MFE 409 LECTURE 2B MEASURING VALUE-AT-RISK

Valentin Haddad

Spring 2019

LECTURE OBJECTIVES

Measuring Value-at-Risk:

■ How to judge validity of a VaR estimate?

Historical approach

- Model-building approach
- How to get a measure for a given approach but also how to choose an appropriate approach

OUTLINE

Model-Building

Model-Building Approach

■ The main alternative to historical simulation is to make assumptions about the probability distributions of the returns on the market variables

Sometimes called the variance-covariance approach

NORMAL MODEL

■ Simplest and often-used assumption: normal distribution

NORMAL MODEL

- Simplest and often-used assumption: normal distribution
- VaR has a simple expression:

$$VaR = -\mu - \sigma \times z(c)$$

- Portfolios of normal returns are also normally distributed
- Estimation of normal distributions very developed

Portfolios

- With multivariate normal returns, portfolio returns are normally distributed
- Assume:
 - ▶ Each asset return R_i is normally distributed with mean 0 and variance σ_i^2
 - Pairwise correlations: ρ_{ij}
 - ightharpoonup investment in each asset α_i

$$\underbrace{\Delta P}_{\text{portfolio gain}} = \sum_{i} \alpha_{i} R_{i} \sim \mathcal{N}(0, \sigma_{P}^{2})$$

$$\sigma_{P}^{2} = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \sigma_{i} \sigma_{j} \rho_{ij}$$

Portfolios

- With multivariate normal returns, portfolio returns are normally distributed
- Assume:
 - lacktriangle Asset return ${f R}$ normally distributed with mean 0 and variance Σ
 - ightharpoonup Investment vector α

$$\underbrace{\Delta P}_{\text{portfolio gain}} = \alpha' \mathbf{R} \sim \mathcal{N}(0, \sigma_P^2)$$

$$\sigma_P^2 = \alpha' \Sigma \alpha$$

Portfolios

- With multivariate normal returns, portfolio returns are normally distributed
- Assume:
 - lacktriangle Asset return ${f R}$ normally distributed with mean 0 and variance Σ
 - ightharpoonup Investment vector α

$$\underbrace{\Delta P}_{\text{portfolio gain}} = \alpha' \mathbf{R} \sim \mathcal{N}(0, \sigma_P^2)$$

$$\sigma_P^2 = \alpha' \Sigma \alpha$$

lacktriangle Multiply by -z(c) to obtain VaR

EXAMPLE: IMPERFECT HEDGE

- Previous example:
 - ▶ Long position EUR 10m, $M_t = \text{USD/EUR} = \$1.436$, $\sigma_M = 0.65\%$
 - ▶ Dollar position \$14.36m
 - ► VaR= \$217, 204
- Suppose you want to hedge with Japanese Yens: $\sigma_J = 0.69\%$, $\rho_{MJ} = 0.2775$
 - ▶ What Yen position do you choose to hedge as well as possible?
 - ► What is your hedged VaR?

IMPERFECT HEDGE

- lacktriangle Want to hedge a position R_p using a hedging instrument R_h
- Optimal hedging position:

$$\alpha_{\mathsf{hedge}} = -\rho \frac{\sigma_p}{\sigma_h}$$

■ Variance of the hedged portfolio:

Minimum variance =
$$\sigma_p^2(1-\rho^2)$$

IMPERFECT HEDGE

- lacktriangle Want to hedge a position R_p using a hedging instrument R_h
- Optimal hedging position:

$$\alpha_{\mathsf{hedge}} = -\rho \frac{\sigma_p}{\sigma_h}$$

■ Variance of the hedged portfolio:

Minimum variance =
$$\sigma_p^2(1-\rho^2)$$

■ VaR of the hedged portfolio:

Minimum VaR = VaR
$$_p\sqrt{1-\rho^2}$$

ightharpoonup Only depends of correlation ho

VOLATILITY

Often, volatility is defined as standard deviation of log return

$$\log\left(\frac{P_{t+1}}{P_t}\right)$$

■ In risk management, typically the standard deviation of simple return

$$\frac{P_{t+1}}{P_t} - 1$$

VOLATILITY

■ Often, volatility is defined as standard deviation of *log return*

$$\log\left(\frac{P_{t+1}}{P_t}\right)$$

■ In risk management, typically the standard deviation of *simple return*

$$\frac{P_{t+1}}{P_t} - 1$$

- Some conventions:
 - ▶ Only count trading days: $\sigma_{
 m yr} = \sigma_{
 m day} imes \sqrt{252}$
 - ▶ Variance rate: σ^2

