# **Entity Profiling with Varying Source Reliabilities**

Furong Li, Mong Li Lee, Wynne Hsu {furongli, leeml, whsu} @ comp.nus.edu.sg National University of Singapore





### **Outline**

- Motivation
- Proposed Method
- Performance Study
- Conclusion









Wi-Fi: Yes

10:00 AM-Midnight

Sun











### What We Want

| Name                   | Ad     | ldress                 | Phone        | Cuisine | Recommend | Price | Week  | day    | Weekend            | Rating | Source                  |
|------------------------|--------|------------------------|--------------|---------|-----------|-------|-------|--------|--------------------|--------|-------------------------|
|                        |        |                        |              |         |           |       | Hou   | rs     | Hours              |        |                         |
| Frank                  | 407 Co | olorado St             | 512-494-6894 |         | Hot dog   |       | Norn  | $al^1$ | $Extend^2$         | 8.7    | Urbanspoon              |
| Frank                  | 407 Co | olorado St             | 512-494-6916 |         |           | \$    | Norn  | nal    | Normal             | 6.0    | FindMeGF <sup>5</sup>   |
| Frank Restaurant       | btw 4  | th & 5th               | 512-494-6894 |         |           | \$    | Norn  | nal    | Extend             | 9.4    | Foursquare <sup>6</sup> |
| Frank                  | 407 C  |                        |              |         |           | 4.    |       |        |                    |        | LocalEats <sup>7</sup>  |
| Frank                  | 407 C  | <ul> <li>Va</li> </ul> | rious na     | me re   | present   | atio  | ns    | ıal    | Extend             | 8.2    | Yelp <sup>8</sup>       |
| Frank                  | 407 (  | • Fr                   | roneous      | attribu | ite valu  | es    |       |        |                    | 8.2    | TripAdvisor             |
| Frank&Angie's Pizzeria | 508    |                        |              |         |           |       |       | ıal    | Night <sup>3</sup> | 8.8    | Urbanspoon              |
| Frank & Angie's        | 508    | • Inc                  | complete     |         | nation    |       |       | ıal    | Night              | 8.6    | Foursquare              |
| Frank&Angie's Pizzeria | 508    | <ul> <li>An</li> </ul> | nbiguous     | s refer | ences     |       |       | ıal    | Night              |        | LocalEats               |
| Frank & Angie's        | 508    | 1000 1110              | 012 112 0001 |         |           | ΨΨ    | 11011 | ıal    | Night              | 7.0    | Yelp                    |
| Frank&Angie's Pizzeria | 508 W  | Vest Ave               | 512-472-3534 | Italian | Pizza     | \$\$  |       |        |                    | 8.0    | Tripadvisor             |



### **Entity Profiling**

| Name             | Address         | Phone        | Cuisine  | Recommend | Price | Weekday | Weekend | Rating |
|------------------|-----------------|--------------|----------|-----------|-------|---------|---------|--------|
|                  |                 |              |          |           |       | Hours   | Hours   |        |
| Frank Restaurant | 407 Colorado St | 512-494-6894 | American | Hot dog   | \$    | Normal  | Extend  | 8.2    |
|                  |                 |              |          |           |       |         |         |        |



### The Problem Involves Two Tasks

#### Record linkage

[Getoor et al, VLDB'12], [Negahban et al, CIKM'12]

#### Truth discovery

[Li et al, VLDB'13], [Yin et al, KDD'07]





- The erroneous values may prevent correct linkages
- ✓ Incomplete picture of the data limits the effectiveness of truth discovery



### State-of-the-art Method

- [Guo et al, VLDB'10]
- Assume a set of (soft) uniqueness constraints
- Transform records into attribute value pairs

#### Limitations

- Make wrong associations when the percentage of erroneous values increases
- Computationally expensive
- The uniqueness constraint limits its generality



### **Outline**

- Motivation
- Proposed Method
- Performance Study
- Conclusion



# A Motivating Example

Table 1: Reference Records

 $q_1$ 

 $q_2$ 

 $q_3$ 

| Name           | Affiliation |
|----------------|-------------|
| Rakesh Agrawal | MS          |
| Charu Aggarwal | IBM         |
| Alon Y. Halevy | Google      |

#### matching -> profiles

 $p_1 = <Rakesh \ Agrawal, \ MS, \ DM, \ Wisconsin>$   $p_2 = <Charu \ Aggarwal, \ IBM, \ DM, \ MIT>$   $p_3 = <Alon \ Y. \ Halevy, \ Google, \ DB, \ Stanford>$ 

