

CHỦ ĐỀ: PHÂN TÍCH VÀ CHUẨN HÓA DỮ LIỆU TRONG CƠ SỞ DỮ LIỆU CUỐI KÌ

Môn học: Cơ sở dữ liệu

GVHD: ThS. Nguyễn Thị Hoài – ThS. Lê Hữu Hùng

Lớp: DHTMDT19B - 420300391602

Danh sách thành viên

STT	HỌ VÀ TÊN	MSSV	Mức độ hoàn thành
1	Huỳnh Trần Thanh Đạm	2365281 1	100%
2	Hồ Thị Cẩm Hường	2365743 1	100%
3	Nguyễn Lê Nguyên	2365336 1	100%
4	Lê Thị Hoàng Ngân	2366608 1	100%
5	Trần Dương Bảo Trân	2365817 1	100%

Minh chứng làm việc nhóm

PHÂN A

Bài tập 5: QUẢN LÝ LỊCH DẠY - HỌC

Để quản lý lịch dạy của các giáo viên và lịch học của các lớp, một trường tổ chức như sau: Mỗi giáo viên có một mã số giáo viên (MAGV) duy nhất, mỗi MAGV xác định các thông tin như: họ và tên giáo viên (HOTEN), số điện thoại (DTGV). Mỗi giáo viên có thể dạy nhiều môn cho nhiều khoa nhưng chỉ thuộc sự quản lý hành chánh của một khoa nào đó. Mỗi môn học có một mã số môn học (MAMH) duy nhất, mỗi môn học xác định tên môn học (TENMH). Ứng với mỗi lớp thì mỗi môn học chỉ được phân cho một giáo viên. Mỗi phòng học có một số phòng học (SOPHONG) duy nhất, mỗi phòng có một chức năng (CHUCNANG); chẳng hạn như phòng lý thuyết, phòng thực hành máy tính, phòng nghe nhìn, xưởng thực tập cơ khí,... Mỗi khoa có một mã khoa (MAKHOA) duy nhất, mỗi khoa xác định các thông tin như: tên khoa (TENKHOA), điện thoại khoa(DTKHOA). Mỗi lớp có một mã lớp (MALOP) duy nhất, mỗi lớp có một tên lớp (TENLOP), sĩ số lớp (SISO). Mỗi lớp có thể học nhiều môn của nhiều khoa nhưng chỉ thuộc sự quản lý hành chính của một khoa nào đó. Hàng tuần, mỗi giáo viên phải lập lịch báo giảng cho biết giáo viên đó sẽ dạy những lớp nào, ngày nào (NGAYDAY), môn gì?, tại phòng nào, từ tiết nào (TUTIET) đến tiết nào (DENTIET), tựa đề bài dạy (BAIDAY), ghi chú (GHICHU) về các tiết dạy này, đây là giờ dạy lý thuyết (LYTHUYET) hay thực hành - giả sử nếu LYTHUYET=1 thì đó là giờ dạy thực hành và nếu LYTHUYET=2 thì đó là giờ lý thuyết, một ngày có 16 tiết, sáng từ tiết 1 đến tiết 6, chiều từ tiết 7 đến tiết 12, tối từ tiết 13 đến 16.

1. XÂY DỰNG MÔ HÌNH ER

2. CHUYỂN SANG LƯỢC ĐỐ QUAN HÊ

2.1. KHOA(MAKHOA, TENKHOA, DTKHOA)

PK: MAKHOA

2.2. GIANG_VIEN(MAGV, HOTEN, DTGV, MAKHOA) 2.6. THONGTIN_LOP_MON_GV(MALOP, MAMH,

PK: MAGV

FK:

 \rightarrow KHOA(MAKHOA)

2.3. MON_HOC(MAMH, TENMH)

PK: MAMH

2.4. LOP(MALOP, TENLOP, SISO)

PK: MALOP

2.5. PHONG(SOPHONG, CHUCNANG)

PK: SOPHONG

MAGV, NAMHOC, HOCKY)

PK: MALOP, MAMH, MAGV, NAMHOC, HOCKY

FK:

 $MALOP \rightarrow LOP(MALOP)$

 $MAMH \rightarrow MON_HOC(MAMH)$

 $MAGV \rightarrow GIANG_VIEN(MAGV)$

Bước 1: Tạo CSDL
 CREATE DATABASE
 QL_LICH_DAY_GIAO_VIEN;
 GO

USE QL_LICH_DAY_GIAO_VIEN; GO

```
Bước 2: Tạo bảng dữ liệu (dựa theo
lược đồ quan hệ)
-- Tạo bảng KHOA
CREATE TABLE KHOA (
  MAKHOA CHAR(5) PRIMARY KEY,
  TENKHOA NVARCHAR(100),
  DTKHOA VARCHAR(15)
```

```
-- Tạo bảng GIÁO_VIÊN
CREATE TABLE GIAO_VIEN (
 MAGV CHAR(5) PRIMARY KEY,
  HOTEN NVARCHAR(100),
  DTGV VARCHAR(15),
 MAKHOA CHAR(5),
  FOREIGN KEY (MAKHOA)
REFERENCES KHOA(MAKHOA)
```

```
-- Tạo bảng MÔN_HỌC
CREATE TABLE MON_HOC (
  MAMH CHAR(5) PRIMARY KEY,
 TENMH NVARCHAR(100),
  MAGV CHAR(5),
  FOREIGN KEY (MAGV) REFERENCES
GIAO_VIEN(MAGV)
```

```
-- Tạo bảng PHÒNG_HỌC
CREATE TABLE PHONG_HOC (
SOPHONG CHAR(5) PRIMARY
KEY,
CHUCNANG NVARCHAR(100)
);
```

```
-- Tạo bảng LỚP_HỌC
CREATE TABLE LOP_HOC (
 MALOP CHAR(5) PRIMARY KEY,
 TENLOP NVARCHAR(100),
 SISO INT,
  MAKHOA CHAR(5),
  FOREIGN KEY (MAKHOA) REFERENCES
KHOA(MAKHOA)
```

```
-- Tạo bảng LỊCH_DẠY
CREATE TABLE LICH_DAY (
 MAGV CHAR(5),
 MALOP CHAR(5),
  MAMH CHAR(5),
  NGAYDAY DATE,
  SOPHONG CHAR(5),
  TUTIET INT,
  DENTIET INT,
  BAIDAY NVARCHAR(100),
  GHICHU NVARCHAR (255),
  LYTHUYET INT,
  PRIMARY KEY (MAGV, MALOP, MAMH, NGAYDAY, TUTIET),
  FOREIGN KEY (MAGV) REFERENCES GIAO_VIEN(MAGV),
  FOREIGN KEY (MALOP) REFERENCES LOP_HOC(MALOP),
  FOREIGN KEY (MAMH) REFERENCES MON_HOC(MAMH),
  FOREIGN KEY (SOPHONG) REFERENCES PHONG_HOC(SOPHONG)
```

Bước 3: Thêm 5 dòng dữ liệu mẫu mỗi bảng

--KHOA

INSERT INTO KHOA VALUES ('KH01', N 'Công nghệ thông tin', '0123456789'), ('KH02', N 'Cơ khí', '0223456789'), ('KH03', N 'Điện tử', '0323456789'), ('KH04', N 'Kinh tế', '0423456789'), ('KH05', N 'Ngữ văn', '0523456789');

--GIÁO VIÊN

INSERT INTO GIAO_VIEN VALUES ('GV01', N 'Nguyễn Văn A', '0912345678', 'KH01'), ('GV02', N 'Trần Thị B', '0922345678', 'KH01'), ('GV03', N 'Lê Văn C', '0932345678', 'KH02'), ('GV04', N 'Phạm Thị D', '0942345678', 'KH03'), ('GV05', N 'Hoàng Văn E', '0952345678', 'KH04');

Bước 3: Thêm 5 dòng dữ liệu mẫu mỗi bảng

--MÔN HỌC

INSERT INTO MON_HOC VALUES ('MH01', N 'Lập trình C', 'GV01'), ('MH02', N 'Cơ lý thuyết', 'GV03'), ('MH03', N 'Kinh tế vĩ mô', 'GV05'), ('MH04', N 'Ngữ pháp tiếng Việt', 'GV05'), ('MH05', N 'Điện tử công suất', 'GV04');

--GIÁO VIÊN

INSERT INTO GIAO_VIEN VALUES ('GV01', N 'Nguyễn Văn A', '0912345678', 'KH01'), ('GV02', N 'Trần Thị B', '0922345678', 'KH01'), ('GV03', N 'Lê Văn C', '0932345678', 'KH02'), ('GV04', N 'Phạm Thị D', '0942345678', 'KH03'), ('GV05', N 'Hoàng Văn E', '0952345678', 'KH04');

