Odpowiedzi i schematy oceniania

Arkusz 7

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania		
zadania	odpowiedź			
1.	A.	$W = -27 \cdot \frac{1}{9} = -3 \Rightarrow 2W = -6$, zatem wartość wyrażenia została		
		zmniejszona o 3.		
2.	В.	$x = 1 + \frac{2}{n}$. Tylko liczby 1 i 2 spełniają warunki zadania, dla		
		większych liczb naturalnych drugi składnik sumy jest ułamkiem		
		właściwym.		
3.	A.	Np. $x = 2 - \sqrt{3}$, $y = 4 + \sqrt{3} \Rightarrow x + y = 6$.		
4.	C.	W podanym zbiorze wraz ze wzrostem argumentów maleje wartość		
		funkcji.		
5.	D.	$\sqrt{3} \cdot \sqrt{3} - 2y + 3\sqrt{3} = 0 \Rightarrow y = \frac{3}{2} + \frac{3\sqrt{3}}{2}$		
6.	B.	Skorzystaj z definicji wartości bezwzględnej i pamiętaj, że $0 = -0$.		
7.	D.	$ x-3 = 3 - x \Rightarrow x - 3 \le 0 \Rightarrow x \le 3$		
8.	D.	$a^3 - 3a^2 + 4a = 12 \Rightarrow a^2(a-3) + 4(a-3) = 0 \Rightarrow (a^2 + 4)(a-3) = 0$		
		zatem $a = 3$.		
9.	A.	Skorzystaj z zasady rysowania funkcji $y = -f(x)$.		
10.	C.	$a_n = 7n + 1$, zatem $a_6 = 43$		
11.	C.	$2^n < 32 \Rightarrow 2^n < 2^5$, więc liczby naturalne dodatnie spełniające tę		
		nierówność to 1, 2, 3, 4.		
12.	В.	Gdy zwiększamy n , ułamek $\frac{1}{n}$ się zmniejsza.		
13.	B.	Każdy punkt symetralnej odcinka jest jednakowo odległy od końców		
		tego odcinka.		
14.	D.	$ r_1 - r_2 < S_1 S_2 < r_1 + r_2$, więc okręgi przecinają się.		

15.	C.	$ \angle CAO = 10^{\circ} \Rightarrow \angle CDA = 180^{\circ} - 10^{\circ} - 140^{\circ} \Rightarrow CDA = 30^{\circ}$
16.	D.	x, $2x$ – boki prostokąta, d – przekątna prostokąta,
		$d = x\sqrt{5} \Rightarrow \cos \alpha = \frac{2x}{x\sqrt{5}} \Rightarrow \cos \alpha = \frac{2\sqrt{5}}{5}$.
17.	C.	Nierówność przekształcamy do postaci $(x-1)^2 + (y+3)^2 \le 0$, zatem
		spełnia ją jedynie punkt $P = (1, -3)$.
18.	A.	a – krawędź sześcianu, d – przekątna sześcianu,
		wiec $a^3 = 6\sqrt{6} \Rightarrow a = \sqrt{6} \Rightarrow d = a\sqrt{3} \Rightarrow d = \sqrt{18} \Rightarrow d = 3\sqrt{2}$.
19.	C.	3x, $2x$ – odpowiednio ramię i podstawa trójkąta będącego
		przekrojem,
		$r = x$, zatem $\sin \alpha = \frac{x}{3x} = \frac{1}{3}$.
20.	D.	$\stackrel{=}{\Omega} = 16, \stackrel{=}{A} = 11 \Rightarrow P(A) = \frac{11}{16}$
21.	B.	$\bar{x} = \frac{3+3+4+4+4+5+5+6}{8} = 4,25$

