Modulo 7 – Princípios básicos de Scilab

Prof: Rafael Lima

Introdução

- Ambiente voltado para resolução de problemas numéricos
- Criado em 1990 por um grupo de pesquisadores do INRIA (Institut de Recherche en Informatique et en Automatique) e ENPC (Ecole Nationale des Ponts et Chaussées)
- Gratuito e código aberto
- http://www.scilab.org

Introdução

- Aplicações:
 - Álgebra linear
 - Polinômios e funções racionais
 - Interpolação
 - Otimização
 - Equações diferenciais
 - Estatística

 Para acessar ajuda através do console basta digitar:

```
--> help
```

 Para obter ajuda de uma função especifica basta digitar:

```
--> help sin
```

Variáveis não precisam ser declaradas:

$$-->_{X} = 1$$
 $x = 1$

Os valores das variáveis podem ser redefinidos:

```
-->x = 2
x = 2
2
-->x = 5
x = 5
```

- Para limpar a memória das variáveis não protegidas use o comando clear
- Para limpar a tela do prompt do scilab use clc

- Operadores básicos:
 - + Adição
 - Subtração
 - * Multiplicação
 - / Divisão a direita $x/y = xy^{-1}$
 - \ Divisão a esquerda $x \setminus y = x^{-1}y$
 - ^ Potencia x^y
 - * * Potencia x^y
 - Conjugado transposto

- Podemos nomear variáveis com até 24 caracteres
- Scilab é case sensitive, ou seja, scilab diferencia letras maiúsculas de minúsculas.
 Ex.: potencia e Potencia podem ser definidas como duas variáveis diferentes

- Comentários em scilab são iniciados por / /
- Os caracteres . . . permitem que continuemos uma expressão mesmo após o *enter*

```
-->//Este é um comentario

-->x = 1 + ...

-->2 + ...

-->3

x =
```

 Scilab possui já implementadas algumas funções matemáticas

acos	acosd	acosh	acoshm	acosm	acot	acotd	acoth
acsc	acscd	acsch	asec	asecd	asech	asin	asind
asinh	asinhm	asinm	atan	atand	atanh	atanhm	atanm
cos	$\cos d$	\cosh	$\cosh m$	$\cos m$	$\cot d$	cotg	coth
cothm	CSC	cscd	csch	sec	secd	sech	\sin
sinc	sind	\sinh	sinhm	$_{ m sinm}$	tan	tand	tanh
tanhm	$_{ m tanm}$						

 Essas funções aceitam como entrada vetores para evitar uso de *loops* ou estruturas de repetição

```
exp expm log log10 log1p log2 logm max
maxi min mini modulo pmodulo sign signm sqrt
sqrtm
```

```
-->x = cos(2);
-->y = sin(2);
-->x^2 + y^2
ans =
```

- Scilab possui variáveis pré-definidas que são iniciadas por %:
- %i Numero imaginário i
- %e Constante de Euller e
- %pi Constante matemática π

Exemplo:

```
-->cos(%pi)
ans =
- 1.
```

- Variáveis em scilab podem assumir também valores booleanos, ou seja, lógicos
- Verdadeiro é representado pelo símbolo %t
 ou %T
- Falso é representado pelo símbolo %f ou %F
- Valores booleanos são resultado de operações logicas

Operações lógicas:
a & b Logica e
a | b Logica ou
a Logica não
a==b Verdadeiro se a e b são iguais
a~=b ou a<> b Verdadeiro se a e b são diferentes
a<b Verdadeiro se a é menor que b

a>b Verdadeiro se a é maior que b
a<=b Verdadeiro se a é menor ou igual a b</p>
a>=b Verdadeiro se a é maior ou igual a b

• Exemplo:

```
-->a = %t
-->b = (0 == 1)
   F
-->a & b
ans =
   F
```

- Scilab também trabalha com números complexos
- Existem funções especificas para tratar números complexos

real Parte real de um numero

imag Parte imaginaria de um numero

imult Multiplicação por i

isreal Verdadeiro se a variável não contem parte imaginaria

Exemplos de operações:

```
-->_{X} = 1 + \%i;
-->real(x)
ans =
-->x '
ans =
```

- Scilab permite que strings sejam armazenadas em variáveis
- Strings devem estar entre \ \ \
- Operador + permite concatenar *strings*

```
-->nome = 'Rafael'
nome =
Rafael
-->sobrenome = 'Lima'
sobrenome =
Lima
-->nome + ' ' + sobrenome
ans =
Rafael Lima
```

