NON-LINEAR REGRESSIONS

PROF. XINXIN LI

POTENTIAL PROBLEMS IN USING LINEAR REGRESSIONS

- The outcome variable is assumed to be normally distributed which may not be true
- Using a linear regression could result in the predicted outcome variables being senseless or outside of allowable range
- For example,
 - When outcome variable is binary, which likely arises when we have fine grained individual level data
 - When outcome variable is a count variable which can only be nonnegative

LOGISTIC REGRESSION

- A widely used statistical model to model a binary outcome variable
 Y).
 - e.g., whether to click an ad, whether to make a purchase, whether to exit etc.
- How to transform a binary variable (Y) to an unbounded continuous variable?
 - First, consider the probability of Y=1 instead of Y itself as the outcome variable, but it is still bounded between 0 and 1
 - Second, consider the odds ratio: $\frac{Prob\{Y=1\}}{1-Prob\{Y=1\}}$, which measures the probability of "success" over "failure", but it is still non-negative
 - Third, take a log transformation: $\ln\left(\frac{Prob\{Y=1\}}{1-Prob\{Y=1\}}\right)$, which is now an unbounded continuous variable

LOGISTICS REGRESSION

• We can then model $\ln \left(\frac{Prob\{Y=1\}}{1-Prob\{Y=1\}} \right)$ using a linear function:

$$\ln\left(\frac{Prob\{Y=1|X\}}{1-Prob\{Y=1|X\}}\right) = \alpha + \beta X$$

• This is equivalent to: $Prob\{Y = 1|X\} = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$

• Use Maximum Likelihood estimation to find the coefficients that maximize the chance of observing the data we observed.

LOGISTICS REGRESSION

- How to interpret the coefficients?
 - The coefficient (β) measures the change in log odds ratio of the outcome variable (Y) upon one unit increase in the explanatory variable (X):

$$\ln\left(\frac{Prob\{Y=1|X\}}{1-Prob\{Y=1|X\}}\right) - \ln\left(\frac{Prob\{Y_0=1|X_0\}}{1-Prob\{Y_0=1|X_0\}}\right) = \beta(X-X_0)$$

- We can also take exponent of the coefficient to get the percent change in odds ratio of the outcome variable upon one unit increase in X.

$$\frac{\frac{Prob\{Y=1|X\}}{1-Prob\{Y=1|X\}}}{\frac{Prob\{Y_0=1|X_0\}}{1-Prob\{Y_0=1|X_0\}}} = e^{\beta(X-X_0)}$$

– If X increases by 1 unit, then the odds of the event increases by a factor of e^{β}

LINEAR VS. LOGISTICS REGRESSION

THE WEATHER IMPACT EXAMPLE — INDIVIDUAL DATA

- Does weather (rainy, sunny or cloudy) have any impact on people's propensity to click an ad?
- Data (MobileAd.xls)
 - ID: individual ID
 - $Responded = \begin{cases} 1 & \text{if responded to the ad and purchased} \\ 0 & \text{otherwise} \end{cases}$
 - $Sunny = \begin{cases} 1 & \text{if weather is sunny} \\ 0 & \text{otherwise} \end{cases}$
 - $Rainy = \begin{cases} 1 & \text{if weather is rainy} \\ 0 & \text{otherwise} \end{cases}$
 - $\text{AdVersion} = \begin{cases} 1 & \text{if ad has prevention framing "Do not miss the} \\ 0 & \text{opportunity to take advantage of this special deal! "} \\ 0 & \text{otherwise} \end{cases}$
 - Location: id of the location
- How to set up the model?

DOES WEATHER HAVE AN IMPACT?

```
> summary(ml <- gl m(Responded~Sunny+Rai ny+AdVersi on+as. factor(Locati on), fami l y=bi nomi al ("logi t"), data=Mobi l eAd))
Call:
  gl\, \texttt{m}(formul\, a = Responded \sim Sunny + Rai\, ny + AdVersi\, on + as.\, factor(Locati\, on)\,, \\  fami\, l\, y = bi\, nomi\, al\, ("l\, ogi\, t")\,, \quad data = MAData) 
Devi ance Residuals:
Mi n 10 Medi an 30
-1.7274 -0.8785 -0.6940 0.9524
                                                    Max
Coefficients:
                             Estimate Std. Error z value Pr(>|z|) -0.94474 0.25433 -3.715 0.000204
(Intercept)
                                             0. 06464 4. 898 9. 66e-07
                            0. 31664
Sunny
                          Rai ny
AdVersi on
as. factor(Location) 2
(omitted)
as. factor(Location) 31  0. 67400  0. 31287  2. 154  0. 031223 *
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 16355 on 11955 degrees of freedom Residual deviance: 14347 on 11922 degrees of freedom
AIC: 14415
Number of Fisher Scoring iterations: 11
```

