732A95/TDDE01 Introduction to Machine Learning Lecture 1a Block 2: Ensemble Methods

Jose M. Peña IDA, Linköping University, Sweden

Contents

- Bagging
- Random Forests
- Boosting
 - AdaBoost
 - Forward Stagewise Additive Modeling
 - Gradient Boosting
- Summary

Literature

- Main source
 - Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer, 2009. Sections 10.1-10.10 and 15.1-15.4.
- Additional source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
 Sections 14.1-14.4.

Bagging

- Boosting aggregation (bagging) is a technique to combine (weak) regressions and so produce a more accurate (committee) regression. It can also be applied to classification.
- Main steps:
 - Obtain B bootstrap samples of the original training data, i.e. draw B samples with replacement from the original data and of the same size as the original data.
 - From the regression algorithm on each bootstrap sample b to obtain the regression $f^b(x)$.
 - Return the average of the regressions obtained, that is

$$f_{bag}(x) = \frac{1}{B} \sum_{b} f^{b}(x)$$

- Bagging (generalized) linear regressions is not particularly useful: The bagged regression will converge to the one learned from the original data as B increases.
- ▶ Then, it makes more sense to use bagging with non-linear regressions.
- For classification, we can average the individual models by averaging their posterior class probabilities, or use majority voting.

Bagging

- Let h(x) denote the true regression. Then, $f^b(x) = h(x) + \epsilon^b(x)$.
- The error of $f^b(x)$ can be expressed as

$$E_X[(f^b(x) - h(x))^2] = E_X[\epsilon^b(x)^2]$$

▶ The error of $f_{bag}(x)$ can be expressed as

$$E_X[(\frac{1}{B}\sum_b f^b(x) - h(x))^2] = E_X[(\frac{1}{B}\sum_b \epsilon^b(x))^2]$$

• **Assume** that the error terms $\epsilon^b(x)$ have zero mean and are uncorrelated, i.e. $E_X[\epsilon^b(x)] = 0$ and $E_X[\epsilon^b(x)\epsilon^{b'}(x)] = 0$. Then,

$$E_X[(\frac{1}{B}\sum_{b}f^{b}(x)-h(x))^{2}]=\frac{1}{B}[\frac{1}{B}\sum_{b}E_X[\epsilon^{b}(x)^{2}]]$$

which implies that bagging reduces the average error of the individual regressions by a factor of B.

- In practice, the reduction in error is less dramatic as the individual errors are highly correlated.
- At least, the bagged error is never larger than the average individual errors:

$$\frac{1}{B}\sum_{b}E_{X}[\epsilon^{b}(x)^{2}]=E_{X}[\sum_{b}\frac{1}{B}\epsilon^{b}(x)^{2}]\geq E_{X}[(\frac{1}{B}\sum_{b}\epsilon^{b}(x))^{2}]$$

by Jensen's inequality, i.e. $\sum_i \lambda_i g(a_i) \ge g(\sum_i \lambda_i a_i)$.

Bagging

FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The orange points correspond to the consensus vote, while the green points average the probabilities.

- Bagging reduces the variance (a.k.a. unstability) of the original algorithm (the more uncorrelated the individual errors, the larger the reduction).
- The reason is that the variance of the average of B identically distributed variables with positive pairwise correlation ρ is

$$\rho\sigma^2 + \frac{1-\rho}{R}\sigma^2$$

▶ This is why bagging is used with decision trees, which have high variance.

Random Forests

- Recall from previous lectures that a decision tree partitions the input space into regions. Each region has associated a predictor.
- ▶ Then, decision trees can be seen as a form of committee predictor.

- The model in each region is typically a constant, specifically
 - * the result of majority voting for classification, since the best classifier under the 0-1 loss function is $\arg\max_{y} p(y|x)$, and
 - the average for regression, since the best regression function under the squared error loss function is E_{Y|x}[y].
- Decision trees have many advantages (popular, fast, interpretable, etc.)
 and two major disadvantages: Low accuracy and high variance.
- These disadvantages make them good candidates for bagging, at the expense of compromising some of their advantages.

Random Forests

▶ Random forest = bagging + decision trees + decorrelation.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbb{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_B^r(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

Note that step 1ai aims to decorrelate the individual decision trees.

Random Forests

FIGURE 15.3. Random forests compared to gradient boosting on the California housing data. The curves represent mean absolute error on the test data as a function of the number of trees in the models. Two random forests are shown, with m=2 and m=6. The two gradient boosted models use a shrinkage parameter $\nu=0.05$ in (10.41), and have interaction depths of 4 and 6. The boosted models outperform random forests.

