WWS 509 Generalized Linear Models: Precept 1 Section 2.1 through 2.5.6

Kristin E. Bietsch

Office of Population Research, Princeton University

September 2012

1 Introducing the data

This precept uses data from the United Nations about urbanization and fertility. Today we will focus on 50 Africa countries, the percentage of a population in each country classified as "urban," the country's total fertility rate (ask the demographer sitting closest to you for a definition), and the Human Development Index score in 2005. Please do not cite this data or the regressions.

2 Null and Saturated Models

- A null model postulates no systematic differences between units
 - In this week's example, the null model would be that all countries have the same percentage of population living in urban areas
- A saturated model has as many parameters in the linear predictor as it has observation.
 - In this week's example, imagine dummy variables for Ghana, Nigeria, South Africa, etc.

Neither of these models are very informative. Let's look in the middle!

3 Simple Linear Regression

3.1 Fertility and Urbanization

Presented below is the Stata output from a regression of TFR on urbanization:

Source	55	df		MS		Number of obs	
Model	5161.91771	1	5161.	91771		F(1, 48)	= 21.61 = 0.0000
Residual	11464.1449	48		36352		R-squared	= 0.3109
Total	16626.0626	49	339	9.3074		Adj R-squared Root MSE	= 0.2961 = 15.454
propurbO5	Coef.	Std.	Err.	t	P> t	[95% Comf.	Interval]
tfr	-7.188698	1.546	304	-4.65	0.000	-10.29775	-4.079645
_coms	76.86343	8.00	464	9.60	0.000	60.76902	92.95784

Figure 1: Regression of TFR on Proportion Urban

- 1. Interpret the coefficient for the constant and TFR
 - (a) The constant is the expected response when x equals 0. This means that if TFR=0 (meaning no one was having children) the expected urbanization is 76.9%. However, this is meaningless because TFR never equals 0. For more interpretability of the constant, it would be a good idea to center TFR.
 - (b) The coefficient on TFR represents the expected increment of change in the response per unit in change x. Therefore, a increase in 1 in the TFR is associated with a -7.2 percentage point change in urbanization level
- 2. Construct the Likelihood ratio where this model is nested in the null

Source of variation	Degrees of freedom	Sum of squares	Mean squared	F-ratio
TFR	1	5161.91771	5161.91771	21.61
Residual	48	11464.1449	238.836352	
Total	49	16626.0626		

- (a) With 1 and 48 degrees of freedom
- 3. Test the significance for the coefficient for TFR
 - (a) $\frac{-7.188698}{1.546304} = -4.65$
 - (b) Significant at the 1% level
- 4. How would you calculate the R^2 by hand?
 - (a) $\frac{sumof squares}{total}$ (b) $\frac{5161.91771}{16626.0626} = 0.31047$
- 5. Calculate Pearson's r
 - (a) The square root of the proportion of variance explained in a simple linear regression model, with the same sign as the regression coefficient, is Pearson's linear correlation coefficient.

- (b) $\sqrt{\frac{5161.91771}{16626.0626}}$
- (c) In this example, each standard deviation increase in the total fertility rate is associated with an addition decrease in the proportion urban of 0.557 standard deviations.

3.2 HDI and Urbanization

Presented below is the Stata output from a regression of HDI on urbanization:

Source	55	df		6		Number of obs	1900-480 - 125-150- 5 -1
Model	5796.67508	ī	5796.6	7508		F(1, 48)	= 25.69 = 0.000
Residual	10829.3875	48	225.6			R-squared	= 0.348
Total	16626.0626	49	339.	3074		Adj R-squared Root MSE	= 0.335 = 15.0
propurbO5	Coef.	Std.	Err.	t	P> t	[95% Comf.	Interval
hdi	82.64527	16.30	459	5.07	0.000	49.86269	115.427
_cons	6.954846	7.056	541	0.99	0.329	-7.233282	21.1429

Figure 2: Regression of HDI on Proportion Urban

- 1. Interpret the coefficient for the constant and HDI
 - (a) The constant is the expected response when x equals 0. This means that if HDI=0 (wow that would suck) the expected urbanization is 6.95%. However, this is meaningless because HDI never equals 0. For more interpretability of the constant, it would be a good idea to center TFR.
 - (b) The coefficient on HDI represents the expected increment of change in the response per unit in change x. However, HDI is only measured on a scale from 0 to 1. Therefore, a increase in 0.1 in the HDI is associated with a 8.26 percentage point increase in urbanization level.
- 2. Construct the Likelihood ratio where this model is nested in the null

Source of variation	Degrees of freedom	Sum of squares	Mean squared	F-ratio
TFR	1	5796.67508	5796.67508	25.69
Residual	48	10829.3875	225.61224	
Total	49	16626.0626		

- (a) With 1 and 48 degrees of freedom
- 3. Test the significance for the coefficient for HDI
 - (a) $\frac{82.64527}{16.30459} = 5.07$

- (b) Significant at the 1% level
- 4. How would you calculate the R^2 by hand?
 - (a) $\frac{sumof squares}{total}$
 - (b) $\frac{5796.67508}{16626.0626} = 0.3486$
- 5. Calculate Pearson's r
 - (a) The square root of the proportion of variance explained in a simple linear regression model, with the same sign as the regression coefficient, is Pearson's linear correlation coefficient.
 - (b) $\sqrt{\frac{5796.67508}{16626.0626}} = 0.59$
 - (c) In this example, each standard deviation increase in the HDI is associated with an addition increase in the proportion urban of 0.59 standard deviations.

