Lect 13

Adder CS221: Digital Design

Ref Chapter 10 of the Book: Introduction to Digital System, Ercegovac M, Lang T and Moreno J H, Wiley India, 2013

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Combinational Block
- Adder, Substractor, BCD Adder
- Efficient : Adder Design
 - RCA, CS_kA, CS_lA, CLA
- Binary Multiplier
 - Array, Sequential, Booth
- Floating Point

Adding Two One-bit Operands • One-bit Half Adder: A B Sum Cout 0 0 0 0 $Sum = A \oplus B$ 0 1 0 HA Cout = A.B1 0 0 0 1 1 • One-bit Full Adder: C_{in} A B Sum Cout 0 0 0 0 0 0 0 1 0 $Sum = A \oplus B \oplus Cin$ 0 1 0 0 Cout = A.B + B.Cin0 1 1 0 1 C_{out} FA + A.Cin 1 0 0 1 0 1 0 1 0 1 Şum 1 1 0 0 1 1 1 1

Decimal Adder

- Decimal numbers are represented with BCD code.
- When two BCD digits A and B are added
 - if A+B<10 result is a valid BCD digit
 - if A+B>9 result will not be valid BCD digit. It must be corrected by adding 6 to the result
- If A+B >9 add 6 to solve this issue

Efficient Adder Design

15

Adder Universal Use

• Adder : A = B + C

• Substractor: A = B + (-C), 2's complement

Compare: C = A> B ? 1:0, (A-B > 0) ? 1:0
 Special case of compare with 0

Multiply

• Divide

• Mod

• Floating point: Add/sub/mul...

16

Adding Two One-bit Operands • One-bit Full adder

↓ Sum

 $Sum = A \oplus B \oplus Cin$ Cout = A.B + B.Cin + A.Cin

0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1	Cin	Α	В	Sum	Cout
0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1	0	0	0	0	0
0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1	0	0	1	1	0
1 0 0 1 0 1 0 1 0 1 1 1 0 0 1	0	1	0	1	0
1 0 1 0 1 1 0 0 1	0	1	1	0	1
1 1 0 0 1	1	0	0	1	0
	1	0	1	0	1
1 1 1 1	1	1	0	0	1
17	1	1	1	1	

Addition of Two N-Bit numbers

$$x + y + c_{in} = 2^n c_{out} + s$$

The solution:

$$s = (x + y + c_{in}) \mod 2^n$$

$$c_{out} = 1 \text{ if } (x + y + c_{in}) \ge 2^n \text{ else } 0$$

18

Example

- $011110 + 101101 = 1 (x 2^6) + 001011$
- X=30, Y=45
- $30 + 45 = 75 = 2^6 \times 1 + 11$
- Solution
 - S= (30+45+0) % 2⁶=11
 - Cout= 1 if (30+45+0 >= 2^6) else 0 = 1

Primitive module FA $x_{i} + y_{i} + c_{i} = 2 c_{i+1} + s_{i}$ with solution $\bullet s_{i} = (x_{i} + y_{i} + c_{i}) \mod 2$ $\bullet c_{i+1} = \text{floor} \left[(x_{i} + y_{i} + c_{i})/2 \right] \xrightarrow{\text{FA}} \leftarrow C_{i}$ $C_{i+1} = S$

N-Bit Ripple-Carry Adder: Series of

• To add two n-bit numbers

- Adder delay = Tc * n
- $Tc = (C_{in} \text{ to } C_{out} \text{ delay}) \text{ of a FA}$

Adder Schemes

- Step1: Obtain carries
 - (Carry at i depends on j < i), Non-trivial to do fast
- Step2: Compute sum bits (local function)

Mathematically: C_i & S_i

- $C_i = FuncC (x_{i-1}, ..., x_0, y_{i-1}, ..., y_0, c_{in})$
- $S_i = FuncS(x_i, y_i, c_i)$ = $(x_i + y_i + c_i) mod 2$

Ripple Carry Adder Analysis 0 0 0 0 0 0-0-0-Kill (K_i=1) 0 0 0 Kill/Stop C_{in}/C_{out}=0 **Propagate** 0 1 1 Propagate C_{in} P_i=1 1 0 1 C_{i} Generate 1 1 2 (G_i=1), Generate C_{out}, C_{out}=1

Propagate, Generate & Kill

- Case 1 (Kill): $k_i = x_i'y_i' = (x_i + y_i)'$
- Case 2 (Propagate): $p_i = x_i XOR y_i$
- Case 3 (Generate): $g_i = x_i + y_i$

Then

$$c_{i+1} = g_i + p_i c_i = x_i y_i + (x_i XOR y_i) c_i$$

Alternative (simpler) expression:

$$C_{i+1} = g_i + a_i C_i$$

Since $a_i = k'_i$, we call it "alive"

Reducing Adder Delay

- Ripple Carry Adder: N(t_c)+max(t_c,t_s)
- Reducing Carry Delay t_c: Manchester Switch
- Changing linear factor to smaller
 - N/k or logN
 - Carry Look Ahead, Carry Skip, Carry Select, Conditional Sum Adder
- Including a competition signal: addition always may not be the worst case.
- Changing number representation: Carry Saved Adder

Switched Carry Ripple (Manchester) Adder

• Idea: Fast circuit to propagating carry chain

x _i +y _i	Gi	P _i	K _i	C _{i+1}
0	0	0	1	0
1	0	1	0	Ci
2	1	0	0	1

Manchester Adder (MRCA)

