EXHIBIT 15

(12) United States Patent

Kumar et al.

(10) Patent No.: US 12,274,554 B2

(45) **Date of Patent:** *Apr. 15, 2025

(54) DEVICE FEATURES AND DESIGN ELEMENTS FOR LONG-TERM ADHESION

(71) Applicant: **iRhythm Technologies, Inc.**, San Francisco, CA (US)

(72) Inventors: Uday N. Kumar, San Francisco, CA (US); Peter H. Livingston, San Francisco, CA (US); Mark J. Day, San Francisco, CA (US); Shena Hae Park,

San Francisco, CA (US); William F. Willis, San Francisco, CA (US); William H. Righter, San Francisco,

CA (US)

(73) Assignee: iRhythm Technologies, Inc., San

Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 18/936,888

(22) Filed: Nov. 4, 2024

(65) **Prior Publication Data**

US 2025/0057459 A1 Feb. 20, 2025

Related U.S. Application Data

(63) Continuation of application No. 17/304,811, filed on Jun. 25, 2021, now Pat. No. 12,133,734, which is a (Continued)

(51) **Int. Cl.**A61B 5/00 (2006.01)

A61B 5/05 (2021.01)

(Continued)

(Continued)

(58) Field of Classification Search

CPC A61B 5/04; A61B 5/0408; A61B 5/04085; A61B 5/04087; A61B 5/0492;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

1,497,079 A 6/1924 Gullborg 2,179,922 A 11/1939 Dana (Continued)

FOREIGN PATENT DOCUMENTS

AU 2011252998 8/2015 AU 2014209376 6/2017 (Continued)

OTHER PUBLICATIONS

US 8,750,980 B2, 06/2014, Katra et al. (withdrawn) (Continued)

Primary Examiner — Joseph A Stoklosa
Assistant Examiner — Brian M Antiskay
(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear, LLP

(57) ABSTRACT

An electronic device for long-term adhesion to a mammal includes a housing with an electronic component. The electronic device may include a first wing and a second wing, each being integrally formed with the housing. An electrode is positioned on a bottom surface of each of the wings, the electrodes electrically connected to the electronic component. An adhesive layer is provided for adhesion to a surface of the mammal. The adhesive layer may cover a portion of the bottom surfaces of the wings but generally does not cover the electrode or a bottom surface of the housing. A method of applying an electronic device to a mammal includes removing first and second adhesive covers (Continued)

Page 2

from first and second wings of the electronic device to expose an electrode and an adhesive coated on a bottom surface of each wing.

13 Claims, 11 Drawing Sheets

Related U.S. Application Data

continuation of application No. 16/723,208, filed on Dec. 20, 2019, now Pat. No. 11,141,091, which is a continuation of application No. 16/138,819, filed on Sep. 21, 2018, now Pat. No. 10,517,500, which is a continuation of application No. 15/005,854, filed on Jan. 25, 2016, now Pat. No. 10,405,799, which is a continuation of application No. 13/890,144, filed on May 8, 2013, now Pat. No. 9,241,649, which is a continuation of application No. 13/563,546, filed on Jul. 31, 2012, now Pat. No. 8,538,503, which is a continuation of application No. 13/106,750, filed on May 12, 2011, now Pat. No. 8,560,046.

- (60) Provisional application No. 61/334,081, filed on May 12, 2010.
- (51) Int. Cl.

 A61B 5/25 (2021.01)

 A61B 5/259 (2021.01)

 A61B 5/282 (2021.01)

 A61B 5/291 (2021.01)

 A61B 5/389 (2021.01)
- (52) **U.S. CI.**CPC A61B 5/6832 (2013.01); A61B 5/6833
 (2013.01); A61B 5/68335 (2017.08); A61B
 5/389 (2021.01); A61B 2560/0406 (2013.01);
 A61B 2560/0468 (2013.01); Y10T 156/10

(58) Field of Classification Search CPC A61B 5/0531; A61B 5/6801; A61B

5/6832–6833 USPC 600/372, 382–393 See application file for complete search history.

(2015.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2,201,645 A 5/1940 Epner 2,311,060 A 2/1943 Lurrain 2,444,552 A 7/1948 Sigurd 2,500,840 A 3/1950 Lyons 3,215,136 A 11/1965 Holter et al. 3,547,107 A 12/1970 Chapman et al. 3,697,706 A 10/1972 Huggard 3,870,034 A 3/1975 James 3,882,853 A 5/1975 Gofman 3,911,906 A 10/1975 Reinhold 5/1977 4,023,312 A Stickney 4,027,664 A 6/1977 Heavner, Jr. et al. 4,082,087 A 4/1978 Howson 4,121,573 A 10/1978 Crovella et al. 4,123,785 A 10/1978 Cherry et al. 4,126,126 A 11/1978 Bare 5/1980 Hong et al. 4,202,139 A 4,274,419 A 6/1981 Tam et al. 4,274,420 A 6/1981 Hymes 4,286,610 A 9/1981 Jones 4.333.475 A 6/1982 Moreno et al. 4,361,990 A 12/1982Link 4,381,792 A 5/1983 Busch

4,438,767 A 3/1984 Nelson 4,459,987 A 7/1984 Pangburn 4.535,783 A 8/1985 Marangoni 4,537,207 A 8/1985 Gilhaus 4.572.187 A 2/1986 Schetrumpf 4,621,465 A 11/1986 Pangburn 4.622.979 11/1986 Katchis et al 4,623,206 A 11/1986 Fuller 4,658,826 A 4/1987 Weaver 4,712,552 A 12/1987 Pangburn 4,736,752 A 4/1988 Munck et al. 4,855,294 A 8/1989 Patel 4,925,453 A 5/1990 Kannankeril 4,938,228 A 7/1990 Righter et al. 4.981.141 A 1/1991 Segalowitz 5,003,987 A 4/1991 Grinwald 7/1991 Dougherty et al. 5,027,824 A 5,082,851 A 1/1992 Appelbaum et al. 5,086,778 A 2/1992 Mueller et al. 5.191.891 A 3/1993 Righter 5,205,295 A 4/1993 Del Mar et al. 5,226,425 A 7/1993 Righter 5,228,450 A 7/1993 Sellers 5,230,119 A 7/1993 Woods et al. 5,289,824 A 3/1994 Mills et al. 5 305 746 A 4/1994 Fendrock 5,309,909 A 5/1994 Gadsby 5,328,935 A 7/1994 Van Phan 5,365,935 A 11/1994 Righter et al. 5,458,141 A 10/1995 Neil 5,483,967 A 1/1996 Ohtake 5,489,624 A 2/1996 Kantner et al. 5,511,548 A 4/1996 Riazzi et al. 5,511,553 4/1996 Segalowitz 5,515,858 A 5/1996 Myllymaki 5,536,768 7/1996 Kantner et al. 5.581.369 12/1996 Righter et al. 5,626,140 5/1997 Feldman et al. 5,634,468 A 6/1997 Platt et al. 5,645,063 A 7/1997 Straka 7/1997 5.645,068 A Mezack et al. 3/1998 5.730.143 Schwarzberg 5/1998 5.749.365 A Magill 5,749,367 A 5/1998 Gamlyn et al. 5,771,524 A 6/1998 Woods et al. 5,772,604 A 6/1998 Langberg et al. 5,776,072 A 7/1998 Hsu et al. 5,881,743 3/1999 Nadel D408.541 S 4/1999 Dunshee et al. 5,916,239 A 6/1999 Geddes et al. 5,931,791 8/1999 Saltzstein et al. 5,941,829 A 8/1999 Saltzstein et al. 5,957,854 A 9/1999 Besson et al. 5.959.529 9/1999 Kail 6,013,007 1/2000 Root et al. 6.032.060 A 2/2000 Carim 6,038,464 A 3/2000 Axelgaard et al. 6.038,469 A 3/2000 Karlsson et al. 6,044,515 4/2000 Zygmont 6,093,146 7/2000 Filangeri D429,336 S 8/2000 Francis et al. 6,102,856 A 8/2000 Groff et al. Del Mar et al. 6,117,077 9/2000 6,121,508 A 9/2000 Bischof 6,132,371 10/2000 Dempsey et al. 6.134.480 10/2000 Minogue 6,136,008 A 10/2000 Becker et al. 6,161,036 A 12/2000 Matsumura et al. 6,169,915 B1 1/2001 Krumbiegel et al. 6,178,357 B1 1/2001 Gliner et al. 6.200.265 B1 3/2001 Walsh et al. 5/2001 6,225,901 B1 Kail 6,232,366 B1 5/2001 Wang et al. 6.238.338 B1 5/2001 DeLuca et al. 6,248,115 B1 6/2001 Halk 6,287,252 B1 9/2001 Lugo 6,290,707 B1 9/2001 Street

6.315.719 B1

6,379,237 B1

11/2001

4/2002 Gordon

Rode et al.

								_
(56)		Refe	ren	ces Cited	7,222,054 7,242,318		5/2007 7/2007	
	1	J.S. PATE	NT	DOCUMENTS	7,266,361		9/2007	
	6 295 472	D1 5/20	002	Haines et al.	7,316,671 7,349,947			Lastovich et al. Slage et al.
	6,385,473 6,389,308			Shusterman	D567,949		4/2008	Lash et al.
	6,416,471	B1 7/20	002	Kumar et al.	7,354,423			Zelickson et al.
	6,453,186 6,434,410			Lovejoy et al. Cordero et al.	7,387,607 7,444,177		10/2008	Holt et al. Nazeri
	6,441,747			Khair et al.	D584,414	S	1/2009	Lash et al.
	6,454,708	B1 9/20		Ferguson et al.	7,477,933 7,478,108			Ueyama Townsend et al.
	6,456,871 6,456,872			Hsu et al. Faisandier	7,478,108		1/2009	
	6,464,815			Beaudry	7,482,314	B2		Grimes et al.
	6,493,898			Woods et al.	7,502,643 7,539,533		3/2009 5/2009	Farringdon et al.
	6,496,705 6,510,339			Ng et al. Kovtun et al.	7,542,878		6/2009	Nanikashvili
	6,546,285			Owen et al.	D600,351			Phillips et al.
	6,564,090			Taha et al.	7,587,237 7,630,756		12/2009	Korzinov et al.
	6,569,095 6,577,893			Eggers Besson et al.	7,632,174			Gringer et al.
	6,580,942			Willshire	D607,570			Phillips et al.
	6,585,707			Cabiri et al. Flach et al.	7,672,714 7,715,905			Kuo et al. Kurzweil et al.
	6,589,170 6,589,187			Dimberger et al.	D618,357	S	6/2010	Navies
	6,605,046	B1 8/20	003	Del Mar et al.	7,729,753			Kremliovsky et al.
	6,615,083			Kupper	7,733,224 D621,048		6/2010 8/2010	Severe et al.
	6,622,035 6,626,865			Merilainen Prisell	7,815,494	B2	10/2010	Gringer et al.
	6,656,125	B2 12/20		Misczynski et al.	7,841,039		11/2010	Squire Reeves et al.
	6,664,893 6,665,385			Eveland et al. Rogers et al.	7,889,070 7,894,888			Chan et al.
	6,690,959			Thompson	D634,431	S		Severe et al.
	6,694,177			Eggers et al.	7,904,133 7,907,956		3/2011 3/2011	Gehman et al.
	6,701,184 6,711,427			Henkin Ketelhohn	7,907,996			Prystowsky et al.
	6,730,028			Eppstein	7,941,207		5/2011	Korzinov
	D492,607			Curkovic et al. Flach et al.	D639,437 7,970,450			Bishay et al. Kroecker et al.
	6,773,396 6,775,566			Nissila	7,979,111	B2	7/2011	Acquista
	6,801,137	B2 10/20	04	Eggers	7,996,075			Korzinov et al. Nanikashvili et al.
	6,801,802 6,871,089			Sitzman et al. Korzinov et al.	7,996,187 8,002,701			John et al.
	6,871,211			Labounty et al.	D645,968	S	9/2011	Kasabach et al.
	6,875,174			Braun et al.	D650,911 8,077,042		12/2011 12/2011	
	6,881,191 6,893,396			Oakley et al. Schulze et al.	8,103,333		1/2012	
	6,897,788	B2 5/20	05	Khair et al.	8,108,036		1/2012	
	6,904,312			Bardy Shusterman	8,170,639 8,116,841		1/2012 2/2012	Bly et al.
	6,925,324 6,940,403			Shusterman Kail	8,150,502	B2	4/2012	Kumar et al.
	6,954,163	B2 10/20	005	Toumazou et al.	8,156,945		4/2012	Hart Kumar et al.
	6,957,107 6,987,965	B2 10/20 B2 1/20)05)06	Rogers et al. Ng et al.	8,160,682 D659,836			Bensch et al.
	7,002,468			Eveland et al.	8,200,319	B2	6/2012	Pu et al.
	7,020,508			Stivoric et al.	D663,432 8,214,007			Nichols Baker et al.
	7,024,248 7,031,770			Penner et al. Collins et al.	8,244,335			Kumar et al.
	7,072,708	B1 7/20		Andresen et al.	8,249,686			Libbus et al.
	7,072,709			Xue	8,261,754 8,265,907			Pitstick Nanikashvili et al.
	7,076,283 7,076,287			Cho et al. Rowlandson	RE43,767	E	10/2012	Eggers et al.
	7,076,288	B2 7/20	06	Skinner	8,280,749			Hsieh et al.
	7,076,289 7,079,977			Sarkar et al. Osorio et al.	8,285,356 8,290,129			Bly et al. Rogers et al.
	7,082,327			Houben	8,290,574	B2	10/2012	Field et al.
	7,089,048			Matsumura et al.	8,301,219 8,301,236			Chen et al. Baumann et al.
	7,099,715 7,117,031			Korzinov et al. Lohman et al.	8,311,604			Rowlandson et al.
	7,120,485	B2 10/20	006	Glass et al.	8,315,687			Cross et al.
	7,130,396 7,161,484		06	Rogers et al. Tsoukalis	8,315,695 8,323,188		11/2012 12/2012	Sebelius et al.
	7,101,464			Ng et al.	8,326,394			Rowlandson et al.
	7,179,152	B1 2/20	07	Rhoades	8,326,407	B2	12/2012	Linker
	7,186,264			Liddicoat et al.	8,328,718 D674,000		1/2012	
	7,193,264 7,194,300			Lande Korzinov	D674,009 8,343,116		1/2013	Nichols Ignon
	7,206,630	B1 4/20	07	Tarler	8,369,936	B2	2/2013	Farringdon et al.
	7,212,850	B2 5/20	07	Prystowsky et al.	8,374,688	B2	2/2013	Libbus et al.

