Exam 1

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1	Pa	art 1 (Study of points on lines, and distance)	1
	1.1	Axioms	1
	1.2	Definitions	3
	1.3	Theorems	4
	1.4	Propositions	7
2		art 2 (Study of rays in pencils, angles, angle measures, angles)	8
	2.1	Axioms	8
	2.2	Definitions	9
	2.3	Theorems	11
	2.4	Propositions	13
	2.5	Duals of results from chapters 8 and 9 \dots	14
	4	2.5.1 Theorems (14)	14
	2	2.5.2 Propositions	14
3	Pa	art 3: Study of perpendiculars	15
	3.1	Definitions	15
	3.2	Theorems	16
	3.3	Propositions	17
4	Ex	cam 2 questions	18

1.1 Axioms

Axiom of distance: For all points P, Q

Part 1 (Study of points on lines, and distance)

- 1. $PQ \geqslant 0$
- 2. $PQ = 0 \iff P = Q$
- 3. PQ = QP

Axioms of incidence

- 1. There are at least two different lines
- 2. Each line contains at least two different points
- 3. Each pair of points are together in at least one line
- 4. Each pair of points P, Q, with $PQ < \omega$ are together in at most one line

Betweenness of points axiom (Ax. BP): If A, B, C are distinct, collinear points, and if $AB + BC \leq \omega$, then there exists a betweenness relation among A, B, C

What this is really saying is that if **any** of AB + BC, BA + AC, AC + CB is $\leq \omega$, then there is a betweenness relation.

Note: If Ax.BP is true for a plane \mathbb{P} , and if $AB + BC \leq \omega$ for distinct collinear A, B, C, then there is a betweenness relation, but not necessarily A-B-C

When $\omega = \infty$, then for any distinct collinear $A, B, C, AB + BC < \infty = \omega$, so there will be a betweenness relation

Quadrichotomy Axiom for Points (Ax.QP): If A, B, C, X are distinct, collinear points, and if A-B-C. Then, at least one of the following must hold

$$X-A-B$$
, $A-X-B$, $B-X-C$, or $B-C-X$

Thus, Ax.QP says that whenever A-B-C (say on line ℓ), then any other point X on line ℓ is in either \overrightarrow{BA} or \overrightarrow{BC} . That is,

$$\ell = \overrightarrow{BA} \cup \overrightarrow{BC}$$

Nontriviality Axiom (Ax.N): For any point A on a line ℓ there exists a point B on ℓ with $0 < AB < \omega$

This axiom is true for the planes in which $\omega = \infty$ (\mathbb{E} , \mathbb{M} , \mathbb{H} , \mathbb{G} , \mathbb{R}^3 , $\hat{\mathbb{E}}$, ws)

This axiom is also true for S and Fano, where $\omega < \infty$

Real ray Axiom (Ax.RR): For any ray \overrightarrow{AB} , and for any real number s with $0 \le s \le \omega$, there is a point X in \overrightarrow{AB} with AX = s

Separation Axiom Ax.S: for each line m, there exists a pair of opposite halfplanes with edge m.

1.2 Definitions

- **Definition (Endpoints)**. Point A is called an endpoint of ray \overrightarrow{AB}
- Definition (Interior points and length for a segment): Given a segment \overline{AB} , A and B are called its endpoints. All other points of \overline{AB} are called Interior points of \overline{AB}

Distance AB is called the **length** of \overline{AB}

The interior of \overline{AB} , denoted \overline{AB} or \overline{AB}^0 , means the set of all interior points of \overline{AB} . That is, $\overline{AB} = \overline{AB}^0 = \{X : A-X-B\}$

• **Definition**. Assume $\omega < \infty$. Let A be a point on a line m. The unique point A_m^* on m such that $AA_m^* = \omega$ is called the **antipode** of A on m. Thus,

$$\begin{cases} A, A_m^* \text{ are on m, } AA_m^* = \omega \\ \text{and } A\text{-}X\text{-}A_m^* \text{ for all other points } X \text{ on } m \end{cases}$$

• Definition (interior points of a ray): Let $h = \overrightarrow{AB}$ be a ray. All points of h that are not endpoints of h are called *interior points* of h.

The *interior* of h is the set of all interior points of h, and is denoted by h° , \overline{AB}° , or Int \overline{AB} .

- **Definition (Opposite rays)**: Two rays with the same endpoint whose union is a line are called **opposite rays**
- Notation: Denote the ray opposite to ray h by h'. So, \overrightarrow{AB}' means the ray opposite \overrightarrow{AB}
- **Definition**: Let H, K be opposite halfplanes with edge m. Two points in the same halfplane are said to be on the **same side** of m.
- **Definition**: A^* is called the **antipode** of A

1.3 Theorems

- Theorem 6.1 (Symmetry of betweenness). For a general plane \mathbb{P} with points, lines, distance, and satisfy the seven axioms, $A B C \iff C B A$
- Theorem 6.2 (UMT): If A B C then B A C and A C B are false.
- Theorem 7.6: For any point A on a line ℓ there exists a point C not on ℓ with $0 < AC < \omega$
- Triangle inequality for the line: If A, B, C are any three distinct, collinear points, then

