Projet 6_Détectez des faux billets

Parcours <u>Data Analyst</u>

Xuefei ZHANG_janvier 2022

Sommaire

- Analyse descriptive
- ACP
- Classification K means
- Modélisation régression logistique
- Cas pratique: test de programme

M0 - Analyse de statistique descriptive

- Analyse univariée
- Analyse bivariée

M0 - affichage et nettoyage du jeu de données

```
Data columns (total 7 columns):
# Column
              Non-Null Count Dtype
  is genuine 170 non-null bool
   diagonal 170 non-null
                           float64
2 height left 170 non-null
                           float64
3 height right 170 non-null float64
4 margin_low 170 non-null float64
                                                                           Jeu de données bien propre pour l'analyse
5 margin up 170 non-null float64
6 length
           170 non-null float64
dtypes: bool(1), float64(6)
memory usage: 8.3 KB
None
Index(['is genuine', 'diagonal', 'height left', 'height right', 'margin low',
   'margin_up', 'length'],
   dtype='object')
```

Out[20]:

2	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.67	103.74	103.70	4.01	2.87	113.29
2	True	171.83	103.76	103.76	4.40	2.88	113.84
3	True	171.80	103.78	103.65	3.73	3.12	113.63
4	True	172.05	103.70	103.75	5.04	2.27	113.55

M0 - Analyse univariée Moyenne, médianne, variance

À noter que:

- il existe des différences remarquables entre les vrais billets et faux billets sur les 5 variables à l'exception de diagonal, en terme de : moyenne, médiane, variance
- Variances pour variable margin_low et length sont surtout grands

M0 - Analyse univariée barchart, histogram(+kde), boxplot

À noter que:

il existe des différences remarquables entre les vrais billets et faux billets sur les 5 variables à l'exception de "diagonal", en terme de : **distribution de densité, quartiles**

M0 - Analyse bivariée **Heatmap de corrélations**

Corrélations entre les variables:

- height_left vs height_right : 70%
- margin_low vs height_right : 50%
- margin_up vs heights : 30%
- length vs heights: 40%
- margin up vs length : 50%
- margin low vs length : 60%
- diagonal vs others: -10% 30%

M0 - Analyse bivariée **Pairplot**

Scatter plots:

 Les individus True et False de classification is_genuine se regroupent en 2 partitions sur tous ces 6 variables

Histogrammes:

- Globalement la distribution des valeurs de ces 6 variables suivent la loi normale
- Grand écart au sujet de la distribution des individus False/True pour ces 6 variables

Analyse univariée & bivariée

Ne permettent pas à décortiquer la variabilité entre les individus ni les liaisons entre les variables, ainsi n'arrivent pas à nous sortir des conclusions concrètes pour le but.

=> il faut creuser dans le détail à l'appui d'autres méthodes plus solides et performantes à ce titre: ACP, classification des individus ...

M1 - Analyse de Composantes Principales (PCA)

- éboulis des valeurs propres ;
- représentation des variables par le cercle des corrélations ;
- projection des individus par les plans factoriels;
- analyse de la qualité de **représentation** et la **contribution** des individus.

ACP - Eboulis de valeurs propres (scree plot)

- Les 2 premiers facteurs (le 1er plan factoriel) représentent environ 70% de l'inertie
- Les 3 premiers facteurs représentent environ 80% de l'inertie
- Les 4 premiers facteurs (les 2 premiers plans factoriels) représentent environ 90% de l'inertie

=> On pourrait s'arrêter au 2ème ou 4ème facteurs vu que les deux/quatre premiers facteurs conservent déjà **70**%/**90**% d'informations.

ACP - représentation des variables par cercles de corrélations

- le **1er plan** représente globalement bien les 6 variables
- diagonal est quasiment superposé avec F2 au sens positif, et longue flèche => très bien représenté par 1er plan factoriel
- sur le 1er et 2ème plan, height_left et height_right se corrèlent bien (vu l'angle entre eux)
- margin_up flèche longue et petit angle avec F3 au sens négatif => bien représenté par F3 au sens négatif

ACP - Projection des individus par 2 plans factoriels - nuage de points

- * variable illustrative: **is_genuine** (False/True)
 - Les individus False et True se distinguent et se groupent en 2 clusters sur le 1er plan factoriel
 - Sur 2ème plan, il n'y a pas de clusters clairement formés

ACP - Qualité de représentation des individus

```
In [214]: cos2 = coord**2 print(cos2.shape)

for j in range(p): cos2[:,j] = cos2[:,j]/di

repres= pd.DataFrame({'genuine':notesO.index,'COS2_1':cos2[:,0],'COS2_2':cos2[:,1]}) repres

#comme ça, Les COS² pour les 2 premiers facteurs sont affichés

(170, 6)
```

Conformément à la théorie de projection, pour chaque individu, la somme des COS² sur l'ensemble des 6 facteurs est égale à 1.

