Math238 Formula Sheet

- Part 1. Linear System, Augmented Matrix, Gauss-Jordan Elimination
 - 1 A system of linear equations is said to be homogeneous if the constant terms are all zero.
 - 2. Elementary Row Operations:
 - Interchange two rows
 - Multiply a row by some nonzero constant Add a multiple of a row to another row.
 - 3. This matrix which have following properties is in reduced row-echelon form
 - 1. All zero rows are at the bottom.
 - 2. The first non-zero entry of every non-zero row is a 1 (leading one).
 - 3. Leading ones go from left to right.
 - 4. All entries above and below any leading one are zero.
 - 4. Gauss-Jordan Elimination is a procedure of a series of elementary row operations which will reduce the augmented matrix to a reduced row-echelon form.

Part 2. Matrices

- 1. A matrix is a rectangular array of numbers. The numbers in the array are called the entries in the matrix.
- 2. Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.
- 3. If A and B are matrices of the same size, then the sum A+(or -)B is the matrix obtained by adding (or subtracting) the entries of B to the corresponding entries of A.
- 4. If A is any matrix and c is any scalar, then the product cA is the matrix obtained by multiplying each entry of the matrix A by c.
- 5. If A is an m×r matrix and B is an r×n matrix, then the product AB is the m×n matrix whose entry in row i and column j of AB, single out row i from the matrix A and column j from the matrix B. Multiply the corresponding entries from the row and column together and then add up the resulting products.

6.

Transpose: The transpose operator A^T swaps rows and columns. If $A \in \mathbb{R}^{m \times n}$ then $A^T \in \mathbb{R}^{n \times m}$ and $(A^T)_{ij} = A_{ji}$.

- $(A^{\mathsf{T}})^{\mathsf{T}} = A$.
- $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$.
- 7. If A is a square matrix, and if a matrix B of the same size can be found such that AB=BA=I, then A is said to be *invertible* and B is called an *inverse* of A. If no such matrix B can be found, then A is said to be *singular*.

$$(AB)^{-1} = B^{-1}A^{-1}$$

- 8. If A is an invertible $n \times n$ matrix, then for each $n \times 1$ matrix **b**, the system of equations $A\mathbf{X} = \mathbf{b}$ has exactly one solution, namely, $X = A^{-1}b$.
- 9.

The matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if $ad - bc \neq 0$, in which case the inverse is given by the formula

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \frac{d}{ad - bc} & -\frac{b}{ad - bc} \\ -\frac{c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

10. Theorem:

- (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
- (b) The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is upper triangular.
- (c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.
- (d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular.

Part 3. Determinant

- 1. Cofactor expansion: $det(A) = a_{j1}C_{j1} + a_{j2}C_{j2} + \cdots + a_{jn}C_{jn}$
- 2. If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the entries on the main diagonal of the matrix; that is, $det(A) = a_{11}a_{22}...a_{nn}$.

Properties of the determinant function

Given an $n \times n$ matrix A

- If A has a zero row or zero column then det(A) = 0.
- If we get matrix B by interchanging two rows of A then det(B) = -det(A).
- If we get matrix B by multipying one row of A by $k \neq 0$ then $\det(B) = k \det(A)$.
- If we get matrix B by adding a multiple of a row to another of matrix A then
 det(B) = det(A).
- $\bullet \det(kA) = k^n \det(A).$
- $\bullet \det(A^T) = \det(A).$
- $\bullet \det(AB) = \det(A)\det(B)$
- $det(A^{-1}) = \frac{1}{\det(A)}.$

Part 4. Vectors in 2-Space, 3-Space, and n-Space

Definition(Dot Product)

If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ then the **dot product** of \mathbf{u} and \mathbf{v} is defined by

If θ is the angle between \mathbf{u} and \mathbf{v} then $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$

Two vectors are orthogonal to each other if and only if their dot product is zero.

Point-normal equations of the line and plane:

$$a(x - x_0) + b(y - y_0) = 0$$
 [line]

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 [plane]

THEOREM 3.3.1

(a) If a and b are constants that are not both zero, then an equation of the form

$$ax + by + c = 0$$

represents a line in \mathbb{R}^2 with normal $\mathbf{n} = (a, b)$.

(b) If a, b, and c are constants that are not all zero, then an equation of the form

$$ax + by + cz + d = 0$$

represents a plane in \mathbb{R}^3 with normal $\mathbf{n} = (a, b, c)$.

