HOMEWORK 2: SYMPLECTIC FORMS VS. AREA AND VOLUME

YANNIS BÄHNI

Exercise 1.1. Let (M, ω) be a 2n-dimensional symplectic manifold.

- (a) ω^n is a volume form.
- (b) Show that if M is compact, then $[\omega^n] \in H^{2n}_{dR}(M)$ is nonzero.
- (c) Conclude that $[\omega] \neq 0$.
- (d) \mathbb{S}^{2n} does not admit a symplectic structure for n > 1.

Solution 1.1. Part (a) immediately follows from the fact that for each $p \in M$ we have that $\omega_p^n \neq 0$. Thus ω^n is a nonvanishing form of top degree, hence a volume form.

For proving (b), assume that $[\omega^n] = 0$. Hence ω^n is exact. Thus there exists $\mu \in \Omega^{2n-1}(M)$ such that $\omega^n = d\mu$. But then Stoke's theorem [Lee13, p. 411] together with positivity [Lee13, p. 407] yields

$$0 < \int_{M} \omega^{n} = \int_{M} d\mu = \int_{\partial M} \mu = \int_{\varnothing} \mu = 0$$

since M is oriented by part (a) and ω^n is a positively oriented orientation form (see [Lee13, p. 381]).

For proving (c), observe that $[\omega^n] = [\omega] \cup \cdots \cup [\omega]$, where \cup is the so-clalled cup product (see [Lee13, p. 464]). So if $[\omega] = 0$, we have by bilinearity also $[\omega^n] = 0$, which contradicts part (b).

For proving (d), by [Lee13, p. 450] we have that

$$H_{\mathrm{dR}}^{p}(\mathbb{S}^{n}) \cong \begin{cases} \mathbb{R} & p = 0 \text{ or } p = n, \\ 0 & 0$$

for $n \ge 1$. Let n > 1. Assume that (\mathbb{S}^n, ω) is a symplectic manifold. Since \mathbb{S}^n is compact, part (c) implies that $[\omega] \ne 0$. But $[\omega] \in H^2_{dR}(\mathbb{S}^{2n}) \cong 0$.

Example 1.1. Consider the symplectic manifold $(\mathbb{R}^{2n}, \omega_0)$, where ω_0 is the standard symplectic structure on \mathbb{R}^{2n} . Clearly, \mathbb{R}^{2n} is not compact and ω_0 is exact since

$$d\left(\sum_{i=1}^{n} x^{i} dy^{i}\right) = \sum_{i=1}^{n} dx^{i} \wedge dy^{i} = \omega_{0}.$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Example 1.2. Let M be a smooth manifold. Then (T^*M, ω) is a symplectic manfiold, where ω is the canonical symplectic form on T^*M . It is an exact form, since $\omega = -d\alpha$, where α is the tautological 1-form. Moreover, T^*M is not compact by problem 10-19 [Lee13, p. 271].

Exercise 1.2. Let (M, ω) be a 2n-dimensional symplectic manifold. (a)

Solution 1.2. For proving (a), we have using [Lee13, p. 117]

$$T_p \mathbb{S}^n = \{ v \in \mathbb{R}^{n+1} : \langle v, p \rangle = 0 \}$$

for each $p \in \mathbb{S}^n$. Consider the *Euler vector field* V defined by

$$V := x^i \frac{\partial}{\partial x^i}.$$

Then V is a unit normal vector field along \mathbb{S}^n . Indeed, if $p \in \mathbb{S}^n$ and $v \in T_p \mathbb{S}^n$ we have that

$$\langle p, v \rangle_{\bar{g}} = \langle p, v \rangle = 0$$

and

$$|p|_{\overline{g}} = |p| = 1.$$

Hence by [Lee13, p. 390], the volume form $\omega_{\mathring{g}}$ on $(\mathbb{S}^n, \mathring{g})$ is given by

