Rechnernetze - Computer Networks

Problem Set 8: Internetworking & Routing

Markus Fidler, Mark Akselrod, Lukas Prause

Institute of Communications Technology Leibniz Universität Hannover

June 10, 2024

- ► **Forwarding:** router-local action of transferring a packet from an input link interface to the appropriate output link interface.
- Switching: moving packets between devices on the same network.
- ► **Routing:** a network-wide process that determine the end-to-end paths that packets take from source to destination.

1.2 Link-state vs. distance-vector routing

Link-state routing

- Nodes intercommunicate with all other nodes via broadcast ...
- and provide the costs of the directly connected links
- Requires knowledge of the entire network topology

Distance-vector routing

- Only neighbouring nodes exchange information ...
- they provide each least-cost estimates from itself to all other (known) nodes
- Requires only connections to the neighbours and no topology information

1.3 Link cost selection

- ► Can be chosen arbitrarily
- ▶ Often associated with a network metric, e.g., bandwidth, delay
- Can force traffic to flow along a certain path
- 1.4 Drawbacks of dynamic link weights
 - More responsive to network changes
 - Can cause routing instabilities such as routing loops and oscillations
- 1.5 Internet routing
 - Interconnected autonomous systems (ASes)
 - Intra-domain (local) routing within each AS
 - Inter-domain routing: edge routers forward packets to neighbouring ASes

2.1 Plot the topology:

$$E = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 4 & 0 & 5 \\ 0 & 0 & 3 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{pmatrix}$$

2.2 Network Graph, Reachability

$$E = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

- ightharpoonup E denotes the nodes that are reachable in one step
- $ightharpoonup E^2$ denotes the number of two step paths
- $ightharpoonup E^3$ denotes the number of three step paths . . .

$$E^{2} = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \quad E^{3} = \begin{pmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}, \quad E^{4} = \begin{pmatrix} 2 & 3 & 2 & 3 \\ 1 & 3 & 3 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 3 & 3 \end{pmatrix}$$

$$E + E^2 + E^3 + E^4 = \begin{pmatrix} 4 & 6 & 6 & 6 \\ 3 & 5 & 6 & 5 \\ 3 & 3 & 4 & 3 \\ 3 & 5 & 6 & 5 \end{pmatrix}$$

Since all matrix elements are non-zero, all nodes are reachable.

Least-cost path SRC \rightarrow DST ?

Denote

- ightharpoonup c(i,j) the cost of link $e_{i,j}$ from node i to node j
 - $ightharpoonup c(i,j) = \infty$ if link $e_{i,j}$ does not exist
- ightharpoonup d(i) cost (distance) from the source to node i
- \blacktriangleright p(i) predecessor of node i on the least-cost path from the source to node i
- ▶ M set of nodes for which least-cost paths are uniquely determined

```
1: M = \{a\}
 2: for all nodes i do
 3:
       if link e_{a,i} exists then
 4:
         d(i) = c(a, i)
 5:
     else
 6:
         d(i) = \infty
      end if
 8: end for
 9: repeat
10:
       find a node j not in M such that d(j) is minimal
11:
       add i to M
12:
       for all nodes k not in M do
13:
          if d(k) > d(j) + c(j,k) then
            d(k) = d(j) + c(j, k)
14:
15:
            p(k) = i
16:
          end if
17:
       end for
18: until all nodes in M
```

step	M	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞

step	M	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4 _A	4_{SRC}	9_A	∞	14_A	∞

step	M	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4_{A}	4_{SRC}	9_A	∞	14_A	∞
2.1	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞

step	M	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4 _A	4_{SRC}	9_A	∞	14_A	∞
2.1	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞
2.2	SRC,A,C		4_{A}		9_A	8_C	14_A	∞

step	M	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4 _A	4_{SRC}	9_A	∞	14_A	∞
2	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞
3	SRC,A,B,C				8_B	7_B	14_A	∞

step	M	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4_{A}	4_{SRC}	9_A	∞	14_A	∞
2	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞
3	SRC,A,B,C				8_B	7_B	14_A	∞
4	SRC,A,B,C,E				8_{B}		14_A	14_E

