Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on March 10, 2021

2021 Spring

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

Chapter 9. Two-Sample Inferences

§ 9.1 Introduction

- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

Multilevel designs:

- ${\bf 1.}\ \, {\bf Two\ methods\ applied\ to\ two\ independent\ sets\ of\ similar\ subjects}.$ ${\bf E.g.,\ comparing\ two\ products}.$
- Same method applied to two different kinds of subjects.
 E.g., comparing bones of European kids and American kids.

Test for normal parameters (two sample test)

- 1. Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- **2.** Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Find a test statistic Λ in order to test $H_0: \mu_X = \mu_Y$ v.s. $H_1: \mu_X \neq \mu_Y$.

- 1-1 When σ_X^2 and σ_Y^2 are known
- **1-2** When $\sigma_X^2 = \sigma_Y^2$ is unknown
- 1-3 When $\sigma_X^2 \neq \sigma_Y^2$, both are unknown

Prob. 2 Find a test statistic Λ in order to test $H_0: \sigma_X^2 = \sigma_Y^2$ v.s. $H_1: \sigma_X^2 \neq \sigma_Y^2$.

Prob. 1-1 Find a test statistic for $H_0: \mu_X = \mu_Y$ v.s. $H_1: \mu_X \neq \mu_Y$, with σ_X^2 and σ_Y^2 known.

Sol.

$$\frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0, 1)$$

Test statistics: $Z = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_X^2}{N} + \frac{\sigma_Y^2}{N}}}$.

Critical region $|z| \geq z_{\alpha/2}$.

Prob. 1-2 Find a test statistic for
$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$,

with $\sigma_X^2 = \sigma_Y^2 = \sigma^2$ but unknown.

Sol. Composite-vs-composite test with:

$$\omega = \left\{ (\mu_X, \mu_Y, \sigma^2) : \mu_X = \mu_Y \in \mathbb{R}, \quad \sigma^2 > 0 \right\}$$

$$\Omega = \left\{ (\mu_X, \mu_Y, \sigma^2) : \mu_X \in \mathbb{R}, \, \mu_Y \in \mathbb{R}, \, \sigma^2 > 0 \right\}$$

The likelihood function

$$L(\omega) = \prod_{i=1}^{n} f_X(x_i) \prod_{j=1}^{m} f_Y(y_j)$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{m+n} \exp\left(-\frac{1}{2\sigma^2}\left[\sum_{i=1}^n (x_i - \mu_X)^2 + \sum_{i=1}^m (y_i - \mu_Y)^2\right]\right)$$

Under ω , the MLE $\omega_e = (\mu_{\omega_e}, \mu_{\omega_e}, \sigma_{\omega_e}^2)$ is

$$\mu_{\omega_e} = \frac{\sum_{i=1}^n x_i + \sum_{j=1}^m y_j}{n+m}$$

$$\sigma_{\omega_{\mathbf{e}}}^2 = \frac{\sum_{i=1}^{n} (\mathbf{x}_i - \mu_{\omega_{\mathbf{e}}})^2 + \sum_{j=1}^{m} (\mathbf{y}_j - \mu_{\omega_{\mathbf{e}}})^2}{n+m}$$

Hence,

$$L(\omega_{e}) = \left(\frac{e^{-1}}{2\pi\sigma_{\omega_{e}}^{2}}\right)^{\frac{n+n}{2}}$$

Under Ω , the MLE $\omega_e = (\mu_{X_e}, \mu_{Y_e}, \sigma_{\Omega_e}^2)$ is

$$\mu_{X_e} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\mu_{Y_e} = \frac{1}{m} \sum_{j=1}^{m} y_j$

$$\sigma_{\Omega_{e}}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{X_{e}})^{2} + \sum_{j=1}^{m} (y_{j} - \mu_{Y_{e}})^{2}}{n + m}$$

