Appunti di Algoritmi e Strutture Dati

Algoritmi e Strutture Dati (prof. Pirola) - CdL Informatica Unimib - 23/24

Federico Zotti

Indice

1	Intr	oduzione	5
	1.1	Algoritmo: Definizione dell'ordinamento di un vettore	5
	1.2	Scelta di un algoritmo	5
		1.2.1 Tempo di esecuzione	5
	1.3	Algoritmo: Ricerca sequenziale	6
2	Prol	olema computazionale	7
	2.1	Esempio: Ricerca in un vettore	8
	2.2	Esempio: Ricerca in un vettore ordinato	8
3	Trov	rare il miglior algoritmo	8
	3.1	Esempio	9
4	Nota	azioni asintotiche	9
	4.1	Limite asintotico superiore	9
	4.2	Limite asintotico inferiore	11
	4.3	Limite asintotico stretto	12
	4.4	Scala degli asintoti	15
	4.5	Esempi	16
5	Sele	ction Sort	16
	5.1	Problema: Trova minimo	16
		5.1.1 Dimostrare che l'algoritmo è corretto	16
	5.2	Problema: Ordinamento di vettori	17
		5.2.1 Esempio	17
		5.2.2 Implementazione	18
		5.2.3 Analisi dei tempi di calcolo	18
		5.2.4 Considerazioni accessorie	19
6	Inse	rtion sort	20
	6.1	Esempio	20
	6.2	Implementazione	21

	6.3	Analisi dei tempi di calcolo	21
	6.4	Considerazioni accessorie	22
7	Rico	rsione	22
	7.1	Problema: Esponenziale di un numero	22
		7.1.1 Implementazione iterativa	22
			22
		7.1.3 Tempi dell'implementazione ricorsiva	22
		7.1.4 Seconda implementazione ricorsiva	23
	7.2	Ricerca dicotomica	24
		7.2.1 Implementazione	25
		7.2.2 Analisi dei tempi	25
	7.3	Merge sort	26
		7.3.1 Implementazione	26
		7.3.2 Analisi dei tempi	27
		7.3.3 Differenze di implementazione	27
			28
	7.4	Teorema dell'esperto	28
			29
	7.5	Problema: Ricerca del minimo	30
		7.5.1 Selection sort ricorsivo	31
8	Ouic	:k Sort	31
Ū	8.1		32
	8.2		32
9	Prob		32
	9.1	'	33
	9.2	'	33
			33
		9.2.2 Selez	33
	9.3	Tempi	33

10	Cour	nting So	ort	34
	10.1	Calcolo	o dei tempi	34
11	Radi	x Sort		34
	11.1	Calcolo	o dei tempi	35
12	Bina	ry Heap	,	35
	12.1	Proprie	età dello heap	35
	12.2	Esemp	i	36
	12.3	Genera	are un binary heap	36
		12.3.1	MaxHeapify	36
	12.4	Heap S	Sort	37
13	Insie	mi dina	amici	37
	13.1	Diziona	ari	38
		13.1.1	Inserimento in fondo	38
		13.1.2	Inserimento in posizione data	38
		13.1.3	Inserimento in cima	39
		13.1.4	Cancellazione in fondo	39
		13.1.5	Cancellazione in posizione data	39
		13.1.6	Cancellazione in cima	40
		13.1.7	Ricerca valore	40
		13.1.8	Cancellazione elementi uguali a un valore dato	41
		13.1.9	Limitazioni	41
	13.2	Liste co	oncatenate	41
		13.2.1	Inserimento in testa	42
		13.2.2	Inserimento dopo un nodo dato	42
		13.2.3	Inserimento in coda	43
		13.2.4	Cancellazione in testa	43
		13.2.5	Cancellazione in coda	43
		13.2.6	Cancellazione di un nodo dato	44
		13.2.7	Ricerca elemento	44
		13.2.8	Cancellazione nodo con valore date	45

13.2.9	Cancellazione di tutti i nodi con valore dato	45
13.3 Riepilo	ogo	46
13.4 Liste c	loppiamente concatenate	46
13.4.1	Inserimento in testa	47
13.4.2	Inserimento in coda	47
13.4.3	Cancellazione in testa	47
13.4.4	Cancellazione di un nodo dato	48
13.4.5	Inserimento successore	48
13.4.6	Cancellazione in coda	49
13.5 Riepilo	ogo 2	49
13.6 Confro	onto strutture dati per dizionari	49

1 Introduzione

Un'algoritmo è una sequenza di istruzioni elementari (devono essere comprese e eseguite dall'esecutore) che permettono di risolvere un problema computazionale (ovvero per ogni possibile input produce l'output corretto).

Per definire un **problema** è necessario specificare:

- Il tipo del parametro in input
- Il tipo del risultato in output
- Il legame tra input e output

Un'istanza di un problema si ottiene specificando uno dei possibili valori in input specifico per il problema.

1.1 Algoritmo: Definizione dell'ordinamento di un vettore

Sort:

- Input: Array Int (Dim n) $\rightarrow A = \langle a_1, a_2, \dots, a_n \rangle$
- Output: Array Int (Dim n) $\rightarrow A' = \langle a'_1, a'_2, \dots, a'_n \rangle$

A' è una permutazione di A, tale che $a'_1 \le a'_{i+1}$ $\forall i . 1 \le i \le n-1$.

1.2 Scelta di un algoritmo

L'algoritmo migliore è quello che utilizza il minor numero di risorse.

Le risorse sono:

- Il tempo di esecuzione
- Lo spazio (memoria) utilizzato

1.2.1 Tempo di esecuzione

Per calcolare il tempo utilizziamo una funzione T(n). n rappresenta la quantità di dati in input.

- $T_p(n)$ rappresenta il caso peggiore
- $T_n(n)$ rappresenta il caso "medio" (non è la media dei due)
- $T_m(n)$ rappresenta il caso migliore

1.2.1.1 Esempio

- Algoritmo 1: $T(n) = 100000 \cdot n$
- Algoritmo 2: $T(n) = 10 \cdot n^3$
- Algoritmo 3: $T(n) = 1 \cdot 2^n$

In questo caso il migliore dipende dal grado di n, dunque l'algoritmo 1 risulta quello più veloce. Per numeri di n molto piccoli invece è meglio calcolare caso per caso il tempo. Nel caso ci siano più n, si considera quello con il grado maggiore.

$$T(n) = 7n^3 + 2n + 10000 \sim n^3$$

1.3 Algoritmo: Ricerca sequenziale

- V: vettore di interi
- k: intero da cercare nel vettore
- p: posizione nel vettore

Analisi del tempo di esecuzione:

- Caso peggiore: $k \neq V[] \Rightarrow T(n) = 3 + 2 \cdot n + 1 \sim n$
- Caso migliore: $k = V[1] \Rightarrow T(n) = 4 \sim c$
- Caso medio: $k = V[\frac{n}{2}] \Rightarrow 3 + 2\frac{n}{2}(\pm 1) \sim n$

Se Vè ordinato ci si può fermare appena trova un numero più grande di k.

```
1 Ricerca_Seq(V, k)
2 p = 1
```

Analisi del tempo di esecuzione:

- Caso migliore: $V[p] \ge k \Rightarrow 4 \sim c$
- Caso peggiore: $k > V[p] \Rightarrow 3 + 2n \sim n$
- Caso medio: $k = V\left[\frac{n}{2}\right] \Rightarrow 3 + 2\frac{n}{2} \cdot \frac{1}{2}$

