SDM670 Linux Android 软件温控概述

OLIALCONNO

Qualcomm Technologies, Inc.

80-PD126-7SC 版本 B

机密和专有信息 – Qualcomm Technologies, Inc.

限制分发: 未经 Qualcomm 配置管理部门的明确批准,不得向 Qualcomm Technologies, Inc. 或其关联公司的员工之外的任何人分发。

机密和专有信息 – Qualcomm Technologies, Inc.

禁止公开披露:如若发现本文档在公共服务器或网站上发布,请报告至: DocCtrlAgent@qualcomm.com。

未经 Qualcomm Technologies, Inc. 的明确书面许可,不得使用、复印、复制或修改其全部或部分内容,或以任何方式向其他人泄露其内容。

MSM 是 Qualcomm Technologies, Inc. 的产品。本文中提到的其他 Qualcomm 产品是 Qualcomm Technologies, Inc. 或其子公司的产品。

Qualcomm 和 MSM 是 Qualcomm Incorporated 在美国和其他国家/地区所注册的商标。其他产品和品牌名称可能是其各自所有者的商标或注册商标。

本技术资料可能受美国和国际出口、再出口或转让(统称"出口")法律的约束。严禁违反美国和国际法律。

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2017 Qualcomm Technologies, Inc. 和/或其关联公司。保留所有权利。

修订记录

版本	日期	说明	
А	2017年9月	初始版本	
В	2017年11月	更新了幻灯片 9 SDM670 <i>片上温度传感器的放置</i>	

目录

- 温升调节软件概念架构
- 温度传感器
- 温控软件概述
- 其他温控软件功能
- LTE 温控
- CDMA 温控
- WCDMA 温控
- GERAN 温控
- 参考资料
- 问题?

温升调节软件概念架构

温升调节软件概念架构

温度传感器

温度传感器 - 放置和扩大的覆盖范围

- 传感器放置于硅片热点附近
 - SDM670 具有 21 个片上传感器(参见幻灯片 9 中的片上传感器平面图)
- PCB 靠近功率放大器的位置需要额外放置传感器(热敏电阻)
- 片上传感器精度和采样率
 - SDM670 芯片组精度达到 < 1.5°C
 - 1.5 ms 采样率实现响应更快的温控操作
- 当超过 SBL1 中预定义的临界高/低阈值时,发生硬接线 tsens_reset, 以保护设备

SDM670 片上温度传感器的放置

- 21 个片上温度传感器
- 每个带有传感器 ID 的白点代表不同传感器。

软件通道	控制器	名称
0	0	AOSS.0
1	0	CPU.0.0
2	0	CPU.0.1
3	0	CPU.0.2
4	0	CPU.0.3
5	0	CPUSS.0
6	0	CPUSS.1
7	0	CPU.0.4
8	0	CPU.0.5
9	0	CPU.1.0
10	0	CPU.1.1
11	0	GPUSS.0
12	0	GPUSS.1
13	1	AOSS.1
14	1	MDM_Q6
15	1	DDR
16	1	WLAN
17	1	COMPUTE_HVX
18	1	CAMERA
19	1	MMSS
20	1	MDM_CORE

温控软件概述

温控软件概述

- 温控软件的动因
 - 管理芯片温度限值
 - 管理外部设备的表面温度限值
- 传感器
 - MSM™ 芯片组的片上传感器
 - 板载热敏电阻 PMIC、PA、XO等
- 温控设备
 - 通过降低性能进行被动降温
 - OEM 通过配置文件针对不同产品配置设备选择 和阈值
- 架构
 - 用户空间 自定义 Tskin 规则,应用感测
 - 内核 核心隔离(热插拔)
 - 限制硬件 高结温和/或电流的时间关键型调节

Userspace

- Tskin 规则
- 需要应用感测的温控 策略

Kernel

- 启动和运行阶段的 核心热插拔
- 低温温控

Limits HW

• 高 Tj 和/或电 流的时间关键 型调节

启动温控 (BTM) 算法

- 启动电压限制

- 在允许设备启动前,确保温度处于有效工作范围内。
- 温度阈值、延迟和最大尝试次数在启动加载程序编译中配置。

BTM 配置硬编码

- 默认禁用 BTM
 - .nLowerThresholdDegC 设置为 -150°C。
 - .nUpperThresholdDegC 设置为 150°C。
- 如果 OEM 指定了正确的温度阈值,并且当前温度高于或低于相应阈值, 则可以延迟启动。
- 如果超过了预定义重试次数,则启动失败。
- 在启动加载程序库中实施: QcomPkg/Library/BootTempCheckLib/BootTempCheck.c

温控核心框架

- 在 SDM670 芯片组中, 温控核心替代了内核温度监控 (KTM)
- 温控核心的主要功能
 - 核心隔离(热插拔)
 - CPU 频率调节
 - GPU Tj 控制
 - 低温温控,即 VDD 限制
- 温控核心是上游 Linux 温控解决方案的一部分
- 在 SDM670 芯片组中改用温控核心框架的动因
 - KTM 的传统控制功能已经硬件固化,或者不再是芯片组运行过程所需的功能
 - KTM 紧急频率调节由限制调节硬件 (LMH) 进行处理
 - QTI 使用专有上游代码主动提供限制温控解决方案