Hence,

$$L(\Omega_{\mathbf{e}}) = \left(\frac{\mathbf{e}^{-1}}{2\pi\sigma_{\Omega}^2}\right)^{\frac{n+n}{2}}$$

a

$$\lambda = \frac{L(\omega_{\rm e})}{L(\Omega_{\rm e})} = \left(\frac{\sigma_{\Omega_{\rm e}}^2}{\sigma_{\omega_{\rm e}}^2}\right)^{\frac{m+n}{2}}$$

$$\lambda^{\frac{2}{n+m}} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{j=1}^{n} (y_j - \bar{y})^2}{\sum_{i=1}^{n} \left(x_i - \frac{n\bar{x} + m\bar{y}}{m+n}\right)^2 + \sum_{j=1}^{n} \left(y_j - \frac{n\bar{x} + m\bar{y}}{m+n}\right)^2}$$

$$\sum_{i=1}^{n} \left(x_i - \frac{n\bar{x} + m\bar{y}}{m+n} \right)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{m^2 n}{(m+n)^2} (\bar{x} - \bar{y})^2$$

$$\sum_{j=1}^{m} \left(y_j - \frac{n\bar{x} + m\bar{y}}{m+n} \right)^2 = \sum_{j=1}^{m} (y_j - \bar{y})^2 + \frac{mn^2}{(m+n)^2} (\bar{x} - \bar{y})^2$$

$$\downarrow$$

$$\sum_{i=1}^{n} \left(x_{i} - \frac{n\bar{x} + m\bar{y}}{m+n} \right)^{2} + \sum_{j=1}^{n} \left(y_{j} - \frac{n\bar{x} + m\bar{y}}{m+n} \right)^{2}$$

$$\parallel$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{i=1}^{m} (y_{i} - \bar{y})^{2} + \frac{mn}{m+n} (\bar{x} - \bar{y})^{2}$$

$$\lambda^{\frac{2}{m+n}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{j=1}^{m} (y_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{j=1}^{m} (y_{i} - \bar{y})^{2} + \frac{mn}{m+n} (\bar{x} - \bar{y})^{2}}$$

$$= \frac{1}{1 + \frac{(\bar{x} - \bar{y})^{2}}{\left[\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{j=1}^{m} (y_{i} - \bar{y})^{2}\right] \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

$$= \frac{n + m - 2}{n + m - 2 + \frac{(\bar{x} - \bar{y})^{2}}{\frac{1}{n+m-2} \left[\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{j=1}^{m} (y_{i} - \bar{y})^{2}\right] \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

$$= \frac{n + m - 2}{n + m - 2 + \frac{(\bar{x} - \bar{y})^{2}}{s_{p}^{2} \left(\frac{1}{m} + \frac{1}{n}\right)}} = \frac{n + m - 2}{n + m - 2 + t^{2}}.$$

$$t := \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$$

$$t\mapsto rac{a}{a+t^2}$$

One can use the following statistic

$$T = rac{\overline{X} - \overline{Y}}{S_p \sqrt{rac{1}{m} + rac{1}{n}}}$$

where S_p^2 is called the pooled sample variance

$$S_p^2 = \frac{1}{n+m-2} \left[\sum_{i=1}^n \left(X_i - \overline{X} \right)^2 + \sum_{i=1}^m \left(Y_i - \overline{Y} \right)^2 \right]$$
$$= \frac{1}{n+m-2} \left[(n-1)S_X^2 + (m-1)S_Y^2 \right]$$

Three observations:

1.
$$\mathbb{E}[\overline{X} - \overline{Y}] = 0$$
 and

$$\operatorname{Var}(\overline{X} - \overline{Y}) = \operatorname{Var}(\overline{X}) + \operatorname{Var}(\overline{Y}) = \frac{\sigma_{X}^{2}}{n} + \frac{\sigma_{Y}^{2}}{m} = \sigma^{2} \left(\frac{1}{n} + \frac{1}{m} \right)$$
Hence, $\frac{\overline{X} - \overline{Y}}{\sigma_{X} \sqrt{1 + 1}} \sim N(0, 1)$

