SQL InjectionModule 14

SQL Injection

SQL injection is a technique often used to attack a website. It is the most common website vulnerability on the Internet.

Lab Scenario

A SQL injection attack is done by including portions of SQL statements in a web form entry field in an attempt to get the website to pass a newly formed rogue SQL command to the database (e.g., dump the database contents to the attacker). SQL injection is a code injection technique that exploits security vulnerability in a website's software. The vulnerability happens when user input is either incorrectly filtered for string literal escape characters embedded in SQL statements or user input is not strongly typed and unexpectedly executed. SQL commands are thus injected from the web form into the database of an application (like queries) to change the database content or dump the database information like credit card or passwords to the attacker. SQL injection is mostly known as an attack vector for websites but can be used to attack any type of SQL database.

As an expert **ethical hacker**, you must use diverse solutions, and prepare statements with bind variables and whitelisting input validation and escaping. Input validation can be used to detect unauthorized input before it is passed to the SQL query.

Lab Objectives

The objective of this lab is to provide expert knowledge on SQL Injection attacks and other responsibilities that include:

- Understanding when and how web application connects to a database server in order to access data
- Extracting basic SQL injection flaws and vulnerabilities
- Testing web applications for blind SQL injection vulnerabilities
- Scanning web servers and analyzing the reports
- Securing information in web applications and web servers

Lab Environment

To carry out the lab, you need:

- A computer running Windows Server 2012
- Window 7 running in virtual machine
- A web browser with an Internet connection
- Administrative privileges to configure settings and run tools

Tools
demonstrated in
this lab are
available in
D:\CEHTools\CEHv8
Module 14 SQL
Injection

Lab Duration

Time: 50 Minutes

Overview of SQL Injection

SQL injection is a technique used to take advantage of **non-validated input** vulnerabilities to pass SQL commands through a **web application** for execution by a backend database.

Lab Tasks

Overview

Recommended labs to assist you in SQL Injection:

- Performing blind SQL injection
- Logging on without valid credentials
- Testing for SQL injection
- Creating your own user account
- Creating your own database
- Directory listing
- Denial-of-service attacks
- Testing for SQL injection using the IBM Security AppScan tool

Lab Analysis

Analyze and document the results related to the lab exercise. Give your opinion on your target's security posture and exposure.

PLEASE TALK TO YOUR INSTRUCTOR IF YOU HAVE QUESTIONS RELATED TO THIS LAB.

SQL Injection Attacks on MS SQL Database

SQL injection is a basic attack used either to gain unauthorized access to a database or to retrieve information directly from the database.

ICON KEY

Lab Scenario

Today, SQL injection is one of the most common and perilous attacks that website's software can experience. This attack is performed on SQL databases that have weak codes and this vulnerability can be used by an attacker to execute database queries to collect sensitive information, modify the database entries, or attach a malicious code resulting in total compromise of the most sensitive data.

As an Expert **penetration tester** and **security administrator**, you need to test web applications running on the **MS SQL Server** database for vulnerabilities and flaws.

Lab Objectives

The objective of this lab is to provide students with expert knowledge on SQL injection attacks and to analyze web applications for vulnerabilities.

In this lab, you will learn how to:

- Log on without valid credentials
- Test for SQL injection
- Create your own user account
- Create your own database
- Directory listing
- Execute denial-of-service attacks

Lab Environment

To carry out the lab, you need:

A computer running Window Server 2012 (Victim Machine)

Tools
demonstrated in
this lab are
available in
D:\CEHTools\CEHv8
Module 14 SQL
Injection

- A computer running **Window 8** (Attacker Machine)
- MS SQL Server must be running under local system privileges
- A web browser with an Internet connection

Lab Duration

Time: 30 Minutes

Overview of SQL Injection Attacks

SQL injection is a basic attack used either to gain **unauthorized access** to a database or to **retrieve** information directly from the database. It is a **flaw** in **web applications** and not a database or web server issue. Most programmers are still not aware of this threat.

Lab Tasks

Log on without Valid Credentials **Blind SQL injection** is used when a web application is **vulnerable** to SQL injection but the results of the injection are **not visible** to the attacker.

Blind SQL injection is identical to normal SQL injection, except that, when an attacker attempts to exploit an application, rather than seeing a useful error message, a **generic custom page** displays.

TASK1

- 1. Run this lab in Firefox. It will not work in Internet Explorer.
- 2. Open a web browser, type http://localhost/realhome in the address bar, and press Enter.
- 3. The **Home page** of Real Home appears.

