Assignment 2

Dr. Wojtek Kowalczyk

wojtek@liacs.nl

Updated plan

Old plan:

three programming assignments:

Assignment 1: Linear Models + MLP

Assignment 2: Deep Neural Networks on GPU's

Assignment 3: A DL Challenge

– New plan:

Assignments 2 and 3 merged together

Deadline: 19 April (Wednesday evening)

Deadline for self-evaluation: 1 May (Monday morning)

Presentation of best papers: 3 May (Wednesday, 11:15)

Objectives of A2

- 1. Master 3 types of networks and learn some of their applications:
 - Convolutional
 - Recurrent
 - Autoencoders
- Master modern tools for training deep networks on GPUs (*Python* + *KERAS(Theano|Tensorflow*)).
- 3. Learn how to apply "Deep Learning" to some interesting problems.

A2: step-by-step

- Get acquainted with TensorFlow or Theano and Keras by studying and running various programs/tutorials that are available on the internet
- Select, for each type of networks (CNNs, RNNs, AutoEncoders), an interesting problem and produce a "proof-of-understanding" by:
 - Describing the problem and the network(s) used in your experiments
 - Describing the data, the experiments, and the results of your experiments

This step shouldn't cost you much time: just browse the internet, rerun some experiments, modifying data or network parameters and describe your findings in the report (up to 3 pages in total).

A2: the last step

3. The Challenge:

Find an original problem and/or a data set and apply "Deep Learning" to it. You are free to use any type of network – also those that were not covered during the course.

Some ad-hoc ideas:

- "from ASCI to UNICODE" (e.g., French, Polish, German)
- "automatic extractions of equations from pdfs"
- "images of equations into Latex"
- "restoration of images"

A2: the report

- Spend most time and effort on the "challenge" part of A2. This part of the report shouldn't exceed 7 pages. Only this part of your work will be evaluated by your peers. Don't forget to attach your code!
- Spend at most 3 pages (one per network type) on providing "a proof of understanding" – it is a compulsory part (not graded) and the reviewers will only check if you actually produced such a "proof".
- 3. Keep in mind that the grade for A2 will be mainly decided by your colleagues.
- 4. Get help/feedback from your "Instructors".

Software

 Theano http://deeplearning.net/software/theano/

 TensorFlow https://www.tensorflow.org/

Keras https://keras.io/

Hardware

- A GPU-server: duranium.liacs.nl (reachable from LIACS network or via ssh gateway gold.liacs.nl)
- For small data sets you may use "normal computers"
 Theano, TensorFlow, Keras can be installed on Linux, Windows, Mac OS.
- Any PC with a modern NVIDIA GPU (with DDR5 RAM) would be much faster that a plain PC.
- On Wed. 22/03, 9:00: intro to DSLab/duranium, etc.

Resources

- 1. Lots of examples implemented in KERAS: https://github.com/Yaffa1607/Tensorflow_HVASS
- Popular data sets used in Deep Learning: http://deeplearning.net/datasets/
- 3. Tutorials: http://deeplearning.net/reading-list/tutorials/
 - (!) https://www.youtube.com/user/hvasslabs
- 4. <u>Papers:</u> <u>http://deeplearning.net/reading-list/</u>

Examples

- Sequence to Sequence Learning
- "Reading Comprehension"
- Visualization of Kernels of Convolutional NNs
- "Google Deep Dream"
- OCR (images of short words, distorted fonts)
- Sentiment/Text analysis (IMDB data sets)
- www.kaggle.com/deepmatrix/imdb-5000-movie-dataset
- Text Generation
- Adversarial Examples
- •

Sequence To Sequence Learning

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

- English to French
- '3 + 5' to '8'

Reading Comprehension

Develop a NN to pass the "reading comprehension task"

Task 1: Single Supporting Fact

Mary went to the bathroom.

John moved to the hallway.

Mary travelled to the office.

Where is Mary? A:office

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office

John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen? A:office

Task 5: Three Argument Relations

Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A: Mary

Who did Fred give the cake to? A: Bill

Task 2: Two Supporting Facts

John is in the playground.

John picked up the football.

Bob went to the kitchen.

Where is the football? A:playground

Task 4: Two Argument Relations

The office is north of the bedroom.