Per avere un'ottimizzazione significativa si può sfruttare il fatto che il vettore è ordinato per implementare una semplice ricerca binaria (spezzare il vettore e guardare solo una metà).

```
Ricerca_Dic(V, k)
       sx = 1
       dx = V.length
       p = (dx + sx) div 2
5
       while (V[p] != k) and (sx < dx)
           if k > V[p]
7
               sx = p + 1
8
9
               dx = p - 1
           p = (dx + sx) div 2
       if V[p] = k
           return p
14
           return -1
```

Analisi del tempo di esecuzione:

- Caso migliore: $V\left[\frac{n}{2}\right] = k \Rightarrow t_m(n) = 6 \sim c$
- Caso peggiore: $k \notin V \Rightarrow T_p(n) = 5 + 4 \cdot (\log_2 n) + 1 \sim \log_2 n$
- Caso medio: $T(n) = \frac{T_p(n)}{2} \sim \log_2 n$

2 Problema computazionale

Un problema computazionale è una relazione tra input e output.

$$P \subseteq I \times O$$

2.1 Esempio: Ricerca in un vettore

Input:

- Un vettore V di n elementi
- Un valore k

Output:

• Un intero i, t.c. i = -1 se $k \notin V$ altrimenti V[i] = k

Ci sono tanti algoritmi per risolvere questo problema. Un esempio è la **ricerca sequen- ziale**.

Aggiungere algo. #todo-uni

2.2 Esempio: Ricerca in un vettore ordinato

Input:

- Un vettore **ordinato** $V \operatorname{di} n$ elementi
- Un valore k

Output:

• Un intero i, t.c. i = -1 se $k \notin V$ altrimenti V[i] = k

Questo problema è diverso dal precedente, perché i dati in input sono diversi. Essendo che l'algoritmo della ricerca sequenziale è corretto per tutti i vettori in input, è corretto anche per i vettori ordinati. Esistono però algoritmi specifici per questo problema. Per esempio la **ricerca binaria** (o dicotomica).

Inserire algo. #todo-uni

3 Trovare il miglior algoritmo

Generalmente il **tempo di esecuzione** e lo **spazio utilizzato** da un algoritmo sono legati alla grandezza dell'input. Dunque è possibile esprimere questi due dati come funzioni di n.

T(n)

S(n)

In questo corso ci si concentrerà di più su T(n).

Il tempo di esecuzione non può essere espresso in secondi, perché questi dipendono dalla velocità dell'elaboratore (da quanto tempo viene impiegato ad eseguire ogni singola istruzione). Dunque il tempo viene espresso in quante istruzioni devono essere eseguite.

Non sempre però il tempo dipende soltanto da n. Per esempio 300 + 200 risulta molto più semplice di 345 + 783, nonostante abbiano lo stesso numero di cifre. Dunque T(n) oscilla tra il caso migliore $T_{migl}(n)$ e il caso peggiore $T_{pegg}(n)$.

3.1 Esempio

Riprendendo gli algoritmi di ricerca si possono definire i tempi di esecuzione.

- Ricerca sequenziale:
 - $T_{migl}(n) = a_1$
 - $T_{pegg}(n) = a_2 + b_2 n$
- · Ricerca binaria:
 - $T_{migl}(n) = a_3$
 - $T_{pegg}(n) = a_4 + b_4 \log_2 n$

4 Notazioni asintotiche

4.1 Limite asintotico superiore

Assunzioni:

• Le funzioni T(n), S(n) sono definite nei numeri naturali, ma i grafici vengono definiti nei reali per semplicità

· Le funzioni sono definitivamente positive

Aggiungere grafico con una funzione casuale e una funzione def maggiore. #todo-uni

- Blu: $T_{pegg}(n) = f(n)$
- Verde: O(g(n))

$$O(g(n)) = \left\{ f(n) \mid \exists \, n_0 > 0, c > 0 \, : \, 0 \le f(n) \le c \cdot g(n) \forall \, n > n_0 \right\}$$

Ovvero O(g(n)) è l'insieme delle funzione superiormente limitate da g(n) per una costante $c(g(n) \cdot c)$.

Esempio:

- $f(n) = 3n^2$ $3n^2 \in O(n^3)$? ovvero $\exists n_0, c > 0 : 0 \le 3n^2 \le c \cdot n^3 \forall n > n_0$?

 $n \ge \frac{3}{c}$? Questo è verificato per esempio con c = 3, $n_0 = 1$.

È possibile però che esista una funzione g(n) "minore": $3n^2 = O(n^2)$?

 $c \ge 3$? Questo è verificato per esempio con $c = 4, n_0 = 1$.

Dunque $3n^2 = O(n^2)$.

Si può provare con una funzione ancora più "bassa", ma facendo i calcoli la condizione l non viene soddisfatta.

Esempio:

- $f(n) = 5n^3 + n^2$ $f(n) \in O(n^3)$? ovvero $\exists n_0, c > 0 : 0 \le 5n^3 + n^2 \le c \cdot n^3 \forall n > n_0$?

 $6n^3 \le cn^3$? Questo è verificato per esempio con $c=7, n_0=1$.

Si può provare con una funzione ancora più "bassa", ma facendo i calcoli la condizione non viene soddisfatta.

4.2 Limite asintotico inferiore

Aggiungere grafico con funzione T(n) e una funzione def inferiore.

$$\Omega(g(n)) = \{ f(n) \mid \exists n_0 > 0, c > 0 \text{ t.c. } 0 \le c \cdot g(n) \le f(n) \, \forall n > n_0 \}$$

$$\exists c > 0, n_0 > 0 \quad 0 \le cn \le 3n^2 \quad \forall n > n_0$$
$$3n^2 \ge cn$$
$$n \ge \frac{c}{3}$$
$$c = 3 \quad n_0 = 1$$

Dunque è verificato.

Si può dire che $3n^2 = \Omega(n)$ (impropriamente).

Proseguendo, $3n^2 = \Omega(n^2)$?

$$\exists c > 0, n_0 > 0 \quad 0 \le cn^2 \le 3n^2 \quad \forall n > n_0$$
$$3n^2 \ge cn^2$$
$$3 \ge c$$
$$c = 3 \quad n_0 = 1$$

Dunque è verificato.

Continuando, $3n^2 = \Omega(n^3)$?

$$\exists c > 0, n_0 > 0 \quad 0 \le cn^3 \le 3n^2 \quad \forall n > n_0$$
$$3n^2 \ge cn^3$$
$$3 \ge cn$$
$$n \le \frac{3}{c}$$

Questo non è verificato definitivamente. $3n^2 \notin \Omega(n^3)$. Lo stesso vale per tutti gli $\Omega(n^{\varepsilon}) \quad \forall \, \varepsilon > 2$.

4.3 Limite asintotico stretto

Devo trovare due costanti c_1 , c_2 tale che la funzione T(n) è compresa definitivamente tra $c_1g(n)$ e $c_2g(n)$.

