抽象代数入门

罗雨屏

清华大学 交叉信息研究院

2014年5月3日

FAQ

- 问: 抽象代数是什么?
- 答:其实它是一类树形数据结构,叫做臭翔袋,所以一般称之为臭翔袋树,简称为抽象代数。
- 问: 这货很有用吗? 会不会很难写啊?
- 答: 请参考 LCT 的发展趋势。
- 问:那你抽象代数学的怎么样?成绩多少啊?
- 答:不谈成绩我们还是好朋友。(捂脸)

群

ullet 定义在一个集合 S 上的运算 imes 满足下列四种性质,即构成一个群

- 1. 封闭性: $\forall a, b \in S, a \times b \in S$
- 2. 结合律: $\forall a, b, c \in S, (a \times b) \times c = a \times (b \times c)$
- 3. 存在单位元: $\exists e \in S, s.t. \forall a \in S, e \times a = a \times e = a$
- 4. 存在逆元: $\forall a \in S, \exists b \in S, s.t. a \times b = b \times a = 1$, 记作 $b = a^{-1}$
- Abel 群
 - \circ × 满足交換律: $\forall a, b \in S, a \times b = b \times a$
- 定义

$$a^k = \begin{cases} e & \text{if } k = 0\\ a \times a^{k-1} & \text{otherwise.} \end{cases}$$

• 在不引起歧义的前提下, $a \times b$ 可以记作 ab

群举例

- ℝ上的+
- R\{0} 上的 ×
- p 为素数,则 $\mod p$ 下的 $\{1,\ldots,p-1\}$
- xor 群
- $\forall n \in \mathbb{N}$, 令 $S = \{1 \le x \le n : x \in \mathbb{N}, (x, n) = 1\}$, 乘法为对 n 取模
- 非 Abel 群
 - {1,2,...,n} 的所有置换
 - 矩阵群

群的基本性质

- 单位元唯一: 若 e, e' 均为单位元,则 e' = ee' = e
- 每个元素的逆元唯一: 若 a 有两个逆元 x, y ,则 x = xay = y
- $(a^{-1})^{-1} = a$
- 消去律: 若 au = bu , 则 a = b ; 若 ua = ub , 则 a = b

• 给定一个定义在 $\{0,1,\ldots,n-1\}$ 的运算,如何判断其满足结合律?

• 给定一个定义在 $\{0,1,\ldots,n-1\}$ 的运算,如何判断其满足结合律?

• 给定一个定义在 $\{0,1,\ldots,n-1\}$ 的运算,如何判断其满足结合律?

•

Light's associativity test

- 给定一个定义在 $\{0,1,\ldots,n-1\}$ 的运算, 如何判断其满足结合律?
- •
- Light's associativity test
- Monte Carlo method

- 给定一个定义在 $\{0,1,\ldots,n-1\}$ 的运算, 如何判断其满足结合律?
- •
- Light's associativity test
- Monte Carlo method
 - 随机选择两个 0/1 多项式, 检验是否存在

- 给定一个定义在 $\{0,1,\ldots,n-1\}$ 的运算, 如何判断其满足结合律?
- •
- Light's associativity test
- Monte Carlo method
 - 随机选择两个 0/1 多项式,检验是否存在
 - 位运算: 32 倍速

• 给定一个 n , 求 n 阶群的数目

- 给定一个 n , 求 n 阶群的数目
- $n \le 3000$

- 给定一个 n , 求 n 阶群的数目
- $n \le 3000$

- 给定一个 n , 求 n 阶群的数目
- $n \le 3000$

•

• 其实我也不会做

- 给定一个 n , 求 n 阶群的数目
- n < 3000

- 其实我也不会做
- 你看看人家 Mathematica 都不会做

- 给定一个 n , 求 n 阶群的数目
- n < 3000

- 其实我也不会做
- 你看看人家 Mathematica 都不会做
- 所以大家可以放弃治疗了

- 给定一个 n , 求 n 阶群的数目
- n < 3000

- 其实我也不会做
- 你看看人家 Mathematica 都不会做
- 所以大家可以放弃治疗了
- @Seter: 打表 + OEIS, 没有超过 2k 的数据

