Имя, фамилия и номер группы:

Вопрос 1. Случайная величина X имеет функцию плотности $f(x) = 3x^2$ на отрезке [0;1]. Ожидание $\mathrm{E}(1/X)$ равно

A 1/3

C 2

|E| 2/3

B 3/2

 \overline{D} 1

Вопрос 2. В урне лежат 7 белых и 5 черных шаров. Из урны достают 5 шаров. Вероятность того, что хотя бы 3 из них окажутся белыми, равна

 $\boxed{A} \ C_5^3 \left(\frac{7}{12}\right)^3 \left(\frac{5}{12}\right)^2$

 $C \frac{C_5^3 C_7^2 + C_5^4 C_7^1 + C_5^5 C_7^0}{C_{12}^5}$

 $E C_5^3 \left(\frac{7}{12}\right)^2 \left(\frac{5}{12}\right)^3$

 $\boxed{B} \quad \frac{3}{5} \cdot \frac{7}{12}$

 $\boxed{D} \ \ \frac{C_7^3 C_5^2 + C_7^4 C_5^1 + C_7^5 C_5^0}{C_{12}^5}$

Вопрос 3. Величины $\xi_1, \, \xi_2, \, \dots$ независимы и имеют таблицы распределения

$$\begin{array}{ccc}
x & -1 & 1 \\
\mathbb{P}(\xi_i = x) & 1/2 & 1/2
\end{array}$$

Рассмотрим их сумму $S_n = \xi_1 + \ldots + \xi_n$. Предел $\lim_{n \to \infty} \mathbb{P} \left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} > 2 \right)$ равен

A 1

 $C \int_{-\infty}^{2} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

 $E \mid 0.5$

- $B \int_{2}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$
- $\boxed{D} \int_2^{+\infty} e^{-t^2/2} dt$

Вопрос 4. Про случайные величины X,Y,Z известно, что $\mathrm{E}(X)=1,\,\mathrm{E}(Y)=2,\,\mathrm{E}(Z)=3.$ Ожидание $\mathrm{E}(X-Y+2Z)$ равно

A 2

C 4

E = 5

B 1

D 3

Вопрос 5. Дисперсию случайной величины X можно найти, зная

A $F_Y(x)$

 $oxedcircle{C}$ $\mathrm{E}(XY)$ и $\mathrm{E}(Y)$

E $E(X^2)$ и E(X)

 $\boxed{B} (E(X))^2$ и E(X)

Вопрос 6. Для любой функции распределения $F_X(x)$ верно, что

 \overline{A} она не убывает

 $oxedsymbol{D} \ F_X(x)$ принимает любые значения на $[0,+\infty)$

- $|B| F_X(x) > 0$
- C она не возрастает

E она возрастает

Вопрос 7. Плотность величины X имеет вид f(x)=2x при 0< x<1 и f(x)=0 при остальных x. Условная плотность величины Y задаётся формулой $f_{Y|X}(y|x)=\begin{cases} \frac{1}{x}, \text{ если } 0< y\leq x;\\ 0, \text{ иначе} \end{cases}$. Совместная плотность величин X и Y равна

2018-12-28

$$\boxed{D} \ f(x,y) = \begin{cases} 1/x, \ \text{если} \ 0 < y < 1, 0 < x < 1; \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{E} \ f(x,y) = \begin{cases} 1/x, \ \text{если} \ 0 < y \leq x < 1; \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{C} \ f(x,y) = \begin{cases} 1, \ \text{если} \ 0 < y \leq x < 1; \\ 0, \ \text{иначе} \end{cases}$$

Вопрос 8. Совместная функция плотности пары случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} c(2x+y), & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Константа c равна

A 1/8

C 12

|E| 1/6

B 8

D 1/12

Вопрос 9. Для энтропий пары случайных величин выполнено соотношение

$$A H(Y|X) + H(X|Y) = H(X,Y)$$

$$D H(X) + H(Y) = H(X, Y)$$

$$\boxed{B} \ H(X) \cdot H(Y) = H(X, Y)$$

$$C H(X \cdot Y)/H(X) = H(Y|X)$$

$$\boxed{E} H(Y|X) + H(X) = H(X,Y)$$

Вопрос 10. Про независимые случайные величины X и Y известно, что $\mathrm{Var}(X)=8, \mathrm{Var}(Y)=1.$ Корреляция $\mathrm{Corr}(X,-2Y)$ равна

 \overline{A} 0

C 0.5

E 0.25

|B| -0.025

D -0.5

Вопрос 11. Про линейно связанные случайные величины X и Y, известно, что ${\rm Var}(X)=1$, ${\rm Var}(Y)=4$. Дисперсия их суммы может быть равна

 $A \mid 4$

C 1

|E| 5

B 3

D 2

Вопрос 12. В школе три выпускных класса. В "А" классе 50% мальчиков, в "Б" классе -70% мальчиков, и в "В" классе -80%. Я выбираю один класс равновероятно, а затем одного учащегося из этого класса, также равновероятно. Вероятность того, что окажется выбран мальчик равна

A 0.7

C 2/3

E 0.6

B 0.75

D 0.5

Вопрос 13. Случайная величина X имеет непрерывное распределение, при этом $\mathbb{P}(X \leq 3) = 0.25$ и $\mathbb{P}(X > 0.25) = 0.8$. Квантиль порядка 0.25 величины X может быть равен

A 0.25

C 3

E 0.75

B 0.2

D 0.8

Вопрос 14. Маша подбрасывает кубик два раза. Рассмотрим события $A = \{$ в первый раз выпало чётное число $\}$, $B = \{$ в сумме выпало чётное число $\}$ и $C = \{$ в сумме выпало нечётное число $\}$. Независимыми являются пары событий:

 \overline{A} A и B; B и C

oxedownderpoons C oxedownderpoons только A и B

 $oxed{B}$ A и B; A и C

 \square A и C; B и C

Вопрос 15. Величина X с равными вероятностями принимает только два значения, -1 и 1, и $\mathrm{E}(Y|X=x)=1$. Ожидание $\mathrm{E}(Y)$ равно

A = 0

C 1

|E|-1

B 0.5

D 0.5

Вопрос 16. Величина X имеет биномиальное распределение с параметрами n и p. Дисперсия величины X максимальна при p равном

A 0.25

C 0.5

 \boxed{E} 0.2

B 0.75

D = 0.9

Вопрос 17. Случайная величина X равномерно распределена на отрезке от -2 до 2. Вероятность $\mathbb{P}(X^2>0.64)$ равна

A 0.8

C 0.1

 $E \frac{1}{2\sqrt{2}}$

B 0.2

D 0.6

Вопрос 18. Вероятность поражения мишени при одном выстреле равна 0.8. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2019}+\ldots+\xi_n^{2019}}{n}$ равен

