Fonctions numériques

I. Fonction numérique

Activité:

On considere un rectangle de longueur (x-1)cm et de largeur (x-2)cm tel que x un réel supérieur strictement a 2.

On désigne par f(x) la **surface** de ce rectangle

- **1.** Déterminer l'expression de f(x)
- **2.** Déterminer la surface du rectangle si x = 4
- **3.** Déterminer les valeurs possibles de x si f(x) = 8

Définition

Soit D une partie de $\mathbb R$

On appelle fonction numérique (noté f): toute relation qui a associée chaque nombre réel x de D par un seul nombre réel y qu'on note f(x) et on écrit

$$f:D o \mathbb{R}$$

$$x
ightarrow f(x) = y$$

- f(x) = y : S'appelle 'image de x par la fonction f
- ullet Le nombre x s'appelle antécédent de y par la fonction f

Application 1

On considère une fonction numérique définie par $f(x) = 3x^2 - 1$

- **1.** Déterminer les images de 1 ; -2 et $\frac{3}{4}$ par la fonction f
- **2.** Déterminer les antécédents, s'ils existent, des nombres suivants 0, 5 et -4 par la fonction f

II. Ensemble de définition

Activité:

Soit f une fonction numérique définie par $f(x) = \frac{1}{x^2 - 1}$

- Déterminer les images de 0 ;2 ;
- Peut on calculer les images de 1 et -1 par la fonction f?

Définition

On appelle ensemble de définition d'une fonction numérique f, l'ensemble des nombres réels x pour lesquels l'image f(x) est bien définie et se note souvent D_f , On écrit $D_f = \{x \in \mathbb{R}/f(x) \in \mathbb{R}\}.$

Remarque

Pour déterminer l'ensemble de définition d'une fonction f; il faut **éliminer** tous les nombres réels pour lesquels

• le dénominateur est nul • le nombre sous la racine carrée est négatif.

Soient P(x) et Q(x) deux fonctions polynômes.

Fonction	Ensemble de definition	
x o P(x)	$D_f=\mathbb{R}$	
$x o rac{P(x)}{Q(x)}$	$D_f = \{x \in \mathbb{R}/Q(x) eq 0\}$	
$x o \sqrt{P(x)}$	$D_f = \{x \in \mathbb{R}/P(x) \geq 0\}$	
$x o rac{P(x)}{\sqrt{Q(x)}}$	$D_f = \{x \in \mathbb{R}/Q(x) > 0\}$	
$x o \sqrt{rac{P(x)}{Q(x)}}$	$D_f = \left\{ x \in \mathbb{R} / rac{P(x)}{Q(x)} \geq 0 \; \; et \; \; Q(x) eq 0 ight\}$	
$x ightarrow rac{\sqrt{P(x)}}{\sqrt{Q(x)}}$	$D_f = \{x \in \mathbb{R}/P(x) \geq 0 \;\; et \;\; Q(x) > 0 \}$	

+Exemple

Soient
$$f(x)=x^3+3x^2-2$$
 et $f(x)=rac{3x-1}{2x+1}$

Application 2

Déterminer l'ensemble de définition des fonctions suivantes:

$$\begin{array}{|c|c|c|c|c|}\hline f_1: x \mapsto x^2 + 3x - 5 & f_2: x \mapsto \frac{-2x + 4}{3x + 4} & f_3: x \mapsto \frac{\sqrt{x}}{x^2 + x - 2} \\ \hline f_4: x \mapsto \frac{4x^2 - 5}{\sqrt{2x^2 + 2x - 4}} & f_5: x \mapsto \frac{\sqrt{2 - x}}{|x + 2| - 3} & f_6: x \mapsto \sqrt{\frac{2 - x}{4x + 2}} \\ \hline f_7: x \mapsto \frac{\sqrt{2 - x}}{\sqrt{4x + 2}} & f_8: x \mapsto \frac{\sin^2(x)}{\cos^2(x) - 1} \\ \hline \end{array}$$

III. égalité de deux fonctions

Activité

Soit
$$f(x)=rac{1}{x}$$
 et $g(x)=rac{x}{x^2}$
1. M.q: $f(x)=g(x)$ 2. calculer $f(0)$ et $g(0)$

Soient f et g deux fonctions. D_f et D_g sont leurs ensembles de définition respectifs.