Bước 3: Thêm 5 dòng dữ liệu mẫu mỗi bảng

--PHÒNG HỌC

INSERT INTO PHONG_HOC VALUES ('PH01', N 'Phòng lý thuyết'), ('PH02', N 'Phòng thực hành máy tính'), ('PH03', N 'Phòng nghe nhìn'), ('PH04', N 'Xưởng cơ khí'), ('PH05', N 'Phòng thí nghiệm');

--LỚP HỌC

INSERT INTO LOP_HOC VALUES ('LP01', 'CNTT - K14', 40, 'KH01'), ('LP02', N 'Cơ khí - K12', 35, 'KH02'), ('LP03', N 'Điện tử - K13', 38, 'KH03'), ('LP04', N 'Kinh tế - K15', 50, 'KH04'), ('LP05', N 'Ngữ văn - K14', 45, 'KH05');

Bước 3: Thêm 5 dòng dữ liệu mẫu mỗi bảng

--LICH DAY

INSERT INTO LICH_DAY (MAGV, MALOP, MAMH, NGAYDAY, SOPHONG, TUTIET, DENTIET, BAIDAY, GHICHU, LYTHUYET)

VALUES

('GV01', 'LP01', 'MH01', '2025-05-05', 'PH02', 1, 2, N'Cấu trúc rẽ nhánh', N'', 1), ('GV03', 'LP02', 'MH02', '2025-05-06', 'PH03', 1, 2, N'Chương 1 - Cơ học', N'Mang tài liệu', 2),

('GV05', 'LP04', 'MH03', '2025-05-06', 'PH05', 1, 2, N'Tổng quan kinh tế', N", 2), ('GV05', 'LP05', 'MH04', '2025-05-07', 'PH04', 2, 3, N'Ngữ pháp căn bản', N", 2), ('GV03', 'LP03', 'MH05', '2025-05-08', 'PH05', 10, 11, N'Điện áp 3 pha', N'Mang đồng hồ đo', 1);

Bước 4: Kiểm tra kết quả

Bảng khoa: SELECT * FROM KHOA;

Bảng Giáo viên : SELECT * FROM GIAO_VIEN;

- Bước 4: Kiểm tra kết quả
- Bảng Môn Học : SELECT * FROM MON_HOC;

Bảng Phòng Học : SELECT * FROM PHONG_HOC;

Bước 4: Kiểm tra kết quả

 Bảng Lớp Học: SELECT * FROM LOP_HOC;

	MALOP	TENLOP	SISO	MAKHOA
1	LP01	CNTT - K14	40	KH01
2	LP02	Cơ khí - K12	35	KH02
3	LP03	Điện tử - K13	38	KH03
4	LP04	Kinh tế - K15	50	KH04
5	LP05	Ngữ văn - K14	45	KH05

Bước 4: Kiểm tra kết quả

Bảng Lịch Dạy: SELECT * FROM LICH_DAY;

Query executed successfully.

Bước 4: Kiểm tra kết quả

DATABASE DIAGRAMS

I.Truy vấn Join

Câu hỏi 1: Liệt kê mã giáo viên, họ tên, và tổng số tiết giảng dạy thực tế, chỉ hiển thị những giáo viên đã dạy từ 6 tiết trở lên trong tất cả các lịch dạy.

SELECT GV.MAGV,

GV.HOTEN,

SUM(LD.DENTIET - LD.TUTIET + 1) AS TONG_SOTIET_DAY

FROM LICH_DAY LD

JOIN GIAO_VIEN GV ON LD.MAGV = GV.MAGV

GROUP BY GV.MAGV, GV.HOTEN

HAVING SUM(LD.DENTIET - LD.TUTIET + 1) >= 6;

Câu 2: Tìm tên các giáo viên thuộc khoa "Công nghệ thông tin" và môn học mà họ đang giảng dạy.

SELECT GV.HOTEN, MH.TENMH

FROM GIAO_VIEN GV

JOIN MON_HOC MH ON GV.MAGV = MH.MAGV

JOIN KHOA K ON GV.MAKHOA = K.MAKHOA

WHERE K.TENKHOA = N'Công nghệ thông tin';

II. Truy Vấn Update

Câu 1: Cập nhật nội dung ghi chú (GHICHU) trong bảng LICH_DAY thành 'Mang giáo án' cho các buổi học bắt đầu từ tiết 1 và kết thúc ở tiết 2.

UPDATE LICH_DAY

SET GHICHU = N'Mang giáo án'

WHERE TUTIET = 1 AND DENTIET = 2;

Câu 2: Cập nhật số điện thoại cho giáo viên có tên là "Trần Văn An"

UPDATE GIAOVIEN

SET SODIENTHOAI = '0912345678'

WHERE HOTEN = 'TRẦN VĂN AN';

III. Truy vấn DELETE

Xóa tất cả các lịch dạy diễn ra vào ngày '2025-05-05':

DELETE FROM LICH_DAY

WHERE NGAY_DAY = '2025-05-05'

Xóa tất cả các giáo viên thuộc khoa 'Cơ khí' ('KHO2') và không có bất kỳ môn học nào được gán cho họ trong bảng MON_HOC:

DELETE FROM GIAO_VIEN

WHERE MAKHOA = 'KHO2'

AND MAGV NOT IN (SELECT MAGV FROM MON_HOC);

IV. Truy vấn GROUP BY

Câu 1. Thống kê số lượng lớp của từng khoa SELECT MAKHOA, COUNT(*) AS SoLuongLop

FROM LOP_HOC

GROUP BY MAKHOA;

Câu 2. Thống kê số môn học do từng giáo viên giảng dạy

SELECT MAGV, COUNT(*) AS SoLuongMonHoc

FROM MON_HOC

GROUP BY MAGV;

4. TỰ CHO CÂU HỎI VÀ TRẢ LỜI: 12 CÂU V. 2 CÂU SUBQUERY(TRUY VẤN CON)

Câu 1 Tìm tên các lớp học có số tiết lý thuyết trong lịch dạy cao hơn số tiết lý thuyết trung bình

của tất cả các lớp.

SELECT DISTINCT TENLOP

FROM LOP_HOC

WHERE MALOP IN (SELECT MALOP

FROM LICH_DAY

GROUP BY MALOP

HAVING SUM(LYTHUYET) > (SELECT AVG(TongLT)

FROM (SELECT SUM(LYTHUYET) AS TongLT FROM LICH_DAY GROUP BY MALOP) AS LTTB))

4. TỰ CHO CÂU HỎI VÀ TRẢ LỜI: 12 CÂU V. 2 CÂU SUBQUERY(TRUY VẤN CON)

Câu 2 Tìm tên các giáo viên có dạy ít nhất một lớp thuộc khoa "Kinh tế".

SELECT HOTEN

FROM GIAO_VIEN

WHERE MAGV IN (SELECT DISTINCT LD.MAGV

FROM LICH_DAY LD

JOIN LOP_HOC LH ON LD.MALOP = LH.MALOP

JOIN KHOA K ON LH.MAKHOA = K.MAKHOA

WHERE K.TENKHOA = 'Kinh tế')

VI. Truy vấn bất kỳ

Câu 1: Liệt kê giáo viên có tên bắt đầu bằng "Nguyễn" SELECT MAGV, HOTEN FROM GIAOVIEN WHERE HOTEN LIKE 'NGUYỄN%';

Câu 2: Liệt kê tên các giáo viên có dạy ít nhất 2 buổi, kèm theo số buổi dạy, và sắp xếp theo số buổi dạy giảm dần.

