CS231N: Low-Level Vision

Jia Deng

Predict per-pixel 2D motion between a pair of frames

Applications

Robotics

Self-driving cars (Waymo)

Everydayrobots.com

Project starline (Google)

Hololens (Microsoft)

Robotics

3D Vision

Graphics

Optical Flow as Optimization

Objective: appearance constancy + plausibility of flow field

$$E(\Delta x) = Distance(I(x_i), I(x_i + \Delta x_i)) + Regularization(I, \Delta x)$$

[Horn and Schunck, 1981] [Black and Anandan, 1993] [Zach et al. 2007] [Brox et al. 2004] [Brox and Malik, 2010] [Weinzaepfel et al, 2013] [Liu et al. 2009] [Roth et al. 2009] [Menze et al, 2015] [Sun et al, 2010]

[Bailer et al. 2015] [Chen and Koltun, 2016] [Xu et al, 2017]

Classical approaches:

The Model of Horn and Schunck [1]

$$\min_{u,v} \left\{ E = \int_{\Omega} |\nabla u|^2 + |\nabla v|^2 \ d^2x + \lambda \int_{\Omega} \rho(u,v)^2 \ d^2x \right\}$$
 Regularization Term Data Term (OFC)

+ Convex
$$\rho(u,v) = I_t + (u,v) \cdot \nabla I \approx 0$$

- + Easy to solve
- Does not allow for sharp edges in the solution
- Sensitive to outliers violating the OFC

[1] Horn and Schunck. Determinig Optical Flow. Artificial Intelligence, 1981

- Classical approaches: TV-L1 Flow (TV: total variation)
 - Replace quadratic functions by L₁ norms
 - Done by Cohen, Aubert, Brox, Bruhn, ...

$$\min_{u,v} \left\{ E = \int_{\Omega} |\nabla u| + |\nabla v| \ d^2x + \lambda \int_{\Omega} |\rho(u,v)| \ d^2x \right\}$$

- +Allows for discontinuities in the flow field
- +Robust to some extent to outliers in the OFC
- +Still convex
- Much harder to solve

Classical approaches: DeepFlow

Weinzaepfel P, Revaud J, Harchaoui Z, Schmid C. DeepFlow: Large displacement optical flow with deep matching. InProceedings of the IEEE international conference on computer vision 2013 (pp. 1385-1392).

FlowNet [Dosovitskiy et al. 2015]

- First optical flow network
- U-Net on concatenated frames
- Simple and Fast -- but underperforming the best optimization approaches

Deep Learning: FlowNet

FlowNet S (Simple) architecture

- Input: two stacked images ([image(t), image(t-1)])
- Encode: 9 Convolutional layers (strides: 2)

conv 7*7: 1 layers
 conv 5*5: 2 layers
 conv 3*3: 6 layers

Decode: Refinement layers (described later)

Slide credit: K-Inoue @ki42 & Oscar @wang

9

Deep Learning: FlowNet

Deep Learning: FlowNet

Refinement layers in FlowNet S/C

- 1. 4 De-convolution layers & 4 Upsampled prediction layers
 - De-convolution: Transposed convolution + LeakyReLU
 - Upsampled prediction: Transposed convolution (evaluated)
 - De-conv + Previous feature map + Upsampled prediction
- 2. Bilinear upsampling (4x)
 - Cheaper & Adding more refinement layers did not improve

Deep Learning: FlowNet 2.0

Deep Learning and Optical Flow

PWC-Net [Sun et at al., 2018]

- Inductive bias: warping, cost volume
- Iterative refinement limited to pyramid levels

Deep Learning: PWC-Net

Sun D, Yang X, Liu MY, Kautz J. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018 (pp. 8934-8943).

Deep Learning: VCN

Yang G, Ramanan D. Volumetric Correspondence Networks for Optical Flow. In Advances in Neural Information Processing Systems 2019 (pp. 793-803).

