Spiking Neural Network Report - MNIST Classification

1. Introduction

This project implements a Spiking Neural Network (SNN) to classify handwritten digits from the MNIST dataset.

SNNs emulate the time-based firing of biological neurons and process data as temporal spike trains.

2. Step-by-Step Approach

- Load MNIST images and convert each image into a spike train using Poisson encoding.
- Model architecture:
 - Input layer: 784 neurons (28x28 image)
 - Hidden layer: 512 LIF neurons
 - Output layer: 10 LIF neurons
- Neuron model: Leaky Integrate-and-Fire (LIF)
 - Leaks over time
 - Fires if threshold is crossed, then resets
- Training:
 - Use surrogate gradients to approximate spike gradients
 - Optimizer: Adam
 - Loss: CrossEntropy between final output spike counts and true labels

3. Visualizations

- Poisson spike trains generated from images show meaningful activity
- Accuracy improves over epochs
- Loss drops significantly within a few epochs

4. Observations & Challenges

- CPU/CUDA mismatch fixed with careful device transfers

Spiking Neural Network Report - MNIST Classification

- Poisson encoding is stochastic; training curves may vary
- Surrogate gradient selection is crucial
- Higher number of time steps improves accuracy but increases compute

5. SNN vs ANN

Feature	SNN	ANN	
	-		
Activation	Binary spikes	Continuous value	s
Training	Surrogate gradients	Backpropagatio	on
Timing	Time-based	Static	1
Power	Energy efficient (sparse) Dense computation		
Hardware	Neuromorphic-frie	endly CPU/GPU	1

6. Reflections & Future Work

- Accuracy around 92-94% on MNIST is promising
- Explore STDP learning or event-driven datasets like DVS-Gesture
- Investigate deeper SNNs or hybrid SNN-ANN architectures

7. References

- Neftci et al. (2019): Surrogate Gradient Learning in SNNs
- MNIST dataset: http://yann.lecun.com/exdb/mnist/
- PyTorch docs: https://pytorch.org/
- fzenke/spytorch: https://github.com/fzenke/spytorch