01:640:350H - Homework 8

Pranav Tikkawar

November 4, 2024

- 1. (10 points) Sec. 5.1 Question 4(c) For each of the following matrices:
 - (a) Determine the eigenvalues of the matrix.
 - (b) For each eigenvalue, determine the eigenvectors.
 - (c) If possible find a basis for F^n consisting of eigenvectors of the matrix.
 - (d) If successful in finding such a basis determine and invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

$$A = \begin{bmatrix} i & 1 \\ 2 & -i \end{bmatrix}, \quad \text{for } F = C$$

Solution: Part (a)

The characteristic polynomial of A is given by

$$\det(A - \lambda I) = \begin{vmatrix} i - \lambda & 1 \\ 2 & -i - \lambda \end{vmatrix}$$
$$= (i - \lambda)(-i - \lambda) - 2$$
$$= \lambda^2 + 1 - 2$$
$$= \lambda^2 - 1$$
$$= (\lambda - 1)(\lambda + 1)$$

So the eigenvalues of A are $\lambda = 1, -1$.

Part (b)

For $\lambda = 1$, we have

$$A - I = \begin{bmatrix} i - 1 & 1 \\ 2 & -i - 1 \end{bmatrix}$$

$$\begin{bmatrix} i - 1 & 1 \\ 2 & -i - 1 \end{bmatrix} \xrightarrow{(-i-1)r_1 + r_2 \to r_2} \begin{bmatrix} i - 1 & 1 \\ 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{i-1}r_1 \to r_1} \begin{bmatrix} 1 & \frac{-i+1}{2} \\ 0 & 0 \end{bmatrix}$$

We can see that vectors of the form of $\begin{bmatrix} i-1\\2 \end{bmatrix}$ are eigenvectors of A corresponding to $\lambda=1$.

We can call the eigenspace of $\lambda = 1$ as E_1 .

For $\lambda = -1$, we have

$$A + I = \begin{bmatrix} i+1 & 1\\ 2 & -i+1 \end{bmatrix}$$

$$\begin{bmatrix} i+1 & 1\\ 2 & -i+1 \end{bmatrix} \xrightarrow{(-i+1)r_1 + r_2 \to r_2} \begin{bmatrix} i+1 & 1\\ 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{i+1}r_1 \to r_1} \begin{bmatrix} 1 & \frac{-i-1}{2}\\ 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} i+1\\2 \end{bmatrix}$ are eigenvectors of A corresponding to $\lambda=-1.$

We can call the eigenspace of $\lambda = -1$ as E_{-1} as.

Part (c)

By the theorems in chapter 5 we can see that the sets E_1 and E_{-1} are linearly independent sets, thus $E_1 \cup E_{-1}$ is also linearly independent.

Since the largest linearly independent combination of vectors in the set $E_1 \cup E_{-1}$ is of size 2, and C^2 has dimension 2, we can see that the eigenvectors of A are a basis for C^2 .

Thus the basis is $\left\{ \begin{bmatrix} i-1\\2 \end{bmatrix}, \begin{bmatrix} i+1\\2 \end{bmatrix} \right\}$

Part (d)

Let
$$Q = \begin{bmatrix} i-1 & i+1 \\ 2 & 2 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

We can see that $Q^{-1}AQ = D$. Obviously Q is invertible since $\det(Q) = 2i - 2 - 2i - 2 = -4 \neq 0$. Thus we have found the required Q and D.

2. (10 points) Sec. 5.1 Question 4(d)

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{bmatrix}, \quad \text{for } F = R$$

Solution: The characteristic polynomial of A is given by

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & -1 \\ 4 & 1 - \lambda & -4 \\ 2 & 0 & -1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 2 & -1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)((2 - \lambda)(-1 - \lambda) + 2)$$
$$= -\lambda(1 - \lambda)^{2}$$

Thus the eigenvalues of A are $\lambda = 0, 1$. Where 1 has a multiplicity of 2 **Part** (b)

For $\lambda = 0$, we have

$$A - 0I = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{bmatrix}$$

$$\xrightarrow{r_2 - 2r_1 \to r_2, r_3 - r_1 \to r_3} \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 0$ are of the form $\lfloor 4 \rfloor$.

We can call the eigenspace of $\lambda = 0$ as E_0 . For $\lambda = 1$, we have

$$A - I = \begin{bmatrix} 1 & 0 & -1 \\ 4 & 0 & -4 \\ 2 & 0 & -2 \end{bmatrix}$$

$$\xrightarrow{r_2 - 4r_1 \to r_2, r_3 - 2r_1 \to r_3} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 1$ are of the form $\begin{bmatrix} 0 \end{bmatrix}$,

We can call the eigenspace of $\lambda = 1$ as E_1 .