Disegnare grafico #todo-uni : funzione casuale T(n) con due "rette"/"curve" che stanno def. sopra e def. sotto T(n).

$$\Theta(g(n)) = \{ f(n) \mid \exists \, n_0, c_1, c_2 > 0 \, : \, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \quad \forall \, n > n_0 \, \}$$

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Es 1: continuando gli esempi precedenti, sappiamo che

$$3n^2 = \Omega(n^2) \wedge 3n^2 = O(n^2) \implies 3n^2 = \Theta(n^2)$$

Es 2:

•
$$f(n) = 5n^3 + n^2$$

•
$$g(n) = n^3$$

•
$$f(n) = 5n^3 + n^2$$

• $g(n) = n^3$
• $5n^3 + n^2 = \Omega(n^3)$?

$$5n^3 + n^2 \ge 5n^3 = \Omega(n^3)$$

 $5n^3 + n^2 = O(n^3) \implies 5n^3 + n^2 = \Theta(n^3)$

Es 3:

•
$$f(n) = 5n^3 - 10n^2 - 30n$$

•
$$g(n) = n^3$$

•
$$f(n) = \Omega(n^3)$$
?

$$\exists c, n_0 > 0 \quad 0 \le cn^3 \le 5n^3 - 10n^2 - 30n \quad \forall n > n_0$$
$$5n^3 - 10n^2 - 30n \ge cn^3$$
$$5n^3 - cn^3 \ge 10n^2 + 30n$$
$$(5 - c)n^3 \ge 10n^2 + 30n$$

Sapendo che

•
$$10n^2 < 10n^2$$

•
$$30n < 30n^2$$

possiamo scrivere $10n^2 + 30n \le 10n^2 + 30n^2$. Adesso dobbiamo stabilire se $(5-c)n^2 \ge$ $10n^2 + 30n^2$ (perché implica la disuguaglianza precedente).

$$(5-c)n^2 \ge 10n^2 + 30n^2$$

 $n \ge \frac{40}{5-c}$ $\cos c < 5$
 $c = 1$ $n_0 = 9$

Dunque è verificato.

Inoltre
$$f(n) = O(n^3) \implies f(n) = \Theta(n^3)$$
.

Dim: $\Omega()$ è uguale a n al grado massimo del polinomio?

•
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$$
 $a_k > 0$

•
$$g(n) = n^k$$

•
$$f(n) = \Omega(n^k)$$

$$\exists c, n_0 > 0 \quad 0 \le cn^k \le f(n) \quad \forall n > n_0$$
$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 \ge cn^k$$
$$(a_k - c)n^k \ge -a_{k-1} n^{k-1} - \dots - a_0$$

$$-a_{k-1}n^{k-1}-\dots-a_0 \leq |a_{k-1}|n^{k-1}+|a_{k-2}|n^{k-1}+\dots+|a_0|n^{k-1}$$

$$(a_k - c)n^k \ge \sum_{i=0}^{k-1} |a_i| n^{k-1}$$

$$(a_k - c)n^k \ge n^{k-1} \sum_{i=0}^{k-1} |a_i|$$

$$(a_k - c)n \ge \sum_{i=0}^{k-1} |a_i|$$

$$n \ge \frac{\sum_{i=0}^{k-1} |a_i|}{a_k - c} \quad \text{con } c < a_k$$

Dimostrato che un polinomio è un omega di n al grado massimo.

Dim: un'esponenziale è limitato inferiormente da un polinomio.

•
$$f(n) = 2^n$$

•
$$2^n = O(2^n)$$

•
$$2^n = \Omega(n^b) \quad \forall \, h > 0.7$$

$$\lim_{n \to +\infty} \frac{n^b}{2^n} = 0$$

$$\implies \exists n_0 \quad \forall n > n_0 \quad \frac{n^b}{2^n} < 1$$

$$2^n > 1n^b$$

Quindi tutti i polinomi limitano inferiormente un esponenziale. E sapendo che $2^n =$

 $\Omega(2^n)$, si considera questo perché è "il più grande". Ciò implica $2^n = \Theta(2^n)$.

Dim: lo stesso per i logaritmi.

- f(n) = log₂^a n
 log₂^a n = O(n^b) ∀ b > 0?

$$\lim_{n \to +\infty} \frac{\log_2^a n}{n^b} = 0$$

$$\implies \exists n_0 \quad \forall n > n_0 \quad \frac{\log_2^a n}{n^b} < 1$$

$$\log_2^a = O(n^b)$$

Quindi tutti i polinomi limitano inferiormente un logaritmo. E sapendo che $\log_2^a =$ $O(\log_2^a)$, si considera questo perché è "il più piccolo". Ciò implica $\log_2^a = \Theta(\log_2^a)$.

4.4 Scala degli asintoti

- 1
- $\log n$
- $n^b \quad \forall 0 < b < 1$
- n
- $n \cdot \log n$
- $n^{1+\varepsilon} \quad \forall \, 0 < \varepsilon < 1$
- n^2
- $n^2 \cdot \log n$
- $n^{2+\varepsilon} \quad \forall \, 0 < \varepsilon < 1$
- n^3
- $n^3 \cdot \log n$
- $n^{2+\varepsilon} \quad \forall \, 0 < \varepsilon < 1$
- $a^n \quad \forall a > 1$ (ogni $a \stackrel{.}{e}$ una classe a se)
- n!
- nⁿ

4.5 Esempi

Es 1: ricerca in un vettore ordinato.

Algoritmo	Tempo caso migliore	Tempo caso peggiore
Ricerca sequenziale	$a_1 = \Omega(1)$	$a_2 + b_2 n = O(n)$
Ricerca dicotomica	$a_3 = \Omega(1)$	$a_4 + b_4 \log n = O(\log n)$

5 Selection Sort

5.1 Problema: Trova minimo

Attenzione: gli indici degli array partono da 1 e non da 0.

- **Input:** un vettore *V* di *n* interi
- **Output:** una posizione *i* t.c. $V[i] \le V[j] \quad \forall \ 1 \le j \le n$

- Caso migliore: $1 + n + (n 1) + 0 + 1 = 2n + 1 = \Omega(n)$
- Caso peggiore: 1 + n + (n 1) + (n 1) + 1 = 3n = O(n)

Dunque il tempo di calcolo di questo algoritmo è $\Theta(n)$.

5.1.1 Dimostrare che l'algoritmo è corretto

Riscriviamo l'algoritmo con un while.

```
1 Trova_Minimo(V)
2    posMin = 1
3    i = 2
4    while i <= V.length
5    if V[i] < V[posMin]
6        posMin = i
7        i = i + 1
8    return posMin</pre>
```

- Invariante di ciclo (condizione che deve essere sempre vera): posMin è la posizione che contiene il valore più piccolo di $V[1 \dots i-1]$.
- Inizializzazione (prima del while): posMin è la posizione del minimo di $V[1\dots 1]$? Sì
- Conservazione (ciò che è vero alla prima istr. del ciclo deve essere vero anche alla fine): l'invariante di ciclo è vera alla fine se è vera anche all'inizio
- **Terminazione** (la conseguenza dell'inizializzazione e della conservazione): i = V.length + 1. posMin è la posizione del minimo di V[1 ... V.length] = V

5.2 Problema: Ordinamento di vettori

- **Input:** A un vettore di n interi
- Output: un vettore di n interi che contiene gli stessi valori di A ma ordinati in modo crescente

5.2.1 Esempio

Supponiamo di avere un vettore

$$A = (5, 2, 4, 6, 1, 3)$$

Per ordinarlo si possono seguire questi passi:

- 1. Trovo il minimo e la sua posizione
- 2. Scambio il minimo con il primo elemento

$$A = (1, 2, 4, 6, 5, 3)$$

- 3. Ora continuo considerando la restante parte del vettore (2,4,6,5,3) trovando il minimo e la sua posizione (il secondo elemento più piccolo)
- 4. Scambio questo elemento con il secondo elemento di A
- 5. Continuo così finché non esaurisco il vettore

$$A = (1, 2, 3, 4, 5, 6)$$

5.2.2 Implementazione

```
Selection_Sort(A)
for i = 1 to A.length
// Trova l'elemento minimo
posmin = i
for j = i + 1 to A.length
if A[j] < A[posmin]
posmin = j

scambia A[posmin] con A[i]</pre>
```

Per semplificare i calcoli il primo **for** va da 1 a A.length al posto che A.length – 1, e non entriamo nel secondo **for** quando i = A.length. Inoltre consideriamo i parametri come Java, quindi i vettori vengono passati per riferimento e dunque l'algoritmo non necessita di una **return**.