(56)		Referen	ces Cited	9,044,148			Michelson et al.
	II C	DATENT	DOCUMENTS	9,084,548 9,095,274			Bouguerra Fein et al.
	0.3.	FAIENI	DOCUMENTS	9,101,264			Acquista
5	8,386,009 B2	2/2013	Lindberg et al.	9,138,144		9/2015	Geva
	8,388,543 B2		Chon et al.	9,149,228		10/2015	
	8,406,843 B2		Tiegs et al.	9,173,670 9,179,851			Sepulveda et al. Baumann et al.
	8,412,317 B2	4/2013	Mazar Chon et al.	D744,659			Bishay et al.
	8,417,326 B2 8,425,414 B2		Eveland	9,211,076		12/2015	
	D682,437 S		Olson et al.	9,226,679		1/2016	
	8,449,471 B2	5/2013	Tran	9,241,649			Kumar et al.
	8,452,356 B2		Vestel et al. Libbus et al.	9,241,650 9,277,864			Amirim Yang et al.
	8,460,189 B2 8,473,039 B2		Michelson et al.	9,282,894			Banet et al.
	8,473,047 B2		Chakravarthy et al.	9,307,921			Friedman et al.
5	8,478,418 B2	7/2013		9,345,414			Bardy et al.
	8,483,809 B2		Kim et al.	9,355,215 D759,653		5/2016 6/2016	Toth et al.
	8,500,636 B2 8,515,529 B2	8/2013	Pu et al.	9,357,939	B1		Nosrati
	8,525,673 B2	9/2013		9,364,150	B2		Sebelius et al.
	8,535,223 B2		Corroy et al.	9,364,155			Bardy et al.
	8,538,503 B2		Kumar et al.	9,398,853 9,408,545			Nanikashvili Felix et al.
	8,540,731 B2 8,560,046 B2	9/2013	Kay Kumar et al.	9,408,551			Bardy et al.
	8,562,527 B2	10/2013	Braun et al.	9,408,576			Chon et al.
	8,571,645 B2	10/2013	Wu et al.	9,414,753			Chon et al.
	8,588,908 B2	11/2013	Moorman et al.	9,414,786			Brockway et al.
	8,591,430 B2		Amurthur et al.	D766,447 9,433,367			Bishay et al. Felix et al.
	8,591,599 B1 8,594,763 B1	11/2013 11/2013		9,433,380			Bishay et al.
	8,626,262 B2	1/2014	McGusty et al.	9,439,566			Arne et al.
	8,639,319 B2	1/2014	Hugh et al.	9,439,599			Thompson et al.
	8,668,643 B2	3/2014		9,445,719 9,451,890			Libbus et al. Gitlin et al.
	8,684,900 B2 8,684,925 B2	4/2014 4/2014	Amurthur et al.	9,451,975			Sepulveda et al.
	8,688,189 B2		Shennib	9,474,445	B2	10/2016	Eveland
	8,688,190 B2		Libbus et al.	9,474,461			Fisher et al.
	8,688,202 B2		Brockway et al.	9,478,998 D773,056		10/2016	Lapetina et al.
	8,718,742 B2 8,718,752 B2		Beck et al. Libbus et al.	9,492,084			Behar et al.
	8,718,753 B2		Chon et al.	9,504,423	B1	11/2016	Bardy et al.
	8,731,632 B1	5/2014	Sereboff et al.	D775,361			Vosch et al.
	8,738,118 B2		Moon et al.	9,510,764 9,510,768		12/2016 12/2016	
	8,744,561 B2 8,755,876 B2	6/2014	Chon et al.	9,526,433			Lapetina et al.
	8,782,308 B2	7/2014		9,545,204	B2	1/2017	Bishay et al.
	8,789,727 B2		Mortazavi	9,545,228			Bardy et al.
	8,790,257 B2		Libbus et al.	9,554,715 9,579,020			Bardy et al. Libbus et al.
	8,795,174 B2 8,818,481 B2		Manicka et al. Bly et al.	D780,914		3/2017	Kyvik et al.
	8,823,490 B2		Libbus et al.	9,585,584		3/2017	
5	8,838,218 B2	9/2014	Khair	9,597,004	D.O.		Hughes et al.
	8,858,450 B2		Chon et al.	9,615,763			Felix et al. Solosko et al.
	8,874,185 B2 D719,267 S		Sonnenborg Vaccarella	9,619,660			Felix et al.
	8,903,477 B2	12/2014		9,642,537			Felix et al.
	8,903,484 B2	12/2014		9,655,518		5/2017	
	8,909,328 B2	12/2014		9,655,537 9,655,538		5/2017	Bardy et al.
	8,909,330 B2 8,909,332 B2		McCombie et al. Vitali et al.	9,662,030			Thng et al.
	8,909,333 B2	12/2014		9,675,264	B2		Acquista et al.
	8,909,832 B2		Vlach et al.	9,700,227			Bishay et al.
	8,926,509 B2		Magar et al.	9,706,938 9,706,956			Chakravarthy et al. Brockway et al.
	8,945,019 B2 8,948,854 B2		Prystowsky et al. Friedman et al.	9,713,428			Chon et al.
	8,954,129 B1		Schlegel et al.	D793,566		8/2017	Bishay et al.
8	8,956,293 B2	2/2015		D794,812			Matsushita
	8,968,195 B2	3/2015		9,717,432			Bardy et al.
	8,972,000 B2 8,979,755 B2		Manera Szydlo-Moore et al.	9,717,433 9,730,593			Felix et al. Bardy et al.
	9,014,777 B2	3/2015 4/2015		9,730,604			Li et al.
	9,015,008 B2		Geva et al.	9,730,641		8/2017	Felix et al.
	9,017,255 B2		Raptis et al.	9,736,625			Landgraf et al.
	9,017,256 B2		Gottesman	9,737,211			Bardy et al.
	9,021,161 B2		Vlach et al.	9,737,224 D797,301		8/2017 9/2017	Bardy et al.
	9,021,165 B2 9,026,190 B2	4/2015 5/2015	Shenasa et al.	D797,301 D797,943		9/2017	
	9,037,223 B2		Oral et al.	D798,170			Toth et al.
-	. ,			,•			

(56)		Referen	ces Cited	10,602,977 10,624,551			Bardy et al. Bardy et al.
	U.S.	PATENT	DOCUMENTS	10,660,520		5/2020	Lin
D#00	204 G	0/2017	T 4 . 1	10,667,712 10,729,361			Park et al. Hoppe et al.
	,294 S ,534 B2		Toth et al. Korzinov et al.	10,758,139		9/2020	Rapin et al.
9,775	,536 B2	10/2017	Felix et al.	10,772,521 10,779,744			Korzinov et al.
	,095 B2 ,132 B2		Ylostalo et al. Golda et al.	10,779,744			Rapin et al. Park et al.
	,722 B2		Bardy et al.	10,827,938	B2		Fontanarava et al.
	,562 B1		Host-Madsen	10,866,619 10,869,610			Bushnell et al. Lu et al.
	,665 B2 ,363 B2	12/2017	Felix et al. Albert	10,987,018		4/2021	Aga et al.
D810	,308 S	2/2018	Lind et al.	11,004,198 11,017,887			Isgum et al.
	,610 S ,611 S		Abel et al. Lind et al.	11,026,632			Finkelmeier et al. Narasimhan et al.
	,615 S		Lind et al.	11,051,738			Bahney et al.
	,866 B2		Chon et al. Friedman et al.	11,051,743 11,062,804			Felix et al. Selvaraj et al.
	,478 B2 ,875 B2		Bardy et al.	11,083,371	B1	8/2021	Szabados et al.
9,955	,885 B2	5/2018	Felix et al.	11,141,091 11,172,882			Uday et al. Upadhya et al.
	,887 B2 ,888 B2		Hughes et al. Felix et al.	11,246,523			Abercrombie, II et al.
9,955	,911 B2	5/2018	Bardy et al.	11,246,524			Szabados et al.
	,274 B2 ,921 B2		Korzinov et al. Chon et al.	11,253,185 11,253,186		2/2022	Szabados et al. Szabados et al.
	,921 B2 ,415 B2		Bishay et al.	11,276,491	B2	3/2022	Petterson et al.
	,466 S		Marogil	11,289,197 11,324,420			Park et al. Selvaraj et al.
	,526 S ,709 B2		Ramjit et al. Bardy et al.	11,324,441			Bardy et al.
10,052	,022 B2	8/2018	Bardy et al.	11,331,034			Rapin et al.
	,257 B2 ,841 B2		Lin et al. Dettinger et al.	11,337,632 11,350,864			Abercrombie, II et al. Abercrombie, II et al.
	,559 B2		Hughes et al.	11,350,865	B2	7/2022	Abercrombie, II et al.
	,601 B2		Bishay et al.	11,375,941 11,382,555		7/2022 7/2022	
	,703 B2 ,793 B2		Bardy et al. Felix et al.	11,399,760		8/2022	Abercrombie, II et al.
10,165	,946 B2	1/2019	Bardy et al.	11,445,967 11,497,432		9/2022 11/2022	Felix et al. Szabados et al.
	,534 B2 ,575 B2		Felix et al. Isgum et al.	11,504,041			Abercrombie, II et al.
	,575 B2 ,575 B2		Bardy et al.	11,589,792			Abercrombie, II et al.
	,576 B2		Bardy et al. Felix et al.	11,605,458 11,627,902			Park et al. Bahney et al.
	,992 B2 ,015 B2		Bardy et al.	11,660,037	B2	5/2023	Felix et al.
	,898 B2		Soli et al.	D988,518 11,678,832			Levy et al. Boleyn et al.
	,754 B2 ,755 B2		Bahney et al. Felix et al.	11,751,789		9/2023	Abercrombie, II et al.
10,271	,756 B2	4/2019	Felix et al.	11,756,684			Park et al.
	,603 B2 ,606 B2		Felix et al. Bishay et al.	11,806,150 D1,012,295			Abercrombie, II et al. Peremen et al.
	,607 B2		Prystowsky et al.	11,925,469	B2	3/2024	Szabados et al.
	,691 B2		Hughes et al.	12,133,731 12,133,734		11/2024 11/2024	Abercrombie, II et al. Kumar et al.
	,823 B2 ,657 B2		Chakravarthy et al. Spencer et al.	2001/0056262	A1	12/2001	Cabiri et al.
D852	,965 S	7/2019	Bahney et al.	2002/0007126 2002/0026112		1/2002	Nissila Nissila et al.
	,167 S ,467 B2		Bahney et al. Landgraf et al.	2002/0067256		6/2002	Kail
10,368	,808 B2	8/2019	Lee et al.	2002/0082491		6/2002	Nissila Winitsky
,	,172 B2 ,700 B2		Kuppuraj et al. Bardy et al.	2002/0087167 2002/0180605			Ozguz et al.
10,398	,344 B2	9/2019	Felix et al.	2003/0069510	A1		Semler
	,799 B2 ,205 B2		Kumar et al.	2003/0083559 2003/0125786		5/2003 7/2003	Thompson Gliner
	,203 B2 ,634 B1		Bardy et al. Al-Jazaeri et al.	2003/0149349	A1	8/2003	Jensen
	,743 B1		Felix et al.	2003/0176795 2003/0195408			Harris et al. Hastings
	,748 B2 ,751 B2		Bishay et al. Bardy et al.	2003/0193408			Sage, Jr. et al.
10,441	,184 B2	10/2019	Baumann et al.	2003/0212319		11/2003	
	,269 B2 ,083 B2		Boleyn et al. Felix et al.	2004/0032957 2004/0068195			Mansy et al. Massicotte et al.
	,083 B2 ,812 B2		Bardy et al.	2004/0077954	Al	4/2004	Oakley et al.
10,517	,500 B2	12/2019	Kumar et al.	2004/0082843			Menon
	,683 B2 ,326 B2		Bahney et al. Felix et al.	2004/0187297 2004/0199063		9/2004 10/2004	
10,561	,328 B2	2/2020	Bishay	2004/0215091	A1	10/2004	Lohman et al.
	,533 B2		Soli et al.	2004/0236202		11/2004	
	,527 B2 ,371 B2		McNamara et al. Gopalakrishnan et al.	2004/0254587 2004/0260189		12/2004 12/2004	Park Eggers et al.
	,942 B2		Shakur et al.	2005/0096513			Ozguz et al.

