NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA1101R Linear Algebra I

2018-2019 (Semester 1)

Tutorial 7

- 1. Consider the set $V = \{(x, y, z) \mid ax + by + cz = 0\} \subseteq \mathbb{R}^3$.
 - (a) Describe the set V geometrically. Is V a subspace of \mathbb{R}^3 ?
 - (b) If V contains $\mathbf{v_1} = (1, 4, -6)$ and $\mathbf{v_2} = (0, 2, -4)$, use Gaussian Elimination to find a, b, c.
 - (c) Is $S = \{v_1, v_2\}$ a basis for V? Justify your answer.
 - (d) Show that $T = \{u_1, u_2\}$, where $u_1 = (1, 1, 0)$, $u_2 = (1, 5, -8)$, is also a basis for V.
 - (e) Find the transition from T to S.
 - (f) Is it possible to compute $(v)_S$ for the vector v = (1, 1, 2)? Justify your answer.
 - (a) V represents a plane in \mathbb{R}^3 that contains the origin. Yes, V is a subspace of \mathbb{R}^3 .
 - (b) Substitute v_1 and v_2 into the equation ax + by + cz = 0:

$$\left(\begin{array}{cc|c} 1 & 4 & -6 & 0 \\ 0 & 2 & -4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{cc|c} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \end{array}\right)$$

A general solution is $a=-2t, b=2t, c=t, t\in\mathbb{R}$. So we may choose a=-2, b=2, c=1. The equation of the plane is thus -2x+2y+z=0.

- (c) Since V is a subspace of \mathbb{R}^3 with dimension 2 and $\mathbf{v_1}$, $\mathbf{v_2}$ are two vectors in V that are not multiples of each other, we can conclude that $S = \{\mathbf{v_1}, \mathbf{v_2}\}$ is a basis for V.
- (d) Again, note that $\boldsymbol{u_1}$ and $\boldsymbol{u_2}$ are not multiples of each other, meaning that they are linearly independent. For T to be a basis for V, it suffices to show that $\boldsymbol{u_1}, \boldsymbol{u_2} \in V$. Indeed both (1,1,0) and (1,5,-8) satisfies the equation -2x + 2y + z = 0, thus T is a basis for V.

(e)

$$\begin{pmatrix}
1 & 0 & 1 & 1 \\
4 & 2 & 1 & 5 \\
-6 & -4 & 0 & -8
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & -\frac{3}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0
\end{pmatrix}$$

So $u_1 = v_1 - \frac{3}{2}v_2$ and $u_2 = v_1 + \frac{1}{2}v_2$ and the transition matrix from T to S is $\begin{pmatrix} 1 & 1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$.

(f) No, since $\mathbf{v} = (1, 1, 2)$ does not belong to V (that is, (1, 1, 2) does not satisfy the equation of the plane).

2. (a) Suppose P is the transition matrix from T to S, where $S = \{v_1, v_2\}$, $T = \{w_1, w_2\}$ are bases for \mathbb{R}^2 . If

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \qquad P = \begin{pmatrix} 3 & 5 \\ 1 & -2 \end{pmatrix},$$

find w_1 and w_2 .

(b) Let $S = \{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}\}$ and $T = \{\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\}$ where

$$\boldsymbol{u_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u_2} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \boldsymbol{u_3} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}, \quad \boldsymbol{v_1} = \begin{pmatrix} 4 \\ 6 \\ 7 \end{pmatrix}, \quad \boldsymbol{v_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{v_3} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

- (i) Verify that S and T are both bases for \mathbb{R}^3 .
- (ii) Find the transition matrix from T to S.
- (c) Suppose Q is the transition matrix from S to T, where $S = \{v_1, v_2\}$, $T = \{w_1, w_2\}$ are bases for \mathbb{R}^2 . If

$$v_1 = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, \qquad w_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \qquad Q = \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix},$$

find v_2 and w_2 .

- (a) Since P is the transition matrix from T to S, we have $(\mathbf{w_1})_S = (3,1)$ and $(\mathbf{w_2})_S = (5,-2)$. So $\mathbf{w_1} = 3(1,2)+1(2,3) = (5,9)$ and $\mathbf{w_2} = 5(1,2)-2(2,3) = (1,4)$.
- (b) (i)

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4 \end{vmatrix} = 1 \neq 0, \quad \begin{vmatrix} 4 & 6 & 7 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 3 \neq 0.$$

Thus both S and T are bases for \mathbb{R}^3 .

