Artificial Intelligence

Lecture 12: Deep Learning II

Xiaojin Gong 2022-05-23

Outline

- Attentions
 - Channel attention
 - Spatial attention
 - Self-attention / Transformer
- Unsupervised Learning
 - Unsupervised feature representation learning
 - Unsupervised person re-identification

Review: CNN

The convolutional layer

- Cons:
 - Channel dependencies and spatial correlations are entangled
 - Process one local neighborhood at a time

Review: CNN

• The convolutional neural network

$$S_c = \sum_k w_k^c F_k = \sum_k w_k^c \sum_{x,y} f_k(x,y)$$

Class Activation Maps

■ CAM – to estimate class activation maps using global average pooling

Class score:

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y) = \sum_{x,y} \sum_k w_k^c f_k(x,y)$$
$$= \sum_{x,y} M_c(x,y)$$

Class activation map:

$$M_c(x,y) = \sum_k w_k^c f_k(x,y)$$

Class Activation Maps

■ CAM – to estimate class activation maps using global average pooling

Squeeze and Excitation Networks

- Convolution channel dependencies and spatial correlations are entangl
- SENet to explicitly model the interdependencies between the channels
- won the 1st place in ILSVRC 2017 classification competition.

J. Hu, et al. Squeeze and Excitation Networks, CVPR 2018.

Squeeze and Excitation Networks

SE block

Squeeze: global information embedding

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j)$$

• Excitation: reduce dimensionality to prevent overfitting & reduce complexity

$$\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \cdot \text{ReLU}(\mathbf{W}_1 \mathbf{z}))$$

$$\mathbf{W}_1 \in \mathbb{R}^{\frac{C}{r} \times C}$$

$$\mathbf{W}_2 \in \mathbb{R}^{C \times \frac{C}{r}}$$

• Scaling: to enhance features

$$\widetilde{\mathbf{x}}_c = \mathbf{F}_{scale}(\mathbf{u}_c, s_c) = s_c \cdot \mathbf{u}_c$$

Squeeze and Excitation Networks

SE-ResNet Module

	orig	inal	re-i	mplementat	ion	SENet				
	top-1 err.	top-5 err.	top-1err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs		
ResNet-50 [10]	24.7	7.8	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87		
ResNet-101 [10]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60		
ResNet-152 [10]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32		
ResNeXt-50 [47]	22.2	-	22.11	5.90	4.24	21.10 _(1.01)	$5.49_{(0.41)}$	4.25		
ResNeXt-101 [47]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00		
VGG-16 [39]	-	-	27.02	8.81	15.47	25.22(1.80)	7.70 _(1.11)	15.48		
BN-Inception [16]	25.2	7.82	25.38	7.89	2.03	$24.23_{(1.15)}$		2.04		
Inception-ResNet-v2 [42]	19.9^{\dagger}	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76		

$$\begin{aligned} \mathbf{M_c(F)} & & Spatial \ pooling \\ &= \sigma(MLP(AvgPool(\mathbf{F})) + MLP(MaxPool(\mathbf{F}))) \\ &= \sigma(\mathbf{W_1(W_0(F^c_{avg})) + W_1(W_0(F^c_{max})))}, \end{aligned}$$

$$\begin{aligned} \mathbf{M_{s}(F)} &\in \mathbf{R}^{H \times W} & \text{Channel pooling} \\ &= \sigma(f^{7 \times 7}([AvgPool(\mathbf{F}); MaxPool(\mathbf{F})])) \\ &= \sigma(f^{7 \times 7}([\mathbf{F_{avg}^{s}}; \mathbf{F_{max}^{s}}])), \end{aligned}$$

