UTC - CF04 Session Automne

CF04 Mécanique des fluides numérique et couplages multiphysiques

Emmanuel LEFRANÇOIS

Equipe Numérique

Mots-clés :

Mécanique des fluides, méthodes numériques, couplages multiphysiques

Laboratoire Roberval, UMR 7337 UTC-CNRS

http://roberval.utc.fr

Troisième partie

Analyse des résultats et précision des schémas

Section. 1

Motivations pour ce chapitre

1.1. Motivations

Obtenir la bonne solution du premier coup est généralement impossible :

- 1. complexité des écoulements,
- 2. non-linéarités.
- 3. couplages présents dans les équations.

Origine principale

Discrétisation

Approximation

Boucle de modélisation (4 étapes)

→ lot d'erreurs lors du passage entre deux modèles successifs.

Objectif:

annuler ces erreurs?

→ IMPOSSIBLE...

MAIS les contrôler/quantifier!

→ nécessité de connaître leurs origines! voir chapitre *Techniques CFD Partie I*

1.1. Motivations/ Comment s'y prendre?

Qu'en est-il des solutions logicielles actuelles?

- blindées, robustes,
- usines à gaz!

ightarrow systématiquement fournir une solution.

Question?

Fournir quelle(s) solution(s)??

Tendance en *trompe-l'œil* pour traduire CFD par *Color Fluid Dynamics*!

D'autant plus facile en l'absence d'expertise sérieuse.

Passage du modèle mathématique → modèle numérique. Deux nouvelles :

- La mauvaise : plus grosse source d'erreurs !
- La bonne : de nombreux curseurs existent sur lesquels agir. A condition de savoir!!

Section. 2

Notion fondamentale de la convergence

2.1. Théorème d'équivalence de Lax (linéaire)

Outil FONDAMENTAL : théorème d'équivalence de Lax-Richtmyer

Theorem

Consistance + Stabilité = Convergence

Lax, P. D. Richtmyer, R. D. Survey of the stability of linear finite difference, equations.

Comm. Pure Appl. Math. 9 (1956), 267–293 Condition nécessaire et suffisante pour assurer la

convergence vers la solution du modèle mathématique.

Questions?

Consistance?

Stabilité?

2.2. Illustration sur l'équation de la chaleur 1D

► Équation simple de la chaleur (1D) :

$$\rho C_p \frac{\partial T(x,t)}{\partial t} - \kappa \frac{\partial^2 T(x,t)}{\partial x^2} = f, \quad \forall x \in [0,L], \ \forall t \ge 0 \text{ avec 2 C.L. et } T(x,0)$$

▶ Discrétisation par différences finies centrées + schéma explicite en temps :

$$\to T_j^{n+1} - T_j^n - \frac{\kappa \Delta t}{\Delta x^2} \left(T_{j-1}^n - 2 T_j^n + T_{j+1}^n \right) - \Delta t f \approx 0, \quad i = 2, ..., N-1.$$

2.3. Analyse de la consistance - théorie

Définition

Consistance d'un schéma \to capacité à faire tendre vers zéro **l'erreur de troncature** (notée \mathcal{T}) qui lui est associée.

D'où provient l'erreur de troncature?

- des approximations successives en espace (Δx) et en temps (Δt) ,
- correspond à la différence relevée entre les expressions mathématique et algébrique du modèle,
- résolution d'un modèle mathématique *entâché* d'erreurs.

A savoir...

Modèle numérique = Modèle mathématique + $\mathcal{F}(\Delta x, \Delta t)$.

Un schéma est donc consistant, si mathématiquement il vérifie :

$$\lim_{\substack{\Delta \mathbf{x} \to 0 \\ \Delta t \to 0}} \mathcal{T}(\Delta \mathbf{x}, \Delta t) = 0 !$$

2.4. Analyse de la consistance - méthode

Comment extraire \mathcal{T} ?

