The Multisymplectic Framework of Field Theories

Workshop on Geometric Aspects of Material Modelling

Rubén Izquierdo-López

23 August, 2024

ICMAT-UCM

Structure of the talk

The geometry of calculus of variations

- 1.1 The geometric setting
- 1.2 The Euler-Lagrange equations

Multisymplectic geometry

- 2.1 Basic definitions
- 2.2 Noether's Theorem
- 2.3 Brackets
- 2.4 ...and more!

Examples

- 3.1 Classical Mechanics
- 3.2 Hyperelastic materials

The geometry of calculus of

variations

The geometric setting I

What to minimize/maximize? Sections!

Fixed some fibered manifold

$$Y \xrightarrow{\pi_{YX}} X$$
 with coordinates $(x^{\mu}, y^{i}) \mapsto x^{\mu}$,

we want to find a section

$$\phi: X \to Y, \ (x^{\mu}) \mapsto (x^{\mu}, y^i = \phi^i(x^{\mu}))$$

minimizing/maximizing the functional

$$\mathcal{J}[\phi] = \int_X L\left(x^{\mu}, \phi^i(x^{\mu}), \frac{\partial \phi^i}{\partial x^{\mu}}, \frac{\partial^2 \phi^i}{\partial x^{\mu} \partial x^{\nu}}, \dots\right) d^n x.$$

We will focus on first order theories,

$$\mathcal{J}[\phi] = \int_X L\left(x^{\mu}, \phi^i(x^{\mu}), \frac{\partial \phi^i}{\partial x^{\mu}}\right) d^n x.$$

The geometric setting II

We can interpret

$$L\left(x^{\mu},\phi^{i}(x^{\mu}),\frac{\partial\phi^{i}}{\partial x^{\mu}}\right)d^{n}x$$

as an n-form on the first jet bundle

$$J^1\pi_{YX}$$
 with coordinates (x^μ,y^i,z^i_μ) .

We call it the Lagrangian density

$$\mathcal{L} = L(z^{\mu}, y^{i}, z_{\mu}^{i})d^{n}x.$$

We can rewrite the action as

$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}.$$

л

where $\mathcal{L} \in \Omega^n(J^1\pi_{YX})$ is the Lagrangian dentisy.

The Euler-Lagrange equations I

If ϕ is a minimizer/maximizer (more generally, stationary section),

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0}\mathcal{J}[\phi_t]=0,\,\forall\,\,\mathrm{variation}\,\,\phi_t.$$

The Euler-Lagrange equations II

Equivalently,

$$0 = \int_X \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (j^1 \frac{\phi_t}{\phi_t})^* \mathcal{L}.$$

Locally, we get

$$\frac{\partial L}{\partial y^i} = \frac{\mathrm{d}}{\mathrm{d} x^\mu} \left(\frac{\partial L}{\partial z^i_\mu} \right).$$

What about intrinsic Euler-Lagrange equations?

If we define

we define
$$\begin{aligned} \boldsymbol{\xi} &:= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \boldsymbol{\phi_t} = \boldsymbol{\xi}^i \frac{\partial}{\partial y^i} \in \mathfrak{X}(Y), \\ \boldsymbol{\xi^{(1)}} &:= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} j^1 \boldsymbol{\phi_t} = \boldsymbol{\xi}^i \frac{\partial}{\partial y^i} + \left(\frac{\partial \boldsymbol{\xi}^i}{\partial x^\mu} + \frac{\partial x^i}{\partial y^j} z^j_\mu \right) \frac{\partial}{\partial z^j_\mu} \in \mathfrak{X}(J^1 \pi_{YX}). \end{aligned}$$

