

PurdueX: 416.2x Probability: Distribution Models & Continuous Random Variables

■ Bookmarks

- Welcome
- ▼ Unit 7: Continuous Random Variables

L7.1: Probability Density Functions

L7.2: Cumulative
Distribution Functions

L7.3: Jointly Distributed Continuous Random Variables

L7.4: Independent Continuous Random Variables

L7.5: Practice

L7.6: Quiz Quiz

 Unit 8: Conditional Distributions and Expected Values Unit 7: Continuous Random Variables > L7.6: Quiz > Unit 7: Quiz

Unit 7: Quiz

☐ Bookmark this page

Unit 7: Quiz

The problems in the quiz will be automatically graded.

You are given only **ONE** attempt for each problem. You will be able to see the solution after you submit your answers.

If the answer is numeric and has more than 4 decimal places, just give your answers to **4 decimal places (0.0001 accuracy)** unless otherwise stated.

e.g. for 0.123456... you just need to round it up to 0.1235

Problem 1

(A)

3/3 points (graded)

1. Suppose that \boldsymbol{X} is a random variable with density function

$$f_X(x) = rac{2}{3} e^{-(2/3)x} ext{ for } x > 0$$

- Unit 9: Models of Continuous Random Variables
- Unit 10: Normal
 Distribution and Central
 Limit Theorem (CLT)
- Unit 11: Covariance,
 Conditional Expectation,
 Markov and Chebychev
 Inequalities
- Unit 12: Order Statistics, Moment Generating Functions, Transformation of RVs

- and $f_X(x)=0$ otherwise.
- **1a.** Calculate P(0.5 < X < 2.5).

0.5276557

1b. Calculate P(X=2.5). (Why do you get that value?)

0

1c. Find a formula for the CDF $F_X(x)$, calculate $F_X(1.5)$.

$$F_X(1.5) = 0.6321206$$

Submit

You have used 1 of 1 attempt

Problem 2

5/5 points (graded)

- **2.** Suppose that X is a continuous random variable with a probability density function that is a positive constant on the interval [8, 20], and is 0 otherwise.
- **2a.** What is the positive constant mentioned above?

1/12

2b. Calculate $P(10 \le X \le 15)$.

5/12

2c. Find an expression for the CDF $F_X(x)$. Calculate the following values.

$$F_X(7) = \boxed{0}$$

$$F_X(11) = 1/4$$

$$F_X(30) = \boxed{1}$$

Submit

You have used 1 of 1 attempt

Problem 3

3/3 points (graded)

3. Suppose that $oldsymbol{X}$ has CDF

$$F_X(x)=1-e^{-5x} ext{ for } x>0$$

and $F_X(x)=0$ otherwise.

3a. What is the 25th percentile of X? I.e., what is the value "a" such that $P(X \le a) = 1/4$?

0.05753641

3b. What is the median (also called 50th percentile) of X, i.e., what is the value "a" such that $P(X \le a) = 1/2$?

0.13862944

3c. What is the 75th percentile of X?

0.27725887

Submit

You have used 1 of 1 attempt

Problem 4

6/6 points (graded)

4. Suppose that $oldsymbol{X}$ has probability density function

$$f_X(x) = x$$
 for $0 < x < 1$; $= 2 - x$ for $1 < x < 2$, $= 0$ otherwise.

4a. Find $P(X \le 3/4)$.

.28125	•

4b. Find $P(X \le 5/4)$. (Hint: It is not necessary-but it could be easier-to first find the complementary probability.)

4c. Find a formula for the CDF $F_X(x)$. Calculate the following values. (Hint: It is worthwhile to do this in a piecewise manner, since $f_X(x)$ is defined piecewise. I.e., it is helpful to find $F_X(x)$ for 0 < x < 1 and then to find $F_X(x)$ for 1 < x < 2.)

$$F_X(-0.5) = 0$$
 $F_X(0.5) = 0.125$
 $F_X(1.5) = 0.875$
 $F_X(2.5) = 1$

4d. Do your answers to **a** and **b** each agree with your answer to **c**, in the specific cases x=3/4 and x=5/4?

