Problem 18.

iiiiiii HEAD Prove if true and disprove if false.

a. Prove that for every integer a if a^3 is even then a is even.

Proof. (by contraposition) If a is odd then a^3 is odd.

Let a be odd, then a = 2k + 1 for some $k \in \mathbb{Z}$ by definition of odd.

$$a^3 = (2k+1)^3$$
 by substitution $a^3 = 2(4k^3 + 6k^2 + 3k) + 1$ by algebra

Let $t = 4k^3 + 6k^2 + 3k$.

 $t \in \mathbb{Z}$ since $4, 6, 3, \& k \in \mathbb{Z}$ because integers are closed under addition & multiplication. $a^3 = 2t + 1$ is odd by definition of odd. Therefore, a^3 is odd.

b. Prove that $\sqrt[3]{2}$ is irrational

Proof. (by contradiction)

 $\sqrt[3]{2}$ is rational.

By definition of rational, $\exists a, b \in \mathbb{Z}$ with $b \neq 0$ and WLOG, a and b have no common factor

$$\sqrt[3]{2} = \frac{a}{b}$$
 by substitution
$$2 = \frac{a^3}{b^3}$$
 by algebra
$$2(b^3) = \frac{a^3}{b^3}(b^3)$$

$$2(b^3) = a^3$$

Let $h = b^3$. $h \in \mathbb{Z}$ because integers are closed under multiplication.

So a^3 is even by definition of even. By part (a), since a^3 is even, a is even.

Then $\exists k \in \mathbb{Z} \ni a = 2k$ by definition of even.

$$2b^3 = (2k)^3$$
 by substitution
 $b^3 = 4k^3$ by algebra
 $b^3 = 2(2k^3)$ by definition of even

Let $t = 2k^3$. $t \in \mathbb{Z}$ since $k, 2 \in \mathbb{Z}$ as integers are closed under multiplication.

So b^3 is even by definition of even. By part (a), since b^3 is even, b is even.

Therefore, this contradicts the assumption that a and b doesn't have a common factor since a and b are both even.

So this contradicts the assumption that $\sqrt[3]{2}$ is a rational

 $\Rightarrow =$ Prove if true and disprove if false.

- **a.** Prove that for every integer a if a^3 is even then a is even.
- **b.** Prove that $\sqrt[3]{2}$ is irrational *Proof.*

■ ¿¿¿¿¿¿¿ ace8925 (Added .DS store to .gitignore)

Problem 23.

Prove that for any integer $a, 9 \nmid (a^2 - 3)$

iiiiiii HEAD

Proof. (by contradiction)

Suppose not. $\exists a \in \mathbb{Z} \ni 9 \mid (a^2 - 3)$

By the definition of divisibility, $\exists d \in \mathbb{Z} \ni a^2 - 3 = 9d$

$$a^2 = 9d + 3$$
 by algebra $a^2 = 3(3d + 1)$

Let k = 3d + 1. $k \in \mathbb{Z}$ since $3, d, \& 1 \in \mathbb{Z}$ by the closure of addition & multiplication So $a^2 = 3k$ by substitution, where $k \in \mathbb{Z}$. Therefore, $3 \mid a^2$ by definition of divisibility. By 19.b, $\forall a \in \mathbb{Z}$, if $3 \mid a^2 \to 3 \mid a$.

Then by definition of divisibility, $\exists f \in \mathbb{Z} \ni a = 3f$

$$(3f)^2 = 3(3d+1)$$
 by substitution
$$\frac{9f^2}{3} = \frac{3(3d+1)}{3}$$
 by algebra
$$3f^2 - 3d = 1$$

$$3(f^2 - d) = 1$$

Let $x = f^2 - d$ and $x \in \mathbb{Z}$ because $f, d \& -1 \in \mathbb{Z}$ by the closure of integers of addition and multiplication.

So 3x = 1 by substitution. This implies $3 \mid 1$ by definition of divisibility, which is false. Therefore, $9 \mid (a^2 - 3)$ must be also be false.

★ ■ =====

Proof.

■ ¿¿¿¿¿¿ ace8925 (Added .DS store to .gitignore)