# FCC SAR EVALUATION REPORT

# In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name: Tough Smart Speaker

Trademark: SEIKI

Model Name: Tough

Family Model: N/A

Report No.: \$19051700403001

FCC ID: ZY9-TOUGH

## Prepared for

Shenzhen Great Power Innovation And Technology Enterprise Co.,Ltd Building E,Xin Xulong Industrial Area, Kukeng Village, Guanlan Town, Longhua New District, Shenzhen, China

#### Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District,
Shenzhen, Guangdong, China

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599

Website: http://www.ntek.org.cn



## TEST RESULT CERTIFICATION

Shenzhen Great Power Innovation And Technology Enterprise Applicant's name.....

Co.,Ltd

Building E,Xin Xulong Industrial Area, Kukeng Village, Guanlan

Town, Longhua New District, Shenzhen, China

Shenzhen Great Power Innovation And Technology Enterprise

Manufacturer's Name....: Co.,Ltd

Building E,Xin Xulong Industrial Area, Kukeng Village, Guanlan Address .....

Town, Longhua New District, Shenzhen, China

**Product description** 

Product name .....: Tough Smart Speaker

Trademark .....: SEIKI

Model and/or type reference: Tough

Family Model..... N/A

FCC 47 CFR Part 2(2.1093); ANSI/IEEE C95.1-1992 Standards....:

IEEE Std 1528-2013; Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

#### **Date of Test**

Date of Issue ...... Jul. 05, 2019

Test Result ..... Pass

Prepared By (Test Engineer) : Cheny Jiawen

(Cheng Jiawen)

: Sam . Chew

Approved By (Lab Manager)



# $\ensuremath{\, \times \,} \ensuremath{\, \times \,} \ensuremath$

| REV.    | DESCRIPTION                 | ISSUED DATE   | REMARK       |
|---------|-----------------------------|---------------|--------------|
| Rev.1.0 | Initial Test Report Release | Jul. 05, 2019 | Cheng Jiawen |
|         |                             |               |              |
|         |                             |               |              |
|         |                             |               |              |



## **TABLE OF CONTENTS**

| 1.  | Gener  | al Information                                 | 6   |
|-----|--------|------------------------------------------------|-----|
|     | 1.1.   | RF exposure limits                             | 6   |
|     | 1.2.   | Statement of Compliance                        | 7   |
|     | 1.3.   | I                                              |     |
|     | 1.4.   | Test specification(s)                          | 8   |
|     | 1.5.   | Ambient Condition                              | 8   |
| 2.  | SAR M  | easurement System                              | 9   |
|     | 2.1.   | SATIMO SAR Measurement Set-up Diagram          | 9   |
|     | 2.2.   | Robot                                          | .10 |
|     | 2.3.   | E-Field Probe                                  | .11 |
|     | 2.3    | 3.1. E-Field Probe Calibration                 | .11 |
|     | 2.4.   | SAM phantoms                                   | .12 |
|     | 2.4    | 1.1. Technical Data                            | .13 |
|     | 2.5.   | Device Holder                                  | .14 |
|     | 2.6.   | Test Equipment List                            | .15 |
| 3.  | SAR M  | easurement Procedures                          | .17 |
|     | 3.1.   | Power Reference                                | .17 |
|     | 3.2.   | Area scan & Zoom scan                          | .17 |
|     | 3.3.   |                                                |     |
|     | 3.4.   | Volumetric Scan                                | .19 |
|     | 3.5.   | Power Drift                                    | .19 |
| 4.  | Systen | n Verification Procedure                       | .20 |
|     | 4.1.   | Tissue Verification                            | .20 |
|     | 4.1    | L.1. Tissue Dielectric Parameter Check Results | .21 |
|     |        | System Verification Procedure                  |     |
|     | 4.2    | 2.1. System Verification Results               | .23 |
| 5.  | SAR M  | easurement variability and uncertainty         | .24 |
|     | 5.1.   | SAR measurement variability                    | .24 |
|     | 5.2.   | SAR measurement uncertainty                    | .24 |
| 6.  | RF Exp | osure Positions                                | .25 |
|     | 6.1.   | Body Worn Accessory                            | .25 |
| 7.  | RF Out | tput Power                                     | .26 |
|     | 7.1.   | WLAN Output Power                              | .26 |
|     | 7.2.   | Bluetooth Output Power                         | .28 |
| 8.  | Anten  | na Location                                    | .29 |
| 9.  | Stand- | alone SAR test exclusion                       | .30 |
| 10. | SAR    | Results                                        | .31 |
|     | 10.1   | . SAR measurement results                      | .31 |
|     | 10     | .1.1. SAR measurement Result of WLAN 2.4G      | .31 |

Page 5 of 90

Report No.: S19051700403001





#### 1. General Information

#### 1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.4        | 8.0          | 20.0                           |

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.08       | 1.6          | 4.0                            |

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

#### **Occupational/Controlled Environments:**

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

## **General Population/Uncontrolled Environments:**

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE
HEAD AND TRUNK LIMIT
1.6 W/kg
APPLIED TO THIS EUT





## 1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Tough are as follows.

|           | Max Reported SAR Value(W/kg) |  |  |  |
|-----------|------------------------------|--|--|--|
| Band      | 1-g Body                     |  |  |  |
|           | (Separation distance of 0mm) |  |  |  |
| WLAN 2.4G | 0.651                        |  |  |  |
| WLAN 5.2G | 1.054                        |  |  |  |
| WLAN 5.3G | 1.227                        |  |  |  |
| WLAN 5.6G | 0.888                        |  |  |  |
| WLAN 5.8G | 0.953                        |  |  |  |

NOTE: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & Published RF exposure KDB procedures.

## 1.3. EUT Description

| Device Information                                          |                              |                     |              |  |  |  |
|-------------------------------------------------------------|------------------------------|---------------------|--------------|--|--|--|
| Product Name                                                | Tough Smart Speaker          |                     |              |  |  |  |
| Trademark                                                   | SEIKI                        |                     |              |  |  |  |
| Model Name                                                  | Tough                        | Tough               |              |  |  |  |
| Family Model                                                | N/A                          |                     |              |  |  |  |
| FCC ID                                                      | ZY9-TOUGH                    |                     |              |  |  |  |
| Device Phase                                                | Identical Prototype          |                     |              |  |  |  |
| Exposure Category                                           | General population / Unco    | ntrolled environmer | nt           |  |  |  |
| Antenna Type                                                | FPCB Antenna                 |                     |              |  |  |  |
| Battery Information                                         | DC 7.2V, 2500mAh             |                     |              |  |  |  |
| Device Operating Configurations                             |                              |                     |              |  |  |  |
| Supporting Mode(s) WLAN 2.4G/5.2G/5.3G/5.6G/5.8G, Bluetooth |                              |                     |              |  |  |  |
| Test Modulation                                             | WLAN(DSSS/OFDM), Blu         | etooth(GFSK, π/4-D  | QPSK, 8DPSK) |  |  |  |
|                                                             | Band                         | Tx (MHz)            | Rx (MHz)     |  |  |  |
|                                                             | WLAN 2.4G                    | 2412-               | 2462         |  |  |  |
|                                                             | WLAN 5.2G                    | 5180-               | 5240         |  |  |  |
| Operating Frequency Range(s)                                | WLAN 5.3G                    | 5260-5320           |              |  |  |  |
|                                                             | WLAN 5.6G                    | 5500-5700           |              |  |  |  |
|                                                             | WLAN 5.8G                    | 5745-5825           |              |  |  |  |
|                                                             | Bluetooth 2402-2480          |                     |              |  |  |  |
| Test Channels (low-mid-high)                                | 1-3-6-9-11(WLAN 2.4G)        |                     |              |  |  |  |
| rest Channels (low-mid-nigh)                                | 36-38-40-42-46-48(WLAN 5.2G) |                     |              |  |  |  |



| III ya ii wa ii a ya i |
|----------------------------------------------------------------------------------------------------------------|
| 52-54-56-58-62-64(WLAN 5.3G)                                                                                   |
| 100-102-106-118-120-122-134-140(WLAN 5.6G)                                                                     |
| 149-151-155-157-159-165(WLAN 5.8G)                                                                             |

## 1.4. Test specification(s)

| FCC 47 CFR Part 2(2.1093)                       |
|-------------------------------------------------|
| ANSI/IEEE C95.1-1992                            |
| IEEE Std 1528-2013                              |
| KDB 865664 D01 SAR measurement 100 MHz to 6 GHz |
| KDB 865664 D02 RF Exposure Reporting            |
| KDB 447498 D01 General RF Exposure Guidance     |
| KDB 248227 D01 802.11 Wi-Fi SAR                 |

## 1.5. Ambient Condition

| Ambient temperature | 20°C – 24°C |  |  |
|---------------------|-------------|--|--|
| Relative Humidity   | 30% – 70%   |  |  |

## 2. SAR Measurement System

#### 2.1. SATIMO SAR Measurement Set-up Diagram



These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"



#### 2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:



- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

#### 2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

Report No.: S19051700403001

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used



- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

Probe linearity: ±0.08 dBAxial isotropy: 0.06 dB

- Hemispherical Isotropy: 0.08 dB

- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.

