Лабораторная работа N = 2

Алгоритмы многомерной минимизации функции

Сысоев Александр, Зырянова Мария Верблюжий случай

1 Постановка задания

Требуется реализовать алгоритмы поиска минимума функции нескольких переменных, исследовать их, оценить поведение:

- метод градиентного спуска
- метод наискорейшего спуска
- метод сопряженных градиентов

Ограничение на исследуемые функции – они должны быть квадратичными, то есть представимы в виде

$$f(x) = f(x_1, x_2, \dots, x_n) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} x_i x_j - \sum_{i=1}^{n} b_i x_i + c$$

В матричной форме эти функции имеют вид:

$$f(x) = \frac{1}{2}x^T A x - b^T x + c$$
, где $x = (x_1, \dots, x_n)^T, b = (b_1, \dots, b_n)^T$

2 Предварительное исследование

Основная задача — найти минимум заданной функции. По теореме Ферма, если точка x^* — минимум функции, то $f'(x^*)=0$. В многомерном случае можно применить этот критерий последовательно к каждой частной производной, и тогда получится критерий минимума функции нескольких переменных — равенство всех частных производных нулю. Величина, за это отвечающая — градиент, то есть если $x^*=(x_1^*,\cdots,x_n^*)$ — минимум функции, то

$$\nabla f(x^*) = 0$$

Рассмотрим частную производную по x_i квадратичной функции:

$$\frac{\delta}{\delta x_i} f(x_1, \dots, x_n) = a_{ii} x_i + \sum_{j \neq i} \frac{1}{2} (a_{ij} + a_{ji}) x_j - b_i$$

То есть в общем виде градиент квадратичной функции выглядит следующим образом:

$$\nabla f(x) = Ax - b$$

A – симметричная матрица (\Rightarrow ее можно рассматривать, как треугольную), у которой на пересечении i строки и j столбца стоит величина $\frac{1}{2}(a_{ij}+aji)$.

В случае, если градиент в точке не равен нулю, он показывает направление наибольшего локального увеличения функции. Поэтому, если двигаться в направлении антиградиента (то есть $-\nabla f(x)$), то будет происходить движение в направлении убывания f(x).

3 Исследуемые функции

Для анализа методов были выбраны следующие квадратичные функции:

1.

$$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$$

Рис. 1: График функции №1.

$$\min\{64\,x^2+126\,x\,y+64\,y^2-10\,x+30\,y+13\}\approx$$

$$-187.3937007874015748031496063\,\operatorname{at}(x,\,y)\approx$$

$$(9.96062992125984251968503937,\,-10.03937007874015748031496063)$$

Рис. 2: Минимум, найденный с помощью Wolphram Alpha.

2.

$$f(x) = x_1^2 + 4x_2^2 + 4x + 2y$$

Рис. 3: График функции №2.

$$\min\{x^2 + 4y^2 + 4x + 2y\} = -4.25 \text{ at } (x, y) = (-2, -0.25)$$

Рис. 4: Минимум, найденный с помощью Wolphram Alpha.

3.

$$f(x) = 29x^2 + 18y^2 - 8x + 10$$

Рис. 5: График функции №3.

 $\min \left\{ 29\,x^2 + 18\,y^2 - 8\,x + 10 \right\} \approx 9.44827586206896551724137931$ at $(x,\,y) \approx (0.1379310344827586206896551724,\,0)$

Рис. 6: Минимум, найденный с помощью Wolphram Alpha.

4 Метод градиентного спуска

Как было написано ранее, двигаясь в направлении антиградиента, функция убывает. То есть по точке x^k можно получить точку x^{k+1} с меньшим значением функции f. Повторяя это нескольно раз, построится последовательность $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$. При этом, α_k (величина шага) такова, что $f(x^{k+1}) < f(x^k)$.

Точка является миниумом, если в ней квадратичная форма положительно определена. Матрица A — симметричная, будем считать, что положительно определенная. Пусть L — наибольшее собственное значение A, тогда при любых $\alpha \in \left(0; \frac{2}{L}\right)$ и x из области определения фукнции $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$, будет сходиться к единственной точке глобального минимума x^* линейно, со скоростью геометрической прогрессии. В этом случае последовательность x_k будет релаксационной и не будет происходить "проскакивания" стационарной точки.

Таким образом, посчитав максимальное собственное число A, примем $\alpha=\frac{2}{L}$, и затем будем выстраивать последовательность. Если на каком-то шаге $f(x^{k+1})\geqslant f(x^k)$, то был сделан слишком большой шаг и следует уменьшить α . Примем новое $\alpha=\frac{\alpha}{2}$. Будем повторять до условия остановки: $\|\nabla f(x^k)\|\leqslant \epsilon$, либо до указанного колчиества итераций, если это было дано (в нашем исследовании – 10000).

