Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1	1 (Currently Amended). An image editing apparatus which edits
2	image data which has been coded in accordance with an image coding
3	method, wherein a plurality of image frames constituting the image data
4	are divided into groups, each image frame is coded into one of a first type
5	image frame which is created by coding data in the image frame, a second
6	type image frame which is created by performing inter-frame
7	mono-directional prediction based on a past image frame and coding a
8	difference obtained by the prediction, and a third type image frame which
9	is created by performing inter-frame dual-directional prediction based on a
10	past image frame and a future image frame and coding differences
11	obtained by the prediction, and the plurality of image frames are coded so
12	that a head frame of each group may be the first type image frame, said
13	apparatus comprising:
14	an image coder which codes each of frames of image data into one
15	of the first type image frame, the second type image frame, and the third
16	type image frame;
17	an image decoder which decodes the image frame coded by said
18	image coder; and
19	an image data analyzer which analyzes a picture header of a head
20	frame in the area to be edited and determines types of image frames
21	included in each group,
22	wherein said image data analyzer determines whether or not a head
23	group which is arranged at a head of an editing target area included in the
24	image data is a closed group which does not include the third type image
25	frame which is to be decoded by referring to an image frame included in a
26	group which is arranged before the head group; and

27 in a case where said image data analyzer determines that the head 28 group is not the closed group, said image coder converts a portion near the 29 head of the editing target area into the closed group, wherein: said image coding method is an MPEG method; 30 each of the groups is a GOP of MPEG; 31 the first type image frame is an I picture; 32 the second type image frame is a P picture; and 33 34 the third type image frame is a B picture; and wherein in a case where said image data analyzer determines that a second 35 GOP next to a first GOP to which a start point of an editing target area 36 belongs is not a closed GOP, said image coder converts the second GOP 37 into a closed GOP by converting frames in the editing target area between 38 an I picture at a head of the second GOP and a P picture such that the 39 40 second GOP includes no B picture. 2 (Original). The image editing apparatus according to claim 1, wherein 1 2 said image data analyzer determines whether or not the third type image frame included in the head group is an image frame which is to be decoded 3 by referring to an image frame included in a group which is arranged 4 5 before the head group. 3 (Original). The image editing apparatus according to claim 2, wherein: 1 in a case where said image data analyzer determines that the third type 2 image frame is to be decoded by referring to an image, frame included in 3 the group arranged before the head group, the image decoder decodes the 4 5 third type image frame; and said image coder codes the third type image frame which is 6 determined by said image data analyzer as an image frame to be decoded 7 by referring to an image frame included in the group arranged before the 8 head group, and is decoded by said image decoder, into an image frame 9

10	which is able to be decoded without referring to an image frame included
11	in the group arranged before the head group.
	4 (Canceled).
1	5 (Currently Amended). An image editing apparatus which edits
2	image data which has been coded in accordance with an MPEG method,
3	said apparatus comprising:
4	image data analyzing means for analyzing a picture header of a
5	head frame in the area to be edited and a structure of image frames
6	included in each GOP of the image data, and determining an attribute of
7	each GOP and picture types of image frames included in each GOP;
8	conversion point detecting means for detecting a GOP which needs
9	to be re-coded from an editing target area of the image data, and an image
10	frame which needs to be re-coded from the detected GOP;
11	image decoding means for decoding the image frame which needs
12	to be re-coded detected by said conversion point detecting means;
13	GOP converting means for creating a new GOP by re-coding the
14	image frame decoded by said image expanding means; and
15	image data concatenating means for concatenating a plurality of
16	image data which are cut out as editing target areas,
17	wherein said image data analyzing means determines whether or
18	not a head GOP which is arranged at a head of the editing target area is a
19	closed GOP; and
20	in a case where said image data analyzing means determines that
21	the head GOP of the editing target area is not a closed GOP, said GOP
22	converting means converts a portion near the head of the editing target area
23	into a closed GOP; and wherein
24	in a case where said image data analyzer determines that a second
25	GOP next to a first GOP to which a start point of an editing target area

