Lecture 5

Proportion data: chi-square tests

比例数据:卡方检验

Chi-square tests = proportion tests

Sometimes data are presented as proportions:

有时数据以比例表示

- One-sample proportion 单样本比例
 - Is there a difference in the proportion of women and men among UK millionaires?

这里只有一个"独立"比例,即加起来是100%

(<u>NOTE</u>: only one 'independent' proportion here: if women are 52%, men must be 48% - proportions must add up to 100%)

• Proportion of children vs. adults in a village

- Difference in proportion of married people in London vs. Glasgow?
- (NOTE: here, proportions do not need to add up to 100%

这里加起来不需要是100%

• To analyse proportions, we use *proportion tests* (aka *chi-square tests*)

为了分析比例,我们使用比例检验(卡方检验)

Applications

比例分析在各个领域都有广泛的应用

 Proportion analysis is widely applied in all fields! Voting intention if there was a general election tomorrow

- Market research
- Opinion polls
- Behavioural trends over time
- Public health
- etc.

Survey of 1,712 adults in Great Britain, between 28 and 29 September. Results weighted by likelihood to vote, excluding those who would not vote, don't know, or refused to answer.

People in England overweight and obese by age

What do people feel are the most important issues facing Britain today?

Brexit has become a major issue since EU referendum

Proportion test, one sample: sex ratios

- As a rule, sex ratio at birth is ~1 in humans 通常,人类的出生性别比例约为1
 - very similar number of newborn girls and boys
 - slightly male-based ratio at ~1.05, to compensate for higher male infant mortality
- But Berenczi and Dunbar (1997) identified an exception: a female-biased ratio at birth among Hungarian gypsies
- Their explanation:
 - rural and urban gypsies are poorer than neighbour Hungarians
 - daughters often marry richer Hungarians; sons very unlikely to marry out
- Their prediction: natural selection should produce an excess of females at birth
 - (note: sex ratio at birth is unaffected by infanticide etc.)

- But let's re-examine the evidence presented in the study
- In Hungarian gypsies, is sex ratio at birth significantly different from p=0.5?

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters			
	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian
A. all children				
sample size	254	216	239	224
males/100 females	s 89.3	111.8	89.7	113.3
B. first-born childre	n only			
sample size	87	85	77	102
males/100 females	s 81.3	157.6	94.3	131.8

note: in this lecture, *p* is proportion; *P* is significance value (careful: *R* output does not make the distinction!)

One-sample proportion test

- =tests the likelihood of a proportion p deviating from a test value 测试比例p偏离测试值的可能性
 - if there are two proportions, predicted proportion of each is p = 0.5
 - for 3 proportions, predicted p for each is p = 0.33

如果有两个比例,每个比例的预测比例为p=0.5 对于三个比例,每个是p=0.33

比例检验基于二元分布的近似值

100 Draws

- Proportion test is based on an approximation to the binary distribution estimating probability of x positives out of n attempts
 - e.g. coin tossing: binary distribution estimates probability of x heads, each one with p(head)=0.5, in n tosses
 - expected mean: np (=10*0.5)=5; you expect 5 heads in 10 tosses); variance: np(1-p)

检验统计量u

- u distribution approaches normal with large n 当n较大时, u分布趋近于正态分布
- (alternative u², which has a chi-square distribution also approaching normality with large n)

To test the likelihood of say x=6 heads in n=15 tosses:

> prop.test(x=positives, n=total, p=proportion tested) x是pos, n是总数, p是测试比例 (default p: p=0.5)

10000 Draws

Gypsy sex ratios

Are there fewer gypsy boys than girls at birth?

