Name :	:		• • • • • • •	•••••		
Roll No). <i>:</i>					
Invigilo	ator's Si	ignature :				
		CS/B.TECH(CSE)	(N)/S	SEM-5/CS-501/2012-13		
		2012				
]	DESIC	GN AND ANALYSIS	S OI	F ALGORITHM		
Time Allotted: 3 Hours				Full Marks : 70		
	Th	e figures in the margin	indica	ate full marks.		
Cand	idates d	are required to give thei	r ansı	wers in their own words		
		as far as pr	actic	able		
		GROUP -	- A			
		(Multiple Choice Ty	pe Qı	uestions)		
1. C	hoose t	ose the correct alternatives for the following : $10 \times 1 = 10$				
i)		0		of the expression		
	f(n)	$= n \log_2 n + n^2 + e^{\log_2^n}$	is			
	a)	$O\left(n\log_2 n\right)$	b)	$O(n^2)$		
	c)	O(n)	d)	$O(e^{\log_2 n}).$		
ii) Traveling Sa esman Problem is						
	a)	NP Hard	b)	NP		
	c)	NP Complete	d)	none of these.		
iii	i) o(g	g(n) is [Read as small	all oh	of $g(n)$ is		
	a)	asymptotically loose	b)	asymptotically tight		
	c)	same as Big Oh	d)	None of these.		
iv) Con	Complexity the recurrence relation $T(n) = 8T\left(\frac{n}{2}\right) + n^2$ is				
	a)	O (n)	b)	$O(n^2)$		
	c)	$O\left(\log_2 n\right)$	d)	$O(n^3)$.		
5002(N	V)			[Turn over		

CS/B.TECH(CSE)(N)/SEM-5/CS-501/2012-13

v)	Kruskal's Algorithm is an example of	of
	a) Dynamic Programming	

- b) Greedy Method
- c) Both (a) and (b)
- d) None of these.
- vi) Complexity of Tower of Hanoi problem is
 - a) O(n)

b) $O(n^2)$

c) $O(2^n)$

- d) None of these.
- vii) Binary Search algorithm can't be applied to
 - a) Sorted linked lists
- b) Sorted binary trees
- c) Sorted linear array
- d) Sorted integer array.
- viii) The technique of Pruning is used in
 - a) Branch and Bound
 - b) Backtracking
 - c) Divide and Conquer
 - d) Dynamic Programming.
- ix) The tight bound for building a max heap is
 - a) O(n)

b) $O(\log_2 n)$

c) $O(n.\log_2 n)$

- d) None of these.
- x) The worst case running time of a quick sort algorithm is
 - a) $O(n^2)$

b) $O(n.\log_2 n)$

c O(n)

d) $O(\log_2 n)$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Find the best and worst case time complexity of quick sort.
- 3. State Master's theorem and find out the time complexity for the recurrence T(n) = T(2n/3) + 1.

5002(N)

CS/B.TECH(CSE)(N)/SEM-5/CS-501/2012-13

4. Find the optimal solution using greedy criteria for a knapsack having capacity 100 kg for the following list of items having values and weights as shown in the table.

Item	Value	Weight
I_1	10	15
I_2	20	25
I_3	30	35
I ₄	40	45
I_5	50	55

- 5. Compare and contrast BFS *vs* DFS.
- 6. Use the recursion tree to give an asymptotically tight solution to the recursion T(n) = T(n-a) + T(a) + cn where a > 1 and c > 0 are constant.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. Suppose we have a recurrence relation $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, show that the following are true.
 - a) If $af\left(\frac{n}{b}\right) = kf(n)$ for some constant k < 1., then T(n) = 0 (f(n)).
 - b) If $af\left(\frac{n}{b}\right) = kf(n)$ for some constant k > 1, then $T(n) = O(n \log_{h}^{a}).$
 - c) If $af\left(\frac{n}{b}\right) = kf(n)$ for some constant k = 1, the $T(n) = O(n \log_{b}^{a})$.
- 8. a) Discuss the Bellman-Ford's algorithm for single-source shortest path problem.
 - b) Prove that the time-complexity of the algorithm is $\Theta(VE)$.
 - c) What is union-find algorithm? Explain with an example.

5002(N) 3 [Turn over

CS/B.TECH(CSE)(N)/SEM-5/CS-501/2012-13

- 9. a) What are the characteristics of greedy algorithm?
 - b) Discuss the activity selection problem for job sequencing with an example. Prove that the time complexity of the algorithm is $O(n \log n)$. 5+3
 - c) Differentiate between greedy method and dynamic programming.
- 10. a) Explain the max-flow min-cut theorem with an example.

6

- b) Compare and contrast BFS ans DFS. State the 0/1 knapsack problem. 3+2
- c) Describe the Clique Decision Problem CDP). Prove that the CDP is NP complete. 2 + 2
- 11. Write short notes on any *three* of the f llowing : 3×5
 - a) Asymptotic Notations
 - b) Strassen's Matrix Mul iplication
 - c) Approximation A gorithms
 - d) Knuth-Morris-Pratt Algorithm
 - e) Recursion Tr es.

5002(N)