Лабораторная работа №1 Логические и побитовые операции

Задание 1 Логические битовые операции

Задание 2 Битовые сдвиги

Задача на «4»

Задача на «5»

Порядок выполнения работы

Работа может выполняться в группах из 2 – 4 человек по одному варианту.

- 1. Ознакомиться с заданием.
- 2. Выполнить программную реализацию задания.
- 3. Исходные данные произвольные.

Задание 1 Логические битовые операции

- 1. Выполнить установку битов по маске
- 2. Выполнить выделение битов по маске
- 3. Выполнить очистку битов по маске
- 4. Выполнить инвертирование битов по маске

Задание 2 Битовые сдвиги

- 1. Реализовать быстрое умножение на 2 (логический сдвиг влево)
- 2. Реализовать быстрое деление на 2 (логический сдвиг вправо)
- 3. Реализовать алгоритм обмена двух переменных (искл. ИЛИ)
- 4. Реализовать циклический сдвиг

Вариант 1. Определить разрядность целого числа. Использовать битовый сдвиг вправо.

Вариант 2. Подсчитать количество единичных разрядов. Использовать битовый сдвиг вправо, операцию И с единичной маской.

Постановка задачи

На факультете биологии АГУ занимаются выведением многоножек. Все многоножки имеют по 32 сегмента. На каждом сегменте слева и/или справа растут ножки. Исследованиями занимаются четыре аспиранта и один студент. Первый аспирант хочет знать, в каких сегментах многоножки есть лапки с обеих сторон. Второй аспирант хочет знать, в каких сегментах многоножки только одна лапка (всё равно с какой стороны).

Третий аспирант хочет знать, в каких сегментах есть хотя бы одна лапка

Студенту для дипломного проекта нужно знать, есть ли лапка в сегменте с номером N от головы многоножки (справа или слева – он вам укажет).

Что имеем

Многоножки отсканированы, и каждая сторона представлена в виде набора битов: 1 — в сегменте ножка есть, 0 — в сегменте ножки нет. Строка битов записывает с хвоста к голове многоножки.

Пример

Левая сторона 01001000001000010010010001000

Правая сторона 1000000100100010001101000010

Строка представлена в шестнадцатеричной записи. Буквы для обозначения шестнадцатеричных цифр берутся в нижнем регистре.

Входной файл содержит три строки.

Первая строка — описание левой стороны многоножки.

Вторая строка — описание правой стороны многоножки.

Третья строка (вопрос студента) — число NЄ[0,31] и символ L (для левой стороны) или R (для правой стороны).

Что должна выдать программа

В выходной файл необходимо записать четыре строки.

Первые три строки — ответы на вопросы аспирантов для каждого сегмента многоножки (1 – ответ положительный, 0 — ответ отрицательный)

Пример

Ответ для первого аспиранта: 000000000100000010000001000000

Ответ для второго аспиранта: 110010010000001100000011100001010

Ответ для третьего аспиранта: 11001001001000110010011101001010

Битовые представления ответов следует вывести в шестнадцатеричном виде Четвертая строка должна содержать слово **Yes**, если на интересующем студента месте есть ножка, и **No** — в противном случае.

Пример того, как это выглядит

Исходные данные	Ответ на вопросы аспирантов
01001000001000010010010001001	00000000100000010000001000000
1000000100100010001101000010	11001001000000110000011100001010
	11001001001000110010011101001010
THE PERSON NAMED OF THE PARTY.	
Ввод с консоли	На экране
48212448	00202040
81222342	c903070a
8 R	c923274a
	Yes