Gradient Descent and Loss Functions

Mengye Ren

NYU

September 12, 2023

Homework 1

- Homework 1 will be released on course website today (Sept 12). You have until Oct 3 noon (12pm) to finish.
- Submit PDF to Gradescope.
- Course website: https://cs.nyu.edu/courses/fall23/CSCI-GA.2565-001/

CSCI-GA 2565 September 12, 2023 2/60 Review: ERM

Our Machine Learning Setup

Prediction Function

A **prediction function** gets input x and produces an output $\hat{y} = f(x)$.

Our Machine Learning Setup

Prediction Function

A **prediction function** gets input x and produces an output $\hat{y} = f(x)$.

Loss Function

A loss function $\ell(\hat{y}, y)$ evaluates an action in the context of the outcome y.

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{Y}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{Y}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Definition

A Bayes prediction function f^* is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_f R(f),$$

• The risk of a Bayes prediction function is called the **Bayes risk**.

Let
$$\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$$
 be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of f with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- The unconstrained empirical risk minimizer can overfit.
 - i.e. if we minimize $\hat{R}_n(f)$ over all functions, we overfit.

September 12, 2023

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{Y}$.

• This is the collection of prediction functions we are choosing from.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{Y}$.

- This is the collection of prediction functions we are choosing from.
- ullet An empirical risk minimizer (ERM) in ${\mathcal F}$ is

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Example: Linear Least Squares Regression

Setup

• Loss: $\ell(\hat{y}, y) = (y - \hat{y})^2$

Example: Linear Least Squares Regression

Setup

- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$
- Given a data set $\mathfrak{D}_n = \{(x_1, y_1), ..., (x_n, y_n)\},\$
 - Our goal is to find the ERM $\hat{f} \in \mathcal{F}$.

Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in \mathcal{F} , parametrized by $w \in \mathbb{R}^d$, that minimizes the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

Objective Function: Empirical Risk

We want to find the function in \mathcal{F} , parametrized by $w \in \mathbb{R}^d$, that minimizes the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• How do we solve this optimization problem?

$$\min_{w \in \mathbb{R}^d} \hat{R}_n(w)$$

• (For OLS there's a closed form solution, but in general there isn't.)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Unconstrained Optimization

Setting

We assume that the objective function $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable.

We want to find

$$x^* = \arg\min_{x \in \mathsf{R}^d} f(x)$$

The Gradient

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.
- The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction in which f(x) increases fastest, if we start from x_0 .
- The gradient of f is the partial derivatives of all dimensions: $\nabla f(x) = [\partial f/\partial x_1(x), ..., \partial f/\partial x_d(x)].$

The Gradient

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.
- The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction in which f(x) increases fastest, if we start from x_0 .
- The gradient of f is the partial derivatives of all dimensions: $\nabla f(x) = [\partial f/\partial x_1(x), ..., \partial f/\partial x_d(x)].$

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 12 / 60

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

• until the stopping criterion is satisfied.

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update x!

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update x!
- "Step size" is also referred to as "learning rate" in neural networks literature.

Gradient Descent Path

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

• If η is too large, the optimization process might diverge

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

- If η is too large, the optimization process might diverge
- In practice, it often makes sense to try several fixed step sizes
- Intuition on when to take big steps and when to take small steps?

2D Divergence example

Notes on Convergence

Gradient descent with an appropriate step size converges to stationary point (derivative = 0) for differentiable functions.

Notes on Convergence

- Gradient descent with an appropriate step size converges to stationary point (derivative = 0) for differentiable functions.
- Stationary points can be (local) minima, (local) maxima, saddle points, etc.

Notes on Convergence

- Gradient descent with an appropriate step size converges to stationary point (derivative =

 o) for differentiable functions.
- Stationary points can be (local) minima, (local) maxima, saddle points, etc.
- Gradient descent can converge to global minimum for convex functions.

Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$ we have

$$\theta x_1 + (1-\theta)x_2 \in C.$$

KPM Fig. 7.4

Convex Functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} \ f$, and $0 \le \theta \le 1$, we have

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y).$$

KPM Fig. 7.5

Theorem

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable, and ∇f is **Lipschitz continuous** with constant L > 0 (*L-smooth*), i.e.

$$\|\nabla f(x) - \nabla f(x')\| \le L\|x - x'\|$$

for any $x, x' \in \mathbb{R}^d$. Then gradient descent with fixed step size $\eta \leqslant 1/L$ converges. In particular,

$$f(x^{(k)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|^2}{2\eta k}.$$

This says that gradient descent is guaranteed to converge and that it converges with rate O(1/k).

Strongly Convex Functions

Definition

A function f is μ -strongly convex if

$$f(x') \ge f(x) + \nabla f(x) \cdot (x' - x) + \frac{\mu}{2} ||x - x'||^2$$

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and μ -strongly convex, and step size $0 < \eta \leqslant \frac{1}{L}$, then gradient descent converges with the following inequality:

$$||x^{(k)} - x^*||^2 \le (1 - \eta \mu)^k ||x^{(0)} - x^*||^2$$

This means we can get linear convergence, but it depends on μ . If the estimate of μ is bad then the rate is not great.

