Übungen zum Ferienkurs Theoretische Mechanik

Starre Körper

Übungen, die mit einem Stern ★ markiert sind, werden als besonders wichtig erachtet.

3.1 Trägheitstensor eines homogenen Quaders

Bestimmen Sie den Trägheitstensor bzgl. des Hauptachsensystems eines Quaders mit konstanter Massendichte ρ_0 , und den Seitenlängen a, b und c. Berechnen Sie dannach das Trägheitsmoment bezüglich einer Achse, die entlang einer Diagonale des Quaders verläuft.

3.2 Kräftefreier axialsymmetrischer Kreisel

Berechnen Sie im körperfestem System die Winkelgeschwindigkeit eines kräftefreiem axialsymmetrischem Kreisels (M=0 und $\Theta_1 = \Theta_2$):

3.3 Schwingung eines Zylinders

Ein Zylinder der Masse M,
mit homogener Massenverteilung, mit Radius a, rollt ohne zu gleiten in einer zylindrischen Fläche, mit Radius R>a, im Schwerefeld .
Berechnen Sie die Schwingungsdauer. Es darf angenommen werden, dass ϕ klein ist.

Abbildung 1:

3.4 Zwei Kugeln

Berechnen Sie den Trägheitstensor bezüglich des Schwerpunktes, von 2 Kugeln mit gleichem Radius und homogener Masseverteilung. Die Kugeln sind im Schwerpunkt T verbunden.

3.5 Halbzylinder

Ein Halbzylinder mit homogener Massendichte dreht sich im Schwerefeld um eine Achse, welche mit der Symmetrieachse des Zylinders zusammenfällt. Der Halbzylinder erstreckt sich H/2 in die und H/2 aus der Ebene. Bestimmen Sie die Lagrangefunktion dieses Systems. (Der Halbzylinder Kann nicht überkippen. d.h $\phi \leq \pi$

y s y x

(a) Halbzylinder im Gleichgewicht

(b) Halbzylinder um die Achse A gedreht