Wormhole Hamiltonian Monte Carlo

Babak Shahbaba¹

Department of Statistics and Department of Computer Science, UCI

AAAI, 2014

Shahbaba (UCI) Wormhole HMC

Motivation

Energy Barrier

Our Solution:

Exploiting and Modifying Geometry

Hamiltonian Monte Carlo (HMC)

The Metropolis Algorithm

- Specify a symmetric transition probability $g(\theta, \theta^*)$ and repeat the following steps for many iterations:
 - ① Given our current state $\theta^{(n)}$, we propose a new state θ^* according to g.
 - Calculated the acceptance probability,

$$a(\theta^{(n)}, \theta^*) = \min(1, \frac{f(\theta^*)}{f(\theta^{(n)})})$$

• Accept the proposed state $\theta^{(n+1)} = \theta^*$ as the new state with probability $a(\theta^{(n)}, \theta^*)$ or remain at the current state $\theta^{(n+1)} = \theta^{(n)}$.

Shahbaba (UCI) Wormhole HMC AAAI, 2014 6 / 27

Hamiltonian Monte Carlo

 Hamiltonian Monte Carlo (HMC) reduces the random walk behavior of Metropolis.

Shahbaba (UCI) Wormhole HMC AAAI, 2014 7 / 2

Hamiltonian Dynamics

• The dynamic system can be represented by the *Hamiltonian* function:

$$H(\theta, p) = U(\theta) + K(p)$$

• Hamilton's equations determine how θ and p change over time:

$$\dot{\theta} = \nabla_p H(\theta, p)$$

$$\dot{p} = -\nabla_{\theta} H(\theta, p)$$

• They define a mapping, T_s , from the state at some time t to the state at time t + s.

Shahbaba (UCI) Wormhole HMC AAAI, 2014 8 / 27

Application in Statistics

- In statistics, the potential energy $U(\theta)$ is the minus log density of the target distribution (e.g., posterior distribution).
- We also introduce fictitious momentum variables p.
- Typically, we set $p \sim N(0, M)$ so

$$K(p) = \sum_{i} p_i^2/2m_i$$

where M is called the *mass matrix* and is usually set to I.

• The joint density of θ and p is

$$P(\theta, p) = \frac{1}{Z} \exp(-H(\theta, p)) = \frac{1}{Z} \exp(-U(\theta)) \exp(-K(p))$$

HMC Overview

Riemannian Manifold HMC

RMHMC

- Girolami and Calderhead (2011) have introduced a new method, called Riemannian Manifold HMC (RMHMC).
- They argue that it is more natural to put the Hamiltonian dynamic on Riemannian manifold of distributions rather than Euclidean space.
- They follow Amari (2000) and use the Fisher information matrix, $G(\theta) = -E\left[\nabla_{\theta}^2 \log f(\theta)\right]$, as a metric on the manifold.
- ullet That is, they use position specific mass matrix, $M=\mathcal{G}(heta)$
- This way, we could explore the parameter space more efficiently by exploiting its geometric properties.

Shahbaba (UCI) Wormhole HMC AAAI, 2014 12 /

HMC vs. RMHMC

Shahbaba (UCI) Wormhole HMC AAAI, 2014 13 /

Wormhole HMC Known Modes

Geodesic

• For a manifold, \mathcal{M} , endowed with a generic metric $G(\theta)$, we define the arclength along the curve $\theta(t):[0,T]\to\mathcal{M}$ as

$$\ell(\theta) := \int_0^T \sqrt{\dot{\theta}(t)^\mathsf{T} G(\theta(t)) \dot{\theta}(t)} dt$$

ullet Given any two points $heta_1, heta_2 \in \mathcal{M}$ there exists a curve

$$\theta(t): [0, T] \rightarrow \mathcal{M}$$

satisfying the boundary conditions

$$\theta(0) = \theta_1, \theta(T) = \theta_2$$

whose arclength is minimal among such curves.

ullet The length of such a minimal curve defines a distance function on ${\cal M}.$

Wormhole Metric

- We start by assuming that the modes are known (possibly through some fast optimization methods).
- We define a new metric, G_W , for which the distance between modes is shortened.
- This way, we can facilitate moving between modes by creating "wormholes" between them.
- Next, we define the overall metric, G, for the whole parameter space of θ as a weighted sum of the base metric G_0 and the wormhole metric G_W ,

$$G(\theta) = (1 - \mathfrak{m}(\theta))G_0(\theta) + \mathfrak{m}(\theta)G_W,$$

Shahbaba (UCI) Wormhole HMC AAAI, 2014 16 / :

Illustration: 2d MoG with tied means

Shahbaba (UCI) Wormhole HMC AAAI, 2014 17 / 27

Wormhole HMC

Effect of wormhole metric diminishes Wormholes interfere with each other

Wormhole HMC *Unknown* Modes

Regeration

- Our solution: search for new modes and update wormhole network at regeneration times
- The transition kernel is regarded as a mixture of two kernels

$$\mathcal{T}(\theta_{t+1}|\theta_t) = S(\theta_t)Q(\theta_{t+1}) + (1 - S(\theta_t))R(\theta_{t+1}|\theta_t)$$

 Regeneration: a state is deemed to come from an independence kernel retrospectively

Shahbaba (UCI) Wormhole HMC

Mode Searching

• At regeneration times, proactively search new modes by optimizing the *tempered residual potential energy*:

$$U_{\mathsf{r}}(oldsymbol{ heta}, T) = -\log\left(f(oldsymbol{ heta}) - \exp\left(rac{1}{T}\log q(oldsymbol{ heta})
ight) + c
ight)$$

◄□▶
■
■
■
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

 Shahbaba (UCI)
 Wormhole HMC
 AAAI, 2014
 21 / 27

Experiments

Mixture of Gaussians with known modes

$$\mathrm{REM}(t) = \|\overline{\boldsymbol{\theta}(t)} - \boldsymbol{\theta}^*\|_1 / \|\boldsymbol{\theta}^*\|_1$$

where $\overline{\theta(t)}$ is the mean of MCMC samples obtained by time t and θ^* is the true mean.

Shahbaba (UCI) Wormhole HMC AAAI, 2014 23

Sensor Network Localization

$$Y_{ij}|Z_{ij} = 1, x \sim \mathcal{N}(\|x_i - x_j\|, \sigma^2)$$

Shahbaba (UCI)

Mixture of Gaussians with unknown modes

Thank You!