Lemma 1. A cyclic group contains at most one element of order 2.

Put another way, an involution¹ of a cyclic group, if it exists, is unique.

Proof. Let $G = \langle a \rangle$ be a cyclic group.

If G is infinite, then there are no elements of order 2. So, assume the order of G is finite: $|G| = n < \infty$. If n = 1, then $G = \langle e \rangle$; if n = 2, then $G = \{e, a\}$ and $a^2 = e$. In both cases, there is nothing to prove.

Suppose n > 2, and let $x, y \in G$ be two non-identity elements of G, say, $x = a^j$ and $y = a^k$, where 1 < j, k < n. If $x^2 = e$, then $a^{2j} = e$. Therefore n divides 2j (by Theorem 4(a) of Cyclic Group Supplement 1). But j < n implies 2j < 2n, so the only way to have n|2j is n = 2j. If $y^2 = e$, then the same argument applied to k yields n = 2k. It follows that if $x^2 = e = y^2$, then j = k and so $x = a^j = a^k = y$. Hence involutions of cyclic groups are unique.

 $^{^{1}}$ Recall, an *involution* is an element of order 2.