.92171I
	b = -0.549126 - 1.238180I		
	u = 0.68409 - 1.39512I		
	a = 0.435024 - 0.190053I	-2.93350 + 6.63406I	-8.79219 - 4.92171I
	b = -0.549126 + 1.238180I		
	u = 1.30096 + 0.91198I		
	a = 0.393242 + 1.276420I	-0.8291 + 14.7385I	-8.45146 - 7.52643I
	b = 0.90620 - 1.50613I		
	u = 1.30096 - 0.91198I		
	a = 0.393242 - 1.276420I	-0.8291 - 14.7385I	-8.45146 + 7.52643I
	b = 0.90620 + 1.50613I		
	u = -1.42639 + 0.82761I		
	a = 0.254534 - 1.154900I	2.34232 - 8.31871I	-5.94131 + 4.58592I
,	b = 0.63940 + 1.47836I		
	u = -1.42639 - 0.82761I		
	a = 0.254534 + 1.154900I	2.34232 + 8.31871I	-5.94131 - 4.58592I
	b = 0.63940 - 1.47836I		
	u = 0.334496		
	a = 0.508543	-10.4004	21.7570
,	b = -1.69359		
	u = 1.62920 + 0.48052I		
	a = -0.319293 - 1.001180I	5.91302 + 6.12351I	-10.80009 - 6.57387I
	b = -0.737374 + 0.986244I		
	u = 1.62920 - 0.48052I		
	a = -0.319293 + 1.001180I	5.91302 - 6.12351I	-10.80009 + 6.57387I
	b = -0.737374 - 0.986244I		
	u = -1.74543 + 0.04421I		
	a = -0.121882 + 0.958359I	6.80819 + 0.98118I	-9.12937 - 0.92113I
	b = -0.454067 - 1.159470I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.74543 - 0.04421I		
a = -0.121882 - 0.958359I	6.80819 - 0.98118I	-9.12937 + 0.92113I
b = -0.454067 + 1.159470I		

$$\text{II. } I_2^u = \langle -271u^5a^3 - 2553u^5a^2 + \cdots + 3664a - 2027, \ -2u^5a^3 + u^5a^2 + \cdots - 4a - 2, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.110657a^{3}u^{5} + 1.04247a^{2}u^{5} + \dots - 1.49612a + 0.827685 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.518579a^{3}u^{5} + 0.461004a^{2}u^{5} + \dots + 0.0661494a + 0.956309 \\ -1.96366a^{3}u^{5} - 0.801552a^{2}u^{5} + \dots - 1.76072a - 1.99755 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.518579a^{3}u^{5} - 0.461004a^{2}u^{5} + \dots - 0.0661494a - 0.956309 \\ -0.110657a^{3}u^{5} - 1.04247a^{2}u^{5} + \dots + 1.49612a + 0.172315 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.110657a^{3}u^{5} + 1.04247a^{2}u^{5} + \dots - 0.496121a + 0.827685 \\ 0.110657a^{3}u^{5} + 1.04247a^{2}u^{5} + \dots - 1.49612a + 0.827685 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ -u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} - 1 \\ u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.32993a^{3}u^{5} + 1.68150a^{2}u^{5} + \dots - 2.77909a + 0.292364 \\ -1.44059a^{3}u^{5} + 0.639036a^{2}u^{5} + \dots - 2.28297a - 0.535321 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 10$

Crossings	u-Polynomials at each crossing
c_1	$ \left (u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^4 \right $
$c_2, c_3, c_4 \\ c_8$	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^4$
c_5, c_7, c_{11}	$u^{24} + 3u^{23} + \dots + 418u + 319$
c_6, c_9, c_{12}	$u^{24} - 3u^{23} + \dots - 38u + 181$
c_{10}	$(u^2 + u - 1)^{12}$

Crossings	Riley Polynomials at each crossing
c_1	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^4$
c_2, c_3, c_4 c_8	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^4$
c_5, c_7, c_{11}	$y^{24} + 11y^{23} + \dots + 621500y + 101761$
