Homework

David Cyncynates dcc57@case.edu

June 29, 2016

1 Scalar Modes

In the following, lower case denotes a quantity in position space while capital letters denote their components in Fourier space.

Denote the displacement field $u(\vec{x},t) = \nabla \phi(\vec{x},t) + \nabla \times a(\vec{x},t)$. The linearized (acoustic) wave equation for ϕ is then

$$\alpha^2 \nabla^2 \phi = \partial_t^2 \phi \,, \tag{1}$$

where $\alpha^2 = \frac{\lambda + 2\mu}{\rho}$. We may write

$$\phi(\vec{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \Phi(\vec{k},\omega) e^{\mathrm{i}(\vec{k}\cdot\vec{x}-\omega t)}, \qquad (2)$$

from which we obtain the dispersion relation $\alpha k = \omega$, and hence the solution

$$\phi(\vec{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \Phi(\vec{k},\omega) e^{\mathrm{i}(\vec{k}\cdot\vec{x} - \alpha kt)} \,. \tag{3}$$

We now impose the constraint equation

$$\sigma_{ij} = \delta_{ij} \lambda \nabla \cdot u + \mu (u_{i,j} + u_{j,i}) \tag{4}$$

which, for the scalar modes becomes

$$\sigma_{ij} = \delta_{ij}\lambda\nabla^2\phi + 2\mu\partial_i\partial_j\phi \tag{5}$$

and whose trace is

$$-p = K\nabla^2 \phi \,, \tag{6}$$

where $K = \lambda + \frac{2}{3}\mu$ is the bulk modulus and $p = -\frac{1}{3}\operatorname{tr}\sigma_{ij}$. We take this constraint as an initial condition at t = 0. In Fourier space

$$P(\vec{k}) = Kk^2 \Phi(\vec{K}), \qquad (7)$$

from which we obtain the displacement field components

$$U(\vec{k}) = i\frac{P(\vec{k})}{K} \frac{\vec{k}}{k^2}, \tag{8}$$

and hence

$$u(\vec{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \mathrm{i} \frac{P(\vec{k})}{K} \frac{\vec{k}}{k^2} e^{\mathrm{i}(\vec{k} \cdot \vec{x} - \alpha k t)}, \qquad (9)$$

The equation for the energy of the compressional modes is

$$E = \frac{1}{2} \int_{V} d^{3}x \left(\rho |\partial_{t}u|^{2} + (\lambda + 2\mu) |\nabla \cdot u|^{2} \right), \qquad (10)$$

$$= \frac{\lambda + 2\mu}{K^2} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \left| P(\vec{k}) \right|^2 \tag{11}$$

In the case that P depends only on the frequency

$$E = 4\pi \frac{\lambda + 2\mu}{K^2} \int \frac{\mathrm{d}\tilde{\lambda}}{\tilde{\lambda}^4} |P(\tilde{\lambda})|^2.$$
 (12)

Now consider the case of a step function type pressure source - a cylinder of height h and radius r_X

$$p(\vec{x},0) = p_0 \theta(r_X - r) \left[\theta(z + h/2) - \theta(z - h/2) \right], \tag{13}$$

whose Fourier components are

$$P(\vec{k}) = \frac{4\pi r_X p_0}{\sqrt{k_x^2 + k_y^2 k_z}} J_1\left(\sqrt{k_x^2 + k_y^2} r_X\right) \sin\left(\frac{h}{2} k_z\right) , \tag{14}$$

which, in polar k-space is

$$P(k,\varphi,\theta) = \frac{4\pi r_X p_0}{k^2 \sin \theta \cos \theta} J_1\left(r_X k \sin \theta\right) \sin \left(\frac{h}{2} k \cos \theta\right) , \qquad (15)$$

Directly integrating in Mathematica (over θ first) yields

$$E_{\text{total}} = \frac{\lambda + 2\mu}{K^2} 4\pi^2 p_0^2 \sigma_X h \tag{16}$$

where $\sigma_X = \pi r_X^2$. To calculate the energy deposition into the low frequency spectrum, we integrate k from 0 to k_0 . Observe, we can make the following approximation

$$P(\vec{k}) \approx_{k \ll r_X} \frac{2\pi r_X p_0}{k^2 \cos \theta \sin \theta} r_X k \sin \theta \sin \left(\frac{h}{2} k \cos \theta\right) , \tag{17}$$

$$= \frac{2\pi r_X^2 p_0}{k\cos\theta} \sin\left(\frac{h}{2}k\cos\theta\right). \tag{18}$$

From this we obtain the portion of the energy relegated to the long wavelength spectrum

$$E_{\text{propagated}} = \frac{\lambda + 2\mu}{K^2} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \left| \frac{2\pi r_X^2 p_0}{k \cos \theta} \sin \left(\frac{h}{2} k \cos \theta \right) \right|^2, \tag{19}$$

$$= \left[\frac{1}{2h} (r_X^2 p_0)^2 \frac{\lambda + 2\mu}{K^2} \right] \left[hk_0 \cos(hk_0) + \sin(hk_0) + hk_0 \left(-2 + hk_0 \operatorname{Si}(hk_0) \right) \right], \tag{20}$$

$$= \left[(r_X^2 p_0)^2 \frac{\lambda + 2\mu}{K^2} \right] \left[\frac{\pi}{\lambda_0} \cos \left(\frac{2\pi h}{\lambda_0} \right) + \sin \left(\frac{2\pi h}{\lambda_0} \right) + \left(\frac{\pi}{\lambda_0} \right) \left(-2 + \left(\frac{2\pi h}{\lambda_0} \right) \operatorname{Si} \left(\frac{2\pi h}{\lambda_0} \right) \right) \right], \quad (21)$$

$$\approx_{h\gg\lambda_0\gg1} \left[(r_X^2 p_0)^2 \frac{\lambda + 2\mu}{K^2} \right] \left[\frac{\pi^3 h}{\lambda_0^2} \right], \tag{22}$$

$$= \left[(\sigma_X p_0)^2 \frac{\lambda + 2\mu}{K^2} \right] \left[\frac{\pi h}{\lambda_0^2} \right]. \tag{23}$$

From this we obtain the fractional energy deposition into the unattenuated wavelengths

$$\Xi = \frac{\sigma_X}{4\pi\lambda_0^2} \,. \tag{24}$$

This approximation holds for $\lambda_0^2 \gg \sigma_X$, which is appropriate for the case that λ_0 is on the order of kilometers and σ_X is on the order of centimeters squared.

2 Vector Modes