The Euler-Lagrange equations III

If we define

$$\xi := \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \phi_{t} = \xi^{i} \frac{\partial}{\partial y^{i}} \in \mathfrak{X}(Y),$$

$$\xi^{(1)} := \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} j^{1} \phi_{t} = \xi^{i} \frac{\partial}{\partial y^{i}} + \left(\frac{\partial \xi^{i}}{\partial x^{\mu}} + \frac{\partial x^{i}}{\partial y^{j}} z_{\mu}^{j} \right) \frac{\partial}{\partial z_{\mu}^{j}} \in \mathfrak{X}(J^{1} \pi_{YX}),$$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \mathcal{J}[\phi_t] = \int_X (j^1 \phi)^* \mathcal{L}_{\xi^{(1)}} \mathcal{L}, \text{ for every vertical } \xi \in \mathfrak{X}(Y)$$

Applying Stokes' Theorem

$$0 = \int_X (j^1 \phi)^* \iota_{\xi^{(1)}} d\mathcal{L} + \int_X d\iota_{\xi^{(1)}} \mathcal{L} = \int_X (j^1 \phi)^* \iota_{\xi^{(1)}} d\mathcal{L}.$$

The Euler-Lagrange equations IV

$$0 = \int_X (j^1 \phi)^* \iota_{\boldsymbol{\xi^{(1)}}} d\mathcal{L} \text{ for every vertical } \boldsymbol{\xi} \in \mathfrak{X}(Y).$$

Does not yield equations.

Idea: modify \mathcal{L}

We want to find an n-form $\Theta_{\mathcal{L}}$ satisfying

$$(j^1\phi)^*\mathcal{L} = (j^1\phi)^*\Theta_{\mathcal{L}}$$

such that ϕ is an stationary field of the action if and only if

$$0=\int_X (j^1\phi)^*\iota_\eta d\Theta_{\mathcal L}$$
 for every $\eta\in\mathfrak X(J^1\pi_{YX}).$

The Euler-Lagrange equations V

Proposition

There is such $\Theta_{\mathcal{L}}$, and can be intrinsically defined (using the geometry of $J^1\pi_{YX}$).

Locally,

$$\Theta_{\mathcal{L}} = \frac{\partial L}{\partial z_{\mu}^{i}} dy^{i} \wedge d^{n-1} x_{\mu} - \left(\frac{\partial L}{\partial z_{\mu}^{i}} z_{\mu}^{i} - L\right) d^{n} x$$

and it is called the Poincaré-Cartan form.

Corollary (Intrinsic Euler-Lagrange equations) A field $\phi: X \to Y$ is stationary if and only if it satisfies

$$(j^1\phi)^*\iota_\eta d\Theta_{\mathcal L}=0, \ \ ext{for every} \ \eta\in \mathfrak X(J^1\pi_{YX}).$$

Looking for solutions

To find solutions, we can look for distributions on $J^1\pi_{YX} \to \text{such that an}$ integral section of such this distribution $\sigma: X \to J^1\pi_{YX}$ satisfies

$$\sigma^* \iota_{\eta} \Omega_{\mathcal{L}} = 0, \forall \eta \in \mathfrak{X}(J^1 \pi_{YX}).$$

We can define such distributions via decomposable n-multivector fields

$$U = X_1 \wedge \cdots \wedge X_n$$
.

Then, being stationary is characterized by $\iota_U\Omega_{\mathcal{L}}=0$.

Disclaimer

Giving such a multivector field U does not immediately give a solution:

- We need to make sure that the corresponding distribution is integrable.
- Even if it is integrable, it may not be holonomic. That is, that the corresponding integral section $\sigma: X \to J^1\pi_{YX}$ could fail to be the jet lift of some section

$$\phi: X \to Y$$
.

When \mathcal{L} is regular, this is not an issue.

• Even if it satisfies the previous conditions, there may not exist global sections of $Y \xrightarrow{\pi_{YX}} X$.

