1) Evaluate each limit

a)
$$\lim_{x \to 2} \frac{3x}{x^2 + 2} = \frac{3(2)}{(2)^2 + 3}$$

= $\frac{6}{6}$

2) Evaluate the limit of each

a)
$$\lim_{x \to 2} \frac{4-x^2}{2-x}$$

$$= \lim_{x \to 2} \frac{(2-x)(2+x)}{2-x}$$

$$= 2+2$$

$$= 4$$

b)
$$\lim_{x \to -1} (x^4 + x^3 + x^2)$$

= $(-1)^4 + (-1)^3 + (-1)^3$
= $(-1+1)^4$

b)
$$\lim_{x \to -1} \frac{2x^2 + 5x + 3}{x + 1}$$
 $\lim_{x \to -1} \frac{2x^2 + 5x + 3}{x + 1}$ $\lim_{x \to -1} \frac{2x^3 - 27}{x - 3}$ c) $\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$ $\lim_{x \to -1} \frac{2x^3 - 27}{x - 3}$

c)
$$\lim_{x \to 9} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^2$$

$$= \left(\sqrt{9} + \frac{1}{\sqrt{9}} \right)^2$$

$$= \left(3 + \frac{1}{3} \right)^2$$

$$= \left(\frac{19}{3} \right)^2$$

$$= \frac{100}{9}$$
c) $\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$

$$= \lim_{x \to 3} \frac{(x/3)(x^2 + 3x + 9)}{x/3}$$

$$= (3)^2 + 3(3) + 9$$

$$= 27$$

d)
$$\lim_{x \to 4} \frac{16 - x^2}{x^3 + 64}$$

= $\lim_{x \to 4} \frac{(4 - x)(4 + x)}{(4 - x)(4 + x)}$

= $\frac{(4 - x)(4 + x)}{(4 - x)(4 + x)}$

= $\frac{(4)^2 - 4(4) + 16}{16}$

= $\frac{(4)^2 - 4(4) + 16}{16}$

e)
$$\lim_{x \to 4} \frac{x^2 - 16}{x^2 - 5x + 6}$$

f) $\lim_{x \to -1} \frac{x^2 + x}{x + 1}$

$$= \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 2)(x - 3)}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

f)
$$\lim_{x \to -1} \frac{x^2 + x}{x + 1}$$

$$= \lim_{x \to -1} \frac{x(x + 1)}{x + 1}$$

$$= - |$$

3) Complete the following table and use results to estimate $\lim_{x\to 2} \frac{x-2}{x^2-x-2}$

ж	1.9	1.99	1.999	2.001	2.01	2.1
$\frac{x-2}{x^1-x-2}$	0.3448	0.3344	0.3334	0.3332	0.3322	0.3226
lim 2-	x-2 =	= -3				

4) Use the graph to find the following limits:

a)
$$\lim_{x \to -1^+} \frac{x^2}{x+1} = 0$$

b)
$$\lim_{x \to -1^-} \frac{x^2}{x+1} = -\infty$$

c)
$$\lim_{x\to -1} \frac{x^2}{x+1}$$
 Does not exist

5) Use the graph to determine the following limits

a)
$$\lim_{x \to -1^+} h(x) = -2$$

b)
$$\lim_{x \to -1^{-}} h(x) = 1$$

c)
$$\lim_{x \to -1} h(x)$$
 Does not exist

d)
$$\lim_{x \to 3^+} h(x) = 3$$

$$e) \lim_{x \to 3^{-}} h(x) = 2$$

f)
$$\lim_{x\to 3} h(x)$$
 Does not exist

