

AD-A113 603

EIC LABS INC. NEWTON MA
CHARACTERIZATION OF ETHER ELECTROLYTES FOR RECHARGEABLE LITHIUM--ETC(U)
MAR 82 K M ABRAHAM, J L GOLDMAN, D L NATWIG N00014-77-C-0155

NL

UNCLASSIFIED

TR-5

1-1
A
000004

END
DATE
FILED
5 82
DTIG

AD A113603

OFFICE OF NAVAL RESEARCH

Contract No. N00014-77-C-0155

Task No. NR 359-638

TECHNICAL REPORT NO. 5

CHARACTERIZATION OF ETHER ELECTROLYTES FOR RECHARGEABLE LITHIUM CELLS

by

K. M. Abraham, J. L. Goldman and D. L. Natwig

Prepared for Publication

in the

Journal of the Electrochemical Society

EIC Laboratories, Inc.
67 Chapel Street
Newton, Massachusetts 02158

March 1982

DTIC
ELECTED
APR 20 1982
S H D

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

DTIC FILE COPY

82 04 20 011

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TECHNICAL REPORT NO. 5	2. GOVT ACCESSION NO. <i>AD-A113 603</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) CHARACTERIZATION OF ETHER ELECTROLYTES FOR RECHARGEABLE LITHIUM CELLS	5. TYPE OF REPORT & PERIOD COVERED Technical Report	
7. AUTHOR(s)	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS BIC Laboratories, Inc. 67 Chapel Street Newton, Massachusetts 02158	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 359-638	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research/Chemistry Program Arlington, Virginia 22217	12. REPORT DATE March 1982	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 26	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES Submitted for Publication in the Journal of the Electrochemical Society.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	Lithium cycling efficiency, electrolyte stability.	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	2Methyl-tetrahydrofuran(2Me-THF)/LiAsF ₆ and several diethyl ether (DEE)/LiAsF ₆ -based electrolytes have been characterized for their usefulness in rechargeable Li/TiS ₂ cells. This characterization has involved extended room temperature cell cycling at various depths of discharge, evaluation of rate/capacity behavior of cells at 25 and -10°C, and storage of cells at 50°C for up to one month with subsequent cycling. The thermal stability of the electrolytes at 71°C was evaluated by storage experiments	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/Tamper Seal Required

In sealed-tubes, followed by product analysis. The performance of 2Me-THF/LiAsF₆ cells far surpassed the others. The present data further substantiate previous reports from this laboratory of the superior behavior of 2Me-THF/LiAsF₆ solutions in rechargeable Li cells. The DME/LiAsF₆-based electrolytes are too unstable thermally to be practically useful.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/Tamper Seal Required

CHARACTERIZATION OF ETHER ELECTROLYTES FOR RECHARGEABLE LITHIUM CELLS

K. M. Abraham*, J. L. Goldman* and D. L. Natwig
EIC Laboratories, Inc., 67 Chapel Street, Newton, MA 02158

ABSTRACT

2Methyl-tetrahydrofuran(2Me-THF)/LiAsF₆ and several diethyl ether (DEE)/LiAsF₆-based electrolytes have been characterized for their usefulness in rechargeable Li/TiS₂ cells. This characterization has involved extended room temperature cell cycling at various depths of discharge, evaluation of rate/capacity behavior of cells at 25°C and -10°C, and storage of cells at 50°C for up to one month with subsequent cycling. The thermal stability of the electrolytes at 71°C was evaluated by storage experiments in sealed-tubes, followed by product analysis. The performance of 2Me-THF/LiAsF₆ cells far surpassed the others. The present data further substantiate previous reports from this laboratory of the superior behavior of 2Me-THF/LiAsF₆ solutions in rechargeable Li cells. The DEE/LiAsF₆-based electrolytes are too unstable thermally to be practically useful.

*Electrochemical Society Active Member.

Key Words: Lithium Cycling efficiency, electrolyte stability.

INTRODUCTION

Discoveries during the past few years of new organic electrolytes (1), together with advances in positive electrode technology (2) and cell fabrication capabilities (3,4) have made ambient temperature rechargeable Li cells a practical reality. Noteworthy among these advances are the identification of highly desirable electrolyte systems such as 2Me-THF/LiAsF₆ at EIC Laboratories (5,6) and 1,3-dioxolane/LiClO₄ by Exxon Corporation (7), and the construction and testing of Li/TiS₂ (4), Li/V₆O₁₃ (3) and Li/MoS₃ (4) cells with nominal capacities ranging from 5-20 Ah. Because of a tendency to detonate upon impact, the 1,3-dioxolane/LiClO₄ system has been abandoned (8). The present electrolyte of choice for rechargeable Li cells is 2Me-THF/LiAsF₆ (1,3,9,10).