Summary

- Fields, denoted by ϕ , are sections of a fibered manifold $Y \xrightarrow{\pi_{YX}} X$.
- A first order variational problem is defined through a Lagrangian density \mathcal{L} on $J^1\pi_{YX}$ (which defines an *n*-form on X at each point), and the action can be expressed as

$$\mathcal{J}[\phi] = \int_X (j^1 \phi)^* \mathcal{L}.$$

If we define the multisymplectic form as

$$\Omega_{\mathcal{L}} := -d\Theta_{\mathcal{L}},$$

stationary fields are characterized by

$$(j^1\phi)^*\iota_\eta\Omega_{\mathcal L}=0, \text{ for every } \eta\in\mathfrak X(J^1\pi_{YX}).$$

In particular, we can look for decomposable horizontal n-multivector fields U satisfying

$$\iota_U\Omega_{\mathcal{L}}=0.$$

Multisymplectic geometry

Basic definitions I

Definition

A multisymplectic manifold of order n is a pair (M, ω) , where M is a smooth manifold, and ω is a closed (n+1)-form.

An immediate example is the bundle of n-forms on a manifold Q.

$$M:=\bigwedge^n T^*Q \xrightarrow{\tau} Q$$

has a canonical *n*-form,

$$\Theta|_{\alpha}(\mathbf{v}_1,\ldots,\mathbf{v}_n) := \alpha(\tau_*\mathbf{v}_1,\ldots,\tau_*\mathbf{v}_n)$$

and

$$\Omega := -d\Theta$$

defines a multisymplectic structure on M.

Basic definitions II

Definition

Let (M,ω) be a multisymplectic manifold of order n. A q-multivector field U on M $(q \le n)$ is called Hamiltonian if

$$\iota_U\omega=d\alpha,$$

for certain (n-q)-form α , which will also be called Hamiltonian.

 Top degree Hamiltonian multivector fields (n-multivector fields) represent solutions to the variational problem,

$$\iota_U\omega=dH, H\in C^\infty(M).$$

■ Hamiltonian vector fields $X \in \mathfrak{X}(M)$ are symmetries, $\mathfrak{L}_X \omega = 0$ and the corresponding (n-1)—form can be thought of as the Noether current of the symmetry.

Noether's Theorem I

Given a Hamiltonian function H, and a top degree decomposable multivector field U such that

$$\iota_U\omega=dH$$
,

let

$$j:\Sigma\hookrightarrow M$$

be an n-dimensional integral submanifold of U (which can be thought of as a distribution).

Noether's Theorem II

Theorem

Let X be a Hamiltonian vector field and α the corresponding (n-1)-form (the current),

$$\iota_X\omega=d\alpha.$$

Then, if X is a symmetry of H, that is,

$$X(H)=0$$
,

 α is a conserved current on Σ , this means $d(j^*\alpha) = 0$.

Proof.

Indeed,

$$(d\alpha)(U) = \iota U \iota_X \Omega = (-1)^n \iota_X \iota_U \Omega = (-1)^n X(H) = 0.$$

Noether's Theorem III

What does conserved means here?

Noether's Theorem IV

How can we obtain the corresponding current from the symmetry defined by X?

Theorem

Let (M, ω) be an exact multisymplectic manifold, that is, there exists a multisymplectic potential

$$\omega = -d\theta$$
.

Then, if X is a symmetry of θ , $\mathfrak{L}_X \theta = 0$ (and hence of ω),

$$\alpha := -\iota_X \theta$$

is a current for X.

Proof.

Indeed,

$$d\alpha = -d\iota_X \theta = -\iota_X d\theta = \iota_X \omega.$$

Brackets I

Proposition

Let (M, ω) be a multisymplectic manifold and α , β be Hamiltonian forms, with Hamiltonian multivector fields, X, Y, respectively. Then

$$\{\alpha,\beta\}:=\iota_{\mathsf{Y}}\iota_{\mathsf{X}}\omega$$

is a Hamiltonian form. Its Hamiltonian multivector field is -[X, Y] (the Schouten-Nijenhuis bracket).

Definition

Define the Poisson bracket of two Hamiltonian forms by

$$\{\alpha, \beta\} := -(-1)^{(k-1-\operatorname{ord}\alpha)} \iota_{\mathsf{Y}} \iota_{\mathsf{X}} \omega,$$

which is again Hamiltonian by the previous proposition.

What are the properties that $\{\cdot,\cdot\}$ satisfies?

