(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 26 May 2005 (26.05.2005)

PCT

(10) International Publication Number WO 2005/048330 A1

(51) International Patent Classification⁷: C30B 25/04

H01L 21/20,

(21) International Application Number:

PCT/GB2004/050022

(22) International Filing Date: 28 October 2004 (28.10.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0326321.7

12 November 2003 (12.11.2003) GB

- (71) Applicant (for all designated States except US): UNIVER-SITY OF WARWICK [GB/GB]; Coventry, Warwickshire CV4 7AL (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CAPEWELL, Adam, Daniel [GB/GB]; 16 Cowdray Close, Leamington Spa, Warwickshire CV31 1LB (GB). PARKER, Evan, Hubert, Cresswell [GB/GB]; The Orchard, Back Ends, Chipping Campden, Gloucestershire GL55 6AU (GB). GRASBY, Timothy, John [GB/GB]; 3 Clover Cottage, Station Road, Salford Priors, Worcestershire WR11 8UX (GB).

- (74) Agents: HARDING, Richard, Patrick et al.; Marks & Clerk, 4220 Nash Court, Oxford Business Park South, Oxford, Oxfordshire OX4 2RU (GB).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with amended claims and statement

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FORMATION OF LATTICE-TUNING SEMICONDUCTOR SUBSTRATES

(57) Abstract: A method of forming a lattice-tuning semiconductor substrate comprises defining a selected area (12) of a Si surface (15) by means of a window (13) extending through an isolating layer (11) on the Si surface (15); defining in the isolating layer (11) a depression (14) separated from the Si surface (15) by a portion of the isolating layer (11); growing a SiGe layer (16) on top of the selected area (12) of the Si surface (15) such that dislocations (17) are formed in the window (13) to relieve the strain in the SiGe layer (16); and

further growing the SiGe layer (16) to overgrow the isolating layer (11) and extend into the depression (14) to form a substantially dislocation-free area (18) of SiGe within the depression (14). If required, the portion of the SiGe layer (16) that has overgrown the isolating layer (11) can then be removed by polishing so as to isolate the substantially dislocation-free area (18) of SiGe within the depression (14) from the area of SiGe within the window (13). Furthermore the SiGe layer (16) and the isolating layer (11) can then be removed from the Si surface (15) except in the vicinity of the depression (14) so as to leave on the Si surface (15) the substantially dislocation-free area (18) of SiGe isolated from the Si surface (15) by the portion of the isolating layer (11).

O 2005/048330 A1