Review of Linear Algebra

We review orthogonal vectors, matrices, inverses, and eigenvectors

Objectives

To review the main definitions and properties of vectors in \mathbb{R}^n , with $n = 1, 2, 3, \dots$, of $n \times n$ matrices and their eigenvalues and eigenvectors.

Further Reading

Students may need to review Chapter 5, "Overview of Linear Algebra" in our textbook.

Vectors and Linear Dependence-Independence

A **vector** in \mathbb{R}^n , with $n = 1, 2, 3, \dots$, is a collection of n numbers $\mathbf{v} = \langle v_1, \dots, v_n \rangle$ together with the operation **linear combination** given by

$$a \mathbf{u} + b \mathbf{v} = a \langle u_1 \cdots, u_n \rangle + b \langle v_1 \cdots, v_n \rangle = \langle (au_1 + bu_2), \cdots, (au_n + bv_n) \rangle \quad \forall a, b \in \mathbb{R}.$$

The numbers a, b above are called **scalars**, to tell them apart from the numbers u_i , for $i = 1, \dots, n$, which are vector components. We will also use the column vector notation for vectors,

$$\boldsymbol{u} = \langle u_1, \cdots, u_n \rangle = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}.$$

A finite set of vectors $\{v_1, \dots, v_k\}$, with $k \geq 1$, is **linearly dependent** iff there exists a set of scalars $\{c_1, \dots, c_k\}$, not all of them zero, such that,

$$c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}.$$

The set $\{v_1, \dots, v_k\}$ is called *linearly independent* iff the equation above implies that every scalar vanishes, $c_1 = \dots = c_k = 0$. The *dimension* of a vector space \mathbb{R}^n is the maximum number of vectors that are linearly independent. It is not difficult to see that the dimension of the vector space \mathbb{R}^n is indeed n. A linearly independent set of n vectors in \mathbb{R}^n is called a **base** of \mathbb{R}^n . Again, it is not difficult to see that any vector in the space \mathbb{R}^n is a linear combination of the vectors in a base.

Question 1: (10 points) Determine whether the set of vectors below are linearly dependent or independent.

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\-2\\-7 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}.$$

Orthogonal Vectors

The **dot product** of vectors $\mathbf{u} = \langle u_1, \dots, u_n \rangle \mathbf{v} = \langle v_1, \dots, v_n \rangle$ in \mathbb{R}^n is

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + \dots + u_n v_n.$$

The length of a vector $\mathbf{u} = \langle u_1, \cdots, u_n \rangle$ is

$$\|\boldsymbol{u}\| = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}} = \sqrt{(u_1)^2 + \cdots + (u_n)^2}.$$

And any vector v can be rescaled into a unit vector by dividing by its magnitude. So, the vector v below is a unit vector in the direction of the vector v,

$$oldsymbol{u} = rac{oldsymbol{v}}{\|oldsymbol{v}\|}.$$

The dot product of two vectors can also be written in the alternative form

$$\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos(\theta),$$

where $\|\boldsymbol{u}\|$, $\|\boldsymbol{v}\|$ are the length of the vectors \boldsymbol{u} , \boldsymbol{v} , and $\theta \in [0, \pi]$ is the angle between the vectors. A set of vectors is an **orthogonal set** if all the vectors in the set are mutually perpendicular. An **orthonormal** set is an orthogonal set where all the vectors are unit vectors.

