FIN2010 Financial Management

Lecture 7: Stock Valuation

Review—Bond Price

Bond:

- Fair valuation = PV of future cash flows
 - If hold until maturity, cash flows = t coupons + principal
 - Proper discount rate: often use yields of similar bonds

Fair value =
$$Coupon * \frac{1 - \frac{1}{(1+r)^t}}{r} + \frac{par \ value}{(1+r)^t}$$

- Three key relationships in bond valuations
- Market price: determined by supply and demand.

Review—Yield

- Yield: discount rate that equates the PV(future cash flows) and the market price
 - Expressed in APR
 - Can be different from actual return
 - price ↓⇒ Yield ↑
- Determinants of Bond Prices and Yield
 - Promised cash flow streams
 - Required return.
 - Interest rate risk
 - Default risk
 - Liquidity risk
 - Call feature
 - Reinvestment risk
 - Maturity

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Asset Valuation- What is Value?

- Book value: accounting value of the asset. Objective and backward looking
- Market value: the market price at which the asset trades in an open marketplace. Objective, equal to the price we need to pay, and changing all the time.
- Intrinsic/fair value: what the price of a security should be worth. Subjective.
- Asset valuation: use models to determine <u>fair value</u> and then make investment decisions.

What is a Stock?

Corporate's perspective:

What we own (Asset)

What we owe (Debt)
What is left over (Equity)

Investor's perspective:

Cash flow:

Purchase price

Dividend

- Rights: vote, claim to dividend
- What do I have no control of?
 - Cannot make day-to-day decisions
 - Cannot force the company to pay dividends

Dividend

Sale price

Equity financing

proceeds

...

Stock Valuation—Overview

- Key: predicting <u>unknown</u> cash flows in the future and determining required return
 - Discounted dividend model: forecast what dividend investors will get
 - Discounted free cash flow model: forecast how much a firm can earn (free cash flow)
 - Comparable pricing: use the prices of comparable firms
- But predicting the future is hard! No one can accurately predict the future. As an investor or financial analyst, we can only try our best.

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

The Dividend Discount Model

 What is the price if we plan to hold the stock for one year?

$$\begin{vmatrix} \mathbf{0} & \mathbf{1} \\ -P_0 & Div_1 + P_1 \end{vmatrix} \qquad P_0 = \left(\frac{Div_1 + P_1}{1 + r_E} \right)$$

 What is the price if we plan to hold the stock for two years?

-r_E: discount rate. Also called cost of equity in stock valuation

The Dividend Discount Model

What if you plan to hold the stock for N years?

$$P_0 = \frac{Div_1}{1 + r_E} + \frac{Div_2}{(1 + r_E)^2} + \cdots + \frac{Div_N}{(1 + r_E)^N} + \frac{P_N}{(1 + r_E)^N}$$

 In cases when a firm is expected to operate forever, we can let N go to infinity and write it as follows:

$$P_0 = \frac{Div_1}{1 + r_E} + \frac{Div_2}{(1 + r_E)^2} + \frac{Div_3}{(1 + r_E)^3} + \cdots = \sum_{n=1}^{\infty} \frac{Div_n}{(1 + r_E)^n}$$

 The price of any stock is equal to the present value of the expected future dividends it will pay.

The Dividend Discount Model

- The challenge: virtually impossible to forecast an infinite number of dividends
 - Therefore, we tend to make simplified assumptions about the future dividends
- Based on the assumptions we make, the DDM is classified into three categories:
 - Zero growth model: dividends are constant over time
 - Constant growth model: dividends grow at a constant rate
 - Variable growth model: dividends change for a number of years and then stabilize to a sustainable growth rate

Zero Growth Model

Zero growth model: the firm's future dividends will be a constant number forever.

• Zero Growth stock is a perpetuity: $P_0 = Div / r_E$ Where r_E is the required return on equity

Example – Zero Growth Model

Suppose you are thinking of purchasing the stock of Moore Oil, Inc. You expect the stock to pay a \$0.50 dividend every quarter and the required return is 10% per year. What is the price?

$$P_0 = .50 / (10\% / 4) = $20$$

Constant Growth Model

Constant Dividend Growth: the firm's future dividends will grow at a constant rate, g, forever

- The value of the firm depends on the current dividend level, the cost of equity, and the growth rate
- Insights:
 - $\triangleright g \uparrow$, price \uparrow Firms with higher growth potential have higher stock price
 - When investors demand higher return, a stock $\succ r_E \uparrow$, price has lower stock price. Investors often demand higher return for riskier stock.

