EXPERIMENT - 5

AIM:

To Determine the Mechanical Equivalent of heat.

Observations:

Specific Heat for Al, $C_{Al} = 887 \text{ J/Kg}^{o}C$ Specific Heat for Cu, $C_{Cu} = 385 \text{ J/Kg}^{o}C$ Specific Heat for Pb, $C_{Pb} = 130 \text{ J/Kg}^{o}C$ Acceleration due to gravity, $g = 9.81 \text{ m/s}^{2}$

Metal	Weight	Length	Initial	Flips	Final	Height	E = mgh	Q =	J = E/Q
	m(g)	l(m)	Temp.		Temp.	of shot	(Joules)	mCΔT	(Joule/
			(°C)		(°C)	h(m)		(Joules)	Joule)
Al	405.2	1.8 m	21.1	45	22.0	81	321.976	323.472	0.9954
Cu	473.2	1.9 m	21.1	33	22.7	62.7	291.059	291.4912	0.9985
Pb	515.9	1.9 m	21.1	26	24.8	49.4	250.013	248.1497	1.0075

Calculations:

For Al:

Value of J =
$$0.9954*4.186 = 4.1667444$$
 J/Cal Error %, $E_{Al} = \frac{4.1667444-4.186}{4.186} * 100 = 0.46\%$

For Cu:

Value of J = 0.9985*4.186 = 4.179721 J/Cal
Error %,
$$E_{Cu} = \frac{4.179721 - 4.186}{4.186} * 100 = 0.15\%$$

For Pb:

Value of J = 1.0075*4.186 = 4.217395 J/Cal
Error %,
$$E_{Pb} = \frac{4.217395 - 4.186}{4.186} * 100 = 0.75\%$$

Results:

Mechanical Equivalents of heat for Al, Cu, Pb are 4.167 J/Cal, 4.18 J/Cal, 4.2174 J/Cal respectively with % error of 0.46%, 0.15%, 0.75% respectively.