Vettori Geometrici - Sommario

Sommario-appunti presi nel 27.06.2023, sui vettori applicati al passaggio di vettori liberi. Operazioni sui vettori e alcune osservazioni

Vettori Applicati

Vettori Applicati

Definizione basilare del vettore applicato, operazioni tra essi, vettore nullo, limitazioni dei vettori applicati, alcune proprietà.

Premessa

Ci mettiamo nel contesto della *geometria euclidea*, i quali postulati vengono descritti dagli *Elementi* (uno dei testi fondamentali della matematica) di Euclide (uno dei matematici greci più importanti); quindi ricorreremo a dei concetti geometrici che vengono dati come *elementi primitivi*, come il *punto*, il *piano*, la *retta*, ...

DEF 1. Vettore Applicato

Un **vettore applicato** è un segmento orientato, caratterizzato dunque da:

- Punto di applicazione; ovvero il "punto di partenza" A del vettore \overrightarrow{AB}
- Direzione; essa è quella data dalla retta su cui giace il vettore
- Verso; esso è uno dei due orientamenti dalla retta
- Modulo o lunghezza; viene indicata con $|\overrightarrow{AB}|$

Graficamente il vettore si rappresenta così:

Dal grafico si evince che un **vettore applicato** è determinato da una coppia ordinata (A,B) di punti; in tal caso il vettore si denota \overrightarrow{AB}

DEF 1.2. Vettore applicato nullo

Per ogni *punto di applicazione A*, esiste il **vettore applicato nullo** \overrightarrow{AA} , che non ha un verso definito.

DEF 1.3. Somma dei due vettori applicati

I *vettori applicati* si possono **sommare** tra di loro, purché il punto finale del primo vettore coincida con il punto iniziale del secondo, ovvero purché siano della forma

$$\overrightarrow{AB}, \overrightarrow{BC}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

OSS 1.3.1 Se i due vettori non sono della forma appena descritta sopra, ovvero

$$\overrightarrow{AB}, \overrightarrow{CD}$$
 ove $B \neq C$

allora non è possibile sommare questi due vettori; infatti questo rappresenta la *prima limitazione* dei vettori liberi.

OSS 1.3.2. Se prendiamo

$$\overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB}$$

$$\overrightarrow{AA} + \overrightarrow{AB} = \overrightarrow{AB}$$

notiamo che \overrightarrow{BB} e \overrightarrow{AA} si comportano come il numero 0 con l'addizione; **però** notiamo che questi due sono dei vettori applicati *distinti* e non uguali, in quanto essi sono definiti dai loro rispettivi *punti di applicazione* (e ovviamente $A \neq B$). Pertanto è come se si avesse un numero 0 per ogni punto nel piano, dandoci così la *seconda limitazione* dei vettori liberi.

PROP 1.3.1: LA PROPRIETA' ASSOCIATIVA. La somma di vettori applicati, quando possibile, soddisfa la *proprietà associativa*;

DETOUR. Nei numeri reali $\mathbb R$ la *proprietà associativa* della somma dice il seguente.

$$orall a,b,c\in\mathbb{R} ext{ vale che } (a+b)+c=a+(b+c)$$

Infatti grazie a questa proprietà è possibile scrivere la somma per un n numero di numeri senza nessuna ambiguità; ad esempio a+b+c.

DIM. Dobbiamo dimostrare che per ogni vettore applicato $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}$ vale che

$$(\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} = \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD})$$

Ora, usando la definizione di somme dei vettori (DEF 1.3.), possiamo

scrivere:

membro sx.
$$(\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

membro dx. $\overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD}) = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$

Oppure si può anche avvalere dell'interpretazione grafica:

DEF 1.4. Moltiplicazione di un vettore per uno scalare

DEF 1.4. Dato un vettore applicato \overrightarrow{AB} e un numero reale $a \in \mathbb{R}$, definiamo $a \cdot \overrightarrow{AB}$ in questo modo:

- Se
$$a=0,\; a\cdot \overrightarrow{AB}:=\overrightarrow{AA}$$

- Se $a>0,\;a\cdot A\overset{'}{B}:=$ Un vettore applicato in A con le proprietà ${\bf A})$
- Se $a < 0, \; a \cdot A\overset{'}{B} :=$ Un vettore applicato in A con le proprietà B)
- A) Con la stessa direzione e lo stesso verso, ma con modulo uguale a $a\cdot |\overrightarrow{AB}|$;
- **B**) Con la *stessa* **direzione**, il **verso** *opposto* dal vettore originario \overrightarrow{AB} e con **modulo** uguale a $|(a)|\cdot |\overrightarrow{AB}|$, ovvero $-(a)\cdot |\overrightarrow{AB}|$ (|a| rappresenta il valore assoluto)

OSS 1.1. Parallelismo tra equazioni lineari e vettori applicati

Si nota un parallelismo tra due argomenti appena affrontati, ovvero le soluzioni di un'equazione e i Vettori Applicati. Infatti, da una certa somma

di vettori si ottiene un altro vettore; da una moltiplicazione di un vettore con uno scalare si ottiene un altro vettore, come proprio accade con le soluzioni di un'equazione (osservatosi in Equazioni e Proprietà Lineari). Infatti entrambi i vettori applicati e le soluzioni lineari compongono dei spazi vettoriali; come lo stesso accade con le soluzioni alle equazioni differenziali lineari.

Vettori Liberi

Vettori Liberi

Costruzione dei vettori liberi, brevi richiami a relazioni e classi di equivalenza (in Analisi 1), significato di equipollenza, classe di equipollenza e definizione di somma tra vettori liberi.

Premessa

Come abbiamo osservato nei Vettori Applicati, la costruzione di esse comportano delle *limitazioni* (OSS 1.3.1 e OSS 1.3.2); quindi per ottenere una teoria più "comprensiva", introduciamo un nuovo oggetto: i vettori liberi.

Tuttavia è necessario prima introdurre dei nuovi concetti, tra cui il concetto dell'equipollenza, della classe di equipollenza e i rappresentanti di una classe di equipollenza.

DEF 1. Equipollenza

Due vettori applicati $\overrightarrow{AB}, \overrightarrow{CD}$ si dicono **equipollenti** $(\overrightarrow{AB} \equiv \overrightarrow{CD})$ se e solo se i due vettori hanno:

- La medesima direzione
- Il medesimo verso
- Il medesimo modulo

OSS 1.1. Si verifica che l'*equipollenza* è una relazione di equivalenza (**DEF 5.**); ovvero essa è riflessiva, simmetrica e transitiva. Questo in quanto l'equipollenza è descritta dall'essere uguali =.

DEF 2. Classe di equipollenza

Dato un vettore applicato \overrightarrow{AB} , si definisce la sua classe di equipollenza

$$\overrightarrow{[AB]} := \{ \text{tutti i vettori applicati } \overrightarrow{CD} : \overrightarrow{AB} \equiv \overrightarrow{CD} \}$$

PROP 2.1. Dai risultati della *geometria euclidea* segue che dati un vettore applicato \overrightarrow{AB} e un punto C, allora esiste *sempre* un **vettore applicato** $\overrightarrow{CD} \equiv \overrightarrow{AB}$; da questo segue che una classe di equipollenza denotata \overrightarrow{v} e dato un punto C nel piano, esiste *sempre* un vettore applicato che appartiene a \overrightarrow{v} e che ha come punto iniziale C.

INTERPRETAZIONE GRAFICA.

OSS 2.1. Si nota che

$$\overrightarrow{AB} \equiv \overrightarrow{CD} \iff \overrightarrow{[AB]} = \overrightarrow{[CD]}$$

Quindi si dice che i vettori $\overrightarrow{AB}, \overrightarrow{CD}$ sono dei *rappresentanti* della medesima classe di equipollenza.

DEF 3. Vettore libero

Ora finalmente si definisce il **vettore libero**, che si dice come una classe di **equipollenza** \vec{v} .

Infatti è una **quantità infinita** di vettori applicati, che condividono una medesima direzione, un medesimo verso e una medesima lunghezza; sostanzialmente si "estrania" dal vettore applicato il punto di

applicazione e si considerano solo le tre proprietà appena elencate sopra.

DEF 3.1. Vettore libero nullo

OSS 3.1.1. Tutti i *vettori applicati nulli* sono equipollenti e dunque formano una **sola classe di equipollenza** che si denota $\vec{0}$. Qui si vede superato la *prima limitazione* osservata nei Vettori Applicati (**OSS. 1.3.1**); quindi definiamo il *vettore libero nullo* come

$$ec{0}:=ec{AA}ec{0}$$

ovvero *tutti* i vettori per cui il punto di applicazione coincide con il punto di arrivo.

