МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

вычислительные методы

Методические указания к выполнению лабораторных работ (варианты заданий для группы 20BBC1)

Даны указания к выполнению лабораторных работ в системе Mathcad по следующей тематике: теория погрешностей и машинная арифметика, решение уравнений, решение систем уравнений прямыми и итерационными методами, приближение функций.

Методические указания подготовлены на кафедре «Системы автоматизированного проектирования» и предназначены для студентов направлений 02.03.03 «Математическое обеспечение и администрирование информационных систем» и 09.03.01 «Информатика и вычислительная техника».

Составители: Гудков П.А., Подмарькова Е.М.

Лабораторная работа №1

ТЕОРИЯ ПОГРЕШНОСТЕЙ И МАШИННАЯ АРИФМЕТИКА

Цель работы

Ознакомиться с системой символьных вычислений Mathcad. Изучить основные понятия теории погрешностей.

Общие сведения

Пусть a — точное значение, a^* — приближенное значение некоторой величины. Абсолютной погрешностью называется величина $\Delta=|a-a^*|$. Относительной погрешностью (при $a\neq 0$) называется величина:

 $\delta = \frac{\Delta}{|a|}$

Значащую цифру числа a^* называют верной, если абсолютная погрешность числа не превосходит половины единицы разряда, соответствующего этой цифре.

Пусть $f=f(x_1,x_2,\ldots,x_n)$ – дифференцируемая в области G функция, вычисление которой производится при приближенно заданных значениях аргументов x_1^*,x_2^*,\ldots,x_n^* . Тогда для абсолютной погрешности функции справедлива следующая оценка:

$$\Delta_f \leq \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \cdot \Delta_{x_i}$$

В ЭВМ для представления вещественных чисел используется двоичная система счисления и принята форма представления чисел с плавающей точкой $x=\mu\cdot 2^p$. Здесь μ — мантисса; p — целое число, называемое двоичным порядком. Количество цифр t, которое отводится для записи мантиссы, называется разрядностью мантиссы.

Диапазон представления чисел в ЭВМ ограничен конечной разрядностью мантиссы и значением числа p. Все представимые

числа на ЭВМ удовлетворяют неравенствам: $0 < X_0 \le |x| < X_\infty$, где $X_0 = 2^{-(p_{\max}+1)}$, $X_\infty = 2^{p_{\max}}$. Все числа, по модулю большие X_∞ , не представимы на ЭВМ и рассматриваются как машинная бесконечность. Все числа, по модулю меньшие X_0 , для ЭВМ не отличаются от нуля и рассматриваются как машинный нуль. Машинным эпсилон $\varepsilon_M \approx 2^{-t}$ называется относительная точность ЭВМ, то есть граница относительной погрешности представления чисел в ЭВМ. Машинное эпсилон определяется разрядностью мантиссы и способом округления чисел, реализованным на конкретной ЭВМ.

Порядок выполнения работы

- 1. Изучить теоретический материал.
- 2. Выполнить задания, указанные в индивидуальном варианте.
- 3. Оформить отчет.

Содержание отчета

- 1. Вариант задания (с формулировкой решаемых задач).
- 2. Листинг решения в системе *Mathcad*.
- 3. Выводы по работе.

Варианты заданий

1. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{2}{n^2 + 5n + 6}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

• Найти сумму ряда S аналитически как предел частичных сумм ряда.

- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 33 & 28 & 24 \\ 360 & 320 & 270 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

2. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{36}{11(n^2 + 5n + 4)}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 2 & 16 & 6 \\ 3 & 24 & 5 \\ 1 & 8 & 11 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

3. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{9}{n^2 + 7n + 12}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 1,1 & 0,1 & 0,8 & 1,6 \\ 1,3 & -0,3 & 1,2 & 2,1 \\ 0,9 & 0,5 & 0,4 & 1,1 \\ -0,4 & -3,8 & 2 & 1,3 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти

ранг. Объяснить полученные результаты.

4. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{48}{5(n^2 + 6n + 8)}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2-39,6x-716,85=0$. Предполагается, что коэффициент 39,6 получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

5. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{48}{5(n^2 + 6n + 5)}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 30 & 34 & 19 \\ 314 & 354 & 200 \\ 2 & 8 & 13 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

6. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{72}{5(n^2 + 6n + 8)}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).

• Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 2 & 4, 4 & -2 \\ 1 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

7. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{24}{n^2 + 8n + 15}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N=\sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 0,6 & 4,5 & 0,3 & 3 \\ -2,4 & -12 & 0,9 & -7 \\ 1,2 & 9 & 0,6 & 6 \\ -1,2 & 3 & 3,6 & 4 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.

8. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{32}{n^2 + 9n + 20}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2+27, 4x+187, 65=0$. Предполагается, что коэффициент 187, 65 получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

9. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{216}{7(n^2 + 8n + 15)}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 1, 3 & 1 & 13 \\ 3, 4 & 1, 4 & 23 \\ 5 & 3 & 1, 5 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

10. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{84}{13(n^2 + 14n + 48)}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

• Найти сумму ряда S аналитически как предел частичных сумм ряда.

- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 3 & 5 & 3 \\ 9 & 15 & 9 \\ 6 & 7 & 2 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

11. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{60}{11(n^2 + 12n + 35)}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 1,8 & 4 & 0 & 1,9 \\ 20,9 & 37 & -25 & 19,2 \\ 0,5 & 3 & 5 & 1,1 \\ 10,6 & 16 & -20 & 8,9 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.

12. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{144}{5(n^2 + 6n + 8)}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2+37, 4x+187, 65=0$. Предполагается, что коэффициент 37, 4 получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

13. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{36}{n^2 + 7n + 10}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 9 & 5 & 6 \\ 17 & 9 & 11 \\ 7 & 4 & 5 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

14. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{48}{n^2 + 8n + 15}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 48 & 3 & 6 \\ 32 & 2 & 4 \\ 5 & -1 & 2 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

15. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{20}{n^2 + 4n + 3}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).

• Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 2 & 15 & 22 & 7 \\ 1 & 14, 1 & 18, 8 & 2, 3 \\ 2 & 4 & 9 & 9 \\ -0, 4 & 2, 5 & 2, 1 & -2, 4 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.

16. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{32}{n^2 + 5n + 6}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2-30,9x+238,7=0.$ Предполагается, что коэффициент 238,7 получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при

нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

17. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{144}{n^2 + 18n + 80}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} -7 & -7 & -1 \\ 0 & -2 & -6 \\ 5 & 6 & 4 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

18. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{24}{n^2 + 4n + 3}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 2 & 0,4 & 6 \\ 1,1 & 0,2 & 3 \\ 2,3 & 1,2 & 4 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

19. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{180}{n^2 + 20n + 99}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.

- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 1,9 & 9 & 1,6 & 0,1 \\ 11,3 & 23 & 6,8 & -3,7 \\ 0,5 & 10 & 1,1 & 1,1 \\ 0,9 & -11 & -0,6 & -2,1 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.

20. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{112}{15(n^2 + 16n + 63)}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2 3,29x + 2,706 = 0$. Предполагается, что коэффициент 3,29 получен в

результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

21. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{24}{7(n^2 + 8n + 15)}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 3 & 1 & 13 \\ 5 & 3 & 15 \\ 11 & 5 & 40 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

22. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{36}{n^2 + 5n + 4}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 5 & 5, 5 & 5, 5 \\ 1 & 1 & 1 \\ 5 & -1 & 2 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

23. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{46}{n^2 + 5n + 6}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 1,2 & 9 & 0,6 & 6 \\ 1,6 & 23 & -7,2 & 9 \\ 2 & 4 & 9 & 9 \\ 2 & 37 & -15 & 12 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.

24. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{96}{n^2 + 9n + 20}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).

- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2-3,29x+2,706=0$. Предполагается, что коэффициент 2,706 получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

25. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{60}{n^2 + 6n + 8}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 33 & 28 & 24 \\ 360 & 320 & 270 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A?

Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

26. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{72}{n^2 + 7n + 10}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 2 & 16 & 6 \\ 3 & 24 & 5 \\ 1 & 8 & 11 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

27. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{24}{n^2 + 4n + 3}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 1,1 & 0,1 & 0,8 & 1,6 \\ 1,3 & -0,3 & 1,2 & 2,1 \\ 0,9 & 0,5 & 0,4 & 1,1 \\ -0,4 & -3,8 & 2 & 1,3 \end{bmatrix}$$

Найти ранг матрицы A. Затем внести погрешность в 0,1% в элемент a_{11} , затем во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.

28. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{96}{n^2 + 8n + 15}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

• Найти сумму ряда S аналитически как предел частичных сумм ряда.

- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.
- б) Дано квадратное уравнение $x^2-39,6x-716,85=0$. Предполагается, что коэффициент 39,6 получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.

29. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{72}{n^2 + 6n + 8}$$

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

$$A = \begin{bmatrix} 30 & 34 & 19\\ 314 & 354 & 200\\ 2 & 8 & 13 \end{bmatrix}$$

В каждый из диагональных элементов по очереди внести погрешность в 1%. Как изменится определитель матрицы A? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

30. а) Дан ряд

$$\sum_{n=0}^{\infty} \frac{12}{5(n^2 + 6n + 8)}$$

Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N$ и найти величину погрешности при значениях $N=10,10^2,10^3,10^4,10^5$. Порядок решения задачи:

- Найти сумму ряда S аналитически как предел частичных сумм ряда.
- Используя функцию $S_N = \sum_{n=0}^N$, вычислить значения частичных сумм ряда при указанных значениях N.
- Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- Результаты представить в виде гистограммы.

б) Дана матрица

$$A = \begin{bmatrix} 2 & 4, 4 & -2 \\ 1 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$$

Найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.

Контрольные вопросы

- 1. Чем абсолютная погрешность отличается от относительной?
- 2. Что такое значащая цифра?
- 3. Как определяется число верных знаков?
- 4. Что такое машинная бесконечность, ноль, эпсилон?
- 5. Как определяется погрешность суммы?
- 6. Как определяется погрешность разности?
- 7. Как определяется погрешность произведения?.
- 8. Как определяется погрешность частного?
- 9. Как определяется погрешность степени и корня?

Лабораторная работа №2

МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Цель работы

Изучить итерационные методы решения нелинейных уравнений. Сравнить между собой два указанных в задании метода.

Общие сведения

Пусть рассматривается уравнение f(x)=0. Корнем уравнения называется значение \bar{x} , при котором $f(\bar{x})=0$. На рисунке 1 представлен алгоритм решения задачи методом половинного деления в Mathcad. Алгоритм заключается в построении последовательности вложенных отрезков, на концах которых функция принимает значения разных знаков. Каждый последующий отрезок получают делением пополам предыдущего.

Задача решения нелинейных уравнений складывается из двух этапов: на первом этапе осуществляют локализацию корней, на втором этапе производят итерационное уточнение корней. На этапе локализации корней находят достаточно узкие отрезки (или отрезок, если корень единственный), которые содержат один и только один корень уравнения f(x)=0. На втором этапе вычисляют приближенное значение корня с заданной точностью. Часто вместо отрезка локализации достаточно указать начальное приближение к корню.

Корень \bar{x} называется простым, если $f'(\bar{x}) \neq 0$, в противном случае корень называется кратным. Целое число m называется кратностью корня \bar{x} , если $f^{(k)}(\bar{x})=0$ для $k=1,2,3,\ldots,m-1$ и $f^{(m)}(\bar{x})\neq 0$.

