```
88888888888888888888888888888888888
   Problem Set 4
    01
clear all;
B = 4;
cd('C:\Users\Jasmine\Dropbox\Dropbox\ECON 628\HW1_files\');
addpath('C:\Users\Jasmine\Dropbox\ECON 628\HW1_files\');
load('Data HW1');
Draw e i from i = 1, ..., N.
% read the variables from ``data''
college = data(:,1);
nearc4 = data(:,2);
IQ = data(:,3);
motheduc = data(:,4);
fatheduc = data(:,5);
reg662 = data(:,6);
reg663 = data(:,7);
reg664 = data(:,8);
reg665 = data(:,9);
reg666 = data(:,10);
reg667 = data(:,11);
reg668 = data(:,12);
reg669 = data(:,13);
lwage = data(:,14); % this variable is not used in this exercise
exper = data(:,15); % this variable is not used in this exercise
expersq = data(:,16); % this variable is not used in this exercise
smsa = data(:,17); % this variable is not used in this exercise
south = data(:,18); % this variable is not used in this exercise
                      % the number of parameters to be estiamted
nparm = 13;
Y = zeros(nobs, 1);
                  % allocate memory
X = zeros(nobs,nparm); % allocate memory
                 % dummy variable for college attendence
Y(:) = college;
X(:,1) = ones(nobs,1); % the first column is constant term
X(:,2:nparm) =
 [nearc4, IQ, motheduc, fatheduc, reg662, reg663, reg664, reg665, reg666, reg667, reg668, reg
theta = zeros(nparm,1);
options =
optimset('Display','iter','TolX',1e-6,'TolFun',1e-6, 'MaxIter',
10000,'MaxFunEvals',10000);
f ml = @(b)likelihood(b,X,Y);
[theta_hat,fval,exitflag,output,grad,hessian] =
fminunc(f ml, theta, options);
hessian = hessian / nobs;
      = hessian^{(-1)};
    = sqrt(diaq(avar));
se
%This is for 1.3
```

```
ape_iq = normpdf(X*theta_hat)'*(theta_hat(3)*ones(nobs,1))/nobs;;
fun
           = @(b) funIQ(b,X);
           = gradient(fun,theta_hat);
G
avar_ape_iq= G'*avar*G;
se_ape_iq = sqrt(avar_ape_iq);
%%1.1 - 1.2
%Bootstrap
%for CI of thetas
T1 1 = zeros(B,1);
T2_1 = zeros(B,1);
T1_2 = zeros(B,1);
T2 2 = zeros(B,1);
T1 3 = zeros(B,1);
T2_3 = zeros(B,1);
%for CI of APE
T_ape_1 = zeros(B,1);
T_ape_2 = zeros(B,1);
T_ape_3 = zeros(B,1);
T ape par 1 = zeros(B,1);
T_ape_par_2 = zeros(B,1);
T_ape_par_3 = zeros(B,1);
for k = 1: B
    u = ceil(rand(nobs,1) * nobs);
    epsilon = randn(nobs,1);
    X b = zeros(size(X));
    Y_b = zeros(size(Y));
    for i = 1:nobs
        bi = u(i);
        X_b(bi,:) = X(bi,:);
        Y_b(bi,:) = Y(bi,:);
    end
    f_ml_b = @(theta_0)likelihood(theta_0, X_b, Y_b);
    [theta_hat_b,fval,exitflag,output,grad,hessian] = ...
        fminunc(f ml b, theta, options);
    hessian = hessian / nobs;
    avar b
             = hessian^{(-1)};
    se_b = sqrt(diag(avar_b));
    ape_iq_b = normpdf(X*theta_hat_b)'*(theta_hat_b(3)*ones(nobs,1))/
nobs;
    fun
               = @(b)funIQ(b,X_b);
               = gradient(fun,theta_hat_b);
    avar_ape_iq_b= G'*avar_b*G;
    se_ape_iq_b = sqrt(avar_ape_iq_b);
    T1 1(k) = theta hat b(2);
    T2_1(k) = theta_hat_b(3);
    T_ape_1(k) = ape_iq_b;
```

```
T1_2(k) = theta_hat_b(2) - theta_hat(2);
    T2_2(k) = theta_hat_b(3) - theta_hat(3);
    T_ape_2(k) = ape_iq_b - ape_iq;
    T1_3(k) = (theta_hat_b(2) - theta_hat(1))/se_b(2);
    T2_3(k) = (theta_hat_b(3) - theta_hat(2))/se_b(3);
    T_ape_3(k) = (ape_iq_b - ape_iq)/se_ape_iq_b;
    %%%Parametric Bootstrap%%%
    Y_par_b = (X_b * theta_hat + epsilon>0);
    f ml par b = @(theta 0)likelihood(theta 0, X b, Y par b);
    [theta_hat_par_b,fval,exitflag,output,grad,hessian] = ...
        fminunc(f ml b, theta, options);
    hessian = hessian / nobs;
    avar par b
                 = hessian^{(-1)};
    se_par_b = sqrt(diag(avar_par_b));
    ape_iq_par_b =
 normpdf(X*theta_hat_par_b)'*(theta_hat_par_b(3)*ones(nobs,1))/nobs;
    fun
               = @(b)funIQ(b,X_b);
    G
               = gradient(fun,theta_hat_par_b);
    avar_ape_iq_par_b= G'*avar_b*G;
    se_ape_iq_par_b = sqrt(avar_ape_iq_par_b);
    T_ape_par_1(k) = ape_iq_par_b;
    T_ape_par_2(k) = ape_iq_par_b - ape_iq;
    T_ape_par_3(k) = (ape_iq_par_b - ape_iq)/se_ape_iq_par_b;
end
T1 1 = sort(T1 1, 'ascend');
T2_1 = sort(T2_1, 'ascend');
T1_2 = sort(T1_2, 'ascend');
T2_2 = sort(T2_2, 'ascend');
T1_3 = sort(T1_3, 'ascend');
T2_3 = sort(T2_3, 'ascend');
T_ape_1 = sort(T_ape_1, 'ascend');
T_ape_2 = sort(T_ape_2, 'ascend');
T_ape_3 = sort(T_ape_3, 'ascend');
T_ape_par_1 = sort(T_ape_par_1, 'ascend');
T_ape_par_2 = sort(T_ape_par_2, 'ascend');
T_ape_par_3 = sort(T_ape_par_3, 'ascend');
C1 low 1 = T1 1(ceil(B*0.025));
C1_high_1 = T1_1(ceil(B*0.975));
C2_{low_1} = T2_1(ceil(B*0.025));
C2_{high_1} = T2_1(ceil(B*0.975));
C1_low_2 = theta_hat(1) - T1_2(ceil(B*0.975));
C1_high_2 = theta_hat(1) - T1_2(ceil(B*0.025));
```

```
C2_{low_2} = theta_{hat(2)} - T2_{2(ceil(B*0.975))};
C2 high 2 = theta hat(2) - T2 2(ceil(B*0.025));
C1 low 3 = theta hat(1) - se(2)*T1 3(ceil(B*0.975));
C1_{high_3} = theta_{hat(1)} - se(2)*T1_3(ceil(B*0.025));
C2_{low_3} = theta_{hat(2)} - se(3)*T2_3(ceil(B*0.975));
C2_high_3 = theta_hat(2) - se(3)*T2_3(ceil(B*0.025));
%%1.1 - 1.2 Print
fprintf('Confidence Interval 1 for nearc4 [%f ,
 %f]\n',C1_low_1,C1_high_1);
fprintf('Confidence Interval 1 for IQ [%f ,
 %f]\n',C2_low_1,C2_high_1);
fprintf('Confidence Interval 2 for nearc4 [%f ,
 %f]\n',C1_low_2,C1_high_2);
fprintf('Confidence Interval 2 for IQ [%f ,
 %f]\n',C2_low_2,C2_high_2);
fprintf('Confidence Interval 3 for nearc4 [%f ,
 %f]\n',C1_low_3,C1_high_3);
fprintf('Confidence Interval 3 for IQ [%f ,
 %f]\n',C2_low_3,C2_high_3);
%%1.3 Confidence interval for average partial effect
fprintf('Confidence Interval 1 for Average Partial Effect of IQ [%f,
    T_ape_1(ceil(B*0.025)), T_ape_1(ceil(B*0.975)));
fprintf('Confidence Interval 2 for Average Partial Effect of IQ [%f,
 %f]\n',...
    ape_iq - T_ape_2(ceil(B*0.975)), ape_iq - T_ape_2(ceil(B*0.025)));
fprintf('Confidence Interval 3 for Average Partial Effect of IQ [%f,
 %f]\n',...
    ape_iq - se_ape_iq*T_ape_3(ceil(B*0.975)), ...
    ape_iq - se_ape_iq*T_ape_3(ceil(B*0.025)));
%%1.4Parametric Bootstrap
fprintf('Confidence Interval 1 for parametric Average Partial Effect
 of IQ [%f, %f]\n',...
    T_ape_par_1(ceil(B*0.025)), T_ape_par_1(ceil(B*0.975)));
fprintf('Confidence Interval 2 for parametric Average Partial Effect
 of IQ [%f, %f]\n',...
    ape_iq - T_ape_par_2(ceil(B*0.975)), ape_iq -
 T_ape_par_2(ceil(B*0.025)));
fprintf('Confidence Interval 3 for parametric Average Partial Effect
 of IQ [%f, %f]\n',...
    ape_iq - se_ape_iq*T_ape_par_3(ceil(B*0.975)), ...
    ape_iq - se_ape_iq*T_ape_par_3(ceil(B*0.025)));
Warning: Gradient must be provided for trust-region algorithm; using
quasi-newton algorithm instead.
                                                         First-order
 Iteration Func-count
                             f(x)
                                         Step-size
                                                          optimality
                            1009.92
     0
                                                          4.15e+04
                14
User objective function returned NaN; trying a new point...
```

