ESIR3-IN: I.M. TP 3

Segmentation "moyenne", Algorithme STAPLE, Courbe ROC

15 IRM (T1) de cerveaux non pathologiques ont été segmentées manuellement. On veut construire un atlas anatomique à partir de ces données. Une première étape consiste à recaler spatialement les 15 IRM et à faire la moyenne de ces 15 volumes. Vous trouverez dans le fichier TP3_donnees.mat une image IRM_T1 contenant une coupe (arbitrairement choisie) du résultat de cette première étape. IRM_T1 correspond donc à la moyenne des 15 IRM différentes, toutes recalées les unes avec les autres.

1 Union, Intersection, Majorité

- 1. La matrice Segm_binaire contient les 15 segmentations de la matière blanche, recalées sur l'IRM moyenne IRM_T1. Ainsi Segm_binaire(:,:,k) contient la segmentation du k-ième sujet.Écrivez une fonction displaySegOnMri(Seg,MRI) qui affiche une segmentation binaire par dessus une IRM (en rouge par exemple). Affichez quelques-unes de ces segmentations par dessus l'image anatomique moyenne en utilisant cette fonction.
- 2. Construisez l'intersection et l'union de ces segmentations (une ligne pour chacune). L'un de ces résultats vous semble-t-il un candidat satisfaisant pour représenter la segmentation "moyenne" associée aux 15 segmentations initiales?
- 3. Une stratégie plus évoluée consiste à appliquer la règle de la majorité ("majority voting") qui consiste à attribuer à chaque pixel l'étiquette qui revient la plus fréquemment dans les différentes segmentations initiales. Cette stratégie a également l'avantage d'être adaptable directement aux cas où L ne contient plus simplement des segmentations binaires mais des segmentations à n classes. En utilisant la fonction matlab mode, calculez la segmentation moyenne (binaire) de la matière blanche donnée par cette méthode, ainsi que la segmentation à 4 classes (matière grise, matière blanche, ventricule, noyaux gris centraux) calculée à partir de Segm_4classes.
- 4. Dans certains cas, une grande variabilité dans la qualité des différentes segmentations initiales peut créer des segmentations moyennes imparfaites. Un exemple très caricatural est donné par les matrices I_Toy et Segm_Toy (cf Fig. 1): la segmentation 1 est une segmentation obtenue par seuillage (et donc imparfaite du fait de la présence de fort bruit), les segmentations 2 et 7 sont quasi-parfaites, les segmentations 3, 4, 5 et 6 ne semblent pas cohérentes

avec la donnée à segmenter (la 3 et la 6 ayant probablement été réalisées par des étudiants un vendredi matin). Testez et affichez les 3 stratégies précédentes (union, intersection et majorité) sur cet exemple.

FIGURE 1 – Exemple "jouet"

2 Algorithme STAPLE

Dans ces cas (grande variabilité de qualité des segmentations), une meilleure segmentation peut être obtenue en accordant plus de poids à certaines segmentations initiales par rapport à d'autres. L'algorithme STAPLE 1 introduit en cours permet simultanément de combiner n segmentations et d'estimer le niveau de performance de chacune des segmentations initiales.

Nous allons l'implémenter dans le cas d'une segmentation binaire mais la généralisation au cas n-aire est simple et rapide (cf article par exemple). Dans le cas binaire, la qualité de la segmentation j (ou de "l'expert" associé) sera mesurée via sa sensibilité p_j et sa spécificité q_j :

$$p_j = P(D_{ij} = 1 \mid T_i = 1)$$
 , $q_j = P(D_{ij} = 0 \mid T_i = 0)$

où, pour un pixel i:

- T_i est la segmentation "idéale" (inconnue mais que l'on va estimer)
- D_{ij} est la segmentation, l'étiquette (0 ou 1 ici) donnée par l'expert j. Dans notre cas, si i = (x, y) on a $D_{ij} = \text{Segm_toy}(x,y,j)$.

^{1.} Simultaneous truth and performance level estimation (STAPLE) : an algorithm for the validation of image segmentation, Warfield SK, Zou KH, Wells WM, IEEE Trans Med Imaging. 2004 Jul

On souhaite donc estimer T_i et (p_j, q_j) simultanément. L'algorithme STAPLE fait partie de la classe des algorithmes "espérance-maximisation" (en anglais "Expectation-maximisation algorithm", souvent abrégé EM) ². Ces algorithmes itèrent sur 2 étapes, l'étape E et l'étape M. L'article (disponible sur l'ENT) détaille chacune de ces 2 étapes dans le cas qui nous intéresse.

- 1. On initialise $p_j^{(0)}$ et $q_j^{(0)}$
- 2. étape E : à l'étape k, on suppose que l'on connaît la sensibilité $p_j^{(k)}$ et la spécificité $q_j^{(k)}$ de chaque expert et on calcule, pour chaque pixel i, la probabilité qu'il fasse partie de la classe 1, que l'on note $W_i^{(k)}$.

Indication: Cette étape est décrite à la page 8 de l'article (équations 14, 15 et 16). $f(T_i = 1)$ et $f(T_i = 0)$ sont les probabilités a priori d'avoir l'une ou l'autre des classes et peuvent être estimées en calculant la proportion de 1 et de 0 dans les segmentations initiales (P1 et P0 dans le squelette fourni).

3. étape M : on suppose que l'on connaît $W_i^{(k)}$, et on met à jour la sensibilité $p_j^{(k+1)}$ et la spécificité $q_j^{(k+1)}$ de chaque expert.

Indication : Cette étape est décrite à la page 9 de l'article (équations 18 et 19).

4. On itère jusqu'à convergence. La segmentation finale est alors obtenue en affectant 1 aux pixels pour lesquel $W_i^{(k)} > 0.5$.

Vous trouverez dans staple.m un squelette de fonction à compléter ... complétez le! et testez le sur Segm_toy et Segm_binaire.

3 Courbe ROC

FIGURE 2 – Exemples de courbes ROC

^{2.} https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

Comme on l'a vu, la sensibilité et la spécificité associée à une segmentation sont deux mesures permettant de mesurer la qualité de celle-ci vis-à-vis d'une "vé-rité terrain". Une méthode de segmentation dépend très souvent d'un ou plusieurs paramètres, et une courbe ROC permet de représenter les différentes mesures de sensibilité/spécificité correspondantes aux segmentations associées à différents paramètres.

1. On souhaite tout d'abord segmenter l'image I_toy par seuillage. Tracez la courbe ROC correspondante, le paramètre qui varie étant donc le seuil utilisé. En déduire le seuil qui fournit la segmentation correspondante au meilleure compromis sensibilité/spécificité.

Indication : pour une segmentation donnée, pour pouvoir calculer sensibilité/spécificité on a besoin de la "vérité terrain". Pour l'image I_toy, celle-ci est un carré blanc sur un fond noir et peut être construite ainsi :

```
T = zeros(size(I_toy)); T(30:70,30:70) = 1;
```

2. La fonction segmentation, fournie dans segmentation_LS.zip, implémente la méthode "contours actifs / Level Set" (cf MATI). Cette fonction prend en argument l'image I à segmenter et un sigma indiquant l'écart-type de la gaussienne appliquée à l'image avant de calculer son gradient (pour obtenir l'image g_I qui servira de fonction d'arrêt dans l'évolution). Tracez la courbe ROC en faisant varier sigma entre 1 et 20. Identifiez le sigma optimal et comparer les deux méthodes (seuillage et contours actifs).