The Li electrode in Li/TiS₂ and Li/V₆O₁₃ cells utilizing 2Me-THF/LiAsF₆ has typically cycled at charge densities of 7-10 mAh/cm² with a figure of merit, F.O.M.Li of ~40. The F.O.M.Li is given by the relationship (11).

$$F.O.M.Li = \frac{\text{total accumulated discharge capacity}}{\text{theoretical Li capacity}} \quad (1)$$

While this cycling efficiency is very impressive, a F.O.M.Li of 40 means that a cell requiring a life of 200 deep discharge cycles (100% depth of discharge, d.o.d.) would need a minimum of five times the Li capacity to that of the cathode. This amount of Li, although it leads only to a small reduction in the cell's specific energy, causes a significant reduction in its volumetric energy density (4). Another limitation of 2Me-THF/LiAsF₆,

which is discussed in this paper, is the rather poor rate capability of its cells below 0°C. Clearly, electrolytes superior to 2Me-THF/LiAsF₆ are desirable for applications which require rechargeable Li cells with higher energy densities and better low temperature performance.

A promising class of electrolytes, recently discovered at EIC (12), has been those based on diethyl ether(DEE)/LiAsF₆. Studies in half-cells with DEE/LiAsF₆(2.5M) have shown that the Li electrode cycles with a F.O.M.Li ≥ 50. In addition, it was found that the low conductivity, $1.2 \times 10^{-3} (\Omega\text{cm})^{-1}$, of the DEE/LiAsF₆(2.5M) solution could be improved by "blending" the electrolyte, in 10-20 volume/percent (v/o), with ethers such as tetrahydrofuran (THF), 2Methyl-furan (2Me-F), 1,2-dimethoxyethane (DME) or 1,3-dioxolane (D). These blended electrolytes exhibited Li cycling efficiencies equal to or exceeding that in the parent solution despite of the poor Li cycling ability of the solvent additives to the ether. Although these half-cell cycling efficiencies represent the highest achieved to date in any organic electrolyte, they have been obtained at a rather low Li charge density of ~1 coul/cm².

In order to fully assess their practical utility, the DEE-based electrolytes have been evaluated in hermetic Li/TiS₂ cells. The results are presented here. The studies include evaluation of cycle life, Li cycling efficiency, rate/capacity behavior versus temperature and storage characteristics at 50°C of 0.68 Ah, Li/TiS₂ cells utilizing (C₂H₅)₂O/LiAsF₆ (2.5M) or its blends with THF (10 and 20 v/o), DME (10 v/o), D (10 v/o) or

2Me-F(10 v/o). The results are compared with those of cells containing 2Me-THF/LiAsF₆ (1.4M).

EXPERIMENTAL

General

All experiments were conducted in the absence of air and moisture under an Ar atmosphere in a Vacuum-Atmospheres Corporation dry box equipped with a Model He-493 Dri-Train.

Materials. Diethyl ether (DEE), tetrahydrofuran (THF), dimethoxyethane (DME) (Burdick and Jackson, distilled-in-glass) and lithium hexafluoro-arsenate (LiAsF₆) (U.S. Steel Agri Chemicals, electrochemical grade) were used as-received. Lithium foil was obtained from Foote Mineral Company sealed under Ar. 2-Methyl tetrahydrofuran (2Me-THF), 2-Methyl furan (2Me-F) and 1,3-dioxolane (D) (Aldrich Chemical Company) were distilled off CaH₂ under Ar from a Perkin-Elmer Model 251 Auto Annular Still. The reflux ratio was 5:1 and the middle 70% fraction was collected. The distilled 2Me-THF typically had ~0.2% 2Me-F impurity, as evidenced by G. C. analysis.

The electrolytes, 2Me-THF/LiAsF₆(1.4M), DEE/LiAsF₆(2.5M) and the blended electrolytes, DEE(90 v/o):THF(10 v/o)/LiAsF₆(2.5M), DEE(80 v/o):THF(20 v/o)/LiAsF₆(2.5M), DEE(90 v/o):2Me-F(10 v/o)/LiAsF₆(2.5M), DEE(90 v/o):DME(10 v/o)/LiAsF₆(2.5M) and DEE(90 v/o):D(10 v/o)/LiAsF₆(2.5M) were prepared as described previously (3,5). The blended electrolytes are designated Blend 90-THF, Blend 80-THF, Blend 90-2MeF, Blend 90-DME and Blend 90-D respectively.

