

Spark: Data Science as a Service

Sridhar Alla, Kiran Muglurmath Comcast

Who we are

Sridhar Alla

Director, Data Engineering, Comcast

Architecting and building solutions on a big data scale

sridhar_alla@cable.comcast.com

Kiran Muglurmath

Executive Director, Data Science, Comcast Data science on a big data scale.

kiran muglurmath@cable.comcast.com

Agenda

- Why do this?
- Where are we now
- Real world challenges
- Introduction to Roadrunner Our Solution to the real world challenges
- How we use Roadrunner in Comcast
- Q&A

Our Data

- 40PB in HDFS capacity and 100s of TBs in Teradata space
- ~1200 data nodes in total in Hadoop and Spark clusters
- · Multiple 1Trillion+ row datasets
- Datasets with 12000+ columns
- 100s of models
 - · Logistic regression, Neural Networks
 - · LDA and other text analytics
 - · Bayesian Networks
 - · Clustering that includes kmeans, hierarchical, density
 - Geospatial

Data Science Use Cases

- · Churn Models
- Price Elasticity
- Geo Spatial Route Optimization
- Direct Mail Campaign
- Customer call Analytics

```
many more .....
```


Direct Mail Campaign Optimization

Customer Journey Analytics

Main Challenges of Data Science

- Feature Engineering
 - Making sense of variety in data
- Model Scoring
 - Implementing ML algorithms
- Operational consumption for Business use cases

Main Challenges of Data Science

- Data ingestion, profiling and quality control
- We store and process massive amounts of data, still lack critical ability to stitch together pieces of data to make meaningful predictions. This is due to
 - Massive data size
 - Lack of service level architecture
- Multiple teams working on the same dataset
 - Increase development time because everyone has to process/feature engineer same dataset

What we needed

- A Central Processing System
 - · Highly Scalable
 - · Persisted and Cached
 - SQL capabilities and connection with multiple data sources and databases
 - Statistical Process Control methodology for data quality at every stage
 - Machine Learning capabilities and connection with multiple ML tools
 - Multi Tenancy
 - Access through APIs and programming languages

· Fully automated workflow management for data science operations

What we built

- · Perpetual Spark Engine
- RESTful API to control all aspects
- Massively parallel quality control of petabyte scale datasets
 - Use Statistical Process Control methodology to check data at the record level
 - · Parallelized data profilers on blind datasets
- Connectors to
 - Cassandra, Hbase, MongoDB, Teradata, MySQL, Hive, Elasticsearch, etc
 - · Kafka, Storm for streaming data
 - · ORC, Parquet, text files

What we built

- Role based control on who sees what
- Integration with modeling using Python, R, SAS, SparkML, H2O with language conversion tools
- Automated workflow management using graph methodology for data science

Roadrunner

Who can use Roadrunner

- Data Scientist
- DevOps
- Validation
- Modeler
- Engineer

How Roadrunner Works

Sample Rest API


```
"jobType": "nautilusPathsJob",
"jobId" : "JobId4",
"rosettaTableName": "base.adm_meld_201607",
 "startTime": "2016-01-01 00:00:00",
   "endTime":"2016-02-01 00:00:00",
 "eventId": "ANY",
 "appendToEventId":"",
 "minAccounts": 1,
   "accountFilters": "ALL",
   "eventRules": {
          "condition": "OR",
          "rules" : [
            "ruleType" : 2,
            "firstEventId": "ER. *",
            "secondEventId": "IVR.*",
            "op" : "gt",
            "threshold": 3,
            "timeGap" : 166400,
            "generateRuleSequences":true,
            "overlappingSequences":true,
            "exactMatchingEvents":true
```


Sample Rest API

Examples of Transformations

Examples of Joins

Examples of Joins

```
"results": [
   "joinType": "inner",
   "joinTotal": 301,
   "leftTotal": 1000,
   "rightTotal": 2,
    "leftNulls": 0,
    "rightNulls": 0
    "joinType": "leftouter",
   "joinTotal": 1000,
    "leftTotal": 1000,
    "rightTotal": 2,
    "leftNulls": 383,
    "rightNulls": 699
   "joinType": "rightouter",
   "joinTotal": 302,
   "leftTotal": 1000,
   "rightTotal": 2,
   "leftNulls": 1,
    "rightNulls": 0
   "joinType": "outer",
   "joinTotal": 1001,
   "leftTotal": 1000,
   "rightTotal": 2,
   "leftNulls": 384,
    "rightNulls": 699
```


