Análisis Matemático. Curso 2020-21.

Resumen de las semanas 1 y 2

Norma. Es una función $\|\cdot\|: \mathbb{V} \to \mathbb{R}$, definida en un espacio vectorial \mathbb{V} , que cumple los tres axiomas siguientes:

norma1: $||v|| \ge 0$ y $||v|| = 0 \iff v = \mathbf{0}$.

norma2: $||\lambda v|| = |\lambda| ||v||$.

norma3: $||v + w|| \le ||v|| + ||w||$.

Su significado intuitivo es que se trata de una manera útil de medir longitudes de vectores. El axioma norma3 es la desigualdad triangular (para normas).

Espacio normado. Es un par ordenado $(\mathbb{V}, \|\cdot\|)$ formado por un espacio vectorial \mathbb{V} y una norma $\|\cdot\|$ en \mathbb{V} .

Cuidado: si $\|\cdot\|$ y $\|\cdot\|'$ son dos normas diferentes en un mismo espacio \mathbb{V} , entonces $(\mathbb{V}, \|\cdot\|)$ y $(\mathbb{V}, \|\cdot\|')$ son dos espacios normados distintos.

Producto escalar. Es cualquier función bilineal simétrica $\langle \cdot, \cdot \rangle : \mathbb{V} \to \mathbb{R}$ tal que $\langle v, v \rangle > 0$ para todo $v \in \mathbb{V} \setminus \{\mathbf{0}\}$.

Dado un producto escalar, la función $||v|| \equiv \sqrt{\langle v, v \rangle}$ resulta ser un tipo especial de norma.

Norma euclídea. La que cumple una identidad $||v||^2 \equiv \langle v, v \rangle$, con $\langle \cdot, \cdot \rangle$ algún producto escalar.

Ejemplo importante. Para $1 \leq p \leq \infty$ tenemos una norma $\|\cdot\|_p: \mathbb{R}^n \to \mathbb{R}$ dada por:

$$\|(x_1, \dots, x_n)\|_p = \begin{cases} (|x_1|^p + \dots + |x_n|^p)^{1/p} & \text{si } p < \infty \\ \max\{|x_1|, \dots, |x_n|\} & \text{si } p = \infty \end{cases}$$

y sólo es una norma euclídea para p=2, en cuyo caso es la **norma euclídea estándar:**

$$||x||_2 = \sqrt{x \cdot x} = \sqrt{x_1^2 + \dots + x_n^2}$$
.

Polarización. Dada una norma euclídea $\|\cdot\|$, su producto escalar polar es el único producto escalar $\langle\cdot,\cdot\rangle$ tal que $\|v\|^2 \equiv \langle v,v\rangle$. Lo podemos recuperar a partir de la norma utilizando una identidad de polarización de las varias que existen; por ejemplo, ésta:

$$\langle v, w \rangle = \frac{\|v + w\|^2 + \|v - w\|^2}{4}$$
.

Distancia. Dado cualquier conjunto no vacío X, una función distancia o métrica en X es una función $d(\cdot,\cdot): X\times X\to \mathbb{R}$ que cumple los tres axiomas siguientes:

dist1: $d(x,y) \ge 0$ y $d(x,y) = 0 \implies x = y$.

dist2: d(x,y) = d(y,x).

dist3: $d(x, z) \le d(x, y) + d(y, z)$.

El axioma dist2 se llama simetría. El axioma dist3 es la desigualdad triangular (para distancias).

Espacio métrico. Es un par ordenado (X,d) formado por un conjunto no vacío X y una función distancia d en X.

Cuidado: si $d \neq d'$ son dos distancias distintas en un mismo conjunto X, entonces (X, d) y (X, d') son espacios métricos distintos.

Ejemplos importantes. (1) En un espacio vectorial \mathbb{V} , cualquier norma $\|\cdot\|$ da lugar a una función distancia dada por $d(v,w) = \|v-w\|$. Pero hay *muchas* distancias en \mathbb{V} que no se construyen así.

- (2) Dados un espacio métrico (X,d) y cualquier subconjunto no vacío $Y \subseteq X$, la restricción $d_Y = d|_{Y \times Y}$ es una función distancia en Y y así el par (Y, d_Y) es también un espacio métrico.
- (3) De (1) y (2) se deduce que cualquier subconjunto no vacío $Y \subseteq \mathbb{R}^n$ tiene muchas funciones distancia, cada una de las cuales lo convierte en un espacio métrico.

Recuerda: todo subconjunto de \mathbb{R}^n puede ser un espacio métrico.