DOES WEATHER HAVE AN IMPACT?

```
> summary(ml <- gl m(Responded \sim Sunny + Rai ny + AdVersi on + as. factor(Locati on), family=bi nomi al("logit"), data=MobileAd))
Call:
  gl\, \texttt{m}(formul\, a = Responded \sim Sunny + Rai\, ny + AdVersi\, on + as.\, factor(Locati\, on)\,, \\  fami\, l\, y = bi\, nomi\, al\, ("l\, ogi\, t")\,, \quad data = MAData) 
Devi ance Residuals:
                       Medi an
     Mi n
                 1Q
                                                  Max
- 1. 7274    - 0. 8785    - 0. 6940
                                   0. 9524
Coeffi ci ents:
                             Estimate Std. Error z value Pr(>|z|)
                                            0.25433 - 3.715 \ 0.000204
                             -0.94474
(Intercept)
                             0. 31664
                                           0.06464
                                                        4.898 9.66e-07
Sunny
                             - 0. 36505
                                        0. 07350 - 4. 967 6. 80e- 07
Rai ny
AdVersi on
                             0. 59158
                                          0. 07974 7. 419 1. 18e-13
as. factor(Location) 2
                             0. 93061
                                           0. 32419
                                                        2.871 0.004097
                                                                                           Yes, compared to
(omitted)
                                                                                       cloudy days, people are
as. factor(Location) 31
                             0.67400
                                           more likely to respond
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
                                                                                         to ad on sunny days
(Dispersion parameter for binomial family taken to be 1)
                                                                                           and less likely to
Nul l devi ance: 16355
Resi dual devi ance: 14347
                                on 11955 degrees of freedom
on 11922 degrees of freedom
```

AIC: 14415

Number of Fisher Scoring iterations: 11

respond on rainy days

DOES WEATHER IMPACT VARY WITH AD DESIGN?

```
> summary(i ml <- gl m(Responded~Sunny+Rai ny+AdVersi on+Sunny: AdVersi on+Rai ny: AdVersi on+as. fa ctor(Locati on), fami l y=bi nomi al ("l ogi t"), data=Mobi l eAd))
Call:
glm(formula = Responded ~ Sunny + Rainy + AdVersion + Sunny: AdVersion +
Rainy: AdVersion + as. factor(Location), family = binomial("logit"),
     data = MAData)
Devi ance Residuals:
                     Medi an 30
- 0. 6475 0. 9299
                                                  Max
          10
- 1. 6085   - 0. 8837
                                              2.3990
Coefficients:
                            Estimate Std. Error z value Pr(>|z|) -1.10028 0.26109 -4.214 2.51e-05
(Intercept)
                                                        6. 163 7. 14e-10
Sunny
                             0.61253
                                           0. 09939
Rai ny
                            - 0. 47510
                                           0. 13836 - 3. 434 0. 000595
                                           0. 10268 7. 436 1. 04e-13
AdVersi on
                            0. 76349
                                           0. 13417 - 4. 307 1. 65e-05
Sunny: AdVersi on - 0. 57788
Rai ny: AdVersi on 0. 17569 0. 15814 1. 111 0. 266584 as. factor(Location) 2 1. 03439 0. 32826 3. 151 0. 001627 **
(omitted)
as. factor(Location) 31
                            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
     Null deviance: 16355 on 11955 degrees of freedom
Residual deviance: 14323 on 11920 degrees of freedom
AIC: 14395
Number of Fisher Scoring iterations: 11
```

