

Adaptation de maillage pour la simulation de la pyrolyse d'un matériau de protection thermique

Encadré par C.Barranger et H.Beaugendre

Objectifs

Bouclier thermique PICA de la sonde Mars Science Laboratory (2011).

Contexte : matériaux de protections thermiques dans le domaine de l'aérospatial.

- Etudier le **front de pyrolyse** dans un objet soumis à un flux de chaleur
- Simuler le phénomène numériquement en 1D
- Mettre en place une **méthode d'adaptation** de maillage

Modélisation mathématique

- Loi d'Arrhenius et de la chaleur couplées :

$$\begin{cases} \frac{\partial}{\partial t} \left(\rho C_p (T - T_0) + L_m \rho \right) - div(\lambda \nabla T) = 0 \\ \frac{\partial \rho}{\partial t} = -A_{ref} e^{-T_A/T} (\rho - \rho_p) \end{cases}$$

- Modélisation de la variation des constantes physiques

$$\begin{cases} \rho C_p = (1 - \xi)\rho_v C_{pv} + \xi \rho_p C_{pp} \\ \lambda = (1 - \xi)\lambda_v + \xi \lambda_p \end{cases}$$

Mise en place de la méthode des volumes finis

- Étape 1 : Résolution de l'équation d'Arrhenius

$$\forall t \in [t_n, t_{n+1}], \quad \frac{\partial \rho}{\partial t}(x, t) = -A_{ref}e^{-T_A/T(t_n, x)}(\rho(x, t) - \rho_p)$$

$$\rho * = \frac{\rho_i^n + \Delta t \rho_p A_{ref}e^{-T_A/T_i^n}}{1 + \Delta t A_{ref}e^{-T_A/T_i^n}}$$

- Étape 2 : Calcul des grandeurs physiques, de manière intermédiaire

$$\xi^* = \frac{\rho_v - \rho^*}{\rho_v - \rho_p}. \qquad C_p^* = \frac{(1 - \xi^*)\rho_v C_{pv} + \xi^* \rho_p C_{pp}}{\rho^*} \qquad \lambda^* = (1 - \xi^*)\lambda_v + \xi^* \lambda_p$$

- Étape 3 : Résolution de l'équation de la chaleur

$$\forall t \in [t_n, t_{n+1}], \quad \frac{\partial}{\partial t} \left(\rho^*(x) C_p^*(x) T + L_m \rho \right) - \lambda^* div(\nabla T) = 0$$

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \rho^{\star}(x) C_p^{\star}(x) (T(t_{n+1}, x) - T(t_n, x)) dx - \int_{t_n}^{t_{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} \lambda^{\star}(x) \frac{\partial^2 T}{\partial x^2} dx dt = L_m h_i \Delta t f(\rho^{\star})$$

Approximation de la température :

$$T_i^n = \frac{1}{h_i} \int_{x_{i-1/2}}^{x_{i+1/2}} T(t_n, x) dx$$

Équation exacte exprimant les flux, dus à l'intégrale en temps de la dérivée en espace :

$$\rho_i^{\star} C_{p_i}^{\star} h_i (T_i^{n+1} - T_i^n) - \lambda_i^{\star} \Delta t \left(\frac{\partial T}{\partial x} (t_{n+1}, x_{i+\frac{1}{2}}) - \frac{\partial T}{\partial x} (t_{n+1}, x_{i-\frac{1}{2}}) \right) = L_m h_i \Delta t f(\rho_i^{\star})$$

Schéma volumes finis

Approximation par différences finies : $\frac{\partial T}{\partial x}(t_{n+1},x_{i+\frac{1}{2}}) = 2\frac{T_{i+1}^{n+1} - T_i^{n+1}}{h_i + h_{i+1}} + O(\max(h_i,h_{i+1}))$

Schéma valable à l'intérieur du maillage :

$$T_{i}^{n+1} = T_{i}^{n} + \frac{2\lambda_{i}^{\star}\Delta t}{\rho_{i}^{\star}C_{p_{i}}^{\star}} \frac{1}{hi} \left(\frac{(h_{i-1} + h_{i})T_{i+1}^{n+1} - (h_{i-1} + 2h_{i} + h_{i+1})T_{i}^{n+1} + (h_{i} + h_{i+1})T_{i-1}^{n+1}}{(h_{i} + h_{i-1})(h_{i} + h_{i+1})} \right) + \frac{L_{m}}{\rho_{i}^{\star}C_{p_{i}}^{\star}} \Delta t f(\rho_{i}^{\star})$$

Conditions aux limites

• Limite à gauche

$$\begin{cases} \Phi(t) = 10000t \text{ pour } t \in [0, 50] \\ \Phi(t) = 500000 - 9000(t - 50) \text{ pour } t \in [50, 100] \end{cases}$$

Loi de Fourier : $\phi = -\lambda \partial_x T$

Schéma sur le bord gauche :

$$T_1^{n+1} = T_1^n + \frac{2\lambda_1^{\star} \Delta t}{\rho_1^{\star} C_{p_1}^{\star}} \frac{1}{h_1} \left(2 \frac{T_2^{n+1} - T_1^{n+1}}{h_1 + h_2} + \frac{\Phi}{\lambda^{\star}} \right) + \frac{L_m}{\rho_1^{\star} C_{p_1}^{\star}} \Delta t f(\rho_1^{\star})$$

