Домашнее задание №3 курса «Гармонический анализ»

Автор:	Хоружий	Кирилл
--------	---------	--------

От: 13 мая 2021 г.

Содержание

		Производные обобщенных функций	
1 Третье задание по математическому анализу			4
	1.1	Сходимость и полнота систем функций в пространствах C и L_p	4
	1.2	Банаховы пространства и их двойственные	8
	1.3	Распредления (обобщенные функции)	16

Предел по базе – предел по фильтру. Для любых двух множеств из фильтра

0.1 Производные обобщенных функций

21.75

Найдём

$$I = \langle (\ln x)' \mid \varphi \rangle = -\langle \ln |x| \mid \varphi \rangle = -\int_{-\infty}^{+\infty} \ln |x| \varphi'(x) \, dx = \langle \operatorname{smth} | \varphi \rangle,$$

однако просто вернуть производную на лоагрифм будет нехорошо. Запишем это так:

$$I = -\lim_{\varepsilon \to +0} \left(\int_{\infty}^{\varepsilon} + \int_{\varepsilon}^{+\infty} \right) \ln|x| \varphi'(x) \, dx = \lim_{\varepsilon \to +0} \left[\ln \varepsilon \cdot (\varphi(\varepsilon) - \varphi(-\varepsilon)) \right] + \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, dx.$$

Здесь заметим, что

$$\ln \varepsilon \cdot (\varphi(\varepsilon) - \varphi(-\varepsilon)) = 2\varepsilon \ln \varepsilon \cdot \frac{\varphi(\varepsilon) - \varphi(-\varepsilon)}{2\varepsilon} = 0\varphi'(0) = 0,$$

тогда

$$I = \lim_{\varepsilon \to +0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, dx,$$

но 1/x – не является локально интегрируемой в 0 функцией. Итого

$$I = v. p. \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x} dx = \left\langle \mathcal{P} \frac{1}{x} \middle| \varphi \right\rangle.$$

Другими словами мы установили, что

$$(\ln|x|)' \stackrel{D'}{=} \mathcal{P}\frac{1}{x}, \Leftrightarrow (\ln|x|)' \stackrel{*w.}{=} \mathcal{P}\frac{1}{x}, \Leftrightarrow \langle (\ln|x|)' | = \langle \mathcal{P}\frac{1}{x} |.$$

21.84

Уместен вопрос: когда верно, что

$$\langle \lambda_f' \mid \varphi \rangle = \langle \lambda_{f'} \mid \varphi \rangle.$$

Далее пусть $\frac{d}{dx}$ – классическая производная, f' – производная обобщенной функции, тогда наш вопрос будет выглядеть, как

$$\langle f' \mid \varphi \rangle = \left\langle \frac{df}{dx} \mid \varphi \right\rangle + \sum_{k=1}^{n} \Delta f(x_k) \langle \delta(x - x_k) \mid \ldots \rangle,$$

где x_k – точки разрыва классической функции f, а

$$\Delta f(x_k) = f(x_k + 0) - f(x_k - 0) \in \mathbb{R}.$$

В частоности рассмотрим случай с $x_k=0$. Тогда

$$\langle f' \mid \varphi \rangle = -\langle f \mid \varphi' \rangle = -\int_{-\infty}^{+\infty} f(x)\varphi'(x) dx,$$

что удобно расписать в виде

$$-\left(\int_{-\infty}^{0} + \int_{0}^{\infty} f(x)\varphi'(x) = -f(x)\varphi(x)\Big|_{+0}^{+\infty} - f(x)\varphi(x)\Big|_{-\infty}^{0} + \int_{-\infty}^{+\infty} \frac{df(x)}{dx}\varphi(x) dx = \Delta f(0)\langle \delta(x) | \varphi \rangle + \left\langle \frac{df}{dx} | \varphi \rangle.$$

Домашнее задание: _

Найти $(\ln x_+)'$ и $\frac{1}{x+i\cdot 0}$, где

$$\ln x_{+} = \begin{cases} \ln x, & x > 0, \\ 0, & x < 0. \end{cases} \qquad \left\langle \frac{1}{x \pm i \cdot 0} \middle| \varphi \right\rangle = \lim_{\varepsilon \to +0} \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x \pm i\varepsilon} \, dx, \quad \Rightarrow \frac{1}{x \pm i \cdot 0} \stackrel{\mathcal{D}'}{=} \mp i\pi \delta(x) + \mathcal{P} \frac{1}{x}.$$

T29, T30

Следующее утверждение – страница 472, Богачев-Смолянов.

Lem 0.1. Пусть $f \in \mathcal{D}'\left(\mathbb{R}\right)$ и так оказалось, что f'=0, тогда f имеет вид $\langle f|\varphi\rangle=c\int_{-\infty}^{\infty}\varphi(x)\,dx$.

 \triangle . Утверждается, что $c = \langle f \, | \, \varphi_0 \rangle$ годится, где

$$\varphi_0 \in \mathcal{D}(\mathbb{R}): \int_{-\infty}^{+\infty} \varphi_0(x) dx = 1.$$

Итак, любую функцию $\varphi \in \mathcal{D}$ можно представить в виде

$$\varphi = -\theta \cdot \varphi_0 + \theta \cdot \varphi_0, \qquad \theta = \int_{-\infty}^{+\infty} \varphi(x) dx.$$

Зададим функцию от вида

$$\psi(x) = \int_{-\infty}^{x} (\varphi(t) - \theta \varphi_0(t)) dt \in \mathcal{D}(\mathbb{R}).$$

Собирая всё вместе находим

$$\psi' = \varphi - \theta \cdot \varphi_0, \quad \Rightarrow \quad \langle f | \varphi \rangle = \langle f | \psi' + \theta \varphi_0 \rangle = \langle f | \psi' \rangle + \theta \langle f | \varphi_0 \rangle,$$

где $-\langle f' \, | \, \psi \rangle = 0$ по условию. Также $\langle f \, | \, \varphi_0 \rangle = c$, тогда верно, что

$$\psi' = c \cdot \theta = c \int_{-\infty}^{+\infty} \varphi(x) dx$$
, Q. E. D.

Thr 0.2. Для всякой обобщенной функции f из $\mathcal{D}(\mathbb{R})$ существует $g \in \mathcal{D}'(\mathbb{R})$ такая, что $g' \stackrel{\mathcal{D}'}{=} f$. Для всякой другой $h \in \mathcal{D}'(\mathbb{R})$ верно, что если $h' \stackrel{\mathcal{D}'}{=} f$, то $g - h \stackrel{\mathcal{D}'}{=} c$.

 \triangle . Точно также берем некоторую φ , ψ . Положим, по определению, что

$$\langle g \, | \, \varphi \rangle \stackrel{\text{def}}{=} - \langle f \, | \, \Psi \rangle,$$

для которого хотелось бы показать линейность и непрерывность.

Для этого рассмотрим

$$\langle g \mid \varphi_1 + \varphi_2 \rangle = -\langle f \mid \psi_1 + \psi_2 \rangle = -\langle f \mid \int_{-\infty}^{x} (\varphi_1 + \varphi_2 - (\theta_1 + \theta_2)\varphi_0) \, dt \rangle = -\langle f \mid \psi_1 \rangle - \langle f \mid \psi_2 \rangle.$$

Осталось показать непрерывность, точнее показать, что линейной отображение $\varphi \to \psi$ непрерывно на $\mathcal{D}(\mathbb{R})$.

...

0.2 Преобразование Фурье обобщенных функций

Найдём фурье преобразование *n*-й производной дельта-функции

$$I = \langle F[\delta^{(n)}(x)] | \varphi \rangle = \langle \delta^{(n)}(x) | F[\varphi] \rangle = (-1)^n F^{(n)}[\varphi][0] = \frac{(-1)^n}{i^n} F[x^n \varphi](0),$$

тогда

$$I == \frac{(-1)^n}{i^n} \langle \delta(x) \, | \, F[x^n \varphi] \rangle = i^n \langle F[\delta(x) \, | \, x^n \varphi] \rangle, \quad \Rightarrow \quad F\left[\delta^{(n)}(x)\right] \stackrel{\mathcal{D}'}{=} \frac{(ix)^n}{\sqrt{2\pi}}.$$

Физический подход:

$$\int_{-\infty}^{+\infty} \frac{dt}{\sqrt{2\pi}} e^{-ixt} \frac{d^n}{dt^n} \delta(t) = (-1)^n \int_{-\infty}^{+\infty} \frac{dt}{\sqrt{2\pi}} \delta(t) \frac{d^n}{dt^n} e^{-ixt} = (ix)^n \int_{-\infty}^{+\infty} \frac{dt}{\sqrt{2\pi}} \delta(t) e^{-ixt} = (ix)^n \cdot \frac{1}{\sqrt{2\pi}}.$$

Для третьего примера – Кудрявцев, учебник, том 3, страница 297 по файлу

T33

Thr 0.3. Пусть $f \in \mathcal{D}(\mathbb{R})$ и оказалось, что $F[f] \in \mathcal{D}(\mathbb{R})$. Тогда $f \equiv 0$.