DOES WEATHER IMPACT VARY WITH AD DESIGN?

```
> summary(i ml <- gl m(Responded~Sunny+Rai ny+AdVersi on+Sunny: AdVersi on+Rai ny: AdVersi on+as. fa ctor(Locati on), fami l y=bi nomi al ("l ogi t"), data=Mobi l eAd))
Call:
glm(formula = Responded ~ Sunny + Rainy + AdVersion + Sunny: AdVersion +
Rainy: AdVersion + as. factor(Location), family = binomial("logit"),
     data = MAData)
Devi ance Residuals:
                                   \begin{array}{c} 30 \\ 0.9299 \end{array}
                        Medi an
                                                   Max
- 1. 6085   - 0. 8837
                       - 0. 6475
                                               2.3990
Coefficients:
                             Estimate Std. Error z value Pr(>|z|) -1.10028 0.26109 -4.214 2.51e-05
(Intercept)
                                                          6. 163 7. 14e-10
Sunny
                              0.61253
                                             0.09939
Rai ny
                             -0.47510
                                             0. 13836 - 3. 434 0. 000595
                                             0. 10268 7. 436 1. 04e-13
AdVersi on
                              0.76349
                                                        -4.307 1.65e-05
Sunny: AdVersi on
                                             0. 13417
                             - 0. 57788
Rai ny: AdVersi on
                              0. 17569
                                             0. 15814 1. 111 0. 266584
as. factor(Location) 2
                                             0. 32826
                                                          3. 151 0. 001627 **
                               1. 03439
(omitted)
                                                                                       Sunny weather effect
as. factor(Location) 31
                                                                                           varies with ad
                              0. 66223
                                             0. 31728 2. 087 0. 036867 *
                                                                                         version, but rainy
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
                                                                                        weather effect does
(Dispersion parameter for binomial family taken to be 1)
                                                                                          not vary with ad
     Null deviance: 16355 on 11955 degrees of freedom
```

Number of Fisher Scoring iterations: 11

AIC: 14395

Residual deviance: 14323 on 11920 degrees of freedom

version

WEATHER IMPACT FOR AD WITHOUT PREVENTION

```
> summary(i ml <- gl m(Responded~Sunny+Rai ny+AdVersi on+Sunny: AdVersi on+Rai ny: AdVersi on+as. factor(Locati on), fami ly
=bi nomi al ("logit"), data=MobileAd))
Gam(formula = Responded ~ Sunny + Rainy + AdVersion + Sunny:AdVersion +
Rainy:AdVersion + as.factor(Location), family = binomial("logit"),
    data = MAData)
Deviance Residuals:
Min 1Q Median
-1.6085 -0.8837 -0.6475
                           3Q
0.9299
Coefficients:
                      (Intercept)
Sunny
                       0.61253
                                  0.09939
Rainý
                      -0.47510
                                  0.13836
AdVersion
                       0.76349
                                  0.10268
                                  0.13417
                                           -4.307 1.65e-05 ***
Sunny:AdVersion
                      -0.57788
Rainy:AdVersion
                       0.17569
                                  0.15814
                                            1.111 0.266584
                                                                    Sunny and rainy effect
                                            3.151 0.001627 **
as.factor(Location)2
                                  0.32826
                       1.03439
(omitted)
                                                                     compared to cloudy
as.factor(Location)31
                      0.66223
                                  0.31728
                                            2.087 0.036867 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 16355 on 11955 degrees of freedom
Residual deviance: 14323 on 11920 degrees of freedom
AIC: 14395
Number of Fisher Scoring iterations: 11
> linearHypothesis(iml, "Sunny=Rainy")
Linear hypothesis test
Hypothesis:
Sunny - Rainy = 0
Model 1: restricted model
Model 2: Responded ~ Sunny + Rainy + AdVersion + Sunny: AdVersion + Rainy: AdVersion +
    as. factor (Location)
                                                                      Sunny compared to
  Res. Df Df Chi sq Pr(>Chi sq)
1 11921
                                                                                 rainv
  11920 1 59. 821 1. 039e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

WEATHER IMPACT FOR AD WITH PREVENTION FRAMING