- Delay: t_{sw}+(n-1)*t_p
- Here $t_p < t_c$, so total delay is less

Carry Skip Adder

- Smaller modification to Ripple Carry Adder
- Reduce worst case delay by reducing the number of FA cell through carry has to Propagate
- Divide n bits in to (n/m) groups of m bits
- If sum of group is 2^m-1 then carry is propagated
- Carry is propagated when it propagated by all the bits of the groups

$$P_j = p_{j0} p_{j1} p_{j2} ... p_{jm-1}$$

• $C_{\text{in,j+1}} = C_{\text{out, j}} \cdot P'_{\text{j}} + C_{\text{in,j}} + P_{\text{j}}$

Delay Analysis of Adder

- Ripple Carry Adder (RCA) = N * T_c
- Machester RCA = N*T_m
- Carry Skip Adder = Depend on Data
 - Let probability of skip is p
 - If skip delay for Group is T_s
 - Else Delay of Group m*T_c

Total Delay = $p (N/m) T_s + (p-1) *(N/m) * m * T_c$

Carry Select Adder = Independent of Data
 Delay of select = T_s
 T = (N/m - 1) T_s + m T_c

Delay of Adder **Q** N : Linear Delay

- Ripple Carry Adder (RCA) = $N * T_c = \alpha N$
- Machester RCA = N * $T_m = \alpha N$
- Carry Skip Adder Total Delay = $p (N/m) T_s + (p-1) *(N/m) * m * T_c T = N * (p/m * T_s + (p-1) T_c) = <math>\alpha N$
- Carry Select Adder = Independent of Data Delay of select = Ts

 $T = (N/m - 1) T_s + m T_c$ $T = N*T_s/m + (mT_c-T_s) = \alpha N + c$

Delay is linear Always carry moves from Right to Left Some time Skip/Always Skip It have to select Linear Arrangement == > O(N) delay How to reduced to Logarithmic delay? Tree Fashion/ Hierarchical Fashion Design a block which can be used in Tree Fashioned Adder === > Solution is CLA Block

CLG

$$\begin{split} & \boldsymbol{C}_{i} = \boldsymbol{G}_{i} + \boldsymbol{P}_{i} \cdot \boldsymbol{C}_{i-1} \\ & \text{where } \boldsymbol{G}_{i} = \boldsymbol{A}_{i} \cdot \boldsymbol{B}_{i} \\ & = \boldsymbol{G}_{i} + \boldsymbol{P}_{i} \cdot \boldsymbol{G}_{i-1} + \ldots + \boldsymbol{P}_{i} \cdot \boldsymbol{P}_{i-1} \ldots \boldsymbol{P}_{2} \cdot \boldsymbol{P}_{1} \cdot \boldsymbol{C}_{0} \\ & \boldsymbol{S}_{i} = \boldsymbol{C}_{i} \oplus \boldsymbol{P}_{i} \end{split}$$

Available for (# of inputs ≤ 4)

Group propagate & generate

$$\begin{split} c_1 &= p_0 \, c_0 + g_0 \\ c_2 &= p_1 \, c_1 + g_1 = p_1 p_0 c_0 + p_1 g_0 + g_1 \\ c_3 &= p_2 \, c_2 + g_2 = p_2 p_1 p_0 c_0 + p_2 p_1 g_0 + p_2 g_1 + g_2 \\ c_4 &= p_3 \, c_3 + g_3 = \\ & p_3 p_2 p_1 p_0 c_0 + p_3 p_2 p_1 g_0 + p_3 p_2 g_1 + p_3 g_2 + g_3 \\ P_0 &= p_3 p_2 p_1 p_0 \\ G_0 &= p_3 p_2 p_1 g_0 + p_3 p_2 g_1 + p_3 g_2 + g_3 \\ c_4 &= P_0 \, c_0 + G_0 \end{split}$$

Group propagate & generate

$$\begin{split} P_i &= p_{i+3} \, p_{i+2} \, p_{i+1} \, p_i \\ G_i &= p_{i+3} \, p_{i+2} \, p_{i+1} \, g_i + p_{i+3} \, p_{i+2} \, g_{i+1} + p_{i+3} \, g_{i+2} + g_{i+3} \\ \\ C_4 &= P_0 \, \textcolor{red}{\textbf{c_0}} + G_0 \\ C_8 &= P_4 \, P_0 \, \textcolor{red}{\textbf{c_0}} + P_4 \, G_0 + G_4 \\ C_{12} &= P_8 \, P_4 \, P_0 \, \textcolor{red}{\textbf{c_0}} + P_8 \, P_4 \, G_0 + P_8 \, G_4 + G_8 \\ C_{16} &= P_{12} \, P_8 \, P_4 \, P_0 \, \textcolor{red}{\textbf{c_0}} + P_{12} \, P_8 \, P_4 \, G_0 + P_{12} \, P_8 \, G_4 + P_{12} \, G_8 + G_{12} \end{split}$$

Summery: Two operand Additions

- Speeding up addition
 - -Ripple carry adder (carry propagate): O(n)
 - -Carry look ahead: O(log n)
- What about Multi-Operand Adder
 - $-A=N_0+N_1+N_2+....+N_n$
- Where we require: possibly in multiply or advance computing places

