АЛГОРИТМЫ ФИЛЬТРАЦИИ ЗВУКОВЫХ СИГНАЛОВ НА ОСНОВЕ *U*-ПРЕОБРАЗОВАНИЯ

Гай В. Е.

Рассматриваются алгоритмы фильтрации звуковых сигналов, основанные на интегральнодифференциальном (U-преобразовании). Полученные результаты указывают на возможность использования предложенных алгоритмов для решения поставленной задачи.

Ключевые слова: цифровая обработка сигналов, преобразование Уолша, фильтрация сигналов.

Введение

Задача очистки сигнала от шума с целью восстановления смысла сообщения, улучшения качества сигнала, является одной из актуальных задач обработки сигналов.

Часто, предполагается, что на исходный сигнал действует аддитивная или мультипликативная помеха. В работе предлагается несколько алгоритмов фильтрации помех, основанных на U-преобразовании. Обзор алгоритмов фильтрации речевых сигналов приведён в [1].

1. *U*-преобразование

U-преобразование заключается в формировании многоуровневого (грубо-точного) представления сигнала с помощью фильтров Уолша системы Хармута [2, 3], причём:

- 1) для построения каждого уровня разложения используются фильтры одинаковой длины, которые масштабируются до размера анализируемого участка сигнала;
- 2) сначала фильтры применяются ко всему сигналу, затем к его частям.

Прямое U-преобразование записывается следующим образом:

$$D = U(S)$$
,

где $D = \{D_{ij}\}, D_{ij} - j$ -ый спектр, находящийся на i-ом уровне разложения, $i \in [0; J-1], J$ – количество уровней разложения, $j \in [0; M_i-1], M_i$ – количество элементов на i-ом уровне разложения.

Предлагаются следующие алгоритмы построения U-разложения исходного сигнала:

1) алгоритм формирования K-ичного дерева разложения сигнала (параметры алгоритма: J – количество уровней разложения, K – количество сегментов на i уровне, на которые разбивается сигнал на (i-1)-ом уровне), в вершине дерева

расположено разложение исходного сигнала, $M_i = K^i - 1$;

- 2) алгоритм построения разложения сигнала на одном уровне с использованием сегмента произвольной длины (параметры алгоритма: L длина сегмента);
- 3) алгоритм построения разложения сигнала на одном уровне, при формировании которого сигнал разбивается на заданное количество сегментов (параметры алгоритма: M количество сегментов, на которое разбивается сигнал).

Вычисление спектрального представления каждого сегмента дерева H (или одного уровня разложения):

$$D_{ij}(n) = \frac{1}{L_i} \cdot \sum_{k=0}^{L_i-1} H_{ij}(k) \cdot G_{in}(k), n \in [0; W-1], G'$$

— набор фильтров, сгенерированный по фильтрам Уолша, W — количество используемых фильтров, $H_i = \{H_{i1}, ..., H_{i\,Mi}\}$ — множество сегментов, полученных из исходного сигнала S с шагом L на i-ом уровне разложения, H_{ij} — j-ый сегмент сигнала на i-ом уровне разложения, $H_{ii}(k)$ — k-ый отсчёт сегмента.

Обратное U-преобразование записывается следующим образом:

$$S' = U^{-1}[D],$$

где S' — сигнал, полученный после выполнения обратного преобразования, U^{-1} — оператор обратного преобразования. Вычислить обратное преобразование можно следующим образом:

$$H_{ij}(k) = \sum_{k=0}^{W-1} D_{ij}(k) \cdot G(k)$$
, где G — набор филь-

тров Уолша системы Хармута.

Рис. 1. Фильтры Уолша системы Хармута

Амплитуда анализируемого сигнала для выполнения операции восстановления должна

быть нормирована к отрезку [0, 1] до построения разложения сигнала.

2. Алгоритмы фильтрации данных

Рассмотрим предлагаемые алгоритмы очистки сигнала от шума.

2.1. Алгоритм фильтрации 1

Разработанный алгоритм основан на обнулении коэффициентов разложения и состоит из следующих шагов:

- 1) построение U-разложения D сигнала S (формируется один уровень разложения, длина сегмента -L, L=W, W количество используемых фильтров);
- 2) модификация разложения D: обнуление в каждом спектре разложения указанных коэффициентов:
- 3) применение к модифицированному разложению D обратного преобразования: генерация сигнала S'.

Предположим, что разложение сигнала формируется с использованием 4 фильтров, тогда существует $15 (2^4 - 1)$ комбинаций вариантов обнуления коэффициентов фильтров (см. табл.1).