_		004 400	4 4000 00	0.05.00
1	44	926.103	1.0228e-07	2.36e+03
2	58	925.795	1	599
3	72	925.745	1	628
4	86	925.365	1	1.55e+03
5	100	924.637	1	3.23e+03
6	114	922.676	1	5.93e+03
7	128	918.768	1	8.7e+03
8	142	912.659	1	9.56e+03
9	156	907.378	1	6.3e+03
10	170	905.459	1	1.85e+03
11	184	905.251	1	164
12	198	905.241	1	134
13	212	905.238	1	135
14	226	905.225	1	134
15	240	905.196	1	140
16	254	905.116	1	235
17	268	904.921	1	374
18	282	904.461	1	560
19	296	903.55	1	724
19	290	903.55	1	
T+ +	T	£ ()	Oton oi-o	First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	902.285	1	685
21	324	901.374	1	365
22	338	901.123	1	84.6
23	35 <i>2</i>	901.099	1	59.6
24	366	901.098	1	59.6
25	380	901.097	1	59.6
26	394	901.094	1	59.5
27	408	901.085	1	59.5
28	422	901.061	1	59.4
29	436	901.001	1	70.1
30	450	900.841	1	117
31	464	900.426	1	193
32	478	899.35	1	314
33	492	896.61	1	499
34	506	889.949	1	759
35	520	875.545	1	1.05e+03
36	534	851.864	1	1.19e+03
37	548	829.356	1	957
38	562	819.943	1	374
39	57 <i>6</i>	818.382	1	85.9
32	370	010.502	_	First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	818.28	Step-S12e 1	83.6
			1	
41	604	818.276		83.1
42	618	818.275	1	83
43	632	818.27	1	82.7
44	646	818.259	1	139
45	660	818.228	1	274
46	674	818.149	1	489
47	688	817.941	1	840
48	702	817.401	1	1.4e+03
49	716	816.006	1	2.3e+03
50	730	812.509	1	3.63e+03

51	744	804.42	1	5.3e+03
52	758	789.183	1	6.41e+03
53	772	770.869	1	5.3e+03
54	786	760.159	1	2.54e+03
55	800	757.585	1	594
56	814	757.386	1	33.5
57	828	757.379	1	24.9
58	842	757.379	1	24.9
5 <i>9</i>	856	757.379	1	24.9
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	757.378	1	24.8
61	884	757.376	1	43.2
62	898	757.37	1	84.3
63	912	757.356	1	150
64	926	757.319	1	256
65	940	757.222	1	426
66	954	756.972	1	693
67	968	756.352	1	1.09e+03
68	982	754.943	1	1.58e+03
69	996	752.358	1	1.9e+03
70	1010	749.346	1	1.55e+03
71	1024	747.716	1	659
72	1038	747.402	1	103
73	1052	747.385	1	13.3
7 <i>4</i>	1066	747.384	1	13.1
7 <i>5</i>	1080	747.384	1	13.1
7 <i>5</i>	1094	747.384	1	13.1
77	1108	747.383	1	18.6
78	1122	747.383	1	37.8
78 79	1136	747.376	1	68
19	1130	747.370	1	First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	747.363	1	117
81	1164	747.303	1	197
82	1178	747.238	1	322
83	1192	747.238	1	514
84	1206	746.464	1	779
85	1220	745.326	1	1.04e+03
8 <i>6</i>	1234	743.593	1	1.04e+03
87	1248	743.393	1	651
88	1248 1262	742.147	1	177
8 <i>9</i>	1262 1276	741.663	1	16
90			1	
	1290	741.61	1	15.6
91	1304	741.61		15.6
92	1318	741.61	1	15.6
93	1332	741.609	1	15.5
94	1346	741.608	1	16.8
95 06	1360	741.605	1	31.2
96 07	1374	741.597	1	54.4
<i>9</i> 7	1388	741.576	1	91.7
98	1402	741.523	1	151
99	1416	741.387	1	242
				First-order

Iteration	Func-count	f(x)	Step-size	optimality
100	1430	741.058	1	370
101	1444	740.355	1	508
102	1458	739.222	1	550
103	1472	738.186	1	374
104	1486	737.794	1	116
105	1500	737.743	1	10.7
106	1514	737.741	1	10.6
107	1528	737.741	1	10.6
108	1542	737.741	1	10.6
109	1556	737.741	1	10.6
110	1570	737.741	1	10.9
111	1584	737.74	1	20.6
112	1598	737.737	1	36.1
113	1612	737.73	1	61.2
114	1626	737.711	1	101
115	1640	737.662	1	165
116	1654	737.539	1	264
117	1668	737.239	1	402
118	1682	736.592	1	554
119	1696	735.528	1	601
			_	First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	734.504	1	412
121	1724	734.089	1	135
122	1738	734.031	1	13.6
123	1752	734.029	1	13.3
124	1766	734.029	1	13.3
125	1780	734.029	1	13.3
126	1794	734.028	1	13.2
127	1808	734.028	1	13.1
128	1822	734.026	1	13
129	1836	734.022	1	22.8
130	1850	734.012	1	38.8
131	1864	733.984	1	64.4
132	1878	733.913	1	105
133	1892	733.732	1	168
134	1906	733.29	1	258
135	1920	732.323	1	361
136	1934	730.678	1	407
137	1948	728.996	1	299
138	1962	728.232	1	105
139	1976	728.112	1	8.06
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	728.107	1	7.7
141	2004	728.107	1	7.7
142	2018	728.107	1	7.7
143	2032	728.106	1	7.71
144	2046	728.106	1	7.71
145	2060	728.106	1	11.9
146	2074	728.104	1	21.1
147	2088	728.1	1	36.2
148	2102	728.089	1	60.3

149	2116	728.062	1	99
150	2130	727.991	1	159
151	2144	727.815	1	248
152	2158	727.418	1	359
153	2172	726.684	1	434
154	2186	725.803	1	358
155	2200	725.32	1	146
156	2214	725.232	1	18.5
157	2228	725.226	1	3.11
158	2242	725.226	1	3.07
159	2256	725.226	1	3.07
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	725.226	1	3.07
161	2284	725.226	1	3.06
162	2298	725.226	1	3.94
163	2312	725.226	1	7.4
164	2326	725.226	1	12.7
165	2340	725.225	1	21.4
166	2354	725.224	1	35.3
167	2368	725.22	1	57.1
168	2382	725.21	1	89.1
169	2396	725.189	1	129
170	2410	725.149	1	157
171	2424	725.1	1	132
172	2438	725.071	1	58.3
173	2452	725.065	1	9.23
174	2466	725.065	1	0.24
175	2480	725.065	1	0.239
176	2494	725.065	1	0.239
177	2508	725.065	1	0.239
178	2522	725.065	1	0.239
179	2536	725.065	1	0.239
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	725.065	1	0.341
181	2564	725.065	1	0.564
182	2578	725.065	1	0.932
183	2592	725.065	1	1.49
184	2606	725.065	1	2.37
185	2620	725.065	1	3.66
186	2634	725.065	1	5.24
187	2648	725.065	1	6.32
188	2662	725.064	1	5.27
189	2676	725.064	1	2.29
190	2690	725.064	1	0.355
191	2704	725.064	1	0.00522

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

44421 110,700				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.47e+04
User object	ive function	returned NaN;	trying a new	point
1	44	961.73	1.65507e-07	1.36e+03
2	58	961.573	1	236
3	72	961.561	1	247
4	86	961.465	1	596
5	100	961.283	1	1.26e+03
6	114	960.786	1	2.34e+03
7	128	959.776	1	3.5e+03
8	142	958.127	1	4.01e+03
9	156	956.598	1	2.81e+03
10	170	955.984	1	904
11	184	955.907	1	89.2
12	198	955.902	1	81.9
13	212	955.9	1	82.9
14	226	955.892	1	84.9
15	240	955.874	1	141
16	254	955.824	1	246
17	268	955.702	1	400
18	282	955.413	1	607
19	296	954.838	1	794
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	954.029	1	765
21	324	953.437	1	420
22	338	953.268	1	98.8
23	35 <i>2</i>	953.251	1	37.3
24	366	953.25	1	37.2
25	380	953.25	1	37.2
26	394	953.247	1	37.2
27	408	953.24	1	37.1
28	422	953.222	1	37.1
29	436	953.175	1	59.8
30	450	953.053	1	99.1
31	464	952.734	1	162
32	478	951.916	1	259
33	492	949.879	1	403
34	506	945.208	1	580
35	520	936.431	1	707
36	534	925.709	1	631
37	548	919.36	1	339
38	562	917.844	1	63.1
39	576	917.716	1	42.3
		_		First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	917.711	1	41.8

41	604	917.71	1	41.7
42	618	917.707	1	41.4
43	632	917.7	1	54.4
44	646	917.681	1	110
45	660	917.632	1	199
46	674	917.502	1	343
47	688	917.163	1	575
48	702	916.286	1	944
49	716	914.068	1	1.5e+03
50	730	908.795	1	2.25e+03
51	744	898.132	1	2.92e+03
52	758	883.099	1	2.8e+03
53	772	871.617	1	1.69e+03
54	786	867.777	1	530
55	800	867.363	1	49.7
56	814	867.348	1	25.4
57	828	867.347	1	25.3
58	842	867.347	1	25.3
59	856	867.346	1	25.3
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	867.343	1	42.6
61	884	867.336	1	85.7
62	898	867.318	1	154
63	912	867.27	1	266
64	926	867.146	1	446
65	940	866.826	1	730
66	954	866.028	1	1.15e+03
67	968	864.191	1	1.69e+03
68	982	860.752	1	2.05e+03
69	996	856.622	1	1.7e+03
70	1010	854.253	1	760
71	1024	853.739	1	143
72	1038	853.707	1	11
73	1052	853.706	1	11
74	1066	853.706	1	10.9
75	1080	853.706	1	10.9
76	1094	853.705	1	10.9
77	1108	853.704	1	20.9
78	1122	853.701	1	38.4
79	1136	853.693	1	66.9
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	853.671	1	113
81	1164	853.616	1	186
82	1178	853.474	1	300
83	1192	853.127	1	464
84	1206	852.359	1	655
85	1220	851.03	1	749
86	1234	849.633	1	561
87	1248	848.99	1	209
88	1262	848.89	1	24.3
89	1276	848.885	1	7.8
90	1290	848.885	1	7.75