step	М	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4 _A	4_{SRC}	9_A	∞	14_A	∞
2	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞
3	SRC,A,B,C				8_B	7_{B}	14_A	∞
4	SRC,A,B,C,E				8_{B}		14_A	14_E
5	SRC,A,B,C,E,D						14_A	13 _D

step	М	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4 _A	4_{SRC}	9_A	∞	14_A	∞
2	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞
3	SRC,A,B,C				8_B	7_{B}	14_A	∞
4	SRC,A,B,C,E				8_{B}		14_A	14_E
5	SRC,A,B,C,E,D						14_A	13_D
6	SRC,A,B,C,E,D,DST						14_A	

step	М	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4_{A}	4_{SRC}	9_A	∞	14_A	∞
2	SRC,A,B			4_{SRC}	8_B	7_B	14_A	∞
3	SRC,A,B,C				8_B	7_B	14_A	∞
4	SRC,A,B,C,E				8_{B}		14_A	14_E
5	SRC,A,B,C,E,D						14_A	13_D
6	SRC,A,B,C,E,D,DST						14_A	
7	SRC,A,B,C,E,D,DST,F							

The least-cost path from SRC to DST has a cost of ${\bf 13}$ over the path ${\bf SRC\text{-}A\text{-}B\text{-}D\text{-}DST}$.

3.2 Link Cost Change

Link A-F Cost: $12 \rightarrow 7$

step	М	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	d(DST)
эсер	101	u(A)	u(D)	u(C)	u(D)	u(L)	u(1)	u(D31)
init	SRC	2_{SRC}	5_{SRC}	4_{SRC}	∞	∞	∞	∞
1	SRC,A		4_{A}	4_{SRC}	9_A	∞	$14_{A} \frac{14_{A}}{9_{A}}$	∞
2	SRC,A,B			4_{SRC}	8_B	7_B	$14_{A}\frac{14_{A}}{9_{A}}$	∞
3	SRC,A,B,C				8_B	7 _B	$14_{A} \frac{14_{A}}{9_{A}}$	∞
4	SRC,A,B,C,E				8_{B}		$14_{A} \frac{14_{A}}{9_{A}}$	14_E
5	SRC,A,B,C,E,D						$14_{A} 14_{A} 9_{A}$	13_D
								13_D
6	SRC,A,B,C,E,D,DST SRC,A,B,C,E,D,DST SRC,A,B,C,E,D,F						14 _A 14_A	12_F
7	SRC,A,B,C,E,D,DST,F SRC,A,B,C,E,D,DST,F SRC,A,B,C,E,D,F,DST							

The least-cost path from SRC to DST has then a cost of $\bf 12$ over the path $\bf SRC$ - $\bf A$ - $\bf SRC$ - $\bf A$ - $\bf SRC$ -

Denote

- $ightharpoonup D^x$ distance table of node x
 - ightharpoonup example: $D^x(y,z)=4$ route to destination y has cost 4 via next hop z
- $ightharpoonup F^x$ forwarding table of node x
 - example: $F^x(y) = (4, z)$ shortest path to destination y via next hop z has cost 4

Mode of operation

- ▶ node z computes the shortest path to destination y as $c(z,y) = \min_w \{D^z(y,w)\}$
- Node z stores the next hop w that achieves the minimum in its forwarding table $F^z(y) = (c(z,y),w)$
- node z sends its forwarding table to it's neighboring node x
- node x computes $D^x(y,z) = c(x,z) + c(z,y)$

```
1: for all neighbors y do
2: D^{x}(y,y) = c(x,y)
3: end for
4: for all destinations z do
      send \min_{w} \{D^{x}(z, w)\} to all neighbors y
6: end for
7: loop
      if c(x,y) for neighbor y changes by d then
8:
         update D^x(z,y) = D^x(z,y) + d for all destinations z
9:
     else if updated c(y, z) received from neighbor y then
10:
         recompute D^x(z,y) = c(x,y) + c(y,z)
11:
12:
      end if
      if a new \min_{w} \{D^{x}(z, w)\} exists for any destination z then
13:
         send new \min_{w} \{D^{x}(z, w)\}\ to all neighbors y
14:
      end if
15:
16: end loop
```


Least-cost path SRC \rightarrow DST ?

initialization: the distance vector of each host x is initialized with the link cost c(x,y) to the direct node neighbors y:

$$D^x(y,y) = c(x,y)$$

D^S	Α	В	D^A	S	В	F	D^B	S	Α	D
Α	2		S	2			S	5		
В		5	В		2		Α		2	
F			F			12	F			
D			D				D			9

Each node sends an update to all of its neighbors.

