Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{\sqrt{2} k (2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	$\sigma_{0}^{\sharp 1}$		$\sigma_{0}^{#1}$ 1 +2 k^2) ²	$\overline{t_1}$ $\overline{t_1}$	$\tau_{0+}^{\#1}$ $i\sqrt{2} k$ $+2k^2)^2$	$\begin{bmatrix} \tau_0^{\#} \\ \hline t_1 \end{bmatrix} 0$					$\sigma_{2+\alpha\beta}^{\#1}$			$\sigma_{2}^{\#1}_{-\alpha\beta\chi}$
$ au_{1}^{\#1}$	0	0	0	0	0	0	0	$ au_{0}^{\#1}$	† - 	i √2 k +2 k ²) ²	$\frac{1}{t_1} - \frac{1}{t_1}$	$2k^2 + 2k^2)^2$	${t_1}$ 0	0)	$\sigma_{2}^{#1}$ †		$(1+2k^2)^2$	t_1 $(1+2)$	$\frac{\sqrt{2} k}{2 k^2)^2 t_1}$	0
					1/2′		$\frac{1+t_1)}{t_1^2}$	$ au_{0}^{\#2}$	†	0		0	0			$\tau_{2}^{\#1}$ †		$2i\sqrt{2}k$ $(1+2k^2)^2i$	$\frac{-}{t_1} \left \frac{2}{(1+2)} \right $	$\frac{k^2}{k^2)^2 t_1}$	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	$\sigma_0^{\#1}$	† <u> </u>	0		0	0	$\frac{1}{k^2}$	r ₂	$\sigma_2^{\#1} \dagger^c$	ιβχ	0		0	$\frac{2}{2k^2r_1+t_1}$
				- 7	(t ₁)		$-\frac{i\sqrt{2}}{(t_1)}$	$f_{1^-}^{\#2}$	0	0	0	ūkt ₁	0	0	0	1					
$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$f_{1}^{\#1} \alpha f$	0	0	0	0	0	0	0	$\omega_{2}^{\#1}$ $_{\alpha eta \chi}$	0	0	$r_1 + \frac{t_1}{2}$		
ρ					t ₁ +			$\omega_{1}^{\#2}{}_{lpha}\ f$	0	0	0	t1 √2	0	0	0				K ²)		
$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0					2 2				$f_{2}^{\#1}$	- ikt1	$k^2 t_1$	0		
$\tau_1^{\#}$	•	(3+2)						$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	-k ² r ₁ -	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{l} k t_1$	$\omega_{2}^{\#1}_{\alpha\beta} f_{2}^{\#1}_{\alpha\beta}$	t1	$\frac{2}{\sqrt{2}}$	0		
$\sigma_{1}^{\#2}{}_{+}$ $_{lphaeta}$	$\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0	$f_{1}^{\#1}$	$\frac{i k t_1}{3 \sqrt{2}}$	<i>ikt</i> 1 3	^{k² t₁}		0	0	0		$\omega_{2}^{\#1} + \alpha \beta$	$f_2^{*1} + \alpha \beta$	$\alpha \beta \chi$		
$\sigma_1^{\#}$	- 6	(3+2 k	- 13 (3+2)						1	Į,	$\vec{l} k t_1 \frac{\vec{k}}{2}$						$\omega_{2}^{\#1}$	$f_2^{\#1}$	$\omega_{2}^{*1} + ^{lphaeta\chi}$		
$\alpha\beta$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2^{2}t_{1}}$	$\frac{2}{2}k$					$\omega_1^{\#2}{}_+\alpha\beta$	$-\frac{t_1}{3\sqrt{2}}$	17 3	- 1 i k	0	0	0	0		_	$\omega_{0}^{\#1}$	$f_0^{\#}$		$^{2}_{+} \omega_{0}^{#1}$
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0	$\omega_1^{\#1}{}_+^{lpha}$	9 [1]	$\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	0	0	0	$\omega_{0}^{#1}$ $f_{0}^{#1}$		$\frac{-t_1}{i\sqrt{2}kt}$	$i \sqrt{2}$ $-2k^2$		
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_{1}^{\#2} + \alpha$	$\tau_{1}^{\#1} + \alpha$	$\tau_{1}^{\#2} + \alpha$	3	$+\alpha\beta$	$+^{\alpha\beta}$		+α+	μ+α	$f_{1}^{#1} + \alpha$	$f_1^{\#2} + \alpha$	$\int_{0}^{1} f_{0}^{+2}$		0	$\begin{vmatrix} -2k \\ 0 \end{vmatrix}$		
	$\sigma_{1}^{\#1}$	$\sigma_{1}^{\#2}$	$ au_1^{\#1}$	$\sigma_{1.}^{\#}$	$\sigma_{1^-}^{\#}$	$ au_1^{\#}$	$ au_1^{\#}$		$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#^2} +^{lpha}$	$f_{1}^{\#1}$	$f_{1}^{#2}$	$\omega_0^{#1}$		0	0	0	$k^2 r_2$

- C /	
50(3) irreps	Multiplicities
r ₀ ^{#2} == 0	1
$r_{0+}^{\#1} - 2 ik \sigma_{0+}^{\#1} = 0$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	3
$t_1^{\#1}\alpha == 0$	3
$\tau_{1}^{\#1}\alpha\beta - 2ik \sigma_{1}^{\#1}\alpha\beta = 0$	3
$2 \ \sigma_{1+}^{\#1} \alpha \beta + \ \sigma_{1+}^{\#2} \alpha \beta == 0$	3
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	5
Fotal constraints:	19

Massive and massless spectra

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$