5.2.3 Analisi dei tempi di calcolo

```
for a to b: T(n) = b - a + 1 + 1
```

Selection Sort	$T_{migl}(n)$	$T_{pegg}(n)$
for i = 1 to A.length	<i>n</i> + 1	<i>n</i> + 1
posmin = i	n	n
<pre>for j = i + 1 to A.length</pre>	$\Theta(n^2)$	$\Theta(n^2)$
<pre>if A[j] < A[posmin]</pre>	$\Theta(n^2)$	$\Theta(n^2)$
posmin = j	0	$\Theta(n^2)$
scambia A[posmin] con A[i]	n	n

- Caso migliore: $T_{migl}(n) = \Omega(n^2)$
- Caso peggiore: $T_{migl}(n) = O(n^2)$

Dunque l'algoritmo è $\Theta(n^2)$.

5.2.4 Considerazioni accessorie

5.2.4.1 Stabilità In applicazioni più complesse gli elementi del vettore da ordinare sono **chiavi** a strutture con dati aggiuntivi. Dunque molto raramente due elementi (considerando anche questi dati aggiuntivi) risultano uguali. Se però bisogna ordinare il vettore, il selection sort si comporta nel seguente modo:

$$(5,6,3^A,1,3^B)$$

$$(1,6,3^A,5,3^B)$$

$$(1,3^A,6,5,3^B)$$

$$(1,3^A,3^B,5,6)$$

$$(1,3^A,3^B,5,6)$$

In questo caso $\mathbf{3}^A$ risulta "prima" di $\mathbf{3}^B$. In quest'altro esempio invece:

$$(3^A, 5, 6, 3^B, 1)$$

$$(1, 5, 6, 3^B, 3^A)$$

$$(1,3^B,6,5,3^A)$$

$$(1,3^B,3^A,5,6)$$

$$(1,3^B,3^A,5,6)$$

 3^B risulta "prima" di 3^A .

Ciò indica che il selection sort non è stabile perché non preserva l'ordine degli elementi di ugual valore.

5.2.4.2 In-place Un algoritmo è in-place se lavora direttamente sul vettore in input, e non su un'altra copia.

Il selection sort è in-place.

6 Insertion sort

- **Input:** un vettore *A* di *n* interi
- Output: un vettore di n interi che contiene gli stessi valori di A ma ordinati in modo crescente

6.1 Esempio

Supponiamo di avere un vettore

$$A = (5, 2, 4, 6, 1, 3)$$

- 1. Controlliamo il secondo elemento (2) con il primo elemento (5).
- 2. Essendo minore sposto il 2 a sinistra del 5
- 3. Non ci sono altri elementi a sinistra, quindi mi fermo

$$A = (2, 5, 4, 6, 1, 3)$$

- 4. Controllo il terzo elemento (4) con il precedente (5)
- 5. Essendo minore sposto il 4 a sinistra del 5
- 6. Controllo il 4 con il precedente (2)
- 7. Essendo il 4 maggiore di 2, mi fermo

$$A = (2, 4, 5, 6, 1, 3)$$

- 8. Controllo il quarto elemento (6) con il precedente (5)
- 9. Essendo maggiore, mi fermo

$$A = (2, 4, 5, 6, 1, 3)$$

- 10. Controllo il quinto elemento (1) con il precedente (6)
- 11. Essendo minore sposto l'1 a sinistra del 6
- 12. Controllo l'1 con il precedente

- 13. Essendo minore sposto l'1 a sinistra del 5
- 14. Continuo così finché l'elemento precedente è minore di 1 o non ci sono più elementi
- 15. Continuo così per tutti gli elementi restanti nel vettore

$$A = (1, 2, 3, 4, 5, 6)$$

Il vettore è ordinato.

6.2 Implementazione

```
Insertion_Sort(A)
for i = 1 to A.length
    key = A[i]
    j = i - 1

while (j > 0) and (A[j] > key)
    A[j+1] = A[j]
    A[j] = key
    j = j - 1
```

6.3 Analisi dei tempi di calcolo

Insertion sort	$T_{migl}(n)$	$T_{pegg}(n)$
for i = 1 to A.length	<i>n</i> + 1	<i>n</i> + 1
key = A[i]	n	n
j = i - 1	n	n
<pre>while (j > 0)and (A[j] > key)</pre>	n	$\Theta(n^2)$
A[j+1] = A[j]	0	$\Theta(n^2)$
A[j] = key	0	$\Theta(n^2)$
j = j - 1	0	$\Theta(n^2)$

- Caso migliore: (A è già ordinato in modo crescente) $T_{migl}(n) = \Omega(n)$
- Caso peggiore: (A è ordinato in modo decrescente) $T_{pegg}(n) = O(n^2)$

6.4 Considerazioni accessorie

L'insertion sort è stabile e in-place.

7 Ricorsione

7.1 Problema: Esponenziale di un numero

- Input: un reale a e un naturale n
- Output: un reale b tale che $b = a^n$

7.1.1 Implementazione iterativa

```
1 EsponenzialeIt(a, n)
2    ris = 1
3    for i = 1 to n
4        ris = a * ris
5    return ris
```

$$T(n) = \Theta(n)$$

7.1.2 Implementazione ricorsiva

```
1 EsponenzialeRic(a, n)
2   if n == 0
3     return 1
4
5   return a * EsponenzialeRic(a, n-1)
```

7.1.3 Tempi dell'implementazione ricorsiva

In questo specifico esempio non ha senso calcolare i tempi migliore e peggiori perché la quantità in input invariabile.

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 0 \\ T(n-1) + \Theta(1) & \text{se } n \neq 0 \end{cases}$$

Il problema è che rimane la ricorrenza anche all'interno del calcolo.

Riscrivo il caso $n \neq 0$:

$$T(n) = T(n-1) + \Theta(1)$$

$$= T(n-1) + c$$

$$= (T(n-2) + c) + c$$

$$= T(n-3) + 3c$$

$$= \dots$$

$$= T(n-i) + ic$$

Ad un certo punto si arriverà che n-i=0. A quel punto si sarà nel caso $T(n)=\Theta(1)$. Dunque il tutto si può riscrivere come

$$T(n) = T(0) + nc = \Theta(1) + nc = \Theta(n)$$

Attenzione: questi casi non sono il peggiore e il migliore, perché in quei casi non si può fissare n. Questi sono solo in casi in cui n è fissato.

Nonostante le due implementazioni siano asintoticamente equivalenti, nella realtà le versioni iterative sono più veloci di quelle ricorsive.

