Nous innovons pour votre réussite!

Unix: Utilisation et programmation

Pr. Hajar IGUER hajar.iguer@uic.ac.ma

Nous innovons pour votre réussite!

PROTECTION DES FICHIERS

Introduction

- Linux est un système multi-utilisateurs
- On a donc besoin de créer plusieurs utilisateurs pour pouvoir exploiter le système d'exploitation
- D'où l'intérêt de gérer les utilisateurs, leurs droits d'accès et leur groupes.
- Les fichiers importants à connaître sont :
 - le fichier /etc/passwd
 - le fichier /etc/group

Fichier /etc/passwd

- Le fichier /etc/passwd contient toutes les informations relatives aux utilisateurs (login, mots de passe, ...).
- Seul le superutilisateur (root) doit pouvoir le modifier.
- Les droits de ce fichier doivent être en lecture seule pour les autres utilisateurs.

Fichier /etc/passwd

Extrait du fichier :

- root:x:0:0:root:/root:/bin/bash
- bin:x:1:1:bin:/bin:
- daemon:x:2:2:daemon:/sbin:
- adm:x:3:4:adm:/var/adm:
- lp:x:4:7:lp:/var/spool/lpd:
- sync:x:5:0:sync:/sbin:/bin/sync
- shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
- halt:x:7:0:halt:/sbin:/sbin/halt

Fichier /etc/passwd

- Les champs :
 - Nom utilisateur
 - Mot de passe : codé, ou x donc dans /etc/shadow, ou
 !! Interdit de connexion
 - UID
 - GID
 - Libre : nom et prénom, adresse...
 - Le répertoire de connexion
 - Le shell

Fichier /etc/group

- Le fichier /etc/group contient la liste des utilisateurs appartenant aux différents groupes.
- Plusieurs utilisateurs peuvent accéder à plusieurs fichiers/répertoires ainsi ils sont regroupés dans une seule structure appelée groupe.

Fichier /etc/group

- Organisé en champs :
 - Le nom du groupe
 - Mot de passe (non utilisé)
 - Le numéro du groupe
 - Champs vide
 - Champs description
 - Liste des membres

Nous innovons pour votre réussite!

CONNEXION ET DÉCONNEXION

Commandes

- logname, whoami: nom de l'utilisateur
- id: donne les informations sur l'utilisateur actuel
- uname: donne des informations sur le SE
- who: donne la liste des utilisateurs sur la machine
- passwd: modification du mot de passe

Nous innovons pour votre réussite!

Exécuter en mode root

- Le root est désigné comme le superutilisateur de toute distribution Linux cela veut dire qu'il a tous les droits sur la machine.
- Tout autre utilisateur créé, en même temps que sa session, détient des droits limités.
- C'est un des volets de sécurité pour lequel est connu Linux.

Nous innovons pour votre réussite!

Exécuter en mode root

- Afin d'exécuter en mode root:
 - Utilisez la commande sudo
- Afin d'exécuter en mode root et le rester:
 - Utilisez la commande sudo –su
- Notez que:
 - sudo: substitute user do
 - le mot de passe de votre session est le même que celui du superutilisateur
 - pour quitter le mode root, saisissez

« quit » ou Ctrl + D

de Casablanca

Changer de session

- Pour changer d'utilisateur/ de session, on utilise la commande su [nom_user]
- En utilisant la commande su , le "-" force le démarrage d'un nouveau shell de connexion, avec ajustement des variables d'environnement et de tous les réglages par défaut selon les préférences de l'utilisateur.
- Exemple: su Ginfo

UNIVERSITÉ INTERNATIONALE DE CASABLAN¹C⁴A

Nous innovons pour votre réussite!

GESTION DES UTILISATEURS

Gestion des utilisateurs

- Seul le superutilisateur peut gérer les autres utilisateurs
 - Pour ajouter un utilisateur: sudo adduser ginfo
 - Changer le mot de passe: passwd ginfo
 - Supprimer un compte: deluser -removehome ginfo

Gestion des groupes

- Tout utilisateur doit appartenir à un groupe
- Lors de la création d'un utilisateur, il est automatiquement affecté à un groupe du même nom que l'utilisateur.
 - Pour créer un groupe: addgroup
 - Pour modifier un utilisateur: usermod
 - -I : renomme l'utilisateur (le nom de son répertoire personnel ne sera pas changé par contre);
 - -g : change de groupe.

