Matrices: feuille d'exercices

Ι Calcul matriciel

Exercice: Des calculs de produits

Calculer lorsqu'ils sont définis les produits AB et BA dans chacun des cas suivants :

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$

Exercice: Commutant

Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice: Annulateur

On considère les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Calculer AB, AC. Que constate-t-on? La matrice A peut-elle être inversible? Trouver toutes les matrices $F \in \mathcal{M}_3(\mathbb{R})$

telles que AF = 0 (où 0 désigne la matrice nulle).

Exercice: Produit non commutatif

Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que : AB = 0 et $BA \neq 0$.

Exercice: Matrices stochastiques en petite taille

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice stochastique si la somme des coefficients sur chaque colonne de A est égale à 1. Démontrer que le produit de deux matrices stochastiques est une matrice stochastique si n=2. Reprendre la question si $n \leq 1$.

Exercice: Puissance n-ième, par récurrence

Calculer la puissance n-ième des matrices suivantes :

$$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right), \ B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right).$$

Exercice: Puissance n-ième - avec la formule du binôme

Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice: Puissance n-ième - avec un polynôme annulateur

1. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 - 3X + 2$.

2. Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Déduire de la question précédente la valeur de A^n , pour $n \geqslant 2$.

Exercice: Inverser une matrice sans calculs!

1. Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. Montrer que $A^2 = 2I_3 - A$, en déduire que A est inversible et calculer A^{-1} .

2. Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
. Calculer $A^3 - A$. En déduire que A est inversible puis déterminer A^{-1} .

3. Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Calculer $A^2 - 3A + 2I_3$. En déduire que A est inversible, et calculer A^{-1} .

Exercice: Inverse avec calculs!

Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right), \quad B = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{array}\right).$$

Exercice: Matrice nilpotente

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \geqslant 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

II Puissance d'une matrice

Exercice: Modélisation matricielle de suites définies par une récurrences linéaires

On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes :

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

pour
$$n \geqslant 0$$
. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- 1. Exprimer X_{n+1} en fonction d'une matrice A et de X_n .
- 2. Exprimer X_n en fonction d'une matrice A et de X_0 .

Exercice: Puissance d'une matrice triangulaire de diagonale nulle

III Trace 3

Démontrer qu'une matrice triangulaire de diagonale nulle
$$A = \begin{pmatrix} 0 & a_{1,2} & \cdots & \cdots & a_{1,n} \\ 0 & 0 & & & a_{2,n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$
 est nilpotente

III Trace

Exercice: Matrice nilpotente

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \geqslant 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

Exercice: Matrice nilpotente

Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
.
Démontrer que $\operatorname{tr}(A^{\mathsf{T}}A) = \sum_{i=1}^n \sum_{j=1}^p a_{ij}^2$