Perancangan Sistem Pendukung Pengambilan Keputusan untuk Penerimaan Beasiswa dengan Metode SAW (Simple Additive Weighting)

Sri Eniyati

Program Studi Sistem Informasi, Universitas Stikubank email: eniyati03@gmail.com

Abstrak

Dalam menentukan penerimaan beasiswa, banyak sekali kriteria-kriteria yang harus dimiliki oleh individu sebagai syarat dalam mendapatkan beasiswa. Masing-masing sekolah pasti memiliki kriteria-kriteria untuk menentukan siapa yang akan terpilih untuk menerima beasiswa. Pembagian beasiswa dilakukan oleh beberapa lembaga untuk membantu seseorang yang kurang mampu ataupun berprestasi selama menempuh studinya. Untuk membantu penentuan dalam menetapkan seseorang yang layak menerima beasiswa maka dibutuhkan sebuah sistem pendukung keputusan.

Pada penelitian ini akan diangkat suatu kasus yaitu mencari alternative terbaik bedasarkan kriteria-kriteria yang telah ditentukan dengan menggunakan metode SAW (Simple Additive Weighting)

Penelitian dilakukan dengan mencari nilai bobot untuk setiap atribut, kemudian dilakukan proses perankingan yang akan menentukan alternatif yang optimal, yaitu siswa terbaik.

Kata kunci: SAW, beasiswa, nilai bobot

PENDAHULUAN

Perkembangan teknologi khususnya komputer beberapa tahun terakhir ini sangat pesat. Dahulu, orang menulis menggunakan alat tulis seperti pena atau pun pensil. Sekarang ini, menulis manual dapat digantikan dengan menggunakan komputer. Cukup dengan menekan papan ketik, huruf atau angka yang diinginkan akan muncul di layar.

Adapun disetiap lembaga pendidikan khususnya sekolah, komputer menjadi alat untuk mempermudah kinerja untuk setiap guru dan staf yang bertugas, dan khususnya dalam penerimaan beasiswa.

Untuk mendapatkan beasiswa tersebut maka harus sesuai dengan aturan-aturan yang telah ditetapkan. Kriteria yang ditetapkan dalam studi kasus ini adalah nilai, penghasilan orang tua, jumlah saudara kandung, jumlah tanggungan orang tua, dan lain-lain. Oleh sebab itu tidak semua yang mendaftarkan diri sebagai calon penerima beasiswa tersebut akan diterima, hanya yang memenuhi kriteria-kriteria saja yang akan memperoleh beasiswa tersebut. Oleh karena jumlah peserta yang mengajukan beasiswa banyak serta indikator kriteria yang banyak juga, maka perlu dibangun sebuah sistem pendukung keputusan

yang akan membantu penentuan siapa yang berhak untuk mendapatkan beasiswa tersebut.

ISSN: 0854-9524

Model yang digunakan dalam sistem pendukung keputusan ini adalah SAW, karena SAW ini dipilih karena dapat menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif terbaik dari sejumlah alternatif, dalam hal ini alternatif yang dimaksud adalah yang berhak menerima beasiswa berdasarkan kriteria-kriteria yang ditentukan.

Dengan metode perangkingan tersebut, diharapkan penilaian akan lebih tepat karena didasarkan pada nilai kriteria dan bobot yang sudah ditentukan sehingga akan mendapatkan hasil yang lebih akurat terhadap siapa yang akan menerima beasiswa tersebut

KAJIAN PUSTAKA

Sistem Pendukung Keputusan

Sistem pendukung keputusan adalah sistem penghasil informasi yang ditujukan pada suatu masalah tertentu yang harus dipecahkan oleh manager dan dapat membantu manager dalam pengambilan keputusan (Raymond Mc Leod, Jr., 1995:348). Sistem pendukung keputusan merupakan bagian tak terpisahkan dari totalitas sistem organisasi

ISSN: 0854-9524

keseluruhan. Suatu sistem organisasi mencakup sistem fisik, sistem keputusan dan sistem informasi (Dr. Ir. Kadarsyah Suryadi, 2002:13).

