Funzioni - Sommario

Tutto sulle funzioni (in generale, non sullo specifico delle funzioni di variabile reale).

A. Funzioni

Funzioni

Funzioni - Definizione base, esempi, definizione di immagine, funzione suriettiva, iniettiva; funzione composta; l'immagine di un pezzo di dominio; funzione inversa, teorema sulle funzioni inverse.

DEF 1. Funzione

Siano,

- A, B due insiemi
- f una "legge", ovvero una specie di predicato, oppure una relazione speciale che ad ogni valore di A associa uno e uno solo valore di B;
 - Cioè se $x \in A$, allora $\exists ! y \in B$ (si legge esiste solo un valore di y in B) è associato a x (f(x) = y)

DEF 1. La terna (A, B, f) viene definita come **funzione**.

SUBDEF 1.1. L'insieme A si dice il **dominio** della *funzione*,

SUBDEF 1.2. L'insieme B si dice il **codominio** della *funzione*,

SUBDEF 1.3. La "legge" f è una **regola** che ad ogni elemento x del dominio A associa uno e uno solo elemento y del codominio B.

DEFINIZIONE ESPLICITA.

Con la scrittura compatta la terna può essere definita *esplicitamente* anche mediante la seguente notazione.

$$f:A\mapsto B$$

ESEMPIO 1.1.

Siano $A = \{ \text{Persone in quest'aula} \}, B = \{ \text{Comuni italiani} \}$ e $f: x \mapsto \text{comuni di residenza};$ allora si rappresenta il grafico della funzione (A,B,f) nel seguente modo:

DEF 1.1.

In questo corso si studieranno le cosiddette funzioni di reale variabile, ovvero le funzioni $f:A\mapsto B$, con $A,B\subseteq\mathbb{R}$.

OSS 1.1 Secondo questa definizione di *funzione*, le sue proprietà non cambiano solamente per la legge f, ma anche per gli *insiemi* A, B.

OSS 1.2. Si osserva il seguente grafico:

Si nota che la parte rossa è funzione, invece la parte verde non lo è, in quanto ci sono più elementi di B associati ad un elemento di A; quindi si parte da un valore a_n e tutti devono avere un solo corrispondente b_n .

DEF 2. Valore immagine

Sia $f: A \mapsto B$ una funzione.

Se $x \in A$, il valore $f(x) \in B$ viene definita come il **valore immagine di** x, una specie di proiezione.

DEF 2.1. L'insieme immagine

Riprendendo i presupposti di prima, si definisce l'insieme di tutti i *valori immagine* come **l'insieme immagine** e lo si indica con

ESEMPIO 2.1.1. Siano $A=\mathbb{N}, B=\mathbb{N}, f(n)=2n.$ $f(\mathbb{N})=\{0,2,4,\ldots\}=\mathbb{P}$ (l'insieme dei numeri pari);

OSS 2.1.1.1. Si nota che $f(A) \subseteq B$.

Ecco il grafico della funzione f;

DEF 3. Funziona suriettiva e iniettiva

DEF 3.1. Funzione suriettiva (o surgettiva)

Se

$$f(A) = B$$

Allora la funzione f si dice **suriettiva** (oppure come lo chiamano i pisani, **surgettiva**).

ESEMPIO 3.1. La funzione f(n)=2n (tratto dall'**ESEMPIO 2.1.1.**) non è surgettiva se si definisce $A=\mathbb{N}$; invece lo è se si definisce $A=\mathbb{P}$.

DEF 3.2. Funzione iniettiva (o ingettiva)

Siano

$$f:A\mapsto B; x_1,x_2\in A$$

Supponendo che

$$x_1
eq x_2 \implies f(x_1)
eq x_2$$

Allora si dice che la funzione f è **iniettiva** (oppure in pisano **ingettiva**).

ESEMPIO 4.1. Siano

$$A = [0, \infty) \ B = [0, \infty) \ f: x \mapsto x^2$$

(dove la notazione $[0,\infty)$ indica tutti i numeri $\forall x\in\mathbb{R}:x\geq 0$). La funzione f(x) è suriettiva, in quanto $\forall y\geq 0, \exists x\geq 0: x^2=y$. Inoltre è anche *iniettiva*.

DIM. Si dimostra che f è iniettiva; se $0 \le x_1 < x_2$, (quindi $x_1 \ne x_2$) allora moltiplicando da ambo le parti per x_1 e per x_2 , si ottengono:

$$egin{aligned} ext{I. } 0 \leq x_1 < x_2 \ x_1^2 < x_1 x_2 \ ext{II. } 0 \leq x_1 < x_2 \ x_1 x_2 < x_2^2 \ ext{Pertanto} \ \end{aligned}$$

ESEMPIO 4.2. Riprendendo la medesima funzione $f: x \mapsto x^2$ dall'**ESEMPIO 4.1.**, però cambiando gli insiemi $A, B = \mathbb{R}$, la funzione f non è più $n\acute{e}$ suriettiva $n\acute{e}$ iniettiva;

DIM. Si dimostra che non è suriettiva prendendo un valore y=f(x)=-1; si dimostra che $\not\exists x: x^2=-1$ (guardando il grafico), pertanto $-1 \not\in f(\mathbb{R})$.

