PMATH 347 Groups and Rings Spring 2018

James Yu

May 9, 2018

Contents

1	Intr	roduction	1
	1.1	Numbers	1
		1.1.1 Addition	1
		1.1.2 Multiplication	2
	1.2	Matrices	
		1.2.1 Matrix Addition	:
		1.2.2 Matrix Multiplication	
	1.3	Permutations	

Chapter 1

Introduction

1.1 Numbers

In this course we denote

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

$$\mathbb{Q} = \left\{\frac{a}{b} : a \in \mathbb{Z} \text{ and } b \in \mathbb{N}\right\}$$

$$\mathbb{R} = \text{set of real numbers}$$

$$\mathbb{C} = \left\{a + bi : a, b \in \mathbb{R} \text{ and } i^2 = -1\right\}$$

$$= \text{set of complex numbers}$$

For $n \in \mathbb{Z}$ let \mathbb{Z}_n denote the set of integers modulo n, i.e.

$$\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}$$

with congruence classes

$$[r] = \{ z \in \mathbb{Z} : z \equiv r \mod n \} \qquad (0 \le r \le n - 1)$$

We note that for $R = \mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , or \mathbb{Z}_n we have two operations: addition and multiplication.

1.1.1 Addition

If $r_1, r_2, r_3 \in R$ then

$$r_1 + r_2 \in R$$
 (closure)
 $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$ (associativity)

Also, if $R \neq \mathbb{N}$, there exists $0 \in R$ (identity) such that, for all $r \in \mathbb{R}$

$$r + 0 = r = r + 0$$

and there exists $-r \in R$ (<u>inverse</u>) such that

$$r + (-r) = 0 = (-r) + r$$

1.1.2 Multiplication

If $r_1, r_2, r_3 \in R$ then

$$r_1 \cdot r_2 \in R$$

$$r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$$

Also, there exists $1 \in R$ such that, for all $r \in R$

$$r \cdot 1 = r = 1 \cdot r$$

Finally, for $R=\mathbb{Q},\,\mathbb{R},\,\mathbb{C},$ if $r\in R,$ there exists $\frac{1}{r}\in R$ such that

$$r \cdot \frac{1}{r} = 1 = \frac{1}{r} \cdot r$$

We note that for $R = \mathbb{Z}_n$, not all $[r] \in \mathbb{Z}_n$ have a "<u>multiplicative inverse</u>." For example, for $[2] \in \mathbb{Z}_4$ there is no $[x] \in \mathbb{Z}_4$ such that $[2] \cdot [x] = [1]$.

1.2 Matrices

For $n \in \mathbb{N}$, an $n \times n$ matrix over \mathbb{R} (where \mathbb{R} can be replaced by \mathbb{Q} or \mathbb{C}) is an $n \times n$ array

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

where $a_{ij} \in \mathbb{R} (1 \leq i, j \leq n)$.

We denote by $\underline{M_n(\mathbb{R})}$ the set of all $n \times n$ matrices over \mathbb{R} .

1.2.1 Matrix Addition

Given $A = [a_{ij}], B = [b_{ij}] \in M_n(\mathbb{R})$, we define

$$A + B = [a_{ij} + b_{ij}]$$

Note that $A + B \in M_n(\mathbb{R})$ and for $A, B, C \in M_n(\mathbb{R})$ we have

$$A + (B+C) = (A+B) + C$$

Define $0 \in M_n(\mathbb{R})$ by

$$0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Thus we have

$$A + 0 = A = 0 + A$$

Finally, for $A \in M_n(\mathbb{R})$, there exists $-A = [-a_{ij}] \in M_n(\mathbb{R})$ such that

$$A + (-A) = 0 = (-A) + A$$

We also note that in this case

$$A + B = B + A$$
 (commutativity)

1.2.2 Matrix Multiplication

Given $A = [a_{ij}], B = [b_{ij}] \in M_n(\mathbb{R})$ we define

$$AB = [c_{ij}] c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Note that $AB \in M_n(\mathbb{R})$. Also, for $A, B, C \in M_n(\mathbb{R})$ we have

$$A(BC) = (AB)C$$

Define $I \in M_n(\mathbb{R})$ by

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Then we have

$$AI = A = IA$$

However, for $A \in M_n(\mathbb{R})$, it is not always ture that there exists some $A^{-1} \in M_n(\mathbb{R})$ such that

$$AA^{-1} = I = A^{-1}A$$

Also, we can find $A, B \in M_n(\mathbb{R})$ such that

$$AB \neq BA$$

1.3 Permutations

Definition 1.3.1. Let $f: X \to Y$ be a function, we say f is $\underline{1-1}$ if

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

We say f is onto if for all $y \in Y$, there exists $x \in X$ such that

$$f(x) = y$$

If f is 1-1 and onto, then we say f is a bijection.

Definition 1.3.2. Given a non-empty set L, a <u>permutation</u> of L is a bijection from L to L. The set of permutations of L is denoted by S_L

Index

 $M_n(\mathbb{R}), 2$ identity, 2 $n \times n$ matrix over $\mathbb{R}, 2$ inverse, 2 1-1, 4 associativity, 1 multiplicative inverse, 2 bijection, 4 onto, 4 closure, 1 commutativity, 3 permutation, 4