```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
# Load dataset
df = pd.read_csv('kalki_movie_reviews.csv')
# Convert ratings to sentiment labels (customize as needed)
def get sentiment(rating):
    if rating >= 7:
        return 'positive'
    elif rating <= 4:
        return 'negative'
    else:
        return 'neutral'
df['sentiment'] = df['Ratings'].apply(get_sentiment)
# Features and Labels
X = df['Comments']
y = df['sentiment']
# Vectorize text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000) # Adjust max_features as needed
X_vec = vectorizer.fit_transform(X)
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(X_vec, y, test_size=0.2, random_state=42)
# Train Logistic Regression model
model = LogisticRegression()
model.fit(X_train, y_train)
# Predictions and evaluation
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
# Create bar chart for sentiment distribution
sentiment_counts = df['sentiment'].value_counts()
sentiment_counts.plot(kind='bar', color=['green', 'red', 'blue'])
plt.title('Sentiment Distribution')
plt.xlabel('Sentiment')
plt.ylabel('Count')
plt.show()
```

Accuracy: 1.0

Classification	precision	recall	f1-score	support
negative	1.00	1.00	1.00	88
neutral	1.00	1.00	1.00	129
positive	1.00	1.00	1.00	783
accuracy			1.00	1000
macro avg	1.00	1.00	1.00	1000
weighted avg	1.00	1.00	1.00	1000

