School of Computing National University of Singapore CS5340: Uncertainty Modeling in AI Semester 1, AY 2018/19

Exercise 2

Question 1

Fig. 1.1

The restricted Boltzmann machine is a Markov Random Field (MRF) defined on a bipartite graph as shown in Fig. 3.1. It consists of a layer of visible variables $\mathbf{v} = [v_1, ..., v_V]^T$ and hidden variables $\mathbf{h} = [h_1, ..., h_H]^T$, where all variables are binary taking states $\{0,1\}$. The joint distribution of the MRF is given by:

$$p(\boldsymbol{v},\boldsymbol{h}) = \frac{1}{Z(\boldsymbol{W},\boldsymbol{a},\boldsymbol{b})} \exp(\boldsymbol{v}^T \boldsymbol{W} \boldsymbol{h} + \boldsymbol{a}^T \boldsymbol{v} + \boldsymbol{b}^T \boldsymbol{h}),$$

where $\theta = \{ \boldsymbol{W}_{V \times H}, \boldsymbol{a}_{V \times 1}, \boldsymbol{b}_{H \times 1} \}$ are the parameters of the potential functions, and Z(.) is the partition function.

a) Given that:

$$p(h_i = 1 \mid \boldsymbol{v}) = \sigma(b_i + \sum_i W_{ii} v_i),$$

where $\sigma(x) = \frac{e^x}{1+e^x}$ is the sigmoid activation function. Show that the distribution of hidden units conditioned on the visible units factorizes as:

$$p(\boldsymbol{h} | \boldsymbol{v}) = \prod_{i} p(h_i | \boldsymbol{v}).$$

Show all your workings clearly.

b) Assuming that the restricted Boltzmann machine consists of only 2 visible and 1 hidden variables, and the joint distribution of the MRF is given by:

h	v_1	v_2	$\exp(\boldsymbol{v}^T\boldsymbol{W}\boldsymbol{h} + \boldsymbol{a}^T\boldsymbol{v} + b\boldsymbol{h})$
0	0	0	1.00
0	0	1	2.13
0	1	0	4.65
0	1	1	9.90
1	0	0	3.65
1	0	1	8.66
1	1	0	4.22
1	1	1	10.01

Find the unknown parameters, i.e. $\theta = \{W_{2\times 1}, a_{2\times 1}, b\}$.

Question 2

Fig. 2.1

Fig. 4.1 shows a Markov Random Field (MRF) representation of a Hidden Markov Model (HMM) over three time steps. The hidden variables z_1, z_2, z_3 are discrete random variables that take three possible states $z_n \in \{F, H, M\}$, and x_1, x_2, x_3 are the observed variables that take on real values $x_n \in \mathbb{R}$. The joint distribution is given by:

$$p(z_1, z_2, z_3, x_1, x_2, x_3) = \frac{1}{7} \prod_{n=2}^{3} \psi_t(z_n, z_{n-1}) \prod_{n=1}^{3} \psi_e(x_n, z_n),$$

where Z is the partition function, and the transition potential $\psi_t(z_n, z_{n-1})$ and the emission potentials $\psi_e(x_n, z_n)$ are given by:

$\psi_t(\mathbf{z}_n, \mathbf{z}_{n-1})$	$z_n = F$	$z_n = H$	$z_n = M$
$z_{n-1} = F$	2.0	3.0	5.0
$z_{n-1} = H$	1.0	6.0	3.0
$z_{n-1}=M$	4.5	2.0	2.5

z_1	$\psi_e(x_1,z_1)$
F	1.0
Н	8.0
М	1.0

Z_2	$\psi_e(x_2,z_2)$
F	7.0
Н	1.0
М	2.0

Z_3	$\psi_e(x_3,z_3)$
F	2.0
Н	3.0
М	5.0

Decode the message that corresponds to the states of the hidden variables that give the maximal probability. Show all your workings clearly.

Question 3

Fig. 3.1 shows a Bayesian network of the mixture of Bernoulli Distribution. X_n is a binary random variable, i.e. $x_n \in \{0,1\}$. N is the total number of observations. Z_n is the 1-of-k indicator random variable, $z_{nk} = 1 \Rightarrow z_{n,j\neq k} = 0$ indicates the assignment of the random variable x to the k^{th} Bernoulli density. $z_{nk} \in \{0,1\}$ and $\sum_k z_{nk} = 1$.

Fig. 3.1

Given the expressions for the Bernoulli distribution:

$$p(x \mid \mu) = \prod_{n=1}^{N} \mu^{x_n} (1 - \mu)^{(1-x_n)}$$
,

and marginal distribution of Z_n , which is a categorical distribution specified in terms of the mixing coefficients λ_k :

$$p(\mathbf{z_n}) = \prod_{k=1}^K \lambda_k^{z_{nk}} = \mathrm{cat}_{\mathbf{z_n}}[\lambda]$$
 , where $0 \leq \lambda_k \leq 1$ and $\sum_k \lambda_k = 1$.

(a) Show that the mixture of Bernoulli distribution is given by:

$$p(x \mid \mu, \lambda) = \prod_{n=1}^{N} \sum_{k=1}^{K} \lambda_k \mu_k^{x_n} (1 - \mu_k)^{(1-x_n)}.$$

(b) Derive the responsibility $\gamma(z_{nk}) = p(z_{nk} = 1 \mid x)$, and show that the updates for the unknown parameters μ and λ in the maximization step of the EM algorithm are given by:

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n,$$

$$\lambda_k = \frac{N_k}{N} \text{, where } N_k = \sum_{n=1}^N \gamma(z_{nk}).$$

Show all your workings clearly.

Question 4

Fig 4.1

(Image source: "Computer Vision: Models, Learning and Inference", Simon Prince)

Compute the MAP solution to the three-pixel graph cut problem in Fig. 4.1 by

- (i) computing the cost of all eight possible solutions explicitly and finding the one with the minimum cost, and
- (ii) running the augmenting paths algorithm on this graph by hand and interpreting the minimum cut.

Question 5

Consider the simple 3-node graph shown in Fig. 5.1 in which the observed node X is given by a Gaussian distribution $\mathcal{N}(x|\mu,\tau^{-1})$ with mean μ and precision τ . Suppose that the marginal distributions over the mean and precision are given by $\mathcal{N}(\mu|\mu_0,s_0)$ and $\mathrm{Gam}(\tau|a,b)$, where $\mathrm{Gam}(.|.,.)$ denotes a gamma distribution. Write down expressions for the conditions distributions for the conditional distributions $p(\mu|x,\tau)$ and $p(\tau|x,\mu)$ that would be required in order to apply Gibbs sampling to the posterior distribution $p(\mu,\tau|x)$.

Fig. 5.1

--End--