Precision-based sampling with missing observations

Philipp Hauber^{1,2}

 1 JMU Würzburg 2 Kiel Institute for the World Economy (IfW)

Kiel Institute Research Seminar March 22nd, 2022

This presentation

Mash-up of two papers in my dissertation!

Method:

Hauber, P and C. Schumacher (2021). *Precision-based sampling with missing observations: A factor model application*, **Bundesbank Discussion Paper 11/2021**.

Application:

Hauber, P. (2021) How useful is external information from professional forecasters? Conditional forecasts in large factor models

Motivation

Essential task in the Bayesian estimation of state space models: drawing from $p(\eta|\mathbf{y},\Theta)$ where η is an unobserved component, \mathbf{y} is data and Θ parameters

Precision-based samplers (Chan and Jeliazkov 2009, IJMMNO; McCausland 2012, JEcmtrics) exploit the fact the precision matrix of η is banded in many macroeconomic application \rightarrow alternative to simulation smoothers that rely on the Kalman filter

Applications in macroeconomics (with complete data) include models of trend inflation (Chan et al. 2013, JBES), time-varying Bayesian vector autoregressions (Chan 2020, JBES) and factor models (Kaufmann and Schumacher 2017, JAE)

Missing observations arise frequently in macroeconomic applications/datasets: different starting dates, different release patterns ("ragged edge"), outliers or mixed frequencies

In our paper, we propose a precision-sampler that can handle (most of these) applications!

Precision-based sampling

Simple example

AR(2) process:
$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + u_t$$
; $u_t \sim \mathcal{N}(0, \sigma^2)$

Stacking the observations over t = 1, ..., T yields

$$\mathbf{H}\boldsymbol{\eta} = \mathbf{u}, \text{ where } \mathbf{u} \sim \mathcal{N}(0, \mathbf{I}_T \sigma^2) \text{ and } \mathbf{H} = \begin{bmatrix} 1 \\ -\phi_1 & 1 \\ -\phi_2 & -\phi_1 & 1 \\ & -\phi_2 & -\phi_1 & 1 \\ & & \ddots & \ddots & \ddots \\ & & & -\phi_2 & -\phi_1 & 1 \end{bmatrix}$$

$$\eta$$
 is Normal with mean $\mathbf{0}_T$ and covariance matrix $\Sigma = \mathbf{H}^{-1} \mathbf{I}_T \sigma^2 \mathbf{H}^{-1}$ corresponding *precision matrix* is given by $\mathbf{Q} = \Sigma^{-1} = \mathbf{H}^\mathsf{T} \mathbf{I}_T \sigma^{-2} \mathbf{H}$

Precision-based sampling with missing observations

Covariance and precision matrix of η

Properties of the multivariate Normal distribution:

- $\Sigma_{ij} = 0 \Longrightarrow \text{independence of } \eta_i \text{ and } \eta_j$
- $lackbox{ } lackbox{ } lac$

Notes: The blue dots indicate the non-zero entries in the covariance matrix Σ and precision matrix \mathbf{Q} of an AR(2) process for T=20 observations. The former is a dense matrix while the latter is sparse and banded with lower and upper bandwidth equal to 2.

Precision-based sampling

Computational advantages of banded precision matrices

Solving linear systems of the form Ux = b where U is an $n \times n$ upper-triangular matrix takes n^2 flops (left); when U has bandwidth p the solution can be obtained in 2np flops (right):

```
% solution to Ux=b
% solution to Ux=b
% U has maximal bandwidth
                                            % U has bandwidth p
for i = n:-1:1
                                            for i = n:-1:1
    \times(i) = b(i)/U(i,i)
                                                x(i) = b(i)/U(i,i)
    for i = 1:i-1
                                                for i = \max\{1, i-p\}: i-1
         b(i) = b(i) - U(i,i) \times (i)
                                                     b(i) = b(i) - U(i,i) \times (i)
    end
                                                 end
end
                                            end
```

Even larger gains for matrix factorisations, e.g. Cholesky ($Q = L^T L$) \Longrightarrow linear instead of cubic costs!

L "inherits" the bandwidth of Q (Golub and Van Loan 2013, Theorem X)

Precision-based sampling

Drawing from $p(\eta|\mathbf{y},\Theta)$

Precision-based sampling with missing observations

Drawing from $p(\eta, y^m | y^o, \Theta)$

References I

- Chan, Joshua C. C., "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, 2020, 38 (1), 68–79.
- ___, Gary Koop, and Simon M. Potter, "A New Model of Trend Inflation," Journal of Business & Economic Statistics, 2013, 31 (1), 94–106.
- Chan, Joshua CC and Ivan Jeliazkov, "Efficient simulation and integrated likelihood estimation in state space models," International Journal of Mathematical Modelling and Numerical Optimisation, 2009, 1 (1-2), 101–120.
- Golub, Gene H. and Charles F. Van Loan, Matrix Computations Johns Hopkins Studies in the Mathematical Sciences, 4th ed., Johns Hopkins University Press, 2013.
- Kaufmann, Sylvia and Christian Schumacher, "Identifying relevant and irrelevant variables in sparse factor models," *Journal of Applied Econometrics*, 2017, 32 (6), 1123–1144.
- McCausland, William J., "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," *Journal of Econometrics*, 2012, *168* (2), 189–206.