Таблица 1. Варианты обнуления коэффициентов

№	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1	1
2	0	0	1	1	0	0	1	1
3	0	1	0	1	0	1	0	1
No	9	10	11	12	13	14	15	5
№	9	10	11	12	13	14	1: 1	5
			11 1 0	12 1 0			1; 1	5
	1	1	1	1	1	1	1; 1 1 1	5

Рис. 3. Результат обнуления нулевого коэффициента

На рис. 3 показан сигнал *S'* (исходный сигнал показан на рис. 2), в каждом спектре которого, обнулён нулевой коэффициент. Выполнение данной операции привело к потере информации о форме сигнала (после обнуления сохраняется только высокочастотная составляющая сигнала). Таким образом, при решении задачи фильтрации

обнулением коэффициентов, нельзя использоваться комбинации с первой по восьмую (см. табл. 1).

При использовании 10, 11 и 12 комбинаций в получаемые сигналы вносятся артефакты (см. рис. 3, рис. 4, на рисунках сплошной линией показан восстановленный сигнал, пунктирной линией — исходный сигнал, отображается только часть сигнала). В данных комбинациях обнуляется первый спектральный коэффициент (см. рис. 1.б).

Можно отметить, что чем больше число знакоперемен (переходов через ноль) у фильтра, тем более высокочастотную составляющую он позволяет выделить из сигнала. Количество информации о форме сигнала, находящейся в коэффициентах, уменьшается с увеличением числа знакоперемен в фильтре, генерирующем коэффициент.

В связи с этим, не рекомендуется обнулять спектральные коэффициенты, полученные с применением нулевого и первого фильтров, в противном случае, это приведёт не только к огрублению формы сигнала и сглаживанию шумовой составляющей, но и к внесению в сигнал различных артефактов.

Обнуление коэффициентов, полученных с применением второго и третьего фильтров, приводит только к «огрублению» сигнала, после выполнения обратного преобразования.

Рис. 4. Результат восстановления сигнала с использованием комбинации 1001 (10)

Рис. 5. Результат восстановления сигнала с использованием комбинации 1010 (11)

Сравнивая сигналы, полученные после применения 9 и 13, 14 и 15 комбинаций, можно отметить, что для 9 комбинации генерируется более грубый сигнал, чем для других комбинаций.

Рис. 6. Результат восстановления сигнала с использованием комбинации 1110 (15)

Таким образом, для фильтрации сигнала можно использовать следующие комбинации спектральных коэффициентов: 1000 (9), 1100 (13), 1101 (14), 1110 (15).

Выше проведён анализ результатов обнуления коэффициентов для 4 фильтров. При использовании большего числа фильтров будет доступно больше вариантов комбинаций обнуляемых коэффициентов.

В результате выполнения алгоритма, уровень шума в сигнале *S'* должен быть меньше уровня шума в исходном сигнале *S*. Указанный результат достигается за счёт обнуления коэффициентов разложения, несущих информацию о высокочастотной составляющей сигнала, а, следовательно, и о шуме.

Примечания:

- 1) использование комбинаций, в которых во второй половине находятся единицы не рекомендуется, это приводит к добавлению различных артефактов к «огрублённому» сигналу, указанный эффект особенно заметен при использовании 8 и более фильтров;
- 2) сравнивая речевые сигналы до и после огрубления, можно отметить разницу между указанными сигналами, заключающуюся в повышении высоты голоса, полученную после огрубления сигнала;
- 3) результат применения комбинаций 1100 и 11110000 (8 фильтров) эквивалентен, поэтому для повышения производительности рекомендуется использовать меньшее количество фильтров.

2.2. Алгоритм фильтрации 2

Разработанный алгоритм основан на восстановлении сигнала с заданной степенью точности:

1) построение U-представления D сигнала S (формируется один уровень разложения, длина

сегмента — L, $L = P \cdot W$, W — количество используемых фильтров);

- 2) выполнение обратного преобразования и генерация сигнала S': меняя длину сегмента L, можно генерировать сигнал S' с различной степенью «огрубления». При L=W сигнал восстанавливается без ошибок, при L>W восстановленный сигнал будет более «грубым» (содержать меньше деталей), чем исходный;
- 3) интерполяция восстановленного сигнала до размера исходного сигнала.

Длина сегмента L должна быть кратна длине сигнала, в противном случае, восстановленный сигнал будет обрезан по длине. Это является следствием того, что в сигнале будут присутствовать отсчёты, не уложившиеся в целое число сегментов.

В качестве третьего алгоритма фильтрации можно предложить алгоритм, основанный на комбинации первого и второго алгоритмов. В таком алгоритме одновременно будет выполняться обнуление коэффициентов и огрубление сигнала.

