# REPRESENTACIÓN GRÁFICA DE FUNCIONES

Para representar gráficamente funciones explícitas (es decir del tipo y=f(x)), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se vayan conociendo:

#### 1. Estudio de la función:

- a) Dominio de definición: Si hay cocientes, donde sea cero el denominador la función no estará definida; si hay raíces de índice par, no lo estará cuando el radicando sea negativo.
- b) Simetrías: Si f(-x)=f(x), la función es par (simétrica respecto al eje OY); si f(-x)=-f(x) la función es impar (simétrica respecto al origen). No tiene porque haber simetrías, pero su existencia nos facilita el trazado de la gráfica.
- c) Intersecciones con los ejes: Con el eje OY, haciendo x=0 (como máximo hay una); con el eje OX haciendo y=0 (puede haber muchas y en ocasiones no son fáciles de hallar)
- d) Asíntotas.
  - i) Verticales: Si se tiene que  $\lim_{x \to a} f(x) = \infty$ , entonces la recta x=a es una asíntota vertical.
  - ii) Horizontales: Si  $\lim_{x\to\infty} f(x) = k$ , entonces la recta y=k es una asíntota horizontal.
  - iii) Oblicuas: Si  $\lim_{x\to\infty} \frac{f(x)}{x} = m$  (m finito y  $\neq$  0), y  $\lim_{x\to\infty} (f(x) mx) = b$ , entonces la recta y=mx+b es una asíntota oblicua.

Nota: Si hay asíntota horizontal, no puede haberla oblicua y viceversa. Las asíntotas horizontales y oblicuas pueden cortar a la gráfica de la función en uno o mas puntos, dato este necesario para representarla correctamente. Para hallar los puntos de intersección se resuelve el sistema formado por la ecuación de la función y de la asíntota.

e) Signo de la función: La función solo puede cambiar de signo en los puntos en que vale cero o no es continua. Por tanto, en las regiones delimitadas por estos puntos mantiene siempre el mismo signo. Esto es muy útil a la hora de representarla.

### 2. Estudio de la derivada 1ª:

- a) Obtención, simplificación y factorización al máximo. Podemos transformar la expresión de la función para derivarla más cómodamente. Una vez derivada, debemos simplificarla al máximo y sacar factor común todo lo posible.
- b) Ceros y puntos de discontinuidad. Si se hizo lo indicado en el apartado anterior, serán más fáciles de hallar.
- c) Signo de la derivada primera: como se hizo en el apartado 1.e) con la función.
- d) Máximos, mínimos y regiones de crecimiento y decrecimiento: Donde la derivada primera sea positiva la función es creciente; donde sea negativa, decreciente; y cuando cambie de una cosa a otra (si esta definida) habrá un máximo (primero creciente, luego decreciente) o un mínimo (primero decreciente, luego creciente). Conviene determinar cuanto vale la función en los máximos y mínimos.

### 3. Estudio de la derivada 2ª:

- a) Obtención, simplificación y factorización al máximo.
- b) Ceros y puntos de discontinuidad.
- c) Signo de la derivada segunda. Estos tres apartados consisten en lo mismo que los correspondientes a la derivada 1ª.
- d) Puntos de inflexión y regiones de concavidad y convexidad: Donde la derivada segunda sea positiva la función es convexa (∪); donde sea negativa, cóncava (∩); y cuando cambie de una cosa a otra (si esta definida) habrá un punto de inflexión (en el que la tangente en ese punto atraviesa a la gráfica). Conviene determinar cuanto vale la función en los puntos de inflexión, así como la derivada 1ª, para tener una idea de la pendiente de la gráfica en esos puntos.

## **EJEMPLO**

Apliquemos todo lo anterior para representar la función  $y = \frac{x^3}{(x-1)^2}$ .

- 1. a) Se trata de una función racional (cociente de dos funciones polinómicas), por lo que únicamente no estará definida donde sea cero el denominador, es decir en x=1 (doble);  $D(f(x))=R-\{1\}$ .
  - b)  $f(-x) = \frac{(-x)^3}{((-x)-1)^2} = \frac{-x^3}{(-x-1)^2} = \frac{-x^3}{(x+1)^2}$ , distinto de f(x) y de -f(x),

por lo que no hay simetrías.

