Generalized quantum Yang-Baxter moves and their application to Schubert calculus

<u>Takafumi Kouno</u>⁽¹⁾, Cristian Lenart⁽²⁾, and Satoshi Naito⁽³⁾

(1) Waseda University, Japan

(2) State University of New York at Albany, U.S.A.
(3) Tokyo Institute of Technology, Japan

July 21, 2022, FPSAC2022

(Based on arXiv:2105.02546)

Introduction

2 The quantum alcove model

Quantum Yang-Baxter moves

Introduction

2 The quantum alcove model

Quantum Yang-Baxter moves

The quantum alcove model

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

- the quantum K-theory of flag manifolds
- the representation theory of quantum affine algebras

The quantum alcove model

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

- ullet the quantum K-theory of flag manifolds
- the representation theory of quantum affine algebras
- B^{p,1}: a column-shape Kirillov-Reshetikhin crystal

 (a combinatorial model for a certain finite-dimensional representation of a quantum affine algebra)

The quantum alcove model

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

- the quantum *K*-theory of flag manifolds
- the representation theory of quantum affine algebras
- B^{p,1}: a column-shape Kirillov-Reshetikhin crystal

 (a combinatorial model for a certain finite-dimensional representation of a quantum affine algebra)

Fact (Lenart-Naito-Sagaki-Schilling-Shimozono (2017))

In arbitrary untwisted affine type, there exists a crystal isomorphism

$$\underbrace{\mathcal{A}(\Gamma)}^{\sim} \to B^{p_1,1} \otimes B^{p_2,1} \otimes \cdots \otimes B^{p_k,1}$$
 (only "dual Demazure arrows"), objects of the quantum alcove model

where Γ is a suitable sequence of roots, called a λ -chain.

The combinatorial R-matrix

- $\bullet \ (p_1,p_2,\ldots,p_k) \in \mathbb{Z}_{>0}^k$
- $(p'_1, p'_2, ..., p'_k)$: a permutation of $(p_1, p_2, ..., p_k)$

Fact

There exists a crystal isomorphism

$$\mathcal{B}^{p_1,1}\otimes\mathcal{B}^{p_2,1}\otimes\cdots\otimes\mathcal{B}^{p_k,1}\xrightarrow{\sim}\mathcal{B}^{p_1',1}\otimes\mathcal{B}^{p_2',1}\otimes\cdots\otimes\mathcal{B}^{p_k',1},$$

called a combinatorial R-matrix (realized as jeu de taquin on Young tableaux in type A).

The quantum Yang-Baxter move

 $\mathcal{A}(\Gamma)$ may depend of the choice of " λ -chain" Γ (λ : dominant)

The quantum Yang-Baxter move

 $\mathcal{A}(\Gamma)$ may depend of the choice of " λ -chain" Γ (λ : dominant)

- λ : dominant integral weight
- Γ , Γ' : two "reduced" (shortest) λ -chains

Theorem (Lenart-Lubovsky (2018))

There exists a crystal isomorphism $\mathcal{A}(\Gamma) \xrightarrow{\sim} \mathcal{A}(\Gamma')$, which is realized combinatorially by a sequence of quantum Yang-Baxter moves.

The quantum Yang-Baxter move

 $\mathcal{A}(\Gamma)$ may depend of the choice of " λ -chain" Γ (λ : dominant)

- λ : dominant integral weight
- Γ , Γ' : two "reduced" (shortest) λ -chains

Theorem (Lenart-Lubovsky (2018))

There exists a crystal isomorphism $\mathcal{A}(\Gamma) \xrightarrow{\sim} \mathcal{A}(\Gamma')$, which is realized combinatorially by a sequence of quantum Yang-Baxter moves.

 $\rightarrow \mathcal{A}(\Gamma)$ does not depend on the choice of Γ

Combinatorial R-matrix vs. QYB moves

Combinatorial R-matrix vs. QYB moves

Conclusion

The quantum Yang-Baxter moves provide a realization (in the quantum alcove model) of the combinatorial *R*-matrix, which works uniformly for all untwisted affine root systems.

