Note Title 2/18/2013

Frictionless incl. plane

$$n = mgcos0$$

Fx = -m gsme = max

$$Q_X = -95mQ$$

Springs Natural Length top is peop to Squish Tam = XX Ideal, massless springs

Pull or push

depending on whater

compress or extend spring

Squash by X

k spring constant

(force)

Unds N = [k] M $[k] = N_m = h_{52}$

As, stretch Mathematical

2.0 kg & 3.0 kg mass aren horiz. fric. surface connected by spr, h= 140 m A 15N force is applied to largor mass, By how much does Spring stretch from equil. length? Both back have same motion.

Decond Mess: Q = 3.0 % F=ma=(2.04)(3.0%)=6.0N $= |k \times| = (140 \%) \times$ $\chi = 0.043 \, \text{m} = 4.3 \, \text{cm}$

Friction

Circu lay

There is now th (force of kinetic friction) motion. Obbozo Brich Normal force.? Speed of Ligert? Materials 713's show matts normal force. Sliding frictions Embaricay.

motion, relocity \mathcal{L} \mathcal{N} $\int_{\mathbf{k}} = \mathcal{M}_{\mathbf{k}} \mathcal{N}$ the coefficient of kinetic friction. Mr is unitless e.j. Woodn bb.h on table Mu ~ 0.2 Tires on concrete un ~ 0.8 5.29 A hochey puch is girm an initial speed of 143. If it comes to rest in 56m; what's coefficient of hinetic friction? Acceloration V= V=+2ax 7 = -1.75 %2

$$f_{h} = \mu_{h} N = \mu_{h} mg$$

$$F_{x} = m a_{x}$$

$$N = MQ$$

Mags cancels out

$$ML = \frac{1.75 \% sc}{9} = 0.179$$

The is a value of F_{qq} so that it starts

Solve if f_{qq} so that it starts $f_{s} = F_{qq}$ $f_{s} = F_{qq}$