第五章 二重积分

1987~2008本章考题考点分布统计表

考点	考频	考题分布与分值			
二重积分的概念、 性质与基本计算	2	2004,12 题 4 分	2008,6 题 4 分		
利用区域的对称 性及函数的奇偶 性计算积分	3	1991 , 二(4) 题 3分	2005,10 题 4 分	2006 , 17 题 10 分	
分块函数积分的 计算	3	2005,21 题 9 分	2007,22 题 11 分	2008,18 题 11 分	P
交换积分次序及 坐标系	2	2006,11 题 4 分	2007,8 题 4 分		

本章导读

本章考查的重点是二重积分的计算,除了掌握基本的计算方法,需注意对称性、拆分区域、拆 分函数、交换积分次序、交换积分坐标系等的应用.

试题特点

从 2004 年起增加的二重积分的内容,是数学二重要的考试知识点,每年试题一般是一个大题、 一个小题,分数约占总分的9%,主要集中在二重积分计算的考查,往往在被积函数和积分区域设 置障碍,因而要掌握一定的方法和技巧.另外,被积函数为抽象函数的二重积分也值得关注.

真题分类练习

一阶题,相对容易,推荐先做 二阶题,较综合,可在第二轮复习时做

二重积分的概念、性质与基本计算

- [(2004,12 题,4 分) 设函数 f(u) 连续,区域 $D = \{(x,y) | x^2 + y^2 \leq 2y\}$,则 $\iint_{\mathbb{R}} f(xy) dx dy 等于$
- (A) $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(xy) dy$.
- (B) $2 \int_{0}^{2} dy \int_{0}^{\sqrt{2y-y^{2}}} f(xy) dx$.
- (C) $\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} f(r^{2}\sin\theta\cos\theta) dr.$ (D) $\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} f(r^{2}\sin\theta\cos\theta) r dr.$

2 (2008,6 题,4 分) 设 f(x) 连续,若 $F(u,v) = \iint\limits_{D_{-}} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} \mathrm{d}x \mathrm{d}y$,其中区域 D_{uv} 为图中

阴影部分,则 $\frac{\partial F}{\partial x}$ =

 $(A) v f(u^2).$

(B) $\frac{v}{u}f(u^2)$.

(C)vf(u).

(D) $\frac{v}{u}f(u)$.

答题区

二、利用区域的对称性及函数的奇偶性计算积分

3 (1991,二(4) 题,3 分) 设 D 是 xOy 平面上以(1,1),(-1,1) 和(-1,-1) 为顶点的三 角形区域, D_1 是 D 的第一象限的部分,则 $\int_{0}^{\infty} (xy + \cos x \sin y) dx dy$ 等于 $(A)2\iint_{D_1}\cos x\sin ydxdy.$ (B) $2 \iint_{D_1} xy \, dx \, dy$. $(C)4\iint_{D_1}(xy+\cos x\sin y)dxdy.$

(D)0.

答题区

5 (2006,17 题,10 分) 设区域
$$D = \{(x,y) \mid x^2 + y^2 \leq 1, x \geq 0\}$$
,计算二重积分
$$\iint_D \frac{1+xy}{1+x^2+y^2} \mathrm{d}x \mathrm{d}y.$$
 答题 区

分块函数积分的计算

6 (2005,21 题,9 分) 计算二重积分 $\int_{D} |x^{2} + y^{2} - 1| d\sigma$,其中 $D = \{(x,y) \mid 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1\}.$

真题真刷基础篇・考点分类详解版(数学二)

重积分
$$\iint_D f(x,y) d\sigma$$
,其中 $D = \{(x,y) \mid |x| + |y| \leqslant 2\}$.

答题区

交换积分次序及坐标系

9 (2006,11 题,4 分) 设 f(x,y) 为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r\cos\theta,r\sin\theta) r dr$ 等于

(A)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^{2}}} f(x,y) dy$$
.

$$(\mathrm{B})\int_0^{\frac{\sqrt{2}}{2}}\mathrm{d}x\int_0^{\sqrt{1-x^2}}f(x,y)\mathrm{d}y.$$

(C)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x,y) dx$$
.

(D)
$$\int_{0}^{\sqrt{2}} dy \int_{0}^{\sqrt{1-y^2}} f(x,y) dx$$
.

答题区

10 (2007,8 题,4 分) 设函数 f(x,y) 连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x,y) dy$ 等于 (A) $\int_{0}^{1} dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx$. (B) $\int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$.

$$(A) \int_0^1 dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx$$

$$(B)\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx.$$

$$(C)\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi + \arcsin y} f(x, y) dx.$$

$$(D) \int_0^1 dy \int_{\underline{x}}^{\pi - \arcsin y} f(x, y) dx.$$

答题区

