DEC 3

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 162984

In recappatcation of:

eryé Bochard et al.

Serial No.

: Unassigned

Filed

: December 8, 1993

For

NEW TAXOIDS, THEIR PREPARATION AND PHARMACEUTICAL

COMPOSITIONS CONTAINING THEM

CLAIM TO CONVENTION PRIORITY

HON. COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

Sir:

In the matter of the above-identified application and under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55 applicant(s) claim(s) the benefit of the following prior application:

Application filed in: France

In the name of : BOUCHARD et al.

Serial No.

: 92 14813

Filing Date

: December 9, 1992

- 1. [x] Pursuant to the Claim to Priority, applicant(s) submit(s) a duly certified copy of said foreign application.
- 2. [] A duly certified copy of said foreign application is in the file of application Serial No. _______, filed ______.

Respectfully submitted,

MORGAN & FINNEGA

Date: December 8, 1993

MORGAN & FINNEGAN
555 13th Street, N.W.
Suite 480 West
Washington, D.C. 20004-1109

Tel: (202) 857-7887 Fax: (202) 857-7929

Rev. 10/92 M&F

By: Frederick F. Malvetti

Registration No. 28,557

THIS PAGE BLANK (USPTO)

NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

BREVETS D'INVENTION

CERTIFICATS D'UTILITÉ - CERTIFICATS D'ADDITION

Copie officielle

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme, d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris le.

2 8 JUIN 1993

R. P. Roya

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef de Division

au pu

Yves CAMPENON

114 INPI

THIS PAGE BLANK (USPTO)

INPI ANS	STITUT NATIONAL DI	E LA PROPR	IÉTÉ INDU	ISTRIELLE CETTO
DUPLICATA DE LA REQUETE DEMANDE DE (voir case cochée)	B X BHEVEL DINVENTION D VEHT FICAT DUTLITE C DEMANDE DIVIS ONNAIRE d THANSFORMATERN DUNE	2 OPTIONS OBLIC LE DEMANDEUR REQUIER L'ÉTABLISSEMENT DIFFÉRE DE L'AVIS DOCUMENTAIRE NATURE	OUI	OUI TO DATE DE LA DEMANDE INITIA
O 9. DEC. 1992 N. D'ENREGISTREMENT NATIONAL 9 2 1 4 8 1 3 CODE POSTAL DU LIEJ DE DÉPÔT	DATE DE DEPOY= GENÉRAL	RHONE-POU Direction 20 avenue 92165 ANT	LENC RORER Brevets Raymond Ar ONY CEDEX	on .
7 TITRE DE L'INVENTION	15 janvier 1991 NOUVEAUX TAXOIDES, LEUR PHARMACEUTIQUÉS QUI LES	5 RÉFÉRENCE DU CORR ST 92080 R PREPARATION E CONTIENNENT		6 TELEPHONE DU COF RESPINDANT (1) 40 91 70 29 SITIONS
8 DEMANDEUR(S) Non. et Prénoms	RHONE-POULENC RORER S		3	0 4 4 6 3 2 8 4
9 ADRESSE(S) COMPLETE(S)	20 avenue Raymond A 92160 ANTONY	ron		PAYS FRANCE
10 NATIONALITÉ(S) 11 INVENTEUR(S) LE DEMANDEUR EST L'UNIQUE. CONVENTEUR Si la reponse est ron voir notice explicative X N	française 12 SIIF DEMANDEUR EST UILE P PHYSIQUE NON IMPOSA REQUIERT OU A REQUIS LA RE DES REDEVANCES	BLE II OLU	X DE DÉPÔY X D'AVIS DOCUMEN DE REVENDICATIO X DE REVENDICATIO	
13 DÉCLARATION DE PRIORITÉ PAYS	AVAILABLE COP	NUMÉRO -		
14 DIVISIONS ANTÉRIEURI: PRÉSENTE DE	S A LA MANDE . N° N°		N·	N
Fonde de Pouvoir PILARD Jacques Cocher la case choisie		over:	SIGNATURE APRES ENTRE	GIS PENNYT DE LA DEMANDE A L'INPI

LES ENCADRÉS GRAS SONT RÉSERVÉS A L'ADMINISTRATION

Numéro d'enregistrement de la demande

92 14813

CLASSIFICATION INTERNATIONALE DES BREVETS

Int. 015

Ne pas tenir compte de ces chiffres C 0453c 5 /3/4 , H CAK 3.1 /325

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08 Tél. : (1) 42 94 52 52 - Télécopie : (1) 42 93 59 30

Division Administrative des Brevets

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° d'enregistrement national

92 14813

ST 92080

Titre de l'invention :

NOUVEAUX TAXOIDES, LEUR PREPARATION ET LES COMPOSITIONS

PHARMACEUTIQUES QUI LES CONTIENNENT

Le (s) soussigné (s)

RHONE-POULENC RORER S.A.

20 avenue Raymond Aron

92160 ANTONY

désigne (nt) en tant qu'inventeur (s) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

BOUCHARD Hervé - 114 avenue Danielle Casanova, 94200 IVRY SUR SEINE

BOURZAT Jean-Dominique - 36 boulevard de la Libération, 94300 VINCENNES

COMMERCON Alain - 1 bis rue Charles Floquet, 94400 VITRY SUR SEINE

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

Antony, le 9 décembre 1992

RHONE-POULENC RORER S.A.

Fondé de Pouvoir

FILARD Jacques

118000

BEST AVAILABLE COPY

DOCUMENT COMPORTANT DES MODIFICATIONS

PAGE(S) DE LA DESCRIPTION OU DES REVENDI- CATIONS OU PLANCHE(S) DE DESSIN		R.M.*	DATE	TAMPON DATEUR	
Modifiée(s)	Supprimée(s)	Ajoutée(s)		DE LA CORRESPONDANCE	1
15,24,26				15	
7,29,30,32,33		·		15 mars 93	19 AVA. 1999 1 A
				15 mars 93	19 AVE 1000 LA
					·
			1		
		I			
			1		

Un changement apporté à la rédaction des revendications d'origine, sauf si celui-ci découle des dispositions de l'article 28 du décret du 19 septembre 1979, est signalé par la mention "R.M." (revendications modifiées).

NOUVEAUX TAXOIDES. LEUR PREPARATION ET LES COMPOSITIONS PHARMACEUTIQUES QUI LES CONTIENNENT

La présente invention concerne de nouveaux taxoïdes de formule générale :

5 leur préparation et les compositions pharmaceutiques qui les contiennent.

Dans la formule générale (I),

Ar représente un radical aryle,

10

15

20

25

R représente un atome d'hydrogène ou un radical acétyle,

 R_1 représente un radical benzoyle ou un radical R_2 -O-CO- dans lequel R_2 représente :

- un radical alcoyle droit ou ramifié contenant 1 à 8 atomes de carbone, alcényle contenant 2 à 8 atomes de carbone, alcynyle contenant 3 à 8 atomes de carbone, cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone ou bicycloalcoyle contenant 7 à 11 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les atomes d'halogène et les radicaux hydroxy, alcoyloxy contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, pipéridino, morpholino, pipérazinyl-1 (éventuellement substitué en -4 par un radical alcoyle contenant 1 à 4 atomes de carbone ou par un radical phénylalcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone), cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone, phényle, cyano, carboxy ou alcoyloxycarbonyle dont la partie alcoyle contient 1 à 4 atomes de carbone,

- ou un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone, alcoyloxy contenant 1 à 4 atomes de carbone,

- ou un radical hétérocyclyle azoté saturé ou non saturé contenant 4 à 6 chaînons et éventuellement substitué par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone,

étant entendu que les radicaux cycloalcoyles, cycloalcényles ou bicycloalcoyles peuvent être éventuellement substitués par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone.

5

10

15

20

25

30

De préférence Ar représente un radical phényle ou α- ou β-naphtyle éventuellement substitué par un ou plusieurs atomes ou radicaux choisis parmi les atomes d'halogène (fluor, chlore, brome, iode) et les radicaux alcoyles, alcényles, alcynyles, aryles, arylalcoyles, alcoxy, alcoylthio, aryloxy, arylthio, hydroxy, hydroxyalcoyle, mercapto, formyle, acyle, acylamino, aroylamino, alcoxycarbodialcoylamino, carboxy, alcoxycarbonyle, alcoylamino, amino. nylamino, carbamoyle, dialcoylcarbamoyle, cyano, nitro et trifluorométhyle, étant entendu que les radicaux alcoyles et les portions alcoyles des autres radicaux contiennent 1 à 4 atomes de carbone, que les radicaux alcényles et alcynyles contiennent 2 à 8 atomes de carbone et que les radicaux aryles sont des radicaux phényles ou α - ou β naphtyles, ou bien Ar représente un radical hétérocyclique aromatique ayant 5 chaînons et contenant un ou plusieurs atomes, identiques ou différents, choisis parmi les atomes d'azote, d'oxygène ou de soufre, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi les atomes d'halogène (fluor, chlore, brome, iode) et les radicaux alcoyles contenant 1 à 4 atomes de carbone, aryles contenant 6 à 10 atomes de carbone, alcoxy contenant 1 à 4 atomes de carbone, aryloxy contenant 6 à 10 atomes de carbone, amino, alcoylamino contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, acylamino dont la partie acyle contient 1 à 4 atomes de carbone, alcoxycarbo-nylamino contenant 1 à 4 atomes de carbone, acyle contenant 1 à 4 atomes de carbone, arylcarbonyle dont la partie aryle contient 6 à 10 atomes de carbone, cyano, carboxy, carbamoyle, alcoylcarbamoyle dont la partie alcoyle contient 1 à 4 atomes de carbone, dialcoylcarbamoyle dont chaque partie alcoyle contient 1 à 4 atomes de carbone ou alcoxycarbonyle dont la partie alcoxy contient 1 à 4 atomes de carbone.

Plus particulièrement, Ar représente un radical phényle, thiényle-2 ou -3 ou furyle-2 ou -3 éventuellement substitué par un ou plusieurs atomes ou radicaux, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux alcoyles,

alcoxy, amino, alcoylamino, dialcoylamino, acylamino, alcoxycarbonylamino et trifluorométhyle.