_	x_1	x_2	Кол-во	Значение		$x_{2_{min}}$			
ϵ			итераций	минимума	$x_{1_{min}}$				
$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$									
10^{-2}	10	10	876	-187.39370078722567	9.9606205571591	-10.039360714639415			
10^{-3}	10	10	876	-187.39370078722567	9.9606205571591	-10.039360714639415			
10^{-4}	10	10	876	-187.39370078722567	9.9606205571591	-10.039360714639415			
10^{-5}	10	10	10000	-187.3937007873267	9.960623763053757	-10.039363920534072			
10^{-6}	10	10	10000	-187.3937007873267	9.960623763053757	-10.039363920534072			
$f(x) = x_1^2 + 4x_2^2 + 4x + 2y$									
10^{-2}	10	10	29	-4.249999999999996	-1.9999999329447746	-0.25			
10^{-3}	10	10	29	-4.24999999999999	-1.9999999329447746	-0.25			
10^{-4}	10	10	29	-4.249999999999996	-1.9999999329447746	-0.25			
10^{-5}	10	10	29	-4.24999999999999	-1.9999999329447746	-0.25			
10^{-6}	10	10	29	-4.249999999999996	-1.9999999329447746	-0.25			
$29x^2 + 18y^2 - 8x + 10$									
10^{-2}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-3}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-4}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-5}	10	10	15	9.44827586206899	0.137931034482758	-3.58174971296527E-08			
10^{-6}	10	10	16	9.448275862068968	0.13793103448275862	-1.3585947187109647E-08			

Рис. 7: Функция №2.

5 Метод наискорейшего спуска

Это модификация предудщего метода, в которой коэффициент α каждый раз пересчитывается. После вычисления в начальной точке градиента, движение в направлении антиградиента делается не маленькими шагами, а до тех пор, пока функция убывает. При достижении минимума на выбранном направлении, снова вычисляется градиент функции и описанные действия повторяются.

На каждом k-ом шаге коэффициент α_k находится из решения задачи одномерной оптимизации:

$$\Phi_k(\alpha_k) \to min, \quad \Phi_k(\alpha_k) = f(x^k - \alpha_k \nabla f(x^k))$$

При этом, $\alpha_k > 0$, поэтому оптимизируем на промежутке $[0; \frac{2}{L}]$.

Таким образом, на каждом шаге будем находить α_k , принимать $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$, до тех пор, пока $\|\nabla f(x^k)\| \le \epsilon$, либо до указанного колчиества итераций, если это было дано.

ϵ	x_1	x_2	Кол-во итераций	Значение минимума	$x_{1_{min}}$	$x_{2_{min}}$			
$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$									
10^{-2}	10	10	727	-187.39367612608606	9.957118417601245	-10.03585857508156			
10^{-3}	10	10	698	-187.39370053896903	9.96027747821606	-10.039017635696377			
10^{-4}	10	10	797	-187.39370078492178	9.96059470922056	-10.039334866700877			
10^{-5}	10	10	987	-187.39370078737676	9.960626416187417	-10.039366573667733			
10^{-6}	10	10	1250	-187.3937007874012	9.960629568354005	-10.039369725834321			
$f(x) = x_1^2 + 4x_2^2 + 4x + 2y$									
10^{-2}	10	10	16	-4.249988667261994	-1.9970766063316312	-0.24916535824055244			
10^{-3}	10	10	20	-4.249999838918146	-1.9996335176315747	-0.2499181884365339			
10^{-4}	10	10	25	-4.249999999196022	-1.999975518591127	-0.250007152606546			
10^{-5}	10	10	29	-4.24999999998744	-1.9999969394487098	-0.25000089350317256			
10^{-6}	10	10	34	-4.249999999999927	-1.9999997681107133	-0.24999992938546808			
$29x^2 + 18y^2 - 8x + 10$									
10^{-2}	10	10	7	9.448275973454791	0.1378722480606154	-2.4906900895904814E-05			
10^{-3}	10	10	9	9.448275864130045	0.1379268474573064	9.287609823917025E-06			
10^{-4}	10	10	11	9.448275862076303	0.1379308093771439	5.709298815339414E-07			
10^{-5}	10	10	12	9.448275862069288	0.1379311181748114	8.101038924841543E-08			
10^{-6}	10	10	14	9.448275862068968	0.1379310416449409	1.0259368808164012E-09			

Рис. 8: Функция №2.

6 Метод сопряженных градиентов

Отличительная особенность данного метода — он решает квадратичную задачу оптимизации за конечное число шагов (не более, чем n итераций, где n — размерность пространства).

Рассмотрим ненулевые векторы p^1, \dots, p^n . Они называются сопряженными относительно матрицы $A_{n\times n}$ или А-ортогональными, если для всех $i,j:i\neq j$ выполняется условие $(Ap^i,p^j)=0$. Система из таких векторов линейно независима и образует базис в E_n .

Тогда минимизация квадратичной функции $f(x) = \frac{1}{2} (Ax, x) + (b, x) + c (A$ – положительно определенная) сводится к итерационному процессу $x^k = x^{k-1} + \alpha_k p^k$, где p^k – А-ортогональные. Такой последовательный спуск по А-ортогональным направлениям приводит к точке минимума квадратичной формы не более чем за n шагов. На каждой итерации необходимо выбрать параметры, дающие наилучший многочлен, который можно построить, учитывая все сделанные до текущего шага измерения градиента.

