

Machine Learning Model Selection & Assessment

Dariush Hosseini

dariush.hosseini@ucl.ac.uk Department of Computer Science University College London

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

By the end of this lecture you should:

- Understand the concept of Model Selection in machine learning
- Be aware of some practical approaches to model selection, including: Validation techniques, Cross Validation techniques, and PAC learning
- 3 Know the concept of Model Assessment

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

Model Selection

- On several occasions we have seen the need to select various hyperparameters in order to fully define our learning algorithm (or our model). For example:
 - lacktriangle The ridge regression hyperparameter, λ
 - The degree of polynomial in polynomial regression
 - More abstractly: the 'complexity' measure in the bias-variance trade-off
- How we choose the best hyperparameter / learning algorithm / model for a particular problem is the task of Model Selection

Model Selection

- Note that model selection is primarily concerned with ranking a set of models on some basis, rather than estimating the performance of a particular model
- However, the way in which we perform a ranking is intimately connected with performance:

Model Selection

- Often our model selection approaches seek to approximate a measure of performance somehow
- And of course the measure of performance that we are ultimately interested in is the Generalisation Loss:

$$\mathbb{E}_{\mathcal{D}}\big[\mathcal{E}(f(\boldsymbol{\mathfrak{X}}),\boldsymbol{\mathfrak{Y}})\big]$$

- Empirical Test Set Loss, $\mathbb{E}_{\mathcal{S}_{\mathsf{Test}}}\big[\mathcal{E}(f(\mathcal{X}),\mathcal{Y})\big]$, can act as a reasonable estimator of this quantity...
- ...But cannot be used for model selection!
- Can we use **Empirical Training Set Loss**, $\mathbb{E}_{\mathcal{S}_{\mathsf{Train}}}\big[\mathcal{E}(f(\mathcal{X}),\mathcal{Y})\big]$ as an alternative?

Training Loss

■ No!

Recall our previous observation that a focus on such a **training loss** when selecting hyperparameters can lead us astray:

Training Loss

- So **Empirical Risk Minimisation** (ERM) (alone) is not enough to fit our hyperparameters / perform model selection...
- Instead we'll discuss three alternatives:
 - Validation Techniques
 - Cross Validation Techniques
 - PAC Learning

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

Validation Set Loss

- Here the basic idea is to split the initial training data into three sets: Training, Validation, and Test sets:
 - The first is used for **training** each possible model
 - The second is used to **select** the 'best' model
 - The third is used to assess the performance of that model

60%		20%	20%	
Training Set	Val	lidation Set	Test Set	
0	<u>6n</u> 10	<u>8n</u> 10		n

Validation Set Loss

■ The motivation is that the **validation (set) loss** (the empirical loss on the validation set) will provide a proxy for the generalisation loss, which we then use to select an optimal model

- We can prove that the validation loss is related to the generalisation loss, using **Hoeffding's Inequality**
- We will prove the result for the case of misclassification loss, using the following notation:

Notation

■ Validation Set:

$$\mathcal{S}_{\mathcal{V}} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^{n_{\mathcal{V}}} \quad \text{where:} \quad \mathcal{S}_{\mathcal{V}} \sim \mathcal{D}^{n_{\mathcal{V}}}$$

Loss Measure:

$$\mathcal{E}(f(\mathbf{x}), y) = \mathbb{I}[y \neq f(\mathbf{x})]$$

■ Generalisation Loss:

$$\mathsf{L}(\mathcal{E},\mathcal{D},f) = \mathbb{E}_{\mathcal{D}}\big[\mathcal{E}(f(\mathbf{X}),\mathcal{Y})\big]$$

■ Validation Loss:

$$L(\mathcal{E}, \mathcal{S}_{\mathcal{V}}, f) = \frac{1}{n_{\mathcal{V}}} \sum_{i=1}^{n_{\mathcal{V}}} \mathcal{E}(f(\mathbf{x}^{(i)}), \mathbf{y}^{(i)})$$

