

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Winter 2014 Examination

Subject & Code: Engg. Maths (17216) Model Answer Page No: 1/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Important Instructions to the Examiners:		
		1) The Answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding		
		level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in the figure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's Answers and the		
		model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

Subject & Code: Engg. Maths (17216) **Page No:** 2/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
l)	Que.	Attempt any TEN of the following:		IVIAINS
	a)	If $(3x-4y)+i(x+y)=7$, find x, y.		
	Ans.	(3x-4y)+i(x+y)=7		
		$\therefore (3x-4y)+i(x+y)=7+0i$		
		$\therefore 3x - 4y = 7 and x + y = 0$	1/2+1/2	
		$\therefore 3x - 4y = 7$		
		4x + 4y = 0		
		$\therefore 7x = 7$	1/2	
		$\therefore x = 1$		2
		∴ <i>y</i> = −1	1/2	_
	b)	If $z=1+\sqrt{3}i$, show that $z^2+4=2z$		
	Ans.	$z^2 + 4 = (1 + \sqrt{3}i)^2 + 4$	1/2	
		$=1+2\sqrt{3}i-3+4$	1/2	
		$= 2 + 2\sqrt{3}i$	1/2	
		$=2\left(1+\sqrt{3}i\right)$		
		=2z	1/2	2
		OR		_
		$z^2 = \left(1 + \sqrt{3}i\right)^2$	1/2	
		$=1+2\sqrt{3}i-3$		
		$=-2+2\sqrt{3}i$	1/2	
		$\therefore z^2 + 4 = -2 + 2\sqrt{3}i + 4$	1/2	
		$=2\left(1+\sqrt{3}i\right)$	/2	
		$=2(1+\sqrt{3t})$ $=2z$	1/2	2
	c)	If $f(x) = 3x^2 - 5x + 7$, show that $f(-1) = 3f(1)$		
	Ans.	f(1) = 3 - 5 + 7 = 5	1/2	
			1/2	
		$f(-1) = 3(-1)^{2} - 5(-1) + 7 = 15$		
		$\therefore f(-1) = 3f(1)$	1	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg. Maths (17216)

Page No: 3/30

Subje	rag			U
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	d)	State whether the function $f(x) = \frac{e^{-x} + e^x}{2}$ is odd or even.		
	Ans.	$f\left(-x\right) = \frac{e^{-\left(-x\right)} + e^{-x}}{2}$	1/2	
		$=\frac{e^x+e^{-x}}{2}$	1/2	
		$= f(x)$ $\therefore f(x) \text{ is even.}$	1/2	
			1/2	2
	e)	Evaluate $\lim_{x\to 3} \frac{x^2-9}{x-3}$		
	Ans.	$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$	1/2	
		$= \lim_{x \to 3} (x+3)$ $= 3+3$	1/2 1/2	
		= 6 OR	1/2	2
		$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{x^2 - 3^2}{x - 3}$	1/2	
		$=2\times3^{2-1}$	1	2
		= 6	1/2	2
	f)	Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$		
	Ans.	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{x^2}$	1/2	
		$= \lim_{x \to 0} 2 \left[\frac{\sin\left(\frac{x}{2}\right)}{x} \right]^2$		
		$= \lim_{x \to 0} 2 \left[\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \times \frac{1}{2} \right]^{2}$	1/2	
		$=2\left[1\times\frac{1}{2}\right]^2$	1/2	
		$=\frac{1}{2}$	1/2	2

Subject & Code: Engg. Maths (17216) **Page No:** 4/30

Que.	Sub.		3.5.1	Total
No.	Que.	Model Answers	Marks	Marks
1)		OR		
		$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \times \frac{1 + \cos x}{1 + \cos x}$ $= \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2} \times \frac{1}{1 + \cos x}$	1/2	
		$= \lim_{x \to 0} \frac{\sin^2 x}{x^2} \times \frac{1}{1 + \cos x}$ $= \lim_{x \to 0} \left[\frac{\sin x}{x} \right]^2 \times \frac{1}{1 + \cos x}$	1/2	
		$= \left[1\right]^2 \times \frac{1}{1 + \cos 0}$	1/2	
		$=\frac{1}{2}$	1/2	2
	g)	Evaluate $\lim_{x\to 0} \frac{3^x - 4^x}{x}$		
	Ans.	$\lim_{x \to 0} \frac{3^x - 4^x}{x} = \lim_{x \to 0} \frac{3^x - 1 - 4^x + 1}{x}$	1/2	
		$= \lim_{x \to 0} \frac{(3^x - 1) - (4^x - 1)}{x}$	1/2	
		$= \lim_{x \to 0} \left[\frac{3^x - 1}{x} - \frac{4^x - 1}{x} \right]$	1/2	
		= log 3 - log 4	1/2	2
	h)	Find $\frac{dy}{dx}$, if $y = \log(x^2 + 2x)$		
	Ans.	$y = \log\left(x^2 + 2x\right)$		
		$\therefore \frac{dy}{dx} = \frac{1}{x^2 + 2x} \cdot \frac{d}{dx} \left(x^2 + 2x \right)$	1	
		$=\frac{1}{x^2+2x}\cdot(2x+2)$ OR	1	
		$y = \log\left(x^2 + 2x\right)$		
		$Put \ u = x^2 + 2x$ $\therefore \frac{du}{dx} = 2x + 2$	1/2	

Subject & Code: Engg. Maths (17216)

Page No: 5/30

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)		$\therefore y = \log u$ $\therefore \frac{dy}{du} = \frac{1}{u}$ $\therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$	1/2	
		$=\frac{1}{u}\cdot(2x+2)$	1/2	
		$=\frac{1}{x^2+2x}\cdot(2x+2)$	1/2	2
	i)	If $x^2 + y^2 = 4$, find $\frac{dy}{dx}$.		
	Ans.	$x^{2} + y^{2} = 4$ $\therefore 2x + 2y \frac{dy}{dx} = 0$	1	
		$\therefore 2y \frac{dy}{dx} = -2x$		
		$\therefore \frac{dy}{dx} = -\frac{x}{y}$	1	2
	j)	Find $\frac{dy}{dx}$, if $x = \sin \theta$, $y = \cos \theta$.		
	Ans.	$x = \sin \theta, \ y = \cos \theta$ $\therefore \frac{dx}{d\theta} = \cos \theta and \frac{dy}{d\theta} = -\sin \theta$ $dy dy/d\theta$	1/2+1/2	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$ $= \frac{-\sin\theta}{\cos\theta}$	1/2	2
		$= -\tan \theta$	1/2	2
	k)	Show that the root of equation $x^3 - 2x - 5 = 0$ lies between 2 & 3.		
	Ans.	$f(x) = x^3 - 2x - 5$	1	
		f(2) = -1 $f(3) = 16$	1/2	
		Therefore the root lies between 2 & 3.	1/2	2

