

Logic Simulation

- Logic simulation may be utilized to
 - (1) verify the correctness of the design or
 - (2) predict the behavior of the design.
- Simulation accuracy and complexity depend on the circuit model.
 - Functional level description down to transistor level.
 - Two-valued (0 or 1), three-valued (0, 1, or u), or more complicated signal models.
 - Inclusion of timing model, types of timing models.

Fault Simulation

- A fault simulator is used to evaluate the quality of tests.
 - It can simulate the circuit response in the presence of faults.
 - Fault dropping—test pattern generator utilizes fault simulation to remove faults detected by newly generated test patterns from the fault list.
 - Utilize fault-parallelism or pattern-parallelism to speed up the process.
- Inputs:
 - The design under test, the fault list
- Outputs:
 - Detected faults, fault coverage, fault detection dictionary

Why?

- Fault simulation with user-given patterns is insufficient and inefficient.
- ATPG aims to generate a high-quality test pattern set (high fault coverage with few patterns) to detect the target faults.
- Modern ATPGs consider not only fault coverage and the pattern count but also test power, compressibility, and diagnosability.

Sequential ATPG?

- Very low efficiency.
- With full-scan design, sequential ATPG is no longer needed.

Some Facts about ATPG

- Random pattern generation
 - Use random patterns to detect easy-to-detect faults—fault simulation is cheaper than pattern generation.
 - Stop when fault coverage saturates.
- X-ratio
 - Most ATPG patterns are sparsely specified.
 - The ratio of unspecified bits (at PI and PPI), i.e., X-ratio, is generally higher than 90%.
 - Test power reduction and test compression techniques rely heavily on X-bits.

The Scan-Design Rules

- The designers must adhere to the rules so that the design is scan-testable.
- Rule I: Use only D-type master-slave FFs.
- Rule II: At least one PI pin must be available for TC.
 - Scan-in and out can be shared (using MUX) with functional PI and PO.
- Rule III: All FF clocks must be controllable from PI.
 - This is necessary for FFs to function as a scan register.
- Rule IV: Clock must NOT feed the data inputs of FFs.
 - To avoid potential race conditions in the normal mode.

Tests for Scan Circuits

- Phase I:
 - Shift test
 - Targets the scan flip-flops.
- Phase II:
 - Combinational test
 - Target the faults in the combinational circuit.

Phase I: Shift Test

- A toggle sequence
 - 00110011... of length *n*+4 is scanned in.
 - n is the maximum number of FFs in a scan chain.
- Each SFF experiences all four transitions: $0 \rightarrow 1$, $0 \rightarrow 0$, $1 \rightarrow 1$, $1 \rightarrow 0$.
- The shift test covers most single stuck-at faults in the FFs.
- The shift test also verifies the correctness of the shift operation.

Phase II: Combinational Test

- Each test vector consists of I_i and S_i
- Scan-test length
 - $n_{comb}(n + 1) + n$
 - n_{comb}: number of
 combinational tests

Multiple Scan Chains

- To reduce test time.
 - However, each scan register has its own scan-in and scan-out.
- The scan registers may differ in length.
 - Test time determined by the longest one.

Problem w/ Scan Design

- Area/performance overhead
 - Increased gate count and routing area
 - MUXed input (in single-clock SFF design)
 - Extra load capacitance at FF output.
- Long test application time.
- Not applicable to all designs.
 - Must follow the scan design rules.
- High power dissipation during testing.

Physical Design of Scan w/ Standard Cells

Placing the cells without scan wiring.

- Comb. logic SFFs
- Replace FFs with SFFs.
 - Wider than original.
- Add TC control line.
 - At most one track in every alternate routing channel.
- Scan path routing.
 - One track in every alternate routing channel is possible.

At-Speed Test Application

- For timing-related faults, need two-vector patterns.
- However, a scan cell only stores one vector.
- LoC (Launch-on-Capture) or LoS (Launch-on-Shift).

Scan-Based LoC Test Pattern Application

- An LoC pattern consists of two vectors.
 - $V_1 = \langle I_1, S_1 \rangle$, $V_2 = \langle I_2, S_2 \rangle$ where I/S corresponds to PI/PPI.

77

• S_2 is generated by CUT.

ITC-Asia 2021

• At-speed cycle is identical or similar to functional operation.

LAUNCH-ON-SHIFT (LOS)

Skewed-load

LOW COST TESTER LIMITATIONS

- PI hold constant from launch to capture
- PO masked

LOC VS. LOS

- Fault coverage
- Hardware requirement
- Test power