ONLINE TRAVEL SEARCH HISTORY ANALYSIS

BY:

Alle Likhitha

ID:QSML100420

CONTENTS

- ABOUT DATASET
- TASK GIVEN
- PANDAS PROFILING
- SAMPLING
- ALGORITHMS USED
- CONCLUSION

ABOUT DATASET

- The dataset is from one of the worlds largest online travel agency (OTA) which powers search results for millions of travel shoppers every day
- It consists of 54 features.
- The target features in the dataset are clicked, booked value, booked

Here the clicked and booked are categorical data with '0' and '1's

Column Name	Data Type	Description
1 search_id	Integer	The ID of the search
2 timestamp	Date/time	Date and time of the search
3 site_id	Integer	ID of the website point of sale (i.ecom, .co.uk, .co.jp,)
4 user_country_id	Integer	The ID of the country the customer is located
5 user_hist_stars	Float	The mean star rating of hotels the customer has previously purchased; null signifies there is no purchase history on the customer
6 user_hist_paid	Float	The mean price per night (in US\$) of the hotels the customer has previously purchased; null signifies there is no purchase history on the customer
7 listing_country_id	Integer	The ID of the country the hotel is located in
8 listing_id	Integer	The ID of the hotel
9 listing_stars	Integer	The star rating of the hotel, from 1 to 5, in increments of 1. A 0 indicates the property has no stars, the star rating is not known or cannot be publicized.
10 listing_review_score	Float	The mean customer review score for the hotel on a scale out of 5, rounded to 0.5 increments. A 0 means there have been no reviews, null that the information is not available.
11 is_brand	Integer	+1 if the hotel is part of a major hotel chain; 0 if it is an independent hotel
12 location_score1	Float	A (first) score outlining the desirability of a hotel's location
13 location_score2	Float	A (second) score outlining the desirability of the hotel's location
14 log_historical_price	Float	The logarithm of the mean price of the hotel over the last trading period. A 0 will occur if the hotel was not sold in that period.
15 listing_position	Integer	Hotel position on the search results page. This is only provided for the training data, but not the test data.
16 price_usd	Float	Displayed price of the hotel for the given search. Note that different countries have different conventions regarding displaying taxes and fees and the value may be per night or for the whole stay
17 has_promotion	Integer	+1 if the hotel had a sale price promotion specifically displayed
18 booking_value	Float	Total value of the transaction. This can differ from the price_usd due to taxes, fees, conventions on multiple day bookings and purchase of a room type other than the one shown in the search
19 destination_id	Integer	ID of the destination where the hotel search was performed
20 length_of_stay	Integer	Number of nights stay that was searched
21 booking_window	Integer	Number of days in the future the hotel stay started from the search date
22 num_adults	Integer	The number of adults specified in the hotel room
23 num_kids	Integer	The number of (extra occupancy) children specified in the hotel room
24 num_rooms	Integer	Number of hotel rooms specified in the search
25 stay_on_saturday	Boolean	+1 if the stay includes a Saturday night, starts from Thursday with a length of stay is less than or equal to 4 nights (i.e. weekend); otherwise 0
26 log_click_proportion	Float	The log of the probability a hotel will be clicked on in Internet searches (hence the values are negative) A null signifies there are no data (i.e. hotel did not register in any searches)
27 distance_to_dest	Float	Physical distance between the hotel and the customer at the time of search. A null means the distance could not be calculated.
28 random_sort	Boolean	+1 when the displayed sort was random, 0 when the normal sort order was displayed
29 competitor1_rate	Integer	+1 if agency has a lower price than competitor 1 for the hotel; 0 if the same; -1 if the agency's price is higher than competitor 1; null signifies there is no competitive data
30 competitor1_has_availability	Integer	+1 if competitor 1 does not have availability in the hotel; 0 if both agency and competitor 1 have availability; null signifies there is no competitive data
31 competitor1_price_percent_diff	Float	The absolute percentage difference (if one exists) between the agency and competitor 1's price (agency's price the denominator); null signifies there is no competitive data
32 competitor2_rate	Integer	
33 competitor2_has_availability	Integer	
34 competitor2_price_percent_diff	Float	
35 competitor3_rate	Integer	
36 competitor3_has_availability	Integer	
37 competitor3_price_percent_diff	Float	
38 competitor4_rate	Integer	
39 competitor4_has_availability	Integer	
40 competitor4_price_percent_diff	Float	
41 competitor5_rate	Integer	
42 competitor5_has_availability	Integer	(same, for competitor 2 through 8)
43 competitor5_price_percent_diff	Float	
44 competitor6_rate	Integer	
45 competitor6_has_availability	Integer	
46 competitor6_price_percent_diff	Float	
47 competitor7_rate	Integer	
48 competitor7_has_availability	Integer	
49 competitor7_price_percent_diff	Float	
50 competitor8_rate	Integer	
51 competitor8_has_availability	Integer	
52 competitor8_price_percent_diff	Float	
53 clicked	Boolean	if the listing is clicked 1, else 0
54 booked	Boolean	if the listing is booked 1, else 0

1.Load the dataset into R or Python and identify the type of the dataset features and report them

- I have uploaded the dataset as zip file to my drive and then in google colab I have unzipped it. So now it is present in google colab.

2 .Perform summary statistics and explain what issues these statistics reveal.

- I read the dataset using pandas and performed the functions like shape, info and describe to know about the dataset
- As the data fame is huge I have not performed pandas profiling because it takes lot of time for large data frames
- Describe function gives all the statistics of the data frame.

