利用 Verilog 开发 MIPS 流水线处理器

一. 整体结构:

流水线处理器包括流水寄存器、各级组合逻辑以及各级控制器三大部分它们均放在 mips.v 层次下,其中 code.txt 中存储相应指令码处理器为 32 位处理器,支持的指令集为: addu,subu, ori, lw, sw, beq, lui, j,jal, jr,nop

Figure 7.58 Pipelined processor with full hazard handling

二. 数据通路部分

5170a-			addu	subu	bea	lw	SW	ori	lui	1	ial	ir	MUX	控制
	创件	輸入	2000	Suou	beq	TA	24	011	101	3	Jar	J.E	MUA	32.01
	PC	- Th/A												-
	ADD4	_	PC	PC	PC	PC	PC	PC	PC	PC	PC		-	-
	IM	-	PC	PC	PC	PC	PC	PC	PC	PC	PC			-
		_										PC		2010
D級对PC更新	PC	_	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	PC1_MUX	PC1Se
	IR_D	_	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM		\leftarrow
	PC4_D	-	-		ADD4			1		ADD4	ADD4		1	-
	PCS_D	-									2		E 3	₩
1	RegFile	A1	IR_D[rs]	IR_D[rs]	IR_D[rs]	IR_D[rs]	IR_D[rs]	IR_D[rs]	IR_D[rs]			IR_D[rs]		₩
1		A2	IR_D[rt]	IR_D[rt]	IR_D[rt]	10000	IR_D[rt]		The second second					—
1	CMP	D1			RF_RD1								6 0	—
リ級切取同所	5.775.0	D2			RF_RD2									↓
	EXT					IR_D[i16]	IR_D[i16]	IR_D[i16]	IR_D[i16]				E 8	_
1	NPC	PC4			PC4_D					PC4_D	PC4_D			
		index			IR_D[i16]						IR_D[i26]			NPCS
B級更新PC	PC	Section 1			NPC				le l	NPC	NPC	RF. RD1	PC2_MUX	PC2S
	IR_B		IR_D	IR_D		IR_D	IR_D	IR_D	IR_D		IR_D			
	PC4_E	48	5164		15	-35	51164		Silval :		PC4_D		15 3	
	PCS_E				- E		X	1	63	1	N. Contraction		- E - C	
/8級流水线寄存器	RS_E		RF_RD1	RF_RD1		RF_RD1	RF_RD1	RF_RD1	RF_RD1					
	RT E		RF_RD2	RF_RD2		HLC0-9012	RF_RD2	HE TO SOLD	Second :		E 0		10 17	
,	EXT E					EXT	EXT	EXT	EXT					$\overline{}$
		A	RS_E	RS_E	100	RS_E	RS_E	RS_E	RS_E				Sau	
	ALU	В	RT E	RT_B		EXT E	EXT E	EXT E	EXT E				ALUB_MUX	ALUB
B級功能部件		D1												
	XALU	D2											8	
	IR_M		IR E	IR_E		IR E	IR E	IR E	IR_B		IR B		0. 0	-
	PC4_M		40_4	20_0		10_0	10_0	10_4	In_2		PC4_E			-
	PCS_M	 	-	-						_			10 0	-
/M級流水线哥存器	ALUout_M	+	ALUout	ALUout		ALUout	ALUout	ALUout	ALUout	-		<u> </u>		-
ensecon possessi in representati	XALUout M	-	ALUGUT	ALUGUE		ALUGUE	ALUGUT	ALUGUT	ALUGUT	 	0	-	107 (6	-
	RT M		-	-			RT_E						-	-
100000000000000000000000000000000000000	S. A.	-		-		12.22				_			2	-
M級功能部件	DM	A WD	_	-		ALUout_M	ALUout_M	1		_			2 0	+
		AD.					RT_M						9	+-
	IR_W		IR_M	IR_M	23	IR_M		IR_M	IR_M	-	IR_M		- S	+
,	PC4_W		_	+							PC4_M		1	₩
▼級流水线寄存器	PCS_W												E 5	₩
C. C	ALUout_W		ALUout_M	ALUout_M				ALUout_M	ALUout_M					—
	XALUout_W				E	Lanca III	×		2		V		- W 9	
	DM_W		è		18 3	DM	i i		12		12		12 3	_
	BYT DW	A												
m (50 m), 40 m) (4.	EXT_DM	Din	70000	A		100							8 8	
V級功能部件		A3	IR_W[rd]	IR_W[rd]		IR_W[rt]		IR_W[rt]	IR_W[rt]		0x1f		WReg_MUX	WReg
	RF	WD	ALUout W	ALUout W		DM W		ALUout W	ALUout W		PC4 W		WD MUX	WDSe

1. IF 级组合逻辑:

(1) PC.V

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号
		0: 无效
		1: 有效
stall	I	阻塞/暂停信号:
		0: pc=npc
		1: pc 保持不变
npc[31:0]	I	输入的 PC 地址
pc	0	输出当前 PC 地址

功能定义:

序号	功能	功能定义
1	复位	当时钟上升沿来临时,若复位信号有效,
		PC=0x00003000
2	取地址	时钟上升沿来临输出读取地址

(2) IM.V

模块定义:

信号名	方向	描述
pc[31:0]	I	当前 PC 地址
Instr[31:0]	0	当前读取的指令

(3) ADD4.v

模块定义:

信号名	方向	描述
pc[31:0]	I	当前 pc 地址
pcplus4[31:0]	0	输出数据为地址加 4

(4) ADD8. v

模块定义:

信号名	方向	描述
pc[31:0]	I	当前 pc 地址
Pcplus8[31:0]	0	输出数据为地址加8

2. IF/ID 级流水寄存器:

IF_ID_register.v

模块定义:

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号
		0:无效
		1: 有效
en	I	写使能信号
		0:不可写流水寄存器
		1: 可写流水寄存器
IR_D_in[31:0]	I	传入该寄存器的指令
PC4_D_in[31:0]	I	传入该寄存器的 PC+4
PC8_D_in[31:0]	I	传入该寄存器的 PC+8
IR_D_out[31:0]	0	传出该寄存器的指令
PC4_D_out[31:0]	0	传出该寄存器的 PC+4
PC8_D_out[31:0]	0	传出该寄存器的 PC+8

功能定义:

序号	功能	功能定义
1	复位	当时钟上升沿来临时,若复位信号有效,寄存
		器内容全为零
2	取地址	时钟上升沿来临时输出读取地址
3	取指令	时钟上升沿来临时取出当前指令

3. ID 级组合逻辑:

(1) GRF. v

信号名	方向	描述

clk	I	时钟信号
reset	I	复位信号,将 32 个寄存器中的值全部清零
		1: 有效
		0: 无效
pc[31:0]	I	W 级 PC 地址(PC4_W-4)
RegWrite_W	Ι	₩ 级写使能信号 1: 可向 GRF 中写入数据 0: 不能向 GRF 中写入数据
Read_register1[4:0]	I	5 位地址输入信号,指定 32 个寄存器中的一个,
		将其中存储的数据读出到 D1
Read_register2[4:0]	I	5 位地址输入信号,指定 32 个寄存器中的一个,
		将其中存储的数据读出到 D2
Write_register_W	I	5 位地址输入信号,指定 32 个寄存器中的一个
		作为写入的目标寄存器
Write_data_W[31:0]	I	向写入寄存器写入的数据

功能定义:

序号	功能名称	功能描述
1	复位	reset 信号有效时,所有寄存器存储的数值清零
2	读数据	读出 Read_register1, Read_register2 地址对应寄存器中所存储
		的数据到 RF. RD1, RF. RD2
3	写数据	当 WE 有效且时钟上升沿来临时,将 Write_data_W 写入
		Write_register_W 所对应的寄存器中

(2) EXT. v:

功能:选择立即数扩展方式

imm[15:0]	I	输入数据
Extop[1:0]	I	选择信号:
		00: 无符号扩展
		01: 有符号扩展
		10: 加载至高位,低位补零
after_ext[31:0]	О	符号扩展后输出数据

(3) CMP. v

功能: 比较器

模块定义:

信号名	方向	描述
D1[31:0]	I	第一个比较的数
D2[31:0]	I	第二个比较的数
judge	О	判断信号
		1: D1=D2
		0:D1!=D2

(4) PC_beq.v

模块定义:

信号名	方向	描述
after_ext[31:0]	I	EXT 扩展后的数
PC4_D[31:0]	I	PC+4 的值
equal	I	相等信号
pc_beq	О	beq 指令跳转地址

(5) PC_jal.v

信号名	方向	描述
Instr[31:0]	I	指令
PC4_D[31:0]	I	PC+4 的值
pc_jal	О	jal 指令跳转地址

(6) MFRSD. v

功能: D级 rs 转发多选器

模块定义:

信号名	方向	描述
RF_RD1[31:0]	I	rs 寄存器里面内容
ALUout_M[31:0]	I	M级 ALUout 数据
Write_data_W[31:0]	I	W级多选器的输出内容
ForwardRSD[1:0]	I	选择信号
		00: RF_RD1_trans=RF_RD1
		01: RF_RD1_trans=ALUout_M
		10: RF_RD1_trans=Write_data_W
RF_RD1_trans[31:0]	О	选择出来的数据

(7) MFRTD. v

功能: D级rt 转发多选器

信号名	方向	描述
RF_RD2[31:0]	I	rs 寄存器里面内容
ALUout_M[31:0]	I	M级 ALUout 数据
Write_data_W[31:0]	I	W级多选器的输出内容
ForwardRTD[1:0]	I	选择信号
		00: RF_RD2_trans=RF_RD2
		01: RF_RD2_trans=ALUout_M

		10: RF_RD2_trans=Write_data_W
RF_RD2_trans[31:0]	О	选择出来的数据

(8) nextpc_2.v

功能: 跳转 pc 的选择

模块定义:

信号名	方向	描述
pc_jal[31:0]	I	jal 跳转的地址
pc_beq[31:0]	I	beq 跳转的地址
RF_RD1_trans[31:0]	I	jr 跳转的地址
pc_sel2[1:0]	I	选择信号
		00: nextpc=pc_jal
		01: nextpc=pc_beq
		10: nextpc=RF_RD1_trans
nextpc[31:0]	О	选择出来的 nextpc

(9) Wreg_D.v

模块定义:

信号名	方向	描述
Instr[20:16]	I	rt 寄存器
Instr[15:11]	I	rd 寄存器
5'b11111	I	31 号(\$ra)寄存器
RegDst[1:0]	I	写寄存器选择信号
		00: write_register_D=rt
		01: write_register_D=rd
		10: write_register_D=\$ra
write_register_D[4:0]	О	选择出来的写寄存器

4. ID/EX 级流水寄存器:

ID_EX_register.v

模块定义:

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号
	_	0:无效
		1: 有效
stall	I	
IR_E_in[31:0]	I	传入该寄存器的指令
PC4_E_in[31:0]	I	传入该寄存器的 PC+4
PC8_E_in[31:0]	I	传入该寄存器的 PC+8
RS_E_in[31:0]	I	由 rs 寄存器传出,传入该寄存器的值
RT_E_in[31:0]	I	由rt寄存器传出,传入该寄存器的值
EXT_E_in[31:0]	I	传入该寄存器的立即数扩展之后的值
write_register_E_in[4:0]	I	传入该寄存器的写寄存器
IR_E_out[31:0]	О	传出该寄存器的指令
PC4_E_out[31:0]	О	传出该寄存器的 PC+4
PC8_E_out[31:0]	О	传出该寄存器的 PC+8
RS_E_out[31:0]	О	由 rs 寄存器传出,传出该寄存器的值
RT_E_out[31:0]	О	由rt寄存器传出,传出该寄存器的值
EXT_E_out[31:0]	О	传出该寄存器的立即数扩展之后的值
write_register_E_out[4:0]	О	传出该寄存器的写寄存器

5. EX 级组合逻辑:

(1) ALU_data_B.v

功能:选择进入ALU的第二个数据值

信号名	方	描述
-----	---	----

	向	
RF_RD2_trans[31:0]	I	经过转发选择后的1寄存器的值
after_ext[31:0]	I	立即数扩展之后的值
ALUSrc	I	选择信号
ALUB	О	输入 ALU 的第二个数据值

(2) ALU. v

模块定义:

信号名	方向	描述
A[31:0]	I	输入 A 数据
B[31:0]	I	输入 B 数据
ALUop[1:0]	I	选择信号:
		00: A1+A2
		01: A1-A2
		10: A1 A2
Result[31:0]	О	计算后输出数据

(3) MFRSE. v

功能: E级转发多选器

信号名	方	描述
	向	
RF_RD1[31:0]	I	第一个寄存器传出来的值
ALUout_M[31:0]	I	M级 ALUout 数据
Write_data_W[31:0]	I	W级多选器的输出内容
ForwardRSE[1:0]	I	选择信号
		00: RF_RD1_trans=RF_RD1
		01: RF_RD1_trans=ALUout_M

		10: RF_RD1_trans=Write_data_W
RF_RD1_trans[31:0]	О	rs 转发多选器选出来的值

(4) MFRTE. v

功能: E级转发多选器

模块定义:

信号名	方	描述
	向	
RF_RD2[31:0]	I	第二个寄存器传出来的值
ALUout_M[31:0]	I	M级 ALUout 数据
Write_data_W[31:0]	I	W级多选器的输出内容
ForwardRTE[1:0]	I	选择信号
		00: RF_RD2_trans=RF_RD2
		01: RF_RD2_trans=ALUout_M
		10: RF_RD2_trans=Write_data_W
RF_RD2_trans[31:0]	О	rt 转发多选器选出来的值

6. EX/MEM 级流水寄存器:

EX_MEM_register.v

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号
		0:无效
		1: 有效
IR_M_in[31:0]	I	传入该寄存器的指令
PC4_M_in[31:0]	I	传入该寄存器的 PC+4

PC8_M_in[31:0]	I	传入该寄存器的 PC+8
ALUout_M_in[31:0]	I	由 ALU 传出,传入该寄存器的值
RT_M_in[31:0]	I	由rt寄存器传出,传入该寄存器的值
RegWrite_M_in	I	传入该寄存器的写信号
write_register_M_in[4:0]	I	传入该寄存器的写寄存器
IR_M_out[31:0]	О	传出该寄存器的指令
PC4_M_out[31:0]	О	传出该寄存器的 PC+4
PC8_M_out[31:0]	О	传出该寄存器的 PC+8
ALUout_M_out[31:0]	О	由 ALU 传出,传出该寄存器的值
RT_M_out[31:0]	О	由rt寄存器传出,传出该寄存器的值
RegWrite_M_out	О	传出该寄存器的写信号
write_register_M_out[4:0]	О	传出该寄存器的写寄存器

7. MEM 级组合逻辑

(1) DM. v

功能:对内存进行读写操作

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号
		0: 无效
		1: 有效
pc[31:0]	I	pc 现在地址
addr[31:0]	I	存数据的地址
MemWrite	I	写内存信号
		0: 不可写内存
		1: 可写内存
MemData[31:0]	I	存入的数据

DMout[31:0]	0	读出对应内存位置的数据
		以山外四月十四里的剱猫

功能定义:

序号	功能名称	功能描述
1	读数据	读出 pc 地址对应内存中所存储的数据到 DMout
2	写数据	当 MemWrite 有效且时钟上升沿来临时,将 MemData 写入
		addr 所对应的内存位置

(2) MFRTM. v

功能: M级rt转发选择器

模块定义:

信号名	方向	描述
WD[31:0]	I	M级 ALUout_M的数据
Write_data_W[31:0]	I	W 级多选器的输出内容
ForwardRTM	I	选择信号
		0: Write_data_trans=WD
		1: Write_data_trans=Write_data_W
Write_data_trans[31:0]	О	输出传至 DMWD 端口数据

8. MEM/WB 级流水寄存器:

MEM_WB_register.v

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号
		0:无效
		1: 有效

IR_W_in[31:0]	I	传入该寄存器的指令
PC4_W_in[31:0]	I	传入该寄存器的 PC+4
PC8_W_in[31:0]	I	传入该寄存器的 PC+8
ALUout_W_in[31:0]	I	由 ALU 传出,传入该寄存器的值
DM_W_in[31:0]	I	由 DM 传出,传入该寄存器的值
RegWrite_W_in	I	传入该寄存器的写信号
write_register_W_in[4:0]	I	传入该寄存器的写寄存器
IR_W_out[31:0]	О	传出该寄存器的指令
PC4_W_out[31:0]	О	传出该寄存器的 PC+4
PC8_W_out[31:0]	О	传出该寄存器的 PC+8
ALUout_W_out[31:0]	О	由 ALU 传出,传出该寄存器的值
DM_W_out[31:0]	О	由 DM 传出,传出该寄存器的值
RegWrite_W_out	О	传出该寄存器的写信号
write_register_W_out[4:0]	О	传出该寄存器的写寄存器

9. WB 级组合逻辑:

(1) DATAtoREG. v

功能:选择回写寄存器堆的数据来源

信号名	方向	描述			
ALUout_W[31:0]	I	从 ALU 出来的数据			
DMout[31:0]	I	从 DM 出来的数据			
MemtoReg	I	选择信号:			
		0: writeback_data=ALUout_W			
		1: writeback_data=DMout			
writeback_data[31:0]	О	输出数据作为回写寄存器内容			

三. 控制器

信号名	方向	描述					
func[5:0]	I	6位 func					
op[5:0]	I	6 位 op					
RegDst[1:0]	О	写寄存器选择信号					
ALUSrc	О	进入 ALU 的第二个值选择信号					
MemtoReg	О	写回写寄存器的数据选择信号					
RegWrite	О	写入寄存器信号					
MemWrite	О	写入 DM 信号					
Extop[1:0]	О	位扩展信号					
ALUop[1:0]	О	ALU 功能选择信号					
pc_sel1	О	是否跳转信号					
pc_sel2[1:0]	О	哪种跳转方式选择信号					
Cal_r	О	Cal_r 类信号					
Cal_i	О	Cal_i 类信号					
В	О	Beq 类信号					
Load	О	Load 类信号					
Save	О	Save 类信号					
J	О	J类信号					

三. 转发和暂停

					ID/EX(Tnew)		EX/MEM(Tnew)			ME	M/WB(Tnew) 🗧 🕈	°, 🙂 🎍 🖪
源寄存器	涉及指令				jal 0/31	cal_r 0/rd	cal_i 0/rt	jal 0/31	cal_r 0/rd			jal 0/3
rs	beg. jr	MFRSD	ForwardRSD	RF. RD1	ADD4	ALUout	ALUout	ADD4	RFRD MUX	RFRD MUX	RFRD MUX	
												1
rt	cal r	MFRTE	ForwardRTE	RTOE		ALUout	ALUout		RFRD MUX	RFRD MUX	RFRD MUX	
rt	SW	MFRTM 转发MUX		RT@M 輸入0					RFRD MUX	RFRD MUX	RFRD MUX	
							_			,		
IF	/ID当前指令	₹				ID/EX(Ti	new)			EX/MEM	(Tnew)	
类型	源寄存器	Tuse	ca	l_r 1.	/rd	cal_i 1	i 1/rt lw 2/rt		rt	lw 1/rt		
r	rs/rt	1									T T	
_i	rs	1						暂停				
y .	rs	1						暂停				
	rs	1						暂停			Ĭ	
	rt	2			T.		T.				I	
q	rs/rt	0				暂停		暂停		暂	停	
3	rs	0		暂停		暂停		暂停		暂	停	
lr	rs	0		暂停	ij	暂停		暂停		暂	停	
	IF. 类型 _r _i w	TE Deq. jr	Tell	TE	Tell	#	# できます	# できます	# PR	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##	### ### ### ### ### ### ### ### ### ##

对于暂停信号 stall

 $stall_B_Calr=(B_D\&\&Cal_r_E\&\&((IR_D_out[25:21]==IR_E_out[15:11])|(IR_D_out[20:16]==IR_E_out[15:11]));$

 $stall_B_Cali=(B_D\&\&Cal_i_E\&\&((IR_D_out[25:21]==IR_E_out[20:16])|(IR_D_out[20:16]==IR_E_out[20:16]));$

 $stall_B_Load1=(B_D\&\&Load_E\&\&((IR_D_out[25:21]==IR_E_out[20:16])|(IR_D_out[20:16]==IR_E_out[20:16]));$

 $stall_B_Load2 = (B_D\&\&Load_M\&\&((IR_D_out[25:21] == IR_M_out[20:16]) | (IR_D_out[20:16] == IR_M_out[20:16]));$

stall_Calr_Load=(Cal_r_D&&Load_E&&((IR_D_out[25:21]==IR_E_out[20:16])|(IR D_out[20:16]==IR_E_out[20:16]));

stall Cali Load=(Cal i D&&Load E&&(IR D out[25:21]==IR E out[20:16]));

stall Load Load =(Load D&&Load E&&(IR D out[25:21]==IR E out[20:16]));

stall Save Load =(Save D&&Load E&&(IR D out[25:21]==IR E out[20:16]));

stall=stall_B_Calr|stall_B_Cali|stall_B_Load1|stall_B_Load2|stall_Calr_Load|stall_C ali_Load|stall_Load_Load|stall_Save_Load;

四. 思考题

- 1. 在本实验中你遇到了哪些不同指令组合产生的冲突?你又是如何解决的?相应的测试样例是什么样的?请有条理的罗列出来。(非常重要)
- (1) lw 后加 beg 指令出现异常, lw 后加 beg 应该暂停两次。

测试程序:

```
ori $a0, $0, 2026

sw $a0,0($0)

lw $a1,0($0)

lw $a2,0($0)

beq $a2,$a1,branch

ori $t0,$0,1

ori $t0,$0,2

branch:

ori $t1,$0,3
```

