یک کامپیوتر دو آدرسه دارای حافظهای به گنجایش ۲۱۴ واحد آدرس پذیر ۶ بیتی، طول کلمه ۱۸ بیتی و ۳۲ ثبات همهمنظوره R0 تا R31 میباشد. شیوههای نشانیدهی ماشین شامل ثباتی (مستقیم و غیرمستقیم)، بلافاصله و مستقیم حافظهای، و شیوه نمایش اعداد مکمل۲ است. دستورات در سه قالب (طبق جداول زیر) کد میشوند.

Format I			11 opcode	i1:r1	i2:r2/Qdata
If i1 then $opr1 = M_{(r1)}$ else $opr1 = r1$; If i2 then $opr2 = M_{(r1)}$ else $opr2 = r2$;			6 bits	6 bits	6 bits
Instruc	tion	Opcode	Operation		
mov	opr1,opr2	0000	<i>opr</i> 1 ← ((opr2);	 ,
add	opr1,opr2	0001	$opr1 \leftarrow 0$	(opr1) -	+ (<i>opr</i> 2);
sub	opr1,opr2	0010	$opr1 \leftarrow 0$	(opr1) -	-(opr2);
and	opr1,opr2	0011	$opr1 \leftarrow 0$	(opr1) .	∧(<i>opr</i> 2);
or	opr1,opr2	0100	$opr1 \leftarrow 0$	(opr1)	√ (opr2);
xor	opr1,opr2	0101	$opr1 \leftarrow 0$	(opr1)	⊕ (<i>opr</i> 2);
swap	opr1,opr2	0110	(<i>opr</i> 1) <i>⇐</i>	>(opr2	2);
addq	opr1,Qdata	0111	opr1 ← ((opr1) -	+ Qdata;
subq	opr1,Qdata	1000	opr1 ← ((opr1)	– Qdata;
movq	opr1,Qdata	1001	opr1 ←	Qdata,	

Format II			10 opcode r address 5 bits 5 bits 14 bits
Instruc	Instruction		Operation
mov	r, address	000	$r \leftarrow (M_{address});$
mov	address,r	001	$M_{oddress} \leftarrow (r);$
jnz	r, address	010	if $(r) \neq 0$ then $PC \leftarrow address$;
jz	r, address	011	if $(r) = 0$ then $PC \leftarrow address$;
jneg	r, address	100	if $(r) < 0$ then $PC \leftarrow address$;
jpos	r, address	101	if $(r) \ge 0$ then $PC \leftarrow address$;
loop	r, address	110	$r \leftarrow (r) - 1$; if $(r) \neq 0$ then $PC \leftarrow address$;
jmp	r, address	111	$r \leftarrow (r) + 1; PC \leftarrow address;$

Format III			0 r data		
			5 bits	18 bits	
Instruct	Instruction		Operation		
mov	r,#data	0	$r \leftarrow data;$		

```
۱- طول تمامی ثباتهای ماشین را تعیین کنید. (۱ نمره)
۲- برنامهای به زبان اسمبلی بنویسید که آرایه بیست کلمهای A را به صورت
                                   زیر پر کند. (۴ نمره)
          A[i] = \max(F_{i+1}, A[i]), \text{ for } i = 0, 1, ..., 19
                   توجه: F_{i+1} جمله iام سرى فيبوناچى است. يعنى:
           F_1 = 0, F_2 = 1, F_3 = 1, F_4 = 2, F_5 = 3, F_6 = 5,...
         ٣- برنامه زير چه مي كند؟ مقادير اوليه ثباتها مثبت است. (٣ نمره)
           org
            movq R1,0
                    R1,R2
            add
                    370FFh
            dw
   aaa:
                    R3,3
           jnz
           dw
                    32105h
   sum:
            addq
                    R3,1
            mov
                    R6,R4
            sub
                    R6,R5
   array: dw
                    2A600h,0DB80h,740h
                    R7,(R0)
            mov
            addq
                    (R7),-3
                    R5,#-2
            mov
            end
```

۴- برنامه سوال ۳ را به کد ماشین ترجمه کنید. (۲ نمره)