Plus particulièrement encore, Ar représente un radical phényle éventuellement substitué par un atome de chlore ou de fluor, ou par un radical alcoyle (méthyle), alcoxy (méthoxy), dialcoylamino (diméthylamino), acylamino (acétylamino) ou alcoxycarbonylamino (tert-butoxycarbonylamino) ou thiényle-2 ou -3 ou furyle-2 ou -3.

5

10

15

20

25

D'un intérêt encore plus particulier sont les produits de formule générale (I) dans laquelle Ar représente un radical phényle et R représente un radical benzoyle ou tert.butoxycarbonyle.

Selon la présente invention, les nouveaux taxoïdes de formule générale (I) peuvent être obtenus à partir d'un produit de formule générale :

$$\begin{array}{c} Ar \\ R_1-N \\ R_3 \\ R_4 \end{array} \qquad \begin{array}{c} G_1-O \\ O \\ HO \\ \hline \\ OCOCC_6H_5 \end{array} \qquad (II)$$

dans laquelle Ar et R₁ sont définis comme précédemment et R₃ et R₄, identiques ou différents représentent un atome d'hydrogène ou un radical alcoyle contenant 1 à 4 atomes de carbone, ou un radical aralcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone et la partie aryle représente, de préférence, un radical phényle éventuellement substitué par un ou plusieurs radicaux alcoxy contenant 1 à 4 atomes de carbone, ou un radical aryle représentant, de préférence un radical phényle éventuellement substitué par un ou plusieurs radicaux alcoxy contenant 1 à 4 atomes de carbone, ou bien R₃ représente un radical alcoxy contenant 1 à 4 atomes de carbone ou un radical trihalométhyle tel que trichlorométhyle ou un radical phényle substitué par un radical trihalométhyle tel que trichlorométhyle et R₄ représente un atome d'hydrogène, ou bien R₃ et R₄ forment ensemble avec l'atome de carbone auquel ils sont liés un cycle ayant 4 à 7 chaînons, et G₁ représente un groupement protecteur de la fonction hydroxy, en opérant, selon les significations de R₃ et R₄, de la manière suivante :

1) lorsque R₃ représente un atome d'hydrogène ou un radical alcoxy contenant 1 à 4 atomes de carbone ou un radical aryle éventuellement substitué et R₄

représente un atome d'hydrogène, le produit de formule générale (II) est traité en milieu acide pour obtenir un produit de formule générale :

dans laquelle Ar, R_1 et G_1 sont définis comme précédemment, dont le radical G_1 est, si nécessaire, remplacé par un atome d'hydrogène.

5

10

15

20

25

La déprotection de la chaîne latérale du produît de formule générale (II) peut être effectuée en présence d'un acide minéral (acide chlorhydrique, acide sulfurique) organique (acide acétique, acide méthanesulfonique, trifluorométhanesulfonique, acide p.toluènesulfonique), utilisé seul ou en mélange, en opérant dans un solvant organique choisi parmi les alcools (méthanol, éthanol, (tétrahydrofuranne, éther diisopropylique, méthyl isopropanol), les éthers t.butyléther), les esters (acétate d'éthyle, acétate d'isopropyle, acétate de n.butyle), les hydrocarbures aliphatiques (pentane, hexane, heptane), les hydrocarbures aliphatiques halogénés (dichloro-méthane, dichloro-1,2 éthane), les hydrocarbures aromatiques (benzène, toluène, xylènes) et les nitriles (acétonitrile) à une température comprise entre - 10 et 60°C, de préférence entre 15 et 30°C. L'acide peut être utilisé en quantité catalytique, stoechiométrique ou en excès.

La déprotection peut aussi être réalisée dans des conditions oxydantes en utilisant par exemple le nitrate d'ammonium et de cérium IV dans un mélange acétonitrile-eau ou la dichloro-2,3 dicyano-5,6 benzoquinone-1,4 dans l'eau.

La déprotection peut être également réalisée dans des conditions réductrices, par exemple par hydrogénolyse en présence d'un catalyseur.

Lorsque G₁ représente un groupement protecteur, celui-ci est de préférence un radical trichloro-2,2,2 éthoxy carbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle, dont le remplacement par un atome d'hydrogène est effectué par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 20 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou dans un ester aliphatique tel que l'acétate

d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre.

2) lorsque R₃ et R₄, identiques ou différents, représentent un radical alcoyle contenant 1 à 4 atomes de carbone, ou un radical aralcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone et la partie aryle est, de préférence un radical phényle, éventuellement substitué, ou bien R₃ représente un radical trihalométhyle ou un radical phényl substitué par un radical trihalométhyle et R₄ représente un atome d'hydrogène, ou bien R₃ et R₄ forment ensemble avec l'atome de carbone auquel ils sont liés un cycle ayant 4 à 7 chaînons, le produit de formule générale (II) est transformé en produit de formule générale :

5

10

20

25

dans laquelle Ar et G_1 sont définis comme précédemment, qui est acylé au moyen de chlorure de benzoyle ou d'un dérivé réactif de formule générale :

$$R_2$$
-O-CO-X (V)

dans laquelle R₂ est défini comme précédemment et X représente un atome d'halogène (fluor, chlore) ou un reste -O-R₂ ou -O-CO-O-R₂, pour obtenir un produit de formule générale (III) dans laquelle Ar, R₁ et G₁sont définis comme précédemment, dont le radical G₁ est, si nécessaire, remplacé par un atome d'hydrogène.

Les produits de formule générale (IV) peuvent être obtenus en traitant un produit de formule générale (II), dans laquelle Ar, R₁ et G₁ sont définis comme cidessus, R₃ et R₄, identiques ou différents, représentent un radical alcoyle, aralcoyle ou aryle, ou bien R₃ et R₄ forment ensemble avec l'atome de carbone auquel ils sont liés un cycle ayant 4 à 7 chaînons, par un acide minéral (acide chlorhydrique, acide sulfurique) ou organique (acide formique) éventuellement dans un alcool contenant 1 à 3 atomes de carbone (méthanol éthanol, isopropanol) à une température comprise entre 0 et 50°C. De préférence, on utilise l'acide formique à une température voisine de 20°C.

L'acylation du produit de formule générale (IV) au moyen de chlorure de benzoyle ou d'un dérivé réactif de formule générale (V) est effectuée dans un solvant organique inerte choisi parmi les esters tels que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle et les hydrocarbures aliphatiques halogénés tels que le dichlorométhane ou le dichloro-1,2 éthane en présence d'une base minérale telle que le bicarbonate de sodium ou organique telle que la triéthylamine. La réaction est effectuée à une température comprise entre 0 et 50°C, de préférence voisine de 20°C.

Lorsque le radical G_1 représente un groupement protecteur, son remplacement par un atomed'hydrogène s'effectue dans les conditions décrites cidessus.

Les produits de formule générale (II) peuvent être obtenus selon l'une des méthodes suivantes :

1) par estérification du produit de formule générale :

$$\begin{array}{c|c}
G_1-O & O \\
HO & & \\
\hline
HO & & \\
\hline
GCOC_6H_5
\end{array}$$
(VI)

15

5

10

dans laquelle G₁ est défini comme précédemment au moyen d'un acide de formule générale :

dans laquelle Ar, R₁, R₃ et R₄ sont définis comme précédemment, ou d'un dérivé de cet acide.

L'estérification au moyen d'un acide de formule générale (VII) peut être effectuée en présence d'un agent de condensation (carbodiimide, carbonate réactif) et d'un agent d'activation (aminopyridine) dans un solvant organique (éther, ester, cétones, nitriles, hydrocarbures aliphatiques, hydrocarbures aliphatiques halogénés, hydrocarbures aromatiques) à une température comprise entre -10 et 90°C.

20

L'estérification peut aussi être réalisée en utilisant l'acide de formule générale (VII) sous forme d'anhydride en opérant en présence d'un agent d'activation (aminopyridine) dans un solvant organique (éthers, esters, cétones, nitriles, hydrocarbures aliphatiques, hydrocarbures aliphatiques halogénés, hydrocarbures aromatiques) à une température comprise entre 0 et 90°C.

5

10

15

20

25

L'estérification peut aussi être réalisée en utilisant l'acide de formule générale (VII) sous forme d'halogénure ou sous forme d'anhydride avec un acide aliphatique ou aromatique, éventuellement préparé in situ, en présence d'une base (amine aliphatique tertiaire) en opérant dans un solvant organique (éthers, esters, cétones, nitriles, hydrocarbures aliphatiques, hydrocarbures aliphatiques halogénés, hydrocarbures aromatiques) à une température comprise entre 0 et 80°C.

L'acide de formule générale (VII) peut être obtenu par saponification d'un ester de formule générale :

$$R_1$$
-N O (VIII)

dans laquelle Ar, R₁, R₃ et R₄ sont définis comme précédemment et R₅ représente un radical alcoyle contenant 1 à 4 atomes de carbone éventuellement substitué par un radical phényle.

Généralement, la saponification est effectuée au moyen d'une base minérale (hydroxyde, carbonate ou bicarbonate de métal alcalin) en milieu hydro-alcoolique (méthanol-eau) à une température comprise entre 10 et 40°C.

L'ester de formule générale (VIII) peut être obtenu par action d'un produit de formule générale :

$$R_{3} = 0 (IX)$$

dans laquelle R₃ et R₄ sont définis comme précédemment sous forme d'un dialkylacétal ou d'un alkyléther d'énol, sur un ester de formule générale :

$$Ar \xrightarrow{\stackrel{\square}{=}} COOR_5 \qquad (X)$$

dans laquelle Ar, R₁ et R₅ sont définis comme précédemment en opérant dans un solvant organique inerte (hydrocarbure aromatique) en présence d'un acide fort minéral (acide sulfurique) ou organique (acide p.toluènesulfonique éventuellement sous forme de sel de pyridinium) à une température comprise entre 0°C et la température d'ébullition du mélange réactionnel.

5

10

15

20

25

L'ester de formule générale (X) peut être obtenu par action d'un produit de formule générale (V) sur un ester de formule générale :

$$H_2N_{,,,,}$$
 COOR₅ (XI)

dans laquelle Ar et R_5 sont définis comme précédemment, en opérant dans un solvant organique (ester, hydrocarbure aliphatique halogéné) en présence d'une base minérale ou organique à une température comprise entre 0 et $50^{\frac{5}{6}}$ C.