... par procédure inverse :

Modèle numérique - Modèle mathématique

Moyens mis en œuvre?

... Développements limités :

en espace :

$$\begin{split} T_{j+1}^n &= & T_j^n + \Delta x \frac{\partial T}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 T}{\partial x^2} + \frac{\Delta x^3}{3!} \frac{\partial^3 T}{\partial x^3} + \dots \\ T_{j-1}^n &= & T_j^n - \Delta x \frac{\partial T}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 T}{\partial x^2} - \frac{\Delta x^3}{3!} \frac{\partial^3 T}{\partial x^3} + \dots \end{split}$$

en temps :

$$T_j^{n+1} = T_j^n + \Delta t \frac{\partial T}{\partial t} + \frac{\Delta t^2}{2} \frac{\partial^2 T}{\partial t^2} + \dots$$

2.5. Analyse de la consistance - application

Application:

Modèle numérique

Modèle mathématique

$$\begin{split} T_{j}^{n+1} - T_{j}^{n} &\to \Delta t \frac{\partial T}{\partial t} + \Delta t^{2}(...) \\ -\frac{\kappa \Delta t}{\Delta x^{2}} \left(T_{j-1}^{n} - 2 T_{j}^{n} + T_{j+1}^{n} \right) &\to -\frac{\kappa \Delta t}{\Delta x^{2}} \left(\Delta x^{2} \frac{\partial^{2} T}{\partial x^{2}} + \Delta x^{4}(...) \right) \\ &= \Delta t f &\to \Delta t f \end{split}$$

Réorganisation :

Modèle numérique =
$$\underbrace{\rho C_p \frac{\partial T(x,t)}{\partial t} - \kappa \frac{\partial^2 T(x,t)}{\partial x^2} - f}_{\text{Modèle mathématique}} + \underbrace{\Delta t(...) - \Delta x^2(...)}_{\mathcal{F}(\Delta x, \Delta t)}.$$

Vérification de la consistance :

$$\lim_{\substack{\Delta \mathbf{x} \to 0 \\ \Delta t \to 0}} \mathcal{T}(\Delta \mathbf{x}, \Delta t) = 0$$
!

- ordre 1 en temps,
- ordre 2 en espace.

2.6. Calcul CFD → critère CFL

Stabilité : capacité d'un schéma à amortir toute perturbation néfaste d'origine numérique.

Pour une analyse CFD, la stabilité est généralement contrôlée d'après :

... critère CFL pour Courant-Friedrichs-Lewy aussi appelé nombre de Courant :

$$\mathsf{CFL} = \frac{V \Delta t}{\Delta x} = \frac{\mathsf{Distance parcourue}}{\mathsf{longueur de maille}} \quad \mathsf{ou} \quad \Delta t = \mathsf{CFL} \times \frac{\Delta x}{V}$$

Critère calculable sur toutes les cellules $\rightarrow \Delta t$ défini par le cas le plus sélectif.

Pour un schéma :

- Explicite : vérifier CFL < 1</p>
- ▶ Implicite : vérifier CFL < 10,20... fonction du degré de non-linéarités

Choix de la vitesse V:

- vitesse locale du fluide *u* si incompressible,
- |u|+c si compressible (captation des ondes acoustiques).

Section. 3

Mise en pratique d'une convergence au maillage

3.1. Extension vers des cas 2D ou 3D

Réalité 3D, modèles a minima 2D

Théorie des caractéristiques → directions caractéristiques → analyse 1D possible!

Analyses théoriques incapables de prédire le comportement d'équations non linéaires fortement couplées...

- ⇒ méthodes beaucoup plus pragmatiques :
 - 1. Stabilité avec le respect d'un critère de stabilité démontré de type CFL.
 - Consistance avec la mise en place d'une analyse systématique de convergence au maillage.

3.2. Choix du critère de convergence

Analyse de convergence au maillage (sup et inf)

Sur quel(s) critère(s)?