26	belongs is not a closed GOP, said image coder converts the second GOP
27	into a closed GOP by converting frames in the editing target area between
28	an I picture at a head of the second GOP and a P picture such that the
29	second GOP includes no B picture.
1	6 (Currently Amended). An image editing apparatus which edits
2	image data which has been coded in accordance with an image coding
3	method, wherein a plurality of image frames constituting the image data
4	are divided into groups, each image frame is coded into one of a first type
5	image frame which is created by coding based on data in the image frame,
6	a second type image frame which is created by performing inter-frame
7	mono-directional prediction based on a past image frame, and a third type
8	image frame which is created by performing inter-frame dual-directional
9	prediction based on a past image frame and a future image frame, and the
10	image data is coded so that a head frame of each group may be the first
11	type image frame, said apparatus comprising:
12	an image encoder which codes each of frames of image data into
13	one of the first type image frame, the second type image frame, and the
14	third type image frame in accordance with said image coding method;
15	an image decoder which decodes the image frame coded by said
16	image encoder; and
17	an image data analyzer which analyzes a picture header of a head
18	frame in the area to be edited and determines types of image frames
19	included in each group,
20	wherein in a case where said image data analyzer determines that a
21	head image frame which is arranged at a head of an editing target area
22	included in the image data is not the first type image frame, said image
23	decoder decodes the head image frame, and each image frame appearing
24	between the head image frame and the first type image frame which
25	appears first after the head image frame; and

said image encoder re-codes the image frames which are created by decoding the head image frame and each image frame appearing between 27 the head image frame and the first type image frame which appears first 28 after the head image frame, and re-codes the head image frame into the 29 first type image frame, and re-codes any of the third type image frame 30 appearing after the head image frame into an image frame which is able to 31 be decoded without referring to an image frame arranged before the head 32 image frame; wherein 33 said image coding method is an MPEG method; 34 each of the groups is a GOP of MPEG; 35 the first type image frame is an I picture; 36 the second type image frame is a P picture; and 37 the third type image frame is a B picture; and wherein 38 in a case where said image data analyzer determines that a second 39 GOP next to a first GOP to which a start point of an editing target area 40 belongs is not a closed GOP, said image coder converts the second GOP 41 into a closed GOP by converting frames in the editing target area between 42 an I picture at a head of the second GOP and a P picture such that the 43 second GOP includes no B picture. 44 The image editing apparatus which edits 7 (Currently Amended). 1 image data which has been coded in accordance with an image coding 2 method, wherein a plurality of image frames constituting the image data 3 are divided into groups, each image frame is coded into one of a first type 4 image frame which is created by coding based on data in the image frame, 5 a second type image frame which is created by performing inter-frame 6 mono-directional prediction based on a past image frame, and a third type 7 image frame which is created by performing inter-frame dual-directional 8 prediction based on a past image frame and a future image frame, and the 9 image data is coded so that a head frame of each group may be the first 10

type image frame, said apparatus comprising: 11 an image encoder which codes each of frames of image data into 12 one of the first type image frame, the second type image frame, and the 13 third type image frame in accordance with said image coding method; 14 an image decoder which decodes the image frame coded by said 15 image encoder; and 16 an image data analyzer which determines types of image frames 17 18 included in each group, 19 wherein in a case where said image data analyzer which analyzes a picture header of a head frame in the area to be edited and determines that 20 a head image frame which is arranged at a head of an editing target area 21 included in the image data is not the first type image frame, said image 22 decoder decodes the head image frame, and each image frame appearing 23 between the head image frame and the first type image frame which 24 appears first after the head image frame; 25 said image encoder re-codes the image frames which are created by 26 decoding the head image frame and each image frame appearing between 27 the head image frame and the first type image frame which appears first 28 after the head image frame, and re-codes the head image frame into the 29 first type image frame, and re-codes any of the third type image frame 30 appearing after the head image frame into an image frame which is able to 31 be decoded without referring to an image frame arranged before the head 32 image frame, and wherein: 33 in a case where said image data analyzer determines that the head 34 image frame of the editing target area is not the first type image frame, the 35 image decoder decodes any of third type image frames that appear after a 36 first type image frame which appears first after the head image frame if any 37 of the third type image frames is an image frame which is to be decoded by

