7-1高数基础真题测试~

高数正式笔记

2. (98-1;2) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + a$, 且当 $\Delta x \to 0$ 时, a

是 Δx 的高阶无穷小, $y(0) = \pi$, 则 y(1) 等于

(A)
$$2\pi$$
. (B) π . (C) $e^{\frac{\pi}{4}}$. (D) $\pi e^{\frac{\pi}{4}}$.

$$dy = \frac{y \, dx}{1 + x^2}$$

$$|ny| = \arctan x + C \Rightarrow y = Ce$$

$$y(0) = \lambda \Rightarrow C = \lambda$$

$$y(0) = xe^{\frac{2}{3}}$$

3. (97-2) 求微分方程

$$(3x^2 + 2xy - y^2)dx + (x^2 - 2xy)dy = 0$$

的通解.

4. (99-2) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0(x > 0) \\ y|_{x=1} = 0 \end{cases}$$

的解.

$$\frac{y}{x} + \sqrt{1 + \frac{1}{x}} \cdot ex - dy = 0$$

$$\frac{x}{x} + \sqrt{1 + \frac{1}{x}} \cdot ex - dy = 0$$

$$\Rightarrow cx^{2} = y + \sqrt{y^{2} + x^{2}}$$

$$y|_{x=1=0} \Rightarrow c = |$$

$$\Rightarrow y = \frac{1}{x}(x^{2} - 1)$$

器 Q 口 位

7-1高数基础真题测试~

2024高等数... ×

7-1高数础过关 × 7-1高数基... 🗀 × 7-3高数基础... ×

7-3高数基础..

5. (90-3) 求微分方程 $y' + y \cos x = (\ln x)e^{-\sin x}$ 的通解.

6. (91-2) 求微分方程 $xy' + y = xe^x$ 满足 y(1) = 1 的特解.

$$y'+ \pm y = e^{x}$$
. 用那个成分了
 $y = e^{-\int \pm dx} \left[\int e^{x} e^{\int x dx} dx + \zeta \right]$
 $= \pm \left[\sum x e^{x} - e^{x} + \zeta \right]$ 代入 $y(i) = 1 \Rightarrow \zeta = 1$

7. (95-2) 设 $y = e^x$ 是微分方程 xy' + p(x)y = x 的一个解,求此微分方程满足条件

$$y|_{x=\ln 2} = 0$$
 的特解. $y=e^{\times} H \Delta$
 $\times e^{\times} + P(X) e^{\times} = X \Rightarrow P(X) = \frac{X(1-e^{\times})}{e^{\times}}$
 $y=e^{-|e^{-\times}|} dx \in e^{|e^{\times}|} dx + CJ$
 $=e^{\times} + Ce^{\times} + e^{-\times}$
 $=e^{\times} + Ce^{\times} + e^{-\times}$
 $=e^{\times} + Ce^{\times} + e^{-\times}$
 $=e^{\times} + Ce^{\times} + e^{-\times}$

8. (04-2) 微分方程 $(y+x^3)dx-2xdy=0$ 满足 $y|_{x=1}=\frac{6}{5}$ 的特解为_ TX A - A = X > 4= e 1 x dx [[x e] x dx + c] = [x lx x + c] 代入りにリーキラリーをナラスラ

9. (05-1;2) 微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{2}$ 的解为

10. (92-2) 求微分方程 y"-3y'+2y-xe*的通解

$$r^{2}-3r+2=0 \Rightarrow r_{1}=1, r_{2}=2 \Rightarrow y'=c_{1}e^{x}+c_{2}e^{2x}$$

$$iky^{*}=x(ax+b)e^{x} \cdot ikx \Rightarrow a=-\sum_{1}b=-1$$

$$y=c_{1}e^{x}+c_{2}e^{2x}-1 \Rightarrow x^{2}+x)e^{x}$$

 \Leftrightarrow \Rightarrow \Rightarrow

7-1高数基础真题测试

高数正式笔记

11. (94-2) 求微分方程 $v'' + a^2 v = \sin x$ 的通解, 其中常数 a > 0.

y= c1005 ax + C25 inax. Oa+1 of. y = Acosx + Bsinx = 5 1x y= ciaosax+cxsinax+ sinx Da=1. iby = x (Ausx+Bsinx) => y= ciaosax+sinx - xxaosx

12. (96-1) 微分方程 $y'' - 2y' + 2y = e^x$ 的通解为

1-1-1 = 0 => n = 1+1, D=1-1 yi ciexosx+czexsinx · 为y*=Aex >A=1 4= CIEXCOSX+ CZESINX+EX

13. (96-2) 求微分方程 $y'' + y' = x^2$ 的通解.