A <u>quick introduction</u> to working with medical images in Python

A presention in two parts

Peter Goodin

Medical images?

- Umbrella term for methods that visualise the human body for medical examinations and intervention
- Medical images can be aquired using:
 - Electromagnetic radiaton (M & EEG, NIRS, ECG, MRI)
 - Sound (Ultrasound, echocardiogram)
 - Ionising radiation (PET, X-ray / CT)

This presentation will focus on MRI.

Wait. Who are you again?

- Dr. Peter Goodin (B.Sc*, Ph.D Psychoneuroimmunology)
- Currently Senior Data Scientist at HitlQ
- Previously -
 - Fifteen years working with electromagnetic imaging methods (M/EEG, MRI)
 - Two years working with CT @ RMH
 - Neuroimaging correlates of condom sensation

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Image

Magnetic Resonance Image types

Structural (eg T1, T2)

Functional (eg fMRI)

Diffusion (eg DTI / FBA

Uh huh. Yep. But what are you going to show us?

- Reading nii data (nibabel)
- Numerical manipulation (numpy)
- Plotting 1d (Matplotlib / Seaborn)
- Plotting 2d (Matplotlib, Napari)
- Plotting 3d (Napari)
- Bias correction (ANTs)
- Brain extraction (ANTsPyNet)
- Basic segmentation of tissue types (sklearn)
- Template space transform (ANTs)

TO THE CODE! :D

(note: tested using Miniconda + Ubuntu 20.04)