Fachrichtung Mathematik • Institut für Algebra • Prof. Dr. Ulrike Baumann

Mathematische Methoden für Informatiker INF-120 Sommersemester 2019

6. Ubungsblatt für die Woche 13.05. - 19.05.2019 Potenzreihen, Taylorentwicklung

Ü31 Gegeben ist die Potenzreihe $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (x-1)^k$.

- (a) Zeigen Sie, dass diese Potenzreihe für alle $x \in (0,2)$ absolut konvergent ist.
- (b) Bestimmen Sie für die Funktion $f:(0,2)\to\mathbb{R}:x\mapsto\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}(x-1)^k$ ihre Ableitung.
- (a) Bestimmen Sie Mittelpunkt und Konvergenzradius folgender Potenzreihen:

(i)
$$\sum_{k=1}^{\infty} \frac{(k+1)!}{k^k} (x+2)^k$$

(i)
$$\sum_{k=1}^{\infty} \frac{(k+1)!}{k^k} (x+2)^k$$
, (ii) $\sum_{k=1}^{\infty} \frac{(-2)^k}{5k^{2k}} (x-3)^k$.

Sind die Reihen im Punkt x = 1 konvergent? Begründen Sie!

(b) Von der Potenzreihe $\sum_{k=2}^{\infty} \frac{1}{2^k (k-1)} (x+\frac{1}{2})^k$ ist bekannt, dass ihr Konvergenzradius r=2

beträgt. Bestimmen Sie die Menge aller $x \in \mathbb{R}$, für die die Reihe konvergiert.

 $\ddot{U}33$ (a) Bestimmen Sie die Ableitungen der reellen Funktionen f mit

(i)
$$f(x) = \ln\left(\sqrt{1 + \sin^2(x)}\right)$$
, (ii) $f(x) = \frac{x^2 e^{\frac{1}{x}}}{x^2 + 1}$.

- (b) Stellen Sie für beliebiges $n \in \mathbb{N}$ eine Formel für die n-te Ableitung der reellen Funktion f mit $f(x) = 1 + \ln(x)$ auf, und beweisen Sie deren Gültigkeit mit vollständiger Induktion.
- (c) Betrachtet werden folgende Funktionen f und Werte $x_0 \in \mathbb{R}$:

(i)
$$f(x) = 1 + \ln(x)$$
, $x_0 = 1$, (ii) $f(x) = x \sin(2x)$, $x_0 = \frac{\pi}{2}$.

- (1) Stellen Sie für die Funktionen jeweils die Taylorpolynome bis zum 3. Grad mit Entwicklungsstelle x_0 auf.
- (2) Wie lautet die lineare Approximation von f in der Umgebung von x_0 ?
- H34 A Hinweis: In der Lösung zu dieser Aufgabe muss bei der Berechnung von Grenzwerten klar ersichtlich sein, welche Rechenregeln und bekannten Grenzwerte Sie an welcher Stelle anwenden! Gegeben ist die Potenzreihe $\sum_{k=1}^{\infty} \frac{1}{3^k \sqrt{k}} (x-1)^k$.
 - (a) Bestimmen Sie den Mittelpunkt x_0 und den Konvergenzradius r. Ist die Reihe im Punkt x = -1 konvergent? Begründen Sie Ihre Antwort!
 - (b) Untersuchen Sie das Konvergenzverhalten der Potenzreihe in den Randpunkten $x_0 \pm r$ des Konvergenzintervalls.

- H35 (a) Geben Sie für die Potenzreihe $\sum_{k=1}^{\infty} \frac{3^{k+1}}{(k-1)!} (x-3)^k$ den Mittelpunkt an, und berechnen Sie den Konvergenzradius.
 - (b) Von einer Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ ist bekannt, dass sie an der Stelle x=0 konvergent ist und an den Stellen x=-4 und x=2 divergent. Wie groß kann der Konvergenzradius dieser Potenzreihe höchstens sein?
- H36 Bestimmen Sie die Reihensumme für alle Werte x, in denen folgende Potenzreihen existieren, indem Sie die Reihen auf passende geometrische Reihen zurückführen:

(a)
$$\sum_{n=0}^{\infty} \frac{(-2)^{n+1}}{3^n} \cdot (x-1)^n,$$
 (b)
$$\sum_{n=0}^{\infty} \frac{3^n}{2^{n-1}} \cdot x^{n+1}.$$

Geben Sie für beide Reihen ihren Konvergenzradius an!

