NAME: SOLUTION SET.

MAXIMUM POINTS: 100

EECE 322: Electronics-II (Spring 2013, University of New Mexico) MID TERM EXAMINATION-I

RULES:

- Write your name on the top left corner
- Time Allotted = 75 Minutes
- Closed Book and Closed Notes
- You are allowed one single sided 8.5 x 11 page of formulae
- You may use a calculator
- Write your answers on the question paper. You may use additional sheets if needed.

HINTS:

- Please read the questions carefully and only provide only the information that is requested. This will save you time.
- If you are stuck in a particular question, move on to the next and come back to the
 question later. Solving the easy problems will give you confidence to solve the
 more challenging questions.

Section A: Conceptual Questions (60 Points)

1. Consider the transistor shown below.

4 Points

Which of these statements about this transistor is true?

- a. npn transistor in the forward active mode
- b. pnp transistor in the inverse active mode
- c. pnp transistor in the forward active mode
- d. pnp transistor in the cut-off mode

5 Points

- a. Collector current to Emitter Current
- b. Emitter current to Collector Current
- ©. Collector current to Base Current
- d. Base current to Emitter Current
- 3 Thevenize the circuit shown below at the dotted line. Calculate the value for R_{TH} and V_{TH} ?

4. If the h-parameter, h_{fe} , of the transistor is 100 and the diffusion resistance is 1K Ω , then the transconductance (g_m) is equal to

$$h_{fe} = \beta = 100$$

$$g_{m} g_{ff} = \beta$$

$$g_{m} = \frac{100}{1 \text{ kA}} = 100 \text{ mA/V}$$

Consider the figure below. Write an expression for the overall gain for the amplifier (v₀/v_s), including the loading effect.
 7 Points

6. In the circuit below, calculate the slope of the AC and the DC load line.

lope of DC bad line =
$$-\frac{1}{15 \text{ kn}}$$

7. Calculate the values for R_E and R_C , such that I_{EQ} =0.5mA and V_{ECQ} =4.0V. The transistor parameters are β =120 and V_{EB} (on)=0.7V.

KVLON EB LOOP.

$$V^{+}$$
 - IEQ RE - VEBON - $\frac{IEQ}{(1+B)}$ RE = 8.52 ks I ICQ = IEQ B = 0.496
(1+B) MA

8. Consider the AC equivalent circuit shown below.

5 Points

The output voltage is

(a.
$$-g_m V_{\pi}(r_0//R_c)$$

- b. $-g_m V_{\pi}(R_c)$
- c. $+g_mV_{\pi}(r_0//R_c)$
- d. $-g_m V_{\pi}(r_0//R_c) (R_i/R_i+R_s)$

9. Write an expression for the input resistance, R_i, of the circuit shown below.

10. In circuit in problem 9, assume that R_S =0. Write an expression for the output resistance, R_0 .

5 Points

Section B: Problems (40 Points)

20 Points

B.1. Consider the circuit below. Assume $\beta = 50$.

- (a) Calculate R_{TH} and V_{TH}.
- (b) Calculate Ico
- (c) Calculate V_{ECQ}
- (d) Draw the DC load line and label I_{cmax}, V_{CEmax} and the Q-point. .

a)
$$R_{TH} = 3k \kappa n 1168 k n = 23-5k n$$

$$V_{TH} = \left(\frac{68}{36468}\right) 10 - 5 = 1.54 V$$

(b) KVL ON BE 1009 VTH-CTBQ 5V- IBQ(1+B) RE-VEB(ON) - IBQ RTN-VTH=0 IBQ= 1.78MA I(Q=0.0888MA IEQ=0.096

© KVLON EC 100p 1862-2-07484 10- (0-0906)(30)-VECQ-(0-0888 (12)

B.2 In the circuit below with transistor parameters β = 180 and V_A = ∞ . Design the bias resistors (i.e. determine R_1 and R_2) to achieve maximum symmetrical swing in the output voltage and to maintain a bias-stable circuit. The total instantaneous C–E voltage is to remain in the range $0.5 \le v_{CE} \le 4.5$ V and the total instantaneous collector current is to be $i_C \ge 0.25$ mA.

combine (4) a (B) to get Icq = 2.82 mAd IBq = 0.0157mA For bias stable circuit, RTH = (0.1) (1+B) RE EVLOUBEINOP VTH - IBQRTH - VBEEN + (1+B) IBQ RE VTH = 1-013V R_{4} But $V_{TH} = \frac{R_{TH}}{R_{1}} V^{+} = > R_{1} = \frac{8.93 \, kn}{R_{1}}$ $R_2 = 2.27 kA$