MATH455 - Analysis 4

Summary

Winter 2025, Prof. Jessica Lin. Notes by Louis Meunier

1 Linear Operators (Open Mapping; Closed Graph; Uniform Boundedness)	1
2 Hilbert Spaces; Weak Convergence	2
$3\ L^p$ Spaces	3
4 Fourier Analysis	5

1 Linear Operators (Open Mapping; Closed Graph; Uniform Boundedness)

$$\textbf{Definition 1:} \ \text{For} \ X,Y \ \text{normed vector spaces}, \\ \mathcal{L}(X,Y) \coloneqq \left\{T: X \to Y \ | \ \|T\| \coloneqq \sup_{x \in X} \frac{\|Tx\|_Y}{\|x\|_X} < \infty \right\}$$

Theorem 1: $T: X \to Y$ bounded iff continuous; if X, Y Banach, so is $\mathcal{L}(X, Y)$.

Theorem 2:

- (i) Any two nvs of the same finite dimension are isomorphic;
- (ii) Any finite dimensional space complete, any finite dimensional subspace is closed;
- (iii) B(0,1) compact in X iff X finite dimensional.

Theorem 3 (Open Mapping): Let $T: X \to Y$ a bounded linear operator where X, Y Banach. Then, if T surjective, T open, that is, $T(\mathcal{U})$ open in Y for any \mathcal{U} open in X.

Remark 1: By scaling & translating, openness of an operator is equivalent to proving $T(B_X(0,1))$ contains $B_Y(0,r)$ for some r>0.

Corollary 1: If $T: X \to Y$ bounded, linear and bijective for X, Y Banach, T^{-1} continuous. In particular, if $\left(X, \left\|\cdot\right\|_1\right), \left(X, \left\|\cdot\right\|_2\right)$ are two Banach spaces such that $\left\|x\right\|_2 \le C \left\|x\right\|_1$, then $\left\|\cdot\right\|_1, \left\|\cdot\right\|_2$ are equivalent.

Theorem 4 (Closed Graph Theorem): Let $T: X \to Y$ where X, Y Banach. Then T continuous iff T is *closed*, i.e. the graph $G(T) := \{(x, Tx) : x \in X\} \subset X \times Y$ is closed in the product topology.

Remark 2: This theorem crucially uses the fact that the norm

$$\left\|(x,y)\right\|_*\coloneqq \left\|x\right\|_X + \left\|y\right\|_Y$$

(among others) induces the product topology on $X \times Y$, hence in particular such a norm can be used to make $X \times Y$ a nvs.

Theorem 5 (Uniform Boundedness): Let X Banach and Y an nvs, and let $\mathcal{F} \subset \mathcal{L}(X,Y)$ such that $\forall \, x \in X, \exists \, M_x > 0$ s.t. $\|Tx\|_Y \leq M_x \, \forall \, T \in \mathcal{F}$ (that is, \mathcal{F} pointwise bounded). Then, \mathcal{F} uniformly bounded, i.e. there is some M > 0 such that $\|T\|_Y \leq M$ for every $T \in \mathcal{F}$.

Remark 3: This is implied by the consequence of the Baire Category theorem that states that if $\mathcal{F} \subset$ C(X) where X a complete metric space and \mathcal{F} pointwise bounded, then there is a nonempty open set $\mathcal{O} \subset X$ such that \mathcal{F} uniformly bounded on \mathcal{O} . In the case of a nvs, by linearity, being uniformly bounded on an open set extends to being uniformly bounded on all of X.

Theorem 6 (Banach-Saks-Steinhaus): Let X Banach and Y an nvs, and $\{T_n\} \subset \mathcal{L}(X,Y)$ such that for every $x \in X$, $\lim_n T_n(x)$ exists in Y. Then

- (i) $\{T_n\}$ uniformly bounded in $\mathcal{L}(X,Y)$;
- (ii) $T \in \mathcal{L}(X, Y)$ where $T(x) := \lim_{n} T_n(x)$;
- (iii) $||T|| \leq \liminf_n ||T_n||$.

