Рубежная контрольная работа 1

Содержание

PUNGWUAG KOUTHOULUAG NANOTA I	
Рубежная контрольная работа 1	Z

Рубежная контрольная работа 1.Вариант 1

1.

Первую половину пути машина проехала по гравию со скоростью $v_0=36~{\rm кm/ч}$. Далее водитель выехал на асфальт, и на оставшемся участке дороги он ехал половину времени со скоростью $v=85~{\rm km/ч}$, а затем окончательный участок ехала со скоростью $u=139~{\rm km/ч}$. Найдите среднюю скорость машины за всё время её движения.

2.

На наклонную плоскость, составляющую угол $\alpha=60^\circ$ с горизонтом, поместили два бруска, соприкасающихся друг с другом. Коэффициенты трения между брусками и плоскостью равны $k_1=0.3$ и $k_2=0.2$ соответственно для бруска 1 и бруска 2. Сила давления между брусками равна F=3 Н. Найти массу второго бруска m_2 , если масса первого бруска $m_1=10$ кг. Ускорение свободного падения g считать равным 10 м/c^2 . Ответ приведите в килограммах.

3.

Шайба массы m=50 г соскальзывает без начальной скорости по наклонной плоскости, составляющей угол $\alpha=30^\circ$ с горизонтом, и, пройдя по горизонтальной плоскости расстояние l=50 см, останавливается. Найти работу сил трения на всем пути, считая всюду коэффициент трения k=0.15.

4.

Космический корабль массы m_0 движется в отсутствие внешних сил с постоянной скоростью v_0 . Для изменения направле-

ния движения включили реактивный двигатель, который стал выбрасывать струю газа с постоянной относительно корабля скоростью u, все время перпендикулярной к направлению движения корабля. В конце работы двигателя масса корабля стала равной m. На какой угол α изменилось направление движения корабля за время работы двигателя?