Bertolak dari pemikiran di atas, maka kelancaran fisik sangat dipengaruhi oleh mekanisme pengaturan vang diialani. Rangkaian pengaturan sistem fisik ini distrukturkan dalam sistem manajemen yang merupakan tidak lain sistem menghasilkan keputusan yang diperlukan guna menjamin kelancaran sistem fisik. Oleh karena sistem manajemen ini menghasilkan sejumlah maka sering pula keputusan, sistem manajemen disebut sistem keputusan.

Berdasarkan uraian di atas, sistem keputusan tidak bisa dipisahkan dari sistem fisik maupun sistem informasi. Kompleksitas sistem secara fisik menuntut adanya sistem keputusan yang komplek pula. Ciri utama dari pendukung sistem keputusan adalah kemampuannya untuk menvelesaikan masalah-masalah yang tidak terstruktur. Pada dasarnya system pendukung keputusan merupakan pengembangan lebih lanjut dari sistem manajemen terkomputerisasi yang dirancang sedemikian rupa sehingga bersifat interaktif dengan pemakainya. Sifat interaktif ini dimaksudkan untuk memudahkan integrasi antara berbagai komponen dalam proses pengambilan keputusan seperti prosedur, kebijakan, teknis, analisis, serta pengalaman dan wawasan manajerial guna membentuk suatu kerangka keputusan yang bersifat fleksibel.

Sistem pendukung keputusan adalah suatu pendekatan sistematis pada hakekat suatu masalah, pengumpulan fakta-fakta penentu yang matang dari alternatif yang dihadapi dan pengambilan tindakan yang paling tepat (Kadarsih Suryadi, 2000:1). Sistem pendukung keputusan adalah suatu sistem berbasis komputer yang menghasilkan berbagai alternatif keputusan untuk membantu manajemen dalam menangani berbagai permasalahan yang terstruktur ataupun tidak terstruktur dengan menggunakan data dan model (Dadan Umar Daihani, 2001:55). Untuk menghasilkan keputusan yang baik di dalam sistem pendukung keputusan, perlu didukung informasi dan fakta-fakta vang berkualitas antara lain:

a. Aksebilitas

Atribut ini berkaitan dengan kemudahan mendapatkan informasi, informasi akan lebih berarti bagi si pemakai kalau informasi tersebut mudah didapat, karena akan berkaitan dengan aktifitas dari nilai informasinya.

b. Kelengkapan

Atribut ini berkaitan dengan kelengkapan isi informasi, dalam hal ini isi tidak menyangkut hanya volume tetapi juga kesesuaian dengan harapan si pemakai sehingga sering kali kelengkapan ini sulit diukur secara kuantitatif.

c. Ketelitian

Atribut ini berkaitan dangan tingkat kesalahan yang mungkin di dalam pelaksanaan pengolahan data dalam jumlah (volume) besar. Dua tipe kesalahan yang sering terjadi yaitu berkaitan dengan perhitungan.

d. Ketepatan

Atribut ini berkaitan dengan kesesuaian antara informasi yang dihasilkan dengan kebutuhan pemakai. Sama halnya dengan kelengkapan, ketepatan pun sangat sulit diukur secara kuantitatif.

e. Ketepatan Waktu

Kualitas informasi juga sangat ditentukan oleh kektepatan wktu penyampaian dan aktualisasinya. Misal informasi yang berkaitan dengan perencanaan harian akan sangat berguna kalau disampaikan setiap dua hari sekali.

f. Kejelasan

Atribut ini berkaitan dengan bentuk atau format penyampaian informasi. Bagi seorang pimpinan, informasi yang disajikan dalam bentuk grafik, histogram, atau gambar biasanya akan lebih berarti dibandingkan dengan informasi dalam bentuk kata-kata yang panjang.

g. Fleksibilitas

Atribut ini berkaitan dengan tingkat adaptasi dari informasi yang dihasilkan terhadap kebutuhan berbagai keputusan yang akan diambil dan terhadap sekelompok pengambil keputusan yang berbeda.

