import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

df=pd.read_csv('survey lung cancer.csv')

df.head(3)

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
0	М	69	1	2	2	1	1	2
1	М	74	2	1	1	1	2	2
2	F	59	1	1	1	2	1	2

Next steps: (Generate code with df) (New interactive sheet

df.tail()

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
304	F	56	1	1	1	2	2	2
305	М	70	2	1	1	1	1	2
306	М	58	2	1	1	1	1	1
307	М	67	2	1	2	1	1	2
308	М	62	1	1	1	2	1	2

df.sample()

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
195	М	69	1	2	2	1	1	1

df.shape

(309, 16)

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309 entries, 0 to 308
Data columns (total 16 columns):
    Column
                          Non-Null Count Dtype
    -----
                                         ----
0
    GENDER
                          309 non-null
                                         object
1
    AGE
                          309 non-null
                                         int64
2
    SMOKING
                          309 non-null
                                         int64
3
    YELLOW_FINGERS
                          309 non-null
                                         int64
4
    ANXIETY
                          309 non-null
                                         int64
5
                          309 non-null
    PEER_PRESSURE
                                         int64
6
    CHRONIC DISEASE
                          309 non-null
                                         int64
7
    FATIGUE
                          309 non-null
                                         int64
    ALLERGY
                          309 non-null
                                         int64
    WHEEZING
                          309 non-null
                                         int64
10 ALCOHOL CONSUMING
                          309 non-null
                                         int64
11 COUGHING
                          309 non-null
                                         int64
12 SHORTNESS OF BREATH
                          309 non-null
                                         int64
13 SWALLOWING DIFFICULTY 309 non-null
                                         int64
14 CHEST PAIN
                          309 non-null
                                         int64
15 LUNG CANCER
                          309 non-null
                                         object
```

dtypes: int64(14), object(2)
memory usage: 38.8+ KB

df.describe()

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONI DISEAS
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.00000
mean	62.673139	1.563107	1.569579	1.498382	1.501618	1.5048
std	8.210301	0.496806	0.495938	0.500808	0.500808	0.50078
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.00000
25%	57.000000	1.000000	1.000000	1.000000	1.000000	1.0000
50%	62.000000	2.000000	2.000000	1.000000	2.000000	2.0000
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.0000
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.00000

df.dtypes

0

GENDER object

AGE int64

SMOKING int64

YELLOW_FINGERS int64

ANXIETY int64

PEER_PRESSURE int64

CHRONIC DISEASE int64

FATIGUE int64

ALLERGY int64

WHEEZING int64

ALCOHOL CONSUMING int64

COUGHING int64

SHORTNESS OF BREATH int64

SWALLOWING DIFFICULTY int64

CHEST PAIN int64

LUNG_CANCER object

dtype: object

df.isnull().sum()

	0
GENDER	0
AGE	0
SMOKING	0
YELLOW_FINGERS	0
ANXIETY	0
PEER_PRESSURE	0
CHRONIC DISEASE	0
FATIGUE	0
ALLERGY	0
WHEEZING	0
ALCOHOL CONSUMING	0
COUGHING	0
SHORTNESS OF BREATH	0
SWALLOWING DIFFICULTY	0
CHEST PAIN	0
LUNG_CANCER	0
dtype: int64	

```
count

LUNG_CANCER

YES 270

NO 39

dtype: int64
```

```
plt.figure(figsize=(3,2))
sns.countplot(df['LUNG_CANCER'])
```


encoding

x and y me break train test split standard scaler mode train

encoding

Double-click (or enter) to edit

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['GENDER']=le.fit_transform(df['GENDER'])
df['LUNG_CANCER']=le.fit_transform(df['LUNG_CANCER'])
```

df

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
0	1	69	1	2	2	1	1	2
1	1	74	2	1	1	1	2	2
2	0	59	1	1	1	2	1	2
3	1	63	2	2	2	1	1	1
4	0	63	1	2	1	1	1	1
304	0	56	1	1	1	2	2	2
305	1	70	2	1	1	1	1	2
306	1	58	2	1	1	1	1	1
307	1	67	2	1	2	1	1	2
308	1	62	1	1	1	2	1	2

309 rows × 16 columns

Next steps: (Generate code with df

New interactive sheet

```
x = df.drop('LUNG_CANCER', axis=1)
y = df['LUNG_CANCER']
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
```

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.transform(x_test)
```

```
from sklearn.svm import SVC
model=SVC()
model.fit(x_train,y_train)
```

```
▼ SVC ① ?
SVC()
```

```
model.score(x_train,y_train)*100,model.score(x_test,y_test)*100
```

```
(94.73684210526315, 96.7741935483871)
```

```
y_pred=model.predict(x_test)
```

from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y_pred)

cm

from sklearn.metrics import accuracy_score, classification_report
print("Accuracy:",accuracy_score(y_test,y_pred)*100)