Practical Machine Learning for Streaming Data

ACM SIGKDD Tutorial (hands-on) 2024

Heitor Murilo Gomes¹, Albert Bifet^{2,3}

https://adaptive-machine-learning.github.io/kdd2024 ml for streams/

THE UNIVERSITY OF WAIKATO

Concept Drifts

Evolving Stream Learning

There is nothing permanent except change.

Heraclitus

Evolving Stream Learning

- The world is dynamic... changes occur all the time
- These changes affect our machine learning models

Evolving Stream Learning

- The world is dynamic... changes occur all the time
- These changes affect our machine learning models

Ideally, we would like to...

- (1) Detect, understand and react to changes in the data
- (2) Learn new concepts without forgetting old concepts

Learn to classify new classes

Learn to classify new classes

Update itself to accommodate for changes within existing classes

Learn to classify new classes

Update itself to accommodate for changes within existing classes

Forgets that which is no longer needed

Learn to classify new classes

Class Evolution (Stream Learning)

Class Incremental (Continual Learning)

Update itself to accommodate for changes within existing classes

Forgets that which is no longer needed

Learn to classify new classes

Related Research Areas / Jargon

Class Evolution (Stream Learning)

Class Incremental (Continual Learning)

Update itself to accommodate for changes within existing classes

Concept Drift (Stream Learning)

Domain Incremental (Continual Learning)

Forgets that which is no longer needed

Related Research Areas / Jargon

Class Evolution (Stream Learning)

Class Incremental (Continual Learning)

Update itself to accommodate for changes within existing classes

Concept Drift (Stream Learning)

Domain Incremental (Continual Learning)

Forgets that which is no longer needed

Class Evolution (Stream Learning)

The hidden context

The problem of concept drift: definitions and related work

Alexey Tsymbal
Department of Computer Science
Trinity College Dublin, Ireland
tsymbalo@tcd.ie

April 29, 2004

Abstract

In the real world concepts are often not stable but change with time. Typical examples of this are weather prediction rules and customers' preferences. The underlying data distribution may change as well. Often these changes make the model built on old data inconsistent with the new data, and regular updating of the model is necessary. This problem, known as *concept drift*, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques, which treat arriving instances as equally important contributors to the final concept. This paper considers different types of concept drift, peculiarities of the problem, and gives a critical review of existing approaches to the problem.

"A difficult problem with learning in many real-world domains is that the concept of interest may depend on some hidden context, not given explicitly in the form of predictive features."

TSYMBAL, 2004

Assumptions

Assumptions

Independent and identically distributed (iid)

Each data point in the stream comes from the same probability distribution &
The values of one data point does not provide any information about the values of another data point

Assumptions

Independent and identically distributed (iid)

The presence of Concept Drift (CD) violates the identically distributed assumption

CD implies that **different sub-populations** (concepts) exists in the stream at different time intervals

Each concept have its own statistical properties

Concept Drift Example

Concept drift example

Assume a simple classification problem

- Two classes
 Two features (X0 and X1)

We can build a very simple linear model to separate the two classes!

An accurate model!

What if the data distribution changes?

An accurate model!

What if the data distribution changes?

What can we do about CD?

Detect & Adapt (update the model)

The data distribution may change overtime

The data distribution may change overtime

Some questions:

- What data should we use to train the updated model?
- How do we **detect** changes? What can the detection algorithm observe?

Categorising Concept Drift

Real x Virtual

Rate of change

ADWIN

ADaptive WINdow (ADWIN)

- Window based methods rely on a window that sums up past data and a sliding window summarising recent data
- Statistical tests are used to compare the distribution over the two windows
 - Null hypothesis: the distributions are equal
 - A rejection of the null hypothesis indicates a significant difference between the distributions of these windows (i.e. signals a change has happened)

ADaptive WINdow (ADWIN)

- Uses sliding windows of variable size that are recalculated online according to the rate of observed change of data in the windows
- Window is increased when there is no change, and decreased when a change has been detected
- ADWIN provides performance guarantees in the form of limits on false positive rates and false negative rates
- ADWIN doesn't make assumptions about the underlying data distribution

Simulating CD

Why should we simulate?

Concept drift is hard to define in a real data stream

Thus, studying it using real data can be challenging

One approach is to use <u>synthetic data</u> for studying and benchmarking algorithms

Concept Drift Framework

"Model a concept drift event as a weighted combination of two pure distribution that characterizes the target concepts before and after the drift." [Bifet et al, 2011]

[Bifet et al, 2011] Bifet, A., & Kirkby, R. (2011). Data stream mining a practical approach. Chapter 2.7.1

Evaluation

Evaluating CD Detection

Common approach (proxy): "Attach the method to a classifier, if the accuracy goes up, then the detector works"

Not necessarily the detector is successful in detecting changes, maybe it is just <u>randomly resetting the classifier!</u>

We must use specific metrics to evaluate a detector

Evaluating CD Detection

Important: we need the ground-truth of drift location for some of these

Some Metrics:

- Mean Time between False Alarms (MTFA)
- Mean Time to Detection (MTD)
- And others: MDR, ARL, MTR, ...

Hands-on example

KDD_2024_drift.ipynb