Problemas de revisão da matéria de FQ I

N. M. R. Peres

September 19, 2016

1 Momento angular

1. Partindo de

$$L_{+}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m+1)}|l,m+1\rangle, \qquad (1)$$

$$L_{-}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m-1)}|l,m-1\rangle, \qquad (2)$$

obtenha a representação matricial para os operadores L_x e L_y considerando o caso l=1.

- 2. Escreva a representação matricial do operador L_z considerando o caso l=1. Obtenha, a partir das matrizes do item anterior, a representação matricial do operador L^2 .
- 3. Partindo de

$$L_{+}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m+1)}|l,m+1\rangle,$$
 (3)

$$L_{-}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m-1)}|l,m-1\rangle,$$
 (4)

obtenha a representação matricial para os operadores L_x e L_y considerando o caso l=3/2. Verifique a sua resposta sabendo que para este caso temos

$$L_{+} = \hbar \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}, \tag{5}$$

$$L_{-} = \hbar \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{3} & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}.$$
 (6)

- 4. A partir da representação no espaço real (em coordenadas esféricas) dos operadores L_x , L_y e L_z , obtenha a representação no espaço real do operador L^2 , nas mesmas coordenadas.
- 5. Considere uma partícula de spin 1/2 representada pelo estado normalizado

$$\chi(0) = \begin{pmatrix} \cos \alpha \\ e^{i\beta} \sin \alpha \end{pmatrix} . \tag{7}$$

- (a) Calcule a probabilidade de uma medida de S_y originar o valor $-\hbar/2$.
- (b) Escreva a evolução temporal do estado $\chi(0)$, admitindo que a partícula é descrita por um Hamiltoniano da forma $H=g\sigma_z$.
- 6. A representação matricial de L_y para o caso l=1 é

$$L_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix} . \tag{8}$$

(a) Verifique se o estado

$$|1,1\rangle = \frac{1}{2} \begin{pmatrix} 1\\ i\sqrt{2}\\ -1 \end{pmatrix} \tag{9}$$

está normalizado e se é estado próprio de L_y .

- (b) Calcule todos os valores e vectores próprios de L_y .
- 7. Use a representação matricial, para o caso l=1/2, dos operadores S_x , S_y e S_z para verificar que

$$[S_x, S_y] = i\hbar S_z. (10)$$

8. Se representarmos os estados próprios de S_z pelos kets $|m=1/2\rangle$ e $|m=-1/2\rangle$, verifique que os operadores S_z , S_+ e S_- podem ser escritos como

$$S_z = \frac{\hbar}{2} |m = 1/2\rangle \langle m = 1/2| - \frac{\hbar}{2} |m = -1/2\rangle \langle m = -1/2|,$$
 (11)

$$S_{+} = \hbar |m = 1/2\rangle \langle m = -1/2|,$$
 (12)

$$S_{-} = \hbar |m = -1/2\rangle \langle m = 1/2|$$
 (13)

9. Uma partícula de spin 1 encontra-se no estado

$$|\psi\rangle = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3i \end{pmatrix} . \tag{14}$$

- (a) Verifique se o estado está normalizado
- (b) Calcule as probabilidades de numa medida de L_z obtermos os valores $-\hbar, 0, \hbar$.
- (c) Sem usar multiplicação de matrizes, calcule o valor expectável de L_z .
- (d) Calcule o valor expectável de L_x .
- 10. Demonstre que a seguinte igualdade

$$e^{-iS_y\theta/\hbar} = \cos\frac{\theta}{2} - \frac{2i}{\hbar}S_y\sin\frac{\theta}{2}.$$
 (15)

para partículas de spin 1/2.

2 Hamiltonianos dependentes do momento angular

1. Mostre que a função de onda (normalizada)

$$\langle \theta, \phi | \psi(0) \rangle = \sqrt{\frac{3}{4\pi}} \sin \theta \sin \phi$$
 (16)

é função de onda do hamiltoniano

$$H = \frac{L^2}{2I}$$

(Sugestão: escreva a função de onda usando harmónicos esféricos.)

2. Um rotor rígido, quando colocado num campo magnético $\boldsymbol{B} = B_0 \boldsymbol{u}_z$, é descrito pelo hamiltoniano

$$H = \frac{L^2}{2I} + \omega_0 L_z \,. \tag{17}$$

(a) Se o sistema se encontrar no estado

$$\langle \theta, \phi | \psi(0) \rangle = \sqrt{\frac{3}{4\pi}} \sin \theta \sin \phi$$
 (18)

calcule a forma da função de onda no tempo t, $\langle \theta, \phi | \psi(t) \rangle$.

(b) Também podemos escrever a função de onda $\langle \theta, \phi | \psi(0) \rangle$ na representação de Dirac, como

$$|\psi(0)\rangle = \frac{i}{\sqrt{2}}(|1,1\rangle + |1,-1\rangle). \tag{19}$$

Indique o significado dos termos dentro dos parêntesis curvos.

- (c) Calcule o valor expectável de L_x no tempo t. (Sugestão: expresse o operador L_x em termos dos operadores L_+ e L_- .)
- 3. O hamiltoniano que descreve a rotação da molécula de NH_3 é dado por

$$H = \frac{L_z^2}{2I_1} + \frac{L_x^2 + L_y^2}{2I_2} \,. \tag{20}$$

- (a) Mostre que o hamitoniano comuta com L_z .
- (b) Determine os valores e os vectores próprios deste hamiltoniano.
- (c) Suponha que no tempo t=0 o sistema se encontra no estado

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0,0\rangle + \frac{1}{\sqrt{2}}|1,1\rangle. \tag{21}$$

Determine $|\psi(t)\rangle$.