Wprowadzenie do supergeometrii

Wojciech Fabjańczuk

Uniwersytet Warszawski Wydział Fizyki

8 kwietnia 2017

Wstęp

Motywacja: Kwantowa teoria pola z cechowaniem; metoda Faddeeva-Popova, dodanie antyprzemiennych zmiennych pozwala obliczyć całkę Feynmana!

Pytanie: jak wygląda geometria różniczkowa ze zmiennymi antyprzemiennymi?

Cel na dziś: uogólnić wyznacznik! (superjakobian, superwrońskian, ...)

Plan:

- Superalgebra liniowa
 - Superprzestrzenie
 - Superalgebry
 - Supermoduly
- Supermacierze
 - Parzystość i nieparzystość
 - Odwracalność supermacierzy parzystych
 - 8 Bierezinian
- 8 Rzut oka na supergeometrię
 - Superrozmaitości

Superprzestrzenią wektorową nad ciałem \mathbb{K} nazywamy przestrzeń wektorową \mathbb{V} nad \mathbb{K} wraz z parą (\mathbb{V}_0 , \mathbb{V}_1) podprzestrzeni \mathbb{V} takich, że $\mathbb{V} = \mathbb{V}_0 \oplus \mathbb{V}_1$.

Elementy \mathbb{V}_0 są parzyste. Elementy \mathbb{V}_1 są nieparzyste.

Równoważnie superprzestrzeń to (\mathbb{V}, α) , gdzie $\alpha \in \operatorname{End}_{\mathbb{K}}(\mathbb{V})$ spełnia $\alpha^2 = \operatorname{Id}_{\mathbb{V}}$. Wtedy

$$V_0 := \ker(\alpha - \mathrm{Id}_{V}),$$

$$V_1 := \ker(\alpha + \mathrm{Id}_{V}).$$

Superprzestrzenią wektorową nad ciałem \mathbb{K} nazywamy przestrzeń wektorową \mathbb{V} nad \mathbb{K} wraz z parą (\mathbb{V}_0 , \mathbb{V}_1) podprzestrzeni \mathbb{V} takich, że $\mathbb{V} = \mathbb{V}_0 \oplus \mathbb{V}_1$.

Elementy \mathbb{V}_0 są parzyste. Elementy \mathbb{V}_1 są nieparzyste.

Równoważnie superprzestrzeń to (\mathbb{V}, α) , gdzie $\alpha \in \operatorname{End}_{\mathbb{K}}(\mathbb{V})$ spełnia $\alpha^2 = \operatorname{Id}_{\mathbb{V}}$. Wtedy

$$V_0 := \ker(\alpha - \mathrm{Id}_{V}),$$

$$V_1 := \ker(\alpha + \mathrm{Id}_{V}).$$

Definicja

 $\mathbb S$ nazywamy *superpodprzestrzenią* $\mathbb V$ wtedy i tylko wtedy, gdy $\mathbb S$ jest podprzestrzenią $\mathbb V$ oraz $\mathbb S=\mathbb S\cap\mathbb V_0\oplus\mathbb S\cap\mathbb V_1.$

Niech \mathbb{V}, \mathbb{W} będą superprzestrzeniami. Odwzorowanie liniowe $f: \mathbb{V} \to \mathbb{W}$ nazywamy homomorfizmem superprzestrzeni.

f jest parzyste jeśli $f(\mathbb{V}_0) \subset \mathbb{W}_0$ oraz $f(\mathbb{V}_1) \subset \mathbb{W}_1$. f jest nieparzyste jeśli $f(\mathbb{V}_0) \subset \mathbb{W}_1$ oraz $f(\mathbb{V}_0) \subset \mathbb{W}_1$.

Niech \mathbb{V}, \mathbb{W} będą superprzestrzeniami. Odwzorowanie liniowe $f: \mathbb{V} \to \mathbb{W}$ nazywamy homomorfizmem superprzestrzeni.

$$f$$
 jest parzyste jeśli $f(\mathbb{V}_0) \subset \mathbb{W}_0$ oraz $f(\mathbb{V}_1) \subset \mathbb{W}_1$. f jest nieparzyste jeśli $f(\mathbb{V}_0) \subset \mathbb{W}_1$ oraz $f(\mathbb{V}_0) \subset \mathbb{W}_1$.

Każdy $f \in \underline{\mathrm{Hom}}_{\mathrm{SVect}}(\mathbb{V},\mathbb{W})$ spełnia $f = f_0 + f_1$ dla jednoznacznie określonego parzystego f_0 i nieparzystego f_1 , ponieważ

$$\begin{split} f &= (\mathrm{Id}_{\mathbb{W}}) f(\mathrm{Id}_{\mathbb{V}}) = (\pi_{\mathbb{W}_0} + \pi_{\mathbb{W}_1}) f(\pi_{\mathbb{V}_0} + \pi_{\mathbb{V}_1}) = \\ &= (\pi_{\mathbb{W}_0} f \pi_{\mathbb{V}_0} + \pi_{\mathbb{W}_1} f \pi_{\mathbb{V}_1}) + (\pi_{\mathbb{W}_0} f \pi_{\mathbb{V}_1} + \pi_{\mathbb{W}_1} f \pi_{\mathbb{V}_0}). \end{split}$$

Wniosek

Homomorfizmy superprzestrzeni wektorowych $\mathbb{V} \to \mathbb{W}$ tworzą superprzestrzeń wektorową oznaczaną $\operatorname{\underline{Hom}}_{\operatorname{SVect}}(\mathbb{V},\mathbb{W}).$

Pytanie: czy istnieje związek parzystości homomorfizmu superprzestrzeni ze strukturą jego jądra i obrazu?

