EMBEDDED VISION DESIGN 3

SUPERVISED ML

JEROEN VEEN

QUIZ TIME

- Individual, multiple-choice questions
- Online: http://www.socrative.com room 1PTGB6PY
- Open book quiz, so books and slides can be consulted
- HAN student number, so NOT your name, nickname or anything else.
- Quiz starts exactly at class hour and takes 10 minutes.
- Be on time and have your equipment prepared.

CONTENTS

- Classification
- k-nearest neighbors
- Support vector machines
- Decision trees
- Random forests
- Bagging and boosting
- Try it out

INTRODUCTION

- A supervised learning algorithm takes a known set of input data and known responses to the data (labels) and trains a model to generate reasonable predictions of the labels for new input data.
- Use supervised learning if you have existing data for the labels you are trying to predict.
- All supervised learning techniques are a form of either classification (discrete output) or regression (continuous output).

BINARY CLASSIFICATION

• Sample falls in either of 2 classes

Source: Mathworks, Applying Supervised Learning

MULTI-CLASS CLASSIFICATION

- Sample falls in either of 3 or more classes
- E.g. classify image as cat, dog, fish
- E.g. digit recognition

Source: Mathworks, Applying Supervised Learning

CLASSIFICATION PERFORMANCE

Confusion matrix

More on performance in another lecture

MULTI-LABEL CLASSIFICATION

- Multiple labels may be assigned to each sample
- Generalization of multi-class classification

MULTI-OUTPUT CLASSIFICATION

- Disjoint label combinations.
- Both the number of properties and the number of classes per property is greater than 2

K NEAREST NEIGHBOR (KNN)

• https://youtu.be/AoeEHqVSNOw

KNN

- The simplest classifier
- Assume feature vectors near each other are similar
- Categorizes objects based on the classes of their nearest neighbors
- No training required
- Intuitive
- Benchmark

Source: Mathworks, Applying Supervised Learning

"Tell me who your neighbors are, and I'll tell you who you are"

MAKING PREDICTIONS

- Comparing to every example is very slow
- More suited for lowdimensional feature spaces (which images are not)

SUPPORT VECTOR MACHINE (SVM)

- Powerful and versatile ML model, capable of performing linear or nonlinear classification, regression, and even outlier detection.
- Simple and easy to interpret.
- Binary classifier, i.e. for data that has exactly two classes.
- For multi-class data, reduction to several binary problems needed.

LINEAR SEPARATION

• Finding the linear decision boundary (hyperplane) that separates all data points of one class from those of the other class.

Source: Mathworks, Applying Supervised Learning

SKITTLE SORTING ON ARDUINO

- Color sensor gives 1 RGB pixel
- SVM color classification

See

https://eloquentarduino.github.io/2020/03/h ow-to-train-a-color-classification-machine-learning-classifier-directly-on-your-arduino-board/

Source: https://create.arduino.cc/projecthub/user421848217/how-to-make-color-sorting-machine-8278c9

LARGE MARGIN CLASSIFICATION

 Decision boundary of an SVM classifier not only separates the two classes but also stays as far away from the closest training instances as possible.

HAN_UNIVERSITY
OF APPLIED SCIENCES

SOFT MARGIN CLASSIFICATION

More flexible model

Source: Géron, ISBN: 9781492032632

 Balance between keeping the street as large as possible and limiting the margin violations

ADDING FEATURES TO MAKE A DATASET LINEARLY SEPARABLE

NONLINEAR SVM CLASSIFICATION

• E.g. polynomial kernel

THE KERNEL TRICK

- Represent data through a set of pairwise similarity comparisons between the original data and references
- A similarity function measures how much each sample resembles a particular landmark.

Kernel Definition

- A function that takes as its inputs vectors in the original space and returns the dot product of the vectors in the feature space is called a kernel function
- \blacksquare More formally, if we have data $\mathbf{X},\mathbf{Z}\in X$ and a map $\phi:X\to\Re^{^{N}}$ then

$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

is a kernel function

DECISION TREES

- Predict responses to data by following the decisions in the tree from the down to a leaf node.
- Easy to interpret
- Fast to fit
- Minimize memory usage

Source: Mathworks, Applying Supervised Learning

See: https://youtu.be/tNa99PG8hR8

MAKING PREDICTIONS

• E.g. Iris Decision Tree

DECISION TREE BOUNDARIES

• white box models

CHOOSING THE BEST CLASSIFIER?

- There is no "best"
- No free lunch theorem:
 Averaged over all possible types of data distributions, all classifiers
 perform the same.... (see http://en.wikipedia.org/wiki/ No_free_lunch_theorem)
- However, given certain data and set of constraints, there may be a best classifier. Thus, when faced with real data it's a good idea to try-out many
- In a future lesson we will discuss more supervised learning methods

ENSEMBLE LEARNING

- Wisdom of the crowd
- Group of predictors
- Random forest

Source: Mathworks, Applying Supervised Learning

 Several "weaker" decision trees are combined into a "stronger" ensemble

HARD VOTING CLASSIFIER

Majority-vote can be strong given sufficient diversity

LAW OF LARGE NUMBERS

BAGGING PREDICTORS

• Trees are trained independently on bootstrapped data

BOOSTING

 Sequentially adding predictors to an ensemble, each one correcting its predecessor

TRY IT OUT

 A First Application Classifying Iris Species with KNN from Introduction to Machine Learning with Python (11p)

https://scikit-learn.org/stable/install.html

PITFALLS

- Assuming that generalization is possible
- Inductive bias
 the set of assumptions a learner uses to predict results given inputs it has not yet encountered.
- Induce an approximate function
- Class imbalance

NEXT TIME

- Hands-on:
 - Sci-kit learn
 - Training a classifier
 - Tuning and thinking about performance

- Theory:
 - Regression
 - How do classification and regression relate?