Intelligent distributed systems

Daniele Fontanelli

Department of Industrial Engineering
University of Trento
E-mail address: daniele fontanelli@unitn.it

2022/2023

Outline

- An example of distributed estimation
 - A simplified example
 - A simplified example with relative measurements

Outline

- An example of distributed estimation
 - A simplified example
 - A simplified example with relative measurements

Outline

- An example of distributed estimation
 - A simplified example
 - A simplified example with relative measurements

Consider the following toy example:

• There are two points x_1 and x_2 moving on a line, starting from unknown initial conditions $x_1(0)$ and $x_2(0)$ and subject to a first order discrete dynamic affected by noise:

$$x_i(k+1) = x_i(k) + a_i d_i(k) + b_i \varepsilon_i(k), \quad k = 0, 1, 2, \dots,$$

where $d_i(k)$ is the linear (known) displacement and $\varepsilon_i(k) \sim \mathcal{N}(0, \sigma_i^2)$ is the uncertainty affecting the displacement, supposed to be white.

• Suppose that every $n_i \geq 1$ time steps, each point receives its absolute position measurement from an exogenous sensor, e.g. GPS, landmark detection (e.g. visual feature on a map or RFID position), anchor-based position, etc., with a certain uncertainty

$$z_i(n_i k) = x_i(n_i k) + \eta_i(n_i k), \quad k = 0, 1, 2, \dots,$$

where $\eta_i(k) \sim \mathcal{N}(0, \xi_i^2)$ is a white Gaussian process.

2022/2023

To properly estimate the point positions, it is possible to carry out an *(intermittent) Kalman filter* (provided that the two noise sequences are *uncorrelated*).

Intermittency takes place whenever $n_i > 1$, i.e. an update step every n_i prediction steps.

In other words, the estimator acts *alternatively* as a *predictor* (when there is no *update step*) or as a *filter*.

Kalman filter

Recall that:

• Prediction step:

$$\hat{x}(k+1)^{-} = A(k)\hat{x}(k) + B(k)u(k)$$
$$P(k+1)^{-} = A(k)P(k)A(k)^{T} + G(k)Q(k)G(k)^{T}$$

Update step:

$$S(k+1) = H(k+1)P(k+1)^{-}H(k+1)^{T} + R(k+1)$$

$$W(k+1) = P(k+1)^{-}H(k+1)^{T}S(k+1)^{-1}$$

$$\hat{x}(k+1) = \hat{x}(k+1)^{-} + W(k+1)\left(z(k+1) - H(k+1)\hat{x}(k+1)^{-}\right)$$

$$P(k+1) = (I - W(k+1)H(k+1))P(k+1)^{-}$$

Kalman filter

Therefore:

Prediction step:

$$\hat{x}_i(k+1)^- = \hat{x}_i(k) + a_i d_i(k)$$

$$P_i(k+1)^- = P_i(k) + b_i^2 \sigma_i^2$$

• *Update step* (every n_i steps):

$$S_{i}(k+1) = P_{i}(k+1)^{-} + \xi_{i}^{2}$$

$$W_{i}(k+1) = \frac{P_{i}(k+1)^{-}}{S_{i}(k+1)}$$

$$\hat{x}_{i}(k+1) = \hat{x}_{i}(k+1)^{-} + W_{i}(k+1) \left(z_{i}(k+1) - \hat{x}_{i}(k+1)^{-}\right)$$

$$P_{i}(k+1) = (1 - W_{i}(k+1))P_{i}(k+1)^{-}$$

Kalman filter

Simplifying the terms:

Prediction step:

$$\hat{x}_i(k+1)^- = \hat{x}_i(k) + a_i d_i(k)$$
$$P_i(k+1)^- = P_i(k) + b_i^2 \sigma_i^2$$

• *Update step* (every n_i steps):

$$\hat{x}_i(k+1) = \hat{x}_i(k+1)^- + \frac{P_i(k+1)^-}{P_i(k+1)^- + \xi_i^2} \left(z_i(k+1) - \hat{x}_i(k+1)^- \right)$$

$$P_i(k+1) = \frac{\xi_i^2}{P_i(k+1)^- + \xi_i^2} P_i(k+1)^-$$

D. Fontanelli DII - UniTN 2022/2023

10

Kalman filter

From the update equations,

$$\hat{x}_i(k+1) = \hat{x}_i(k+1)^- + \frac{P_i(k+1)^-}{P_i(k+1)^- + \xi_i^2} \left(z_i(k+1) - \hat{x}_i(k+1)^- \right)$$

$$P_i(k+1) = \frac{\xi_i^2}{P_i(k+1)^- + \xi_i^2} P_i(k+1)^-$$

it is evident that:

• Whenever the sensor readings are very accurate compared to the available *a-priori knowledge*, i.e. $\xi_i^2 << P_i(k+1)^-$, we have:

$$\hat{x}_i(k+1) \approx z_i(k+1)$$

 $P_i(k+1) \approx \xi_i^2$

D. Fontanelli DII - UniTN 2022/2023

11

Kalman filter

Again, from the update equations,

$$\hat{x}_i(k+1) = \hat{x}_i(k+1)^- + \frac{P_i(k+1)^-}{P_i(k+1)^- + \xi_i^2} \left(z_i(k+1) - \hat{x}_i(k+1)^- \right)$$

$$P_i(k+1) = \frac{\xi_i^2}{P_i(k+1)^- + \xi_i^2} P_i(k+1)^-$$

it is evident that:

• Whenever the *a-priori knowledge* is very accurate compared to the sensor readings, i.e. $\xi_i^2 >> P_i(k+1)^-$, we have:

$$\hat{x}_i(k+1) \approx \hat{x}_i(k+1)^-$$

$$P_i(k+1) \approx P_i(k+1)^-$$

• WARNING!: This condition is temporary, since sooner or later $P_i(k+1)^-$ becomes comparable to ξ_i^2 , i.e. uncertainty increases over time due to dead reckoning (Matlab simulations).

Kalman filter

Finally notice that the steady state estimation uncertainty $P_i(k)$ can be computed in closed form by computing the fixed point of the following equation:

$$P_{i}(k) = \frac{\xi_{i}^{2}}{P_{i}(k)^{-} + \xi_{i}^{2}} P_{i}(k)^{-} =$$

$$= \frac{\xi_{i}^{2}}{P_{i}(k) + b_{i}^{2} \sigma_{i}^{2} + \xi_{i}^{2}} \left(P_{i}(k) + b_{i}^{2} \sigma_{i}^{2} \right)$$

Notice that this results hold for a multidimensional system as well, computing the solution of the *Riccati difference equation*.

D. Fontanelli DII - UniTN 2022/2023

13

Outline

- An example of distributed estimation
 - A simplified example
 - A simplified example with relative measurements

Toy example

Consider the following toy example:

• There are two points x_1 and x_2 moving on a line, starting from unknown initial conditions $x_1(0)$ and $x_2(0)$ and subject to a first order discrete dynamic affected by noise:

$$x_i(k+1) = x_i(k) + a_i d_i(k) + b_i \varepsilon_i(k), \quad k = 0, 1, 2, \dots,$$

where $d_i(k)$ is the linear (known) displacement and $\varepsilon_i(k) \sim \mathcal{N}(0, \sigma_i^2)$ is the uncertainty affecting the displacement, supposed to be white.

Toy example

• Suppose that every $n_i \geq 1$ time steps, each point receives its *absolute* position measurement from an *exogenous* sensor, e.g. GPS, landmark detection (e.g. visual feature on a map or RFID position), anchor-based position, etc., with some uncertainty $\eta_i(k)$, i.e.

$$z_i(n_i k) = x_i(n_i k) + \eta_i(n_i k), \quad k = 0, 1, 2, \dots,$$

where $\eta_i(k) \sim \mathcal{N}(0, \xi_i^2)$ is a white Gaussian process.

Toy example

• Moreover, suppose that every $m_i \geq 1$ time steps, the i-th point measures the *relative position* w.r.t. $x_j(k)$ from an *exogenous* sensor, e.g. a LIDAR, a camera, an RGB-D sensor, etc., with a certain uncertainty

$$\Delta_{ij}(m_i k) = (x_j(m_j k) - x_i(m_i k)) + \eta_{ij}(m_i k), \ k = 0, 1, 2, \dots,$$

where $\eta_{ij}(m_i k) \sim \mathcal{N}(0, \xi_{ij}^2)$ is a white Gaussian process.