Stwierdzenie

Niech $f: \mathbb{V} \to \mathbb{W}$ będzie parzystym lub nieparzystym homomorfizmem superprzestrzeni. Wtedy $\ker(f)$ i $\operatorname{im}(f)$ są superpodprzestrzeniami \mathbb{V} i \mathbb{W} .

Pytanie: czy istnieje związek parzystości homomorfizmu superprzestrzeni ze strukturą jego jądra i obrazu?

Stwierdzenie

Niech $f: \mathbb{V} \to \mathbb{W}$ będzie parzystym lub nieparzystym homomorfizmem superprzestrzeni. Wtedy $\ker(f)$ i $\operatorname{im}(f)$ są superpodprzestrzeniami \mathbb{V} i \mathbb{W} .

Dowód.

Niech $r \in \ker(f)$. Istnieje jednoznaczny rozkład $r = r_0 + r_1$ na $r_0 \in \mathbb{V}_0, r_1 \in \mathbb{V}_1$. Widać, że

$$r \in \ker(f) \cap \mathbb{V}_0 \oplus \ker(f) \cap \mathbb{V}_1 \iff r_0, r_1 \in \ker(f).$$

Z faktu, że $f(r_0) = -f(r_1) \in \mathbb{W}_0 \cap \mathbb{W}_1$ otrzymujemy $f(r_0) = f(r_1) = 0$ i tym samym $\ker(f)$ jest superpodprzestrzenią \mathbb{V} .

 $\mathbb S$ nazywamy superpodprzestrzenią $\mathbb V$ wtedy i tylko wtedy, gdy $\mathbb S$ jest podprzestrzenią $\mathbb V$ oraz $\mathbb S=\mathbb S\cap\mathbb V_0\oplus\mathbb S\cap\mathbb V_1.$

Implikacja w drugą stronę nie zachodzi, istnieje prosty kontrprzykład: endomorfizm g superprzestrzeni $\mathbb{V}:=\langle e_1,e_2,e_3\rangle$, $\mathbb{V}_0:=\langle e_1,e_2\rangle$, $\mathbb{V}_1:=\langle e_3\rangle$ przedstawiony w macierzy w bazie $\varepsilon:=\{e_i\}_{i\in\overline{1,3}}$ jako

$$[g]_arepsilon^arepsilon = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$

nie jest jednorodny, mimo że superpodprzestrzeniami są $\ker(g) = \langle e_2 \rangle \oplus \{0\}$ oraz $\operatorname{im}(g) = \langle e_1, e_2 \rangle \oplus \{0\}$.

 $\mathbb S$ nazywamy superpodprzestrzenią $\mathbb V$ wtedy i tylko wtedy, gdy $\mathbb S$ jest podprzestrzenią $\mathbb V$ oraz $\mathbb S=\mathbb S\cap\mathbb V_0\oplus\mathbb S\cap\mathbb V_1.$

Implikacja w drugą stronę nie zachodzi, istnieje prosty kontrprzykład: endomorfizm g superprzestrzeni $\mathbb{V}:=\langle e_1,e_2,e_3\rangle$, $\mathbb{V}_0:=\langle e_1,e_2\rangle$, $\mathbb{V}_1:=\langle e_3\rangle$ przedstawiony w macierzy w bazie $\varepsilon:=\{e_i\}_{i\in\overline{1,3}}$ jako

$$[g]_arepsilon^arepsilon = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$

nie jest jednorodny, mimo że superpodprzestrzeniami są $\ker(g) = \langle e_2 \rangle \oplus \{0\}$ oraz $\operatorname{im}(g) = \langle e_1, e_2 \rangle \oplus \{0\}$.

Stwierdzenie

Niech $f: \mathbb{V} \to \mathbb{W}$ będzie dowolnym homomorfizmem superprzestrzeni. Jeśli $\ker(f)$ jest superpodprzestrzenią, to $\ker(f) = \ker(f_0) \cap \ker(f_1)$.

Niech $\mathbb A$ będzie algebrą nad $\mathbb K$ oraz $(\mathbb A,(\mathbb A_0,\mathbb A_1))$ będzie superprzestrzenią. Mówimy, że $\mathbb A$ jest *superalgebrą* nad $\mathbb K$, jeśli

$$\forall i, j \in \mathbb{Z}_2, \ \forall a \in \mathbb{A}_i, b \in \mathbb{A}_j, \qquad ab \in \mathbb{A}_{i+j}.$$

Powiemy, że $(\mathbb{A},(\mathbb{A}_0,\mathbb{A}_1))$ jest superprzemienna, jeśli

$$\forall i, j \in \mathbb{Z}_2, \ \forall a \in \mathbb{A}_i, b \in \mathbb{A}_j, \qquad ab = (-1)^{ij}ba.$$

