네트워크 계층 3

NAT

NAT 내부 == 같은 IP 주소를 사용함

⇒ 지저분해지는 문제가 생김

왜?

⇒ IP 주소가 아니라 PORT 번호로 보낸 패킷을 찾아가기 때문에 진짜 프로세서를 찾기 위해 계속해서 재해석 할 필요가 있음

위의 이유에 따라 NAT를 사용해서는 배포가 불가능 하다는 문제가 생김
⇒ IPv4를 계속해서 사용할 수는 없음

DHCP(Dynamic Host Configuration Protocol)

우리는 개인에게 할당된 IP(고정 IP) 를 사용지 않음
IP 주소를 확인할 때 ip, subnet, router, DNS 등을 확인할 수 있음
우리가 직접 기입한 적이 없는데 어떻게?

⇒ DHCP 프로토콜이 직접 기입해줌

DHCP 는 IP 주소를 요청하면 제공해줌 ⇒ 추후에 회수해감

DHCP client-server scenario

Network Layer 4-51

- IP 주소를 할당받은 클라이언트가 request 를 또 다시 보내는 이유
- ⇒ 사용을 확정하겠다는 의미 (여러 주소 중 하나만 선택)

여러 주소 중 하나만 선택한다?

- ⇒ DHCP 는 브로드캐스트 하게 IP를 전달하기 때문
- 그렇다면 유의미한 인스턴스(클라이언트) 는 어떻게 구분하는가?
- ⇒ IP 주소를 요청한 클라이언트는 port 번호가 열려있다.

MTU (최대 전송 단위)

IPv4 의 경우 MTU를 초과하면 데이터를 여러개로 쪼갠다 ⇒ 독립 패킷 목적지에 도착하면 패킷을 다시 조립한다!

중간에 패킷이 유실된다면???

⇒ 패킷을 재조립 할 수 없다 ⇒ ACK 가 도달하지 않음 ⇒ 타이머 시간초과 ⇒ 재전송

네트워크 계층 3 2

의 순서를 거쳐 패킷이 다시 전송된다.

문제

IP 주소를 확인할 때

ip주소, 서브넷 마스크, 라우터, DNS 등의 정보를 제공해주는 프로토콜의 이름은?

네트워크 계층 4

ICMP(Internet Control Message Protocol)

문제가 생겼을 때 어떤 상황에서 문제가 생겼는지에 해당하는 메세지를 보내주는 프로토 콜

ex) 라우터를 이동하다 cnt 값이 0이 돼서 패킷이 Drop 되면 어떤 상황인지 해당하는 메세지를 줌

•	to communicate network- level information	Type Code description			
		0	0	echo reply (ping)	
		3	0	dest. network unreachable	
	error reporting:	3	1	dest host unreachable	
	unreachable host, network, port, protocol	3	2	dest protocol unreachable	
		3	3	dest port unreachable	
	echo request/reply (used by	3	6	dest network unknown	
	ping)	3	7	dest host unknown	
*	network-layer "above" IP:	4	0	source quench (congestion	
	 ICMP msgs carried in IP datagrams 			control - not used)	
		8	0	echo request (ping)	
		9	0	route advertisement	
**	ICMP message: type, code	10	0	router discovery	
	plus first 8 bytes of IP	11	0	TTL expired	
	datagram causing error	12	0	bad IP header	

IPv6 로 넘어갈 때 주소는 걱정하지 않아도 된다

used by hosts & routers

하지만 과도기에는 서로 다른 두 프로토콜을 이해하는(터널링) 라우터가 필요하다

네트워크 계층 4 1

라우팅 알고리즘

수업을 들으면서 네트워크를 그래프처럼 표현할 수 있다는 것을 알게 되었다.

라우팅의 목적 == 시작 지점에서 목표 지점으로 이동하기 위함

어떻게 효율적으로 라우팅 할 수 있을까? ⇒ 목적지까지 이동 가능한 최단 경로를 찾자! ⇒ 다익스트라 알고리즘

Link State ≒ 다익스트라

왜 사용하는가?

⇒ 포워딩 테이블을 채우기 위해서

Ste	o N'	D(v) p(v)	D(w) p(w)	D(x) p(x)	D(y) p(y)	D(z) p(z)
0	u	7,u	3,u	5,u	∞	∞
0	uw	6,w		5,u	11,w	∞
2	uwx	6,w			11,W	14,X
2	uwxv				10,	14,x
4	uwxvy					12,V
5	uwxvyz					

문제점 : 전 세계의 수많은 라우터(개인이 소유하기 때문) 간의 최단 경로를 찾을 수 있을까?

⇒ 불가능하다 link state 알고리즘은 하나의 네트워크(내부) 에서만 사용한다.

Distance Vector ≒ 재귀네ㄷㄷ

내 이웃과의 최단 거리를 알면 된다.

문제

link state 라우팅 알고리즘에서 사용하는 알고리즘 기법은?

네트워크 계층 4 4