

6 Kombinatorik

In der **Kombinatorik** wird untersucht, wie viele Möglichkeiten sich bei der Anordnung einer Anzahl von Objekten ergeben

Eine **Permutation** ist eine bestimmte Reihenfolge.

Wie viele Möglichkeiten (Permutationen) gibt es, die Zahlen 1,, n						
anzuordnen?				1, 2, 3, 4 1, 2, 4, 3	2, 1, 3, 4 2, 1, 4, 3	
n = 1	n = 2	n = 3	n = 4	1, 3, 2, 4 1, 3, 4, 2	2, 3, 1, 4 2, 3, 4, 1	
1	2	6	24	1, 4, 2, 3 1, 4, 3, 2	2, 4, 1, 3 2, 4, 3, 1	
	1,2 2,1	1, 2, 3 2, 3, 1 1, 3, 2 2, 1, 3 3, 2, 1 3, 1, 2		Vier solche Blöcke Insgesamt, d.h. 6*4 = 24		

Die Anzahl Möglichkeiten beträgt

Die Anzahl Möglichkeiten steigt sehr schnell und wird sehr groß.

n	n!
1	1
2	2
3	6
4	24
5	120
6	720
7	5040

Wie viele Möglichkeiten gibt es, ein 32-Blatt-Kartenspiel zu mischen?

Python:
import math

math.factorial(x)

Die Wahrscheinlichkeit eines Ereignisses ergibt sich als der Kehrwert der Möglichkeiten (Anzahl aller Ereignisse)

Wie wahrscheinlich ist es, aus einer Urne mit 3 farbigen Kugeln (rot, grün, blau) die Reihenfolge rot – grün – blau zu ziehen? Die Kugeln werden nicht zurückgelegt.

6 Möglichkeiten

$$3! = 1*2*3 = 6$$

Wie viele Möglichkeiten gibt es, wenn einige der Objekte gleich sind?

Wie viele Möglichkeiten gibt es, die Ziffern 0, 0 und 1 anzuordnen?

Wie viele Möglichkeiten gibt es, aus einer Urne mit zwei roten und zwei blauen Kugeln zu ziehen (ohne Zurücklegen)?

Wie viele Möglichkeiten gibt es, wenn einige der Objekte gleich sind?

Die Anzahl aller Möglichkeiten wird durch die Anzahl der Permutationen der einzelnen Objekte geteilt

$$\frac{n!}{m_1! * m_2! * \cdots}$$

Wie viele Möglichkeiten gibt es, die Ziffern 0, 0 und 1 anzuordnen?

$$\frac{3!}{2! * 1!} = \frac{3 * 2 * 1}{2 * 1 * 1} = 3$$

Wie viele Möglichkeiten gibt es, aus einer Urne mit zwei roten und zwei blauen Kugeln zu ziehen (ohne Zurücklegen)?

$$\frac{4!}{2! * 2!} = \frac{4 * 3 * 2 * 1}{2 * 1 * 2 * 1} = 6$$

Was passiert, wenn nicht alle Elemente gezogen werden?

Wie viele Möglichkeiten gibt es, zwei Kugeln aus einer Urne mit 3 farbigen Kugeln (rot, grün, blau) zu ziehen? Die Kugeln werden nicht zurückgelegt.

Ziehen ohne Zurücklegen mit Beachten der Reihenfolge

Werden aus einer Menge von *n* Elementen *k* herausgenommen, berechnet sich die Anzahl der möglichen Tupel folgendermaßen:

$$\frac{n!}{(n-k)!}$$

Mit der Definition von 0! = 1 gilt die Formel auch für k=n

Ziehen mit Zurücklegen mit Beachten der Reihenfolge

Werden die Elemente wieder zurückgelegt, d.h. es wird *k* Mal aus der gleichen Menge gezogen, dann kann also an jeder Stelle eines der n Elemente stehen

$$n * n * \cdots * n = n^k$$

Ein Würfel mit 6 Seiten wird 2x geworfen. Wie viele mögliche Ergebnisse gibt es?

Was passiert, wenn die Reihenfolge keine Rolle spielt?

Aus einer Urne mit 4 Kugeln (2x rot, 2xblau) werden 3 Kugeln gezogen (ohne Zurücklegen). Wie viele Möglichkeiten gibt es, wenn die Reihenfolge keine Rolle spielt?

Ein Würfel mit 6 Seiten wird 2x geworfen. Wie viele unterschiedliche Ergebnisse gibt es, wenn die Reihenfolge keine Rolle spielt?

Ziehen ohne Zurücklegen ohne Beachten der Reihenfolge

Werden aus einer Menge von *n* Elementen *k* herausgenommen, berechnet sich die Anzahl der möglichen Ergebnisse ohne Beachtung der Reihenfolge folgendermaßen:

$$\binom{n}{k} = \frac{n!}{(n-k)! * k!}$$

Diese Zahl nennt man Binomialkoeffizient

Das Pascalsche Dreieck 1 1 1 1 1 1 1 1 2 1 1 3 3 1 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1

Ziehung der Lottozahlen

Es werden 6 Zahlen aus 49 ohne Zurücklegen gezogen. Wie viele Möglichkeiten gibt es, wenn die Reihenfolge keine Rolle spielt?

Python:
import math

math.comb(n, k)

Wird aus einer Menge von *n* Elementen *k* Mal gezogen (mit Zurücklegen), berechnet sich die Anzahl der möglichen Ergebnisse ohne Beachtung der Reihenfolge folgendermaßen:

$$\binom{n+k-1}{k} = \frac{(n+k-1)!}{(n-1)! * k!}$$

Ein Würfel mit sechs Seiten wird zwei Mal geworfen. Wie viele Ergebnisse gibt es, wenn die Reihenfolge keine Rolle spielt?

