Take-Home Exam One

Noah Gallego

2024-10-19

Import Libraries

```
library(dplyr)
                    # For data manipulation
library(ggplot2)
                    # For plotting
library(ggrepel)
                    # For labeling plots
library(factoextra) # For Scree Plot and K-means visualization
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WB
а
library(readxl)
                    # For reading Excel files
library(lubridate) # For handling date-related operations
library(maps)
                    # For map data
## Attaching package: 'maps'
## The following object is masked from 'package:purrr':
##
##
       map
library(gganimate) # For animating polygons
library(cluster) # For clustering analysis
##
## Attaching package: 'cluster'
## The following object is masked from 'package:maps':
##
##
       votes.repub
```

Read-In Data

```
# Load the datasets required for analysis
student_data = read_excel("student_performance_missing.xlsx")
stocks_data = read.table("stocks2.txt", header = TRUE)
airbnb_data = read.csv("airbnb.csv")
```

Question One: Summary Function

Define Summary Function

```
# Function to summarize data frame
# Inputs: df - data frame to summarize
# Outputs: Class information, summary statistics, and bar plots for categorical variable
display_results = function(df) {
  for (col name in names(df)) {
    col_data = df[[col_name]] # Get the column data
    # Find class of each variable of the data frame
    cat("The class of", col_name, "is:", class(col_data), "\n")
    if (is.numeric(col data)) {
      # Impute missing values with the mean if any are detected
      if (any(is.na(col data))) {
        cat("Missing values detected in", col_name, "- imputing with mean.\n")
        df[[col_name]][is.na(col_data)] = mean(col_data, na.rm = TRUE)
      # Print summary statistics for numeric columns
      cat("\nSummary statistics for", col_name, ":\n")
      cat("Mean:", mean(col data, na.rm = TRUE), "\n")
      cat("Median:", median(col_data, na.rm = TRUE), "\n")
      cat("Variance:", var(col data, na.rm = TRUE), "\n")
      cat("IQR:", IQR(col_data, na.rm = TRUE), "\n")
      cat("Standard Deviation:", sd(col_data, na.rm = TRUE), "\n\n")
    } else if (is.factor(col_data) || is.character(col_data)) {
      # Create a bar plot for categorical variables
      plot = ggplot(data = df, aes(x = col_data)) +
        geom bar(color = "blue", fill = rgb(0.1, 0.4, 0.5, 0.7)) +
        labs(title = paste("Bar Plot of", col_name), x = col_name, y = "Count") +
        theme minimal() +
        theme(axis.text.x = element_text(angle = 45, hjust = 1))
      print(plot)
    }
  }
}
# Test the Function with Modified Student Data
# Convert Exam Score to numeric before running the function
copy = student data
copy$Exam_Score = as.numeric(copy$Exam_Score)
```

Warning: NAs introduced by coercion

display_results(copy)

The class of Name is: character

The class of Attendance is: character

Bar Plot of Attendance

The class of Exam_Score is: numeric ## Missing values detected in Exam_Score - imputing with mean. ## ## Summary statistics for Exam_Score : ## Mean: 75.28557 ## Median: 80 ## Variance: 278.5613 ## IQR: 30 ## Standard Deviation: 16.69016 ## ## The class of Study_Time is: numeric ## Summary statistics for Study_Time : ## Mean: 4.902639 ## Median: 5.057341 ## Variance: 5.036645 ## IQR: 3.965244 ## Standard Deviation: 2.244247 ## The class of Major is: character