Let us recall **Hoeffding's Inequality**: Let $\mathcal{Z}_1, \ldots, \mathcal{Z}_n$ be independent random variables, such that each \mathcal{Z}_i is bounded by the interval $[a_i, b_i]$, then for any $\epsilon > 0$:

$$\mathbb{P}\left(\mathbb{E}[\overline{\mathcal{Z}}] - \overline{\mathcal{Z}} \geqslant \epsilon\right) \leqslant \exp\left(-\frac{2n^2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

■ Apply this to i.i.d. \mathcal{Z}_i , such that $\mathcal{Z}_i = \mathbb{I}[\mathcal{Y}^{(i)} \neq f(\mathcal{X}^{(i)})]$, means that $(b_i - a_i) = 1$ and:

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \geqslant \frac{1}{n_{\mathcal{V}}} \sum_{i=1}^{n_{\mathcal{V}}} \mathbb{I}[y^{(i)} \neq f(\mathbf{x}^{(i)})] + \epsilon\right) \leqslant e^{-2n_{\mathcal{V}}\epsilon^2}$$

And so:

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \geqslant \mathbb{E}_{\mathcal{S}_{\mathcal{V}}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] + \epsilon\right) \leqslant e^{-2n_{\mathcal{V}}\epsilon^2}$$

■ If we wish the probability of the occurrence of this event to be no greater than some quantity $\delta \in [0, 1]$ then:

$$\delta > e^{-2n_{\mathcal{V}}\varepsilon^2}$$

$$\implies \varepsilon < \sqrt{\frac{\ln(1/\delta)}{2n_{\mathcal{V}}}}$$

■ This setting of ϵ will ensure that the probability of the occurrence of the complement of this event will be greater than $(1 - \delta)$:

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] < \mathbb{E}_{\mathcal{S}_{\mathcal{V}}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] + \sqrt{\frac{\ln(1/\delta)}{2n_{\mathcal{V}}}}\right) > (1 - \delta)$$

■ Equivalently, we can state the **Validation Set Bound**: Let f be some predictor function, then with probability of at least $(1 - \delta)$ over the choice of validation set, $\mathcal{S}_{\mathcal{V}}$:

$$L(\mathcal{E}, \mathcal{D}, f) \leqslant L(\mathcal{E}, \mathcal{S}_{\mathcal{V}}, f) + \sqrt{\frac{\ln(1/\delta)}{2n_{\mathcal{V}}}}$$

- This holds for a single function *f*, but we wish to use the validation loss to choose from amongst a set of functions
- Using the **Union Bound** we can prove that a similar bound holds for all members of a finite hypothesis class, \mathcal{F} :

$$\mathcal{F} = \{f_1, ..., f_r\}$$
 of size: $|\mathcal{F}|$

■ Recall that by the Union Bound, for events *A* and *B*, the following inequality holds:

$$\begin{split} \mathbb{P}(\mathsf{A} \vee \mathsf{B}) \leqslant \mathbb{P}(\mathsf{A}) + \mathbb{P}(\mathsf{B}) \\ \Longrightarrow \ 1 - \mathbb{P}(\mathsf{A} \vee \mathsf{B}) \geqslant 1 - (\mathbb{P}(\mathsf{A}) + \mathbb{P}(\mathsf{B})) \\ \Longrightarrow \ \mathbb{P}(\neg(\mathsf{A} \vee \mathsf{B})) \geqslant 1 - (\mathbb{P}(\mathsf{A}) + \mathbb{P}(\mathsf{B})) \\ \Longrightarrow \ \mathbb{P}(\neg\mathsf{A} \wedge \neg\mathsf{B}) \geqslant 1 - (\mathbb{P}(\mathsf{A}) + \mathbb{P}(\mathsf{B})) \end{split} \qquad \text{by DeMorgan}$$

