Pacman Homework Report

R12922A09 Yung-Hsiang Yang

Question 1

(a.) sentence 1, sentence 2

利用 logicPlan.py 提供的 Class Expr 一題目需求,建立 A B C 等 expression,再用運算子 ~, &, |, >>, % 分別對應 \neg , \wedge , \vee , \rightarrow , \leftrightarrow 把 expression 合併成 condition,最後再用 conjoin() 將 condition 合成 CNF (Conjunctive normal form) 後回傳。需要注意的一點是,必須盡可能使用 conjoin 和 disjoin,假設要檢查 A、B、C、D 和 E 是否全為真。最簡單的方法是寫 condition = A & B & C & D & E,但這實際上是 ((((A & B) & C) & D) & E)。

(b.) snetence 3

概念同上, 先把所有條件列出, 如下

```
A = Expr('PacmanAlive_1')
B = Expr('PacmanAlive_0')
C = Expr('PacmanBorn_0')
D = Expr('PacmanKilled 0')
```

分析條件

條件 1:

Pacman is alive at time 1 **if and only if** he was alive at time 0 **and** he was **not** killed at time 0 **or** he was **not** alive at time 0 **and** he was born at time 0. 得到

$PacmanAlive_1 \leftrightarrow$

 $((PacmanAlive_0 \land \neg PacmanKilled_0) \lor (\neg PacmanAlive_0 \land PacmanBorn\ 0))$

條件 2:

At time 0, Pacman **cannot** both be alive **and** be born.

 $\neg (PacmanAlive_0 \land PacmanBorn_0)$

條件 3:

Pacman **is born** at time 0

PacmanBorn 0

最後把條件 1, 2, 3 以 CNF 合併

(c.) premise entails the conclusion

在邏輯中,要判斷前提是否蘊含結論,即 **前提 P** 蘊含 結論 **Q** 的情況,可以使用邏輯條件運算符 \rightarrow (也稱為「蘊含」)。給定前提 P 和結論 **Q**,判斷前提是否蘊含結論的邏輯表達式,以及邏輯等價是:

$$P \to Q \equiv P \land \neg Q$$

Question 2

(a.) At least one

at least one 只少一個,意旨一或更多,只少有一個條件符合即可。只要用 disjunction (>) 把所有條件合併在一起,做法比較直覺。

$$A_1 \vee A_2 \vee A_3 \vee \ldots \vee A_n$$

(b.) At most one

"最多一個"的邏輯表達意思是至少有一個為真的情況下,最多一個條件為真。如果有超過一個條件為真,則不符合"最多一個"的要求。假設有一組條件 $A_1,A_2,A_3,...,A_n$,這些條件的值可以是 true 或 false。則"最多一個"的表達可以寫成

$$\begin{aligned} \boldsymbol{A_1} \wedge (\neg A_2) \wedge (\neg A_3) \wedge \dots \wedge (\neg A_n)) \\ \vee \\ ((\neg A_1) \wedge \boldsymbol{A_2} \wedge (\neg A_3) \wedge \dots \wedge (\neg A_n)) \\ \vee \\ \vdots \\ \vee \\ ((\neg A_1) \wedge (\neg A_2) \wedge (\neg A_3) \wedge \dots \wedge \boldsymbol{A_n}) \end{aligned}$$

(c.) Exactly one

將 at least one 與 at most one 用 AND 組合,概念類似 $\Theta(n)$ 是同時找到 f(n) 的「上界(upper bound)」與「下界(lower bound)」,像是三明治一樣把 f(n) 夾住

Grade

Questions According to Lecture

Q1

像 GPT-3 以及類似的 LLM (Large Language Model) 根據訓練的資料生成語言。然而,其運作方式是根據機率而不是理解來產生輸出。LLM 的好壞取決於他們接受訓練的數據,如果資料有偏差或不完整,則可能會限制模型在不同情境下的能力。AGI (Artificial general intelligence) 需要與物理世界互動以及從感官體驗中學習的能力,而 LLM 目前缺乏這些能力。目前研究多為生成式的自然語言處理,可能不太適合該領域以外的任務,AGI 需要多種認知能力的整合,包括感知、推理和學習。

\mathbf{Q}^2

現存的 Visual-Language Pretraing Model 通常關注於理解圖形上的物件、實體,而忽略物體間的交互作用,意旨對於描述圖片中發生的事件的推理能力不佳。利用文字資訊擷取技術獲取 event structural knowledge,利用多種 prompt functions 透過操作 event structures 來比較 difficult negative descriptions。

Questions for Structured Linguistic Knowledge

O3

Prompt Learning 通常是是語言模型 已成为使视觉语言基础模型适应下游任务的普遍策略 但是傳統的方式缺乏所謂的 structured information,無法有效體現與特定類別相關的實體或屬性之間的交互關係。

利用 ChatGPT (OpenAI 2023) 來產生具有符合 structured relationships 的 description。制定 question templates 當作 LLM 的 language instruction。如下:

- What does a [CLASS] look like among all a [TYPE]?
- What are the distinct features of [CLASS] for recognition among all [TYPE]?

[CLASS] 代表具有額外描述的特定類別的名稱,例如:「一隻暹羅貓」,而 [TYPE] 表示與資料集相關的物件類型,例如「寵物種類」。

A person doing Apply Eye Makeup might look like they are holding a makeup brush and applying makeup to their eyelids or under-eye area, with a focused expression.

Q5

1. 數學公理:訓練 VLM 將數學概念的文字,數學概念的解釋、證明,以圖像描述,如座標系,幾何圖形等,反之亦然。理解數學公式的語意,包括運算子、變數、函數之間的關聯,並且進行推理。