

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-Butanoyl-*N*-(3-chloro-1,4-dioxonaph-thalen-2-yl)butanamide

Ray J. Butcher, ** Solomon Berhe, * Alan J. Anderson *b and Oladapo Bakare *

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^bDepartment of Natural Sciences, Bowie State University, Bowie, MD 20715, USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 6 June 2013; accepted 12 June 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(C-C) = 0.007$ Å; R factor = 0.077; wR factor = 0.227; data-to-parameter ratio = 15.5.

In the title compound, $C_{18}H_{18}CINO_4$, the imide group with its two alkyl substituents is approximately perpendicular to the plane of the naphthoquinone ring system [dihedral angle = 78.5 (1)°]. Further, the imide carbonyl groups are oriented in an *anti* sense. In the crystal, the substituted naphthoquinone rings form π – π stacks in the *a*-axis direction [perpendicular centroid–centroid distance = 3.209 (2) Å and slippage = 4.401 Å].

Related literature

For the synthesis and biological evaluation of some imidosubstituted 1,4-naphthoquinone derivatives, see; Bakare *et al.* (2003); Berhe *et al.* (2008); Brandy *et al.* (2013). For the anticancer and anti-trypanosomal activity of the title compound, see; Bakare *et al.* (2003); Berhe *et al.* (2008); Khraiwesh *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{lll} C_{18}H_{18}ClNO_4 & \gamma = 118.043 \ (12)^\circ \\ M_r = 347.78 & V = 862.23 \ (17) \ \mathring{A}^3 \\ Triclinic, P\overline{1} & Z = 2 \\ a = 8.1717 \ (10) \ \mathring{A} & \text{Cu } K\alpha \ \text{radiation} \\ b = 8.3117 \ (10) \ \mathring{A} & \mu = 2.15 \ \text{mm}^{-1} \\ c = 14.6841 \ (15) \ \mathring{A} & T = 295 \ \text{K} \\ \alpha = 93.119 \ (9)^\circ & 0.36 \times 0.28 \times 0.08 \ \text{mm} \\ \beta = 98.369 \ (10)^\circ \end{array}$

Data collection

Agilent Xcalibur (Ruby, Gemini) 5454 measured reflections 3398 independent reflections 4bsorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.530, T_{\max} = 1.000$ 5454 measured reflections 3398 independent reflections 2122 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.077 & 219 \ {\rm parameters} \\ WR(F^2) = 0.227 & {\rm H-atom\ parameters\ constrained} \\ S = 1.12 & \Delta\rho_{\rm max} = 0.39\ {\rm e\ \mathring{A}^{-3}} \\ 3398 \ {\rm reflections} & \Delta\rho_{\rm min} = -0.24\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership); in part by grant G12MD007597 from the National Institute On Minority Health and Health Disparities of the National Institutes of Health; and in part by MRI grant No. CHE-1126533 from the NSF. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5322).

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.

Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485–488.

Brandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). *Molecules*, **18**, 1973–1084

Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). *Arch. Pharm. Res.* 35, 27–33.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2013). E69, o1230 [doi:10.1107/S1600536813016401]

N-Butanoyl-N-(3-chloro-1,4-dioxonaphthalen-2-yl)butanamide

Ray J. Butcher, Solomon Berhe, Alan J. Anderson and Oladapo Bakare

Comment

We have been involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives [Bakare *et al.* (2003); Berhe *et al.* (2008); Brandy *et al.* (2013)]; and previously reported 2-chloro-3-dibutyrylamino-1,4-naphthoquinone (1) to possess inhibitory activities against certain protein kinases (Bakare *et al.* 2003). Compound 1 has subsequently been shown to possess a some desirable biological activities including anti-cancer [Bakare *et al.* (2003; Berhe *et al.* (2008)] and anti-trypanosomal activities [(Khraiwesh, *et al.*, (2012)]. We present here the crystal structure of this anticancer and antiparasitic agent.

The title compound, $C_{18}H_{18}CINO_4$, was synthesized as previously reported (Bakare *et al.* (2003)). The crystal structure of the title compound **1** shows that the imide group with its two alkyl substituents is almost perpendicular to the plane of the naphthoquinone ring (dihedral angle between planes of 78.5 (1)°. Further the two imide carbonyls are oriented *anti* to each other. The naphthoquinone rings form π – π stacks in the *a* direction (perpendicular Cg···Cg distance of 3.209 Å with slippage of 4.401 Å).