2.
$$\frac{n+m-2}{\sigma^2} S_{\rho}^2 = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 + \sum_{j=1}^m \left(\frac{Y_j - \overline{Y}}{\sigma} \right)^2 \sim \text{Chi square}(n+m-2)$$

3.
$$\frac{\overline{X}-\overline{Y}}{\sigma\sqrt{\frac{1}{n}+\frac{1}{m}}} \perp \frac{n+m-2}{\sigma^2} S_p^2$$

$$\implies T = \frac{\frac{X - Y}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{n + m - 2}{\sigma^2} S_{\rho}^2 \times \frac{1}{n + m - 2}}} = \frac{\overline{X} - \overline{Y}}{S_{\rho} \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim \text{t distr.}(n + m - 2)$$

Finally,

Test statistics:
$$t = \frac{\bar{x} - \bar{y}}{s_{\rho} \sqrt{\frac{1}{m} + \frac{1}{n}}}$$

Critical region:
$$|t| \geq t_{\alpha/2, n+m-2}$$
.

Prob. 1-3 Find a test statistic for $H_0: \mu_X = \mu_Y$ v.s. $H_1: \mu_X \neq \mu_Y$, with $\sigma_X^2 \neq \sigma_Y^2$, both unknown.

Remark: 1. Known as the *Behrens-Fisher problem*.

2. No exact solutions!

3. We will derive a widely used approximation by

Bernard Lewis Welch (1911–1989)

Sol.

$$W = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} / \frac{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

$$U := \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0, 1)$$

$$\frac{V}{\nu} := \frac{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

!! Assumption/Approximation:

Assume that V follows Chi Square(ν) and assume that $V \perp U$.

 \implies Then, $W \sim$ Student's t-distribution of freedom ν .

? It remains to estimate ν : Suppose we have

$$\nu = \frac{\left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)^2}{\frac{\sigma_X^4}{n^2(n-1)} + \frac{\sigma_Y^4}{m^2(m-1)}} = \frac{\left(\theta + \frac{n}{m}\right)^2}{\frac{1}{n-1}\theta^2 + \frac{1}{m-1}\left(\frac{n}{m}\right)^2}, \quad \theta = \frac{\sigma_X^2}{\sigma_Y^2}.$$

!! Still need to know $\theta = \sigma_X^2/\sigma_Y^2$... Another approximation $\hat{\theta} = S_X^2/S_Y^2$, i.e.,

$$\nu \approx \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{s_X^4}{n^2(n-1)} + \frac{s_Y^4}{m^2(m-1)}} = \frac{\left(\hat{\theta} + \frac{n}{m}\right)^2}{\frac{1}{n-1}\hat{\theta}^2 + \frac{1}{m-1}\left(\frac{n}{m}\right)^2}, \quad \hat{\theta} = \frac{\mathbf{s}_X^2}{\mathbf{s}_Y^2}.$$

In summary:

$$W = rac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{rac{S_X^2}{n} + rac{S_Y^2}{m}}} \sim \text{Student's t of freedom } \nu$$

$$\nu = \left[\frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{s_X^4}{n^2(n-1)} + \frac{s_Y^4}{m^2(m-1)}}\right] = \left[\frac{\left(\hat{\theta} + \frac{n}{m}\right)^2}{\frac{1}{n-1}\hat{\theta}^2 + \frac{1}{m-1}\left(\frac{n}{m}\right)^2}\right], \quad \hat{\theta} = \frac{\boldsymbol{s}_X^2}{\boldsymbol{s}_Y^2}.$$

Test statistic:
$$t = \frac{\bar{x} - \bar{y} - (\mu_X - \mu_Y)}{\sqrt{\frac{s_X^2}{\lambda} + \frac{s_Y^2}{y}}}$$

Critical region:
$$|t| \geq t_{\alpha/2,\nu}$$
.

Remark If $\nu \geq 100$, replace the t-score, e.g., $t_{\alpha/2,\nu}$ by the z-score, e.g., $Z_{\alpha/2}$.

