

Determine whether each of the Following is a tantology or controlletion or neither g.

1- P-> (PV9)

P	91	PV9	P-7(PV9)		
È			A 76	(08/ > X - C) (E X Y	-:
0	1	01	$\left(\frac{1}{1}\right)^{-1}$		
1	0	1	1	=> tantology.	
1	1	1 1	6 1 EX	5 X128/1/12 C	

2- (P-79) 1 (-PV9)

P	19.	P-79	→ P	7949	(P->9) 1(PV9) (P-9)
0	07	1	1 1	1 1	1 (x) X X
1	0	0	0	0	1375 XA Casthe

1 - Nostrein	1	1	1	•
3-(PV9) <> (9VP)	P	9	PV9	PV9=>9VP
2858	6	O	0	(1)
tautology (0	1	1	1
	1	1	1	1 1
		-		

8-(P->79)V(7r-7.P)

P	9	r.	79	- Y	P-779	2-2P	1(x26)
0	0	0	1	1	1	1	1
0	1	0	17	1	120	0 3	117
1	1	11	1	1	1	E1 1	1
1	1	. 1	1 1	1	1	1 1	1 1
5	1	1	1	0 0	0	1	1.12
	0	0 0 1 1 0	0 0 1 0	0 0 0 1 1 0 0 1 1 1 0 1 1	0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1		

9-[P->(9/V)] <> [CP->9) N(P->r)]

P	9)	r	912	P-7(9AV)	P->9	Por	(6-20)	[CY-79) / CP-70]
000001111	00110011	010101	00000001	11110001	7774 0 0 11	11110101	1111100.01	

tantology

10- [CPV9) ->r] @ (7PV79)

P	9	7	PV9	(PV9)->r	7p	79	7PV79	[CPV9) ->r] @ (7P V79)
0	0	0	0	1	1	1	1	.0
0	o	1	0	1	1	1	1	0
0	1	0	1	0	1	0	1	1
0	1	1	1	1	1	. 0	1	0
1	0	0	1	0	0	1	1	1
1	0	1	1	1	0	1	1 -	0
1	1	10	11	0	ō_	0	0	0
1	1	11	1	1	0	0	1	0

neither

Prove each of the Following logical equivalences:

G(BVE BAGIA) A(BVEBAL) [4PROLEM]

2-91 [CPV9) NE7917P)] = 9

P(X,y) : X/y=1, what is the truth value of the Following g.

- 1) VX Vy P(X,y) = Folse
- 2) YX= PCX, D) = Folse
- 3) IX Yy P(x, v) = Folse
- 4) Ix Iy PCX, D = true

1- Prove that if n=ad, a, b 70, % a s Nn or ⇒assume that n= 3 is 32ab, anight equal to 3 or 1 and bois same as a るがって、いまった、のでいた、かろりん 80 NM = NOG , NM = NO. NG , 1 8 No 3 NE and 20 2 NZ 2 - Prove that For integer n, if n2 is odd, 80 n is odd = if n2 is ofd, & n2 = 2K+1, n= NEVADO 0 83 Nod3 = 080) & wis odd 3- Show that the ProPosition PCO) is true, where PCu) is "if n>1, then n27n", Domann EZ P(0) = 071-7070,80 its true

1 - use math motical induction to prove that x2n y2n is divisible by x+y whenever n is a Positive integer.

* Bosic stel: - P(1) = x3-y2 = (x+y)(x-y). / x+y //

* inductive steps. assume that P(K) is brone o-X24-824/X+3 V

00 For WPL 8 - X2CK+1) - y2CK+2) = X2K+2 - y2K+2

= (x x+1+ y x+1) (x x+1- y x+1)

= (x2-52)(xx-yx), 8x2-32/x+y

30 (PCH+1) is true

(x2-52)(x1/y1)= x2+1/- x2y1/- x1/y2+j

= x2(xK-yK) - y2(xK-yK) = (x2-32)(xK-3K)

* inductive step g. assume PCN) is true

"3" < K! AK77

"6" For M+1 g. if 3" < H! , 80 31 < K\$+1

3" = 3.3" , 3" +1 < 3 K!

8" 3" +1 < K+1 · H!

"0" 3" +1 < (K+1)! (, P(K+1)) is true

1. List the numbers of these sets:-

a) {X | X is a real number such that x2=13 = 2-1,13

b) EXIX is a Positive integer Less than 123.