Tahapan Pengambilan keputusan

Untuk menghasilkan keputusan yang baik ada beberapa tahapan proses yang harus dilalui dalam pengambilan keputusan. Menurut Julius Hermawan (2002:3), proses pengambilan keputusan melalui beberapa tahap berikut :

a. Tahap Penelusuran(intelligence)

Tahap pengambil keputusan mempelajari kenyataan yang terjadi, sehingga kita bisa mengidentifikasi masalah yang terjadi biasanya dilakukan analisis dari sistem ke subsistem didapatkan pembentuknya sehingga keluaran berupa dokumen pernyataan masalah.

b. Tahap Desain

Dalam tahap ini pengambil keputusan menemukan, mengambangkan dan menganalisis semua pemecahan yang mungkin yaitu melalui pembuatan model yang bisa mewakili kondisi nyata masalah. Dari tahapan ini didapatkan keluaran berupa dokumen alternatif solusi.

c. Tahap Choice

Dalam tahap ini pengambil keputusan memilih salah satu alternatif pemecahan yang dibuat pada tahap desain yang dipandang sebagai aksi yang paling tepat untuk mengatasi masalah yang sedang dihadapi. Dari tahap ini didapatkan dokumen solusi dan rencana implementasinya.

d. Tahap Implementasi

Pengambil keputusan menjalankan rangkaian aksi pemecahan yang dipilih di tahap *choice*. Implementasi yang sukses ditandai dengan terjawabnya masalah yang dihadapi, sementara kegagalan ditandai masih adanya masalah yang sedang dicoba untuk diatasi. Dari tahap ini didapatkan laporan pelaksanaan solusi dan hasilnya.

Komponen-Komponen Sistem Pendukung Keputusan

Sistem pendukung keputusan terdiri dari 3 komponen utama atau subsistem yaitu (Dadan Umar Daihani, 2001:63) :

a. Subsistem Data (Database)

Subsistem data merupakan komponen sistem pendukung keputusan penyedia data bagi sistem. Data dimaksud disimpan dalam suatu pangkalan data (*database*) yang diorganisasikan suatu sistem yang disebut sistem manajemen pengkalan data (*Data Base Manajemen System/DBMS*).

ISSN: 0854-9524

b. Subsistem Model (Model Subsistem)

c. Subsistem Dialog (User Sistem Interface)

Keunikan lainnya dari sistem pendukung keputusan adalah adanya fasilitas yang mampu mengintegrasikan sistem terpasang dengan pengguna secara interaktif. Fasilitas yang dimiliki oleh subsistem ini dapat dibagi atas 3 komponen yaitu :

- 1. Bahasa aksi (Action Language) yaitu suatu perangkat lunak yang dapat digunakan pengguna untuk berkomunikasi dengan sistem. Komunikasi ini dilakukan melalui berbagai pilihan media seperti keyboard, joystick dan key function.
- 2. Bahasa Tampilan (Display atau Presentation Language) yaitu suatu perangkat yang berfungsi sebagai sarana untuk menampilkan sesuatu.
- 3. Basis Pengetahuan (Knowledge Base) yaitu bagian yang mutlak diketahui oleh pengguna sistem yang dirancang dapat berfungsi secara efektif.(Umar Daihani, 2000:63)

Gambar 1 Komponen SPK (Dadan Umar Daihani, 2001:64)

Metode SAW

Metode SAW sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

dimana rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i=1,2,...,m dan j=1,2,...,n.

Nilai preferensi untuk setiap alternatif (Vi)diberikan sebagai:

Nilai Vi yang lebih besar mengindikasikan bahwa alternatif Ai lebih terpilih.

ANALISA DAN PERANCANGAN

Analisa Sistem

Lembaga pendidikan khususnya sekolah, komputer menjadi alat untuk mempermudah kinerja untuk setiap guru dan staf yang bertugas, dan khususnya dalam penerimaan beasiswa.

Untuk mendapatkan beasiswa tersebut maka harus sesuai dengan aturan-aturan yang telah ditetapkan. Kriteria yang ditetapkan dalam studi kasus ini adalah nilai, penghasilan orang tua, jumlah saudara kandung, jumlah tanggungan orang tua dan semester. Oleh sebab itu tidak semua yang mendaftarkan diri sebagai calon penerima beasiswa tersebut akan diterima, hanya yang memenuhi kriteriakriteria saja yang akan memperoleh beasiswa tersebut. Oleh karena jumlah peserta yang mengajukan beasiswa banyak serta indikator kriteria yang banyak juga, maka perlu dibangun sebuah sistem pendukung keputusan yang akan membantu penentuan siapa yang berhak untuk mendapatkan beasiswa tersebut.Dari permasalahan yang timbul diatas maka dirancanglah aplikasi sistem pendukung keputusan untuk penerimaan beasiswa yang

dapat menentukan siapa yang akan menerima beasiswa berdasarkan bobot dan kriteria yang sudah ditentukan dengan lebih mudah dan efisien.

