RL methods for cart pole swing up and stabilization

Bogdan Alexandrov, Vadim Shirokinskiy

Problem statement

We have an cart pole, the pendulum is looking down. The task is to lift the pendulum up and hold it.

Parameters of the system

pendulum mass = 0.1

pendulum length = 0.5

area length = inf, 10, 5 (optionally)

steps per episode = 1500 - 3000

initial state: (pi,)

cart mass = 1

g = 9.81

dt = 0.003

System dynamic

$$\dot{\theta} = \omega$$

$$\dot{\omega} = \frac{(m + m_c)g\sin\theta - \cos\theta(u + ml\omega^2\sin\theta)}{(4/3)(m + m_c)l - ml\cos\theta^2}$$

$$\dot{h} = dh$$

$$\dot{dh} = \frac{u + ml(\omega^2\sin\theta - \dot{\omega}\cos\theta)}{m + m_c}$$
Foliation of the centre x

State -> observation transition

$$\theta, \omega \to \cos \theta, \sin \theta, \omega$$

Since we don't care about absolute value of angle(10001 * pi or pi are equal for our system).

We need only sine and cosine of angle

Used approaches

RL methods:

- 1) Reinforce
- 2) Actor-Critic

Ways to influence the environment:

- 1) Apply continuous bounded action
- 2) Predict direction of predetermined force (used 10 in our experiments)

Setup1

Reinforce with fixed force. Cost is also fixed. Available surface is unlimited.

if $\cos \theta < -0.5$: return 1000

elif $\cos \theta < 0.8$:return 500

elif $\cos \theta < 0.95$: return 200

else: return 0

Here added additional punishment on high velocity: if $\cos\theta>0.95$: ω^2

Setup 2

Same as previous, but changed cost to smooth one.

$$a*(1-\cos\theta)^2+b*\omega^2$$

where a, b are positive weights

Hidden dim: 32 Hidden layers: 2

lr: 0.005 steps: 1800

N_episode: 2 N_iters: 200

cost coefs a=b=1.

cost coefs a=30, b=1.

Hidden layers: 2

steps: 1500 N_iters: 200

Setup 3.

Here we changed model with fixed force to unfixed. Model predicts force itself within [-10, 10].

P.S. worked not good

cost function is fixed with velocity cost if angle is small (cosine > 0.95)

Setup 4

Actor Critic approach. Unlimited surface of cart.

Hidden dim: 64 (both A-C) Ir: 0.005 N_episode: 2 Hidden layers: 8 (both A-C) steps: 1500 N_iters: 200 bounds: [-40, 40] alpha: 0.5 cost function is $alpha*(1-\cos\theta)+(1-alpha)*\omega^2+0.25*u^2$

Limited Cart Pole (-10, 10)

Hidden dim: 64 Hidden layers: 3 lr: 0.005 steps: 1500 N_episode: 2 N_iters: 200

if $\cos\theta$ < 0.9: return $80*(1-\cos\theta)+\omega^2+x^2$ else: return $40*(1-\cos\theta)+\omega^2$

As you may observe, RL suffers with stabilizing system at desired position (angle == 0).

Let's check, if initial state is already at (0, 0) for unlimited cart pole. And compare with LQR.

LQR formula

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{(M+m)g}{IM} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ -\frac{1}{IM} \end{bmatrix} u$$

cost fixed with velocity punishment on high cosine.

Init state (np.pi / 100, 0)

Thank you for your attention!

Ready to answer your questions.

https://github.com/BogChamp/rl_project/tree/master