Приведем расчетные формулы других методов решения нелинейных уравнений:

$$\begin{array}{l} bisec(f,a,b,\epsilon) := & an \leftarrow a \\ bn \leftarrow b \\ k \leftarrow 0 \\ while \ (bn-an) > 2 \cdot \epsilon \\ \hline & xn \leftarrow \frac{an+bn}{2} \\ fa \leftarrow f(an) \\ fb \leftarrow f(bn) \\ fxn \leftarrow f(xn) \\ bn \leftarrow xn \ \ if \ fa \cdot fxn \leq 0 \\ an \leftarrow xn \ \ otherwise \\ k \leftarrow k+1 \\ \hline & xn \leftarrow \frac{an+bn}{2} \\ \hline res \leftarrow \begin{pmatrix} xn \\ k \end{pmatrix} \\ \hline res \end{array}$$

Рисунок 1 – Метод бисекции

• Упрощенный метод Ньютона:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

• Метод ложного положения:

$$x_{n+1} = x_n - \frac{c - x_n}{f(c) - f(x_n)} \cdot f(x_n)$$

где c — фиксированная точка из окрестности корня.

• Метод секущих:

$$x_{n+1} = x_n - \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)} \cdot f(x_n)$$

• Метод Стеффенсена:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n + f(x_n)) - f(x_n)} \cdot f(x_n)$$

• Модифицированный метод Ньютона для поиска кратных корней:

$$x_{n+1} = x_n - m \cdot \frac{f(x_n)}{f'(x_n)}, \quad m = 1, 2, \dots$$

Порядок выполнения работы

- 1. Изучить теоретический материал.
- 2. Выполнить задания, указанные в индивидуальном варианте.
- 3. Оформить отчет.

Содержание отчета

- 1. Постановка задачи.
- 2. Необходимый теоретический материал.
- 3. Результаты вычислительного эксперимента.
- 4. Анализ полученных результатов.
- 5. Графический материал (если необходимо).
- 6. Тексты программ.
- 7. Выводы по работе.

Варианты заданий

1. а) Даны два уравнения:

$$(\sin x)^2 - \frac{5}{6}\sin x + \frac{1}{6} = 0$$

$$(\sin x)^2 - \sin x + \frac{1}{4} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;1]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти отрицательный корень уравнения $e^{-x} 2 + x^2 = 0$ с точностью $\varepsilon = 10^{-6}$ двумя способами:
 - а) Использовать метод бисекции. Предварительно определить отрезок локализации [a,b].
 - b) Использовать метод Ньютона. В качестве начального приближения для метода Ньютона взять середину отрезка локализации из п. а).

Сравнить число итераций в п. а), b).

2. а) Даны два уравнения:

$$(\sin x)^2 + \frac{7}{12}\sin x + \frac{1}{12} = 0$$

$$(\sin x)^2 + \frac{2}{3}\sin x + \frac{1}{9} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [-1;0]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.

- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $\sin x + 2x^2 + 4x = 0$ и найти их с точностью $\varepsilon = 10^{-5}$, используя метод простой итерации. К виду $x = \varphi(x)$, удобному для итераций, уравнение f(x) = 0 привести двумя способами:
 - а) Преобразовать уравнение к виду $x = x \alpha f(x)$, где $\alpha = 2/(M+m)$, $0 < m \le f'(x) \le M$, а x принадлежит отрезку локализации [a,b].
 - b) Любым другим преобразованием уравнения.

Проверить достаточное условие сходимости метода. Использовать критерий окончания итерационного процесса вида $|x^{(n)}-x^{(n-1)}|<\varepsilon\frac{(1-q)}{q}$, где в п. а) $q=\frac{(M-m)}{(M+m)}$, в п. b) $q=\max_{x\in[a,b]}|\varphi'(x)|$. Сравнить число итераций и значения величины q в п. а), b).

3. а) Даны два уравнения:

$$(\sin x)^2 - \frac{1}{30}\sin x - \frac{1}{30} = 0$$

$$(\sin x)^2 - \frac{2}{5}\sin x + \frac{1}{25} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,5;0,5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

• Найти аналитическое решение первого уравнения.

- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $x^5+4,545004x^4-3,055105x^3-18,06895x^2+4,002429x+4,722482=0.$ Найти их с точностью $\varepsilon=10^{-8}$, используя методы простой итерации и Ньютона. Сравнить скорость сходимости методов (по числу итераций).

4. а) Даны два уравнения:

$$(\cos x)^2 + \frac{2}{35}\cos x - \frac{1}{35} = 0$$

$$(\cos x)^2 - \frac{2}{7}\cos x + \frac{1}{49} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;2]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.

б) Найти приближенно корень уравнения $36\cos x + 18\sqrt{3}x + 9x^2 + \pi^2 - 18 - 6\sqrt{3}\pi - 6\pi x = 0$, принадлежащий отрезку [0,8;1,2], с точностью $\varepsilon=10^{-5}$, используя модификацию метода Ньютона для случая кратного корня при значениях m=1,2,3,4,5. По числу итераций определить кратность корня.

5. а) Даны два уравнения:

$$(\cos x)^2 - \left(\frac{1}{\sqrt{2}} + \frac{1}{4}\right)\cos x - \frac{1}{4\sqrt{2}} = 0$$
$$(\cos x)^2 - \frac{2}{\sqrt{2}}\cos x + \frac{1}{2} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;1,5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $e^x-3\sqrt{x}=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона и упрощенный метод Ньютона. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

6. а) Даны два уравнения:

$$(\cos x)^2 + \frac{1}{2}\cos x + \frac{1}{18} = 0$$

$$(\cos x)^2 + \frac{1}{3}\cos x + \frac{1}{36} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;2]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $x \ln x x^2 + 3x 1 = 0$. Найти их с точностью $\varepsilon = 10^{-5}$ и $\varepsilon = 10^{-12}$, используя метод Ньютона, упрощенный метод Ньютона и метод секущих. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

7. а) Даны два уравнения:

$$(\ln x)^2 - 5\ln x + 6 = 0$$

$$(\ln x)^2 - 4\ln x + 4 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [5;25]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти положительный корень уравнения $x \cdot e^x x 1 = 0$ с точностью $\varepsilon = 10^{-6}$ двумя способами:
 - а) Использовать метод бисекции. Предварительно определить отрезок локализации [a,b].
 - b) Использовать метод Ньютона. В качестве начального приближения для метода Ньютона взять середину отрезка локализации из п. а).

Сравнить число итераций в п. a), b).

8. а) Даны два уравнения:

$$(\ln x)^2 - \ln x - 2 = 0$$

$$(\ln x)^2 + 2\ln x + 1 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,1;10]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.

- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $e^{-x} \lg(1-x^2) 2 = 0$ и найти их с точностью $\varepsilon = 10^{-5}$, используя метод простой итерации. К виду $x = \varphi(x)$, удобному для итераций, уравнение f(x) = 0 привести двумя способами:
 - а) Преобразовать уравнение к виду $x = x \alpha f(x)$, где $\alpha = 2/(M+m), 0 < m \le f'(x) \le M$, а x принадлежит отрезку локализации [a,b].
 - b) Любым другим преобразованием уравнения.

Проверить достаточное условие сходимости метода. Использовать критерий окончания итерационного процесса вида $|x^{(n)}-x^{(n-1)}|<\varepsilon\frac{(1-q)}{q}$, где в п. а) $q=\frac{(M-m)}{(M+m)}$, в п. b) $q=\max_{x\in[a,b]}|\varphi'(x)|$. Сравнить число итераций и значения величины q в п. а), b).

9. а) Даны два уравнения:

$$(\ln x)^2 - \frac{3}{4} \ln x + \frac{1}{8} = 0$$

$$(\ln x)^2 - \ln x + \frac{1}{4} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,1;2]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.

- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $x^5-2,656764x^4-3,406111x^3+10,89372x^2-1,752935x-3,423612=0.$ Найти их с точностью $\varepsilon=10^{-8}$, используя методы простой итерации и Ньютона. Сравнить скорость сходимости методов (по числу итераций).

$$(\operatorname{tg} x)^2 + (\sqrt{3} - 1)\operatorname{tg} x - \sqrt{3} = 0$$
$$(\operatorname{tg} x)^2 - 2\operatorname{tg} x + 1 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [-1,2;1]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти приближенно корень уравнения $144 \sin x + 12\sqrt{3}\pi + 36x^2 + \pi^2 72 12\pi x 72\sqrt{3}x = 0$, принадлежащий отрезку [0, 3; 0, 7], с точностью $\varepsilon = 10^{-5}$,

используя модификацию метода Ньютона для случая кратного корня при значениях m=1,2,3,4,5. По числу итераций определить кратность корня.

11. а) Даны два уравнения:

$$(\operatorname{tg} x)^2 - \frac{28}{9}\operatorname{tg} x + \frac{1}{3} = 0$$

$$(\lg x)^2 - 6\lg x + 9 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;1,5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $\sqrt{2-x^2}-e^x=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона и метод ложного положения. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

12. а) Даны два уравнения:

$$(\operatorname{tg} x)^2 - \frac{53}{6} \operatorname{tg} x - \frac{3}{2} = 0$$

$$(\operatorname{tg} x)^2 - \frac{1}{3}\operatorname{tg} x + \frac{1}{36} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [-0,5;1,5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $x^3-0, 9x^2-x-0, 1=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона, упрощенный метод Ньютона и метод секущих. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

13. а) Даны два уравнения:

$$x^4 - 7x^2 + 10 = 0$$

$$x^4 - 4x^2 + 4 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.

- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти положительный корень уравнения $e^x+1-\sqrt{9-x^2}=0$ с точностью $\varepsilon=10^{-6}$ двумя способами:
 - а) Использовать метод бисекции. Предварительно определить отрезок локализации [a,b].
 - b) Использовать метод Ньютона. В качестве начального приближения для метода Ньютона взять середину отрезка локализации из п. a).

Сравнить число итераций в п. а), b).

14. а) Даны два уравнения:

$$x^4 - \frac{10}{3}x^2 + 1 = 0$$

$$x^4 - 6x^2 + 9 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;2]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.

б) Локализовать корни уравнения

$$\sin(x+2) - x^2 + 2x - 1 = 0$$

и найти их с точностью $\varepsilon=10^{-5}$, используя метод простой итерации. К виду $x=\varphi(x)$, удобному для итераций, уравнение f(x)=0 привести двумя способами:

- а) Преобразовать уравнение к виду $x = x \alpha f(x)$, где $\alpha = 2/(M+m), 0 < m \le f'(x) \le M$, а x принадлежит отрезку локализации [a,b].
- b) Любым другим преобразованием уравнения.

Проверить достаточное условие сходимости метода. Использовать критерий окончания итерационного процесса вида $|x^{(n)}-x^{(n-1)}|<\varepsilon\frac{(1-q)}{q}$, где в п. а) $q=\frac{(M-m)}{(M+m)}$, в п. b) $q=\max_{x\in[a,b]}|\varphi'(x)|$. Сравнить число итераций и значения величины q в п. a), b).

15. а) Даны два уравнения:

$$x^4 - \frac{13}{2}x^2 + 3 = 0$$

$$x^4 - x^2 + \frac{1}{4} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .

- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $x^5-4,556062x^4+2,93309x^3+9,274868x^2-10,32081x+0,422098=0.$ Найти их с точностью $\varepsilon=10^{-8}$, используя методы простой итерации и Ньютона. Сравнить скорость сходимости методов (по числу итераций).

$$(\sin x)^2 + \frac{5}{6}\sin x + \frac{1}{6} = 0$$
$$(\sin x)^2 + \frac{2}{3}\sin x + \frac{1}{9} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [-1;0]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти приближенно корень уравнения $32\sqrt{2}\sin x + 8\pi + 16x^2 + \pi^2 32 8\pi x 32x = 0$, принадлежащий отрезку [0,5;1], с точностью $\varepsilon=10^{-5}$, используя модификацию метода Ньютона для случая кратного корня при значениях m=1,2,3,4,5. По числу итераций определить кратность корня.

$$(\sin x)^2 - \frac{7}{12}\sin x + \frac{1}{12} = 0$$

$$(\sin x)^2 - \frac{1}{2}\sin x + \frac{1}{16} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;1]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $\ln x 2\cos x = 0$. Найти их с точностью $\varepsilon = 10^{-5}$ и $\varepsilon = 10^{-12}$, используя метод Ньютона и метод простой итерации. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

18. а) Даны два уравнения:

$$(\sin x)^2 + \frac{1}{30}\sin x - \frac{1}{30} = 0$$

$$(\sin x)^2 + \frac{1}{3}\sin x + \frac{1}{36} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,5;0,5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $e^{-x}-5x^2+10x=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона, упрощенный метод Ньютона и метод секущих. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

$$(\cos x)^2 - \frac{2}{35}\cos x - \frac{1}{35} = 0$$

$$(\cos x)^2 - \frac{2}{5}\cos x + \frac{1}{25} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .

- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти наибольший по модулю корень уравнения

$$(x+1) \cdot e^{x+1} - x - 2 = 0$$

с точностью $\varepsilon=10^{-6}$ двумя способами:

- а) Использовать метод бисекции. Предварительно определить отрезок локализации [a,b].
- b) Использовать метод Ньютона. В качестве начального приближения для метода Ньютона взять середину отрезка локализации из п. а).

Сравнить число итераций в п. а), b).

20. а) Даны два уравнения:

$$(\cos x)^2 + \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)\cos x - \frac{1}{4\sqrt{2}} = 0$$
$$(\cos x)^2 - \frac{1}{2}\cos x + \frac{1}{16} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;2]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.

- б) Локализовать корни уравнения $(x-1) \operatorname{sh}(x+1) x = 0$ и найти их с точностью $\varepsilon = 10^{-5}$, используя метод простой итерации. К виду $x = \varphi(x)$, удобному для итераций, уравнение f(x) = 0 привести двумя способами:
 - а) Преобразовать уравнение к виду $x = x \alpha f(x)$, где $\alpha = 2/(M+m)$, $0 < m \le f'(x) \le M$, а x принадлежит отрезку локализации [a,b].
 - b) Любым другим преобразованием уравнения.

Проверить достаточное условие сходимости метода. Использовать критерий окончания итерационного процесса вида $|x^{(n)}-x^{(n-1)}|<\varepsilon\frac{(1-q)}{q}$, где в п. а) $q=\frac{(M-m)}{(M+m)}$, в п. b) $q=\max_{x\in[a,b]}|\varphi'(x)|$. Сравнить число итераций и значения величины q в п. a), b).

21. а) Даны два уравнения:

$$(\cos x)^2 - \frac{1}{2}\cos x + \frac{1}{18} = 0$$

$$(\cos x)^2 - \frac{2}{3}\cos x + \frac{1}{9} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;2]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.

б) Локализовать корни уравнения $x^5+7,809249x^4+16,28542x^3-2,771356x^2-27,95304x-11,33921=0.$ Найти их с точностью $\varepsilon=10^{-8}$, используя методы простой итерации и Ньютона. Сравнить скорость сходимости методов (по числу итераций).

22. а) Даны два уравнения:

$$(\ln x)^2 + \frac{5}{3}\ln x - \frac{2}{3} = 0$$

$$(\ln x)^2 - \frac{2}{3}\ln x + \frac{1}{9} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,001;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью $\varepsilon.$
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти приближенно корень уравнения $\cot x + 2x + \pi x 1 \pi/2 2x^2 \pi^2/8 = 0$, принадлежащий отрезку [0;1], с точностью $\varepsilon = 10^{-5}$, используя модификацию метода Ньютона для случая кратного корня при значениях m=1,2,3,4,5. По числу итераций определить кратность корня.

$$(\ln x)^2 - \ln x - \frac{3}{4} = 0$$

$$(\ln x)^2 - 3\ln x + \frac{9}{4} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,1;35]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $\sqrt{x} \cdot e^{\cos x} 1 = 0$. Найти их с точностью $\varepsilon = 10^{-5}$ и $\varepsilon = 10^{-12}$, используя метод Ньютона и метод секущих. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

24. а) Даны два уравнения:

$$(\ln x)^2 + \frac{3}{4} \ln x - \frac{1}{4} = 0$$

$$(\ln x)^2 + 2\ln x + 1 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0,01;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $\ln(2x-x^2)+2-\sqrt{x}=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона, упрощенный метод Ньютона и метод секущих. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

$$(\operatorname{tg} x)^2 - (1 + \frac{1}{\sqrt{3}})\operatorname{tg} x + \frac{1}{\sqrt{3}} = 0$$
$$(\operatorname{tg} x)^2 - 2\operatorname{tg} x + 1 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;1]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .

- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти все корни уравнения $\sqrt{x}-\cos x=0$ с точностью $\varepsilon=10^{-6}$ двумя способами:
 - а) Использовать метод бисекции. Предварительно определить отрезок локализации [a,b].
 - b) Использовать метод Ньютона. В качестве начального приближения для метода Ньютона взять середину отрезка локализации из п. а).

Сравнить число итераций в п. а), b).

26. а) Даны два уравнения:

$$(\operatorname{tg} x)^2 - \frac{7}{4}\operatorname{tg} x - \frac{1}{2} = 0$$

$$(\operatorname{tg} x)^2 + \frac{1}{2}\operatorname{tg} x + \frac{1}{16} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [-0,5;1,5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.

- б) Локализовать корни уравнения $x-e^{-x^2}=0$ и найти их с точностью $\varepsilon=10^{-5}$, используя метод простой итерации. К виду $x=\varphi(x)$, удобному для итераций, уравнение f(x)=0 привести двумя способами:
 - а) Преобразовать уравнение к виду $x = x \alpha f(x)$, где $\alpha = 2/(M+m), 0 < m \le f'(x) \le M$, а x принадлежит отрезку локализации [a,b].
 - b) Любым другим преобразованием уравнения.

Проверить достаточное условие сходимости метода. Использовать критерий окончания итерационного процесса вида $|x^{(n)}-x^{(n-1)}|<\varepsilon\frac{(1-q)}{q}$, где в п. а) $q=\frac{(M-m)}{(M+m)}$, в п. b) $q=\max_{x\in[a,b]}|\varphi'(x)|$. Сравнить число итераций и значения величины q в п. a), b).

27. а) Даны два уравнения:

$$(\operatorname{tg} x)^2 + \frac{37}{6}\operatorname{tg} x + 1 = 0$$

$$(\lg x)^2 + 12\lg x + 36 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [-1,5;0]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.

б) Локализовать корни уравнения $x^5-13,0072x^4+60,24546x^3-122,0716x^2+105,6798x-30,19201=0.$ Найти их с точностью $\varepsilon=10^{-8}$, используя методы простой итерации и Ньютона. Сравнить скорость сходимости методов (по числу итераций).

28. а) Даны два уравнения:

$$x^4 - 11x^2 + 24 = 0$$
$$x^4 - 6x^2 + 9 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [1;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Найти приближенно корень уравнения $\sqrt{3}$ ctg $x+4\sqrt{3}x+4\pi x-3-2\pi/\sqrt{3}-12x^2-\pi^2/3=0$, принадлежащий отрезку [0;0,7], с точностью $\varepsilon=10^{-5}$, используя модификацию метода Ньютона для случая кратного корня при значениях m=1,2,3,4,5. По числу итераций определить кратность корня.

29. а) Даны два уравнения:

$$x^4 - \frac{26}{5}x^2 + 1 = 0$$

$$x^4 - 10x^2 + 25 = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;3]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя Mathcad, локализовать корни уравнения графически.
- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x)=0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $e^{-(x+1)}+x^2+2x-1=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона и метод Стеффенсена. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

30. а) Даны два уравнения:

$$x^4 - \frac{21}{2}x^2 + 5 = 0$$

$$x^4 - x^2 + \frac{1}{4} = 0$$

Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [0;5]. Для решения задачи использовать метод бисекции. Порядок решения задачи:

- Найти аналитическое решение первого уравнения.
- Используя *Mathcad*, локализовать корни уравнения графически.

- Используя программу bisec, найти корни уравнения с точностью ε с помощью метода бисекции.
- Используя встроенную в Mathcad функцию root, найти корни уравнения f(x) = 0 с точностью ε .
- Попытаться выполнить п. 1-4 для второго уравнения. Объяснить полученные результаты.
- б) Локализовать корни уравнения $\sqrt{x}+x^2-10=0$. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, используя метод Ньютона, упрощенный метод Ньютона и метод секущих. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

Контрольные вопросы

- 1. В чём заключается графическое решение уравнений?
- 2. Что является результатом этапа отделения корней?
- 3. Метод половинного деления.
- 4. Метод хорд.
- 5. Метод Ньютона.
- 6. Комбинированный метод решения уравнений.
- 7. Метод итерации для решения уравнений.

Лабораторная работа №3

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВ-НЕНИЙ ПРЯМЫМИ МЕТОДАМИ

Цель работы

Ознакомиться с методами решения систем линейных алгебраических уравнений и оценки погрешности решения.

Общие сведения

Система m линейных алгебраических уравнений с n неизвестными – это система уравнений вида Ax = b, где A – матрица коэффициентов, $b = b_1, b_2, \ldots, b_m$ – вектор правых частей уравнений, $x = x_1, x_2, \ldots, x_n$ – вектор решения.

Система называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы уравнений — совокупность n чисел c_1, c_2, \ldots, c_n , таких что подстановка каждого c_i вместо x_i в систему обращает все её уравнения в тождества.

Норма матрицы определяется следующим образом:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

и вычисляется по формулам:

$$\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$

$$\|A\|_{2} = \max_{1 \le j \le n} \sqrt{\lambda_{i}(A^{T}A)}$$

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

где $\lambda_i(A^TA)$ — собственные значения матрицы A^TA . Норма матрицы показывает, насколько максимально растягивается вектор x при отображении y=Ax.

Порядок выполнения работы

- 1. Изучить теоретический материал.
- 2. Выполнить задания, указанные в индивидуальном варианте.
- 3. Оформить отчет.

Содержание отчета

- 1. Постановка задачи.
- 2. Необходимый теоретический материал.
- 3. Решение поставленной залачи.
- 4. Анализ полученных результатов.
- 5. Графический материал (если необходимо).
- 6. Тексты программ.
- 7. Выводы по работе.

Варианты заданий

1. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{15}{4c^5 + 6c + 1} \qquad b_i = 1$$

где $c=c_{ij}=0, 1\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

• Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.

- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана система уравнений Ax=b порядка $n=40\,\mathrm{c}$ симметричной положительно определенной матрицей A. Элементы матрицы A задаются формулой

$$a_{ij} = \begin{cases} \frac{i+j}{n+m}, & i \neq j\\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j \end{cases}$$

где n=40, m=10. Элементы вектора b задаются как $b_i=n\cdot i+m.$ Решить систему методом Холецкого. Порядок решения задачи:

• Используя встроенную функцию cholesky(A) пакета Mathcad, получить LL^T -разложение матрицы A.

- Решить последовательно системы Ly = b и $L^T x = y$ с треугольными матрицами.
- 2. а) Дана система уравнений Ax = b порядка n = 6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{125}{(4+0,25c)^6} \qquad b_i = 2$$

где $c=c_{ij}=0, 2\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).
- 3. а) Дана система уравнений Ax = b порядка n = 6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{12}{4c+4} \qquad b_i = 3$$

где $c=c_{ij}=0, 3\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

• На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.

- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана матрица

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 2 & 3 \\ 1 & 3 & 2 & 1 & 2 \\ 1 & 4 & 3 & 2 & 1 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.
- Для каждого найденного решения x^i вычислить отнопиение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|$.
- 4. а) Дана система уравнений Ax=b порядка n=7. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{55}{c^2 + 3c + 100} \qquad b_i = 4$$

где $c=c_{ij}=0, 4\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A, b) пакета Mathcad, найти решение x системы Ax = b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A. Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где A^* решение системы с возмущенной матрицей A*.