Example – Constant Growth Model

 Consolidated Edison, Inc. is a regulated utility company that services the New York City area. Suppose Con Edison plans to pay \$2.60 per share in dividends in the coming year. If its equity cost of capital is 6% and dividends are expected to grow by 2% per year in the future, estimate the value of Con Edison's stock.

$$P_0 = \frac{Div_1}{r_e - g} = \frac{2.6}{6\% - 2\%} = $65$$

Variable Growth Model

 Dividend is unstable in the first stage, and then it grows at a sustainable constant rate in the second stage.

Value of stock = PV of dividend in the 1st stage + PV of dividend in the 2nd stage.

$$= \frac{\text{Div}_1}{1+r} + \frac{\text{Div}_2}{(1+r)^2} + \dots + \frac{\text{Div}_t}{(1+r)^t} + \frac{\frac{\text{Div}_t(1+g)}{r-g}}{(1+r)^t}$$

Example – Discounted Dividend Model

 Example: Assume that there are 3 companies, and they all just paid exactly the same annual dividend of \$2.25 a share. In addition, the future annual rate of growth in dividends for each of the 3 companies has been estimated as follows. What are the fair prices if the discount rate is 10%?

Firm A	Firm B	Firm C	
g=0	g=6%	Year 1	\$2.53
i.e., dividends are		Year 2	\$2.85
expected to remain at	for the foreseeable future	Year 3	\$3.20
*		Year 4	\$3.60
\$2.25/share		Year 5 and beyond	g=6%

Solution:

• Firm A: price =
$$\frac{2.25}{10\%}$$
 = 22.5

• Firm B: price =
$$\frac{2.25 * (1+6\%)}{10\%-6\%} = 59.63$$

• Firm C: price=
$$\frac{2.53}{(1+10\%)^1} + \frac{2.85}{(1+10\%)^2} + \frac{3.2}{(1+10\%)^3} + \frac{3.6}{(1+10\%)^4} + \frac{\frac{3.6 * (1+6\%)}{10\%-6\%}}{(1+10\%)^4} = 74.68$$

Which Model to Choose?

Zero growth model:

 Generally used to price preferred stock

Variable growth model:

- Appropriate for companies expected to experience rapid or variable rates of growth for a period and then settle down to a more stable growth rate thereafter
- This, in fact, is the growth pattern of many young companies, so the model has considerable application in practice.

The constant-growth model:

- Best suited for common stocks of mature, dividend-paying companies
- They are probably large companies (or even some mature mid-cap companies) that have demonstrated an ability to generate steady rates of growth.
- The growth rates may not be identical from year to year, but they tend to move within a relatively narrow range.

What is the Appropriate g?

- The math in dividend discount model is easy. Real life is complicated.
- Biggest challenge: how to determine div, r_E , g
- Will discuss in depth how to determine r_E and div in future lectures.
- Here we briefly discuss a simple model of g and try to get a sense of what is driving stock price

Dividend Growth Rate

- Method 1: Calculate the growth rate of dividends in the past. Shortcoming: backward looking.
- Method 2: look at the key forces that actually drive the g. One commonly used approach:
 - Assumption: the ROE (return on equity) and the dividend payout ratio (b) are constant. Retention ratio (rr) = 1 – payout ratio (b)

Dividend growth(g) =
$$\frac{\text{Div}_{t+1} - \text{Div}_{t}}{\text{Div}_{t}}$$

$$= \frac{\text{ROE} * \text{Equity}_{t+1} * b - \text{ROE} * \text{Equity}_{t} * b}{\text{ROE} * \text{Equity}_{t} * b}$$

$$= \frac{\text{Equity}_{t+1} - \text{Equity}_{t}}{\text{Equity}_{t}}$$

$$= \frac{\text{Equity}_{t} + \text{Equity}_{t} * \text{ROE} * (1 - b) - \text{Equity}_{t}}{\text{Equity}_{t}}$$

$$= ROE * (1 - b)$$

$$= ROE * rr$$

$$g = ROE * rr = ROE * (1 - b)$$

Insights from the Simple Model

Apply the simple model of g into constant growth model:

$$P_0 = \frac{Div_1}{r_e - g} = \frac{ROE * Equity * b}{r_e - ROE (1 - b)}$$

- Although the model is simple, it does provide some insights:
 - Higher ROE, higher stock price. More profitable firms have higher prices
- If a firm wants to increase its share price, should it ↑ or ↓ b?
 - In other words: should it cut investment (increase its dividend) or increase investment (cut dividend)?
 - The answer will depend on the profitability of the firm's investments

$$\frac{\partial P}{\partial b} = \frac{ROE * Equity (r - ROE)}{[r - ROE * (1 - b)]^2}$$

