CS4670 / 5670: Computer Vision

Noah Snavely

Graph-Based Image Segmentation

Stereo as a minimization problem

$$E(d) = \underbrace{E_d(d)}_{\text{match cost}} + \lambda \underbrace{E_s(d)}_{\text{smoothness cost}}$$
 want each pixel to find a good match in the other image Adjacent pixels should (usually) move about the same amount

Related problem: binary segmentation

Suppose we want to segment an image into foreground and background

Can you think of a way to solve this problem?

Related problem: binary segmentation

Suppose we want to segment an image into foreground and background

User sketches out a few strokes on foreground and background...

How do we classify the rest of the pixels?

Binary segmentation as energy minimization

- Define a labeling L as an assignment of each pixel with a 0-1 label (background or foreground)
- Problem statement: find the labeling L that minimizes

$$E(L) = E_d(L) + \lambda E_s(L)$$

smoothness cost

("how similar is each labeled pixel to the foreground / background?")

$$E(L) = E_d(L) + \lambda E_s(L)$$

$$E_d(L) = \sum_{(x,y)} C(x, y, L(x,y))$$

$$(-1, -1, -1)$$
 $\int_{-\infty}^{\infty}$

 $C(x,y,L(x,y)) = \begin{cases} \infty & \text{if } L(x,y) \neq \tilde{L}(x,y) \\ C'(x,y,L(x,y)) & \text{otherwise} \end{cases}$

C'(x,y,0): "distance" from pixel to background pixels $oldsymbol{1}$

 $C^\prime(x,y,1)$: "distance" from pixel to foreground pixels

usually computed by creating a color model from user-labeled pixels

$$E(L) = E_d(L) + \lambda E_s(L)$$

C'(x, y, 1)

$$E(L) = E_d(L) + \lambda E_s(L)$$

- Neighboring pixels should generally have the same labels
 - Unless the pixels have very different intensities

Binary segmentation as energy minimization

$$E(L) = E_d(L) + \lambda E_s(L)$$

- For this problem, we can easily find the global minimum!
- Use max flow / min cut algorithm

Graph min cut problem

- Given a weighted graph G with source and sink nodes (s and t), partition the nodes into two sets, S and T such that the sum of edge weights spanning the partition is minimized
 - **–** and $s \in S$ and $t \in T$

Segmentation by min cut

- Graph
 - node for each pixel, link between adjacent pixels
 - specify a few pixels as foreground and background
 - create an infinite cost link from each bg pixel to the t node
 - create an infinite cost link from each fg pixel to the s node
 - create finite cost links from s and t to each other node
 - compute min cut that separates s from t
 - The min-cut max-flow theorem [Ford and Fulkerson 1956]

Segmentation by min cut

- The partitions *S* and *T* formed by the min cut give the optimal foreground and background segmentation
- I.e., the resulting labels minimize

$$E(d) = E_d(d) + \lambda E_s(d)$$

GrabCut

Grabcut [Rother et al., SIGGRAPH 2004]

Is user-input required?

Our visual system is proof that automatic methods are possible

· classical image segmentation methods are automatic

Argument for user-directed methods?

· only user knows desired scale/object of interest

Automatic graph cut [Shi & Malik]

Fully-connected graph

- · node for every pixel
- link between every pair of pixels, p,q
- cost c_{pq} for each link
 - c_{pq} measures similarity
 - » similarity is *inversely proportional* to difference in color and position

Segmentation by Graph Cuts

Break Graph into Segments

- · Delete links that cross between segments
- Easiest to break links that have low cost (similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph

Link Cut

- · set of links whose removal makes a graph disconnected
- · cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

Find minimum cut

· gives you a segmentation

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- · a cut penalizes large segments
- · fix by normalizing for size of segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch A

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- · elasticity proportional to cost
- · vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- · elasticity proportional to cost
- · vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

Extension to Soft Segmentation

- Each pixel is convex combination of segments.
 Levin et al. 2006
 - compute mattes by solving eigenvector problem

Questions?