Subject & Code: Engg. Maths (17216) **Page No:** 6/30

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
1)	1)	Find the first iteration by using Jacobi's method for the following system of equations: $10x+y+2z=13$, $3x+10y+z=14$, $2x+3y+10z=15$		
	Ans.	$10x + y + 2z = 13$ $3x + 10y + z = 14$ $2x + 3y + 10z = 15$ $\therefore x = \frac{13 - y - 2z}{10}$ $y = \frac{14 - 3x - z}{10}$ $15 - 2x - 3y$	1/2	
		$z = \frac{15 - 2x - 3y}{10}$ Now we start with: $x_0 = 0 = y_0 = z_0$. $\therefore x_1 = \frac{13 - (0) - 2(0)}{10} = 1.3$	1/2	
		$y_1 = \frac{14 - 3(0) - (0)}{10} = 1.4$ $z_1 = \frac{15 - 2(0) - 3(0)}{10} = 1.5$	1/2	2
2)		Attempt any four of the following.		
	a)	Express the following complex number in the polar form $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$		
	Ans.	$\therefore r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = 1$	1½	
		$\theta = 180^{\circ} - \tan^{-1} \left(\frac{\sqrt{3}/2}{1/2} \right) = 180^{\circ} - 60^{\circ} = 120^{\circ} \text{ or}$ $or \ \theta = \pi - \tan^{-1} \left(\frac{\sqrt{3}/2}{1/2} \right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$ $\therefore z = r(\cos \theta + i \sin \theta)$	1½	
		$=\cos 120^{\circ} + i\sin 120^{\circ} or \cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3}$	1	4

Subject & Code: Engg. Maths (17216) **Page No:** 7/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.	OR		17101110
		$\therefore r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = 1$	1½	
		$\theta = 180^{\circ} + \tan^{-1} \left(\frac{\sqrt{3}/2}{-1/2} \right) = 180^{\circ} - 60^{\circ} = 120^{\circ} \text{ or}$	1½	
		or $\theta = \pi + \tan^{-1} \left(\frac{\sqrt{3}/2}{-1/2} \right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$		
		$\therefore z = r(\cos\theta + i\sin\theta)$		
		$=\cos 120^{\circ} + i\sin 120^{\circ} or \cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3}$	1	4
	b)	Evaluate $(1+i)^8 + (1-i)^8 = 32$		
	Ans.	$\left(1+i\right)^8 = \left[\left(1+i\right)^2\right]^4$	1/2	
		$= \left[1 + 2i + i^2\right]^4$	1/2	
		$= \left[1 + 2i - 1\right]^4$	1/2	
		$= [2i]^4$ $= 2^4 i^4$		
		=16	1/2	
		$\therefore (1-i)^8 = 16$	1	
		$\therefore (1+i)^8 + (1-i)^8 = 32$	1	4
		OR		
		$\therefore r = \sqrt{(1)^2 + (1)^2} = \sqrt{2} and$	1/2	
		$\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}$	1/2	
		$\therefore z = r(\cos\theta + i\sin\theta)$		
		$\therefore 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$	1/2	
		$\therefore (1+i)^8 = \left\lceil \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right\rceil^8$		
		$=16(\cos 2\pi + i\sin 2\pi)$	1/2	
		$\therefore (1-i)^8 = 16(\cos 2\pi - i\sin 2\pi)$	1/2	

Subject & Code: Engg. Maths (17216) **Page No:** 8/30

Que.	Sub.	Model Appropria	Marta	Total
No.	Que.	Model Answers	Marks	Marks
2)		$\therefore (1+i)^8 + (1-i)^8$		
		$= 16(\cos 2\pi + i\sin 2\pi) + 16(\cos 2\pi - i\sin 2\pi)$		
		$=16(\cos 2\pi + i\sin 2\pi + \cos 2\pi - i\sin 2\pi)$	1	
		$= 32\cos 2\pi$ $= 32$	1/2	
		= 32		4
	c)	Using Euler's formula, prove that $\sin^2 \theta + \cos^2 \theta = 1$		
	Ans.	$\sin^2\theta + \cos^2\theta = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2 + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$	1	
		$=\frac{\left(e^{i\theta}\right)^{2}-2e^{i\theta}e^{-i\theta}+\left(e^{-i\theta}\right)^{2}}{4i^{2}}+\frac{\left(e^{i\theta}\right)^{2}+2e^{i\theta}e^{-i\theta}+\left(e^{-i\theta}\right)^{2}}{4}$		
		$= \frac{e^{2i\theta} - 2 + e^{-2i\theta}}{-4} + \frac{e^{2i\theta} + 2 + e^{-2i\theta}}{4}$	1	
		$= \frac{-e^{2i\theta} + 2 - e^{-2i\theta} + e^{2i\theta} + 2 + e^{-2i\theta}}{4}$	1	
		=1	1	4
	d)	Simplify using DeMoivre's theorem:		
		$\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{7}$		
		$\frac{\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{7}}{\left(\cos 4\theta + i\sin 4\theta\right)^{\frac{1}{4}} \left(\cos \frac{2}{3}\theta - i\sin \frac{2}{3}\theta\right)^{3}}$		
	Ans.	$\frac{(\cos 5\theta - i\sin 5\theta)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{7}}{(\cos 5\theta - i\sin 5\theta)^{\frac{2}{5}}}$		
		$\frac{1}{(\cos 4\theta + i\sin 4\theta)^{\frac{1}{4}} \left(\cos \frac{2}{3}\theta - i\sin \frac{2}{3}\theta\right)^{3}}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{-5\times\frac{2}{5}} \left(\cos\theta + i\sin\theta\right)^{\frac{2}{7}\times7}}{\left(\cos\theta + i\sin\theta\right)^{4\times\frac{1}{4}} \left(\cos\theta + i\sin\theta\right)^{-\frac{2}{3}\times3}}$	1/2+1/2+	
			1/2+1/2	
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{-2} \left(\cos\theta + i\sin\theta\right)^{2}}{\left(\cos\theta + i\sin\theta\right)^{1} \left(\cos\theta + i\sin\theta\right)^{-2}}$	1	
		$=(\cos\theta + i\sin\theta)^{-2+2-1+2}$		
		$= \cos\theta + i\sin\theta$ $= \cos\theta + i\sin\theta$	1	
		OR	1	4

Subject & Code: Engg. Maths (17216)