RAFT: Recurrent All-Pairs Field Transforms

Iterative updates of a single high-res flow field

[Teed & Deng, ECCV 2020] Best Paper Award

Strategy: Optimization-Inspired Neural Architectures

Design neural networks to behave like classical optimization algorithms

+ Recurrent iterative updates

RAFT: Recurrent All-Pairs Field Transforms

• State-of-the-art accuracy: 16% better on KITTI, 30% better on Sintel

• High efficiency: 10X faster training, 10fps on 436x1088 video

• **Strong Generalization**: 40% better synthetic to real generalization

All-Pairs Visual Similarities

Dot product between all pairs

All-Pairs Visual Similarities

- Dot product between all pairs
- Repeated pooling of last two dimensions

All-Pairs Visual Similarities

- Dot product between all pairs
- Repeated pooling of last two dimensions
- Use current flow estimate to retrieve a feature vector

cues on how good the current flow is and where are better similarities

Update Operator

GRU-Based recurrent update operator

- Designed to mimic updates of first order optimization algorithm [1]
- But no explicit objective or gradient
 - [1] Adler, Jonas, and Ozan Öktem. "Learned primal-dual reconstruction."2018

Convex Upsampling

- Upsamples flow to **full resolution**
- Convex combination of 3x3 coarse resolution neighbors

Convex Upsampling

- Upsamples flow to **full resolution**
- Convex combination of 3x3 coarse resolution neighbors

Training

 Supervised directly on sequence of full resolution flow fields

$$Loss = \sum_{i}^{N} \frac{1.25^{i}}{1.25^{N}} \left| \left| f_{gt} - f_{i} \right| \right|_{1}$$

RAFT versus VCN

RAFT [Teed & Deng, 2020]

- Construct 4D cost volume
- 2D convolution on slices of cost volume

VCN [Yang & Ramanan, 2019]

- Construct 4D cost volume
- 4D convolution on entire cost volume

KITTI-2015[1] Results

Butler, Daniel J., et al. "A naturalistic open source movie for optical flow evaluation." *ECCV* 2012.

Cross-Dataset Generalization

Models trained on FlyingChairs (Fischer et al. 2015) and FlyingThings3D (Mayer et al, 2016)

Convergence

Convergence Visualized

RAFT can recover the motion of small, fast moving objects

KITTI-2015: http://www.cvlibs.net/datasets/kitti/index.php

DAVIS (1080p) https://davischallenge.org/

Butler, Daniel J., et al. "A naturalistic open source movie for optical flow evaluation." *ECCV* 2012.

Robust Vision Challenge ECCV 2020

All top 3 submissions used RAFT

Winner

Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu

Google Research
Google

Stereo

Many slides adapted from Steve Seitz and Svetlana Lazebnik

• Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2

Dense depth map

• Given a calibrated binocular stereo pair, fuse it to produce a depth image

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
 - Humans can do it

Stereograms: Invented by Sir Charles Wheatstone, 1838

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
 - Humans can do it

Autostereograms: www.magiceye.com

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
 - Humans can do it

Autostereograms: www.magiceye.com

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then epipolar lines fall along the horizontal scan lines of the images

Depth from disparity

Depth from disparity

$$disparity = x - x' = \frac{B \cdot f}{z}$$

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Basic stereo algorithm

- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = B*f/(x-x')

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Data

Window-based matching

Ground truth

Better methods exist...

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization</u> via Graph Cuts, PAMI 2001

How can we improve window-based matching?

- The similarity constraint is local (each reference window is matched independently)
- Need to enforce **non-local** correspondence constraints

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - We expect disparity values to change slowly (for the most part)

Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

$$E(D) = \sum_{i} (W_1(i) - W_2(i + D(i)))^2 + \lambda \sum_{\text{neighbors } i, j} \rho (D(i) - D(j))$$

$$E(D) = \sum_{i} (W_1(i) - W_2(i + D(i)))^2 + \lambda \sum_{\substack{\text{neighbors } i, j \\ \text{data term}}} \rho (D(i) - D(j))$$

$$E(D) = \sum_{i} (W_1(i) - W_2(i + D(i)))^2 + \lambda \sum_{\substack{\text{neighbors } i, j \\ \text{data term}}} \rho (D(i) - D(j))$$

$$E(D) = \sum_{i} (W_1(i) - W_2(i + D(i)))^2 + \lambda \sum_{\text{neighbors } i, j} \rho (D(i) - D(j))$$

$$\frac{data \ term}{}$$

 Energy functions of this form can be minimized using graph cuts

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization via</u> Graph Cuts, PAMI 2001