1 Третье задание по математическому анализу

14.8(2)

Рассмотрим интеграл с подвижной особенностью. В частности есть $c(\alpha) \in [a, b]$:

$$I(\alpha) = \int_{a}^{b} f(x, \alpha) dx = \left(\int_{a}^{c(\alpha)} + \int_{c(\alpha)}^{b} f(x, \alpha) dx. \right)$$

В частности опишем ситуации, когда функция неограничена на нижнем и верхнем пределе:

$$\forall \varepsilon > 0 \ \exists \alpha_1(\varepsilon) \geqslant a \ \forall \xi_1 > \alpha_1(\varepsilon) \ \forall \varepsilon \in E \ \left| \int_{\xi_1}^{c(\alpha)} f(x, \alpha) \, dx \right| < \frac{\varepsilon}{2}.$$

Аналогично для нижнего предела

$$\forall \varepsilon > 0 \ \exists \alpha_2(\varepsilon) \leqslant b \ \forall \xi_2 > \alpha_2(\varepsilon) \ \forall \varepsilon \in E \ \left| \int_{c(\alpha)}^{\xi_2} f(x, \alpha) \, dx \right| < \frac{\varepsilon}{2}.$$

Если взять Δ большое правильным образом, то приходим к определению вида

$$\forall \varepsilon > 0 \ \exists \Delta(\varepsilon) > 0 \ \forall \delta_1 \in (0, \Delta(\varepsilon)) \ \forall \delta_2 \in (0, \Delta(\varepsilon)) \ \forall \alpha \in E \ \left| \int_{c(\alpha) - \delta_1}^{c(\alpha) + \delta_2} f(x, \alpha) \, dx \right| < \varepsilon.$$

Теперь можем перейти к примеру:

$$I(\alpha) = \int_0^1 \frac{\sin(\alpha x)}{\sqrt{|x - \alpha|}} dx,$$

тогда, по определению,

$$\left| \int_{\alpha-\delta_1}^{\alpha+\delta_2} \frac{\sin(\alpha x) \, dx}{\sqrt{|x-\alpha|}} \right| \leqslant \int_{\alpha-\delta_1}^{\alpha+\delta_2} \frac{dx}{\sqrt{|x-\alpha|}} = \int_{\alpha-\delta_1}^{\alpha} \frac{dx}{\sqrt{|x-\alpha|}} + \int_{\alpha}^{\alpha+\delta_2} \frac{dx}{\sqrt{|x-\alpha|}} = 2\sqrt{\delta_1} + 2\sqrt{\delta_2} < 4\Delta(\varepsilon),$$

в таком случае достаточно взять $\Delta(\varepsilon) = \varepsilon^2/16$

1.1 Сходимость и полнота систем функций в пространствах C и L_p

Можно построить следующую систему вложений: топологические пространства ⊃ метрические пространства ⊃ нормированные пространства ⊃ предгильбертовы пространства.

- **Def 1.1.** Банахово пространство полное нормированое пространство.
- **Def 1.2.** Гильбертово пространство банахово пространство, с нормой, порожденной положительно определенным скалярным произведением $||x|| = \sqrt{(x,x)}$.
- **Def 1.3.** Гильбертово пространство нолное нормированое пространство, с нормой, порожденной положительно определенным скалярным произведением $||x|| = \sqrt{(x,x)}$.

Приведем некоторые примеры: пространство непрерывных функций C[a,b] с нормой $\|\cdot\|_C = \|\cdot\|_\infty = \sup_{t\in[a,b]}|x(t)|$. Пространство L_p . Пространство C_p , совпадающее с C[a,b], но с нормой $\|\cdot\|_2$ – предгильбертово, кстати.

T1

Построим табличку сходимостей. Для начала вспомним, что если $\mu(A) < +\infty$ и $1 \leqslant p_1 < p_2 \leqslant +\infty$, то

$$\|\cdot\|_{p_1} \leqslant C(\mu(A), p_1, p_2)\|\cdot\|_{p_2}, \quad C(\ldots) = (\mu(A))^{\frac{p_2-p_1}{p_1p_2}}.$$

В частности, можно перейти к пределу, и обнаружить, что

$$\|\cdot\|_1 \leqslant C(\ldots)\|\cdot\|_{\infty}, \quad \|\cdot\|_{\infty} = \lim_{p \to \infty} \|\cdot\|_p \equiv \|\cdot\|_C.$$

Таким образом из сходимости L_2 следует сходимость в L_1 .

Ещё раз напишем, что значит сходимость по норме:

$$f_n \underset{L_p}{\to} f \quad \Leftrightarrow \quad \forall \varepsilon > 0 \; \exists N_{\varepsilon} \in \mathbb{N} \; \forall n \geqslant N_{\varepsilon} \; ||f_n - f||_p < \varepsilon.$$

Тогда рассмотрим

$$||f_n - f||_1 \le \sqrt{b - a}||f_n - f|| < \varepsilon, \quad \square.$$

Теперь докажем $f_n \xrightarrow{C} f \Rightarrow f_n \xrightarrow{D} f$, где сходимость по C-норме:

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n \geqslant N_{\varepsilon} \ \forall x \in A \ |f_n(x) - f(x)| < \varepsilon.$$

Ну, действительно,

$$||f_n - f||_2^2 = \int_A |f_n - f|^2(x)\mu(dx) \leqslant \int_A \left\{ \sup_{x \in A} |f_n - f|(x) \right\}^2 \mu(dx) = \left\{ \sup_{x \in A} |f_n - f|(x) \right\}^2 \mu(A),$$

где множитель перед $\mu(A)$ стремится к 0 при $n \to \infty$, \square .

Также стоит вспомнить, что из равномерной сходимости следует поточечная сходимость. По определению, поточечная сходимость:

$$\forall x \in A \ \forall \varepsilon > 0 \ \exists N(\xi, \varepsilon) \in \mathbb{N} \ \forall n \geqslant N \ |f_n - f|(x) < \varepsilon.$$

Получается, что достаточно взять $N(x,\varepsilon)=N(\varepsilon)$ и получить искомое утверждение.

В качетсве контрпримера рассмотрим $f_n(x) = n \operatorname{arcctg}(n/x^2)$ с $A = [1,_\infty)$. По отрицанию условия Коши, если $\exists \varepsilon_0 \ \forall k \in \mathbb{N} \ \exists n \geqslant k \ \exists p \in \mathbb{N} \ \exists \tilde{x} \in A \colon \ |f_{n+p} - f_n|(\tilde{x}) \geqslant \varepsilon_0,$

то последовательность f_n не явдяется равномерно сходящейся. Действительно, при $n=k,\, p=2k-2n,\, \tilde{x}=\sqrt{k}=\sqrt{n}$, верно, что

$$|f_{n+p} - f_n|(\tilde{x}) = n|2 \operatorname{arctg} 2 - \operatorname{arctg} 1| \geqslant |2 \operatorname{arctg} 2 - \pi/4| = \varepsilon_0 > 0,$$

что говорит об отсутсвие равномерной сходимости. При этом $f_n \to x^2$ поточечно на $x \in E$.

Контрпримеры. Покажем, что $f_n \underset{L_1}{\to} f \not\Rightarrow f_n \underset{L_2}{\to} f$. Прямую мы умеем строить по двум точкам

$$\frac{f - f_0}{f_1 - f_0} = \frac{x - x_0}{x_1 - x_0},$$

Построим последовательность функций вида

$$\frac{f_n - c_n}{0 - c_n} = \frac{x - 0}{x_n - 0}, \quad f_n(x) = \begin{cases} c_n(1 - \frac{x}{x_n}), & x \in [0, x_n), \\ 0, & x \in [x_n, 1]. \end{cases}$$

Контропримеры строим на отрезке [0,1]. Выберем последоательность сходящуюся к 0 в L_1 норме:

$$||f_n - 0||_1 = \int_0^{x_n} \left| c_n \left(1 - \frac{x}{x_n} \right) \right| \mu(dx) = \frac{1}{2} c_n x_n, \quad ||f_n - 0||_2^2 = \frac{1}{3} c_n^2 x_n, \quad \Rightarrow \quad ||f_n||_2 = \frac{1}{\sqrt{3}} c_n \sqrt{x_n}.$$

Пусть $c_n x_n = \alpha_n$ – бесконечно малая последовательность. Выберем $x_n = 1/n$, тогда $c_n = n\alpha_n$.

Для $\|f_n\|_2=\frac{1}{\sqrt{3}}\frac{\alpha_n}{\sqrt{x_n}}=\frac{1}{\sqrt{3}}\sqrt{n}\alpha_n$, что устремим к ∞ , выбрав

$$\alpha_n = \frac{1}{n^{1/2-\xi}}, \quad \xi \in \left(0, \frac{1}{2}\right), \quad \Box$$

Эту историю можно обобщить до отсутсвия следствия в $||f_n||_p = c_n x_n^{1/p} (1+p)^{-1/p}$. Тогда можем взять $\alpha_n = (n^{1-1/p-\xi})^{-1}$, для $\xi \in (0, 1-1/p)$.

Теперь покажем, что $f_n \to f \not\Rightarrow f_n \to f$. Пусть $f_n \to 0$ в L_2 норме. Пусть

$$||f_n - 0||_2 = ||f_n|| = \frac{c_n}{\sqrt{3}}x_n = \alpha_n, \quad x_n = \frac{1}{n}.$$

Пусть f_n вида

$$f_n(x) = \{\sqrt{3}\alpha_n\sqrt{n}(1-nx), x \in [0,1/n)0, x \in (1/n,1].$$

В таком случае

$$\sup_{x \in [0,1]} |f_n - 0|(x) = \sup_{x \in [0,1/n]} |\sqrt{3}\alpha_n \sqrt{n}(1 - nx)| = \sqrt{3}\alpha_n \sqrt{n} \not\to 0, \quad \alpha_n = \frac{1}{n^{1/2 - \xi}}, \quad \xi \in [0,1/2),$$

что и требовалось доказать.

Пусть теперь есть поточечная сходимость но нет сходимости в L_1 . Построим пилу, вида

$$f_n(x) = \begin{cases} c_n \frac{x_{1,n} - x}{x_{1,n} - x_n}, & x \in (x_{1,n}, x_n], \\ c_n \frac{x_{2,n} - x}{x_{2,n} - x_n}, & x \in [x_n, x_{2,n}), \\ 0, & x \in [0, x_{1,n}] \cup [x_{2,n}, 1]. \end{cases}$$

В этой задаче достаточно считать $x_{1,n} = 1/(n+1)$, а $x_{2,n} = 1/n$, тогда

$$||f_n||_1 = c_n \frac{x_{2,n} - x_{1,n}}{2} = \frac{c_n}{2} \frac{1}{(n+1)n} \to \infty.$$

Чтобы это сделать, достаточно выбрать $c_n = n^{2+\xi}$. Однак поточечно такой зуб пилы сходится к 0. Действительно, при x=0 $f_n(0)=0$. Для остальных x можно показать, что по определению $\lim_{n\to\infty} f_n(x)=0$.