91	1304	848.885	1	7.74
92	1318	848.884	1	7.72
93	1332	848.884	1	10.1
94	1346	848.883	1	20.3
95	1360	848.88	1	36.1
96	1374	848.872	1	62.1
97	1388	848.851	1	104
98	1402	848.796	1	169
99	1416	848.659	1	269
			_	First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	1430	848.334	1	404
101	1444	847.673	1	531
102	1458	846.719	1	521
103	1472	845.997	1	296
104	1486	845.781	1	70.1
105	1500	845.76	1	7.14
106	1514	845.759	1	7.14
107	1528	845.759	1	7.16
108	1542	845.759	1	7.16
109	1542 1556	845.759	1	7.16
			1	13
110	1570	845.758	1	
111	1584	845.756	1	23.6
112	1598	845.751		41
113	1612	845.739	1	68.9
114	1626	845.706	1	113
115	1640	845.623	1	183
116	1654	845.416	1	285
117	1668	844.945	1	411
118	1682	844.075	1	495
119	1696	843.033	1	412
	_	5 ()		First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	842.454	1	181
121	1724	842.341	1	29.4
122	1738	842.333	1	7.31
123	1752	842.333	1	7.29
124	1766	842.333	1	7.29
125	1780	842.333	1	7.28
126	1794	842.333	1	7.26
127	1808	842.332	1	12.3
128	1822	842.33	1	21.9
129	1836	842.324	1	37.7
130	1850	842.31	1	62.9
131	1864	842.272	1	103
132	1878	842.175	1	166
133	1892	841.935	1	259
134	1906	841.392	1	37 <i>2</i>
135	1920	840.4	1	444
136	1934	839.245	1	360
137	1948	838.615	1	151
138	1962	838.492	1	22.2
139	1976	838.484	1	5.49
				First-order

Iteration	Func-count	f(x)	Step-size	optimality
140	1990	838.484	1	5.5
141	2004	838.484	1	5.5
142	2018	838.484	1	5.5
143	2018	838.484	1	5.5
144	2046	838.483	1	8.12
			1	
145	2060	838.482	1	14.4
146	2074	838.478	1	24.7
147	2088	838.467	1	41.3
148	2102	838.441		67.7
149	2116	838.372	1	109
150	2130	838.205	1	168
151	2144	837.838	1	236
152	2158	837.207	1	269
153	2172	836.549	1	194
154	2186	836.255	1	62.6
155	2200	836.211	1	3.72
156	2214	836.209	1	2.28
157	2228	836.209	1	2.27
158	2242	836.209	1	2.26
159	2256	836.209	1	2.26
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	836.209	1	2.26
161	2284	836.209	1	4.22
162	2298	836.209	1	7.48
163	2312	836.208	1	13.2
164	2326	836.208	1	22.1
165	2340	836.206	1	36.5
166	2354	836.202	1	58.8
167	2368	836.191	1	91.5
168	2382	836.166	1	131
169	2396	836.122	1	156
170	2410	836.072	1	125
171	2424	836.045	1	51.1
172	2438	836.04	1	7.04
173	2452	836.039	1	0.347
174	2466	836.039	1	0.342
175	2480	836.039	1	0.342
176	2494	836.039	1	0.342
177	2508	836.039	1	0.341
178	2522	836.039	1	0.442
179	2536	836.039	1	0.794
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	836.039	1	1.4
181	2564	836.039	1	2.26
182	2578	836.039	1	3.81
183	2592	836.039	1	6.14
184	2606	836.039	1	9.56
185	2620	836.039	1	13.8
186	2634	836.038	1	16.8
187	2648	836.037	1	14.2
188	2662	836.037	1	6.26
	2002	230.037	-	0.20

189	2676	836.037	1	1
190	2690	836.037	1	0.00947

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

-				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.47e+04
User object	ive function	returned NaN;	trying a new	point
1	44	961.73	1.65507e-07	1.36e+03
2	58	961.573	1	236
3	72	961.561	1	247
4	86	961.465	1	596
5	100	961.283	1	1.26e+03
6	114	960.786	1	2.34e+03
7	128	959.776	1	3.5e+03
8	142	958.127	1	4.01e+03
9	156	956.598	1	2.81e+03
10	170	955.984	1	904
11	184	955.907	1	89.2
12	198	955.902	1	81.9
13	212	955.9	1	82.9
14	226	955.892	1	84.9
15	240	955.874	1	141
16	254	955.824	1	246
17	268	955.702	1	400
18	282	955.413	1	607
19	296	954.838	1	794
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	954.029	1	765
21	324	953.437	1	420
22	338	953.268	1	98.8
23	<i>352</i>	953.251	1	37.3
24	366	953.25	1	37.2
25	380	953.25	1	37.2
26	394	953.247	1	37.2
27	408	953.24	1	37.1
28	422	953.222	1	37.1
29	436	953.175	1	59.8
30	450	953.053	1	99.1
31	464	952.734	1	162
32	478	951.916	1	259
33	492	949.879	1	403

34	506	945.208	1	580
35	520	936.431	1	707
36	534	925.709	1	631
37	548	919.36	1	339
38	562	917.844	1	63.1
39	576	917.716	1	42.3
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	917.711	1	41.8
41	604	917.71	1	41.7
42	618	917.707	1	41.4
43	632	917.7	1	54.4
44	646	917.681	1	110
45	660	917.632	1	199
46	674	917.502	1	343
47	688	917.163	1	575
48	702	916.286	1	944
49	716	914.068	1	1.5e+03
50	730	908.795	1	2.25e+03
51	744	898.132	1	2.92e+03
52	758	883.099	1	2.8e+03
53	772	871.617	1	1.69e+03
54	786	867.777	1	530
55	800	867.363	1	49.7
56	814	867.348	1	25.4
57	828	867.347	1	25.3
58	842	867.347	1	25.3
59	856	867.346	1	25.3
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	867.343	1	42.6
61	884	867.336	1	85.7
62	898	867.318	1	154
63	912	867.27	1	266
64	926	867.146	1	446
65	940	866.826	1	730
66	954	866.028	1	1.15e+03
67	968	864.191	1	1.69e+03
68	982	860.752	1	2.05e+03
69	996	856.622	1	1.7e+03
70	1010	854.253	1	760
71	1024	853.739	1	143
72	1038	853.707	1	11
73	1052	853.706	1	11
74	1066	853.706	1	10.9
75	1080	853.706	1	10.9
7 <i>6</i>	1094	853.705	1	10.9
77	1108	853.704	1	20.9
78	1122	853.701	1	38.4
7 <i>9</i>	1136	853.693	1	66.9
, ,		222.023	±	First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	853.671	1	113
81	1164	853.616	1	186
0.4	T T O T	000.010	_	100

82	1178	853.474	1	300
83	1192	853.127	1	464
84	1206	852.359	1	655
85	1220	851.03	1	749
86	1234	849.633	1	561
87	1248	848.99	1	209
88	1262	848.89	1	24.3
89	1276	848.885	1	7.8
90	1290	848.885	1	7.75
91	1304	848.885	1	7.74
92	1318	848.884	1	7.72
93	1332	848.884	1	10.1
94	1346	848.883	1	20.3
95	1360	848.88	1	36.1
96	1374	848.872	1	62.1
97	1388	848.851	1	104
98	1402	848.796	1	169
99	1416	848.659	1	269
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	1430	848.334	1	404
101	1444	847.673	1	531
102	1458	846.719	1	521
103	1472	845.997	1	296
104	1486	845.781	1	70.1
105	1500	845.76	1	7.14
106	1514	845.759	1	7.16
107	1528	845.759	1	7.16
108	1542	845.759	1	7.16
109	1556	845.759	1	7.16
110	1570	845.758	1	13
111	1584	845.756	1	23.6
112	1598	845.751	1	41
113	1612	845.739	1	68.9
114	1626	845.706	1	113
115	1640	845.623	1	183
116	1654	845.416	1	285
117	1668	844.945	1	411
118	1682	844.075	1	495
119	1696	843.033	1	412
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	842.454	1	181
121	1724	842.341	1	29.4
122	1738	842.333	1	7.31
123	1752	842.333	1	7.29
124	1766	842.333	1	7.29
125	1780	842.333	1	7.28
126	1794	842.333	1	7.26
127	1808	842.332	1	12.3
128	1822	842.33	1	21.9
129	1836	842.324	1	37.7
130	1850	842.31	1	62.9
131	1864	842.272	1	103

132	1878	842.175	1	166
133	1892	841.935	1	259
134	1906	841.392	1	372
135	1920	840.4	1	444
136	1934	839.245	1	360
137	1948	838.615	1	151
138	1962	838.492	1	22.2
139	1976	838.484	1	5.49
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	838.484	1	5.5
141	2004	838.484	1	5.5
142	2018	838.484	1	5.5
143	2032	838.484	1	5.5
144	2046	838.483	1	8.12
145	2060	838.482	1	14.4
146	2074	838.478	1	24.7
147	2088	838.467	1	41.3
148	2102	838.441	1	67.7
149	2116	838.372	1	109
150	2130	838.205	1	168
151	2144	837.838	1	236
152	2158	837.207	1	269
153	2172	836.549	1	194
154	2186	836.255	1	62.6
155	2200	836.211	1	3.72
156	2214	836.209	1	2.28
157	2228	836.209	1	2.27
158	2242	836.209	1	2.26
159	2256	836.209	1	2.26
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	836.209	1	2.26
161	2284	836.209	1	4.22
162	2298	836.209	1	7.48
163	2312	836.208	1	13.2
164	2326	836.208	1	22.1
165	2340	836.206	1	36.5
166	2354	836.202	1	58.8
167	2368	836.191	1	91.5
168	2382	836.166	1	131
169	2396	836.122	1	156
170	2410	836.072	1	125
171	2424	836.045	1	51.1
172	2438	836.04	1	7.04
173	2452	836.039	1	0.347
174	2466	836.039	1	0.342
175	2480	836.039	1	0.342
176	2494	836.039	1	0.342
177	2508	836.039	1	0.341
178	2522	836.039	1	0.442
179	2536	836.039	1	0.794
				First-order
Iteration	Func-count	f(x)	Step-size	optimality