Examples of Aggregations

```
"rules":[ {
  "functions" : [ {
   "name" : "approx_count_distinct"
   "name" : "histogram_string",
    "buckets": 20
  "groupBy": "SNAPSHOTDATE",
 "columns" : [ "SERLOC_CURRENT_DIVISION_NAME" ]
},
   "functions" : [ {
     "name" : "approx_count_distinct"
      "name" : "min"
     "name" : "var pop"
      "name" : "sum"
     "name" : "percentile_approx",
      "percentiles" : [ 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 ]
    "groupBy": "SNAPSHOTDATE, SERLOC_CURRENT_DIVISION_NAME, SERLOC_CURRENT_REGION_NAME",
    "columns" : [ "DAYSSINCE" ]
]}
```


Examples of Aggregations

```
"results": {
 "approx_count_distinct(6)": 10,
 "min(6)": "174.56",
 "max(6)": "995.09",
 "avg(6)": 566.268,
 "count(6)": 10,
 "first(6)": "706.99",
 "last(6)": "995.09",
 "kurtosis(6)": -1.4016327462769833,
 "skewness(6)": 0.12851131741001862,
 "stddev(6)": 298.53423354040245,
 "stddev_pop(6)": 283.21444125609133,
  "variance(6)": 89122.68859555555,
 "var_pop(6)": 80210.419736,
 "sum(6)": 5662.68,
 "percentile_approx(CAST(6 AS DOUBLE), array(0.25, 0.5, 0.75, 0.9, 0.95, 0.99))": [
   272.63,
    506.58,
    885.62,
    911.8,
    995.09,
    995.09
```


Examples of Aggregations

```
"Aggregations" : [ {
  "SNAPSHOTDATE" : "20170201",
  "SERLOC CURRENT DIVISION NAME" : "NORTHEAST DIVISION",
  "SERLOC_CURRENT_REGION_NAME" : "KEYSTONE REGION",
  "approx_count_distinct(SERLOC_CURRENT_DIVISION_NAME)" : 1,
  "approx_count_distinct(DAYSSINCE)" : 33,
  "stddev(DAYSSINCE)" : 3611.7773139718893,
  "stddev_pop(DAYSSINCE)" : 3565.171783171744,
  "variance(DAYSSINCE)" : 1.3044935365721995E7,
  "var_pop(DAYSSINCE)" : 1.2710449843523994E7,
  "sum(DAYSSINCE)" : 84277,
  "percentile_approx(CAST(DAYSSINCE AS DOUBLE), array(0.25, 0.5, 0.75, 0.9, 0.95, 0.99))" : [ 112.0, 552.0, 2218.0,
  "SNAPSHOTDATE" : "20170101",
  "SERLOC_CURRENT_DIVISION_NAME" : "NORTHEAST DIVISION",
  "SERLOC_CURRENT_REGION_NAME" : "BELTWAY REGION",
  "approx_count_distinct(SERLOC_CURRENT_DIVISION_NAME)" : 1,
  "approx_count_distinct(DAYSSINCE)" : 28,
  "stddev(DAYSSINCE)": 1183.8048117688786,
  "stddev_pop(DAYSSINCE)" : 1170.8666657885606,
  "variance(DAYSSINCE)" : 1401393.83236715,
  "var pop(DAYSSINCE)" : 1370928.7490548207,
  "sum(DAYSSINCE)" : 28387,
  "percentile_approx(CAST(DAYSSINCE AS DOUBLE), array(0.25, 0.5, 0.75, 0.9, 0.95, 0.99))" : [ 0.0, 60.0, 810.0, 1738
}],
"customAggregations" : [ {
  "histogram_string(SERLOC_CURRENT_DIVISION_NAME)" : {
    "NORTHEAST DIVISION" : 364,
    "CENTRAL DIVISION" : 435,
    "WEST DIVISION": 435
```


Deciles – Spark + Scala

```
val filters =
  dfTransformed
    .groupBy(column)
    .count
    .distinct
    . rdd
    .map(r => r.getString(0))
    .collect
val rdds = for { f <- filters } yield {</pre>
  val dfTmp = {
    if (f == null)
      dfTransformed.filter(col(column).isNull)
    else
      dfTransformed.filter(col(column) === f)
  val bw = Window.partitionBy(column).orderBy(col(scoreColumn).desc)
  val df2 = dfTmp.select(col("*"), ntile(10).over(bw).alias(colName.getOrElse("decile")))
```


Deciles – the Roadrunner way...

