Dokumentacja techniczna

dla konsoli przenośnej AirBoy

Piotr Mijakowski

Szczecin, 2022

Spis treści

1	Wst	ęp 2
	1.1	Informacje ogólne
	1.2	Założenia projektu
2	Buc	lowa urządzenia 2
	2.1	Mikrokontroler
		Informacje ogólne
		Rozkład wyprowadzeń
	2.2	Blok zasilania
		Ładowarka baterii
		Bateria
		Włącznik główny
		Przetwornice napięcia
	2.3	Ekran
		Informacje ogólne
		Komunikacja
	2.4	Audio
		Informacje ogólne
		Komunikacja
		Głośniki
	2.5	Moduł kontrolera
		Informacje ogólne
		Komunikacja
	2.6	Programator
		Informacje ogólne
	2.7	Slot kart SD
		Informacje ogólne
	2.8	Port rozszerzeń
		Informacie ogólne

3	Sch	ematy	16
	3.1	Schemat ogólny	16
	3.2	Schemat zasilania	17
	3.3	Schemat audio	18
	3.4	Schemat programatora	19
	3.5	Schemat kontrolera	20
_	PC1 4.1 4.2	B Opis	21 21 22
5	Bib	liografia	22

1 Wstęp

1.1 Informacje ogólne

Air Boy to przenośna konsola do gier stworzona do nauki programowania. Oparta jest o wydajny mikrokontroler ESP32 umożliwiający pisanie gier różnych gatunków: platformówki, fps, itd.

1.2 Założenia projektu

Konsola Airboy została opracowana z poniższymi założeniami:

- Przenośność powinna umożliwiać prostą zmianę środowiska pracy dom <-> szkoła
- Możliwość rozbudowy powinna umożliwić rozbudowę w celu dodania dodatkowych funkcjonalności
- Prostota tworzenia tworzenie gier powinno być proste co ułatwi początkującym programistą naukę
- Przystępna cena konsola powinna być dostępna za niewielką cenę

2 Budowa urządzenia

2.1 Mikrokontroler

Informacje ogólne

Mikrokontrolerem używanym w konsoli AirBoy jest ESP32-WROOM-32D o następujących parametrach:

- 2 rdzeniowy procesor Xtensa 32-bit
- Taktowanie rdzenia 240 MHz lub 160 MHz
- Pamięć RAM 520 KB (320 KB DRAM oraz 200 KB IRAM)
- Pamięć flash 4 MB
- Bluetooth v4.2

- Wi-Fi
- Napięcie wejścia-wyjścia 3,3V
- Zasilanie 3,3V

Rozkład wyprowadzeń

ESP32 w konsoli AirBoy używa wielu magistrali komunikacyjnych:

 SPI_a - do komunikacji z wbudowanym wyświetlaczem

 SPI_b - do komunikacji z kartami SD

 $\rm I^2C_a$ - do komunikacji z wbudowanym kontrolerem

 $\rm I^2C_b$ - wyprowadzony do portu rozszerzeń

 ${\rm I^2S}$ - do komunikacji z układami audio

Ponadto do mikrokontrolera podłączone są piny sterujące z poszczególnych modułów konsoli.

2.2 Blok zasilania

Ładowarka baterii

Układ ładowarki baterii jest oparty na układzie TP4056. Ładowarka ta daje maksymalny prąd o natężeniu 1A, choć jest możliwa jego zmiana poprzez rezystor R19 (przykładowe wartości rezystora w poniższej tabeli). Podczas podłączenia do ładowania i jednoczesnym włączeniu urządzenia ładowarka podaje prąd na baterie oraz zasila resztę układu. Ładowanie odbywa się poprzez zintegrowany port USB-C.

Bateria

Konsola ma wbudowaną baterie Li-Po o pojemności 2500 mAh. Bateria ma wymiary 40x50x10 mm i jest w całości schowana pod obudową.

