Graphs I

Cunsheng Ding

HKUST, Hong Kong

October 28, 2015

1 / 28

Contents

- Basic Definitions
- Subgraphs
- Special Types of Graphs
- Isomorphisms of Graphs
- Degrees of Graphs
- Paths and Circuits
- Connectedness of Graphs
- 8 Connected Components and Equivalence Relations

Basic Definitions (1)

Example 1

Computer network: A company has four computers. The following figure illustrates how they are connected, where A, B, C, D are the four computers and the lines e_1, e_2, e_3 indicate the connections between the computers. In graph theory A, B, C, D are called **vertices**, and e_1, e_2, e_3 are called **edges**.

Basic Definitions (2)

Definition 2

A graph G consists of three components (V(G), E(G), F(G)), where

- V(G) is the set of <u>vertices</u>,
- (2) E(G) the set of <u>edges</u>,

Each edge connects two or one vertices, which are called endpoints.

4 / 28

Basic Definitions (3)

Example 3

In Example 1,

②
$$E(G) = \{e_1, e_2, e_3\}$$

F(G) is given in the table:

Edge	Endpoints	
<i>e</i> ₁	$\{A,B\}$	
<i>e</i> ₂	{ <i>A</i> , <i>C</i> }	
<i>e</i> ₃	$\{B,D\}$	

5/28

Basic Definitions (4)

Definition 4

- An edge with just one endpoint is called a loop, eg. v₁.
- 2 Two vertices connected by an edge are called adjacent, eg. v_2 and v_3 .
- An edge is said to be <u>incident on</u> each of its endpoints.
- Two edges incident on the same endpoint are called adjacent.
- Two edges with the same endpoints are called parallel.
- A vertex on which no edges are incident is called <u>isolated</u>.
- A graph with no vertices is called empty.

Basic Definitions (5)

Definition 5

Two graphs are the <u>same</u> if they have the same set of vertices, the same set of edges, and the same edge-endpoint function.

Example 6

The two pictures represent the same graph.

Subgraphs

Definition 7

A graph H is said to be a subgraph of a graph G iff

- every vertex in *H* is also a vertex in *G*;
- 2 every edge in H is also an edge in G; and
- every edge in H has the same endpoints as in G.

Example 8

Let G the graph on the left-hand side. Then the two on the right-hand side are subgraphs of G.

8 / 28

Simple Graphs

Definition 9

A simple graph is a graph without any loops and parallel edges.

Question: Which of the three graphs are simple, and which are not simple?

Complete Graphs

Definition 11

A <u>complete graph on n vertices</u>, denoted K_n , is a simple graph with n vertices v_1, v_2, \ldots, v_n whose set of edges contains exactly one edge for each pair of distinct vertices.

Example 12

 $K_2, K_3, K_4.$

Complete Bipartite Graphs

Definition 13

A complete bipartite graph on (m, n) vertices, denoted $K_{m,n}$, is a simple graph with vertices v_1, \ldots, v_m and w_1, \ldots, w_n that satisfies the following properties: for all $i, k = 1, 2, \ldots, m$ and for all $j, l = 1, 2, \ldots, n$,

- there is an edge between each vertex v_i and each vertex w_i .
- 2 there is not an edge between any vertex v_i to any other vertex v_k .
- there is not an edge between any vertex w_i to any other vertex w_k .

Isomorphisms of Graphs

Definition 15

Let G and G' be graphs with vertex sets V(G) and V(G') and edge sets E(G) and E(G'), respectively. G is isomorphic to G' iff there exist one-to-one correspondences

$$g: V(G) \rightarrow V(G')$$

 $h: E(G) \rightarrow E(G')$

that preserve the edge-endpoint functions of G and G' in the sense that for all $v \in V(G)$ and $e \in E(G)$,

v is an endpoint of e implies that g(v) is an endpoint of h(e).

Isomorphisms of Graphs: an Example

Example 16

Consider the following two graphs:

We define two one-to-one correspondences:

$$g$$
: $A \mapsto w$, $B \mapsto u$, $C \mapsto v$, $D \mapsto x$

$$h : e_i \mapsto e'_i$$

It is easily seen that v is an endpoint of e implies that g(v) is an endpoint of h(e). Hence the above two graphs are isomorphic.

The Degree of Graphs (1)

Definition 17

Let G be a graph and v a vertex of G.

- The degree of v, denoted by deg(v), is the number of edges that are incident on v, with a loop being counted twice.
- 2 The total degree of G, denoted deg(G), is the sum of the degrees of all the vertices of G.

Example 18

 $deg(v_1) = 0$, $deg(v_2) = 2$, $deg(v_3) = 4$, deg(G) = 0 + 2 + 4 = 6.

The Degree of Graphs (2)

Proposition 19

Let G be a graph. Then $deg(G) = 2 \cdot (number \ of \ edges \ of \ G)$.

Proof.

Recall that $deg(G) = \sum_i deg(v_i)$.

Every edge contributes 2 to the total degree.

