Homework 3

CS 4964 - Math for Data Nick Porter

November 26, 2016

Exercise 1. Let the first column of the data set be the explanatory variable x, and let the fourth column be the dependent variable y.

• (a) Run simple linear regression to predict y from x. Report the linear model you found. Predict the value of y for new x values 1, for 2, and for 3.

After running a simple linear regression I found the model to be:

$$f(x) = -2.06x + 5.99$$

$$f(1) = 3.93$$

$$f(2) = 1.87$$

$$f(3) = -0.19$$

• (b) Use cross-validation to predict generalization error, with error of a single data point (x, y) from a model M as $(M(x) - y)^2$. Describe how you did this, and which data was used for what.

To split my data into training and testing sets I used a SKLearn function, and used 10% as testing data and left the other 90% to train my new model. Then I computed a new model based on the training data. After that I computed the SSE based off the testing data.

```
# Split data randomly into train and test sets
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.1)
# Build our new model from the training data
trainM, trainB = np.polyfit(X_train.values.flatten(), y_train.values.flatten(), 1)
p = np.poly1d([trainM, trainB])
# Evaluate our new model on our test data.
sse = 0
for i in range(0, len(X_test)):
    xValue = X_test.iloc[i][0]
    yValue = y_test.iloc[i][0]
    sse = sse + (p(xValue) - yValue)**2
```


• (c) On the same data, run polynomial regression for p = 2, 3, 4, 5. Report polynomial models for each. With each of these models, predict the value of y for a new x values of 1, for 2, and for 3.

def poly_regression(x, y, degree):
 coefs = np.polyfit(x.values.flatten(), y.values.flatten(), degree)
 p = np.poly1d(coefs)

When p=2

$$f(x) = -1.02x^{2} + 2.08x + 3.16$$

$$f(1) = 4.229$$

$$f(2) = 3.236$$

$$f(3) = 0.188$$

When p = 3

$$f(x) = 0.025x^3 - 1.18x^2 + 2.33x + 3.08$$
$$f(1) = 4.264$$
$$f(2) = 3.237$$
$$f(3) = 0.153$$

When p=4

$$f(x) = -0.034x^4 + 0.30x^3 - 1.91x^2 + 3x + 2.94$$
$$f(1) = 4.303$$
$$f(2) = 3.190$$
$$f(3) = 0.187$$

When p=5

$$f(x) = 0.03x^5 - 0.035x^4 + 1.44x^3 + 3.64x^2 + 4.02x + 2.79$$
$$f(1) = 4.294$$
$$f(2) = 3.187$$
$$f(3) = 0.202$$

• (d) Cross-validate to choose the best model. Describe how you did this, and which data was used for what.

To find the p which provides the best model we will use cross validation to help us gauge the effectiveness of each model.

We will perform the operations described below 10,000 times to get a good average.

First use train test split method to split our data 90% train, 10% test for each iteration 1 - 10,000.

Then for each value of p [1-5] we will evaluate the SSE and add it to the running sum for that value of p.

Next we will compute the average by taking SSE of each p / 10,000.

Degree	SSE
1	19.643
2	4.633
3	4.625
4	4.605
5	4.593

As we can see the degree 5 polynomial has the lowest SSE, making it the most accurate out of all our models. However to confirm this we may want to plot the lines and ensure that a degree 5 polynomial is not doing anything too extreme at the ends.

Exercise 2. Now let the first three columns of the data set be separate explanatory variables x_1, x_2, x_3 . Again let the fourth column be the dependent variable y.

• (a) Run linear regression simultaneously using all three explanatory variables. Report the linear model you found. Predict the value of y for new (x_1,x_2,x_3) values (1,1,1), for (2,0,4), and for (3,2,1).

```
x3 = pandas.read_csv('D3.csv', usecols = [0,1,2])  
x3 = sm.add_constant(x3)  
model = sm.OLS(y,x3).fit()  
f(x_1,x_2,x_3) = -2.042x_1 + 0.561x_2 - 0.292x_3 + 5.4137 
f(1,1,1) = 3.640 
f(2,0,4) = 0.161 
f(3,2,1) = 0.117
```

• (b) Use cross-validation to predict generalization error, with error of a single data point (x_1, x_2, x_3, y) from a model M as $(M(x_1, x_2, x_3)y)^2$. Describe how you did this, and which data was used for what.

To split my data into training and testing sets I used a SKLearn function, and used 10% as testing data and left the other 90% to train my new model. Then I computed a new model based on the training data. After that I computed the SSE based off the testing data.

I ran the following operation on all the testing data.

```
sse += ((xValue_1 * params[1] + xValue_2 * params[2] + xValue_3 * params[3] +
params[0]) - yValue)**2
```

After running the operation I was given a SSE of 14.084

Exercise 3. Consider two functions

$$f_1(x,y) = (x-2)^2 + (y-3)^2$$

$$f_2(x,y) = (1 - (y-3))^2 + 20((x+3) - (y-3)^2)^2$$

Starting with (x, y) = (0, 0) run the gradient descent algorithm for each function. Run for T iterations, and report the function value at the end of each step.

• (a) First, run with a fixed learning rate of $\gamma=0.5$. For both functions I ran the gradient descent function for T=10.

$f_1(x,y)$	
i	(x,y)
0	(0,0)
1	(2,3)
2	(2,3)
3	(2,3)
4	(2,3)
5	(2,3)
6	(2,3)
7	(2,3)
8	(2,3)
9	(2,3)

We ended up with a final gradient of < 0, 0 >

 $f_2(x,y)$

i	(x,y)
0	(0,0)
1	(120,724)
2	(1.03944800e+07, -1.49886671e+10)
3	(4.49320284e+21, 1.34694243e+32)
4	(3.62850784e+65, -9.77478235e+97)
5	(1.91092740e+197, 3.73577989e+295)
6	$(\inf, -\inf)$
7	(nan,nan)
8	(nan,nan)
9	(nan,nan)

We ended up with integer overflow. Unsure how to handle this.

def gradient_descent(gradf, x, y, learning_rate, iterations):

```
values[0, :] = v_init
v = v_init

for i in range(1, iterations):
    print v
    v = v - learning_rate * gradf(v[0], v[1])
    values[i, :] = v

print LA.norm(gradf(v[0], v[1]))
```

• (b) Second, run with any variant of gradient descent you want. Try to get the smallest function value after T steps.

For $f_1(x, y)$ I ran the same gradient descent algorithm, however I used a learning rate of 0.01, a starting point of (5, 5) and T = 100

After 100 iterations I was given back a value of 0.975 for the norm of the gradient at the point (2.414, 3.276)

We noticed that the original parameters resulted in a far better result, using few iterations as well.

On $f_2(x, y)$ I ran the same gradient descent algorithm however with the starting point of (6, 6), learning rate at 0.0007 and set for T = 100

The smaller learning rate allowed this run to not overflow and converge.

After 100 iterations I was given back a value of 0.656 for the norm of the gradient at the point (5.955, 5.989)