c_6, c_9, c_{12}	$y^{24} - 13y^{23} + \dots - 152760y + 32761$
c_{10}	$(y^2 - 3y + 1)^{12}$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.642556 - 0.992563I	5.83845 + 0.92430I	-4.28328 - 0.79423I
b = -0.61676 + 1.29086I		
u = 1.002190 + 0.295542I		
a = 0.85932 - 1.36236I	-2.05724 + 0.92430I	-4.28328 - 0.79423I
b = 0.022966 + 0.740302I		
u = 1.002190 + 0.295542I		
a = 0.30955 + 1.60690I	5.83845 + 0.92430I	-4.28328 - 0.79423I
b = 0.04999 - 1.65697I		
u = 1.002190 + 0.295542I		
a = 0.012501 - 0.246000I	-2.05724 + 0.92430I	-4.28328 - 0.79423I
b = 1.46084 + 0.21819I		
u = 1.002190 - 0.295542I		
a = -0.642556 + 0.992563I	5.83845 - 0.92430I	-4.28328 + 0.79423I
b = -0.61676 - 1.29086I		
u = 1.002190 - 0.295542I		
a = 0.85932 + 1.36236I	-2.05724 - 0.92430I	-4.28328 + 0.79423I
b = 0.022966 - 0.740302I		
u = 1.002190 - 0.295542I		
a = 0.30955 - 1.60690I	5.83845 - 0.92430I	-4.28328 + 0.79423I
b = 0.04999 + 1.65697I		
u = 1.002190 - 0.295542I		
a = 0.012501 + 0.246000I	-2.05724 - 0.92430I	-4.28328 + 0.79423I
b = 1.46084 - 0.21819I		
u = -0.428243 + 0.664531I		
a = -1.40914 + 1.08956I	-5.83845 + 0.92430I	-11.71672 - 0.79423I
b = 0.634044 - 0.520697I		
u = -0.428243 + 0.664531I		
a = -0.93092 - 1.84591I	2.05724 + 0.92430I	-11.71672 - 0.79423I
b = 0.192218 - 1.006480I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.428243 + 0.664531I		
a = 2.36603 + 0.04486I	2.05724 + 0.92430I	-11.71672 - 0.79423I
b = -0.032636 + 1.358240I		
u = -0.428243 + 0.664531I		
a = -2.34802 + 3.62566I	-5.83845 + 0.92430I	-11.71672 - 0.79423I
b = -1.051840 - 0.400227I		
u = -0.428243 - 0.664531I		
a = -1.40914 - 1.08956I	-5.83845 - 0.92430I	-11.71672 + 0.79423I
b = 0.634044 + 0.520697I		
u = -0.428243 - 0.664531I		
a = -0.93092 + 1.84591I	2.05724 - 0.92430I	-11.71672 + 0.79423I
b = 0.192218 + 1.006480I		
u = -0.428243 - 0.664531I		
a = 2.36603 - 0.04486I	2.05724 - 0.92430I	-11.71672 + 0.79423I
b = -0.032636 - 1.358240I		
u = -0.428243 - 0.664531I		
a = -2.34802 - 3.62566I	-5.83845 - 0.92430I	-11.71672 + 0.79423I
b = -1.051840 + 0.400227I		
u = -1.073950 + 0.558752I		
a = 0.461962 - 1.241720I	3.94784 - 5.69302I	-8.00000 + 5.51057I
b = 0.48362 + 1.59891I		
u = -1.073950 + 0.558752I		
a = -0.327999 + 0.551063I	3.94784 - 5.69302I	-8.00000 + 5.51057I
b = -1.003490 - 0.857180I		
u = -1.073950 + 0.558752I		
a = -0.370228 + 0.210083I	-3.94784 - 5.69302I	-8.00000 + 5.51057I
b = 1.67733 - 0.62104I		
u = -1.073950 + 0.558752I		
a = 0.01951 + 1.59808I	-3.94784 - 5.69302I	-8.00000 + 5.51057I
b = -0.316295 - 1.320830I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.073950 - 0.558752I		
a = 0.461962 + 1.241720I	3.94784 + 5.69302I	-8.00000 - 5.51057I
b = 0.48362 - 1.59891I		
u = -1.073950 - 0.558752I		
a = -0.327999 - 0.551063I	3.94784 + 5.69302I	-8.00000 - 5.51057I
b = -1.003490 + 0.857180I		
u = -1.073950 - 0.558752I		
a = -0.370228 - 0.210083I	-3.94784 + 5.69302I	-8.00000 - 5.51057I
b = 1.67733 + 0.62104I		
u = -1.073950 - 0.558752I		
a = 0.01951 - 1.59808I	-3.94784 + 5.69302I	-8.00000 - 5.51057I