Grouped Aggregations – easy?

```
val (aggColumnFunctions, toCalculate) = columnFunctions.partition(
  _.function.isDefined
) //if a columnFunction has a function=None then it is a custom function and cannot be handled by the `df.agg` call
val aggFunctions = aggColumnFunctions.flatMap(_.function)
def columnNames(funcs: Seq[ColumnFunction]) =
funcs.flatMap(_.columnNames).distinct.map(col)
def groupByColumnsFunc(funcs: Seg[ColumnFunction]) =
 funcs.flatMap(\_.groupBy.getOrElse("").split(",").map(x \Rightarrow x.trim)).distinct.map(col)
val groupByColumns = groupByColumnsFunc(aggColumnFunctions)
val resultsF = Future(blocking {
  aggFunctions.isEmpty.fold(
   { List() }, {
      logger.debug(s"Running df.agg(${aggFunctions.mkString(",")}")
      if (groupByColumns.isEmpty) {
        df.select(columnNames(aggColumnFunctions): *)
          .agg(aggFunctions.head, aggFunctions.tail: _*)
          .toJSON
          .collectAsList()
          .toList
      } else {
        df.groupBy(groupByColumnsFunc(aggColumnFunctions): _*)
          .agg(aggFunctions.head, aggFunctions.tail: _*)
          .toJSON
          .collectAsList()
          .toList
```


Grouped Aggregations – easy?

```
val (aggColumnFunctions, toCalculate) = columnFunctions.partition(
  _.function.isDefined
) //if a columnFunction has a function=None then it is a custom function and cannot be handled by the `df.agg` call
val aggFunctions = aggColumnFunctions.flatMap(_.function)
def columnNames(funcs: Seq[ColumnFunction]) =
funcs.flatMap(_.columnNames).distinct.map(col)
def groupByColumnsFunc(funcs: Seg[ColumnFunction]) =
 funcs.flatMap(\_.groupBy.getOrElse("").split(",").map(x \Rightarrow x.trim)).distinct.map(col)
val groupByColumns = groupByColumnsFunc(aggColumnFunctions)
val resultsF = Future(blocking {
  aggFunctions.isEmpty.fold(
   { List() }, {
      logger.debug(s"Running df.agg(${aggFunctions.mkString(",")}")
      if (groupByColumns.isEmpty) {
        df.select(columnNames(aggColumnFunctions): *)
          .agg(aggFunctions.head, aggFunctions.tail: _*)
          .toJSON
          .collectAsList()
          .toList
      } else {
        df.groupBy(groupByColumnsFunc(aggColumnFunctions): _*)
          .agg(aggFunctions.head, aggFunctions.tail: _*)
          .toJSON
          .collectAsList()
          .toList
```


Grouped Aggregations - the Roadrunner way

```
"rules":[ {
  "functions" : [ {
   "name" : "approx_count_distinct"
    "name" : "histogram_string",
    "buckets" : 20
  "groupBy": "SNAPSHOTDATE",
  "columns" : [ "SERLOC_CURRENT_DIVISION_NAME" ]
    "functions" : [ {
     "name" : "approx_count_distinct"
     "name" : "min"
     "name" : "max"
     "name" : "avg"
    }, {
   "name" : "stddev"
      "name" : "stddev pop"
      "name" : "var_pop"
     "name" : "sum"
      "name" : "percentile_approx",
      "percentiles" : [ 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 ]
    1,
    "groupBy": "SNAPSHOTDATE, SERLOC_CURRENT_DIVISION_NAME, SERLOC_CURRENT_REGION_NAME",
    "columns" : [ "DAYSSINCE" ]
13
```


