Heegard Floer Homology

J.A. Weenink

RUG & NTU

March 22, 2021

Outline

Two parts:

- Heegard splitting
 - 3 Manifold theory
 - Heegaard diagrams
 - Examples
- Heegaard Floer Homology
 - Boxes
 - Chains
 - Example

- Kevin's problems?
- ► My problems?

80s: Floer developed his homology Lagrangian submfds of symplectic manifolds.

 $\label{thm:conjecture} \mbox{To prove Arnold's conjecture (Poincar\'e-Birkhoff generalisation) in some cases, intersection = fixed points [8] \\$

00s: Ozsváth, Szabó, etc., create appropriate structures on 3 Manifolds to apply Floer Homology

3 Manifold \implies Heegard Σ urface \implies tori $\Pi_{\alpha}, \Pi_{\beta}$ in $\mathrm{Sym}^{g}(\Sigma)$

Establishes Heegard Floer Theory of knots

Late 00s: combinatorial simplification \implies grid homology

3 Manifold theory

Given two 3-mfds M_i with homeo $f: \partial M_1 \to \partial M_2$,

$$M := M_1 \cup_f M_2$$

If M_i same genus handlebodies, ∂M_i same, we have a **Heegard splitting** Thm. All closed, orientable 3-mfd M have a Heegaard splitting. Pf.

Triangulate M, tree inside 1=skeleton, skeleton 0, 1 cells, skeleton 2,3 cells handlebody

E.g. Sphere

Draw pictures of Sphere as $D^3 \cup D^3$, Σ_1 and Σ_g with stabilisation.

Thm. Heegards splitting are "essentially" unique
By "stabilisation", isotopy, any splitting has a common descendant.

Pf Triangulations of mfd equivalent, which exist by above. Any Heegard is equivalent to triangulation decomp: axial graph of H_i , give triangulation to hole H_i , via boundary to H'_i .

<u>Alexander</u>

Every 2-sphere in \mathbb{R}^3 bounds a 3-ball[3].

Every 2-sphere automorphism can be uniquely extended to entire ball (up to isotopy) [1].

Orientation preserving isotopic to identity

$$\Longrightarrow$$
 Any homeo $f: D^3 \to D^3$ determined by f on $\partial D^3 = S^2$
Sketch: $f: S^2 \to S^2$ on D^3 by $\hat{f}(r, \phi, \theta) = rf(\phi, \theta)$

Solid torus friends

Heegard splitting across g-torus, $\pi_1(\text{Torus}) = \mathbb{Z} \oplus \mathbb{Z}$

 $\pi_1(\text{ Iorus}) = \mathbb{Z} \oplus \text{draw Meridian}$

 $D^2 imes S^1 = (D^2 imes \delta) \cup D^3$

 $\partial A \cup B = \partial A \cup B + a \cup \partial B$

Lemma: image of μ completely determines gluing of two solid tori

$$D \times S = (D \times 0)$$

60s Lickorish, Wallace: all 3-mfd by surgery on link in S^3

meridian $\mu \to \mu$ or λ

Heegaard diagram

 Σ genus g surface, then $\{\gamma_i\}_{1\leq i\leq g}$ are attaching circles if homologically linearly independent

Excercise: lin-indep $\iff \Sigma \setminus \cup_i \gamma_i$ connected Def. the **Heegaard diagram** is $(\Sigma, \{\alpha\}, \{\beta\})$

prev page example attaching $\mathcal{T}^1,\{\mu\},\{\lambda\}$

Knot Heegaard diagram

For knot K in 3-mfd Y, we have a **doubly pointed Heegaard diagram** $(\Sigma, \{\alpha\}, \{\beta\}, w, z)$ if:

- ▶ α, β attaching circles for $Y = (Σ, \alpha, \beta)$
- ▶ Arcs $w \rightarrow z$ and $z \rightarrow w$ via α resp. β 3mfds give rise to Knot

Recall 3-ball H_{α} attached along $\alpha_1 \dots \alpha_g$, let $w \to z$ in 3-ball Likewise $z \to w$ in 3-ball H_{β} complement of $\beta_1 \dots \beta_g$

Practically runs near surface avoiding $\cup_i \alpha_i$ resp. $\cup_i \beta_i$ Unknot:

algorithm 1

Take knot K with knot diagram $\xrightarrow{1}$ thicken $U(K) \xrightarrow{2}$ connect crossings appropriately

 $\stackrel{3}{ o}$ attaching circles lpha for genus holes, eta for g-1 crossings, and $eta_{m{g}}$ at w, z

algorithm 1+

Take knot K with knot diagram $\xrightarrow{1}$ thicken $U(K) \xrightarrow{2}$ connect crossings appropriately

 $\xrightarrow{3}$ attaching circles α for genus holes, β for ${\it g}-1$ crossings, and $\beta_{\it g}$ at w, z

Trefoil alternative

Riemann manifold

For doubly pointed Heegaard diagram (Σ , { α }, { β }, w, z), def

$$\operatorname{Sym}^{g}(\Sigma) = \Sigma^{\times g}/\operatorname{S}_{g}$$

Thm.: $\operatorname{Sym}^g(\Sigma)$ is a complex manifold Sketch: $\Sigma \simeq \mathbb{C}$, locally $\simeq \mathbb{C}^g$

$$\operatorname{Sym}^g(\Sigma) \ni (w_1, \dots, w_g) \leftrightarrow \ (z - w_1) \cdots (z - w_g) = z^g + a_{g-1} z^{g-1} + \dots a_0 \ \leftrightarrow (a_0, \dots a_{g-1}) \in \mathbb{C}^g$$

Whitney

$$\mathbb{T}_\alpha := \alpha_1 \times \cdots \times \alpha_g \ \mathbb{T}_\beta = \beta_1 \times \cdots \times \beta_g \qquad \subset \mathrm{Sym}^g \Sigma$$
 g-tori subspaces, assume intersect transversely, i.e.

