## **Lecture : Inference in Graphical Models**

#### Riashat Islam

Reasoning and Learning Lab McGill University

11th October 2017

#### **Exact Inference**

Variable Elimination and Belief Propagation

#### Inference

Inference corresponds to using the distribution to answers questions about the environment.

#### examples

- What is the probability p(x=4|y=1,z=2)?
- What is the most likely joint state of the distribution p(x, y)?
- What is the entropy of the distribution p(x, y, z)?
- What is the probability that this example is in class 1?
- What is the probability the stock market will do down tomorrow?

#### Computational Efficiency

- Inference can be computationally very expensive and we wish to characterise situations in which inferences can be computed efficiently.
- For singly-connected graphical models, and certain inference questions, there
  exist efficient algorithms based on the concept of message passing.
- In general, the case of multiply-connected models is computationally inefficient.



 $p(a,b,c,d) \propto f_1\left(a,b\right) f_2\left(b,c\right) f_3\left(c,d\right) f_4\left(d\right) \quad a,b,c,d \text{ binary variables}$ 



$$p(a) = \sum_{b,c,d} p(a,b,c,d)$$

$$\propto \sum_{b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d) \Rightarrow 2^3 \text{ sums}$$

 $p(a,b,c,d) \propto f_1\left(a,b\right) f_2\left(b,c\right) f_3\left(c,d\right) f_4\left(d\right) \quad a,b,c,d \text{ binary variables}$ 



$$\begin{split} p(a) &= \sum_{b,c,d} p(a,b,c,d) \\ &\propto \sum_{b,c,d} f_1\left(a,b\right) f_2\left(b,c\right) f_3\left(c,d\right) f_4\left(d\right) \Rightarrow 2^3 \text{ sums} \\ &= \sum_b f_1\left(a,b\right) \sum_c f_2\left(b,c\right) \sum_d f_3\left(c,d\right) f_4\left(d\right) \Rightarrow 2 \times 3 \text{ sums} \end{split}$$

 $p(a,b,c,d) \propto f_1\left(a,b\right) f_2\left(b,c\right) f_3\left(c,d\right) f_4\left(d\right) \quad a,b,c,d \text{ binary variables}$ 



$$p(a) = \sum_{b,c,d} p(a,b,c,d)$$

$$\propto \sum_{b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$= \sum_{b} f_1(a,b) \sum_{c} f_2(b,c) \sum_{d} f_3(c,d) f_4(d)$$

$$= \sum_{b} f_1(a,b) \sum_{c} f_2(b,c) \sum_{d} f_3(c,d) f_4(d)$$

 $p(a,b,c,d) \propto f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$  a,b,c,d binary variables



Passing variable-to-variable messages from d up to a

$$p(a) = \sum_{b,c,d} p(a,b,c,d)$$

$$\propto \sum_{b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$= \sum_{b} f_1(a,b) \sum_{c} f_2(b,c) \sum_{d} f_3(c,d) f_4(d)$$

$$\mu_{d \to c}(c)$$

$$\mu_{c \to b}(b)$$

For p(c) need to send messages in both directions



$$p(c) \propto \sum_{a,b,d} f_{1}(a,b) f_{2}(b,c) f_{3}(c,d) f_{4}(d)$$

$$= \sum_{b} \sum_{\substack{a \\ \mu_{a \to b}(b) \\ \mu_{b \to c}(c)}} f_{1}(a,b) f_{2}(b,c) \underbrace{\sum_{\substack{d \\ \mu_{d \to c}(c)}}} f_{3}(c,d) f_{4}(d)$$

$$p(a,b,c,d,e) \propto f_1\left(a,b\right) f_2\left(b,c,d\right) f_3\left(c\right) f_4\left(d,e\right) f_5\left(d\right)$$

