UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Final Examination
Date: March 19, 2020, Duration: 3 hours

INSTRUCTIONS:

- The exam has 6 problems and 16 pages.
- The exam is open book and open notes.
- Calculator are allowed.

Your name:———		
Student ID:		

Table 1: Score Table Problem d Score Total

Table 3.1 Basic Properties of One-sided Laplace Transforms			
Causal functions and constants	$\alpha f(t), \beta g(t)$	$\alpha F(s), \beta G(s)$	
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha F(s) + \beta G(s)$	
Time shifting	f(t-lpha) $U(t-lpha)$	$e^{-\alpha s}F(s)$	
Frequency shifting	$e^{\alpha t}f(t)$	$F(s-\alpha)$	
Multiplication by t	tf(t)	$-\frac{dF(s)}{ds}$	
Derivative	$\frac{df(t)}{dt}$	sF(s) - f(0-)	
Second derivative	$\frac{d^2 f(t)}{dt^2}$	$s^2 F(s) - s f(0-) - f^{(1)}(0)$	
Integral	$\int_{0-}^{at} f(t')dt'$	$\frac{F(s)}{s}$	
Expansion/contraction	$f(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }F(\frac{s}{\alpha})$	
Initial value	$f(0-) = \lim_{s \to \infty} sF(s)$	INT NO.	

Table 3.2 One-sided Laplace Transforms		
	Function of time	Function of s, ROC
(1)	$\delta(t)$	1, whole s – plane
(2)	u(t)	$\frac{1}{s}$, $\mathcal{R}e[s] > 0$
(3)	r(t)	$\frac{1}{s^2}, \mathcal{R}e[s] > 0$
(4)	$e^{-at}u(t), a>0$	$\frac{1}{s+a}$, $\mathcal{R}e[s] > -a$
(5)	$\cos(\Omega_0 t) u(t)$	$\frac{s}{s^2+\Omega_0^2}, \mathcal{R}e[s]>0$
(6)	$\sin(\Omega_0 t) u(t)$	$\frac{\Omega_0}{s^2+\Omega_0^2}, \mathcal{R}e[s] > 0$
(7)	$e^{-at}\cos(\Omega_0 t)u(t), a>0$	$\frac{s+a}{\left(s+a\right)^2+\Omega_0^2}, \mathcal{R}e[s] > -a$
(8)	$e^{-at}\sin(\Omega_0 t)u(t), a>0$	$\frac{\Omega_0}{\left(\mathbf{s}+\mathbf{a}\right)^2+\Omega_0^2}, \mathcal{R}\mathbf{e}[\mathbf{s}] > -\mathbf{a}$
(9)	$2Ae^{-at}\cos(\Omega_0t+\theta)u(t), a>0$	$rac{A \angle heta}{s + a - j\Omega_0} + rac{A \angle - heta}{s + a + j\Omega_0}, \mathcal{R}e[s] > -a$
(10)	$\frac{1}{(N-1)!}t^{N-1}u(t)$	$\frac{1}{s^N}N$ an integer, $\mathcal{R}\textbf{\textit{e}}[\textbf{\textit{s}}]>0$
(11)	$\frac{1}{(N-1)!}t^{N-1}e^{-at}u(t)$	$\frac{1}{(s+a)^N}N$ an integer, $\mathcal{R}e[s]>-a$
(12)	$\tfrac{2A}{(N-1)!}t^{N-1}e^{-at}\cos(\Omega_0t+\theta)\mathit{U}(t)$	$rac{A \angle heta}{(s+a-j\Omega_0)^N} + rac{A \angle - heta}{(s+a+j\Omega_0)^N}, \mathcal{R}e[s] > -a$

Table 5.1 Basic Properties of the Fourier Transform				
	Time Domain	Frequency Domain		
Signals and constants	$x(t), \gamma(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$		
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$		
Expansion/contraction in time	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$		
Reflection	x(-t)	$X(-\Omega)$		
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} d\Omega$		
Duality	X(t)	$2\pi x(-\Omega)$		
Time differentiation	$\frac{d^n x(t)}{dt^n}$, $n \ge 1$, integer	$(j\Omega)^n X(\Omega)$		
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$		
Integration	$\int_{-\infty}^{t} x(t')dt'$	$\frac{X(\Omega)}{j\Omega} + \pi X(0)\delta(\Omega)$		
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$		
Frequency shifting	$e^{j\Omega_0 t}x(t)$	$X(\Omega - \Omega_0)$		
Modulation	$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$		
Periodic signals	$x(t) = \sum_{k} X_k e^{jk\Omega_0 t}$	$X(\Omega) = \sum_{k} 2\pi X_k \delta(\Omega - k\Omega_0)$		
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $		
		$\angle X(\Omega) = -\angle X(-\Omega)$		
Convolution in time	$z(t) = [x * \gamma](t)$	$Z(\Omega) = X(\Omega)Y(\Omega)$		
Windowing/multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$		
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real		
Sine transform	x(t) odd	$X(\Omega) = -i \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$, imaginary		

