STATS 415: Dimension reduction for linear regression

Prof. Liza Levina

Department of Statistics, University of Michigan

Improving on Ordinary Least Squares

- Subset selection (of variables X)
- Shrinkage (of coefficients $\hat{\beta}$)
- Dimension reduction (of variables X) if p is large

Dimension reduction

- Projecting all p predictors into a k-dimensional space where k < p, and then fitting a smaller linear regression model (with k predictors)
- E.g. principle components regression, partial least squares
- Advantage: a much smaller model, faster to fit, coefficients are stable
- Disadvantages: the relationship between *y* and *X* is not taken into account when performing dimension reduction; original variables are no longer in the model, therefore interpretation is lost

Principal component analysis

- The main objective: reduce dimensionality of the data set.
- Replaces the original p variables with k the original variables that are a "good representation" of the data (a linear dimension reduction method)
- Belongs to the class of projection methods
- Useful for
 - visualization (project to 2-d or 3-d)
 - as a pre-processing step for other methods that do not deal well with an excessive number of variables (principle component regression (PCR), classification based on principle components)

A Toy Example:

Question: What is a good 1-dim projection of the data?

Some Possibilities

- Could use 1 (2,3,...) of the variables (e.g. X_1 in the toy example). But what if there are many thousands of variables?
- Better idea: use a linear combination of the variables; i.e. a weighted average of the variables. In the toy example,

$$Z_1 = w_1 X_1 + w_2 X_2$$
.

• What is a good choice for the weights w_i ? Need a criterion.

The Criterion for Principal Components

PCA finds the direction vector w that maximizes

$$\max_{w:||w||=1} \operatorname{Var}\left(\sum_i w_i X_i\right)$$

Can rewrite this in matrix form:

$$\max_{w:||w||=1} w^T \Sigma w$$

where Σ is the covariance matrix of the data X.

 The "interesting" direction in the data according to the PCA criterion is the one that captures the most variance in the data.

Toy Example: 1-dim PCA solution

Toy Example: 2-dim PCA solution

- What if we wanted a second linear combination, i.e. $Z_2 = v_1 X_1 + v_2 X_2 = v^T X$?
- Require subsequent linear combinations to be orthogonal to previous ones.

Mathematical Formulation of PCA

- Assume that the variables have been centered
- The problem: Find p new variables Z_1, Z_2, \dots, Z_p , such that $Z_i = \sum_{i=1}^p w_{ij} X_j$ and the weights w maximize

$$w_i^T \Sigma w_i$$
 subject to $w_i^T w_i = 1, w_i^T w_j = 0.$

• In matrix form: find Y = XW where W solves

$$\max_{W : W^T W = I} W^T \Sigma W.$$

 Solution (proof omitted): the columns of W are given by the eigenvectors of Σ.

Properties of PCs

- New variables Z_i have mean 0
- $Var(Z_j) = \lambda_j$, where λ_j is the *j*th largest eigenvalue of Σ .
- $Cor(Z_j, Z'_j) = 0$ for all $j \neq j'$: PCs are uncorrelated.

PCA Terminology

- The vectors w_i are called PC directions
- Vectors $Z_i = Xw_i$ are projections of the data onto the PC directions
- Components of Xwi are called scores
- The coordinates w_{ij} are called loadings; sometimes loadings are defined as $\sqrt{\lambda_j}w_{ij}$.

Covariance vs Correlation

- Should we standardize the variables first (mean 0, sd 1)?
- This is equivalent to applying PCA to the correlation matrix instead of the covariance matrix
- The PCs from covariance and from correlation are not the same
- Reason to standardize: makes the analysis independent of units; generally recommended.
- Reason to not standardize: there is information in the variance, particularly if all variables are measured on the same scale

Example: Athletic Performance Data

- Records for 55 countries in the following men's track events: 100, 200, 400, 800, 1500, 5000, 10000 meters and the marathon
- The data are in seconds for the first three events and in minutes for the rest.

