ECON 736 Presentation Assortative Matching with Large Firms

Mitchell Valdes-Bobes

November 30, 2021

Roadmap of Talk

Introduction

Model

Model set-up

Equilibrium

Characterization of Equilibrium Assortativity Characterization

Equilibrium Assignment

Simulation

Simulation Strategy Simulation Results

Appendix

Roadmap of Talk

Introduction

Model

Model set-up

Characterization of Equilibrium Assortativity Characterization Equilibrium Assignment

Simulation

Simulation Strategy Simulation Results

Appendix

Introduction

Motivation

Research Questions

Research Question Provide a unifying theory of production with a trade-off between hiring more versus better workers.

Results

 A sorting condition that captures the trade-off between quantity and quality of workers.

The model should deliver the following results:

- Characterization of matching in equilibrium.
 - When is matching assortative (PAM) or (NAM)?
 - When are more productive workers hired by more productive firms?
 - Under what conditions more productive firms hire more workers in equilibrium?

Roadmap of Talk

Introduction

Model

Model set-up Equilibrium

Characterization of Equilibrium Assortativity Characterization Equilibrium Assignment

Simulation

Simulation Strategy Simulation Results

Appendix

Model Setup

Production Function

Equilibrium

Feasible Demand

Equilibrium Definition

Equilibrium Characterization

Equilibrium Assortativity

Sketch of Proposition 1

Conditions for Assortative Equilibrium

Main Results: Proposition 2

Sketch of Proposition 2

Equilibrium Assignment

Roadmap of Talk

Introduction

Mode

Model set-up

Equilibrium

Characterization of Equilibrium

Assortativity Characterization

Equilibrium Assignment

Simulation

Simulation Strategy Simulation Results

Appendix

Title

- To simulate the model we will use the following production function:

$$f(x, y, \theta) = \left(\omega_A x^{(1-\sigma_A)/\sigma_A} + (1-\omega_A) y^{(1-\sigma_A)/\sigma_A}\right)^{\sigma_A/(1-\sigma_A)} \theta^{\omega_B}$$
 (1)

Computing condition ?? for this production function we get:

$$-\frac{\left(1-\sigma_{A}\right)\left(1-\omega_{A}\right)\omega_{A}x^{\frac{1}{\sigma_{A}}}y^{\frac{1}{\sigma_{A}}}\theta^{\omega_{B}}\left(\omega_{A}x^{\frac{1}{\sigma_{A}}-1}+\left(1-\omega_{A}\right)y^{\frac{1}{\sigma_{A}}-1}\right)^{\frac{\sigma_{A}}{1-\sigma_{A}}}}{\sigma_{A}\left(\omega_{A}\left(yx^{\frac{1}{\sigma_{A}}}-xy^{\frac{1}{\sigma_{A}}}\right)+xy^{\frac{1}{\sigma_{A}}}\right)^{2}}>0 \qquad (2)$$

- Clearly the condition for **PAM** holds if $\sigma_A < 1$ and we will have **NAM** if $\sigma_A > 1$.

Effect of changing ω_A

- When $\omega_A = 0.5$ workers and firms are equally weighted.
- Fully symmetric model, mathing $\mu(x) = x$, reach constant size

- Parametrization x, $y \sim U[0, 1]$, $\omega_B = 0.5$ and $\sigma_A = 0.9$

Effect of changing ω_A

- $\omega_A \in (0.5, 1]$ worker type is more determinant in production.
- The size effect dominates the type effect \implies matching is concave and firm size is increasing.

- Parametrization x, y \sim U[0, 1], $\omega_B = 0.5$ and $\sigma_A = 0.9$

Effect of changing ω_A

- $\omega_A \in [0, 0.5)$ firm type is more determinant in production.
- The type effect dominates the size effect \implies matching is convex and firm size is decreasing.

- Parametrization x, y $\sim U[0, 1]$, $\omega_B = 0.5$ and $\sigma_A = 0.9$

Roadmap of Talk

Introduction

Mode

Model set-up

Equilibrium

Characterization of Equilibrium Assortativity Characterization Equilibrium Assignment

Simulation

Simulation Strategy Simulation Results

Appendix

Use it to intimidate audiences!

Now you can make it clear you've done a shitload of work without having to show everything!

Back

You label a frame with the [label=name] option, and then point a link to it

You can make an object a link using the $\mbox{hyperlink{label}{object}}$ command