$$AB + BC \geqslant AC$$

- Rule of insertion:
 - If A-B-C and A-X-B, then A-X-B-C
 - If A-B-C and B-X-C, then A-B-X-C
- Theorem 8.1: If $\omega = \infty$, then $\mathbb{D} = [0, \infty)$; if $\omega < \infty$, then $\mathbb{D} = [0, \omega]$
- Theorem 8.2 Each segment, ray, and line has infinitely many points.
- Theorem 8.3. If $X \neq Y$ are points different from A on ray \overrightarrow{AB} , then one of A-X-Y or A-Y-X is true.
- Theorem 8.4. If C is any point on ray \overrightarrow{AB} with $0 < AC < \omega$, then $\overrightarrow{AC} = \overrightarrow{AB}$
- Theorem 8.6 (UDR) For any ray \overrightarrow{AB} and any real number s with $0 \le s \le \omega$, there is a **unique** point X on \overrightarrow{AB} with AX = s. X is in \overline{AB} if and only if $s \le AB$
- Theorem 9.1 (Antipode on line theorem): Let A be a point on a line m (in a plane with the 11 axioms). Assume that $\omega < \infty$. Then, there exists a unique point A_m^* on m such that $AA_m^* = \omega$. Further, if X is any other point on m, then A-X- A_m^*
- Theorem 9.2 (Almost-uniqueness for Quadrichotomy): Suppose that A, B, C, X are distinct points on a line m, and that A-B-C. Then **exactly one** of the following holds:

$$X-A-B$$
, $A-X-B$, $B-X-C$, $B-C-X$

with the *only exception* that both X-A-B and B-C-X are true when $\omega<\infty$ and $X=B_m^*$.

(Note that $B_m^* - A - B$ and $B - C - B_m^*$ are both true by Thm. 9.1)

- Theorem 9.4. If h is a ray with two endpoints A and P, then $\omega < \infty$ and $P = A_m^*$, where m is the carrier of h ($h \subseteq m$).
- Theorem 9.6 (Opposite ray theorem): If B-A-C, then \overrightarrow{AB} and \overrightarrow{AC} are opposite rays

Also, for $m = \overrightarrow{AB}$

$$\overrightarrow{AB} \cap \overrightarrow{AC} = \begin{cases} \{A\} & \text{if } \omega = \infty \\ \{A, A_m^*\} & \text{if } \omega < \infty \end{cases}$$

• Corollary 9.7: Each ray has a unique opposite ray.

- Corollary 9.8: Let A, B be points on line m with $0 < AB < \omega < \infty$. Then $\overrightarrow{AB'} = \overrightarrow{AB_m^*}$
- Corollary 9.9: Let A, B be points on line m with $0 < AB < \omega < \infty$. Then, $m = \overline{AB} \cup \overline{BA_m^*} \cup \overline{A_m^*B_m^*} \cup \overline{B_m^*A}$, with the interiors of these segments being disjoint.
- Theorem 9.10: Let A,B be points on line m with $0 < AB < \omega < \infty$. Let $C \neq A,B,A_m^*,B_m^*$ be another point on m. Then there is no betweenness relation for A,B,C if and only if $C \in \overline{A_m^*B_m^*}^0$
- **Definition**. A subset S of \mathbb{P} is **convex** if for each pair of points $X \neq Y$ in S with $XY < \omega$, $\overline{XY} \subseteq S$ holds.
- Theorem 10.1: If S_1 and S_2 are convex sets in \mathbb{P} , then so is $S_1 \cap S_2$
- Theorem 10.2: Segments, rays, and lines are convex.
- Definition: A pair of sets H, K in \mathbb{P} is called **opposed around a line** m if
 - $-H, K \neq \emptyset$
 - -H, K are convex
 - $-H\cap K=\varnothing$
 - $H \cup K = \mathbb{P} m$
- Theorem 10.3 Let H, K be sets opposed around a line m in \mathbb{P} . Suppose that A, C are points so that $C \in m$, $A \in H$, $AC < \omega$. Then, $\operatorname{Int}\overrightarrow{CA} \subseteq H$, and $\operatorname{Int}\overrightarrow{CA}' \subseteq K$
- Corollary 10.4: let H, K be sets opposed around a line m, let A, B be points not on m, with A-X-B for some point $X \in m$. Then, A, B lie one in each of H and K, in some order.
- Definition: Let m be a line. Sets H, K are called **opposite halfplanes with edge** m if:

H,K are opposed around m, and whenever $X \in H,Y \in K$ and $XY < \omega$, then, $\overline{XY} \cap m \neq \emptyset$

• Theorem 10.5: Suppose that m is a line so that there exists a pair H, K of opposite half planes with edge m. Suppose also that $\omega < \infty$ and A is a point on m. If B is any point in $\mathbb P$ with $AB = \omega$, then $B \in m$ (so $B = A_m^*$, and there is only one point B in all of $\mathbb P$ with $AB = \omega$)

In other words, let H, K be opposite halfplanes with edge a line m, let $A \in m$, $\omega < \infty$. If $B \in \mathbb{P}$, $AB = \omega$, then $B \in m$, and B unique in \mathbb{P}

- Theorem 10.6: Suppose that there is a pair H, K of opposite halfplanes with edge m. Let $A \neq B$ be points not on m. Then,
 - A, B lie one in each of $H, K \iff$ there is a point X on m such that A-X-B
- Corollary 10.7 (Needs proof): Suppose that there is a pair H, K of opposite halfplanes with edge a line m. Then, H, K is the only pair of sets opposed around m.
- Theorem 10.8: Suppose that $\omega < \infty$. For each point A, there is exactly one point A^* in \mathbb{P} with $AA^* = \omega$. Also, every line through A goes through A^* as well.

• Corollary 10.9: Suppose that $\omega < \infty$. For any line m and point P, there are just two possibilities:

$$\begin{cases} P, P^* & \text{both on } m \\ P, P^* & \text{on opposite sides of } m \end{cases}$$

- Theorem 10.10 (Pasch's Axioms) (needs proof): Let A, B, C be three non-collinear points. Let X be a point with B-X-C, and m a line through X but not through A, B, or C. Then, exactly one of
 - 1. m contains a point Y with A-Y-C
 - 2. m contains a point Z with A-Z-B
- Theorem 10.11: Assume that $\omega < \infty$. Then, any two distinct lines must have a point (in fact, a pair of antipodes) in common.