1) Rural gypsies, all babies:

- sex ratio (=boys/girls)=89.3%=0.893, n=254 =>120 boys, 134 girls, (120/134=0.893)
 - Proportion of boys (=boys/total)= 120/254 = 0.47
 - Question: is p=0.47 different from 0.5?

```
> prop.test(120, 254, 0.5)
```

0.4724409

```
1-sample proportions test with continuity correction data: 120 out of 254, null probability 0.5

X-squared = 0.6654, df = 1, p-value = 0.4147
alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:
0.4099875 0.5357417
sample estimates:
```

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters			
	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian
A. all children sample size males/100 females		216 111.8	239 89.7	224 113.3
B. first-born children sample size males/100 females	87	85 157.6	77 94.3	102 131.8

零假设:比例p=0.5

Null hypothesis: proportion p=0.5

- P=0.41 与p=0.55和平衡的1:1性别比例无显著差异。
- =>no significant deviation from p=0.55 and from balanced 1:1 sex ratio
- accept null hypothesis 接收零假设
- test value p=0.5 is included in 95% CI

测试值p=0.5包含在95%的CI里

no evidence of fewer boys than girls in rural Roma

Note: calculating boys (b) and girls (g)

- Table shows:
 - Sample size n = b + g
 - (males/females) x 100 (i.e. shown as percentage)
- Rural gypsy: n=254 and male/female = 89.3; then
 - n = b + g = 254
 - b/g = 0.893

therefore

• g = n/(1 + sex ratio)

Urban gypsies

Exercise:

Run the same test with urban gypsies, all children (n=239, ratio=0.897)

Does the sex ratio at birth differ from p=0.5?

First-borns only

- But decision to have a second baby or abort may depend on sex of previous offspring
 - if 1st child is a boy, Roma parents are more likely to try again (until child is female);
 - if it is a girl, they are more likely to stop
- Solution: analysing only 1st-born rural babies:
 - sex ratio=0.813, n=87 => boys=39, girls=48
 - p(boys)=39/87=0.448

0.4482759

```
> prop.test(39, 87, 0.5)

1-sample proportions test with continuity correction data: 39 out of 87, null probability 0.5

X-squared = 0.7356, df = 1, p-value = 0.3911

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.3427920 0.5583697

sample estimates:

p
```

Table 2. Sex ratios at birth for each population

number of sons per 100 daughters			
rural populations		urban populations	
Gypsy	Hungarian	Gypsy	Hungarian
254	216	239	224
es 89.3	111.8	89.7	113.3
n only			
	85	77	102
s 81.3	157.6	94.3	131.8
	rural p Gypsy 254 es 89.3 n only 87	rural populations Gypsy Hungarian 254 216 es 89.3 111.8 n only	rural populations urban Gypsy Hungarian Gypsy 254 216 239 es 89.3 111.8 89.7 n only 87 85 77

- P=0.39
- 95% CI includes test value *p*=0.5
- No evidence of fewer boys in rural Gypsy 1^{st-}borns
- One-sample proportion tests do not show any evidence that rural gypsies have a female-biased sex ratio

Exercise:

Run the same test with urban gypsies, first-born children only (n=77, ratio=0.943)

Does the sex ratio at birth differ from p=0.5?

卡方检验用于检验观察到的类别变量的分布是否与期望的不同

1. 单因素卡方检验(卡房拟合度检验):一个分类变量的预期频率与观察到的频率相比是否存在显著差异 Break

2. 二因素卡方检验(独立性卡方检验): 检验两个类别变量之间是否存在关系

Two independent proportions

- But proportion of boys in rural gypsies vs. Hungarians could still differ *from each other*
 - i.e. we can compare the two independent proportions of boys in rural Gypsies vs. Hungarians
 - (maybe proportion of Roma boys is 48%, but of Hungarian boys it is 55%)
- Now we need *two-sample proportion tests*
 - based on *u*-statistic (=difference between proportions divided by pooled variance) and chi-square distribution

基于u统计量(=比例之间的差异除以合并方差)和卡方分布

Syntax:

- > prop.test(c(x1, x2...), c(n1, n2...)) n是总数
 - xi= positive cases (=boys) in group 1 and group 2
 - ni=total cases (=boys+girls) in group 1 and group 2

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters				
	rural p	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian	
A. all children sample size males/100 fema	254 les 89.3	216 111.8	239 89.7	224 113.3	
B. first-born child sample size males/100 females	87	85 157.6	77 94.3	102 131.8	

Rural Gypsies vs. Hungarians, all babies

```
> prop.test(c(120,114), c(254,216))
```