Part (c)

By the theorems in chapter 5 we can see that the sets E_0 and E_1 are linearly independent sets, thus $E_0 \cup E_1$ is also linearly independent.

Since the largest linearly independent combination of vectors in the set $E_0 \cup E_1$ is of size 3, and R^3 has dimension 3, we can see that the eigenvectors of A are a basis for

Thus the basis is $\left\{ \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$

Part (d)

Let
$$Q = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

We can see that $\vec{Q}^{-1}AQ = D$. Obviosuly Q is invertible since $\det(Q) = 1(0-1)$ $1(4-0)+0=-4\neq 0$. Thus we have found the required Q and D.

3. (10 points) Sec. 5.1 Question 5(f) For each linear operator T on V fin the eigenvalues of T and an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

$$V = P_3(R), \quad T(f(x)) = f(x) + f(2)x$$

Solution: For T we can say that $T = L_A$ where A is

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 4 & 8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The characteristic polynomial of A is given by

$$det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 & 0 \\ 1 & 3 - \lambda & 4 & 8 \\ 0 & 0 & 1 - \lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix}$$
$$= (3 - \lambda) \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (3 - \lambda)(1 - \lambda)^{3}$$

Thus the eigenvalues of T are $\lambda = 3, 1$, with 1 having a multiplicity of 3. For $\lambda = 1$ we have

$$A - I = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 1$ are of the form $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$,

$$\begin{bmatrix} -4 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -8 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

We can call this eigenspace as E_1 .

For $\lambda = 3$ we have

$$A - 3I = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & 0 & 4 & 8 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

$$\frac{r_2 + \frac{1}{2}r_1 + 2r_3 + 4r_4 \to r_2}{\longrightarrow} \begin{bmatrix}
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 3$ are of the form $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

We can call this eigenspace as E_3 .

By the theorems in chapter 5 we can see that the sets E_1 and E_3 are linearly independent sets, thus $E_1 \cup E_3$ is also linearly independent.

Solution: Continued:

Since the largest linearly independent combination of vectors in the set $E_1 \cup E_3$ is of size 4, and $P_3(R)$ has dimension 4, we can see that eigenvectors of T is a basis for $P_3(R)$.

Thus we can let
$$\beta = \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -4\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -8\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right\}$$

We can see that $[T]_{\beta}$ is a diagonal matrix.

$$[T]_{\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

4. (10 points) Sec. 5.1 Question 9(a) Prove that a linear operator T on a finite dimensional vector space is invertable iff 0 is not an eigenvalue of T.

Solution: Assume T is a linear operator on a finite dimensional vector space. Let us call T a function from V to V.

Proof of \Longrightarrow :

Suppose T is invertible.

Need to show that 0 is not an eigenvalue of T.

Note that since T is a linear operator on a finite dimensional vector space, we can take $T = L_A$ for some matrix A.

Suppose w is an eigenvector of T corresponding to the eigenvalue λ .

Then we have $T(w) = \lambda w$.

Notice that we have v be non zero and we have that for all $w \in V$ we have T(w) = 0 iff w = 0.

Thus must have that $\lambda \neq 0$. as desired.

Proof of $\Leftarrow=:$

Suppose 0 is not an eigenvalue of T.

Need to show that T is invertible.

Since we know that 0 is not an eigenvalue of T, we know that there is no non zero vector v such that T(v) = 0.

This means that T is injective.

This also implies that T is surjective since T is a linear operator on a finite dimensional vector space.

Thus T is bijective and thus invertible.

5. (10 points) Sec. 5.1 Question 9(b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T iff λ^{-1} is an eigenvalue of T^{-1} .

Solution: Since T is the inverse of T^{-1} , we only need to consider the forward direction.

Suppose λ is an eigenvalue of T.

Then we have $T(v) = \lambda v$ for some non zero vector v.

We can apply T^{-1} to both sides to get $T^{-1}(T(v)) = T^{-1}(\lambda v)$.

This implies that $v = \lambda T^{-1}(v)$.

Thus we have that $\lambda^{-1}v = T^{-1}(v)$ Thus λ^{-1} is an eigenvalue of T^{-1} .

6. (10 points) Sec. 5.1 Question 10 Prove that the eigenvalue of an upper triangular matrix M are the diagonal entries of M.

Solution: We can prove this by induction for any $n \times n$.

For a base case of 1×1 matrix, we have that the only eigenvalue is the diagonal entry.

Suppose that the statement is true for all $n \times n$ matrices.

Let M be an $(n+1) \times (n+1)$ upper triangular matrix.

Let λ be an eigenvalue of M.

Then we have that $det(M - \lambda I) = 0$.

