Skript zur Vorlesung Einführung in die Experimentalphysik für Studierende der Biologie und der Sportwissenschaft

Peter Keim

2016

Inhaltsverzeichnis

U	Erkenntni	sprozess in der Naturwissenschaft	4	
1	Grundgrö	ßen und Messabweichung	6	
	1.0.1	Basiseinheiten	6	
	1.0.2	Dimension einer Größe		
	1.0.3	Messfehler	7	
2	Kinematik (Bewegungslehre)			
	2.0.1	Eindimensionale Bewegung	11	
	2.0.2	Bewegungen in 2D und 3D	17	
	2.0.3	Kreisförmige Bewegung (Rotation)	24	
3	Mechanik einzelner Massepunkte 28			
	3.0.1	Newtonsche Gesetze	28	
	3.0.2	Der Impuls	32	
	3.0.3	Arbeit und Energie	37	
	3.0.4	Reibung	45	
	3.0.5	Rotationsbewegung und Drehimpuls	47	
	3.0.6	Scheinkräfte und beschleunigte Bezugssysteme	52	
4	Reale deformierbare Körper 57			
	4.0.1	Aufbau der Materie	57	
	4.0.2	Verformung von Festkörpern	60	
	4.0.3	Gasgesetze	65	
	4.0.4	Ruhende Flässigkeiten (Hydrostatik)	68	
	4.0.5	Strömende Fluide (ohne Reibung)	75	
	4.0.6	Strömende Fluide (mit Reibung)	78	
5	Schwingun	ngen und Wellen	83	
	5.0.1	Das mathematische Pendel	84	
	5.0.2	Gedämpfte harmonische Schwingung (mit Reibung)		
	5.0.3	Erzwungene Schwingung (Pendel mit periodischer äußerer Kraft) .	88	
	5.0.4	Gekoppeltes Pendel (Versuch)	90	
6	Optik		99	
	6.0.1	Geometrische Optik	101	
	6.0.2	Linsen und optische Instrumente		
	6.0.3	Wellenoptik + Interferenzphänomene		
	6.0.4	Interferometer		

	6.0.5	Auflösungsvermögen optischer Geräte
	6.0.6	Polarisation von Licht
7	Elektrosta	atik und Elektrizität 135
	7.0.1	Ladungsverteilungen
	7.0.2	Elektrisches Feld
	7.0.3	Gleichströme
8	Magnetisi	mus 156
	8.0.1	Kräfte im magnetischen Feld
	8.0.2	Magnetfeld von bewegten Ladungen
	8.0.3	Magnetische Induktion
	8.0.4	Magnetismus in Materie
	8.0.5	Wechselströme
	8.0.6	Zusammenfassung der elektrischen und magnetischen Gleichungen
		(Maxwellgleichungen)
9	Entropie	und statistische Physik 188
	9.0.1	Kinetische Gastheorie
	9.0.2	Maxwell-Boltzmann-Geschwindigkeitsverteilung 193
	0.0.3	Wärme Kraft Maschine

Liebe Studierende,

dies ist mein Handzettel zur Vorlesung und kein ausgearbeitetes Skript. Er ist entstanden und zusammengefasst aus den Vorlesungen von Thomas Gisler, Christof Aegerter, Johannes Boneberg und Günter Schatz, die in früheren Jahren die Einführung in die Experimentalphysik lasen. Die Zettel sind <u>NICHT</u> frei von Schreib-, Rechen- und Vorzeichenfehlern, sie sind als Orientierungshilfe zum Lernen gedacht - nicht als Lernersatz. Die Herausgabe der Zettel ist für mich das Experiment, ob die Klausur wirklich schlechter ausfällt, wenn ein Skript zugänglich ist (die meisten Professoren behaupten dies). Also trotzdem lernen und trotzdem anwesend sein! Es ist immer noch eine Vorlesung und keine "Vorschreibung"!

Viele Grüße, Peter Keim, Sommer 2016

LATEX Version von Florian Furtwängler, Cornelia Langer, Adrian Heilemann, Prof. Dr. Giso Hahn

Sommer 2017

Kapitel 1

Grundgrößen und Messabweichung

Wir benötigen Definitionen und Messvorschriften physikalische Größe = Zahlenwert x Einheit

Bsp.: 1 inch (1150 König David von Schottland)

Mittlere Daumendicke eines Großen, mittleren und kleinen Mannes = 2,54 cm

gute Längendefinition?

