

Sposoby określania funkcji

- Wprowadzenie
- Przeczytaj
- Prezentacja multimedialna
- Sprawdź się
- Dla nauczyciela

W życiu codziennym spotykamy się z różnego rodzaju jednoznacznymi przyporządkowaniami. Opisywane są one w różny sposób. Zwykle nie nazywamy ich jednak funkcjami. Teraz poznamy matematyczne sposoby opisu funkcji. Poszukamy odpowiedzi na pytanie: czy funkcję można opisać tylko za pomocą wzoru?

Twoje cele

- Poznasz sposoby opisywania funkcji.
- Opiszesz funkcję różnymi sposobami.
- Wybierzesz sposób opisu funkcji w zależności od sytuacji.

Przeczytaj

Funkcja

Przypomnijmy definicję funkcji.

Definicja: Funkcja

Funkcją f ze zbioru X w zbiór Y (zbiory X i Y są niepuste) nazywamy takie odwzorowanie, w którym każdemu elementowi ze zbioru X został przyporządkowany tylko jeden element ze zbioru Y.

Funkcję tę oznaczamy $f: X \to Y$.

Zbiór X nazywamy dziedziną funkcji f i oznaczamy D_f .

Zbiór Y nazywamy przeciwdziedziną funkcji f.

Zbiorem wartości funkcji f nazywamy zbiór tych elementów ze zbioru Y, które zostały przypisane elementom ze zbioru X i oznaczamy symbolem ZW_f .

Do opisu funkcji najczęściej wykorzystujemy:

- graf,
- opis słowny,
- tabelkę,
- zbiór par uporządkowanych,
- wykres,
- wzór.

Prześledźmy powyższe sposoby, analizując przykłady.

Graf

Z grafu można odczytać, że dziedziną funkcji jest zbiór $X=\{A,\,B,\,G,\,H,\,I,\,J,\,K,\,C\}$, zaś przaciwdziedziną zbiór $Y=\{D,\,E,\,L,\,M,\,N,\,O,\,Q,\,P,\,R\}$. Strzałki pokazują sposób przyporządkowania elementom dziedziny elementów przeciwdziedziny. Zapis $A\to D$ czytamy: dla argumentu A wartość funkcji jest równa D, czyli f(A)=D.

Opis słowny

Funkcję f opisujemy pełnym zdaniem, podajemy jej dziedzinę i dokładny opis przyporządkowania. Np.: "Funkcja f każdemu uczniowi klasy Ia przyporządkowuje jego numer w dzienniku."

Znając opis funkcji można podać wartości funkcji przyporządkowane poszczególnym argumentom.

Tabelka

Tabelka zbudowana jest z dwóch wierszy. W górnym wierszu znajdują się argumenty funkcji, czyli elementy dziedziny funkcji. W dolnym wierszu umieszczone są wartości, jakie funkcja przyjmuje dla danych argumentów.

x	-2	-1	0	1	2	3	4
f(x)	-3	-5	2	7	8	0	10

Z tabelki możemy na przykład odczytać, że dla argumentu 1 funkcja f przyjmuje wartość 7, natomiast wartość 0 odpowiada argumentowi 3.

Zbiór par uporządkowanych

Funkcję można opisać za pomocą zbioru par uporządkowanych postaci (x, f(x)), gdzie pierwszy element pary oznacza argument, zaś drugi to wartość funkcji dla danego elementu.

Np.:
$$\{(3,8), (4,9), (7,24), (8,32)\}.$$

Zapis
$$(4, 9)$$
 oznacza, że $f(4) = 9$.

Wykres

Definicja: Wykres funkcji

Wykres funkcji f jest to zbiór wszystkich punktów płaszczyzny o współrzędnych $(x,\ f(x))$, w prostokątnym układzie współrzędnych, gdzie x należy do dziedziny tej funkcji, natomiast f(x) jest wartością funkcji f dla argumentu x.

Rysunek przedstawia wykres funkcji f. Wykres składa się z czterech punktów. Współrzędne tych punktów to: (-2, -1), (-1, 2), (2, 3), (4; 4, 5).

