STAT 22400 Takeaway

Assumptions of MLR

- 1. The model
 - Have a linear relationship: $\mathbb{E}[X \mid Y] = \beta x$
- 2. The predictors
 - · Independent from each other
 - They are nonrandom fixed values
- 3. The errors
 - Independent of time
 - With a constant variance, mean = 0

Violations of MLR assumptions & Detection

- 1. Non-linear relationship: non-linearity
 - Plot Y against X directly
 - Plot residual again fitted value -> there's a pattern
- 2. Predictors are linearly dependent: multicollinearity
 - Variance inflated factor, $VIF_j = \frac{1}{1-R_i^2} \geq 10$
 - Explanation: R_j^2 is the **coefficient of determination** from regressing the predictor X_j on all the **other predictors** in the model. When R_j is around 0.95, which means 95% of the variance in R_j could be explained by other predictors. Therefore VIF is large, therefore there's multicollinearity.
- 3. Errors dependent on time: autocorrelation
 - Residual time plot (surprisingly smooth or rough)

- Durbin-Watson Test for AR(1)
- ACF plot (shows the autocorrelation at different lags)
- Lag plot
- 4. Errors have a heteroscedasticity issue
 - Residual plot, residual plot, residual plots...

What are the remedies

- 1. Non-linearity:
 - Variable transformation: either predictor or response
- 2. Multicollinearity:
 - Remove predictor(s)
 - Ridge, Lasso
- 3. Autocorrelation:
 - Oscutt Method (iteration) -> remove AR(1)
- 4. Heteroscedasticity:
 - Response variable transformation
 - Box-Cox
 - WLS: if the errors demonstrate a significant pattern

Interview questions so far...

- 1. What's the basic assumption for OLS?
- 2. Have you heard about regularization/Lasso?
- 3. The biggest challenge for developing a model is solving non-linearity and model selection, so I guess lots of things will expand on that...

Concepts should know crystal clear

- 1. What is an influential observation? What's the commonality/difference between influential points, high leverage points, and outliers?
 - An influential observation has large effect on some part of the model (measure Cook's distance, DEFITs) (measure the regression coefficient no matter it's slope or intercept)
 - An outlier is a point that this model fails to explain (measure residuals)

- Little influence on the slope unless it's high leverage
- May or may not be influential
- An high leverage point is far from the mean of predictors (only consider X) (measure leverage, AKA hat value)
 - It pulls the model towards itself; it might no be an outlier
 - May or may not be influential
- 2. What is interaction?
 - When two or more categorical variables are combined together
- 3. How do you penalize the model for extra variables?
 - Score: AIC, BIC, smaller is preferred
 - Adjusted R square: larger is preferred