(56)	Referen	ces Cited	2010/0022864 A1		Cordero
U.S.	PATENT	DOCUMENTS	2010/0042113 A1 2010/0049006 A1		Magar et al.
2005/0101875 A1	5/2005	Semler et al.	2010/0051039 A1 2010/0056881 A1		Ferrara Libbus et al.
2005/0118246 A1		Wong et al.	2010/0057056 A1		Gurtner
2005/0119580 A1		Eveland	2010/0076533 A1 2010/0081913 A1		Dar et al. Cross et al.
2005/0165323 A1 2005/0204636 A1		Montgomery et al. Azar et al.	2010/0081913 A1 2010/0145359 A1	6/2010	
2005/0277841 A1		Shennib	2010/0191310 A1	7/2010	Bly
2005/0280531 A1	12/2005	Fadem et al.	2010/0234716 A1	9/2010	
2006/0030781 A1		Shennib	2010/0249625 A1 2010/0268103 A1	9/2010 10/2010	McNamara et al.
2006/0030782 A1 2006/0047215 A1		Shennib Newman et al.	2010/0312131 A1		Naware et al.
2006/0084883 A1	4/2006		2010/0331711 A1		Krauss et al.
2006/0142648 A1		Banet et al.	2011/0021937 A1 2011/0087083 A1		Hugh et al. Poeze et al.
2006/0142654 A1 2006/0149156 A1	6/2006 7/2006	Cochran et al.	2011/0098583 A1		Pandia et al.
2006/0155173 A1	7/2006	Anttila et al.	2011/0119212 A1		De Bruin et al.
2006/0155183 A1		Kroecker et al.	2011/0144470 A1 2011/0160601 A1		Mazar et al. Wang et al.
2006/0155199 A1 2006/0155200 A1		Logier et al. Ng et al.	2011/0166468 A1		Prystowsky et al.
2006/0161064 A1		Watrous et al.	2011/0190650 A1		McNair
2006/0161065 A1	7/2006		2011/0218415 A1 2011/0237922 A1	9/2011	Cher Parker, III et al.
2006/0161066 A1 2006/0161067 A1	7/2006 7/2006		2011/0237924 A1		McGusty et al.
2006/0161068 A1		Hastings et al.	2011/0251504 A1		Tereshchenko et al.
2006/0167353 A1	7/2006	Nazeri	2011/0279963 A1 2011/0306862 A1		Kumar et al. Hayes-Gill
2006/0224072 A1 2006/0264767 A1		Shennib Shennib	2011/0300802 A1 2012/0029307 A1		Paquet et al.
2007/0003695 A1		Tregub et al.	2012/0071730 A1	3/2012	Romero
2007/0010729 A1	1/2007	Virtanen	2012/0071731 A1 2012/0071743 A1		Gottesman Todorov et al.
2007/0027388 A1 2007/0088419 A1	2/2007	Chou Florina et al.	2012/00/1743 A1 2012/0083670 A1		Rotondo et al.
2007/0088419 A1 2007/0156054 A1		Korzinov et al.	2012/0088999 A1		Bishay et al.
2007/0208266 A1	9/2007	Hadley	2012/0101396 A1		Solosko et al.
2007/0225611 A1		Kumar et al.	2012/0108917 A1 2012/0108920 A1		Libbus et al. Bly et al.
2007/0249946 A1 2007/0255153 A1		Kumar et al. Kumar et al.	2012/0110226 A1		Vlach et al.
2007/0270678 A1		Fadem et al.	2012/0110228 A1		Vlach et al.
2007/0285868 A1		Lindberg et al.	2012/0133162 A1 2012/0172676 A1		Sgobero Penders et al.
2007/0293776 A1 2007/0299325 A1	12/2007	Korzinov et al.	2012/0197150 A1	8/2012	Cao et al.
2008/0039730 A1		Pu et al.	2012/0209102 A1		Ylotalo et al.
2008/0091089 A1		Guillory et al.	2012/0209126 A1 2012/0215123 A1		Amos et al. Kumar et al.
2008/0108890 A1 2008/0114232 A1	5/2008	Teng et al.	2012/0220835 A1	8/2012	
2008/0139953 A1	6/2008	Baker et al.	2012/0259233 A1		Chan et al.
2008/0167567 A1		Bashour et al.	2012/0271141 A1 2012/0310070 A1	10/2012	Davies Kumar et al.
2008/0214901 A1 2008/0275327 A1		Gehman et al. Faarbaek et al.	2012/0316532 A1		McCormick
2008/0281215 A1		Alhussiny	2012/0323257 A1	12/2012	
2008/0288026 A1		Cross et al.	2012/0330126 A1 2013/0023816 A1		Hoppe et al. Bachinski et al.
2008/0309287 A1 2009/0048556 A1	12/2008 2/2009	Durand	2013/0041273 A1		Houben et al.
2009/0062670 A1	3/2009		2013/0046151 A1		Bsoul et al.
2009/0062671 A1		Brockway	2013/0085347 A1 2013/0096395 A1		Manicka et al. Katra et al.
2009/0073991 A1 2009/0076336 A1		Landrum et al. Mazar et al.	2013/0116533 A1		Lian et al.
2009/0076340 A1		Libbus et al.	2013/0116585 A1		Bouguerra
2009/0076341 A1		James et al.	2013/0144146 A1 2013/0150698 A1	6/2013	Hsu et al.
2009/0076342 A1 2009/0076343 A1		Amurthur et al. James et al.	2013/0158494 A1	6/2013	
2009/0076344 A1		Libbus et al.	2013/0172763 A1		Wheeler
2009/0076345 A1		Manicka et al.	2013/0184662 A1 2013/0191035 A1		Aali et al. Chon et al.
2009/0076346 A1 2009/0076349 A1		James et al. Libbus et al.	2013/0151035 A1 2013/0225938 A1	8/2013	
2009/0076350 A1		Bly et al.	2013/0225967 A1		Esposito
2009/0076364 A1		Libbus et al.	2013/0226018 A1 2013/0245415 A1		Kumar et al. Kumar et al.
2009/0076397 A1 2009/0076401 A1		Libbus et al. Mazar et al.	2013/0245472 A1		Eveland
2009/0076559 A1		Libbus et al.	2013/0253285 A1	9/2013	Bly et al.
2009/0182204 A1		Semler et al.	2013/0274584 A1		Finlay et al.
2009/0253975 A1 2009/0283300 A1	10/2009	Tiegs Grunthaner	2013/0296680 A1 2013/0300575 A1	11/2013	Linker Kurzweil et al.
2009/0283300 A1 2009/0292193 A1		Wijesiriwardana	2013/0300373 A1 2013/0324868 A1		Kuizweii et al. Kaib et al.
2009/0292194 A1		Libbus et al.	2013/0331663 A1	12/2013	Albert et al.
2009/0306485 A1	12/2009		2013/0331665 A1		Bly et al.
2010/0001541 A1	1/2010	Sugiyama	2013/0338448 A1	12/2013	Libbus et al.

(56)	Referen	nces Cited	2016/03	59150 A	1 12/2016	de Francisco Martin et al.
IIC	DATENIT	DOCIMENTS		61015 A 67164 A		Wang et al. Felix et al.
0.5	. PATENT	DOCUMENTS		74583 A		Cerruti et al.
2014/0012154 A1	1/2014	Mazar		42447 A		
2014/0058280 A1		Chefles et al.		55896 A 56682 A		Al-Ali et al.
2014/0088394 A1 2014/0094676 A1		Sunderland Gani et al.		65823 A		Kaib et al.
2014/0094709 A1		Korzinov et al.		76641 A	1 3/2017	Senanayake
2014/0100432 A1	4/2014	Golda et al.		88872 A		Hughes et al.
2014/0171751 A1		Sankman et al.		88971 A 49698 A		Hughes et al.
2014/0116825 A1 2014/0206976 A1		Kurzweil et al. Thompson et al.		49716 A		Rajagopal et al.
2014/0206977 A1		Bahney et al.		64388 A		Heneghan et al.
2014/0243621 A1		Weng et al.		10266 A 25387 A		Lee et al. Hadley et al.
2014/0275827 A1 2014/0275840 A1		Gill et al. Osorio		44241 A		Liu et al.
2014/0275928 A1		Acquista et al.		46875 A		Friedman et al.
2014/0303647 A1		Sepulveda et al.		61211 A 42876 A		Beckey Hughes et al.
2014/0330136 A1 2015/0005854 A1	1/2014	Manicka et al.		57346 A		
2015/0003834 A1 2015/0022372 A1		Vosch	2018/02	60706 A	1 9/2018	Galloway et al.
2015/0057512 A1		Kapoor		89274 A 74576 A		Bahney et al. Dettinger et al.
2015/0073252 A1 2015/0081959 A1		Mazar Vlach et al.		74370 A 21671 A		Kumar et al.
2015/0081939 A1 2015/0082623 A1		Felix et al.		38148 A	1 2/2019	Valys
2015/0087921 A1	3/2015	Felix et al.		46066 A		Hughes et al.
2015/0087922 A1		Bardy et al.		69788 A 90769 A		Coleman et al. Boleyn et al.
2015/0087923 A1 2015/0087933 A1		Bardy et al. Gibson et al.		97339 A		Lim et al.
2015/0087948 A1		Bishay et al.		98758 A		Hassemer et al.
2015/0087949 A1		Felix et al.		99132 A 67143 A		Mulinti et al. Li et al.
2015/0087950 A1 2015/0087951 A1		Felix et al. Felix et al.		09022 A		
2015/008/931 A1 2015/0088007 A1		Bardy et al.		46928 A	1 8/2019	Bahney et al.
2015/0088020 A1	3/2015	Dreisbach et al.		74574 A		Hughes et al.
2015/0094556 A1		Geva et al.		82178 A 90147 A		Volosin et al. Persen et al.
2015/0148637 A1 2015/0157273 A1		Golda et al. An et al.		98201 A		Persen et al.
2015/0173671 A1		Paalasmaa et al.		98209 A		Persen et al.
2015/0193595 A1		McNamara et al.		98272 A 74163 A		Persen Faabaek et al.
2015/0223711 A1 2015/0238107 A1		Raeder et al. Acquista et al.		78617 A		Charles et al.
2015/0289814 A1		Magar et al.		60563 A		
2015/0297134 A1		Albert et al.		93388 A 00693 A		Bouguerra et al.
2015/0327781 A1 2015/0351689 A1	11/2015	Hernandez-Silverira et al.		08260 A		Haddad et al.
2015/0351089 A1 2015/0351799 A1	12/2015		2020/01	21209 A	1 4/2020	Kumar et al.
2015/0374244 A1	12/2015	Yoo et al.		70529 A 78825 A		Bahney et al.
2016/0022161 A1 2016/0029906 A1	1/2016	Khair Tompkins et al.		78828 A		Bahney et al.
2016/0029906 A1 2016/0066808 A1	3/2016			93597 A		Fan et al.
2016/0085927 A1		Dettinger et al.		96897 A		Biswas et al.
2016/0085937 A1		Dettinger et al.		14563 A 14584 A		McNamara et al.
2016/0086297 A1 2016/0098536 A1	3/2016 4/2016	Dettinger et al. Dettinger et al.		37309 A		Golda et al.
2016/0098537 A1		Dettinger et al.		89014 A		Park et al.
2016/0113520 A1		Manera		37608 A 52489 A		Garai et al. Hoppe et al.
2016/0120433 A1 2016/0120434 A1		Hughes et al. Park et al.		67779 A		Korzinov et al.
2016/0128597 A1		Lin et al.		97313 A		Attia et al.
2016/0135746 A1		Kumar et al.		38102 A 59612 A		Boleyn et al. Krebs et al.
2016/0149292 A1 2016/0157744 A1		Ganton Wu et al.		85215 A		Auerbach et al.
2016/0166155 A1		Banet et al.	2021/00	85255 A	1 3/2021	Vule et al.
2016/0192852 A1		Bozza et al.		25722 A		Sherkat et al.
2016/0192855 A1	7/2016 7/2016	Geva et al.		53761 A 17519 A		Jung et al. Park et al.
2016/0192856 A1 2016/0198972 A1		Lee et al.		44279 A	1 8/2021	Szabados et al.
2016/0232807 A1	8/2016	Ghaffari et al.		69046 A		Hashimoto et al.
2016/0262619 A1		Marcus et al.		98688 A 04855 A		Banerjee et al. Ansari et al.
2016/0278658 A1 2016/0287177 A1		Bardy et al. Huppert et al.		04833 A 15470 A		Wu et al.
2016/0287207 A1	10/2016	Xue		15504 A		Kumar et al.
2016/0296132 A1		Bojovic et al.		61218 A		Szabados et al.
2016/0302725 A1		Schultz et al.		69178 A		Szabados et al. Roth et al.
2016/0302726 A1 2016/0317048 A1	10/2016 11/2016	Chang Chan et al.		74502 A 78579 A		Doron et al.
2016/0317057 A1		Li et al.		93187 A		Amos et al.