The generalization of the QYB move (1/3)

- $\mathcal{A}(w,\Gamma)$: objects of the quantum alcove model (admissible subsets) generalized by Lenart-Naito-Sagaki (2020) for
 - w (generalized from w = e before): an element of the Weyl group
 - Γ : a λ -chain (λ : an arbitrary integral weight)

The generalization of the QYB move (1/3)

- $\mathcal{A}(w,\Gamma)$: objects of the quantum alcove model (admissible subsets) generalized by Lenart-Naito-Sagaki (2020) for
 - w (generalized from w = e before): an element of the Weyl group
 - Γ : a λ -chain (λ : an arbitrary integral weight)

Applications (Lenart-Naito-Sagaki (2020))

- The Chevalley multiplication formula in the K-group of semi-infinite flag manifolds
- — in the quantum K-group of flag manifolds
- Character identities of level-zero Demazure modules over quantum affine algebras

The generalization of the QYB move (2/3)

Question

Is there a generalization of the quantum Yang-Baxter moves

$$\mathcal{A}(w,\Gamma) \rightarrow \mathcal{A}(w,\Gamma')$$
?

 $\rightarrow \mathcal{A}(w,\Gamma)$ is independent of the choice of Γ

The generalization of the QYB move (2/3)

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) \to \mathcal{A}(w,\Gamma')$?

 $\rightarrow \mathcal{A}(w,\Gamma)$ is independent of the choice of Γ

Problem

In general, $|\mathcal{A}(w,\Gamma)| \neq |\mathcal{A}(w,\Gamma')|$. Hence there does not exist any bijection $\mathcal{A}(w,\Gamma) \to \Gamma(w,\Gamma')$.

 \rightarrow We need a new approach to generalize QYB moves.

The generalization of the QYB move (3/3)

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) \to \mathcal{A}(w,\Gamma')$?

Definition (Fisher-Konvalinka (2020))

A sijection ("signed bijection") $S \Rightarrow T$ between signed sets S and T is a triple $(\iota_S, \iota_T, \varphi)$ consisting of

- $\varphi: S_0 \to T_0$: a sign-preserving bijection $(S_0 \subset S, T_0 \subset T)$
- ι_S (resp., ι_T): a sign-reversing involution on $S \setminus S_0$ (resp., $T \setminus T_0$)

The generalization of the QYB move (3/3)

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) \to \mathcal{A}(w,\Gamma')$?

Definition (Fisher-Konvalinka (2020))

A sijection ("signed bijection") $S \Rightarrow T$ between signed sets S and T is a triple $(\iota_S, \iota_T, \varphi)$ consisting of

- $\varphi: S_0 \to T_0$: a sign-preserving bijection $(S_0 \subset S, T_0 \subset T)$
- ι_S (resp., ι_T): a sign-reversing involution on $S \setminus S_0$ (resp., $T \setminus T_0$)

Theorem (KLN (2021))

For λ -chains Γ , Γ' such that Γ' is obtained from Γ by a "simple deformation procedure", there exists a sijection $\mathcal{A}(w,\Gamma) \Rightarrow \mathcal{A}(w,\Gamma')$ which preserves the related statistics end, down, wt, and height.

Settings

- ullet g: a simple Lie algebra over ${\mathbb C}$
- ullet Δ : the root system of ${\mathfrak g}$
- ullet Δ^+ : the set of positive roots
- P: the weight lattice
- P⁺: the set of dominant integral weights
- Q^{\vee} : the coroot lattice
- W: the Weyl group
- $\ell: W \to \mathbb{Z}_{\geq 0}$: the length function

Introduction

2 The quantum alcove model

Quantum Yang-Baxter moves

Introduction

2 The quantum alcove model

Quantum Yang-Baxter moves

The quantum Bruhat graph

Definition (Brenti-Fomin-Postnikov (1999))

The quantum Bruhat graph QBG(W) is the labeled directed graph:

- Vertex set: W
- Label set: Δ^+
- Edge: $x \xrightarrow{\alpha} y \ (x, y \in W, \ \alpha \in \Delta^+) \Leftrightarrow y = xs_{\alpha}$, and (Prubat edge) $\ell(y) = \ell(y) + 1$ or

(Bruhat edge) $\ell(y) = \ell(x) + 1$, or (Quantum edge) $\ell(y) = \ell(x) - 2\langle \rho, \alpha^{\vee} \rangle + 1$ ($\rho := (1/2) \sum_{\alpha \in \Delta^{+}} \alpha$).

