Computer Science & Engineering Department I. I. T. Kharagpur

Principles of Programming Languages: CS40032 Elective

Assignment – 2: λ -Calculus January 30, 2020

Marks: 20

- 1. Reduce the following λ -expressions. Show every step of α -, β -, η and δ -reductions. [2 * 6 = 12]
 - (a) $(\lambda z. z) (\lambda z. z z) (\lambda z. z y)$
 - (b) $(\lambda x. \lambda y. x y y) (\lambda a. a) b$
 - (c) $(\lambda x. \lambda y. x y y) (\lambda y. y) y$
 - (d) $(\lambda x. x x) (\lambda y. y x) z$
 - (e) $(\lambda x. (\lambda y. (x y)) y) z$
 - (f) $((\lambda x. (\lambda y. (x y)) (\lambda y. y)) w)$
- 2. Consider the recursive definition of $add(x,y), \forall x \geq 0, y \geq 0$: [2 + 6 = 8]

$$add(x,y) = y$$
, if $x = 0$
= $add(x-1,y+1)$, if $x > 0$

- (a) Using Y combinator, encode the above recursive definition of add as a $\lambda\text{-expression}.$
- (b) Reduce $add\ 2\ 5$. Show every step of β and δ reductions. You may skip the α -reductions with a mention of the step.