SUP MPSI3 Corrigé DS02 21 octobre 2022

EXERCICE 1 : Etude d'un réseau en régime permanent :

 $(\approx 34 \text{ pts})$

Q1. Pour exprimer i, il faut calculer la résistance équivalente à toutes les résistances du réseau.

 \blacksquare On note R_{eq1} la résistance équivalente aux résistances 4R et 12R en parallèle.

Soit
$$R_{eq1} = \frac{4R \times 12R}{4R + 12R} = \frac{48 R^2}{16 R}$$
; On obtient : $R_{eq1} = 3R$.

 \clubsuit Cette résistance R_{eq1} est en série avec la résistance 2R. Soit R_{eq2} cette nouvelle résistance équivalente.

Alors
$$R_{eq2} = R_{eq1} + 2R = 3R + 2R$$
; On obtient $R_{eq2} = 5R$.

 \blacksquare Enfin, notons R_{eq3} la résistance équivalente aux résistances R_{eq2} et 20 R en parallèle.

$$R_{eq3} = \frac{R_{eq2} \times 20 R}{R_{eq2} + 20 R} = \frac{5R \times 20R}{5R + 20R} = \frac{100 R^2}{25 R}$$
; On obtient : $R_{eq3} = 4R$.

On obtient alors un circuit à une seule maille : Loi de Pouillet pour trouver
$$I$$
 : $I = \frac{E}{R + R_{eq3}} = \frac{E}{R + 4R}$; On obtient donc : $I = \frac{E}{5R}$.

Pour déterminer
$$U_1$$
, on utilise l'additivité des tensions : $U_1 = E - R I = E - R \frac{E}{5R} = E - \frac{E}{5}$; On obtient donc : $U_1 = \frac{4}{5} E$.

Q2. Il faut reprendre le schéma numéro 2, qui présente *U* aux bornes de R_{eq1} :

 U_1 peut se décaler à l'entrée de la résistance 2R comme sur le schéma

On a alors les résistances 2R et R_{eq1} qui sont en série. U_1 est la tension globale:

Formule du pont diviseur de tension :
$$\frac{U}{U_1} = \frac{R_{eq1}}{R_{eq1} + 2R} = \frac{3R}{3R + 2R}$$
;

Soit :
$$U = \frac{3}{5}U_1$$
 . Et comme $U_1 = \frac{4}{5}E$, on obtient $U = \frac{3}{5} \times \frac{4}{5}E$;

Ou encore :
$$U = \frac{12}{25}E$$
.

 $\mathbf{Q3}$. Pour obtenir les intensités I_1 et I_2 , on exploite la loi d'Ohm en convention récepteurs aux bornes des résistances 4R et 12R respectivement.

D'où :
$$U = 12R I_2$$
 ; Soit : $I_2 = \frac{U}{12R} = \frac{\frac{12}{25}E}{12R}$; ainsi : $I_2 = \frac{E}{25R}$.

Et de même,
$$U = 4R I_1$$
; Soit : $I_1 = \frac{U}{4R} = \frac{\frac{12}{25}E}{4R}$; ainsi : $I_1 = \frac{3E}{25R}$.

Et de même,
$$U = 4R I_1$$
; Soit : $I_1 = \frac{U}{4R} = \frac{\frac{12}{25}E}{4R}$; ainsi : $I_1 = \frac{3E}{25R}$.
Pour obtenir I_3 : Loi des nœuds : $I_3 = I_1 + I_2 = \frac{3E}{25R} + \frac{E}{25R}$; Soit : $I_3 = \frac{4E}{25R}$.

Q4. Les résistances 4R et 12R sont en parallèle.

I₃ est l'intensité globale qui arrive au nœud ou en repart, comme indiqué sur le schéma ci-contre :

Formule du pont diviseur de courant : Attention, il faut prendre la résistance de l'autre branche ou bien travailler avec les

$$\frac{I_1}{I_3} = \frac{12 R}{12 R + 4R} = \frac{12}{16} = \frac{3}{4}$$
; Ainsi : $I_1 = \frac{3}{4} I_3$;

Cohérent avec le résultat précédent. De même :
$$\frac{I_2}{I_3} = \frac{4 R}{12 R + 4 R} = \frac{4}{16} = \frac{1}{4}$$
; Ainsi : $\boxed{I_2 = \frac{1}{4} I_3}$.

