Homework 2 of CSCE 212

1. Consider two different implementations of the same ISA. The four classes of instructions are A,B,C and D. Refer to following table for the data required.

	Clock Rate	CPI A	СРІ В	CPI C	CPI D
P1	3 GHz	1	3	4	2
P2	4 GHz	4	5	6	2

Given a program with 10% of A instructions, 20% of B instructions, 30% of C instructions and 40% of D instructions

- a. Which implementation of P1 and P2 is faster?
- b. What is the global CPI of each implementation?
- c. If the program has 10⁴ instructions, find the execution time on each implementation.
- 2. Refer to the following table for the data required.

	Arith	Store	Load	Branch
Instructions for a program	500	% 0	100	100
CPI	1	5	5	2

- a. Calculate execution time of a program on a 2 GHz processor.
- b. Find global CPI of the program.
- c. If number of load instructions can be reduced by one-half, what is the speed up and CPI?
- d. If number of store and arithmetic instructions can be reduced by one-half, what is the speed up and CPI?
- 3. Write MIPS code to implement a leaf procedure for the following C function:

Assume that the variables x and y are passed from argument registers \$a0 and \$a1 respectively. The returned value should be stored in register \$v0. Note that you need to use stack to store any other registers if you use them in this procedure.

- 4. Convert the decimal number -27.0625 to equivalent IEEE 754 FP representation (single precision). Show the final result in hexadecimal format and your answer must include the steps.
- 5. Which decimal number does $0 \times C0A80000$ (IEEE 754 FP single precision) represent? Your answer must include the steps .