Architecture	Param.	GFLOPs	Top-1 Error (%)	Top-5 Error (%)
ResNet18 [5]	11.69M	1.814	29.60	10.55
ResNet18 [5] + SE [28]	11.78M	1.814	29.41	10.22
ResNet18 [5] + CBAM	11.78M	1.815	29.27	10.09
ResNet34 [5]	21.80M	3.664	26.69	8.60
ResNet34 [5] + SE [28]	21.96M	3.664	26.13	8.35
ResNet34 [5] + CBAM	21.96M	3.665	25.99	8.24
ResNet50 [5]	25.56M	3.858	24.56	7.50
ResNet50 [5] + SE [28]	28.09M	3.860	23.14	6.70
ResNet50 [5] + CBAM	28.09M	3.864	22.66	6.31
ResNet101 [5]	44.55M	7.570	23.38	6.88
ResNet101 $[5]$ + SE $[28]$	49.33M	7.575	22.35	6.19
ResNet101 [5] + CBAM	49.33M	7.581	21.51	5.69

Outline

- Attentions
 - Channel attention
 - Spatial attention
 - Self-attention / Transformer
- Unsupervised Learning
 - Unsupervised feature representation learning
 - Unsupervised person re-identification

Review: RNN

Re-use the same weight matrices at every time step

- Cons:
 - Vanishing gradients
 - The inherently sequential nature precludes parallelization
 - Ineffective to capture long-term dependencies

Example

Output • The transformer model architecture Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding

Outputs

(shifted right)

Inputs

Self-attention modules

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- ullet Q = the current position-word vector in the input sequence
- ullet K = all the position-word vectors in the input sequence
- $\bullet~~V=$ all the position-word vectors in the input sequence

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

https://medium.com/@b.terryjack/deep-learning-the-transformer-9ae5e9c5a190°

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble 8	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$		
Transformer (base model)	27.3	38.1		10^{18}		
Transformer (big)	28.4	41.0	2.3 ·	10^{19}		

Transformers for Image Recognition

Vision transformer

Dosovitskiy, et al. An Image is Worth 16*16 Words: Transformers for Image Recognition at Scale, ICLR 2021..

Transformers for Image Recognition

Vision transformer

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Outline

- Attentions
 - Channel attention
 - Spatial attention
 - Self-attention / Transformer
- Unsupervised Learning
 - Unsupervised feature representation learning
 - Unsupervised person re-identification

Review: CNN

• The convolutional neural network

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(i|f_{\boldsymbol{\theta}}(x_i)).$$

$$P(i|\mathbf{v}) = \frac{\exp\left(\mathbf{w}_i^T \mathbf{v}\right)}{\sum_{j=1}^n \exp\left(\mathbf{w}_j^T \mathbf{v}\right)} \qquad \mathbf{v} = f_{\boldsymbol{\theta}}(x).$$

Non-Parametric Instance Discrimination

Model

Non-Parametric classifier

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(i|f_{\boldsymbol{\theta}}(x_i)).$$

$$P(i|\mathbf{v}) = \frac{\exp\left(\mathbf{v}_i^T \mathbf{v}/\tau\right)}{\sum_{i=1}^n \exp\left(\mathbf{v}_i^T \mathbf{v}/\tau\right)}$$

Memory bank

Noise contrastive estimation

Wu et al. Unsupervised Feature Learning via Non-Parametric Instance Discrimination, CVPR 2018

Non-Parametric Instance Discrimination

Image C	Image Classification Accuracy on ImageNet											
method	conv1	conv2	conv3	conv4	conv5	kNN	#dim					
Random	11.6	17.1	16.9	16.3	14.1	3.5	10K					
Data-Init [16]	17.5	23.0	24.5	23.2	20.6	-	10K					
Context [2]	16.2	23.3	30.2	31.7	29.6	-	10K					
Adversarial [4]	17.7	24.5	31.0	29.9	28.0	-	10K					
Color [47]	13.1	24.8	31.0	32.6	31.8	-	10K					
Jigsaw [27]	19.2	30.1	34.7	33.9	28.3	-	10K					
Count [28]	18.0	30.6	34.3	32.5	25.7	-	10K					
SplitBrain [48]	17.7	29.3	35.4	35.2	32.8	11.8	10K					
Exemplar[3]			31.5			-	4.5K					
Ours Alexnet	16.8	26.5	31.8	34.1	35.6	31.3	128					
Ours VGG16	16.5	21.4	27.6	33.1	37.2	33.9	128					
Ours Resnet18	16.0	19.9	26.3	35.7	42.1	40.5	128					
Ours Resnet50	15.3	18.8	24.4	35.3	43.9	42.5	128					

Table 2: Top-1 classification accuracies on ImageNet.

