Learning \LaTeX

Ana Povea Ruiz October 2020 - in process

Contents

1	Introduction	2
2	Learning the basics - Mathematical mode	3
3	Brackets	5
4	Tables	6

1 Introduction

This is a template made with the sole purpose of learning latex for academical and work purposes.

© 2020 Ana Povea Ruiz

All rights reserved. This work may be distributed and/or modified under the conditions of the LaTeX Project Public License.

The work consists of the filetitle pages.tex and the derived filetitle pages.pdf

2 Learning the basics - Mathematical mode

- Math mode: (x + 3 + 4)
- Displayed math mode:

$$A(x) = x^2 + 2x + 4$$

- Superscript:

$$2x^{34+5x}$$

- Subscript:

 x_1

 x_{12}

- Sub-subscripts:

 x_{1_3}

 $a_0, a_1, a_2, \ldots, a_{100}$

- Greek letters

 π

П

 α

 $A = \pi r^2$

- Trig functions:

 $y = \sin x$

 $y = \cos x$

 $y = \csc \theta$

 $y = \sin^{-1} x$

 $y = \arcsin x$

- Log functions:

 $y = \log x$

 $y = \log_5 x$

 $y = \ln x$

-Roots & square roots:

 $\sqrt{2}$

 $\sqrt[3]{2}$

$$\sqrt{x^2 + y^2} \sqrt{1 + \sqrt{x}}$$

-Simple Fractions:

$$\frac{2}{3}$$

-More complicated fractions:

$$\frac{\sqrt{x+1}}{\sqrt{x+2}}$$

$$\frac{\sqrt{x+3}}{\sqrt{x+4}}$$

$$\frac{1}{(1+\frac{1}{x})}$$

-Sizing the fractions:

· Example: $\frac{1}{2}$ of the population is...

 \cdot Example: $\frac{2}{3}$ of the population is...

 \cdot Example: $\frac{2}{3}$ of the population is... (we need a package for this) -Arrays:

$$5x^2 - 9 = x + 3 \tag{1}$$

$$5x^2 - x - 12 = 0 (2)$$

$$5x^{2} - 9 = x + 3$$
$$5x^{2} - x - 12 = 0$$
$$0 = 12 + x - 5x^{2}$$

$$5x^2 - 9 = x + 3 \tag{3}$$

$$5x^2 - x - 12 = 0 (4)$$

3 Brackets

The distributive property states that a(b+c)=ab+ac, for all $a,b,c\in\mathbb{R}$.

The equivalence class of a is [a].

The set A is defined to be $\{1, 2, 3\}$.

Money: \$11.50. Expanding the size of the brackets:

$$2\left(\frac{1}{x^2-1}\right)$$

$$2\left[\frac{1}{x^2-1}\right]$$

$$2\left\{\frac{1}{x^2-1}\right\}$$

$$2\left\langle \frac{1}{x^2 - 1} \right\rangle$$

$$2\left|\frac{1}{x^2-1}\right|$$

$$\left. \frac{dy}{dx} \right|_{x=}$$

$$\left(\frac{1}{1+\left(\frac{1}{1+x}\right)}\right)$$

4 Tables

Basic table:

x	1	2	3	4	5
g(x)	10	11	12	13	14

x	1	2	3	4	5
f(x)	$\frac{1}{2}$	11	12	13	14

Table 1: These values represent the function f(x).

Table 2: The relationship between f and f'.

f(x)	f'(x)
x > 0	The function $f(x)$ is increasing.