Review of Lecture 15

Kernel methods

$$K(\mathbf{x},\mathbf{x}') = \mathbf{z}^{\mathsf{\scriptscriptstyle T}}\mathbf{z}'$$
 for some $\mathcal Z$ space

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

Soft-margin SVM

Minimize
$$\frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} + C \sum_{n=1}^N \xi_n$$

Same as hard margin, but $0 \le \alpha_n \le C$

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 16: Radial Basis Functions

Outline

• RBF and nearest neighbors

• RBF and neural networks

• RBF and kernel methods

• RBF and regularization

Learning From Data - Lecture 16 2/20

Basic RBF model

Each $(\mathbf{x}_n, y_n) \in \mathcal{D}$ influences $h(\mathbf{x})$ based on $\|\mathbf{x} - \mathbf{x}_n\|$

Standard form:

$$h(\mathbf{x}) = \sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$
basis function

Learning From Data - Lecture 16 3/20

The learning algorithm

Finding
$$w_1, \cdots, w_N$$
:

Finding
$$w_1, \cdots, w_N$$
:
$$h(\mathbf{x}) = \sum_{n=1}^N w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$

based on
$$\mathcal{D}=(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$$

$$E_{\mathrm{in}}=0$$
: $h(\mathbf{x}_n)=\mathbf{y}_n$ for $n=1,\cdots,N$:

$$\sum_{m=1}^{N} w_m \exp\left(-\gamma \|\mathbf{x}_n - \mathbf{x}_m\|^2\right) = y_n$$

The solution

$$\sum_{m=1}^{N} w_m \exp\left(-\gamma \|\mathbf{x}_n - \mathbf{x}_m\|^2\right) = y_n$$
 N equations in N unknowns

$$\underbrace{\begin{bmatrix} \exp(-\gamma \|\mathbf{x}_{1} - \mathbf{x}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{1} - \mathbf{x}_{N}\|^{2}) \\ \exp(-\gamma \|\mathbf{x}_{2} - \mathbf{x}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{2} - \mathbf{x}_{N}\|^{2}) \\ \vdots & \vdots & \vdots & \vdots \\ \exp(-\gamma \|\mathbf{x}_{N} - \mathbf{x}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{N} - \mathbf{x}_{N}\|^{2}) \end{bmatrix}}_{\Phi} \underbrace{\begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{N} \end{bmatrix}}_{\mathbf{\tilde{y}}} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}}_{\mathbf{\tilde{y}}}$$

If Φ is invertible, $\|\mathbf{w} = \Phi^{-1}\mathbf{y}\|$

$$\mathbf{w} = \Phi^{-1}\mathbf{y}$$

"exact interpolation"

The effect of γ

$$h(\mathbf{x}) = \sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$

Learning From Data - Lecture 16 6/20

RBF for classification

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)\right)$$

Learning: ∼ linear regression for classification

$$s = \sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$

Minimize $(s-y)^2$ on \mathcal{D} $y=\pm 1$

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

Relationship to nearest-neighbor method

Adopt the y value of a nearby point:

similar effect by a basis function:

Learning From Data - Lecture 16

RBF with K centers

N parameters w_1,\cdots,w_N based on N data points

Use $K \ll N$ centers: μ_1, \cdots, μ_K instead of $\mathbf{x}_1, \cdots, \mathbf{x}_N$

$$h(\mathbf{x}) = \sum_{k=1}^{K} \mathbf{w}_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$$

- 1. How to choose the centers μ_k
- **2**. How to choose the weights w_k

Learning From Data - Lecture 16 9/20

Choosing the centers

Minimize the distance between \mathbf{x}_n and the closest center $\boldsymbol{\mu}_k$: K-means clustering

Split $\mathbf{x}_1, \cdots, \mathbf{x}_N$ into clusters S_1, \cdots, S_K

Minimize
$$\sum_{k=1}^K \sum_{\mathbf{x}_n \in S_k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Unsupervised learning (:)