```
> linearHypothesis(iml, "Sunny+Sunny: AdVersion=0")
Linear hypothesis test
Hypothesis:
Sunny + SunnyxAdVersion = 0
Model 1: restricted model
Model 2: Responded ~ Sunny + Rainy + AdVersion + SunnyxAdVersion + RainyxAdVersion +
    as. factor(Location)
                                               Sunny effect is the same
  Res. Df Df Chi sq Pr(>Chi sq)
  11921
                                                         as cloudy
   11920 1 0.155
                      0.6938
> linearHypothesis(iml, "Rainy+Rainy: AdVersion=0")
Linear hypothesis test
Hypothesis:
Rai ny + Rai nyxAdVersi on = 0
Model 1: restricted model
Model 2: Responded ~ Sunny + Rainy + AdVersion + SunnyxAdVersion + RainyxAdVersion +
    as. factor(Location)
                                               Rainy effect is different
  Res. Df Df Chi sq Pr(>Chi sq)
1 11921
                                                       from cloudy
2 11920 1 12.424
                    0.000424
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> linearHypothesis(iml, "Sunny+Sunny: AdVersion=Rainy+Rainy: AdVersion")
Linear hypothesis test
Hypothesis:
Sunny - Rainy + Sunny: AdVersion - Rainy: AdVersion = 0
Model 1: restricted model
Model 2: Responded ~ Sunny + Rainy + AdVersion + Sunny: AdVersion + Rainy: AdVersion +
    as. factor(Location)
                                               Sunny effect is different
  Res. Df Df Chi sq Pr(>Chi sq)
1 11921
                                                         from rainy
2 11920 1 8.6555
                    0.003261 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


II. POISSON AND NEGATIVE BINOMIAL REGRESSION

POISSON REGRESSION

- A statistical model to model count data (non-negative integers).
 - e.g., number of ad clicks, number of purchases, number of pageviews etc.
- It assumes that the outcome variable (Y) follows a Poisson distribution:

$$Pr(Y = y | \lambda) = \frac{e^{-\lambda} \lambda^{y}}{y!}$$
, where $y = 0,1,2,...$

- $-\lambda$ is the mean or the expected value of the poisson distribution
- $-\lambda$ is also variance of the poisson distribution
- The logarithm of the expected value of the outcome variable (Y) can be modeled as a linear function of explanatory variables (X):

$$Ln(E(Y|X)) = \alpha + \beta X$$

NEGATIVE BINOMIAL REGRESSION

- A generalization of poisson regression by relaxing the assumption that variance equals mean
 - Poisson distribution is restrictive in that it requires the variance to be similar to the mean.
 - This may not be true when overdispersion is present in the data.
- It assumes that the outcomes variable (Y) follows a negative binomial distribution:

$$\Pr(Y = y | m, \alpha) = \frac{\Gamma(\frac{1}{\alpha} + y)}{y!\Gamma(\frac{1}{\alpha})} \left(\frac{\frac{1}{\alpha}}{\frac{1}{\alpha} + m}\right)^{\frac{1}{\alpha}} \left(\frac{m}{\frac{1}{\alpha} + m}\right)^{y}, \text{ where } y = 0, 1, 2, \dots$$

- -m is the mean or the expected value of the negative binomial distribution
- α is the over dispersion parameter. When $\alpha = 0$, the negative binomial distribution is the same as the poisson distribution
- Γ is the gamma function: $\Gamma(n) = (n-1)!$
- Again, the logarithm of the expected value of the outcome variable (Y) can be modeled as a linear function of explanatory variables (X):

$$Ln(E(Y|X)) = \alpha + \beta X$$

INTERPRETATION OF THE COEFFICIENTS

• The coefficient (β) measures the change in log of expected count (Y) upon one unit increase in the explanatory variable (X):

$$\ln(E(Y|X)) - \ln(E(Y_0|X_0)) = \beta(X - X_0)$$

• We can also take exponent of the coefficient to get the percent change in the expected count upon one unit increase in X.

$$\frac{E(Y|X)}{E(Y_0|X_0)} = e^{\beta(X-X_0)}$$

THE WEATHER IMPACT EXAMPLE — AGGREGATE DATA

- Does weather (rainy, sunny or cloudy) have any impact on people's propensity to click an ad?
- Data (MobileAdAggregate.xlsx)
 - $Sunny = \begin{cases} 1 & \text{if weather is sunny} \\ 0 & \text{otherwise} \end{cases}$
 - $Rainy = \begin{cases} 1 & \text{if weather is rainy} \\ 0 & \text{otherwise} \end{cases}$
 - $\text{AdVersion} = \begin{cases} 1 & \text{if ad has prevention framing "Do not miss the} \\ 0 & \text{opportunity to take advantage of this special deal! "} \\ 0 & \text{otherwise} \end{cases}$
 - Location: id of the location
 - Purchases: the number of purchases
- Poisson or Negative Binomial?
 - Depends on the nature of the data
 - In the presence of overdispersion, negative binomial would be more appropriate.

