PLSC 504

Introduction to Item Response Theory Models - I

November 28, 2017

Item Response Theory ("IRT")

- Origins in psychometrics / testing
- Measurement model (typically) no X
- Unidimensional
- Discrete responses Y
- Equally descriptive and inferential

Basic Setup

$$Y^* =$$
latent trait ("ability")

Y =observed measures

- $i \in \{1, 2...N\}$ indexes *subjects* / *units*, and
- $j \in \{1, 2, ...J\}$ indexes *items* / *measures*.

$$Y_{ij} = \begin{cases} 0 & \text{if subject } i \text{ gets item } j \text{ "incorrect,"} \\ 1 & \text{if subject } i \text{ gets item } j \text{ "correct."} \end{cases}$$

Data

> head(SCOTUS, 10)

	id	Rehnquist	${\tt Stevens}$	${\tt OConnor}$	Scalia	Kennedy	${\tt Souter}$	${\tt Thomas}$	Ginsburg	Breyer
1	1	0	1	0	0	0	0	0	0	0
2	2	0	0	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0	0	0
4	4	1	1	1	1	1	1	1	1	1
5	5	0	1	0	0	1	1	0	1	1
6	6	0	0	0	0	0	0	NA	0	0
7	7	1	1	1	0	1	1	0	1	1
8	8	0	1	0	0	0	0	0	NA	0
9	9	0	0	0	0	0	0	0	0	0
10	10	1	1	1	1	1	1	1	1	1

One-Parameter Logistic Model ("1PLM")

$$Pr(Y_{ij} = 1) = \frac{exp(\theta_i - \beta_j)}{1 + exp(\theta_i - \beta_j)}$$

Here,

- θ_i = respondent *i*'s *ability*,
- β_i = item j's difficulty.
- $\beta_j \equiv \text{value of } Y^* \text{ where } \Pr(Y_{ij} = 1) = 0.50$

1PLM

- a.k.a. "Rasch" model (Rasch 1960)
- Implicit "slope" = 1.0
- Implies items are equally "discriminating"
- If not...

Two-Parameter Logistic Model ("2PLM")

$$\mathsf{Pr}(Y_{ij} = 1) = rac{\mathsf{exp}[lpha_j(heta_i - eta_j)]}{1 + \mathsf{exp}[lpha_j(heta_i - eta_j)]}$$

- θ_i = respondent *i*'s *ability*,
- β_i = item j's difficulty,
- $\alpha_j = \text{item } j$'s discrimination.

Identical Difficulty, Different Discrimination

Different Difficulty & Discrimination

2PLM

- Due to Birnbaum (1968)
- Similar to "typical" logit...
- Nests the 1PLM as a special case $(\alpha_j = 1 \forall j)$

Three-Parameter Logistic Model ("3PLM")

$$\Pr(Y_{ij} = 1) = \delta_j + (1 - \delta_j) \left\{ \frac{\exp[\alpha_j(\theta_i - \beta_j)]}{1 + \exp[\alpha_j(\theta_i - \beta_j)]} \right\}$$

- θ_i = respondent *i*'s *ability*,
- β_i = item j's difficulty,
- α_i = item j's discrimination.
- $\delta_j = lower \ asymptote \ of \ Pr(Y_{ij} = 1)$ (incorrectly: "guessing" parameter).

3PLM, Constant α & β , Varying δ

The Two Big Assumptions

- Unidimensionality
- Local Item Independence ("No LID"):

$$Cov(Y_{ij}, Y_{ik}|\theta_i) = 0 \ \forall \ j \neq k$$

Estimation: Notation

$$P_{ij} = \operatorname{Pr}(Y_{ij} = 1),$$
 $Q_{ij} = \operatorname{Pr}(Y_{ij} = 0)$
 $= 1 - \operatorname{Pr}(Y_{ij} = 1),$
 $\Psi = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_J \\ \alpha_1 \\ \vdots \\ \alpha_J \\ \delta_1 \\ \vdots \\ \delta_L \end{pmatrix}.$

Estimation: Likelihoods

Known $\Psi = \alpha$, β , δ :

$$L(\mathbf{Y}|\Psi) = \prod_{i=1}^{J} P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}}.$$

Known θ :

$$L(\mathbf{Y}|\theta) = \prod_{i=1}^{N} P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}}.$$

Estimation: Likelihoods

$$L(\mathbf{Y}|\Psi,\theta) = \prod_{i=1}^{N} \prod_{j=1}^{J} P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}}$$

$$\ln L(\mathbf{Y}|\Psi,\theta) = \sum_{i=1}^{N} \sum_{j=1}^{J} Y_{ij} \ln P_{ij} + (1-Y_{ij})Q_{ij}.$$

Parameterization

- N + J parameters in the 1PLM,
- N + 2J parameters in the 2PLM,
- N + 3J parameters in the 3PLM.

But...

- NJ observations,
- Asymptotics as $N \to \infty$, $J \to \infty$...

Estimation: Conditional Likelihood

Total score is:

$$T_i = \sum_{j=1}^{J} Y_{ij} \in \{0, 1, ...J\}$$

$$L = \prod_{i=1}^{N} \frac{\exp[\alpha_j(\theta_t - \beta_j)]}{1 + \exp[\alpha_j(\theta_t - \beta_j)]}$$

 θ_t are "score-group" parameters corresponding to the J+1 possible values of $\mathcal{T}.$

Estimation: Conditional Likelihood

• Equivalent to fitting a conditional logit model:

$$\mathsf{Pr}(Y_{ij} = 1) = rac{\mathsf{exp}(\mathbf{Z}_{ij}\gamma)}{\sum_{j=1}^{J}\mathsf{exp}(\mathbf{Z}_{ij}\gamma)}$$

with $Z_{ii} =$ "item dummies."

• Useful only for 1PLM (since T_i is a sufficient statistic for θ_i).

Estimation: Marginal Likelihood

$$L(\mathbf{Y}|\Psi,\theta) = \prod_{i=1}^{N} \left[\int_{-\infty}^{\infty} \prod_{j=1}^{J} P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}} d\theta \right]$$

- Analogous to "random effects" ...
- Eliminates inconsistency as $N \to \infty$, but
- Requires *strong* exogeneity of θ and Ψ .

Estimation: Bayesian Approaches

- Place priors on θ , Ψ ;
- Estimate via sampling from posteriors, via MCMC.
- Eliminates problems with $\hat{\alpha}$, $\hat{\beta}$, $\hat{\theta} = \infty$ (see below).
- Easily extensible to other circumstances (hierarchical/multilevel, etc.)

Identification

Two Issues:

- Scale invariance: $L(\hat{\Psi}) = L(\hat{\Psi} + c)$
- Rotational invariance: $L(\hat{\Psi}) = L(-\hat{\Psi})$

Fixes:

- Set one (arbitrary) $\beta_j = 0$, and another (arbitrary) $\beta_k > 0$, or
- Fix two θ_i s at specific values.

Further (Potential) Concerns

- $Y_{ij} = 0/1 \ \forall \ i \rightarrow \beta_i = \pm \infty$.
- $Y_{ij} = 0/1 \ \forall j \rightarrow \theta_i = \pm \infty$.
- Separation / "empty cells" $\rightarrow \alpha_j = \pm \infty$.
- Problematic for joint and conditional approaches; more easily dealt with in the Bayesian framework.

Results

- Estimates of $\hat{\alpha}$ s, $\hat{\beta}$ s, and/or $\hat{\delta}$ s, plus $\hat{\theta}$ s
- Associated s.e.s / c.i.s
- "Scale-free" quantities of interest...