M54 conjecture

Neo Lee, Adam Ousherovitch, Shaolun Zhang

November 2023

1 Abstract

2 Introduction

This paper proves the necessary and sufficient condition for the existence of time-invariant Nash Equilibrium for the stake-governed random turn game – Trail of Lost Pennies – introduced by [Hammond]. Trail of Lost Pennies is a variant of Tug-of-war, a class of games that has a history dates back to [some year] by [author name].

2.1 Game set up

The Trail of Lost Pennies plays on the infinite integer line with a counter initially placed at the origin. In the beginning of each turn, two players, namely Maxine (who plays to the right) and Mina (who plays to the left), wager a non-negative finite real amount, denoted a and b respectively. Then, the counter moves one unit to the right with probability $\frac{a}{a+b}$, else moves one unit to the left. Hence, the counter's location X is a discrete stochastic process $X(t): \mathbb{N} \to \mathbb{Z}$, mapping from the game's time-step to counter's location (we take \mathbb{N} to include zero).

If the counter's location tends to $+\infty$ as $t \to \infty$, Maxine and Mina receive a predefined payout, denoted m_{∞} and n_{∞} respectively, while receiving a predefined payout $m_{-\infty}$ and $n_{-\infty}$ respectively when the counter's location tends to $-\infty$, with the payouts constrained by $m_{-\infty} < m_{\infty}$ and $n_{\infty} < n_{-\infty}$. Therefore, we can specify our game set up entirely on the 4 parameters and denote our game by $\text{Trail}(m_{-\infty}, m_{\infty}, n_{-\infty}, n_{\infty})$.

2.2 Motivations, definitions, and theorems

The time-invariant Nash Equilibrium of Trail of Lost Pennies is in fact characterized by a system of equations, in particular its *positive* solutions. Hence, we introduce the definition and related theorems motivate our result later.

Definition 1 (ABMN system). Let $a_i, b_i, m_i, n_i \in \mathbb{R}$ be the non-negative finite wager of Maxine and Mina, mean payout of Maxine and Mina respectively when counter is located at $i \in \mathbb{Z}$. Then the ABMN system is the set of equations

$$(a_i + b_i)(m_i + a_i) = a_i m_{i+1} + b_i m_{i-1}$$
(1)

$$(a_i + b_i)(n_i + b_i) = a_i n_{i+1} + b_i n_{i-1}$$
(2)

$$(a_i + b_i)^2 = b_i(m_{i+1} - m_{i+1})$$
(3)

$$(a_i + b_i)^2 = a_i(n_{i-1} - n_{n+1}), (4)$$

where i ranges over \mathbb{Z} .

Definition 2 (ABMN solution). A solution to this system of equations is said to have boundary data $(m_{-\infty}, m_{\infty}, n_{-\infty}, n_{\infty})$ when

$$\lim_{k\to\infty} m_{-k} = m_{-\infty}, \quad \lim_{k\to\infty} m_k = m_{\infty}, \quad \lim_{k\to\infty} n_{-k} = n_{-\infty}, \quad \lim_{k\to\infty} n_k = n_{\infty}.$$

For such a solution, the Mina margin is set equal to $\frac{n_{-\infty}-n_{\infty}}{m_{\infty}-m_{-\infty}}$. A solution is called positive if $a_i,b_i>0$ for all $i\in\mathbb{Z}$. It is called strict if $m_{i+1}>m_i$ and $n_i>n_{i+1}$ for $i\in\mathbb{Z}$. (include strict?)

Theorem 1 (Positive ABMN solution). (Include ?) Let $\{(a_i, b_i, m_i, n_i) \in (0, \infty)^2 \times \mathbb{R}^2 : i \in \mathbb{Z}\}$ be a positive ABMN solution. Then,

- 1. the solution is strict;
- 2. the solution has boundary conditions (data?) $(m_{-\infty}, m_{\infty}, n_{-\infty}, n_{\infty})$ that satisfy $m_{-\infty} < m_{\infty}$ and $n_{\infty} < n_{-\infty}$;
- 3. the values $m_{-\infty}, m_{\infty}, n_{\infty}$, and $n_{-\infty}$ are real numbers. As such, the Mina margin $\frac{n_{-\infty}-n_{\infty}}{m_{\infty}-m_{-\infty}}$ exists and is a positive finite real number.