FIGURE 1.1: Old House Restaurant home page

- 4. Assume that you are new to this site and have never **registered** with this website previously.
- 5. Now log in with code:

blah' or 1=1 --

Try to log on using

code ' or 1=1 -- as login

name

A dynamically generated SQL query is used to retrieve the number of matching rows.

- 6. Enter any password in the **Password** field or leave the password field empty.
- 7. Click Login or press Enter.

FIGURE 1.2: Old House Restaurant login page

8. You are logged in to the website with a fake login. Your credentials are not valid, but you are logged in. Now you can browse all the web pages of the website as a registered member. You will get a **Logout** link at the uppercorner of the screen.

FIGURE 1.3: Old House Restaurant web page

You have successfully logged on to the vulnerable site and created your own database.

TASK2

Create a user account using an SQL injection query.

Creating Your Own User Account

🗏 TASK 2

- 9. Open a web browser, type http://localhost/realhome and press Enter.
- 10. The home page of Real Home appears.

A user enters a user name and password that matches a record in the Users table.

When the attacker enters blah' or 1=1, then the SQL query look like

SELECT Count(*) FROM Users WHERE UserName='blah' Or 1=1 -"AND Password="'. Try to insert a string value where a number is expected in the input field.

FIGURE 1.4: Old House home page

11. Enter the query

blah'; insert into login values ('juggyboy', 'juggy123'); -in the Login name field and enter any password in the **Password** field or
leave the **Password** field empty. In this query, **juggyboy** is the username,
and **juggy123** is the password.

- 12. After executing the query you will be redirected to the login page; this is normal.
- 13. Try juggyboy as the username, and juggy123 as the password to log in.
- 14. Click Login or press Enter.

FIGURE 1.5: Old House Login page

- 15. If no error message is displayed on the web page, it means that you have successfully created your login using SQL injection query.
- 16. To verify whether your login has been created successfully, go to the login page, enter juggyboy in the Login Name field and juggy123 in the Password field, and click Login.

To detect SQL Injection, check if the web application connects to a database server in order to access some data.

Error messages are essential for extracting information from the database. Depending on the type of errors found, you can vary the attack techniques.

Understanding the underlying SQL query allows the attacker to craft correct SQL Injection

FIGURE 1.6: Old House Login page

- 17. You will login successfully with the created login. Now you can access all the features of the website.
 - Go to **Start** menu apps and launch **SQL Server Management Studio** and login with the credentials.

FIGURE 1.7: Old House Login page

Different databases require different SQL syntax. Identify the database engine used by the

server.

Create Your Own Database

TASK 3

- 18. Open a web browser, type http://localhost/realhome in the address bar, and press Enter.
- 19. The **Home Page** of Real Home appears.

Most injections land in the middle of a SELECT statement. In a SELECT clause, we almost always end up in the WHERE section.

FIGURE 1.8: Old House Home page

20. In the Login Name field, type

blah'; create database juggyboy; -- and leave the **Password** field empty. Click **Login**.

21. In this query, juggyboy is the name of the database.

FIGURE 1.9: Old House Login page

- 22. No error message or any message displays on the web page. It means that the site is vulnerable to SQL injection and a database with the name juggyboy has been created at the database server.
- 23. When you open Microsoft SQL Server Management Studio, under Database you can see the created database, juggyboy.

Mostly the error messages show you what DB engine you are working on with ODBC errors. It displays database type as part of the driver information.

Try to replicate an error-free navigation, which could be as simple as ' and '1' = '1 Or ' and '1' = '2.

Time delays are a type of blind SQL Injection that causes the SQL engine to execute a long-running query or a time delay statement, depending on the logic injected.

FIGURE 1.10: Microsoft SQL Server Management Studio

- 24. Open a web browser, type http://localhost/realhome in the address bar, and press Enter.
- 25. The Home Page of Real Home is displayed.

FIGURE 1.11: Old House Home page

26. In the **Login name** field, type

blah';exec master..xp_cmdshell 'ping
www.certifiedhacker.com -1 65000 -t'; --,

and leave the Password field empty, and click Login.

27. In the above query, you are performing a ping for the www.certifiedhacker.com website using an SQL injection query: I is the send buffer size, and I means to ping the specified host until stopped.

Denial-of-Service Attack

Once you determine the usernames, you can start gathering passwords:

Username: 'union select password,1,1,1 from users where username = 'admin'-

Username: 'union select ret,1,1,1 from foo--

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'.