Li/TiS₂ Cells

Synthesis of TiS₂. TiS₂ was synthesized by a vapor transport technique by reacting Ti (sponge, Fisher Scientific Company) and S (powder, precipitated purified, Alfa-Ventron) at ~600°C. It was characterized by X-ray and chemical analyses. For the latter, the material was oxidized in air at ~700°C and weighed as TiO₂. The material used in the cells typically had the composition, Ti_{1.02}S₂.

Cathode Preparation. The cathodes were prepared as pressed powder electrodes. An intimate mixture consisting of 84 w/o TiS₂ (-80 mesh), 8 w/o C (Shawinigan 50% compressed) and 8 w/o Teflon was prepared in a blender. The mixture was pressed on either side of an expanded Ni screen (Exmet Corporation, 5Ni7-4/0) at a pressure of ~1000 lbs/in². The electrodes typically had a thickness of 1.125 mm. The cathode loading capacity typically was 17 mAh/cm².

Test Cells. Cells were all hermetically sealed. The electrode package comprised two cathodes and three Li anodes, arranged in an alternating fashion with Li forming the outer electrodes in the stack. Each cathode had an area of 10 cm²/side so that the total cathode area was 40 cm². The total cathode capacity was 680 mAh (1e⁻/TiS₂) or 17 mAh/cm². The Li electrode was fabricated from 10 mil Li foil. The middle electrode had two pieces of the Li foil (10 cm²) on each side of the Ni screen and the outer electrode had one piece of Li (10 cm²) on the side of the Ni screen facing the cathode. The total theoretical Li capacity typically was 1820 mAh (45.5 mAh/cm²). Each Li electrode was bagged in two layers of Celgard

2400, polypropylene separator. The electrode package was introduced into a D-cell can (Ni plated cold-rolled steel) and compression was applied to the electrode package by Teflon hemi-cylinders. The cell was vacuum filled with ~12 ml electrolyte through a fill-tube on the cell cover assembly.

Cells were cycled galvanostatically with the aid of standard cycling equipment. The potential limits were 1.6V for discharge and 3V for charge. However, in most experiments cells were discharged to depths of 3, 7 or 10 mAh/cm² only so that the lower voltage limit was reached only towards the end of cell life. A cell was considered failed when its capacity decreased to less than 50% of the discharge capacity desired in a particular cycling regime. Any Li remaining on the anode was determined by electrostripping it by deep discharging the cell to ~-2V. The Li cycling efficiency, F.O.M.-Li, was calculated using the relationship given in Eq. 1. In obtaining the rate/capacity data, the cell was successively discharged at current densities between 0.5 and 8 mA/cm², with each discharge followed by a charge at 0.5 mA/cm². Data collection and retrieval were done with a Bascom-Turner 8000 Recorder equipped with microprocessor accessories.

Electrolyte Stability Experiments. Liquid samples were sealed in Pyrex glass tubes equipped with break-seals as described previously (13). After two weeks of heating at 71°C, the tubes, attached to a vacuum-line, were opened at the break seal and the gases were separated by vacuum distillation. UV-visible spectra of liquids were obtained on a Perkin-Elmer double beam spectrometer. IR spectra were obtained on a Beckman Aculab-5 Spectrometer. Liquid (0.025 mm path length) and gas (10 cm path length) cells were equipped with KBr windows.

RESULTS AND DISCUSSION

Some of the properties of the various electrolytes discussed in this paper including typical Li cycling efficiencies achieved in half cells are listed in Table 1. The low charge density Li cycling ability of the DEE-based electrolytes far exceeds that of 2Me-THF/LiAsF₆. It is also apparent that blending the DEE/LiAsF₆(2.5M) solution with 10 v/o of other ethers such as THF, DME, 2M-F or D results in an increase in both the conductivity of the solution and the cycling efficiency of the Li electrode. The highly regular and dendrite-free morphologies of the Li plates observed in blended DEE/LiAsF₆ solutions have been discussed previously (12). The higher conductivity exhibited by the blended electrolytes may be attributed to a more desirable complexation of Li⁺-ions by the minor ether component. The noticeably higher cycling efficiency of the Li electrode in the blends than in the parent DEE/LiAsF₆(2.5M) may be, in part, due to the higher conductivities of the blended solutions.