■ Let A be the event, (for some function f^A):

$$L(\mathcal{E}, \mathcal{D}, f^{A}) > L(\mathcal{E}, \mathcal{S}_{\mathcal{V}}, f^{A}) + \sqrt{\frac{\ln(1/\delta')}{2n_{\mathcal{V}}}}$$

■ Then by the validation set bound:

$$\mathbb{P}(A) < \delta'$$

■ Similarly let B be the event, (for some function f^{B}):

$$L(\mathcal{E}, \mathcal{D}, f^{B}) > L(\mathcal{E}, \mathcal{S}_{\mathcal{V}}, f^{B}) + \sqrt{\frac{\ln(1/\delta')}{2n_{\mathcal{V}}}}$$

■ Then by the validation set bound:

$$\mathbb{P}(\mathsf{B}) < \delta'$$

■ Combining these, for all $f \in \{f^A, f^B\}$:

$$\mathbb{P}\left(\mathsf{L}(\mathcal{E},\mathcal{D},f)\leqslant\mathsf{L}(\mathcal{E},\mathcal{S}_{\mathcal{V}},f)+\sqrt{\frac{\ln\left(1/\delta'\right)}{2n_{\mathcal{V}}}}\right)\geqslant1-2\delta'$$

■ Then, if we set $\delta = 2\delta'$ then, for all $f \in \{f^A, f^B\}$:

$$\mathbb{P}\left(\mathsf{L}(\mathcal{E},\mathcal{D},f)\leqslant\mathsf{L}(\mathcal{E},\mathcal{S}_{\mathcal{V}},f)+\sqrt{\frac{\ln\left(2\times1/\delta\right)}{2n_{\mathcal{V}}}}\right)\geqslant1-\delta$$

■ Our result for all $f \in \{\mathcal{F}\}$ where the number of functions contained in \mathcal{F} is $|\mathcal{F}|$ follows in a similar way.

■ With probability of at least $(1 - \delta)$ over the choice of $\delta_{\mathcal{V}}$:

$$\forall f \in \mathcal{F}$$
 $L(\mathcal{E}, \mathcal{D}, f) \leqslant L(\mathcal{E}, \mathcal{S}_{\mathcal{V}}, f) + \sqrt{\frac{\ln(|\mathcal{F}|/\delta)}{2n_{\mathcal{V}}}}$

- In other words, the validation loss is a good guide to the generalisation loss provided that:
 - \blacksquare \mathcal{F} is not too large (i.e. we don't try too many models)
 - \blacksquare $n_{\mathcal{V}}$ is not too small
- If either of these conditions is not true, then the validation and generalisation losses will drift apart as we begin to overfit the model / hyperparameters
- For example the Kaggle leader board phenomenon:
 - Entrants routinely top the validation leader board, but perform poorly on the final test board

Stratification

- One way of alleviating the small sample size problem is to stratify our sampling
- Stratification involves sampling the data for each set (training/validation/test) such that each contains the same proportion of data points with particular combinations of features
- \blacksquare This helps to ensure that training, validation, and test sets are all representative of ${\mathfrak D}$

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

Cross Validation

- But data is often not plentiful at all
- If we wish to retain most of our data for training then we must adopt a different approach:
- Cross Validation allows us to perform validation, while still maintaining our training data set

Cross Validation

- \blacksquare Here the basic idea is to split the initial training data into k sets (or **folds**)
- The learning algorithm is run k times, for each model, each time using all the folds but one as a **training** set, $S \setminus S_k$, and the remaining fold as a **validation** set, S_k
- The validation performance, for a particular model f, is averaged across all k folds to give the cross validation loss:

$$L_{CV_k}(\mathcal{E}, \mathcal{S}, f) = \frac{1}{k} \sum_{i=1}^{k} L_{\mathcal{S} \setminus \mathcal{S}_k}(\mathcal{E}, \mathcal{S} \setminus \mathcal{S}_k, f)$$

