

© Andrzej M. Borzyszkowski

Bazy Danych

Bazy Danych

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytetu Gdańskiego

materiały dostępne elektronicznie http://inf.ug.edu.pl/~amb

Relacyjna baza danych = relacje + operacje na relacjach

- Algebra relacji:
 - operacje mogą być ze sobą wielokrotnie składane tworząc wyrażenia relacyjne
- Podstawowe operacje relacyjne:
 - obcięcie/wybór: wybiera pewne wiersze
 - rzut/projekcja: wybiera pewne atrybuty (+ zmiana nazwy)
 - złączenie: produkuje relację o atrybutach z dwu relacji, w tym wspólne atrybuty
- Operacje teoriomnogościowe: suma, przecięcie, różnica, iloczyn kartezjański
- · Wstawianie, modyfikacja, usuwanie krotki

Algebra relacji

2/24

© Andrzej M. Borzyszkowski

Operacja obcięcia

- Obcięcie tylko wiersze spełniające warunek (predicate)
 - $-\sigma_{[miasto='Gda\acute{n}sk']}(Klient)$ (sigma)
 - w notacji bardziej przyjaznej Klient WHERE miasto='Gdańsk'
- σ_[warunek](relacja)
 - relacja jest dowolnym wyrażeniem algebry relacji
 - warunek jest wyrażeniem logicznym

								_
nr	tytul	nazwisko	imie	kod_po	miasto	ulica_dom	telefon	<u>۔</u> ج
5	Pan	Soroczyński	Jan	80-230	Gdańsk	Al. Hallera	58 309	anve
6	Pani	Niezabitows	Marzena	80-619	Gdańsk	Focha 39-41 m.66	58 3099	
7	Pani	Kołak	Agnieszk	80-832	Gdańsk	Wąwóz 4	NULL	Baz
9	NULI	Hałasa	Ewa	80-511	Gdańsk	Dywizjonu 303/303	58 348	Ī
10	Pan	Sosnowy	Andrzej	80-266	Gdańsk	Leśna Góra 41h/08	58 346	Ī
11	Pani	Songin	Barbara	80-376	Gdańsk	Grunwaldzka 1024	58 5528	Ī

© Andrzej M. Borzyszkowski

Bazy Danych

3/24

Predykaty w operacji obcięcia

- Przykładowe postacie warunku obcięcia:
 - równość (i jej zaprzeczenie) X1=X2, X1≠C
 - porządek (dla dziedzin uporządkowanych) X1<X2, X1≤X2
 - należenie X1 in X2
 - warunki złożone
 - A WHERE c1 AND c2 koniunkcja
 - A WHERE c1 OR c2 alternatywa
 - A WHERE NOT c1 negacja
- Predykat stosowany jest do każdej krotki z osobna
 - nie można więc wyrażać go w zależności od wielu krotek
- σ_[warunek-2](σ_[warunek-1](relacja)) jest możliwym zastosowaniem obcięcia
 - wynik będzie ten samo co σ[warunek-2 and warunek-1](relacja)

© Andrzej M. Borzyszkowski

Bazy Danych

© Andrzej M. Borzyszkowski

Bazy Danych

5/24

Uogólniony rzut (i zmiana nazwy)

- Zmiana nazwy
 - całej relacji: ρ_[s](R) (rho)
 - poszczególnych atrybutów w relacji: $\rho_{[S(B1,...,Bn)]}(R)$
 - tutaj zakładamy, że nowy schemat S ma tyle samo atrybutów i o tych samych dziedzinach
 - w praktyce będzie notacja wymieniająca tylko nowe nazwy
- Rzut w sensie ogólniejszym
 - nagłówek: może zawierać również wyrażenia dla atrybutów relacji (i nazwy dla nich)
 - treść: krotki, do których zastosowano to wyrażenie
 - np. jeśli w nagłówku są atrybuty cena i koszt, to w rzucie może się pojawić nowy atrybut zysk zdefiniowany jako różnica cena-koszt

