

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«СПЕЦИАЛЬНОЕ МАШИНОСТРОЕНИЕ»	
КАФЕДРА	«РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОМУ ПРОЕКТУ*

HA TEMY:

Разработка технологического процесса изготовления детали «Поршень пироперезарядки»

Студент	CM6-92		Н.К. Широкопетлев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель ку	урсовой работы		
		(Подпись, дата)	(И.О. Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	Зав		РЖДАЮ ий кафедрой		
		,	174 .	(Индек	:c)
			(И.О. Фамили	(кі	
	«	»		_ 20	_ г.
ЗАДАН	ниЕ				
на выполнение кур	сового пр	оекта	a		
по дисциплине: Технология производства ракетного	и ствольного с	ружия			
Студент группы: Широкопетлев Никита Константин (Фамилия, имя, отчество)	<u>ович</u>				
Тема курсового проекта: <u>Разработка технологическ пироперезарядки»</u>	сого процесса	изготовл	іения детали	«Порш	<u>іень</u>
Направленность КП (учебный, исследовательский, п Источник тематики (кафедра, предприятие, НИР): <u>ка</u>	•	роизвод	ственный, др	р.): <u>учеб</u>	<u>ная</u>
График выполнения проекта: 25% к $\underline{5}$ нед., 50% к $\underline{9}$	нед., 75% к <u>12</u> :	нед., 100)% к <u>17</u> нед.		
Задание: разработать технологический процесс изго	товления детал	и «Порі	пень пиропе	резаряд	ки»;
спроектировать режущие инструменты, а также	подобрать и	рассчи	тать режим	ы реза	ния;
спроектировать необходимую оснастку; разработать	контрольно-из	вмерител	ьное приспо	соблені	<u>1e.</u>
Оформление курсового проекта:					
Расчетно-пояснительная записка на _ листах формат Перечень графического (иллюстративного) материал 5 листов формата A1		акаты, с	лайды и т.п.))	
Дата выдачи задания « <u>1</u> » <u>сентября</u> 2022 года					
Руководитель курсового проекта:		_	Н.К. Ширс	копетле	<u>eB</u>
Студент:	(Подпись, дата)	_	(И.О.Фа <u>И.О. Фа</u>	<u>имилия</u>	
	(IIIOTITICE TOTO)		(14.1.) (10.0)	MIIIIIIII (

Оглавление

Вве	дение	4
	Общие сведения об объекте производства	
	Технологический процесс изготовления детали	
۷.	технологический процесс изготовления детали	10

Введение

Материал курсового проект представлен на 5 листах чертежей формата A1. В качестве описания приложена расчетно-пояснительная записка на ___ листов формата A4 с подробным содержанием проделанной работы, содержанием листов и необходимых расчетов.

Первый лист содержит рабочий чертеж изготавливаемой детали с указанием всех размеров, технические требования по качеству получаемых размеров и поверхностей и специальные требования по контролю и изготовлению детали.

Второй лист содержит операционные эскизы, на которых в свою очередь описано содержание технологических операций и технологических переходов на каждой операции.

Третий лист содержит сборочный чертеж приспособления для крепления изделия для фрезерной обработки на обрабатывающем центре MCV 1000 5 AX Sprint.

Четвертый лист содержит рабочие чертежи инструментов, применяемых на показанных технологических операциях: державка и режущая пластина, комплектный метчик, фреза концевая, сверло.

Пятый лист содержит контрольно-измерительное приспособление для контроля допуска симметричности лыск.

1. Общие сведения об объекте производства

В данном курсовом проекте рассматривается деталь «Поршень пироперезарядки» предназначенная для работы системы автоматического перезаряжания двухствольной авиационной пушки ГШ-23. Трёхмерная модель детали «Поршень пироперезарядки» представлена на рисунке 1.

Рисунок 1. Трёхмерная модель детали «Поршень пироперезарядки»

Принцип действия детали, следующий: в момент прохода пороховых газов по каналу ствола, их часть поступает в отдельный канал и попадает в двигатель автоматики. В нём газ действует на поршень затворной рамы. В блоке пиропатронов три заряда, они срабатывают поочередно, включение сигнала на срабатывание пиропатрона происходит от электронной системы управления стрельбой. Функциональная схема работы системы пироперезарядки представлена на рисунке 1: 1 – поршень, 2 – корпус, 3 – клапан, 4 – пиропатрон.

Рисунок 2. Схема пироперезарядки пушки ГШ-23

Тип производства - серийное.