Niech $\mathbb A$ będzie algebrą nad $\mathbb K$ oraz $(\mathbb A,(\mathbb A_0,\mathbb A_1))$ będzie superprzestrzenią. Mówimy, że $\mathbb A$ jest *superalgebrą* nad $\mathbb K$, jeśli

$$\forall i, j \in \mathbb{Z}_2, \ \forall a \in \mathbb{A}_i, b \in \mathbb{A}_j, \qquad ab \in \mathbb{A}_{i+j}.$$

Powiemy, że $(A, (A_0, A_1))$ jest superprzemienna, jeśli

$$\forall i,j \in \mathbb{Z}_2, \ \forall a \in \mathbb{A}_i, b \in \mathbb{A}_j, \qquad ab = (-1)^{ij}ba.$$

Algebra form nad rozmaitością różniczkową jest superalgebrą superprzemienną.

$$\begin{array}{l} \Omega(M) := \bigoplus_{k=0}^{\infty} \Omega^k(M), \\ \Omega(M)_0 := \bigoplus_{k=0}^{\infty} \Omega^{2k}(M), \\ \Omega(M)_1 := \bigoplus_{k=0}^{\infty} \Omega^{2k+1}(M). \end{array}$$

Iloczyn zewnętrzny jest dwuliniowy i zachodzi:

$$\forall \alpha \in \Omega^k(M), \ \forall \beta \in \Omega^l(M), \quad \alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha = (-1)^{p(\alpha)p(\beta)} \beta \wedge \alpha.$$

Superprzestrzeń $(\mathbb{V},(\mathbb{V}_0,\mathbb{V}_1))$ jest prawym super \mathbb{A} -modułem jeśli jest prawym modułem nad superalgebrą $(\mathbb{A},(\mathbb{A}_0,\mathbb{A}_1))$ oraz

$$\forall i, j \in \mathbb{Z}_2, \ \forall v \in \mathbb{V}_i, a \in \mathbb{A}_j, \quad va \in \mathbb{V}_{i+j}.$$

Uwaga: z definicji modułu nad pierścieniem wynika, że $\mathbb A$ ma jedynkę!

Superprzestrzeń $(\mathbb{V},(\mathbb{V}_0,\mathbb{V}_1))$ jest prawym super \mathbb{A} -modułem jeśli jest prawym modułem nad superalgebrą $(\mathbb{A},(\mathbb{A}_0,\mathbb{A}_1))$ oraz

$$\forall i, j \in \mathbb{Z}_2, \ \forall v \in \mathbb{V}_i, a \in \mathbb{A}_j, \quad va \in \mathbb{V}_{i+j}.$$

Uwaga: z definicji modułu nad pierścieniem wynika, że A ma jedynkę!

Definicja

Niech \mathbb{V},\mathbb{W} będą prawymi super \mathbb{A} -modułami. Homomorfizm superprzestrzeni $f:\mathbb{V}\to\mathbb{W}$ nazywamy homomorfizmem prawych supermodułów, jeśli

$$\forall a \in \mathbb{A}, v \in \mathbb{V}, \quad f(va) = f(v)a.$$

Superprzestrzeń (\mathbb{V} , (\mathbb{V}_0 , \mathbb{V}_1)) jest prawym super \mathbb{A} -modułem jeśli jest prawym modułem nad superalgebrą (\mathbb{A} , (\mathbb{A}_0 , \mathbb{A}_1)) oraz

$$\forall i, j \in \mathbb{Z}_2, \ \forall v \in \mathbb{V}_i, a \in \mathbb{A}_j, \quad va \in \mathbb{V}_{i+j}.$$

Uwaga: z definicji modułu nad pierścieniem wynika, że A ma jedynkę!

Definicja

Niech \mathbb{V},\mathbb{W} będą prawymi super \mathbb{A} -modułami. Homomorfizm superprzestrzeni $f:\mathbb{V}\to\mathbb{W}$ nazywamy homomorfizmem prawych supermodułów, jeśli

$$\forall a \in \mathbb{A}, v \in \mathbb{V}, \quad f(va) = f(v)a.$$

 $\underline{\mathrm{Hom}}_{\mathrm{SMod}}(\mathbb{V},\mathbb{W}) \text{ jest superpodprzestrzenią } \underline{\mathrm{Hom}}_{\mathrm{SVect}}(\mathbb{V},\mathbb{W}) \text{, ponieważ}$

$$f_0(va) + f_1(va) = f(va) = f(v)a = f_0(v)a + f_1(v)a.$$

Superprzestrzeń (\mathbb{V} , (\mathbb{V}_0 , \mathbb{V}_1)) jest prawym super \mathbb{A} -modułem jeśli jest prawym modułem nad superalgebrą (\mathbb{A} , (\mathbb{A}_0 , \mathbb{A}_1)) oraz

$$\forall i, j \in \mathbb{Z}_2, \ \forall v \in \mathbb{V}_i, a \in \mathbb{A}_j, \quad va \in \mathbb{V}_{i+j}.$$

Uwaga: z definicji modułu nad pierścieniem wynika, że A ma jedynkę!