A simple framework for contrastive learning

Chen et al. A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020.

Data augmentation

Contrastive learning

Chen et al. A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020.

Large batch size

Method	Architecture	Param.	Top 1	Top 5					
Methods using R	Methods using ResNet-50:								
Local Agg.	ResNet-50	24	60.2	-					
MoCo	ResNet-50	24	60.6	-					
PIRL	ResNet-50	24	63.6	-					
CPC v2	ResNet-50	24	63.8	85.3					
SimCLR (ours)	ResNet-50	24	69.3	89.0					
Methods using or	ther architectures:								
Rotation	RevNet-50 $(4\times)$	86	55.4	-					
BigBiGAN	RevNet-50 $(4\times)$	86	61.3	81.9					
AMDIM	Custom-ResNet	626	68.1	-					
CMC	ResNet-50 $(2\times)$	188	68.4	88.2					
MoCo	ResNet-50 $(4\times)$	375	68.6	-					
CPC v2	ResNet-161 (*)	305	71.5	90.1					
SimCLR (ours)	ResNet-50 $(2\times)$	94	74.2	92.0					
SimCLR (ours)	ResNet-50 (4 \times)	375	76.5	93.2					

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

Momentum Contrast

MOCO

He et al. Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020.

Momentum Contrast

MOCO

Momentum update

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Queue

Momentum Contrast

Prototypical Contrastive Learning

Instance => Cluster

Prototypical Contrastive Learning

Instance => Cluster

Prototypical Contrastive Learning

• Instance => Cluster

Mathad	anahita atum	VOC07						Places205				
Method	architecture	k=1	k=2	k=4	k=8	k=16	k=1	k=2	k=4	k=8	k=16	
Random	ResNet-50	8.0	8.2	8.2	8.2	8.5	0.7	0.7	0.7	0.7	0.7	
Supervised	ResNet-50	54.3	67.8	73.9	79.6	82.3	14.9	21.0	26.9	32.1	36.0	
Jigsaw		26.5	31.1	40.0	46.7	51.8	4.6	6.4	9.4	12.9	17.4	
MoCo	ResNet-50	31.4	42.0	49.5	60.0	65.9	8.8	13.2	18.2	23.2	28.0	
PCL (ours)		46.9	56.4	62.8	70.2	74.3	11.3	15.7	19.5	24.1	28.4	
SimCLR		32.7	43.1	52.5	61.0	67.1	9.4	14.2	19.3	23.7	28.3	
MoCo v2	ResNet-50-MLP	46.3	58.3	64.9	72.5	76.1	10.9	16.3	20.8	26.0	30.1	
PCL v2 (ours)		47.9	59.6	66.2	74.5	78.3	12.5	17.5	23.2	28.1	32.3	

Outline

- Attentions
 - Channel attention
 - Spatial attention
 - Self-attention
- Unsupervised Learning
 - Unsupervised feature representation learning
 - Unsupervised person re-identification

Person Re-ID

The flow of a practical person Re-ID system

Observations

Model

Loss

$$\mathcal{L} = \mathcal{L}_{Intra} + \lambda \mathcal{L}_{Inter}$$

$$\mathcal{L}_{Intra} = -\sum_{c=1}^{C} \frac{1}{N_c} \sum_{x_i \in \mathcal{D}_c} \log \frac{exp(\mathcal{K}'[j]^T f(x_i)/\tau)}{\sum_{k=A+1}^{A+Z_{c_i}} exp(\mathcal{K}'[k]^T f(x_i)/\tau)}$$

$$\mathcal{L}_{Inter} = -\sum_{i=1}^{N'} \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \log \frac{S(p, x_i)}{\sum_{u \in \mathcal{P}} S(u, x_i) + \sum_{q \in \mathcal{Q}} S(q, x_i)}$$