预期结果:

```
35@00003000: $ 4 <= 000007ea
35@00003004: *00000000 <= 000007ea
55@00003008: $ 5 <= 000007ea
65@0000300c: $ 6 <= 000007ea
105@00003014: $ 8 <= 00000001
115@0000301c: $ 9 <= 00000003
```

(2) jr 在 D 级需要用到 rs 寄存器的值,需要通过转发来解决,不然中强测前两个点过不去。

测试程序:

```
ori $ra, $0,0x3014

jr $ra

ori $a0, $0,1

ori $a0, $0,2

ori $a0,$0,3

ori $a0,$0,4
```

预期结果:

```
35@00003000: $31 <= 00003014
65@00003008: $ 4 <= 00000001
75@00003014: $ 4 <= 00000004
```

(3) 在 D 级部件将通过转发后的 RF_RD1_trans 和 RF_RD2_trans 转发到了下一

级寄存器中,实际上应该将转发前的 RF RD1 和 RF RD2 传到下一级。

(4) jal 延迟槽后跟 jr 发生冲突,在 E 级增加多路选择器,,选择传出的地址是 ALU 计算出来的值还是 PC+8

测试程序:

```
jal jump
nop
jump:
jr $ra
ori $a0,$0,1
```

预期结果:

```
35@00003000: $31 <= 00003008
 65@0000300c: $ 4 <= 00000001
 85@0000300c: $ 4 <= 00000001
105@0000300c: $ 4 <= 00000001
125@0000300c: $ 4 <= 00000001
145@0000300c: $ 4 <= 00000001
165@0000300c: $ 4 <= 00000001
185@0000300c: $ 4 <= 00000001
205@0000300c: $ 4 <= 00000001
225@0000300c: $ 4 <= 00000001
245@0000300c: $ 4 <= 00000001
265@0000300c: $ 4 <= 00000001
285@0000300c: $ 4 <= 00000001
305@0000300c: $ 4 <= 00000001
325@0000300c: $ 4 <= 00000001
345@0000300c: $ 4 <= 00000001
365@0000300c: $ 4 <= 00000001
385@0000300c: $ 4 <= 00000001
405@0000300c: $ 4 <= 00000001
425@0000300c: $ 4 <= 00000001
445@0000300c: $ 4 <= 00000001
465@0000300c: $ 4 <= 00000001
485@0000300c: $ 4 <= 00000001
505@0000300c: $ 4 <= 00000001
525@0000300c: $ 4 <= 00000001
545@0000300c: $ 4 <= 00000001
565@0000300c: $ 4 <= 00000001
585@0000300c: $ 4 <= 00000001
605@0000300c: $ 4 <= 00000001
625@0000300c: $ 4 <= 00000001
645@0000300c: $ 4 <= 00000001
665@0000300c: $ 4 <= 00000001
```

(5) beq 指令当跳转条件不满足时,应传回 PC+8 的值,而不是 PC+4,不然中强测第二个点过不去。

测试程序:

```
ori $a0, $0, 1
ori $a1, $0, 2
beq $a0, $a1, jump
ori $t0, $0, 3
ori $t1, $0, 4
addu $t7, $a0, $a1
jump:
subu $t7, $a1, $a0
```

预期结果:

35@00003000: \$ 4 <= 00000001 45@00003004: \$ 5 <= 00000002 75@0000300c: \$ 8 <= 00000003 85@00003010: \$ 9 <= 00000004 95@00003014: \$15 <= 00000003 105@00003018: \$15 <= 00000001

五. 测试程序

(一)整体测试

```
#t0---2
  1 ori $t0, $0, 2
  2 ori $t1, $0, 4
                     #t1---4
  3 beq $t0, $t1, jump1 #不跳
  4 addu $a0, $t0, $t1 #a0---6
  5 subu $a0, $t1, $t0
                      #a0---2
  6 jump1:
  7 ori $t3, $0, 3
                  #t3---3
  g ori $a1, $0, 2
                  #a1---2
  g beq $a0, $a1, jump2 ##
   ori $t7, $0, 8
10
11 ori $t7, $0, 9
12 jump2:
13 ori $ra, $0, 0x303c
   jr $ra
14
   ori $a0, $0, 1
15
16 ori $a0, $0, 2
```

```
ori $a0, $0, 2
16
      ori $a0, $0, 3
17
     ori $a0, $0, 4
                       #跳到这步
18
     ori $a0, $0, 2026
19
      sw $a0,0($0)
20
     1w $a1,0($0)
21
     1w $a2,0($0)
22
     beq $a1, $a2, branch
23
     ori $t0, $0, 1
24
     ori $t1, $0, 2
25
     branch:
26
      ori $t1, $0, 3
27
     jal jump
28
     1ui $s1, 1
29
     1ui $s2, 2
30
31
      jump:
      1ui $s3, 3
32
      j finish
33
      finish:
34
      jr $ra
35
```

预期结果:

```
35@00003000: $ 8 <= 00000002
45@0003004: $ 9 <= 00000004
75@0000300c: $ 4 <= 00000006
85@00003010: $ 4 <= 00000002
95@00003014: $11 <= 00000003
105@00003018: $ 5 <= 00000002
135@00003020: $15 <= 00000008
145@00003028: $31 <= 0000303c
175@00003030: $ 4 <= 00000001
185@0000303c: $ 4 <= 00000004
195@00003040: $ 4 <= 000007ea
195@00003044: *00000000 <= 000007ea
215@00003048: $ 5 <= 000007ea
225@0000304c: $ 6 <= 000007ea
265@00003054: $ 8 <= 00000001
275@0000305c: $ 9 <= 00000003
285@00003060: $31 <= 00003068
295@0003064: $17 <= 00010000
305@000306e: $19 <= 00030000
345@0003068: $18 <= 00020000
345@00003068: $18 <= 00020000
365@0000306e: $19 <= 00030000
405@00003068: $18 <= 00020000
415@00003068: $18 <= 00020000
425@0000306c: $19 <= 00030000
465@00003068: $18 <= 00020000
475@00003068: $18 <= 00020000
485@0000306c: $19 <= 00030000
525@00003068: $18 <= 00020000
535@00003068: $18 <= 00020000
545@0000306c: $19 <= 00030000
585@00003068: $18 <= 00020000
595@00003068: $18 <= 00020000
605@0000306a: $19 <= 00030000
```

(二) 冲突测试

对于冲突的测试类型可以用: X - Y - Z 来表示,它们的含义如下。

- X: 产生冲突的前序指令的类型。
- Y: 前序指令在哪个阶段与当前指令产生冲突。
- Z: 产生冲突的寄存器。

如:

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
1	R-M-RS	subu	MEM	rs	subu \$1, \$2, \$3 addu \$4, \$1, \$2
2	R-M-RT	subu	MEM	rt	subu \$1, \$2, \$3 addu \$4, \$2, \$1
3	R-W-RS	subu	MEM	rs	subu \$1, \$2, \$3 instru 无关 addu \$4, \$1, \$2
4	R-M-RT	subu	MEM	rt	subu \$1, \$2, \$3 instru 无关 addu \$4, \$2, \$1
5	I-M-RS	ori	MEM	rs	ori \$1, \$2, 1000 addu \$4, \$1, \$2
6	I-M-RT	ori	MEM	rt	ori \$1, \$2, 1000 addu \$4, \$2, \$1
7	I-W-RS	ori	MEM	rs	ori \$1, \$2, 1000 instru 无关 addu \$4, \$1, \$2
8	I-W-RT	ori	MEM	rt	ori \$1, \$2, 1000 instru 无关 addu \$4, \$2, \$1
9	LD-M-RS				
10	LD-M-RT	37		52	7
11	LD-W-RS		5	<i>s</i>	
12	LD-W-RT				

(1) Cal r 类型指令

1) R—M—RS

测试序列:

预期结果:

```
ori $t0, $0, 1 35@00003000: $ 8 <= 00000001 ori $t1, $0, 2 45@00003004: $ 9 <= 00000002 ori $t3, $0, 6 55@00003008: $11 <= 00000006 subu $s1, $t3, $t0 addu $s2, $s1, $t3
```

2) R-M-RT

测试序列:

预期结果:

```
ori $t0, $0, 1
ori $t1, $0, 2
ori $t3, $0, 6
subu $s1, $t3, $t0
addu $s2, $t3, $s1

35@00003000: $ 8 <= 00000001
45@00003004: $ 9 <= 00000002
55@00003008: $11 <= 00000006
65@0000300c: $17 <= 00000005
75@00003010: $18 <= 00000000b
```

3) R-W-RS

预期结果:

```
ori $t0,$0,1
ori $t1,$0,2
ori $t3,$0,6
subu $s1,$t3,$t0
ori $t4,$0,3
addu $s2,$s1,$t3
```

4) R-W-RT

预期结果:

```
ori $t0, $0, 1

ori $t1, $0, 2

ori $t3, $0, 6

subu $s1, $t3, $t0

ori $t4, $0, 3

addu $s2, $t3, $s1
```

5) I—M—RS

预期结果:

```
ori $t1, $0, 2

ori $t0, $0, 10

addu $s1, $t0, $t1

35@00003000: $ 9 <= 00000002

45@00003004: $ 8 <= 00000000a

55@00003008: $17 <= 00000000c
```

6) I—M—RT

预期结果:

```
ori $t1, $0, 2

ori $t0, $0, 10

addu $s1, $t1, $t0

35@00003000: $ 9 <= 00000002

45@00003004: $ 8 <= 0000000a

55@00003008: $17 <= 0000000c
```

7) I—W—RS

```
ori $t1, $0, 2

ori $t0, $0, 10

ori $t4, $0, 5

addu $s1, $t0, $t1

35@00003000: $ 9 <= 00000002

45@00003004: $ 8 <= 00000008

55@00003008: $12 <= 00000005

65@0000300c: $17 <= 0000000c
```

