

INTEGRAÇÃO NUMÉRICA E SISTEMAS NÃO-LINEARES 5ª LISTA DE EXERCÍCIOS

Faça as contas considerando todos os dígitos, mas apresente apenas 4 casas decimais.

1 Calcule as integrais a seguir pela regra dos Trapézios, 1/3 de Simpson e 3/8 de Simpson, usando seis divisões de [a,b].

a)
$$\int_{-1}^{2} e^{x} dx$$

c)
$$\int_0^9 (x^3 - 3x) dx$$

b)
$$\int_1^7 \sqrt{x} dx$$

2 Na tabela seguinte estão indicados os valores relativos à velocidade registrada (em km/h) para um ciclista em um determinado percurso, entre às 8h00 e 8h40.

Tempo (h)	8h00	8h10	8h20	8h30	8h40
Velocidade (km/h)	24,2	35,0	41,3	42,8	34,2

Sabendo que $d(t) = \int v(t)dt$, aplique a regra dos Trapézios para calcular uma estimativa da distância percorrida pelo ciclista entre 8h00 e 8h40.

3 Sejam os dados:

x_i	0	0,5	1,0	1,5	2,0	2,5
$f(x_i)$	1,0	2,119	2,910	3,945	5,720	8,695

- a) Aplique a regra 1/3 de Simpson e estime o valor de $\int_0^2 f(x)dx$.
- b) Aproxime f por um polinômio de segundo grau para obter f(3) e estime $\int_0^3 f(x)dx$ utilizando a regra 3/8 de Simpson.

Resolva pelo Método de Newton, com ε =10⁻², os sistemas a seguir. Considerar 4 casas decimais em todos os cálculos abaixo.

4.
$$\begin{cases} x_1^2 + x_2 = 3 \\ x_1 + x_2^2 = 5 \end{cases} \text{ com } x^0 = {2 \choose 2}$$

5.
$$\begin{cases} x_1 + x_2 = 5 \\ x_1^2 - x_2^2 = 5 \end{cases} \text{ com } x^0 = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$