1.4 Propositions

- Proposition 6.3
 - (a) \overline{AB} lies in one line, the line \overleftrightarrow{AB}
 - (b) $\overline{AB} = \overline{BA}$
 - (c) If $x \in \overline{AB}$, with $X \neq B$, then AX < AB
- **Proposition 6.4**: Let A,B,C,D be collinear points with $0 < AB < \omega, \ 0 < CD < \omega,$ and $\overline{AB} = \overline{CD}$, then
 - (a) Either $\{A, B\} = \{C, D\}$ or $\{A, B\} \cap \{C, D\} = \emptyset$
 - (b) AB = CD
- **Proposition 7.1**: If A-B-C and A-C-D, then A, B, C, D are distinct and collinear
- Proposition 7.2 If A-B-C-D, then A, B, C, D are distinct and collinear, and D-C-B-A
- **Proposition 7.5**: If $X \neq Y$ are points distinct from A or ray \overrightarrow{AB} , then at least one of A-X-Y or A-Y-X or X, Y in \overline{AB} is true.
- Important fact: Suppose X is a point on a ray \overrightarrow{AB} in a general plane.
 - 1. If A-X-B then AX < AB
 - 2. If A-B-X then AX > AB
 - 3. IF X = B then AX = AB
- **Proposition 8.11** Let A, B be any two points on line m, with $0 < AB < \omega$. Then, there exists a point C on m with C-A-B and $CB < \omega$.
- Proposition 8.5: A ray has at most two endpoints
- **Proposition 8.7**: Let \overline{AB} be a segment and $X, Y \in \overline{AB}$. Then, $XY \leqslant AB$, and if XY = AB, then $\{X, Y\} = \{A, B\}$
- Proposition 8.8 If $\overline{AB} = \overline{CD}$, then $\{A, B\} = \{C, D\}$
- **Proposition 8.9**: In each segment \overline{AB} there is a unique point M, called the **midpoint** of \overline{AB} , with the property that $AM = \frac{1}{2}AB$. Further, AM = MB
- **Proposition 9.3**: Assume $\omega < \infty$. Let A, B be points on line m with $0 < AB < \omega$. Then
 - (a) $\overrightarrow{AB} = \overrightarrow{AB} \cup \overrightarrow{BA_m^*}$ and $\overrightarrow{AB}^{\circ} \cap \overrightarrow{BA_m^*}^{\circ} = \varnothing$.
 - (b) $\overrightarrow{AB} = \overrightarrow{A_m^*B}$, so that if A is an endpoint of a ray with carrier m, then so is A_m^* .
- **Proposition between** Let \overrightarrow{AB} and \overrightarrow{AC} be opposite rays, and points $X \in \operatorname{Int} \overrightarrow{AB}$, $Y \in \operatorname{Int} \overrightarrow{AC}$ with $AX + AY \leq \omega$, then X A Y
- **Proposition Noncollinear**: If A, B, C are three noncollinear points (not all on the same line), then AB, AC, BC all less than ω .

Part 2 (Study of rays in pencils, angles, angle measures, triangles)

2.1 Axioms

• Measure axioms:

M1: For all coterminal rays $p, q, 0 \le pq \le 180$

 $M2: pq = 0 \iff p = q$

M3: pq = qp

 $M4: pq = 180 \iff q = p'$

• Betweenness of rays axiom (Ax.BR): If a, b, c are distinct, coterminal rays, and if $ab + bc \le 180$, then there exists a betweenness relation among a, b, c

Thus, if no betweenness relation exists, then

$$ab + bc > 180$$

$$ac + cb > 180$$

$$ba + ac > 180$$

• Quadrichotomy of Rays Axiom (Ax.QR): If a, b, c, x are distinct, coterminal rays, and if a-b-c, then at least one of the following must hold

$$x$$
- a - b a - x - b b - x - c b - c - x

So, Ax.QR says that whenever $\overrightarrow{a-b-c}$ (say in pencil P), then any other ray in P is in either fan \overrightarrow{ba} or fan \overrightarrow{bc} (so $P = \overrightarrow{ba} \cup \overrightarrow{bc}$)

• Real fan axiom (Ax.RF): For any fan \overrightarrow{ab} and for any real number t with $0 \le t \le 180$, there is a ray r in \overrightarrow{ab} with ar = t

Ax.RF says every real number from 0 to 180 produces at least one ray in the fan

Note: Ax.RF is one version of what is sometimes called the Protractor Axiom

- Compatibility Axiom (Ax.C): Let A, B, C be points on line m, and X a point not on m. If A-B-C, then $\overrightarrow{XA}-\overrightarrow{XB}-\overrightarrow{XC}$
- Side-angle-side axiom (Ax.SAS): If under the correspondence $ABC \leftrightarrow XYZ$ between the vertices of $\triangle ABC$ and those of $\triangle XYZ$, two sides of $\triangle ABC$ are congruent to the corresponding two sides of $\triangle XYZ$, and the angle included between these two sides of $\triangle ABC$ is congruent to the corresponding angle of $\triangle XYZ$, then $\triangle ABC \cong \triangle XYZ$

2.2 Definitions

• Definition: Coterminal rays: Rays with the same endpoint

• **Definition:** Angle: $\underline{ab} = a \cup b$, where a, b are coterminal rays

• **Definition:** Pencil of rays at point A: The set of all rays with endpoint A: denote by P_A or just P

