EE103 Digital Systems 1

Wong Chin Hong

106

Maynooth International Engineering College Fuzhou University

So far ...!

- We've used Karnaugh Maps to minimise logic ...
- We've implemented circuits using NAND only or NOR only gates ...
- We've introduced Sequential Logic and looked in detail at both the asynchronous and the synchronous SR flipflop ...

TODAY, we are going to look at the D, JK and T flipflops ...

BUT FIRST, we are going to finish off the section on the SR flipflop...

• By carefully analysing the state table, we can derive the following requirements table for the SR flipflop, where X represents don't care terms:

S R Q	Q (τ)		Onevetien			
0 0 0	0	\mathcal{C}	Operation	(S)	(R)	_ /
0 0 1		<u>ረ</u>	Stay at 0	0	X	15
0 1 0	0 4		Stay at I	X	0	
	0		Go to 0	0	- 1	
			Go to I	1	0	
I		and	efine.			

- We can also express the flipflop behaviour in terms of a Next
 State Equation.
- This is simply a Boolean expression that relates the next output $Q(\tau)$ to the inputs S and R and the previous output Q.
- The next state equation can be derived in two ways ...

1101010101011101<u>0000</u>

1101010101011101<mark>0000</mark>

- The **D** or data flipflop is the simplest of all the flipflops.
- It basically allows the transfer of data in a synchronised manner. S
- The D flipflop is a modified version of the SR flipflop where the inputs S and R are tied together with an inverter between them, as follows:

 The state table is easily derived from that of the SR flipflop as follows:

	D	S	R	Q(t)	
Ī	0	0	- 1	0	Q is set to 0
	1	- 1	0	- 1	Q is set to I

• Note that the condition S = R cannot occur due to the presence of the inverter and, hence, the indeterminate state of the SR flipflop is not an issue here.

 In brief, for the D flipflop, the next output is simply the same as the input (once the CLK is high).

D	Q (τ)
0	0
	_

• The JK flipflop is a refined version of the SR flipflop, where the indeterminate state of the SR flipflop is now defined.

ander, ne

Here, S now becomes J and R becomes K, as follows:

• Let us now consider the operation of the JK flipflop ...

AB f

• If J = 0 and K = 0 ...

• If J = 0 and K = 1 ...

• If J = I and K = 0 ...

- If J = I and K = 0 ...
- Then when CLK \rightarrow I, R_C = I, S_C \rightarrow \overline{Q} = Q
- Since $S_C = Q$, $Q(\tau) \rightarrow Q$ $\overline{Q} = I$ and since $R_C = I$, $\overline{Q}(\tau) \rightarrow 0$
- Hence $Q(\tau) \to I$ and $Q(\tau) \to 0$ (same as the SR flipflop)

- If J = I and K = I ...

$$Q + Q \overline{Q(\tau)}$$

$$= Q (I + Q(\tau))$$

- Overall, we can state that the operation of the JK flipflop is the same as that of the SR flipflop except for J = K = I.
- In the case of the SR flipflop this resulted in an indeterminate state.
- In the case of the JK flipflop, this condition acts as a toggle flipflop.
 In other words, it complements the output.

 Hence, we can derive the following state table for the synchronous JK flipflop:

	J	K	Q	Q (τ)	
	0	0	0	0	
4	0	0	1	1	∫ Q
	0	- 1	0	0	
	0	1	1	0	
	1	0	0	1	
	1	0	1	1	」 '
	I	- 1	0	I	} =
	I	I	1	0	

• The concise form of the state table is thus:

J	K	Q	Q (τ)
0	0	0	0
0	0	- 1	- 1
0	- 1	0	0
0	- 1	- 1	0
ı	0	0	- 1
ı	0	- 1	- 1
I	l L	0	I
I	Ī	I	0

• By carefully analysing the state table, we can derive the following requirements table for the JK flipflop, where X represents don't care terms:

J	K	Q	Q (τ)				
0	0	0	0		Onevetion		V
0	0				Operation	J	
0	- 1	0	0	1_1-4-1	Stay at 0	0	X
0	I	ı	0		Stay at I	X	0
- !	0	0			Stay at I Go to 0	X	- 1
	0						V
1		0			Go to I	I	X
- 1	I	I	0				

 The next state equation for the JK flipflop can be derived as follows:

					KQ
	J	K	Q	Q (τ)	
	0	0	0	0	
	0	0	1	I	$\mathbf{Q} \mathbf{I} 0 0 \mathbf{I} \mathbf{Q}$
	0	ı	0	0	
	0	1	I	0	K
	- 1	0	0	1	
	- 1	0	- 1	1	
	1	I L	0		$Q(\tau) = JQ + KQ$
	1	T I	T I	0	
L					

• The toggle flipflop is a modified version of the JK flipflop, where both inputs are simply tied together as follows:

- Note that by connecting J and K to T, we are restricting the J and K inputs to be either both 0 or I. The condition $J \neq K$ can never occur.
- Hence the following state table:

_		V	$\overline{}$	$O(\tau)$		
	J	<u> </u>	Q	Q(t)	т	Ο (τ)
0	0	0	0		•	(0)
			O .		0	
0	0	0			O	<u> </u>
					1	
			0		•	Q
				U		

• In brief, the T flipflop complements the output when T = I, otherwise the output remains the same when T = 0.

rrorordrororrro<mark>r</mark>oooo

• The requirements table for the T flipflop is:

Operation	Т
Stay at 0	0
Stay at I	0
Go to 0	I
Go to I	1

- Latches are very similar devices to flipflops they are constructed in the same fashion and have the same basic operating principles. However there are two notable differences.
- Firstly, and a relatively minor different, latches tend to use an Enable (or Control) input instead of the Clock input associated with the flipflops.
- Both work using the same principle, whereby the output of the device can only change depending on the Enable input or the Clock input being set HIGH (typically).
- However, the Clock tends to be a regular periodic signal, while the Enable key does not have to be.

- The second and fundamental difference relates to when the actual output is allowed to change.
- In the case of the latch the output can change at any instant in time while the Enable input is set HIGH.
- In flipflops, the output can only change when the Clock is in transition between two states, either LOW to HIGH or HIGH to LOW.
- This difference has a significant impact on the timing of both devices.

 By way of example, consider the timing associated with a D flipflop, using a positive-edge clock transition (i.e. from 0 to 1), and a D latch:

 By way of example, consider the timing associated with a D flipflop, using a positive-edge clock transition (i.e. from 0 to 1), and a D latch:

 By way of example, consider the timing associated with a D flipflop, using a positive-edge clock transition (i.e. from 0 to 1), and a D latch:

CHANGES PERMITTED

170707**0**10107170<mark>70000</mark>

 The symbol for an edge-triggered flipflop (for example the D flipflop) looks like:

The symbol for an edge-triggered flipflop (for example the D flipflop) looks like:

