# Introduction

Our mission is to reconstruct the last 30 seconds of a ECG signal given some other complete ECG signals,

This is done using two algorithms: **RLS** and **Adam** 

# RLS (Recursive Least Squares)

- Notation:
- λ Forgetting factor
- θ Filter parameters
- p Filter length
- P Covariance matrix of parameters
- K Kalman gain
- h observations
- x input signals
- 1. Uses the Weighted Squared Error as "error function" with the aim to minimize it.
- 2. The initial guess is important.
- 3. Updates the filter coefficients for every iteration.

$$\hat{x}_{T}[n] = \sum_{k=0}^{M-1} a_{k} [n] x_{1} [n-k] + \sum_{k=0}^{N-1} b_{k} [n] x_{2} [n-k]$$

$$\hat{x}[n] = h[n]^T \theta[n-1]$$

$$p = M + N$$

$$h \in \mathbb{R}^{px1}$$

$$P \in \mathbb{R}^{pxp}$$

$$K \in \mathbb{R}^{px1}$$

$$\lambda \in \mathbb{R}$$

### Adam

Adam is a algorithm that combines the features of two gradient descent algorithms: **Momentum** and **RMSprop** 

#### Momentum

$$m_n = \beta m_{n-1} - \mu g_n$$

$$h[n] = h[n-1] + m_n$$



**Notation:** 

μ, α - Step size

β - Decay rate

h - Filter parameters

m - Momentum

v - RMSprop (2nd momentum)

#### **RMSprop**

$$v_n = \beta v_{n-1} + (1 - \beta)g_n^2$$

$$h[n] = h[n-1] - \frac{\mu}{\epsilon + \sqrt{v_n}} g_n$$



## Adam

Adam is a algorithm that combines the features of two gradient descent algorithms: Momentum and RMSprop

Adam

 $m_n = \beta m_{n-1} - \mu g_n$ 

Momentum

$$h[n] = h[n-1] + m_n$$

### **RMSprop**

$$v_n = \beta v_{n-1} + (1 - \beta)g_n^2$$

$$h[n] = h[n-1] - \frac{\mu}{\epsilon + \sqrt{v_n}} g_n$$

for n = 1 to N do  $\boldsymbol{m}_n = \beta_1 \boldsymbol{m}_{n-1} + (1 - \beta_1) \boldsymbol{g}_n$  $v_n = \beta_2 v_{n-1} + (1 - \beta_2) q_n^2$  $\hat{m}_n = m_n/(1-\beta_1^n)$  $\hat{\boldsymbol{v}}_n = \boldsymbol{v}_n / (1 - \beta_2^n)$  $\boldsymbol{h}[n] = \boldsymbol{h}[n-1] - \alpha \, \hat{\boldsymbol{m}}_n / (\sqrt{\hat{\boldsymbol{v}}_n} + \epsilon)$ end

m\_hat and v\_hat compensates for Adams initial bias towards zero, originating from vectors h, m and v being initialised with zeros

Notation: μ, α - Step size

β - Decay rate

(ε - Numerical stability)

h - Filter parameters

p - Filter length

m - Momentum

m hat - Momentum unbiased

v - RMSprop (2nd momentum)

v hat - RMSprop unbiased

 $v \in \mathbb{R}^{px1}$  $h \in \mathbb{R}^{px1}$ 

 $\hat{v} \in \mathbb{R}^{px1}$  $m \in \mathbb{R}^{px1}$ 

 $g \in \mathbb{R}^{px1}$  $\hat{m} \in \mathbb{R}^{px1}$ 

### Adam

For Adam optimizer we assume that the estimated signal can be

written as a linear combinations of **x\_1** (**ECG V**) and **x\_2** (**ECG AVR**) 
$$\hat{x}_T[n] = \sum_{k=0}^{M-1} a_k [n] x_1 [n-k] + \sum_{k=0}^{N-1} b_k [n] x_2 [n-k]$$
 
$$\hat{x}[n] = h[n-1]^T y[n]$$
 
$$h[n] = \begin{bmatrix} a_0[n] \\ a_1[n] \\ \dots \\ a_{M-1}[n] \\ b_0[n] \\ b_1[n] \\ \dots \\ b_{N-1}[n] \end{bmatrix}$$
 
$$y[n] = \begin{bmatrix} x_1[n] \\ x_1[n-1] \\ \dots \\ x_1[n-(M-1)] \\ x_2[n] \\ 2_2[n-1] \\ \dots \\ x_2[n-(N-1)] \end{bmatrix}$$

$$h[n] = \begin{bmatrix} a_0[n] \\ a_1[n] \\ \dots \\ a_{M-1}[n] \\ b_0[n] \\ b_1[n] \\ \dots \\ b_{N-1}[n] \end{bmatrix}$$

$$[n] = \begin{bmatrix} x_1[n] \\ x_1[n-1] \\ \dots \\ x_1[n-(M-1)] \\ x_2[n] \\ 2_2[n-1] \\ \dots \\ x_2[n-(N-1)] \end{bmatrix}$$

#### Notation:

μ, α - Step size

β - Decay rate

(ε - Numerical stability)

h - Filter parameters

p - Filter length

m - Momentum

m hat - Momentum unbiased

v - RMSprop (2nd momentum)

v hat - RMSprop unbiased

v - observations

x - input signals

#### Initialise the filter:

- Filter length, how many parameters we want for the inputs (M and N)
- Select the Adam parameters:  $\alpha$ ,  $\beta$ 1,  $\beta$ 2,  $\epsilon$
- Initialize the vectors h, m, v with zeros
- Define a cost function f(h(n-1))

