Bayesian Data Analysis

Seminar Session 1

Matthew A. Fisher

School of Mathematics, Statistics and Physics Newcastle University

February 3, 2022

Preliminary

Welcome to the first seminar of MAS8405 - Bayesian Data Analysis!

- The Thursday Seminars (14:30-16:30) will be lead by me, Matthew Fisher.
- My seminars will be focussed on the practical application of the course material.
- All code will be written in R.
- All the Thursday seminar materials can be found on GitHub. I will "push" the weeks material just before the session starts.
- If there is any particular aspect of the course you would like me to address in upcoming seminars, please let me know (time permitting).

Overview

- 1. A Quick Refresher
- 2. Problem 1: Conjugate Inference
- 3. Problem 2: Non-Conjugate Inference
- 4. Problem 3: JAGS Introduction

A Quick Refresher

Notation

- Data or observations will be represented as lower-case letters (e.g. y_i) and a collection of n data will be denoted as a vector (or matrix) as $y = (y_1, \ldots, y_n)$.
- Data y_i are assumed to be an observation from a corresponding random-variable Y_i . Random variables will be denote by a capital letters (e.g. Y).
- We write $Y \sim \mathbb{P}$ to mean that the random variable Y follows the distribution \mathbb{P} .
- Probability distributions come equipped with parameters. Individual parameters will usually be denoted by lower-case letters or Greek letters. We will group all parameters together as a vector $\theta = (\theta_1, \dots, \theta_m)$, where each $\theta_1, \dots, \theta_m$ is a parameter. For example, the mean μ and variance σ^2 parameterise a normal distribution $\mathcal{N}(\mu, \sigma^2)$ and so we write $\theta = (\mu, \sigma^2)$.
- We define the set of "allowed" parameters (termed the *parameter space*) as Θ and we specify that $\theta \in \Theta$.

Statistical Inference

Statistical inference is a formalisation of *induction*. Given some observations, we seek to understand and describe the underlying random-process that generated our observations. In mathematics (and assuming I.I.D. data):

- 1. We have data $y = (y_1, ..., y_n)$.
- 2. We assume each y_i is a realisation (or observation) from a random variable Y_i , which follows a distribution $Y_i \sim \mathbb{P}_{\theta}$, for some parameter $\theta \in \Theta$.
- 3. Using our given data \underline{y} , we seek the particular θ that generated \underline{y} or some subset $\Theta_0 \subset \Theta$ that could likely have generated \underline{y} .

There are many ways of doing this...

Example: Statistical Inference by Eye

Suppose we have the following data $\underline{y} = (4.5, 4.8, 4.6, \dots, 5.2)$, which we can visualise as a histogram:

Example: Statistical Inference by Eye

Suppose we have the following data $\underline{y} = (4.5, 4.8, 4.6, \dots, 5.2)$, which we can visualise as a histogram:

Example: Statistical Inference by Eye

Suppose we have the following data $\underline{y} = (4.5, 4.8, 4.6, \dots, 5.2)$, which we can visualise as a histogram:

Example: Statistical Inference by Eye

Suppose we have the following data $\underline{y} = (4.5, 4.8, 4.6, \dots, 5.2)$, which we can visualise with a histogram:

Bayesian Inference

Bayesian inference is a particular approach of statistical inference that is the focus of this course. Bayesian inference assumes the parameter θ is a random quantity to be inferred and relies on the Bayesian update.

The Bayesian Update

We place a prior distribution $p(\theta)$ on the parameter θ and, after observing data \underline{y} , we update our knowledge about θ based on the data y using Bayes rule:

$$p(\theta \mid \underline{y}) = \frac{p(\underline{y} \mid \theta)p(\theta)}{\int p(\underline{y} \mid \theta)p(\theta) d\theta}.$$

This requires the specification of a probability model $p(\underline{y}|\theta)$ for the data \underline{y} . This is termed the likelihood.

Distribution Zoo

The notation \mathbb{P}_{θ} has been used as a placeholder for a general probability distribution with parameter $\theta \in \Theta$. Widely used probability distributions have special notation:

- 1. Normal distribution: continuous, $Y \sim \mathcal{N}(\mu, \sigma^2)$.
- 2. Uniform distribution: continuous, $Y \sim \mathcal{U}(a, b)$ or $Y \sim \text{Unif}(a, b)$.
- 3. Gamma distribution: continuous, $Y \sim \Gamma(\alpha, \beta)$ or $Y \sim \text{Gamma}(\alpha, \beta)$.
- 4. Beta distribution: continuous, $Y \sim \mathcal{B}(\alpha, \beta)$ or $Y \sim \text{Beta}(\alpha, \beta)$.
- 5. Binomial distribution: discrete, $Y \sim Bin(n, p)$.

Note on Parameterisation:

A distribution can be reparamaterised. For instance, you may be familiar with using the precision $\tau=1/\sigma^2$ to parameterise the normal distribution instead of the variance.

Visit the Distribution Zoo to see a wide array of different distributions and their uses.

Problem 1: Conjugate Inference

Conjugate Inference

Conjugate inference is useful since Bayesian updating can be computed in closed-form. For this first problem, we consider implementing a conjugate inference problem from "scratch" using R. What is conjugate inference?

Bayesian Conjugate Inference

A likelihood $p(\underline{y}|\theta)$ and prior $p(\theta)$ are said to form a conjugate pair whenever the posterior $p(\theta|y)$ belongs to the same "distributional family" as the prior.

How do we know when prior is conjugate to our likelihood?

- 1. Check by hand using Bayes theorem.
- 2. Look up standard conjugate distributions. Good sources include Wikipedia, the Distribution Zoo or a book.

Problem 2: Non-Conjugate Inference

Non-Conjugate Inference

For our second "problem", we implement non-conjugate inference from "scratch" using R. For non-conjugate inference we have to resort to numerical methods to investigate our posterior due to the pesky normalisation constant:

$$p(\theta \mid \underline{y}) = \frac{p(\underline{y}|\theta)p(\theta)}{\int p(\underline{y}|\theta)p(\theta) d\theta}.$$

In this course we will resort to Markov Chain Monte Carlo (MCMC) and use the MCMC software JAGS.

I thought it would be useful to implement a couple of alternative numerical methods.

Problem 3: JAGS Introduction

The End