Thm The moment estimate for ν

$$\nu = \frac{\left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)^2}{\frac{\sigma_X^4}{n^2(n-1)} + \frac{\sigma_Y^4}{m^2(m-1)} + \frac{\sigma_X^2\sigma_Y^2}{mn}}$$

$$\approx \frac{\left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)^2}{\frac{\sigma_X^4}{n^2(n-1)} + \frac{\sigma_Y^4}{m^2(m-1)}} = \frac{\left(\theta + \frac{n}{m}\right)^2}{\frac{1}{n-1}\theta^2 + \frac{1}{m-1}\left(\frac{n}{m}\right)^2}, \quad \theta = \frac{\sigma_X^2}{\sigma_Y^2}.$$

Proof.

$$\frac{V}{\nu} \left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m} \right) = \frac{S_X^2}{n} + \frac{S_Y^2}{m}$$

$$(n-1)S_X^2/\sigma_X^2 \sim \text{Chi Sqr}(n-1) \Longrightarrow \mathbb{E}(S_X^2) = \sigma_X^2$$
. Similarly, $\mathbb{E}(S_Y^2) = \sigma_Y^2$.

First moment gives identity. Need to consider second moment.

Second moments for Chi sqr(r) is 2r. Hence, $\mathbb{E}(S_X^4) = \frac{\sigma_X^4}{n-1}$.

$$\frac{2\nu}{\nu^2}\left(\frac{\sigma_X^2}{\textit{n}} + \frac{\sigma_Y^2}{\textit{m}}\right)^2 = 2\frac{\sigma_X^4}{\textit{n}^2(\textit{n}-1)} + 2\frac{\sigma_X^4}{\textit{m}^2(\textit{m}-1)} + 2\frac{\sigma_X^2\sigma_Y^2}{\textit{mn}}$$

...

Remark Welch (1938) approximation is more involved, which actually assumes that V follows the Type III Pearson distribution.

https://en.wikipedia.org/wiki/Behrens-Fisher_problem

Prob. 2 Find a test statistic Λ in order to test $H_0: \sigma_X^2 = \sigma_Y^2$ v.s. $H_1: \sigma_Y^2 \neq \sigma_Y^2$.

Sol.

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim \text{F-disribution } (n-1,m-1)$$

Test statistic:
$$f=\frac{s_X^2/\sigma_X^2}{s_Y^2/\sigma_Y^2}=\frac{s_X^2}{s_Y^2}$$

Critical regions: $f \leq F_{\alpha/2,n-1,m-1}$ or $f \geq F_{1-\alpha/2,n-1,m-1}$.

Chapter 9. Two-Sample Inferences

§ 9.1 Introduction

§ 9.2 Testing
$$H_0: \mu_X = \mu_Y$$

§ 9.3 Testing
$$H_0: \sigma_X^2 = \sigma_Y^2$$

- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

- ▶ Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- ▶ Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 = \sigma_Y^2$.

Prob. 2 Testing
$$H_0: \mu_X = \mu_Y$$
 if $\sigma_X^2 \neq \sigma_Y^2$.

True means:
$$\mu_X$$
, μ_Y

$$ightharpoonup$$
 True std. dev.'s: σ_X , σ_Y

► True variances:
$$\sigma_X^2$$
, σ_Y^2

$$\overline{X}$$
, \overline{Y}

$$S_X, S_Y$$

$$\mathcal{S}_{\mathsf{X}}^2,~\mathcal{S}_{\mathsf{Y}}^2$$

When
$$\sigma_{X}^{2} = \sigma_{Y}^{2} = \sigma^{2}$$

Def. The pooled variance:
$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

$$=\frac{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}+\sum_{j=1}^{n}(Y_{j}-\overline{Y})^{2}}{n+m-2}$$

Thm.
$$T_{n+m-2} = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \text{Student t distr. of } n + m - 2 \text{ dgs of fd.}$$

Proof. (See slides on Section 9.1)

When
$$\sigma_{\it X}^2=\sigma_{\it Y}^2=\sigma^2$$

Testing
$$H_0: \mu_X = \mu_Y$$
 v.s.

