Грищенко Юрій ІПС-32 Лабораторна робота №5

Постановка задачі: Знайти опуклу оболонку для множини точок X — мінімальну опуклу множину, що містить X.

Опис алгоритму:

"Швидкий" метод побудови опуклої оболонки - підхід, схожий на швидке сортування (quicksort), звідси назва ШвидкОбол (QuickHull).

Метод розбиває множину S із N точок на дві підмножини, кожна з яких міститиме одну із двох ламаних, з'єднання яких дає многокутник опуклої оболонки.

Розбиваємо множину точок S на підмножини в залежності від того, знаходяться вони зліва чи зправа від лінії:

- Виберемо початкові значення $\{l_0, r_0\}$ точок l та r:
- за 10 точку з найменшою абсцисою (x0,y0);
- за r0- точку $(x_0,y_0-\epsilon)$, де $\epsilon>0-$ мале число.
- Через це за початкову пряму, яка розбиває множину на частини, обирається вертикальна пряма, що проходить через точку 10.
- Після завершення алгоритму точка r0 вилучається.

Далі рекурсивно оброблюємо підмножини точок зліва від лінії lr:

- Розглянемо підмножину S_1 .
- Визначимо точку h, для якої трикутник (hlr) має максимальну площу серед усіх трикутників $\{(plr): p \in S_1\}$.
- Якщо таких точок більше однієї, то вибираємо найлівішу.
- Точка h гарантовано належить опуклій оболонці.

- Побудуємо дві прямі: L_1 спрямована із l в h; L_2 спрямована із h в r.
- Для кожної точки множини S_1 визначається її положення відносно цих прямих.
- Важливо помітити, що жодна з точок не знаходиться одночасно ліворуч від L_1 та від L_2 .
- Всі точки, розташовані праворуч від обох прямих, є внутрішніми точками трикутника (lrh) і тому можуть бути вилучені із подальшої обробки.

- Точки, розташовані ліворуч від L_1 або на ній (і розташовані праворуч від L_2), утворюють підмножину $S_{1,1}$. Аналогічно утворюється підмножина $S_{1,2}$.
- Утворені підмножини передаються на наступний рівень рекурсивної обробки.
- Опукла оболонка для S_1 утворюється склейкою впорядкованих списків вершин опуклих оболонок для $S_{1,1}$ і $S_{1,2}$.

Складність алгоритму:

Складність схожа на QuickSort — в загальному випадку $O(n \log n)$, але в найгіршому випадку $O(n^2)$.

На кожному кроці робимо O(n) операцій, і розбиваємо множину на дві підмножини, але не гарантовано, що підмножини рівні. (це гарантує алгоритм "Розділяй та володярюй" Шеймоса, він завжди виконується за час O(n log n)).

Також існують алгоритми:

Метод Грехема — $O(n \log n)$, якщо точки задані в полярних координатах і відсортовані, то O(n)

Метод Ендрю — аналогічно, з декартовими координатами Метод Джарвіса — O(hn) взагалі, в найгіршому випадку O(n²)

Реалізовано на мові Python.

Інтерфейс користувача: набір точок задається файлом points.txt. Програма у вікні показує всі задані точки та малює опуклу оболонку.