相关概念

- 子群: 若 G 为群且 $H \subset G$,且 (H, \times) 构成群,则称 H 是 G 的一个子群,记作 $H \leq G$
- 陪集: $\Diamond H \leq G$, 则 $\forall a \in G$, 记

$$Ha = \{ha : h \in H\}, aH = \{ah : h \in H\}$$

分别称之为 H 的右陪集、左陪集

- Ha = Hb 充要条件是 $ab^{-1} \in H$
- \circ |Ha| = |Hb|
- \circ 若 $Ha \neq Hb$, 则 $Ha \cap Hb = \emptyset$
- \circ G 中 H 的所有右陪集构成 G 的一个划分,划分的每一部分大小相等
- Lagrange Theorem
 - 若 H < G 且 |G| 有限,则 |H| 是 |G| 的因子

相关概念

• 生成子群:一个集合 S 的生成子群被定义为

$$\bigcap_{S\subseteq G}G$$

• 循环群: 若 G 可以由一个元素生成,即存在一个元素 a 满足

$$G = \{a^k : k \in \mathbb{Z}\},\$$

则称 G 是循环群, a 是 G 的一个生成元

• 周期(阶): 对于 $a \in G$, 定义

$$o(a) = \min\{n \in \mathbb{N} : n > 0, a^n = e\},\$$

如果不存在,则记 o(a) = 0

- \circ 推论: 若 |G| 有限,则 o(a)||G| (Lagrange 定理)
- 若 |G| = p 且 p 为素数,则 G 为循环群
 - \circ 考虑 G 中任意一个元素 a 的阶: o(a)|p

数论中的欧拉定理

• $\forall n \in \mathbb{N}, (a,n) = 1$, 有

$$a^{\phi(n)} = 1$$

- $\{a: a \in \mathbb{N}, (a, n) = 1\}$ 构成一个群,群大小为 $\phi(n)$
- 由 o(a)||G| 直接可以推出来

群对集合的作用

• G 为一个群,S 为一个集合,一个 $G \times S \to S$ 的映射 $(g,s) \to g * s$ 满足

- $\lor \forall x \in S, e * x = x$
- $\circ \ \forall a, b \in G, x \in S, (ab) * x = a * (b * x)$
- 则称 G 在 S 上定义了一个左作用
- 若 G 是有限集 S 上的置换群,且 g*x=gx 则群对集合的作用即为置换群对集合的作用
- 在不引起歧义的情况下, g*x 可以被记为 gx 或者 x^g

轨道公式

• 轨道: $\forall x \in S$, 定义 x 的轨道为

$$Gx = \{gx : g \in G\}$$

即在 G 作用下, x 所有可能的结果

• 稳定化子: $\forall x \in S$, 定义 x 的稳定化子为

$$\mathsf{Stab}\ x = \{g \in G : gx = x\}$$

即在 G 中所有保持 x 不动的元素的集合

• 轨道公式:

$$|Gx| = [G : \mathsf{Stab}\ x]$$

BURNSIDE 定理

• \Diamond G 为一有限群,S 为一个有限 G- 集合,n 为 S 上 G 作用后的不同的轨道数目,则

$$n = \frac{1}{|G|} \sum_{g \in G} S_g$$

其中 $S_g = \{x \in S : gx = x\}$

• 证明:

$$n = \sum_{x \in S} \frac{1}{|Gx|} = \sum_{x \in S} \frac{\mathsf{Stab}\ x}{|G|}$$

• 每一对满足 gx=x 的 (g,x) 都给等式两边贡献 $\frac{1}{|G|}$

置换群

- 轮换分解与对换分解
- 为何置换群如此重要

Theorem (Cayley Theorem)

任何一个群 G 都同构于 G 上置换群的一个子群。

Proof of Cayley Theorem.