Fold 1	**	Validation Se
Fold 2	333333	Training Set
Fold 3		
:		
•		
Fold k		

Cross Validation

Again, the motivation is that the cross validation loss will provide a proxy for the generalisation loss, which we then use to select an optimal model

Cross Validation: k selection

- What value should we select for k?
- **•** k = n is known as **Leave One Out** (**LOO**) cross validation
 - It maximises the training set for each fold iteration and so reduces bias in the hypothesis learned for each such iteration
 - But it is computationally expensive
 - And each validation fails to give a good estimate of the generalisation error associated with the learned hypothesis
- Empirical analysis suggests that k = 5 or 10 is better
 - This is used in practice almost as standard
 - And is computationally cheaper

Cross Validation: Comments

- Cross Validation works well in practice...
- ...But a rigorous understanding of why is an open question
- And in certain circumstances it must be treated with care, for example:
 - Time Series Data:
 - Only sequential cross validation should be performed
 - Randomising would artificially enhance validation set performance
 - Neighbouring points are likely to be similar and should therefore be kept together

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

The PAC Approach

- Here we begin with the generalisation loss...
- ...And seek to formulate a probabilistic 'worst-case' bound on this quantity in terms of:
 - The observable empirical training loss
 - \blacksquare Some complexity penalty, which takes into account the size of the representation space, $\mathcal F$
- Then we perform model selection by searching for the model / hyperparameter choice which gives rise to the tightest bound

PAC Learning

- The learner receives samples and must select a hypothesis, *f*, from, 𝔻, such that with high probability (**probably**) the selected function will have low generalisation loss (will be **approximately correct**)
- This must be true for any probability of success, (1δ) , any approximation loss target, ϵ , and any data generating process, \mathcal{D}

PAC Learning: Procedure

■ These PAC generalisation bounds can be generated using the Uniform Convergence approach.

This is a two step procedure:

- First we seek some finite sample **concentration inequality** that is independent of \mathcal{D} . We apply this to one function, f
- Second we seek to apply this inequality **uniformly** across all f in $\mathcal F$ via the **Union Bound** or some measure of the functional complexity of $\mathcal F$
- Let's take a look at this approach in a few different **classification** settings:

Notation

■ Training Set:

$$S = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$$
 where: $S \sim \mathcal{D}^n$

■ Loss Measure:

$$\mathcal{E}(f(\mathbf{x}), y) = \mathbb{I}[y \neq f(\mathbf{x})]$$

■ Generalisation Loss:

$$\mathbb{E}_{\mathcal{D}}\big[\mathcal{E}(f(\mathfrak{X}), \mathcal{Y})\big]$$

■ Training Loss:

$$\mathbb{E}_{\mathcal{S}}\big[\mathcal{E}(f(\mathfrak{X}), \mathcal{Y})\big]$$

PAC Bound: Finite F, Consistent Learner

- A **consistent learner** is a learning algorithm which only outputs hypotheses, $f \in \mathcal{F}$, that are consistent with the training data, (i.e. $\mathbb{E}_{\mathcal{S}}[\mathcal{E}(f(\mathcal{X}), \mathcal{Y})] = 0$)
- $$\begin{split} \blacksquare \text{ Assuming } \big(0 < \varepsilon < 1\big) \text{ and } \big(0 < \delta < 1\big); \\ \mathbb{P}(\text{a particular } f \in \mathfrak{F}, \text{ with } \mathbb{E}_{\mathbb{D}}[\mathcal{E}(f(\mathfrak{X}), \mathfrak{Y})] > \varepsilon, \\ \text{is consistent with } 1 \text{ training ex.}) < (1 \varepsilon) < e^{-\varepsilon} \end{split}$$

So:

$$\begin{split} \mathbb{P}(\textit{a particular } f \in \mathfrak{F}, \textit{ with } \mathbb{E}_{\mathbb{D}}[\mathcal{E}(f(\mathfrak{X}), \mathfrak{Y})] > \varepsilon, \\ \textit{is consistent with } \textit{n training ex.}) < (1-\varepsilon)^{\textit{n}} < e^{-\varepsilon \textit{n}} \end{split}$$

