

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Dinamikus nano- és mikrokeménység mérése

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

Mérés dátuma: 2018. 04. 26.

Tartalomjegyzék

1.	A mérés célja	2
2.	A mérés elve	6
3.	Mérési eredmények	•
	3.1. Tiszta anyagok keménysége	,
	3.2. Al-Mg ötvözetek keménysége	
	3.3 Plasztikus instabilitás	

1. A mérés célja

A mérés célja megismerkedni a dinamikus keménységmérés módszerével, tiszta anyagok, valamint különböző arányú Al-Mg ötvözetek keménységének mérése. Ezen túl a plasztikus instabilitás kimutatása Al-Mg ötvözetről készült különböző sebességel felvett görbéken.

2. A mérés elve

A statikus keménységmérés lényege, hogy a mintába egy ismert geometriájú fejet (pl. Vickers-fej) nyomunk adott erővel (F). Ha a fej A maximális felülettel érintkezik az anyaggal (melyet a nyom mikroszkóppal való méréséből határozunk meg), akkor a Vickers-keménység: $HV = \frac{F}{A}$. A statikus méréssel szemben a dinamikus mérésnél a fejet valamilyen előre meghatározott függvény szerint (esetünkben időben lineáris erőnöveléssel) nyomjuk az anyagba (majd vesszük ki a tehermentesítési szakaszban), és egyszerre mérjük a benyomódási mélységet (h) és a hozzá szükséges erőt (F), ezáltal egy F(h) görbét kapunk. Mivel a maximális erőhöz tartozó h_m maximális mélységben rugalmas és plasztikus deformáció is szerepet játszik, ezért az ebből számolt keménység nem egyezik meg a statikussal, hanem figyelembe kell venni a rugalmas deformációt is $(1. \text{ egyenlet})^1$. Az így kapott h_c mélységből a fej geometriájának ismeretében számolható az érintkezési felület a 2. egyenlet szerint.

$$h_c = h_m - 0.75 \frac{F_{\text{max}}}{\frac{dF}{dh} \Big|_{h_m}} \tag{1}$$

$$A = 24.5h_c^2 \tag{2}$$

A méréssel meghatározható a minta redukált modulusza (E_r) (3. egyenlet).

$$E_r = \frac{\sqrt{\pi} \frac{dF}{dh} \Big|_{h_m}}{2\beta \sqrt{A}} \tag{3}$$

Mivel a mérőfej sem tökéletesen merev, az is ad járulékot a relatív moduluszba (??). Így tehát a mérőfej Young-moduluszának (E_i) és Poisson-számának (ν_i) , valamint a minta Poisson-számának (ν) ismeretében megkapható a minta Young-modulusza (E) a 4. egyenlet szerint.

$$\frac{1}{E_r} = \frac{a - \nu^2}{E} + \frac{a - \nu_i^2}{E_i} \tag{4}$$

Az általunk használt Vickers gyémántfejre $\nu_i=0.17,\ E_i=1070\ GPa$ és a 3. egyenletben szereplő $\beta=1.012.$

A mérés második felében meghatározzuk különböző koncentrációjú Al-Mg ötvözetek keménységét. Az ötvözőanyag (Mg) a diszlokációkkal való kölcsönhatás révén az anyag

¹Az egyenletben szereplő deriváltat a tehermentesítési szakaszra kell számolni.

keményedéséhez vezet. A keménység hatványfüggvény szerint függ a koncentrációtól (5), melynek kitevője modellfüggő (1/2 vagy 2/3).

$$HV = HV_0 + Bc^m (5)$$

Az Al-Mg ötvözetben ezentúl megfigyelhető a plasztikus instabilitás jelensége is, amely annak a következménye, hogy a fékezőfeszültség-diszlokációsebesség függvény nem monoton növekvő, hanem egy lokális minimuma van véges v_0 értéknél. Ennek megfelelően alacsony benyomódási sebességnél megfigyelhető az F(h) görbe "fogazott-sága".

3. Mérési eredmények

3.1. Tiszta anyagok keménysége

Tiszta anyagok mérési eredményeit tartalmazza a $\ref{tartalmazza}$. táblázat. A mérés során az erőváltozás sebessége 20~mN/s volt.

3.2. Al-Mg ötvözetek keménysége

Különböző koncentrációjú Al-Mg ötvözetek mért keménységét tartalmazza a ??. táblázat. A mérés során az erőváltozás sebessége $20 \ mN/s$ volt. A keménységadatokra $HV = HV_0 + Bc^m$ alakú függvényt illesztettem (??). Az illesztés paraméterei: .

3.3. Plasztikus instabilitás kimutatása

1. ábra. Al-1.45%Mg minta különböző sebességgel felvett mélység-nyomás grafikonjának illesztettől eltérése

A plasztikus instabilitást kimutatandó az 1.45% Mg-ot tartalmazó Al-mintáról az erőt 1 mN/s és 2 mN/s sebességgel növelve is felvettünk adatsort. A görbékre hatványfüggvényt illesztettem. Az illesztett görbék $(f(h) = Ah^m)$ paraméterei:

```
1 mN/s: A = (29.52 \pm 0.13) \ mN/(\mu m)^m, \ m = 1.311 \pm 0.004,
2 mN/s: A = (34.99 \pm 0.10) \ mN/(\mu m)^m, \ m = 1.362 \pm 0.003,
20 mN/s (1): A = (31.64 \pm 0.21) \ mN/(\mu m)^m, \ m = 1.457 \pm 0.006,
20 mN/s (2): A = (28.70 \pm 0.21) \ mN/(\mu m)^m, \ m = 1.489 \pm 0.007.
```

A görbékből az illesztett függvényt kivontam, az így kapott görbéket ábrázolja az 1. ábra. Látható, hogy alacsonyabb sebességnél a görbe fogazottsága jelentősen növekszik, míg a $20\ mN/s$ sebességnél felvettek simák, és eltérés csupán abból adódik, hogy a hatványfüggvény nem pontosan illik a folyamatra.