

Seminar

Multivariate Statistics for Biological Sciences

Anderson Freitas, MSc.

Piracicaba – SP – Brazil May, 2025

Multivariate Statistics

Multivariate statistics (MVA) is a subdivision of statistics encompassing the **simultaneous observation and analysis of more than one outcome variable**.

The main point of a multivariate analysis is to consider several related variables **simultaneously**, all of which are considered equally important, at least initially (MANLY, 2008).

Examples of usages of MVA

Treatment	Temperature	Oxygen	pН	Conductivity	Alkalinity	Hardness	Ammonium	Nitrites
BioMos2%	27.32		6.78	578.3	26.67	13.33	0.2	0.61
BioMos2%	27.4	7.11	6.08	578.3	6.67	33.33	0	0.16
BioMos2%	27.46	6.95	5.19	131.3	18.33	3.33	0	0.21
BioMos2%	27.8	6.88	5.56	266.9	20	21.67	0	0.02
BioMos2%	27.76	6.75	6.35	207	16.67	11.67	0	0.05
BioMos2%	27.82	6.68	7.1	160.6	30	3.33	0	0.05
BioMos2%	27.67	7.66	7.33	320.4	19.7	14.44	0.03	0.18
BioMos2%	27.48	7.55	7.22	277.4	18.5	14.63	0.01	0.11
Biomos4%	27.1	7.76	6.98	615	23.33	13.33	0.01	0.6
Biomos4%	26.97	7.16	6.02	615	11.67	33.33	0	0.44
Biomos4%	27.06	6.88	5.01	117.8	3.33	3.33	0	0.01
Biomos4%	27.21	6.86	5.39	204.9	25	6.67	0	0.19
Biomos4%	27.31	6.79	6.22	204.7	16.67	10	0	0.27
Biomos4%	27.47	6.53	7.1	107.8	23.33	1.67	0	0.03
Biomos4%	27.56	7.41	7.42	310.87	17.22	11.39	0.00	0.26
Biomos4%	27.39	7.52	7.34	260.18	16.20	11.06	0.00	0.20
Biomos6%	26.63	7.66	6.82	630.3	26.67	16.67	0	1.83
Biomos6%	26.47	7.15	6.15	630.3	1.67	45	0	0.16
Biomos6%	26.51	7	5.71	116	6.67	6.67	0	2.11
Biomos6%	26.59	6.89	6.1	460.7	16.67	13.33	0	4.13
Biomos6%	26.72	6.82	6.39	215.7	40.33	13.33	0.1	1.27
Biomos6%	26.69	6.8	7.38	118	21.67	1.67	0	0.02
Biomos6%	26.68	7.67	7.67	361.83	18.95	16.11	0.02	1.59
Biomos6%	26.33	7.58	7.54	317.09	17.66	16.02	0.02	1.55

The Standard Figure - Expectation

The Standard Figure - Reality

Considere dois indivíduos nos quais foi medida a variável quantitativa X. Naturalmente, uma medida de distância entre esses indivíduos seria:

$$d_{12} = x_1 - x_2$$

Ou ainda:

$$d_{12} = |x_1 - x_2|$$

$$d_{12} = \sqrt{(x_1 - x_2)^2}$$

No caso em que *p* variáveis quantitativas foram medidas, pode-se generalizar para o caso multivariado, conhecida como **distância euclidiana**:

$$d_{ij} = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{i'j})^2}$$

No caso em que *p* variáveis quantitativas foram medidas, pode-se generalizar para o caso multivariado, conhecida como **distância euclidiana**:

$$d_{ij} = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{i'j})^2}$$

 Em muitos métodos multivariados, a padronização de variáveis é um procedimento útil e, muitas vezes, necessário para eliminar influências das diferentes unidades de medida das variáveis nos resultados.

A principal forma de padronização de variáveis é:

$$z = \frac{x - \mu}{\sigma}$$

Tabela 1. Distâncias euclidianas entre sete grupos caninos.

