Appunti molto belli di Calculus

Floppy Loppy

March 2022

Contents

1	Nu	meri Reali
	1.1	Sottoinsiemi particolari di \mathbb{R}
		1.1.1 Intervalli limitati
		1.1.2 Intervalli illimitati
	1.2	Dominio e Codominio
2	Pro	prietà Funzioni
	2.1	Iniettività
	2.2	Surriettività
	2.3	Biiettiva
	2.4	Operazioni tra funzioni
	2.5	Funzioni inverse
	2.6	Monotonia
	2.7	Proprietà delle funzioni monotone
3	Tra	sformazioni geometriche
	3.1	traslazioni verticali
	3.2	traslazioni orizzontali
	3.3	dilatazioni e contrazioni verticali
	3.4	dilatazioni e contrazioni orizzontali
4	Fun	zioni elementari
	4.1	Proprietà dell'esponenziale e del logaritmo
	4.2	Funzioni trigonometriche
5	Lim	niti 14
	5.1	Definizione di un limite
		5.1.1 Esempi con $x_0 = +\infty$
		5.1.2 Esempi con $x_0 = -\infty$

1 Numeri Reali

Sottoinsiemi di \mathbb{R} sono:

- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z} \land n \in \mathbb{N}^* \}$

Osservazione 1.1. In particolare \mathbb{Q} è detto denso ovvero presi due qualunque punti $x, y \in \mathbb{R}$ esiste sempre un razionale \mathbb{Q} tra di essi.

Esempio 1.1. Proviamo a dimostrarlo attraverso unaretta:

Proprietà 1.1. Fondamentale Proprietà di \mathbb{R} è un insieme **totalmente** ordinato.

Aggiungere esempio con una retta

Lemma 1.1. $\forall x, y \in \mathbb{R} \text{ con } x < y$

1.1 Sottoinsiemi particolari di $\mathbb R$

Esistono diversi tipi di intervalli, elenchiamoli per categoria

1.1.1 Intervalli limitati

- $(a,b) = \{x \in \mathbb{R} : x > a \land x < b\}$ intervallo aperto
- $[a,b] = \{x \in \mathbb{R} : x \ge a \land x \le b\}$ intervallo chuso
- $[a,b) = \{x \in \mathbb{R} : x \ge a \land x < b\}$ intervallo semi-aperti
- $(a,b] = \{x \in \mathbb{R} : x > a \land x \leq b\}$ itervallo semi-aperti

1.1.2 Intervalli illimitati

Gli intervalli illimitati sono rappresentate geometricamente da semirette

- $(a, +\infty) = \{x \in \mathbb{R} : x > a \land x < +\infty\}$ intervallo aperto
- $[a, +\infty] = \{x \in \mathbb{R} : x \ge a \land x \le +\infty\}$ intervallo chuso
- $[-\infty, b) = \{x \in \mathbb{R} : x \ge -\infty \land x < b\}$ intervallo semi-aperti
- $(-\infty, b] = \{x \in \mathbb{R} : x > -\infty \land x \le b\}$ itervallo semi-aperti

1.2 Dominio e Codominio

recuperare lezione mannaggia il cazzo

Definizione 1.1. (Funzione) Una funzione $f:A\to R$ non è altro che una associazione univoca di un elemento di A con uno di $\mathbb R$.

In particolare:

$$\forall x \in A \quad \exists! y \in \mathbb{R} : f(x) = g.$$

Proprietà 1.2. Una particolarità dei reali è che possiamo rappresentare il grafico della funzione:

Disegnare retta

Come la retta rappresenta l'insieme $\mathbb R$ il piano rappresenta l'insieme:

$$\mathbb{R}\times\mathbb{R}=\{(x,y):x\in\mathbb{R},y\in\mathbb{R}\}$$

Il grafico di f non è altro che:

$$graph(f) = \{(x, f(x)) : x \in A = dom(f)\} \le \mathbb{R}^2$$

Osservazione 1.2. Data una curva $M \subseteq \mathbb{R}^2$, essa è grafico di una funzione solo se $\forall x \in \mathbb{R}$ esiste al più un punto y tale che $(x,y) \in M$, cioè M intergetta le rette verticali al più di un punto

Inserire Esempio grafico 10:30

2 Proprietà Funzioni

2.1 Iniettività

Definizione 2.1. $f: A \to \mathbb{R}$ è iniettiva se $\forall x_1, x_2 \in A$ se $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Definizione 2.2. Graficamente possiamo dare più definizioni con lo stesso significato:

- graficamente diciamo che se due punti x_1, x_2 hanno i realtivi punti sul grafico alla stessa altezza, allora in realta $x_1 = x_2$ sono lo stesso punto.
- Presa una qualunque altezza, c'è al più un punto sul grafico quell'altezza.
- $f: A \to \mathbb{R}$ è iniettiva se $\forall y \in \mathbb{R}$ la retta $\{y = y_0\}$ interseca il grafico di f in al più un punto.
- \bullet f è iniettiva se interseca rette orizzontali in al più un punto.
- $f:A\to\mathbb{R}$ è iniettiva se $\forall y\in\mathbb{R}$ l'equazione f(x)=y ha al più una soluzione.

Figure 1: Dimostrazione Iniettività

dove f(x) è la distanza (con segno) del punto sul grafico dall'asse dell'ascisse

2.2 Surriettività

Definizione 2.3. $f:A\to\mathbb{R}$ è surriettiva se $\forall y\in\mathbb{R}\exists$

Definizione 2.4. graficamente possiamo dire che $f: A \to \mathbb{R}$ è surriettiva se $\forall y_0 \in \mathbb{R}$ la retta $\{y = y_0\}$ interseca il grafico di f in almeno un punto.

Figure 2: Dimostrazione grafica surriettività

2.3 Biiettiva

 $f:A\to\mathbb{R}$ è bi
iettiva se:

- $\forall y_0 \in \mathbb{R}$ la retta $\{y=y_0\}$ interseca il grafico di f in almeno un punto.
- $\bullet\,$ ogni retta orizzontale intersca il grafico di f in un punto.
- $\forall y \in \mathbb{R}$ f(x) = y ha al più una soluzione

2.4 Operazioni tra funzioni

date $f, g: A \to \mathbb{R}$ (posso avere anche domini diversi ma allora la funzione che risulterà alla fine avrà come dominio l'intersezione di dom(f) e dom(g)).

- (f+y)(x) = f(x) + g(x)
- $\bullet \ (f-y)(x) = f(x) g(x)$
- $\bullet \ (f * y)(x) = f(x) * g(x)$
- $\bullet \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$
- $(\lambda f)(x) = \lambda * f(x)$
- $f \circ g(x) = f(g(x))$

Possiamo immaginare le funzioni come una black box nella quale inseriamo una valore ed essa ci restituisce un altro valore in base a quello che accade all'intero della black box.

Il dominio di $f \circ g$ è quel numero che:

Esempio 2.1. Mostriamo alcuni esempi di funzioni composte:

$$e^{x^2} = (f \circ g)(x)$$
$$g(x) = x^2 \quad f(y) = e^y$$
$$f(y(x)) = f(x^2) = e^{x^2}$$

Aggiungere il dominio della funzione composta LEZ:4/3

2.5 Funzioni inverse

Se $f:A\to\mathbb{R}$ è iniettiva possiamo costruire la funzione inversa, vedi figura 1. Data $y\in Im(f)$ posso definire x=g(y) come l'unica soluzione di y=f(x)

$$dom(f^{-1}) = Im(f)$$
$$Im(f^{-1}) = dom(f)$$

Una funzione inversa molto comune è l'operazione di radice.

Esempio 2.2. se $f:[0,+\infty)\to\mathbb{R}$ $f(x)=x^2$

Figure 3

Vediamo se è iniettiva:

$$\frac{x-1}{x+1} = \frac{y-1}{y+1}$$

2.6 Monotonia

Definizione 2.5. $f: A \to \mathbb{R}$ si dice monotona crescente se $\forall x_1, x_2 \in A$ si ha:

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

Definizione 2.6. $f:A\to\mathbb{R}$ si dice monotona decrescente se $\forall x_1,x_2\in A$ si ha:

$$x_1 > x_2 \Rightarrow f(x_1) \ge f(x_2)$$

aggiungere dimostrazione LEZ:4/3

Esempio 2.3. Crescente spostandosi verso destra del grafico devo salire:

Figure 4: Esempio di monotonia crescente

 $Decrescente\ spostandosi\ verso\ destra\ devo\ andare\ verso\ il\ basso:$

Figure 5: Esempio di monotonia decrescente

Esistono casi in cui una funzione è crescente per un intervallo e decrescente per un altro intervallo, per esempio $f(x)=x^2$

Crescente nell'intervallo $(0, +\infty)$ Decrescente nell'intervallo $(-\infty, 0)$

Osservazione 2.1. se f è sia crescente che decrescente in A

Proprietà 2.1. Se $f:A\to\mathbb{R}$ è strettamente monotona allora f è iniettiva (dunque invertibile).

