The Variable Processor Cup Game

Alek Westover

Belmont High School

June 7, 2020

WHY IS THE CUP GAME IMPORTANT?

work scheduling:

Previous Work — p = 1

Single-processor cup game Adaptive filler:

- ▶ $\Omega(\log n)$ lower bound
- $ightharpoonup O(\log n)$ upper bound

Oblivious filler (can't see emptier's actions): 1

- $ightharpoonup \Omega(\log\log n)$ lower bound
- ► $O(\log \log n)$ upper bound (with good probability in short games)

¹[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]

Previous Work — Restricted Versions

Cup flushing game (emptier can completely empty cups):²

- $ightharpoonup \Omega(\log\log n)$ lower bound
- $ightharpoonup O(\log \log n)$ upper bound

Bamboo Garden Trimming (filler always adds same amount):3

- ▶ 2 lower bound
- ▶ 2 upper bound

²[P. F. Dietz and R. Raman. Persistence, amortization and randomization. In Proceedings of the Second An-nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78–88, 1991.]

³[Bilò, Davide, Luciano Gualà, Stefano Leucci, Guido Proietti, and Giacomo Scornavacca. "Cutting Bamboo Down to Size." arXiv preprint arXiv:2005.00168 (2020).]

Previous Work — p > 1

Multi-processor cup game: ⁴

- $ightharpoonup \Omega(\log n)$ lower bound
- $ightharpoonup O(\log n)$ upper bound

Multi-processor cup game with *oblivious* filler: ⁵

- ▶ $\Omega(\log \log n)$ lower bound
- ► $O(\log \log n + \log p)$ upper bound (with good probability in short games)

⁴[William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.]

⁵[William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.]

THIS TALK

Our Question: What if *p* can change?

Variable-Processor Cup Game:

Each round the filler can change *p*

Modification seems small...

OUR RESULT

The variable-processor cup game is *fundamentally different* than the *p*-processor cup game!

ADAPTIVE FILLER LOWER BOUND

Theorem

There is an adaptive filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for any constant $\epsilon > 0$ *in running-time*

$$2^{O(\log^2 n)}.$$

ADAPTIVE FILLER LOWER BOUND

Theorem

There is an adaptive filling strategy that achieves backlog

 $\Omega(n)$

in running-time

O(n!).

UPPER BOUND

Theorem

A greedy emptier maintains the invariant:

Average fill of k fullest cups $\leq 2n - k$.

Corollary

A greedy emptier never lets backlog exceed

O(n).

This matches our lower bound!

OBLIVIOUS FILLER LOWER BOUND

Theorem

There is an oblivious filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for constant $\epsilon>0$ with probability at least $1-2^{-\operatorname{polylog}(n)}$ in running time $2^{O(\log^2 n)}$ against a greedy-like emptier.

 Δ -greedy-like emptier:

Lower Bound

Adaptive Filler

Proof Sketch

AMPLIFICATION LEMMA

Lemma

Given a strategy for achieving backlog f(n) on n cups, we can construct a new strategy that achieves backlog

$$f'(n) \ge (1 - \delta) \sum_{\ell=0}^{L} f((1 - \delta)\delta^{\ell} n)$$

for appropriate parameters $L \in \mathbb{N}, 0 < \delta \ll 1/2$. And, if the running time of f(n) is T(n) the running time of f'(n) satisfies

$$T'(n) \le (L+1)n^2T(n(1-\delta)).$$

PROOF META-STRUCTURE

- ► *A* starts as the δn fullest cups, *B* as the $(1 \delta)n$ other cups.
- ightharpoonup Repeatedly apply f to B and swap generated cup into A.
- ightharpoonup Decrease p, recurse on A.

Instantiate *A* and *B*

Will try to apply f to B while placing 1 fill in each cup in A.

If the emptier doesn't empty from each cup in *A* (we say it *neglects A*) then the average fill of *A* rises!

If emptier doesn't neglect A filler can apply f to B

this gets a cup with high fill in *B*: swap it into *A*

Note: swaps increase average fill of *A*, decrease average fill of *B*.

Apply f to B again

If emptier doesn't neglect A we have a high cup in B again

Swap this cup into *A*.