5. а) Дана система уравнений Ax = b порядка n = 7. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{135}{(2+0,3c)^5} \qquad b_i = 5$$

где $c=c_{ij}=0, 5\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана система уравнений Ax=b порядка n=20 с симметричной положительно определенной матрицей A. Элементы

матрицы A задаются формулой

$$a_{ij} = \begin{cases} \frac{i+j}{n+m}, & i \neq j\\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j \end{cases}$$

где $n=20,\,m=8.$ Элементы вектора b задаются как $b_i=50\cdot i+200.$ Решить систему методом Холецкого. Порядок решения задачи:

- Используя встроенную функцию cholesky(A) пакета Mathcad, получить LL^T -разложение матрицы A.
- Решить последовательно системы Ly = b и $L^T x = y$ с треугольными матрицами.
- 6. а) Дана система уравнений Ax = b порядка n = 7. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{3}{c^4 - 4c^3} \qquad b_i = 6$$

где $c=c_{ij}=0, 6\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).
- 7. а) Дана система уравнений Ax = b порядка n = 6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{256}{(5+0,256c)^5} \qquad b_i = 7$$

где $c=c_{ij}=0,7\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем

 $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 3 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|$.
- 8. а) Дана система уравнений Ax = b порядка n = 6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{1}{\sqrt{c^2 + 0.58c}} \qquad b_i = 8$$

где $c=c_{ij}=0,8\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

• На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.

- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A. Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где A^* решение системы с возмущенной матрицей A*.
- 9. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{3}{(1+c)^2}$$
 $b_i = 9$

где $c=c_{ij}=0,9\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана система уравнений Ax=b порядка n=30 с симметричной положительно определенной матрицей A. Элементы матрицы A задаются формулой

$$a_{ij} = \begin{cases} \frac{i+j}{n+m}, & i \neq j\\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j \end{cases}$$

где $n=30,\,m=9.$ Элементы вектора b задаются как $b_i=i^2-100.$ Решить систему методом Холецкого. Порядок решения задачи:

- Используя встроенную функцию cholesky(A) пакета Mathcad, получить LL^T -разложение матрицы A.
- Решить последовательно системы Ly = b и $L^T x = y$ с треугольными матрицами.
- 10. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \sin\left(\frac{c}{8}\right) \qquad b_i = 10$$

где $c=c_{ij}=1\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

• Используя встроенную функцию lsolve(A, b) пакета Mathcad, найти решение x системы Ax = b.

- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).
- 11. а) Дана система уравнений Ax=b порядка n=4. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{1}{67 + c^4} \qquad b_i = 11$$

где $c=c_{ij}=1, 1\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|$.
- 12. а) Дана система уравнений Ax=b порядка n=4. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{111}{c^4 + 3c + 13} \qquad b_i = 12$$

где $c=c_{ij}=1, 2\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax = b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A. Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где A^* решение системы с возмущенной матрицей A*.
- 13. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{1}{(1+c)^3} \qquad b_i = 13$$

где $c=c_{ij}=1, 3\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$

относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана система уравнений Ax=b порядка $n=50\,\mathrm{c}$ симметричной положительно определенной матрицей A. Элементы матрицы A задаются формулой

$$a_{ij} = \begin{cases} \frac{i+j}{n+m}, & i \neq j\\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j \end{cases}$$

где $n=50,\,m=15.$ Элементы вектора b задаются как $b_i=m\cdot n-i^3.$ Решить систему методом Холецкого. Порядок решения задачи:

- Используя встроенную функцию cholesky(A) пакета Mathcad, получить LL^T -разложение матрицы A.
- Решить последовательно системы Ly=b и $L^Tx=y$ с треугольными матрицами.
- 14. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{1,5}{0,001c^3 - 2,5c} \qquad b_i = 14$$

где $c=c_{ij}=1, 4\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).

15. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{88,5}{0,03c^2 + c} \qquad b_i = 15$$

где $c=c_{ij}=1, 5\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathead, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \\ 64 & 16 & 4 & 1 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|$.
- 16. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{100}{(0,3c+3)^5} \qquad b_i = 16$$

где $c=c_{ij}=1,6\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

• Используя встроенную функцию lsolve(A, b) пакета Mathcad, найти решение x системы Ax = b.

- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A. Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где A^* решение системы с возмущенной матрицей A*.
- 17. а) Дана система уравнений Ax=b порядка n=4. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{115}{4c^3 + 3c} \qquad b_i = 17$$

где $c=c_{ij}=1,7\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана система уравнений Ax=b порядка $n=30\,\mathrm{c}$ симметричной положительно определенной матрицей A. Элементы матрицы A задаются формулой

$$a_{ij} = \begin{cases} \frac{i+j}{n+m}, & i \neq j\\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j \end{cases}$$

где $n=30,\, m=20.$ Элементы вектора b задаются как $b_i=m\cdot i+n.$ Решить систему методом Холецкого. Порядок решения задачи:

- Используя встроенную функцию cholesky(A) пакета Mathcad, получить LL^T -разложение матрицы A.
- Решить последовательно системы Ly = b и $L^T x = y$ с треугольными матрицами.
- 18. а) Дана система уравнений Ax = b порядка n = 5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{123}{2c^3 + 5c^2} \qquad b_i = 18$$

где $c=c_{ij}=1,8\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

• На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.

- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).
- 19. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{100}{(c+11)^5} \qquad b_i = 19$$

где $c=c_{ij}=1,9\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 16 & 8 & 4 & 2 & 1 \\ 81 & 27 & 9 & 3 & 1 \\ 256 & 64 & 16 & 4 & 1 \\ 625 & 125 & 25 & 3 & 1 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов $b^i, i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

• Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|.$

20. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \cos\left(\frac{c}{25}\right) \qquad b_i = 20$$

где $c=c_{ij}=2\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) исследовать зависимость погрешности решения системы от

погрешностей коэффициентов матрицы A. Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где A^* – решение системы с возмущенной матрицей A*.

21. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{1000}{c^3 + 3c^2} \qquad b_i = 21$$

где $c=c_{ij}=2, 1\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A, b) пакета Mathcad, найти решение x системы Ax = b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

• На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.

- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Дана система уравнений Ax=b порядка n=25 с симметричной положительно определенной матрицей A. Элементы матрицы A задаются формулой

$$a_{ij} = \begin{cases} \frac{i+j}{n+m}, & i \neq j\\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j \end{cases}$$

где $n=25,\,m=10.$ Элементы вектора b задаются как $b_i=i^2-n.$ Решить систему методом Холецкого. Порядок решения задачи:

- Используя встроенную функцию cholesky(A) пакета Mathcad, получить LL^T -разложение матрицы A.
- Решить последовательно системы Ly = b и $L^T x = y$ с треугольными матрицами.
- 22. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{150}{13c^3 + 777c} \qquad b_i = 22$$

где $c=c_{ij}=2, 2\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.

• Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).
- 23. а) Дана система уравнений Ax = b порядка n = 5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{11,7}{(c+1)^7} \qquad b_i = 23$$

где $c=c_{ij}=2,3\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

• Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.

- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 611 & 196 & -192 & 407 \\ 196 & 899 & 113 & -192 \\ -192 & 113 & 899 & 196 \\ 407 & -192 & 196 & 611 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

• Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.

• Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|.$
- 24. а) Дана система уравнений Ax=b порядка n=4. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{159}{10c^3 + c^2 + 25} \qquad b_i = 24$$

где $c=c_{ij}=2, 4\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 3 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов $b^i, i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

• Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|.$

25. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{321}{(c+1)^6} \qquad b_i = 25$$

где $c=c_{ij}=2, 5\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 1 & 0.5 & 0.333 & 0.25 & 0.2 \\ 0.5 & 0.333 & 0.25 & 0.2 & 0.167 \\ 0.333 & 0.25 & 0.2 & 0.167 & 0.143 \\ 0.25 & 0.2 & 0.167 & 0.143 & 0.125 \\ 0.2 & 0.167 & 0.143 & 0.125 & 0.111 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|$.
- 26. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{31}{\sqrt{c^2 + 6c}} \qquad b_i = 26$$

где $c=c_{ij}=2,6\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

• Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax = b.

- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax = b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA = LU (P матрица перестановок).
- 27. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{350}{(0,35c+5)^3} \qquad b_i = 27$$

где $c=c_{ij}=2,7\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 1 & 0,5 & 0,333 & 0,25 & 0,2 \\ 0,5 & 0,333 & 0,25 & 0,2 & 0,167 \\ 0,333 & 0,25 & 0,2 & 0,167 & 0,143 \\ 0,25 & 0,2 & 0,167 & 0,143 & 0,125 \\ 0,2 & 0,167 & 0,143 & 0,125 & 0,111 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

- Выбрать последовательность линейно независимых векторов $b^i, i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.
- Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|.$
- 28. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{500}{(8c - 5)^2} \qquad b_i = 28$$

где $c=c_{ij}=2,8\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\ldots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем

 $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A. Теоретическая оценка погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где A^* решение системы с возмущенной матрицей A*.
- 29. а) Дана система уравнений Ax=b порядка n=6. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{10}{0, 3c^+10c} \qquad b_i = 29$$

где $c=c_{ij}=2,9\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

• Используя встроенную функцию lsolve(A,b) пакета Mathcad, найти решение x системы Ax=b.

- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\ldots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

б) Дана матрица

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 4 & 20 \end{bmatrix}$$

Найти число обусловленности матрицы, используя вычислительный эксперимент. Порядок решения задачи:

• Выбрать последовательность линейно независимых векторов b^i , $i=1,\ldots,k$. Решить k систем уравнений $Ax^i=b^i$, используя встроенную функцию lsolve пакета Mathcad.

• Для каждого найденного решения x^i вычислить отношение

$$\frac{\|x^i\|}{\|b^i\|}, \quad i = 1, \dots, k$$

• Вычислить норму матрицы A^{-1} по формуле

$$||A^{-1}|| \approx \max \frac{||x^i||}{||b^i||}$$

- Вычислить число обусловленности матрицы A по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|.$
- 30. а) Дана система уравнений Ax=b порядка n=5. Элементы матрицы A и вектора b задаются формулами

$$a_{ij} = \frac{1}{0,4c^3 + 20c} \qquad b_i = 30$$

где $c=c_{ij}=3\cdot i\cdot j$. Исследовать зависимость погрешности решения x от погрешностей правой части системы b. Порядок решения задачи:

- Используя встроенную функцию lsolve(A, b) пакета Mathcad, найти решение x системы Ax = b.
- С помощью встроенной функции condi(A) пакета Mathcad вычислить число обусловленности матрицы A.
- Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d=(d_1,\dots,d_n)^T,\ d_i=\frac{\|x-x^i\|}{\|x\|}$ относительных погрешностей решений x^i систем $Ax^i=b^i$, где компоненты векторов b^i вычисляются по формулам:

$$b_k^i = \begin{cases} b_k + \Delta, & k = i \\ b_k, & k \neq i \end{cases}$$

где $k=1,\dots,n,$ Δ — произвольная величина погрешности.

- На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- Оценить теоретически погрешность решения x^m по формуле $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.
- б) Решить систему уравнений Ax=b из п. а), используя LU-разложение матрицы A. Для этого использовать встроенную функцию lu(A) пакета Mathcad. Функция lu(A) возвращает матрицу, в которой содержатся матрицы P, L и U такие, что PA=LU (P матрица перестановок).

Контрольные вопросы

- 1. Что такое число обусловленности матрицы?
- 2. Как вычисляется норма матрицы?
- 3. Метод Гаусса.
- 4. Метод LU-разложения.

Лабораторная работа №4

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВ-НЕНИЙ ИТЕРАЦИОННЫМИ МЕТОДАМИ

Цель работы

Ознакомиться с итерационными методами решения систем линейных алгебраических уравнений.

