Private-Key Encryption and Pseudorandomness (Part I)

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2014

Outline

- 1 A Computational Approach to Cryptography
- 2 Defining Computationally-Secure Encryption
- **3** Pseudorandomness

4 Constructing Secure Encryption Schemes

Content

- 1 A Computational Approach to Cryptography
- 2 Defining Computationally-Secure Encryption
- **3** Pseudorandomness

4 Constructing Secure Encryption Schemes

Idea of Computational Security

Computational security vs. Information-theoretical security

Kerckhoffs's Another Principle

A [cipher] must be practically, if not mathematically, indecipherable.

- Information-theoretical security: Perfect secrecy.
- Computational security:
 - Only preserved against adversaries that run in a feasible amount of time.
 - Adversaries can succeed with some very small probability.

Necessity of the Relaxations

Limit the power of adversary (against brute force with pr. 1 in time linear in $|\mathcal{K}|$) and allow a negligible probability (against random guess with pr. $1/|\mathcal{K}|$).

Concrete Approach

A scheme is (t, ε) -secure if every adversary running for time at most t succeeds in breaking the scheme with probability at most ε .

Example

Optimal security: when the key has length n, an adversary running in time t can succeed with probability at most $t/2^n$.

 $t = 2^{80}$ 2²⁰ 1GHz CPUs run 35 years.

n=128 2^{170} atoms in the planet.

 $\varepsilon=2^{-48}$ once every 100 years with probability $2^{-30}/\mathrm{sec}.$

■ But one may ask: What type of computing power? What if under Moore's Law? Which kind of implementation? What is the success probability of running for 10 years? Does the key length matter?

$\mathcal{P} = \mathcal{NP}$?

The majority of computer scientists believe $\mathcal{P} \neq \mathcal{NP}$.

This is very dangerous!

Asymptotic Approach

Time t and probability ε are described as functions of **security** parameter n (usually, the length of key).

- Time is PPT (probabilistic polynomial-time): n^a for constant a.
- Probability is **negligible**: smaller than any inverse polynomial n^{-b} for constant b.
- **Caution**: 'Security' for large enough values of n.

Example

"Breaking the scheme" with probability $2^{40} \cdot 2^{-n}$ in n^3 minutes.

 $n \le 40$ 6 weeks with probability 1.

n = 50 3 months with probability 1/1000.

n = 500 more than 200 years with probability 2^{-500} .

Efficient Computation

- An algorithm A runs in **polynomial time** if there exists a polynomial $p(\cdot)$ such that, for every input $x \in 0, 1^*$, A(x) terminates within at most p(|x|) steps.
- A probabilistic algorithm has the capability of "tossing coins".
- A can run another PPT A' as a sub-routine in polynomial-time.
- Random number generators should be designed for cryptographic use, not random() in C.
- Open question: Does probabilistic adversaries are more powerful than deterministic ones?

Negligible Success Probability

- A function f is **negligible** if for every polynomial $p(\cdot)$ there exists an N such that for all integers n>N it holds that $f(n)<\frac{1}{p(n)}.$
- lacksquare $\operatorname{negl}_3(n) = \operatorname{negl}_1(n) + \operatorname{negl}_2(n)$ is $\operatorname{negligible}.$
- **p** positive polynomial p, $\operatorname{negl}_4(n) = p(n) \cdot \operatorname{negl}_1(n)$ is $\operatorname{negligible}$.
- Problem X is hard if X cannot be solved by any polynomial-time algorithm except with negligible probability.

Remarks on The Asymptotic Approach

- The longer the key, the higher the security.
- \blacksquare Increasing n to defend against increases in computing power.
- Convention: algorithm input is 1^n . (a string of n 1's)

Example			
	Honest party	Adversary	
	$10^6 \cdot n^2$	$10^8 \cdot n^4$	2^{20-n}
$1\mathrm{GHz}\ n=50$	2.5 sec.	1 week	2^{-30}
$16 \mathrm{GHz}\ n = 500$	0.625 sec.	16 week	2^{-80}

Content

- 1 A Computational Approach to Cryptography
- 2 Defining Computationally-Secure Encryption
- **3** Pseudorandomness

4 Constructing Secure Encryption Schemes

Defining Private-key Encryption Scheme

A Private-key encryption scheme Π is a tuple of \mathtt{PPT} (Gen, Enc, Dec)

