

• Real numbers are difficult to represent.

This involves a certain amount of approximation with knowledge of a few significant digits at the start of the number, *e.g.*,

 $\pi \approx 3.1415926536$ $c \approx 299,792,458$

One approach is to use *floating-point representation* where the number is given according to a fixed number of decimal places (and precision)

 Scientists and engineers use scientific notation where a number is expressed as

$$M\times10^{E}$$

Where M is the mantissa, E is the exponent and 10 is the base.

10^E is also known as scaling factor

 $c \approx 2.998 \times 10^8$

e.g.,

Avogadro's Number $\approx 6.0247 \times 10^{23}$

Planck's Constant $\approx 6.6254 \times 10^{-27}$

Prof RLUy, DLSU-CCS

Computer Organization

Slide #4

• Computers represent real numbers using scientific notation in base $2. \Rightarrow floating-point$

$$(-1)^S \times M \times 2^E$$

- The mantissa is also typically *normalized* $(1 \le |M| < 2)$ and can be represented as 1 plus a fraction
- Floating point standard: IEEE-754
 (Institute of Electrical and Electronics
 Engineers Standard 754). Originally 1985,
 current version is 2008.

IEEE-754

- IEEE-754 defines the following:
 - Arithmetic format: binary and decimal floating point data
 - Rounding rules
 - Exception handling (divide by zero, etc.)
 - Floating point operations

IEEE-754 Arithmetic Format

- IEEE-754 arithmetic format
 - 16-bit binary: IEEE Half Precision (not basic)
 - 32-bit binary: IEEE Single Precision
 - 64-bit binary: IEEE Double Precision
 - 128-binary: IEEE Quadruple Precision
 - 32-bit decimal: Decimal-32
 - 64-bit decimal: Decimal-64
 - 128-bit decimal: Decimal-128

IEEE Single Precision

$$(-1)^{S} \times 1.F \times 2^{E'-127}$$

IEEE Single Precision

- Uses 32 bits: 1-bit sign, 23-bit mantissa, 8-bit exponent.
- The fraction is normalized (i.e. 1.M).
- The exponent is biased (i.e., excess 127).
- Base of the exponent is 2
- Mantissa has 24-bits of precision = 7.225 decimal digits $(\log_{10}(2^{24}))$
- The smallest normalized number is $\pm 1.0 \text{x } 2^{-126}$ or $\pm 1.17 \times 10^{-38}$.

Single Precision (Special Value)

Sign Bit	E'	Mantissa	Value
0	0000 0000	000 0000 0000 0000 0000 0000	+0 (Positive Zero)
1	0000 0000	000 0000 0000 0000 0000 0000	-0 (Negative Zero)
0/1	0000 0000	<>0	Denomalized
0	1111 1111	000 0000 0000 0000 0000 0000	+ Infinity
1	1111 1111	000 0000 0000 0000 0000 0000	- Infinity
X	1111 1111	0xx xxxx xxxx xxxx xxxx xxxx	sNaN
X	1111 1111	1xx xxxx xxxx xxxx xxxx xxxx	qNaN

Example (single precision)

- 1.00010000 x 2⁵
- Sign bit = 0
- Exponent representation = 5+127=132 = 1000
 0100
- Mantissa = 000 1000 0000 0000 0000 0000
- or 42080000h

Example (single precision)

- 11001.1111 x 2¹²
- (normalize): 1.10011111x 2¹⁶
- Sign bit = 0
- Exponent representation = 16+127=143 = 1000 1111
- Mantissa = 100 1111 1000 0000 0000 0000
- => 0 1000010 1001111110000000000000000
- or 47CF8000h

Example (single precision)

- 0.0000001101 x 2⁻³
- (normalize): 1.101x 2⁻¹⁰
- Sign bit = 0
- Exponent representation = -10+127=117 = 0111 0101
- Mantissa = 101 0000 0000 0000 0000 0000
- or 3AD00000h

Smallest Denormalized Number (Single Precision)

