

Lecture 13b – Groundwater flow

Learning Outcomes

- Be able to describe and explain the differences between aquitards, unconfined aquifers, confined aquifers, and advantages/disadvantages of wells dug into either
- Be able to explain how and why groundwater moves and draw flowlines on a cross-section of a drainage basin
- Be able to describe and explain what occurs when the water table intersects with the ground surface and what geologic arrangements might lead to springs occurring
- Be able to draw/describe/explain/carry out simple calculations related to the freshwater/saltwater interface near the ocean

Groundwater Flow

Which direction would water flow between the two lower points?

- a) Left to right
- b) Right to left

Groundwater Flow

- Hydraulic head, potential energy driving flow, is due to...
 - Elevation above sea level
 - Pressure exerted by weight of overlying water

(Given that pores are now completely saturated we can ignore tension – yay! Pressure is only positive.)

Review: Darcy's Law

Darcy's Law

$$Q = -KA \frac{\Delta h}{L}$$

Q = discharge/flowrate (volume/time)

K = hydraulic conductivity (length/time)

Δh = energy head/hydraulic head

L = flowpath length

A = cross-section area

$$q = Q = -K \Delta h$$
A
L
 $q = specific discharge$

Saturated Hydraulic Conductivity (K_{sat})

- Function of:
- 1. Fluid properties
 - a) Viscosity
 - b) Density
- 2. Structure of pore space
 - a) Roughness of grains
 - b) Tortuosity of flowpaths
- 3. Configuration of fluid in the pore space
 - a) Saturation

Note: Permeability is a property of the material itself so is part of hydraulic conductivity.

Saturated hydraulic conductivity (K_{sat})

To make our life easier we usually assume that K_{sat} is homogeneous and isotropic but that it often not true at all!!

Groundwater Flow

 Groundwater flows from areas of greater head (recharge areas) to areas to less head (discharge areas).

Recharge areas = groundwater flows away from water table
Discharge areas = groundwater flows towards the water table
Hinge line = line separating recharge and discharge areas

Groundwater Flowlines

Water Table Topography

- Subdued replica of the surface topography
- Where is groundwater divide?
- What are we assuming here? When might the flows be different?

Water Table Topography