SELECT GV.HOTEN AS TenGiaoVien, COUNT(*) AS SoBuoiDay FROM LICH_DAY LD

JOIN GIAO_VIEN GV ON LD.MAGV = GV.MAGV

GROUP BY GV.HOTEN

HAVING COUNT(*) >= 2

ORDER BY SoBuoiDay DESC

1/ Cho lược 1/ Cho lược đồ CSDL

Q(TENTAU,LOAITAU,MACHUYEN,LUONGHANG,BENCANG,NGAY)

F={TENTAU → LOAITAU

MACHUYEN → TENTAU, LUONGHANG

TENTAU, NGAY → BENCANG, MACHUYEN}

- a) Hãy tìm tập phủ tối thiểu của F
- b) Tìm tất cả các khóa của Q

đồ CSDL

```
a) Hãy tìm tập phủ tối thiểu của F
- Đặt:
        TENTAU: A
       LOAITAU: B
       MACHUYEN: C
       LUONGHANG: D
       BENCANG: E
       NGAY: G
=> Q(A,B,C,D,E,G)
=> F = \{ A \rightarrow B ; C \rightarrow AD ; AG \rightarrow EC \}
- Bước 1: Phân tích vế phải của phụ thuộc hàm:
F = \{ A \rightarrow B ; C \rightarrow A ; C \rightarrow D ; AG \rightarrow E ; AG \rightarrow C \}
```

```
-Bước 2: Loại bỏ thuộc tính vê trái dư thừa:
•Xét AG→E :
Loại A, G+ = G, không chứa E => không loại được A
Loại G, A+ = AB, không chứa E => không loại được G
Phụ thuộc hàm không dư thừa
•Xét AG→C:
Loại A, G+ = G, không chứa C => không loại được A
Loại G, A+ = AB, không chứa C => không loại được G
Phụ thuộc hàm không dư thừa
=> F = \{AG \rightarrow E; AG \rightarrow C; A \rightarrow B; C \rightarrow A; C \rightarrow D\}
- Bước 3: Loại bỏ dư thừa phụ thuộc hàm:
•Xét A→B : A+ = A, không chứa B => không loại
•Xét C→A : C+ = CD, không chứa A => không loại
•Xét C→D: C+ = CAB, không chứa D => không loại
=> F = \{AG \rightarrow E ; AG \rightarrow C ; A \rightarrow B ; C \rightarrow A ; C \rightarrow D \}
Vậy phủ tối thiểu của F = { TENTAU, NGAY → BENCANG
                               TENTAU, NGAY → MACHUYEN
                               TENTAU → LOAITAU
                               MACHUYEN → TENTAU
                               MACHUYEN → LUONGHANG }
```

b) Tìm tất cả các khóa của Q

 $TN = {NGAY}$

TG = {TENTAU, MACHUYEN}

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	NGAY	NGAY		
TENTAU	TENTAU, NGAY	TENTAU, NGAY, LOAITAU, BENCANG, MACHUYEN, LUONGHANG	TENTAU, NGAY	TENTAU, NGAY
MACHUYEN	MACHUYEN, NGAY	TENTAU, LUONGHANG, BENCANG, MACHUYEN, NGAY, LOAITAU	MACHUYEN, NGAY	MACHUYEN, NGAY

Vậy khóa của Q là {TENTAU, NGAY} và {MACHUYEN, NGAY}

```
2/ Q(A,B,C,D,E,G)
Cho F={AB→C;C→A;BC→D;ACD→B;D→EG;BE→C;CG→BD;CE →
AG}
X={B,D}, X+=?
Y={C,G}, Y+=?
```

```
a) X=\{B,D\}, X^{+}=?
X_0 = BD
 Xét f5 vì D \subseteq X<sub>0</sub> \Rightarrow X<sub>1</sub> = BD U EG = BDEG, loai f5
 Xét f6 vì BE \subseteq X_1 \Rightarrow X_2 = BDEG \cup C = BCDEG, loại f6
 Xét f7 vì CG \subseteq X_2 \Rightarrow X_3 = BCDEG \cup BD = BCDEG, loại f7
 Xét f8 vì CE \subseteq X<sub>3</sub> \Rightarrow X<sub>4</sub> = BCDEG U AG = ABCDEG
=> X^{+} = X_{4} = \{A, B, C, D, E, G\}  là bao đóng của X
```

$$X_o = CG$$

Xét f7 vì CG \subseteq Y₀ \Rightarrow Y₁ = CG U BD = BCDG, loại f7

Xét f8 vì CE \subseteq Y₁ \Rightarrow Y₂ = BCDG U AG = ABCDEG

=> $Y^+ = Y_2 = \{A, B, C, D, E, G\}$ là bao đóng của Y

- 3/ cho lược đồ quan hệ Q và tập phụ thuộc hàm F
- a) $F=\{AB\rightarrow E;AG\rightarrow I;BE\rightarrow I;E\rightarrow G;GI\rightarrow H\}$ chứng minh rằng $AB\rightarrow GH$.
- b) $F=\{AB\rightarrow C; B\rightarrow D; CD\rightarrow E; CE\rightarrow GH; G\rightarrow A\}$ chứng minh rằng $AB\rightarrow B$
- $E; AB \rightarrow G$

- 3/ a) F = { AB → E; AG → I; BE → I; E → G; GI → H } Chứng minh rằng AB → GH.
 - 1. AB → E (giả thiết)
 - 2. E → G (giả thiết)
 - 3. AB → G (Bắc cầu 1 và 2)
 - 4. AB → AG (Tăng trưởng 3)
 - 5. AG → I (giả thiết)
 - 6. AB → I (Bắc cầu 4 và 5)
 - 7. AB → GI (Hợp 3 và 6)
 - 8. GI →H (giả thiết)
 - 9. AB → H (Bắc cầu 7 và 8)
 - => 10. AB → GH (Hợp 3 và 9)

b) F = { AB → C; B → D; CD → E; CE → GH; G → A } Chứng minh rằng AB → E; AB → G

- 1.AB → C (giả thiết)
- 2.AB → BC (Tăng trưởng 1)
- 3. B → D (giả thiết)
- 4. BC → CD (Tăng trưởng 3)
- 5. CD → E (giả thiết)
- 6. BC → E (Bắc cầu 4 và 5)
- => 7. AB→ E (Bắc cầu 2 và 6)
- 8. AB →CE (Hợp 1 và 7)
- 9. EC → GH (giả thiết)
- 10. AB → GH (Bắc cầu 8 và 9)
- => 11. AB → G (Tách 10)

4/ Cho quan hệ r

Α	В	С	D
x	u	x	Υ
У	x	z	x
z	У	у	У
У	z	w	z

Trong các phụ thuộc hàm sau đây, PTH nào không thỏa $A \rightarrow B$; $A \rightarrow C$; $B \rightarrow A$; $C \rightarrow D$; $D \rightarrow C$; $D \rightarrow A$

4.

Ta xét:

 $A \rightarrow B$

$$A=x \rightarrow B=u$$

$$A=y \rightarrow B=x,z$$

$$A=z \rightarrow B=y$$

- -> Không thỏa vì A=Y có hai giá trị B khác nhau (x,y)
- -> Phụ thuộc A ->B không thỏa

$$A \rightarrow C$$

$$A = y \rightarrow C = y,w$$

- -> Không thỏa vì A=y có hai giá trị C khác nhau (y,w)
- -> Phụ thuộc A->C không thỏa

$$B = x \rightarrow A = y$$

$$B = y \rightarrow A = z$$

$$B = z \rightarrow A = y$$

$$B = u \rightarrow A = x$$

- -> Không có giá trị B nào
- -> Thỏa mãn

C->D

$$C = x \rightarrow D = y$$

$$C = y \rightarrow D = z$$

$$C = z \rightarrow D = y$$

$$C = W \rightarrow D = Z$$

- -> Mỗi giá trị C xuất hiện duy nhất
- -> Thỏa mãn

$$D = y \rightarrow C = x,z$$

- -> Không thỏa vì D=y có hai giá trị C khác nhau(x,z)
- D->A

$$D = z \rightarrow A = y$$

$$D = y \rightarrow A = x,z$$

-> Không thỏa vì D=y có hai giá A khác nhau(x,z)

5/ Hãy tìm tất cả các khóa cho lược đồ quan hệ sau:

Q(BROKER,OFFICE,STOCK,QUANTITY,INVESTOR,DIVIDENT)

F={STOCK → DIVIDENT

INVESTOR → BROKER

INVESTOR, STOCK → QUANTITY

BROKER → OFFICE }

5/

Xét các thuộc tính không bị suy ra từ phụ thuộc hàm:

INVESTOR

STOCK

Tính bao đóng của {INVESTOR, STOCK}

Từ INVESTOR → BROKER

→ thêm BROKER

Từ BROKER → OFFICE

→ thêm OFFICE

Từ STOCK → DIVIDENT

→ thêm DIVIDENT

Từ INVESTOR, STOCK → QUANTITY

- → thêm QUANTITY
- → Bao đóng = {INVESTOR, STOCK, BROKER, DIVIDENT, QUANTITY, OFFICE} = toàn bộ thuộc tính
- -> {INVESTOR, STOCK} là khóa duy nhất

```
6/ Xét lược đồ quan hệ và tập phụ thuộc dữ liệu: Q(C,T,H,R,S,G) 
f={ f₁: C→T; f₂: HR→ C; f₃: HT→ R; 
f₄: CS→ G; f₅: HS→ R}
Tìm phủ tối thiểu của F
```

