Denoising Autoencoders (Continued)

Frame Title

Common Noise Types

- Gaussian noise: $\tilde{x} = x + \mathcal{N}(0, \sigma^2)$
- Salt & pepper noise:
 Random pixels set to min/max
- Dropout noise: Random features set to zero
- Masking: Blank out regions (used in MAE)

Applications

- Image denoising and restoration
- Signal processing and enhancement
- Missing data imputation
- Self-supervised pretraining
- Robust feature extraction

Linear Autoencoders and PCA - Theoretical Connection

Linear Autoencoder Configuration

A linear autoencoder with the following properties is equivalent to PCA:

- Linear activations (no non-linearities)
- Single hidden layer (one encoder, one decoder layer)
- MSE loss function $(\|x \hat{x}\|^2)$
- Undercomplete representation (dim(z) < dim(x))

Mathematical Equivalence

For a linear autoencoder:

$$z = Wx$$
 (1)

$$\hat{x} = W'z = W'Wx \qquad (2)$$

At the optimum, the weight matrices:

PCA vs. Autoencoder - Key Differences

PCA Properties

- Orthogonal components
 - Directions are perpendicular
 - Uncorrelated features
- Variance maximization
 - Directions of maximum variance
 - Components ordered by importance
- Closed-form solution
 - Eigendecomposition of covariance
 - Computationally efficient
- Linear transformations only

Autoencoder Properties

- Not constrained to orthogonality
 - More flexible representations
 - Can have correlated features
- Reconstruction optimization
 - Minimizes reconstruction error
 - No explicit ordering of features
- Iterative solution
 - Trained with gradient descent
 - Potentially more computationally intensive
- Non-linear transformations
 - Can model complex relationships
 - More powerful for complex data

Comparative Visualization - PCA vs. Autoencoder

Original Data

- Non-linear structure (spiral)
- 2D data for visualization
- Complex pattern

PCA Projection (1D)

- Linear projection only
- Cannot capture spiral structure
- Points overlap in projection

Autoencoder Encoding (1D)

1D latent representation

- Non-linear encoding function
- Preserves structure in 1D

The Bottleneck Layer - Information Theory Perspective

Information Bottleneck

- The bottleneck layer creates an information constraint
- Forces network to:
 - Discard irrelevant/noisy information
 - Preserve essential structure
 - Learn efficient encodings
- Size determines compression level

Frame Title

Information Theory View

$$I(X;Z) \le \min(H(X),H(Z)) \tag{5}$$

$$H(Z) \le \log(|\mathcal{Z}|) \tag{6}$$

7/8

where:

- I(X; Z) is mutual information
- H(X), H(Z) are entropies
- \bullet $|\mathcal{Z}|$ is size of latent space

Compression vs. Reconstruction Trade-off

- Too narrow bottleneck: Poor reconstruction, too much info lost
- Too wide bottleneck: Perfect reconstruction but no useful compression
- Optimal bottleneck: Preserves essential structure while reducing

 Comprehensive Visual Guide

 Understanding Autoencoders

 April 9, 2025

Overview

Figure: DAE