Vector forms of a line and plane:

Lines: If \mathbf{x}_0 and \mathbf{v} are vectors in \mathbb{R}^n , and if \mathbf{v} is nonzero, then the equation

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$$

defines the *line through* \mathbf{x}_0 *that is parallel to* \mathbf{v} . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the line is said to *pass through the origin*.

Planes: If \mathbf{x}_0 , \mathbf{v}_1 , and \mathbf{v}_2 are vectors in \mathbb{R}^n , and if \mathbf{v}_1 and \mathbf{v}_2 are not collinear, then the equation

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

defines the *plane through* \mathbf{x}_0 *that is parallel to* \mathbf{v}_1 *and* \mathbf{v}_2 . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the plane is said to *pass through the origin*.

Projection:

$$\text{proj}_a u = \frac{u \cdot a}{\|a\|^2} a \quad (\textit{vector component of } u \textit{ along } a)$$

$$u - \text{proj}_a u = u - \frac{u \cdot a}{\|a\|^2} a \ \ (\textit{vector component of } u \textit{ orthogonal to } a)$$

Distance:

(a) In \mathbb{R}^2 the distance D between the point $P_0(x_0, y_0)$ and the line ax + by + c = 0 is

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

(b) In R^3 the distance D between the point $P_0(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Cross Product If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the *cross product* $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

or, in determinant notation,

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space, then

(a)
$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

(b)
$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

(u × v is orthogonal to v)

(c)
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$
 (Lagrange's identity)

(d)
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$
 (relationship between cross and dot products)

(e)
$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$
 (relationship between cross and dot products)

THEOREM 3.5.2 Properties of Cross Product

If u, v, and w are any vectors in 3-space and k is any scalar, then:

(a)
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

(b)
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

(c)
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

(d)
$$k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$$

(e)
$$\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

$$(f)$$
 $\mathbf{u} \times \mathbf{u} = 0$

Area of a Parallelogram and Volumn of the parallelepiped

(a) The absolute value of the determinant

$$\det\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$$

is equal to the area of the parallelogram in 2-space determined by the vectors $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. (See Figure 3.4.7a.)

(b) The absolute value of the determinant

$$\det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$$

 $is\ equal\ to\ the\ volume\ of\ the\ parallelepiped\ in\ 3-space\ determined\ by\ the\ vectors$ $\mathbf{u} = (u_1, u_2, u_3), \mathbf{v} = (v_1, v_2, v_3), \text{ and } \mathbf{w} = (w_1, w_2, w_3). \text{ (See Figure 3.4.7b.)}$

Part 5. Real Vector Spaces

1. Vector space:

DEFINITION Let V be an arbitrary nonempty set of objects on which two operation are defined: addition, and multiplication by numbers called *scalars*. By *addition* we mean a rule for associating with each pair of objects \mathbf{u} and \mathbf{v} in V an object $\mathbf{u} + \mathbf{v}$ called the *sum* of \mathbf{u} and \mathbf{v} ; by *scalar multiplication* we mean a rule for associating wite each scalar k and each object \mathbf{u} in V an object $k\mathbf{u}$, called the *scalar multiple* of \mathbf{u} by V. If the following axioms are satisfied by all objects \mathbf{u} , \mathbf{v} , \mathbf{w} in V and all scalars k an k, then we call V a *vector space* and we call the objects in V *vectors*.

- 1. If \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- 2. u + v = v + u
- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. There is an object $\mathbf{0}$ in V, called a *zero vector* for V, such that $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} =$ for all \mathbf{u} in V.
- 5. For each \mathbf{u} in V, there is an object $-\mathbf{u}$ in V, called a *negative* of \mathbf{u} , such that $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.
- **6.** If k is any scalar and \mathbf{u} is any object in V, then $k\mathbf{u}$ is in V.
- 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- 8. $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- **9.** $k(m\mathbf{u}) = (km)(\mathbf{u})$
- 10. 1u = u

Subspace: A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Linear Independence:

DEFINITION If $S = \{v_1, v_2, \dots, v_r\}$ is a set of two or more vectors in a vector space V, then S is said to be a *linearly independent set* if no vector in S can be expressed as a linear combination of the others. A set that is not linearly independent is said to be *linearly dependent*.

