GCN (Graph Convolution Network)

https://youtu.be/e_5s4uLw-d8

Graph란

Convolution이란

Graph란

- node와 edge로 이루어진 자료구조
 - Undirected Graph <-> Directed Graph
 - Weighted Graph

Convolution이란

- filter를 이용하여 activation map을 업데이트 하는 layer
 - CNN의 Convolution Layer

- CNN과의 공통점
 - weight sharing
 - reduce the number of parameter
 - => less overfitting, low computational cost
 - learn local features

- 목표
 - Graph에서 feature를 추출하여 각 노드를 update 하는 것

	0	1	2	3	4	5
0	0	1	0	1	0	0
1	1	0	1	1	0	0
2	0	1	0	1	1	1
3	1	1	1	0	1	0
4	0	0	1	1	0	0
5	0	0	1	0	0	0

Adjacency matrix

	0	1	2	3	4
0	255	24	0	13	0
1	146	27	75	0	0
2	124	0	45	245	0
3	86	157	0	56	0
4	0	0	13	11	45
5	46	0	45	0	34

Node feature matrix

$$H_4^{(l+1)} = \sigma(H_2^{(l)}W^{(l)} + H_3^{(l)}W^{(l)} + H_4^{(l)}W^{(l)})$$

$$H^{(l+1)} = \sigma(AH^{(l)}W^{(l)})$$

• $H^{(l+1)} = \sigma(AH^{(l)}W^{(l)})$

Χ

6

Node feature matrix

H^(l)

64

=> 6

Node
H^(l+1)

Weight matrix
W^(l)

Node feature matrix
H^(l+1)

Readout

Node-wise summation

$$z_G = \tau \left(\sum_{i \in G} MLP\left(H_i^{(L)}\right) \right)$$

Q & A