Włącznik główny

Za włączenie konsole odpowiada układ IRF7307, który zawiera klucz (P-MOSFET) jak i jego sterowanie (N-MOSFET). Użycie tego rodzaju wyłącznika

było spowodowane dużym prądem zasilania konsoli (dużo większym niż maksymalny prąd przełącznika suwakowego).

Przetwornice napięcia

AirBoy jest zasilany przez 2 główne napięcia: 5V i 3,3V. Napięcie baterii (3-4,2V) zostaje przekształcone za pomocą przetwornicy STEP-UP MT3608 na napięcie 5V. Napięcie to zasila układy audio oraz jest dostępne na porcie rozszerzeń w celu zwiększenia jego możliwości. Napięcie 3,3 V wytwarza przetwornica AP2115-3.3. podłączona jest ona do: mikrokontrolera, układów kontrolera, programatora, wyświetlacza oraz również dostępne jest na porcie rozszerzeń. Układy te zostały dobrane w celu osiągnięcia jak najdłuższego czasu pracy na baterii.

2.3 Ekran

Informacje ogólne

Używanym ekranem jest ekran TFT o rozdzielczości 320x240px oraz przekątnej 2,8 cala. Jego sterownikiem jest ILI9341. Konsola korzysta z 16 bitowego koloru rgb565. Moduł ekranu jest zamontowany do płyty głównej przy pomocy 4 śrub na podkładkach oraz Goldpinów.

Komunikacja

Komunikacja z ekranem odbywa się dzięki magistrali SPI i jest to magistrala SPI $_{\rm a}$. Częstotliwość taktowania magistrali wynosi 40 MHz. Zegar 80 MHz może powodować niestabilność systemu lub błędy graficzne. W takim wypadku należy zmniejszyć częstotliwość.

Numery połączeń magistrali SPI_a do ESP32*:

MISO	MOSI	SCK	RST	CS	DC
19	23	18	2	27	4

^{*}Dokładny schemat połączeń patrz punkt 3. Schematy

2.4 Audio

Informacje ogólne

Układ audio został zbudowany w oparciu o układy MAX98357 czyli układy wzmacniaczy klasy D z wbudowanymi układami DAC I2C. Na płycie głównej konsoli znajduje się miejsce na 2 takie układy, istnieje natomiast możliwość montażu tylko jednej sztuki. W takim wypadku należy dostosować odpowiednio rezystor R7 lub R12 (w zależności od umiejscowienia układu). Rezystory te mogą mieć 3 wartości w zależności od trybu pracy układu.

- $1M\Omega$ daje układ mono (left/2 + right/2)
- $300 \mathrm{K}\Omega$ daje układ stereo o kanale prawym
- 0Ω daje układ stereo o kanale lewym

Rezystory R8, R9, R10, R11 ustawiają wzmocnienie układu. Na każdą parę powinien być montowany tylko jeden rezystor. Poniżej znajduje się opis wartość tych rezystorów dla wzmocnienia.

Wzmocnienie (dB)	16	12	9	6	3
Wartość rezystora R8	X	X	Χ	Ω	$100 \mathrm{k}\Omega$
Wartość rezystora R9	$100 \mathrm{k}\Omega$	Ω	X	X	X

Komunikacja

Układy audio komunikują się z mikrokontrolerem przy pomocy magistrali I2S. Częstotliwość próbkowania może wynosić od 8kHz do 96kHz. Magistrala może korzystać z 16/24/32 bitowej komunikacji.

Podłączenie magistrali I²S do ESP32:

DOUT	BCLK	LRC
17	16	5

Głośniki

Konsola używa wbudowanych głośników o impedancji 8Ω oraz Mocy 1W, dlatego standardowe wzmocnienie ustawione jest na 6 dB.

