Nome:	Número:	TP:			

$\mathbf{I.}$ Indique quais das seguintes afirmações são verdadeiras (V) e quais	s são falsas (F):				
V F \times A correspondência $x \mapsto \begin{cases} 2x & \text{se } x \geq 2 \\ 4x - 4 & \text{se } x \leq 2 \end{cases}$ define	ne uma função $f:\mathbb{Z}$	$ ightarrow \mathbb{Z}.$			
$\hfill \square$	$f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}.$				
		-			
II. Considere as funções $f: \mathbb{Z} \to \mathbb{Z}$ e $g: \mathbb{N}_0 \to \mathbb{Z}$ dadas por $f(x) = \langle x \rangle$	$x-2$ se $x \neq 1$ 2 se $x=1$	$\land x \neq 3$			
e g(x) = x + 4.	4 se x = 3				
(a) (0,75 valores) Tem-se $f(\{1,3,4\}) = \underline{\{2,4\}}$					
(b) (0,75 valores) Tem-se $f^{\leftarrow}(\{1,2\}) = \{1,4\}$					
(c) (0,75 valores) A função composta $f \circ g$ é dada por: $ f \circ g : $	$\mathbb{N}_0 \to \mathbb{Z}$ $x \mapsto x + 2$				
(Na alínea (c) indique o domínio e o conjunto de chegada.)					
III. Considere a função $f: \mathbb{Z} \to \mathbb{Z}$ definida em II. e a função $g: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ dada por $g(X) = \mathbb{N} \setminus X$, para todo $X \in \mathcal{P}(\mathbb{N})$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):					
V F \times f é injetiva. \times f é sobrejetiva. \times g é bijetiva.					
IV. Seja R a relação binária em $\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$ definida por					
$XRY \Leftrightarrow X \cap Y \neq \emptyset, \ \forall X,Y \in \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$ Indique quais das seguintes afirmações são verdadeiras (V) e qua $\begin{matrix} V & F \\ \hline \times & $					
R é anti-simétrica.					

$$x \sim y \Leftrightarrow \exists k \in \mathbb{Z}, x - y = 3k.$$

(a) Indique as seguintes classes de equivalência em extensão:

(i)
$$(0.75 \text{ valores})$$
 $[-4]$ = $\{y \in A : -4 \sim y\} = \{y \in A : \exists k \in \mathbb{Z}, -4 - y = 3k\} = \{-4, -1, 2\}$

(ii) (0,75 valores) [0]
$$= \{ y \in A : 0 \sim y \} = \{ y \in A : \exists k \in \mathbb{Z}, 0 - y = 3k \} = \{ -3, 0, 3 \}$$

(b) (0,75 valores) Determine o conjunto quociente A/\sim .

Uma vez que
$$[-4] = [-1] = [2]$$
, $[0] = [-3] = [3]$ e $[1] = \{-2, 1, 4\} = [-2] = [4]$, tem-se

$$A/\sim = \{[x] : x \in A\} = \{[0], [1], [2]\} = \{\{-3, 0, 3\}, \{-2, 1, 4\}, \{-4, -1, 2\}\}.$$

VI. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

V	\mathbf{F}	
	×	Existe uma relação de equivalência \sim em $\mathbb N$ tal que $\mathbb N/\sim=\{\mathbb N\setminus\{2,3,4\},\{3,4\}\}$

Existe uma relação de equivalência \sim em \mathbb{N} tal que $[2]_{\sim} \cup [3]_{\sim} = \{3,4,5\}$.

 \times Existe uma relação de equivalência \sim em $\mathbb N$ tal que $\mathbb N/\sim=\{\{x\}:x\in\mathbb N\}$

VII. Considere os conjuntos

$$P = \{\emptyset, \{2\}, \{2,3\}, \{2,4\}, \{2,3,4,6\}, \{2,3,4,5\}, \{2,3,4,5,6\}\}$$
e $S = \{\{2\}, \{2,3\}, \{2,4\}\}.$

(a) (0.75 valores) Desenhe o diagrama de Hasse do c.p.o. (P, \subseteq) onde \subseteq é a relação de inclusão.

