

Practice Exercises

5.1 In Section 5.4, we mentioned that disabling interrupts frequently can affect the system's clock. Explain why this can occur and how such effects can be minimized.

Answer:

The system clock is updated at every clock interrupt. If interrupts were disabled—particularly for a long period of time—it is possible the system clock could easily lose the correct time. The system clock is also used for scheduling purposes. For example, the time quantum for a process is expressed as a number of clock ticks. At every clock interrupt, the scheduler determines if the time quantum for the currently running process has expired. If clock interrupts were disabled, the scheduler could not accurately assign time quantums. This effect can be minimized by disabling clock interrupts for only very short periods.

5.2 Explain why Windows, Linux, and Solaris implement multiple locking mechanisms. Describe the circumstances under which they use spinlocks, mutex locks, semaphores, adaptive mutex locks, and condition variables. In each case, explain why the mechanism is needed.

Answer:

These operating systems provide different locking mechanisms depending on the application developers' needs. Spinlocks are useful for multiprocessor systems where a thread can run in a busy-loop (for a short period of time) rather than incurring the overhead of being put in a sleep queue. Mutexes are useful for locking resources. Solaris 2 uses adaptive mutexes, meaning that the mutex is implemented with a spin lock on multiprocessor machines. Semaphores and condition variables are more appropriate tools for synchronization when a resource must be held for a long period of time, since spinning is inefficient for a long duration.

5.3 What is the meaning of the term **busy waiting**? What other kinds of waiting are there in an operating system? Can busy waiting be avoided altogether? Explain your answer.

Busy waiting means that a process is waiting for a condition to be satisfied in a tight loop without relinquishing the processor. Alternatively, a process could wait by relinquishing the processor, and block on a condition and wait to be awakened at some appropriate time in the future. Busy waiting can be avoided but incurs the overhead associated with putting a process to sleep and having to wake it up when the appropriate program state is reached.

Explain why spinlocks are not appropriate for single-processor systems yet are often used in multiprocessor systems.

Spinlocks are not appropriate for single-processor systems because the condition that would break a process out of the spinlock can be obtained only by executing a different process. If the process is not relinquishing the processor, other processes do not get the opportunity to set the program condition required for the first process to make progress. In a multiprocessor system, other processes execute on other processors and thereby modify the program state in order to release the first process from the spinlock.

Show that, if the wait() and signal() semaphore operations are not executed atomically, then mutual exclusion may be violated.

Answer:

A wait operation atomically decrements the value associated with a semaphore. If two wait operations are executed on a semaphore when its value is 1, if the two operations are not performed atomically, then it is possible that both operations might proceed to decrement the semaphore value, thereby violating mutual exclusion.

Illustrate how a binary semaphore can be used to implement mutual exclusion among n processes.

Answer:

The *n* processes share a semaphore, mutex, initialized to 1. Each process P_i is organized as follows:

```
do {
  wait(mutex);
     /* critical section */
  signal(mutex);
     /* remainder section */
} while (true);
```


Main Memory

Practice Exercises

8.1 Name two differences between logical and physical addresses. **Answer:**

A logical address does not refer to an actual existing address; rather, it refers to an abstract address in an abstract address space. Contrast this with a physical address that refers to an actual physical address in memory. A logical address is generated by the CPU and is translated into a physical address by the memory management unit(MMU). Therefore, physical addresses are generated by the MMU.

8.2 Consider a system in which a program can be separated into two parts: code and data. The CPU knows whether it wants an instruction (instruction fetch) or data (data fetch or store). Therefore, two base-limit register pairs are provided: one for instructions and one for data. The instruction base-limit register pair is automatically read-only, so programs can be shared among different users. Discuss the advantages and disadvantages of this scheme.

Answer:

The major advantage of this scheme is that it is an effective mechanism for code and data sharing. For example, only one copy of an editor or a compiler needs to be kept in memory, and this code can be shared by all processes needing access to the editor or compiler code. Another advantage is protection of code against erroneous modification. The only disadvantage is that the code and data must be separated, which is usually adhered to in a compiler-generated code.

8.3 Why are page sizes always powers of 2? **Answer:**

a page size that is a power of 2.

Recall that paging is implemented by breaking up an address into a page and offset number. It is most efficient to break the address into X page bits and Y offset bits, rather than perform arithmetic on the address to calculate the page number and offset. Because each bit position represents a power of 2, splitting an address between bits results in

Chapter 8 Main Memory 26

- Consider a logical address space of 64 pages of 1024 words each, mapped onto a physical memory of 32 frames.
 - How many bits are there in the logical address?
 - How many bits are there in the physical address?

Answer:

Logical address: 16 bits

Physical address: 15 bits

What is the effect of allowing two entries in a page table to point to the same page frame in memory? Explain how this effect could be used to decrease the amount of time needed to copy a large amount of memory from one place to another. What effect would updating some byte on the one page have on the other page?