T=1

						F					
Α	2	7	 S	2	7		_	S	5	4	
В	<u>4</u>	5	В	7	2			Α	7	2	
F	<u>14</u>		F			12		F		14	<u>12</u>
D		<u>14</u>	D		<u>11</u>	15		D			9

D^F	A	D	D^D	В	F	SRC 2	F
S	<u>14</u>		S	<u>14</u>		5 2 B	9
Α	12		Α	<u>11</u>	15		DST
В	14	<u>12</u>	В	9			
D		3	F		3		

Each node sends an update to all of its neighbors when a cheaper path is discovered

T=2

								D^B			
A		2	7	S	2	6	26	S	5	4	23
В		4	5	В	6	2	24	Α	7	2	20
F		14	16	F	16	14	12	S A F	19	14	12
D)	<u>13</u>	14	D	16	11	15	D	19	13	9

			D^D	В	F	SRC 2	F
	14			<u>13</u>	17	5 2 B	9
Α	12	14	Α	11	15		DST
В	14	12	В	9	15		
D	23	3	F	21	3		

$$T=3$$

	D^S	Α	В					D^B			
_	Α	2	7	S	2	6	26	S	5	4	22
	В	4	5	В	6	2	24	Α	7	2	20
	F	14	16	F	16	14	12	F	19	14	12
	D	13	14	D	15	11	15	A F D	17	13	9

D^F		D		_	
S	14	16	S	13	17
Α	12	14	Α	11	15
В	14	12	В	9	15
D	14 12 14 23	3	F	13 11 9 21	3

Distance vectors reached stable-state, no more updates sent

Example, Forwarding table for A after step 3:

D^A	S	В	F
S	2	6	26
В	6	2	24
F	16	14	12
D	15	11	15

$$\begin{array}{c|cccc} F^A & & \\ \hline S & 2,S \\ B & 2,B \\ F & 12,F \\ D & 11,B \\ \end{array}$$

Path SRC \rightarrow DST ?

After t=1: SRC \rightarrow B \rightarrow DST

After t=2: SRC \rightarrow A \rightarrow B \rightarrow DST

► Intra-AS Routing Protocols

- Only used within an AS
- Contain only the information necessary to route packets within the network
- Protocols: RIP, EIGRP (Distance Vector), OSPF, IS-IS (Link-State)

► Inter-AS Routing Protocols

- ► Route packets between different ASes
- Contain routes necessary to reach every other AS on the Internet
- ► Prevalent protocol: Border Gateway Protocol (BGP)

5.2 Intra-AS and Inter-AS Routing in the Internet Communications-

Different requirements on the routing procols depending on whether they are used inside (*intra*) or between (*inter*) ASes:

- The ability to specify routing policies for ISPs (inter-AS routing)
- Scalability more important than pure routing speed
- Intra-AS protocols typically optimized for fast routing

Routing Table of router D:

Destination Subnet	Next Router	Hops to Destination
u	A	2
w	A	2
y	В	2
z	B A	7 1+4=5 5
X	_	1
V	-	1

RIP advertisement from router A:

THE BUYCE DISCHICITE HORIE FOR THE									
Destination Subnet	Next Router	Hops to Destination							
Z	С	4							
u	-	1							
W	-	1							
×	_	1							

5.4 Areas and Routers in OSPF

OSPF areas:

local area subset of the AS backbone area connects multiple local areas and AS with other ASes

Router types:

internal router within a local area area border router between backbone and local area backbone router within backbone area boundary router between backbone area and other ASes