180	2550	836.039	1	1.4
181	2564	836.039	1	2.26
182	2578	836.039	1	3.81
183	2592	836.039	1	6.14
184	2606	836.039	1	9.56
185	2620	836.039	1	13.8
186	2634	836.038	1	16.8
187	2648	836.037	1	14.2
188	2662	836.037	1	6.26
189	2676	836.037	1	1
190	2690	836.037	1	0.00947

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.64e+04
User object	ive function	returned NaN;	trying a new	point
1	44	956.402	1.61364e-07	1.48e+03
2	58	956.211	1	359
3	72	956.18	1	377
4	86	955.945	1	970
5	100	955.496	1	2.02e+03
6	114	954.286	1	3.7e+03
7	128	951.881	1	5.42e+03
8	142	948.145	1	5.93e+03
9	156	944.951	1	3.87e+03
10	170	943.809	1	1.12e+03
11	184	943.688	1	96.3
12	198	943.683	1	54.5
13	212	943.682	1	54.1
14	226	943.678	1	52.6
15	240	943.668	1	50.3
16	254	943.64	1	49.5
17	268	943.573	1	74.2
18	282	943.407	1	109
19	296	943.052	1	147
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	942.463	1	158
21	324	941.889	1	106
22	338	941.65	1	45.5
23	35 <i>2</i>	941.616	1	36.1
24	366	941.614	1	35.8

25	380	941.613	1	35.8
26	394	941.609	1	35.7
27	408	941.602	1	35.7
28	422	941.581	1	35.7
29	436	941.527	1	40.6
30	450	941.385	1	69.3
31	464	941.019	1	115
32	478	940.075	1	187
33	492	937.73	1	292
34	506	932.361	1	423
35	520	922.29	1	527
36	534	909.95	1	492
37	548	902.654	1	261
38	562	900.948	1	31.9
39	576	900.795	1	32.7
			_	First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	900.789	1	30
41	604	900.789	1	29.9
42	618	900.787	1	29.9
43	632	900.784	1	47.6
44	646	900.776	1	96.5
45	660	900.774	1	176
46	674	900.697	1	304
47	688	900.549	1	513
48	702		1	848
	702 716	900.161	1	1.38e+03
49		899.159		
50	730	896.651	1	2.17e+03
51	744	890.849	1	3.17e+03
<i>52</i>	758	879.868	1	3.87e+03
53	772	866.328	1	3.29e+03
54	786	858.08	1	1.63e+03
55	800	856.138	1	381
56	814	855.995	1	17.6
57	828	855.991	1	17.3
58	842	855.99	1	17.2
59	856	855.99	1	17.2
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	855.989	1	18.4
61	884	855.987	1	41
62	898	855.982	1	79.9
63	912	855.969	1	142
64	926	855.935	1	242
65	940	855.847	1	402
66	954	855.621	1	652
67	968	855.066	1	1.01e+03
68	982	853.846	1	1.42e+03
69	996	851.782	1	1.58e+03
70	1010	849.749	1	1.12e+03
71	1024	848.873	1	400
72	1038	848.737	1	48.9
73	1052	848.731	1	13.4
74	1066	848.731	1	13.4

75	1080	848.731	1	13.3
76	1094	848.731	1	13.3
77	1108	848.73	1	13.2
78	1122	848.728	1	19.9
79	1136	848.722	1	35.5
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	848.707	1	61.1
81	1164	848.667	1	102
82	1178	848.566	1	166
83	1192	848.312	1	261
84	1206	847.729	1	383
85	1220	846.619	1	477
86	1234	845.202	1	425
87	1248	844.287	1	209
88	1262	844.076	1	37.4
89	1276	844.062	1	7.94
90	1290	844.062	1	7.94
91	1304	844.062	1	7.93
92	1318	844.062	1	7.93
93	1332	844.061	1	7.92
94	1346	844.06	1	15.5
95	1360	844.057	1	27.9
96	1374	844.05	1	48.2
97	1388	844.031	1	80.8
98	1402	843.98	1	133
99	1416	843.851	1	214
				First-order
Iteration	Func-count	f(x)	Step-size	First-order optimality
Iteration 100	Func-count 1430	f(x) 843.532	Step-size 1	First-order optimality 332
Iteration 100 101	Func-count 1430 1444	f(x) 843.532 842.822	Step-size 1 1	First-order optimality 332 472
Iteration 100 101 102	Func-count 1430 1444 1458	f(x) 843.532 842.822 841.575	Step-size 1 1 1	First-order optimality 332 472 550
Iteration 100 101 102 103	Func-count 1430 1444 1458 1472	f(x) 843.532 842.822 841.575 840.267	Step-size 1 1 1 1	First-order optimality 332 472 550 424
Iteration 100 101 102 103 104	Func-count 1430 1444 1458 1472 1486	f(x) 843.532 842.822 841.575 840.267 839.664	Step-size 1 1 1 1 1	First-order optimality 332 472 550 424 159
Iteration 100 101 102 103 104 105	Func-count 1430 1444 1458 1472 1486 1500	f(x) 843.532 842.822 841.575 840.267 839.664 839.56	Step-size 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7
Iteration 100 101 102 103 104 105 106	Func-count 1430 1444 1458 1472 1486 1500 1514	f(x) 843.532 842.822 841.575 840.267 839.664 839.56	Step-size	First-order optimality 332 472 550 424 159 12.7 5.96
Iteration 100 101 102 103 104 105 106 107	Func-count 1430 1444 1458 1472 1486 1500 1514	f(x) 843.532 842.822 841.575 840.267 839.664 839.56 839.556	Step-size 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92
Iteration 100 101 102 103 104 105 106 107	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542	f(x) 843.532 842.822 841.575 840.267 839.664 839.56 839.556 839.556	Step-size 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91
Iteration 100 101 102 103 104 105 106 107 108 109	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556	f(x) 843.532 842.822 841.575 840.267 839.664 839.56 839.556 839.556	Step-size 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89
Iteration 100 101 102 103 104 105 106 107 108 109 110	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91
Iteration 100 101 102 103 104 105 106 107 108 109 110 111	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555 839.551 839.551	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626	f(x) 843.532 842.822 841.575 840.267 839.664 839.56 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.474	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.474 839.351	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.543 839.544 839.351 839.071	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668 1682	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.351 839.071 838.555	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309 372
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.543 839.544 839.351 839.071	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309 372 310
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668 1682 1696	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.474 839.351 839.071 838.555 837.939	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309 372 310 First-order
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 Iteration	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668 1682 1696	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.474 839.351 839.071 838.555 837.939 f(x)	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309 372 310 First-order optimality
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 Iteration 120	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668 1682 1696 Func-count 1710	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.474 839.351 839.071 838.555 837.939 f(x) 837.595	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309 372 310 First-order optimality 137
Iteration 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 Iteration	Func-count 1430 1444 1458 1472 1486 1500 1514 1528 1542 1556 1570 1584 1598 1612 1626 1640 1654 1668 1682 1696	f(x) 843.532 842.822 841.575 840.267 839.664 839.556 839.556 839.555 839.555 839.555 839.551 839.551 839.543 839.524 839.474 839.351 839.071 838.555 837.939 f(x)	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 332 472 550 424 159 12.7 5.96 5.92 5.91 5.89 8.91 17.2 30.1 51.3 84.9 137 214 309 372 310 First-order optimality

123	1752	837.524	1	6.24
124	1766	837.524	1	6.23
125	1780	837.524	1	6.19
126	1794	837.523	1	6.15
127	1808	837.523	1	11.4
128	1822	837.521	1	20.3
129	1836	837.516	1	35
130	1850	837.503	1	58.4
131	1864	837.469	1	95.7
132	1878	837.385	1	153
133	1892	837.181	1	231
134	1906	836.755	1	311
135	1920	836.096	1	321
136	1934	835.529	1	200
137	1948	835.327	1	56.1
138	1962	835.304	1	5.81
139	1976	835.303	1	5.72
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	835.303	1	5.71
141	2004	835.303	1	5.7
142	2018	835.303	1	5.68
143	2032	835.303	1	5.65
144	2046	835.302	1	6.66
145	2060	835.301	1	11.6
146	2074	835.297	1	19.7
147	2088	835.288	1	32.6
148	2102	835.263	1	53.4
149	2116	835.199	1	85.7
150	2130	835.04	1	133
151	2144	834.681	1	192
152	2158	834.018	1	232
153	2172	833.234	1	192
154	2186	832.807	1	78.4
155	2200	832.724	1	8.37
156	2214	832.718	1	3.06
157	2228	832.718	1	3.05
158	2242	832.718	1	3.04
159	2256	832.718	1	3.04
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	832.718	1	3.03
161	2284	832.718	1	3.7
162	2298	832.717	1	6.65
163	2312	832.717	1	11.4
164	2326	832.715	1	19.1
165	2340	832.712	1	31.4
166	2354	832.702	1	50.7
167	2368	832.679	1	79.2
168	2382	832.625	1	115
169	2396	832.525	1	141
170	2410	832.401	1	120
171	2424	832.327	1	54.1
172	2438	832.31	1	8.69