When $\omega < \infty$, each ray $h = \overrightarrow{AB} = \overrightarrow{A^*B}$, so $P_A = P_{A^*}$. h' is the opposite ray to h, as before

• Undefined Term Angle distance function, or angle measure: A function μ from all pairs (p,q) of coterminal rays to $\mathbb R$

We abbreviate the angular distance between rays p,q, or the angle measure of the angle pq, $\mu(p,q)$ as pq

• Angular distance in \mathbb{E} , $\hat{\mathbb{E}}$, \mathbb{M} : The usual measure in degrees (0 to 180)

$$pq = \cos^{-1}\left(\frac{1+mn}{\sqrt{1+m^2}\sqrt{1+n^2}}\right)$$

• Angular distance in \mathbb{H} :

$$\mu_{\mathbb{H}}(p,q) = \cos^{-1}\left(\frac{1+mn-bc}{\sqrt{1+m^2-b^2}\sqrt{1+n^2-c^2}}\right)$$

• Definition (betweenness for rays): Ray b lies between rays a and c (a-b-c) provided that

- (a) a, b, c are different, coterminal
- (b) ab + bc = ac

• **Definition** (Wedge, fan): Let p, q be coterminal rays with 0 < pq < 180.

- Wedge $\overline{pq} = \{p, q\} \cup \{r : p\text{-}r\text{-}q\}$
- Fan $\overrightarrow{pq} = \{p,q\} \cup \{r: p\text{-}r\text{-}q\} \cup \{r: p\text{-}q\text{-}r\}$

• **Definition** (quad betweenness): a-b-c-d means that all four of

$$a$$
- b - c a - b - d a - c - d b - c - d

are true

• Notation and terminology: Recall that pq means $p \cup q$, then union of the rays. Measure of pq means the angular distance pq

Suppose $p = \overrightarrow{BA}$, $q = \overrightarrow{BC}$. Then, write

$$pq = \angle ABC = \angle CBA$$

Or just $\angle B$ when clear, and

$$pa = \angle ABC = \angle CBA$$

or just $\angle B$.

• Definition:

- **Zero angle:** pq is a **zero angle** if pq = 0 ($\iff p = q$)

- Straight angle: If $pq = 180 \iff p = q'$

- Proper angle: if 0 < pq < 180

- acute angle: if 0 < pq < 90

- **right angle**: if pq = 90

- **obtuse angle**: if 90 < pq < 180

• **Definition**: The ray b from the midpoint proposition is called the **bisector** of angle pq

• **Definition:** Congruence: Two segments \overline{AB} and \overline{XY} are congruent (\cong) if they have the same length: $\overline{AB} \cong \overline{XY}$ means AB = XY

Two angles $\angle CAB$ and $\angle ZXY$ are congruent if they have the same angle measure

Two triangles $\triangle ABC$ and $\triangle XYZ$ are congruent under the correspondence $A \leftrightarrow X$, $B \leftrightarrow Y, C \leftrightarrow Z$ (Write as $ABC \leftrightarrow XYZ$) if

$$\overline{AB} \cong \overline{XY}, \quad \overline{BC} \cong \overline{YZ}, \quad \overline{AC} \cong \overline{XZ}.$$

and

$$\angle ABC \cong \angle XYZ$$
, $\angle CAB \cong \angle ZXY$, $\angle BCA \cong \angle YZX$.

denote this by $\triangle ABC \cong \triangle XYZ$

- Definition: Absolute plane: An absolute plane \mathbb{P} is a set of points \mathbb{P} with lines, distance, and angular distance (all undefined terms), such that all 21 axioms are true. The three planes above are absolute planes
- Definition: types of triangles
 - A triangle is **isosceles** if two sides have the same length
 - Equilateral if all three sides have the same length
 - Equiangular if all three angles have the same measure

Note: A triangle can be called **scalene** if all all three sides have different lengths and all three angles have different measures

2.3 Theorems

- Theorem 11.1 (symmetry of betweenness): a-b- $c \iff c$ -b-a
- Theorem 11.3 UMT: If a-b-c, then b-a-c and a-c-b are false.
- Theorem 11.2 (non-triviality): For any ray p there is a coterminal ray q so that 0 < pq < 180
- Theorem (Triangle inequality for rays): If a, b, c are three distinct, coterminal rays, then $ab + bc \geqslant ac$
- Theorem 11.5 (Rule of insertion for rays):
 - (a) If a-b-c and a-r-b, then a-r-b-c
 - (b) If a-b-c and b-r-c, then a-b-r-c
- Theorem 11.6 (Unique angular distance for fans): For any fan \overrightarrow{pq} and any real number t with $0 \le t \le 180$, there is a unique ray r in \overrightarrow{pq} with pr = t. r is in \overline{pq} if and only if $t \le pq$
- Theorem 11.8: If ray a lies in pencil P, then a-r-a' for every other ray r in P
- Theorem 11.9 (Almost uniqueness of quadrichotomy for rays): Suppose that a, b, c, r are distinct rays in a pencil P, and that a-b-c. Then, **exactly** one of

$$r$$
- a - b a - r - b b - r - c b - c - r

With the exception that both r-a-b and b-c-r are true when r = b'