Kiểm tra khả năng rút gọn vế trái

f2: HR \rightarrow C

H → C? Không suy ra được

R → C? Không suy ra được

→ Giữ nguyên

f3: $HT \rightarrow R$

H → R? Không suy ra được

T → R? Không suy ra được

→ Giữ nguyên

 $f4: CS \rightarrow G$

 $C \rightarrow G$? Không suy ra được

 $S \rightarrow G$? Không suy ra được

→ Giữ nguyên

 $f5: HS \rightarrow R$

H → R? Không suy ra được

 $S \rightarrow R$? Không suy ra được

→ Giữ nguyên

Giả sử loại f5: HS → R

Không có cách nào suy ra R từ HS nếu thiếu f5

→ f5 cần thiết

→ Không có phụ thuộc nào dư thừa

```
7/ Q(A,B,C,D,E,H)

F=\{A \rightarrow E; C \rightarrow D; E \rightarrow DH\}

Chứng minh K=\{A,B,C\} là khóa duy nhất của Q
```

```
7/ Kiểm tra bao đóng của K = {A, B, C}
Ta tính K+ = (A, B, C)+ theo F:
A → E ⇒ thêm E → {A, B, C, E}
C → D ⇒ thêm D → {A, B, C, E, D}
E → DH ⇒ thêm H (D đã có rồi) → {A, B, C, D, E, H}
K+ = {A, B, C, D, E, H}
Vì K+ = tập thuộc tính của Q ⇒ {A, B, C} là siêu khóa
```

- **7**/ Kiểm tra tối thiểu :
 - Bổ A khởi K: {B, C}+

Không có E

 \rightarrow Không dùng được A \rightarrow E, E \rightarrow DH

 $C\acute{o} C \rightarrow D$

- \rightarrow {B, C, D}
- → Không đủ ⇒ không là khóa
 - Bổ B khổi K: {A, C}+

 $A \rightarrow E \Rightarrow \{A, C, E\}$

 $C \rightarrow D \Rightarrow \{A, C, E, D\}$

 $E \rightarrow DH \Rightarrow \{A, C, E, D, H\}$

- → Không có B
- ⇒ Không sinh ra tất cả thuộc tính trong Q
- ⇒ Không là khóa

• Bổ C khổi K: {A, B}+

 $A \rightarrow E \Rightarrow \{A, B, E\}$

Không có C ⇒ không có D

Không có $D \Rightarrow$ không dùng $E \rightarrow DH$

- → Không đủ ⇒ không là khóa
- ⇒ {A, B, C} là khóa tối thiểu duy nhất của Q

8/ Q(A,B,C,D) F={AB→C; D→B; C→ABD} Hãy tìm tất cả các khóa của Q

	ı	I	I	
Xi	$(TN \cup X_i)$	$(TN \cup X_i)^+$	Siêu khóa	Khóa
Ø	Ø	Ø		
A	A	A		
В	В	В		
С	C	ABCD	С	С
D	D	BD		
AB	AB	ABCD	AB	AB
AC	AC	ABCD	AC	
AD	AD	ABCD	AD	AD
BC	BC	ABCD	BC	
BD	BD	BD		
CD	CD	ABCD	CD	
ABC	ABC	ABCD	ABC	
ABD	ABD	ABCD	ABD	
ACD	ACD	ABCD	ACD	
BCD	BCD	ABCD	BCD	
ABCD	ABCD	ABCD	ABCD	

Vậy khóa của $Q(A, B, C, D) = \{C, AB, AD\}$

Ta có:

 $TN = \emptyset$

Vi TN = Q - RightF

Q: Tập tất cả thuộc tính của quan hệ Q, tức là Q = $\{A, B, C, D\}$.

Tập $F = \{AB \rightarrow C, D \rightarrow B, C \rightarrow ABD\}$. Phân tích phần phải của từng phụ thuộc hàm:

 $AB \rightarrow C$: Phần phải = $\{C\}$.

 $D \rightarrow B$: Phần phải = $\{B\}$.

 $C \rightarrow ABD$: Phần phải = $\{A, B, D\}$.

Hợp các phần phải : RightF = $\{C\} \cup \{B\} \cup \{A, B, D\} = \{A, B, C, D\}$

 $\delta TN = Q - RightF = \{A, B, C, D\} - \{A, B, C, D\} = \emptyset$

 $TG = \{A, B, C, D\}$

Vì

Xác định LeftF: Tập các thuộc tính ở phần trái của F:

 $AB \rightarrow C$: Phần trái = $\{A, B\}$.

 $D \rightarrow B$: Phần trái = $\{D\}$.

 $C \rightarrow ABD$: Phần trái = $\{C\}$.

Нор:

LeftF = $\{A, B\} \cup \{D\} \cup \{C\} = \{A, B, C, D\}$

 $TG = LeftF \cap RightF = \{A, B, C, D\} \cap \{A, B, C, D\} = \{A, B, C, D\}$ $B, C, D\}$

9/ Q(A,B,C,D,E,G)
F={AB→C;C→ A;BC→D;ACD→B;D→EG;BE→C;CG→BD;CE→G}
Hãy tìm tất cả các khóa của Q.

Xi	TN u Xi	(TN ∪ Xi)⁺	Siêu khóa	Khóa
Ø	Ø	Ø		
A	A	A		
В	В	В		
С	С	С		
D	D	D, E, G		
E	E	Е		
G	G	G		
AB	AB	A, B, C, D, E, G	AB	AB
AC	AC	A, C		
AD	AD	A, D, E, G		
AE	AE	A, E		
AG	AG	A, G		
BC	BC	A, B, C, D, E, G	BC	BC
BD	BD	A, B, C, D, E, G	BD	BD
BE	BE	A, B, C, D, E, G	BE	BE
BG	BG	B, G		
CD	CD	A, B, C, D, E, G	CD	CD
CE	CE	A, B, C, D, E, G	CE	CE
CG	CG	A, B, C, D, E, G	CG	CG
DE	DE	D, E, G		
DG	DG	D, E, G		
EG	EG	E, G		
ABC	ABC	A, B, C, D, E, G	ABC	
ABD	ABD	A, B, C, D, E, G	ABD	
ABE	ABE	A, B, C, D, E, G	ABE	
BCD	BCD	A, B, C, D, E, G	BCD	
CDE	CDE	A, B, C, D, E, G	CDE	
CEG	CEG	A, B, C, D, E, G	CEG	
DEG	DEG	D, E, G		
ABCD	ABCD	A, B, C, D, E, G	ABCD	
ABCE	ABCE	A, B, C, D, E, G	ABCE	
ABCDE	ABCDE	A, B, C, D, E, G	ABCDE	
ABCDG	ABCDG	A, B, C, D, E, G	ABCDG	
ABCDEG	ABCDEG	A, B, C, D, E, G	ABCDEG	

Vậy các khóa của Q(A, B, C, D, E, G) là {AB, BC, BD, BE, CD, CE, CG}

• $TN = Q - RightF = \{A, B, C, D, E, G\} - \{A, B, C, D, E, G\} = \emptyset$

Vì:

 $Q = \{A, B, C, D, E, G\}$

RightF là tập hợp tất cả các thuộc tính xuất hiện ở phần phải của các phụ thuộc hàm trong F. Phân tích từng phụ thuộc hàm:

 $AB \rightarrow C$: Phần phải = $\{C\}$.

 $C \rightarrow A$: Phần phải = $\{A\}$.

 $BC \rightarrow D$: Phần phải = $\{D\}$.

 $ACD \rightarrow B$: Phần phải = $\{B\}$.

 $D \rightarrow EG$: Phần phải = $\{E, G\}$.

 $BE \rightarrow C$: Phần phải = $\{C\}$.

 $CG \rightarrow BD$: Phần phải = $\{B, D\}$.

 $CE \rightarrow G$: Phần phải = $\{G\}$.

• TG = LeftF \cap RightF = {A, B, C, D, E, G} \cap {A, B, C, D, E, G} = {A, B, C, D, E, G} Vi:

LeftF là tập hợp tất cả các thuộc tính xuất hiện ở phần trái của các phụ thuộc hàm trong F. Phân tích từng phụ thuộc hàm:

 $AB \rightarrow C$: Phần trái = $\{A, B\}$.

 $C \rightarrow A$: Phần trái = $\{C\}$.

 $BC \rightarrow D$: Phần trái = $\{B, C\}$.

 $ACD \rightarrow B$: Phần trái = $\{A, C, D\}$.

 $D \rightarrow EG$: Phần trái = $\{D\}$.

 $BE \rightarrow C$: Phần trái = $\{B, E\}$.

 $CG \rightarrow BD$: Phần trái = $\{C, G\}$.

 $CE \rightarrow G$: Phần trái = {C, E}.

