Clase presencial – tema 3

Repaso método NMPB – infraestructuras viarias Resolución ejercicio

Eduard Puig

El método NMPB permite calcular niveles equivalentes LAeq, para las diferentes franjas horarias.

El método NMPB tiene muy en cuenta la influencia de las condiciones meteorológicas.

Variaciones importantes para > 100 m

Propagación del sonido con gradientes negativos de temperatura.

Fuente: NMPB 96 - PREDICTION OF ROAD TRAFFIC NOISE

- Origen térmico: Temperatura disminuye con la altura. Velocidad decrece con la altura. Efecto que se produce de día.
- Origen aerodinámico: Cuando el viento sopla en dirección contraria a la dirección de propagación.

Propagación del sonido con gradientes positivos de temperatura.

Fuente: NMPB 96 - PREDICTION OF ROAD TRAFFIC NOISE

- Origen térmico: Temperatura aumenta con la altura. Velocidad aumenta con la altura. Efecto que se produce de noche.
- Origen aerodinámico: Cuando el viento sopla en la misma dirección que la dirección de propagación.

Propagación del sonido con gradientes cero de temperatura.

Fuente: NMPB 96 - PREDICTION OF ROAD TRAFFIC NOISE

- Cuando los fenómenos térmicos y aerodinámicos se compensan.
- Cuando no hay viento y la temperatura es constante con la altura. Se produce a la hora de la salida o la puesta del sol, el cielo esta muy nubloso.

Representación del sonido a largo plazo.

Para la realización de una media representativa a largo plazo, se trabaja sobre las probabilidades de condiciones favorables del sonido (p) entre 0 y 1.

$$L_{LT} = 10\log\left[p \cdot 10^{\frac{L_F}{10}} + (1-p) \cdot 10^{\frac{L_H}{10}}\right]$$

Distingue entre condiciones favorables y condiciones homogéneas, aplicando un porcentaje de probabilidad, con el fin de encontrar un índice medio "Long Term"

Procedimiento general del método de cálculo:

- 1. Descomponer la fuente de sonido en fuentes puntuales.
- 2. Determinar la potencia acústica de cada una de las fuentes.
- 3. Buscar los caminos de propagación entre fuente y receptor:
 - a. Directo
 - b. Reflejado.
 - c. Difractado.
- 4. Para cada camino de propagación:
 - a. Calcular la atenuación con condiciones favorables.
 - b. Calcular la atenuación para condiciones homogéneas.
- 5. Sumar los niveles para cada camino y calcular la contribución de niveles en el receptor para todas las frecuencias, con el fin de obtener un nivel global..

Descripción de la fuente.

- -Función de la geometría.
- -Función de la variabilidad del sonido en su trazado.

Al no tratarse de un medio homogéneo, se secciona en segmentos con las mismas características.

- -Asignando un determinado ángulo visto des del receptor.
- -Asignando una longitud constante.

Nivel de emisión

- Evl y Epl son niveles de emisión definidos en los abacos/tablas de "Guide du Bruit".
- Rj es el espectro normalizado de ruido de tráfico viario ponderado A, según EN 1793-3
- Qvl y Qpl es el flujo horario.
- Li es la longitud de los segmentos

J	Banda Valor de Foctava (Hz) (dBA)		
1	125	-14	
2	250	-10	
3	500	-7	
4	1K	-4	
5	2K	-7	
6	4K	-12	

Tablas de emisión por tipo de vehículo + condiciones de funcionamiento de este

Cálculo de las correcciones de propagación

- Corrección de 3 dBA, debido a la reflexión de la fachada del edificio.
- Cálculo 2D del camino directo i reflexiones.
- Cálculo 3D (tiene en cuenta alturas, para el cálculo de la absorción del suelo)

Cálculos

- 1. Divergencia geométrica.
- 2. Absorción atmosférica, según ISO 9613-1 a 15°C y 70 %.

Frecuencia (Hz)	125	250	500	1K	2K	4K
α(dB/Km)	0,38	1,13	2,36	4,08	8,75	26,4

3. Absorción del suelo. Se caracteriza por el parámetro G que toma valores de 0 a 1.

Tipo de suelo	G
Absorbente	1
Reflectante	0

Valores discretos, G=0 o G=1

Atenuación del efecto del terreno:

Primero se calculan las alturas equivalentes a partir del plano medio entre emisor y receptor.

