Consistency Notes and Formula Reference for the T0 Model

Johann Pascher

April 21, 2025

Abstract

This document contains notes on known consistency issues in the T0 model documentation, along with a comprehensive reference of mathematical symbols. It serves as a guide for readers of the documentation and as instructions for future revisions. The identified inconsistencies primarily concern the presentation of field equations, Lagrangian densities, and the notation of approximations.

Contents

1	Kno	Known Consistency Issues			
	1.1	Inconsistent Marking of Approximations			
	1.2	Variants of the Lagrangian Density			
	1.3	Parameters and Constants			
	1.4	References and URL Structure			
	1.5	Priorities for Future Revisions			
2	2 Formula Symbol Reference				
3	B Dimensions in Natural Units				

1 Known Consistency Issues

Note to Readers

The following list contains known consistency issues in the current T0 model documentation. These will be addressed in future revisions. Until then, this section serves as a guide to correctly interpret the various representations of the same concepts across different documents.

1.1 Inconsistent Marking of Approximations

P1. Field Equation for T(x): The fundamental equation $\nabla^2 T(x) \approx -\frac{\rho}{T(x)^2}$ is sometimes presented without the approximation sign (\approx). This is inconsistent and should be marked as an approximation throughout all documents.

Affected documents:

- MathZeitMasseLagrangeEn.tex (Section 2)
- EmergentGravT0En.tex (Section 3.2)
- MassVarGalaxienEn.tex (Section 2.1)
- QMRelTimeMassPart1ZEn.tex (Section 5.1)
- NatEinheitenSystematikZEn.tex (Section 15.1)

1.2 Variants of the Lagrangian Density

P2. Intrinsic Lagrangian Density: Different versions are presented without clear distinction or explanation of the relationships between these variants:

Simple version (free field dynamics):

$$\mathcal{L}_{\text{intrinsic}} = \frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - \frac{1}{2} T(x)^{2}$$
 (1)

With matter coupling:

$$\mathcal{L}_{\text{intrinsic}} = \frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - \frac{1}{2} T(x)^{2} - \frac{\rho}{T(x)}$$
 (2)

Complete form:

$$\mathcal{L}_{\text{intrinsic}}^{\text{complete}} = \underbrace{\frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - \frac{1}{2} T(x)^{2}}_{\text{Free field dynamics}} + \underbrace{\bar{\psi} \left(i\hbar \gamma^{0} \frac{\partial}{\partial (t/T(x))} - i\hbar \gamma^{0} \frac{\partial}{\partial t} \right) \psi}_{\text{Interaction with matter}}$$
(3)

Affected documents:

- $\bullet \quad Math Zeit Masse Lagrange En. tex$
- NotwendigkeitQMErweiterungEn.tex (Section 5.1)
- EmergentGravT0En.tex (Section 2.3)
- QMRelTimeMassPart1ZEn.tex (Section 4.1)

1.3 Parameters and Constants

P3. κ -Parameter: The derivation and dimension of the κ -parameter are represented differently:

Variant 1: $\kappa = \beta_T \cdot \frac{yv}{r_g^2}$ with dimension [E]

Variant 2: $\kappa^{\rm SI} \approx 4.8 \times 10^{-11} \, {\rm m/s}^2$ without explicit derivation

Affected documents:

- MassVarGalaxienEn.tex (Section 2.2)
- MessdifferenzenT0StandardEn.tex (Section 3.1)
- T0VereinheitlichungDEGalEn.tex (Section 4.2)

1.4 References and URL Structure

P4. Inconsistent URL Structure: The references to other documents in the series do not always follow the same pattern:

Correct structure:

- German: /pdf/Deutsch/Filename.pdf
- English: /pdf/English/FilenameEn.pdf

Affected documents: Various documents with inconsistent linking structure

1.5 Priorities for Future Revisions

The following measures should be implemented with priority in future revisions:

- M1. Consistent marking of all approximations with the symbol \approx in all field equations.
- M2. Introduction of a consistent representation of the Lagrangian density with clear indications of which version is used in which context:
 - Free field dynamics for propagation studies
 - With matter coupling for gravity-relevant applications
 - Complete form for comprehensive theoretical presentation
- M3. Unification of the derivation and dimension of the κ -parameter with explicit connection between the theoretical form and SI value.
- M4. Standardization of the URL structure in all documents according to the correct structure.

2 Formula Symbol Reference

Mathematical Symbols of the T0 Model

This reference contains the most important mathematical symbols of the T0 model with brief explanations.

3 Dimensions in Natural Units

Symbol	Meaning		
T(x)	Intrinsic time field; fundamental field with dimension $[E^{-1}]$		
T_0	Constant intrinsic time at rest mass		
\hbar	Reduced Planck constant; in natural units $\hbar = 1$		
c	Speed of light; in natural units $c = 1$		
G	Gravitational constant; in natural units $G = 1$		
k_B	Boltzmann constant; in natural units $k_B = 1$		
$lpha_{ m EM}$	Fine-structure constant; in natural units $\alpha_{\rm EM} = 1$		
$lpha_{ m W}$	Wien constant; in natural units $\alpha_{\rm W} = 1$		
$eta_{ m T}$	T0 parameter; in natural units $\beta_T = 1$		
$eta_{ m T}^{ m SI}$	T0 parameter in SI units; $\beta_{\rm T}^{\rm SI} \approx 0.008$		
$\gamma_{ m Lorentz}$	Lorentz factor; $\gamma_{\text{Lorentz}} = 1/\sqrt{1 - v^2/c^2}$		
ξ	Ratio of T0 length to Planck length; $\xi = r_0/l_P \approx 1.33 \times 10^{-4}$		
r_0	Characteristic T0 length; $r_0 = \xi \cdot l_P$		
l_P	Planck length; $l_P = \sqrt{\hbar G/c^3}$		
$\Phi(r)$	Modified gravitational potential; $\Phi(r) = -GM/r + \kappa r$		
κ	Linear term in the modified gravitational potential; $\kappa \approx 4.8 \times 10^{-2}$		
	$10^{-11}\mathrm{m/s}^2$		
λ_h	Higgs self-coupling; $\lambda_h \approx 0.13$		
v	Higgs vacuum expectation value; $v \approx 246 \text{GeV}$		
m_h	Higgs mass; $m_h \approx 125 \text{GeV}$		
ω	Angular frequency or photon energy		
ho	Mass density or general energy density		
$T(x)(\partial_{\mu} + igA_{\mu})\Phi + \Phi\partial_{\mu}T(x)$	Modified covariant derivative for Higgs field		
$\mathcal L$	Lagrangian density		
z	Redshift		
z_0	Reference redshift		
λ	Wavelength		
λ_0	Reference wavelength		

Table 1: Important mathematical symbols of the T0 model

Physical Quantity	SI Unit	Dimension in Natural Units
Length	m	$[E^{-1}]$
Time	S	$[E^{-1}]$
Mass	kg	[E]
Energy	J	[E]
Temperature	K	[E]
Electric Charge	\mathbf{C}	[1] (dimensionless)
Electric Field	V/m	$[E^2]$
Magnetic Field	T	$[E^2]$
Force	N	$[E^2]$
Pressure	Pa	$[E^4]$
Vacuum Permittivity ε_0	F/m	[1] (in nat. units $\varepsilon_0 = 1$)
Vacuum Permeability μ_0	H/m	[1] (in nat. units $\mu_0 = 1$)

Table 2: Dimensions of physical quantities in natural units