- 3.Perform exploratory analysis to identify any collinearities and explain which issues collinear-ity causes.
- -To perform collinearities we use data frame.corr() function. This function returns the collinearity between each feature.
- The features are not so related to each other some features like clicked, booking value, booked have high collinearity.
- 4. There is currently a problem in the data which will lead to inflation in the success of the metric of choice (i.e.inflated accuracy, or false reduction in loss). This will keep the model from generalizing to the test set. Please identify what it is and explain the problem.
 - The problems I have identified in the data is
 - Huge amount of Null Values
 - Presence of Outliers
 - Null values leads to bias in the data
 - Due to presence of the outliers it leads lo wrong predictions, accuracy.

- 5. Propose and implement the solutions for the issues you have found. The issues listed here are not exhaustive. If you encounter any other issues, please propose and implement solutions for those as well
 - To reduce these problems I have removed the features with null values > 80%, after removing them the outliers are checked by using box plot.
 - The null values are filled with the mean, median, mode according to the type of data present in the features

Ex: listing_review_score - The mean customer review score for the hotel on a scale out of 5, rounded to 0.5 increments. A 0 means there have been no reviews, null that the information is not available.

I.e As the information is not available and data is continuous so it is filled with the mean values.

- Outliers are checked and removed by using IQR(Inter Quartile Range)
- 6.Are there any data privacy and security issues in this dataset? If so, what are they? How would you solve these problems?
 - The data consists of the customer_id, site_id etc by using these values the hotel management can know about the bookings of the customers easily so the data is not so secured.

- Q. This dataset has 3 possible outcome variables: clicked, booking_value and booked. Select one of those variables to model and train a machine learning model of your choice.
- The variables clicked and booked are categorical and are correlated on each other. As they are categorical I have applied the classification algorithms Decision Tree and SVM.

Pandas-Profiling:

Generates profile reports from a pandas <code>DataFrame</code>. The pandas <code>df.describe()</code> function is great but a little basic for serious exploratory data analysis. <code>pandas_profiling</code> extends the pandas <code>DataFrame</code> with <code>df.profile_report()</code> for quick data analysis.

For each column the following statistics - if relevant for the column type - are presented in an interactive HTML report:

- Type inference: detect the types of columns in a dataframe.
- Essentials: type, unique values, missing values
- Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range
- Descriptive statistics like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
- Most frequent values
- Histogram
- Correlations highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
- Missing values matrix, count, heatmap and dendrogram of missing values
- Text analysis learn about categories (Uppercase, Space), scripts (Latin, Cyrillic) and blocks (ASCII) of text data.
- File and Image analysis extract file sizes, creation dates and dimensions and scan for truncated images or those containing EXIF information.

Example snapshots of pandas profiling report

Pandas Profiling Report Overview Variables Interactions Correlations Missing values

Overview

Missing values

Interactions

SAMPLING:

- > RANDOM OVERSAMPLING IMBALANCED DATASETS
 - As the features clicked and booked have imbalanced data oversampling is applied.
 - -Random oversampling involves randomly duplicating examples from minority class and and adding them to the training dataset.
 - This may increase the likelihood of overfitting, specially for higher over-sampling rates. Moreover, it may decrease the classifier performance and increase the computational effort.

```
[ ] print(sum(dataf_2['booked']==1))
    print(sum(dataf_2['booked']==0))
Г→ 66388
    2314169
[ ] print(sum(dataf_2['clicked']==1))
    print(sum(dataf 2['clicked']==0))
[→ 106094
    2274463
[ ] print(sum(df_clean['booked']==1))
    print(sum(df clean['booked']==0))
Г→ 36378
    1269369
[ ] print(sum(df clean['clicked']==1))
    print(sum(df clean['clicked']==0))
[→ 55346
    1250401
```

Algorithms Used:

- **Decision tree classification**
 - -A decision tree is a simple representation for classifying data. It is a Simple Supervised Machine Learning where the data is continuously split according to certain parameter

 Is a Person Fit?
 - Nodes: Test for the value of a certain attribute.
 - Edges/ Branch: Correspond to the outcome of a test and connect to the next node or leaf.
 - -Leaf nodes: Terminal nodes that predict the outcome

EXAMPLE DECISION TREE

Regions "A", "B" and "C" are "pure". They should not be split. Region D should be considered for splitting.

F1 Score: 0.986 accuracy Score: 0.986

- F1 Score: F1 score is defined as the harmonic mean between precision and recall. It is used as a statistical measure to rate performance. In other words, an F1-score (from 0 to 9, 0 being lowest and 9 being the highest) is a mean of an individual's performance, based on two factors i.e. precision and recall.
- ightharpoonup Accuracy: Accuracy is one metric for evaluating classification models. Informally, accuracy is the fraction of predictions our model got right. Formally, accuracy has the following definition: $Accuracy = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$
- For binary classification, accuracy can also be calculated in terms of positives and negatives as follows: $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$
- Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

SVM Algorithm

Support Vector Machine (SVM) is a supervised <u>machine learning algorithm</u> which can be used for both classification or regression challenges. However, it is mostly used in classification problems. In the SVM algorithm, we plot each data item as a point in n-dimensional space (where n is number of features you have) with the value of each feature being the value of a particular coordinate. Then, we perform classification by finding the hyper-plane that differentiates the two classes very well (look at the below snapshot).

> Support Vectors are simply the co-ordinates of individual observation. The SVM classifier

is a frontier which best segregates the two classes

CONCLUSION

➤ The data has even more information to dig from as I have only performed two algorithms for classification still we can do so much using the information present in the data set. The important steps we have to do are checking null values, if any then do the suitable methods to eliminate them, removing outliers, sampling the imbalanced data and applying the regression and classification algorithms on the data.

THANK YOU