Gestion des groupes

Nous innovons pour votre réussite!

- Tout utilisateur doit appartenir à un groupe
- Lors de la création d'un utilisateur, il est automatiquement affecté à un groupe du même nom que l'utilisateur.
 - Pour créer un groupe: addgroup
 - Pour supprimer un groupe : delgroup
 - Pour modifier un utilisateur: usermod
 - -I : renomme l'utilisateur (le nom de son répertoire personnel ne sera pas changé par contre) ;
 - -g : change de groupe.
 - -aG: rajoute un groupe aux groupes déjà associés Université International
 - Pour afficher la liste des groupes g

Nous innovons pour votre réussite!

Gestion des groupes

- Exemples:
 - usermod –g groupe1 ginfo
 - addgroup group1
 - delgroup group2
 - groups ginfo

Propriétaire du fichier : modifier

- Pour changer le propriétaire d'un fichier
 - chown user nom_fich
- Pour changer le groupe propriétaire d'un fichier
 - chgrp group1 nom_fich
 - chown ginfo:group1 nom_fich (affectation double de l'utilisateur et du groupe)
 - chown –R : Affectera récursivement tous les sous dossiers à un utilisateur

Nous innovons pour votre réussite!

DROITS D'ACCES

Droits: Concept

- Pour chaque fichier, il existe trois types d'utilisateurs:
 - Propriétaire du fichier
 - Les membres du groupe propriétaire du fichier
 - Les autres utilisateurs du système
- Chaque fichier est désigné par 10 attributs:

Droits: Signification

Droits:

- Lecture (r)
- Ecriture (w)
- Exécution (x)
- Utilisateur (u)
- Groupe (g)
- Autre (o)

Nous innovons pour votre réussite!

Droits: Exemple

- c rw- r- r--: fichier spécial caractère/ lecture et écriture pour l'utilisateur/ lecture pour le groupe / lecture pour les autres.
- d rwx rw- r--:dossier/ lecture, écriture et exécution permises pour le propriétaire/ lecture et écriture pour le groupe/ seulement lecture pour les autres
- rw- rw- rw- : fichier ordinaire/lecture et écriture pour l'utilisateur, le groupe et les autres

Affichage des informations

- Affichage des informations d'un fichier:
 - Is –I nom_fichier
 - Is –I chemin_fichier

- Affichage des informations d'un répertoire:
 - Is –dl nom_repertoire
 - Is –dl chemin_repertoire

Nous innovons pour votre réussite!

Modification des droits d'accès aux fichiers

- Mode d'utilisation: Protection par un nombre octal
 - chmod [nb_octal] <liste_fichiers>

Exemple:

- rwx rw- r-x sera représenté par un nombre octal.
 Pour faire le calcul, on remplace une lettre par 1 et un tiret par 0. La représentation sera
 111 110 101= 765
- chmod 765 fich

Nous innovons pour votre réussite!

Modification des droits d'accès aux fichiers

- Mode d'utilisation: Mode symbolique
 - chmod [who] op [droit] < liste_fichiers>
- who?
 - U(ser)
 - G(roup)
 - O(ther)
- op?
 - = force les droits
 - +ajoute les droits
 - -- retire les droits

Nous innovons pour votre réussite!

Modification des droits d'accès aux fichiers

Exemples:

- chmod u-w fich: supprime le droit d'écriture au propriétaire.
- chmod g+r fich: rajoute le droit de lecture au groupe.
- chmod ug=x fich: accès uniquement en exécution pour le propriétaire et le groupe / Aucune modification pour les autres.
- chmod u=rwx,g=r,o=- fich : tous les accès pour l'utilisateur/ la lecture pour le groupe/ aucun droit pour les autres

 Université Internationale de Casablanca

Droits aux dossiers: Interprétation

- r: autorise la lecture du contenu du répertoire et permet de voir la liste des fichiers
- x: autorise l'accès au répertoire (à l'aide de la commande cd)
- w: autorise la création, la suppression et le changement du nom d'un élément du répertoire. Cette permission reste indépendante de l'accès aux fichiers dans le répertoire

Nous innovons pour votre réussite!