Table 2: Input Records from Various Data Sources

|          | 1              |             |       |            |         |
|----------|----------------|-------------|-------|------------|---------|
| ,        | Name           | Affiliation | Field | Education  | Source  |
| $r_1$    | Rakesh Agrawal | Bell        | DM    | Wisconsin  | em.c.4  |
| $r_2$    | Alon Halevy    | Google      | DB    | Stanford   | $src_1$ |
| $r_3$    | Rakesh Agrawal | MS          | DM    |            | $src_2$ |
| $r_4$    | A. Halevy      | Google      | DB    |            | 37 02   |
| $r_5$    | Agrawal        | MS          |       | Wisconsin  | $src_3$ |
| $r_6$    | Charu Aggarwal | IBM         |       | MIT        | S1 C3   |
| $r_7$    | Agrawal        | IBM ?       |       | Wisconsin  |         |
| $r_8$    | Halevy         | $UW \times$ | DB    | Stanford v | $src_4$ |
| $r_9$    | Charu Aggarwal | UIC X       | DM    | MIT v      |         |
| $r_{10}$ | Agrawal        | IBM         | DM    | Wisconsin  | $src_5$ |

True matchings:  $\{q_1, r_1, r_3, r_5, r_7\}, \{q_2, r_6, r_9, r_{10}\}, \{q_3, r_2, r_4, r_8\}$ 



# A Motivating Example

| Table 1: | Reference | Records |
|----------|-----------|---------|
|----------|-----------|---------|

 $q_1$ 

| Name           | Affiliation |
|----------------|-------------|
| Rakesh Agrawal | MS          |
| Charu Aggarwal | IBM         |
| Alon Y. Halevy | Google      |

#### matching -> profiles

 $p_1 = <Rakesh \ Agrawal, \ MS, \ DM, \ Wisconsin>$   $p_2 = <Charu \ Aggarwal, \ IBM, \ DM, \ MIT>$   $p_3 = <Alon \ Y. \ Halevy, \ Google, \ DB, \ Stanford>$ 

Table 2: Input Records from Various Data Sources

|          | Name           | Affiliation | Field | Education  | Source  |
|----------|----------------|-------------|-------|------------|---------|
| $r_1$    | Rakesh Agrawal | Bell        | DM    | Wisconsin  | er ca   |
| $r_2$    | Alon Halevy    | Google      | DB    | Stanford   | $src_1$ |
| $r_3$    | Rakesh Agrawal | MS          | DM    |            | $src_2$ |
| $r_4$    | A. Halevy      | Google      | DB    |            | 31 02   |
| $r_5$    | Agrawal        | MS          |       | Wisconsin  | $src_3$ |
| $r_6$    | Charu Aggarwal | IBM         |       | MIT        | S1 C3   |
| $r_7$    | Agrawal        | IBM ?       |       | Wisconsin  |         |
| $r_8$    | Halevy         | $UW \times$ | DB    | Stanford v | $src_4$ |
| $r_9$    | Charu Aggarwal | UIC X       | DM    | MIT v      |         |
| $r_{10}$ | Agrawal        | IBM         | DM    | Wisconsin  | $src_5$ |

True matchings: $\{q_1, r_1, r_3, r_5, r_7\}, \{q_2, r_6, r_9, r_{10}\}, \{q_3, r_2, r_4, r_8\}$ 



# The Example Tells Us

- The data sources are not equally reliable among different attributes
  - Introduce a reliability matrix M[s, a]
  - Lower the impact of erroneous values on matching decisions
- Rectifying errors in attribute values provides additional evidence for linking records
  - Interleave the processes of record linkage and error correction



# The Proposed Two-phase Method





### **Outline**

- Motivation
- Proposed Method
- Performance Study
- Conclusion



### Comparative Methods

- PIPELINE
  - Record linkage [1] + Truth discovery [2]
- MATCH [3]
  - State-of-the-art method
- COMET
  - The proposed method
- 1. Negahban et al. Scaling multiple-source entity resolution using statistically efficient transfer learning. In CIKM, 2012
- 2. Yin et al. TruthFinder. In KDD, 2007
- 3. Guo et al. Record linkage with uniqueness constraints and erroneous values. VLDB, 2010



### Results on Restaurant Dataset

Table 5: Record Linkage on Restaurant Dataset

|          | Precision | Recall |
|----------|-----------|--------|
| Comet    | 96.6      | 96.6   |
| Матсн    | 93.0      | 88.1   |
| PIPELINE | 89.1      | 83.5   |