Cohérent avec le résultat précédent.

Soit
$$P_g = E \frac{E}{5R}$$
; Ainsi : $P_g = \frac{E^2}{5R}$; **Q6.** La résistance 12*R* est traversée par I_2 ;

Ainsi :
$$P_{J} = 12RI_{2}^{2}$$
; D'où ; $P_{J} = 12R\left(\frac{E}{25R}\right)^{2}$; Ainsi : $P_{J} = \frac{12E^{2}}{625R}$;

$$= \text{Enfin}: \frac{P_J}{P_g} = \frac{\frac{12 E^2}{625R}}{\frac{E^2}{5 E}}; \text{Ainsi}: \frac{P_J}{P_g} = \frac{12}{625} \times 5 = \frac{12}{125}; \underline{\text{Ccl}}: \boxed{P_J \approx \frac{1}{10} P_g \approx \frac{10}{100} P_g};$$

La résistance 12R consomme donc environ 10 % de l'énergie fournie par le générateur.

EXERCICE 2 : Etude d'un pont de Wheatstone en régime permanent : (≈33pts)

Q1. $U_1 = V_A - V_B$; $U_3 = V_A - V_D$; Et $U = V_B - V_D$

I - Etude du réseau ci-contre par différentes méthodes :

Q2. Lois de Kirchhoff:

- \bot Loi des nœuds : $I = I_1 + I_3$.
- \blacksquare Loi des mailles en bas : $E R_3I_3 R_4I_3 = 0$; Soit : $I_3 = \frac{E}{R_3 + R_4}$;
- Loi des mailles ds la grande maille : $E R_1I_1 R_2I_1 = 0$; Soit : $I_1 = \frac{E}{R_1 + R_2}$;

En appliquant la loi des nœuds, il vient : $I = \frac{E}{R_1 + R_2} + \frac{E}{R_3 + R_4}$ Ou encore : $I = \frac{E(R_1 + R_2 + R_3 + R_4)}{(R_1 + R_2)(R_3 + R_4)}$;

Enfin: Loi d'Ohm en convention récepteur: $U_1 = R_1 I_1$; Soit: $U_1 = \frac{R_1 E}{R_1 + R_2}$;

Et de même : $U_3 = R_3 I_3$; Soit : $U_3 = \frac{R_3 E}{R_3 + R_4}$;

Q3. Simplification du réseau :

$$R_{eq} = \frac{R_{eq1}R_{eq2}}{R_{eq1} + R_{eq2}} = \frac{(R_1 + R_2)(R_3 + R_4)}{R_1 + R_2 + R_3 + R_4}$$

Sur le circuit à une maille : <u>Loi de Pouillet</u> : $I = \frac{E}{R_{eq}}$; Ainsi : $I = \frac{E(R_1 + R_2 + R_3 + R_4)}{(R_1 + R_2)(R_3 + R_4)}$;

Q4. En utilisant les formules du pont diviseur de tension, sur le circuit initial :

Dans la maille du bas, les résistances R_3 et R_4 sont en série et E alimente la totalité :

Ainsi : $\frac{U_3}{E} = \frac{R_3}{R_3 + R_4}$; Soit : $U_3 = \frac{R_3}{R_3 + R_4} E$;

De même dans la grande maille, les résistances R_1 et R_2 sont en série et E alimente la totalité :

Ainsi : $\frac{U_1}{E} = \frac{R_1}{R_1 + R_2}$; Soit : $U_1 = \frac{R_1}{R_1 + R_2} E$;

De plus, $U = V_B - V_D = V_B - V_A + V_A - V_D$; Soit : $U = U_3 - U_1$ (par additivité des tensions).