On dit que f et g sont égales , et on écrit f=g, si les deux conditions suivantes sont vérifiées :

•
$$D_f = D_a$$

$$ullet \ D_f = D_g \qquad ullet \ f(x) = g(x) ext{ pour tout } x \in D_f$$

Exemple 1

Soit
$$f(x) = \sqrt{x^2}$$
 et $g(x) = |x|$

Exercices

Exercice 8 - page: 277

IV. représentation graphique

Activité

On considère la fonction numérique f définie par f(x) = 2x + 1

Construire le graphe de la fonction f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

🖺 Définition :

• Dans un plan muni d'un repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative d'une fonction f, notée souvent (C_f) , est l'ensemble des pointsdu plan M(x;f(x)) où $x\in D_f$

🖺 Remarque :

L'équation y = f(x)est appelée l'équation de la courbe (C_f) .

Exemple 2

Tracer le courbe de $f: x \to |x|$

Application 3

On considère la fonction numérique f définie par : $f(x) = \frac{x^2}{x+1}$

- **1.** Déterminer D_f l'ensemble de définition de la fonction f.
- **2.** Déterminer les points appartenant à (C_f) parmi les points suivants :

$$O(0;0); B\left(3; \frac{9}{4}\right); C(1;1)$$

Application 4

Soit la figure suivante :

- **1.** est ce cette courbe est une fonction
- **3.** Donner les images de : -3; -1; 4
- **5.** est que la fonction paire ou impaire
- 2. Donner l'ensemble de définition
- **4.** Donner les antécédents de : 1; 2

Exercices

Exercice 10, 28 - page : 277

V. Fonction paire - Fonction impaire

Activité

On considère la fonction numérique f définie par : f(x) = |x| - 1

- **1.** Déterminer l'ensemble de définition de la fonction f.
- **2.** Soit $x \in \mathbb{R}$, montrer que f(-x) = f(x)
- 3. Vérifiez que f(x)=x-1 si $x\geq 0$ et f(x)=-x-1 si x<0
- **4.** En déduire la nature de la courbe (C_f) , puis tracer C_f dans un repère orthonormé $(O,\vec{i},\vec{j}).$
- **5.** En déduire que la courbe C_f admet un axe de symétrie à déterminer.

Définition

Soit D une partie de \mathbb{R} .

On dit que D est symétrique par rapport à zéro si pour tout $x \in D$ on a $-x \in D$.

Exemple 3

Déterminer les parties symétriques par rapport à zéro parmi les parties suivantes :

- ullet [-2:2] ullet [-2:1] ullet $[-3:-2] \cup [2:4]$ ullet $\mathbb R$

- $[0; +\infty[$

Définition : fonction paire

On dit que f est une fonction paire si :

- Si $x \in D_f$ alors $-x \in D_f$ (D_f est symétrique par rapport à zéro)
- Pour tout $x \in D_f$ on a : f(-x) = f(x)

La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Exemple 4

Soit
$$f(x) = \frac{1}{x^2}$$

Application 5

Déterminer si f est une fonction paire dans les cas suivants :

•
$$f(x) = x^6 + 3$$
 • $f(x) = \sqrt{x} + 1$

•
$$f(x) = \sqrt{x+1}$$

Definition: fonction impaire

On dit que f est une fonction impaire si :

• Si
$$x \in D_f$$
 alors $-x \in D_f$

$$ullet$$
 Si $x\in D_f$ alors $-x\in D_f$ $ullet$ Pour tout $x\in D_f$ on a $:f(-x)=-f(x)$

La courbe d'une fonction impaire est symétrique par rapport à l'origine du repère.

