Chapter 9 Nonconvex functions

- Lemma 9.1 Let f ∈ C², with X ⊆ dom(f) convex, if ||∇²f(x)|| ≤ L, ∀x, where ||·|| is spectual norm, then f is L-smooth.
 Proof similar to Lemma A of Chapter 10.
- Idea For non convex function, instead of focusing on f, we focus on convergence of $\|\nabla f(\mathbf{x}_t)\|^2$ to a critical point.
- Theorem 9.2 $f \in C^2$ is L-smooth with global minimum \mathbf{x}^\star , then a stepsize of $\gamma = 1/L$ gives $\frac{1}{T}\sum_{t=0}^{T-1}\|\nabla f(\mathbf{x}_t)\|^2 \leq \frac{2L}{T}(f(\mathbf{x}_0) f(\mathbf{x}^\star))$, and $\lim_{t \to \infty}\|\nabla f(\mathbf{x}_t)\|^2 = 0$.
 Proof
 - sufficient descent gives $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2$, which means $\|\nabla f(\mathbf{x}_t)\|^2 \leq 2L \left(f(\mathbf{x}_t) f(\mathbf{x}_{t+1})\right)$
 - so summation and we get the first result, also if $\lim_{t \to \infty} \|\nabla f(\mathbf{x}_t)\|^2 = g > 0$ will lead to contradiction.
- Lemma 9.3 (with stepsize 1/L, it cannot overshoot.) $f \in C^2$ is L-smooth, if $\nabla f(\mathbf{x}) \neq \mathbf{0}$, then update with $\gamma = 1/L' < 1/L$ will never give a critical point $\nabla f(\mathbf{x}' = \mathbf{x} \gamma \nabla f(\mathbf{x})) \neq 0$.
 - Proof
 - lacksquare By smoothness we have L-Lipschitz $\|
 abla f(\mathbf{x})
 abla f(\mathbf{x}') \| \leq L \| \mathbf{x} \mathbf{x}' \| = rac{L}{L'} \|
 abla f(\mathbf{x}) \| < \|
 abla f(\mathbf{x}) \|$
 - lacksquare This means $\|
 abla f(\mathbf{x}')\| \geq \|
 abla f(\mathbf{x})\| \|
 abla f(\mathbf{x}')
 abla f(\mathbf{x})\| > 0$.

Trajectory analysis

• Some times we can prove GD avoids saddle points and converge to global optimal

Deep Linear Neural Networks

• Objective $\|W_\ell W_{\ell-1} \cdots W_1 X - Y\|_F^2$

Width-1 DLNN

- ullet We want when x=1 then y=1, this gives an objective of $f(\mathbf{x}):=rac{1}{2}\Bigl(\prod_{k=1}^d x_k-1\Bigr)^2$
- ullet The gradient gives $abla f(\mathbf{x}) = (\prod_k x_k 1) \Bigl(\prod_{k
 eq 1} x_k, \ldots, \prod_{k
 eq d} x_k\Bigr)^ op$
 - $\circ~$ global minimum when $\prod_k x_k = 1$
 - \circ other critical point when at least $two \ x_k$ is zero, thay give non-minimum of f=1/2.
- We want to show that from anyhwere in $X = \{\mathbf{x} : \mathbf{x} > \mathbf{0}, \prod_k \mathbf{x}_k \leq 1\}$, GD converge to global minimum. However, f is not smooth in X.
- But we can later show f smooth along trajectory, then with sufficient descent, we know f always decreasing, and the starting point, we have f < 1/2, then never to a saddle point.
- ullet Even in this, we still cannot prove global minimum, since X is unbounded, GD may make ${f x}$ to infinity.
- ullet Definition 9.4 If ${f x}>0$ componentwise, let $c\geq 1$, ${f x}$ is called c-balanced if $x_i\leq cx_j$ for all $1\leq i,j\leq d$
- Lemma 9.5 If $\mathbf{x} > 0$ be c-balanced with $\prod_k x_k \le 1$, then for any stepsize $\gamma > 0$, $\mathbf{x}' := \mathbf{x} \gamma \nabla f(\mathbf{x})$ satisfies (i) $\mathbf{x}' \ge \mathbf{x}$ componentwise and (ii) \mathbf{x}' is also c-balanced.
 - Proof
 - lacksquare Set $\Delta:=-\gamma\left(\prod_k x_k-1
 ight)\left(\prod_k x_k
 ight)\geq 0$, then gradient descent gives $x_k'=x_k+rac{\Delta}{x_k}\geq x_k$
 - lacksquare We havee $x_i \leq cx_j$ and $x_j \leq cx_i \Leftrightarrow 1/x_i \leq c/x_j$, so $x_i' = x_i + rac{\Delta}{x_i} \leq cx_j + rac{\Delta c}{x_j} = cx_j'$
 - $\circ~$ If we define $c \leq 1$ -co-balanced as $x_i \geq cx_j$ for all $1 \leq i,j \leq d$
 - \circ then when $\prod_k x_k \geq 1$, then $\mathbf{x'} < \mathbf{x}$, while still $\mathbf{x'}$ is c-co-balanced.

