Camera Calibration using Vanishing Point Estimation

Image Analysis and Computer Vision Course

February 2022

Marzia Favaro

Ahmad Ataeighalehghasemi

Siddhant Samarth

Overview

Segments detection

From edge detection to selection of straight lines

Edges classification

Cluster the edges based on their compatibility with the hypothetical vanishing points

Calibration

Extract the vanishing points on the Manhattan directions and calibrate

Segments detection

Straight lines detection

Edges classification

Preference matrix

Clustering - Jaccard

Clustering - Tanimoto

Calibration

$$\omega = (K K^{T})^{-1}$$

$$f \quad 0 \quad u_{o}^{-1}$$

$$K = \begin{bmatrix} 0 & f & v_{o} \\ 0 & 0 & 1 \\ & & -1 \end{bmatrix}$$

$$\mathbf{v}^T \omega \mathbf{u} = \mathbf{0}$$
 $\forall \mathbf{v}' \perp \mathbf{u}'$ s.t.

v is the image of v' u is the image of u'

Assumptions:

$$\bullet \quad f_{_{X}} = f_{_{Y}} \quad = \quad f$$

no skew

Orthogonality constraints

Results

Jaccard Tanimoto

Classified edges

Jaccard Tanimoto

Classified edges

Jaccard Tanimoto

Classified edges

Vanishing Points quality assessment

Problems

- The farther the VP, the more likely it is to get it wrong
- Associate our VPs with the ground truth ones correctly
- Slight errors in the lines' slopes can cause vanishing points to end on the opposite side of the image

Solution

Compare their directions

Jaccard

Tanimoto

Angular errors of the vanishing points

Vanishing points angular error distribution

Focal distance absolute error

Possible improvements

 The cumulative consistency can suffer severely from outliers: replace function to find better vanishing points

Possible improvements

- Collinear edges' vanishing point is uninformative, and the same for very close lines. Solution: merge these.
- Not all the images had 3 vanishing points: improve segment detection
- Using Tanimoto didn't improve the results: improve the parameters

