Regression 1 Final Project Code

Data Wrangling

```
# loading data from the source
data_raw <- read.csv('./data/raw_data.csv')</pre>
# loading a data dictionary with more readable column names
dic <- openxlsx::read.xlsx("./data/data_dictionary.xlsx")</pre>
# cleaning data
data <-
  data_raw |>
  dplyr::mutate(
    dplyr::across(
      dplyr::where(is.character),
      ~factor(stringr::str_to_title(.x))
    # ordering factors for visualization & intuitive dummy creation
    dplyr::across(
      .cols = c(CAEC, CALC),
      .fns = ~factor(.x, level = c("No", "Sometimes", "Frequently", "Always"))
    ),
    # converting numeric counts to integers (see first paragraph of the results section)
    dplyr::across(
      .cols = c(FCVC, TUE, NCP, CH2O, FAF, Age),
      .fns = as.integer
    ),
    # ordering transit types by their frequency
   MTRANS = forcats::fct_inorder(factor(MTRANS)),
   BMI = Weight/(Height^2)
    ) |>
  # removing unneeded variables
```

```
dplyr::select(-c(Height, Weight, NObeyesdad))
# converting names to the human readable
names(data) <- dic$Name</pre>
# generating a "dirty" copy without integer conversions
data_dirty <-
  data raw |>
  dplyr::mutate(
    dplyr::across(
      dplyr::where(is.character),
      ~factor(stringr::str_to_title(.x))
    ),
    dplyr::across(
      .cols = c(CAEC, CALC),
      .fns = ~factor(.x, level = c("No", "Sometimes", "Frequently", "Always"))
    ),
    MTRANS = forcats::fct_inorder(factor(MTRANS)),
    BMI = Weight/(Height^2)
  ) |>
  dplyr::select(-c(Height, Weight, NObeyesdad))
names(data_dirty) <- dic$Name</pre>
```

Exploratory data analysis

Univariate Analysis

```
psych::describe(data) |>
dplyr::select(-c(median, trimmed, mad))
```

```
max range skew kurtosis
                         n mean
                                  sd min
Gender*
                     1 2111 1.51 0.50
                                     1 2.00 1.00 -0.02
                                                           -2.00 0.01
                     2 2111 23.97 6.31 14 61.00 47.00 1.56
Age
                                                            2.97 0.14
Family_History*
                     3 2111 1.82 0.39 1 2.00 1.00 -1.64
                                                            0.70 0.01
High_Caloric_Food*
                    4 2111 1.88 0.32 1 2.00 1.00 -2.40
                                                           3.74 0.01
                    5 2111 2.21 0.60 1 3.00 2.00 -0.12
Vegetable_Intake
                                                           -0.47 0.01
Number_of_Meals
                    6 2111 2.52 0.83 1 4.00 3.00 -0.88 -0.46 0.02
Snacking*
                    7 2111 2.14 0.47 1 4.00 3.00 1.90
                                                           5.38 0.01
Smoking*
                    8 2111 1.02 0.14 1 2.00 1.00 6.70 42.95 0.00
```

```
Water_Intake
                       9 2111 1.71 0.60
                                              3.00 2.00 0.21
                                                                  -0.60 0.01
Calorie_Monitoring*
                      10 2111
                               1.05 0.21
                                               2.00 1.00 4.36
                                                                  17.02 0.00
Physical_Activity
                      11 2111
                               0.73 0.83
                                              3.00 3.00 0.90
                                                                   0.00 0.02
Screen_Time
                      12 2111
                               0.38 0.58
                                              2.00
                                                    2.00 1.25
                                                                   0.55 0.01
                                           0
Alcohol Consumption*
                       13 2111
                                1.73 0.52
                                              4.00
                                                    3.00 - 0.24
                                                                  -0.33 0.01
Transportation_Type*
                       14 2111
                                1.49 0.87
                                              5.00 4.00
                                                         1.36
                                                                   0.32 0.02
BMI
                       15 2111 29.70 8.01 13 50.81 37.81 0.15
                                                                  -0.81 0.17
```

Histograms of Integer Variables (Raw)


```
# CH2O, FAF, FCVC, NCP, TUE are discrete
# Age, BMI, Height, Weight are continuous, normal or log normal distributed
```

Histogram of Numeric Variables


```
dplyr::mutate(
    Question = i,
    Total = sum(Freq),
    Proportion = round(Freq/sum(Freq), digits = 2)
)

mean <- data |>
    dplyr::summarise(
    Mean_BMI = mean(BMI),
    .by = i
) |>
    tidyr::pivot_longer(i, names_to = "Question", values_to = "Var2")
    dplyr::left_join(f, mean)
}) |>
    dplyr::select(Question, Var2, Freq, Proportion, Mean_BMI)
```