温控核心框架 - 架构

- 在QTI的限制温控解决方案中,温控核心框架如下所示。
- 该图反映了许多内核级温控功能和驱动的上游规划。

温控核心框架 - 设备树条目

- 温控核心框架的一项主要功能是核心热插拔。
- 以下是一个设备树条目示例,当 ibat 达到 2.3 A 时用于热插拔 CPU0,在 ibat 低于 2.1 A 时清除调节。
 - 假设群集 0(从 0 开始索引) 具有 22 个频率调节步长,则第 22 步是热插拔。
 - 注:这只是一项示例;实际的设备树条目将包含在本文档的后续修订版本中。

```
ibat {
   polling-delay-passive = <100>;
   polling-delay = <0>;
   thermal-governor = "step wise";
   thermal-sensors = <&bcl sensor
   trips {
       low ibat 00: low-ibat {
           temperature = <2300>;
           hysteresis = \langle 200 \rangle;
           type = "passive";
       };
   } ;
                                      调节上限
   cooling-maps {
       ibat map0 {
           trip = <&low ibat 00>;
           cooling-device = <&CPU0 22 22>;
       };
   };
};
                                  调节下限
```

注:由于上限和下限调节值相同,所以该规则和监控规则相同,保持在22级直至达到迟滞。

限制温控硬件 (LMH)

- LMH 是基于硬件的保护电路
 - LMH 通过以下方式提升了 MSM 设备的可靠性和稳健性
 - 其在 PMIC 电源轨的特定性能范围内管理 CPU 子系统消耗的峰值电流。
 - 如果任何 CPU 过热,它可以提供快速温控响应;这仅适用于性能群集。
 - HLOS(温控核心框架)可对 LMH 的频率变化进行表决。该请求直接作用于硬件, 获得更快的响应。
- LMH 功能概要

特性	SDM670	
峰值电流管理	是 适用于大核 CPU 群集	
温控	是 适用于每个 CPU 群集,即 小核和大核 使用 SS 算法进行的结温温控	

 更多详细信息,参见 Limits Management Hardware (LMH) Overview (80-NM328-108)。

用户空间温控引擎

- 温控引擎已经修改了温控后台程序,以便与传感器管理器集成,允许多种算法。
 - 温控引擎:支持传统和高级动态算法并行运行;OEM 可以在温控引擎配置文件中选择现有算法或新算法。
 - 动态算法(动态温控 (DTM)): 它显着减少了调试工作并改善了平均 DMIPS。
 - 虚拟传感器:将多于两个的传感器读数与相关权重组合,以精确关联表面温度。
 - 动态参数更新:可以在运行过程中更新温控引擎的重要参数集,实现更好的 OEM 特定动态温控。

用户空间温控引擎(续)

• 温控引擎配置示例:

调试模式和默认采样 debug sampling 1000

监控算法实例示例

[CPU5_HOTPLUG_MONITOR]
algo_type monitor
sampling 1000
sensor cpu3
thresholds 90000
thresholds_clr 70000
actions hotplug_3
action info 1

动态算法实例示例

[SS-CPU0]
algo_type ss
sampling 10
sensor cpu0
device cluster0
set_point 85000
set_point_clr 65000
time_constant 0

温控软件调节装置

调节设备	说明	
CPUx	调整每个群集允许的最高工作频率	
GPU	调整允许的最大工作频率	
关机	确保在超过结温限值前关闭 CPU 核心的安全机制	
Modem	调整峰值数据速率、最大 Tx 功率和数据通话中断	
LCD	调整最大背光强度	
电池	调整允许的最快充电速率	
摄像头和摄像机	调整 fps 速率	

温度调节算法

- 多种算法类型可应用于温控配置文件
 - DTM algo type ss
 - 监控 algo type monitor
- DTM
 - 配置为 algo type ss。
 - OEM 确定需要维持的单一温区,算法相应地动态限制 OEM 特定操作 (CPU 频率)。
 - 其用于表面温度和片上温度控制
 - 与监控相比,所需的调试工作更少
 - 能够更严格地执行温度限制
 - 它只适用于 CPU 和 GPU 调节(如降低最高频率)。
 - 通过 thermal-engine.conf 文件中的 set_point 和 set_point_clr 调整 DTM 算法阈值。

温度调节算法(续)

- LCD、Modem 和电池的监控算法
 - 配置 algo type monitor
 - OEM 确定一系列温度阈值以及每个阈值对应的精确操作
 - 监控算法用于 LCD、Modem 和电池调节;不建议用于 CPU 和 GPU 调节,因为 其需要通过大量调整找到每个设定点
 - 通过 thermal-engine.conf 文件中的 thresholds 和 threshold_clr, 阈 值根据监控算法发生变化
- 相较于监控,强烈推荐将 DTM 用于 CPU 和 GPU 调节,它能够显著减少 调试工作、提高性能并严格保持 OEM 设定点的温度

动态算法示例 - 响应预测

- 当温度超过设定值 (75°C) 时,性能在温度稳定前持续下降。根据规则中定义的采样参数启用轮询模式。
- 当温度降至 75°C 以下时,恢复允许的最高频率。
- 如果温度进一步降至设定的清零点 (50°C) 以下,则重新启用中断模式。
- 动态算法用于 CPU 和 GPU 控制。

