Singular Value Decomposition (SVD) Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) Machine Learning for Finance (FIN 570)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2019-20 Module 3 (Spring 2020)

2019-20 M3

Eigen(spectral) decomposition

For a matrix $oldsymbol{A}$, eigenvalue λ_k and eigenvector $oldsymbol{v}_k$ satisfy

$$Av_k = \lambda_k v_k.$$

The matrix A can be decomposed into

$$A = Q\Lambda Q^{-1},$$

where Λ is a diagonal matrix with values λ_k and $Q=(v_1\cdots v_n)$, i.e., $Q_{*j}=v_j$. When A is real and symmetric, Q is an orthonormal matrix, $QQ^T=I$,

$$\boldsymbol{A} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T,$$

Singular Value Decomposition (SVD)

The single most useful practical concept in linear algebra:

- Any matrix (even rectangular) has a SVD.
- SVD tells everything on a matrix.

For any $m \times n$ matrix A, there is a unique decomposition:

$$A = USV^T$$
, where

- U $(m \times m)$: orthonormal $(UU^T = U^TU = I)$
- S $(m \times n)$: diagonal. Singular values, $s_k \ge 0$, are in decreasing order for $1 \le k \le \min(m,n)$
- V $(n \times n)$: orthonormal $(VV^T = V^TV = I)$

SVD: Intuition

Linear transformation A is decomposed into

- ullet a rotation by V^T
- ullet a scaling by S
- ullet a rotation by U

SVD: Compact Form, Low Rank Approximation

- For a non-square matrix, a compact form is enough: $U(m \times r)$, $S(r \times r)$, $V(n \times r)$ where $r = \min(m, n)$.
- If the rank is $k (\leq r)$, $s_{j>k} = 0$: $U(m \times k)$, $S(k \times k)$, $V(n \times k)$
- Using the first $j (\leq k)$ biggest singular values,

$$A_j = U_j S_j V_j^T = \sum_{i=1}^j \mathbf{u}_i s_i \mathbf{v}_i^T, \quad U_j (m \times j), \ S_j (j \times j), \ V_j (n \times j)$$

is the best approximation with rank j minimizing the norm $\|A-A_j\|_F$

← □ ▶ ←

SVD: Image Compression

An image file is nothing but a matrix, so the low-rank approximation of SVD works as an image compression method. The storage is reduced from mn to (m+n+1)k.

2019-20 M3

Principal Component Analysis (PCA)

If X is a matrix of n samples of p features $(n \times p)$, the covariance matrix is

$$oldsymbol{\Sigma} = rac{1}{n} oldsymbol{X}^T oldsymbol{X} : (p imes p)$$
 symmetric matrix

The covariance matrix of the transformed space $oldsymbol{Z} = oldsymbol{X} oldsymbol{W}$ is

$$\mathsf{Cov}(\boldsymbol{Z}) = \frac{1}{n}(\boldsymbol{X}\boldsymbol{W})^T(\boldsymbol{X}\boldsymbol{W}) = \frac{1}{n}\boldsymbol{W}^T(\boldsymbol{X}^T\boldsymbol{X})\boldsymbol{W} = \boldsymbol{W}^T\boldsymbol{\Sigma}\boldsymbol{W}$$

If we pick $m{W}$ to be the orthogonal transformation of SVD, i.e., $m{\Sigma} = m{W} m{S} m{W}^T$,

$$\mathsf{Cov}(\boldsymbol{Z}) = \boldsymbol{S} = \mathsf{diag}(S_{11}, \cdots, S_{pp}).$$

Notice that $\text{Cov}(Z_i, Z_j) = \boldsymbol{W}_{*i}^T \boldsymbol{\Sigma} \boldsymbol{W}_{*j} = S_{ij}$ is zero if $i \neq j$, so the extracted features are orthogonal.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ める◆