The bedroom is north of the bathroom.

The kitchen is west of the garden.

What is north of the bedroom? A: office

What is the bedroom north of? A: bathroom

Task 6: Yes/No Questions

John moved to the playground.

Daniel went to the bathroom.

John went back to the hallway.

Is John in the playground? A:no

Is Daniel in the bathroom? A:ves

Reading Comprehension

Ÿ	Weakly Supervised		Uses External	10 1000 mm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
			Resources	Resources (using supporting facts)						
TASK	N.STATI	1487	Shuchard SVA	Western Commy	Washing W.	Memily Cally	A Achily	Wenty.	No. or ex Ap. 1.8	Mula Tak Training
1 - Single Supporting Fact	36	50	99	100	100	100	100	100	250 ex.	100
2 - Two Supporting Facts	2	20	74	100	100	100	100	100	500 ex.	100
3 - Three Supporting Facts	7	20	17	20	100	99	100	100	500 ex	98
4 - Two Arg. Relations	50	61	98	71	69	100	73	100	500 ex.	80
5 - Three Arg. Relations	20	70	83	83	83	86	86	98	1000 ex.	99
6 - Yes/No Questions	49	48	99	47	52	53	100	100	500 ex.	100
7 - Counting	52	49	69	68	78	86	83	85	FAIL	86
8 - Lists/Sets	40	45	70	77	90	88	94	91	FAIL	93
9 - Simple Negation	62	64	100	65	71	63	100	100	500 ex.	100
10 - Indefinite Knowledge	45	44	99	59	57	54	97	98	1000 ex.	98
11 - Basic Coreference	29	72	100	100	100	100	100	100	250 ex.	100
12 - Conjunction	9	74	96	100	100	100	100	100	250 ex.	100
13 - Compound Coref.	26	94	99	100	100	100	100	100	250 ex	100
14 - Time Reasoning	19	27	99	99	100	99	100	99	500 ex	99
15 - Basic Deduction	20	21	96	74	73	100	77	100	100 ex.	100
16 - Basic Induction	43	23	24	27	100	100	100	100	100 ex.	94
17 - Positional Reasoning	46	51	61	54	46	49	57	65	FAIL	72
18 - Size Reasoning	52	52	62	57	50	74	54	95	1000 ex.	93
19 - Path Finding	0	8	49	0	9	3	15	36	FAIL	19
20 - Agent's Motivations	76	91	95	100	100	100	100	100	250 ex	100
Mean Performance	34	49	79	75	79	83	87	93		92

Visualization of Kernels of CNNs

- Train a CNNs (or download it from the internet!)
- Select a kernel you want to "understand"
- Search for an input image that strongly activates the selected kernel
 - => optimization problem!
- Apply "inverted backpropagation": input nodes play a role of weights; weights play a role of a "fixed input"

https://jacobgil.github.io/deeplearning/filter-visualizations

Deep Dream (check Wikipedia)

- Take a trained ImageNet (or something similar)
- Provide an input image (e.g., "a castle")
- Smoothly change the input so it could be classified as a "fish"
- optimization problem => SGD
- Spectacular effects!

The same image before (left) and after (right) applying ten iterations of DeepDream

Adversarial Examples

bookcase (99.72%)

Adversarial Examples: MNIST

Accuracy drop from 99% to 11% accuracy (over test set)

https://github.com/Yaffa1607/Tensorflow_HVASS/blob/master/12_Adversarial_Noise_MNIST.ipynb

More: http://cs231n.github.io/understanding-cnn/

Automatic Text Generation

- Train a RNN on a collection of documents
- The network learns to predict next word(s)
 (better: probability distribution of "next word")
- Apply the network to an initial phrase to generate more text
- More Idea's:
 - try this approach on the Europarl text corpora
 - author recognition
 - detection of unusual phrases ("cheating"?)
 - detection of a "change of style / rhetoric" (e.g. for politicians)
 - **—** ...
- Text Summarization https://arxiv.org/abs/1506.01057

Theano, TensorFlow, Keras

- Install Theano or TensorFlow (TF is a default)
- Install Keras
- Follow Tutorials and Examples from
 - Keras https://keras.io/
 - Github:

https://github.com/fchollet/keras/tree/master/examples