Ainsi : $U = \frac{R_3}{R_3 + R_4} E - \frac{R_1}{R_1 + R_2} E$; Soit : $U = \frac{R_3(R_1 + R_2) - R_1(R_3 + R_4)}{(R_1 + R_2)(R_3 + R_4)} E$; Ou encore : $U = \frac{R_2 R_3 - R_1 R_4}{(R_1 + R_2)(R_3 + R_4)} E$;

U est nulle lorsque le numérateur est nul, donc pour $R_1 R_4 = R_2 R_3$;

II - On branche maintenant entre les bornes B et D un ampèremètre de précision, que l'on modélise par un conducteur ohmique de résistance r :

- **Q5.** Soit i l'intensité traversant l'ampèremètre modélisé ci-contre par la résistance r. On a $U = r i = V_B V_D$; Ainsi i = 0, pour $V_B = V_D$;
- **Q6.** On règle la valeur de la résistance variable R_2 de façon à obtenir U=0 au voltmètre ou i=0 à l'ampèremètre ;

On en déduit la valeur de la résistance inconnue R_3 telle que : $R_3 = \frac{R_1 R_4}{R_2}$;

On peut ainsi déterminer la valeur d'une résistance inconnue.

PROBLEME 1 : Etude d'une lampe de secours rechargeable :

 $(\approx 63 \text{ pts})$

(D'après CCINP TSI 2022)

Q1. Loi des mailles : $u_c(t) - Ri(t) = 0$.

Relation courant tension aux bornes du condensateur <u>en convention générateur</u> : $i(t) = -C \frac{u_c(t)}{dt}$;

D'où:
$$u_c(t) + RC \frac{du_c(t)}{dt} = 0$$
;

Sous forme canonique, il vient :
$$\frac{du_c(t)}{dt} + \frac{u_c(t)}{RC} = \frac{du_c(t)}{dt} + \frac{u_c(t)}{\tau} = 0 \text{ ; En posant } \tau = RC.$$

Solution générale = solution homogène (puisque le second membre est nul) de la forme :

 $u_c(t) = A e^{-t/\tau}$.

Condition initiale : A t = 0, $u_c(0^-) = u_c(0^+) = U_0$, car C assure la continuité de la tension à ses bornes. Alors $A e^0 = U_0 = A$; Conclusion: $u_c(t) = U_0 e^{-t/\tau}$, avec $\tau = RC$.

Q2. D'après l'énoncé,
$$5\tau = 20 \text{ min}$$
; donc $\underline{\tau = RC = 4 \text{ min} = 240 \text{ s}}$; Alors : $R = \frac{\tau}{c}$.

$$\underline{AN}$$
: $R = \frac{240}{10}$; On obtient : $\underline{R} = 24 \Omega$.

Q3. Les deux résistances doivent modifier au minimum le circuit. Ainsi, on devrait avoir R_f grande, pour que l'intensité qui la traverse soit faible et R_s petite, afin de minimiser les pertes par effet Joule.

Q4. Lorsque la DEL est bloquée, l'intensité reste nulle, donc elle se comporte comme un interrupteur ouvert.

ullet Lorsqu'elle est passante, la caractéristique de la diode est une droite oblique d'équation : $m{i} = \alpha \, m{u}_d + m{eta}$. Il faut déterminer α et β :

$$\alpha$$
 est le coefficient directeur de la droite : $\alpha = \frac{250.10^{-3}}{0.5} = \frac{0.25}{0.5} = \frac{25}{50}$; Soit $\underline{\alpha = 0.5 \text{ S (ou }\Omega^{-1})}$.

$$\beta$$
 l'ordonnée à l'origine telle que : 0 = 0,5 \times 2,3 + β ; Soit β = $-1,15$;

D'où l'équation de la caractéristique :
$$i = 0, 5 u_d - 1, 15$$
 (*)

On souhaite modéliser la DEL sous forme d'un générateur de Thévenin, donc on veut une équation de la forme : $u_d = \alpha' i + \beta'$.

Il faut donc sortir
$$u_d$$
 de l'équation précédente (*) : 0,5 $u_d = i + 1,15$; Ou encore : $u_d = \frac{i}{0,5} + \frac{1,15}{0,5} = 2i + \frac{11,5}{5}$ Qui se simplifie en $u_d = 2i + 2,3$; De la forme $u_d = u_s + ri$ avec $v_s = u_s + v_s = u_s + v_s$

On peut donc modéliser la diode passante par une association série d'une f.e.m. U_s et une résistance r en convention récepteur.

