

18/5/12

DIALOG(R) File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.

007916115

WPI Acc No: 1989-181227/198925

XRAM Acc No: C89-079903

Plasmid transformed with genes - used for coding pre-albumin downstream of yeast character expression regulating region

Patent Assignee: KAGAKU OYOBI KESSEI RYOH (KAGA)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 1117790	A	19890510	JP 87276598	A	19871030	198925 B
JP 96011074	B2	19960207	JP 87276598	A	19871030	199610

Priority Applications (No Type Date): JP 87276598 A 19871030

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
-----------	------	-----	----	----------	--------------

JP 1117790	A	12			
------------	---	----	--	--	--

JP 96011074	B2	10	C12P-021/02	Based on patent JP 1117790
-------------	----	----	-------------	----------------------------

Abstract (Basic): JP 1117790 A

Recombinant DNA which is a shuttle vector comprising genes both yeast and E. coli and yeast's character expression regulation region, and which is transduced with cDNA for coding human prealbumin in the lower portion of the region. The cDNA is pref. a gene for coding human normal prealbumin, specifically peptides of 1st-147th amino acids, which has specific sequence. USE/ADVANTAGE - Prealbumin with amino acid at its any site transformed can be easily produced in quantity. An exemplary abnormal albumin thus produced, i.e. albumin having methionine at 30th amino acid from N-terminus instead of valine is useful to diagnosis for familial amyloid pheurobachy (FAP).

0/6

Title Terms: PLASMID; TRANSFORM; GENE; CODE; PRE; ALBUMIN; OWNSTREAM; YEAST; CHARACTER; EXPRESS; REGULATE; REGION

Derwent Class: B04; D16

International Patent Class (Main): C12P-021/02

International Patent Class (Additional): C07K-013/00; C12N-015/00; C12N-015/09; C12P-021/02; C12R-001-865

File Segment: CPI

BEST AVAILABLE COPY

⑪ 公開特許公報 (A)

平1-117790

⑫ Int. Cl.

C 12 N 15/00
C 07 K 13/00
C 12 P 21/02

識別記号

厅内整理番号

A-8412-4B
8318-4H
C-6712-4B

⑬ 公開 平成1年(1989)5月10日

※審査請求 未請求 発明の数 1 (全12頁)

⑭ 発明の名称 プレアルブミンをコードする遺伝子を組込んだ組換えプラスミドおよびこれを用いたプレアルブミンの製法

⑮ 特 願 昭62-276598

⑯ 出 願 昭62(1987)10月30日

特許法第30条第1項適用 昭和62年8月25日発行の「生化学vol.59No.8,1987(第60回日本生化学会大会抄録号)」に掲載し発表

⑰ 発明者 菅原 敬信 熊本県熊本市武蔵ヶ丘2-142
 ⑰ 発明者 中武 博 熊本県熊本市清水町高平402-1
 ⑰ 発明者 潤 上 寛 熊本県菊池郡合志町幾久富1647-151
 ⑰ 出願人 財団法人化学及血清療法研究所 熊本県熊本市清水町大窪668番地
 ⑰ 代理人 弁理士 筒井 知

最終頁に続く

明細書

1. 発明の名称

プレアルブミンをコードする遺伝子を組込んだ組換えプラスミドおよびこれを用いたプレアルブミンの製法

2. 特許請求の範囲

(1) 離母の遺伝子と大腸菌の遺伝子を含み、かつ離母の形質発現調節領域を担うシャトルベクターであり、その形質発現調節領域下流にヒトのプレアルブミンをコードする cDNA を組込んだことを特徴とする組換えプラスミド。

(2) 該 cDNA がヒトの正常プレアルブミンをコードする遺伝子である前記第(1)項記載の組換えプラスミド。

(3) 该 cDNA がヒトの正常プレアルブミン遺伝子から翻訳される第1番目から第147番目アミノ酸までのペプチドをコードする遺伝子を含む前記第(2)項記載の組換えプラスミド。

(4) 该 cDNA が下記の遺伝子配列を含む遺伝子断片である前記第(3)項記載の組換えプラスミド。

ATG GCT TCT CAT CGT CTG CTC CTC CTC TGC CTT
 GCT GGA CTG GTA TTT GTG TCT GAG GCT GGG CCT
 ACG GGC ACC CGT GAA TCC AAG TGT CCT CTG ATG
 GTC AAA GTT CTA GAT GCT GTC CCA GGC AGT CCT
 GCC ATC AAT GTG GCC GTG CAT GTG TTC AGA AAG
 CCT CCT GAT GAC ACC TGC GAG GCA TTT GCC TGT
 GGG AAA ACC ACT GAG TCT GGA GAG CTG CAT GGG
 CTC ACA ACT GAG GAG GAA TTT GTA GAA GGG ATA
 TAC AAA GTG GAA ATA GAC ACC AAA TCT TAC TGG
 AAG GCA CTT GGC ATC TCC CCA TTC CAT GAG CAT
 GCA GAG GTG GTA TTC ACA GCG AAC GAC TCC GGC
 CCC CGC CGC TAC ACC ATT GGC GGC CTG CTG AGC
 CCC TAC TCC TAT TCC ACC ACG GCT GTC GTC ACC
 AAT CCC AAG GAA TGA

(5) 该 cDNA がヒトの正常プレアルブミン遺伝子から翻訳される第21番目から第147番目アミノ酸までのペプチドをコードする遺伝子を含む前記第(2)項記載の組換えプラスミド。