T2

Приведем пример, когда последовательность функция (f_n) сходится в пространстве $L_1[a,b]$, но для любого $x \in [a, b]$ последовательность чисел $f_n(x)$ расходится.

Из сходимости в L_1 следует сходимость по мере, так что можем воспользоваться $npuмеpom\ Pucca.$ Пусть $f_n \underset{I}{\rightarrow} f \equiv 0$. Рассмотрим конструкцию вида

$$\varphi_{m,k}(x) = \xi \left[\frac{k}{2^m}, \frac{k+1}{2^m} \right](x), \quad m \in \mathbb{N}_0,$$

где $k=0,1\ldots,2^m-1$. Утверждается, что $\forall n\in\mathbb{N}\ \exists!m,k:\ n=2^m+k$. Таким нетривиальным образом мы (точнее Рисс) решили дробить ступеньку. Верно, что

$$||f_n - 0||_1 = \int_{k/2^m}^{(k+1)/2^m} \varphi_{m,k}(x) dx = \frac{1}{2^m} \underset{n \to \infty}{\longrightarrow} 0.$$

Однако, для $\forall x \in [0,1]$ существует бесконечное число сленов последовательности равных 0 и 1. Таким образом поточечно последовательность расходится.

T3

Докажем, что естественное отображение $C[a,b] \to L_1[a,b]$ не сюръективно, не забывая, что элементы L_1 – это не функции, а классы эвкивалентности.

Достаточно выбрать функцию, вида

$$f(x) = \operatorname{sign} x$$

которую нельзя изменить на множестве нулевой меры, чтобы сделать её непрерывной.

T4

Выясним полноты некоторых систем функций в пространстве $L_2[0,\pi/2]$. Начём с

$$\{f_n(x) = \sin[(2n-1)x]\}_{n \in \mathbb{N}}.$$

Def 1.4. Пусть X – нормированное пространство. Система $S = \{f_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ называется *полной*, если $\forall x \in X \ \forall \varepsilon > 0$ $\exists \alpha_1, \ldots, \alpha_n \in \mathcal{A}$, а также $\exists f_{\alpha_1}, \ldots, f_{\alpha_n} \in S$ такие, что $\|x - (\alpha_1 f_{\alpha_1} + \ldots + \alpha_n f_{\alpha_n})\|_X < \varepsilon$.

Стоит подчеркнуть, что это не определение базиса, так как $\alpha \equiv \alpha(\varepsilon)$. Это определение слабее базиса, это – приближение.

Если мы возьмём $L_2[-\pi,\pi]$, и систему вида $\{1,\sin(nx),\cos(nx)\}_{n\in\mathbb{N}}$, то она будет полна, более того будет являеться базисом. В рамках задачи мы интересуемся промежутком $[0, \pi/2]$.

Более того, такая система полна в $\overset{\circ}{C}[-\pi,\pi], (f(-\pi)=f(\pi)),$ чем мы потом воспользуемся в Т5. В смысле L_2 мы можем приближать, игнорируя счётное число точек:

$$||f - \tau_n||_2^2 = \int_0^{\pi/2} |f - \tau_n|(x)\mu(dx).$$

Достраивая функцию специфичным образом на отрезок $[-\pi,\pi]$ (u, d, u, d), пользуемся знанием о полноте тригонометрической системы и приходим к полной системе.

Для понимания продолжения функции с отрезка $[0, \pi/2]$, на $[-\pi, \pi]$, достаточно построить функции, образующие системы (рис. 1). И, аналогично, для k=2 (рис. 2).

T5

Аналогично T4, рассмотрим полноту систем некоторых функция в пространстве $C[0, \pi/2]$. В частности покажем, что $\exists \tilde{x} \in C[0,\pi/2]$ и $\exists \varepsilon_0 \ \forall \tau_n$. Все синусы упираются в 0, выберем $\tilde{x}(t)=1$, тогда

$$\|\tilde{x} - \tau_n\|_{\infty} = \sup_{x \in [0, \pi/2]} |\tilde{x}(t) - \tau_n(t)| \ge |\tilde{x} - \tau_n| = |\tilde{x} - \tau_n|(0) = |1 - 0| = \varepsilon_0.$$

Получается, что ломаются все синусы и косинусы с «нечётными дугами» (достаточно взять $t=\frac{\pi}{2}$), что явно видно по построению.

Итого, единственная хорошая система, $-\cos(2kx)$.

Рис. 1: Графики функция при m=1 для $\mathrm{T}4$

Рис. 2: Графики функция при m=2 для T4

Т6. Функции Эрмита

Приведем пример счетной системы фукций, полной в $L_2(\mathbb{R})$. В частности, воспользуемся функциями Эрмита:

$$\varphi_n(t) = c_n H_n(t) e^{-\frac{1}{2}t^2}, \quad H_n(t) = e^{\frac{1}{2}t^2} \frac{d^n}{dt^n} e^{-\frac{1}{2}t^2}.$$

Утверждается, что это базис $L_2(\mathbb{R})$, докажем это.

Есть система функций

$$\mathcal{L} = \{ \varphi_n(t) \} = \{ \rho(t)e^{-\frac{1}{2}t^2}, \ \rho \in \mathcal{P} \}.$$

Так как L_2 – гильбертово пространство, то достаточно проверить замкнутость системы, то есть показать, что $\mathcal{L}^{\perp} = \{0\}$. По определению:

$$f \in \mathcal{L}^{\perp}, \quad \Rightarrow \quad \int_{\mathbb{R}} f(t) t^n e^{-\frac{1}{2}t^2} dt = 0, \quad n \in \mathbb{N}.$$

Рассмотрим преобразование Фурье:

$$\begin{split} F\left[f(t)e^{-\frac{1}{2}t^2}\right](y) &= \int_{\mathbb{R}} \frac{dt}{\sqrt{2\pi}} f(t)e^{-\frac{1}{2}t^2}, e^{-iyt} = \int_{\mathbb{R}} \frac{dt}{\sqrt{2\pi}} f(t)e^{-\frac{1}{2}t^2} \sum_{n=0}^{\infty} \frac{(-iyt)^n}{n!} = \\ &\stackrel{\textcircled{\tiny !}}{=} \sum_{n=0}^{\infty} \frac{(-iy)^n}{n!} \int_{\mathbb{R}} \frac{dt}{\sqrt{2\pi}} f(t) \underbrace{t^n e^{-\frac{1}{2}t^2}}_{=0 \text{ по условию}} = 0, \end{split}$$

таким образом мы выяснили, что Фурье функции $\equiv 0$. Далее воспользуемся тем, что $f(t)e^{-\frac{1}{2}t^2}\in L_2\left(\mathbb{R}\right)$, а значит работает равенство Парсеваля:

$$\int_{\mathbb{R}} \left| f(t) e^{-\frac{1}{2}t^2} \right|^2 \frac{dt}{2\pi} = \int_{\mathbb{R}} \left| F[\ldots](y) \right|^2 dy = 0, \quad \Rightarrow \quad f(t) e^{-\frac{1}{2}t^2} = 0, \quad \Rightarrow \quad f(t) = 0,$$

по крайней мере кроме множества меры нуль. Таким образом функции эрмита составляют базис в L2.

T7

Возьмём функцию, которая лежит в L_2 , но не лежит в $\tilde{C}[-\pi,\pi]$, например, ограничение sign x. И рассмотрим подпространство $V \subset \mathring{C}[-\pi,\pi]$, заданное ортогональностью к ней, то есть заданное формулой

$$\int_{-\pi}^{0} f(x) \ dx = \int_{0}^{\pi} f(x) \ dx.$$

Это V есть замкнутое подпространство в $C[-\pi,\pi]$ и в нём можно выбрать какую-то полную систему, и даже её ортогонализовать. Если начать с тригонометрической системы, то косинусы и чётные синусы и так лежат в V, нечётные синусы надо будет подправить, скомбинировав их с $\sin x$, а потом ещё ортогонализовать (что может быть неприятно).

В итоге, система не может быть полна в $C[-\pi,\pi]$, так как её линейные комбинации не выходят за пределы V. А что касается замкнутости, то переходя в гильбертово L_2 видно, что ортогональное дополнение к замыканию образа V в гильбертовом пространстве одномерно и натянуто на этот вот sign x, который разрывен и не лежит в образе $C[-\pi,\pi]$. Так что замкнутость в терминах $C[-\pi,\pi]$ есть.

1.2 Банаховы пространства и их двойственные

T8

Здесь, и далее p(x) = ||x||, q(x) = ||x||'. Нормы эквивалентны, если

$$\exists m, M : mp(x) \leq q(x) \leq Mp(x) \ \forall x.$$

Так вот, всегда есть $\{e_k\}_{k=1}^n$ базис Гамиля, такой что $x=\sum_{k=1}^n x_k e_k$, где естественно ввести норму вида

$$p(x) = \sum_{k=1}^{n} |x_k|.$$

Пусть q(x) – ещё одна норма на X, в качестве мажоранты выберем $M = \max_{i=1,...,n} q(e_i)$. Теперь можем оценить сумму сверху:

$$q(x) = q\left(\sum_{k=1}^{n} x_k e_k\right) \leqslant \sum_{k=1}^{n} |x_k| q(e_k) \leqslant M \cdot p(x).$$

И оценить снизу:

$$|q(x) - q(y)| \le q(x - y) \le M \cdot p(x - y),$$

вообще это значит, что q – липшецев функционал, – непрерывный функционал на X с нормой p, а тогда и q(x) непрерывный функционал X с нормой p(x).

Lem 1.5. Шары в пространстве компактны тогда, и только тогда, когда $\dim X < +\infty$.

