

Robert Lorenz, Thanippuli Appuhamilage Dimuth Indeewara, Elsa Maria Jose Chair of Econometrics and Statistics, esp. in the Transport Sector

Predict Presence of a Heart Disease

Dresden, Applied Multivariate Statistics / July 17th, 2024

Data

Heart Disease Data

• Region:

- Cleveland, Hungary, Switzerland, and the VA Long Beach
- Only using Cleveland dataset 303 observations

76 attributes – using a subset of 14

- 6 numeric
- 8 categorical

Target Value

- presence of heart disease in the patient
- Values: 0 absence and 1, 2, 3, 4 presence

Missing Values:

- 6 Values
- Removed → 297 observations left

Variable Name	Description	Туре
age	age in years	numeric
sex	sex (1 = male; 0 = female)	categorical
ср	chest pain type(1: typical angina - 2: atypical angina - 3: non-anginal pain - 4: asymptomatic)	categorical
trestbps	resting blood pressure (on admission to the hospital)	numeric
chol	serum cholestoral	numeric
fbs	fasting blood sugar > 120 mg/dl	categorical
restecg	resting electrocardiographic results	categorical
thalach	maximum heart rate achieved	numeric
exang	exercise induced angina	categorical
oldpeak	ST depression induced by exercise relative to rest	numeric
slope	the slope of the peak exercise ST segment	categorical
са	number of major vessels (0-3) colored by flourosopy	numeric
thal	3 = normal; 6 = fixed defect; 7 = reversable defect	categorical
num	diagnosis of heart disease	target

Data

Dimension Reduction: Principal Component Analysis (PCA)

Cumulative Percentage of PCA

First four principal components are chosen, Since first four Principal components capture majority of variance (80+%)

- PC1 Strong positive influence from thalach, Strong negative from age, oldpeak & ca
- PC2 Strong positive influences from *chol* and *thalach*
- PC3 Strong positive influences from trestbps and strong negative from chol
- PC4 Strong positive influences from oldpeak and strong negative from age

trestbps, chol, thalach: Have substantial contributions across the dimensions, as indicated by their positions and cos2 values

age, ca, oldpeak: Contribute moderately, evident from their positioning and cos2 values.

Dimension Reduction: Factor Analysis Model

P = 6, K = 2, d = 4

Principal Component Method

Estimated loadings after varimax

	Factor 1	Factor 2
Age	- 0.585	-0.494
Trestbps	- 0.151	-0.652
Chol		-0.773
Thalach	0.787	
Oldpeak	- 0.685	
Ca	- 0.637	- 0.197

	Factor 01	Factor 02
SS loadings	1.866	1.313
Proportion Var	0.311	0.219
Cumulative Var	0.311	0.530

Maximum likelihood Method

	Communality	Uniqueness
Age	0.526	0.474
Trestbps	0.177	0.823
Chol	0.099	0.900
Thalach	0.995	0.005
Oldpeak	0.168	0.832
Ca	0.232	0.768

	Factor 01	Factor 02
SS loadings	0.526	0.474
Proportion Var	0.177	0.823
Cumulative Var	0.099	0.900

In the ML method, the loadings for before and after varimax rotation indicated the similar results

The p-value (0.000977) suggests that, not enough factors to capture the full dimensionality of the data set

Correspondence Analysis

CP vs NUM

Typical angina is most closely associated with the highest level of heart disease

REST ECG vs NUM

individuals with st wave abnormal findings are likely to show the highest risk of heart disease

Correspondence Analysis

THALLIUM STRESS vs NUM

Down sloping ECG results are associated with higher levels of heart disease, indicating more severe conditions.

Fixed defects in test results are associated with higher levels of heart disease, indicating more severe conditions.

Discriminant Analysis (DA)

Comparison of DA Algorithms Training Accuracy: no Cross-Validation(CV) vs. CV

	Original Data	PCA	Original Data - CV	PCA - CV
LDA with prior	0.852	0.848	0.838	0.838
QDA with prior	0.862	0.862	0.835	0.805
LDA without prior	0.845	0.845	0.842	0.839
QDA without prior	0.862	0.855	0.835	0.812

Figure: Distribution of variable num of data with PCA LAD with prior

Figure: Pairwise with (left) and without (right) prior for original data and data with PCA for LDA and QDA

Sources

Janosi, Andras, Steinbrunn, William, Pfisterer, Matthias, and Detrano, Robert. (1988). Heart Disease. UCI Machine Learning Repository. https://doi.org/10.24432/C52P4X.

Pett, M. A., Lackey, N. R., & Sullivan, J. J. Making sense of factor analysis. Sage. 2003

Watkins, Marley W. A step-by-step guide to exploratory factor analysis with R and RStudio. Routledge, 2020.

