Contents

Practi	co 1																							1
2)																	 							. 1
3)																	 							. 2
6)																								. 2
7)																	 							. 2
8)																	 							
10)																	 							
12)																								. 3
	Clase .		•	٠		٠	•			٠		•				•	 	•					•	. 3
Practi	co 2																							3
1)																	 							. 3
2)																	 							. 4
,	Notas																 							. 4
	Howto																 							. 4
3)																	 							. 4
7)																	 							. 4
8)																	 							. 4
\mathbf{FF}																								5
Practi	co 3																							5
EK																	 							. 5
	Idea .																 							_
	Notaci	on .															 							. 5
	Pasos																							. 5
2)																	 							. 5
Algori	tmos																							6
_	ic																 							. 6
	ve																							_
Prac	tico I	1																						
2)																								
(2) Hallar el número cromático de los siguientes grafos. (i) (ii) (iii)																								
	~		\leq	_		\setminus					1		\	1	\langle				_		\leq	7	<u>.</u>	

- 1. Encontrar algun subgrafo para el cual se sepa su número cromatico
- 2. Plantear $\chi(H) \leq \chi(G)$
- 3. Dar un coloreo para el grafo que usa C colores, buscando que $C = \chi(H)$
- 4. Plantear $\chi(G) \leq C$
- 5. Pleantear que como $\chi(H) = C \Rightarrow \chi(G) = C$

3)

Para cada caso (r impar, r = 2 y r > 2 y r par > 2))

- 1. Visualizar como se veria el grafo
- 2. Encontrar algun subgrafo para el cual se sepa su número cromatico
- 3. Plantear $\chi(H) \leq \chi(G)$
- 4. Dar un coloreo para el grafo que usa C colores, buscando que $C = \chi(H)$ Este coloreo puede ser definido como una funcion definida por casos que toma argumento un i que es el i-esimo vertice Ver los casos para los cuales la funcion C no puede ser igual. Por ejemplo: $C(i) \neq C(i+1)$
- 5. Plantear $\chi(G) \leq C$
- 6. Pleantear que como $\chi(H) = C \Rightarrow \chi(G) = C$

6)

- Con los ciclos se puede decir que son simetricos por rotacion
- 1. Visualizar grafo
- 2. Demostrar que no existe un coloreo propio con 3 colores
 - Tomar un subgrafo y plantear un lema en base a el
 - Demostrar lema
 - Buscar llegar a un absurdo al aplicar el lema en el grafo entero
- 3. Dar un coloreo propio con 4 colores
 - Ver casos segun cada tipo de vertice
- 4. Plantear $4 \le \chi(G) \le 4 \Rightarrow \chi(G) = 4$

7)

- 1. Visualizar grafo con un ejemplo mas chico de G_n
 - Pensar en que significa que mcd(i, j) = 1
- 2. Encontrar algun subgrafo para el cual se sepa su número cromatico
- 3. Plantear $\chi(H) \leq \chi(G)$
- 4. Dar un coloreo para el grafo que usa C colores, buscando que $C = \chi(H)$
 - Este coloreo puede ser definido como una funcion definida por casos que toma argumento un i que es el i-esimo vertice
 - Ver los casos para los cuales la funcion C no puede ser igual.
 - Por ejemplo: $C(i) \neq C(i+1)$
- 5. Demostrar que el coloreo es propio viendo los distintos casos
- 6. Plantear $\chi(G) \leq C$
- 7. Pleantear que como $\chi(H) = C \Rightarrow \chi(G) = C$

8)

- 1. Visualizar grafo con n chicos
 - Ver cuales son los coprimos de 6
 - Usar coordenadas para definir los vertices
- 2. Encontrar algun subgrafo H para el cual se sepa su número cromatico
- 3. Plantear $\chi(H) \leq \chi(G)$
- 4. Dar un coloreo para el grafo que usa C colores, buscando que $C=\chi(H)$
 - Ver casos en los que dos vertices estan conectados, usando dos vertices (a,b) y (c,d)
- 5. Demostrar que el coloreo es propio viendo los distintos casos
 - Evaluar C(i,j) en cada caso y probar que $C(a,b) \neq C(c,d)$ para demostrar que se cumple
- 6. Plantear $\chi(G) \leq C$
- 7. Pleantear que como $\chi(H) = C \Rightarrow \chi(G) = C$

10)

- 1. Dar un coloreo propio con 4 colores
- $2.\,$ Demostrar que no existe un coloreo propio con 3 colores
 - Dar un coloreo general para algun subgrafo
 - Deducir un coloreo general para el resto de vertices
 - Ver si se llega a un absurdo
- 3. Plantear $4 \le \chi(G) \le 4 \Rightarrow \chi(G) = 4$

12)

