Table of Contents

Introduc	tion	2			
Data Des	scription	2			
Colum	ns of the Dataset	2			
Data Pre	processing	3			
Prepro	ocessing of Input Columns	3			
1.	Path	3			
2.	Room Count	3			
3.	Gross and Net m ²	4			
4.	Building age	5			
5.	Floor No	6			
6.	Detached House	6			
7.	Total Floor Count	6			
8.	Bath Count	6			
9.	Dropped Columns	7			
Target C	olumn	7			
Separa	ation of the Dataset	7			
Modellir	ng	8			
Case o	f İstanbul	8			
Мо	del Selection and Parameter Tuning	8			
Fea	ture Importance	8			
Case o	f İzmir	9			
Мо	del Selection and Parameter Tuning	9			
Fea	ture Importance	9			
Conclusi	onclusion 9				

Introduction

The rapid increase in population in Turkey and the effects of the pandemic have a significant influence on the real estate market. The supply and demand gap in the real estate market is increasing fast and this situation causes an increase in property prices that is difficult to predict. Especially, in big cities, this problem is nonnegligible. İstanbul and İzmir are the two of the biggest cities in Turkey and the fact that the population in these cities is increasing day by day increases the demand for properties.

Zingat, one of the biggest real estates in Turkey, shared a set of data in Kaggle (https://www.kaggle.com/zingatbi/zingat-real-estate) about 3 months ago which includes property prices and some variables given by sellers. The purpose of this project is to predict the future sales price of properties in these with the help of these variables.

Data Description

Data represents information of properties from January 2019 to April 2020. The dataset contains 19 inputs, 1 target variable, and 64573 rows. Some columns consist of Turkish words and missing values are labeled as "-". The description of the columns is given below.

Columns of the Dataset

- 1. date: the date when listing is started to active on the website
- 2. price: the price of the property
- 3. path: address column shows the city/district/neighbourhood of the listing.
- 4. Property type: the type of property.
- 5. Building age: age of the building
- 6. Totalfloorcount: the total number of floors
- 7. Room_count: the number of rooms (i.e. 3+1 represents room count + living room count)
- 8. grossm²: the gross size.
- 9. netm²: the net size.
- 10. floor no: column shows the floor info.
 - Yüksek giriş: High Entrance
 - Giriş kat: Entrance Floor
 - Kot: Basement
 - Zemin kat: Ground floor
 - Catı Katı: Penthouse apartment
 - Bahçe katı: Garden floor flat

11. heating_type:

- Kalorifer (Doğalgaz): central heating/natural gas,
- Kalorifer (Kömür): central heating/coal,

- Kombi (Elektrikli): combi boiler
- Klima: air-conditioning
- Kombi (Doğalgaz): gas-combi boiler
- Merkezi Sistem: central heating
- Merkezi Sistem (Isı Payı Ölçer): central heating
- Yerden Isitma: floor heating
- Soba (Kömür): heating stove/coal,
- Soba (Doğalgaz): heating stove/natural gas
- Güneş Enerjisi: solar energy,
- Jeotermal: geothermal energy
- Fancoil: a type of air conditioner
- Kat Kaloriferi: central heating
- Kalorifer (Akaryakıt): central heating/fuel oil
- Yok: None
- 12. bath count: the number of baths.
- 13. landscape: the landscape type (i.e. sea, street, nature or lake)
- 14. car park: the park type. Open or underground with paid/free info.
- 15. Intercom: whether there is an intercom. (Var: yes, Yok: no)
- 16. Earthquake reg: suitable to earthquake regulations.
- 17. Elevator: whether there is an elevator. (Var: yes, Yok: no)
- 18. children playground: whether there is a playground for children. (Var. yes, Yok. no)
- 19. dressing room: whether there is a room for dressing. (Var: yes, Yok: no)
- 20. parents bathroom: whether there is a bath for parent. (Var: yes, Yok: no)

Data Preprocessing

Preprocessing of Input Columns

1. Path

Path column consists of three information such as city, distinct and neighbourhood. I separated them into three different columns to encode them easily.

2. Room Count

There are some missing or irrational values (i.e. 1149+0), a total of 51. I decided to fill these values with the average room number of property types. The room count column consists of two information such as the number of rooms and number of living rooms. I first separated them into two columns. Then, I calculated the median of these two new columns in terms of property types (I preferred to use the median to decrease the outlier effect). Finally, I filled these values with these medians. Additionally, I added one more column named total room as the sum of these two columns.

3. Gross and Net m²

There are some missing or irrational values in these columns. While some properties' gross and net m² are too small, some values are extremely high (Figure 1 and 2). Furthermore, for some properties, net m² is bigger than gross m² which is impossible in real life.