定义函数 $\phi: G \to \operatorname{Sym}(G)$, 且

$$\phi_q(x) = gx, \forall x \in G,$$

易证 ϕ 为单射,Im ϕ 为群同构,而 Im $\phi \leq \operatorname{Sym}(G)$,证毕。

SGU 539 Multiswap Sorting

- 给定一个 (1,2,...,n) 的置换 P
- 每次可以选择不相交的若干对数 $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ 然后同时交换 x_i, y_i 在序列中的位置
- 求至少要多少次才能使整个排列有序
- 要求输出一组方案
- •
- $n \le 10^3$

SGU 539 Multiswap Sorting

- 答案至多是 2
- 只需考虑每个轮换就好了
- 对于大小为 2 的排列: 只需一次
- 对于大小大于 2 的排列: $(2,3,\ldots,n,1)$
 - \circ 第一次: $(3,n),(4,n-1),\ldots$
 - 交换后变成 $(2,1,n,n-1,\ldots,3)$
 - 第二次: 直接交换
 - 证明: 分奇偶讨论即可
 - $(2,3,4,1) \rightarrow (2,1,4,3) \rightarrow (1,2,3,4)$
 - $(2,3,4,5,1) \rightarrow (2,1,5,4,3) \rightarrow (1,2,3,4,5)$

HDU 4702 问题描述

- 给定 $m \uparrow 1, \ldots, n$ 的排列 $\sigma_1, \sigma_2, \ldots, \sigma_m$
- 求其生成子群大小

•

• $n, m \le 50$

STABILIZER

- 令 G 为最后的生成子群
- 维护 n 个排列 ω_x 表示: G 中是否存在一个排列 τ 满足

$$\tau(x) = 1$$

- 如果存在,定义 $\omega_x = \tau$
- 规定 $\omega_1 = e$

Orbit

•
$$\diamondsuit G = \langle x, y, z \rangle$$

$$x = (1,2)(3,5,9)$$

$$y = (1,3,5)(7,8,10)$$

$$z = (4,7,8)$$

- 其轨道为 $\Delta_1 = \{1, 2, 3, 5, 9\}, \Delta_2 = \{4, 6, 7, 8, 10\}$
- $\omega_1 = e, \omega_2 = (1, 2)(3, 5, 9), \omega_3 = (1, 5, 3)(7, 10, 8)$

判定性问题

- 如果得到了 G 的 ω , 如何判断一个置换 σ 是否在 G 中?
- 考虑 $x = \sigma(1)$
 - 如果不存在 ω_x , 则 $\sigma \notin G$
 - \circ 否则考虑 $\sigma' = \omega_x \sigma$
 - $\sigma \in G \Leftrightarrow \sigma' \in G$
 - σ' 的好性质: $\sigma'(1) = 1$
- σ' 的意义: 都只需判断一个置换 σ' 是否在 Stab 1 中,且 $\sigma'(1)=1$
 - 考虑 σ'(2)
 - 递归处理!

判定性问题

- $\diamondsuit G = \langle (1, 2, 3, 4, 5, 6), (2, 6)(3, 5) \rangle$
- 如何判断 g = (1,4)(2,3)(5,6) 是否在 G 中
- $g(1) = 4, \omega_4 = (1,4)(2,5)(3,6)$
- 所以只需要判断 $\omega_4 g$ 是否在 G 中即可
 - 其实只要判断是否在 Stab 1 中即可
 - Stab $1 = \langle (2,6)(3,5) \rangle$
- $\omega_4 g = (2,6)(3,5) \times G +$
 - \circ g 在 G 中

ω 的意义

- 轨道公式: $|Gx| = [G : \mathsf{Stab}\ x]$
 - 如果知道 |Gx| 和 |Stab x| 那么就知道 |G| 了
- |G1| 的意义:有多少个 ω_u 存在
- |Stab 1| 是 G 的一个子群
 - 再建立一个相同的数据结构维护 Stab 1
- 算法: 维护 ω 和 |Stab 1| 并对 Stab 1 建立相同的数据结构
 - 答案即为每个数据结构的 |\\(\omega\) 的乘积

ω 的维护

- 考虑每次添加一个 σ ,我们需要知道两件事
 - 1. 能得到哪些新的 ω_x
 - 2. Stab 1 会增加哪些元素
- 对于第一个问题: BFS/DFS
- 对于第二个问题,由于一次添加可能使得 Stab 1 增加很多个元素,所以一个一个添加是不行的
 - \circ 每次添加一个大小有界的集合 X ,满足 Stab $1_{new} = \langle X \cup \mathsf{Stab} \ 1_{old}
 angle$
 - 这又是一个递归的问题
 - \circ 如何找到的 X ?

