Mixing Samples to Address Weak Overlap in Causal Inference

ACIC 2025

Suehyun Kim

Department of Statistics, Seoul National University

14 May 2025

Collaborators

Kwonsang Lee Seoul National University kwonsanglee@snu.ac.kr

Jaehyuk (Jay) Jang Seoul National University bbq12340@snu.ac.kr

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Handling weak overlap in weighting methods

Overlap assumption:

$$0 < e(x) = \mathbb{P}(Z = 1 \mid X = x) < 1$$

• Weak overlap is problematic in weighting methods due to units with extreme weights such as $1/e \simeq \infty$ or $1/(1-e) \simeq \infty$.

Remedies so far

There have been three main approaches to handle weak overlap in the literature:

1. Trimming/truncating units with extreme weights

· Loss of sample size, sensitivity to the choice of cutoff

2. Targeting an alternative causal estimand

- Overlap weights and ATO (Average Treatment of the Overlap Population)
- Lack of interpretability

3. Balancing weights

- Entropy Balancing, Covariate Balancing Propensity Score, etc.
- Optimization may be infeasible under weak overlap

Our idea

We propose the **mixing framework**, which helps overcome the limitations of the above approaches by creating a synthetic sample of mixed treated and control units.

Main idea: Simple mixing strategy

Our strategy aims to intentionally increase overlap by mixing treated and control units.

Main idea: Simple mixing strategy

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Notation & Setup

Under Rubin's Potential Outcome Framework, our aim is to apply mixing to weighting estimators of the Average Treatment Effect on the Treated (ATT).

Assumptions

- 1. Unconfoundedness: $(Y(1), Y(0)) \perp \!\!\!\perp Z \mid X$
- 2. **Overlap**: $0 < e(x) = \mathbb{P}(Z = 1 \mid X = x) < 1$ for all x = x = 1
- (Y(0), Y(1)): Potential outcomes
- Y: Observed outcome
- X: Observed covariates
- Z: Binary treatment indicator
- $\tau = E[Y(1) Y(0) \mid Z = 1]$: Target estimand (ATT)
- $f_{Y,X}$: Joint density of (Y,X)
- $f_{Y,X|Z=z}$: Joint density of (Y,X) given Z=z

Mixed distribution

Definition (Mixed distribution)

We define the distribution of (Y^*, Z^*, X^*) as the distribution with the conditional joint densities of (Y^*, X^*) given $Z^* = 1, 0$, respectively,

$$f_{Y^*,X^*|Z^*=1} = (1 - \delta)f_{Y,X|Z=1} + \delta f_{Y,X|Z=0}$$

$$f_{Y^*,X^*|Z^*=0} = f_{Y,X|Z=0}$$

for a fixed constant $0 < \delta < 1$ and Z^* to satisfy $\mathbb{P}(Z^* = 1) = \mathbb{P}(Z = 1) =: \pi$. We refer to the mixed distribution with a constant δ as the **simple mixed distribution**.

Mixed distribution

Mixed propensity score

Lemma 1 (Mixed propensity score and its robustness)

Let $e^*(x) = \mathbb{P}(Z^* = 1 \mid X^* = x)$ be the propensity score of the mixed distribution. Then,

$$\frac{e^*}{1-e^*}(x)=(1-\delta)\frac{e}{1-e}(x)+\delta\frac{\pi}{1-\pi}$$
 for all x .

Figure 1: Behavior of $e^*(x)$ with respect to δ

Mixed IPW (MIPW) estimator

Theorem 1 (MIPW estimator and its consistency)

Using the mixed propensity score

$$\frac{e}{1-e}(x)=\frac{\frac{e^*}{1-e^*}(x)-\delta\frac{\pi}{1-\pi}}{1-\delta},$$

we define the Mixed IPW (MIPW) estimator as follows:

$$\hat{\tau} := \frac{\sum_{i} Z_{i} Y_{i}}{\sum_{i} Z_{i}} - \frac{\sum_{i} \left(\frac{e^{*}}{1 - e^{*}} (X_{i}^{*}) - \delta \frac{\pi}{1 - \pi}\right) (1 - Z_{i}^{*}) Y_{i}^{*}}{\sum_{i} \left(\frac{e^{*}}{1 - e^{*}} (X_{i}^{*}) - \delta \frac{\pi}{1 - \pi}\right) (1 - Z_{i}^{*})}$$

Under the strong ignorability assumptions, $\hat{\tau}$ is a consistent estimator of τ .

Mixing implementation 1: M-estimation

Proposition 1 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, $\hat{\theta} = Solve_{\theta} \left[\sum_{i} \psi^{**}(\theta; Y_{i}, X_{i}, Z_{i}) = 0 \right]$ is an M-estimator of $\theta = (\beta, \pi, E[Y(1) \mid Z = 1], E[Y(0) \mid Z = 1])$, where, for $0 < \delta < 1$,

$$\psi^{**}(\theta;Y,X,Z) = \begin{pmatrix} \left\{\frac{1-\delta}{e^*(X;\beta)}Z + \left(\frac{\delta\pi}{(1-\pi)e^*(X;\beta)} - \frac{1}{1-e^*(X;\beta)}\right)(1-Z)\right\}\nabla_\beta e^*(X;\beta) \\ Z - \pi \\ ZY - ZE[Y(1) \mid Z = 1] \\ \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)Y - \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)E[Y(0) \mid Z = 1] \end{pmatrix}.$$

$$\{(Y_i, Z_i, X_i)\}_{i=1}^n \xrightarrow{\qquad \qquad \qquad } \hat{\tau} \xrightarrow{n \to \infty} \tau$$

$$\{(Y_i, Z_i, X_i, Y_i^*, Z_i^*, X_i^*)\}_{i=1}^n \xrightarrow{\qquad \qquad } \hat{\tau} \xrightarrow{n \to \infty} \tau$$