Operacja rzutu

- Rzut tylko wybrane atrybuty
 - $\pi_{[nr,nazwisko,imie]}(Klient)$
 - w notacji asciiKlient(nr,nazwisko,imie)
- Rzutem relacji R: π_[A₁,...,A_m](R) jest relacja z nagłówkiem { A₁:D_{A1},...,A_m:D_{Am} } i z treścią składającą się z tych krotek, dla których w relacji R występuje krotka, której fragmentem jest krotka z rzutu
- uwaga: relacja nie ma powtórzeń, fragmenty wszystkich krotek mogłyby wprowadzić powtórzenie

nr	nazwisko	imie	
1	Kuśmierek	Małgorzata	
2	Chodkiewicz	Jan	Borzyszkowski
3	Szczęsna	Jadwiga	Š
4	Łukowski	Bernard	ysz
5	Soroczyński	Jan	orz
6	Niezabitowsk	ғMarzena	ă.
7	Kołak	Agnieszka	Ξ
8	Kołak	Agnieszka	© Andrzej M.
9	Hałasa	Ewa	١
10	Sosnowy	Andrzej	0
11	Songin	Barbara	
12	Wróblewicz-T	€Urszula	_
13	Soroczyński	Bogdan	Bazy Danych
14	Miszke	Wojciech	Jar
15		Marcin	
16		Grażyna	Baz
17	Wierciński	Henryk	
18	Bazior	Gerard	
		6/24	1

0,2

Iloczyn kartezjański

- Iloczyn kartezjański (produkt kartezjański, złączenie krzyżowe)
 - nagłówek: suma nagłówków { X:DX,Y:DY }, które muszą mieć różne atrybuty
 - treść: wszystkie możliwe pary krotek { X:x,Y:y }

Andrzej M. Borzyszkov

Operacja złączenia

- Złączenie zapewnia integrację danych
 - dane z kilku tabel są zbierane w jednej tabeli wynikowej
- Łączy ze sobą krotki z różnych relacji
 - krotki dobierane są na podstawie pasujących wartości odpowiednich atrybutów
 - najczęściej klucz obcy jednej relacji i klucz kandydujący drugiej relacji
- Operacja daje się wyrazić za pomocą kolejno
 - iloczynu kartezjańskiego (wszystkie pary krotek)
 - obcięcia (wybór par pasujących do siebie)
 - rzutu (wyrugowanie powtarzających się atrybutów)
- Oznaczenia matematyczne: R ⋈_[warunek złaczenia] S

Dodatkowe operacje relacyjne – złączenie zewnętrzne

- Złączenie naturalne gubi te krotki z jednej relacji, które nie pasują do żadnej krotki z drugiej relacji
 - może to być pożądanych rezultatem, np. szukamy zamówień i klientów, którzy je złożyli
 - ale może prowadzić do utraty informacji, np. o klientach, którzy nie złożyli zamówień wcale
- Złączenie zewnętrzne
 - krotki z jednej z relacji nie pasujące do żadnej krotki z drugiej uzupełniane są wartością NULL
 - można "chronić" tylko jedną z relacji przed utratą informacji: złączenie lewe i prawe

Złączenie, przykład

nr	nazwisko	imie
1	Kuśmierek	Małgorzata
2	Chodkiewicz	Jan
3	Szczęsna	Jadwiga
4	Łukowski	Bernard
5	Soroczyński	Jan
6	Niezabitowska-Nasiadko	Marzena
7	Kołak	Agnieszka
8	Kołak	Agnieszka

Andrzej M. Borzyszkowski

9/24

© Andrzej M. Borzyszkowski

klient_nr dat	a_zlozenia	-
3	13.03.2025	
3	23.03.2025	
3	21.02.2025	Ski
4	22.03.2025	, WO
4	1.02.2025	VSZ
5	4.02.2025	orz
8	12.01.2025	. ≥ . ш
8	7.01.2025	zej l
		تام
ata_zlozenia	-	© Andrzej M. Borzyszkowski
		9

	nr	nazwisko	imie	data_zlozenia
	3	Szczęsna	Jadwiga	13.03.2025
	3	Szczęsna	Jadwiga	23.03.2025
	3	Szczęsna	Jadwiga	21.02.2025
	4	Łukowski	Bernard	22.03.2025
	4	Łukowski	Bernard	1.02.2025
	5	Soroczyński	Jan	4.02.2025
-	8	Kołak	Agnieszka	12.01.2025
	8	Kołak	Agnieszka	7.01.2025

ا م ما

10/24

Złączenie zewnętrzne, przykład

nr	nazwisko	imie	data_zlozenia
1	Kuśmierek	Małgorzata	
2	Chodkiewicz	Jan	
3	Szczęsna	Jadwiga	23.02.2025
3	Szczęsna	Jadwiga	13.02.2025
3	Szczęsna	Jadwiga	23.01.2025
4	Łukowski	Bernard	22.02.2025
4	Łukowski	Bernard	1.02.2025
5	Soroczyński	Jan	4.02.2025
6	Niezabitowska-Nasiadko	Marzena	
7	Kołak	Agnieszka	
8	Kołak	Agnieszka	12.01.2025
8	Kołak	Agnieszka	7.01.2025