You have used 1 of 1 attempt

Problem 5

5/5 points (graded)

5. Suppose X and Y have a constant joint density on the square with vertices (0,0),(4,0),(4,4),(0,4).

5a. For 0 < a < 4, find $P(X + Y \le a)$. Calculate the following value.

$$P(X+Y\leq 2)=\boxed{1/8}$$

5b. For 4 < a < 8, find $P(X + Y \ge a)$. (Then the complement $P(X + Y \le a)$ is easy.) Calculate the following value.

$$P(X+Y\leq 6)=\boxed{7/8}$$

5c. If you write W=X+Y, the work from **a** and **b** automatically yields an expression for the CDF $F_W(w)=P(W\leq w)$ of W. Differentiate this CDF $F_W(w)$ to find the density $f_W(w)$ of W. Calculate the following values.

$$f_W(3) = \boxed{3/16}$$
 $f_W(5) = \boxed{3/16}$

$$f_W(9) = \boxed{ 0}$$

You have used 1 of 1 attempt

Problem 6

3/3 points (graded)

6. Suppose $oldsymbol{X}$ and $oldsymbol{Y}$ have joint probability density function

$$f_{X,Y}(x,y) = 21e^{-3x-7y}$$

for x>0 and y>0; and $f_{X,Y}(x,y)=0$ otherwise.

6a. Compute $P(Y \ge X)$.

3/10 **✓ Answer:** 0.3

6b. Compute $P(Y \leq 3X)$.

7/8 **✓ Answer:** 0.875

6c. Compute $P(Y \ge 1/10)$.

0.4965853

✓ Answer: 0.4965853

Explanation

6a. We have
$$P(Y \geq X) = \int_0^\infty \int_x^\infty 21 e^{-3x-7y}\,dydx = \int_0^\infty 3e^{-10x}\,dx = 3/10.$$

6b. We have
$$P(Y \leq 3X) = \int_0^\infty \int_{y/3}^\infty 21 e^{-3x-7y} \, dx \, dy = \int_0^\infty 7 e^{-8y} \, dy = 7/8$$
.

6c. We have
$$P(Y \geq 1/10) = \int_{1/10}^{\infty} \int_0^{\infty} 21 e^{-3x-7y} \, dx \, dy = \int_{1/10}^{\infty} 7 e^{-7y} \, dy = e^{-7/10}$$
 .

Submit

You have used 1 of 1 attempt

✓ Correct (3/3 points)

Problem 7

4/4 points (graded)

7a. In the setup of question **6**, find the probability density function $f_X(x)$ of X. Then calculate the following values.

7b. In the setup of question **6**, find the probability density function $f_Y(y)$ of Y.

7c. Use your answer to **7b** to find $P(Y \ge 1/10)$. Does your answer agree with your answer to **6c**?

Explanation

7a. For x>0, we have $f_X(x)=\int_0^\infty 21e^{-3x-7y}\,dy=3e^{-3x}$, and for $x\le 0$, we have $f_X(x)=0$. **7b.** For y>0, we have $f_Y(y)=\int_0^\infty 21e^{-3x-7y}\,dx=7e^{-7y}$, and for $y\le 0$, we have $f_Y(y)=0$. **7c.** We have $P(Y\ge 1/10)=\int_{1/10}^\infty 7e^{-7y}\,dy=e^{-7/10}$, which agrees with **6c**.

Submit

You have used 1 of 1 attempt

✓ Correct (4/4 points)

Problem 8

4/4 points (graded)

8. Consider a pair of random variables X and Y with joint probability density function $f_{X,Y}(x,y)=\frac{1}{8}xy$ for x,y in the triangle where 0 < x < 2 and 0 < y < 2x, and $f_{X,Y}(x,y)=0$ otherwise.

8a. Are X and Y independent? Why or why not?

ullet Yes, $oldsymbol{X}$ and $oldsymbol{Y}$ are independent

ullet No, $oldsymbol{X}$ and $oldsymbol{Y}$ are dependent $oldsymbol{\checkmark}$

8b. Find $P(X \leq 1)$ using the joint density $f_{X,Y}(x,y)$.

1/16 **Answer:** 0.0625

8c. Find the density $f_X(x)$. Calculate the following values.

8d. Use the density $f_X(x)$ to find $P(X \le 1)$. Does your answer agree with your answer to **b**?

Explanation

8a. Here X and Y are dependent. Perhaps the easiest way to see this is that their domain is not rectangular shaped (it is like a triangle shape).

8b. We have $P(X \leq 1) = \int_0^1 \int_0^{2x} frac{1}{8} xy dy dx = \int_0^1 frac{1}{4} x^3 \, dx = 1/16.$

8c. The density of X is $f_X(x) = \int_0^{2x} rac{1}{4} x^3 \, dx = rac{1}{4} x^3$ for 0 < x < 2, and $f_X(x) = 0$ otherwise.