We can expand this determinant along the last row to get

$$(m_{n+1,n+1} - \lambda)det(M_{n \times n} - \lambda I) = 0$$

Since $M_{n\times n} - \lambda I$ is an upper triangular matrix, we can see that the eigenvalues of $M_{n\times n}$ are the diagonal entries of $M_{n\times n}$.

Thus the eigenvalues of M are the diagonal entries of M.

7. (10 points) Sec. 5.2 Question 2(d) For each of the following matrices $A \in M_{n \times n}(R)$ test A for diagonalizability and if A is diagonalizable find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

$$A = \begin{bmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{bmatrix}$$

Solution: First we can find the characteristic polynomial of A.

$$det(A - \lambda I) = \begin{vmatrix} 7 - \lambda & -4 & 0 \\ 8 & -5 - \lambda & 0 \\ 6 & -6 & 3 - \lambda \end{vmatrix}$$
$$= (3 - \lambda) \begin{vmatrix} 7 - \lambda & -4 \\ 8 & -5 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)((7 - \lambda)(-5 - \lambda) + 32)$$
$$= (3 - \lambda)(\lambda^2 - 2\lambda - 3)$$
$$= (3 - \lambda)^2(-\lambda - 1)$$

Thus the eigenvalues of A are $\lambda = 3, -1$ with 3 having a multiplicity of 2. For $\lambda = 3$ we have

$$A - 3I = \begin{bmatrix} 4 & -4 & 0 \\ 8 & -8 & 0 \\ 6 & -6 & 0 \end{bmatrix}$$

$$\xrightarrow{r_2 - 2r_1 \to r_2, r_3 - \frac{3}{2}r_1 \to r_3} \begin{bmatrix} 4 & -4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 3$ are of the form $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$,

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

We can call this eigenspace as E_3 .

For $\lambda = -1$ we have

$$A + I = \begin{bmatrix} 8 & -4 & 0 \\ 8 & -4 & 0 \\ 6 & -6 & 4 \end{bmatrix}$$

$$\xrightarrow{r_2 - r_1 \to r_2, r_3 - \frac{3}{2}r_1 \to r_3} \begin{bmatrix} 8 & -4 & 0 \\ 0 & 0 & 0 \\ 0 & -3 & 4 \end{bmatrix}$$

We can clearly see that the eigenvectors of A corresponding to $\lambda = -1$ are of the

form $\begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}$.

Solution: Continued:

We can call this eigenspace as E_{-1} .

We can see that the sets E_3 and E_{-1} are linearry independent sets, thus $E_3 \cup E_{-1}$ is also linearly independent.

Since the largest linearly independent combination of vectors in the set $E_3 \cup E_{-1}$ is of size 3, and R^3 has dimension 3, we can see that the eigenvectors of A are a basis for R^3 .

This must mean that A is diagonalizable.

Let
$$Q = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 4 \\ 0 & 1 & 3 \end{bmatrix}$$
 and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Thus we have found the required Q and D.

8. (10 points) Sec. 5.2 Question 2(f)

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Solution: Since the matrix is already upper triangular, we can see that the eigenvalues of A are the diagonal entries of A.

Thus the eigenvalues of A are $\lambda = 1, 3$ with 1 having a multiplicity of 2.

For $\lambda = 1$ we have

$$A - I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 1$ are of the form $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

We can see that this eigenspace is of dimension 1. but the algebraic multiplicity of the eigenvalue is 2.

Thus A is not diagonalizable.

9. (10 points) Sec. 5.2 Question 3(d) For each of the following linear operators T on a vector space V, test T and if T is diagonalizable find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

$$V = P_2(R), \quad T(f(x)) = f(0) + f(1)(x + x^2)$$

Solution: Let us assert that $T = L_A$ for some matrix A.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

The characteristic polynomial of A is given by

$$det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)(\lambda^2 - 2\lambda)$$
$$= -\lambda(1 - \lambda)(2 - \lambda)$$

Thus the eigenvalues of A are $\lambda = 0, 1, 2$.

Since each eigenvalue has a multiplicity of 1, we can see that A is diagonalizable.

For $\lambda = 0$ we have

$$A - 0I = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{r_3 - r_2 \to r_3, r_2 - r_1 \to r_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 0$ are of the form $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$.

We can call this eigenspace as E_0 .

For $\lambda = 1$ we have

$$A - I = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 1$ are of the form $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$.

We can call this eigenspace as E_1 .

For $\lambda = 2$ we have

$$A - 2I = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{r_2 + r_1 \to r_2, r_3 + r_1 \to r_3} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{r_3 + r_2 \to r_3} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

We can see that the eigenvectors of A corresponding to $\lambda = 2$ are of the form $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

We can call this eigenspace as E_2 .

Thus we can see that the sets E_0 , E_1 , and E_2 are linearly independent sets, thus $E_0 \cup E_1 \cup E_2$ is also linearly independent.