阈值算法示例

- 测得的温度超过预定义阈值,然后设定预定义调节等级。
- 当传感器温度达到 70°C 时, GPU 频率从 500 MHz 降至 333 MHz。
- 最终传感器温度保持在 85°C。

属性	级别 1	级别 2	级别 3
阈值置位	70°C	77°C	85°C
阈值清零	65°C	72°C	80°C
GPU 频率	333 MHz	200 MHz	100 MHz

温控启动时间线

将自定义温控配置添加到设备

- 无需重新编译源代码,即可将自定义温控配置添加至设备。
- 1. 通过将其放置在名为 thermal-engine.conf 的文件中,然后使用 adb 将其推送到设备 (/system/etc/thermal-engine.conf) 添加规则。

```
adb push <location_of_thermal-engine.conf> /system/etc/thermal-engine.conf
```

- 例如,要为 GPU 添加规则,在 thermal-engine.conf 其中添加如下行:

```
[SS-GPU]
algo_type ss
sampling 65
sensor gpu
device gpu
set_point 60000
set_point_clr 57000
time constant 0
```

- 该示例中将一个名为 [SS-GPU] 的规则添加到温控配置中。
- 1. 添加或更改 thermal-engine.conf 后重启设备。

将自定义温控配置添加到设备(续)

- 要替换默认规则,可以向 thermal-engine.conf 添加与默认规则同名的规则。
- 例如, [SS-POPMEM] 是默认规则;如果向 thermal-engine.conf添加名称相同的规则,将覆盖默认规则

```
[SS-POPMEM]

algo_type ss

sampling 250

sensor pop_mem

device cluster1

set_point 65000

set_point_clr 55000

time_constant 2
```

- 该示例覆盖 80°C 的 [SS-POPMEM] 默认规则,并将其降至 65°C。
- 添加或更改 thermal-engine.conf 后重启设备。

将自定义温控配置添加到设备(续)

要禁用默认规则,可以向 thermal-engine.conf添加与待禁用规则同名的规则,其后带有 disable 1。

[SS-POPMEM]
disable 1

- 该示例中禁用了 [SS-POPMEM] 规则。
- 添加或更改 thermal-engine.conf 后重启设备。

其他温控软件功能

其他温控软件功能

特性	说明	
电池电流限制	基于电池充电状态水平的 CPU 调节	
扬声器音圈校准 扬声器音圈电阻与温度关系的自动校准使音频编解码器防止在高 率输出下损坏扬声器音圈		
电压限制	通过调整极端温度下所需的最低电压,电压限制支持高于 0°C 的温度下电压运行	
动态参数更新	可以在运行过程中更新重要参数集,实现更好的 OEM 特定动态温控	
2018-01-30 Philade.		

LTE 温控

Modem - 温控实施

- 由温升引擎管理
- HKADC 通过 QMI 接口向温控引擎报告的温度
- 温控引擎接收热敏电阻和 TSENS 的温度读数
- 操作和阈值在温控配置文件(thermal-engine.conf (TSENS) 和 Modem EFS (PA)) 中定义
 - 可以选择以下任一调节方法降低或控制温度:
 - 限制 UL 数据吞吐量,同时保持原始功率等级,执行 duty-cycling/DTx;这是首选/第一种方法
 - 降低设备的功率等级,降低最高 Tx 功率,从而限制功率放大器的功耗。这并非首选方法,却是降低达到紧急状态概率的另一种工具
 - 通过降低载波分量 (CC) 限制 DL 吞吐量, 并从 4Rx 回退到 2Rx
 - 紧急状态 通话中断;设备转至受限服务,只允许 E911 呼叫

用户空间温控引擎

- 温控引擎在用户空间中运行,接受可通过 ADB 访问的由 OEM 定义的配置文件 (/etc/thermal-engine.conf)。
- 温升调节类型:可以使用温控配置实例中的"操作"字段更改温升调节 类型。

"操作"类型	说明
Modem	通过上行链路数据速率限制、最高 Tx 功率限制和 数据通话中断降低 PA 温度;使用 PA 传感器
Modem_proc	通过调整载波聚合 (CA) 模式、2Rx 回退和高级接收器 (ARX) 功能执行 Modem 基带温度调节;使用 TSENS 传感器

用户空间温控引擎(续)

- 國值算法的温控引擎配置实例 监控。
- 以下示例为使用监控算法的实例;监控算法可以同时设置多个阈值和相应操作。

使用 modem_proc 的阈值或监控示例

debug : Adding this line will add detailed debug info in adb logcat log

sampling 5000 : Default sampling period of 1000 msec

[MSS_TM]

algo_type monitor

sensor tsens_tz_sensor2

sampling 1000

thresholds 75000 105000 thresholds_clr 65000 100000

actions modem_proc modem_proc

action info 1 3

: Thermal Rule name

: Algorithm Type

: Sensor Type: TSENS

: Sampling period of 1000 msec

: thresholds set in 75C, 105C

: clear points set 65C, 100C

: Mitigation Type

: Mitigation Level

使用 Modem 的阈值和监控示例

[pa]

algo type monitor sensor pa therm0 thresholds 40000 43000 45000 98000 thresholds clr 30000 35000 41000 43000 sampling 5000 actions modem modem modem modem action info