Dopodiché si dimostra che non è neanche iniettiva tramite un *controesempio*; prendiamo $x_1=-1, x_2=1$ (quindi $x_1\neq x_2$) e i *valori immagini* di x_1, x_2 sono $f(-1)=-1^2=1$, $f(1)=1^2=1$, pertanto f(-1)=f(1).

DEF 3.3. Funzione biiettiva

Se una funzione $f:A\mapsto B$ è sia *iniettiva* e sia *suriettiva*, allora si dice che f è **biiettiva**

DEF 4. Funzione composta

Siano

$$f:A\mapsto B$$

 $q:B\mapsto C$

Si definisce $g \circ f$ la **funzione composita** "g dopo f".

$$g \circ f : A \mapsto C$$

 $x \mapsto g(f(x))$

Si illustra la funzione composita tramite il seguente diagramma:

ESEMPIO 5.1. Siano

$$f: \mathbb{R} \mapsto \mathbb{R}, \, g: \mathbb{R} \mapsto \mathbb{R} \ f: x \mapsto x^2, \, g: y \mapsto y+2$$

Allora

$$(g\circ f)(x)=g(f(x))=g(x^2)=x^2+2 \ (f\circ g)(x)=f(g(x))=f(x+2)=(x+2)^2$$

OSS 5.1.1. Ovviamente da questo esempio si nota che *non* è *sempre vero* che $f \circ g = g \circ f$.

DEF 5. L'immagine di un pezzo del dominio

Sia $f: A \mapsto B$, $A' \subseteq A$; allora si definisce

$$f(A') = \{f(x): x \in A'\}$$

come l'immagine di un pezzo del dominio A.

ESEMPIO 6.1. Si rappresenta il grafico della funzione $f : \mathbb{R} \to \mathbb{R}$, $f : x \mapsto x^2 + 3$. Si vuole trovare (e rappresentare) f([1,2]).

5

Dal grafico si evince chiaramente che f([1,2]) = [4,7].

DEF 6. La funzione inversa

Sia

$$f:A\mapsto B$$

Supponiamo che esista una funzione $g: B \mapsto A$, tale che

$$g\circ f=\mathrm{id}_A:A\mapsto A\ f\circ g=\mathrm{id}_B:B\mapsto B$$

, ove la funzione d'identità su un insieme A viene rappresentata da $\mathrm{id}_A:x\mapsto x$, si dice che la funzione g è la **funzione inversa di** f. Si illustra la funzione inversa di f con un diagramma.

TEOREMA 1. L'esistenza della funzione inversa f^{-1}

Una funzione $f:A\mapsto B$ ha la sua inversa

$$f^-1:B\mapsto A$$

se e solo se è biettiva, ovvero se è entrambi iniettiva e suriettiva.

DEF 7. Insieme contro immagine

Sia

$$f:A\longrightarrow B$$

ove $\tilde{A} \subseteq A, \tilde{B} \subseteq B$.

Allora definisco l'insieme contro immagine

$$f^\leftarrow(ilde{B})=\{x\in A: f(a)\in ilde{B}\}$$

ovvero gli elementi di A tali per cui le loro immagini f(a) appartengono all'insieme \tilde{B} .

DEF 8. Funzione monotona, crescente o decrescente.

DEF 8. Sia

$$f:A\longrightarrow B$$

e diciamo che questa sia **monotona** se sussistono una delle seguenti condizioni:

$$egin{aligned} & ext{i.} \ orall x, y \in A; x \leq y \implies f(x) \leq y \ & ext{ii.} \ orall x, y \in A; x < y \implies f(x) < y \ & ext{iii.} \ orall x, y \in A; x \leq y \implies f(x) \geq y \ & ext{iv.} \ orall x, y \in A; x < y \implies f(x) > y \end{aligned}$$

in particolare,

- se sussiste la i., allora la funzione è crescente;
- invece per la ii., la funzione si dice **strettamente crescente**.
- Analoghi i discorsi per iii, iv. in cui diciamo che la funzione è **decrescente o strettamente decrescente.

DEF 9. Funzione pari e dispari

PREMESSA. Siano $A, B \subseteq \mathbb{R}$, sia A simmetrico rispetto all'origine (ovvero $\forall x \in A, -x \in A$).

Sia la funzione f

$$f:A\longrightarrow B$$

e la chiamo:

DEF 9.1. Una funzione pari se accade che

$$f(x) = f(-x)$$

DEF 9.2. Una funzione dispari se

$$f(x) = -f(-x)$$

ESEMPIO 9.1. Osserviamo la funzione potenza (Funzioni di potenza, radice e valore assoluto, **DEF 1.1.**) $p_n(x)$.

