

MICROCOPY RESOLUTION TEST CHART NATIONAL BURGALL OF STANDARDS, 1963 A

LEVEL

Estimation of Wave Transmission Coefficients for Overtopping of Impermeable Breakwaters,

AD A 098388

COASTAL ENGINEERING TECHNICAL AID NO. 80-7

Approved for public release;
distribution unlimited.

THE FILE COPY

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING
RESEARCH CENTER

Kingman Building Fort Belvoir, Va. 22060

81 5

03/03/

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22161

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

نت CERC

ì	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
-1	- CETA 80-7 AD-A098 388	3. RECIPIENT'S CATALOG NUMBER	
	ESTIMATION OF WAVE TRANSMISSION COEFFICIENTS FOR OVERTOPPING OF IMPERMEABLE BREAKWATERS	5. TYPE OF REPORT & PERIOD COVERED Coastal Engineering Technical Aid 6. PERFORMING ORG. REPORT NUMBER	
	7. AUTHOR(*) William N. Seelig	6. CONTRACT OR GRANT NUMBER(*)	
	PERFORMING ORGANIZATION NAME AND ADDRESS Department of the Army Coastal Engineering Research Center (CERRE-CS) Kingman Building, Fort Belvoir, Virginia 22060	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS F31538	
	Ontrolling office NAME AND ADDRESS Department of the Army Coastal Engineering Research Center Kingman Building, Fort Belvoir, Virginia 22060	12. REPORT DATE December 1980 13. NUMBER OF PAGES 12	
	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	18. SECURITY CLASS. (of this report) UNCLASSIFIED	
	16. DISTRIBUTION STATEMENT (of this Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

Breakwaters Impermeable breakwaters Waves Wave runup

Wave transmission coefficients

20. ABSTRACT (Continue on reverse ofth H necessary and identify by block number)

Methods are presented for estimating coefficients of wave transmission by overtopping for smooth and rough impermeable breakwaters. These techniques can be used for monochromatic or irregular wave conditions and for submerged breakwaters. Example problems are worked to illustrate calculations.

DO 1 JAN 73 1473 EDITION OF T NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

This report describes methods for estimating wave transmission coefficients for overtopping of impermeable breakwaters. It supplements Section 7.23 of the Shore Protection Manual (SPM) and replaces the Coastal Design Memorandum No. 76-1 (Seelig, 1976). The methods presented can be used with smooth or rough impermeable breakwaters and for irregular as well as monochromatic incident waves. Laboratory tests show that the prediction methods give useful estimates of transmission coefficients for submerged breakwaters. The work was carried out under the offshore breakwaters for shore stabilization program of the U.S. Army Coastal Engineering Research Center (CERC).

The report was prepared by William N. Seelig, Hydraulic Engineer, under the general supervision of Dr. R.M. Sorensen, Chief, Coastal Processes and Structures Branch.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as suppl mented by Public Law 172, 88th Congress, approved 7 November 1963.

TED E. BYSHOP
Colonel, Corps of Engine

Colonel, Corps of Engineers Commander and Director

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes

Availability Codes

Avail and/or
Dist Special

CONTENTS

		Page
	CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	5
	SYMBOLS AND DEFINITIONS	6
1	I INTRODUCTION	7
11	ESTIMATION OF TRANSMISSION COEFFICIENTS	7
III	ESTIMATION OF WAVE RUNUP	8
IV	V EXAMPLE PROBLEMS	9
V	V SUMMARY	10
	LITERATURE CITED	12
	TABLES	
1	Empirical wave runup prediction coefficients for smooth impermeable slopes	8
2	Rough slope empirical runup coefficients for breakwaters with 1.25 \leq cot θ 5.0	9
	FIGURES	
1	Wave transmission by overtopping of an impermeable breakwater	7
2	Predicted transmitted wave heights for Example 2	11

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

 $\ensuremath{\text{U.S.}}$ customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.