Answer:

By allowing two entries in a page table to point to the same page frame in memory, users can share code and data. If the code is reentrant, much memory space can be saved through the shared use of large programs such as text editors, compilers, and database systems. "Copying" large amounts of memory could be effected by having different page tables point to the same memory location.

However, sharing of nonreentrant code or data means that any user having access to the code can modify it and these modifications would be reflected in the other user's "copy."

8.6 Describe a mechanism by which one segment could belong to the address space of two different processes.

Answer:

Since segment tables are a collection of base-limit registers, segments can be shared when entries in the segment table of two different jobs point to the same physical location. The two segment tables must have identical base pointers, and the shared segment number must be the same in the two processes.

- Sharing segments among processes without requiring that they have the same segment number is possible in a dynamically linked segmentation system.
 - Define a system that allows static linking and sharing of segments without requiring that the segment numbers be the same.
 - Describe a paging scheme that allows pages to be shared without requiring that the page numbers be the same.

Answer:

Both of these problems reduce to a program being able to reference both its own code and its data without knowing the segment or page number associated with the address. MULTICS solved this problem by associating four registers with each process. One register had the address of the current program segment, another had a base address for the stack, another had a base address for the global data, and so on. The idea is

that all references have to be indirect through a register that maps to the current segment or page number. By changing these registers, the same code can execute for different processes without the same page or segment numbers.

- 8.8 In the IBM/370, memory protection is provided through the use of *keys*. A key is a 4-bit quantity. Each 2K block of memory has a key (the storage key) associated with it. The CPU also has a key (the protection key) associated with it. A store operation is allowed only if both keys are equal, or if either is zero. Which of the following memory-management schemes could be used successfully with this hardware?
 - a. Bare machine
 - b. Single-user system
 - c. Multiprogramming with a fixed number of processes
 - d. Multiprogramming with a variable number of processes
 - e. Paging
 - f. Segmentation

Answer:

- a. Protection not necessary, set system key to 0.
- b. Set system key to 0 when in supervisor mode.
- c. Region sizes must be fixed in increments of 2k bytes, allocate key with memory blocks.
- d. Same as above.
- e. Frame sizes must be in increments of 2k bytes, allocate key with pages.
- f. Segment sizes must be in increments of 2k bytes, allocate key with segments.

Virtual Memory

Practice Exercises

9.1 Under what circumstances do page faults occur? Describe the actions taken by the operating system when a page fault occurs.

Answer:

A page fault occurs when an access to a page that has not been brought into main memory takes place. The operating system verifies the memory access, aborting the program if it is invalid. If it is valid, a free frame is located and I/O is requested to read the needed page into the free frame. Upon completion of I/O, the process table and page table are updated and the instruction is restarted.

- **9.2** Assume that you have a page-reference string for a process with *m* frames (initially all empty). The page-reference string has length *p*; *n* distinct page numbers occur in it. Answer these questions for any page-replacement algorithms:
 - a. What is a lower bound on the number of page faults?
 - b. What is an upper bound on the number of page faults?

Answer:

- a. *n*
- b. *p*
- **9.3** Consider the page table shown in Figure 9.30 for a system with 12-bit virtual and physical addresses and with 256-byte pages. The list of free page frames is *D*, *E*, *F* (that is, *D* is at the head of the list, *E* is second, and *F* is last).

Convert the following virtual addresses to their equivalent physical addresses in hexadecimal. All numbers are given in hexadecimal. (A dash for a page frame indicates that the page is not in memory.)

- 9EF
- 111

- 700
- 0FF

Answer:

- 9EF 0EF
- 111 211
- 700 D00
- 0FF EFF
- Consider the following page-replacement algorithms. Rank these algorithms on a five-point scale from "bad" to "perfect" according to their page-fault rate. Separate those algorithms that suffer from Belady's anomaly from those that do not.
 - LRU replacement
 - FIFO replacement
 - Optimal replacement
 - Second-chance replacement

Answer:

Rank	<u>Algorithm</u>	Suffer from Belady's anomaly
1	Optimal	no
2	LRU	no
3	Second-chance	yes
4	FIFO	yes

9.5 Discuss the hardware support required to support demand paging. **Answer:**

For every memory-access operation, the page table needs to be consulted to check whether the corresponding page is resident or not and whether the program has read or write privileges for accessing the page. These checks have to be performed in hardware. A TLB could serve as a cache and improve the performance of the lookup operation.

- An operating system supports a paged virtual memory, using a central processor with a cycle time of 1 microsecond. It costs an additional 1 microsecond to access a page other than the current one. Pages have 1000 words, and the paging device is a drum that rotates at 3000 revolutions per minute and transfers 1 million words per second. The following statistical measurements were obtained from the system:
 - 1 percent of all instructions executed accessed a page other than the current page.
 - Of the instructions that accessed another page, 80 percent accessed a page already in memory.