Boosting

- Boosting is a technique to combine (weak) classifiers and so produce a more accurate (committee) classifier. It can also be applied to regression.
- Main steps:
 - Run the original classification algorithm on the original/modified training data.
 - Modify the training data by giving
 - more weight to the erroneously classified points, and
 - less weight to the correctly classified points.
 - Iterate through the previous steps a number of times.
 - Return a weighted average of the classifiers obtained.

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 244-node classification tree.

Forward Stagewise Additive Modeling

 Boosting can be seen as fitting an additive expansion of a set of basis functions. That is, the boosted classifier

$$G(x) = \sum_{m} \alpha_{m} G_{m}(x)$$

can be rewritten as

$$f(x) = \sum_{m} \beta_{m} b(x; \gamma_{m})$$

and the aim of boosting can be rephrased as minimizing a loss function over the training data $\{x_i, y_i\}$, that is

$$\min_{\{\beta_m,\gamma_m\}} \sum_i L(y_i, \sum_m \beta_m b(x_i; \gamma_m))$$

 The problem above is challenging for most loss functions and basis functions. Heuristic solution: Add the basis functions one at a time.

Forward Stagewise Additive Modeling

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

 It can be shown that Adaboost is equivalent to forward stagewise additive modeling with exponential loss function, that is

$$L(y, f(x)) = \exp(-yf(x))$$

In each step of forward stagewise additive modeling, we have to solve

$$(\beta_{m}, \gamma_{m}) = \underset{\beta, \gamma}{\arg \min} \sum_{i} \exp[-y_{i}(f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma))]$$
$$= \underset{\beta, \gamma}{\arg \min} \sum_{i} w_{i}^{(m)} \exp(-y_{i}\beta b(x_{i}; \gamma))$$

where $w_i^{(m)} = exp(-y_i f_{m-1}(x_i))$ are the instance weights in AdaBoost.

Note that

$$\sum_{i} w_{i}^{(m)} \exp(-y_{i}\beta b(x_{i};\gamma)) = \exp(-\beta) \sum_{y_{i} = b(x_{i};\gamma)} w_{i}^{(m)} + \exp(\beta) \sum_{y_{i} \neq b(x_{i};\gamma)} w_{i}^{(m)}$$

and, thus, for any given $\beta > 0$

$$\gamma_m = \underset{\gamma}{\operatorname{arg\,min}} \sum_i w_i^{(m)} I(y_i \neq b(x_i; \gamma))$$

which is what step 2a of AdaBoost does.

- Now, solving for β results in $\beta = (1/2) \log((1 err_m)/err_m)$.
- Finally, take $\alpha_m = 2\beta$ and note that

$$w_i^{(m+1)} = \exp(-y_i[f_{m-1}(x_i) + \beta b(x_i; \gamma)]) = w_i^m \exp(\alpha_m I(y_i \neq b(x_i; \gamma))) \exp(-\beta)$$

where $exp(-\beta)$ has no effect as it multiplies all weights. This is steps 2b-d.

 It can be shown that the population minimizer of the exponential loss function is

$$\arg \min_{f(x)} E_{Y|x} [exp(-yf(x))] = \frac{1}{2} \log \frac{p(Y=1|x)}{p(Y=-1|x)}$$

- Since Adaboost's output is an approximation to the population minimizer, it makes sense to use the sign as the classification rule in step 3.
- Note that the exponential loss is an upper bound on the 0-1 loss.

Moreover, the exponential loss for a misclassified point increases exponentially with its margin yf(x). This may make the performance of Adaboost to degrade in settings with wrongly labeled points: Adaboost may try to classify them correctly at the expense of other misclassified points that are correctly labeled.

Gradient Boosting

- For some loss functions and/or basis functions, forward stagewise additive modeling can be cumbersome. In those cases, gradient boosting may be the solution.
- Recall that $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$

 Recall that the gradient is a vector whose components are the partial derivatives.

Gradient Boosting

Gradient Boosting

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_i L(y_i, b(x_i; \gamma))$
- 2. For m = 1 to M:
 - (a) Compute the gradient residual $r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = f_{m-1}(x)}$
 - (b) $\gamma_m = \arg\min_{\gamma} \sum_i (r_{im} b(x_i; \gamma))^2$
 - (c) $\beta_m = \arg\min_{\beta} \sum_i L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma_m))$
 - (d) $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$
 - Note that step 2b aims for the basis function that is most parallel to the gradient.
 - ► Step 2a is easy in some cases, e.g. if $L(y, f(x)) = \frac{1}{2}(y f(x))^2$ then

$$\frac{\partial L(y, f(x))}{\partial f(x)} = y - f(x)$$

Summary

- Bagging: Combines weak predictors to reduce error and variance.
- ► Random forest = bagging + decision trees + decorrelation.
- AdaBoost: Combination of weak predictors under exponential loss.
- Gradient boosting: Extension to arbitrary loss functions.
- How many individual models in bagging, boosting and random forest ? (Nested) cross-validation.