Schreier's Lemma

Definition (Transversal)

令 $H \leq G$,称 R 为 H 的一个 right transversal 当且仅当 |R| = [G:H] 且

$$\{Hr:r\in R\}=\{Hg:g\in G\},$$

即对于 $g \in G$,存在且仅存在一个 r 满足 $gr^{-1} \in H$,并且这里我们定义 \overline{g} 为这个 r 。

Theorem (Schreier's lemma)

令 $H \leq G = \langle S \rangle$, $|S| < \infty$, 则 H 由以下集合生成:

$$X_H = \{ rs(\overline{rs})^{-1} : r \in R, s \in S \}$$

Schreier's Lemma 的应用

- 维护的 ω 就是 Stab 1 的一个 right transversal
- 由于置换的特殊性:可以快速找到 g 对应的 r ,即 \overline{g}
- 还需要维护 G 的生成集合 S
 - 在这个数据结构中加一个数组维护即可
- 观察每次添加一个元素后,R 的变化和 X_G 的变化
 - \circ R 的变化: 即 ω 的变化
 - \circ X_G 的变化:增加了一个元素

PSEUDOCODE

Algorithm 1 updR(σ , G)

- 1: if $\sigma \in G$ then
- 2: return
- 3: end if
- 4: insert σ into X_G
- 5: **for** ω_x in current ω **do**
- 6: updX($\omega_x \sigma$, G)
- 7: end for

Algorithm 2 updX(σ , G)

- 1: $x \leftarrow \sigma(1)$
- 2: if $\omega_x = \emptyset$ then
- 3: $\omega_x \leftarrow \sigma$
- 4: **for** τ in current X_G **do**
- 5: $\mathsf{updX}(\sigma\tau, G)$
- 6: end for
- 7: else
- 8: updR($\omega_x \sigma$, Stab 1)
- 9: end if
- 该算法即为著名的 Schreier-Sims algorithm
- 复杂度还是多项式时间的

如何构造数据

• 交错群 A_n 的生成集合

$$\{(1,2,3),(1,2,3),\ldots,(1,2,n)\}$$

• 置换群 S_n 的生成集合

$$\{(1,2),(1,2,\ldots,n)\}$$

• 把 $\{1,2,\ldots,n\}$ 分成若干个集合,不存在一个置换 σ 满足 $\sigma x=y$ 且 x,y 在不同集合

BASE AND STRONG GENERATING SET (BSGS)

- 令 G 为一置换群
- $B = (\beta_1, \beta_2, \dots, \beta_k)$ 被成为是 G 的一组 base 当且仅当 $\forall g \in G$, g 能 被 $(g\beta_1, g\beta_2, \dots, g\beta_k)$ 唯一确定。
- 对于一组 B ,定义 $G^{(0)}=G,G^{(i)}=\{g\in G^{(i-1)}:g\beta_i=\beta_i\}$,即 $G^{(i)}$ 为 $G^{(i-1)}$ 中的 Stab β_i
- S 为一个集合,S 被称为 strong generating set 当且仅当 $\forall 0 \leq i \leq k, G^{(i)} = \langle S \cap G^{(i)} \rangle$
- Schreier-Sims 算法实际上是求在 BSGS
 - 思考: 前面讲的算法中, 求出的 BSGS 是什么?

PARITAL BASE AND STRONG GENERATING SET

- $\diamondsuit G = \langle X \rangle$
- $(B = (\beta_1, \beta_2, \dots, \beta_k), S)$ 被称为 G 的一组 partial BSGS 当且仅当
 - $\circ X \subseteq S$
 - S 在逆运算下封闭: $\forall x \in S, x^{-1} \in S$
 - 不存在一个元素 $x \in S$, 满足 $\forall \beta_i \in B, x\beta_i = \beta_i$
- 如何求任意一组 partial BSGS
 - \circ 初始时令 $S = X \setminus \{e\}, B = \emptyset$
 - \circ $\forall x \in S$, 将 x^{-1} 添加进入 S
 - $\circ \ \forall x \in S$, 如果 xB = B , 则选择一个 β 满足 $x\beta \neq \beta$ 并将 β 添加进 B

