DATA SCIENCE MASTER

SEMANTIC KNOWLEDGE REPRESENTATION

Ontology Formalisation and Protégé

Mounira Harzallah

mounira.harzallah@univ-nantes.fr Tél: 02 28 09 21 27

Plan

- □ Formalisation of ontology with description logics (DLs)
- Reasoning with DL on ontology
- □ Formalisation of ontology with OWL/Protégé

Description Logics

Description logics are logical formalisms for :

- Defining concepts and their relations/roles (**Terminologies**)
- Specifying properties of individuals (Assertions)

Main advantages:

- Well-defined semantic: defined by interpreting with subsets of individuals
- Flexibility: Formalisation of large kinds of situations

Today DLs represent one of the main language of knowledge representation, with applications in a number of areas of computer sciences

Semantic web: DLs are a foundation of ontology languages (OWL) which have been standardised by W3C group

Software engineering: one can translate UML diagrams into DL

Database theory: one can translate E/R-models into DL

DL constructs for ontology formalisation

Atomic Concepts denote subsets of the domain that are not defined (primitive concepts). All other concepts are defined in terms of the primitive concepts

Example: Human, Animal, Plant, Female

Roles denote binary relations on the domain

Example: HasChild, HasCost, HasPart, IsAuthorOf

Concepts constructors denote operations for combining and building complex concepts.

Example: Conjunction (\sqcap) , Disjunction (\sqcup)

Role constructors denotes operations for building complex roles

Example: transitive closure (*) and R* is a transitive closure on R

 $R^*(x)=y <=> It exists z where R(x)= z and R^*(z)= y$

DL Constructs for ontology formalisation

Example

- Atomic/primitive concepts: Human, Animal, Plant, Female
- Role: HasChild, Marryto
- Complex Concept s :

```
Animal ⊓ Plant
```

Human □ ∃HasChild.T

Human □ ∃HasChild.T □ ∀HasChild.Female

Human □ ¬Female

Complex Role: (HasChild)*= HasDescendant

HasDescendant(x) = HasChild*(x) = y <=>

It exists z where Haschild(x) = z and HasDescendant(z) = y

DL goals

DL is a language of description:

- How to constitute concepts and roles,
- Mechanisms to specify knowledge on concepts and roles, using Terminological axioms i.e. TBox: collection of definitions of concepts and their relations
- Mechanisms to specify the properties of objects/individuals using Assertional axioms i.e. Abox: specification of individual properties, where the properties are those defined in the TBox
- A set of mechanisms for reasoning

DL goals

Example

- Complex concepts:
 - Human □ Male □ ∃HasChild □ ∀ HasChild.Doctor
- Tbox

```
T=\{Father \equiv Human \sqcap Male \sqcap \exists hasChild, HappyFather \subseteq Father \sqcap \forall HasChild.Doctor\}
```

• Abox

```
A= {HappyFather(Jean), (Jean, Marie) ∈ Haschild<sup>I</sup>}
```

• Example of reasoning

```
T | HappyFather ⊆ ∃HasChild.Doctor
T U A | Doctor(Marie)
```

Semantic of DL constructs

- \square An interpretation I is a pair (F, Δ), where
 - Δ is a non-empty set
 - Fc : AtomicConcepts \rightarrow Pow(Δ)
 - Fr : Roles \rightarrow Pow($\Delta x \Delta$)
- \square Fc(C) = C^I is the interpretation of C

The set of individuals of C is one interpretation of C

The set of ordered pairs of individuals of R is one interpretation of R

Interpretation is a mean to explain

- the semantic of DL constructs
- the reasoning made

Interpretation and Reasoning

☐ An interpretation I satisfies a Tbox, if it satisfies every axioms in the Tbox

denoted by
$$I = Tbox$$

 \square Tbox \models Ai => all the interpretations of the Tbox should satisfy Ai, Ai is an axiom

If \exists an interpretation of **Tbox that dosent' satisfy** $Ai \Rightarrow \overline{Tbox} \not\models Ai$

Example

Thox= {C
$$\sqcup$$
 D \equiv B}, I1 : C^{I1}={1, 2, 3}, D^{I1} ={1, 4}, B^{I1}={1, 2, 3,4}

$$\{1, 2, 3\}U\{1, 4\} = \{1, 2, 3, 4\} \implies I1 \models Tbox$$

A1 : $C \sqcap D \equiv \bot$, Tbox $\not\models A1$ because $C^{I1} \cap D^{I1} = \{1\}$ is not empty