SYMBOLS AND DEFINITIONS

a,b	empirical coefficients of runup on rough breakwaters
В	crest width of a breakwater
С	an empirical wave transmission by overtopping coefficient
c_1, c_2, c_3	empirical smooth slope runup coefficients
d or d _s	water depth at the toe of the structure
F	breakwater freeboard = h - dg
g	acceleration due to gravity
H or H ₁	incident wave height; use the mean wave height for irregular waves
н _t	transmitted wave height
ħ	structure height
K _{To}	wave transmission by overtopping coefficient
L	wavelength
Lo	deepwater wavelength
R	wave runup
T	wave period; use the period of peak energy density for irregular waves
θ	breakwater seaward face front slope angle
ξ	the surf similarity parameter = tan $\theta/\sqrt{H/L_0}$

ESTIMATION OF WAVE TRANSMISSION COEFFICIENTS FOR OVERTOPPING OF IMPERMEABLE BREAKWATERS

by William N. Seelig

I. INTRODUCTION

When a wave strikes an impermeable breakwater, some of the water may overtop the breakwater and produce regenerated waves. Section 7.233 of the Shore Protection Manual (SPM) (U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977) and Seelig (1976) give a method for estimating transmission by overtopping coefficients for smooth, vertical-faced breakwaters overtopped by monochromatic waves. Wave period effects are not considered. This report presents a more general method of predicting transmission by overtopping coefficients that includes the influence of structure slope (nonvertical as well as vertical), crest width, roughness, wave period, and wave type (irregular and monochromatic waves). The method is based on laboratory tests for $d/gT^2 \le 0.03$, where d is the water depth, g is the acceleration due to gravity, and T is the wave period. Figure 1 shows the case of transmission for an impermeable breakwater and illustrates some of the terms used. Methods described in this report apply to breakwaters with an impermeable surface, an impermeable core, or an impermeable diaphragm to prevent wave transmission through the structure.

Figure 1. Wave transmission by overtopping of an impermeable breakwater.

II. ESTIMATION OF TRANSMISSION COEFFICIENTS

Laboratory data show that the coefficient of wave transmission by overtopping for an impermeable breakwater, K_{To}, can be predicted using (Seelig, 1980).

$$K_{To} = \frac{H_t}{H_1} = C\left(1 - \frac{F}{R}\right) \tag{1}$$

where F/R is the ratio of the breakwater freeboard to wave runup suggested by Cross and Sollitt (1971), and C is the empirical given by

$$C = 0.51 - 0.11 \frac{B}{h}$$
 (2)

where B is the structure crest width and h the structure height. Equation (2) is valid for the range $0 \le B/h \le 3.2$. Equation (1) slightly underpredicts the transmission coefficient for submerged breakwaters with a 1 on 15 bottom slope in front of the breakwater; a revised formula is suggested for those cases:

$$K_{To} = C\left(1 - \frac{F}{R}\right) - \left(1 - 2C\right)\frac{F}{R}$$
(3)

III. ESTIMATION OF WAVE RUNUP

Values of wave runup on the structure are necessary to use equation (1). If the runup exceeds the breakwater freeboard, transmission by overtopping will occur. The recommended runup equation for smooth slopes is given by Franzius (1965)

$$R = HC_1 \left(0.123 \frac{L}{H}\right) \left(C_2 \sqrt{H/d} + C_3\right)$$
 (4)

where

H or H; = incident wave height

L = wavelength

d = water depth

 C_1 , C_2 , and C_3 = empirical coefficients.

Values of the empirical coefficients are given in Table 1. A linear interpolation of these values is necessary to obtain coefficients for other slopes.

Table 1. Empirical wave runup prediction coefficients for smooth impermeable slopes.

Front-face slope c_1 C_3 of_breakwater Vertical 0.958 0.228 0.0578 1 on 0.5 1.280 0.390 -0.091 1 on 1.0 1.469 -0.105 0.346 1 on 1.5 1.991 0.498 -0.185 1 on 2.25 1.811 0.469 -0.0801 on 3.0 1.366 0.512 0.040

The recommended equation for estimating runup on rough slope impermeable breakwaters is given by Ahrens and McCartney (1975):

$$R = \left(\frac{a\xi}{1+b\xi}\right)H; \xi = \frac{\tan \theta}{\sqrt{H/L_0}}$$
 (5)

where ξ is the surf parameter, θ the angle of the seaward face of the breakwater, L_0 the deepwater wavelength given from linear theory as

$$L_{O} = \frac{g T^{2}}{2\pi}$$
 (6)

and a and b are empfrical coefficients. Suggested values of a and b are in Table 2.

Table 2. Rough slope empirical runup coefficients for breakwaters with 1.25 \leq cot $\theta \leq$ 5.0.

Armor type	a	Б	Comment
Two layers of rubble	0.692	0.504	Recommended
Two layers of rubble	0.956	0.398	To obtain an upper limit or conservative estimate of runup and K _{To}
Two layers of dolos	0.988	0.703	

For additional information on wave runup refer to Stoa (1978) and the SPM.