(ii) To find the transition matrix from T to S, we need to write each v_1, v_2, v_3 as a linear combination of u_1, u_2, u_3 .

$$\begin{pmatrix} 1 & 1 & 2 & 4 & 0 & 1 \\ 1 & 2 & 3 & 6 & 1 & 0 \\ 1 & 2 & 4 & 7 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}.$$

So $(\mathbf{v_1})_S = (1, 1, 1), (\mathbf{v_2})_S = (-1, 1, 0), (\mathbf{v_3})_S = (1, -2, 1)$ and the required transition matrix is $\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$.

(c) $(\mathbf{v_1})_T = (4, 2) \Rightarrow \mathbf{v_1} = 4\mathbf{w_1} + 2\mathbf{w_2}$. Thus

$$\begin{pmatrix} 2 \\ 6 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 4 \end{pmatrix} + 2 \boldsymbol{w_2} \Rightarrow 2 \boldsymbol{w_2} = \begin{pmatrix} -2 \\ -10 \end{pmatrix} \Rightarrow \boldsymbol{w_2} = \begin{pmatrix} -1 \\ -5 \end{pmatrix}.$$

Similarly, $(\boldsymbol{v_2})_T = (1,1) \Rightarrow \boldsymbol{v_2} = \boldsymbol{w_1} + \boldsymbol{w_2}$. Thus

$$\mathbf{v_2} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} -1 \\ -5 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

3. Let $S = \{u_1, u_2, u_3, u_4, u_5, u_6\}$ where

$$\mathbf{u_1} = (0, 1, 0, 0), \ \mathbf{u_2} = (-1, 0, 2, -3), \ \mathbf{u_3} = (0, 1, 0, 0)$$

 $\mathbf{u_4} = (1, 1, -2, 3), \ \mathbf{u_5} = (1, 6, 2, 0), \ \mathbf{u_6} = (0, 7, 0, 2).$

- (a) By finding a row-echelon form of $\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & -3 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & -2 & 3 \\ 1 & 6 & 2 & 0 \\ 0 & 7 & 0 & 2 \end{pmatrix}$, find a basis for $V = \operatorname{span}(S)$.
- (b) Find another basis T for V = span(S) such that T is a subset of S.

 $\begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 2 & -3 \\
0 & 1 & 0 & 0 \\
1 & 1 & -2 & 3 \\
1 & 6 & 2 & 0 \\
0 & 7 & 0 & 2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.$

So a basis for $V = \operatorname{span}(S)$ is $\{e_1, e_2, e_3, e_4\}$.

(b) Consider the transpose of \boldsymbol{A} and its reduced row-echelon form:

$$\begin{pmatrix} 0 & -1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 6 & 7 \\ 0 & 2 & 0 & -2 & 2 & 0 \\ 0 & -3 & 0 & 3 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Since the pivot columns are at the first, second, fifth and sixth columns, $\{u_1, u_2, u_5, u_6\}$ is a basis for V = span(S). (Remark: Students should not take $\{u_1, u_2, u_3, u_4\}$ which corresponds to rows 1 to 4 of the reduced row-echelon form of A in part (a), as this is not a linearly independent set.)

4. Let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 3 & 1 & 4 \\ 2 & 4 & 5 & 5 & 4 & 9 \\ 3 & 6 & 7 & 8 & 5 & 9 \end{pmatrix}.$$

- (a) Let \mathbf{R} be the reduced row-echelon form of \mathbf{A} . Which are the non pivot columns of \mathbf{R} ? Write each of the non pivot columns of \mathbf{R} as a linear combination of the pivot columns of \mathbf{R} .
- (b) Which columns of \boldsymbol{A} corresponds to the pivot columns of \boldsymbol{R} ? Recall that these columns of \boldsymbol{A} forms a basis for the column space of \boldsymbol{A} . Write each of the remaining columns of \boldsymbol{A} as a linear combination of these basis vectors.