(6) 该 cDNA が下記の遺伝子配列を含む遺伝子断片である前記第(5)項記載の組換えプラスミド。

GGC CCT ACG GGC ACC GGT GAA TCC AAG TGT CCT
 CTG ATG GTC AAA GTT CTA GAT GCT GTC CGA GGC
 AGT GGT GCC ATC AAT GTG GCC GTG CAT GTG TTC
 AGA AAG GGT GCT GAT GAC ACC TGG GAG CCA TTT
 GCC TCT GGG AAA ACC ACT GAG TCT GGA GAG CTC
 CAT GGG CTC ACA ACT GAG GAG GAA TTT GTC GAA
 GGG ATA TAG AAA GTG GAA ATA GAC ACC AAA TGT
 TAC TGG AAG GCA CTT GCC ATC TCC CCA TTC CAT
 GAG CAT GCA GAG GTG GTC TTC ACA GCC AAC GAC
 TCC CCC CCC CGC TAC ACC ATT GCC GGC CTC
 GTG AGC CCC TAC TCC TAT TCC ACC ACG GCT GTC
 GTC ACC AAT CCC AAG GAA TGA

(7) 該cDNAがFAP患者が持つ異型プレアルブミンをコードする遺伝子である前記第(1)項記載の組換えプラスミド。

(8) 該cDNAがFAP患者が持つ異型プレアルブミン遺伝子から翻訳される第1番目から第14番目アミノ酸までのペプチドをコードする遺伝子を含む前記第(7)項記載の組換えプラスミド。

(9) 該cDNAが下記の遺伝子配列を含む遺伝子

断片である前記第(8)項記載の組換えプラスミド。
 ATG GCT TCT CAT CGT CTG CTC CTC CTC TGC CTT
 GCT GGA CTG GTA TTT GTG TCT GAG GGT GGC CCT
 ACG GGC ACC GGT GAA TCC AAG TGT CCT CTG ATG
 GTC AAA GTT GTC GAT GCT GTC CGA GGC AGT CCT
 GCC ATC AAT GTG GGC ATG CAT GTG TTC AGA AAG
 GCT GCT GAT GAC ACC TGG GAG CGA TTT GCG TGT
 GGG AAA ACC ACT GAG TCT GGA GAG CTC CAT CGG
 CTC ACA ACT GAG GAG GAA TTT GTC GAA GGG ATA
 TAC AAA GTG GAA ATA GAC ACC AAA TCT TAC TGG
 AAG GCA CTT GCC ATC TCC CCA TTC CAT GAG CAT
 GCA GAG GTG GTC TTC ACA GCC AAC GAC TCC GGC
 CCC CCC CGC TAG AGC ATT GGG GCC CTC GTG AGC
 CCC TAC TCC TAT TCC ACC ACC ACG GCT GTC GTC ACC
 AAT CCC AAG GAA TGA

(10) 該cDNAがFAP患者が持つ異型プレアルブミン遺伝子から翻訳される第21番目から第147番目アミノ酸までのペプチドをコードする遺伝子を含む前記第(7)項記載の組換えプラスミド。

(11) 該cDNAが下記の遺伝子配列を含む遺伝子

断片である前記第(10)項記載の組換えプラスミド。
 GGC CCT AGG GGC ACC GGT GAA TCC AAG TGT CCT
 CTG ATG GTC AAA GTT CTA GAT GCT GTC CGA GGC
 AGT CCT GCC ATC AAT GTG GCC ATG CAT GTG TTC
 AGA AAG GCT GAT GAC ACC TGG GAG CCA TTT
 GCC TCT GGG AAA ACC ACT GAG TCT GGA GAG CTC
 CAT GGG CTC ACA ACT GAG GAG GAA TTT GTC GAA
 GGG ATA TAG AAA GTG GAA ATA GAC ACC AAA TCT
 TAC TGG AAG GCA CTT GCC ATC TCC CCA TTC CAT
 GAG CAT GCA GAG GTG GTC TTC AGA GCC AAC GAC
 TCC CCC CCC CGC TAC ACC ATT GCC GCG CTC
 CTG AGC CCC TAC TCC TAT TCC ACC ACG GCT GTC
 GTC AGC AAT CCC AAG GAA TGA

(12) 前記第(1)項の組換えプラスミドを酵母 *Saccharomyces cerevisiae* に導入することにより形質転換酵母を得、この形質転換酵母を培養することを特徴とするヒトプレアルブミンの製法。

(13) 该プレアルブミンがヒトの正常プレアルブミンである前記第(12)項記載の製法。

(14) 该プレアルブミンがヒトの異型プレアルブミ

ンである前記第(12)項記載の製法。

3.発明の詳細な説明

本発明は、ヒトのプレアルブミンをコードするcDNAを組込んだ組換えプラスミド、およびこれを酵母に導入して得られた形質転換酵母によるプレアルブミンの製法に関する。すなわち、ヒトの正常プレアルブミン、更には、PAP患者の持つ異型プレアルブミンをコードするcDNA断片を大腸菌および酵母の両方で増殖しうるシャトルベクターに組み入れた形質転換調節領域(プロモーター)の下流に組込んだ組換えプラスミドを得、これを酵母に与えて形質転換を起こさせて形質転換酵母とし、これを培養させて産生されるプレアルブミン(正常プレアルブミンもしくは異型プレアルブミン)を得る方法に関する。