- Lower detection limit: 7mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

#### 2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.



## 2.4. SAM phantoms

## Photo of SAM phantom SN 16/15 SAM119



The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.



#### 2.4.1. Technical Data

| Serial<br>Number   | Shell thickness | Filling volume | Dimensions                                      | Positionner<br>Material | Permittivity | Loss<br>Tangent |
|--------------------|-----------------|----------------|-------------------------------------------------|-------------------------|--------------|-----------------|
| SN 16/15<br>SAM119 | 2 mm ±0.2 mm    | 27 liters      | Length:1000 mm<br>Width:500 mm<br>Height:200 mm | Gelcoat with fiberglass | 3.4          | 0.02            |



| Serial Number   | Left Head(mm) |      | Right Head(mm) |      | Flat Part(mm) |      |
|-----------------|---------------|------|----------------|------|---------------|------|
|                 | 2             | 2.02 | 2              | 2.08 | 1             | 2.09 |
|                 | 3             | 2.05 | 3              | 2.06 | 2             | 2.06 |
|                 | 4             | 2.07 | 4              | 2.07 | 3             | 2.08 |
| SN 16/15 SAM119 | 5             | 2.08 | 5              | 2.08 | 4             | 2.10 |
|                 | 6             | 2.05 | 6              | 2.07 | 5             | 2.10 |
|                 | 7             | 2.05 | 7              | 2.05 | 6             | 2.07 |
|                 | 8             | 2.07 | 8              | 2.06 | 7             | 2.07 |
|                 | 9             | 2.08 | 9              | 2.06 | -             | -    |

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 µm.



## 2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.



| Serial Number   | Holder Material               | Permittivity | Loss Tangent |  |
|-----------------|-------------------------------|--------------|--------------|--|
| SN 16/15 MSH100 | <b>SN 16/15 MSH100</b> Delrin |              | 0.005        |  |



This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked  $\boxtimes$ 

| 1 | Monufooturor | Name of             | Type/Model     | Serial Number       | Calibration |          |  |
|---|--------------|---------------------|----------------|---------------------|-------------|----------|--|
|   | Manufacturer | Equipment           | i ype/iviodei  | Seriai Number       | Last Cal.   | Due Date |  |
|   | MVG          | E FIELD PROBE       | SSE2           | SN 08/16 EPGO287    | Sep. 17,    | Sep. 16, |  |
|   | IVIVO        | LTIELDTROBE         | OOLZ           | 014 00/ 10 L1 0020/ | 2018        | 2019     |  |
|   | MVG          | 750 MHz Dipole      | SID750         | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   | WIV O        | 700 Will 2 Dipole   | 012700         | 0G750-355           | 2018        | 2021     |  |
|   | MVG          | 835 MHz Dipole      | SID835         | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   |              | 000 IIII IZ DIPOIO  | 0.2000         | 0G835-347           | 2018        | 2021     |  |
|   | MVG          | 900 MHz Dipole      | SID900         | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   | 0            | 000 IIII IZ D.P010  | <b>G</b> 12000 | 0G900-348           | 2018        | 2021     |  |
|   | MVG          | 1800 MHz Dipole     | SID1800        | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   |              | 7000 Wii i2 Dipolo  | 012 1000       | 1G800-349           | 2018        | 2021     |  |
|   | MVG          | 1900 MHz Dipole     | SID1900        | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   |              |                     | 012 1000       | 1G900-350           | 2018        | 2021     |  |
|   | MVG          | 2000 MHz Dipole     | SID2000        | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   | WIVO         | 2000 Will IZ Dipole | OIDZOOO        | 2G000-351           | 2018        | 2021     |  |
|   | MVG          | 2450 MHz Dipole     | SID2450        | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   | WV           | 2400 Willia Dipole  | OIDZ-100       | 2G450-352           | 2018        | 2021     |  |
|   | MVG          | 2600 MHz Dipole     | SID2600        | SN 03/15 DIP        | Apr. 19,    | Apr. 18, |  |
|   | WVO          | 2000 WII IZ DIPOIC  | 0102000        | 2G600-356           | 2018        | 2021     |  |
|   | MVG          | 5000 MHz Dipole     | SWG5500        | SN 13/14 WGA 33     | Apr. 19,    | Apr. 18, |  |
|   | IVIVO        | 3000 WII IZ DIPOIC  | 000000         | 014 10/14 440/4 00  | 2018        | 2021     |  |
|   | MVG          | Liquid              | SCLMP          | ON 04/45 OODO 70    | NCR         | NCR      |  |
|   | WV           | measurement Kit     | OOLIVII        | SN 21/15 OCPG 72    | NOIX        | NOIX     |  |
|   | MVG          | Power Amplifier     | N.A            | AMPLISAR_28/14_003  | NCR         | NCR      |  |
|   | KEITHLEY     | Millivoltmeter      | 2000           | 4072790             | NCR         | NCR      |  |
|   |              | Universal radio     |                |                     | A OF        | A 04     |  |
|   | R&S          | communication       | CMU200         | 117858              | Aug. 05,    | Aug. 04, |  |
|   |              | tester              |                |                     | 2018        | 2019     |  |
|   |              | Wideband radio      |                |                     | Oct. 08,    | Oct. 07, |  |
|   | R&S          | communication       | CMW500         | 103917              | 2018        | 2019     |  |
|   |              | tester              |                |                     | 2010        | 2013     |  |
|   | HP           | Nationals Assets    | 07505          | 0440 104400         | Aug. 05,    | Aug. 04, |  |
|   | 1 11         | Network Analyzer    | 8753D          | 3410J01136          | 2018        | 2019     |  |
|   | Agilent      | PSG Analog          | E0057D         | MVE4440440          | Aug. 05,    | Aug. 04, |  |
|   | Agiient      | Signal Generator    | E8257D         | MY51110112          | 2018        | 2019     |  |



Aug. 05, Aug. 04,  $\boxtimes$ Agilent E4419B MY45102538 Power meter 2018 2019 Aug. 05, Aug. 04, Agilent  $\boxtimes$ Power sensor E9301A MY41495644 2018 2019 Aug. 05, Aug. 04,  $\boxtimes$ Agilent Power sensor E9301A US39212148 2018 2019 Directional Aug. 05, Aug. 04,  $\boxtimes$ MCLI/USA CB11-20 0D2L51502 2019 Coupler 2018

Report No.: S19051700403001

#### 3. SAR Measurement Procedures

The measurement procedures are as follows:

#### <Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: S19051700403001

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

#### <SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

#### 3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

#### 3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.



Measurement of the SAR distribution with a grid of 8 to 16 mm \* 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 \* 30 \*30 mm or 32 \* 32 \* 32 mm is assessed by measuring 5 or 8 \* 5 or 8 \* 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

|                                                                                                        |                                                 | ≤ 3 GHz                                                                                                                                                                                                                                  | > 3 GHz                                                                                                                       |                                                               |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface |                                                 |                                                                                                                                                                                                                                          | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                                    |                                                               |
|                                                                                                        |                                                 | 30° ± 1°                                                                                                                                                                                                                                 | 20° ± 1°                                                                                                                      |                                                               |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                            |                                                 |                                                                                                                                                                                                                                          | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                                                                                      |                                                               |
|                                                                                                        |                                                 |                                                                                                                                                                                                                                          | on, is smaller than the above, must be $\leq$ the corresponding levice with at least one                                      |                                                               |
| patial reso                                                                                            | lution: Δx <sub>Zoom</sub> , Δy <sub>Zoom</sub> | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 – 3 GHz: $\leq$ 5 mm <sup>*</sup>                                                                                                                                                                         | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$                                          |                                                               |
| uniform grid: $\Delta z_{Zoom}(n)$                                                                     |                                                 | ≤ 5 mm                                                                                                                                                                                                                                   | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$<br>$4 - 5 \text{ GHz: } \le 3 \text{ mm}$<br>$5 - 6 \text{ GHz: } \le 2 \text{ mm}$    |                                                               |
| oraded                                                                                                 | graded                                          | Δz <sub>Zoom</sub> (1): between 1 <sup>st</sup> two points closest to phantom surface                                                                                                                                                    | ≤ 4 mm                                                                                                                        | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm |
| grid $\Delta z_{Zoom}(n>1)$ : between subsequent points                                                |                                                 | ≤ 1.5·Δz                                                                                                                                                                                                                                 | Zoom(n-1)                                                                                                                     |                                                               |
| x, y, z                                                                                                |                                                 | ≥ 30 mm                                                                                                                                                                                                                                  | $3 - 4 \text{ GHz: } \ge 28 \text{ mm}$<br>$4 - 5 \text{ GHz: } \ge 25 \text{ mm}$<br>$5 - 6 \text{ GHz: } \ge 22 \text{ mm}$ |                                                               |
|                                                                                                        | patial resolution graded grid                   | patial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$ uniform grid: $\Delta z_{Zoom}$ , $\Delta y_{Zoom}$ $\Delta z_{Zoom}(1)$ : between 1st two points closest to phantom surface $\Delta z_{Zoom}(n>1)$ : between subsequent points | The closest measurement point oble sensors) to phantom surface from probe axis to phantom leasurement location                |                                                               |

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

<sup>\*</sup> When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### 3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

Report No.: S19051700403001

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

#### 3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

#### 3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

## 4. System Verification Procedure

#### 4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No.: S19051700403001

| Ingredients (% of weight) | Head Tissue |       |       |       |                   |        |       |       |       |       |
|---------------------------|-------------|-------|-------|-------|-------------------|--------|-------|-------|-------|-------|
| Frequency Band (MHz)      | 750         | 835   | 900   | 1800  | 1900              | 2000   | 2450  | 2600  | 5200  | 5800  |
| Water                     | 34.40       | 34.40 | 34.40 | 55.36 | 55.36             | 57.87  | 57.87 | 57.87 | 65.53 | 65.53 |
| NaCl                      | 0.79        | 0.79  | 0.79  | 0.35  | 0.35              | 0.16   | 0.16  | 0.16  | 0.00  | 0.00  |
| 1,2-Propanediol           | 64.81       | 64.81 | 64.81 | 0.00  | 0.00              | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  |
| Triton X-100              | 0.00        | 0.00  | 0.00  | 30.45 | 30.45             | 19.97  | 19.97 | 19.97 | 24.24 | 24.24 |
| DGBE                      | 0.00        | 0.00  | 0.00  | 13.84 | 13.84             | 22.00  | 22.00 | 22.00 | 10.23 | 10.23 |
| Ingredients (% of weight) |             |       |       |       | Body <sup>-</sup> | Tissue |       |       |       |       |
| Frequency Band<br>(MHz)   | 750         | 835   | 900   | 1800  | 1900              | 2000   | 2450  | 2600  | 5200  | 5800  |
| Water                     | 50.30       | 50.30 | 50.30 | 69.91 | 69.91             | 71.88  | 71.88 | 71.88 | 79.54 | 79.54 |
| NaCl                      | 0.60        | 0.60  | 0.60  | 0.13  | 0.13              | 0.16   | 0.16  | 0.16  | 0.00  | 0.00  |
| 1,2-Propanediol           | 49.10       | 49.10 | 49.10 | 0.00  | 0.00              | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  |
| Triton X-100              | 0.00        | 0.00  | 0.00  | 9.99  | 9.99              | 19.97  | 19.97 | 19.97 | 11.24 | 11.24 |
| DGBE                      | 0.00        | 0.00  | 0.00  | 19.97 | 19.97             | 7.99   | 7.99  | 7.99  | 9.22  | 9.22  |

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.





#### 4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

|                | 1                  |                        |                     | 1     |                 |                 |               |  |
|----------------|--------------------|------------------------|---------------------|-------|-----------------|-----------------|---------------|--|
| <del></del> .  | Measured           | Target T               | Target Tissue       |       | Measured Tissue |                 |               |  |
| Tissue<br>Type | Frequency<br>(MHz) | εr (±5%)               | σ (S/m)<br>(±5%)    | εr    | σ (S/m)         | Liquid<br>Temp. | Test Date     |  |
| Body<br>2450   | 2450               | 52.70<br>(50.07~55.33) | 1.95<br>(1.85~2.04) | 52.46 | 2.00            | 21.4 °C         | Jun. 06, 2019 |  |
| Body<br>5000   | 5200               | 49.00<br>(46.55~51.45) | 5.30<br>(5.04~5.57) | 49.72 | 5.30            | 21.4 °C         | Jun. 12, 2019 |  |
| Body<br>5000   | 5400               | 48.75<br>(46.31~51.19) | 5.52<br>(5.24~5.80) | 49.03 | 5.58            | 21.3 °C         | Jun. 12, 2019 |  |
| Body<br>5000   | 5600               | 48.48<br>(46.06~50.90) | 5.76<br>(5.47~6.05) | 49.84 | 5.69            | 21.2 °C         | Jun. 13, 2019 |  |
| Body<br>5000   | 5800               | 48.20<br>(45.79~50.61) | 6.00<br>(5.70~6.30) | 48.44 | 6.07            | 21.2 °C         | Jun. 13, 2019 |  |

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

#### 4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:



## 4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

|                 | 1               |                       | ı            |           |         |                |
|-----------------|-----------------|-----------------------|--------------|-----------|---------|----------------|
|                 | Target SAR (1W) |                       | Measured SAR |           |         |                |
| System          | (±10            | %)                    | (Normalize   | ed to 1W) | Liquid  | T1 D-1-        |
| Verification    | 1-g (W/Kg)      | 10-g (W/Kg)           | 1-g          | 10-g      | Temp.   | Test Date      |
|                 | 3 ( 3)          | <b>3</b> ( <b>3</b> / | (W/Kg)       | (W/Kg)    |         |                |
| 2450MHz Body    | 49.32           | 22.89                 | 52.43        | 23.34     | 21.4 °C | Jun. 06, 2019  |
| 2430WII 12 BOOY | (44.39~54.25)   | (20.60~25.17)         | 32.43        | 23.34     | 21.4 0  | Juli. 00, 2019 |
| 5200MHz Body    | 156.85          | 55.20                 | 148.86       | 49.14     | 21.4 °C | Jun. 12, 2019  |
| 5200MHZ BOUY    | (141.17~172.54) | (49.68~60.72)         | 140.00       | 43.14     | 21.4 0  | Juli. 12, 2019 |
| 5400MHz Body    | 163.97          | 57.26                 | 155.02       | 55.23     | 21.3 °C | Jun. 12, 2019  |
| 5400MHZ BOUY    | (147.57~180.37) | (51.53~62.98)         | 155.02       | 55.25     | 21.3 C  | Juli. 12, 2019 |
| 5600MHz Body    | 166.58          | 57.87                 | 161.52       | 58.82     | 21.2 °C | Jun. 13, 2019  |
| 3000MHZ BOUY    | (149.92~183.24) | (52.08~63.66)         | 101.52       | 30.02     | 21.2 C  | Juli. 13, 2019 |
| 5800MHz Body    | 169.30          | 58.49                 | 169.33       | 58.13     | 21.2 °C | Jun. 13, 2019  |
| JOOUNII IZ DOUY | (152.37~186.23) | (52.64~64.34)         | 109.55       | 30.13     | 21.2 0  | Juli. 13, 2019 |

## 5. SAR Measurement variability and uncertainty

#### 5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Report No.: S19051700403001

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is  $\ge 1.45$  W/kg ( $\sim 10\%$  from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

#### 5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.



#### 6.1. Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.4.1). Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.