ESTIMATING VOLATILITY

- lacktriangle Assume today is date t and we have data for n past dates
- Unbiased estimates
 - ▶ Mean

$$\bar{R} = \frac{1}{n} \sum_{i=1}^{n} R_{t-i}$$

Volatility

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (R_{t-i} - \bar{R})^2$$

ESTIMATING VOLATILITY

- lacktriangle Assume today is date t and we have data for n past dates
- Unbiased estimates
 - Mean

$$\bar{R} = \frac{1}{n} \sum_{i=1}^{n} R_{t-i}$$

Volatility

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (R_{t-i} - \bar{R})^2$$

- Risk management practice:
 - Assume $\bar{R}=0$: mean small relative to standard deviation for one day
 - ightharpoonup Replace n-1 by n

ESTIMATING VOLATILITY: MAXIMUM LIKELIHOOD

ESTIMATING VOLATILITY: MAXIMUM LIKELIHOOD

S&P500: RETURNS

S&P500: HISTORIC VOLATILITY

WEIGHTING SCHEMES

■ Volatility moves over time: recent information more relevant than older one

WEIGHTING SCHEMES

- Volatility moves over time: recent information more relevant than older one
- Weighting scheme:

$$\sigma_t^2 = \sum_{i=1}^n \alpha_i R_{t-i}^2$$
 with $1 = \sum_{i=1}^n \alpha_i$

WEIGHTING SCHEMES

- Volatility moves over time: recent information more relevant than older one
- Weighting scheme:

$$\sigma_t^2 = \sum_{i=1}^n \alpha_i R_{t-i}^2$$
 with $1 = \sum_{i=1}^n \alpha_i$

■ Weighting scheme + long-run variance

$$\sigma_t^2 = \gamma V_L + \sum_{i=1}^n \alpha_i R_{t-i}^2$$
 with $1 = \gamma + \sum_{i=1}^n \alpha_i$

■ ARCH(m), autoregressive conditional heteroskedasticity

$$\sigma_t^2 = \omega + \sum_{i=1}^m \alpha_i R_{t-i}^2$$

■ ARCH(m), autoregressive conditional heteroskedasticity

$$\sigma_t^2 = \omega + \sum_{i=1}^m \alpha_i R_{t-i}^2$$

▶ If $\alpha_i = 1/m$ and $\omega = 0$, rolling window estimate

■ ARCH(m), autoregressive conditional heteroskedasticity

$$\sigma_t^2 = \omega + \sum_{i=1}^m \alpha_i R_{t-i}^2$$

- ▶ If $\alpha_i = 1/m$ and $\omega = 0$, rolling window estimate
- EWMA, exponentially weighted moving average

$$\alpha_i = (1 - \lambda)\lambda^i$$

Simple volatility updating:

■ ARCH(m), autoregressive conditional heteroskedasticity

$$\sigma_t^2 = \omega + \sum_{i=1}^m \alpha_i R_{t-i}^2$$

- ▶ If $\alpha_i = 1/m$ and $\omega = 0$, rolling window estimate
- EWMA, exponentially weighted moving average

$$\alpha_i = (1 - \lambda)\lambda^i$$

Simple volatility updating:

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda)R_t^2$$

▶ RiskMetrics reported with $\lambda = 0.94$ until 2006

S&P500: EWMA VOLATILITY

GARCH(1,1)

■ GARCH(1,1), generalized autoregressive conditional heteroskedasticity

$$\sigma_t^2 = \underbrace{\gamma V_L}_{\omega} + \alpha R_{t-1}^2 + \beta \sigma_{t-1}^2$$

- ► EWMA + long-run average
- ▶ If $\gamma = 0$, EWMA
- ▶ For stability, $\alpha + \beta < 1$

MLE ESTIMATION OF GARCH(1,1)

- Parameters: ω , α , β
- Log-likelihood

$$\sum_{i=1}^{n} \left[-\log(\sigma_{t-i}^2) - \frac{R_{t-i}^2}{\sigma_{t-i}^2} \right]$$

- Compute σ_{t-i}^2 :
 - ▶ Initialize at $\sigma_0 = \sqrt{V_L} = \sqrt{\omega/(1-\alpha-\beta)}$
 - ► Use formula to iterate

$$\sigma_t^2 = \omega + \alpha R_{t-1}^2 + \beta \sigma_{t-1}^2$$

ESTIMATION OF GARCH(1,1)

- Variance targetting: set V_L to the sample variance or a reasonable number
- Goodness of fit ?

ESTIMATION OF GARCH(1,1)

- Variance targetting: set V_L to the sample variance or a reasonable number
- Goodness of fit:
 - Remove time-varying volatility
 - Remove autocorrelation of volatility
 - * Compare autocorrelations $c_k = \text{cor}(R_t^2/\sigma_t^2, R_{t-k}^2/\sigma_{t-k}^2)$

ESTIMATION OF GARCH(1,1)

- Variance targetting: set V_L to the sample variance or a reasonable number
- Goodness of fit:
 - Remove time-varying volatility
 - Remove autocorrelation of volatility
 - * Compare autocorrelations $c_k = \text{cor}(R_t^2/\sigma_t^2, R_{t-k}^2/\sigma_{t-k}^2)$
- Ljung-Box Statistic

$$n\sum_{k=1}^{K} w_k c_k^2$$
$$w_k = \frac{n+2}{n-k}$$

For K = 15, 95% threshold is 25

Volatility Forecasts

 \blacksquare If we want to forecast k days in the future:

$$\mathbb{E}_t \left[\sigma_{t+k}^2 \right] = V_L + (\alpha + \beta)^k (\sigma_t^2 - V_L)$$

