APPM 4350/5350: Fourier Series and Boundary Value Problems

Homework #2 Monday, September 11, 2023 Due: Monday 3PM, September 25, 2023

In what follows, and in the future, all 'arbitrary' functions are assumed to be piecewise smooth unless otherwise specified.

1. (20 points) Consider:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$
, $0 < x < L, t > 0, \kappa > 0$ constant

with BCs: T(x = 0, t) = T(x = L, t) = 0.

Solve for T(x,t) with the following initial values:

- a) $T(x,0) = T_0 \sin \frac{\pi x}{L}$,
- b) $T(x,0) = T_0 \sin \frac{\pi x}{L} \cos \frac{\pi x}{L}$

where T_0 constant.

2. (25 points) Suppose:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$
 $0 < x < L, t > 0, \kappa > 0$ constant

with boundary conditions (BCs); $T(x=0,t)=0, \frac{\partial T}{\partial x}(x=L,t)=0$ and initial condition (IC): T(x,0)=f(x). Find T(x,t) and the equilibrium, temperature. Hint: direct integration can be used to show that the eigenfunctions are orthogonal.

3. (25 points) Consider

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} - \alpha T, \quad 0 < x < L, t > 0, \kappa > 0, \alpha > 0 \text{ constants}$$

with BCs: $\frac{\partial T}{\partial x}(x=0,t) = \frac{\partial T}{\partial x}(x=L,t) = 0$ and IC: T(x,0) = f(x). Find the equilibrium temperature and T(x,t). Find the long time asymptotic limit (i.e. the limit as $t \to \infty$) of T and compare it to the equilibrium temperature.

- 4. (20 points) 2.3.10 a,c
- 5. (20 points) 2.5.1 b
- 6. (20 points) Solve Laplace's equation

$$\nabla^2 u = 0$$

for $u=u(r,\theta)$ for the bounded solution inside the semicircle r< R and above the real axis where $\frac{\partial u}{\partial \theta}=0$ on the real axis and $\frac{\partial u}{\partial r}(r=R,\theta)=g(\theta)$ on the semicircle. Hint: The boundary condition implies that separated solutions $u_s(r,\theta)=F(r)G(\theta),G(\theta)$ satisfies

Hint: The boundary condition implies that separated solutions $u_s(r,\theta) = F(r)G(\theta)$, $G(\theta)$ satisfies $\frac{\partial G}{\partial \theta} = 0$, when $\theta = 0$ and $\theta = \pi$.

7. (25 points) Solve Laplace's equation

$$\nabla^2 \phi = 0$$

inside a circular annulus $R_1 < r < R_2$ with boundary conditions: $\phi(R_1, \theta) = 0$, $\frac{\partial \phi}{\partial r}(R_2, \theta) = f(\theta)$.

- 8. (10 points) Use the maximum principle to show that the solution of $\nabla^2 \phi = f(x, y)$ in a domain D with $\phi = g(x, y)$ specified on a curve C bounding the region D is unique.
- 9. (15 points) Consider

$$\frac{\partial^2 \phi}{\partial t^2} + \frac{\partial^2 \phi}{\partial x^2} = 0 \qquad 0 < x < L$$

with $\phi(x=0,t)=\phi(x=L,t)=0$ and initial conditions:

- a) $\phi(x,0) = 0$, $\frac{\partial \phi}{\partial t}(x,0) = 0$. Find the solution $\phi(x,t)$.
- b) Suppose we perturb the initial conditions a little bit; namely suppose we have the initial conditions $\phi(x,0) = \frac{1}{N}\sin\frac{N\pi x}{L}, \frac{\partial\phi}{\partial t}(x,0) = 0, N$ a large positive integer. Find the solution and explain why the equation is *not* well-posed.
- 10. (20 points) Solve for the bounded solution of Laplace's equation

$$\nabla^2 u = 0$$

in a strip: 0 < x < L, $0 < y < \infty$ with boundary conditions u(x = 0, y) = u(x = L, y) = 0 and u(x, 0) = f(x).

11. XC (20 points) In this problem you will solve for the exterior ideal flow around a circle using the velocity potential: $\mathbf{u} = \nabla \phi$ where \mathbf{u} is the velocity of the flow: $\mathbf{u} = \phi_x \hat{\mathbf{i}} + \phi_y \hat{\mathbf{j}} = \phi_r \hat{\mathbf{r}} + \frac{1}{r} \phi_\theta \hat{\boldsymbol{\theta}}$ where $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ are unit vectors in the x, y directions respectively and $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}$ are unit vectors in the radial and circular directions respectively.

The problem is posed as follows. Find the solution $\phi = \phi(r, \theta)$ where ϕ satisfies

$$\nabla^2 \phi = 0$$
, $\frac{\partial \phi}{\partial r}(r = R, \theta) = 0$, $\phi \to U_0 x = U_0 r \cos \theta$ as $r \to \infty$

Then determine ϕ with prescribed circulation

$$\Gamma = \oint_C \boldsymbol{u} \cdot \hat{\boldsymbol{t}} ds$$

where the integral is over the simple closed path C, u is the velocity, \hat{t} is the unit tangent and ds is the differential arc length. Find all coefficients in the solution ϕ in terms of U_0 and Γ .

Hint: The conditions of periodicity only apply to the velocity: $\frac{\partial \phi}{\partial r}$, $\frac{\partial \phi}{\partial \theta}$. This problem was discussed in class using the stream function ψ where $\mathbf{u} = \psi_y \hat{\mathbf{i}} - \psi_x \hat{\mathbf{j}}$.

 2