プレアルブミンは血液中に、約300μg/ml程度存在する血清蛋白のひとつであり、血中ではこれが4分子結合し分子量55,000の複合体として存在している。この複合体は甲状腺ホルモンとの結合部位を2ヶ所持ち、同ホルモンの輸送に関与してい

る。さらに、この複合体はビタミンA結合蛋白の結合部位を4ヶ所持ち両ビタミンの輸送にも関与している。その他、プレアルブミンの詳細な機能に関してはまだ正確には解明されておらず、今後の研究成果が期待されている。

最近、X末端より30番目のパリンがメチオニンに変異した異型プレアルブミンが遺伝病家族性アミロイドニューロバチー（FAP）の病因と深くかかわっていることが明らかにされ、そのDNAを解析することで遺伝子診断も可能となっている。

この中で、特にFAPの病因と考えられる異型プレアルブミンはFAP患者の血液を原材料とせざるを得ず、その機能と病因との関連を解明する上で大きな制約がある。

このような状況において、プレアルブミン特に異型プレアルブミンの原材料の入手における制約を解決できる有力な手がかりとなるのは、遺伝子組換えを応用し量産を可能にする技術の開発であろう。しかしながら、これまでに遺伝子組換え等の技術を用いてプレアルブミンもしくは異型プレ

アルブミンの発現を試みたような報告はまだ見あたらず、勿論発現に成功した報告もない。

このような事情のもとに、本発明者らは、先に日本大学医学部の前田らがクローニングに成功したヒト由来のプレアルブミン遺伝子、異型プレアルブミン遺伝子 (Mita et al., Biochem. Biophys. Res. Commun. 124, 558-564 1984) を用い、最初に大腸菌を宿主としてプレアルブミンの発現を試みた。しかしながらその結果としては、好ましい成果は得られず、大腸菌を宿主とした発現の試みは失敗に終った。その後さらに本発明者らは酵母を宿主として用いたプレアルブミンの量産について検討を重ねた結果、酵母の遺伝子と大腸菌の遺伝子とを含みかつ酵母のプロモーターの制御下にプレアルブミン遺伝子を組込んだ新しい組換えDNAを構築し、それによって酵母を形質転換させ、かかる形質転換酵母を用いてヒト由来のプレアルブミンと同じ分子量、免疫学的性質を有するプレアルブミンを量産させることに成功し、本発明を完成するに至った。

すなわち、本発明は、プレアルブミン遺伝子を組込んだ新規な組換えプラスミド、それによる形質転換酵母および該酵母によるプレアルブミンの生産方法を提供するものである。また、本発明はこれまでヒト血液からの分離が難しく、試料の入手に問題があった異型プレアルブミンに関してはこれを限りなく大量に供給することを可能にするものである。

本発明のプレアルブミンの製法においては、大腸菌および酵母の両方の遺伝子を保え、それらのいずれでも増殖しうるシャトルベクターを用い、そのベクターに抱われた酵母のプロモーターの下流にプレアルブミン遺伝子を組込むことによりプレアルブミン遺伝子発現ベクターを得る。このようにして得られるプレアルブミン遺伝子発現プラスミドを常法により酵母に作用させて形質転換を起こさせることにより所望の形質転換酵母が得られる。この形質転換酵母を、使用した発現用プロモーターが効率よく働く条件下に培養することにより所望のプレアルブミンが量産される。

本発明の完成によって、*in vitro*で入為的に任意の部位のアミノ酸を変異させたプレアルブミンが容易にかつ量的に入手し得る手段が解決されたもので、本新技術はきわめて興味ある知見を今後み出す可能性を提供するものである。

本技術は、ヒト血液を原材料とせず、ヒトプレアルブミンを容易に入手し得る手段も同時に与えるものであり、今後の該蛋白の医薬品化において、従来の方法でヒト血液から精製した場合のようにヒト血液に由来する未知の感染性因子の混入を考慮することのない極めて安全かつ低コストでのプレアルブミン製剤を供給することを可能にするものである。さらには、試料の入手に関して制約があった、異型プレアルブミンについても、本発明によりその制約が解消され、これを容易にしかも無限に提供することが可能となり、今後のFAPに関する研究に大きく貢献するものと考えられる。

以下に本発明の組換えプラスミド、形質転換酵母、およびそれによるプレアルブミンの生産についてさらに詳細に説明する。

(1) プレアルブミン遺伝子

本発明で用いられるプレアルブミンをコードするcDNAは、ヒトの肝臓より調製したmRNAを出免材料として、常法に従い逆転写酵素により二本鎖cDNAを合成し、これを大腸菌によりクローニングしたものである。クローニングされたプレアルブミン遺伝子はプレアルブミン蛋白をコードする全領域を含み、第2図に示す塩基配列を有する。

本発明において調製されたプレアルブミンcDNAは、669塩基対からなり、アミノ酸をコードする領域の完全な配列を含む。さらに、プレアルブミンcDNAは5'-非翻訳領域に26、3'-非翻訳領域に161の塩基対を含む。

第1図の制限酵素図および第2図に示す塩基配列を有するDNA断片が大腸菌プラスミドOkayama-BerryベクターにオリゴdG、dC法により挿入されたものを、通常はPstI-PvuIIで処理してプレアルブミン遺伝子断片を得、後述のプラスミド構築に供する。必要に応じ、成熟プレアルブミンを直接提

レアルブミンの遺伝子は、正常プレアルブミン遺伝子を用い、この遺伝子にポイントミューテーションを起こさせ必要な箇所のみ塩基を交換することによっても調製することができる。