8) I—W—RT

预期结果:

```
ori $t1, $0, 2
                          35@00003000: $ 9 <= 00000002
ori $t0, $0, 10
                          45@00003004: $ 8 <= 0000000a
ori $t4, $0, 5
                          55@00003008: $12 <= 00000005
                          65@0000300c: $17 <= 0000000c
addu $s1, $t1, $t0
9) LD—M—RS
                                 预期结果:
ori $t0, $0, 10
                          35@00003000: $ 8 <= 0000000a
sw $t0,0($sp)
                          35@00003004: *00000000 <= 0000000a
                          55@00003008: $ 9 <= 0000000a
1w $t1,0($sp)
                          75@0000300c: $17 <= 00000014
addu $s1, $t1, $t0
10) LD-M-RT
                                预期结果:
ori $t0, $0, 10
                           35@00003000: $ 8 <= 0000000a
sw $t0,0($sp)
                           35@00003004: *00000000 <= 0000000a
                           55@00003008: $ 9 <= 0000000a
1w $t1,0($sp)
                           75@0000300c: $17 <= 00000014
addu $s1, $t0, $t1
11) LD—W—RS
                                 预期结果:
ori $t0, $0, 10
                          35@00003000: $ 8 <= 0000000a
sw $t0,0($sp)
                          35@00003004: *00000000 (= 0000000a
                          55@00003008: $ 9 <= 0000000a
1w $t1,0($sp)
                          65@0000300c: $11 <= 00000005
ori $t3, $0, 5
                          75@00003010: $17 <= 00000014
addu $s1, $t1, $t0
12) LD—W—RT
                                预期结果:
ori $t0, $0, 10
                          35@00003000: $ 8 <= 0000000a
sw $t0,0($sp)
                          35@00003004: *00000000 <= 0000000a
1w $t1,0($sp)
                          55@00003008: $ 9 <= 0000000a
                          65@0000300c: $11 <= 00000005
ori $t3, $0, 5
                          75@00003010: $17 <= 00000014
addu $s1, $t0, $t1
Cal r整体测试:
ori $0, 50
ori $1, 100
ori $2, 200
ori $3, 300
ori $4, 400
ori $5,500
```

top:

```
beq $1, $4, top
```

nop

ori \$6, 600

ori \$7, 700

ori \$8,800

ori \$9, 900

ori \$10, 1000

ori \$11, 100

ori \$12, 200

ori \$13, 300

ori \$14, 100

ori \$15, 200

ori \$16, 300

ori \$17, 50

ori \$18, 100

ori \$19, 200

ori \$20, 300

ori \$21, 0x0008

ori \$22, 0x0048

ori \$23, 0x2ffc

ori \$24, 0x120

ori \$25, 0x0004

#1

subu \$1, \$2, \$3 # \$1=-100

addu \$4, \$1, \$2 # \$4=100

#2

subu \$1, \$2, \$3 # \$1=-100

addu \$4, \$3, \$1 # \$4=200

#3

subu \$11, \$12, \$13 # \$11=-100

```
sw $4, -4($23) # *00002ffc=200
```

addu \$14, \$11, \$12 # \$14=100

#4

subu \$11, \$12, \$13 # \$11=-100

subu \$23, \$23, \$25 # \$23=0x2ff8

addu \$14, \$12, \$11 # \$14=100

#8

ori \$1, \$0, 128 # \$1=128

lui \$16 1234

addu \$4, \$2, \$1 # \$4=228

#9

lw \$1,0(\$23)

addu \$4, \$1, \$2 # \$4=400

#10

lw \$1,0(\$23)

addu \$4, \$2, \$1 # \$4=400

#11

lw \$1,0(\$23)

ori \$27, 0x2ff4

addu \$4, \$1, \$2 # \$4=400

#12

lw \$1,4(\$27)

subu \$23, \$23, \$25

addu \$4, \$3, \$1 # \$4=600

#13

jal loop1

addu \$4, \$31, \$1

ori \$1, \$4, 0

beq \$1, \$4, loop2

loop1:

#5

ori \$1, \$0, 128 # \$1=128

addu \$4, \$1, \$2 # \$4=228

#6

ori \$1, \$0, 128 # \$1=128

addu \$4, \$2, \$1 # \$4=228

#7

ori \$2, \$0, 128 # \$1=128

lui \$26, 8

addu \$4, \$2, \$1 # \$4=228

jr \$31

loop2:

nop

jal loop3

addu \$4, \$1, \$31

ori \$1, \$4, 0

beq \$1, \$4, loop4

loop3:

#5

ori \$1, \$0, 128 # \$1=128

addu \$4, \$1, \$2 # \$4=228

#6

ori \$1, \$0, 128 # \$1=128

addu \$4, \$2, \$1 # \$4=228

#7

ori \$2, \$0, 128 # \$1=128

lui \$26, 8

addu \$4, \$2, \$1 # \$4=228

jr \$31

```
loop4:
sw $4, 0($23)
jal loop5
sw $4, 0($0)
ori $1, $4, 0
beq $1, $4, loop6
loop5:
addu $4, $31, $1
jr $31
loop6:
lw $5, 0($23)
jal loop8
ori $1, $4, 0
beq $1, $4, loop7
loop8:
addu $4, $1, $31
jr $31
loop7:
ori $1, $4, 0
beq $0, $0, top
lui $0, 100
预期输出:
45@00003004: $ 1 <= 00000064
55@00003008: $ 2 <= 000000c8
65@0000300c: $ 3 <= 0000012c
75@00003010: $ 4 <= 00000190
85@00003014: $ 5 <= 000001f4
115@00003020: $ 6 <= 00000258
```

125@00003024: \$ 7 <= 000002bc

```
135@00003028: $ 8 <= 00000320
```

$$245@00003054$$
: $$19 \le 000000c8$

- 375@00003088: \$14 <= 00000064
- 385@0000308c: \$11 <= ffffff9c
- 395@00003090: \$23 <= 00002ff8
- 405@00003094: \$14 <= 00000064
- 415@00003098: \$ 1 <= 00000080
- 425@0000309c: \$16 <= 04d20000
- 435@000030a0: \$ 4 <= 00000148
- 445@000030a4: \$ 1 <= 000000c8
- 465@000030a8: \$ 4 <= 00000190
- 475@000030ac: \$ 1 <= 000000c8
- 495@000030b0: \$ 4 <= 00000190
- 505@000030b4: \$ 1 <= 000000c8
- 515@000030b8: \$27 <= 00002ff4
- 525@000030bc: \$ 4 <= 00000190
- 535@000030c0: \$ 1 <= 000000c8
- 545@000030c4: \$23 <= 00002ff4
- 555@000030c8: \$ 4 <= 000001f4
- 565@000030cc: \$31 <= 000030d4
- 575@000030d0: \$ 4 <= 0000319c
- 585@000030dc: \$ 1 <= 00000080

```
595@000030e0: $ 4 <= 00000148
605@000030e4: $ 1 <= 00000080
615@000030e8: $ 4 <= 00000148
625@000030ec: $ 2 <= 00000080
635@000030f0: $26 <= 00080000
645@000030f4: $ 4 <= 00000100
675@000030d4: $ 1 <= 00000100
705@000030dc: $ 1 <= 00000080
725@00003100: $31 <= 00003108
735@00003104: $ 4 <= 00003188
745@00003110: $ 1 <= 00000080
755@00003114: $ 4 <= 00000100
765@00003118: $ 1 <= 00000080
775@0000311c: $ 4 <= 00000100
785@00003120: $ 2 <= 00000080
795@00003124: $26 <= 00080000
805@00003128: $ 4 <= 00000100
815@00003130: *00002ff4 <= 00000100
835@00003108: $ 1 <= 00000100
865@00003110: $ 1 <= 00000080
865@00003130: *00002ff4 <= 00000100
885@00003134: $31 \le 0000313c
885@00003138: *00000000 <= 00000100
905@00003144: $ 4 <= 000031bc
925@0000314c: $ 5 <= 00000100
935@0000313c: $ 1 <= 000031bc
965@00003144: $ 4 <= 000062f8
975@0000314c: $ 5 <= 00000100
985@00003150: $31 <= 00003158
995@00003154: $ 1 <= 000062f8
ISim>
# run 1.00us
1005@0000315c: $ 4 <= 00009450
1025@00003164: $ 1 <= 00009450
1055@0000315c: $ 4 <= 0000c5a8
1065@00003164: $ 1 <= 0000c5a8
 (2) Cal i 整体测试
ori $t1,$0,7
ori $t2,$t1,8
```

ori \$t1,\$0,7 addu \$s1,\$0,\$0

```
ori $t2,$t1,8
```

```
ori $t0,$0,3
```

ori \$t1,\$0,4

addu \$t2,\$t0,\$t1

ori \$t3,\$t2,8

ori \$t0,\$0,7

sw \$t0,0(\$sp)

lw \$t1,0(\$sp)

ori \$t2,\$t1,8

jal jump

ori \$t0,\$0,1

jump:

ori \$t1,\$0,2

预期输出:

- 35@00003000: \$ 9 <= 00000007
- 45@00003004: \$10 <= 0000000f
- 55@00003008: \$ 9 <= 00000007
- 65@0000300c: \$17 <= 00000000
- 75@00003010: \$10 <= 0000000f
- 85@00003014: \$ 8 <= 00000003
- 95@00003018: \$ 9 <= 00000004
- 105@0000301c: \$10 <= 00000007
- 115@00003020: \$11 <= 0000000f
- 125@00003024: \$ 8 <= 00000007
- 125@00003028: *00000000 <= 00000007
- 145@0000302c: \$ 9 <= 00000007
- 165@00003030: \$10 <= 0000000f
- 175@00003034: \$31 <= 0000303c
- 185@00003038: \$ 8 <= 00000001
- 195@0000303c: \$ 9 <= 00000002

P5 测试指令:

Addu:

Ori_E_RS(addu):
ori \$t0, \$zero, 8
addu \$t1, \$t0, \$zero
180@00003000: \$ 8 <= 00000008
220@00003004: \$ 9 <= 00000008

Ori_M_RS(addu)
ori \$t0, \$zero, 8
ori \$t2, \$zero, 12
addu \$t1, \$t0, \$zero
180@00003000: \$ 8 <= 00000008
220@00003004: \$10 <= 00000000
260@00003008: \$ 9 <= 00000008

Ori_W_RS(addu)
ori \$t0, \$zero, 8
ori \$t2, \$zero, 12
ori \$t3, \$zero, 13
addu \$t1, \$t0, \$zero
180@00003000: \$ 8 <= 00000008
220@00003004: \$10 <= 0000000d
260@00003008: \$11 <= 0000000d
300@0000300c: \$ 9 <= 00000008

Ori_E_RT(addu)
ori \$t0, \$zero, 8
addu \$t1, \$zero, \$t0
180@00003000: \$ 8 <= 00000008
220@00003004: \$ 9 <= 00000008

Ori_M_RT(addu) ori \$t0, \$zero, 8 ori \$t2, \$zero, 12 addu \$t1, \$zero, \$t0 180@00003000: \$ 8 <= 00000008 220@00003004: \$10 <= 0000000c 260@00003008: \$ 9 <= 00000008

Ori_W_RT(addu) ori \$t0, \$zero, 8 ori \$t2, \$zero, 12

ori \$t3, \$zero, 13

addu \$t1, \$zero, \$t0

180@00003000: \$ 8 <= 00000008 220@00003004: \$10 <= 0000000c 260@00003008: \$11 <= 0000000d 300@0000300c: \$ 9 <= 00000008

Lui_E_RS(addu)

lui \$t0, 8

addu \$t1, \$t0, \$zero

180@00003000: \$ 8 <= 00080000 220@00003004: \$ 9 <= 00080000

Lui_M_RS(addu)

lui \$t0, 8

lui \$t2, 12

addu \$t1, \$t0, \$zero

180@00003000: \$ 8 <= 00080000 220@00003004: \$10 <= 000c0000 260@00003008: \$ 9 <= 00080000

