Instructions for R Homework 5*

Ouestion 1

For this exercise we will run a regression using Swiss demographic data from around 1888. The sample is a cross-section of French speaking counties in Switzerland. This data come with the R package datasets. To load this dataset type this data(swiss, package="datasets").

The basic variable definitions are as follows:

Variable	Description
Fertility	Ig, 'common standardized fertility measure'
Agriculture	% of males involved in agriculture as occupation
Examination	% draftees receiving highest mark on army examination
Education	% education beyond primary school for draftees.
Catholic	% 'catholic' (as opposed to 'protestant').
Infant.Mortality	live births who live less than 1 year.

Type help(swiss) in the console for additional details. Use the summary() command to report the mean and median for the variables Fertility, Education, and Catholic.

^{*} For all HW assignments, I need to see all the code used

Ouestion 2

We want to estimate the expected Fertility level in a Swiss county conditional on the county's education level. We assume the relationship is linear. So, we are interested in estimating α and β in

Fertility_c =
$$\alpha + \beta \cdot \text{Education}_c + \epsilon_c$$
.

If we use Ordinary Least Squares to estimate and we have the following formulas:

$$\hat{eta} = r_{x,y} rac{s_y}{s_x}$$

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x},$$

where y is the left hand side variable, x is the right hand side variable, and the bar $\bar{}$ denotes the sample mean, s is the standard deviation, and $r_{x,y}$ is the correlation between x and y.

- Find the correlation between Education and Fertility using the cor() function, as well as the sample standard deviation for each variable using the sd() function. Report these numbers.
- Use the cor() and sd() function to get an estimate for β in the equation relating Fertility to Education. Keep this value stored in a scalar called beta_hat. Report this number by having a line with print(beta_hat).
- Now use the estimate beta_hat, along with the function mean() to get an estimate for alpha.
 Keep this value stored as a scalar called alpha_hat. Report this number by having a line with print(alpha_hat).

Question 3

Use alpha_hat and beta_hat to predict the average fertility rate in a county where 40% of the population is educated.

Question 4

Plot the relationship between Fertility and Education using the plot() function with Education on the horizontal axis. Make sure to label your axis! (If you don't know how, use 'plot').

Ouestion 5

Now estimate the model the model relating Fertility Rate to Education using the lm() function in R's base code. Typically, if you want to estimate you use the syntax $lm(yvar \sim xvar, data = dataframe)$.

- Store the estimation results as follows model_1 <- lm(...). This list should include a number of
 details include the estimated parameters, the coefficient of determination (r-squared), all of the
 residuals from the model, and more.
- Use the command summary(model_1) to report the summary of the ordinary least squares estimation. Do you have the same estimates as Ouestion 2?
- What is the R-squared from this regression? Interpret it in a meaningful way.

Question 6

For each one of the estimated parameters reported in Question 5:

- · Interpret the coefficient in a meaningful way.
- Report the results from testing the null hypothesis that the true parameter value is zero.

Question 7

Recreate the figure in Question 4, and then add the line of best fit using the abline() function with the coefficients from model_1, model_1\$coefficients.

Question 8

Use the mean() command to show that the average of the residuals associated with model_1 is zero.