(2) シャトルベクター

本発明で用いられるシャトルベクターは、酵母の遺伝子と大腸菌の遺伝子とを含みかつ酵母の形質発現開始領域を組ったプラスミドベクターである。

この酵母の遺伝子としては、一般に、プラスミドが酵母中で染色体と独立して増殖するのに必要なDNA配列。例えば酵母染色体の複製に必要なDNA配列(srs1)、2μ-mRNAの複製に必要なDNA配列(2μ ori)があり、所望により、さらに形質転換酵母の選択マーカーとなる遺伝子が含まれる。この選択マーカーとしては、ロイシン産生遺伝子、ヒスチジン産生遺伝子、トリプトファン産生遺伝子、ウラシル産生遺伝子、アデニン産生遺伝子などが含まれ、これらの1種または2種以上が用いられる。

大腸菌側の遺伝子としては大腸菌体内において

換え酵母に発現させるために、翻訳される第1番目から20番目までのアミノ酸、すなわちシグナルペプチドの部分をコードする遺伝子を予め除去しておくこともできる。この場合には、開始コドンのATGも同時に除去されるため、後に述べるシャトルベクターにプレアルブミン遺伝子を組み込む際に開始コドンとなるATGを付け加える工夫が必要となる。

なお、本発明で述べるプレアルブミン遺伝子は、第2図に示す塩基配列を有するものに限定されるものではない。

また、異型プレアルブミンをコードする遺伝子も、PAP患者の肝臓より調製したmRNAより同様にして異型プレアルブミンをコードするcDNAを調製することができる。このようにして得られた異型プレアルブミン遺伝子は、正常のプレアルブミン遺伝子配列と比較して、1塩基の違いしかなく、プレアルブミン遺伝子の翻訳開始コドンを+1とした場合に第149番目(+149)のシトシンがアデニンに変異しているだけである。また、異型ア

プラスミドが増殖するために必要なDNA配列、例えばColE1系のプラスミドの複製起点のDNA配列(ori)を有し、好ましくはさらに形質転換大腸菌の選択マーカーとなる遺伝子を含む。この選択マーカーの遺伝子としてはアンビシリントリプトファン耐性遺伝子、カナマイシン耐性遺伝子、テトラサイクリン耐性遺伝子、クロラムフェニコール耐性遺伝子などが挙げられ、これらの遺伝子の1種または2種以上が用いられる。このような大腸菌DNAとしてアンビシリントリプトファン耐性遺伝子とテトラサイクリン耐性遺伝子を有するpBR322が一般に汎用されている。

組換え酵母によりプレアルブミンを産生させるために必要な形質発現開始領域(プロモーター)には酵母由来のものが用いられる。好ましいプロモーターの例としては、酸性ウォスファターゼプロモーター、グルタルアルデハイドデヒドロゲナーゼプロモーターのように本来酵母に必要な酵素等の形質発現を行うプロモーター等が挙げられる。具体的な一例として酵母の抑制性酸性ホスファターゼプロモーターが挙げられるが、酸性ホスファ

ターゼプロモーターは通常ホスファターゼを構成する60,000ダルトンのポリペプチド(p60)のプロモーターであり、そのプロモーター活性もかなり強力で、且つ培地中のリン酸濃度をコントロールすることによってプロモーター活性を制御できることに大きなメリットがある。

このようなシャトルベクターの代表的な例は、本発明者らにより製造された。酵母側の遺伝子としてarsl、2μoriおよびロイシン耐性遺伝子(Leu2)を有する酵母DNAと大腸菌プラスミドpBR322とを組み合わせたシャトルベクターPAM92(特開昭59-36689)であり、これはつきのようにして構築される。

酵母S288C DNAバンクより得られた抑制性ホスファターゼを構成する60,000ダルトンのポリペプチド(p60)の遺伝子を含む約8000塩基対(8kb)の制限酵素EcoRI断片[PNAS, T7巻、6541~6545頁、(1980)およびPNAS, 79巻、2151~2155頁、(1982)を参照]を公知の大腸菌プラスミドpBR322[Sutcliffe, J.G., Cold Spring Harbor Syposiu

m.43巻、77~80頁、(1979)を参照]のEcoRI部位に挿入して得られるプラスミドを出发材料とする。なおこの8kbDNA断片は制限酵素SalIの認識部位を約2.8kbと約5.2kbに分ける位置に1個所有し、2.8kb側がpBR322のアンビシリン耐性遺伝子側になるよう挿入されている。

このプラスミドを制限酵素SalIで切断し、さらにT4DNALリガーゼにより再アニールさせてpAT25のSalI部位から酵母のホスファターゼ遺伝子断片の5.2kb側を失ったプラスミドを得、これをpAT25と称する。このpAT25はpBR322のアンビシリン耐性遺伝子を含むEcoRI部位からSalI部位までの約3.1kbの断片と酵母のホスファターゼ遺伝子のEcoRI部位からSalI部位までの約2.8kbの断片がそれぞれ対応する末端同志で結合したプラスミドである。つぎに、上記pAT25のEcoRI部位に、酵母の自律増殖に必要なDNA配列(arsl)および酵母のTrp1遺伝子を含む1.4kbのEcoRI断片[Proc. NAS, 79巻、1035~1039頁、(1982)を参照]を挿入する。得られたプラスミドをpAT29と称する。なおこの

arsl-Trp1を含む断片は、そのTrp1遺伝子内に制限酵素HindIIIの認識部位を1個所有する。

上記pAT29のHindIII部位に酵母のロイシン産生遺伝子(Leu2)と2μmDNAの複製に必要なDNA配列(2μori)を含むHindIII断片(Tohe, A., Guerry, P., Wichen, R.B.; J. Bacteriol., 141, 413~419, 1980を参照)を挿入する。このようにして得られるプラスミドがシャトルベクターpATT7(特開昭59-38889を参照)である。