Experimental

The title compound 1 was synthesized by refluxing 2-amino-3-chloro-1,4-naphthoquinone in butyryl chloride as previously reported (Bakare *et al.* (2003)). The compound was crystallized from the crude below 0°C with diethyl ether to obtain yellow crystals.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.97 Å $U_{iso}(H) = 1.2 U_{eq}(C)$ and 0.96 Å for CH₃ [$U_{iso}(H) = 1.5 U_{eq}(C)$].

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acta Cryst. (2013). E69, o1230 Sup-1

Figure 1 Diagram of $C_{18}H_{18}ClNO_4$ showing atom labeling.

Figure 2 The molecular packing for $C_{18}H_{18}CINO_4$ viewed along the b axis and showing the $\pi-\pi$ stacking in the a direction.

Acta Cryst. (2013). E69, o1230 sup-2

N-Butanoyl-N-(3-chloro-1,4-dioxonaphthalen-2-yl)butanamide

Crystal data

 $C_{18}H_{18}CINO_4$ Z = 2 $M_r = 347.78$ F(000) = 364Triclinic, $P\overline{1}$ $D_x = 1.340 \text{ Mg m}^{-3}$ Hall symbol: -P 1 Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ a = 8.1717 (10) ÅCell parameters from 1350 reflections b = 8.3117 (10) Å $\theta = 3.1-75.5^{\circ}$ c = 14.6841 (15) Å $\mu = 2.15 \text{ mm}^{-1}$ $\alpha = 93.119 (9)^{\circ}$ T = 295 K $\beta = 98.369 (10)^{\circ}$ Plate, pale vellow $\gamma = 118.043 (12)^{\circ}$ $0.36 \times 0.28 \times 0.08 \text{ mm}$ $V = 862.23 (17) \text{ Å}^3$

Data collection

Agilent Xcalibur (Ruby, Gemini)5454 measured reflectionsdiffractometer3398 independent reflectionsRadiation source: Enhance (Cu) X-ray Source2122 reflections with $I > 2\sigma(I)$

Graphite monochromator $R_{\text{int}} = 0.043$ Detector resolution: 10.5081 pixels mm⁻¹ $\theta_{\text{max}} = 75.7^{\circ}, \, \theta_{\text{min}} = 3.1^{\circ}$

ω scans

Absorption correction: multi-scan $k = -10 \rightarrow 8$

Absorption correction: multi-scan $k = -10 \rightarrow 8$ (CrysAlis PRO; Agilent, 2012) $l = -18 \rightarrow 18$ $T_{min} = 0.530$, $T_{max} = 1.000$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.077$ Hydrogen site location: inferred from $wR(F^2) = 0.227$ neighbouring sites S = 1.12 H-atom parameters constrained

3398 reflections $w = 1/[\sigma^2(F_o^2) + (0.0739P)^2 + 0.4803P]$ 219 parameters where $P = (F_o^2 + 2F_c^2)/3$

Primary atom site location: structure-invariant direct methods $\Delta \rho_{\text{max}} = 0.39 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.4121 (2)	0.34538 (16)	0.17915 (8)	0.0891 (4)	
O1	0.2762 (5)	0.3535 (4)	-0.0134(2)	0.0844 (9)	
O2	0.4177 (5)	0.9507 (4)	0.2097 (2)	0.0938 (11)	