 $A 0.8^{2019}$

C 0.5

E 0

B 0.2

 $D \mid 0.8$

Вопрос 19. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите вероятность $\mathbb{P}(Y=X)$

 $A \mid 3/4$

|C| 0

B 1/4

D = 1/2

|E| невозможно вычислить на основе имеющихся данных

Вопрос 20. Про случайные величины X, Y известно, что Var(X) = 1, Var(Y) = 4, Cov(X, Y) = -1. Корреляция Corr(X, -2Y) равна

 $A \mid -0.5$

 $|E| \ 0.5$

Вопрос 21. Количество скачиваний за день мобильного приложения распределено по Пуассону. В среднем приложение скачивают 12 раз за день. Вероятность того, что приложение будет скачено за день ровно 5 раз, равна

 $C e^{-12\frac{12^5}{5!}}$

 $B e^{-5\frac{5^{12}}{121}}$

Вопрос 22. Для дискретной случайной величины функция распределения

А вырождена

|C| не определена

E непрерывна

B \mid имеет разрывы

D строго возрастает

Вопрос 23. Известно, что Var(X) = 4, Var(Y) = 9, Cov(X, Y) = 6. Корреляция Corr(X, Y) равна

 $A \mid -0.25$

C -0.5

|E| 0.5

 \overline{D} 0.25

Вопрос 24. Случайная величина X имеет равномерное распределение. Возможной функцией плотности величины X является

- $\boxed{B} \ f(x) = \begin{cases} 1/20, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{D} \ f(x) = \begin{cases} x/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$

Вопрос 25. Размер выплаты по страховому полису является неотрицательной величиной с математическим ожиданием 10,000 рублей. Согласно неравенству Маркова, вероятность того, что величина выплаты превысит 30,000 рублей, не превосходит

$$E \mid 0.3$$

$$D \mid 0.5$$

Вопрос 26. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите функцию распределения $F_Y(y)$

A

$$F_Y(y) = \begin{cases} \frac{1}{4}y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0;2] \\ 0, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

$$F_Y(y) = egin{cases} y^2, & ext{если } y \in [0;2] \\ 0, & ext{иначе} \end{cases}$$

B

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{4}y^2, \ y \in [0; 2] \\ 1, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{2}y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{2}y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

Вопрос 27. Сумма независимых абсолютно непрерывной и дискретной случайных величин имеет распределение

A вырожденное

C дискретное

Е нормальное

- B абсолютно непрерывное
- D сингулярное

Вопрос 28. Величина Y имеет экспоненциальное (показательное) распределение с параметром $\lambda = 0.5$. Величины X и Y независимы. Ожидание E(Y|X=3/4) равно

 $E = \frac{3}{4}$

 $B \mid \frac{1}{8}$

Вопрос 29. Известно, что $\mathbb{P}(A\cap B)=0.3,$ $\mathbb{P}(B|A)=0.6.$ Вероятность того, что событие A произойдет, а событие B не произойдёт, равна

A 0.2

C 0.8

|E| 1/3

B 0.5

D 2/3

Вопрос 30. Величины X и Y одинаково распределены и равновероятно принимают только два значения, -1 и 1, при этом $\mathbb{P}(Y=1|X=1)=0.4$. Вероятность $\mathbb{P}(Y=-1,X=1)$ равна

A 1

C 0.6

|E| 0.5

B 0.4

D = 0.3

Имя, фамилия и номер группы:	

Вопрос 1. Для любой функции распределения $F_X(x)$ верно, что

 A
 она не убывает

C $F_X(x) > 0$

 $[E] \ F_X(x)$ принимает любые значения на $[0, +\infty)$

В она возрастает

 $\lceil D \rceil$ она не возрастает

Вопрос 2. Вероятность поражения мишени при одном выстреле равна 0.8. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2019}+\ldots+\xi_n^{2019}}{n}$ равен

A 0.5

 $C 0.8^{2019}$

E = 0

B 0.2

D = 0.8

Вопрос 3. Известно, что $\mathbb{P}(A\cap B)=0.3$, $\mathbb{P}(B|A)=0.6$. Вероятность того, что событие A произойдет, а событие B не произойдёт, равна

A 2/3

C 1/3

E 0.2

 $|B| \ 0.8$

D 0.5

Вопрос 4. Случайная величина X имеет непрерывное распределение, при этом $\mathbb{P}(X \leq 3) = 0.25$ и $\mathbb{P}(X > 0.25) = 0.8$. Квантиль порядка 0.25 величины X может быть равен

A 0.25

C 0.8

E 0.75

B 3

D 0.2

Вопрос 5. Количество скачиваний за день мобильного приложения распределено по Пуассону. В среднем приложение скачивают 12 раз за день. Вероятность того, что приложение будет скачено за день ровно 5 раз, равна

 $A e^{-12\frac{5^{12}}{12!}}$

 $C e^{-5\frac{5^{12}}{12!}}$

 $E e^{-12\frac{12^5}{5!}}$

 $B e^{-5}$

 $D \frac{5}{12}$

Вопрос 6. Маша подбрасывает кубик два раза. Рассмотрим события $A=\{$ в первый раз выпало чётное число $\}$, $B=\{$ в сумме выпало чётное число $\}$ и $C=\{$ в сумме выпало нечётное число $\}$. Независимыми являются пары событий:

 \overline{A} A и C; B и C

C АиB; BиC

 $oxed{E}$ A и B; A и C

 $\fbox{$B$}$ только A и B

 \square только A и C

Вопрос 7. Для энтропий пары случайных величин выполнено соотношение

$$\boxed{A} H(Y|X) + H(X) = H(X,Y)$$

$$\boxed{C} \ H(X \cdot Y)/H(X) = H(Y|X)$$

$$\boxed{A} \ H(Y|X) + H(X) = H(X,Y) \qquad \boxed{C} \ H(X \cdot Y) / H(X) = H(Y|X) \qquad \boxed{E} \ H(Y|X) + H(X|Y) = H(X,Y)$$

$$\boxed{B} H(X) \cdot H(Y) = H(X,Y)$$

$$\boxed{B} \ H(X) \cdot H(Y) = H(X,Y) \qquad \boxed{D} \ H(X) + H(Y) = H(X,Y)$$

Вопрос 8. Случайная величина X имеет равномерное распределение. Возможной функцией плотности величины X является

$$\boxed{A} \ f(x) = \begin{cases} 1/5, x \in [-5; 5] \\ 0, x \notin [-5; 5] \end{cases}$$

$$\boxed{A} \ f(x) = \begin{cases} 1/5, x \in [-5; 5] \\ 0, x \notin [-5; 5] \end{cases} \qquad \boxed{C} \ f(x) = \begin{cases} x/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{E} \ f(x) = \begin{cases} 1/50, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

$$\boxed{B} \ f(x) = \begin{cases} 1/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

Вопрос 9. Совместная функция плотности пары случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} c(2x+y), & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Константа c равна

