Contrôle de connaissances

 $\label{eq:Durée:1} Durée: 1 \ heure-Calculatrice autorisée \\ Fiches de cours autorisées (fiches distribuées + max 4 pages manuscrites)$

Exercice 1.

Soit K un sous-ensemble convexe fermé non vide dans un espace de Hilbert H. Soient $P_K u$ et $P_K v$ les projections respectives de u et v sur K. Montrer alors que $||P_K u - P_K v|| \le ||u - v||$ où $||\cdot||$ désigne la norme induite par le produit scalaire de H.

Exercice 2.

Utiliser la méthode des multiplicateurs de Lagrange pour trouver le ou les extrema relatifs de la fonction $J(x_1, x_2) = x_1 + (x_2 - 1)^2$ sur l'axe $x_1 = 0$.

Exercice 3.

On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = 3x^6 - 4x^3y + y^2$.

- 1. Montrer que le point (0,0) est le seul point critique de f.
- 2. Montrer que la restriction de f à toute droite passant par (0,0) admet un minimum local strict en ce point.
- 3. En considérant la restriction de f à la courbe d'équation $y=2x^3$, montrer que f n'admet pourtant pas de minimum relatif en (0,0).
- 4. Conclure.

Exercice 4.

Soient $c \in \mathbb{R}$ et $f : \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par : $f(x_1, x_2) = x_1^2 + x_2^2 - cx_1x_2 + 2x_1 - 2x_2$.

- 1. Déterminer les valeurs de c pour lesquelles cette fonction admet un minimum en un point unique de \mathbb{R}^2 .
- 2. Lorsqu'il existe et est unique, on note x_c le point qui réalise ce minimum. Calculer x_c et $f(x_c)$ en fonction de c.
- 3. On pose maintenant c=1 et $\langle \cdot, \cdot \rangle$ désigne le produit scalaire usuel sur \mathbb{R}^2 . Écrire f sous la forme d'une fonctionnelle quadratique : $f(x)=\frac{1}{2}\langle Ax,x\rangle-\langle b,x\rangle$, puis appliquer une itération de l'algorithme du gradient à pas optimal à f en partant de $u^{(0)}=(0,1)$.