Need to define factor-to-variable messages and variable-to-factor messages

$$p(a) \propto f_{1}(a,b) \sum_{c,d} f_{2}(b,c,d) \underbrace{f_{3}(c)}_{\mu_{c \to f_{2}}(c) = \mu_{f_{3} \to c}(c)} \underbrace{f_{5}(d)}_{\mu_{f_{5} \to d}(d)} \underbrace{\sum_{e} f_{4}(d,e)}_{\mu_{f_{4} \to d}(d)} \underbrace{\underbrace{\int_{\mu_{f_{4} \to d}(d)} \int_{\mu_{f_{4} \to d}(d)} \int_{\mu_{d \to f_{2}}(d)} \int_{\mu_{d \to f_{2}}(d)} \int_{\mu_{d \to f_{2}}(d)} \int_{\mu_{f_{1} \to d}(a)} \int_{\mu_{f_{1} \to d}(a)} \int_{\mu_{f_{1} \to d}(a)} \int_{\mu_{f_{1} \to d}(a)} \int_{\mu_{f_{2} \to d}(a)} \int_{\mu_{f_{2}$$

Marginal inference for a singly-connected structure is easy.

## **Sum-Product Algorithm for Factor Graphs**

#### Variable to factor message

$$\mu_{v \to f}\left(v\right) = \prod_{f_i \sim v \setminus f} \mu_{f_i \to v}\left(v\right)$$

Messages from extremal variables are set to 1



#### Factor to variable message

$$\begin{array}{l} \mu_{f\rightarrow v}\left(v\right) = \sum_{\{v_i\}} f(v,\{v_i\}) \prod_{v_i\sim f\setminus v} \mu_{v_i\rightarrow f}\left(v_i\right)_{v} \\ \text{Messages from extremal factors are set to the factor} \end{array}$$



#### Marginal

$$p(v) \propto \prod_{f_i \sim v} \mu_{f_i \to v} (v)$$

#### **Max Product Algorithm**

 $p(a,b,c,d) \propto f_1\left(a,b\right) f_2\left(b,c\right) f_3\left(c,d\right) f_4\left(d\right)$  a,b,c,d binary variables



$$\max_{a,b,c,d} p(a,b,c,d) = \max_{a,b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$= \max_{a} \max_{b} f_1(a,b) \max_{c} f_2(b,c) \underbrace{\max_{d} f_3(c,d) f_4(d)}_{\mu_{d \to c}(c)}$$

$$\underbrace{\mu_{c \to b}(b)}_{\mu_{b \to a}(a)}$$

# Max Product Algorithm

#### Variable to factor message

$$\mu_{v \to f}(v) = \prod_{f_i \sim v \setminus f} \mu_{f_i \to v}(v)$$



#### Factor to variable message

Factor to variable message 
$$\mu_{f \rightarrow v}\left(v\right) = \max_{\left\{v_{i}\right\}} f(v,\left\{v_{i}\right\}) \prod_{v_{i} \sim f \setminus v} \mu_{v_{i} \rightarrow f}\left(v_{i}\right) \underbrace{\mu_{f \rightarrow v}\left(v\right)}_{\mu_{f \rightarrow v}\left(v\right)} \underbrace{\mu_{v_{2} \rightarrow f}\left(v_{2}\right)}_{\mu_{v_{2} \rightarrow f}\left(v_{2}\right)} \underbrace{v_{1}}_{\nu_{2} \rightarrow f}\left(v_{2}\right) \underbrace{v_{2} \rightarrow f\left(v_{2}\right)}_{\nu_{2} \rightarrow f}\left(v_{2}\right) \underbrace{v_{2} \rightarrow f}\left(v_{2}\right)$$

#### Marginal

$$v^* = \operatorname*{argmax}_{v} \prod_{f_i \sim v} \mu_{f_i \rightarrow v} \left( v \right)$$



## **Message Passing**

- Also known as belief propagation or dynamic programming
- ▶ Note that for non-branching graphs (they look like lines), only variable to variable messages are required.
- For message passing to work we need to be able to distribute the operator over the factors (which means that the operator algebra is a semiring) and that the graph is singly-connected.
- ▶ Provided the above conditions hold, marginal inference scales linearly with the number of nodes in the graph.

