CS-GY 9223 D: Lecture 3 Supplemental The Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco

SKETCHING ALGORITHMS

Abstract architecture of a sketching algorithm:

- Given a dataset $D = d_1, \dots, d_n$ with n pieces of data, we want to output f(D) for some function f.
- Sketch phase: For each $i \in 1, ..., n$, compute $s_i = C(d_i)$, where C is some compression function and $|s_i| \ll d_i$.
- Process phase: Using (lower dimensional) dataset s_1, \ldots, s_n , compute an approximation to f(D).

Better space complexity, communication complexity, runtime, all at once.

BINARY VECTOR COMPRESSION

We already saw a powerful application of sketching (the MinHash algorithm) to compressing binary vectors.

Let us estimate the Jaccard similarity between any two binary vectors \mathbf{q} and \mathbf{y} using the information in $C(\mathbf{q})$ and $C(\mathbf{y})$ alone.

Euclidean norm / distance:

- Given $\mathbf{q} \in \mathbb{R}^d$, $\|\mathbf{q}\|_2 = \sqrt{\sum_{i=1}^d q(i)^2}$.
- Given $\mathbf{q}, \mathbf{y} \in \mathbb{R}^d$, distance defined as $\|\mathbf{q} \mathbf{y}\|_2$.

Can we find compact sketches that preserve Euclidean distance, just as we did for Jaccard similarity?

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a $\underline{\text{linear map}} \; \Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{\epsilon^2}\right)$ such that $\underline{\text{for all}}$ $\underline{i,j}$,

$$(1 - \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2 \le \|\mathbf{\Pi}\mathbf{q}_i - \mathbf{\Pi}\mathbf{q}_j\|_2 \le (1 + \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2.$$

5

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a <u>linear map</u> $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{\epsilon^2}\right)$ such that <u>for all i, j,</u>

$$(1 - \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2^2 \le \|\mathbf{\Pi}\mathbf{q}_i - \mathbf{\Pi}\mathbf{q}_j\|_2^2 \le (1 + \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2^2.$$

because for small ϵ , $(1 + \epsilon)^2 = 1 + O(\epsilon)$ and $(1 - \epsilon)^2 = 1 - O(\epsilon)$.

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a <u>linear map</u> $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{\epsilon^2}\right)$ such that <u>for all</u> $\underline{i,j}$,

$$(1-\epsilon)\|\Pi q_i - \Pi q_j\|_2^2 \le \|q_i - q_j\|_2^2 \le (1+\epsilon)\|\Pi q_i - \Pi q_j\|_2^2.$$

because for small ϵ , $\frac{1}{1+\epsilon} = 1 - O(\epsilon)$ and $\frac{1}{1-\epsilon} = 1 + O(\epsilon)$.

Remarkably, Π can be chosen <u>completely at random!</u>

One possible construction: Random Gaussian.

$$\mathbf{\Pi}_{i,j} = \frac{1}{\sqrt{k}} \mathcal{N}(0,1)$$

The map Π is oblivious to the data set. This stands in contrast to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001] [Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random $\{+1,-1\}$ variables, sparse random matrices, pseudorandom Π . Each with different advantages.

RANDOMIZED JL CONSTRUCTIONS

Let $\Pi \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$ or each entry equals $\frac{1}{\sqrt{k}} \pm 1$ with equal probability.

>> Pi = randn(m,d); >> s = (1/sqrt(m))*Pi*q:

>> Pi = 2*randi(2,m,d)-3; >> s = (1/sqrt(m))*Pi*q;

A random orthogonal matrix also works. I.e. with $\Pi\Pi^T = \mathbf{I}_{k \times k}$. For this reason, the JL operation is often called a "random projection", even though it technically isn't a projection when entries are i.i.d.

RANDOM PROJECTION

Intuitively, close points will remain close after projection, and far points will remain far.

Intermediate result:

Lemma (Distributional JL Lemma)

Let $\Pi \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$, where $\mathcal{N}(0,1)$ denotes a standard Gaussian random variable.

If we choose $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any vector **x**, with probability $(1 - \delta)$:

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

JL FROM DISTRIBUTIONAL JL

We have a set of vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$. Fix $i, j \in 1, \dots, n$.

Let
$$\mathbf{x} = \mathbf{q}_i - \mathbf{q}_j$$
. By linearity, $\mathbf{\Pi} \mathbf{x} = \mathbf{\Pi} (\mathbf{q}_i - \mathbf{q}_j) = \mathbf{\Pi} \mathbf{q}_i - \mathbf{\Pi} \mathbf{q}_j$.

By the Distributional JL Lemma, with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2 \le \|\mathbf{\Pi}\mathbf{q}_i - \mathbf{\Pi}\mathbf{q}_j\|_2 \le (1 + \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2.$$

Finally, set $\delta = \frac{1}{n^2}$. Since there are $< n^2$ total i, j pairs, by a union bound we have that with probability 9/10, the above will hold <u>for all</u> i, j, as long as we compress to:

$$k = O\left(\frac{\log(1/(1/n^2))}{\epsilon^2}\right) = O\left(\frac{\log n}{\epsilon^2}\right)$$
 dimensions. \square

Want to argue that, with probability $(1 - \delta)$,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le |\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

Claim: $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$.

