1.1.4 Измерение интенсивности радиационного фона

Тимур Байдюсенов Б01-302

15.09.2023

1 Аннотация

В работе измеряется интенсивность радиационного фона. Данные фиксируются с помощью счётчика Гейгера-Мюллера(СТС-6). Исследуются ошибки результатов.

2 Теоретические сведения

Количество отсчётов в одном опыте подчиняется распределению Пуассона, т.к. регистрация частиц однородна по времени и каждая следующая не зависит от предыдущего. Стандартная ошибка отдельного измерения находится по формуле:

$$\sigma = \sqrt{n} \tag{1}$$

Значит результат измерений записывается так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измерениях среднее значение числа сосчитанных за одно измерение частиц равно:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

Стандартную ошибку отдельного измерения можно оценить по формуле:

$$\sigma_{\text{ОТД}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}$$
 (4)

Ближе всего к значению $\sigma_{\text{ОТД}}$ лежит величина $\sqrt{\overline{n}}$, тогда:

$$\sigma_{\text{ОТЛ}} \approx \sqrt{\overline{n}}$$
 (5)

Как показывает теория вероятностей стандартная ошибка отклонения \overline{n} от n_0 может быть определена так:

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{\text{ОТД}}}{\sqrt{N}}$$
 (6)

Относительная ошибка отдельного измерения:

$$\varepsilon_{\text{ОТД}} = \frac{\sigma_{\text{ОТД}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогичным образом определяется относительная ошибка в определении среднего по всем измерениям значения \overline{n} :

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} = \frac{\sigma_{\text{OTA}}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}$$
(8)

3 Оборудование

Рис. 1: Схема включения счетчика

Обнаружить космичекие лучи можно с помощью ионизации, которую они производят, используя счетчик Гейгера-Мюллера. Счетчик представляет собой наполненный газом сосуд с двумя электродами: металлическим цилиндром и нитью. Частицы космических лучей ионизируют газ,

выбивая электроны из стенок сосуда и создавая лавину электронов: сталкиваясь с молекулами газа, выбивают из них электроны. Так, получается лавина электронов, в следствии чего, через счетчик увеличивается ток и регистрируется частица.

4 Результаты измерений и обработка данных

Таблица 1: Число срабатываний счетчика за 20 с

1аолица 1: Число сраоатывании счетчика за 20 с										
№ опыта :	1	2	3	4	5	6	7	8	9	10
0:	0	8	24	30	33	25	36	26	33	30
10:	27	24	23	31	24	23	31	24	30	35
20:	25	29	28	25	19	36	16	23	21	23
30:	30	14	31	25	25	33	36	32	23	27
40:	23	21	19	16	21	22	27	23	20	34
50:	35	21	16	26	28	29	32	28	30	27
60:	31	25	21	31	19	26	25	27	17	31
70:	27	25	22	24	23	16	25	29	27	32
80:	23	23	22	28	29	28	26	29	35	20
90:	25	29	19	23	21	26	19	24	22	32
100:	25	33	40	31	28	30	27	33	32	27
110:	31	23	25	31	30	37	33	32	33	21
120:	21	33	29	31	23	29	30	27	31	21
130:	19	29	20	28	40	20	25	29	31	32
140:	29	15	24	31	28	26	36	24	20	31
150:	25	20	22	32	25	34	32	33	28	33
160:	29	25	20	25	17	31	33	21	33	27
170:	26	25	31	34	26	25	31	16	21	26
180:	32	26	27	33	32	26	22	25	34	19
190:	33	27	31	27	31	27	25	25	22	35

Таблица 2: Данные для построения гистограммы распределения числа срабатываний счетчика за 10 с

VIBBailini Cici ilika 3a 10 C						
Число импульсов n_i	4	5	6	7	8	
Число случаев	2	6	6	6	22	
Доля случаев w_n	0.005	0.015	0.015	0.015	0.055	
Число импульсов n_i	9	10	11	12	13	
Число случаев	22	30	44	37	47	
Доля случаев w_n	0.055	0.075	0.11	0.0925	0.1175	
Число импульсов n_i	14	15	16	17	18	
Число случаев	54	30	22	25	19	
Доля случаев w_n	0.135	0.075	0.055	0.0625	0.0475	
Число импульсов n_i	19	20	21	22	23	
Число случаев	8	7	5	2	1	
Доля случаев w_n	0.02	0.0175	0.0125	0.005	0.0025	
Число импульсов n_i	24	25	26	27	28	
Число случаев	0	1	0	0	1	
Доля случаев w_n	0	0.0025	0	0	0.0025	

