▶ If we assume that $p(\mathbf{x})$ is continuous and \mathcal{R} is small enough so that p(x) does not vary significantly in it, we can get the approximation $\int_{\mathcal{P}} p(\mathbf{x'}) d\mathbf{x'} \simeq p(\mathbf{x}) V$

where
$$\mathbf{x}$$
 is a point in \mathcal{R} and V is the volume of \mathcal{R} .

$$p(\mathbf{x}) \simeq \frac{k/n}{V}.$$