ZADANIE 18

Z psychologicznych powodów, czasem wygodniej jest oznaczać ideał pierwszy pierścienia A literami x, y jeśli myślimy o nich jako o punkcie $X = \operatorname{Spec}(A)$. Kiedy myślimy o x jako o ideale pierwszym A, oznaczamy go przez \mathfrak{p}_X (oczywiście jest to ta sama rzecz). Pokaż, że

(i) $zbiór \{x\} jest domknięty w Spec(A) \iff \mathfrak{p}_X jest maksymalny$

 \iff

Jeśli \mathfrak{p}_X jest ideałem maksymalnym, to $\{x\} = V(\mathfrak{p}_X)$, gdyż żaden inny ideał pierwszy nie zawiera \mathfrak{p}_X . My definiowaliśmy V(E) jako zbiory domknięte, więc $\{x\}$ też taki jest.

 \Longrightarrow

Wiem, że {x} jest zbiorem domkniętym. Czyli jest przekrojem pewnej rodziny domkniętych zbiorów bazowych

$$\{x\} = \bigcap_{i \in I} V(E_i) = V\left(\bigcup_{i \in I} (E_i)\right)$$

ale jeśli taka suma zawiera się w jednym, jedynym ideale pierwszym, to jest on maksymalny.

(ii)
$$\overline{\{x\}} = V(p_x)$$

 \subset

Jest raczej prostym zawieraniem: $\overline{\{x\}}$ jest najmniejszym zbiorem domkniętym zawierającym $\{x\}$, a $V(\mathfrak{p}_X)$ z pewnością to spełnia.

 \supseteq

Po pierwsze zauważmy, że

$$V(\mathfrak{p}_X) = \bigcap_{E \subseteq \mathfrak{p}_X} V(E) = V\Big(\bigcup_{E \subseteq \mathfrak{p}_X} V(E)\Big),$$

bo to są wszystkie te ideały pierwsze, które zawierają jakiś podzbiór \mathfrak{p}_X , czyli obcinamy te mniejsze podzbiory \mathfrak{p}_X w trakcie brania przekroju.

Wiemy, że \bigcap V(E) jest zbiorem domkniętym. Wiemy, że $x \in \bigcap$ V(E), czyli dostajemy, że V(\mathfrak{p}_x) jest $E \subseteq \mathfrak{p}_x$ przekrojem wszystkich zbiorów domkniętych zawierających x, czyli jest najmniejszym zbiorem domkniętym zawierającym x, czyli domknięciem x.

$$\textit{(iii)} \ y \in \{\overline{x}\} \iff \mathfrak{p}_X \subseteq \mathfrak{p}_y$$

 \Leftarrow

Niech $x, y \in X$ takie, że $\mathfrak{p}_X \subseteq \mathfrak{p}_y$. Wówczas, $x \in V(E) \implies y \in V(E)$. Ponieważ $\{x\}$ jest przekrojem zbiorów $V(E_i)$, który zawiera x, to w szczególności każdy z tych zbiorów zawiera również y, stąd $y \in \{x\}$.

 \Longrightarrow

Trywialne z (ii).

(iv) X jest T_0 -przestrzenią (jeśli x, y są rozróżnialnymi punktami X, to albo istnieje otoczenie x które nie zawiera y, albo istnieje otocznie y, które nie zawiera x).

Weźmy dowolne punkty $x, y \in X$. Rozważmy dwa przypadki:

1. $\mathfrak{p}_X \subseteq \mathfrak{p}_V$ (lub $\mathfrak{p}_V \subseteq \mathfrak{p}_X$, ale WLOG pierwsza wersja)

Wtedy $x \in X \setminus V(p_V)$, które jest zbiorem otwartym takim, że $y \notin X \setminus V(p_V)$.

2. $\mathfrak{p}_{\mathsf{X}} \not\subseteq \mathfrak{p}_{\mathsf{y}} i \mathfrak{p}_{\mathsf{y}} \not\subseteq \overline{\mathfrak{p}_{\mathsf{X}}}$

Wtedy $y \notin \overline{\{x\}}$ i $x \notin \overline{\{y\}}$. Czyli $y \in X \setminus \{x\}$ jest otwartym zbiorem zawierającym y ale niezawierającym x.

ZADANIE 19.

Przestrzeń topologiczna X jest nieredukowalna, jeśli X $\neq \emptyset$ i jeśli każda para niepustych otwartych podzbiorów X się przecina (równoważnie, każdy niepusty podzbiór otwarty jest gęsty w X). Pokaż, że Spec(A) jest nieredukowalny \iff nilradykał A jest ideałem pierwszym.

 \Longrightarrow

Chcę mieć punkt, którego dopełnienie jest wszystkim.

Niech r będzie nilradykałem pierścienia A i niech r będzie ideałem pierwszym. Weźmy dowolne \mathfrak{a}_1 , $\mathfrak{a}_2 \triangleleft A$ i rozpatrzmy $U_1 = V(\mathfrak{a}_1)^c$, $U_2 = V(\mathfrak{a}_2)^c$.

ZADANIE 20

Niech X będzie przestrzenią topologiczną

(i) Jeśli Y jest nieredukowalną podprzestrzenią X, wtedy domknięcie \overline{Y} w X jest nieredukowalne.