La definizione appena data da noi ci "suggerisce" che per n pari, p_n è una funzione pari; similmente p_n è dispari se n è dispari.

DEF 10. Funzione periodica

DEF 10. Sia T>0, $A\subseteq\mathbb{R}$ tale che

$$orall k \in \mathbb{Z}, orall x \in A; x+Tk \in A$$

Sia ora una funzione f del tipo

$$f:A\longrightarrow \mathbb{R}$$

è periodica se è vera che

$$\forall x, k; f(x) = f(x + Tk)$$

ESEMPIO 10.1. Le Funzioni trigonometriche sono periodiche: infatti secondo la **PROP 2.3.**, abbiamo $T=2\pi$. Ovvero

$$\sin(x) = \sin(x + 2\pi k), orall k \in \mathbb{Z}$$

analogo il discorso per cos.

DEF 11. Massimo e minimo assoluto

#Definizione

DEF 11.1. (Punto di massimo e minimo assoluto)

Sia $f:E\longrightarrow \mathbb{R}$, $x_0\in E$.

Allora definiamo x_0 punto di massimo assoluto se abbiamo

$$\forall x \in E, f(x) \leq f(x_0)$$

Alternativamente è punto di minimo assoluto se abbiamo

$$\forall x \in E, f(x) \geq f(x_0)$$

#Definizione

DEF 11.2. Se x_0 è punto di massimo (minimo) assoluto, allora il valore immagine (ee4c92) $f(x_0)$ si dice massimo (minimo) assoluto della funzione.

ATTENZIONE! Notiamo che se possiamo avere più di uno *punti di massimo* (minimo), ci ricordiamo che il *massimo* (minimo) della funzione è l'*immagine* del punto: dunque in quanto tale può esistere un unico *valore massimo* dell'insieme immagine f(E).

#Esempio

Esempio 11.1. Funzione \sin

Sia $f(x) = \sin x$.

Allora sappiamo che i punti di massimo di \sin è costituita dalla classe di equivalenza

$$\left[\frac{\pi}{2}\right]_{=2\pi}$$

Analogamente i *punti di minimo* di sin sono

$$\left[-rac{\pi}{2}
ight]_{\equiv 2\pi}$$

10

Tuttavia il massimo e minimo di \sin sono -1, 1; infatti

$$-1 \leq \sin x \leq 1, orall x \in \mathbb{R}$$

L'illustrazione di questo esempio mediante grafici è lasciato al pubblico per esercizio.

#Esempio

Esempio 11.2. Funzione con dominio ristretto

Guardiamo alla funzione $x_{\mid [0,1[}$, ovvero una funzione del tipo

$$f:[0,1[$$
 $\longrightarrow \mathbb{R}$

Notiamo che f non ha massimo, perché f([0,1[)=[0,1[dunque f(E) non ha \max (anche se resta che esiste \sup).

Invece f ha minimo con f(0) = 0.

Anche questo esempio è lasciato al pubblico da illustrare per esercizio.

Esercizio 11.3. Funzione $\frac{1}{x}$

Si lascia al lettore verificare se $\frac{1}{x}$ ha massimo e/o minimo per il suo dominio.

B. Esercizi sulle funzioni

Esercizi sulle funzioni

Alcuni esercizi misti sulle funzioni

0. Info

Questo appunto contiene degli esercizi misti sull'argomento delle Funzioni. Notare che alcuni esercizi potrebbe richiedere già di essere preparati nell'argomento delle *funzioni di variabile reale*, ovvero Funzioni di potenza, radice e valore assoluto e/o Funzioni trigonometriche.

1. Esercizi misti proposti da D.D.S.

Qui si propone degli esercizi misti sulle funzioni svolte durante le lezioni dell'A.A. 2023-2024.

ESERCIZIO 1.a. Sia

$$f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2 + x - 1$$

Si determini:

$$f(0), \{f(n), n \in \mathbb{N}\}, f([1,2]), f(3x) \ f \circ f, (f(x))^2, f(x^2), f^{\leftarrow}([2,4])$$

Con il grafico della funzione da disegnare.

ESERCIZIO 1.b. Sia

$$\sin:\mathbb{R}\longrightarrow [-1,1]$$

Determinare $\sin([0, \frac{3}{4}\pi])$.

ESERCIZIO 1.c. Data la funzione arcsin, trovare

$$\arcsin^\leftarrow([0,rac{1}{2}])$$

ESERCIZIO 1.d. Data la funzione

$$f(x) = \frac{|x+1|}{x}$$

Disegnare f(x) e determinare

$$f^\leftarrow(]0,+\infty[)$$

2. Svolgimento degli esercizi

Se un giorno avessi la voglia di farlo, mi sistemerei pure lo svolgimento e la soluzione di questi esercizi. Però questo sarebbe da vedere.