Atenuación del efecto del terreno:

- 1. Cálculo diferenciado para condiciones favorables y condiciones homogéneas.
- 2. En función de dp, se toman tres zonas diferenciadas, $d_p \le 30(z_s + z_r)$

$$A_{grd,F} = A_{s,F} + A_{m,F} + A_{r,F}$$

- 3. Calculo por frecuencias.
- 4. El cálculo sigue el procedimiento descrito en la ISO 9613-2
- 5. Para condiciones homogéneas, se considera una única región, en función de Gpath.

Gpath:

Efecto de difracción:

Fuente: NMPB 96 - PREDICTION OF ROAD TRAFFIC NOISE

- Cálculo diferenciado para condiciones favorables y condiciones homogéneas de la diferencia de caminos.
- Tiene en cuenta el efecto del terreno

Cálculo de la diferencia de caminos

Fuente: NMPB 96 - PREDICTION OF ROAD TRAFFIC NOISE

Caso de propagación en condiciones homogéneas

Calculo diferencia de caminos

Caso de propagación en condiciones favorables

Fuente: NMPB 96 - PREDICTION OF ROAD TRAFFIC NOISE

En condiciones favorables de propagación, se considera una curvatura del frente de ondas, y por tanto, disminuyendo el efecto de difracción del obstáculo.

Reflexiones

Utilización de la fuente imagen.

Guide du Bruit 2008:

La emisión viene dada por dos componentes:

a) Componente motor $(L_{m w/m})$

Para vehículos ligeros (LV):

$$L_{m w/m,LV}(v) = L_{LV}(90) + b \cdot \log\left(\frac{v}{90}\right)$$

donde $L_{p,LV}(90)$ y b son valores tabulados según la velocidad media y la aceleración (velocidad constante, acelerada o desacelerada).

Para vehículos pesados (HV):

$$L_{m,w/m,HV}(v) = L_{HV}(80) + b \cdot \log\left(\frac{v}{80}\right) + \Delta L_{m,w/m}$$

Donde $L_{p,LV}(80)$ y b son valores tabulados según la velocidad media y $\Delta L_{m,w/m}$ es una corrección según la pendiente y el tipo de aceleración (velocidad constante, acelerada o desacelerada).

b) Componente de rodadura $(L_{r w/m})$

Esta componente depende de la velocidad del vehículo y del tipo de superficie de la carretera.

Las superficies se clasifican en 3 tipos según el tipo de asfalto $(R_1 R_2 y R_3)$

^{*} Road noise prediction, Calculating sound emissions from traffic, SETRA (2011).

En la siguiente tabla se muestran las ecuaciones para el cálculo del nivel de rodadura según la velocidad del vehículo.

Tipo de superficie	$L_{r,LV}$	$L_{r,HV}$	
R1	$53,4 + 21 \cdot \log(v/90)$	$61.5 + 20 \cdot \log(v/80)$	
R2	$55,4 + 20,1 \cdot \log(v/90)$	$63.3 + 20 \cdot \log(v/80)$	
R3	$55,7 + 21,4 \cdot \log(v/90)$	$64.1 + 20 \cdot \log(v/80)$	

Además, existe un factor correctivo en función de la antigüedad del pavimento a en años:

	$\Delta oldsymbol{L_{r, w}}$	v/m <i>LV</i>	$\Delta L_{r,\mathrm{w/mH}V}$		
Tipo de superficie	a≤2	2≤ a≤10	a≤2	2≤ a≤10	
R1	-4	0,5 (<i>a</i> -10)	-2,4	0,3 (<i>a</i> -10)	
R2	-2	0,25 (<i>a</i> -10)	-1,2	0,15 (<i>a</i> -10)	
R3	-1,6	0,2 (<i>a</i> -10)	-1	0,12 (<i>a</i> -10)	

Calculamos la suma energética de estas dos contribuciones:

$$L_{w/m} = L_{m w/m} \oplus L_{r w/m} = 10 \cdot \log(10^{0.1 L_{m w/m}} + 10^{0.1 L_{r w/m}})$$

