SEMAINE DU 15/01 AU 19/01

1 Cours

Groupes, anneaux, corps

Notion de loi interne Définition. Associativité, commutativité. Définition d'un élément neutre, unicité sous réserve d'existence. Inversibilité, unicité de l'inverse si la loi est associative.

Groupes Définition. Sous-groupe : définition et caractérisation.

Anneaux Définition. Groupe des éléments inversibles. Règles de calcul dans les anneaux. Intégrité. Formule du binôme de Newton et factorisation de $a^n - b^n$ si **commutativité**. Sous-anneaux : définition et caractérisation.

Corps Définition. Tout corps est intègre. Sous-corps : définition et caractérisation.

2 Méthodes à maîtriser

- ▶ Dans un anneau, on prendra garde à se méfier des habitudes de calcul.
 - La seconde loi n'est pas toujours commutative.
 - Un produit d'éléments d'un anneau non intègre peut-être nul sans qu'aucun des facteurs soit nul.
 - Un élément d'un anneau n'est pas forcément inversible.
- ▶ Pour montrer qu'un ensemble est un groupe/anneau/corps, on peut montrer que c'est un sous-groupe/sous-anneau/sous-corps d'un groupe/anneau/corps déjà connu.
- ▶ Dans un corps, on calcul comme on en a l'habitude.

3 Questions de cours

- ▶ Montrer que \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) puis que \mathbb{U}_n est un sous-groupe de (\mathbb{U}, \times) .
- ▶ Soit H et K deux sous-groupes d'un groupe G. Montrer que si $H \cup K$ est un sous-groupe de G, alors $H \subset K$ ou $K \subset H$.
- ▶ Soient $(A, +, \times)$ un anneau et $(x, y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- ▶ Soit $(A, +, \times)$ un anneau. Montrer que si $x \in A$ est nilpotent, alors $1_A x$ est inversible et déterminer son inverse.
- ▶ Montrer que $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$ et déterminer ses éléments inversibles.