Endogène égale exogène en 2 commandes... et plus!

François Ollivier (CNRS)

Brahim Sadik

(Faculté des Sciences Semlalia, Marrakech)

Contexte

Critère effectifs de platitude

Un système paramétrable est un système différentiel ordinaire dont la solution générale peut être paramétrée sur un ouvert par m fonctions arbitraires. Il est plat si ce paramétrage est localement bijectif. Fliess, Lévine, Martin et Rouchon (1991)

Conjecture « endogène égale exogène » : tout système paramétrable est plat.

Les premiers exemples de systèmes plats ont été donnés par Monge (1784). Le *problème de Monge* est précisément de tester si un système est plat. Serret, Goursat, Hilbert, Cartan, Pangiotis Zervos (1878-1952).

Le nombre de commandes est la dimension différentielle en algèbre différentielle (Ritt) ou en théorie des diffiétés (Vinogradov).

Exemple de la voiture.

$$\cos(\theta)y' - \sin(\theta)x' = 0$$

Sorties linéarisantes :

- -x et y avec $\theta = \arctan(y'/x')$ ou $\theta = \operatorname{arccot}(x'/y')$;
- $-\theta$ et $z := \cos(\theta)y \sin(\theta)x$ avec

$$x = -\sin(\theta)z - \cos(\theta)z'/\theta'$$
 et $y = \cos(\theta)z - \sin(\theta)z'/\theta'$.

La roue de Monge – Petitot

$$(x')^2 + (y')^2 = (z')^2.$$

Les sorties plates sont les points d'une développante de la courbe (x,y):

$$\zeta_1 = x - \frac{x'}{\sqrt{(x')^2 + (y')^2}} z; \quad \zeta_2 = y - \frac{y'}{\sqrt{(x')^2 + (y')^2}} z.$$

Il s'agit du système tachyconique obtenu à partir du système non plat de Hilbert (1912) en « contôlant le temps ».

$$x' = u; \quad y' = u^2.$$

$$x' = vu;$$
 $y' = vu^2;$ $t' = v;$ donc $: y't' = (x')^2.$

$$(A' + B')(A' - B') = (x')^2$$
: $(x')^2 + (B')^2 = (A')^2$.

 $Platitude\ orbitale$: les fonctions solutions et le temps sont fonctions de m+1 fonctions arbitraires. C'est la notion implicitement considérée par Monge qui ne distingue pas fonctions dépendantes et indépendantes.

$$\mathrm{d}x^2 + \mathrm{d}y^2 = \mathrm{d}z^2.$$

Les critères de Cartan (1914–1915)

Premier critère. — Soit $x_i' = f_i(x, u, t)$ un système à une commande. On note $d_t := d/dt$ la dérivation (champs de Cartan) et $\partial_u \ \partial/\partial u$. Le système est plat si les distributions définies par $D_0 = \langle \partial_u \rangle$ et $D_{i+1} = \langle D_i, [d_t, D_i] \rangle$ sont involutives (stables par crochet) et telles que dim $D_i = i+1$ pour $0 \le i \le n-1$.

Ce théorème est aussi un critère de « paramétrabilité », donc endogène égale exogène en une commande. Charlet, Lévine et Marino (1989). Second critère. — Soit $x_i' = f_i(x)u + g_i(x)v$ un système (sans dérive) à 2 commandes. On note $f = \sum_{i=1}^n f_i \partial_{x_i}$ et $g = \sum_{i=1}^n g_i \partial_{x_i}$. Le système est plat si les distributions définies par $D_0 = \langle f, g \rangle$ et $D_{i+1} = \langle D_i, [D_i, D_i] \rangle$ sont telles que dim $D_i = i+2$ pour $0 \le i \le n-2$.

Il s'agit en fait de la version « orbitale » du théorème précédent.

Un peu de formalisme

Algèbre différentielle. Ritt (1893–1951)

Anneau différentiel : anneau avec une dérivation. Corps.

Polynôme : $\mathcal{F}\{x_1, x_n\} = \mathcal{F}[x_1, x_1', \dots, x_n, x_n', \dots]$ muni de l'unique dérivation compatible avec celle de \mathcal{F} et $(x_i^{(k)})' = x_i^{(k+1)}$.

Idéal différentiel I: stable par dérivation. $P \in I$ implique $P' \in I$.

Un idéal différentiel premier I de $\mathcal{F}\{x\}$ définit l'anneau différentiel intègre $A := \mathcal{F}\{x\}/I$ et l'extension de corps \mathcal{G}/\mathcal{F} , où \mathcal{G} est le corps de fraction de A.

Définition. — Une extension de corps \mathcal{G}/\mathcal{F} est plate si $\overline{\mathcal{G}}$ est isomorphe à $\overline{\mathcal{F}\langle z_1,\ldots,z_m\rangle}$.

Les z_i sont appelés les sorties linéarisantes ou sorties plates.

Théorie des diffiété. Vinogradov (1938 –)

Définition. Une diffiété est une variété de dimension dénombrable équippée d'un champs de vecteur.

Les fonctions sur la diffiété sont des fonctions C^{∞} ne dépendant que d'un nombre fini de paramètres.

La topologie est la topologie la plus grossière qui rende les projections sur les espace de dimension fini continues.