DOES WEATHER HAVE AN IMPACT?

```
> summary(nml <-gl m(Purchases~Sunny+Rai ny+AdVersi on+as. factor(Locati on), family=negative. b i nomi al (1), data=Mobi leAdAggregate, control=gl m. control (maxi t=500)))
Call:
glm(formula = Purchases ~ Sunny + Rainy + AdVersion + as.factor(Location),
    family = negative.binomial(1), data = MAData2, control = glm.control(maxit = 500))
Devi ance Residuals:
Min 10 Median 30 - 3. 1712 - 1. 9504 - 1. 2295 - 0. 6605
                                                         Max
                                                     4.0109
Coeffi ci ents:
                                Estimate Stu. 11101
8. 207e-01 8. 825e-01 0. 930 0. 35512
1 0082 01 3. 681e-01 0. 298 0. 76612
(Intercept) 8. 207e-01 8. 825e-01
Sunny 1. 096e-01 3. 681e-01
Sunny
(omitted)
as. factor(Location) 31 1. 348e+00 1. 333e+00 1. 011 0. 31278
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for Negative Binomial(1) family taken to be 4.985853)
Null deviance: 1920.8 on 339 degrees of freedom Residual deviance: 1060.7 on 306 degrees of freedom (1 observation deleted due to missingness) AIC: 1760.5
Number of Fisher Scoring iterations: 18
```

DOES WEATHER HAVE AN IMPACT?

```
> summary(nml <-gl m(Purchases~Sunny+Rai ny+AdVersi on+as. factor(Locati on), family=negative. b i nomi al (1), data=Mobi leAdAggregate, control=gl m. control (maxi t=500)))
Call:
glm(formula = Purchases ~ Sunny + Rainy + AdVersion + as.factor(Location),
    family = negative.binomial(1), data = MAData2, control = glm.control(maxit = 500))
Devi ance Residuals:
Mi n 10 Medi an 30 - 3. 1712 - 1. 9504 - 1. 2295 - 0. 6605
                                                       Max
                                                   4.0109
Coeffi ci ents:
                                 Estimate Std. Error t value Pr(>|t|)
                               8. 207e-01 8. 825e-01 0. 930 0. 35312
(Intercept)
                               1. 096e-01 3. 681e-01
                                                               0. 298 0. 76612
Sunny
                              -1. 100e+00 3. 906e-01 -2. 816 0. 00518
Rai ny
                               1. 867e+00 3. 507e-01 5. 325 1. 96e-07
AdVersi on
as. factor(Location) 2 1. 245e+00 1. 303e+00
                                                               0. 955 0. 34032
(omitted)
as. factor(Location) 31 1. 348e+00 1. 333e+00 1. 011 0. 31278
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for Negative Binomial(1) family taken to be 4.985853)
Null deviance: 1920.8 on 339 degrees of freedom Residual deviance: 1060.7 on 306 degrees of freedom (1 observation deleted due to missingness) AIC: 1760.5
Number of Fisher Scoring iterations: 18
```