ISSN: 0854-9524

Perencanaan Sistem

Tahap pembuatan aplikasi ini, terlebih dahulu adalah menentukan dan merencanakan kriteria-kriteria dalam penerimaan beasiswa yaitu jumlah penghasilan orangtua, semester, jumlah tanggungan orangtua, jumlah saudara kandung, dan nilai

1. Bobot

Dalam penelitian ini ada bobot dan kriteria yang dibutuhkan untuk menentukan siapa yang akan terseleksi sebagai penerima beasiswa

Tabel 1. Kode dan Ketentuan Kriteria

Kode Kriteria	Ketentuan criteria		
C1	Jumlah Penghasilan orang tua		
C2	Semester		
C3	Jumlah Tanggungan orang tua		
C4	Jumlah Saudara Kandung		
C5	Nilai		

Dari masing-masing kriteria tersebut akan ditentukan bobot-bobotnya. Pada bobot terdiri dari enam bilangan *fuzzy*, yaitu sangat rendah (SR), rendah (R), sedang (S), tengah (T1), tinggi (T2), dan sangat tinggi (ST) seperti terlihat pada Gambar 2.

Gambar 2. Bilangan fuzzy untuk bobot

Dari masing-masing bobot tersebut, maka dibuat suatu variabel yang akan dirubah kedalam bilangan fuzzy dengan rumus yaitu variabel ke-n/n-1.

Tabel 2. Variabel dan Bobot (Nilai)

Variabel	Bobot (Nilai)		
Sangat Rendah (SR)	Variabel ke-0 / (6-1) = 0		
Rendah (R)	Variabel ke-1 / $(6-1) = 1/5 = 0.2$		
Sedang (S)	Variabel ke-2 / (6-1) = 2/5 = 0,4		
Tengah (T1)	Variabel ke-3 / $(6-1) = 3/5 = 0.6$		
Tinggi (T2)	Variabel ke-4/(6-1) = 4/5 = 0,8		
Sangat Tinggi (ST)	Variabel ke-5 / $(6-1) = 5/5 = 1$		

1. Kriteria Penghasilan Orang Tua

Tabel 3. Kriteria Penghasilan Orang Tua

Penghasilan Orang Tua (C1)	Varia bel	Nilai
C1 <= Rp.500.000	Sangat Tinggi	1
C1 > Rp. 500 ribu < C1 < Rp. 1 juta	Tinggi	0,8
C1 > Rp. 1 juta < C1 < Rp. 1,5 juta	Tengah	0,6
C1 > Rp. 1,5 juta < C1 < Rp. 2 juta	Sedang	0,4
C1 > Rp. 2 juta < C1 < Rp. 2,5 juta	Rendah	0,2
C1 >= Rp. 2,5 juta	Sangat rendah	0

2. Kriteria Semester

Tabel 4. Kriteria Semester

Semester (C2)	Variabel	Nilai	
Semester = 1	Sangat rendah	0	
Semester = 2	Rendah	0,2	
Semester = 3	Sedang	0,4	
Semester = 4	Tengah	0,6	
Semester = 5	Tinggi	0,8	
Semester = 6	Sangat Tinggi	1	

3. Kriteria Jumlah Tanggungan Orang Tua

Tabel 5. Kriteria Jumlah Tanggungan Orang Tua

Jumlah Tanggungan Orang Tua (C3)	Variabel	Nilai
1 anak	Sangat rendah	0
2 anak	Rendah	0,2
3 anak	Sedang	0,4
4 anak	Tengah	0,6
5 anak	Tinggi	0,8
Lebih dari 5 anak	Sangat Tinggi	1