D'où le schéma électrique équivalent.

Q5. Schéma ci-contre.

i et u_d dont de sens opposés.

 u_d et U_S sont de même sens.

Loi des mailles :
$$u_c(t) - ri(t) - U_S = 0$$
.

Relation courant tension aux bornes du condensateur en convention

$$\underline{\text{générateur}}: \boldsymbol{i}(\boldsymbol{t}) = -\boldsymbol{C} \frac{u_c(t)}{dt};$$

D'où:
$$u_c(t) + rC \frac{u_c(t)}{dt} - U_S = 0.$$

Sous forme canonique, il vient :
$$\frac{du_c(t)}{dt} + \frac{u_c(t)}{rc} = \frac{du_c(t)}{dt} + \frac{u_c(t)}{rt} = \frac{U_S}{rc};$$

En posant $\tau' = rC$

Q6. Solution homogène de la forme : $u_{ch}(t) = B e^{-t/\tau}$.

Solution particulière constante; Elle satisfait à l'équation

différentielle ; Soit : $u_{cP} = U_S$.

Solution générale : $u_c(t) = u_{ch}(t) + u_{cP} = B e^{-t/\tau} + U_S$.

Condition initiale: A t = 0, $u_c(0^-) = u_c(0^+) = U_0$, car C assure

la continuité de la tension à ses bornes.

Alors $B e^0 + U_S = U_0$; D'où : $B = U_0 - U_S$; Conclusion : $u_c(t) = U_S + (U_0 - U_S) e^{-t/\tau}$, avec $\tau' = rC$.

 \blacksquare Allure de $u_c(t)$: ci-contre.

$$u_c(0^+) = U_0$$
 et $\lim_{t\to\infty} u_c(t) = U_S$.

L'intersection de la tangente à l'origine avec l'asymptote horizontale donne accès à τ' .

Q7. On a vu que $i(t) = -C \frac{u_c(t)}{dt}$;

Soit:
$$i(t) = -C\left(-\frac{1}{\tau'}\right)(U_0 - U_S)e^{-\frac{t}{\tau'}}$$

Soit : $i(t) = -C\left(-\frac{1}{\tau'}\right)(U_0 - U_S)e^{-\frac{t}{\tau'}};$ Qui se simplifie en $i(t) = (\frac{U_0 - U_S}{r})e^{-t/\tau'}$.

$$\frac{\text{Allure de } i(t) : \text{ci-contre.}}{i(0^+) = \frac{U_0 - U_S}{r}} \quad \text{et} \quad \lim_{t \to \infty} i(t) = 0 .$$

L'intersection de la tangente à l'origine avec l'axe des temps donne accès à τ' .

Q8. On remarque que
$$u_{c max} = U_0 = 3, 3 V$$
 et $i_{max} = \frac{U_0 - U_S}{r}$

D'où : et $i_{max} = \frac{3,3-2,3}{2}$; on obtient $i_{max} = 0, 5$ A.

D'après le tableau 1, $\underline{i_{max}} = 250 \text{ mA et } \underline{u_{cmax}} = 2.8 \text{ V}$.

Conclusion: Il faut restreindre la charge initiale du condensateur (pour limiter $u_{c max}$) en secouant moins longtemps ($\approx 20 \text{ s}$) et ajouter une résistance R' en série avec la LED pour diviser par deux, la valeur initiale de l'intensité.

Q9. D'après l'énoncé, la lampe éclaire tant que $u_d > U_S + 0.1 \text{ V}$.

D'après le schéma de la question Q5, $u_c = u_d$.

Ainsi, la lampe éclaire tant que $U_S + (U_0 - U_S) e^{-t/\tau \tau} > U_S + 0.1 \text{ V}$

A la limite, en t = T, on aura : $(U_0 - U_S) e^{-T/\tau t} = 0.1 \text{ V}$

Or $U_0 - U_S = 1$ V; Ainsi, on obtient: $e^{-T/\tau} = 0.1$; Soit: $-\frac{T}{\tau} = \ln(0.1) = -\ln(10)$.

Ainsi : $T = \tau' \ln(10) = rC \ln(10)$; AN : $T = 2 \times 10 \times 2.3$; On obtient : $T \approx 46$ s.

