ННГУ им. Лобачевского

Факультет: Высшая школа общей и прикладной физики

ОТЧЕТ

по лабораторной работе №27:

Изучение законов движения при помощи машины Атвуда

Выполнили:

Митяшин Илья

Ковригин Марк

Нижний Новгород

2023г.

Цель работы

Описать силу трения, возникающую в блоке машины Атвуда.

Оборудование

Блок, нить, две платформы, измерительная шкала, перегрузки массы m, грузы массы M.

M = 363r

 $\Delta h = 0.5$ cm., $\Delta t = 0.01$ c., $\Delta M = 0.5$ г., $\Delta m = 0.05$ г.

Теоретическая часть

1. Описание машины Атвуда

В данной лабораторной установке блок закреплен на вертикальной шкале, для удержания грузов используется электромагнит, время движения грузов регистрируется электросекундомером (рис. 1). Для приведения грузов в движение служит набор перегрузов двух видов А и В (рис. 2). По шкале можно перемещать платформы П1 и П2 (рис. 1), одна из которых (П1) служит для размыкания цепи электросекундомера, а другая (П2) - для съема с движущегося правого груза перегрузов типа В.

Первоначально левый груз находится в нижнем положении и удерживается электромагнитом - тумблер на блоке управления в положении «магнит». При переключении тумблера в положение «секундомер» размыкается цепь питания электромагнита (освобождается система грузов) и включается электросекундомер. Выключение секундомера происходит при размыкании правым грузом контакта на платформе П1.

Расставим действующие в системе силы и напишем второй закон Ньютона для каждого из грузов в проекции на направленную вниз ось x:

$$\begin{cases} (M+m_1)a_{1x} = (M+m_1)g - T_1\\ (M+m_2)a_{2x} = (M+m_2)g - T_2 \end{cases}$$

Здесь M — масса основных грузов, m_1 и m_2 — массы левого и правого перегрузов (m_2 > m_1), а T_1 и T_2 — силы, с которыми нить действует на левый и правый грузы соответственно. Из условия нерастяжимости нити следует соотношение между ускорениями грузов

$$a_{1x} = -a_{2x}(2)$$

а из невесомости – соотношение между действующими на нить силами

$$T_2 - T_1 = F_{TD}(3)$$

В соотношении (3) $F_{\tau p}$ – сила трения со стороны блока, а T_1 и T_2 – силы со стороны грузов, которые по 3-му закону Ньютона равны соответственно силам T_1 и T_2 .

Решая систему уравнений (1) – (3), находим

$$a_{2x} = \frac{(m_2 - m_1)g - F_{\rm rp}}{2M + m_1 + m_2} (4)$$

Выражение (4) содержит известную силу трения $F_{тp}$. Физической причиной появления этой силы является инерционность блока и наличие трения в его оси. Если трение в оси блока является вязким, то сила $F_{тp}$ зависит от скорости грузов (скорости вращения блока) и, как можно понять из (4), ускорение грузов не остается постоянным во время движения. Если трение в оси сухое и нить не проскальзывает по блоку, то $F_{тp}$ можно представить в виде

$$F_{\rm Tp} = F_0 + \lambda a_{2x}(5),$$

где F_0 и λ – положительные константы, характеризующие, соответственно, сухое (постоянное) трение в оси и инерционные свойства блока. Для блока в виде сплошного диска константа λ равна половине его массы (это можно получить, дополнив систему (1) - (3) уравнением вращательного движения блока). Подставляя выражение (5) в формулу (4), получаем

$$a_{2x} = \frac{(m_2 - m_1)g - F_0}{2M + m_1 + m_2 + \lambda} (6).$$

Из формулы (6) следует, что в модели (5) ускорение грузов остается постоянным в ходе движения и зависит не только от масс грузов, но и от величин λ и F_0 . Правильность модели (5) можно проверить, исследуя зависимость a_{2x} от разности масс перегрузов $m_2 - m_1$ при сохранении неизменной суммарной массы $m_1 + m_2$.

3. Контрольные вопросы

Каким будет ускорение грузов при $(m_2 - m_1)g < F_0$? Чему при этом будет равна F_{mp} ?

Рассмотрим 2 случая:

- **1.** Пусть начальная скорость нулевая, тогда ускорение будет ноль, а F_{TP} при этом будет равна $(m_2 m_1)g$
- **2.** Пусть начальная скорость ненулевая, тогда ускорение будет не 0, оно будет считаться по формуле (6), но будет отрицательным, а $F_{\tau p} = F_0 + \lambda a_{2x}$

Может ли F_{mp} равняться нулю при F_0 ≠ 0?

Нет, пойдём от обратного, пусть $F_{\tau p} = 0$, тогда $F_0 = -\lambda a_{2x}$ из уравнения (5), то есть $a_{2x} < 0$, но из уравнения (4) видно, что $a_{2x} > 0 =>$ противоречие, а значит $F_{\tau p} \neq 0$.

Оценить интервал изменения F_0 для используемых в установке грузов и перегрузов в зависимости от распределения перегрузов (суммарную массу перегрузов $m_1 + m_2$ считать фиксированной).

 F_0 — это сила сухого трения, а значит она может принимать значения от 0 до F_{0max} , которую можно представить как силу трения скольжения, то есть максимальное значение при $a_{2x}=0$ => из уравнения (6) $F_{0max}=(m_1+m_2)g$.

