Geometric Quantisation

Benjamin C. W. Brown B.Brown@ed.ac.uk

Women in STEM Society Talk

 \sim

9th February 2021

Some Physics

Classical Mechanics

- ▶ In classical mechanics, the space of all possible states of a system is given by *phase space*, *M*.
- "State" describes the position and the momentum.

Quantum Mechanics

- ► In quantum mechanics, still have phase space *M* but states are replaced by *wavefunctions*.
- ► In my research, wavefunctions are just *homogeneous polynomials*, for example:

$$\phi(\mathbf{z}) = z_1^{k_1} z_2^{k_2} z_3^{k_3}$$
, where $k_1 + k_2 + k_3 = k$.

Lattice Points

- Certain type of spaces M are special: each has an associated polytope.
- Each lattice point inscribed inside correspond to a polynomial.

Quantisation Dimension

▶ Dimension of the quantisation for each *M* is equal to the lattice point count.

Half-Spaces

• Each polytope can be thought of as the intersection of half-spaces.

Hyperplane Arrangements

- What if we included both sides of the hyperplane?
- Get something unbounded.

Quantisation?

- Previous argument tells us the respective quantisation is infinite-dimensional.
- So I am trying to break the arrangement into manageable pieces, each a with finite-dimensional quantisation.

A-Levels & Undergraduate

A-Levels

- During my A-Levels, I originally wanted to study chemistry.
- Decided that Physics and Further Maths would be beneficial for this.

Undergraduate Studies

- Eventually studied integrated Masters in Mathematics & Physics at The University of Warwick.
- In my 2nd Year, became interested in geometry because of its deep relationship with physics.

Postgraduate

Postgraduate Studies

- Wasn't successful in my first round of PhD applications.
- Stayed at Warwick for a MASt in Mathematics, to strengthen my mathematics.
- Received an unconditional offer for Edinburgh .