- Theorem 11.10 (Opposite fan theorem): Let p, q, r be rays in pencil P such that q-p-r. Then, $\overrightarrow{pq} \cup \overrightarrow{pr} = P$, and $\overrightarrow{pq} \cap \overrightarrow{pr} = \{p, p'\}$
- Corollary 11.11: If p, q are rays in pencil P with 0 < pq < 180, then $P = \overrightarrow{pq} \cup \overrightarrow{pq'}$ and $\overrightarrow{pq} \cap \overrightarrow{pq'} = \{p, p'\}$
- Theorem 12.2 (Fan: halfplane): Let H, K be opposite halfplanes with edge line ℓ , point $B \in H$. Let X, A be points on ℓ with $0 < AX < \omega$. Let $h = \overrightarrow{XA}, k = \overrightarrow{XB}$. Then, H consists of all points on all rays of the fan \overrightarrow{hk} , except for the points of ℓ

That is, $P \in H \iff P \in j^0$, where j^0 is the interior of some ray $j \in \overrightarrow{hk}, j \neq h$ or h'

- Corollary 12.3: Let z by any number with 0 < z < 180. For any ray \overrightarrow{AB} there are exactly two rays h, k in P_A such that $\overrightarrow{AB}h = z = \overrightarrow{AB}k$. Furthermore, h^0 and k^0 lie in opposite halfplanes with edge \overrightarrow{AB}
- Theorem 12.4 (The Crossbar Theorem): If hk is a proper angle with vertex (common endpoint) X, if $A \in h^0$ (so $h = \overrightarrow{XA}$), $C \in k^0$ (so $k = \overrightarrow{XC}$), and h-j-k, then there is an interior point B of j with A-B-C
- Theorem 13.1 (ASA): If under the correspondence $ABC \leftrightarrow XYZ$, two angles and the included side of $\triangle ABC$ are congruent, respectively, to the corresponding two angles and included side of $\triangle XYZ$, then $\triangle ABC \cong \triangle XYZ$
- Theorem 13.2 (pons asinorum ("Bride of asses")) In any $\triangle ABC$,

$$AB = AC \iff \angle ACB = \angle ABC$$

• Corollary 13.3: A triangle is equilateral if and only if it is equiangular

• Theorem 13.4 (SSS): If in $\triangle ABC$ and $\triangle XYZ$, $\overline{AB} \cong \overline{XY}$, $\overline{BC} \cong \overline{YZ}$ and $\overline{CA} \cong \overline{ZX}$, then

 $\triangle ABC \cong \triangle XYZ.$

2.4 Propositions

- Proposition 11.14
 - (a) If $\omega < \infty$, then $\angle ABC = \angle AB^*C$
 - (b) If $P \in \overrightarrow{BA}^0$ and $Q \in \overrightarrow{BC}^0$, then $\angle ABC = \angle PBQ$
- Proposition 11.15 (Midpoint): If \underline{pq} is a proper angle, then there is exactly one ray b in the wedge \overline{pq} so that $pb=\frac{1}{2}pq$

2.5 Duals of results from chapters 8 and 9

2.5.1 Theorems (14)

- **Theorem 8.1D**: The set of angle measures $\mathbb{D} = [0, 180]$
- Theorem 8.2D: All wedges, fans, pencils have infinitely many rays
- Theorem 8.3D: Let $x \neq y$ be distinct from a on fan \overrightarrow{ab} . Then, exactly one of

$$a$$
- x - y or a - y - x .

- Theorem 8.4D: Let \overrightarrow{ab} be a fan. If $c \in \overrightarrow{ab}$, 0 < c < 180, then $\overrightarrow{ab} = \overrightarrow{ac}$
- Theorem 8.6D: Stated in theorem 11.6
- Theorem 9.1D: Let ray a be in pencil P, there exists a unique fan $a' \in P$ such that aa' = 180. For all other rays $x \in P$, a-x-a'
- Theorem 9.2D: Stated in theorem 11.8
- Theorem 9.4D: If ap = 180 in some fan h, then p = a'.
- Theorem 9.6D: Stated in theorem 11.9
- Theorem 9.7D: Each fan has a unique opposite fan.
- Theorem 9.8D: Let rays $a, b \in P$, if 0 < ab < 180, then fan $\overrightarrow{ab'} = \overrightarrow{ab'}$
- Theorem 9.9D: Let rays $a, b \in P$, if 0 < ab < 180, then $P = \overline{ab} \cup \overline{ab'} \cup \overline{ba'} \cup \overline{b'a'}$, where the interiors of these wedges are disjoint.
- Theorem 9.10D: Let rays $a, b \in P$, if 0 < ab < 180, and c is some other ray in P, then there exists no betweenness relation among a, b, c if and only if $c \in \overline{a'b'}$

2.5.2 Propositions

- Proposition 8.11D: Let $a, b \in P$, 0 < ab < 180, there exists $c \in P$ such that c-a-b, cb < 180
- Proposition 8.5D: A fan has at most two terminal rays
- **Proposition 8.7D**: Let \overline{ab} be a wedge, for all $x, y \in \overline{ab}$, $xy \leqslant ab$, if xy = ab, then $\{x, y\} = \{a, b\}$
- **Proposition 8.8D**: If $\overline{ab} = \overline{cd}$, then $\{a, b\} = \{c, d\}$
- Proposition 8.9D: Stated in proposition 11.15
- Proposition 9.3D: Let $a, b \in P$ such that 0 < ab < 180. Then,
 - Fan $\overrightarrow{ab} = \overline{ab} \cup \overline{ba'}$, with $\overline{ab} \cap \overline{ba'} = \emptyset$
 - $\operatorname{Fan} \overrightarrow{ab} = \overrightarrow{a'b}$