- $k \leftarrow \operatorname{Gen}(1^n), |k| \ge n$ (security parameter). $\operatorname{Gen}(1^n)$ chooses $k \leftarrow \{0,1\}^n$ uniformly at random (*u.a.r*).
- $c \leftarrow \operatorname{Enc}_k(m), m \in \{0,1\}^*$ (all finite-length binary strings). **Fixed-length** if $m \in \{0,1\}^{\ell(n)}$.
- $m := \mathsf{Dec}_k(c).$

Eavesdropping Indistinguishability Experiment

The eavesdropping indistinguishability experiment $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$:

- **1** \mathcal{A} is given input 1^n , outputs m_0, m_1 of the same length.
- 2 $k \leftarrow \mathsf{Gen}(1^n)$, a random bit $b \leftarrow \{0,1\}$ is chosen. Then $c \leftarrow \mathsf{Enc}_k(m_b)$ (challenge ciphertext) is given to \mathcal{A} .
- **3** \mathcal{A} outputs b'. If b'=b, $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}=1$, otherwise 0.

Defining Private-key Encryption Security

Definition 1

 Π has indistinguishable encryptions in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists a negligible function negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n),$$

where the probability it taken over the random coins used by \mathcal{A} .

Properties of Definition of Indistinguishable

I No single bit can be guessed in a randomly-chosen plaintext with probability significantly better than 1/2.

$$\Pr[\mathcal{A}(1^n, \mathsf{Enc}_k(m)) = m^i] \le \frac{1}{2} + \mathsf{negl}(n).$$

where m^i is the *i*th bit of m, $\mathcal{A}(\cdot)$ outputs the guess.

2 No function of plaintext can be learned regardless of the *a priori* distribution over the plaintext.

$$\forall \ \mathcal{A}$$
, $\exists \ \mathcal{A}'$, $\forall \ f \ \text{and} \ \forall \ S \in \{0,1\}^*$,

$$\left|\Pr[\mathcal{A}(1^n,\mathsf{Enc}_k(m)) = f(m)] - \Pr[\mathcal{A}'(1^n) = f(m)]\right| \le \mathsf{negl}(n),$$

where
$$m \in S_n \stackrel{\mathsf{def}}{=} S \cap \{0, 1\}^n$$
.

Semantic Security

Intuition: No partial information leaks.

Definition 2

 Π is semantically secure in the presence of an eavesdropper if \forall PPT \mathcal{A} , $\exists \mathcal{A}'$ such that \forall distribution $X = (X_1, \dots)$ and $\forall f, h$,

$$|\Pr[\mathcal{A}(1^n, \mathsf{Enc}_k(m), h(m)) = f(m)] - \Pr[\mathcal{A}(1^n, h(m)) = f(m)]|$$

 $\leq \mathsf{negl}(n).$

where m is chosen according to X_n , h(m) is external information.

Theorem 3

A private-key encryption scheme has **indistinguishable** encryptions in the presence of an eavesdropper \iff it is **semantically secure** in the presence of an eavesdropper.

Content

- 1 A Computational Approach to Cryptography
- 2 Defining Computationally-Secure Encryption
- **3** Pseudorandomness

4 Constructing Secure Encryption Schemes

Conceptual Points of Pseudorandomness

- True randomness can not be generated by a describable mechanism.
- Pseudorandom looks truly random for the observers who don't know the mechanism.
- No fixed string can be "pseudorandom" which refers to a distribution.
- It is impossible to definitively prove randomness.

Distinguisher: Statistical Tests

The pragmatic approach is to take many sequences of random numbers from a given generator and subject them to a battery of statistical tests.¹

■
$$D(x) = 0$$
 if $|\#0(x) - \#1(x)| \le 10 \cdot \sqrt{n}$

■
$$D(x) = 0$$
 if $|\#00(x) - n/4| \le 10 \cdot \sqrt{n}$

■
$$D(x) = 0$$
 if max-run-of- $0(x) \le 10 \cdot \log n$

¹State-of-the-art: NIST Special Publication 800-22 "A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications"

Intuition for Defining Pseudorandom

Intuition: Generate a long string from a short truly random seed, and the pseudorandom string is indistinguishable from truly random strings.

Definition of Pseudorandom Generators

Definition 4

A deterministic polynomial-time algorithm $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is a **pseudorandom generator (PRG)** if

- **1** (Expansion:) $\forall n, \ell(n) > n$.
- **2** (Pseudorandomness): \forall PPT distinguishers D,

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \mathsf{negl}(n),$$

where r is chosen u.a.r from $\{0,1\}^{\ell(n)}$, the **seed** s is chosen u.a.r from $\{0,1\}^n$. $\ell(\cdot)$ is the **expansion factor** of G.