Remark 4: (i) follows from uniform boundedness, (ii) from just taking sums limits, (iii) from taking lim(inf)its.

2 Hilbert Spaces; Weak Convergence

Theorem 7 (Cauchy-Schwarz): $|(u, v)| \leq ||u|| ||v||$.

Theorem 8 (Orthogonality): If $M \subset H$ a closed subspace, for every $x \in H$, there is a unique decomposition

$$x = u + v,$$
 $u \in M, v \in M^{\perp} := \{v \in H \mid (v, y) = 0 \,\forall \, y \in M\},\$

and

$$\|x-u\| = \inf_{y \in M} \|x-y\|, \qquad \|x-v\| = \inf_{y \in M^\perp} \|x-y\|.$$

Theorem 9 (Riesz): For $f \in H^* := \mathcal{L}(H, \mathbb{R})$, there is a unique $y \in H$ such that $f(y) = (y, x), \forall x \in H$.

Theorem 10 (Bessel's Inequality): If $\{e_n\} \subset H$ orthonormal, then $\sum_{i=1}^{\infty} \left| (x, e_i) \right|^2 \leq \|x\|^2$.

Theorem 11 (Equivalent Notions of Orthonormal Basis): If $\{e_n\} \subset H$ orthonormal, TFAE:

- (i) if $(x, e_i) = 0$ for every i, x = 0;
- (ii) Parseval's identity holds, $||x||^2 = \sum_{i=1}^{\infty} (x, e_i)^2$, for every $x \in H$; (iii) $\{e_i\}$ a basis for H, that is $x = \sum_{i=1}^{\infty} (x, e_i)e_i$ for every $x \in H$.

Theorem 12: H is separable (has a countable dense subset) iff H has a countable basis.

Theorem 13 (Properties of the Adjoint): For $T: H \to H$, the adjoint $T^*: H \to H$ is defined as the operator with the property $(Tx, y) = (x, T^*y)$ for every $x, y \in H$. Then:

- if $T \in \mathcal{L}(H)$ then $T^* \in \mathcal{L}(H)$ and $||T^*|| = ||T||$;
- $(T^*)^* = T$;
- $(T+S)^* = T^* + S^*$;
- $(T \circ S)^* = S^* \circ T^*$;
- if $T \in \mathcal{L}(H)$, then $N(T^*) = R(T)^{\perp}$, and similarly, $N(T) = R(T^*)^{\perp}$.

Note that then $R(T)^{\perp}$ closed, so one finds $\left(R(T)^{\perp}\right)^{\perp} = \overline{R(T)}$.

Definition 2 (Weak Convergence): We say $\{x_n\} \subset X$ converges weakly to $x \in X$ and write $x_n \rightharpoonup x$ if for every $T \in X^*$, $Tx_n \to Tx$. By Riesz, this is equivalent to saying $(x_n, y) \to (x, y)$ for every $y \in X$.

We define, then, $\sigma(X, X^*)$ to be the weak topology (on X) generated by the collection of families X^* ; i.e., the coarsest topology for which every functional $T \in X^*$ is continuous.

Theorem 14 (Properties of Weak Convergence):

- (i) If $x_n \rightharpoonup x$, then $\{x_n\}$ bounded in H and $\|x\| \leq \liminf_{n \to \infty} \|x_n\|$.
- (ii) If $y_n \to y$ (strongly) and $x_n \rightharpoonup x$ (weakly) then $(x_n, y_n) \to (x, y)$.

Theorem 15 (Helley's Theorem): Let X a separable normed vector space and $\{f_n\} \subset X^*$ such that there is a C>0 such that $|f_n(x)| \leq C\|x\|$ for every $x \in X$ and $n \geq 1$. Then, there is a subsequence $\left\{f_{n_k}\right\}$ and $f \in X^*$ such that $f_{n_k}(x) \to f(x)$ for every $x \in X$.

Remark 5: This is just the Arzelà-Ascoli Lemma; by linearity, the uniform boundedness implies uniform Lipschitz continuity and thus equicontinuity.