(c) What do you observe when comparing the answers in (a) and (b)?

$$A \longrightarrow \begin{pmatrix} 1 & 2 & 0 & 5 & -3 & 0 \\ 0 & 0 & 1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = R.$$

The non pivot columns of R are the second, fourth and fifth columns. Let r_1, \dots, r_6 be the columns of R, where r_i is the i-th column of R. Thus the non pivot columns are r_2, r_4, r_5 and the pivot columns are r_1, r_3, r_6 .

$$r_2 = 2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2r_1 + 0r_3 + 0r_6$$

$$r_4 = 5 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 5r_1 - r_3 + 0r_6$$

$$r_5 = -3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = -3r_1 + 2r_3 + 0r_6$$

(b) Let a_1, \dots, a_6 be the columns of A. So the columns of A that corresponds to the pivot columns of R are a_1, a_3, a_6 .

$$a_{2} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 2a_{1} + 0a_{3} + 0a_{6}$$

$$a_{4} = \begin{pmatrix} 3 \\ 5 \\ 8 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} = 5a_{1} - a_{3} + 0a_{6}$$

$$a_{5} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} = -3a_{1} + 2a_{3} + 0a_{6}$$

- (c) We see that the linear relationship between the vectors r_1, \dots, r_6 is the same as that between the vectors a_1, \dots, a_6 .
- 5. Prove Theorem 4.1.11 (from the textbook):

Let \boldsymbol{A} and \boldsymbol{B} be row equivalent matrices. Prove the following statements.

- (a) A given set of columns of \boldsymbol{A} is linearly independent if and only if the set of corresponding columns of \boldsymbol{B} is linearly independent.
- (b) A given set of columns of \boldsymbol{A} forms a basis for the column space of \boldsymbol{A} if and only if the set of corresponding columns of \boldsymbol{B} forms a basis for the column space of \boldsymbol{B} .

Let $A = (a_1 \ a_2 \ \cdots \ a_n)$ and B be $m \times n$ matrices where a_i is the *i*th column of A. Suppose A and B are row equivalent, i.e. there exists elementary matrices E_1, E_2, \ldots, E_k such that

$$B = E_k \cdots E_2 E_1 A.$$

Define $P = E_k \cdots E_2 E_1$. Then $B = PA = (Pa_1 \ Pa_2 \cdots \ Pa_n)$ where Pa_i is the *i*th column of B. By Theorem 2.4.7, P is invertible.

Let $S_1 = \{a_{i_1}, a_{i_2}, \ldots, a_{i_r}\}$ be a set of columns of A. Note that $S_2 = \{Pa_{i_1}, Pa_{i_2}, \ldots, Pa_{i_r}\}$ is the set of corresponding columns of B.

- (a) Since \mathbf{P} is invertible, by Question 3.30 (Chapter 3 Problem 30), S_1 is linearly independent if and only if S_2 is linearly independent.
- (b) Suppose S_1 is a basis for the column space of \mathbf{A} . We want to show that S_2 is a basis for the column space of \mathbf{B} :
 - (i) By (a), S_2 is linearly independent.
 - (ii) It is obvious that span $(S_2) \subseteq$ the column space of \mathbf{B} . Take any $\mathbf{u} \in$ the column space of \mathbf{B} , i.e. for some $c_1, c_2, \ldots, c_n \in \mathbb{R}$,

$$\boldsymbol{u} = c_1 \boldsymbol{P} \boldsymbol{a_1} + c_2 \boldsymbol{P} \boldsymbol{a_2} + \dots + c_n \boldsymbol{P} \boldsymbol{a_n}.$$

Since span(S_1) = the column space of \boldsymbol{A} ,

$$a_1, a_2, \dots, a_n \in \text{span}(S_1) = \text{span}\{a_{i_1}, a_{i_2}, \dots, a_{i_r}\}$$

and hence

$$Pa_1, Pa_2, \dots, Pa_n \in \text{span}\{Pa_{i_1}, Pa_{i_2}, \dots, Pa_{i_r}\} = \text{span}(S_2).$$

By Theorem 3.2.9.2, $\mathbf{u} \in \text{span}(S_2)$. So the column space of $\mathbf{B} \subseteq \text{span}(S_2)$. We have shown that $\text{span}(S_2) = \text{the column space of } \mathbf{B}$.

By (i) and (ii), S_2 is a basis for the column space of \mathbf{B} .

Similarly, follow the arguments above by replacing a_i by Pa_i and P by P^{-1} . We conclude that if S_2 is a basis for the column space of B, then S_1 is a basis for the column space of A.