- $1.0 \text{ x}2^{-149} \sim 1.4 \text{ x}10^{-45}$
- Sign bit = 0
- Exponent = 0000 0000

IEEE Double Precision

$$(-1)^{S} \times 1.F \times 2^{E'-1023}$$

IEEE Double Precision

- Uses 64 bits: 1-bit sign, 52-bit mantissa, 11-bit exponent.
- The fraction is normalized (i.e. 1.M).
- The exponent is biased (i.e., excess 1023).
- Base of the exponent is 2
- Mantissa has 53-bits of precision = 15.955 decimal digits ($log_{10}(2^{53})$)
- The smallest normalized number is $\pm 1.0 \text{x} \ 2^{-1022}$ or is $\pm 2.23 \times 10^{+308}$.
- The largest normalized number is $\pm 1.111111...1x$ 2^{+1023} or $\pm 1.80 \times 10^{-308}$

Double Precision (Special Value)

Sign Bit	E'	Mantissa	Value
0	000 0000 0000	0000 0000 0000 0000 0000 0000 0000 0000 0000	+0 (Positive Zero)
1	000 0000 0000	0000 0000 0000 0000 0000 0000 0000 0000 0000	-0 (Negative Zero)
0/1	000 0000 0000	<>0	Denomalized
0	111 1111 1111	0000 0000 0000 0000 0000 0000 0000 0000 0000	+ Infinity
1	111 1111 1111	0000 0000 0000 0000 0000 0000 0000 0000 0000	- Infinity
X	111 1111 1111	Oxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx	sNaN
X	111 1111 1111	1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxx	qNaN

Example (double precision)

- 1.00010000 x 2⁵
- Sign bit = 0
- Exponent representation = 5+1023=1028 = 100 0000 0100
- Mantissa = 00010.....0
- => 0 1000000100000100....0000000
- or 404100000000000h

Example (double precision)

- 11001.1111 x 2¹²
- (normalize): 1.10011111x 2¹⁶
- Sign bit = 0
- Exponent representation = 16+1023=1039 = 100 0000 1111
- Mantissa = 100111111000....0
- => 0 10000001111 10011111000000...00
- or 40F9F00000000000h

Example (double precision)

- 0.0000001101 x 2⁻³
- (normalize): 1.101x 2⁻¹⁰
- Sign bit = 0
- Exponent representation = -10+1023=1013 = 01111110101
- Mantissa = 1010.....0
- ◆ => 0 011111110101 1010...0
- or 3F5A000000000000h

Denormalized (Double Precision)

- Denormalized number: 0.000...001 x2⁻¹⁰²²
- $1.0 \text{ x} 2^{-1074} \sim 4.94 \text{ x} 10^{-324}$
- Sign bit = 0
- Exponent = 000 0000 0000
- Mantissa = 00000.....1

IEEE Half Precision

- Uses 16 bits: 1-bit sign, 10-bit mantissa, 5-bit exponent.
- The fraction is normalized (i.e. 1.M).
- The exponent is biased (i.e., excess 15).
- Base of the exponent is 2
- Mantissa has 11-bits of precision = 3.3 decimal digits $(\log_{10}(2^{11}))$
- The smallest normalized number is $\pm 1.0 \text{x } 2^{-14}$ or is $\pm 6.103515625 \times 10^{-5}$.
- The largest normalized number is $\pm 1.111111...1x$ 2^{+15} or ± 65535

IEEE Quadruple Precision

- Uses 128 bits: 1-bit sign, 112-bit mantissa, 15-bit exponent.
- The fraction is normalized (i.e. 1.M).
- The exponent is biased (i.e., excess 16383).
- Base of the exponent is 2
- Mantissa has 113-bits of precision = 34.016 decimal digits ($log_{10}(2^{113})$)
- The smallest normalized number is $\pm 1.0 \text{x} \ 2^{-16382}$ or is $\pm 3.36 \times 10^{-4932}$.
- The largest normalized number is $\pm 1.111111...1x$ 2^{+16383} or $\pm 1.18 \times 10^{4932}$