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \leqslant \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \le \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)
- Early stopping:
 - evalute loss on validation data (unseen held out data) after each iteration;
 - stop when the loss does not improve (or gets worse).

Gradient Descent for Empirical Risk - Scaling Issues

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathfrak{F} = \{f_w : \mathfrak{X} \to \mathfrak{Y} \mid w \in \mathbb{R}^d\}$
 - Parameterized by $w \in \mathbb{R}^d$.

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F} = \{f_w : \mathcal{X} \to \mathcal{Y} \mid w \in \mathsf{R}^d\}$
 - Parameterized by $w \in \mathbb{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F} = \{ f_w : \mathcal{X} \to \mathcal{Y} \mid w \in \mathbb{R}^d \}$
 - Parameterized by $w \in \mathbb{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- ullet Then we can do gradient descent on $\hat{R}_n(w)$

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

• How does this scale with *n*?

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with *n*?
- We have to iterate over all n training points to take a single step. [O(n)]

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with *n*?
- We have to iterate over all n training points to take a single step. [O(n)]
- Can we make progress without looking at all the data before updating w?

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 26 / 60

Stochastic Gradient Descent

"Noisy" Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!

"Noisy" Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!
- Intuition:
 - Gradient descent is an iterative procedure anyway.
 - At every step, we have a chance to recover from previous missteps.

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

• It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_{N}(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{m_{i}}), y_{m_{i}})$$

29 / 60

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Batch vs Stochastic Methods

(Slide adapted from Ryan Tibshirani)

Rule of thumb for stochastic methods:

- Stochastic methods work well far from the optimum
- But struggle close the the optimum

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 31 / 60

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \nabla \hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \implies$ Worse estimate of gradient, but can be quite fast

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \Longrightarrow$ Worse estimate of gradient, but can be quite fast
- Because of vectorization, the computation cost of minibatches is sublinear

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

- For convergence guarantee, use diminishing step sizes, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step
 - but most of that advantage comes into play once we're already pretty close to the minimum

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step
 - but most of that advantage comes into play once we're already pretty close to the minimum
 - in many ML problems we don't care about optimizing to high accuracy (why?)

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- initialize w = 0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

• For SGD, fixed step size can work well in practice.

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- initialize w = 0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving (staircase decay).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Minibatch Gradient Descent (minibatch size *N*)

- initialize w = 0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving (staircase decay).
- Other schedules: inverse time decay (1/t) etc.

More on why we need a diminishing step size.

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leqslant \sigma^2$ for all k, then SGD with step size $\eta \leqslant \frac{1}{L}$ satisifies:

$$\min_{k} \mathbb{E}[||f(x^{(k)}||^{2}] \leqslant \frac{f(x^{(0)} - f(x^{*}))}{\sum_{k} \eta_{k}} + \frac{L\sigma^{2}}{2} \frac{\sum_{k} \eta_{k}^{2}}{\sum_{k} \eta_{k}}$$

The extra term of variance will dominate if the step size does not decrease. ¹

¹https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L11.pdf

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leqslant \sigma^2$ for all k, then SGD with step size $\eta \leqslant \frac{1}{L}$ satisifies:

$$\min_{k} \mathbb{E}[\|f(x^{(k)}\|^{2}] \leqslant \frac{f(x^{(0)} - f(x^{*}))}{\sum_{k} \eta_{k}} + \frac{L\sigma^{2}}{2} \frac{\sum_{k} \eta_{k}^{2}}{\sum_{k} \eta_{k}}$$

• If $\eta_k = \eta$, then $\sum_k \eta_k = k\eta$, $\sum_k \eta_k^2 = k\eta^2$, error= $O(1/k) + O(\eta)$.

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leq \sigma^2$ for all k, then SGD with step size $\eta \leq \frac{1}{I}$ satisifies:

$$\min_{k} \mathbb{E}[\|f(x^{(k)}\|^{2}] \leq \frac{f(x^{(0)} - f(x^{*}))}{\sum_{k} \eta_{k}} + \frac{L\sigma^{2}}{2} \frac{\sum_{k} \eta_{k}^{2}}{\sum_{k} \eta_{k}}$$

- If $\eta_k = \eta$, then $\sum_k \eta_k = k\eta$, $\sum_k \eta_k^2 = k\eta^2$, error= $O(1/k) + O(\eta)$.
- If $\eta_k = \eta/k$, then $\sum_k \eta_k = O(\log(k))$, $\sum_k \eta_k^2 = O(1)$, error= $O(1/\log(k))$.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leqslant \sigma^2$ for all k, then SGD with step size $\eta \leqslant \frac{1}{L}$ satisifies:

$$\min_{k} \mathbb{E}[||f(x^{(k)}||^{2}] \leqslant \frac{f(x^{(0)} - f(x^{*}))}{\sum_{k} \eta_{k}} + \frac{L\sigma^{2}}{2} \frac{\sum_{k} \eta_{k}^{2}}{\sum_{k} \eta_{k}}$$