Page No: 9/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.	OR		IVICINS
		$\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} = \left(\cos \theta + i\sin \theta\right)^{-5\times\frac{2}{5}} = \left(\cos \theta + i\sin \theta\right)^{-2}$	1/2	
		$\left[\left(\cos\frac{2}{7}\theta + i\sin\frac{2}{7}\theta\right)^7 = \left(\cos\theta + i\sin\theta\right)^{\frac{2}{7}\times7} = \left(\cos\theta + i\sin\theta\right)^2\right]$	1/2	
		$\left(\cos 4\theta + i\sin 4\theta\right)^{\frac{1}{4}} = \left(\cos \theta + i\sin \theta\right)^{4\times \frac{1}{4}} = \left(\cos \theta + i\sin \theta\right)^{1}$	1/2	
		$\left[\cos\frac{2}{3}\theta - i\sin\frac{2}{3}\theta\right]^{3} = \left(\cos\theta + i\sin\theta\right)^{-\frac{2}{3}\times 3} = \left(\cos\theta + i\sin\theta\right)^{-2}$	1/2	
		$\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{7}$		
		$\left(\cos 4\theta + i\sin 4\theta\right)^{\frac{1}{4}} \left(\cos \frac{2}{3}\theta - i\sin \frac{2}{3}\theta\right)^{3}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{-2} \left(\cos\theta + i\sin\theta\right)^{2}}{\left(\cos\theta + i\sin\theta\right)^{1} \left(\cos\theta + i\sin\theta\right)^{-2}}$	1	
		$=(\cos\theta+i\sin\theta)^{-2+2-1+2}$		
		$=\cos\theta+i\sin\theta$	1	4
	e)	If $y = f(x) = \frac{2x-3}{3x-2}$, then prove that $x = f(y)$.		
	Ans.	$\therefore f(y) = \frac{2y-3}{3y-2}$	1/2	
		$= \frac{2\left(\frac{2x-3}{3x-2}\right) - 3}{3\left(\frac{2x-3}{3x-2}\right) - 2}$	1/2	
		$= \frac{2(2x-3)-3(3x-2)}{\frac{3x-2}{3(2x-3)-2(3x-2)}} \qquad or \qquad \frac{2(2x-3)-3(3x-2)}{3(2x-3)-2(3x-2)}$	1	
		$3x-2 = \frac{4x-6-9x+6}{6x-9-6x+4}$	1	
		$= \frac{-5x}{-5}$	1/2	
		$ \begin{array}{c} -5 \\ = x \end{array} $	1/2	4

Subject & Code: Engg. Maths (17216)

Page No: 10/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.			Iviairs
ŕ	f)	If $f(x) = x^2 - 4x + 11$, solve the equation $f(x) = f(3x - 1)$.		
	Ans.	$f(x) = x^2 - 4x + 11$		
		$f(3x-1) = (3x-1)^2 - 4(3x-1) + 11$	1	
		$=9x^2-6x+1-12x+4+11$		
		$=9x^2-18x+16$	1	
		But $f(x) = f(3x-1)$		
		$\therefore x^2 - 4x + 11 = 9x^2 - 18x + 16$	1/2	
		$\therefore -8x^2 + 14x - 5 = 0 \qquad or \qquad 8x^2 - 14x + 5 = 0$	1/2	
		$\therefore x = \frac{5}{4}, \frac{1}{2}$ or 1.25, 0.5	1/2 +1/2	4
		OR		
		f(x) = f(3x-1)		
		$\therefore x^2 - 4x + 11 = (3x - 1)^2 - 4(3x - 1) + 11$	1	
		$\therefore x^2 - 4x + 11 = 9x^2 - 6x + 1 - 12x + 4 + 11$	1	
		$\therefore -8x^2 + 14x - 5 = 0$	1	
		$\therefore x = \frac{5}{4}, \frac{1}{2} \qquad or \qquad 1.25, 0.5$	1/2+1/2	4
3)		Attempt any four of the following.		
	a)	If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ then show that $f\left(\frac{2x}{1+x^2}\right) = 2f(x)$		
	Ans.	$\therefore f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right)$	1	
		$=\log\left(\frac{1+x^2+2x}{1+x^2-2x}\right)$	1	
		$=\log\left[\frac{\left(1+x\right)^2}{\left(1-x\right)^2}\right]$	1/2	
		$=\log\left(\frac{1+x}{1-x}\right)^2$	1/2	
		$=2\log\left(\frac{1+x}{1-x}\right)$	1/2	
		=2f(x)	1/2	4
		OR		

Subject & Code: Engg. Maths (17216) **Page No:** 11/30

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3)		$\therefore f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right)$	1	
		$=\log\left(\frac{1+x^2+2x}{1+x^2-2x}\right)$	1	
		and $2f(x) = 2\log\left(\frac{1+x}{1-x}\right)$		
		$=\log\left(\frac{1+x}{1-x}\right)^2$	1/2	
		$=\log\left[\frac{\left(1+x\right)^2}{\left(1-x\right)^2}\right]$	1/2	
		$= \log \left(\frac{1 + 2x + x^2}{1 - 2x + x^2} \right)$	1/2	
		$\therefore f\left(\frac{2x}{1+x^2}\right) = 2f(x)$	1/2	4
	b)	If $f(x) = \frac{1}{1-x}$ then show that $f\{f[f(x)]\} = x$		
	Ans.	$\therefore f \left[f(x) \right] = \frac{1}{1 - f(x)}$	1/2	
		$=\frac{1}{1-\frac{1}{1-x}}$	1/2	
		$=\frac{1}{\frac{1-x}{1-x-1}}$	1/2	
		$=\frac{1-x}{-x}$ or $-\frac{1-x}{x}$	1/2	
		$\therefore f\left\{f\left[f\left(x\right)\right]\right\} = \frac{1}{1 - f\left[f\left(x\right)\right]}$		
		$=\frac{1}{1+\frac{1-x}{x}} or \frac{1}{1-\frac{1-x}{-x}}$	1/2	
		$= \frac{1}{\frac{x+1-x}{x}} or \frac{1}{\frac{-x-1+x}{-x}}$ $= \frac{1}{\frac{1}{x}} or \frac{1}{\frac{-1}{-x}}$	1/2	
		$=\frac{1}{\frac{1}{x}} \qquad or \frac{1}{-\frac{1}{-x}}$	1/2	
		=x	1/2	4

