Métodos Matemáticos I

Prof. Aparecido J. de Souza aparecidosouza@ci.ufpb.br

Transformações Lineares Decomposição em Valores Singulares

Recapitulando

Seja V um espaço vetorial munido de um PI.

O operador adjunto de um operador $T : \mathbb{V} \to \mathbb{V}$ é o operador $T^* : \mathbb{V} \to \mathbb{V}$ tal que $\langle T(v), w \rangle = \langle v, T^*(w) \rangle, \ \forall v, w \in \mathbb{V}$.

O operador $T : V \to V$ é auto-adjunto se $T^* = T$.

Teorema Espectral. Se $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ é um operador **auto-adjunto** num espaço vetorial \mathbb{V} de dimensão finita munido de um PI, então existe uma base ortonormal de \mathbb{V} formada por autovetores de \mathbf{T} .

Versão Matricial do Teorema Espectral. Toda matriz real simétrica é diagonalizável, isto é, $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \Lambda$, em que Λ é uma matriz diagonal, cuja diagonal é formada pelos autovalores (reais) de \mathbf{A} e a matriz \mathbf{Q} é uma matriz ortogonal, cujas colunas são formadas pelos autovetores (ortonormais) de \mathbf{A} .

Sejam

- \mathbb{V} e \mathbb{W} espaços vetoriais com $dim(\mathbb{V}) = \mathbf{n}$ e $dim(\mathbb{W}) = \mathbf{m}$.
- $T : \mathbb{V} \to \mathbb{W}$ uma transformação linear c/ matriz $A_{m \times n}$.
- σ₁, σ₂, ..., σ_r os r autovalores positivos do operador não negativo T* ο T (da matriz A* A).

Então existem bases ortonormais $\mathbf{B}_{\mathbb{V}} = \{v_1, \dots, v_r, \dots, v_n\}$ de \mathbb{V} e $\mathbf{B}_{\mathbb{W}} = \{w_1, \dots, w_r, \dots, w_m\}$ de \mathbb{W} , tais que

- $\mathbf{T}(v_i) = \sqrt{\sigma_i} w_i$, $\mathbf{T}^*(w_i) = \sqrt{\sigma_i} v_i$, para $i = 1, \dots \mathbf{r}$ e
- $T^*(w_i) = 0$ para i = r + 1, ..., m.

Definição. O números positivos $\sqrt{\sigma_1}, \cdots, \sqrt{\sigma_r}$ são os **valores** singulares de **T** (ou de **A**).

Algoritmo. Por um teorema anterior o operador

 $T^* \circ T : \mathbb{V} \to \mathbb{V}$ é não negativo.

Passo 1. Determine os **r** autovalores (reais) positivos e os $(\mathbf{n} - \mathbf{r})$ autovalores nulos de $\mathbf{T}^* \circ \mathbf{T}$ (ou de $\mathbf{A}^* \mathbf{A}$).

Passo 2. Determine a base ortonormal $\mathbf{B}_{\mathbb{V}} = \{v_1, \dots, v_r, \dots, v_n\}$ de \mathbb{V} formada por autovetores de $\mathbf{T}^* \circ \mathbf{T}$ (ou de $\mathbf{A}^* \mathbf{A}$), tal que

- $\mathbf{T}^* \circ \mathbf{T}(v_i) = \sigma_i v_i, i = 1, 2, \dots \mathbf{r},$
- $T^* \circ T(v_i) = 0v_i = 0_{\mathbb{V}}, i = r + 1, \dots n.$

$$\textbf{Ent\~ao},\, \langle \textbf{T}(\textit{v}_i),\textbf{T}(\textit{v}_j)\rangle = \langle \textit{v}_i,\textbf{T}^* \circ \textbf{T}(\textit{v}_j) = \langle \textit{v}_i,\sigma_j\,\textit{v}_j\rangle = \sigma_j\langle\textit{v}_i,\textit{v}_j\rangle = \textcolor{red}{\delta_{ij}}.$$

Assim, os vetores $\mathbf{T}(v_1), \dots, \mathbf{T}(v_r)$ são dois a dois ortogonais, e não nulos, pois $\|\mathbf{T}(v_i)\|^2 = \sigma_i \|v_i\|^2 = \sigma_i, i = 1, 2, \dots, r$.

Além disto, $\|\mathbf{T}(v_i)\|^2 = 0$, para $i = \mathbf{r} + 1, \dots, \mathbf{n}$.