Общие сведения

Прямые (или точные) методы решения систем линейных алгебраических уравнений позволяют найти решение за определенное количество шагов. Итерационные методы основаны на использовании повторяющегося процесса. Они позволяют получить решение в результате последовательных приближений.

Для применения итерационных методов система Ax=b должна быть приведена к эквивалентному виду x=Bx+c. Затем выбирается начальное приближение к решению системы уравнений $x^{(0)}=(x_1^0,x_2^0,\ldots,x_n^0)$ и находится последовательность приближений к корню.

На рисунке 2 приведена функция Mathcad, находящая приближенное решение системы уравнений по методу Зейделя.

Для сходимости итерационного процесса достаточно, чтобы было выполнено условие $\|B\| < 1$.

Критерий окончания итераций зависит от применяемого метода и обычно задается формулой $\|x^{(n+1)}-x^{(n)}\|<\varepsilon.$

Порядок выполнения работы

- 1. Изучить теоретический материал.
- 2. Выполнить задания, указанные в индивидуальном варианте.
- 3. Оформить отчет.

Рисунок 2 – Метод Зейделя

Содержание отчета

- 1. Постановка задачи.
- 2. Необходимый теоретический материал.
- 3. Решение поставленной задачи.
- 4. Анализ полученных результатов.
- 5. Графический материал (если необходимо).
- 6. Тексты программ.
- 7. Выводы по работе.

Варианты заданий

1. а) Дана система уравнений:

$$\begin{bmatrix} 79,2 & 0 & 35 & 19,8 & 24 \\ 39,6 & 85 & 0 & 19,8 & 25 \\ 19,8 & -15 & 45 & 0 & 10 \\ 49,5 & 18 & 20 & 89,1 & 0 \\ 9,9 & 15 & 20 & -49,5 & 95 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 86 \\ 55 \\ 77 \\ 5 \\ -64 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0, 2 & 0, 3 & -0, 1 \\ 0, 1 & -0, 25 & \cos(0, 5\pi t) \\ \sin(10\pi t) & 0, 1 & 0, 3 \end{bmatrix} \quad c = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику

определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

2. а) Дана система уравнений:

$$\begin{bmatrix} 29,7 & 2 & 0 & 19,8 & 2 \\ 9,9 & -21 & 0 & -9,9 & 1 \\ -9,9 & 11 & 29 & 6,6 & 1 \\ 9,9 & 7,5 & 2 & -19,8 & 0 \\ -49,5 & -1 & 23 & 9,9 & 84 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 26,2 \\ -41,1 \\ 97,4 \\ 99,8 \\ 27,1 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) найти решение по методу Зейделя с точностью $\varepsilon=10^{-6}$, взяв любое

начальное приближение. Для этого модифицировать функцию zeid так, чтобы решение вычислялось с заданной точностью ε . Предусмотреть подсчет количества итераций, потребовавшихся для достижения точности ε .

3. а) Дана система уравнений:

$$\begin{bmatrix} 89,1 & 29 & 0 & 59,4 & 0 \\ 39,6 & -84 & 0 & -39,6 & 4 \\ -29,7 & 31 & 86 & 19,8 & 3 \\ 49,5 & 39 & 8 & -99 & 0 \\ -59,4 & 0 & 24 & 13,2 & 98 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 260,2 \\ -313,2 \\ 293,3 \\ -212,4 \\ 230,8 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) выполнить 10 итераций по методу простой итерации. Оценить абсолютную погрешность полученного решения

теоретически. Найти реальную величину абсолютной погрешности, приняв за точное решение — решение, полученное с помощью встроенной функции lsolve пакета Mathcad. Объяснить результаты.

4. а) Дана система уравнений:

$$\begin{bmatrix} 39,6 & 0 & 17,5 & 9,9 & 12 \\ 79,2 & 120 & 0 & 39,6 & 0 \\ 19,8 & -21 & 46 & 0 & 5 \\ 49,5 & 19 & 19 & 89,1 & 0 \\ 9,9 & 25 & 10 & -39,6 & 85 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 38,5 \\ 38,8 \\ 93,7 \\ 43 \\ -49,7 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.

б) Дана система уравнений:

$$\begin{bmatrix} 3,5 & -1 & 0,9 & 0,2 & 0,1 \\ -1 & 7,3 & 2 & 0,3 & 2 \\ 0,9 & 2 & 4,9 & -0,1 & 0,2 \\ 0,2 & 0,3 & -0,1 & 5 & 1,2 \\ 0,1 & 2 & 0,2 & 1,2 & 7 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Найти решение системы с точностью $\varepsilon=10^{-5}$ с помощью метода релаксации (для этого модифицировать функцию zeid, реализующую метод Зейделя). Определить экспериментально параметр релаксации ω , при котором точность ε достигается при наименьшем числе итераций. Построить график зависимости числа итераций от параметра релаксации.

5. а) Дана система уравнений:

$$\begin{bmatrix} 99 & 28 & 0 & 69,3 & 0 \\ 49,5 & -94 & 3 & -29,7 & 10 \\ 39,6 & 24 & --96 & -29,7 & 0 \\ 29,7 & 24 & 23 & 79,2 & 0 \\ 69,3 & 0 & 21 & -3,3 & -98 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 40,2 \\ 91,5 \\ 93,4 \\ 84,7 \\ -1,5 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию *zeid*, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).

Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.

- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0,2 & 0,3 & -0,1\\ \cos(6\pi t) & -0,25 & 0,3\\ 0,2 & \sin(10\pi t) & 0,3 \end{bmatrix} \quad c = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

6. а) Дана система уравнений:

$$\begin{bmatrix} 7,92 & 3,36 & -2,24 & 1,98 \\ -13,86 & 18,2 & 0 & 3,96 \\ -2,97 & 0,2 & 4,8 & 0 \\ 5,94 & 0 & -10,6 & 16,83 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -1,956 \\ 62,8 \\ -4,16 \\ 48,31 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.

- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) найти решение по методу Зейделя с точностью $\varepsilon=10^{-6}$, взяв любое начальное приближение. Для этого модифицировать функцию zeid так, чтобы решение вычислялось с заданной точностью ε . Предусмотреть подсчет количества итераций, потребовавшихся для достижения точности ε .

7. а) Дана система уравнений:

$$\begin{bmatrix} 4,95 & 1,12 & 2,9 & 0,66 \\ 8,91 & 19,9 & -4 & 6,93 \\ -2,97 & 2,2 & -5,8 & 0 \\ 5,94 & 1,3 & 10,5 & 17,82 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3,41 \\ 50,33 \\ 19,49 \\ -45,88 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).

Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.

- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) выполнить 10 итераций по методу простой итерации. Оценить абсолютную погрешность полученного решения теоретически. Найти реальную величину абсолютной погрешности, приняв за точное решение решение, полученное с помощью встроенной функции lsolve пакета Mathcad. Объяснить результаты.
- 8. а) Дана система уравнений:

$$\begin{bmatrix} 118,8 & -14 & -5 & -89,1 \\ -59,4 & 194 & 5 & 128,7 \\ 148,5 & 12 & -310 & 148,5 \\ 0 & 18,5 & 90 & -108,9 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -92,5 \\ -340,1 \\ -898 \\ 184,1 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).

Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.

• Взять другое начальное приближение. Объяснить полученные результаты.

б) Дана система уравнений:

$$\begin{bmatrix} 8,2 & 1,2 & 2,1 & 0,1 & -0,1 \\ 1,2 & 8,1 & 2,5 & -1,3 & 0,2 \\ 2,1 & 2,5 & 10,2 & -,1,7 & 0,3 \\ 0,1 & -1,3 & -1,7 & 9,6 & 1,6 \\ -0,1 & 0,2 & 0,3 & 1,6 & 3,5 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0,1 \\ 6 \\ 3,2 \\ 0,2 \\ -0,7 \end{bmatrix}$$

Найти решение системы с точностью $\varepsilon=10^{-5}$ с помощью метода релаксации (для этого модифицировать функцию zeid, реализующую метод Зейделя). Определить экспериментально параметр релаксации ω , при котором точность ε достигается при наименьшем числе итераций. Построить график зависимости числа итераций от параметра релаксации.

9. а) Дана система уравнений:

$$\begin{bmatrix} 118,8 & -14 & -5 & -89,1 \\ -14,85 & -20 & -5 & 0 \\ 297 & 16 & 320 & 0 \\ 0 & 6 & -30 & -36,3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 444,5 \\ -41,05 \\ -635 \\ 209,3 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение

достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.

- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0, 2 & 0, 3 & \sin(3\pi t) \\ 0, 1 & -0, 25 & 0, 3 \\ 0, 2 & 0, 1 & 0, 3 \end{bmatrix} \quad c = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

10. а) Дана система уравнений:

$$\begin{bmatrix} 49,5 & 15,52 & 16,12 & 19,8 \\ 0 & 27,1 & 1,64 & 23,76 \\ 12,87 & 11,52 & 40 & -14,85 \\ 0 & 4,32 & 0,12 & 6,27 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -92,98 \\ 25,46 \\ -26,76 \\ -1,15 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

• Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.

- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} -0.2 & \cos(3t) & 0.1 & 0.3 \\ 0.1 & 0.11 & 0.4 & -0.05 \\ 0.3 & 0.1 & \sin(3t) + \cos(2t) & 0.1 \\ 0.2 & -0.12 & 0.1 & 0.09 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

11. а) Дана система уравнений:

$$\begin{bmatrix} 3,96 & -1,5 & 0 & -0,99 & -1,4 & 0 \\ 3,96 & 18,3 & 1,6 & 6,93 & 4,3 & 1,5 \\ 0 & 4,6 & -13 & 4,29 & -1,4 & 2,3 \\ 3,96 & 0,4 & 0 & 5,94 & 1,5 & 0 \\ 5,94 & 3,1 & 3,4 & 0,99 & 14,4 & 0,9 \\ -2,97 & -1,2 & 0,8 & 4,95 & -2,7 & 12,7 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 32,83 \\ 91,31 \\ 29,91 \\ 98,8 \\ 56,97 \\ 37,92 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение,

полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} \sin(t) & 0.15 & 0.1 & 0.3 \\ 0.1 & \sin(t) & 0.4 & -0.05 \\ 0.3 & 0.1 & \sin(t) & 0.1 \\ 0.2 & -0.12 & 0.1 & \sin(t) \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

12. а) Дана система уравнений:

$$\begin{bmatrix} 9,9 & 3 & 4 & 0 & 1,3 & 1,5 \\ 1,98 & 9,8 & 0,8 & 5,94 & 0,42 & -0,6 \\ 3,96 & -4,8 & 19,7 & 9,9 & 0,72 & 0,3 \\ 1,98 & 1,2 & 1,1 & 6,93 & 0,81 & -1,2 \\ 9,9 & -7,5 & 2,1 & -9,9 & 29,5 & 0 \\ -2,97 & -1,2 & 0,8 & 4,95 & 2,7 & 12,7 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 73,34 \\ -37,456 \\ -126,316 \\ -82,528 \\ 96,66 \\ 7,41 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0,1 & 0,12 & 0,5 & -0,1 \\ -0,1 & -0,15 & -0,01 & -0,4 \\ 0,15 & 0 & t-0,5 & 0,2 \\ 0 & -0,1 & 0,25 & 0,1 \end{bmatrix} \quad c = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

где $t=-1,\; -0,8,\; \dots,\; 0,8,\; 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику

определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

13. а) Дана система уравнений:

$$\begin{bmatrix} 2,97 & 0,4 & 0,3 & 1,98 & 0 & 0,1\\ 0,99 & 4,9 & 0,4 & 2,97 & 0,2 & -0,3\\ 0 & -1,8 & 6,6 & 3,3 & 0,6 & 0,8\\ 4,95 & 1,6 & 1,2 & 8,91 & 0,8 & 0,3\\ 1,98 & -1,5 & 0,4 & -1,98 & 6,1 & 0\\ 9,9 & 1,4 & 2,4 & 5,94 & 3,2 & 23,3 \end{bmatrix} \times \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix} = \begin{bmatrix} 0,69\\ 12,18\\ -3,64\\ 21,05\\ 0,42\\ -13,91 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.