- Case 1: Let *e* be a loop with endpoint *v*. Then *e* contributes 2 to the degree of *v*.
- Case 2: Let e be an edge with two distinct endpoints $\{v_1, v_2\}$. Then e contributes 1 to $\deg(v_1)$ and $\deg(v_2)$.

This proves that every edge contributes exactly 2 to the total degree. The desired conclusion then follows.

Paths and Circuits (1)

Definition 20

Let *G* be a graph and let *v* and *w* be vertices in *G*.

A <u>walk from v to w</u> is a finite alternating sequence of adjacent vertices and edges of *G*:

$$v e_1 v_1 e_2 \dots v_{n-1} e_n w$$
.

There is a **trivial walk** from every vertex v to itself, i.e., v. So intuitively a trivial walk on v may be understood as standing at v without moving.

Example: $u_2 e_2 u_3 e_3 u_4$ in the graph.

Paths and Circuits (2)

Definition 21

Let G be a graph and let v and w be vertices in G.

A path from v to w is a walk from v to w that does not contain a repeated edge:

$$v e_1 v_1 e_2 \dots v_{n-1} e_n w$$

where $e_i \neq e_j$ for any $i \neq j$.

Example: $u_1 e_1 u_2 e_2 u_3$ in the graph.

Paths and Circuits (3)

Definition 22

Let *G* be a graph and let *v* and *w* be vertices in *G*.

A simple path from v to w is a path that does not contain a repeated vertex:

$$v e_1 v_1 e_2 \dots v_{n-1} e_n w$$

where v, v_1, \dots, v_{n-1} are pairwise distinct and e_1, e_2, \dots, e_n are also pairwise distinct.

Example: u_1 e_1 u_2 e_2 u_3 e_4 u_4 in the graph.

Paths and Circuits (4)

Definition 23

Let *G* be a graph and let *v* and *w* be vertices in *G*.

A <u>closed walk</u> is a walk that starts and ends at the same vertex.

Example: $u_1 e_1 u_2 e_2 u_3 e_6 u_2 e_1 u_1$ in the graph.

Paths and Circuits (5)

Definition 24

Let *G* be a graph and let *v* and *w* be vertices in *G*.

A <u>circuit</u> is a closed walk without any repeated edges.

Example: $u_2 e_2 u_3 e_6 u_2$ in the graph.

Paths and Circuits (6)

Definition 25

Let *G* be a graph and let *v* and *w* be vertices in *G*.

A <u>simple circuit</u> is a circuit that does not have a repeated vertex except the first and last.

Example: $u_2 e_2 u_3 e_6 u_2$ in the graph.

A Comparison

	Repeated	Repeated	Starts and Ends
	Edge?	Vertex?	at the same point
Walk	Allowed	Allowed	Allowed
Path	No	Allowed	Allowed
Simple Path	No	No	No
Closed Walk	Allowed	Allowed	Yes
Circuit	No	Allowed	Yes
Simple Circuit	No	First and Last only	Yes

The Connectedness of Graphs

Definition 26

- Let *G* be a graph. Two <u>vertices *v* and *w* are connected</u> iff there is a walk from *v* to *w*.
- 2 The graph G is connected iff given any two distinct vertices v and w, there is a walk from v to w.

Example 27

Connected Components

Definition 28

A graph H is a connected component of a graph G iff

- H is a subgraph G;
- H is connected;
- No connected subgraph of *G* has *H* as a subgraph and contains vertices or edges that are not in *H*.

In other words, a connected component is a largest connected subgraph.

Example 29

G has two connected components. G' has only one, i.e. itself.

Definition 30

Given a symmetric relation R on a set A, its <u>associated graph</u> G'_R has vertex set A and

For any $u, v \in A$, $\{u, v\} \in E(G'_R)$ iff uRv.

Example 31

Let

$$A = \{a, b, c, d\}$$

and $R = \{(a,b),(b,c),(c,d),(d,a),(b,a),(c,b),(d,c),(a,d)\}.$ Then G_R' is

Proposition 32

Let R be an equivalence relation on A. Since it is symmetric, we consider its associated graph G'_R . Then the set of vertices of the connected components of G'_R are precisely the equivalence classes of R.

Proof.

Left as an exercise.

Proposition 33

Given an undirected graph G, we define a relation R'_G on V(G) as follows:

for any
$$u, v \in V(G)$$
, $uR'_G v$ iff $\{u, v\} \in E(G)$.

Then R'_G is a symmetric relation.

Proof: If $u R'_G v$, then $\{u, v\} \in E(G)$. Hence $\{v, u\}$ is also an edge in E(G). Therefore $v R'_G u$. This proves symmetry.

Example 34

Let graph G be as follows. Then

$$R'_{G} = \{(a,b),(b,a),(a,d),(d,a),(b,c),(c,b)\}.$$

Proposition 35

Suppose G is a graph. Define a relation R on the set V(G) as follows: "For any $u, v \in V(G)$, u R v iff u and v are connected in G". Then

- R is an equivalence relation
- 2 The equivalence classes of R are precisely the set of vertices of the connected components of G.

Proof.

Left as an exercise.