Numbers

Weak Schur Numbers

Membres du groupe: Romain Ageron (<u>romain.ageron@student-cs.fr</u>), Thibaut Pellerin (<u>thibaut.pellerin@student-cs.fr</u>), Yann Portella (<u>yann.portella@student-cs.fr</u>), Paul Castéras (<u>paul.casteras@student-cs.fr</u>)

Encadrants: Joanna Tomasik (joanna.tomasik@centralesupelec.fr), Arpad Rimmel (arpad.rimmel@centralesupelec.fr)

L'étude des nombres de Schur est un problème de combinatoire à l'énoncé simple formulé il y a plus de 100 ans.

Les nombres de Schur

Soit n>0 un entier, k>0 un nombre de couleurs,

Peut-on colorier les entiers de 1 à n avec k couleurs tel que si deux nombres sont de la même couleur, leur somme n'est pas de cette couleur? Si ce coloriage existe, il est dit *sans sommes*.

Par exemple, ce coloriage est sans sommes:

1 2 3 4 5 6 7 8 9 10 11 12 13

Pour k couleurs, on note *S(k)* le plus grand entier n tel qu'il existe une partition de 1 à n sans sommes à k couleurs. On appelle *S(k)* le k-ième *nombre de Schur*.

Les nombres de Weak Schur

Soit n>0 un entier, k>0 un nombre de couleurs,

Peut-on colorier les entiers de 1 à n avec k couleurs tel que si deux nombres *différents* sont de la même couleur, leur somme n'est pas de cette couleur?

Si ce coloriage existe, il est dit *faiblement sans* sommes.

Par exemple, ce coloriage est faiblement sans sommes:

Pour k couleurs, on note **WS(k)** le plus grand entier n tel qu'il existe une partition de 1 à n faiblement sans sommes à k couleurs. On appelle WS(k) le k-ième **nombre de Schur faible**.

Soit n,m>0, Abbott et Hanson ont montré que:

 $S(n+m) \ge S(n)(2S(m)+1)+S(m)$

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40					

Construction de Abbott et Hanson dans le cas n=2 et m=2

n	1	2	3	4	5	6	7	8	9	10	11	12
Before Rowley	1	4	13	44	160	536	1680	5 041	15124	51120	172216	575664
					[9]	[10]	[10]	[3]	[3]	[3]	[3]	[3]
Rowley							1 696	5 286	17694	60 320	201 696	637 856
[7], [11]							1 0 9 0	0 200	11 034	00 320	201 030	037 030
Our results									17 803	60948	203 828	644 628

Tableau comprant les bornes inférieures obtenus pour les nombres de Schur

Le projet recrute! Si vous êtes intéréssés, inscrivez-vous au Pôle Projet 005: «Formation à la recherche».