Use the bulk insert statement to read any file on the server, and use bcp to create arbitrary text files on the server.

FIGURE 1.12: Old House Login page

- 28. The SQL injection query starts pinging the host, and the login page shows a **Waiting for localhost...** message at the bottom left side of the window.
- 29. To see whether the query has successfully executed or not and ping is running, open your **Task Manager** window.
- In Task Manager, under the Details tab, you see a process called PING.EXE running in the background.
- 31. This process is the result of the SQL injection query that you entered in the login field of the website.

FIGURE 1.13: Task Manager

32. To manually kill this process, right-click the PING.EXE process and select **End Process.** This stops pinging of the host.

Lab Analysis

Analyze and document the results related to the lab exercise. Give your opinion on your target's security posture and exposure.

Using the sp_OACreate,

can do.

sp_OAMethod and sp_OAGetProperty system

stored procedures to create

Old Automation (ActiveX)

applications that can do

everything an ASP script

Tool/Utility	Information Collected/Objectives Achieved
SQL Injection	■ Login id: 1003, 1004
Attacks on MS	 Login Username: juggyboy
SQL Database	 Password: juggy123

PLEASE TALK TO YOUR INSTRUCTOR IF YOU HAVE QUESTIONS RELATED.

Internet Connection Required		
☐ Yes	☑ No	
Platform Supported		
☑ Classroom	☑ iLabs	

Testing for SQL Injection Using IBM Security AppScan Tool

Workbook review

IBM Security AppScan is a web application security testing tool that automates vulnerability assessments, prevents SQL injection attacks on websites, and scans websites for embedded malware.

Lab Scenario

By now, you are familiar with the types of SQL injection attacks an attacker can perform and the impact caused due to these attacks. Attackers can use the following types of SQL injection attacks: authentication bypass, information disclosure, compromised data integrity, compromised availability of data, and remote code execution, which allows them to spoof identity, damage existing data, execute system-level commands to cause denial of service of the application, etc.

In the previous lab you learned to test SQL injection attacks on MS SQL database for website vulnerabilities.

As an expert **security professional** and **penetration tester** of an organization, your job responsibility is to test the company's web applications and web services for vulnerabilities. You need to find various ways to extend security tests and analyze web applications, and employ multiple testing techniques.

Moving further, in this lab you will learn to test for SQL injection attacks using IBM Security AppScan tool.

Tools
demonstrated in
this lab are
available D:\CEHTools\CEHv8
Module 14 SQL
Injection

Lab Objectives

The objective of this lab is to help students learn how to test web applications for SQL injection threats and vulnerabilities.

In this lab, you will learn to:

- Perform website scans for vulnerabilities
- Analyze scanned results
- Fix vulnerabilities in web applications

Generate reports for scanned web applications

Lab Environment

You can download IBM AppScan from http://www-01.ibm.com.

Supported operating

systems (both 32-bit and

 Windows Server 2008: Standard and Enterprise, SP1 and SP2

Standard and Enterprise, SP1 and SP2

64-bit editions):
• Windows 2003:

To carry out the lab, you need:

- Security AppScan located at D:\CEH-Tools\CEHv8 Module 14 SQL
 Injection\SQL Injection Detection Tools\IBM Security AppScan
- A computer running Window Server 2012
- Double-click on SEC APPS STD V8.7_EVAL WIN.exe to install
- You can also download the latest version of Security AppScan from the link http://www-01.ibm.com/software/awdtools/appscan/standard
- A web browser with Internet access
- Microsoft .NET Framework Version 4.0 or later

Lab Duration

Time: 20 Minutes

Overview of Testing Web Applications

Web applications are tested for implementing security and automating vulnerability assessments. Doing so prevents SQL injection attacks on web servers and web applications. Websites are tested for embedded malware and to employ a multiple of testing techniques.

Lab Tasks

Testing Web Application

- 1. Follow the wizard-driven installation steps and install the IBM Security AppScan tool.
- 2. To launch **IBM Security AppScan** move your mouse cursor to the lower-left corner of your desktop and click **Start**.

FIGURE 2.1: Windows Server 2012 Desktop view

A personal firewall running on the same computer as Rational AppScan can block communication and result in inaccurate findings and reduced performance. For best results, do not run a personal firewall on the computer that runs Rational AppScan.