Acta Cryst. (2013). E69, o1230 Sup-3

O3	0.7195 (7)	0.7372 (8)	0.4060(3)	0.1463 (19)
O4	0.1712 (5)	0.5863 (5)	0.3023 (2)	0.0968 (11)
N1	0.4736 (5)	0.6864 (5)	0.2928 (2)	0.0706 (9)
C1	0.3740 (6)	0.5151 (5)	0.1381 (3)	0.0639 (10)
C2	0.2990 (6)	0.4877 (5)	0.0361 (3)	0.0662 (10)
C3	0.2519 (6)	0.6265 (5)	0.0005 (2)	0.0607 (9)
C4	0.1688 (6)	0.6021 (6)	-0.0927(3)	0.0722 (11)
H4A	0.1453	0.4994	-0.1325	0.087*
C5	0.1217 (7)	0.7286 (7)	-0.1261 (3)	0.0855 (13)
H5A	0.0661	0.7112	-0.1883	0.103*
C6	0.1562 (8)	0.8814 (7)	-0.0680(3)	0.0886 (14)
H6A	0.1230	0.9664	-0.0909	0.106*
C7	0.2399 (7)	0.9083 (6)	0.0240 (3)	0.0785 (12)
H7A	0.2649	1.0126	0.0628	0.094*
C8	0.2869 (6)	0.7820 (5)	0.0590(2)	0.0622 (9)
C9	0.3728 (6)	0.8109 (5)	0.1584 (3)	0.0680 (10)
C10	0.4067 (6)	0.6633 (5)	0.1942 (2)	0.0622 (10)
C11	0.6690 (8)	0.7503 (8)	0.3266 (3)	0.0961 (16)
C12	0.7987 (8)	0.8295 (9)	0.2605 (4)	0.1059 (18)
H12A	0.7738	0.9213	0.2331	0.127*
H12B	0.7675	0.7323	0.2108	0.127*
C13	1.0076 (11)	0.9175 (12)	0.2999 (6)	0.142 (3)
H13A	1.0310	0.8316	0.3343	0.171*
H13B	1.0747	0.9385	0.2487	0.171*
C14	1.0836 (12)	1.0872 (13)	0.3596 (6)	0.174 (4)
H14A	1.2123	1.1256	0.3876	0.261*
H14B	1.0106	1.0712	0.4073	0.261*
H14C	1.0791	1.1792	0.3241	0.261*
C15	0.3333 (8)	0.6480 (7)	0.3445 (3)	0.0796 (12)
C16	0.3897 (9)	0.6902 (10)	0.4493 (3)	0.1102 (19)
H16A	0.4304	0.6045	0.4716	0.132*
H16B	0.4976	0.8129	0.4656	0.132*
C17	0.2496 (10)	0.6815 (14)	0.4964 (4)	0.149 (3)
H17A	0.1405	0.5600	0.4784	0.179*
H17B	0.2116	0.7696	0.4751	0.179*
C18	0.2999 (10)	0.7179 (11)	0.6009 (4)	0.131 (2)
H18A	0.1924	0.7052	0.6254	0.197*
H18B	0.4029	0.8406	0.6204	0.197*
H18C	0.3366	0.6311	0.6236	0.197*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1260 (11)	0.0735 (7)	0.0734 (7)	0.0587 (7)	0.0014 (6)	0.0018 (5)
O1	0.118(3)	0.0700 (17)	0.0620 (16)	0.0477 (18)	0.0066 (16)	-0.0132 (13)
O2	0.142(3)	0.0725 (18)	0.0629 (17)	0.061(2)	-0.0114 (18)	-0.0161 (14)
O3	0.135 (4)	0.212 (5)	0.079(3)	0.083 (4)	-0.015 (2)	0.023(3)
O4	0.100(3)	0.121(3)	0.0619 (18)	0.048(2)	0.0175 (18)	-0.0028 (18)
N1	0.087(2)	0.074(2)	0.0479 (16)	0.0428 (19)	-0.0014 (16)	-0.0036 (14)
C1	0.075(3)	0.058(2)	0.057(2)	0.0337 (19)	0.0084 (18)	0.0011 (16)