Используемы материал детали — сталь 30XH2MФA ГОСТ 4543-2016. Расшифровка используемого материала:

- массовая доля углерода в стали 30ХН2МФА примерно равна 0,30%;
- буква X в обозначении стали указывает, что сталь легирована хромом, отсутствие за буквой цифр означает, что массовая доля этого легирующего элемента не превышает 1,5%;
- буква Н в обозначении стали указывает, что сталь легирована никелем, цифра 2 за буквой означает, что массовая доля этого легирующего элемента примерно равна 2%;
- буква М в обозначении стали указывает, что сталь легирована молибденом, отсутствие за буквой цифр означает, что массовая доля этого легирующего элемента не превышает 1,5%;

- буква Ф в обозначении стали указывает, что сталь легирована ванадий, отсутствие за буквой цифр означает, что массовая доля этого легирующего элемента не превышает 1,5%;
- буква А в обозначении стали указывает, что сталь высококачественная, т.е. сталь с повышенными требованиями к химическому составу и макроструктуре металлопродукции из нее по сравнению с качественной сталью.

Данный материал относится к конструкционным легированным сталям, предназначенным для работы в узлах ответственных деталей турбин и компрессорных машин, работающих при высоких температурах, таких как: валы, цельнокованые роторы, диски, детали редукторов, болты, шпильки и т.п. Химический состав и механические свойства данной стали представлены в таблице 1 и 2, соответвенно.

Таблица 1. Химический состав стали 30ХН2МФА

Массовая доля элементов, %						
C Si Mn Cr Ni Mo V						
0,27 - 0,34 0,17 - 0,37 0,3 - 0,6 0,6 - 0,9 2,0 - 2,4 0,2 - 0,3 0,1 - 0,18						

Таблица 2. Механические свойства стали 30ХН2МФА

	Механические свойства стали 30ХН2МФА								
ГОСТ	Состояние поставки, режим термообработки	Сечение,	КП	$\sigma_{0,2}$, МПа	$\sigma_{\scriptscriptstyle m B}$, МПа	δ_5 ,%	ψ,%	<i>КСU</i> , Дж /см²	HB, не более
ГОСТ 4543-71	Пруток. Закалка 860° С, масло. Отпуск 680°	25	-	785	880	10	40	88	-
ΓΟCT 8479-70	Поковки. Закалка. Отпуск	100 - 300 $300 - 500$	490	490 490	655 655	13 12	40 35	54 49	212-248
-	Пруток. Закалка 850° С, масло. Отпуск 200° С, воздух	15	-	1470	1710	11	50	58	(49)

Механические свойства стали 30ХН2МФА в зависимости от сечения						
Сечение, мм	Место вырезки образца	$\sigma_{0,2}$, МПа	$\sigma_{_{ m B}}$, МПа	δ_5 ,%	ψ,%	<i>КСU</i> , Дж/см ²
Закалка 860° С, масло. Отпуск 680° С, выдержка 1,5 ч						
20	Ц	680	940	16	58	140
60	К Ц	790 740	890 900	19 20	66 65	170 170

Механические свойства стали 30ХН2МФА в зависимости от температуры отпуска								
Температура отпуска, °С	$\sigma_{0,2}$, МПа	$\sigma_{_{ m B}}$, МПа	δ_5 ,%	ψ,%	<i>KCU</i> ,Дж/см ²			
	Закалка 860° С, масло							
200	1460	1650	8	51	68			
300	1400	1550	8	55	54			
400	1310	1410	9	56	64			
500	1190	1230	10	58	93			

Механические свойства стали 30ХН2МФА сечением 10 мм в зависимости от температуры испытания								
Температура испытаний, °С	$\sigma_{\scriptscriptstyle m B}$, МПа	δ_5 , %	ψ,%					
Закалка 860	Закалка 860° С, масло. Отпуск 500° С							
250	1160	13	65					
400	920	13	68					
500	680	36	79					

2. Технологический процесс изготовления детали

2.1. Получение заготовки

Используемый тип заготовки — вал круглого сечения В1-36 ГОСТ 2590-2006 30ХН2МФА ГОСТ 4543-2016. Заготовку получают путём сортового горячекатаного проката. Точность проката обычная — В1. Процесс получения заготовки для последующей обработки представлен на рисунке 3: а — помещение заготовки В1-36 в пресс-форму (для наглядности показана только её нижняя часть), б — заход поршня на длину рабочего хода, в — получение заготовки и выход поршня, г — извлечение заготовки при помощи толкателя.

Рисунок 3. Процесс получение заготовки

Проектирование заготовки делали предполагает подбор материала, а так же расчет геометрической формы. Последнее считают в зависимости от суммы всех припусков на обработку делали.

Существуют два метода назначения припусков: производственный (по соответствующим таблицам) и расчетно-аналитический (на основе расчета). В отчете приведён последний метод для трёх основных операций: точение, фрезерование и сверление.

Расчетно-аналитический метод определения величины припуска базируется на анализе производственных погрешностей, возникающих при изготовлении заготовки и её обработке. Расчёт проводим по справочнику технолога-машиностроителя под редакцией Косиловой, том 1 [8].