Lui_W_RS(addu)

lui \$t0, 8

lui \$t2, 12

lui \$t3, 14

addu \$t1, \$t0, \$zero

180@00003000: \$ 8 <= 00080000 220@00003004: \$10 <= 000c0000 260@00003008: \$11 <= 000e0000 300@0000300c: \$ 9 <= 00080000

Lui_W_RT(addu)

lui \$t0, 8

addu \$t1, \$zero, \$t0

180@0003000: \$ 8 <= 00080000 220@0003004: \$ 9 <= 00080000

Lui_w_RT(addu)

lui \$t0, 8

lui \$t2, 12

addu \$t1, \$zero, \$t0

180@00003000: \$ 8 <= 00080000 220@00003004: \$10 <= 000c0000 260@00003008: \$ 9 <= 00080000

Lui_W_RT(addu)

lui \$t0, 8

lui \$t2, 12

lui \$t3, 14

addu \$t1, \$zero, \$t0

180@00003000: \$ 8 <= 00080000 220@00003004: \$10 <= 000c0000 260@00003008: \$11 <= 000e0000 300@0000300c: \$ 9 <= 00080000

R E RS(addu)

lui \$t0, 8

addu \$t1, \$zero, \$t0

addu \$t2, \$t1, \$zero

180@00003000: \$ 8 <= 00080000 220@00003004: \$ 9 <= 00080000 260@00003008: \$10 <= 00080000

R_M_RS(addu)

lui \$t0, 8

addu \$t1, \$zero, \$t0

addu \$t3, \$t0, \$t0

addu \$t2, \$t1, \$zero

180@00003000: \$ 8 <= 00080000 220@00003004: \$ 9 <= 00080000 260@00003008: \$11 <= 00100000 300@0000300c: \$10 <= 00080000

 $R_W_RS(RT)(addu)$

```
lui $t0, 8
addu $t1, $zero, $t0
addu $t3, $t0, $t0
addu $t4, $t0, $t0
addu $t2, $t1, $t1
180@0003000: $ 8 <= 00080000
220@00003004: $ 9 <= 00080000
260@00003008: $11 <= 00100000
300@000300c: $12 <= 00100000
340@00003010: $10 <= 00100000
Ld E RS(RT)(addu)
ori $t0, $zero, 8
ori $t1, $zero, 12
ori $t2, $zero, 16
ori $t3, $zero, 20
ori $t4, $zero, 24
ori $t5, $zero, 28
sw $t1, 0($t0)
ori $s0, $zero, 4
ori $s1, $zero, 8
ori $s2, $zero, 12
lw $t6, 0($t0)
addu $t7, $t6, $t6
180@00003000: $ 8 <= 00000008
220@00003004: $ 9 <= 0000000c
260@00003008: $10 <= 00000010
300@000300c: $11 <= 00000014
340@00003010: $12 <= 00000018
380@00003014: $13 <= 0000001c
380@00003018: *00000008 <= 0000000c
460@0000301c: $16 <= 00000004
500@00003020: $17 <= 00000008
540@00003024: $18 <= 0000000c
580@00003028: $14 <= 0000000c
660@0000302c: $15 <= 00000018
Ld M RS(RT)(addu)
ori $t0, $zero, 8
ori $t1, $zero, 12
ori $t2, $zero, 16
ori $t3, $zero, 20
ori $t4, $zero, 24
```

sw \$t1, 0(\$t0)

```
ori $s0, $zero, 4
```

ori \$s2, \$zero, 12

lw \$t6, 0(\$t0)

ori \$t5, \$zero, 28

addu \$t7, \$t6, \$t6

180@00003000: \$ 8 <= 00000008

220@00003004: \$ 9 <= 0000000c

260@00003008: \$10 <= 00000010

300@0000300c: \$11 <= 00000014

340@00003010: \$12 <= 00000018

340@0003014: *00000008 <= 0000000c

420@00003018: \$16 <= 00000004

460@0000301c: \$17 <= 00000008

500@00003020: \$18 <= 0000000c

540@00003024: \$14 <= 0000000c

580@00003028: \$13 <= 0000001c

620@0000302c: \$15 <= 00000018

Ld W RS(RT)(addu)

ori \$t0, \$zero, 8

ori \$t1, \$zero, 12

ori \$t2, \$zero, 16

ori \$t3, \$zero, 20

ori \$t4, \$zero, 24

sw \$t1, 0(\$t0)

ori \$s0, \$zero, 4

ori \$s1, \$zero, 8

ori \$s2, \$zero, 12

lw \$t6, 0(\$t0)

ori \$t5, \$zero, 28

ori \$t8, \$zero, 32

addu \$t7, \$t6, \$t6

180@00003000: \$ 8 <= 00000008

220@00003004: \$ 9 <= 0000000c

260@00003008: \$10 <= 00000010

300@000300c: \$11 <= 00000014

340@00003010: \$12 <= 00000018

340@00003014: *00000008 <= 00000000c

420@00003018: \$16 <= 00000004

460@0000301c: \$17 <= 00000008

500@00003020: \$18 <= 0000000c

540@00003024: \$14 <= 0000000c

580@00003028: \$13 <= 0000001c

```
620@0000302c: $24 <= 00000020
660@00003030: $15 <= 00000018
Jal E RS(RT)(addu)
ori $t0, $zero, 8
ori $t1, $zero, 12
ori $t2, $zero, 16
jal change1
addu $t3, $ra, $ra
ori $t4, $zero, 20
ori $t5, $zero, 24
change1:
    ori $t6, $zero, 20
180@0003000: $ 8 <= 00000008
220@00003004: $ 9 <= 0000000c
260@00003008: $10 <= 00000010
300@000300c: $31 <= 00003014
340@0003010: $11 <= 00006028
380@0000301c: $14 <= 00000014
Jal M RS(RT)(addu)
ori $t0, $zero, 8
ori $t1, $zero, 12
ori $t2, $zero, 16
jal change1
ori $t4, $zero, 20
ori $t5, $zero, 24
change1:
    addu $t3, $ra, $ra
    ori $t6, $zero, 20
    ori $t7, $zero, 24
$ 8 <= 00000008
$ 9 <= 0000000c
$10 <= 00000010
$31 <= 00003014
$12 <= 00000014
$11 <= 00006028
$14 <= 00000014
$15 <= 00000018
Jal W RS(RT)(addu)
ori $t0, $zero, 8
ori $t1, $zero, 12
```

```
ori $t2, $zero, 16
jal change1
ori $t4, $zero, 20
ori $t5, $zero, 24
change1:
    ori $t6, $zero, 20
    addu $t3, $ra, $ra
    ori $t6, $zero, 20
    ori $t7, $zero, 24
$ 8 <= 00000008
$9 \le 0000000c
$10 <= 00000010
$31 <= 00003014
$12 <= 00000014
$14 <= 00000014
$11 <= 00006028
$14 <= 00000014
$15 <= 00000018
Ori E RS(ori)
ori $t0, $zero, 8
ori $t1, $t0, 12
180@0003000: $ 8 <= 00000008
220@00003004: $ 9 <= 0000000c
Ori M RS(ori)
ori $t0, $zero, 8
ori $t2, $zero, 20
ori $t1, $t0, 12
180@0003000: $ 8 <= 00000008
220@00003004: $10 <= 00000014
260@00003008: $ 9 <= 0000000c
Ori_W_RS(ori)
ori $t0, $zero, 8
ori $t2, $zero, 20
ori $t3, $zero, 24
ori $t1, $t0, 12
180@0003000: $ 8 <= 00000008
220@00003004: $10 <= 00000014
260@00003008: $11 <= 00000018
300@000300c: $ 9 <= 0000000c
Subu E RS(ori)
```

```
ori $t0, $zero, 8
```

- ori \$t1, \$zero, 20
- ori \$t2, \$zero, 24
- ori \$t3, \$zero, 12
- ori \$t4, \$zero, 16
- subu \$t5, \$t0, \$t1
- ori \$t6, \$t5, 13
- 180@0003000: \$ 8 <= 00000008
- 220@00003004: \$ 9 <= 00000014
- 260@00003008: \$10 <= 00000018
- 300@0000300c: \$11 <= 0000000c
- 340@0003010: \$12 <= 00000010
- 380@00003014: \$13 <= fffffff4
- 420@00003018: \$14 <= fffffffd

Subu M RS(ori)

- ori \$t0, \$zero, 8
- ori \$t1, \$zero, 20
- ori \$t2, \$zero, 24
- ori \$t3, \$zero, 12
- ori \$t4, \$zero, 16
- subu \$t5, \$t0, \$t1
- ori \$t7, \$zero, 20
- ori \$t6, \$t5, 13
- 180@00003000: \$ 8 <= 00000008
- 220@00003004: \$ 9 <= 00000014
- 260@00003008: \$10 <= 00000018
- 300@0000300c: \$11 <= 0000000c
- 340@00003010: \$12 <= 00000010
- 380@00003014: \$13 <= fffffff4
- 420@00003018: \$15 <= 00000014
- 460@0000301c: \$14 <= fffffffd

Subu_W_RS(ori)

- ori \$t0, \$zero, 8
- ori \$t1, \$zero, 20
- ori \$t2, \$zero, 24
- ori \$t3, \$zero, 12
- ori \$t4, \$zero, 16
- subu \$t5, \$t0, \$t1
- ori \$t7, \$zero, 20
- ori \$t8, \$zero, 24
- ori \$t6, \$t5, 13
- 180@00003000: \$ 8 <= 00000008

```
220@00003004: $ 9 <= 00000014
260@00003008: $10 <= 00000018
300@0000300c: $11 <= 0000000c
340@00003010: $12 <= 00000010
380@00003014: $13 <= fffffff4
420@00003018: $15 <= 00000014
460@0000301c: $24 <= 00000018
500@00003020: $14 <= fffffffd
Ld E RS(ori)
ori $t0, $zero, 8
ori $t1, $zero, 20
ori $t2, $zero, 4
ori $t3, $zero, 12
ori $t4, $zero, 16
sw $t0, 0($t1)
lw $t5, 0($t1)
ori $t6, $t5, 13
180@00003000: $ 8 <= 00000008
220@00003004: $ 9 <= 00000014
260@00003008: $10 <= 00000004
300@0000300c: $11 <= 0000000c
340@00003010: $12 <= 00000010
340@0003014: *00000014 <= 00000008
420@00003018: $13 <= 00000008
500@0000301c: $14 <= 0000000d
Ld M RS(ori)
ori $t0, $zero, 8
ori $t1, $zero, 20
ori $t2, $zero, 4
ori $t3, $zero, 12
ori $t4, $zero, 16
sw $t0, 0($t1)
lw $t5, 0($t1)
ori $t7, $zero, 20
ori $t6, $t5, 13
```

