GENERATIVE ADVERSARIAL NETWORKS

What are GANs?

Generative Adversarial Networks

Generative Models

We try to learn the underlying the distribution from which our dataset comes from.

What are GANs?

Generative Adversarial Networks

Adversarial Training
GANS are made up of two competing networks
(adversaries) that are trying beat each other.

What are GANs?

Generative Adversarial Networks

Neural Networks

GENERATIVE VS DISCRIMINATIVE

Goal of ML algorithms: "predict the probability of a sample belonging to class y, based on a set of features x". In other words: $p(y \mid x)$.

- Discriminative algorithms try to solve this by correlating features to labels.
 E.g. logistic regression, SVM
- Generative algorithms try to learn the distribution of each class. "How did we get x?" $\to p(x \mid y)$ E.g. Naïve Bayes

GENERATIVE ADVERSARIAL NETWORKS

GENERATOR VS DISCRIMINATOR

- Generator's goal: produce "fake" data that will trick the discriminator
- Discriminator's goal: distinguish between real and fake data
- The two compete in a zero-sum game, which will hopefully improve the performance of both models.
- Very hard to train. Especially during early stages.

IN MORE DETAILS...

Original conception (Goodfellow et al.):

• D and G play a two-player minimax game with value function V(D,G):

Discriminator's loss is essentially a cross-entropy loss.

SHANNON ENTROPY

$$H(P) = \sum_{x} P(x) \cdot \log \left(\frac{1}{P(x)} \right)$$
$$H(P) = -\mathbb{E}_{x \sim p} [\log P(x)]$$

- Bits needed to encode "message" x with probability P(x).
- Entropy H: sum over all messages.
- Measure of "impurity" in data.
- Low entropy → data more uniform.

CROSS-ENTROPY

$$H(y, \hat{y}) = \sum_{i} y_{i} \cdot \log \left(\frac{1}{\hat{y}_{i}}\right)$$
$$H(y, \hat{y}) = -\mathbb{E}_{y}[\log \hat{y}]$$

- Bits needed to encode "message" i from distribution y with "symbols" from distribution \hat{y} .
- Measure "relatedness" between y and \hat{y} .
- High cross-entropy $\rightarrow (y, \hat{y})$ unrelated.

CROSS-ENTROPY INSIGHTS

1.437	1.748	2.184
2.865	2.087	2.311
5.583	3.495	2.577

$$H(d_1, d_1) = H(d_1) = 1.437$$

 $H(d_2, d_2) = H(d_2) = 2.087$
 $H(d_3, d_3) = H(d_3) = 2.577$

$$H(d_1, d_2) \neq H(d_2, d_1)$$

 $H(d_1, d_3) \neq H(d_3, d_1)$

...

CROSS-ENTROPY INSIGHTS

KULLBACK-LEIBLER (KL) DIVERGENCE

- Measures **difference** between two probability distributions (y, \hat{y}) .
- Essentially the difference from entropy to cross-entropy.

$$KL(y \mid\mid \hat{y}) = H(y, \hat{y}) - H(y)$$
$$KL(y \mid\mid \hat{y}) = \sum_{i} y_{i} \cdot \log\left(\frac{y_{i}}{\hat{y}_{i}}\right)$$

- How many more bits are required to encode messages from distribution y if we use symbols from \hat{y} .
- Non symmetric: $KL(y || \hat{y}) \neq KL(\hat{y} || y)$. Not a distance metric.
- Always takes **positive** values: $H(y, \hat{y}) \ge H(y)$.
- The higher the value, the more two distributions differ.

JENSEN-SHANNON (JS) DIVERGENCE

A derivative of KL divergence, that can be used as a distance metric.

$$JS(y || \hat{y}) = \frac{1}{2}KL(y || m) + \frac{1}{2}KL(\hat{y} || m)$$
where $m = \frac{1}{2}(y + \hat{y})$

- Symmetric.
- Positive.
- The **higher** the value the **larger** the distance between y, \hat{y} .