Рассмотрим сферу $S = \{x \in X \mid p(x) = 1\}$ – компакт. Но мы знаем, что непрерывный функционал на компакте достигает своего миниимума:

$$\min_{x \in S} q(x) = \min_{p(x)=1} q(x) = m > 0.$$

Тогда на сфере S верно, что $q(x) \geqslant m$. Тогда в X $q(x) \geqslant m \cdot p(x)$. Действительно,

$$q(tx) = |t|q(x), \quad p(tx) = |t| p(x), \quad \Rightarrow \quad q(tx) = \frac{p(tx)}{p(x)} q(x) \geqslant m p(tx).$$

Собственно, $mp(x) \leqslant q(x) \leqslant M \cdot p(x)$, Q. E. D.

T9. Пространство c

Пространство состоит из некоторых бесконечномерных «векторов» (последовательностей):

$$x = (x(1), x(2), \dots, x(k), \dots), \quad \left| \lim_{k \to \infty} x(k) \right| < +\infty.$$

Норма определена, как

$$p(x) = ||x||_c = \sup_{k \in \mathbb{N}} |x(k)| = ||x||_{\infty}.$$

Докажем, что это пространство является банаховым, а именно полноту по $\|\cdot\|_{\infty}$ норме.

Рассмотрим последовательность x_n , где

$$x_n = (x_n(1), \dots, x_n(k), \dots).$$

Глобально хотим показать, что

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall n \geqslant N(\varepsilon) \ \forall l \in \mathbb{N} \ \|x_{n+l} - x_n\|_{\infty} = \sup_{k \in \mathbb{N}} |x_{n+l}(k) - x_n(k)| < \varepsilon.$$

Попробуем через это продраться: из сходимости следует, что

$$\forall k \in \mathbb{N} \ |x_{n+l}(k) - x_n(k)| < \varepsilon.$$

Здесь можем выделить $(x_n(k))_{n\in\mathbb{N}}$ – числовая фундаментальная в \mathbb{R} . По критерию Коши:

$$\forall k \in \mathbb{N} \quad \lim_{n \to \infty} x_n(k) = y(k) \in \mathbb{R},$$

уставнавливается покомпонентая сходимость. Теперь рассмотрим

$$\sup_{k \in \mathbb{N}} |x_n(k) - y(k)| = ||x_n - y||_{\infty} < \varepsilon,$$

что автоматически означает, что $\exists y$ такой, что

$$\lim_{n \to \infty} x_n = y.$$

Следующий этап – показать, что

$$\exists \lim_{k \to \infty} y(k) \in \mathbb{R},$$

то есть показать полноту пространства:

$$|y(k+q) - y(k)| = |y(k+q) - x_n(k+q) + x_n(k+q) - x_n(k) + x_n(k) - x_n(k)|$$

$$\leq |y(k+q) - x_n(k+q)| + |y(k) - x_n(k)| + |x_n(k+q) - x_n(k)|$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Таким образом мы доказали полноту пространства¹.

Т10. Критерий Йордана-фон Неймана

Хочется понять, можно ли ввести на пространстве C[a,b] скалярное произведение так, что норма пространства будет получаться из этого скадяного произведения.

Thr 1.6 (критерий Йордана-фон Неймана). *Норма* $\| \circ \|_X$ порождается скалярным произведением тогда, и тоглько тогда, когда $\| \circ \|_X$ удовлетворяет правилу параллелограмма:

$$\forall x, y \in X \quad \|x + y\|_X^2 + \|x - y\|_X^2 = 2\|x\|_X^2 + 2\|y\|_X^2.$$

Выберем $C[0,\pi/2]$, и $x(t)=\cos t,$ $y(t)=\sin t.$ Заметим, что

$$||x||_{\infty} = ||y||_{\infty} = 1, \quad ||x+y||_{\infty} = \sqrt{2}, \quad ||x-y||_{\infty} = 1, \quad 2+1 \neq 2+2,$$

таким образом пространство не гильбертово.

Т11. Поиск функционала

Далее будем обозначать за $\mathcal{D}(A)$ область определения оператора A, и $\mathcal{R}(A)$ – область значений. Оператор действует $A \colon X \mapsto Y$, где X и Y – линейные нормированные пространства.

Def 1.7. Говорится, что линейный оператор $A: X \mapsto Y$ непрерывен а точка $x \in \mathcal{D}(A)$, если $\forall \{x_n\}_{n=1}^{\infty} \subset \mathcal{D}(A)$, сходящейся к x в $X, Ax_n \to Ax$ в Y. Оператор глобально непрерывен, если он непрерывен $\forall x \in \mathcal{D}(A)$.

Lem 1.8. Для того, чтобы линейный оператор A был непрерывен на всей $\mathcal{D}(A)$, необходимо и достаточно, чтобы он был непрерывен в нуле.

Def 1.9. Линейный оператор $A: X \mapsto Y$ называется *ограниченным*, если $\exists C > 0: \|Ax\|_Y \leqslant C \cdot \|x\|_X \ \forall x \in \mathcal{D}(A)$. Наименьшее из чисел C называется *нормой* оператора A и обозначается $\|A\|$.

Lem 1.10. Для того, чтобы линейный оператор был ограниченным, необходимо и достаточно, чтобы он переводил всякое ограниченное в X множество, в ограниченное в Y.

Thr 1.11. Оператор A непрерывен тогда, u только тогда, когда он ограничен.

Thr 1.12 (о норме линейного оператора). Верно, что

$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{\|x\| \neq 0} \frac{||Ax||}{\|x\|}.$$

Найдём норму функционала

$$A: f \mapsto \sum_{k=0}^{N} (-1)^k f\left(\frac{k}{N}\right),$$

на пространстве C[0,1].

Вообще нормированным пространством мы называем пару вида $(X, \| \circ \|_X)$. И пусть есть некоторый непрерывный ограниченный оператор из X в Y. Если $Y = \mathbb{C}(\mathbb{R})$,

$$A = F \colon X \to \mathbb{C}(\mathbb{R}),$$

 $^{^{1}}c_{0}, c_{00}, l_{\infty}$ – банаховы ли? ①: c_{0} (сходящиеся к 0), c_{00} (финитные), l_{∞} (ограниченные).

то A называют функционалом. Выберем в качетсве X=C[0,1], а в качетсве $F\colon C[0,1]\mapsto \mathbb{C}(\mathbb{R}).$ Функционал

$$F[f] = \sum_{k=0}^{n} (-1)^k f\left(\frac{k}{n}\right).$$

Что есть норма функционала? Норма функционала есть

$$||F|| = \sup_{\|f\|_{\infty} \le 1} |F[f]| = \sup_{\|f\|_{\infty} = 1} |F[f]| = \inf\{L > 0 \mid |F[f]| \le L||f||_{\infty}\}, \quad \forall f \in C[0, 1].$$

Глобально, это доказывается, например, в Константинове очень подробно.

Всегда легко сверху ограничить. Тривиальный шаг:

$$|F[f]| = \left| \sum_{k=0}^{n} (-1)^k f\left(\frac{k}{n}\right) \right| \le \sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) \right| \le \sum_{k=0}^{n} \sup_{x \in [0,1]} |f(x)| = (n+1) \cdot ||f||_{\infty}.$$

Продолжаем,

$$\frac{|F[f]|}{\|f\|_{\infty}}\leqslant n+1, \quad \Rightarrow \quad \|F\|=\sup_{\|f\|_{\infty}=1}|F[f]|\leqslant n+1.$$

Теперь выберем функцию $f_s(x) = f(k/n) = (-1)^k$. На ней мы действительно достигаем супремум, тогда $||F|| = |F[f_s]| = n + 1$.

Таким образом нашли норму оператора.

В более общем случае можем показать, что

$$F[f] = \sum_{k=1}^{n} c_k x(t_k), \quad |F[f]| \leqslant \sum_{k=1}^{n} |c_k| \cdot ||f||_{\infty}, \quad \Rightarrow \quad ||F|| \leqslant \sum_{k=1}^{n} |c_k|.$$

Далее, определив схожим образом непрерывную функцию \tilde{f} , равную sign c_k в $t=t_k$ увидим, что $\|\tilde{f}\|=1$,

$$||F[\tilde{f}]|| \geqslant |F[\tilde{f}]| = \sum_{k=1}^{n} |c_k|,$$

таким образом решили чуть более общую задачу.

T12

Пусть функция g непрерывна на [a,b]. Найдём норму линейного отображения $M_g\colon L_2[a,b]\mapsto L_2[a,b]$, где $A_g(f)=[f]$ – мультипликативный оператор. Здесь $X=Y=L_2[a,b]$.

По опредению, норма оператора $||A_g|| = \sup_{\|f\|_X = 1} ||A_g[f]||_Y$. Аналогично, ищем ограничение сверху:

$$||A_g[f]||_2^2 = ||gf||_2^2 = \int_{[a,b]} |gf|^2(x)\mu(dx) \leqslant \int_{[a,b]} \left\{ \sup_{x \in [a,b]} |g(x)| \right\}^2 |f(x)|^2\mu(dx).$$

Вынесенный супремум позволит записать:

$$||A_g[f]||_2^2 \leqslant ||g||_{\infty}^2 ||f||_2^2, \quad \Rightarrow \quad ||A_g|| = \sup_{||f||_2 = 1} ||A_g[f]||_2 \leqslant ||g||_{\infty}.$$

Далее покажем, что норма не достигается, но сколь угодно близко приближается.

Есть функция

$$\sup_{x \in [a,b]} |g(x)| = |g(c)|$$

есть некоторая $f_{\varepsilon} \in L_2[a,b]$ вида

$$f(x) = \begin{cases} \alpha_{\varepsilon}, & x \in [c - \varepsilon, c + \varepsilon], \\ 0, & x \notin [c - \varepsilon, c + \varepsilon], \end{cases} \Rightarrow \|f_{\varepsilon}\|_{2}^{2} = \int_{[c - \varepsilon, c + \varepsilon]} \alpha_{\varepsilon}^{2} \mu(dx) = \alpha_{\varepsilon}^{2} \cdot 2\varepsilon = 1, \quad \alpha_{\varepsilon} = \frac{1}{\sqrt{2\varepsilon}}.$$

В таком случае рассмотрим

$$||A_g[f_{\varepsilon}]||_2^2 = ||gf_{\varepsilon}||_2^2 = \alpha_{\varepsilon}^2 \int_{[c-\varepsilon,c+\varepsilon]} |g(x)|^2 \mu(dx) = \alpha_{\varepsilon}^2 \cdot 2\varepsilon |g(x_{c,\varepsilon})|^2 \underset{\varepsilon \to 0}{\to} ||g||_{\infty}^2,$$

в силу непрерывности g, по теореме о среднем.

