Lecture 11: Prop. formulas, Truth tables, demantic Implications

Theorem

Any Boolean hunchion $f = hT_i F_i^y$ has a peop. bornula repr. f: f: e. $f|_{X_i=u_i} = f(v_i - u_i)$

bor any υ, ... υη Ε ΑΤ, Ε

f(υ, ... νη | def (ν, η ν2) νν3

Ψ= (χ, ηχ2) νχ3

literal on D is Let 52 = 1x, -- xn 3. either x: or 7x; Let $u \in \Lambda T, FY$. Then $x_i^{u} = \begin{bmatrix} x_i & i \neq u = r \\ 7x_i & i \neq u = F \end{bmatrix}$ is a literal.

Let $v \in AT_i F 3^n$. Consider $A \times i = 4$ not. Let's illustrate this. Assume n=2 and u=(T,F) $x_1' = x_1$ $x_2^{v_2} = 7x_2$ $y = -x_1 \wedge 7x_2$ Claim For any uchties, $\varphi_{1}|_{x_{1}=q,\ldots,x_{n}=u_{n}}$

Hole that $f(v_1...v_n) = \left(\begin{array}{c} V \\ V \\ V \end{array} \right) \left(\begin{array}{c} V \\ V \end{array} \right) \left$ Xi is a statement eaging that Xi is equal to 4

Definition

A formula 4 is in Disjurtice normal form

if 4=UAL (i.e. its a disj of conj. of (iterals)

A conj. of literals is called a Learn

A formula 4 is in conjumental Loren it φ= NUL And a disjunctions of literals is a clouse. Exercis We showed that any Boolean function has a DNF show that it has a CNF. 7((x ry) v (y rz))~ (7(x ry)) ~ (7(y rz))~ ~ (1xX1y) ~ (2yu 22)
CHT

Let's fix some
$$f: T_i F_j^* \rightarrow T_i F_j$$

We showed that there are $l_{ij} > s.t$
 $f(v_i, v_n) = \begin{pmatrix} v & \lambda \\ v_i & v_i \end{pmatrix} \Big|_{x_i = v_i, \dots, x_n = v_n}$

Note that

 $\left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{1}{2} \left(\frac{v_i}{v_i} \right) \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_i}{v_i} \right) \Big|_{x_i = v_i, \dots, x_n = v_n} = \left(\frac{v_$