Therefore, the output function is

$$z_{ij}(m_i k) = \Delta_{ij}(m_i k) - x_j(m_j k) = -x_i(m_i k) + \eta_{ij}(m_i k), \quad k = 0, 1, \dots$$

- The overall uncertainty affecting this measurement is then given by $\eta_{ij}(m_ik) + P_j(m_ik)^-$.
- WARNING!: we are now implicitly assuming that the agent j is able to send $x_j(m_jk)$ and $P_j(m_ik)$ to the i-th agent.

This is the essence of *collaborative localisation*!

18

Toy example

Kalman filter

Therefore, for the i-th or j-th agent:

Prediction step:

$$\hat{x}_i(k+1)^- = \hat{x}_i(k) + a_i d_i(k)$$

 $P_i(k+1)^- = P_i(k) + b_i^2 \sigma_i^2$

• Update step only absolute (every n_i steps, with $n_i k \neq m_i k$):

$$S_{i}(k+1) = P_{i}(k+1)^{-} + \xi_{i}^{2}$$

$$W_{i}(k+1) = \frac{P_{i}(k+1)^{-}}{S_{i}(k+1)}$$

$$\hat{x}_{i}(k+1) = \hat{x}_{i}(k+1)^{-} + W_{i}(k+1) \left(z_{i}(k+1) - \hat{x}_{i}(k+1)^{-}\right)$$

$$P_{i}(k+1) = (1 - W_{i}(k+1))P_{i}(k+1)^{-}$$

Toy example

Kalman filter

For only the i-th agent:

• Update step only relative (every m_i steps, with $n_i k \neq m_i k$):

$$S_{i}(k+1) = P_{i}(k+1)^{-} + \xi_{ij}^{2} + P_{j}(k+1)^{-}$$

$$W_{i}(k+1) = \frac{P_{i}(k+1)^{-}}{S_{i}(k+1)}$$

$$\hat{x}_{i}(k+1) = \hat{x}_{i}(k+1)^{-} + W_{i}(k+1) \left(z_{ij}(k+1) - (-\hat{x}_{i}(k+1)^{-})\right)$$

$$P_{i}(k+1) = (1 - W_{i}(k+1))P_{i}(k+1)^{-}$$

Toy example

Kalman filter

Finally, for the i-th agent:

• Update step with absolute and relative (when $n_i k = m_i k$):

$$S(k+1) = H_i(k+1)P_i(k+1)^{-}H_i(k+1)^{T} + R_i(k+1)$$

$$W(k+1) = P_i(k+1)^{-}H_i(k+1)^{T}S(k+1)^{-1}$$

$$\hat{x}_i(k+1) = \hat{x}_i(k+1)^{-} + W(k+1)\left(\bar{z}(k+1) - H_i(k+1)\hat{x}_i(k+1)^{-}\right)$$

$$P_i(k+1) = (1 - W(k+1)H_i(k+1))P_i(k+1)^{-}$$

where
$$\bar{z}(k+1) = [z_i(k+1), z_{ij}(k+1)]^T$$
, $H_i(k+1) = [1, -1]^T$ and $R_i(k+1) = \operatorname{diag}([\xi_i^2, \xi_{ij}^2 + P_j(m_i k)^-])$.

• It is possible to show that, in the spirit of the *Fisher matrix*, using also the relative measure *the uncertainty decreases* (*Matlab simulations*).

Toy example

It is then reasonable that this idea remains valid if also the j-th agent measure the i-th agent every m_j time steps (Matlab simulations). Unfortunately this is not always the case...

So, what is the problem?

Toy example

Consistency

The problem can be easily understood by rewriting the complete equations as it would be a centralised Kalman filter:

- Initial conditions: $\hat{x}(0) = [\hat{x}_i(0), \hat{x}_j(0)]^T$ and $P(0) = \operatorname{diag}(P_i(0), P_j(0))$.
- Prediction step:

$$\hat{x}(k+1)^{-} = \begin{bmatrix} \hat{x}_i(k) \\ \hat{x}_j(k) \end{bmatrix} + \begin{bmatrix} a_i & 0 \\ 0 & a_j \end{bmatrix} \begin{bmatrix} d_i(k) \\ d_j(k) \end{bmatrix}$$
$$P(k+1)^{-} = \begin{bmatrix} P_i(k) & 0 \\ 0 & P_j(k) \end{bmatrix} + \begin{bmatrix} b_i^2 \sigma_i^2 & 0 \\ 0 & b_j^2 \sigma_j^2 \end{bmatrix}$$

Notice that after the prediction step nothing different happens.