Wunsch: Wenige aber möglichst überall nachprüfbare Basisgrößen

1.0.1 Basiseinheiten

Internationales Einheitensystem SI (système international d'unités)

<u>Länge:</u> 1 Meter (m) ist die Länge der Strecke, die Licht im Vakuum während der Dauer von $\frac{1}{299792458}$ Sekunden zurücklegt (erst Erdumfang $\frac{1}{40000000}$ durch Paris 1488, dann $Pt_{90}Ir_{10}$ -Stab)

<u>Masse:</u> 1 Kilogramm (kg) ist die Masse des aus Platin-Iridium bestehenden Urkilogramms des Bureau International des Perids et Mesures in Sèvres, nach Anwendung der standartisierten Reinigungsprozedur.

Zeit: 1 Sekunde (s) ist die Zeitdauer von 9.192.631.770 Schwingungen eines Hyperfeinstruktur-Übergangs zwischen zwei bestimmten Energiezuständen des Isotopes 133 Cäsiums.

<u>Stromstärke:</u> 1 Ampere (A) ist die Stärke eines zeitlich konstanten Stromes, der durch zwei im Vakuum im Abstand von 1 m parallel verlaufende (∞ lang, $\emptyset = 0$ m) Leiter fließend eine gegenseitige Kraft von $2 \cdot 10^{-7}$ Newton pro Meter Drahtlänge erzeugt.

<u>Temperatur:</u> 1 Kelvin (K) ist der Bruchteil $\frac{1}{273,16}$ der thermodynamischen Temperatur des Tripelpunktes von H_2O .

<u>Stoffmenge:</u> 1 Mol (mol) ist die Menge eines Stoffes, die aus genauso vielen Molekülen bestehen, wie Atome in 12 g des Kohlenstoffisotopes ^{12}C enthalten sind.

<u>Lichtstärke</u>: 1 Candela (cd) ist die Lichtstärke (Helligkeit) in einer gegebenen Richtung, die von monochromatischer Strahlung von $540 \cdot 10^{12}$ Hz (≈ 550 nm) einer Leistung

von $\frac{1}{683}$ Watt pro Steradiant abgestrahlt wird. Verweis auf Internet: http://www1.bipm.org/en/si

Dimension einer Größe 1.0.2

Abgeleitete Größen haben eine Dimension (Einheit), z.B. Geschwindigkeit = $\frac{\text{Länge}}{\text{Zeit}}$ $v = \frac{l}{t} = \left[\frac{m}{s}\right]$; Fläche $A = [m^2]$

Wichtig für Überprüfung von Rechnungen!

Dimensionen auf beiden Seiten einer Gleichung müssen übereinsteimmen! Beispiel:

$$T = 2\pi \sqrt{\frac{l}{g}} \quad \text{oder} \quad T = 2\pi \sqrt{\frac{g}{l}} \text{(falsch)}$$

$$g \to \left[\frac{m}{s^2}\right] \text{(Erdbeschleunigung)} \quad l \to [m] \quad T \to [s]$$

$$(1.1)$$

$$g \to \left\lceil \frac{m}{s^2} \right\rceil$$
 (Erdbeschleunigung) $l \to [m]$ $T \to [s]$ (1.2)

$$[s] = \left[\sqrt{\frac{m}{\frac{m}{s^2}}}\right] = [\sqrt{s^2}] = [s] \tag{1.3}$$

1.0.3Messfehler

z.B. Längenmessung, Größenmessung einer Person (Achtung stehend/liegend)

- systematische Messfehler:
 - z.B. falsch geeichtes Meßinstrument, Nichtberücksichtigen von konstanten äußeren Einflüssen (Luftreibung, Magnetfelder, elektrische Felder)
 - vgl. Abstraktion Kapitel 1
 - Systematische Fehler verfälschen stets um den gleichen Betrag in die gleiche Richtung
 - Sie sind prinzipiell vermeidbar (müssen aber erst erkannt, dann entweder durch Verbesserung der Anordnung eliminert werden ODER qualifiziert und in Auswertung/Rechnung korrigiert werden)
- statistische (zufällige) Fehler:
 - können die Messergebnisse um verschiedene Beträge in beide Richtungen verändern (größer und kleiner)
 - durch Beobachter selbst (ungenaue Ablesung)
 - durch statistische Schwankungen äußerer veränderlicher Einflüsse (Rauschen,
 - sind prinzipiell unvermeindbar, aber durch wiederholte Messungen (und Fehlerrechnung) verringerbar