• Limite à droite

- bord adiabatique
- dissipation d'énergie nulle \rightarrow Loi de Fourier : $\partial_x T = 0$

$$T_N^{n+1} = T_N^n + \frac{2\lambda_N^* \Delta t}{\rho_N^* C_{p_N}^*} \frac{1}{h_N} \left(-2 \frac{T_N^{n+1} - T_{N-1}^{n+1}}{h_{N-1} + h_N} \right) + \frac{L_m}{\rho_N^* C_{p_N}^*} \Delta t f(\rho_N^*)$$

Résolution du schéma numérique

Schéma sous forme matricielle

$$(I+A)\widetilde{T}^{n+1} = \widetilde{T}^n + \widetilde{f}$$

avec

$$\widetilde{f} = \begin{pmatrix} \gamma_1 + rac{\Delta t \Phi}{
ho_1 C_{p_1} h_1} \\ \gamma_2 \\ \vdots \\ \gamma_N \end{pmatrix} \quad \text{où} \quad \gamma_i = rac{L_m \Delta t}{
ho_i^{\star} C_{p_i}^{\star}} f(\rho_i^{\star}) \quad \forall i = \{1, N\}$$

$$\gamma_i = rac{L_m \Delta t}{
ho_i^\star C_{p_i}^\star} f(
ho_i^\star) \quad orall i = \{1, N\}$$

et
$$A = \begin{pmatrix} \frac{2\lambda_{1}^{*}\Delta t}{\rho_{1}^{*}C_{p_{1}}^{*}h_{1}\beta_{1}} & \frac{-2\lambda_{1}^{*}\Delta t}{\rho_{1}^{*}C_{p_{1}}^{*}h_{1}\beta_{1}} \\ -\alpha_{2}\beta_{2} & \alpha_{2}(\beta_{1}+\beta_{2}) & \cdot -\alpha_{2}\beta_{1} \\ & \ddots & \ddots & \\ & -\alpha_{N-1}\beta_{N-1} & \alpha_{N-1}(\beta_{N-2}+\beta_{N-1}) & -\alpha_{N-1}\beta_{N-2} \\ & & \frac{-2\lambda_{N}^{*}\Delta t}{\rho_{N}^{*}C_{p_{N}}^{*}h_{N}\beta_{N-1}} & \frac{2\lambda_{N}^{*}\Delta t}{\rho_{N}^{*}C_{p_{N}}^{*}h_{N}\beta_{N-1}} \end{pmatrix}$$

$$\alpha_i = \frac{2\lambda_i^* \Delta t}{\rho_i^* C_{p_i}^* h_i \beta_{i-1} \beta_i}$$
 et $\beta_i = h_i + h_{i+1}, \forall i \in [1, N]$

Résultats pour un maillage fixe

- 1) Calcul d'un maillage équidistant fixe
- 2) Calcul de ρ^*
- 3) Calcul de C_p et λ
- 4) **Résolution du système** pour obtenir T
- 5) Réévaluer ρ avec la nouvelle T

Front très raide, peu de points dessus → **adaptation** de maillage

Raffinement en structuré

Besoin de raffiner le maillage à cause des variations rapides de la densité sur une section particulière.

• Equilibre d'un ensemble de **ressorts** de raideurs k(i) :

$$k(i) = \frac{metrique(x_{i-1}) + metrique(x_i)}{2}$$

Raideurs calculées à partir de la métrique d'un élément du maillage :

$$metrique(x_i) = \sqrt{\max(|u''(x_i)|, 0.5)}$$

• Matrice élémentaire de raideur Me,

Structure de la boucle d'adaptation

Représentation schématique de la méthode des ressorts.

- Conditions d'arrêt : nombre d'itérations itemax et tolérance
- Calcul de la **métrique** en chacun des points du maillage
- Assemblage des matrices élémentaires Me
- **Résolution** du système MX = B

Résultat sur un exemple

Représentation d'un maillage 1D avant et après application de la méthode des ressorts.

Schéma pour un maillage mobile

- Les coordonnées d'espace sont des fonctions du temps :

$$\int_{t_n}^{t_{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} \left(\rho^{\star}(x) C_p^{\star}(x) \frac{\partial}{\partial t} T - \lambda^{\star}(x) \frac{\partial^2 T}{\partial x^2} \right) dx dt = \int_{t_n}^{t_{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} L_m f(\rho^{\star}) dx dt$$

Formule de Reynolds :

$$\int_{t_n}^{t^{n+1}} \left(\int_{x_{i-1/2}(t)}^{x_{i+1/2}(t)} \frac{\partial T}{\partial t}(t,x) dx \right) dt \simeq h_i^{n+1} T_i^{n+1} - h_i^n T_i^n - \Delta t \left(\widehat{\nu}_{i+1/2} T_{i+1/2}^n - \widehat{\nu}_{i-1/2} T_{i-1/2}^n \right)$$