After repeating this process for each cup in A, the difference of the average fills of A and B is at least f(|B|); A accounts for |B|/n of this difference. Thus average fill of A has increased by at least $(1 - \delta)f((1 - \delta)n)$

Recurse on A for L levels of recursion. Problem size shrinks by a factor of δ each time.

$$f'(n) \ge (1 - \delta) \sum_{n=0}^{L} f((1 - \delta)\delta^{\ell}n)$$

ADAPTIVE FILLER LOWER BOUND

Let $\epsilon > 0$ be any constant. Then there is some $\delta = \Theta(1)$ such that by repeated amplification we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n^{1-\epsilon})$ in running-time $2^{O(\log^2 n)}$.

ADAPTIVE FILLER LOWER BOUND

Extremal strategy:

By repeated amplification using $\delta = \Theta(1/n)$ we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n)$ in running-time O(n!).

OPEN QUESTIONS

- ► Can we extend the oblivious lower bound construction to work with arbitrary emptiers?
- ► Are there shorter more simple constructions?

ACKNOWLEDGEMENTS

- ► My mentor William Kuszmaul
- ► MIT PRIMES
- ► My Parents

Question Slides

WHAT IS THE CUP GAME?

Definition

p-processor cup-game on *n* cups: multi-round game. every round:

- ▶ *filler* adds water
- ► *emptier* removes water

Note:

Emptier must allocate resources discretely Filler can allocate resources continuously

GOALS

- ► Emptier tries to *minimize* backlog
- ► Filler tries to *maximize* backlog

WHY IS THE CUP GAME IMPORTANT?

Models work scheduling:

- ► Cups represent tasks
- ► At each time step:
 - ▶ new work comes in distributed among the tasks (*filler*)
 - ▶ must allocate processors to work on tasks (*emptier*)

ANALYSIS OF THE CUP GAME

Prove lower bounds

 Exhibit a filling strategy that achieves large backlog (against any emptier)

Prove upper bounds

► Exhibit an emptying strategy that prevents backlog from growing large (against any filler)

Quick example: Single-processor cup game:

- $ightharpoonup \Omega(\log n)$ lower bound
- $ightharpoonup O(\log n)$ upper bound

Filling strategy:

Filling strategy:

Distribute water equally amongst cups not yet emptied from.

Achieves backlog:

$$\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} = \Omega(\log n).$$

SINGLE-PROCESSOR UPPER BOUND

A *greedy emptier* – an emptier that always empties from the fullest cup – never lets backlog exceed $O(\log n)$.

Definitions

- $ightharpoonup S_t$: state at start of round t
- ▶ I_t : state after the filler adds water on round t, but before the emptier removes water
- $\mu_k(S)$: average fill of k fullest cups at state S.

SINGLE-PROCESSOR UPPER BOUND PROOF

Proof: Inductively prove a set of invariants:

$$\mu_k(S_t) \leq \frac{1}{k+1} + \ldots + \frac{1}{n}.$$

Let *a* be the cup that the emptier empties from on round *t*

If *a* is one of the *k* fullest cups in S_{t+1} :

$$\mu_k(S_{t+1}) \le \mu_k(S_t).$$

Otherwise:

$$\mu_k(S_{t+1}) \le \mu_{k+1}(I_t) \le \mu_{k+1}(S_t) + \frac{1}{k+1}.$$

PREVIOUS WORK ON CUP GAMES

- ▶ The Single-Processor cup game (p = 1) has been tightly analyed with *oblivious* and *adaptive* fillers (i.e. fillers that can't and can observe the emtpier's actions).
- ► The Multi-Processor cup game (p > 1) is substantially more difficult. With an adaptive filler:
 - ► Kuszmaul established upper bound of $O(\log n)$.
 - We established a matching lower bound of $\Omega(\log n)$.
- ► The multi-processor cup game with an oblivious filler has not yet been tightly analyzed.
- ► Variants where valid moves depend on a graph have been studied.
- ► Variants with resource augmentation have been studied.
- Variants with semi-clairvoyance have been studied.

⁶William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.

OUR VARIANT

Definition

Variable-Processor Cup Game:

Each round filler can change *p*

Modification may seem small, but it drastically alters the game

Adaptive Filler Lower Bound

NEGATIVE FILL

In lower bound proofs we allow negative fill

- ► Measure fill relative to average fill
- ► Important for recursion
- ► Strictly easier for the filler if cups can zero out

AMPLIFICATION LEMMA

Lemma

Given a strategy for achieving backlog f(n) on n cups, we can construct a new strategy that achieves backlog

$$f'(n) \ge (1 - \delta) \sum_{\ell=0}^{L} f((1 - \delta)\delta^{\ell} n)$$

for appropriate parameters $L \in \mathbb{N}, 0 < \delta \ll 1/2$.