For irregular wave conditions use the mean wave height (approximately 0.63 times the significant wave height; Sec. 3.22 of the SPM) and the period of peak energy density in equations (4), (5), and (6) (Seelig, 1980).

IV. EXAMPLE PROBLEMS

* * * * * * * * * * * * * * * * EXAMPLE PROBLEM 1 * * * * * * * * * * * * * * * *

GIVEN: A rough impermeable breakwater covered with two layers of rubble on a 1 on 3 slope. The structure height is 18 feet (5.49 meters), crest width is 12 feet (3.66 meters), and water depth is 15 feet (4.57 meters).

FIND: The transmitted wave height produced by overtopping for an incident wave with a height of 9 feet (2.74 meters) and period of 11 seconds.

SOLUTION: From equation (5) the surf parameter is

$$\xi = \frac{\tan \theta}{\sqrt{H/L_0}} = \frac{0.333}{\sqrt{9/(5.12 \times 11^2)}} = 2.77$$

Using the recommended rubble runup coefficients of a = 0.692 and b = 0.504 (Table 2), the predicted runup is:

$$R = \left(\frac{0.692\xi}{1+0.504F}\right) H = \left(\frac{0.692 \times 2.77}{1+0.504 \times 2.77}\right) \times 9 = 7.2 \text{ feet (2.2 meters)}$$

The breakwater freeboard, F, is $h - d_s = 18 - 15 = 3.0$ feet (0.91 meter). From equation (2), C = 0.51 - 0.11 B/h = 0.51 - 0.11 (12/18) = 0.44 and from equat on (1), the transmission coefficient is:

$$K_{To} = C\left(1 - \frac{F}{R}\right) = 0.44\left(1 - \frac{3.0}{7.2}\right) = 0.257$$

The transmitted wave height is:

$$H_t = K_{To} H_i = 0.257$$
 (9) = 2.3 feet (0.71 meter)

GIVEN: A vertical, smooth-faced impermeable breakwater with a crest width of 12.0 feet (3.7 meters), a structure height of 16.0 feet (4.9 meters), and a water depth of 11.2 feet (3.4 meters) as shown in Figure 2(a).

FIND: Transmitted wave height for an incident monochromatic wave with a period of 12.0 seconds and height of 6.0 feet (1.8 meters).

SOLUTION: From equation (4) the runup is

R = 6 (0.958)
$$\left(0.123 \frac{224.1}{6}\right)^{(0.228 \sqrt{6/11.2} + 0.0578)}$$
 = 8.1 feet (2.5 meters)

From equation (2)

$$C = 0.51 - 0.11 \left(\frac{12.0}{16.0}\right) = 0.43$$

and the breakwater freeboard is

$$F = h - d_s = 16.0 - 11.2 = 4.8$$
 feet (1.5 meters)

From equation (1) the transmission by overtopping coefficient is

$$K_{TO} = C \left(1 - \frac{F}{R}\right) = 0.43 \left(1 - \frac{4.8}{8.1}\right) = 0.175$$

and the transmitted wave height is

$$H_t = K_{To} H = 0.175 \times 6.0 = 1.0 \text{ foot } (0.32 \text{ meter})$$

Figure 2(b) shows how the predicted transmitted wave height varies as a function of incident wave height and period for this example breakwater.

V. SUMMARY

Methods of predicting transmission coefficients of impermeable breakwaters show that the magnitude of the transmission coefficients is a function of the breakwater freeboard, incident wave height and period, water depth, and structure slope, crest width and roughness. Calculations may be performed manually or with the FORTRAN computer program OVER (Program No. 752XR1CYO) available from the CERC ADP Coordinator, U.S. Army Coastal Engineering Research Center, Fort Belvoir, Virginia 22060.

a. Profile view of conditions for Example 2.

b. Predicted transmitted wave heights.

Figure 2. Predicted transmitted wave heights for Example 2.