Definicja

Niech \mathbb{V},\mathbb{W} będą prawymi super \mathbb{A} -modułami. Homomorfizm superprzestrzeni $f:\mathbb{V}\to\mathbb{W}$ nazywamy homomorfizmem prawych supermodułów, jeśli

$$\forall a \in \mathbb{A}, v \in \mathbb{V}, \quad f(va) = f(v)a.$$

 $\underline{\mathrm{Hom}}_{\mathrm{SMod}}(\mathbb{V},\mathbb{W}) \text{ jest superpodprzestrzenią } \underline{\mathrm{Hom}}_{\mathrm{SVect}}(\mathbb{V},\mathbb{W}) \text{, ponieważ}$

$$f_0(va) + f_1(va) = f(va) = f(v)a = f_0(v)a + f_1(v)a.$$

 $\underline{\mathrm{Hom}}_{\mathrm{SMod}}(\mathbb{V},\mathbb{W})$ jest lewym super \mathbb{A} -modułem.

Superprzestrzeń $\mathbb V$ jest prawym super $\mathbb A$ -modułem jeśli jest prawym modułem nad superalgebrą $\mathbb A$ oraz

$$\forall i, j \in \mathbb{Z}_2, \ \forall v \in \mathbb{V}_i, a \in \mathbb{A}_j, \quad va \in \mathbb{V}_{i+j}.$$

Definicja

Niech $\mathbb V$ będzie prawym super $\mathbb A$ -modułem. Jeśli istnieją $v_1,\ldots,v_m\in\mathbb V_0$ oraz $v_{m+1},\ldots,v_{m+n}\in\mathbb V_1$ takie, że dla każdego $v\in\mathbb V$ istnieje dokładnie jeden $(\alpha_1,\ldots,\alpha_{m+n})\in\mathbb A^{m+n}$ o własności

$$v = \sum_{k=1}^{m+n} v_k \alpha_k,$$

to mówimy, że układ wektorów $\{v_1,\ldots v_{m+n}\}$ jest super bazą w $\mathbb V$. Samo $\mathbb V$ nazywamy wolnym prawym super $\mathbb A$ -modułem, zaś (m,n) nazywamy super wymiarem $\mathbb V$.

Niech $\mathbb V$ będzie wolnym prawym super $\mathbb A$ -modułem super wymiaru (m,n) z super bazą $\{v_1,\ldots v_{m+n}\}$. Jeśli $v\in \mathbb V_0$, to istnieje $(\alpha_1,\ldots,\alpha_{m+n})\in \mathbb A_0^m\times \mathbb A_1^n$ spełniający

$$v = \sum_{k=1}^{m+n} v_k \alpha_k. \tag{1}$$

Niech $\mathbb V$ będzie wolnym prawym super $\mathbb A$ -modułem super wymiaru (m,n) z super bazą $\{v_1,\ldots v_{m+n}\}$. Jeśli $v\in \mathbb V_0$, to istnieje $(\alpha_1,\ldots,\alpha_{m+n})\in \mathbb A_0^m\times \mathbb A_1^n$ spełniający

$$v = \sum_{k=1}^{m+n} v_k \alpha_k. \tag{1}$$

Dowód.

Istnieje dokładnie jeden $(\alpha_1,\ldots,\alpha_{m+n})\in\mathbb{A}^{m+n}$ dla którego zachodzi (1). Niech α_k^0,α_k^1 oznaczają odpowiednio rzuty na \mathbb{A}_0 oraz \mathbb{A}_1 współczynnika $\alpha_k\in\mathbb{A}$. Zauważmy, że

$$v - \left(\sum_{i=1}^m v_i \alpha_i^0 + \sum_{j=m+1}^{m+n} v_j \alpha_j^1\right) = \left(\sum_{i=1}^m v_i \alpha_i^1 + \sum_{j=m+1}^{m+n} v_j \alpha_j^0\right).$$

Skoro $v \in \mathbb{V}_0$ oraz $\mathbb{V}_0 \cap \mathbb{V}_1 = 0$, to $v = \left(\sum_{i=1}^m v_i \alpha_i^0 + \sum_{j=m+1}^{m+n} v_j \alpha_j^1\right)$.

Wniosek

Jeżeli $\mathbb V$ jest wolnym prawym super $\mathbb A$ -modułem super wymiaru (m,n), to

$$(\mathbb{V},(\mathbb{V}_0,\mathbb{V}_1))\simeq (\mathbb{A}^{m+n},(\mathbb{A}_0^m\times\mathbb{A}_1^n,\mathbb{A}_1^m\times\mathbb{A}_0^n))$$

Wniosek

Jeżeli $\mathbb V$ jest wolnym prawym super $\mathbb A$ -modułem super wymiaru (m,n), to

$$(\mathbb{V},(\mathbb{V}_0,\mathbb{V}_1))\simeq (\mathbb{A}^{m+n},(\mathbb{A}_0^m\times\mathbb{A}_1^n,\mathbb{A}_1^m\times\mathbb{A}_0^n))$$

Niech $f: \mathbb{V} \to \mathbb{W}$ będzie homomorfizmem prawych wolnych super \mathbb{A} -modułów o super wymiarach (m, n) i (r, s), oraz superbazach $\{v_j\}_{j \in \overline{1, m+n}}$ i $\{w_i\}_{i \in \overline{1, r+s}}$.

$$f\left(\sum_{j=1}^{m+n} v_j x_j\right) = \sum_{j=1}^{m+n} f(v_j) x_j = \sum_{j=1}^{m+n} \sum_{i=1}^{r+s} w_i f_{ij} x_j = \sum_{i=1}^{r+s} w_i \left(\sum_{j=1}^{m+n} f_{ij} x_j\right),$$

gdzie $x_j, f_{ij} \in \mathbb{A}$. Współczynniki f_{ij} tworzą macierz f w tych super bazach.