Toy example

Consistency

Update step: We model that j-th agent does not updates its
 estimate, but the i-th does with only the relative measure from the
 j-th:

$$S(k+1) = H_{ij}(k+1)P(k+1)^{-}H_{ij}(k+1)^{T} + R_{ij}(k+1) =$$

$$= \begin{bmatrix} -1 & 1 \end{bmatrix} P(k+1)^{-} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \xi_{ij}^{2} =$$

$$= P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2}$$

$$W(k+1) = P(k+1)^{-}H_{ij}(k+1)^{T}S(k+1)^{-1} =$$

$$= \frac{1}{P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2}} \begin{bmatrix} -P_{i}(k+1)^{-} \\ 0 \end{bmatrix}$$

ullet So we have to force a zero in the second element of the gain matrix of W.

Toy example

Consistency

• *Update step*: Moreover:

$$\hat{x}(k+1) = \hat{x}(k+1)^{-} + W(k+1) \left(z_{ij}(k+1) - H_{ij}(k+1) \hat{x}(k+1)^{-} \right)$$

$$P(k+1) = (I - W(k+1)H_{ij}(k+1))P(k+1)^{-} =$$

$$= \frac{1}{P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2}} \cdot \begin{bmatrix} P_{j}(k+1)^{-} + \xi_{ij}^{2} & P_{i}(k+1)^{-} \\ 0 & P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2} \end{bmatrix} \cdot \begin{bmatrix} P_{i}(k+1)^{-} & 0 \\ 0 & P_{j}(k+1)^{-} \end{bmatrix}$$

• So the random variable x_i is *correlated* to the random variable x_j !

Toy example

Consistency

- As a consequence, the first time that x_j updates its position with a relative measure from x_i , it will consider the measurement H_{ji} as independent but *this is not the case*!
- This leads to the Kalman filter inconsistency in covariances, i.e. the covariance decreases even if it should not!
- Indeed...

Toy example

Consistency

 Full update step: Both are updated with the relative measure of the i-th agent w.r.t. the j-th agent:

$$S(k+1) = H_{ij}(k+1)P(k+1)^{-}H_{ij}(k+1)^{T} + R_{ij}(k+1) =$$

$$= \begin{bmatrix} -1 & 1 \end{bmatrix} P(k+1)^{-} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \xi_{ij}^{2} =$$

$$= P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2}$$

$$W(k+1) = P(k+1)^{-}H_{ij}(k+1)^{T}S(k+1)^{-1} =$$

$$= \frac{1}{P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2}} \begin{bmatrix} -P_{i}(k+1)^{-} \\ P_{j}(k+1)^{-} \end{bmatrix}$$

Toy example

Consistency

• *Update step*: Moreover:

$$\hat{x}(k+1) = \hat{x}(k+1)^{-} + W(k+1) \left(z_{ij}(k+1) - H_{ij}(k+1) \hat{x}(k+1)^{-} \right)$$

$$P(k+1) = (I - W(k+1)H_{ij}(k+1))P(k+1)^{-} =$$

$$= \frac{1}{P_{i}(k+1)^{-} + P_{j}(k+1)^{-} + \xi_{ij}^{2}} \cdot \left[P_{j}(k+1)^{-} + \xi_{ij}^{2} - P_{i}(k+1)^{-} - P_{i}(k+1)^{-} + \xi_{ij}^{2} \right] \cdot \left[P_{i}(k+1)^{-} - 0 - P_{i}(k+1)^{-} \right]$$

$$\cdot \begin{bmatrix} P_{i}(k+1)^{-} & 0 - P_{i}(k+1)^{-} \end{bmatrix}$$

• There is a sub-space that is not *observable*, i.e. $x_i + x_j$, hence the associated eigenvalue *grows unbounded* (i.e. *dead reckoning*).

Toy example

Solution

- To overcome this problem, a correct covariance update should be considered among the agents.
- This solution for a team of mobile robots can be found in: Solmaz S. Kia, Stephen Rounds, and Sonia Martínez, "Cooperative Localization for Mobile Agents: A recursive decentralized algorithm based on Kalman-filter decoupling", IEEE Control Systems Magazine, April 2016.