Problema 31. Determineu quins dels anells següents són dominis d'integritat i doneu-ne els cossos de fraccions corresponents:

(a) $\mathbb{Z}[X]/(X)$; (b) $\mathbb{Z}[X]/(X^2)$; (c) $\mathbb{Z}/n\mathbb{Z}[X]$; (d) $\mathbb{Z}[X]/(p,X)$, amb $p \in \mathbb{Z}$ primer.

Observació 1. Sigui A un anell, $I \subseteq A$ ideal. A/I és domini d'integritat si, i només si, I és un ideal primer.

Solució.

(a) Sigui $p(X) = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X^1 + a_0$ un polinomi de $\mathbb{Z}[X]$ en fer la projecció a $\mathbb{Z}[X]/(X)$:

$$\overline{p(X)} = \overline{a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X^1 + a_0} = \overline{a_n X^n} + \overline{a_{n-1} X^{n-1}} + \ldots + \overline{a_1 X^1} + \overline{a_0}$$

Tots els termes amb X van a la classe del 0, per tant, ens quedem només amb la classe del terme independent. Podem definir un isomorfisme f entre $\mathbb{Z}[X]/(X)$ i \mathbb{Z} tal que: $f(\overline{a}) = a$, que està ben definit: $f(\overline{1}) = 1$, $f(\overline{a}\overline{b}) = f(\overline{ab}) = ab = f(\overline{a})f(\overline{b})$ i $f(\overline{a} + \overline{b}) = f(\overline{a} + \overline{b}) = a + b = f(\overline{a}) + f(\overline{b})$. És injectiu, ja que $f^{-1}(0) = \overline{0}$ i clarament, és exhaustiu. Sabem que \mathbb{Z} és domini d'integritat, per tant $\mathbb{Z}[X]/(X)$, ja que és isomorf, és domini d'integritat i el seu cos de fraccions és \mathbb{Q} .

- (b) $\mathbb{Z}[X]/(X^2)$ no és domini d'integritat, ja que $\overline{X} \neq \overline{0}$ $(X \notin (X^2))$ i $\overline{X} \cdot \overline{X} = \overline{X^2} = \overline{0}$
- (c) Per la observació sabem que $\mathbb{Z}/n\mathbb{Z}[X]$ serà domini d'integritat si, i només si, (n) és un ideal primer i això només és cert quan n és primer. En aquest cas el cos de fraccions de $\mathbb{Z}/n\mathbb{Z}[X]$ és el cos de polinomis amb coeficients a $\mathbb{Z}/p\mathbb{Z}$.
- (d) Primer veiem quin és el ideal generat per p i X. L'ideal generat per X són tots els polinomis amb monomis de grau major o igual que 1 en $\mathbb{Z}[X]$, i el generat per p, tots els polinomis amb monomis de coeficients enters múltiples de p. Per tant, $\mathbb{Z}[X]/(p,X) \cong \mathbb{Z}/p\mathbb{Z}$, i com p és primer, és un domini d'integritat (de fet és un cos). Els elements del cos de fraccions d'aquest domini d'integritat seran, per tant, fraccions de coeficients a $\mathbb{Z}/p\mathbb{Z}$.