

UA776

PROGRAMMABLE LOW POWER SINGLE OPERATIONAL AMPLIFIERS

- MICROPOWER OPERATION
- NO FREQUENCY COMPENSATION REQUIRED
- WIDE PROGRAMMING RANGE
- HIGH SLEW RATE
- SHORT-CIRCUIT PROTECTION
- PROGRAMMABLE SINGLE OP-AMPs

ORDER CODES

je N	D
0°C •	•
05°C •	•
25°C •	•
	00°C

76-01.TBL

DESCRIPTION

The UA776 programmable operational amplifier is characterized by, low supply current and low input noise over a wide range of operating supply voltages.

Coupled with programmable electrical characteristics, it is an extremely versatile amplifier for use in high accuracy, low power consumption analog applications.

Input noise voltage and current, power consumption, and input current can be optimized by a single resistor or current source that sets the chip quiescent current for nano-watt power consumption or for characteristics similar to the UA741.

Internal frequency compensation, absence of latch up, high slew rate and short-circuit protection assure ease of use in long time integrators, active filters, and sample and hold circuits.

PIN CONNECTIONS (top view)

April 1995 1/8

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA776M	UA776I	UA776C	Unit
Vcc	Supply Voltage	±18	±18	±18	V
Vi	Input Voltage - (note 1)	±15	±15	±15	V
V_{id}	Differential Input Voltage	±30	±30	±30	V
P _{tot}	Power Dissipation	500	310	310	mW
	Output Short-circuit Duration		Infinite		
T _{oper}	Operating Free Air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range	-65 to +150	-65 to +150	-65 to +150	°C

Note: 1. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{set} = 15μA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Тур.	Max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5 6	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	15 40	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 15	50 50 100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	400		V/m\
$T_{amb} = 25^{\circ}C$ 20 25	92		dB
· min. – · amb – · max.	160	180 200	μА
V _{icm} Input Common Mode Voltage Range ±10 ±10			V
$\begin{array}{c cccc} CMR & Common \ Mode \ Rejection \ Ratio \ (R_s \leq 10k\Omega) \\ & T_{amb} = 25^{o}C \\ & T_{min.} \leq T_{amb} \leq T_{max.} \end{array} \hspace{0.5cm} \begin{array}{c ccccc} 70 & 90 & 70 \\ & 70 & 70 \end{array}$	90		dB
I _{os} Output Short-circuit Current 0.5 3 15 6	12	30	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		V
V _{ior} Offset Voltage Adjustment Range 9	18		mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8		V/µs
$\begin{array}{c} t_r & \text{Rise Time (V}_i = \pm 20 \text{mV, C}_L = 100 \text{pF, unity gain)} \\ R_L = 5 \text{k} \Omega \\ R_L = 75 \text{k} \Omega \end{array} \qquad \qquad 1.6$	0.35		μs
$ \begin{array}{c c} K_{OV} & \text{Overshoot (V_i = $\pm 20 mV$, C_L = $100 pF$, unity gain)} \\ R_L = 5 k \Omega \\ R_L = 75 k \Omega \\ \end{array} $	10		%
R _i Input Resistance 50	5		ΜΩ
C _{id} Differential Input Capacitance 2	2		pF
R₀ Output Resistance 5	1		kΩ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7		MHz
THD Total Harmonic Distortion (f = 1kHz, Av = 20dB, V_0 = 2Vpp, C_L = 100pF, T_{amb} = 25°C) R_L = $5k\Omega$ R_L = $75k\Omega$ 0.8	0.025		%
e _n Equivalent Input Noise Voltage $(f = 1 \text{kHz}, R_s = 100\Omega)$ 40	20		nV √Hz

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 3V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	$I_{set} = 1.5 \mu A$			I _{set} = 15μA			Unit	
Syllibol	r ai ailletei	Min.	Тур.	Max.	Min.	Тур.	Max.]	
V _{io}	Input Offset Voltage $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		2	5 6		2	5 6	mV	
l _{io}	Input Offset Current $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		0.7	3 10		2	15 40	nA	
l _{ib}			2 2	7 10 20		15 15	50 50 100	nA	
A_{vd}	$ \begin{array}{ll} \text{Large Signal Voltage Gain } (V_o = \pm 1V) \\ T_{amb} = 25^{o}C & R_L = 5k\Omega \\ R_L = 75k\Omega \\ T_{min.} \leq T_{amb} \leq T_{max.} & R_L = 5k\Omega \\ R_L = 75k\Omega \end{array} $	50 25	200		50 25	200		V/m'	
SVR	Supply Voltage Rejection Ratio ($R_s \le 10k\Omega$) $T_{amb} = 25^{9}C$ $T_{min.} \le T_{amb} \le T_{max.}$	77 77	92		77 77	92		dB	
I _{CC}	Supply Current, no load $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		13	20 25		130	160 180	μА	
V_{icm}	Input Common Mode Voltage Range	±1			±1			V	
CMR	Common Mode Rejection Ratio ($R_s \le 10k\Omega$) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	70 70	90		70 70	90		dB	
los	Output Short-circuit Current	0.5	3	15	2	5	20	mΑ	
±V _{OPP}	$ \begin{array}{ccc} \text{Output Voltage Swing} \\ T_{amb} = 25^{\circ}C & R_L = 75k\Omega \\ R_L = 5k\Omega \\ T_{min.} \leq T_{amb} \leq T_{max} & R_L = 75k\Omega \\ R_L = 5k\Omega \end{array} $	2 2	2.4		2 1.9 2 1.9	2.4 2.1		V	
V _{ior}	Offset Voltage Adjustment Range		9			18		m۷	
SR	Slew Rate (V _i = ±1V, C _L = 100pF, unity gain) $R_L = 5k\Omega$ $R_L = 75k\Omega$		0.03			0.35		V/µs	
t _r	Rise Time (V _i = ± 20 mV, C _L = 100 pF, unity gain) R _L = $5k\Omega$ R _L = $75k\Omega$		3			0.6		μs	
Kov	Overshoot (V _i = ± 20 mV, C _L =100pF, unity gain) R _L = $5k\Omega$ R _L = $75k\Omega$		0			5		%	
Ri	Input Resistance		50			5		МΩ	
C _{id}	Differential Input Capacitance		2			2		pF	
Ro	Output Resistance		5			1		kΩ	
GBP			0.075			0.5		МН	
THD	$ \begin{array}{l} Total \ Harmonic \ Distortion \ (f=1kHz, \ Av=20dB, \\ V_o=1V_{PP}, \ C_L=100pF, \ T_{amb}=25^{o}C) \\ R_L=5k\Omega \\ R_L=75k\Omega \end{array} $		1			0.03		%	
en	Equivalent Input Noise Voltage (f = 1kHz, $R_s = 100\Omega$)		20			20		nV √Hz	

BIASING CIRCUITS

RESISTOR BIASING

TRANSISTOR CURRENT SOURCE BIASING

FET CURRENT SOURCE BIASING

OFFSET VOLTAGE NULL CIRCUIT

TRANSIENT RESPONSE TIME TEST CIRCUIT

TYPICAL APPLICATIONS

HIGH ACCURACY SAMPLE AND HOLD

MULTIPLEXING AND SIGNAL CONDITIONING WITHOUT FETs

NANO-WATT AMPLIFIER

HIGH INPUT IMPEDANCE AMPLIFIER

PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP

Dimensions		Millimeters		Inches			
Dillielisions	Min.	Тур.	Max.	Min.	Тур.	Max.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
E	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0260	
i			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches			
Dilliensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1		•	45°	(typ.)		•	
D	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.