Conductors and minimal discriminants of hyperelliptic curves

Padmavathi Srinivasan

MIT

AMS Summer Institute in Algebraic Geometry, Salt Lake City July 31, 2015

Outline

Introduction

2 Conductors and minimal discriminants

3 Comparing conductors and discriminants

What are conductors and minimal discriminants?

How are these related?

Outline

Introduction

Conductors and minimal discriminants

3 Comparing conductors and discriminants

Notation

R: complete discrete valuation ring

K: fraction field of R

k: residue field of R, algebraically closed, char $\neq 2$

 ν : discrete valuation $K \to \mathbb{Z} \cup \{\infty\}$

t: a uniformizer of R, i.e., $\nu(t) = 1$.

Examples: $\mathbb{C}[[t]], \mathbb{Z}_p^{\text{unr}}$

Notation

f(x): monic, squarefree, even degree \geq 4 polynomial in R[x]

X: smooth projective model of the plane curve $y^2 = f(x)$ over K

g: genus of X

If
$$f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_0$$
 factors as $(x - \alpha_1) \ldots (x - \alpha_d)$ in $\overline{K}[x]$, then

$$\operatorname{disc}(f) := \prod_{i < j} (\alpha_i - \alpha_j)^2$$
$$\in K[a_0, \dots, a_{d-1}]$$

$$f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_0 = (x - \alpha_1)\ldots(x - \alpha_d)$$

The naive disciminant of $y^2 = f(x)$ is defined to be

$$\Delta_f := \nu(\operatorname{disc}(f)) = \nu(\prod_{i < j} (\alpha_i - \alpha_j)^2).$$

The minimal discriminant Δ_{\min} of X is given by

$$\Delta_{\min} = \Delta_{\min}(X) := \min \left(\Delta_f \mid f(x) \in R[x] \text{ such that } y^2 = f(x) \mid \text{is birational to } X \text{ over } K \right)$$

 $\Delta_{\min} = 0 \iff X$ has good reduction.

Artin conductor

X: a hyperelliptic curve over K

 \mathscr{X} : a proper, flat, regular R-scheme with $\mathscr{X}_K \simeq X$

 $\mathscr{X}_{\overline{K}}\colon \mathsf{geometric}$ generic fiber of \mathscr{X}

 \mathscr{X}_k : special fiber of \mathscr{X}

Fix a prime $\ell \neq \operatorname{char} k$. For any curve C over an algebraically closed field of $\operatorname{char} \neq \ell$, let

$$\chi(C) := \sum_{i=0}^{2} (-1)^i \dim H^i_{\acute{e}t}(C, \mathbb{Q}_\ell)$$

 δ : Swan conductor for the representation $H^1(\mathscr{X}_{\overline{K}}, \mathbb{Q}_{\ell})$ (integer, ≥ 0 , measure of wild ramification).

Artin Conductor

X: a hyperelliptic curve over K

 \mathscr{X} : a proper, flat, regular R-scheme with $\mathscr{X}_K \simeq X$

 $\mathscr{X}_{\overline{K}} \colon \mathsf{geometric}$ generic fiber of \mathscr{X}

 \mathscr{X}_k : special fiber of \mathscr{X}

 χ : ℓ -adic Euler Poincaré characteristic

 δ : Swan conductor for the representation $H^1(\mathscr{X}_{\overline{K}},\mathbb{Q}_\ell)$

$$-\operatorname{Art}(\mathscr{X}/R) = \chi(\mathscr{X}_k) - \chi(\mathscr{X}_{\overline{K}}) + \delta \underset{(\mathsf{Saito})}{=} \text{ Deligne discriminant.}$$

Properties of the Artin Conductor

- Art(\mathcal{X}/R) is independent of ℓ .
- $-\operatorname{Art}(\mathscr{X}/R) \geq 0$. $-\operatorname{Art}(\mathscr{X}/R) = 0 \iff \mathscr{X} \text{ is smooth or } g = 1 \text{ and } (\mathscr{X}_k)_{\operatorname{red}}$ is smooth.
- Let n be the number of components of \mathscr{X}_k and let ϵ be the tame conductor. Then,

$$-\operatorname{Art}(\mathscr{X}/R) = (n-1) + \epsilon + \delta$$

$$\geq n-1.$$

• When $\mathscr X$ is regular and semi-stable,

$$-\operatorname{Art}(\mathscr{X}/R) = \# \operatorname{singular} \operatorname{points} \operatorname{of} \mathscr{X}_k.$$

Outline

Introduction

2 Conductors and minimal discriminants

3 Comparing conductors and discriminants

Earlier results (Ogg, Saito, Liu)

Let \mathscr{X} be the minimal proper regular model of X.

- If g=1, then $-\operatorname{Art}(\mathscr{X}/R)=\Delta_{\min}$ [Ogg-Saito formula]. This also holds when char k=2.
- If g=2, Liu showed that $-\operatorname{Art}(\mathscr{X}/R) \leq \Delta_{\min}$. He showed that equality does not always hold.

Question: Does $-\operatorname{Art}(\mathscr{X}/R) \leq \Delta_{\min}$ hold for hyperelliptic curves of arbitrary genus?

Theorem (_)

Let X be a hyperelliptic curve over K and let $\mathscr X$ be the minimal proper regular model of X. Assume that

- (a) the Weierstrass points of X are K-rational, and,
- (b) that the residue characteristic of K is not 2. Then.

$$-\operatorname{Art}(\mathscr{X}/R) \leq \Delta_{\min}.$$

Explicit construction of a regular model \mathscr{X}'

The first step in the proof is the explicit construction of a regular model \mathcal{X}' for X (not necessarily minimal).

Lemma

Let Bl \mathbb{P}^1_R be an arithmetic surface birational to \mathbb{P}^1_R .

Let f be an element of the function field of \mathbb{P}^1_R .

Assume that the odd multiplicity components of the divisor of f on Bl \mathbb{P}^1_R are disjoint.

Then, the normalization of Bl \mathbb{P}^1_R in $K(x, \sqrt{f(x)})$ is a proper regular model for the hyperelliptic curve given by $y^2 = f(x)$.

- 1. Explicitly construct a regular model \mathscr{X}' (not necessarily minimal).
- 2. \mathscr{X}' is strict simple normal crossings, $\mathscr{X}'_k = \sum m_i \Gamma_i$ and $m_i \in \{1, 2\}$.

$$-\operatorname{Art}(\mathscr{X}'/R) = \sum_{i} \left\{ (1-m_i)\chi(\Gamma_i) + \sum_{j\neq i} (m_j-1)\Gamma_i.\Gamma_j \right\} + \sum_{i< j} \Gamma_i.\Gamma_j.$$

- 3. Similarly decompose Δ_{\min} into local terms.
- 4. Prove a local comparison inequality.
- 5. Add local inequalities.

$$-\operatorname{Art}(\mathscr{X}/R) \leq -\operatorname{Art}(\mathscr{X}'/R) \leq \Delta_{\min}.$$

Thank you!