11/24

© Andrzej M. Borzyszko

Złączenie naturalne, definicja

- Niech A i B beda relacjami o nagłówkach { X:DX,Y:DY } oraz { Y:DY,Z:DZ },
 - złączeniem naturalnym relacji A i B, A ⋈ B, jest relacja z nagłówkiem { X:DX,Y:DY,Z:DZ } i z treścią składającą się z takich krotek { X:x,Y:y,Z:z }, że krotka { X:x,Y:y } należy do relacji A, a krotka { Y:y,Z:z } należy do relacji B
- Najczęstszy przypadek: wspólne atrybuty Y stanowia klucz kandydujący w jednej relacji i klucz obcy w drugiej
 - generalnie NIE zakłada się, że atrybuty o tej samej nazwie oznaczają to samo
 - złączenie wymaga jawnego podania nazw atrybutów, które chcemy utożsamić (t.j. warunku łączącego)

13/24

Andrzej M. Borzyszkowski

Bazy Danych

Andrzej M. Borzyszkowski

Bazy Danych

Operacje teoriomnogościowe

- Przekrój (iloczyn, część wspólna)
 - nagłówek: równy wspólnemu nagłówkowi obu relacji (dopuszczalne są lekkie odchylenia, dziedziny atrybutów nie muszą być identyczne, ale zgodne, np. liczbowe)
 - treść: wszystkie krotki należące do obu relacji
- Suma (unia)
 - nagłówek: równy wspólnemu nagłówkowi obu relacji
 - treść: wszystkie krotki należące do co najmniej jednej z relacji
- Różnica
 - nagłówek: równy wspólnemu nagłówkowi obu relacji treść: krotki z jednej relacji nie należące do drugiej
 - np. studenci, którzy nie zaliczyli egzaminu

Złączenie, własności

- łączność: $(A \bowtie B) \bowtie C = A \bowtie (B \bowtie C)$
 - można opuszczać nawiasy
- przemienność: $A \bowtie B = B \bowtie A$
- jeśli relacje A i B nie mają wspólnych atrybutów, wówczas jest to iloczyn kartezjański relacji: każda krotka A jest skombinowana z każdą krotką B
- jeśli relacje A i B mają identyczne wszystkie atrybuty, wówczas jest to przecięcie relacji: tylko wspólne krotki

14/24

Wstawianie, modyfikacja, usuwanie krotki

- Wstawianie krotki
 - wstawiana krotka musi pasować do schematu relacji
 - treść: wszystkie dotychczasowe krotki plus wstawiana
- Modyfikacja krotki
 - treść: wszystkie dotychczasowe krotki oprócz modyfikowanej pozostają bez zmian, modyfikowana jest zmieniona
- Usuwanie krotki
 - treść: wszystkie dotychczasowe krotki oprócz usuniętej

© Andrzej M. Borzyszkowski

15/24

16/24

Dodatkowe operacje relacyjne – funkcje agregujące (grupowanie)

 Funkcja agregująca przekształca zbiór wartości w pojedynczą wartość

- avg: średnia

- min, max, sum

- count: liczba elementów

 Relacja jest grupowana w/g równych wartości niektórych atrybutów

 do każdej grupy stosowana jest funkcja agregująca

 szczególny przypadek: cała relacja jest jedną grupą

ilu	miasto	고
3	Sopot	ows
1	Gdakowo	/SZk
1	Kielno	3orz)
1	Dziewięć Włók	Α.
6	Gdynia	© Andrzej M. Borzyszkowski
7	Gdańsk	And
1	Tczew	0
1	Prabuty	
1	Kwidzyn	Jych
1	Gardeja Pierwsza	y Danych
		. 🛬

Rachunek krotek

18/24

Rachunek krotek, c.d.