referring to an image frame which is arranged before the first type image

frame; and

38

39

40

said image encoder re-codes the image frame which is created by 41 42 decoding any of the third type image frame that appears after the first type image frame which appears first after the head image frame; and wherein 43 in a case where said image data analyzer determines that a second 44 GOP next to a first GOP to which a start point of an editing target area 45 belongs is not a closed GOP, said image coder converts the second GOP 46 into a closed GOP by converting frames in the editing target area between 47 an I picture at a head of the second GOP and a P picture such that the 48 49 second GOP includes no B picture. The image editing apparatus according to claim 6, 1 8 (Original). wherein when said image encoder re-codes the image frames which 2 are created by decoding each frame appearing between the head image 3 frame and the first type image frame which appears first after the head 4 image frame, said image encoder re-codes any of the third type image 5 frame that appears after the head image frame into the third type image 6 frame that is able to be decoded without referring to an image frame which 7 is arranged before the head image frame. 8 The image editing apparatus according to claim 6, wherein: 9 (Original). 1 in a case where said image data analyzer determines that the head 2 image frame of the editing target area is the first type image frame, said 3 image decoder decodes any of the third type image frame that appears after 4 5 the head image frame; and said image encoder re-codes the image frame which is created by 6 decoding any of the third type image frame that appears after the head 7 image frame into an image frame which is able to be decoded without 8 referring to an image frame which is arranged before the head image 9 10 frame.

Docket 06270007AA Serial No.: 10/052,521

8

9

10 (Original). The image editing apparatus according to claim 6, wherein: 1 in a case where said image data analyzer determines that the head 2 image frame of the editing target area is the first type image frame, said 3 image decoder decodes any of the third type image frame that appears after 4 the head image frame; and 5 said image encoder re-codes the image frame which is created by 6 decoding any of the third type image frame that appears after the head 7 8 image frame into the first type image frame. 11 (Original). The image editing apparatus according to claim 6, wherein: 1 in a case where said image data analyzer determines that the head 2 image frame of the editing target area is the first type image frame, said 3 image decoder decodes any of the third type image frame that appears after 4 5 the head image frame; and said image encoder re-codes the image frame which is created by 6 decoding any of the third type image frame that appears after the head 7 image frame into the third type image frame which is able to be decoded 8 without referring to an image frame which is arranged before the head 9 image frame. 10 12 (Canceled). 13 (Currently Amended). An image editing apparatus which edits image 1 data which has been coded in accordance with an image coding method, 2 wherein a plurality of image frames constituting the image data are divided 3 into groups, each image frame is coded into one of a first type image frame 4 which is created by coding based on data in the image frame, a second type 5 image frame which is created by performing inter-frame mono-directional 6 prediction based on a past image frame, and a third type image frame 7

which is created by performing inter-frame dual-directional prediction

9	based on a past image frame and a future image frame, and the image data
10	is coded so that a head frame of each group may be the first type image
11	frame, said apparatus comprising:
12	an image encoder which codes each of frames of image data into
13	one of the first type image frame, the second type image frame, and the
14	third type image frame in accordance with said image coding method;
15	an image decoder which decodes the image frame coded by said
16	image encoder; and
17	an image data analyzer which analyzes a picture header of a head
18	frame in the area to be edited and determines types of image frames
19	included in each group,
20	wherein said image data analyzer determines whether a first
21	condition that the first type image frame which appears first in an editing
22	target area included in the image data coded in accordance with said image
23	coding method is a head image frame which is arranged at a head of a
24	group, and
25	a second condition that the group is a closed group which does not
26	include the third type image frame which is to be decoded by referring to
27	an image frame included in a group which is arranged before the group are
28	satisfied or not; in accordance with a result of determining the first
29	condition and the second condition, said image decoder decodes any of the
30	third type image frame that appears after the first type image frame
31	appearing first in the editing target area and that needs to be re-coded; and
32	said image encoder re-codes the image frame which is created by decoding
33	any of the third type image frame that appears after the first type image
34	frame which appears first in the editing target area; wherein
35	said image coding method is an MPEG method;
36	each of the groups is a GOP of MPEG;
37	the first type image frame is an I picture;
38	the second type image frame is a P picture; and