Question Two: Vector Conversion Function

Define Conversion Function

```
# Function to remove outliers and draw boxplots
# Inputs: col - vector to analyze
# Outputs: Boxplots of original data vs. data without outliers
convert_vector = function(col) {
  # Check whether col is numeric or not
  if (!is.numeric(col)) {
    cat("The vector", names(col), "is not numeric.")
    return()
 } else {
    # Remove outliers using the IQR method
    q1 = quantile(col, 0.25, na.rm = TRUE)
    q3 = quantile(col, 0.75, na.rm = TRUE)
    igr val = IQR(col, na.rm = TRUE)
    lower_bound = q1 - 1.5 * iqr_val
    upper_bound = q3 + 1.5 * iqr_val
    filtered_col = col[col >= lower_bound & col <= upper_bound]
    # Draw boxplots: with and without outliers
    par(mfrow = c(1, 2))
    boxplot(col, main = "With Outliers", col = "lightblue", border = "blue")
    boxplot(filtered_col, main = "Without Outliers", col = "lightgreen", border = "gree
n")
  }
}
# Test the Function
convert_vector(student_data$Attendance)
```

The vector is not numeric.

NULL

convert_vector(student_data\$Study_Time)

Without Outliers

Question Three: Stock Data Analysis Data Cleaning and Summary Statistics

Examine Stock Data
head(stocks_data)

	Date <chr></chr>	AMZN <chr></chr>	DUK <chr></chr>	KO <chr></chr>
1	1/3/2007	38.700	34.971	17.875
2	1/4/2007	38.900	35.044	17.882
3	1/5/2007	38.370	34.240	17.757
4	1/8/2007	miss	miss	miss
5	1/9/2007	37.780	34.131	17.886
6	1/10/2007	37.150	33.984	17.912
6 ro	ws			

```
suppressWarnings({
 # Correct data types for stock data
  stocks_data$Date = as.Date(stocks_data$Date, format = "%m/%d/%Y")
  dates = stocks data$Date
 # Convert all columns (except Date) to numeric
  stocks_data[, 2:ncol(stocks_data)] = stocks_data[, 2:ncol(stocks_data)] %>%
    mutate all(as.numeric)
  stocks data$Date = dates
})
# Deal with NA's by replacing with median
stocks_data[, 2:ncol(stocks_data)] = stocks_data[, 2:ncol(stocks_data)] %>%
  mutate_all(~ replace(., is.na(.), median(., na.rm = TRUE)))
# Calculate summary statistics
cat("AMZN Five Number Summary: \n")
## AMZN Five Number Summary:
summary(stocks_data$AMZN)
                              Mean 3rd Qu.
##
      Min. 1st Qu.
                    Median
                                               Max.
     35.03
             89.42
                    206.78 258.90 332.61 844.36
##
cat("\nDUK Five Number Summary: \n")
## DUK Five Number Summary:
summary(stocks_data$DUK)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
     24.09
             35.79
                     50.23
                             50.64
                                     63.86
                                              84.44
cat("\nKO Five Number Summary: \n")
##
## KO Five Number Summary:
summary(stocks_data$K0)
      Min. 1st Qu.
                              Mean 3rd Ou.
##
                    Median
                                               Max.
```

29.23

21.77

29.68

45.37

37.26

14.70

##

Days with High Closing Prices

```
# Calculate number of days with closing price > 20% higher than the mean
stocks_data[, 2:ncol(stocks_data)] %>%
   summarise_all(~ sum(. > 1.2 * mean(., na.rm = TRUE))) -> days_higher_than_mean
cat("Days higher than the mean: (AMZN, DUK, KO)\n")
```

```
## Days higher than the mean: (AMZN, DUK, KO)
```

```
print(days_higher_than_mean)
```

```
## AMZN DUK K0
## 1 745 790 814
```

Calculate Daily Returns

```
# Calculate daily returns for each company
returns = list()

for (i in 2:ncol(stocks_data)) {
    return_vector = numeric(nrow(stocks_data) - 1)

    for (j in 2:nrow(stocks_data)) {
        return_vector[j - 1] = (stocks_data[j, i] - stocks_data[j - 1, i]) / stocks_data[j - 1, i]
    }

    returns[[colnames(stocks_data)[i]]] = return_vector
}

return_df = as.data.frame(returns)
head(return_df, 10)
```

