一段话总结

本章聚焦对称密钥原语的理论构造,核心在于证明**单向函数**是构建伪随机生成器、函数和置换的基础。通过定义单向函数及其硬核心谓词,利用Goldreich-Levin定理,从单向置换出发构造出最小扩展的伪随机生成器,并通过迭代扩展其扩张因子。进一步借助Feistel网络等结构,由伪随机生成器构造伪随机函数与强伪随机置换,最终证明单向函数的存在是实现非平凡私钥密码学的充要条件,揭示了理论构造与实际应用的关联及假设基础。

思维导图

详细总结

一、单向函数基础

1. 定义:函数f易计算,且对任意PPT算法A,反转概率(Pr[Invert_{A,f}(n)=1]≤negl(n))。若f是双射且长度保留,为单向置换。_

2. 候选函数

- 整数分解: (f{mult}(x,y)=x·y), 限制x,y为等长素数。 子集和问题: (f{ss}(x_1,...,x_n,J)=(x_1,...,x_n,\sum{j∈J}x_j \mod 2^n))。
- 离散对数: (f{p,g}(x)=g^x \mod p), p为素数, g为生成元。3. 硬核心谓词: 对函数f, 谓词hc(x)易计算, 但给定f(x)时计算hc(x)概率仅略高于1/2。如Goldreich-Levin构造: (gl(x,r)=\oplus{i=1}^n x_i·r_i), r均匀。

二、伪随机生成器构造

- 1. 最小扩张 (n→n+1) 构造: 若f是单向置换, hc是硬核心谓词, 定义(G(s)=f(s)||hc(s))。 安全性: f是置换使f(s)均匀, hc硬核心使附加位伪随机,通过区分器归约证明。
- 2. 任意多项式扩张 方法: 迭代调用G,每次用前n位作为新种子,如(\hat{G}(s)=G^k(s)),k次调用得n+k位。 证明:混合论证,定义中间分布(H_n^j),通过区分器归约到基生成器安全性。

三、伪随机函数与置换

- 1. 伪随机函数 构造: 用2n扩张生成器G, 定义($F_k(x_1...x_n)=G\{x_n\}\{...G\{x_n\}\}$ (k)...)),如二叉树遍历。 安全性: 归约到生成器多块不可区分性,用混合论证证明与随机函数不可区分。
- 2. 伪随机置换 三轮Feistel网络: (F^{(3)}{k1,k2,k3}(L0,R0)=(R3,L3)), 其中: (L1=R0, R1=L0⊕F{k1}(R0)) (L2=R1, R2=L1⊕F{k2}(R1)) (L3=R2, R3=L2⊕F{k3}(R2)) 强伪随机置换 (四轮Feistel): 增加一轮,抵抗正反查询区分。

四、关键定理与假设

定理 / 假设	内容
单向函数存在性	是构造所有非平凡私钥原语的充要条件
Goldreich-Levin 定理	单向函数存在→存在硬核心谓词
构造链	单向函数→伪随机生成器→函数→置换
必要性证明	EAV 安全加密 (消息长 2 倍于密钥) →单向函数

五、计算不可区分性

- 1. 定义: 两概率 ensemble (X,Y),对任意PPT区分器D,(|Pr[D(X_n)=1]-Pr[D(Y_n)=1]|≤negl(n))。
- 2. 应用: 伪随机生成器定义为(G(U_n) \stackrel{c}{≡} U_{(n)}), 多样本不可区分性定理支持多块扩展。

关键问题

1. 单向函数在对称密钥构造中的核心作用是什么?

答案:单向函数是对称密钥原语的理论基础,其存在是构造伪随机生成器、函数和置换的充要条件。通过硬核心谓词,单向函数的"难反转性"转化为伪随机序列的"不可预测性",进而构建各类密码学原语,确保从理论上奠定安全性基础。

2. 如何从单向函数逐步构造出伪随机置换?

答案: 首先由单向置换与硬核心谓词构造扩张因子n+1的伪随机生成器,再通过迭代扩展其扩张因子。接着用生成器构建基于二叉树遍历的伪随机函数,最后利用三轮或四轮Feistel网络,将伪随机函数转化为伪随机置换,通过多轮函数迭代和结构设计确保置换的伪随机性和可逆性。

3. 为什么说单向函数是私钥密码学的最小假设?

答案:一方面,单向函数可构造所有非平凡私钥原语(如加密、MAC);另一方面,非平凡私钥加密(消息长于密钥)或安全MAC必然蕴含单向函数存在。这形成充要关系,表明单向函数是私钥密码学不可再弱的假设,无法在更弱假设下实现同等安全构造。