Active stereo with structured light

- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

Active stereo with structured light

- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

Kinect: Structured infrared light

XBOX 360

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

RAFT-Stereo: RAFT for rectified two-view stereo

RAFT-Stereo: 1st on Middlebury [Scharstein et al, 2014]

[Lipson, Teed, Deng, 3DV 2021] Best Student Paper Award

Middlebury Stereo Benchmark

Visual SLAM:

Simultaneous Localization and Mapping

• Input: video of (largely) static scene

• Output: 3D map and camera trajectory

Classical Approach: Optimization with Multiview Geometry

2D motion (optical flow) is a known analytical function of 3D points and 3D motion

$$f = F(X, T)$$

Step 1. Estimate 2D flow f

→ Match pixels by manual features

Step 2. Solve for 3D given flow

$$\min_{X,T} \|f - F(X,T)\|^2$$

Insufficient Robustness: Failures are frequent and catastrophic

Deep Visual SLAM

Train a network to directly regress 3D points (depth) and 3D motion

DeMoN [Ummenhofer et al., 2017]

TartanVO [Wang et al., 2021]

Problems with Deep Visual SLAM

- Lower Accuracy: large amounts of drift, global inconsistency
- Weaker Generalization: doesn't generalize to new datasets or cameras

EuRoC MAV Benchmark (Monocular)

[Burri et al. 2016]

DROID: Differentiable Recurrent Optimization-Inspired Design

- *Accurate* reduce error by 60%-80% over prior systems
- *Robust 6X* fewer catastrophic failures
- Generalizable trained only on synthetic data

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

Estimate 2D motion (optical flow)

Predict per-pixel 2D motion between a pair of frames

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

• **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ii}^{pred}

- **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ii}^{pred}
- Want: depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

• **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}

Co-visibility graph

• Want: depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

• **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}

Co-visibility graph

• Want: depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

- **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}
- Want: depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

- Non-linear least squares
- Iterative algorithms like Gauss-Newton

Naïve SLAM: RAFT + DBA

• Works poorly, because of outliers: visibility, dynamic objects, prediction error

Naïve SLAM: RAFT + DBA

frame i

Co-visibility graph

frame *i*

feedbackOptimizer

Optimizer T^*, d^*

(Gauss-Newton Iterations)

DBA

 $E(x,y) \longleftrightarrow$

• Works poorly, because of outliers: visibility, dynamic objects, prediction error

RAFT

 $m{f}_{ij}^{pred}$

• How to exclude outliers? (1) Predicted Confidence Map (2) Feedback

Naïve SLAM: RAFT + DBA feedback f_{ii}^{pred} Optimizer fram<u>e i</u> shape optimization Co-visibili $\min_{y\in Y}E(x,y)$ Works How to feedback

Recurrent Updates + Analytical Layer

DBA Layer: how to update depth and poses to make induced flow better?

$$\min_{\Delta \boldsymbol{d}, \Delta \boldsymbol{T}} \sum_{(i,j) \in \mathcal{E}} \left\| f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T}) + r_{ij} - f_{ij}^{ind}(\boldsymbol{d} + \Delta \boldsymbol{d}, \boldsymbol{T} + \Delta \boldsymbol{T}) \right\|_{diag(w_{ij})}^{2}$$

$$\min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T}) + r_{ij} - f_{ij}^{ind}(\boldsymbol{d} + \Delta \boldsymbol{d}, \boldsymbol{T} + \Delta \boldsymbol{T}) \right\|_{diag(w_{ij})}^{2}$$

$$\min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T}) + r_{ij} - f_{ij}^{ind}(\boldsymbol{d} + \Delta \boldsymbol{d}, \boldsymbol{T} + \Delta \boldsymbol{T}) \right\|_{diag(w_{ij})}^{2}$$
Current induced flow between frame i, j

$$\min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T}) + r_{ij} - f_{ij}^{ind}(\boldsymbol{d} + \Delta \boldsymbol{d}, \boldsymbol{T} + \Delta \boldsymbol{T}) \right\|_{diag(w_{ij})}^{2}$$