Subject & Code: Engg. Maths (17216) **Page No:** 12/30

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
3)	c)	Evaluate $\lim_{x \to 1} \frac{x^3 + 3x^2 - 6x + 2}{x^3 + 3x^2 - 3x - 1}$		
	Ans.	$\lim_{x \to 1} \frac{x^3 + 3x^2 - 6x + 2}{x^3 + 3x^2 - 3x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + 4x - 2)}{(x - 1)(x^2 + 4x + 1)}$	1	
		$= \lim_{x \to 1} \frac{x^2 + 4x - 2}{x^2 + 4x + 1}$	1	
		$=\frac{(1)^2+4(1)-2}{(1)^2+4(1)+1}$	1	
		$=\frac{1}{2} or 0.5$	1	4
	d)	Evaluate $\lim_{x\to\infty} \left(\sqrt{x^2+5x}-x\right)$		
	Ans.	$\lim_{x \to \infty} \left(\sqrt{x^2 + 5x} - x \right)$		
		$= \lim_{x \to \infty} \left(\sqrt{x^2 + 5x} - x \right) \times \frac{\sqrt{x^2 + 5x} + x}{\sqrt{x^2 + 5x} + x}$	1/2	
		$= \lim_{x \to \infty} \frac{x^2 + 5x - x^2}{\sqrt{x^2 + 5x} + x}$	1/2	
		$= \lim_{x \to \infty} \frac{5x}{\sqrt{x^2 + 5x} + x}$ $\frac{5x}{2}$	1/2	
		$= \lim_{x \to \infty} \frac{\overline{x}}{\sqrt{x^2 + 5x + x}}$		
		$=\lim_{x\to\infty} \frac{5}{\sqrt{\frac{x^2+5x}{x^2} + \frac{x}{x}}}$	1/2	
		$=\lim_{x\to\infty}\frac{5}{\sqrt{1+\frac{5}{x}+1}}$	1/2	
		$=\frac{5}{\sqrt{1+0}+1}$	1	
		$=\frac{5}{2} or \qquad 2.5$	1/2	4

Subject & Code: Engg. Maths (17216) **Page No:** 13/30

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Allswers	Marks	Marks
3)	e) Ans.	Evaluate $\lim_{x\to 0} \frac{6^x - 3^x - 2^x + 1}{x^2}$ $\lim_{x\to 0} \frac{6^x - 3^x - 2^x + 1}{x^2} = \lim_{x\to 0} \frac{3^x \cdot 2^x - 3^x - 2^x + 1}{x^2}$ $= \lim_{x\to 0} \frac{3^x (2^x - 1) - (2^x - 1)}{x^2}$ $= \lim_{x\to 0} \frac{(3^x - 1)(2^x - 1)}{x^2}$ $= \lim_{x\to 0} \frac{(3^x - 1)}{x} \times \frac{(2^x - 1)}{x}$ $= \log 3 \times \log 2$	1 1 1	4
	f)	Evaluate $\lim_{x\to 0} \frac{\sin 3x - 3\sin x}{x^3}$		
4)	Ans.	$\lim_{x \to 0} \frac{\sin 3x - 3\sin x}{x^3} = \lim_{x \to 0} \frac{3\sin x - 4\sin^3 x - 3\sin x}{x^3}$ $= \lim_{x \to 0} \frac{-4\sin^3 x}{x^3}$ $= \lim_{x \to 0} -4\left(\frac{\sin x}{x}\right)^3$ $= -4(1)^3$ $= -4$ Attempt any four of the following.	1 1 1 1	4
	a)	Using first principal, find the derivative of $f(x) = \sin x$.		
	Ans.	Let $y = f(x) = \sin x$ $\therefore f(x+h) = \sin(x+h)$ $\therefore \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos\left(\frac{x+h+x}{2}\right)\sin\left(\frac{x+h-x}{2}\right)}{h}$	1	

Subject & Code: Engg. Maths (17216)

Page No: 14/30

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
4)		$= \lim_{h \to 0} 2 \cos\left(\frac{2x+h}{2}\right) \times \frac{\sin\left(\frac{h}{2}\right)}{h}$ $\sin\left(\frac{h}{2}\right)$	1/2	
		$= \lim_{h \to 0} 2 \cos\left(\frac{2x+h}{2}\right) \times \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \frac{1}{2}$	1	
		$=2\cos\left(\frac{2x}{2}\right)\times1\times\frac{1}{2}$	1	
		$=\cos x$	1/2	4
	b)	If u and v are differentiable functions of x and $y = u \cdot v$, prove that $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$		
	Ans.	Let $y = uv$. Let δx be infinitesimal increment in x and δy , δu , δv be corresponding infinitesimal increments in y, u, v.	1/2	
		$\therefore y + \delta y = (u + \delta u)(v + \delta v)$ $= uv + u\delta v + v\delta u + \delta u\delta v$ $\therefore \delta y = uv + u\delta v + v\delta u + \delta u\delta v - y$	1/2	
		$= uv + u\delta v + v\delta u + \delta u\delta v - uv$ $= u\delta v + v\delta u + \delta u\delta v$ As δu and δv are very very small, $\delta u\delta v$ is negligible.	1/2	
		$\therefore \delta y = u \delta v + v \delta u$ $\therefore \frac{\delta y}{\delta x} = \frac{u \delta v + v \delta u}{\delta x} = u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x}$	1/2	
		$\therefore \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left[u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} \right]$	1	
		$\therefore \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = u \lim_{\delta x \to 0} \frac{\delta v}{\delta x} + v \lim_{\delta x \to 0} \frac{\delta u}{\delta x}$ $\therefore \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$	1	4
	c)	If $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$, find $\frac{dy}{dx}$.		
	Ans.	$\therefore \frac{dy}{dx} = \frac{\left(e^{x} - e^{-x}\right) \cdot \frac{d}{dx} \left(e^{x} + e^{-x}\right) - \left(e^{x} + e^{-x}\right) \frac{d}{dx} \left(e^{x} - e^{-x}\right)}{\left(e^{x} - e^{-x}\right)^{2}}$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg. Maths (17216)

Page No: 15/30

Que.	Sub.	Model Aperirane	Maulta	Total
No.	Que.	Model Answers	Marks	Marks
4)		$=\frac{\left(e^{x}-e^{-x}\right)\cdot\left(e^{x}-e^{-x}\right)-\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)}{\left(e^{x}-e^{-x}\right)^{2}}$	1	
		$\left(e^{x}-e^{-x}\right)^{2}$		
		$(e^{x})^{2} - 2e^{x}e^{-x} + (e^{-x})^{2} - \left[(e^{x})^{2} + 2e^{x}e^{-x} + (e^{-x})^{2}\right]$		
		$= \frac{\left(e^{x}\right)^{2} - 2e^{x}e^{-x} + \left(e^{-x}\right)^{2} - \left[\left(e^{x}\right)^{2} + 2e^{x}e^{-x} + \left(e^{-x}\right)^{2}\right]}{\left(e^{x} - e^{-x}\right)^{2}}$	1	
		,		
		$=\frac{-4}{\left(e^{x}-e^{-x}\right)^{2}}$	1	4
	d)	Differentiate w. r. t. x, $\tan^{-1} \left(\frac{5x}{1 - 6x^2} \right)$		
	Ans.	$Let y = \tan^{-1} \left(\frac{5x}{1 - 6x^2} \right)$		
		$= \tan^{-1}\left(\frac{2x+3x}{1-2x\cdot 3x}\right)$	1/2	
		Put $\tan A = 2x$ and $\tan B = 3x$	1/2	
		$\therefore y = \tan^{-1} \left(\frac{\tan A + \tan B}{1 - \tan A \tan B} \right)$	1/2	
		$= \tan^{-1} \left[\tan \left(A + B \right) \right]$	1/2	
		=A+B	1	
		$= \tan^{-1}(2x) + \tan^{-1}(3x)$		
		$\therefore \frac{dy}{dx} = \frac{1}{1+4x^2} \cdot 2 + \frac{1}{1+9x^2} \cdot 3$	1	4
		OR		
		$Let y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right)$		
		$\therefore \tan y = \frac{5x}{1 - 6x^2}$		
		$\therefore \sec^2 y \frac{dy}{dx} = \frac{(1 - 6x^2) \cdot 5 - 5x(-12x)}{(1 - 6x^2)^2}$	1½	
		$=\frac{5-30x^2+60x}{\left(1-6x^2\right)^2}$		
		$=\frac{5(1-6x^2+12x)}{(1-6x^2)^2}$	1½	
		$\left(1-6x^2\right)^2$		
		$\therefore \frac{dy}{dx} = \frac{5\left(1 - 6x^2 + 12x\right)}{\left(1 - 6x^2\right)^2 \sec^2 y}$	1	4
		$dx \left(1 - 6x^2\right)^2 \sec^2 y$		4