# **Approximate Inference**Sampling Methods

#### Inference for Graphical Models

#### Before we looked into Exact Inference:

Can be slow in many cases!

Approximate Inference : Sampling Methods represent desired distribution with a set of samples  $\rightarrow$  as more samples are used, obtain more accurate representation

#### Sampling

Fundamental problem we address:

- ▶ How to obtain samples from a probability distribution p(z)
- ▶ This could be a conditional distribtion  $p(\mathbf{z}|\mathbf{e})$

We wish to evaluate expectations such as

$$\mathbb{E}[f] = \int f(z)p(z)dz \tag{1}$$

• e.g mean when f(z) = z

For complicated p(z), this is difficult to do exactly, so approximate as

$$\hat{f} = \frac{1}{Z} \sum_{l=1}^{L} f(z^{(l)}) \tag{2}$$

where  $\{z^{(l)}|l=1,...L\}$  are independent samples from  $p(\mathbf{z})$ 



# **Sampling**



Approximate

$$\hat{f} = rac{1}{L} \sum_{l=1}^{L} f(oldsymbol{z}^{(l)})$$

where  $\{oldsymbol{z}^{(l)}|l=1,\ldots,L\}$  are independent samples from  $p(oldsymbol{z})$ 



## Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:

$$\int f(x)P(x) dx \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

**Example: making predictions** 

$$\begin{split} p(x|\mathcal{D}) \; &= \; \int \! P(x|\theta,\mathcal{D}) P(\theta|\mathcal{D}) \; \mathrm{d}\theta \\ \\ &\approx \; \frac{1}{S} \! \sum_{s=1}^S \! P(x|\theta^{(s)},\mathcal{D}), \; \; \theta^{(s)} \sim P(\theta|\mathcal{D}) \end{split}$$

## **Properties of Monte Carlo**

Estimator: 
$$\int f(x)P(x) \ \mathrm{d}x \ pprox \ \hat{f} \ \equiv \ \frac{1}{S} \sum_{s=1}^S f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

#### Estimator is unbiased:

$$\mathbb{E}_{P(\{x^{(s)}\})} \Big[ \hat{f} \Big] \; = \; rac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] \; = \; \mathbb{E}_{P(x)} [f(x)]$$

Variance shrinks  $\propto 1/S$ :

$$\operatorname{var}_{P(\{x^{(s)}\})}\left[\hat{f}\right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)}[f(x)] = \operatorname{var}_{P(x)}[f(x)] / S$$

"Error bars" shrink like  $\sqrt{S}$ 

## Sampling from a Bayesian Network

#### Ancestral pass for directed graphical models:

- sample each top level variable from its marginal
- sample each other node from its conditional once its parents have been sampled



$$P(A, B, C, D, E) = P(A) P(B) P(C | A, B) P(D | B, C) P(E | C, D)$$

## Sampling from Bayesian Networks

- Sampling from discrete Bayesian networks with no observations is straight-forward, using ancestral sampling
- Bayesian network specifies factorization of joint distribution

$$P(z_1,\ldots,z_n) = \prod_{i=1}^n P(z_i|pa(z_i))$$

- Sample in-order, sample parents before children
  - Possible because graph is a DAG
- Choose value for  $z_i$  from  $p(z_i|pa(z_i))$

# **Ancestral Sampling**

#### Given a DAG model

- Start by sampling from  $P(x_1)$
- ▶ Then sample from  $P(x_2|x_1)$
- ▶ Then sample from  $P(x_3|x_2)$
- Finally sample from  $P(x_4|x_3)$

 $\{x_1, x_2, x_3, x_4\}$  is a sample from the joint distribution

## **Basic Sampling Algorithm**

How to generate samples from simple non-uniform distributions assuming we can generate samples from uniform distribution.



Define:  $h(y) = \int_{-\infty}^{y} p(\hat{y}) d\hat{y}$ 

Sample:  $z \sim U[0,1].$  Then:  $y = h^{-1}(z)$  is a sample from p(y).