Clase

Tomar subgrafo con todos los vertices menos el vertice cuyo lado es delta Como por propiedad p < k, al agregar x se aumenta el NC, los vecinos de x deben tener todos los colores por lo cual: delta >= p como el maximo de aumento del NC es 1: p+1 = k Y hay que llegar a que delta +1 >= k

Ideas: 1) Tomar x con grado delta 2) Para que x use nuevo color los vecinos de x tienen que incluir todos los colores 3) k = p+1

Practico 2

1)

• Pensar en algun flujo donde las capacidades no tengan interseccion

2)

Notas

Un flujo maximal es cuando se esta mandando todo lo que se puede y ser recibe todo lo que se puede

Howto

- 1. Partir de un network super basico
- 2. Ver si sirve de contraejemplo para alguna de las preguntas.
- 3. Añadir mas cosas al network y volver al paso anterior

3)

- Prestar mucha atencion a los dominios de las "funciones"
- 1. Graficar todas las transformaciones que hay que hacer para usar la caja negra
 - P1 -T1-> P2 -> CN -> S2 -T2> S1
- 2. Ver como adaptar el problema a la caja negra
 - Hacer un ejemplo de un network con un loop y ver de que manera transformarlo para que no afecte.
 - Hacer un ejemplo de un network con un lado paralelo y ver de que manera transformarlo para que no afecte
- 3. Ver como adaptar la solucion de la caja negrea a la solucion que buscamos
- 4. Demostrar que el flujo obtenido es flujo del problema original

7)

- Tener en cuenta teorema de la integralidad
- Es posible aplicar FF para demostrar
- 1. Hacer un ejemplo sencillo. Arrancar con al menos 4 vertices
- 2. Ver si se llega a alguna conclusion.
- 3. Complicar el ejemplo y repetir el paso anterior
- Para llegar a un flujo maximal impar en un flujo par no hay que usar todas las capacidades.
 - Y similar para el caso par -> impar

8)

- Pensar en que la capacidad por vuelo es de 1 agente
 - Por ende, no podemos mandar medio agente
 - Esto que caracteristica le da al flujo?
- Que algoritmo va muy bien para flujos maximales enteros?

\mathbf{FF}

• Armar network residual con los flujos que se pueden deshacer y los flujos que aun se pueden tomar

Practico 3

$\mathbf{E}\mathbf{K}$

Idea

 ${\rm EK}$ puede ser pensado como un algoritmo para encontrar el menor camino aumentante de s
 hasta t

Notacion

Para resolver EK usamos la siguiente notacion:

```
sB C A D t
s B C- A D
9 9 7 5 5
```

- 1) La primer columna son los vertices que vamos agregando
- 2) La segunda columna es quien los agrego, si es un lado backward lleva exponente "-"
- 3) La tercer columna es el flujo que puede ser mandado

o mas explicito:

Pasos

- 1) Armar primer camino aumentante (BFS) con notacion adecuada
- 2) Reconstruir camino empezando desde t (leyendo segunda fila)
- 3) Hacer una tabla con las capacidades sobrantes
 - Solo cambia si pertenece al camino aumentante formado
- 4) Armar siguiente camino aumentante
 - Si un flujo esta saturado, devolver flujo por donde vino

2)

- Tener en cuenta el orden en el que se agregan los vertices y en el que se exploran
- Hay que buscar armar un network con la forma de una S que tiene un agujero en el medio
- 1. Partir de un network super basico
- 2. Ver si sirve
- 3. Añadir mas cosas al network y volver al paso anterior

Algoritmos

Dinic

- 1. Armar network auxiliar por niveles (BFS)
- A partir de las segunda iteracion se toman solo los que tienen capacidad mayor a 0
- 1. Hacer DFS desde s hasta t hasta que se llegue a un flujo bloqueante
- Si se llega a un camino sin salida hacer backtrack y seguir hasta llegar a t
- 1. Sumar los cuellos de botella de todos los caminos aumentantes encontrados para encontrar el max flow
- 2. Repetir pasos anteriores
- Flujo bloqueante: cuando no se pueden encontrar mas caminos desde s hasta t porque todos los vertices han sido saturados
- Cuando hay un flujo backward se toma la capacidad que se está usando al calcular el valor del camino

Wave

- 1. Hacer lista de vertices ordenados por niveles y alfabeticamente
- Se va armando una tablita (2D) con lo que manda cada vertice

Ola forward:

- 1. Cada vertice manda todo lo que puede a sus vecinos
- 2. Marcar los vertices que quedan bloqueados (no pueden mandar el flujo que tienen)
- 3. Una vez se termina de mandar todo se hace una linea al final de la tablita y se hace una flechita hacia la derecha en algun lado de la parte de arriba, como para denotar que es forward

Ola backward:

- 1. Arrancar desde los vertices bloqueados
- 2. Devuelve todo lo que puede

Se hace ola forward de nuevo

1. Se manda hacia adelante en los vertices desbalanceados, pero no se manda a los bloqueados

Se hace de nuevo lado backward