Portanto
$$dim(Im(\mathbf{T})) = \mathbf{r}$$
, pois $\|\mathbf{T}(v_i)\| = \sqrt{\sigma_i}$, $i = 1, ... \mathbf{r}$ e $\mathbf{T}(v_i) = 0$, $i = \mathbf{r} + 1, ..., \mathbf{n}$.

Passo 3. Defina $w_i = \frac{1}{\sqrt{\sigma_i}} \mathbf{T}(v_i), i = 1, \dots \mathbf{r}.$

Então $\{w_1, \dots w_r\}$ é uma base ortonormal de **Im**(**T**).

Como $\dim(\text{Im}(\mathbf{T}^*)) = \dim(\text{Im}(\mathbf{T})) = r$, como $\mathbf{T}^* : \mathbb{W} \to \mathbb{V}$ e como $\dim(\mathbb{W}) = m$, então pelo teorema do núcleo e da imagem aplicado à transformação \mathbf{T}^* tem-se que $\dim(\mathbf{N}(\mathbf{T}^*)) = \mathbf{m} - \mathbf{r}$.

Passo 4. Determine uma base ortonormal de $N(T^*) \subset W$, digamos $\{w_{r+1}, \dots w_m\}$.

Passo 5 (Fim). Complete a base de $\{w_1, \dots, w_r\}$ de Im(T) para a base ortonormal $\mathbf{B}_{\mathbb{W}} = \{w_1, \dots, w_r, w_{r+1} \dots w_m\}$ de \mathbb{W} .

Obs. Os vetores unitários w_1, \ldots, w_r e $w_{r+1}, \ldots w_m$ são ortogonais entre si, pois se $1 \le i \le r$ e $r+1 \le j \le m$, então $\langle w_i, w_j \rangle = \frac{1}{\sqrt{\sigma_i}} \langle \mathbf{T}(v_i), w_j \rangle = \frac{1}{\sqrt{\sigma_i}} \langle v_i, \mathbf{T}^*(w_j) \rangle = \frac{1}{\sqrt{\sigma_i}} \langle v_i, \mathbf{0}_{\mathbb{W}} \rangle = 0$.

Temos uma base ortonormal $\mathbf{B}_{\mathbb{V}} = \{v_1, \dots, v_r, \dots, v_n\}$ de \mathbb{V} formada por autovetores ortonormais de $\mathbf{T}^* \circ \mathbf{T}$ (ou de $\mathbf{A}^* \mathbf{A}$).

Temos uma base ortonormal $\mathbf{B}_{\mathbb{W}}$ de \mathbb{W} formada pela união da base ortonormal $\{w_1, \ldots, w_r\}$ de $\mathbf{Im}(\mathbf{T})$ com a base ortonormal $\{w_{r+1} \ldots w_m\}$ de $\mathbf{N}(\mathbf{T}^*)$.

Note que:

- se $i = 1, \ldots, r$, então
 - por construção temos, $\mathbf{T}^*(\mathbf{T}(v_i)) = \sigma v_i$ e $w_i = \frac{1}{\sqrt{\sigma_i}}\mathbf{T}(v_i)$;

•
$$\mathbf{T}^*(\mathbf{W}_i) = \mathbf{T}^*\left(\frac{1}{\sqrt{\sigma_i}}\mathbf{T}(\mathbf{V}_i)\right) = \frac{1}{\sqrt{\sigma_i}}\mathbf{T}^*(\mathbf{T}(\mathbf{V}_i)) = \frac{1}{\sqrt{\sigma_i}}\sigma_i\mathbf{V}_i = \sqrt{\sigma_i}\mathbf{V}_i;$$

•
$$\mathsf{T} \circ \mathsf{T}^*(w_i) = \mathsf{T}(\sqrt{\sigma_i} \, v_i) = \sqrt{\sigma_i} \, \mathsf{T}(v_i) = \sqrt{\sigma_i} \, \sqrt{\sigma_i} \, w_i = \sigma_i w_i.$$

- se $i = r + 1, \ldots, n$, então $T(v_i) = 0_{\mathbb{W}}$,
- se i = r + 1,m, então $\mathbf{T}^*(w_i) = \mathbf{0}_{\mathbb{V}}$ e assim $\mathbf{T} \circ \mathbf{T}^*(w_i) = \mathbf{T}(\mathbf{0}_{\mathbb{V}}) = \mathbf{0} = 0w_i$.