Theorem 16 (Weak Compactness): Every bounded sequence in H has a weakly converging subsequence.

Remark 6: This is a consequence of Helley's.

3 L^p Spaces

Theorem 17 (Basic Properties of $L^p(\Omega)$):

- (i) (Holder's Inequality) $\|fg\|_1 \le \|f\|_p \|g\|_q$ for $f \in L^p(\Omega), g \in L^q(\Omega)$ and $\frac{1}{p} + \frac{1}{q} = 1, 1 \le p \le q \le \infty$;
- (ii) (Riesz-Fischer Theorem) $L^p(\Omega)$ is a Banach space for every $1 \le p \le \infty$;
- (iii) $C_c(\mathbb{R}^d)$, simple functions, and step functions are all dense in $L^p(\mathbb{R}^d)$ for every finite p;
- (iv) $L^p(\Omega)$ is separable for every finite p;
- (v) If $\Omega \subset \mathbb{R}^d$ has finite measure, then $L^p(\Omega) \subset L^{p'}(\Omega)$ for every $p \leq p'$;
- (vi) If $f \in L^p(\Omega) \cap L^q(\Omega)$ for $1 \le p \le q \le \infty$, then $f \in L^p(\Omega)$ for every $r \in [p,q]$.

Theorem 18 (Riesz Representation for $L^p(\Omega)$): Let $1 \le p < \infty$ and q the Holder conjugate of p. Then, if $T \in (L^p(\Omega))^*$, there is a unique $g \in L^q(\Omega)$ such that

$$Tf=\int_{\Omega}fg, \qquad \forall\, f\in L^p(\Omega),$$

and $||T|| = ||g||_q$.

Remark 7: When p=2=q, then $L^p(\Omega)$ is a Hilbert space so this reduces to the typical Hilbert space theory.

Theorem 19 (Weak Convergence in $L^p(\Omega)$):

- Let $p \in (1, \infty)$ and $\{f_n\} \subset L^p(\Omega)$, then by Riesz, $f_n \rightharpoonup f$ iff $\int_{\Omega} f_n g \to \int_{\Omega} f g$ for every $g \in L^q(\Omega)$.
- Suppose f_n are bounded and $f \in L^p(\Omega)$, then $f_n \rightharpoonup f$ if and only if $f_n \to f$ pointwise a.e..
- (Radon-Riesz) For $p \in (1, \infty)$, let $\{f_n\} \subset L^p(\Omega)$ such that $f_n \rightharpoonup f$. Then, $f_n \to f$ strongly if and only if $\|f_n\|_p \to \|f\|$.

Theorem 20 (Weak Compactness in $L^p(\Omega)$): Let $p \in (1, \infty)$. Then, every bounded sequence in $L^p(\Omega)$ has a weakly converging subsequence in $L^p(\Omega)$.

Remark 8: This is essentially the same as the Hilbert space proof.

Theorem 21 (Properties of Convolutions):

- (i) (f * g) * h = f * (g * h)
- $\begin{array}{l} \text{(ii) With } \tau_z f(x) \coloneqq \underline{f(x-z), \tau_z(f*g)} = \underline{(\tau_z f)*g} = f*(\tau_z g) \\ \text{(iii) } \sup p(f*g) \subseteq \overline{\sup(f) + \sup(g)} = \overline{\{x+y \mid x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)\}} \end{array}$

Theorem 22 (Young's Inequality): Let $f \in L^1(\mathbb{R}^d)$ and $g \in L^p(\mathbb{R}^d)$ for any $p \in [1, \infty]$, then

$$\|f * g\|_p \le \|f\|_1 \|g\|_p,$$

so in particular $f * g \in L^p(\Omega)$.

Theorem 23 (Derivatives of Convolutions): Let $f \in L^1(\mathbb{R}^d)$ and $g \in C^1(\mathbb{R}^d)$ with $|\partial_i g| \in L^\infty(\mathbb{R}^d)$ for i = 1, ..., d. Then, $f * g \in C^1(\mathbb{R}^d)$, and in particular

$$\partial_i(f * g) = f * (\partial_i g).$$

Remark 9: This holds more generally for many different assumptions on f, g but you basically need to be able to apply dominated convergence theorem to pass the limit involved in taking the derivative under the integral sign.

