

UNIVERSITY OF ASIA PACIFIC

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Course Title: Database Systems Lab

Course Code: CSE 212

Project Name: Agriculture Yield Prediction Management System

Submitted By		Submitted To
Name Shahriar Alam Shimul Salman Nur Ramim M Sakib Rahman Sadman Sarwar Nabid H.M. Tahsin Sheikh Sec: E-1 Year-Semester: 2nd Year Semester	ID 22201227 22201239 22201240 22201242 22201243	Nadeem Ahmed Assistant Professor Department Of Computer Science & Engineering University Of Asia Pacific

Table of Content

1. Topic	3
2. Description	3
3. Database Name	4
4. Users	5
5. Table	5
6. Table Column/Attribute	6
7. Primary Key, Foreign Key Relation	7
8. Entity Relation	10
9. ER Diagram	11
10. Schema Diagram	12
11. Queries	13
CEP Mapping	19

AGRITULTURE YIELD PREDICTION MANAGEMENT SYSTEM

Topic

The Agriculture Yield Production Management System (AYPMS) is a smart tool that helps farmers improve their work and grow more crops efficiently. It technology like data analysis to keep track of important factors like soil quality, weather, crop growth, and pest problems. With real-time updates, AYPMS helps farmers make better decisions for their fields. This system is very useful for sustainable farming because it ensures resources like water and fertilizers are used wisely. In today's world, where climate change, limited resources, and a growing population are big challenges, tools like AYPMS are essential. By collecting and analyzing data from various sources, it helps farmers predict crop yields more accurately, cut costs, and boost food production to meet global needs.

Description

An agriculture yield prediction management system is a comprehensive database or repository that collects, organizes, and manages various types of agricultural data to support the efficient and accurate forecasting of crop yields. This type of system is designed to handle the vast and complex relationships between different types of data, which can include:

- 1. Information on soil quality and composition: Detailed data about soil nutrients, pH levels, and other factors that impact crop growth.
- **2. Weather and climate data:** Historical and real-time data about rainfall, temperature, humidity, and other climatic conditions essential for predicting agricultural yields.
- **3.** Crop and seed data: Information about different crops, seed varieties, growth patterns, and optimal planting and harvesting times.
- **4. Fertilizer and pesticide usage**: Data on the types and amounts of fertilizers and pesticides applied, their effects on crops, and the timing of applications.

5. Pest and disease management: Records of pest infestations and disease outbreaks, including preventive and curative measures taken.

By utilizing a yield prediction management system, agricultural enterprises and farmers can overcome issues related to data inconsistency, where different datasets may exist in various formats across multiple sources. This level of integration helps in automating various processes, from data collection and analysis to generating forecasts and reports. With better access to organized and precise data, decision-makers can optimize planting schedules, resource allocation, and risk management strategies, leading to more efficient agricultural practices and improved yield predictions.

Core Benefits:

- Improved decision-making through comprehensive data access.
- Automated processes for efficient data collection and management.
- Accurate yield predictions using data-driven analytics.
- Enhanced risk management for weather and market conditions.
- Optimized resource use to promote sustainable practices.

Database Name

The name of the database will be "AYP_Database_System". It will consist of 14 tables, each designed to manage and organize data related to agriculture yield production efficiently. The database will serve as a centralized platform, enabling farmers, agronomists, and administrators to access, analyze, and utilize agricultural data. The database will facilitate data collection from various sources, weather monitoring systems and user inputs.

Users

The Agriculture Yield Production Management System (AYPMS) serves multiple stakeholders to enhance agricultural productivity and decision-making. Key users include:

1. Farmers

- Access data on crop health, soil conditions, and weather, and log farming activities for progress tracking.

2. Agronomists

- Analyze data to provide recommendations on pest control, fertilization, and crop rotation to improve yield.

3. Administrators

- Manage system access, ensure data integrity, and oversee compliance with agricultural regulations.

4. Central Data Management

- Manages the database, ensures consistency, runs queries, and generates analytic to support all users.