Можно пойти другим путем, по определению:

$$\forall \varepsilon \in (0, \|g\|_{\infty}), \quad \exists x_{\varepsilon} \subseteq [a, b] \ g(x) \geqslant \|g\|_{\infty} - \varepsilon,$$

почти всюду на X_{ε} . Выберем h(x) вида

$$h(x) = \operatorname{sign} g(x) \ \chi_{X_{\varepsilon}}(x), \quad \|h_{\varepsilon}\|_{1} = \|h_{\varepsilon}\|_{2} = \mu(X_{\varepsilon}),$$

тогда верно, что

$$||A_g|| \geqslant ||A_g[h_{\varepsilon}]||_1 \cdot ||h_{\varepsilon}||_1 = \int_{[a,b]} |g(x)| \chi_{X_{\varepsilon}}(x) \mu(dx) \geqslant (||g||_{\infty} - \varepsilon) \chi \mu(X_{\varepsilon}), \quad \Rightarrow \quad ||A_g|| = ||g||_{\infty}.$$

Аналогично в L_2 :

$$||A_g||^2 \geqslant |||g|\chi_{X_{\varepsilon}}||_2^2 \cdot ||h_{\varepsilon}||_2^2 \geqslant ||g||_{\infty}^2 \mu^2(X_{\varepsilon}),$$

что приводит такому же результату.

T13

Сначала найдём норму оператора F, откуда уже получим значение нормы для J, где

$$F[f] = \int_a^b g(t)f(t) dt, \quad J[f] = \int_a^b K(x, y)f(y) dy,$$

где $g \in C[a,b]$, а $F,\ J$ – линейные функционалы на C[a,b].

Первая часть. Функционал F ограничен в силу

$$|F[f]| \leqslant \int_a^b |g(t)|f(t)| dt \leqslant ||f||_{\infty} \cdot \int_a^b |g(t)| dt.$$

Далее выберем произвольное $\varepsilon > 0$. По $meopeme\ Kahmopa$ найдётся такое разбиение отрезка [a,b] точками $a=t_0 < t_1 < \ldots < t_n = b$, что колебание $\omega_i(g)$ функции g на i-ом отрезке $\Delta_i = [t_{i-1},t_i]$ удовлетворяет неравенствам

$$\omega_i(g) < \varepsilon, \quad i = 1, 2, \ldots, n.$$

Разобьём все Δ_i на две группы. В первую группу отнесем те отрезки, на которых g сохраняет знак. Пусть это будут отрезки $\Delta_1', \ldots, \Delta_r'$. Вторую группу $\Delta_1'', \ldots, \Delta_s''$ образуют отрезки, на которых g меняется знак. В каждом промежутке второго типа существует точка, в которой g обращается в нуль. Ввиду установленных неравенств там $|g(t)| < \varepsilon$.

На промежутках первого типа положим $\tilde{f}(t) = \operatorname{sign} g(t)$, в остальных точках $\tilde{f}(t)$ – линейная непрерывная функция, удовлетворяющая неравенству $|\tilde{f}| \leqslant 1$. Тогда $\|\tilde{f}\| = 1$, и

$$\begin{split} \|F\| &= \sup_{\|f\|=1} |F[f]| \geqslant |F[\tilde{f}]| = \left| \int_a^b g(t)\tilde{f}(t) \, dt \right| = \left| \sum_{k=1}^r \int_{\Delta_k'} |g(t)| \, dt + \sum_{i=1}^s \int_{\Delta_i''} g(t)\tilde{f}(t) \, dt \right| \geqslant \\ &\geqslant \sum_{k=1}^r \int_{\Delta_k'} |g(t)| \, dt - \sum_{i=1}^s \int_{\Delta_i''} = \int_a^b |g(t)| \, dt - 2 \sum_{i=1}^s \int_{\Delta_i''} |g(t)| \, dt \geqslant \int_a^b |g(t)| \, dt - 2\varepsilon \cdot \mu[a,b], \end{split}$$

что ввиду произвольности ε означает, что $||F|| \ge \int_a^b |g(t)| \, dt$, что вместе со знанием супремума позволяет утверждать: $||f|| = \int_a^b |g(t)| \, dt$.

Вторая часть. Переходим к поиску нормы J:

$$||J[f]|| = \sup_{t \in [a,b]} \left| \int_a^b K(t,s)f(s) \, ds \right| \leqslant \sup_{t \in [a,b]} \int_a^b |K(t,s)| \cdot |f(s)| \, ds \leqslant ||f|| \cdot \sup_{t \in [a,b]} \int_a^b |K(t,s)| \, ds,$$

таким образом, по определению

$$||J|| \leqslant \sup_{t \in [a,b]} \int_a^b |K(t,s)| ds \stackrel{\text{def}}{=} M.$$

Так как ядро K непрерывно, то непрерывен и интеграл $\int_a^b |K| \, ds$, поэтому $\exists t_0 \in [a,b]$ такой, что $M = \int_a^b |K(t_0,s)| \, ds$.

Как было показано в первой части, $q(x) = \int_a^b |K(t_0,s)| f(s) \, ds$ — линейный непрерывный функционал на C[a,b] с нормой равной M. Таким образом, выбирая \tilde{f} так, чтобы $\mathrm{sign}\, f(s) = \mathrm{sign}\, K(t_0,s)$ может утверждать, что супремум достигается, и

$$||J|| = M = \sup_{t \in [a,b]} \int_a^b |K(t,s)| \, ds.$$

Thr 1.13 (Теоремма Бэра для открытых множеств). Счётное семейство открытых всюду плотных подмножеств банахова пространства имеет непустое пересечение.

Thr 1.14 (Теорема Бэра для замкнутых множеств). Если банахово пространство Е покрыто счётным семейством замкнутых множеств, то одно из них имеет непустую внутренность.

T14

Докажем, что алгебраический базис бесконечномерного банахова пространства не может быть счётным.

Вводился алгебраический базис Гамиля $\{e_{\alpha}\}_{{\alpha}\in A}$, где $\forall x\in E$ представляется в виде $x\sum_{k=1}^n x_k e_{{\alpha}_k}$. Получается, что нужно показать, что в бесконечномерном банаховом пространстве такой базис не может быть счётным: докажем от противного.

Пусть $\{e_n\}_{n\in\mathbb{N}}$, тогда пространство описывется, как

$$E_n = \left\{ \sum_{k=1}^n x_k e_k \mid x_1, \dots, x_k \in \mathbb{R} \right\} = \langle E_1, \dots, e_n \rangle, \quad \Rightarrow \quad E = \bigcup_{n \in \mathbb{N}} E_n.$$

Но по теореме Бэра для замкнутых множеств E не может быть счётным объединением нигде не плотных множеств.

Точнее, это было бы возможно, только с случае непустой внутренности одного из пространств E_n , что невозможно.

T15

Приведем пример плотного в X = C[a, b] банахова пространства, со счётным базисом.

По теореме Вейерштрассе система степеней A полна в C[a,b], что равносильно тому, что линейная оболочка системы степеней A плотна на C[a,b]. Таким образом, A со счётным базисом, является ответом на задачу.

Def 1.15. Последовательность элементов $\{e_n\}_{n\in\mathbb{N}}$ называется *базисом* в пространстве² X, если $\forall x\in X$ существует единственный набор $\{x_i\}_{i\in\mathbb{N}_0}$ таких, что сумма вида (не конечная не при каком n)

$$x = \sum_{k=1}^{\infty} x_k e_k = \lim_{n \to \infty} \sum_{k=1}^n x_k e_k, \quad \Leftrightarrow \quad \exists ! \{x_i\}_{i \in \mathbb{N}_0} \ \forall \varepsilon > 0 \ \exists N_\varepsilon \in \mathbb{N}_0 \ \forall n \geqslant N_\varepsilon \ \|x - \sum_{k=0}^n x_k e_k\|_X = \|x - S_n\| < \varepsilon.$$

Thr 1.16 (Теорема Банаха-Штейнгауза для линейных функционалов). Пусть семейство линейный функционалов $Y \subset E'$ ограничено в любой точке банахова пространства E, то есть для любого $x \in E$ множество чисел $\{\lambda(x) \mid \lambda \in Y\}$ ограничено. Тогда Y ограничено в смысле нормы в E'.

T16

Thr 1.17 (Расходимость ряда Фурье в точке). Существует непрерывная 2π -периодическая функция, ряд Фурье которой расходится в точке θ .

 \triangle . На пространстве $\dot{C}[-\pi,\pi]$ непрерывных 2π -периодических функций с нормой $\|\cdot\|_C$ определим линейный функционал

$$\lambda_n(f) = \int_{-\pi}^{\pi} f(t) D_n(t) dt,$$

это значение n-й частичной суммы ряда Фурье в точке $0, T_n(f,0)$. Можно заметить по определению нормы, что его норма равна

$$\|\lambda_n\| = \int_{-\pi}^{\pi} |D_n(t)| dt.$$

Оценим интеграл модуля ядра Дирихле стандартным способом:

$$I = \int_{-\pi}^{\pi} \frac{|\sin(n+1/2)x|}{2\pi|\sin(x/2)|} dx \geqslant \int_{-\pi}^{\pi} \frac{|\sin(n+1/2)x|}{\pi|x|} dx = \int_{-\pi(1+1/2)}^{\pi(1+1/2)} \frac{|\sin u|}{\pi|u|} du \geqslant$$
$$\geqslant \int_{-\pi(1+1/2)}^{\pi(1+1/2)} \frac{\sin^2 u}{\pi|u|} du = \int_{-\pi(1+1/2)}^{\pi(1+1/2)} \frac{1-\cos 2u}{2\pi|u|} du \to \int_{-\infty}^{\infty} \frac{1-\cos 2u}{2\pi|u|} du = +\infty, \quad n \to \infty.$$

Получается, то нормы функционалов λ_n при $n \to \infty$ не являются ограниченными. Следовательно, по теореме Банаха-Штейгауза, примененной в обратную сторону, для некоторой функции $f \in \dot{C}[-\pi,\pi]$ значения $\lambda_n(f) = T_n(f,0)$ не будут ограничены, и, следовательно, расходятся при $n \to \infty$.