2-sample test for equality of proportions with continuity correction

```
data: c(120, 114) out of c(254, 216)

X-squared = 1.2171, df = 1, p-value = 0.2699

alternative hypothesis: two.sided

95 percent confidence interval:

-0.15018442 0.03951076
```

sample estimates:

prop 1 prop 2 0.4724409 0.5277778

All rural babies:

- Rural gypsies: 254 total, 120 boys; p(boys)=0.47
- Rural Hungarians: ratio
 1.118, 216 total -> 114 boys,
 102 girls; p(boys)=0.527

Result:

- P>0.26
- 95% CI includes zero (no difference)

95%CI包括零(无差异)

Conclusion: no significant difference in sex ratios between rural populations

Exercise:

Run the same test two independent proportions test on urban children

Does the sex ratio at birth differ between Gypsies and Hungarians?

First births only

- But now take only first births:
 - Rural gypsies: 39 boys, 48 girls, n=87
 - Rural Hungarians: 52 boys, 33 girls, n=85

```
> prop.test(c(39,52), c(87,85))
```

2-sample test for equality of proportions with continuity correction

```
data: c(39, 52) out of c(87, 85)

X-squared = 3.9795, df = 1, p-value = 0.04606

alternative hypothesis: two.sided

95 percent confidence interval:
-0.322272741 -0.004704946

sample estimates:
```

prop 2

0.4482759 0.6117647

prop 1

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters			
	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian
A. all children				
sample size	254	216	239	224
males/100 females	s 89.3	111.8	89.7	113.3
B. first-born childre	p only			
sample size	87	85	77	102
males/100 females	81.3	157.6	94.3	131.8
-				

差异显著

- Finally a significant difference!
 - P<0.05 (just about)
 - 95% CI excludes zero
 - difference between p(boys)=0.448 (Gypsies) and p(boys)=0.61 (Hungarians) is significant
- Conclusion: rural gypsies show lower proportion of first-born boys than rural Hungarians

Exercise:

Run the same test two independent proportions test on urban children, first-born only

Does the sex ratio at birth differ between Gypsies and Hungarians?

```
> prop. test(c(37,58),c(77,102))
2-sample test for equality of proportions with continuity correction
data: c(37, 58) out of c(77, 102)
X-squared = 1.0367, df = 1, p-value = 0.3086
alternative hypothesis: two.sided
95 percent confidence interval:
   -0.24678311    0.07056717
sample estimates:
   prop 1    prop 2
0.4805195    0.5686275
```

Conclusions

- The only test that shows a difference between sex ratios in Roma and Hungarians is a two-independent sample comparing rural, first-born children
- But in that test, the 'abnormal' population seems to be rural Hungarians, with a very high number of boys among first-borns!
 - they have 57.6% more boys than girls!!!
 - (but is this ratio significant?)
- Very biased conclusion from the authors of the study!
 - They ran test after test until they obtained the significant result they "wanted" to find
 - (we'll see how to fix this later)

Table 2. Sex ratios at birth for each population

	number of sons per 100 daughters			
	rural populations		urban populations	
	Gypsy	Hungarian	Gypsy	Hungarian
A. all children				
sample size	254	216	239	224
males/100 females	89.3	111.8	89.7	113.3
B. first-born children	n onl			
sample size	8	85	77	102
males/100 females	8 8 .3	157.6	94.3	131.8

Other cases: more than two independent proportions

- If you want to compare more than two independent proportions
 - e.g. proportion of boys among rural gypsies, rural Hungarian, urban gypsies, urban Hungarians all at the same time)

延长

- Just extend *prop.test* to four populations
- 这里的n指总数
- > prop.test(c(x1, x2, x3, x4), c(n1, n2, n3, n4))

以矩阵形式输入

两个计算出来的p什么的都 是一样的

- Function *chisq.test* is similar to *prop.test*, but you enter it in matrix form Syntax:
 - > chisq.test(matrix(c(x1, x2, x3, x4, n1, n2, n3, n4), nrow=m))

Enter all positives (boy numbers) first, then all negatives (girl numbers)

Important! Here n = negatives (in our case, girls), not total!!!

