Difference between DFA and NFA.

DFA: each possible input determines the resulting state q'uniquely. Each input causes a state change, and the new state is completely determined by the input, moreover, the automaton can change state only after reading an input.

If start a DFA in its initial state and input some word w, the state q in which the DFA ends up is completely determined by we this is meant by calling it deterministic, and we say that the word is accepted if the state is an accepted state NFA: (some inputs may allow a choice of resulting states. > many possibilities.

Some may cause the automator to choke \rightarrow no new state corresponding to that input May change state to some new state q' without reading any input $\rightarrow \lambda$.

Therefore, if start an NFA in its initial state and input word w, there may be several possible states in which it can end up, consequently you can't predict from w alone in exactly which state the automaton will finish, this is meant by calling it nondetermini

But as long as at least one of them is an accepted state, we say automaton accepts the word.

DFA cannot use & transition while NFA can.

Proporties of Regular Language.
Union: L, VL2 Concatenation: L, L Star: L* Reversal: LR Complement: L, ML2 intersection: L, ML2
Take two languages: LI, L2, L(MI)=L1, L(M2)=L2.
Union: Union: Union: WHA: MI NFA: M2 NFA: M2 NFA: M2 NFA for LIUL2. NFA: M2 NFA: M2
ii). Concatenation: L1 L2: -> 0 M2 0 M
iii). Star: L*: -O-X-O-X-O-X-O-X-O-X-O-X-O-X-O-X-O-X-O-
iv) Reverse: IP is Reverse all transitions invinction at the same to

iv) Reverse: LP. i). Reverse all transitions instinitial state - accepting state.

I accepting state - initial state.

L(M) = LR

V). Compliment: Li . i) Take the DFA That accepts L. ii). Make all accepting states regular, and make all regular states accepting states. amplement w' L(M)=L NFAs cannot be used for complement VI) Intersection: LINL2 T(W) = T(WI) V T(WI) Regular Expressions Regular Expressions describe regular languages. Given regular expressions Y_1 and Y_2 , $\begin{cases} Y_1 + Y_2 \\ Y_1 - Y_2 \end{cases}$ Are regular expressions. Primitive regular expression: \$\phi,\times,\times\, \times\): language of regular expression. e.g. L((a+b·c)*)= {x, a, bc, aa, abc, ...} For primitive regular expressions: L(\$\psi\$) = \$\psi\$, L(\$\times) = \$\frac{7}{4}\frac{3}{5}\$. For regular expressions Y_1 and Y_2 : $L(Y_1+Y_2)=L(Y_1) \vee L(Y_2)=\S Y_1,Y_2\S$ L(Y1. Y2) = L(Y1) L(Y2) = {Y13. } 723 L(Y*) = (L(Y))* = { Y3* L((r)) = [(r) = {r,3

$$L((atb) \cdot a^*) = L(atb) \cdot L(a^*) = (L(a) \vee L(b)) (L(a))^*$$

= $(\{a\} \vee \{b\}) (\{a\})^* = \{a,b\} \cdot \{\lambda,a,aa,\dots\}$
= $\{a,aa,aaq,\dots\}$

Regular expressions r, and r, are equivalent if Lini=Lini. $e.g: Y_1 = (1+01)^{\frac{1}{x}}(0+x)$ $Y_2 = (1^{\frac{1}{x}}011^{\frac{1}{x}})^{\frac{1}{x}}(0+x) + 1^{\frac{1}{x}}(0+x)$

L(r,) = L(r) = L = fall strings without substring 00}

{ Languages generated } = { Regular languages }

Proof: i). { Languages generated } = { regular languages}

Namely, for any regular expression r, the language Lir, is regular. Proof by induction on the size of r.

Induction Basis: given primitive regular expressions \$, \lambda, \alpha.

: L(a) = {a} 20 C OC

> Inductive Hypothesis: Suppose that for regular expressions r, and rz, Lix,) and Lix, are regular languages.

We will prove: L(Y,+YE), L(Y,YZ), L(Y,*), L((Y,)) are regular languages Since we know regular languages are closed under : union, concatenation, star, they are regular languages.

ii). { regular languages} < { languages generated by regular expressions}	
Namely, for any regular language. L, there is a regular expression r with	L(r)=
We will convert an NFA that accepts L to a regular expression.	
Since L is regular, there is a NFA M that accepts it. L(M)=L DOWNO	
From M construct the equivalent generalized transition graph, in which transition graph graph, in which transition graph graph, in which transition graph	
By repeating the process until two states are left, the resulting expression r ha	ıs :

By repeating the process until two states are left, the resulting expression r has: L(r) = L(M) = L.

Standard representations of regular languages NFAs

Regular expressions.