

Análisis de algoritmos

Complejidad

Índice

- ¿ Por qué es necesario?
- ¿Cómo estimar el tiempo de ejecución ?
 - De qué depende
 - Como calcularlo
 - Experimentalemente
 - Estimándolo matemáticamente
- Análisis de algoritmos
 - Operaciones primitivas
 - Caso medio y caso peor
 - Notación asintótica
- Limitaciones del análisis asintótico

¿Por qué es necesario su análisis?

- Una vez dado un algoritmo para resolver un problema y comprobado que es correcto
- Hay que determinar su complejidad computacional (cantidad de recursos que necesita para su ejecución)
- ¿Cómo estimar el tiempo de ejecución ?
 - Tiempo de computación
 - Espacio
 - En memoria
 - En disco

Complejidad

Cómo estimar el tiempo de ejecución ?

- ¿Qué medimos? Tiempo de ejecución
- ¿De qué depende?
 - Tamaño de la entrada
 - Otros factores (Hw y Sw)
 - Velocidad de la máquina
 - Calidad del compilador
 - Calidad del programa
- ¿Cómo medirlo?
 - Experimentalmente
 - Estimandolo matemáticamente

¿Cómo medimos?. Experimentalmente

- Midiendo el tiempo de ejecución en función del tamaño de la entrada
 - No podemos probar todas las entradas
 - Es necesario implementar el algoritmo
 - Depende del Software y Hardware
- Busquemos otra medida
 - Mas abstracta
 - Mas fácil de obtener

5

Complejidad

¿Cómo medimos?. Objetivo

- Considerar todas las entradas
- Independiente del entorno de Software y Hardware
- Puedan ejecutarse estudiando una descripción de alto nivel de algoritmo, sin implementarlo

¿Cómo medimos?

 Vamos a suponer que tenemos un algoritmo que verifica si los valores de la primera y segunda posición de un array son iguales

а	b	С	d	е	f	g	h	i	j
\uparrow	=?								

- ¿Cuantas comparaciones necesitamos si el array tiene 10 elementos?
- ¿Cuantas comparaciones necesitamos si el array tiene 100 elementos?

7

Complejidad ¿Cómo medimos?

- El número de comparaciones a realizar es constante (no hay que realizar más comparaciones aunque haya más elementos)
- El algoritmo es independiente del tamaño del array
- La complejidad del algoritmo es O(1)
 (la velocidad de crecimiento del algoritmo es constante)

¿Cómo medimos?

Vamos a suponer que tenemos un algoritmo que verifica si el valor de la primera posición de un array es igual al de la segunda y tercera posición

El número de comparaciones a realizar es constante (no hay que realizar más comparaciones aunque haya más elementos)

9

Complejidad ¿Cómo medimos?

Vamos a suponer que tenemos un algoritmo que verifica si el valor de la primera posición de un array está repetido

¿En el peor de los casos cuantas comparaciones habrá que realizar?

> ∴ ¿Cúal es el termino dominante? (cuando n es muy grande...)

¿Cómo medimos?. Estimación matemática

- Buscamos para cada algoritmo una función que dependa de la entrada: f(n)
- Emplearemos el caso peor para caracterizar el tiempo de ejecución
- Interesa la velocidad de crecimiento del tiempo de ejecución en función del tamaño de la entrada

11

Complejidad

¿Cómo medimos?. Estimación matemática

- Método de "contar pasos":
 - Tiempo constante
 - asignación, llamada método, op. aritmética, index. array, escribir/leer un valor
 - Suma de tiempo de cada iteración
 - Ciclos (más eval. de la condición en cada paso)
 - Máximo de tiempos
 - · Instrucción condicional
 - Coste adicional
 - Llamada a subprogramas

Complejidad: Ejemplo

¿Cómo medimos?. Estimación matemática

 Vamos a suponer que se quiere desarrollar el siguiente método:

public boolean esAnagrama(Palabra pal1, Palabra pal2)

//Pre: pal1 y pal2 representan dos palabras, estando todas sus // letras en mayúsculas

//Post: Devuelve True si pal1 y pal2 tienen las mismas letras

Por ejemplo: pal1="VITORIA" y pal2="VORIATI" son anagrama

12

Ejemplo: esAnagrama? (I)

Ejemplo: esAnagrama? (I)

4 marcas iniciales

Buscar cada letra de pal1 en pal2

4*4 comprobaciones (en el caso peor)

Ver si las 4 letras han sido marcadas (en el caso peor)

EsAnagrama(I)

Programa Java

```
public static boolean esAnagrama (Palabra p1, Palabra p2) {
 char[] pal1 = p1.getLetras();
 char[] pal2 = p2. getLetras();
 int[] v = new int[4]; int p,j;
 //Inicializar posiciones visitadas
 for (int i=0;i<4;i++)
    v[i]=0;
 for (int i=0;i<4;i++) {
   while ( (j<4) && !(pal1[i]==pal2[j] && v[j]==0) )
   if ( (j<4) && pal1[i]==pal2[j] && v[j]==0 )
     v[j]=1;
 p=0;
 while ((p<4) && (v[p]==1))
 if (p==4) return true;
  else return false;
                                                                        16
```


Ejemplo: esAnagrama? (II)

Coste:

Asignar 26 ceros

Hacer 4 incrementos (pal1)

Hacer 4 decrementos (pal2)

Hacer 26 comprobaciones (en el caso peor)

17

Comparativa algoritmos

Cuando n es lo bastante grande el algoritmo2 es mas eficiente que el algoritmo1.

