Récurrence

Chapitre 1

$$u_{n+1} = f(u_n)$$

Sommaire

	R	Raiso	onnement par récurrence	 3
-	4	Un e	exemple	 3
E	3	Rais	sonnement par récurrence	 3
		1	Axiome en général	 3
		2	Axiome de la récurrence	 4
(2	Dém	montrer une propriété $\mathscr{P}(n)$ pour tout $n \ge n_0$	 5
		1	Démonstration par récurrence	 5
		2	Démonstration « directe »	 5
	E	xem	nples d'Applications	 6
,	4	Inég	galité de Bernoulli	 6
E	3	Suite	te majorée, minorée, bornée	 6
C		Dém	nontrer qu'une suite est monotone	 7

Introduction

Les capacités attendues de ce chapitre sont :

Cours

- 1 Raisonner par récurrence pour établir une propriété d'une suite;
- (2) Etudier des phénomènes d'évolution modélisables par une suite.

Raisonnement par récurrence

Démontrer une égalité pour tout entier naturel n non nul

• On note la somme

$$S_n = 1 + 2 + \dots + n,$$

pour tout $n \in \mathbb{N}^*$.

• On souhaite démontrer que pour tout $n \in \mathbb{N}^*$, on a :

$$S_n = \frac{n(n+1)}{2}$$

Analyse du problème :

• Il s'agit de démontrer l'égalité :

pour tout $n \in \mathbb{N}^*$.

- On note $\mathscr{P}(n)$ la propriété $S_n = \frac{n(n+1)}{2}$.
- Vérifions que $\mathscr{P}(n)$ est vraie pour les premières valeurs de n

n	S_n	$\frac{n(n+1)}{2}$	$\mathscr{P}(n)$ vraie?
1	1	1	oui
2	3	3	oui
3	6	6	oui
4	10	10	oui
:	:	:	:

 $\mathscr{P}(1)$, $\mathscr{P}(2)$, $\mathscr{P}(3)$ et $\mathscr{P}(4)$ sont vraies mais rien ne prouve encore que $\mathscr{P}(n)$ est vraie pour tout n.

B Raisonnement par récurrence

1 AXIOME EN GÉNÉRAL

Définition

Un axiome est une proposition considérée comme évidente, admise et sans démonstration.

Exemples:

Axiome nº 1 d'Euclide : Il existe toujours une droite qui passe par deux points du plan.

Axiome d'induction de Peano : Si une partie P de $\mathbb N$ contient 0, et si le successeur de tout élément de P appartient à P,

alors $P = \mathbb{N}$.

2 AXIOME DE LA RÉCURRENCE

Faire tomber une infinité dénombrable de dominos

Sur chaque abscisse entière d'une droite graduée, on dispose un domino.

Imaginons que:

- le domino nº 0 tombe (initialisation)
- la chute du domino nº n entraîne toujours du domino suivant nº n + 1 (Hérédité)

Alors on conviendra que tous les dominos seront tombés.

Objectif: employons ce processus pour démontrer qu'une propriété est vraie pour tout entier $n \ge n_0$.

Axiome Récurrence

Soit $\mathscr{P}(n)$ une propriété définie sur \mathbb{N} .

On suppose que l'on a les deux étapes réunies :

Initialisation : $\mathcal{P}(n_0)$ est vraie

Hérédité : si $\mathcal{P}(n)$ est vraie alors $\mathcal{P}(n+1)$ est vraie.

Alors par récurrence $\mathcal{P}(n)$ est vraie pour tout entier $n \ge n_0$.

Pseudo explication:

- $\mathcal{P}(n_0)$ est vraie (initialisation)
- $\mathcal{P}(n_0+1)$ est vraie (*Hérédité*)
- $\mathcal{P}(n_0+2)$ est vraie (*Hérédité*)
- $\mathcal{P}(n_0+3)$ est vraie (*Hérédité*) etc

« De proche en proche », $\mathcal{P}(n)$ est vraie pour tout $n \ge n_0$.

Application du raisonnement par récurrence

Démontrons que pour tout $n \in \mathbb{N}^*$, on a : $S_n = \frac{n(n+1)}{2}$.

Preuve:

Pour tout $n \in \mathbb{N}^*$, on note $\mathscr{P}(n) : S_n = \frac{n(n+1)}{2}$.

Initialisation: on a

$$\triangleright S_1 = 1$$

$$\triangleright \frac{1 \times (1+1)}{2} = 1$$

Donc on a bien l'égalité $S_1 = \frac{1 \times (1+1)}{2}$ et $\mathscr{P}(1)$ est vraie.

