SHIFT REGISTERS

Aim:-

Realization of 3-bit counters as a sequential circuit and Mod-N counter design (7476, 7490, 74192, 74193).

Apparatus Required: -

IC 7495, etc.

Serial In Parallel Out:

- 1. Connections are made as per circuit diagram.
- 2. Apply the data at serial i/p
- 3. Apply one clock pulse at clock 1 (Right Shift) observe this data at QA.
- 4. Apply the next data at serial i/p.
- 5. Apply one clock pulse at clock 2, observe that the data on QA will shift to QB and the new data applied will appear at QA.
- 6. Repeat steps 2 and 3 till all the 4 bits data are entered one by one into the shift register.

SIPO (Right Shift):-

Clock	Serial i/p	QA	QB	QC	QD
1	0	0	X	X	X
2	1	1	0	X	X
3	1	1	1	0	X
4	1	1	1	1	0

Serial In Serial Out:

- 1. Connections are made as per circuit diagram.
- 2. Load the shift register with 4 bits of data one by one serially.
- 3. At the end of 4th clock pulse the first data 'd0' appears at QD.
- 4. Apply another clock pulse; the second data 'd1' appears at QD.
- 5. Apply another clock pulse; the third data appears at QD.
- 6. Application of next clock pulse will enable the 4th data 'd3' to appear at QD. Thus the data applied serially at the input comes out serially at QD

SISO:-

Clock	Serial i/p	QA QB		QС	QD	
1	do=0	0	X	X	X	
2	d1=1	1	0	X	X	
3	d2=1	1	1	0	X	
4	d3=1	1	1	1	0=do	
5	Х	X	1	1	1=d1	
6	Х	X	X	1	1=d2	
7	Х	X	X	X	1=d3	

Parallel In Parallel Out:

- 1. Connections are made as per circuit diagram.
- 2. Apply the 4 bit data at A, B, C and D.
- 3. Apply one clock pulse at Clock 2 (Note: Mode control M=1).
- 4. The 4 bit data at A, B, C and D appears at QA, QB, QC and QD respectively.

PIPO:-

Clock	P	aral	lel i	/p	Parallel o/p			
	Α	В	С	D	QA	QB	QC	QD
1	1	0	1	1	1	0	1	1

Parallel In Serial Out:-

- 1. Connections are made as per circuit diagram.
- 2. Apply the desired 4 bit data at A, B, C and D.
- 3. Keeping the mode control M=1 apply one clock pulse. The data applied at A, B, C and D will appear at QA, QB, QC and QD respectively.
- 4. Now mode control M=0. Apply clock pulses one by one and observe the data coming out serially at QD.

PISO:-

Mode	Clock	Parallel i/p				Parallel o/p			
		A	В	С	D	QA	QΒ	QC	QD
1	1	1	0	1	1	1	0	1	1
0	2	X	X	X	Х	X	1	0	1
0	3	X	X	X	Х	X	X	1	0
0	4	X	X	X	X	X	X	X	1

Left Shift:

- Connections are made as per circuit diagram.
- 2. Apply the first data at D and apply one clock pulse. This data appears at QD.
- 3. Now the second data is made available at D and one clock pulse applied. The data appears at QD to QC and the new data appears at QD.
- 4. Step 3 is repeated until all the 4 bits are entered one by one.
- 5. At the end 4^{th} clock pulse the 4 bits are available at QA, QB, QC and QD.