(b) (0.75 valores) Determine, caso existam, os majorantes e os minorantes de S.

Minorantes de $S: \emptyset, \{2\};$

Majorantes de $S: \{2, 3, 4, 5\}, \{2, 3, 4, 6\}, \{2, 3, 4, 5, 6\}.$

(c) (0.75 valores) Determine, caso existam, o supremo e o ínfimo de S.

Supremo de S: não existe; Ínfimo de S: $\{2\}$.

VIII. (a) (1,5 valores) (Verdadeiro ou Falso?) Sejam A, B, C conjuntos e $f: A \to B$ e $g: B \to C$ funções. Se g é sobrejetiva, então $g \circ f$ é sobrejetiva.

(b) (2 valores) Mostre por indução que, para todo o número natural $n \ge 1$,

$$2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1.$$

Nome:	Número:	TP:			

I. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):					
V F	$f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}.$				
\times A correspondência $x \mapsto \begin{cases} 3x & \text{se } x \geq 3 \\ 4x - 3 & \text{se } x \leq 3 \end{cases}$ defi	ne uma função $f:\mathbb{Z}$	$ ightarrow \mathbb{Z}.$			
		,			
II. Considere as funções $f: \mathbb{Z} \to \mathbb{Z}$ e $g: \mathbb{N}_0 \to \mathbb{Z}$ dadas por $f(x) = \begin{cases} x-1 & \text{se} & x \neq 1 \land x \neq 3 \\ 1 & \text{se} & x = 1 \\ 3 & \text{se} & x = 3 \end{cases}$					
e g(x) = x + 4.					
(a) (0,75 valores) Tem-se $f(\{1,2,3\}) = \{1,3\}$					
(b) (0,75 valores) Tem-se $f^{\leftarrow}(\{0,1\}) = \underline{\{1,2\}}$					
(c) (0,75 valores) A função composta $f \circ g$ é dada por:	$ \mathbb{N}_0 \to \mathbb{Z} \\ x \mapsto x + 3 $				
(Na alínea (c) indique o domínio e o conjunto de chegada.)					
III. Considere a função $f: \mathbb{Z} \to \mathbb{Z}$ definida em II. e a função $g: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ dada por $g(X) = \mathbb{N} \setminus X$, para todo $X \in \mathcal{P}(\mathbb{N})$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):					
V F \times g é bijetiva. X f é injetiva. X f é sobrejetiva.					
IV. Seja R a relação binária em $\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$ definida por $XRY\Leftrightarrow X\cap Y\neq\emptyset,\ \forall X,Y\in\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}$ Indique quais das seguintes afirmações são verdadeiras (V) e qua $\begin{array}{c c} V & F\\ \hline \times & $					

$$x \sim y \Leftrightarrow \exists k \in \mathbb{Z}, x - y = 3k.$$

(a) Indique as seguintes classes de equivalência em extensão:

(i) (0,75 valores) [-2]
$$= \underline{\{y \in A : -2 \sim y\}} = \{y \in A : \exists k \in \mathbb{Z}, -2 - y = 3k\} = \{-2, 1, 4\}$$

(ii) (0,75 valores) [3]
$$= \{ y \in A : 3 \sim y \} = \{ y \in A : \exists k \in \mathbb{Z}, 3 - y = 3k \} = \{ -3, 0, 3 \}$$

(b) (0,75 valores) Determine o conjunto quociente A/\sim .

Uma vez que
$$[-2] = [1] = [4]$$
, $[3] = [0] = [-3]$ e $[2] = \{-4, -1, 2\} = [-4] = [-1]$, tem-se $A/\sim=\{[x]:x\in A\}=\{[0],[1],[2]\}=\{\{-3,0,3\},\{-2,1,4\},\{-4,-1,2\}\}$.