- ➤ When r<ROE, increasing dividend (decreasing investment) will decrease stock price
- When r>ROE, increasing dividend (decreasing investment) will increase stock price
- Increasing efficient investment leads to a price increase

Limitations of the Dividend Discount Model

- Cannot be used on stocks that do not pay dividends
- Div, r and g can only be estimated with error
- Results are extremely sensitive to r and g (small changes in r and g can lead to large changes in the estimated stock price)
- Forecasting g requires forecasting the ROE and dividend payout rate, which could be hard to predict

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Method of Comparable

- We estimate the value of the firm <u>based on the value of</u> <u>other comparable firms</u>
- Another application of the Law of One Price: similar stocks should be price similarly
- Similar firms: similar in future growth and risk
 - Same industry
 - Similar size and maturity level

Method of Comparable- Valuation multiples

- Stock shares do not have the same unit
 - Two firms are both worth \$100M:
 - (1) Firm A issued 1M shares, so each share is worth \$100
 - (2) Firm B issued 10M shares, so each share worth?
- To adjust for the differences in scale, we calculate the share value in terms of a valuation multiple
 - -Stock price= (...) Per share price / (...) per share (multiples) -Analogous to:
 - -House price= # of square meters/house * price/square meter

Valuation Multiples

- Most commonly used scale measure:
 - Earnings per share (EPS) = $\frac{Net income}{\# of shares}$
 - P/E Ratio (市盈率): the multiple
 - Stock's fair value=EPS*appropriate P/E ratio
- Appropriate P/E ratio: often use similar firms' P/E ratio.
- Other commonly used valuation multiples
 - Stock's fair value=cash flow per share * appropriate price/cash flow per share
 - Stock's fair value=sales per share * appropriate price/sales per share
 - Stock's fair value=book value per share *appropriate price/book value per share

Example-Valuation Multiples

 Suppose furniture manufacturer Herman Miller, Inc., has earnings per share of \$1.38. If the average P/E of comparable furniture stocks is 21.3, estimate a value for Herman Miller using the P/E as a valuation multiple.
 What are the assumptions underlying this estimate?

- Solution: P_0 = \$1.38 *21.3= \$29.39
- Underlying assumptions: Herman Miller is similar to an average firm in the industry

Where can We Find P/E Ratios?

Yahoo Finance:
 Apple Inc.

Sina Finance: 贵州茅台

Historical P/E Ratios of Different Markets

7.5

Limitations of Comparable Pricing Method

- There is no clear guidance on how to
 - Choose similar firms
 - Adjust for differences in expected future growth rates, risk, or differences in accounting policies
- This method values a firm relative to similar firms in the market. However, the similar firms may be wrongly priced themselves, which may lead to a wrong valuation of the targeted firm
 - In contrast, discounted dividend model have the advantage that they can incorporate specific information about the firm's cost of capital or future growth

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Discounted Free Cash Flow Model

(We will discuss this in detail in the 2nd half of the semester)

- Intuition: enterprise value = PV(free cash flow of the firm)
 - Enterprise value = equity value + debt value →
 - Equity value = firm value debt value
 - Logic: the cash generated by a firm can be paid out as dividends (although its manager may decide not to).

Pros:

- Very flexible. Can be used to analyze any firm (esp. for startups, which are difficult to value using the other 2 methods).
- Can justify any price

Cons:

Need to make a LOT of assumptions, which might be difficult to justify.