	Page 8			
(56) References Cited	EP	2092502	2/2016	
(56) References Cited	EP EP	2983593 3165161	2/2016 5/2017	
U.S. PATENT DOCUMENTS	EP	3212061	9/2017	
C.B. TATERY DOCUMENTS	EP	3753483	12/2020	
2022/0022798 A1 1/2022 Soon-Shiong et al.	EP	3387991	6/2022	
2022/0031223 A1 2/2022 Li et al.	EP	4103051	12/2022	
2022/0039719 A1 2/2022 Abercrombie, II et al.	GB	2 299 038	9/1996	
2022/0039720 A1 2/2022 Abercrombie, II et al.	GB IN	2 348 707 002592907-0001	10/2000 12/2014	
2022/0039721 A1 2/2022 Abercrombie, II et al.	JP	S61-137539	6/1986	
2022/0039722 A1 2/2022 Abercrombie, II et al. 2022/0079497 A1 3/2022 Bardy et al.	JP	H05-329123	12/1993	
2022/0093247 A1 3/2022 Batty et al.	JP	H08-317913	3/1996	
2022/0095982 A1 3/2022 de Saint Victor et al.	JP	H08-322952	12/1996	
2022/0142493 A1 5/2022 Albert	JP	2000-126145	5/2000	
2022/0142495 A1 5/2022 De Marco et al.	JP	2001-057967	3/2001	
2022/0160279 A1 5/2022 Abercrombie, II et al.	JP JP	2003-275186 2004-121360	9/2003 4/2004	
2022/0160285 A1 5/2022 Szabados et al.	JP	2004-121300	4/2004	
2022/0167905 A1 6/2022 Szabados et al. 2022/0280093 A1 9/2022 Abercrombie, II et al.	JР	2006-136405	6/2006	
2022/0296144 A1 9/2022 Abercrombie, II et al.	JP	2006-520657	9/2006	
2022/0330874 A1 10/2022 Szabados et al.	JP	2007-045967	2/2007	
2022/0330875 A1 10/2022 Szabados et al.	JP	2007-503910	3/2007	
2022/0361793 A1 11/2022 Abercrombie, II et al.	JP	2007-504917	3/2007	
2023/0056777 A1 2/2023 Abercrombie, II et al.	JP	2007-097822	4/2007	
2023/0172511 A1 6/2023 Abercrombie, II et al.	JP JP	2007-296266 2008-532596	11/2007 8/2008	
2023/0172518 A1 6/2023 Szabados et al.	JP	2008-332390	9/2008	
2023/0200702 A1 6/2023 Sepulveda et al. 2023/0207122 A1 6/2023 Park et al.	JP	2009-518099	5/2009	
2023/0248288 A1 8/2023 Bahney et al.	JР	2009-525816	7/2009	
2023/0371873 A1 11/2023 Abercrombie, II et al.	JP	2011-516110	5/2011	
2023/0371874 A1 11/2023 Abercrombie, II et al.	JP	2011-519583	7/2011	
2024/0145080 A1 5/2024 Park et al.	JP	2013-521966	6/2013	
2024/0321455 A1 9/2024 Hytopoulos et al.	JP	5203973	6/2013	
2024/0331875 A1 10/2024 Hytopoulos et al.	JP JP	1483906 S 2014-008166	10/2013 1/2014	
2024/0382130 A1 11/2024 Bahney et al.	JP	5559425	7/2014	
2024/0382131 A1 11/2024 Bahney et al. 2024/0398309 A1 12/2024 Kumar et al.	JР	2014-150826	8/2014	
2024/0398310 A1 12/2024 Kumar et al.	JР	2014-236982	12/2014	
2025/0009271 A1 1/2025 Bahney et al.	JР	2015-530225	10/2015	
2020,00032,1 111 1/2020 Damie, to all	JP	2015-531954	11/2015	
FOREIGN PATENT DOCUMENTS	JP	2016-504159	2/2016	
	JP	2013-517053	5/2016	
AU 2021218704 2/2024	JP JP	2016-523139 2017-136380	8/2016 8/2017	
CA 2 752 154 8/2010	JP	6198849	9/2017	
CA 2 898 626 7/2014	JР	2017-209482	11/2017	
CA 2 797 980 8/2015	JP	2018-504148	2/2018	
CA 2 651 203 9/2017 CA 2 966 182 6/2020	JP	2018-508325	3/2018	
CA 2 966 182 6/2020 CA 3 171 482 3/2024	JP	2018-513702	5/2018	
CN 102038497 7/2012	JP JP	6336640	5/2018	
CN 102883775 12/2014	JP	D1596476 2018-153651	8/2018 10/2018	
CN 103997955 11/2016	JР	2018-174995	11/2018	
CN 303936805 11/2016	JP	2019-503761	2/2019	
CN 107205679 9/2017	JР	6491826	3/2019	
CN 108113647 6/2018 CN 109363659 2/2019	JP	6495228	3/2019	
CN 109303039 2/2019 CN 110491500 11/2019	JP	2019-140680	8/2019	
CN 110766691 2/2020	JP JP	2019-528511 2020-058819	10/2019 4/2020	
CN 110890155 3/2020	JP JP	2020-509840	4/2020	
CN 110974217 4/2020	JP	6766199	9/2020	
CN 115426940 12/2022	JP	2021-003591	1/2021	
CN 116322498 6/2023	JP	6901543	6/2021	
CN 116530951 8/2023 EM 001857966-0001 5/2011	JP	2021-525616	9/2021	
EM 003611714-0001 1/2017	JP	2021-166726	10/2021	
EM 003611714-0002 1/2017	JP JP	2022-501123 2022-037153	1/2022 3/2022	
EM 003611714-0003 1/2017	JP	2022-037133	3/2022	
EM 003611714-0004 1/2017	JP	2022-126807	8/2022	
EM 003611714-0005 1/2017	JР	2023-508235	3/2023	
EP 0509689 4/1992	JP	2023-074267	5/2023	
EP 1738686 6/2006 EP 1782729 5/2007	JР	2023-100210	7/2023	
EP 1782729 5/2007 EP 1981402 10/2008	JP	2023-536981	8/2023	
EP 1981402 10/2008 EP 2262419 12/2010	JP	2023-536982	8/2023	
EP 2395911 12/2011	JP	7406001	12/2023	
EP 2568878 3/2013	JP	2024-009608	1/2024	
EP 2635179 9/2013	JP	2024-502335	1/2024	
EP 2635180 9/2013	JР	2024-021061	2/2024	
EP 2948050 12/2015	JP	2024-026058	2/2024	

(56)	Refere	ences Cited	WO WO 2014/168841 10/2014
(50)			WO WO 2014/197822 12/2014 WO WO 2015/089484 6/2015
	FOREIGN PAL	ENT DOCUMENTS	WO WO 2013/089484 0/2013 WO WO 2016/044514 3/2016
JP	7431777	2/2024	WO WO 2016/044515 3/2016
JP	2024-050777	4/2024	WO WO 2016/044519 3/2016 WO WO 2016/057728 4/2016
JP JP	2024-521799 2024-087811	6/2024 7/2024	WO WO 2016/070128 5/2016
JP	2024-087811	8/2024	WO WO 2016/130545 8/2016
JP	7551696	9/2024	WO WO 2016/172201 10/2016
JP	2024-164285	11/2024	WO WO 2016/181321 11/2016 WO WO 2017/039518 3/2017
JP KR	2025-000653 3003784570000	1/2025 3/2005	WO WO 2017/041014 3/2017
KR	1020050055072	6/2005	WO WO 2017/043597 3/2017
KR	1020140050374	4/2014	WO WO 2017/043603 3/2017
KR	10-1513288	4/2015	WO WO 2017/108215 6/2017 WO WO 2017/159635 9/2017
KR KR	3008476060000 3008476090000	3/2016 3/2016	WO WO 2018/164840 9/2018
KR	3008482960000	3/2016	WO WO 2018/218310 12/2018
KR	3008584120000	6/2016	WO WO 2019/070978 4/2019
KR	3008953750000	2/2017	WO WO 2019/071201 4/2019 WO WO 2019/188311 10/2019
KR KR	3008953760000 3008987790000	2/2017 3/2017	WO WO 2019/191487 10/2019
KR	1020170133527	12/2017	WO WO 2019/233807 12/2019
KR	3009445870000	2/2018	WO WO 2020/008864 1/2020 WO WO 2020/013895 1/2020
KR	3009547690000	4/2018	WO WO 2020/013895 1/2020 WO WO 2020/041363 2/2020
KR KR	3009547710000 10-2019-0114694	4/2018 10/2019	WO WO 2020/058314 3/2020
KR	10-2563372	7/2023	WO WO 2020/224041 11/2020
KR	10-2023-0119036	8/2023	WO WO 2020/0226852 11/2020 WO WO 2020/262403 12/2020
WO WO	WO 99/023943 WO 01/016607	5/1999	WO WO 2020/262403 12/2020 WO WO 2021/150122 7/2021
WO	WO 01/010007 WO 2003/043494	3/2001 5/2003	WO WO 2021/163331 8/2021
wo	WO 2004/100785	11/2004	WO WO 2021/200245 10/2021
WO	WO 2005/025668	3/2005	WO WO 2021/200764 10/2021 WO WO 2021/205788 10/2021
WO WO	WO 2005/037946	4/2005 9/2005	WO WO 2021/203788 10/2021 WO WO 2021/210592 10/2021
WO	WO 2005/084533 WO 2006/094513	9/2003	WO WO 2021/241308 12/2021
WO	WO 2007/049080	3/2007	WO WO 2021/245203 12/2021
WO	WO 2007/036748	4/2007	WO WO 2022/034045 2/2022 WO WO 2022/093709 5/2022
WO WO	WO 2007/063436 WO 2007/066270	6/2007 6/2007	WO WO 2022/147520 7/2022
WO	WO 2007/000270 WO 2007/071180	6/2007	WO WO 2022/251636 12/2022
WO	WO 2007/072069	6/2007	WO WO 2023/114742 6/2023
WO	WO 2007/092543	8/2007	WO WO 2024/102663 A2 5/2024
WO WO	WO 2008/005015 WO 2008/005016	1/2008 1/2008	OTHER BURL ICATIONS
WO	WO 2008/057884	5/2008	OTHER PUBLICATIONS
WO	WO 2008/120154	10/2008	3M Corporation, "3M Surgical Tapes—Choose the Correct Tape"
WO WO	WO 2009/055397 WO 2009/074928	4/2009 6/2009	quicksheet (2004).
wo	WO 2009/074928 WO 2009/112972	9/2009	Akram, Muhammad Usman, "Application of Prototype Based Fuzzy
WO	WO 2009/112976	9/2009	Classifiers for ECG based Cardiac Arrhythmia Recognition", Jan. 1,
WO	WO 2009/112979	9/2009	2008 retrieved from faculty.pieas.edu.pk/Fayyaz/_static/pubfiles/
WO WO	WO 2009/134826 WO 2010/014490	11/2009 2/2010	student/usman_thesis.pdf [retrieved on Feb. 17, 2015] in 93 pages.
WO	WO 2010/104952	9/2010	Altini, et al., An ECG Patch Combining a Customized Ultra-Low-
WO	WO 2010/105203	9/2010	Power ECG SOC With Bluetooth Low Energy for Long Term
WO WO	WO 2010/107913 WO 2010/093900	9/2010 10/2010	Ambulatory Monitoring, Conference: Proceddings of Wireless Health
wo	WO 2010/093900 WO 2011/077097	6/2011	2011, WH 2011, Oct. 10-13, 2011. British-Made Early Warning Monitor A "Game Changer", healthcare-
WO	WO 2011/084636	7/2011	in-europe.com, Mar. 31, 2014.
WO	WO 2011/112420	9/2011	Comstock, Proteus Digital Health Quietly Launches Consumer-
WO WO	WO 2011/143490 WO 2011/149755	11/2011 12/2011	Facing Wearable for Athletes, Mobile Health News, Oct. 29, 2014.
WO	WO 2012/003840	1/2012	Coxworth, Small Adhesive Partch Outperforms Traditional Tech for
WO	WO 2012/009453	1/2012	Detecting Arrhythmia, Scripps, iRhythm Technologies, Jan. 3, 2014.
WO WO	WO 2012/061509 WO 2012/061518	5/2012 5/2012	Del Mar et al.; The history of clinical holter monitoring; A.N.E.; vol.
wo	WO 2012/001318 WO 2012/125425	9/2012 9/2012	10; No. 2; pp. 226-230; Apr. 2005.
WO	WO 2012/140559	10/2012	Enseleit et al.; Long-term continuous external electrocardiogramacord-
WO	WO 2012/160550	11/2012	ing: a review; Eurospace; vol. 8; pp. 255-266; 2006. Feng-Tso Sun et al., "PEAR: Power efficiency through activity
WO WO	WO 2013/065147 WO 2013/179368	5/2013 12/2013	recognition (for ECG-based sensing)", Pervasive Computing Tech-
WO	WO 2013/179308 WO 2014/047032	3/2014	nologies for Healthcare (PervasiveHealth) 2011 5th International
WO	WO 2014/047205	3/2014	Conference On, IEEE, May 23, 2011. pp. 115-122.
WO	WO 2014/051563	4/2014	Hoefman et al.; Optimal duration of event recording for diagnosis
WO	WO 2014/055994	4/2014	of arrhythmias in patients with palpitations and light-headedness in
WO	WO 2014/116825	7/2014	the general practice; Family Practice; Dec. 7, 2006.