Hérédité: supposons que $\mathscr{P}(n)$ est vraie et démontrons alors que $\mathscr{P}(n+1)$ est vraie.

Il s'agit donc de démontrer que :

$$S_n = \frac{n(n+1)}{2} \implies S_{n+1} = \frac{(n+1)(n+2)}{2}$$

Hypothèse de récurrence (**HR**)

Mais comment fait-on pour passer de S_n à S_{n+1} ?

▶ Nous disposons de la relation :

$$\left(S_{n+1} = S_n + (n+1)\right)$$

ightharpoonup Cette relation dit que S_{n+1} s'obtient à partir du terme précédent S_n . C'est la **relation de récurrence** a.

a. **récurrence** du latin recurrens, dérivé du verbe **recurrere** : « marcher en arrière ». L'adjectif qualifie « ce qui revient », « ce qui se reproduit ».

Bro Frédéric -4/8- Année 2020-2021

$$S_{n+1}$$
 = $S_n + (n+1)$
= $\frac{n(n+1)}{2} + (n+1)$
= $(n+1)(\frac{n}{2}+1)$
= $\frac{(n+1)(n+2)}{2}$

Conclusion : $\mathcal{P}(n)$ est vraie pour n=1 et elle héréditaire, alors par **récurrence** elle vraie pour tout $n \ge 1$.

O Démontrer une propriété $\mathcal{P}(n)$ pour tout $n \ge n_0$

1 DÉMONSTRATION PAR RÉCURRENCE

Il faut mener à bien les 3 étapes suivantes :

Initialisation : Justifier que $\mathcal{P}(n_0)$ est vraie

 $\textit{H\'er\'edit\'e}: \ \ \text{Justifier l'implication pour tout } n \in \mathbb{N}: \boxed{\mathscr{P}(n) \ \text{vraie} \ \Rightarrow \mathscr{P}(n+1) \ \text{vraie}}.$

Il s'agit d'identifier une relation de récurrence qui permet de passer de $\mathcal{P}(n)$ à $\mathcal{P}(n+1)$.

Conclusion : Dire que $\mathcal{P}(n_0)$ est vraie et que $\mathcal{P}(n)$ est héréditaire donc **par récurrence** $\mathcal{P}(n)$ est vraie pour tout

 $n \ge n_0$.

2 DÉMONSTRATION « DIRECTE »

Exemple nº 1

Démontrons que pour tout $n \in \mathbb{N}^*$, on a : $S_n = \frac{n(n+1)}{2}$.

Réponse :

$$S_n = 1 + 2 + \cdots + n$$

 $S_n = n + (n-1) + \cdots + 1$
 $2S_n = (n+1) + (n+1) + \cdots + (n+1)$

Donc

$$2S_n = n \times (n+1)$$

$$S_n = \frac{n(n+1)}{2}$$

Exemple nº 2

Démontrons que pour tout $n \in \mathbb{N}^*$, on a : $\sqrt{n} \le \frac{n+1}{2}$.

R'eponse:

- On ne voit pas comment passer du rang n au rang n + 1 : il n'y a pas de relation de récurrence visible!
 On ne peut pas faire de récurrence.
- Effectuons une preuve « directe » : Pour tout $n \in \mathbb{N}^*$, on a :

Exemples d'Applications

Inégalité de Bernoulli

Théorème

Inégalité de Bernoulli

Pour tout réel a **positif** et pour tout entier naturel n, on a :

$$(1+a)^n \geqslant 1+na.$$

Preave:

Démontrons par récurrence, que pour tout $n \in \mathbb{N}$ on a : $(1+a)^n \ge 1+na$.

On note $\mathcal{P}(n): (1+a)^n \ge 1+na$.

Initialisation : $\Rightarrow (1+\alpha)^0 = 1$

 $\triangleright 1 + 0 \times a = 1$

Ainsi $(1+a)^0 = 1+0 \times a$ et donc $\mathcal{P}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ l'est également :

Par hypothèse de récurrence, $\mathcal{P}(n)$ est vraie :

$$(1+a)^n \ge 1+na$$
 puisque $a \ge 0$ donc $1+a \ge 0$ équivaut à $(1+a)^{n+1} \ge (1+na)(1+a)$ équivaut à $(1+a)^{n+1} \ge 1+(n+1)a+\underbrace{na^2}_{\ge 0}$

équivaut à $(1+a)^{n+1} \ge 1+(n+1)a$

Ainsi la propriété est bien vraie au rang n + 1.

Conclusion : $\mathscr{P}(n)$ est vraie pour n=0 et elle héréditaire, alors par **récurrence** elle vraie pour tout $n \in \mathbb{N}$.