Proof. presi $x_1, x_2 \in A$ con $x_1 \neq x_2$ possiamo assumere che:

- 1. $x_1 < x_2$ avremo che $f(x_1) < f(x_2)$. In particolare se strettamente crescente $f(x_1) \neq f(x_2)$
- 2. $x_2 < x_1$ avremo che $f(x_2) < f(x_1)$, in particolare se strettamente decrescente $f(x_2) \neq f(x_1)$

2.7 Proprietà delle funzioni monotone

Se f(x), g(x) sono finiti crescente:

- f(x) + g(x) è funzione crescente
- $\lambda * f(x)$ è <u>crescente</u> per $\lambda > 0$ e decrescente per $\lambda < 0$
- se f(x) > 0 sempre e g(x) > 0 sempre allora f(x) * g(x) è crescente

Osservazione 2.2. In generale se f(x) e g(x) sono entrambe monotone e non cambiano segno allora f(x)*g(x) è anch'essa monotona;

Se f e g sono monotone, anche $f\circ g$ è monotona e segue la regola dei segni $(\nearrow = +, \searrow = -)$.

Esempio 2.4. Con $f(x) = \frac{1}{x}$ che ha $A = dom(f) = \mathbb{R}$ 0 Avremo che la funzione è decrescente:

Figure 6: Esempio iperbole

Dove $x_1 < x_2 \ e \ quindi \ f(x_1) < f(x_2)$.

3 Trasformazioni geometriche

Possiamo considerare le tralsazioni come somme e le dilatazione-contrazioni come moltiplicazioni.

3.1 traslazioni verticali

Consideriamo y = f(x) la sua traslazione verticale sarà la somma di un k con il valore di f(X) in quanto la funzione si sposterà sull'asse della y.

Per ottenere $\{y=f(x)+1\}$ devo traslare $\{y=f(x)\}$ verso l'alto di 1 unità. Per ottenere $\{y=f(x)+a\}$ devo traslare $\{y=f(x)\}$ verso l'alto di |a| unità se a>0 verso il basso di |a| unità se a<0.

3.2 traslazioni orizzontali

Consideriamo y=f(x) la sua traslazione orizzontale sarà la somma di un k con il valore di x in quanto la funzione si sposterà sull'asse della x.

3.3 dilatazioni e contrazioni verticali

Consideriamo y = f(x) la sua dilatazione e contrazione sarà il prodotto di un k con il valore di f(X) in quanto la funzione si dilaterà-contrarrà sull'asse della y.

3.4 dilatazioni e contrazioni orizzontali

Aggiungere esempio traslazione orizzontale

Aggiungere esempio dilatazioni e contrazioni verticali

Aggiungere esempio dilatazioni e contrazioni orizzontale

4 Funzioni elementari

4.1 Proprietà dell'esponenziale e del logaritmo

Alcune proprietà degli esponenziali

- $\bullet \ a^{x+y} = a^x + a^y$
- $\bullet \ a^{x*b} = (a^x)^b$
- $a^{-x} = (a^x)^{-1}$
- $a^0 = 1$
- $a^1 = a$

Alcune proprietà dei logaritmi:

- $\log_a(x * y) = \log_a(x) + \log_a(y)$
- •
- $\log = 0$
- $\log_a(a) = 1$

 $\log(x)$ è stato introdotto come funzione inversa dell'esponenziale a^x infatti dire: $\log a(y)$ vuol dire trovare x tale che:

$$\log_2(3) = 2^x = 3$$

Una base a particolare è la \rceil ovvero Numero di Nepero.

In particolare:

$$\log_e(x) = ln(x)$$

i Dove ln è il logaritmo naturale

$$\log_a(x) = \overline{\log_b * \log_a(b)}$$

Alcune propiretà dell'inversione sono:

•
$$a^{\log_a(x)} = x$$

Proprietà mancante 9:33

4.2 Funzioni trigonometriche

 α misura x radianti se x è la lunghezza dell'arco di cerchio presente dentro l'angolo sapendo che la circonferenza è 2π .