Exploration

Features

Converter

Saspark: A Trans-Compiler Experiment

from SAS Dataset Transformation to Spark, Scala, Python & perhaps R

Demo

Result

Documentation

API

```
SAS

IF hispanic_index=0 THEN DO;
```

```
* calculate x using nclv & adj_pml scores;

x = nclv * (1 + adj_pml);

IF %<x<1 THEN v=2;

ELSE IF x in (1,2,3) OR nclv>0 THEN DO; v=3; END;

ELSE v=5;

END;

ELSE v = 100;
```

Python

```
if row.hispanic_index == 0:
    # calculate x using nclv & adj_pnl scores
    x = row.nclv * (1 + row.adj_pnl)
    if 0 < x < 1:
        v = 2
    elif x in [1,2,3] or row.nclv > 0:
        v = 3
    else:
        v = 5
else:
    v = 100
```

Scala

```
//[Any] must be replaced with actual type for scala to co
val adj_pml = row.getAs[Any]("adj_pml")
val nclv = row.getAs[Any]("nclv")
val hispanic_index = row.getAs[Any]("hispanic_index")
var x : Any
var v : Any

if (hispanic_index == 0) {
    // calculate x using nclv & adj_pml scores
    x = nclv * (1 + adj_pml)
    if (0 < x && x < 1) v = 2
    else if {List(1,2,3).contains(x) || nclv > 0) {
        v = 3
    }
    else v = 5
}
else v = 100
```


Spark Stack

SparkR

- Enables using R packages to process data
- Can run Machine Learning and Statistical Analysis

Spark MLlib

- Implements various Machine Learning Algorithms
- Classification, Regression, Collaborative Filtering, Clustering, Decomposition

Works with Streaming, Spark SQL, GraphX or with

SparkR.

PySpark, TensorFlow and SparkR

Scala and Spark for Big Data Analytics

Md. Rezaul Karim, Sridhar Alla

Tame Big Data with Scala and Apache Spark!

Preorder this eBook at 50% OFF and print book at 15% OFF

We are hiring!

- Big Data Engineers (Hadoop, Spark, Kafka...)
- Data Analysts (R, SAS.....)
- Big Data Analysts (Hive, Pig)

jobs.comcast.com

Thank You.

Data Science Initiatives

- Customer Churn Prediction
- Click-thru Analytics
- Personalization
- Customer Journey
- Modeling
- Anomaly Detection
- GPU driven optimizations

Anomaly Detection

- Identification of observations which do not conform to an expected pattern.
- Ex: Network Intrusion Detection, Spikes in operational data, Unusual usage activity.

Popular Algorithms

- Unsupervised
 - KMeans
 - DBScan
- Supervised
 - HMM
 - Neural networks

KMeans Clustering

- Clustering is an unsupervised learning problem
- Groups subsets of entities with one another based on some notion of similarity.
- Easy to check if a new entity is falling outside known groups/clusters

Sample Code

```
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors

val lines = sc.textFile("training.csv")
val data = lines.map(line => line.split(",").map(_.trim))
val inData = data.map{(x) => (x(3)) }.map(_.toLong)
val inVector = inData.map{a => Vectors.dense(a)}.cache()
val numClusters = 3
val numIterations = 100
val kMeans = new KMeans().setMaxIterations(numIterations).setK(numClusters)
val kMeansModel = kMeans.run(inVector)

// Print cluster index for a given observation point
var ci = kMeansModel.predict(Vectors.dense(10000.0))
var ci = kMeansModel.predict(Vectors.dense(900008830.0))
```


Sample Code (R):

```
library('RHmm')
indata <- read.csv(file.choose(), header = FALSE, sep = ",", quote = "\"", dec = ".")
testdata <- read.csv(file.choose(), header = FALSE, sep = ",", quote = "\"", dec = ".")
dataSets <- c(as.numeric(indata$V4))
dataSetModel <- HMMFit(dataSets, nStates=3)
testdataSets <- c(as.numeric(testdata$V4))
tVitPath <- viterbi(dataSetModel, testdataSets)

#Forward-backward procedure, compute probabilities
tfb <- forwardBackward(dataSetModel, testdataSets)

# Plot implied states
layout(1:3) dataSet
plot(testdataSets[1:100], ylab="StateA", type="l", main="dataSet A")
plot(tVitPath$states[1:100], ylab="StateB", type="l", main="dataSet B")</pre>
```


Add Slides as Necessary

Supporting points go here.

Thank You.

Contact information or call to action goes here.