Portanto, w_i , com $i = 1, \dots, n$, são autovetores ortonormais de

 $\mathsf{T} \circ \mathsf{T}^*$ (ou de $\mathsf{A} \mathsf{A}^*$).

A matriz de $T: \mathbb{V}^n \to \mathbb{W}^m$ em relação às bases ortonormais $\mathbf{B}_\mathbb{V}$ e $\mathbf{B}_\mathbb{W}$ é uma matriz $m \times n$ dada por

$$\sqrt{\Sigma} = \begin{bmatrix} \sqrt{\sigma_1} & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\sigma_2} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \sqrt{\sigma_3} & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sqrt{\sigma_r} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

Note que $posto(\sqrt{\Sigma}) = posto(\mathbf{A}) = dim(Im(\mathbf{T})) = \mathbf{r}$.

A matriz de $T^*: \mathbb{W}^m \to \mathbb{V}^n$ em relação às bases ortonormais $\mathbf{B}_\mathbb{W}$ e $\mathbf{B}_\mathbb{V}$ é uma matriz $\mathbf{n} \times \mathbf{m}$ dada por

$$\sqrt{\Sigma^t} = \begin{bmatrix} \sqrt{\sigma_1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & 0 & 0 & \cdots & 0 \\ \mathbf{0} & \sqrt{\sigma_2} & \mathbf{0} & \cdots & \mathbf{0} & 0 & 0 & \cdots & 0 \\ \mathbf{0} & \mathbf{0} & \sqrt{\sigma_3} & \cdots & \mathbf{0} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \sqrt{\sigma_r} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}_{n \times m}$$

Note que
$$posto(\sqrt{\Sigma^t}) = posto(\mathbf{A}^*) = dim(Im(\mathbf{T}^*)) = \mathbf{r} = posto(\sqrt{\Sigma}) = posto(\mathbf{A}) = dim(Im(\mathbf{T})).$$

Versão para Matrizes: Decomposição em Valores Singulares

Seja $A_{m \times n}$ a matriz de uma transformação linear $T : \mathbb{V}^n \to \mathbb{W}^m$. Suponha que A tenha posto r.

Então A pode ser fatorada na forma $\mathbf{A} = \mathbf{U}\sqrt{\Sigma}\mathbf{V}^*$ em que

- U é uma matriz quadrada m x m, cujas colunas são m autovetores ortonormais de AA*;
- √Σ é uma matriz m × n, com √Σ_{jj} = √σ_j, para j = 1,2,···, r, em que σ_j são os autovalores não nulos de AA* (ou de A*A) e os demais elementos são nulos;
- V (resp. V*) é uma matriz n × n ortogonal, cujas colunas (resp. linhas) são n autovetores ortonormais de A*A.

Como decorar a ordem na decomposição:

 $\mathbf{A}_{m\times n} = \mathbf{U}_{m\times m} \sqrt{\Sigma}_{m\times n} \mathbf{V}^*_{n\times n}.$

Obs. Lembre que para uma matriz **M** real, tem-se que $\mathbf{M}^* = \mathbf{M}^t$.

Exemplo do Teorema dos Valores Singulares

Seja **T** :
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 tal que **T** $(x, y, z) = (x + 2y + 3z, 4x + 5y + 6z)$.

Matriz de **T**:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
. $posto(\mathbf{A}) = dim(Im(\mathbf{T})) = 2$.

Matriz
$$\mathbf{A}^t \mathbf{A} = \begin{bmatrix} 17 & 22 & 27 \\ 22 & 29 & 36 \\ 27 & 36 & 45 \end{bmatrix}$$
, Matriz $\mathbf{A} \mathbf{A}^t = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}$.

Autovalores de $T^* \circ T$ (ou de A^tA):

$$\begin{split} &\sigma_1 = \frac{1}{2}(91 + \sqrt{8065}) \approx 90.4027, \\ &\sigma_2 = \frac{1}{2}(91 - \sqrt{8065}) \approx 0.597327, \\ &\sigma_3 = 0. \end{split}$$

Valores singulares de T:

$$\sqrt{\sigma_1} \approx \sqrt{90.4027} \approx 9.5$$
, $\sqrt{\sigma_2} \approx \sqrt{0.597327} \approx 0.77$.

