Project

Applying Your Learning

Lab9

The Instructors Design's for Students to Analyze

Remember

There is no 100% security

Security, like all engineering, involves tradeoffs

Know what you are trying to secure

The adversary...

Schedule

```
• 12 APR Topic Review / Project Launch
```

- 19 APR [DEFEND] Design Review: **Key Management**
- 26 APR [DEFEND] Design Review: Secure Message Exchange
- 03MAY [ATTACK] Analysis: Attack Plan for Two Designs

Biased toward attacking Instructor designs

Project -- Randomizer

Network	Number of Nodes per Session	Nature of Security	Channel	Hardware Acceleration	Message Rate
CAN FD	Fixed; N=5	Secure the control loop	1	Symmetric only	10 msg/sec
CAN FD	Dynamic; N=315	Secure the control loop	8	Symm & Asymm	1,000 msg/sec

Project – Instructor Constraints

Instructor A

CAN FD

Fixed; N = 5

Secure Control Loop

8 Channel

Symm and Asymm

1000 msg/sec

Instructor B

CAN FD

Dynamic; N = 3..15

Secure Control Loop

8 Channel

Symm and Asymm

10 msg/sec

NOTE!

- Each design has at least one huge security gap.
- Can you identify them?

Instructor A: Fast Multi-Loop

Key Management

Key Management is handled in two stages:

 Joining (done once in an ECU's "life"), which is driven by PoP CWTs and uses NaCl Box() to move network channel key, S_{NCH}.

Session (done on every power cycle, or more often)

An: Valid PoP CWT

Az: ECUs must be for the VIN and assigned a channel(s) – signed by OEM

 $\mbox{P/K}_{\mbox{\scriptsize OEM}}-\mbox{for signing/validating PoP CWT (ECU's do NOT have <math display="inline">\mbox{K}_{\mbox{\scriptsize OEM}})$

P/K_A -- public/private key agreement keypair for ECU "A".

 S_{NCH} – long-lived network channel key S_{VCH} – short-lived session channel key

Message Exchange

[F32|32 I24] 64

F : 32-bit freshness value, unique to each Tx. Rx must track FV of each ECU they receive from.

by

: 24-bit truncated CMAC covers PGN, SA, CH, FV and Data

C : none

An: must have signed CWT to get keys

Az: keys are distributed by channel, so CWT must contain channel(s) the ECU is authorized to

Instructor A

CAN FD

Fixed; N = 5

Secure Control Loop

8 Channel

Symm and Asymm

1000 msg/sec

Instructor A – Key Management

"Joining" is a one-time event

- TIC is the network leader
- Uses CWT signed by OEM
 - CWT includes AZ for VIN and Channel
- Mutual authentication of CWT
 - TIC validates ECU CWT using P_{OEM}
 - ECU validates TIC CWT using P_{OFM}
 - Validation includes Proof-of-possession step
 - Send a nonce in a box, require nonce+1 to come back in another box
- TIC gives out long-lived channel key, S_{NCH} using Box()
 - Message size = (16+24)+16 = 56 bytes
 - (16+24) is MAC and nonce
 - 16 is AES-128 key, S_{NCH}.

OEM issues PoP CWT

Instructor A – Key Management

- "Session" happens on every power-cycle (or more often, if needed)
 - TIC waits for all 5 members to complete NAME process before starting...
 - On each session & for each channel
 - TIC sends 8-bit channel, 128-bit nonce and 128tag
 - Tag = CMAC(S_{NCH}, PGN | | CH | | NONCE)
 - Nonce Message = CH | NONCE | Tag
 - Each member validates the nonce, if valid
 - Calculate the session key for the channel(s) it participates in
 - S_{VCH} = KDF(S_{NCH}, NONCE)

- Used by TIC to create nonce message.
- Used by member to validate the nonce message.

 Used by all participants to create the session key for the channel

Instructor A – Message Exchange

- Tag used to prove freshness, integrity, An and Az
- Only ECUs authorized to the channel have access to the key required to create and validate tags

CH - channel

FV – 32-bit freshness value, unique to each Tx

T-24-bit truncated CMAC for tag, use CMAC(S_{VCH} , PGN || SA || CH || FV || Data)

Opted for the simplicity allowed by CAN FD and symmetric acceleration to tag each message (as opposed creating epochs and wrapping security around the stream)

Instructor B: SlowSigned

Key Management

Key Management (on every power cycle):

An: Valid PoP CWT Az: ECUs must be

assigned a channel(s)

- signed by OEM

- Recognition, ECU sends 32-byte public key.
- If other ECU doesn't recognize the Public key then it triggers mutual An/Az via PoP CWT.
- ECUs remember P_{ECU} and Authorized channels for subsequent power cycles.

P/K_{OFM} – for signing/validating PoP CWT (ECU's do NOT have K_{OFM})

 P/K_{Δ} – public/private signing keypair for ECU "A".

Message Exchange

[F32|32 I24] 64

: 32-bit freshness value, unique to each Tx. Rx must track FV of each ECU they receive from.

: 24-bit truncated CMAC covers PGN, SA, CH, FV and Data

C : none

An: must have signed CWT to get keys

Az : keys are distributed by channel, so CWT must contain channel(s) the ECU is authorized to

Instructor B

CAN FD

Dynamic; N = 3..15

Secure Control Loop

8 Channel

Symm and Asymm

10 msg/sec

Instructor B – Key Management

"Recognition" happens on every cycle

- ECU_A sends its public key, P_A, as 32-byte CAN FD frame
 - If everyone else recognizes the ECU then go to message exchange
- If ECU_B does not recognize ECU_A:
 - ECU_B responds with "unrecognized" PGN, where the frame contains P_A .
 - ECU_B and ECU_A exchange PoP CWT, validate them, and then do Proof-of-Possession step.
 - Proof-of-Possession requires signing a nonce provided by the other ECU
 - ECUs then store the other ECU's public key and channels in flash memory, to be used in future recognition events.

OEM issues PoP CWT

Instructor B – Message Exchange

CH - channel

FV – 32-bit freshness value, unique to each Tx

T - 512-bit (64-btye) Ed25519 signature = Ed25519(K_A , PGN || SA || CH || FV || Data)

The receiver uses P_{Δ} to validate the signature.

NOTE This approach is acceptable given: a) the slow message rate and b) the availability of hardware accelerated asymmetric cryptography.

- · Only ECU A can sign the message.
- · EVERY ECU can verify the message.
- This is a bit "better" than situations with group keys...
 in that we have strong reason to believe that the
 message really is from a SPECIFIC ECU.