Page 10

(56) References Cited

OTHER PUBLICATIONS

Huyett "Keystock & Shim Stock Catalog" p. 9 Feb. 2014. found at https://issuu.com/glhuyett/docs/gl-huyett-keystock-catalog/20 (Year: 2014).

Ikeda Y. et al., "A Method for Transmission Data Reduction for Automated Monitoring System via CNN Distribution Process", Proceedings of the Symposium of Multi-media, Distribution, Coordination, and Mobile (DOCOMO2019), Jul. 2019.

International Preliminary Report on Patentability and Written Opinion in PCT Application No. PCT/US2011/036335, dated Nov. 22, 2012.

International Search Report and Written Opinion in PCT Application No. PCT/US2011/036335, dated Oct. 31, 2011.

Kennedy et al.; The history, science, and innovation of holter technology; A.N.E.; vol. 11; No. 1; pp. 85-94; 2006.

"Mayo Alumni", Mayo Clinic, Rochester, MN, Spring 2011, in 24 pages.

Medtronic Launches Seeq Wearable Cardiac Monitoring System in United States, Diagnostic and Interventional Cardiology, Oct. 7, 2014

Mundt et al. "A Multiparameter Wearable Physiologic Monitoring System for Space and Terrestrial Applications" IEEE Transactions on Information Technology in Biomedicine, vol. 9, No. 3, pp. 382-384, Sep. 2005.

Prakash, New Patch-Based Wearable Sensor Combines Advanced Skin Adhesives and Sensor Technologies, Advantage Business Marketing, Jul. 17, 2012.

Rajpurkar et al, "Cardiologist-Level Arrhythmia Detection with Convolutinal Neural Networks," ARXIV.org, https://arxiv.org/abs/1707.01836. Jul. 6, 2017 in 9 pages.

1707.01836, Jul. 6, 2017 in 9 pages. Redjem Bouhenguel et al, "A risk and Incidence Based Atrial Fibrillation Detection Scheme for Wearable Healthcare Computing Devices," Pervasive Computer Technologies for Healthcare, 2012 6th International Conference On, IEEE, pp. 97-104, May 21, 2012. Reiffel et al.; Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour holter monitors for arrhythmia detection; Am. J. Cardiology; vol. 95; pp. 1055-1059; May 1, 2005.

Request for Reexamination of U.S. Pat. No. 7,020,508 under 35 U.S.C. §§ 311-318 and 37 C.F.R. § 1.913 as submitted Sep. 14, 2012 in 78 pages.

Scapa Medical product listing and descriptions (2008) available at http://www.caapana.com/productlist.jsp and http://www.metplus.co.rs/pdf/prospekti/Samolepljivemedicinsketrake.pdf; retrieved via WayBack Machine Sep. 24, 2012.

Strong, Wearable Technologies Conference 2013 Europe—Notes and Roundup, Wearable Technologies Conference, Feb. 8, 2013. Sumner, Stanford Engineers Monitor Heart Health Using Paper-Thin Flexible 'Skin', Stanford Report, May 14, 2013.

Ward et al.; Assessment of the diagnostic value of 24-hour ambulatory electrocardiographic monitoring; Biotelemetry Patient monitoring; vol. 7; 1980.

Ziegler et al.; Comparison of continuous versus intermittent monitoring of atrial arrhythmias; Heart Rhythm; vol. 3; No. 12; pp. 1445-1452; Dec. 2006.

Zimetbaum et al.; The evolving role of ambulatory arrhythmia monitoring in general clinic practice; Ann. Intern. Med.; vol. 130; pp. 846-8556; 1999.

Zimetbaum et al.; Utility of patient-activated cardiac event recorders in general clinical practice; The Amer. J. of Cardiology; vol. 79; Feb. 1, 1997.

Behind the Design: How iRhythm Built Its New Zio Monitor. Online, published date Oct. 4, 2023. Retrieved on Jun. 18, 2024 from URL: https://www.mddionline.com/cardiovascular/behind-the-design-how-irhythm-built-its-new-zio-monitor.

YouTube.com, "Demonstration of Nintendo controller repair," https://www.youtube.com/watch?v=hzybDNChNeU, Aug. 2010.

Apr. 15, 2025

Sheet 1 of 11

FIG. 1A

FIG. 1B

Apr. 15, 2025

Sheet 2 of 11

FIG. 1C

Apr. 15, 2025

Sheet 3 of 11

U.S. Patent Apr. 15, 2025 Sheet 4 of 11

FIG. 1F

Apr. 15, 2025

Sheet 5 of 11

Apr. 15, 2025

Sheet 6 of 11

Apr. 15, 2025

Sheet 7 of 11

FIG. 5A

FIG. 5B

Apr. 15, 2025

Sheet 8 of 11

U.S. Patent Apr. 15, 2025 Sheet 9 of 11 US 12,274,554 B2

Apr. 15, 2025

Sheet 10 of 11

Apr. 15, 2025

Sheet 11 of 11

DEVICE FEATURES AND DESIGN **ELEMENTS FOR LONG-TERM ADHESION**

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/304,811, filed Jun. 25, 2021, titled "Device Features And Design Elements For Long-Term Adhesion" which claims priority to U.S. application Ser. No. 16/723,208, filed Dec. 20, 2019, titled "Device Features and Design Elements for Long-Term Adhesion" which claims priority to U.S. application Ser. No. 16/138,819, filed Sep. 21, 2018, titled "Device Features and Design Elements for Long-Term Adhesion" which claims priority to U.S. application Ser. No. 15/005,854, filed Jan. 25, 2016, titled "Device Features and Design Elements for Long-Term Adhesion" which claims priority to U.S. application Ser. No. 13/890,144, filed May 8, 2013, titled "Device Features and Design Elements for Long-Term Adhesion" which claims priority to U.S. application Ser. No. 13/563,546, filed Jul. 31, 2012, titled "Device Features and Design Elements for Long-Term Adhesion", which claims priority to U.S. patent application Ser. No. 13/106,750, filed May 12, 2011, which claims priority to U.S. Provisional Patent Application No. 61/334, 081, filed May 12, 2010, entitled "Device Features and Design Elements for Long-Term Adhesion." All of the aforementioned applications are incorporated by reference as if fully set forth herein.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent 35 application was specifically and individually indicated to be incorporated by reference.

FIELD OF THE INVENTION

This application relates to devices worn on a body for monitoring, recording, reporting and/or treating the person wearing the device. Improvements in the device design elements and functionality are disclosed for maintaining the device in contact with and operational for extended periods 45 of time, typically longer than 24 hours.

BACKGROUND OF THE INVENTION

The ability to adhere a medical device to a human body 50 for a long-period of time is dependent on a variety of factors. In addition to the type and nature of the adhesive chosen, another factor is the mechanical design of the device. By design, this refers to, but is not limited to, the device shape, size, weight, flexibility, and rigidity. These design elements 55 are influenced by a number of additional factors, including, hut not limited to, where on the body the device will attach and the duration of the attachment, moisture conditions in that area, movement conditions in that area, stretching and contraction in that area, interactions with external factors in 60 that area such as clothing, and purposeful and/or inadvertent interaction between the person wearing the device and the

As many are typically used on the body for less than 24 hours, devices have not been designed that can withstand 65 longer-term adhesion. Hence, there is a need to implement device features and design elements that have the ability to

2

enhance the likelihood of adhesion of a device to a human body for 24 hours or more, while accommodating the functionality, shape, size, weight, flexibility, and rigidity of a given device.

SUMMARY

In one aspect of the invention, there is an electronic device for long-term adhesion to a mammal. The device has a housing containing an electronic component with a first wing and a second wing integrally formed with the housing. There is an electrode positioned on a bottom surface of each of the wings with the electrodes electrically connected to the electronic component. An adhesive layer is provided tor adhesion to a surface of the mammal. The adhesive layer is coated on a portion of the bottom surface of the wings. The adhesive layer is not coated on the electrode or on a bottom surface of the housing.

The electronic component in any of the devices described 20 herein may include a processor having a memory with computer readable instructions to record signals from the first and second electrodes while the electronic device is attached to the mammal. The processor may be configured to only convert signals from the electrodes to digital signals, filter those signals and then store the signals in memory.

In another aspect, the device includes a flap connected to each of the wings. The flaps may extend below the housing. Additionally or alternatively, the adhesive layer is coated on a bottom surface of the flaps.

In another aspect, the device includes a connector segment In one aspect, the connector segment configured to connect the flaps together. In other aspects, the connector segment is located at least partially below the housing. Still further, the connector segment is not attached to the housing.

In one alternative, the adhesive layer is coated on a bottom surface of the flap.

In still another aspect, the adhesive for adhesion to a surface of the mammal is an adhesive that can absorb fluids. In another aspect, the adhesive that can absorb fluids is a 40 hydrocolloid adhesive. In another aspect, the adhesive for adhesion to a surface of the mammal is a pressure-sensitive adhesive. The pressure sensitive adhesive is selected from the group consisting of: a polyacrylate, a polyisobutylene, and a polysiloxane. In one alternative, the device includes a diffusion barrier between the adhesive layer and each of the wings. The device may also include an additional adhesive layer and material layer between the wing and the adhesive layer for adhesion to the mammal. The material layer is configured to prevent diffusion of adhesive components from the adhesive layer to the wing. The diffusion barrier may be made from polyester or other suitable synthetic material.

In one aspect of the device, all or substantially all of the electronic components are within the housing. In another aspect, the wing is free from electronic components. In one aspect, the wing is more flexible than the housing. In one alternative, the wings and the housing are made from the same material. In another aspect, the wings and the housing are made from different materials. In another, the wings are made from a fabric. In still another aspect, the material used to make the wings includes a synthetic fiber. In another alternative, the wing and the flap are composed of the same

In another alternative, the device includes a hinge portion between the housing wmg, The hinge portion is configured to allow the device to bend between the housing and the wmg. In one aspect, the hinge portion exists between a rigid

portion of the device and a flexible portion of the device. In one alternative, the rigid portion of the device corresponds to the portion of the housing including the electronics and the flexible portion of the device includes a wmg

In one aspect, the bottom surface of the wing and the 5 bottom surface of the flap are contiguous, In another aspect, the bottom surfaces of the wings, the flap, and the connectors are contiguous. In still other aspects, the flaps and the connector are contiguous.

In another aspect, the connector has at least one hole 10 extending it. The hole may have any of a number of shapes such as circular, oval, round, or triangular.