	AMZN	DUK	КО
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	0.005167959	0.002087444	0.0003916084
2	-0.013624679	-0.022942586	-0.0069902695
3	4.389106072	0.466910047	0.6463929718
4	-0.817293742	-0.320465088	-0.3881990764
5	-0.016675490	-0.004306935	0.0014536509
6	0.006729475	0.002707156	0.0012282269

	AMZN <dbl></dbl>	DUK <dbl></dbl>	KO <dbl></dbl>
7	0.021390374	-0.004842118	-0.0039032006
8	0.012041885	0.003243785	-0.0010635916
9	-0.020175892	-0.001616649	0.0020734099
10	-0.023759240	0.004857799	-0.0051448384
1-10 of 10 rov	/S		

Monthly Mean Closing Prices

```
# Extract month and calculate monthly averages for each company
stocks_data$Month = format(stocks_data$Date, "%Y-%m")
monthly_means = stocks_data %>%
  group_by(Month) %>%
  summarise(
    monthly_AMZN = mean(AMZN, na.rm = TRUE),
    monthly_DUK = mean(DUK, na.rm = TRUE),
    monthly_K0 = mean(K0, na.rm = TRUE)
  )
# Plot monthly mean prices for each company
## Amazon (AMZN)
ggplot(monthly_means, aes(x = Month, y = monthly_AMZN)) +
  geom_line(color = "blue") +
  geom_point(color = "blue") +
  labs(title = "Monthly Mean Closing Prices: AMZN", x = "Month", y = "Mean Closing Pric
e") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

```
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

Monthly Mean Closing Prices: AMZN


```
## Duke Energy (DUK)
ggplot(monthly_means, aes(x = Month, y = monthly_DUK)) +
  geom_line(color = "red") +
  geom_point(color = "red") +
  labs(title = "Monthly Mean Closing Prices: DUK", x = "Month", y = "Mean Closing Price") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

```
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

Monthly Mean Closing Prices: DUK


```
## Coca-Cola (KO)
ggplot(monthly_means, aes(x = Month, y = monthly_KO)) +
  geom_line(color = "green") +
  geom_point(color = "green") +
  labs(title = "Monthly Mean Closing Prices: KO", x = "Month", y = "Mean Closing Price")
+
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

```
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```


Question Four: AirBNB Data Analysis Data Inspection and Cleaning

Inspect AirBNB Data Structure
str(airbnb_data, 2)

```
## 'data.frame':
                  1275 obs. of 13 variables:
## $ room id
                       : int 5453 5506 6695 6976 8789 8792 9273 9765 9824 9827 ...
                       : int 8021 8229 8229 16701 26988 26988 4804 25188 25188 25188
## $ host_id
## $ room_type
                       : chr "Private room" "Private room" "Entire home/apt" "Privat
e room" ...
  $ neighborhood
                       : chr "Jamaica Plain" "Roxbury" "Roxbury" "Roslindale" ...
## $ reviews
                        : int 53 30 39 26 1 11 8 5 18 8 ...
## $ overall_satisfaction: num 5 4.5 5 5 5 4.5 5 4.5 4 4.5 ...
## $ accommodates
                       : int 2 2 4 2 2 3 4 2 2 3 ...
                        : int 111111111...
## $ bedrooms
                        : int 171 165 222 74 165 228 257 319 212 330 ...
## $ price
## $ minstay
                       : int 1 3 3 1 5 5 3 3 2 3 ...
## $ latitude
                       : num 42.3 42.3 42.3 42.4 ...
## $ longitude
                        : num -71.1 -71.1 -71.1 -71.1 ...
                       : chr "33:58.0" "03:21.1" "14:31.7" "27:09.3" ...
## $ last modified
```

```
# Drop unnecessary columns
airbnb_data = subset(airbnb_data, select = -c(latitude, longitude, last_modified))
```