39	the third type image frame is a B picture; and wherein
40	in a case where said image data analyzer determines that a second
41	GOP next to a first GOP to which a start point of an editing target area
42	belongs is not a closed GOP, said image coder converts the second GOP
43	into a closed GOP by converting frames in the editing target area between
44	an I picture at a head of the second GOP and a P picture such that the
45	second GOP includes no B picture.
1	14 (Original). The image editing apparatus according to claim 13, wherein
2	in a case where said image data analyzer determines that one of the first
3	condition and the second condition is not satisfied, said image decoder
4	decodes any of the third type image frame that appears after the first type
5	image frame which appears first in the editing target area; and
6	said image encoder re-codes the image data which is created by decoding
7	any of the third type image frame that appears after the first type image
8	frame which appears first in the editing target area.
1	15 (Original). The image editing apparatus according to claim 13, wherein
2	in a case where said image data analyzer determines that the first condition
3	is satisfied and the second condition is not satisfied, said image encoder
4	re-codes the image frame which is created by decoding any of the third
5	type image frame that appears after the first type image frame which
6	appears first in the editing target area into the first type image frame.
1	16 (Original). The image editing apparatus according to claim 13, wherein
2	in a case where said image data analyzer determines that the first condition
3	is satisfied and the second condition is not satisfied, said image encoder
4	re-codes the image frame which is created by decoding any of the third
5	type image frame that appears after the first type image frame which
6	appears first in the editing target area into the third type image frame

7 which is able to be decoded without referring to an image frame which is 8 arranged before the head image frame. 1 17 (Original). The image editing apparatus according to claim 13, wherein 2 in a case where said image data analyzer determines that the first condition and the second condition are satisfied, said image editing apparatus copies 3 4 the image frame which is created by decoding any of the third type image 5 frame that appears after the first type image frame which appears first in 6 the editing target area to the image data after being edited. 18 (Canceled). 19 (Currently Amended). An image editing method for editing image data 1 which has been coded in accordance with an image coding method, 2 3 wherein a plurality of image frames constituting the image data are divided 4 into groups, each image frame is coded into one of a first type image frame 5 which is created by coding based on data in the image frame, a second type 6 image frame which is created by performing inter-frame mono-directional prediction based on a past image frame, and a third type image frame 7 8 which is created by performing inter-frame dual-directional prediction 9 based on a past image frame and a future image frame, and the plurality of image frames are coded so that a head frame of each group may be the first 10 11 type image frame, said image editing method comprising: setting an editing target area in the image data which has been 12 coded in accordance with said image coding method; 13 determining whether a head group which is arranged at a head of 14 the editing target area is a closed group which does not include the third 15 type image frame which is to be decoded by referring to an image frame 16 included in a group which is arranged before the head group; and 17

converting a portion near the head of the editing target area into the

19	closed group in a case where said determining determines that the head
20	group is not the closed group:
21	determining whether any of the third type image frame included in
22	the head group of the editing target area is an image frame which is to be
23	decoded by referring to an image frame included in a group which is
24	arranged before the head group;
25	decoding any of the third type image frame determined as an image
26	frame which is to be decoded by referring to an image frame included in a
27	group which is arranged before the head group; and
28	coding any of the decoded third type image frame into an image
29	frame which is able to be decoded without referring to an image frame
30	included in a group which is arranged before the head group; and wherein
31	said image coding method is an MPEG method;
32	each of the groups is a GOP of MPEG;
33	the first type image frame is an I picture;
34	the second type image frame is a P picture; and
35	the third type image frame is a B picture; and
36	wherein in a case where it is determined that a second GOP next to
37	a first GOP to which a start point of an editing target area belongs is not a
38	closed GOP, said second GOP is converted into a closed GOP by
39	converting frames in the editing target area between an I picture at a head
4 0	of the second GOP and a P picture such that the second GOP includes no B
41	picture.
	20 (Canceled).
	21(Canceled).
1	22 (Currently Amended). An image editing method for editing image data

