Student Information

 $\operatorname{Name}:$ Satılmış Örencik

ID: 2396273

Answer 1

a)

$$(a \cup b)^*((aa(a \cup b)^*bb) \cup (bb(a \cup b)^*aa))(a \cup b)^*$$

b)

Formally, this machine is $(K, \Sigma, \Delta, s, F)$, where

 $K = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$

 $\Sigma = \{a, b\}$

 $s = q_0$

 $F = q_7$ and

 $\Delta = \{(q_0, a, q_0), (q_0, b, q_0), (q_0, a, q_1), (q_0, b, q_4), (q_1, a, q_2), (q_2, a, q_2), (q_2, b, q_2), (q_2, b, q_3), (q_3, b, q_7), (q_4, b, q_5), (q_5, a, q_5), (q_5, b, q_5), (q_5, a, q_6), (q_6, a, q_7), (q_7, a, q_7), (q_7, b, q_7)\}$

c)

	a	b
$\delta' > \{q_0\}$	$\{q_0, q_1\}$	$\{\mathbf{q}_0, q_4\}$
$\delta^{'}~\{q_0,q_1\}$	$\{\mathbf{q}_0, q_1, q_2\}$	$\{\mathbf{q}_0, q_4\}$
$\delta^{'} \; \{q_0,q_4\}$	$\{q_0, q_1\}$	$\{\mathbf{q}_0, q_4, q_5\}$
$\delta' \left\{q_0,q_1,q_2\right\}$	$\{\mathbf{q}_0, q_1, q_2\}$	$\{q_0, q_2, q_3, q_4\}$
$\delta^{'}\;\{q_0,q_4,q_5\}$	$\{q_0, q_1, q_5, q_6\}$	$\{\mathbf{q}_0, q_4, q_5\}$
$\delta' \left\{ q_0, q_2, q_3, q_4 \right\}$	$\{\mathbf{q}_0, q_1, q_2\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$
$\delta' \left\{ q_0, q_1, q_5, q_6 \right\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{\mathbf{q}_0, q_4, q_5\}$
$\delta' \{q_0, q_2, q_3, q_4, q_5, q_7\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$
$\delta' \{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$

d)

$$(q_0,bbabb) \vdash w^{'} (q_4,babb) \\ \vdash w^{'} (q_5,abb) \\ \vdash w^{'} (q_6,bb) \\ \vdash w^{'} (\emptyset,bb)$$

or $(q_0, bbabb) \qquad \vdash w^{'}(q_4, babb) \\ \vdash w^{'}(q_5, abb)$

$$\vdash w^{'}(q_{5},bb) \\ \vdash w^{'}(q_{5},b) \\ \vdash w^{'}(q_{5},\emptyset)$$
 or
$$(q_{0},bbabb) \qquad \vdash w^{'}(q_{0},babb) \\ \vdash w^{'}(q_{0},abb) \\ \vdash w^{'}(q_{1},bb) \\ \vdash w^{'}(\emptyset,bb)$$

there is no way that w' accepted by this NFA

Now we look the DFA;

$$(q_0, bbabb) \qquad \vdash w^{'} \ (q_0, q_4, babb) \\ \vdash w^{'} \ (q_0, q_4, q_5, abb) \\ \vdash w^{'} \ (q_0, q_1, q_5, bb) \\ \vdash w^{'} \ (q_0, q_4, q_5, b) \\ \vdash w^{'} \ (q_0, q_4, q_5, \emptyset)$$

w' is NOT accepted DFA too:

Therefore; w' is NOT accepted this automota.

Answer 2

a)

Pumping Lemma Theorem:

For any regular language L, there exists a pumping length "p", such that any string $S \in L$ with $|S| \geq p$, there exists x, y, z $\in \Sigma^*$, such that x = xyz, and;

- $(1) |xy| \leq n$
- (2) $|y| \ge 1$ (3) for all $i \ge 0$: $xy^iz \in L$

Suppose L_1 were regular and therefore there is a "pumping constant" p for L_1

Choose $w = a^{p+1}b^p$

Look at all decomposition's of w into xyz

a)
$$|xy| \le p$$
 b) $|y| \ge 1$
 $x = a^{\alpha} \alpha \ge 0$

$$y=a^{\beta} \beta \ge 1$$
$$z=a^{p+1-\alpha-\beta}b^p$$

$$z=a^{p+1-\alpha-\beta}b^p$$

choose i such that
$$xy^iz \notin L_1$$
;
 $xy^iz = a^{\alpha}a^{\beta i}a^{p+1-\alpha-\beta}b^p$
Suppose $a^{p+1+i\beta-\beta}b^p \in L_1$ then;
 $p+1+i\beta-\beta>p$

```
i\beta - \beta + 1 > 0
choose i=0 and \beta has to greater and equal to 1: \beta \ge 1 then we have;
-1 + 1 > 0
0 > 0 this is a contradiction!!
Therefore; by pumping lemma theorem L_1 is NOT regular language.
```

If L_1 was regular, it was possible to create a deterministic finite automata (DFA) for the language. Suppose $M_1 = (Q, \Sigma, \delta, s, F)$ is such a DFA. Then it was possible to design a new DFA $M_1' = (Q, \Sigma, \delta, s, Q-F)$ which rejects a string w if and only if M_1 would accept w. Therefore; $L(M_1') = \Sigma^* - L$ $(M_1) = \Sigma^* - L_1 = \overline{L_1}$. Since it exists a DFA accepting the language L_1 , then L_1 is regular if L_1 is regular. Therefore; Regular languages are closed under complement.

Since regularity is closed under complementation, the considered language can not be regular, because $L_2 = \overline{L_1}$

 L_2 and L_1 are complement. If L_2 were regular then L_1 has to be regular.

Thus:

 L_2 is NOT regular language.

b)

```
Suppose L_4 were regular and therefore there is a "pumping constant" p for L_4 Choose \mathbf{w} = a^p b^p
Look at all decomposition's of \mathbf{w} into \mathbf{xyz}
a) |xy| \leq p b) |y| \geq 1
\mathbf{x} = a^{\alpha} \ \alpha \geq 0
\mathbf{y} = a^{\beta} \ \beta \geq 1
\mathbf{z} = a^{p-\alpha-\beta}b^p
choose i such that xy^iz \notin L_4;
xy^iz = a^{\alpha}a^{i\beta}a^{p-\alpha-\beta}b^p
Choose i such that p + i\beta - \beta \neq p
i\beta - \beta \neq 0
i\beta \neq \beta \text{ pick i=2 then}
There is an integer i such that \mathbf{xyz} \notin L_4
Thus L_4 is NOT regular language.
```

Suppose L_5 were regular and therefore there is a "pumping constant" p for L_5 Choose w = $a^{p+1}b^p$

Look at all decomposition's of w into xyz

a)
$$|xy| \le p$$
 b) $|y| \ge 1$

$$x=a^{\alpha} \ \alpha \geq 0$$

$$y=a^{\beta} \beta \geq 1$$

$$z=a^{p+1\alpha-\beta}b^p$$

choose i such that $xy^iz \notin L_4$; $xy^iz = a^{\alpha}a^{i\beta}a^{p-\alpha-\beta}b^p = a^{p+i\beta-\beta}b^p$ Choose i such that $xyz \notin L_5$ $p+i\beta-\beta\geq 0$, $\beta\geq 1$ $p\geq 0$ Then $p+i\beta-\beta\geq 0$ this expression always consistent; Thus pumping lemme theorem does not work. We have to check regularity whether we can construct DFA or not If we can construct a DFA than language is regular

DFA for L_5 is above Therefore L_5 is regular language.