Guest Accommodation Analysis

```
# Filter for 'Entire home/apt' and calculate accommodation statistics
apt_home_df = airbnb_data[airbnb_data$room_type == 'Entire home/apt', ]

# Calculate average and maximum accommodation capacity
guests_mean = mean(apt_home_df$accommodates, na.rm = TRUE)
guests_max = max(apt_home_df$accommodates, na.rm = TRUE)

cat("Average Accommodation for Entire Home/Apt:", guests_mean, "\n")
```

```
## Average Accommodation for Entire Home/Apt: 3.593709
```

```
cat("Maximum Accommodation for Entire Home/Apt:", guests_max, "\n")
```

```
## Maximum Accommodation for Entire Home/Apt: 12
```

Neighborhood Satisfaction

```
# Calculate average satisfaction by neighborhood and display top 10
osat = airbnb_data %>%
  group_by(neighborhood) %>%
  summarise(avg = mean(overall_satisfaction, na.rm = TRUE)) %>%
  arrange(desc(avg))
head(osat, 10)
```

neighborhood <chr></chr>	avg <dbl></dbl>
Leather District	4.875000
South Boston Waterfront	4.833333
Chinatown	4.812500
Roslindale	4.788462
Jamaica Plain	4.745968
South End	4.726852
Charlestown	4.700000
Roxbury	4.697917
South Boston	4.695122
North End	4.682692
1-10 of 10 rows	

Question 5: EPA Air Data Analysis

Load Pollutant Data

```
folder_path = "Air_Data/"
# List all the CSV files for each pollutant (Ozone, SO2, CO, NO2)
file_list_CO = list.files(path = folder_path, pattern = "daily_42101_[0-9]{4}.csv", ful
l.names = TRUE)
                  # CO
file_list_S02 = list.files(path = folder_path, pattern = "daily_42401_[0-9]{4}.csv", ful
l.names = TRUE) # 502
file list NO2 = list.files(path = folder path, pattern = "daily 42602 [0-9]{4}.csv", ful
l.names = TRUE) \# N02
file list Ozone = list.files(path = folder path, pattern = "daily 44201 [0-9]{4}.csv", f
ull.names = TRUE) # Ozone
# Function to load and extract required columns
load pollutant data = function(files, pollutant name) {
  pollutant_data = lapply(files, function(file) {
    data = read.csv(file, header = TRUE)
   data %>%
      select(Date.Local, State.Name, County.Name, Arithmetic.Mean) %>% # Extract the re
quired columns
      rename(State = State.Name, County = County.Name, !!pollutant_name := Arithmetic.Me
an)
 })
  bind rows(pollutant data)
# Load and combine data for each pollutant
combined_data_CO = load_pollutant_data(file_list_CO, "CO")
combined_data_S02 = load_pollutant_data(file_list_S02, "S02")
combined_data_N02 = load_pollutant_data(file_list_N02, "N02")
combined data Ozone = load pollutant data(file list Ozone, "Ozone")
# Combine the pollutants into a single DataFrame by matching on Date, State, and County
combined data = combined data Ozone %>%
  full_join(combined_data_SO2, by = c("Date.Local", "State", "County")) %>%
  full_join(combined_data_CO, by = c("Date.Local", "State", "County")) %>%
  full_join(combined_data_NO2, by = c("Date.Local", "State", "County"))
## Warning in full_join(., combined_data_SO2, by = c("Date.Local", "State", : Detected a
n unexpected many-to-many relationship between `x` and `y`.
## i Row 1527 of `x` matches multiple rows in `y`.
```

```
## Warning in full_join(., combined_data_S02, by = c("Date.Local", "State", : Detected a
n unexpected many-to-many relationship between `x` and `y`.
## i Row 1527 of `x` matches multiple rows in `y`.
## i Row 58 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
```

```
## Warning in full_join(., combined_data_CO, by = c("Date.Local", "State", : Detected an
unexpected many-to-many relationship between `x` and `y`.
## i Row 1527 of `x` matches multiple rows in `y`.
## i Row 1212 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
```

```
## Warning in full_join(., combined_data_NO2, by = c("Date.Local", "State", : Detected a
n unexpected many-to-many relationship between `x` and `y`.
## i Row 1527 of `x` matches multiple rows in `y`.
## i Row 1 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
```

```
combined_data = combined_data %>%
  rename(Date = Date.Local)
```