Part 3: Study of perpendiculars

3.1 Definitions

- Definition: Supplementary angles: Two angles are supplementary if their measures sum to 180.
- **Definition**: Angles hk, rs are **vertical** if $\{r, s\} = \{h', k'\}$
- **Definition: Perpendicular:** Two intersecting lines m, n are **perpendicular** (at point of intersection B) if the four angles they determine at B are right angles, we write $m \perp n$ (at B)
- Definition: The perpendicular bisector: The perpendicular bisector of a segment \overline{AB} is the line perpendicular to \overline{AB} at the midpoint M of \overline{AB}
- **Definition:** Pole: Point A is a Pole of line m if there exists a point X on m such that

$$\overleftrightarrow{AX} \perp m \text{ and } AX = \frac{\omega}{2}.$$

- **Definition:** *Right triangle*: A **right triangle** is a triangle with exactly **one** right angle.
- **Definition:** *Hypotenuse*: In a right triangle, the **hypotenuse** is the side opposite the right angle. The **legs** are the other two sides
- **Definition:** Birectangular triangle: A triangle with exactly two right angles is a birectangular (e.g $\triangle ABC$ on $\mathbb S$ with B,C on equator, A= north pole).
- **Definition:** *Trirectangular triangle*: A triangle with three right angles is **trirectangular**
- **Definition:** small triangle: A triangle is small if all sides have length $<\frac{\omega}{2}$. (So when $\omega = \infty$, every triangle is small).

If $\triangle ABC$ has more than one right angle (say $\angle B = \angle C = 90$), then $\overrightarrow{AB}, \overrightarrow{AC}$ both perpendicular to \overrightarrow{BC} , so thm 14.5 implies A is a pole for \overrightarrow{BC} . Then, Thm 14.6 implies $AB = AC = \frac{\omega}{2}$, which implies $\triangle ABC$ is **not** small.

- **Definition:** Cevian: A Cevian is a segment from a vertex of a triangle to a point on the opposite side.
- **Definition:** exterior and remote interior angles: Given $\triangle ABC$, and D a point with B-C-D, then $\angle ACD$ is called an exterior angle of $\triangle ABC$, and $\angle A, \angle B$ are called the remote interior angles (relative to $\angle ACD$)

3.2 Theorems

- Theorem 14.1 (Supplementary angles theorem): If h, j are coterminal rays, then hj and jh' are supplementary
- Theorem 14.2 (Vertical angles theorem): Vertical angles are congruent
- Theorem 14.3: Through any point A on a line m, there is exactly one line n perpendicular to m
- Theorem 14.9 (needs proof): Every point of the perpendicular bisector of a segment is equidistant from the endpoints of the segment: AX = BX for all X on the perpendicular bisector
- Theorem 14.10 (converse of 14.9): Let $m = \overrightarrow{AB}$, suppose that line $n \neq m$ meets m at the midpoint M of \overline{AB} . Suppose that there is some point X on n, not on m, so that AX = BX. Then, $n \perp n$ at M
- Theorem 14.4: Through a point A not on a given line m there is at least one line n perpendicular to m
- Theorem 14.5: If there are two different lines through a point A and perpendicular to a line m, then A is a pole of m.
- Theorem 14.6: If A is a pole of line m, then every line through A is perpendicular to m, and meets m at a point distance $\frac{\omega}{2}$ from A. Also, every line perpendicular to m goes through A
- Corollary 14.7: Suppose $\omega < \infty$, each line m has exactly two poles, A and A^*
- Theorem 15.1 (Cevian theorem): Suppose $\omega < \infty$, if $AB < \frac{\omega}{2}$, and $AC < \frac{\omega}{2}$ in $\triangle ABC$, and if B-D-C (so \overline{AD} is a cevian of $\triangle ABC$), then $AD < \frac{\omega}{2}$
- Theorem 15.3 (EAI): An exterior angle of a small triangle has larger measure than either remote interior angle
- Corollary 15.4 (needs proof): The nonright angles of a small right triangle are accute
- Corollary 15.5 (needs proof): The base angles of an isosceles triangle whose congruent sides are $<\frac{\omega}{2}$ are acute.
- Theorem 15.7 (The triangle inequality): In any $\triangle ABC$,

$$AB + BC > AC$$
.

• Corollary 15.8: For any points $A, B, C, AB + BC \ge AC$.

3.3 Propositions

• **Proposition 15.6**: If $AB < \frac{\omega}{2}$, and $BC \leqslant \frac{\omega}{2}$ in $\triangle ABC$, then AB + BC > AC

Exam 2 questions

1. Prove that for any four distinct points on a line, there must be a betweenness relation among some three of them

Proof. Consider the distance AB, if $AB = \omega$, then by Thm 9.1, A-C-B and A-D-B, since $B = A^*$.

If $AB < \omega$, then \overrightarrow{AB} defined. By Coroll. 11.11, $\overrightarrow{AB} \cup \overrightarrow{AB}' = \ell$, where ℓ is the line that contains A, B, C, D. If C or D or both are in \overrightarrow{AB} , then there is a betweenness relation among A, B, C, D by definition of the ray \overrightarrow{AB} . If $C, D \in \overrightarrow{AB}'$, then by Thm 8.3, either A-C-D or A-D-C. Hence, a betweenness relation exists.