Application 6

1. étudier la parité des fonctions :

•
$$f(x) = \frac{2}{x}$$

$$\bullet \ \ fx\big)=x^3-x$$

$$ullet f(x) = rac{2}{x} \qquad ullet fxig) = x^3 - x \qquad ullet f(x) = |x| - rac{1}{x^2}$$

$$ullet f(x) = \sin(x) \qquad ullet f(x) = \cos(x) \qquad ullet f(a) = \tan(x)$$

•
$$f(x) = \cos(x)$$

•
$$f(a) = \tan(x)$$

$$\bullet \ f(x) = \frac{1}{x^2 - 2}$$

•
$$f(x) = \frac{1}{x^2 - 2}$$
 • $f(x) = 3x^2 - 2x + 4$

2. tracer une fonction paire et un fonction impaire

Exercices

Exercice 9, 11 - page : 277

تغيرات الدالة VI. Variations d'une fonction

Activité

Soit f la fonction numérique représentée ci-contre :

- **1.** Déterminer puis comparer f(-2) et f-1
- **2.** Comment les valeurs de f(x) change lorsque les valeurs de x augmentes sur [-2;0]
- **3.** Déterminer puis comparer f(2) et f(1).
- **4.** Comment les valeurs de f(x) change lorsque les valeurs de x augmentes sur [0;2]?

Definition

Soit la fonction f et $a,b\in D_f$

- Si a>b et $f(a)\geq f(b)$ alors f est croissante(تزایدیة)
- Si a>b et f(a)>f(b) alors f est **strictement croissante**
- ullet Si a>b et $f(a)\leq f(b)$ alors f est ullet est ullet est ullet ullet ullet
- Si a > b et f(a) < f(b) alors f est strictement décroissante
- Si a>b et f(a)=f(b) alors f est $oldsymbol{constante}$

Exemple 5

Soit f(x) = -x + 3

Exemple 6

Soit la fonction *f*

Donner les variations de f

🖺 Propriété : Taux de variation

Soit f une fonction définie sur D et $a,b\in D$

Le Taux de variation est $T=rac{f(a)-f(b)}{a-b}$

- Si $T \geq 0$ alors f est croissante sur I
- Si $T \leq 0$ alors f est décroissante sur I
- Si T=0 alors f est constante sur I

Exemple 7

Soit f(x) = 2x + 1

Application 7

Soit $f(x) = x^2 - 4x + 3$

- **1.** monter que le taux le variation est : T = a + b 4
- **2.** étudier la monotonie de f sur $]-\infty;2]$ et $[2;+\infty[$
- **3.** dresser le tableau de variation de f

Exercices

Exercice **14** - page : **277**

Exercice

Soit
$$f(x) = \frac{-x+2}{x-1}$$

- 1. Soit $x,y\in D_f$ Montrer que $f(x)-f(y)=\dfrac{-(x-y)}{(x-1)(y-1)}$ 2. déduire que le taux le variation est : $T=\dfrac{-(x-y)}{(x-1)(y-1)}$
- **3.** étudier la monotonie de f sur $]-\infty;1]$ et $[1;+\infty[$
- **4.** dresser le tableau de variation de f

VII. Maximum et minimum d'une fonction

Définition

Soit f une fonction définie sur I

- **1.** On dit m est un minimum (une valeur minimale) de f sur I si pour tout $x \in I$ on
 - $f(x) \geq m$
- **2.** On dit M est un maximum (une valeur maximale) sur I si pour tout $x \in I$ on

$$f(x) \leq M$$

3. un extremum = minimum **ou** maximum

Exemple 8

Soit f une fonction définie par $f(x) = x + \frac{1}{x}$

- **1.** Montrer que 2 est le minimum de f sur \mathbb{R}^+_*
- **2.** Montrer que -2 est le maximum de f sur \mathbb{R}_*^-

Physique

AA By alyssa allen

Present

View on Prezi.com

VIII. Parabole et Hyperbole

8.1. Fonction $x o ax^2$

Activité

Soit f une fonction définie sur $\mathbb R$ par $f(x)=2x^2$ et (C_f) sa courbe dans un repère orthonormé.

