形式语言与自动机理论 有穷自动机

王春宇

计算机科学与技术学院 哈尔滨工业大学

有穷自动机

Determinate Finite

Automata

- 确定的有穷自动机
 - 形式定义
 - DFA 的设计举例
 - 扩展转移函数与 DFA 的语言
- 非确定有穷自动机
- 带有空转移的非确定有穷自动机

有穷状态系统

- 有限状态机: Moore Machine, Mealy Machine
- 数字电路设计
- 电脑游戏的 AI 设计
- 各种通讯协议: TCP, HTTP, Bluetooth, Wifi
- 文本搜索, 词法分析

例 1. 用有穷自动机识别 $\{w \in \{0,1\}^* \mid w \text{ 的长度}|w|$ 是偶数.}

确定的有穷自动机的形式定义

定义

确定的有穷自动机(DFA, Deterministic Finite Automaton) A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q:有穷状态集;
- ② Σ:有穷输入符号集或字母表;
- **③** $\delta: Q \times \Sigma \rightarrow Q$, 状态转移函数;
- **4** $q_0 \in Q$: 初始状态;
- **6** F ⊆ Q: 终结状态集或接受状态集.

例 2. 请设计 DFA, 在任何由 () 和 1 构成的串中, 接受含有 ()1 子串的全部串.

因此 DFA A 的可定义为:

因此 DFA
$$A$$
 的可定义为:

$$A = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$$

$$\delta(q_1, 1) = q_1$$
 $\delta(q_2, 1) = q_3$ $\delta(q_3, 1) = q_3$
 $\delta(q_1, 0) = q_2$ $\delta(q_2, 0) = q_2$ $\delta(q_3, 0) = q_3$

状态转移图

- 每个状态 q 对应一个节点, 用圆圈表示;
- ② 状态转移 $\delta(q,a) = p$ 为一条从 q 到 p 且标记为字符 a 的有向边;
- \bullet 开始状态 q_0 用一个标有 start 的箭头表示;
- ▲ 接受状态的节点, 用双圆圈表示.

状态转移表

- 每个状态 q 对应一行, 每个字符 a 对应一列;
- ② 若有 $\delta(q,a) = p$, 用第 q 行第 a 列中填入的 p 表示;
- 3 开始状态 q_0 前, 标记箭头 \rightarrow 表示;
- ④ 接受状态 $q \in F$ 前, 标记星号 * 表示.

典型问题

设计 DFA 使其接受且仅接受给定的语言 L.

例 3. 若 $\Sigma = \{0,1\}$, 给出接受全部含有奇数个 1 的串 DFA.

思考题

若
$$\Sigma = \{0,1\}$$

- 如何设计接受 Ø 的 DFA?

3 如何设计接受 $\{\varepsilon\}$ 的 DFA?

扩展转移函数

定义 $\frac{\text{delta height}}{\text{扩展 }\delta\text{ 到字符串,}}$ 定义扩展转移函数 $\hat{\delta}:Q\times\Sigma^*\to Q$ 为

$$\hat{\delta}(q, w) = \begin{cases} q & w = \varepsilon \\ \delta(\hat{\delta}(q, x), a) & w = xa \end{cases}$$

recursive

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

那么. 当 $w = a_0 a_1 \cdots a_n$. 则有

$$\frac{\hat{\delta}(q, w)}{= \delta(\hat{\delta}(q, a_0 a_1 \cdots a_{n-1}), a_n)}$$

$$= \delta(\delta(\hat{\delta}(q, a_0 a_1 \cdots a_{n-2}), a_{n-1}), a_n) = \cdots$$

$$= \underline{\delta(\delta(\cdots \delta(\hat{\delta}(q, \varepsilon), a_0) \cdots, a_{n-1}), a_n)}$$

续例 2. 接受全部含有 01 子串的 DFA , $\hat{\delta}$ 处理串 0101 的过程.

$$\hat{\delta}(q_0, 0101) = \delta(\hat{\delta}(q_0, 010), 1)
= \delta(\delta(\hat{\delta}(q_0, 01), 0), 1)
= \delta(\delta(\delta(\hat{\delta}(q_0, 0), 1), 0), 1)
= \delta(\delta(\delta(\delta(\hat{\delta}(q_0, \varepsilon), 0), 1), 0), 1)
= \delta(\delta(\delta(\delta(\delta(q_0, \varepsilon), 0), 1), 0), 1)
= \delta(\delta(\delta(q_1, 1), 0), 1)
= \delta(\delta(q_2, 0), 1) = \delta(q_2, 1) = q_2$$

思考题

- lacktriangle 扩展转移函数 $\hat{\delta}$ 必须从开始状态 q_0 处理字符串吗? $\{(2',w)\}$

② 对任意的串 w, $\hat{\delta}$ 能保证一定会跳转到某个状态吗?

DFA: every input 都有過し

例 5. 对任何状态 q 及字符串 x 和 y, 证明 $\hat{\delta}(q,xy) = \hat{\delta}(\hat{\delta}(q,x),y)$. 证明: 对 y 使用归纳法. by industion

$$\bullet$$
 当 $y = \varepsilon$ 时

$$\hat{\delta}(\hat{\delta}(q,x),arepsilon) = \hat{\delta}(q,x)$$
 $\hat{\delta}$ 的定义
$$= \hat{\delta}(q,x\,arepsilon)$$

 $\hat{\delta}(q, xwa) = \delta(\hat{\delta}(q, xw), a)$

② 当
$$y = wa$$
 时

② 当
$$y = wa$$
 即

aus assume y=w correct

 $=\delta(\hat{\delta}(\hat{\delta}(q,x),w),a)$

 $=\hat{\delta}(\hat{\delta}(q,x),wa)$

归纳假设

δ的定义

 $\hat{\delta}$ 和连接的定义

DFA 的语言与正则语言

定义

若
$$D = (Q, \Sigma, \delta, q_0, F)$$
 是一个 DFA , 则 D 接受的语言为

$$\overline{\mathbf{L}(D)} = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}.$$

定义

如果语言 L 是某个 DFA D 的语言, 即 $L = \mathbf{L}(D)$, 则称 L 是正则语言. DFA可以识别的语言

- \emptyset , $\{\varepsilon\}$ 都是正则语言
- $\Xi \Sigma$ 是字母表, Σ^* , Σ^n 都是 Σ 上的正则语言

例 6. 设计 DFA 接受 $\{0,1\}$ 上的字符串 w, 且 w 是 3 的倍数的二进制表示. 0,1start $(q_2) \supset 1$ q_1