**Problem**: Computing cumulative h(y) is just as hard!

Sampling from target distribution  $p(z) = \tilde{p}(z)/\mathcal{Z}_p$  is difficult. Suppose we have an easy-to-sample proposal distribution q(z), such that  $kq(z) \geq \tilde{p}(z)$ ,  $\forall z$ .



 $\begin{array}{l} \text{Sample } z_0 \text{ from } q(z). \\ \text{Sample } u_0 \text{ from Uniform}[0,kq(z_0)] \end{array}$ 

The pair  $(z_0,u_0)$  has uniform distribution under the curve of kq(z).

If  $u_0 > \tilde{p}(z_0)$ , the sample is rejected.

#### Probability that a sample is accepted is:



$$p( ext{accept}) = \int rac{ ilde{p}(z)}{kq(z)} q(z) dz$$
  $= rac{1}{k} \int ilde{p}(z) dz$ 

The fraction of accepted samples depends on the ratio of the area under  $\tilde{p}(z)$  and kq(z).

Hard to find appropriate q(z) with optimal k.

Useful technique in one or two dimensions. Typically applied as a subroutine in more advanced algorithms.

Need a proposal density Q(x) [e.g. uniform or Gaussian], and a constant c such that c(Qx) is an <u>upper bound</u> for  $P^*(x)$ 

Example with Q(x) uniform





accept samples that fall below the P\*(x) curve

generate uniform random samples in upper bound volume



the marginal density of the x coordinates of the points is then proportional to  $P^*(x)$ 

Note the relationship to Monte Carlo integration.



#### **Importance Sampling**

Suppose we have an easy-to-sample  $proposal\ distribution\ q(z)$ , such that q(z)>0 if p(z)>0.



$$\begin{split} \mathbb{E}[f] &= \int f(z)p(z)dz \\ &= \int f(z)\frac{p(z)}{q(z)}q(z)dz \\ &\approx \frac{1}{N}\sum_{n}\frac{p(z^{n})}{q(z^{n})}f(z^{n}), \quad z^{n} \sim q(z) \end{split}$$

The quantities  $w^n=p(z^n)/q(z^n)$  are known as **importance weights**. Unlike rejection sampling, all samples are retained.

But wait: we cannot compute p(z), only  $\tilde{p}(z)$ .

## Importance Sampling

Let our proposal be of the form  $q(z) = \tilde{q}(z)/\mathcal{Z}_q$ :

$$\begin{split} \mathbb{E}[f] &= \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz = \frac{\mathcal{Z}_q}{\mathcal{Z}_p}\int f(z)\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \\ &\approx \frac{\mathcal{Z}_q}{\mathcal{Z}_p}\sum_n\frac{\tilde{p}(z^n)}{\tilde{q}(z^n)}f(z^n) = \frac{\mathcal{Z}_q}{\mathcal{Z}_p}\frac{1}{N}\sum_nw^nf(z^n), \qquad z^n \sim q(z) \end{split}$$

But we can use the same importance weights to approximate  $\frac{\mathcal{Z}_p}{\mathcal{Z}_q}$ :

$$\frac{\mathcal{Z}_p}{\mathcal{Z}_q} = \frac{1}{Z_q} \int \tilde{p}(z) dz = \int \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z) dz \quad \approx \quad \frac{1}{N} \sum_n \frac{\tilde{p}(z^n)}{\tilde{q}(z^n)} = \frac{1}{N} \sum_n w^n$$

Hence:

$$\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{\infty} \frac{w^n}{\sum_{n} w^n} f(z^n)$$
 Consistent but biased.

#### **Probelms**

If our proposal distribution q(z) poorly matches our target distribution p(z) then:

- Rejection Sampling: almost always rejects
- Importance Sampling: has large, possibly infinite, variance (unreliable estimator).

For high-dimensional problems, finding good proposal distributions is very hard. What can we do?

Markov Chain Monte Carlo.