Практическая часть

1. Проверка зависимости F_{TP} от v

$$a = \frac{mg - F(v)}{2M + m} \neq \text{const}$$

Снимаем зависимость h(t) и строим график $h(t^2)$ для 3-х разных по массе перегрузков m.

Nº		1				2			3			4		5			
h,	, CM		151		131			111				91		71			
	t, c	4,96	4,92	4,94	4,75	4,76	4,76	4,61	4,52	4,45	4,02	3,93	4	3,72	3,61	3,65	
	tcp, c	4,94			4,76			4,53			3,98			3,66			
14,06г	tcp², c²		24,4		22,66			20,52			15,84			13,4			
	t, c	4,12	4,2	4,19	3,72	3,8	3,75	3,36	3,37	3,19	3	3,09	2,87	2,75	2,76	2,78	
	tcp, c	4,17			3,76			3,34			2,99			2,76			
19,1г	tcp², c²	17,39			14,14			11,16				8,94		7,62			
	t, c	3,32	3,27	3,28	2,99	3,02	3,05	2,8	2,78	2,79	2,5	2,57	2,55	2,29	2,23	2,25	
	tcp, c	3,29			3,02			2,79				2,54		2,26			
28,24г	tcp², c²		10,82			9,12			7,78			6,45		5,11			

Теперь для того, чтобы построить графики воспользуемся методом наименьших квадратов, где y=ax+b, где

$$a = \frac{\sum_{i=1}^{n} (x_i - x_{cp})(y_i - y_{cp})}{\sum_{i=1}^{n} (x_i - x_{cp})^2}$$
$$b = y_{cp} - ax_{cp}$$

Из графика $h(t^2)$ для 3-х разных по массе перегрузков m видно, что получается прямая линия, а это значит, что a= const (для каждого из перегрузков) и гипотеза, что $F_{\tau p}=F(v)$ не справедлива.

2. Проверка зависимости $F_{\tau p}$ = F(a) = F_0 + αa

$$a = \frac{(m_2 - m_1)g - F_0}{2M + m_2 + m_1 + \alpha} = const$$

Для каждого $\Delta m = m_2 - m_1$

 $m_2 = \sum m_i$ – масса перегрузков на правом грузе

 $m_1 = \sum m_i$ – масса перегрузков на левом грузе

Ускорение определенно по формуле $a = \frac{2h}{t^2}$

Измерения были проведены при постоянном значении h=120см и постоянной массе всей системы $(2M+m_2+m_1)=const$

При измерении мы меняли Δm (перекладывая перегрузки с одного груза на другой), измерили время падения правого груза, сняли зависимость $a=f(\Delta m)$ и построили график $a=f(\Delta m)$, используя метод наименьших квадратов.

Nº	1			2				3			4		5			
m1, г	0			3,6				8,3			11,36		15			
m2, г	43,29			39,69				34,99			31,93		28,29			
Δm, r	43,29			36,09			26,69			20,57			13,29			
t, c	2,2	2,22	2,22	2,45	2,32	2,4	2,9	2,88	2,91	3,65	3,71	3,61	5,3	5,28	5,18	
tcp, c	2,21			2,39			2,9				3,66		5,25			
tcp², c²	4,88			5,71			8,41				13,4		27,56			
$a = 2h/t^2$, cm/c^2	49,18			42,03				28,54			17,91		8,71			

3. Доказательство гипотезы, что $F_{\tau p} = F(a) = F_0 + \alpha a$

Из графика $a=f(\Delta m)$ получилось, что $F_0=3,76$, мы его скомпенсировали, положив на правый груз перегрузок $mg=F_0$. Затем мы сняли $h=f(\Delta t)$ при 3-х разных начальных скоростях v_0 (берём 3 разных по массе перегрузка формы B) и построили график $h(\Delta t)$, используя метод наименьших квадратов.

m0 = F0/g, r		3,64																	
h, e	CM	121			101			81			61			41			t0,c		
	t, c	3,58	3,67	3,66	3,2	3,06	3,22	3,82	2,72	3,68	2,4	2,39	2,39	2	1,94	1,89	1,03	1,1	1,1
m1 = 30,14	tcp, c	, c 3,64				3,16 2,74				2,39			1,94			1,08			
	t, c	6,48	6,61	6,45	5,86	5,82	5,61	4,89	4,9	5,1	4,17	4,21	4,21	3,5	3,47	3,48	1,87	1,92	1,92
m2=10,12	tcp,c	6,51			5,76			4,96					4,2		3,48		1,9		
	t,c	4,95	5,1	5,12	4,65	4,51	4,51	3,62	3,73	3,78	3,25	3,41	3,43	2,74	2,66	2,7	1,49	1,5	1,49
m3=16,06	tcp, c	5,06			4,56			3,71			3,36			2,7			1,49		

Функция $h(\Delta t)$ меняется линейно, тогда движение равномерное, а значит гипотеза $F_{\text{тр}} = F(a) = F_0 + \alpha a$ справедлива.

Вывод

Мы смогли описать силу трения в блоке машины Атвуда и экспериментальным путём получили, что $F_{\tau p} = F(a) = F_0 + \alpha a.$