Le produit de formule générale (XI) peut être obtenu par réduction d'un azoture de formule générale :

$$Ar \xrightarrow{\stackrel{\stackrel{N}{=}}{\stackrel{\sim}{=}}} OH$$
 (XII)

dans laquelle Ar et R₅ sont définis comme précédemment, au moyen d'hydrogène en présence d'un catalyseur tel que le palladium sur noir en opérant dans un solvant organique (ester).

Le produit de formule générale (XII) peut être obtenu par action d'un azoture tel que l'azoture de triméthylsilyle en présence de chlorure de zinc ou azoture de métal alcalin (sodium, potassium, lithium) en milieu hydro-organique (eau-tétrahy-drofuranne) à une température comprise entre 20°C et la température d'ébullition du mélange réactionnel sur un époxyde de formule générale :

dans laquelle Ar et R₅ sont définis comme précédemment, éventuellement préparé in situ.

L'époxyde de formule générale (XIII) peut être obtenu, éventuellement in situ, par déhydrohalogénation d'un produit de formule générale :

dans laquelle Ar est défini comme précédemment, Hal représente un atome d'halogène, de préférence un atome de brome, et R₆ et R₇, identiques ou différents, représentent un atome d'hydrogène ou un radical alcoyle contenant 1 à 4 atomes de carbone ou un radical phényle, l'un au moins étant un radical alcoyle ou un radical phényle, au moyen d'un alcoolate alcalin, éventuellement préparé in situ, dans un solvant organique inerte tel que le tétrahydrofuranne à une température comprise entre -80°C et 25°C.

5

10

20

25

Le produit de formule générale (XIV) peut être obtenu par action d'un aldéhyde de formule générale :

dans laquelle Ar est défini comme précédemment sur un halogénure de formule générale :

Hal
$$R_6$$
 R_7 (XVI)

dans laquelle Hal, R₆ et R₇ sont définis comme précédemment, préalablement anionisé.

Généralement, on opère dans un solvant organique inerte choisi parmi les éthers (éther éthylique) et les hydrocarbures aliphatiques halogénés (chlorure de méthylène) à une température comprise entre -80 et 25°C, en présence d'une amine tertiaire (triéthylamine) et d'un agent d'énolisation (triflate de di-n.butylbore).

Le produit de formule générale (XVI) peut être obtenu par action d'un halogénure d'un acide halogénoacétique, de préférence le bromure de l'acide bromoacétique, sur l'oxazolidinone correspondante.

Le produit de formule générale (XI) peut être obtenu par hydrogénolyse d'un produit de formule générale :

dans laquelle Ar et R₅ sont définis comme précédemment et Ph représente un radical phényle éventuellement substitué.

Généralement, l'hydrogénolyse est effectuée au moyen d'hydrogène en présence de catalyseur. Plus particulièrement, on utilise comme catalyseur un palladium sur charbon contenant 1 à 10 % en poids de palladium ou le dihydroxyde de palladium à 20 % en poids de palladium.

L'hydrogénolyse est effectuée dans un solvant organique ou dans un mélange de solvants organiques. Il est avantageux d'opérer dans l'acide acétique éventuellement associé à un alcool aliphatique contenant 1 à 4 atomes de carbone tel qu'un mélange acide acétique-méthanol à une température comprise entre 20 et 80°C.

L'hydrogène nécessaire à l'hydrogénolyse peut aussi être fourni par un composé qui libère de l'hydrogène par réaction chimique ou par décomposition thermique (formiate d'ammonium). Il est avantageux d'opérer sous une pression d'hydrogène comprise entre 1 et 50 bars.

Le produit de formule générale (XVII) peut être obtenu par hydrolyse ou alcoolyse d'un produit de formule générale :

dans laquelle Ar et Ph sont définis comme précédemment.

5

10

15

20

25

Il est particulièrement avantageux d'effectuer une alcoolyse au moyen d'un alcool de formule R5-OH dans laquelle R5 est défini comme précédemment en opérant en milieu acide.

De préférence, on effectue l'alcoolyse au moyen de méthanol en présence d'un acide minéral fort tel que l'acide chlorhydrique à une température voisine de la température de reflux du mélange réactionnel.

Le produit de formule générale (XVIII) peut être obtenu par saponification d'un ester de formule générale :

$$R_8$$
-CO-O R_8 -CO-O

dans laquelle Ar et Ph sont définis comme précédemment et R₈ représente un radical alcoyle, phénylalcoyle ou phényle, suivie de la séparation du diastéréoisomère 3R,4S de formule générale (XVII) des autres diastéréoisomères.

Généralement, la saponification est effectuée au moyen d'une base minérale ou organique telle que l'ammoniaque, la lithine, la soude ou la potasse dans un solvant convenable tel qu'un mélange méthanol-eau ou tétrahydrofuranne-eau à une température comprise entre -10°C et 20°C.

5

10

15

20

La séparation du diastéréoisomère 3R,4S peut être effectuée par cristallisation sélective dans un solvant organique convenable tel que l'acétate d'éthyle.

Le produit de formule générale (XIX) peut être obtenu par cycloaddition d'une imine de formule générale :

$$\begin{array}{c|c} Ar & & \\ N & S & Ph \\ & \tilde{\Xi} \\ CH_3 & & \end{array}$$
 (XX)

dans laquelle Ar et Ph sont définis comme précédemment, sur un halogénure d'acide de formule générale :

dans laquelle R₈ est défini comme précédemment et Y représente un atome d'halogène tel qu'un atome de brome ou de chlore.

Généralement la réaction est effectuée à une température comprise entre 0 et 50°C en présence d'une base choisie parmi les amines tertiaires aliphatiques (triéthylamine) ou la pyridine dans un solvant organique choisi parmi les hydrocarbures aliphatiques éventuellement halogénés (chlorure de méthylène, chloroforme) et les hydrocarbures aromatiques (benzène, toluène, xylènes).

1 24 over

Le produit de formule générale (XX) peut être obtenu dans les conditions analogues à celles décrites par M. Furukawa et coll., Chem. Pharm. Bull., <u>25</u> (1), 181-184 (1977).

Le produit de formule générale (VI) peut être obtenu par action d'un halogénure de métal alcalin (iodure de sodium, fluorure de potassium) ou d'un azoture de métal alcalin (azoture de sodium) sur un dérivé de la baccatine III ou de la désacétyl-10 baccatine III de formule générale :

dans laquelle G₁ est défini comme précédemment.

Généralement la réaction est effectuée dans un solvant organique choisi parmi les éthers (tétrahydrofuranne, diisopropyléther, méthyl t.butyléther) et les nitriles (acétonitrile) seul ou en mélange à une température comprise entre 20°C et la température d'ébullition du mélange réactionnel.

Le dérivé de la baccatine III ou de la désacétyl-10 baccatine III de formule générale (XXII) peut être obtenu par action d'un dérivé de l'acide trifluorométhanesulfonique tel que l'anhydride ou le N-phényl trifluorométhanesulfonimide sur la baccatine III ou la désacétyl-10 baccatine III, qui peuvent être extraites selon les méthodes connues à partir des feuilles d'ifs (Taxus baccata), suivi éventuellement de la protection en position 10..

Généralement, la réaction s'effectue dans un solvant organique inerte (hydrocarbures aliphatiques éventuellement halogénés, hydrocarbures aromatiques) en présence d'une base organique telle qu'une amine tertiaire aliphatique (triéthylamine) ou la pyridine à une température comprise entre -50 et +20°C.

2) par action d'un halogénure de métal alcalin (iodure de sodium, fluorure de potassium) ou d'un azoture de métal alcalin (azoture de sodium) sur un produit de formule générale :

25

5

10

15

20

$$R_1$$
-N R_3 R_4 R_4 R_4 R_4 R_4 R_5 R_4 R_4 R_5 R_6 $R_$

dans laquelle Ar, R_1 , R_3 , R_4 et G_1 sont définis comme précédemment.

5

10

15

Généralement, la réaction est effectuée dans un solvant organique choisi parmi les éthers (tétrahydrofuranne, diisopropyléther, méthyl t.butyléther) et les nitriles (acétonitrile) seul ou en mélange à une température comprise entre 20°C et la température d'ébullition du mélange réactionnel.

Le produit de formule générale (XXIII) pet être obtenu par action d'un dérivé de l'acide trifluorométhanesulfonique tel que l'anhydride ou le N-phényl trifluorométhanesulfonimide sur un taxoïde de formule générale :

$$\begin{array}{c} Ar \\ R_1-N \\ R_3 \\ R_4 \end{array} \qquad \begin{array}{c} G_1-O \\ O \\ HO \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ O \\ COCC_6H_5 \end{array} \qquad (XXIV)$$

dans laquelle Ar, R_1 , R_3 , R_4 et G_1 sont définis comme précédemment.

Généralement, la réaction s'effectue dans un solvant organique inerte (hydrocarbures aliphatiques éventuellement halogénés, hydrocarbures aromatiques) en présence d'une base organique telle qu'une amine tertiaire aliphatique (triéthylamine) ou la pyridine à une température comprise entre -50 et +20°C.

Le taxoïde de formule générale (XXIV), dans laquelle G₁ représente un atome d'hydrogène ou un radical acétyle, peut être obtenu à partir d'un produit de formule générale :

dans laquelle Ar, R₁, R₃ et R₄ sont définis comme précédemment, G'₁ représente un groupement protecteur de la fonction hydroxy et G'₂ représente un radical acétyle ou un groupement protecteur de la fonction hydroxy par remplacement des groupements protecteurs G₁ et éventuellement G₂ par des atomes d'hydrogène.

5

10

15

20

25

Les radicaux G'₁ et G'₂, lorsqu'ils représentent un groupement protecteur de la fonction hydroxy, sont de préférence des radicaux trichloro-2,2,2 éthoxycarbonyle, (trichlorométhyl-2 propoxy)-2 carbonyle ou des radicaux trialkylsilyles, dialkylarylsilyles, alkyldiarylsilyles ou triarylsilyles dans lesquels les parties alkyles contiennent 1 à 4 atomes de carbone et les parties aryles sont de préférence des radicaux phényles.