(at the α level of significance)

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

$$H_1: \mu_X < \mu_Y:$$

$$H_1: \mu_X \neq \mu_Y$$
:

$$H_1: \mu_X > \mu_Y$$
:

Reject
$$H_0$$
 if

Reject
$$H_0$$
 if

Reject
$$H_0$$
 if

$$t \leq -t_{\alpha,n+m-2}$$

$$|t| \geq t_{\alpha/2,n+m-2}$$

$$t \geq t_{\alpha,n+m-2}$$

E.g. Test whether Mark Twain and Snodgrass are the same person by checking the proportion of three-letter words at the 99% level of significance.

Table 9.2.1 Proportion of Three-Letter Words					
Twain	Proportion	QCS	Proportion		
Sergeant Fathom letter	0.225	Letter I	0.209		
Madame Caprell letter	0.262	Letter II	0.205		
Mark Twain letters in		Letter III	0.196		
Territorial Enterprise		Letter IV	0.210		
First letter	0.217	Letter V	0.202		
Second letter	0.240	Letter VI	0.207		
Third letter	0.230	Letter VII	0.224		
Fourth letter	0.229	Letter VIII	0.223		
First Innocents Abroad letter		Letter IX	0.220		
First half	0.235	Letter X	0.201		
Second half	0.217				

Sol. We need to test

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

Since we are tesing whether they are the same person, one can assume that $\sigma_X^2 = \sigma_Y^2$.

1. n = 8, m = 10,

$$\sum_{i=1}^{n} x_i = 1.855, \quad \sum_{i=1}^{n} x_i^2 = 0.4316$$

$$\sum_{i=1}^{m} y_i = 2.097, \quad \sum_{i=1}^{m} y_i^2 = 0.4406$$

2. Hence,

$$\bar{x} = 1.855/8 = 02319 \quad \bar{y} = 2.097/10 = 0.2097$$

$$s_X^2 = \frac{8 \times 0.4316 - 1.855^2}{8 \times 7} = 0.0002103$$

$$s_Y^2 = \frac{10 \times 0.4406 - 2.097^2}{10 \times 9} = 0.0000955$$

$$s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2} = \dots = 0.0001457$$

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \dots = 3.88$$

3. Critical region: $|t| \ge t_{0.005, n+m-2} = t_{0.005, 16} = 2.9208$.

4. Conclusion: Rejection!

E.g. Comparing large-scales and small-scales companies:

Based on the data below, can we say that the return o equity differs between the two types of companies?

Table 9.2.4			
Large-Sales Companies	Return on Equity (%)	Small-Sales Companies	Return on Equity (%)
Deckers Outdoor	21	NVE	21
Jos. A. Bank Clothiers	23	Hi-Shear Technology	21
National Instruments	13	Bovie Medical	14
Dolby Laboratories	22	Rocky Mountain Chocolate Factory	31
Quest Software		Rochester Medical	19
Green Mountain Coffee Roasters	17	Anika Therapeutics	19
Lufkin Industries	19	Nathan's Famous	11
Red Hat	11	Somanetics	29
Matrix Service	2	Bolt Technology	20
DXP Enterprises	30	Energy Recovery	27
Franklin Electric	15	Transcend Services	27
LSB Industries	43	IEC Electronics	24

Sol. Let μ_X and μ_Y be the average returns. We are asked to test

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

1.

$$n = 12,$$
 $\sum_{i=1}^{n} x_i = 223$ $\sum_{i=1}^{n} x_i^2 = 5421$ $m = 12,$ $\sum_{i=1}^{m} y_i = 263$ $\sum_{i=1}^{m} y_i^2 = 6157$

2.

$$ar{x} = 18.5833, \qquad s_X^2 = 116.0833$$
 $ar{y} = 21.9167, \qquad s_Y^2 = 35.7197$
 $w = rac{18.5833 - 21.9167}{\sqrt{rac{116.0833}{12} + rac{35.7197}{12}}} = -0.9371932.$

$$\hat{\theta} = \frac{116.0833}{35.7179} = 3.250 \quad \Rightarrow \quad \nu = \left[\frac{(3.250 + 1)^2}{\frac{1}{11}3.250^2 + \frac{1}{11}1^2} \right] = [17.18403] = 17.$$

3. The critical region is $|\mathbf{w}| \ge t_{\alpha/2,17} = 2.1098$.

4. Conclusion:

Since $\mathbf{w} = -0.94$ is not in the critical region, we fail to reject H_0 .