Exponential mean reversion

VOLATILITY FORECASTS

 \blacksquare If we want to forecast k days in the future:

$$\mathbb{E}_t \left[\sigma_{t+k}^2 \right] = V_L + (\alpha + \beta)^k (\sigma_t^2 - V_L)$$

Exponential mean reversion

■ Remark: If we want to hedge volatility risk, need to consider how shocks today will affect volatility during the lifetime of the option

IMPLIED VOLATIILTY

■ So far, we focused on backward-looking measures of volatility

■ Can use market prices to obtain expectation of future volatility

IMPLIED VOLATIILTY

■ So far, we focused on backward-looking measures of volatility

Can use market prices to obtain expectation of future volatility

Derivative contracts on volatility: VAR swaps, ...

- Implied volatility from calls and puts
 - Volatility so that Black-Scholes formula matches price

- The VIX index is published by CBOE
- It is no longer the Black and Scholes implied volatility
- But it is computed from a portfolio of options on the S&P500 index
 - It is deemed to better capture market "expected" volatility over the next 30 days without relying on any model

- The VIX index is published by CBOE
- It is no longer the Black and Scholes implied volatility
- But it is computed from a portfolio of options on the S&P500 index
 - ▶ It is deemed to better capture market "expected" volatility over the next 30 days without relying on any model
- Why is VIX systematically higher than realized volatility?

- The VIX index is published by CBOE
- It is no longer the Black and Scholes implied volatility
- But it is computed from a portfolio of options on the S&P500 index
 - ▶ It is deemed to better capture market "expected" volatility over the next 30 days without relying on any model
- Why is VIX systematically higher than realized volatility?
 - Risk adjustment implicit in options, that make VIX higher than future realized volatility
 - lt does not mean that market expectations are systematically too high

NON-NORMAL ASSUMPTIONS

■ Market information can be useful beyond the normal distribution

Directly obtain measures of downside risks from options

Using Options to Infer Downside Risk

■ What can options tell us about downside risk?

Using Options to Infer Downside Risk

- What can options tell us about downside risk?
 - ▶ More generally, how can we measure the relative price of options?
- Only taking the ratio of prices may be imprecise, as different strike prices also imply different intrinsic values (how much we are in the money already), which mix up the computation.

Using Options to Infer Downside Risk

- What can options tell us about downside risk?
 - ▶ More generally, how can we measure the relative price of options?
- Only taking the ratio of prices may be imprecise, as different strike prices also imply different intrinsic values (how much we are in the money already), which mix up the computation.
- A standard methodology is to compare the implied volatility of options at different strikes
- lacktriangle Because higher volatility implies a higher price, if OTM options have higher implied volatility than ATM option \rightarrow market expects negative skewness

USING OPTIONS TO INFER DOWNSIDE RISK

- What can options tell us about downside risk?
 - ▶ More generally, how can we measure the relative price of options?
- Only taking the ratio of prices may be imprecise, as different strike prices also imply different intrinsic values (how much we are in the money already), which mix up the computation.
- A standard methodology is to compare the implied volatility of options at different strikes
- lacktriangle Because higher volatility implies a higher price, if OTM options have higher implied volatility than ATM option o market expects negative skewness
 - Since the crash of October 1987, OTM put options have a higher implied volatility than ATM put options.
 - Moreover, the difference in implied volatilities is time varying.

Skewness Index

- CBOE publishes a Skew Index
- Implied expected skewness is computed from option prices with a more elaborate methodology than the Black and Scholes implied volatilities, but the logic is similar.
- Recall that high *negative* skewness imply high downside risk.
 - CBOE define the Skew Index as

Skew Index = $100 - 10 \times Implied Expected Skewness$

lacktriangle Higher positive index ightarrow higher downside risk

Skew Index

S&P500 AND VIX

Model-Building

■ To accurately model risk, necessary to understand interactions between different risks

Lots of models, for each asset class

- Key question: what can go wrong?
- If model is too complex to compute VaR explicitly: Monte-Carlo simulations

Model-Building vs. Historical Simulation

Model-Building vs. Historical Simulation

- Model-building useful for
 - ► Large portfolios
 - ► Limited data
 - ► Taking account of nonlinearities
- Historical simulations useful for:
 - Non-normal situations
 - Unknown structure of investment performance

Model-Building vs. Historical Simulation

- Model-building useful for
 - ► Large portfolios
 - Limited data
 - ► Taking account of nonlinearities
- Historical simulations useful for:
 - Non-normal situations
 - Unknown structure of investment performance
- Key trade-off: making more assumptions vs. using a small part of the data
 - Always the same in statistics!