Semantic of DL constructs

Construct	Syntax	Example	Semantics
atomic concept	A	Doctor	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
atomic role	P	hasChild	$P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
atomic negation	$\neg A$	$\neg Doctor$	$\Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}$
conjunction	$C\sqcap D$	Hum □ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
(unqual.) exist. res.	$\exists R$	∃hasChild	$\{a \mid \exists b. (a,b) \in R^{\mathcal{I}}\}$
value restriction	$\forall R.C$	∀hasChild.Male	$\{a \mid \forall b. (a,b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}}\}$
bottom			Ø

Semantic of DL constructs

Construct	Syntax	Semantics
disjunction	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
top	Т	$\Delta^{\mathcal{I}}$
qual. exist. res.	$\exists R.C$	$\{a \mid \exists b. (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$
(full) negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
number	$(\geq k R)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}}\} \ge k \}$
restrictions	$(\leq k R)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}}\} \le k \}$
qual. number	$(\geq k R.C)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \ge k \}$
restrictions	$(\leq k R.C)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \le k \}$
inverse role	R^{-}	$\{ (a,b) \mid (b,a) \in R^{\mathcal{I}} \}$

Semantic of LD constructs

$$C \sqcup D = B \implies C \sqsubseteq B$$

Equivalences of the Negation

$$\neg(C\sqcap D)=\neg C\sqcup \neg D$$

$$\neg(C \sqcup D) = \neg C \sqcap \neg D$$

$$\neg(\exists R.C) = \forall R.\neg C$$

$$\neg(\forall R.C) = \exists R.\neg C$$

For reasoning, we can use interpretations and/or associate a first-order formula with free-variable x, y

For an atomic concept A,
$$A(x) = A(x)$$

For a role R, we use a binary relation symbol
$$R(x, y)$$

$$T(x) = P(x) \lor \neg P(x) \text{ and } \bot(x) = P(x) \land \neg P(x)$$

$$C \sqcap D(x) = C(x) \land D(x)$$

$$C \sqcup D(x) = C(x) \vee D(x)$$

$$\exists R.C(x) = \exists y(R(x, y) \land C(y))$$

$$\forall R.C(x) = \forall y(R(x, y) \rightarrow C(y))$$

Exercices

- Write "Course with at most 20 participants, all of which are master or Ph.D students", (primitive concepts: Course, MasterStudent, PhDStudent, role: HasParticipant).
- T={Father = Human □ Male □ ∃hasChild,
 HappyFather ⊆ Father □ ∀ HasChild.Doctor}
 A= {HappyFather(Jean), Haschild(Jean, Marie)}

To infer using interprataions:

T | HappyFather ⊆ ∃HasChild.Doctor T U A | Doctor(Marie)

Exercices

```
T={Father ≡ Human □ Male □ ∃hasChild,

HappyFather ⊆ Father □ ∀ HasChild.Doctor}

A= {HappyFather(Jean), Haschild(Jean, Marie)}
```

```
To infer using interprataions:

T |= HappyFather ⊆ ∃HasChild.Doctor

T U A |= Doctor(Marie)
```

HappyFather $\subseteq \exists$ hasChild $\sqcap \forall$ HasChild.Doctor

- \rightarrow (\forall x, Happyfather(x) \rightarrow (\exists y, HasChild (x,y)) \land (\forall y HasChild(x,y) \rightarrow Doctor(y))
- \rightarrow (\forall x, Happyfather(x) \rightarrow \exists y, HasChild (x,y) \land Doctor(y))
- → HappyFather ⊆ ∃hasChild.Doctor

```
    HappyFather(Jean) → ∀ HasChild.Doctor(Jean) ∧
    Haschild(Jean, Marie) ∧ ∀ HasChild.Doctor(Jean) → Doctor (Marie)
```

How to formalise ontology

Primitive ConceptsHuman, Male

Complex Concept definitions

Man ⊂ Human

 $Man \equiv (Human \sqcap Male)$

Woman \equiv Human \sqcap (\neg Male)

Father $\subset \exists$ HasChild

Father \equiv (Man $\sqcap \exists$ HasChild)

MenNoChildOrFatherWithOnlySon =

 $(Man \sqcap \forall HasChild.Man)$

Reasoning on ontology

- □ Classification: classification of a concept within a taxonomy
- □ Improving a classification: a better classification of a concept)
- □ Inference of new properties of concepts, individuals or roles.
- □ Determination of unsatisfiability
- □ Identification of logical inconsistencies

Reasoning. Classification of concepts

A concept C should be classed under the concept C1 that is the most close to it.