Some notation:

$$S = \frac{\frac{(1/\sqrt{k}) \pi_1}{(1/\sqrt{k}) \pi_2}}{\frac{\vdots}{(1/\sqrt{k}) \pi_k}}$$

So each π_i contains $\mathcal{N}(0,1)$ entries.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \sum_{i}^{k} \mathbf{s}(i)^{2} = \sum_{i}^{k} \left(\frac{1}{\sqrt{k}} \langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2} = \frac{1}{k} \sum_{i}^{k} \left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}$$
$$\mathbb{E}\left[\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2}\right] = \frac{1}{k} \sum_{i}^{k} \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}\right]$$
$$= \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}\right]$$

$$\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle = Z_1 \cdot \mathbf{x}(1) + Z_2 \cdot \mathbf{x}(2) + \ldots + Z_d \cdot \mathbf{x}(d)$$

where each Z_1, \ldots, Z_d is a standard normal $\mathcal{N}(0,1)$ random variable.

This implies that $Z_i \cdot \mathbf{x}(i)$ is a normal $\mathcal{N}(0, \mathbf{x}(i)^2)$ random variable.

Goal: Prove $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$. Established: $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle\right)^2\right]$

STABLE RANDOM VARIABLES

What type of random variable is $\langle \pi_i, \mathbf{x} \rangle$?

Fact (Stability of Gaussian random variables)

$$\mathcal{N}(\mu_1, \sigma_1^2) + \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$$\begin{split} \langle \boldsymbol{\pi}_i, \mathbf{x} \rangle &= \mathcal{N}(0, \mathbf{x}(1)^2) + \mathcal{N}(0, \mathbf{x}(2)^2) + \ldots + \mathcal{N}(0, \mathbf{x}(d)^2) \\ &= \mathcal{N}(0, \|\mathbf{x}\|_2^2). \end{split}$$

So
$$\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle\right)^2\right] = \|\mathbf{x}\|_2^2$$
, as desired.

Want to argue that, with probability $(1 - \delta)$,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

- 1. $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$.
- 2. Need to use a concentration bound.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \frac{1}{k} \sum_{i=1}^{k} (\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle)^{2} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{N}(0, \|\mathbf{x}\|_{2}^{2})$$

"Chi-squared random variable with k degrees of freedom."

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma

Let Z be a Chi-squared random variable with k degrees of freedom.

$$\Pr[|\mathbb{E}Z - Z| \ge \epsilon \mathbb{E}Z] \le 2e^{-k\epsilon^2/8}$$

Goal: Prove $\|\mathbf{\Pi}\mathbf{x}\|_2^2$ concentrates within $1 \pm \epsilon$ of its expectation, which equals $\|\mathbf{x}\|_2^2$.

SAMPLE APPLICATION

k-means clustering: Give data points $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^d$, find centers $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^d$ to minimize:

$$Cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_{j=1,...,k} \|\mu_j - X_i\|_2^2$$

SAMPLE APPLICATION

k-means clustering: Give data points $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^d$, find centers $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^d$ to minimize:

$$Cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_{j=1,...,k} \|\mu_j - X_i\|_2^2$$

SAMPLE APPLICATION

k-means clustering: Give data points $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^d$, find centers $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^d$ to minimize:

$$Cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_{j=1,...,k} \|\mu_j - \mathbf{a}_i\|_2^2$$

NP hard to solve exactly, but there are many good approximation algorithms. All depend at least linearly on the dimension *d*.

Approximation scheme: Find clusters $\tilde{C}_1, \dots, \tilde{C}_k$ for the $k = O\left(\frac{\log n}{\epsilon^2}\right)$ dimension data set $\Pi \mathbf{a}_1, \dots, \Pi \mathbf{a}_n$.

Argue these clusters are near optimal for $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Equivalent formulation: Find clusters $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$ to minimize:

Cost(
$$C_1, ..., C_k$$
) = $\sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2$.

Equivalent formulation: Find clusters $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$ to minimize:

Cost(
$$C_1, ..., C_k$$
) = $\sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2$.

$$Cost(C_1, ..., C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u, v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2$$

$$\widetilde{Cost}(C_1, ..., C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u, v \in C_j} \|\mathbf{n}a_u - \mathbf{n}a_v\|_2^2$$

Let
$$Cost^* = min Cost(C_1, ..., C_k)$$
 and $\widetilde{Cost}^* = min \widetilde{Cost}(C_1, ..., C_k)$.

Claim: $(1 - \epsilon)Cost^* \le \widetilde{Cost}^* \le (1 + \epsilon)Cost^*$.

Suppose we use an approximation algorithm to find clusters B_1, \ldots, B_k such that:

$$\widetilde{Cost}(B_1,\ldots,B_k) \leq (1+\alpha)\widetilde{Cost}^*$$

Then:

$$Cost(B_1, ..., B_k) \le \frac{1}{1 - \epsilon} \widetilde{Cost}(B_1, ..., B_k)$$

$$\le (1 + \alpha)(1 + O(\epsilon))\widetilde{Cost}^*$$

$$\le (1 + \alpha)(1 + O(\epsilon))(1 + \epsilon)Cost^*$$

$$= 1 + O(\alpha + \epsilon)Cost^*$$

CONNECTION TO LAST LECTURE

If high dimensional geometry is so different from low-dimensional geometry, why is <u>dimensionality reduction</u> <u>possible?</u> Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions?

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ are all mutually orthogonal unit vectors:

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} = 2$$
 for all i, j .

From our result earlier, in $O(\log n/\epsilon^2)$ dimensions, there exists $2^{O(\epsilon^2 \cdot \log n/\epsilon^2)} \ge n$ unit vectors that are close to mutually orthogonal.

 $O(\log n/\epsilon^2)$ = just enough dimensions.