

Figure 1: *
Graphical summary of $\mathbb{P}(1,1,4)$, Case II. When the integer point (0,4) is missing from Newt(Ω), we move the edge corresponding to the exceptional divisor of the minimal resolution $\mathbb{F}_4 \to \mathbb{P}(1,1,4)$ normally inwards until it reaches an integer point. The new edge has affine length 4, which implies that

the strict transform of the branch curve intersects the contracted -4-curve C_1 with total multiplicity 4. The affine distance from the missing point to the new edge is 1, so the curve C_1 appears in $tot_{\tilde{V}}(B)$ with multiplicity 1.