このpATT7は、大腸菌の遺伝子としてpBR322のアンビシリン耐性遺伝子(Ap')を含むEcoRI部位からSalI部位までを有し、一方酵母の遺伝子として、pBR322と結合したEcoRI部位よりarsl、2μori、Leu2遺伝子の順に位置し、さらにそのつぎに酵母ホスファターゼ遺伝子の上流からSalI部位までを有する。そしてそのEcoRIおよびSalI部位でこれら大腸菌遺伝子と酵母遺伝子が結合した構造となっている。このpATT7は大腸菌においてはpBR322の複製起点DNA配列(ori)により増殖し、また酵母においてはarslおよびLeu2μoriにより増殖可能と

なる。さらにこのプラスミドは、選択マーカーとしてアンビシリン耐性遺伝子(Ap')およびロイシン産生遺伝子(Leu2)を有しており、大腸菌、酵母のいずれの細胞内でも増殖でき、シャトルベクターとしての条件を充分に備えている。

なお、このシャトルベクターを用いるのは、後記組換えプラスミドを大腸菌を用いて製造するためであり、該組換えプラスミドで酵母を形質転換する段階に至っては、大腸菌の遺伝子は除去されても問題はない。

このようなシャトルベクターpATT7を制限酵素SalIで処理して開裂させ、ついでこれをエキソヌクレアーゼBAL31で処理することにより酵母ホスファターゼ構造遺伝子の一部または全部と、所望によりさらにはその上流の種々の部分まで除去する。この除去は酵母ホスファターゼ構造遺伝子の上流・5Dbpの前までの適当な部位まで行われ、エキソヌクレアーゼ処理条件により適宜調節される。

上記のようにして酵母ホスファターゼ構造遺伝子全部もしくはさらにその上流部分を除去したの

ち、この部位に合成または天然のリンカー、例えばSal I リンカーまたはXba I リンカーを組込み再び環状プラスミドに戻すことにより、酸性ホスファターゼプロモーターの制御下に外来性遺伝子を純粹な形で発現させ得るシャトルベクターが得られる。このようにして酸性ホスファターゼ構造遺伝子の上流-33bpまで除去したシャトルベクターが、pAM82である。

このシャトルベクターは、通常の制限酵素Sal I またはXba I で処理することにより容易にその組込み部位を開裂させることができるので、所望の遺伝子を組込むのに好適である。このようなシャトルベクター pAM82に関しては本発明者らにより特開昭58-36699として特許出願されており、なお、このpAM82をサッカロミセス・セレビシエAH22に組込んだもの（サッカロミセス・セレビシエAH22/pAM82）は新工研矢第313号として寄託されている。

(3) プレアルブミン遺伝子発現プラスミドの構築

本発明の組換えプラスミド、すなわちプレアルブミン遺伝子を組んだプラスミドの調製は、ま

ず前記シャトルベクターを使用したリンカーに対する制限酵素、例えばSal I またはXba I にて処理して開裂させ、これに上記プレアルブミンDNAを作用させて連結させる。これを大腸菌にて増殖し、各種制限酵素分析によって正しい配位に組込まれたもののみを選択し、目的とする組換えプラスミドを得る。

(4) 酵母の形質転換

形質転換されるべき酵母としては、プラスミドで組われた形質転換酵母の選択マーカー遺伝子によって相補される変異を持った変異株、例えばロイシン要求性変異株であるサッカロミセス・セレビシエ (*Saccharomyces cerevisiae*) AH22 (*a* leu2 his4 Can1 (Cir^r))、サッカロミセス・セレビシエ (*Saccharomyces cerevisiae*) AH22 pho80 (*a* leu2 his4 Can1 (Cir^r) pho80)などを用いる。上記組換えプラスミドを大腸菌にて増殖させたのち、該酵母変異株に常法により作用させ、例えばスフェロプラスト化したのちカルシウム処理した菌体とプラスミドDNAを混合して形質転換を起

こさせる。このように処理された酵母をベクター上に組んでいる宿主酵母の変異を相補する遺伝子、例えばロイシン要求性変異株の発現を指標として形質転換酵母を選択し、分離する。

なお、酵母としてはロイシン要求性変異株のほかに、ヒステジン要求性変異株、トリプトファン要求性変異株、ウラシル要求性変異株、アデニン要求性変異株などが挙げられる。

(5) 形質転換酵母の培養およびプレアルブミンの生産

上記の方法で得られた形質転換酵母を培養し目的のプレアルブミンを得る。この場合、用いたプロモーターに応じて培養条件を工夫することが好ましい。例えば、酸性ホスファターゼプロモーターを使用した場合には、得られた形質転換酵母をリン酸を含む培地にて通常の培養条件下に前培養し、対数増殖期にある固体をリン酸を含まない培地に移しかえて酸性ホスファターゼプロモーターが抑制されない条件下に培養する。培養後、シグナルペプチド領域を除去したプレアルブミン遺伝