Modem - 高温用例

- 长时间执行可能产生高温的用例或这些用例的并行组合
 - 峰值 DL 或 UL 数据速率下的吞吐量测试
 - 在 UE 连续发射,同时 Tx 功率非常高时,不良 RF 条件下的数据吞吐量
 - 高 DL 数据速率以及视频等应用
 - 通话中断或受限服务(只允许 E911)
- Modem 温控的测试设置要求包括:
 - 仅当使用非 GCF SIM 时,即 SIM 未使用 MCC = 001 和 MNC = 01 进行编程, 温控才有效
 - 为了使 WCDMA 流量控制发挥作用,网络或网络模拟器必须支持 WIN_SIZE SUFI
 - 要使用 LTE "Modem" (即 PA 传感器)温升调节,网络和/或网络模拟器必须 支持动态 UL 调度,后者基于 UE 报告的缓冲状态报告 (BSR)
 - 要使用 LTE "modem_proc" (即 TSENS 传感器),网络模拟器必须支持下行链路适配 (LA),其中 DL 调度基于在 CSF 测量报告期间由 UE 报告的排名指数 (RI)

温控操作分解

CFCM 监控	等级	操作	注释
PA 调节	1	启用 UL 限制	通过报告较小缓冲区状态报告,启动对 上行链路数据速率的限制
	2	启用 MTPL 回退和/或 PUCCH 回退	限制最大 Tx 功率 (23 dBm) 和 DL 降低 带宽
	3	受限服务模式	通话恢复或受限服务(只允许 E911)
Modem 调节	1	启动下行链路调节状态机	执行从 4Rx 到 2Rx 的回退过程并根据 需要放弃 CA 模式
	2	不使用的	_
	3	受限服务模式	通话恢复或受限服务(只允许 E911)

Modem 温升调节 (PA 传感器) - 配置

- 预计基于 PA 温度传感器的所有 Modem 温升调节决策均由 Modem 软件中的热监控策略管理器决定。
- 此热监控允许用户基于 PA 传感器配置阈值,以进入和退出温升调节状态。
- * 通过上传 config.ini 文件到 /nv/item_files/therm_monitor/config.ini 目录, 可配置 Modem 热监控策略。

[pa]		31	· Offi	
thermal_zone	pa	100	lu.	
sampling	6000	5000	4000	3000
thresholds	45	50	55	528
thresholds_clr	-273	43	48	53
actions	mitigate	mitigate	mitigate	mitigate
action_info	0	1	2	3

^{*} 仅当 thermal-engine.conf 中没有用于 PA 调节的条目时,方可使用 config.ini 方法。 注:config.ini 文件必须以新行结束。

Modem 温升调节 (TSENS) – 配置

- 在温升调节引擎配置文件 (/etc/thermal-engine.conf) (可通过 ADB 访问进行访问)中,可以配置基于 TSENS 温度的 Modem 温升调节决策。
- 以下示例为使用监控算法的实例;监控算法可以同时设置多个阈值和相应操作。

[MSS_TM]		100
algo_type	monitor	37. 000
sensor	tsens_tz_sen	sor2
sampling	300	7.30 Mile
thresholds	75000	105000
thresholds_clr	65000	100000
actions	modem_proc	modem_proc
action info	1	3

调节等级 1 (PA 传感器) – UL 降低带宽

软件中执行 UL 降低带宽的默认目标 MAC 层级数据速率配置如下所示。

```
Uint8 num state = 13;
Uint8 default state = 8;
Uint16 reserved = 0; /* keep this set to 0 */
/* number of bytes per TTI (ms) */
Uint32 target rate[0] = 18750 (150 Mb/s)
                                             //0x493E (in EFS write it as 3E490000)
Uint32 target rate[1] = 12500 (100 Mb/s)
                                             //0x30D4 (in EFS write it as D4300000)
Uint32 target rate[2] = 9375 (75 Mb/s)
Uint32 target rate[3] = 6250 (50 Mb/s)
Uint32 target rate [4] = 5000 (40 \text{ Mb/s})
Uint32 target rate[5] = 3125 (25 Mb/s)
Uint32 target rate [6] = 1250 (10 Mb/s)
Uint32 target rate [7] = 625 (5 Mb/s)
Uint32 target rate [8] = 125 (1 Mb/s)
                                              Default state as configured in EFS
Uint32 target rate[9] = 63 (500 kb/s)
Uint32 target rate [10] = 13 (100 kb/s)
Uint32 target rate [11] = 6 (50 kb/s)
Uint32 target rate [12] = 1 (10 kb/s)
```

- 流量控制目标数据速率的默认值具有 13 个状态,如前文所述。默认速率设置为 1 Mbps。 最小速率可以设置为较低值,但建议将其设置为符合控制通道和延迟敏感型应用程序的要求。 建议不要将此值设置为 0,因为它会关闭 UL 并最终导致通话中断。
- 应仔细选择默认状态,确保及时响应降温情况。通过在默认配置中将默认状态设置为8,数据速率在触发UL流量控制后最初降低至1Mbps。
- 为了更改或配置数据速率的配置,使用 EFS 结构并写入 num_state、default_state、 target_rate[0]...target_rate[num_state-1];将以每毫秒的字节数表示数据速率。更多详细信息, 参见下一张幻灯片。