180@00003000: \$ 8 <= 00000008 220@00003004: \$ 9 <= 00000014 260@00003008: \$10 <= 00000004 300@0000300c: \$11 <= 0000000c 340@00003010: \$12 <= 00000010

340@0003014: *00000014 <= 00000008

```
420@00003018: $13 <= 00000008
460@0000301c: $15 <= 00000014
500@00003020: $14 <= 0000000d
Ld W RS(ori)
ori $t0, $zero, 8
ori $t1, $zero, 20
ori $t2, $zero, 4
ori $t3, $zero, 12
ori $t4, $zero, 16
sw $t0, 0($t1)
lw $t5, 0($t1)
ori $t7, $zero, 20
ori $t8, $zero, 24
ori $t6, $t5, 13
180@0003000: $ 8 <= 00000008
220@00003004: $ 9 <= 00000014
260@00003008: $10 <= 00000004
300@0000300c: $11 <= 0000000c
340@00003010: $12 <= 00000010
340@0003014: *00000014 <= 00000008
420@00003018: $13 <= 00000008
460@0000301c: $15 <= 00000014
500@00003020: $24 <= 00000018
540@00003024: $14 <= 0000000d
Jal E RS(ori)
ori $t0, $zero, 8
ori $t1, $zero, 20
jal change1
ori $t2, $ra, 8
ori $t3, $zero, 14
change1:
    ori $t4, $zero, 18
ori $t5, $zero, 22
ori $t6, $zero, 26
180@00003000: $ 8 <= 00000008
220@00003004: $ 9 <= 00000014
260@00003008: $31 <= 00003010
300@0000300c: $10 <= 00003018
```

340@00003014: \$12 <= 00000012 380@00003018: \$13 <= 00000016 420@0000301c: \$14 <= 0000001a

```
Jal M RS(ori)
ori $t0, $zero, 8
ori $t1, $zero, 20
jal change1
ori $t2, $zero, 4
ori $t3, $zero, 14
change1:
    ori $t4, $ra, 18
ori $t5, $zero, 22
ori $t6, $zero, 26
180@0003000: $ 8 <= 00000008
220@00003004: $ 9 <= 00000014
260@00003008: $31 <= 00003010
300@000300c: $10 <= 00000004
340@00003014: $12 <= 00003012
380@00003018: $13 <= 00000016
420@0000301c: $14 <= 0000001a
Jal W RS(ori)
ori $t0, $zero, 8
ori $t1, $zero, 20
jal change1
ori $t2, $zero, 4
ori $t3, $zero, 14
change1:
    ori $t7, $zero, 6
    ori $t4, $ra, 18
ori $t5, $zero, 22
ori $t6, $zero, 26
180@00003000: $ 8 <= 00000008
220@00003004: $ 9 <= 00000014
260@00003008: $31 <= 00003010
300@000300c: $10 <= 00000004
340@00003014: $15 \le 00000006
380@00003018: $12 <= 00003012
420@0000301c: $13 <= 00000016
460@00003020: $14 <= 0000001a
Lw:
R_E/M/W_RS(lw)
```

```
ori $t0, $zero, 4
```

ori \$t1, \$zero, 8

ori \$t2, \$zero, 9

ori \$t3, \$zero, 12

sw \$t1, 0(\$t0)

sw \$t2, 4(\$t0)

sw \$t3, 8(\$t0)

occasion1: #R_E_RS subu \$t4, \$t1, \$t0 lw \$t5, 0(\$t4)

occasion2: #R_M_RS subu \$t5, \$t3, \$t0 ori \$zero, \$zero, 5 lw \$t6, 0(\$t5)

occasion3: #R_W_RS

addu \$t6, \$t0, \$t1

ori \$s0, \$zero, 12

ori \$s1, \$zero, 16

lw \$t7, 0(\$t6)

\$ 8 <= 00000004

\$ 9 <= 00000008

\$10 <= 00000009

\$11 <= 0000000c

*00000004 <= 00000008

*00000008 <= 00000009

*0000000c <= 0000000c

\$12 <= 00000004

\$13 <= 00000008

\$13 <= 00000008

\$14 <= 00000009

 $14 \le 0000000$ c

\$16 <= 0000000c

 $17 \le 00000010$

\$15 <= 0000000c

I E/M/W RS(lw)

ori \$t0, \$zero, 4

ori \$t1, \$zero, 8

ori \$t2, \$zero, 9

ori \$t3, \$zero, 12

sw \$t1, 0(\$t0)

```
sw $t2, 4($t0)
sw $t3, 8($t0)
occasion1: #R E RS
    ori $t4, $zero, 4
    lw $t5, 0($t4)
occasion2: #R M RS
    ori $t5, $zero, 8
    ori $zero, $zero, 5
    lw $t6, 0($t5)
occasion3: #R W RS
    ori $t6, $zero, 12
    ori $s0, $zero, 12
    ori $s1, $zero, 16
    lw $t7, 0($t6)
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00000009
$11 <= 0000000c
*00000004 <= 00000008
*00000008 <= 00000009
*0000000c \le 0000000c
$12 <= 00000004
$13 <= 00000008
$13 <= 00000008
$14 <= 00000009
14 \le 0000000c
$16 <= 0000000c
$17 <= 00000010
$15 <= 0000000c
Ld E/M/W RS(lw)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
sw $t0, 0($zero)
sw $t1, 0($t0)
sw $t2, 0($t1)
sw $t3, 4($t1)
 occasion1: #ld E RS
    lw $t4, 0($t0)
```

```
lw $t5, 0($t4)
 occasion2: #ld M RS
   lw $t5, -4($t0)
   addu $zero, $zero, $t1
   lw $t6, 0($t5)
occasion: #ld W RS
   lw $t6, 4($t0)
   ori $s0, $zero, 1
   ori $s1, $zero, 2
   lw $t7, 0($t6)
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$11 <= 00000010
*00000000 <= 00000004
*00000004 <= 00000008
*00000008 <= 0000000c
*0000000c <= 00000010
$12 <= 00000008
13 \le 00000000c
$13 <= 00000004
$14 <= 00000008
$14 <= 0000000c
$16 <= 00000001
$17 <= 00000002
$15 <= 00000010
```

由于 DM 的容量只有 4KB, 因此 31 号寄存器中的值不可能作为 lw 指令中的寻址

Sw:

```
R_E/M/W_RS/RT(sw)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
ori $t4, $zero, 20
```

occasion1: #R E RS

addu \$t5, \$t0, \$t1 sw \$t2, 0(\$t5)

occasion2: #R_M_RS subu \$t6, \$t2, \$t1 ori \$s0, \$zero, 12 sw \$t3, 4(\$t6)

occasion3: #R_W_RS subu \$t7, \$t4, \$t0 ori \$s1, \$zero, 4 ori \$s2, \$zero, 8 sw \$t4, 0(\$t7)

occasion4: #R_E_RT subu \$t5, \$t1, \$t0 sw \$t5, 0(\$t0)

occasion5: #R_M_RT subu \$t5, \$t2, \$t0 ori \$s0, \$zero, 2 sw \$t5, 4(\$t2)

occasion6: #R_W_RT addu \$t6, \$t3, \$t4 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 sw \$t6, 0(\$t1)

\$ 8 <= 00000004

\$ 9 <= 00000008

\$10 <= 0000000c

\$11 <= 00000010

\$12 <= 00000014

 $13 \le 0000000$ c

*0000000c <= 0000000c

\$14 <= 00000004

\$16 <= 0000000c

*00000008 <= 00000010

\$15 <= 00000010

 $17 \le 00000004$

\$18 <= 00000008

*00000010 <= 00000014

\$13 <= 00000004

*00000004 <= 00000004

```
$13 <= 00000008
```

\$16 <= 00000002

*00000010 <= 00000008

\$14 <= 00000024

\$16 <= 00000001

\$17 <= 00000002

*00000008 <= 00000024

$I_E/M/W_RS/RT(sw)$

ori \$t0, \$zero, 4

ori \$t1, \$zero, 8

ori \$t2, \$zero, 12

ori \$t3, \$zero, 16

ori \$t4, \$zero, 20

occasion1: #I E RS

ori \$t5, \$zero, 12

sw \$t2, 0(\$t5)

occasion2: #I M RS

ori \$t6, \$zero, 4

ori \$s0, \$zero, 12

sw \$t3, 4(\$t6)

occasion3: #I W RS

ori \$t7, \$zero, 16

ori \$s1, \$zero, 4

ori \$s2, \$zero, 8

sw \$t4, 0(\$t7)

occasion4: #I E RT

lui \$t5, 3

sw \$t5, 0(\$t0)

occasion5: #I M RT

lui \$t5, 1

ori \$s0, \$zero, 2

sw \$t5, 4(\$t2)

occasion6: #I W RT

ori \$zero, \$zero, 9

ori \$s0, \$zero, 1

ori \$s1, \$zero, 2

```
sw $zero, 0($t1)
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$11 <= 00000010
$12 <= 00000014
13 \le 0000000c
*0000000c <= 0000000c
$14 <= 00000004
$16 <= 0000000c
*00000008 <= 00000010
$15 <= 00000010
$17 <= 00000004
$18 <= 00000008
*00000010 <= 00000014
$13 <= 00030000
*00000004 <= 00030000
$13 <= 00010000
$16 <= 00000002
*00000010 <= 00010000
$16 <= 00000001
$17 <= 00000002
*00000008 <= 00000000
Ld_E/M/W_RS RT(sw)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
ori $t4, $zero, 20
sw $t0, 0($zero)
sw $t1, 0($t0)
sw $t2, 4($t0)
sw $t3, 8($t0)
occasion1: #ld_E_RS
   lw $t5, 0($t0)
    sw $t2, 0($t5)
occasion2: #ld M RS
   lw $t6, 0($t0)
   ori $s0, $zero, 12
    sw $t3, 4($t6)
```

```
occasion3: #ld W RS
   lw $t7, 4($t0)
   ori $s1, $zero, 4
   ori $s2, $zero, 8
   sw $t4, 0($t7)
occasion4: #ld_E_RT
   lw $t5, 0($t2)
   sw $t5, 0($t0)
occasion5: #ld M RT
   lw $t5, 4($t2)
   ori $s0, $zero, 2
   sw $t5, 4($t2)
occasion6: #ld_W_RT
   lw $t6, 4($t0)
   ori $s0, $zero, 1
   ori $s1, $zero, 2
   sw $t6, 0($t1)
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$11 <= 00000010
$12 <= 00000014
*00000000 <= 00000004
*00000004 <= 00000008
*00000008 <= 0000000c
*0000000c <= 00000010
$13 <= 00000008
*00000008 \le 0000000c
$14 <= 00000008
16 \le 0000000c
*0000000c <= 00000010
15 \le 0000000c
$17 <= 00000004
$18 <= 00000008
*0000000c <= 00000014
$13 <= 00000014
*00000004 <= 00000014
$13 <= 00000000
$16 <= 00000002
*00000010 <= 00000000
```

```
$14 <= 0000000c
$16 <= 00000001
$17 <= 00000002
*00000008 <= 0000000c
(jal sw 的情况)
Beq:
R E/M/W RS/RT(beq)(equal)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
subu $t4, $t0, $t1
occasion1: #R_E_RS
    addu $t5, $t0, $t1
    beq $t5, $t2, change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion2: #R M RS
    addu $t6, $t0, $t1
    ori $s0, $zero, 1
    beq $t6, $t2, change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion3: #R W RS
    addu $t7, $t0, $t1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    beq $t7, $t2, change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
        ori $s2, $zero, 3
```

```
ori $s3, $zero, 4
```

```
occasion4: #R E RT
    subu $t5, $t1, $t2
    beq $t4, $t5, change4
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change4:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion5: #R_M_RT
    subu $t6, $t1, $t2
    ori $s0, $zero, 1
    beq $t4, $t6, change5
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change5:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion6: #R_W_RT
    subu $t7, $t1, $t2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    beq $t4, $t7, change6
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change6:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$11 <= 00000010
$12 <= fffffffc
$13 <= 0000000c
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$14 <= 0000000c
$16 <= 00000001
$16 <= 00000001
$18 <= 00000003
```

```
$19 <= 00000004
15 \le 0000000c
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$13 <= fffffffc
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$14 <= fffffffc
$16 <= 00000001
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$15 <= fffffffc
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
R E/M/W RS/RT(beq)(unequal)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
subu $t4, $t0, $t1
occasion1: #R E RS
    addu $t5, $t0, $t1
   beq $t5, $t3, change1
   ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion2: #R M RS
   addu $t6, $t0, $t1
   ori $s0, $zero, 1
    beq $t6, $t3, change2
    ori $s0, $zero, 1
```

