Linear equations Linear algebra basics

Ivo Roghair, Martin van Sint Annaland

Chemical Process Intensification, Eindhoven University of Technology

Today's outline

Introduction

- Introduction
- Matrix inversion
- 3 Solving a linear system
- 4 Towards larger systems
- Summary

Introduction 000

- Introduction

Introduction

Goals

- Different ways of looking at a system of linear equations
- Determination of the inverse, determinant and the rank of a matrix
- The existence of a solution to a set of linear equations

Separate equations:

Introduction

$$x + y + z = 4$$
$$2x + y + 3z = 7$$
$$3x + y + 6z = 5$$

• Matrix mapping Mx = b:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Linear combination:

$$x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Today's outline

- Matrix inversion

Inverse of a matrix

The inverse M⁻¹ is defined such that:

$$MM^{-1} = I$$
 and $M^{-1}M = I$

• Use the inverse to solve a set of linear equations:

$$Mx = \mathbf{b}$$

$$M^{-1}Mx = M^{-1}\mathbf{b}$$

$$Ix = M^{-1}\mathbf{b}$$

$$x = M^{-1}\mathbf{b}$$

How to calculate the inverse?

 The inverse of an N × N matrix can be calculated using the co-factors of each element of the matrix:

$$M^{-1} = \frac{1}{\det |M|} \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$

- $\det |M|$ is the *determinant* of matrix M.
- C_{ii} is the *co-factor* of the ij^{th} element in M.

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ± 1 , depending on the position.

$$\begin{bmatrix} \mathbf{1} & \times & \times \\ \times & \mathbf{1} & \mathbf{3} \\ \times & \mathbf{1} & \mathbf{6} \end{bmatrix}$$

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ± 1 , depending on the position.

$$\begin{bmatrix}
1 & \times & \times \\
 \times & 1 & 3 \\
 \times & 1 & 6
\end{bmatrix} \qquad
\begin{bmatrix}
+ & - & + \\
- & + & - \\
+ & - & +
\end{bmatrix}$$

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ± 1 , depending on the position.

$$\begin{bmatrix} 1 & \times & \times \\ \times & 1 & 3 \\ \times & 1 & 6 \end{bmatrix} \quad \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \qquad C_{11} = \begin{bmatrix} +1 & \cdot & \det & 1 & 3 \\ 1 & 6 & 1 & 6 \end{bmatrix}$$
$$= 6 \times 1 - 3 \times 1 = 3$$

Back to our example:

$$M^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}^{-1} = \frac{1}{\det |M|} \begin{bmatrix} 3 & -3 & -1 \\ -5 & 3 & 2 \\ 2 & -1 & -1 \end{bmatrix}^{T}$$

Back to our example:

$$M^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}^{-1} = \frac{1}{\det |M|} \begin{bmatrix} 3 & -3 & -1 \\ -5 & 3 & 2 \\ 2 & -1 & -1 \end{bmatrix}^{T}$$

- The determinant is very important
- If det |M| = 0, the inverse does not exist (singular matrix)

Calculating the determinant

Compute the determinant by multiplication of each element on a row (or column) by its cofactor and adding the results:

$$\det \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix} - \det \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = -1$$

Calculating the determinant

Compute the determinant by multiplication of each element on a row (or column) by its cofactor and adding the results:

$$\det \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix} - \det \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = -1$$

$$\det \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} - 3\det \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} + 6\det \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = -1$$

Today's outline

- Introduction
- Matrix inversion
- 3 Solving a linear system
- 4 Towards larger systems
- Summary

Solving a linear system

Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Solving a linear system

• Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

The solution is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = M^{-1}b = \frac{1}{-1} \begin{bmatrix} 3 & -5 & 2 \\ -3 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} -13 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 13 \\ -4 \\ -5 \end{bmatrix}$$

Solving a linear system

• Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

• The solution is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = M^{-1}b = \frac{1}{-1} \begin{bmatrix} 3 & -5 & 2 \\ -3 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} -13 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 13 \\ -4 \\ -5 \end{bmatrix}$$

• The inverse exists, because $\det |M| = -1$.

Create the matrix:

• Create the matrix:

Create solution vector:

```
>> b = [4; 7; 5];
```

Create the matrix:

```
>> A = [1 1 1; 2 1 3; 3 1 6];
```

Create solution vector:

```
>> b = [4; 7; 5];
```

Get the matrix inverse:

```
>> Ainv = inv(A);
```

Create the matrix:

Create solution vector:

Get the matrix inverse:

```
>> Ainv = inv(A);
```

Compute the solution:

```
>> x = Ainv * b
```

• Create the matrix:

Create solution vector:

```
>> b = [4; 7; 5];
```

Get the matrix inverse:

```
>> Ainv = inv(A);
```

Compute the solution:

```
>> x = Ainv * b
```

Matlab's internal direct solver:

```
>> x = A \setminus b
```

These are black boxes! We are going over some methods later!

Create a script that generates matrices with random elements of various sizes $N \times N$. Compute the inverse of each matrix, and use tic and too to see the computing time for each inversion. Plot the time as a function of the matrix size N.