Theorem 1. Given an orthogonal set $\{u_1, \dots, u_n\}$ in \mathbb{R}^n , every vector $v \in \mathbb{R}^3$ can be decomposed as

$$\mathbf{v} = v_1 \, \mathbf{u}_1 + \cdots + v_n \, \mathbf{u}_n.$$

Furthermore, there is a formula for the vector components,

$$v_1 = \frac{(\boldsymbol{v} \cdot \boldsymbol{u}_1)}{(\boldsymbol{u}_1 \cdot \boldsymbol{u}_1)}, \quad \cdots, \quad v_n = \frac{(\boldsymbol{v} \cdot \boldsymbol{u}_n)}{(\boldsymbol{u}_n \cdot \boldsymbol{u}_n)}.$$

If the vectors are orthonormal, that is orthogonal and unit vectors, then the formula for the components reduces to

$$v_1 = \boldsymbol{v} \cdot \boldsymbol{u}_1, \quad \cdots, \quad v_n = \boldsymbol{v} \cdot \boldsymbol{u}_n.$$

Proof of Theorem 1: Since the vectors u_1, \dots, u_n are mutually perpendicular, that means they are linearly independent, so the set of all possible linear combinations of these vectors is the whole space \mathbb{R}^n . Therefore, given any vector $\mathbf{v} \in \mathbb{R}^n$, there exists constants v_1, \dots, v_n such that

$$\mathbf{v} = v_1 \, \mathbf{u}_1 + \cdots + v_n \, \mathbf{u}_n$$

Since the vectors u_1, \dots, u_n are mutually orthogonal, we can compute the dot product of the equation above with u_1 , and we get

$$\mathbf{u}_1 \cdot \mathbf{v} = v_1 \, \mathbf{u}_1 \cdot \mathbf{u}_1 + \dots + v_n \, \mathbf{u}_1 \cdot \mathbf{u}_n = v_1 \, \mathbf{u}_1 \cdot \mathbf{u}_1 + 0 + \dots + 0,$$

therefore, we get a formula for the component v_1 ,

$$v_1 = \frac{(\boldsymbol{v} \cdot \boldsymbol{u}_1)}{(\boldsymbol{u}_1 \cdot \boldsymbol{u}_1)}.$$

If the vector \mathbf{u}_1 is an unit vector, then $\mathbf{u}_1 \cdot \mathbf{u}_1 = 1$. A similar calculation provides the formulas for v_i , with $i = 2, \dots n$. This establishes the Theorem.

Question 2: (10 points) Find the expansion of the vector

$$\mathbf{v} = \langle 3, 2, 1 \rangle$$

on the orthonormal set

$$\{u_1 = \frac{1}{\sqrt{3}}\langle 1, 1, 1 \rangle, u_2 = \frac{1}{\sqrt{6}}\langle -2, 1, 1 \rangle, u_3 = \frac{1}{\sqrt{2}}\langle 0, -1, 1 \rangle\}.$$

Overview of Matrices

An $m \times n$ matrix, A, is an ordered array of numbers,

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}.$$

The numbers $A_{i,j} \in \mathbb{R}$, for $i = 1, \dots, m$ and $j = 1, \dots, n$, are called the matrix components. The space of all $m \times n$ matrices with components in \mathbb{R} is called $\mathbb{R}^{m,n}$. The $n \times n$ matrices are called **square** matrices.

The **matrix-vector product** of an $m \times n$ matrix $A = [A_{ij}]$ and an n-vector $\mathbf{u} = [u_j]$ is the m-vector $A\mathbf{u}$ given by

$$A\mathbf{u} = \begin{bmatrix} A_{11}u_1 + \dots + A_{1n}u_n \\ \vdots \\ A_{m1}u_1 + \dots + A_{mn}u_n \end{bmatrix}.$$

A matrix together with the matrix-vector product imply that a matrix is a function on the space of vectors. The *linear combination* of the $m \times n$ matrices $A = [A_{ij}]$ and $B = [B_{ij}]$ with the scalars a, b is also an $m \times n$ matrix denoted as (a A + b B) given by

$$a A + b B = [a A_{ij} + b B_{ij}].$$

That is, we compute the linear combination of matrices in a similar way as the linear combination of vectors, component wise. The **matrix multiplication** of an $m \times n$ matrix A and an $n \times \ell$ matrix $B = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_\ell]$ is given by

$$AB = [A\boldsymbol{b}_1, \cdots, A\boldsymbol{b}_\ell], \qquad (1)$$

where $A\mathbf{b}_i$ are the matrix-vector product of matrix A and the n-vectors \mathbf{b}_i for $i = 1, \dots, \ell$. There is an equivalent expression for the matrix multiplication using the components of bot matrices,

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}, \quad i = 1, \dots, m \text{ and } j = 1, \dots, \ell.$$

In the case of square matrices we use the standard power notation $A^2 = AA$, $A^3 = AAA$, and so on.