Bivariate Analysis

```
# Part 2 of Table A
tests <-
  purrr::map_df(factors, \(i){
   q <- colnames(data[,i])</pre>
   bmi <- aov(</pre>
     formula = as.formula(paste("BMI ~ ", i)),
      data = data
   tibble::tibble(
      Question = i,
      P_Value = c(summary(bmi)[[1]][["Pr(>F)"]][1])
 })
analysis <-
  dplyr::left_join(
   x = frequencies,
   y = tests
  ) |>
  dplyr::mutate(dplyr::across(c(4:6), ~round(.x, digits = 2)))
analysis |> gt::gt()
```

Question	Var2	Freq	Proportion	Mean_BMI	P_Value
Alcohol_Consumption	No	639	0.30	27.06	0.00
Alcohol_Consumption	Sometimes	1401	0.66	31.04	0.00
Alcohol_Consumption	Frequently	70	0.03	26.98	0.00
Alcohol_Consumption	Always	1	0.00	22.49	0.00
$Transportation_Type$	$Public_transportation$	1580	0.75	30.11	0.00
Transportation_Type	Walking	56	0.03	23.66	0.00
$Transportation_Type$	Automobile	457	0.22	29.19	0.00
Transportation_Type	Motorbike	11	0.01	25.76	0.00
$Transportation_Type$	Bike	7	0.00	25.17	0.00
Calorie_Monitoring	No	2015	0.95	30.02	0.00
Calorie_Monitoring	Yes	96	0.05	22.94	0.00
Snacking	No	51	0.02	25.43	0.00
Snacking	Sometimes	1765	0.84	31.19	0.00
Snacking	Frequently	242	0.11	20.90	0.00
Snacking	Always	53	0.03	24.32	0.00
Smoking	No	2067	0.98	29.70	0.97
Smoking	Yes	44	0.02	29.66	0.97
Family_History	No	385	0.18	21.50	0.00
Family_History	Yes	1726	0.82	31.53	0.00
High_Caloric_Food	No	245	0.12	24.26	0.00
High_Caloric_Food	Yes	1866	0.88	30.41	0.00
Gender	Female	1043	0.49	30.13	0.01
Gender	Male	1068	0.51	29.28	0.01

```
# testing diff between bikes and motorbikes to finalize the merge
transit <- data |>
   dplyr::filter(Transportation_Type %in% c("Motorbike", "Bike"))

t.test(transit$BMI ~ transit$Transportation_Type) # 0.8402
```

Welch Two Sample t-test

data: transit\$BMI by transit\$Transportation_Type

t = 0.20697, df = 10.064, p-value = 0.8402

alternative hypothesis: true difference in means between group Motorbike and group Bike is no percent confidence interval:

-5.790771 6.977841 sample estimates:

BMI vs. Numeric Variables


```
# looking for additional patterns
data |>
    ggplot(aes(Transportation_Type, Age, fill = Transportation_Type)) +
    geom_boxplot() +
    theme(legend.position = "none")
```



```
data |>
    ggplot(aes(factor(Screen_Time), Age, fill = factor(Screen_Time))) +
    geom_boxplot() +
    labs(x = "Screen_Time") +
    theme(legend.position = "none")
```