调节等级 1(PA 传感器) - UL 降低带宽(续)

- EFS 文件名: Ite_fc_macul_target_ratesEFS 文件位置: /nv/item_files/modem/Ite/common/
- 示例 EFS 内容:
 0D080000 3E490000 D4300000 9F240000
 6A180000 88130000 350C0000 E2040000
 71020000 7D000000 3F000000 0D000000
 06000000 01000000
- 要恢复到默认配置,使用 QPST EFS 资源管理器删除文件 /nv/item_files/modem/lte/common/lte_fc_macul_target_rates。
- NV 65676 步进计时器(以 s 为单位),用于更改速率状态,默认值是 15 s。
- 通过此集中式流量管理器,UE 根据目标速率向网络发送伪缓冲器状态报告;因此,网络在此基础上分配较低权限。

注: 为了使 LTE 流量控制发挥作用,网络和/或网络模拟器必须支持动态调度,即基于 UE 所报告的缓冲器状态的调度。

只能使用 EFS 方法配置级别为 1 的数据速率配置,不能使用 NV 65611。

调节等级 1(PA 传感器) - UL 降低带宽(续)

调节等级 2(PA 传感器) - Tx 功率回退

- 对于处于调节等级 2 状态的 LTE, PA 功率根据在 /nv/item_files/modem/lte/ML1 的 .efs 文件 (tx_power_backoff) 中配置的参数进行调整
- 可以在 .efs 文件中配置的值
 - P_backoff Tx 功率回退的初始值,以 dB 为单位(在每个步长 n 中,功率回退值为 n x P_backoff)
 - T on UE 移除 MTPL 限制的时长
 - T off UE 减小 MTPL 的时长
 - Step_timer 每个步长花费的时间

调节等级 2(PA 传感器) - Tx 功率回退(续)

/nv/item_files/modem/lte/ML1 中 tx_power_backoff 的结构

```
/* Initial backoff */
uint16  p_backoff;
/* Maximum value of the backoff */
uint16  p_backoff_max;
/* Time for non-backed-off value of power */
uint16 t_on;
/* Time for backed off Value of power */
uint16 t_off;
/* Timer for each step of the backoff */
uint32 step_timer;
```

- 示例 如果文件的十六进制内容是 05000C00 32003200 983A0000, 则:
 - P_backoff 5 dB (0500 表示 5 dB)
 - Max_backoff 12 dBm (0C00 表示 13 dB)
 - T_on 50 ms (3200 表示 50 ms)
 - T_off 50 ms (3200 表示 50 ms)
 - Step_timer 15 s (983 A 表示 15 s)
- 相同默认回退值(5 dB、10 dB 和 12 dB)适用于带内或带间 UL CA 的每个载波

调节等级 2(PA 传感器)- PUCCH 回退

- DL 数据流量可通过传输至网络的 UE ACK/NACK 数据包进行控制。
- 在 T_down 期间, UE 不在 PUCCH 中传送任何 HARQ ACK/NACK。
- T_down + T_up 总周期保持不变, 称为 PUCCH 周期。PUCCH 占空比可以通过更改 T_down 和 T_up 进行调整。

为了启用 DL 限制(PUCCH 回退), EFS 十六进制文件 tm_mechanism(内容: 01)
 必须在 /nv/item files/modem/lte/ML1/ 中显示。

00000000	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	0f	
00000000	01																
00000010																	
00000000																	

调节等级 2(PA 传感器)- PUCCH 回退(续)

默认 PUCCH 回退设置

```
pucch cancel info->default state fc = 4;
/* Default state for Thermal mitigation */
pucch cancel info->default state tm = 4;
pucch cancel info->num states = 6;
pucch cancel info->step timer fc = 400;
/* Step Timer for each state for thermal mitigation */
pucch cancel info->step timer tm = 30000;
pucch cancel info->timer info[0].t off = 100; /* Off timer */
pucch cancel info->timer info[0].t on = 100; /* On timer */
pucch cancel info->timer info[1].t off = 80;
pucch cancel info->timer info[1].t on = 120;
pucch cancel info->timer info[2].t off = 60;
pucch cancel info->timer info[2].t on = 140;
pucch cancel info->timer info[3].t off = 40;
pucch cancel info->timer info[3].t on = 160;
pucch cancel info->timer info[4].t off = 20;
pucch cancel info->timer info[4].t on = 180;
pucch cancel info->timer info[5].t off = 10;
pucch cancel info->timer info[5].t on = 190;
```

调节等级 2(PA 传感器)- PUCCH 回退(续)

- 要更改或配置 PUCCH 限制信息,请使用以下 EFS 结构并按如下方式写入 num_states、default_state_tm、default_state_fc、padding、t_on 和 t_off:
- 结构 lte_ml1_nv_cfg_pucch_cancel_info_s

```
struct {
  /* Number of states */
  uint8 num states;-----
                                               6 //0x06
  /* Default state for Thermal mitigation *.
  uint8 default state tm; -----
  /* Default state for CPU based Flow control */
  uint8 default state fc;-----
 /* Padding */
 uint8 padding; -----
 struct {
   /* On timer */
                                        ----- 100 0x00 64 (Write in EFS 64 00)
   uint16 t on;
   /* Off timer */
                               -----100 0x00 64 (Write in EFS 64 00)
   uint16 t off;
  }timer info[LTE ML1 NV CFG MAX PUCCH_CANCEL_STATES];
   /* Step Timer for each state for thermal mitigation */
   uint32 step timer tm;------3000 //0x00007530(Write in EFS 3075 0000)
   /* Step Timer for each state for CPU flow control */
```

