Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 2 - Chapter 9

Started on Monday, 30 January 2017, 11:21 AM

State Finished

Completed on Friday, 3 February 2017, 1:09 PM

Time taken 4 days 1 hour

Grade 98.75 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P9.20_7ed

Given: $v_g(t) = 40 \cos(50,000 t)$ Volts

Find the steady-state expression for $v_0(t)$.

Numeric Answer

 $v_{0,steady-state}(t) = 42.426 cos(50,000 t + 45^{\circ}) Volts$

Correct

Correct

Mark 10.00 out of 10.00

P9.33_7ed

Find the equivalent impedance \mathbf{Z}_{ab} at the terminals a,b.

$$Z_{ab} = \begin{bmatrix} 12 \\ \checkmark + j \end{bmatrix} 12$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$Z_{ab} = 12.0 + j \ 12.0 \ \Omega \ (Ohm)$$

Correct

Question $\bf 3$

Correct

Mark 10.00 out of 10.00

AP9.11_9ed

Find the Thévenin equivalent with respect to terminals a,b.

$$V_{Th} = Magnitude$$
 10 with Angle 45 \checkmark ° (Degrees) Volts $Z_{Th} = Magnitude$ 7.07 \checkmark with Angle -45 \checkmark ° (Degrees) W (Ohm)

Numeric Answer

 $V_{Th} = 10\text{-}045^{\circ} \text{ Volts}$

 $Z_{Th} = 7.071D-45^{\circ} \text{ Ohms}$

Correct

Correct

Mark 10.00 out of 10.00

P9.36_6ed

Find the Thévenin impedance seen looking into the terminals ab of this circuit.

The frequency of operation is 25 krad/sec.

$$Z_{Th} = \begin{bmatrix} 3500 \\ \checkmark + j \\ \end{bmatrix}$$
 -12000 \checkmark W (Ohm) in rectangular form

Numeric Answer

$$Z_{Th} = 3,500 - j 12,000 W$$

Correct

Correct

Mark 10.00 out of 10.00

P9.56_6ed

Use the node-voltage method to find the follow phasor values.

$$V_0 = \begin{bmatrix} 1280 \\ \hline \end{bmatrix} + j \begin{bmatrix} 320 \\ \hline \end{bmatrix}$$
 Volts $V_0 = \begin{bmatrix} -1.4 \\ \hline \end{bmatrix} + j \begin{bmatrix} -1.2 \\ \hline \end{bmatrix}$ Amps

Numeric answer

$$V_0 = 1,280 + j 320 V = 1319.394D 14.04° V$$

$$I_0 = -1.40 - j \ 1.20 \ A = 1.844 \div -139.40^{\circ} \ A$$

Correct

Marks for this submission: 10.00/10.00.

Question 6

Correct

Mark 10.00 out of 10.00

P9.47_6ed

Find V_0 in this circuit.

Numeric answer

$$V_0 = 15.811 \text{ } \text{£}18.43^{\circ} \text{ Volts}$$

Correct

Correct

Mark 10.00 out of 10.00

P9.81_7ed

The operational amplifier is ideal.

Given $v_g(t) = 25 \cos(50,000 t) V$

a) Find the steady-state output $v_0(t)$.

$$v_0(t) = 7.054$$
 $\sqrt{\cos(50,000 t + -8.14)}$ (Degrees) Volts

b) How large can the amplitude of $\boldsymbol{v}_{\boldsymbol{q}}(t)$ be before the amplifier saturates?

$$|v_0(t)_{\text{max}}| \le 35.46$$
 Volts (less than or equal to)

Numeric answer

a)
$$v_0(t) = 7.07 \cos(50,000 t - 8.13^\circ) \text{ Volts}$$

b)
$$|v_0(t)_{max}| \le 35.3557 \text{ Volts}$$

Correct

Partially correct

Mark 8.75 out of 10.00

P9.62_7ed

Use the Mesh method and find the following currents:

$$\mathbf{I_a} = \mathsf{Magnitude}$$
 5 with Angle 0 \checkmark ° (Degrees) Amps $\mathbf{I_b} = \mathsf{Magnitude}$ 11.8 \checkmark with Angle 63.43 \checkmark ° (Degrees) Amps $\mathbf{I_c} = \mathsf{Magnitude}$ 7.07 \checkmark with Angle 45 \checkmark ° (Degrees) Amps $\mathbf{I_d} = \mathsf{Magnitude}$ 5 \checkmark with Angle 90 \checkmark ° (Degrees) Amps

Numeric Answer

$$I_h = 5 + j \, 10 \, A = 11.180 \, \text{D}63.43^{\circ} \, A$$

$$I_c = 5 + j 5 A = 7.071 \text{ } \pm 45.0^{\circ} A$$

$$I_d = 0 + j 5 A = 5 \oplus 90^{\circ} A$$

Partially correct

Correct

Mark 10.00 out of 10.00

P9.63_6ed

Given driving source frequency = 25 krad/sec.

The coefficient of coupling k is adjusted so that Z_{ab} is purely resistive.

Find Z_{ab} for this condition.

$$Z_{ab} = 30$$
 W (Ohm)

Numeric Answer

$$Z_{ab} = 30.0 \text{ W (Ohm)}$$

Correct

Marks for this submission: 10.00/10.00.

Question 10

Correct

Mark 10.00 out of 10.00

Find the impedance Z_{ab} if Z_{L} = 80 \pm 00° W (Ohms).

$$|Z_{ab}| = 512$$
 W (kilo Ohm)

Numeric Answer

$$Z_{ab} = 512 \text{ } \oplus 60^{\circ} \text{ kW (kilo Ohm)}$$

Correct