3. Click the IBM Security AppScan Standard app from Start menu apps.

FIGURE 2.2: Windows Server 2012 Desktop view

4. The main window of IBM Security AppScan – appears; click Create New Scan... to start the scanning.

FIGURE 2.3: IBM Rational AppScan main window

5. In the New Scan wizard, click the demo.testfire.net hyperlink.

Note: In the evaluation version we cannot scan other websites.

Scan Expert to perform its analysis and apply some of its recommendations automatically, when you start the scan.

AppScan can scan both web applications and

web services.

You can configure

Malware test uses data gathered during the explore stage of a regular scan, so you must have some explore results for it to function.

FIGURE 2.4: IBM Rational AppScan - New window

6. In the Scan Configuration Wizard, select Web Application Scan, and click Next.

FIGURE 2.5: IBM Rational AppScan - Scan Configuration Wizard

 In URL and Servers options, leave the settings as their defaults and click Next.

There are some changes that Scan Expert can only apply with human intervention, so when you select the automatic option, some changes may not be applied.

One of the options in

the scan configuration

wizard is for Scan Expert to run a short scan to

evaluate the efficiency of the new configuration for

your particular site.

FIGURE 2.6: IBM Rational AppScan - Scan Configuration Wizard

8. In Login Management, select option Automatic and enter the user name details as Username: jsmith and Password: Demo1234 and click Next.

FIGURE 2.7: IBM Rational AppScan Scan Configuration window

9. In **Test Policy** options, click **Nex**t to continue.

FIGURE 2.8: IBM Rational AppScan Full Scan window

10. Click Finish to complete the Scan Configuration Wizard.

The total number of tests to be sent, or URLs to be visited, may increase during a scan, as new links are discovered.

Security Issues view shows the actual issues discovered, from overview level down to individual requests/responses. This is the default view.

Results can display in three views: Security Issues, Remediation Tasks, and Application Data. The view is selected by clicking a button in the view selector. The data displayed in all three panes varies with the view selected.

FIGURE 2.9: IBM Rational AppScan Full Scan window

11. When the **Auto Save** window prompts you to save **automatically during scan**, click **Yes** to save the file and proceed to scan.

FIGURE 2.10: Auto Save window

12. Security AppScan starts scanning the provided URL for vulnerabilities.

FIGURE 2.11: IBM Rational AppScan Scanning Web Application window

Note: It will take a lot of time to scan the complete site; in this lab we have stopped before scanning is complete.

- 13. After the scan is complete, the application lists all the security issues and vulnerabilities in the website.
- 14. Results can be displayed in three views: Data, Issues, and Tasks.
- 15. To view the vulnerabilities and security issues in particular website click the **Issues** tab.

Remediation Tasks view provides a To Do list of specific remediation tasks to fix the issues found by the scan.

- The Result List displays the issues for whatever item is selected in the application tree. These can be for:
- Root level: All site issues display
- Page level: All issues for the page
- Parameter level: All issues for a particular request to a particular page

You can export the complete scan results as an XML file or as a relational database. (The database option exports the results into a Firebird database structure. This is open source and follows ODBC and JDBC standards.).

FIGURE 2.12: IBM Rational AppScan Scanning Web Application Result window

16. To analyze the scan results, click any of the results, such as **SQL Injection**, to list all the links that are vulnerable to SQL injection.

FIGURE 2.13: IBM Rational AppScan Scanning Web Application Result window

17. Click the **Advisory tab** in the bottom pane of the window to see the severity of that particular link.

FIGURE 2.14: IBM Rational AppScan Scanning Web Application Result window

18. To fix these threats and vulnerabilities, click **Fix Recommendation** to view a list of advice for fixing these vulnerabilities.

FIGURE 2.15: IBM Rational AppScan Scanning Web Application Result window

Analyze Result

The severity level assigned to any issue can be changed manually by right-clicking on the node.

Result Expert consists of various modules that are used to process scan results. The processed results are added to the Issue Information tab of the Detail pane, making the information displayed there more comprehensive and detailed, including screen shots where relevant.

The Security Report reports security issues found during the scan. Security information may be very extensive and can be filtered depending on your requirements. Six standard templates are included, but each can easily be tailored to include or exclude categories of information.

Generate Report

- The Industry
 Standard Report reports
 the compliance (or noncompliance) of your
 application with a selected
 industry committee or your
 own custom standards
 checklist.
- The Template Based Report is a custom report containing user-defined data and user-defined document formatting in Microsoft Word .doc format.
- The Delta Analysis report compares two sets of scan results and shows the difference in URLs and/or security issues discovered.