- **1.** Etudier la parité de la fonction f. **2.** Dédu
- **2.** Déduire la propriété géométrique de C_f
- **3.** Etudier la monotonie sur \mathbb{R}^+ puis déduire la monotonie sur \mathbb{R}^- .
- **4.** Dresser le tableau de variation
- **5.** Construire C_f la courbe de la fonction f dans un repère orthonormé.
- **6.** Refaire les mêmes questions pour la fonction g qui est définie par $g(x)=-2x^2$

Définition

Soit $a \in \mathbb{R}^*$.

- le sommet l'origine du repère
- **l'axe de symétrie** est l'axe des ordonnés (x=0).

Les variations de f:

Exemple 9

 $f(x) = 2x^2$

Application 8

Soit f une fonction sur $\mathbb R$ définie par $f(x)=-rac{1}{2}x^2$

- **1.** Dresser le tableau de variation sur \mathbb{R} .
- **2.** Donner la nature de \mathcal{C}_f en précisant ses éléments caractéristiques.
- **3.** Construire C_f .

8.2. Fonction $f(x) = ax^2 + bx + c$

Activité

Soit $f(x) = ax^2 + bx + c$

- **1.** monter que $f(x) = a \left(x + \frac{b}{2a} \right)^2 \frac{\Delta}{4a}$
- **2.** trouver X et Y tel que : $f(x) = aX^2 + Y$
- **3.** donner les propriétés de C_f

Propriété

Soit
$$f(x) = ax^2 + bx + c$$

La forme canonique de f est : $f(x) = a \left(x + rac{b}{2a}
ight)^2 - rac{\Delta}{4a}$

La courbe de f est une parabole de sommet $\Omega\left(-\frac{b}{2a};f\left(-\frac{b}{2a}\right)\right)$ et d'axe de symétrie b

$$x = -rac{b}{2a}$$

Application 9

On considère la fonction f définie par : $f(x) = 2x^2 - 5x + 3$

- **1.** Déterminer D_f lensemble de définition de la fonction f
- **2.** monter que $f(x)=2\bigg(x-rac{5}{4}\bigg)^2+rac{49}{8}$
- **3.** Dresser le tableau de variations de f
- **4.** Déterminer la nature et les éléments caractéristiques de la courbe C_f
- **5.** Tracer (C_f) dans un repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

8.3. Fonction $x ightarrow rac{a}{x}$

Activité

Soit f une fonction définie sur $\mathbb R$ par $f(x)=rac{1}{x}$ et $a\in\mathbb R$

- 1. Déterminer D_f 2. Etudier la parité de la fonction f .
- **3.** Déduire la propriété géométrique de C_f
- **4.** Etudier la monotonie sur \mathbb{R}_*^+ , puis déduire la monotonie sur \mathbb{R}_*^- .
- **5.** Dresser le tableau de variation
- **6.** Construire C_f la courbe de la fonction f dans un repère orthonormé.

Définition

La courbe de la fonction $f = \frac{a}{r}$ s'appelle une hyperbole de centre O et d'asymptotes les droites

d'équations x = 0 et y = 0

Application 10

Soit f une fonction sur $\mathbb R$ définie par $f(x) = rac{3}{x}$

- **1.** Dresser le tableau de variation sur \mathbb{R} .
- **2.** Donner la nature de C_f en précisant ses éléments caractéristiques.
- **3.** Construire C_f .

