COP-5614 Exam Review Session

Instructor: Dr. Liting Hu

Introduction to Operating Systems

1. Introduction to Operating Systems

1.1 Computer Architecture

1.2 The CPU Control Unit

What is CPU pipeline?

load R3, b load R4, c add R3, R4 store R3, a

Control Unit

Primary Memory

1.3 CPU Response to Interrupts

1.4 System Calls

When to switch from user mode to kernel mode?

Processes management

2. Processes Management

2.1 Address Space

2.2 Multi-threaded Process

Process vs Thread?

2.3 Process Finite State Diagrams

2.4 Process Scheduler

2.5 Scheduler Metrics

- CPU Utilization
- Throughput
- Waiting time
- Service time
- Turnaround time for a process
- Response time

2.5.1 First Come, First Served Scheduler

Process	Service time
p1	140
p2	75
р3	320
p4	280
p5	125

2.5.2 Shortest Job Next Scheduler

Process	Service time
p1	140
p2	75
рЗ	320
p4	280
p5	125

2.5.3 Round Robin Scheduler

Process	Service time
p1	140
p2	75
рЗ	320
p4	280
p5	125

Interprocess Communication and Synchronization

3. IPC and Synchronization

Potential IPC problems

Race condition?

Critical region?

What is data inconsistency?

3.1 Possible solutions

- Software solution
- Disable interrupts
- Mutex and Semaphore

3.2 Bounded Buffer (Producers and Consumers)

4. Memory Management

4.1 Memory Management Unit

What is the task of MMU?

4.2 Single Contiguous Allocation

Operating system

Application program

4.3 Partitioned Allocation

4.4 Paged Memory Management

P1 PMT

Page	Frame
0	5
1	12
2	15
3	7
1	22

P2 PMT Page Frame

-	
0	10
1	18
2	1

11

Memory

Frame	Contents
0	
1	P2/Page2
2	
3	
4	
5	P1/Page0
6	
7	P1/Page3
8	
9	
10	P2/Page0
11	P2/Page3
12	P1/Page1
13	
14	
15	P1/Page2

A page is a unit of logical memory of a program

A frame is a unit of physical memory

All pages are of the same size

All frames are of the same size

A frame is of the same size as a page

4.4.1 Using the Page Table

To produce a physical address, you first look up the page in the PMT to find the frame number in which it is stored. Then multiply the frame number by the frame size and add the offset to get the physical address. A page table is kept in main memory. It is part of the process control block (PCB) for each process.

4.4.2 Virtual Memory Management

4.4.3 Page Faults

4.4.4 Handling of a Page Fault

Refresher on page fault service

4.5 Page Replacement Algorithms

First-In-First-Out (FIFO) Replacement

FIFO Total 14 page faults

4.5 Page Replacement Algorithms

Least Recently Used (LRU) Replacement

Total 11 page faults

LRU

4.6 The Working Set Model

What is the working set? Dynamical adjust of w?

At virtual time i-1: working set = $\{0, 1\}$

At virtual time i: working set = $\{0, 1, 3\}$

File System Management

5.1 File System Abstractions

Disk partition

Figure 7-12 A hard drive is divided into one or more partitions that contain logical drives

Liting Hu COP5614 Operating Systems

5.1 File System Abstractions

Disk blocks

5.2 A File

 A file is an ordered collection of data blocks

5.3 Directories and File System Tables

Contents of the directory ~/courses/ee446/labs

Why saving i-node numbers instead of i-nodes in i-node table?

5.3.1 Directory Trees

5.3.2 File Object Links

5.4 I-node

Input/Output and Deadlocks

6.1 Device Driver Layers

6.2.1 Polling

6.2.2. Interrupt Driven

Device Controller

How OS deals with interrupt?

6.3 Deadlocks

A deadlock condition can occur when two processes need multiple shared resources at the same time in order to continue.

How to avoid deadlocks?

Review Tips

- Slides
- Section quiz
- Exam review session
- Text book