 $S = \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$

$$\mathfrak{Z}=\mathbb{T}_{lpha}\cap\mathbb{T}_{lpha}$$

Whitney strips/disc $\pi_2(x, y)$ homotopy classes: $x, y \in S$, a map $\varphi : D^1 \subset \mathbb{C} \to \operatorname{Sym}^g \Sigma$

$$x,y\in\mathcal{S}$$
, a map $\varphi:D^1\subset\mathbb{C} o\mathrm{Sym}^g\Sigma$ $x\stackrel{\mathbb{T}_{eta}}{\Longrightarrow}y$

 $\widehat{\mathcal{M}}(\varphi) = \text{all holomorphic representatives of } \varphi \text{ modulo translation}$ Maslov

g=1 Maslov calculation

Fact 1: Möbius transforms on R-S $\overline{\mathbb{C}}=S^2$ completely determined by three points.

2: Only biholomorphic maps on unit disc are Möbius (exc. 3)

Lemma: $\widehat{\mathcal{M}}(\varphi)$ has one representative

Domain

$$\begin{split} & \Sigma \backslash \alpha \cup \beta = \cup_{i} \mathcal{D}_{i}^{\circ} \\ & \partial \mathcal{D}_{i} \subset \mathbb{T}_{\alpha} \cup \mathbb{T}_{\beta} \\ & \partial \partial_{\alpha} \end{split}$$

Heegaard-Floer chain Def $n_z(\varphi) := \#\varphi^{-1}\{z\} \times \operatorname{Sym}^{g-1}\Sigma$

$$\partial x = \sum_{oldsymbol{y} \in \mathbb{T}_{lpha} \cap \mathbb{T}_{eta}} \sum_{oldsymbol{arphi} \in \pi_2(oldsymbol{x}, oldsymbol{y})} \# \widehat{\mathcal{M}}(oldsymbol{arphi}) U^{n_w(oldsymbol{arphi})} V^{n_z(oldsymbol{arphi})} y$$

bigrading:
$$M(x) - M(y) = \mu(\varphi) - 2n_w(\varphi)$$

 $A(x) - A(y) = n_z(\varphi) - n_w\varphi$

$$n_z(\varphi) = 0 \implies \partial^ \& n_w(\varphi) = 0 \implies \hat{\partial}$$

Thm. (16.4.1) H-F homology
$$\partial^-$$
 is equivalent to ∂^- grid homology Lemma: φ is a product of rectangles

$\frac{\textbf{Trefoil example}}{\pi_z(\varphi) := \#\{z\} \times \operatorname{Sym}^{g-1}\Sigma^-}$

$$\partial x = \sum_{\substack{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \\ \mu(\phi) = 1}} \sum_{\substack{\varphi \in \pi_2(x,y) \\ \mu(\phi) = 1}} \# \widehat{\mathcal{M}}(\varphi) U^{n_w(\varphi)} V^{n_z(\varphi)} y$$

Show Meridian matters, give diagram definition, pointed heegaard mfd. splitting examples	

References I

Burde-Zieschang. knots. 2014.

Hiroshi Goda, Hiroshi Matsuda, and Takayuki Morifuji. "Knot Floer homology of (1, 1)-knots". In: Geom. Dedicata (2005). ISSN: 00465755. DOI: 10.1007/s10711-004-5403-2.

Allen Hatcher. "Notes on Basic 3-Manifold Topology". In: *Topology* 138.45 (2000), pp. 2244–2247. ISSN: 00282162.

Jennifer Hom. "Heegaard floer homology, lectures 1–4". In: (2019), pp. 1–21.

Peter Ozsváth and Zoltán Szabó. "Holomorphic disks and topological invariants for closed three-manifolds". In: *Ann. Math.* (2004). ISSN: 0003486X. DOI: 10.4007/annals.2004.159.1027. arXiv: 0101206 [math].

Peter S Ozsváth, András I Stipsicz, and Zoltán Szabó. *Grid homology for knots and links*. Vol. 208. 2015. ISBN: 9781470417376.

Nikolai Saveliev. *Lectures on topology of 3 manifiolds*. ISBN: 9783110250350. DOI: 10.1515/9783110250367.

Dietmar Solomon. Lectures on Floer Homology.

exercise 1

Show $\{\gamma_i\}_{1\leq i\leq g}$ are attaching circles (lin. indep. disjoint curves in $H_1(\Sigma_g)$) for surface Σ if, and only if $\Sigma_g \setminus \cup_i \gamma_i$ is connected. (Hint: draw 4*g*-polygon

with edge and vertex identification.) First try g = 1, 2 and then generalise.

exercise 2

The figure 8 knot pointed diagrams:
a: with the first algorithm creating a large genus diagram

b: as genus 1 diagram by the trefoil-like procedure (resulting toroidal diagram is in $16.1~\rm of~book)$

<u>exercise 3</u> Under assumption that the Möbius transforms from the unit disc to itself

exist, are biholomorphic, and are determined by three points, show that: All biholomirhpic functions on the unit disc $f: D^2 \subset \mathbb{C} \to D^2$ are Möbius transforms.

exercise 4 Over field $\mathbb{Z}/2\mathbb{Z}$, finish the trefoil knot complex calculation by calculating the gradings of elements a, b, c, using U = 1, and V = 1.