Access Answers of Maths NCERT Class 9 Chapter 8 – Quadrilaterals

Class 9 Maths Chapter 8 Exercise 8.1 Page: 146

1. The angles of quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution:

Let the common ratio between the angles be = x.

We know that the sum of the interior angles of the quadrilateral = 360° Now,

$$3x + 5x + 9x + 13x = 360^{\circ}$$

$$\Rightarrow$$
 30x = 360°

$$\Rightarrow$$
 x = 12°

Angles of the quadrilateral are:

$$3x = 3x12^{\circ} = 36^{\circ}$$

$$5x = 5 \times 12^{\circ} = 60^{\circ}$$

$$9x = 9x12^{\circ} = 108^{\circ}$$

$$13x = 13 \times 12^{\circ} = 156^{\circ}$$

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution:

Given that,

$$AC = BD$$

To show that, ABCD is a rectangle if the diagonals of a parallelogram are equal

To show ABCD is a rectangle we have to prove that one of its interior angle is right angled.

Proof,

In \triangle ABC and \triangle BAD.

BC = BA (Common)

AC = AD (Opposite sides of a parallelogram are equal)

AC = BD (Given)

Therefore, $\triangle ABC \cong \triangle BAD$ [SSS congruency]

 $\angle A = \angle B$ [Corresponding parts of Congruent Triangles] also.

 $\angle A + \angle B = 180^{\circ}$ (Sum of the angles on the same side of the transversal)

$$\Rightarrow 2\angle A = 180^{\circ}$$

$$\Rightarrow \angle A = 90^{\circ} = \angle B$$

ABCD is a rectangle.

Hence Proved.

3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution:

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.

Given that,

OA = OC

OB = OD

and $\angle AOB = \angle BOC = \angle OCD = \angle ODA = 90^{\circ}$

To show that,

if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

i.e., we have to prove that ABCD is parallelogram and AB = BC = CD = AD

Proof,

In $\triangle AOB$ and $\triangle COB$,

OA = OC (Given)

 $\angle AOB = \angle COB$ (Opposite sides of a parallelogram are equal)

OB = OB (Common)

Therefore, $\triangle AOB \cong \triangle COB$ [SAS congruency]

Thus, AB = BC [CPCT]

Similarly we can prove,

BC = CD

CD = AD

AD = AB

AB = BC = CD = AD

Opposites sides of a quadrilateral are equal hence ABCD is a parallelogram.

, ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle.

Hence Proved.

4. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:

Let ABCD be a square and its diagonals AC and BD intersect each other at O.

To show that,

AC = BD

AO = OC

and ∠AOB = 90°

Proof,

In \triangle ABC and \triangle BAD,

BC = BA (Common)

 $\angle ABC = \angle BAD = 90^{\circ}$

AC = AD (Given)

, $\triangle ABC \cong \triangle BAD$ [SAS congruency]

Thus,

AC = BD [CPCT]

, diagonals are equal.

Now,

In $\triangle AOB$ and $\triangle COD$,

 $\angle BAO = \angle DCO$ (Alternate interior angles)

 $\angle AOB = \angle COD$ (Vertically opposite)

AB = CD (Given)

,, $\triangle AOB \cong \triangle COD$ [AAS congruency]

Thus,

AO = CO [CPCT].

, Diagonal bisect each other.

Now,

In $\triangle AOB$ and $\triangle COB$,

OB = OB (Given)

AO = CO (diagonals are bisected)

AB = CB (Sides of the square)

,, $\triangle AOB \cong \triangle COB$ [SSS congruency]

also, $\angle AOB = \angle COB$

 $\angle AOB + \angle COB = 180^{\circ}$ (Linear pair)

Thus, $\angle AOB = \angle COB = 90^{\circ}$

- , Diagonals bisect each other at right angles
- 5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

Given that,

Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at right angle at O.

To prove that,

The Quadrilateral ABCD is a square.

