Modeling Epidemics

Jeff Saucerman

Modeling of Epidemics Overview

- 1. Schematic
- 2. Assumptions
- 3. Equations
- 4. Parameters
- 5. Simulation
- 6. Validation

$$\frac{dI}{dt} = \beta IS - \gamma I$$

http://arxiv.org/abs/2003.09861

SIR model

This model assumes there are three groups of people:

- (S)usceptible people are not yet Infected, but they may get the disease from Infected people.
- (I)nfected currently have the disease and can spread it to Susceptible people.
- (R)ecovered people were infected but are now immune.

Assumes: lifelong immunity

Ex: measles, mumps, rubella, social contagion

Kermack, W. O., McKendrick, A. G. Contributions to the mathematical theory of epidemics. Proc. Royal Soc. A, 115, 700-721 (1927).

Variants of the SIR model

Assumes: lifelong immunity

Ex: measles, mumps, rubella

SIS

Assumes: no immunity

Ex: common cold

SEIR

Assumes: delay before infective

Ex: HIV, chicken pox, COVID-19

SIRS

Assumes: limited immunity

Ex: seasonal influenza

Typical Assumptions when Modeling Epidemics

```
large numbers → continuum approximations dX/dt...
→ deterministic
small numbers → discrete, stochastic/probabilistic
```

homogeneous, large numbers → ODEs homogeneous, small numbers → non-spatial stochastic heterogeneous, discrete space → spatial agent-based model heterogeneous, continuous space → PDEs

Conservation of "Mass" / "Population", "Mass Action" kinetics Other assumptions:

relative populations (initial infected << population) relative timescales: rapid equilibrium d[X]/dt = 0

SIR model: ordinary differential equations

Population ODEs, no birth or death:

$$\frac{dS}{dt} = -\beta IS \qquad \frac{dI}{dt} = \beta IS - \gamma I \qquad \frac{dR}{dt} = \gamma I$$

β transmission rate constant [1/days/people]

γ recovery rate constant [1/days]

N size of population [people]

 $R_e = S(t=0)\beta/\gamma$ effective reproductive number [people infected per person] **The epidemic will spread if R_e > 1.** Note: R_e is is unrelated to Recovered.

Optional:
$$\beta = \frac{\kappa \tau}{N}$$
 κ : # contacts/time [1/days] τ : transmissibility (fraction contacts \rightarrow infection)

SIR model: ordinary differential equations

N = 100 [people], $\kappa = 5$ [contacts/day/person], $\tau = 0.5$, $\gamma = 1/5$ [1/days],

SIRcompute.m SIRode.m

SIR model (ODE): sensitivity analyses

Sensitivity Matrix

 κ

relative parameter values

SIRsensitivity.m

SIR model (ODE): uncertainty analysis

Vary all parameters CV = 30%

Vary contacts/day κ CV = 30%

Vary recovery rate $\gamma CV = 30\%$

SIR model: probabilistic, continuous time

$$E[S] = NP(S)$$

$$E[I] = NP(I)$$

$$E[R] = NP(R)$$
Susceptible Infected Recovered

substitute

Population ODEs → continuous-time Markov chain

$$\frac{dP(S_t)}{dt} = -\beta NP(I_t)P(S_t)$$

$$\frac{dP(I_t)}{dt} = \beta NP(I_t)P(S_t) - \gamma P(I_t) \quad \stackrel{\text{P}}{\mathsf{N}}$$

transmission rate constant recovery rate constant size of population

$$\frac{dP(R_t)}{dt} = \gamma P(I_t)$$

SIR model: probabilistic, discrete time

continuous-time Markov chain -> discrete-time Markov chain

$$\frac{dP(S_t)}{dt} = -\beta NP(I_t)P(S_t) \longrightarrow P(S_{t+1}) = -\beta NP(I_t)P(S_t)\Delta t + P(S_t)$$

$$\frac{dP(I_t)}{dt} = \beta NP(I_t)P(S_t) - \gamma P(I_t) \longrightarrow P(I_{t+1}) = \beta NP(I_t)P(S_t)\Delta t - \gamma P(I_t) \Delta t + P(I_t)$$

$$\frac{dP(R_t)}{dt} = \gamma P(I_t) \qquad \longrightarrow \qquad P(R_{t+1}) = \gamma P(I_t) \Delta t + P(R_t)$$

SIR model: individual-based stochastic

Susceptible Infected Recovered discrete-time Markov chain → simulate individuals

$$P(I_{t+1}) = \beta N P(I_t) P(S_t) \Delta t - \gamma P(I_t) \Delta t + P(I_t)$$