Table

- 1. SoilData
- 2. Weather Data
- 3. Crop Data
- 4. Yield Data
- 5. Farmer Profile
- 6. Recommendations
- 7. Alerts
- 8. Budget
- 9. Fertilizer Data
- 10. Fertilizer Usage
- 11. Pest Control
- 12. Agronomist
- 13. Appointment
- 14. Loan

Table columns / attributes

- 1. SoilData (SoilTypeID, Region, NutrientLevels, CropCompatibility)
- **2.** WeatherData (<u>WeatherID</u>, Date, Temperature, Humidity, Rainfall, WindSpeed, Region)
- 3. CropData (CropID, Name, Season, AverageYield, CompatibleSoilTypeID)
- **4.** YieldData (<u>YieldID</u>, Region, CropID, Year, ActualYield)
- **5.** FarmerProfile (<u>FarmerID</u>, Name, Region, ContactInfo)
- 6. Recommendations (RecommendationID, FarmerID, CropID, Date, Season)
- 7. Alerts (AlertID, FarmerID, AlertType, Date)
- **8.** Budget (<u>BudgetID</u>, FarmerID, CropID, LoanID, Year, EstimatedCost, ActualCost, Revenue, Profit)
- 9. FertilizerData (FertilizerID, Name, Type, CostPerUnit)
- **10.** FertilizerUsage (<u>UsageID</u>, CropID, FertilizerID, AmountUsed, ApplicationDate)
- 11. PestControl (PestControlID, CropID, PesticideUsed, ApplicationDate, Cost)
- 12. Agronomist (AgronomistID, Name, Specialization, ContactInfo, Region)
- **13.** Appointment (<u>Appointment</u>_ID, FarmerID, AgronomistID, AppointmentDate)
- **14.** Loan (<u>LoanID</u>, FarmerID, LoanAmount, InterestRate, LoanStartDate, LoanEndDate, Status)

Primary key, Foreign key/Relation

1. SoilData

SoilType ID PRIMARY KEY,

Region,

NutrientLevels,

CropCompatibility

2. Weather Data

Weather ID PRIMARY KEY,

Date,

Temperature,

Humidity,

Rainfall,

WindSpeed,

Region FOREIGN KEY

3. CropData

Crop ID PRIMARY KEY,

Name,

Season PRIMARY KEY,

AverageYield,

CompatibleSoilType ID FOREIGN KEY

4. YieldData

Yield ID PRIMARY KEY,

Region,

Crop ID FOREIGN KEY,

Year, Actual Yield

5. FarmerProfile

Farmer ID PRIMARY KEY,

Name,

Region,

ContactInfo

6. Recommendations

Recommendation_ID PRIMARY KEY,

Farmer_ID FOREIGN KEY,

Crop_ID FOREIGN KEY, Date, Season FOREIGN KEY

7. Alerts

Alert_ID PRIMARY KEY, Farmer_ID FOREIGN KEY, AlertType VARCHAR(50), Date

8. Budget

Budget_ID PRIMARY KEY,
Farmer_ID FOREIGN KEY,
Crop_ID FOREIGN KEY,
Loan_ID FOREIGN KEY,
Year,
EstimatedCost,
ActualCost,
Revenue,
Profit

9. FertilizerData

Fertilizer_ID PRIMARY KEY, Name, Type, CostPerUnit

10. FertilizerUsage

<u>Usage_ID</u> PRIMARY KEY, Crop_ID FOREIGN KEY, Fertilizer_ID FOREIGN KEY, AmountUsed, ApplicationDate

11. PestControl

PestControl_ID PRIMARY KEY, Crop_ID FOREIGN KEY, PesticideUsed, ApplicationDate, Cost

12. Agronomist

Agronomist_ID PRIMARY KEY, Name, Specialization, ContactInfo, Region

13. Appointment

Appointment_ID PRIMARY KEY, FarmerID FOREIGN KEY, AgronomistID FOREIGN KEY, AppointmentDate

14. Loan

Loan_ID PRIMARY KEY,
Farmer_ID FOREIGN KEY,
LoanAmount,
InerestRate,
LoanStartDate,
LoanEndDate,
Status