Proof,

In $\triangle AOB$ and $\triangle COD$,

AO = CO (Diagonals bisect each other)

 $\angle AOB = \angle COD$ (Vertically opposite)

OB = OD (Diagonals bisect each other)

, $\triangle AOB \cong \triangle COD$ [SAS congruency]

Thus,

AB = CD [CPCT] - (i)

also,

 $\angle OAB = \angle OCD$ (Alternate interior angles)

 \Rightarrow AB \parallel CD

Now,

In $\triangle AOD$ and $\triangle COD$,

AO = CO (Diagonals bisect each other)

 $\angle AOD = \angle COD$ (Vertically opposite)

OD = OD (Common)

,, $\triangle AOD \cong \triangle COD$ [SAS congruency]

Thus,

AD = CD [CPCT] - (ii)

also,

AD = BC and AD = CD

$$\Rightarrow$$
 AD = BC = CD = AB — (ii)

also, $\angle ADC = \angle BCD$ [CPCT]

and $\angle ADC + \angle BCD = 180^{\circ}$ (co-interior angles)

 $\Rightarrow 2\angle ADC = 180^{\circ}$

One of the interior angles is right angle.

Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square.

Hence Proved.

6. Diagonal AC of a parallelogram ABCD bisects $\angle A$ (see Fig. 8.19). Show that

(i)it bisects ∠C also,

(ii)ABCD is a rhombus.

Fig. 8.19

Solution:

(i) In \triangle ADC and \triangle CBA,

AD = CB (Opposite sides of a parallelogram)

DC = BA (Opposite sides of a parallelogram)

AC = CA (Common Side)

, $\triangle ADC \cong \triangle CBA$ [SSS congruency]

Thus,

 $\angle ACD = \angle CAB$ by CPCT

and $\angle CAB = \angle CAD$ (Given)

 $\Rightarrow \angle ACD = \angle BCA$

Thus,

AC bisects ∠C also.

(ii) $\angle ACD = \angle CAD$ (Proved above)

 \Rightarrow AD = CD (Opposite sides of equal angles of a triangle are equal)

Also, AB = BC = CD = DA (Opposite sides of a parallelogram)

Thus,

ABCD is a rhombus.

7. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

Solution:

Given that,

ABCD is a rhombus.

AC and BD are its diagonals.

Proof,

AD = CD (Sides of a rhombus)

 $\angle DAC = \angle DCA$ (Angles opposite of equal sides of a triangle are equal.) also, AB || CD

 $\Rightarrow \angle DAC = \angle BCA$ (Alternate interior angles)

⇒ ∠DCA = ∠BCA

, AC bisects ∠C.

Similarly,

we can prove that diagonal AC bisects ∠A.

Following the same method,

we can prove that the diagonal BD bisects $\angle B$ and $\angle D$.

8. ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that:

(i)ABCD is a square

(ii) Diagonal BD bisects ∠B as well as ∠D.

Solution:

(i) $\angle DAC = \angle DCA$ (AC bisects $\angle A$ as well as $\angle C$)

 \Rightarrow AD = CD (Sides opposite to equal angles of a triangle are equal) also, CD = AB (Opposite sides of a rectangle)

$$, AB = BC = CD = AD$$

Thus, ABCD is a square.

(ii) In
$$\triangle BCD,BC = CD$$

$$\Rightarrow$$
 \angle CDB = \angle CBD (Angles opposite to equal sides are equal)

also, $\angle CDB = \angle ABD$ (Alternate interior angles)

$$\Rightarrow \angle CBD = \angle ABD$$

Thus, BD bisects ∠B

Now,

$$\angle CBD = \angle ADB$$

$$\Rightarrow \angle CDB = \angle ADB$$

Thus, BD bisects ∠D

- 9. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.20). Show that:
- $(i)\Delta APD \cong \Delta CQB$
- (ii)AP = CQ
- $(iii)\Delta AQB \cong \Delta CPD$
- (iv)AQ = CP
- (v)APCQ is a parallelogram

Solution:

(i) In $\triangle APD$ and $\triangle CQB$,

DP = BQ (Given)

 $\angle ADP = \angle CBQ$ (Alternate interior angles)

AD = BC (Opposite sides of a parallelogram)

Thus, $\triangle APD \cong \triangle CQB$ [SAS congruency]

- (ii) AP = CQ by CPCT as \triangle APD \cong \triangle CQB.
- (iii) In ΔAQB and ΔCPD,

 $BQ = DP (Given) \angle ABQ = \angle CDP (Alternate interior angles)$

AB = BCCD (Opposite sides of a parallelogram)

Thus, $\triangle AQB \cong \triangle CPD$ [SAS congruency]

- (iv) As $\triangle AQB \cong \triangle CPDAQ = CP$ [CPCT]
- (v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles. , APCQ is a parallelogram.
- 10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) \triangle APB \cong \triangle CQD
- (ii) AP = CQ

Fig. 8.21

Solution:

(i)In \triangle APB and \triangle CQD,

 $\angle ABP = \angle CDQ$ (Alternate interior angles)

 $\angle APB = \angle CQD$ (= 90° as AP and CQ are perpendiculars)

AB = CD (ABCD is a parallelogram)

, $\triangle APB \cong \triangle CQD$ [AAS congruency]

(ii) As $\triangle APB \cong \triangle CQD$.