7.1.4 Seconda implementazione ricorsiva

$$a^{n} = \begin{cases} 1 & \text{se } n = 0 \\ a^{\frac{n}{2}} \cdot a^{\frac{n}{2}} & \text{se } n \text{ è pari} \\ a \cdot a^{\left\lfloor \frac{n}{2} \right\rfloor} \cdot a^{\left\lfloor \frac{n}{2} \right\rfloor} & \text{se } n \text{ è dispari} \end{cases}$$

```
1     EsponenzialeRicV2(a, n)
2          if n == 0
3             return 1
4          
5          if n == 1
6             return a
7          m = floor(n/2)
9          ris = EsponenzialeRicV2(a, m)
```

```
10    ris = ris * ris
11
12    if dispari(n)
13     ris = a * ris
14
15    return ris
```

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 0 \\ \Theta(1) & \text{se } n = 1 \end{cases}$$
$$T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \Theta(1) \quad \text{altrimenti}$$

Supponendo che n sia sempre pari, e che tutti i $\frac{n}{2}$ siano pari:

$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$= T\left(\frac{n}{4}\right) + 2c$$

$$= \dots$$

$$= T\left(\frac{n}{2^{i}}\right) + ic$$

Il tutto termina quando $i = \log_2 n$. A quel punto si può riscrivere come

$$T(n) = T(1) + ic$$

$$= T(1) + c \log_2 n$$

$$= \Theta(\log_2 n)$$

$$= \Theta(\log n)$$

7.2 Ricerca dicotomica

$$A = (1, 5, 7, 11, 15, 18, 21, 32, 35, 39, 40, 45, 48, 51, 57, 61)$$

Dobbiamo trovare 40 all'interno di A.

- 1. Trovo l'elemento a metà (pos. 8): 32
- 2. Lo confronto con 40: è minore, dunque scarto tutta la metà inferiore
- 3. Trovo l'elemento a metà della parte superiore (35, 39, 40, 45, 48, 51, 57, 61) (pos. 12): 45

- 4. Lo confronto con 40: è maggiore, allora scarto la parte superiore
- 5. Trovo l'elemento a metà della parte inferiore (35, 39, 40, 45) (pos. 11): 40
- 6. Lo confronto con 40: è minore o uguale, allora scarto la parte inferiore
- 7. Trovo l'elemento a metà della parte superiore (40, 45) (pos. 11): 40
- 8. Continuo così finché il vettore considerato avrà dimensione 1, a quel punto l'elemento dovrebbe essere l'elemento cercato se è presente.
- 9. Confronto l'elemento trovato con quello che stavo cercando

7.2.1 Implementazione

- **Input:** A vettore ordinato di interi, x elemento da cercare
- Input ricorsivi: input + l indice sinistro, r indice destro
- Output: un valore booleano che indica se l'elemento x è presente nell'array

7.2.2 Analisi dei tempi

 $n = \dim \operatorname{input} = r - l + 1.$

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le 1 \\ \Theta(1) + T\left(\frac{n}{2}\right) & \text{altrimenti} \end{cases}$$

Semplificando la ricorsione si ottiene

$$T(n) = \Theta(\log n)$$

7.3 Merge sort

Vogliamo ordinare il seguente vettore

$$A = (11, 5, 8, 7, 13, 6, 9, 1)$$

Possiamo dividere l'array in due parti e ordinarle separatamente:

$$(5,7,8,11)$$
 $(1,6,9,13)$

A questo punto confronto i primi elementi delle due metà. Sicuramente uno dei due è il primo elemento di A. Continuo così fino a "svuotare" le due metà e ricostruire A ordinato.

Per ordinare le due metà iniziali è possibile svolgere lo stesso algoritmo ricorsivamente.

7.3.1 Implementazione

- **Input:** A vettore di interi
- Input ricorsivi: input + l indice sinistro, r indice destro
- Output: stesso A ordinato in modo crescente

```
Merge(A, l, mid, r)
      T = new [(r-l+1) int]
      5
6
7
      while (i <= mid) and (j <= r)</pre>
         if A[i] <= A[j]
8
9
            T[k] = A[i]
          i = i + 1
if A[i] > A[j]
            T[k] = A[j]
             j = j + 1
          k = k + 1
14
15
      while i <= mid</pre>
          T[k] = A[i]
          i = i + 1
18
          k = k + 1
19
      while j <= r
         T[k] = A[j]
          j = j + 1
          k = k + 1
```

```
26
        for c = 1 to T.length
            A[c+l-1] = T[c]
28
29
   Merge_Sort_Ric(A, l, r)
       if l < r
            mid = floor( ( l + r ) / 2)
Merge_Sort_Ric(A, l, mid)
            Merge_Sort_Ric(A, mid+1, r)
34
35
            Merge(A, l, mid, r)
36
37
38
39 Merge_Sort_Entry(A)
40
        return Merge_Sort_Ric(A, 1, A.length)
```

7.3.2 Analisi dei tempi

 $n = \dim \operatorname{input} = r - l + 1$

$$T_{\mathsf{Merge}}(n) = \Theta(n)$$

$$T_{\mathsf{MSort}}(n) = \begin{cases} \Theta(1) & \text{se } n \le 1 \\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{altrimenti} \end{cases}$$
$$= \Theta(n \log n)$$

7.3.3 Differenze di implementazione

Primo tipo:

```
1 if l < r
2     mid = floor( ( l + r ) / 2 )
3     Merge_Sort_Ric(A, l, mid)
4     Merge_Sort_Ric(A, mid+1, r)
5     Merge(A, l, mid, r)</pre>
```

Secondo tipo:

```
if l >= r
    return
mid = floor((l + r) / 2)

Merge_Sort_Ric(A, l, mid)
Merge_Sort_Ric(A, mid+1, r)
Merge(A, l, mid, r)
```

Nel secondo caso viene evidenziato il caso base rispetto al passo ricorsivo. I due tipi sono equivalenti.

7.3.4 Altre considerazioni

Questo algoritmo non è in-place, perché la Merge utilizza un array di appoggio. Inoltre è stabile con questa implementazione di Merge.

La merge sort è un esempio classico di un algoritmo divide et impera (divide, impera, combina). Questa tipologia di algoritmi divide un problema in più sottoproblemi. Vengono risolti questi sottoproblemi e vengono ricombinati per ottenere la soluzione al problema iniziale.

Questi algoritmi hanno

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \text{ suff. piccolo } \forall n \le n_0 \\ aT\left(\frac{n}{b}\right) + f(n) & \text{se } n > n_0 \end{cases}$$

7.4 Teorema dell'esperto

Se abbiamo un algoritmo divide et impera (come il merge sort precedente), dunque avente la formula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \text{ suff. piccolo } \forall \, n \leq n_0 \\ aT\left(\frac{n}{b}\right) + f(n) & \text{se } n > n_0 \end{cases}$$

con $a \ge 1, b > 1$ e f(n) asintoticamente non negativa, possiamo semplificare la formula con i seguenti casi:

1. Se
$$f(n) = O\left(n^{\log_b a - \epsilon}\right) \text{ per } \epsilon > 0 \implies T(n) = \Theta\left(n^{\log_b a}\right)$$

2. Se
$$f(n) = \Theta\left(n^{\log_b a}\right) \implies T(n) = \Theta\left(n^{\log_b a} \cdot \log n\right)$$

2. Se
$$f(n) = \Theta\left(n^{\log_b a}\right) \implies T(n) = \Theta\left(n^{\log_b a} \cdot \log n\right)$$

3. Se $f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right)$ per $\varepsilon > 0$ e $\exists c < 1$ t.c. $af\left(\frac{n}{b}\right) \le cf(n)$ per n suff. grandi $\implies T(n) = \Theta\left(f(n)\right)$

7.4.1 Esempi

Es 1: $T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$

- a = 1• b = 2• $n^{\log_b a} = n^{\log_2 1} = n^0 = 1$
- $f(n) = \Theta(1) = c$

Vediamo i casi:

1. $\exists \varepsilon > 0$ t.c. $c = O(n^{0-\varepsilon})$? NO 2. $c = \Theta(n^0) = \Theta(1)$? $S\hat{l}$ Dunque $T(n) = \Theta(n^0 \cdot \log n) = \Theta(\log n)$.