64522.000000	count	64522.000000
185.825160	mean	127.800719
2672.887722	std	765.843472
1.000000	min	1.000000
100.000000	25%	90.000000
125.000000	50%	110.000000
155.000000	75%	135.000000
370000.000000	max	145000.0000000
	185.825160 2672.887722 1.000000 100.000000 125.000000 155.000000	185.825160 mean 2672.887722 std 1.000000 min 100.000000 25% 125.000000 50% 155.000000 75%

Figure 1 Statistics for the column grossm2

Figure 2 Statistics for the column netm2

First of all, I eliminated the columns which have lower than 5 in both gross and net m² (4 rows). After that, I equalized the gross and net m2 in the cases where the net is bigger than the gross. After these corrections, as there is no extreme low value in gross m², there are still some extreme low values in net m² as shown in Figure 3. I equalized the net m² of these properties to their gross m².

	date	path	price	room_count	grossm²	netm²
6931	2/23/2019	İzmir/Seferihisar/Payamlı	330000 TRY	3+1	130	1
19798	6/1/2019	İzmir/Menderes/Çile	280000 TRY	2+1	1800	1
326	1/3/2019	İstanbul/Beylikdüzü/Kavaklı	445000 TRY	4+1	10	1
38130	10/25/2019	İstanbul/Bağcılar/15 Temmuz	900000 TRY	10+0	4400	1
11840	4/2/2019	İstanbul/Beşiktaş/Vişnezade	132500000 TRY	9+2	1300	1

Figure 3 First 5 columns of Minimum Net m2

To handle extremely high values in the data, I decided to apply a capping to these values. I could get rank all the data together and cap extreme values with the same value but instead of doing this, I preferred to observe the net and gross m2 of different property types. The reason is that the property type is one of the important features for the size of the house because it can be assumed that on average the size of an apartment is smaller than the size of a villa. When we look at the data to see that difference (Figure 4), we can observe that the mean size of the villa is almost twice the mean size of the apartment (Daire in Turkish). Thus, we need to cap extreme values by considering the types of property.

	count	mean	std	min	25%	50%	75%	max
property_type								
Daire	56262.0	117.359141	809.947414	7.0	85.00	103.0	130.00	145000.0
Köşk / Konak / Yalı	48.0	488.625000	474.777199	90.0	230.75	400.0	562.25	3000.0
Müstakil Ev	1433.0	204.704815	310.405898	7.0	100.00	150.0	220.00	5999.0
Prefabrik Ev	181.0	41.265193	51.217362	8.0	20.00	20.0	45.00	500.0
Rezidans	1106.0	164.154611	147.537208	23.0	70.00	120.0	200.00	1300.0
Villa	4321.0	222.740801	246.156048	39.0	134.00	170.0	250.00	7195.0
Yalı Dairesi	72.0	156.069444	70.793953	80.0	105.00	137.5	180.00	500.0
Yazlık	1053.0	125.313390	63.491329	14.0	100.00	120.0	140.00	1200.0
Çiftlik Evi	93.0	758.150538	2291.311097	22.0	100.00	175.0	300.00	18000.0

Figure 4 Statistics of Net Area of Property Type

After capping, I added two columns to the data: area_diff as the difference between gross and net area and ave_area as the average of gross and net area (because as seen in Figure 3, some gross and net areas are not supporting each other. To add this column may provide a more accurate area size. I will observe this in the feature importance part).

4. Building age

In this column, there are many categories which are not organized properly. I grouped after 30 years because of low frequency and first years (1 to 5).

0	28088		
6-10 arası	5748		
16-20 arası	3808		
1	3523		
21-25 arası	3242		
11-15 arası	3211	0	28088
26-30 arası	3133	1-5 arası	12631
2	2795	6-10 arası	5748
4	2598	16-20 arası	3808
-	2450	21-25 arası	3242
3	2406	11-15 arası	3211
31-35 arası	1731	26-30 arası	3133
5	1309	Unknown building age	2450
36-40 arası	298	30+	2258
40 ve üzeri	229	50.	2230

Figure 5 Previous and Current Categories of Building Age

5. Floor No

The column of Floor number also contains many unorganized categories and some columns express similar things. For example, both "Kot" and "Bodrum Katı" indicate the basement. After grouping, the category number decreased significantly.

2	10587		
3	8588		
1	6064		
4	5871		
-	4502		
5	3823		
Müstakil	3765		
Bahçe katı	3517		
Yüksek Giriş	3324		
6	2043		
7	1749		
Giriş Katı	1735		
8	1379		
9	1131		
10	885		
Komple	698		
11	652		
Kot 1	600		
Zemin Kat	561		
Kot 2	484		
12	429		
Çatı Katı	348		
13	337		
Kot 3	280		
14	267		
20 ve üzeri	213	Ara Kat	44179
Kot 4	175	Giriş Katı	9137
15	134		
En Üst Kat	95	Unknown_floor_no	4502
16	87	Müstakil	4463
17	83	Bodrum Kat	1580
Teras Kat	52		
18	47	En Üst Kat	495
Bodrum Kat	41	20 ve üzeri	213
19	23	Lo .c dici i	

Figure 6 Previous and Current Categories of Floor No

6. Detached House

Some categories in property types and floor numbers specify that the property is a detached house (i.e. villa in property type). I created a new column by using these categories.