Smoothness along the trajectory

- We can derive smoothness from bounded Hessian
- The hessian is $abla^2 f(\mathbf{x})_{ij} = egin{cases} \left(\prod_{k
 eq i} x_i
 ight)^2, & j = i \ 2\prod_{k
 eq i} x_k \prod_{k
 eq j} x_k \prod_{k
 eq i,j} x_k, & j
 eq i \end{cases}$
- Lemma 9.6 If $\mathbf{x}>0$ is c-balanced, then for any subset $I\subseteq\{1,\ldots,d\}$, $\left(\frac{1}{c}\right)^{|I|}(\prod_k x_k)^{1-|I|/d}\leq\prod_{k\not\in I}x_k\leq c^{|I|}(\prod_k x_k)^{1-|I|/d}$
 - Proof

- lacksquare For any i, we have $x_i^d \geq (1/c)^d \prod_k x_k$ so $x_i \geq (1/c)(\prod_k x_k)^{1/d}$, similarly $x_i^d \leq c^d \prod_k x_k$ so $x_i \leq c(\prod_k x_k)^{1/d}$
- Plug in this and we get the result.
- \circ If c-co-balanced, $I\subseteq\{1,\ldots,d\}$, $\left(rac{1}{c}
 ight)^{|I|}(\prod_k x_k)^{1-|I|/d}\geq\prod_{k
 eq I}x_k\geq c^{|I|}(\prod_k x_k)^{1-|I|/d}$
- ullet Lemma 9.7 If $\mathbf{x}>0$ be c-balanced with $\prod_k x_k \leq 1$, then $\|
 abla^2 f(\mathbf{x})\| \leq \|
 abla^2 f(\mathbf{x})\|_F \leq 3dc^2$
 - Proof
 - lacksquare For any matrix A, $\|Ax\|^2 = \sum_i (a_i^ op x)^2 \leq \sum_i (\sum_j a_{ij})^2 (\sum_j x_j)^2 = \|A\|_F^2 \|x\|_2^2$, then $\|A\| \leq \|A\|_F$
 - $lacksquare To bound \,
 abla^2 f$, first we bound on diagnal term $|
 abla^2 f(\mathbf{x})_{ii}| = |\left(\prod_{k
 eq i} x_i
 ight)^2| \leq c^2$
 - ullet then for off-diagnal term $|
 abla^2 f(\mathbf{x})_{ij}| \leq |2\prod_{k
 eq i} x_k \prod_{k
 eq j} x_k| + |\prod_{k
 eq i,j} x_k| \leq 3c^2$
 - ullet sum together we get $\|
 abla^2 f\|_F^2 \leq dc^4 + 9d(d-1)c^4 \leq 9d^2c^4$, QED.
 - \circ If c-co-balanced, we can prove $\|
 abla^2 f(\mathbf{x})\| \leq \|
 abla^2 f(\mathbf{x})\|_F \leq 3d rac{1}{c^2}$
- Lemma 9.8 (Summary of previous) If $\mathbf{x}>0$ be c-balanced with $\prod_k x_k \leq 1$, $L=3dc^2$, Let $\gamma:=1/L$, then GD with this Ir gives \mathbf{x}_t always c-balanced, and f is L-smooth along the line segment of trajectory.
 - \circ Proof key is that smooth function never pass critical point, so every iterate, we have $\prod_k x_k \leq 1$.
 - \circ We can prove similar result for $\prod_k x_k \geq 1$ case with similar definition of c-co-balance (Exercise 58).
- Exercise 59 there are starting point \mathbf{x}_0 not critical that does not converge to global minimum.
 - \circ When $\prod_k x_k \geq 1$ and $\Delta \leq 0$, then update $x_k' = x_k + \Delta/x_k$ will lead to zero for some large learning rate.