The Regulatory
Compliance Report: It
reports on the compliance
(or non-compliance) of
your application with a
large choice of regulations
or legal standards or with
your own custom
template).

- After Rational AppScan assesses your site's vulnerability, you can generate customized reports configured for the various personnel in your organization.
- 20. You can open and view the reports from within Security AppScan, and you can **save a report** as a file to be opened with a third-party application.
- 21. To generate a report, select **Tools** → **Report...**. The **Create Report** window appears.

FIGURE 2.16: IBM Rational AppScan Report Option window

22. Select the type of report to generate, check options, and click **Save Report...**.

FIGURE 2.17: IBM Rational AppScan Create Report window

23. Save the report to the desired location. The saved report will be helpful for future guidance.

Lab Analysis

Analyze and document the results related to the lab exercise. Give your opinion on your target's security posture and exposure.

Tool/Utility	Information Collected/Objectives Achieved
IBM Security AppScan	SQL Injection attack detected

PLEASE TALK TO YOUR INSTRUCTOR IF YOU HAVE QUESTIONS RELATED TO THIS LAB.

Questions

- 1. Analyze how to speed up the scanning process and reduce the number of pages that IBM Rational AppScan finds.
- 2. Evaluate whether it is possible to perform scans against live production environments with IBM Rational AppScan. Will that cause damage or hurt the site?
- 3. Analyze how variables can be implemented in a multi-step sequence with IBM Rational AppScan.

Internet Connection Required	
☑ Yes	□ No
Platform Supported	
☑ Classroom	□ iLabs

Testing for SQL Injection Using WebCruiser Tool

WebCruiser - Web Vulnerability Scanner is an effective and powerful web penetration testing tool that will aid you in auditing your website. It has a Vulnerability Scanner and a series of security tools.

Lab Scenario

A deeper understanding of detecting SQL injection attacks using the IBM Security AppScan too was examined in the previous lab. In this lab we will have a look at a real case scenario where SQL injection attacks were implemented to steal confidential information from banks.

Albert Gonzalez, an indicted hacker, stole 130 million credit and debit cards, the biggest identity theft case ever prosecuted in the United States. He used SQL injection attacks to install sniffer software on the companies' servers to intercept credit card data as it was being processed.

He was charged for many different cases in which the methods of hacking utilized were:

- Structured Query Language ("SQL") was a computer programming language designed to retrieve and manage data on computer databases.
- "SQL Injection Attacks" were methods of hacking into and gaining unauthorized access to computers connected to the Internet.
- "SQL Injection Strings" were a series of instructions to computers used by hackers in furtherance of SQL Injection Attacks.
- "Malware" was malicious computer software programmed to, among other things, identify, store, and export information on computers that were hacked, including information such as credit and debit card numbers and corresponding personal identification information of cardholders ("Card Data"), as well as to evade detection by anti-virus programs running on those computers.

As an expert **security professional** and **penetration tester** you should have a complete understanding of SQL injection attack scenarios and list high=risk

components and note entry points to start testing and exploring. Hence, as another aspect in SQL Injection testing, in this lab you will be guided to test for SQL injection using the WebCruiser Tool.

Lab Objectives

The objective of this lab is to help students learn how to test web applications for SQL injection threats and vulnerabilities.

In this lab, you will learn to:

- Perform website scans for vulnerabilities
- Analyze scanned results
- Fix vulnerabilities in web applications
- Generate reports for scanned web applications

Lab Environment

To carry out the lab, you need:

- WebCruiser located at D:\CEH-Tools\CEHv8 Module 14 SQL Injection\SQL Injection Detection Tools\WebCruiser
- Run this tool in Window Server 2012
- You can also download the latest version of WebCruiser from the link http://sec4app.com/download.htm
- A web browser with Internet access
- Microsoft .NET Framework Version 4.0 or later

Lab Duration

Time: 20 Minutes

Overview of Testing Web Applications

Web applications are tested for implementing security and automating vulnerability assessments. Doing so prevents SQL injection attacks on web servers and web applications. Websites are tested for embedded malware and to employ multiple testing techniques.

Tools

demonstrated in this lab are

available D:\CEH-

You can download WebCruiser from

To produce time-

the response time

consuming SQL sentence and get information from

http://sec4app.com/downl

Tools\CEHv8
Module 14 SQL

Injection

Lab Tasks

Testing Web Application

- 1. To launch WebCruiser in your Windows Server 2012 host machine, navigate to D:\CEH-Tools\CEHv8 Module 14 SQL Injection\SQL Injection Detection Tools\WebCruiser.
- 2. Double-click WebCruiserWVS.exe to launch it.