AMPLIFICATION LEMMA PROOF SKETCH

- ► *A* starts as the δn fullest cups, *B* as the $(1 \delta)n$ other cups.
- ightharpoonup Repeatedly apply f to B and swap generated cup into A.
- ightharpoonup Decrease p, recurse on A.

ADAPTIVE FILLER LOWER BOUND

Let $\epsilon > 0$ be any constant. Then there is some $\delta = \Theta(1)$ such that by repeated amplification we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n^{1-\epsilon})$ in running-time $2^{O(\log^2 n)}$.

ADAPTIVE FILLER LOWER BOUND

Extremal strategy:

By repeated amplification using $\delta = \Theta(1/n)$ we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n)$ in running-time O(n!).

Upper Bound

UPPER BOUND

We prove a novel set of invariants:

Theorem

A greedy emptier maintains the invariant:

$$\mu_k(S_t) \leq 2n - k$$
.

Corollary

A greedy emptier never lets backlog exceed

O(n).

Note: this matches our lower bound!

UPPER BOUND PROOF SKETCH

Induct on *t*. Fix *k*. Define sets of cups:

- ▶ A: (emptied from) \cap (k fullest in S_t) \cap (k fullest in S_{t+1})
- ▶ B: (emptied from) \cap (k fullest in S_t) \cap (**not** k fullest in S_{t+1})
- ightharpoonup C: *AC* is the *k* fullest cups in S_{t+1}

 $\mu_k(S_{t+1})$ is largest if fill from *BC* is pushed into *A*

Oblivious Filler

Lower Bound

OBLIVIOUS FILLER LOWER BOUND

Definition

Oblivious Filler: Can't observe the emptier's actions

- ► Classically emptier does better in the randomized setting.
- ► But not in the variable-processor cup game!
- ► We get the same lower bound as with an adaptive filler in quasi-polynomial length games!

OBLIVIOUS FILLER LOWER BOUND

Definition

 Δ -greedy-like emptier:

Let x, y be cups. If $fill(x) > fill(y) + \Delta$ then a Δ -greedy-like emptier empties from y only if it also empties from x.

Oblivious filler can achieve backlog $\Omega(n^{1-\epsilon})$ for $\epsilon>0$ constant in running time $2^{\operatorname{polylog}(n)}$ against a Δ -greedy-like emptier $(\Delta \leq O(1))$ with probability at least $1-2^{-\operatorname{polylog}(n)}$.

FLATTENING

Definition

A cup configuration is R-flat if all cups have fills in [-R, R].

Proposition

Oblivious filler can get a $2(2 + \Delta)$ -flat configuration from an R-flat configuration against a Δ -greedy-like emptier in running time O(R).

OBLIVIOUS FILLER: CONSTANT FILL

Getting constant fill in a *known* cup is hard now. Strategy:

- ▶ Play many single-processor cup games on $\Theta(1)$ cups blindly. Each succeeds with constant probability.
- ▶ By a Chernoff Bound with probability $1 2^{-\Omega(n)}$ at least a constant fraction nc of these succeed.
- ightharpoonup Set p = nc.
- ► Fill *nc* known cups; because emptier is greedy-like it must focus on the *nc* cups with high fill before these cups.
- ► Recurse on the *nc* known cups with high fill.

OBLIVIOUS AMPLIFICATION LEMMA

Almost identical to the Adaptive Amplification Lemma!

Lemma

Given a strategy f for achieving backlog f(n) on n cups, we can construct a new strategy that achieves backlog

$$f'(n) \ge \phi \cdot (1 - \delta) \sum_{\ell=0}^{L} f((1 - \delta)\delta^{\ell}n)$$

for appropriate parameters $L \in \mathbb{N}, 0 < \delta \ll 1/2$ and constant $\phi \in (0,1)$ of our choice against a greedy-like emptier.

(Note: Lemma is actually more complicated than this.)

OBLIVIOUS FILLER LOWER BOUND

Theorem

There is an oblivious filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for constant $\epsilon > 0$ with probability at least $1 - 2^{-\operatorname{polylog}(n)}$ in running time $2^{O(\log^2 n)}$ against a greedy-like emptier.

Achieve this probability by a union bound on $2^{\text{polylog}(n)}$ events.

Proof notes:

- ► Similar to adaptive filler proof
- need larger base case for union bound to work; this doesn't harm backlog though