• When a new page was required, the replaced page was modified 50 percent of the time.

Calculate the effective instruction time on this system, assuming that the system is running one process only and that the processor is idle during drum transfers.

Answer:

```
effective access time = 0.99 \times (1 \mu sec + 0.008 \times (2 \mu sec) + 0.002 \times (10,000 \mu sec + 1,000 \mu sec) + 0.001 \times (10,000 \mu sec + 1,000 \mu sec)
= (0.99 + 0.016 + 22.0 + 11.0) \mu sec
= 34.0 \mu sec
```

9.7 Consider the two-dimensional array A:

```
int A[][] = new int[100][100];
```

where A[0][0] is at location 200 in a paged memory system with pages of size 200. A small process that manipulates the matrix resides in page 0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by the following array-initialization loops, using LRU replacement and assuming that page frame 1 contains the process and the other two are initially empty?

```
a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)
A[i][j] = 0;</li>
b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)
A[i][j] = 0;</li>
```

Answer:

- a. 5,000
- b. 50
- **9.8** Consider the following page reference string:

How many page faults would occur for the following replacement algorithms, assuming one, two, three, four, five, six, or seven frames? Remember all frames are initially empty, so your first unique pages will all cost one fault each.

- LRU replacement
- FIFO replacement
- Optimal replacement

Answer:

Number of frames	LRU	<u>FIFO</u>	<u>Optimal</u>
1	20	20	20
2	18	18	15
3	15	16	11
4	10	14	8
5	8	10	7
6	7	10	7
7	7	7	7

Suppose that you want to use a paging algorithm that requires a reference bit (such as second-chance replacement or working-set model), but the hardware does not provide one. Sketch how you could simulate a reference bit even if one were not provided by the hardware, or explain why it is not possible to do so. If it is possible, calculate what the cost would be.

Answer:

You can use the valid/invalid bit supported in hardware to simulate the reference bit. Initially set the bit to invalid. On first reference a trap to the operating system is generated. The operating system will set a software bit to 1 and reset the valid/invalid bit to valid.

9.10 You have devised a new page-replacement algorithm that you think may be optimal. In some contorted test cases, Belady's anomaly occurs. Is the new algorithm optimal? Explain your answer.

Answer:

No. An optimal algorithm will not suffer from Belady's anomaly because —by definition—an optimal algorithm replaces the page that will not be used for the longest time. Belady's anomaly occurs when a pagereplacement algorithm evicts a page that will be needed in the immediate future. An optimal algorithm would not have selected such a page.

Segmentation is similar to paging but uses variable-sized "pages." Define two segment-replacement algorithms based on FIFO and LRU pagereplacement schemes. Remember that since segments are not the same size, the segment that is chosen to be replaced may not be big enough to leave enough consecutive locations for the needed segment. Consider strategies for systems where segments cannot be relocated, and those for systems where they can.

Answer:

FIFO. Find the first segment large enough to accommodate the incoming segment. If relocation is not possible and no one segment is large enough, select a combination of segments whose memories are contiguous, which are "closest to the first of the list" and which can accommodate the new segment. If relocation is possible, rearrange the memory so that the first *N* segments large enough for the incoming segment are contiguous in memory. Add any leftover space to the free-space list in both cases.

- b. LRU. Select the segment that has not been used for the longest period of time and that is large enough, adding any leftover space to the free space list. If no one segment is large enough, select a combination of the "oldest" segments that are contiguous in memory (if relocation is not available) and that are large enough. If relocation is available, rearrange the oldest *N* segments to be contiguous in memory and replace those with the new segment.
- 9.12 Consider a demand-paged computer system where the degree of multiprogramming is currently fixed at four. The system was recently measured to determine utilization of CPU and the paging disk. The results are one of the following alternatives. For each case, what is happening? Can the degree of multiprogramming be increased to increase the CPU utilization? Is the paging helping?
 - a. CPU utilization 13 percent; disk utilization 97 percent
 - b. CPU utilization 87 percent; disk utilization 3 percent
 - c. CPU utilization 13 percent; disk utilization 3 percent

Answer:

- a. Thrashing is occurring.
- b. CPU utilization is sufficiently high to leave things alone, and increase degree of multiprogramming.
- c. Increase the degree of multiprogramming.
- 9.13 We have an operating system for a machine that uses base and limit registers, but we have modified the machine to provide a page table. Can the page tables be set up to simulate base and limit registers? How can they be, or why can they not be?

Answer:

The page table can be set up to simulate base and limit registers provided that the memory is allocated in fixed-size segments. In this way, the base of a segment can be entered into the page table and the valid/invalid bit used to indicate that portion of the segment as resident in the memory. There will be some problem with internal fragmentation.