Report Analysis:

1. *This data basically takes in 11 attributes: College(whether the customer is in college or not), Income(how much income the customer has), Overage, Leftover, House cost, Handset Price, the number of calls the customer takes that are over 15 minutes, the average call duration, their satisfaction with the company, reported usage level, and whether they were considering changing company. In order to simplify this data, I realized that I had to normalize all the numerical attributes, and simplify the data more by mapping all the ordinal attributes such as reported usage level to rank numbers and binary attributes(yes/no) such as college to numbers 1 or 0. This is an important step as it would scale the data and normalize it. After normalizing the data, I've created two visualizations for this data. The first visualization is a decision tree which I thought was meaningful because it really lays out the attributes and which combination leads to which output. My second visualization was the dendrogram I produced when I was using K-means clustering to see the similarity between different clusters. I used this dendrogram to measure the distance and get the best k to start with for this algorithm. (I've attached the decision tree in the submission folder and the dendrogram below in the next question).

2. To analyze the clusters using K-means, I coded up the K-Means algorithm using scikit learn in Python. I picked the best k by using hierarchical clustering to first create a dendrogram:

By analyzing this dendrogram, I came to the conclusion that the best k is 6 by cutting off at a distance of 8, and thus used that k value to create 6 different clusters. From producing these clusters, I've come across some surprising results:

Cluster 1 Similarity

College	zero
Average Income	79009.9
Average Overage	198.87
Average Leftover	19.7070
Average House value	492974
Average Handset Price	374.0209
Average Overage 15min	20.8126
satisfaction	Very unsatisfactory
usage_level	Same everywhere
Considering to change plan	considering
Leave or STAY?	LEAVE

Cluster 2:

College	one
Average Income	131585
Average Overage	49.741
Average Leftover	22.636
Average House value	487700
Average Handset Price	687.54

Average Overage 15min	3.8930
satisfaction	Very unsatisfactory
usage_level	Same everywhere
Considering to change plan	considering
Leave or STAY?	STAY

Cluster 3:

College	zero
Average Income	56657
Average Overage	36.317
Average Leftover	7.10303
Average House value	489632.1
Average Handset Price	264.241
Average Overage 15min	2.78168
satisfaction	Very unsatisfactory
usage_level	Same everywhere
Considering to change plan	considering
Leave or STAY?	STAY

Cluster 4:

College	one
Average Income	67737.552
Average Overage	49.6397
Average Leftover	16.0705
Average House value	494608.44
Average Handset Price	314.9060
Average Overage 15min	3.893617
satisfaction	Very unsatisfactory
usage_level	Same everywhere
Considering to change plan	no
Leave or STAY?	STAY

Cluster 5:

College	zero
Average Income	63096.68
Average Overage	56.0871
Average Leftover	62.598
Average House value	499920.30
Average Handset Price	288.36
Average Overage 15min	4.3647
satisfaction	Very unsatisfactory
usage_level	Same everywhere
Considering to change plan	considering
Leave or STAY?	LEAVE

Cluster 6:

College	one
Average Income	80321.3
Average Overage	84.7873
Average Leftover	23.336
Average House value	496817.74
Average Handset Price	390.442
Average Overage 15min	7.5107
satisfaction	average
usage_level	Same everywhere

Considering to change plan	considering
Leave or STAY?	STAY

What differences did I see across the clusters?

I saw that roughly all the customers in all the clusters had almost the same average of calls. However, the income differed majorly across all the clusters: for example, in cluster 1 the average income was \$131545.6 whereas the average income in cluster 2 was \$56946.2. Another major difference across the clusters was whether the customers churned to stay or leave. Some clusters were similar because most of the customers wanted to leave, whereas some of the other clusters were similar because most of the customers wanted to stay.

3.

a. I coded up two predictive models for this dataset: a Decision Tree model and a Logistic Regression model. The decision tree produced an accuracy of 68% and the logistic regression model produced an accuracy of 65%. When I produced the ROC curve for the Logistic Regression model and Decision Tree it looked somewhat like this:

This is the ROC curve for Decision Tree

This is the ROC curve for Logistic Regression

As I can see, the ROC curve is not touching the top left corner: it's almost there but not yet. However, I believe that since the Decision Tree produced slightly a higher accuracy, I would say that the Decision Tree method works better on customer churn.

b. I don't think my data is balanced because when I coded up the KMeans: the clusters varied highly and in addition, the mean was always higher than the median which means that the data might have been skewed a little. In addition,

- when I saw the Decision Tree, I saw that the model was very overfitted which means that the data wasn't balanced.
- c. To balance the data, I wrote a method in python that maps all the categorical variables to a number. To elaborate, I mapped the attributes: College, Reported Unsatisfactory, the labels(Leave or Stay), Reported Satisfaction, Considering Change of Plan all to a value. For example, I mapped the values in College to 0 or 1:0 for zero and 1 for one and the values in Reported Satisfactory to values 0(very unsatisfactory), 1(unsatsfactory), 2(satisfactory), and 3(very satisfactory).
- d. Using my decision tree model, I've come across that lower house rates lead to customers staying more, whereas higher income and house rates correlate with customers leaving the company. Also with my logistic regression model I printed

out the correlations as shown below:

COLLEGE	0.118135
INCOME	-0.163843
OVERAGE	-0.411277
LEFT0VER	-0.246192
HOUSE	0.461332
HANDSET_PRICE	-0.087725
OVER_15MINS_CALLS_PER_MONTH	-0.134970
AVERAGE_CALL_DURATION	-0.124559
REPORTED_SATISFACTION	-0.010970
REPORTED_USAGE_LEVEL	-0.020736
CONSIDERING_CHANGE_OF_PLAN	-0.037383

As we can see income, overage, leftover, handset price, over 15 minute calls, average call duration, reported satisfaction, reported usage level, and considering change of plan all have a negative correlation. Whereas, college, and house value have a positive correlation with customer churn.

e. There are many recommendations for reducing churn. By looking at my clusters, it seems that many customers were very unsatisfactory with the company, and most of them didn't have that much of an income. To reduce churn, the company could provide more grants or more deals to get more opportunities within the

company. In other words, the company could give out more discounts with their products or monthly plans to the customers. Another factor could be to send out an outline on how each customer's bill would look like before they are actually charged to let them know what their costs consist of. Looking at my decision tree, it looked like customers who mostly had over 15 minute calls and more usage of the phone had a higher chance of leaving. Hopefully, sending out an earlier outline of their plan would let them change their behavior towards the phone so their bills don't be costly.