Finalmente, el nivel de emisión LA_{wi} se calcula incluyendo el número de vehículos ligeros y pesados (Q_{LV} y Q_{HV}), la longitud del tramo representado por la fuente puntual I_i y la corrección por tercios de octava R(j) del espectro de tráfico.

$$LA_{wi} = [L_{w/m LV} + 10 \log(Q_{LV})) \oplus (L_{w/m HV} + 10 \log(Q_{HV}))] + 10 \log(l_i) + R(j)$$

Existen dos tipos de correcciones R(j) según si el pavimento es poroso o no poroso.

Modelo de propagación: NMPB-Routes-2008.

El modelo de propagación es muy parecido al descrito en el modelo anterior (NMPB-96). A continuación se detallan las modificaciones más importantes:

- Resolución frecuencial en bandas de tercio de octava, de 100 Hz hasta 5 KHz.
- Altura de la fuente = 0,05m (en lugar de 0,5 m).
- Coeficiente G (para el cálculo de Δ_{suelo}) adquiere valores continuos (antes 0 o 1).
- Cambios en el cálculo de $\Delta_{difracción}$ (adaptada para barreras de poca altura).

FUTURO:

Un método único para todos los estados miembros de la Unión Europea => CNOSSOS

METODO RLS-90 (método alemán)

Caracterización fuente de ruido.

$$L_{25}(0) = 37,3 + 10 \cdot \log(M(1 + 0.082 \cdot p))$$

Donde M es el volumen de tráfico y p el porcentaje de vehículos pesados.

Tipus de via	M(veh/h) dia	p(%) dia	M(veh/h) nit	p(%) nit
Autopista	0,06 IMD	25	0,014 IMD	45
Autovia	0,06 IMD	20	0,011 IMD	20
Comercial	0,06 IMD	20	0,008 IMD	10
Municipal	0,06 IMD	10	0,011 IMD	3

IMD = Índice medio diario

METODO RLS-90

$$L_{25} = L_{25}(0) + \Delta L_f + \Delta L_p + \Delta L_r + \Delta L_v$$

El valor de emisión se corrige con :

 ΔL_f es la corrección por tipo de asfalto.

 ΔL_p es la corrección por la pendiente de la vía.

 ΔL_r es la corrección por la presencia de reflexiones.

 ΔL_v es la corrección por la velocidad y porcentaje de pesados.

METODO RLS-90

El nivel en recepción vendrá dado por: $Lr = 10 \cdot \log \sum_{j} 10^{0.1 \cdot L_{r,j}}$

Donde Lr es la suma energética de la contribución de cada calle, definida:

$$L_{r,j} = L_{m,j} + k$$

Donde Lm,j es el nivel debido para cada sección de fuente, corregido por las variables de propagación y k es una corrección por presencia de cruces o semáforos.

$$L_{m,j} = L_{25} + D_l + D_s + D_{BM} + D_z$$

DI es la corrección por longitud de sección.

Ds es la atenuación debido a la divergencia geométrica i al efecto de la absorción del aire.

DBM es la corrección por efecto del suelo i condiciones meteo.

Dz es la corrección por posibles efectos de difracción de obstáculos.

Ejercicio

Aplicar el método NMPB

Vehículos ligeros día: 1200 v/h Vehículos pesados día: 40 v/h

V: 50 Km/h

Pendiente nula

Tráfico fluido

Asfalto liso

Distancia centro vía=14m

Anchura carril 3m

Dos carriles /dos direcciones

Temperatura 20 °C Humedad relativa 60%

Ejercicio entregable (opcional)

Datos:

- IMD: 40.000 vehículos/día
- 3% de vehículos pesados
- Tipo de tráfico: fluido continuo
- Velocidad media: 40 km/h
- Tipo de pavimento: asfalto liso
- Pendiente = 0%
- Temperatura media: 15ºC
- Humedad relativa: 50%

Calcular los niveles en el punto P, según el método NMPB-96

Entregar hoja Excel con los cálculos.

Clase presencial – tema 3

Repaso método NMPB – infraestructuras viarias Resolución ejercicio

Eduard Puig

