CSE 6242 / CX 4242

Classification

How to predict a discrete variable?

Based on Parishit Ram's slides. Pari now at SkyTree. Graduated from PhD from GT. Also based on Alex Gray's slides.

How will I rate "Chopin's 5th Symphony"?

Songs	Label
Some nights	0 0
Skyfall	0 0
Comfortably numb	0 0
We are young	• •
Chopin's 5th	???

Classification

What tools do you need for classification?

1.Data
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

- x_i represents each example with d attributes
- y_i represents the label of each example
- 2. Classification **model** $f_{(a,b,c,...)}$ with some parameters a, b, c,...
 - a model/function maps examples to labels

3.Loss function L(y, f(x))

how to penalize mistakes

Features $x_i = (x_{i1}, \dots, x_{id})$

Song name	Label	Artist	Length	
Some nights	00	Fun	4:23	
Skyfall	000	Adele	4:00	
Comf. numb	00	Pink Fl.	6:13	
We are young		Fun	3:50	•••
		•••	•••	•••
		•••	•••	•••
Chopin's 5th	??	Chopin	5:32	•••

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Training a classifier (building the "model")

Q: How do you learn appropriate values for parameters *a, b, c, ...* such that

- $y_i = f_{(a,b,c,...)}(x_i), i = 1, ..., n$ Low/no error on "training data" (songs)
- $y = f_{(a,b,c,...)}(x)$, for any new x• Low/no error on "test data" (songs)

Possible A: Minimize $\sum_{i=1}^{\sum} L(y_i, f_{(a,b,c,..)}(x_i))$ with respect to a, b, c,...

Classification loss function

Most common loss: **0-1 loss function**

$$L_{0-1}(y,f(x)) = \mathbb{I}(y \neq f(x))$$

More general loss functions are defined by a *m x m* cost matrix *C* such that

$$L(y, f(x)) = C_{ab}$$

where $y = a$ and $f(x) = b$

Class	ТО	T1
P0	0	C ₁₀
P1	C ₀₁	0

TO (true class 0), T1 (true class 1)

P0 (predicted class 0), P1 (predicted class 1)

k-Nearest-Neighbor Classifier

The classifier:

f(x) = majority label of the k nearest neighbors (NN) of x

Model parameters:

- Number of neighbors k
- Distance/similarity function d(.,.)

But KNN is so simple!

It can work really well! Pandora uses it:

https://goo.gl/foLfMP

(from the book "Data Mining for Business Intelligence")

k-Nearest-Neighbor Classifier

If k and d(.,.) are fixed Things to learn: ?

How to learn them: ?

If d(.,.) is fixed, but you can change k.

Things to learn: ?

How to learn them: ?

$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$

k-Nearest-Neighbor Classifier

If k and d(.,.) are fixed **Things to learn:** Nothing **How to learn them:** N/A

If *d(.,.)* is fixed, but you can change *k* **Selecting** *k*: Try different values of *k* on some hold-out set

15-NN

1-NN

Pretty good!

Overfitted

How to find the best k in K-NN?

Use cross validation.

15-NN

Pretty good!

1-NN

Overfitted

Example, evaluate k = 1 (in K-NN) using 5-fold cross-validation

Cross-validation (C.V.)

- 1. Divide your data into n parts
- 2. Hold 1 part as "test set" or "hold out set"
- 3. Train classifier on remaining n-1 parts "training set"
- 4. Compute test error on test set
- 5. Repeat above steps n times, once for each n-th part
- 6. Compute the average test error over all n folds (i.e., cross-validation test error)

Cross-validation variations

Leave-one-out cross-validation (LOO-CV)

test sets of size 1

K-fold cross-validation

- Test sets of size (n / K)
- K = 10 is most common (i.e., 10 fold CV)

$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$

k-Nearest-Neighbor Classifier

If k is fixed, but you can change d(.,.)

Things to learn: ?

How to learn them: ?

Cross-validation:?

Possible distance functions:

- Euclidean distance: $||x_i x_j||_2 = \sqrt{(x_i x_j)^{\top}(x_i x_j)}$
- Manhattan distance: $||x_i x_j||_1 = \sum_{l=1}^d |x_{il} x_{jl}|$

• ...