Вопрос 10. В урне лежат 7 белых и 5 черных шаров. Из урны достают 5 шаров. Вероятность того, что хотя бы 3 из них окажутся белыми, равна

$$\boxed{A} \ C_5^3 \left(\frac{7}{12}\right)^2 \left(\frac{5}{12}\right)^3$$

$$C$$
 $\frac{3}{5} \cdot \frac{7}{12}$

$$\boxed{E} \ \ \frac{C_7^3 C_5^2 + C_7^4 C_5^1 + C_7^5 C_5^0}{C_{12}^5}$$

$$\boxed{B} \ C_5^3 \left(\frac{7}{12}\right)^3 \left(\frac{5}{12}\right)^2$$

$$\boxed{D} \ \ \frac{C_5^3 C_7^2 + C_5^4 C_7^1 + C_5^5 C_7^0}{C_{12}^5}$$

Вопрос 11. Размер выплаты по страховому полису является неотрицательной величиной с математическим ожиданием 10,000 рублей. Согласно неравенству Маркова, вероятность того, что величина выплаты превысит 30,000 рублей, не превосходит

$$D = 0.13$$

Вопрос 12. Величина Y имеет экспоненциальное (показательное) распределение с параметром $\lambda = 0.5$. Величины X и Y независимы. Ожидание E(Y|X=3/4) равно

 $|E| = \frac{1}{2}$

 $B \mid 2$

Вопрос 13. Сумма независимых абсолютно непрерывной и дискретной случайных величин имеет распределение

A вырожденное

C абсолютно непрерывное

|E| сингулярное

B дискретное

D нормальное

Вопрос 14. Известно, что Var(X) = 4, Var(Y) = 9, Cov(X, Y) = 6. Корреляция Corr(X, Y) равна

|A| -0.5

|E| 0.25

 $B \mid -0.25$

D 0.5

Вопрос 15. Про случайные величины X, Y, Z известно, что $\mathrm{E}(X) = 1$, $\mathrm{E}(Y) = 2$, $\mathrm{E}(Z) = 3$. Ожидание E(X - Y + 2Z) равно

 $A \mid 3$

|E| 1

 $B \mid 2$

Вопрос 16. Величины X и Y одинаково распределены и равновероятно принимают только два значения, -1 и 1, при этом $\mathbb{P}(Y=1|X=1)=0.4$. Вероятность $\mathbb{P}(Y=-1,X=1)$ равна

 $A \mid 1$

 $E \mid 0.3$

 $B \mid 0.5$

D = 0.4

Вопрос 17. Величина X имеет биномиальное распределение с параметрами n и p. Дисперсия величины X максимальна при p равном

 $A \mid 0.2$

 $C \mid 0.5$

 $|E| \ 0.25$

B | 0.75

D = 0.9

Вопрос 18. Про линейно связанные случайные величины X и Y, известно, что Var(X) = 1, Var(Y) = 4. Дисперсия их суммы может быть равна

|A| 5

|E| 3

 $B \mid 2$

Вопрос 19. Величины $\xi_1, \, \xi_2, \, \dots$ независимы и имеют таблицы распределения x = -1 = 1

 $\frac{\mathbb{P}(\xi_i=x) - 1/2 - 1/2}{\text{Рассмотрим их сумму } S_n = \xi_1 + \ldots + \xi_n. \text{ Предел } \lim_{n\to\infty} \mathbb{P}\Big(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} > 2\Big) \text{ равен}$

 $\boxed{A} \int_2^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

 $\boxed{C} \int_{-\infty}^{2} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

B $\int_{2}^{+\infty} e^{-t^2/2} dt$

Вопрос 20. Величина X с равными вероятностями принимает только два значения, -1 и 1, и $\mathrm{E}(Y|X=x)=1$. Ожидание $\mathrm{E}(Y)$ равно

A 0

C 1

E 0.5

B - 1

 \overline{D} 0.5

Вопрос 21. Про случайные величины X,Y известно, что $\mathrm{Var}(X)=1$, $\mathrm{Var}(Y)=4$, $\mathrm{Cov}(X,Y)=-1$. Корреляция $\mathrm{Corr}(X,-2Y)$ равна

A 0.5

C 0

|E| 1

B -0.25

D -0.5

Вопрос 22. Про независимые случайные величины X и Y известно, что $\mathrm{Var}(X)=8, \mathrm{Var}(Y)=1.$ Корреляция $\mathrm{Corr}(X,-2Y)$ равна

A -0.025

C -0.5

E 0.5

B 0.25

 $D \mid 0$

Вопрос 23. Случайная величина X равномерно распределена на отрезке от -2 до 2. Вероятность $\mathbb{P}(X^2>0.64)$ равна

A $\frac{1}{2\sqrt{2}}$

B 0.2

 $D \mid 0.8$

C 0.6

E = 0.1

Вопрос 24. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите вероятность $\mathbb{P}(Y=X)$

 \overline{A} 0

 \boxed{C} 1/4

E невозможно вычислить на основе имеющихся данных

B 3/4

D 1/2

Вопрос 25. Дисперсию случайной величины X можно найти, зная

A $(E(X))^2$ и E(X)

 $oxedcolon{}{C}$ $\mathrm{E}(XY)$ и $\mathrm{E}(Y)$

E Cov(X,Y) и Var(Y)

 $oxed{B} \ \mathrm{E}(X^2)$ и $\mathrm{E}(X)$

D $F_Y(x)$

Вопрос 26. В школе три выпускных класса. В "A" классе 50% мальчиков, в "Б" классе -70% мальчиков, и в "В" классе -80%. Я выбираю один класс равновероятно, а затем одного учащегося из этого класса, также равновероятно. Вероятность того, что окажется выбран мальчик равна

$$D = 0.75$$

Вопрос 27. Плотность величины X имеет вид f(x) = 2x при 0 < x < 1 и f(x) = 0 при остальных x. Условная плотность величины Y задаётся формулой $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}, \text{ если } 0 < y \leq x; \\ 0, \text{ иначе} \end{cases}$. Совместная плотность величин X и Y равна

$$\boxed{C} \ f(x,y) = \begin{cases} 1/x, \ \text{если} \ 0 < y \le x < 1; \\ 0, \ \text{иначe} \end{cases}$$

Вопрос 28. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите функцию распределения $F_Y(y)$

A

$$F_Y(y) = egin{cases} y^2, & ext{если } y \in [0;2] \ 0, & ext{иначе} \end{cases}$$

C

$$F_Y(y) = egin{cases} rac{1}{4}y^2, & ext{если } y \in [0;2] \\ 0, & ext{иначе} \end{cases}$$

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{2}y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

B

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{4}y^2, \ y \in [0; 2] \\ 1, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