Entity Relationship

Entity Name 1	Entity Name 2	Relationship Name	Relationship Type	Participation
SoilData	WeatherData	Regional Climate	One-to-Many	Partial for both
SoilData	CropData	Soil Suitability	One-to-Many	Partial for SoilData, Total for YieldData
CropData	PestControl	Pest Management	One-to-Many	Partial for CropData, Total for PestControl
CropData	Recommendations	Irrigation Planning	One-to-Many	Partial for both
CropData	YieldData	Production Yield	One-to-Many	Partial for CropData, Total for YieldData
FarmerProfile	Loan	Financial Assistance	One-to-Many	Partial for FarmerProfile,Total for Loan
FarmerProfile	Agronomist	appointment	Many-to-Many	Partial for both
FarmerProfile	Recommendations	Farming Advice	One-to-Many	Partial for FarmerProfile, Total for Recommendations
FarmerProfile	Alerts	Emergency Notifications	One-to-Many	Partial for FarmerProfile, Total for Alerts
FarmerProfile	CropData	Budget	Many-to-Many	Total for both
FertilizerData	FertilizerUsage	Usage Details	One-to-Many	Partial for FertilizerData, Total for FertilizerUsage
CropData	FertilizerUsage	Crop Fertilizer Management	one-to-Many	Partial for CropData, Total for FertilizerUsage

ER Diagram

Agriculture Prediction Management System ER Diagram

Schema Diagram

Queries

--display all the data stored in the SoilData table

SELECT * FROM SoilData;

	SoilTypeID	Region	NutrientLevels	CropCompatibility
1	1001	Dhaka	High Nitrogen, Medium Phosphorus	Rice, Wheat
2	1002	Chittagong	High Phosphorus, Low Potassium	Tea, Rice
3	1003	Sylhet	High Organic Matter	Tea, Vegetables
4	1004	Rajshahi	Low Nitrogen, Medium Phosphorus	Mango, Wheat
5	1005	Khulna	Saline Soil	Shrimp, Rice
6	1006	Barisal	Acidic Soil	Rice, Jute
7	1007	Rangpur	High Potassium	Potato, Rice
8	1008	Mymensingh	Medium Nitrogen	Vegetables, Rice
9	1009	Comilla	Medium Phosphorus	Jute, Rice
10	1010	Noakhali	Sandy Loam	Rice, Vegetables

--list all distinct seasons recorded in the CropData table

SELECT DISTINCT Season FROM CropData;

--display all fertilizer names in uppercase from the FertilizerData table.

SELECT UPPER(Name) AS FertilizerName FROM
FertilizerData;

--display Name, Region data stored in the FarmerProfile table

SELECT Name, Region FROM
FarmerProfile;

--count the total number of crops listed in the CropData table

SELECT COUNT(*) AS TotalCrops FROM
CropData;

--calculate the average estimated cost from the Budget table

SELECT AVG(EstimatedCost) AS
AvgUtilization FROM Budget;

--find the minimum and maximum cost per unit of fertilizers from the FertilizerData table.

SELECT MIN(CostPerUnit) AS MinPrice,
MAX(CostPerUnit) AS MaxPrice FROM
FertilizerData;

-calculate the total amount of fertilizer used from the FertilizerUsage table.

SELECT SUM(AmountUsed) AS
TotalFertilizerUsed FROM
FertilizerUsage;

--all records from the Alerts table where the AlertType contains the word "Warning"

SELECT * FROM Alerts

WHERE AlertType LIKE '%Warning%';

--find all fertilizer data where the cost per unit is between 10 and 20.

SELECT * FROM FertilizerData

WHERE CostPerUnit BETWEEN 10 AND 20;

--find all loans where the loan amount is greater than 50,000.

SELECT * FROM Loan

WHERE LoanAmount > 50000

--find the total yield for each region, only for those regions where the total yield is greater than 4.

SELECT Region, SUM(ActualYield) AS
TotalYield FROM YieldData

GROUP BY Region

HAVING SUM(ActualYield) > 4;

--Calculate the average yield for each region from the YieldData table, grouping the results by Region."

SELECT Region, AVG(ActualYield) AS AvgYield FROM YieldData

GROUP BY Region;

--all records from the FertilizerData table and order them by CostPerUnit in ascending order.