Exemplo do Teorema dos Valores Singulares

Autovetores ortonormais de $T^* \circ T$ (ou de A^tA)/ Base ortonormal de $V = \mathbb{R}^3$:

$$v^{(1)} \approx \frac{1}{1.41} \begin{bmatrix} 0.6 \\ 0.8 \\ 1 \end{bmatrix}, \quad v^{(2)} = \frac{1}{1.73} \begin{bmatrix} -1.4 \\ -0.2 \\ 1 \end{bmatrix}, \quad v^{(3)} = \frac{1}{2.45} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$

Como
$$dim(\mathbb{R}^2)=dim((N(\mathbf{T}^*))+dim(Im(\mathbf{T}^*)),$$
 então
$$\mathbf{N}(\mathbf{T}^*)=\{(\mathbf{0},\mathbf{0})\}.$$

Base ortonormal de Im(T):

$$w^{(1)} = \frac{1}{\sqrt{\sigma_1}} \mathbf{T}(v^{(1)}) \approx \frac{1}{9.5} \begin{bmatrix} 3.69 \\ 8.79 \end{bmatrix},$$

$$\emph{w}^{(2)} = rac{1}{\sqrt{\sigma_2}} \mathbf{T}(\emph{v}^{(2)}) pprox rac{1}{0.77} \left[egin{matrix} 0.69 \\ -0.34 \end{smallmatrix}
ight],$$

os quais são autovetores ortonormais de $T \circ T^*$ (ou de AA^t).

Base ortonormal de $\mathbb{W} = \mathbb{R}^2$: $\mathbf{B}_{\mathbb{W}} = \{ w^{(1)}, w^{(2)} \}$.

Exemplo do Teorema dos Valores Singulares

Matriz 2 × 3 dos Valores Singulares/Matriz de T em relação às bases $\mathbf{B}_{\mathbb{V}} = \{v^{(1)}, v^{(2)}, v^{(3)}\}$ e $\mathbf{B}_{\mathbb{W}} = \{w^{(1)}, w^{(2)}\}$:

$$\sqrt{\Sigma} = \begin{bmatrix} \sqrt{\sigma_1} & 0 & 0 \\ 0 & \sqrt{\sigma_2} & 0 \end{bmatrix} \approx \begin{bmatrix} 9.5 & 0 & 0 \\ 0 & 0.77 & 0 \end{bmatrix}.$$

Matriz ortogonal 2×2 cujas colunas são os autovetores ortonormais de $T^* \circ T$ (ou de AA^t):

$$\mathbf{U} = \begin{bmatrix} w^{(1)} & w^{(2)} \end{bmatrix} \approx \begin{bmatrix} \frac{3.69}{9.5} & \frac{0.69}{0.77} \\ \frac{8.79}{9.5} & \frac{-0.34}{0.77} \end{bmatrix}.$$

Matriz ortogonal 3×3 cujas linhas são os autovetores ortonormais de A^tA :

$$\mathbf{V^{t}} = \begin{bmatrix} \mathbf{V}^{(1)t} \\ \mathbf{V}^{(2)t} \\ \mathbf{V}^{(3)t} \end{bmatrix} \approx \begin{bmatrix} \frac{0.6}{1.41} & \frac{0.8}{1.41} & \frac{1}{1.41} \\ \frac{-1.4}{1.73} & \frac{-0.2}{1.73} & \frac{1}{1.73} \\ \frac{1}{2.45} & \frac{-2}{2.45} & \frac{1}{2.45} \end{bmatrix}.$$

Aplicação do Teorema dos Valores Singulares

Livro do Strang, pg. 333. Foto de satélite a ser enviada para a terra com $\mathbf{N} \times \mathbf{N}$ pixels, cada um representando uma cor definida, digamos $\mathbf{N} = 1000$.

As informações **essenciais** podem estar apenas em poucos pixels.

Usando a decomposição em valor singular as cores essenciais estão associados, digamos aos ${\bf r}$ valores singulares de uma ordem de 10^{-3} para cima, e as demais cores correspondem aos valores singulares com ordem inferior à 10^{-3} .

Então basta enviar apenas as colunas de $\bf U$ e de $\bf V^t$ que correspondem à estes $\bf r$ valores singulares e são omitidas as demais $\bf N-\bf r$ colunas, uma vez que

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathbf{t}} = w^{(1)} \sqrt{\sigma_1} v^{(1)} + \dots + w^{(\mathbf{q})} \sqrt{\sigma_{\mathbf{q}}} v^{(\mathbf{q})}.$$