Discrete-time transition probabilities:

$$S \rightarrow I$$
 $P(I_{t+1}, |S_t) = \beta NP(I_t) \Delta t = \beta I \Delta t$
 $I \rightarrow R$ $P(R_{t+1}|I_t) = \gamma \Delta t$

These discrete-time transition probabilities let us simulate stochastic transitions of individuals:

If S: If rand $\sim U[0, 1] < \beta I \Delta t$, then I

If I: If rand $\sim U[0, 1] < \gamma \Delta t$, then R

SIR model:

individual-based stochastic Susceptible

SIR model:

individual-based stochastic, spatial

Susceptible Infected

Recovered

Non-spatial ABM → spatial ABM

Discrete-time transition probabilities:

$$S \rightarrow I \quad P(I_{t+1}, | S_t) = \beta I \Delta t$$

 \implies If rand \sim U[0, 1] $< \beta I \Delta t$, then I

$$\beta = \frac{\kappa \tau}{N}$$

Where: $\beta = \frac{\kappa \tau}{N}$ N: # of people κ : # contacts/time/person [1/days]

τ: transmissibility (fraction contacts→infection)

$$\beta I = \frac{\kappa \tau I}{N} = \kappa \tau P_{contact-Inf}$$

For spatial: If S is contact with I, $P_{contact-Inf} = 1$, so $P(I_{t+1}|S_t) = \tau \Delta t$

SIR model (ABM): stochastic, spatial

Infectious disease simulator

https://scratch.mit.edu/projects/375763600/

SIR model (ABM): stochastic, spatial

Infectious disease simulator with limited healthcare system capacity https://scratch.mit.edu/projects/375925004/

SEIR COVID-19 Parameters

	Location	$R_0 = \beta N/\gamma$ Reproduction Number \mathcal{R}_0	Incubation Period $T_{ m inc}$ (in days)	Tinf = $1/\gamma$ Infectious Period T_{inf} (in days)
Kucharski et. al	Wuhan	3.0 (1.5 — 4.5)	5.2	2.9
Li, Leung and Leung	Wuhan	2.2 (1.4 — 3.9)	5.2 (4.1 — 7.0)	2.3 (0.0 — 14.9)
Wu et. al	Greater Wuhan	2.68 (2.47 — 2.86)	6.1	2.3
WHO Initial Estimate	Hubei	1.95 (1.4 — 2.5)		
WHO-China Joint Mission	Hubei	2.25 (2.0 — 2.5)	5.5 (5.0 - 6.0)	
Liu et. al	Guangdong	4.5 (4.4 — 4.6)	4.8 (2.2 — 7.4)	2.9 (0 — 5.9)
Rocklöv, Sjödin and Wilder-Smith	Princess Diamond	14.8	5.0	10.0
Backer, Klinkenberg, Wallinga	Wuhan		6.5 (5.6 — 7.9)	
Read et. al	Wuhan	3.11 (2.39 — 4.13)		
Bi et. al	Shenzhen		4.8 (4.2 — 5.4)	1.5 (0 — 3.4)
Tang et. al	China	6.47 (5.71 — 7.23)		

$$rac{dS}{dt} = -rac{\mathcal{R}_t}{T_{
m inf}} \cdot IS, \qquad rac{dE}{dt} = rac{\mathcal{R}_t}{T_{
m inf}} \cdot IS - T_{
m inc}^{-1}E, \qquad rac{dI}{dt} = T_{
m inc}^{-1}E - T_{
m inf}^{-1}I, \qquad rac{dR}{dt} = T_{
m inf}^{-1}I$$

Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand

(Download Report 9)

Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine van Elsland, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuanrong Wang, Patrick GT Walker, Caroline Walters, Peter Winskill, Charles Whittaker, Christl A Donnelly, Steven Riley, Azra C Ghani.

References

- Kermack, W. O., McKendrick, A. G. Contributions to the mathematical theory of epidemics. Proc. Royal Soc. A, 115, 700-721 (1927).
- Excellent article: Weiss, Howard Howie. "The SIR Model and the Foundations of Public Health." *Materials Matematics*, 2013, 0001–17. http://mat.uab.cat/matmat/PDFv2013/v2013n03.pdf
- https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
- Nice table of SEIR COVID-19 parameters from various sources: http://gabgoh.github.io/COVID/index.html
- Imperial College COVID-19 Response Team. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand https://doi.org/10.25561/77482
- Giordano, Giulia, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro Di Filippo, Angela Di Matteo, Marta Colaneri, and the COVID19 IRCCS San Matteo Pavia Task Force. "A SIDARTHE Model of COVID-19 Epidemic in Italy." *ArXiv:2003.09861 [Cs, Eess, Math, q-Bio]*, March 22, 2020. http://arxiv.org/abs/2003.09861.