## Séance 4 du 22.01. - Changements de variables Sujet 2023 Exercice 2: 10 points Partie A Le tableau suivant, où $x_i$ désigne le rang de l'année mesuré à partir de l'année 2015, donne le nombre $y_i$ d'appareils connectés, exprimé en milliards, dans le monde entre 2015 et 2021. 2015 2016 2017 2018 2019 2020 2021 Année $x_i$ : rang de l'année 0 1 2 3 4 5 6 $y_i$ : nombre d'appa-15,4 17,7 20,4 23,1 26,7 30,7 35,8 reils (en milliards) **a.** Déterminer le coefficient de corrélation linéaire r de la série statistique $(x_i; y_i)$ . Arrondir le résultat au centième. r ~ 0,99 b. Expliquer pourquoi le résultat obtenu permet d'envisager un ajustement affine. r et proche de 1 donc un ajutement affire et adapté 2. Déterminer, à l'aide d'une calculatrice, une équation de la droite de régression de y en x, sous la forme y = ax + b. Les coefficients a et b seront arrondis au dixième. M = 3,3 x + 14,2 y=ax+b a=3.339285714 b=14.23928571 r2=0.9806709473 r=0.9902883152 3. À l'aide de l'équation de la droite de régression trouvée précédemment, estimer le nombre d'appareils qui seront connectés en 2023. En 2023, z = 8 et $y = 3,3 \times 8 + 14,2$ En 2023, on estime le montre d'appareils connecté à 40,6 milliands d'appareils. III.4. « Transformation » d'un nuage, changement de variable(s) i Idée On peut « transformer » l'un des deux paramètres (ou les deux) de la série à l'aide d'une certaine fonction : on obtient un nouveau nuage de points (généralement de forme allongée); on détermine l'équation de la droite d'ajustement; · on revient aux variables initiales (en retournant la fonction). > Exemples On transforme avec « ln », on retourne avec « exp » (et inversement). On transforme avec « $\sqrt{\ }$ », on retourne avec « $^2$ » (et inversement). On transforme over "inverse" et on retourne over "inverse".





## **Exercice 4**

Un test sur circuit de distance d'arrêt d'un véhicule en fonction de sa vitesse a livré les résultats suivants :

| L٨ | Vitesse en km/h (v <sub>i</sub> )       | 27 | 43 | 62 | 78 | 98  | 115 | 125 | 137 |
|----|-----------------------------------------|----|----|----|----|-----|-----|-----|-----|
| L3 | $x_i = (v_i)^2$                         |    |    |    |    |     |     |     |     |
| 12 | Distance d'arrêt en m (d <sub>i</sub> ) | 9  | 21 | 36 | 68 | 101 | 136 | 170 | 201 |

Représenter le nuage de points (v<sub>i</sub>; d<sub>i</sub>) en prenant 1 cm pour 10 km/h en abscisse et 1 cm pour 20 m en ordonnée (de 0 à 160 en abscisse et de 0 à 250 en ordonnée).



2. Déterminer l'équation de la droite de régression de d en v sous la forme d = av + b en arrondissant a à 2 décimales et b à l'entier, ainsi que le coefficient de corrélation linéaire correspondant arrondi à 3 décimales.

RégLin 9=ax+b a=1.758168091 b=-57.79314275 r<sup>2</sup>=0.9611939182 r=0.9804049766 2 ≈ 0,98 d = 1,76 N - 57,79

Tracer cette droite sur le graphique et déterminer quelle serait, suivant cette tendance, la distance d'arrêt pour une vitesse de 150 km/h.



Pan 150 km/h: N= 150 d = 1,76 x 150 - 57,79 = 206,4 DiVance d'arrêt chima: 206,4 mite

Cette modélisation ne semblant pas totalement satisfaisante, on se demande si la distance d'arrêt ne serait pas plutôt corrélée à l'énergie acquise par le véhicule, c'est à dire au carré de la vitesse.

- **4.** On pose  $x_i = (v_i)^2$ .
  - a. Compléter le tableau avec la ligne des  $x_i$ .

| L1  | L2  | Lз    |
|-----|-----|-------|
| 27  | 9   | 729   |
| 43  | 21  | 1849  |
| 62  | 36  | 3844  |
| 78  | 68  | 6084  |
| 98  | 101 | 9604  |
| 115 | 136 | 13225 |
| 125 | 170 | 15625 |
| 137 | 201 | 18769 |
|     |     |       |

b. Déterminer le coefficient de corrélation linéaire du couple (x; d), arrondi à 4 décimales L'idée de cette nouvelle modélisation vous parait-elle bonne?

A ≈ 0. 9989



