ERT-ykt 18

Kommentarar i ettertid

Oppgåve 1 (max 5 minutt)

Som i ein del tidlegare tilfelle er spenningsforsyninga, inkludert jord, underforstått i symbolet til invertarane.

Oppgåve 2 (Max. 15 minutt)

For dei fleste er nok 15 minutt alt for kort tid til å skulle finna ut detaljane på eiga hand. Nedanfor kjem ei detaljert forklaring. Denne vil ogso verta gjennomgått i auditorium.

For å gjera forklaringa mest mogeleg konkret, har eg heile vegen brukt v_{DD} = 5 volt. Me tek utgangspunkt i denne figuren:

Mykje av lykelen for å forstå kretsen ligg i spenninga v_3 . So lenge brytaren er på, vil v_3 alltid ha ein verdi lik v_1 pluss kondensatorspenninga v_c (slik me har definert forteiknet i figuren ovanfor.)

Når brytaren vert slått på, skjer fire ting rask rekkefylgje:

- 1. v_3 gjeng frå 0 til $v_1 + v_c = v_c$ sidan $v_1 = 0$.
- 2. v_2 , som er den inverterte av v_3 , gjeng frå 5 volt til 0
- 3. v_1 , som er den inverterte av v_2 , gjeng frå 0 til 5 volt.
- 4. v_3 gjeng frå v_c til $v_1 + v_c = 5 + v_c$.

Alt dette skjer ideelt sett momentant, slik at me får ein brå overgang ved t = 0 som vist i neste figur. For brå endringar kan det vera greitt å bruka notasjonen 0^- for tidspunktet umiddelbart før 0 og 0^+ for tidspunktet umiddelbart etter 0.

t=0: $V_2=5$, $V_4=0$, $V_6=5$, $V_3=0$

 $t=0^{\dagger}$: $V_2=0$, $V_1=5$, $V_2=5$, $V_3=V_4+V_5=5+5=10$

Lat oss no fokusera på det som skjer med kondensatorspenninga v_c . For å tenkja rett her, er det lurt å setja opp ein modell. Utgangen av den høgre invertaren ser me no som ei ideell spenningskjelde med spenning $v_1 = 5$ volt. Den andre enden av kondensatoren er kopla til $v_2 = 0$ via motstanden R.

Neste steg er å teikna Thévenin-ekvivalenten av situasjonen.

Her ser me at, slik me har definert referanseretninga på v_c , vil v_c no lada seg opp mot ein verdi + $v_c(\infty)$ = -5 Dette er skissert i neste figur.

I den same figuren ser me og at $v_3 = v_1 + v_c$ bevegar seg parallelt med v_c , men heile tida $v_1 = 5$ volt over. Den fallande tendensen held fram heilt til v_3 passerer 2.5 volt. Då, nemleg, skjer tre ting:

- 1. Den venstre inverteren endrar inngangen frå låg til høg, altso $v_2 = 5$.
- 2. Den høgre inverteren endrar sin verdi frå høg til låg, altso $v_1 = 0$.
- 3. v_3 endrar verdi til $v_1 + v_c = v_c$.

Men no vert situasjonen for kondensatoren og endra. No er det den venstre inverteren som fungerer som ei spenningskjelde på v_2 = 5 volt, medan den høgre inverteren ligg på v_1 = 0. Me får denne modellen og Thévenin-ekvivalenten:

Me ser her at v_c no vil lada seg opp mot ein verdi + $v_c(\infty)$ = +5 volt. Oppførselen ser me i neste figur:

Me ser no at kondensatorspenninga no er komen inn i ein periodisk sekvens, der ho skiftar mellom \pm 2.5 volt. Dette gjev variasjonar i v_3 , som i sin tur sørger for at v_2 og v_1 varierer som vist.

Oppgåve 3

Ingen kommentar

Oppgåve 4

Her gjeld det å innsjå at ein fyrst finn ein høveleg tidskonstant. Deretter kan ein velja ein verdi for den eine komponenten og rekna ut ein verdi for den andre. Altso ingen fasit!

Simulering:

T = 18.01 ms - 16.98 ms = 1.03 ms. Teoretisk skulle me fått T = 1 ms, men avlesingsfeil og avrunding i utrekningar utgjer truleg avviket.

Oppgåve 5 (Ekstra)

Me ser igjen på grafen over dei ulike spenningane:

Sjå spesielt på de halve perioden der at v_c stig frå startverdien -2.5 volt til 2.5 volt, eller meir generelt frå - V_{DD} /2 til + V_{DD} /2. For dette området får me då:

$$V_{c}(+) = V_{c}(x) + [v_{c}(0) - V_{c}(x)]e^{-t/t}$$

$$V_{c}(T/t) = \frac{V_{on}}{2}$$

$$V_{c}(+/t) = V_{on} + [-\frac{V_{on}}{2} - V_{on}]e^{-T/t}$$

$$V_{c}(+/t) = V_{on} + [-\frac{V_{on}}{2} - V_{on}]e^{-T/t}$$

$$1 - \frac{3}{2}e^{-T/t} = 1$$

$$2^{-T/t} = 1$$

$$e^{-T/t} = 1$$

$$-\frac{1}{2t} = -\ln 3$$

$$+ = 2 \ln 3T$$

Oppgåve 6 (Ekstra)

Ingen kommentar.