

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Capítulo 5

Grande e rápida: Explorando a Hierarquia de Memória

Datapath MIPS

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. Copyright © 2009 Elsevier Inc. All rights reserved

Tecnologia de Memória

Tecnologia de memória	Tempo de acesso típico	US\$ por GB em 2012
SRAM	0,5-2,5 ns	\$500-\$1000
DRAM	50-70 ns	\$10-\$20
Flash	5.000-50.000 ns	\$0,75-\$1,00
Disco magnético	5.000.000-20.000.000 ns	\$0,05-\$0,10

Memória ideal

- Tempo de acesso SRAM
- Capacidade e custo/GB do disco

Princípio da Localidade

- Os programas acessam uma pequena proporção de seu espaço de endereço a qualquer momento Localidade temporal
 - Se um item foi referenciado, ele tende a ser novamente referenciado em seguida
 - Ex.: loops, reutilização de operandos

Localidade espacial

- Se um item foi referenciado, itens cujo endereço estão próximos tendem a ser referenciados em seguida
 - Ex.: execução do código, acesso a vetores e matrizes

Princípio da Localidade

Exercício 5.1

Neste exercício, veremos as propriedades de localidade de memória do cálculo de matriz. O código a seguir é escrito em C, em que os elementos dentro da mesma linha são armazenados de forma contígua. Suponha que cada palavra seja um inteiro de 32 bits.

```
a. for (I=0; I<8; I++)
for (J=0; J<8000; J++)
A[I][J]=B[I][0]+A[J][I];
```

5.1.1 [5] <§5.1> Quantos inteiros de 32 bits podem ser armazenados em uma linha de cache de 16 bytes?

- **a.** 4 inteiros de 32 bits
- **5.1.2** [5] <§5.1> Referências a quais variáveis exibem localidade temporal?
 - **a.** I, J
- **5.1.3** [5] <§5.1> Referências a quais variáveis exibem localidade espacial?
 - **a.** A[I][J]

Princípio da Localidade

Matriz A[I,J]							
	J=0	J=1	J=2	J=3	J=4	J=5	 J=7999
I=0	1	2	3	4	5	6	 8000
I=1	8001	8002	8003	8004			
l=2							
I=3							
l=4							
I=5							
I=7							
I=7							

Memória		
End	32 bits (4 bytes)	
0	1	
1	2	
2	3	
3	4	
4	5	
5	6	
6	7	
7	8	
8	9	

Aproveitando a localidade

- Hierarquia de memória
- Armazene tudo no disco
- Copie os itens acessados recentemente (e próximos) do disco para uma memória DRAM menor
 - Memória principal
- Copie os itens acessados mais recentemente (e próximos) da DRAM para uma memória SRAM menor
 - Memória cache anexada à CPU

FIGURE 5.1 The basic structure of a memory hierarchy.

Copyright © 2013 Elsevier Inc. All rights reserved

- Bloco (também conhecido como linha): unidade de cópia
 - Podem ser várias palavras
- Acerto (hit): dados são encontrados em algum bloco do nível superior
 - Taxa de acerto: Percentual dos acessos à memória encontrados no nível superior
 - Tempo de acerto: Tempo para acessar o nível superior, que consiste em:
 - Tempo de acesso + Tempo para determinar hit/miss

- Bloco (também conhecido como linha): unidade de cópia
 - Podem ser várias palavras
- Falha (miss): dados devem ser buscados no nível inferior
 - Taxa de falhas: 1 Taxa acertos
 - Penalidade por falha: Tempo para trocar o bloco do nível superior, que consiste em:
 - Tempo para trocar o bloco do nível superior + Tempo para entregar o bloco ao processador
 - Tempo acerto < Penalidade por falha</p>

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance from the processor increases, so does the size.

Copyright © 2013 Elsevier Inc. All rights reserved

Memória Cache

- Memória cache
 - O nível da hierarquia de memória mais próximo da CPU
- Acessos dados X1, ..., Xn 1, Xn

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X ₃

a. Before the reference to X_n

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X_n
X ₃

b. After the reference to X_n

- Como sabemos se os dados estão presentes?
- Para onde olhamos?

Cache Mapeamento Direto

- Localização determinada pelo endereço
- Mapeado direto: apenas uma escolha
 - (Endereço de bloco) modulo (Número Blocos na cache)

- Número de Blocos é uma potência de 2
- Usa bits de endereço de ordem inferior

Tags e Bit Validade

- Como sabemos qual bloco específico está armazenado em uma posição de cache?
 - Junto com o dado, armazena parte do endereço do bloco
 - Bits de ordem mais alta
 - Chamados de tag
- E se não houver dados na posicção?
 - Bit validade: 1 = presente, 0 = não presente
 - Inicialmente 0

- 8 blocos, 1 palavra/bloco, mapeamento direto
- Estado inicial

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

End. Decimal	End. Binário	Hit/miss	Bloco Cache
22	10 110	Miss	110

O campo tag conterá apenas a parte superior do endereço. O endereço completo de uma palavra contida no bloco de cache i com o campo tag j para essa cache é j × 8 + i ou, de forma equivalente, a concatenação do campo tag j e o campo índice i. Por exemplo, o índice 010 bin possui tag 10 bin e corresponde ao endereço 10110 bin .

Indice	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

O processador requisita os seguintes endereços: 10110 bin (falha)

End. Decimal	End. Binário	Hit/miss	Bloco Cache
26	11 010	Miss	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

End. Decimal	End. Binário	Hit/miss	Bloco Cache
22	10 110	Hit	110
26	11 010	Hit	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

End. Decimal	End. Binário	Hit/miss	Bloco Cache
16	10 000	Miss	000
3	00 011	Miss	011
16	10 000	Hit	000

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Y	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Quando o endereço 10010 bin (18) é referenciado, a entrada para o endereço 11010 bin (26) precisa ser substituída, e uma referência a 11010 bin causará uma falha subsequente.

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Quando o endereço 10010 bin (18) é referenciado, a entrada para o endereço 11010 bin (26) precisa ser substituída, e uma referência a 11010 bin causará uma falha subsequente.

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Referências

- Seções 5.1 e 5.2 Organização e Projeto de Computadores - A Interface Hardware/Software, David A. Patterson & John L. Hennessy, Campus, 4 edição, 2013.
- Seção 5.1- Computer organization and design: the hardware/software interface/David A.
 Patterson, John L. Hennessy, Elsevier, 5th ed, 2013.