Out[214]:

	genuine	COS2_1	COS2_2
0	0	0.251929	0.139000
1	1	0.818002	0.050822
2	2	0.784862	0.000466
3	3	0.882856	0.001652
4	4	0.320145	0.009417
165	165	0.800651	0.004703
166	166	0.324059	0.411824
167	167	0.498809	0.083461
168	168	0.156908	0.271800
169	169	0.421817	0.217111
	1		

Cosinus carrés

*COS2_1, COS2_2: Qualité de représentation des 170 individus sur les 2 premiers facteurs (1er plan factoriel)

ACP - Contribution des individus aux facteurs

ctr: permet de déterminer les individus qui pèsent le plus dans la définition de chaque facteur.

```
In [216]: #contributions aux axes

ctr = coord**2

for j in range(p):

ctr[:,j] = ctr[:,j]/(n*eigval[j])

ctr_axes= pd.DataFrame({'genuine': notesO.index,'CTR_1':ctr[:,0],'CTR_2':ctr[:,1]})

# ici on prends axe 1 et 2

ctr_axes.sort_values(by="CTR_1", ascending= False ).head()

# les 5 individus qui contributent le plus aux CTR_1
```

Out[216]:

	genuine	CTR_1	CTR_2
122	122	0.023758	0.012372
49	49	0.019620	0.007487
29	29	0.018089	0.000038
112	112	0.017950	0.016259
158	158	0.015836	0.002423

Conformément à la théorie, pour chaque axe, la somme des contributions des individus sur cette axe est égale à 1.

```
In [217]: #vérifions la théorie print(np.sum(ctr,axis=0))
[1. 1. 1. 1. 1. 1.]
```

ACP - corrélations des 6 variables avec F1 et F2 (1er plan factoriel)

	id	COR_1	COR_2
0	diagonal	0.123635	0.894863
1	height_left	0.802300	0.389389
2	height_right	0.829835	0.270354
3	margin_low	0.727258	-0.367910
4	margin_up	0.594829	-0.161976
5	length	-0.785209	0.361022

Constatations:

- 4 variables (height_left, height_right, margin_up, margin_low) sont positivement corrélées avec F1 et les coeff de corrélation élevés (>0.6);
- diagonal n'est pas bien corrélé avec F1, mais bien corrélé avec F2 au sens positif (0.89);
- length négativement corrélé avec F1 à un coeff 0.78

ACP - Qualité de représentation des variables (COS²)

```
In [215]: #cosinus carré des variables sur F1 et F2
cos2var = corvar**2
print(cos2var.shape)
repres_variables = pd.DataFrame({'id':notes.columns,'COS2_1':cos2var[:,0],'COS2_2':cos2var[:,1]})
repres_variables['COS2_1+2'] = repres_variables['COS2_1'] + repres_variables['COS2_2']
repres_variables

(6, 6)
```

Out[215]:

Constatation:

- F1 représente bien 5 variables sauf diagonal
- F2 représente bien diagonal
- F1+F2 (COS2_1+2) représente dans son ensemble bien ces 6 variables

In [224]: #verification qualité repésentation des variables sur facteurs print(np.sum(cos2var,axis=1))

La somme des COS² sur toutes les composantes sont égales à 1 (la somme des COS² d'une variable sur l'ensemble des 6 facteurs est égale à 1)

[1. 1. 1. 1. 1. 1.]

ACP - Contribution des variables aux axes (CTR)

```
In [128]: #contributions
ctrvar = cos2var

for k in range(p):
ctrvar[:,k] = ctrvar[:,k]/eigval[k]

# ici on n'affiche que pour les deux premiers axes
contri_variables= pd.DataFrame({'id':notes.columns,'CTR_F1':ctrvar[:,0],'CTR_2':ctrvar[:,1]})
contri_variables
```

Out[128]:

In [233]: #verification contributions des variables aux axes print(np.sum(ctrvar,axis=0))

print(np.sum(contri_variables,axis=0))

[1. 1. 1. 1. 1. 1.]

id diagonalheight_leftheight_rightmargin_lowmargi...

CTR_1 1.0

CTR_2 1.0

Pour chaque axe, la somme des contributions de tous ces 6 variables sur chaque axe est égale à 1. Ainsi on a [1.1.1.1.1] vu qu'on a 6 axes-facteurs.

M2 - Classification des individus: K means

- Appliquez un **algorithme de classification**, puis analysez le résultat obtenu.
- Visualisez la partition obtenue dans le 1er plan factoriel de l'ACP, puis analysez-la

M2 - algorithme de classification K-means

In [301]: notesO.head()

Out[301]:

Pourquoi K-means?

- On sait déjà le nombre de clusters à sortir soit 2
- K-means est bien liée avec ACP
- Efficacité de méthode K-means

	diagonal	height_left	height_right	margin_low	margin_up	length
is_genuine						
True	171.81	104.86	104.95	4.52	2.89	112.83
True	171.67	103.74	103.70	4.01	2.87	113.29
True	171.83	103.76	103.76	4.40	2.88	113.84
True	171.80	103.78	103.65	3.73	3.12	113.63
True	172.05	103.70	103.75	5.04	2.27	113.55

In [306]: # Nombre de clusters souhaités n clust = 2 # préparation des données pour le clustering X = notesO.values # Réduire n'est ici pas nécessaire car les variables sont exprimées dans la même unité #X scaled = preprocessing.StandardScaler().fit transform(X) # Centrage et Réduction std scale = preprocessing.StandardScaler().fit(X) # centrage X scaled = std scale.transform(X) # reduction # Clustering par K-means km = KMeans(n clusters=n clust) km.fit(X)# Récupération des clusters attribués à chaque individu clusters = km.labels # Affichage du clustering par projection des individus sur le premier plan factoriel pca = decomposition.PCA(n_components=n_comp).fit(X_scaled) X projected = pca.transform(X scaled)

^{*} Mais on pourrait aussi employer classification hiérarchique vu le volume d'observations n'est pas grand.