cor(data |> dplyr::select(dplyr::where(is.numeric)))

```
Age Vegetable_Intake Number_of_Meals Water_Intake
                 1.00000000
                                -0.01323971
                                               -0.07063207 -0.09067179
Age
Vegetable_Intake -0.01323971
                                 1.00000000
                                                0.13851033
                                                            0.03749487
Number_of_Meals
                -0.07063207
                                 0.13851033
                                                1.00000000
                                                            0.06743107
Water_Intake
                -0.09067179
                                 0.03749487
                                                0.06743107
                                                            1.00000000
Physical_Activity -0.16330684
                                 0.01934405
                                                0.12688822
                                                            0.26609713
Screen_Time
                -0.23495124
                                -0.15012044
                                                0.02804751
                                                            0.09575291
BMI
                                                0.07063317 -0.01273720
                 0.23246073
                                 0.26107584
                Physical_Activity Screen_Time
                                                    BMI
Age
                      -0.16330684 -0.23495124 0.23246073
                       0.01934405 -0.15012044 0.26107584
Vegetable_Intake
Number_of_Meals
                       Water_Intake
                       Physical_Activity
                       1.00000000 0.13437002 -0.26689086
Screen_Time
                       0.13437002 1.00000000 -0.30292843
BMI
                      -0.26689086 -0.30292843 1.00000000
#Screen time and BMI
raw_data <- read.csv("./data/raw_data.csv") |>
  dplyr::mutate(
```

```
dplyr::across(
      dplyr::where(is.character),
      ~factor(stringr::str_to_title(.x))
    ),
    dplyr::across(
      .cols = c(FCVC, TUE, NCP, CH2O, FAF, Age),
      .fns = as.integer
    ),
    dplyr::across(
      .cols = c(CAEC, CALC),
      .fns = ~factor(.x, level = c("No", "Sometimes", "Frequently", "Always"))
    ),
    MTRANS = forcats::fct_inorder(factor(MTRANS)),
   BMI = Weight/(Height<sup>2</sup>)
 ) |>
 dplyr::select(-c(Height, Weight, NObeyesdad))
screen_bmi <- boxplot(BMI ~ TUE, data = raw_data, main = "Screen Time and BMI", xlab = "Screen
```

Screen Time and BMI


```
screen_bmi_anova <- aov(BMI ~ factor(TUE), data = raw_data)
summary(screen_bmi_anova)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
factor(TUE)
               2 13237
                           6619
                                  114.2 <2e-16 ***
           2108 122186
Residuals
                             58
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Family history BMI and snacking
barplot(table(raw_data$family_history_with_overweight, raw_data$CAEC),
       beside = T,
        legend.text = T,
        xlab = "Snacking",
        ylab = "Frequency",
        main = "Snack Frequency by Family History of Obesity")
```

Snack Frequency by Family History of Obesity

chisq.test(raw_data\$family_history_with_overweight, raw_data\$CAEC)

Pearson's Chi-squared test

data: raw_data\$family_history_with_overweight and raw_data\$CAEC
X-squared = 260.36, df = 3, p-value < 2.2e-16</pre>

```
#Family History and High Caloric Food Intake
barplot(table(raw_data$family_history_with_overweight, raw_data$FAVC),
    beside = T,
    legend.text = T,
    xlab = "High Caloric Food Intake",
    ylab = "Frequency",
    main = "High Caloric Food Intake by Family History of Obesity")
```

High Caloric Food Intake by Family History of Obesity

High Caloric Food Intake

```
chisq.test(raw_data$family_history_with_overweight, raw_data$FAVC)
```

```
Pearson's Chi-squared test with Yates' continuity correction data: raw_data$family_history_with_overweight and raw_data$FAVC X-squared = 89.687, df = 1, p-value < 2.2e-16
```

```
ylab = "Frequency",
main = "Vegetable Consumption by Gender")
```

Vegetable Consumption by Gender


```
chisq.test(raw_data$Gender, raw_data$FCVC)
```

```
Pearson's Chi-squared test
```

```
data: raw_data$Gender and raw_data$FCVC
X-squared = 305.59, df = 2, p-value < 2.2e-16</pre>
```

Method of Transportation by High Caloric Food Intake

fisher.test(table(raw_data\$MTRANS, raw_data\$FAVC))

Fisher's Exact Test for Count Data

```
data: table(raw_data$MTRANS, raw_data$FAVC)
p-value = 6.617e-13
alternative hypothesis: two.sided
```

Physical Activity by Water Consumption


```
chisq.test(raw_data$CH20, raw_data$FAF)
```

Pearson's Chi-squared test

```
data: raw_data$CH2O and raw_data$FAF
X-squared = 199.94, df = 6, p-value < 2.2e-16</pre>
```

Model Selection

Full Model

```
# doing some additional pre-processing
# using the recipes package to make additional transformations easier later
full_rec <-
    recipes::recipe(BMI ~ ., data = data) |>
    recipes::step_other(Transportation_Type, Alcohol_Consumption, threshold = 0.01) |>
    recipes::step_dummy(recipes::all_nominal_predictors())

prepped_data <- recipes::prep(full_rec) |> recipes::bake(data)
```

```
# starting with a full model - this should be the first of the two models we'll need
full_mod <- lm(BMI ~ ., data = prepped_data)
summary(full_mod)</pre>
```

Call:

lm(formula = BMI ~ ., data = prepped_data)

Residuals:

Min 1Q Median 3Q Max -18.4051 -3.9656 0.4073 3.5768 23.9357

Coefficients:

	${\tt Estimate}$	Std. Error	t value	Pr(> t)	
(Intercept)	7.51355	1.26730	5.929	3.56e-09	***
Age	0.27599	0.02580	10.696	< 2e-16	***
Vegetable_Intake	3.17290	0.22137	14.333	< 2e-16	***
Number_of_Meals	0.61828	0.15292	4.043	5.47e-05	***
Water_Intake	0.34172	0.22138	1.544	0.122843	
Physical_Activity	-1.12920	0.16111	-7.009	3.23e-12	***
Screen_Time	-1.85734	0.22637	-8.205	3.99e-16	***
Gender_Male	-0.02599	0.27021	-0.096	0.923398	
Family_History_Yes	6.54154	0.35235	18.566	< 2e-16	***
<pre>High_Caloric_Food_Yes</pre>	2.17354	0.40453	5.373	8.60e-08	***
Snacking_Sometimes	1.43007	0.83856	1.705	0.088270	
Snacking_Frequently	-5.44934	0.90378	-6.030	1.94e-09	***
Snacking_Always	-2.17257	1.12344	-1.934	0.053266	
Smoking_Yes	-0.22930	0.86035	-0.267	0.789864	
Calorie_Monitoring_Yes	-1.97486	0.60526	-3.263	0.001121	**
Alcohol_Consumption_Sometimes	1.87430	0.28061	6.679	3.06e-11	***
Alcohol_Consumption_Frequently	1.19977	0.71125	1.687	0.091781	
Alcohol_Consumption_other	5.75064	5.60115	1.027	0.304686	
Transportation_Type_Walking	-2.61205	0.79000	-3.306	0.000961	***
<pre>Transportation_Type_Automobile</pre>	-4.33177	0.38106	-11.368	< 2e-16	***
Transportation_Type_other	-2.00068	1.33339	-1.500	0.133650	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.521 on 2090 degrees of freedom Multiple R-squared: 0.5296, Adjusted R-squared: 0.5251 F-statistic: 117.7 on 20 and 2090 DF, p-value: < 2.2e-16

```
BIC(full_mod)
```

[1] 13351.5

BIC Selected Model w/ No Transformations

```
# perform best subset selection
best_subset <- leaps::regsubsets(BMI ~ ., data = prepped_data, nvmax = 20, method = "exhaust
results <- summary(best_subset)</pre>
# extract results
n <- nrow(prepped_data)</pre>
p <- 20
results_df <-
  tibble::tibble(
   predictors = 1:p,
   adj_R2 = results$adjr2,
   bic = results$bic,
   aic = n*log(results$rss/n) + (1:p)*2
  )
# training the bic selected model
form <- paste("BMI~", paste(names(which(results$which[which.min(results_df$bic),-1])), colla</pre>
  as.formula()
bic_mod <- lm(form, data = prepped_data)</pre>
summary(bic_mod)
Call:
lm(formula = form, data = prepped_data)
Residuals:
     Min
               1Q
                    Median
                                 3Q
                                          Max
-18.3613 -3.9867 0.3698 3.6075 23.8470
Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                9.18157
                                            0.94368 9.730 < 2e-16 ***
```

```
0.27438
                                       0.02538 10.809 < 2e-16 ***
Age
                                       0.20950 15.419 < 2e-16 ***
Vegetable_Intake
                             3.23026
Number_of_Meals
                             0.63847
                                       0.15154 4.213 2.62e-05 ***
Physical_Activity
                            -1.08922
                                       0.15455 -7.048 2.46e-12 ***
Screen Time
                                       0.22342 -7.888 4.90e-15 ***
                            -1.76232
Family_History_Yes
                                      0.34119 19.693 < 2e-16 ***
                             6.71901
High_Caloric_Food_Yes
                            -6.82686 0.40615 -16.809 < 2e-16 ***
Snacking_Frequently
                                      0.78521 -4.417 1.05e-05 ***
Snacking_Always
                            -3.46848
Calorie_Monitoring_Yes
                            -1.96777
                                      0.60065 -3.276 0.00107 **
Alcohol_Consumption_Sometimes
                           1.75692
                                       0.27269 6.443 1.45e-10 ***
                                       0.78160 -3.155 0.00163 **
Transportation_Type_Walking
                            -2.46590
Transportation_Type_Automobile -4.24159
                                       0.37681 -11.257 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.526 on 2097 degrees of freedom
Multiple R-squared: 0.5272,
                           Adjusted R-squared: 0.5243
```

BIC Selected Model w/ Log Transformation

F-statistic: 179.9 on 13 and 2097 DF, p-value: < 2.2e-16

```
full_mod2 <- lm(log(BMI) ~ ., data = prepped_data)
summary(full_mod2)</pre>
```