Potenzyeihen \(\frac{1}{2} \cdot \chi_{1} (\frac{1}{2} - \frac{1}{2})^{\text{k}} = C_0 + C_1 (\frac{1}{2} - \frac{1}{2}) + C_1 (\frac{1}{2} - \frac{1}{2})^{\text{k}} + \dots Wittelpunkt

Scilky (2-1)

Zu Zeigen für alle x6 (0,2)

abs konv. WK: Lim K 21 div? ? div allgemein: div? konv? div

The tonv? div

The tonv? b) f(x) = \frac{100}{100} (x-1)^k ER für x6(0,2) lant VI: in [0, 2] believing oft differentierbar $f'(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{|x|} \cdot |x| (x-1)^{k-1} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{|x|} (x-1)^{k-1}$ ⇒ ∑ (-1)^ (->-1)^ $=\frac{2}{2}\left(-\frac{1}{1-1}+1\right)^{2}=\frac{1}{1-1-\frac{1}{1-1}+1}=\frac{1}{\frac{1}{1-1}}$

(i)
$$\sum_{k=1}^{\infty} \frac{(k+1)!}{k^k} (x+2)^k,$$
 (ii)
$$\sum_{k=1}^{\infty} \frac{(-2)^k}{5k^{2k}} (x-3)^k.$$

(ii)
$$\sum_{k=1}^{\infty} \frac{(-2)^k}{5k^{2k}} \left(x-3\right)^k.$$

Mittelankt: 5=-2

mit
$$Q_k$$
:

 $\lim_{k \to \infty} \left| \frac{Q_{k+1}}{Q_{1k}} \right| = \frac{(k+2)!}{(k+1)!} \left(\frac{Q_{k+1}}{Q_{1k}} \right) \left(\frac{Q_{k+1}}{Q_{1k}} \right)$

QK: Lim AK C

$$(k+1)! \qquad (k+1)! \qquad ($$

$$\lim_{k \to \infty} ||a_{k}|| \leq 1$$

$$\lim_{k \to \infty} ||a_{k}|| = 1$$

$$\lim_{k \to \infty} ||a_{k$$

LK:
$$Q_{1c} = \frac{1}{|c_{-1}|}$$
 $\lim_{k \to 1} \frac{1}{|c_{-1}|} = 0$ $\lim_{k \to 1} \frac{1}{|c_{-1}|} = 0$

$$\frac{2}{\sum_{k=1}^{2} \frac{1}{2^{k}(k-1)}} = \frac{2}{\sum_{k=1}^{2} \frac{1}{k-1}} = \frac{2}{\sum_{k=1}^{2} \frac{1}{k}} \quad hamon. \quad i2eide$$

$$\Rightarrow divergent.$$

33
a) i)
$$f(x) = \ln \left(1 + \sin^2(x)\right)$$
 $f(x) = \sin^2(x)$

$$=\frac{2\sin^2(x)\cos x}{2\sqrt{1+\sin^2(x)}\cdot \sqrt{1+\sin^2(x)}} = \frac{\sin(x)\cos x}{1+\sin^2(x)}$$

$$(i) \quad f(x) = \frac{\cancel{\cancel{3}} \cdot \cancel{\cancel{0}} \cancel{\cancel{3}}}{\cancel{\cancel{3}} \cdot \cancel{\cancel{0}} \cancel{\cancel{0}}}$$

$$f(x) = -1 + f_{m}(x)$$

$$f'(x) = -\frac{1}{x}$$

$$f''(x) = -\frac{1}{x^{2}}$$

$$f^{(h)}(x) = \frac{2.3}{54}$$
Rehampting: $f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{5^n}$ für $n \ge 1$

Beneis

$$IA: \lambda = 1: f(x) = \frac{1}{2} = (-1)^{2} \frac{(1-1)!}{x}$$

TS:
$$\pm .29$$
: $\forall n > 1$: $f^{(n)}(x) = (-1)^{h+1} \frac{(n-1)!}{x^n}$ $\int TV$

Bours:
$$f^{(n+1)}(x) = (f^{(n+1)})' = ((-1)^{n+1} \frac{(n-1)!}{x^n})'$$

$$= (-1)^{n+1} \cdot (n-1)! \cdot (-n) (x_{1-n-1})$$

$$= (-1)^{n+1} \cdot (n-1)! \cdot (-n) (x_{1-n-1})$$

H34 A Hinweis: In der Lösung zu dieser Aufgabe muss bei der Berechnung von Grenzwerten klar ersichtlich sein, welche Rechenregeln und bekannten Grenzwerte Sie an welcher Stelle anwenden!

Gegeben ist die Potenzreihe
$$\sum_{k=1}^{\infty} \frac{1}{3^k \sqrt{k}} (x-1)^k \ .$$

- (a) Bestimmen Sie den Mittelpunkt x_0 und den Konvergenzradius r. Ist die Reihe im Punkt x=-1 konvergent? Begründen Sie Ihre Antwort!
- (b) Untersuchen Sie das Konvergenzverhalten der Potenzreihe in den Randpunkten $x_0\pm r$ des Konvergenzintervalls.

= 13-1 \(\in\) \(\frac{1}{6K} = \frac{1}{5}K - \frac{1}{5}K \)
= \frac{1}{3} \frac{1}{5} - 1 \lim \frac{1}{1} = \frac{1}{3} \frac{1}{5} - 1 \lim \frac{1}{1} = \frac{1}{3} \frac{1}{5} - 1 \left