Es 2: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

- a = 2• b = 2• $n^{\log_b a} = n^{\log_2 2} = n^1 = n$
- $f(n) = \Theta(n) = cn$

Vediamo i casi:

- 1. $\exists \epsilon > 0$ t.c. $c = O(n^{1-\epsilon})$? NO

Dunque $T(n) = \Theta(n \log n)$.

Es 3: $T(n) = T\left(\frac{2n}{3}\right) + \Theta(1)$

- a = 1• $b = \frac{3}{2}$ $n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0 = 1$

Vediamo i casi:

1.
$$\exists \varepsilon > 0$$
 t.c. $c = O(n^{0-\varepsilon})$? NO

2.
$$c = \Theta(n^0) = \Theta(1)$$
? $S\hat{l}$

Es 3: $T(n) = 3T(\frac{n}{2}) + n^3$

Vediamo i casi:

1.
$$\exists \epsilon > 0$$
 t.c. $c = O(n^{1,\dots-\epsilon})$? NO
2. $n^3 = \Theta(n^1,\dots)$? NO
3. $\exists \epsilon > 0$ $n^3 = \Omega(n^1,\dots+\epsilon)$ SÌ

2.
$$n^3 = \Theta(n^{1,...})$$
? NO

3.
$$\exists \epsilon > 0$$
 $n^3 = \Omega(n^{1,\dots+\epsilon}) S \tilde{l}$

Condizione di regolarità: $\exists c < 1 \text{ t.c. } af\left(\frac{n}{b}\right) < cf(n) \text{ SÌ, } c = \frac{3}{8}$ Dunque $T(n) = \Theta(n^3)$

7.5 Problema: Ricerca del minimo

- **Input:** vettore *A* di *n* interi
- Output: la posizione del minimo in A

Per creare un algoritmo ricorsivo è possibile utilizzare il fatto che

$$\min(A) = \min(A[0], \min(A[1 \dots n-1]))$$

Per delimitare la porzione di array su cui opera l'algoritmo usiamo due parametri l e r. Questo evita di copiare ogni volta il sotto-array da passare alla chiamata ricorsiva (con costo $\Theta(n)$). È necessaria una funzione di utilità che inizializza i parametri aggiuntivi per la chiamata ricorsiva iniziale.

```
// JAVA Class (LAB)
   // Funzione ricorsiva
   private static int _findPosMin(int[] A, int l, int r){
5
        // Caso base: ho un solo valore
       if (l + 1 == r)
           return l;
       // Chiamata ricorsiva
int rest = _findPosMin(A, l+1, r);
8
9
       if (A[l] < A[rest])
           return l;
        return rest;
13 }
14
   // Funzione di inizializzazione parametri
public static int findPosMin(int[] A) {
        return _findPosMin(A, 0, a.length);
18
```

7.5.1 Selection sort ricorsivo

Con la funzione appena definita, è possibile riscrivere anche il selection sort in maniera ricorsiva

```
// JAVA Class (LAB)
   // Funzione ricorsiva
   private static void _selectionsort(int [] A, int l, int r) {
       // Caso base: array vuoto o con un elemento
       if (l + 1 >= r)
6
           return;
       // Passo ricorsivo:
8
       // Cerca posizione minimo
       int posMin = _findPosMin(A, l, r);
       // Scambia
       int tmp = A[posMin];
       a[posMin] = a[l];
14
       a[l] = tmp;
       // Prosegui ricorsivamente
       _selectionsort(A, l + 1, r);
  }
18
19
  // Funzione di inizializzazione parametri
   public static void selectionsort(int[] A) {
       _selectionsort(A, 0, A.length);
```

8 Quick Sort

Completare #todo-uni

Noi abbiamo guardato la partizione di Hoare, ma si può seguire tranquillamente quella di Lomuto. Hai fini dell'esame non è importante.

Viene dimostrata anche la correttezza.

8.1 Tempi di calcolo

Nel caso peggiore (array ordinato) l'equazione di ricorrenza è

$$T(n) = T(n-k) + T(k) + \Theta(n) = \Theta(n^2)$$

con k costante.

Nel caso migliore invece è

$$T(n) = T(\alpha n) + T((1 - \alpha)n) + \Theta(n) = \Theta(n \log n)$$

 $con 0 < \alpha < 1$.

Dunque il Quick Sort è $\Omega(n \log n)$ e $O(n^2)$.

Se l'input è casuale, il tempo atteso però è $\Theta(n \log n)$.

8.2 Random partition

```
Rnd_Partition(A, l, r):
    Scambia A[l] con un A[l-c] scelto casualmente
    return Partition(A, l, r)

Rnd_QS(A, l, r):
    if l<r then
        cut = Rnd_Partition(A, l, r)
        Rnd_QS(A, l, cut)
        Rnd_QS(A, cut+1, r)</pre>
```

9 Problema di selezione

- Input: un array A di n interi distinti, un intero $i \in [1, n]$
- Output: il valore di A tale che è maggiore esattamente di i –1 elementi

9.1 Esempio

```
15 4 8 12 22 26 9 19
```

- Con i = 1 l'output sarà 4 (minimo)
- Con i = 8 l'output sarà 26 (massimo)
- Con $i = \frac{n}{2} = 4$ l'output sarà 12 (mediana)

9.2 Implementazioni

9.2.1 Naive

```
1 Naive(A, i):
2 Ordina A
3 return A[i]
```

9.2.2 Selez

Questa implementazione è una ricerca binaria mischiata al quick sort.

9.3 Tempi

Se divide a metà

$$T(n) = \Theta(n) + T\left(\frac{n}{2}\right) = \Theta(n)$$

Se invece toglie un elemento per volta

$$T(n) = \Theta(n) + T(n-1) = \Theta(n^2)$$

Quindi

$$O(n^2)$$
 $\Omega(n)$

10 Counting Sort

• **Input:** A vettore di interi e k intero t.c. $\forall i.0 \le A[i] \le k$

```
CountingSort(A, k):
       C = nuovo vettore con indici da 0 a k
       for i = 0 to k:
           C[i] = 0
6
       for i = 1 to A.length:
           C[A[i]] = C[A[i]] + 1
8
       for i = 1 to k:
9
           C[i] = C[i] + C[i-1]
       B = nuovo vettore da 1 a A.length
       for i = A.length down to 1:
           B[C[A[i]]] = A[i]
14
           C[A[i]] = C[A[i]] - 1
16
       return B
```

10.1 Calcolo dei tempi

$$T(n, k) = \Theta(n + k)$$

11 Radix Sort

• Input: A vettore di interi, d massimo numero di cifre di ogni elemento

```
1 RadixSort(A, d):
2    for i = 1 to d:
3         aplica un alg. di ord. stabile per ordinare A sulla i-esima cifra meno significativa
```

11.1 Calcolo dei tempi

$$T(n,d) = \Theta(d \cdot T_0(n))$$

12 Binary Heap

Un **binary heap** è una struttura dati memorizzata in un array e un certo campo accessorio (**heap size**).