2.5 Moduł kontrolera

Informacje ogólne

Kontroler składający się z 13 przycisków jest oparty o układy MCP23008. Układy te obsługują linię interrupt (po jednej linii na sztukę), które użytkownik może wykorzystać do zdarzeniowego systemu sprawdzenia przycisków. Na płycie głównej znajdują się 2 takie układy. Jeden obsługuje 4 przyciski kierunku, start, select, menu oraz lewy bumper. Drugi natomiast przyciski A, B, X, Y oraz prawy bumper. Możliwe jest również wyprowadzenie 3 dodatkowych przycisków, które jednak nie są zamontowane w podstawowej wersji konsoli.

Komunikacja

Układy komunikują się z ESP32 magistralą I2 C_a . Ma ona wbudowane rezystory 1 $K\Omega$. Maksymalna prędkość transmisji jest ograniczona ze względu na układ ESP32 i wynosi 800KHz (teoretyczna prędkość maksymalna to 1,7 MHz). Układy zgłaszają się na adresach 0x27 dla układu obsługującego przyciski kierunku i 0x26 dla drugiego układu.

Podłączenie układów kontrolera do ESP32:

$\overline{\text{SCL}}$	SDA	INT0	INT1
33	32	34	35

2.6 Programator

Informacje ogólne

Za programowanie konsoli odpowiada układ CH340G, który jest podłączony do portu USB-C (odpowiedzialnego również za ładowanie konsoli). Programowanie jest możliwe w różnych prędkościach, lecz najszybszą przetestowaną było 921600 bodów. Układ ten dzięki pobliskim tranzystorom automatycznie resetuje mikrokontroler i wprowadza go w stan programowania, po czym resetuje go ponownie.

2.7 Slot kart SD

Informacje ogólne

Nośnikiem danych na gry jest karta SD. Podłączana jest ona do konsoli poprzez slot kart SD wbudowany w moduł ekranu. Komunikacja do karty SD odbywa się po magistrali SPI_b. Taktowanie magistrali wynosi 20 MHz, może zostać zwiększone do 40 MHz co przyspieszy wczytywanie gier. Ta sama magistrala dostępna jest na porcie rozszerzeń.

Podłączenie magistrali:

MISO	MOSI	SCK	CS
12	13	14	15

2.8 Port rozszerzeń

Informacje ogólne

Port rozszerzeń jest ważną cechą konsoli. Dzięki niemu możliwości mogą zostać zwiększone w niemal dowolnym zakresie. Zawiera on magistralę $\mathrm{SPI_b}$ do podłączenia karty SD lub pamięci FLASH wbudowanej w moduł rozszerzający, dzięki czemu moduł taki może być używany bez dodatkowej karty SD . Po magistrali tej można podłączyć również inne urządzenia peryferyjne korzystające z SPI . Może to jednak wpłynąć na odczyt kart SD . Podłączona jest do niego również magistrala $\mathrm{I^2C_b}$ dzięki czemu można podłączyć urządzenia takie jak żyroskop, czy akcelerometr. Dodatkowo port ten ma wbudowane 4 piny GPIO z których 2 są portami IO , a 2 kolejne portami input only. Układy na porcie mogą być zasilane z $\mathrm{5V}$ oraz 3,3 V . Należy pamiętać że $\mathrm{ESP32}$ przyjmuje na wejścia tylko 3,3 V !

Rozkład wyprowadzeń:

SDA	SCL	D0	D1	D2	D3
21	22	25	26	36	39

3 Schematy

3.1 Schemat ogólny

3.2 Schemat zasilania

3.3 Schemat audio

3.4 Schemat programatora

3.5 Schemat kontrolera

4 PCB

4.1 Opis

4.2 Ścieżki

5 Bibliografia

- https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
- $\bullet \ \ https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf$
- https://ww1.microchip.com/downloads/en/DeviceDoc/MCP23008-MCP23S08-Data-Sheet-20001919F.pdf
- https://www.olimex.com/Products/Breadboarding/BB-PWR-3608/resources/MT3608.pdf
- http://www.tp4056.com/d/tp4056.pdf
- https://www.diodes.com/assets/Datasheets/AP2115.pdf