Mixing implementation 1: M-estimation

Proposition 2 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, $\hat{\theta} = Solve_{\theta} \left[\sum_{i} \psi^{**}(\theta; Y_{i}, X_{i}, Z_{i}) = 0 \right]$ is an M-estimator of $\theta = (\beta, \pi, E[Y(1) \mid Z = 1], E[Y(0) \mid Z = 1])$, where, for $0 < \delta < 1$,

$$\psi^{**}(\theta;Y,X,Z) = \begin{pmatrix} \left\{\frac{1-\delta}{e^*(X;\beta)}Z + \left(\frac{\delta\pi}{(1-\pi)e^*(X;\beta)} - \frac{1}{1-e^*(X;\beta)}\right)(1-Z)\right\}\nabla_\beta e^*(X;\beta) \\ Z - \pi \\ ZY - ZE[Y(1) \mid Z = 1] \\ \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)Y - \frac{e(X;\beta)}{1-e(X;\beta)}(1-Z)E[Y(0) \mid Z = 1] \end{pmatrix}.$$

$$\{(Y_i, Z_i, X_i)\}_{i=1}^n \xrightarrow{\psi^{**}} \hat{\tau} \xrightarrow{n \to \infty} \tau$$

$$\{(Y_i, Z_i, X_i, Y_i^*, Z_i^*, X_i^*)\}_{i=1}^n \xrightarrow{\psi^*} \hat{\tau} \xrightarrow{n \to \infty} \tau$$

Mixing implementation 2: Resampling algorithm

Another way to implement mixing is to use a **resampling algorithm** that directly estimates $\hat{f}_{Y|X|Z=z}^*$ from the observed dataset.

Mixing implementation 2: Resampling algorithm

The resampling algorithm allows for extensions to various weighting schemes, such as Entropy Balancing or Covariate Balancing Propensity Score.

Proposition 3 (Extension to balancing weights)

Suppose W^* is a balancing weight for X^* , satisfying

$$E[X^* \mid Z^* = 1] = E[W^*X^* \mid Z^* = 0].$$

Then,

$$W := \frac{W^* - \delta \frac{\pi}{1 - \pi}}{1 - \delta}$$

is a balancing weight for X.

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Simulation study

Simulation 1	Simulation 2
M-estimation	Resampling algorithm
 IPW vs MIPW 	 Extension to Entropy Balancing
 Efficiency gain in terms of both finite- and large-sample perspective 	 Performance under model misspecification

- Data generating process: $e(X) = \{1 + \exp(-X^T\beta)\}^{-1}, X \sim N_5(0, I)$
 - Overlap level (according to β): Strong / Moderate / Weak
 - Treatment effect: au=1 (homogeneous)

Simulation study for implementation 1: M-estimation

- **Performance measures**: Monte-Carlo simulation of (1) standard deviation estimates and (2) Huber-White's robust standard error estimates
- Benchmark: ATO estimation via overlap weights (Li et al., 2018)
 - ATO: A causal estimand under the subpopulation for which the average treatment effect can be estimated with the smallest variance.
- True treatment effect: 1 (homogeneous) \implies ATO = ATT = 1

Estimator	IPW	MIPW	OW
Target	ATT	ATT	ATO

Results: IPW vs MIPW vs OW

Figure 2: Monte Carlo simulation result: SD estimates (solid) and Huber-White robust SE estimates (dotted) of IPW, MIPW, OW

Simulation study for implementation 2: Resampling algorithm

- **Scenario 1**: The same weak overlap setting from previous study (true treatment effect = 1)
- **Scenario 2**: A modified study from Kang & Schafer (2007) to endow model misspecification but within weak overlap (true treatment effect = 210)
- Extension to Entropy Balancing (EB): Weighting method that estimates $\frac{e}{1-e}(X_i)$ by solving a constrained optimization problem to reduce model dependence (Hainmueller, 2012).

Estimator	EB	MEB	OW
Target	ATT	ATT	ATO

Results: EB vs MEB vs OW

Figure 3: Monte Carlo simulation result: SD estimates of EB, MEB, OW

Results: EB vs MEB vs OW

Figure 4: Monte Carlo simulation result: Finite-sample bias of EB, MEB, OW

Overview

- 1. Motivation
- 2. Mixing Approach
- 3. Simulation Study
- 4. Conclusion

Future Work

• Heterogeneous mixing strategy: What if we allow δ to vary according to the values of covariates?

Figure 5: Homogeneous (Simple) Mixing: shrink with same ratio

Figure 6: Heterogeneous (Advanced) Mixing: (Blue) shrink less (Red) shrink more

Future Work

Primary results

Estimator	Bias	SD
IPW	0.1812	0.2656
Simple Mixing	0.1590	0.2440
Heterogeneous Mixing	0.1497	0.2232

Table 1: Advanced mixing strategy

• Other interesting topics remain, including application of mixing to matching methods.

Summary

Key Takeaways

Mixing: A simple & practical statistical tool for handling overlap to control extremeness of inverse probability weights without additional assumptions

- Performance: Efficiency is enhanced without bias trade-off (even in sufficient overlap)
- Straightforward interpretation: No need to shift the target estimand
- Flexibility: Applicable to broad range of weighting methods
- Open to further exploration: Heterogeneous mixing strategy

Thank you!

Email: suehyunkim@snu.ac.kr

Preprint link: https://arxiv.org/abs/2411.10801v3