analysis set

Gleb Anohin

September 25, 2024

Contents

1	Мн	ожество	2
	1.1	Определение	2
	1.2	Обозначения	2
			2
	1.3		2
			2
			2
	1.4		3
	1.5		3
			3
		/ 1	3
			3
		1.5.4 Дополнение (типо до универсума)	3
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
	1.6		3
2	Ото	ображение	4
	2.1	Примеры	4
	2.2	Свойства и определения	5
		2.2.1 Покрытие (сюрьекция)	5
			6
			6
			6
			7
			7
			7
	2.3		7
	-	r	8
3	Teo	рема Кантора - Бернштейна	8

1 Множество

1.1 Определение

Совокупность объектов (элементов) любой природы \emptyset – пустое множество, т.е. множество без элементов

Каждый элемент множества входит в множество однократно, т.е. уникален

1.2 Обозначения

А, В, ..., М - множества а, b, ..., m - обозначения элементов множества

1.2.1 Задание множества

- 1. Перечисление элементов $M = \{1, 2, 3\}$
- 2. С помощью характеристического свойства: $A = \{x \in M : B(x)\}$ B(x) предикат, M универсум (Универсум базовое множество для рассматриваемой задачи)
 - (a) M = N
 - (b) $A = \{x \in M : x \equiv 0 \pmod{2}\}$
 - (c) $A = \{x \in M : x \in A\}$ тождественная запись
- 3. $M = \{\{\emptyset\}, \{\{\emptyset\}, \emptyset\}\}$

Множество А является подмножеством В если $\forall b \in B \to b \in A \ A \subset B$ или $A \subseteq B$ Собственное подмножество — $A \subsetneq B$

1.3 Мощность

Мощностью конечного множества A называется количество его элементов. #A = |A|

Множество A имеет счетную мощность, если существует биекция $F:A\to N$

1.3.1 Экививалентность

 $A^{\sim}B$ (равномощны), если биекция (взаимно-однозначное) существует $F:A\to B$

1.3.2 Теорема Кантора

Обозначим 2^A - множество всех подмножеств множества A. Множество всех пожмножеств множества A не эквивалентно A.

Доказательство от противного:

Представим, что существует биекция $F: 2^A \to A$. Назовем элемент $a \in A$ дефектным, если $a \notin M_a$, где $(M_a, a) \in F, M_a \subset A$ т.е. $M_a \in 2^A$

Назовем множество $D=\{a\in A, a-\text{defect}\}$ дефектом. Т.е. $D\in 2^A, D\subset A$ Рассмотрим $d\in A:(D,d)\in F.$

Предположим, что d - дефектный, тогда $d \in D$, но $d \notin D$, т.к. это заложено в определении F.

В противном случае d - недефектный, но тогда он является дефектным, поскольку удовлетворяет $d \notin D$.

Следовательно $(D,d) \notin F$

1.4 Парадокс Рассела

М - все A - бреется сам B - бреет бродобрей $A\cap B=\emptyset$ $A\cup B=M$

Но бродобрей попадает в оба множества.

1.5 Операции

1.5.1 Объединение

$$A \cup B = \{x \in M : (x \in A) \land (x \in B)\}$$

1.5.2 Пересечение

$$A \cap B = \{x \in M : (x \in A) \lor (x \in B)\}$$

1.5.3 Разность

$$A B = \{x \in M : (x \in A) \lor \neg (x \in B)\}$$

1.5.4 Дополнение (типо до универсума)

$$\neg A = \{x \in M : \neg (x \in A)\}\$$

1.5.5 Симметрическая разность

$$A\triangle B = (A \cup B) \backslash (A \cap B)$$

1.6 Законы

Коммутативность (перестановочность)

1.
$$A \cap B = B \cap A$$

2.
$$A \cup B = B \cup A$$

Ассоциативность (сочетательность)

1.
$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$2. \ (A \cup B) \cup C = A \cup (b \cup C)$$

Дистрибутивность (распределенность)