AP = CQ [CPCT]

11. In \triangle ABC and \triangle DEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22).

Show that

- (i) quadrilateral ABED is a parallelogram
- (ii) quadrilateral BEFC is a parallelogram
- (iii) AD || CF and AD = CF
- (iv) quadrilateral ACFD is a parallelogram
- (v) AC = DF
- (vi) $\triangle ABC \cong \triangle DEF$.

Fig. 8.22

Solution:

(i)AB = DE and AB || DE (Given)

Two opposite sides of a quadrilateral are equal and parallel to each other.

Thus, quadrilateral ABED is a parallelogram

(ii)Again BC = EF and BC || EF.

Thus, quadrilateral BEFC is a parallelogram.

(iii)Since ABED and BEFC are parallelograms.

 \Rightarrow AD = BE and BE = CF (Opposite sides of a parallelogram are equal) , AD = CF.

Also, AD || BE and BE || CF (Opposite sides of a parallelogram are parallel)

, AD || CF

(iv)AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.

(v)Since ACFD is a parallelogram

AC || DF and AC = DF

(vi)In \triangle ABC and \triangle DEF,

AB = DE (Given)

BC = EF (Given)

AC = DF (Opposite sides of a parallelogram)

, $\triangle ABC \cong \triangle DEF$ [SSS congruency]

12. ABCD is a trapezium in which AB \parallel CD and AD = BC (see Fig. 8.23). Show that

(i)∠A = ∠B

(ii)∠C = ∠D

(iii) \triangle ABC \cong \triangle BAD

(iv)diagonal AC = diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Fig. 8.23

Solution:

To Construct: Draw a line through C parallel to DA intersecting AB produced at E.

(i)CE = AD (Opposite sides of a parallelogram)

AD = BC (Given)

, BC = CE

⇒ ∠CBE = ∠CEB

also,

 \angle A + \angle CBE = 180° (Angles on the same side of transversal and \angle CBE = \angle CEB)

 \angle B + \angle CBE = 180° (As Linear pair)

 $\Rightarrow \angle A = \angle B$

(ii) $\angle A + \angle D = \angle B + \angle C = 180^{\circ}$ (Angles on the same side of transversal)

 $\Rightarrow \angle \mathsf{A} + \angle \mathsf{D} = \angle \mathsf{A} + \angle \mathsf{C} \; (\angle \mathsf{A} = \angle \mathsf{B})$

 $\Rightarrow \angle D = \angle C$

(iii)In ΔABC and ΔBAD,

AB = AB (Common)

∠DBA = ∠CBA

AD = BC (Given)

, $\triangle ABC \cong \triangle BAD$ [SAS congruency]

(iv)Diagonal AC = diagonal BD by CPCT as \triangle ABC \cong \triangle BA.

Exercise 8.2 Page 151

- 1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that:
- (i) SR || AC and SR = 1/2 AC

(ii) PQ = SR

(iii) PQRS is a parallelogram.

Fig. 8.29

Solution:

(i) In $\triangle DAC$,

R is the mid point of DC and S is the mid point of DA.

Thus by mid point theorem, SR \parallel AC and SR = 1/2 AC

(ii)In ΔBAC,

P is the mid point of AB and Q is the mid point of BC.

Thus by mid point theorem, $PQ \parallel AC$ and PQ = 1/2 AC

also,
$$SR = 1/2 AC$$

$$, PQ = SR$$

 \Rightarrow SR || PQ – from (i) and (ii)

also, PQ = SR

, PQRS is a parallelogram.

2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Solution:

Given in the question,

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively.

To Prove,

PQRS is a rectangle.

Construction,

Join AC and BD.

Proof,

In \triangle DRS and \triangle BPQ,

DS = BQ (Halves of the opposite sides of the rhombus)

 \angle SDR = \angle QBP (Opposite angles of the rhombus)

DR = BP (Halves of the opposite sides of the rhombus)

, $\Delta DRS \cong \Delta BPQ$ [SAS congruency]

In \triangle QCR and \triangle SAP,

RC = PA (Halves of the opposite sides of the rhombus)

 $\angle RCQ = \angle PAS$ (Opposite angles of the rhombus)

CQ = AS (Halves of the opposite sides of the rhombus)

, $\triangle QCR \cong \triangle SAP$ [SAS congruency]

RQ = SP [CPCT]-----(ii)

Now,

In ΔCDB,

R and Q are the mid points of CD and BC respectively.

