Revisión Teórica

Seleccionar la/s respuesta/s correcta/s en cada caso

(a)	Una	hipótesis estadística es:
		Cualquier afirmación acerca de la distribución de una variable en una población.
		Una región del espacio muestral que lleva asociada una alternativa.
		Una regla de decisión que nos indica cuando debe aceptarse o rechazarse el valor de un parámetro.
		Un valor que se asigna provisionalmente a un estadístico en tanto no se demuestre cuál es su verdadero valor.
		ninguna de las anteriores es correcta.
(b)	Un t	est de hipótesis estadístico es:
		Una región del espacio paramétrico.
		Una afirmación acerca de la población.
		Una regla de decisión.
		Un estadístico, función de la muestra.
		ninguna de las anteriores es correcta.
(c)	La r	egión crítica de un test es:
		Un subconjunto del espacio muestral tal que si la muestra pertenece a él se rechaza la hipótesis nula.
		Un subconjunto del espacio muestral tal que si la muestra pertenece a él se rechaza la hipótesis falsa.
		Una región del espacio paramétrico tal que si el parámetro pertenece a ella se rechaza la hipótesis nula.
		Una región del espacio paramétrico tal que si el parámetro pertenece a ella se rechaza la hipótesis falsa.
		ninguna de las anteriores es correcta.
(d)	La h	ipótesis nula del Análisis de la Varianza afirma:
		Existen diferencias entre las medias muestrales.
		No existen diferencias entre las medias de las subpoblaciones.

	☐ Existen diferencias entre las medias de las subpoblaciones.
	\square No existen diferencias entre las medias muestrales
	□ Ninguna de las anteriores es correcta.
(e)	La hipótesis nula del test de Levene establece:
	□ Lo mismo que la hipótesis nula del test de Bartlett.
	\square Que las medias poblaciones de los grupos son iguales.
	\square Que las varianzas poblacionales de los grupos son iguales.
	\square Son correctas la primera y la tercer.
	\square Son correctas la primera y la segunda.
(f)	El rechazo de la hipótesis nula del test de Kruskal Wallis indica:
	\square Que las medias de los grupos son distintas si las dispersiones son similares.
	\square Que las medianas de los grupos son distintas si las distribuciones son similares.
	\square Que las dispersiones son distintas aunque las medias pueden ser iguales.
	\square Que las distribuciones son distintas si las medianas son iguales.
	□ Ninguna de las anteriores es correcta.
(g)	El análisis de clusters tiene por objetivo seleccionar grupos que:
	☐ Maximicen la varianza dentro del grupo y minimicen la varianza entre grupos.
	☐ Minimicen la varianza dentro y entre los grupos.
	☐ Maximicen la varianza dentro y entre los grupos.
	\Box Minimicen la varianza dentro del grupo y maximicen la varianza entre grupos.
	□ Ninguna de las anteriores es correcta.
(h)	Los conglomerados elegidos por el método dependen de:
	□ Las variables elegidas para el análisis.
	\square La distancia establecida entre las observaciones.
	\Box La metodología elegida de medir distancia entre clusters.
	☐ Todas las anteriores son correctas.
	□ Ninguna de las anteriores es correcta.
	Para medir o cuantificar la capacidad discriminante de un método es conveniente:

	☐ Construir una tabla de confusión con las observaciones utilizadas para entrenar el método.
	\square Construir una tabla de confusión con observaciones no utilizadas para entrenar el método.
	☐ Extraer las observaciones de a una y validar el método construido sin ella para clasificarla a esa.
	\square Se puede elegir la segunda o la tercera según el tamaño de la base disponible.
	☐ Todas las anteriores son correctas.
(j)]	Los supuestos del análisis discriminante cuadrático de Fisher son:
	□ Normalidad de la distribución de las observaciones.
	\Box Homocedasticidad de la distribución de las observaciones.
	\Box Homocedasticidad de la distribución e independencia de las observaciones.
	□ Ninguna de las anteriores es correcta.
	☐ La primera y la segunda son correctas.

Indicar el valor de verdad de las siguientes premisas

- (a) VF El análisis de cluster se puede aplicar a variables y también a observaciones.
- (b) VF La hipótesis nula del test M de Box establece que las matrices de covarianza de los grupos son iguales.
- (c) VF El test de análisis de la varianza se basa en el estadístico F que es el cociente entre dos variables Chi cuadrado.
- (d) VF Se denomina centroide de un grupo al valor de la función discriminante evaluado el vector de medias del grupo.
- (e) VF El análisis discriminante es adecuado cuando no se ha rechazado la hipótesis de igualdad de vectores medios de las poblaciones en estudio.
- (f) VF Una función de similaridad satisface que es positiva, simétrica y cumple la propiedad triangular.
- (g) VF La distribución T de Student es la versión univariada de la distribución de Wishart.
- (h) VF Si el coeficiente de una variable es alto en la función discriminante implica que no es una variable que permita discriminar entre los grupos.
- (i) \overline{V} \overline{F} \overline{S} is un vector $X=(x1,x2,\ldots,xq,\ xq+1,\ldots,xp)$ tiene distribucion normal multivariada, cualquier combinacion lineal de sus componentes tiene distribucion normal.

(j) VF El coeficiente de correlación cofenética establece el nivel de asociación entre las distancias originales y las representadas por el árbol binario.

Responder brevemente a las siguientes preguntas

- (a) ¿Cuando es adecuado utilizar el análisis de perfiles?
- (b) ¿Cómo se clasifica una nueva observación cuando en el análisis discriminante hay más de dos grupos?
- (c) ¿Qué ventaja tiene el método de "probabilidades a posteriori" para el análisis discriminante?
- (d) Establezca al menos dos diferencias importantes entre el análisis discriminante y el análisis de cluster.
- (e) Explique la diferencia entre segmentación jerárquica y no jerárquica. Señale las características de los métodos divisivos y aglomerativos.