While the half-cell Li cycling efficiencies achieved in the DEE-based electrolytes are far superior to any reported so far (1), the specific capacities of the Li plates have been extremely small. Practical (full) cells require Li plates with specific capacities exceeding 10 mAh/cm² (3,4,11). Moreover, the Li must cycle with high efficiencies at the high charge densities. The cycling efficiency of the Li electrode is determined by the properties of the electrolyte solution.

The electrolyte must be thermally stable in the long life-time of practical rechargeable Li cells. The electrolyte must also maintain fluidity with appreciable conductivity and Li⁺-ion transport capability down to low temperatures (for example, -20°C) to be able to withstand with acceptable charge/discharge characteristics, the thermal excursions encountered by practical cells.

Li Cycling Efficiency in Li/TiS₂ Cells

The room temperature cycling efficiencies of the Li electrode in Li/TiS₂ cells have been measured as a function of the specific capacity of the Li plate. The results are given in Fig. 1. Typical galvanostatic charge/discharge cycles representative of the cycling regimes are depicted in Figs. 2-5. All experiments were carried out at least in duplicate and the reproducibility of the results was excellent.

Not only is the Li cycling efficiency in the 2Me-THF cells better than in DEE-based electrolytes, but also it is superior to that in 2Me-THF half-cells. While the cycling efficiency in 2Me-THF/LiAsF₆ is rather insensitive to the Li charge density, it shows a strong dependence in DEE-based electrolytes. Another trend which is apparent in the blended electrolytes is the strong effect of the ether additive on Li cycling. Clearly, the preferred electrolyte among the blends is Blend 90-THF.

The present data clearly indicate that the half cell data, representative of impractically low Li charge density cycling, do not have a real predictive value with respect to the usefulness of a given electrolyte

in practical cells. To date we have seen a good agreement between half and full cell Li cycling efficiencies only with 2Me-THF/LiAsF₆. The Li/TiS₂ cells employed in this study were all identical and were constructed and handled under identical conditions. Therefore, it seems that the large discrepancy shown by DEE-based electrolytes - the large differences between half and full cell Li cycling efficiencies as well as the significant variations among the blends themselves - reflect solution characteristics not revealed in the very short (~1 day) half-cell tests. Some of the probable contributing factors are: (i) the thermal instability of the electrolyte which would be more aptly manifested in long-term cycle tests (1-2 months); (ii) a greater extent of reaction between Li and the electrolyte during the long term, high capacity cycle tests; (iii) significant differences in the morphology of the Li plates which can be caused by, (a) the environments of the half and full cells and (b) the lower electrolyte to Li ratio in full cells.

The results obtained with electrolyte storage experiments (vide infra) indicate that the thermal instability of the electrolytes may be a major cause of the lower cycling efficiencies in DEE-based cells. However, the involvement of other factors cannot be ruled out.

Koch et al. suggested (10) that DEE is effective in cycling Li in half-cells because it is reduced on Li to lithium ethoxide (LiOEt) which is insoluble and that this film may protect Li from further attack. These authors also suggested that LiOEt has the right Li⁺ ion-transmission properties to allow Li plating. Presumably, in the blends the poorly Li cy-

cling solvents such as THF, DME etc. are kept away by the LiOEt film. If we accept this hypothesis, we can see some basic differences between the Li surface characteristics of half and full cells. (The half-cells referred to are the types used in the studies in refs. (5) and (12)). The ideal ion-transmitting film visualized by Koch *et al.* may not be achieved in Li/TiS₂ cells. First of all, the electrode package in full cells is very tight. The dynamics of Li intercalation/deintercalation processes associated with the TiS₂ cathode (2) during cell cycling can impose significant pressure variations on the Li electrode surface. The film surface may have cracks or other inhomogeneities, permitting electrolyte migration and higher extents of Li-electrolyte reaction. Not only is a larger amount of Li isolated in each cycle, but the heightened reaction may also cause significant changes in Li plate morphology, eventually worsening the cycling efficiency. The significant differences observed in the performance of various blends may reflect the variations in the kinetics of the reaction between Li and the ether additive.

The insensitivity of Li cycling efficiency in 2Me-THF/LiAsF₆, either to Li charge density or to cell environments, may be indicative of a chemically different and/or a more flexible protective film (5,14). The exceptional behavior of the 2Me-THF system is further indicated by the data in Figs. 5 and 6 which compare the cycle life of two cells, one containing a theoretical 45.5 mAh/cm² and the other a 78 mAh/cm² Li electrode. Both electrodes exhibited nearly identical Li cycling efficiencies.

Cell Storage at 50°C

The relevant data are given in Table 2. Because of their poor Li cycling efficiencies, cells with DME or D blends were not evaluated.