GAN LOSSES

•
$$min_G max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [1 - \log D(G(z))]$$

- Discriminator loss (sum two losses):
 - Loss on "real" images: $\mathop{\mathbb{E}}_{x \sim p_{data}(x)}[\log D(x)]$
 - Loss on "fake" images: $-\operatorname{\mathbb{E}}_{z\sim p_{z}(z)}[1\,-\,\log D(G(z))]$
- Generator loss (only relevant for "fake" images):

$$\mathbb{E}_{z \sim p_{z}(z)}[1 - \log D(G(z))]$$

TRAINING

- Initially:
 - Generator does not know how to produce realistic images.
 - Discriminator does not know how to separate the two.
- As training progresses:
 - G: starts to learn the distribution of real images.
 - D: becomes better at distinguishing real from fake.
- After successful training:
 - G: has learned to produce realistic images.
 - D: can't distinguish from the two .

TRAINING DETAILS

- When you train the discriminator, hold the generator values constant; and when you train the generator, hold the discriminator constant. Each should train against a static adversary.
- Each side of the GAN can overpower the other.
 - If the discriminator is too good, it will return values so close to 0 or 1 that the generator will struggle to read the gradient.
 - If the generator is too good, it will persistently exploit weaknesses in the discriminator that lead to false negatives.

GANTRAINING ISSUES

$$min_G max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [1 - \log D(G(z))]$$

- Hard to achieve Nash Equilibrium (each player plays independently; cannot ensure convergence).
- Vanishing Gradient:

As D becomes better (makes more confident predictions), G loss approaches $0 \rightarrow$ no gradient. Perfect discriminator exists (proven).

- If D behaves badly, G cannot gather accurate feedback.
- JS divergence fails to provide a meaningful metric when the two distributions are disjointed.
- Highly sensitive to hyperparameter selection.
- Mode collapse:

Multimodal distribution "modes" collapse into a single "mode".

MODE COLLAPSE

- Consider the extreme case that G is trained without updating D. The generated images will converge towards the optimal image x^* , which maximizes D's uncertainty: $x^* = argmax_xD(x)$.
- The mode collapses to a single point, the gradient associated with z becomes 0.

- D with then push to exploit the next best mode. G will soon follow and the two will be stuck in an overfit state where both will try to exploit the other's short term weaknesses.
- D is more likely to overfit than G.

SOME WORKAROUNDS TO GAN'S TRAINING ISSUES...

Minibatch discrimination:

- Separate real/fake into different batches.
- Compute similarity within batch.
- Feed this to the discriminator.
- Mode drops -> similarity increases.
- D can spot fake images from this parameter and penalize G.

One-sided label smoothing:

- Penalize D when prediction for real is high. E.g. D(x) > 0.9.
- Avoid overconfidence.
- Add noise to stabilize the model.
- Alternative generator cost function:

$$\mathsf{Replace} \quad \mathbb{E}_{z \sim p_Z(z)}[1 \, - \, \log D(G(z))] \quad \mathsf{with} \quad - \, \mathbb{E}_{z \sim p_Z(z)}[\log D(G(z))]$$

More resistant to vanishing gradients

WASSERSTEIN GAN (1/4)

- Most of GAN's training issues emanate from the cost function.
- Replace JS with "Wasserstein distance".
- Distance metric between distributions.
- How much "earth" we need to move to reach from one distribution to the other.
- Continuous everywhere and differentiable almost everywhere (not true for KL, JS).

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x, y) \sim \gamma} [||x - y||]$$

where $\Pi(\mathbb{P}_r, \mathbb{P}_g)$ is the set of all joint distributions (x, y) whose marginals are $\mathbb{P}_r, \mathbb{P}_g$.

WASSERSTEIN GAN (2/4)

- The previous cost function depends on the optimal "transport plan" γ , which is tricky to compute.
- After some assumptions and by using the Kantorovich-Rubinstein duality, we can simplify the calculation to:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_{L} \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

where f is a 1-Lipschitz function.

• In practice we build a deep neural network to **approximate** this function ©. This new network is very similar to the Discriminator, which we will call the "critic" to reflect its new role.

WASSERSTEIN GAN (3/4)

- New gradients:
 - Critic:

$$\nabla_{w} \frac{1}{m} \sum_{i=1}^{m} \left[f(x^{(i)}) - f(G(z^{(i)})) \right]$$

Generator:

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \left[-f\left(G(z^{(i)})\right) \right]$$

• Unfortunately f needs to be a 1-Lipschitz function. To enforce this constraint the authors simply **clipped** f if it exceeded an arbitrary range.