which has been coded in accordance with an MPEG method, said image

3	editing method comprising:
4	setting one or more editing target areas in the coded image data;
5	determining whether a head GOP which is arranged at a head of
6	each of the one or 5 more editing target areas is a closed GOP;
7	determining a picture type of a head image frame which is arranged
8	at the head of each editing target area;
9	detecting a GOP which needs to be re-coded, and an image frame
10	which is included in the GOP and needs to be re-coded in accordance with
11	a result of said determining whether a head GOP of each editing target area
12	is a closed GOP, and a result of said determining a picture type of a head
13	image frame of each editing target area; and
14	re-coding the detected image frame which needs to be re-coded,
15	after it is decoded,
16	determining a picture type of a next image frame which is arranged
17	next to the head image frame of each editing target area, in a case where
18	said determining whether a head GOP is a closed GOP determines that the
19	head GOP of each editing target area is not a closed GOP;
20	decoding the next image frame and following image frames which
21	are B pictures, in a case where said determining a picture type of a next
22	image frame determines that the next image frame is a B picture, after
23	decoding an image frame which is an I picture which is encountered first
24	when going back in a reverse direction from the head image frame, each
25	image frame between the encountered image frame and the head image
26	frame, and the head image frame;
27	re-coding each decoded image frame, and re-coding the image
28	frames which are created by decoding the following image frames which
29	are B pictures into image frames which are able to be decoded without
30	referring to an image frame which is arranged before the head image
31	frame; and
32	recording each of the image frames which are created by re-coding

33	the head image from and the fellowing image from a selicitude D
	the head image frame and the following image frames which are B pictures
34	after those image frame are decoded, and
35	wherein in a case where it is determined that a second GOP next to
36	a first GOP to which a start point of an editing target area belongs is not a
37	closed GOP, said second GOP is converted into a closed GOP by
38	converting frames in the editing target area between an I picture at a head
39	of the second GOP and a P picture such that the second GOP includes no B
40	<u>picture</u> .
	23 (Canceled).
1	24 (Original). The image editing method according to claim 22, further
2	comprising:
3	decoding the head image frame of each editing target area in a case
4	where said determining a picture type of a head image frame determines
5	that the head image frame is a P picture, and also decoding each image
6	frame appearing after the head image frame and before an image frame
7	which is an I picture which appears first after the head image frame; and
8	re-coding the image frames which are created by decoding the head
9	image frame and each image frame appearing after the head image frame,
10	and re-coding the image frame which is created by decoding the head
1	image frame into an image frame which is an I picture.
1	25 (Original). The image editing method according to claim 22, further
2	comprising:
3	expanding the image frame which needs to be re-coded by
4	decoding:
	-
5	creating a new GOP by re-coding the image frame which is
6	decoded by said expanding; and
7	concatenating the one or more editing target areas.

l	26 (Currently Amended). An image editing method for editing image data
2	which has been coded in accordance with an image coding method,
3	wherein a plurality of image frames constituting the image data are divided
4	into groups, each image frame is coded into one of a first type image frame
5	which is created by coding based on data in the image frame, a second type
6	image frame which is created by performing inter-frame mono-directional
7	prediction based on a past image frame, and a third type image frame
8	which is created by performing inter-frame dual-directional prediction
9	based on a past image frame and a future image frame, and the image data
10	is coded so that a head frame of each group may be the first type image
11	frame, said image editing method comprising:
12	setting an editing target area in the image data which has been
13	coded in accordance with said image coding method;
14	determining a type of a head image frame which is arranged at a
15	head of the editing target area;
16	decoding the head image frame of the editing target area and each
17	image frame appearing between the head image frame and the first type
18	image frame which appears first after the head image frame, in a case
19	where said determining a type determines that the head image frame is not
20	the first type image frame; and
21	re-coding the image frames created by decoding the head image
22	frame and each image frame appearing between the head image frame and
23	the first type image frame which appears first after the head image frame,
24	and re-coding the head image frame into the first type image frame, and
25	re-coding any of the third type image frame that appears after the head
26	image frame into an image frame which is able to be decoded without
27	referring to an image frame which is arranged before the head image
28	frame; wherein:
29	said image coding method is an MPEG method;