This extends for $g \in C^k(\mathbb{R}^d)$; in particular, if $g \in C^\infty(\mathbb{R}^d)$, then $f * g \in C^\infty(\mathbb{R}^d)$. It also holds for the gradient, i.e. $\nabla(f*g) = f*(\nabla g)$ (where the convolution is component-wise in the gradient vector).

Theorem 24 (Good Kernels): A *good kernel* is a parametrized family of functions $\{\rho_{\varepsilon}: \varepsilon \in \mathbb{R}\}$ with the properties

- $\begin{array}{ll} \text{(i)} & \int_{\mathbb{R}^d} \rho_\varepsilon(y) \, \mathrm{d}y = 1, \\ \text{(ii)} & \int_{\mathbb{R}^d} |\rho_\varepsilon(y)| \, \mathrm{d}y \leq M, \\ \text{(iii)} & \text{for every } \delta > 0, \int_{|y| > \delta} |\rho_\varepsilon(y)| \, \mathrm{d}y \to 0 \text{ as } \varepsilon \to 0^+. \end{array}$

The canonical, and in particular both smooth and compactly supported, example is

$$\rho(x) := \begin{cases} C \exp\left(-\frac{1}{1 - |x|^2}\right) & \text{if } |x| \le 1, \\ 0 & \text{o.w.} \end{cases}$$

where C=C(d) a scaling constant such that ρ integrates to 1. Then $\rho_{\varepsilon}(x):=\left(\frac{1}{\varepsilon^d}\right)\rho\left(\frac{x}{\varepsilon}\right)$ is a good kernel, supported on $B(0,\varepsilon)$. Then:

- $\begin{array}{l} \text{(i) if } f \in L^{\infty}\big(\mathbb{R}^d\big), f_{\varepsilon} \coloneqq \rho_{\varepsilon} * f \text{ and } f \text{ continuous at } x \text{, then } f_{\varepsilon}(x) \to f(x) \text{ as } \varepsilon \to 0; \\ \text{(ii) if } f \in C\big(\mathbb{R}^d\big) \text{ then } f_{\varepsilon} \to f \text{ uniformly on compact sets;} \\ \text{(iii) if } f \in L^p\big(\mathbb{R}^d\big) \text{ with } p \text{ finite, then } f_{\varepsilon} \to f \text{ in } L^p\big(\mathbb{R}^d\big). \end{array}$

Remark 10: Part 3. follows immediately from 2. by density of $C_c(\mathbb{R}^d)$ in $L^p(\mathbb{R}^d)$.

Corollary 2: $C_c^{\infty}(\mathbb{R}^d)$ dense in $L^p(\mathbb{R}^d)$ for any finite p.

Theorem 25 (Weierstrass Approximation Theorem): Polynomials are dense in C([a,b]), i.e. for any $f \in C([a,b])$ and $\eta > 0$, there is a polynomial p(x) such that $\|p-f\|_{L^{\infty}([a,b])} < \eta$.

Theorem 26 (Strong Compactness): Let $\{f_n\}\subseteq L^p(\mathbb{R}^d)$ for p finite, such that • $\{f_n\}$ uniformly bounded in $L^p(\mathbb{R}^d)$, and

- $\lim_{|h|\to 0}\|f_n-\tau_hf_n\|_p=0$ uniformly in n, i.e. for every $\eta>0$ there is a $\delta>0$ such that $|h|<\delta$ implies $||f_n - \tau_h f_n||_n < \eta$ for every $n \ge 1$.

Then, for every $\Omega\subset\mathbb{R}^d$ of finite measure, there exists a subsequence $\left\{f_{n_k}\right\}$ such that $f_{n_k}\to f$ in $L^p(\Omega)$.

Remark 11: This is Arzelà-Ascoli in disguise!