Figure 6.4.1 – Test positions for body-worn devices



# 7. RF Output Power

## 7.1. WLAN Output Power

| Mode         | Channel | Frequency (MHz) | Tune-up | Output Power (dBm) |
|--------------|---------|-----------------|---------|--------------------|
|              | 1       | 2412            | 14.5    | 14.2               |
| 802.11b      | 6       | 2437            | 14.5    | 14.1               |
|              | 11      | 2462            | 14.5    | 14.1               |
|              | 1       | 2412            | 13.5    | 13.1               |
| 802.11g      | 6       | 2437            | 13.5    | 13.2               |
|              | 11      | 2462            | 13.5    | 13.1               |
|              | 1       | 2412            | 13.5    | 12.7               |
| 802.11n HT20 | 6       | 2437            | 13.5    | 12.6               |
|              | 11      | 2462            | 13.5    | 12.6               |
|              | 3       | 2422            | 13.5    | 12.3               |
| 802.11n HT40 | 6       | 2437            | 13.5    | 12.3               |
|              | 9       | 2452            | 13.5    | 12.2               |

| Mode           | Channel | Frequency (MHz) | Tune-up | Output Power (dBm) |
|----------------|---------|-----------------|---------|--------------------|
|                | 36      | 5180            | 13.5    | 13.2               |
| 802.11a        | 40      | 5200            | 13.5    | 13.0               |
|                | 48      | 5240            | 13.5    | 13.1               |
|                | 36      | 5180            | 13.5    | 12.6               |
| 802.11n HT20   | 40      | 5200            | 13.5    | 12.5               |
|                | 48      | 5240            | 13.5    | 12.4               |
| 802.11n HT40   | 38      | 5190            | 13.5    | 12.6               |
| 002.111111140  | 46      | 5230            | 13.5    | 12.7               |
|                | 36      | 5180            | 12.5    | 11.7               |
| 802.11ac VHT20 | 40      | 5200            | 12.5    | 11.8               |
|                | 48      | 5240            | 12.5    | 11.7               |
| 902 11aa VUT40 | 38      | 5190            | 12.5    | 11.9               |
| 802.11ac VHT40 | 46      | 5230            | 12.5    | 11.8               |
| 802.11ac VHT80 | 42      | 5210            | 10.5    | 10.0               |



ACCREDITED Page 27 of 90
Certificate #4298.01

| Mode           | Channel | Frequency (MHz) | Tune-up | Output Power (dBm) |
|----------------|---------|-----------------|---------|--------------------|
|                | 52      | 5260            | 14.0    | 13.7               |
| 802.11a        | 56      | 5280            | 14.0    | 13.5               |
|                | 64      | 5320            | 14.0    | 13.4               |
|                | 52      | 5260            | 14.0    | 13.3               |
| 802.11n HT20   | 56      | 5280            | 14.0    | 13.3               |
|                | 64      | 5320            | 14.0    | 13.2               |
| 802.11n HT40   | 54      | 5270            | 14.0    | 13.2               |
| 602.1111 H140  | 62      | 5310            | 14.0    | 13.2               |
|                | 52      | 5260            | 13.0    | 12.5               |
| 802.11ac VHT20 | 56      | 5280            | 13.0    | 12.2               |
|                | 64      | 5320            | 13.0    | 12.3               |
| 802.11ac VHT40 | 54      | 5270            | 13.0    | 12.5               |
| 002.11aC VH140 | 62      | 5310            | 13.0    | 12.4               |
| 802.11ac VHT80 | 58      | 5290            | 11.0    | 10.8               |

| Mode             | Channel | Frequency (MHz) | Tune-up | Output Power (dBm) |
|------------------|---------|-----------------|---------|--------------------|
|                  | 100     | 5500            | 14.0    | 13.5               |
| 802.11a          | 120     | 5600            | 14.0    | 13.5               |
|                  | 140     | 5700            | 14.0    | 13.4               |
|                  | 100     | 5500            | 14.0    | 13.6               |
| 802.11n HT20     | 120     | 5600            | 14.0    | 13.5               |
|                  | 140     | 5700            | 14.0    | 13.5               |
|                  | 102     | 5510            | 14.0    | 13.8               |
| 802.11n HT40     | 118     | 5590            | 14.0    | 13.6               |
|                  | 134     | 5670            | 14.0    | 13.5               |
|                  | 100     | 5500            | 13.0    | 12.2               |
| 802.11ac VHT20   | 120     | 5600            | 13.0    | 12.3               |
|                  | 140     | 5700            | 13.0    | 12.2               |
|                  | 102     | 5510            | 13.0    | 12.3               |
| 802.11ac VHT40   | 118     | 5590            | 13.0    | 12.2               |
|                  | 134     | 5670            | 13.0    | 12.3               |
| 902 11 oo V/UT00 | 106     | 5530            | 11.0    | 10.8               |
| 802.11ac VHT80   | 122     | 5610            | 11.0    | 10.7               |





| Mode            | Channel | Frequency (MHz) | Tune-up | Output Power (dBm) |
|-----------------|---------|-----------------|---------|--------------------|
|                 | 149     | 5745            | 14.0    | 13.7               |
| 802.11a         | 157     | 5785            | 14.0    | 13.5               |
|                 | 165     | 5825            | 14.0    | 13.2               |
|                 | 149     | 5745            | 14.0    | 13.1               |
| 802.11n HT20    | 157     | 5785            | 14.0    | 13.2               |
|                 | 165     | 5825            | 14.0    | 13.0               |
| 802.11n HT40    | 151     | 5755            | 14.0    | 13.2               |
| 002.1111 H 140  | 159     | 5795            | 14.0    | 13.2               |
|                 | 149     | 5745            | 13.0    | 12.3               |
| 802.11ac VHT20  | 157     | 5785            | 13.0    | 12.2               |
|                 | 165     | 5825            | 13.0    | 12.2               |
| 902 11aa V/UT40 | 151     | 5755            | 13.0    | 12.2               |
| 802.11ac VHT40  | 159     | 5795            | 13.0    | 12.2               |
| 802.11ac VHT80  | 155     | 5775            | 11.0    | 10.6               |

## 7.2. Bluetooth Output Power

|        |         | Output Power (dBm) |            |      |      |  |  |
|--------|---------|--------------------|------------|------|------|--|--|
|        | Channel | _                  | Data Rates |      |      |  |  |
| 55 555 |         | Tune-up            | 1M         | 2M   | 3M   |  |  |
| BR+EDR | 0CH     | 2.15               | 2.15       | 2.09 | 0.24 |  |  |
|        | 39CH    | 4.60               | 4.53       | 4.54 | 2.77 |  |  |
|        | 78CH    | 4.60               | 4.49       | 4.53 | 2.76 |  |  |

|      | Channel | Tune-up | Output Power (dBm) |
|------|---------|---------|--------------------|
| DI E | 0CH     | 6.00    | 4.16               |
| BLE  | 19CH    | 6.00    | 5.61               |
|      | 39CH    | 6.00    | 5.41               |

#### 8. Antenna Location



| Distance of the Antenna to the EUT surface/edge |            |           |           |            |          |             |  |
|-------------------------------------------------|------------|-----------|-----------|------------|----------|-------------|--|
| Antennas                                        | Front Side | Back Side | Left Side | Right Side | Top Side | Bottom Side |  |
| Bluetooth &                                     | 15mm       | Emm       | 40mm      | EEmm       | Omm      | 202mm       |  |
| WLAN ANT                                        | 15mm       | 5mm       | 4011111   | 55mm       | 0mm      | 20211111    |  |

#### 9. Stand-alone SAR test exclusion

Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

Report No.: S19051700403001

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[ $\sqrt{f_{(GHZ)}}$ ]  $\leq 3.0$  for 1-g SAR and  $\leq 7.5$  for 10-g extremity SAR, where:

- f<sub>(GHZ)</sub> is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

| Mode      | P <sub>max</sub> | P <sub>max</sub> | Distance | f     | Calculation | SAR Exclusion | SAR test  |
|-----------|------------------|------------------|----------|-------|-------------|---------------|-----------|
| ivioue    | (dBm)            | (mW)             | (mm)     | (GHz) | Result      | threshold     | exclusion |
| Bluetooth | 6.00             | 3.98             | 5        | 2.480 | 1.25        | 3.0           | Yes       |