Bola abierta. En un espacio métrico (X, d), la bola abierta de centro x y radio r > 0 es

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

Bola cerrada. En un espacio métrico (X,d), la bola cerrada de centro x y radio $r \ge 0$ es

$$\overline{B}(x,r) = \{ y \in X : d(x,y) \le r \}.$$

Caso particular. Para un espacio normado $(\mathbb{V}, \|\cdot\|)$, escribimos:

$$B(x,r) = \{ v : ||v-x|| < r \} , \overline{B}(x,r) = \{ v : ||v-x|| \le r \}.$$

Conjunto abierto. Es cualquier subconjunto U, de un espacio métrico, tal que

para todo
$$x \in U$$
 existe un $r = r(x) > 0$ con $B(x,r) \subseteq U$

La clase de estos conjuntos incluye las bolas B(x,r) y es cerrada para la unión, finita o infinita, y para la intersección finita.

Entornos. Un entorno del punto $\mathbf{x_0}$ es cualquier abierto U tal que $x_0 \in U$. Un entorno del conjunto $\mathbf{Y} \subseteq \mathbf{X}$ es cualquier abierto U tal que $Y \subseteq U$.

Equivalencia de distancias y normas. Dos distancias equivalentes en un conjunto no vacío X son dos funciones distancia que definen los mismos conjuntos abiertos en X. Dos **normas equivalentes** en un espacio vectorial $\mathbb V$ son dos normas que definen los mismos conjunto abiertos en $\mathbb V$.

- (1). Dos normas $\|\cdot\|$ y $\|\cdot\|'$ en \mathbb{V} son equivalentes si y sólo si existen constantes c, C > 0 tales que $c \|v\| \le \|v\|' \le C \|v\|$ para todo $v \in \mathbb{V}$.
- (2). Todas las normas en \mathbb{R}^n son equivalentes; luego dan lugar a los mismos conjuntos abiertos, los cuales llamamos abiertos estándar de \mathbb{R}^n .

Convergencia. Dada una sucesión $\{x_n\}_{n=1}^{\infty}$ de puntos en un espacio métrico (X,d), y un punto $x_0 \in X$, decimos que la sucesión **converge a x_0**, y lo expresamos $\{x_n\} \to x_0$, si toda bola $B(x_0, r)$, centrada en x_0 , contiene una cola $\{x_k, x_{k+1}, x_{k+2}, \ldots\}$ de la sucesión, con k dependiente de k. Decimos que $\{x_n\}$ es **convergente en X** si existe un punto k0 al cual converge.

Punto límite. Cada sucesión convergente $\{x_n\}$ converge a un único punto. Este punto, determinado por la sucesión, se llama **límite de la sucesión** y se denota $\lim x_n$.

- (3). Si $\{x_n\}$ es convergente, entonces sus subsucesiones $\{x_{n_k}\}_{k=1}^{\infty}$ son también convergentes, y con el mismo punto límite.
- (4). La sucesión $\{x_n\}$ converge a x_0 si y sólo si todo entorno de x_0 contiene una cola de la sucesión. Por lo tanto, distancias equivalentes definen las mismas sucesiones convergentes, y cada una con el mismo límite. En particular, todas las normas en \mathbb{R}^k definen las mismas sucesiones convergentes $\{x_n\} \subset \mathbb{R}^k$ y el mismo punto límite para cada una de éstas.

Conjunto cerrado. Es cualquier subconjunto C, de un espacio métrico (X, d), tal que toda sucesión contenida en Y y convergente en X tiene su límite en Y.

La clase de estos conjuntos incluye las bolas $\overline{B}(x,r)$ y es cerrada para la intersección, finita o infinita, y para la unión finita.

(5). Un subconjunto $C \subseteq X$ es cerrado si y sólo si su complementario $X \setminus C$ es un abierto. Esto equivale a $C = X \setminus U$ para algún abierto U.

Interior. El interior de un conjunto E es el conjunto int E de los puntos x para los que existe un r = r(x) > 0 tal que $B(x, r) \subseteq E$. Es el abierto más grande contenido en E.

Cierre. El cierre de un conjunto $E \subseteq X$, o adherencia de E, es un conjunto \overline{E} que admite tres definiciones equivalentes:

- 1. \overline{E} es el conjunto de todos los límites de sucesiones contenidas en E y convergentes en X.
- 2. \overline{E} es el conjunto de los puntos x tales que toda bola B(x,r), centrada en x, corta a E.
- 3. \overline{E} es el cerrado más pequeño que contiene a E.

En particular, un conjunto E es cerrado si y sólo si $E = \overline{E}$.

Frontera. La frontera topológica de un conjunto E es el conjunto $\operatorname{Fr} E = \overline{E} \setminus \operatorname{int} E$ de los puntos x tales que toda bola B(x,r), centrada en x, corta tanto a E como a $X \setminus E$. Es siempre un conjunto cerrado.

