University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

A Power-of-Two Checker

#### Powers of Two are Easy to Spot in Binary

Let's do another bit-sliced design.

Can we check whether an unsigned number represents a power of two?

What does a power of two look like in bits?

For **5-bit unsigned**, the powers of 2 are...

00001, 00010, 00100, 01000, 10000

A power of two has exactly one 1 bit (with place value 2<sup>N</sup> for some N, of course!).

#### The Answers are Not Always Enough

So our design will answer the following:

Is  $A = a_{N-1}a_{N-2}...a_1a_0$  a power of two?

How many answers are possible?

Two: Yes, and No.

A trick question:

How many bits do we need to pass between slices?

That's right: TWO bits.

#### What Extra Information Do We Need?

Why not just one? An answer only needs 1 bit!

Say that we pass bits from right to left.

If the bits  $a_{N-2}...a_1a_0$  represent a power of two, is  $a_{N-1}a_{N-2}...a_1a_0$  be a power of two?

What if  $\mathbf{a}_{N-2}...a_1\mathbf{a}_0$  does **not** Iff  $\mathbf{a}_{N-1} = \mathbf{0}$ . represent a power of two?

In that case, we can't tell whether  $a_{N-1}a_{N-2}...a_1a_0$  is a power of two or not!

What else do we need to know?

#### For Inductive Step, We Must Know Whether all Bits are 0

Imagine that we have completed N-1 bits.

Under what conditions can number **A** be a power of two?

- 1.  $a_{N-1} = 1$  and the rest is all 0s, or
- 2.  $a_{N-1} = 0$  and the rest is a power of two.

For #2, we need to know whether the rest of the bits form a power of two.

But for #1, we also need to know whether the rest of the bits are all 0.

#### There are Three Possible Messages between Bit Slices

The "yes" cases for #1 and #2 do not overlap: all 0 bits is not a power of two.

The "no" cases need not be further separated:

- all 0s means no 1 bits
- a power of two means one 1 bit
- more than one 1 bit means
  "no" to both questions

That's all we need to know. Three possible messages between slices, so two bits.

#### We Need a Representation for Answers

I'll use the following representation.

Others may be better.

| $\mathbf{C_1}$ | $\mathbf{C_0}$ | meaning   |  |  |  |  |  |  |
|----------------|----------------|-----------|--|--|--|--|--|--|
| 0              | 0              | no 1 bits |  |  |  |  |  |  |
| 0              | 1              | one 1 bit |  |  |  |  |  |  |
| 1              | 0              | not used  |  |  |  |  |  |  |
| 1              | 1              | more than |  |  |  |  |  |  |
|                |                | one 1 bit |  |  |  |  |  |  |

#### We Need a Representation for Answers

Let's build a slice that operates on two bits of **A**.

In the bit slice, we call them **A** and **B**.

Inputs from the previous bit slice are  $C_1$  and  $C_0$ .

Outputs to the next bit slice are  $\mathbb{Z}_1$  and  $\mathbb{Z}_0$ .

Direction of our operation doesn't matter. Either will do.

#### Two Zeroes Do Not Change the Result

Let's fill in a truth table.

We'll start with the case of A = 0 and B = 0.

| A | В | $\mathbf{C_1}$ | $\mathbf{C_0}$ | meaning | $\mathbf{Z}_1$ | $\mathbf{Z}_0$ | meaning    |
|---|---|----------------|----------------|---------|----------------|----------------|------------|
| 0 | 0 | 0              | 0              | no 1s   | 0              | 0              | no 1s      |
| 0 | 0 | 0              | 1              | one 1   | 0              | 1              | one 1      |
| 0 | 0 | 1              | 0              | ???     | x              | x              | don't care |
| 0 | 0 | 1              | 1              | >one 1  | 1              | 1              | >one 1     |

#### One 1 Input Increments the Count of 1 Bits

Now consider A = 0 and B = 1.

