Imperial College London

Variational Inference + Autoencoders

Recap

$$\frac{\partial L}{\partial w_1^{(1)}} = \underbrace{ \frac{\partial L}{\partial a_1^{(3)}} \frac{\partial a_1^{(3)}}{\partial x_1^{(3)}} \frac{\partial x_1^{(3)}}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial x_1^{(2)}} \frac{\partial x_1^{(2)}}{\partial w_1^{(1)}} }_{} + \underbrace{ \frac{\partial L}{\partial a_2^{(3)}} \frac{\partial a_2^{(3)}}{\partial x_2^{(3)}} \frac{\partial x_1^{(3)}}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial x_1^{(2)}} \frac{\partial x_1^{(2)}}{\partial w_1^{(1)}} }_{}$$

- We can classify an image using a fully connected neural network architecture
- Each layer has a non-linear connection to each node in the previous layer
 - We train neural networks with back-propagation (which is the chain rule)

Imperial College London

Objectives

- What are generative models? Understand the role of observed variables and latent variables (Terms are not always rigorous)
- Understand Autoencoder architecture (a particular type of generative model) and how to train one using SGD
- Discover Variational Autoencoders, which constrain the latent space of Autoencoders
- Use Variational Inference to train a Variational Autoencoder
- Blur the supervised/unsupervised line with Conditional Variational Autoencoders

Imperial Collegei London

Observed Variables

- Observed variables are variables which we can measure
- For a die, the observed variable is the face of the die which points upwards when we roll it

Observed Variables

- Observed variables are variables which we can measure
- In MNIST, the observed variable is an image of a handwritten digit

Observed Variables

- Observed variables are variables which we can measure
- In FWI, the observed variable is the wavefield data

Can anyone give me an example of another observed variable?

Latent Variables

- Latent variables are variables which explain observed variables
- For a die, the latent variable is the biasedness of the die

Roll 1	Roll 2	Roll 3	Roll 4	Roll 5

Latent Variable

$$p(4) = 100\%$$

Latent Variables

- Latent variables are variables which explain observed variables
- In MNIST, the latent variable is the digit class

Latent Variable

Digit class = 5

Latent Variables

- Latent variables are variables which explain observed variables
- In FWI, the latent variable is the acoustic sound speed

Latent Variable

Can anyone give me an example of another latent variable?

Imperial College London

- Generative models capture the joint probability distribution of an observed and latent variable
- If we sample the latent variable, we can generate samples of the observed variable

For example

- A single die p(face, bias)
- MNIST digits p(image, class)
- **FWI** p(wavefield, sound speed)

Imperial Collegei London

- If we sample the latent variable, we can generate samples of the observed variable
- The generative model contains all the possible biases of a die
- We sample the latent variable by making a die which is biased p(4) = 100%
- Now we can take some samples...

Roll 1	Roll 2	Roll 3	Roll 4	Roll 5

- If we sample the latent variable, we can generate samples of the observed variable
- The generative model contains all the possible handwritten digits
- We choose the digit class as 5
- Now we can take some samples...

Conceptual study of Auto-encoders and Variational Auto-encoders

Autoencoder Workflow

Autoencoder Names

A linear autoencoder is PCA

Transposed Convolution (Increasing dimensionality)

 Shamelessly borrowed from the source https://www.youtube.com/watch?v=96_oGE8WyPg

Imperial Collegen London

Lets generate an image

Lets generate an image

The Encoder (also know as a Recognition network) takes an example image

The layers of the encoder are activated and eventually activate a latent space. Initially the latent space is random

Decoder (also known as Generator) takes the latent activations and generates an image.

The Encoder (also know as a Recognition network) takes an example image

The layers of the encoder are activated and eventually activate a latent space. Initially the latent space is random

Decoder (also known as Generator) takes the latent activations and generates an image.

- Steps
- Compare the input image and the generated image using the L2 norm
- 2. Take the sum of the pixelwise differences
- Imperi³. Use the sum of the difference to run a stochastic gradient descent (to train the parameters of the encoder and decoder

- Compare the input image and the generated image using the L2 norm
- 2. Take the sum of the pixelwise differences
- Imperi³. Use the sum of the difference to run a stochastic gradient descent (to train the parameters of the encoder and decoder

- Compare the input image and the generated image using the L2 norm
- 2. Take the sum of the pixelwise differences
- Imperi³. Use the sum of the difference to run a stochastic gradient descent (to train the parameters of the encoder and decoder