 ${\it Supermacierzami \ nazywamy \ macierze \ homomorfizm\'ow \ supermoduł\'ow \ wolnych.}$

Supermacierzami nazywamy macierze homomorfizmów supermodułów wolnych.

Fakt

Niech $f: \mathbb{V} \to \mathbb{W}$ będzie homomorfizmem prawych wolnych super \mathbb{A} -modułów o super wymiarach (m,n) i (r,s) i jego macierz Λ będzie postaci

$$\Lambda = \begin{bmatrix} G_{r \times m} & P_{r \times n} \\ Q_{s \times m} & H_{s \times n} \end{bmatrix}.$$

 $\textit{Jeśli f jest parzyste, to } \Lambda = \begin{bmatrix} \mathbb{A}_0 & \mathbb{A}_1 \\ \mathbb{A}_1 & \mathbb{A}_0 \end{bmatrix}\!, \textit{a jeśli nieparzyste, to } \Lambda = \begin{bmatrix} \mathbb{A}_1 & \mathbb{A}_0 \\ \mathbb{A}_0 & \mathbb{A}_1 \end{bmatrix}\!.$

Supermacierzami nazywamy macierze homomorfizmów supermodułów wolnych.

Fakt

Niech $f: \mathbb{V} \to \mathbb{W}$ będzie homomorfizmem prawych wolnych super \mathbb{A} -modułów o super wymiarach (m,n) i (r,s) i jego macierz Λ będzie postaci

$$\Lambda = \begin{bmatrix} G_{r \times m} & P_{r \times n} \\ Q_{s \times m} & H_{s \times n} \end{bmatrix}.$$

Jeśli f jest parzyste, to $\Lambda = \begin{bmatrix} \mathbb{A}_0 & \mathbb{A}_1 \\ \mathbb{A}_1 & \mathbb{A}_0 \end{bmatrix}$, a jeśli nieparzyste, to $\Lambda = \begin{bmatrix} \mathbb{A}_1 & \mathbb{A}_0 \\ \mathbb{A}_0 & \mathbb{A}_1 \end{bmatrix}$.

Wniosek

Supermacierze zmiany super bazy muszą być parzyste i odwracalne!

Supermacierz parzysta

$$\Lambda = \begin{bmatrix} G & P \\ Q & H \end{bmatrix},$$

jest odwracalna wtedy i tylko wtedy, gdy G i H są odwracalne. Supermacierz odwrotna ma postać

$$\Lambda^{-1} = \begin{bmatrix} (G - PH^{-1}Q)^{-1} & -G^{-1}P(H - QG^{-1}P)^{-1} \\ -H^{-1}Q(G - PH^{-1}Q)^{-1} & (H - QG^{-1}P)^{-1} \end{bmatrix}.$$
(2)

Niech $\mathbb A$ będzie superprzemienną superalgebrą z jedynką.

$$\mathcal{N}:=\mathbb{A}_1+\mathbb{A}_1^2$$
 ,

$$\overline{\mathbb{A}}:=\mathbb{A}/\mathcal{N}.$$

Dla dowolnej supermacierzy Λ o współczynnikach w $\mathbb A$ konstruujemy $\overline{\Lambda}$ poprzez zastąpienie każdego elementu Λ jego obrazem w rzutowaniu $\mathbb A \to \overline{\mathbb A}$.

Niech A będzie superprzemienną superalgebrą z jedynką.

$$\mathcal{N}:=\mathbb{A}_1+\mathbb{A}_1^2$$
,

$$\overline{\mathbb{A}}:=\mathbb{A}/\mathcal{N}.$$

Dla dowolnej supermacierzy Λ o współczynnikach w $\mathbb A$ konstruujemy $\overline{\Lambda}$ poprzez zastąpienie każdego elementu Λ jego obrazem w rzutowaniu $\mathbb A \to \overline{\mathbb A}$.

Lemat

Supermacierz Λ jest odwracalna wtedy i tylko wtedy, gdy $\overline{\Lambda}$ jest odwracalna.

Niech A będzie superprzemienną superalgebrą z jedynką.

$$\mathcal{N}:=\mathbb{A}_1+\mathbb{A}_1^2$$
,

$$\overline{\mathbb{A}} := \mathbb{A}/\mathcal{N}$$
.

Dla dowolnej supermacierzy Λ o współczynnikach w $\mathbb A$ konstruujemy $\overline{\Lambda}$ poprzez zastąpienie każdego elementu Λ jego obrazem w rzutowaniu $\mathbb A \to \overline{\mathbb A}$.

Lemat

Supermacierz Λ jest odwracalna wtedy i tylko wtedy, gdy $\overline{\Lambda}$ jest odwracalna.

Dowód.