In one aspect, the housing is thicker at a center of the housing than at edges of the housing.

In another aspect of the device, the housing is unattached 15 to the mammal when the electrodes are in contact with the mammal

In another alternative aspect of a device for long-term adhesion to a mammal, the device includes a housing with a first wing extending laterally from the housing and a 20 second wing extending laterally from the housing without overlapping the first wing, There is a first electrode positioned on a bottom surface of the first wing and a second electrode positioned on a bottom surface of the second wing. An electronic memory is positioned within the housing. The 25 electronic memory is configured to receive and store electronic signals from the first and second electrodes while the electronic device is attached to the mammal. There is also an adhesive layer on a portion of a bottom surface of the first wing and the second wing. The adhesive is not on a bottom 30 surface of the housing. When the device is worn on the mammal, only the adhesive layer(s) are attached to the mammal.

In one aspect, the portion of the bottom surface of the first wing and the second wing does not include the first and 35 second electrodes, In one device aspect, the first wing, the second wing, and the housing are formed from the same material. In still another, the first wing, the second wing and the housing integrally form a monolithic structure. In other aspects, an angle formed by the first wing, the second wing, 40 and the housing is between approximately 90° and 180°, In one variation, the angle is approximately 180°, In another variation, the angle is approximately 135°.

In still other embodiments, there is a first hinged portion between the first electrode and the processor and a second 45 hinged portion between the second electrode and the housing.

In a further aspect, at least a portion of the body uncovered is not adhered to the mammal when signals from the electrodes are being recorded in memory.

In another aspect, the device includes a first flap connected to the first wing medial to the first electrode and a second flap connected to the second wing medial to the second electrode. Each nap may extend below the housing.

The device may also include a connector segment configured to connect the flaps together. In one aspect, the connector segment is located at least partially below the housing, but is not attached to the housing.

In another aspect, there is an electronic device that has a patch including a housing containing an electronic component. There is an electrode positioned on a bottom surface of the patch, the electrode electrically connected to the electronic component. There is a first adhesive strip extending around the perimeter of the patch and a second adhesive strip extending around the perimeter of the first adhesive strip, In 65 one aspect, the first adhesive cover over the first adhesive strip and a second adhesive cover over the second adhesive

4

strip, The first and second adhesive covers may be configured to be separably removed from the first and second adhesive strips, In one alternative, the first adhesive strip extends between the first and second adhesive covers. In another alternative, the adhesive in the first and the second adhesive strips is an adhesive that can absorb fluids. In still another aspect, the adhesive that can absorb fluids is a hydrocolloid adhesive. In one alternative, the adhesive in the first and the second adhesive is a pressure-sensitive adhesive. In some aspects, the pressure-sensitive adhesive is a polyacrylate, a polyisobutylene, or a polysiloxane.

In one alternative, the second adhesive strip partially overlaps the first adhesive strip. In another aspect, the second adhesive strip is attached to a shell, the shell overlapping the first adhesive strip.

In still another alternative device for long-term adhesion to a mammal, the device includes a patch having a housing with an electronic component contained therein, There is an electrode positioned on a bottom surface of the patch, The electrode electrically connected to the electronic component There is a porous foam pad configured to be positioned between the electronic component and the mammal. In one aspect, the porous foam pad comprises a biocompatible foam material. In one variation, the porous foam pad can absorb fluids. In still another aspect, the porous foam pad is attached to the housing. In another, the porous foam pad is configured to be attached to the mammal. In another request, the porous foam pad can absorb fluids.

In one aspect of a method of applying an electronic device, there is a step of removing a first adhesive cover from the first wing of the electronic device to expose an electrode and an adhesive coated on a bottom surface of a first wing, There is a step of placing the exposed electrode into contact with the mammal by adhering the adhesive coated bottom of the first wing to the mammal. There is also a step of removing a second adhesive cover from the second wing of the electronic device to expose an adhesive coated on a bottom surface of the second wing and another exposed electrode, There is also a step of placing the another exposed electrode into contact with the mammal by adhering the adhesive coated bottom of the second wing to the mammal. After performing the removing and the placing steps, the housing is unattached to the mammal, but is held in position on the mammal using the adhesive coated bottoms of the first and the second wings.

In one alternative method of attaching a device, the electronic device includes a first nap connected to the first wing and a second flap connected to the second wing. The first and second flaps each extend below the housing. The step of removing a first adhesive cover from the first wing may also include exposing an adhesive coated on a bottom surface of the first flap. The step of removing a second adhesive cover from the second wing may also include exposing an adhesive coated on a bottom surface of the second flap.

In another alternative method of attaching a device, after performing the removing and the placing steps, the housing is held in position on the mammal using only the adhesive coated bottoms of the first wing, the second wing, the first flap and the second flap.

In an alternative aspect of a method of applying an electronic device to a mammal for long-term adhesion, the method includes removing a first adhesive cover from the first wing of the electronic device to expose an electrode and an adhesive coated on a bottom surface of the first wing. There is also a step of removing a second adhesive cover from the second wing of the electronic device to expose an

adhesive coated on a bottom surface of the second wing and another exposed electrode. There is a step of placing the exposed electrodes into contact with the mammal by adhering the adhesive coated on the bottom of the first and the second wings to the mammal, After performing the remov- 5 ing and the placing steps, the housing is unattached to the mammal, but is held in position on the mammal using the

adhesive coated bottoms of the first and the second wings.

There is also provided a method of applying an electronic device to a mammal for long-term adhesion wherein the electronic device includes a patch. The patch includes an electronic component along with an electrode positioned on a bottom surface of the patch and electrically connected to the electronic component. There is a first adhesive strip extending around the perimeter of the patch and a second 15 adhesive extending around the perimeter of the first adhesive strip. One aspect of a method of applying the device includes a step of removing an adhesive cover from the second adhesive strip of the electronic device. There is a step of applying pressure to the second adhesive strip to adhere the 20 second adhesive strip to the mammal such that the electrode is in contact with the mammal. Then, after a period of time, removing an adhesive cover from the first adhesive strip of the electronic device. Next, there is the step of applying pressure to the first adhesive strip to adhere the first adhesive 25 strip to the mammal such that the electrode remains in contact with the mammal.

In another alternative method of applying an electronic device to a mammal for long-term adhesion, the electronic device includes a patch, an electronic component, and an 30 electrode positioned on a bottom surface of the patch and electrically connected to the electronic component. There is a first adhesive strip extending around the perimeter of the patch. The method includes a step of applying pressure to a first adhesive strip to adhere the first adhesive strip to the 35 mammal such that the electrode is in contact with the mammal. After a period of time, placing a second adhesive strip around the perimeter of the first adhesive strip. Then there is the step of applying pressure to the second adhesive strip to adhere the second adhesive strip to the mammal such 40 that the electrode remains in contact with the mammal.

Any of the above described devices may include additional aspects. A device may also include a first wire connecting the first electrode and the processor or an electronic memory and a second wire connecting the second 45 electrode and the processor or an electronic memory. The first and second wires extend within the body and the first and second wings. In one aspect, the first and second wires extend within and are completely encapsulated within the body and the first and second wings. In one aspect, a conduit 50 orientation; is provided within the body and the wings and the wires pass through the conduit. In one alternative, the conduit extends from the processor or electronic memory to an electrode so that the wire is completely within the conduit. In still other aspects of the devices described above, the first and second 55 wires connecting the electrodes to the processor or electronics each include slack between the electrode and the processor. In one aspect, the slack is located in a portion of each wing that is configured to bed or flex. In another aspect, the slack is a portion of the wire within the wing and at least 60 thereon; partially coiled about the first or the second electrode. In still other aspects, the slack is provided by a portion of the wire formed into a coil, a wave pattern, or a sinusoidal pattern along its length the connection point on the electronics to the connection point on the electrode.

In still other alternatives, the devices described above may be applied to any of a wide variety of conventional 6

physiological data monitoring, recording and/or transmitting devices. Any of the improved adhesion design features and aspects may also be applied to conventional devices useful in the electronically controlled and/or time released delivery of pharmacological agents or blood testing, such as glucose monitors or other blood testing devices. Additional alternatives to the devices described may include the specific components of a particular application such as electronics, antenna, power supplies or charging connections, data ports or connections for down loading or off loading information from the device, adding or offloading fluids from the device, monitoring or sensing elements such as electrodes, probes or sensors or any other component or components needed in the device specific function. In still other aspects, the electronic component in any of the above devices is an electronic system configured for performing, with the electronic signals of the mammal detected by the electrodes, one or more or any combination of or the following electronic functions: monitoring, recording, analyzing, or processing using one or more algorithms electronic signals from the mammal. Still further, any of the devices described above may include appropriate components such that the device is used to detect, record, process or transmit signals or information related to signals generated by a mammal to which the device is attached including but not limited to signals generated by one or more of EKG, EEG and/or EMG.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1 is a top view of a patch having two wings;

FIG. 1A is a representative cross-section of an embodiment of the patch in FIG. 1;

FIG. 1B is a representative cross-section of another embodiment of the patch in FIG. 1;

FIG. 1C is a representative cross-section of another embodiment of the patch in FIG. 1;

FIG. 1D is a representative cross-section of another embodiment of the patch in FIG. 1;

FIG. 1E is a representative cross-section of another embodiment of the patch in FIG. 1;

FIG. 1F is a top view of a patch having three wings illustrating an alternative electrode-electronics-electrode

FIG. 2A is a schematic drawing of the electronics contained within a patch;

FIG. 2B is a schematic drawing of a patch with wiring having slack in the form of undulations between electronics and electrodes:

FIG. 2C is a schematic drawing of a patch with wiring having slack in the form of a coil between electronics and electrodes;

FIG. 3 is the bottom view of a patch having adhesive

FIG. 4A shows a patch as worn by a person rolled to the

FIG. 4B shows a patch as worn by a person playing golf; FIG. 5A shows a patch in response to a concave bend of 65 the skin;

FIGS. 5B and 5C show a patch in response to a convex bend of the skin;

7

FIG. 6A is a bottom view of a patch having a connector between two flans:

FIG. 6B is a cross-section of the patch of FIG. 6A;

FIG. 7A is a bottom view of a patch having multiple covers forming strips of adhesive;

FIG. 7B is a cross-section of the patch of FIG. 7A;

FIG. 8A is a bottom view of a patching having multiple covers forming strip of adhesive around each electrode;

FIG. 8B is a cross-section of the patch of FIG. 8A;

FIGS. 9A and 9B show a patch having multiple layers 10 formed thereon;

FIGS. 10A and 10B show a patching having multiple layers formed thereon, each layer having multiple patches of

FIG. 11 shows a patch having an open cell support;

FIG. 12 shows a patch having an annular open cell support;

FIG. 13A shows a patch having a protective shell thereon;

FIG. 13B shows a cross-section of the patch of FIG. 13A. 20 advantageously absorbs water.

DETAILED DESCRIPTION

The following device features and design elements can be implemented into any device being adhered to the human 25 body for a long-period of time, typically greater than 24 hours. As an example, the following device features and design elements can be used for long-term adhesion of a cardiac rhythm monitoring patch ("patch") to the chest of a

Referring to FIGS. 1 and 1A, a patch 100 for long term adhesion includes a housing 102. The housing 102 can be formed from any flexible, durable material, such as a biocompatible polymer, for example silicone. The housing 102 can include electronic components 108 therein. As shown in 35 FIG. 2, the electronics 108 can include a printed circuit board 220, a battery 225, and a communications port mounted on the printed circuit board 220. The printed circuit board 220 can include analog circuits 210, digital circuits 215, and an activation or event notation button or switch 40 for electronic components 108 of the patch 100, The elec-130. The electronics 108 can be used, for example, to record continuous physiological signals from a mammal wearing the patch 100. A system for continuously recording data is described further in co-owned U.S. application Ser. No. 11/703,428, filed Feb. 6, 2007, the entire contents of which 45 are incorporated by reference herein.

As shown in FIGS. 1 and 1A, wings 104, 106 can be connected to the housing 102. The wings 104, 106 can be integral with the housing 102 and, in some embodiments, can be formed of the same material as the housing 102. The 50 wings 104, 106 can be more flexible than the electronic components 108, which can be substantially rigid. An electrode 124, 126 can extend through a bottom surface of each wing 104, 106. The electrodes can be positioned to detect an ECG of a mammal wearing the patch 100 for processing by 55 the electronics 108. For example, the electrodes can be more than 2 cm apart, such as more than 3 cm apart, for example at least 6 cm apart. The electrodes 124, 126 can be integral with the wings 104, 106 so as to be inseparable from the wings 104, 106 when the patch is in use.

For a patch 100 that is entirely flexible and can conform, stretch, and adapt to the movement and conditions of the chest underneath the device, adhesive can be placed over the entire surface of the device that is in contact with the body, except for areas where sensors, electronics, or others elements such as electrodes are interacting with the body related to the functioning of the device may be incorporated.