调节等级 2(PA 传感器)- PUCCH 回退(续)

- EFS 文件 Ite_ml1_nv_cfg_pucch_cancel_info_s
- EFS 位置: /nv/item_files/modem/lte/ML1
- 示例 EFS 内容:

06	04	04	00	64	00	64	00	6e	0.0	5a	00	78	00	50	00
82	00	46	00	8c	00	3c	00	96	00	32	0.0	00	00	00	00
				00			00	0.0	00	00	000	30	75	00	00
90	01	00	0.0							Q2.	10.				

PUCCH 回退日志

F3 日志:

```
2015 Jan 1 00:16:37.791 lte_ml1_common_fc.c 1048 H PUCCH Backoff down received. 2015 Jan 1 00:16:37.811 lte_ml1_common_fc.c 697 H Off timer expiry. PUCCH Backoff OFF 2015 Jan 1 00:16:37.841 lte ml1 common fc.c 1167 H PUCCH FC OFF cmd received.
```

日志数据包: MI1 专门为 ACK/NAK 信息打孔, 降低 CPU 的使用率 1980 Jan 6 00:27:54.827 [27] 0xB173 LTE PDSCH Stat Indication

							7	_									
18	0	27 50	2	2	PCell	1	01 0	Pass	. 3° c).	00.01	None	No	4590 28	64QAM 50	ACK		- 1
1 1		1 1		- 1	I I	1	0 1	Pass	~ ~ @\	1	None	No	4590 28	64QAM 50	ACK		
19	1	27 50	2	2	PCell	2	0 1	Pass	0 70cl	0	None	No	4590 28	64QAM 50	ACK		
1 1		1 1				2	01 0	Pass	CI CI	1	None	No	4590 28	64QAM 50	ACK	- 1	
20	2	27 50	2	2	PCell	3	0 1	Pass	2 CI	0	None	No	4590 28	64QAM 50	ACK	- 1	
1 1		1 1				3	0 0	Pass	CI	1	None	No	4590 28	64QAM 50	ACK	- 1	
21	3	27 50	2	2	PCell	4	0 _1	Pass	Cl	0	None	No	4590 28	64QAM 50	ACK		
1 1		1 1				4	0 1	Pass	Cl	1	None	No	4590 28	64QAM 50	ACK	- 1	
								5									

2015 Jan 1 00:16:37.823 [93] 0xB173 LTE PDSCH Stat Indication

Version = 5 Num Records = 22

Records

1	I	I		Num	I	Trans	port	Block	cs									I	1 1
	1		I I	Transpor	t Serving	1					[Discarded	I I						
	Subframe	Frame	Num Nu	um Blocks	Cell	HARQ		CR		TB	1	reTx	Did	TB Size	Mod	ulation N	um ACK/N	ACK PMCH	Area
#	Num	Num	RBs La	ayers Present	Index	ID	RV NI	DI Res	sult RNTI	Type Ind	iex E	Present	Recombining	(bytes)	MCS Typ	e F	Bs Decis	ion ID	ID
	0 4	27	50	2	2 PCell	. 5	2	0 0	fail	Cl	0	Present	No	4590	28	64QAM	50	ACK	1 1
	1		I I	I		5	2	1 1	?ail	Cl	1	Present	No	4590	28	64QAM	50	ACK	
	1 5	27	50	2	2 PCell	. 6	2	0 1	fail	Cl	0	Present	No	4590	28	64QAM	50	ACK	1 1
	1	1	I I	1	1	6	2	1 1	[ail	Cl	1	Present	No	4590	28	64QAM	50	ACK	1 1

调节等级 1(TSENS 和/或 PA 传感器)- DL 数据限制

- 支持使用步进计时器方法替代基于等级的方法调用调节操作
- 当 modem_proc TSENS 温度达到等级 1 的阈值时,将触发以下调节操作:
 - 在第一个 CC 中强制执行 2Rx(2 层)
 - 在第二个 CC 中强制执行 2Rx(2 层)
 - 开始丢弃 SCC,直到实现单载波(仅 PCC)
 - UE 为所有丢弃的 SCC 向网络报告 CQI = 0
- 等级 1 阈值清零后:
 - 恢复先前丢弃的 SCC, 然后开始报告相应 CQI
 - 所有载波恢复 4Rx 模式

调节等级 1(TSENS 和/或 PA 传感器)- DL 数据限制(续)

- 示例 1 Gbps (3xCA 4 L+4 L+2 L)
- 在此示例中, CFCM 发送两个命令:
 - 当 Tj > L1_set 阈值时的等级 1 命令
 - 当 Tj < L1_clear 阈值时的等级 0 命令

TED: 定时器超时 DOWN(步进计时器超时,最后一个 CFCM 命令是 DOWN)

TEU: 定时器超时 UP(步进计时器超时,最后一个 CFCM 命令是 UP)

调节等级 1(TSENS 和/或 PA 传感器)- DL 数据限制(续)