Chains of roots

- $A_\circ := \{ \nu \mid 0 < \langle \nu, \alpha^\vee \rangle < 1 \text{ for all } \alpha \in \Delta^+ \}$: the fundamental alcove
- λ ∈ P

(reduced) λ -chain: a sequence $\Gamma = (\beta_1, \dots, \beta_r)$ of roots associated to a (shortest) path from A_\circ to $A_{-\lambda} := A_\circ - \lambda$

 $\begin{aligned} & [\mathsf{Type}\ \textit{A}_2] \\ & (\alpha_2,\alpha_1+\alpha_2,\alpha_2,\alpha_1+\alpha_2,\alpha_1,\alpha_1+\alpha_2) \\ & (\varpi_1+2\varpi_2)\text{-chain} \end{aligned}$

Admissible subsets (1/2)

Admissible subsets: main objects in the quantum alcove model

- w ∈ W
- $\lambda \in P$
- $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (Lenart-Lubovsky (2015), Lenart-Naito-Sagaki (2020))

A subset $A = \{i_1 < i_2 < \cdots < i_s\} \subset \{1, \ldots, r\}$ is said to be w-admissible if

$$w = w_0 \xrightarrow{|\beta_{i_1}|} w_1 \xrightarrow{|\beta_{i_2}|} \cdots \xrightarrow{|\beta_{i_s}|} w_s \ (=: end(A))$$

is a directed path in QBG(W). Set

$$\mathsf{down}(A) := \sum_{\substack{1 \leq k \leq s \ w_{k-1} o w_k \text{ is a quantum edge}}} |eta_k|^ee,$$
 $n(A) := |\{j \in A \mid eta_i \in -\Delta^+\}|.$

Admissible subsets (2/2)

Definition (Lenart-Lubovsky (2015), Lenart-Naito-Sagaki (2020))

A subset $A = \{i_1 < i_2 < \dots < i_s\} \subset \{1, \dots, r\}$ is said to be $\emph{w-admissible}$ if

$$w = w_0 \xrightarrow{|\beta_{i_1}|} w_1 \xrightarrow{|\beta_{i_2}|} \cdots \xrightarrow{|\beta_{i_s}|} w_s \ (=: \operatorname{end}(A))$$

is a directed path in QBG(W). Set

$$\mathsf{down}(A) := \sum_{\substack{1 \leq k \leq s \ w_{k-1}
ightarrow w_k \text{ is a quantum edge}}} |eta_k|^ee,$$
 $n(A) := |\{j \in A \mid eta_i \in -\Delta^+\}|.$

Remark

We can also define statistics $wt(A) \in P$ and $height(A) \in \mathbb{Z}$.

$$\mathcal{A}(w,\Gamma) := \{A \subset \{1,\ldots,r\} \mid A \text{ is } w\text{-admissible}\} \text{ with sign } A \mapsto (-1)^{n(A)}$$

Introduction

2 The quantum alcove model

Quantum Yang-Baxter moves

Yang-Baxter transformation

- $\lambda \in P$
- $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (e.g., Lenart-Postnikov (2007))

A Yang-Baxter transformation (YB): a procedure to obtain a new λ -chain

- (1) Take a segment $(\beta_{t+1}, \ldots, \beta_{t+q})$ of Γ s.t.
 - $\langle \beta_{t+1}, \beta_{t+q}^{\vee} \rangle \leq 0$,
 - $(\beta_{t+1}, \ldots, \beta_{t+q}) = (\alpha, s_{\alpha}(\beta), s_{\alpha}s_{\beta}(\alpha), \ldots, s_{\beta}(\alpha), \beta)$ for some α, β .
- (2) Reverse $(\beta_{t+1}, \ldots, \beta_{t+q})$ in Γ :

$$\Gamma' := (\beta_1, \ldots, \beta_t, \beta_{t+q}, \ldots, \beta_{t+1}, \beta_{t+q+1}, \ldots, \beta_r).$$