LITERATURE CITED

- AHRENS, J.P., and McCARTNEY, B.L., "Wave Period Effect on the Stability of Riprap," *Proceedings of Civil Engineering in the Oceans/III*, American Society of Civil Engineers, 1975, pp. 1019-1034 (also Reprint 76-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., NTIS A029 726).
- CROSS, R.H., and SOLLITT, C.K., "Wave Transmission by Overtopping," Technical Note No. 15, Massachusetts Institute of Technology, Ralph M. Parsons Laboratory, Cambridge, Mass., July 1971.
- FRANZIUS, L., "Wirkung und Wirtschaftlichkeit von Rauhdeckwerken im Hinblick auf den Wellenauflauf," Mitteilungen des Franzius-Instituts fur Grund- und Wasserbau der TH Hannover, Heft 25, 1965, pp. 149-268.
- SEELIG, W.N., "A Simplified Method for Determining Vertical Breakwater Crest Elevation Considering Wave Height Transmitted by Overtopping," CDM 76-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., May 1976.
- SEELIG, W.N., "Two Dimensional Tests of Wave Transmission and Reflection Characteristics of Laboratory Breakwaters," TR 80-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1980.
- STOA, P.N., "Reanalysis of Wave Runup on Structures and Beaches," TP 78-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1978.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, Shore Protection Manual, 3d ed., Vols. I, II, and III, Stock No. 008-022-00113-1, Government Printing Office, Washington, D.C., 1977, 1,262 pp.

Seelig, William N.

Estimation of wave transmission coefficients for overtopping of impermeable breakwaters / by William N. Seellg -- Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va.,: available from National Technical Information Service, 1980.

[12] p.: ill.: 27 cm. -- (Technical aid -- U.S. Coastal Engi-

impermeable breakwaters / by William N. Seelig -- Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va., : available from National Technical Information Service, 1980.
[12] p.: ill. : 27 cm. -- (Technical aid -- U.S. Coastal Engi-

Estimation of wave transmission coefficients for overtopping of

Seelig, William N.

breakwaters. These techniques can be used for monochromatic or irregular wave conditions with subaertal and submerged breakwaters. Example problems are worked to illustrate calculations.

1. Breakwaters. 2. Waves. 3. Wave runup. 4. Wave propagation.

1. Title. II. Series: U.S. Coastal Engineering Research Center.

fechnical aid no. 80-7.

627

no. 80-7

Includes bibliographical references.
Methods are presented for estimating coefficients of wave transmission by overtopping for smooth and rough impermeable breakwaters. These techniques can be used for monochromatic or

neering Research Center; no. 80-7)

neering Research Center; no. 80-7)

Includes bibliographical references. Methods are presented for estimating coefficients of wave transmission by overtopping for smooth and rough impermeable breakwaters. These techniques can be used for monochromatic or irregular wave conditions with subserial and submerged breakwaters. Example problems are worked to illustrate calculations.

1. Breakwaters.

2. Wave. runup.

4. Wave propagation.

1. Title.

11. Series: U.S. Coastal Engineering Research Center.

Fechnical aid no. 80-7.

no. 80-7

Estimation of wave transmission coefficients for overtopping of impermeable breakwaters / by William N. Seelig -- Fort Belvoir, Va.: U.S. Coastal Engineering Research Center; Springfield, Va., [12] p. : 111. : 27 cm. - (Technical aid -- U.S. Coastal Engi-

Seelig, William N.

available from National Technical Information Service, 1980.

neering Research Center; no. 80-7)

Estimation of wave transmission coefficients for overtopping of impermeable breakwaters / by William N. Seelig -- Fort Belvoir, Va.: U.S. Ccastal Engineering Research Center; Springfield, Va., :

Includes bibliographical references.
Methods are presented for estimating coefficients of wave
transmission by overtopping for smooth and rough impermeable
breakwaters. These techniques can be used for monochromatic or
irregular wave conditions with subaerial and submerged breakwaters. Example problems are worked to illustrate calculations.

Includes bibliographical references.

Methods are presented for estimating coefficients of wave transmission by overtophing for smooth and rough impermeable breakwaters. These techniques can be used for monochromatic or irregular wave conditions with subaerial and submerged breakwaters.

iters. 2. Waves. 3. Wave runup. 4. Wave propagation. II. Series: U.S. Coastal Engineering Research Center.

Example problems are worked to illustrate calculations.

1. Breakwaters. 2. Waves.

Fechnical aid no. 80-7.

3. Wave runup. 4. Wave propagation. I. Title. II. Series: U.S. Coastal Engineering Research Center. 2. Waves. Breakwaters.

471

no. 80-7

seelig, William N.

available from National Technical Information Service, 1980. [12] p.: ill.: 27 cm. -- (Technical aid -- U.S. Coastal Engineering Research Center; no. 80-7)

Fechnical aid no. 80-7.

no. 80-7

627

DATE FILMED S

DTIC