M2 - K means

Projection des individus en 2 clusters sur le 1er plan factoriel ACP

Constatation:

Sur le 1er plan factoriel, les 2 clusters-partitions se distinguent clairement.

Vu que le 1er plan représente environ 70% d'inertie et la plupart des variables (diagonal, length, height_left, height_left, margin_low) y sont projetées de bonne qualité (COS2 élevés), on dirait que cette projection des clusters sur 1er plan a du sens et on pourrait y faire confiance.

M2 - K means Matrice de confusion

Matrice de confusion

col_0	False	True
cluster1	68	1
cluster2	2	99

- 2 faux billets sont classés dans cluster2 qui représente globalement billets vrais (99/101)
- 1 vrai billet est classé dans cluster1 qui représente globalement billets faux (68/69)

On sait qu'il existe au total 170 billets dont 100 vrais billets et 70 faux,

donc le taux d'erreur = 3/170 = 1.76%

=> cette K-means clustering qu'on a appliqué est dans sa globalité bonne pour ce cas

M3 - Modélisation par régression logistique

L'objectif de la régression logistique est de modéliser, de classifier, une variable binaire prenant ses valeurs dans {0,1} en fonction de variables explicatives quantitatives (et potentiellement qualitatives).

Le Y à prédire est une variable qualitative binaire,

et qu'il existe de multiples variables (6) explicatives quantitatives qui jouent sur la prédiction de Y

=> régression logistique

Est-il correct de choisir le modèle régression logistique?

Entraînement et test de modèle logistique

Split de jeu de données

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state= 42)
print("Training features/target:", X_train.shape, y_train.shape)
print("Testing features/target:", X_test.shape, y_test.shape)
```

Training features/target: (136, 6) (136,) Testing features/target: (34, 6) (34,)

20% de jeu de données (test_size=0.2) sont pour le **test**, autrement dit **80%** pour l'**entraînement** de modèle

Entrainement et test

```
logmodel = LogisticRegression(penalty="12", C=0.1)
logmodel.fit(X_train, y_train) # entrainer logmodel avec train data. méthode fit()

y_pred = logmodel.predict(X_test) #prédire y avec X_test

y_pred_proba = logmodel.predict_proba(X_test)[:,1]
print(y_pred)
print(y_pred_proba)
```

Niveau de précision de logmodel

AUC =1, ctd. Il y a 100% de chance que logmodel est en mesure de distinguer les individus de classe positive de ceux de classe négative.

Optimisation de choix de variables avec RFE

M4 - Cas pratique: test de l'algorithme

M4 - Cas pratique: simulation - test de l'algorithme

```
example = pd.read_csv("example.csv")
        example.head()
ut[403]:
            diagonal height_left height_right margin_low margin_up length
              171.76
                                      103.54
                                                               3.30 111.42 A 1
                         104.01
                                                    5.21
              171.87
                         104.17
                                      104.13
                                                    6.00
                                                               3.31 112.09 A_2
              172.00
                         104.58
                                      104.29
                                                    4.99
                                                               3.39 111.57 A_3
         3
              172.49
                         104.55
                                      104.34
                                                    4.44
                                                               3.03 113.20 A 4
              171.65
                         103.63
                                      103.56
                                                    3.77
                                                               3.16 113.33 A 5
n [404]: from sklearn.linear model import LogisticRegression
        XX = example.drop(['id'], axis=1).values
        XX
ut[404]: array([[171.76, 104.01, 103.54, 5.21, 3.3, 111.42],
             [171.87, 104.17, 104.13, 6., 3.31, 112.09],
            [172., 104.58, 104.29, 4.99, 3.39, 111.57].
            [172.49, 104.55, 104.34, 4.44, 3.03, 113.2],
            [171.65, 103.63, 103.56, 3.77, 3.16, 113.33]])
        probability = selector.predict(XX)
        proba percentage = selector.predict proba(XX)
        print(probability)
        print("False %, True %:")
        print(proba percentage)
        [False False True True]
        False % . True %:
        [[0.71976459 0.28023541]
         [0.85286893 0.14713107]
         [0.78312751 0.21687249]
         [0.30729561 0.69270439]
         [0.08078442 0.91921558]]
```

	ID	Genuine	Proba_False	Proba_True
0	A_1	False	0.719765	0.280235
1	A_2	False	0.852869	0.147131
2	A_3	False	0.783128	0.216872
3	A_4	True	0.307296	0.692704
4	A_5	True	0.080784	0.919216

Q & A

MERCI!