

What Guides Our Choices? Modeling Developers' Trust and Behavioral Intentions Towards GenAI

Rudrajit Choudhuri¹, Bianca Trinkenreich¹, Rahul Pandita³, Eirini Kalliamvakou³, Igor Steinmacher², Marco Gerosa², Christopher Sanchez¹, Anita Sarma¹

Generative AI is revolutionizing SE

The Paradigm Shifts in Artificial Intelligence

COMMUNICATIONS

Even as we celebrate AI as a technology that will have far-reaching benefits for humanity, trust and alignment remain disconcertingly unaddressed.

Survey: The AI wave continues to grow on software development teams

Google CEO says more than a quarter of the company's new code is created by Al

Hugh Langley Oct 29, 2024, 9:36 PM UTC

A Share A Save

Trust in AI? What does it mean? Why does it matter?

"the <u>attitude</u> that an AI agent will achieve an individual's goals in a situation characterized by uncertainty and vulnerability"

Trust being an <u>attitude</u> is a psychological construct that is not directly observable & should be:

- captured through *psychometrically validated instruments*
- distinguished from observable measures such as reliance

A foundational design requirement for supporting effective human-AI interactions:

- Miscalibrated levels of trust can lead developers to:
 - Overlook AI-induced errors and risks in work
 - Eschew its use altogether

The **PICSE** Framework

Personal

Community: an accessible community of developers that use the tool

Source Reputation:

reputation
of or familiarity with the
individual, organization, or
platform associated with
introduction to the tool

Clear Advantages: benefits of using the tool validated by other users

Interaction

Contribution Validation Support: contributions can be easily validated

Feedback Loops: tool includes mechanisms for injecting developer insights, experiences, and preferences

Educational Value: tool contributes new knowledge or augments developer existing knowledge

Control

Ownership: tool was developed in some part by the user

Control: developer has final say in application or use of tool's contribution

Workflow Integration: tool is easy to integrate into workflow

System

Ease of Installation &

Use: ability to quickly and easily install and initially use tool

Polished Presentation: careful and thoughtful

design apparent on first use

Safe and secure practices: visible consideration of important concerns, such as security and privacy

Correctness: contributions are accurate and appropriate for the program or system

Consistency: contributions are consistently accurate and appropriate

Performance: tools is performant, or exhibits few performance issues

Expectations

Meeting Expectations: contributions match what developer expects

Transparent Data Practices:

Documentation includes information on data behind the model (e.g., licenses or data sources)

Style matching: contributions match style of user

Goal matching: contributions match the goal, context, or scenario the developer currently cares about

Johnson, B., Bird, C., Ford, D., Forsgren, N., & Zimmermann, T. (2023, May). Make your tools sparkle with trust: The PICSE framework for trust in software tools. ICSE-SEIP (pp. 409-419). IEEE.

What to prioritize in tool design for trust?

It is important to establish an understanding of

RQ1: How these multitude of factors affect developers' trust in genAI tools?

- A validated instrument for
 - o capturing different trust-RELATED factors in human-genAI interaction contexts
 - through a <u>psychometric analysis</u> of the PICSE framework
- The strength & significance of these factors' association with developers' trust in genAI tools

Survey with software developers (N=238) at GitHub Inc. & Microsoft

Psychometric Analysis

Psychometric quality refers to the objectivity, reliability, and validity of an instrument

- PICSE was qualitatively developed → Its psychometric quality had not been assessed
- We conducted psychometric analysis of the framework to empirically:
 - o refine its factor groupings,
 - which were then evaluated for their association with trust

Validated PICSE Instrument for capturing trust-RELATED factors in HAI context

Construct	ID	Items
System/Output Quality	S2	Presentation/Interaction design
	S3	Safety/security practices
	S4	Consistent contextual accuracy
	S5	Performance in tasks
	E3	Style matching of contributions

Building the structural (theoretical) model

* Note: TXAI is

- (a) derived from validated trust scales specifically for HAI interactions,
- (b) psychometrically validated, and (c) is widely used to capture the trust construct.

often fails to support all users adequately

Design and Human-Computer Interaction, Language Processing, Machine Learning

Al-Detectors Biased Against Non-Native English Writers

- Substantial body of work exists in modeling technology adoption,
 - These studies *don't* consider the inclusivity of the software design
 - One such aspect of inclusivity is supporting **cognitive diversity**:
 - Fosters divergence in perceptions and interaction styles with technology
 - No particular style is inherently better or worse
 - When an user's cognitive style is unsupported (or misaligned) by software:
 - Additional "cognitive tax" everytime they use that software
 - Additional barriers to usage and adoption

RQ2: How are developers' <u>trust and cognitive styles</u> associated with their <u>intentions to use genAI tools</u>?

Cognitive Diversity, i.e. variations in cognitive styles

diverse ways users perceive, process, and interact with information & technology, as well as their approach to problem-solving

Building the structural (theoretical) model (contd.)

^{*} Note: We used the validated GenderMag facet survey to capture the five cognitive styles

We used components of the UTAUT model to capture the behavioral intention and usage constructs

Structural Model Evaluation (PLS-SEM)

Factors associated with trust (RQ1)

PLS-SEM Model: Solid lines indicate item loadings and path coefficients (p < 0.05); dashed lines represent non-significant paths. Reverse-coded items are suffixed with '-R' (e.g., SE2-R). Latent constructs are depicted as circles and adjusted R^2 (Adi, R^2) values are reported for endogenous constructs.

Factors associated with behavioral intentions (RQ2)

Takeaways: Prioritizing drivers of trust and adoption

Thank You!

Questions?

choudhru@oregonstate.edu

Check out our paper!