²Если линейное нормированное пространство имеет не более, чем счётный базис, то оно сепарабельно. Однако существуют сепарабельные банаховы пространства без базиса.

T17

Для последовательностей

$$x = (x(1), \dots, x(k), \dots),$$

рассмотрим пространство вида

$$l_p = \{x \mid ||x||_p \in \mathbb{R}\}, \quad ||x||_p = \left(\sum_{k=1}^{\infty} |x(k)|^p\right)^{1/p}.$$

Возьмём пространство l_p как множество, но добавим норму из пространства l_q , где $\infty > q > p$. Покажем, что в таком «дырявом» пространстве не выполняется теорема Бэра и принцип равномерной ограниченности.

Рассмотрим шар A_n вида

$$A_n = \{ x \in l_p \mid ||x||_p \leqslant n \}, \quad l_p = \bigcap_{n=1}^{\infty} A_n.$$

Докажем от противного, что A_n нигде не плотно.

Пусть существует такой R>0 и $x_0\in A_n\colon B_R(x_0)\subset\operatorname{cl} A_n=A_n.$

$$\forall x \in l_p: \quad \rho_q(x, x_0) < R, \quad \Rightarrow \quad x \in A_n \quad \Rightarrow \quad \|x\|_p \leqslant n.$$

Рассмотрим некоторую последовательность

$$z(k) = \frac{R}{2} \frac{1}{\sum_{\kappa=1}^{\infty} \frac{1}{\kappa^{q/p}}} \frac{1}{k^{1/p}}.$$

Для начала,

$$\left(\sum_{k=1}^{\infty} (z(k))^q\right)^{1/q} = ||z||_q = \frac{R}{2} < +\infty.$$

Далее, видим гармонический ряд

$$\sum_{k=1}^{\infty} (z(k))^p = +\infty, \quad \Rightarrow \quad \exists N \colon \sum_{k=1}^{N} (z(k))^p > (2n)^p.$$

Теперь рассмотрим набор «частниных последовательностей»

$$y(k) = \{z(k), k \leq N, 0, k > N.$$

Теперь рассмотрим последовательность $h(k) = (x_0 + y)(k)$, для которой верно, что

- 1. $\rho_q(h, x_0) = ||y||_q \leqslant R/2$, откуда следует $||h||_p \leqslant n$.
- 2. $||h||_p \geqslant ||y||_p ||x_0||_p > 2n n = n$, а тогда $||h||_p > n$, таким образом пришли к противоречию.

Полное пространство нельзя представить, как объединение нигде не плотных множеств, получается l_p не полно. Осталось доказать, что A_n замкнуто.

Пусть t – точка прикосновения. Тогда $\forall \varepsilon > 0$ найдётся

$$\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in A_n \colon \rho_q(t, x_{\varepsilon}) < \varepsilon, \quad \iff \quad \sum_{k=1}^N |t(k) - x_{\varepsilon}(k)|^q < \varepsilon \quad \Rightarrow \quad |t(k) - x_{\varepsilon}(k)| < \varepsilon^{1/q},$$

получается это правда и для

что стремится к n при $\varepsilon \to 0$. Таким образом $||t||_p \leqslant n$.

И, наконец, докажем, что не выполняеся принцип равномерной ограниченности. Рассмотрим функционалы

$$F_n[x] = \sum_{k=1}^n x(k).$$

Верно, что

$$\forall x \in l_1 \ |F_n[x]| \leqslant ||x||_1.$$

По норме $\| \circ \|_2$ верно, что эти функционалы можно переписать в виде скалярного произведения (x, e_n) , где

 $e_n = (1, \ldots, 1, 0, \ldots, 0, \ldots)$:

$$F_n[x] = (x, e_n) = \sum_{k=1}^{\infty} x_{(k)}(e_n)_{(k)} = \sum_{k=1}^{n} x(k),$$

что является проявлением одной из теорем Рисса. Положив $x=e_n$ видим, что норма достигается и $\|F_n\|=n\to\infty$ при $n\to\infty$. Таким образом мы показали, что на таком пространстве не работает принцип равномерной сходимости.

T18

Докажем, что в бесконечномерном банаховом пространстве E единичный шар не явяется компактным.

Lem 1.18 (Лемма Рисса или лемма о перпендикуляре). Если X_0 – замкнутое линейное подпространство в нормированом пространстве X, $X_0 \neq X$, тогда

$$\forall \varepsilon > 0, \ \exists x_{\varepsilon} \in X \colon ||x_{\varepsilon}|| = 1, \quad ||x_{\varepsilon} - y|| \geqslant 1 - \varepsilon \ \forall y \in X_0.$$

 \triangle . Найдётся $z \in X \setminus X_0$, положим $\delta = \inf\{\|z - u\| \mid y \in X_0\} > 0$. Тогда выберем

$$\varepsilon_0 > 0$$
: $\frac{\delta}{\delta + \varepsilon_0} > 1 - \varepsilon$,

выберем $y_0 \in X_0$ такой, что $||z - y_0|| < \delta + \varepsilon_0$.

Далее, считая

$$x_{\varepsilon} = \frac{z - y_0}{\|z - y_0\|}, \quad \forall y \in X_0.$$

Теперь оценим

$$||x_{\varepsilon} - y|| = \frac{1}{||z - y_0||} ||z - y_0 - ||z - y_0||y|| \geqslant \frac{\delta}{\delta + \varepsilon_0} > 1 - \varepsilon.$$

Заметим, что

$$v = y_0 + ||z - y_0|| y \in X_0, \quad \Rightarrow \quad ||z - v|| \ge \delta.$$

Con 1.19. В $\forall X$ (бесконеномерном, нормированном пространстве) $\exists (x_n) \colon ||x_n|| = 1 \ u \ ||x_n - x_k|| \geqslant 1, \ n \neq k.$ Как следстввие все шары R > 0 в X некомпактны.

 \triangle . Всякое бесконечное подмножество компакта имеет предельную точку. Последовательность x_n строится по индукции с помошью леммы Рисса.

Thr 1.20 (Теорема Хана-Банаха). Пусть E – банахово пространтво, $F \subset E$ – его линейное подпространство. Тогда всякий ограниченный линейный функционал $\lambda \in \mathbb{F}'$ продолжается до линейногофункционала на всём E без увеличения его нормы.

Con 1.21. Для всякого банахова пространства E и его ненулевого элемента $x \in E$ найдётся $\lambda \in E'$, такой $umo \|\lambda\| = 1$ и $\lambda[x] = \|x\|$.

Con 1.22. Естественное отображение банахова пространства в двойственное κ его двойственному (второе двойственное)

$$E \mapsto E'', \quad x \mapsto (\lambda \mapsto \lambda(x))$$

является вложением, сохраняющим норму.

Thr 1.23 (Теорема Радона-Никодима в \mathbb{R}^n). Пусть неотрицательная конечная борелевская мера μ на \mathbb{R}^n абсолютно непрерывна относительно меры Лебега. Тогда у меры ν есть плотность, то есть борелевская $f \geqslant 0$, такая что для всякого борелевского X $\nu(X) = \int_X f(x) \, dx$.

T19

Выведем из теоремы Хана-Банаха, что всякое конечномерное подпространство V в банаховом постранстве E имеет замкнутое дополнение $W \subseteq E$, такое что $E = V \oplus W$.

Thr 1.24. Для всякого ненулевого элемента x нормированного пространства X найдётся такой функционал l, что ||l|| = 1 и l[f] = ||f||.

 \triangle . На одномерном пространствеЮ порожденном xЮ положим $l_0(tx) = t||x||$. Тогда $l_0(x) = ||x||$ и $||l_0|| = 1$. Остается продолжить l на x с сохранением нормы.

Из этой теоремы можно получить, что в случае бесконечномерного пространства X для всякого n найдутся такие векторы $x_1, \ldots, x_n \in X$ и функционалы $l_1, \ldots, l_n \in X^*$, что $l_i(x_j) = \delta_{ij}$. В частности поэтому, сопряженное пространство тоже бесконечномерно.

Соп 1.25. Пусть X_0 – конечномерное подпростанство нормированного пространства X. Тогда X_0 топологически дополняемо в X, т.е. существует такое замкнутое линейное подпространство X_1 , что X является прямой алгебраической суммой X_0 и X_1 , а естественные алгебраические проекции P_0 и P_1 на X_0 и X_1 непрерыны.

 \triangle . Можено найти базис x_1,\ldots,x_n пространства X_0 и элементы $l_i\in X^*$ с $l_i(x_j)=\delta_{ij}$. Положим

$$X_1 \stackrel{\text{def}}{=} \bigcap_{i=1}^n \text{Ker } l_i, \quad P_0[x] \stackrel{\text{def}}{=} \sum_{i=1}^n l_i(x) x_i, \quad P_1[x] \stackrel{\text{def}}{=} x - P_0 x.$$

Для всякого j имеем $P_0[x_j]-l_j(x_j)x_j=x_j$. В таком контексте становится понятно, что $P_0|_{X_1}=0$, и $X_0\cap X_1=\{0\}$, $X=X_0\oplus X_1$, ибо $x-P_0x\in X_1$ ввиду равенств $l_j(x-P_0x)=l_j(x)-l_j(x)l_j(x_j)=0$. Непрерывность P_0 и P_1 понятна из опредления, более того сопадают с алгебраическими проектированиями на X_0 и X_1 .