Subject & Code: Engg. Maths (17216) **Page No:** 16/30

Que.	Sub.	M - J - 1 A	N (1	Total
No.	Que.	Model Answers	Marks	Marks
4)		$Let y = \tan^{-1} \left(\frac{5x}{1 - 6x^2} \right)$		
		$\therefore \frac{dy}{dx} = \frac{1}{1 + \left(\frac{5x}{1 - 6x^2}\right)^2} \times \frac{d}{dx} \left(\frac{5x}{1 - 6x^2}\right)$	1	
		$= \frac{1}{1 + \left(\frac{5x}{1 - 6x^2}\right)^2} \times \frac{\left(1 - 6x^2\right) \cdot 5 - 5x\left(-12x\right)}{\left(1 - 6x^2\right)^2}$	1	
		$= \frac{1}{1 + \left(\tan y\right)^2} \times \frac{5 - 30x^2 + 60x}{\left(1 - 6x^2\right)^2}$		
		$= \frac{1}{1 + \tan^2 y} \times \frac{5(1 - 6x^2 + 12x)}{(1 - 6x^2)^2}$	1	
		$\therefore \frac{dy}{dx} = \frac{5\left(1 - 6x^2 + 12x\right)}{\left(1 - 6x^2\right)^2 \sec^2 y}$	1	4
	e)	If $y = (\sin x)^{\cos x}$, find $\frac{dy}{dx}$.		
	Ans.	$y = (\sin x)^{\cos x}$		
		$\therefore \log y = \cos x \cdot \log (\sin x)$	1	
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \cos x \cdot \frac{d}{dx} \Big[\log(\sin x) \Big] + \log(\sin x) \cdot \frac{d}{dx} (\cos x)$		
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \cos x \left[\frac{1}{\sin x} \cdot \cos x \right] + \log(\sin x) \cdot \left[-\sin x \right]$	1	
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \cos x \cot x - \sin x \log(\sin x)$	1	
		$\therefore \frac{dy}{dx} = y \Big[\cos x \cot x - \sin x \log (\sin x) \Big]$	1	4
	f)	If $y = \tan^{-1}\left(\frac{2t}{1-t^2}\right)$ and $x = \sin^{-1}\left(\frac{2t}{1+t^2}\right)$, find $\frac{dy}{dx}$.		
	Ans.	$y = \tan^{-1}\left(\frac{2t}{1-t^2}\right)$		
		$Put \ t = \tan \theta$		

Subject & Code: Engg. Maths (17216)

Page No: 17/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)		$\therefore y = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right) = \tan^{-1} \left(\tan 2\theta \right) = 2\theta$	1/2	
		$\therefore y = 2 \tan^{-1} t$	1/2	
		$\therefore \frac{dy}{dt} = \frac{2}{1+t^2}$	1/2	
		$And x = \sin^{-1}\left(\frac{2t}{1+t^2}\right)$		
		Put $t = \tan \theta$ $\therefore x = \sin^{-1} \left(\frac{2 \tan \theta}{1 + \tan^2 \theta} \right) = \sin^{-1} \left(\sin 2\theta \right) = 2\theta$	1/2	
		$\therefore x = 2 \tan^{-1} t$	1/2	
		$\therefore \frac{dx}{dt} = \frac{2}{1+t^2}$	1/2	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$		
		$=\frac{\frac{2}{1+t^2}}{\frac{2}{1+t^2}}$	1/2	
		$\therefore \frac{dy}{dx} = 1$	1/2	4
		OR		
		$y = \tan^{-1}\left(\frac{2t}{1-t^2}\right)$		
		$Put \ t = \tan \theta$		
		$\therefore y = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right) = \tan^{-1} \left(\tan 2\theta \right) = 2\theta$	1/2	
		$\therefore y = 2 \tan^{-1} t$	1/2	
		$And x = \sin^{-1}\left(\frac{2t}{1+t^2}\right)$		
		$Put \ t = \tan \theta$		
		$\therefore x = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \sin^{-1}\left(\sin 2\theta\right) = 2\theta$	1/2	
		$\therefore x = 2 \tan^{-1} t$	1/2	
		$\therefore y = x$	1	
		$\therefore \frac{dy}{dx} = 1$	1	4

Subject & Code: Engg. Maths (17216) **Page No:** 18/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	Que.	Attempt any four of the following.		Warks
	a)	Evaluate $\lim_{x \to 0} \frac{\tan x \left(5^x - 1\right)}{\sqrt{x^2 + 16} - 4}$		
	Ans.	$\lim_{x \to 0} \frac{\tan x \left(5^{x} - 1\right)}{\sqrt{x^{2} + 16} - 4} = \lim_{x \to 0} \frac{\tan x \left(5^{x} - 1\right)}{\sqrt{x^{2} + 16} - 4} \times \frac{\sqrt{x^{2} + 16} + 4}{\sqrt{x^{2} + 16} + 4}$	1	
		$= \lim_{x \to 0} \frac{\tan x \left(5^x - 1\right)}{x^2 + 16 - 16} \times \left(\sqrt{x^2 + 16} + 4\right)$		
		$= \lim_{x \to 0} \frac{\tan x \left(5^{x} - 1\right)}{x^{2}} \times \left(\sqrt{x^{2} + 16} + 4\right)$	1	
		$= \lim_{x \to 0} \frac{\tan x}{x} \times \frac{5^x - 1}{x} \times \left(\sqrt{x^2 + 16} + 4\right)$		
		$=1\times\log 5\times\left(\sqrt{0^2+16}+4\right)$	1	
		$=8\log 5$	1	4
	b)	Evaluate $\lim_{x \to 5} \frac{\log x - \log 3}{x - 3}$		
	Ans.	$\lim_{x \to 5} \left[\frac{\log x - \log 3}{x - 3} \right] \qquad \qquad \frac{\text{Let } x = 3 + h \text{or} x - 3 = h}{\text{as } x \to 3, h \to 0}$	1	
		$=\lim_{h\to 0}\left[\frac{\log(3+h)-\log 3}{3+h-3}\right]$		
		$=\lim_{h\to 0}\frac{1}{h}\log\left(\frac{3+h}{3}\right)$	1	
		$=\lim_{h\to 0}\log\left(1+\frac{h}{3}\right)^{1/h}$	1/2	
		$=\lim_{h\to 0}\log\left(1+\frac{h}{3}\right)^{3/h}\times \frac{1}{3}$	1/2	
		$=\log e^{\frac{1}{3}}$	1/2	
		$= \log e^{3}$ $= \frac{1}{3} \log e$ $= \frac{1}{3} \log e$		
		$=\frac{1}{3}$	1/2	4
				T