b = -0.316295 + 1.320830I		

$$\begin{array}{c} \text{III. } I_3^u = \langle -17u^{10} + 21u^9 + \dots + 356b + 71, \ -617u^{10} + 202u^9 + \dots + 178a - \\ 1470, \ u^{11} - 3u^9 + \dots + u + 1 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3.46629u^{10} - 1.13483u^{9} + \dots - 13.9270u + 8.25843 \\ 0.0477528u^{10} - 0.0589888u^{9} + \dots + 1.43820u - 0.199438 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2.36798u^{10} - 0.278090u^{9} + \dots - 9.50562u + 8.34551 \\ -0.00842697u^{10} + 0.216292u^{9} + \dots + 0.893258u + 0.0646067 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2.99719u^{10} - 0.261236u^{9} + \dots - 10.7022u + 8.68820 \\ -0.0758427u^{10} + 0.446629u^{9} + \dots + 1.53933u + 0.0814607 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.705056u^{10} + 0.429775u^{9} + \dots + 2.73596u - 1.26124 \\ -0.0365169u^{10} + 0.103933u^{9} + \dots + 0.370787u + 0.446629 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3.51404u^{10} - 1.19382u^{9} + \dots + 1.43820u - 0.199438 \\ 0.0477528u^{10} - 0.0589888u^{9} + \dots + 1.43820u - 0.199438 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.637640u^{10} - 0.199438u^{9} + \dots + 1.43820u - 0.199438 \\ -0.0674157u^{10} + 0.230337u^{9} + \dots + 0.646067u + 0.0168539 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.705056u^{10} + 0.429775u^{9} + \dots + 2.73596u - 1.26124 \\ -0.0674157u^{10} + 0.230337u^{9} + \dots + 0.646067u + 0.0168539 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 4.17135u^{10} - 1.56461u^{9} + \dots - 16.6629u + 10.5197 \\ 0.0842697u^{10} - 0.162921u^{9} + \dots + 1.06742u - 0.646067 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= \frac{1809}{356}u^{10} - \frac{507}{356}u^9 - \frac{2437}{178}u^8 + \frac{665}{178}u^7 + \frac{410}{89}u^6 + \frac{8485}{356}u^5 + \frac{653}{178}u^4 - \frac{2875}{178}u^3 + \frac{3149}{89}u^2 - \frac{4741}{178}u + \frac{2863}{356}u^8 + \frac{110}{128}u^8 + \frac{110}{128}u$$

Crossings	u-Polynomials at each crossing
c_1	$u^{11} - 6u^{10} + \dots - 3u - 1$
c_2	$u^{11} + 4u^{10} + 5u^9 - 2u^8 - 11u^7 - 8u^6 + 4u^5 + 8u^4 + 2u^3 - 2u^2 - u - 1$
c_3	$u^{11} - 3u^9 + 2u^7 - 5u^6 + u^5 + 4u^4 + 6u^3 + 2u^2 + u - 1$
C4	$u^{11} - 4u^{10} + 5u^9 + 2u^8 - 11u^7 + 8u^6 + 4u^5 - 8u^4 + 2u^3 + 2u^2 - u + 1$
c_5, c_{11}	$u^{11} + 3u^9 + 3u^8 + 3u^7 + 6u^6 + 3u^5 + 2u^4 + 2u^3 - 2u^2 - 3u - 1$
c_6, c_{12}	$u^{11} - 3u^{10} + 2u^9 + 2u^8 - 2u^7 + 3u^6 - 6u^5 + 3u^4 - 3u^3 + 3u^2 + 1$
c_7	$u^{11} + 3u^9 - 3u^8 + 3u^7 - 6u^6 + 3u^5 - 2u^4 + 2u^3 + 2u^2 - 3u + 1$
c_8	$u^{11} - 3u^9 + 2u^7 + 5u^6 + u^5 - 4u^4 + 6u^3 - 2u^2 + u + 1$
<i>C</i> 9	$u^{11} + 3u^{10} + 2u^9 - 2u^8 - 2u^7 - 3u^6 - 6u^5 - 3u^4 - 3u^3 - 3u^2 - 1$
c_{10}	$u^{11} - 5u^{10} + \dots - 3u - 9$

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} + 2y^{10} + \dots + 25y - 1$
c_{2}, c_{4}	$y^{11} - 6y^{10} + \dots - 3y - 1$
c_3, c_8	$y^{11} - 6y^{10} + \dots + 5y - 1$
c_5, c_7, c_{11}	$y^{11} + 6y^{10} + \dots + 5y - 1$