Table 6: Truth Discovery on Restaurant Dataset

|          | Accuracy | Coverage |
|----------|----------|----------|
| Comet    | 86.4     | 83.2     |
| Match    | 75.3     | 76.8     |
| PIPELINE | 82.3     | 71.2     |





%err: percentage of erroneous values

%ambi: percentage of records with abbreviated names

(b) Vary %ambi

Figure 2: Record linkage on Football dataset

0.9

0.7

%ambi

0.6

0.8

0.9

0.8

**PIPELINE** 

0.6

0.7

%ambi



75

Coverage 29 29

60

58.4

-O- PIPELINE

0.6

%ambi

0.7

80

70

Accuracy

50

45

354

COMET MATCH

0.5

0.7

%ambi

0.6

0.8



%err: percentage of erroneous values



0.8

%ambi: percentage of records with abbreviated names

Figure 3: Truth discovery on Football dataset

(b) Vary %ambi

0.9



# Scalability Experiments



Figure 7: Scalability results



### **Outline**

- Motivation
- Proposed Method
- Performance Study
- Conclusion



### Conclusion

- Address the problem of building entity profiles by collating data records from multiple sources in the presence of erroneous values
- Interleave record linkage with truth discovery
- Varying source reliabilities
- Reduce the impact of erroneous values on matching decisions

### Thanks!

Q & A

furongli@comp.nus.edu.sg



- Bootstrap the framework with a small set of confident matches
- Initialize reliability matrix based on confident matches

| $q_1$ | Rakesh Agrawal | MS     |    |           |         |
|-------|----------------|--------|----|-----------|---------|
| $r_1$ | Rakesh Agrawal | Bell X | DM | Wisconsin | $src_1$ |
| $r_3$ | Rakesh Agrawal | MS     | DM |           | $src_2$ |
| $q_2$ | Charu Aggarwal | IBM    |    |           |         |
| $r_6$ | Charu Aggarwal | IBM    |    | MIT       | $src_3$ |
| $r_9$ | Charu Aggarwal | UICX   | DM | MIT       | $src_4$ |
| $q_3$ | Alon Y. Halevy | Google |    |           |         |
| $r_2$ | Alon Halevy    | Google | DB | Stanford  | $src_1$ |
|       |                |        |    |           |         |

$$M[src_1, Affiliation] = 0.5,$$
  
 $M[src_2, Affiliation] = 1.0,$   
 $M[src_3, Affiliation] = 1.0,$   
 $M[src_4, Affiliation] = 0.2,$   
 $M[src_5, Affiliation] = \epsilon.$ 



|                                                      | $q_1$ | Ttakesii Agrawai | IVID |    |           |         |
|------------------------------------------------------|-------|------------------|------|----|-----------|---------|
|                                                      | $r_1$ | Rakesh Agrawal   | Bell | DM | Wisconsin | $src_1$ |
| Distinguish sources                                  | $r_3$ | Rakesh Agrawal   | MS   | DM |           | $src_2$ |
| $\triangleright$ Reliable: $\{src_1, src_2, src_3\}$ |       |                  |      |    |           |         |
| $\triangleright$ $\{r_5, r_4\}$                      |       |                  |      |    |           |         |
| $\triangleright$ Unreliable: $\{src_4, src_5\}$      |       |                  |      |    |           |         |
| $\{r_7, r_0, r_{10}\}$                               | $q_2$ | Charu Aggarwal   | IBM  |    |           |         |
| $ ho$ $\{r_7, r_8, r_{10}\}$                         | $r_6$ | Charu Aggarwal   | IBM  |    | MIT       | $src_3$ |
|                                                      | $r_9$ | Charu Aggarwal   | UIC  | DM | MIT       | $src_4$ |
|                                                      |       |                  |      |    |           |         |
|                                                      |       |                  |      |    |           |         |
|                                                      |       |                  |      |    |           |         |

