Deep Learning with torch:: CHEAT SHEET

torch is based on Pytorch, a framework popular among deep learning researchers.

torch's GPU acceleration allows to implement fast machine learning algorithms using its convenient interface, as well as a vast range of use cases, not only for deep learning, according to Its flexibility and its low level API.

It is part of an ecosystem of packages to interface with specific dataset like torchaudio for timeseries-like and torchvision for image-like data.

https://torch.mlverse.org/

https://mlverse.shinyapps.io/torch-tour/

INSTALLATION

The torch R package uses the C++ libtorch library. You can install the prerequisites directly from R.

https://torch.mlverse.org/docs/articles/installation.html

```
install.packages("torch")
library(torch)
install_torch()
See ?install_torch for
GPU instructions
```

Working with torch models

DEFINE A NN MODULE dense ← nn_module("no_biais_dense_layer", initialize = function(in_f, out_f) { self\$w ← nn_parameter(torch_randn(in_f, out_f)) }, forward = function(x) { torch_mm(x, self\$w) } } Create a nn module names no_biais_dense_layer

ASSEMBLE MODULES INTO NETWORK

model ← dense(4, 3)
Instantiate a network from a single module

model ← nn_sequential(
 dense(4,3), nn_relu(), nn_dropout(0.4),
 dense(3,1), nn_sigmoid())
Instantiate a sequential network with multiple layers

MODEL FIT

model\$train()
Turns on gradient update

with_enable_grad({
 y_pred ← model(trainset)
 loss ← (y_pred - y)\$pow(2)\$mean()
 loss\$backward()
})
Detailed training loop step (alternative)

EVALUATE A MODEL

model\$eval()
or
with_no_grad({
 model(validationset)
})
Perform forward operation with no gradient update

OPTIMIZATION

optim_sgd()
Stochastic gradient descent optimiser

optim_adam()
ADAM optimiser

CLASSIFICATION LOSS FUNCTION

nn_cross_entropy_loss()
nn_bce_loss()
nn_bce_with_logits_loss()
(Binary) cross-entropy losses
nn_nll_loss()
Negative log-likelihood loss
nn_margin_ranking_loss()
nn_hinge_embedding_loss()
nn_multi_margin_loss()
nn_multilabel_margin_loss()
(Multiclass) (multi label) hinge losses

REGRESSION LOSS FUNCTION

nn_ll_loss()
L1 loss
nn_mse_loss()
MSE loss nn_ctc_loss()
Connectionist Temporal Classification loss
nn_cosine_embedding_loss()
Cosine embedding loss
nn_kl_div_loss()
Kullback-Leibler divergence loss
nn_poisson_nll_loss()
Poisson NLL loss

OTHER MODEL OPERATIONS

summary() Print a summary of a torch model

torch_save(); torch_load() Save/Load models to files

load_state_dict()
Load a model saved in python

Neural-network layers

CORE LAYERS nn_linear() Add a linear transformation NN layer to an input nn_bilinear() to two inputs nn_sigmoid(), nn_relu() Apply an activation function to an output nn_dropout() nn_dropout2d() nn_dropout3d() Applies Dropout to the input

nn_batch_norm1d()
nn_batch_norm2d()
nn_batch_norm3d()
Applies batch normalisation to the weights

CONVOLUTIONAL LAYERS

nn_conv2d() 2D, e.g. spatial convolution over images

nn_conv_transpose3d()
Transposed 3D (deconvolution)
nn_conv3d() 3D, e.g. spatial
convolution over volumes

nnf_pad()
Zero-padding layer

Hochreiter 1997 CC BY SA Christophe Regouby • torch 0.7.0 • Updated: 2022-05

Long-Short Term Memory unit -

Gated recurrent unit - Cho et al

nn_gru()

nn_lstm()

Tensor manipulation

TENSOR CREATION

tt <- torch_rand(4,3,2) uniform distrib.

 $tt \leftarrow torch_randn(4,3,2)$ unit normal distrib. $tt \leftarrow torch_randint(1,7,c(4,3,2))$ uniform integers within [1,7)

Create a random values tensor with shape

 $tt \leftarrow torch_ones(4,3,2)$ torch_ones_like(a)

Create a tensor full of 1 with given shape, or with the same shape as 'a'. Also torch_zeros, torch_full, torch_arange,...

tt\$ndim tt\$dtype tt\$shape [1] 3 [1] 4 3 2 torch_Float tt\$requires_grad tt\$device

[1] FALSE torch_device(type='cpu') Get 't' tensor shape and attributes

tt\$stride() [1] 6 2 1

jump needed to go from one element to the next In each

dimension

 $tt \leftarrow torch_tensor(a,$ dtype=torch_float(), device= " cuda ") Copy the R array 'a' into a tensor of float on the

← as.matrix(tt\$to(device="cpu ")

TENSOR SLICING

tt[1:2, -2:-1,] Slice a 3D tensor tt[5:N, -2:-1, ..]

