Redes Ubíquas e Suas Aplicações

Ariel, Francisco, Jesimar e João Paulo

GRUBI

5 de novembro de 2013

Sumário

- 🚺 Introdução
- 2 Integrantes
- Operation of the second of
 - Robótica Evolutiva
 - Aplicações em RSSF
- Perguntas

Introdução

Principais Linhas de Pesquisa

- Redes sem fio.
- Redes de sensores sem fio RSSF
 - Experimentos Simulados
 - Experimentos Reais
- Robótica
 - Plataforma para controle de robôs
 - Automação de Robôs
- Algoritmos Genéticos
 - Programação Automática de RSSF
 - Evolução de Robôs
- Sistemas de Arquivos

Integrantes

Mestrandos

- Hewerton Enes Orientador Tales
- João Paulo Araujo Orientador Tales
- Francisco Vinhas Orientador Tales

Graduandos

- Ariel Marques (Bolsista de IC) Orientador Tales
- Jesimar Arantes (Bolsista de IC) Orientador Tales

Título

Desenvolvimento de um Módulo de Robótica Evolutiva Utilizando Algoritmos Genéticos

Ideia Básica

Este trabalho tem como foco principal desenvolver um módulo de robótica evolutiva.

Onde robôs evoluem com o tempo seguindo regras definidas em algoritmos genéticos.

Os robôs são modelados de forma a serem o mais próximos dos robôs do kit robocore, para serem feitos construções reais do robô gerado.

Montagem

A seguir é mostrado as etapas da montagem do robô.

Figura: Etapas da Montagem do Robô.

Problemas

A primeira classe de problemas a serem resolvidos são problemas de deslocamento do robô.

Figura: Problemas de Deslocamento.

Problemas

A segunda classe de problemas a serem resolvidos são problemas de transporte de carga pelo robô.

Figura: Problemas de Transporte.

Pseudocódigo de um algoritmo genético

- Inicialização
 - Gera população inicial;
 - Avalia o Fitness de cada indivíduo:
- Enquanto a Condição de parada não for Verdadeira
 - Repita até que a nova população esteja completa
 - Selecione dois pais da geração;
 - Aplique cruzamento para gerar dois descendentes;
 - Aplique mutação;
 - Avalie o Fitness;
 - Coloque os descendentes na nova população;
 - Geração Atual ← Nova População;

Crossover de hardware

Apartir das peças dos pais é selecionado um sub-grupo de peças para compor as peças do filho.

Figura: Exemplo de Crossover

Crossover de software

Apartir dos comportamentos dos pais é selecionado um sub-grupo de comportamentos para compor o comportamento do filho.

Figura: Exemplo de um Comportamento

Título

Geração automática de aplicações em RSSF utilizando Programação Genética

Ideia Básica

Este trabalho tem como foco principal desenvolver um framework para geração automática de aplicações em RSSF.

As aplicações são evoluídas utilizando os conceitos de algoritmos genéticos. É utilizado um middleware que irá interpretar uma linguagem script, onde está a aplicação gerada, e um módulo de simulação para medir as aplicações geradas através de uma função objetivo.

Motivações

Programação em baixo-nível

Complexidade da especificação de alto-nível

Complexidade da infraestrutura adjacente

Complexidade na programação dinâmica da rede

Soluções

Utilização de um middleware

Utilização de uma linguagem script

Utilização de metaheurísticas para geração de aplicações

Framework

Framework para geração automática de aplicações

Figura: Visão geral do framework.

Indivíduos da Programação Genética

Um indivíduos é representado por um conjunto de triggers. Um trigger é composto por um cabeçalho e diversos comandos.

P1 and A3	Al or A2	P3 and P2
$send(P2, \rightarrow)$	down(P1)	up(P2)
down(P3)	up(P2)	send(P1,↓)
	send(P3,↑)	down(P1)
	down(P1)	

Figura: Representação de um indivíduo.

Criação de novos indivíduos

Cria-se novos indivíduos baseado no cruzamento de indivíduos já existentes (Crossover).

Figura: Tipos de Crossover.

Visão da rede

Execução do middleware na rede

Figura: Visão geral da rede.

Problema em um RSSF

Detecção de eventos na RSSF

Figura: Eventos em uma RSSF.

Perguntas

Obrigado

Perguntas?