Так как функция квадратичная и есть условие А-ортогональности, нахождение параметров сводится до следующих действий на каждом этапе итераций:

$$\alpha = \frac{\|\nabla f(x^k)\|^2}{(Ap^k, p^k)}, \quad x^{k+1} = x^k + \alpha_k p^k$$

$$\nabla f(x^{k+1}) = \nabla f(x^k) + \alpha_k A p^k$$

$$\beta_k = \frac{\|\nabla f(x^{k+1})\|^2}{\|\nabla f(x^k)\|^2}$$

$$p^{k+1} = -\nabla f(x^{k+1}) + \beta_k p^k$$

ϵ	x_1	x_2	Кол-во итераций	Значение минимума	$x_{1_{min}}$	$x_{2_{min}}$			
$f(x) = 64x_1^2 + 126x_1x_2 + 64x_2^2 - 10x_1 + 30x_2 + 13$									
10^{-2}	$10^{-2} \mid 10 \mid 10 \mid 2$			-187.39367612608606	9.957118417601245	-10.03585857508156			
10^{-3}	10	10	2	-187.39370053896903	9.96027747821606	-10.039017635696377			
10^{-4}	10	10	2	-187.39370078492178	9.96059470922056	-10.039334866700877			
10^{-5}	10	10	2	-187.39370078737676	9.960626416187417	-10.039366573667733			
10^{-6}	10	10	2	-187.3937007874012	9.960629568354005	-10.039369725834321			
$f(x) = x_1^2 + 4x_2^2 + 4x + 2y$									
10^{-2}	10	10	2	-4.249988667261994	-1.9970766063316312	-0.24916535824055244			
10^{-3}	10	10	2	-4.249999838918146	-1.9996335176315747	-0.2499181884365339			
10^{-4}	10	10	2	-4.249999999196022	-1.999975518591127	-0.250007152606546			
10^{-5}	10	10	2	-4.24999999998744	-1.9999969394487098	-0.25000089350317256			
10^{-6}	10	10	2	-4.249999999999927	-1.9999997681107133	-0.24999992938546808			
$29x^2 + 18y^2 - 8x + 10$									
10^{-2}	10	10	2	9.448275973454791	0.1378722480606154	-2.4906900895904814E-05			
10^{-3}	10	10	2	9.448275864130045	0.1379268474573064	9.287609823917025E-06			
10^{-4}	10	10	2	9.448275862076303	0.1379308093771439	5.709298815339414E-07			
10^{-5}	10	10	2	9.448275862069288	0.1379311181748114	8.101038924841543E-08			
10^{-6}	10	10	2	9.448275862068968	0.1379310416449409	1.0259368808164012E-09			

Рис. 9: Функция №2.

7 Сравнение методов

Для симметричной положительно определенной матрицы число обусловленности $\mu = \frac{L}{l}$, где L – наибольшее собственное число матрицы A, а l – наименьшее. Оно характеризует степень вытянутости линий уровня f(x) = const.

- Если *μ* велико, то линии уровня сильно вытянуты, функция имеет овражный характер, то есть резко меняется по одним направлениям и слабо по другим. В этом случае задача плохо обусловлена.
- Если $\mu \approx 1$, то линии уровня близки к окружностям и задача является хорошо обсуловленной.

Для исследования количества итераций каждого метода на разных числах обсуловленности, будем генерировать квадратичную функцию в виде $a_1 \cdot x_1^2 + \cdots + a_n \cdot x_n^2$, где $a_i > 0$, a_1 — наименьшее число и равно 1, a_n — наибольшее и равно заданному k. У нее положительно определенная матрица с l=1, L=k, а значит $\mu=k$. Также исследуем зависимость от размерности пространства n.

Метод градиентного спуска:

Метод наискорейшего спуска:

Метод сопряженных градиентов:

n / k	10	50	100	200	400	800	1000	1500	1750	2000
2	2	2	2	2	2	2	2	2	2	2
10	8	9	10	10	9	10	10	10	10	10
50	10	29	32	39	41	40	41	37	48	44
100	10	35	41	45	57	70	60	69	57	64
250	10	36	53	67	69	105	83	104	81	108
500	10	37	54	68	107	118	130	117	120	162
750	10	37	54	72	100	135	153	143	180	173
1000	10	37	54	78	110	133	161	184	202	181
1500	10	37	55	78	107	150	149	173	184	161
10000	10	38	56	81	114	162	181	221	239	256

8 Выводы

Мето сопряженных градиентов показал себя наилучшим образом — ему требуется малое количество итераций, однако при его реализации требуются различные вычислительные оптимизации, которые сильно зависят от вида функции нескольких переменных. Также производится несколько вычислений, на различных n и μ ведет себя нестабильно.

Метод градиентного спуска прост в реализации, не требует затратных вычислений и применения одномерных оптимизаций. Однако, ему требуется наибольшее количество итераций.

Метод наискорейшего спуска требует меньшего количества итераций, однако внутри происходит вычисление минимума при помощи методов одномерной оптимизации, которые затрачивают итерации.

Реализация: GitHub.