1. Escreva uma descrição formal de cada um dos seguinte grafos:

$$(c) \quad a \quad b \quad d$$

$$V = da, b, c, de$$

c)
$$G = (v, E)$$
 and $V = da, b, c, d, e$

2. Determine as matrizes de incidência e de adjacência de cada um dos grafos apresentados no exercício anterior.

$$(c) \begin{array}{c} c & e \\ e_3 & e_4 \\ \hline a & e_1 \\ \hline b & e_4 \\ \hline d \end{array}$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

3. Desenhe um grafo que tenha como matriz de adjacência a matriz:

(b)
$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

4. Desenhe um grafo que tenha como matriz de incidência a matriz:

(a)
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \stackrel{a}{,c}$$
(b)
$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(b)
$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Considere o seguinte grafo

- (a) Indique um caminho de a a h que não seja simples.
- (b) Indique um caminho simples de a a h que não seja elementar.
- (c) Indique um caminho elementar de a a h.
- (d) Indique um circuito de G que não seja ciclo.
- (e) Indique um ciclo de G de comprimento 7.
- (f) Verifique se os seguintes grafos são subgrafos de G:
 - i. $G_1 = (\{a, b, e, f\}, \{\{a, b\}, \{a, e\}, \{a, f\}, \{e, f\}\});$
 - ii. $G_2 = (\{a, b, d, g, h\}, \{\{a, b\}, \{a, d\}, \{b, g\}, \{d, g\}, \{g, h\}\});$
 - iii. $G_3 = (\{a, c, d, e, f\}, \{\{a, c\}, \{a, e\}, \{c, d\}, \{e, f\}\}).$
- (g) Determine o subgrafo de G induzido por cada um dos subconjuntos de vértices seguintes:
 - i. $\{a, b, c, d, e\}$; ii. $\{b, c, e, f, g\}$; iii. $\{b, c, e\}$.

(a,e, t, a, e, t, d, g, h)

ou

< a, e, d, d, g, b, d, g, h>

<u>ne</u> --.

b) caminho elementer: caminho sem vértices refetidos

(a,b,d,c,+,d,g,h)

ore (a, e, f, g, a, b, g, h) ore --.

- c) (a, b, g, h) on (a, c, d, g, h) on (a, e, t, d, g, h)
- d) Circuito: cominho que começa e termina no mesors véretice ciclo: circuito que não repete véatices

- e) (a,b,g,d,c,+,e,a)
- i) i) Gn = (\frac{1}{2}a_1b_1e_1t_1^2_1 d_1d_2b_1^2_1 d_2e_1b_1^2_1 d_2e_1t_1^2_1)

 Não & Subgrato uma vez que daid; mão acesta de G

 ii) G2 = (\frac{1}{2}a_1b_1a_1a_1^2_1 d_1^2_1 d_

iii) fb,c,e}

e

Geago n

7. Considere o grafo de Petersen aqui apresentado

Determine

- (a) um caminho simples de comprimento 5;
- (b) um caminho elementar de comprimento 9;
- (c) ciclos de comprimento 5, 6, 8 e 9.
- a) comminhor simples: sem avestas repetidas.
 (a,c,e,d,b,b')
- b) cominho elementer: sem véetices repetidos. (a,b,d,e,c,c',d,a,e,b')
- C) Comprimento 5: (a, b, d, a, c, a)

 comprimento 6: (a, a, e, b, c, c, a)

 comprimento 8: (c', d', a, e, b', b, a, c, c')

 comprimento 9: (c', d', a, e, b', b, d, e, c, c')

11. Dos seguintes grafos, diga quais são bipartidos, indicando uma partição do conjunto dos seus vértices

Existe uma factição of X, y jo de V tal que as

vértices de X so son adjacentes a vértices de Y a vice-versa.

Tecrema: Um grafs é um biparticlo se não tem ciclos de comprimento impor

$$X = da$$
,

 $Y = db$, c , e , d

Não funciona!

Este grado não é bipartido pois da, b, c, a je é um ciclo de comprimento impar

(b)
$$a \xrightarrow{b} c \xrightarrow{d} g$$

Este grado é bipartido pois não tem ciclos (e partanto não tem ciclos de comp. impar)

$$X = \{a, h, e, c, j, g\}$$

 $Y = \{b, i, f, d\}$

(e)
$$d \underbrace{ \begin{array}{c} f \\ \\ b \\ \\ a \end{array} } e$$

$$X = \{a, b, c\}$$

$$Y = \{e_1, d\}$$

Não dunciona!

0 caminho (a, e, b, c, d, a)

é um ciclo de comprimento 5 lugo o grado não é bifartido.

Todos os ciclos deste grafo têm comprimento 6

logo o grado é hispartiolo

X= d a, d, e f

Y= d b, c, + }

- 13. Dê exemplo, caso exista, de:
 - (a) um grafo sem vértices de grau ímpar;
 - (b) um grafo sem vértices de grau par;
 - (c) um grafo com exatamente um vértice de grau ímpar;
 - (d) um grafo com exatamente um vértice de grau par;
 - (e) um grafo com exatamente dois vértices de grau ímpar;
 - (f) um grafo com exatamente dois vértices de grau par.

G:

b) G:

C) Tecnema: Em qualquer grado o numero de vértices de genue impar é par Logo tal grado não existe

15. Qual o número mínimo de vértices de um grafo simples com 200 arestas? Porquê?

O grado complete Kn é o grado simples com n vertices e o maiore vieneros de avertas possível ema vez que quaisquer dois vertices são adjocentes. O grado Kn tem $\binom{n}{2} = \frac{n(n-1)}{2}$ arrestas

Temos que K20 tem $\frac{20\times19}{2} = 190$ arrestas

K21 tem $\frac{21\times20}{2} = 210$ arrestas

Postante para construir em grafe com 200 orestes e o vúmero mínimo de véstices devemos tornas um grafe $G = (V_1 E)$ onde #V = 21, digamos, $V = d v_2, v_2, \ldots, v_{20}, w \neq 0$ o subgrade garado por $d v_1, v_2, \ldots, v_{20}, e K_{20}$ e além disso grave (w) = 10, ou sija, $E = d d v_1, v_1 \neq 0$, $i \neq j$, $i, j = 1 \ldots 20$ o $d d w_1, v_2 \neq 0$, $k = 1, \ldots, v_0 \neq 0$.