Group and Summarize Pollutant Data

```
combined_data_cleaned = combined_data %>%
  group_by(Date, State, County) %>%
  summarise(
    Ozone = mean(Ozone, na.rm = TRUE),
    SO2 = mean(SO2, na.rm = TRUE),
    CO = mean(CO, na.rm = TRUE),
    NO2 = mean(NO2, na.rm = TRUE)
)
```

```
## `summarise()` has grouped output by 'Date', 'State'. You can override using the
## `.groups` argument.
```

Visualize Distribution of Pollutant Levels

```
combined_data_cleaned %>%
  gather(Pollutant, Value, Ozone:CO) %>%
  ggplot(aes(x = Value, fill = Pollutant)) +
  geom_histogram(bins = 30, alpha = 0.7, position = "identity") +
  facet_wrap(~ Pollutant, scales = "free") +
  theme_minimal() +
  labs(title = "Distribution of Pollutant Levels", x = "Pollutant Value", y = "Count")
```

```
## Warning: Removed 2571607 rows containing non-finite outside the scale range
## (`stat_bin()`).
```

Distribution of Pollutant Levels

Weekly Means

```
combined_data_cleaned$Date = as.Date(combined_data_cleaned$Date)

weekly_means = combined_data_cleaned %>%
   group_by(Week = floor_date(Date, "week")) %>%
   summarise(across(c(Ozone, SO2, CO, NO2), mean, na.rm = TRUE))
```

```
## Warning: There was 1 warning in `summarise()`.
## i In argument: `across(c(Ozone, SO2, CO, NO2), mean, na.rm = TRUE)`.
## i In group 1: `Week = 2017-12-31`.
## Caused by warning:
## ! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
## Supply arguments directly to `.fns` through an anonymous function instead.
##
     # Previously
##
##
     across(a:b, mean, na.rm = TRUE)
##
##
     # Now
##
     across(a:b, \(x) mean(x, na.rm = TRUE))
```

Plot Weekly Means

```
weekly_means %>%
  gather(Pollutant, Value, Ozone:NO2) %>%
  ggplot(aes(x = Week, y = Value, color = Pollutant)) +
  geom_line() +
  labs(title = "Weekly Mean Levels of Pollutants", x = "Week", y = "Mean Pollutant Leve
l") +
  theme_minimal()
```


combined_data_cleaned\$Year = format(as.Date(combined_data_cleaned\$Date), "%Y")

Function to Plot Pollutant Maps for a Given State

```
plot_pollutant_map = function(data, state_name) {
 data$County = tolower(data$County)
  state data = data[data$State == state name, ]
 # Group and summarise the pollutants
 state_data = state_data %>%
   group_by(County) %>%
    summarise(
     Ozone = mean(Ozone, na.rm = TRUE),
     S02 = mean(S02, na.rm = TRUE),
     CO = mean(CO, na.rm = TRUE),
     N02 = mean(N02, na.rm = TRUE)
    )
 # Load map data for U.S. counties and filter for the specific state
 state_map = map_data("county")
 state_map = state_map[state_map$region == tolower(state_name), ]
 state_map$subregion = tolower(state_map$subregion)
 # Merge map data with state pollutant data
 state map data = left join(state map, state data, by = c("subregion" = "County"))
 # Plot Ozone levels
 ggplot(state_map_data, aes(x = long, y = lat, group = group, fill = 0zone)) +
   geom polygon(color = "black") +
    coord fixed(1.3) +
    scale_fill_viridis_c(option = "plasma", na.value = "white") +
   theme minimal() +
    labs(title = paste("Average Ozone Levels by County in", state name), fill = "Ozone L
evels")
}
plot pollutant map(combined data cleaned, "Florida")
```