■ 示例 – 1 Gbps (3 x CA 4 L+4 L+2 L)

调节等级 1(TSENS 和/或 PA 传感器)- DL 数据限制载波优先级

• 2Rx 回退并丢弃载波

流量控制的载波优先级

当选择需要丢弃的 SCell 时,选择优先级最低的 SCell。

- 没有配对 UL SCC 的 DL SCC
- 带宽最低的 DL SCC

选择执行 2Rx 回退的 CC 时,选择优先级最低的 CC (PCell 或 SCell)。

- 带宽最低的 DL CC
- SCC 先发生 2Rx 回退, 然后是 PCC

调节等级 3(TSENS 和/或 PA 传感器)- 紧急关机

- 进入该状态后:
 - RRC 连接释放,中断所有数据通话
 - 设备驻留于受限服务
 - 设备允许 E911 语音呼叫,直至 PA 或 TSENS 传感器达到等级 0,即传感器读数低于 L1_clear 阈值,导致 CFCM 向 THERMAL_PA 或 MDM_TEMP 客户端发送等级 0 命令

调试 - 日志数据包

- 调试 LTE 热相关问题需要日志数据包和 F3
 - 日志数据包 [0xB146] LTE LL1 AGC Tx 报告 监控 Tx 功率
 - 日志数据包 [0xB064] MAC UL 传输块 监控 UL 流量控制
 - 日志数据包 [0x14D8] 温度监控
 - MSG F3 [00043/02] 流量控制器

CDMA 温控

温控操作分解

• 以下是一项示例,可以通过不同方式配置。

Modem 操作 类型	正常	警惕	严重	极端
Modem 降低带 宽(仅限 UL)	无限制	开始限制上传数据	继续限制上传	禁用所有数据模式
最大 Tx 功率 限制	完整功率范围	完整功率范围	限制最高 Tx 功率	不适用(数据模式 已禁用)
紧急通话中断	无	无 30 19:33 111.601	无	通话恢复和受限服 务;只允许 E911

1xEV-DO 温控方法

- 1X 温控方法
 - 启动 1X 调节后,设备停止请求 R-SCH(反向增补信道),停止 1X 中的反向 链路流量。
 - 在达到正常的调节状态时,设备恢复 R-SCH 处理。
- EV-DO 温控方法
 - 调节开始后,
 - 反向链路限制 DO 协议栈反向链路 MAC 层 (RMAC) 中部分载波允许的最大净荷(或数据包大小)
 - RMAC 执行基于 QoS 的数据包优先级
 - 通过允许某种数据包大小,可以保持 QoS
 - 在极端状态下, 1xEV-DO 中的 RMAC 将除 SLP 以外的所有活动载波的最大净荷设置 为 0
 - SLP 载波保持默认的最大净荷

1xEV-DO 温控方法(续)

1xEV-DO 温控方法(续)

调试 - 日志数据包

- 1X 日志数据包
 - 0x14D8 温度监控日志
 - 0x1005 反向信道流量消息
 - 0x1008 正向信道流量消息
 - 日志数据包 [0x14D8] 温度监控
 - MSG F3 [00043/02] 流量控制器
- EV-DO 日志数据包
 - 0x14D8 温度监控日志
 - 0x127D 1xEV Rev-A RL 增益
 - 0x1069 1xEV 功率
 - 日志数据包 [0x14D8] 温度监控
 - MSG F3 [00043/02] 流量控制器

WCDMA 温控

温控操作分解

• 下表是一项示例,可以通过不同方式配置。

Modem 操作类型	正常	警惕	严重	极端
Modem 降低带宽 (UL 和 DL)	无限制	开始限制上传 数据	限制上传和下载	禁用所有数据 模式
最大 Tx 功率限制	完整功率范围	完整功率范围	限制最高 Tx 功率	不适用(数据 模式已禁用)
紧急通话中断	无	元 19:34 (1) (1) (1) (1)	无	通话恢复和受 限服务;只允 许 E911

调节等级 1 - 流量控制

- 算法仅适用于
 - UL 方向 通过减小 PDU 大小
 - DL 方向 通过向网络发送 WIN_SIZE SUFI 减少 DL 流量
 - 具体实施的相关函数为:
 - rlci_dl_fc_tx_new_win_sufi
 - rlci_fc_new_win_size

调节等级 2 - Tx 功率回退

- 该算法仅在 UE 处于 CELL_DCH 时适用。
- 进入 CELL_DCH 时,如果 UE 已经处于调节等级 2 状态,则 L1 软件立即基于 以下配置应用 MTPL 回退算法:
 - 初始 MTPL 回退值 5 dB
 - 占空比的 T_down 定时器 400 ms
 - 占空比的 T_up 定时器 50 ms
 - 步进计时器值 10 s

调节等级 2-Tx 功率回退(续)

调节等级3(紧急)

- 进入该状态后:
 - RRC 连接释放
 - 设备驻留于受限服务
 - 只允许 E911 呼叫,直到温升调节等级降低

调试 - 日志数据包

- 调试 WCDMA 热相关问题需要日志数据包和 F3
 - 日志数据包 [0x14D8] 温度监控
 - MSG F3 [00043/02] 流量控制器
 - RLC 日志数据包