173	2452	832.309	1	0.831
174	2466	832.309	1	0.82
175	2480	832.309	1	0.82
176	2494	832.309	1	0.819
177	2508	832.309	1	0.819
178	2522	832.309	1	0.818
179	2536	832.309	1	1.11
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	832.309	1	1.97
181	2564	832.309	1	3.29
182	2578	832.309	1	5.44
183	2592	832.309	1	8.8
184	2606	832.308	1	13.9
185	2620	832.306	1	20.5
186	2634	832.302	1	26.3
187	2648	832.297	1	24.6
188	2662	832.294	1	12.9
189	2676	832.293	1	2.73
190	2690	832.293	1	0.0578
191	2704	832.293	1	0.0318
192	2718	832.293	1	0.00295

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.64e+04
User object	ive function	returned NaN;	trying a new	point
1	44	956.402	1.61364e-07	1.48e+03
2	58	956.211	1	359
3	72	956.18	1	377
4	86	955.945	1	970
5	100	955.496	1	2.02e+03
6	114	954.286	1	3.7e+03
7	128	951.881	1	5.42e+03
8	142	948.145	1	5.93e+03
9	156	944.951	1	3.87e+03
10	170	943.809	1	1.12e+03
11	184	943.688	1	96.3
12	198	943.683	1	54.5
13	212	943.682	1	54.1
14	226	943.678	1	52.6
15	240	943.668	1	50.3

49.5 74.2 109 147 erst-order
109 147 rst-order
147 rst-order
rst-order
ntimaliter
рсипатису
158
106
45.5
36.1
35.8
35.8
35.7
35.7
35.7
40.6
69.3
115
187
292
423
527
492
261
31.9
32.7
rst-order
ptimality
30
29.9
29.9 29.9
29.9 29.9 47.6
29.9 29.9 47.6 96.5
29.9 29.9 47.6 96.5 176
29.9 29.9 47.6 96.5 176 304
29.9 29.9 47.6 96.5 176 304 513
29.9 29.9 47.6 96.5 176 304 513 848
29.9 29.9 47.6 96.5 176 304 513 848
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03
29.9 29.9 47.6 96.5 176 304 513 848 3.38e+03 3.17e+03
29.9 29.9 47.6 96.5 176 304 513 848 38e+03 317e+03 387e+03
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 8.17e+03 8.87e+03 8.87e+03
29.9 29.9 47.6 96.5 176 304 513 848 38e+03 2.17e+03 3.17e+03 3.87e+03 3.87e+03 3.29e+03
29.9 29.9 47.6 96.5 176 304 513 848 38e+03 2.17e+03 3.17e+03 3.87e+03 3.87e+03 3.29e+03 3.63e+03
29.9 29.9 47.6 96.5 176 304 513 848 38e+03 3.17e+03 3.17e+03 3.29e+03 3.63e+03 381 17.6
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 .17e+03 8.17e+03 8.29e+03 .63e+03 381 17.6 17.3
29.9 29.9 47.6 96.5 176 304 513 848 3.38e+03 3.17e+03 3.17e+03 3.29e+03 3.63e+03 381 17.6 17.3 17.2
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 3.17e+03 3.17e+03 3.29e+03 3.63e+03 3.17.6 17.6 17.3 17.2 17.2
29.9 29.9 47.6 96.5 176 304 513 848 38e+03 17e+03 17e+03 17e+03 29e+03 63e+03 17.6 17.6 17.3 17.2 17.2 2 2 22
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 .17e+03 .17e+03 .87e+03 .87e+03 .87e+03 .17e+04 .17e+04 .17e+05 .17e
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 .17e+03 .17e+03 .87e+03 .87e+03 .87e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .29e+03 .17e+03 .29e+03 .17e+03 .29e+03 .17e+03 .29e+03 .17e-103 .17e
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 .17e+03 .17e+03 .87e+03 .87e+03 .29e+03 .63e+03 .17.6 17.3 17.6 17.2 17.2 .rst-order optimality 18.4 41
29.9 29.9 47.6 96.5 176 304 513 848 .38e+03 .17e+03 .17e+03 .87e+03 .87e+03 .87e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .17e+03 .29e+03 .17e+03 .29e+03 .17e+03 .29e+03 .17e+03 .29e+03 .17e-103 .17e

64	926	855.935	1	242
65	940	855.847	1	402
66	954	855.621	1	652
67	968	855.066	1	1.01e+03
68	982	853.846	1	1.42e+03
69	996	851.782	1	1.58e+03
70	1010	849.749	1	1.12e+03
71	1024	848.873	1	400
72	1038	848.737	1	48.9
73	1052	848.731	1	13.4
74	1066	848.731	1	13.4
75	1080	848.731	1	13.3
76	1094	848.731	1	13.3
77	1108	848.73	1	13.2
78	1122	848.728	1	19.9
79	1136	848.722	1	35.5
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	848.707	1	61.1
81	1164	848.667	1	102
82	1178	848.566	1	166
83	1192	848.312	1	261
84	1206	847.729	1	383
85	1220	846.619	1	477
86	1234	845.202	1	425
87	1248	844.287	1	209
88	1262	844.076	1	37.4
89	1276	844.062	1	7.94
90	1290	844.062	1	7.94
91	1304	844.062	1	7.93
92	1318	844.062	1	7.93
93	1332	844.061	1	7.92
94	1346	844.06	1	15.5
95	1360	844.057	1	27.9
96	1374	844.05	1	48.2
97	1388	844.031	1	80.8
98	1402	843.98	1	133
99	1416	843.851	1	214
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	1430	843.532	1	332
101	1444	842.822	1	472
102	1458	841.575	1	550
103	1472	840.267	1	424
104	1486	839.664	1	159
105	1500	839.56	1	12.7
106	1514	839.556	1	5.96
107	1528	839.556	1	5.92
108	1542	839.556	1	5.91
109	1556	839.555	1	5.89
110	1570	839.555	1	8.91
111	1584	839.554	1	17.2
112	1598	839.551	1	30.1
113	1612	839.543	1	51.3
· 	- -		-	

114	1626	839.524	1	84.9
115	1640	839.474	1	137
116	1654	839.351	1	214
117	1668	839.071	1	309
118	1682	838.555	1	372
119	1696	837.939	1	310
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	837.595	1	137
121	1724	837.528	1	21.4
122	1738	837.524	1	6.31
123	1752	837.524	1	6.24
124	1766	837.524	1	6.23
125	1780	837.524	1	6.19
126	1794	837.523	1	6.15
127	1808	837.523	1	11.4
128	1822	837.521	1	20.3
129	1836	837.516	1	35
130	1850	837.503	1	58.4
131	1864	837.469	1	95.7
132	1878	837.385	1	153
133	1892	837.181	1	231
134	1906	836.755	1	311
135	1920	836.096	1	321
136	1934	835.529	1	200
137	1948	835.327	1	56.1
138	1962	835.304	1	5.81
139	1976	835.303	1	5.72
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	835.303	1	5.71
141	2004	835.303	1	5.7
142	2018	835.303	1	5.68
143	2032	835.303	1	5.65
144	2046	835.302	1	6.66
145	2060	835.301	1	11.6
146	2074	835.297	1	19.7
147	2088	835.288	1	32.6
148	2102	835.263	1	53.4
149	2116	835.199	1	85.7
150	2130	835.04	1	133
151	2144	834.681	1	192
152	2158	834.018	1	232
153	2172	833.234	1	192
154	2186	832.807	1	78.4
155	2200	832.724	1	8.37
156	2214	832.718	1	3.06
157	2228	832.718	1	3.05
158	2242	832.718	1	3.04
159	2256	832.718	1	3.04
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	832.718	1	3.03
161	2284	832.718	1	3.7

162	2298	832.717	1	6.65
163	2312	832.717	1	11.4
164	2326	832.715	1	19.1
165	2340	832.712	1	31.4
166	2354	832.702	1	50.7
167	2368	832.679	1	79.2
168	2382	832.625	1	115
169	2396	832.525	1	141
170	2410	832.401	1	120
171	2424	832.327	1	54.1
172	2438	832.31	1	8.69
173	2452	832.309	1	0.831
174	2466	832.309	1	0.82
175	2480	832.309	1	0.82
176	2494	832.309	1	0.819
177	2508	832.309	1	0.819
178	2522	832.309	1	0.818
179	2536	832.309	1	1.11
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	832.309	1	1.97
181	2564	832.309	1	3.29
182	2578	832.309	1	5.44
183	2592	832.309	1	8.8
184	2606	832.308	1	13.9
185	2620	832.306	1	20.5
186	2634	832.302	1	26.3
187	2648	832.297	1	24.6
188	2662	832.294	1	12.9
189	2676	832.293	1	2.73
190	2690	832.293	1	0.0578
191	2704	832.293	1	0.0318
192	2718	832.293	1	0.00295

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.41e+04
User object	ive function	returned NaN;	trying a new	point
1	44	964.484	1.63132e-07	1.31e+03
2	58	964.325	1	406
3	72	964.286	1	427
4	86	964	1	1.09e+03

_	100	060 451	-	0.05.00
5	100	963.451	1	2.25e+03
6	114	961.974	1	4.1e+03
7	128	959.029	1	6e+03
8	142	954.432	1	6.57e+03
9	156	950.463	1	4.32e+03
10	170	949.024	1	1.28e+03
11	184	948.867	1	115
12	198	948.86	1	79.4
13	212	948.858	1	79.4
14	226	948.85	1	78.4
15	240	948.833	1	76.7
16	254	948.787	1	105
17	268	948.671	1	165
18	282	948.394	1	247
19	296	947.821	1	329
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	946.95	1	333
21	324	946.221	1	200
22	338	945.976	1	54.8
23	352	945.948	1	38.4
24	366	945.947	1	38.4
25	380	945.946	1	38.4
26	394	945.943	1	38.4
27	408	945.936	1	38.4
28	422	945.916	1	38.3
29	436	945.864	1	49.8
30	450	945.73	1	84.1
31	464	945.381	1	
				139
32	478	944.49	1	223
33	492	942.305	1	343
34	506	937.466	1	483
35	520	929.048	1	564
36	534	920.103	1	464
37	548	915.82	1	196
38	<i>562</i>	915.064	1	34.5
39	576	915.017	1	33.4
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	915.015	1	33.2
41	604	915.014	1	33.2
42	618	915.011	1	33.1
43	632	915.004	1	58.2
44	646	914.983	1	114
45	660	914.931	1	202
46	674	914.793	1	346
47	688	914.434	1	577
48	702	913.499	1	947
49	716	911.122	1	1.52e+03
50	730	905.376	1	2.3e+03
51	744	893.276	1	3.05e+03
52	758	874.636	1	3.11e+03
53	772	858.124	1	2.12e+03
54	786	851.47	1	863