Таблица 3: Данные для построения гистограммы распределения числа срабатываний счетчика за $40~\mathrm{c}$

Число импульсов n_i	42	43	44	45	46
Число случаев	2	1	6	2	4
Доля случаев w_n	0.02	0.01	0.06	0.02	0.04
Число импульсов n_i	47	48	49	50	51
Число случаев	4	4	5	7	6
Доля случаев w_n	0.04	0.04	0.05	0.06	0.06
Число импульсов n_i	52	53	54	55	56
Число случаев	4	6	10	6	2
Доля случаев w_n	0.04	0.06	0.1	0.06	0.02
Число импульсов n_i	57	58	59	60	61
Число случаев	4	7	2	1	3
Доля случаев w_n	0.04	0.07	0.02	0.01	0.03

Построим гистограммы 1, 2 на основе полученных данных. Они отображают распределение Пуассона и распределение Гаусса.

Рис. 2: Гистограмма для t=10c

Рис. 3: Гистограмма для t=40c

Определим среднее число частиц за 10 и 40 с:

$$\overline{n_{10}} = \frac{1}{N_{10}} \sum_{i=1}^{N_{10}} n_i = 12.93$$

$$\overline{n_{40}} = \frac{1}{N_{40}} \sum_{i=1}^{N_{40}} n_i = 51.72$$

Найдем среднеквадратичную ошибку отдельного измерения за 10 и 40 с по формуле:

$$\sigma_{\text{ОТД}10} = \sqrt{\frac{1}{N_{10}} \sum_{i=1}^{N_{10}} (n_i - \overline{n_{10}})^2} = 3.79$$

$$\sigma_{ ext{OTД40}} = \sqrt{\frac{1}{N_{40}} \sum_{i=1}^{N_{40}} (n_i - \overline{n_{40}})^2} = 7.88$$

Убедимся в справедливости формулы:

$$3.79 \approx \sqrt{12.93} = 3.60$$

$$7.88 \approx \sqrt{51.72} = 7.19$$

Найдем среднеквадратичное отклонение для средних значений по формуле:

$$\sigma_{\overline{n_{10}}} = \frac{\sigma_{\text{ОТД}10}}{\sqrt{N_{10}}} = 0.19$$

$$\sigma_{\overline{n_{40}}} = \frac{\sigma_{\text{ОТД40}}}{\sqrt{N_{40}}} = 0.79$$

Определим долю случаев для $t=10\ {\rm c}$ и сравним с теоретическими оценками:

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_{10} = \pm 3.6$	264	66	68
$\pm 2\sigma_{10} = \pm 7.2$	379	94.75	95
$\pm 3\sigma_{10} = \pm 10.8$	395	98.75	99

Определим долю случаев для $t=40\ {\rm c}$ и сравним с теоретическими оценками:

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_{40} = \pm 7.2$	79	79	68
$\pm 2\sigma_{40} = \pm 14.4$	96	96	95
$\pm 3\sigma_{40} = \pm 21.6$	99	99	99

Относительная ошибка:

$$\epsilon_{\overline{n_{10}}} = \frac{\sigma_{\overline{n_{10}}}}{\overline{n_{10}}} \approx 1.5\%$$

$$\epsilon_{\overline{n_{40}}} = \frac{\sigma_{\overline{n_{40}}}}{\overline{n_{40}}} \approx 1.5\%$$

Окончательный результат:

$$n_{10} = \overline{n_{10}} \pm \sigma_{\overline{n_{10}}} = 12.93 \pm 0.19$$

$$n_{40} = \overline{n_{40}} \pm \sigma_{\overline{n_{40}}} = 51.72 \pm 0.79$$

5 Вывод

В ходе выполнения работы познакомился с основными понятиями статистики: распределением Пуассона и распределением Гаусса. Удостоверился в возможности описания исследуемого процесса статистическими законами Пуассона и Гаусса. Определил среднее число регистрируемых космических лучей в секунду и определил погрешность результата.