Remarks:

- (a) Notice that the matrix multiplication is not commutative, that is, in general we have $AB \neq BA$.
- (b) Also notice we may have matrices A, B such that BA = 0 but $A \neq 0$ and $B \neq 0$.
- (c) Therefore, the product AB = 0 does not imply that either A = 0 or B = 0.

An $n \times n$ matrix A is called *invertible* iff there exists another $n \times n$ matrix, denoted as A^{-1} , such that

$$(A^{-1})A = I$$
 and $A(A^{-1}) = I$.

where I is the $n \times n$ identity matrix. There is a simple formula for the inverse of a 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

which is given by

$$(A^{-1}) = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
, in the case that $\det(A) \neq 0$,

where det(A) = ad - bc is the **determinant** of a matrix A. It is simple to verify that this matrix (A^{-1}) is the inverse of matrix A because

$$(A^{-1}) A = I,$$
 $A(A^{-1}) = I,$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

Also recall that the *trace* of a $n \times n$ matrix is the sum of its diagonal elements, so the trace of the 2×2 matrix A above is

$$\operatorname{tr}(A) = a + d.$$

Question 3: (10 points) Prove the Cayley-Hamilton Theorem in the case of 2×2 matrices, that is, show that every 2×2 matrix A satisfies the following matrix equation,

$$A^{2} - \operatorname{tr}(A) A + \operatorname{det}(A) I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Properties of Determinants

Question 4: (10 points) Prove that det(AB) = det(A) det(B), where $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.

Question 5: (10 points) Determine whether the equation det(A + B) = det(A) + det(B) is true or not. If it is true, prove it for all 2×2 matrices A and B; if it is not true, give an example.

Question 6: (10 points) Denote a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in terms of its column vectors as $A = \begin{bmatrix} \boldsymbol{a}_1, \boldsymbol{a}_2 \end{bmatrix}$. Suppose that the vectors $\boldsymbol{a}_1 = \begin{bmatrix} a \\ c \end{bmatrix}$ and $\boldsymbol{a}_2 = \begin{bmatrix} b \\ d \end{bmatrix}$ are given in the figure below. Use that picture to prove Area of the shaded parallelogram = $|\det(A)|$.

Hint: Relate the parallelogram area with areas you can easily compute, such as triangle and rectangle areas.

Properties of Inverse Matrices

Question 7: (10 points) Prove that for every invertible 2×2 matrix holds that $((A^{-1})^{-1}) = A$.

Question 8: (10 points) Prove that every invertible 2×2 matrix satisfy $\det(A^{-1}) = \frac{1}{\det(A)}$.

Question 9: (10 points) Prove that every invertible 2×2 matrices A, B, satisfy $(AB)^{-1} = (B^{-1})(A^{-1})$.

Eigenvalues and Eigenvectors

A number $\lambda \in \mathbb{R}$ and a nonzero *n*-vector $\mathbf{v} \in \mathbb{R}^n$ are an *eigenvalue* with corresponding *eigenvector* (eigenpair) of an $n \times n$ matrix A iff they satisfy the equation

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Theorem 2 (Eigenvalues-Eigenvectors).

(a) All the eigenvalues λ of an $n \times n$ matrix A are the solutions of the scalar equation

$$\det(A - \lambda I) = 0. \tag{2}$$

(b) Given an eigenvalue λ of an $n \times n$ matrix A, the corresponding eigenvectors \boldsymbol{v} are the nonzero solutions to the homogeneous linear system

$$(A - \lambda I)\mathbf{v} = \mathbf{0}. (3)$$

Question 10: (10 points) Compute the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.