WebCruiser - Web Vulnerability Scanner Enterprise Edition

File Tools View Configuration Help

Scanner Scanner

FIGURE 3.1: WebCruiser main window

3. Enter the URL that you want to scan; in this lab we are scanning http://10.0.0.2/realhome/ (this IP address is where the realhome website is hosted).

FIGURE 3.2: WebCruiser Scanning a site

4. A software disclaimer pop-up will appear; click .**OK** to continue.

Scanning is not necessary for SQL Injection POC, you can launch POC by input the URL directly, or launch from the Scanner. WebCruiser support: * GET/Post/Cookie Injection; * SQL Server: PlainText/FieldEcho(Unio n)/Blind Injection; * MySQL/DB2/Access: FieldEcho(Union)/Blind Injection: * Oracle:

FieldEcho(Union)/Blind/C

rossSite Injection;

WebCruiser Web
Vulnerability Scanner for iOS, an effective and convenient web penetration testing tool that will aid you in auditing your website!
WebCruiser can find the following web vulnerabilities currently:
* GET SQL Injection(Int, String, Search)
* POST SQL Injection(Int, String, Search)

* Cross Site Scripting(XSS)

It can support scanning website as well as POC (Proof of concept) for web vulnerabilities: SQL Injection, Cross Site Scripting, XPath Injection etc. So, WebCruiser is also an automatic SQL injection tool, an XPath injection tool, and a Cross Site Scripting tool!

FIGURE 3.3: WebCruiser Software Disclaimer pop-up

5. WebCruiser starts with the URL scan as shown in the following screenshot. It shows Site Structure, and the following table is vulnerabilities.

FIGURE 3.4: WebCruiser Scanning Vulnerabilities

6. Right-click each of the vulnerabilities displayed in the scan result, and then you can launch SQL Injection POC (Proof of Concept).

System Requirement: .NET FrameWork V2.0 or higher, you can Download .NET FrameWork V2.0 From Microsoft.

SQL injection is a code injection technique that exploits a security vulnerability occurring in the database layer of an application.

The vulnerability is present when user input is either incorrectly filtered for string literal escape characters embedded in SQL statements or user input is not strongly typed and thereby unexpectedly executed.

It is an instance of a more general class of vulnerabilities that can occur whenever one programming or scripting language is embedded inside another. SQL Injection is one of the most common application layer attack techniques used today.

There are many methods to getting data in

these methods are supported in an actual penetration test.

SQL Injection, but not all

FIGURE 3.5: WebCruiser SQL Injection POC (Proof of Concept)

7. This will launch the SQL injection and fill the relevant fields. Click **Get Environment Information**.

FIGURE 3.6: WebCruiser SQL Injection POC Tool

8. It will display the environment information where the site is hosted.

Lab Analysis

Analyze and document the results related to the lab exercise. Give your opinion on your target's security posture and exposure.

Tool/Utility	Information Collected/Objectives Achieved	
WebCruiser	SQL Injection Detected	

PLEASE TALK TO YOUR INSTRUCTOR IF YOU HAVE QUESTIONS RELATED TO THIS LAB.

Questions

- 1. Analyze how to speed up the scanning process and reduce the number of pages the IBM Rational AppScan finds.
- 2. Evaluate whether it is possible to perform scans against live production environments with IBM Rational AppScan. Will that cause damage or hurt the site?
- 3. Analyze how variables can be implemented in a multi-step sequence with IBM Rational AppScan.

Internet Connection Required		
☐ Yes	□No	
Platform Supported		
☑ Classroom	☑ iLabs	

Testing for SQL Injection Using N-Stalker Tool

N-Stalker Web Application Security Scanner 2012 is a sophisticated Web Security Assessment solution for your web applications. By incorporating the well-known 'N-Stealth HTTP Security Scanner" and its 39,000 Web Attack Signature database along with a patent-pending component-oriented Web Application Security Assessment technology, N-Stalker is a "must have" security tool to developers, system/security administrators, IT auditors, and staff.

Lab Scenario

In the previous lab you examined how to use the Webcruiser tool to scan a website as well as POC (Proof Of Concept) for web vulnerabilities: SQL injection.

Few attackers perform SQL injection attacks based on an "error message" received from the server. If an error is responded from the application, the attacker can determine the entire structure of the database, and read any value that can be read by the account the ASP application is using to connect to the SQL Server. However, if an error message is returned from the database server complaining that the SQL Query's syntax is incorrect, an attacker tries all possible True and False questions through SQL statements to steal data.