8

Thus, as shown in FIG. 3, an adhesive layer 166 can coat the bottom of the patch 100 for attachment to the skin, For a patch 100 in which there may be some areas that are not completely flexible and may not be able to stretch or contract (e.g., the electronics 1(8), adhesive may be excluded from the portion of the patch 100 underneath these areas. Thus, for example, the bottom surface 302 of the housing 102, which contains the electronics, can remain free from adhesive. As shown in FIG. 1 A, by not coating adhesive on a bottom surface of the housing 102, the housing 102 can float above the adhered portions, allowing for increased flexibility of the patch, as will be discussed further below. Further, as shown in FIG. 3 the bottom surface of the electrodes 124, 126 can remain free of adhesive. For example, a ring 362 without adhesive can be formed around each electrode 124, 126 to separate the electrodes from the adhesive 164, The adhesive can be, for example, a pressure-sensitive adhesive, such as polyacrylate, polyisobutlene, or a polysiloxane. Alternatively, the adhesive can be a hydrocolloid which

The wings 104, 106 and the housing 102 can form a smooth, contiguous outer surface to the patch 100, As shown in FIG. 1 A, when viewed from the top, the housing 102 and wings 104, 106 can together form an oblong substantially oval shape, Further, the housing 102 can have a thickness that is greater than the thickness of the wings 104, 106. The housing 102 and each of the wings 104, 106 when viewed in profile, can each form a dome with a height that is greater at the center than at the ends of the respective component, i.e. some or all of the components can be tapered at the ends and/or sides.

The electronics 108 can extend along only a portion of the distance between the electrodes 104, 106. For example, the electronics can occupy less than 90% of the distance between the electrodes, for example less than 80%. By having the electronics 108 in a relatively limited space between the electrodes 124, 126, the flexibility of the patch 100 can be increased

The housing 102 can provide a watertight enclosure 110 tronics 108 can be unattached to the housing 102 such that the electronics 108 are free to move within the watertight enclosure 110. Allowing the relatively rigid electronics 108 to move freely within the flexible housing 102 advantageously enhances the overall flexibility of the patch 100, The wings 104, 106 can each have a watertight enclosure 114, 116 formed therein, which can be contiguous with the watertight enclosure 110 of the housing 102.

Wiring 120 or other suitable electrical connections can connect the electrodes 124, 126 with the electrical components 108 of the housing. In some embodiments, as shown in FIGS. 1B-IE, the contiguous nature of the enclosure 110 and the enclosures 114, 116 allows the wiring 120 to extend within the patch 100 from the electrodes 124, 126 to the electronic components 108. In other embodiments, one or more channels, tubes, or conduits are provided between the housing 102 and the wings 104, 106, to provide space for the wiring 120. The tube or channel may be straight or curved. In use, the wire 120 positioned in the enclosures 110, 114, 116 or in the tube or channel may move relative thereto in order to remain flexible within the housing. In one aspect, the flexible channels or tubes are formed within the device housing so that the housing, as it is being stretched, does not affect the ability of the components, such as wires, that may connect more rigid structures, to move or elongate.

As shown in FIG. 1, the wire 120 is straight with a direct line of connection between the electrodes 124, 126 and the

q

electronics 108. FIG. 1 illustrates an embodiment where the length of the wires 120 connecting the electrodes 124, 126 to electronics 108 are about the same distance as the spacing between the electrode connection point on electronics 108 and the electrodes 124, 126. FIG. 1F also illustrates a 5 straight line type connection where wire 120 length is nearly the same as the spacing between the electronics 108 and the electrodes 124, 126. However, as a patient moves, the patch 100 flexes along with patient movement. As shown in FIGS. 4B and 5C, patch flexion may be severe and is likely to occur during long term monitoring. In order to address the possible dislocation or breakage of the wire 120, the length or shape of the wire 120 may be selected to permit patch flexion to occur with little risk of wire 120 pulling from the electrode or electronics. Numerous alternatives are possible to com- 15 pensate for patch flexion. Exemplary confirmations include undulations or zig-zags 231 as shown in FIG. 2B, coils 233 as shown in FIG. 2e, or a configuration that partially or fully wraps around an electrode. In some embodiments, other components, such as the circuit hoard or electrodes, can 20 alternatively or additionally contain additional length to help accommodate stretch or displacement. When the patch 100 is attached to a mammal, the slack in the wiring 120 allows the patch 100 to flex while not placing stress on the wiring

While the illustrated embodiments of FIGS. 1A-1D show only two wings and show the electrodes and electronics in a direct line in a approximate 180 degree alignment of electrode 124 to electronics 108 to electrode 126), other configurations are possible. For example, as shown in FIG. 30 1F, the wings 104, 106 are arranged in an orientation less than 180 degrees. In the illustrated embodiment, the angle formed by the electrodes and the electronics is about 135 degrees. Other ranges are possible so long as electrode spacing is provided to permit ECG monitoring. The orientation of the wings 104, 106 to the housing 102 also illustrates the use of an additional adhesive tab 105. Tab 105 is shown as a semicircular extension of the body 102. The bottom of tab 105 can include adhesives as described herein and is used to provide additional anchoring of the patch to 40 the patient. The tab 105 may be formed in any of a number of different shapes such as rectangles, ovals, loops or strips. Further, in some embodiments, the tab 105 can function similar to a wing, e.g., include an electrode therethrough that connects to the electronics 108.

Referring to FIGS. 1A-1D and 2B-2C, a hinge portion 194.196 in the patch 100 can extend between each electrode 124, 126 and the electronics 108. The hinge portions 194, 196 can have a thickness less than the thickness of surrounding portions of the patch 100, For example, if the hinge 50 portions 194, 196 are in the wings 104, 106, then the thickness can be less than adjacent portions of the wings. Likewise, the hinge portions 194, 196 can have a width less than adjacent portions of the patch 100, e.g., less than adjacent portions of the wings 104, 106. Alternatively, the 55 hinged portion can be formed by the adjunct between a rigid portion, i.e. the electronics 108, and a more flexible portion, The hinged portion allows the patch 100 to bend between the housing 102 and wings 104, 106 to compensate for any movement caused by the patient. As shown in FIGS. 2B and 60 2C, the slack in the wiring 120 can be placed at or proximal to the hinge portions 194, 196 to allow for bending at the hinge portions 194, 196 without pulling or breaking the wiring 120.

Referring to FIGS. 4A and 4B, having adhesive on the 65 bottom of the patch 100 except in the areas substantially around the electrodes and directly underneath the housing

10

102 can create a floating section 455 over the skin of the mammal to which the patch 100 is attached. The floating section 455 can house the more rigid or less flexible electronic components while the flexible wings 104, 106 can be adhered to the skin and provide the flexibility necessary to hold the patch 100 in place. As a result of this selective use of adhesive areas and non-adhesive areas, the limitation on device flexibility imposed by the less flexible floating section can be mitigated or reduced by hounding the floating section with one or more adhered flexible areas. The flexible sections can thus adhere to the body if the underlying portion of the body is stretched and/or contracted while the floating section is free to move above the skin, for example if the person wearing the device rolls over (as shown in FIG. 4A) or is involved in activities that can otherwise cause movement of the skin (as shown in FIG. 4B).

Referring back to FIGS. 1B-1E, each wing 104, 106 can include a material layer 214,216 between the adhesive 164, 166 and the wings 104, 106, The material layer 214,216 can be, for example, a polyester layer. The material layer 214, 216 can be attached to the patch 100 with a layer of adhesive 204,206, The adhesive 204, 206 can be the same as the adhesive 164, 166 or different. For example, the adhesive 204, 206 could be a silicone adhesive. The material layer 214 can serve as a barrier to prevent diffusion or migration of adhesive components, such as a tackifier, from the adhesive 164, 166 into the wings 104, 106 or housing 102. The material layer 214 can thus advantageously serve to maintain the strength of the adhesive 104, 106 over time.

Referring still to FIGS. 1B-IE, the patch 100 can further include a first flap 154 connected to the first wing 104 and a second flap 156 connected to the second wing 106. The flaps 154, 156 can both extend from a position on the wings 104, 106 medial to the electrodes to a position below the housing 102, such as below the electronics 108. The flaps 154, 156 can remain unattached to the housing 102. As a result, gaps 144, 146 can be formed between the flaps 154, 156 and the housing 102. The gaps can provide additional "floating" for the housing 102 and the relatively rigid components 108 contained therein.

In some embodiments, shown in FIG. 1B, the flaps 154, 156 can be attached to the wings 104, 106 with adhesive 134, 136. The adhesive 134, 136 can be the same as the adhesive 164, 166 or different. For example, the adhesive 134, 136 could be a silicone adhesive. In other embodiments, shown in FIGS. 1C-IE, the flaps 154, 156 can be integral with the wings 104, 106. For example, the flaps 154, 156 can be solvent welded to and/or formed during the molding process of the wings 104, 105 such that hinges 194, 196 form below the wings 104, 106. Additionally or alternatively, one or more of the flaps 154, 156 may be separably attached to the wings 104, 106. In some embodiments, shown in FIGS. 1B and 1C, the materials making up the flaps 154, 156 can extend all the way to the lateral edge of the patch 100. In other embodiments, shown in FIG. 1D, a flap can extend on each side of the electrodes, i.e. one flap can extend medially and the other laterally. In some embodiments, the lateral and medial-extending flaps are part of the same annular flap. In other embodiments, shown in FIG. 1E, the flaps and materials making up the flaps extend only from a position medial to the electrodes underneath the housing.

The Flaps **154**, **156** may be positioned in virtually any relationship to the adhered flexible area such that, when attached in use, the attachment of the flap or flaps effectively counteracts the expected external forces acting on the device, specifically those forces that may dislodge the adhered flexible areas. Further, in embodiments such as that

11

shown in FIG. 1F where there are more than two wings, there can be a flap corresponding to each additional wing.

The adhesive layers 164, 166 can coat all or a portion of the bottom of each of the flaps 154, 156. In some embodiments, the adhesive 164, 166 extends continuously from the 5 bottom surface of the wings 104, 106 to the bottom surface of the flaps 154, 156, except for areas proximate to the electrodes 124, 126. Further, the top surface of the flaps 154, 156, i.e. the surface closest to the housing 102, can remain free of adhesive to ensure that the housing 102 remains 10 floating. In some embodiments, the only portion of the patch 100 including adhesive for adhesion to the skin can be the flaps 154, 156.

Referring to FIGS. 5A-5C, the naps 154, 156, can provide hinge-like behavior for the patch 100, Thus, as shown in 15 FIG. 5A, if the skin 501 is stretched or bent in a concave manner, the gaps 144, 146 between the flaps 154, 156 and the housing 102 can approach zero such that the patch 100 can sit substantially flat on the skin 501. As shown, the hinge portions 194, 196 between the housing 102 and wings 104, 20 106 can provide additional flexibility for concave bends by flattening as the patch 100 is stretched. In contrast, as shown in FIGS. 5B and 5C, as the skin 501 is bent in an increasingly convex manner, the gaps 144, 146 between the flaps 154, 156 and the housing 102 can increase, thereby allowing 25 the flexible wings 104, 106 to remain adhered to the skin and the rigid housing 102 to float above skin. As shown, the hinge portions 194, 196 between the housing and the wings 104, 106 can provide additional flexibility for convex bends by folding inward as the patch 100 is bent.

When placed substantially flat on the skin 501, the patch 100 can have a height that extends no more than 2 cm off of the skin, such as no more than 1.5 cm off of the skin, when lying flat on the patient and no more than 4 cm, such as no more than cm off of the skin when floating above the skin. 35 The relatively low height of the patch 100 can enhance long-term adhesion by reducing the potential for the patch] 00 to snag or rip off of the skin.

Advantageously, the flaps **154**, **156** can function as anchors for adhesion that mitigates shear force. The flaps 40 **154**, **156** can provide a different direction for the acute and chronic forces being experienced by the device due to stretching, contraction, or torsion to be spread out over both the flap as well as the flexible adhesive areas. Further, by pre-aligning the orientation of the floating section, adhered 45 flexible area and the flaps, the device may be better able to tolerate (i.e., remain attached to the body and in use) and/or tailor the interaction with the forces acting on the device in order to better withstand the acute or chronic forces being experienced by the device. Tailoring the response of the 50 device to the expected forces is one

Because the flaps can be used to counteract forces acting on a particular device, it is to be appreciated that the dimensions, flexibility, attachment technique, and/or orientation between a flap and another component may vary 55 depending upon the purpose of a particular flap. Accordingly, a flap may have the same or different characteristics from another flap or component of the device. In one aspect, at least one flap is more flexible that the other flaps in a particular device. In another aspect, each of the flaps has 60 similar flexibility. In still another aspect, at least one flap is more flexible than the device component to which it is attached or from which it originates. In still another aspect, at least one flap is less flexible than the device component to which it is attached or from which it originates.