Rachunek krotek

- Zmienne krotkowe *x*
 - $\{x \mid \Phi(x)\}\$ lub $\{\langle x.A1,...,x.An \rangle \mid \Phi(x)\}$
 - <x.A1,..,x.An> jest złożeniem kilku atrybutów w krotkę
 - predykat Φ jest zbudowany z następujących elementów
 - należenie do relacji $x \in r$, zapisywane również r(x)
 - warunki na wartości atrybutów (podobnie jak w obcięciu)
 - kwantyfikatory "dla każdego" $\forall x$ oraz "istnieje" $\exists x$
 - elementy połączone są spójnikami koniunkcji, alternatywy oraz negacji
- Przykład,
 - relacja $\sigma_{\text{Imiasto='Gdańsk']}}(\text{Klient})$ jest równa $\{ k \mid \text{Klient}(k) \text{ AND } k.\text{miasto='Gdańsk'} \}$
 - relacja π_[nr,nazwisko,imie](Klient) jest równa {<k.nr, k.nazwisko, k.imie> | Klient(k) }

- Kwantyfikatory:
 - nazwiska klientów, którzy złożyli zamówienie:
 - { k.nazwisko | Klient(k) AND
 ∃ z (Zamówienie(z) AND z.klient_nr=k.nr) }
 - jest to de facto złączenie (a właściwie jego rzut)
- Nazwiska klientów, którzy zamówili każdy towar dostępny w ofercie
 - { k.nazwisko | Klient(k) AND ∀ t (Towar(t) ⇒
 ∃ z (Zamówienie(z) AND z.klient_nr=k.nr
 AND ∃ p (Pozycja(p) AND p.zamowienie_nr=z.nr AND
 p.towar_nr=t.nr))) }

© Andrzej M. Borzyszkowski

Bazy Danych

19/24

© Andrzej M. Borzyszkowski

17/24

20/24

Logika kwantyfikatorów

- NOT $(\exists u) \Phi(u) \Leftrightarrow (\forall u) \text{ NOT } \Phi(u)$
- NOT $(\forall u) \Phi(u) \Leftrightarrow (\exists u) NOT \Phi(u)$
- W szczególności kwantyfikator uniwersalny ∀ może zostać zastąpiony przez bardziej skomplikowane wyrażenie bez niego
 - $(\forall u) \Phi(u) \Leftrightarrow NOT(\exists u) NOT \Phi(u)$
 - "nieprawda, że istnieje kontrprzykład"
- Przydatne moga też być prawa de Morgana dla spójników logicznych
 - NOT $(\Phi(t) \text{ AND } \Psi(t)) \Leftrightarrow (\text{NOT } \Phi(t) \text{ OR NOT } \Psi(t))$
 - NOT $(\Phi(t) \text{ OR } \Psi(t)) \Leftrightarrow (\text{NOT } \Phi(t) \text{ AND NOT } \Psi(t))$
- Konstrukcje z kwantyfikatorem ogólnym powinny ograniczać zbiór potencjalnych wartości
 - tzn. dopuszczalne są jedynie konstrukcje $\forall x. x \in r \Rightarrow \Phi(x)$ czyli $\forall x \in r. \Phi(x)$

Rachunek dziedzin

22/24

21/24

Bazy Danych

Andrzej M. Borzyszkowski

23/24

Rachunek dziedzin

- Zmienne dziedzinowe xi, dla każdej dziedziny atrybutu
 - $\{\langle x1,...,xn\rangle \mid \Phi(x1,...,xn) \}$ gdzie w formule ma prawo wystąpić więcej zmiennych niż chcemy mieć w wyniku
 - predykat Φ jest zbudowany analogicznie jak w rachunku krotek
- Przykład,
 - relacja σ_[miasto='Gdańsk'](Klient) jest równa {<nr,tytul,nazwisko,..,miasto,kod p,tel> | Klient(nr,tytul,nazwisko,...,miasto,kod p,tel) AND miasto='Gdańsk' }
 - relacja π_[nr,nazwisko,imie](Klient) jest równa {<nr,nazwisko,imie> | ∃ tytul,miasto,kod p,tel,... Klient(nr,tytul,nazwisko,..,miasto,kod p,tel) }

Rachunek dziedzin, QBE

- Jezyk QBE (query by example) opracowany w IBM
 - nie ma potrzeby nazywać zmiennych, których nie potrzebujemy w wyniku
 - nazwy zmiennych często są przykładowymi wynikami (i są syntaktycznie wyróżnione)
 - wyświetl imiona i nazwiska klientów z Gdańska: {< Jan, Kowalski> |Klient(, , Kowalski, Jan, 'Gdańsk', ,) }
 - wyświetl nazwy towarów zamawianych z Gdańska: { donica | Klient(17, , , , 'Gdańsk', ,) AND Zamówienie (44, 17, ,) AND Pozycja (44, 32,) AND Towar(32, donica, ,) }
- Język używany jest często w środowisku graficznym (Access)
 - nazwy potrzebnych zmiennych lub stałych wprowadzane są bezpośrednio do nagłówków tabeli