Messvorschrift: oft messen & arithmetisches Mittel bilden

Arithmetisches Mittel:

$$\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + \dots + x_n}{n} \tag{1.4}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1.5}$$

z.B. Größenmessung $\bar{x} = 175$ cm

Abbildung 1.1: Mittelwert von 175cm

- \bullet Fehler mit verschiedenen Vorzeichen sind gleich wahrscheinlich \to symmetrische Verteilung um \bar{x}
- Fehler mit großem Betrag sind weniger wahrscheinlich
- Je mehr Messungen $(n \to \infty)$ und je feiner die Diskretisierung (sprich Messskala), desto mehr nähert sich die Verteilung einer "Normalverteilung" an \to beschrieben mit der Gaußkurve
- Die Genauigkeit der Messung ist durch die Breite der Verteilung gegeben. Die Breite der Verteilung ist die Summe der Abstandsquadrate.
- Veranschaulichung mit Versuch Galton-Brett

Summe der Abstandsquadrate = Varianz

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \text{Varianz}$$
(1.6)

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \text{Standardabweichung}$$
(1.7)

Zentraler Grenzwertsatz: $n \to \infty$

 $\bar{x} \rightarrow \mu = \text{Erwartungswert} \equiv \text{"wahrer"} \text{Wert}$

Fehler der Einzelmessung \leftrightarrow Breite der Verteilung \leftrightarrow Standardabweichung $n \to \infty \to$ Häufigkeit normieren \to Wahrscheinlichkeit p(x) = Gaußkurve

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\bar{x})^2}{2\sigma^2}}$$
(1.8)

Fehler der Einzelmessunge ist relativ nutzlos \to Fehler von Messreihen Anschaulich: Mehrere Messreihen betrachten und Mittelwerte der Mittelwerte bilden (\approx

Abbildung 1.2: Gaußkurve

 $Mittelwert \leftarrow nutzlos)$

ABER: Mittelwerte der Abweichungsquadrate bilden \rightarrow Fehler einer Messreihe σ_m σ_m = Abweichung der Mittelwertes der Messreihe \bar{x}_m vom "wahren" Wert (ohne Beweis oder später bzw. Anfängerpraktikum)

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (1.9)

 σ_m ist um so kleiner, je präziser die Einzelmessung ist (schmale Verteilung, σ sei klein) UND je länger die Messreihe ist.

Messergebnis: $x = \bar{x} \pm \sigma_m$, mit \bar{x} Mittelwert der Messreihe und σ_m Fehler der Messreihe

NB: 10 (\approx 9) mal öfter messen $\rightarrow \sigma_m^{10^1} \approx \frac{1}{\sqrt{9}} \sigma_m = \frac{1}{3} \sigma_m$ 100 mal öfter messen $\rightarrow \sigma_m^{10^2} \frac{1}{10} \sigma_m$ 1000 mal öfter messen $\rightarrow \sigma_m^{10^3} \frac{1}{31} \sigma_m$ 10000 mal öfter messen $\rightarrow \sigma_m^{10^4} \frac{1}{100} \sigma_m$

Angabe: $x = 1,573496052 \pm 0,004 = \text{falsch!}$ $x = 1,573 \pm 0,004 \equiv 1,573(4) \rightarrow \text{Genauigkeit der letzten Stelle}$ $x = 1,573 \pm 0,1 \quad \text{falsch!}$ $x = 1,6 \pm 0,1 = 1,6(1)$

Es macht keinen Sinn, den Messwert genauer anzugeben, als seine Unsicherheit!!

Erwartungswert $E(x_i) = \mu$

$$E(g(x)) = \sum_{i=1}^{n} p(x_i)g(x_i)$$
 (1.10)

 $\min \sum_{i=1}^{n} p(x_i) \stackrel{!}{=} 1$

Dann ist $E(x_i) = \mu$ und $E((x_i - \mu)^2) = \sigma^2$, für den Mittelwert \bar{x} gilt $E(\bar{x}) = \mu$

Fehler der Messreihe bzw. mittlerer Fehler des Mittelwertes

$$\sigma_m^2 = E \left[\frac{1}{n} \sum_{i=1}^n (x_i - \mu) \right]^2$$
 (1.11)

$$\sigma_m^2 = \frac{1}{n^2} \sum_{i=1}^n E\left[(x_i - \mu)^2 \right] + \frac{1}{n^2} \sum_{i=1, j=1, i \neq j}^n E\left[(x_i - \mu)(x_j - \mu) \right]$$
 (1.12)

zweiter Teil fällt weg, da ≈ 0 weil inkohärent wenn Fehler stat. unabhängig.

$$\sigma_m^2 = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{1}{n} \cdot \sigma^2$$
(1.13)

$$\sigma_m = \frac{1}{\sqrt{n}}\sigma \tag{1.14}$$

q.e.d.