= { 1,2,3,4,5,6,7,8,9,10,113

C) 2 X | X is the square of an integer and X < 100 3 = 12, 23_

= { 1,4,9,11,25,36,49,64,813

J) $\{x \mid x \text{ is an integer such that } x^2 = z\} = \emptyset$

* Determe whether these statements are true or false.

a) \$ 2 2 \$ 3 T

6) Ø E E Ø) E Ø 3] T

C) [\$5 & £ \$3 F

d) 803 E 2 2033 T

2-use set builder notation to give a description of each of these sets

a) 90,3,6,9,123 = 23×10× is an integer less than \$5 and greather than or equal to 23

b) 4-3,-2,-1,0,1,2,33
= 2 x 1 x is an Integer Less than 4 and greather than = 43
=
Determine whether each of these statements is true or
a) XEZX3T b) EX3 S EX3T
C) EX3 E EX3 F d) EX3 E E EX3 T e) Ø E EX3 T
F) Ø E 2 X3 F
Determne, whether these statements are true or Polse g.
·の) ダモをダラT b) ダモをかったかろうてい
c) 203 E 203 F d) 203 E 22053 T
e) 203 C 20,203] T F) [2033 C 20,203] T
9) q 2 × 3 3 = 2 2 × 3 , 2 × 3] F
what is the cardholity of each of these sets 3-
N 203 → 1203 = 1 b) 22033 → 122033 == 1

Let A = {a,b,c,d,e3, B= {a,b,c,de,e,F,9,h3

Fild :-

a) AVB = 2XIXEA V XEB] = 2a, b, c, de, F, g, h]

b) ANB = EXIXEANXEB3 = Eastor estoe3

c) A-B = EXIXEA N X & B3 = 0

d) B-A= 2x1 x € A n x ∈ B3 = 2 F, J, h3

What conyon say about the sets A&B if you know that s

O) AVB=A?=> BCA=> YXCXEB->XEA)A 3xCXEAAX&B)

b) ANB = A => A CB + P or A = B => if ANB = B & ANB = A

c) A-B=A-> A NB = &, no elements intersect between A & B

d) ANB=BNA => commutative law

e) A-B=B-A=> A=B

	DATE / / SUBJECT:
6	6
-	19) show that if A and B are sets, then :-
0	a) $A - B = A \Lambda B$
10 10	A-B= ZXIXEANX B3
77	= EXIXEANXEB]
	= ANB
10 1	ANB = EXIXEANXEB3
9 40	= 2 XIX EANX #B3
	= A-B
9	事b)AVCB-A)=AVB
7	SAVCB-A)= EXIXEAV(XEB AX #A) 3
	= {XI(X = A V X = B) A CX = A V X \(A \) }
	= Ex (CXEAVXEB)]
4	$= \underbrace{A \vee B}$
-	means iff
2	
7.4	

24- Let A, B and c be sets. show that 3-(A-B)-C=(A-E)-(B-C) = (Anc) 17(Bnc) = (AAC) A (TBVC) - ANC'NB'V ANC'NC = Ancin B1 = (AAB) A e' = (A-B) - < = L.H.S 4 Pag 1 1 1 - 12 + 11 - - -EXIXEAN X&B) N. X & C] SO ZX (XEAN X&B) N(X&BNX&C) 3 EXI(XEANXEC) * (XEBNXEC) 3 06 € XI CXEANXEC) NCXEBV XEC)] = 3 X ((XEANX &CNX &B) V (XEANX &CNX &C) = 9 X | XEANXECNXEB3

of F(x) = 2x+1 = 2b=1

S Vb Fa (F(a) = b), 00 Za+1 = b, 10= b-1

1/20 FCA)=ZX+1 FSabijection 3// (onto)

Quiz-contd

PAGE DATE 3 - \2 - 2023

	(2)		2- (2-2023
	*LetF:R->R	be defined by	FCK7-5X+8, show
0	*Let F & R > R that F is a biJect	ion and FMD it	s inverse.
0		22 /	0 10 1
5	S 1-(1-1)	2- onto	
	Ya Y (F(A)-F(b)-7 a=	6) VI F. (F.	a) =62
	-	\$ 50 5a+8	
-	30 ga+8=86+8		
-	= 0 a = 6	A . B a -	5-8 500 a CR
-			2
-			. ,
_	· 0 10; L	Fairle 1	
_			
_	3° ; € F (X)=	5x +8, 5. 3=	5x+8
-	\$ X=57+8)	" X-8 1	61 7200
-	- 40 X = 53 +8)	3 5	2 -
-	1- let P, g and	h to the Fun	etons defined
•		T's	- K-0
	FOR PO	x) = x2-5	424.04
-	- 22 - DP 9	(x) 5x	
0	8; z->R. 9	X2-z	
-	4 8, R->Z 1	NCA) - LX]	
-			
	No.		
-			

