-----72课

-----

## χ2分布介绍

 $\chi$ 2分布是概率论与统计学中常用的一种概率分布。k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布。卡方分布常用于假设检验和置信区间的计算。若来自正态总体的k个随机变量、……、相互独立,且数学期望为0、方差为1(即服从标准正态分布),则随机变量 $X=\Sigma Zi2$ ,被称为服从自由度为k的 $\chi$ 2分布,记作 $X\sim\chi$ 2(k)。

| n ' | Р     |       |       |       |       |       |       |       |       |  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| 11  | 0.995 | 0.99  | 0.975 | 0.95  | 0.9   | 0.75  | 0.5   | 0.25  | 0.1   |  |
| 1   |       |       |       |       | 0.02  | 0.1   | 0.45  | 1.32  | 2.71  |  |
| 2   | 0.01  | 0.02  | 0.02  | 0.1   | 0.21  | 0.58  | 1.39  | 2.77  | 4.61  |  |
| 3   | 0.07  | 0.11  | 0.22  | 0.35  | 0.58  | 1.21  | 2.37  | 4.11  | 6.25  |  |
| 4   | 0.21  | 0.3   | 0.48  | 0.71  | 1.06  | 1.92  | 3.36  | 5.39  | 7.78  |  |
| 5   | 0.41  | 0.55  | 0.83  | 1.15  | 1.61  | 2.67  | 4.35  | 6.63  | 9.24  |  |
| 6   | 0.68  | 0.87  | 1.24  | 1.64  | 2.2   | 3.45  | 5.35  | 7.84  | 10.64 |  |
| 7   | 0.99  | 1.24  | 1.69  | 2.17  | 2.83  | 4.25  | 6.35  | 9.04  | 12.02 |  |
| 8   | 1.34  | 1.65  | 2.18  | 2.73  | 3.4   | 5.07  | 7.34  | 10.22 | 13.36 |  |
| 9   | 1.73  | 2.09  | 2.7   | 3.33  | 4.17  | 5.9   | 8.34  | 11.39 | 14.68 |  |
| 10  | 2.16  | 2.56  | 3.25  | 3.94  | 4.87  | 6.74  | 9.34  | 12.55 | 15.99 |  |
| 11  | 2.6   | 3.05  | 3.82  | 4.57  | 5.58  | 7.58  | 10.34 | 13.7  | 17.28 |  |
| 12  | 3.07  | 3.57  | 4.4   | 5.23  | 6.3   | 8.44  | 11.34 | 14.85 | 18.55 |  |
| 13  | 3.57  | 4.11  | 5.01  | 5.89  | 7.04  | 9.3   | 12.34 | 15.98 | 19.81 |  |
| 14  | 4.07  | 4.66  | 5.63  | 6.57  | 7.79  | 10.17 | 13.34 | 17.12 | 21.06 |  |
| 15  | 4.6   | 5.23  | 6.27  | 7.26  | 8.55  | 11.04 | 14.34 | 18.25 | 22.31 |  |
| 16  | 5.14  | 5.81  | 6.91  | 7.96  | 9.31  | 11.91 | 15.34 | 19.37 | 23.54 |  |
| 17  | 5.7   | 6.41  | 7.56  | 8.67  | 10.09 | 12.79 | 16.34 | 20.49 | 24.77 |  |
| 18  | 6.26  | 7.01  | 8.23  | 9.39  | 10.86 | 13.68 | 17.34 | 21.6  | 25.99 |  |
| 19  | 6.84  | 7.63  | 8.91  | 10.12 | 11.65 | 14.56 | 18.34 | 22.72 | 27.2  |  |
| 20  | 7.43  | 8.26  | 9.59  | 10.85 | 12.44 | 15.45 | 19.34 | 23.83 | 28.41 |  |
| 21  | 8.03  | 8.9   | 10.28 | 11.59 | 13.24 | 16.34 | 20.34 | 24.93 | 29.62 |  |
| 22  | 8.64  | 9.54  | 10.98 | 12.34 | 14.04 | 17.24 | 21.34 | 26.04 | 30.81 |  |
| 23  | 9.26  | 10.2  | 11.69 | 13.09 | 14.85 | 18.14 | 22.34 | 27.14 | 32.01 |  |
| 24  | 9.89  | 10.86 | 12.4  | 13.85 | 15.66 | 19.04 | 23.34 | 28.24 | 33.2  |  |
| 25  | 10.52 | 11.52 | 13.12 | 14.61 | 16.47 | 19.94 | 24.34 | 29.34 | 34.38 |  |
| 26  | 11.16 | 12.2  | 13.84 | 15.38 | 17.29 | 20.84 | 25.34 | 30.43 | 35.56 |  |
| 27  | 11.81 | 12.88 | 14.57 | 16.15 | 18.11 | 21.75 | 26.34 | 31.53 | 36.74 |  |
| 28  | 12.46 | 13.56 | 15.31 | 16.93 | 18.94 | 22.66 | 27.34 | 32.62 | 37.92 |  |
| 29  | 13.12 | 14.26 | 16.05 | 17.71 | 19.77 | 23.57 | 28.34 | 33.71 | 39.09 |  |
| 30  | 13.79 | 14.95 | 16.79 | 18.49 | 20.6  | 24.48 | 29.34 | 34.8  | 40.26 |  |
| 40  | 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 33.66 | 39.34 | 45.62 | 51.8  |  |
| 50  | 27.99 | 29.71 | 32.36 | 34.76 | 37.69 | 42.94 | 49.33 | 56.33 | 63.17 |  |