c_6, c_9, c_{12}	$y^{11} - 5y^{10} + \dots - 6y - 1$
c_{10}	$y^{11} - 5y^{10} + \dots + 369y - 81$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.625397 + 0.494839I		
a = 0.438748 - 1.244100I	-3.46083 + 0.46362I	-10.64211 + 0.77158I
b = 0.821829 + 0.139209I		
u = 0.625397 - 0.494839I		
a = 0.438748 + 1.244100I	-3.46083 - 0.46362I	-10.64211 - 0.77158I
b = 0.821829 - 0.139209I		
u = -0.564447 + 1.125840I		
a = -0.247928 + 0.345446I	-7.82119 - 3.76164I	-18.6525 + 4.0849I
b = 0.522992 - 0.276078I		
u = -0.564447 - 1.125840I		
a = -0.247928 - 0.345446I	-7.82119 + 3.76164I	-18.6525 - 4.0849I
b = 0.522992 + 0.276078I		
u = 0.145041 + 0.670202I		
a = 0.32779 + 2.44730I	2.75970 - 0.49193I	-4.46246 - 4.43880I
b = 0.101556 + 1.234860I		
u = 0.145041 - 0.670202I		
a = 0.32779 - 2.44730I	2.75970 + 0.49193I	-4.46246 + 4.43880I
b = 0.101556 - 1.234860I		
u = -1.50834 + 0.06577I		
a = -0.223191 + 1.141650I	7.91909 + 0.79075I	-1.37905 - 0.86737I
b = -0.44883 - 1.38945I		
u = -1.50834 - 0.06577I		
a = -0.223191 - 1.141650I	7.91909 - 0.79075I	-1.37905 + 0.86737I
b = -0.44883 + 1.38945I		
u = 1.48572 + 0.56088I		
a = -0.448099 - 0.943396I	6.75307 + 5.68255I	-2.50294 - 2.90690I
b = -0.619533 + 1.131030I		
u = 1.48572 - 0.56088I		
a = -0.448099 + 0.943396I	6.75307 - 5.68255I	-2.50294 + 2.90690I
b = -0.619533 - 1.131030I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.366747		
a = 17.3054	-5.71995	23.2780
b = -0.756037		

IV.
$$I_1^v = \langle a, b + 2v + 2, 4v^2 + 6v + 1 \rangle$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -2v - 2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -2v - 3 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -2v - 2 \\ -2v - 3 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -2v - 2 \\ -2v - 3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 4v + 5 \\ 4v + 6 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 4v + 5 \\ 4v + 6 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2v - 2 \\ -2v - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -4v - 5 \\ -4v - 6 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 5v + 5 \\ 4v + 6 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -4v - 5 \\ -4v - 6 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 5v + 5 \\ 4v + 6 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 4v + 6 \\ 6v + 8 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{45}{2}v \frac{183}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_8	u^2
c_4	$(u+1)^2$
c_5, c_7, c_{10}	$u^2 + u - 1$
	$u^2 - 3u + 1$
c_9, c_{12}	$u^2 + 3u + 1$
c_{11}	u^2-u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_8	y^2
c_5, c_7, c_{10} c_{11}	$y^2 - 3y + 1$
c_6, c_9, c_{12}	$y^2 - 7y + 1$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.30902		
a = 0	-2.63189	-16.2970
b = 0.618034		
v = -0.190983		
a = 0	-10.5276	-41.4530
b = -1.61803		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{2}(u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{4}$ $\cdot (u^{11} - 6u^{10} + \dots - 3u - 1)(u^{21} + 11u^{20} + \dots + 2416u + 256)$
