Теорема Куранта

А. Завадский

1. Теорема Куранта

Введём в пространстве \mathbb{R}^n скалярное произведение: $(x,y)=x^Ty$.

Теорема 1 (Р. Курант). Пусть A — симметрическая вещественная матрица размера $n \times n$, $\lambda_1 \leqslant \lambda_2 \leqslant ... \leqslant \lambda_n$ — её собственные значения, расположенные в порядке возрастания. Будем обозначать через L_k множество всех k-мерных подпространств в \mathbb{R}^n , а его элементы, т.е. подпространства размерности k, — символом W. Тогда

$$\lambda_k = \min_{W \in L_k} \max_{x \in W} (x, Ax) = \max_{W \in L_{n-k+1}} \min_{x \in W} (x, Ax).$$

Доказательство.

В некотором ортонормированном базисе матрица A диагональна, т.е. $(x, Ax) = \lambda_1 x_1^2 +$ $... + \lambda_n x_n^2$. Рассмотрим (n-k+1)-мерное подпространство $W_1 = \{x \mid x_1 = ... = x_{k-1} = 0\}$ и k-мерное подпространство $W_2 = \{x \mid x_{k+1} = ... = x_n = 0\}$. Заметим, что для любого вектора $x \in W_1$, имеющего единичную норму,

$$(x, Ax) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2 \geqslant \lambda_k (x_k^2 + \dots + x_n^2) = \lambda_k.$$
 (1)

Значит, $\lambda_k \leqslant \min_{\substack{x \in W_1 \\ \|x\| = 1}} (x, Ax)$. Тогда $\lambda_k \leqslant \max_{W \in L_{n-k+1}} \min_{\substack{x \in W \\ \|x\| = 1}} (x, Ax)$.

Для любого вектора $x \in W_2$, ||x|| = 1 имеем

$$(x, Ax) = \lambda_1 x_1^2 + \dots + \lambda_k x_k^2 \le \lambda_k (x_1^2 + \dots + x_k^2) = \lambda_k,$$
 (2)

т.е. $\lambda_k \geqslant \max_{x \in W_2} (x, Ax)$. Тогда $\lambda_k \geqslant \min_{W \in L_k} \max_{x \in W} (x, Ax)$. $\|x\| = 1$ Пусть W_3 — произвольное k-мерное подпространство. Так как $\dim W_1 + \dim W_3 > n$, то $W_1 \cap W_3 \neq \{0\}$. Тогда найдётся вектор $x \in W_1 \cap W_3$ такой, что $\|x\| = 1$ и для него выполнено неравенство (1). Поэтому $\lambda_k \leqslant \max_{x \in W_1 \cap W_2} (x, Ax) \leqslant \max_{x \in W_2} (x, Ax)$. Подпространство $W_2 \in L_k$ мы выбрали произвольным образом, значит $\lambda_k \leqslant \min_{W \in L_k} \max_{x \in W} (x, Ax)$.

Взяв теперь в качестве W_3 произвольное (n-k+1)-мерное подпространство и рассмотрев некоторый вектор единичной нормы в $W_2 \cap W_3$, получим аналогично, что $\lambda_k \geqslant \min_{x \in W_1} (x, Ax)$.

Тогда
$$\lambda_k \geqslant \max_{W \in L_{n-k+1}} \min_{x \in W} (x, Ax).$$

Замечание: теорема верна и в случае эрмитовой матрицы A и эрмитова скалярного произведения в \mathbb{C}^n , причём доказательство переносится без изменений.

2. Малые колебания при наложении голономных связей

Рассмотрим консервативную лагранжеву систему, заданную лагранжианом $L(q,\dot{q}) =$ $T(q,\dot{q}) - U(q)$, способную совершать малые колебания в положении равновесия q = 0. Пусть $\lambda_1 \leqslant ... \leqslant \lambda_n$ — её собственные значения. Наложим на систему дополнительную голономную автономную связь g(q)=0, такую, что g(0)=0, т.е. положение равновесия удовлетворяет уравнению связи. Считаем также, что g — гладкая функция и $\frac{\partial g}{\partial q}\Big|_{q=0}\neq 0$. На самом деле, можно считать функцию g линейной, т.к. при исследовании малых колебаний рассматривается не сами связи, а их линейные приближения.

Обобщённые координаты можно ввести так, что $g(q)=q_n$, т. е. новая связь задаётся уравнением $q_n=0$. Пусть $\mu_1\leqslant ...\leqslant \mu_{n-1}$ — собственные значения новой системы.

Теорема 2. При наложении связи новые собственные значения чередуются со старыми:

$$\lambda_1 \leqslant \mu_1 \leqslant \lambda_2 \leqslant \dots \leqslant \mu_{n-1} \leqslant \lambda_n.$$

Доказательство основывается на применении теоремы Куранта.

Пусть A — матрица кинетической энергии: $A=a_{ij}(0)$, а B — матрица Гессе потенциальной энергии в нуле: $B=\frac{\partial^2 U(0)}{\partial q_i\partial q_j}$. Числа $\lambda_1,\dots,\lambda_n$ — это собственные числа пары форм с матрицами A и B. В нормальных координатах имеем $(q,Bq)=\lambda_1q_1^2+\dots+\lambda_nq_n^2$ на эллипсоиде $\{q\mid (q,Aq)=1\}$. Рассмотрим (n-1)-мерное подпространство, задаваемое уравнением $q_n=0$. Оно соответствует системе с новой связью. Обозначим через \tilde{L}_k множество k-мерных подпространств, содержащихся в нём. Очевидно, $\tilde{L}_k \subset L_k$. Из первого равенства в теореме Куранта

$$\mu_k = \min_{W \in \tilde{L}_k} \max_{\substack{q \in W \\ \|q\| = 1}} (q, Bq) \geqslant \min_{W \in L_k} \max_{\substack{q \in W \\ \|q\| = 1}} (q, Bq) = \lambda_k,$$

а из второго

$$\mu_k = \max_{W \in \tilde{L}_{n-k}} \min_{\substack{q \in W \\ \|q\| = 1}} (q, Bq) \leqslant \max_{W \in L_{n-k+1}} \min_{\substack{q \in W \\ \|q\| = 1}} (q, Bq) = \lambda_{k+1}.$$

Собственные значения являются квадратами частот малых колебаний систем. Поэтому теорему 2 можно переформулировать следующим образом: при наложении связи частоты колебаний новой системы чередуются с частотами старой.

Список литературы

- [1] В. В. Прасолов. Задачи и теоремы линейной алгебры, М.: МЦНМО, 2016
- [2] С. В. Болотин и др. Теоретическая механика, М.: Академия, 2010