Remarks on Pseudorandom Generators

- Sparse outputs: In the case of $\ell(n) = 2n$, only 2^{-n} of strings of length 2n occurs.
- Brute force attack: Given an unlimited amount of time, one can distinguish G(s) from r with a high probability by generating all strings with all seeds.

$$|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \ge 1 - 2^{-n}$$

- **Sufficient seed space**: *s* must be long enough against brute force attack
- **Existence**: Under the weak assumption that *one-way* functions exists, or $\mathcal{P} \neq \mathcal{NP}$.

Content

- 1 A Computational Approach to Cryptography
- 2 Defining Computationally-Secure Encryption
- **3** Pseudorandomness

4 Constructing Secure Encryption Schemes

A Secure Fixed-Length Encryption Scheme

Construction 5

- $|G(k)| = \ell(|k|), m \in \{0,1\}^{\ell(n)}.$
- Gen: $k \in \{0,1\}^n$.
- Enc: $c := G(k) \oplus m$.
- Dec: $m := G(k) \oplus c$.

Theorem 6

This fixed-length encryption scheme has indistinguishable encryptions in the presence of an eavesdropper.

Reduction (Complexity)

A **reduction** is a transformation of one problem ${\cal A}$ into another problem ${\cal B}.$

Reduction $A \leq_m B^2$: A is **reducible** to B if solutions to B exist and whenever given the solutions A can be solved.

Solving A cannot be harder than solving B.

Example

- lacktriangle "measure the area of a rectangle" \leq_m "measure the length and width of rectangle"
- "calculate x^2 " \leq_m "calculate $x \times y$ "

 $^{^2}m$ means the mapping reduction.

Proofs of Reduction

- A PPT \mathcal{A} can break Π with probability $\varepsilon(n)$.
- **Assumption**: Problem X is *hard* to solve.
- **Reduction**: Reduce \mathcal{A}' to \mathcal{A} . \mathcal{A}' solves \times efficiently with probability 1/p(n), running \mathcal{A} as a sub-routine.
- **Contradiction**: If $\varepsilon(n)$ is non-negligible, then \mathcal{A}' solves X efficiently with non-negligible probability $\varepsilon(n)/p(n)$.

Proof of Indistinguishable Encryptions

Idea: Use $\mathcal A$ to construct D for G, so that D distinguishes G when $\mathcal A$ breaks $\tilde{\Pi}$. Since D cannot distinguish G, so that $\mathcal A$ cannot break $\tilde{\Pi}$.

Proof.

$$\Pr[D(w) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n) = 1]$$

Proof of Indistinguishable Encryptions (Cont.)

Proof.

To prove $\varepsilon(n) \stackrel{\text{def}}{=} \Pr[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] - \frac{1}{2}$ is negligible.

(1) If w is r chosen u.a.r, then $\tilde{\Pi}$ is OTP.

$$\Pr[D(r)=1] = \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n)=1] = \frac{1}{2};$$

(2) If w is G(k), then $\tilde{\Pi} = \Pi$.

$$\Pr[D(G(k)) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] = \frac{1}{2} + \varepsilon(n).$$

Use Definition 4:

$$|\Pr[D(r)=1] - \Pr[D(G(k))=1]| = \varepsilon(n) \leq \mathsf{negl}(n).$$

Handling Variable-Length Messages

Definition 7

A deterministic polynomial-time algorithm ${\cal G}$ is a variable output-length pseudorandom generator if

- **1** $G(s, 1^{\ell})$ outputs a string of length $\ell > 0$, where s is a string.
- 2 $G(s,1^{\ell})$ is a prefix of $G(s,1^{\ell'})$, $\ell' > \ell$.³
- **3** $G_{\ell}(s) \stackrel{\text{def}}{=} G(s, 1^{\ell(|s|)})$. Then $\forall \ell(\cdot)$, G_{ℓ} is a PRG with expansion factor ℓ .

Both Construction 5 and Theorem 6 hold here.

³for technical reasons to prove security.

Computational Security vs. Info.-theoretical Security

	Computational	Infotheoretical	
Adversary	PPT	no limited	
	eavesdropping	eavesdropping	
Definition	indistinguishable	indistinguishable	
	$rac{1}{2}+negl$	$\frac{1}{2}$	
Assumption	pseudorandom	random	
Key	short random str.	long random str.	
Construction	XOR pad	XOR pad	
Prove	reduction	-	