Practice quiz on Types of Functions

PUNTOS TOTALES DE 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do \it{not} define a function $f:A\to B$?

0 / 1 puntos

- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- f(1) = 5, f(2) = 8, and f(10) = 40.
- (1) = 4, f(2) = 4, and f(10) = 4.
- $\bigcirc \ f(a) = 4a$, for each $a \in A$

Incorrecto

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. This is a perfectly fine rule. Don't be tricked by the fact that all of the elements in A get transformed into the same element in B. Nothing in the definition of function forbids that.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1 / 1 puntos

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person \boldsymbol{a} if we have a false positive?

$$\bigcap T(a) = + \text{ and } D(a) = S$$

$$\bigcirc$$
 $T(a) = + \text{ and } D(a) = H$

$$\bigcirc T(a) = - \text{ and } D(a) = S$$

$$\bigcap T(a) = - \text{ and } D(a) = H$$

3.	Consider the function $g:\mathbb{R} o\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are <i>not</i> on the graph of g ?	1 / 1 puntos
	\bigcirc (1,0)	
	\bigcirc $(0,-1)$	
	\bigcirc $(-1,0)$	
	$\begin{tabular}{c} \checkmark \textbf{ Correcto} \\ & \textbf{Recall that the graph of } g \textbf{ consists of all points } (x,y) \textbf{ such that } y=g(x). \textbf{ Here } \\ & g(2)=3\neq -1, \textbf{ so the point } (2,-1) \textbf{ is } \textbf{ emph{not} on the graph of } g. \end{tabular}$	
,		
4.	Let the point $A=(2,4)$. Which of the following graphs does <i>not</i> contain the point A ?	1/1 puntos
	O The graph of $s(x) = x^2$	
	The graph of $f(x) = 2x$	
	lacksquare The graph of $h(x)=x-1$	
	\bigcirc The graph of $g(x)=x+2$	
	5. Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1 / 1 puntos
	All statements are correct	
	lacktriangledown h is a strictly decreasing function	
	$\bigcirc \ \ h$ is neither a strictly increasing function nor a strictly decreasing function.	
	igcirc h is a strictly increasing function	
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1/1 puntos
	Which of the following is a possible value for $f(3.7)$?	
	17	
	\bigcirc -3	
	○ 3	
	○ 14.7	