🖺 Propriété : fonction périodique

On dit que f est une fonction périodique de période T si pour tout $x \in D_f$:

•
$$(x+T) \in D_f$$

•
$$(x+T) \in D_f$$
 • $f(x+T) = f(x)$

Exemple 10

On a $\sin(x+2\pi)=\sin(x)$ et $\cos(x+2\pi)=\cos(x)$ alors $\sin(x)$ et $\cos(x)$ sont des fonctions périodiques de période : $T=2\pi$

Propriété :
$$f(x) = \frac{ax+b}{cx+d}$$
Soit la fonction $f(x) = \frac{ax+b}{cx+d}$

Soit la fonction
$$f(x) = \frac{ax + b}{cx + d}$$

La formule réduite de f est : $f(x) = eta + rac{\lambda}{x+lpha}$

La courbe de la fonction f est une hyperbole de centre $\Omega\left(-\frac{d}{c};\frac{a}{c}\right)$ et d'asymptotes les droites

d'équations
$$x = -\frac{d}{c}$$
 et $y = \frac{a}{c}$

Soit
$$\Delta = a \times d - c \times b$$

Application 11

On considère la fonction f définie par : $f(x) = \frac{-x+2}{x-1}$

- **1.** Déterminer D_f lensemble de définition de la fonction f
- **2.** monter que $f(x) = -1 + \frac{1}{x-1}$
- **3.** Dresser le tableau de variations de f
- **4.** Déterminer la nature et les éléments caractéristiques de la courbe C_f
- **5.** Tracer (C_f) dans un repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

IX. Résolution graphique des équations et des inéquations

Propriété

L'équation	f(x) = m	f(x) = g(x)
Les abscisses des points	(\mathcal{C}_f) avec la droite	$(\mathcal{C}_f) \operatorname{avec} (\mathcal{C}_g)$
d'intersection de	y = m	

L'inéquation	f(x) > m	f(x) > g(x)
Sont les intervalles dont	(C_f) est au- dessus de la droite $y = m$	(\mathcal{C}_f) est au-dessus $\mathrm{de}\;\;(\mathcal{C}_g)$

Exemple 11

Soit
$$f(x) = -x^2 + 3$$
 et $g(x) = -x + 1$

1. Résoudre algébriquement et graphiquement :

$$\circ f(x) = g(x)$$

$$\circ f(x) \geq g(x)$$

$$\circ \ f(x) \leq g(x)$$

![Alt text](./images/equation and inequation.ggb)

Application 12

Soient f et g les fonctions définies par : $f(x) = x^2 - 2x - 3$ et $g(x) = \frac{-x - 7}{x + 1}$

Déterminer la nature et les éléments caractéristiques de (C_{f}) et de (C_{g})

- Résoudre graphiquement puis algébriquement l'équation f(x) = 0
- 2) Résoudre graphiquement les inéquations $f(x) \ge 0$ et $f(x) \le 0$
- 3) Résoudre graphiquement l'équation f(x) = 5
- Résoudre graphiquement les inéquations f(x)≥5 et f(x)≤5
- 5) Résoudre graphiquement l'équation f(x) = g(x)
- 6) Résoudre graphiquement les inéquations $f(x) \ge g(x)$ et $f(x) \le g(x)$

Application 8

Soit f une fonction sur $\mathbb R$ définie par $f(x)=rac{3}{x}$

- **1.** Dresser le tableau de variation sur \mathbb{R} .
- **2.** Donner la nature de C_f en précisant ses éléments caractéristiques.
- **3.** Construire C_f .

1) on a $\beta(x) = \frac{3}{2}$ olons a $\beta(x) = \frac{3}{2}$

Dorce 21 -00 0 +00

2) on a (Cg) est un Ryperbole de

centre (0:0) et d'asymptotes:

n=0 ety=0

3) ma:

7(-3-2-1 1 2 3 8(n) -1 -15-3 3 15 1

elor.