T20

Приведем пример замкнутого в топологии нормы множества $X \subset E'$ (двойственное к некоторому банахову пространству), которое не замкнутое в его *-слабой топологии.

Ответ — $c\phi$ ера, докажем это. Покажем, что для $X \subset E'$ clX = X и w. cl $X \neq X$. Что есть сфера? Сфера есть

$$S = \{ f \in E' \mid \|f\| = 1 \}, \quad \text{ cl } S = S, \quad w. \text{ cl } S = \bar{B}, \quad \bar{B} = \{ F \in E' \mid \|f\| \leqslant 1 \}.$$

Введём дополнение $S_C \stackrel{\text{def}}{=} E \backslash S$, и покажем, что оно открыто.

Выберем $g \in S_c$ с ||g|| < 1 и $\varepsilon = 1 - ||g|| > 0$. Пусть $h \in B_{\varepsilon}(g)$, более того

$$||h|| = ||g + h - g|| \le ||g|| + ||h - g|| < 1, \Rightarrow B_{\varepsilon}(g) \subseteq S_c.$$

Далее, пусть $g \in S_c$ и $\|g\| > 1$, тогда $\varepsilon = \|g\| - 1 > 0$. Выберем $h \in B_{\varepsilon}(g)$, тогда

$$||g|| = ||h + g - h|| \le ||h|| + ||g - h||, \quad \Rightarrow \quad ||h|| \ge ||g|| - (||g|| - 1) = 1,$$

получается ||h|| > 1 и $B_{\varepsilon}(g) \subseteq S_c$. Таким образом S_c открыто, S замкнуто.

Докажем теперь, что w, cl $S = \bar{B}$. Во-первых $\forall g_0 \notin B$ верно, что

$$||g_0|| > 1$$
, $\exists x_0 \in E, \ \exists \varepsilon_0 > 0 \ \forall g \in U_{x_0, g_0, \varepsilon_0} \ ||g|| > 1$, $\Rightarrow w. \operatorname{cl} S \subseteq B$.

В чатсности, покажем, что

$$||g|| \ge |g[x_0]| = |g[x_0] - g_0[x_0] + g_0[x_0]| \ge |g_0[x_0]| - |g[x_0] - g_0[x_0]|,$$

что уже можно сделать строго больше:

$$||g|| > |g_0[x_0]| - \varepsilon_0 = 1,$$

где $\varepsilon_0 = |g_0[x_0]| - 1$.

Пусть теперь \forall фиксированного $g_0 \in \bar{B}$ с $||g_0|| < 1$. Тогда

$$\exists U(g_0) \colon g_0 \in \bigcap_{k=1}^N U_{x_k, g_k, \varepsilon_k} \subset U(g_0).$$

Утверждается, что существует ненулевой g такой, что $\forall t \in \mathbb{R}$ с $g_0 + tg \in U(g_0)$.

Осталось построить цилиндрическое множество по которому «прогуляемся» до нужной нам области. Пусть

$$\varphi(t) = ||g_0 + tg|| \in C(\mathbb{R}), \quad |\varphi(t_1) - \varphi(t_2)| \le |t_1 - t_2| \cdot ||g||.$$

Понятно, что $\varphi(0) = \|g_0\| < 1$. Тогда $\varphi(t) \geqslant |t| \cdot \|g\| - \|g\|_0 \to \infty$ при $t \to \infty$. По теореме о промежуточных значениях непрерывной функции

$$\exists t_0 \in \mathbb{R} : \varphi(t_0) = 1, \quad \Rightarrow \quad g_0 + t_0 g \in S.$$

Получается, что взяв точку из шара, и взяв её слабую окрестность, мы находим непустое пересечение этой окрестности со сферой. Из этого следует, что $g_0 \in w$. cl S, а тогда и $\bar{B} \subseteq w$. cl S, которое содержится в замкнутом шаре. Вывод: $\bar{B} = w$. cl S.

T21

Докажем, что *-слабой топологии E' компактность некоторого множества влечет его замкнутость.

Lem 1.26. Слабая топология хаусдорфова.

Пусть K – компакт в ХТП X. Пусть $x \in X \setminus K$. Для $\forall y \in K \exists U_y, V_y$ (открытые) такие, что $U_y \cap V_y = \emptyset$, где $x \in U_y$ и $y \in V_y$.

Рассмотрим систему $S = \{V_y \mid y \in K\}$ – открытое покрытие компакта K. Также $S_0 = \{V_y \mid y \in F\}$, F – конечное подмножество K (т.к. K – компакт).

Рассмотрим множество $U = \cap_{y \in F} U_y$ – открытая окрестность точки x. Утверждается, что $U \cap K = \varnothing$. Перебирая все точки $x \in K$ получаем доказательство исходного утверждения.

T22

Хочется найти такое топологическое пространство, в котором есть компактные, но не замкнутые подмножества. В качестве такого хаусдорфова топологического пространства можем выбрать $X = \{a, b\}$, базой топологии $\tau = \{\varnothing, \{a\}, \{a, b\}\}.$

Пример выглядит искуственным, но, на мой взгляд, большинство примеров нехаумдорфовых пространств выглядят очень искуственно.

1.3 Распредления (обобщенные функции)

Работать будем с $\mathcal{D}(X)\stackrel{\mathrm{def}}{=} C_0^\infty(X), X\subseteq\mathbb{R}.$ Функция называется финитной, если $\mathrm{supp}\, \varphi=K\subset X,$

$$\operatorname{supp} \varphi \stackrel{\text{def}}{=} \bar{Y}, \quad Y = \{ x \in X \mid \varphi(x) \neq 0 \}.$$

Далее будем считать $\mathcal{D}(\mathbb{R}) \equiv \mathcal{D}$.

Вспомним, что $\varphi_n \stackrel{\mathcal{D}'}{\to} \varphi$ означает $\exists [a,b] \supset \operatorname{supp} \varphi_n$ и $\operatorname{supp} \varphi$, а также $\varphi_n^{(k)} \stackrel{[a,b]}{\to} \varphi^{(k)}$, и тогда пишут, что $\lim_{n \to \infty} \varphi_n \stackrel{\mathcal{D}}{\to} \varphi$.

Хочется определить пространство линейный непрерывных функционалов. Далее, договоримся обозначать $f(\varphi) \equiv f[\varphi] \stackrel{\text{def}}{=} \langle f \mid \varphi \rangle$.

Def 1.27. Функционал $f: \mathcal{D} \mapsto \mathbb{C}(\mathbb{R})$ непрерывен в \mathcal{D}' , если

$$\lim_{n \to \infty} \varphi_n \stackrel{\mathcal{D}}{=} \varphi, \quad \Rightarrow \quad \lim_{n \to \infty} \langle f \mid \varphi_n \rangle = \langle f \mid \varphi \rangle.$$

Def 1.28. Всякий линейный функционал из \mathcal{D}' называют *обобщенной функцией* на \mathcal{D} .

Каждая локально-интегрируемая функция порождает некоторую обобщенную, их назовём регулярными. Если не существует такой локально-интегрируемой функции в D для функционала из \mathcal{D}' , то это сингулярная обобщенная функции. Стоит заметить, что регулярные обобщенные функции плотны в \mathcal{D}' , а их пополнением являются сингулярные.

Например, $\delta(x)$ можно представить как предел PO Φ , где под пределом имеется ввиду

$$f_n \stackrel{\mathcal{D}'}{\to} f \quad (f_n)_{n \in \mathbb{N}} \subset \mathcal{D}', \ f \sin \mathcal{D}', \quad \forall \varphi \in \mathcal{D} \quad \lim_{n \to \infty} \langle f_n \, | \, \varphi \rangle = \langle f \, | \, \varphi \rangle,$$

в частности тогда пишут

$$\lim_{n \to \infty} f_n \stackrel{\mathcal{D}'}{=} f \qquad \Leftrightarrow \qquad *w. \lim_{n \to \infty} f_n = f.$$

T23

Найдём пределы последовательностей регулярных элементов пространства \mathcal{D}' , при

$$\lim_{n \to \infty} \langle \cos(nx) \mid \varphi \rangle = \lim_{n \to \infty} \int_{-\infty}^{+\infty} \cos(nx) \varphi(x) \, dx = \lim_{n \to \infty} \operatorname{Re} \int_{-\infty}^{+\infty} \, dx e^{inx} \varphi(x) = \lim_{n \to \infty} \operatorname{Re} \hat{\varphi}(n) = \langle 0 \mid \varphi \rangle \stackrel{\mathcal{D}'}{=} 0.$$

По той же причине

*
$$w$$
. $\lim_{n \to \infty} n \sin(nx) - 0$.