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

Mot. 1

Mot. 2 To test H_0 : $\mu_X = \mu_Y$ under the assumption $\sigma_X^2 = \sigma_Y^2$, we need to first test $\sigma_X^2 = \sigma_Y^2$.

Testing
$$H_0: \sigma_X^2 = \sigma_Y^2$$

v.s

(at the α level of significance)

$$\begin{array}{lll} H_1: \sigma_X^2 < \sigma_Y^2: & H_1: \sigma_X^2 \neq \sigma_Y^2: & H_1: \sigma_X^2 > \sigma_Y^2: \\ & \text{Reject H_0 if} & \text{Reject H_0 if} & \text{Reject H_0 if} \\ & s_Y^2/s_X^2 \leq F_{\alpha,m-1,n-1} & s_Y^2/s_X^2 \geq F_{1-\alpha/2,m-1,n-1} & s_Y^2/s_X^2 \geq F_{1-\alpha,m-1,n-1} \\ & & \text{or} \\ & s_Y^2/s_X^2 \leq F_{\alpha/2,m-1,n-1} & \end{array}$$

E.g. Electroencephalograms (EEG).

Twenty inmates in a Canadian prison, randomly split into two groups of equal size: one in solitary confinement, one in their own cells.

Measure the alpha waves. Whether the observed difference in variability is significant (set $\alpha=0.05$.)

Table 9.3.1 Alpha-Wave Frequencies (CPS)				
Nonconfined, x _i	Solitary Confinement, y _i			
10.7	9.6			
10.7	10.4			
10.4	9.7			
10.9	10.3			
10.5	9.2			
10.3	9.3			
9.6	9.9			
11.1	9.5			
11.2	9.0			
10.4	10.9			

Figure 9.3.2 Alpha-wave frequencies (cps).

Sol. ...

Another example here:

https://www.itl.nist.gov/div898/handbook/eda/section3/
eda359.htm

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

By the central limit theorem, when n and m are large

$$\frac{\frac{X}{n} - \frac{Y}{m} - \mathbb{E}\left(\frac{X}{n} - \frac{Y}{m}\right)}{\sqrt{\operatorname{Var}\left(\frac{X}{n} - \frac{Y}{m}\right)}} \overset{approx.}{\sim} \textit{N}(0, 1)$$

Under $H_0: p_X = p_Y$,

$$\mathbb{E}\left(\frac{X}{n} - \frac{Y}{m}\right) = 0$$

$$\operatorname{Var}\left(\frac{X}{n} - \frac{Y}{m}\right) = \frac{p(1-p)}{n} + \frac{p(1-p)}{m}$$

The MLE for p under H_0 is

$$p_e = \frac{x + y}{n + m}$$

Testing
$$H_0: p_X = p_Y$$

V.S

(at the α level of significance)

$$z = \frac{\frac{x}{n} - \frac{y}{m}}{\sqrt{p_e(1 - p_e)\left(\frac{1}{n} + \frac{1}{m}\right)}}, \qquad p_e = \frac{x + y}{n + m}$$

$$H_1: p_X < p_Y:$$
 $H_1: p_X \neq p_Y:$ $H_1: p_X > p_Y:$ Reject H_0 if Reject H_0 if $z < -z_{\alpha}$ $|z| \geq z_{\alpha/2}$ $z > z_{\alpha}$

E.g. Nightmares among men and women:

Table 9.4.1 Frequency of Nightmares				
	Men	Women	Total	
Nightmares often Nightmares seldom Totals % often:	55 105 160 34.4	60 132 192 31.3	115 237	

Is 34.4% significantly different from 31.1% ($\alpha = 0.05$)?