	CM	CD	LC	LI	Cuon	Dingo	СРН
CM	-	-	-	-	-	-	-
CD	1,91	-	-	-	-	-	-
LC	5,38	7,12	-	-	-	-	-
LI	3,38	5,06	2,14	-	-	-	-
Cuon	1,51	3,19	4,57	2,91	-	-	-
Dingo	1,56	3,18	4,21	2,20	1,67	-	-
СРН	0,66	2,39	5,12	3,24	1,26	1,71	-

	CM	CD	LC	LI	Cuon	Dingo	CPH
CM	-	-	-	-	-	-	-
CD	1,91	-	-	-	-	-	-
LC	5,38	7,12	-	-	-	-	-
LI	3,38	5,06	2,14	-	-	-	-
Cuon	1,51	3,19	4,57	2,91	-	-	-
Dingo	1,56	3,18	4,21	2,20	1,67	-	-
CPH	0,66	2,39	5,12	3,24	1,26	1,71	-

Distância

$$X_1 = +\mathbf{0}, \mathbf{85} \, F_1 - 0,10 \, F_2 - 0,27 \, F_3 + 0,36 \, F_4 + e_1 \, (0,93)$$

 $X_2 = +0,11 \, F_1 - 0,30 \, F_2 - \mathbf{0}, \mathbf{86} \, F_3 + 0,10 \, F_4 + e_2 \, (0,85)$
 $X_3 = -0,03 \, F_1 - 0,32 \, F_2 + \mathbf{0}, \mathbf{89} \, F_3 + 0,09 \, F_4 + e_3 \, (0,91)$
 $X_4 = -0,19 \, F_1 + 0,04 \, F_2 + \mathbf{0}, \mathbf{64} \, F_3 - 0,14 \, F_4 + e_4 \, (0,46)$
 $X_5 = -0,02 \, F_1 - 0,08 \, F_2 + 0,04 \, F_3 - \mathbf{0}, \mathbf{95} \, F_4 + e_5 \, (0,92)$
 $X_6 = -0,35 \, F_1 + 0,48 \, F_2 + 0,15 \, F_3 - \mathbf{0}, \mathbf{65} \, F_4 + e_6 \, (0,79)$
 $X_7 = -0,08 \, F_1 + \mathbf{0}, \mathbf{93} \, F_2 + 0,00 \, F_3 + 0,01 \, F_4 + e_7 \, (0,87)$
 $X_8 = -\mathbf{0}, \mathbf{91} \, F_1 + 0,17 \, F_2 + 0,12 \, F_3 - 0,04 \, F_4 + e_8 \, (0,88)$
 $X_9 = -\mathbf{0}, \mathbf{73} \, F_1 - \mathbf{0}, \mathbf{57} \, F_2 + 0,30 \, F_3 + 0,14 \, F_4 + e_9 \, (0,87)$

Back to the basics: ANOVA

Tabela 1. Quadro da ANOVA de um fator.

Causas de variação	Graus de liberdade	Soma de Quadrados	Quadrados médios	F
Fatores	k-1	SQ_{Trat}	QM_{Trat}	$F = \frac{QM_{Trat}}{}$
Resíduo	k(r-1)	SQ_{Res}	QM_{Res}	QM_{Res}
Total	<i>kr</i> − 1	SQ_{Total}		

p-value

•
$$SQ_{Total} = \sum y^2 - C$$

•
$$SQ_{Res} = SQ_{Total} - SQ_{Trat}$$

•
$$SQ_{Trat} = \frac{\sum T^2}{r} - C$$

•
$$C = \frac{(\sum y)^2}{n}$$

ANOVA Output

Tests of Between-Subjects Effects

Dependent Variable: Political interest

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	5645.998ª	5	1129.200	78.538	<.001
Intercept	132091.906	1	132091.906	9187.227	<.001
gender	8.420	1	8.420	.586	.448
education_level	5446.697	2	2723.348	189.414	<.001
gender * education_level	210.338	2	105.169	7.315	.002
Error	747.644	52	14.378		
Total	140265.750	58			
Corrected Total	6393.642	57			

a. R Squared = .883 (Adjusted R Squared = .872)

MANOVA

Or a PERMANOVA for non-parametric data!!!

The hypothesis to be verified is:

$$H0 = \mu 1 = \mu 2 = \cdots = \mu I$$

In other words, the hypothesis is that there are no differences between the true treatment mean vectors.

The alternative hypothesis is that **at least one of the mean vectors** is **different** from the others.

Hands on

¡Muchas gracias!

@FreitasSays

Contato:

andersonfreitas@usp.br anderson.defreitas@kaust.edu.sa

Follow me on Social Media