California Map

```
# Filter the data to include only California counties
ca_data = combined_data_cleaned[combined_data_cleaned$State == "California", ]
# Aggregate pollutant data by County
ca_data_summary = aggregate(cbind(Ozone, SO2, CO, NO2) ~ County,
                            data = ca_data,
                            FUN = function(x) mean(x, na.rm = TRUE))
# Load U.S. county map data
california map = map data("county")
# Filter map data for California
california_map = california_map[california_map$region == "california", ]
# Ensure lowercase consistency for merging
california map$subregion = tolower(california map$subregion)
ca_data_summary$County = tolower(ca_data_summary$County)
# Merge map data with pollutant data by county
california_map_data = california_map %>%
  left join(ca data summary, by = c("subregion" = "County"))
# Plot Ozone levels by county in California
ggplot(california_map_data, aes(x = long, y = lat, group = group, fill = 0zone)) +
  geom polygon(color = "black") +
 coord fixed(1.3) +
 scale_fill_viridis_c(option = "plasma", na.value = "white") + # Color scale
 theme minimal() +
 labs(title = "Average Ozone Levels by County in California", fill = "Ozone Levels") +
   axis.text = element_blank(),
   axis.ticks = element_blank(),
    panel.grid = element_blank()
  )
```

Average Ozone Levels by County in California


```
# Plot SO2 levels by county in California
ggplot(california_map_data, aes(x = long, y = lat, group = group, fill = SO2)) +
    geom_polygon(color = "black") +
    coord_fixed(1.3) +
    scale_fill_viridis_c(option = "magma", na.value = "blue") +
    theme_minimal() +
    labs(title = "Average SO2 Levels by County in California", fill = "SO2 Levels")
```


Animated Map

```
yearly_averages = combined_data_cleaned %>%
  group_by(Year, State, County) %>%
  summarise(
    Ozone = mean(Ozone, na.rm = TRUE),
    S02 = mean(S02, na.rm = TRUE),
    C0 = mean(C0, na.rm = TRUE),
    N02 = mean(N02, na.rm = TRUE)
) %>%
  ungroup()
```

 $\mbox{\tt \#\#}$ `summarise()` has grouped output by 'Year', 'State'. You can override using the $\mbox{\tt \#\#}$ `.groups` argument.

```
# Ensure 'Year' is treated as a character for data manipulation
yearly averages$Year = as.character(yearly averages$Year)
# Load map data for U.S. counties
county map = map data("county")
# Ensure lowercase county names and state names for consistency in merging
county map$subregion = tolower(county map$subregion)
yearly_averages$County = tolower(yearly_averages$County)
yearly averages$State = tolower(yearly averages$State)
# Replace missing values in critical columns with "unknown"
yearly_averages[is.na(yearly_averages$State), "State"] = "unknown"
yearly_averages[is.na(yearly_averages$County), "County"] = "unknown"
yearly_averages[is.na(yearly_averages$Year), "Year"] = "unknown"
# Convert Year back to a factor for animation purposes
yearly_averages$Year = as.factor(yearly_averages$Year)
# Merge yearly averages with map data
map data yearly = left join(county map, yearly averages, by = c("region" = "State", "sub
region" = "County"))
```

```
## Warning in left_join(county_map, yearly_averages, by = c(region = "State", : Detected
an unexpected many-to-many relationship between `x` and `y`.
## i Row 52 of `x` matches multiple rows in `y`.
## i Row 1 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
```

```
# Create an animated map for Ozone levels over time
animated_map = ggplot(map_data_yearly, aes(x = long, y = lat, group = group, fill = Ozon
e)) +
 geom polygon(color = "black") +
 coord fixed(1.3) +
 scale_fill_viridis_c(option = "plasma", na.value = "white") +
 theme minimal() +
  labs(title = "Average Ozone Levels in U.S. Counties ({closest state})", fill = "Ozone
Levels") +
 theme(
    axis.text = element blank(),
   axis.ticks = element_blank(),
   panel.grid = element blank()
 ) +
 transition states (Year, state length = 1, transition length = 1) +
 ease_aes('linear')
# Animate the plot
animate(animated map)
```

