S: Rain Water Trapping Ms/Amazon/Apple/95/ JPM/Bloomberg/Payton/--

Given Nærrag elements, Afij denotes the height of ith Building-Return the units of water trapper bjw the buildings

En: {2, 1, 3, 2, 1, 2, 4, 3, 2, 1, 3

Ans: - Sum et units et water trapped on top et each building.

left boundary -> left Man sight boundary -> sight Man

worder = min (left Man, right Man) - Ali]

Ex: {4,2,5,7,4,2,3,6,8,2,3} min(4,8)-3 min(5,8)-4 nin(4,3)-8=-5 mín (8,3)-2 G min(4,8)-2 min (4,8)-4 min (4,8)-2

```
ams = D;
     for ( i= 1; i < N-1; i++) 1
          left Man -> [0, i-1]
          right Man → [i+1, N-1]
           Val = min (letMan, right Man) - Alij
           if (Val >0)
               ans+= val;
-> Precalculate left Man & right Man
 A: 2 3 4 5 6 7 8 9 10
LM: 10 4 4 5 7 7 7 7 7 8 8 3
RM {8 8 8 8 8 8 3 3 0 }
       LM[1] = man(LM[1-1], A[1-1])
  1) Create LM[] -> O[N)
  2) Create RM[] - DIN)
  3) find the val for each inden D(N)
             TC: D(N)
             SC: 0(N)
```

$$for(n = 1; n (= M-1; n++) ($$

$$if((b/\cdot M * n) \cdot M = = 1)$$

$$8 = 10, M = 4$$

$$n \in [1, 6]$$

$$n = 1 \quad (10/\cdot 4 * 1) \cdot 4 + 1$$

$$(3 \times 1) \cdot 4 + 1$$

$$(10/\cdot 4 \times 5) \cdot 4 = (3 \times 5) \cdot 4 + 1$$

$$= 15 \cdot 4 = 2$$

$$f'' \cdot M = 5$$

$$f'' \cdot M = 5$$

$$f'' \cdot M = 1$$

$$b^{M-1}$$
 $\cdot M = b^{-1} \cdot M$
 $b^{M-1} \cdot M = b^{-1} \cdot M$
 $b^{M-2} \cdot M = b^{M-2} \cdot M$
 $b^{M-2} \cdot M = b^{-1} \cdot M$
 $b^{M-2} \cdot M = b^{-1} \cdot M$

$$b^{-1} \cdot /.M = b^{M-2} \cdot /.M$$

$$\Rightarrow Pow(b, M-2, M)$$

Given N, x,
$$P(Prime no.)$$

Calculate Ncr 1.P [N, $r < P$]

$$\frac{N!}{x!(N-x)!}$$
 $Y.P$

$$\frac{(a)}{y.P}$$

$$\frac{(a)}{y.P}$$

$$Y.P$$

$$\frac{(a)}{y.P}$$

$$Y.P$$

$$\frac{(a)}{y.P}$$

$$Y.P$$

$$b^{-1}/.P \rightarrow b^{-2}/.P$$

1) P is $Prime mo$.

2) $Qcd(b,P) = 1$
 $(x_1)^{-1}/.P = 0$
 $Qcd(x_1,P) = 1$
 $(N-x_1)^{-1}/.P$
 $N \in P$

$$N-r < P \Rightarrow gcd((N-r)!, P) = 1$$

$$(32)^{-1} ? P = (32)^{2-2} ? P$$

$$\Rightarrow (32)^{-1} ? P$$

$$N^{2-2} ? P$$

$$Pow(n, P-2, P)$$

$$\Rightarrow (N-r)!^{-1} ? P$$

$$\Rightarrow (N-r)! ? P^{2-2} ? P$$

$$\Rightarrow (N-r)! ? P^{2-2} ? P$$

$$\Rightarrow (N-r)! ? P^{2-2} ? P$$

 $n_{C_0} = 1$, $n_{C_N} = 1$, $n_{C_1} = n$

Given a Binary Array, find the subarray when flipped () can give the man no. eg 1's in the entire array.

i) flip operation can be done atmost once. ii) If there's NO subarray me want to flip return [].

A[s]: $\{ 1 \ 0 \ 1 \ 0 \ 3 \}$ [1-4] $\Rightarrow \{ 1 \ 1 \ 0 \ 1 \ 1 \ 3 \Rightarrow 4 \ 1's$ [0-2] $\Rightarrow \{ 0 \ 1 \ 0 \ 0 \ 3 \Rightarrow 1 \ 1's$ [1-1] $\Rightarrow \{ 1 \ 1 \ 1 \ 0 \ 0 \ 3 \Rightarrow 3 \ 1's$

Brute force

Therate over every subarray & Check rulich subarray flip is giving the max. no. of 1's.

y subarrays = $\frac{N(N+1)}{2} \approx \frac{N(N^2)}{2}$

 $O(N^2 * N) \rightarrow O(N^2)$

Observations

1)

1's

0's

71ip

Net gain in 1's.

-2

 $2) \qquad 3 \qquad 6 \qquad \xrightarrow{\text{flip}} \qquad +3$

3) 2 7 7 7 7 45

-> flip the subarray that gives us max gain.

Man gain => No. et > No. et >

=> After replacing 0 mith 1 & 1 mith -1, find the subarray mith man gain
[S,e]
=> KADANE'S ALGO

* —