Subject & Code: Engg. Maths (17216) **Page No:** 19/30

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Widdel / Miswers	IVIAINS	Marks
5)	c)	Using bisection method, find the approximate root of $x^3 - 6x + 3 = 0$ (three iterations only).		
	Ans.	$x^3 - 6x + 3 = 0$		
		$f(x) = x^3 - 6x + 3$		
		$\therefore f(0) = 3$	1/2	
		f(1) = -2	1/2	
		\therefore the root is in $(0, 1)$.	1/2	
		$\therefore x_1 = \frac{0+1}{2} = 0.5$	1/2	
		f(0.5) = 0.125	1/2	
		\therefore the root is in $(0.5, 1)$.		
		$\therefore x_2 = \frac{0.5 + 1}{2} = 0.75$	1/2	
		f(0.75) = -1.078	1/2	
		\therefore the root is in $(0.5, 0.75)$.		
		$\therefore x_3 = \frac{0.5 + 0.75}{2} = 0.625$	1/2	4
		OR	72	
		$x^3 - 6x + 3 = 0$		
		$f(x) = x^3 - 6x + 3$		
		$\therefore f(0) = 3$	1/2	
		f(1) = -2	1/2	
		$\therefore \text{ the root is in } (0, 1).$	1/2	
		the root is in (o, 1).		
		a b $x = \frac{a+b}{2}$ $f(x)$		
		0 1 0.5 0.125	1	
		0.5 1 0.75 -1.078	1	4
		0.5 0.75 0.625	1/2	T
		Note (*): In numerical methods problems only, writing		
		directly the exact values of functions, such as here in		
		this example f(2) or f(3), is allowed. Note for Numerical Problems: For practical purpose, generally		
		the values of fractional numbers are truncated up to 3		
		decimal points by the method of rounded-off. Thus the		
		solution is taken up to 3 decimal points only. Further		
			<u> </u>	

Subject & Code: Engg. Maths (17216) **Page No:** 20/30

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIAINS	Marks
5)		if answer is truncated more than 3 decimal points, the final answer may vary for last decimal point/s. Due to the use of advance calculators, such as modern scientific non-programmable calculators, 1/3 is actually 0.333333333333333 but can be taken as 0.333 or in case of 3/7 it is actually 0.428571428 but it is truncated as 0.429. Further it is preferred that in numerical methods the answers are to be in decimal forms, but still many times students keep answers in fractional form. In this case, no marks to be deducted.		
		OR		
		$x^3 - 6x + 3 = 0$		
		$f(x) = x^3 - 6x + 3$		
		$\therefore f(2) = -1$	1/2	
		f(3) = 12	1/2	
		$\therefore \text{ the root is in } (2, 3).$	1/2	
		$\therefore x_1 = \frac{2+3}{2} = 2.5$	1/2	
		$\therefore f(2.5) = 3.625$	1/2	
		\therefore the root is in $(2, 2.5)$.		
		$\therefore x_2 = \frac{2 + 2.5}{2} = 2.25$	1/2	
		f(2.25) = 0.891	1/2	
		$\therefore \text{ the root is in } (2, 2.25).$		
		$\therefore x_3 = \frac{2 + 2.25}{2} = 2.125$	1/2	4
		OR		
		$x^3 - 6x + 3 = 0$		
		$f(x) = x^3 - 6x + 3$		
		$\therefore f(2) = -1$	1/2	
		f(3) = 12	1/2	
		\therefore the root is in $(2, 3)$.	1/2	
		a b $x = \frac{a+b}{2}$ $f(x)$		
		2 3 2.5 3.625	1	
		2 2.5 2.25 0.891	1	
		2 2.5 2.125	1/2	4

Subject & Code: Engg. Maths (17216)

Page No: 21/30

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
5)	d)	Using Regula-Falsi method, find the root of $x^3 - x - 4 = 0$ (three iterations only).		
	Ans.	$f(x) = x^3 - x - 4$		
		$\therefore f(1) = -4$	1/2	
		f(2) = 2	1/2	
		\therefore the root is in $(1, 2)$.	1/2	
		$\therefore x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = 1.667$	1/2	
		f(1.667) = -1.035	1/2	
		\therefore the root is in $(1.667, 2)$.		
		$x_2 = 1.781$	1/2	
		$\therefore f(1.781) = -0.132$	1/2	
		\therefore the root is in $(1.781, 2)$.		
		$\therefore x_3 = 1.795$	1/2	4
		OR		
		$f(x) = x^3 - x - 4$		
		$\therefore f(1) = -4$	1/ ₂ 1/ ₂	
		f(2) = 2	1/2	
		\therefore the root is in $(1, 2)$.	/2	
		a b $f(a)$ $f(b)$ $x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ $f(x)$		
		1 2 -4 2 1.667 -1.035	1	
		1.667 2 -1.035 2 1.781 -0.132 1.781 2 -0.132 2 1.795	$\begin{vmatrix} 1 \\ \frac{1}{2} \end{vmatrix}$	4
		1.701 2 -0.102 2 1.775	/2	
	e)	Using Newton-Raphson method, find the root of $x^4 - x - 9 = 0$.		
	Ans.	$x^4 - x - 9 = 0$		
	1 1115.	$\therefore f(x) = x^4 - x - 9$		
		$\therefore f'(x) = 4x^3 - 1$	1/2	
		$\therefore f(1) = -9$	1/2	
		f(2) = 5	1/2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg. Maths (17216) Page No: 22/30