If we define a new degree:

$$\deg \alpha := k - 1 - \operatorname{ord} \alpha$$
,

It is graded-skew-symmetric, that is,

$$\{\alpha, \beta\} = (-1)^{\deg \alpha \deg \beta} \{\beta, \alpha\}.$$

• Its satisfies graded-Jacobi identity (up to an exact form)

$$(-1)^{\deg\alpha\deg\gamma}\{\{\alpha,\beta\},\gamma\} + \mathrm{cycl.} = \mathrm{exact\ term}$$

Brackets III

Theorem

Let (M, ω) be a multisymplectic manifold. Then, the space of all Hamiltonian forms modulo exact forms is a graded Lie algebra.

Some remarks:

- When restricted to the subspace of forms of deg $\alpha=0$, that is, alpha = k-1, we have a Lie algebra, the Lie algebra of currents.
- Some brackets are zero just by degree considerations, more particularly, when

$$\deg \alpha + \deg \beta > k - 1$$
,

that is, the bracket is trivial when

ord
$$\alpha$$
 + ord β < $k - 1$.

• Dynamics can be characterized by this Poisson bracket. Indeed, fixed a Hamiltonian, an n- multivector field U is a solution ($\iota_U\omega=dH$) if

$$\{\alpha, H\} = (d\alpha)(U).$$

...and more!

Multisymplectic geometry is a very active area of research, and there has been a lot of interest in generalizing classical results from symplectic geometry to the multisymplectic setting.

- Reduction by symmetries.
- Coisotropic reduction.
- Constraint analysis.
- Darboux-like Theorems.
- Is everything a Lagrangian submanifold? (Weinstein's creed)
- Alogue to Poisson geometry and Dirac geometry (work in progress...).

Summary

- Multisymplectic geometry gives an abstract formulation of field theories (calculus of variations).
- We can talk about the dynamics and conserved quantities with Hamiltonian multivector fields and forms.
- We can prove Noether's Theorem in this formalism.
- Hamiltonian forms are endowed with a graded Lie algebra structure (when quotiented by exact forms) which yields a Lie algebra when restricted to currents, (n-1)-forms.

Examples

Classical Mechanics I

We recover Classical Mechanics by taking the bundle

$$\mathbb{R} \times Q \xrightarrow{\pi} \mathbb{R}$$
.

Then, a section is just a curve $\gamma: \mathbb{R} \to Q$.

Classical Mechanics II

The jet bundle:

$$J^1\pi=\mathbb{R}\times TQ,$$

and the Poincaré-Cartan form fixed a Lagrangian (which will be identified with a function)

$$L: \mathbb{R} \times TQ \to \mathbb{R}$$

is

$$\theta_L = \frac{\partial L}{\partial \dot{q}^i} d\dot{q}^i - \left(\frac{\partial L}{\partial \dot{q}^i} \dot{q}^i - L\right) dt.$$

Dyanmics are vector fields X satisfying

- Stationary condition, $\iota_X d\theta_L = 0$.
- Normalization, dt(X) = 1.

We recover cosymplectic geometry!

Classical Mechanics III

What about Noether Theorem? Suppose L t-invariant. Then, time translations $\frac{\partial}{\partial t}$ define a symmetry of the corresponding multisymplectic form. Hence, by previous considerations, $\iota_{\frac{\partial}{\partial t}}\theta_L$ is an conserved current, that is, a conserved quantity. Locally,

$$\iota_{\frac{\partial}{\partial t}}\theta_L = \frac{\partial L}{\partial \dot{q}^i} \dot{q}^i - L = H,$$

obtaining conservation of energy.

Hyperelastic materials I

We will give an example of hyperelastic dynamics in a fixed background.

- Fix a body (B, G), ρ , where B is a smooth manifold, G is a Riemannian metric on B, and ρ is the mass density.
- Fix a background manifold (M, g), with M a smooth manifold and g a Riemannian metric on B.

Dynamics of B on M are time-dependent embeddings

$$\phi_t: B \to M$$
.

We model these embeedings as fields

$$Y \xrightarrow{\pi} X$$
.

