Algèbre linéaire avancée II printemps 2021

Série 14

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit $A \in \mathbb{Z}^{m \times n}$ une matrice de plein rang lignes, et n > m. Montrer qu'il y a une base $\{b_1, \ldots, b_k\} \subseteq \mathbb{Z}^n$ de $\ker(A)$, composée de vecteurs entiers, et exprimer k avec m et n.

Exercice 2. Soit $A \in \mathbb{Z}^{m \times n}$ et $d \in \mathbb{Z}$ un nombre entier qui divise chaque composante de A. Si $U \in \mathbb{Z}^{m \times m}$ et $V \in \mathbb{Z}^{n \times n}$ sont des matrices unimodulaires, alors d divise chaque composante de $U \cdot A \cdot V$.

Exercice 3. Calculer la forme normale de Smith pour

$$A = egin{bmatrix} 3 & 12 & 9 & 0 & -3 \ 4 & 1 & 0 & 1 & 1 \ 7 & 3 & 21 & 0 & 8 \ 7 & 6 & 4 & 5 & 2 \end{bmatrix}, \qquad B = egin{bmatrix} 3 & 12 & 9 & 0 & -3 \ 4 & 1 & 0 & 1 & 1 \ 5 & -5 & 15 & 0 & 10 \ 7 & 6 & 4 & 5 & 2 \end{bmatrix}$$

Exercice 4. Soit $A \in \mathbb{Z}^{m \times n}$ et rang(A) = m. L'ensemble $\Lambda(A) := \{Ax, x \in \mathbb{Z}^n\}$ est un réseau entier généré par A. Parmi les matrices suivantes, lesquelles génèrent le même réseau?

$$A_1 = egin{pmatrix} 4 & 2 & 2 & 0 \ -4 & -1 & 0 & 1 \ 0 & 2 & 1 & 2 \ 5 & 0 & -3 & -2 \end{pmatrix}, \qquad A_2 = egin{pmatrix} 3 & 0 & -6 & 0 \ 1 & -1 & 1 & -1 \ 0 & 1 & 0 & -1 \ 0 & -3 & 2 & 1 \end{pmatrix}, \qquad A_3 = egin{pmatrix} 2 & 2 & 6 & 0 \ 0 & 0 & -3 & 1 \ 4 & 1 & 3 & 2 \ -2 & -3 & 0 & -2 \end{pmatrix}.$$

Exercice 5. Soit $A \in \mathbb{C}^{n \times n}$ une matrice, et soient $P, J \in \mathbb{C}^{n \times n}$ telles que P est inversible, J est en forme normale de Jordan et $A = P^{-1}JP$. Montrer que les polynômes minimaux de A et de J sont les mêmes.

Remarque: Le polynôme minimal p(x) d'un application linéaire $T:V\to V$ est le polynôme de degré minimal t.q. p(T)=0.

Exercice 6. Soit $A \in \mathbb{C}^{n \times n}$ une matrice en forme normale de Jordan, où

$$A=egin{pmatrix} A_1 & & & \ & \ddots & \ & & A_k \end{pmatrix},$$

et pour $i = 1, \ldots, k$,

$$A_i = egin{pmatrix} B_{i1} & & & \ & \ddots & \ & & B_{ik_i} \end{pmatrix}$$
 ,

où B_{ij} est un bloc de Jordan de taille m_{ij} , avec la valeur λ_i sur sa diagonale.

a) Montrer que

$$m_{A_i}(x) = (\lambda_i - x)^{m_i},$$

où $m_i=\max_{j=1,\dots,k_i}m_{ij}$ est la taille maximale d'un bloc de Jordan de A avec λ_i sur la diagonale.

b) Montrer que

$$m_A(x) = \prod_{i=1}^k (\lambda_i - x)^{m_i}.$$

c) Quelles informations sur la forme normale de Jordan pour A nous donnent le polynôme minimal et le polynôme caractéristique de A?

Exercice 7. Soit $A \in \mathbb{C}^{5 \times 5}$ une matrice avec polynôme caractéristique

$$p_A(x) = (x-2)^3(x+7)^2$$

et polynôme minimal

$$m_A(x) = (x-2)^2(x+7).$$

Déterminer la forme normale Jordan J de A.

Exercice 8. Soit $A \in \mathbb{C}^{n \times n}$ une matrice telle que $A^3 = A$. Montrer que A est diagonalisable.

Exercice 9. Soit $A \in \mathbb{C}^{n \times n}$ un bloc Jordan avec λ sur la diagonale. Soit $x \in \mathbb{R}^n$ un vecteur. Montrer que

$$(e^{At}x)_i = \sum_{j=i}^n rac{x_j t^{j-i}}{(j-i)!} e^{\lambda t}.$$

Exercice 10. Soit $Q: \mathbb{R}^3 \to \mathbb{R}$ une application telle que $Q(x) = 9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$.

- a) Trouver une matrice symétrique $A\in\mathbb{R}^{3 imes3}$ telle que $Q(x)=x^TAx$ pour tout $x\in\mathbb{R}^3.$
- b) Soit B la base canonique. Trouver une base $B' = \{v_1, v_2, v_3\}$, telle que $Q(x) = [x]_{B'}^T D[x]_{B'}$, où D est une matrice diagonale.