ð LeftF = $\{A, B\} \cup \{C\} \cup \{B, C\} \cup \{A, C, D\} \cup \{D\} \cup \{B, E\} \cup \{C, G\} \cup \{C, E\} = \{A, B, C, D, E, G\}$

```
10/ Xác định phủ tối thiểu của tập phụ thuộc hàm sau:
a) Q(A,B,C,D,E,G),
F={AB→C;C→A;BC→D;ACD→B;D→EG;BE→C;CG→BD;CE→AG}
b) Q(A,B,C)
F={A→B,A→C,B→A,C→A,B→C}
```

10/a. Q(A,B,C,D,E,G), F=

{AB→C;C→A;BC→D;ACD→B;D→EG;BE→C;CG→BD;CE→AG} Tách các phụ thuộc nhiều thuộc tính bên phải:

- D
$$\rightarrow$$
 EG \rightarrow D \rightarrow E, D \rightarrow G

$$-CG \rightarrow BD \rightarrow CG \rightarrow B, CG \rightarrow D$$

- CE
$$\rightarrow$$
 AG \rightarrow CE \rightarrow A, CE \rightarrow G

=> F = {AB
$$\rightarrow$$
 C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CG \rightarrow D, CE \rightarrow A, CE \rightarrow G}

Vế trái:

Kiểm tra từng phụ thuộc hàm để xem có thể loại bỏ mà vẫn giữ nguyên bao đóng của F.

$$AB \rightarrow C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CE \rightarrow$$

G: Không dư thừa (loại bỏ bất kỳ cái nào đều làm mất thuộc tính trong bao đóng).

 $ACD \rightarrow B$: Dư thừa vì $CG \rightarrow B$ và các phụ thuộc khác suy ra $B(CG^+ = \{A, B, C, D, E, G\})$.

 $CG \rightarrow D$: Dư thừa vì $BC \rightarrow D$ và các phụ thuộc khác suy ra D.

=> F = {AB
$$\rightarrow$$
 C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CE \rightarrow G}

Phủ tối thiểu của F là: $F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CE \rightarrow G\}$

- b. $Q(A,B,C) F = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, C \rightarrow A, B \rightarrow C\}$

Tất cả phụ thuộc hàm đều có phần phải chứa một thuộc tính:

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, C \rightarrow A, B \rightarrow C\}$$

-Mỗi phụ thuộc hàm có phần trái chỉ chứa một thuộc tính, nên không thể loại bỏ. Giữ nguyên F.

Loại bỏ phụ thuộc hàm dư thừa

Kiểm tra từng phụ thuộc hàm:

- $A \rightarrow B$: Không dư thừa (loại bỏ làm mất B trong bao đóng của A).
- $A \rightarrow C$: Dư thừa vì $A \rightarrow B$, $B \rightarrow C$ suy ra C ($A^+ = \{A, B, C\}$).
- B \rightarrow A: Dư thừa vì B \rightarrow C, C \rightarrow A suy ra A (B+ = {A, B, C}).
- $C \rightarrow A$, $B \rightarrow C$: Không dư thừa (loại bỏ làm mất A hoặc C trong bao đóng).

Phủ tối thiểu của F là:

$$\{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$$

```
11/ Xác định phủ tối thiểu của các tập phụ thuộc hàm sau:
a) Q1(ABCDEGH)
 F_1=\{A\rightarrow H,AB\rightarrow C,BC\rightarrow D;G\rightarrow B\}
b) Q2(ABCSXYZ)
F_2 = \{S \rightarrow A; AX \rightarrow B; S \rightarrow B; BY \rightarrow C; CZ \rightarrow X\}
c) Q3(ABCDEGHIJ)
 F_3=\{BG\rightarrow D;G\rightarrow J;AI\rightarrow C;CE\rightarrow H;BD\rightarrow G;JH\rightarrow A;D\rightarrow I\}
 d) Q4(ABCDEGHIJ)
 F_4 = \{BH \rightarrow I; GC \rightarrow A; I \rightarrow J; AE \rightarrow G; D \rightarrow B; I \rightarrow H\}
```

11/ a) Q1(ABCDEGH) $F_1=\{A \rightarrow H, AB \rightarrow C, BC \rightarrow D; G \rightarrow B\}$

Bước 1: Đơn trị hóa phần phải

Tất cả phụ thuộc hàm trong F₁ đều có phần phải chứa một thuộc tính.

 $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$

Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái

 $AB \rightarrow C$:

Kiểm tra loại A: $\{B\}^+ = \{B\}$ (không suy ra C).

Kiểm tra loại B: $\{A\}^+ = \{A, H\}$ (không suy ra C).

Không thể loại A hoặc B. Giữ nguyên: AB → C.

 $BC \rightarrow D$:

Kiểm tra loại B: $\{C\}^+ = \{C\}$ (không suy ra D).

Kiểm tra loại C: $\{B\}^+ = \{B\}$ (không suy ra D).

Không thể loại B hoặc C. Giữ nguyên: BC → D.

 $A \rightarrow H$, $G \rightarrow B$: Phần trái chỉ có một thuộc tính, không thể loại.

Tập F₁ giữ nguyên:

 $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$

Bước 3: Loại bỏ phụ thuộc hàm dư thừa

 $A \rightarrow H$: Loại $A \rightarrow H$, tính $\{A\}^+$ với $F' = \{AB \rightarrow C, BC \rightarrow D, G \rightarrow BC \rightarrow C, BC$

B}: $A^+ = \{A\}$ (không suy ra H). Không dư thừa.

 $AB \rightarrow C$: Loại $AB \rightarrow C$, tính $\{AB\}^+$ với $F' = \{A \rightarrow H, BC \rightarrow D, C\}$

 \rightarrow B}: AB+ = {A, B, H} (không suy ra C). Không dư thừa.

 $BC \rightarrow D$, $G \rightarrow B$: Tương tự, không dư thừa.

Tập F_1 không thay đổi:

 $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$

Phủ tối thiểu của $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$

11/b) Q2(ABCSXYZ) $F_2=\{S\rightarrow A;AX\rightarrow B;S\rightarrow B;BY\rightarrow C;CZ\rightarrow X\}$

Bước 1: Đơn trị hóa phần phải

Tất cả phụ thuộc hàm đều có phần phải đơn trị:

 $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$

Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái

 $AX \rightarrow B$:

Kiểm tra loại A: $\{X\}^+ = \{X\}$ (không suy ra B).

Kiểm tra loại X: $\{A\}^+ = \{A\}$ (không suy ra B).

Không thể loại A hoặc X. Giữ nguyên: $AX \rightarrow B$.

 $BY \rightarrow C$:

Kiểm tra loại B: $\{Y\}^+ = \{Y\}$ (không suy ra C).

Kiểm tra loại Y: $\{B\}^+ = \{B\}$ (không suy ra C).

Không thể loại B hoặc Y. Giữ nguyên: $BY \rightarrow C$.

 $CZ \rightarrow X$:

Kiểm tra loại C: $\{Z\}^+ = \{Z\}$ (không suy ra X).

Kiểm tra loại Z: $\{C\}^+ = \{C\}$ (không suy ra X).

Không thể loại C hoặc Z. Giữ nguyên: $CZ \rightarrow X$.

 $S \rightarrow A$, $S \rightarrow B$: Phần trái chỉ có một thuộc tính, không thể loại.

Tập F₂ giữ nguyên:

 $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$

Bước 3: Loại bỏ phụ thuộc hàm dư thừa

 $S \rightarrow A$: Loại $S \rightarrow A$, tính $\{S\}^+$ với $F' = \{AX \rightarrow B, S \rightarrow B,$

BY \rightarrow C, CZ \rightarrow X}: S⁺ = {S, B} (không suy ra A). Không dư thừa.

 $AX \rightarrow B$, $S \rightarrow B$, $BY \rightarrow C$, $CZ \rightarrow X$: Tương tự, không dư thừa (loại bỏ bất kỳ phụ thuộc nào đều làm mất thuộc tính trong bao đóng).

Tập F₂ không thay đổi:

 $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$ Phủ tối thiểu của $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C,$

 $CZ \rightarrow X$

11/c) Q3(ABCDEGHIJ) $F_3 = \{BG \rightarrow D; G \rightarrow J; AI \rightarrow C; CE \rightarrow H; BD \rightarrow G; JH \rightarrow A; D \rightarrow I \}$

```
Tất cả phụ thuộc hàm đều đơn trị: F_3 = \{BG \to D, G \to J, AI \to C, CE \to H, BD \to G, JH \to A, D \to I\} Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái Kiểm tra các phụ thuộc hàm có phần trái nhiều hơn một thuộc tính: BG \to D: Kiểm tra loại B: \{G\}^+ = \{G, J\} (không suy ra D). Kiểm tra loại G: \{B\}^+ = \{B\} (không suy ra D).
```

AI → C: Kiểm tra loại A: {I}+= {I} (không suy ra C). Kiểm tra loại I: {A}+= {A} (không suy ra C).

