DOMANDA: Doto un invience di generatori $S = \{u_1, u_2, ..., u_j\}$ di uno spazio vettoriale V finitamente generato, la suitura $v = \lambda_1 u_1 + ... + \lambda_n u_n = unica?$

ES: If vettoris $(1,1), (1,0) \in (0,1) \in \mathbb{R}^2$ generates \mathbb{R}^2 . In falti per ognis $(a,b) \in \mathbb{R}^2$ in has: (a,b) = a(1,0) + b(0,1) + 0(1,1), may outlike $(a,b) = 0 \cdot (1,0) + (b-a) \cdot (0,1) + a(1,1)$ e $(a,b) = (a-b) \cdot (1,0) + 0 \cdot (0,1) + b(1,1)$.

Quindi la scrittura in generale NON è unica.

DEF.: Siano Zu1,..., uk} vettori di uno spazio vettoriale V. Si chianua Sotto SPAZIO DI V GENERATO DA U1,..., uk e ni indica con

< 41, ..., un>

 ℓ' insieme di tutte le combinazioni lineoni di $u_1,...,u_k \in V$: $\langle u_1,...,u_k \rangle := \ell \sum_{i=1}^k \text{ vi } u_i = \alpha_1 u_1 + ... + \alpha_k u_k \mid \alpha_i \in \mathbb{R}, i = 1,...,k$

e indicato con Spon(u1,..., un).

L'insieme delle combinazioni lineari di u1,..., un è un notto spazior vettoriale di V.

DIM.: Dobbiono provone che Υλ, η ER « Υ «1 «1 «+ «+ « » » β1 «1+ ··· + β « « « « « « « « » » » » i ha

λ («+ lu+ + ·· + « n lu n) + η (β1 u+ ·· +β u u n) € < u 1, ·· , u n>.

BUTIVITA COMMUTATIVITA ASSOCIATIVITA

Colcolisum: λ («1 11+ ··· + « 11 11 11 + γ (β111+ ··· + β111) = λ «111+ ··· + λ « 111+ ··· + η β111+ ··· + η β11+ ··· + η

= $(\lambda \alpha_1 u_1 + \eta \beta_1 u_1) + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_k u_k) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) = (\lambda \alpha_1 + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_1 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1) u_2 + \cdots + (\lambda \alpha_k u_k + \eta \beta_1$

LЕННА: <u1,..., un> € V è il più piccolo nottospazio vettoriale di V contenente иг,-.., ин.

DIM: E'nefficiente orrervore che se T e un sottospassio vettoriale di V contenente us,..., un, allora deve contenere auche tutte le loro combinassioni liveori. Quindi deve contenere auche cue,..., un>.

LEMMA: V è uno spazio vettoriale finitamente generato se e voltanto se $V=<u\epsilon_1,...,u_n>$ per qualche $u\epsilon_1,...,u_n\in V$.

- DIM: (=) Se V è fivitamente generato, allona 3 uz,..., un e V t.c. agui elemento vre V ri seriva come v=hzuzz..., zh mun per qualche hz,..., h eR. Quindi V \(\sigma \) (uz,..., un >. Dato che \(\suz,..., un \sigma \) \(\sigma \) \(\text{vi} \) ha \(V = < uz,..., un \).
- (€) Se V=<u+1,...,un>, allora agui vettore di V è combinazione liveore di un muneo finito di vettori: u+1,...,un. Quindi V è finitomente generato.
- Es. Dato vel si ha che cro = { av | a = R } = V.
- DEF: Dato un qualsioni nottoinsience S di una spazio vettoniale V, indichiona con 25> il più piccola rottospazio vettoniale di V contenente S. Allora 25> e l'innience di tutte le combinazioni lineori di elementi di S a coefficienti in R.

SESERCI 21 SUI GENERATORI

Es: Stobilire se i segueuti infiemi di vettori generano 123:

(i) (0,0,1), (2,1,0), (1,1,1)

(ii)(2,3,4),(3,2,1)

(iii)(1,0,0), (1,2,0), (0,0,2), (1,3,4).

<u>501</u>: Bisogua controllore che ogni vettore $(\alpha, \beta, \delta) \in \mathbb{R}^3$ si possa scrivere come combinazione lineare dei vettori dati.

(i) Dato (α,β,δ) ∈ R3 ci chiedious re 3 λ, λ, λ, λ ε R t.c.

$$(x, \beta, \gamma) = \lambda(0,0,1) + \lambda 2(2,1,0) + \lambda_3(1,1,1)$$

= $(2\lambda_2 + \lambda_3, \lambda_2 + \lambda_3, \lambda_1 + \lambda_3).$

Questa uguogliouza di vettori ri pro'interpretore come un rishema in 12,12,13:

$$\begin{cases} 2\lambda 2 + \lambda 3 = \alpha \\ \lambda_2 + \lambda_3 = \beta \\ \lambda_4 + \lambda_3 = \delta \end{cases}$$

Se tale ristema aumette soluzioni, allora i vettori generous R3, altrimuti no.