The open-circuit-voltage (OCV) of none of the cell showed any change with time. Furthermore, the discharge capacity of cells after storage was practically identical to that typically obtained in their unstored analogs. These results manifest the overall compatibility between TiS_2 and the various electrolytes. The data also indicate that none of the electrolytes undergoes a gross degradation or reaction during storage.

The more significant data, however, are the Li cycling efficiencies. Identical cycling efficiencies have been obtained in both the stored and unstored 2Me-THF cells. The stored DEE-based cells show the following trends. The DEE-cell, exhibited (unlike fresh ones) a significant voltage delay at 1 mA/cm^2 , but yielded (at 0.5 mA/cm^2) the same cycling efficiency as do fresh cells. The Blend 90-THF and Blend 80-THF cells, which exhibited little or no voltage delay even at 2 mA/cm^2 , cycled with considerably reduced Li cycling efficiencies. The stored Blend 90-2MeF cell also cycled with a lower Li efficiency; but the decrease in efficiency caused by storage is less than observed in Blend-THF cells. These effects of cell storage on cycling may be ascribed to the solubilities of the protective film on the Li electrode. It appears that in DEE/LiAsF₆, the protective film, grows to a greater extent with storage, as indicated by the voltage delay, prevents significant reactions between Li and the electrolyte. Since LiOEt

is apparently more soluble, especially at elevated temperatures, in polar solvents such as THF (12), it is possible that the protective film in the Blend-THF electrolytes during storage is subjected to a continuous dissolution-deposition process, permitting a continued attack of the Li by the electrolyte.

The above explanation notwithstanding, the effects of storage may be related to the thermal stability of DEE-based electrolytes.

Thermal Stability of Electrolytes at 71°C

Electrolytes were stored with and without Li in evacuated sealed Pyrex tubes at 71°C. Some samples were also stored with all the components of a cell such as, electrolyte, TiS₂, C/Teflon mixture, Celgard 2400 separator and Ni screens.

Neither gassing nor any apparent decomposition was evident in any of the 2Me-THF/LiAsF₆ samples. However, their UV-visible spectra exhibited minor product peaks at 265, 285 (shoulder) and 330 nm. These products were found the least in samples containing all of the cell components. The excellent storage capability shown by the 2Me-THF cells suggests that whatever these minor storage products are, they are either not formed at 50°C or they do not affect Li cycling.

Unexpectedly rapid decomposition, i.e., in 2-3 days, occurred in DEE-based electrolytes. The decompositon of DEE/LiAsF₆(2.5M) or Blend 90-THF solutions occurred irrespective of whether the solutions contained Li or other cell components. However, the solvents themselves were stable. In all samples, CH₂=CH₂ was found by IR in the gas phase. When Li was pre-

sent, H₂ was also found. (It should be noted Li/DEE samples did not produce H₂ in the absence of LiAsF₆). A major solution product was a pink oil which exhibited UV-visible absorption maxima at 450, 380 and 270 nm. The pink oil, which is soluble in electrolyte but only sparingly soluble in DEE itself, was isolated by repeated extraction with DEE. It showed IR absorptions characteristic of both C₂H₅ (1400, 1450-1480 cm⁻¹) and As-F (670-730 cm⁻¹) functionalities. However, it did not exhibit the characteristics C-O-C linkage absorptions at (~1125 cm⁻¹). Most probably it is a mixture of C₂H₅AsF₆ and C₂H₅OAsF₄. The isolated material decomposes in a few days at room temperature to form a glassy brown solid, which we believe is an [As-O-As] polymer (14).

We believe that the following sequence of reactions occur:

Reaction 2 is supported by the fact that addition of AsF₅ to DEE and mild heating lead to identical products. This first step is probably followed by:

Our experience is that with ethers such as THF, this type of reaction is suppressed by presence of Li. One main structural feature of DEE is that it contains groups which allow easy 1,2-elimination. It should be noted that the instability of ether/LiAsF₆ solutions at temperatures >100°C has been previously discussed by Koch *et al.* (15).

Rate/Capacity Behavior of Li/TiS₂ Cells

The relevant data, plotted as percent cathode utilization (based on le^-/TiS_2) versus current density (mA/cm^2), for cells containing 2Me-THF/LiAsF₆(1.4M), DEE/LiAsF₆(2.5M) and Blend 90-THF are shown in Fig. 7. The discharge curves for the Blend 90-THF cell at various current densities at 25°C are given in Fig. 8. The room temperature rate/capacity behavior of the Blend 90-THF cell is practically identical to that of the 2Me-THF cell (16).