30	each of the groups is a GOP of MPEG;
31	the first type image frame is an I picture;
32	the second type image frame is a P picture;
33	the third type image frame is a B picture; and
34	wherein in a case where it is determined that a second GOP next to
35	a first GOP to which a start point of an editing target area belongs is not a
36	closed GOP, said second GOP is converted into a closed GOP by
37	converting frames in the editing target area between an I picture at a head
38	of the second GOP and a P picture such that the second GOP includes no B
39	picture.
1	27 (Currently Amended). An image editing method for editing image data
2	which has been coded in accordance with an image coding method,
3	wherein a plurality of image frames constituting the image data are divided
4	into groups, each image frame is coded into one of a first type image frame
5	which is created by coding based on data in the image frame, a second type
6	image frame which is created by performing inter-frame mono-directional
7	prediction based on a past image frame, and a third type image frame
8	which is created by performing inter-frame dual-directional prediction
9	based on a past image frame and a future image frame, and the image data
10	is coded so that a head frame of each group may be the first type image
11	frame, said image editing method comprising:
12	setting an editing target area in the image data which has been
13	coded in accordance with said image coding method;
14	determining a type of a head image frame which is arranged at a
15	head of the editing target area;
16	decoding the head image frame of the editing target area and each
17	image frame appearing between the head image frame and the first type
18	image frame which appears first after the head image frame, in a case
19	where said determining a type determines that the head image frame is not

20 the first type image frame; and re-coding the image frames created by decoding the head image 21 frame and each image frame appearing between the head image frame and 22 the first type image frame which appears first after the head image frame, 23 and re-coding the head image frame into the first type image frame, and 24 re-coding any of the third type image frame that appears after the head 25 image frame into an image frame which is able to be decoded without 26 referring to an image frame which is arranged before the head image 27 frame, and further comprising: 28 decoding any of third type image frames that appear after the first 29 type image frame which appears first after the head image frame if any of 30 the third type image frame is an image frames which is to be decoded by 31 referring to an image frame which is arranged before the first type image 32 frame, in a case where said determining a type determines that the head 33 image frame of the editing target area is not the first type image frame; and 34 re-coding the image frame which is created by decoding any of the 35 third type image frame that appears after the first type image frame which 36 appears first after the head image frame; wherein: 37 said image coding method is an MPEG method; 38 each of the groups is a GOP of MPEG; 39 the first type image frame is an I picture; 40 the second type image frame is a P picture; 41 the third type image frame is a B picture; and 42 wherein in a case where it is determined that a second GOP next to 43 a first GOP to which a start point of an editing target area belongs is not a 44 closed GOP, said second GOP is converted into a closed GOP by 45 converting frames in the editing target area between an I picture at a head 46 of the second GOP and a P picture such that the second GOP includes no B 47 48 picture.

28 (Original). The image editing method according to claim 26, further 1 comprising 2 re-coding the image frames created by decoding the head image 3 frame and each image frame appearing between the head image frame and 4 the first type image frame which appears first after the head image frame, 5 and re-coding any of the third type image frame that appears after the head 6 image frame into the third type image frame which is able to be decoded 7 without referring to an image frame which is arranged before the head 8 image frame. 9 29 (Original). The image editing method according to claim 26, further 1 2 comprising: decoding any of the third type image frame that appears after the 3 head image frame of the editing target area in a case where said 4 determining a type determines that the head image frame is the first type 5 image frame; and 6 re-coding the image frame which is created by decoding any of the 7 third type image frame that appears after the head image frame into an 8 image frame which is able to be decoded without referring to an image 9 frame which is arranged before the head image frame. 10 30 (Original). The image editing method according to claim 26, further 1 comprising: 2 decoding any of the third type image frame that appears after the 3 head image frame of the editing target area in a case where said 4 determining a type determines that the head image frame is the first type 5 image frame; and 6 re-coding the image frame which is created by decoding any of the 7 third type image frame that appears after the head image frame into the 8 first type image frame. 9

Docket 06270007AA Serial No.: 10/052,521

17

1 31 (Original). The image editing method according to claim 26, further 2 comprising: 3 decoding any of the third type image frame that appears after the head image frame of the editing target area in a case where said 5 determining a type determines that the head image frame is the first type 6 image frame; and 7 re-coding the image frame which is created by decoding any of the 8 third type image frame that appears after the head image frame into the 9 third type image frame which is able to be decoded without referring to an 10 image frame which is arranged before the head image frame. 32 (Canceled). 1 33 (Currently Amended). An image editing method for editing image data 2 which has been coded in accordance with an image coding method, 3 wherein a plurality of image frames constituting the image data are divided into groups, each image frame is coded into one of a first type image frame 4 which is created by coding based on data in the image frame, a second type 5 6 image frame which is created by performing inter-frame mono-directional prediction based on a past image frame, and a third type image frame 7 8 which is created by performing inter-frame dual-directional prediction 9 based on a past image frame and a future image frame, and the image data 10 is coded so that a head frame of each group may be the first type image frame, said image editing method comprising: 11 setting an editing target area in the image data which has been 12 coded in accordance with said image coding method; 13 determining whether a first condition that the first type image 14 15 frame which appears first in the editing target area is a head image frame which is arranged at a head of a group and a second condition that the 16