- c) Haciendo x=0, se obtiene y=0; haciendo y=0 solo se obtiene nuevamente x=0. En este caso hay un solo punto de corte con ambos ejes: el origen.
- d) i) En x=1 el denominador vale cero y el numerador no, por lo tanto  $\lim_{x\to 1} \frac{x^3}{(x-1)^2} = +\infty$  (positivo, pues tanto numerador como

denominador son positivos a la izquierda y derecha de 1). Por tanto la recta x=1 es una A.V.

- ii) El grado del numerador es mayor que el del denominador, luego  $\lim_{x \to \pm \infty} \frac{x^3}{(x-1)^2} = \pm \infty$  y no hay asíntotas horizontales.
- iii) El que el grado del numerador sea uno mayor que el del denominador, nos indica que hay una asíntota oblicua, y=mx+b.

$$m = \lim_{x \to \infty} \frac{\frac{x^3}{(x-1)^2}}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 - 2x + 1} = 1$$

$$b = \lim_{x \to \infty} f(x) - mx = \lim_{x \to \infty} \left(\frac{x^3}{x^2 - 2x + 1} - x\right) = \lim_{x \to \infty} \frac{x^3 - x^3 + 2x^2 - x}{x^2 - 2x + 1} = 2$$

Su ecuación es por tanto y=x+2. Resolviendo el sistema de ecuaciones que formado por la de la función y la de la asíntota, obtenemos un único punto de corte (2/3,8/3).

- e) El denominador de la fracción es siempre positivo, así que la función tiene siempre el mismo signo que x³, es decir que para x<0 es negativa y para x>0 es positiva.
- 2. a) La derivada primera será:

$$y' = \frac{3x^{2}(x-1)^{2}-x^{3}2(x-1)}{(x-1)^{4}} = \frac{3x^{2}(x-1)-2x^{3}}{(x-1)^{3}} = \frac{x^{3}-3x^{2}}{(x-1)^{3}} = \frac{x^{2}(x-1)}{(x-1)^{3}}$$

- b) Es cero en x=0 (raíz doble) y en x=3, y no esta definida en x=1.
- c), d) Estudiemos el signo de la derivada en cada una de las regiones delimitadas por estos puntos:

| х  | x<0   | x=0       | 0 <x<1< th=""><th>x=1</th><th>1<x<3< th=""><th>x=3</th><th>3<x< th=""></x<></th></x<3<></th></x<1<> | x=1  | 1 <x<3< th=""><th>x=3</th><th>3<x< th=""></x<></th></x<3<> | x=3          | 3 <x< th=""></x<> |
|----|-------|-----------|-----------------------------------------------------------------------------------------------------|------|------------------------------------------------------------|--------------|-------------------|
| y' | +     | 0         | +                                                                                                   | N.D. | -                                                          | 0            | +                 |
| у  | Crec. | P.I.<br>0 | Crec.                                                                                               | N.D. | Decr.                                                      | Mín.<br>27/4 | Crec.             |

3. a) Partiendo de la penúltima expresión de la derivada primera, tenemos:

$$y'' = \frac{(3x^2 - 6x)(x - 1)^3 - (x^3 - 3x^2)3(x - 1)^2}{(x - 1)^6} = \frac{3x(x - 2)(x - 1) - 3x^2(x - 3)}{(x - 1)^4} = \frac{3x^3 - 9x^2 + 6x - 3x^3 + 9x^2}{(x - 1)^4} = \frac{6x}{(x - 1)^4}$$

- b) La derivada segunda se anula en x=0 y no esta definida en x=1.
- c), d) Estudiemos su signo en las regiones delimitadas por estos puntos:

| Х  | x<0     | x=0                 | 0 <x<1< th=""><th>x=1</th><th>1<x< th=""></x<></th></x<1<> | x=1  | 1 <x< th=""></x<> |
|----|---------|---------------------|------------------------------------------------------------|------|-------------------|
| у" | -       | 0                   | +                                                          | N.D. | +                 |
| У  | Conc. ∩ | P.I.<br>y=0<br>y'=0 | Conv. ∪                                                    | N.D. | Conv. ∪           |

Si se ha ido representando toda la información obtenida, podremos completar ya fácilmente la gráfica de la función:



Gráfica de la función  $y = \frac{x^3}{(x-1)^2}$  y de su asíntota y=x+2.

Los puntos están espaciados dos unidades en las direcciones de ambos ejes.