Pecal sufficient condition for f diffle at to

The $f:A \subseteq \mathbb{R}^n \to \mathbb{R}^n$, A open

If all $\frac{\partial f_i}{\partial x_i}$ exist near to and is to at to $f:A \subseteq \mathbb{R}^n \to \mathbb{R}^n$, A open

Higher-order derivatives

Let $f:A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, A open (Another to the straight of the component $f:A \to \mathbb{R}$ (i=0,...,m)

Inductively define; (component-unise)

Let $f:\mathbb{R}^2 \to \mathbb{R}$ $f:\mathbb{R}^2 \to \mathbb{R}$

Def C^{∞} f is C^{∞} if $\forall r \in \mathbb{N}$, it is C^{r} ex $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ $f(x_{1}, x_{2}) = \alpha + b_{1}x_{1} + b_{2}x_{2} + c_{1}x_{1}^{2} + c_{2}x_{1}x_{2} + c_{2,2}x_{2}^{2}$ $(\alpha_{1}, b'_{3}, c_{3} \in \mathbb{R})$ $\frac{\partial^{2}}{\partial x_{1}\partial x_{2}} f = \frac{\partial}{\partial x_{1}}(b_{2} + c_{1,2}x_{1} + 2c_{2,2}x_{2}) = c_{1,2}$ $\frac{\partial^{2}}{\partial x_{2}\partial x_{1}} f = \frac{\partial}{\partial x_{2}}(b_{1} + c_{1,2}x_{2} + 2c_{1}x_{1}) = c_{1,2}$ Thm (Mixed partials) (et $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ (A open)

be in C^{2} , then $\forall x_{0} \in A$, $\frac{\partial^{2}}{\partial x_{1}\partial x_{1}\partial x_{1}} f(x_{0}) = \frac{\partial^{2}}{\partial x_{1}\partial x_{1}} f(x_{0})$ (Wrong ff for n=2, n=1: $\frac{\partial^{2}}{\partial x_{1}\partial x_{2}} f(x_{1}, x_{2}) = \lim_{h \to 0} \frac{\partial f}{\partial x_{1}} (x_{1}h_{1}, x_{2}h_{2}) - \frac{\partial f}{\partial x_{2}} (x_{1}, x_{2})$ $= \lim_{h \to 0} \frac{\lim_{k \to 0} f(x_{1}h_{1}, x_{2}h_{2}) - f(x_{1}h_{1}, x_{2}h_{2}) - \lim_{k \to 0} f(x_{1}, x_{2}h_{2}) - \lim_{k \to 0} \frac{f(x_{1}, x_{2}h_{2}) - f(x_{1}, x_{2}h_{2})}{k}$

= $\lim_{h\to 0} \lim_{k\to 0} \frac{f(x_{1}+h, x_{2}+k) - f(x_{1}+h, x_{2}) - f(x_{1}, x_{2}+k) + f(x_{1}, x_{2})}{hk}$ = $\lim_{k\to 0} \lim_{h\to 0} \frac{f(x_{1}+h, x_{2}+k) - f(x_{1}, x_{2}+k) - f(x_{1}+h, x_{2}) + f(x_{1}, x_{2})}{hk}$ = $\lim_{k\to 0} \frac{\inf_{h\to 0} f(x_{1}+h, x_{2}+k) - f(x_{1}, x_{2}+h)}{h} - \lim_{h\to 0} \frac{f(x_{1}+h, x_{2}) - f(x_{1}, x_{2})}{h}$ = $\lim_{k\to 0} \frac{\partial f}{\partial x_{1}}(x_{1}, x_{2}+k) - \frac{\partial f}{\partial x_{1}}(x_{1}, x_{2})$ = $\frac{\partial f}{\partial x_{2}\partial x_{1}}$ Checkion: (U) Can we actually do this? No.

(2) Where we use chity of C^{2} ? not yet.

Now apply MVT to $\psi:S \mapsto \frac{\partial}{\partial x_2}f(s,t_0)$ to get a $S_0 \le l$. $G(h,k)=kh\frac{\partial^2}{\partial x_1\partial x_2}f(S_0,t_0)$ Then we define ψ_2,ψ_2 in a different order and get a similar argument: $\exists S_0',t_0'$ s.t. $G(h,k)=kh\frac{\partial^2}{\partial x_1\partial x_2}f(S_0',t_0')$ Thus we get $\frac{\partial^2 f}{\partial x_1\partial x_2}(S_0,t_0)=\frac{\partial^2 f}{\partial x_0\partial x_1}(S_0',t_0')$ Let $h,k\to 0 \implies (S_0,t_0),(S_0',t_0')\to (x_1,x_2)$ So doily gives the result.

Actual Proof

WLOG Let m=1, n=2 $(f: \mathbb{R}^2 \rightarrow \mathbb{R})$ Define $G(h,k) = f(x_1+h, x_2+k) - f(x_1+h, x_2)$ $-f(x_1, x_2+k) + f(x_1, x_2)$ Let $g(t) = f(x_1+h_1, t) - f(x_1, t) \Longrightarrow G(h, k) = g(x_2+k) - g(x_2)$ $MVT \Longrightarrow \ni bo \ s.t. G(h,k) = g(x_2+k) - g(x_2) = kg'(to)$ i.e. $G(h,k) = k(\frac{2}{2\pi h}f(x_1+h, to) - \frac{2}{2\pi h}f(x_1, to))$