Inhomogeneous Hypergraph Clustering with Applications

Pan Li ¹ Olgica Milenkovic ¹

¹University of Illinois at Urbana-Champaign

Introduction

Graph clustering: Group the vertices into clusters such that there should be many edges within each cluster and relatively few between the clusters.

Hypergraph clustering:

Relationships among the vertices are more complex than pairwise, modeled as hyperedges.

▶ Inhomogeneous Hypergraph (V, E, w) Clustering: Different subsets of vertices within the same hyperedge may have different structural importance. The weight of hyperedges can be a set function: for $e \in E$, $w_e(\cdot): 2^e \to \mathbb{R}_{>0}$, $w_e(S) = w_e(\overline{S}), w_e(\emptyset) = 0.$

Balanced partition and normalized cut:

- ▶ Partition of V: $V = S \cup S$.
- ▶ Cost of cut (inhomogeneous case): for $S \subseteq V$,

$$Cut(S) = \sum_{e \in \partial S} w_e(S \cap e).$$

► Volume of set *S*:

$$Vol(S) = \sum_{v \in S} d_v = \sum_{v \in S} \sum_{e:v \in e} w_e(\{v\}).$$

► Inhomogenous Hypergraph Partitioning: Minimize normalized hypergraph cut

$$\arg\min_{S} \operatorname{NCut}(S) = \operatorname{Cut}(S) \times \left(\frac{1}{\operatorname{Vol}(S)} + \frac{1}{\operatorname{Vol}(\overline{S})}\right)$$

Generalization of graph/hypergraph normalized cut.

Algorithm

▶ Projection: Use a complete graph to "approximate" each hyperedge. $\{w_{v\tilde{v}}^{(e)}\}_{v,\tilde{v}\in e}$ stands for projected edge weights from hyperedge e.

$$w_e(\cdot) o \{w_{uv}^{(e)}\}_{u,v \in e},$$

e.g. e = {u, v, s}, w_e(u) = w_e(v) = 3, w_e(s) = 2.
▶ Merging: Merge subgraphs obtained from each hyperedge.

$$w_{vu} = \sum_{e \in E} w_{vu}^{(e)}$$

► Spectral partitioning: Run standard spectral clustering algorithm.

Projection and Infeasibility

► The projection step is critical.

P1:
$$\min_{w^{(e)}} \beta^{(e)}$$
 s.t. $w_e(S) \leq \sum_{v \in S, u \in e/S} w_{vu}^{(e)} \leq \beta^{(e)} w_e(S)$,

for all $S \in 2^e$ for which $w_e(S)$ is defined,

• Quadratic optimality: If there exist feasible constants $\beta^{(e)}$ for all hyperedges e and $w_{vu} = \sum_{e \in E} w_{vu}^{(e)} \ge 0$ for all $\{v, u\}$, then $\alpha = NCut$ of spectral clustering satisfies

$$(\beta^*)^3 \alpha^* \ge \frac{\alpha^2}{8} \ge \frac{(\alpha^*)^2}{8},$$

where α^* is the optimal normalized cut and $\beta^* = \max_{e \in E} \beta^{(e)}$.

• $w_{v\tilde{v}}^{(e)}$ may be negative or even the optimization problem is infeasible, e.g. $e = \{1, 2, 3, 4\}$, with $w_e(\{1,4\}) = w_e(\{2,3\}) = 1$ and $w_e(S) = 0$ for all other choices of sets S.

Performance guarantee with submodular weights

Submodular weights:

$$w_e(S_1) + w_e(S_2) \ge w_e(S_1 \cap S_2) + w_e(S_1 \cup S_2)$$
 for all $S_1, S_2 \in 2^e$.

- ▶ If $w_e(\cdot)$ is submodular, then there are nonnegative $\{w_{vu}^{(e)}\}_{v,u\in e}$ and $\beta^{(e)}$ feasible to **P1**. For general |e|, $\beta^{(e)} \leq |e| - 1$ [1].
- Optimal linear projection (OLP):

$$w_{vu}^{*(e)} = \sum_{S \in 2^e/\{\emptyset, e\}, v \in S} \left[\frac{w_e(S)}{|S|(\delta(e) - |S|)} 1_{u \notin S} - \frac{w_e(S)}{(|S| - 1)(\delta(e) - |S| + 1)} 1_{u \in S} \right].$$

- OLP is proper for practical use.
- a) Best known approximation ratio $\beta^{(e)}$ when $|e| \leq 7$.