Convergence

- Theorem 9.9 Let c>1 and $\delta>0$ such that $\mathbf{x}_0>0$ is c-balanced with $\delta\leq\prod_k (\mathbf{x}_0)_k<1$, choosing stepsize $\gamma=\frac{1}{3dc^2}$, then GD satisfies $f(\mathbf{x}_T)\leq \left(1-\frac{\delta^2}{3c^4}\right)^T f(\mathbf{x}_0)$.
 - Proof
 - lacksquare By sufficient decrease $f\left(\mathbf{x}_{t+1}
 ight) \leq f\left(\mathbf{x}_{t}
 ight) rac{1}{6dc^2}\|
 abla f\left(\mathbf{x}_{t}
 ight)\|^2$
 - $\text{ while } \|\nabla f(\mathbf{x})\|^2 = 2f(\mathbf{x}) \sum_{i=1}^d \left(\prod_{k \neq i} x_k\right)^2 \geq 2f(\mathbf{x}) \tfrac{d}{c^2} (\prod_k x_k)^{2-2/d} \geq 2f(\mathbf{x}) \tfrac{d}{c^2} (\prod_k x_k)^2 \geq 2f(\mathbf{x}) \tfrac{d}{c^2} \delta^2$
 - lacksquare then $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) rac{1}{6dc^2} 2f(\mathbf{x}_t) rac{d}{c^2} \delta^2 = f(\mathbf{x}_t) \left(1 rac{\delta^2}{3c^4}
 ight)$
- ullet Exercise 61 Sequence $(\mathbf{x}_T)_{T\geq 0}$ in above update converge to an optimal solution \mathbf{x}^\star
 - o Proof
 - Since $0 < x_i \le c(\prod_k x_k)^{1/d} \le c$, sequence is always bounded, then it has a converging subsequence $\{\mathbf{x}_{t_k}\}$.
 - lacksquare By Young's inequality $(\sum_i a_i)^2 = \sum_{ij} a_i a_j \leq \sum_{ij} rac{1}{2} (a_i^2 + a_j^2) = n \sum_i a_i^2$, this also fits for vector case, $\|\sum_i \mathbf{a}_i\|^2 \leq n \sum_i \|\mathbf{a}_i\|_2^2$
 - Let $\mathbf{a}_t = \mathbf{x}_{t_k} \mathbf{x}_t$, then we have $\|\mathbf{x}_{t_k} \mathbf{x}_T\|^2 \le (T t_k) \sum_t \|\gamma \nabla f(x_t)\|^2 \le C \cdot (T t_k) \cdot (f(x_{t_k}) f(x_T))$, $f(x_{t_k}) f(x_T)$ converge exponentially w.r.t t_k , so this term $\|\mathbf{x}_{t_k} \mathbf{x}_T\|^2$ converge to zero.
 - \circ We can also prove from the fact of $x_{k,t}$ is monotone....way much easier.