18122800779

Вопрос 29. Для дискретной случайной величины функция распределения

A имеет разрывы

C строго возрастает

Е непрерывна

В не определена

Вырождена

Вопрос 30. Случайная величина X имеет функцию плотности $f(x)=3x^2$ на отрезке [0;1]. Ожидание $\mathrm{E}(1/X)$ равно

A 3/2

C 1

 \boxed{E} 2/3

B 2

D 1/3

Имя, фамилия и н	омер групп	ы:					
			 				ина ξ_i

Вопрос 1. Вероятность поражения мишени при одном выстреле равна 0.8. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2019}+\ldots+\xi_n^{2019}}{n}$ равен

A 0.8

C 0

 $E 0.8^{2019}$

B 0.5

D 0.2

Вопрос 2. Про случайные величины X,Y известно, что $\mathrm{Var}(X)=1,\mathrm{Var}(Y)=4,\mathrm{Cov}(X,Y)=-1.$ Корреляция $\mathrm{Corr}(X,-2Y)$ равна

A -0.5

C 0.5

|E| -0.25

B

D 0

Вопрос 3. Маша подбрасывает кубик два раза. Рассмотрим события $A = \{$ в первый раз выпало чётное число $\}$, $B = \{$ в сумме выпало чётное число $\}$ и $C = \{$ в сумме выпало нечётное число $\}$. Независимыми являются пары событий:

 $oxed{A}$ АиC; ВиC

 $oxed{C}$ A и B; A и C

 \square A и B; B и C

Вопрос 4. Про независимые случайные величины X и Y известно, что $\mathrm{Var}(X)=8$, $\mathrm{Var}(Y)=1$. Корреляция $\mathrm{Corr}(X,-2Y)$ равна

A 0.25

C 0.5

|E| -0.025

B 0

D -0.5

Вопрос 5. Известно, что $\mathrm{Var}(X)=4$, $\mathrm{Var}(Y)=9$, $\mathrm{Cov}(X,Y)=6$. Корреляция $\mathrm{Corr}(X,Y)$ равна

A 0.25

C 1

|E| -0.5

B -0.25

D 0.5

Вопрос 6. Совместная функция плотности пары случайных величин X и Y имеет вид

$$f(x,y) = egin{cases} c(2x+y), & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Константа c равна

A 8

C 1/6

|E| 12

 \boxed{B} 1/12

D 1/8

Вопрос 7. Случайная величина X имеет равномерное распределение. Возможной функцией плотности величины X является

$$[E] f(x) = \begin{cases} 1/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

$$\boxed{B} \ f(x) = \begin{cases} 1/20, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{D} \ f(x) = \begin{cases} 1/50, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

Вопрос 8. Случайная величина X имеет непрерывное распределение, при этом $\mathbb{P}(X \leq 3) = 0.25$ и $\mathbb{P}(X > 3)$ (0.25) = 0.8. Квантиль порядка (0.25) величины (0.25) может быть равен

 $A \mid 0.8$

 $C \mid 0.2$

 $|E| \ 0.25$

 \overline{B} 3

Вопрос 9. Плотность величины X имеет вид f(x) = 2x при 0 < x < 1 и f(x) = 0 при остальных x. Условная плотность величины Y задаётся формулой $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}, \text{ если } 0 < y \leq x; \\ 0, \text{ иначе} \end{cases}$. Совместная плотность величин X и Y равна

$$egin{aligned} egin{aligned} A \end{bmatrix} f(x,y) = egin{cases} 1/x, \ ext{ecли} \ 0 < y < 1, 0 < x < 1; \ 0, \ ext{uhave} \end{cases} \end{aligned}$$

$$\boxed{D} \ f(x,y) = \begin{cases} 2, \ \text{если} \ 0 < y < 1, 0 < x < 1; \\ 0, \ \text{иначе} \end{cases}$$

$$[E] \ f(x,y) = \begin{cases} 2, \ \text{если} \ 0 < y \le x < 1; \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{C} \ f(x,y) = \begin{cases} 1/x, \ \text{если} \ 0 < y \leq x < 1; \\ 0, \ \text{иначе} \end{cases}$$

Вопрос 10. Известно, что $\mathbb{P}(A \cap B) = 0.3$, $\mathbb{P}(B|A) = 0.6$. Вероятность того, что событие A произойдет, а событие B не произойдёт, равна

 $A \mid 2/3$

C 0.8

|E| 0.2

 $B \mid 0.5$

 \overline{D} 1/3

Вопрос 11. Размер выплаты по страховому полису является неотрицательной величиной с математическим ожиданием 10,000 рублей. Согласно неравенству Маркова, вероятность того, что величина выплаты превысит 30,000 рублей, не превосходит

 $A \mid 0.73$

 $C \mid 0.5$

|E| 1/3

 $B \mid 0.3$

 $D \mid 0.13$

$$\begin{array}{ccc}
x & -1 & 1 \\
\mathbb{P}(\xi_i = x) & 1/2 & 1/2
\end{array}$$

 $\frac{\mathbb{P}(\xi_i=x) - 1/2 - 1/2}{\text{Рассмотрим их сумму}\, S_n = \xi_1 + \ldots + \xi_n.\, \text{Предел } \lim_{n\to\infty} \mathbb{P}\Big(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} > 2\Big) \, \text{равен}$

 $\boxed{A} \int_2^{+\infty} e^{-t^2/2} \, dt$

- C $\int_{-\infty}^{2} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$
- $E \int_{2}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$

B = 0.5

Вопрос 13. Для любой функции распределения $F_X(x)$ верно, что

A она возрастает

- значения на $[0, +\infty)$
- |D| она не убывает

- $|B| F_X(x)$ принимает любые
- |C| она не возрастает
- $|E| F_X(x) > 0$

Вопрос 14. Величины X и Y одинаково распределены и равновероятно принимают только два значения, -1 и 1, при этом $\mathbb{P}(Y=1|X=1)=0.4$. Вероятность $\mathbb{P}(Y=-1,X=1)$ равна

 $A \mid 0.5$

|E| 0.6

 $B \mid 0.3$

Вопрос 15. В школе три выпускных класса. В "A" классе 50% мальчиков, в "Б" классе -70% мальчиков, и в "В" классе — 80%. Я выбираю один класс равновероятно, а затем одного учащегося из этого класса, также равновероятно. Вероятность того, что окажется выбран мальчик равна

 $A \mid 0.5$

 \overline{C} 0.6

 $|E| \ 2/3$

 $B \mid 0.7$

Вопрос 16. Величина Y имеет экспоненциальное (показательное) распределение с параметром $\lambda = 0.5$. Величины X и Y независимы. Ожидание $\mathrm{E}(Y|X=3/4)$ равно

 $A \frac{1}{8}$

 $E = \frac{1}{2}$

 $B \mid 2$

Вопрос 17. Для дискретной случайной величины функция распределения

не определена

- C строго возрастает
- E имеет разрывы

вырождена

D непрерывна

Вопрос 18. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите функцию распределения $F_Y(y)$