Theorem 2 (Conditions for positive ABMN solution). Let $I \subset (0, \infty)$ equal to the set of values of the Mina margin $\frac{n_{-\infty}-n_{\infty}}{m_{\infty}-m_{-\infty}}$, where $\{(a_i,b_i,m_i,n_i\in(0,\infty)^2\times\mathbb{R}^2:i\in\mathbb{Z}\}$ ranges over the set of positive ABMN solutions. Then,

- 1. there exists a value $\lambda \in (0,1]$ such that $I = [\lambda, \lambda^{-1}]$;
- 2. a positive ABMN solution exists with boundary data $(m_{-\infty}, m_{\infty}, n_{-\infty}, n_{\infty}) \in \mathbb{R}^4$ if and only if $m_{-\infty} < m_{\infty}$ and $n_{\infty} < n_{-\infty}$ and the Mina margin $\frac{n_{-\infty} n_{\infty}}{m_{\infty} m_{-\infty}} \in [\lambda, \lambda^{-1}];$
- 3. the value of λ is at most 0.999904.

3 Main Result

[Hammond] conjectured that λ is at least 0.999902, and we will provide a computer-assisted proof that indeed $\lambda \geq 0.999902$. We first introduce some of the tools developed in [Hammond] that will be useful in our proof.

3.1 Some tools

Definition 3. (Finite mina margin map)

Definition 4. Set $w:(0,\infty)\to(1,\infty), w(x)=\sqrt{8x+1}$. Writing w=w(x), we further set

$$s = \frac{(w-1)^2}{4(w+7)},$$
 $c = \frac{(w+3)^2}{16},$ $d = \frac{(w+3)^2}{8(w+1)}$ for $x \in (0,\infty)$

Definition 5. Let $s_{-1}:(0,\infty)\to(0,\infty)$ be given by $s_{-1}(x)=\frac{1}{s(1/x)}$. We now define a collection of functions $s_i:(0,\infty)\to(0,\infty)$ indexed by $i\in\mathbb{Z}$. We begin by setting $s_0(x)=x$ for $x\in(0,\infty)$. We then iteratively specify that for $i\in\mathbb{N}_+$ and $x\in(0,\infty), s_i(x)=s(s_{i-1}(x))$ and $s_{-1}(x)=s_{-1}(s_{-i+1}(x))$. Then, for $j\in\mathbb{Z}$, set $c_j,d_j:(0,\infty)\to(0,\infty)$ to be $c_j(x)=c(s_j(x))$ and $d_j(x)=d(s_j(x))$.

Definition 6. Set $P_0 = S_0 = 1$. For $k \in \mathbb{N}$, we iteratively specify

$$P_{k+1}(x) = \prod_{i=0}^{k} (c_i(x) - 1) + P_k(x)$$
 and $S_{k+1}(x) = \prod_{i=0}^{k} (d_i(x) - 1) + S_k(x)$.

Set $Q_1 = T_1 = 0$. For $k \in \mathbb{N}_+$, we then set

$$Q_{k+1}(x) = \prod_{i=1}^{k} (c_{-i}(x) - 1)^{-1} + Q_k(x) \quad and \quad T_{k+1}(x) = \prod_{i=1}^{k} (d_{-i}(x) - 1)^{-1} + T_k(x).$$

Lemma 1 (Another form of mina margin map). For $k \in \mathbb{N}$ and $\ell \in \mathbb{N}_+$, the finite mina margin map takes the form

$$\mathcal{M}_{\ell,k}(x) = \frac{x(S_k + T_\ell)}{P_k + Q_\ell}.$$

Lemma 2. For $x \in [1/3, 3], |\mathcal{M}(x) - \mathcal{M}_{5,4}(x)| \le 6.3 \times 10^{-7}$.

Theorem 3. $\lambda \in [0.999902, 0.999904]$.

Proof. The upper bound has been proved in [Hammond], and we will provide a computer-assisted proof for the lower bound of λ .

foo \Box