

MapReduce 实战项目之 PageRank

赵敏 老师

扫描二维码关注微信/微博 获取最新IT面试情报及权威解答

微信: ninechapter

知乎专栏: http://zhuanlan.zhihu.com/jiuzhang

微博: http://www.weibo.com/ninechapter

官网: www.jiuzhang.com

Outline

- What is PageRank
- Why is PageRank
- Basic theory behind PageRank
- Implement PageRank with MapReduce

- PageRank is an algorithm used by Google Search to rank websites in their search engine results.
- Beats Yahoo!

When I search "big data", there will be 261,000,000 results

How to rank?

How to rank in the past

- Use Title
- Use keyword density
- Manually
- ...

Disadvantage of the old rank method?

- Not accurate
- Easily manipulated by human

So PageRank came out!

Self-rank is not accurate, let's involve everyone to rank!

- 数量假设: More important websites are likely to receive more links from other websites
- 质量假设:Website with higher PageRank will pass higher weight

$$A \rightarrow B, C, D$$

$$B \rightarrow A, D$$

$$C \to \mathsf{A}$$

$$D \rightarrow B, C$$

 More important websites are likely to receive more links from other websites

How to represent the directivity between pages?

Transition Matrix

$$A \rightarrow B, C, D$$

$$B \rightarrow A, D$$

$$C \rightarrow A$$

$$D \rightarrow B, C$$

To\From	WA	WB	WC	WD
WA	0	1/2	1	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

$$M = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Website with higher PageRank will pass higher weight

How to represent the importance of each website?

PageRank Matrix

How to calculate PR1?

——— PR1 = PR0 *	Transition	Matrix
-----------------	------------	--------

To\From	WA	WB	WC	WD
WA	0	1/2	1	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

	PR0		PR1
Α	1/4	Α	9/24
В	1/4	 В	5/24
С	1/4	С	5/24
D	1/4	D	5/24

$$\mathbf{AB} = egin{pmatrix} a & b & c \ p & q & r \ u & v & w \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} ax + by + cz \ px + qy + rz \ ux + vy + wz \end{pmatrix}$$

How to calculate PR2? ———— PR2 = PR1 * Transition Matrix

How to calculate PR(N)? ———— PRN = PR(N-1) * Transition Matrix

Will this iteration be infinite?

No! The matrix PR will finally converge

Can you think of some edge cases?

- Dead ends
- Spider traps

Dead ends

To\From	WA	WB	WC	WD
WA	0	1/2	0	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

PR(N) matrix will become zeros finally

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 5/24 \\ 5/24 \\ 7/48 \\ 7/48 \\ 31/288 \\ 31/288 \\ 31/288 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Spider traps

To\From	WA	WB	WC	WD
WA	0	1/2	0	0
WB	1/3	0	0	1/2
WC	1/3	0	1	1/2
WD	1/3	1/2	0	0

PR(N) matrix will be dominated by one page

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 5/24 \\ 5/24 \\ \end{bmatrix} \begin{bmatrix} 5/48 \\ 7/48 \\ 29/48 \\ 205/288 \\ 31/288 \\ 31/288 \\ \end{bmatrix} ... \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \end{bmatrix}$$

How to solve this problem as a human?

What you will do when you see these two situations?

Close current page and open a new one!

Teleporting

PR(N) = PR(N-1) * Transition Matrix
$$\downarrow \\
PR(N) = (1-\beta)*PR(N-1)*Transition Matrix + \beta*e$$

 $PR(N) = (1-\beta)*PR(N-1)*Transition Matrix + \beta*e$ $\beta = 1/5$

To\From	WA	WB	WC	WD
WA	0	1/2	1	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

		PR0		
	Α	1/4		
<	В	1/4	× (1-1/5)	
	С	1/4		
	D	1/4		

	PR0		
Α	1/4		
В	1/4	×	1/5
С	1/4		
D	1/4		

Let's implement on MapReduce!

What is the input? Matrix?

To\From	WA	WB	WC	WD
WA	0	1/2	1	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

	PR0
Α	1/4
В	1/4
С	1/4
D	1/4

No!

- Waste space
- Not easy to insert/delete

Input format

```
1 http://www1.hollins.edu/
2 http://www.hollins.edu/
3 http://www1.hollins.edu/Docs/CompTech/Network/webmail faq.htm
4 http://www1.hollins.edu/Docs/Forms/GetForms.htm
5 http://www1.hollins.edu/Docs/misc/travel.htm
6 http://www1.hollins.edu/Docs/GVCalendar/gvmain.htm
7 http://www1.hollins.edu/docs/events/events.htm
1 2
8 2
16 2
18 2
20 2
```


To simplify your work

Input1: Relations.txt

- 1 2,7,8,29
- 2 4,9,10,26
- 3 1,29,31,26

Input2: PR.txt

- 1 1/6012
- 2 1/6012
- 3 1/6012
- 4 1/6012
- 5 1/6012

Matrix * Matrix?
You will keep everything in memory!

不允许录像与传播录像, 否则将追究法律责任和经济赔偿。

不允许录像与传播录像, 否则将追究法律责任和经济赔偿。

MR1.Mapper1

Input1: Relations.txt

1 2,7,8,29

2 4,9,10,26

3 1,29,31,26

Key: from	Value: to = relation
1	2=1/4
1	7=1/4
1	8=1/4
1	29=1/4

To\From	WA	WB	WC	WD
WA	0	1/2	1	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

MR1.Mapper2

Input2: PR.txt

1 1/6012

2 1/6012

3 1/6012

4 1/6012

5 1/6012

Key: page	Value: PR
1	1/6012
2	1/6012
3	1/6012
4	1/6012

	PR0		
Α	1/4		
В	1/4		
С	1/4		
D	1/4		

MR1.Reducer

Key: from	Value: to = relation
1	2=1/4
1	7=1/4
1	8=1/4
1	29=1/4

Key: page	Value: PR
1	1/6012
2	1/6012
3	1/6012
4	1/6012

Page	List <values></values>
1	2=1/4, 7=1/4, 8=1/4, 29=1/4, 1/6012

Page	Page List <values></values>		Key: to	Value: subPR
1	1 2=½, 7=½, 8=½, 29=½, 1/6012		2	1⁄4*1/6012
			7	1⁄4*1/6012

To\From	WA	WB	WC	WD
WA	0	1/2	1	0
WB	1/3	0	0	1/2
WC	1/3	0	0	1/2
WD	1/3	1/2	0	0

不允许录像与传播录像, 否则将追究法律责任和经济赔偿。

MR2.Mapper:

Read file generated from last MR

MR2.Reducer:

Key: to	Value: subPR		Key: to	Value: totalPR
2	1⁄4*1/6012	sum	2	½*1/6012+½ *1/6012
2	½ *1/6012		•	
7	1/4*1/6012		7	1/4*1/6012

不允许录像与传播录像,否则将追究法律责任和经济赔偿。

Overview

- What is PageRank
- Why is PageRank
- Basic theory behind PageRank
- Implement PageRank with MapReduce
- How to do Matrix Multiplication in MapReduce