NOTE: Standalone SAR test exclusion for Bluetooth



## 10. SAR Results

#### 10.1. SAR measurement results

## 10.1.1. SAR measurement Result of WLAN 2.4G

| Test Position of | Test<br>channel | Test Mode    | SAR Value<br>(W/kg) |       | Power Conducted Drift power | Tune-up        | Scaled<br>SAR |              |
|------------------|-----------------|--------------|---------------------|-------|-----------------------------|----------------|---------------|--------------|
| Body with 0mm    | /Freq.          | i est iviode | 1g                  | 10g   | (±5%)                       | power<br>(dBm) | (dBm)         | 1g<br>(W/Kg) |
| Front Side       | 6/2437          | 802.11b      | 0.235               | 0.135 | 0.25                        | 14.10          | 14.50         | 0.258        |
| Back Side        | 6/2437          | 802.11b      | 0.312               | 0.165 | 1.20                        | 14.10          | 14.50         | 0.342        |
| Left Side        | 6/2437          | 802.11b      | 0.128               | 0.063 | 0.31                        | 14.10          | 14.50         | 0.140        |
| Right Side       | 6/2437          | 802.11b      | 0.110               | 0.052 | 2.05                        | 14.10          | 14.50         | 0.121        |
| Top Side         | 6/2437          | 802.11b      | 0.594               | 0.277 | -1.53                       | 14.10          | 14.50         | 0.651        |

NOTE: Body SAR test results of WLAN 2.4G

#### 10.1.2. SAR measurement Result of WLAN 5.2G

| Test Position of | Test              | Took Mode | SAR Value<br>(W/kg) |       | Power          | Conducted      | Tune-up        | Scaled<br>SAR |
|------------------|-------------------|-----------|---------------------|-------|----------------|----------------|----------------|---------------|
| Body with 0mm    | channel<br>/Freq. | Test Mode | 1g                  | 10g   | Drift<br>(±5%) | power<br>(dBm) | power<br>(dBm) | 1g<br>(W/Kg)  |
| Front Side       | 40/5200           | 802.11a   | 0.354               | 0.124 | 0.24           | 13.00          | 13.50          | 0.397         |
| Back Side        | 40/5200           | 802.11a   | 0.531               | 0.223 | 1.50           | 13.00          | 13.50          | 0.596         |
| Left Side        | 40/5200           | 802.11a   | 0.145               | 0.062 | 2.11           | 13.00          | 13.50          | 0.163         |
| Right Side       | 40/5200           | 802.11a   | 0.189               | 0.087 | 0.31           | 13.00          | 13.50          | 0.212         |
| Top Side         | 40/5200           | 802.11a   | 0.939               | 0.380 | -1.70          | 13.00          | 13.50          | 1.054         |
| Top Side -       | 40/5200           | 802.11a   | 0.931               | 0.374 | 2.07           | 13.00          | 13.50          | 1.045         |
| Repeated         | 40/3200           | 002.11d   | 0.931               | 0.374 | 2.07           | 13.00          | 13.50          | 1.045         |
| Top Side         | 36/5180           | 802.11a   | 0.910               | 0.357 | 3.02           | 13.20          | 13.50          | 0.975         |
| Top Side         | 48/5240           | 802.11a   | 0.897               | 0.340 | 1.52           | 13.10          | 13.50          | 0.984         |

NOTE: Body SAR test results of WLAN 5.2G



#### 10.1.3. SAR measurement Result of WLAN 5.3G

| Test Position of       | Test<br>channel | Test Mode | SAR Value<br>(W/kg) |       | Power<br>Drift | Conducted      | Tune-up        | Scaled<br>SAR |
|------------------------|-----------------|-----------|---------------------|-------|----------------|----------------|----------------|---------------|
| Body with 0mm          | /Freq.          | Test Mode | 1g                  | 10g   | (±5%)          | power<br>(dBm) | power<br>(dBm) | 1g<br>(W/Kg)  |
| Front Side             | 56/5280         | 802.11a   | 0.521               | 0.231 | 0.25           | 13.50          | 14.00          | 0.585         |
| Back Side              | 56/5280         | 802.11a   | 0.625               | 0.289 | 1.25           | 13.50          | 14.00          | 0.701         |
| Left Side              | 56/5280         | 802.11a   | 0.322               | 0.145 | 3.01           | 13.50          | 14.00          | 0.361         |
| Right Side             | 56/5280         | 802.11a   | 0.310               | 0.134 | 0.53           | 13.50          | 14.00          | 0.348         |
| Top Side               | 56/5280         | 802.11a   | 1.094               | 0.423 | 0.38           | 13.50          | 14.00          | 1.227         |
| Top Side -<br>Repeated | 56/5280         | 802.11a   | 1.090               | 0.420 | 1.40           | 13.50          | 14.00          | 1.223         |
| Top Side               | 52/5260         | 802.11a   | 0.987               | 0.405 | 2.01           | 13.70          | 14.00          | 1.058         |
| Top Side               | 64/5320         | 802.11a   | 0.995               | 0.410 | 4.01           | 13.40          | 14.00          | 1.142         |

NOTE: Body SAR test results of WLAN 5.3G

#### 10.1.4. SAR measurement Result of WLAN 5.6G

| Test Position of | Test              |           |       | Value<br>/kg) | Power          | Conducted      | Tune-up        | Scaled<br>SAR |
|------------------|-------------------|-----------|-------|---------------|----------------|----------------|----------------|---------------|
| Body with 0mm    | channel<br>/Freq. | Test Mode | 1g    | 10g           | Drift<br>(±5%) | power<br>(dBm) | power<br>(dBm) | 1g<br>(W/Kg)  |
| Front Side       | 120/5600          | 802.11a   | 0.321 | 0.123         | 1.25           | 13.50          | 14.00          | 0.360         |
| Back Side        | 120/5600          | 802.11a   | 0.354 | 0.142         | 0.23           | 13.50          | 14.00          | 0.397         |
| Left Side        | 120/5600          | 802.11a   | 0.210 | 0.089         | 1.04           | 13.50          | 14.00          | 0.236         |
| Right Side       | 120/5600          | 802.11a   | 0.237 | 0.096         | 2.04           | 13.50          | 14.00          | 0.266         |
| Top Side         | 120/5600          | 802.11a   | 0.791 | 0.312         | -0.22          | 13.50          | 14.00          | 0.888         |
| Top Side         | 100/5500          | 802.11a   | 0.789 | 0.310         | 1.47           | 13.50          | 14.00          | 0.885         |
| Top Side         | 140/5700          | 802.11a   | 0.772 | 0.291         | 2.31           | 13.40          | 14.00          | 0.886         |

NOTE: Body SAR test results of WLAN 5.6G



#### SAR measurement Result of WLAN 5.8G 10.1.5.

| Test Position of | Test<br>channel | Test Mode |       | Value<br>⁄kg) | Power<br>Drift | Conducted      | Tune-up        | Scaled<br>SAR |
|------------------|-----------------|-----------|-------|---------------|----------------|----------------|----------------|---------------|
| Body with 0mm    | /Freq.          | rest Mode | 1g    | 10g           | (±5%)          | power<br>(dBm) | power<br>(dBm) | 1g<br>(W/Kg)  |
| Front Side       | 157/5785        | 802.11a   | 0.311 | 0.120         | 1.20           | 13.50          | 14.00          | 0.349         |
| Back Side        | 157/5785        | 802.11a   | 0.345 | 0.142         | 0.25           | 13.50          | 14.00          | 0.387         |
| Left Side        | 157/5785        | 802.11a   | 0.287 | 0.105         | 3.21           | 13.50          | 14.00          | 0.322         |
| Right Side       | 157/5785        | 802.11a   | 0.263 | 0.092         | 1.04           | 13.50          | 14.00          | 0.295         |
| Top Side         | 157/5785        | 802.11a   | 0.837 | 0.315         | 0.80           | 13.50          | 14.00          | 0.939         |
| Top Side -       | 157/5785        | 802.11a   | 0.832 | 0.312         | 2.50           | 13.50          | 14.00          | 0.934         |
| Repeated         | 10170100        | 002.114   | 0.002 | 0.012         | 2.00           | 10.00          | 1 1.00         | 0.001         |
| Top Side         | 149/5745        | 802.11a   | 0.809 | 0.303         | 1.07           | 13.70          | 14.00          | 0.867         |
| Top Side         | 165/5825        | 802.11a   | 0.793 | 0.300         | 2.06           | 13.20          | 14.00          | 0.953         |

NOTE: Body SAR test results of WLAN 5.8G

## 10.2. Simultaneous Transmission Analysis

Simultaneous transmission of Wi-Fi 2.4G, Wi-Fi 5G and Bluetooth is not supported.