Lorsque G'₁ et G'₂ représentent un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle, le remplacement des groupements protecteurs par des atomes d'hydrogène est effectué par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 20 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre.

Lorsque G'₁ représente un radical silylé et G'₂ représente un radical acétyle, le remplacement du groupement protecteur par un atome d'hydrogène peut s'effectuer au moyen, par exemple, d'acide chlorhydrique gazeux en solution éthanolique à une température voisine de 0°C, dans des conditions qui sont sans effet sur le reste de la molécule.

Le produit de formule générale (XXV) peut être obtenu dans les conditions décrites dans la demande internationale PCT/WO 9209589.

Les nouveaux dérivés de formule générale (I) peuvent aussi être obtenus par estérification d'un produit de formule générale (VI) au moyen d'un acide de formule générale :

dans laquelle Ar et R₁ sont définis comme précédemment et G₃ représente un groupement protecteur de la fonction hydroxy choisi parmi les radicaux méthoxyméthyle, éthoxy-1 éthyle, benzyloxyméthyle, (β-triméthylsilyloxy)méthyle, tétrahydropyranyle, trichloro-2,2,2 éthoxyméthyle, trichloro-2,2,2 éthoxycarbonyle, (trichlorométhyl-2 propoxy)-2 carbonyle ou CH₂-Ph dans lequel Ph représente un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux, identiques ou différents choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoxy contenant 1 à 4 atomes de carbone, ou d'un dérivé activé de cet acide, pour obtenir un produit de formule générale :

5

10

15

20

25

$$\begin{array}{c} R_1 \text{-NH} \\ A_1 \text{-} P_1 \text{-} P_2 \text{-} P_3 \text{-} P_4 \text{-} P$$

dans laquelle Ar, R_1 , G_1 et G_3 sont définis comme précédemment, suivie du remplacement des groupements protecteurs G_1 et G_3 par des atomes d'hydrogène pour obtenir un produit de formule générale (I).

L'estérification peut être réalisée dans les conditions décrites précédemment pour l'estérification du produit de formule générale (VI) au moyen d'un acide de formule générale (VII).

Le remplacement des groupements protecteurs G₁ et G₃ du produit de formule générale (XXVII) par un atome d'hydrogène est effectué par traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre, lorsque G₁ et G₃ représentent un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle. Le remplacement du groupement protecteur G₃, lorsqu'il représente un radical silylé, peut être effectué par traitement en milieu acide tel que par exemple l'acide chlorhydrique en solution dans

un alcool aliphatique contenant 1 à 3 atomes de carbone (méthanol, éthanol, propanol, isopropanol) ou l'acide fluorhydrique aqueux à une température comprise entre 0 et 40°C, lorsqu'il représente un reste d'acétal, le remplacement du groupement protecteur G₁ étant ensuite effectué dans les conditions décrites ci-dessus. Lorsque G₃ représente un groupement -CH₂-Ph, le remplacement de ce groupement protecteur par un atome d'hydrogène peut s'effectuer par hydrogénolyse en présence d'un catalyseur.

L'acide de formule générale (XXVI) peut être obtenu par saponification d'un ester de formule générale :

$$R_1$$
-NH COOR₅

Ar O-G₃ $\stackrel{\circ}{\varepsilon}$ (XXVIII)

10

5

dans laquelle Ar, R₁, R₅ et G₃ sont définis comme précédemment.

Généralement la saponification est effectuée au moyen d'une base minérale (hydroxyde, carbonate ou bicarbonate de métal alcalin) en milieu hydro-alcoolique (méthanol-eau) à une température comprise entre 10 et 40°C.

15

L'ester de formule générale (XXVIII) peut être obtenu selon les méthodes habituelles de préparation des éthers, et plus particulièrement selon les procédés décrits par J-N. DENIS et coll., J. Org. Chem., <u>51</u>, 46-50 (1986), à partir d'un produit de formule générale (XI).

20

Les nouveaux produits de formule générale (I) obtenus par la mise en oeuvre des procédés selon l'invention peuvent être purifiés selon les méthodes connues telles que la cristallisation ou la chromatographie.

Les produits de formule générale (I) présentent des propriétés biologiques remarquables.

25

In vitro, la mesure de l'activité biologique est effectuée sur la tubuline extraite de cerveau de porc par la méthode de M.L. Shelanski et coll., Proc. Natl. Acad. Sci. USA, <u>70</u>, 765-768 (1973). L'étude de la dépolymérisation des microtubules en tubuline est effectuée selon la méthode de G. Chauvière et coll., C.R. Acad. Sci., <u>293</u>, série II, 501-503 (1981). Dans cette étude les produits de formule générale (I) se sont montrés au moins aussi actifs que le taxol et le Taxotère.

30

In vivo, les produits de formule générale (I) se sont montrés actifs chez la souris greffée par le mélanome B16 à des doses comprises entre 1 et 10 mg/kg par voie intrapéritonéale, ainsi que sur d'autres tumeurs liquides ou solides.

L'exemple suivant illustre la présente invention.

EXEMPLE

5

10

15

20

25

30

35

Une solution de 2,01 g de tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy-2\alpha époxy-5β,20 dihydroxy-1β,10β méthylène-7β,8β oxo-9 nor-19 taxène-11 yle-13α dans 20 cm3 d'acide formique est agitée pendant 4 heures à une température voisine de 20°C puis concentrée à sec sous pression réduite (0,27 kPa) à 40°C. La meringue obtenue est dissoute dans 100 cm3 de dichlorométhane et la solution obtenue est additionnée de 20 cm3 d'une solution aqueuse saturée d'hydrogénocarbonate de sodium. La phase aqueuse est séparée par décantation et extraite par 20 cm3 de dichlorométhane. Les phases organiques sont réunies, séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite (2,7 kPa) à 40°C. On obtient 1,95 g d'une meringue blanche que l'on purifie par chromatographie sur 200 g de silice (0,063-0,2 mm) contenus dans une colonne de 7 cm de diamètre en éluant avec un mélange dichlorométhane-méthanol (98-2 en volumes) en recueillant des fractions de 30 cm3. Les fractions ne contenant que le produit cherché sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 1,57 g d'amino-3 hydroxy-2 phényl-3 propionate-(2R,3S) d'acétoxy-4 benzoyloxy-2a époxy-5 β ,20 dihydroxy-1 β ,10 β méthylène-7 β ,8 β oxo-9 nor-19 taxène-11 yle-13 α sous forme d'une meringue blanche.

A une solution de 400 mg d'amino-3 hydroxy-2 phényl-3 propionate-(2R,3S) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 dihydroxy- 1β , 10β méthylène- 7β , 8β oxo-9 nor-19 taxène-11 yle-13α dans 1 cm3 de dichlorométhane, maintenue sous atmosphère d'argon, on ajoute 60 mg d'hydrogénocarbonate de sodium puis goutte à goutte, à une température voisine de 20°C, une solution de 0,16 g de dicarbonate de di.tert-butyle dans 1 cm3 de dichlorométhane. La solution obtenue est agitée pendant 64 heures à une température voisine de 20°C puis additionnée d'un mélange de 5 cm3 d'eau distillée et de 10 cm3 de dichlorométhane. La phase organique est lavée par 3 fois 2 cm3 d'eau distillée. La phase organique est séchée sur sulfate de magnésium, filtrée puis concentrée à sec sous pression réduite (2,7 kPa) à 40°C. On obtient ainsi 317 mg d'une meringue blanche que l'on purifie par chromatographie sur 30 g de silice (0,063-0,2 mm) contenus dans une colonne de 3 cm de diamètre en éluant avec un mélange dichlorométhane-méthanol (95-5 en volumes) en recueillant des fractions de 5 cm3. Les fractions ne contenant que le produit cherché sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 161 mg de tert-butoxycarbonylamino-3 hydroxy-2 phényl-3 propionate-

(2R,3S) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 dihydroxy- 1β , 10β méthylène- 7β ,8 β oxo-9 nor-19 taxène-11 yle-13 α sous forme d'une meringue blanche dont les caractéristiques sont les suivantes :

- pouvoir rotatoire : $[\alpha]^{20}$ _D = 17° (c = 0,482; méthanol)
- 5 - spectre de RMN (400 MHz ; CDCl₃ ; température de 323 K ; δ en ppm ; constantes de couplage J en Hz): 1,21 (s, 3H:-CH3 16 ou 17); 1,28 (s, 3H:-CH3 16 ou 17); 1,34 [s, 9H: $-C(C_{\underline{H}3})_3$]; de 1,30 à 1,50 (mt, 1H: $-\underline{H}_{\underline{I}}$ 7); 1,80 et 2,36 (2mt, 1H chacun: -CH2- du cyclopropane); 1,88 (s, 3H: -CH3 18); 2,13 [mt, 1H: -(CH)-H 6]; 2,26 [dd, 1H, J = 15 et 8,5 : -(CH)- \underline{H} 14]; 2,35 (s, 3H : -COC \underline{H} 3); de 2,35 à 2,50 [mt, 2H:-(CH)- \underline{H} 14 et-(CH)- \underline{H} 6]; 3,21 (d, 1H, J = 4:-O \underline{H} 2'); 4,08 [d, 1H, 10 J = 8 : -(CH) - H = 20; 4,16 (d, 1H, J = 7 : -H = 3); 4,18 (s, 1H, -OH = 10); 4,31 [d, 1H, J = 8: -(CH)- \underline{H} 20]: 4,61 (dd, 1H, J = 4 et 2: - \underline{H} 2'); 4,74 (d, 1H, J = 4: - \underline{H} 5); 5,00 (s, 1H: $-\underline{H}$ 10); 5,26 (dd, 1H, J = 9 et 2: $-\underline{H}$ 3'); 5,33 (d, 1H, J = 9: $-\underline{N}\underline{H}$ 3'); 5,69 (d, 1H, J = 7 : - \underline{H} 2) ; 6,29 (d, 1H, J = 8,5 : - \underline{H} 13) ; de 7,30 à 7,50 [mt, 5H : - C_6H_5 15 en 3' $(-\underline{H} \ 2 \ a \ -\underline{H} \ 6)$]; 7,51 [t, 2H, J = 7,5 : -OCOC₆H₅ $(-\underline{H} \ 3 \ et \ \underline{H} \ 5)$]; 7,60 [t, 1H, J = 7.5: $-OCOC_6H_5(-H_4)$]; 8.14[d, 2H, J = <math>7.5: $-OCOC_6H_5(-H_2)$ et H_4 .

