MT2123 - Advanced Linear Algebra

Nachiketa Kulkarni

Contents

1	Fields and Vector Spaces															1										
	1.1	Groups																								1
	1.2	Rings																								1
	1.3	Fields																								1
2	2 Linear Transformations															2										

Chapter 1

Fields and Vector Spaces

1.1 Groups

Definition A group $\langle G, * \rangle$ is a set G with a binary operation * such that the following axioms are satisfied:

- 1. Closure: For all $a, b \in G$, $a * b \in G$.
- 2. Associativity: For all $a, b, c \in G$, a * (b * c) = (a * b) * c.
- 3. Identity Element: There exists an element $I \in G$ such that for all $I \in G$, a * I = I * a = a. Here, I is called as the identity element of * in G.
- 4. Inverse: corresponding to every element $a \in G$, there exists an element $a' \in G$ such that a * a' = a' * a = I. Here, a' is called as the inverse of a in G.

1.2 Rings

Definition A ring $\langle R, +, \cdot \rangle$ is a set R with two binary operations + and \cdot , which we call addition and multiplication, such that the following axioms are satisfied:

- 1. $\langle R, + \rangle$ is an abelian/commutative group.
- 2. Multiplication is associative: For all $a,b,c\in R,\ a\cdot (b\cdot c)=(a\cdot b)\cdot c.$
- 3. Distributive Property: For all $a, b, c \in R$, the Left Distributive Law, $a \cdot (b + c) = a \cdot b + a \cdot c$ and Right Distributive Law, $(a + b) \cdot c = a \cdot c + b \cdot c$.

1.3 Fields

Definition

Chapter 2

Linear Transformations

long wall of text incoming