MATH 2401 WORKSHEET #3 SECTION K

Name:

(1) Find the limit of the function or show that the limit does not exist.

(a)
$$f(x,y) = \frac{xy^2 - 1}{y - 1}$$
, as $(x,y) \to (1,1)$.
Path 1: $\chi = 1$ $f(x,y) = \frac{y^2 - 1}{(x-y) \to (1,1)}$ $f(x,y) = \frac{y^2 - 1}{(x-y) \to (1,1)} (y+1) = 2$.

3 points

1 point per path

1 point for the limit not existing

Path 2:
$$X=Y$$
. $f(x,y)=\frac{y^3+1}{y+1}=\int_{(x,y)\to(1-i)}^{y+1} (y^3+y+1)=3$.

Therefore the lant DNE.

(b)
$$g(x,y) = \cos(\frac{x^3 - y^3}{x^2 + y^2})$$
, as $(x,y) \to (0,0)$. 3 points 1 point to make the change of variable 1 point for algebra 1 point to get the limit

Then $g(x,y) = \cos(\frac{y^2 \cos \theta - y^2 \sin \theta}{y^2}) = \cos(y^2 - \sin \theta)$

Therefore $\lim_{(x,y) \to 0} g(x,y) = \lim_{(x,y) \to 0} \cos(y^2 - \sin \theta) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \cos(0) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} \cos(y^2 - \sin \theta)) = \lim_{(x,y) \to 0} (\lim_{(x,y) \to 0} (\lim_{(x,y)$

(2) Find an equation for and sketch the graph of the level curve of the function $f(x,y) = \sqrt{x+y^2-3}$, that passes through the point (3,-1).

level aure: f(x,y) = C.

$$x+y^2-3=c^{-1}$$

Aluggung
$$(3,-1)$$
 \Rightarrow $3+(-3-c)$ \Rightarrow $c=1$.

4 points

1 point for graph

1 point for determining c

1 point for setting f(x,y)=c

1 point for correct equation