Call:

lm(formula = log(BMI) ~ ., data = prepped_data)

Residuals:

Min 1Q Median 3Q Max -0.72004 -0.12574 0.02526 0.12871 0.73143

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.6013988	0.0443136	58.704	< 2e-16 ***
Age	0.0114191	0.0009022	12.656	< 2e-16 ***
Vegetable_Intake	0.0940204	0.0077406	12.146	< 2e-16 ***
Number_of_Meals	0.0113759	0.0053471	2.127	0.03350 *
Water_Intake	0.0160370	0.0077411	2.072	0.03842 *

```
Gender_Male
                          0.0152891 0.0094485 1.618 0.10578
                          Family_History_Yes
High_Caloric_Food_Yes
                         0.0636985 0.0141450 4.503 7.06e-06 ***
Snacking_Sometimes
                          0.0352580 0.0293219 1.202 0.22933
                          Snacking_Frequently
                          -0.0843369 0.0392831 -2.147 0.03192 *
Snacking_Always
                          Smoking_Yes
Calorie_Monitoring_Yes
                          -0.0543980 0.0211641 -2.570 0.01023 *
Alcohol_Consumption_Frequently 0.0579349 0.0248701 2.330 0.01993 *
                          0.1866724 0.1958548 0.953 0.34064
Alcohol_Consumption_other
Transportation_Type_Walking
                          -0.0810451 0.0276240 -2.934 0.00338 **
Transportation_Type_Automobile -0.1552961 0.0133245 -11.655 < 2e-16 ***
Transportation_Type_other
                          Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.193 on 2090 degrees of freedom
Multiple R-squared: 0.5361,
                         Adjusted R-squared: 0.5317
F-statistic: 120.8 on 20 and 2090 DF, p-value: < 2.2e-16
# perform best subset selection
best_subset2 <- leaps::regsubsets(log(BMI) ~ ., data = prepped_data, nvmax = 20, method = "ex
results2 <- summary(best_subset2)</pre>
# extract and plot results
n <- nrow(prepped_data)</pre>
p < -20
results_df2 <-
 tibble::tibble(
   predictors = 1:p,
   adj_R2 = results2$adjr2,
   bic = results2$bic,
   aic = n*log(results2$rss/n) + (1:p)*2
 )
# training the bic selected model
form <- paste("log(BMI)~", paste(names(which(results2$which[which.min(results_df2$bic),-1]))</pre>
 as.formula()
```

Physical_Activity

Screen_Time

```
bic_mod2 <- lm(form, data = prepped_data)
summary(bic_mod2)</pre>
```

```
Call:
lm(formula = form, data = prepped_data)
Residuals:
   Min
          1Q Median
                      3Q
                            Max
-0.7281 -0.1285 0.0265 0.1259 0.7457
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                         2.6788647 0.0312415 85.747 < 2e-16 ***
(Intercept)
Age
                         0.0112776  0.0008849  12.744  < 2e-16 ***
Vegetable Intake
                         0.0916109 0.0072785 12.586 < 2e-16 ***
                        Physical_Activity
                       -0.0605584 0.0077747 -7.789 1.05e-14 ***
Screen_Time
                        Family_History_Yes
                        High_Caloric_Food_Yes
                        Snacking_Frequently
                        Snacking_Always
Alcohol_Consumption_Sometimes
                         0.0577526 0.0094327 6.123 1.10e-09 ***
Transportation_Type_Automobile -0.1464172 0.0131432 -11.140 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1943 on 2100 degrees of freedom
Multiple R-squared: 0.5279,
                         Adjusted R-squared: 0.5257
F-statistic: 234.9 on 10 and 2100 DF, p-value: < 2.2e-16
```

BIC Selected Model w/ BoxCox Transformation

```
# trying a log transformation of BMI -----
# trying to lessen the heteroskedacicity
recipe3 <- full_rec |>
    recipes::step_BoxCox(BMI)

prepped_data3 <- recipes::prep(recipe3) |> recipes::bake(data)
```

full_mod3 <- lm(BMI ~ ., data = prepped_data3) summary(full_mod3)</pre>

Call:

lm(formula = BMI ~ ., data = prepped_data3)

Residuals:

Min 1Q Median 3Q Max -4.6627 -0.9331 0.1296 0.8675 5.4592

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.162573	0.305600	16.893	< 2e-16	***
Age	0.072072	0.006222	11.583	< 2e-16	***
Vegetable_Intake	0.717671	0.053381	13.444	< 2e-16	***
Number_of_Meals	0.120020	0.036876	3.255	0.00115	**
Water_Intake	0.093977	0.053385	1.760	0.07849	
Physical_Activity	-0.278710	0.038851	-7.174	1.01e-12	***
Screen_Time	-0.442835	0.054587	-8.112	8.37e-16	***
Gender_Male	0.042556	0.065160	0.653	0.51376	
Family_History_Yes	1.627848	0.084966	19.159	< 2e-16	***
<pre>High_Caloric_Food_Yes</pre>	0.491640	0.097548	5.040	5.06e-07	***
Snacking_Sometimes	0.307650	0.202212	1.521	0.12831	
Snacking_Frequently	-1.405860	0.217938	-6.451	1.38e-10	***
Snacking_Always	-0.548227	0.270908	-2.024	0.04313	*
Smoking_Yes	-0.048072	0.207466	-0.232	0.81679	
Calorie_Monitoring_Yes	-0.436824	0.145954	-2.993	0.00280	**
Alcohol_Consumption_Sometimes	0.432199	0.067666	6.387	2.08e-10	***
Alcohol_Consumption_Frequently	0.333487	0.171512	1.944	0.05198	
Alcohol_Consumption_other	1.341951	1.350673	0.994	0.32056	
Transportation_Type_Walking	-0.604704	0.190503	-3.174	0.00152	**
Transportation_Type_Automobile	-1.060642	0.091889	-11.543	< 2e-16	***
Transportation_Type_other	-0.465696	0.321536	-1.448	0.14767	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.331 on 2090 degrees of freedom Multiple R-squared: 0.5335, Adjusted R-squared: 0.529 F-statistic: 119.5 on 20 and 2090 DF, p-value: < 2.2e-16

```
# perform best subset selection
best_subset3 <- leaps::regsubsets(BMI ~ ., data = prepped_data3, nvmax = 20, method = "exhaus
results3 <- summary(best_subset3)</pre>
# extract and plot results
n <- nrow(prepped_data3)</pre>
p <- 20
results_df3 <-
 tibble::tibble(
   predictors = 1:p,
   adj_R2 = results3$adjr3,
   bic = results3$bic,
   aic = n*log(results3$rss/n) + (1:p)*2
 )
# training the bic selected model
form <- paste("BMI~", paste(names(which(results3$which[which.min(results_df3$bic),-1])), col
 as.formula()
bic_mod3 <- lm(form, data = prepped_data3)</pre>
summary(bic_mod3)
Call:
lm(formula = form, data = prepped_data3)
Residuals:
          1Q Median
                       3Q
                            Max
-4.6119 -0.9423 0.1307 0.8767 5.4691
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                         5.587409  0.227647  24.544  < 2e-16 ***
(Intercept)
                         Vegetable_Intake
Number_of_Meals
                         Physical_Activity
                        Screen_Time
                         Family_History_Yes
High_Caloric_Food_Yes
                        Snacking_Frequently
                        -1.709179 0.097977 -17.445 < 2e-16 ***
Snacking_Always
                        -0.815858   0.189420   -4.307   1.73e-05 ***
```

Model Comparison

```
# Figure 1
dplyr::bind_rows(results_df, results_df2, results_df3, .id = "Transform") |>
  dplyr::mutate(Transform =
                  dplyr::case_when(
                    Transform == 1 ~ "No Transformation",
                    Transform == 2 ~ "log(BMI)",
                    Transform == 3 ~ "BMI BoxCox",
                    FALSE ~ NA
                  )
                  ) |>
  ggplot(aes(predictors, bic, color = Transform)) +
 geom_point() +
  geom_point(data = results_df2[which.min(results_df2$bic), ], color="darkgreen", size = 3)
 labs(title = "BIC vs. Number of Predictors",
       subtitle = "Comparing three possible transformations of the response",
       x = "# Predictors", y = "BIC") +
  theme(legend.position = "top")
```

BIC vs. Number of Predictors

Comparing three possible transformations of the response

Model Diagnostics

Equal Variance of Errors

```
data_diagnostic <- broom::augment(bic_mod2)

ggplot(aes(x = .fitted, y = .resid), data = data_diagnostic) +
  geom_point() + geom_hline(yintercept = 0) +
  ggtitle("Fitted vs Residuals Plot") +
  labs(x = "Fitted Values", y = "Residuals")</pre>
```