#### **Summary so far**

- Sums and integrals, often expectations, occur frequently in statistics
- Monte Carlo approximates expectations with a sample average
- · Rejection sampling draws samples from complex distributions
- Importance sampling applies Monte Carlo to 'any' sum/integral

## **Application to Large Problems**

We often can't decompose P(X) into low-dimensional conditionals

Undirected graphical models:  $P(x) = \frac{1}{Z} \prod_i f_i(x)$ 





Posterior of a directed graphical model

$$P(A, B, C, D | E) = \frac{P(A, B, C, D, E)}{P(E)}$$

We often don't know  $\mathcal{Z}$  or P(E)

## **Gibbs Sampling**

For large graphical models, given a multivariate distribution, it is simpler to sample from a conditional distribution than to marginalize by integrating over a joint distribution

- We want samples approximate the joint distribution of all variables
- ► The marginal distribution of any subset of variables can be approximated by simply considering the samples for that subset of variables (Markov Blanket in Bayes Nets!)
- ► The expected value of any variable can be approximated by averaging over all the samples

## **Gibbs Sampling**

#### A method with no rejections:

- Initialize x to some value
- Pick each variable in turn or randomly and resample  $P(x_i|\mathbf{x}_{i\neq i})$



Figure from PRML, Bishop (2006)

## **Gibbs Sampler**

Consider sampling from  $p(z_1, ..., z_N)$ .



Initialize 
$$z_i$$
,  $i=1,...,N$ 

For 
$$t=1,...,T$$

Sample 
$$z_1^{t+1} \sim p(z_1 | z_2^t, ..., z_N^t)$$

Sample 
$$z_2^{t+1} \sim p(z_2|z_1^{t+1}, x_3^t, ..., z_N^t)$$

Sample 
$$z_N^{t+1} \sim p(z_N | z_1^{t+1}, ..., z_{N-1}^{t+1})$$

Gibbs sampler is a particular instance of M-H algorithm with proposals  $p(z_n|\mathbf{z}_{i\neq n}) \to \text{accept}$  with probability 1. Apply a series (componentwise) of these operators.

## Gibbs Sampling for Bayes Nets

#### 1. Initialization

- Set evidence variables E, to the observed values e
- Set all other variables to random values (e.g. by forward sampling)

This gives us a sample  $x_1, \ldots, x_n$ .

- 2. Repeat (as much as wanted)
  - ullet Pick a non-evidence variable  $X_i$  uniformly randomly)
  - Sample  $x_i'$  from  $P(X_i|x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$ .
  - Keep all other values:  $x'_j = x_j, \forall j \neq i$
  - The new sample is  $x'_1, \ldots, x'_n$
- Alternatively, you can march through the variables in some predefined order

#### Why Gibbs works in Bayes Nets

- The key step is sampling according to  $P(X_i|x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$ . How do we compute this?
- In Bayes nets, we know that a variable is conditionally independent of all others given its Markov blanket (parents, children, spouses)

$$P(X_i|x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) = P(X_i|\mathsf{MarkovBlanket}(X_i))$$

- So we need to sample from  $P(X_i|\mathsf{MarkovBlanket}(X_i))$
- Let  $Y_j, j = 1, ..., k$  be the children of  $X_i$ . It is easy to show that:

$$\begin{array}{lcl} P(X_i=x_i|\mathsf{MarkovBlanket}(X_i)) & \propto & P(X_i=x_i|\mathsf{Parents}(X_i)) \\ & \cdot & \prod_{j=1}^k P(Y_j=y_j|\mathsf{Parents}(Y_j)) \end{array}$$

#### **Summary**

Ways of doing inference in graphical models...

#### **Exact Inference**

Message Passing algorithms

#### Approximate Inference (Sampling Methods)

- Monte-Carlo Sampling
- Importance Sampling
- Gibbs Sampling in Bayesian Networks

**Note**: We will cover Sampling Methods in more details when we talk about Approximate Inference and Variational Methods (later...)