A Kunen-like model without critical continuum (Part I)

Omer Ben-Neria

Hebrew University of Jerusalem

December 2023

The Banach Center's Simon's Semester Program

About

- ► The purpose of the talks is to present the result of a joint work with **Eyal Kaplan** on the tension between structure theory for ultrafilters, and the continuum problem.
- Kunen's work on models L[μ] for a single σ-complete ultrafilter μ, is a cornerstone of inner-model theory. It provides a the simplest possible (nontrivial) behaviour of σ-complete ultrafilters in a universe of set theory:
 - 1. There is a unique measurable cardinal κ with a unique normal κ -complete ultrafilter (normal measure) U,
 - 2. every other σ -complete ultrafilter is (Rudin-Keisler) isomorphic to a finite power U^n of U.
- **b** By a Kunen-like model, we mean a model that witnesses the same simple behaviour of $(\sigma$ -complete) ultrafilters.

Theorem (BN-Kaplan)

The existence of a Kunen-like model in which $2^\kappa > \kappa^+$ is consistent relative to the existence of a model with a (κ,κ^{++}) -extender.

The result can be seen as an extension of three lines of research in set theory:

- 1. Structure theory for (σ -complete) ultrafilters and its implications to key properties of the set theoretic universe.
- 2. Structure theory for σ -complete ultrafilters in forcing extensions.
- 3. Iterated forcing theory and its interaction with fine structure

Plan (Part I)

Part I.1: Introduction

Part 1.2: The Friedman-Magidor blueprint for controlling normal measures

Part I.1

Introduction

Structure theory for ultrafilters (1/2)

- ▶ By Silver, Kunen's model L[U] satisfies GCH. The simplicity properties of L[U] both in terms of the structure of $(\sigma$ -complete) ultrafilters, and in cardinal arithmetic (GCH), extend to other known canonical inner models of set theory.
- ► The Ultrapower Axiom (UA) of Gabe Goldberg isolates a structural property for ultrafilters that holds in all known canonical inner models.

Definition (UA)

For every σ -complete ultrafilters U_0, U_1 , with ultrapower emb. $j_i: V \to M_{U_i} \cong Ult(V, U_i)$, i < 2, there are $W_1 \in M_{U_0}$ and $W_0 \in M_{U_1}$ whose ult. emb. $k_i: M_{U_i} \to N \cong Ult(M_i, W_{1-i})$, i < 2, have the same ultrapower N, and $k_1 \circ j_0 = k_0 \circ j_1$.

Structure theory for ultrafilters (2/2)

Theorem (Goldberg)

UA implies:

- 1. The Mitchell order is linear
- 2. The first measurable cardinal κ carries a single normal measure U and every other measure on κ is isomorphic to U^n for some $n < \omega$
- 3. if there is a supercompact cardinal κ then $2^{\lambda} = \lambda^+$ for all $\lambda \geq \kappa$.

Question: Does UA (with possible extension to partial ultrafilters or/and extenders) + large cardinals implies GCH?

Local Version: Does UA implies $2^{\kappa} = \kappa^+$ for every measurable cardinal κ ?

Answer: No (witnessed by the Kunen-like model)

Structure theory for ultrafilters in forcing extensions (1/6)

- ► The preservation of elementary embeddings in forcing extensions that add many new subsets plays a key role in Silver's proof for the consistency of the failure of SCH from the consistency of a supercompact cardinal.
- Given a supercompact cardinal κ , an ult. emb. $j: V \to M \cong Ult(V, W)$ by a κ^{++} -supercompact measure W, and a V-generic filter $G \subseteq \mathbb{P}_{\kappa}$ for an Easton support iteration of Cohen posets $Add(\alpha, \alpha^{++})$ at inaccessibles $\alpha \leq \kappa$, Silver's master sequence construction gives an M-generic $G^* \subseteq j(\mathbb{P}_{\kappa})$ with j " $G \subseteq G^*$, and an extension $j^*: V[G] \to M[G^*]$. The derived normal measure on κ is $U^* = \{X \subseteq \kappa \mid \kappa \in j^*(X)\}$.
- The master sequence construction is quite flexible, and gives rise to many different possible generics G^* , which in turn, generates many different normal measures on κ in V[G].

Structure theory for ultrafilters in forcing extensions (2/6)

- A driving force to the pursuit for control of elementary embeddings in generic extensions was the question about the possible number of normal measures on a measurable cardinal.
- Nunen's model L[U] shows it is consistent to have a single normal measure from the minimal assumption of a measurable cardinal. The Kunen-Paris forcing shows that the maximal number of $2^{2^{\kappa}}$ is also possible from the same assumption.
- Mitchell's construction and theory of inner models $L[\vec{U}]$ with coherent sequences of normal measures shows that any number $\lambda \in [0, \kappa^{++}]$ of normal measures on κ is consistent, but requires a stronger large cardinal assumption (higher Mitchell order) and does not apply to the first measurable cardinal.

Structure theory for ultrafilters in forcing extensions (3/6)

- ▶ Baldwin constructed a models with any number $\lambda < \kappa$ of normal measures on the first measurable cardinal, from an assumption of $o(\kappa) >> \lambda$.
- Apter, Cummings, and Hamkins established the consistency of κ^+ many normal measures on the first measurable cardinal from the minimal assumption.
- ▶ Leaning constructed models with any number $\lambda < \kappa^+$ of normal measures on the first measurable cardinal from an assumption weaker than $o(\kappa) = 2$.