OSS 3.1.2. Tenendo in considerazione la definizione della somma tra due vettori liberi, si ha

$$ec{0} + ec{v} = ec{[AA]} + ec{[AB]} = ec{[AB]} \ ec{v} + ec{0} = ec{[AB]} + ec{[BB]} = ec{[AB]}$$

Quindi il *vettore libero nullo* $\vec{0}$ si comporta come il numero 0 rispetto all'operazione di *somma*.

Operazioni sui vettori liberi

Operazioni sui vettori liberi: somma, scalamento; proprietà di queste operazioni, proprietà asssociativa.

DEF 1. Somma di due vettori liberi

Dati due Vettori Liberi \vec{u}, \vec{v} , definiamo la loro **somma** $\vec{u} + \vec{v}$ nella maniera seguente:

- 1. Si sceglie un rappresentante \overrightarrow{AB} per \vec{u}
- 2. Per la **PROP. 2.1.** (Vettori Liberi), si può sempre scegliere un vettore applicato in \vec{v} tale che il suo punto iniziale sia B, ovvero un vettore applicato $\overrightarrow{BC} \in \vec{v}$, ovvero $\vec{v} = [\overrightarrow{BC}]$.

3. Definiamo infine

$$ec{u} + ec{v} := [\overrightarrow{AB} + \overrightarrow{BC}] = [\overrightarrow{AC}]$$

PROP. 1.1. Si sceglie arbitrariamente un rappresentante per \vec{u} ; tuttavia secondo il passaggio 3. si nota che *indipendentemente* dal vettore scelto iniziale, si raggiunge sempre allo stesso risultato finale; ovvero la classe di equipollenza $\overrightarrow{[AC]}$

DIM. Si vuole dimostrare che si raggiunge sempre allo stesso risultato finale, indipendentemente dal vettore iniziale scelto. Ripercorriamo i passaggi definiti in **DEF 3.1.** con delle leggere variazioni;

1. Si scelgono due distinti rappresentanti per \vec{u} , ovvero

$$\overrightarrow{AB}, \overrightarrow{A'B'} \in \vec{u}; \overrightarrow{AB}
eq \overrightarrow{A'B'}$$

2. Si scelgono i corrispettivi rappresentanti di \vec{v} , tali che i loro punti iniziali coincidano con i punti finali dei vettori-rappresentanti di \vec{u} ;

$$\overrightarrow{BC}, \overrightarrow{B'C'} \in \vec{v}; \overrightarrow{BC}
eq \overrightarrow{B'C'}$$

3. Ora, per definizione in **DEF 3.1.**, la somma di $\vec{u} + \vec{v}$ viene

$$\vec{u} + \vec{v} = [\overrightarrow{AB} + \overrightarrow{BC}] = [\overrightarrow{A'B'} + \overrightarrow{B'C'}] \iff [\overrightarrow{AC}] = [\overrightarrow{A'C'}] = \vec{w}$$

Da qui si evince che *indipendentemente* dai punti di applicazione A e A' scelti, si arriva **sempre** allo stesso risultato; ovvero il *vettore-risultante* \vec{w} .

La definizione quindi è *ben posta*, ovvero *non* dipende dal rappresentante scelto.

OSS 1.1. Rigorosamente parlando, la *somma* è una funzione, ovvero la si scrive come

$$egin{aligned} +: V_2 imes V_2 \longrightarrow V_2 \ (ec{u}, ec{v}) \mapsto ec{u} + ec{v} \end{aligned}$$

ove V_2 rappresenta l'insieme dei vettori liberi.