Conclusion : On est loin des 20 min annoncées !

Q10. On sait que l'énergie emmagasinée dans le condensateur se met sous la forme : $W = \frac{1}{2} C U^2$.

Ainsi, l'énergie initiale sera : $W_i = \frac{1}{2} C U_0^2$; Et l'énergie finale : $W_{Fin} = \frac{1}{2} C U_{Fin}^2$.

Alors le pourcentage d'énergie restante dans le condensateur lorsque la DEL cesse d'émettre de la lumière est :

$$P = 100 \times \frac{W_{Fin}}{W_i} = 100 \times \frac{U_{Fin}^2}{U_0^2}$$

PROBLEME 2: Etude d'un circuit RL transitoire : (D'après AGRO) (≈43 pts)

Q1. Oui, le courant dans la bobine est continu à t = 0, car une bobine assure la continuité de l'intensité qui la traverse.

Par contre, à priori il y a discontinuité de la tension aux bornes de la bobine à t = 0.

Et aussi, discontinuité du courant dans la résistance \mathbf{R} à t = 0.

Q2. Pour t < 0, K est ouvert, donc $i_L(0^-) = 0$; Par continuité $i_L(0^+) = 0$.

Loi des nœuds à $t = 0^+ : i(0^+) = i_R(0^+) + i_L(0^+) ;$ Soit : $i(0^+) = i_R(0^+)$.

Loi des mailles dans la maille de gauche, à $t = 0^+$: $E - Ri(0^+) - \frac{R}{2}i_R(0^+) = 0$

Soit: $E = \left(R + \frac{R}{2}\right)i_R(0^+)$; D'où: $i_R(0^+) = i(0^+) = \frac{2E}{3R}$ et $s(0^+) = \frac{R}{2}i_R(0^+) = \frac{R}{2}\frac{2E}{3R}$;

On obtient bien : $s(0^+) = \frac{E}{2}$.

Autre méthode: Comme $i_L(0^+) = 0$, alors $i(0^+) = i_R(0^+)$ et les résistances R et $\frac{R}{2}$ peuvent être considérées

comme en série. Pont diviseur de tension à $t=0^+: \frac{s(0^+)}{E}=\frac{\frac{R}{2}}{\frac{R}{2}+R}=\frac{\frac{R}{2}}{\frac{R}{3}}=\frac{1}{3}$; D'où : $s(0^+)=\frac{E}{3}$.

Q3. Lorsque $t \to \infty$, le régime permanent est atteint et la **bobine se comporte comme un fil**.

Ainsi, $[\underline{lim}(s) = 0]$, car cela correspond à la tension aux bornes d'un fil.

Q4. On cherche l'équation différentielle en s(t):

Loi des mailles à gauche : E - Ri(t) - s(t) = 0.

Il faut supprimer i(t): Loi des nœuds : $i(t) = i_R(t) + i_L(t)$.

Ainsi, on obtient : $E = R[i_R(t) + i_L(t)] + s(t)$. (*)

Il reste à exprimer les intensités $i_L(t)$ et $i_R(t)$ en fonction de s(t): $s(t) = L \frac{d i_L(t)}{dt}$ et $s(t) = \frac{R}{2} i_R(t)$.

Il faut donc dériver (*): $0 = R \frac{d i_R(t)}{dt} + R \frac{d i_L(t)}{dt} + \frac{d s(t)}{dt}$

Ainsi, il vient : $2\frac{d s(t)}{dt} + \frac{R}{L} s(t) + \frac{d s(t)}{dt} = 0$; Enfin sous forme canonique, on obtient : $\frac{d s(t)}{dt} + \frac{R}{3L} s(t) = 0$

Q5. Par simplification du réseau : On garde bien la bobine à droite.

On transforme le générateur de Thévenin en générateur de Norton : On a alors $\eta = \frac{E}{R}$

Puis les résistances R et $\frac{R}{2}$ sont en parallèle, alors

$$R_{eq} = \frac{R\frac{R}{2}}{R + \frac{R}{2}} = \frac{\frac{R}{2}}{\frac{3}{2}}$$
; Ainsi, $R_{eq} = \frac{R}{3}$.