Le tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy-2α époxy-5β,20 dihydroxy-1β,10β méthylène-7β,8β oxo-9 nor-19 taxène-11 yle-13 α peut être préparé de la manière suivante :

20 A une solution de 2,5 g de tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy-2\alpha époxy-5β,20 dihydroxy-1β,10β oxo-9 trifluorométhanesulfonate-7β taxène-11 yle-13α dans 25 cm3 d'acétonitrile anhydre et 3 cm3 de tétrahydrofuranne anhydre, maintenue sous atmosphère d'argon, on ajoute 2,5 g d'azoture de sodium. Le mélange réactionnel est chauffé pendant 2 heures sous agitation et sous atmosphère d'argon à une température voisine de 80°C, puis refroidi à une température voisine de 20°C et additionné de 30 cm3 d'eau distillée. La phase aqueuse est séparée par décantation puis extraite par 20 cm3 de dichlorométhane. Les phases organiques rassemblées sont séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite (2,7 kPa) à 40°C. On obtient ainsi 2,44 g d'une meringue jaune que l'on purifie par chromatographie sur 300 g de silice (0,063-0,2 mm) contenus dans une colonne de 8 cm de diamètre en éluant avec un mélange dichlorométhane-acétate d'éthyle (90-10 en volumes) en recueillant des fractions de 60 cm3. Les fractions 47 à 70 sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On

25

30

obtient ainsi 2,01 g de tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidine-carboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 dihydroxy- 1β ,10 β méthylène- 7β ,8 β oxo-9 nor-19 taxène-11 yle- 13α sous forme d'une meringue blanche.

Le tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 dihydroxy- 1β ,10 β oxo-9 trifluorométhanesulfonate- 7β taxène-11 yle- 13α peut être préparé de la manière suivante :

5

10

15

20

25

30

A une solution de 2,86 g de tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy-2a époxy-5β,20 trihydroxy-1 β ,7 β ,10 β oxo-9 taxène-11 yle-13 α dans 29 cm3 de dichlorométhane anhydre, maintenue sous atmosphère d'argon, on ajoute 0,955 cm3 de pyridine et 50 mg de tamis moléculaire 4Å activé en poudre. Le mélange réactionnel est refroidi à une température voisine de -35°C, additionné lentement de 0,85 cm3 d'anhydride trifluorométhanesulfonique, agité à une température voisine de -5°C pendant 15 minutes et additionné de 10 cm3 d'eau distillée. Après filtration sur verre fritté garni de célite et rinçage du verre fritté par 3 fois 10 cm3 d'un mélange méthanoldichlorométhane (10-90 en volumes), la phase aqueuse est séparée par décantation et extraite par 2 fois 10 cm3 de dichlorométhane. Les phases organiques sont réunies, séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite (2,7 kPa) à 40°C. On obtient 3,87 g d'une meringue blanche que l'on purifie par chromatographie sur 400 g de silice (0,063-0,2 mm) contenus dans une colonne de 10 cm de diamètre en éluant avec un gradient de dichlorométhane-acétate d'éthyle (de 97,5-2,5 à 90-10 en volumes) en recueillant des fractions de 80 cm3. Les fractions ne contenant que le produit cherché sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 3,0 g de tertdiméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) butoxycarbonyl-3 d'acétoxy-4 benzoyloxy-2α époxy-5β,20 dihydroxy-1β,10β oxo-9 trifluorométhanesulfonate-7 β taxène-11 yle-13 α sous forme d'une meringue blanche.

Le tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 trihydroxy- 1β ,7 β ,10 β oxo-9 taxène-11 yle- 13α peut être préparé de la manière suivante :

Une solution de 24,35 g de tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 oxo-9

bis-(trichloro-2,2,2 éthoxy)carbonyloxy-7β,10β hydroxy-1β taxèné-11 yle-13α dans un mélange de 130 cm3 d'acétate d'éthyle et de 46,5 cm3 d'acide acétique est chauffée sous agitation et sous atmosphère d'argon jusqu'à une température voisine de 60°C puis additionnée de 40 g de zinc en poudre. Le mélange réactionnel est ensuite agité pendant 30 minutes à 60°C puis refroidi à une température voisine de 20°C et filtré sur verre fritté garni de célite. Le verre fritté est lavé par 100 cm3 d'un mélange méthanol-dichlorométhane (20-80 en volumes) ; les filtrats sont réunis puis concentrés à sec sous pression réduite (0,27 kPa) à une température voisine de 40°C.

Le résidu est additionné de 500 cm3 de dichlorométhane. La phase organique est lavée par 2 fois 50 cm3 d'une solution aqueuse saturée d'hydrogénocarbonate de sodium puis par 50 cm3 d'eau distillée. Les phases aqueuses obtenues par décantation et réunies sont extraites par 2 fois 30 cm3 de dichlorométhane. Les phases organiques sont réunies, séchées sur sulfate de magnésium, filtrées puis concentrées à sec sous pression réduite (2,7 kPa) à 40°C. On obtient 19,7 g d'une meringue blanche que l'on purifie par chromatographie sur 800 g de silice (0,063-0,2 mm) contenus dans une colonne de 10 cm de diamètre en éluant avec un gradient dichlorométhane-méthanol (de 100-0 à 97-3 en volumes) en recueillant des fractions de 80 cm3. Les fractions ne contenant que le produit cherché sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 16,53 g de tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy-2a époxy-5β,20 trihydroxy- 1β , 7β , 10β oxo-9 taxène-11 yle-13 α sous forme d'une meringue blanche.

10

15

20

25

30

Le tert-butoxycarbonyl-3 diméthyl-2,2 phényl-4 oxazolidinecarboxylate-5-(4S,5R) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 oxo-9 bis-(trichloro-2,2,2 éthoxy) carbonyloxy- 7β ,10 β hydroxy- 1β taxène-11 yle- 13α peut être préparé selon la méthode décrite dans la demande internationale PCT WO 9209589.

Les nouveaux produits de formule générale (I) manifestent une activité inhibitrice significative de la prolifération cellulaire anormale et possèdent des propriétés thérapeutiques permettant le traitement de malades ayant des conditions pathologiques associées à une prolifération cellulaire anormale. Les conditions pathologiques incluent la prolifération cellulaire anormale de cellules malignes ou non malignes de divers tissus ét/ou organes, comprenant, de manière non limitative, les tissus musculaires, osseux ou conjonctifs, la peau, le cerveau, les poumons, les organes sexuels, les systèmes lymphatiques ou rénaux, les cellules mammaires ou

sanguines, le foie, l'appareil digestif, le pancréas et les glandes thyroïdes ou adrénales. Ces conditions pathologiques peuvent inclure également le psoriasis, les tumeurs solides, les cancers de l'ovaire, du sein, du cerveau, de la prostate, du colon, de l'estomac, du rein ou des testicules, le sarcome de Kaposi, le cholangio-carcinome, le choriocarcinome, le neuroblastome, la tumeur de Wilms, la maladie de Hodgkin, les mélanomes, les myélomes multiples, les leucémies lymphocytaires chroniques, les lymphomes granulocytaires aigus ou chroniques. Les nouveaux produits selon l'invention sont particulièrement utiles pour le traitement du cancer de l'ovaire. Les produits selon l'invention peuvent être utilisés pour prévenir ou retarder l'apparition ou la réapparition des conditions pathologiques ou pour traiter ces conditions pathologiques.

5

10

15

20

25

30

35

Les produits selon l'invention peuvent être administrés à un malade selon différentes formes adaptées à la voie d'administration choisie qui, de préférence, est la voie parentérale. L'administration par voie parentérale comprend les administrations intraveineuse, intrapéritonéale, intramusculaire ou sous-cutanée. Plus particulièrement préférée est l'administration intrapéritonéale ou intraveineuse.

La présente invention comprend également les compositions pharmaceutiques qui contiennent au moins un produit de formule générale (I) en une quantité suffisante adaptée à l'emploi en thérapeutique humaine ou vétérinaire. Les compositions peuvent être préparées selon les méthodes habituelles en utilisant un ou plusieurs adjuvants, supports ou excipients pharmaceutiquement acceptables. Les supports convenables incluent les diluants, les milieux aqueux stériles et divers solvants non toxiques. De préférence les compositions se présentent sous forme de solutions ou de suspensions aqueuses, de solutions injectables qui peuvent contenir des agents émusifiants, des colorants, des préservatifs ou des stabilisants.

Le choix des adjuvants ou excipients peut être déterminé par la solubilité et les propriétés chimiques du produit, le mode particulier d'administration et les bonnes pratiques pharmaceutiques.

Pour l'administration parentérale, on utilise des solutions ou des suspensions stériles aqueuses ou non aqueuses. Pour la préparation de solutions ou de suspensions non aqueuses peuvent être utilisés des huiles végétales naturelles telle que l'huile d'olive, l'huile de sésame ou l'huile de paraffine ou les esters organiques injectables tel que l'oléate d'éthyle. Les solutions stériles aqueuses peuvent être constituées d'une solution d'un sel pharmaceutiquement acceptable en solution dans de l'eau. Les solutions aqueuses conviennent pour l'administration intraveineuse

dans la mesure où le pH est convenablement ajusté et où l'isotonicité est réalisée, par exemple, par une quantité suffisante de chlorure de sodium ou de glucose. La stérélisation peut être réalisée par chauffage ou par tout autre moyen qui n'altère pas la composition.

Il est bien entendu que tous les produits entrant dans les compositions selon l'invention doivent être purs et non toxiques pour les quantités utilisées.

5

10

15

20

. 25

30

35

Les compositions peuvent contenir au moins 0,01 % de produit thérapeutiquement actif. La quantité de produit actif dans une composition est telle qu'une posologie convenable puisse être prescrite. De préférence, les compositions sont préparées de telle façon qu'une dose unitaire contienne de 0,01 à 1000 mg environ de produit actif pour l'administration par voie parentérale.