$$= \min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| r_{ij} - \frac{\partial f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T})}{\partial \boldsymbol{d}} \Delta \boldsymbol{d} - \frac{\partial f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T})}{\partial \boldsymbol{T}} \Delta \boldsymbol{T} \right\|_{diag(w_{ij})}^{2}$$

$$\min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T}) + r_{ij} - f_{ij}^{ind}(\boldsymbol{d} + \Delta \boldsymbol{d}, \boldsymbol{T} + \Delta \boldsymbol{T}) \right\|_{diag(w_{ij})}^{2}$$

$$= \min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| r_{ij} - \frac{\partial f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T})}{\partial \boldsymbol{d}} \Delta \boldsymbol{d} - \frac{\partial f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T})}{\partial \boldsymbol{T}} \Delta \boldsymbol{T} \right\|_{diag(w_{ij})}^{2}$$
Linear least squares Differentiable closed-form solution i.e. Gauss-Newton step

horizontal flow confidence

No direct supervision

DROID-SLAM: Full System

- Frontend: feature extraction, local bundle adjustment
- Backend: global bundle adjustment
- Building covisibility graph: thresholding inter-frame flow magnitude
- Real time on 2 3090 GPUs (with custom GPU kernels)
- Trained only on monocular input

Global BA

DROID-SLAM: extension to stereo and RGB-D

• Stereo: double the frames in graph, fixing relative poses between left & right frames

Co-visibility graph for stereo

DROID-SLAM: extension to stereo and RGB-D

- Stereo: double the frames in graph, fixing relative poses between left & right frames
- RGB-D: still estimate depth, but use sensor depth as a prior in DBA layer
 - Sensor depth can have noise and missing observations

$$\min_{\Delta d, \Delta T} \sum_{(i,j) \in \mathcal{E}} \left\| f_{ij}^{ind}(\boldsymbol{d}, \boldsymbol{T}) + r_{ij} - f_{ij}^{ind}(\boldsymbol{d} + \Delta \boldsymbol{d}, \boldsymbol{T} + \Delta \boldsymbol{T})) \right\|_{diag(w_{ij})}^{2} + \left\| \boldsymbol{d} + \Delta \boldsymbol{d} - \widehat{\boldsymbol{d}} \right\|^{2}$$
Sensor depth $\widehat{\boldsymbol{d}}$ as a prior

No retraining needed for stereo or RGB-D

TartanAir – SLAM Challenge [Wang et al. 2020]

- Our system trained on TartanAir (training split) with monocular input
- 66% lower error on monocular, 60% lower error on stereo, 16x faster

- - V203
 - DSO Engel et al. '17]
 [Forster et al. '16]
 [Zubizarreta et al. '20]
 - SVO [Campos et al. '20]

- Our system trained only on TartanAir
- 82% less error among methods with zero failures
- 43% less error than ORB-SLAM3 on its successful sequences

- Our system trained only on monocular TartanAir
- 71% less error than ORB-SLAM3

- Our system trained only on monocular TartanAir
- 83% lower error than DeepFactors

ETH-3D SLAM (RGB-D)

- Our system trained only on monocular TartanAir
- Ranks 1st, 35% better AUC
- Successfully track 30/32 RGB-D datasets, next best method tracks 19/32

Strong Generalization

All results, across datasets and modalities (monocular, stereo, RGB-D),

are by a single model, trained only once, on synthetic data.

DeepV2D [ICLR 2020]: Video to Depth

Recurrent unit + analytical layer (PnP)

53% less error over prior SOTA on NYU Depth

RAFT-3D [CVPR 2021]: Scene Flow

Input: RGB-D video of dynamic scene

Output: per-pixel 3D motion

Recurrent unit + analytical layer (DBA w/ soft pixel grouping)

6D Multi-Object Pose [Lipson, Teed, Deng, CVPR 2022]

Input: RGB-D + known 3D models

Output: 6D object poses

Recurrent unit + analytical layer (Bidirectional PnP)

SOTA on the BOP benchmark (YCB-V, T-LESS, LINEMOD-Occluded)