- b) Consistency: if $w_e(\cdot)$ is from graph cuts, then OLP recovers the underlying graph.
- c) Efficiently computable.

Application I: Foodweb hierarchical clustering

Florida Bay food web

► The network motif to construct the inhomogeneous hypergraph:

> 5 clusters; Only 6 carbon flows are in inverse directions.

Application II: Category Learning in Rankings

- ► Rriffled independence: Rankings of candidates within different categories are independent from each other [2].
- ► Goal: Detecting the riffled independent category *S*. Q: Set of candidates to be ranked.
- S: $\subseteq Q$, a specific category of candidates. $\sigma: Q \to [n]$, a full ranking over Q.
- Define

$$I_{i:j,k} \triangleq I(\sigma(i); 1_{\sigma(j) < \sigma(k)}) = \sum_{\sigma(i)} \sum_{1_{\sigma(j) < \sigma(k)}} \mathbb{P}(\sigma(i), 1_{\sigma(j) < \sigma(k)}) \log \frac{\mathbb{P}(\sigma(i), 1_{\sigma(j) < \sigma(k)})}{\mathbb{P}(\sigma(i)) \mathbb{P}(1_{\sigma(j) < \sigma(k)})}$$

 $I_{i:i,k} = 0$ indicates the position of i is independent from the rankings of j and k.

► The underlying optimization problem:

$$\arg\min_{S\subseteq Q} \mathcal{F}(S) \triangleq \sum_{(i,j,k)\in\Omega_{S,\bar{S}}^{cross}} I_{i;j,k} + \sum_{(i,j,k)\in\Omega_{\bar{S},S}^{cross}} I_{i;j,k},$$

 $\Omega_{A,B}^{cross} \triangleq \{(i,j,k)|i \in A,j,k \in B\}, A,B \text{ different categories.}$

- A normalized form of above problem equivalent to inhomogeneous hypergraph partitioning.
- ► The correct categories of candidates can be detected with only 70% of samples as opposed to the benchmark.
- Only 30% of triples of mutual information $I_{i;j,k}$ requires to be estimated.

Irish House of Parliament election dataset (2002)

Application III: Subspace clustering

- ► Subspace segmentation has the goal to partition data according to their intrinsically embedded subspaces.
- ► The intrinsic affine space: *p*-dimensional.
- ► Construct ψ -uniform ($\psi > p + 1$, typically set to p + 2) hypergraphs $\mathcal{H} = (V, E, w)$.
- \triangleright w_e , the weight of hyperedge e, is to characterize how likely the corresponding points in e fit into one affine space.

Illustration of the weight (p = 1) used for subspace segmentation.

► Evaluation over the Hopkins 155 dataset:

Misclassification rates $e\%$. (MN: mean; MD: median)																
Two Motions									Three Motions							
Method	od Chck.(78)		Trfc.(31)		Artc.(11)		All(120)		Chck.(26)		Trfc.(7)		Artc.(2)		All(115)	
	MN	MD	MN	MD	MN	MD	MN	MD	MN	MD	MN	MD	MN	MD	MN	MD
$H+d_e^{H-1}$	12.27	5.06	14.91	9.94	12.85	3.66	12.92	6.01	22.13	23.98	21.99	18.12	19.79	19.79	21.97	20.45
$H+d_e^{H-2}$	4.20	0.43	0.33	0.00	1.53	0.10	2.93	0.06	7.05	2.22	7.02	3.98	6.47	6.47	7.01	2.12
InH	1.69	0.00	0.61	0.22	1.22	0.62	1.40	0.04	4.82	0.69	2.46	0.60	4.23	4.23	4.06	0.65

References

- [1] N. R. Devanur, S. Dughmi, R. Schwartz, A. Sharma, and M. Singh, "On the approximation of submodular functions," arXiv preprint arXiv:1304.4948, 2013.
- [2] J. Huang, C. Guestrin et al., "Uncovering the riffled independence structure of ranked data," Electronic Journal of Statistics, vol. 6, pp. 199–230, 2012.