Suite majorée, minorée, bornée

Définition

On dit que $(u_n)_{n\in\mathbb{N}}$ est :

- majorée par un nombre réel M, si pour tout $n \in \mathbb{N}$, on a : $u_n \leq M$.
- minorée par un nombre réel m, si pour tout $n \in \mathbb{N}$, on a : $m \le u_n$.
- bornée, s'il existe deux réels m et M tels que pour tout $n \in \mathbb{N}$, on a : $m \le u_n \le M$.

Exemples:

• La suite $\left(1-\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ est majorée par 1, car :

$$1 - \frac{1}{n} \le 1$$
, quel que soit $n \in \mathbb{N}^*$.

Remarque: 2 est aussi un majorant ...

• La suite $(2^n)_{n\in\mathbb{N}^*}$ est minorée par 2, car :

 $2^n \ge 2$, quel que soit $n \in \mathbb{N}^*$.

Remarque: 0 est aussi un minorant ...

Propriétés

• Si $(u_n)_{n\in\mathbb{N}}$ est **croissante** alors elle est **minorée** par u_0 :

car,
$$u_0 \le u_1 \le u_2 \le ...$$

• Si $(u_n)_{n\in\mathbb{N}}$ est **décroissante** alors elle est **majorée** par u_0 :

car,
$$\ldots \leq u_{n+1} \leq u_n \leq \ldots \leq \underline{u_0}$$

Application

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par :

$$u_0 = 1$$
 et $u_{n+1} = \sqrt{2 + u_n}$.

Démontrons que pour tout entier naturel n on a : $0 < u_n < 2$.

Réponse : démontrons par récurrence que : $0 < u_n < 2$, pour tout $n \in \mathbb{N}$.

 $\overline{\text{On note } \mathscr{P}(n)}: 0 < u_n < 2.$

Initialisation : Puisque $u_0 = 1$ alors on a : $0 < u_0 < 2$.

Donc $\mathcal{P}(0)$ est vraie.

Hérédité : supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ l'est également :

Par hypothèse de récurrence, $\mathcal{P}(n)$ est vraie :

équivaut à
$$0< u_n<2$$
 équivaut à $2<2+u_n<4$ Par croissance de la racine carrée sur $[0;+\infty[$ équivaut à $0< u_{n+1}<2$

Donc la propriété est bien vraie au rang n + 1.

Conclusion : $\mathcal{P}(n)$ est vraie pour n = 0 et elle héréditaire, alors par **récurrence** elle vraie pour tout $n \in \mathbb{N}$.

Démontrer qu'une suite est monotone

Définition

Rappels

- Une suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** lorsque : **pour tout entier** $n, u_n \leq u_{n+1}$.
- Une suite $(u_n)_{n\in\mathbb{N}}$ est décroissante lorsque : pour tout entier $n, u_n \ge u_{n+1}$.

Application

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par :

$$u_0 = 1$$
 et $u_{n+1} = \sqrt{2 + u_n}$.

Démontrons que $(u_n)_{n\in\mathbb{N}}$ est croissante.

Réponse : démontrons par récurrence que : $u_n \le u_{n+1}$, pour tout $n \in \mathbb{N}$.

 $\overline{\text{On note } \mathscr{P}(n)} : u_n \leq u_{n+1}.$

Initialisation : Puisque $u_0 = 1$ et $u_1 = \sqrt{3}$ alors $u_0 \le u_1$.

Donc $\mathcal{P}(0)$ est vraie.

Hérédité : supposons que $\mathcal{P}(n)$ est vraie et démontrons alors que $\mathcal{P}(n+1)$ l'est également : Par hypothèse de récurrence, $\mathcal{P}(n)$ est vraie :

$$u_n \leq u_{n+1}$$

Cela équivaut à :

$$\begin{array}{cccc} u_n+2 & \leqslant & u_{n+1}+2 \\ \sqrt{u_n+2} & \geqslant & \sqrt{u_{n+1}+2} \\ & & \text{Par croissance de la} \\ & & \text{racine carr\'e sur } [0\,;+\infty[\\ & & u_{n+2} \end{array}$$

Donc la propriété est bien vraie au rang n + 1.

Conclusion : $\mathcal{P}(n)$ est vraie pour n = 0 et elle héréditaire, alors par **récurrence** elle vraie pour tout $n \in \mathbb{N}$.

Propriété Rappel 1^{ière}S

La suite géométrique $(q^n)_{n \in \mathbb{N}}$ est :

- croissante si q > 1.
- décroissante si 0 < q < 1.
- De signe alterné, lorsque q < 0, on dit dans ce cas que la suite est **alternée**.