3.2. Choix du critère de convergence/ Critère physique

- ► Cœfficient de portance, de traînée
- Extrema d'une grandeur en vitesse, pression, contrainte de cisaillement...
- Débit si celui-ci n'est pas directement imposé dans les conditions aux limites d'entrée et/ou de sortie
- Perte de charge
- **>**

3.2.Choix du critère de convergence/ Norme énergie

- Méthode des éléments finis principalement,
- thermique stationnaire ou déformation élastique statique.

Forme algébrique générale

$$[K]\{T\}=\{F\}.$$

Définition de la norme énergie

$$\mathcal{E} = \frac{1}{2} < T > [K]\{T\} = \frac{1}{2} < T > \{F\}.$$

Ce scalaire constitue un bon choix de critère à suivre lors d'une analyse de convergence au maillage.

3.2.Choix du critère de convergence/ Norme énergie : exemple (2/2)

Convergence au maillage, résolution équation 2D de la chaleur stationnaire

3.3. Pistes d'amélioration/accélération de la convergence

Principales approches complémentaires :

1/ Respect des critères de qualité géométrique des cellules?

2/ Curseur lié aux ordres d'approximation en espace

- 3/ Curseur lié au degré de raffinement du maillage. Trois approches possibles :
 - \rightarrow la r-adaptation : relocalisation des nœuds,
 - → la p-adaptation : enrichissement de l'ordre d'approximation de l'élément (FEM seulement),
 - → la h−adaptation : adaptation de la taille des éléments.

Pistes d'amélioration / Critères usuels de qualité

Maillages constitués d'éléments répondant à des critères de qualité garantissent

- → stabilité numérique de la solution,
- → convergence plus rapide.

Qualité géométrique d'un élément (Jacobian Ratio)

Qualité géométrique =
$$\frac{\min(|J|)}{\min(|J|)}$$

- \rightarrow J : jacobien = indicateur d'éloignement de la forme de référence.
 - ▶ J > 0: élément correct (idéal si ≈ 1).
 - \rightarrow J < 0: élément tordu (causera des problèmes de convergence).
 - ightharpoonup J = 0: élément mal défini.

Aspect Ratio :

$$R = \frac{\max(\text{longueur})}{\min(\text{longueur})} \frac{b}{a} \quad (= 1 \text{ idéalement...})$$

source : A. Bonfiglioli et al., 2012

ightarrow risques de distributions de contraintes non cohérentes, instabilités numériques...

Cas particulier

Adaptation du maillage pour capturer une onde de choc \rightarrow les éléments peuvent présenter une très forte distorsion en *s'étalant* le long du choc sans pour autant générer la moindre oscillation numérique parasite (car transport nul transversalement)!

Distorsion (Skewness)

mesure des angles entre deux arêtes contiguës d'un élément ou d'une face d'une maille.

Skew (triangle) =
$$\sum_{i=1}^{3} |60 - \alpha_i|$$
, Skew (quadrangle) = $\sum_{i=1}^{4} |90 - \alpha_i|$.

Ex : angle idéal de 60 degrés pour un triangle est et de 90 degrés pour un rectangle.

Si angles trop obtus ou trop aigus \rightarrow problèmes de **précision**.

Skew factor	[0-0.25]	[0.25-0.50]	[0.50-0.80]	[0.80-0.95]	[0.95-1]
Qualité	Excellente	Bonne	Acceptable	Pauvre	Mauvaise

ELF/2017 CF04 23 / 36

Pistes d'amélioration / Critères usuels de qualité

Couche limite et loi de progression géométrique.

Ex : pour une épaisseur totale δ composée de n cellules :

$$\delta = \Delta y_o \sum_{i}^{n} r^{i-1},$$

Pistes d'amélioration / Adaptation de maillage sur critère d'erreur.