RANDOMIZATION

Algorithm 3 Randomized version of Schreier-Sim Algorithm

- 1: $(B,S) \leftarrow$ a partial base and strong generating set
- 2: while needn't stop do
- 3: $g \leftarrow \text{random element in } G$
- 4: $\bar{g} \leftarrow$ the residue of stripping g w.r.t (B, S)
- 5: if $g \neq e$ then
- 6: add \bar{g} and \bar{g}^{-1} to S
- 7: if $B^{\bar{g}} = B$ then
- 8: add a point not fixed by \bar{g} to B
- 9: end if
- 10: end if
- 11: end while

STRIPPING

- stripping ?
 - \circ 给定一个 partial BSGS 以及任意一个置换 g ,可以求得 g 不在哪一个 $G^{(i)}$
- 如何随机选择 G 中一个元素
 - 如果已知 BSGS ,那么可以从每个 transversal 里面选择随机选择一个元素,再乘起来
 - 可是 BSGS 还没有求出来
 - o product-replacement algorithm

PRODUCT-REPLACEMENT ALGORITHM

Algorithm 4 product-replacement algorithm

- 1: $D = (g_1, g_2, \dots, g_m)$ is a global variable, $g_i \in G$
- 2: $i, j \leftarrow 2$ different integers in $\{1, 2, \dots, m\}$
- 3: if random() > 0.5 then
- 4: $g \leftarrow g_i g_j$
- 5: else
- 6: $g \leftarrow g_j g_i$
- 7: end if
- 8: $g_i = g$
- 9: return g

PRODUCT-REPLACEMENT ALGORITHM

- 这个算法没有 uniformly randomness 的保证
 - o Experimentation has shown them to be good.
- m 的大小:有人建议 $m = \max(10, 2n + 1)$
- D 的初始化: 前面 n 个是 G 的生成集合 X ,后面的为 e
- 随机防卡的一般方法: 抛弃前 K 次随机
 - 有人建议 $K \ge 60$

A NEW FIELD

- Computational Group Theory 在等着你们
 - o Schreier-Sims algorithm: 求 BSGS
 - Todd-Coxeter algorithm: 枚举所有陪集
 - product-replacement algorithm: 求群里面一个随机元素

域

• 定义在一个集合 S 上的两种运算 $(+, \times)$ 满足

- (S,+) 构成 Abel 群
- (S\{0},×) 构成 Abel 群
- 分配率: $\forall a,b,c \in S, (a+b) \times c = a \times c + b \times c, a \times (b+c) = a \times b + a \times c$
- 则称 (S, +, ×) 构成一个域
 - \circ ($\mathbb{R}, +, \times$) 和 ($\mathbb{C}, +, \times$)
 - \circ 若 p 为素数,则 $\operatorname{mod} p$ 构成一个域

域的性质

- 若域 F 的大小有限,则 $|F| = p^k$,其中 p 为素数,k 为整数
 - 如何构造大小为 9 的域?
 - 域的扩张
- 任何一个域 F 的乘法群的有限子群 G 是循环群
 - 考虑 $f(x) = x^m 1$ 在 F 中的根的数目,其中 m = |F|
 - 至多为 m 个根
 - $\forall a \in G, a^{|G|} = 1 \Rightarrow$ 至少有 m 个根
- 对于有限域 F ,其中任意元素 a 均满足 $a^{|F|}=a$

Theorem (Wilson's Theorem)

若 p 为素数,则 $(p-1)! \equiv -1 \mod p$

Theorem (Wilson's Theorem)

若 p 为素数,则 $(p-1)! \equiv -1 \mod p$

Proof.

Theorem (Wilson's Theorem)

若 p 为素数,则 $(p-1)! \equiv -1 \mod p$

Proof.

• 可以用逆元来证明

Theorem (Wilson's Theorem)

若 p 为素数,则 $(p-1)! \equiv -1 \mod p$

Proof.

- 可以用逆元来证明
- 考虑

$$x^{p-1} - 1$$

在 F_p 上面的根

Theorem (Wilson's Theorem)

若 p 为素数,则 $(p-1)! \equiv -1 \mod p$

Proof.

- 可以用逆元来证明
- 考虑

$$x^{p-1} - 1$$

在 F_p 上面的根

。 韦达定理

ENDING

• 谢谢大家