SELECT * FROM FertilizerData

ORDER BY CostPerUnit ASC;

--Calculate the total yield for each region from the YieldData table for the year 2023, where the total yield is greater than 4, grouping the results by Region.

SELECT Region, SUM(ActualYield) AS
TotalYield FROM YieldData

WHERE Year = 2023

GROUP BY Region

HAVING SUM(ActualYield) > 4

--all the records from the FarmerProfile table, ordered by FarmerID in descending order.

SELECT * FROM FarmerProfile

ORDER BY FarmerID desc

	FarmerID	Name	Region	ContactInfo
1	1020	Junaid Rafi	Barisal	01843670901
2	1019	Kabir Singh	Chittagong	01656499012
3	1018	Asif Nazim	Sylhet	01923556580
4	1017	Rakib Khan	Dhaka	01734583892
5	1016	Afia Sultana	Khulna	01823326789
6	1015	Jamal Jitu	Rajshahi	01567894021
7	1014	Shuhurat Khatun	Chittagong	01611367890
8	1013	Nadeem Rahman	Sylhet	01985554321
9	1012	Sheikh Hasina	Dhaka	01798755432
10	1011	Abdullah Jubayer	Barisal	01812335578
11	1010	Shahidul Islam	Khulna	01845678905
12	1009	Kabir Chowdhury	Rajshahi	01656789012
13	1008	Nasima Akter	Sylhet	01923456780
14	1007	Rafiq Hossain	Dhaka	01734567892
15	1006	Ayesha Sultana	Barisal	01823456789
16	1005	Jamal Uddin	Khulna	01567894321
17	1004	Fatema Khatun	Rajshahi	01612347890
18	1003	Mizanur Rahman	Chittagong	01987654321
19	1002	Hasina Begum	Sylhet	01798765432
20	1001	Abdul Karim	Dhaka	01812345678

--find the FarmerIDs that are present in both the Loan and Alerts tables.

SELECT FarmerID FROM Loan

INTERSECT

SELECT FarmerID FROM Alerts;

--names of farmers and their respective agronomists from the FarmerProfile and Agronomist tables, based on the Appointment table.

SELECT f.Name AS FarmerName, agr.Name AS
AgronomistName FROM FarmerProfile f

JOIN Appointment ap ON f.FarmerID =
ap.FarmerID

JOIN Agronomist agr ON ap.AgronomistID =
agr.AgronomistID;

--combine the FarmerID values from the Loan and Alerts tables, ensuring there are no duplicates.

SELECT FarmerID FROM Loan

UNION

SELECT FarmerID FROM Alerts;

--FarmerID values from the Loan table that do not exist in the Alerts table.

SELECT FarmerID FROM Loan

EXCEPT

SELECT FarmerID FROM Alerts;

--count the number of loans issued in each region by joining the FarmerProfile and Loan tables.

SELECT Region, COUNT(LoanID) AS LoanCount

FROM FarmerProfile f JOIN Loan 1 ON
f.FarmerID = 1.FarmerID

GROUP BY Region;

--find the names of farmers who have not taken any loans

SELECT Name FROM FarmerProfile

WHERE FarmerID NOT IN (SELECT FarmerID
FROM Loan);

--all alerts for farmers located in the 'Dhaka' or 'Sylhet' regions.

SELECT * FROM Alerts

WHERE FarmerID IN (SELECT FarmerID FROM
FarmerProfile WHERE Region IN ('Dhaka',
'Sylhet'));

--count the number of loans issued in each region by joining the FarmerProfile and Loan tables.

SELECT Region, COUNT(LoanID) AS LoanCount

FROM FarmerProfile f JOIN Loan 1 ON
f.FarmerID = 1.FarmerID

GROUP BY Region;

--find the names of farmers who have not taken any loans

SELECT Name FROM FarmerProfile WHERE
FarmerID NOT IN (SELECT DISTINCT FarmerID
FROM Loan);

--create a view named LoanSummary that selects the FarmerID, LoanID, LoanAmount, and Status from the Loan table, and then retrieve all the data from the LoanSummary view.