| A B | $\mathbf{C}_1$ | $\mathbf{C_0}$ | meaning | $\mathbf{Z}_1$ | $\mathbf{Z}_0$ | meaning    |
|-----|----------------|----------------|---------|----------------|----------------|------------|
| 0 1 | 0              | 0              | no 1s   | 0              | 1              | one 1      |
|     |                |                | one 1   |                |                |            |
| 0 1 | 1              | 0              | ???     | x              | x              | don't care |
| 0 1 | 1              | 1              | >one 1  | 1              | 1              | >one 1     |

#### One 1 Input Increments the Count of 1 Bits

The case for A = 1 and B = 0 is the same.

|   |   |   |   | meaning |   |   |            |
|---|---|---|---|---------|---|---|------------|
| 1 | 0 | 0 | 0 | no 1s   | 0 | 1 | one 1      |
|   |   |   |   | one 1   |   |   |            |
| 1 | 0 | 1 | 0 | ???     | x | x | don't care |
| 1 | 0 | 1 | 1 | >one 1  | 1 | 1 | >one 1     |

#### Two 1s in the Number Rules Out Powers of Two

Finally, consider A = 1 and B = 1.

| A B | $\mathbf{C}_1$ | $\mathbf{C_0}$ | meaning | $\mathbf{Z}_1$ | $\mathbf{Z}_0$ | meaning    |
|-----|----------------|----------------|---------|----------------|----------------|------------|
| 1 1 | 0              | 0              | no 1s   | 1              | 1              | >one 1     |
| 1 1 | 0              | 1              | one 1   | 1              | 1              | >one 1     |
| 1 1 | 1              | 0              | ???     | x              | x              | don't care |
| 1 1 | 1              | 1              | >one 1  | 1              | 1              | >one 1     |

# We Solve $Z_1$ as a POS Expression

Let's use a K-map to solve  $\mathbb{Z}_1$ . POS looks good.

What are the loops?

$$(\mathbf{C}_1 + \mathbf{A} + \mathbf{B})$$

$$(C_0 + A)$$

$$(C_0 + B)$$

So 
$$Z_1 = (C_1 + A + B)$$
  
 $(C_0 + A)(C_0 + B)$ 



# We Solve $Z_0$ as an SOP Expression

Now let's solve  $\mathbb{Z}_0$ . SOP and POS are the same.

What are the loops for SOP?

 $\mathbf{C_0}$ 

A

B

So  $Z_0 = (C_0 + A + B)$ 



#### We Can Reuse Some Factors with Algebra

Notice that we can reuse factors from  $\mathbb{Z}_1$  to calculate  $\mathbb{Z}_0$ :

$$Z_1 = (C_1 + A + B)(C_0 + A)(C_0 + B)$$
  
 $Z_0 = (C_0 + A + B) = (C_0 + A) + (C_0 + B)$ 

Let's draw the bit slice, then analyze its area and delay.

### Area is 6N, and Delay is N Gate Delays for N Bits

Here is an implementation of the bit slice using NAND and NOR. Let's find area.

How many literals? 7

How many operations?

5 (4 NOR, 1 NAND)

And delay?

2 on all paths.

So N gate delays for N bits.



#### Need One More Gate Delay to Get the Answer

But we don't get an answer!

Our N-bit checker,

- composed of N/2 bit slices,
- produces only a "count" of 1 bits (0, 1, or "many").

We want yes (P = 1) or no (P = 0)!

Looking at the representation, the fastest solution is to add an XOR gate at the end.

 $P = Z_1 \oplus Z_0$  from the last bit slice.

So delay is actually N + 1 gate delays.

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

# Building with Abstraction and a First Example

#### Optimization at the Level of Gates is Always Possible

One can always solve a problem by

- developing complete Boolean expressions,
- solving for "good" forms with K-maps (or algebra, with more variables),
- implementing the resulting equations,
- tuning logic to reduce gate sizes (number of inputs) and fanout (the number of gates using a single gate's output).

You can now perform such a process.

### But Optimization at Gate Level is Rarely Needed

Such detail is rarely needed for a satisfactory solution.

#### Instead, humans can

- use abstraction and build with components such as adders and comparators, or
- use extra levels of logic to describe functions more intuitively.

#### Computer-aided design (CAD) tools

- can help with low-level optimizations.
- In many cases, CAD tools can do better than humans because they explore more options.