Załóżmy, że Λ jest odwracalna. Wtedy istnieje Γ takie, że ΛΓ = \mathbb{I} , wobec tego $\overline{\Lambda\Gamma}=\overline{\mathbb{I}}$ i $\overline{\Lambda}$ jest odwracalna. W drugą stronę, jeśli $\overline{\Lambda\Gamma}=\overline{\mathbb{I}}$, to ΛΓ = $\mathbb{I}+X$, gdzie X jest supermacierzą o współczynnikach z \mathcal{N} . Elementy X są kombinacjami liniowymi skończonego zbioru elementów \mathbb{A}_1 , więc X jest nilpotentne oraz $\Lambda\Gamma(\mathbb{I}+X)^{-1}=\mathbb{I}$.

Lemat

Niech Λ będzie supermacierzą parzystą. Macierze $(G - PH^{-1}Q)^{-1}$ oraz $(H - QG^{-1}P)^{-1}$ istnieją wtedy i tylko wtedy, gdy istnieją G^{-1} oraz H^{-1} .

Lemat

Niech Λ będzie supermacierzą parzystą. Macierze $(G-PH^{-1}Q)^{-1}$ oraz $(H-QG^{-1}P)^{-1}$ istnieją wtedy i tylko wtedy, gdy istnieją G^{-1} oraz H^{-1} .

Dowód.

Niech G^{-1} i H^{-1} istnieją. Zauważmy, że

$$(G - PH^{-1}Q)^{-1} = G^{-1}(\mathbb{I}_m - PH^{-1}QG^{-1})^{-1} = G^{-1}\sum_{n=0}^{\infty}(PH^{-1}QG^{-1})^n.$$

Elementy skończenie wymiarowych macierzy P i Q należą do $\mathrm{span}\{\theta_1,\dots\theta_{2N}\}$ dla pewnych $\theta_1,\dots,\theta_{2N}\in\mathbb{A}_1$. Wobec tego szereg potęgowy w równości powyżej jest sumą co najwyżej N+1 wyrazów i $(G-PH^{-1}Q)^{-1}$ istnieje. Podobnie $(H-QG^{-1}P)^{-1}$ istnieje. W drugą stronę, istnienie G^{-1} oraz H^{-1} wynika bezpośrednio z istnienia $G-PH^{-1}Q$ oraz $H-QG^{-1}P$.

Supermacierz Λ jest odwracalna wtedy i tylko wtedy, gdy G i H są odwracalne. Supermacierz odwrotna ma postać

$$\Lambda^{-1} = \begin{bmatrix} (G - PH^{-1}Q)^{-1} & -G^{-1}P(H - QG^{-1}P)^{-1} \\ -H^{-1}Q(G - PH^{-1}Q)^{-1} & (H - QG^{-1}P)^{-1} \end{bmatrix}.$$
(3)

Supermacierz Λ jest odwracalna wtedy i tylko wtedy, gdy G i H są odwracalne. Supermacierz odwrotna ma postać

$$\Lambda^{-1} = \begin{bmatrix} (G - PH^{-1}Q)^{-1} & -G^{-1}P(H - QG^{-1}P)^{-1} \\ -H^{-1}Q(G - PH^{-1}Q)^{-1} & (H - QG^{-1}P)^{-1} \end{bmatrix}.$$
(3)

Dowód.

Skoro

$$\overline{\Lambda} = \begin{bmatrix} \overline{G} & 0 \\ 0 & \overline{H} \end{bmatrix},$$

odwracalność Λ jest równoważna jednoczesnej odwracalności G i H. Postać macierzy odwrotnej można zweryfikować obliczając $\Lambda\Lambda^{-1}$.

Supermacierz Λ jest odwracalna wtedy i tylko wtedy, gdy G i H są odwracalne. Supermacierz odwrotna ma postać

$$\Lambda^{-1} = \begin{bmatrix} (G - PH^{-1}Q)^{-1} & -G^{-1}P(H - QG^{-1}P)^{-1} \\ -H^{-1}Q(G - PH^{-1}Q)^{-1} & (H - QG^{-1}P)^{-1} \end{bmatrix}.$$
(3)

Dowód.

Skoro

$$\overline{\Lambda} = \begin{bmatrix} \overline{G} & 0 \\ 0 & \overline{H} \end{bmatrix},$$

odwracalność Λ jest równoważna jednoczesnej odwracalności G i H. Postać macierzy odwrotnej można zweryfikować obliczając $\Lambda\Lambda^{-1}$.

Parzyste supermacierze odwracalne ze współczynnikami w \mathbb{A} tworzą grupę multiplikatywną oznaczaną $\mathrm{GL}_{(m,n)}(\mathbb{A})$.

Bierezinianem nazywamy odwzorowanie $\mathrm{ber}:\mathrm{GL}_{(m,n)}(\mathbb{A}) \to \mathbb{A}_0$ spełniające dwa warunki:

(1) Dla $G \in \mathrm{GL}_m(\mathbb{A}_0)$ oraz $H \in \mathrm{GL}_n(\mathbb{A}_0)$ mamy

$$\operatorname{ber}\begin{pmatrix} G & 0 \\ 0 & H \end{pmatrix} = \operatorname{det}(G)\operatorname{det}(H^{-1}).$$

(2) Dla $\Lambda, \Omega \in GL_{(m,n)}(\mathbb{A})$ zachodzi $ber(\Lambda\Omega) = ber(\Lambda)ber(\Omega)$.