# 11. Appendix A. Photo documentation

Refer to appendix Test Setup photo---SAR



# 12. Appendix B. System Check Plots

| Table of contents                                |  |  |  |  |
|--------------------------------------------------|--|--|--|--|
| MEASUREMENT 1 System Performance Check - SID2450 |  |  |  |  |
| MEASUREMENT 2 System Performance Check - SID5200 |  |  |  |  |
| MEASUREMENT 3 System Performance Check - SID5300 |  |  |  |  |
| MEASUREMENT 4 System Performance Check - SID5400 |  |  |  |  |
| MEASUREMENT 5 System Performance Check - SID5800 |  |  |  |  |



# **MEASUREMENT 1**

A. Experimental conditions.

| 71: Experimental conditions | <u>/                                    </u> |
|-----------------------------|----------------------------------------------|
| <u>Area Scan</u>            | dx=12mm dy=12mm, h= 5.00 mm                  |
| ZoomScan                    | 7x7x7,dx=5mm dy=5mm dz=5mm                   |
| <u>Phantom</u>              | <u>Validation plane</u>                      |
| Device Position             | <u>Dipole</u>                                |
| Band                        | <u>CW2450</u>                                |
| Channels                    | <u>Middle</u>                                |
| Signal                      | CW (Crest factor: 1.0)                       |

# **B. SAR Measurement Results**

| Frequency (MHz)                        | 2450.000000 |
|----------------------------------------|-------------|
| Relative permittivity (real part)      | 52.462143   |
| Relative permittivity (imaginary part) | 14.721244   |
| Conductivity (S/m)                     | 2.001387    |
| Variation (%)                          | 2.250000    |





**VOLUME SAR** 

Maximum location: X=0.00, Y=1.00 SAR Peak: 8.46 W/kg

| SAR 10g (W/Kg) | 2.334206 |
|----------------|----------|
| SAR 1g (W/Kg)  | 5.242705 |







A. Experimental conditions.

| 7 ti Experimental contactions | <u>/                                    </u> |
|-------------------------------|----------------------------------------------|
| <u>Area Scan</u>              | dx=10mm dy=10mm, h= 2.00 mm                  |
| ZoomScan                      | 7x7x12,dx=4mm dy=4mm dz=2mm                  |
| <u>Phantom</u>                | Validation plane                             |
| Device Position               | <u>Dipole</u>                                |
| <b>Band</b>                   | CW5200                                       |
| Channels                      | <u>Middle</u>                                |
| Signal                        | CW (Crest factor: 1.0)                       |

**B. SAR Measurement Results** 

| TIT MOGOGIOMOM TROCGICO                |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5200.000000 |
| Relative permittivity (real part)      | 49.720117   |
| Relative permittivity (imaginary part) | 18.352718   |
| Conductivity (S/m)                     | 5.304265    |
| Variation (%)                          | -0.870000   |



Maximum location: X=0.00, Y=6.00 SAR Peak: 40.06 W/kg

| SAR 10g (W/Kg) | 4.913721  |
|----------------|-----------|
| SAR 1g (W/Kg)  | 14.886020 |

| Z<br>(m<br>m)         | 0.00        | 2.00        | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00       | 8.00       | 10.0       | 12.0<br>0     | 14.0       | 16.0<br>0  | 18.0<br>0  | 20.0       | 22.0       |
|-----------------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|---------------|------------|------------|------------|------------|------------|
| SA<br>R<br>(W/<br>Kg) | 37.8<br>360 | 22.3<br>233 | 11.3<br>794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.66<br>82 | 2.82<br>30 | 1.40<br>94 | 0.71<br>31    | 0.36<br>49 | 0.18<br>58 | 0.10<br>10 | 0.05<br>40 | 0.03<br>19 |
|                       |             |             | 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 | 2 4        | 6 8        | 10 12<br>Z | 14 16<br>(nm) | 18 20      | 0 22 2     | 24 26      |            |            |





A. Experimental conditions.

| A: Experimental conditions | <u> </u>                    |
|----------------------------|-----------------------------|
| Area Scan                  | dx=10mm dy=10mm, h= 2.00 mm |
| ZoomScan                   | 7x7x12,dx=4mm dy=4mm dz=2mm |
| <u>Phantom</u>             | Validation plane            |
| Device Position            | <u>Dipole</u>               |
| Band                       | <u>CW5400</u>               |
| <u>Channels</u>            | <u>Middle</u>               |
| Signal                     | CW (Crest factor: 1.0)      |

### **B. SAR Measurement Results**

| Frequency (MHz)                        | 5400.000000 |  |  |  |  |  |  |  |
|----------------------------------------|-------------|--|--|--|--|--|--|--|
| Relative permittivity (real part)      | 49.034200   |  |  |  |  |  |  |  |
| Relative permittivity (imaginary part) | 18.614024   |  |  |  |  |  |  |  |
| Conductivity (S/m)                     | 5.581084    |  |  |  |  |  |  |  |
| Variation (%)                          | -0.550000   |  |  |  |  |  |  |  |





**VOLUME SAR** 

Maximum location: X=0.00, Y=6.00 SAR Peak: 49.61 W/kg

|                | <u> </u>  |
|----------------|-----------|
| SAR 10g (W/Kg) | 5.523324  |
| SAR 1g (W/Kg)  | 15.502202 |

| Z<br>(m<br>m) | 0.00        | 2.00                                   | 4.00        | 6.00          | 8.00       | 10.0       | 12.0<br>0  | 14.0<br>0  | 16.0<br>0  | 18.0<br>0  | 20.0       | 22.0       |
|---------------|-------------|----------------------------------------|-------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| SA<br>R       | 46.6<br>123 | 27.5<br>690                            | 14.0<br>601 | 7.05<br>80    | 3.59<br>42 | 1.78<br>62 | 0.89<br>83 | 0.46<br>05 | 0.24<br>35 | 0.13<br>82 | 0.06<br>20 | 0.04<br>71 |
| (W/<br>Kg)    |             |                                        |             |               |            |            |            |            |            |            |            |            |
|               |             | 46.<br>40.                             | <b>\</b>    |               |            |            |            |            |            |            |            |            |
|               |             |                                        | -1          |               |            |            |            |            |            |            |            |            |
|               |             | (3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3) |             | $\overline{}$ |            |            |            |            |            |            |            |            |
|               |             | 20.                                    |             | $\setminus$   |            |            |            |            |            |            |            |            |
|               |             | 10.                                    |             |               |            |            |            |            |            |            |            |            |
|               |             | 0.                                     | 0-          | 4 (           | 8          | 10 12      | 14 16      | 18 20      | ) 22 2     | 4 26       |            |            |
|               |             |                                        |             |               |            | Z (        | mm)        |            |            |            |            |            |





A. Experimental conditions.

| Area Scan              | dx=10mm dy=10mm, h= 2.00 mm |
|------------------------|-----------------------------|
| <u>ZoomScan</u>        | 7x7x12,dx=4mm dy=4mm dz=2mm |
| <u>Phantom</u>         | Validation plane            |
| <b>Device Position</b> | <u>Dipole</u>               |
| <u>Band</u>            | <u>CW5600</u>               |
| <u>Channels</u>        | <u>Middle</u>               |
| Signal                 | CW (Crest factor: 1.0)      |

**B. SAR Measurement Results** 

| Art Meadardment Redaite                |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5600.000000 |
| Relative permittivity (real part)      | 49.840330   |
| Relative permittivity (imaginary part) | 18.301725   |
| Conductivity (S/m)                     | 5.694255    |
| Variation (%)                          | -0.020000   |