DFCF Model Example

Aswath Damodaran's valuation of Tesla

	В	ase year		1		2		3		4		5		6
Revenue growth rate				70.00%		70.00%		70.00%		70.00%		70.00%		56.55%
Revenues	\$	1,328.70	\$	2,258.78	\$	3,839.93	\$	6,527.88	\$	11,097.40	\$	18,865.58	\$	29,534.07
EBIT (Operating) margin		-1.64%		-0.23%		1.18%		2.60%		4.01%		5.43%		6.84%
EBIT (Operating income)	\$	(21.86)	\$	(5.21)	\$	45.46	\$	169.63	\$	445.34	\$	1,023.93	\$	2,020.72
Tax rate		0.00%		0.00%		0.00%		0.00%		0.00%		0.00%		7.00%
EBIT(1-t)	\$	(21.86)	\$	(5.21)	\$	45.46	\$	169.63	\$	445.34	\$	1,023.93	\$	1,879.27
- Reinvestment			\$	659.64	\$	1,121.38	\$	1,906.35	\$	3,240.79	\$	5,509.35	\$	7,566.30
FCFF			\$	(664.84)	\$	(1,075.92)	\$	(1,736.72)	\$	(2,795.45)	\$	(4,485.42)	\$	(5,687.03)
NOL	\$	1,070.00	\$	1,075.21	\$	1,029.74	\$	860.11	\$	414.78	\$	-	\$	-
Cost of capital				10.03%		10.03%		10.03%		10.03%		10.03%		9.63%
Cumulated discount factor		0.9088		0.8260		0.7507		0.6822		0.6200		0.5656		
PV(FCFF)			\$	(604.23)	\$	(888.67)	\$	(1,303.68)	\$	(1,907.10)	\$	(2,781.02)	\$	(3,216.43)

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Stock Valuation Techniques: The Final Word

- No single technique provides a final answer regarding a stock's true value. All approaches require assumptions or forecasts that are too uncertain to provide a definitive assessment of the firm's value.
 - Most real-world practitioners use a combination of these approaches and gain confidence if the results are consistent across a variety of methods
 - Other methods: total payout model, dividend and earnings approach
 - Additional analysis: sensitivity analysis, scenario analysis...

A Glimpse at an Analysts' Report

• https://www.cfainstitute.org/en/societies/challenge/past-champions

Appendix A3: FGL Terminal Multiple Assumptions

The terminal multiple for FGL was determined through a 10-year trading multiples analysis of comparable companies in the sporting goods retailing subsector. The global median (second quartile) of the 10-year trading multiples analysis was used as the terminal multiple. The chosen competitor set included: Foot Locker, Inc., Cabela's Incorporated, Dick's Sporting Goods Inc., Sportman's Warehouse Holdings, Inc., and Hibbett Sports, Inc.

Historical EV / EBITDA Trend: Sporting Goods and Apparel Retailers

Source: written report of the 2016 champion

Analysts Often Disagree with Each Other!

Analysts' price targets of <u>Tesla Inc.</u>

Date	Brokerage	Action	Rating	Price Target
2/11/2019	Canaccord Genuity	Upgrade	Hold → Buy	\$330.00 → \$450.00
2/6/2019	Royal Bank of Canada	Reiterated Rating	Sell	\$245.00
2/5/2019	Morgan Stanley	Reiterated Rating	Equal → Equal Weight	\$291.00 → \$283.00
2/4/2019	DZ Bank	Reiterated Rating	Sell	
1/31/2019	CIBC	Reiterated Rating	Outperform → Outperform	\$418.00 → \$437.00
1/31/2019	JPMorgan Chase & Co.	Reiterated Rating	Underweight → Underweight	\$220.00 → \$230.00
1/31/2019	JMP Securities	Reiterated Rating	Mkt Outperform → Outperform	\$408.00 → \$406.00
1/31/2019	Jefferies Financial Group	Set Price Target	Buy	\$450.00

Why are We Learning This?

- The purpose of the lecture is not
 - To teach you how to make accurate forecasts so you can get rich
- But rather, the purpose is to get you familiar with the techniques so you are able to
 - Understand the assumptions and flaws of the pricing models
 - Be able to draw insights from the models even though they are flawed
 - Understand the news/reports
 - Take more advanced finance courses
 - Think critically

Summary

- Three commonly used methods to price stocks
 - Dividend discount model
 - Method of comparable pricing
 - Discounted free cash flow model
- No single method is perfect.
 - We typically use a combination of different methods in reality.
 - Analysts disagree with each other all the time.

Next Lecture—Risk and Return

- Motivation
- Definition and Measurement of Risk and Return
- Empirical Facts on Historical Returns