CREATE VIEW LoanSummary AS

SELECT FarmerID, LoanID, LoanAmount,
Status

FROM Loan;

select * from LoanSummary

--names of farmers who have used organic fertilizers

SELECT Name FROM FarmerProfile

WHERE FarmerID IN (SELECT FarmerID FROM FertilizerUsage fu

JOIN FertilizerData fd ON fu.FertilizerID
= fd.FertilizerID WHERE fd.Type =
'Organic');

--Create a view named CropBasicInfo that includes the CropID, Name (aliased as CropName), Season, and AverageYield columns from the CropData table. Then, retrieve all records from the CropBasicInfo view."

CREATE VIEW CropBasicInfo AS

SELECT CropID, Name AS CropName, Season,
AverageYield FROM CropData;

select * from CropBasicInfo

	CropID	Crop Name	Season	Average Yield
1	10001	Rice	Aman	3.50
2	10002	Tea	Kharif	1.80
3	10003	Mango	Summer	5.00
4	10004	Wheat	Rabi	2.50
5	10005	Potato	Winter	4.00
6	10006	Jute	Monsoon	2.80
7	10007	Shrimp	Rainy	1.20
8	10008	Vegetabl	All Sea	3.00
9	10009	Banana	Summer	6.00
10	10010	Tomato	Winter	2.20

CEP mapping

Our project is a solution to a complex engineering problem because it can't be resolved without in depth engineering knowledge. There is no obvious solution to and requires some amount of abstract thinking depending on the Database model.

How Knowledge Profiles (K's) are addressed through the project and mapping among

K's, COs and POs:

Code	Competency	Description	Related COs	Related POs
К3	Engineering Fundamentals	Our project leverages core engineering principles such as relational database design, programming fundamentals (SQL), and system analysis to create a robust agricultural management system.	C01, C02	5(e), 2(b)
К4	Specialist Knowledge	Requires in-depth knowledge of soil science, weather data, and crop management to design predictive models for improved agricultural yield.	C05, C07	3(c)
К5	Engineering Design	The project incorporates ER diagrams, schema creation, normalization, and efficient database management, ensuring logical relationships between entities like farmers, crops, and agronomists.	C03, CO4	1(a), 2(b)
К6	Engineering Practice	We have used SQL in Microsoft SQL Server for managing and querying the database, along with Illustrator for creating the ER diagram	C01, CO2	5(e), 2(b)

➤ How Complex Engineering problem solving (P's) are addressed through the project and mapping among

P's, COs and POs:

Code	Performance	Description	Related COs	Related POs
P1	Depth of knowledge requirements	The project requires study of SQL in Microsoft SQL Server(K6), normalization, ER diagram, Schema diagram(K5), join, subquery etc.	CO2, CO4	2(b), 2(b)
P2	Range of conflicting requirements	Developed a database system to address real- world agricultural challenges, such as optimizing crop yield while balancing limited resources like fertilizers, budgets, and pest control	CO5	3(c)
Р3	Depth of data analysis	Designed tables to store, process, and analyze soil data, weather data, and crop yield, ensuring accurate insights for decision-making and Utilized SQL queries to extract insights from large datasets	CO2, CO3	2(b), 1(a)
P7	Interdependence	Developed a system where various components such as soil data, weather conditions, crop information, and financial aspects are interdependent, ensuring that changes in one area impact others.	CO8	9(i)

➤ How Complex Engineering Activities (A's) are addressed through the project and mapping among

A's, COs and POs:

Code	Attribute	Description	Related COs	Related POs
A1	Range of resources	Leveraged a wide range of resources, including online platforms, agricultural data sources, and public records, to effectively map and develop the agriculture yield prediction system.	C05, CO9	3(c), 10(j)
A2	Level of Interaction	Designed a system with a high level of interaction, allowing farmers to actively engage with the platform for personalized recommendations, yield predictions, and budget tracking.	C08	9(i)
A5	Familiarity	Demonstrated a high level of familiarity with key technologies and concepts required to design and implement the agriculture yield prediction system, including SQL for database management and data analysis, and tools like Microsoft SQL Server for efficient query processing.	CO5	3(c)