б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 2t & 0,12 & 0,5 & -0,1 \\ -0,1 & -0,15 & -0,01 & -0,4 \\ 0,15 & 0 & 0,3 & 0,2 \\ 0 & -0,1 & 0,25 & 0,1 \end{bmatrix} \quad c = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

14. а) Дана система уравнений:

$$\begin{bmatrix} 5,94 & 0,8 & 0,6 & -3,96 & 0,2 & 0,3 \\ 2,97 & 6,4 & 0 & -2,97 & 0,2 & 0,2 \\ 2,97 & 3,5 & 8,7 & 1,98 & 0,2 & 0 \\ 4,95 & 1,6 & 1,2 & -8,91 & 0,8 & 0,3 \\ -0,99 & 2,5 & 1,1 & -3,96 & 9 & 0,4 \\ 5,94 & 1,4 & 2,4 & 0 & 3,2 & 13 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0,44 \\ -54,75 \\ -4,64 \\ 20,47 \\ -95,86 \\ 26,92 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию *zeid*, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).

Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.

- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0,01 & 0,12 & 0,5 & -0,1 \\ -0,1 & t & -0,01 & -0,4 \\ 0,15 & 0 & 2t & 0,2 \\ 0 & -0,1 & 0,25 & 0,1 \end{bmatrix} \quad c = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

15. а) Дана система уравнений:

$$\begin{bmatrix} 0, 33 & 0, 1 & 0, 1 & 0 & 0, 02 & 0, 1 \\ 0, 99 & 4, 9 & 0, 4 & 2, 97 & 0, 21 & -0, 3 \\ 1, 32 & -1, 6 & 6, 6 & 3, 3 & 0, 24 & 0, 1 \\ 1, 98 & 1, 2 & 1, 1 & 6, 93 & 0, 81 & -1, 2 \\ 1, 98 & -1, 5 & 0, 4 & -1, 98 & 6, 1 & 0 \\ 0, 99 & 0, 4 & 0, 3 & 1, 65 & 0, 9 & 4, 3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0, 62 \\ 23, 365 \\ -14, 01 \\ 18, 955 \\ 24, 88 \\ -1, 5 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

• Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.

- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) найти решение по методу Зейделя с точностью $\varepsilon=10^{-6}$, взяв любое начальное приближение. Для этого модифицировать функцию zeid так, чтобы решение вычислялось с заданной точностью ε . Предусмотреть подсчет количества итераций, потребовавшихся для достижения точности ε .

16. а) Дана система уравнений:

$$\begin{bmatrix} 79,2 & 0 & 35 & 19,8 & 24 \\ 39,6 & 85 & 0 & 19,8 & 25 \\ 19,8 & -15 & 45 & 0 & 10 \\ 49,5 & 18 & 20 & 89,1 & 0 \\ 9,9 & 15 & 20 & -49,5 & 95 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 468,1 \\ 122,3 \\ -257,2 \\ -223,6 \\ 35,9 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение

достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.

- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) выполнить 10 итераций по методу простой итерации. Оценить абсолютную погрешность полученного решения теоретически. Найти реальную величину абсолютной погрешности, приняв за точное решение решение, полученное с помощью встроенной функции lsolve пакета Mathcad. Объяснить результаты.

17. а) Дана система уравнений:

$$\begin{bmatrix} 29,7 & 2 & 0 & 19,8 & 2 \\ 9,9 & -21 & 0 & -9,9 & 1 \\ -9,9 & 11 & 29 & 6,6 & 1 \\ 9,9 & 7,5 & 2 & -19,8 & 0 \\ -49,5 & -1 & 23 & 9,9 & 84 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0,2 \\ 99,9 \\ -174,7 \\ 75,05 \\ -185,9 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение

достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.

- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.

б) Дана система уравнений:

$$\begin{bmatrix} 7,8 & 0,7 & -2,1 & -2,4 \\ 0,7 & 3 & 0,3 & 0,9 \\ -2,1 & 0,3 & 4,7 & -1,2 \\ -2,4 & 0,9 & -1,2 & 5,1 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2,6 \\ -0,8 \end{bmatrix}$$

Найти решение системы с точностью $\varepsilon=10^{-5}$ с помощью метода релаксации (для этого модифицировать функцию zeid, реализующую метод Зейделя). Определить экспериментально параметр релаксации ω , при котором точность ε достигается при наименьшем числе итераций. Построить график зависимости числа итераций от параметра релаксации.

18. а) Дана система уравнений:

$$\begin{bmatrix} 89,1 & 29 & 0 & 59,4 & 0 \\ 39,6 & -84 & 0 & -39,6 & 4 \\ -29,7 & 31 & 86 & 19,8 & 3 \\ 49,5 & 39 & 8 & -99 & 0 \\ -59,4 & 0 & 24 & 13,2 & 98 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0,5 \\ -64,4 \\ -95,1 \\ -40,7 \\ 12,6 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0, 2 & 0, 3 & -0, 1 \\ 0, 1 & -0, 25 & 0, 3 \\ 0, 2 & \sin(2\pi t) & 0, 3 \end{bmatrix} \quad c = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

19. а) Дана система уравнений:

$$\begin{bmatrix} 39,6 & 0 & 17,5 & 9,9 & 12 \\ 79,2 & 120 & 0 & 39,6 & 0 \\ 19,8 & -21 & 46 & 0 & 5 \\ 49,5 & 19 & 19 & 89,1 & 0 \\ 9,9 & 25 & 10 & -39,6 & 85 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 34,35 \\ -530 \\ 102,1 \\ -286,5 \\ 101,3 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение,

полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0, 2 & 0, 3 & -0, 1 \\ \cos(2\pi t) & -0, 25 & 0, 3 \\ 0, 2 & 0, 1 & 0, 3 \end{bmatrix} \quad c = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

20. а) Дана система уравнений:

$$\begin{bmatrix} 99 & 28 & 0 & 69,3 & 0 \\ 49,5 & -94 & 3 & -29,7 & 10 \\ 39,6 & 24 & --96 & -29,7 & 0 \\ 29,7 & 24 & 23 & 79,2 & 0 \\ 69,3 & 0 & 21 & -3,3 & -98 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 58,7 \\ -156,9 \\ -405,5 \\ 239,6 \\ -306,5 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} -0.2 & \cos(3t) & 0.1 & 0.3 \\ 0.1 & 0.11 & 0.4 & -0.05 \\ 0.3 & 0.1 & 0.2 & 0.1 \\ 0.2 & -0.12 & 0.1 & 0.09 \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t

выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

21. а) Дана система уравнений:

$$\begin{bmatrix} 7,92 & 3,36 & -2,24 & 1,98 \\ -13,86 & 18,2 & 0 & 3,96 \\ -2,97 & 0,2 & 4,8 & 0 \\ 5,94 & 0 & -10,6 & 16,83 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0,556 \\ -100,54 \\ -1,27 \\ -71,31 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) найти решение по методу Зейделя с точностью $\varepsilon=10^{-6}$, взяв любое начальное приближение. Для этого модифицировать функцию zeid так, чтобы решение вычислялось с заданной

точностью ε . Предусмотреть подсчет количества итераций, потребовавшихся для достижения точности ε .

22. а) Дана система уравнений:

$$\begin{bmatrix} 4,95 & 1,12 & 2,9 & 0,66 \\ 8,91 & 19,9 & -4 & 6,93 \\ -2,97 & 2,2 & -5,8 & 0 \\ 5,94 & 1,3 & 10,5 & 17,82 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 31,024 \\ -37,81 \\ 28,58 \\ 9,32 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax = b из п. а) выполнить 10 итераций по методу простой итерации. Оценить абсолютную погрешность полученного решения теоретически. Найти реальную величину абсолютной погрешности, приняв за точное решение решение, полученное с помощью встроенной функции lsolve пакета

Mathcad. Объяснить результаты.

23. а) Дана система уравнений:

$$\begin{bmatrix} 118,8 & -14 & -5 & -89,1 \\ -59,4 & 194 & 5 & 128,7 \\ 148,5 & 12 & -310 & 148,5 \\ 0 & 18,5 & 90 & -108,9 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0,5 \\ -1158,3 \\ 5700 \\ -2060,7 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.

б) Дана система уравнений:

$$\begin{bmatrix} 3,2 & 0,3 & 0,9 & 0,7 & 1,1\\ 0,3 & 8,1 & 1,8 & -2 & 0,8\\ 0,9 & 1,8 & 4,1 & -0,1 & 0,2\\ -0,7 & -2 & -0,1 & 3,6 & -0,6\\ 1,1 & 0,8 & 0,2 & -0,6 & 4 \end{bmatrix} \times \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 3,2\\ -2\\ -3 \end{bmatrix}$$

Найти решение системы с точностью $\varepsilon=10^{-5}$ с помощью метода релаксации (для этого модифицировать

функцию zeid, реализующую метод Зейделя). Определить экспериментально параметр релаксации ω , при котором точность ε достигается при наименьшем числе итераций. Построить график зависимости числа итераций от параметра релаксации.

24. а) Дана система уравнений:

$$\begin{bmatrix} 118, 8 & -14 & -5 & -89, 1 \\ -14, 85 & -20 & -5 & 0 \\ 297 & 16 & 320 & 0 \\ 0 & 6 & -30 & -36, 3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -80, 7 \\ 2602, 8 \\ 1, 1 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.

б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} -0.2 & 0.15 & 0.1 & 0.3\\ 0.1 & 0.11 & 0.4 & \sin(5t)\\ 0.3 & 0.1 & 0.2 & 0.1\\ 0.2 & -0.12 & 0.1 & \sin(t) \end{bmatrix} \quad c = \begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

25. а) Дана система уравнений:

$$\begin{bmatrix} 49,5 & 15,52 & 16,12 & 19,8 \\ 0 & 27,1 & 1,64 & 23,76 \\ 12,87 & 11,52 & 40 & -14,85 \\ 0 & 4,32 & 0,12 & 6,27 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 51,176 \\ 101,46 \\ -178,846 \\ 14,084 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.

- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} \sin(t) & 0.15 & 0.1 & 0.3 \\ 0.1 & 0.11 & 0.4 & -0.05 \\ 0.3 & 0.1 & 0.2 & 0.1 \\ 0.2 & -0.12 & 0.1 & \sin(5t) \end{bmatrix} \quad c = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

26. а) Дана система уравнений:

$$\begin{bmatrix} 3,96 & -1,5 & 0 & -0,99 & -1,4 & 0 \\ 3,96 & 18,3 & 1,6 & 6,93 & 4,3 & 1,5 \\ 0 & 4,6 & -13 & 4,29 & -1,4 & 2,3 \\ 3,96 & 0,4 & 0 & 5,94 & 1,5 & 0 \\ 5,94 & 3,1 & 3,4 & 0,99 & 14,4 & 0,9 \\ -2,97 & -1,2 & 0,8 & 4,95 & -2,7 & 12,7 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0,95 \\ -64,89 \\ -38,57 \\ -23,82 \\ -84,83 \\ 30,35 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.

- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение).
 Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0,01 & 0,12 & 0,5 & -0,1 \\ -0,1 & -0,15 & -0,01 & t^2 - 1,5t \\ 0,15 & 0 & t & 0,2 \\ 0 & -0,1 & 0,25 & 0,1 \end{bmatrix} \quad c = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

27. а) Дана система уравнений:

$$\begin{bmatrix} 9,9 & 3 & 4 & 0 & 1,3 & 1,5 \\ 1,98 & 9,8 & 0,8 & 5,94 & 0,42 & -0,6 \\ 3,96 & -4,8 & 19,7 & 9,9 & 0,72 & 0,3 \\ 1,98 & 1,2 & 1,1 & 6,93 & 0,81 & -1,2 \\ 9,9 & -7,5 & 2,1 & -9,9 & 29,5 & 0 \\ -2,97 & -1,2 & 0,8 & 4,95 & 2,7 & 12,7 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0,45 \\ 77,48 \\ 31,33 \\ 10,03 \\ -78,74 \\ 64,22 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

• Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.

- Преобразовать систему Ax = b к виду x = Bx + c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0,01 & 0,12 & 0,5 & -0,1 \\ -0,1 & -0,15 & -0,01 & -0,4 \\ 0,15 & t^2 & 0,3 & 0,2 \\ 0 & -0,1 & 0,25 & 0,1 \end{bmatrix} \quad c = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

28. а) Дана система уравнений:

$$\begin{bmatrix} 2,97 & 0,4 & 0,3 & 1,98 & 0 & 0,1 \\ 0,99 & 4,9 & 0,4 & 2,97 & 0,2 & -0,3 \\ 0 & -1,8 & 6,6 & 3,3 & 0,6 & 0,8 \\ 4,95 & 1,6 & 1,2 & 8,91 & 0,8 & 0,3 \\ 1,98 & -1,5 & 0,4 & -1,98 & 6,1 & 0 \\ 9,9 & 1,4 & 2,4 & 5,94 & 3,2 & 23,3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 10,45 \\ -8,28 \\ 4,48 \\ -26,93 \\ 11,82 \\ 38,84 \end{bmatrix}$$

Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение,

полученное с помощью метода Гаусса, за точное, найти величину абсолютной погрешности итерационного решения. Порядок решения задачи:

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Дана система уравнений x = Bx + c

$$B = \begin{bmatrix} 0,01 & -0,1 & 0,12 & t & 0,2 \\ 0,1 & 0,08 & -0,09 & 0 & 0,2 \\ t & 0,15 & -0,06 & 0,1 & 0 \\ 0,3 & 0,1 & -0,01 & 0,2 & -0,2 \\ 0,01 & 0,07 & -0,1 & 0 & 0,1 \end{bmatrix} \quad c = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}$$

где $t=-1,\ -0,8,\ \dots,\ 0,8,\ 1.$ Построить график зависимости нормы $\|B\|_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\varepsilon=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.

29. а) Дана система уравнений:

$$\begin{bmatrix} 5,94 & 0,8 & 0,6 & -3,96 & 0,2 & 0,3\\ 2,97 & 6,4 & 0 & -2,97 & 0,2 & 0,2\\ 2,97 & 3,5 & 8,7 & 1,98 & 0,2 & 0\\ 4,95 & 1,6 & 1,2 & -8,91 & 0,8 & 0,3\\ -0,99 & 2,5 & 1,1 & -3,96 & 9 & 0,4\\ 5,94 & 1,4 & 2,4 & 0 & 3,2 & 13 \end{bmatrix} \times \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix} = \begin{bmatrix} 0,08\\ 29,99\\ 38,7\\ 37,19\\ 36,74\\ 67,34 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) выполнить 10 итераций по методу простой итерации. Оценить абсолютную погрешность полученного решения теоретически. Найти реальную величину абсолютной погрешности, приняв за точное решение решение, полученное с помощью встроенной функции lsolve пакета Mathcad. Объяснить результаты.

30. а) Дана система уравнений:

$$\begin{bmatrix} 0, 33 & 0, 1 & 0, 1 & 0 & 0, 02 & 0, 1 \\ 0, 99 & 4, 9 & 0, 4 & 2, 97 & 0, 21 & -0, 3 \\ 1, 32 & -1, 6 & 6, 6 & 3, 3 & 0, 24 & 0, 1 \\ 1, 98 & 1, 2 & 1, 1 & 6, 93 & 0, 81 & -1, 2 \\ 1, 98 & -1, 5 & 0, 4 & -1, 98 & 6, 1 & 0 \\ 0, 99 & 0, 4 & 0, 3 & 1, 65 & 0, 9 & 4, 3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0, 94 \\ 18, 68 \\ 12, 5 \\ 5, 56 \\ -10, 28 \\ 12, 29 \end{bmatrix}$$

- Используя встроенную функцию lsolve пакета Mathcad, найти решение системы с помощью метода Гаусса.
- Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $\|B\|_{\infty} < 1$.
- Используя функцию zeid, выполнить 10 итераций по методу Зейделя (взять любое начальное приближение). Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения.
- Взять другое начальное приближение. Объяснить полученные результаты.
- б) Для системы уравнений Ax=b из п. а) найти решение по методу Зейделя с точностью $\varepsilon=10^{-6}$, взяв любое начальное приближение. Для этого модифицировать функцию zeid так, чтобы решение вычислялось с заданной точностью ε . Предусмотреть подсчет количества итераций, потребовавшихся для достижения точности ε .

Контрольные вопросы

- 1. Как привести систему к виду, удобному для итерации?
- 2. Метод Зейделя.
- 3. Достаточные условия сходимости процесса итерации.
- 4. Оценка погрешности приближений процесса итерации.

Лабораторная работа №5

ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Цель работы

Ознакомиться с понятиями интерполяции и приближения функций. Решить задачу приближения функции по методу наименьших квадратов.

Общие сведения

На практике часто возникает необходимость найти функциональную зависимость между величинами x и y, которые получены в результате эксперимента. Часто вид эмпирической зависимости известен, но числовые параметры неизвестны.

На рисунке 3 приведена функция mnk, используемая в данной работе для нахождения коэффициентов многочлена P_m .

$$\begin{aligned} mnk(x,y,n,m) &\coloneqq & & \text{for } j \in 0 ... m \\ & b_j \leftarrow \sum_{i=0}^n \left[y_i \cdot \left(x_i \right)^j \right] \\ & \text{for } k \in 0 ... m \\ & \Gamma_{j,k} \leftarrow \sum_{i=0}^n \left(x_i \right)^{k+j} \\ & a \leftarrow lsolve(\Gamma,b) \end{aligned}$$

Рисунок 3 – Метод наименьших квадратов

Порядок выполнения работы

- 1. Изучить теоретический материал.
- 2. Выполнить задания, указанные в индивидуальном варианте.

3. Оформить отчет.

Содержание отчета

- 1. Постановка задачи.
- 2. Необходимый теоретический материал.
- 3. Решение поставленной задачи.
- 4. Анализ полученных результатов.
- 5. Графический материал.
- 6. Тексты программ.
- 7. Выводы по работе.

Варианты заданий

задачи:

1. a) Функция y = f(x) задана таблицей значений:

-1,03;-0,37;0,61;2,67;5,04;8,9

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .

- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за перемещением x материальной точки по оси OX в моменты времени $t \in [t_0, T]$:

```
t: 1; 1, 4; 1, 8; 2, 6; 3; 3, 4; 3, 8; 4, 2; 4, 6; 5
```

Известно, что движение является равномерным и описывается линейной зависимостью x(t)=vt+b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t=2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

2. а) Функция y = f(x) задана таблицей значений:

x: 0; 0, 375; 0, 563; 0, 75; 1, 125; 1, 313; 1, 5; 1, 69; 1, 875; 2, 063; 2, 25; 2, 438; 2, 625; 2, 813; 3

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = ae^{bx^2}$$

x: -2, 5; -2; -1, 5; -1; -0, 5; 0; 0, 5; 1; 1, 5; 2; 2, 5

y: 0,0876; 0,29523; 0,75958; 1,49184; 2,23671; 2,56; 2,23671; 1,49184; 0,75958; 0,29523; 0,0876

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

3. а) Функция y = f(x) задана таблицей значений:

x: -1; -0,74; -0,48; -0,21; 0,05; 0,31; 0,58; 0,84; 1,1; 1,36; 1,63; 1,89; 2,15; 2,41; 2,95

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y):

Известно, что движение осуществляется по кривой, описываемой многочленом $y=kx^2+b$. Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение координаты x, соответствующее значению y=7.

Для нахождения коэффициентов k и b составить нормальную систему метода наименьших квадратов и

решить её с помощью встроенной функции lsolve пакета Mathcad.

4. а) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(4\pi x) + c_2 \cos(2\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

Используя метод наименьших квадратов, определить c_1 и c_2 .

5. а) Функция y = f(x) задана таблицей значений:

- x: -2, 1; -1, 8; -1, 5; -1, 2; -0, 9; -0, 6; -0, 3; 0; 0, 3; 0, 6; 0, 9; 1, 2; 1, 5; 1, 8; 2, 1
- y: 14, 1982; 11, 4452; 9, 1586; 7, 2426; 6, 364; 4, 8182; 6, 1088; 3, 9536; 4, 6872; 4, 7601; 5, 8511; 7, 101; 9, 1792; 11, 421; 14, 097

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.

б) Зависимость между величинами x и y описывается функцией:

$$y = a + \frac{b}{x}$$

x: 0, 1; 0, 3; 0, 5; 0, 7; 0, 9; 1, 1; 1, 3; 1, 5; 1, 7; 1, 9; 2, 1 y: 5, 53; 2, 7967; 2, 25; 2, 0157; 1, 8856; 1, 8027; 1, 7454; 1, 7033; 1, 6712; 1, 6458; 1, 6252

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

6. а) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

• Задать векторы x и y исходных данных.

- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функнией:

$$y = a + b \ln x$$

x: 0, 1; 0, 2; 0, 3; 0, 4; 0, 5; 0, 6; 0, 7; 0, 8; 0, 9; 1; 1, 1

y: 0,479; 0,7562; 0,9184; 1,0335; 1,1227; 1,1957; 1,2573; 1,3107; 1,3579; 1,4; 1,4381

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

7. а) Функция y = f(x) задана таблицей значений:

x: -0,7; -0,41; -0,12; 0,17; 0,46; 0,75; 1,04; 1,33; 1,62; 1,91; 2,2

y: -4,152; 1,244; 3,182; 2,689; 0,95; -2,743; -5,839; -7,253; -6,1; -2,144; 6,103

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = \sqrt{a + bx^2}$$

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное

равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

8. а) Функция y = f(x) задана таблицей значений:

```
x: 0; 0, 3; 0, 6; 0, 9; 1, 2; 1, 5; 1, 8; 2, 1; 2, 4; 2, 7; 3
y: 1, 019; 1, 4889; 2, 2079; 3, 0548; 3, 8648; 4, 2161; 5, 118; 5, 7661; 6, 672; 7, 196; 7, 8551
```

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за перемещением x материальной точки по оси OX в моменты времени $t \in [t_0, T]$:

```
t: 1; 1, 625; 2, 25; 2, 88; 3, 5; 4, 13; 4, 75; 5, 375; 6
x: 14, 86; 27, 15; 41, 19; 54; 69, 03; 81, 6; 96, 11; 109, 4; 124, 03
```

Известно, что движение является равномерным и описывается линейной зависимостью x(t) = vt + b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t = 2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

9. а) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(4\pi x) + c_2 \cos(0\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

- x: -1; -0, 9; -0, 8; -0, 7; -0, 6; -0, 5; -0, 4; -0, 3; -0, 2; -0, 1; 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5; 0, 6; 0, 7; 0, 8; 0, 9; 1
- y: 0,8984; 1,0916; 1,0262; 0,802; 0,7105; 0,9056; 1,0958; 1,0365; 0,7972; 0,6868; 0,9066; 1,0858; 1,0128; 0,7833; 0,7028; 0,9035; 1,0815; 1,0366; 0,7552; 0,7185; 0,9218

10. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.

б) В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y):

Известно, что движение осуществляется по кривой, описываемой многочленом $y=kx^2+b$. Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение координаты x, соответствующее значению y=8.