A

 $F_Y(y) = egin{cases} rac{1}{4}y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases}$ $F_Y(y) = egin{cases} y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases}$

 $F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{4}y^2, \ y \in [0; 2] \\ 1, \ y > 2 \end{cases}$

В

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{2}y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$$

Вопрос 19. В урне лежат 7 белых и 5 черных шаров. Из урны достают 5 шаров. Вероятность того, что хотя бы 3 из них окажутся белыми, равна

 $A = \frac{3}{5} \cdot \frac{7}{12}$

 $C \frac{C_5^3 C_7^2 + C_5^4 C_7^1 + C_5^5 C_7^0}{C_{12}^5}$

 $E C_5^3 \left(\frac{7}{12}\right)^2 \left(\frac{5}{12}\right)^3$

 $B C_5^3 \left(\frac{7}{12}\right)^3 \left(\frac{5}{12}\right)^2$

 $D \frac{C_7^3 C_5^2 + C_7^4 C_5^1 + C_7^5 C_5^0}{C_{12}^5}$

Вопрос 20. Про линейно связанные случайные величины X и Y, известно, что Var(X)=1, Var(Y)=4. Дисперсия их суммы может быть равна

 $A \mid 1$

 $E \mid 2$

 $B \mid 5$

Вопрос 21. Величина X имеет биномиальное распределение с параметрами n и p. Дисперсия величины X максимальна при p равном

 $A \mid 0.5$

 $E \mid 0.75$

B | 0.9

Вопрос 22. Для энтропий пары случайных величин выполнено соотношение

 $A \mid H(Y|X) + H(X) = H(X,Y)$

 $D \mid H(X \cdot Y)/H(X) = H(Y|X)$

 $B \mid H(Y|X) + H(X|Y) = H(X,Y)$

 $C \mid H(X) \cdot H(Y) = H(X,Y)$

 $E \mid H(X) + H(Y) = H(X, Y)$

Вопрос 23. Величина X с равными вероятностями принимает только два значения, -1 и 1, и $\mathrm{E}(Y|X=x)=1$. Ожидание $\mathrm{E}(Y)$ равно

A 0.5

C -1

|E| 1

B 0.5

D = 0

Вопрос 24. Случайная величина X имеет функцию плотности $f(x)=3x^2$ на отрезке [0;1]. Ожидание $\mathrm{E}(1/X)$ равно

A 1

C 2

 \boxed{E} 3/2

B 1/3

D 2/3

Вопрос 25. Случайная величина X равномерно распределена на отрезке от -2 до 2. Вероятность $\mathbb{P}(X^2>0.64)$ равна

A 0.2

C $\frac{1}{2\sqrt{2}}$

 \boxed{E} 0.8

B 0.6

D 0.1

Вопрос 26. Про случайные величины X,Y,Z известно, что $\mathrm{E}(X)=1,$ $\mathrm{E}(Y)=2,$ $\mathrm{E}(Z)=3.$ Ожидание $\mathrm{E}(X-Y+2Z)$ равно

A 3

C 1

|E| 4

B = 5

D 2

Вопрос 27. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите вероятность $\mathbb{P}(Y=X)$

- A невозможно вычислить на основе имеющихся данных
- \boxed{B} 1/2

D 3/4

C 1/4

E

Вопрос 28. Количество скачиваний за день мобильного приложения распределено по Пуассону. В среднем приложение скачивают 12 раз за день. Вероятность того, что приложение будет скачено за день ровно 5 раз, равна

 $A \frac{5}{12}$

 $C e^{-\xi}$

 $E e^{-5\frac{5^{12}}{12!}}$

 $B e^{-12\frac{12^5}{5!}}$

 $D e^{-12\frac{5^{12}}{12}}$

Bonpoc 29. Сумма независимых абсолютно непрерывной и дискретной случайных величин имеет распределение

А абсолютно непрерывное

С вырожденное

E нормальное

В сингулярное

Дискретное

Вопрос 30. Дисперсию случайной величины X можно найти, зная

A $E(X^2)$ и E(X)

 $oxedsymbol{C}$ $(\mathrm{E}(X))^2$ и $\mathrm{E}(X)$

 $E F_Y(x)$

 $\fbox{$B$} \ \operatorname{Cov}(X,Y)$ и $\operatorname{Var}(Y)$

 $oxed{D}$ $\mathrm{E}(XY)$ и $\mathrm{E}(Y)$

Имя, фамилия и номер группы:

Вопрос 1. Про линейно связанные случайные величины X и Y, известно, что $\mathrm{Var}(X)=1$, $\mathrm{Var}(Y)=4$. Дисперсия их суммы может быть равна

A 4

C 3

|E| 1

B 2

 \overline{D} 5

Вопрос 2. Размер выплаты по страховому полису является неотрицательной величиной с математическим ожиданием 10,000 рублей. Согласно неравенству Маркова, вероятность того, что величина выплаты превысит 30,000 рублей, не превосходит

A 0.73

C 0.5

E 0.3

B 0.13

D 1/3

Вопрос 3. Величина X имеет биномиальное распределение с параметрами n и p. Дисперсия величины X максимальна при p равном

A 0.9

C 0.75

 \boxed{E} 0.5

 $B \mid 0.2$

D 0.25

Вопрос 4. Про случайные величины X,Y,Z известно, что $\mathrm{E}(X)=1,\,\mathrm{E}(Y)=2,\,\mathrm{E}(Z)=3.$ Ожидание $\mathrm{E}(X-Y+2Z)$ равно

 \overline{A} 1

C 3

|E| 2

B

D 5

Вопрос 5. Плотность величины X имеет вид f(x)=2x при 0 < x < 1 и f(x)=0 при остальных x. Условная плотность величины Y задаётся формулой $f_{Y|X}(y|x)=\begin{cases} \frac{1}{x}, \text{ если } 0 < y \leq x; \\ 0, \text{ иначе} \end{cases}$. Совместная плотность величин X и Y равна

- $\boxed{A} \ f(x,y) = egin{cases} 2, \ \text{если} \ 0 < y < 1, 0 < x < 1; \\ 0, \ \text{иначе} \end{cases}$
- $\boxed{D} \ f(x,y) = \begin{cases} 1/x, \ \text{если} \ 0 < y < 1, 0 < x < 1; \\ 0, \ \text{иначе} \end{cases}$
- $\boxed{E} \ f(x,y) = \begin{cases} 2, \ \text{если} \ 0 < y \leq x < 1; \\ 0, \ \text{иначе} \end{cases}$

 $\boxed{\textit{C}} \ f(x,y) = \begin{cases} 1, \text{ если } 0 < y \leq x < 1; \\ 0, \text{ иначе} \end{cases}$

Вопрос 6. Совместная функция плотности пары случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} c(2x+y), & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Константа c равна