- Essa può essere vista come albero binario quasi completo
- Tutti gli elementi tranne il primo soddisfano la proprietà dello heap

$$parent(i) = \left\lfloor \frac{i}{2} \right\rfloor$$
$$left(i) = 2i$$
$$right(i) = 2i + 1$$
$$A.length = 10$$
$$A.heap_size = 10$$

12.1 Proprietà dello heap

$$\forall i$$
 1 < $i \le A$.heap_size

Se *A* è:

- Max heap: $A[parent(i)] \ge A[i]$
- Min heap: $A[parent(i)] \le A[i]$

Oss: se A è ordinato in modo decrescente, allora è un heap. Il contrario invece non è sempre vero.

12.2 Esempi

12.3 Generare un binary heap

Per rendere un normale albero un binary heap abbiamo bisogno delle seguenti procedure:

- BuildMaxHeap per rendere un array un max heap
- MinHeapify per rendere un albero un min heap

12.3.1 MaxHeapify

```
for i = floor(A.heap_size / 2) down to 1 do

MaxHeapify(A, i)
```

12.3.1.1 Tempi I tempi della MaxHeapify sono:

$$T(h) = \Theta(1) + T(h - 1) = O(h)$$

$$T(n) = O(\log n)$$

I tempi di BuildMaxHeap sono:

$$T(n) \le \frac{n}{2} \cdot O(\log n) = O(n \log n)$$
$$T(n) = \Theta(n)$$

12.4 Heap Sort

```
1 HeapSort(A):
2    BuildMaxHeap(A)
3    for i = A.length to 2:
4         scambia A[1] con A[i]
5         A.heap_size = A.heap_size - 1
6         MaxHeapify(A, 1)
```

$$T(n) = O(n \log n)$$

Questo è un algoritmo in-place.

13 Insiemi dinamici

Gli insiemi manipolati dagli algoritmi possono crescere, ridursi o cambiare nel tempo. Questi insiemi sono detti **dinamici**.

Molti algoritmi richiedono soltanto la capacità di **inserire** e **cancellare** degli elementi da un insieme e di **verificare l'appartenenza** di un elemento ad un insieme.

Un insieme dinamico che supporta queste operazioni è un dizionario.

13.1 Dizionari

Un dizionario può essere implementato tramite un array in cui, oltre all'attributo length, viene memorizzato anche l'attributo size che specifica quanti valori sono effettivamente presenti nel dizionario.

```
private int[] data;
public final int length;
public int size;

C01_DictionaryArray(int length) {
    this.data = new int[length];
    this.length = length;
    this.size = 0;
}
```

13.1.1 Inserimento in fondo

La forma più semplice di inserimento è l'inserimento in fondo al dizionario.

size indica direttamente in che punto fare l'inserimento in fondo.

Nota: potrei non aver spazio per inserire un elemento (*overflow*).

Tempi: supponendo di avere n elementi, l'inserimento in fondo richiede $\Theta(1)$.

13.1.2 Inserimento in posizione data

Per inserire un elemento x in una data posizioni i devo "fargli posto" spostando a destra tutti gli elementi in posizioni comprese fra i (incluso) e size (escluso).

```
public void insert(int i, int x) {
    if (size == length)
        throw new RuntimeException("overflow");

if (i > size)
        throw new RuntimeException("impossibile inserire lasciando buchi");

for (int j = size; j > i; --j)
        data[j] = data[j - 1];

data[i] = x;
```

```
11 size = size + 1;
12 }
```

Tempi: supponendo di avere n elementi, l'inserimento richiede O(n) nel caso peggiore.

13.1.3 Inserimento in cima

L'inserimento in cima (prepend) potrebbe richiamare la insert(0, x). La implementiamo però esplicitamente.

Tempi: supponendo di avere n elementi, l'inserimento in cima richiede $\Theta(n)$.

13.1.4 Cancellazione in fondo

La forma più semplice di cancellazione è la cancellazione dell'ultimo elemento.

Note:

- Devo controllare che ci sia almeno un elemento (altrimenti errore di underflow)
- Le delete spesso restituiscono l'elemento cancellato

Tempi: $\Theta(1)$.

13.1.5 Cancellazione in posizione data

Per cancellare l'elemento in posizione i devo spostare a sinistra tutti gli elementi che sono presenti nelle posizioni comprese fra i e size. L'ultimo elemento resta fisicamente

nell'array, ma non viene considerato perché decrementiamo size.

```
public int delete(int i) {
       if (size == 0)
           throw new RuntimeException("underflow");
3
       if (i >= size)
5
           throw new RuntimeException("impossibile eliminare");
6
       int ris = data[i];
8
       for (int j = i; j < size-1; j++)</pre>
9
           data[j] = data[j+1]
       size = size - 1;
12
13
       return ris;
14 }
```

13.1.6 Cancellazione in cima

13.1.7 Ricerca valore

Ricerca il valore × nel dizionario. Restituisce l'indice dell'elemento o −1 se non è presente.

```
public int search(int x) {
    int j = 0;

while (j < size) {
    if (x == data[j]) {
        return j;
    }
    j++;
    }
    }

return -1;
}</pre>
```

13.1.8 Cancellazione elementi uguali a un valore dato

Elimina tutti gli elementi uguali a x. La funzione restituisce **true** se il valore era presente almeno una volta, **false** altrimenti.

```
public boolean deleteAllValues(int x) {
    int n_found = 0;

for (int i = 0; i < size; i++) {
    if (data[i] == x) {
        n_found++;
    } else {
        data[i - n_found] = data[i];
    }

    size = size - n_found;
    return n_found > 0;
}
```

13.1.9 Limitazioni

Array consentono di memorizzare insiemi dinamici ma hanno capacità massima ridotta:

- Alzare la capacità riduce la probabilità di overflow ma lascia spazio non utilizzato
- Ridurre la capacità riduce lo spazio non utilizzato ma incrementa la probabilità di overflow
- Con riallocazioni dinamiche si perde tempo per la copia (analisi ammortizzata dei tempi)

13.2 Liste concatenate

Una **lista concatenata** (*linked list*) è una struttura dati in cui ciascun dato è memorizzato in un nodo e i nodi sono collegati tra loro in ordine lineare.

È necessario implementare le operazioni di accesso in modo da preservare la struttura dati.

Definiamo una classe (inner class) Node per rappresentare ciascun nodo e manteniamo un riferimento head al primo nodo.

```
public class SimpleList {
   public static class Node {
   int key;
   Node next;
}
```

Una lista vuota non ha nodi, quindi head = **null**.

```
1 SimpleList() {
2    this.head = null;
3 }
```

Di una lista concatenata in genere non si lavora con la sua dimensione, ma si vuole sapere solo se è vuota o se ha almeno un elemento.

```
boolean isEmpty() {
    return this.head == null;
}
```

13.2.1 Inserimento in testa

```
public Node prepend(Node x) {
    x.next = this.head;
    this.head = x;
    return x;
}
```

Tempi: O(1).

13.2.2 Inserimento dopo un nodo dato

insertAfter(Node i, Node x) inserisce il nuovo nodo x come successore del nodo i già presente nella lista. Se i == **null** allora è inserimento in testa.

Tempi: O(1).

13.2.3 Inserimento in coda

Per inserire in coda \times devo trovare il riferimento i all'ultimo elemento, poi procedo come da insertAfter(i, \times).

```
public Node append(Node x) {
    if (this.head == null) {
        this.head = x;
    } else { // Cerco l'ultimo nodo (cioè il nodo con next == null)
        Node i = this.head;
    while (i.next != null) { // dato che head!=null, allora i.next non mi darà errore
        i = i.next;
    } // Aggiungo x come successore di i
    i.next = x;
    }
    return x;
}
```

Tempi: O(n).