NP-hard

An iterative algorithm

Lloyd's algorithm: Iteratively minimize
$$\sum_{k=1}^K \sum_{\mathbf{x}_n \in S_k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$
 w.r.t. $\boldsymbol{\mu}_k, S_k$

$$\mu_k \leftarrow \frac{1}{|S_k|} \sum_{\mathbf{x}_n \in S_k} \mathbf{x}_n$$

$$S_k \leftarrow \{\mathbf{x}_n: \|\mathbf{x}_n - \boldsymbol{\mu}_k\| \leq \text{all } \|\mathbf{x}_n - \boldsymbol{\mu}_\ell\|\}$$

Convergence — local minimum

Lloyd's algorithm in action

- 1. Get the data points
- 2. Only the inputs!
- 3. Initialize the centers
- 4. Iterate
- 5. These are your μ_k 's

Learning From Data - Lecture 16 12/20

Centers versus support vectors

support vectors

RBF centers

Learning From Data - Lecture 16

Choosing the weights

$$\sum_{k=1}^K w_k \, \exp\left(-\gamma \, \|\mathbf{x}_n - oldsymbol{\mu}_k\|^2
ight) pprox \, y_n$$
 N equations in $K < N$ unknowns

$$\underbrace{\begin{bmatrix} \exp(-\gamma \|\mathbf{x}_{1} - \boldsymbol{\mu}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{1} - \boldsymbol{\mu}_{K}\|^{2}) \\ \exp(-\gamma \|\mathbf{x}_{2} - \boldsymbol{\mu}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{2} - \boldsymbol{\mu}_{K}\|^{2}) \\ \vdots & \vdots & \vdots & \vdots \\ \exp(-\gamma \|\mathbf{x}_{N} - \boldsymbol{\mu}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{N} - \boldsymbol{\mu}_{K}\|^{2}) \end{bmatrix}}_{\Phi} \underbrace{\begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{K} \end{bmatrix}}_{\mathbf{\tilde{W}}} \approx \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}}_{\mathbf{\tilde{Y}}}$$

If
$$\Phi^{\mathsf{T}}\Phi$$
 is invertible,

$$\mathbf{w} = (\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\mathbf{y}$$

pseudo-inverse

RBF network

The "features" are $\exp\left(-\gamma \|\mathbf{x}-\boldsymbol{\mu}_k\|^2\right)$

Nonlinear transform depends on ${\mathcal D}$

→ No longer a linear model

A bias term $(b ext{ or } w_0)$ is often added

Compare to neural networks

Learning From Data - Lecture 16 16/20

Choosing γ

Treating
$$\gamma$$
 as a parameter to be learned $h(\mathbf{x}) = \sum_{k=1}^K w_k \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2\right)$

Iterative approach (\sim EM algorithm in mixture of Gaussians):

- 1. Fix γ , solve for w_1, \cdots, w_K
- 2. Fix w_1, \dots, w_K , minimize error w.r.t. γ

We can have a different γ_k for each center μ_k

Outline

RBF and nearest neighbors

• RBF and neural networks

RBF and kernel methods

RBF and regularization

Learning From Data - Lecture 16 18/20

RBF versus its SVM kernel

SVM kernel implements:

sign
$$\left(\sum_{\alpha_n>0} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

Straight RBF implements:

$$\operatorname{sign}\left(\sum_{k=1}^{K} \mathbf{w}_{k} \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_{k}\|^{2}\right) + \mathbf{b}\right)$$

Learning From Data - Lecture 16 19/20

RBF and regularization

RBF can be derived based purely on regularization:

$$\sum_{n=1}^{N} (h(x_n) - y_n)^2 + \lambda \sum_{k=0}^{\infty} a_k \int_{-\infty}^{\infty} \left(\frac{d^k h}{dx^k}\right)^2 dx$$

"smoothest interpolation"

Learning From Data - Lecture 16 20/20