Matrix is read by column (default: byrow=F) 这里的n在例子中指女孩数量,而不是总数

(m is the number of groups or rows in the matrix; in the example above, m=4)

m是矩阵中的组数或者行数,在例子中是4

Exercise:

- 1) Run prop.test on the four proportions: rural gypsies, rural Hungarian, urban gypsies, urban Hungarians
- 2) Run a chi-square test on the same four proportions

其他情况:一个样本n个比例

Other cases: one sample, n proportions

- You may want to test whether a die (instead of a coin) is loaded
 - now there are six proportions (1/6 for each side) that add up to 100%
 - tested proportion is now p=1/6=0.17
- This test can be done with function *chisq.test*
- > chisq.test(matrix(c(x1, x2, x3, x4, x5, x6), nrow=1))

x1是掷骰子得到1的次数等

- x1 = number of times you got a 1 rolling the die, etc.
- nrow= 1 (meaning all 6 values are from the same die; since only
 one goup here, parameter not necessary) nrow=1表明所有6个值来自同一个骰子,因为只有一个组
 所以参数不是必须的

Binomial test

二项分布是放回抽取(独立重复)

 The binomial test is equivalent to a prop.test, except that it is based on the binomial distribution itself 他是基于二项分布本身

要注意是单侧还是双侧检验

有些人喜欢这个因为它估计一个精确的p值

- Some prefer binom.test because it estimates an exact P value
 - contrary to prop.test that calculates P value from a normal approximation to the binomial

> prop.test(120, 254, 0.5)

1-sample proportions test with continuity correction data: 120 out of 254, null probability 0.5
X-squared = 0.6654, df = 1, p-value = 0.4147
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4099875 0.5357417
sample estimates: p
0.4724409

观测值,样本总量,(检验比率)

> binom.test(120,254)

Exact binomial test

data: 120 and 254

number of successes = 120, number of trials = 254, p-

value = 0.4147

alternative hypothesis: true probability of success is not

equal to 0.5

95 percent confidence interval:

0.4097151 0.5358173

sample estimates: probability of success

0.4724409

prop是从正态分布近似值计算p的值

Fischer exact test

Fisher exact test also calculates exact P value

输入positive和negative,而不是总数

- Now you enter the positive x cases (e.g. boys) and the negative cases (e.g girls), instead of total n
- Test is based on odds-ratios not proportions 测试是基于赔率而不是比例
 - 95% CI looks different
 - if odds ratio (of boys to girls) is different from 1, proportions differ

如果优势比不等于1,则比例不同

Syntax:

>fisher.test(matrix(c(pos1, pos2,..., neg1, neg2,...), m))

m= number of compared groups

fi sher精确检验也计算精确的p值

Using data from urban gypsies vs. Hungarians

> fisher.test(matrix(c(39, 52, 48, 33), 2))

Fisher's Exact Test for Count Data

data: matrix(c(39, 52, 48, 33), 2)

p-value = 0.03396

alternative hypothesis: true odds ratio is not

equal to 1

95 percent confidence interval:

0.2684001 0.9885450

sample estimates:

odds ratio

0.5176459

m是比较组的数量

Generalisation

卡房或者fi sher精确检验可以同时推广到任意数量的样本和比例

- Chi-square or Fisher exact tests can be generalised for any number of samples and proportions at the same time
- For example, does choice of degree (Archaeology, Biology, Engineering) at UCL affect the final grade (1^{st,} 2.1, 2.2, 3rd class degree)?
 - results per degree (number of 1^{st,} 2.1, 2.2, 3rd for each degree, which add up to 1)
 - number of degrees *nrow* (in this case, nrow=3)

• Syntax:

```
>chisq.test(matrix(c(n_{1st,arc}, n_{1st,bio}, n_{1st,eng}, n_{2.1,arc}, n_{2.1,bio}, n_{2.1,eng}, n_{2.2,bio}, n_{2.2,arc}, n_{3rd,arc}, n_{3rd,bio}, n_{3rd,eng}), n_{3rd,eng}), n_{3rd,eng}), n_{3rd,eng}
```

fi sher检验的优点是可以计算出精确的p值

advantage of Fisher test is to calculate exact P value