Bước 1: Đơn trị hóa phần phải

Không thể loại A hoặc I. Giữ nguyên: $AI \rightarrow C$.

Không thể loại B hoặc G. Giữ nguyên: BG → D.

 $CE \rightarrow H$:

Kiểm tra loại C: $\{E\}^+ = \{E\}$ (không suy ra H).

Kiểm tra loại E: $\{C\}^+ = \{C\}$ (không suy ra H).

Không thể loại C hoặc E. Giữ nguyên: CE → H.

 $BD \rightarrow G$:

Kiểm tra loại B: $\{D\}^+ = \{D, I\}$ (không suy ra G).

Kiểm tra loại D: $\{B\}^+ = \{B\}$ (không suy ra G).

Không thể loại B hoặc D. Giữ nguyên: BD → G.

 $JH \rightarrow A$:

Kiểm tra loại J: $\{H\}^+ = \{H\}$ (không suy ra A).

Kiểm tra loại H: $\{J\}^+ = \{J\}$ (không suy ra A).

Không thể loại J hoặc H. Giữ nguyên: JH → A.

 $G \rightarrow J$, $D \rightarrow I$: Phần trái chỉ có một thuộc tính, không thể loại.

Tập F₃ giữ nguyên:

 $F_3 = \{BG \rightarrow D, G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I\}$

Bước 3: Loại bỏ phụ thuộc hàm dư thừa

 $BG \rightarrow D$: Loại $BG \rightarrow D$, tính $\{BG\}^+$ với $F' = \{G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow BG \rightarrow D\}$

 $G, JH \rightarrow A, D \rightarrow I$: $BG^+ = \{B, G, J\}$ (không suy ra D). Không dư thừa.

 $G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I$: Tương tự, không dư thừa.

Tập F₃ không thay đổi:

 $F_3 = \{BG \rightarrow D, G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I\}$

Phủ tối thiểu của $F_3 = \{BG \to D, G \to J, AI \to C, CE \to H, BD \to G, JH \to A,$

 $D \rightarrow I$

11/d) Q4(ABCDEGHIJ) $F_4=\{BH\rightarrow I;GC\rightarrow A;I\rightarrow J;AE\rightarrow G;D\rightarrow B;I\rightarrow H\}$

Bước 1: Đơn trị hóa phần phải

Tất cả phụ thuộc hàm đều đơn trị:

$$F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$$

Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái

Kiểm tra các phụ thuộc hàm có phần trái nhiều hơn một thuộc tính:

 $BH \rightarrow I$:

Kiểm tra loại B: $\{H\}^+ = \{H\}$ (không suy ra I).

Kiểm tra loại H: $\{B\}^+ = \{B\}$ (không suy ra I).

Không thể loại B hoặc H. Giữ nguyên: BH → I.

 $GC \rightarrow A$:

Kiểm tra loại G: $\{C\}^+ = \{C\}$ (không suy ra A).

Kiểm tra loại C: $\{G\}^+ = \{G\}$ (không suy ra A).

Không thể loại G hoặc C. Giữ nguyên: GC → A.

 $AE \rightarrow G$:

Kiểm tra loại A: $\{E\}^+ = \{E\}$ (không suy ra G).

Kiểm tra loại E: $\{A\}^+ = \{A\}$ (không suy ra G).

Không thể loại A hoặc E. Giữ nguyên: $AE \rightarrow G$.

 $I \rightarrow J, D \rightarrow B, I \rightarrow H$: Phần trái chỉ có một thuộc tính, không thể loại.

Tập F₄ giữ nguyên:

 $F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$

Bước 3: Loại bỏ phụ thuộc hàm dư thừa

 $BH \rightarrow I$: Loại $BH \rightarrow I$, tính $\{BH\}^+$ với $F' = \{GC \rightarrow A, I \rightarrow J,$

 $AE \rightarrow G, D \rightarrow B, I \rightarrow H$: $BH^+ = \{B, H\}$ (không suy ra I).

Không dư thừa.

 $GC \rightarrow A$, $I \rightarrow J$, $AE \rightarrow G$, $D \rightarrow B$, $I \rightarrow H$: Tương tự, không dư thừa.

Tập F₄ không thay đổi:

 $F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$

Phủ tối thiểu của $F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$

```
I Bài tập tổng hợp
```

```
1/ Cho biết dạng chuẩn của các lược đồ quan hệ sau:
                           a) Q(ABCDEG);
                      F=\{A\rightarrow BC, C\rightarrow DE, E\rightarrow G\}
                          b) Q(ABCDEGH);
                       F=\{C\rightarrow AB, D\rightarrow E, B\rightarrow G\}
                           c) Q(ABCDEGH)
                       F=\{A\rightarrow BC, D\rightarrow E, H\rightarrow G\}
                           d) Q(ABCDEG);
                 F=\{AB\rightarrow C, C\rightarrow B, ABD\rightarrow E, G\rightarrow A\}
                          e) Q(ABCDEGHI);
   F={AC→B,BI→ACD,ABC→D,H→I,ACE→BCG,CG→AE}
```

I Bài tập tổng hợp

1/ Cho biết dạng chuẩn của các lược đồ quan hệ sau:

a) Q(ABCDEG); $F=\{A\rightarrow BC, C\rightarrow DE, E\rightarrow G\}$

 $TN=\{A\}$

TG={CE}

- E→G có vế trái không phải siêu khóa => Không đạt chuẩn BCNF
- E→G có vế trái không là khóa và vế phải không là tập con của khóa => Không đạt chuẩn 3
- Lược đồ chỉ có 1 khóa và khóa có duy nhất 1 thuộc tính
- =>Đạt chuẩn 2

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	A	ABCDEG	A	A
С	AC	ABCDEG	AC	
Е	AE	ABCDEG	AE	
CE	ACE	ABCDEG	ACE	

I Bài tập tổng hợp

1/

b) Q(ABCDEGH); $F=\{C\rightarrow AB, D\rightarrow E, B\rightarrow G\}$

TN={CDH}

TG={B}

- B→G có vế trái không phải siêu khóa => Không đạt chuẩn BCNF
- B→G có vế trái không là khóa và vế phải không là tập con của khóa => Không đạt chuẩn 3
- C+ ={ABC} chứa phần tử không phải khóa => Không đạt chuẩn 2 =>Đạt chuẩn 1.

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	CDH	ABCDEGH	CDH	CDH
В	BCDH	ABCDEGH	BCDH	

I Bài tập tổng hợp

1/

c) Q(ABCDEGH) $F=\{A\rightarrow BC, D\rightarrow E, H\rightarrow G\}$

TN={ADH}

 $TG=\{\emptyset\}$

- A→BC có vế trái không phải siêu khóa => Không đạt chuẩn BCNF
- Phân rã vế phải của F

Ta có A→B có vế trái không là khóa và vế phải không là tập con của khóa => Không đạt chuẩn 3

- D+={DE} chứa phần tử không phải khóa => Không đạt chuẩn 2

=>Đạt chuẩn 1.

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	ADH	ABCDEGH	ADH	ADH

I Bài tập tổng hợp

1/ d) Q(ABCDEG); F={AB→C, C→B, ABD→E, G→A}

TN={DG}

TG={ABC}

- ABD→E có vế trái không phải siêu khóa
- => Không đạt chuẩn BCNF
- ABD→E có vế trái không là khóa và vế phải không là tập con của khóa => Không đạt chuẩn 3
- -ABD+={ABCDEG} chứa phần tử không phải khóa => Không đạt chuẩn 2

=>Đạt chuẩn 1.

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	DG	ADG		
A	ADG	ADG		
В	BDG	ABCDEG	BDG	BDG
С	CDG	ABCDEG	CDG	CDG
AB	ABDG	ABCDEG	ABDG	
AC	ACDG	ABCDEG	ACDG	
BC	BCDG	ABCDG	BCDG	
ABC	ABCDG	ABCDEG	ABCDG	

I Bài tập tổng hợp

1/ e) Q(ABCDEGHI); F={AC→B, BI→ACD, ABC→D, H→I, ACE→BCG, CG→AE}
TN={H}

TG={ABCEGI}

- AC →B có vế trái không phải siêu khóa => Không đạt chuẩn BCNF
- Phân rã F

Ta có BI→ D có vế trái không là khóa và vế phải không là tập con của khóa => Không đạt chuẩn 3

- AC+={ABCD} chứa phần tử không phải khóa => Không đạt chuẩn 2
- =>Đạt chuẩn 1.