= F(F(2)) = F(-1) = F(8(2)) = F(5 h (h(3-7)) - h(2+1) = h(F(015)) = h(-2.75 1.5) = F(h(1.51) = F(1) g(h(2)) = volues of these sums W=1 = 5(6) + 5= 20 + (-2) + (-2) + (-2) + (-2) + (-2) 4= 3X lo = (30

Lec. 7-Quz

PAGE				
DATE	10	1121	1202	3

List the ordered Pars in the relation R from A=20,1,2,2,43 to 8= 20,1,2,3], where (a, b) ER if and only if : a) a=b=> { (0,0); (1,1), (2,2); (3,3)} +6-4=7 {(1,3),(3,1),(2,2),(4,0)} c) ~76 => & (1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0) 3 (4,1), (4,2), (4,3) } 1) 0/6 => 2 (0,0), (1,0), (1,1), (1,2), (1,3), (2,2), (3,3) (C2,0), (3,0), (4,0) 3 Let Ribe the rolation represented by the matrix MR - 1110 Find the matrix occresenting b) R-[101] (Q) R e) R= RxR - [30] x [301] - [100]

PAGE	
DATE	

ch of the Following relations Rona set a) it's coordnote grid c) its matrix cas & 16) i) A= 21,2,3,4,5,6,7,83: - a eb ; Ff a <b { (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,3) 1(2,4), (2,5), (2,6), (2,7), (2,8), (3,4), (3,5) , (3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8) ,65,6),(5,7),(5,8),(6,7),(6,8),(7,8) 3 -75 17 17 118 (537) (THE (FE)

	P	A	G	Ε
1	n	Ā	Ŧ	ë

(ix) A=	191,2,33, the power set of {1,2,33%.
7 -	(\$)\$),(\$/3),(\$/3),(\$/3),(\$/23).
) (\$1,33), (\$1,23), (\$1,2,33), (\$1,2,33), (\$13,(13))
	(21,23, 21,23), (21,33, 21,33), (22,33, 22,33)) (21,333, 21,2,33)

ab	ø	213	223	{33 }	£1,23	£ 1,33	£ 2,33	{1 54,3}
6	X	X	_X_	X	X	X	X	X
£23 £23			Х-	×				
{1,23\ {1,33\					X	χ		
{2,33						X	X	_
6773	+						***************************************	

	PAGE DATE
2- the binary matrice relations R and 5 re = 91,2,3,4,53 are := 1 1 1 1 1 MR = 1 1 0 1	s MR and Ms For two sleetively on the set A
i)-163t elements of R, S	$\frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}$
>= \(\frac{1}{2}(2,1),(2,3),(2,3))	,5), (3,1), (3,2), (3,4), (4,1) (5), (6,1), (5,4)
= {2 (1,1),(1,2),(2 ,(3,3),(4,1), ii)- from dingly for eacho	
2 3 (S	
	5 4

Lecture 8- aniz

DATE \5/12/2023

228= 119 x 1 + 100 9009 mod 223 = 89 9009 = 223 ×40 +89 9009 div 223 = 40 -10101 mod 333 = 1222 c) a=-lolo1, m=333 = -31 x 333 + 222 - lolo 1 6, x 333 - 31 -765432 mod 38271 -138259 -- 765432, m=38271 -765432 = 3-21 x 38271 + 38259 -765432 dix 38271 = -21

The state of the s	PAGE
Find a the integer a such	11 7
a such	that o
M = 43 (mo) 23) and -2	
/	25020
b a-43	
23	why = + 43
9	50 that 43-43
& a ≥ (43-23) (mod 23)	23 - 0
= 20 (mod 23)	because
= (20-23) cms 23)	
= -3 mod 23	-225a50
0 0-(-3)	
23) % a=	3/ 50 0 23 =0, Y=0
12 171 7	₹
b) n= 17(mod 29) ont.	-14 5a 5 14
4	
3 a = (17-29) (mod 29))
A = 1 - (v. 1 - va)	
a=-12 (mod 29)	
> [00 a = -1	2
c) == 11 (nod 21) and 905	
1 == -11 (mod 21) and 50 5	a 5 110
0 A = 1 rinx 1 211 1	1 1 - 11
% A = \r(mod 21) = 31	(mod 21) = 52 (mod 21)

a = 73 (mod 21), so = a = 24 (mod 21)

80 a = 94