#### Tradeoffs are Always Made in Some Context

Context is important!

If a mechanical engineer produces a 0.5% boost in efficiency for internal combustion engines sized for automobiles, that engineer will probably win a major prize.

In our field, engineers spend a lot of time

- improving the designs of arithmetic units and memory, and
- improving CAD tools' ability to optimize.

### But Optimization at Gate Level is Rarely Needed

"Premature optimization is the root of all evil."
- Sir C.A.R. "Tony" Hoare

#### Don't spend time optimizing

- something that is likely to change, nor
- something that does not contribute much to the overall system goodness (any metric).

#### The flip side:

- don't ignore scaling issues when choosing algorithms, and
- don't design in a way that prohibits/inhibits optimization.

#### First Example: Subtraction

Let's start with something simple.

Let's build a subtractor.

How do we subtract as humans?

### Example: Subtraction of 5-Digit Numbers

Let's do an example with **5-digit numbers** 

12345 - 871

Negate by finding the "9's complement" and adding 1.

### Example: Subtraction of 5-Digit Numbers

Let's do an example with 5-digit numbers

```
We have no 31 1
space for 12345
that digit! + 99129
11474
```

Good, we got the right answer (12345 - 871 = 11474)!

#### Use an Adder to Implement a Subtractor

Ok, maybe your elementary school taught subtraction a different way.

But you probably did use that approach in your ECE120 homework to subtract **unsigned** and **2's complement** values.

$$A - B = A + (NOT B) + 1$$

(where "NOT" applies to all bits of B)

Instead of mimicking the human subtraction process, let's use an adder to implement a subtractor...

#### Use an Adder to Implement a Subtractor

Take a look at the design to the right.

The core is an **N-bit adder**.

We want to calculate the difference  $\mathbf{D} = \mathbf{A} - \mathbf{B}$ .

We modify the inputs slightly to perform the subtraction.



#### Convert B to its 1's Complement

The input A is unchanged.

The input **B** is transformed to its 1's complement.

How do we implement 1's complement?
N inverters!



#### With $C_{in} = 1$ , the Adder Produces A - B

Finally, the  $C_{in}$  input is set to 1.

So what does the adder calculate?

A + (NOT B) + 1

which is A - B, as desired.



# Calculate D to Understand the Carry Out Signal

What does the carry out Cout mean?

Remember that the 1's complement is  $(2^N - 1) - B$ .

So we obtain D =  $A + (2^{N} - 1) - B + 1$ =  $A - B + 2^{N}$ 



#### Carry Out Signal (Opposite Sense) Still Means Overflow

So  $\mathbf{D} = \mathbf{A} - \mathbf{B} + 2^{\mathbf{N}}$ .

But C<sub>out</sub> is the 2<sup>N</sup> term from the adder.

#### Thus

$$\circ C_{out} = 1 \text{ means } A \ge B$$

$$\circ C_{out} = 0 \text{ means } A < B$$

So for unsigned subtraction  $C_{out} = 0$  indicates overflow!



### Use a Control Signal to Select between Operations

What if we want a device that does both addition and subtraction?

We need a way to choose the operation.

Add a control signal S

- $\circ$  **S** = **0**: addition
- $\circ$  **S** = 1: subtraction

And then modify the adder inputs with S

- A ... unmodified
- B ... B XOR S (bitwise)
- $\circ C_{in} \dots S$

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Checking for Upper-Case Characters

#### Task: Checking for an Upper-Case Letter

Let's design logic to check whether an **ASCII** character is an upper-case letter.

In **ASCII**, 'A' is **1000001** (0x41), and 'Z' is **1011010** (0x5A).

Let's say that the **ASCII** character is in  $C = C_6C_5C_4C_3C_2C_1C_0$ .

How can we check whether C represents an upper-case letter?