Bierezinianem nazywamy odwzorowanie $\mathrm{ber}:\mathrm{GL}_{(m,n)}(\mathbb{A}) \to \mathbb{A}_0$ spełniające dwa warunki:

(1) Dla $G \in \mathrm{GL}_m(\mathbb{A}_0)$ oraz $H \in \mathrm{GL}_n(\mathbb{A}_0)$ mamy

$$\operatorname{ber}\begin{pmatrix} G & 0 \\ 0 & H \end{pmatrix} = \operatorname{det}(G)\operatorname{det}(H^{-1}).$$

(2) Dla $\Lambda, \Omega \in GL_{(m,n)}(\mathbb{A})$ zachodzi $ber(\Lambda\Omega) = ber(\Lambda)ber(\Omega)$.

Lemat

Dla parzystych supermacierzy blokowo trójkątnych

$$\operatorname{ber}\begin{pmatrix} G & P \\ 0 & H \end{pmatrix} = \operatorname{ber}\begin{pmatrix} G & 0 \\ Q & H \end{pmatrix} = \operatorname{det}(G)\operatorname{det}(H^{-1}).$$

Dowód.

Zauważmy, że

$$\begin{bmatrix} G & P \\ 0 & H \end{bmatrix} = \begin{bmatrix} G & 0 \\ 0 & -H \end{bmatrix} \begin{bmatrix} \mathbb{I}_m & G^{-1}P \\ 0 & -\mathbb{I}_n \end{bmatrix}$$

oraz

$$\begin{bmatrix} \mathbb{I}_m & G^{-1}P \\ 0 & -\mathbb{I}_n \end{bmatrix} = \begin{bmatrix} \mathbb{I}_m & -\frac{1}{2}G^{-1}P \\ 0 & \mathbb{I}_n \end{bmatrix} \begin{bmatrix} \mathbb{I}_m & 0 \\ 0 & -\mathbb{I}_n \end{bmatrix} \begin{bmatrix} \mathbb{I}_m & \frac{1}{2}G^{-1}P \\ 0 & \mathbb{I}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{I}_m & -\frac{1}{2}G^{-1}P \\ 0 & \mathbb{I}_n \end{bmatrix} \begin{bmatrix} \mathbb{I}_m & 0 \\ 0 & -\mathbb{I}_n \end{bmatrix} \begin{bmatrix} \mathbb{I}_m & -\frac{1}{2}G^{-1}P \\ 0 & \mathbb{I}_n \end{bmatrix}^{-1}.$$

Z tego i z warunków (1), (2) otrzymujemy

$$\operatorname{ber}\begin{pmatrix} G & P \\ 0 & H \end{pmatrix} = \operatorname{ber}\begin{pmatrix} G & 0 \\ 0 & -H \end{pmatrix} \operatorname{ber}\begin{pmatrix} \mathbb{I}_m & 0 \\ 0 & -\mathbb{I}_n \end{pmatrix} = \operatorname{det}(G)\operatorname{det}(H^{-1}).$$

Drugi przypadek wykazujemy analogicznie.

Niech
$$\Lambda = \begin{bmatrix} G & P \\ Q & H \end{bmatrix} \in GL_{(m,n)}(\mathbb{A}).$$

Where $\Lambda = \det(G - PH^{-1}Q) \det(H^{-1}).$ (4)

Niech
$$\Lambda = \begin{bmatrix} G & P \\ Q & H \end{bmatrix} \in GL_{(m,n)}(\mathbb{A}).$$

Wtedy $ber(\Lambda) = det(G - PH^{-1}Q) det(H^{-1}).$ (4)

Dowód.

$$\begin{bmatrix} G & P \\ Q & H \end{bmatrix} = \begin{bmatrix} \operatorname{Id}_m & PH^{-1} \\ 0 & \operatorname{Id}_n \end{bmatrix} \begin{bmatrix} G - PH^{-1}Q & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} \operatorname{Id}_m & 0 \\ H^{-1}Q & \operatorname{Id}_n \end{bmatrix}.$$

Stąd mamy
$$\operatorname{ber}\begin{pmatrix} G & P \\ Q & H \end{pmatrix} = \operatorname{det}(G - PH^{-1}Q)\operatorname{det}(H^{-1}).$$

Wniosek

Jeśli bierezinian istnieje, to jest jednoznacznie określony wzorem (4).

Jeśli bierezinian istnieje, to wzór $\operatorname{ber}(\Lambda) = \det(G - PH^{-1}Q) \det(H^{-1})$ jest równoważny z $\operatorname{ber}(\Lambda) = \det(G) \det(H - QG^{-1}P)^{-1}$.