Mathematics of Training Autoencoders

This is relatively straight-forward, as usual we just use the chain rule

$$\frac{\partial L}{\partial w_1^{(1)}} = \frac{\partial L}{\partial a_1^{(3)}} \frac{\partial a_1^{(3)}}{\partial x_1^{(3)}} \frac{\partial x_1^{(3)}}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial x_1^{(2)}} \frac{\partial x_1^{(2)}}{\partial w_1^{(1)}} + \frac{\partial L}{\partial a_2^{(3)}} \frac{\partial a_2^{(3)}}{\partial x_2^{(3)}} \frac{\partial x_1^{(3)}}{\partial a_1^{(2)}} \frac{\partial a_1^{(2)}}{\partial x_1^{(2)}} \frac{\partial x_1^{(2)}}{\partial w_1^{(1)}}$$

 Now the loss is the difference between the target (observed) image and the predicted image

$$L = \operatorname{fn}(X, \hat{X})$$

 For example the L2-norm, which is the pixel-wise square difference between the target and the prediction

$$L = ||X - \hat{X}||^2$$

The problem with Autoencoders

- When we visualise our latent space we see that the range of the latent vector is not limited
- This means the shape of the trained latent space is hard to predict
- Note that the latent-space looks a bit like a probability distribution

The problem with Autoencoders

- This is a problem when we try to generate new samples from the latent space
- We either limit the range of values that we generate by sticking close to (0,0)
- Or we generate bogus values by sampling parts of the latent space which don't contain any useful information

Variational autoencoders

- We can force the latent space to be a specific probability distribution
- We can even force it to be a standard normal gaussian

$$z_i \sim \mathcal{N}(0, I)$$

$$z_i \sim \mathcal{U}(1,6)$$

Variational Autoencoder

Now our latent space represents a probability distribution which we have chosen

Imperial College London

Why is this better?

 (SPOILER) Now our latent space has a gaussian shape, sampling is much easier

 ... and we no longer generate bogus values

Why can't we train our autoencoder anymore?

Training a Variational Autoencoder

Bayes equation to the rescue ...or maybe not

- Please see the accompanying notes
- Bayes equation is a framework for finding the posterior of a probabilistic optimisation problem
- Unfortunately the evidence distribution is intractable so it is challenging to solve directly
- An equivalent formulation for VAE's is to minimise KL divergence between an approximating distribution and the posterior for the latent space

Evidence Lower Bound

- This KL divergence also can't be solved directly
- We rearrange the KL divergence to remove the evidence term from the posterior
- This means we can minimise the negative KL divergence between the approximating distribution and the joint distribution (of the latent and observed variables)

The log-derivative trick and score-function method

- We want to optimise by taking the derivative of the new KL divergence
- We can't take a derivative of the expectation of this KL divergence directly
- Instead we use the log-derivative trick to put this in a tractable form which allows a solution

The reparameterisation trick & Path-wise derivatives

- The score-function/log-derivative approach is prone to instability because the variance of the gradient estimate is high
- Another way to calculate the derivative is to arrange the approximating distribution so it is a deterministic function of another distribution with constant coefficients
- This means we can differentiate through the parameters of the deterministic function to get a lower-variance gradient update

Variational Autoencoders + Reparameterisation Trick

Concluding remarks

Objectives

- What are generative models? Understand the role of observed variables and latent variables (Terms are not always rigorous)
- Understand Autoencoder architecture (a particular type of generative model) and how to train one using SGD
- Discover Variational Autoencoders, which constrain the latent space of Autoencoders
- Use Variational Inference to train a Variational Autoencoder
- Blur the supervised/unsupervised line with Conditional Variational Autoencoders

Conditional variational autoencoders (& Semi-supervised learning) Decoder Latent Space Predicted **Image** Image Simply concatenate the class-Class Class labels onto the image vector Labels Labels (before encoding) and the latent vector (before decoding)

Conditional variational autoencoders (& Semi-supervised learning)

- Note that the class labels are additional dimensions, so now each class is normally distributed in the latent space
- This tool is particularly useful for generative modelling in unbalanced datasets
- For a useful blog please see
 https://wiseodd.github.io/techblog/2016/
 /12/17/conditional-vae/

Useful links

- Please see the following blog https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html which covers many of the older types of specific architectures
- An in-depth tutorial https://arxiv.org/pdf/1606.05908.pdf
- t-distributed stochastic neighbour embedding is a way of visualising highdimensional latent spaces
 - https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a
 - https://discuss.pytorch.org/t/t-sne-for-pytorch/44264

Novel Architectures

- Auto-encoder classification
 https://ieeexplore.ieee.org/abstract/document/9424386
- Normalising flow, particularly autoregressive flow https://arxiv.org/pdf/1606.04934.pdf

As good as GAN's?

- Very deep VAE is a new type of architecture which looks roughly like a u-net
- For more information here's the paper

https://arxiv.org/pdf/2011.10650.pdf