

TECNICATURA SUPERIOR EN

Telecomunicaciones

Electrónica Microcontrolada

Optimización 2: Comunicación y Preprocesamiento

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL EDUCACIÓN

Profesor: Gonzalo Vera

Alumno: Raúl Jara

Conexión básica ESP32 a una red WiFi y Monitoreo de Estado

Explicación Paso a Paso:

1. Incluir la librería WiFi.h:

#include <WiFi.h>

- o Se incluye la librería WiFi.h para manejar la conectividad Wi-Fi en el ESP32. Esta librería proporciona todas las funciones necesarias para conectar, monitorear y reconectar a una red Wi-Fi.
- 2. Definir las credenciales de la red Wi-Fi (SSID y Contraseña):

```
const char* ssid = "tu SSID";
const char* password = "tu contraseña";
```

- Aquí defines las variables ssid y password que contienen el nombre de la red
 Wi-Fi y la contraseña que usará el ESP32 para conectarse.
- 3. **Función setup():** La función setup() es donde se configura el ESP32 al inicio. Se ejecuta una sola vez cuando el dispositivo se enciende o se reinicia.

3.1 Inicializar el Monitor Serie:

```
Serial.begin(115200);
delay(1000);
```

- Se inicia la comunicación serie a 115200 baudios para poder imprimir información en el Monitor Serie.
- delay(1000) agrega una pequeña pausa de 1 segundo para asegurarse de que el Monitor Serie esté listo.

3.2 Conectar a la red Wi-Fi:

WiFi.begin(ssid, password);

 El ESP32 intentará conectarse a la red Wi-Fi utilizando las credenciales ssid y password definidas anteriormente. Esta función inicia el proceso de conexión en modo estación (STA).

3.3 Esperar a que la conexión Wi-Fi se establezca:

```
while (WiFi.status() != WL_CONNECTED) {
  delay(1000);
  Serial.println("Conectando...");
}
```

 Este bucle while se ejecuta repetidamente hasta que el ESP32 se conecte a la red Wi-Fi. Si WiFi.status() no devuelve WL_CONNECTED, significa que aún no está conectado, por lo que se espera 1 segundo (delay(1000)) antes de intentarlo de nuevo.

3.4 Imprimir la dirección IP cuando se establece la conexión:

```
Serial.println("Conexión establecida!");
Serial.print("Dirección IP: ");
Serial.println(WiFi.localIP());
```

- Una vez conectado, el ESP32 imprime un mensaje de confirmación en el Monitor Serie y muestra la dirección IP que se le ha asignado en la red.
- 4. **Función loop():** La función loop() se ejecuta repetidamente mientras el ESP32 esté encendido.

4.1 Monitorizar el estado de la conexión Wi-Fi:

```
if (WiFi.status() != WL_CONNECTED) {
```

```
Serial.println("Conexión Wi-Fi perdida, intentando reconectar...");
...
}
```

En cada ciclo del loop(), se verifica si el estado actual de la conexión Wi-Fi es
 WL_CONNECTED. Si no lo es, significa que la conexión se ha perdido.

4.2 Intentar reconectar si se ha perdido la conexión:

```
while (WiFi.status() != WL_CONNECTED) {
    WiFi.reconnect();
    delay(5000);
    Serial.println("Intentando reconectar...");
}
```

 Si se pierde la conexión, el ESP32 intenta reconectarse automáticamente usando WiFi.reconnect(). El bucle while continúa intentándolo hasta que la conexión se restablezca. Entre cada intento, se espera 5 segundos (delay(5000)) para evitar múltiples reconexiones rápidas.

4.3 Mensaje de reconexión exitosa:

Serial.println("Reconexión exitosa!");

 Una vez que el ESP32 se reconecta con éxito, se imprime este mensaje en el Monitor Serie.

5. Pausa entre los ciclos de monitoreo:

delay(10000);

 Se agrega una pausa de 10 segundos en el bucle loop() para evitar que el ESP32 imprima demasiados mensajes en el Monitor Serie de forma continua, haciendo el monitoreo más manejable.

Resumen:

- **setup()**: Inicializa el ESP32, intenta conectarse a la red Wi-Fi y, cuando se conecta, imprime la dirección IP.
- **loop()**: Monitorea el estado de la conexión Wi-Fi. Si se pierde, intenta reconectar automáticamente. Si lo consigue, imprime un mensaje de éxito.

Este código es la base para una conexión Wi-Fi robusta con el ESP32, manejando la reconexión automática en caso de pérdida de red.