调试

■ 相关日志摘录

```
1980 Jan 6 00:29:08.971 [8D] 0x413B WCDMA RLC UL AM PDU
Number of AM UL Entities = 1
Entity[0]:
Data Logical Channel ID = 19
Number of PDUs Logged = 10
PDU Size (in Bits) = 336
PDU Log(s):
Raw: 0x01 0x7F 0xF2 0xC9
<-CONTROL PDU:: Chan:19, Type: STATUS_
                                                发送 WIN SIZE 获得最大 DL 吞吐量
SUFI[0]: WINDOW SIZE => 2047
1980 Jan 6 00:29:14.794 [D4] 0x14D8 Temperature Monitor Log
Version = 1
Number Of Samples = 2
 | |Sensor|Temperature|
|# |SSID|ID |Reading |
                                                PA 的温度正在上升
| 0| 0| 0| 98|
1980 Jan 6 00:29:44.826 [8F] 0x14D8 Temperature Monitor Log
Version = 1
Number Of Samples = 2
 | |Sensor|Temperature|
|# |SSID|ID |Reading |
                                                PA 的温度正在上升
1 01 01 01 991
```

调试(续)

```
1980 Jan 6 00:29:44.834 [90] 0x413B WCDMA RLC UL AM PDU
Number of AM UL Entities = 1
Entity[0]:
Data Logical Channel ID = 19
Number of PDUs Logged = 16
PDU Size (in Bits) = 336
PDU Log(s):
                                               PA 的温度超过阈值, RLC FC 生效;发
Raw: 0x01 0x36 0xB0 0x72
<-CONTROL PDU:: Chan:19, Type: STATUS
                                               送新 DL WIN SIZE 以减少吞吐量
SUFI[0]: WINDOW SIZE => 875
1980 Jan 6 00:29:54.835 [79] 0x14D8 Temperature Monitor Log
Version = 1
Number Of Samples = 2
 | |Sensor|Temperature|
                                             温度仍不低于清零阈值
  |SSID|ID |Reading
| 0| 0| 0| 99|
1980 Jan 6 00:30:14.837 [49] 0x413B WCDMA RLC UL AM PDU
Number of AM UL Entities = 1
Entity[0]:
Data Logical Channel ID = 19
Number of PDUs Logged = 5
PDU Size (in Bits) = 336
PDU Log(s):
Raw: 0x01 0x11 0x10 0x72
                                             发送新的 DL WIN SIZE 进一步降低吞吐量
<-CONTROL PDU:: Chan:19, Type: STATUS
SUFI[0]: WINDOW SIZE => 273
```

调试(续)

```
1980 Jan 6 00:30:34.857 [1C] 0x14D8 Temperature Monitor Log
Version = 1
Number Of Samples = 2
 | |Sensor|Temperature| |
|# |SSID|ID |Reading |
| 0| 0| 0| 99|
1980 Jan 6 00:31:14.833 [BA] 0x413B WCDMA RLC UL AM PDU
Number of AM UL Entities = 1
Entity[0]:
Data Logical Channel ID = 19
Number of PDUs Logged = 8
PDU Size (in Bits) = 336
PDU Log(s):
Raw: 0x01 0x03 0x30 0x02
                                              发送新的 DL WIN SIZE 进一步降低吞吐量
<-CONTROL PDU:: Chan:19, Type: STATUS
SUFI[0]: WINDOW SIZE => 51
1980 Jan 6 00:32:14.916 [34] 0x14D8 Temperature Monitor Log
Version = 1
Number Of Samples = 2
 | |Sensor|Temperature|
|# |SSID|ID |Reading |
                                              温度开始下降
| 0| 0| 0| 98|
```


GERAN 温控

GERAN 温升调节

- GERAN 温升调节中定义了四个等级
 - 0 正常
 - 1 降低带宽
 - 2 仅限语音呼叫
 - 3 仅限紧急呼叫
- 调节等级 1 通过降低 UE 的播发多时隙等级实现;如果多时隙等级为 12,则将其减小至 10;如果等级为 10,则将其减小到 1,UE 根据该数值执行RAU 程序。
- 调节等级 2 通过将蜂窝广播服务能力指示为仅 CS 而实现; 所有活动的 PDP 环境隐式关闭, 从而影响其他应用程序。
- 在调节等级 3 中,所有活动的 PDP 环境隐式关闭,从而影响其他应用程序; 丢弃所有活动的语音通话。

标题	文档号
Qualcomm Technologies, Inc.	
Thermal Tuning Procedure	80-N9649-1
Thermal Design Checklist	80-VU794-21
Thermal Protection Algorithm Overview	80-VT344-1
Limits Management Hardware (LMH) Overview	80-NM328-108

缩略词或术语	定义
ВТМ	启动温控 (Boot thermal management)
CC	载波分量 (Carrier components)
CSF	信道状态反馈 (Channel state feedback)
DTM	动态温控 (Dynamic thermal management)
KTM	内核温度监控 (Kernel thermal monitor)
LMH	限制温控硬件 (Limits management hardware)
TM	温升调节 (Thermal mitigation)
LE	Linux 启用 (Linux enabled)
QoS	服务质量 (Quality of service)
PA	功率放大器 (Power amplifiers)

问题? https://createpoint.qti.qualcomm.com