Studious la matrie completa execiata (riducendola a reale tromite l'algoritus di Gouss). $\begin{bmatrix}
0 & 2 & 1 & | & \alpha \\
0 & 1 & 1 & | & \beta
\end{bmatrix}
\xrightarrow{\text{I} \to \text{II}}
\begin{bmatrix}
1 & 0 & 1 & | & \beta \\
0 & 1 & 1 & | & \beta
\end{bmatrix}
= \begin{bmatrix}
A'|b'\end{bmatrix}.$

Biche rg[A']b']=rgA'=3=numero delle incognite \Rightarrow il nistema ammette un' unica soluzione: $\lambda_3=2\beta-\alpha$, $\lambda_2=\alpha-\beta$, $\lambda_3=Y-2\beta+\alpha$

Quivoli i vettori dati generous R3.

(ii) Qui obsious da studiose:

$$(\alpha, \beta, \delta) = \lambda_1(2, 3, 4) + \lambda_2(3, 2, 1).$$

Quiudi il sistema ossociato ha 3 equazioni in 2 incognite. E quiudi lecito ospettorsi che non abbia soluzioni in generale (ossia che la matrice completa ridotta a scala possa overe rongo 3, mentre la incompleta 2).

En questo \bar{z} sufficiente cercore un vettore di \mathbb{R}^3 che NON sia combinazione lineare di (2,3,4) e (3,2,1).

Considerions $(1,0,0) \in \mathbb{R}^3$. Ci chiedians: $\exists \lambda_1, \lambda_2 \in \mathbb{R} \quad \forall \lambda_1, \lambda_2 \in \mathbb{R} \quad \forall \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$

Provious a nisolvere il vistema ossociato:

(2λ1+3λ2=1 3λ1+2λ2=0 4λ1+λ2=0 Procedious per sostibusione la \mathbb{T}^a equasione motra $\lambda_2=-4\lambda_1$, da cui vortituendo nella \mathbb{T}^a : $3\lambda_1-4\lambda_1=0 \Rightarrow \lambda_1=0$. Ne segue che volamente (0,0) vodobista le ultime due equasioni. Tuttonia, (0,0) NON puo' vodobistore la prima equasione \Rightarrow \sharp volusioni.

Fu altre porole (1,0,0) NON puo' essere combinazione lineone dei vettori dati. Quindi (2,3,4) e (3,2,1) NON generous \mathbb{R}^3 .

(iii) Nuovamente dobniono mortrore che $\exists \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ t.c. $(a, \beta, Y) = \lambda_4 (4, 0, 0) + \lambda_2 (4, 2, 0) + \lambda_3 (0, 0, 2) + \lambda_4 (1, 3, 4)$.

Tuttovia, mostrious un METODO AUTERNATIVO di procedere. Yuiziono con il seguente:

> FATTO: Sia SEV un invience di generatori e nia IEV un invience dato. Se ogni elemento di S è combinazione lineore di elementi di I, allora I genera V.

Torvious all'exercisio: sappious che (1,0,0), (0,1,0) e (0,0,1) generous \mathbb{R}^3 . Quiudi $\tilde{\epsilon}$ sufficient mostrore che i vettori dati $\tilde{I}=\{(1,0,0),(1,2,0),(0,0,2),(1,3,4)\}$ sions \tilde{t} .c.

$$(1,0,0), (0,1,0), (0,0,1) \in \langle T \rangle$$

Ohioramente $(1,0,0) \in I \Rightarrow (1,0,0) \in \langle I \rangle$.

$$(0,1,0) = \frac{1}{2}(1,2,0) - \frac{1}{2}(1,0,0) \in \langle I \rangle$$

$$(0,0,1) = \frac{1}{2} (0,0,2) \in \langle T \rangle$$

Quiudi explicitormente ogni vettore $(a, \beta, Y) \in \mathbb{R}^3$ ni puo' verivere come combinazione lineare dei vettori in I come segue:

Quiudi dobious provato che i vettori dati sous generatori di R3.

Notions che mell'ultime exercisio obtaine provato che \mathbb{R}^3 è generato da (1,0,0), (1,2,0), (0,0,2). Quindi il vettore $(1,3,4) \in \mathbb{R}^3$ era "superflue", ossia può anch'esso essere descritto come combinazione lineare di (1,0,0), (1,2,0), (0,0,2). Tuttonia, obtiono visto che se S genera V, anche $S \cup \{v\}$ genera V $(V \in V)$, quindi mon c'è problema mel concludere che i vettori dati generius \mathbb{R}^3 .