子を用いた場合には固体内に、またシグナルペプチド領域を含む全プレアルブミン遺伝子を用いた場合には、その培養液中および固体表面に分泌されたプレアルブミンが大量に蓄積される。なお、用いる酵母の種類により、例えばPho80変異株を用いた場合には、酸性ホスファターゼプロモーターを抑制しない条件をとくに採用する必要はなく、該形質転換酵母を直接培養して所望のプレアルブミンを大量に產生させることができる。

上記方法で得られるプレアルブミンは免疫学的にヒトの血中に存在するものと区別し難く、また、プレアルブミンが培地中に分泌、放出されることから、酵母における蛋白質分離研究のモデルとしても有用である。

つぎに実施例を挙げて本発明をさらに具体的に説明する。

実施例1：プレアルブミンの発現

(1) プレアルブミン遺伝子の調製

(1) mRNAの精製

ヒト肝臓は手術時に抽出し、液体窒素中にて直

ちに凍結し、これを用いて、チャーヴィンら (Chirgwin et al., Biochemistry, 24 5294-5298, 1985) の方法に従って、mRNAを調製した。

(II)cDNAの合成および大腸菌E81D1の形質転換ヒト肝臓より得た mRNAをもとに Okayama-Berg法 (Okayama, H. and Berg, P., Mol. Cell Biol. 2, 161-170, 1982) により、cDNAを含むプラスミドを作製し、これを大腸菌E81D1に形質転換し、cDNAライブラリーを調製した。

(III)プレアルブミンcDNAの同定

Kandaら (Kanda, Y. et al., J. Biol. Chem., 249, 6796-6805, 1974) によって明らかにされているプレアルブミンのアミノ酸配列をもとに Asp¹⁸-Gln¹⁹に相当する部分の合成DNA16種を合成し、これをWallaceら (Wallace, R.B. et al., Nucleic Acids Res., 8, 3543-3557, 1980) の方法により ($r\text{-}^{32}\text{P}$) ATPでラベルし、これをプローブとしてcDNAライブラリーのスクリーニングを行い、プレアルブミン遺伝子を含む大腸菌を選び出した。

(IV)プラスミドDNAの調製

結合したプラスミドであるを得る。

つぎに、このpA725のEcoRI部位に、プラスミドYRP7をEcoRI処理することによって得られるarsIおよびtrpI遺伝子を含む1.4KbのEcoRI断片を挿入してプラスミドpAT28を得る（このarsI-trpIを含む断片は、そのtrpI遺伝子内に制限酵素HindIIIの認識部位を1箇有する）。

上記pAT28のHindIIIに、プラスミドpSLE1をHindIIIで処理して得られる酵母のLcu2および2μoriを含む8IndIII断片を挿入してシャトルベクターpA777を得る。このpA777をサッカロミセス・セレビシエAH22に組込んだもの（サッカロミセス・セレビシエAH22/pA777）は微小研究登録第324号として登録されている。

上記の方法で得られたpA777 (1μg) をSalIで調製したのち、20mMトリス-HCl(pH8.2)、12mM CaCl₂、12mM MgCl₂、0.2M NaCl、1mM EDTA溶液50μl中で0.1UのエキソヌクレアーゼBAL31を30秒～1分間作用させる。ついでフェノール抽出、エタノール沈殿を行ったのち、XbaIリンクー1pmolとT4

プレアルブミン遺伝子を含む大腸菌より松原ら (Matsumura et al., J. Virol., 18, 476-485, 1975) の方法によりプラスミドを調製した。

このプラスミドはOkayama-Bergベクターにプレアルブミンをコードする全領域のcDNAがクローニングされたものであり、これをpPATとした。

(2)シャトルベクターpAM82の調製

酵母S288C DNAバンクより得られた抑制性酸性ホスファターゼを構成する80000ダルトンのポリペプチド (p80) の遺伝子を含む約8000塩基対 (8kb) の制限酵素EcoRI断片を大腸菌プラスミドpBR322のEcoRI部位に挿入して得られるプラスミドを出来材料とし、これを制限酵素SalIで切断し、さらにT4DNAリガーゼにより再アニールさせてpBR322のSalI部位から酸性ホスファターゼ遺伝子断片の5.2kb側を失ったプラスミドpA725（これはpBR322のアンピシリン耐性遺伝子を含むEcoRI部位からSalI部位までの約3.7kbの断片と酵母菌の酸性ホスファターゼ遺伝子のEcoRI部位からSalI部位までの約2.8kbの断片がそれぞれ対応する末端同士で

DNAリガーゼの反応条件下で12時間結合を行う。この反応溶液で大腸菌x1778を形質転換し、得られたアンピシリン耐性の形質転換体よりプラスミドDNAを調製し、各DNAについてマキサム-ギルバートの方法 (Maxam, A. & Gilbert, W.; Proc. N.A.S., 74, 580-584を参照) に従い、塩基配列を調べ、BAL31処理により除去された酸性ホスファターゼ遺伝子領域を決定する。これら中からホスファターゼ構造遺伝子領域が完全に除去されたプラスミドpAM82（第3図）を得る。

ホスファターゼ構造遺伝子の産物p80の最初のアミノ酸であるメチオニンをコードするコドンATGのAを+1として、pAM82は-33まで除去されたものである。なお、このpAM82をサッカロミセス・セレビシエAH22に組んだもの（サッカロミセス・セレビシエAH22/pAM82）は微小研究登録第313号として登録されている。

(3)プレアルブミン遺伝子発現プラスミド(pPAT)