8d. Yes! We have $P(X \leq 1) = \int_0^1 rac{1}{4} x^3 \, dx = 1/16$.

You have used 1 of 1 attempt

Correct (4/4 points)

Problem 9

3/3 points (graded)

9. Suppose X and Y have joint density $f_{X,Y}(x,y)=10e^{-3x-2y}$ for x,y in the region where 0 < x < y, and $f_{X,Y}(x,y)=0$ otherwise.

9a. Find P(Y>2X). (Just a side comment, not a hint: We already know P(Y>X)=1.)

5/7 **Answer:** 0.7142857

9b. Find the density $f_X(x)$ of X. Calculate the following values.

 $f_X(1) = \begin{bmatrix} 0.03368973 & \checkmark & Answer: 0.03368973 \\ f_X(-1) = \begin{bmatrix} 0 & \checkmark & Answer: 0 \end{bmatrix}$

Explanation

9a. We have $\int_0^\infty \int_{2x}^\infty 10e^{-3x-2y}\,dydx = \int_0^\infty 5e^{-7x}\,dx = 5/7$. **9b.** We have $f_X(x) = \int_x^\infty 10e^{-3x-2y}\,dy = 5e^{-5x}$ for x>0, and $f_X(x)=0$ otherwise.

You have used 1 of 1 attempt

✓ Correct (3/3 points)

Problem 10

4/5 points (graded)

10. Suppose X, Y has joint density

$$f_{X,Y}(x,y)=rac{1}{225}(5-x)(6-y)$$
 if $0\leq x\leq 5$ and $0\leq y\leq 6$, $=0$, otherwise.

10a. Are \boldsymbol{X} and \boldsymbol{Y} independent? Why or why not?

- ullet Yes, $oldsymbol{X}$ and $oldsymbol{Y}$ are independent $oldsymbol{\checkmark}$
- ullet No, $oldsymbol{X}$ and $oldsymbol{Y}$ are dependent

10b. Find the density $f_X(x)$ of X. Calculate the following values.

$$f_X(2.5) = 1/45$$
 \star Answer: 0.2 $f_X(10) = 0$ \star Answer: 0

10c. Find the density $f_Y(y)$ of Y.

Explanation

10a. Yes, X and Y are independent. Their density is defined in a rectangular region, and it can be factored into x and y parts.

10b. We have $f_X(x)=\int_0^6 rac{1}{225}(5-x)(6-y)dy=rac{2}{25}(5-x)$, for $0\leq x\leq 5$, and $f_X(x)=0$ otherwise.

10c. We have $f_Y(y) = \int_0^5 \frac{1}{225} (5-x)(6-y) dx = \frac{1}{18} (6-y)$, for $0 \le y \le 6$, and $f_Y(y) = 0$ otherwise.

Submit

You have used 1 of 1 attempt

Partially correct (4/5 points)

Problem 11

2/2 points (graded)

11. Suppose X is a continuous random variable with density $f_X(x)=3e^{-3x}$ for x>0, and $f_X(x)=0$ otherwise. Suppose Y is a continuous random variable with density $f_Y(y)=5e^{-5y}$ for y>0, and $f_Y(y)=0$ otherwise. Finally, suppose that X and Y are independent. Define Z as the minimum of X and Y, i.e., $Z=\min{(X,Y)}$.

11a. Find the density $f_Z(z)$ of Z. Calculate the following value.

11b. Find P(Z > 1/10).

0.449329 **✓ Ans**

✓ Answer: 0.4493

Explanation

11a. For z > 0, we have

$$P(Z \ge z) = P(X \ge z \& Y \ge z) = P(X \ge z)P(Y \ge z)$$
 $= (\int_z^\infty 3e^{-3x} dx)(\int_z^\infty 5e^{-5y} dy)$
 $= e^{-3z}e^{-5z} = e^{-8z}.$

Thus $F_Z(z)=P(Z\leq z)=1-e^{-8z}$ for z>0. So $f_Z(z)=8e^{-8z}$ for z>0, and $f_Z(z)=0$ otherwise.

11b. We have $P(Z>1/10)=\int_{1/10}^{\infty}8e^{-8z}\,dz=e^{-4/5}=0.4493.$

Submit

You have used 1 of 1 attempt

✓ Correct (2/2 points)

© All Rights Reserved