Arithmetic

- Digits are added bit-by-bit from right to left, with carries passed to the next digit to the left
- Subtraction is simply addition with the appropriate operand negated before the addition
- Overflow occurs when the result from an operation cannot be represented with the available hardware
 - Overflow cannot occur in addition with numbers of differing signs because the result is no larger than one of the operands
 - Therefore, in subtraction, overflow cannot occur when the signs are the <u>same</u>
 - Adding/subtracting two 32-bit numbers can yield a result that needs 33 bits
 - We don't have 3 bits, so that means when overflow occurs, the sign bit is set with the value of the result instead of the proper sign
 - Therefore, overflow occurs when adding two positive numbers and the sum is negative, or vice-versa
 - In subtraction, it occurs when we subtract a negative number from a positive number and get a negative result or subtract a positive number from a negative number and get a positive result
- The above is for signed (Two's Complement) overflow. For unsigned overflow, we usually choose to ignore it, therefore MIPS includes two types of arithmetic instructions:
 - · add, addi, and sub cause exceptions on overflow (signed)
 - · addu, addiu, and subu do not cause exceptions on overflow
- · C always chooses to ignore overflow so the compiler will always generate the unsigned versions of the instructions
- If we were to detect overflow, MIPS would do so with an exception/interrupt, which is an unscheduled event that disrupts program execution
 - The address of the instruction that overflowed is saved in a register and the computer jumps to a predefined address to invoke the appropriate routine for that exception
 - MIPS includes a register called exception program counter (EPC) that contains that address of the instruction that caused the exception so that the software can return to it if it wants to
 - This also leads to the existence of \$k0 and \$k1 registers reserved for the operating system so that it can be used when jumping back to the offending instruction and resetting all general-purpose registers without using a general purpose register to jump back with

Overflow

Chapter 3

Floating Points · We also need support for fractions (real numbers) and not just signed and unsigned numbers · A number like 3,155,760,000 is too large to be stored in 32 bits, but can be represented in a more compact form using scientific notation in the form of 3.15576 x 109 · A normalized number is a number in floating-point notation that has no leading 0s · We can also show binary numbers in scientific notation · Floating point refers to computer arithmetic that represents numbers in which the binary point is not fixed · C use s the name float for such numbers Fields · Must find a compromise between the size of the fraction and the exponent · Increasing the size of the fraction enhances the precision of the faction · Increasing the size of the exponent increases the range of numbers that can be represented · Floating point numbers are of the form: (-1)S x F x 2E · For a 32 bit floating point number, we have: · Sign (1 bit): sign of the fraction (1 if it is negative, 0 if it is positive) · Exponent (8 bits): Value of the exponent; includes sign · Fraction (23 bits): This is a 23-bit number · These sizes give an extraordinary range: Range · Fractions can be almost as small as 2.0 x 10⁻³⁸ and numbers almost as large as 2.0x1038 · Numbers can still be too large \cdot Overflow occurs when exponent is too large to be represented in the exponent field · We also have issues of numbers being too small · Underflow occurs when the negative exponent has become too large to fit in the exponent field **Double Precision** · We can reduce the number of overflow/underflow cases by introducing a double precision floating point arithmetic · It is represented in two 32-bit words (therefore it is 64 bits) · In C, this number is called a double · In double-precision, the breakdown is the following: · Sign: 1 bit · Exponent: 11 bits

Normalized

· IEEE 754 makes the leading 1-bit of the normalized binary numbers implicit

· These formats are all part of the IEEE 754 floating-point standard that is

· This thus allows numbers as small as 2.0 x 10⁻³⁰⁸ and as large as

· Fraction: 20 bits

virtually universal to all computers

2.0 x 10³⁰⁸

	left of the decimal point. Because this is binary, the only number to
	the left of the binary point is a 1. Therefore, to save 1 bit we can
	make this implicit.
	 The significand is therefore 24 bits for single-precision and 53 bits for double-precision
	 Significand refers to these lengths whereas fraction refers to
	the 23-bit and 52-bit numbers
Special Cases	· 0 has no implicit 1, so to represent this, the fraction must be all 0 and the
	exponent must be all 0
	· For the rest of the numbers, the modified representation includes the hidden
	1: (-1) ^S x (1 + Fraction) x 2 ^E
	 Numbering the bits of the fraction from left to right s₁, s₂, s₃,, then
	the value is:
	· $(-1)^S \times (1 + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) +) \times 2^E$
	· An exponent of 255 (the largest exponent) and a fraction of 0 yields either
	positive or negative infinity
	 Programmers can use this in instances such as dividing by 0 instead
	of interrupting or throwing an error
	· An exponent of 255 (the largest exponent) and a nonzero fraction produces a
	NaN (Not a Number)
	\cdot This is used as a result of invalid operations, such as 0/0 or
	subtracting infinity from infinity
	· An exponent of 0 and a nonzero fraction is a de-normalized number
	 In this case, there is no implicit 1, which goes hand in hand with the
	definition of a de-normalized number
	 Therefore, we are able to reach even smaller numbers,
	because previously the smallest number was (1 + 0.0000)
	x 2-126 because of the implicit 1
	· Once taken out, with denorms, the smallest number is then
Bias Encoding	$0.0001 \times 2^{-126} = 2^{-23} \times 2^{-126}$
	The designers wanted a floating-point representation that could easily be
	processed by integer comparisons, especially sorting
	• The most significant bit is the sign bit which allows for a quick test of
	less than, greater than, or equal to 0
	The exponent bit comes before the significand because numbers with bigger exponents leak larger than numbers with smaller.
	with bigger exponents look larger than numbers with smaller exponents as long as both exponents have the same sign
	We can't use two's complement here because negative
	exponents have a 1 in the most significant bit of the
	exponents have a 1 in the most significant bit of the exponent field, which makes it look like a big number when
	it's actually the opposite
	 Instead, we encode the exponent with bias encoding
	• Represent the most negative exponent as all 0s
	hepresent the most negative exponent as all us
	· The most positive exponent as all 1s
	 The most positive exponent as all 1s For single precision, use a bias of 127

 There is leading 1-bit in the normalized version because in the normalized version of scientific notation, there is only 1 digit to the \cdot The real form is then (-1)S x (1 + Fraction) x 2(Exponent - Bias) · Because the exponent of 255 is reserved for NaN's and infinity, the biggest exponent we can have is 254 which yields an upper bound of 127 on the exponent and a lower bound of -126