c_2	$(u-1)^{2}(u^{6}-u^{5}-u^{4}+2u^{3}-u+1)^{4}$ $\cdot (u^{11}+4u^{10}+5u^{9}-2u^{8}-11u^{7}-8u^{6}+4u^{5}+8u^{4}+2u^{3}-2u^{2}-u-1)$ $\cdot (u^{21}-3u^{20}+\cdots-12u+16)$
c_3	$u^{2}(u^{6} - u^{5} - u^{4} + 2u^{3} - u + 1)^{4}$ $\cdot (u^{11} - 3u^{9} + 2u^{7} - 5u^{6} + u^{5} + 4u^{4} + 6u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{21} + 5u^{20} + \dots + 528u + 64)$
c_4	$(u+1)^{2}(u^{6}-u^{5}-u^{4}+2u^{3}-u+1)^{4}$ $\cdot (u^{11}-4u^{10}+5u^{9}+2u^{8}-11u^{7}+8u^{6}+4u^{5}-8u^{4}+2u^{3}+2u^{2}-u+1)$ $\cdot (u^{21}-3u^{20}+\cdots-12u+16)$
c_5	$(u^{2} + u - 1)$ $\cdot (u^{11} + 3u^{9} + 3u^{8} + 3u^{7} + 6u^{6} + 3u^{5} + 2u^{4} + 2u^{3} - 2u^{2} - 3u - 1)$ $\cdot (u^{21} - u^{20} + \dots - 2u + 1)(u^{24} + 3u^{23} + \dots + 418u + 319)$
c_6	$(u^{2} - 3u + 1)$ $\cdot (u^{11} - 3u^{10} + 2u^{9} + 2u^{8} - 2u^{7} + 3u^{6} - 6u^{5} + 3u^{4} - 3u^{3} + 3u^{2} + 1)$ $\cdot (u^{21} - 15u^{19} + \dots + 3u - 1)(u^{24} - 3u^{23} + \dots - 38u + 181)$
c ₇	$(u^{2} + u - 1)$ $\cdot (u^{11} + 3u^{9} - 3u^{8} + 3u^{7} - 6u^{6} + 3u^{5} - 2u^{4} + 2u^{3} + 2u^{2} - 3u + 1)$ $\cdot (u^{21} - u^{20} + \dots - 2u + 1)(u^{24} + 3u^{23} + \dots + 418u + 319)$
c ₈	$u^{2}(u^{6} - u^{5} - u^{4} + 2u^{3} - u + 1)^{4}$ $\cdot (u^{11} - 3u^{9} + 2u^{7} + 5u^{6} + u^{5} - 4u^{4} + 6u^{3} - 2u^{2} + u + 1)$ $\cdot (u^{21} + 5u^{20} + \dots + 528u + 64)$
<i>c</i> 9	$(u^{2} + 3u + 1)$ $\cdot (u^{11} + 3u^{10} + 2u^{9} - 2u^{8} - 2u^{7} - 3u^{6} - 6u^{5} - 3u^{4} - 3u^{3} - 3u^{2} - 1)$ $\cdot (u^{21} - 15u^{19} + \dots + 3u - 1)(u^{24} - 3u^{23} + \dots - 38u + 181)$
c_{10}	$((u^{2}+u-1)^{13})(u^{11}-5u^{10}+\cdots-3u-9)(u^{21}-19u^{20}+\cdots+96u-64)$
c_{11}	$(u^{2} - u - 1)$ $\cdot (u^{11} + 3u^{9} + 3u^{8} + 3u^{7} + 6u^{6} + 3u^{5} + 2u^{4} + 2u^{3} - 2u^{2} - 3u - 1)$ $\cdot (u^{21} - u^{20} + \dots - 2u + 1)(u^{24} + 3u^{23} + \dots + 418u + 319)$
c ₁₂	$(u^{2} + 3u + 1)$ $\cdot (u^{11} - 3u^{10} + 2u^{9} + 2u^{8} - 2u^{7} + 3u^{6} - 6u^{5} + 3u^{4} - 3u^{3} + 3u^{2} + 1)$ $\cdot (u^{21} - 15u^{19} + \dots + 3u - 1)(u^{24} - 3u^{23} + \dots - 38u + 181)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^2)(y^6 + y^5 + \dots + 3y + 1)^4(y^{11} + 2y^{10} + \dots + 25y - 1)$ $\cdot (y^{21} + y^{20} + \dots - 37120y - 65536)$
c_2, c_4	$(y-1)^{2}(y^{6}-3y^{5}+5y^{4}-4y^{3}+2y^{2}-y+1)^{4}$ $\cdot (y^{11}-6y^{10}+\cdots-3y-1)(y^{21}-11y^{20}+\cdots+2416y-256)$
c_3, c_8	$y^{2}(y^{6} - 3y^{5} + \dots - y + 1)^{4}(y^{11} - 6y^{10} + \dots + 5y - 1)$ $\cdot (y^{21} - 9y^{20} + \dots + 54016y - 4096)$
c_5, c_7, c_{11}	$(y^{2} - 3y + 1)(y^{11} + 6y^{10} + \dots + 5y - 1)(y^{21} + 13y^{20} + \dots + 46y^{2} - 1)$ $\cdot (y^{24} + 11y^{23} + \dots + 621500y + 101761)$
c_6, c_9, c_{12}	$(y^{2} - 7y + 1)(y^{11} - 5y^{10} + \dots - 6y - 1)(y^{21} - 30y^{20} + \dots + 41y - 1)$ $\cdot (y^{24} - 13y^{23} + \dots - 152760y + 32761)$
c_{10}	$((y^2 - 3y + 1)^{13})(y^{11} - 5y^{10} + \dots + 369y - 81)$ $\cdot (y^{21} - 11y^{20} + \dots + 115712y - 4096)$