 \boxed{A} 1/6

C 12

|E| 1/8

B 8

D | 1/12

Вопрос 7. Для любой функции распределения $F_X(x)$ верно, что

 $A F_X(x) > 0$

oxedcirclet C $F_X(x)$ принимает любые значения на $[0,+\infty)$

D она не убывает

|B| она не возрастает

|E| она возрастает

Вопрос 8. Для дискретной случайной величины функция распределения

 A
 непрерывна

C строго возрастает

|E| не определена

В имеет разрывы

D вырождена

Вопрос 9. Случайная величина X равномерно распределена на отрезке от -2 до 2. Вероятность $\mathbb{P}(X^2>0.64)$ равна

A 0.2

C 0.6

E 0.1

B 0.8

 $\boxed{D} \ \frac{1}{2\sqrt{2}}$

Вопрос 10. Величины X и Y одинаково распределены и равновероятно принимают только два значения, -1 и 1, при этом $\mathbb{P}(Y=1|X=1)=0.4$. Вероятность $\mathbb{P}(Y=-1,X=1)$ равна

A 0.6

C 0.3

E = 0.4

B 1

D 0.5

Вопрос 11. Величина X с равными вероятностями принимает только два значения, -1 и 1, и $\mathrm{E}(Y|X=x)=1$. Ожидание $\mathrm{E}(Y)$ равно

A 1

C 0.5

E 0

B 0.5

D -1

Bonpoc 12. Сумма независимых абсолютно непрерывной и дискретной случайных величин имеет распределение

A нормальное

С сингулярное

Е вырожденное

В абсолютно непрерывное

Дискретное

Вопрос 13. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите функцию распределения $F_Y(y)$

A

 $F_Y(y) = \begin{cases} \frac{1}{4}y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases} \qquad F_Y(y) = \begin{cases} y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases}$

 $F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{4}y^2, \ y \in [0; 2] \\ 1, \ y > 2 \end{cases}$

В

 $F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{2}y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0; 2] \\ 0, \ y > 2 \end{cases}$

Вопрос 14. Величины $\xi_1,\,\xi_2,\,...$ независимы и имеют таблицы распределения

 $\frac{x}{\mathbb{P}(\xi_i=x)-1/2-1/2}$ Рассмотрим их сумму $S_n=\xi_1+\ldots+\xi_n$. Предел $\lim_{n\to\infty}\mathbb{P}\Big(\frac{S_n-\mathrm{E}(S_n)}{\sqrt{\mathrm{Var}(S_n)}}>2\Big)$ равен

 \overline{A} 1

C $\int_{2}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$

B $\int_{0}^{+\infty} e^{-t^2/2} dt$

 $D \int_{-\infty}^{2} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

Вопрос 15. Случайная величина X имеет непрерывное распределение, при этом $\mathbb{P}(X \leq 3) = 0.25$ и $\mathbb{P}(X>0.25)=0.8$. Квантиль порядка 0.25 величины X может быть равен

 $A \mid 0.75$

 $E \mid 0.25$

 $B \mid 0.8$

 \overline{D} 0.2

Вопрос 16. Для энтропий пары случайных величин выполнено соотношение

 $\boxed{B} H(Y|X) + H(X) = H(X,Y) \qquad \boxed{D} H(X \cdot Y) / H(X) = H(Y|X)$

Вопрос 17. Случайная величина X имеет равномерное распределение. Возможной функцией плотности величины X является

 $\boxed{C} \ f(x) = \begin{cases} 1/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{E} \ f(x) = \begin{cases} 1/50, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$

 $\boxed{B} \ f(x) = \begin{cases} x/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{D} \ f(x) = \begin{cases} 1/20, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$

Вопрос 18. Количество скачиваний за день мобильного приложения распределено по Пуассону. В среднем приложение скачивают 12 раз за день. Вероятность того, что приложение будет скачено за день ровно 5 раз, равна

$$A e^{-5\frac{5^{12}}{12!}}$$

$$C e^{-12\frac{5^{12}}{12!}}$$

$$E = \frac{5}{12}$$

$$B e^{-12\frac{12^5}{5!}}$$

$$D$$
 $e^{-\xi}$

Вопрос 19. В школе три выпускных класса. В "A" классе 50% мальчиков, в "Б" классе -70% мальчиков, и в "В" классе -80%. Я выбираю один класс равновероятно, а затем одного учащегося из этого класса, также равновероятно. Вероятность того, что окажется выбран мальчик равна

$$\overline{D}$$
 2/3

Вопрос 20. Про независимые случайные величины X и Y известно, что $\mathrm{Var}(X)=8, \mathrm{Var}(Y)=1.$ Корреляция $\mathrm{Corr}(X,-2Y)$ равна

$$\overline{A}$$
 0

$$|E| -0.5$$

$$B - 0.025$$

Вопрос 21. В урне лежат 7 белых и 5 черных шаров. Из урны достают 5 шаров. Вероятность того, что хотя бы 3 из них окажутся белыми, равна

$$\boxed{A} \ \frac{C_5^3 C_7^2 + C_5^4 C_7^1 + C_5^5 C_7^0}{C_{12}^5}$$

$$C$$
 $C_5^3 \left(\frac{7}{12}\right)^2 \left(\frac{5}{12}\right)^3$

$$\boxed{E} \quad \frac{C_7^3 C_5^2 + C_7^4 C_5^1 + C_7^5 C_5^0}{C_{12}^5}$$

$$\boxed{B} \ C_5^3 \left(\frac{7}{12}\right)^3 \left(\frac{5}{12}\right)^2$$

$$\boxed{D} \ \tfrac{3}{5} \cdot \tfrac{7}{12}$$

Вопрос 22. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите вероятность $\mathbb{P}(Y=X)$

A невозможно вычислить на основе имеющихся данных

 \boxed{B} 1/2

D 1/4

C 3/4

E 0

Вопрос 23. Величина Y имеет экспоненциальное (показательное) распределение с параметром $\lambda=0.5$. Величины X и Y независимы. Ожидание $\mathrm{E}(Y|X=3/4)$ равно

A 1

C

 $E \frac{3}{4}$

B $\frac{1}{2}$

D 2

Вопрос 24. Случайная величина X имеет функцию плотности $f(x)=3x^2$ на отрезке [0;1]. Ожидание $\mathrm{E}(1/X)$ равно

A 2/3

C 3/2

E 1/3

B

 \overline{D} 2

Вопрос 25. Маша подбрасывает кубик два раза. Рассмотрим события $A = \{$ в первый раз выпало чётное число $\}$, $B = \{$ в сумме выпало чётное число $\}$ и $C = \{$ в сумме выпало нечётное число $\}$. Независимыми являются пары событий:

 \overline{A} только A и B

C АиB; АиC

E АиC; ВиC

B A и B; B и C

Вопрос 26. Известно, что Var(X)=4, Var(Y)=9, Cov(X,Y)=6. Корреляция Corr(X,Y) равна

