Departamento de Matemática e Aplicações

,				
Λ.				
/\	$1 \sim 1$	hra	 ハヘつ	r
$\boldsymbol{\neg}$	שאו	bra	 ווכמ	

	teste D —	10 de janeiro de 2011 ————	
nome:		número:	

A duração da prova é de 2 (duas) horas. **Não** é permitida a utilização de máquinas de calcular.

 \cot ação: em (I), $1\sim(1.5+1.5+1.5+1.5)$, $2\sim2$; em (II), cada resposta certa vale 1 valor e cada resposta errada subtrai 0.25.

(1)

Justifique todas as suas respostas convenientemente.

1. Considere a matriz
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
 e o vector $b = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$.

- (a) Resolva o sistema Ax = b, usando o algoritmo de eliminação de Gauss.
- (b) Encontre uma base do núcleo de A.
- (c) Encontre uma base de CS(A), o espaço das colunas de A. Verifique se $CS(A) = \mathbb{R}^3$.
- (d) Mostre que $A + \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ é diagonalizável e diagonalize-a (bastando, para tal, indicar uma matriz diagonalizante e uma diagonal),
- 2. Mostre que $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & -1 & 0 \end{bmatrix}$ é invertível e calcule A^{-1} ou pelo algoritmo de Gauss-Jordan ou à custa dos complementos algébricos.

Leia atentamente as questões. Depois, na última página desta prova, assinale com um X a alínea (a, b, c ou d) correspondente à melhor resposta a cada questão. No caso de ter assinalado mais do que uma alínea de resposta para a mesma questão, essa questão será considerada como não respondida.

- 1. Considere as matrizes $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ e $J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
 - (a) $\sigma(A) = \sigma(J)$, ou seja, A e J têm os mesmos valores próprios.
 - (b) $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ é vector próprio associado ao valor próprio 2 de J.
 - (c) J e A têm o mesmo polinómio característico.
 - (d) Todas as anteriores. (V)
- 2. Para a matriz $A = \begin{bmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$,
 - (a) A é diagonalizável.
 - (b) $\dim N(A) = 2$.
 - (c) car(A) = 1.
 - (d) Todas as anteriores. (V)
- 3. Para as matrizes $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$,
 - (a) Ax = b tem soluções.
 - (b) $N(A) = \{(0,0,0)\}.$
 - (c) $\operatorname{proj}_{CS(A)}b = b$.
 - (d) Nenhuma das anteriores. (V)
- 4. Dada a matriz $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$,
 - (a) As colunas de A formam uma base de \mathbb{R}^2 .
 - (b) $CS(A) = \mathbb{R}^2$. (V)
 - (c) $\dim N(A) = 2$.
 - (d) Nenhuma das anteriores.

- 5. Dadas duas matrizes A e B quadradas $n \times n$,
 - (a) $(A+B)(A-B)=A^2-B^2$ é sempre válida, independentemente da escolha de $A \in B$.
 - (b) $(A+B)^2 = A^2 + 2AB + B^2$ é sempre válida, independentemente da escolha de A e B.
 - (c) $AB = 0 \Rightarrow A = 0 \lor B = 0$ é sempre válida, independentemente da escolha de A e B.
 - (d) Nenhuma das anteriores. (V)
- 6. Considere a matriz $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.
 - (a) Para qualquer escolha de $b \in \mathbb{R}^3$, a equação Ax = b tem uma única solução. (V)
 - (b) $\dim N(A) = 1$.
 - (c) det(A) = 0.
 - (d) Nenhuma das anteriores.
- 7. Dado um subespaço vectorial V de \mathbb{R}^5 , com dim V=3,
 - (a) $(0,0,0,0,0) \in V$.
 - (b) Se $(1, 1, 1, 1, 0) \in V$ então $(3, 3, 3, 3, 0) \in V$.
 - (c) $V \neq \mathbb{R}^5$.
 - (d) Todas as anteriores. (V)
- 8. Sendo $T: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear definida por

$$T(1,0) = (-1,0,1), T(0,1) = (1,1,1).$$

- (a) T(1,2) = (1,0,3).
- (b) T(x,0) = (x,0,x), para qualquer $x \in \mathbb{R}$.
- (c) A matriz que representa T em relação à base canónica de \mathbb{R}^2 e à de \mathbb{R}^3 é $[T] = \begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$.

 (V)
- (d) Todas as anteriores.

Respostas:

1. a) \bigcirc

b) (

 $c)\;\bigcirc$

 $\mathrm{d})\;\bigcirc$

2. a) 🔘

b) (

c) ()

 $\mathrm{d})\;\bigcirc$

3. a) 🔘

b) (

c) (

 $\mathrm{d})\;\bigcirc$

4. a) 🔘

b) (

 $c)\;\bigcirc$

 $\mathrm{d})\;\bigcirc$

5. a) 🔘

b) (

c) (

d) ()

6. a) 🔘

b) (

c) ()

d) ()

7. a) ()

b) (

c) (

d) ()

8. a) ()

b) (

c) (

d) ()

9. a) 🔘

b) (

c) (

d) ()

10. a) 🔘

b) (

 $c)\;\bigcirc$

 $\mathrm{d})\;\bigcirc$