3	(a)	State the principle of conservation of momentum.	
	(-)		
			-

(b) A firework is initially stationary. It explodes into three fragments A, B and C that move in a horizontal plane, as shown in the view from above in Fig. 3.1.

Fig. 3.1

Fragment A has a mass of 3m and moves away from the explosion at a speed of $4.0 \,\mathrm{m \, s^{-1}}$.

Fragment B has a mass of 2m and moves away from the explosion at a speed of $6.0\,\mathrm{m\,s^{-1}}$ at right angles to the direction of A.

Fragment C has a mass of m and moves away from the explosion at a speed v and at an angle θ as shown in Fig. 3.1.

Calculate:

(i) the angle θ

			$v = \dots ms^{-1}$ [2]
(c)	mas		s mass 5.0 g and has chemical energy per unit all of the chemical energy is transferred to the
	(i)	Show that the total chemical energy in the	e firework is 3.5 J.
			[1]
	(ii)	Calculate the mass <i>m</i> .	
			<i>m</i> = kg [3]
			[Total: 11]

(ii) the speed v.