group is a closed group which does not include the third type image frame

18	which is to be decoded by referring to an image frame included in a group
19	which is arranged before the group are satisfied or not;
20	decoding any of the third type image frame that appears after the
21	first type image frame which appears first in the editing target area and that
22	needs to be re-coded, in accordance with a result of determining the first
23	condition and the second condition; and
24	re-coding the image frame which is created by decoding any of the
25	third type image frame that appears after the first type image frame which
26	appears first in the editing target area; wherein:
27	said image coding method is an MPEG method;
28	each of the groups is a GOP of MPEG;
29	the first type image frame is an I picture;
30	the second type image frame is a P picture;
31	the third type image frame is a B picture; and
32	wherein in a case where it is determined that a second GOP next to
33	a first GOP to which a start point of an editing target area belongs is not a
34	closed GOP, said second GOP is converted into a closed GOP by
35	converting frames in the editing target area between an I picture at a head
36	of the second GOP and a P picture such that the second GOP includes no B
37	picture.
1	34 (Original). The image editing method according to claim 33, further
2	comprising:
3	decoding any of the third type image frame that appears after the
4	first type image frame which appears first in the editing target area, in a
5	case where said determining determines that one of the first condition and
6	the second condition is not satisfied; and
7	re-coding the image frame which is created by decoding any of the
8	third type image frame that appears after the first type image frame which
9	appears first in the editing target area.

35 (Original). The image editing method according to claim 33, further 1 comprising 2 re-coding the image frame which is created by decoding any of the 3 third type image frame that appears after the first type image fame which 4 appears first in the editing target area into the first type image frame, in a 5 case where said determining determines that the first condition is satisfied, 6 and the second condition is not satisfied. 7 36 (Original). The image editing method according to claim 33, further 1 comprising 2 re-coding the image frame which is created by decoding any of the 3 third type image frame that appears after the first type image fame which 4 appears first in the editing target area into the third type image frame 5 which is able to be decoded without referring to an image frame which is 6 arranged before the head image frame, in a case where said determining 7 determines that the first condition is satisfied, and the second condition is 8 9 not satisfied. 37 (Original). The image editing method according to claim 33, further 1 2 comprising copying the image frame which is created by decoding any of the third type 3 image frame that appears after the first type image frame which appears 4 first in the editing target area to the image data after being edited, in a case 5 where said determining determines that the first condition and the second 6 7 condition are satisfied. 38 (Currently Amended). An image editing method for editing image data 1 which has been coded in accordance with an image coding method, 2 wherein a plurality of image frames constituting the image data are divided 3

into groups, each image frame is coded into one of a first type image frame
which is created by coding based on data in the image frame, a second type
image frame which is created by performing inter-frame mono-directional
prediction based on a past image frame, and a third type image frame
which is created by performing inter-frame dual-directional prediction
based on a past image frame and a future image frame, and the image data
is coded so that a head frame of each group may be the first type image
frame, said image editing method comprising:
setting an editing target area in the image data which has been
coded in accordance with said image coding method;
determining whether a first condition that the first type image
frame which appears first in the editing target area is a head image frame
which is arranged at a head of a group and a second condition that the
group is a closed group which does not include the third type image frame
which is to be decoded by referring to an image frame included in a group
which is arranged before the group are satisfied or not;
decoding any of the third type image frame that appears after the
first type image frame which appears first in the editing target area and that
needs to be re-coded, in accordance with a result of determining the first
condition and the second condition; and
re-coding the image frame which is created by decoding any of the
third type image frame that appears after the first type image frame which
appears first in the editing target area, further comprising
inserting a first or second type image frame which appears
immediately before a head image frame which is arranged at the head of
the editing target area into the head of the editing target area, in a case
where the head image frame is the third type image frame; wherein:
said image coding method is an MPEG method;
each of the groups is a GOP of MPEG;
the first type image frame is an I picture;