Dowód.

$$\mathsf{Rozwa\dot{z}my} \begin{bmatrix} \mathsf{G} & \mathsf{P} \\ \mathsf{Q} & \mathsf{H} \end{bmatrix} = \begin{bmatrix} \mathrm{Id}_m & \mathsf{0} \\ \mathsf{Q}\mathsf{G}^{-1} & \mathrm{Id}_n \end{bmatrix} \begin{bmatrix} \mathsf{G} & \mathsf{0} \\ \mathsf{0} & \mathsf{H} - \mathsf{Q}\mathsf{G}^{-1} \mathsf{P} \end{bmatrix} \begin{bmatrix} \mathrm{Id}_m & \mathsf{G}^{-1}\mathsf{P} \\ \mathsf{0} & \mathrm{Id}_n \end{bmatrix} . \quad \Box$$

Jeśli bierezinian istnieje, to wzór $\operatorname{ber}(\Lambda) = \operatorname{det}(G - PH^{-1}Q)\operatorname{det}(H^{-1})$ jest równoważny z $\operatorname{ber}(\Lambda) = \operatorname{det}(G)\operatorname{det}(H - QG^{-1}P)^{-1}$.

Dowód.

$$\mathsf{Rozwa\dot{z}my}\, \begin{bmatrix} \mathsf{G} & \mathsf{P} \\ \mathsf{Q} & \mathsf{H} \end{bmatrix} = \begin{bmatrix} \mathrm{Id}_m & \mathsf{0} \\ \mathsf{Q}\mathsf{G}^{-1} & \mathrm{Id}_n \end{bmatrix} \begin{bmatrix} \mathsf{G} & \mathsf{0} \\ \mathsf{0} & \mathsf{H} - \mathsf{Q}\mathsf{G}^{-1} \mathsf{P} \end{bmatrix} \begin{bmatrix} \mathrm{Id}_m & \mathsf{G}^{-1}\mathsf{P} \\ \mathsf{0} & \mathrm{Id}_n \end{bmatrix} . \quad \Box$$

Do udowodnienia pozostało już tylko

Jeśli bierezinian istnieje, to wzór $\operatorname{ber}(\Lambda) = \operatorname{det}(G - PH^{-1}Q)\operatorname{det}(H^{-1})$ jest równoważny z $\operatorname{ber}(\Lambda) = \operatorname{det}(G)\operatorname{det}(H - QG^{-1}P)^{-1}$.

Dowód.

$$\mathsf{Rozwa\dot{z}my}\, \begin{bmatrix} \mathsf{G} & \mathsf{P} \\ \mathsf{Q} & \mathsf{H} \end{bmatrix} = \begin{bmatrix} \mathrm{Id}_m & \mathsf{0} \\ \mathsf{Q}\mathsf{G}^{-1} & \mathrm{Id}_n \end{bmatrix} \begin{bmatrix} \mathsf{G} & \mathsf{0} \\ \mathsf{0} & \mathsf{H} - \mathsf{Q}\mathsf{G}^{-1} \mathsf{P} \end{bmatrix} \begin{bmatrix} \mathrm{Id}_m & \mathsf{G}^{-1}\mathsf{P} \\ \mathsf{0} & \mathrm{Id}_n \end{bmatrix} . \quad \Box$$

Do udowodnienia pozostało już tylko

Twierdzenie

Bierezinian istnieje.

Superrozmaitością o super wymiarze (m,n) nazywamy parę (M,\mathcal{A}_M) , gdzie M jest rozmaitością różniczkową wymiaru m i \mathcal{A}_M jest snopem z kategorii otwartych podzbiorów M do kategorii superalgebr takim, że

ullet istnieje otwarte pokrycie $\{U_{lpha}\}_{lpha\in A}$ rozmaitości M spełniające

$$\forall \alpha \in A$$
, $A_M(U_\alpha) \simeq C^\infty(U_\alpha) \otimes \Lambda \mathbb{R}^n$,

• Jeżeli $\mathfrak N$ jest snopem elementów nilpotentnych snopu $\mathcal A_M$, to $(M,\mathcal A_M/\mathfrak N)$ jest izomorficzny z $(M,C^\infty(M))$.

Superrozmaitością o super wymiarze (m,n) nazywamy parę (M,\mathcal{A}_M) , gdzie M jest rozmaitością różniczkową wymiaru m i \mathcal{A}_M jest snopem z kategorii otwartych podzbiorów M do kategorii superalgebr takim, że

• istnieje otwarte pokrycie $\{U_{\alpha}\}_{{\alpha}\in A}$ rozmaitości M spełniające

$$\forall \alpha \in A$$
, $A_M(U_\alpha) \simeq C^\infty(U_\alpha) \otimes \Lambda \mathbb{R}^n$,

• Jeżeli $\mathfrak N$ jest snopem elementów nilpotentnych snopu $\mathcal A_M$, to $(M,\mathcal A_M/\mathfrak N)$ jest izomorficzny z $(M,C^\infty(M))$.

Superpole wektorowe odpowiadające superoscylatorowi harmonicznemu:

$$X = \dot{q}^{a} \frac{\partial}{\partial q^{a}} - q^{a} \frac{\partial}{\partial \dot{q}^{a}} + \dot{\theta}^{a} \frac{\partial}{\partial \theta^{a}} - \theta^{a} \frac{\partial}{\partial \dot{\theta}^{a}}.$$

Jego potok opisuje dynamikę układu.

Bibliografia

- Rogers A., "Supermanifolds: Theory and Applications", World Scientific Publishing Co. Pte. Ltd., Singapur, 2007.
- Varadarajan V.S., "Supersymmetry for mathematicians: an introduction", Courant lecture notes, Vol. 11, American Mathematical Society, Providence, RI, 2004.