## SÉRIES TEMPORELLES LINÉAIRES Examen 2018-2019

Durée : 2 heures. Sans document.

Les exercices sont indépendants. Il est demandé de justifier les réponses de façon concise.

Exercice 1 Soit  $(u_t)_{t\in\mathbb{N}}$  une suite de variables aléatoires réelles indépendantes et identiquement distribuées telles que  $Eu_t = m$  et  $Var(u_t) = \sigma^2$  existent. On définit la suite  $(X_t)_{t\in\mathbb{N}}$  par  $X_0 = 0$  et  $X_t = \rho X_{t-1} + u_t$  pour  $t \geq 1$ .

- 1. La suite  $(u_t)_{t\in\mathbb{N}}$  est-elle toujours ergodique? A quelle condition est-elle un bruit blanc? Quelle est la limite presque sûre de  $\frac{1}{n}\sum_{t=1}^{n}u_t^2$  quand  $n\to\infty$ ?
- 2. On note  $\mu_t = EX_t$ . Exprimer  $\mu_t$  en fonction de  $\rho$ , m et  $\mu_{t-1}$ , puis en fonction de  $\rho$ , m et t.
- 3. La figure 1 représente une trajectoire  $X_0, X_1, \ldots, X_n$  de longueur n = 300. A la vue de ce graphique, pouvez-vous rejeter l'hypothèse que m = 0? Pouvez-vous rejeter l'hypothèse que  $\rho = 1$ ? Est-il nécessaire de faire des tests statistiques pour cela?

**Exercice 2** Soit  $(\epsilon_{1t}, \epsilon_{2t}, \epsilon_{3t})'$  un bruit blanc fort de variance identité  $I_3$ , et  $X_t = (X_{1t}, X_{2t}, X_{3t})'$  satisfaisant

$$\begin{cases} X_{1t} = aX_{3t} + \epsilon_{1t} \\ X_{2t} = bX_{1t} + \epsilon_{2t} \\ X_{3t} = cX_{3, t-1} + \epsilon_{3t}. \end{cases}$$

1. On suppose dans cette question que |c| < 1.



FIGURE 1 – Trajectoire de la série  $(X_t)$ .

- Ecrire ce système sous forme VAR(1) en précisant la variance du bruit et montrer qu'il satisfait la condition d'existence d'une solution stationnaire et non anticipative.
- Le vecteur  $(X_{1t}, X_{2t})'$  cause-t-il  $X_{3t}$  au sens de Granger? Pour quelles valeurs de a, b et c la variable  $X_{3t}$  cause-t-elle le vecteur  $(X_{1t}, X_{2t})'$  au sens de Granger? A-t-on causalité instantanée entre  $X_{1t}$  et  $(X_{2t}, X_{3t})'$ ?
- 2. On suppose dans cette question que c=1. Ecrire ce système sous forme à correction d'erreur VECM. Pour quelles valeurs de a et b le processus  $X_t$  est-il cointégré? Quel est son rang de cointégration?

Exercice 3 Il arrive souvent que l'on veuille prévoir une séries temporelle  $Y_t$  en fonction de ses valeurs passées et également d'une variable  $X_t$  dite "exogène". Ceci peut se faire à l'aide de modèles appelés ARMAX, dont nous considérons dans cet exercice la version la plus simple.

Soit  $(\epsilon_t)$  un bruit blanc et  $(X_t)$  une série temporelle univariée telle que  $X_t$  soit observable avant la variable d'intérêt  $Y_t$ . On suppose que la série bivariée  $(X_t, \epsilon_t)$  est strictement stationnaire et ergodique, avec  $EX_t^2 < \infty$ , et on considère le modèle AR(1)-X

$$Y_t = aY_{t-1} + bX_t + c + \epsilon_t, \quad t \in \mathbb{Z}.$$

- 1. On suppose |a| < 1, mais on n'impose aucune contrainte sur b et c. Donner la solution  $Y_t$  stationnaire et ergodique de l'équation AR(1)-X. On suppose que  $\epsilon_t$  est indépendant de  $\{X_u, u \leq t; \epsilon_u, u < t\}$ . Quelle est la meilleure prévision de  $Y_t$  en fonction de  $\{X_u, u \leq t; Y_u, u < t\}$ ? Quelle est la variance du terme d'erreur?
- 2. On étudie dans cette question les conséquences de l'oubli de la variable exogène. On suppose que  $X_t = \eta_t + d\eta_{t-1}$  avec |d| < 1 et  $(\eta_t)$  un bruit blanc fort de variance  $\sigma_{\eta}^2$ , indépendant du bruit fort  $(\epsilon_t)$  de variance  $\sigma_{\epsilon}^2$ . Posons  $Z_t = bX_t + \epsilon_t$ .
  - (a) Déterminer la fonction d'autocovariance de  $(Z_t)$ . Quel est le modèle ARMA suivi par  $Z_t$ ? Quel est le modèle ARMA suivi par  $Y_t$ ?
  - (b) Quelle est approximativement la variance du terme d'erreur du modèle ARMA suivi par  $(Y_t)$  quand |b| est très grand? Quelle est alors la conséquence de l'oubli de la variable exogène pour la prévision de  $Y_t$ ?
- 3. On étudie dans cette question les conséquences de l'oubli de la dynamique de  $Y_t$ . Pour que les calculs soient simples, on suppose maintenant que la suite  $(X_t)$  est iid indépendante de  $(\epsilon_t)$ . Dans le modèle de régression

$$Y_t = \tilde{b}X_t + \tilde{c} + e_t,$$

où  $e_t$  est centré et non corrrélé avec  $X_t$ , que valent  $\tilde{b}$ ,  $\tilde{c}$  et la variance de  $e_t$ ? Quelle est alors la conséquence de l'oubli de la dynamique de  $Y_t$ ? Pour estimer les paramètres de ce modèle, peut-on faire confiance aux sorties des logiciels de régression usuels?