Que.	Sub.		1	Total
No.	Que.	Model Answers	Marks	Marks
5)	~	$x - \frac{f(x)}{f'(x)} = x - \frac{x^4 - x - 9}{4x^3 - 1}(*)$ $= \frac{3x^4 + 9}{4x^3 - 1}(**)$	1	
		OR	OR	
		$\frac{xf'(x) - [f(x)]}{f'(x)} = \frac{x(4x^3 - 1) - (x^4 - x - 9)}{4x^3 - 1}(*)$ $= \frac{3x^4 + 9}{4x^3 - 1}(**)$ Start with $x = 2$	1	
		Start with $x_0 = 2$,	1/2	
		$x_1 = 1.839$ $x_2 = 1.814$	1/2	
		$x_3 = 1.813$	1/2	4
		 Note i) Once the formula (*) is formed, writing the direct values of x_i's is permissible, as we allow it in case of Table Format for either bisection method or regula-falsi method. Note ii) To calculate directly the values of x_i's, students may use 		
		the formula (*) instead of formulating the reduced form (**) of (*). This is also considerable. No marks to be deducted. The same is also applicable in the next example.		
		OR		
		$x^4 - x - 9 = 0$		
		$\therefore f(x) = x^4 - x - 9$		
		$\therefore f'(x) = 4x^3 - 1$	1/2	
		$\therefore f(1) = -9$	1/2	
		f(2)=5	1/2	
		\therefore the root is in $(1, 2)$.		
		\therefore start with $x_0 = 2$		
		$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$		
		$=2-\frac{f(2)}{f'(2)}$		
		$=2-\frac{5}{31}$ =1.839	1	
L	I .	1.007	I .	l

Subject & Code: Engg. Maths (17216) **Page No:** 23/30

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		Iviaiks	Marks
5)		$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= 1.839 - \frac{f(1.839)}{f'(1.839)}$ $= 1.839 - \frac{0.598}{23.877}$ $= 1.814$ $x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$ $= 1.814 - \frac{f(1.814)}{f'(1.814)}$ $= 1.814 - \frac{0.014}{22.877}$	1	
		=1.813	1/2	4
	f)	Using Newton-Raphson method, find the approximate value of $\sqrt{10}$ (three iterations only).		
	Ans.	Let $x = \sqrt{10}$		
		$\therefore x^2 - 10 = 0$		
		$\therefore f(x) = x^2 - 10$		
		$\therefore f'(x) = 2x$	1/2	
		$\therefore f(3) = -1$	1/2	
		f(4) = 6	1/2	
		$x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - 10}{2x} \qquad(*)$	/2	
		$=\frac{x^2+10}{2x}(**)$	1	
		2x OR	OR	
		$\frac{xf'(x) - [f(x)]}{f'(x)} = \frac{x(2x) - (x^2 - 10)}{2x}(*)$		
		$=\frac{x^2+10}{2x}(**)$	1	
		Start with $x_0 = 3$,		
		$\therefore x_1 = 3.167$	1/2	
		$x_2 = 3.162$	1/2	4
		$x_3 = 3.162$	1/2	4

Subject & Code: Engg. Maths (17216) **Page No:** 24/30

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.			Marks
-,		Note: If the problem is solved by taking $f(x) = x - \sqrt{10}$, no		
		marks to be given since to find various values of $f(x)$		
		for different values of x , it is required to use the value of		
		$\sqrt{10}$ and it is not permissible in this example as here		
		given task is to find its approximate value.		
		OR		
		Let $x = \sqrt{10}$		
		$\therefore x^2 - 10 = 0$		
		$\therefore f(x) = x^2 - 10$	1.	
		f'(x) = 2x	1/2	
		$\therefore f(3) = -1$	1/2	
		f(4) = 6 $f(4) = 6$	1/2	
		$\therefore \text{ start with } x_0 = 3$		
		$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$		
		$=3-\frac{f(3)}{f'(3)}$		
		$=3-\frac{-1}{6}$		
		= 3.167	1	
		$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$		
		$=3.167 - \frac{f(3.167)}{f'(3.167)}$		
		$=3.167 - \frac{0.0299}{6.334}$	1	
		= 3.162	1	
		$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$		
		$=3.162 - \frac{f(3.162)}{f'(3.162)}$		
		$=3.162 - \frac{-0.0018}{6.324}$		
		6.324 $= 3.162$	1/2	4

Subject & Code: Engg. Maths (17216) **Page No:** 25/30

Que.	Sub.	Model Answers	Marks	Total
No. 6)	Que.	Attempt any four of the following.		Marks
,	,			
	a)	If $y = \sin 5x - 3\cos 5x$, show that $\frac{d^2y}{dx^2} + 25y = 0$		
	Ans.	$\therefore \frac{dy}{dx} = \cos 5x \cdot 5 + 3\sin 5x \cdot 5$	1	
		$\therefore \frac{d^2y}{dx^2} = -\sin 5x \cdot 25 + 3\cos 5x \cdot 25$	1	
		$=-25(\sin 5x-3\cos 5x)$		
		=-25y	1	
		$\therefore \frac{d^2y}{dx^2} + 25y = 0$	1	4
		OR		
		$\therefore \frac{dy}{dx} = \cos 5x \cdot 5 + 3\sin 5x \cdot 5$	1	
		$\therefore \frac{d^2 y}{dx^2} = -\sin 5x \cdot 25 + 3\cos 5x \cdot 25$		
		$= -25\sin 5x + 75\cos 5x$	1	
		$\therefore \frac{d^2y}{dx^2} + 25y$		
		$= -25\sin 5x + 75\cos 5x + 25(\sin 5x - 3\cos 5x)$	1	
		$= -25\sin 5x + 75\cos 5x + 25\sin 5x - 75\cos 5x$		
		=0	1	4
	b)	If $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{4}$.		
	Ans.	$x = a(\theta - \sin \theta)$		
		$\therefore \frac{dx}{d\theta} = a(1 - \cos\theta)$	1/2	
		$y = a(1 - \cos \theta)$		
		$\frac{dy}{d\theta} = a(\sin\theta)$	1/2	
		$\therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a(\sin\theta)}{a(1-\cos\theta)} = \frac{\sin\theta}{1-\cos\theta}$	1/2	
		$\therefore at \ \theta = \frac{\pi}{4}, \qquad \frac{dy}{dx} = \frac{\sin\frac{\pi}{4}}{1 - \cos\frac{\pi}{4}}$		
		$=\frac{1}{\sqrt{2}-1}$ or 1.793	1/2	