⇒ QR || BD

also,

P and S are the mid points of AD and AB respectively.

⇒ PS || BD

 \Rightarrow QR || PS

, PQRS is a parallelogram.

also, ∠PQR = 90°

Now,

In PQRS.

RS = PQ and RQ = SP from (i) and (ii)

 $\angle Q = 90^{\circ}$

, PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Solution:

Given in the question,

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively.

Construction,

Join AC and BD.

To Prove,

PQRS is a rhombus.

Proof,

In AABC

P and Q are the mid-points of AB and BC respectively

, PQ || AC and PQ = $\frac{1}{2}$ 21AC (Midpoint theorem) — (i) In \triangle ADC,

SR || AC and SR = $\frac{1}{2}$ 21AC (Midpoint theorem) — (ii)

So, PQ | SR and PQ = SR

As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.

PS || QR and PS = QR (Opposite sides of parallelogram) — (iii)

Now,

In ΔBCD,

Q and R are mid points of side BC and CD respectively.

, QR || BD and QR = $\frac{1}{2}$ 21BD (Midpoint theorem) — (iv)

AC = BD (Diagonals of a rectangle are equal) — (v)

From equations (i), (ii), (iii), (iv) and (v),

PQ = QR = SR = PS

So, PQRS is a rhombus.

Hence Proved

4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC.

Fig. 8.30

Solution:

Given that,

ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD.

To prove,

F is the mid-point of BC.

Proof,

BD intersected EF at G.

In ΔBAD,

E is the mid point of AD and also EG || AB.

Thus, G is the mid point of BD (Converse of mid point theorem)

Now,

In ΔBDC,

G is the mid point of BD and also GF || AB || DC.

Thus, F is the mid point of BC (Converse of mid point theorem)

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD.

Solution:

Given that,

ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively.

To show,

AF and EC trisect the diagonal BD.

Proof,

ABCD is a parallelogram

, AB || CD

also, AE || FC

Now,

AB = CD (Opposite sides of parallelogram ABCD)

 $\Rightarrow \frac{1}{2} = \frac{1}{2} 21AB = \frac{1}{2} 21CD$

 \Rightarrow AE = FC (E and F are midpoints of side AB and CD)

AECF is a parallelogram (AE and CF are parallel and equal to each other)

AF || EC (Opposite sides of a parallelogram)

Now,

In Δ DQC,

F is mid point of side DC and FP || CQ (as AF || EC).

P is the mid-point of DQ (Converse of mid-point theorem)

$$\Rightarrow$$
 DP = PQ — (i)

Similarly,

In APB,

E is mid point of side AB and EQ || AP (as AF || EC).

Q is the mid-point of PB (Converse of mid-point theorem)

$$\Rightarrow$$
 PQ = QB — (ii)

From equations (i) and (i),

$$DP = PQ = BQ$$

Hence, the line segments AF and EC trisect the diagonal BD.

Hence Proved.

6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Solution:

Let ABCD be a quadrilateral and P, Q, R and S are the mid points of AB, BC, CD and DA respectively.

Now,

In ΔACD,

R and S are the mid points of CD and DA respectively.

, SR || AC.

Similarly we can show that,

PQ || AC

PS || BD

QR || BD

, PQRS is parallelogram.

PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

- 7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
- (i) D is the mid-point of AC
- (ii) MD \perp AC
- (iii) CM = MA = (1/2) AB

Solution:

(i) In ΔACB,

M is the mid point of AB and MD || BC

- , D is the mid point of AC (Converse of mid point theorem)
- (ii) ∠ACB = ∠ADM (Corresponding angles)also, ∠ACB = 90°
- , ∠ADM = 90° and MD \perp AC
- (iii) In \triangle AMD and \triangle CMD,AD = CD (D is the midpoint of side AC)

 $\angle ADM = \angle CDM (Each 90^{\circ})$

DM = DM (common)

, $\triangle AMD \cong \triangle CMD$ [SAS congruency]

AM = CM [CPCT]

also, AM = 1/2 AB (M is mid point of AB)

Hence, $CM = MA = \frac{1}{2}$ AB