Referring to FIGS. 6A and 6B, in one embodiment, the flaps 154, 156 may be augmented by a connector segment

12

607 used to join the flaps together. The connector segment 607 can extend below the housing 102, but remain unattached to the housing 102. As shown in FIG. 6A, the flaps 154, 156 and the connector 607 can together form a butterfly shape. In one embodiment, the connector segment 607 and the flaps 154, 156 are formed from a single piece of material. The connector segment 607 can be made of the same material as the flaps 154, 156 or of different material. In one embodiment, the bottom surface of the connector is covered with adhesive. In another embodiment, the bottom surface of the connector does not include any adhesive. Further, as shown in FIG. 6B, the connector segment 607 can be thicker in the middle, under the housing 102, than near the edges, i.e., closer to the electrodes. The variable thickness can help prevent the connector segment 607 from capturing moisture thereunder. The connector segment 607 can advantageously prevent the device from flipping when attached to the patient

The connector segment 607 can include one or more holes 614, 616. In some configurations, the connector segment may trap moisture and/or inadvertently stick to the body. The holes 614, 616 can advantageously minimize the potential for undesired sticking or moisture collection. The size, shape and placement of the holes mitigate or reduce the collection of moisture and/or undesired adhesive still providing a connector with sufficient structural integrity (i.e. the connector allows the flaps to be connected to one another in order to prevent them from folding). Additionally or alternatively, the connector holes could also be made to preferentially allow forces to be distributed along certain axes of the connector in order to further maximize the ability of the device to adhere tong-term in the face of significant acute and chronic forces due to stretching, contraction, and torsion.

Adhesive can be selectively applied to the connector and/or naps to provide the desired body attachment locations depending upon the specific use of the device. For example, one piece of material including flaps and the connector can be adhered along two or more edges and/or with adhesive only covering certain areas, In another aspect, at least a portion of the skin-contacting surface of the unitary nap connector structure does not include any adhesive. Additionally or alternatively, the connector segment incorporating the flaps may be integral parts of the larger device housing (e.g. could be molded as part of the device housing or enclosure).

In some embodiments, the patch 100 can include one or more release liners to cover parts of the adhesive prior to adhesion. As is particular to devices having multiple adhesive areas and/or multiple adhesive components (i.e., flaps and flexible sections), the manner of applying the device may be specifically detailed in order to ensure that the device and the adhesive portions are properly engaged. In one particular aspect, the release liners are removed in a particular order to minimize the likelihood that the device adhesive is misapplied. For example, a portion of the adhesive may be exposed first and used to affix the device to the body, Thereafter, a second set of adhesive liners may be removed to expose and affix one or more flaps to the body, A stepwise adhesive exposure method may be implemented during device application such that elements, such as the one or more flaps do not fold on themselves, for example.

Breaking up the areas in which the adhesive is used to adhere the device, whether it be splitting it up to rigid areas, to create flaps, to create connector segments with holes, of any of the other techniques described above may also have benefits in terms of preventing moisture bridges that could act as conducting pathways between electrical sensing ele-

13

ments, such as electrodes. Bridges of moisture could short-circuit electrical connections and/or prevent the proper functioning of the device, particularly if the device has an electrical function, such as sensing via electrodes.

In some applications, a long-duration patch may experience excessive forces due to acute (quick and/or rapid) or chronic (slow and/or prolonged) contraction, stretching, or torsion. In such applications, the hinge points between a floating rigid section and flexible adhered sections may be modified in order to align with and counteract or mitigate the 10 predominant direction of the force acting on the patch. In some device situations or configurations, the strength and direction of the acute or chronic force may be so strong that the forces imparted on the device adhesive surfaces or components may be distributed differently in addition to or 15 as an alternative to the hinge described above.

Further, the device construction can be made in such a way that the housing is fashioned so that the axes of the housing are structured and placed along or against the direction of various forces, possibly during certain states, 20 such as sleeping, so that the device itself can help counteract these forces and improve long-term adhesion.

Advantageously, the patch described herein can provide long-term adhesion to the skin. Having the various flexible portions and/or hinged portions can compensate for stressed 25 caused as the skin stretches or bends, while allowing the rigid portion to float about the skin. As a result, the devices described herein can adhere to the skin substantially continuously tor more than 24 hours, such as greater than 3 days, for example, greater than 7 days, greater than 14 days, 30 or greater than 21 days.

Another mechanism for adhering a patch to the skin long-term is described with respect to FIGS. **7-10**. As shown in the embodiments of FIGS. **7-10**, one or more parts of the patch are used in a temporary fashion in order to improve 35 adhesion. The adhesive used in the embodiments described below can include a hydrocolloid or a pressure-sensitive adhesive, such as polyacrylate, polyisobutylenes, or polysilograps.

In one embodiment, shown in FIGS. 7A and 7B, the patch 40 700 can be surrounded with an adhesive 760 having multiple covers 701, 703, 705 thereon that can be peeled away in a sequence to expose strips of adhesive 760 underneath. The covers 701,703,705 can be concentric with one another and be configured to be pulled off separately and sequentially 45 starting from the inside of the patch 700. Each additional exposed area of adhesive 760 can increase the adhesion life of the patch 700. Although only three covers are shown in FIG. 7 A, other numbers, such as 2, 4, 5, or more are possible. Further, each electrode 124, 126 of the patch 700 50 can include a barrier 714,716 to protect the electrodes 124, 126 from shortage.

In another embodiment, shown in FIGS. 8A and 8B, each electrode 124, 126 can be surrounded by a patch of adhesive 864, 866. Accordingly, a set of covers 801, 803, 805, 807 can 55 be positioned sequentially around each of the electrodes 124, 126 over the adhesive 864, 866. The covers 801, 803, 805, 807 can be concentric with one another and be configured to be pulled off sequentially starting from the inside. Each additional exposed strip of adhesive 864, 866 can 60 increase the adhesion life of the patch 100. Although only four covers are shown in FIG. 8A, other numbers, such as 2, 3, 5, or more are possible. Further, each electrode 124, 126 of the patch 800 can include a barrier 814, 816 to protect from shortage.

Referring to FIGS. 9A-9B, in other embodiments, shells or layers 901,902,903 can extend over all or a portion of the

14

patch 900. Each layer 901,902,903 can include a strip of adhesive 962 on the bottom surface and an adhesion guard 982 protecting the adhesive. As shown in FIG. 913, as the patch 900 is worn over a period of time, the layers 901, 902, 903 can be sequentially removed. As a new layer is exposed, the adhesive guard 982 of that layer can be peeled away such that the adhesive 962 of the new layer can be used to adhere the patch 900 to the skin, In a similar embodiment, referring to FIGS. 10A-10B, each of the layers 1001, 1002, 1003 can include multiple portions of adhesive to help adhere the layer to both the skin and the patch itself. As with the embodiments of FIGS. 7-8, the number of layers in the embodiments of FIGS. 9 and 10 can vary. For example, there can be 2, 3, 4, or 5 or more layers.

In some embodiments, the layers or covers of the embodiments described herein can be added to the device over time to improve adhesion. Further, the multiple layers or covers of the embodiments described herein can be partially overlapped. Further, in some embodiments, the strips of adhesive can be overlapped.

Advantageously, the use of multiple covers or layers can assist in the adhesive performance of a base or core device because the added surface area or adhesive force of the combined outer layer aids in preventing layer pull away and/or may act to spread forces being experienced away from the core device by spreading those forces over a larger area.

Referring to FIGS. 11 and 12, an open cell structured support 1330 or porous foam can be used to support a more rigid or less flexible portion 1302 of the patch 1300, As shown in FIG. 11, the open cell structured support 1330 can fully fill an area below the rigid portion 1302. Alternatively, as shown in FIG. 12, the open cell structured support 1330 can be an annular shape or have some other configuration that includes spaces between adjacent portions of the support. The open cell structured support 1302 may be attached to both the skin and to the rigid portion, to only the rigid portion, or to only the skin. Because of the open cell structure of the support, the flexible movement of the skin can be absorbed by the structure entirely or partially such that the rigid portion does not impact or has a reduced impact on the ability of the device to accommodate movement and remain affixed. In addition, the open cell support may have a thickness selected to enhance patient comfort so that the more rigid portion of a device does not push against the skin. In one aspect, the open cell structure is a biocompatible foam material. In another aspect, the open cell material is positioned between an electronics module on the device and the skin when worn by a patient. The open cell support can advantageously absorb fluids to keep the electrodes from shorting.

Referring to FIG. 13, the patch can have a shell design. Adhesive can be placed on the perimeter edge of the bottom ring. The circuit board and electrode unit can be dropped into the bottom ring, and a shell can be dropped on top of the circuit board and electrode. The perimeter adhesive can create a watertight chamber therein.

The shape of a particular electronic device embodiment may vary. The shape, footprint, perimeter or boundary of the device may be a circle or circular (see FIG. 13A), an oval (see FIG. 1A, 2A), a triangle or generally triangular (see FIG. 1F) or a compound curve. Examples of a device embodiments having a compound curve shape are shown in FIGS. 2B, 2B, 3, 6A, 7A, and 8A. In some embodiments, the compound curve includes one or more concave curves and one or more convex curves. FIG. 3 illustrates a device having a convex surface along the top (where reference 102

15

indicates), a concave surface along the bottom and convex shaped edges around the electrodes 124, 126. FIGS. 2B and 2C illustrate a device embodiment having a convex shape on either side of the electronics 108 and around the electrodes 124, 126. The convex shapes are separated by a concave 5 portion. The concave portion is between the convex portion on the electrodes, In some embodiments, the concave portion corresponds at least partially with a hinge, hinge region or area of reduced.

While described in the context of a heart monitor, the 10 device adhesion improvements described herein are not so limited. The improvement described in this application may be applied to any of a wide variety of conventional physiological data monitoring, recording and/or transmitting devices. The improved adhesion design features may also be 15 applied to conventional devices useful in the electronically controlled and/or time released delivery of pharmacological agents or blood testing, such as glucose monitors or other blood testing devices. As such, the description, characteristics and functionality of the components described herein 20 may be modified as needed to include the specific components of a particular application such as electronics, antenna, power supplies or charging connections, data ports or connections for down loading or off loading information from the device, adding or offloading fluids from the device, 25 monitoring or sensing elements such as electrodes, probes or sensors or any other component or components needed in the device specific function. In addition or alternatively, devices described herein may be used to detect, record, or transmit signals or information related to signals generated 30 by a body including but not limited to one or more of EKG, EEG, and/or EMG.

What is claimed is:

- 1. An electronic device for long-term adhesion to a user, the device comprising:
 - a housing comprising a physiologic data collection circuit, the housing positioned over a flexible layer extending from beneath the housing, the flexible layer comprising an electrode positioned on the bottom of the flexible layer at a position distal from the housing, 40 wherein the flexible layer comprises a polymer upper layer overlying an electrical connection, the electrical

16

connection extending linearly from the physiologic data collection circuit to the electrode when viewed from above the electronic device, the polymer upper layer adhered to a polymer lower layer underlying the electrical connection;

- a connecting adhesive layer positioned under the polymer upper layer, the connecting adhesive layer adhering the polymer upper layer to the polymer lower layer; and
- a lower adhesive layer positioned on the flexible layer and configured to adhere the electronic device to a user.
- 2. The electronic device of claim 1, further comprising a flap extending beneath the housing.
- 3. The electronic device of claim 1, wherein the housing is rigid.
- 4. The electronic device of claim 1, wherein the housing is configured to remain connected to the flexible layer when the housing is tilted at an angle relative the lower adhesive layer in response to movement of the user.
- 5. The electronic device of claim 1, further comprising a hinge portion adjacent the housing.
- **6**. The electronic device of claim **1**, wherein the lower adhesive layer comprises a hydrocolloid adhesive.
- 7. The electronic device of claim 1, wherein the physiologic data collection circuit is configured to collect cardiac rhythm data from the user.
- **8**. The electronic device of claim **1**, wherein the polymer upper layer extends horizontally away from the housing beyond a boundary of the electrode.
- 9. The electronic device of claim 1, further comprising an upper adhesive layer positioned over the polymer upper layer.
- 10. The electronic device of claim 9, wherein the upper adhesive layer is positioned above the electrode.
- 11. The electronic device of claim 10, wherein the upper adhesive layer extends horizontally away from the housing beyond a boundary of the polymer upper layer.
- 12. The electronic device of claim 1, wherein the lower adhesive layer extends at least partially below the housing.
- 13. The electronic device of claim 1, wherein the lower adhesive layer does not extend below the housing.

* * * * *