Subject & Code: Engg. Maths (17216) **Page No:** 26/30

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		Iviairs	Marks
6)		$\frac{d}{d\theta} \left(\frac{dy}{dx} \right) = \frac{\left(1 - \cos \theta \right) \frac{d}{d\theta} \left(\sin \theta \right) - \sin \theta \frac{d}{d\theta} \left(1 - \cos \theta \right)}{\left(1 - \cos \theta \right)^2}$		
		$(1-\cos\theta)(\cos\theta)-\sin\theta(\sin\theta)$		
		$=\frac{(1-\cos\theta)(\cos\theta)-\sin\theta(\sin\theta)}{(1-\cos\theta)^2}$		
		$=\frac{\cos\theta-\cos^2\theta-\sin^2\theta}{\left(1-\cos\theta\right)^2}$		
		$(1-\cos\theta)^2$		
		$=\frac{\cos\theta-1}{\left(1-\cos\theta\right)^2}$		
		$=\frac{-1}{1-\cos\theta}$	1	
		$\therefore \frac{d^2 y}{dx^2} = \frac{d}{d\theta} \left(\frac{dy}{dx} \right) \cdot \frac{d\theta}{dx} \text{ or } \frac{\frac{d}{d\theta} \left(\frac{dy}{dx} \right)}{\frac{dx}{d\theta}}$		
		$= \frac{-1}{1 - \cos \theta} \times \frac{1}{a(1 - \cos \theta)}$		
		$=\frac{-1}{a(1-\cos\theta)^2}$	1/2	
		$\therefore at \ \theta = \frac{\pi}{4}, \qquad \frac{d^2y}{dx^2} = \frac{-1}{a\left(1 - \cos\frac{\pi}{4}\right)^2}$		
		$=\frac{-2}{a(\sqrt{2}-1)^2}$	1/2	4
	c)	Solve by Jacobi's method (three iterations only) $5x+2y+7z=30$, $x+4y+2z=15$, $x+2y+5z=20$		
	Ans.	5x + 2y + 7z = 30		
		x + 4y + 2z = 15		
		x + 2y + 5z = 20		
		$\therefore x = \frac{1}{5}(30 - 2y - 7z)$		
		$y = \frac{1}{4}(15 - x - 2z)$ $z = \frac{1}{5}(20 - x - 2y)$		
		$z = \frac{1}{5}(20 - x - 2y)$	1	

Subject & Code: Engg. Maths (17216) **Page No:** 27/30

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	Que.	Starting with $x_0 = 0 = y_0 = z_0$		Marks
·		$x_1 = 6$		
		$y_1 = 3.75$	1	
		$z_1 = 4$		
		$x_2 = -1.1$	1	
		$y_2 = 0.25$		
		$z_2 = 1.3$		
		$x_3 = 4.08$		
		$y_3 = 3.375$	1	
		$z_3 = 4.12$		4
		Solve by Gauss elimination method:		
	d)	x+2y+3z=14, $3x+y+2z=11$, $2x+3y+z=11$		
		x + 2y + 3z = 14		
	Ans.	3x + y + 2z = 11		
		2x + 3y + z = 11		
		2 6 0 42		
		3x+6y+9z = 42 3x+y+2z = 11 6x+2y+4z = 22 6x+9y+3z = 33		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2+1/2	
		5y + 7z = 31 -7y + z = -11		
		5y + 7z = 31		
		-49y + 7z = -77		
		+ - +		
		${54y = 108}$		
		y = 2	1	
		z = 3	1	
		x = 1	1	4
		\mathbf{OR} $x + 2y + 3z = 14$	1	
		$\begin{vmatrix} x+2y+5z=14\\ 3x+y+2z=11 \end{vmatrix}$		
		2x+3y+z=11		

Page No: 28/30

Subject & Code: Engg. Maths (17216)

Que.	Sub.		Model Answers	Marks	Total
No.	Que.			Widiks	Marks
6)		x + 2y + 3z = 14	9x + 3y + 6z = 33		
		6x + 2y + 4z = 22 and	2x + 3y + z = 11	1/2+1/2	
		$\frac{-5x-z=-8}{-5x-z=-8}$	${7x+5z=22}$		
		*			
		-25x - 5z = -40			
		$\frac{7x+5z=22}{}$			
		-18x = -18			
		$\therefore x = 1$		1	
		z = 3		1	4
		y = 2	OP	1	4
		x + 2y + 3z = 14	OR		
		3x + y + 2z = 11			
		2x+3y+z=11			
		, ,			
		2x + 4y + 6z = 28	3x + y + 2z = 11		
		9x + 3y + 6z = 33 and	4x + 6y + 2z = 22	1/2+1/2	
					
		-7x + y = -5	-x-5y=-11		
		-35x + 5y = -25			
		-x-5y=-11			
		-36x = -36			
				1	
		$\therefore x = 1$		1 1	
		y = 2		1	4
		z = 3			
		eliminated to find	rst x is eliminated and then z is the value of y first. the method II, first y is eliminated and		
		then z is eliminate	ed to find the value of x first.		
			the method III, first z is eliminated inated to find the value of x first.		
		_	ust illustrations to get desire solution.		
		But student may i	follow another order of solution just on		
			n i. e., to say in the method I, student		
		_	e x and then y to find the value of z marks to be given as per above scheme		
		of marking.	2 11 2 1 0 1 the per upo to better		

Subject & Code: Engg. Maths (17216) **Page No:** 29/30

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel / Miswers	IVIAINS	Marks
6)	e)	Solve by Jacobi's method (three iterations only) $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$		
	Ans.	20x + y - 2z = 17 $3x + 20y - z = -18$ $2x - 3y + 20z = 25$		
		$\therefore x = \frac{1}{20} (17 - y + 2z)$ $y = \frac{1}{20} (-18 - 3x + z)$ $z = \frac{1}{20} (25 - 2x + 3y)$	1	
		Starting with $x_0 = 0 = y_0 = z_0$ $x_1 = 0.85$ $y_1 = -0.9$ $z_1 = 1.25$	1	
		$x_2 = 1.02$ $y_2 = -0.965$ $z_2 = 1.03$	1	
		$x_3 = 1.001$ $y_3 = -1.002$ $z_3 = 1.003$	1	4
	f)	Solve by Gauss-Seidal method (three iterations only) 15x+2y+z=18, $2x+20y-32=19$, $3x-6y+25z=22$		
	Ans.	$15x + 2y + z = 18$ $2x + 20y = 51$ $3x - 6y + 25z = 22$ $\therefore x = \frac{1}{15}(18 - 2y - z)$		
		$y = \frac{1}{20}(51 - 2x)$ $z = \frac{1}{25}(22 - 3x + 6y)$	1	

Page No: 30/30

Subject & Code: Engg. Maths (17216)

Oue.	Sub.	25.11.		Total
No.	Que.	Model Answers	Marks	Marks
Que. No. 6)	Sub. Que.	Starting with $x_0 = 0 = y_0 = z_0$ $x_1 = 1.2$ $y_1 = 2.43$ $z_1 = 1.319$ $x_2 = 0.788$ $y_2 = 2.471$ $z_2 = 1.379$ $x_3 = 0.779$ $y_3 = 2.472$ $z_3 = 1.380$ Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.	Marks 1 1	Total Marks
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		