Tools
demonstrated in
this lab are
available D:\CEHTools\CEHv8
Module 14 SQL
Injection

As an expert security professional and penetration tester you should be familiar with the tips and tricks used in SQL injection detection. You must also be aware of all the tools that can be used to detect SQL injection flaws. In this lab you will learn to use the tool N-Stalker to detect SQL injection attacks in websites.

Lab Objectives

The objective of this lab is to help students learn how to test web applications for SQL Injection threats and vulnerabilities.

In this lab, you will learn to:

Perform website scans for vulnerabilities

- Analyze scanned results
- Fix vulnerabilities in web applications
- Generate reports for scanned web applications

Lab Environment

To carry out the lab, you need:

- N-Stalker located at D:\CEH-Tools\CEHv8 Module 14 SQL Injection\SQL Injection Detection Tools\N-Stalker Web Application Security Scanner
- Run this tool in Window Server 2012
- You can also download the latest version of N-Stalker from the link http://www.nstalker.com/products/editions/free/download
- A web browser with Internet access
- Microsoft .NET Framework Version 4.0 or later

Lab Duration

Time: 20 Minutes

Overview of Testing Web Applications

Web applications are tested for implementing security and automating vulnerability assessments. Doing so prevents SQL injection attacks on web servers and web applications. Websites are tested for embedded malware and to employ multiple testing techniques.

E TASK 1

You can download N-

http://www.nstalker.com/

products/editions/free/do

Founded upon the

Component-oriented Web Application Security Scanning, N-Stalker

Enterprise Edition allows for assessment of Web

Applications

U.S. Patent Registered Technology of

Stalker from

wnload

Lab Tasks

Testing Web Application

1. To launch N-Stalker move your mouse cursor to the lower-left corner of your desktop and click **Start**.

FIGURE 4.1: Windows Server 2012 Desktop view

2. Click the N-Stalker Free 2012 app to launch it.

N-Stalker Web
Application Security
Scanner 2012 Enterprise
Edition provides the most
complete and effective
suite of Web Security
assessment checks to
enhance the overall security
of your Web Applications
against a wide range of
vulnerabilities and
sophisticated hacker
attacks.

N-Stalker also allows you to create your own assessment policies and requirements, enabling an effective way to manage your application's SDLC, including the ability to control information exposure, development flaws, infrastructure issues and real security vulnerabilities that can be explored by external agents.

Web Security Intelligence Service (WSIS) is provided by WSI Labs and will ensure you always get the latest updates available for N-Stalker Web Application Security Scanner as well as for its attack signature database. New 0-day exploits and common vulnerabilities will be added on daily or weekly basis, giving you the ability to scan you Web Server infrastructure periodically against the latest threats.

System Requirement: .NET FrameWork V2.0 or higher, you can Download .NET FrameWork V2.0 From Microsoft.

FIGURE 4.2: Windows Server 2012 Start menu Apps

3. Click the **Update** button to update the N-Stalker database in the main window of N-Stalker as shown in the following screenshot.

FIGURE 4.3: N-Stalker Main window

4. A software disclaimer pop-up will appear. Click **OK** to continue.

FIGURE 4.4: N-Stalker Free Edition pop-up

5. **N-Stalker** will start updating the database; it will take some time to update.

To run N-Stalker Web Application Security Scanner appropriately, there are minimum requirements to be met:

- · 128MB RAM (available to N-Stalker)
- · At least 500MB Hard Disk free space (caching purposes)
- · Win32 Platform (Win 2000, XP, 2003 or Vista and later)
- · Internet connection to download N-Stalker database/software updates

FIGURE 4.5: N-Stalker database updating status

6. After updating is complete, click **Start** to start a new scanning session.

FIGURE 4.6: N-Stalker database updated

- 7. In N-Stalker Scan Wizard, enter the URL as http://10.0.0.2/realhome/ (this IP address is where the realhome website is hosted).
- 8. Set the Scan Policy as OWASP Policy, and click Next.

You may modify N-Stalker's cache options to avoid web pages from being permanently stored in your hard disk. This might be useful to preserve disk space on large assessments

To run N-Stalker Scanner from command line, you will need a scan session policies, host information and specific configurations needed to run the entire session.

N-Stalker HTTP

force tool that works by

taking a web macro and

attempting to run a series of authentication requests to obtain valid credentials (you may provide your own user and password list).