Normal Residuals

```
#normality
ggplot(aes(sample = .resid), data = data_diagnostic) +
  geom_qq() +
  geom_qq_line() +
  ggtitle("QQ Plot")
```


shapiro.test(data_diagnostic\$.resid)

```
Shapiro-Wilk normality test
data: data_diagnostic$.resid
W = 0.98647, p-value = 3.018e-13
```

Independent Residuals

```
library(gghalfnorm)
library(faraway)
x <- model.matrix(bic_mod2)[,-1]
# looking at vif
faraway::vif(x) |>
   round(digits=2) |>
   sort(decreasing=TRUE) |>
   data.frame() |>
   dplyr::rename(VIF=1) |>
   tibble::rownames_to_column(var="Variable")
```

```
2
  Transportation_Type_Automobile 1.64
3
               Family_History_Yes 1.17
4
                      Screen Time 1.15
              Snacking_Frequently 1.15
5
6
                Physical Activity 1.11
            High_Caloric_Food_Yes 1.11
7
8
   Alcohol_Consumption_Sometimes 1.11
9
                 Vegetable_Intake 1.06
10
                  Snacking_Always 1.03
# nothing especially concerning
# looking at pairwise correlations of predictors
cor(x)
```

Variable VIF

Age 1.74

1

```
Age Vegetable_Intake Physical_Activity
                                1.00000000
                                                -0.013239705
                                                                  -0.163306843
Age
Vegetable_Intake
                               -0.01323971
                                                 1.00000000
                                                                   0.019344048
Physical_Activity
                               -0.16330684
                                                0.019344048
                                                                   1.000000000
Screen Time
                                                -0.150120443
                               -0.23495124
                                                                   0.134370020
Family_History_Yes
                                0.19555239
                                                0.008331892
                                                                  -0.128375257
High Caloric Food Yes
                                               -0.073481896
                                                                  -0.156302053
                                0.05587190
Snacking_Frequently
                               -0.11442188
                                                0.077944676
                                                                   0.086072453
Snacking_Always
                               -0.02282438
                                                0.038916459
                                                                   0.076585622
Alcohol_Consumption_Sometimes
                               -0.01772641
                                                0.087590575
                                                                  -0.158171068
Transportation_Type_Automobile 0.60427406
                                                -0.098691575
                                                                   0.004464302
                               Screen_Time Family_History_Yes
                               -0.23495124
                                                   0.195552391
Age
Vegetable_Intake
                               -0.15012044
                                                   0.008331892
Physical_Activity
                                0.13437002
                                                 -0.128375257
Screen_Time
                                1.00000000
                                                 -0.097282976
Family_History_Yes
                               -0.09728298
                                                   1.000000000
High_Caloric_Food_Yes
                                                   0.208035507
                               -0.05478303
Snacking_Frequently
                                0.10650696
                                                  -0.269018294
                                0.09768498
                                                 -0.073188529
Snacking_Always
Alcohol_Consumption_Sometimes
                               -0.18464410
                                                 -0.024636667
Transportation_Type_Automobile -0.11903070
                                                  0.099326516
                               High_Caloric_Food_Yes Snacking_Frequently
                                           0.05587190
Age
                                                             -0.11442188
Vegetable_Intake
                                         -0.07348190
                                                               0.07794468
```

```
Physical_Activity
                                          -0.15630205
                                                               0.08607245
Screen_Time
                                         -0.05478303
                                                               0.10650696
Family_History_Yes
                                          0.20803551
                                                              -0.26901829
High_Caloric_Food_Yes
                                           1.00000000
                                                              -0.18065106
Snacking Frequently
                                         -0.18065106
                                                               1.00000000
Snacking_Always
                                         -0.05529196
                                                              -0.05774552
Alcohol Consumption Sometimes
                                           0.13961092
                                                              -0.12780025
Transportation_Type_Automobile
                                           0.05759657
                                                              -0.09888545
                               Snacking_Always Alcohol_Consumption_Sometimes
Age
                                  -0.022824376
                                                                  -0.01772641
Vegetable_Intake
                                   0.038916459
                                                                   0.08759058
Physical_Activity
                                   0.076585622
                                                                  -0.15817107
Screen_Time
                                                                  -0.18464410
                                   0.097684980
Family_History_Yes
                                  -0.073188529
                                                                  -0.02463667
High_Caloric_Food_Yes
                                  -0.055291958
                                                                   0.13961092
Snacking_Frequently
                                  -0.057745518
                                                                  -0.12780025
Snacking_Always
                                   1.000000000
                                                                  -0.04597909
Alcohol_Consumption_Sometimes
                                  -0.045979095
                                                                   1.00000000
Transportation_Type_Automobile
                                   0.003869257
                                                                  -0.07862441
                               Transportation_Type_Automobile
Age
                                                   0.604274062
Vegetable Intake
                                                  -0.098691575
Physical_Activity
                                                   0.004464302
Screen_Time
                                                  -0.119030701
Family_History_Yes
                                                   0.099326516
High_Caloric_Food_Yes
                                                   0.057596565
Snacking_Frequently
                                                  -0.098885449
Snacking_Always
                                                   0.003869257
Alcohol_Consumption_Sometimes
                                                  -0.078624414
Transportation_Type_Automobile
                                                   1.000000000
# the corrplot indicates some potential collinearity with age and transportaiton
data_diagnostic |>
  ggplot(aes(Age, .resid)) +
  geom_point() +
  facet_wrap(~factor(Transportation_Type_Automobile), ncol = 1) +
  geom_smooth(method = "lm") +
  labs(title = "Model Residuals vs. Age by People Who Use Cars")
```