DOES WEATHER IMPACT VARY WITH AD DESIGN?

```
> nml 2<- gl m(Purchases~Sunny+Rai ny+AdVersi on+SunnyxAdVersi on+Rai nyxAdVersi on+as. factor(Lo cati on), fami l y=negati ve. bi nomi al (1), data=MAData2, control = gl m. control (maxi t=500))
> summary(nml 2)
Call:
glm(formula = Purchases ~ Sunny + Rainy + AdVersion + SunnyxAdVersion + RainyxAdVersion + as.factor(Location), family = negative.binomial(1), data = MAData2, control = glm.control(maxit = 500))
Devi ance Residuals:
Min 10 Median 30 Max - 3. 2522 - 1. 8230 - 1. 2427 - 0. 5357 4. 3238
Coeffi ci ents:
Estimate Std. Error t value Pr(>|t|)
(omitted)
as. factor(Location) 31 1. 315e+00 1. 409e+00 0. 933 0. 351458
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for Negative Binomial (1) family taken to be 5.180961)
Null deviance: 1920.8 on 339 degrees of freedom
Residual deviance: 1039.7 on 304 degrees of freedom
(1 observation deleted due to missingness)
AI C: 1743.5
Number of Fisher Scoring iterations: 18
```

WEATHER IMPACT FOR AD WITHOUT PREVENTION FRAMING

```
> nml 2<- gl m(Purchases~Sunny+Rai ny+AdVersi on+SunnyxAdVersi on+Rai nyxAdVersi on+as. factor(Lo cati on), fami l y=negati ve. bi nomi al (1), data=MAData2, control = gl m. control (maxi t=500))
> summary(nml 2)
Call:
glm(formula = Purchases ~ Sunny + Rainy + AdVersion + SunnyxAdVersion + RainyxAdVersion + as.factor(Location), family = negative.binomial(1), data = MAData2, control = glm.control(maxit = 500))
Devi ance Residuals:
Min 10 Median 30 Max - 3. 2522 - 1. 8230 - 1. 2427 - 0. 5357 4. 3238
Coeffi ci ents:
                                   Estimate Std. Error t value Pr(>|t|)
                        7. 581e-01 9. 192e-01 0. 825 0. 410107
2. 968e-01 4. 126e-01 0. 719 0. 472505
-1. 712e+00 5. 040e-01 -3. 397 0. 000772 ***
2. 920 0. 003765 **
(Intercept)
Sunny
Rai ny
AdVersi on
as. factor(Location) 2 1. 321e+00 1. 341e+00
                                                                   0.986 \ 0.325136
(omitted)
as. factor(Location) 31 1. 315e+00 1. 409e+00 0. 933 0. 351458
                       0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
(Dispersion parameter for Negative Binomial(1) family taken to be 5.180961)
Null deviance: 1920.8 on 339 degrees of freedom Residual deviance: 1039.7 on 304 degrees of freedom (1 observation deleted due to missingness)
AI C: 1743. 5
Number of Fisher Scoring iterations: 18
```

WEATHER IMPACT FOR AD WITH PREVENTION FRAMING

```
> linearHypothesis(nml 2, "Sunny+Sunny: AdVersi on=0")
Linear hypothesis test
Hypothesis:
Sunny + SunnyxAdVersi on = 0
Model 1: restricted model
Model 2: Purchases ~ Sunny + Rainy + AdVersion + SunnyxAdVersion + RainyxAdVersion + as. factor(Location)
  Res. Df Df Chi sq Pr(>Chi sq)
     305
     304 1 0, 6469
                         0.4212
> linearHypothesis(nml 2, "Rai ny+Rai ny: AdVersi on=0")
Linear hypothesis test
Hypothesis:
Rainy + RainyxAdVersion = 0
Model 1: restricted model
Model 2: Purchases ~ Sunny + Rainy + AdVersion + SunnyxAdVersion + RainyxAdVersion + as. factor(Location)
  Res. Df Df Chi sq Pr(>Chi sq)
     304 1 0.0918
                         0.7619
```


III. PROPENSITY SCORE MATCHING

PROPENSITY SCORE MATCHING (PSM)

- Quasi-experiment does not have random assignment between control and treatment groups. As a result, subjects in these two groups are not comparable. What can we do?
- **Idea**: match subjects in control group to those in treatment group with the same (or similar) observable characteristics
 - Find a matched control subject as the counterfactual for the treated subject
- Challenge: as the number of characteristics determining selection increases, it becomes more and more difficult to find comparable subjects
- Solution: match subjects on a single index (propensity score), reflecting the probability of a subject selecting into the treatment group

PROPENSITY SCORE MATCHING (PSM)

