1. Fundamentals GHV Chapters 4-5

DATA 335 - Univerrsity of Calgary - Winter 2025

Statistical models and statistical inference

- A statistical model is a probability distribution.
- A statistical model is characterized by unknown and often unknowable numbers called *parameters*. They are our quantities of interest.
- Statistical models facilitate statistical inference procedures for turning data into parameters estimates, avatars for their uncertainty.
 - ► Frequentist inference: point estimation, standard errors, confidence intervals, hypothesis tests
 - Bayesian inference: posterior distribution

Estimators for mean and variance

- Let x_0, \ldots, x_{n-1} be a random sample¹ from the a model (distribution) F with mean μ and variance σ^2 .
- ▶ The sample mean

$$\bar{x} = \frac{x_0 + \dots + x_{n-1}}{n}$$

estimates μ .

► The sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i < n} (x_{i} - \bar{x})^{2}$$

estimates σ^2 .

¹independent and identically distributed

Estimators have distributions

- ▶ Since the x_i are random variables, the estimators \bar{x} and s^2 are computed computed from them are, too.
- In particular, they have distributions.
- Distributions of random variables computed from random samples from other distributions are called *sampling* distributions.
- ▶ (Demo) Visualizing sampling distributions

Standard error

- ▶ The standard error of a random variable x, denoted se(x), is the standard deviation of its distribution.
- ▶ se(x) is the fundamental numerical distillation of the uncertainty in x.

The sampling distribution of the mean

▶ If $x_0, ..., x_{n-1}$ is a random sample drawn from a distribution with mean μ and standard deviation σ , then

$$\operatorname{se}(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

- ▶ By the *Central Limit Theorem*, the distribution of \bar{x} is approximately² normal, with mean μ and standard deviation $se(\bar{x})$.
- Said differently,

$$z = \frac{\bar{x} - \mu}{\operatorname{se}(\bar{x})} \longrightarrow N(0, 1)$$

as $n \to \infty$.

²the larger the sample size, the better the approximation <a>→ ⟨፮→ ⟨፮→ ⟨፮→ ⟨፮→ ⟨፮→ ⟨३⟩⟩

Normal approximation to the binomial proportion

▶ When $y \sim Bin(n, p)$, we estimate the binomial proportion p by

$$\hat{p} = \frac{y}{n}$$
.

- ▶ Bin(n, p)-RVs are sums of Ber(p)-RVs, making \hat{p} the average of Ber(p)-RVs. Thus, \hat{p} is a sample mean.
- ▶ Since Ber(p) has standard deviation $\sqrt{p(1-p)}$,

$$\operatorname{se}(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$$

and, by the central limit theorem,

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$
 (approx.).

Normal approximation to the binomial distribution

► Since $y = n\hat{p}$, we have

$$Bin(n, p) = distribution of y \approx N(np, np(1-p)).$$

▶ (Demo) Normal approximation to the binomial distribution

Cumulative distribution and percent point functions

► The (cumulative) distribution function of a random variable x is defined by

$$\operatorname{cdf}_{x}(u) = \mathbb{P}[x \leq u].$$

Its inverse function is called the percent point function.

$$ppf_x(v) = u \iff \mathbb{P}[x \le u] = v$$

Also known as the *quantile function* or *inverse* (cumulative) distribution function.

Confidence intervals for sample means

Define

$$z_{\alpha/2} = ppf_{N(0,1)}(1 - \alpha/2).$$

▶ If *n* is sufficiently large, then

$$rac{ar{x}-\mu}{\mathsf{se}(ar{x})}\sim \mathit{N}(0,1)$$
 (approx.)

by the central limit theorem, implying

$$\begin{aligned} 1 - \alpha &\approx \mathbb{P}\left[\left|\frac{\bar{x} - \mu}{\mathsf{se}(\bar{x})}\right| < z_{\alpha/2}\right] \\ &= \mathbb{P}[\bar{x} - z_{\alpha/2}\,\mathsf{se}(\bar{x}) < \mu < \bar{x} + z_{\alpha/2}\,\mathsf{se}(\bar{x})]. \end{aligned}$$

- The interval with endpoints $\bar{x} \pm z_{\alpha/2} \operatorname{se}(\bar{x})$ is called the $100(1-\alpha)\%$ -confidence interval for μ associated to \bar{x} .
- ▶ (DEMO) Confidence intervals for sample means

Estimating the standard error

• Since σ is typically unknown, so is

$$\operatorname{se}(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

▶ To estimate it, plug in the sample standard deviation for σ :

$$\widehat{\operatorname{se}}(\bar{x}) = \frac{s}{\sqrt{n}}.$$

▶ If *n* is sufficiently large, you can use this estimate to constructing confidence intervals as above:

$$100(1-\alpha)\%\text{-CI} = [\bar{x} - z_{\alpha/2}\widehat{\operatorname{se}}(\bar{x}), \ \bar{x} + z_{\alpha/2}\widehat{\operatorname{se}}(\bar{x})]$$

If *n* is small, you can't!

▶ (DEMO) Bad coverage for small n

Confidence intervals from the t-distribution

▶ If the common distribution of the x_i is normal, then

$$\frac{\bar{x}-\mu}{\widehat{\mathsf{se}}(\bar{x})}\sim t_{n-1}$$

(*t*-distribution with n-1 degrees of freedom).

- **DEMO)** Simulating t_{n-1}
- We can use the percent-point function of t_{n-1} to construct confidence intervals for \bar{x} . Set

$$t_{n-1,\alpha/2} = ppf_{t_{n-1}}(1-\alpha/2).$$

and define

100(1 -
$$\alpha$$
)%-CI = [$\bar{x} - t_{n-1,\alpha/2}\widehat{se}(\bar{x}), \ \bar{x} + t_{n-1,\alpha/2}\widehat{se}(\bar{x})$].

▶ This is valid for small n! For large n, we have $t_{n-1} \approx N(0,1)$ and $z_{\alpha/2} \approx t_{n-1,\alpha/2}$.

