<u>Deep Learning (Python Level 3)</u>

Lesson	Mini-Topic	Time	Depth
1	Overview of deep learning Historical developments in deep learning Mini Project: Research and present a historical development in deep learning Assessment: Write a brief summary on the development of deep learning	1-hour for all topics	Go over the topics to give a brief idea about the topics, to ensure student attentiveness
2-3	Introduction to AI and ML Neural networks and deep learning Mini Project: Create a simple neural network to classify handwritten digits from the MNIST dataset Assessment: Modify the neural network to improve its accuracy	30 mins. 1 hour 30mins from neural networks	Spend 30 mins on general concepts like introduction to AI and MI before spending the rest of the 1 hour 30 mins over the next session giving a general idea about the implementation of Fully connected neural nets.
4-5	What is Computer vision? What is Natural language processing What is Speech recognition Mini-Project (CW): Build a convolutional neural network to recognize facial expressions from images Assessment (HW): Evaluate the performance of the model and propose improvements.	30 mins - on NLP and Speech Recognitio n, 1 hour 30 mins on Computer Vision	Brief idea about NLP and speech recognition, Brief idea about the process of computer vision and detailed implementatio n.
6	Artificial neurons and activation functions (Brief Idea) Feedforward neural networks	1 hour for both	General idea and implementatio n of the topics
7-8	Convolutional neural networks	30 mins for Convoluti on	Detailed implementatio n of CNN

		procedure, 1 hour 30 mins of creation of CNN	
9	Recurrent neural networks	1 hour	Implementatio n of recurrent neural networks
10	Mini Project : Implement a feedforward neural network to predict the price of a house based on its features Assessment : Analyze the results and discuss the limitations of the model	1 hour	Detailed implementation of neural networks to predict the price of the house.
12	Gradient descent Backpropagation	1 hour	Brief theory and implementatio n.
13	Stochastic gradient descent Adam optimizer	1 hour	Brief theory and implementatio n.
14	Mini Project: Implement stochastic gradient descent to train a neural network for image classification on the CIFAR-10 dataset Assessment: Evaluate the performance of the model and compare it with other optimization techniques	1 hour	Detailed implementation
15	Dropout Batch normalization Mini Project: Implement dropout and batch normalization in a neural network for sentiment analysis Assessment: Evaluate the impact of regularization on the model's performance	1 hour	Brief idea of dropout and batch normalisation and detailed implementatio n in projects.
16	Introduction to image classification Building a deep learning model for image classification Mini Project: Build a deep learning model to classify different types of food	1 hour	General idea of how classification works and detailed implementatio n of a cnn for a

	Assessment: Test the model on real-world images and evaluate its performance		classification problem
17	Object detection using YOLO	1 hour	General idea
18	Instance segmentation using Mask R-CNN	1 hour	General idea
19	Mini Project: Implement Mask R-CNN to detect and segment different objects in an image Assessment: Evaluate the results and propose improvements	1 hour	Implementatio n and executing the knowledge learnt above
20	Introduction to transfer learning	1 hour	Introduction to the concept and the different existing models.
21	Fine-tuning pre-trained models	1 hour	Fine tuning the model to serve a different purpose on a custom dataset
22	Mini Project: Fine-tune a pre-trained model on the ImageNet dataset for a new classification task Assessment: Compare the performance of the fine-tuned model with a model trained from scratch	1 hour	Implementatio n of transfer learning using the projects.
23	MNIST CIFAR-10	1 hour	Creation of dataset class and intro to the datasets
24	Introduction to text classification	1 hour	How does text classification works?
25	Building a deep learning model for text classification	1 hour	Creation of the model from scratch.
26	Mini Project: Build a deep learning model to classify news articles into different categories Assessment: Test the model on real-world news articles and evaluate its performance	1 hour	Creation of the model from scratch.

27	Introduction to sentiment analysis Building a deep learning model for sentiment analysis	1 hour	Brief idea of how sentiment analysis Detailed implementatio n of Neural Networks for sentiment analysis.
28	Mini Project: Build a deep learning model to predict the sentiment of a movie review Assessment: Evaluate the performance of the model and compare it with other sentiment analysis techniques	1 hour	Implementatio n of sentiment analysis in a real world scenario
29-30	Introduction to language generation Building a deep learning model for language generation Mini Project: Build a deep learning model to generate captions for images Assessment: Evaluate the quality of the generated captions and propose improvements	2 hours	1 hour - brief idea of language generation and its implementation 1 hour - practicing it in projects to enforce the knowledge.
31	IMDB Reviews Reuters News	1 hour	Dataset class creation and introduction to different datasets
32	Overview of healthcare and medicine tasks Mini Project: Research and present a deep learning application in healthcare or medicine Assessment: Write a brief summary on the potential benefits and limitations of deep learning in healthcare	1 hour	Idea about the applications of AI in the medical field.
33-34	Medical image analysis using CNNs Disease diagnosis using machine learning Mini Project: Build a convolutional neural network to classify different types of skin lesions Assessment: Evaluate the performance of the	2 hours	Convolutions of medical images brief idea and implementatio n of a disease detection program from

	model and discuss the challenges of applying deep learning in medical image analysis		scratch
35-36	Chest X-Ray Images MIMIC Mini Project: Build a deep learning model to predict the risk of heart disease based on medical data Assessment: Evaluate the performance of the model and discuss the ethical implications of using deep learning in healthcare	2 hours	Intro to medical datasets, creationof dataset class for medical datasets, implementatio n of Neural Networks for medical datasets.
37	Develop and implement a deep learning project Project presentation Project documentation Peer evaluation Final evaluation and feedback	1 hour	Creation of a Final Project incorporating everything that has been taught.
38	Mini Project: Develop and implement a deep learning project on a topic of your choice Assessment: Present the project and discuss the design decisions and challenges faced	1 hour	Project and Assessments