Le traitement thérapeutique peut être effectué concuremment avec d'autres traitements thérapeutiques incluant des médicaments antinéoplastiques, des anticorps monoclonaux, des thérapies immunologiques ou des radiothérapies ou des modificateurs des réponses biologiques. Les modificateurs des réponses incluent, de manière non limitative, les lymphokines et les cytokines telles que les interleukines, les interférons (α , β ou δ) et le TNF. D'autres agents chimiothérapeutiques utiles dans le traitement des désordres dus à la prolifération anormale des cellules incluent, de manière non limitative, les agents alkylants tels que les moutardes à l'azote comme la mechloretamine, le cyclophosphamide, le melphalan et le chlorambucil, des sulfonates d'alkyle comme le busulfan, les nitrosourées comme la carmustine, la lomustine, la sémustine et la streptozocine, les triazènes comme la dacarbazine, les antimétabolites comme les analogues de l'acide folique tel que le méthotrexate, les analogues de pyrimidine comme le fluorouracil et la cytarabine, des analogues de purines comme la mercaptopurine et la thioguanine, des produits naturels tels que les alcaloïdes de vinca comme la vinblastine, la vincristine et la vendésine, des épipodophyllotoxines comme l'étoposide et le teniposide, des antibiotiques comme la dactinomycine, la daunorubicine, la doxorubicine, la bléomycine, la plicamycine et la mitomycine, des enzymes comme la L-asparaginase, des agents divers comme les complexes de coordination du platine tel que le cisplatine, les urées substituées tel que l'hydroxyurée, les dérivés de méthylhydrazine comme la procarbazine, les suppresseurs adrénocoticoïques comme le mitotane et l'aminoglutéthymide, les hormones et les antagonistes comme les adrénocorticostéroïdes comme la prednisone, les progestines comme le caproate d'hydroxyprogestérone, l'acétate de

méthoxyprogestérone et l'acétate de megestrol, les oestrogènes comme le diéthylstilbestrol et l'éthynylestradiol, les antioestrogène comme le tamoxifène, les androgènes comme le propionate de testostérone et la fluoxymesterone.

Les doses utilisées pour mettre en oeuvre les méthodes selon l'invention sont celles qui permettent un traitement prophylactique ou un maximum de réponse thérapeutique. Les doses varient selon la forme d'administration, le produit particulier sélectionné et les caractéristiques propres du sujet à traiter. En général, les doses sont celles qui sont thérapeutiquement efficaces pour le traitement des désordres dus à une prolifération cellulaire anormale. Les produits selon l'invention peuvent être administrés aussi souvent que nécessaire pour obtenir l'effet thérapeutique désiré. Certains malades peuvent répondre rapidement à des doses relativement fortes ou faibles puis avoir besoin de doses d'entretien faibles ou nulles. Généralement, de faibles doses seront utilisées au début du traitement et, si nécessaire, des doses de plus en plus fortes seront administrées jusqu'à l'obtention d'un effet optimum. Pour d'autres malades il peut être nécessaire d'administrer des doses d'entretien 1 à 8 fois par jour, de préférence 1 à 4 fois, selon les besoins physiologiques du malade considéré. Il est aussi possible que pour certains malades il soit nécessaire de n'utiliser qu'une à deux administrations journalières.

Chez l'homme, les doses sont généralement comprises entre 0,01 et 200 mg/kg. Par voie intrapéritonéale, les doses seront en général comprises entre 0,1 et 100 mg/kg et, de préférence entre 0,5 et 50 mg/kg et, encore plus spécifiquement entre 1 et 10 mg/kg. Par voie intraveineuse, les doses sont généralement comprises entre 0,1 et 50 mg/kg et, de préférence entre 0,1 et 5 mg/kg et, encore plus spécifiquement entre 1 et 2 mg/kg. Il est entendu que, pour choisir le dosage le plus approprié, devront être pris en compte la voie d'administration, le poids du malade, son état de santé général, son âge et tous les facteurs qui peuvent influer sur l'efficacité du traitement.

L'exemple suivant illustre une composition selon l'invention.

EXEMPLE

10

15

20

25

30

On dissout 40 mg du produit obtenu à l'exemple 1 dans 1 cm3 d'Emulphor EL 620 et 1 cm3 d'éthanol puis la solution est diluée par addition de 18 cm3 de sérum physiologique.

La composition est administrée par perfusion pendant 1 heure par introduction dans du soluté physiologique.

REVENDICATIONS

1 - Nouveaux taxoïdes de formule générale :

dans laquelle

10

15

20

25

R représente un atome d'hydrogène ou un radical acétyle,
R₁ représente un radical benzoyle ou un radical R₂-O-CO- dans lequel R₂ représente
un radical alcoyle, alcényle, alcynyle, cycloalcoyle, cycloalcényle, bicycloalcoyle,
phényle ou hétérocyclyle, et
Ar représente un radical aryle.

2 - Nouveaux dérivés selon la revendication 1 pour lesquels :

R représente un atome d'hydrogène ou un radical acétyle, R₁ représente un radical benzoyle ou un radical R₂-O-CO dans lequel R₂ représente :

- un radical alcoyle droit ou ramifié contenant 1 à 8 atomes de carbone, alcényle contenant 2 à 8 atomes de carbone, alcynyle contenant 3 à 8 atomes de carbone, cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone ou bicycloalcoyle contenant 7 à 10 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux hydroxy, alcoxy contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, pipéridino, morpholino, pipérazinyl-1 (éventuellement substitué en -4 par un radical alcoyle contenant 1 à 4 atomes de carbone ou par un radical phénylalcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone), cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone, phényle, cyano, nitro, carboxy ou alcoxycarbonyle dont la partie alcoyle contient 1 à 4 atomes de carbone.

o ou un radical phényle, éventuellement substitué par un ou plusieurs radicaux, identiques ou différents, choisis parmi les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoxy contenant 1 à 4 atomes de carbone,

- ou un radical hétérocyclyle azoté saturé ou non saturé contenant 5 ou 6 chaînons éventuellement substitué par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone.

5

10

15

20

25

30

35

étant entendu que les radicaux cycloalcoyles, cycloalcényles ou bicycloalcoyles peuvent être éventuellement substitués par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone, et

Ar représente un radical phényle ou α - ou β -naphtyle éventuellement substitué par un ou plusieurs atomes ou radicaux choisis parmi les atomes d'halogène (fluor, chlore, brome, iode) et les radicaux alcoyles, alcényles, alcynyles, arylalcoyles, alcoxy, alcoylthio, aryloxy, arylthio, hydroxy, hydroxyalcoyle, mercapto, formyle, aroylamino, alcoxycarbonylamino, alcoylamino, acylamino, amino, acyle, dialcoylamino, carboxy, alcoxycarbonyle, carbamoyle, dialcoylcarbamoyle, cyano, nitro et trifluorométhyle, étant entendu que les radicaux alcoyles et les portions alcoyles des autres radicaux contiennent 1 à 4 atomes de carbone, que les radicaux alcényles et alcynyles contiennent 2 à 8 atomes de carbone et que les radicaux aryles sont des radicaux phényles ou α- ou β-naphtyles, ou bien Ar représente un radical hétérocyclique aromatique ayant 5 chaînons et contenant un ou plusieurs atomes, identiques ou différents, choisis parmi les atomes d'azote, d'oxygène ou de soufre, éventuellement substitué par un ou plusieurs substituants, identiques ou différents, choisis parmi les atomes d'halogène (fluor, chlore, brome, iode) et les radicaux alcoyles contenant 1 à 4 atomes de carbone, aryles contenant 6 à 10 atomes de carbone, alcoxy contenant 1 à 4 atomes de carbone, aryloxy contenant 6 à 10 atomes de carbone, amino, alcoylamino contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, acylamino dont la partie acyle contient 1 à 4 atomes de carbone, alcoxycarbonylamino contenant 1 à 4 atomes de carbone, acyle contenant 1 à 4 atomes de carbone, arylcarbonyle dont la partie aryle contient 6 à 10 atomes de carbone, cyano, carboxy, carbamoyle, alcoylcarbamoyle dont la partie alcoyle contient 1 à 4 atomes de carbone, dialcoylcarbamoyle dont chaque partie alcoyle contient 1 à 4 atomes de carbone ou alcoxycarbonyle dont la partie alcoxy contient 1 à 4 atomes de carbone.

3 - Nouveaux dérivés selon la revendication 1 pour lesquels R représente un atome d'hydrogène ou un radical acétyle, R₁ représente un radical benzoyle ou un

radical R₂-O-CO- dans lequel R₂ représente un radical t.butyle et Ar représente un radical phényle.

4 - Procédé de préparation d'un produit selon l'une des revendications 1, 2 ou 3 caractérisé en ce que l'on estérifie un produit de formule générale :

dans laquelle G_1 représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy, au moyen d'un acide de formule générale :

5

dans laquelle Ar et R₁ sont définis comme dans l'une des revendications 1, 2 ou 3, R₃ représente un atome d'hydrogène ou un radical alcoxy ou un radical aryle éventuellement substitué et R₄ représente un atome d'hydrogène, pour obtenir un produit de formule générale :

dans laquelle Ar, R et R₁ sont définis comme dans l'une des revendications 1, 2 ou 3, R₃, R₄ et G₁ sont définis comme ci-dessus, que l'on traite en milieu acide pour obtenir un produit de formule générale :

$$\begin{array}{c}
R_{1}-NH \\
Ar \\
\hline
OH
\end{array}$$

$$\begin{array}{c}
G_{1}-O \\
\hline
OH
\end{array}$$

$$\begin{array}{c}
G_{1}-O \\
\hline
OH
\end{array}$$

$$\begin{array}{c}
OH$$

$$OH$$

$$\begin{array}{c}
OH$$

$$OH$$

dans laquelle Ar, R_1 et G_1 sont définis comme ci-dessus, puis remplace éventuellement le groupement protecteur G_1 par un atome d'hydrogène et isole le produit obtenu.