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

k-Nearest-Neighbor Classifier

If *k* is fixed, but you can change *d(.,.)*Things to learn: distance function *d(.,.)*How to learn them: optimization

Cross-validation: any regularizer you have on your distance function

Summary on k-NN classifier

Advantages

- Little learning (unless you are learning the distance functions)
- quite powerful in practice (and has theoretical guarantees as well)

Caveats

Computationally expensive at test time

Reading material:

- ESL book, Chapter 13.3
 http://www-stat.stanford.edu/~tibs/ElemStatLearn/printings/ESLII print10.pdf
- Le Song's slides on kNN
 classifier
 http://www.cc.gatech.edu/~lsong/teaching/CSE6740/lecture2.pd

Points about cross-validation

Requires extra computation, but gives you information about expected test error

LOO-CV:

- Advantages
 - Unbiased estimate of test error (especially for small n)
 - Low variance
- Caveats
 - Extremely time consuming

Points about cross-validation

K-fold CV:

- Advantages
 - More efficient than LOO-CV
- Caveats
 - K needs to be large for low variance
 - Too small K leads to under-use of data, leading to higher bias
- Usually accepted value K = 10

Reading material:

- ESL book, Chapter 7.10
 http://www-stat.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
- Le Song's slides on CV
 http://www.cc.gatech.edu/~lsong/teaching/CSE6740/lecture13-cv.pdf

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Decision trees (DT)

Dependent variable: PLAY

The classifier:

 $f_T(x)$ is the majority class in the leaf in the tree T containing x

Model parameters: The tree structure and size

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Decision trees

Things to learn: ?
How to learn them: ?
Cross-validation: ?

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Decision trees

Things to learn: the tree structure

How to learn them: (greedily) minimize the overall classification loss

Cross-validation: finding the best sized tree with *K*-fold cross-validation

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Learning the tree structure

Pieces:

- 1. best split on the chosen attribute
- 2. best attribute to split on
- 3. when to stop splitting
- 4. cross-validation

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Choosing the split

Split types for a selected attribute j:

- 1. Categorical attribute (e.g. "genre") $x_{1j} = Rock$, $x_{2j} = Classical$, $x_{3j} = Pop$
- 2. Ordinal attribute (e.g. `achievement') x_{1j} =Platinum, x_{2j} =Gold, x_{3j} =Silver
- 3. Continuous attribute (e.g. song length) $x_{1j} = 235$, $x_{2j} = 543$, $x_{3j} = 378$

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Choosing the split

At a node *T* for a given attribute *d*, select a split *s* as following:

 $min_s loss(T_L) + loss(T_R)$

where loss(T) is the loss at node T

Node loss functions:

- Total loss: $\sum_{x_i \in T} L(y_i, f_T(x_i)) \sum_{c \in T} p_{cT} \log p_{cT}$
- Cross-entropy: where p_{cT} is the proportion of class c in node T

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Choosing the attribute

Choice of attribute:

- 1. Attribute providing the maximum improvement in training loss
- 2. Attribute with maximum information gain (Recall that entropy ~= uncertainty)

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

When to stop splitting?

- 1. Homogenous node (all points in the node belong to the same class OR all points in the node have the same attributes)
- 2. Node size less than some threshold
- 3. Further splits provide no improvement in training loss

$$(loss(T) \le loss(T_L) + loss(T_R))$$

$$x_i = (x_{i1}, \dots, x_{id}); y_i = \{1, \dots, m\}$$

Controlling tree size

In most cases, you can drive training error to zero (how? is that good?)

What is wrong with really deep trees?

Really high "variance"

What can be done to control this?

- Regularize the tree complexity
 - Penalize complex models and prefers simpler models

Look at Le Song's slides on the decomposition of error in bias and variance of the estimator http://www.cc.gatech.edu/~lsong/teaching/CSE6740/lecture13-cv.pdf

Summary on decision trees

Advantages

- Easy to implement
- Interpretable
- Very fast test time
- Can work seamlessly with mixed attributes
- ** Works quite well in practice

Caveats

- Can be too simplistic (but OK if it works)
- Training can be very expensive
- Cross-validation is hard (node-level CV)

Final words on decision trees

Reading material:

- ESL book, Chapter 9.2 http://www-stat.stanford.edu/~tibs/ElemStatLearn/printings/ESLII print10.pdf
- Le Song's slides http://www.cc.gatech.edu/~lsong/teaching/CSE6740/lecture6.pdf