Since the largest linearly independent combination of vectors in the set $E_0 \cup E_1 \cup E_2$ is of size 3, and $P_2(R)$ has dimension 3, we can see that the eigenvectors of A are a basis for $P_2(R)$.

Thus our basis β is $\left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$

10. (10 points) Sec. 5.2 Question 13 Let T be an invertible linear operator on a finite dimensional vector space V

- (a) Recall that for any eigenvalue λ of T, λ^-1 is an eigenvalue of T^-1 . Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^-1 corresponding to λ^-1 .
- (b) Prove that if T is diagonalizable, then T^{-1} is also diagonalizable.

Solution: Part (a)

Suppose λ is an eigenvalue of T and v is an eigenvector of T corresponding to λ .

Then we have $T(v) = \lambda v$.

We can apply T^{-1} to both sides to get $T^{-1}(T(v)) = T^{-1}(\lambda v)$.

This implies that $v = \lambda T^{-1}(v)$.

Thus we have that $\lambda^{-1}v = T^{-1}(v)$.

Thus v is an eigenvector of T^{-1} corresponding to λ^{-1} .

Thus the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .

Part (b)

Suppose T is diagonalizable.

Then we have that $T = L_A$ for some matrix A.

Let Q be the matrix such that $Q^{-1}AQ = D$ where D is a diagonal matrix.

We can see that $T^{-1} = L_{A^{-1}}$.

We can see that $Q^{-1}A^{-1}Q = D^{-1}$.

Thus T^{-1} is diagonalizable.

11. (10 points) Sec. 5.2 Question 21 Let $W_1, W_2, W_3, \ldots, W_k$ be subspaces of finite-dimensional vector space V such that

$$\sum_{i=1}^{k} W_i = V$$

Prove that V is that direct sum of $W_1, W_2, W_3, \dots, W_k$ if and only

$$dim(V) = \sum_{i=1}^{k} dim(W_i)$$

Solution: Proof of \implies :

Suppose V is the direct sum of $W_1, W_2, W_3, \dots, W_k$.

Need to show that $dim(V) = \sum_{i=1}^{k} dim(W_i)$.

Let γ_i be a basis for W_i .

Since all γ_i are linearly independent and $\gamma_i \cap \gamma_j = \emptyset$ for $i \neq j$, we can see that $\gamma = \gamma_1 \cup \gamma_2 \cup \ldots \cup \gamma_k$ is a basis for V.

Thus $dim(V) = |(\gamma)| = \sum_{i=1}^{k} dim(W_i)$.

Pranav Tikkawar 01:640:350H Homework 8

Note that I use $|(\gamma)|$ to denote the number of elements in the basis γ . I frankly don't know if this is allowed but know I am denoting it as such.

Proof of $\Leftarrow=:$

Suppose $dim(V) = \sum_{i=1}^{k} dim(W_i)$.

Need to show that V is the direct sum of $W_1, W_2, W_3, \ldots, W_k$.

Let γ_i be a basis for W_i .

Since $V = \sum_{i=1}^k W_i$, we can see that $\forall v \in V$, $v = \sum_{i=1}^k w_i$ for some $w_i \in W_i$.

Thus $\gamma = \gamma_1 \cup \gamma_2 \cup \ldots \cup \gamma_k$ is a generating set for V.

Since $dim(V) = \sum_{i=1}^k dim(W_i)$ Then $\sum_{i=1}^k dim(W_i) = \sum_{i=1}^k dim(span(\gamma_i)) = dim(span(\gamma)) = |(\gamma)|$.

Since $|(\gamma)| = dim(V)$, so we can see that the size of γ is the same as the dimension of V. and thus by theorem 5.9 we can see that V is the direct sum of $W_1, W_2, W_3, \ldots, W_k$.

12. (10 points) Sec. 5.2 Question 22 Let V be a finite dimensional vector space with a basis β and let β_1, \ldots, β_k be a partition of β (ie β_1, \ldots, β_k are subsets of β such that $\beta = \beta_1 \cup \cdots \cup \beta_k$ and $\beta_i \cap \beta_j = \emptyset$ for $i \neq j$). Prove that $V = span\beta_1 \oplus \cdots \oplus span\beta_k$

Solution: We need to prove that $V = span\beta_1 + \cdots + span\beta_k$ and $span(\beta_i)span(\beta_j) = 0$ for $i \neq j$

Clearly the $span\beta_i \cap span(\beta_i) = 0$ for $i \neq j$ since $\beta_i \cap \beta_j = \emptyset$.

We can see that $V = span\beta_1 + \cdots + span\beta_k$ since $\beta = \beta_1 \cup \cdots \cup \beta_k$.

Thus $V = span\beta_1 \oplus \cdots \oplus span\beta_k$.