34 the second type image frame is a P picture; the third type image frame is a B picture; and 35 wherein in a case where it is determined that a second GOP next to 36 a first GOP to which a start point of an editing target area belongs is not a 37 38 closed GOP, said second GOP is converted into a closed GOP by 39 converting frames in the editing target area between an I picture at a head 40 of the second GOP and a P picture such that the second GOP includes no B 41 picture. 39 (Canceled). 1 40 (Currently Amended). An image editing apparatus which edits image data which has been coded in accordance with an image coding method, 2 wherein a plurality of image frames constituting the image data are divided 3 into groups, each image frame is coded into one of a first type image frame 4 5 which is created by coding data in the image frame, a second type image frame which is created by performing inter-frame mono-directional 6 7 prediction based on a past image frame and coding a difference obtained 8 by the prediction, and a third type image frame which is created by 9 performing inter-frame dual directional prediction based on a past image frame and a future image frame and coding differences obtained by the 10 prediction, and the plurality of image frames are coded so that a head 11 frame of each group may be the first type image frame, said apparatus 12 comprising: 13 an image coder which codes each of frames of image data into one 14 of the first type image frame, the second type image frame, and the third 15 type image frame; 16 an image decoder which decodes the image frame coded by the 17 18 image coder; and

an image data analyzer which detects a head group which is

20	arranged at a head of an editing target area included in the image data and
21	determines types of image frames included in each group,
22	wherein: said image data analyzer determines whether or not the
23	head group which is arranged at a head of the editing target area included
24	in the image data is a closed group which does not include the third type
25	image frame which is to be decoded by referring to an image frame
26	included in a group which is arranged before the head group; and
27	in a case where said image data analyzer determined the head group
28	is not the closed group which does not include the third type image frame,
29	said image coder converts a portion near the head of the editing target area
30	into the closed group, wherein:
31	said image coding method is an MPEG method;
32	each of the groups is a GOP of MPEG;
33	the first type image frame is an I picture;
34	the second type image frame is a P picture; and
35	the third type image frame is a B picture; and wherein
36	in a case where said image data analyzer determines that a second
37	GOP next to a first GOP to which a start point of an editing target area
38	belongs is not a closed GOP, said image coder converts the second GOP
39	into a closed GOP by converting frames in the editing target area between
40	an I picture at a head of the second GOP and a P picture such that the
41	second GOP includes no B picture.
1	41 (Currently Amended). An image editing apparatus which edits
2	image data which has been coded in accordance with an MPEG method,
3	said apparatus comprising:
4	image data analyzing means for analyzing a structure of image
5	frames included in each GOP of the image data, and determining an
6	attribute of each GOP and picture types of image frames included in each
7	GOP:

8	conversion point detecting means for detecting a GOP which needs
9	to be re-coded from an editing target area of the image data, and an image
10	frame which needs to be re-coded from the detected GOP;
11	image decoding means for decoding the image frame which needs
12	to be re-coded detected by said conversion point detecting means;
13	GOP converting means for creating a new GOP by re-coding the
14	image frame decoded by said image expanding means; and
15	image data concatenating means for concatenating a plurality of
16	image data which are cut out as editing target areas,
17	wherein: said image data analyzing means detects a head GOP
18	which is arranged at a head of the editing target area and determines
19	whether or not the head GOP which is arranged at the head of the editing
20	target area is a closed GOP; and
21	in a case where said image data analyzing means determines that
22	the head GOP of the editing target area is not a closed GOP, said GOP
23	converting means converts a portion near the head of the editing target area
24	into a closed GOP including no B picture, wherein:
25	said image coding method is an MPEG method;
26	each of the groups is a GOP of MPEG;
27	the first type image frame is an I picture;
28	the second type image frame is a P picture; and
29	the third type image frame is a B picture; and wherein
30	in a case where said image data analyzer determines that a second
31	GOP next to a first GOP to which a start point of an editing target area
32	belongs is not a closed GOP, said image coder converts the second GOP
33	into a closed GOP by converting frames in the editing target area between
34	an I picture at a head of the second GOP and a P picture such that the
35	second GOP includes no B picture.