Hyperelastic materials II

- $X := \mathbb{R} \times B$.
- $Y := \mathbb{R} \times B \times M$.
- The projection π is the trivial choice.

There is an issue:

• Arbitrary fields of the previous bundle $\phi: X \to Y$ do not necessarily correspond to time-dependent embeddings.

But not for long...

 Nevertheless, we can still apply the theory developed because embeddings are stable under local perturbations (variations).

Hyperelastic materials III

What is the Lagrangian?

Notation:

- Coordinates on B are denoted by $(x^i) = x^1, \dots, x^{n-1}$.
- When adding the time coordinate $t = x^0$, we get coordinates (x^{μ}) on X.
- Coordinates on M are denoted by (y^a) .

Then, the Lagrangian is:

$$\begin{split} \mathcal{L} &= \mathbb{K} - \mathbb{P} \\ &= \frac{1}{2} \sqrt{\det G} \rho g_{ab} z_0^a z_0^b d^{n+1} x - \sqrt{\det G} \rho W(x^\mu, G, g, z_i^a) d^{n+1} x, \end{split}$$

where W is the stored energy.

Hyperelastic materials IV

The Poincaré-Cartan form is

$$\Theta_{\mathcal{L}} = \rho g_{ab} z_0^b \sqrt{\det G} dy^a \wedge d^n x_0 - \rho \frac{\partial V}{\partial z_i^a} \sqrt{\det G} dy^a \wedge d^n x_i$$
$$- \left(-\frac{\partial W}{\partial z_i^a} z_i^a + \frac{1}{2} g_{ab} z_0^a z_0^b + W \right) \rho \sqrt{\det G} d^{n+1} x$$

How can we apply Noether's Theorem?

- There is a clear symmetry, time-invariance.
- Then, the current obtained through the theory is

$$\begin{split} \alpha &= -\rho \frac{\partial W}{\partial z_i^a} \sqrt{\det G} dy^i d^n x_{i0} \\ &+ \left(\frac{1}{2} g_{ab} z_0^a z_0^b + W - \frac{\partial W}{\partial z_i^a} z_i^a \right) \rho \sqrt{\det G} d^{n+1} x_0. \end{split}$$

Hyperelastic materials V

on holonomic sections it takes the expression

$$\alpha = \left(\frac{1}{2}g_{ab}z_0^az_0^b + W\right)\rho\sqrt{\det G}d^{n+1}x_0 + \rho\frac{\partial W}{\partial z_i^a}z_0^a\sqrt{\det G}d^nx_i$$

Since

$$e = \left(\frac{1}{2}g_{ab}z_0^a z_0^b + W\right)\rho\sqrt{\det G}d^{n+1}x_0$$

can be though of as the energy dentisy. This gives us a conservation law, where

$$\rho \frac{\partial W}{\partial z_i^a} z_0^a \sqrt{\det G} d^n x_i$$

is the energy flux.

Final remarks

- Multisymplectic geometry is a tool that allows us to study variational problems (field theory, Classical Mechanics, some problems in material modelling...)
- It is a very active area of research, both from the mathematical and the physical point of view.
- Applications to material modelling seem interesting, have been practically unexplored.

References

- [1] Ernst Binz. Geometry of classical fields. Ed. by Jędrzej Śniatycki and Hans Fischer. Notas de matemática v. 123. Includes bibliographies and index. Amsterdam; North-Holland; 1988. 450 pp. ISBN: 9780080872650.
- [2] Mark J. Gotay et al. Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. 2004. arXiv: physics/9801019 [math-ph].
- [3] M. de León and R. Izquierdo-López. Coisotropic reduction in Multisymplectic Geometry. Tech. rep. arXiv:2405.12898 [math] type: article. arXiv, June 2024. DOI: 10.48550/arXiv.2405.12898.
- [4] Jerrold E. Marsden et al. "Variational methods, multisymplectic geometry and continuum mechanics". In: Journal of Geometry and Physics 38.3 (2001), pp. 253–284. ISSN: 0393-0440. DOI: https://doi.org/10.1016/S0393-0440(00)00066-8.

Thank you for your attention!