Country codes

AG=Argentina AL=Australia AR=Austria BG=Belgium BM=Bermuda BZ=Brazil BU=Burma CD=Canada CL=Chile CH=China CO=Colombia CI=Cook.Islands CR=Costa.Rica CS=Czechoslovakia DR=Denmark DM=Dominican.Rep FL=Finland FR=France GD=German.Dem.Rep GF=German.Fed.Rep GB=Great.Britain.NI GC=Greece GT=Guatemala HU=Hungary IN=India IO=Indonesia IL=Ireland IS=Israel IT=Italy JA=Japan KY=Kenya KS=Korea KN=Korean.DP.Rep LX=Luxemburg MA=Malaysia MR=Mauritius MX=Mexico NL=Netherlands NZ=New.Zealand NW=Norway PN=Papua.New.Guinea PH=Philippines PL=Poland PR=Portugal RO=Romania SI=Singapore SP=Spain SW=Sweden SZ=Switzerland TP=Taipei TH=Thailand TU=Turkey US=USA UR=USSR WS=Western.Samoa

Pairwise scatterplots and histograms

Loadings from the covariance matrix (variables not standardized)

Variable	Comp1	Comp2
X100	-0.020	-0.211
X200	-0.042	-0.359
X400	-0.111	-0.828
X800	-0.005	-0.023
X1500	-0.014	-0.045
X5000	-0.079	-0.130
X10000	-0.181	-0.299
Marathon	-0.973	0.181

Projection onto the first two PCs

First two principal components from variances

Loadings from the correlation matrix

Variable	Comp1	Comp2
X100	-0.318	0.567
X200	-0.337	0.462
X400	-0.356	0.248
X800	-0.369	0.012
X1500	-0.373	-0.140
X5000	-0.364	-0.312
X10000	-0.367	-0.307
Marathon	-0.342	-0.439

First two principal components from correlations

How many PCs should we use?

- For visualization, can only use 2 or 3
- For general dimension reduction, want to keep enough to represent the data "well"
- Scree plot: plot λ_i or $\sqrt{\lambda_i}$ against i and look for an "elbow"
- Percentage of variance explained: component i "explains" $\frac{\lambda_i}{\sum_{j=1}^p \lambda_j}$, so pick the first k such that

$$\frac{\sum_{j=1}^k \lambda_j}{\sum_{j=1}^p \lambda_j} \ge 1 - \alpha$$

for some pre-specified small α (e.g. 0.1)

• Some hypothesis tests have been proposed, but no universal rule

Scree plot for athletic data

Some other issues

- PCs with equal variance: if k eigenvalues coincide, their eigenspace is a unique k-dimensional subspace, but within that subspace PC directions cannot be distinguished
- Outliers: PCA is not a robust method, some robust versions exist
- Subsets of variables: sometimes want to express a PC in terms of just a few original variables (for ease of interpretation). Sparse variants of PCA are available (shrink many loadings to exactly 0).
- Singular Σ : then only r PCs are defined, where $r = \operatorname{rank}(\Sigma)$. Always the case when p > n, since the sample covariance matrix has rank $\min(p, n-1)$.

Principal Components Regression (PCR)

PCR replaces the regression model

$$y = \beta_0 + \beta_1 x_1 + \dots \beta_p x_p + \varepsilon$$

with

$$y = \beta_0 + \beta_1 z_1 + \dots + \beta_k z_k + \varepsilon$$

- Note: PCs are centered, so $\hat{eta}_0 = ar{y}$
- Potentially, $k \ll p$
- · New predictors are orthogonal
- Interpretation and inference are no longer in terms of the original variables

Partial Least Squares

- PCR ignores y when building z's.
- Partial least squares (PLS) chooses z's that are best at predicting
 y.
- PLS does not solve a well-defined modeling problem; it's just an algorithm.
- Also need to select number of components
- No interpretation

Partial Least Squares

Algorithm:

- **1** Center y, center and standardize each x_j
- 2 Regress y on each x_j separately to get α_j
- 3 Construct $z_1 = \sum \alpha_i x_i$, which is the first PLS component
- 4 Regress y on z_1 to get $\hat{\beta}_1$
- **6** Regress each x_j on z_1 and replace it with the residual ("orthogonolize" x_j to the first component)
- 6 Return to step 2 and continue until the final model is fit:

$$\hat{y} = \bar{y} + \hat{\beta}_1 z_1 + \cdots + \hat{\beta}_k z_k$$

Summary

- PCA is a useful and popular dimension reductino method
- Easy to use in regression, via PCR and PLS
- Need to choose K
- PCR is not interpretable in the original variables