- 1. 令 A, B 为两个集合。 $f: A \to B, g: B \to A$ 为两个映射。如果 $g \circ f = id_A, f \circ g = id_B$ 。证明 f, g 皆为双射。
- 2. 用文字描述下面这些集合的涵义: $\mathbb{Q}^{\mathbb{Q}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{Q}^{\mathbb{R}}$ $\mathbb{Q} \times \mathbb{Q}$ $\mathbb{Q}^{\mathbb{Q} \times \mathbb{Q}}$ $(\mathbb{Q} \times \mathbb{Q})^{\mathbb{Q}}$ $(\mathbb{Q}^{\mathbb{Q}})^{\mathbb{Q}}$ 。证明 $(\mathbb{Q}^{\mathbb{Q}})^{\mathbb{Q}}$ 与 $\mathbb{Q}^{\mathbb{Q} \times \mathbb{Q}}$ 之间存在自然的 1-1 对应。
 - 3. 令 A, B 为两个集合。描述 $A \times B^A$ 。用自然的方式构造一个映射 $A \times B^A \to B$ 。
 - 4. 令 $e_1, e_2, e_3, f_1, f_2, f_3$ 为 \mathbb{R}^n 中的 6 个向量。如果它们之间满足关系

$$(f_1, f_2, f_3) = (e_1, e_2, e_3) \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

找出 3×3 矩阵 A,满足

$$(f_1, f_2, f_3)A = (e_1, e_2, e_3)$$

证明 f_1, f_2, f_3 线性无关当且仅当 e_1, e_2, e_3 线性无关。证明 $span\{e_1, e_2, e_3\} = span\{f_1, f_2, f_3\}$ 。

 $5.\mathbb{R}^n$ 满足向量加法的结合律。对任意的 $u, v, w \in \mathbb{R}^n$ 都有 (u+v)+w=u+(v+w)。用交换图来描述这一性质。

- $6. \diamondsuit T: \mathbb{R}^n \to \mathbb{R}^m$ 为一个线性变换。<1> 写出线性变换需要满足的性质。<2> 描述如何确定 T 的矩阵 A_T 。<3> 用图表示 ker(T), Im(T)。
 - 7. 令 $T: \mathbb{R}^n \to \mathbb{R}^m$ 为一个线性变换。它的矩阵是

$$\begin{bmatrix} 1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2 \end{bmatrix}$$

则 n=?, m=? 分别找出 ker(T) 和 Im(T) 的一组基。ker(T) 和 Im(T) 的维数分别为多少?

8. 令 A 为 4×5 的矩阵。初等行变换 $R_3 \to R_3 + 2R_2$ 等价于在 A 的左边乘以一个矩阵 E。则 E=?

9. 令

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, v_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, v_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, y = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}.$$

如果 $y \in span\{v_1, v_2, v_3\}$, 求 h。

这个问题的另一个等价的问法是:

$$A = \begin{bmatrix} 1 & 5 & -3 \\ -1 & -4 & 1 \\ -2 & -7 & 0 \end{bmatrix}, y = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}.$$

如果矩阵方程 Ax = y 有解, 求 h。

在课堂上我们讲过以下结论: 方程 Ax = b 对于任意 $b \in \mathbb{R}^m$ 都有解 \iff A 的 梯形矩阵在每一行都有一个拐点。在问题 9 中,由于 A 的梯形矩阵在最后一行没有 拐点,所以可以看到有无穷个 $b \in \mathbb{R}^3$ 使得 Ax = b 无解。

10. 令

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

把 e_1, e_2 分别表示为 v_1, v_2 的线形组合。

11. 计算

12. 给出 \mathbb{R}^3 中的 3 个点 (1,0,0), (0,2,0), (0,0,3), 求经过这 3 点的平面的方程。 令 $v_1 = (2,1,1)$, $v_2 = (1,2,2)$ 为两个从点 (0,0,1) 出发的向量。求经过点 (0,0,1) 并且包含 v_1, v_2 的平面的方程。