の調製

プレアルブミンをコードする全領域（第1回参

組)を含むDNA断片が挿入されているプラスミドpPAI(3μg)を制限酵素EcoRI、XbaIで切断処理し、63-108番目の48bpよりなるDNA断片を精製し、これに、EcoRIの切断端を持つ合成DNAを結合し、これをさらに、EcoRI、XbaIで切断処理したプラスミドpUC19のEcoRI-XbaIサイドに挿入した。ついで、このプラスミドをXbaI、HincII切断処理し、これに、pPAIをXbaI、PvuII切断処理して得た5708bpのDNA断片を挿入した。このようにして得たプラスミドは、プレアルブミンのシグナル領域が除去され、さらに翻訳開始コドンとしてATGが、即ちN末端メチオニンが付加されたプレアルブミンcDNAを持ったことになる。つぎに、このプラスミドをEcoRI、HindIIIで切断処理してプレアルブミンのcDNA部分を切り出し、これにXbaIリンクーを結合した。

このようにして末端がXbaI切断末端となったプレアルブミン遺伝子断片を得た。このDNA断片とXbaIで開裂されたシャトルベクターpAMB2を、分子比5:1で温せT4DNAにより結合させた後、この反

スフェロblast化する。ついで、スフェロblastを1.2Mソルビトール溶液で3回洗浄したのち、2Mソルビトール、10mM CaCl₂および10mMトリス-HCl(pH7.5)の溶液0.8mlに懸濁させ、その80μlずつを小試験管に分注する。これに前記(3)で調製した組換えプラスミドpHPA1溶液30μlを加え、充分混合し、さらに0.1M CaCl₂(3μl)加えて最終濃度10mM CaCl₂とし、室温に5~10分間放置する。ついでこれに、20%ポリエチレンギリコール4000、10mM CaCl₂および10mMトリス-HCl(pH7.5)溶液1mlずつを加えて混合し、室温に約20分間放置する。この混合液0.2mlずつを45℃に保溫された再生培地(22%ソルビトール、2%グルコース、0.7%イーストニトロゲンベースアミノ酸、2%YPO、20μg/mlヒステジン、3%東天)10mlに加え、軽く混合させ、予め準備された1.2Mソルビトール含有最小培地(0.7%イーストニトロゲンベースアミノ酸、2%グルコース、30μg/mlヒステジン、3%東天)プレートに掛け、固化させたのち、30℃で培養してロイシン非要求性酵母のコロニーを得る。このコロニーを

応液で大腸菌NB101を形質転換した。得られたアンピシリン耐性の形質転換体よりプラスミドDNAを調製し、それらについて、EcoRI、XbaI、XbaIで分析することにより、ベクターへのプレアルブミン遺伝子の組込みおよびその方向を確認した。選び出されたプラスミドはベクターのホスファターゼプロモーターの下流にプレアルブミン遺伝子が正しい向きに挿入されたものであり、これをプレアルブミン遺伝子発現プラスミドpHPA1と称する。プレアルブミン遺伝子発現プラスミドの構造の流れを示したものを見図に示した。

(4) 形質転換酵母の調製

酵母としてサツカロミセス・セレビシエAH22[α-leu2 his4 Can1 (Cir⁺)](微生物学第312号)を用い、これをYPD培地(2%ポリペプトン、1%イーストエキス、2%グルコース)100mlに接種し、30℃で一晩培養したのち、遠心して集菌する。滅菌水20mlにて菌体を洗浄し、ついで1.2Mソルビトールおよび100μg/mlテモリアーゼ60,000(生化学工業製)の溶液5mlに懸濁させ、30℃で約30分間保ち、

20μg/mlヒステジンを含むバルクホルダーミニマルメディウム(Tohe, A. et al; J. Bacteriol., 113, 727~738(1973)を参照)にて培養して形質転換酵母サツカロミセス・セレビシエpHPA1を得る。

(5) 形質転換酵母によるプレアルブミンの製法

前記(4)で得られた形質転換酵母の各コロニーをさらに20μg/mlヒステジンを含むバルクホルダーミニマルメディウムの東天プレート上に塗布し、30℃にて培養してコロニーを形成させる(ロイシン非要求性となった形質転換体の再確認のため)ついでこのコロニーから菌体を分離し、20μg/mlヒステジンを含むバルクホルダーミニマルメディウム10mlに接種し、30℃にて培養を行う。約24時間後、対数増殖期にある菌体を遠心して集菌し、これをリン酸を含まない最小培地(バルクホルダーミニマルメディウムに含まれるKH₂PO₄をKClで置換し、さらに20μg/mlヒステジンを加えたもの)10mlに初期約4×10⁶cells/mlになるように懸濁し、30℃にて培養を続けた。このようにして酵母菌体内に産生されたプレアルブミンを得た。

リン酸濃度を低下させ、プロモーター活性を誘導する前後でのプレアルブミンの酵素免疫測定による測定値を後記実施例2の第1表中に示した。

実施例2：異型プレアルブミンの発現

(1)異型プレアルブミン遺伝子の調製

FAP患者の肝臓を手術時に摘出し、実施例1の場合と同様にして異型プレアルブミンをコードするcDNAを調製し、これをOkayama-Bergベクターにクローニングし、これをプラスミドpPA3とした。

(2)異型プレアルブミン遺伝子発現プラスミド(pMPA1)の調製

この異型プレアルブミンをコードする全領域を含むDNA断片が挿入されているプラスミドpPA3(3μg)を用い、実施例1と同様にしてシャトルベクターpAM82の既性ホスファターゼプロモーターダ下方に異型プレアルブミン遺伝子が組み込まれている発現プラスミドpMPA1を得た。