A capacity equivalent to $>0.8e^-/TiS_2$ is realized at current densities $\leq 2mA/cm^2$. The utilization at $4\text{ mA}/cm^2$ is $0.68e^-/TiS_2$ for the Blend 90-THF cell and $0.55e^-/TiS_2$ for the 2Me-THF cell. The nearly identical cathode utilizations in the two cells probably reflect very similar electrolyte conductivities. As would be expected from its lower conductivity, the rate capability of DEE/LiAsF₆(2.5M) at 25°C is rather poor. In fact, the rate capability of the DEE cell at 25°C compares only with that of the

Blend 90-THF cell at -10°C. In contrast to the Blend 90-THF cell, however, the 2Me-THF cell had practically no capacity at -10°C, even at 0.5 mA/cm².

In general, all the electrolytes discussed in this paper provide low to moderate rate cells. The rather poor rate capability of the cells at -10°C are believed to be due to the lower solubilities of the (DEE)_n·LiAsF₆ or the (2Me-THF)_n·LiAsF₆ solvates, causing an increase in solution viscosity and a decrease in solution conductivity.

CONCLUSIONS

The ability of 2Me-THF/LiAsF₆ to cycle Li well with high charge utilizations in a practical cell has been further demonstrated. This electrolyte exhibited exceptionally high thermal stability at 71°C. Cells stored at 50°C for up to one month performed as well as fresh cells, indicating the high practicability of 2Me-THF/LiAsF₆. A major deficiency of the system, however, is its poor rate capabilities below 0°C.

Among the various DEE-based electrolytes evaluated, Blend 90-THF is the most desirable. The practicability of this electrolyte, however, is shadowed by its limited thermal stability.

The present study has also demonstrated that Li cycling efficiencies achieved with an electrolyte in half-cells at very low Li charge densities do not have general predictive value with respect to the practicability of electrolyte.

Acknowledgement

This work was supported by the Office of Naval Research.

References

1. V. R. Koch, J. Power sources 6, 357 (1981).
2. K. M. Abraham, J. Power Sources 7, 1 (1981/82).
3. K. M. Abraham, J. L. Goldman and M. D. Dempsey, J. Electrochem. Soc. 128, 2493 (1981).
4. G. L. Holleck, K. M. Abraham, P. B. Harris, J. L. Goldman, J. Avery, M. Rupich and S. B. Brummer, Proceedings of the 30th Power Sources Symposium, Atlantic City, NJ (1982).
5. J. L. Goldman, R. M. Mank, J. H. Young and V. R. Koch, J. Electrochem. Soc. 127, 1461 (1980).
6. G. L. Holleck, K. M. Abraham and S. B. Brummer, in Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, The Electrochemical Society Softbound Proceedings Series, B. B. Owens and N. Margalit, eds. (1980).
7. M. S. Whittingham, Science 192, 1126 (1976).
8. G. H. Newman, R. W. Francis, L. H. Gaines and B. M. L. Rao, J. Electrochem. Soc. 127, 2025 (1980).
9. R. A. Rizzo, in Lithium Batteries, The Electrochemical Society Softbound Series, H. V. Venkatasetty, ed. (1981).
10. S. P. S. Yen, D. Shen, R. P. Vasquez, F. J. Grunthaner and R. B. Somoano, J. Electrochem. Soc. 128, 1434 (1981).
11. G. H. Newman, in Proceedings of the Workshop on Lithium Non-aqueous Battery Electrochemistry. The Electrochemical Society Softbound Proceedings Series (1981).
12. V. R. Koch, J. L. Goldman, C. J. Mattos and M. Mulvaney, J. Electrochem. Soc. 129, 1 (1982).
13. K. M. Abraham and R. Schiff, Phosphorus and Sulfur 8, 177 (1980).
14. V. R. Koch, J. Electrochem. Soc. 126, 181 (1979).
15. V. R. Koch, J. L. Goldman, J. T. Y. Maurand and M. Mulvaney, in Lithium Batteries, The Electrochemical Society Softbound Proceedings Series, H. V. Venkatasetty ed. (1981).
16. K. M. Abraham and S. B. Brummer, in "Lithium Batteries", J. P. Gabano, ed., Academic Press (in print).