C1 is the most close to C, if C is a sub class of C1 where there is not another concept C2 (distinct of C1) where $C \subseteq C2 \subseteq C1$

Person

CitizenOf(Person, County)

LivesIn(Person, Country)

French \equiv (Person \sqcap \exists Citizen.{France})

French Abroad is a new concept defined as

Then FrenchAbroad ⊂ French

Person

French

FrenchAbroad

Reasoning. Taxonomy improving

- Person
- □ Parent ≡ (Person Π ∃ HasChild.Person)
- □ Woman ≡ (Person \sqcap Female)
- □ Mother ≡ (Parent \sqcap Female)

In the taxonomy Mother is-a Female

But we can deduce that Mother is-a Woman

Person

Female

Mother

Reasoning. Logical inconsistency

Ontology inconsistency is when an ontology contains logical contradictions for which a model does not exist

Examples of ontology inconsistencies

• O
$$\models$$
 (Ci \sqcap Cj= \perp and Ci^I \sqcap Cj^I = {c})

Reasoning. Unsatisfability

□ Satisfiability. A concept C is satisfiable if there exists an interpretation I such that $C^I \neq \emptyset$

The following complex concept are satisfiables

- Parent \equiv (Person \sqcap \exists hasChild.Person)
- Woman≡ (Person

 Female)
- Man \equiv (Person \sqcap Male)
- Mother \equiv (Female \sqcap Parent)
- NonHumain $\equiv \neg$ Woman $\sqcap \neg$ Man
- OtheMother = (NonHumain □ Mother)

We can deduce that there is not a non empty set that can interpret OtherMother

OtherMother is Unsatisfiable

OWL (Ontology Web Language)

OWL is developed based on DL. It defines

- Hierarchies of Classes
- Hierarchies of relations (or properties)
- Axioms on concepts and relations

OWLs

RDF/RDFs are languages to describe ressources/data on the web

RDF defines the web ressources as triplets of (objet predicat objet)

RDFs: structures the ressources of RDF

RDF/RDFs are not suffisant to specify and formalize ontologies

OWL languages

- OWL is an extension of RDF/RDFs
- OWL langages: OWL Lite, OWL DL, OWL
 Full
- OWL languages support a variety of syntaxes.

OWL vs LD

DL constructor	Example
$C_1\sqcap\cdots\sqcap C_n$	Human □ Male
$C_1 \sqcup \cdots \sqcup C_n$	Doctor ⊔ Lawyer
$\neg C$	¬Male
$\{a_1\}\sqcup\cdots\sqcup\{a_n\}$	$\{john\} \sqcup \{mary\}$
$\forall P.C$	∀hasChild.Doctor
$\exists P.C$	∃hasChild.Lawyer
$(\leq nP)$	$(\leq 1 hasChild)$
$(\geq nP)$	$(\geq 2hasChild)$
	$C_1 \sqcap \cdots \sqcap C_n$ $C_1 \sqcup \cdots \sqcup C_n$ $\neg C$ $\{a_1\} \sqcup \cdots \sqcup \{a_n\}$ $\forall P.C$ $\exists P.C$ $(\leq n P)$

OWL vs LD

OWL axiom	DL syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal □ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human □ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Man ⊑ ¬Female
sameIndividualAs	$\{a_1\}\equiv\{a_2\}$	$\{presBush\} \equiv \{G.W.Bush\}$
differentFrom	$\{a_1\} \sqsubseteq \neg \{a_2\}$	$\{john\} \sqsubseteq \neg \{peter\}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	hasCost ≡ hasPrice
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$

Protégé: ontology eidtor

- Developed with Java
- Specific language, but based on OWL (and then on DL)
- With protégé, we can edit an ontology in OWL (in several syntaxes)
- Possibility to integrate plug-in by adding applications on the ontology
- Ontology is defined as a hierarchy of classes (is-a), slots (relations), instances and axioms

Protege et OWL

Create a new OWL ontology

OWL/XML

Definition of classes/subClasses and Instances with OWL

The relation Class/subClass is defined by the definition of a hierarchy

Definition of intances

<Woman rdf:ID="Mounira"/>

Definition of axioms with OWLProtege

Example: two classes are disjoints (i.e if it dosen't exist an instance that belongs to the two classes)

Definition of properties with Protege/OWL

Two kinds of properties:

- Object properties : between two individuals
- Datatype properties : between an individual and a datatype

Definition of axioms OWL/Protege

Characteristics of properties:

- It can be the inverse of another property
- It can have only one value for a given instance: function
- It can be transitive
- It can be symmetric

Restrictions on properties:

- Restrictions on the cardinalities
- Restrictions on the values (instances) (hasValue)
- Restrictions with quantifiers (existential and universal)

Definition of axioms with OWL/Protege

Restrictions with quantifiers

Example

"\hasChild only Woman": instances that have daughter or don't have child

Definition of axioms with OWL/Protege

Restrictions with quantifiers

Examples:

HasChild some Woman: instances that has at least one daughter (someValuesFrom)

Restriction on Value (on instances)

HasColor has "White": instances has at least a color white (here white is an instance)

Definition of axioms with OWL/Protege

Restrictions on cardinalities

