

Mobile Robots Lab Localization using magnets

Presentation

The robot and the magnet sensor

The reed switch

A normally open reed switch.

In a sufficiently intense magnetic field, the switch closes.

The magnet sensor

No magnet in the vicinity of the reed switches: all are open

A magnet is right under reed switch 3, which is closed.

The magnet sensor

A magnet is right under switches 5 and 6, which are closed.

A magnet is right under switche 1, another under 7 and 8

The magnet sensor measurements

The magnet sensor measurements

Two measurements: -3.5Δ and $+3\Delta$

Sensor passing over a magnet

Area where the magnetic field is intense enough to switch the reed sensor on.

Sensor passing over a magnet (lower sampling rate)

About the magnet sensor

- The system design parameters are:
 - Magnet field intensity.
 - Inter-magnet distance
 - Reed switch sensitivity.
 - Reed switch number/spacing and sensor length.
- The sensor has been designed in such a way that:
 - When passing over a magnet, either one or two reed switches are activated.
 - When the robot moves, the sensor "cannot avoid crossing magnets"

System characteristics

- 8 reed switches.
- 10 mm interval between reed switches
- 55 mm interval between magnets, arranged in a regular square pattern.

Robot and sensor

Initial positioning of the robot

The center point of the fixed wheel axle is put above a dot painted at (0,0).

Robot characteristics

- Encoders:
 - 360 dots per wheel revolution.
 - "Dumbed down" to 45 dots per revolution to make the problem a bit more challenging.
- Recording frequency:
 - 20 Hz.
 - We will work at 5 Hz.

The robot detecting a magnet

- Express in plain English what the sensor measures.
- Write the measurement equation

Variant of Kalman filter equations

The program uses a slight variant of the Kalman filter equations, where the input u is assumed to be disturbed by noise:

$$X_{k+1} = f(X_k, U_k^*) + \alpha_k$$
 $U_k^* = U_k + \beta_k$ The measured input is affected by an additive noise

$$P_{k+1} = A_k P_k A_k^T + B_k Q_{\beta} B_k^T + Q_{\alpha}$$

The error propagation equation is the only change.

$$A_k = \frac{\partial f}{\partial X} \quad B_k = \frac{\partial f}{\partial U}$$

See paragraph 5.2 of the "book" form of the localization class material for the equations.

Evolution of uncertainty (standard form of the equations)

$$P_{k+1} = A_k \, P_k \, A_k^T + Q_\alpha$$

$$Q_\alpha = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma_\theta^2 \end{bmatrix}$$
 A logical for for Q_α Two tuning parameters.

Assuming the initial uncertainty is the same in x and y, the uncertainty ellipse in the x-y plane starts as a circle and remains a circle during successive odometry phases (no update phase).

Evolution of uncertainty (form with noisy input)

$$P_{k+1} = A_k \, P_k \, A_k^T + B_k \, Q_\beta \, B_k^T$$
 (Q_α has been set to zero)

$$Q_{eta} = \left[egin{array}{ccc} \sigma_v^2 & 0 \ 0 & \sigma_\omega^2 \end{array}
ight]$$

Still two tuning parameters.

Now the uncertainty ellipse orients with the motion of the robot. The result is closer to the way errors actually evolve during odometry.

The input noise in the lab

$$\begin{cases} v = (r_r \dot{q}_r + r_l \dot{q}_l)/2\\ \omega = (r_r \dot{q}_r - r_l \dot{q}_l)/e \end{cases}$$

There is a linear relation between v, w and the rotation speed of the wheels.

So Q_{β} can be written as a function of the covariance matrix of errors on \dot{q}_r and \dot{q}_l .

$$Q_{\beta} = K Q_{\dot{q}} K^T$$
 with $K = \begin{bmatrix} r_r/2 & r_l/2 \\ r_r/e & -r_l/e \end{bmatrix}$

A reasonable form for $Q_{\dot{q}}$: $Q_{\dot{q}} = \left[\begin{array}{cc} \sigma_{\dot{q}}^2 & 0 \\ 0 & \sigma_{\dot{z}}^2 \end{array} \right]$

Now the number of tuning parameters for the input noise is 1.