 $\rightarrow \Gamma'$: λ -chain

Deletion

- $\lambda \in P$
- $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (e.g., Lenart-Postnikov (2007))

A deletion (D): a procedure to obtain a new λ -chain

- (1) Take a segment $(\beta_{t+1}, \beta_{t+2})$ in Γ s.t. $\beta_{t+2} = -\beta_{t+1}$.
- (2) Delete the segment $(\beta_{t+1}, \beta_{t+2})$ in Γ :

$$\Gamma' := (\beta_1, \ldots, \beta_t, \beta_{t+3}, \ldots, \beta_r).$$

 $\rightarrow \Gamma'$: λ -chain

Deletion

- λ ∈ P
- $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (e.g., Lenart-Postnikov (2007))

A deletion (D): a procedure to obtain a new λ -chain

- (1) Take a segment $(\beta_{t+1}, \beta_{t+2})$ in Γ s.t. $\beta_{t+2} = -\beta_{t+1}$.
- (2) Delete the segment $(\beta_{t+1}, \beta_{t+2})$ in Γ :

$$\Gamma' := (\beta_1, \ldots, \beta_t, \beta_{t+3}, \ldots, \beta_r).$$

 $\rightarrow \Gamma'$: λ -chain

Fact (e.g., Lenart-Naito-Sagaki, Lenart-Postnikov)

From any λ -chain, we can obtain any reduced λ -chain by repeated application of (YB) and (D).

Quantum Yang-Baxter move

Theorem (Lenart-Lubovsky (2018))

Let $\lambda \in P^+$, and take reduced λ -chains Γ_1 , Γ_2 s.t. $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$. There exists a bijection $Y : \mathcal{A}(e, \Gamma_1) \to \mathcal{A}(e, \Gamma_2)$ s.t.

- $\operatorname{end}(Y(A)) = \operatorname{end}(A)$,
- down(Y(A)) = down(A),
- $\operatorname{wt}(Y(A)) = \operatorname{wt}(A)$, and
- height(Y(A)) = height(A).

This Y is called a quantum Yang-Baxter (QYB) move.

- A QYB move is a structure-preserving bijection.
 - $\rightarrow \mathcal{A}(e,\Gamma)$ does not depend on the choice of Γ .

Quantum Yang-Baxter move

Theorem (Lenart-Lubovsky (2018))

Let $\lambda \in P^+$, and take reduced λ -chains Γ_1 , Γ_2 s.t. $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$. There exists a bijection $Y : \mathcal{A}(e, \Gamma_1) \to \mathcal{A}(e, \Gamma_2)$ s.t.

- $\operatorname{end}(Y(A)) = \operatorname{end}(A)$,
- down(Y(A)) = down(A),
- $\operatorname{wt}(Y(A)) = \operatorname{wt}(A)$, and
- height(Y(A)) = height(A).

This Y is called a quantum Yang-Baxter (QYB) move.

- A QYB move is a structure-preserving bijection. $\rightarrow \mathcal{A}(e,\Gamma)$ does not depend on the choice of Γ .
- It is, in fact, an affine crystal isomorphism.
- It is a root system generalization of jeu de taquin in type A.

Generalization of QYB moves (1/2)

Theorem (KLN (2021))

Let $\lambda \in P$ and $w \in W$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\Gamma_1 \xrightarrow{(YB)} \Gamma_2 \ or$
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

There exist explicit subsets $A_0(w, \Gamma_1) \subset A(w, \Gamma_1)$ and $A_0(w, \Gamma_2) \subset A(w, \Gamma_2)$ s.t.

Generalization of QYB moves (1/2)

Theorem (KLN (2021))

Let $\lambda \in P$ and $w \in W$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\Gamma_1 \xrightarrow{(YB)} \Gamma_2 \ or$
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

There exist explicit subsets $A_0(w, \Gamma_1) \subset A(w, \Gamma_1)$ and $A_0(w, \Gamma_2) \subset A(w, \Gamma_2)$ s.t.