ori \$s1, \$zero, 2 change2: ori \$s2, \$zero, 3 ori \$s3, \$zero, 4

occasion3: #R_W_RS addu \$t7, \$t0, \$t1 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 beq \$t7, \$t3, change3 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 change3: ori \$s2, \$zero, 3 ori \$s3, \$zero, 4

occasion4: #R_E_RT subu \$t5, \$t1, \$t2 beq \$t3, \$t5, change4 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 change4: ori \$s2, \$zero, 3 ori \$s3, \$zero, 4

occasion5: #R_M_RT subu \$t6, \$t1, \$t2 ori \$s0, \$zero, 1 beq \$t3, \$t6, change5 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 change5: ori \$s2, \$zero, 3 ori \$s3, \$zero, 4

occasion6: #R_W_RT subu \$t7, \$t1, \$t2 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 beq \$t3, \$t7, change6 ori \$s0, \$zero, 1 ori \$s1, \$zero, 2 change6: ori \$s2, \$zero, 3

ori \$s3, \$zero, 4

- \$ 8 <= 00000004
- \$ 9 <= 00000008
- \$10 <= 0000000c
- \$11 <= 00000010
- \$12 <= fffffffc
- \$13 <= 0000000c
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$14 <= 0000000c
- \$16 <= 00000001
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$15 <= 0000000c
- \$16 <= 00000001
- \$17 <= 00000002
- \$16 <= 00000001
- \$15 · 00000001
- $17 \le 00000002$
- \$18 <= 00000003
- \$19 <= 00000004
- \$13 <= fffffffc
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$14 <= fffffffc
- \$16 <= 00000001
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$15 <= fffffffc
- \$16 <= 00000001
- \$17 <= 00000002
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004

```
I E/M/W RS/RT(beq)(equal)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
subu $t4, $t0, $t1
occasion1: #I E RS
    ori $t5, $zero, 16
    beq $t5, $t3, change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
         ori $s2, $zero, 3
         ori $s3, $zero, 4
occasion2: #I M RS
    ori $t6, $zero, 16
    ori $s0, $zero, 1
    beq $t6, $t3, change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
         ori $s2, $zero, 3
         ori $s3, $zero, 4
occasion3: #I W RS
    ori $t7, $zero, 16
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    beq $t7, $t3, change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
         ori $s2, $zero, 3
         ori $s3, $zero, 4
occasion4: #I E RT
    ori $t5, $zero, 8
    beq $t1, $t5, change4
    ori $s0, $zero, 1
```

```
ori $s1, $zero, 2
    change4:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion5: #I M RT
    ori $t6, $zero, 8
    ori $s0, $zero, 1
    beq $t1, $t6, change5
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change5:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion6: #I_W_RT
    ori $t7, $zero, 8
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    beq $t1, $t7, change6
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change6:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$11 <= 00000010
$12 <= fffffffc
$13 <= 00000010
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$14 <= 00000010
$16 <= 00000001
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$15 <= 00000010
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
```

```
$18 <= 00000003
$19 <= 00000004
$13 <= 00000008
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$14 <= 00000008
$16 <= 00000001
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
$15 <= 00000008
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
$18 <= 00000003
$19 <= 00000004
I E/M/W RS/RT(beq)(unequal)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $t3, $zero, 16
subu $t4, $t0, $t1
occasion1: #I E RS
    ori $t5, $zero, 16
    beq $t5, $t2, change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion2: #I_M_RS
    ori $t6, $zero, 16
    ori $s0, $zero, 1
    beq $t6, $t2, change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
```

```
occasion3: #I_W_RS
    ori $t7, $zero, 16
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    beq $t7, $t2, change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion4: #I E RT
    ori $t5, $zero, 8
    beq $t2, $t5, change4
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change4:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion5: #I M RT
    ori $t6, $zero, 8
    ori $s0, $zero, 1
    beq $t2, $t6, change5
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change5:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
occasion6: #I W RT
    ori $t7, $zero, 8
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    beq $t2, $t7, change6
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change6:
        ori $s2, $zero, 3
        ori $s3, $zero, 4
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$11 <= 00000010
```

- \$12 <= fffffffc
- \$13 <= 00000010
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$14 <= 00000010
- \$16 <= 00000001
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$15 <= 00000010
- \$16 <= 00000001
- \$17 <= 00000002
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$13 <= 00000008
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$14 <= 00000008
- \$16 <= 00000001
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004
- \$15 <= 00000008
- \$16 <= 00000001
- \$17 <= 00000002
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000003
- \$19 <= 00000004

Ld_E/M/W_RS/RT(beq)(equal)

- ori \$t0, \$zero, 4
- ori \$t1, \$zero, 8
- ori \$t2, \$zero, 12
- ori \$s0, \$zero, 1
- sw \$t0, 0(\$zero)

```
sw $t1, 4($zero)
sw $t2, 8($zero)
ori $s0, $zero, 1
ori $s1, $zero, 2
occasion1: #ld E RS
    lw $t3, 0($t0)
    beq $t3, $t1, change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
occasion2: #ld M RS
    lw $t4, 0($t0)
    ori $s2, $zero, 2
    beq $t4, $t1, change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
occasion3: #ld W RS
    lw $t5, 0($t0)
    ori $s2, $zero, 2
    ori $s3, $zero, 3
    beq $t5, $t1, change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
occasion4: #ld E RT
    lw $t6, 0($t0)
    beq $t6, $t1, change4
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change4:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
```

```
occasion5: #ld M RT
   lw $t7, 0($t0)
    ori $s2, $zero, 2
    beq $t7, $t1, change5
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change5:
        ori $s2, $zero, 2
        ori $s3, $zero, 3
occasion6: #ld W RT
    lw $t8, 0($t0)
   ori $s2, $zero, 2
    ori $s3, $zero, 3
    beq $t8, $t1, change6
    ori $s0, $zero, 1
    ori $s1, $zero, 2
   change6:
        ori $s2, $zero, 2
        ori $s3, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 0000000c
$16 <= 00000001
*00000000 <= 00000004
*00000004 <= 00000008
*00000008 \le 0000000c
$16 <= 00000001
$17 <= 00000002
$11 <= 00000008
$16 <= 00000001
$18 <= 00000002
$19 <= 00000003
$12 <= 00000008
$18 <= 00000002
$16 <= 00000001
$18 <= 00000002
$19 <= 00000003
$13 <= 00000008
$18 <= 00000002
$19 <= 00000003
$16 <= 00000001
$18 <= 00000002
```

```
$19 <= 00000003
$14 <= 00000008
$16 <= 00000001
$18 <= 00000002
$19 <= 00000003
$15 <= 00000008
$18 <= 00000002
$16 <= 00000001
$18 <= 00000002
$19 <= 00000003
$24 <= 00000008
$18 <= 00000002
$19 <= 00000003
$16 <= 00000001
$18 <= 00000002
$19 <= 00000003
Ld E/M/W RS/RT(beq)(unequal)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 12
ori $s0, $zero, 1
sw $t0, 0($zero)
sw $t1, 4($zero)
sw $t2, 8($zero)
ori $s0, $zero, 1
ori $s1, $zero, 2
occasion1: #ld E RS
    lw $t3, 0($t0)
    beq $t3, $t0, change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
        ori $s2, $zero, 2
        ori $s3, $zero, 3
occasion2: #ld M RS
    lw $t4, 0($t0)
    ori $s2, $zero, 2
    beq $t4, $t0, change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
```

```
ori $s3, $zero, 3
occasion3: #ld W RS
    lw $t5, 0($t0)
    ori $s2, $zero, 2
    ori $s3, $zero, 3
    beq $t5, $t0, change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
occasion4: #ld E RT
    lw $t6, 0($t0)
    beq $t0, $t6, change4
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change4:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
occasion5: #ld M RT
    lw $t7, 0($t0)
    ori $s2, $zero, 2
    beq $t0, $t7, change5
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change5:
         ori $s2, $zero, 2
         ori $s3, $zero, 3
occasion6: #ld_W_RT
    lw $t8, 0($t0)
    ori $s2, $zero, 2
    ori $s3, $zero, 3
    beq $t0, $t8, change6
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change6:
         ori $s2, $zero, 2
        ori $s3, $zero, 3
$ 8 <= 00000004
```