Alon Y. Halevy

Alon Halevy

 $q_3$ 

 $r_2$ 

Rakesh Agrawal

MS

Google

Google

DB

 $src_1$ 

Stanford



|                           |                                                       | $egin{array}{c} q_1 \ r_1 \end{array}$ | Rakesh Agrawal Rakesh Agrawal | MS<br>Bell | DM | Wisconsin | $src_1$ |
|---------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------|------------|----|-----------|---------|
| <ul><li>Disting</li></ul> | uish sources                                          | $r_3$                                  | Rakesh Agrawal                | MS         | DM | XX7: :    | $src_2$ |
| Relia                     | able: $\{src_1, src_2, src_3\}$                       | $\}$ - $r_5$                           | Agrawal                       | MS         |    | Wisconsin | $src_3$ |
| >                         | $\{r_5, r_4\}$                                        |                                        |                               |            |    |           |         |
| Unre                      | eliable: $\{src_4, src_5\}$                           |                                        |                               |            |    |           |         |
|                           | {r_ r_ r_ }                                           | $q_2$                                  | Charu Aggarwal                | IBM        |    |           |         |
|                           | Inreliable: $\{src_4, src_5\}$ $\{r_7, r_8, r_{10}\}$ | $r_6$                                  | Charu Aggarwal                | IBM        |    | MIT       | $src_3$ |
|                           |                                                       | $r_9$                                  | Charu Aggarwal                | UIC        | DM | MIT       | $src_4$ |
|                           |                                                       | $r_5$                                  | Agrawal                       | MS         |    | Wisconsin | $src_3$ |
|                           |                                                       | •                                      |                               |            |    |           |         |

Alon Y. Halevy

Alon Halevy

A. Halevy

 $q_3$ 

 $r_4$ 

Google

Google

Google

DB

 $\overline{\mathrm{DB}}$ 

 $src_1$ 

 $src_2$ 

Stanford



|   |                                                      | $q_1$        | F  |
|---|------------------------------------------------------|--------------|----|
|   |                                                      | $r_1$        | F  |
|   | Distinguish sources                                  | $r_3$        | F  |
|   | $\triangleright$ Reliable: $\{src_1, src_2, src_3\}$ | $r_5$        |    |
|   | $\triangleright$ $\{r_5, r_4\}$                      | $r_{10}$     | A  |
|   | $ ightharpoonup$ Unreliable: $\{src_4, src_5\}$      |              |    |
|   | $r_7, r_8, r_{10}$                                   | $q_2$        | (  |
|   | ( // 0/ 10)                                          | $r_6 \\ r_9$ | C  |
|   |                                                      | $r_5$        | A  |
|   |                                                      | $r_7$        | A  |
|   |                                                      | $r_{10}$     | A  |
|   |                                                      | ~            | Α. |
| I |                                                      | $q_3$        | А  |

| Rakesh Agrawal | MS                |    |           |         |
|----------------|-------------------|----|-----------|---------|
| Rakesh Agrawal | Bell              | DM | Wisconsin | $src_1$ |
| Rakesh Agrawal | MS                | DM |           | $src_2$ |
| Agrawal        | MS                |    | Wisconsin | $src_3$ |
| Agrawal        | IBM               |    | Wisconsin | $src_4$ |
| Agrawal        | $_{\mathrm{IBM}}$ | DM | Wisconsin | $src_5$ |

| _ | Charu Aggarwal | IBM |    |           |         |
|---|----------------|-----|----|-----------|---------|
| _ | Charu Aggarwal | IBM |    | MIT       | $src_3$ |
|   | Charu Aggarwal | UIC | DM | MIT       | $src_4$ |
|   | Agrawal        | MS  |    | Wisconsin | $src_3$ |
|   | Agrawal        | IBM |    | Wisconsin | $src_4$ |
| _ | Agrawal        | IBM | DM | Wisconsin | $src_5$ |

| Alon Y. Halevy | Google                                      |                                     |                                           |                                                    |
|----------------|---------------------------------------------|-------------------------------------|-------------------------------------------|----------------------------------------------------|
| · ·            |                                             | DB                                  | Stanford                                  | $src_1$                                            |
|                |                                             | DB                                  |                                           | $src_2$                                            |
| Halevy         | $\overline{UW}$                             | DB                                  | Stanford                                  | $src_4$                                            |
|                | Alon Y. Halevy Alon Halevy A. Halevy Halevy | Alon Halevy Google A. Halevy Google | Alon Halevy Google DB A. Halevy Google DB | Alon Halevy Google DB Stanford A. Halevy Google DB |



### **Adaptive Matching**



Cluster signatures <- current truth | Update reliability matrix



$$\mathrm{match}(r,c) = \frac{\sum\limits_{a \in \mathcal{A}} M[s_r,a] \cdot \mathrm{sim}(r.a, H_c.a)}{\sum\limits_{a \in \mathcal{A}} M[s_r,a]}$$

Discount records belonging to multiple clusters

Lower the impact of erroneous values on our matching decision