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 3. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- 4. $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$
- 5. $\neg A \cup B = \neg A \cap \neg B$
- 6. $\neg A \cap B = \neg A \cup \neg B$
- 7. $A \cup \emptyset = A$
- 8. $A \cap \emptyset = \emptyset$
- 9. $A \cup U = U$
- 10. $A \cap U = A$

Идемпотентность

- 1. $A \cup A = A$
- $A \cap A = A$

Отрицание

- 1. $\neg \emptyset = U$
- $2. \ \neg U = \emptyset$

2 Отображение

Пусть A,B - множества. Декартовым произведением называется $A\times B=\{(a,b):a\in A,b\in B\}$

Отображением множества A на множество B - $F \subset A \times B$.

Обозначение: $F: A \rightarrow B$.

2.1 Примеры

- 1. $A = N, B = N, F = \{(n, 1) : n \in N\}$
- 2. $A = Z, B = N, F = \{(-1, m) : m \in N\}$
- 3. $A = Z, B = N, F = \{(m, n) : m \in Z, n \in N\}$
- 4. *H* множество треугольников на плоскости.

 $R^2=R\times R$ - плоскость (все координаты)

"треугольник" - $<(x_1;y_1),(x_2;y_2),(x_3;y_3)>$

 $F \subset H \times \mathbb{R}^2; F = \{(\triangle, M) \triangle \in H, M - \text{mass center}\}\$

5. $F \subset \{(x,y): x^2 + y^2 = 1\}$

Это отображение не инъективное и не функция, так как там круг и будут повторяться значения.

2.2 Свойства и определения

2.2.1 Покрытие (сюрьекция)

Отображение $F\subset A\times B$ или $F:A\to B$ называется сюръективным. если $\forall b\in B\exists a\in A:(a,b)\in F.$

T.e. полностью покрывается все B

Например: Для каждой точки на плоскости есть треугольник с центром массы в ней.

2.2.2 Вложение (инъекция)

Отображение $F\subset A\times B$ называется инъективным. если $(a_1,b),(a_2,b)\in F\Rightarrow a_1=a_2.$

T.e. к каждому b соответсвует не больше 1 a.

 $\forall b \in B : (\exists! a \in A : (a,b) \in F) \lor (\forall a \in A : (a,b) \notin F)$

2.2.3 Функция (обратная инъекция)

Отображени $F\subset A\times B$ называется функцией, если $(a_1,b_1),(a_1,b_2)\in F\Rightarrow b_1=b_2$

T.e. к каждому a соответсвует не больше 1 a

2.2.4 Область определения

Областью определения $F:A\to B$ называется множество $\mathrm{dom} F=\{a\in A|\exists b\in B:(a,b)\in F\}$

т.е. $\exists b \in B : (a,b) \in F$ - предикат

2.2.5 Область значений

Областью значений $F:A\to B$ называется множество $\mathrm{rng}F=\{b\in B|\exists a\in A:(a,b)\in F\}$

2.2.6 Однозначность (биекция)

Отображени $F\subset A\times B$ называется биективным (1 к 1), если F - сюръективно, инъективно, функция и $\mathrm{dom} F=A$

2.2.7 Вложение

 $R\subset A imes B$ - вложене если R - функция, инъекция и $\mathrm{dom}R=A$ Биекция - частный случай вложения.

2.3 Обратное отображение

Для отображения $F:A\to B$ обратное отображение определяется как $F^{-1}:B\to A, F^{-1}=\{(b,a)|(a,b)\in F\}$ при F,F^{-1} сюръективных.

2.3.1 Доказательство биекции

F - биекция $\iff F$ и F^{-1} сюръективные и функции F^{-1} - функция $\iff F$ - инъекция. В сочетании с фактом того, что F\$ - сюръективная функция получается что F - биекция.

3 Теорема Кантора - Бернштейна

Пусть A и B - множества. $\exists B_1\subseteq B|F:A\to B_1 \text{ - биекция} \\ \exists A_1\subseteq A|F:B\to A_1 \text{ - биекция} \\ \text{Тогда } A^\sim B \\ \text{Пока что без доказательства.}$