Необходимо отметить, что после восстановления сигнала, максимальное значение амплитуды восстановленного сигнала будет меньше амплитуды исходного сигнала. Данное примечание касается и первого алгоритма фильтрации.

3. Эксперимент

Рассмотрим результаты фильтрации сигналов, полученные на основе предложенных алгоритмов и сравним их с результатами, полученными с помощью вейвлет-фильтрации. Исследование алгоритма выполняется на трёх тестовых сигналах (см. рис. 2, рис. 7.а, рис. 7.б). Искажение сигналов проводится с использованием аддитивного нормального и равномерного шума. Параметр q в табл. 1 обозначает долю шума в сигнале.

Рис. 7. Тестовые сигналы

В табл. 2 приведена оценка качества искажённых сигналов.

Таблица 2. Оценка степени искажения сигналов

тиолици 2. оденки степени некажения сигналов								
q	OCII	I, равн.	шум	ОСШ, норм. шум				
	1	2	3	1	2	3		

0,05	24,88	21,23	24,66	20,08	16,22	20,20
0,1	18,94	15,26	18,88	14,05	10,59	14,00
0,2	12,77	9,29	12,78	8,11	4,31	7,92

Рис. 8. Искажённые сигналы: a) q = 0.1, сигнал – 2; б) q = 0.1, сигнал – 3

3.1. Вейвлет-фильтрация

Алгоритм фильтрации сигнала на основе вейвлет-преобразования [4]:

- 1) формирование N-уровневого вейвлетразложения;
- 2) пороговая обработка детализирующих коэффициентов;
- 3) восстановление сигнала с использованием старых аппроксимирующих коэффициентов и новых детализирующих.

Таблица 3. Результат восстановления на основе вейвлет-преобразования

q	OCII	I, равн.	шум	ОСШ, норм. шум			
	1	2	3	1	2	3	
0,0	24,5	27,0	29,6	21,0	19,0	22,6	
5	1	7	7	3	2	2	
0,1	22,9	22,1	27,6	17,0	15,7	14,9	
	9	6	5	2	1	7	
0,2	19,8	17,2	23,5	13,3	12,8	12,4	
	5	8	3	6	8	9	

3.2. Разработанные алгоритмы

3.2.1. Алгоритм фильтрации 1

Ниже в таблицах приведены результаты работы алгоритма фильтрации, основанного на обнулении коэффициентов разложения.

Таблица 4. Комбинация 1000 (9)

q	ОСШ, равн. шум			ОСШ, норм. шум		
	1	2	3	1	2	3
0,05	25,61	24,08	28,44	21,84	19,17	22,65
0,1	24,02	21,41	27,19	17,82	16,28	15,61
0,2	20,89	17,42	23,94	13,98	13,57	13,22

Таблица 5. Комбинация 1100 (13)

10	Тиолици 3. Помониции 1100 (13)								
q	ОСШ, равн. шум			ОСШ, норм. шум					
	1	2	3	1	2	3			
0,05	27,30	28,47	32,85	23,57	21,38	25,33			
0,1	25,78	24,44	30,07	19,57	18,27	17,68			
0,2	22,61	19,71	26,01	15,80	15,48	15,13			

Таблица 6. Комбинация 1101 (14)

q	ОСШ, равн. шум			ОСШ, норм. шум			
	1	2	3	1	2	3	
0,05	30,11	33,43	35,51	26,58	24,50	29,03	
0,1	28,75	27,98	32,80	22,59	21,15	21,77	
0,2	25,60	23,13	28,75	19,10	18,52	18,15	

Таблица 7. Комбинация 1110 (15)

q	ОСШ, равн. шум			ОСШ, норм. шум			
	1	2	3	1	2	3	
0,05	30,52	30,16	36,23	26,60	24,31	27,75	
0,1	28,84	27,02	33,39	22,61	21,49	19,88	
0,2	25,66	22,40	29,33	18,64	18,58	18,26	

3.2.2. Алгоритм фильтрации 2

Ниже в таблицах приведены результаты работы алгоритма фильтрации, основанного на восстановлении сигнала с заданной степенью точности.

Таблица 8. P = 2 (комбинация 16)

q	OCII	I, равн.	шум	ОСШ, норм. шум				
	1	2	3	1	2	3		
0,0	27,4	27,9	31,6	23,0	20,5	24,3		
5	1	5	3	2	2	0		
0,1	25,4	23,4	29,0	18,7	17,2	16,6		
	7	8	9	1	4	8		
0,2	21,8	18,7	25,0	15,0	14,4	14,0		
	6	4	0	2	8	4		

Таблица 9. P = 4 (комбинация 16)

q	OCII	ОСШ, равн. шум			ОСШ, норм. шум			
	1	2	3	1	2	3		
0,0	25,8	26,6	29,4	21,8	19,4	22,8		
5	0	7	2	4	3	5		
0,1	24,0	22,3	27,7	17,5	16,1	15,2		
	8	5	3	7	7	9		
0,2	20,6	17,5	23,8	13,7	13,3	12,8		
	6	6	3	1	1	3		

3.2.3. Комбинация алгоритмов фильтрации

Рассмотрим результаты, полученные в результате комбинации алгоритмов фильтрации.