OSS 1.2. Se definiamo il *vettore libero nullo* come $\vec{0} := [\overrightarrow{AA}]$, allora notiamo che questo comporta come il numero 0 rispetto alla *somma in* \mathbb{R} . Infatti,

$$ec{0} + ec{v} = [\overrightarrow{AA}] + [\overrightarrow{AB}] = [\overrightarrow{AB}] = ec{v} \ ec{v} + ec{0} = [\overrightarrow{AB}] + [\overrightarrow{BB}] = [\overrightarrow{AB}] = ec{v}$$

DEF 2. Moltiplicazione di un vettore per uno scalare

Analogamente si definisce lo *scalamento* come l'operazione della moltiplicazione di un vettore per uno *scalare* (ovvero numero reale \mathbb{R}); Se $\lambda \in \mathbb{R}$, $\vec{v} \in V_2$, allora possiamo definire $\lambda \cdot \vec{v}$;

$$ec{v} = \overrightarrow{[AB]} \implies \lambda \cdot ec{v} := [\lambda \cdot \overrightarrow{AB}]$$

Di cui $\lambda \cdot \overrightarrow{AB}$ è stata già definita in Vettori Liberi (**DEF 3.2.**).

OSS 2.1. Anche in questo caso la *moltiplicazione di un vettore per uno scalare* è una definizione *ben posta*.

OSS 2.2. Anche in questo caso la moltiplicazione di un vettore per uno scalare è una *funzione*, allora

$$egin{aligned} \cdot : \mathbb{R} imes V_2 \longrightarrow V_2 \ (\lambda, ec{v}) \mapsto \lambda \cdot ec{v} \end{aligned}$$

OSS 2.3. Si nota che

$$1 \cdot \vec{v} = \vec{v}$$

ATTENZIONE! La **moltiplicazione di un vettore per uno scalare** NON va confusa con il *prodotto scalare*; si trattano di due operazioni completamente diverse, in quanto con la moltiplicazione di un vettore per uno scalare si ottiene un altro vettore; invece per il *prodotto scalare* si ottiene un altro vettore.

DEF 3. Proprietà delle operazioni sui vettori liberi

OSS 3.1. Si nota entrambe le operazioni +, \cdot sono suriettive (**DEF 3.1.**), ovvero che a partire da due vettori è possibile raggiungere qualsiasi vettore; infatti se si considerano gli *elementi neutri* di queste operazioni (ovvero 0 per +; 1 per \cdot), possiamo prendere un qualsiasi rappresentante \overrightarrow{AB} di \overrightarrow{v} e metterli in funzione con questi elementi neutri, riotteniamo il medesimo vettore.

3.1. Proprietà della somma +

1. PROPRIETA' ASSOCIATIVA. $\forall \vec{u}, \vec{v}, \vec{w}$

$$(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$$

2. PROPRIETA' COMMUTATIVA. $\forall \vec{u}, \vec{v},$

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

3. L'ESISTENZA DELL'ELEMENTO NEUTRO. $\forall \vec{v}_i$

$$ec{0}+ec{v}=ec{v}+ec{0}=ec{v}$$

4. L'ESISTENZA DELL'ELEMENTO OPPOSTO $\forall \vec{v}, \exists \vec{w}:$

$$\vec{v} + \vec{w} = \vec{w} + \vec{v} = \vec{0}$$

OSS. 3.1.1. Tale elemento \vec{w} si denota con $-\vec{v}$ e definiamo la sottrazione

$$\vec{v}+(-\vec{v}):=\vec{v}-\vec{v}=0$$

Se
$$ec{v} = [\overrightarrow{AB}]$$
, allora $- ec{v} = [\overrightarrow{BA}]$.

3.2. Proprietà dello scalamento

1. $\forall \vec{v}$,

$$1 \cdot \vec{v} = \vec{v}$$

2. $\forall \vec{v}$,

$$(-1)\cdot ec{v}=-ec{v}$$

3. $\forall \lambda, \mu \in \mathbb{R}$ e $\forall \vec{v}$,

$$(\lambda \mu) \cdot \vec{v} = \lambda \cdot (\mu \cdot \vec{v})$$

OSS 3.2.1. Notare che questa proprietà non è banale, al contrario di quello che si può pensare; infatti nella prima si definisce una singola operazione tra un reale $\gamma=\lambda\mu$ e un vettore \vec{v} , invece nella seconda si definiscono due moltiplicazioni tra uno reale e un vettore.

4. $orall \lambda \mu \in \mathbb{R}$ e $orall ec{u}, ec{v}$,

1.
$$(\lambda + \mu) \cdot \vec{v} = \lambda \vec{v} + \mu \vec{v}$$

$$2.\ \lambda\cdot(ec{u}+ec{v})=\lambda\cdotec{u}+\lambda\cdotec{v}$$