A -0.5

C 0.25

|E| 1

B 0.5

D -0.25

Вопрос 27. Дисперсию случайной величины X можно найти, зная

A E(XY) и E(Y)

 $oxed{C}$ $\mathrm{E}(X^2)$ и $\mathrm{E}(X)$

 $|E| (E(X))^2$ и E(X)

 $B F_Y(x)$

Вопрос 28. Про случайные величины X,Y известно, что $\mathrm{Var}(X)=1$, $\mathrm{Var}(Y)=4$, $\mathrm{Cov}(X,Y)=-1$. Корреляция $\mathrm{Corr}(X,-2Y)$ равна

A 0

C -0.25

 \boxed{E} 0.5

B -0.5

D 1

Вопрос 29. Вероятность поражения мишени при одном выстреле равна 0.8. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2019}+\ldots+\xi_n^{2019}}{n}$ равен

 $A 0.8^{2019}$

C 0

E 0.5

B 0.2

 \boxed{D} 0.8

Вопрос 30. Известно, что $\mathbb{P}(A\cap B)=0.3$, $\mathbb{P}(B|A)=0.6$. Вероятность того, что событие A произойдет, а событие B не произойдёт, равна

A 0.8

C 0.2

|E| 1/3

B 2/3

 $D \mid 0.5$

Имя, фамилия и номер группы:

Вопрос 1. Для дискретной случайной величины функция распределения

A не определена

- C строго возрастает
- Е вырождена

B имеет разрывы

D непрерывна

Вопрос 2. Совместная функция плотности пары случайных величин X и Y имеет вид

$$f(x,y) = egin{cases} c(2x+y), & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Константа c равна

 $A \mid 1/12$

C 1/6

E 8

 $B \mid 12$

D | 1/8

Вопрос 3. Величина X с равными вероятностями принимает только два значения, -1 и 1, и $\mathrm{E}(Y|X=x)=$ 1. Ожидание E(Y) равно

 $A \mid 0.5$

|E| 0

 $B \mid 0.5$

Вопрос 4. Дисперсию случайной величины X можно найти, зная

- $|A| \operatorname{Cov}(X,Y)$ и $\operatorname{Var}(Y)$
- C (E(X))² и E(X)

 $|E| \to E(XY)$ и $\to E(Y)$

B $E(X^2)$ и E(X)

 $D F_Y(x)$

Вопрос 5. Величины $\xi_1, \, \xi_2, \, \dots$ независимы и имеют таблицы распределения x = -1 = 1

$$\begin{array}{ccc}
x & -1 & 1 \\
\mathbb{P}(\xi_i = x) & 1/2 & 1/2
\end{array}$$

 $\frac{\mathbb{P}(\xi_i=x) - 1/2 - 1/2}{\text{Рассмотрим их сумму } S_n=\xi_1+\ldots+\xi_n. \text{ Предел } \lim_{n\to\infty}\mathbb{P}\Big(\frac{S_n-\mathrm{E}(S_n)}{\sqrt{\mathrm{Var}(S_n)}}>2\Big) \text{ равен}$

 $\boxed{A} \int_2^{+\infty} e^{-t^2/2} \, dt$

 $E \int_{-\infty}^{2} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$

- $B \int_{2}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$
- D = 0.5

Вопрос 6. Плотность величины X имеет вид f(x)=2x при 0< x<1 и f(x)=0 при остальных x. Условная плотность величины Y задаётся формулой $f_{Y|X}(y|x)=\begin{cases} \frac{1}{x}, \text{ если } 0< y\leq x; \\ 0, \text{ иначе} \end{cases}$. Совместная плотность величин X и Y равна

$$\boxed{A} \ f(x,y) = egin{cases} 1/x, \ \text{если} \ 0 < y \leq x < 1; \ 0, \ \text{иначe} \end{cases}$$

$$\boxed{D} \ f(x,y) = \begin{cases} 1, \ \text{если} \ 0 < y \leq x < 1; \\ 0, \ \text{иначе} \end{cases}$$

$$egin{aligned} \boxed{B} \ f(x,y) = \begin{cases} 1/x, \ \text{если} \ 0 < y < 1, 0 < x < 1; \\ 0, \ \text{иначe} \end{cases} \end{aligned}$$

$$\boxed{E} \ f(x,y) = \begin{cases} 2, \ \text{если} \ 0 < y < 1, 0 < x < 1; \\ 0, \ \text{иначе} \end{cases}$$

$$\boxed{C} \ f(x,y) = \begin{cases} 2, \ \text{если} \ 0 < y \leq x < 1; \\ 0, \ \text{иначе} \end{cases}$$

Вопрос 7. Величины X и Y одинаково распределены и равновероятно принимают только два значения, -1 и 1, при этом $\mathbb{P}(Y=1|X=1)=0.4$. Вероятность $\mathbb{P}(Y=-1,X=1)$ равна

A 0.5

C 0.3

E = 0.4

B 1

D 0.6

Вопрос 8. Вероятность поражения мишени при одном выстреле равна 0.8. Случайная величина ξ_i равна 1, если при i-ом выстреле было попадание, и равна 0 в противном случае. Предел по вероятности последовательности $\frac{\xi_1^{2019}+\ldots+\xi_n^{2019}}{n}$ равен

A 0.2

 $C \mid 0$

E 0.5

 $B \mid 0.8$

 $D 0.8^{2019}$

Вопрос 9. Количество скачиваний за день мобильного приложения распределено по Пуассону. В среднем приложение скачивают 12 раз за день. Вероятность того, что приложение будет скачено за день ровно 5 раз, равна

 $A e^{-5}$

 $C e^{-12\frac{5^{12}}{12!}}$

 $E \frac{5}{12}$

 $B e^{-12\frac{12^5}{5!}}$

 $D e^{-5\frac{5^{12}}{12!}}$

Вопрос 10. Про линейно связанные случайные величины X и Y, известно, что ${\rm Var}(X)=1$, ${\rm Var}(Y)=4$. Дисперсия их суммы может быть равна

A 2

C 1

 $E \mid 5$

B 3

 $D \mid 4$

Вопрос 11. Про независимые случайные величины X и Y известно, что Var(X) = 8, Var(Y) = 1. Корреляция Corr(X, -2Y) равна

$$A = 0$$

$$C \mid 0.5$$

$$|E| -0.5$$

$$B - 0.025$$

Вопрос 12. Случайная величина X имеет равномерное распределение. Возможной функцией плотности величины X является

$$C f(x) = \begin{cases} 1/20, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

$$\boxed{E} \ f(x) = \begin{cases} x/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

$$\boxed{B} f(x) = \begin{cases} 1/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

$$\boxed{A} \ f(x) = \begin{cases} 1/5, x \in [-5; 5] \\ 0, x \notin [-5; 5] \end{cases} \qquad \boxed{C} \ f(x) = \begin{cases} 1/20, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{E} \ f(x) = \begin{cases} x/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

$$\boxed{B} \ f(x) = \begin{cases} 1/30, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases} \qquad \boxed{D} \ f(x) = \begin{cases} 1/50, x \in [30; 50] \\ 0, x \notin [30; 50] \end{cases}$$