Z wykresu możemy odczytać na przykład, że f(-1)=2 oraz że f(x)=4, 5 tylko wtedy, gdy x=4. Wykres funkcji składa się tylko z tylu punktów, ile elementów znajduje się w dziedzinie funkcji.

Wzór funkcji

Są trzy główne sposoby zapisywania wzoru funkcji. Na przykład:

- $f: x \to 0.5x^2$, jeżeli $x \in \mathbb{R}_+$,
- $f(x)=0.5x^2$, jeżeli $x\in\mathbb{R}_+$,
- $y=0,5x^2,$ jeżeli $x\in\mathbb{R}_+.$

Znając wzór funkcji możemy stwierdzić, czy dany punkt należy do wykresu funkcji. Możemy również obliczyć wartość funkcji dla danego argumentu.

Np.:
$$f(4) = 0, 5 \cdot 4^2 = 8, f(6) = 0, 5 \cdot 6^2 = 18.$$

Przykład 1

Dane są dwa zbiory $X = \{2, 5, 7, 20, 32\}$ oraz $Y = \{-2, -4, -6, 0, 6\}$. Rozważmy funkcję, które odwzorowuje zbiór X w zbiór Y i opiszmy ją różnymi sposobami.

Rozwiązanie:

Opis słowny – każdej liczbie parzystej ze zbioru X przyporządkowujemy liczbę 0, a każdej liczbie nieparzystej liczbę 6.

Dziedzina funkcji – $D_f = \{2, 5, 7, 20, 32\}$

Zbiór wartości – $ZW_f = \{0, \ 6\}$

Graf

Tabelka

x	2	5	7	20	32
f(x)	0	6	6	0	0

Zbiór par uporządkowanych

$$\{(2,0),\ (5,6),\ (7,6),\ (20,0),\ (32,0)\}.$$

Wykres

Wzór

Funkcja f zapisana jest za pomocą wzoru:

$$f(x) = \begin{cases} 0, \text{ jeżeli } x = 2 \text{ lub } x = 20 \text{ lub } x = 32 \\ 6, \text{ jeżeli } x = 5 \text{ lub } x = 7 \end{cases}$$

Przykład 2

Funkcja f każdej liczbie dodatniej x przyporządkowuje objętość sześcianu o krawędzi długości x. Opiszemy tę funkcję różnymi sposobami.

Rozwiązanie:

Wzór funkcji

$$f(x) = x^3$$

Dziedzina funkcji – $D_f=\mathbb{R}_+$

Zbiór wartości – $ZW_f=\mathbb{R}_+$

Tabelka

Dziedzina funkcji jest zbiorem nieskończonym. Sporządzamy tabelkę częściową dla pięciu liczb rzeczywistych dodatnich.

x	1	1,5	2	2,5	3
f(x)	1	3,375	8	15,625	27

Zbiór par uporządkowanych (częściowy)

$$\{(1; 1), (1, 5; 3, 375), (2; 8), (2, 5; 15, 625), (3; 27)\}$$

Wykres (częściowy)

Słownik

wykres funkcji

wykres funkcji f jest to zbiór wszystkich punktów płaszczyzny o współrzędnych $(x,\ f(x))$, w prostokątnym układzie współrzędnych, gdzie x należy do dziedziny tej funkcji, natomiast f(x) jest wartością funkcji f dla argumentu x

Prezentacja multimedialna

Polecenie 1

Przeanalizuj uważnie materiał przedstawiony w prezentacji multimedialnej, wykonaj wskazane ćwiczenia oraz odpowiedz na poniższe pytania.

Czy każdy graf przedstawia funkcję?

Czy każdy zbiór punktów w układzie współrzędnych jest wykresem funkcji?

przyporządkowuje pole trójkąta równobocznego o boku długości x. Podaj dziedzinę tej funkcji i zbiór wartości. Przedstaw ją za pomocą wzoru, grafu częściowego, częściowego zbioru par uporządkowanych, tabelki częściowej oraz wykresu.

Zasób interaktywny dostępny pod adresem https://zpe.gov.pl/a/D1A5zzRLJ

Polecenie 2

Funkcja f opisana jest za pomocą wzoru: f(x)=2|x|-5, gdy x<0. Podaj opis słowny funkcji, wykonaj tabelkę częściową, graf częściowy, częściowy zbiór par uporządkowanych i wykres.