Для нахождения коэффициентов k и b составить нормальную систему метода наименьших квадратов и решить её с помощью встроенной функции lsolve пакета Mathcad.

11. a) Функция y = f(x) задана таблицей значений:

```
x: 0; 0, 17; 0, 33; 0, 5; 0, 67; 0, 83; 1; 1, 17; 1, 33; 1, 5; 1, 67; 1, 83; 2
```

y:
$$2,25$$
; $1,106$; $0,3951$; $-0,0334$; $-0,2$; $-0,1137$; $0,0294$; $0,1008$; $0,3$; $-0,0021$; $-0,3682$; $-1,119$; $-2,226$

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень

- m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(3\pi x) + c_2 \cos(1\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

12. a) Функция y = f(x) задана таблицей значений:

-1,4429;-1,0072

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .

- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = ae^{b|x|}$$

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

13. а) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x) = a_0 + a_1 x + \ldots + a_m x^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За

оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m = \sqrt{\frac{1}{n}\sum_{k=0}^n (P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = e^{a+b|x|}$$

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

14. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = a + b(x+2)^3$$

$$x: -4; -3, 2; -2, 4; -1, 6; -0, 8; 0; 0, 8; 1, 6; 2, 4; 3, 2; 4$$

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

15. a) Функция y = f(x) задана таблицей значений:

- x: -0,7; -0,375; -0,05; 0,275; 0,6; 0,925; 1,25; 1,575; 1,9; 2,25; 2,55; 2,875; 3,2
- y: 3,822; -1,498; -2,419; -1,292; 0,828; 1,963; 2,401; 1,877; 2,2; -1,378; -2,395; -1,46; 3,604

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.

- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за перемещением x материальной точки по оси OX в моменты времени $t \in [t_0, T]$:

```
t: 0; 0, 5; 1; 1, 5; 2; 2, 5; 3; 3, 5; 4
x: 3, 732; 9, 378; 15, 53; 22; 29, 52; 35, 2; 42, 35; 48, 61; 55, 51
```

Известно, что движение является равномерным и описывается линейной зависимостью x(t) = vt + b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t=2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

16. a) Функция y = f(x) задана таблицей значений:

$$x: -3, 2; -2, 66; -2, 12; -1, 58; -1, 04; -0, 5; 0, 04; 0, 58; 1, 12; 1, 66; 2, 2$$

y:
$$-0, 173$$
; $-0, 574$; $-1, 811$; $-1, 849$; $0, 123$; $1, 462$; $2, 399$; $1, 3$; $1, 703$; $-2, 045$; $2, 817$

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .

- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y):

Известно, что движение осуществляется по кривой, описываемой многочленом $y=kx^3+b$. Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение координаты x, соответствующее значению y=5.

Для нахождения коэффициентов k и b составить нормальную систему метода наименьших квадратов и решить её с помощью встроенной функции lsolve пакета Mathcad.

17. а) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y):

Известно, что движение осуществляется по кривой, описываемой многочленом $y=kx^2+b$. Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение координаты x, соответствующее значению y=6.

Для нахождения коэффициентов k и b составить нормальную систему метода наименьших квадратов и решить её с помощью встроенной функции lsolve пакета Mathcad.

18. а) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x) = a_0 + a_1 x + \ldots + a_m x^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За

оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m = \sqrt{\frac{1}{n}\sum_{k=0}^n (P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(3\pi x) + c_2 \cos(2\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

Используя метод наименьших квадратов, определить c_1 и c_2 .

19. а) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = \sqrt{a + bx} + 2$$

x: 1; 1, 7; 2, 4; 3, 1; 3, 8; 4, 5; 5, 2; 5, 9; 6, 6; 7, 3; 8

y: 4,0199; 3,9404; 3,8574; 3,7706; 3,6793; 3,5827; 3,4799; 3,3693; 3,249; 3,1158; 2,9644

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное

равенство и введя новые переменные $s = \ln y$ и $t = x^2$, получаем задачу об определении коэффициентов линейной зависимости s = a + bt.

20. a) Функция y = f(x) задана таблицей значений:

$$x: -0, 7; -0, 41; -0, 2; 0, 17; 0, 46; 0, 75; 1, 04; 1, 33; 1, 62; 1, 91; 2, 2$$

y:
$$-12,917$$
; $3,619$; $9,586$; $7,949$; $1,543$; $-8,057$; $-16,15$; $-20,562$; $-17,72$; $-6,2$; $18,115$

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = (ax + b)\sin x$$

x: 0, 5; 0, 75; 1; 1, 25; 1, 5; 1, 75; 2; 2, 25; 2, 5; 2, 75; 3

y: 1,7499; 2,5732; 3,2817; 3,8197; 4,1396; 4,2065; 3,5208; 2,7829; 1,8224; 0,6915; 0,6915

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

21. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.

- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за перемещением x материальной точки по оси OX в моменты времени $t \in [t_0, T]$:

Известно, что движение является равномерным и описывается линейной зависимостью x(t) = vt + b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t=2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

22. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .

- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Зависимость между величинами x и y описывается функцией:

$$y = (ax + b)\cos x$$

где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов.

Свести исходную задачу к линейной задаче метода наименьших квадратов можно, сделав подходящую замену переменных. Например, если исходная зависимость имеет вид $y=e^{a+bx^2}$, то, прологарифмировав исходное равенство и введя новые переменные $s=\ln y$ и $t=x^2$, получаем задачу об определении коэффициентов линейной зависимости s=a+bt.

23. a) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x) = a_0 + a_1 x + \ldots + a_m x^m$ наилучшего среднеквадратичного приближения оптимальной степени $m = m^*$. За

оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m = \sqrt{\frac{1}{n}\sum_{k=0}^n (P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения задачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(2\pi x) + c_2 \cos(4\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

y: $0,1931;\ 1,242;\ 1,7388;\ 1,7317;\ 1,2585;\ 0,1876;\ -1,1307;\ -2,06;\ -2,0782;\ -1,1179;\ 0,2087;\ 1,2317;\ 1,7312;\ 1,7316;\ 1,2483;\ 0,1898;\ -1,1263;\ -2,0577;\ -2,0713;\ -1,1084;\ 0,2066$

Используя метод наименьших квадратов, определить c_1 и c_2 .

24. a) Функция y = f(x) задана таблицей значений:

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения залачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за перемещением x материальной точки по оси OX в моменты времени $t \in [t_0, T]$:

```
t: 2; 3, 2; 4, 4; 5; 5, 6; 6, 8; 7, 4; 8
x: 18, 5; 35, 73; 54, 65; 62, 4; 71, 74; 90, 5; 98, 1; 107, 6
```

Известно, что движение является равномерным и описывается линейной зависимостью x(t)=vt+b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t=2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

25. a) Функция y = f(x) задана таблицей значений:

- x: -1; -0,708; -0,417; -0,125; 0,167; 0,458; 0,75; 1,042; 1,333; 1,625; 2,917; 2,208; 2,5
- y: -5,265; -1,994; 0,224; 1,146; 1,552; -0,148; -1,233; -2,297; -2,4; -2,317; -1,223; 2,257; 7,806

Используя метод наименьших квадратов, найти многочлен $P_m(x)=a_0+a_1x+\ldots+a_mx^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту степень многочлена, начиная с которой величина $\sigma_m=\sqrt{\frac{1}{n}\sum_{k=0}^n(P_m(x_k)-y_k)^2}$ стабилизируется или начинает возрастать. Порядок решения залачи:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y):

```
x: 1; 1, 4; 1, 8; 2, 2; 2, 6; 3; 3, 4; 3, 8; 4, 2; 4, 6
y: 2, 1; 2, 45; 3, 07; 4, 03; 5, 42; 7, 3; 9, 76; 12, 87; 16, 72; 21, 4
```

Известно, что движение осуществляется по кривой, описываемой многочленом $y=kx^3+b$. Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение координаты x, соответствующее значению y=8.

Для нахождения коэффициентов k и b составить нормальную систему метода наименьших квадратов и решить её с помощью встроенной функции lsolve пакета Mathcad.

26. а) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) В таблице приведены результаты наблюдений за перемещением x материальной точки по оси OX в моменты времени $t \in [t_0, T]$:

t: 5; 5, 5; 6; 6, 5; 7; 7, 5; 8; 8, 5; 9

x: 13, 85; 14, 3; 15, 84; 16, 9; 18, 89; 19, 7; 21, 03; 22, 08; 23, 95

Известно, что движение является равномерным и описывается линейной зависимостью x(t) = vt + b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t=2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

27. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.

б) В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y):

Известно, что движение осуществляется по кривой, описываемой многочленом $y=kx^3+b$. Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение координаты x, соответствующее значению y=7.

Для нахождения коэффициентов k и b составить нормальную систему метода наименьших квадратов и решить её с помощью встроенной функции lsolve пакета Mathcad.

28. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.

- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(2\pi x) + c_2 \cos(3\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

y:
$$2,002$$
; $1,7937$; $0,39$; $-0,9052$; $-1,0023$; $0,0001$; $1,0025$; $0,9054$; $-0,37$; $-1,794$; $-2,003$; $-0,5597$; $1,6174$; $2,9025$; $2,2468$; $0,001$; $-2,2365$; $-2,902$; $1,6172$; $0,5593$; $2,0004$

29. а) Функция y = f(x) задана таблицей значений:

```
x: 0; 0, 288; 0, 575; 0, 863; 1, 15; 1, 438; 1, 725; 2, 013; 2, 3
```

y: 5,241; 4,892; 3,521; 1,121; -1,357; -3,5; -3,528; 0,257; 10,515

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.

- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(1\pi x) + c_2 \cos(4\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

30. a) Функция y = f(x) задана таблицей значений:

- Задать векторы x и y исходных данных.
- Используя функцию mnk, найти многочлены P_m , $m=0,1,2,\ldots$ по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.

- На одном чертеже построить графики многочленов P_m , $m=0,1,2,\ldots,m^*$, и точечный график исходной функции.
- б) Известно, что $y = c_1 \sin(2\pi x) + c_2 \cos(1\pi x)$, где коэффициенты c_1 и c_2 подлежат определению.

$$\begin{array}{l} \mathbf{x}; \quad -1; -0, 9; -0, 8; -0, 7; -0, 6; -0, 5; -0, 4; -0, 3; -0, 2; -0, 1; \\ 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5; 0, 6; 0, 7; 0, 8; 0, 9; 1 \\ \mathbf{y}; \quad -2, 32; \quad -0, 9861; \quad 0, 0841; \quad 0, 583; \quad 0, 4912; \quad 0, 002; \quad -0, 4925; \\ -0, 593; \quad -0, 0841; \quad 0, 9852; \quad 2, 315; \quad 3, 3891; \quad 3, 8051; \quad 3, 2961; \\ 1, 9129; \quad -0, 003; \quad -1, 913; \quad -3, 2963; \quad -3, 8051; \quad -3, 3892; \\ -2, 285 \end{array}$$

Контрольные вопросы

- 1. Чем задача приближения функций отличается от задачи интерполирования?
- 2. Метод наименьших квадратов.

Литература

- 1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы: учебное пособие. 4-е изд. СПб.: Лань, 2014. 674 с.
- 2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: учебное пособие. 8-е изд. М.:: БИНОМ Лаборатория знаний, 2015.-639 с.
- 3. Самарский А.А. Численные методы: учебное пособие. 5-е изд. СПб.: Лань, 2009. 260 с.

Содержание

Лабораторная работа №1. Теория погрешностей и	
машинная арифметика	3
Лабораторная работа №2. Методы решения нелинейных	
уравнений	29
Лабораторная работа №3. Решение систем линейных	
алгебраических уравнений прямыми методами	57
Лабораторная работа №4. Решение систем линейных	
алгебраических уравнений итерационными	
методами	100
Лабораторная работа №5. Приближение функций	136
Литература	173