Table 5.2 Fourier Transform Pairs		
	Function of Time	Function of Ω
1	$\delta(t)$	1
2	$\delta(t-\tau)$	$e^{-j\Omega au}$
3	u(t)	$\frac{1}{i\Omega} + \pi \delta(\Omega)$
4	u(-t)	$\frac{-1}{i\Omega} + \pi \delta(\Omega)$
5	$\operatorname{sgn}(t) = 2[u(t) - 0.5]$	$\frac{2}{i\Omega}$
6	$A, -\infty < t < \infty$	$2\pi A\delta(\Omega)$
7	$Ae^{-at}u(t), \ a>0$	$\frac{A}{j\Omega+a}$
8	$Ate^{-at}u(t), \ a>0$	$\frac{A}{(i\Omega+a)^2}$
9	$e^{-a t }, \ a > 0$	$\frac{2a}{a^2+\Omega^2}$
10	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0) \right]$
11	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi \left[\delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0)\right]$
12	$A[u(t+\tau)-u(t-\tau)],\ \tau>0$	$2A au rac{\sin(\Omega au)}{\Omega au}$
13	$\frac{\sin(\Omega_0 t)}{\pi t}$	$u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$
14	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$

Problem 1 (15 pts)

State whether the following statements are TRUE or FALSE. Provide a brief explanation for each part.

(a) (5 pts) A system with the following impulse response function is time-invariant:

$$h(t,\tau) = e^{-2t-2\tau} (\sin(t)\cos(\tau) - \cos(t)\sin(\tau))u(t-\tau)$$
 (1)

(b) (5 pts) A system with the following input-output relationship is causal:

$$y(t) = x(t-3) + \int_{t-3}^{3t} e^{-(t-\sigma)} u(t-\sigma) x(\sigma) d\sigma$$
 (2)

(c) (5 pts) Let $z(t) = \frac{1}{3}x(t-2) + 4$, where x(t) is a band-limited signal with maximum frequency 100 rad/s. The minimum sampling frequency (according to Nyquist theorem) to sample z(t) is $\omega_s = 2 \times \frac{1}{3} \times 100 = \frac{200}{3}$ rad/s.

Problem 2 (15 pts)

Consider an LTI system S with the input signal

$$x(t) = e^{-5t}u(t-1) (3)$$

and corresponding output signal y(t). We also know that if input $\frac{dx(t)}{dt}$ is applied to the system S, corresponding output is $-5y(t) + e^{-2t}u(t)$.

$$x(t) \longrightarrow \boxed{S} \longrightarrow y(t)$$

$$\frac{dx(t)}{dt} \longrightarrow \boxed{S} \longrightarrow -5y(t) + e^{-2t}u(t)$$

- (a) (10 pts) Determine the system transfer function H(s) and the impulse response function h(t).
- (b) (5 pts) Find the system output $y_1(t)$ if the input signal is $x_1(t) = e^{-2t}\cos(3t)u(t)$.

Problem 3 (25 pts)

Consider a periodic signal x(t)

The signal is passed through a parallel system, with the following impulse response for each branch:

$$h_1(t) = \frac{\sin(3\pi t/4)}{\pi t}, \quad h_2(t) = \frac{2\sin(\pi t/4)}{t}\cos(4\pi t)$$

- (a) (10 pts) Compute the Fourier series coefficients X_k of the signal x(t).
- (b) (5 pts) Sketch the frequency response $H(\omega)$ of the entire system.
- (c) (10 pts) Compute the Fourier series coefficients Y_k of the output y(t).

Problem 4 (15 pts)

Given the multiplication property of Fourier Transform

$$x(t)y(t) \xrightarrow{\mathcal{F}} \frac{1}{2\pi}X(\omega) * Y(\omega)$$

where $X(\omega) = \mathcal{F}\{x(t)\}$ and $Y(\omega) = \mathcal{F}\{y(t)\}$, and * denotes convolution.

- (a) (5pts) Compute the Fourier transform of $f_1(t) = \operatorname{sinc}^2(t)$, given that $\operatorname{sinc}(t) = \frac{\sin(t)}{t}$.
- (b) (5 pts) Compute the Fourier transform of $f_2(t) = t \times \text{sinc}^2(t)$.
- (c) (5 pts) By using the result in (a) and the Parseval's theorem, calculate the following integral

$$\int_{-\infty}^{\infty} \operatorname{sinc}^4(t) dt.$$

Problem 5 (15 pts)

Let S be the Linear system

$$x(t) \to [S] \to y(t),$$

described by the differential equation

$$\frac{1}{a}\frac{dy(t)}{dt} + y(t) = \frac{1}{a}\frac{dx(t)}{dt} - x(t)$$
, and $y(0) = x(0) = 0$

where a > 0.

- (a) (5 pts) Find the transfer function H(s) and the frequency response $H(\omega)$.
- (b) (5 pts) Find the system output y(t) if $x(t) = e^{-at}cos(3t)u(t)$.
- (c) (5 pts) Show that the magnitude of the frequency response, $|H(\omega)|$, satisfies

$$|H(\omega)| = \text{constant}$$
, for all ω .

System S is the "all pass" filter since it passes all frequencies of any $X(\omega) = \mathcal{F}\{x(t)\}.$

Problem 6 (15 pts)

For a continuous-time LTI system with a real, causal impulse response h(t), the frequency response $H(\omega)$ and h(t) can be completely specified by the real part of its frequency response, $\Re\{H(\omega)\}$. The property is generally referred as real-part sufficiency. In the following, we want to show this property by examining the even part of h(t), denoted as $h_e(t)$.

- (a) (5 pts) Given that h(t) is a real and causal impulse response, express the Fourier transform of $h_e(t)$ in terms of $H(\omega)$.
- (b) (10 pts) Using what we observed in (a), specify h(t) if the real part of the frequency response of this causal system is

$$\Re \{H(\omega)\} = \cos(\omega)$$