Acta Cryst. (2013). E69, o1230 sup-4

C2	0.076(3)	0.062(2)	0.052(2)	0.028(2)	0.0118 (18)	-0.0076 (16)
C3	0.065(2)	0.062(2)	0.0489 (18)	0.0283 (18)	0.0065 (16)	-0.0022(15)
C4	0.083(3)	0.077(3)	0.048(2)	0.035(2)	0.0066 (19)	-0.0033 (18)
C5	0.098(3)	0.096(3)	0.055(2)	0.046(3)	0.000(2)	0.008(2)
C6	0.111 (4)	0.087(3)	0.070(3)	0.053(3)	0.003(3)	0.015(2)
C7	0.101(3)	0.069(2)	0.063(2)	0.045(2)	0.001(2)	-0.0012 (19)
C8	0.071(2)	0.061(2)	0.0501 (19)	0.0311 (19)	0.0041 (17)	0.0001 (15)
C9	0.084(3)	0.061(2)	0.052(2)	0.034(2)	0.0034 (18)	-0.0068 (16)
C10	0.073 (3)	0.062(2)	0.0454 (18)	0.0316 (19)	0.0012 (16)	-0.0035 (15)
C11	0.109 (4)	0.107 (4)	0.064(3)	0.057(3)	-0.016(3)	-0.006(3)
C12	0.087 (4)	0.125 (5)	0.084(3)	0.039(3)	0.005(3)	-0.009(3)
C13	0.128 (6)	0.169 (7)	0.131 (6)	0.084(6)	-0.009(5)	0.007 (5)
C14	0.145 (7)	0.175 (8)	0.126 (6)	0.035 (6)	-0.032(5)	0.002(6)
C15	0.101 (4)	0.087(3)	0.054(2)	0.052(3)	0.003(2)	-0.003(2)
C16	0.131 (5)	0.149 (5)	0.056(3)	0.075 (4)	0.011 (3)	0.001(3)
C17	0.131 (5)	0.253 (9)	0.055(3)	0.090(6)	0.014(3)	-0.003(4)
C18	0.140(6)	0.185 (7)	0.057(3)	0.072 (5)	0.015(3)	-0.002 (4)

Geometric parameters (Å, °)

)		
1.703 (4)	C9—C10	1.484 (5)
1.218 (4)	C11—C12	1.487 (8)
1.215 (4)	C12—C13	1.508 (8)
1.207 (6)	C12—H12A	0.9700
1.221 (6)	C12—H12B	0.9700
1.389 (6)	C13—C14	1.424 (10)
1.422 (6)	C13—H13A	0.9700
1.440 (4)	C13—H13B	0.9700
1.335 (5)	C14—H14A	0.9600
1.496 (5)	C14—H14B	0.9600
1.475 (6)	C14—H14C	0.9600
1.395 (5)	C15—C16	1.512 (6)
1.397 (5)	C16—C17	1.397 (8)
1.369 (6)	C16—H16A	0.9700
0.9300	C16—H16B	0.9700
1.377 (7)	C17—C18	1.505 (7)
0.9300	C17—H17A	0.9700
1.377 (6)	C17—H17B	0.9700
0.9300	C18—H18A	0.9600
1.376 (6)	C18—H18B	0.9600
0.9300	C18—H18C	0.9600
1.479 (5)		
127.5 (4)	C13—C12—H12A	108.1
113.5 (4)	C11—C12—H12B	108.1
119.0 (4)	C13—C12—H12B	108.1
121.8 (4)	H12A—C12—H12B	107.3
121.9 (3)	C14—C13—C12	114.9 (7)
116.3 (3)	C14—C13—H13A	108.5
122.9 (4)	C12—C13—H13A	108.5
	1.703 (4) 1.218 (4) 1.215 (4) 1.207 (6) 1.221 (6) 1.389 (6) 1.422 (6) 1.440 (4) 1.335 (5) 1.496 (5) 1.475 (6) 1.395 (5) 1.397 (5) 1.369 (6) 0.9300 1.377 (7) 0.9300 1.377 (6) 0.9300 1.376 (6) 0.9300 1.479 (5) 127.5 (4) 113.5 (4) 119.0 (4) 121.8 (4) 121.9 (3) 116.3 (3)	1.703 (4)