Create a script that generates matrices with random elements of various sizes $N \times N$. Compute the inverse of each matrix, and use tic and toc to see the computing time for each inversion. Plot the time as a function of the matrix size N.

```
% Generate random matrices of various sizes 's'.
 Invert the matrices and store the time required
 for the inversion. Plot the times vs 's'
 = [10:10:90 100:100:1000 2000:1000:5000 10000]
for n = 1:length(s)
```

Create a script that generates matrices with random elements of various sizes $N \times N$. Compute the inverse of each matrix, and use tic and toc to see the computing time for each inversion. Plot the time as a function of the matrix size N.

```
% Generate random matrices of various sizes 's'.
% Invert the matrices and store the time required
% for the inversion. Plot the times vs 's'
s = [10:10:90 100:1000:1000 2000:1000:5000 10000]
for n = 1:length(s)
    s(n)
    A = rand(s(n));
```

Create a script that generates matrices with random elements of various sizes $N \times N$. Compute the inverse of each matrix, and use tic and toc to see the computing time for each inversion. Plot the time as a function of the matrix size N.

```
% Generate random matrices of various sizes 's'.
 Invert the matrices and store the time required
% for the inversion. Plot the times vs 's'
s = [10:10:90 \ 100:100:1000 \ 2000:1000:5000 \ 10000]
for n = 1:length(s)
    s(n)
    A = rand(s(n));
    tic;
    Ainv = inv(A);
    t_{inv}(n) = toc;
end
loglog(s,t_inv)
xlabel('N')
vlabel('Time [s]')
```

Exercise: sample results

Each computer produces slightly different results because of background tasks, different matrices, etc. This is especially noticable for small systems.

The time increases by 3 orders of magnitude, for every magnitude in N. A matrix inversion scales with $\mathcal{O}(N^3)$!

$$Ax = b \qquad \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

- Create matrix A in 3×3 cells
- Create right hand side vector b in 3 vertical cells

¹In Dutch Excel: INVERSEMAT

 $^{^2}$ In Dutch Excel: PRODUCTMAT. The semicolon may be a comma.

$$Ax = b \qquad \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

- Create matrix A in 3 × 3 cells
- Create right hand side vector **b** in 3 vertical cells
- Compute the inverse // :
 - Select an empty area of 3×3 cells
 - Type =MINVERSE(B2:D4) 1
 - Close with Ctrl+Shift+Enter

¹In Dutch Excel: INVERSEMAT

²In Dutch Excel: PRODUCTMAT. The semicolon may be a comma.

$$Ax = b \qquad \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

- Create matrix A in 3 × 3 cells
- Create right hand side vector b in 3 vertical cells
- Compute the inverse // :
 - Select an empty area of 3×3 cells
 - Type =MINVERSE(B2:D4) 1
 - Close with Ctrl+Shift+Enter
- Solution:
 - Select 3 vertical cells
 - Type =MMULT(H2:J4; B6:B8) 2
 - Close with Ctrl+Shift+Enter

¹In Dutch Excel: INVERSEMAT

²In Dutch Excel: PRODUCTMAT. The semicolon may be a comma.

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- 4 Towards larger systems
- Summary

Towards larger systems

Computation of determinants and inverses of large matrices in this way is too difficult (slow), so we need other methods to solve large linear systems!

Towards larger systems

Determinant of upper triangular matrix:

$$\det \left| M_{\mathsf{tri}} \right| = \prod_{i=1}^{n} a_{ii} \qquad M = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 9 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \det \left| M \right| = 5 \times 9 \times 1 = 45$$

Matrix multiplication:

$$\det |AM| = \det |A| \times \det |M|$$

• When A is an identity matrix (det |A| = 1):

$$\det |AM| = \det |A| \times \det |M| = 1 \times \det |M|$$

• With rules like this, we can use row-operations so that we can compute the determinant more cheaply.

Solutions of linear systems

Rank of a matrix: the number of linearly independent columns (columns that can not be expressed as a linear combination of the other columns) of a matrix.

$$M = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 9 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- 3 independent columns
- In Matlab:

$$M = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

•
$$col 4 = col 3 - col 1$$

 2 independent columns: rank = 2

Solutions of linear systems

The solution of a system of linear equations may or may not exist, and it may or may not be unique. Existence of solutions can be determined by comparing the rank of the Matrix M with the rank of the augmented matrix M_a :

```
>> rank(A)
>> rank([A b])
```

Our system: Mx = b

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} M_{11} & M_{12} & M_{13} & b_1 \\ M_{21} & M_{22} & M_{23} & b_2 \\ M_{31} & M_{32} & M_{33} & b_3 \end{bmatrix}$$

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_a :

• Rank(M) = n: Unique solution

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_a :

• Rank(M) = n: Unique solution

• Rank $(M) = \text{Rank}(M_a) < n$: Infinite number of solutions

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_a :

• Rank(M) = n: Unique solution

• $Rank(M) = Rank(M_a) < n$: Infinite number of solutions

• Rank(M) < n, $Rank(M) < Rank(M_a)$: No solutions

Two examples

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 4 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

 $rank(M) = 3 = n \Rightarrow Unique solution$

Two examples

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 4 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

 $rank(M) = 3 = n \Rightarrow Unique solution$

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 0 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $rank(M) = rank(M_a) = 2 < n \Rightarrow$ Infinite number of solutions

Today's outline

- Summary

Summary

- Linear equations can be written as matrices
- Using the inverse, the solution can be determined
 - Inverse via cofactors
 - Inverse and solution in Matlab
 - Inverse and solution in Excel
- Inversion scales with N³
- A solution depends on the rank of a matrix