4 Multiple Linear Regression

In this section we look at the additive model which includes TFR and HDI. In an additive model, the effect of each perdictor on the response is assumed to be the same for all values of the other predictors.

Presented below is the Stata output from a regression of HDI and TFR on urbanization:

Source	55	df	MS		Number of obs	
Model	6103.2542	2	3051.6271		F(2, 47) Prob > F	= 13.63 = 0.0000
Residual	10522.8084	47	223.88954		R-squared	= 0.3673
N9000000000000000000000000000000000000	AND AND SECOND	7955			Adj R-squared	
Total	16626.0626	49	339.3074		Root MSE	= 14.96
propurbO5	Coef.	Std. E	rr. t	P> t	[95% Comf.	Interval
tfr	-2.975143	2.5424	56 -1.17	0. 248	-8.089904	2.139619
hdi	56.55783	27.582	73 2.05	0.046	1.068542	112.047
_coms	32.53766	22.964	55 1.42	0.163	-13.66105	78.73637

Figure 3: Regression of HDI and TFR on Proportion Urban

- 1. Interpret the coefficient for the constant, HDI, and TFR
 - (a) Constant: the constant is the expected response if both HDI and TFR equal 0. This would mean that the expected level of urbanization was 32.5%.
 - (b) HDI: A 0.1 increase in HDI, holding TFR constant, represents the expected change in the level of level of urbanization of 5.66 percetage points.

- (c) TFR: A 1 increase in TFR, holding HDI constant, represents the expected change in the level of level of urbanization of -2.98 percetage points.
- 2. Test the significance for HDI and TFR
 - (a) HDI
 - i. $\frac{56.55783}{27.58273} = 2.05$
 - ii. Significant at the 5% level
 - (b) TFR
 - i. $\frac{-2.975143}{2.542456} = -1.17$
 - ii. Not significant
 - Has significance changed from the previous models?

4.1 Gross and Net Effects

- Gross effect: the change in the response that can be associated with a given predictor in a simple linear regression
 - What is the gross effect of TFR on proportion urban? (Fill in the box below)
 - What is the gross effect of HDI on proportion urban?
- Net effect: the change in the response that can be associated with a given predictor for fixed values of other predictors
 - What is the net effect of TFR on proportion urban?
 - What is the net effect of HDI on proportion urban?

Predictor	Gross	Net
TFR	-7.189	-2.975
HDI	82.645	56.558

4.2 ANOVA for Multiple Regression

Fill in the following table for the Analysis of Variance for Multiple Regression of Proportion Urban by TFR and HDI:

Source of variation	Sum of squares	Degrees of freedom	Mean squared	F-ratio
Regression	6103.2542	2	3051.6271	13.63
Residual	10522.8084	47	223.88954	
Total	16626.0626	49		

4.2.1 Hierarchical Table 1

Fill in the following table for the Hierarchical Analysis of Variance for Multiple Regression of Proportion Urban by TFR and HDI:

Source of variation	Sum of squares	Degrees of freedom	Mean squared	F-ratio
TFR	5161.91771	1	5161.91771	23.0556
$\mathrm{HDI} \mathrm{TFR}$	941.33649	1	941.33649	4.204468
Residual	10522.8084	47	223.88954	
Total	16626.0626	49		

- 1. TFR and HDI|TFR are significant
- 2. TFR at the 1% level
- 3. HDI at the 5% level

4.2.2 Hierarchical Table 2

Fill in the following table for the Hierarchical Analysis of Variance for Multiple Regression of Proportion Urban by TFR and HDI:

Source of variation	Sum of squares	Degrees of freedom	Mean squared	F-ratio
HDI	5796.67508	1	5796.67508	25.89078
TFR HDI	306.57912	1	306.57912	1.36933
Residual	10522.8084	47	223.88954	
Total	16626.0626	49		

- 1. HDI is significant at the 1% level
- 2. TFR|HDI is not significant

4.3 Partial and Multiple Correlation

- Multiple Correlation Coefficient: square root of the proportion of variance explained
- Partial Correlation Coefficient: square root of the proportion of variation explained by the second variable out of the amount left unexplained by the first
 - What are the parital correlations for TFR and Urbanization?

Multiple Correlation Coefficient	$\sqrt{\frac{6103.2542}{16626.0626}}$	0.60587
Partial Correlation Coefficient: TFR	$\sqrt{\frac{(6103.2542 - 5796.67508)}{10829.3875}}$	0.16826
Partial Correlation Coefficient: HDI	$\sqrt{\frac{(6103.2542 - 5161.91771)}{11494.1449}}$	0.28618