

M2CAL WORKFLOW CHALLENGE 2016 Fine tuning CNN with HMM smoothing

21th October 2016

Rémi Cadène, Thomas Robert, Nicolas Thome, Matthieu Cord

University Pierre and Marie Curie - LIP6 - MLIA

M2CAI Workflow Dataset

Videos resolution is 1920×1080 , shot at 25 frames per second at the IRCAD research center in Strasbourg, France.

- 27 training videos
- 15 test videos

M2CAI Workflow Dataset

1 of 8 classes for each frames:

- TrocarPlacement
- Preparation
- CalotTriangleDissection
- ClippingCutting
- GallbladderDissection
- GallbladderPackaging
- CleaningCoagulation
- GallbladderRetraction

M2CAI Workflow Goal and Measure

Online prediction : $P(y|x_i, x_{i-1}, x_{i-2}, ...)$

$$x_i := \text{frame } i, \text{ and } y := \text{classes}$$

Useful to:

- monitor surgeons
- trigger automatic actions

Measures : - Jaccard similarity coefficient : $|A \cap B| = |A \cap B|$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

- Accuracy top1 : nb frames well classified / nb total frames

Two fold

Training models to classify from images (frames)
Extract features from CNN Fine tuning CNN
Smoothing the predictions of our model
1. averaging 2. HMM

1. Extracting images

Train

Val

2. Training a frame classifier

Features extraction

2. Training a frame classifier

Fine tuning CNN

2. Training a frame classifier

Fine tuning CNN with Weldon

3. Smoothing the predictions

Avereging

3. Smoothing the predictions

HMM online

3. Smoothing the predictions

HMM offline

Validation set

Visualization

by classes

Visualization

hmm A

Visualization

hmm mus

Conclusion

lolz