5 - Procédé selon la revendication 4 caractérisé en ce que l'estérification est effectuée au moyen de l'acide libre en opérant en présence d'un agent de condensation choisi parmi les carbodiimides et les carbonates réactifs et d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les cétones, les esters, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre -10 et 90°C.

5

10

15

20

- 6 Procédé selon la revendication 4 caractérisé en ce que l'estérification au moyen de l'anhydride est effectué en présence d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 90°C.
- 7 Procédé selon la revendication 4 caractérisé en ce que l'estérification est effectuée au moyen d'un halogénure ou d'un anhydride avec un acide aliphatique ou aromatique, éventuellement préparé in situ, en opérant en présence d'une base choisie parmi les amines aliphatiques tertiaires dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 80°C.

8 - Procédé selon la revendication 4 caractérisé en ce que le traitement acide est effectué au moyen d'un acide minéral ou organique dans un solvant organique à une température comprise entre -10 et 60°C.

9 - Procédé selon la revendication 8 caractérisé en ce que l'acide est choisi parmi les acides chlorhydrique, sulfurique, acétique, méthanesulfonique, trifluoro-méthanesulfonique et p.toluènesulfonique utilisés seuls ou en mélange.

5

10 - Procédé selon la revendication 8 caractérisé en ce que le solvant est choisi parmi les alcools, les éthers, les esters, les hydrocarbures aliphatiques halogénés, les hydrocarbures aromatiques et les nitriles.

11 - Procédé selon la revendication 4 caractérisé en ce que le remplacement par un atome d'hydrogène du groupement protecteur G₁ représentant un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle est effectué par traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre.

12 - Procédé de préparation d'un produit selon l'une des revendications 1, 2 ou 3 caractérisé en ce que l'on estérifie un produit de formule générale :

dans laquelle G₁ représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy au moyen d'un acide de formule générale :

dans laquelle Ar et R_1 sont définis comme dans l'une des revendications 1, 2 ou 3 et R_3 et R_4 , identiques ou différents, représentent un radical alcoyle contenant 1 à 4 atomes de carbone ou un radical aralcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone ou un radical aryle, ou bien R_3 représente un radical trihalométhyle ou un radical phényle substitué par un radical trihalométhyle et R_4 représente un atome d'hydrogène, ou bien R_3 et R_4 forment ensemble avec l'atome de carbone auquel ils sont liés un cycle ayant 4 à 7 chaînons, pour obtenir un produit de formule générale :

5

10

15

20

dans laquelle Ar est défini comme dans l'une des revendications 1, 2 ou 3 et G_1 est défini comme ci-dessus, qui est acylé au moyen de chlorure de benzoyle ou d'un dérivé réactif de formule générale :

dans laquelle R₂ est défini comme dans l'une des revendications 1, 2 ou 3 et X représente un atome d'halogène ou un reste-O-R₂ ou -O-CO-O-R₂, puis remplace, si nécessaire, le groupement protecteur G₁ par un atome d'hydrogène, et isole le produit obtenu.

13 - Procédé selon la revendication 12 caractérisé en ce que l'estérification est effectuée au moyen de l'acide libre en opérant en présence d'un agent de condensation choisi parmi les carbodiimides et les carbonates réactifs et d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les cétones, les esters, les nitriles, les hydrocarbures aliphatiques, les

Sitting of me sales level a located delicated

hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre -10 et 90°C.

14 - Procédé selon la revendication 12 caractérisé en ce que l'estérification au moyen de l'anhydride est effectué en présence d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 90°C.

5

20

- 15 Procédé selon la revendication 12 caractérisé en ce que l'estérification est effectuée au moyen d'un halogénure ou d'un anhydride avec un acide aliphatique ou aromatique, éventuellement préparé in situ, en opérant en présence d'une base choisie parmi les amines aliphatiques tertiaires dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 80°C.
 - 16 Procédé selon la revendication 12 caractérisé en ce que le traitement acide est effectué au moyen d'un acide minéral ou organique dans un solvant organique à une température comprise entre -10 et 60°C.
 - 17 Procédé selon la revendication 16 caractérisé en ce que l'acide est choisi parmi les acides chlorhydrique, sulfurique, fluorhydrique, formique, acétique, méthanesulfonique, trifluoro-méthanesulfonique et p.toluènesulfonique utilisés seuls ou en mélange.
 - 18 Procédé selon la revendication 16 caractérisé en ce que le solvant est choisi parmi les alcools, les éthers, les esters, les hydrocarbures aliphatiques halogénés, les hydrocarbures aromatiques et les nitriles.
 - 19 Procédé selon la revendication 12 caractérisé en ce que l'acylation est effectuée dans un solvant organique inerte en présence d'une base minérale ou organique.
- 20 Procédé selon la revendication 19 caractérisé en ce que le solvant 30 organique inerte est choisi parmi les esters et les hydrocarbures aliphatiques halogénés.

21 - Procédé selon l'une des revendications 18, 19 ou 20 caractérisé en ce que l'on opère à une température comprise entre 0 et 50°C.

22 - Procédé selon la revendication 12 caractérisé en ce que le remplacement par un atome d'hydrogène du groupement protecteur G₁ représentant un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle est effectué par traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre.

5

10

23 - Procédé de préparation d'un produit selon l'une des revendications 1, 2 ou 3 caractérisé en ce que l'on estérifie un produit de formule générale :

dans laquelle G₁ représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy, au moyen d'un acide de formule générale :

dans laquelle Ar et R₁ sont définis comme dans l'une des revendications 1, 2 ou 3 et G₃ représente un groupement protecteur de la fonction hydroxy, ou d'un dérivé activé de cet acide, pour obtenir un produit de formule générale :

dans laquelle Ar, R, R_1 , G_1 et G_3 sont définis comme précédemment, dont on remplace les groupements protecteurs G_3 et éventuellement G_1 par un atome d'hydrogène, et isole le produit obtenu.

- 24 Procédé selon la revendication 23 caractérisé en ce que l'estérification est effectuée au moyen de l'acide libre en opérant en présence d'un agent de condensation choisi parmi les carbodiimides et les carbonates réactifs et d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les cétones, les esters, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre -10 et 90°C.
 - 25 Procédé selon la revendication 23 caractérisé en ce que l'estérification au moyen de l'anhydride est effectué en présence d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 90°C.

15

- 26 Procédé selon la revendication 23 caractérisé en ce que l'estérification est effectuée au moyen d'un halogénure ou d'un anhydride avec un acide aliphatique ou aromatique, éventuellement préparé in situ, en opérant en présence d'une base choisie parmi les amines aliphatiques tertiaires dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques à une température comprise entre 0 et 80°C.
- 27 Procédé selon la revendication 23 caractérisé en ce que le remplacement des groupements protecteurs G₁ et G₃ par des atomes d'hydrogène est effectué par

traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre, lorsque G1 et G3 représentent un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle, ou par traitement en milieu acide tel que par exemple l'acide chlorhydrique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone (méthanol, éthanol, propanol, isopropanol) ou l'acide fluorhydrique aqueux à une température comprise entre 0 et 40°C lorsque G3 représente un reste d'acétal, suivi du remplacement du groupement protecteur G₁ par traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre.

28 - Procédé selon la revendication 23 caractérisé en ce que, lorsque G₃ représente un radical -CH₂-Ph, le remplacement du groupement par un atome d'hydrogène est effectué par hydrogénolyse, après avoir remplacé le groupement protecteur G₁ dans les conditions de la revendication 27.

29 - Nouveau taxoïde de formule générale :

5

10

15

20

dans laquelle G₁ représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy.

30 - Composition pharmaceutique caractérisé en ce qu'elle contient au moins un produit selon l'une des revendications 1, 2 ou 3 en association avec un ou plusieurs produits pharmaceutiquement acceptables qu'ils soient inertes ou physiologiquement actifs.

£

ORIGINAL

alcoxy, amino, alcoylamino, dialcoylamino, acylamino, alcoxycarbonylamino et trifluorométhyle.

Plus particulièrement encore, Ar représente un radical phényle éventuellement substitué par un atome de chlore ou de fluor, ou par un radical alcoyle (méthyle), alcoxy (méthoxy), dialcoylamino (diméthylamino), acylamino (acétylamino) ou alcoxycarbonylamino (tert-butoxycarbonylamino) ou thiényle-2 ou -3 ou furyle-2 ou -3.

5

10

15

20

25

D'un intérêt encore plus particulier sont les produits de formule générale (I) dans laquelle Ar représente un radical phényle et R₁ représente un radical benzoyle ou tert.butoxycarbonyle.

Selon la présente invention, les nouveaux taxoïdes de formule générale (I) peuvent être obtenus à partir d'un produit de formule générale :

dans laquelle Ar et R₁ sont définis comme précédemment et R₃ et R₄, identiques ou différents représentent un atome d'hydrogène ou un radical alcoyle contenant 1 à 4 atomes de carbone, ou un radical aralcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone et la partie aryle représente, de préférence, un radical phényle éventuellement substitué par un ou plusieurs radicaux alcoxy contenant 1 à 4 atomes de carbone, ou un radical aryle représentant, de préférence un radical phényle éventuellement substitué par un ou plusieurs radicaux alcoxy contenant 1 à 4 atomes de carbone, ou bien R₃ représente un radical alcoxy contenant 1 à 4 atomes de carbone ou un radical trihalométhyle tel que trichlorométhyle ou un radical phényle substitué par un radical trihalométhyle tel que trichlorométhyle et R₄ représente un atome d'hydrogène, ou bien R₃ et R₄ forment ensemble avec l'atome de carbone auquel ils sont liés un cycle ayant 4 à 7 chaînons, et G₁ représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy, en opérant, selon les significations de R₃ et R₄, de la manière suivante :

1) lorsque R₃ représente un atome d'hydrogène ou un radical alcoxy contenant 1 à 4 atomes de carbone ou un radical aryle éventuellement substitué et R₄

dans laquelle Ar et R₁ sont définis comme précédemment et G₃ représente un groupement protecteur de la fonction hydroxy choisi parmi les radicaux méthoxyméthyle, éthoxy-1 éthyle, benzyloxyméthyle, (β-triméthylsilyloxy)méthyle, tétrahydropyranyle, trichloro-2,2,2 éthoxyméthyle, trichloro-2,2,2 éthoxycarbonyle, (trichlorométhyl-2 propoxy)-2 carbonyle ou CH₂-Ph dans lequel Ph représente un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux, identiques ou différents choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoxy contenant 1 à 4 atomes de carbone, ou d'un dérivé activé de cet acide, pour obtenir un produit de formule générale :

5

10

15

20

25

$$\begin{array}{c} R_1 \text{-NH} \\ Ar \\ \hline \bar{O} \text{-}G_3 \end{array} \qquad \begin{array}{c} G_1 \text{-}\bar{O} \\ \hline \bar{O} \\ \hline \bar{O} \text{-}G_6 \end{array} \qquad \begin{array}{c} (XXVIII) \\ \hline \bar{O} \\ \hline \bar{O} \text{-}G_6 \end{array}$$

dans laquelle Ar, R_1 , G_1 et G_3 sont définis comme précédemment, suivie du remplacement des groupements protecteurs G_1 et G_3 par des atomes d'hydrogène pour obtenir un produit de formule générale (I).