ori \$s2, \$zero, 2

- \$ 9 <= 00000008
- $10 \le 0000000$ c
- \$16 <= 00000001
- *00000000 <= 00000004
- *00000004 <= 00000008
- *00000008 <= 0000000c
- \$16 <= 00000001
- \$17 <= 00000002
- \$11 <= 00000008
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000002
- \$19 <= 00000002
- \$12 <= 00000008
- \$18 <= 00000002
- \$16 <= 0000001
- \$17 <= 00000002
- \$18 <= 00000002
- 410
- \$19 <= 00000003
- \$13 <= 00000008
- \$18 <= 00000002
- \$19 <= 00000003
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000002
- \$19 <= 00000003
- \$14 <= 00000008
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000002
- \$19 <= 00000003
- $15 \le 00000008$
- \$18 <= 00000002
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000002
- \$19 <= 00000003
- \$24 <= 00000008
- \$18 <= 00000002
- \$19 <= 00000003
- \$16 <= 00000001
- \$17 <= 00000002
- \$18 <= 00000002
- \$19 <= 00000003

```
Jal M/W RS/RT(beq)(equal)
ori $t0, $zero, 4
ori $t1, $zero, 0x00003014
ori $t2, $zero, 0x00003034
ori $t3, $zero, 0x00003058
ori $t4, $zero, 0x00003078
occasion1: #jal_M_RS
    jal change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
        beq $ra, $t1, change11
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change11:
             ori $s2, $zero, 2
             ori $s3, $zero, 3
occasion2: #jal W RS
    jal change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
        ori $s2, $zero, 2
        beq $ra, $t2, change21
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change21:
             ori $s2, $zero, 2
             ori $s3, $zero, 3
occasion3: #jal M RT
    jal change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
        beq $t3, $ra, change31
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change31:
             ori $s2, $zero, 2
             ori $s3, $zero, 3
occasion4: #jal_W_RT
    jal change4
```

```
ori $s0, $zero, 1
    ori $s1, $zero, 2
    change4:
        ori $s2, $zero, 2
        beq $t4, $ra, change41
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change41:
            ori $s2, $zero, 2
            ori $s3, $zero, 3
$ 8 <= 00000004
$ 9 <= 00003014
$10 <= 00003034
$11 <= 00003058
$12 <= 00003078
$31 <= 0000301c
$16 <= 00000001
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$31 \le 0000303c
$16 <= 00000001
$18 <= 00000002
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$31 <= 00003060
$16 <= 00000001
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$31 <= 00003080
$16 <= 00000001
$18 <= 00000002
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
Jal_M/W_RS/RT(beq)(unequal)
ori $t0, $zero, 4
```

```
ori $t1, $zero, 0x00003010
ori $t2, $zero, 0x00003030
ori $t3, $zero, 0x00003050
ori $t4, $zero, 0x00003070
occasion1: #jal M RS
    jal change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change1:
        beq $ra, $t1, change11
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change11:
             ori $s2, $zero, 2
             ori $s3, $zero, 3
occasion2: #jal_W_RS
    jal change2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change2:
        ori $s2, $zero, 2
        beq $ra, $t2, change21
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change21:
             ori $s2, $zero, 2
             ori $s3, $zero, 3
occasion3: #jal_M_RT
    jal change3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change3:
        beq $t3, $ra, change31
        ori $s0, $zero, 1
        ori $s1, $zero, 2
        change31:
             ori $s2, $zero, 2
             ori $s3, $zero, 3
occasion4: #jal W RT
    jal change4
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    change4:
```

```
ori $s2, $zero, 2
beq $t4, $ra, change41
ori $s0, $zero, 1
ori $s1, $zero, 2
change41:
ori $s2, $zero, 2
ori $s3, $zero, 3
```

\$ 8 <= 00000004 \$ 9 <= 00003010 \$10 <= 00003030 \$11 <= 00003050 \$12 <= 00003070 \$31 <= 0000301c \$16 <= 00000001 \$16 <= 00000001 \$17 <= 00000002 \$18 <= 00000002 \$19 <= 00000003 $$31 \le 0000303c$ \$16 <= 00000001 \$18 <= 00000002 \$16 <= 00000001 \$17 <= 00000002 \$18 <= 00000002 \$19 <= 00000003 \$31 <= 00003060 \$16 <= 00000001 \$16 <= 00000001 \$17 <= 00000002 \$18 <= 00000002 \$19 <= 00000003 \$31 <= 00003080 \$16 <= 00000001 \$18 <= 00000002 \$16 <= 00000001 \$17 <= 00000002 \$18 <= 00000002 \$19 <= 00000003

Jal_M_RS(jr)
ori \$t0, \$zero, 4
ori \$t1, \$zero, 0x00003010

```
ori $t2, $zero, 0x00003030
ori $t3, $zero, 0x00003050
ori $t4, $zero, 0x00003070
occasion1: #jal M RS
   jal change1
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 2
    ori $s3, $zero, 3
    change1:
        jr $ra
        ori $s0, $zero, 1
        ori $s1, $zero, 2
$ 8 <= 00000004
$ 9 <= 00003010
$10 <= 00003030
$11 <= 00003050
$12 <= 00003070
$31 \le 0000301c
$16 <= 00000001
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$16 <= 00000001
Jal W RS(jr)
ori $t0, $zero, 4
ori $t1, $zero, 0x00003010
ori $t2, $zero, 0x00003030
ori $t3, $zero, 0x00003050
ori $t4, $zero, 0x00003070
occasion1: #jal W RS
   jal change1
   ori $s0, $zero, 1
    ori $s1, $zero, 2
```

```
ori $s2, $zero, 2
    ori $s3, $zero, 3
    change1:
        ori $s3, $zero, 3
        jr $ra
        ori $s0, $zero, 1
        ori $s1, $zero, 2
$ 8 <= 00000004
$ 9 <= 00003010
$10 <= 00003030
$11 <= 00003050
$12 <= 00003070
\$31 \le 0000301c
$16 <= 00000001
$19 <= 00000003
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$19 <= 00000003
$16 <= 00000001
$17 <= 00000002
$18 <= 00000002
$19 <= 00000003
$19 <= 00000003
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 0x00003000
ori $s0, $zero, 1
ori $s1, $zero, 2
ori $s2, $zero, 3
occasion1: #R E RS
    addu $t3, $t0, $t2
    jr $t3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
```

```
$18 <= 00000003
$11 <= 00003004
$16 <= 00000001
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003004
$16 <= 00000001
$ 9 <= 00000008
$10 <= 00003000
R M RS(jr)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 0x00003000
ori $s0, $zero, 1
ori $s1, $zero, 2
ori $s2, $zero, 3
occasion1: #R M RS
    addu $t3, $t0, $t2
   ori $s0, $zero, 1
   jr $t3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003004
$16 <= 00000001
$16 <= 00000001
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003004
$16 <= 00000001
$16 <= 00000001
```

```
$ 9 <= 00000008
$10 <= 00003000
R W RS(jr)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 0x00003000
ori $s0, $zero, 1
ori $s1, $zero, 2
ori $s2, $zero, 3
occasion1: #R W RS
    addu $t3, $t0, $t2
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    jr $t3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003004
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003004
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
I E RS(jr)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 0x00003000
ori $s0, $zero, 1
ori $s1, $zero, 2
```

```
ori $s2, $zero, 3
occasion1: #R E RS
    ori $t3, $t2, 0
    jr $t3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003000
$16 <= 00000001
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003000
$16 <= 00000001
$ 8 <= 00000004
I_M_RS(jr)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 0x00003000
ori $s0, $zero, 1
ori $s1, $zero, 2
ori $s2, $zero, 3
occasion1: #R_M_RS
    ori $t3, $t2, 0
    ori $s0, $zero, 1
    jr $t3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
```

```
$17 <= 00000002
$18 <= 00000003
$11 <= 00003000
$16 <= 00000001
$16 <= 00000001
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003000
$16 <= 00000001
$16 <= 00000001
$ 8 <= 00000004
I_W_RS(jr)
ori $t0, $zero, 4
ori $t1, $zero, 8
ori $t2, $zero, 0x00003000
ori $s0, $zero, 1
ori $s1, $zero, 2
ori $s2, $zero, 3
occasion1: #R W RS
    ori $t3, $t2, 0
    ori $s0, $zero, 1
    ori $s1, $zero, 2
   jr $t3
    ori $s0, $zero, 1
    ori $s1, $zero, 2
    ori $s2, $zero, 3
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
$16 <= 00000001
$17 <= 00000002
$18 <= 00000003
$11 <= 00003000
$16 <= 00000001
$17 <= 00000002
$16 <= 00000001
$ 8 <= 00000004
$ 9 <= 00000008
$10 <= 00003000
```

```
$16 <= 00000001

$17 <= 00000002

$18 <= 00000003

$11 <= 00003000

$16 <= 00000001

$17 <= 00000002
```

```
Ld E RS(jr)
ori $t0, $zero, 0X00003004
ori $t1, $zero, 0X00003008
ori $s0, $zero, 0
ori $s0, $zero, 0
sw $t0, 0($zero)
sw $t1, 4($zero)
ori $s0, $zero, 0
ori $s0, $zero, 0
occasion1: #ld E RS
    lw $t2, 0($zero)
   jr $t2
    ori $s0, $zero, 0
    ori $s0, $zero, 0
    ori $s0, $zero, 0
$ 8 <= 00003004
$ 9 <= 00003008
$16 <= 00000000
$16 <= 00000000
*00000000 <= 00003004
*00000004 <= 00003008
$16 <= 00000000
$16 <= 00000000
$10 <= 00003004
$16 <= 00000000
$ 9 <= 00003008
$16 <= 00000000
$16 <= 00000000
*00000000 <= 00003004
*00000004 <= 00003008
$16 <= 00000000
$16 <= 00000000
$10 <= 00003004
```

```
ld M RS(jr)
ori $t0, $zero, 0X00003004
ori $t1, $zero, 0X00003008
ori $s0, $zero, 0
ori $s0, $zero, 0
sw $t0, 0($zero)
sw $t1, 4($zero)
ori $s0, $zero, 0
ori $s0, $zero, 0
occasion1: #ld M RS
    lw $t2, 0($zero)
    ori $s0, $zero, 0
   jr $t2
    ori $s0, $zero, 0
    ori $s0, $zero, 0
    ori $s0, $zero, 0
$ 8 <= 00003004
$ 9 <= 00003008
$16 <= 00000000
$16 <= 00000000
*00000000 <= 00003004
*00000004 <= 00003008
$16 <= 00000000
$16 <= 00000000
$10 <= 00003004
$16 <= 00000000
$16 <= 00000000
$ 9 <= 00003008
$16 <= 00000000
$16 <= 00000000
*00000000 <= 00003004
*00000004 <= 00003008
$16 <= 00000000
$16 <= 00000000
$10 <= 00003004
ld W RS(jr)
ori $t0, $zero, 0X00003004
ori $t1, $zero, 0X00003008
ori $s0, $zero, 0
ori $s0, $zero, 0
sw $t0, 0($zero)
sw $t1, 4($zero)
ori $s0, $zero, 0
```

```
ori $s0, $zero, 0
occasion1: #ld_W_RS
   lw $t2, 0($zero)
   ori $s0, $zero, 0
   ori $s0, $zero, 0
   jr $t2
   ori $s0, $zero, 0
   ori $s0, $zero, 0
    ori $s0, $zero, 0
$ 8 <= 00003004
$ 9 <= 00003008
$16 <= 00000000
$16 <= 00000000
*00000000 <= 00003004
*00000004 <= 00003008
$16 <= 00000000
$16 <= 00000000
$10 <= 00003004
$16 <= 00000000
$16 <= 00000000
$16 <= 00000000
$ 9 <= 00003008
$16 <= 00000000
$16 <= 00000000
*00000000 <= 00003004
*00000004 <= 00003008
$16 <= 00000000
$16 <= 00000000
$10 <= 00003004
```