4. Kriteria Jumlah Saudara Kandung

Tabel 6. Kriteria Jumlah Saudara Kandung

Jumlah Saudara Kandung (C4)	Variabel	Nilai	
1 orang	Sangat rendah	0	
2 orang	Rendah	0,2	
3 orang	Sedang	0,4	
4 orang	Tengah	0,6	
5 orang	Tinggi	0,8	
Lebih dari 5 orang	Sangat Tinggi	1	

5. Kriteria Nilai

Tabel 7. Kriteria Nilai

ISSN: 0854-9524

Nilai (C5)	Variabel	Nilai	
C5 <= 50	Sangat rendah	0	
50 < C5 < 60	Rendah	0,2	
60 < C5 < 70	Sedang	0,4	
70 < C5 < 80	Tengah	0,6	
80 < C5 < 90	Tinggi	0,8	
C5 >= 90	Sangat Tinggi	1	

Perancangan Database

Dalam perencanaan sistem ini menggunakan beberapa tabel, yaitu tabel siswa, tabel fuzzy dan tabel SPK.

Tabel 8. Perancangan Tabel Siswa

Field Name	Type	Size	Key	Keterangan	
NIS	char	5	*	NIS	
Nama	Varchar	30		Nama	
Alamat	Varchar	50		Alamat	
Namaortu	Varchar	30		Nama Orang Tua	
Jurusan	Varchar	20		Jurusan	
Penghasilan	Real			Penghasilan Orang Tua	
Saudara	Int			Jumlah Saudara Kandung	
Tanggungan	Int			Tanggungan Orang Tua	

Tabel 9. Perancangan Tabel Nilai

Field Name	Type	Size	Key	Keterangan
NIS	char	5		NIS
Kelas	Int			Kelas
Semester	Int			Semester
Nilai	Real			Nilai

Tabel 10. Perancangan Tabel SPK

Field Name	Type	Size	Key	Keterangan
NIS	char	5		NIS
Nilai	Real			Nilai

Perancangan Dialog

1. Perancangan Dialog Menu Utama

Tampilan menu utama merupakan halaman utama dalam menjalankan program aplikasi. Pada halaman aplikasi ini terdapat beberapa menu, yaitu menu siswa, fuzzy, nilai, spk, cetak spk dan keluar.

Gambar 3. Rancangan Form Menu Utama

2. Perancangan Dialog Siswa

Form siswa ini digunakan untuk menginputkan data siswa.

Gambar 4. Rancangan Form Siswa

3. Perancangan Dialog Nilai

Form nilai ini digunakan untuk menginputkan data nilai siswa.

Gambar 5. Rancangan Form Nilai

4. Perancangan Dialog SPK

Form SPK ini digunakan untuk memasukkan data penerimaan beasiswa yang terbaik.

ISSN: 0854-9524

Berikut adalah tampilan form input histori:

Gambar 6. Rancangan Form Hasil SPK

PENUTUP

Kesimpulan

- 1. Perancangan yang telah disusun, sebagian besar merupakan kriteria untuk penerimaan beasiswa dalam sekolah.
- 2. Bobot perhitungan adalah merupakan salah satu indikator penting dalam perhitungan untuk penerimaan beasiswa.

Saran

- 1. Dapat dilakukan penambahan variabel untuk perilaku siswa
- 2. Dalam perhitungan solusi dengan menggunakan model *Fuzzy*, dapat memperbanyak pilihan kriteria yang diajukan sistem yang bersifat dinamik, yang terdiri dari variabel input *Fuzzy* dan variabel input non *Fuzzy*.
- 3. Seiring perkembangan teknologi informasi, maka akan lebih baik jika sistem yang ada sekarang untuk kedepannya dapat dikembangkan lagi dengan memanfaatkan teknologi jaringan komputer sehingga masyarakat dapat menggunakan sendiri secara langsung

DAFTAR PUSTAKA

- Dadan Umar Daihani, 2001, *Sistem Pendukung Keputusan*, Penerbit Elex Media Komputindo, Jakarta.
- Turban, Efrain dan Aronson, Jay, 2001, Decision Suport System and Intelligent System, Prentice Hall, New Jersey.
- Waljiyanto, 2000, Sistem Basis data, Analisis dan permodelan data, J&J Learning, Jogjakarta.

ISSN: 0854-9524