7. Total Floor Count

I applied similar prosses to this column as the building age column.

8. Bath Count

I decided to define this column as ordered. So, I converted the category of "6 ve üzeri" (above 6) to 6. Since the frequency of the missing value is low, I filled them with the mode of the column.

1	35473	1	35600
2	23099	2	23099
3	3914	3	3914
4	1099	4	1099
5	333	5	333
0	318	0	318
6 ve üzeri	206	6	206
_	127	0	200

Figure 7 Previous and Current Categories of Bath Count

9. Dropped Columns

I dropped some columns such as heating type, landspace, and carpark because of hig frequency of missing data and/or dirtiness of the column.

Target Column

As aforementioned, the data is given for a period of one and a half years. In Turkey, inflation increase is unstable, and it naturally affects the price of properties. Thus, we should handle this effect, otherwise, we may estimate prices incorrectly.

To do this, I decided to determine a base date to calculate all prices according to that base and chose the date where the data ends. I got values of CPI per month from the TCMB (The Central Bank of the Republic of Turkey) website and calculated the coefficients of each date to convert that date to the end date. After I multiplied the coefficients with prices, I obtained prices in terms of the end date.

Separation of the Dataset

As mentioned before, the data consists of two cities as İstanbul and İzmir. Since these cities have different characteristics, I decided to separate the data into two parts as data of İstanbul and İzmir. It also makes it easy to apply models in terms of computational power. While there are 33177 rows in İstanbul data, this number is 31392 in İzmir.

After separating the dataset, I examined the statistics of prices in both İstanbul and İzmir (Figure 8) and realized that there are some extreme values in both upper and lower bonds in prices. Thus, I decided to eliminate the 0.1% percentile from both the above and below datasets.

ınt	33177
ın	1357880
d	6707580
n	252
	234702
	417297
	934002
58	32141304

Figure 8 Statistics of price in İstanbul (left) and İzmir (right)

Modelling

For both datasets, I applied three different machine learning models such as Decision Tree, Random Forest and Xgboost and evaluated models with the three metrics as r-squared, mean absolute percentage error (MAPE) and mean absolute error (MAE). After choosing the model which has better metrics, I applied parameter tuning.

Case of İstanbul

Model Selection and Parameter Tuning

The results show that Random Forest is a better model for each metric. So, I decided to continue with Random Forest.

	R ²	MAPE	MAE
Decision Tree	0,75	0,33	427239,04
Random Forest	<mark>0,85</mark>	<mark>0,27</mark>	338291,12
Xgboost	0,84	0,33	362700,27

I tuned six parameters and best parameters are {'n_estimators': 50, 'min_samples_split': 2, 'min samples leaf': 1, 'max features': 'sqrt', 'max depth': 100, 'bootstrap': False}.

	R ²	MAPE	MAE
Random Forest	0,85	0,27	338291,12
Random Forest (tuned)	0,86	0,27	321406,89

Feature Importance

The first ten most important features in tuned Random Forest are given below. It shows that size, distinct, room numbers of properties are plying significant roles to estimate price properly in İstanbul.

netm²	0.153101
ave_area	0.144876
distinct_Beşiktaş	0.128624
grossm ²	0.120568
bath_count	0.054302
num_room	0.053577
area_diff	0.048006
total_room	0.031331
property_type_Daire	0.021420
distinct_Beylikdüzü	0.019148

Case of İzmir

Model Selection and Parameter Tuning

The results show that while Random Forest gives better estimations in terms of R² and MAE, Xgboost is better for MAPE. Thus, I decided to choose Random Forest.

	R ²	MAPE	MAE
Decision Tree	0,30	0,44	241505,02
Random Forest	<mark>0,68</mark>	0,37	184578,52
Xgboost	0,63	0,33	193858,60

I again tuned the same parameters and best parameters are {'n_estimators': 100, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': 80, 'bootstrap': True}.

	R ²	MAPE	MAE
Random Forest	0,68	0,37	184578,52
Random Forest (tuned)	0,71	0,37	183146,36

Feature Importance

The first ten most important features in tuned Random Forest are given below. It seems that important features are similar to the case of İstanbul. However, being a detached house is a significant feature in İzmir different from İstanbul.

ave_area	0.107094
netm²	0.097800
bath_count	0.094046
grossm ²	0.090203
total_room	0.077104
area_diff	0.063916
distinct_Çeşme	0.059656
num_room	0.048784
detached_house	0.028820
property_type_Daire	0.028360

Conclusion

In this project, I studied applying a proper model to predict the price of properties given by Zingat. The metrics are promising (R2s of the models are above 0,7 and MAPE scores are about 0,30) and important features to predict the price are very similar. Furthermore, popular districts in the cities (Beşiktaş in İstanbul and Çeşme in İzmir) are playing significant roles in the prediction which is meaningful. Unlike the case of İstanbul, whether the property is detached is also an important feature for the case of İzmir.