Adaptation de maillage ↔ Analyse de convergence au maillage optimisée

- 1. $raffiner\ lambda\ où\ il\ se\ passe\ quelque\ chose = source\ d'erreur\ importante$:
 - → zones de forts gradients (chocs)
 - → zones de fortes courbures (pre- post-chocs).
- 2. relâcher (éventuellement) là où il ne se passe pas grand chose dans les zones à faibles gradients.

Approche visant à fournir une nouvelle carte de tailles de maille en s'appuyant sur des d'estimateurs d'erreur.

Pistes d'amélioration / Illustrations (1/2)

Pistes d'amélioration / Illustrations (2/2)

Deux méthodes les plus courantes

- indicateur d'erreur, basé sur le calcul de courbures (gradients seconds) principalement
 - → écoulements faiblement compressibles,
- méthode du gradient, utiles en présence de zones à forts gradients
 → écoulements fortement compressibles (chocs par exemple).

(a) Carte des gradients normalisés

(b) Carte des courbures normalisées

Pistes d'amélioration / Ecoulement fortement compressible

Critère de raffinement (Field Function StarCCM+):

(\${grad_pressure}>1E6) ? 0.002 : 0.01

et ainsi de suite...

Section. 4

Critères à vérifier a posteriori

4.1. Bilans

→ de masse

Un débit massique à travers une surface S est donné par $:Q_m = \iint_S \rho V dS$

- 1. confirmer les entrées et sorties du domaine,
- 2. vérifier le choix du bon fluide (rapport 1000 entre eau et air!)
- 3. repérer les erreurs d'échelles (mm et non m par exemple)

→ d'enthalpie

Particulièrement intéressant en cas d'échange avec une/des paroi(s) conductrice(s). Energie gagnée/cédée par le fluide = Energie cédée/gagnée par le(s) paroi(s)

→ critère de maille

Si modèle de turbulence, vérifier le champ y^+ de première maille (haut ou bas Reynolds).

→ confrontation à des données expérimentales

Base de données ERCOFTAC http://cfd.mace.manchester.ac.uk/ercoftac

Section. 5

Analyse pragmatique des courbes de résidu

5.1. Méthode de calcul du résidu

$$[K(U)]\{U\} = \{F\} \rightarrow \{R(U)\} = [K(U)]\{U\} - \{F\}$$
A convergence on doit vérifier $\{R(U)\} = \{0\}$.

Calcul du résidu pour une cellule e (aux termes de production près) :

$$\{r\}_e = \sum \mathsf{Flux}_{entrants} - \sum \mathsf{Flux}_{sortants}.$$

Résidu global :

$$\{r\}=\sum_e\{r\}_e.$$

Sur le plan pratique :

- 1. $\{r\} = \{0\}$ hors d'atteinte...
- courbes normalisées à partir de la valeur mesurée sur le max des 5 premières itérations (StarCCM+),
- 3. chercher à gagner un ordre 2 voire 3 pour garantir la convergence.

Si convergence impossible, reprendre le calcul avec un ordre de précision le plus faible (typiquement 1).

5.2. Mise en évidence d'un caractère instationnaire

Stationnaire, laminaire, 2D, $\Delta = 2 cm$, ordre 1 en espace

Stationnaire, laminaire, 2D, $\Delta = 5 \, mm$, ordre 2 en espace

5.3. Lorsque cela ne veut pas converger...

- 1. CL mal définie/posée,
- 2. Maillage grossier, inadapté aux échelles requises,
- 3. Effets transitoires trop importants,
- 4. Condition initiale trop éloignée de la solution finale,
- 5. Ordre de précision inadapté → privilégier ordre 1 pour initialisation.

Technique par sous-relaxation

ldée : ralentir la convergence par le biais d'un cœfficient de sous-relaxation $0 < \alpha < 1$:

$$\mathbf{u}^{i+1} = \mathbf{u}^i + \alpha \Delta \mathbf{u}$$

Source : Cours Y. MARCHESSE - ECAM