Figure 7

Esempio 4.1. Per esempio un angolo retto che è $\frac{1}{4}$ della circonferenza sarà $\frac{2\pi}{4}=\frac{\pi}{2}$

In generale un angolo in radianti è:

$$\frac{\text{Angolo in gradi sessadecimali}}{360}*2\pi$$

- $tg(x) = \frac{\sin(x)}{\cos(x)}$
- $cotg(x) = \frac{\cos(x)}{\sin(x)}$
- $\bullet\,$ geometricamente noto che $PH \leq PA \leq QA$ e $\sin(x)$

Aggiungere 9:45 esepi coseno tangente

5 Limiti

Controllare il componente della vunzione vicino a $x_0 \in dom(f)$ e confrontarlo con $f(x_0)$.

Definizione 5.1. Controllare il comportamento della funzione vicino ad un punto x_0 che sia di <u>accumulazione</u> per dom(f).

Definizione 5.2. Sia $A \subseteq \mathbb{R}$ $x_0 \in \mathbb{R}$ è detto punto di accumulazione di A se $\forall \epsilon > 0$ $\exists x \in A - \{x_0\}$ tale che:

$$x_0 \epsilon \le x \le x_0 + \epsilon$$

Esempio 5.1. $A = (0,1), x_0 = 5$ è un punto di accumulazione per A.

In questo caso per $\epsilon < 1$ non trovo elementi di A che siano dentro $(5 - \epsilon, 5 + \epsilon)$.

25/3/22: Aggiungere retta esempio

Esempio 5.2.

• Se $A = \mathbb{N}$ i punti di accumulazione saranno:

Aggiungere esempi accumu-lazione

Figure 8: Esempio

- Se $x \notin \mathbb{N}$ allora non è di accumulazione.
- Se $x \in \mathbb{N}$ non è di accumulazione se: $\epsilon < 1$ e $g \in \mathbb{N}$ $x \epsilon \leq g \leq \epsilon + x \Rightarrow g = x$ che non va bene per la definizione.

NOTA:

Aggiungere nota

Definizione 5.3. un'altra definizione:

- $A\subseteq\mathbb{R}$ si dice che $a+\infty$ è punto di accumulazione di A se $\forall M>0\quad \exists x\in A$ tale che $x\geq M.$
- $-\infty$ è punto di accumulazione di A se $\forall M > 0$ $\exists x \in A$ tale che $x \leq -M$.

Sia $f: A \to \mathbb{R}$ e sia x_0 un punto di accumulazione di A.

5.1 Definizione di un limite

Avendo un limite nella forma:

$$\lim_{x \to x_0} f(x)$$

Possiamo ottenere quattro diverse definizioni:

- 1. $l \in \mathbb{R}$
- $2. +\infty$
- 3. $-\infty$
- 4. **non esiste** (tipo il Molise)

In questi casi si può considerare $x_0 \in \mathbb{R}, x_0 = +\infty, x_0 = -\infty$.

5.1.1 Esempi con $x_0 = +\infty$

Esempio 5.3. 2:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Figure 9

 $\forall M > 0 \quad \exists k > 0 \text{ tale che } \forall x \in A, x > k \text{ si ha:}$

$$f(x) > M$$
.

In parole semplici possiamo dire che:

Esempio 5.4. *3:*

$$\lim_{x \to +\infty} f(x) = -\infty$$

Figure 10

 $\frac{\forall M>0 \quad \exists k>0 \ tale \ che \ se \ x\in A, x>k \ si \ ha:}{\left\lceil f(x)<-M \right\rceil}.$

Esempio 5.5. 1:

$$\lim_{x \to +\infty} f(x) = l$$

Figure 11

 $\underline{\forall \epsilon > 0} \quad \exists k > 0 \ tale \ che \ se \ \forall x \in A, x > k \ si \ ha:$

$$l - \epsilon < f(x) < l + \epsilon$$

Esempio 5.6. 4:

Figure 12

La funzione è continua non ha limite

5.1.2 Esempi con $x_0 = -\infty$

Esempio 5.7. 1:

Figure 13

Esempio 5.8. 2:

Figure 14

Esempio 5.9. 3:

Figure 15

 $\lim_{x\to 0} \neq 0$ perchè nelle definizioni di limite non cosidero **MAI** il valore in $x=x_0$ perchè non mi interessa chi è $f(x_0)$.

Aggiungere esempi 10:15

Definizione 5.4. (Continuita II)

 $x_0 \in A$ punto di accumulazione per $A,\,f$ è continua in x_0 se:

$$\lim_{x \to x_0} f(x) = f(x_0)$$