Machine Learning (Homework 2) Report 0860908 李少琪

1. Sequential Bayesian Learning

過程:

Step.1
$$\emptyset_j(x) = \frac{1}{1+e^{\left(-\frac{x-\mu_j}{s}\right)}}$$
, $s = 0.1$, $\mu_j = \frac{2j}{M}$, $M = 3$, $j = 0, ..., (M-1)$
 $\rightarrow \Phi \in \mathbb{R}^{100 \times 3}$

Step.2 prior distribution $p(w) = N(w \mid m_0, S_0)$

$$m_0 = 0$$
, $S_0 = 10^{-6}I$

以下步驟, X 中選前 N 個做訓練(N=5,10,30,80)

Step.3 posterior distribution $p(w|t) = N(w \mid m_N, S_N), \beta = 1$

$$S_N = (S_0^{-1} + \beta \Phi^T \Phi)^{-1}$$

$$m_N = S_N (S_0^{-1} m_0 + \beta \Phi^T t)$$

Step.4 從 posterior distribution 隨機選出 5 組 random variables 作為 weights

$$\rightarrow w \in \mathbb{R}^3$$

Step.5 $y = w\Phi^T$, 計算 5 組 Root mean square error 的平均, 並劃出預測結果的曲線

Step.6 選前兩個 weight 畫出對應的 prior distribution

Step.7 predictive distribution $p(t|\mathbf{x}, \mathbf{t}, \beta) = N(t|m_N^T \emptyset(\mathbf{x}), \sigma_N^2)$

$$\sigma_N^2 = \frac{1}{\beta} + \emptyset(\mathbf{x})^T S_n \emptyset(\mathbf{x})$$

Step.8 畫出 predictive distribution (上界 mean+stddev, 下界 mean-stddev)

結果:

N = 5, RMS = 17.12

分析:

由上述的結果可以看出,當訓練資料越多,fit 出來的曲線越接近訓練資料,權重的高斯機率分佈的標準差也越來越小,預測的機率分佈的標準差也越來越小。

2. Logistic Regression

渦程:

Step.1 讀取照片,並轉為一維陣列作為訓練特徵,對這些 features 做 Normalization

$$x' = \frac{x - \mu}{\sigma}$$

Step.2 切出 Training dataset, Testing dataset (每個類別各 5 筆資料)

Step.3 將 target 做 one-hot encoding

Step.4 給定 learning rate, epochs, w₀=0

A. Gradient descent Algorithm

Step.5 $w^{\tau+1} = w^{\tau} + \eta \Phi t$

Step.6 Softmax transformation (將 predict 的 target 轉為 0~1, 屬於該類的機率)

$$p(C_k|\emptyset) = y_k(\emptyset) = \frac{e^{a_k}}{\sum_j a_j}$$

Step.7 計算 Accuracy, Cross-entropy $E(W) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} lny_{nk}$

Step.8 predict the class of testing data

B. Principal component analysis (PCA)

Step.9 選出 n 個特徵值最大對應的 eigenvectors

Step.10 PCA_x = x * eigenvectors

Step.11 畫出特徵向量 (由 mean 指向 mean+stddev*eigenvector)

C. Newton-Raphson Algorithm

Step.12 用 PCA 降維到 2,5,10

Step.13
$$w^{\tau+1} = (\Phi^T R \Phi)^{-1} \Phi^T R z$$

$$R_{NN} = y_n(1 - y_n)$$

$$z = \Phi w^{\tau} - R^{-1}(y - t)$$

Step.14 計算 Accuracy, Cross-entropy

結果:

Gradient descent Algorithm (epochs=30)

Learning rate = 0.0001, Testing accuracy = 0.88

True: [1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5]

Predict: [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 4 5 4]

Learning rate = 0.00001, Testing accuracy = 0.88

True: [111111222223333344444555555]

Predict: [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 4 5 4]

Gradient Descent Accuracy (learning rate = 1e-05)

Gradient Descent Error (learning rate = 1e-05)

Eigenvectors

Newton-Raphson Algorithm

PCA dim = 2, Testing accuracy = 0.2

Newton Raphson Accuracy (PCA 2)

Newton Raphson Error (PCA 2)

PCA dim = 5, Testing accuracy = 0.36

True: [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5]

Predict: [1 1 1 1 1 2 3 3 3 3 2 2 2 2 2 4 4 4 5 5 3 4 3 1 3]

PCA dim = 10, Testing accuracy = 0.44

True: [1111122222333334444455555]

Predict: [1 1 5 1 1 2 2 3 2 3 2 2 2 2 2 4 4 4 5 5 3 4 1 1 5]

Epochs

Newton Raphson Error (PCA 10)

分析:

從 gradient descent algorithm 的實驗上可以發現,當 learning rate 越大,cross-entropy 下降越快,但是也越容易 overfitting,所以當要選擇 learning rate 時需要避免 loss 下降過快,以及訓練時間過長。

從 newton-raphson algorithm 的實驗可以發現,選擇的特徵越多, Testing data 的表現越好,但若是過多不必要的特徵,也可能影響訓練,所以 選擇特徵的數量也需要不斷嘗試。

比較 gradient descent algorithm 和 newton-raphson algorithm,可以發現 gradient descent 訓練結果比較好,可能的因素是 gradient descent 是作一次微分,而 newton-raphson 是作二次微分運算較為複雜,使得 testing 的效果並不好。

3. Nonparametric Methods

過程:

Step.1 讀取.csv · 將 Type 1 轉為 Psychic = 0, Normal = 1, Water = 2, 將 Legendary 轉為 False = 0, True = 1

Step.2 Type 1 之後的 columns 作為 features, 並作 Normalization

Step.3 切出 Training dataset(120), Testing dataset(38)

Step.4 用 features 計算 Euclidean distance 找出離 testing data 最近的 K 個 training data 作為 neighbors

$$distance(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_m - y_m)^2}$$

Step.5 以 K 個 neighbors 中最多的類別作為 testing data 的結果

Step.6 計算 accuracy

Step.7 用 PCA 降維至 7,6,5, 重複 Step.4~6

結果:

KNN (all features)

K	1	2	3	4	5	6	7	8	9	10
Acc	.605	.526	.579	.605	.658	.632	.658	.632	.684	.632

K-nearest neighbors Accuracy

KNN (PCA 7)

K	1	2	3	4	5	6	7	8	9	10
Acc	.526	.553	.526	.5	.605	.579	.605	.605	.579	.605

K-nearest neighbors Accuracy (PCA 7)

KNN (PCA 6)

K	1	2	3	4	5	6	7	8	9	10
Acc	.605	.553	.605	.579	.632	.658	.632	.657	.684	.737

K-nearest neighbors Accuracy (PCA 6)

KNN (PCA 5)

V	1	2	2	1	Г	c	7	0	0	10
N.	1		5	4	5	Ö	/	0	9	10
Acc	.553	.553	.553	.553	.605	.579	.632	.605	.632	.658

K-nearest neighbors Accuracy (PCA 5)

分析:

從上述 K-nearest neighbors 的實驗中,可以發現當 K 越小時,準確率越低,但也不能讓 K 太大,有可能因選擇過多鄰居超越分界線,產生 underfitting 的現象。

在 features 量的選擇上,如果計算過多的 features · 計算出的距離也會增大,受到非相關性的 feature 也影響更大,找出最具相關性的幾個 features 來做計算最好。