VI. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

V F

$$\times$$
 Existe uma relação de equivalência \sim em $\mathbb N$ tal que $\mathbb N/\sim=\{\{x\}:x\in\mathbb N\}.$

Existe uma relação de equivalência \sim em $\mathbb N$ tal que $\mathbb N/\sim=\{\mathbb N\setminus\{2,3,4\},\{2,4\}\}.$

Existe uma relação de equivalência \sim em $\mathbb N$ tal que $[3]_{\sim}\cup[4]_{\sim}=\{4,5,6\}.$

VII. Considere os conjuntos

$$P = \{\emptyset, \{2\}, \{3\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 3, 4, 5\}, \{2, 3, 4, 5, 6\}\} \text{ e}$$

$$S = \{\{2, 3, 4\}, \{2, 3, 5\}, \{2, 3, 4, 5\}\}.$$

(a) (0.75 valores) Desenhe o diagrama de Hasse do c.p.o. (P,\subseteq) onde \subseteq é a relação de inclusão.

(b) (0.75 valores) Determine, caso existam, os majorantes e os minorantes de S.

Minorantes de $S: \emptyset, \{2\}, \{3\};$

Majorantes de $S: \{2,3,4,5\}, \{2,3,4,5,6\}.$

(c) (0.75 valores) Determine, caso existam, o supremo e o ínfimo de S.

Ínfimo de S: não existe; Supremo de S: $\{2, 3, 4, 5\}$.

VIII. (a) (1,5 valores) (Verdadeiro ou Falso?) Sejam A,B,C conjuntos e $f:A\to B$ e $g:B\to C$ funções. Se g é sobrejetiva, então $g\circ f$ é sobrejetiva.

A afirmação é falsa.

Contra-exemplo: Sejam $A=B=C=\mathbb{R}$ e f e g as funções definidas, respetivamente, por

$$\forall y \in C \ \exists x = y \in B, \ g(x) = y$$

e, no entanto, a função $g \circ f$, definida por

$$g \circ f: A \rightarrow B$$

 $x \mapsto g(f(x)) = x^2$,

não é sobrejetiva, pois

$$\exists y = -1 \in B \, \forall x \in A, (g \circ f)(x) \neq y.$$

(Com efeito, $-1 = (g \circ f)(x)$ se e só se $x^2 = -1$, mas esta equação não tem solução em $A = \mathbb{R}$).

(b) (2 valores) Mostre por indução que, para todo o número natural $n \ge 1$,

$$2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$$
.

Representemos por p(n) o predicado " $2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$ ". A prova de que p(n) é verdadeiro para todo $n \in \mathbb{N}$ é feita recorrendo ao Princípio de Indução nos Naturais.

(1) Base de indução (n=1): Pretendemos provar que p(1) é verdadeiro. De facto,

$$2^0 + 2^1 = 3 = 2^{(1+1)} - 1$$

pelo que p(1) é verdadeiro.

(2) Passo de indução: Pretendemos mostrar que, para todo $k \in \mathbb{N}$,

$$p(k) \Rightarrow p(k+1)$$
.

Com efeito, se assumirmos, por hipótese de indução, que p(k) é verdadeiro, ou seja, que $2^0+2^1+\dots 2^k=2^{(k+1)}-1$, tem-se

$$2^{0} + 2^{1} + \dots + 2^{k} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} = 2 \times 2^{k+1} - 1 = 2^{k+2} - 1$$

e, portanto, p(k+1) é verdadeiro. Desta forma, provámos que, para todo $k \in \mathbb{N}$,

$$p(k) \Rightarrow p(k+1)$$
.

De (1) e (2) concluímos, pelo Princípio de Indução nos Naturaisfi, que, para todo $n \in \mathbb{N}, p(n)$ é verdadeiro.