- If $\eta_k = \eta$, then $\sum_k \eta_k = k\eta$, $\sum_k \eta_k^2 = k\eta^2$, error= $O(1/k) + O(\eta)$.
- If $\eta_k = \eta/k$, then $\sum_k \eta_k = O(\log(k))$, $\sum_k \eta_k^2 = O(1)$, error= $O(1/\log(k))$.
- If $\eta_k = \eta/\sqrt{k}$, then $\sum_k \eta_k = O(\sqrt{k})$, $\sum_k \eta_k^2 = O(\log(k))$, error= $O(\log(k)/\sqrt{k}) = \tilde{O}(1/\sqrt{k})$.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a **random** subset of size *N* to determine step direction

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
- Stochastic gradient descent
 - Minibatch with N=1.
 - Use a single randomly chosen point to determine step direction.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 36 / 60

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
- Stochastic gradient descent
 - Minibatch with N=1.
 - Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so when referring to SGD, always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in large-scale ML.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 36 / 60

Example: Logistic regression with ℓ_2 regularization

Batch methods converge faster :

(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

Stochastic methods are computationally more efficient:

(Example from Ryan Tibshirani)

Example: Logistic regression with ℓ_2 regularization

Batch methods are much faster close to the optimum:

(Example from Ryan Tibshirani)

Loss Functions: Regression

- Examples:
 - Predicting the stock price given history prices

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos
- Notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.
- A loss $\ell(\hat{y}, y)$ is called **distance-based** if:
 - It only depends on the residual:

$$\ell(\hat{y}, y) = \psi(y - \hat{y})$$
 for some $\psi: R \to R$

2 It is zero when the residual is 0:

$$\psi(0) = 0$$

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

• When might you not want to use a translation-invariant loss?

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in \mathbb{R}.$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 43/60

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in \mathbb{R}.$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 43/60

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

• Residual: $r = y - \hat{y}$

• Square or ℓ_2 Loss: $\ell(r) = r^2$

. - ` ` /

• Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

• An outlier is a data point that differs significantly from other observations.

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

у	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- An outlier is a data point that differs significantly from other observations.
- Outliers typically have large residuals.

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- An outlier is a data point that differs significantly from other observations.
- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (robust and differentiable)
 - Equal values and slopes at $r = \delta$

Classification Loss Functions

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1, 1\}$

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1, 1\}$
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1, 1\}$
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

48 / 60

How can we optimize the model output?

The Score Function

- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

The Score Function

- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- The magnitude of the score can be interpreted as our confidence of our prediction.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1,1\}$ is $y\hat{y}$.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

• The margin is often written as yf(x), where f(x) is our score function.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.
- Most classification losses depend only on the margin (they are margin-based losses).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 50 / 60

Classification Losses: 0-1 Loss

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathcal{X} \rightarrow \{-1, 1\}$:

$$\ell(f(x), y) = 1(\tilde{f}(x) \neq y)$$

Classification Losses: 0-1 Loss

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(\tilde{f}(x) \neq y)$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Classification Losses: 0-1 Loss

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(\tilde{f}(x) \neq y)$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Minimizing empirical 0-1 risk not computationally feasible.

Classification Losses: 0-1 Loss

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(\tilde{f}(x) \neq y)$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n 1(y_i f(x_i) \le 0)$$

Minimizing empirical 0-1 risk not computationally feasible.

 $\hat{R}_n(f)$ is non-convex, not differentiable, and even discontinuous.

Classification Losses

Zero-One loss: $\ell_{0-1} = 1 (m \leq 0)$

• x-axis is margin: $m > 0 \iff$ correct classification

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023

Hinge Loss

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max(1 - m, 0)$

Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1.

We will cover SVM and Hinge loss in more details in future lectures.

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 53/60

- Also known as linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses, depending on the labels.

- Also known as linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses, depending on the labels.
- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function, and $z = f(x) = w^{\top}x$.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Mengye Ren (NYU) CSCI-GA 2565

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\mathsf{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\mathsf{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

• Remember the negative sign!

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\begin{split} \ell_{\mathsf{Logistic}} &= \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases} \\ &= -\log(\sigma(yz)) \\ &= -\log(\frac{1}{1 + e^{-yz}}) \\ &= \log(1 + e^{-m}). \end{split}$$

Logistic Loss

 ${\sf Logistic/Log\ loss:}\ \ell_{\sf Logistic} = \log{(1+e^{-m})}$

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 57/60

What About Square Loss for Classification?

• Loss
$$\ell(f(x), y) = (f(x) - y)^2$$
.

- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

$$= f^{2}(x) - 2f(x)y + y^{2}$$

$$= f^{2}(x)y^{2} - 2f(x)y + 1$$

$$= (1 - f(x)y)^{2}$$

$$= (1 - m)^{2}$$

What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).

Mengye Ren (NYU) CSCI-GA 2565 September 12, 2023 59 / 60

• Gradient descent: step size/learning rate, batch size, convergence

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin
- Logistic regression