#### > Run the Adam algorithm

#### Adam algorithm

$$\begin{array}{l} \textbf{for} \ n = 1 \ to \ N \ \textbf{do} \\ \mid \ \boldsymbol{m}_n = \beta_1 \boldsymbol{m}_{n-1} + (1-\beta_1) \boldsymbol{g}_n \\ \boldsymbol{v}_n = \beta_2 \boldsymbol{v}_{n-1} + (1-\beta_2) \boldsymbol{g}_n^2 \\ \mid \hat{\boldsymbol{m}}_n = \boldsymbol{m}_n/(1-\beta_1^n) \\ \mid \hat{\boldsymbol{v}}_n = \boldsymbol{v}_n/(1-\beta_2^n) \\ \mid \boldsymbol{h}[n] = \boldsymbol{h}[n-1] - \alpha \ \hat{\boldsymbol{m}}_n/(\sqrt{\hat{\boldsymbol{v}}_n} + \epsilon) \\ \textbf{end} \end{array}$$

$$v \in \mathbb{R}^{px1} \qquad p = M + N$$

$$\hat{v} \in \mathbb{R}^{px1} \qquad h \in \mathbb{R}^{px1}$$

$$g \in \mathbb{R}^{px1} \qquad m \in \mathbb{R}^{px1}$$

$$\alpha, \epsilon, \beta_1, \beta_2 \in \mathbb{R}$$
  $\hat{m} \in \mathbb{R}^{px1}$ 

### **RLS Parameters**

- Lambda = 1 (forgetting factor)
- N = 100 (steps back used for signal A)
- M = 100 (steps back used for signal B)
  - $\circ$  p = N + M (filter length)

### **Adam Parameters**

- alfa = 0.001 (step size)
- beta1 = 0.9 (decay rates)
- beta2 = 0.999 (decay rates)
- epsilon = 1e-8 (constant for numerical stability)



Default settings from the Adam paper

- N = 15 (steps back used for signal A)
- M = 15 (steps back used for signal B)
  - $\circ$  p = N + M (filter length)

# Patient 2 (RLS)



# Patient 2 (Adam)



# Patient 3 (RLS)



# Patient 3 (Adam)



# Patient 4 (RLS)



# Patient 4 (Adam)



# Patient 5 (RLS)



# Patient 5 (Adam)



#### Patient 2-5 discussion

- We expected RLS to work well
- Graphs for patient 2 & 3 shows that the reconstructed signal is very accurate
- Reconstructed signal for patient 4 is not as good, follows pattern but not amplitudes of the real signal, possible reasons:
  - Signal used for reconstruction not being correlated to target signal
  - Parameters not being well enough optimized
- Adam performs well but worse than RLS
- Adam had considerably lower computation time
- Adam had better performance with patient 5

## Q1 & Q2 for RLS & LMS for all patients

RLS Adam

| Patient | Q1      | Q2      | Patient | Q1      | Q2      |
|---------|---------|---------|---------|---------|---------|
| 1       | 0.97124 | 0.98558 | 1       | 0.94283 | 0.97458 |
| 2       | 0.99519 | 0.9976  | 2       | 0.97996 | 0.98999 |
| 3       | 0.99361 | 0.99682 | 3       | 0.97011 | 0.98524 |
| 4       | 0.88209 | 0.93953 | 4       | 0.73159 | 0.85539 |
| 5       | 0.87335 | 0.95315 | 5       | 0.91537 | 0.95941 |
| 6       | 0.96125 | 0.98045 | 6       | 0.91183 | 0.95516 |
| 7       | 0.97053 | 0.98534 | 7       | 0.96923 | 0.98454 |
| 8       | 0.98798 | 0.99402 | 8       | 0.98379 | 0.99195 |

Only with patient 5
 Adam had a better performance.

RLS
Hyper Parameter Study: Forgetting Factor, lambda

Patient 2



Patient 3



RLS
Hyper Parameter Study: Forgetting Factor, lambda

Patient 4



Patient 5



# RLS Hyper Parameter Study: Forgetting Factor, lambda

- Expected lambda values closer to one to work better
  - Plots for patient 2-5 show just that
- We need to take old data into account, hence higher lambda (forgetting factor)

# Adam Hyper Parameter Study: Filter Length



# Adam Hyper Parameter Study: Filter Length



# Adam Hyper Parameter Study: Filter Length

- Small filter lengths bad performance (N = M ≈ 1)
- Large filter length performance decrease (N = M ≈ 30)
  - $N = M \approx 30$  had considerably worse performance
- For small filter lengths ECG V seems to be more important
- Filter lengths around N = M  $\approx$  [10, 15] seems to work the best
- Safest to choose small filter lengths

### Discussion

- Both methods accomplish the task, however RLS does it better
- We would choose RLS instead of Adam
  - We can handle the higher computational power
  - We did not have to do anything in real time (for this task)
  - When talking about ECG, we have to put weight on accurate results

### Conclusion

- Both methods work well for the given task
- RLS would have been chosen over LMS with Adam optimizer
- In the future we would have optimized all parameters