- Définition de la vitesse du maillage :

$$\widehat{\nu}_{i+1/2} = \frac{x_{i+1/2}^{n+1} - x_{i+1/2}^{n}}{\Delta t}$$

Définitions des temps ½ :

$$\begin{cases} T_{i+1/2}^n = T_i^n & \text{si } \widehat{\nu}_{i+1/2} \geqslant 0 \\ T_{i+1/2}^n = T_{i+1}^n & \text{si } \widehat{\nu}_{i+1/2} < 0 \end{cases}$$

On obtient finalement le schéma suivant :

$$\left(h_i^{n+1} T_i^{n+1} - h_i^n T_i^n - (x_{i+1/2}^{n+1} - x_{i+1/2}^n) T_{i+1/2}^n + (x_{i-1/2}^{n+1} - x_{i-1/2}^n) T_{i-1/2}^n \right)$$

$$= \frac{2\lambda_i^{\star} \Delta t}{\rho_i^{\star} C_{p_i}^{\star}} \left(\frac{(h_{i-1}^{n+1} + h_i^{n+1}) T_{i+1}^{n+1} - (h_{i-1}^{n+1} + 2h_i^{n+1} + h_{i+1}^{n+1}) T_i^{n+1} + (h_i^{n+1} + h_{i+1}^{n+1}) T_{i-1}^{n+1}}{(h_i^{n+1} + h_{i-1}^{n+1}) (h_i^{n+1} + h_{i+1}^{n+1})} \right) + \Delta t \frac{L_m h_i^{n+1}}{\rho_i^{\star} C_{p_i}^{\star}} f(\rho_i^{\star})$$

Conditions aux limites

Utilisations des conditions limites et de la loi de Fourier pour obtenir l'expression de T_0 et T_{N+1}

$$\begin{cases} \frac{\partial T_{1/2}^n}{\partial x} = -\frac{\Phi_{1/2}}{\lambda_{1/2}} \simeq 2\frac{T_1^n - T_0^n}{h_0^n + h_1^n} \\ \frac{\partial T_{N+1/2}^n}{\partial x} = 0 \simeq 2\frac{T_{N+1}^n - T_N^n}{h_N^n + h_{N+1}^n} \end{cases}$$

Mise sous forme matricielle

Schéma sous forme matricielle

$$(I+A)\widetilde{T}^{n+1} = \widetilde{f}$$

Second membre

$$\widetilde{f} = \begin{pmatrix} \gamma_1 + \frac{\Delta t \Phi}{\rho_1 C_{p_1} h_1^{n+1}} \\ \gamma_2 \\ \vdots \\ \gamma_n \\ \vdots \\ \gamma_{N-1} \\ \gamma_N \end{pmatrix} + \begin{pmatrix} \frac{\Delta t}{h_1^{n+1}} \left(\widehat{\nu}_{3/2}^+ T_1^n + \widehat{\nu}_{3/2}^- T_2^n - \widehat{\nu}_{1/2}^+ \left(T_1^n + \frac{\Phi(h_0^n + h_1^n)}{2\lambda_{1/2}} \right) - \widehat{\nu}_{1/2}^- T_1^n \right) \\ \frac{\Delta t}{h_2^{n+1}} \left(\widehat{\nu}_{5/2}^+ T_2^n + \widehat{\nu}_{5/2}^- T_3^n - \widehat{\nu}_{3/2}^+ T_1^n - \widehat{\nu}_{3/2}^- T_2^n \right) \\ \vdots \\ \gamma_{N-1} \\ \gamma_N \end{pmatrix} + \begin{pmatrix} \frac{\Delta t}{h_1^{n+1}} \left(\widehat{\nu}_{5/2}^+ T_1^n + \widehat{\nu}_{5/2}^- T_3^n - \widehat{\nu}_{3/2}^+ T_1^n - \widehat{\nu}_{3/2}^- T_2^n \right) \\ \vdots \\ \vdots \\ \frac{\Delta t}{h_n^{n+1}} \left(\widehat{\nu}_{i+1/2}^+ T_i^n + \widehat{\nu}_{i+1/2}^- T_{i+1}^n - \widehat{\nu}_{i-1/2}^+ T_{i-1}^n - \widehat{\nu}_{i-1/2}^- T_i^n \right) \\ \vdots \\ \vdots \\ \frac{h_n^n}{h_n^{n+1}} T_i^n \\ \vdots \\ \vdots \\ \frac{h_n^n}{h_n^{n+1}} T_i^n \end{pmatrix}$$

Résultats pour un maillage mobile

Résolution avec un maillage mobile

Problèmes

Problème lors de l'ajout de l'adaptation de maillage dans le reste du code.

D'où vient-il ? Sûrement de la dérivée seconde utilisée pour créer la métrique.

Comment résoudre potentiellement ce problème ? Borner cette dérivée.

Conclusion

- Résolution d'un système d'équations par la méthode des volumes finis
- Mise en place d'une méthode d'adaptation de maillage
- Découverte et application de la méthode ALE
- Résultats mitigés → réussite de certains objectifs