PAC Bound: Finite F, Consistent Learner

■ For this to apply to all $f \in \mathcal{F}$ simultaneously, we begin by applying the **Union Bound** to obtain:

$$\mathbb{P}(\mathbb{E}_{\mathcal{D}}[\mathcal{E}(f(X), \mathcal{Y})] > \epsilon$$
, for at least one $f \in \mathcal{F}) < |\mathcal{F}|e^{-\epsilon n}$

■ Theorem:

For all $(0 < \epsilon < 1)$, $(0 < \delta < 1)$, all data generating distributions, \mathbb{D} , then with probability of at least $(1 - \delta)$:

$$\forall f \in \mathcal{F}$$
 $\mathbb{E}_{\mathcal{D}}[\mathcal{E}(f(\mathfrak{X}), \mathcal{Y})] \leqslant \frac{1}{n} \ln \left(\frac{|\mathcal{F}|}{\delta} \right)$

■ But what if we wish to access a *more realistic* representation, where our learners can make mistakes?

PAC Bound: Finite F, Agnostic Learner

- An **agnostic learner** is a learning algorithm which is not restricted in the hypotheses it can learn
- Let us recall **Hoeffding's Inequality**: Let $\mathcal{Z}_1, \ldots, \mathcal{Z}_n$ be independent random variables, such that each \mathcal{Z}_i is bounded by the interval $[a_i, b_i]$, then for any $\epsilon > 0$:

$$\mathbb{P}\left(\mathbb{E}[\overline{Z}] - \overline{Z} \geqslant \epsilon\right) \leqslant \exp\left(-\frac{2n^2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

PAC Bound: Finite F, Agnostic Learner

■ Apply this to i.i.d. \mathcal{Z}_i , such that $\mathcal{Z}_i = \mathbb{I}[\mathcal{Y}^{(i)} \neq f(\mathcal{X}^{(i)})]$, means that $(b_i - a_i) = 1$ and:

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \geqslant \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[y^{(i)} \neq f(\mathbf{x}^{(i)})] + \epsilon\right) \leqslant e^{-2n\epsilon^{2}}$$

■ And so:

$$\mathbb{P}\left(\mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \geqslant \mathbb{E}_{\mathcal{S}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] + \epsilon\right) \leqslant e^{-2n\epsilon^2}$$

PAC Bound: Finite F, Agnostic Learner

■ For this to hold for all $f \in \mathcal{F}$ simultaneously, we begin by applying the **Union Bound** to obtain:

$$\mathbb{P}\left(\mathbb{E}_{\mathbb{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \geqslant \mathbb{E}_{\mathcal{S}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] + \varepsilon, \text{ for at least one } f \in \mathcal{F}\right) \leqslant |\mathcal{F}|e^{-2n\varepsilon^2}$$

■ Theorem:

For all $(0 < \varepsilon < 1)$, $(0 < \delta < 1)$, all data generating distributions, \mathbb{D} , then with probability of at least $(1 - \delta)$:

$$\forall f \in \mathcal{F}$$
 $\mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \leqslant \mathbb{E}_{\mathcal{S}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] + \sqrt{\frac{1}{2n}} \ln \left(\frac{|\mathcal{F}|}{\delta}\right)$

■ But what if we wish to access a *larger* representation?

