

Analisis de señnales

Clase 1 - Introducción

Pablo Slavkin

Resumen de seccion 1

- 1. Señales
 - 1.1 Porque digital?
 - 1.2 Señales
 - 1.3 Generacion de señales en Python
 - 1.4 Sistemas

2. ADC

- 2.1 Sampling
- 2.2 Sampling
- 2.3 Structuring Elements
- 2.4 Numerals and Mathematics
- 2.5 Figures and Code Listings
- 2.6 Citations and Bibliography

Porque digital?

Digital vs analogico

Digital

- Reproducibilidad
- Tolerancia de componentes
- Partidas todas iguales
- Componentes no envejecen
- Facil de actualizar
- Soluciones de un solo chip

Analogico

- Alto ancho de banda
- Alta potencia

Señales y sistemas

Que son?

Señal

Una señal, en función de una o más variables, puede definirse como un cambio observable en una entidad cuantificable

Sistema

Un sistema es cualquier conjunto físico de componentes que actúan en una señal, tomando una o más señales de entrada, y produciendo una o más señales de salida.

Señales y sistemas

Tipos de señales

- De tiempo continuo
- Pares
- Periódicas
- De energía
- Reales

- De tiempo discreto
- No deterministas
- Impares
- Aperiódicas
- De potencia
- Imaginarias

Señales y sistemas

Tipos de señales

De tiempo continuo

Tiene valores para todos los puntos en el tiempo en algún intervalo (posiblemente infinito) De tiempo discreto

Tiene valores solo para puntos discretos en el tiempo

Generacion de señales en Python

Continuo? vs discreto

```
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(1)
TC=0.001
tc = np.arange(0.0, 1.0, TC)
ax1 = fig.add_subplot(211)
ax1.plot(tc, np.sin(2*np.pi*tc),'b-')
ax1.grid(True)
TD=0.1
td = np.arange(0.0, 1.0, TD)
ax2 = fig.add_subplot(212)
ax2.plot(td, np.sin(2*np.pi*td),'ro')
ax2.grid(True)
plt.show()
```


Posrian pensarse como muestras de una señal de tiempo continuo

x[n] = x(nT) donde n es un número entero y **T** es el período de muestreo.

Señales periodicas

Continua periodica

si existe un $T_0 > 0$, tal que $x(t + T_0) = x(t)$, para todo t T_0 es el período de x(t) medido en tiempo, y $f_0 = 1/T_0$ es la frecuencia fundamental de x(t)

Continua discreta

si existe un entero $N_0 > 0$ tal que $x[n + N_0] = x[n]$ para todo n N_0 es el período fundamental de x[n] medido en espacio entre muestras y $F_0 = \Delta t/N_0$ es la frecuencia fundamental de x[n]

Sistema

Un sistema es cualquier conjunto físico de componentes que actúan en una señal, tomando una o más señales de entrada, y produciendo una o más señales de salida.

En términos de ingeniería, muy a menudo la entrada y la salida son señales eléctricas.

Lineales

Lineal

Un sistema es lineal cuando su salida depende linealmente de la entrada. Satisface el principio de superposicion, escalado y adicion

Invariantes en el tiempo

Invariantes en el tiempo

Un sistema es invariante en el tiempo cuando la salida para una determinada entrada es la misma sin importar el tiempo en el cual se aplica la entrada

Lineales invariantes en el tiempo

LTI

Un sistema es LTI cuando satisface las 2 condiciones anteriores, de linealidad y de invariancia en el tiempo.

Systems

http://www.songho.ca/dsp/system/systems.html

← Back

Variety of Systems

- Linear System
- · Time-Invariant System
- · Causal System

Linear System

Systems that satisfy both homogeneity and additivity are considered to be linear system.

Homogeneity (scalar rule) means that as the strength of input signal is increased (scaled), then the strength of output signal will be also increased (scaled) with same amount.

$$\alpha \cdot x(t)$$
 Linear System $\alpha \cdot y(t)$

Additivity denotes that the output of system can be computed as sum of the responses resulting from each input signal acting alone.

$$x_1(t) + x_2(t)$$
 Linear System $y_1(t) + y_2(t)$

Resumen de seccion 2

- 1. Señales
 - 1.1 Porque digital?
 - 1.2 Señales
 - 1.3 Generacion de señales en Python
 - 1.4 Sistemas

2. ADC

- 2.1 Sampling
- 2.2 Sampling
- 2.3 Structuring Elements
- 2.4 Numerals and Mathematics
- 2.5 Figures and Code Listings
- 2.6 Citations and Bibliography

ADC

Bloque generico de procesamiento

Porque el filtro antialising?