WASSERSTEIN GAN (4/4)

Pros:

- Much more meaningful loss (correlation between loss value and image quality).
- Increased training **stability**:
 - Less likely to collapse.
 - Generator can still learn when critic performs well.
 - Allows training to optimality.

Cons (all have to do with weight clipping):

- Clipping parameter is very sensitive.
- Decreases model capacity.
- Slows down training.

GRADIENT PENALTY (WGAN-GP)

- Done instead of weight clipping.
- A I-Lipshitz function has a gradient norm of I almost everywhere under \mathbb{P}_r , \mathbb{P}_{θ} .
- The model is **penalized** if the gradient norm strays away from 1.

$$L = \mathbb{E}_{\tilde{x} \sim \mathbb{P}_g} [D(\tilde{x})] - \mathbb{E}_{x \sim \mathbb{P}_r} [D(x)] + \lambda \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}} [(||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2]$$
critic loss gradient penalty

where \hat{x} is sampled from \tilde{x} and x.

- Avoid Batch Normalization (creates correlation between samples within batch, impacts the
 effectiveness of GP).
- Makes more stable training and will converge better and faster.
- Allows for the use of more complex models as G, D (e.g. ResNet architecture).

DEEP CONVOLUTIONAL GAN (DCGAN)

- Original GANs were MLP models.
- Can build GANs with convolutional layers.
- Guidelines:
 - Replace pooling layers (which destroy spatial information) with convolutional stride.
 - Use transposed convolutions for up-sampling.
 - Eliminate FC layers.
 - Use Batch Normalization.

CONDITIONAL GAN (CGAN)

Both generator and discriminator also accept the image labels as their input.

LEAST SQUARES GAN (LSGAN)

Defines a new cost function which help get a smoother gradient everywhere.

$$\begin{split} \min_{D} V_{\text{\tiny LSGAN}}(D) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{\tiny data}}(\boldsymbol{x})} \big[(D(\boldsymbol{x}) - b)^2 \big] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - a)^2 \big] \\ \min_{G} V_{\text{\tiny LSGAN}}(G) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - c)^2 \big], \end{split}$$

ENERGY BASED GAN (EBGAN) AND BOUNDARY EQUILIBRIUM GAN (BEGAN)

Both replace D with an AutoEncoder.

EBGAN:

- Measure reconstruction error (MSE)
- Motivates GAN to have broader goals and avoid greedy optimization.
- Ensures GAN generates images with features found in natural images.

BEGAN:

- Wasserstein distance
- Loss function has two goals (hyperparameter γ to balance them):
 - Good critic (helps diversity).
 - Good reconstructor (helps image quality).

SPECTRAL NORMALIZATION

- Popular discriminator regularizer.
- Can enforce Lipschitz constraint.

SELF-ATTENTIONAL GAN (SEGAN)

State-of-the-art!

- Refines each spatial location with an extra term computed by the self-attentional mechanism.
- Can be used on both G and D.
- Spectral Normalization is used to stabilize the GAN.

EVALUATION METRICS (1/2)

Inception Score:

- Entropy can be viewed as randomness.
- When training a classifier we want $p(y \mid x)$ to be **highly predictable**.
- Use an **Inception** network to classify the images and predict $p(y \mid x)$. This reflects on the quality of the images.
- If the generated images are diverse the data distribution of y should be **uniform**:

$$p(y) = \int_{Z} p(y \mid x = G(z)) dz$$

Inception score is computed as:

High $p(y \mid x)$ requires high quality images

$$IS(G) = \exp\left(\mathbb{E}_{x \sim p_g}[KL(\overline{p(y \mid x)} \mid \mid \underline{p(y)})]\right)$$
 Large $p(y)$ requires high diversity between classes

EVALUATION METRICS (2/2)

Fréchet Inception Distance (FID)

- Use Inception Network to extract features from an intermediate layer.
- Model these with a multivariate Gaussian distribution with mean μ and covariance Σ .
- FID between real images x and generated g images is computed as:

$$FID(x,g) = ||\mu_x - \mu_g||_2^2 + Tr\left(\Sigma_x + \Sigma_g - 2(\Sigma_x \Sigma_g)^{\frac{1}{2}}\right)$$

- Lower FID → better image quality and diversity.
- Sensitive to mode collapse (increases with missing modes).
- More robust to noise than IS.
- Better measure for image diversity.