- 2. Given distinct points P, Q, R, S on a line m, with P-R-S and $PS < \omega < \infty$, answer true or false and explain why in each case
 - (a) $R^* \in \overrightarrow{PR}$
 - (b) $\overrightarrow{PR} = \overrightarrow{PS}$
 - (c) There is exactly one point X on m with $PX = \frac{\omega}{2}$
 - (d) \overrightarrow{RP} and \overrightarrow{RS} have only on point in common.
 - (e) $PQ = PQ^*$
 - (f) $\overrightarrow{PS} \cap \overrightarrow{RS} = \{S\}$
- a.) False, if $R^* \in \overrightarrow{PR}$, then one of P-R- R^* or P- R^* -R. Suppose P-R- R^* , then $PR + RR^* = PR^*$, implies $RR^* = \omega < PR^*$. But, since $P \neq R$, $PR^* < \omega$, a contradiction. Next, suppose P- R^* -R, then $PR^* + R^*R = PR$, which implies $R^*R = \omega < PR$, but since \overrightarrow{PR} defined, $PR < \omega$, so $\omega < \omega$, another contradiction. Thus, $R^* \notin \overrightarrow{PR}$
- b.) True, since $S \in \overrightarrow{PR}$ (by definition of P-R-S), and $PS < \omega$, $\overrightarrow{PR} = \overrightarrow{PS}$ but theorem 8.4
- c.) False, there are exactly two points $X, Y \in m$ such that $PX = PY = \frac{\omega}{2}$, one in \overrightarrow{PR} , and one in \overrightarrow{PR}' , by theorem 8.4 and the fact that $\overrightarrow{PR} \cup \overrightarrow{PR}' = m$
- d.), False, by theorem 9.6 since $\omega < \infty$, the intersection is instead $\{R, R^*\}$
- e.) False, assume for the sake of contradiction that $PQ = PQ^*$, first consider the case when $PQ = \omega$. Thus, either $P = Q^*$ or $Q = P^*$, if they both happen simultaneously, then

$$PQ = PQ^* \implies PP^* = Q^*Q^* \implies \omega = 0.$$

a contradiction, thus not both at once. If $P = Q^*, Q \neq P^*$, then

$$PQ = PQ^* \implies Q^*Q = Q^*Q^* \implies \omega = 0.$$

another contradiction. If $Q = P^*, P \neq Q^*$, then

$$PQ = PQ^* \implies PP^* = PQ^* \implies \omega = PQ^*.$$

but, $P \neq Q$. So, another contradiction. Thus, for $PQ = PQ^*$, $PQ = QP < \omega$. So, \overrightarrow{QP} is defined. By prop 9.3, $\overrightarrow{QP} = \overrightarrow{Q^*P}$, and $Q \in \overrightarrow{Q^*P}$ implies one of Q^* -Q-P or Q^* -P-Q. Assume Q^* -Q-P. Then, $Q^*Q + QP = Q^*P$, which implies $Q^*Q = \omega < Q^*P$, and since $P \neq Q$, a contradiction.

assume Q^*-P-Q , then $Q^*P+PQ=Q^*Q=\omega$, and thus $PQ=\omega-Q^*P$. A contradiction, since we assumed $PQ=PQ^*$, Therefore, $PQ\neq PQ^*$

f.) False, P-R-S implies $R \in \overrightarrow{PS}$, and we know that $R \in \overrightarrow{RS}$.

- 3. Let m, n be lines with $m \cap n = \emptyset$, let H, K be opposite halfplanes with edge m.
 - (a) $\omega = \infty$
 - (b) Either $n \subseteq H$ or $n \subseteq K$
- a.) Assume for the sake of contradiction that $\omega < \infty$. Then, by theorem 10.11, all lines have a point in common. Thus, $m \cap n \neq \emptyset$, a contradiction. So, $\omega = \infty$
- b.) Let $A \in n$, choose $B \in n$ such that $0 < AB < \omega$, such points exist by Ax.RR. We note that by theorem 10.2, all segments, rays, lines are convex. Thus, for $X, Y \in n$, $\overline{XY} \subseteq n$. Thus, $\overline{AB} \subseteq n$. Suppose that $A \in H$, $B \in K$. Then, by theorem 10.6, there exists a point $X \in m$ such that A-X-B. But, this implies that $X \in \overline{AB}$. Thus, $X \in \overline{AB} \implies X \in n$, and $X \in m$, which means $n \cap m \neq \emptyset$, a contradiction.

So, n must consist entirely of points in H or in K but cannot have points in both, so $n \subseteq H$ or $n \subseteq K$.

4. Let A,B,C be three noncollinear points. Let D,E be points with A-D-C and A-E-B. Prove

(a)
$$\angle BCE + \angle ECA = \angle BCA$$

- (b) \overrightarrow{CE} meets \overline{BD}
- (c) $\angle BCA + \angle BCA^* = 180$
- (d) $\overrightarrow{BD} \cdot \overrightarrow{BC} \cdot \overrightarrow{BA}^*$

a.) By Ax.C, A-E-B and pt C yields \overrightarrow{CA} -CE-CB = \overrightarrow{CB} - \overrightarrow{CE} - \overrightarrow{CA} , which implies

$$\overrightarrow{CBCE} + \overrightarrow{CECA} = \overrightarrow{CBCA}.$$

Since $\overrightarrow{CBCE} = \angle BCE$, $\overrightarrow{CECA} = \angle BCA$, and $\overrightarrow{CBCA} = \angle BCA$, $\angle BCE + \angle ECA = \angle BCA$

- b.) Since $D \in \overrightarrow{CA^0}$, $B \in \overrightarrow{CB^0}$, and $\overrightarrow{CA} \cdot \overrightarrow{CE} \cdot \overrightarrow{CB}$, by the Crossbar theorem, there exits a point $F \in \overrightarrow{CE^0}$ such that $B \cdot F \cdot D$. Thus, \overrightarrow{CE} meets \overrightarrow{BD} at F
- c.) A-D-C implies A, D, C collinear. Thus, A, A^* , C collinear since A^* on the same line as A (thm 10.5). Thus, by theorem 9.1, A-C- A^* , so \overrightarrow{CA} and $\overrightarrow{CA^*}$ are opposite rays, and $\overrightarrow{CACA^*}$ = 180 (Ax.M4). Further, we have by theorem 10.8 that \overrightarrow{CA} - \overrightarrow{CB} - $\overrightarrow{CA^*}$. Thus,

$$\overrightarrow{CACB} + \overrightarrow{CBCA^*} = \overrightarrow{CACA^*} = 180$$