Cómo se expresa el coste en tiempo de un algortimo

- Clasificación de las funciones para expresar cómo crece el tiempo en función del tamaño de los datos.
- O mayúscula de f: O(f)
 - Denota el conjunto de funciones en O(f)
 que crecen "a lo más tan rápido como f"

$$O(f) = \{ g \mid \exists c \in R \ \exists n \ 0 \in N \ \forall n > n \ 0 \ g(n) < c.f(n) \}$$

19

Notación O

 $O(f) = \{ g \mid \exists c \in R \ \exists n0 \in N \ \forall n > n0 \ g(n) < c.f(n) \}$

Estructuras de datos y Algorítmos I 2011/2012 Dpto. LSI

Ejemplos

- 7n-3 es O(n)
 - -c=7, n0=1
 - -7n-3 <= 7n
- 20n³+10n log n+5 es O(n³)
- 3 log n+log(log n) es $O(\log n)$
- 2¹⁰⁰ es O(1)
- 5/n es O(1/n)

21

Notación O

- Formas de crecimiento más habituales
- O(log n) logarítmica
 O(n) lineal
 O(n.log n)
 O(n²) cuadrática
 O(n³) cúbica
 O(nm) polinómica
 O(2n) exponencial
- $O(\log n) \ O(n) \ O(n.\log n) \ O(n^2) \ O(n^3) \ O(n^m) \ O(2^n)$
- Interesa afinar lo más posible en escala de O(f)

Crecimiento de funciones

log n	\sqrt{n}	n	n log n	n ²	n ³	2 ⁿ
1	1,4	2	2	4	8	4
2	2,0	4	8	16	64	16
3	2,8	8	24	64	512	256
4	4,0	16	64	256	4.096	65.536
5	5,7	32	160	1.024	32.768	4.294.967.296
6	8,0	64	384	4.096	262.144	1,8 * 10 ¹⁹
7	11,0	128	896	16.536	2.097.152	3,4 * 10 ³⁸

23

Complejidad

Justificación de la notación asintótica

- Para un N suficientemente grande, el valor de la función esta completamente determinado por su término dominante
- El valor del coeficiente del termino dominante se conserva al cambiar de máquina
- Los valores pequeños de N, generalmente, no son importantes

Ejemplo I

- Dado un array de enteros, hallar el máximo
 - Entrada: Un array A con n enteros
 - Salida: el elemento mayor de A
- Algoritmo: arrayMax(A, n)

```
current=A[0];
for(i=1;i<n;i++)
          if (A[i]>current)
          current=A[i];
```

- return current
- Caso mejor = 2+4*(n-1)+1 = 4n-1
- Caso peor = 2+6*(n-1)+1 = 6n-3

25

Ejemplo II

 Dado un array A de n números, calcular otro array B, tal que:

$$B[i] = \sum_{j=0}^{i} A[j]$$

A partir de una secuencia de números A[j] calculamos otra (B[i]) tal que cada uno de sus elementos sea la suma de todos los anteriores en la secuencia original

Ejemplo II Solución 1

```
for (i=0;i<n;i++) {
    s=0;
    for(j=0;j<=i;j++)
        s=s+A[j];
    B[i]=s;
}
return B;</pre>
```

Partes:

Inicializar y devolver el array:O(n)

Bucle i: se ejecuta n veces: O(n)

Bucle j: se ejecuta $1+2+3+...+n=(1+n)n/2 : O(n^2)$

Total: $O(n)+O(n)+O(n^2)$ es $O(n^2)$

27

Ejemplo II Solución 2

Aprovechamos las operaciones realizadas en el término anterior para reducir la complejidad del algoritmo

A The state of the

Ejemplo II Solución 2

B[0]=A[0] for(i=1;i<n;i++) B[i]=B[i-1]+A[i] return B

Partes:

Inicializar y devolver el array A[]:O(n)

Bucle i: se ejecuta n-1 veces

Total: O(n)+O(1)+O(n) es O(n) (Orden lineal)

29

Complejidad

Limitaciones del análisis asintótico

- No es apropiado para pequeñas cantidades de datos
- A veces el análisis asintótico es una sobreestimación
- La cota de tiempo de ejecución en el caso promedio puede ser significativamente menor que la cota en el caso peor
- El caso peor en ocasiones es poco representativo por lo que puede ser ignorado