★ Cam-C

(a) Intra-camera Loss

(b) Inter-camera Loss

Mathada	Dafaranaa	Reference Market-1501			DukeMTMC-ReID				MSMT17				
Methods	Kelerence	R1	R5	R10	mAP	R1	R5	R10	mAP	R1	R5	R10	mAP
Purely Unsupervised													
BUC (Lin et al. 2019)	AAAI19	66.2	79.6	84.5	38.3	47.4	62.6	68.4	27.5	-	-	-	-
UGA (Wu et al. 2019)	ICCV 19	87.2	-	-	70.3	75.0	-	-	53.3	49.5	-	-	21.7
SSL (Lin et al. 2020)	CVPR20	71.7	83.8	87.4	37.8	52.5	63.5	68.9	28.6	-	-	-	-
MMCL [†] (Wang and Zhang 2020)	CVPR20	80.3	89.4	92.3	45.5	65.2	75.9	80.0	40.2	35.4	44.8	49.8	11.2
HCT (Zeng et al. 2020)	CVPR20	80.0	91.6	95.2	56.4	69.6	83.4	87.4	50.7	-	-	-	-
CycAs (Wang et al. 2020b)	ECCV20	84.8	-	-	64.8	77.9	-	-	60.1	50.1	-	-	26.7
SpCL [†] (Ge et al. 2020)	NeurIPS20	88.1	95.1	97.0	73.1	-	-	-	-	42.3	55.6	61.2	19.1
CAP	This paper	91.4	96.3	97.7	79.2	81.1	89.3	91.8	67.3	67.4	78.0	81.4	36.9
Unsupervised Domain Adaptation						•							
PUL (Fan et al. 2018)	TOMM18	45.5	60.7	66.7	20.5	30.0	43.4	48.5	16.4	-	-	-	-
SPGAN (Deng et al. 2018b)	CVPR18	51.5	70.1	76.8	22.8	41.1	56.6	63.0	22.3	-	-	-	-
ECN (Zhong et al. 2019)	CVPR19	75.1	87.6	91.6	43.0	63.3	75.8	80.4	40.4	30.2	41.5	46.8	10.2
pMR (Wang et al. 2020a)	CVPR20	83.0	91.8	94.1	59.8	74.5	85.3	88.7	55.8	-	-	-	-
MMCL (Wang and Zhang 2020)	CVPR20	84.4	92.8	95.0	60.4	72.4	82.9	85.0	51.4	43.6	54.3	58.9	16.2
AD-Cluster (Zhai et al. 2020)	CVPR20	86.7	94.4	96.5	68.3	72.6	82.5	85.5	54.1	-	-	-	-
MMT (Ge, Chen, and Li 2020)	ICLR20	87.7	94.9	96.9	71.2	78.0	88.8	92.5	65.1	50.1	63.9	69.8	23.3
SpCL (Ge et al. 2020)	NeurIPS20	90.3	96.2	97.7	76.7	82.9	90.1	92.5	68.8	53.1	65.8	70.5	26.5
Fully Supervised													
PCB (Sun et al. 2018)	ECCV18	93.8	-	-	81.6	83.3	-	-	69.2	68.2	-	-	40.4
ABD-Net (Chen et al. 2019)	ICCV 19	95.6	-	-	88.3	89.0	-	-	78.6	82.3	90.6	-	60.8
CAP's Upper Bound	This paper	93.3	97.5	98.4	85.1	87.7	93.7	95.4	76.0	77.1	87.4	90.8	53.7

Summary

- Attentions
- Unsupervised Learning