On repasse alors en générateur de

Thévenin: $E_{Th} = R_{eq} \eta = \frac{R}{3} \frac{E}{R}$; Ainsi: $E_{Th} = \frac{E}{3}$.

On a alors un circuit à une seule maille :

Loi des mailles : $E_{Th} - R_{eq} i_L(t) - s(t) = 0.$ (**)

Il faut supprimer $i_L(t) : s(t) = L \frac{d i_L(t)}{dt}$

On dérive donc (**), il vient : $0 = R_{eq} \frac{\frac{d i_L(t)}{dt} + \frac{d s(t)}{dt}}{\frac{d t}{dt}}$; Soit : $\frac{d s(t)}{dt} + \frac{R_{eq}}{L} s(t) = 0$; Et enfin : $\frac{d s(t)}{dt} + \frac{R}{3L} s(t) = 0$.

Q6. Solution de cette équation différentielle :

On pose $\tau = \frac{3L}{R}$. Solution homogène = solution générale, car le second membre est nul.

s(t) est de la forme $s(t) = A \exp(-\frac{t}{\tau})$ $CI \ pour \ déterminer \ A : \ CI : A \ t = 0^+, \text{ on a dejà vu en Q2 que}$ $s(0^+) = \frac{E}{3} ; \text{ Donc } A = \frac{E}{3}$ Ainsi : $s(t) = \frac{E}{3} \exp(-\frac{t}{\tau}) \text{ avec } \tau = \frac{3L}{R}$

$$s(0^+) = \frac{E}{3}$$
; Donc $A = \frac{E}{3}$

Ainsi:
$$s(t) = \frac{E}{3} \exp(-\frac{t}{\tau})$$
 avec $\tau = \frac{3L}{R}$

D'où l'allure $\overline{\text{de }s(t)}$ ci-contre :

Remarque: On retrouve bien que $\lim_{s \to \infty} (s) = 0$.

Q7. On cherche t_0 tel que $s(t_0) = \frac{s(t=0^+)}{10} = \frac{E}{3 \times 10}$. On a alors : $s(t) = \frac{E}{3} \exp(-\frac{t_0}{\tau}) = \frac{E}{3 \times 10}$; D'où : $\exp(-\frac{t_0}{\tau}) = \frac{1}{10} = 0,1$.

Soit:
$$-\frac{t_0}{s} = \ln(0,1) = -\ln(10)$$
;

Soit:
$$-\frac{t_0}{\tau} = \ln(0,1) = -\ln(10)$$
;
Enfin: $t_0 = \tau \ln(10) = \frac{3L}{R} \ln(10)$.

Q8. Pour visualiser e(t) et s(t), il suffit de brancher l'oscilloscope comme ci-contre.

La masse de l'oscilloscope est reliée à la masse du GBF, un transformateur d'isolement n'est pas nécessaire.

Q9. On vous donne
$$t_0 = 3.0 \, \mu s$$
 et $R = 1000 \, \Omega$.
Or $t_0 = \frac{3L}{R} \ln (10)$; D'où: $L = \frac{R \, t_0}{3 \ln (10)}$.
 \underline{AN} : $L = \frac{1000 \times 3.10^{-6}}{3 \ln (10)} = \frac{10^{-3}}{\ln (10)} = \frac{1}{2.3} \cdot 10^{-3}$;

$$\underline{\text{AN}}: L = \frac{1000 \times 3.10^{-6}}{3 \ln{(10)}} = \frac{10^{-3}}{\ln{(10)}} = \frac{1}{2.3}.10^{-3}$$

On obtient $L \approx 0.4 \text{ mH}$

Soit
$$T \ge 10 \ \tau = \frac{30 \ L}{R}$$
; Ou encore $f \le \frac{R}{30 \ L}$.

$$\underline{\text{AN}}: f \leq \frac{1000}{30 \times 0.4 \cdot 10^{-3}} = \frac{10^6}{12} \approx 0.08 \cdot 10^6 \approx 8 \cdot 10^4 \approx 80 \cdot 10^3$$
; Il faut donc $\underline{f} \leq 80 \text{ kHz.}$