Note that $\overrightarrow{CACB} = \overrightarrow{CBCA}$ (Ax.M3). Thus, we have that

$$\angle BCA + \angle BCA^* = \angle ACA^* = 180.$$

d.) First, we show that D-C- $A^* = A^*$ -C-D. Observe that since A-D-C, $D \in \overrightarrow{AC}$, more specifically, $D \in \overline{AC}$. By prop 9.3, $\overrightarrow{AC} = \overrightarrow{A^*C}$. So, $D \in \overrightarrow{A^*C}$. Thus, one of

$$A^*$$
- D - C , or A^* - C - D .

Assume A^* -D-C. Then, $D \in \overline{A^*C}$, which by prop 6.3 $\overline{A^*C} = \overline{CA^*}$, and by prop 9.3 $\overline{AC} = \overline{AC} \cup \overline{CA^*}$, with $\overline{AC}^0 \cap \overline{CA^*}^0 = \emptyset$. Thus, $D \in \overline{CA^*}$ and $D \in \overline{AC}$ is a contradiction, and we infact have that A^* -C-D = D-C- A^* .

From here, since A, B, C noncollinear, B not on the same line with A, C. Thus, Ax.C implies

$$\overrightarrow{BD}$$
- \overrightarrow{BC} - \overrightarrow{BA}^* .

- 5. Given distinct rays p, q, r, s in a pencil P with p-r-s, ps < 180, pq = 85, qr = 70, answer T/F and explain why in each case
 - (a) There is a betweenness relation among p, q, r
 - (b) r' is in \overrightarrow{pr}
 - (c) pq' = 85
 - (d) $\overrightarrow{pr} = \overrightarrow{ps}$
 - (e) There is exactly one ray x in P with px = 100
 - (f) If p-q-r then q-r-s
- a.) True, Since

$$pq + qr = 70 + 85 = 155 < 180,.$$

Ax.BR says there exists a betweenness relation among p, q, r

b.) False, if $r' \in \overrightarrow{pr}$, then one of

$$p-r'-r$$
, $p-r-r'$.

Assume p-r'-r, then pr' + r'r = pr, which implies rr' = 180 < pr. By axiom Ax.M1, $0 \le pr \le 180$. Thus, a contradiction.

Assume p-r-r', then pr + rr' = pr', which implies rr = 180 < pr', another contradiction.

Thus, $r' \notin \overrightarrow{pr}$

- c.) False, by theorem 11.8, q-p-q', thus qp + pq' = qq' = 180, which implies pq' = 180 85 = 95
- d.) True, by p-r-s, $s \in \overrightarrow{pr}$, by the dual of theorem 8.4, since $ps < 180, \overrightarrow{pr} = \overrightarrow{ps}$
- e.) False, by theorem 12.3, there are exactly two rays x, y in P with px = py = 100.
- f.) False, contradicts theorem 11.3 (UMT for rays)

6. Let $B \neq C$ be points on the same side of line \overrightarrow{AX} . Prove that exactly one of the following is true

$$A-B-C$$
, $A-C-B$, $\overrightarrow{AX}-\overrightarrow{AB}-\overrightarrow{AC}$, $\overrightarrow{AX}-\overrightarrow{AC}-\overrightarrow{AB}$.

Proof. We first note that since $B, C \neq \overrightarrow{AX}, A, B, C, X$ noncollinear, so all pairs of distances less than ω by theorem 10.8 or proposition non-collinear. Thus, $\overrightarrow{AX}, \overrightarrow{AB}$ defined. Call $\overrightarrow{AX} = h$, $\overrightarrow{AB} = k$. By theorem 12.2,

$$P \in H \iff P \in j^0, \text{ for } j \in \overrightarrow{hk}, j \neq h, h'.$$

Suppose that $C \in \overrightarrow{AB}{}^0 = k^0$. Then, either A-B-C or A-C-B by definition of a ray. Note that if one occurs, the other cannot by the Unique Middle Theorem.

Further, note that by Thm. 8.4, $\overrightarrow{AB} = \overrightarrow{AC}$, since we stated above that $\overrightarrow{AC} < \omega$ and $\overrightarrow{C} \in \overrightarrow{AB}^0$. Thus, both $\overrightarrow{AX} \cdot \overrightarrow{AB} \cdot \overrightarrow{AC}$ and $\overrightarrow{AX} \cdot \overrightarrow{AC} \cdot \overrightarrow{AB}$ cannot occur since \overrightarrow{AB} , \overrightarrow{AC} are not distinct rays.

Suppose that $C \notin k^0$, then A, B, C noncollinear, and thus A-B-C and A-C-B cannot occur. Call the ray that C is in \overrightarrow{AC} . Since $C \notin \overrightarrow{AX}$, $\overrightarrow{AC} \neq \overrightarrow{AX}$, and $\overrightarrow{AC} \neq \overrightarrow{AB}$ since $C \notin \overrightarrow{AB}$. Thus, \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AX} are distinct, coterminal rays, and by definition of $\overrightarrow{hk} = \overrightarrow{\overrightarrow{AX} AB}$, where $\overrightarrow{AC} \in \overrightarrow{hk}$, exactly one of

$$\overrightarrow{AX} \cdot \overrightarrow{AB} \cdot \overrightarrow{AC}$$
, $\overrightarrow{AX} \cdot \overrightarrow{AC} \cdot \overrightarrow{AB}$.