Slice a 3D or more tensor, N for last

tt[1:2, -2:-1, 1:1] tt[1:2, -2:-1, 1, keep=TRUE] Slice a 3D and keep the unitary dim.

tt[1:2, -2:-1, 1] Slice by default remove unitary dim.

tt[tt > 3.1] Boolean filtering (flattened result)

TENSOR VALUES OPERATIONS

Operations with two tensors

\$pow(2), \$log(), \$exp(), \$abs(), \$floor(), \$round(), \$cos(), \$fmod(3), \$fmax(1), \$fmin(3) Element-wise operations on a tensor

\$eq(), \$ge(), \$le() Element-wise comparison

\$to(dtype = torch_long()) Mutate values type

\$sum(dim=1), \$mean(), \$max() Aggregation functions on a single tensor \$amax()

torch_repeat_interleave() Repeats the input n times

tt\$unsqueeze(1) torch_unsqueeze(t,1)

"tt" as first dimension

torch_squeeze(t,1) Remove first unitary dimension to

torch_reshape() \$view()

Change the tensor shape, (tentatively) without with copy or

Flattens an input

torch_movedim(c(1,2,3), c(3,1,2)) move dim 1 to dim 3, dim 2 to 1, dim 3 to 2 torch_permute(c(3,1,2)) Only provide the target dimension order

TENSOR CONCATENATION

torch_flip(1)

torch_flip(2)

torch_stack()

torch_cat()

Stack of tensors

Assemble tensors

torch_split(2)

torch_split(c(1,3,1))

split tensor in sections of size 2

split tensor into explicit sizes

TENSOR SHAPE OPERATIONS

tt\$squeeze(1)

tensor "tt"

torch_flatten()

torch_transpose()

torch_movedim(c(1,2)) switch dimension 1 with 2

flip values along dim 1

both dims torch_flip(c(1,2))

The "Hello, World!" of

deep learning

Pre-trained models

models can be used for prediction, feature

Resnet image classification model

without recoding its nn modules in R.

Remove top layer of a model

IMPORTING FROM PYTORCH

This is done in two steps

import torch

model.eval()

import torchvision

extraction, and fine-tuning.

library(torchvision)

NATIVE R MODELS

Torch applications are deep learning models that are

made available alongside pre-trained weights. These

resnet34 ← model_resnet34(pretrained=TRUE)

resnet34_headless \leftarrow nn_prune_head(resnet34, 1)

{torchvisionlib} allows you to import a pytorch model

1- instantiate the model in Python, script it, and save it:

torch

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA 504/

input layer: use MNIST images

t rchaudio

```
library(torchvision)
train_ds ← mnist_dataset( root = " ~/.cache",
   download = TRUE,
```

torchvision

transform = torchvision::transform_to_tensor

train = FALSE,

train_dl ← dataloader(train_ds, batch_size = 32,

test_dl ← dataloader(test_ds, batch_size = 32)

defining the model and layers

```
"Net",
initialize = function() {
 self$fc1 \leftarrow nn_linear(784, 128)
 self$fc2 \leftarrow nn_linear(128, 10)
```

torch.jit.save(scripted_model, "fcn_resnet50.pt")

2- load and use the model in R: library(torchvisionlib) model ← torch::jit_load("fcn_resnet50.pt")

model = torchvision.models.segmentation.

fcn_resnet50(pretrained = True)

scripted_model = torch.jit.script(model)

with_detect_anomaly()

Provides insight of a nn_module() behaviour

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

Troubleshooting

HELPERS

Callbacks

test_ds ← mnist_dataset(root = " ~/.cache", transform = torchvision::transform_to_tensor shuffle = TRUE) net ← nn module(forward = function(x) { x %>% torch_flatten(start_dim = 2) %>% self\$fc1() %>% nnf_relu() %>% self\$fc2() %>% nnf_log_softmax(dim = 1) $model \leftarrow net()$ # define loss and optimizer optimizer ← optim_sgd(model\$parameters, lr = 0.01) # train (fit) for (epoch in 1:10) { train_losses \leftarrow c() test_losses \leftarrow c() for (b in enumerate(train_dl)) { optimizer\$zero_grad() output ← model(b[[1]]\$to(device = device)) loss ← nnf_nll_loss(output, b[[2]]\$to(device = device)) loss\$backward() optimizer\$step() train_losses ← c(train_losses, loss\$item()) for (b in enumerate(test_dl)) { model\$eval() output \leftarrow model(b[[1]]\$to(device = device)) loss ← nnf_nll_loss(output, b[[2]]\$to(device = device)) test_losses \leftarrow c(test_losses, loss\$item()) model\$train()