Method

- Estimate propensity score (PS) for each subject, which is calculated as the probability of participating in the treatment, conditional on the characteristics *X*

$$PS = Pr\{\text{Treatment}_i = 1 | X_i\} = G(\gamma_0 + \gamma_1 X_i) = \frac{e^{\gamma_0 + \gamma_1 X_i}}{1 + e^{\gamma_0 + \gamma_1 X_i}}$$

$$\widehat{PS}_i = \widehat{Pr}\{\text{Treatment}_i = 1 | X_i\}$$

- Match participants (in treatment group) and non-participants (in control group) with equal/similar propensity score
- Compare outcomes of participants (in treatment group) and matched non-participants (in control group)

Assumptions

- There are no systematic differences between participants and non-participants in terms of unobserved characteristics that may influence participation
- All the variables that affect participation decision and outcome simultaneously are observed
- Matching is feasible, and similar propensity scores are based on similar observed X

PSM EXAMPLE

- Question of interest
 - On a website, some products were featured on the front page, whereas others were not
 - Does "being featured on the front page" increase product sales?
- Data (Feature.xlsx)
 - Product ID: ID of the product
 - Age: how long the product has been offered on the website (in months)
 - Price: price of the product
 - $Feature = \begin{cases} 1 & \text{if product was featured on the front page} \\ 0 & \text{otherwise} \end{cases}$
 - Sales: average daily sales of a product
- How to set up the model?

PSM EXAMPLE

- Treatment: being featured on the front page
- Treatment group: products that were featured on the front page
- Control group: products that were not featured on the front page
- To examine whether "being featured" increases sales:

AvgReview_i =
$$\beta_0 + \beta_1$$
Feature_i + β_2 Age_i + β_3 Price_i

- But products in the treatment group and products in the control group may not be comparable
- Estimate the propensity score (PS) of each product getting featured (i.e., participating in the treatment):

$$PS = Pr\{\text{Feature}_i = 1 | X_i\} = \frac{e^{(\gamma_0 + \gamma_1 \text{Age}_i + \gamma_2 \text{Price}_i)}}{1 + e^{(\gamma_0 + \gamma_1 \text{Age}_i + \gamma_2 \text{Price}_i)}}$$

 Then, based on propensity score, match products from the treatment group and products with control group

MATCH TREATED AND CONTROL PRODUCTS

> summary(psm <- matchit(Feature~Age+Price, data=feature,method = "nearest", ratio=1, distance='logit', caliper=0.0001))

Call:

```
matchit(formula = Feature ~ Age + Price, data = feature, method = "nearest",
    distance = "logit", ratio = 1, caliper = 1e-04)
```

Summary of balance for all data:

.,	Means Treated	Means Control	SD Control	Mean Diff	eQQ Med	eQQ Mean	eQQ Max
di stance	0. 490	0. 4749	0. 0638	0. 0151	0. 0087	0. 0159	1. 038e-01
Age	7. 394	6. 8348	4. 8600	0. 5592	1. 0000	0. 5950	3. 000e+00
Pri ce	4395. 228	6815. 3523	13608. 3096	- 2420. 1247	381. 0000	3051. 9294	8. 200e+04
					7		

Summary of balance for matched data:

_	Means Treated	Means Control	SD Control	Mean Diff	eQQ Med	eQQ Mean	eQQ Max
distance	0. 4917	0. 4917	0. 0315	0.0000	0	0.0000	0
Age	6. 1727	6. 1727	4. 2968	0.0000	0	0. 1439	2
Pri ce	2320. 7122	2320. 7266	3630. 5647	- 0. 0144	0	64. 4317	1000

Percent Balance Improvement:

	Mean Diff.	eQQ	Med	eQQ	Mean	eQQ Max
distance	99. 9995		100	99.	9933	99. 9943
Age	100.0000		100	75.	8167	33. 3333
Pri ce	99. 9994		100	97.	8888	98. 7805

Sample sizes:

	Control	Treated				
Al l	684	637				
Matched	139	139				
Unmatched	545	498				
DI scarded	U	U				