Sol. ...

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p$
- § 9.5 Confidence Intervals for the Two-Sample Problem

Similar to the hypothesis test \dots

- 1. Let X_1, \dots, X_n be a random sample of size n from $N(\mu_X, \sigma_X^2)$.
- **2.** Let Y_1, \dots, Y_m be a random sample of size m from $N(\mu_Y, \sigma_Y^2)$.

Prob. 1 Find the $100(1-\alpha)\%$ C.I. for $\mu_X - \mu_Y$

When both σ_X^2 and σ_Y^2 are known

When $\sigma_X^2 = \sigma_Y^2 = \sigma^2$, but is unknown

When $\sigma_X^2 \neq \sigma_Y^2$, both are unknown

Prob. 2 Find the $100(1-\alpha)\%$ C.I. for σ_X^2/σ_Y^2 , or σ_X/σ_Y

Prob. 1-1 Find the $100(1-\alpha)\%$ C.I. for $\mu_X - \mu_Y$ with σ_X^2 and σ_Y^2 known.

Sol.

$$\frac{\overline{\mathbf{X}} - \overline{\mathbf{Y}} - (\mu_{\mathbf{X}} - \mu_{\mathbf{Y}})}{\sqrt{\frac{\sigma_{\mathbf{X}}^2}{n} + \frac{\sigma_{\mathbf{Y}}^2}{m}}} \sim \mathbf{N}(0, 1)$$

$$\mathbb{P}\left(-z_{\alpha/2} \leq \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \leq z_{\alpha/2}\right) = 1 - \alpha$$

$$\mathbb{P}\left((\overline{X} - \overline{Y}) - z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \le \mu_X - \mu_Y \le (\overline{X} - \overline{Y}) + z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}\right)$$

$$\left((\overline{\mathbf{X}}-\overline{\mathbf{y}})-\mathbf{Z}_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}\right.,\quad (\overline{\mathbf{X}}-\overline{\mathbf{y}})+\mathbf{Z}_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}\right)$$

Γ

Prob. 1-2 Find the $100(1-\alpha)\%$ C.I. for $\mu_X - \mu_Y$ when $\sigma_X^2 = \sigma_Y^2 = \sigma^2$ unknown

Sol.

$$rac{\overline{X}-\overline{Y}-(\mu_X-\mu_Y)}{S_p\sqrt{rac{1}{p}+rac{1}{m}}}\sim ext{Student t-distribution }(n+m-2)$$

$$\mathbb{P}\left(-t_{\alpha/2,n+m-2} \leq \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\mathcal{S}_{\rho}\sqrt{\frac{1}{n} + \frac{1}{m}}} \leq t_{\alpha/2,n+m-2}\right) = 1 - \alpha$$

$$S_{p}\sqrt{\frac{1}{n}+\frac{1}{m}}$$

$$\parallel$$

$$5)-t_{n/2,n+m-2}S_{n}\sqrt{\frac{1}{n}+\frac{1}{m}} < \mu_{X}-\mu_{Y} \leq (\overline{X}-\overline{Y})+t_{n/2,n+m-2}S_{n}$$

$$\mathbb{P}\left((\overline{X} - \overline{Y}) - t_{\alpha/2, n+m-2} S_{\rho} \sqrt{\frac{1}{n} + \frac{1}{m}} \le \mu_{X} - \mu_{Y} \le (\overline{X} - \overline{Y}) + t_{\alpha/2, n+m-2} S_{\rho} \sqrt{\frac{1}{n} + \frac{1}{m}}\right)$$

$$\left((\overline{x}-\overline{y})-t_{\alpha/2,n+m-2}s_{\rho}\sqrt{\frac{1}{n}+\frac{1}{m}}\right.,\quad (\overline{x}-\overline{y})+t_{\alpha/2,n+m-2}s_{\rho}\sqrt{\frac{1}{n}+\frac{1}{m}}\right)$$

Prob. 1-3 Find the $100(1-\alpha)\%$ C.I. for $\mu_X - \mu_Y$ when $\sigma_X^2 \neq \sigma_Y^2$ unknown.