Structure theory for ultrafilters in forcing extensions (4/6)

- The problem regarding the number of normal measures on the first measurable cardinal was finally resolved in 2007 by Friedman and Magidor, who showed that any number $\lambda \leq \kappa^{++}$ of normal measures on the first measurable cardinal κ is consistent from the minimal assumption.
- ▶ In their paper, they also prove a similar result for the number of normal measures on a cardinal κ in a model of $2^{\kappa} = \kappa^{++}$.

Structure theory for ultrafilters in forcing extensions (5/6)

Theorem (Friedman-Magidor 2007)

The existence of a model with a measurable cardinal κ carrying a single normal measure, and $2^{\kappa} = \kappa^{++}$ is consistent relative to the existence to a (κ, κ^{++}) -extender.

Theorem (Apter-Cummings 2023)

The failure of GCH on a strong cardinal κ in a model where the Mitchell order on normal measures on κ is linear, is consistent relative to a strong cardinal.

Structure theory for ultrafilters in forcing extensions (6/6)

- ► The last forcing theorems show that key structural properties for normal measures are consistent with the failure of GCH at a measurable cardinal.
- ▶ The result do not apply to non-normal measures.
- Prior to the new Kunen-like model construction, it was not known whether UA is consistent in any forcing extension adding an unbounded subset to κ .

Part I.2

The Friedman-Magidor blueprint for normal measures

FM blueprint

- The Friedman-Magidor (FM) blueprint was developed to control the number of normal measures in a generic extension of a canonical inner model. We will focus on a version designed to force $2^{\kappa}=\kappa^{++}$ and a unique normal measure on κ .
- by a (short) extender E, with $cp(j) = \kappa$, ${}^{\kappa}M \subseteq M$, and $V_{\kappa+2} \subseteq M$, the goal is to find assumptions for an iteration poset $\mathbb P$ that adds κ^{++} subsets to κ , such that for a V-generic $G \subseteq \mathbb P$ there is a unique M-generic $G^* \subseteq J(\mathbb P)$ with $J^*G \subseteq G^*$.

Keys to the FM blueprint

Comparing with the standard Easton-support construction (as in Silver's work) the main ingredients of the FM-approach for a poset $\mathbb{P}=\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha \leq \kappa \rangle$ are

- 1. increase the closure rate of $\mathbb P$ so that j " $\mathbb P$ meets almost every dense open subset $D\subseteq j(\mathbb P)$ in M,
- 2. include coding posets to make the posets \mathbb{Q}_{α} , $\alpha \leq \kappa$ rigid (i.e., have a unique generic filter)

(More details next time)

κ -Fusion

An Imprecise Definition:

Let $\mathbb P$ that add subsets to κ , and for each $\alpha<\kappa$ has "up " and "down" restriction maps:

$$p \mapsto p \upharpoonright \alpha \quad (p \text{ up to } \alpha)$$

 $p \mapsto p \upharpoonright \alpha \quad (p \text{ starting from } \alpha)$

with the domain of each being dense in \mathbb{P} , and a "join" operation *, which satisfy natural properties such that $p = p \upharpoonright \alpha * (p \downharpoonright \alpha)$ (other properties will be specified later) .

Say that a set $D \subseteq \mathbb{P}$ is dense beyond α if for every $p \in D$, the weaker condition $1_{\mathbb{P}} \upharpoonright (\alpha + 1) * p \downharpoonright (\alpha + 1)$ is also a member of D

Say that $\mathbb P$ has the κ -fusion property (via restriction maps) if for every sequence $\langle D_\alpha \mid \alpha < \kappa \rangle$ so that each D_α is dense beyond α and every $p \in \mathbb P$, there are $p^* \leq p$ and a club $C \subseteq \kappa$ such that for all $\alpha \in C$ the set $\{p' \in D_\alpha : p' \mid (\alpha+1) = p^* \mid (\alpha+1)\}$ is dense in $\mathbb P/p^*$.

Remarks

- ▶ If \mathbb{Q} is κ^+ -closed then it has the κ -fusion property
- ▶ If $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ is an iteration poset, then we have standard restrictions maps the send $p = \langle \dot{p}_{\beta} \mid \beta < \kappa \rangle$ to

$$p \upharpoonright \alpha = \langle \dot{p}_{\beta} \mid \beta < \alpha \rangle \in \mathbb{P}_{\alpha}, \text{ and } p \mid \alpha = \langle \dot{p}_{\beta} \mid \alpha \leq \beta < \kappa \rangle$$

The κ -fusion property is then **equivalent** to the following statement about the iteration poset \mathbb{P} :

For every $p \in \mathbb{P}$ and $\langle D_{\alpha} \mid \alpha < \kappa \rangle$ so that each D_{α} is a $\mathbb{P}_{\alpha+1}$ -name for a dense open subset of $\mathbb{P}/\mathbb{P}_{\alpha+1}$, there are $p^* \leq p$ and a club $C \subseteq \kappa$ such that

$$\forall \alpha \in C \quad p^* \upharpoonright (\alpha + 1) \Vdash_{\mathbb{P}_{\alpha + 1}} p^* \downharpoonright (\alpha + 1) \in D_{\alpha}$$

Fusion Lemma for nonstationary support iteration of closed posets

Lemma (0)

Suppose that κ is a regular cardinal and $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \kappa \rangle$ is a nonstationary support iteration and \mathbb{Q}_{α} is α -closed. Then \mathbb{P} has the κ -fusion property.