FEATURE EFFECT REMAINS SIGNIFICANT ON MATCHED SAMPLE

```
lm(formula = Sales ~ Feature + Age + Price, data = feature)
Resi dual s:
            10 Medi an
   Mi n
                            30
                                   Max
-4.361 -2.501 -1.529 -0.016 100.287
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.793e+00 3.629e-01 7.695 2.75e-14 ***
          1. 709e+00 3. 596e-01 4. 752 2. 24e-06 ***
Feature
           -9.507e-02 3.661e-02 -2.596 0.00953 **
Age
           -5. 833e-05 1. 477e-05 -3. 949 8. 26e-05 ***
Pri ce
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.486 on 1317 degrees of freedom
Multiple R-squared: 0.03569, Adjusted R-squared: 0.03349
F-statistic: 16.25 on 3 and 1317 DF, p-value: 2.26e-10
```

Use original data

```
lm(formula = Sales ~ Feature + Age + Price, data = data psm)
Residuals:
         10 Median 30
  Min
-5. 379 -3. 015 -2. 019 0. 149 47. 825
Coeffi ci ents:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3. 7342920 0. 8724672 4. 280 2. 58e-05 ***
(Ince.
Feature
         Pri ce
         -0.0002432 0.0001160 -2.095 0.03706 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.949 on 274 degrees of freedom
Multiple R-squared: 0.05399, Adjusted R-squared: 0.04363
F-statistic: 5.213 on 3 and 274 DF, p-value: 0.001626
```

Use matched data

IV. CONDITIONAL LOGIT MODEL

MODEL CONSUMER CHOICE

- Consumers typically consider and compare multiple options in their choice set before making a choice, e.g.,
 - after browsing multiple humidifiers on Amazon.com, select one humidifier to buy
 - after considering multiple hotels on Expedia.com, make reservation with neither hotel, etc.
- Although the outcome variable for each option is still binary (yes/no), outcomes of different options in the same choice set are not independent.
- Therefore, the standard logit model does not capture this situation well.
- What should we do?

CONDITIONAL LOGIT MODEL

- Estimates how characteristics of different alternatives in a choice set affect a user's choice among these alternatives
 - The user still makes a binary decision (yes/no) for each alternative
 - At most one alternative can have the binary choice of "yes"
 - All the other alternatives have the binary choice of "no"
- The probability of individual *i* choosing alternative $j = \frac{e^{V_{ij}}}{\sum_{k \in J} e^{V_{ik}}}$,
 - where *J* represents the set of all alternatives (that can include the "choosing non of the alternatives" option as well), called the individual's choice set.
 - User's utility of selecting alternative *j*:

$$V_{ij} = a + b * charateristics of alternative j$$

• Use Maximum Likelihood estimation to find the coefficients (*a* and *b*) that maximize the chance of observing the data we observed.

CONDITIONAL LOGIT MODEL EXAMPLE

- Suppose we want to examine how coupon offering affects consumer's choice among different restaurants they viewed on a website
- We observe the restaurants each individual browsed on the website before choosing a restaurant to dine in
- Data (Coupon.xlsx)
 - $purchased = \begin{cases} 1 & \text{if the individual dined at the restaurant} \\ 0 & \text{otherwise} \end{cases}$
 - browse_id: id of the browsing session
 - $-coupon = \begin{cases} 1 & \text{if the restaurant offers coupon on the website} \\ 0 & \text{otherwise} \end{cases}$
 - review_val: review valence of the restaurant on the website
 - review_vol: review volume of the restaurant on the website (log transformed)
 - price_level: price level of the restaurant (log transformed)
 - coupon_prone: how frequent the individual used coupon in the past

```
summary(cml <- clogit(purchased ~ review_val + review_val + coupon + price_le
vel + coupon_prone: coupon + strata(browse_id), data=Coupon))
Call:
coxph(formula = Surv(rep(1, 7577L), purchased) ~ review_val +
   review_vol + coupon + price_level + coupon_prone: coupon +
   strata(browse id), data = Coupon, method = "exact")
 n= 7577, number of events= 1942
                     coef exp(coef) se(coef)
                                               z Pr(>|z|)
                           1. 48846 0. 26704 1. 489 0. 136369
                0. 39774
revi ew_val
                                  0. 05785 2. 394 0. 016650
revi ew_vol 0. 13851 1. 14856
                -0. 51634 0. 59670 0. 18492 -2. 792 0. 005234
coupon
pri ce_l evel
                 -0. 94406 0. 38905 0. 12458 -7. 578 3. 51e-14
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```