| 60  | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 52.29 | 59.33 | 66.98  | 74.4   | - |
|-----|-------|-------|-------|-------|-------|-------|-------|--------|--------|---|
| 70  | 43.28 | 45.44 | 48.76 | 51.74 | 55.33 | 61.7  | 69.33 | 77.58  | 85.53  | ć |
| 80  | 51.17 | 53.54 | 57.15 | 60.39 | 64.28 | 71.14 | 79.33 | 88.13  | 96.58  | 1 |
| 90  | 59.2  | 61.75 | 65.65 | 69.13 | 73.29 | 80.62 | 89.33 | 98.64  | 107.56 | 1 |
| 100 | 67.33 | 70.06 | 74.22 | 77.93 | 82.36 | 90.13 | 99.33 | 109.14 | 118.5  | 1 |

chi square distribution 卡方分布



degree of freedom





73课

\_\_\_\_\_

#### 皮尔逊x2检验

这一节以一个简单的餐厅一周每日顾客量预计和观测值的例子,使用x2检验进行了假设检验。x2检验由皮尔逊重新发现,运用很广泛。



举个例子,假设你有一万块钱放在2个钱包里,如果你知道其中一个钱包里有多少钱,那另一个钱包里有多少钱你就知道了,x1+x2=10000.两个钱包相当于两个变量,一个已知,另一个也会相应知道,而且另一个的钱数取决于第一个钱包的钱数,第一个多它就少,第一个少它就多。所以另一个钱包的"自由取决于第一个钱包。这就是自由度为1的情况。同样,如果换成三个钱包,只有知道了两个钱包的钱数,你才能知道第三个钱包的钱数,所以第三个钱包的自由度为2.

#### 糊涂人生清醒梦[网易山西省吕梁网友]

我不太懂,卡方分布的条件是变量服从正太分布,这里显然没有说正太分布,难道又是中心极限定理吗?抽取总体中的样本?近似于正太分布?进而平方和后服从正太分布?但是我又不懂为什么要相减完了又除?晕了呢?求指教

这是皮尔逊卡方检验,统计量的构造是 $X^2=\Sigma\{\{\{(x)\}\}\}$ (实际频数-理论频数的) $^2\}$ /理论频数 $\}$ 。视频中也说到,皮尔逊卡方检验统计量近似服从卡方分布(最严格的卡方检验构造就是若干个正态分布之和了)。可以上网查相关资料。

74课

\_\_\_\_\_

#### 列联表x2检验

列联表是以列表方式表示两个或多个变量或属性共同出现的频率。这一节使用一个列联表的例子,再一次练习了X2检验。

contingency table

-----

75~77课

-----

#### 方差分析1:计算总平方和

方差分析(ANOVA),是用于两个及两个以上样本均数差别的显著性检验。这一节从计算总平方和SST,总平方和可以理解为计算方差时,不除以n的那部分。

the total sum of squares 简称SST

the grand mean(总平均值)

自由度可否理解为独立分布的变量个数?

\*\*\*\*\*

76 方差分析中,由于各种因素的影响,研究所得的数据呈现波动状,这种波动可以分为组间波动和组内波动两种情况。这一节讲解了两者的差异和联系。

sum of squares within SSW组内平方和

这里要计算的是组间平方和SSB B表示between(组间) we'll call it sum of squares between, the B stands for between.

# 组内平方和+组间平方和=总平方和 is that the sum of squares within plus the sum of squares between

组内自由度 + 组间自由度 = 总平方和的自由度

m-1

m(n-1)

mn-1

----

77课

-----

### 方差分析3:F统计量假设检验

F检验,是指一种统计学意义上服从F-分布的零假设的检验。这一节继续前两节的内容,对特定例子进行了F检验

F统计量是 组间平方和同除以其自由度...
Sum of Squares between divided by, our degrees of freedom between





78课

-----

#### 相关性和因果性

相关性是指两个或多个事物同时发生,具有关联,而因果性是指因为A所以B,两者具有明显的差异。这一节通过实际例子讲解这一问题。