Sol.

$$\frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} \sim \text{Student t-distribution } (\nu)$$

$$\mathbb{P}\left(-t_{\alpha/2,\nu} \leq \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} \leq t_{\alpha/2,\nu}\right) \approx 1 - \alpha$$

$$\mathbb{P}\left((\overline{X} - \overline{Y}) - t_{\alpha/2,\nu}\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}} \leq \mu_X - \mu_Y \leq (\overline{X} - \overline{Y}) + t_{\alpha/2,\nu}\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}\right)$$

$$\left((\overline{\mathbf{x}}-\overline{\mathbf{y}})-t_{\alpha/2,\nu}\sqrt{\frac{\mathbf{s}_\chi^2}{n}+\frac{\mathbf{s}_Y^2}{m}}\right.,\quad (\overline{\mathbf{x}}-\overline{\mathbf{y}})+t_{\alpha/2,\nu}\sqrt{\frac{\mathbf{s}_\chi^2}{n}+\frac{\mathbf{s}_Y^2}{m}}\right)$$

Γ

Prob. 2 Find the $100(1-\alpha)\%$ C.I. for σ_X^2/σ_Y^2

Sol 1.

$$\begin{split} \frac{S_\chi^2/\sigma_\chi^2}{S_\gamma^2/\sigma_\gamma^2} \sim \text{F-disribution } (n-1,m-1) \\ \mathbb{P}\left(F_{\alpha/2,n-1,m-1} \leq \frac{S_\chi^2/\sigma_\chi^2}{S_\gamma^2/\sigma_\gamma^2} \leq F_{1-\alpha/2,n-1,m-1}\right) &= 1-\alpha \\ & \qquad \qquad || \\ \mathbb{P}\left(\frac{S_\chi^2}{S_\gamma^2} \frac{1}{F_{1-\alpha/2,n-1,m-1}} \leq \frac{\sigma_\chi^2}{\sigma_\gamma^2} \leq \frac{S_\chi^2}{S_\gamma^2} \frac{1}{F_{\alpha/2,n-1,m-1}}\right) \end{split}$$

$$\left(\frac{s_X^2}{s_Y^2} \frac{1}{F_{1-\alpha/2,n-1,m-1}} \quad , \quad \frac{s_X^2}{s_Y^2} \frac{1}{F_{\alpha/2,n-1,m-1}}\right)$$

E0

Sol 2. Or equivalently,

$$\begin{split} \frac{S_{\gamma}^2/\sigma_{\gamma}^2}{S_{\chi}^2/\sigma_{\chi}^2} &\sim \text{F-disribution } (\textit{m}-1,\textit{n}-1) \\ \mathbb{P}\left(F_{\alpha/2,\textit{m}-1,\textit{n}-1} \leq \frac{S_{\gamma}^2/\sigma_{\gamma}^2}{S_{\chi}^2/\sigma_{\chi}^2} \leq F_{1-\alpha/2,\textit{m}-1,\textit{n}-1}\right) &= 1-\alpha \\ & \qquad \qquad || \\ \mathbb{P}\left(\frac{S_{\chi}^2}{S_{\gamma}^2}F_{\alpha/2,\textit{m}-1,\textit{n}-1} \leq \frac{\sigma_{\chi}^2}{\sigma_{\gamma}^2} \leq \frac{S_{\chi}^2}{S_{\gamma}^2}F_{1-\alpha/2,\textit{m}-1,\textit{n}-1}\right) \\ & \qquad \qquad \left(\frac{s_{\chi}^2}{s_{\gamma}^2}F_{\alpha/2,\textit{m}-1,\textit{n}-1} \right. , \quad \frac{s_{\chi}^2}{s_{\gamma}^2}F_{1-\alpha/2,\textit{m}-1,\textit{n}-1}\right) \end{split}$$

$$F_{\alpha,m,n} = \frac{1}{F_{1-\alpha,n,m}}$$

_

Examples from the book...