Exemple. Espace des jets : $J^n := J(\mathbf{R}, \mathbf{R}^n)$. Fonctions de coordonnées : x_i, x_i', \dots et t; $\mathbf{R} \times \left(\mathbf{R}^{\mathbf{N}}\right)^n$ muni de la dérivation

$$\partial_t + \sum_{i=1}^n \sum_{k_{inN}} x^{(k+1)} \partial_{x_i^{(k)}}.$$

On peut recoller des cartes.

Un outil fondamental : le critère de Rouchon

Si un système $P_i(x',x,t)=0$ est paramétrable, alors en tout point x de l'état, les dérivées x' appartiennent à une variété réglée.

Idée de la preuve : $x_i = X_i(z, z', \dots, z^{(r)})$. Alors

$$x_{i'} = \sum_{i=1}^{m} z_i^{(r+1)} \partial_{z_i^{(r)}} X_i + \cdots$$

avec $\partial_{z_i^{(r+1)}} \partial_{z_i^{(r)}} X_i = 0.$

En notant $D=\sum_{i=1}^n C_i\partial_{x_i'}$ avec $DC_i=0$, l'idéal $(D^jP_i|j\in \mathbf{N},\ 1\leq i\leq n)$ est homogène en les C_i et admet une solution non triviale, correspondant à une famille de droites.

Si le nombre de familles de droites est fini, il est borné par m.

Comment obtenir une version effective d'endogène égale exogène en deux commandes?

Idée de la preuve

On suppose avoir choisi un système de coordonnées x_i en nombre n minimal, satisfaisant un système d'ordre 1 et tel que l'ordre r du paramétrage soit minimal.

Si n = 2, le système est plat.

Le cas linéaire

Si le système est linéaire, $x_{i'}=f_i(x)x_1'+g(x_2',x)$, alors on peut faire décroître n en remplaçant les x_i par n-1 solutions indépendantes y_i de

$$\sum_{i=1}^{n} f_i(x) \partial_{x_i} Y = 0.$$

Si la diffiété définie par les y_i est de dimension différentielle, 1 elle est plate avec une sortie linéarisante z; alors x_1 et z sont des sorties linéarisantes pour la diffiété globale.

Sinon, les y_i vérifient un système d'ordre $1: y_i' = g_i(x_1, x_2', y)$, contredisant la minimalité de n

Le cas non-linéaire

Si le système est non linéaire en les dérivées, alors il y a au plus 2 familles de droites, dont l'une correspond à un facteur près à $\partial_{z_i^{(r)}}$. On peut réécrire le système sous la forme

$$x'_{i} = f_{i}(x, w)x'_{1} + g_{i}(x, w).$$

On a envie de prendre de nouvelles coordonnées y_i qui soient n-1 solutions indépendantes de

$$\sum_{i=1}^{n} f_i(x, w) \partial_{x_i} Y = 0.$$

Problème : les y_i dépendent de w, qui doit être adjoint aux fonctions y_i , donc la dimension d'état reste n. Peut-on faire chuter l'ordre ? Pour cela, il faut que w soit d'ordre r-1. Un tel choix est-il possible ?

Pour traiter le cas en 2 commandes, commençons par le cas général.

On va donner une preuve (non effective) d'endogène égale exogène, en se ramenant au cas à 1 commande.

On remplace les dérivées $z_j^{(k)}$, $1 \leq j \leq m$, $0 \leq k \leq r$ du paramétrage par $z^{((j-1)(r+2)+k)}$. La diffiété image du nouveau paramétrage satisfait le système d'ordre 1 d'origine et d'autres équations d'ordre supérieur. Ce système à une commande admet une sortie linéarisante ζ .

On peut considérer l'image ξ_k de la fonction $\zeta^{(k)}$ dans les coordonnées x_i d'origine. Soit A_k l'anneau différentiel engendré par les ξ_s , $0 \le s \le k$. Il existe alors m entiers k_j ($k_1 = 0$!) tels que dim diff $A_{k_j-1} + 1$.

Les ξ_{k_i} sont des sorties linéarisantes.

On peut donc supposer que le paramétrage est plat

La dérivée $\partial_{z_i^{(r)}} w$ dépend seulement des x_i et de w.

- Elle ne peut pas dépendre de x_1' ou de ses dérivées, sinon, $\partial_{z_i^{(r)}}$ et $\partial_{z_i^{(r+k)}}$ ne commuteraient pas.
- Elle ne peut pas dépendre des dérivées de w, sinon elle ne serait pas intégrable: la suite $\partial_{z_i^{(r)}}^k w$, $k \in \mathbb{N}$ serait d'ordre non borné, ce qui contredit le fait que les z_i et leurs dérivées ne dépendent que d'un nombre fini de dérivées des x_i .

Zharinov (1996). Étude des ensembles de dérivations E_i avec E_0 , l'espace des *symétries*, dérivations qui commutent avec d_t et E_{i+1} tel que $[E_{i+1}, d_t] \subset E_i$.

Conclusion

On fait chuter r en prenant pour y_i n solutions indépendantes de

$$\left(\sum_{i=1}^{n} f_i(x, w)\partial_{x_i} + (\partial_{z_i^{(r)}} w)(x, w)\partial_w\right)Y = 0.$$

Il existe des sorties linéarisantes $Z_1(x, x')$ et $Z_2(x, Z_1, \dots, Z_1^{(n-2)})$.