L'estérification peut être réalisée dans les conditions décrites précédemment pour l'estérification du produit de formule générale (VI) au moyen d'un acide de formule générale (VII).

Le remplacement des groupements protecteurs G₁ et G₃ du produit de formule générale (XXVII) par un atome d'hydrogène est effectué par traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre, lorsque G₁ et G₃ représentent un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle. Le remplacement du groupement protecteur G₃, lorsqu'il représente un radical silylé ou un reste d'acétal, peut être effectué par traitement en milieu acide tel que par exemple l'acide chlorhydrique en solution dans

REVENDICATIONS

1 - Nouveaux taxoïdes de formule générale :

dans laquelle

10

15

20

25

R représente un atome d'hydrogène ou un radical acétyle, R₁ représente un radical benzoyle ou un radical R₂-O-CO- dans lequel R₂ représente un radical alcoyle, alcényle, alcynyle, cycloalcoyle, cycloalcényle, bicycloalcoyle, phényle ou hétérocyclyle, et Ar représente un radical aryle.

2 - Nouveaux dérivés selon la revendication 1 pour lesquels :

R représente un atome d'hydrogène ou un radical acétyle,

R₁ représente un radical benzoyle ou un radical R₂-O-CO dans lequel R₂ représente :

- un radical alcoyle droit ou ramifié contenant 1 à 8 atomes de carbone, alcényle contenant 2 à 8 atomes de carbone, alcynyle contenant 3 à 8 atomes de carbone, cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone ou bicycloalcoyle contenant 7 à 10 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux hydroxy, alcoxy contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, pipéridino, morpholino, pipérazinyl-1 (éventuellement substitué en -4 par un radical alcoyle contenant 1 à 4 atomes de carbone ou par un radical phénylalcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone), cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone, phényle, cyano, carboxy ou alcoxycarbonyle dont la partie alcoyle contient 1 à 4 atomes de carbone.

radical R₂-O-CO- dans lequel R₂ représente un radical t.butyle et Ar représente un radical phényle.

4 - Procédé de préparation d'un produit selon l'une des revendications 1, 2 ou 3 caractérisé en ce que l'on estérifie un produit de formule générale :

5

dans laquelle G₁ représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy, au moyen d'un acide de formule générale :

10

dans laquelle Ar et R₁ sont définis comme dans l'une des revendications 1, 2 ou 3, R₃ représente un atome d'hydrogène ou un radical alcoxy contenant 1 à 4 atomes de carbone ou un radical aryle éventuellement substitué et R₄ représente un atome d'hydrogène, pour obtenir un produit de formule générale :

dans laquelle Ar, R et R₁ sont définis comme dans l'une des revendications 1, 2 ou 3, R₃, R₄ et G₁ sont définis comme ci-dessus, que l'on traite en milieu acide pour obtenir un produit de formule générale :

FEUILI

dans laquelle Ar, R_1 et G_1 sont définis comme ci-dessus, puis remplace éventuellement le groupement protecteur G_1 par un atome d'hydrogène et isole le produit obtenu.

5 - Procédé selon la revendication 4 caractérisé en ce que l'estérification est effectuée au moyen de l'acide libre en opérant en présence d'un agent de condensation choisi parmi les carbodiimides et les carbonates réactifs et d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les cétones, les esters, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre -10 et 90°C.

5

10

- 6 Procédé selon la revendication 4 caractérisé en ce que l'estérification au moyen de l'anhydride est effectué en présence d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 90°C.
- 7 Procédé selon la revendication 4 caractérisé en ce que l'estérification est effectuée au moyen d'un halogénure ou d'un anhydride avec un acide aliphatique ou
 20 aromatique, éventuellement préparé in situ, en opérant en présence d'une base choisie parmi les amines aliphatiques tertiaires dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 80°C.

dans laquelle Ar et R₁ sont définis comme dans l'une des revendications 1, 2 ou 3 et R₃ et R₄, identiques ou différents, représentent un radical alcoyle contenant 1 à 4 atomes de carbone ou un radical aralcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone ou un radical aryle, ou bien R₃ représente un radical trihalométhyle ou un radical phényle substitué par un radical trihalométhyle et R₄ représente un atome d'hydrogène, ou bien R₃ et R₄ forment ensemble avec l'atome de carbone auquel ils sont liés un cycle ayant 4 à 7 chaînons, pour obtenir après traitement en milieu acide un produit de formule générale :

10

5

dans laquelle Ar est défini comme dans l'une des revendications 1, 2 ou 3 et G_1 est défini comme ci-dessus, qui est acylé au moyen de chlorure de benzoyle ou d'un dérivé réactif de formule générale :

- dans laquelle R₂ est défini comme dans l'une des revendications 1, 2 ou 3 et X représente un atome d'halogène ou un reste-O-R₂ ou -O-CO-O-R₂, puis remplace, si nécessaire, le groupement protecteur G₁ par un atome d'hydrogène, et isole le produit obtenu.
- 13 Procédé selon la revendication 12 caractérisé en ce que l'estérification 20 est effectuée au moyen de l'acide libre en opérant en présence d'un agent de condensation choisi parmi les carbodiimides et les carbonates réactifs et d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les cétones, les esters, les nitriles, les hydrocarbures aliphatiques, les

FEULLS RESTRICE

hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre -10 et 90°C.

14 - Procédé selon la revendication 12 caractérisé en ce que l'estérification au moyen de l'anhydride est effectué en présence d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 90°C.

5

- 15 Procédé selon la revendication 12 caractérisé en ce que l'estérification est effectuée au moyen d'un halogénure ou d'un anhydride avec un acide aliphatique ou aromatique, éventuellement préparé in situ, en opérant en présence d'une base choisie parmi les amines aliphatiques tertiaires dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 80°C.
 - 16 Procédé selon la revendication 12 caractérisé en ce que le traitement acide est effectué au moyen d'un acide minéral ou organique dans un solvant organique à une température comprise entre 0 et 50°C.
- 17 Procédé selon la revendication 16 caractérisé en ce que l'acide est choisi 20 parmi les acides chlorhydrique, sulfurique et formique.
 - 18 Procédé selon la revendication 16 caractérisé en ce que le solvant est choisi parmi les alcools contenant 1 à 3 atomes de carbone.
 - 19 Procédé selon la revendication 12 caractérisé en ce que l'acylation est effectuée dans un solvant organique inerte en présence d'une base minérale ou organique.
 - 20 Procédé selon la revendication 19 caractérisé en ce que le solvant organique inerte est choisi parmi les esters et les hydrocarbures aliphatiques halogénés.
- 21 Procédé selon l'une des revendications 18, 19 ou 20 caractérisé en ce que l'on opère à une température comprise entre 0 et 50°C.

dans laquelle Ar, R_1 , G_1 et G_3 sont définis comme précédemment, dont on remplace les groupements protecteurs G_3 et éventuellement G_1 par un atome d'hydrogène, et isole le produit obtenu.

24 - Procédé selon la revendication 23 caractérisé en ce que l'estérification est effectuée au moyen de l'acide libre en opérant en présence d'un agent de condensation choisi parmi les carbodiimides et les carbonates réactifs et d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les cétones, les esters, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre -10 et 90°C.

5

10

15

- 25 Procédé selon la revendication 23 caractérisé en ce que l'estérification au moyen de l'anhydride est effectué en présence d'un agent d'activation choisi parmi les aminopyridines dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 90°C.
- 26 Procédé selon la revendication 23 caractérisé en ce que l'estérification est effectuée au moyen d'un halogénure ou d'un anhydride avec un acide aliphatique ou aromatique, éventuellement préparé in situ, en opérant en présence d'une base choisie parmi les amines aliphatiques tertiaires dans un solvant organique choisi parmi les éthers, les esters, les cétones, les nitriles, les hydrocarbures aliphatiques, les hydrocarbures aliphatiques halogénés et les hydrocarbures aromatiques à une température comprise entre 0 et 80°C.
- 27 Procédé selon la revendication 23 caractérisé en ce que le remplacement des groupements protecteurs G₁ et G₃ par des atomes d'hydrogène est effectué par

FEM! 15

traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre, lorsque G1 et G3 représentent un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle, ou par traitement en milieu acide tel que par exemple l'acide chlorhydrique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone (méthanol, éthanol, propanol, isopropanol) ou l'acide fluorhydrique aqueux à une température comprise entre 0 et 40°C lorsque G3 représente radical silylé ou un reste d'acétal, suivi du remplacement du groupement protecteur G₁ par traitement par le zinc, éventuellement associé au cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre.

28 - Procédé selon la revendication 23 caractérisé en ce que, lorsque G₃ représente un radical -CH₂-Ph, le remplacement du groupement par un atome d'hydrogène est effectué par hydrogénolyse, après avoir remplacé le groupement protecteur G₁ dans les conditions de la revendication 27.

29 - Nouveau taxoïde de formule générale :

5

10

15

20

25 dans laquelle G₁ représente un atome d'hydrogène ou un radical acétyle ou un groupement protecteur de la fonction hydroxy.

THIS PAGE BLANK (USPTO)

MORGAN & FINNEGAN
555 13th Street, N.W.
Suite 480 West
Washington, D.C. 20004-1109
1290-7281