

Gait Classification (2,5 &10 Fold Subject - Wise: Acceleration Signal)

Group 4

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula |

Team Introduction

- Renuka Misal: Data Rotation, Neural Network Design, PPT
- Soji Jacob: Data Filtering, Data Trimming, Neural Network Design
- Rushikesh Shende: Normalization, Code integration, Neural Network Design
- Soham Bhute: Data Extraction, Data Cleaning
- Pratik Tatipamula: Motion Sequencing, Data Sampling

Motivation and Aim

Motivation

- Exploring deep learning techniques for classifying experimental data sets and developing complex functional relationship between the input and output parameters.
- In our project we predicted the nature of the walking style by analyzing the Accelerometer data.

Problem Statement

- Aim of the experiment is to classify the gait.
- The output of the neural network should predict whether the subject walked normally or with handicap.

'Step 1': Data Extraction

'Step 2': Cleaning Data

	Α	В	С	D
1	Time (s)	X (m/s^2)	Y (m/s^2)	Z (m/s^2)
3922	39.313798500	-2.76E+00	-4.91E+00	-2.37E+00
3923	39.323827500	-2.40E+00	-5.59E+00	-2.40E+00
3924	39 333856500	-2.15E+00	-6.93E+00	-1.78E+00
3925	39.343884500	-2.21E+00	-7.77E+00	-9.74E-01
3926	39.343884500	-2.37E+00	-7.48E+00	-1.91E+00
3927	39.363942500	-2.65E+00	-7.37E+00	-2.91E+00
3928	39.373971500	-3.10E+00	-7.06E+00	-3.03E+00

Learning Points:-

- Two recorded values at single time step were observed
- · Error Identification: -
 - Exceptionally high data record frequency

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

Date: 01.12.21

Contradiction to

function condition

'Step 3': Calculating Average Data Record Frequency

Physical intrepretation of the cut off frequency which is taken as twice the average walking frequency to include all phenomenas

Learning Points:-

- · Sampling data record frequency not same
- · Average data frequency used for: -
 - Cutting data
 - Motion sequence extraction
 - Filtering

Learning Points:-

- Butter filter parameters:-
 - Order:- 8
 - Walking frquency: 3
 - Low pass
 - Average data sampling frequency
- · Why not Savitzky-Golay filter: -
 - Difficulty in interpreting the window and polynomial order for desired application of extracting walking sequence

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

'Step 5': Cutting Data

Learning Points:-

- Data showed patterns of walking- stop-walking
- · Data analysis starting from the mean time
- Threshold between two peaks kept at 2s
- Default option of checking 3 peak differences at the start and end of the sequence

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

'Step 7': Motion Sequence Extraction and Sampling

'Step 8': Malicious Sequence Removal

Learning Points:-

- Parameters for Motion Extraction: -
 - Threshold peak height
 - Distance between two peaks
- Deciding the two parameters by observing the sampled data points

Learning Points:-

- Using moving average standard deviation to fit the trend of the step data
- Applying the process to X, Y, Z accelerations individually to increse neural netowrk accuracy
- No of resampling points: 250

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

Neural Network

- Exponential Learning Rate Decay: Decay rate: 0.9, Decay steps: 1000, Initialization: 0.001
- L1 regularization: alpha:- 0.1
- Loss: Binary Cross Entropy
- **Optimization**: Adam
- K Fold:- Subject wise:- 2, 5, 10
- Number of parameters to train: 236,193
- **Epochs**:- 50

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

Results

K Fold	Binary Accuracy (%)		
	Training	Validation	
2	70.59%	61.66%	
5	61.66%	70.59%	
10	63.81%	72.81%	

Run Time: 191.61s @ Intel i5, 1 GHz, 8 GB Ram

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

Discussion and Conclusion

Learning Points: -

- Increasing the number of fold increases accuracy, since more data is available for training
- Converging architecture with reducing the number of neurons in hidden layers by a factor of 2 gives better results
- Increasing epochs decreases the loss for our network architecture
- We encountered overfitting in these scenarios:—
 - Using L2 regularization for weights, and a lower value of regularizer hyperparameter
 - Increasing the number of dense layers introducing more parameters Hence, these settings were avoided.

Any Questions?

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula |

Thank You

Task: Aim 1 T01 | Group no: 4

Names: Renuka Misal, Soji Jacob, Rushikesh Shende, Soham Bhute, Pratik Tatipamula