Вопрос 13. Про случайные величины X, Y, Z известно, что $\mathrm{E}(X) = 1$, $\mathrm{E}(Y) = 2$, $\mathrm{E}(Z) = 3$. Ожидание E(X-Y+2Z) равно

$$C$$
 1

$$D$$
 5

Вопрос 14. Случайная величина X имеет непрерывное распределение, при этом $\mathbb{P}(X \leq 3) = 0.25$ и $\mathbb{P}(X>0.25)=0.8$. Квантиль порядка 0.25 величины X может быть равен

Вопрос 15. В урне лежат 7 белых и 5 черных шаров. Из урны достают 5 шаров. Вероятность того, что хотя бы 3 из них окажутся белыми, равна

$$\boxed{A} \ C_5^3 \left(\frac{7}{12}\right)^3 \left(\frac{5}{12}\right)^2$$

$$C$$
 $\frac{3}{5} \cdot \frac{7}{12}$

$$E \frac{C_7^3 C_5^2 + C_7^4 C_5^1 + C_7^5 C_5^0}{C_{12}^5}$$

$$\boxed{B} \ C_5^3 \left(\frac{7}{12}\right)^2 \left(\frac{5}{12}\right)^3$$

$$D \frac{C_5^3 C_7^2 + C_5^4 C_7^1 + C_5^5 C_7^0}{C_{12}^5}$$

Вопрос 16. Для любой функции распределения $F_X(x)$ верно, что

|A| она не возрастает

значения на $[0, +\infty)$

D \mid она возрастает

 $B \mid F_X(x)$ принимает любые $C \mid F_X(x) > 0$

E она не убывает

Вопрос 17. Для энтропий пары случайных величин выполнено соотношение

$$\boxed{A} \ H(Y|X) + H(X) = H(X,Y)$$

$$\boxed{D} \ H(X) + H(Y) = H(X, Y)$$

$$\boxed{B} H(Y|X) + H(X|Y) = H(X,Y)$$

$$C$$
 $H(X) \cdot H(Y) = H(X, Y)$

$$\boxed{E} \ H(X \cdot Y)/H(X) = H(Y|X)$$

Вопрос 18. В школе три выпускных класса. В "A" классе 50% мальчиков, в "Б" классе -70% мальчиков, и
в "В" классе — 80% . Я выбираю один класс равновероятно, а затем одного учащегося из этого класса, также
равновероятно. Вероятность того, что окажется выбран мальчик равна

A 0.6

C 0.75

 \boxed{E} 2/3

B 0.7

D 0.5

Вопрос 19. Известно, что $\mathbb{P}(A\cap B)=0.3$, $\mathbb{P}(B|A)=0.6$. Вероятность того, что событие A произойдет, а событие B не произойдёт, равна

A 1/3

C 0.5

E 0.2

B 2/3

D 0.8

Вопрос 20. Размер выплаты по страховому полису является неотрицательной величиной с математическим ожиданием 10,000 рублей. Согласно неравенству Маркова, вероятность того, что величина выплаты превысит 30,000 рублей, не превосходит

A 1/3

C 0.5

E 0.13

B 0.3

D 0.73

Вопрос 21. Случайная величина X имеет функцию плотности $f(x)=3x^2$ на отрезке [0;1]. Ожидание $\mathrm{E}(1/X)$ равно

A 1/3

C 2/3

E 3/2

B 2

D 1

Вопрос 22. Известно, что $\mathrm{Var}(X)=4$, $\mathrm{Var}(Y)=9$, $\mathrm{Cov}(X,Y)=6$. Корреляция $\mathrm{Corr}(X,Y)$ равна

A 1

C 0.25

E 0.5

B - 0.25

D -0.5

Вопрос 23. Величина X имеет биномиальное распределение с параметрами n и p. Дисперсия величины X максимальна при p равном

A 0.75

 \boxed{C} 0.25

E 0.9

B 0.2

D 0.5

Boпpoc 24. Сумма независимых абсолютно непрерывной и дискретной случайных величин имеет распределение

<u>А</u> вырожденное

С сингулярное

|E| дискретное

В нормальное

 \boxed{D} абсолютно непрерывное

Вопрос 25. Маша подбрасывает кубик два раза. Рассмотрим события $A = \{$ в первый раз выпало чётное число $\}$, $B = \{$ в сумме выпало чётное число $\}$ и $C = \{$ в сумме выпало нечётное число $\}$. Независимыми являются пары событий:

$$A$$
 и C ; B и C

$$E$$
 A и B ; B и C

$$B$$
 A и B ; A и C

$$oldsymbol{D}$$
 только A и B

Вопрос 26. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите вероятность $\mathbb{P}(Y=X)$

 \overline{C} невозможно вычислить на основе имеющихся данных

$$D$$
 1/2

B | 3/4

Вопрос 27. Величина Y имеет экспоненциальное (показательное) распределение с параметром $\lambda = 0.5$. Величины X и Y независимы. Ожидание $\mathrm{E}(Y|X=3/4)$ равно

$$C$$
 $\frac{1}{2}$

$$B \frac{1}{8}$$

$$D \frac{3}{4}$$

Вопрос 28. Случайная величина X равномерно распределена на отрезке от -2 до 2. Вероятность $\mathbb{P}(X^2 >$ 0.64) равна

$$E \frac{1}{2\sqrt{2}}$$

Вопрос 29. Совместная функция плотности случайных величин X и Y имеет вид

$$f(x,y) = \begin{cases} \frac{1}{4}xy, & \text{если } x \in [0;2], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Найдите функцию распределения $F_Y(y)$

A

 $F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{2}y^2, \ y \in [0;2] \\ 0, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ y^2, \ y \in [0;2] \\ 0, \ y > 2 \end{cases} \qquad F_Y(y) = \begin{cases} \frac{1}{4}y^2, \ \text{если } y \in [0;2] \\ 0, \ \text{иначе} \end{cases}$

B

 $F_Y(y) = \begin{cases} y^2, & \text{если } y \in [0;2] \\ 0, & \text{иначе} \end{cases} \qquad F_Y(y) = \begin{cases} 0, \ y < 0 \\ \frac{1}{4}y^2, \ y \in [0;2] \\ 1, \ u > 2 \end{cases}$

Вопрос 30. Про случайные величины X, Y известно, что Var(X) = 1, Var(Y) = 4, Cov(X, Y) = -1. Корреляция Corr(X, -2Y) равна

 $A \mid 0$

 $C \mid -0.5$

|E| -0.25

 $B \mid 0.5$