I Bài tập tổng hợp

1/ e) Q(ABCDEGHI); F={AC→B, BI→ACD, ABC→D, H→I, ACE→BCG, CG→AE}

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	Н	HI		
A	AH	AHI		
В	BH	BHIACD		
С	CH	CHI		
Е	EH	EHI		
G	GH	GHI		
I	IH	IH		
AB	ABH	ABHICD		
AC	ACH	ACHBDI		
AE	AEH	AEHI		
AG	AHG	AHGI		
AI	AHI	AHI		
BC	BCH	BCHIAD		
BE	BEH	BEHIACDG	BEH	BEH
BG	BGH	BGHIACDE	BGH	BGH
BI	BHI	BHIACD		
CE	CEH	CEHI		
CG	CGH	CGHIAEBD	CGH	CGH
CI	CHI	CHI		
EG	EGH	EGHI		
EI	EHI	EI		
GI	GHI	GHI		
ABC	ABCH	ABCHDI		
ABE	ABEH	ABEHICD	ABEH	
ABG	ABGH	ABGHICD		
ABI	ABHI	ABHICD		

ACE	ACEH	ACEHBDIGE	ACEH	ACEH
ACG	ACGH	ABCDEGHI	ACGH	
ACI	ACHI	ACHIBD		
AEG	AEGH	AEGHI		
AEI	AEHI	AEHI		
AGI	AGHI	AGHI		
BCE	BCEH	BCEHIADG	BCEH	BCEH
BCG	BCGH	BCGHIADE	BCGH	BCGH
BCI	BCHI	BCHIAD		
BEG	BEGH	ABCDEGHI	BEGH	
BEI	BEHI	ABCDEGHI	BEHI	
BGI	BGHI	BGHIACDE	BGHI	BGHI
CEG	CEGH	ABCDEGHI	CEGH	
CEI	CEHI	CEHI		
CGI	CGHI	ABCDEGHI	CGHI	
EGI	EGHI	EGHI		
ABCE	ABCEH	ABCDEGHI	ABCEH	
ABCG	ABCGH	ABCDEGHI	ABCGH	
ABCI	ABCHI	ABCHID		
BCEG	BCEGH	ABCDEGHI	BCEGH	
BCEI	BCEHI	ABCDEGHI	BCEHI	
CEGI	CEGHI	ABCDEGHI	CEGHI	
ABCEG	ABCEGH	ABCDEGHI	ABCEGH	
ABCEI	ABCEHI	ABCDEGHI	ABCEHI	
BCEGI	BCEGHI	ABCDEGHI	BCEGHI	
ABCEGI	ABCEGHI	ABCDEGHI	ABCEGHI	

I Bài tập tổng hợp

2/ Kiểm tra dạng chuẩn Q(C,S,Z) F= {CS→Z;Z→C}

TN={S}

TG={CZ}

- Z→ C có vế trái không phải siêu khóa
- => Không đạt chuẩn BCNF
- Z→ C có vế phải là tập con của khóa
- CS → Z có vế trái là khóa và vế phải là tập con của khóa
- => Đạt chuẩn 3

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	S	S		
С	CS	CSZ	CS	CS
Z	SZ	CSZ	SZ	ZS
CZ	CSZ	CSZ	CSZ	

I Bài tập tổng hợp

3/ Cho lược đồ CSDL
Kehoach(NGAY,GIO,PHONG,MONHOC,GIAOVIEN)
F={NGAY,GIO,PHONG→MONHOC
MONHOC,NGAY→GIAOVIEN
NGAY,GIO,PHONG→GIAOVIEN
MONHOC→GIAOVIEN}

a) Xác định dạng chuẩn cao nhất của Kehoach

```
I Bài tập tổng hợp

3/ Cho lược đồ CSDL

Gọi NGAY,GIO,PHONG,MONHOC,GIAOVIEN tương ứng với A,B,C,D,E

Ta có F={ABC→D,A→E, ABC→E, D→E}

TN={ABC}

TG={D}
```

- A→ E có vế trái không phải siêu khóa => Không đạt chuẩn BCNF
- A→ E có vế trái không là khóa và vế phải không là tập con của khóa => Không đạt chuẩn 3
- A+ ={AE} chứa phần tử không phải khóa => Không đạt chuẩn 2 =>Đạt chuẩn 1.
- Vậy dạng chuẩn cao nhất của Kehoach là 1NF

I Bài tập tổng hợp

3/

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	ABC	ABCDE	ABC	ABC
D	ABCD	ABCDE	ABC	

I Bài tập tổng hợp

```
4/ Cho lược đồ quan hệ Q(A,B,C,D) và tập phụ thuộc hàm F
```

 $F = \{A \rightarrow B; B \rightarrow C; D \rightarrow B\}$

 $C = {Q_1(A,C,D); Q_2(B,D)}$

a) Xác định các F_i (những phụ thuộc hàm F được bao trong Q_i)

```
4/
Xét từng phụ thuộc trong F:
A→B
\{A,B\}\subseteq Q1(A,C,D)? \rightarrow Không có B trong Q1
\{A,B\}\subseteq Q2(B,D)? \rightarrow Không có A trong Q2
⇒ Không thuộc F1 hoặc F2
B→C
\{B,C\}\subseteq Q1(A,C,D)? \rightarrow Không có B
\{B,C\}\subseteq Q2(B,D)? \rightarrow Không có C
⇒ Không thuộc F1 hoặc F2
D→B
\{D,B\}\subseteq Q1(A,C,D)? \rightarrow Không có B
\{D,B\}\subseteq Q2(B,D)? \rightarrow C\acute{o}
⇒ Thuộc F2
Vậy:
F1=Ø
F2={D→B}
```

I Bài tập tổng hợp

5/ Giả sử ta có lược đồ quan hệ Q(C,D,E,G,H,K) và tập phụ thuộc hàm F như sau;

 $F = \{CK \rightarrow H; C \rightarrow D; E \rightarrow C; E \rightarrow G; CK \rightarrow E\}$

- a) Từ tập F, hãy chứng minh EK → DH
- b) Tìm tất cả các khóa của Q.
- c) Xác định dạng chuẩn của Q.

l Bài tập tổng hợp

- a) Từ tập F, hãy chứng minh EK → DHTính (EK)+
 - 1. Bắt đầu: EK
 - 2
 - 3. Áp dụng E→C⇒ thêm C
 - $4. \Rightarrow EK+=\{E,K,C\}$
 - $5.\text{Áp dụng C} \rightarrow \text{D} \Rightarrow \text{thêm D}$
 - 6. **⇒EK+={E,K,C,D**
 - 7.Áp dụng E→G ⇒ thêm G
 - 8. \Rightarrow EK+={E,K,C,D,G}
 - 9.Từ C và K: CK→H⇒ thêm H
- 10. \Rightarrow EK+={E,K,C,D,G,H}

Kết luận: Đã chứng minh EK→DH đúng theo F+

b) Tìm tất cả các khóa của Q. Tập thuộc tính của Q là {C, D, E, G, H, K} Xét EK: $E \rightarrow C \Rightarrow có C$

 $C \rightarrow D \Rightarrow co D$

 $E \rightarrow G \Rightarrow co' G$

 $CK \rightarrow H$ (CK có vì đã có C và K) \Rightarrow có H

EK+ = {E, K, C, D, G, H} = đầy đủ thuộc tính ⇒ EK là khóa

Xét CK:

 $CK \rightarrow E \Rightarrow co' E$

 $E \rightarrow C, G \Rightarrow coc G$

 $C \rightarrow D \Rightarrow co D$

 $CK \rightarrow H \Rightarrow co' H$

 $CK^+ = \{C, K, E, D, G, H\} = day du \Rightarrow CK cũng là khóa$

Không có tập con nào của EK hoặc CK có bao đóng chứa đủ toàn bộ thuộc tính ⇒ không có khóa nào nhỏ hơn

Vậy tập khóa của Q là {CK, EK}

l Bài tập tổng hợp

- c) Xác định dạng chuẩn của Q.
- Giả sử Q đang ở 1NF (mọi giá trị nguyên tố)

Xét 2NF:

- Điều kiện để vi phạm 2NF: tồn tại phụ thuộc không tầm thường từ một phần của khóa chính → thuộc tính không khóa.
- C → D: C là một phần của CK, mà D không thuộc khóa ⇒ vi phạm 2NF
- E → C: E là một phần của EK, C không thuộc khóa ⇒ vi phạm 2NF
- E→G: tương tự → vi phạm 2NF
- -> Q không đạt 2NF

```
6/ Cho lược đồ quan hệ Q(S,I,D,M)
```

$$F = \{f_1:SI \rightarrow DM; f_2:SD \rightarrow M; f_3:D \rightarrow M\}$$

- a) Tính bao đóng D+, SD+, SI+
- b) Tìm tất cả các khóa của Q
- c) Tìm phủ tối thiểu của F
- d) Xác định dạng chuẩn cao nhất của Q

```
6/ Cho lược đồ quan hệ Q(S,I,D,M)
```

$$F = \{f_1:SI \rightarrow DM; f_2:SD \rightarrow M; f_3:D \rightarrow M\}$$

- a) Tính bao đóng D+, SD+, SI+
- b) Tìm tất cả các khóa của Q
- c) Tìm phủ tối thiểu của F
- d) Xác định dạng chuẩn cao nhất của Q

```
a) Tính bao đóng D+, SD+, SI+
Bao đóng của D: D+
f_3: D \to M
D \subseteq X_0 \Rightarrow \acute{a}p dụng được
\to X1=X0U\{M\}=\{D,M\}
f_1: SI \to DM \to không \acute{a}p dụng (vì không có S, I)
f_2: SD \to M \to không \acute{a}p dụng (không có S)
Không còn phụ thuộc \acute{a}p dụng được
\to D^+ = \{D, M\}
```

```
Bao đóng của SD: SD+
f_2: SD \rightarrow M
SD \subseteq X_0 \Rightarrow \text{áp dụng được}
 \rightarrow X1=X0 \cup {M}={S,D,M}
f_3: D \rightarrow M
 D \subseteq X_1 \Rightarrow M \text{ dã có, không đổi}
f_1: SI \rightarrow DM
thiếu I → không áp dụng
Không còn phụ thuộc áp dụng được
 \rightarrow SD<sup>+</sup> = {S, D, M}
Bao đóng của SI: SI+
f_1: SI \rightarrow DM
SI \subseteq X_0 \Rightarrow áp dụng được
 \rightarrow X1=X0 \cup {D,M}={S,I,D,M}
f_2: SD \rightarrow M
 S, D \in X_1 \Rightarrow SD \subseteq X_1
 → M đã có rồi ⇒ không đổi
f_3: D \rightarrow M
 D \subseteq X_1 \Rightarrow M \text{ dã có} \Rightarrow \text{không đổi}
Không còn phụ thuộc áp dụng được
 \rightarrow SI+ = {S, I, D, M}
```

I Bài tập tổng hợp

b) Tìm tất cả các khóa của Q Bước 1: Xác định tập thuộc tính của quan hệ Q:

 $\rightarrow U=\{S,I,D,M\}$

Bước 2: Tìm tập bao đóng của từng nhóm thuộc tính để tìm khóa

 $SI+=\{S,I,D,M\}=U\rightarrow SI$ là khóa

Bước 3: Kiểm tra xem có thể loại bớt thuộc tính khỏi SI không

Thử loại S:

 $I^+ = \{I\} \rightarrow \text{không dủ}$

Thử loại I:

 $S^+ = \{S\}$

 \rightarrow SD+ = {S, D, M} (không có I) \rightarrow

không đủ

⇒ Không thể loại bỏ S hoặc I

Kết luận: Khóa duy nhất là SI

Bước 1: Chuẩn hóa vế phải – tách từng phụ thuộc có nhiều thuộc tính ở vế phải

 $f_1: SI \rightarrow DM \rightarrow tách thành:$

 $f_1.1: SI \rightarrow D$

 $f_1.2: SI \rightarrow M$

Giờ F trở thành:

 $f_1.1: SI \rightarrow D$

 $f_1.2: SI \rightarrow M$

 $f_2: SD \rightarrow M$

 $f_3: D \rightarrow M$

Bước 2: Kiểm tra phụ thuộc dư thừa

Xét f₂: SD → M

D → M đã có trong f₃

→ Nếu đã có D rồi thì không cần SD

→ SD → M là dư thừa, có thể loại bỏ

Bước 3: Phủ tối thiểu sau khi loại bỏ phụ thuộc dư thừa

Fmin = $\{SI \rightarrow D; SI \rightarrow M; D \rightarrow M\}$

I Bài tập tổng hợp

d) Xác định dạng chuẩn cao nhất của Q

Bước 1: Kiểm tra 1NF

Lược đồ này có các thuộc tính S,I,D,M các giá trị đều là nguyên tử, nên ở 1NF.

Bước 2: Kiểm tra 2NF

 Tất cả các phụ thuộc đều không có thuộc tính nào phụ thuộc vào một phần của khóa, do đó lược đồ này ở 2NF.

Bước 3: Kiểm tra 3NF

- Tất cả các thuộc tính không phải khóa đều phụ thuộc vào một khóa chính và không có phụ thuộc chuyển tiếp (chẳng hạn D→M không chuyển tiếp qua khóa).
- Do đó, lược đồ này ở 3NF.

Kết luận: Lược đồ này ở 3NF.

```
7/ Kiểm Tra Dạng Chuẩn
a)
Q(A,B,C,D) F={CA→D; A→B}
b) Q(S,D,I,M) F={SI→D;SD→M}
c) Q(N,G,P,M,GV) F={N,G,P→M;M→GV}
d) Q(S,N,D,T,X) F={S→N; S→D; S→T; S→X}
```

I Bài tập tổng hợp

```
a) Q(A,B,C,D) F=\{CA \rightarrow D; A \rightarrow B\}
F = \{CA \rightarrow D; A \rightarrow B\}
Bước 1: Tìm khóa
A \rightarrow B \Rightarrow A^+ = \{A, B\}
CA \rightarrow D \Rightarrow v\acute{o}i C, A có thể suy ra D
Kiểm tra CA+:
CA \rightarrow D, A \rightarrow B \Rightarrow CA^{+} = \{C, A, D, B\} = toàn bộ
⇒ Khóa là CA
Bước 2: Xét 1NF
Giả sử các thuộc tính là nguyên tố ⇒ Q đạt 1NF
Bước 3: Xét 2NF
Khóa: CA
A → B: A là một phần của CA và B không thuộc khóa ⇒
vi phạm 2NF
⇒ Q chỉ đạt 1NF
```

```
F = \{SI \rightarrow D; SD \rightarrow M\}
Bước 1: Tìm khóa
SI → D
SD \rightarrow M
Kiểm tra SI+: SI → D \Rightarrow SI+ = {S, I, D}
nhưng thiếu M ⇒ không đủ
Kiểm tra SDI+:
SD \rightarrow M \Rightarrow com M, SI \rightarrow D \Rightarrow com D
\Rightarrow SDI+ = {S, D, I, M} = đầy đủ
⇒ Khóa là SDI
Bước 2: Xét 1NF
Giả sử đúng
Bước 3: Xét 2NF
SI → D: SI là một phần của SDI ⇒ vi phạm 2NF
SD → M: SD cũng là một phần ⇒ vi phạm 2NF
⇒ Q chỉ đạt 1NF
```

b) $Q(S,D,I,M) F={SI \rightarrow D;SD \rightarrow M}$

I Bài tập tổng hợp

```
c) Q(N,G,P,M,GV) F=\{N,G,P\rightarrow M;M\rightarrow GV\}

F=\{NGP\rightarrow M;M\rightarrow GV\}
```

Bước 1: Tìm khóa

 $NGP \rightarrow M \Rightarrow co' M$

 $M \rightarrow GV \Rightarrow co' GV$

 \Rightarrow NGP+ = {N, G, P, M, GV} = đầy đủ

⇒ Khóa là NGP

Bước 2: Xét 1NF

Giả sử đúng

Bước 3: Xét 2NF

NGP là khóa

M → GV: M không là khóa và không phải là một phần của khóa, nên không vi phạm 2NF

⇒ Q đạt 2NF

Bước 4: Xét 3NF

M → GV: M không là siêu khóa

⇒ GV phải là thuộc tính prime mới không vi phạm 3NF

Nhưng GV không nằm trong khóa ⇒ vi phạm 3NF

⇒ Q đạt 2NF, không đạt 3NF

d) Q(S,N,D,T,X) F={S \rightarrow N; S \rightarrow D; S \rightarrow T; S \rightarrow X} F = {S \rightarrow N; S \rightarrow D; S \rightarrow T; S \rightarrow X} Bước 1: Tìm khóa S \rightarrow {N, D, T, X} \Rightarrow S+ = {S, N, D, T, X} = đầy đủ \Rightarrow Khóa là S

Bước 2: Xét 1NF

Giả sử đúng

Bước 3: Xét 2NF

Tất cả phụ thuộc đều là từ khóa đầy đủ S ⇒ không vi phạm

2NF

Bước 4: Xét 3NF và BCNF

S là khóa ⇒ tất cả phụ thuộc có vế trái là khóa ⇒ đều thỏa

3NF và BCNF

⇒ Q đạt BCNF

THANK YOU