$$\omega_{\mathfrak{g}} = \iota_{\mathbb{S}^n}^* (i_V \omega_{\overline{g}}).$$

More precisely, in the case n = 2 we have

$$i_{V}\omega_{\overline{g}} = i_{V}(dx \wedge dy \wedge dz)$$

$$= (i_{V}dx) \wedge dy \wedge dz - dx \wedge i_{V}(dy \wedge dz)$$

$$= (i_{V}dx) \wedge dy \wedge dz - dx \wedge (i_{V}dy) \wedge dz + dx \wedge dy \wedge (i_{V}dz)$$

$$= xdy \wedge dz + ydz \wedge dx + zdx \wedge dy.$$

For $v, w \in T_p \mathbb{S}^2$, $p \in \mathbb{S}^2$, we have that

$$\omega_{\widehat{\sigma}}|_{p}(v,w) = (i_{V}\omega_{\overline{g}})_{\iota(p)} (d\iota_{p}(v), d\iota_{p}(w)) = (i_{V}\omega_{\overline{g}})|_{p}(v,w)$$

under the usual identification of $T_p\mathbb{S}^n$ as a linear subspace of $T_p\mathbb{R}^{n+1}$. Finally

$$\omega_{\tilde{g}}(v,w) = (xdy \wedge dz + ydz \wedge dx + zdx \wedge dy)(v,w)$$

$$= x \det \begin{pmatrix} dy(v) & dz(v) \\ dy(w) & dz(w) \end{pmatrix} + y \det \begin{pmatrix} dz(v) & dx(v) \\ dz(w) & dx(w) \end{pmatrix} + z \det \begin{pmatrix} dx(v) & dy(v) \\ dx(w) & dy(w) \end{pmatrix}$$

$$= x(v^{2}w^{3} - w^{2}v^{3}) + y(v^{3}w^{1} - w^{3}v^{1}) + z(v^{1}w^{2} - w^{1}v^{2})$$

$$= \langle p, v \times w \rangle$$

for $p := (x, y, z) \in \mathbb{S}^2$ using [Lee13, p. 356].

For proving (b), consider cylindrical polar coordinates (θ, z) on \mathbb{S}^2 given by

$$(x, y, z) = (\sqrt{1 - z^2} \cos \theta, \sqrt{1 - z^2} \sin \theta, z).$$

Then we get

$$i_{V}\omega_{\overline{g}} = id^{*}(i_{V}\omega_{\overline{g}})$$

$$= id^{*}(xdy \wedge dz + ydz \wedge dx + zdx \wedge dy)$$

$$= \sqrt{1 - z^{2}}\cos\theta d(\sqrt{1 - z^{2}}\sin\theta) \wedge dz + \sqrt{1 - z^{2}}\sin\theta dz \wedge d(\sqrt{1 - z^{2}}\cos\theta)$$

$$+ zd(\sqrt{1 - z^{2}}\cos\theta) \wedge d(\sqrt{1 - z^{2}}\sin\theta)$$

$$= \sqrt{1 - z^{2}}\cos\theta \left(\sqrt{1 - z^{2}}\cos\theta d\theta - \frac{z}{\sqrt{1 - z^{2}}}\sin\theta dz\right) \wedge dz$$

$$- \sqrt{1 - z^{2}}\sin\theta dz \wedge \left(\sqrt{1 - z^{2}}\sin\theta d\theta + \frac{z}{\sqrt{1 - z^{2}}}\cos\theta dz\right)$$

$$- z\left(\sqrt{1 - z^{2}}\sin\theta d\theta + \frac{z}{\sqrt{1 - z^{2}}}\cos\theta dz\right)$$

$$\wedge \left(\sqrt{1 - z^{2}}\cos\theta d\theta - \frac{z}{\sqrt{1 - z^{2}}}\sin\theta dz\right)$$

$$= (1 - z^{2})\cos^{2}\theta d\theta \wedge dz - (1 - z^{2})\sin^{2}\theta dz \wedge d\theta + z^{2}\sin^{2}\theta d\theta \wedge dz$$

$$- z^{2}\cos^{2}\theta dz \wedge d\theta$$

$$= d\theta \wedge dz.$$

For proving (c), just observe that

$$\operatorname{Vol}(\mathbb{S}^2) = \int_{\mathbb{S}^2} \omega_{\mathring{g}} = \int_{(0,2\pi)\times(-1,1)} d\theta \wedge dz = 4\pi.$$