WUOLAH

TOCABRIL2017.pdf DGIIM - EXÁMENES - TOC - DP

- 1° Tecnología y Organización de Computadores
- Doble Grado en Ingeniería Informática y Matemáticas
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES

(31/03/2017) Examen de los temas 1 y 2 (2,5 puntos en total)

Apellidos y nombre:	Grupo:
---------------------	--------

EJERCICIOS (2,5 puntos). (**PUNTUACIÓN: 1**: 0,75 pto. ; **2**: 0,50 pto. ; **3**: 0,75 pto. ; **4**: 0,50 pto.).

- Suponiendo un computador que trabaja con datos enteros y con longitud de palabra n = 8 bits, se introducen en él los números con el valor decimal que se indica en la tabla. Calcular su representación interna de tipo Signo-Magnitud, Complemento a 1, Complemento a 2, Representación Sesgada (el sesgo es S = 2ⁿ⁻¹ = 2⁷ = 128) y entero sin signo.
 - a) Indique el valor de los 8 bits en la representación interna de cada número de la tabla siguiente.

Valor decimal	Tipo de Representación	Representación Interna
- 6	(Signo-Magnitud)	
+ 7	(Complemento 1)	
- 3	(Complemento 2)	
- 120	(Sesgada)	
132 (Sin signo, positivo)	(Entero sin signo)	

- b) Ordene de mayor a menor los siguientes números(indicados en hexadecimal) de 16 bits en representación interna en Complemento a 2: $X1=48B5_H$, $X2=70C5_H$, $X3=8A03_H$, $X4=FFF2_H$.
- 2. Obtenga la representación del número decimal (- 43) en formato normalizado IEEE 754 para coma flotante, simple precisión, de 32 bits, con un bit para el signo, 8 bits para el campo del exponente (con sesgo S=127) y 23 bits para el campo de la mantisa.

S	е	m

Ver mis or

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

pony

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES

(31/03/2017)

Examen de los temas 1 y 2 (2,5 puntos en total)

3. Un procesador dispone (entre otros) con los registros: PC (Contador de Programa), AR (Registro de Dirección de 12 bits), DR (Registro de Datos de 16 bits), IR (Registro de Instrucciones) y registros auxiliares para datos R5 y R7. El procesador está conectado con la memoria principal. Suponiendo que el procesador está iniciando la captación de una instrucción con el contador de programa PC = FFC (en hexadecimal), y que el contenido inicial de la memoria principal es el de la tabla adjunta, donde tanto direcciones cómo datos están representados en hexadecimal, responda a las siguientes cuestiones:

Dirección (hexadecimal)	Contenido (hexadecimal)
000	7FFB
001	ABD1
002	6C25
•	
FFB	3437
FFC	A5C1
FFD	3E26
FFE	AA32
FFF	35C6

- a) Indique el contenido de los registros PC e IR al finalizar la fase de captación de la instrucción.
- b) Sabiendo que el código de operación que está en IR corresponde a una instrucción ST R5, 001 y que ésta instrucción consiste en almacenar el contenido del registro R5 en la dirección de memoria 001, y que en R5 se tiene el dato A000, indique los datos que cambian en la memoria y sus correspondientes direcciones, al finalizar la fase de ejecución de la instrucción.
- c) Indique el número de hilos de los buses de datos y de direcciones.
- d) Indique el tamaño máximo (en Bytes) de la memoria principal.
- 4. Un procesador que trabaja con una frecuencia de reloj de 450 MHz, se diseña de la siguiente forma:
 - En la fase de captación todas sus instrucciones consumen 2 ciclos de reloj.
 - En la fase de ejecución todas las instrucciones, en general, consumen 2 ciclos de reloj, salvo las instrucciones que son de almacenamiento en memoria que consumen 4 ciclos de reloj.

Se ejecuta en el procesador un programa que tiene 200 instrucciones (de las que 150 son instrucciones de carácter general y 50 de ellas son instrucciones de almacenamiento en memoria). Indique:

- a) Número de ciclos totales de reloj que consume la ejecución de ese programa.
- b) Tiempo que tarda en ejecutar este programa.
- c) Velocidad de procesamiento en MIPS (Millones de Instrucciones Por Segundo) que se mide de acuerdo a la ejecución de este programa.

