

Linux, Windows czy MacOS?

Czym jest system operacyjny?

Oprogramowanie zarządzające systemem komputerowym, tworzące środowisko do uruchamiania i kontroli zadań.

Współczesne systemy operacyjne

- Linux
- Windows
- MacOS
- Android
- iOS
- I inne ...

System operacyjny - zadania

- Planowanie i przydział czasu procesora dla zadań,
- Kontrola i przydział pamięci operacyjnej dla uruchomionych zadań,
- Dostarczanie mechanizmów do synchronizacji zadań i komunikacji pomiędzy zadaniami,
- Obsługa sprzętu,
- Ustalanie połączeń sieciowych,
- Zarządzanie plikami.

info Share

Linux

- Wolne i otwarte oprogramowanie
- Pierwsza wersja jądra Linuksa opublikowana 17 września 1991
- Twórca: fiński programista Linus Torvalds
- Geneza nazwy: Linus + Unix :)
- Potem też akronim rekurencyjny Linux Is Not UniX

Jądro Linuksa (kernel)

- Największa część kodu napisana w C, pozostała część to wstawki w asemblerze.
- Obsługuje wielozadaniowość, wielowątkowość, pamięć wirtualną, biblioteki współdzielone, ładowanie na żądanie, współdzielony kod wykonywalny, zarządzanie pamięcią i obsługę sieci TCP/IP.

Windows?

WSL

https://docs.microsoft.com/en-us/windows/wsl/install

Putty (https://www.putty.org/)

Windows Terminal (https://github.com/microsoft/terminal)

MacOS

HomeBrew (https://brew.sh/)

Uwaga na różnice w terminalu!

Jaka dystrybucja na stację roboczą?

elementary OS

Jaka dystrybucja na serwer?

RedHat

CentOS

Ubuntu

Debian

AlmaLinux

RockyLinux

Fedora CoreOS

Fedora CoreOS to automatycznie aktualizujący się, minimalistyczny, monolityczny system operacyjny skoncentrowany na kontenerach, zaprojektowany dla klastrów, ale także działający samodzielnie, zoptymalizowany pod kątem Kubernetes, ale także świetny bez niego.

Fedora vs Fedora CoreOS

- Dostosowywany podczas instalacji poprzez plik konfiguracyjny (ignition)
- Ignition file może partycjonować dyski, formatować system plików, tworzyć użytkowników, zapisywać pliki w tym usługi systemd.
- System (immutable) wszystko jest tylko do odczytu poza katalogami /etc i /var które są dostępne do odczytu i zapisu.
- Infrastruktura powinna być zamknięta w pliku konfiguracyjnym Ingition i kontenerach.

Na potrzeby kursu potrzebujemy Ubuntu

Vagrant

- vagrant init hashicorp/bionic64
- vagrant up
- vagrant ssh

vagrant destroy

 Może być też "po prostu" Ubuntu, VirtualBox (bez Vagranta), WSL (Windows Subsystem for Linux), AWS EC2, etc.

Podstawy Linuksa

Systemy plików

- ext
- ext2 ulepszony ext
- ext3 bazujący na ext2, z księgowaniem oraz szybszymi operacjami na

katalogach

- ext4 bazujący na ext3, z lepszą alokacją miejsca na dysku, zwiększonymi limitami, możliwością defragmentacji online
- btrfs nowoczesny system plików z księgowaniem, migawkami,
 klonowaniem, zarządzaniem wolumenami wzorowany na ZFS (Solaris)
- **swap** w zasadzie brak systemu plików, przestrzeń wymiany (struktura)

Najważniejsze katalogi

/bin binarne (wykonywalne) pliki najbardziej podstawowych narzędzi systemowych

/boot pliki niezbędne do uruchomienia systemu (kernel, initrd, pliki bootloadera - w przypadku GRUB)

/dev znajdujące się tutaj pliki nie są faktycznie plikami na dysku, lecz odnoszą się do urządzeń - za ich pośrednictwem system

komunikuje się z urządzeniami (komunikacja niskopoziomowa)

/etc pliki konfiguracyjne, ustawienia systemowe

/home pliki określające ustawienia każdego użytkownika, ponadto jest on przeznaczony na zapisywanie danych, np. dokumentów,

obrazków, muzyki i wszelkich plików których używamy na co dzień

Najważniejsze katalogi

/lib systemowe biblioteki dzielone (shared libraries), zawierające funkcje które są wykonywane przez wiele różnych programów

/media dostęp do nośników wyjmowanych (miejsce montowania nośników wymiennych) (np. pendrive, CD-ROM)

/mnt dostęp do "montowanych" dysków (w dystrybucjach takich jak Ubuntu, dyski są montowane w /media)

/proc wirtualny katalog, zawierający dane o aktualnie uruchomionych procesach

/root ustawienia użytkownika root - głównego administratora każdego systemu uniksowego, który ma maksymalne uprawnienia

Najważniejsze katalogi

/sbin pliki wykonywalne poleceń, które mogą być wykonywane tylko przez administratora

/tmp pliki tymczasowe

/usr dodatkowe programy, które umożliwiają pracę zwykłemu użytkownikowi systemu

/var pliki systemowe, ale których zawartość często się zmienia, jak logi programów/systemu, pliki html czy skrypty php/cgi

wykorzystywane przez serwer www - inaczej mówiąc są to dane zapisywane przez system i ważniejsze programy

i-węzeł (index-node lub i-node)

- Wszystko jest plikiem
- Każdy plik (bezpośrednio lub pośrednio) wskazuje na i-node
- I-węzły są strukturami opisującymi pliki w systemie zawierają wszelkie

informacje związane z plikiem z wyłączeniem danych pliku oraz jego nazwy

- Podgląd informacji:
- stat nazwa_pliku