PAC Bound: Infinite F, Agnostic Learner

- For infinitely large function classes the previous bound becomes trivial because $|\mathcal{F}| \to \infty$
- We need a more subtle way of measuring the size, or functional capacity, or complexity of ${\mathcal F}$
- There are a number of different possible measures, for example:
 - Rademacher Compexity
 - **Covering Numbers**
 - PAC-Bayes
- Using such a measure we can develop a similar PAC bound to the ones which we've already seen:

PAC Bound: Infinite F, Agnostic Learner

■ For example for misclassification loss, and the Rademacher complexity measure we can derive:

■ Theorem:

For all $(0 < \varepsilon < 1)$, $(0 < \delta < 1)$, all data generating distributions, \mathbb{D} , then with probability of at least $(1 - \delta)$:

$$\forall f \in \mathcal{F} \quad \mathbb{E}_{\mathcal{D}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] \leqslant \mathbb{E}_{\mathcal{S}}[\mathbb{I}[\mathcal{Y} \neq f(\mathcal{X})]] + 2\mathbb{R}(\mathcal{F} \circ \mathcal{S}) + 4\sqrt{\frac{2}{n}} \ln\left(\frac{4}{\delta}\right)$$
(1)

■ Here $\mathbb{R}(\mathcal{F} \circ \mathcal{S})$ denotes the Rademacher complexity of $\mathcal{F} \circ \mathcal{S} = \{f(\mathbf{x}^{(i)}) | f \in \mathcal{F}\}_{i=1}^n$

PAC Bound: Infinite F, Agnostic Learner

- Characterising $\mathbb{R}(\mathfrak{F} \circ \mathcal{S})$ is:
 - Beyond the scope of this course!
 - \blacksquare Depends on the training data and on \mathcal{F}
 - For some interesting representations a finite quantity...
 - ...even if f contains an infinite number of functions!

PAC Bound: Model Selection

- So Theorem (1) gives us a worst case upper bound in probability for the generalisation loss for a wide variety of models
- We can calculate this bound for different models (\mathcal{F}) characterised by, for example, different hyperparameter settings
- We can perform model selection by picking the model which gives rise to the tightest of these bounds

PAC Bound: Comments

- The PAC approach has advantages:
 - It is not limited to misclassification loss, it can be applied to a variety of other loss functions
 - It allows models to be compared with training data alone, while avoiding overfitting
- However the bounds are often loose:
 - Thus they are often poor estimators of the generalisation loss itself
 - For model selection, PAC bound optimisation tends to underperform cross validation
- But the value of this approach is much broader:
 - It provides a principled basis for understanding why learning algorithms should work
 - And the process of bound formation then optimisation offers a method for principled novel algorithm creation...as we'll see...

Lecture Overview

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

Model Assessment

- Having chosen a final model, the task of **model assessment** is to estimate the generalisation loss of the model on new data
- As we already saw, the most desirable approach, is to observe model performance on a validation set, and then to form a worst case probabilistic bound on the generalisation loss
- But in the absence of sufficient data to attempt this, what should we do?

Model Assessment

- The PAC Bounds are too loose to be useful for assessment
- The **Cross Validation** loss is a practical and empirically good alternative estimator
- ...While not theoretically well understood, it is widely used in practice

Model Assessment: Metrics

- A related issue is what our metric of efficacy should be
- Learning algorithms are typically designed for canonical loss metrics, e.g.:
 - Mean square error
 - Misclassification loss
- But often we're interested in something different, e.g.:
 - Profitability
 - Quality of Life

Model Assessment: Metrics

- We could design a new algorithm to focus on bespoke metrics
 - But this is hard
- Or we could use our metric of interest in the cross validation phase
 - This can be effective...
 - ...But is a heuristic halfway house which allows us to aim an inadequate algorithm at the right objective

Lecture Overview

- 1 Lecture Overview
- 2 Model Selection
 - Validation Approach
 - Cross Validation Approach
 - PAC Approach
- 3 Model Assessment
- 4 Summary

Summary

- 1 Both Model Selection and Model Assessment involve attempts at characterising the generalisation loss
- 2 The Validation Set approach is a desirable way of tackling these tasks, but requires abundant data
- The PAC approach is a well-motivated alternative but is often practically deficient
- The **Cross Validation** approach is a widely used (though poorly understood) practical alternative