4 Fourier Analysis

Definition 3 (Fourier Series): Let $L^2(\mathbb{T})=\left\{f:\mathbb{T}\to\mathbb{R}\mid\int_{\mathbb{T}}f^2<\infty\right\}$ equipped with the inner product $(f,g)=\int_{\mathbb{T}}f\overline{g}.$ Then, $e_n(x):=e^{2\pi inx},$ for $n\in\mathbb{Z},$ is an orthonormal basis for $L^2(\mathbb{T}).$ The Fourier coefficients of a function f are defined then, for $n \in \mathbb{Z}$

$$\hat{f}(n) = (f,e_n) = \int_{\mathbb{T}} f(x) e^{-2\pi i n x} \,\mathrm{d}x,$$

and so the complex Fourier series is defined

$$\sum_{n\in\mathbb{Z}}\hat{f}(n)e^{2\pi inx}.$$

Theorem 27 (Riemann-Lebesgue Lemma): If $f \in L^2(\mathbb{T})$, $\lim_{n \to \infty} \left| \hat{f}(n) \right| = 0$.

Remark 12: By expanding the real and complex parts of the coefficients, this also implies

$$\lim_{n\to\infty}\int_{\mathbb{T}}f(x)\sin(2n\pi x)\,\mathrm{d}x=\lim_{n\to\infty}\int_{\mathbb{T}}f(x)\cos(2n\pi x)\,\mathrm{d}x=0.$$

Definition 4 (Dirichlet Kernel): The *Dirichlet Kernel* is the sequence of functions defined

$$D_N(x) \coloneqq \sum_{n=-N}^N e^{2\pi i n x} = \frac{\sin\left(2\pi \left(N + \frac{1}{2}\right)x\right)}{\sin\left(2\pi \frac{x}{2}\right)}.$$

Then, the partial sum $S_N f(x) \coloneqq \sum_{n=-N}^N \hat{f}(n) e^{2\pi i n x} = (f * D_N)(x).$

Theorem 28 (Convergence Results):

- (i) If $f \in L^2(\mathbb{T})$ and Lipschitz at x_0 , then $S_N f(x_0) \to f(x_0)$
- (ii) If $f \in L^2(\mathbb{T}) \cap C^2(\mathbb{T})$, then $S_N f \to f$ uniformly on \mathbb{T} .

Definition 5 (Fourier Transform): The *Fourier Transform* of $f: \mathbb{R} \to \mathbb{C}$ is defined

$$\hat{f}(\zeta) := \int_{\mathbb{R}} f(x)e^{-2\pi i \zeta x} \, \mathrm{d}x.$$

The *Inverse Fourier Transform* of $f \in L^1(\mathbb{R})$ is defined

$$\check{f}(x) := \int_{\mathbb{R}} f(\zeta) e^{2\pi i \zeta x} d\zeta = \widehat{f(-\cdot)}(x).$$

Theorem 29 (Properties of the Fourier Transform): Let $f, g \in L^1(\mathbb{R})$.

- (i) $\hat{f}, \check{f} \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R})$ (ii) $\widehat{\tau_y f}(\zeta) = e^{-2\pi i \zeta y} \hat{f}(\zeta)$, and $\tau_{\eta} \hat{f}(\zeta) = e^{2\pi i \eta(\cdot)} f(\cdot)(\zeta)$ (iii) $\widehat{f * g} = \hat{f} \cdot \hat{g}$ (iv) $\int_{\mathbb{R}} f(x) \hat{g}(x) \, \mathrm{d}x = \int_{\mathbb{R}} \hat{f}(x) g(x) \, \mathrm{d}x$ (v) Let $h(x) := e^{\pi a x^2}$ for a > 0, then $\hat{f}(\zeta) = \frac{1}{\sqrt{a}} e^{-\pi \frac{\zeta^2}{a}}$

Theorem 30 (Fourier Inversion): If $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$, then f agrees almost everywhere with some $f_0 \in C(\mathbb{R})$ and $\hat{f} = \hat{f} = f_0$.

Theorem 31 (Plancherel's Theorem): If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then $\hat{f} \in L^2(\mathbb{R})$ and $\|f\|_2 = \|\hat{f}\|_2$.