TABLE I
PROPERTIES OF ETHER ELECTROLYTES

Electrolyte	Li Cycling in Half Cells			
	Specific Conductivity (ohm-cm) ⁻¹	Current Density (mA/cm ²)	Specific Capacity (coul/cm ²)	Cycling Efficiency ¹ (P.O.M. Li)
2Me-THF/LiAsF ₆ (1.4M)	3.8 × 10 ⁻³	5	1.125	25
DEE/LiAsF ₆ (2.5M)	1.2 × 10 ⁻³	5	1.125	45
DEE (90%):THF (10%) / LiAsF ₆ (2.5M)	4.3 × 10 ⁻³	5	1.125	50
DEE (80%):THF (20%) / LiAsF ₆ (2.5M)	4.7 × 10 ⁻³	5	1.125	50
DEE (90%):DME (10%) / LiAsF ₆ (2.5M)	4.7 × 10 ⁻³	5	1.125	45
DEE (90%):2Me-Furan (10%) / LiAsF ₆ (2.5M)	3 × 10 ⁻³	5	1.125	66
DEE (90%):Dioxolane (10%) / LiAsF ₆ (2.5M)	3.3 × 10 ⁻³	5	1.125	52

Average of several experiments. Half cell results in these electrolytes have been initially published by Koch et al., see Refs. 5 and 12.

TABLE 2
STORAGE TEST RESULTS OF Li/TiS₂ CELLS

Electrolyte	Days Stored at 50°C	Capacity (e ⁻ /TiS ₂) at 1 mA/cm ²			Li Cycling Efficiency (P.O.M. Li) after Storage ¹
		OCV Initial	OCV Final	Typical Fresh Cell	
2Me-THF/1.4M LiAsF ₆	33	2.40	2.40	0.90	0.90
DEG/2.5M LiAsF ₆	15	2.40	2.40	0.81 ²	0.80 ²
Blend 90-THF	30	2.40	2.40	0.90	0.89
Blend 80-THF	15	2.40	2.40	0.90	0.90
Blend 90-2Me-F	17	2.40	2.40	0.90	0.90

¹Li charge density = 3 mAh/cm².

²Capacity at 0.5 mA/cm², severe voltage delay of the stored cell prevented capacity measurement at 1 mA/cm².

FIGURE CAPTIONS

Fig. 1. Li cycling efficiencies achieved in Li/TiS₂ cells versus Li charge density. The 2Me-THF solution is 1.4M in LiAsF₆. All other electrolytes are 2.5M in LiAsF₆.

Fig. 2. Typical cycling curves of a Li/Blend 90-THF/TiS₂ cell. Current density, 1 mA/cm². Li charge density, 3 mAh/cm². Theoretical Li, 45.5 mAh/cm².

Fig. 3. Typical cycling curves of a Li/Blend 90-THF/TiS₂ cell. Current density, 1.5 mA/cm². Li charge density, 10.5 mAh/cm². Theoretical Li, 45.5 mAh/cm².

Fig. 4. Typical cycling curves of a Li/Blend 80-THF/TiS₂ cell. Current density, 1 mA/cm². Li charge density, 7 mAh/cm². Theoretical Li, 45.5 mAh/cm².

Fig. 5. Typical cycling curves of a Li/2Me-THF/TiS₂ cell. Current density, 1 mA/cm². Li charge density, 7 mAh/cm². Theoretical Li, 45.5 mAh/cm².

Fig. 6. Typical cycling curves of a Li/2Me-THF/TiS₂ cell. Current density, 1 mA/cm², Li charge density, 7 mAh/cm². Theoretical Li, 78 mAh/cm².

Fig. 7. Rate/capacity data for Li/TiS₂ cells.

Fig. 8. Cathode utilization (based on 1e⁻/TiS₂) versus current density in a Li/Blend 90-THF/TiS₂ cell at 25°C.

F1

F2

F3

F 4

F5'

F6

F7

DISTRIBUTION LIST

Office of Naval Research
Attn: Code 472
800 North Quincy Street
Arlington, VA 22217

ONR Branch Office
Attn: Dr. George Sandoz
536 South Clark Street
Chicago, IL 60605

ONR Area Office
Attn: Scientific Department
715 Broadway
New York, NY 10003

ONR Western Regional Office
1030 East Green Street
Pasadena, CA 91106

ONR Eastern/Central Regional Office
Attn: Dr. L. H. Peebles
Building 114, Section D
666 Summer Street
Boston, MA 02210

Director, Naval Research Laboratory
Attn: Code 6100
Washington, DC 20390

The Assistant Secretary
of the Navy (RE&S)
Department of the Navy
Room 4E736, The Pentagon
Washington, DC 20350

Commander, Naval Air Systems
Command
Attn: Code 310C (H. Rosenwasser)
Department of the Navy
Washington, DC 20360

Defense Technical Information Ctr
Building 5, Cameron Station
Alexandria, VA 22314