55	800	850.558	1	158
56	814	850.518	1	12.7
57	828	850.516	1	12.6
58	842	850.516	1	12.5
59	856	850.516	1	12.5
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	850.515	1	21.4
61	884	850.513	1	46.2
62	898	850.507	1	88.1
63	912	850.492	1	155
64	926	850.452	1	264
65	940	850.35	1	439
66	954	850.086	1	715
67	968	849.43	1	1.12e+03
68	982	847.944	1	1.63e+03
69	996	845.247	1	1.93e+03
70	1010	842.212	1	1.51e+03
71	1024	840.663	1	605
72	1038	840.38	1	92.9
73	1052	840.365	1	10.6
74	1066	840.365	1	10.5
75	1080	840.365	1	10.5
7 <i>6</i>	1094	840.364	1	10.4
77	1108	840.363	1	12.4
78	1122	840.361	1	25.6
7 <i>9</i>	1136	840.355	1	46.2
, ,	1130	010.333	<u> </u>	
				First-order
Iteration	Func-count	f(x)	Step-size	First-order optimality
Iteration 80	Func-count 1150	f(x) 840.338	Step-size 1	First-order optimality 80
Iteration 80 81	Func-count 1150 1164	f(x) 840.338 840.296	Step-size 1 1	First-order optimality 80 134
Iteration 80 81 82	Func-count 1150 1164 1178	f(x) 840.338 840.296 840.187	Step-size 1 1 1	First-order optimality 80 134 218
Iteration 80 81 82 83	Func-count 1150 1164 1178 1192	f(x) 840.338 840.296 840.187 839.917	Step-size 1 1 1 1	First-order optimality 80 134 218 341
Iteration 80 81 82 83 84	Func-count 1150 1164 1178 1192 1206	f(x) 840.338 840.296 840.187 839.917 839.307	Step-size 1 1 1 1 1	First-order optimality 80 134 218 341 493
Iteration 80 81 82 83 84 85	Func-count 1150 1164 1178 1192 1206 1220	f(x) 840.338 840.296 840.187 839.917 839.307 838.189	Step-size	First-order optimality 80 134 218 341 493 594
Iteration 80 81 82 83 84 85 86	Func-count 1150 1164 1178 1192 1206 1220 1234	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882	Step-size	First-order optimality 80 134 218 341 493 594 492
Iteration 80 81 82 83 84 85 86 87	Func-count 1150 1164 1178 1192 1206 1220 1234 1248	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17	Step-size 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212
Iteration 80 81 82 83 84 85 86 87 88	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17	Step-size 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7
Iteration 80 81 82 83 84 85 86 87 88 89	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67
Iteration 80 81 82 83 84 85 86 87 88 89 90	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64
Iteration 80 81 82 83 84 85 86 87 88 89 90 91	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63
Iteration 80 81 82 83 84 85 86 87 88 89 90 91	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.023	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.022 836.021 836.021	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.023 836.021 836.021	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.023 836.023	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388 1402	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.021 836.017 836.007 835.981 835.913	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107 176
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.023 836.023	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107 176 280
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388 1402 1416	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.023 836.021 836.017 836.007 835.981 835.742	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107 176 280 First-order
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388 1402 1416 Func-count	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.022 836.021 836.017 836.007 835.981 835.913 835.742 f(x)	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107 176 280 First-order optimality
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 Iteration 100	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388 1402 1416 Func-count 1430	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.023 836.023 836.023 836.023 836.022 836.021 836.017 836.007 835.981 835.742 f(x) 835.33	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107 176 280 First-order optimality 426
Iteration 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Func-count 1150 1164 1178 1192 1206 1220 1234 1248 1262 1276 1290 1304 1318 1332 1346 1360 1374 1388 1402 1416 Func-count	f(x) 840.338 840.296 840.187 839.917 839.307 838.189 836.882 836.17 836.031 836.023 836.023 836.023 836.022 836.021 836.017 836.007 835.981 835.913 835.742 f(x)	Step-size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	First-order optimality 80 134 218 341 493 594 492 212 29.7 8.67 8.64 8.63 8.6 10.5 21 37.4 64.3 107 176 280 First-order optimality

103	1472	831.902	1	396
104	1486	831.476	1	116
105	1500	831.426	1	6.99
106	1514	831.424	1	6.67
107	1528	831.424	1	6.66
108	1542	831.424	1	6.65
109	1556	831.424	1	6.64
110	1570	831.424	1	9.66
111	1584	831.423	1	18.3
112	1598	831.42	1	32.1
113	1612	831.414	1	54.6
114	1626	831.398	1	90.7
115	1640	831.357	1	148
116	1654	831.251	1	237
117	1668	830.994	1	365
118	1682	830.431	1	508
119	1696	829.477	1	567
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	828.512	1	404
121	1724	828.102	1	138
122	1738	828.045	1	14
123	1752	828.043	1	7.39
124	1766	828.043	1	7.38
125	1780	828.043	1	7.37
126	1794	828.043	1	7.36
127	1808	828.042	1	7.35
128	1822	828.042	1	12.1
129	1836	828.04	1	21.3
130	1850	828.034	1	36.5
131	1864	828.02	1	60.9
132	1878	827.983	1	99.8
133	1892	827.889	1	160
134	1906	827.657	1	248
135	1920	827.142	1	352
136	1934	826.237	1	405
137	1948	825.265	1	304
138	1962	824.798	1	111
139	1976	824.718	1	12.1
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	824.713	1	7.59
141	2004	824.713	1	7.54
142	2018	824.713	1	7.52
143	2032	824.713	1	7.48
144	2046	824.713	1	7.43
145	2060	824.712	1	7.66
146	2074	824.71	1	13.5
147	2088	824.703	1	22.9
148	2102	824.687	1	38
149	2116	824.646	1	61.8
150	2130	824.542	1	97.8
151	2144	824.296	1	146
152	2158	823.803	1	191

153	2172	823.101	1	183
154	2186	822.575	1	95.4
155	2200	822.428	1	17.6
156	2214	822.416	1	1.2
157	2228	822.415	1	1.21
158	2242	822.415	1	1.21
159	2256	822.415	1	1.21
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	822.415	1	1.2
161	2284	822.415	1	1.2
162	2298	822.415	1	1.97
163	2312	822.415	1	3.42
164	2326	822.415	1	5.83
165	2340	822.415	1	9.6
166	2354	822.413	1	15.6
167	2368	822.411	1	24.5
168	2382	822.404	1	36.2
169	2396	822.392	1	46
170	2410	822.375	1	42.4
171	2424	822.364	1	21.8
172	2438	822.361	1	4.49
173	2452	822.361	1	0.141
174	2466	822.361	1	0.137
175	2480	822.361	1	0.136
176	2494	822.361	1	0.136
177	2508	822.361	1	0.136
178	2522	822.361	1	0.136
179	2536	822.361	1	0.136
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	822.361	1	0.179
181	2564	822.361	1	0.359
182	2578	822.361	1	0.595
183	2592	822.361	1	1.02
184	2606	822.361	1	1.64
185	2620	822.361	1	2.44
186	2634	822.361	1	3.07
187	2648	822.361	1	2.71
188	2662	822.36	1	1.27
189	2676	822.36	1	0.225
190	2690	822.36	1	0.00118

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

Warning: Gradient must be provided for trust-region algorithm; using

quasi-newton algorithm instead.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.41e+04
User object	ive function	returned NaN;	trying a new	point
1	44	964.484	1.63132e-07	1.31e+03
2	58	964.325	1	406
3	72	964.286	1	427
4	86	964	1	1.09e+03
5	100	963.451	1	2.25e+03
6	114	961.974	1	4.1e+03
7	128	959.029	1	6e+03
8	142	954.432	1	6.57e+03
9	156	950.463	1	4.32e+03
10	170	949.024	1	1.28e+03
11	184	948.867	1	115
12	198	948.86	1	79.4
13	212	948.858	1	79.4
14	226	948.85	1	78.4
15	240	948.833	1	76.7
16	254	948.787	1	105
17	268	948.671	1	165
18	282	948.394	1	247
19	296	947.821	1	329
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	946.95	1	333
21	324	946.221	1	200
22	338	945.976	1	54.8
23	352	945.948	1	38.4
24	366	945.947	1	38.4
25	380	945.946	1	38.4
26	394	945.943	1	38.4
27	408	945.936	1	38.4
28	422	945.916	1	38.3
29	436	945.864	1	49.8
30	450	945.73	1	84.1
31	464	945.381	1	139
<i>32</i>	478	944.49	1	223
33	492	942.305	1	343
34	506	937.466	1	483
35	520	929.048	1	564
36	534	920.103	1	464
37	548	915.82	1	196
38	562	915.064	1	34.5
39	576	915.017	1	33.4
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	915.015	1	33.2
41	604	915.014	1	33.2
42	618	915.011	1	33.1
43	632	915.004	1	58.2
44	646	914.983	1	114
45	660	914.931	1	202