**VOLUME SAR** 

Maximum location: X=0.00, Y=6.00 SAR Peak: 50.97 W/kg

| SAR 10g (W/Kg) | 5.882019  |  |  |  |  |
|----------------|-----------|--|--|--|--|
| SAR 1g (W/Kg)  | 16.152075 |  |  |  |  |

| Z<br>(m<br>m) | 0.00        | 2.00           | 4.00        | 6.00         | 8.00       | 10.0<br>0  | 12.0<br>0  | 14.0<br>0  | 16.0<br>0  | 18.0<br>0  | 20.0       | 22.0       |
|---------------|-------------|----------------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| SA<br>R       | 48.0<br>319 | 28.3<br>990    | 14.4<br>532 | 7.29<br>35   | 3.64<br>97 | 1.82<br>04 | 0.92<br>45 | 0.46<br>66 | 0.24<br>96 | 0.13<br>43 | 0.07<br>29 | 0.04<br>94 |
| (W/<br>Kg)    |             |                |             |              |            |            |            |            |            |            |            |            |
|               |             | 48.            | $\Lambda$   |              |            |            |            |            |            |            |            |            |
|               |             | 40.            |             |              |            | $\Box$     |            |            |            |            |            |            |
|               |             | (≱) 30.<br>(∰) | 0-          |              |            |            |            |            |            |            |            |            |
|               |             | 848<br>20.     | 0-          | $\downarrow$ |            |            |            |            |            |            |            |            |
|               |             | 10.            |             |              |            |            |            |            |            |            |            |            |
|               |             | 0.             | 0-          | 4 6          | 8          | 10 12      | 14 16      | 18 20      | ) 22 2     | 4 26       |            |            |
|               |             |                |             |              |            | Z (        | mm)        |            |            |            |            |            |





A. Experimental conditions.

| <u> </u>         | <u> </u>                    |
|------------------|-----------------------------|
| <u>Area Scan</u> | dx=10mm dy=10mm, h= 2.00 mm |
| ZoomScan         | 7x7x12,dx=4mm dy=4mm dz=2mm |
| <u>Phantom</u>   | Validation plane            |
| Device Position  | <u>Dipole</u>               |
| Band             | CW5800                      |
| Channels         | Middle                      |
| Signal           | CW (Crest factor: 1.0)      |

**B. SAR Measurement Results** 

| Alt Measurement Results                |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5800.000000 |
| Relative permittivity (real part)      | 48.442052   |
| Relative permittivity (imaginary part) | 18.851520   |
| Conductivity (S/m)                     | 6.070241    |
| Variation (%)                          | -0.580000   |



Maximum location: X=0.00, Y=6.00 SAR Peak: 48.83 W/kg

| SAR 10g (W/Kg) | 5.813460  |
|----------------|-----------|
| SAR 1g (W/Kg)  | 16.933611 |

| Z<br>(m<br>m) | 0.00        | 2.00                                   | 4.00        | 6.00       | 8.00       | 10.0<br>0    | 12.0<br>0  | 14.0<br>0  | 16.0<br>0  | 18.0<br>0  | 20.0       | 22.0<br>0  |
|---------------|-------------|----------------------------------------|-------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|
| SA<br>R       | 45.9<br>895 | 27.2<br>299                            | 13.8<br>532 | 7.02<br>92 | 3.56<br>32 | 1.78<br>60   | 0.90<br>62 | 0.45<br>69 | 0.24<br>64 | 0.13<br>26 | 0.06<br>92 | 0.05<br>02 |
| (W/           | 033         | 233                                    | 332         | 32         | 32         | 00           | 02         | 03         | 04         | 20         | 32         | 02         |
| Kg)           |             |                                        |             |            |            |              |            |            |            |            |            |            |
|               |             | 46.<br>40.<br>30.<br>20.<br>20.<br>10. | 0-          | 4          | -80        | 10 12<br>Z 0 | 14 16      | 18 20      | 0 22 2     | 4 26       |            |            |





## 13. Appendix C. Plots of High SAR Measurement

| Table of contents       |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| MEASUREMENT 1 WLAN 5.2G |  |  |  |  |  |
| MEASUREMENT 2 WLAN 5.3G |  |  |  |  |  |
| MEASUREMENT 3 WLAN 5.6G |  |  |  |  |  |
| MEASUREMENT 4 WLAN 5.8G |  |  |  |  |  |
| MEASUREMENT 5 WLAN 2.4G |  |  |  |  |  |



A. Experimental conditions.

|                        | <u></u>                         |
|------------------------|---------------------------------|
| <u>Area Scan</u>       | dx=10mm dy=10mm, h= 2.00 mm     |
| <u>ZoomScan</u>        | 7x7x12,dx=4mm dy=4mm dz=2mm     |
| Phantom                | Validation plane                |
| <b>Device Position</b> | <u>Body</u>                     |
| Band                   | <u>IEEE 802.11a U-NII</u>       |
| <u>Channels</u>        | <u>Middle</u>                   |
| Signal                 | IEEE802.11a (Crest factor: 1.0) |

**B. SAR Measurement Results** 

| AIN MEdaulement Neadita                |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5200.000000 |
| Relative permittivity (real part)      | 49.719540   |
| Relative permittivity (imaginary part) | 18.345509   |
| Conductivity (S/m)                     | 5.299814    |
| Variation (%)                          | -1.700000   |



Maximum location: X=10.00, Y=18.00 SAR Peak: 2.86 W/kg

| SAR 10g (W/Kg) | 0.379525 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.939468 |

| Z<br>(m<br>m)<br>SA<br>R<br>(W/<br>Kg) | 0.00<br>2.71<br>26 | 2.00<br>1.61<br>56              | 4.00<br>0.81<br>59 | 6.00<br>0.45<br>24 | 8.00<br>0.24<br>56 | 10.0<br>0<br>0.15<br>62 | 12.0<br>0<br>0.10<br>94 | 14.0<br>0<br>0.08<br>44 | 16.0<br>0<br>0.07<br>54 | 18.0<br>0<br>0.07<br>26 | 20.0<br>0<br>0.06<br>53 | 22.0<br>0<br>0.06<br>45 |
|----------------------------------------|--------------------|---------------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                        |                    | 2.7<br>2.0<br>1.5<br>1.0<br>0.5 |                    | 4 6                | 8 1                | 0 12<br>Z (n            | 14 16 mm)               | 18 20                   | 1 22 2                  | 4 26                    |                         |                         |





A. Experimental conditions.

| <u>Area Scan</u>       | dx=10mm dy=10mm, h= 2.00 mm     |
|------------------------|---------------------------------|
| <u>ZoomScan</u>        | 7x7x12,dx=4mm dy=4mm dz=2mm     |
| <u>Phantom</u>         | Validation plane                |
| <b>Device Position</b> | <u>Body</u>                     |
| <u>Band</u>            | <u>IEEE 802.11a U-NII</u>       |
| <u>Channels</u>        | <u>Middle</u>                   |
| Signal                 | IEEE802.11a (Crest factor: 1.0) |

**B. SAR Measurement Results** 

| AIX Mododiomont ixcodito               |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5280.000000 |
| Relative permittivity (real part)      | 49.610344   |
| Relative permittivity (imaginary part) | 18.430668   |
| Conductivity (S/m)                     | 5.406329    |
| Variation (%)                          | 0.380000    |



Maximum location: X=8.00, Y=17.00 SAR Peak: 3.44 W/kg

| SAR 10g (W/Kg) | 0.422602 |
|----------------|----------|
| SAR 1g (W/Kg)  | 1.093503 |

| Z<br>(m<br>m)<br>SA<br>R<br>(W/<br>Kg) | 3.24<br>40 | 2.00<br>1.92<br>24                     | 4.00<br>0.95<br>79 | 6.00<br>0.51<br>81 | 8.00<br>0.28<br>40 | 10.0<br>0<br>0.17<br>17 | 12.0<br>0<br>0.11<br>38 | 14.0<br>0<br>0.08<br>82 | 16.0<br>0<br>0.07<br>77 | 18.0<br>0<br>0.05<br>55 | 20.0<br>0<br>0.06<br>71 | 22.0<br>0<br>0.06<br>53 |
|----------------------------------------|------------|----------------------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                        |            | 3.2<br>2.5<br>2.0<br>1.5<br>1.0<br>0.5 |                    | 4 6                | 8 1                | 0 12<br>Z (m            | 14 16 mm)               | 18 20                   | 1 22 2                  | 4 26                    |                         |                         |





