

DSC 40A

Zecture 05

Zearning via Optimization, pt I

Last Week: Empirical Risk Minimization

► To learn, pick a loss function L and minimize the empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- Absolute loss: $L_{abs}(h, y) = |h y|$ (gives the median)
- Square loss: $L_{sq}(h, y) = (h y)^2$ (gives the mean)

Last Week: The UCSD Loss

We defined the "UCSD Loss":

$$L_{\text{ucsd}}(h, y) = 1 - e^{-(h-y)^2/\sigma^2}$$

► Goal: minimize the "UCSD Risk",

$$R_{\text{ucsd}}(h, y) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h-y_i)^2/\sigma^2} \right]$$

We tried taking a derivative and solving, but we couldn't solve for h.

Last Week: Gradient Descent

- ightharpoonup Pick α to be a positive number. It is the **learning rate**.
- Pick a starting prediction, h_0 .
- ► On step i, perform update $h_i = h_{i-1} \alpha \cdot \frac{dR}{dh}(h_{i-1})$
- Repeat until convergence (when h doesn't change much).

Today

When is gradient descent guaranteed to work?

Convex Functions

ightharpoonup f is **convex** if for **every** a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

ightharpoonup f is **convex** if for **every** a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

ightharpoonup f is **convex** if for **every** a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

ightharpoonup f is **convex** if for **every** a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

Deriving a More Useful/Formal Definition

- ▶ Walk from a at time t = 0 to b at time t = 1.
- Let height f(t) be height of f at time t.
- Let height $_{line}(t)$ be height of line segment at time t.
- ▶ If f is convex, then for every $t \in [0, 1]$:

 $height_{line}(t) \ge height_f(t)$

Position at time t

- Let x(t) be horizontal position at time t.
- At time t = 0, we're at a, so x(0) = a.
- At time t = 1, we're at b, so x(1) = b.
- ► This formula works:

$$x(t) = \alpha + (b-a)t$$
$$= \alpha(1-t) + bt$$

Height of f at time t

- We want a formula for height_f(t)
- ightharpoonup Remember x(t) = (1 t)a + bt. So:

height_f(t) =
$$f(x(t))$$

= $f((1-t)a + bt)$

Height of line segment at time t

- \triangleright We want a formula for height_{line}(t)
- ► It is a linear function: height_{line}(t) = $w_1t + w_0$
- ▶ We know height_{line}(0) = f(a) and height_{line}(1) = f(b).

Height of line segment at time t

- We want a formula for height_{line}(t)
- It is a linear function: height_{line}(t) = $w_1 t + w_0$
- We know height $\lim_{n \to \infty} (0) = f(a)$ and height $\lim_{n \to \infty} (1) = f(b)$.

Discussion Question

What is the formula for height $\lim_{t \to 0} (t)$?

- a) at + (1 b)t | b) (1 t)f(a) + tf(b) 53 c) $(a \cdot f(t) + b \cdot f(t))/2$ | 10 d) t[f(b) f(a)] | 16

Height of line segment at time t

 $height_{line}(t) = w_1t + w_0$

$$height_{line}(0) = f(a)$$
 $height_{line}(1) = f(b)$

heightline (0) = Wo heightline (1) = W1+W0

$$\Rightarrow$$
 W0 = f(a)

heightline (1) = W1+W0
= f(b)

$$W_1 + f(a) = f(b)$$

$$W_1 + + (a) = + (b)$$

$$\Rightarrow W = f(b) - f(a)$$

heightline(t) = WittWo
=
$$(f(b)-f(a))t+f(a)$$

$$= tf(b)+(1-t)f(a)$$

Convexity: Formal Definition

$$\begin{aligned} & \text{height}_{\text{line}}(t) \ge \text{height}_f(t) \\ & (1-t)f(a) + tf(b) \ge f((1-t)a + tb) \end{aligned}$$

Convexity: Formal Definition

$$\operatorname{height}_{\operatorname{line}}(t) \ge \operatorname{height}_{f}(t)$$

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb)$$

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb).$$

Convexity: Formal Definition

$$\begin{aligned} & \mathsf{height}_{\mathsf{line}}(t) \ge \mathsf{height}_f(t) \\ & (1-t)f(a) + tf(b) \ge f((1-t)a + tb) \end{aligned}$$

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb).$$

► A function *f* is **nonconvex** if it is not convex.

Discussion Question

Is f(x) = |x| convex?

- a) Yes.
- b) No.
- c) Maybe.

Example: Prove that f(x) = |x| is convex

Hint: remember triangle inequality, $|\alpha + \beta| \le |\alpha| + |\beta|$.

$$f((1-t)a+tb) \leq (1-t)f(a) + tf(b)$$

$$f((1-t)a+tb) = |(1-t)a+tb|$$

$$|(1-t)| = (1-t)$$
 because $t \in [0,1]$. Likewise $|t| = t$.
Also remumber, $|\alpha\beta| = |\alpha| \cdot |\beta|$, whatever $\alpha \notin \beta$ are.

=
$$|1-t| \cdot |a| + |t| \cdot |b|$$

= $(1-t) \cdot |a| + t |b|$

$$= (1-t)f(a) + tf(b)$$

Proving Convexity: Second Derivative Test

► If $\frac{d^2f}{dx^2}(x) \ge 0$ for all x, then f is convex.

Example:
$$f(x) = x^4$$
 is convex. $\frac{d^2}{dx^2}(x^4) = 12x^2 \ge 0$

Only works if f is twice differentiable!

Proving Convexity: Using Properties

Suppose that f(x) and g(x) are convex. Then:

- $w_1 f(x) + w_2 g(x)$ is convex, provided $w_1, w_2 \ge 0$
 - Example: $3x^2 + |x|$ is convex
- \triangleright g(f(x)) is convex, provided g is non-decreasing.
 - Example: e^{x^2} is convex $g(x) = e^x + f(x) = x^2$
- $ightharpoonup \max\{f(x),g(x)\}$ is convex
 - Example: $\begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$ is convex (max of 0 and x)

Convex Losses

$$\mathcal{L}(h,y) = (h-y)^2$$

If L(h, y) is a convex function (when y is fixed) then

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

is convex.

Proof: sums of convex functions are convex.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- ► **Theorem**: if *R*(*h*) is convex and differentiable¹ then gradient descent converges to a **global optimum** of *R* provided that the step size is small enough².

¹and it's derivative is not too wild

²step size related to steepness.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- ► **Theorem**: if *R*(*h*) is convex and differentiable¹ then gradient descent converges to a **global optimum** of *R* provided that the step size is small enough².
- We can even modify GD to work with convex, non-differentiable functions.

¹and it's derivative is not too wild

²step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

Convexity of Losses

► Is
$$L_{sq}(h, y) = (h - y)^2$$
 convex? Yes or No.

► Is
$$L_{abs}(h, y) = |h - y|$$
 convex? Yes or No.

► Is $L_{\text{ucsd}}(h, y)$ convex? Yes of No.

Convexity of UCSD Risk

- A function can be convex in a region.
- ▶ If σ is large, $R_{ucsd}(h)$ is convex in a big region around data.
- If σ is small, $R_{\text{ucsd}}(h)$ is convex in only small regions.

Status Update

- ▶ We learned what it means for a function to be convex.
- Convex functions are (relatively) easy to optimize with gradient descent.
- ▶ We like convex loss functions, like the square loss and absolute loss.

What's Left?

- We've been predicting salary without using any information about the individual.
- Making predictions using some information.