Acta Cryst. (2013). E69, o1230 sup-5

O1—C2—C1	120.0 (4)	C14—C13—H13B	108.5
C3—C2—C1	117.0 (3)	C12—C13—H13B	108.5
C4—C3—C8	119.0 (4)	H13A—C13—H13B	107.5
C4—C3—C2	119.9 (3)	C13—C14—H14A	109.5
C8—C3—C2	121.1 (3)	C13—C14—H14B	109.5
C5—C4—C3	120.4 (4)	H14A—C14—H14B	109.5
C5—C4—H4A	119.8	C13—C14—H14C	109.5
C3—C4—H4A	119.8	H14A—C14—H14C	109.5
C4—C5—C6	120.4 (4)	H14B—C14—H14C	109.5
C4—C5—H5A	119.8	O4—C15—N1	117.7 (4)
C6—C5—H5A	119.8	O4—C15—C16	123.7 (5)
C5—C6—C7	119.9 (4)	N1—C15—C16	118.6 (5)
C5—C6—H6A	120.0	C17—C16—C15	115.8 (5)
C7—C6—H6A	120.0	C17—C16—H16A	108.3
C8—C7—C6	120.6 (4)	C15—C16—H16A	108.3
C8—C7—H7A	119.7	C17—C16—H16B	108.3
C6—C7—H7A	119.7	C15—C16—H16B	108.3
C7—C8—C3	119.7	H16A—C16—H16B	107.4
C7—C8—C9	119.9 (3)	C16—C17—C18	117.0 (6)
C3—C8—C9	` '	C16—C17—C18 C16—C17—H17A	108.1
C3—C6—C9 O2—C9—C8	120.3 (4) 122.0 (4)	C16—C17—H17A C18—C17—H17A	108.1
O2—C9—C10			108.1
	120.3 (4)	C16—C17—H17B	
C8—C9—C10	117.6 (3)	C18—C17—H17B	108.1
C1—C10—N1	121.5 (4)	H17A—C17—H17B	107.3
C1—C10—C9	121.9 (3)	C17—C18—H18A	109.5
N1—C10—C9	116.6 (3)	C17—C18—H18B	109.5
O3—C11—N1	118.8 (6)	H18A—C18—H18B	109.5
O3—C11—C12	124.2 (6)	C17—C18—H18C	109.5
N1—C11—C12	117.0 (4)	H18A—C18—H18C	109.5
C11—C12—C13	116.7 (5)	H18B—C18—H18C	109.5
C11—C12—H12A	108.1		
C10—C1—C2—O1	177.8 (4)	C2—C1—C10—C9	-0.7 (6)
C11—C1—C2—O1	-3.1(6)	C11—C1—C10—C9	-179.8(3)
C10—C1—C2—C3	-3.5(6)	C15—N1—C10—C1	-102.5(5)
C11—C1—C2—C3	175.6 (3)	C11—N1—C10—C1	79.8 (5)
O1—C2—C3—C4	3.2 (6)	C15—N1—C10—C9	76.4 (5)
C1—C2—C3—C4	-175.4(4)	C11—N1—C10—C9	-101.2(5)
O1—C2—C3—C8	-177.6(4)	O2—C9—C10—C1	-174.2(4)
C1—C2—C3—C8	3.7 (6)	C8—C9—C10—C1	4.7 (6)
C8—C3—C4—C5	-0.3(7)	O2—C9—C10—N1	6.8 (6)
C2—C3—C4—C5	178.9 (4)	C8—C9—C10—N1	-174.3(4)
C3—C4—C5—C6	0.1 (8)	C15—N1—C11—O3	16.4 (8)
C4—C5—C6—C7	0.5 (8)	C10—N1—C11—O3	-166.3 (5)
C5—C6—C7—C8	-1.1 (8)	C15—N1—C11—C12	-163.7 (5)
C6—C7—C8—C3	0.9 (7)	C10—N1—C11—C12	13.6 (7)
C6—C7—C8—C9	-178.6 (5)	O3—C11—C12—C13	-7.2 (10)
C4—C3—C8—C7	-0.3 (6)	N1—C11—C12—C13	172.9 (5)
C2—C3—C8—C7	-179.4 (4)	C11—C12—C13—C14	-70.9 (9)
02 03 00 01	1/2.1(1)	011 012 013 014	10.2 (2)

Acta Cryst. (2013). E**69**, o1230

C4—C3—C8—C9	179.3 (4)	C11—N1—C15—O4	-176.9 (4)
C2—C3—C8—C9	0.1 (6)	C10—N1—C15—O4	5.7 (6)
C7—C8—C9—O2	-5.9 (7)	C11—N1—C15—C16	5.1 (7)
C3—C8—C9—O2	174.5 (4)	C10—N1—C15—C16	-172.3 (4)
C7—C8—C9—C10	175.3 (4)	O4—C15—C16—C17	-9.5 (10)
C3—C8—C9—C10	-4.3 (6)	N1—C15—C16—C17	168.4 (6)
C2—C1—C10—N1	178.2 (4)	C15—C16—C17—C18	178.4 (7)
C11—C1—C10—N1	-0.9 (6)		

Acta Cryst. (2013). E**69**, o1230