Найдём некоторые пределы в терминах обобщенных функций. В частности,

$$*w \lim_{a \to +0} \frac{a}{\pi(a^2 + x^2)} = *w \lim_{\mathcal{B}_a} \frac{a}{\pi(a^2 + x^2)},$$

где \mathcal{B}_a – база, состоящяя из всех последовательностей, стремящихся к 0. В частности, при a=1/n, перейдём к T24(a). Прямым вычислением, находим

$$\left\langle \frac{a}{\pi(a^2+x^2)} \middle| \varphi \right\rangle = \int_{-\infty}^{+\infty} \frac{a\varphi(x)}{\pi(a^2+x^2)} dx = \left(\lim_{\Lambda_+ \to +\infty} \int_0^{\Lambda_+} + \lim_{\Lambda_+ \to -\infty} \int_{\Lambda_-}^0 \right) \frac{a\varphi(x)}{\pi(a^2+x^2)} dx,$$

что интегрируя по частям можем свести к $\operatorname{arctg} x$:

$$\frac{1}{\pi} \lim_{\Lambda_{+} \to +\infty} \left\{ \operatorname{arctg} \frac{x}{a} \varphi(x) \Big|_{0}^{\Lambda_{+}} - \int_{0}^{\Lambda_{+}} \left(\operatorname{arctg} \frac{x}{a} \right) \varphi'(x) \, dx \right\} + \frac{1}{\pi} \lim_{\Lambda_{-} \to -\infty} \left\{ \operatorname{arctg} \frac{x}{a} \varphi(x) \Big|_{\Lambda_{-}}^{0} - \int_{\Lambda_{-}}^{0} \left(\operatorname{arctg} \frac{x}{a} \right) \varphi'(x) \, dx \right\} = \\
= -\frac{1}{2} \varphi(x) \Big|_{0}^{\infty} + \frac{1}{2} \varphi(x) \Big|_{-\infty}^{0} = \varphi(0) = \langle \delta(x) | \varphi \rangle,$$

таким образом мы нашли, что

$$\left\langle \frac{a}{\pi(a^2 + x^2)} \middle| \varphi \right\rangle = \left\langle \delta(x) \middle| \varphi \right\rangle.$$

Второй пункт сводится к интегрированию

$$\frac{1}{\pi} \int_0^x \frac{1}{t} \sin \frac{t}{a} dt = \frac{1}{\pi} \int_0^{x/a} \frac{d \sin y}{dy} dy = \frac{1}{\pi} \operatorname{Si} \left(\frac{x}{a} \right).$$

Вспоминая, что

$$\frac{1}{\pi}\operatorname{Si}(+\infty) = \frac{1}{\pi}\frac{\pi}{2} = \frac{1}{2}, \quad \frac{1}{\pi}\operatorname{Si}(-\infty) = \frac{1}{\pi}\left(-\frac{\pi}{2}\right), \quad \Rightarrow \quad \lim_{n \to \infty} \frac{1}{\pi}\frac{\sin nx}{x} \stackrel{\mathcal{D}'}{=} \delta(x).$$

T25

Теперь найдём предел вида

*
$$w$$
. $\lim_{n \to \infty} \frac{n^3 x}{(1 + n^2 x^2)^2} = *w$. $\lim_{n \to +0} \frac{xa}{(x^2 + a^2)^2} = F$,

для этого

$$\left\langle \frac{xa}{(x^2+a^2)^2} \middle| \varphi \right\rangle = \int_{-\infty}^{+\infty} \frac{xa}{(x^2+a^2)^2} \varphi(x) \, dx = \int_{-\infty}^{+\infty} \left(-\frac{1}{2} \right) \left(\frac{\partial}{\partial x} \frac{a}{x^2+a^2} \right) \varphi(x) \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{a\varphi'(x)}{x^2+a^2} \, dx \xrightarrow[a \to +0]{} \frac{\pi}{2} \varphi'(0),$$
что, учитывая предыдущую задачу, позволяет записать

$$\frac{\pi}{2}\langle \delta(x) \, | \, \varphi' \rangle = \left\langle \left(-\frac{\pi}{2} \right) \delta'(x) \, \middle| \, \varphi \right\rangle, \quad \Rightarrow \quad w. \lim_{a \to +0} \frac{xa}{(x^2 + a^2)^2} = -\frac{\pi}{2} \delta'(x),$$

T26

Алгоритмично, обработаем выражение

$$\langle d \mid \varphi \rangle = \langle g \cdot \delta \mid \varphi \rangle = \langle \delta \mid g \cdot \varphi \rangle = g(0)\varphi(0) = \langle g(0_{\delta}) \mid \varphi \rangle,$$

так приходим к упрощенному выражению вида

$$g(x)\delta(x) \stackrel{\mathcal{D}'}{=} g(0)\delta(x).$$

Во втором пункте $f = g\delta'$, упростим выражение

$$\langle f \mid \varphi \rangle = \langle g\delta' \mid \varphi \rangle = \langle \delta' \mid g\varphi \rangle = -\langle \delta \mid (g\varphi)' \rangle = -\langle \delta \mid g'\varphi + g\varphi' \rangle =$$

$$= -g'(0)\varphi(0) - g(0)\varphi'(0) = -g'(0)\langle \delta \mid \varphi \rangle - g(0)\langle \delta \mid \varphi' \rangle = \langle g(0)\delta' - g'(0)\delta \mid \rangle,$$

таким образом приходим к равенству в \mathcal{D}' :

$$g(x)\delta'(x) \stackrel{\mathcal{D}'}{=} -g'(0)\delta(x) + g(0)\delta'(x).$$

T27

Lem 1.29. $B \mathcal{D}'$ верно, что

$$(g \cdot f)^{(m)} = \sum_{k=0}^{m} C_m^k g^{(k)} f^{(m-k)}.$$

Найдём производные отдельных «строительных блоков»:

$$H(x) = \begin{cases} 1, & x \geqslant 0, \\ 0, & x < 0, \end{cases} \quad \tilde{H}(x) = \begin{cases} 1, & x > 0, \\ 1/2, & x = 0, \\ 0, & x < 0. \end{cases}$$

Докажем, что

$$\operatorname{sign} x = 2\tilde{H}(x) - 1, \quad \Rightarrow \quad \operatorname{sign}'(x) = 2\tilde{H}'(x) = 2\delta(x).$$

Первый шаг, по определению,

$$\left\langle \operatorname{sign}'(x) \, \middle| \, \varphi \right\rangle = -\left\langle \operatorname{sign} x \, \middle| \, \varphi' \right\rangle = -\int_{-\infty}^{+\infty} \operatorname{sign} x \varphi'(x) \, dx = \int_{-\infty}^{0} \varphi'(x) \, dx - \int_{0}^{+\infty} \varphi'(x) \, dx = 2\varphi(0) = \left\langle 2\delta(x) \, \middle| \, \varphi \right\rangle.$$

Теперь покажем, что

$$|x|' = (x \operatorname{sign} x)' = \operatorname{sign} x + x \operatorname{sign}' x = \operatorname{sign} x + x2\delta(x) = \operatorname{sign} x.$$

Также можем найти вторую производную

$$|x|'' = \operatorname{sign}'(x) = 2\delta(x).$$

Пункт а. Теперь легко посчитать, что

$$(g(x)\operatorname{sign} x)' = g'(x)\operatorname{sign} x + g(x)\operatorname{sign}'(x) = g'(x)\operatorname{sign} x + 2g(0)\delta(x),$$

где равенства подразумеваются в пространстве \mathcal{D}' . Для второй производной, находим

$$(g(x) \operatorname{sign} x)'' = g'' \operatorname{sign} x + 2g'(x) \operatorname{sign}' x + g(x) \operatorname{sign}''(x) = g''(x) \operatorname{sign} x + 4g'(0)\delta(x) + 2g(x)\delta'(x) = g''(x) \operatorname{sign} x + 4g'(0)\delta(x) + 2(-g'(0)\delta(x) + g(0)\delta'(x)) = g''(x) \operatorname{sign} x + 2g'(0)\delta(x) + 2g(0)\delta'(x).$$

Пункт б. Сразу подставим значение $g(x) = (x+1)e^{|x|}$:

$$g' = e^{|x|} (1 + (x+1)\operatorname{sign} x),$$

$$g'' = e^{|x|} (1 + \operatorname{sign} x + 2\delta(x)(x+1) + \operatorname{sign} x + x + 1) = 2e^{|x|} (1 + x/2 + \operatorname{sign} x + \delta(x)).$$

T28

Докажем, что слабая сходимость $\delta_{x_n} \to \delta_{x_0}$ эквивалентна обычной сходимости $x_n \to x_0$. Другими словами есть набор $f_n(x) = \delta(x - x_n)$ которые в пределе сходится к $f(x) = \delta(x - x_0)$.

По определению,

$$\forall \varphi \in \mathcal{D} \quad \lim_{n \to \infty} \langle \delta(x - x_n) \, | \, \varphi \rangle = \langle \delta(x - x_0) \, | \, \varphi \rangle.$$

В силу непрерывности функций в \mathcal{D} :

$$\forall \varphi \in D \quad \lim_{n \to \infty} \varphi(x_n) \varphi(x_0).$$

Наконец, это можно переписать в виде

$$\forall \varphi \in \mathcal{D} \ \forall \varepsilon > 0 \ \exists N(\varphi, \varepsilon) \in \mathbb{N} \ \forall n \geqslant N(\varphi, \varepsilon) \ |\varphi(x_n) - \varphi(x_0)| < \varepsilon.$$

Это было дано. Хочется показать, что из этого следует $x_n \to x_0$, или

$$\lim_{n \to \infty} x_n = x_0 \quad \forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \forall n \geqslant N_{\varepsilon} \ |x_n - x_0| < \varepsilon.$$

Докажем от противного, пусть $x_n \to x_1 \neq x_0$. Тогда пусть $\varkappa = |x_1 - x_0|/3$, выберем функцию $\varphi = \chi_{X_0}(x) + -\chi_{X_1}(x)$, где $X_0 = [x_0 - \varkappa, x_0 + \varkappa]$, $X_1 = [x_1 - \varkappa, x_1 + \varkappa]$. В таком случае, в пределе, $\langle f_n(x) \, | \, \varphi \rangle = -1$, при этом по условию $\langle f(x) \, | \, \varphi \rangle = 1$, что приводит нас к противоречию.

T31

Thr 1.30. Для \forall $CO\Phi$ $g \in \mathcal{D}'$, c носителем в открытом шаре, существует такая $PO\Phi$ f u $k \in \mathbb{N}$, что $f^{(k)} = g$.

Def 1.31. Носитель обобщенной функции $\operatorname{supp} f$ – дополнение к объединению $\operatorname{всеx}$ открытых множеств U, на которых f равна нулю. Обобщённая функция f равна нулю на U, $\operatorname{если} \langle f \, | \, \varphi \rangle = 0$ для $\operatorname{всеx} \varphi$ таких, что $\operatorname{supp} \varphi$ содержится $\operatorname{в} U$.

Примером такой функции (которая не является т-й производной РОФ), носитель которой не помещается в

открытый шар, может служить распределение вида

$$f = \sum_{k=1}^{\infty} \delta^{(k)}(x - k).$$

Докажем от противного, пусть $g^{(m)}=f$ и g – РОФ.