Polecenie 3

Funkcja f opisana jest za pomocą zbioru par uporządkowanych $\{(0;0),(1;1),(4;2),(9;3),(16;4),(25;5)\}$. Podaj wzór tej funkcji, opis słowny, wykres.

Sprawdź się

Pokaż ćwiczenia: 🗘 🕠 🌘

Który graf przedstawia funkcję?

Wskaż rysunek przedstawiający wykres funkcji.

Ćwiczenie 3								
Uzupełnij zdania tak, aby otrzymać słowny opis funkcji. Przeciągnij poprawne wyrazy w odpowiednie miejsca.								
Funkcja f każdej $igg[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	bliotece przyporządkowuje jej	<u>.</u>						
Funkcja p każdemu $igg[x igg]$	przyporządkowuje jego].						
Funkcja v każdemu $oxedsymbol{eta}$ pr	zyporządkowuje jego							
Funkcja d każdemu $oxedsymbol{eta}$ pr	rzyporządkowuje długość jego							
pole przeciwprostokątnej	numer w katalogu objętoś	ć						
sześcianowi o krawędzi długos	ści stożkowi o średnicy pods	tawy d książce						
trójkątowi prostokątnemu rów	vnoramiennemu o przyprostoką	$\overline{tnej} \; x$						
Ćwiczenie 4								
Ćwiczenie 5								
Dane są dwa zbiory: $X=\{-5,\ -3,\ -1,\ 0,\ 2,\ 4\},Y=\{-5,\ -4,\ -2,\ 0,\ 1,\ 3,\ 5,\ 6\}$. Funkcja $f:X\to Y$ każdej liczbie x ze zbioru X przyporządkowuje liczbę do niej przeciwną. Oceń prawdziwość sformułowań.								
Sformułowanie	Prawda	Fałsz						
f(-3)=-3	0	0						
Jest to $f(-5) = 5$.		\bigcirc						

Do wykresu funkcji f należy nieskończenie wiele punktów.

Funkcja f przyjmuje tylko wartości nieujemne.

Ćwiczenie 6

Funkcja f każdej liczbie x ze zbioru $\{21,\ 26,\ 37,\ 58,\ 85\}$ przyporządkowuje resztę z dzielenia liczby x przez 11. Połącz w pary odpowiadające sobie stwierdzenia.

f(21) =	10
f(85) =	8
f(37) =	4
f(58) =	3

Ćwiczenie 7

Dane są dwa zbiory: $X=\{-3,\ -1,\ 4,\ 7,\ 10\}$ i $Y=\{0,\ 6\}$. Funkcja $f:X\to Y$ opisana jest za pomocą zbioru par uporządkowanych $\{(-3,\ 0),\ (-1,\ 0),\ (4,\ 6),\ (7,\ 0),\ (10,\ 6)\}$. Zaznacz wszystkie zdania prawdziwe.

igcap f(-1)=0

f(7) = 6

 $oxedsymbol{oxed}$ Funkcja f może przyjmować pięć różnych wartości.

Ćwiczenie 8

Dane są dwa zbiory: $X=\{-3,\ -1,\ 4,\ 7,\ 10\}$ i $Y=\{0,\ 6\}$. Funkcję $f:X\to Y$ przedstawiono za pomocą tabelki. Wskaż tabelkę przedstawiającą funkcję f.

A.

x	-3	-1	4	7	4
f(x)	0	0	6	0	0

B.

x	-3	-1	4	7	10
f(x)	0	0	6	0	0

C.

x	-3	-1	4	7	-3
f(x)	0	0	6	0	6

x	-3	_1	4	7	-1				
f(x)	6	6	6	0	0				
\bigcirc A									
\bigcirc C									
\bigcirc B									
\bigcirc D									
Ćwiczenie 9	Ćwiczenie 9								
Zaznacz prawidłowe zdania.									
Każdemu argumentowi funkcji można przyporządkować dokładnie jeden element należący do przeciwdziedziny tej funkcji.									
Każdemu argumentowi funkcji można przyporządkować co najmniej dwa różne elementy należące do przeciwdziedziny tej funkcji.									
Funkcja może przyjmować taką samą wartość dla więcej niż jednego argumentu.									

