Hardware. Astronomy Housekeeping Box (h.aHKBox) Chassis

As Worked On By Adam Stammer

Context

Project Goal

To design and build an open source, modular Eurocard system to be used as astronomical control/housekeeping equipment

To replace existing ZEUS2 housekeeping equipment with a cheaper, simpler, more robust system

My Goals

- Design Prototyping Daughtercard (P-Card) to aid in development
- Design Eurocard Backplane to connect and control modular cards
- Choose Power Supplies
- Put it all together in the case
- Program Controllers as foundation for card interaction

Existing Housekeeping Equipment

Whiteboarding of the H.aHK Box

Draft model of H.aHK Box

Blue = touch screen

Black = power supply

Grey = cooling fan

Green = circuit boards (big is the bus, and slam are the cards)

Device	Processor	RAM/ Storage	Other	Software	June : Ref.
Raspberry Pi 3 \$39.95	64-bit 1.2 GHz ARM	1 GB/ 32GB	40GPIO, SPI, I2C, HDMI, 4 - USB, Ethernet, Serial	Debian Linux	[5]
Teensy 3.2 \$19.80	72 MHz ARM Cortex-M4	64KB/ 256 KB	34 GPIO, 21 ADC (13-Bit), Serial (3), SPI, I2C (2),	Arduino IDE	[6]

Similar cases and cards as the H.aHK Box as found commercially.

Prototyping Card (P-Card) Sketch

燃Male Socket, Female Socket, Breadboard, High Power Banana Jacks, Double Length For Easy Access

Sockets

煾6o Pins @ 2 Amps and 4 High Current Pins @ 20 Amps

Socket Pinout

^煾2 HP IO, 9 4pin IO Channels, 2 I2C Channels, 1 SPI Channel, Low Power Input, High Power Input, Ground

Prototyping Card (P-Card)

燃Male Socket, Female Socket, Breadboard, High Power Banana Jacks, Double Length For Easy Access

灺Male Socket, Female Socket, Breadboard, High Power Banana Jacks, Double Length For Easy Access

Prototyping Card (P-Card)

Backplane Simplified Schematic Sketch

燃Sockets, Power, SPI, HP Signal I/O, 9 4-pin signal I/Os per card, Arduino Controller (with I2C), On board Temperature Sensors, 7-segment digit display, 5Volt and 2oVolt Power, Raspberry Pi (with I2C), Interrupts from Arduino and Pi

Backplane Schematic

恩Sockets, Power, SPI, HP Signal I/O, 9 4-pin signal I/Os per card, Arduino Controller (with I2C), On board Temperature Sensors, 7-segment digit display, 5Volt and 2oVolt Power, Raspberry Pi (with I2C). Interrupts from Arduino and Pi

Backplane Schematic Closeup

恩Sockets, Power, SPI, HP Signal I/O, 9 4-pin signal I/Os per card, Arduino Controller (with I2C), On board Temperature Sensors, 7-segment digit display, 5Volt and 2oVolt Power, Raspberry Pi (with I2C), Interrupts from Arduino and Pi

В

Chassis Render Back

Chassis Render Front

Card Render

Next Steps

Finish Technical Guide

- Summarize completed work
- Guide future designers and end users

Finish Backplane PCB Layout

Build and Test Everything

Program Controllers

Design/Build Cards