(1) there exists a bijection $Y: \mathcal{A}_0(w, \Gamma_1) \to \mathcal{A}_0(w, \Gamma_2)$ which preserves $sign(-1)^{n(A)}$ and which preserves $end(\cdot)$, $down(\cdot)$, $wt(\cdot)$, and $height(\cdot)$,

Generalization of QYB moves (1/2)

Theorem (KLN (2021))

Let $\lambda \in P$ and $w \in W$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$ or
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

There exist explicit subsets $A_0(w, \Gamma_1) \subset A(w, \Gamma_1)$ and $A_0(w, \Gamma_2) \subset A(w, \Gamma_2)$ s.t.

- (1) there exists a bijection $Y: \mathcal{A}_0(w, \Gamma_1) \to \mathcal{A}_0(w, \Gamma_2)$ which preserves $sign(-1)^{n(A)}$ and which preserves $end(\cdot)$, $down(\cdot)$, $wt(\cdot)$, and $height(\cdot)$,
- (2) there exist involutions I_k on $\mathcal{A}(w, \Gamma_k) \setminus \mathcal{A}_0(w, \Gamma_k)$ (k = 1, 2) which reverse sign $(-1)^{n(A)}$ and which preserve $\operatorname{end}(\cdot)$, $\operatorname{down}(\cdot)$, $\operatorname{wt}(\cdot)$, and $\operatorname{height}(\cdot)$.

Generalization of QYB moves (2/2)

Theorem (KLN (2021))

- (1) a bijection $Y: A_0(w, \Gamma_1) \to A_0(w, \Gamma_2)$ which preserves sign $(-1)^{n(A)}$ and which preserves $end(\cdot)$, $down(\cdot)$, $wt(\cdot)$, and $height(\cdot)$,
- (2) involutions I_k on $\mathcal{A}(w, \Gamma_k) \setminus \mathcal{A}_0(w, \Gamma_k)$ (k = 1, 2) which reverse sign $(-1)^{n(A)}$ and which preserve end (\cdot) , down (\cdot) , wt (\cdot) , and height (\cdot) .

 \rightarrow We obtain a sijection (I_1, I_2, Y) : a generalized QYB move.

Generating functions

- $W_{\mathsf{af}} = W \ltimes Q^{\vee} = \{ \mathsf{wt}_{\xi} \mid \mathsf{w} \in W, \ \xi \in Q^{\vee} \}$: the affine Weyl group
- $x = wt_{\xi} \in W_{\mathsf{af}}$
- Γ : λ -chain $(\lambda \in P)$

Definition

A generating function $G_{\Gamma}(x) \in (\mathbb{Z}[q,q^{-1}][P])[W_{\mathsf{af}}] \Leftrightarrow$

$$\mathsf{G}_{\Gamma}(x) := \sum_{A \in \mathcal{A}(w,\Gamma)} (-1)^{n(A)} q^{-\operatorname{height}(A) - \langle \lambda, \xi \rangle} e^{\operatorname{wt}(A)} \operatorname{end}(A) t_{\xi + \operatorname{down}(A)}.$$

Preservation of generating functions

Theorem (KLN (2021))

Let $\lambda \in P$, $x \in W_{af}$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\bullet \ \Gamma_1 \xrightarrow{(YB)} \Gamma_2 \ or$
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

Then $G_{\Gamma_1}(x) = G_{\Gamma_2}(x)$.

Conclusion

• We obtain a generalization of QYB move $\mathcal{A}(w,\Gamma)\Rightarrow\mathcal{A}(w,\Gamma')$ as a sijection.

Conclusion

- We obtain a generalization of QYB move $\mathcal{A}(w,\Gamma)\Rightarrow\mathcal{A}(w,\Gamma')$ as a sijection.
- Generating functions are preserved under deformation procedures (YB) and (D) (deletes $(\beta, -\beta)$ with β not a simple root).

Conclusion

- We obtain a generalization of QYB move $\mathcal{A}(w,\Gamma)\Rightarrow\mathcal{A}(w,\Gamma')$ as a sijection.
- Generating functions are preserved under deformation procedures (YB) and (D) (deletes $(\beta, -\beta)$ with β not a simple root).
- As an application, we give a combinatorial proof of the Chevalley multiplication formula in the equivariank K-group of semi-infinite flag manifolds, first proved by Lenart-Naito-Sagaki.