Brute Force tool does what the name says. It is an HTTP authentication brute

FIGURE 4.7: N-Stalker Choosing URL and Policy

9. Click Yes in the URI Restriction Found pop-up to continue.

FIGURE 4.8: N-Stalker URI Restriction Found pop-up

10. In Optimize Settings, click Next to continue.

FIGURE 4.9: N-Stalker Optimize Settings

11. Click Yes in the Optimize Settings pop-up.

N-Stalker Web Proxy is a combination of web proxy and HTTP inspection tool. It includes a full Web Proxy support (for external browsers) along with an event-driven interception mechanism, that allows you to inspect HTTP communications (even SSL) based on

keyword matching.

The term "GHDB" was allegedly coined by Johnny Long, which started to maintain a number of "google-based" queries that would eventually reveal security flaws in websites (without one having to scan the site directly for that vulnerability).

FIGURE 4.10: N-Stalker pop-up

12. On the Review Summary tab, click Start Session to continue.

FIGURE 4.11: N-Stalker Review Summary

13. The **N-Stalker Free Edition** pop-up displays a message. Click **OK** to continue.

FIGURE 4.12: N-Stalker Free Edition pop-up

14. Click **Start Scan** after completing the configuration of N-Stalker.

This is a string encoding tool which is useful to encode/decode data on multiple formats used by Web Applications.

This is a Web Server Discovery tool which will

attempt to discover HTTP

platform version. It might

run based on a file list or IP

servers and fingerprint them to obtain their

range.

Google Hacking
Database (GHDB) Tool is
a unique application that
will allow you to search for
"google-like" queries within
a saved spider data. NStalker, GHDB Tool can
be invoked by clicking on
"GHDB Tool" button
under "Miscellaneous
Tools":

FIGURE 4.13: N-Stalker Start Scan wizard

15. You can view scanning details as shown in the following screenshot.

FIGURE 4.14: N-Stalker Start Scan Status

16. N-Stalker will scan the site with four different methods.

FIGURE 4.15: N-Stalker Scanning methods

17. In the left pane, the Website tree displays the pages of the website.

HTTP Load Tester is a performance tester tool. It will run a Web Macro on a concurrent basis (up to you to decide how many instances) and will provide a report on number of connection failures and success.

tool to manage "Web Macros" within N-Stalker Web Application Security Scanner.

Macro Recorder is a

"Web Macro" is a user-provided navigation script that is usually recorded using a web browser and a web proxy tool. Macro Recorder allows you to insert manual URLs as well and you must choose between an authentication or navigation macro.

An authentication
Web Macro is used to
authenticate N-Stalker's
against Web Forms or any
other of user interaction
based authentication.

As applications provide both a mean to login and logoff, Authentication Macros have a "logout detection" control that can be configured to prevent accidental logoff.

FIGURE 4.16: N-Stalker Website Tree

18. In **Results Wizard**, select the relevant options as shown in the following screenshot and click **Next**.

FIGURE 4.17: N-Stalker Results Wizard

19. N-Stalker displays the summary of vulnerabilities. Click Done.

A navigation Web Macro is used to provide a specific path within the application to be followed by N-Stalker's spider engine.

When you are generating reports, N-Stalker allows you to customize template and data that will be used to generate the final report. Both executive and technical reports allow for that customization.

These macros can use any URLs and will not be prevented from calling external services within N-Stalker's spider engine.

FIGURE 4.18: N-Stalker Summary

20. You can view the complete scan results of the URL in the main dashboard of the **N-Stalker**.

FIGURE 4.19: N-Stalker Dashboard

Lab Analysis

Analyze and document the results related to the lab exercise. Give your opinion on your target's security posture and exposure.

Tool/Utility	Information Collected/Objectives Achieved
N-Stalker	Scan session successfully processed with 12 vulnerabilities detected

PLEASE TALK TO YOUR INSTRUCTOR IF YOU HAVE QUESTIONS RELATED TO THIS LAB.

Questions

- 1. Analyze how to speed up the scanning process and reduce the number of pages the IBM Rational AppScan finds.
- 2. Evaluate whether it is possible to perform scans against live production environments with IBM Rational AppScan. Will that cause damage or hurt the site?
- 3. Analyze how variables can be implemented in a multi-step sequence with IBM Rational AppScan.

Internet Connection Required		
☐ Yes	□No	
Platform Supported		
☑ Classroom	☑ iLabs	