[`]geom_smooth()` using formula = 'y ~ x'

Model Residuals vs. Age by People Who Use Cars


```
data_diagnostic |>
  ggplot(aes(factor(Transportation_Type_Automobile), .resid)) +
  geom_boxplot() +
  labs(title = "Model Residuals vs. Auto Transportation")
```


Outliers

```
x <- data_diagnostic$.resid
gghalfnorm(x, nlab = 2, labs = as.character(seq_along(x)), repel = FALSE) +
    ggtitle("Half Normal Plot")</pre>
```


Call:

```
lm(formula = log(BMI) ~ Age + Vegetable_Intake + Physical_Activity +
    Screen_Time + Family_History_Yes + High_Caloric_Food_Yes +
    Snacking_Frequently + Snacking_Always + Alcohol_Consumption_Sometimes +
    Transportation_Type_Automobile, data = exclude)
```

Residuals:

```
Min 1Q Median 3Q Max -0.73313 -0.12844 0.02468 0.12737 0.72962
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      2.6811269 0.0310602 86.320 < 2e-16 ***
                      Age
Vegetable_Intake
                      0.0909079 0.0072329 12.569 < 2e-16 ***
Physical_Activity
                     Screen_Time
                      Family History Yes
                      0.2589521 0.0117722 21.997 < 2e-16 ***
                      0.0719168  0.0138024  5.210  2.07e-07 ***
High_Caloric_Food_Yes
Snacking_Frequently
                      Snacking_Always
                      Alcohol_Consumption_Sometimes
Transportation_Type_Automobile -0.1493053 0.0130756 -11.419 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.193 on 2098 degrees of freedom
Multiple R-squared: 0.5337,
                      Adjusted R-squared: 0.5315
F-statistic: 240.1 on 10 and 2098 DF, p-value: < 2.2e-16
```

summary(bic_mod2)

Call:

lm(formula = form, data = prepped_data)

Residuals:

Min 1Q Median 3Q Max -0.7281 -0.1285 0.0265 0.1259 0.7457

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.6788647	0.0312415	85.747	< 2e-16	***
Age	0.0112776	0.0008849	12.744	< 2e-16	***
Vegetable_Intake	0.0916109	0.0072785	12.586	< 2e-16	***
Physical_Activity	-0.0374721	0.0053432	-7.013	3.13e-12	***
Screen_Time	-0.0605584	0.0077747	-7.789	1.05e-14	***
Family_History_Yes	0.2587828	0.0118366	21.863	< 2e-16	***
<pre>High_Caloric_Food_Yes</pre>	0.0741247	0.0138873	5.338	1.04e-07	***
Snacking_Frequently	-0.2561759	0.0142068	-18.032	< 2e-16	***
Snacking_Always	-0.1170597	0.0274689	-4.262	2.12e-05	***
Alcohol_Consumption_Sometimes	0.0577526	0.0094327	6.123	1.10e-09	***
Transportation_Type_Automobile	-0.1464172	0.0131432	-11.140	< 2e-16	***

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1943 on 2100 degrees of freedom

Multiple R-squared: 0.5279, Adjusted R-squared: 0.5257

F-statistic: 234.9 on 10 and 2100 DF, p-value: < 2.2e-16

# no substantial changes between the models
```

Predictions

```
# getting median values for all predictors
x <- model.matrix(bic_mod2) |>
   as.data.frame() |>
   dplyr::summarise(dplyr::across(dplyr::everything(), median)) |>
   dplyr::select(-1)

predict(bic_mod2, x) |> exp()
```

1 31.92477