- Scilab é fortemente orientado a matrizes
- Matrizes são definidas por
 - Numero de linhas
 - Numero de colunas
 - Tipo de dados
- Vetores são casos particulares de matrizes.
- Vetor linha tem dimensão 1 por n e vetores colunas tem dimensão n por 1 em que n é um inteiro qualquer

- Valores escalares são matrizes 1 por 1
- Uso de matrizes ao invés de loops torna o processamento mais rápido com scilab
- Definindo matrizes
 - Use [e] para delimitar os valores da matriz
 - Use , ou espaço em branco para separar os diferentes valores de diferentes colunas
 - Use ; para separar os valores de diferentes linhas

• Exemplo:

```
-->A = [1 2 7; 5 2 9; 6 1 9]

A =

1. 2. 7.

5. 2. 9.

6. 1. 9.
```

Outra forma alternativa de definir matrizes:

```
-->A = [279
-->951
-->064]
A =
```

7. 9.
 5. 1.

- Definição de vetores através do símbolo:
- Valor inicial: Incremento: Valor final

```
-->a = 1:2:11

a =

1. 3. 5. 7. 9. 11.

-->a = 1:6

a =

1. 2. 3. 4. 5. 6.

-->a = 10:-1:6

a =

10. 9. 8. 7. 6.
```

• Funções especiais para criar matrizes:

```
ones Cria matrizes com valores 1
zeros cria matrizes com valores 0
eye Cria matrizes unitárias
```

Exemplo:

```
-->ones(1,5)
ans = 1 1 1 1 1 1
```

- Matriz vazia é representada por []
- Essa representação permite liberar o conteúdo de variáveis na memória
- Exemplo:

```
-->A = ones(100,100);

-->A = [];

-->A

A = []
```

- Funções que estão relacionadas com a dimensão de matrizes: size, length, matrix, resize matrix e diag
- size Retorna o numero de linhas e colunas de uma matriz
- length Retorna o numero de elementos de uma matriz
- matrix Reformata uma matriz

- resize_matrix Cria uma nova matriz com tamanho diferente
- diag Retorna a diagonal principal de uma matriz

```
-->a = [1 2 3 1 2 3];

-->matrix(a, 2, 3)

ans =

1. 3. 2.

2. 1. 3.

-->b = resize_matrix(ans,2,5)

b =

1. 3. 2. 0. 0.

2. 1. 3. 0. 0.
```

Acesso de valores de uma matriz A, em que i
 e j são escalares e a e b são vetores:

```
A(i,j) Valor na linha i e coluna j
```

A(i,:) Todos valores na linha i

A(:, j) Todos valores na coluna j

A(:,:) ou A Matriz toda

A (a,b) Elementos compreendidos nas linhas e colunas cujos índices são os elementos do vetor a e b respectivamente

• Exemplo:

```
-->A = [1 2 7; 5 2 9; 6 1 9];
-->A(2,3)
ans =
9.
-->A(2,:)
ans =
   5. 2. 9.
-->A([1 2],[2 3])
ans =
   2. 7.
   2. 9.
```

 O operador \$ permite referenciarmos matrizes do fim ao invés do inicio

```
-->A = [1 2 7; 5 2 9; 6 1 9];

-->A($,2)

ans =

1.

-->A($,$)

ans =

9.
```

Operações com matrizes devem obedecer as regras matemáticas já conhecidas

```
-->A = [1 2 7; 5 2 9];

-->B = [2 6; 7 2; 2 2];

-->A*B

ans =

30. 24.

42. 52.

-->A*B'

!--error 10

Multiplicação incoerente.
```

 Se um . é colocado a frente dos operadores convencionais temos operações elemento por elemento

```
-->A = [1 2 7; 5 2 9];
-->A.*A
ans =
1. 4. 49.
25. 4. 81.
```

- Algumas operações de álgebra linear:
 - det Determinante de uma matriz
 - inv Inversa de uma matriz