THEOREM A nonempty set $S = \{v_1, v_2, ..., v_r\}$ in a vector space V is linearly independent if and only if the only coefficients satisfying the vector equation

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r = \mathbf{0}$$

are $k_1 = 0, k_2 = 0, \dots, k_r = 0$.

Definition(Basis)

A basis of a subspace S of \mathbb{R}^n is a set of vectors that span S and are linearly independent.

Theorem. Let V be a finite-dimensional vector space and $\{v_1, v_2, ..., v_n\}$ any basis.

- a) If a set has more than n vector, then it is linearly dependent.
- b) If a set has fewer than n vector, then it does not span V.

THEOREM 4.5.3 Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V.

- (a) If S is a linearly independent set, and if v is a vector in V that is outside of span(S), then the set S∪ {v} that results by inserting v into S is still linearly independent.
- (b) If \mathbf{v} is a vector in S that is expressible as a linear combination of other vectors in S, and if $S \{\mathbf{v}\}$ denotes the set obtained by removing \mathbf{v} from S, then S and $S \{\mathbf{v}\}$ span the same space; that is,

$$\operatorname{span}(S) = \operatorname{span}(S - \{\mathbf{v}\})$$

Theorem: Let S be finite set of vectors in a finite-dimensional vector space V.

- a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- b) If S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V by inserting appropriate vectors into S.

Change of Basis:

$$[\text{new basis} \mid \text{old basis}] \xrightarrow{\text{row operations}} [I \mid \text{transition from old to new}]$$

If we change the basis for a vector space V from an old basis B to a new basis B', suppose P is the transition matrix, then for each vector \mathbf{v} in V, the old coordinate vector $[\mathbf{v}]_B$ is related to the new coordinate vector $[\mathbf{v}]_{B'}$ by the equation

$$[\mathbf{v}]_{B'} = P[\mathbf{v}]_{B}$$

Definition(Row Space, Column Space, Null Space)

Let A be an $m \times n$ matrix,

- The row space of A = span(Rows of A).
- The Column space of A = span(Columns of A).
- The Null space is the subspace of \mathbb{R}^n spanned by the solutions of the homogeneous system $A\mathbf{x} = \mathbf{0}$.

Definition(Rank)

The rank of a matrix A (denoted by rank(A)) is the dimension of its row space (or column space since they're equal)

Definition(Nullity)

The nullity of a matrix A (denoted by nullity(A)), is the dimension of its Null space.

Theorem (The Rank Theorem)

For any $A_{m \times n}$,

$$rank(A) + nullity(A) = n.$$

Part. 6. Linear Transformation, Eigenvalue and Eigenvectors

Definition: A matrix transformation or linear transformation T_A : $R^n \to R^m$ is defined by equations of the form Y = AX, $Y \in R^m$, $X \in R^n$, A is mxn matrix. The matrix $A = [a_{ij}]$ is called the standard matrix for the linear transformation.

DEFINITION 1 If A is an $n \times n$ matrix, then a nonzero vector \mathbf{x} in \mathbb{R}^n is called an *eigenvector* of A (or of the matrix operator T_A) if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ; that is,

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of A (or of T_A), and \mathbf{x} is said to be an *eigenvector corresponding to* λ .

THEOREM 5.1.1 If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation

$$\det(\lambda I - A) = 0 \tag{1}$$

This is called the **characteristic equation** of A.

Theorem: If A is an $n \times n$ triangular matrix (upper triangular, low triangular, or diagonal), then the eigenvalues of A are entries on the main diagonal of A.

THEOREM 5.1.3 If A is an $n \times n$ matrix, the following statements are equivalent.

- (a) λ is an eigenvalue of A.
- (b) λ is a solution of the characteristic equation $\det(\lambda I A) = 0$.
- (c) The system of equations $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
- (d) There is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$.

Definition(Similar Matrices)

Given A and B two $n \times n$ matrices. A is said to be similar to B (written $A \sim B$) if there is an invertible matrix P such that $P^{-1}AP = B$.

Definition(Diagonalizable matrix)

An $n \times n$ matrix A is diagonalizable if there is a diagonal matrix D that is similar to A. i.e. If there is a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$.

Theorem: If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable.

THEOREM 5.1.5 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (1) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n .
- (q) The orthogonal complement of the row space of A is $\{0\}$.
- (r) The kernel of T_A is $\{0\}$.
- (s) The range of T_A is R^n .
- (t) T_A is one-to-one.
- (u) $\lambda = 0$ is not an eigenvalue of A.