$$T(n) = 3T(\sqrt{n}) + \log n$$

Ответ: $T(n) = \Theta((\log n)^{\log_2 3})$. Докажем это:

•
$$T(n) = O(\log n^{\log_2 3})$$
, то есть $T(\sqrt{n}) \le c(\log \sqrt{n})^{\log_2 3} + d \log \sqrt{n}$ $\Longrightarrow T(n) \le c(\log n)^{\log_2 3} + d \log n$ Доказательство: $T(n) = 3T(\sqrt{n}) + \log n$ $T(n) \le 3(c(\log \sqrt{n})^{\log_2 3} + d \log \sqrt{n}) + \log n$ $T(n) \le 3c(\frac{1}{2}\log n)^{\log_2 3} + \frac{3d \log n}{2} + \log n$ $T(n) \le 3c(\frac{\log n)^{\log_2 3}}{2^{\log_2 3}} + (\frac{3}{2}d + 1) \log n$ $T(n) \le 3c\frac{(\log n)^{\log_2 3}}{3} + (\frac{3}{2}d + 1) \log n$ $T(n) \le c(\log n)^{\log_2 3} + (\frac{3}{2}d + 1) \log n$

$$T(n) \le c(\log n)^{\log_2 3} - 2\log n \implies$$

 $T(n) \le c(\log n)^{\log_2 3} + d\log n \quad \Box$

• Заменив в предыдущем доказательстве все знаки \leq на \geq получим $T(\sqrt{n}) \geq c(\log \sqrt{n})^{\log_2 3} + d\log \sqrt{n} \Longrightarrow T(n) \geq c(\log n)^{\log_2 3} + d\log n$, то есть $T(n) = \Omega(\log n^{\log_2 3})$

Возьмём d=-2. Тогда $(\frac{3}{2}d+1)=-2 \implies$