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
22.	Wyznaczenie pierwiastków trójmianu: $x_1 = -4, x_2 = \frac{1}{2}$.	1
	Rozłożenie wielomianu na czynniki: $W(x) = 2(x+4)\left(x-\frac{1}{2}\right)$.	1
23	Wyznaczenie długości wysokości: $ AB = 4\sqrt{5}$.	1
	Wyznaczenie długości boku trójkąta: $a = \frac{8\sqrt{15}}{3}$.	1
24.	Zapisanie liczby pod pierwiastkiem w postaci: $a = \sqrt{2^{\log_2 25}}$.	1
	Wykorzystanie własności logarytmu do wykazania tezy zadania:	1
	$a=\sqrt{25}=5.$	

25.	Wyznaczenie dziedziny równania: $D = R \setminus \{2\}$.	1
	Rozwiązanie równania i zapisanie odpowiedzi: $x = 2 \notin D$,	1
	zatem równanie sprzeczne.	
26.	Wyznaczenie sumy pól trójkątów <i>APD</i> , <i>BCP</i> : $P = \frac{1}{2}ab$, gdzie	1
	a, b są bokami prostokąta.	
	Wyznaczenie sumy pól trójkątów APB , DCP : $P = \frac{1}{2}ba$, co	1
	wykazuje tezę zadania.	
27.	Zapisanie równania wynikającego z treści zadania: $x + \frac{1}{x} = 1$.	1
	Wykazanie sprzeczności równania: $x^2 - x + 1 = 0$, $\Delta < 0$.	1
28.	Wprowadzenie oznaczeń: a, h, α, β – odpowiednio krawędź	1
	podstawy, wysokość ostrosłupa, kąt nachylenia ściany bocznej	
	do płaszczyzny podstawy, kąt nachylenia krawędzi bocznej do	
	płaszczyzny podstawy oraz zapisanie proporcji wynikającej z	
	definicji tangensa kąta α : $\frac{2h}{a} = \frac{2}{3}$.	
	Obliczenie tangensa kąta β : $tg\beta = \frac{\sqrt{2}}{3}$.	1
29.	Wyznaczenie równania prostej k prostopadłej do prostej l	2 (w tym
	przechodzącej przez punkt $A: y = -\frac{1}{3}x + 4$.	1 punkt za
	3	współczynnik
		kierunkowy)
	Wyznaczenie współrzędnych punku przecięcia się prostych	2 (1 punkt za
	$l, k: P = \left(\frac{3}{2}, \frac{7}{2}\right).$	zapisanie
		układu i 1 za
		rozwiązanie)
	Wyznaczenie współrzędnych punktu $B: B = (-3, 5)$.	1
30.	Zapisanie układu równań: $\begin{cases} a_1 + r + a_1 + 3r + a_1 + 5r = 42 \\ (a_1 + r)^2 + (a_1 + 2r)^2 = 185 \end{cases}$	2 (po 1 punkcie
	$(a_1 + r)^2 + (a_1 + 2r)^2 = 185$	za każde
		równanie)
	Przekształcenie układu do równania kwadratowego:	1

	$5r^2 - 84r + 207 = 0.$	
	Rozwiązanie równania: $r_1 = 3, r_2 = 13,8$.	1
	Wyznaczenie pierwszego wyrazu i zapisanie odpowiedzi:	1
	$\begin{cases} a_1 = 5 \\ r = 3 \end{cases} \lor \begin{cases} a_1 = -27,4 \\ r = 13,8 \end{cases}.$	
31.	Wyznaczenie krawędzi podstawy graniastosłupa: $a = 12$.	1
	Wyznaczenie wysokości graniastosłupa: $h = 4$.	1
	Wyznaczenie objętości graniastosłupa: $V = 144\sqrt{3}$.	1
	Wyznaczenie przekątnej ściany bocznej: $d = 4\sqrt{10}$.	1
	Wyznaczenie cosinusa kąta między przekątną ściany bocznej i	1
	krawędzią podstawy: $\cos \alpha = \frac{3\sqrt{10}}{10}$.	