In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df1=pd.read_csv(r'C:\Users\user\Downloads\9_bottle.csv')
df1
```

C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.p
y:3165: DtypeWarning: Columns (47,73) have mixed types.Specify dtype optio
n on import or set low_memory=False.
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	(
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	_
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	1
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	1
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	1
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	1

864863 rows × 74 columns

Out[3]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.50	33.440	NaN	25.649	NaN	
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.46	33.440	NaN	25.656	NaN	
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.46	33.437	NaN	25.654	NaN	
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.45	33.420	NaN	25.643	NaN	
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.45	33.421	NaN	25.643	NaN	
5	1	6	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0030A-7	30	10.45	33.431	NaN	25.651	NaN	
6	1	7	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0039A-3	39	10.45	33.440	NaN	25.658	NaN	
7	1	8	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0050A-7	50	10.24	33.424	NaN	25.682	NaN	
8	1	9	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0058A-3	58	10.06	33.420	NaN	25.710	NaN	

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	•
9	1	10	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0075A-7	75	9.86	33.494	NaN	25.801	NaN	
10	1	11	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0078A-3	78	9.83	33.510	NaN	25.819	NaN	
11	1	12	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0100A-7	100	9.67	33.580	NaN	25.900	NaN	
12	1	13	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0117A-3	117	9.50	33.640	NaN	25.975	NaN	
13	1	14	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0125A-7	125	9.32	33.689	NaN	26.043	NaN	
14	1	15	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0150A-7	150	8.76	33.847	NaN	26.256	NaN	
15	1	16	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0152A-3	152	8.71	33.860	NaN	26.274	NaN	
16	1	17	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0200A-7	200	8.53	33.876	NaN	26.315	NaN	
17	1	18	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0221A-3	221	8.45	NaN	NaN	NaN	NaN	
18	1	19	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0250A-7	250	8.26	33.926	NaN	26.396	NaN	

In [cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L STheta O2Sat . df.info() 19-4903CR-054.0 HY-060-19 20 285 7.96 33.980 NaN 26.483 NaN . 056.0 0930-05400560-0285A-3

20 rows × 74 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 74 columns):

#	Column (Cotal 74	Non-Null Count	Dtype
0	Cst_Cnt	20 non-null	int64
1	Btl_Cnt	20 non-null	int64
2	Sta_ID	20 non-null	object
3	Depth_ID	20 non-null	object
4	Depthm	20 non-null	int64
5	T_degC	20 non-null	float64
6	Salnty	19 non-null	float64
7	O2ml_L	0 non-null	float64
8	STheta	19 non-null	float64
9	02Sat	0 non-null 0 non-null	float64 float64
10	Oxy_μmol/Kg BtlNum		
11 12		0 non-null 20 non-null	float64 int64
	T_prec	20 non-null	float64
14		0 non-null	float64
15		19 non-null	float64
16	S_qual	1 non-null	float64
17	P qual	20 non-null	float64
18	O_qual	20 non-null	float64
19	SThtaq	1 non-null	float64
20	02Satq	20 non-null	float64
21	ChlorA	0 non-null	float64
22	Chlqua	20 non-null	float64
23	Phaeop	0 non-null	float64
24	Phaqua	20 non-null	float64
25	PO4uM	0 non-null	float64
26	P04q	20 non-null	float64
27	SiO3uM	0 non-null	float64
28	SiO3qu	20 non-null	float64
29	NO2uM	0 non-null	float64
30	NO2q	20 non-null	float64
31	NO3uM	0 non-null	float64
32	NO3q	20 non-null	float64
33	NH3uM	0 non-null	float64
34	NH3q	20 non-null	float64
35	C14As1	0 non-null	float64
36	C14A1p	0 non-null	float64
37	C14A1q	20 non-null	float64
38	C14As2	0 non-null	float64
39	C14A2p	0 non-null	float64
40	C14A2q	20 non-null	float64
41	DarkAs	0 non-null	float64