т

Т

Dla nauczyciela

Autor: Anna Jeżewska

Przedmiot: Matematyka

Temat: Sposoby określania funkcji

Grupa docelowa:

III etap edukacyjny, liceum, technikum, zakres rozszerzony

Podstawa programowa:

V. Funkcje. Zakres podstawowy.

Uczeń:

1) określa funkcje jako jednoznaczne przyporządkowanie za pomocą opisu słownego, tabeli, wykresu, wzoru (także różnymi wzorami na różnych przedziałach).

Kształtowane kompetencje kluczowe:

- kompetencje w zakresie rozumienia i tworzenia informacji
- kompetencje matematyczne oraz kompetencje w zakresie nauk przyrodniczych, technologii i inżynierii
- kompetencje cyfrowe
- kompetencje osobiste, społeczne i w zakresie umiejętności uczenia się

Cele operacyjne:

Uczeń:

- podaje przykłady określania funkcji różnymi sposobami,
- opisuje daną funkcję różnymi sposobami,
- rozróżnia te przyporządkowania, które są funkcjami,
- wybiera sposób opisu funkcji w zależności od rodzaju funkcji.

Strategie nauczania:

konstruktywizm

Metody i techniki nauczania:

- metaplan
- dyskusja bez słów

Formy pracy:

- praca indywidualna
- praca w parach
- praca w grupach
- praca całego zespołu klasowego

Środki dydaktyczne:

- komputery z głośnikami i dostępem do Internetu, słuchawki
- zasoby multimedialne zawarte w e-materiale
- tablica interaktywna/tablica, pisak/kreda

Przebieg lekcji

Faza wstępna:

- 1. Przed lekcją grupa chętnych uczniów przygotowuje krótką prezentację przypominającą pojęcie funkcji, określania jej dziedziny i zbioru wartości.
- 2. Nauczyciel podaje temat i cele lekcji oraz ustala z uczniami kryteria sukcesu.
- 3. Uczniowie oglądają prezentację przygotowaną przez swoich kolegów. Jest ona wprowadzeniem do lekcji.

Faza realizacyjna:

1. Uczniowie, pracując w dwóch grupach, analizują przykłady przedstawione w sekcji "Przeczytaj".

Grupa pierwsza - przykład 1.

Grupa druga - przykład 2.

- 2. Po upływie wyznaczonego czasu jeden przedstawiciel z każdej grupy przedstawia sposób rozwiązania zadania.
- 3. Uczniowie metodą dyskusji bez słów zapisują na tablicy sposoby opisu funkcji. Szukają odpowiedzi na pytania:

Czy każdy graf przedstawia funkcję?

Czy każdy zbiór punktów w układzie współrzędnych jest wykresem funkcji? Weryfikują pomysły i formułują wnioski.

- 4. Uczniowie dyskutują o sposobach przedstawiania funkcji.
- 5. Uczniowie wykonują ćwiczenia interaktywne wskazane przez nauczyciela i wspólnie omawiają odpowiedzi.

Faza podsumowująca:

- 1. Jeden z uczniów podsumowuje zajęcia, zwracając uwagę na nabyte umiejętności.
- 2. Nauczyciel omawia przebieg zajęć, ocenia pracę uczniów.

Praca domowa:

- 1. Uczniowie rozwiązują w domu ćwiczenia, których nie rozwiązywali w czasie zajęć.
- 2. Zadanie dla chetnych:

Funkcja f jest określona za pomocą opisu słownego: "Każdej liczbie całkowitej z przedziału $\langle -20,~8 \rangle$ przyporządkowujemy różnicę wartości bezwzględnej tej liczby i liczby 5".

- a) Napisz wzór funkcji f.
- b) Podaj zbiór wartości funkcji f.
- c) Naszkicuj wykres tej funkcji.

Materiały pomocnicze:

Definicja funkcji. Sposoby przedstawiania funkcji

Wskazówki metodyczne:

Nauczyciel może wykorzystać prezentację multimedialną do pracy w parach lub w grupach.