Таблица 10. P = 2 (комбинация 9)

q	ОСШ, равн. шум			ОСШ, норм. шум			
	1	2	3	1	2	3	
0,05	22,03	20,10	26,50	19,99	17,62	21,53	
0,1	21,20	18,43	25,38	16,67	15,15	14,65	
0,2	18,96	15,79	22,58	13,21	12,72	12,43	

Таблица 11. P = 2 (комбинация 13)

q	ОСШ, равн. шум			ОСШ, норм. шум			
	1	2	3	1	2	3	

0,05	25,47	25,11	28,92	21,79	19,31	22,70
0,1	23,92	21,78	27,31	17,67	16,18	15,42
0,2	20,75	17,45	23,77	13,80	13,41	12,91

Таблица 12. P = 2 (комбинация 14)

q	ОСШ, равн. шум			ОСШ, норм. шум			
	1	2	3	1	2	3	
0,0	26,1	27,1	30,3	22,3	20,0	23,4	
5	1	8	7	0	4	5	
0,1	24,5	22,8	28,3	18,0	16,6	16,0	
	7	1	3	7	3	8	
0,2	21,2	18,1	24,4	14,3	13,8	13,3	
	3	4	5	3	9	7	

Таблица 13. P = 2 (комбинация 15)

q	ОСШ, равн. шум			ОСШ, норм. шум		
	1	2	3	1	2	3
0,0	26,5	25,5	29,7	22,4	19,7	23,4
5	7	1	4	3	0	0
0,1	24,6	22,2	27,8	18,2	16,7	15,9
	8	8	9	5	2	0
0,2	21,3	17,9	24,2	14,4	13,9	13,5
	1	6	3	1	4	2

Выводы по результатам экспериментов:

- 1) предложенные алгоритмы фильтрации обеспечивают результат очистки от шума не хуже, чем алгоритм фильтрации, на основе вейвлет-преобразования, а в ряде случаев показывает лучшие результаты;
- 2) при применении первого алгоритма фильтрации, наилучший результат обеспечивает использование 14 и 15 комбинаций обнуления коэффициентов;
- 3) при использовании второго алгоритма фильтрации, при увеличении значения параметра P, качество восстановления сигнала снижается;
- 4) при использовании для восстановления сигнала комбинации алгоритмов можно отметить, что результаты восстановления на основе такого подхода несколько ниже, чем результаты, полученные на основе только первого или второго алгоритмов;
- 5) сравнивая предложенную методику с методикой вейвлет-фильтрации можно отметить меньшее число настраиваемых параметров предложенных алгоритмов, по сравнению с вейвлет-алгоритмом. В алгоритме на основе вейвлет-преобразования требуется выбрать: решающее правило, тип порога, метод масштабирования порога, тип вейвлета и уровень разложения, на котором выполняется фильтрация;
- 6) полученные результаты подтверждают возможность использования обнуления коэффи-

циентов и огрубления сигнала для очистки сигнала от шума (удаления шумовой компоненты).

Заключение

В работе описаны разработанные алгоритмы фильтрации звуковых сигналов, основанные на *U*-преобразовании. В качестве примеров, рассматривается возможность применения разработанных алгоритмов к фильтрации сигналов, искажённых аддитивным гауссовым и равномерным шумами. Несмотря на то, что данные шумы являются модельными, их использование в исследовании позволяют сравнить эффективность различных алгоритмов фильтрации.

Литература

- 1. Чучупал В.Я., Чичагов А.С., Маковкин К.А. Цифровая фильтрация зашумлённых речевых сигналов // Вычислительный центр РАН, 1998, М.: 52 с.
- 2. Утробин В. А. Физические интерпретации элементов алгебры изображения // Успехи физических наук, Т. 174, № 10, 2004, С. 1089–1104.
- 3. Утробин В. А. Компьютерная обработка изображений. Принятие решений в пространстве эталонов. Н. Новгород: НГТУ, 2004. 221 с.
- 4. Donoho, D.L., I.M. Johnstone Ideal spatial adaptation by wavelet shrinkage, Biometrika, 1994, Vol. 81, P. 425–455.