A. Experimental conditions.

| 2 to =21 0 0 1 1 1 1 0 1 1 to 1 1 0 1 1 to 1 |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <u>Area Scan</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dx=10mm dy=10mm, h= 2.00 mm     |
| <u>ZoomScan</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7x7x12,dx=4mm dy=4mm dz=2mm     |
| Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Validation plane                |
| <b>Device Position</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>Body</u>                     |
| Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>IEEE 802.11a U-NII</u>       |
| Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Middle</u>                   |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IEEE802.11a (Crest factor: 1.0) |

**B. SAR Measurement Results** 

| AIX MICAGAI CHICHE IXCOULG             |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5600.000000 |
| Relative permittivity (real part)      | 49.839539   |
| Relative permittivity (imaginary part) | 18.295509   |
| Conductivity (S/m)                     | 5.691936    |
| Variation (%)                          | -0.220000   |



Maximum location: X=0.00, Y=18.00 SAR Peak: 2.56 W/kg

| SAR 10g (W/Kg) | 0.312357 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.790561 |

| Z<br>(m<br>m)<br>SA<br>R<br>(W/<br>Kg) | 0.00<br>2.41<br>84 | 2.00<br>1.40<br>41                             | 4.00<br>0.66<br>51 | 6.00<br>0.34<br>72 | 8.00<br>0.19<br>66 | 10.0<br>0<br>0.12<br>02 | 12.0<br>0<br>0.08<br>97 | 14.0<br>0<br>0.08<br>14 | 16.0<br>0<br>0.07<br>70 | 18.0<br>0<br>0.07<br>49 | 20.0<br>0<br>0.07<br>11 | 22.0<br>0<br>0.06<br>49 |
|----------------------------------------|--------------------|------------------------------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| <b>J</b>                               |                    | 2.4g (M/kg)<br>1.5<br>1.0<br>2.0<br>2.0<br>2.0 |                    | 4 6                | 8 1                | 0 12<br>Z (n            | 14 16                   | 18 20                   | 1 22 2                  | 4 26                    |                         |                         |





A. Experimental conditions.

| 2 to =21 0 0 1 1 1 1 0 1 1 to 1 1 0 1 1 to 1 |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <u>Area Scan</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dx=10mm dy=10mm, h= 2.00 mm     |
| <u>ZoomScan</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7x7x12,dx=4mm dy=4mm dz=2mm     |
| Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Validation plane                |
| <b>Device Position</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>Body</u>                     |
| Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>IEEE 802.11a U-NII</u>       |
| Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Middle</u>                   |
| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IEEE802.11a (Crest factor: 1.0) |

**B. SAR Measurement Results** 

| AIX Micabaroment Reduite               |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 5785.000000 |
| Relative permittivity (real part)      | 48.518703   |
| Relative permittivity (imaginary part) | 18.726767   |
| Conductivity (S/m)                     | 6.018574    |
| Variation (%)                          | 0.800000    |



Maximum location: X=6.00, Y=20.00 SAR Peak: 2.79 W/kg

| SAR 10g (W/Kg) | 0.315395 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.837333 |

| Z<br>(m<br>m)<br>SA<br>R<br>(W/<br>Kg) | 0.00<br>2.62<br>01 | 2.00<br>1.51<br>30                     | 4.00<br>0.70<br>23 | 6.00<br>0.35<br>70 | 8.00<br>0.19<br>96 | 10.0<br>0<br>0.12<br>45 | 12.0<br>0<br>0.08<br>82 | 14.0<br>0<br>0.07<br>75 | 16.0<br>0<br>0.06<br>58 | 18.0<br>0<br>0.06<br>64 | 20.0<br>0<br>0.07<br>02 | 22.0<br>0<br>0.06<br>99 |
|----------------------------------------|--------------------|----------------------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                        |                    | 2.6<br>2.0<br>1.5<br>1.0<br>0.5<br>0.1 |                    | 4 6                | 8 1                | 0 12<br>Z (m            | 14 16                   | 18 20                   | 22 2                    | 4 26                    |                         |                         |





A. Experimental conditions.

|                  | <del>-</del>                    |
|------------------|---------------------------------|
| <u>Area Scan</u> | dx=12mm dy=12mm, h= 5.00 mm     |
| <u>ZoomScan</u>  | 7x7x7,dx=5mm dy=5mm dz=5mm      |
| Phantom          | Validation plane                |
| Device Position  | Body                            |
| Band             | IEEE 802.11b ISM                |
| <u>Channels</u>  | Middle                          |
| Signal           | IEEE802.11b (Crest factor: 1.0) |

**B. SAR Measurement Results** 

| AIX Micabaroment Reduite               |             |
|----------------------------------------|-------------|
| Frequency (MHz)                        | 2437.000000 |
| Relative permittivity (real part)      | 52.521599   |
| Relative permittivity (imaginary part) | 14.675620   |
| Conductivity (S/m)                     | 1.986916    |
| Variation (%)                          | -1.530000   |



Maximum location: X=8.00, Y=-1.00 SAR Peak: 1.06 W/kg

| SAR 10g (W/Kg) | 0.277124 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.593844 |





14. Appendix D. Calibration Certificate

| Table of contents                        |
|------------------------------------------|
| E Field Probe - SN 08/16 EPGO287         |
| 2450 MHz Dipole - SN 03/15 DIP 2G450-352 |
| 5000-6000 MHz Dipole - SN 13/14 WGA 33   |

Report No.: S19051700403001



### **COMOSAR E-Field Probe Calibration Report**

Ref: ACR.260.1.18.SATU.A

# SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 08/16 EPGO287

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144



Calibration Date: 09/17/2018

### Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.



Report No.: S19051700403001



### COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

|               | Name          | Function        | Date      | Signature     |
|---------------|---------------|-----------------|-----------|---------------|
| Prepared by : | Jérôme LUC    | Product Manager | 9/17/2018 | Jes           |
| Checked by:   | Jérôme LUC    | Product Manager | 9/17/2018 | Jes           |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 9/17/2018 | him Puthowshi |

|                | Customer Name                                       |
|----------------|-----------------------------------------------------|
| Distribution : | SHENZHEN NTEK<br>TESTING<br>TECHNOLOGY<br>CO., LTD. |

| Issue | Date      | Modifications   |  |
|-------|-----------|-----------------|--|
| A     | 9/17/2018 | Initial release |  |
|       |           |                 |  |
|       |           |                 |  |
|       |           |                 |  |





### COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

### TABLE OF CONTENTS

| I | Dev  | ice Under Test              |   |
|---|------|-----------------------------|---|
| 2 | Proc | luct Description            |   |
|   | 2.1  | General Information         | 4 |
| 3 |      | surement Method             |   |
|   | 3.1  | Linearity                   | 4 |
|   | 3.2  | Sensitivity                 |   |
|   | 3.3  | Lower Detection Limit       |   |
|   | 3.4  | Isotropy                    |   |
|   | 3.5  | Boundary Effect             | 5 |
| 4 | Mea  | surement Uncertainty5       |   |
| 5 | Cali | bration Measurement Results |   |
|   | 5.1  | Sensitivity in air          | 6 |
|   | 5.2  | Linearity                   |   |
|   | 5.3  | Sensitivity in liquid       |   |
|   | 5.4  | Isotropy                    | 8 |
| 6 | List | of Fauinment 10             |   |

Report No.: S19051700403001



### COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

### 1 DEVICE UNDER TEST

| Device Under Test                        |                                  |  |
|------------------------------------------|----------------------------------|--|
| Device Type                              | COMOSAR DOSIMETRIC E FIELD PROBE |  |
| Manufacturer                             | MVG                              |  |
| Model                                    | SSE2                             |  |
| Serial Number                            | SN 08/16 EPGO287                 |  |
| Product Condition (new / used)           | Used                             |  |
| Frequency Range of Probe                 | 0.15 GHz-6GHz                    |  |
| Resistance of Three Dipoles at Connector | Dipole 1: R1=0.209 MΩ            |  |
|                                          | Dipole 2: R2=0.196 MΩ            |  |
|                                          | Dipole 3: R3=0.197 MΩ            |  |

A yearly calibration interval is recommended.

### 2 PRODUCT DESCRIPTION

### 2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.



**Figure 1** – MVG COMOSAR Dosimetric E field Dipole

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 2 mm   |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 2.5 mm |
| Distance between dipoles / probe extremity | 1 mm   |

### 3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

### 3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.