Dr. Fred Saalfeld
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, DC 20375

U.S. Army Research Office
Attn: CRD-AA-IP
P. O. Box 1211
Research Triangle Park, NC 27709

Naval Ocean Systems Center
Attn: Mr. Joe McCartney
San Diego, CA 92152

Naval Weapons Center
Attn: Dr. A. B. Amster
Chemistry Division
China Lake, CA 93555

Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko
Port Hueneme, CA 93401

Department of Physics & Chemistry
Naval Postgraduate School
Monterey, CA 93940

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, DC 20380

Office of Naval Research
Attn: Dr. Richard S. Miller
800 North Quincy Street
Arlington, VA 22217

Naval Ship R&D Center
Attn: Dr. G. Bosmajian
Applied Chemistry Division
Annapolis, MD 21401

Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, CA 91232

Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, PA 19112

Dr. Rudolph J. Marcus
Office of Naval Research
Scientific Liaison Group
American Embassy
APO San Francisco, CA 96503

Mr. James Kelley
DTNSRDC Code 2803
Annapolis, MD 21402

Dr. Paul Delahay
Department of Chemistry
New York University
New York, NY 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, OH 41106

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, UT 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, CA 91125

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, NJ 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, NJ 07974

Dr. T. Katan
Lockheed Missiles & Space
Company, Inc.
P. O. Box 504
Sunnyvale, CA 94088

Dr. Joseph Singer
Code 302/l
NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

Dr. S. B. Brummer
EIC Laboratories, Inc.
67 Chapel Street
Newton, MA 02158

Library
P. R. Mallory & Company, Inc.
Northwest Industrial Park
Burlington, MA 01803

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9-5NH
UNITED KINGDOM

Dr. Sam Perone
Department of Chemistry
Purdue University
West Lafayette, IN 47907

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514

Naval Ocean Systems Center
Attn: Technical Library
San Diego, CA 92152

Dr. C. E. Mueller
The Electrochemistry Branch
Materials Division, Research
& Technology Department
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910

Dr. G. Goodman
Globe Union, Inc.
5757 North Green Bay Avenue
Milwaukee, WI 53201

Dr. J. Boechler
Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, CA 94040

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, MI 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, NY 12181

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, WI 53706

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of
Technology
Cambridge, MA 02139

Larry E. Plew
Naval Weapons Support Center
Code 30736, Building 2906
Crane, IN 47522

Dr. Stanley Ruby
Department of Energy (STOR)
600 E Street
Washington, DC 20545

Dr. Aaron Wold
Brown University
Department of Chemistry
Providence, RI 02192

Dr. R. C. Chudacek
McGraw-Edison Company
Edison Battery Division
P. O. Box 28
Bloomfield, NJ 07003

Dr. A. J. Bard
University of Texas
Department of Chemistry
Austin, TX 78712

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, CA 92803

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, MD 20910

Dr. R. P. Van Duyne
Department of Chemistry
Northwestern University
Evanston, IL 60201

Dr. B. Stanley Pons
Department of Chemistry
University of Alberta
Edmonton, Alberta
CANADA T6G 2G2

Dr. Michael J. Weaver
Department of Chemistry
Michigan State University
East Lansing, MI 48824

Dr. R. David Rauh
EIC Laboratories, Inc.
67 Chapel Street
Newton, MA 02158

Dr. J. David Margerum
Research Laboratories Division
Hughes Aircraft Company
3011 Malibu Canyon Road
Malibu, CA 90265

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH
UNITED KINGDON

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
at Buffalo
Buffalo, NY 14214

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
At Buffalo
Buffalo, NY 14214

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, RI 02840

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, DC 20375

Dr. John F. Houlihan
Shenango Valley Campus
Pennsylvania State University
Sharon, PA 16146

Dr. M. G. Sceats
Department of Chemistry
University of Rochester
Rochester, NY 14627

Dr. Alan Bewick
Department of Chemistry
The University
Southampton, SO9 5NH
UNITED KINGDOM

Dr. A. Himy
NAVSEA-5433
NC No. 4
2541 Jefferson Davis Highway
Arlington, VA 20362

Dr. John Kincaid
Department of the Navy
Strategic Systems Project Office
Room 901
Washington, DC 20376

M. L. Robertson, Manager
Electrochemical Power Sonics Division
Naval Weapons Support Center
Crane, IN 47522

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Dr. Bernard Spielvogel
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Dr. Denton Elliott
Air Force Office of Scientific
Research
Building 104
Bolling Air Force Base
Washington, DC 20332