13.2.4 Cancellazione in testa

Tempi: O(1).

13.2.5 Cancellazione in coda

Come per l'inserimento in coda devo scorrere la lista m,a devo cercare il *penultimo* elemento (e poi assegnare **null** come successore).

Caso particolare è quando ho un solo elemento:

- Non esiste il penultimo
- Cancellarlo equivale a svuotare la lista

```
// se head.next==null ho un solo elemento -> lo cancello
       if (head.next == null) {
6
7
           Node x = head;
8
           head = null;
9
           return x;
       Node i = head;
       // Cerco il penultimo..
       while (i.next.next != null) {
14
           i = i.next;
       Node x = i.next;
       // ...e cancello il successivo
18
       i.next = null;
       return x;
20 }
```

Tempi: O(n).

13.2.6 Cancellazione di un nodo dato

Per cancellare il nodo i devo cercare il suo predecessore j per aggiornare il suo next a i.next.

```
public Node delete(Node i) {
       if (head == i) {
            // se i==head allora
3
           head = i.next;
           // i non ha predecessore
6
       } else {
           Node j = head;
7
8
           // Cerco il predecessore...
9
           while (j.next != i) {
               j = j.next;
           // e aggiorno il suo successore "saltando" i
           j.next = j.next.next;
14
       i.next = null;
       return i;
   }
```

Tempi: O(n).

13.2.7 Ricerca elemento

Cerca il riferimento al primo nodo che contiene la chiave key. Deve restituire **null** se key non è presente.

```
public Node search(int key) {
    Node i = head;
    while (i != null && i.key != key) {
        i = i.next;
    }
}
```

```
6
7 return i;
8 }
```

13.2.8 Cancellazione nodo con valore date

Elimina il primo nodo che contiene la chiave key. Deve restituire il riferimento al nodo che ha cancellato o **null** se non presente.

```
public Node deleteValue(int key) {
       Node prev = null;
       Node i = this.head;
3
       while (i != null && i.key != key) {
6
           prev = i;
            i = i.next;
8
       }
9
       if (i != null) {
            if (i == this.head) {
                // key è in head, quindi prev == null
               this.head = i.next;
14
           } else {
15
               prev.next = i.next;
            }
            i.next = null;
18
       }
19
       return i;
   }
```

13.2.9 Cancellazione di tutti i nodi con valore dato

Elimina tutti i nodi che contengono la chiave key. La funzione deve restituire **true** se il valore era presente almeno una volta, **false** altrimenti.

```
public boolean deleteAllValues(int key) {
        boolean deleted = false;
3
        Node i = this.head;
4
        Node prev = null;
        while (i != null) {
            if (i.key == key) {
   if (i == this.head) {
6
                     this.head = i.next;
8
                 } else {
9
                     prev.next = i.next;
                 deleted = true;
                 i = i.next;
            } else {
14
                 prev = i;
                 i = i.next;
            }
18
        return deleted;
19
```

13.3 Riepilogo

Operazione	Array	Liste
prepend	O(n)	O(1)
insert	O(n)	O (1)
append	<i>O</i> (1)	O(n)
deleteFirst	O(n)	O (1)
delete	O(n)	O(n)
deleteLast	<i>O</i> (1)	O(n)
search	O(n)	O(n)

13.4 Liste doppiamente concatenate

Possiamo rendere O(1) le operazioni rimanenti?

- search sicuramente no
- append avremmo bisogno di mantenere il riferimento all'ultimo nodo (quindi bisogna aggiungere tail)
- delete avremmo bisogno di conoscere il predecessore di ciascun nodo (quindi bisogna aggiungere prev a ciascun nodo)
- deleteLast avremmo bisogno di tail e prev

```
public class DoublyLinkedList {
       public static class Node {
3
           int key;
           Node prev;
          Node next;
6
7
           public Node(int key) {
               this.key = key;
9
               this.prev = this.next = null;
       }
12
13
       private Node head;
       private Node tail;
14
16
       DoublyLinkedList() {
          this.head = this.tail = null;
```

```
18     }
19
20     boolean isEmpty() {
21         return this.head == null;
22     }
23  }
```

13.4.1 Inserimento in testa

```
public Node prepend(Node x) {
    if (this.isEmpty()) {
        this.head = this.tail = x;
    } else {
        x.next = this.head;
        this.head.prev = x;
        this.head = x;
    }
    return x;
}
```

Tempo: O(1).

13.4.2 Inserimento in coda

```
public Node append(Node x) {
    if (this.isEmpty()) {
        this.head = this.tail = x;
    } else {
        this.tail.next = x;
        x.prev = this.tail;
        this.tail = x;
    }
    return x;
}
```

Tempi: O(1).

13.4.3 Cancellazione in testa

```
public Node deleteFirst() {
       if (this.isEmpty())
           return null;
4
       Node x = head;
5
6
       if (head == tail) {
           // c'è un solo nodo
7
8
           head = tail = null;
9
       } else {
           // ci sono almeno due nodi
           head = head.next;
           head.prev = null;
           x.next = null;
13
```

```
14 }
15
16 return x;
17 }
```

Tempi: O(1).

La cancellazione in coda è simmetrica (su tail).

13.4.4 Cancellazione di un nodo dato

La cancellazione di un nodo i dato aggiorna il riferimento next di i.preve il riferimento prev di i.next. Se i.prev==null allora i è la testa, si aggiorna head. Se i.next ==null allora i è la coda, si aggiorna tail.

Attenzione: i può essere sia testa che coda!

```
public Node delete(Node i) {
       if (i == this.head) {
           this.head = i.next;
       } else {
5
           i.prev.next = i.next;
6
       if (i == this.tail) {
           this.tail = i.prev;
9
       } else {
           i.next.prev = i.prev;
12
       i.prev = null;
14
       i.next = null;
16
       return i;
  }
```

Tempi: O(1).

13.4.5 Inserimento successore

Aggiunge x come successore di i. Se i==**null** deve aggiungere in testa. Restituisce il nodo inserito (x).

Tempi: O(1).

13.4.6 Cancellazione in coda

Cancella l'ultimo nodo. Restituisce il nodo cancellato. Non effettua cancellazioni e restituisce **null** se la lista è vuota.

Tempi: O(1).

13.5 Riepilogo 2

Operazione	Array	Liste	Liste D. Conc.
prepend	O(n)	<i>O</i> (1)	<i>O</i> (1)
insert	O(n)	<i>O</i> (1)	<i>O</i> (1)
append	<i>O</i> (1)	O(n)	<i>O</i> (1)
deleteFirst	O(n)	<i>O</i> (1)	<i>O</i> (1)
delete	O(n)	O(n)	<i>O</i> (1)
deleteLast	<i>O</i> (1)	O(n)	<i>O</i> (1)
search	O(n)	O(n)	O(n)

13.6 Confronto strutture dati per dizionari

Spazio occupato per memorizzare elementi:

- Array: k elementi con $k \ge n$ la capacità fissa
- **Liste semplici**: n elementi + n + 1 puntatori
- Liste doppiamente concatenate: n elementi + 2n + 2 puntatori

Vantaggi e svantaggi:

- Gli array consentono accesso diretto e sono cache-friendly, le liste no.
- Gli array hanno, però, capacità fissa, le liste crescono e si riducono al bisogno.

• Liste dopp. concatenate consentono inserimenti e cancellazioni da entrambi gli estremi in tempo costante, array e liste semplici no.

Qua poi dovrebbero esserci altri tipi di strutture dati.