46	674	914.793	1	346
47	688	914.434	1	577
48	702	913.499	1	947
49	716	911.122	1	1.52e+03
50	730	905.376	1	2.3e+03
51	744	893.276	1	3.05e+03
5 <i>2</i>	758	874.636	1	3.11e+03
53	772	858.124	1	2.12e+03
54	786	851.47	1	863
55	800	850.558	1	158
56	814	850.518	1	12.7
57	828	850.516	1	12.6
58	842	850.516	1	12.5
59	856	850.516	1	12.5
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	850.515	1	21.4
61	884	850.513	1	46.2
62	898	850.507	1	88.1
63	912	850.492	1	155
64	926	850.452	1	264
65	940	850.35	1	439
66	954	850.086	1	715
67	968	849.43	1	1.12e+03
68	982	847.944	1	1.63e+03
69	996	845.247	1	1.93e+03
70	1010	842.212	1	1.51e+03
71	1024	840.663	1	605
72	1038	840.38	1	92.9
73	1052	840.365	1	10.6
7 <i>4</i>	1066	840.365	1	10.5
75	1080	840.365	1	10.5
7 <i>5</i> 7 <i>6</i>	1094	840.364	1	10.4
77	1108	840.363	1	12.4
78	1122	840.361	1	25.6
78 79	1136	840.355	1	46.2
79	1130	040.333	T	First-order
Ttoration	Euna gount	f(v)	Cton gigo	
Iteration 80	Func-count 1150	f(x)	Step-size 1	optimality
81	1164	840.338 840.296	1	80 134
		840.296		
82	1178 1192		1	218
83		839.917	1	341
84	1206	839.307	1	493
85	1220	838.189	1	594
86	1234	836.882	1	492
87	1248	836.17	1	212
88	1262	836.031	1	29.7
89	1276	836.023	1	8.67
90	1290	836.023	1	8.64
91	1304	836.023	1	8.63
92	1318	836.023	1	8.6
93	1332	836.022	1	10.5
94	1346	836.021	1	21
95	1360	836.017	1	37.4

96	1374	836.007	1	64.3
97	1388	835.981	1	107
98	1402	835.913	1	176
99	1416	835.742	1	280
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	1430	835.33	1	426
101	1444	834.46	1	578
102	1458	833.096	1	609
103	1472	831.902	1	396
104	1486	831.476	1	116
105	1500	831.426	1	6.99
106	1514	831.424	1	6.67
107	1528	831.424	1	6.66
108	1542	831.424	1	6.65
109	1556	831.424	1	6.64
110	1570	831.424	1	9.66
111	1584	831.423	1	18.3
112	1598	831.42	1	32.1
113	1612	831.414	1	54.6
114	1626	831.398	1	90.7
115	1640	831.357	1	148
116	1654	831.251	1	237
117	1668	830.994	1	365
118	1682	830.431	1	508
119	1696	829.477	1	567
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	828.512	1	404
121	1724	828.102	1	138
122	1738	828.045	1	14
123	1752	828.043	1	7.39
124	1766	828.043	1	7.38
125	1780	828.043	1	7.37
126	1794	828.043	1	7.36
127	1808	828.042	1	7.35
128	1822	828.042	1	12.1
129	1836	828.04	1	21.3
130	1850	828.034	1	36.5
131	1864	828.02	1	60.9
132	1878	827.983	1	99.8
133	1892	827.889	1	160
134	1906	827.657	1	248
135	1920	827.142	1	352
136	1934	826.237	1	405
137	1948	825.265	1	304
138	1962	824.798	1	111
139	1976	824.718	1	12.1
		_, .		First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	824.713	1	7.59
141	2004	824.713	1	7.54
142	2018	824.713	1	7.52
143	2032	824.713	1	7.48

144	2046	824.713	1	7.43
145	2060	824.712	1	7.66
146	2074	824.71	1	13.5
147	2088	824.703	1	22.9
148	2102	824.687	1	38
149	2116	824.646	1	61.8
150	2130	824.542	1	97.8
151	2144	824.296	1	146
152	2158	823.803	1	191
153	2172	823.101	1	183
154	2186	822.575	1	95.4
155	2200	822.428	1	17.6
156	2214	822.416	1	1.2
157	2228	822.415	1	1.21
158	2242	822.415	1	1.21
159	2256	822.415	1	1.21
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	822.415	_ 1	1.2
161	2284	822.415	1	1.2
162	2298	822.415	1	1.97
163	2312	822.415	1	3.42
164	2326	822.415	1	5.83
165	2340	822.415	1	9.6
166	2354	822.413	1	15.6
167	2368	822.411	1	24.5
168	2382	822.404	1	36.2
169	2396	822.392	1	46
170	2410	822.375	1	42.4
171	2424	822.364	1	21.8
172	2438	822.361	1	4.49
173	2452	822.361	1	0.141
174	2466	822.361	1	0.137
175	2480	822.361	1	0.136
176	2494	822.361	1	0.136
177	2508	822.361	1	0.136
178	2522	822.361	1	0.136
179	2536	822.361	1	0.136
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	822.361	1	0.179
181	2564	822.361	1	0.359
182	2578	822.361	1	0.595
183	2592	822.361	1	1.02
184	2606	822.361	1	1.64
185	2620	822.361	1	2.44
186	2634	822.361	1	3.07
187	2648	822.361	1	2.71
188	2662	822.36	1	1.27
189	2676	822.36	1	0.225
190	2690	822.36	1	0.00118

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.78e+04
User object	ive function	returned NaN;	trying a new	point
1	44	950.533	1.62049e-07	1.62e+03
2	58	950.302	1	398
3	72	950.265	1	419
4	86	950	1	1.02e+03
5	100	949.486	1	2.15e+03
6	114	948.1	1	3.96e+03
7	128	945.29	1	5.89e+03
8	142	940.771	1	6.65e+03
9	156	936.647	1	4.59e+03
10	170	935.016	1	1.45e+03
11	184	934.823	1	144
12	198	934.815	1	69.2
13	212	934.814	1	68.9
14	226	934.809	1	67.4
15	240	934.797	1	64.9
16	254	934.766	1	60.3
17	268	934.687	1	89.6
18	282	934.498	1	131
19	296	934.104	1	172
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	933.496	1	175
21	324	932.973	1	108
22	338	932.787	1	37.1
23	35 <i>2</i>	932.765	1	37
24	366	932.764	1	37
25	380	932.764	1	37
26	394	932.761	1	37
27	408	932.756	1	37
28	422	932.741	1	37
29	436	932.703	1	36.9
30	450	932.603	1	56.2
31	464	932.344	1	93.1
32	478	931.672	1	152
33	492	929.968	1	240
34	506	925.863	1	363
35	520	917.177	1	493
36	534	903.541	1	553
37	548	891.51	1	433
38	562	886.868	1	150

39	576	886.176	1	55.2
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	886.138	1	53.9
41	604	886.136	1	53.6
42	618	886.135	1	53.5
43	632	886.131	1	53.4
44	646	886.123	1	93.4
45	660	886.1	1	181
46	674	886.04	1	319
47	688	885.882	1	546
48	702	885.473	1	909
49	716	884.42	1	1.48e+03
50	730	881.805	1	2.32e+03
51	744	875.901	1	3.3e+03
52	758	865.404	1	3.79e+03
53	772	854.004	1	2.89e+03
54	786	848.04	1	1.26e+03
55	800	846.788	1	255
56	814	846.708	1	11.6
57	828	846.705	1	11.3
58	842	846.705	1	11.3
59	856	846.705	1	11.3
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	846.705	1	11.8
61	884	846.704	1	25.9
62	898	846.701	1	50.3
63	912	846.695	1	88.9
64	926	846.677	1	152
65	940	846.633	1	253
66	954	846.517	1	414
67	968	846.226	1	658
68	982	845.541	1	984
69	996	844.177	1	1.27e+03
70	1010	842.299	1	1.19e+03
71	1024	840.978	1	620
72	1038	840.635	1	131
73	1052	840.609	1	14.3
74	1066	840.609	1	14.1
75	1080	840.609	1	14.1
76	1094	840.608	1	14
77	1108	840.608	1	13.8
78	1122	840.606	1	19
79	1136	840.6	1	34.8
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	840.586	1	60.5
81	1164	840.55	1	102
82	1178	840.455	1	166
83	1192	840.219	1	263
84	1206	839.665	1	391
85	1220	838.565	1	501
86	1234	837.06	1	473

87	1248	836.037	1	260
88	1262	835.768	1	58.1
89	1276	835.743	1	8.99
90	1290	835.743	1	8.99
91	1304	835.743	1	8.99
92	1318	835.743	1	8.98
93	1332	835.742	1	8.97
94	1346	835.742	1	15.2
95	1360	835.74	1	27.7
96	1374	835.736	1	47.8
97	1388	835.726	1	80.2
98	1402	835.699	1	132
99	1416	835.63	1	214
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	1430	835.458	1	336
101	1444	835.059	1	493
102	1458	834.285	1	619
103	1472	833.272	1	557
104	1486	832.625	1	278
105	1500	832.473	1	54.4
106	1514	832.462	1	6.74
107	1528	832.461	1	6.72
108	1542	832.461	1	6.72
109	1556	832.461	1	6.71
110	1570	832.461	1	6.7
111	1584	832.461	1	13.5
112	1598	832.459	1	24.4
113	1612	832.456	1	42.2
114	1626	832.448	1	70.8
115	1640	832.426	1	117
116	1654	832.37	1	189
117	1668	832.229	1	300
118	1682	831.894	1	449
119	1696	831.215	1	588
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	830.237	1	571
121	1724	829.493	1	318
122	1738	829.269	1	74.5
123	1752	829.248	1	8.41
124	1766	829.247	1	8.28
125	1780	829.247	1	8.26
126	1794	829.247	1	8.24
127	1808	829.247	1	8.21
128	1822	829.246	1	10.1
129	1836	829.245	1	18.6
130	1850	829.241	1	32.3
131	1864	829.23	1	54.4
132	1878	829.203	1	89.9
133	1892	829.132	1	146
134	1906	828.956	1	229
135	1920	828.546	1	338
136	1934	827.745	1	428