Warning in lapply(row_vars\$states, as.integer): NAs introduced by coercion

Warning in expand_panel(..., self = self): NAs introduced by coercion

Average Ozone Levels in U.S. Counties (2018)

Function to Analyze Pollution Data

```
analyze_pollution = function(data, year = NULL, pollutant = NULL) {
  # If a year is provided, filter the data by that year
  if (!is.null(year)) {
    data = data[data$Year == year, ]
  }
 # If a specific pollutant is provided, select only that column
  if (!is.null(pollutant)) {
    if (!(pollutant %in% colnames(data))) {
      stop("Invalid pollutant name provided.")
    data = data %>% select(Year, State, County, all_of(pollutant))
  }
  # Calculate the mean, median, and standard deviation for each pollutant
  analysis = data %>%
    summarise(
      Ozone_Mean = mean(Ozone, na.rm = TRUE),
      Ozone_Median = median(Ozone, na.rm = TRUE),
      Ozone_SD = sd(Ozone, na.rm = TRUE),
      S02 Mean = mean(S02, na.rm = TRUE),
      S02_Median = median(S02, na.rm = TRUE),
      SO2 SD = sd(SO2, na.rm = TRUE),
      CO_Mean = mean(CO, na.rm = TRUE),
      CO Median = median(CO, na.rm = TRUE),
      CO\_SD = sd(CO, na.rm = TRUE),
      NO2_Mean = mean(NO2, na.rm = TRUE),
     NO2_Median = median(NO2, na.rm = TRUE),
     N02\_SD = sd(N02, na.rm = TRUE)
  return(analysis)
# Ex: analyze data for 2020
analyze_pollution(combined_data_cleaned, year = "2020")
```

`summarise()` has grouped output by 'Date'. You can override using the
`.groups` argument.

Date <date></date>	State <chr></chr>	Ozone_Mean <dbl></dbl>	Ozone_Median <dbl></dbl>	Ozone_SD <dbl></dbl>
2020-01-01	Alabama	0.033676500	0.033676500	4.034044e-03
2020-01-01	Alaska	0.031676500	0.031676500	3.119048e-03
2020-01-01	Arizona	0.027776507	0.026941000	7.999536e-03

Date <date></date>	State <chr></chr>	Ozone_Mean <dbl></dbl>	Ozone_Median <dbl></dbl>	Ozone_SD <dbl></dbl>
2020-01-01	Arkansas	0.031019583	0.032323500	5.289493e-03
2020-01-01	California	0.020686001	0.021000000	6.477521e-03
2020-01-01	Colorado	0.039398218	0.039941500	6.639402e-03
2020-01-01	Connecticut	0.024058500	0.024029000	4.483700e-03
2020-01-01	Country Of Mexico	0.017471000	0.017471000	NA
2020-01-01	Delaware	0.020955750	0.021706000	2.391335e-03
2020-01-01	District Of Columbia	0.019078333	0.019078333	NA
1-10 of 10,000 rd	ows 1-5 of 14 columns	Previous	1 2 3 4 5	6 1000 Next

Question 6: Wine Analysis Load and Inspect Wine Dataset

wine_data = read.table("wine.txt", sep = ",", header = TRUE)
colnames(wine_data) = c(paste0("Feature_", 1:11), "Class_1", "Class_2", "Class_3")
head(wine_data)