Jaehyuk Choi (PHBS) MLF: SVD, PCA, LDA 2019-20 M3

Process of finding $oldsymbol{W}$

Let $W = (W_{*1} \ W_{*2} \ \cdots W_{*p}).$

- Find W_{*1} such that $|W_{*1}| = 1$ and $|W_{*1}^T \Sigma W_{*1}|$ is maximized.
- Find $m{W}_{*2}$ such that $|m{W}_{*2}|=1$, $|m{W}_{*2}^T m{\Sigma} m{W}_{*2}|$ is maximized and $m{W}_{*1}^T m{W}_{*2}=0$.
- ..
- Find W_{*k} such that $|W_{*k}| = 1$, $|W_{*k}^T \Sigma W_{*k}|$ is maximized and W_{*k} is orthogonal to $\{W_{*j}\}$ for j < k.

Total and Explained Variance

The total variance is the variance of all original features. Under PCA,

$$\sum_{k=1}^{p} \operatorname{Var}(X_k) = \sum_{k=1}^{p} S_{kk}.$$

Therefore the ratio

$$\frac{\sum_{j=1}^k S_{jj}}{\sum_{j=1}^p S_{jj}}$$

indicates how much of the total variance is *explained* by the first k PCA factors. Extracting features from PCA is an unsupervised learning, NOT supervised learning, because the response variable is not associated.

PCA vs Simple Linear Regression for (x, y)

PCA is not same as Simple Linear regression (OLS)!

- **Linear Regression** minimize the the (squared) distance in *y*-axis.
- PCA (1st component) minimize the (squared) shortest distance.

Linear Discriminant Analysis (LDA) as a classifier

- Assume the samples in each class follow normal (Gaussian) distribution.
- Estimate mean $\hat{\pmb{\mu}}_k$ and variance $\hat{\pmb{\Sigma}}_k$ of class k:
- Obtain multivariate normal PDF: $f_k(\mathbf{x}) = n(\mathbf{x}|\hat{\boldsymbol{\mu}}_k, \hat{\boldsymbol{\Sigma}}_k)$
- LDA if $\Sigma_W = \sum_{k=1}^K \Sigma_k$ (within covariance)is used for all Σ_k .
- ullet QDA if $oldsymbol{\Sigma}_k$ is estimated for each class k
- A test sample x is classified to the class k for which $f_k(x)$ is largest.

LDA as a dimensionality reduction

- ullet Given the LDA assumptions, which direction w best separates the feature?
- ullet $oldsymbol{w}pprox oldsymbol{\mu}_2-oldsymbol{\mu}_1$? Probably not the best.
- If $(\mu_{1,2}, \sigma_{1,2}^2)$ is the mean and variance pair of the samples (1-D) projected on w, y = xw, with |w| = 1, we want to maximize the Fisher criterion:

$$J(\boldsymbol{w}) = \frac{(\mu_2 - \mu_1)^2}{N_1 \sigma_1^2 + N_2 \sigma_2^2} = \frac{\boldsymbol{w}^T (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) \boldsymbol{w}}{\boldsymbol{w}^T (N_1 \boldsymbol{\Sigma}_1 + N_2 \boldsymbol{\Sigma}_2) \, \boldsymbol{w}} = \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}},$$

where S_W and S_B are within- and between-class variance matrices

$$oldsymbol{S}_W = \sum_{k=1,2} N_k \, oldsymbol{\Sigma}_k, \quad oldsymbol{S}_B = (oldsymbol{\mu}_2 - oldsymbol{\mu}_1)^T (oldsymbol{\mu}_2 - oldsymbol{\mu}_1)$$

Jaehyuk Choi (PHBS)

LDA as a dimensionality reduction

- The direction \boldsymbol{w} maximizing $J(\boldsymbol{w})$ is $\propto \boldsymbol{S}_W^{-1}(\boldsymbol{\mu}_2 \boldsymbol{\mu}_1)$.
- In general, the eigenvectors, W, of $S_W^{-1}S_B$ in the decreasing order of eigenvalue (similar to PCA) are the best directions to discriminate features.
- ullet The transformation z=xW is the extracted factors with the best separability, which can be used for other ML methods.

Jaehyuk Choi (PHBS)