MÉCANISMES DE REDIRECTION/ TUBES/ FILTRES

Structure d'une commande

 Toute commande utilisée dans le système d'exploitation linux est structurée de la manière suivante:

- Il est possible de rediriger le résultat d'une commande et d'effectuer des enchainements de commandes.
- Cette redirection se fait dans un fichier ou en entrée d'une autre commande

Mécanisme de redirection

- Nous présentons deux flux de redirection dans les fichiers
 - > fich1: redirige dans un fichier et l'écrase s'il existe déjà sans demande de confirmation
 - ->> fich1 : redirige à la fin d'un fichier et le crée s'il n'existe pas

 NB: ces symboles spéciaux sont appelés flux de redirection

- Une commande exécutée peut parfois générer des erreurs.
- Par défaut la redirection se fait en entier dans la sortie standard (fichier).
- Il y a une possibilité de séparer les résultats dans deux fichiers différents (deux sorties)

- Pour cela on utilise le symbole suivant:
 - 2> fichier : redirige les erreurs éventuelles dans le fichier ,il sera écrasé s'il existe déjà.
 - 2>> fichier : redirige les erreurs éventuelles à la fin d'un fichier et le crée s'il n'existe pas.
 - 2>&1 fichier : redirige les erreurs éventuelles dans le même fichier que la sortie standard.

- Nous présentons deux flux de redirection qui permettent de lire depuis un fichier
 - < fich1 : envoie le contenu d'un fichier à une commande
 - << fich1 : permet de lire une entrée progressivement depuis le clavier ligne par ligne
- NB: ce symbole < indique l'entrée envoyée à la commande

Mécanisme de redirection

Exemples:

- commande > fich1.txt
- commande >> fich1.txt
- commande > fich1.txt 2> erreurs.txt
- commande > fich1.txt 2>> erreurs.txt
- commande > fich.txt 2>&1
- commande < fich.txt</p>
- commande << FIN</p>

Exercice

- En utilisant les redirections, réalisez les manipulations suivantes:
 - Copie d'un fichier dans un nouveau fichier
 - Concaténation de deux fichiers
 - Ajout du contenu d'un fichier dans un autre
 - Créer un fichier par saisie au clavier

Correction

Nous innovons pour votre réussite!

- Copie d'un fichier dans un nouveau fichier
 - cat info.txt > test.txt
 - cat <info.txt > test.txt
- Concaténation de deux fichiers
 - cat info.txt info2.txt > test.txt
 - cat <info.txt info2.txt > test.txt
- Ajout du contenu d'un fichier dans un autre
 - cat info.txt info2.txt >> info3.txt
- Créer un fichier par saisie au clavier
 - Cat > test3.txt
 - 1
 - 2
 - 3
 - CTRL + d

Tubes Nous innovons pour votre réussite!

 Un tube est un flot de données qui permet de relier la sortie standard d'une commande à l'entrée standard d'une autre commande.

commande1 | commande2 | commande3

Tubes Nous innovons pour votre réussite!

 Un tube est un flot de données qui permet de relier la sortie standard d'une commande à l'entrée standard d'une autre commande.

commande1 | commande2 | commande3

Filtres

- C'est une commande qui lit les données sur l'entrée standard, les traite et les écrit sur la sortie standard.
- Les filtres les plus utilisés:
 - grep: recherche les occurrences d'une chaine de caractère
 - wc: word count compte le nombre de caractère
 - less: affiche le contenu d'un fichier page par page
 - sort: filtre de tri

Filtres

- Exemple:
 - cat /etc/passwd | grep /bin/bash | wc –l

- Quelles commandes Linux exécuter pour obtenir à l'écran: Il y a xxx utilisateurs de ce système dont le login shell est bash?
 - cat /etc/passwd | wc -l