◀	Feature_7 <dbl></dbl>	Feature_8 <dbl></dbl>	Feature_9 <dbl></dbl>	Feature_10 <dbl></dbl>	Feature_11 <dbl></dbl>	Class_1 <dbl></dbl>	Class_2 <dbl></dbl>	Class_3 <int></int>
	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450
	2.50	2.52	0.30	1.98	5.25	1.02	3.58	1290

Inspect Data Structure
str(wine_data)

```
177 obs. of 14 variables:
## 'data.frame':
## $ Feature 1: int 1 1 1 1 1 1 1 1 1 ...
## $ Feature 2 : num
                     13.2 13.2 14.4 13.2 14.2 ...
                     1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 2.16 ...
## $ Feature 3 : num
## $ Feature 4 : num
                     2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 2.3 ...
## $ Feature 5 : num 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 18 ...
## $ Feature 6 : int 100 101 113 118 112 96 121 97 98 105 ...
## $ Feature_7 : num 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 2.95 ...
## $ Feature_8 : num 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 3.32 ...
## $ Feature_9 : num  0.26  0.3  0.24  0.39  0.34  0.3  0.31  0.29  0.22  0.22 ...
                     1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 2.38 ...
## $ Feature_10: num
## $ Feature_11: num 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 5.75 ...
## $ Class_1 : num
                     1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 1.25 ...
## $ Class 2 : num
                     3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 3.17 ...
## $ Class 3
               : int 1050 1185 1480 735 1450 1290 1295 1045 1045 1510 ...
```

Split Data into Training and Test Sets

```
set.seed(123)
sample_index = sample(seq_len(nrow(wine_data)), size = 0.8 * nrow(wine_data))
train_data = wine_data[sample_index, ]
test_data = wine_data[-sample_index, ]
```

Standardize Variables

```
train_data_scaled = scale(train_data)
test_data_scaled = scale(test_data)
```

Perform PCA on Training Set

```
pca_train = prcomp(train_data_scaled[, -1], center = TRUE, scale. = TRUE)

# Determine Number of Components to Explain at Least 90% Variance
explained_variance = summary(pca_train)$importance[3, ]
num_components = which(cumsum(explained_variance) >= 0.9)[1]
cat("Number of components explaining at least 90% variance:", num_components, "\n")
```

```
## Number of components explaining at least 90% variance: 2
```

```
# Create Scree Plot
fviz_screeplot(pca_train, ncp = ncol(train_data_scaled) - 1) +
   ggtitle("Scree Plot for PCA") +
   theme_minimal()
```


K-means Clustering on Original Variables

```
set.seed(123)
kmeans_original = kmeans(train_data_scaled[, -1], centers = 3, nstart = 25)
# Assign Clusters to Training Data
train_data_scaled$cluster = kmeans_original$cluster
```

```
## Warning in train_data_scaled$cluster = kmeans_original$cluster: Coercing LHS to
## a list
```

```
# Predict Clusters for the Test Set Manually
get_nearest_cluster = function(point, centroids) {
   distances = apply(centroids, 1, function(centroid) sum((point - centroid) ^ 2))
   return(which.min(distances))
}

test_data_scaled$cluster = apply(test_data_scaled[, -1], 1, get_nearest_cluster, centroids = kmeans_original$centers)
```

```
## Warning in test_data_scaled$cluster = apply(test_data_scaled[, -1], 1,
## get_nearest_cluster, : Coercing LHS to a list
```

K-means Clustering on PCA-transformed Data

```
kmeans_pca = kmeans(as.data.frame(pca_train$x[, 1:num_components]), centers = 3, nstart
= 25)

# Assign Clusters to PCA-transformed Training Data
train_pca_data = as.data.frame(pca_train$x[, 1:num_components])
train_pca_data$cluster = kmeans_pca$cluster
```

Create Scatter Plot for First Two Principal Components

```
fviz_cluster(list(data = train_pca_data, cluster = kmeans_pca$cluster), geom = "point",
stand = FALSE) +
    ggtitle("Clusters on PCA-transformed Data (First Two Components)") +
    theme_minimal()
```