Aplicación continua. Es cualquier aplicación entre espacios métricos $f:(X,d)\to (Y,d')$ que cumple una cualquiera de las siguientes condiciones equivalentes:

- 1. Para cada $x \in X$ y cada bola $B(f(x), \varepsilon)$ centrada en f(x), existe una bola $B(x, \delta)$ centrada en x y tal que $f(B(x, \delta)) \subseteq B(f(x), \varepsilon)$.
- 2. Para todo abierto V de (Y, d'), la preimagen $f^{-1}(V)$ es un abierto de (X, d).
- 3. Para todo cerrado C de (Y, d'), la preimagen $f^{-1}(C)$ es un cerrado de (X, d).
- 4. Siempre que $\{x_n\} \subset X$ y $\{x_n\} \to x_0$ en (X,d), se tiene $\{f(x_n)\} \to f(x_0)$ en (Y,d').

Caso particular. Sean $(\mathbb{V}, \|\cdot\|')$, $(\mathbb{W}, \|\cdot\|'')$ espacios normados y $T : \mathbb{V} \to \mathbb{W}$ lineal. Entonces T es continua respecto de esas normas si y sólo si es **lineal acotada**, que significa que existe una bola $\overline{B}(\mathbf{0}_{\mathbb{W}}, M)$ conteniendo a la imagen $T(\overline{B}(\mathbf{0}_{\mathbb{V}}, 1))$. Esto equivale a:

$$||T(v)||'' \leq M ||v||'$$
 para todo $v \in \mathbb{V}$,

y el mínimo valor de M que satisface esta desigualdad para todo $v \in \mathbb{V}$ es el número

$$||T|| \stackrel{\text{def}}{=} \sup \{ ||T(v)||'' : ||v||' \le 1 \},$$

que llamamos norma de T como operador de $(\mathbb{V}, \|\cdot\|')$ a $(\mathbb{W}, \|\cdot\|'')$.

(6). Tenemos las desigualdades:

$$||T(v)||'' \le ||T|| ||v||'$$
, $||T_2 \circ T_1|| \le ||T_2|| ||T_1||$.

- (7). Toda aplicación lineal $T: \mathbb{R}^n \to \mathbb{R}^k$ es lineal acotada respecto de normas cualesquiera en \mathbb{R}^n y \mathbb{R}^k .
- (8). Como todas las normas en cada \mathbb{R}^m son equivalentes, dado $E \subseteq \mathbb{R}^n$ el conjunto de las aplicaciones continuas $E \to \mathbb{R}^k$ es el mismo para cualesquiera normas que utilicemos en \mathbb{R}^n y en \mathbb{R}^k .
- (9). La suma, producto, compuesta, etc, funciones de continuas es continua. En particular, todos los polinomios de n variables son funciones continuas (respecto de cualquier norma) en \mathbb{R}^n .

Conjunto compacto. Es cualquier subconjunto K, de un espacio métrico, que cumple una cualquiera de las siguientes condiciones equivalentes:

- 1. **Propiedad de sucesiones:** toda sucesión $\{x_n\} \subset K$ tiene una subsucesión convergente a algún punto de K.
- 2. **Propiedad de recubrimiento:** cualquier familia $(U_i)_{i\in I}$ de abiertos que recubren K, es decir $K\subseteq \bigcup_{i\in I}U_i$, contiene una subfamilia finita U_1,\ldots,U_N tal que $K\subseteq U_1\cup\cdots\cup U_N$.
 - (10). Un cerrado contenido en un compacto es también compacto.
 - (11). Si $f: X \to Y$ es continua y $K \subseteq X$ es compacto, entonces la imagen f(K) es un subconjunto compacto de Y.
 - (12). Si K es compacto y $f: K \to \mathbb{R}$ es continua, entonces se alcanzan en K el máximo y el mínimo de f. Es decir que existen $p, q \in K$ tales que $f(p) \le f(x) \le f(q)$ para todo $x \in K$.

Conjunto acotado. En un espacio métrico, es cualquier subconjunto contenido en alguna bola.

- (13). Como todas las normas en \mathbb{R}^n son equivalentes, todas definen los mismos conjuntos acotados en \mathbb{R}^n .
- (14). Un subconjunto de \mathbb{R}^n es compacto si y sólo si es cerrado y acotado.

Conjunto conexo por caminos. Es cualquier subconjunto E, en un espacio métrico, tal que para cualesquiera $p, q \in E$ existe una aplicación continua $\alpha(t) : [0,1] \to E$ tal que $\alpha(0) = p$ y $\alpha(1) = q$. Decimos que α es un camino en \mathbf{E} que empieza en \mathbf{p} y termina en \mathbf{q} . El significado intuitivo de esta definición es que un tal E "es de una sola pieza".

Dominio en \mathbb{R}^n. Es cualquier abierto de \mathbb{R}^n que es conexo por caminos.

Conjunto convexo. Es cualquier subconjunto E, de un espacio vectorial, tal que siempre que $x, y \in E$ el segmento rectilíneo que va de x a y está contenido en E.