42	DarkAp	0 non-null	float64
43	DarkAq	20 non-null	float64
44 45	MeanAs	0 non-null 0 non-null	float64 float64
45 46	MeanAp MeanAq	0 non-null 20 non-null	float64
40 47	IncTim	0 non-null	object
47	LightP	0 non-null	float64
46 49	R_Depth	20 non-null	float64
50	R_TEMP	20 non-null	float64
51	R_POTEMP	20 non-null	float64
52	R_SALINITY	19 non-null	float64
53	R_SIGMA	19 non-null	float64
54	R_SVA	19 non-null	float64
55	R_DYNHT	20 non-null	float64

56	R_02	0 non-null	float64
57	R_02Sat	0 non-null	float64
58	R_SI03	0 non-null	float64
59	R_P04	0 non-null	float64
60	R_NO3	0 non-null	float64
61	R_NO2	0 non-null	float64
62	R_NH4	0 non-null	float64
63	R_CHLA	0 non-null	float64
64	R_PHAEO	0 non-null	float64
65	R_PRES	20 non-null	int64
66	R_SAMP	0 non-null	float64
67	DIC1	0 non-null	float64
68	DIC2	0 non-null	float64
69	TA1	0 non-null	float64
70	TA2	0 non-null	float64
71	pH2	0 non-null	float64
72	pH1	0 non-null	float64
73	DIC Quality Comment	0 non-null	object
			3

dtypes: float64(65), int64(5), object(4)

memory usage: 11.7+ KB

In [5]:

df.describe()

Out[5]:

	Cst_Cnt	Btl_Cnt	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	Oxy_
count	20.0	20.00000	20.000000	20.000000	19.000000	0.0	19.000000	0.0	
mean	1.0	10.50000	99.350000	9.618500	33.593421	NaN	25.905684	NaN	
std	0.0	5.91608	86.143867	0.872313	0.203257	NaN	0.296826	NaN	
min	1.0	1.00000	0.000000	7.960000	33.420000	NaN	25.643000	NaN	
25%	1.0	5.75000	27.500000	8.747500	33.434000	NaN	25.655000	NaN	
50%	1.0	10.50000	76.500000	9.845000	33.494000	NaN	25.801000	NaN	
75%	1.0	15.25000	150.500000	10.450000	33.768000	NaN	26.149500	NaN	
max	1.0	20.00000	285.000000	10.500000	33.980000	NaN	26.483000	NaN	

8 rows × 70 columns

In [6]:

df.columns

Out[6]:

In [7]:

df2=df.dropna(axis=1)
df2

Out[7]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	RecInd	T_prec	P_qual	O_qual
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.50	3	1.0	9.0	9.0
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.46	3	2.0	9.0	9.0
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.46	7	2.0	9.0	9.0
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.45	3	2.0	9.0	9.0
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.45	7	2.0	9.0	9.0
5	1	6	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0030A-7	30	10.45	7	2.0	9.0	9.0
6	1	7	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0039A-3	39	10.45	3	2.0	9.0	9.0
7	1	8	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0050A-7	50	10.24	7	2.0	9.0	9.0
8	1	9	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0058A-3	58	10.06	3	2.0	9.0	9.0
9	1	10	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0075A-7	75	9.86	7	2.0	9.0	9.0

_		Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	RecInd	T_prec	P_qual	O_qual
	10	1	11	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0078A-3	78	9.83	3	2.0	9.0	9.0
	11	1	12	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0100A-7	100	9.67	7	2.0	9.0	9.0
	12	1	13	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0117A-3	117	9.50	3	2.0	9.0	9.0
	13	1	14	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0125A-7	125	9.32	7	2.0	9.0	9.0
	14	1	15	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0150A-7	150	8.76	7	2.0	9.0	9.0
	15	1	16	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0152A-3	152	8.71	3	2.0	9.0	9.0
	16	1	17	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0200A-7	200	8.53	7	2.0	9.0	9.0
	17	1	18	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0221A-3	221	8.45	3	2.0	9.0	9.0
	18	1	19	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0250A-7	250	8.26	7	2.0	9.0	9.0
	19	1	20	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0285A-3	285	7.96	3	2.0	9.0	9.0

20 rows × 27 columns

In [8]:

sns.pairplot(df2)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x27627c2ceb0>

In [9]:

sns.distplot(df['MeanAq'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:306: U
serWarning: Dataset has 0 variance; skipping density estimate.
 warnings.warn(msg, UserWarning)

Out[9]:

<AxesSubplot:xlabel='MeanAq', ylabel='Density'>

In [10]:

```
sns.displot(df["MeanAq"])
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x2765b980e20>

In [11]:

In [12]:

sns.heatmap(df1.corr())

Out[12]:

<AxesSubplot:>

In [13]:

df2=df.dropna(axis=1)
df2

Out[13]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	RecInd	T_prec	P_qual	O_qual
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.50	3	1.0	9.0	9.0
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.46	3	2.0	9.0	9.0
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.46	7	2.0	9.0	9.0
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.45	3	2.0	9.0	9.0
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.45	7	2.0	9.0	9.0
5	1	6	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0030A-7	30	10.45	7	2.0	9.0	9.0
6	1	7	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0039A-3	39	10.45	3	2.0	9.0	9.0
7	1	8	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0050A-7	50	10.24	7	2.0	9.0	9.0
8	1	9	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0058A-3	58	10.06	3	2.0	9.0	9.0
9	1	10	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0075A-7	75	9.86	7	2.0	9.0	9.0

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	RecInd	T_prec	P_qual	O_qual
10	1	11	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0078A-3	78	9.83	3	2.0	9.0	9.0
11	1	12	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0100A-7	100	9.67	7	2.0	9.0	9.0
12	1	13	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0117A-3	117	9.50	3	2.0	9.0	9.0
13	1	14	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0125A-7	125	9.32	7	2.0	9.0	9.0
14	1	15	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0150A-7	150	8.76	7	2.0	9.0	9.0
15	1	16	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0152A-3	152	8.71	3	2.0	9.0	9.0
16	1	17	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0200A-7	200	8.53	7	2.0	9.0	9.0
17	1	18	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0221A-3	221	8.45	3	2.0	9.0	9.0
18	1	19	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0250A-7	250	8.26	7	2.0	9.0	9.0
19	1	20	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0285A-3	285	7.96	3	2.0	9.0	9.0

20 rows × 27 columns

```
In [14]:
x=df1[['Cst_Cnt','RecInd','Depthm','R_PRES']]
y=df1[['Depthm']]
In [15]:
from sklearn.model_selection import train_test_split
In [16]:
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [17]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity or a value too large for
Out[17]:
LinearRegression()
In [18]:
print(lr.intercept_)
[-3.97903932e-13]
In [19]:
coef= pd.DataFrame(lr.coef_)
coef
Out[19]:
                                3
    0
                    2
0 0.0 1.058154e-13 1.0 2.372512e-14
In [20]:
```

localhost:8888/notebooks/Bottle.ipynb

print(lr.score(x_test,y_test))

1.0

```
In [21]:
```

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[21]:

<matplotlib.collections.PathCollection at 0x27662e11850>

In [22]:

```
lr.score(x_test,y_test)
```

Out[22]:

1.0

In [23]:

```
lr.score(x_train,y_train)
```

Out[23]:

1.0

In [24]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [25]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[25]:

Ridge(alpha=10)

In [26]:

```
rr.score(x_test,y_test)
```

Out[26]:

0.9999937548317964

```
In [27]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[27]:
Lasso(alpha=10)
In [28]:
la.score(x_test,y_test)
Out[28]:
0.9999973286746021
Elastic Net
In [29]:
from sklearn.linear_model import ElasticNet
en = ElasticNet()
en.fit(x_train,y_train)
Out[29]:
ElasticNet()
In [30]:
print(en.coef_)
[ 0.00000000e+00 -0.00000000e+00 9.99746994e-01 1.92864346e-04]
In [31]:
print(en.intercept_)
[0.00668493]
In [32]:
prediction=en.predict(x_test)
print(prediction)
[ 39.0043394
               75.00217429 100.00086361 149.99785652 30.00488068
   8.0062038 ]
In [33]:
print(en.score(x_test,y_test))
```

0.99999993330917

Evaluation Metrics

```
In [34]:
```

from sklearn import metrics

In [35]:

print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))

Mean Absolute Error: 0.003434209856950569

In [36]:

print("Mean Squared Error:", metrics.mean_squared_error(y_test, prediction))

Mean Squared Error: 1.520106309589754e-05

In [37]:

print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))

Root Mean Squared Error: 0.003898854074711894