Sanmpleo

Teorema del sampleo

Sanmpleo

Teorema del sampleo

```
import numpy as np
 import matplotlib.pvplot as plt
 signalFrec = 50
 fsĎ
              = 200
 NC
             = 1000
ND = NC/fsC*fsD

tC = np.arange(0,NC/fsC,1/fsC)

tD = np.arange(0,ND/fsD,1/fsD)

signalD = np.sin(2*np.pi*signalFrec*tD)

signalC = np.sin(2*np.pi*signalFrec*tD)
 fig = plt.figure()
 contiAxe = fig.add subplot(4,1,1)
 contiLn,dicLn = plt.plot(tC,signalC,'r-',tD,signalD,'b-o')
 contiAxe.set ylabel(fsD)
 fsD
                 = 120
 ND
                = NC/fsC*fsD
 †D
              = np.arange(0.ND/fsD.1/fsD)
 signalD
                 = np.sin(2*np.pi*signalFrec*tD)
 discAxe
                 = fig.add subplot(4,1,2)
 contiLn,dicLn = plt.plot(tC,signalC,'r-',tD,signalD,'b-o')
 discAxe.set ylabel(fsD)
 fsD
                 = 80
 ND
                 = NC/fsC*fsD
 †D
                 = np.arange(0,ND/fsD,1/fsD)
 signalD
                 = np.sin(2*np.pi*signalFrec*tD)
```

listas y columnas

Que es una señal?

- Una señal, en función de una o más variables, puede definirse como un cambio observable en una entidad cuantificable
 - Fusce id sodales dolor. Sed id metus dui.
 - » Cupio virtus licet mi vel feugiat.

- 1. Donec porta, risus porttitor egestas scelerisque video.
 - 1.1 Nunc non ante fringilla, manus potentis cario.
 - 1.1.1 Pellentesque servus morbi tristique.

The quick, brown fox jumps over a lazy dog. DJs flock by when MTV ax quiz prog. "Now fax quiz Jack!"

Text blocks

In plain, example, and alert flavour

This text is highlighted.

A plain block

This is a plain block containing some highlighted text.

An example block

This is an example block containing some highlighted text.

An alert block

This is an alert block containing some highlighted text.

Definitions, theorems, and proofs All integers divide zero

Definition

$$\forall a, b \in \mathbb{Z} : a \mid b \iff \exists c \in \mathbb{Z} : a \cdot c = b$$

Theorem

$$\forall a \in \mathbb{Z} : a \mid 0$$

Proof

$$\forall a \in \mathbb{Z} : a \cdot 0 = 0$$

Numerals and Mathematics

Formulae, equations, and expressions

1234567890 1234567890
$$\hat{x}, \hat{x}, \tilde{a}, \bar{a}, \dot{y}, \ddot{y}$$
 \int f(x, y, z) dxdydz
$$\frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{3 + x}}}} + \frac{1}{1 + \frac{1}{2 + \frac{1}{3 + x}}} + \frac{1}{1 + \frac{1$$

Figures
Tables, graphs, and images

Faculty	With T _E X	Total	%
Faculty of Informatics	1716	2 904	59.09
Faculty of Science	786	5 275	14.90
Faculty of Administration	64	4 591	1.39
Faculty of Arts	69	10 000	0.69
Faculty of Medicine	8	2014	0.40
Faculty of Law	15	4824	0.31
Faculty of Education	19	8 2 1 9	0.23
Faculty of Social Studies	12	5 599	0.21
Faculty of Sports Studies	3	2062	0.15

Cuadro: The distribution of theses written using TEX during 2010–15 at MU

Citations

T_EX, ET_EX, and Beamer

T_EX is a programming language for the typesetting of documents. It was created by Donald Erwin Knuth in the late 1970s and it is documented in *The T_EXbook* [1]. In the early 1980s, Leslie Lamport created the initial version of ET_EX, a high-level language on top of T_EX, which is documented in ET_EX: A Document Preparation System [2]. There exists a healthy ecosystem of packages that extend the base functionality of ET_EX; *The ET_EX Companion* [3] acts as a guide through the ecosystem.

In 2003, Till Tantau created the initial version of Beamer, a Lagar for the creation of presentations. Beamer is documented in the *User's Guide to the Beamer Class* [4].

Bibliography

T_EX, ŁT_EX, and Beamer

- [1] Donald E. Knuth. The TeXbook. Addison-Wesley, 1984.
- [2] Leslie Lamport. ETEX: A Document Preparation System. Addison-Wesley, 1986.
- [3] M. Goossens, F. Mittelbach, and A. Samarin. *The ET_EX Companion*. Addison-Wesley, 1994.
- [4] Till Tantau. User's Guide to the Beamer Class Version 3.01. Available at http://latex-beamer.sourceforge.net.
- [5] A. Mertz and W. Slough. Edited by B. Beeton and K. Berry. *Beamer by example* In TUGboat, Vol. 26, No. 1., pp. 68-73.