(3)形質転換酵母による異型プレアルブミンの製法

前記のプラスミドpMPA1を実施例1と同様に酵母サッカロミセス・セレビジエAH22に導入し、形質

転換酵母を得、これを同様に培養した。第1表にリン酸濃度を低下させ、プロモーター活性を導入する前後での異型プレアルブミンの酵素免疫測定の結果を示した。

第1表

プラスミド	プレアルブミン産生量(μg/ml)	
	誘導前	誘導後
pNPA1	0	5.3
pMPA1	0	2.1

実施例3：発生されたプレアルブミンの解析

前記実施例1および実施例2により得られたプレアルブミン(正常)および異型プレアルブミンの免疫学的性状をヒト血液由来のプレアルブミンのそれと比較することにより調べた。

その結果、正常プレアルブミンを産生している酵母菌を確立して得られる粗抽出液の酵素免疫測定における反応性は、ヒト血液由来のプレアルブミンのそれと同一であることが確認された(第5

図)。さらに、ウェスタンプロットの結果からも、酵母産生正常プレアルブミンはヒト血液由来プレアルブミンと同一の分子量を有していることが確認された。(第6図、レーン1:ヒト血液由来プレアルブミン、レーン2:正常プレアルブミン発現酵母菌粗碎液、レーン3:異型プレアルブミン産生酵母菌粗碎液、レーン4:陰性コントロール用宿主酵母菌粗碎液)

また、実施例2における異型プレアルブミンも同様にFAP患者血液由来の異型プレアルブミンと免疫学的に同一であることが判明した。(第5図、第6図参照)

4. 図の簡単な説明

第1図は、プレアルブミン遺伝子の制限酵素切断地図、第2図はプレアルブミン遺伝子の塩基配列とこれから予想されるアミノ酸配列を示す。

第3図は、シャトルベクターpAM82のプラスミド図を示す。

第4図はプレアルブミン遺伝子発現プラスミドの構成図を示す。

第5図は酵母産生正常プレアルブミン、異型プレアルブミンおよびヒト血液由来プレアルブミンの酵素免疫測定における反応性を示す。

第6図はヒト血液由来プレアルブミン(レーン1)、酵母産生正常プレアルブミン(レーン2)、酵母産生異型プレアルブミン(レーン3)および宿主酵母菌粗抽出液(レーン4)のウェスタンプロット像を示す。

第2図

ACAGAAGTCCACTCATTCTGGCAGG

Met Ala Ser His Arg Leu Leu Leu Cys Leu Ala Gly Leu
ATG GCT TCT CAT CGT CTC CTC CGT CCT GCT GGA CTG
Val Phe Val Ser Glu Ala Gly Pro Thr Gly Glu Ser
GTA TTT GTG TCT GAG CCT GCT AGC GGC ACC GGT GAA TCC
Lys Cys Pro Leu Met Val Lys Val Asp Ala Val Arg Gly
AAC TGT CCT CTG ATG GTC AAA GTT CTA GAT GCT GTC CGA GGC
Ser Pro Ala Ile Asn Val Ala Val His Val Phe Arg Lys Ala
ACT CCT GCC ATC AAT GTG GCC GTG CAT GTG TTC AGA AAG CCT
Ala Asp Asp Thr Trp Glu Pro Phe Ala Ser Glu Lys Thr Ser
GCT GAT GAC ACC TGG GAG CCA TTT GCC TCT GGG AAA ACC AGT
Glu Ser Glu Glu Leu His Glu Leu Thr Thr Glu Glu Glu Phe
GAG TCT CGA GAG CTG CAT GGG CTC ACA ACT GAG GAG GAA TTT
Val Glu Gly Ile Tyr Lys Val Glu Ile Asp Thr Lys Ser Tyr
GTA GAA GGG ATA TAC AAA GTG GAA ATA GAC ACC AAA TCT TAC
Trp Lys Ala Leu Glu Ile Ser Pro Phe His Glu His Ala Glu
TGG AAG GCA CTT GGC ATC TCC CCA TTC CAT GAG CAT GCA GAG
Val Val Phe Thr Ala Asn Asp Ser Glu Pro Arg Tyr Thr
CTG GTC GCA GCG AAC GAC TCC GGC CCC CGC CGC TAC ACC
Ile Ala Ala Leu Leu Ser Pro Tyr Ser Thr Thr Ala
ATT GCC GGC CTG CTG AGC CCC TAC TCC TAT TCC ACC ACG GCT
Val Val Thr Asn Pro Lys Glu ***
GTC GTC ACC AAT CCC AAG GAA TGAGGGACTCTCCAGTGACCTG
AAGGACGAGGGATGGGATTCTCATGTAACCAAGAGTATTCCATTTTACTAAAGCA
CTGTTTCACCTCATATGCTATGTTAGTAGCTCCAGGCAGAGACAATAMACATTG
CTTGAAAGGCAAAAAAAAGGCAAAAAAAAGGCAAAAAAAAGGCAAAAAAAAGGCA
AAAAAA

第1図

第3図

E: 大腸菌由来遺伝子

第4図

第5図

第6図

第1頁の読み

⑤Int.Cl.*

識別記号

庁内整理番号

//(C 12 N 15/00
C 12 R 1:865)
(C 12 P 21/02
C 12 R 1:865)

⑦発明者 濱田 福三郎 熊本県菊池郡西合志町須屋2679-2

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.