137	1948	826.677	1	390
138	1962	825.97	1	192
139	1976	825.796	1	34
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	825.782	1	3.71
141	2004	825.781	1	3.64
142	2018	825.781	1	3.63
143	2032	825.781	1	3.63
144	2046	825.781	1	3.62
145	2060	825.781	1	4.58
146	2074	825.781	1	8.39
147	2088	825.781	1	14.7
148	2102	825.779	1	24.6
149	2116	825.776	1	40.6
150	2130	825.768	1	65.2
151	2144	825.747	1	101
152	2158	825.702	1	142
153	2172	825.624	1	162
154	2186	825.542	1	120
155	2200	825.503	1	43.4
156	2214	825.497	1	4.81
157	2228	825.497	1	0.761
158	2242	825.497	1	0.763
159	2256	825.497	1	0.763
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	825.497	1	0.763
161	2284	825.497	1	0.762
162	2298	825.497	1	1.42
163	2312	825.497	1	2.52
164	2326	825.497	1	4.28
165	2340	825.497	1	7.09
166	2354	825.496	1	11.6
167	2368	825.495	1	18.3
168	2382	825.493	1	27.4
169	2396	825.489	1	36
170	2410	825.483	1	35.4
171	2424	825.478	1	20.2
172	2438	825.477	1	4.85
173	2452	825.476	1	0.205
174	2466	825.476	1	0.123
175	2480	825.476	1	0.122
176	2494	825.476	1	0.122
177	2508	825.476	1	0.122
178	2522	825.476	1	0.121
179	2536	825.476	1	0.184
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	825.476	1	0.292
181	2564	825.476	1	0.504
182	2578	825.476	1	0.822
183	2592	825.476	1	1.31
184	2606	825.476	1	2.07

3.06	1	825.476	2620	185
3.95	1	825.476	2634	186
3.75	1	825.476	2648	187
2.02	1	825.476	2662	188
0.442	1	825.476	2676	189
0.0142	1	825.476	2690	190

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

Computing finite-difference Hessian using user-supplied objective function.

_				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	14	1009.92		2.78e+04
User object	ive function	returned NaN;	trying a new	point
1	44	950.533	1.62049e-07	1.62e+03
2	58	950.302	1	398
3	72	950.265	1	419
4	86	950	1	1.02e+03
5	100	949.486	1	2.15e+03
6	114	948.1	1	3.96e+03
7	128	945.29	1	5.89e+03
8	142	940.771	1	6.65e+03
9	156	936.647	1	4.59e+03
10	170	935.016	1	1.45e+03
11	184	934.823	1	144
12	198	934.815	1	69.2
13	212	934.814	1	68.9
14	226	934.809	1	67.4
15	240	934.797	1	64.9
16	254	934.766	1	60.3
17	268	934.687	1	89.6
18	282	934.498	1	131
19	296	934.104	1	172
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	310	933.496	1	175
21	324	932.973	1	108
22	338	932.787	1	37.1
23	35 <i>2</i>	932.765	1	37
24	366	932.764	1	37
25	380	932.764	1	37
26	394	932.761	1	37
27	408	932.756	1	37
28	422	932.741	1	37
29	436	932.703	1	36.9

30	450	932.603	1	56.2
31	464	932.344	1	93.1
32	478	931.672	1	152
33	492	929.968	1	240
34	506	925.863	1	363
35	520	917.177	1	493
36	534	903.541	1	553
37	548	891.51	1	433
38	562	886.868	1	150
39	576	886.176	1	55.2
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
40	590	886.138	1	53.9
41	604	886.136	1	53.6
42	618	886.135	1	53.5
43	632	886.131	1	53.4
44	646	886.123	1	93.4
45	660	886.1	1	181
46	674	886.04	1	319
47	688	885.882	1	546
48	702	885.473	1	909
49	716	884.42	1	1.48e+03
50	730	881.805	1	2.32e+03
51	744	875.901	1	3.3e+03
52	758	865.404	1	3.79e+03
53	772	854.004	1	2.89e+03
54	7 <i>86</i>	848.04	1	1.26e+03
55	800	846.788	1	255
56	814	846.708	1	11.6
57	828	846.705	1	11.3
58	842	846.705	1	11.3
59	856	846.705	1	11.3
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
60	870	846.705	_ 1	11.8
61	884	846.704	1	25.9
62	898	846.701	1	50.3
63	912	846.695	1	88.9
64	926	846.677	1	152
65	940	846.633	1	253
66	954	846.517	1	414
67	968	846.226	1	658
68	982	845.541	1	984
69	996	844.177	1	1.27e+03
70	1010	842.299	1	1.19e+03
71	1024	840.978	1	620
72	1038	840.635	1	131
73	1052	840.609	1	14.3
74	1066	840.609	1	14.1
75	1080	840.609	1	14.1
76	1094	840.608	1	14
77	1108	840.608	1	13.8
78	1122	840.606	1	19
79	1136	840.6	1	34.8

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
80	1150	840.586	1	60.5
81	1164	840.55	1	102
82	1178	840.455	1	166
83	1192	840.219	1	263
84	1206	839.665	1	391
85	1220	838.565	1	501
86	1234	837.06	1	473
87	1248	836.037	1	260
88	1262	835.768	1	58.1
89	1276	835.743	1	8.99
90	1290	835.743	1	8.99
91	1304	835.743	1	8.99
92	1318	835.743	1	8.98
93	1332	835.742	1	8.97
94	1346	835.742	1	15.2
95	1360	835.74	1	27.7
96	1374	835.736	1	47.8
97	1388	835.726	1	80.2
98	1402	835.699	1	132
99	1416	835.63	1	214
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
100	1430	835.458	1	336
101	1444	835.059	1	493
102	1458	834.285	1	619
103	1472	833.272	1	557
104	1486	832.625	1	278
105	1500	832.473	1	54.4
106	1514	832.462	1	6.74
107	1528	832.461	1	6.72
108	1542	832.461	1	6.72
109	1556	832.461	1	6.71
110	1570	832.461	1	6.7
111	1584	832.461	1	13.5
112	1598	832.459	1	24.4
113	1612	832.456	1	42.2
114	1626	832.448	1	70.8
115	1640	832.426	1	117
116	1654	832.37	1	189
117	1668	832.229	1	300
118	1682	831.894	1	449
119	1696	831.215	1	588
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
120	1710	830.237	1	571
121	1724	829.493	1	318
122	1738	829.269	1	74.5
123	1752	829.248	1	8.41
124	1766	829.247	1	8.28
125	1780	829.247	1	8.26
126	1794	829.247	1	8.24
127	1808	829.247	1	8.21
			_	

128	1822	829.246	1	10.1
129	1836	829.245	1	18.6
130	1850	829.241	1	32.3
131	1864	829.23	1	54.4
132	1878	829.203	1	89.9
133	1892	829.132	1	146
134	1906	828.956	1	229
135	1920	828.546	1	338
136	1934	827.745	1	428
137	1948	826.677	1	390
138	1962	825.97	1	192
139	1976	825.796	1	34
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
140	1990	825.782	1	3.71
141	2004	825.781	1	3.64
142	2018	825.781	1	3.63
143	2032	825.781	1	3.63
144	2046	825.781	1	3.62
145	2060	825.781	1	4.58
146	2074	825.781	1	8.39
147	2088	825.781	1	14.7
148	2102	825.779	1	24.6
149	2116	825.776	1	40.6
150	2130	825.768	1	65.2
151	2144	825.747	1	101
152	2158	825.702	1	142
153	2172	825.624	1	162
154	2186	825.542	1	120
155	2200	825.503	1	43.4
156	2214	825.497	1	4.81
157	2228	825.497	1	0.761
158	2242	825.497	1	0.763
159	2256	825.497	1	0.763
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
160	2270	825.497	1	0.763
161	2284	825.497	1	0.762
162	2298	825.497	1	1.42
163	2312	825.497	1	2.52
164	2326	825.497	1	4.28
165	2340	825.497	1	7.09
166	2354	825.496	1	11.6
167	2368	825.495	1	18.3
168	2382	825.493	1	27.4
169	2396	825.489	1	36
170	2410	825.483	1	35.4
171	2424	825.478	1	20.2
172	2438	825.477	1	4.85
173	2452	825.476	1	0.205
174	2466	825.476	1	0.123
175	2480	825.476	1	0.122
176	2494	825.476	1	0.122
177	2508	825.476	1	0.122

178	2522	825.476	1	0.121
179	2536	825.476	1	0.184
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
180	2550	825.476	1	0.292
181	2564	825.476	1	0.504
182	2578	825.476	1	0.822
183	2592	825.476	1	1.31
184	2606	825.476	1	2.07
185	2620	825.476	1	3.06
186	2634	825.476	1	3.95
187	2648	825.476	1	3.75
188	2662	825.476	1	2.02
189	2676	825.476	1	0.442
190	2690	825.476	1	0.0142

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

```
Computing finite-difference Hessian using user-supplied objective
Confidence Interval 1 for nearc4 [0.193808 , 0.388049]
Confidence Interval 1 for IQ [0.040650 , 0.050025]
Confidence Interval 2 for nearc4 [-6.806539 , -6.612299]
Confidence Interval 2 for IQ [0.331513 , 0.340888]
Confidence Interval 3 for nearc4 [-12.453434 , -12.210590]
Confidence Interval 3 for IQ [0.550566 , 0.579083]
Confidence Interval 1 for Average Partial Effect of IQ [0.011569,
 0.013905]
Confidence Interval 2 for Average Partial Effect of IQ [0.010555,
 0.012891]
Confidence Interval 3 for Average Partial Effect of IQ [0.011219,
 0.012645]
Confidence Interval 1 for parametric Average Partial Effect of IQ
 [0.011569, 0.013905]
Confidence Interval 2 for parametric Average Partial Effect of IQ
 [0.010555, 0.012891]
Confidence Interval 3 for parametric Average Partial Effect of IQ
 [0.011219, 0.012645]
```

Published with MATLAB® R2015a