#### We Will Need a BIG Truth Table!

| Should we                     | $\mathbf{C_6}$ | $\mathbf{C_5}$ | $\mathbf{C_4}$ | $\mathbf{C_3}$ | $\mathbf{C_2}$ | $\mathbf{C_1}$ | $\mathbf{C_0}$ | U(C) |
|-------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------|
| write a                       | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0    |
| truth table for <b>U(C)</b> ? | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0    |
| 101 0(0).                     | 0              | 0              | 0              | 0              | 0              | 1              | 0              | 0    |
|                               | 0              | 0              | 0              | 0              | 0              | 1              | 1              | 0    |
| Can we skip to the ones       | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 0    |
| that matter?                  | 0              | 0              | 0              | 0              | 1              | 0              | 1              | 0    |
|                               | 0              | 0              | 0              | 0              | 1              | 1              | 0              | 0    |
|                               | 0              | 0              | 0              | 0              | 1              | 1              | 1              | 0    |

### Let's Break the Truth Table into Eight Pieces

Can we break the truth table into pieces?

For example, let's break the truth table

- into eight truth tables
- of 16 rows each.

Each piece represents one value of  $C_6C_5C_4$ .

We can solve each piece with a K-map on  $C_3C_2C_1C_0$ .

# Some Functions are Quite Simple

Or maybe we don't need a K-map for some.

Remember that 'A' is **1000001** (0x41), and 'Z' is **1011010** (0x5A).

Think about the table for  $C_6C_5C_4 = 000$ ?\*

What is the function of  $C_3C_2C_1C_0$ ? 0

(In other words, no **ASCII** character with  $C_6C_5C_4 = 000$  is an upper-case letter.)

\* This notation means  $C_6 = 0$  AND  $C_5 = 0$  AND  $C_4 = 0$ .

#### Only Two of Our Functions are Not the 0 Function

For reference: 'A' is **1000001** (0x41), and 'Z' is **1011010** (0x5A).

Which of our eight functions are not the 0 function?

 $C_6C_5C_4 = 100$  Let's call the function  $T_4$ .

 $C_6C_5C_4 = 101$  Let's call the function  $T_5$ .

Let's solve K-maps for these two.

# Solve T<sub>4</sub> Using a Single Loop

Let's solve T<sub>4</sub>. Should we use SOP or POS?



### Solve T<sub>5</sub> as a POS Expression

Let's solve  $T_5$ . POS is better again.

What are the loops?  $\mathbf{C}_3\mathbf{C}_2$  $T_5$ for SOP? 00 10  $(C_3' + C_2')$ 00  $(C_3' + C_1' + C_0')$ 01  $\mathbf{C}_1\mathbf{C}_0$ So  $T_5 = (C_3' + C_2')$  $(C_3' + C_1' + C_0')$ 

# Combine $T_4$ and $T_5$ to find U(C)

How do we combine  $T_4$  and  $T_5$  to find the full upper-case checker function U(C)?

#### Remember:

- $^{\circ} \mathbf{T_4}$  applies when  $\mathbf{C_6C_5C_4} = \mathbf{100}$ , and
- $\circ$   $T_5$  applies when  $C_6C_5C_4 = 101$ .

#### So ...?

- AND T<sub>4</sub> with C<sub>6</sub>C<sub>5</sub>'C<sub>4</sub>',
- AND **T**<sub>5</sub> with **C**<sub>6</sub>**C**<sub>5</sub>'**C**<sub>4</sub>, and
- OR the results together.

#### A Good Solution, But Maybe We Can Do Less Work?

So U(C) = 
$$C_6C_5'C_4'(C_3 + C_2 + C_1 + C_0) + C_6C_5'C_4(C_3' + C_2')(C_3' + C_1' + C_0')$$

That's a pretty small and fast solution.

But we still had to do a fair bit of work.

#### Is there an easier way?

Consider the following: to check for an upper-case letter, we need to know whether

$$C \ge 1000001 \text{ AND } C \le 1011010$$

### Use Two Comparators to Calculate U(C)

What about this approach?



#### Or Use Two Adders to Calculate U(C)

Or this approach?

Note that the adders are performing subtractions.



### Inefficient, But Simple to Design

Quite large and slow compared with our first solution?

Consider two arguments:

- 1. CAD tools can optimize away much of the extra overhead.
- 2. Software executing on data center servers around the world executes the adder design even less efficiently, but it's constantly in use on hundreds of thousands of machines.