Accelerating Dynamical Mean-Field Calculations Using the Discrete Lehmann Representation

Nan Sheng

nansheng@uchicago.edu

Mentors: Kun Chen, Jason Kaye, Olivier Parcollet

08/10/2021 @ CCQ

Acknowledgement

Olivier Parcollet

Jason Kaye

Kun Chen

Nils Wentzell

Alexander Hampel

Sophie Beck

Giulia Galli

Discrete Lehmann Representation (DLR)

$$G(\tau) = -\int_{-\infty}^{+\infty} K(\tau, \omega) \rho(\omega) d\omega$$
$$K(\tau, \omega) = \frac{e^{-\omega \tau}}{1 + e^{-\beta \omega}}$$

Physical energy cutoff
$$\Lambda = \beta \omega_{max}$$
Error ϵ

$$G(\tau) = \sum_{k=1}^{r} K(\tau, \omega_k) g_k = \sum_{k=1}^{r} e^{-\omega_k \tau} \hat{g}_k$$

Standard Discretization

$$O(\Lambda/\epsilon)$$

DLR

$$O(log(\Lambda)log(1/\epsilon))$$

- DLR is a very compact representation of G obtained by low rank decomposition of Lehmann representation, another example of which is intermediate representation (IR) using SVD
- DLR selects most linearly independent $K(\tau, \omega_k)$ as basis functions
- DLR coefficients g_k can be recovered from $G(\tau_j)$ with DLR grid $\{\tau_j\}$
- Since DLR basis functions are explicit, many standard operations, e.g. Fourier transform, become explicit

Kaye, Jason, Kun Chen, and Olivier Parcollet. "Discrete Lehmann representation of imaginary time Green's functions." arXiv preprint arXiv:2107.13094 (2021).

Shinaoka, Hiroshi, et al. "Compressing Green's function using intermediate representation between imaginary-time and real-frequency domains." Physical Review B 96.3 (2017): 035147.

Fitting of Noisy Green's Function

Can we fit DLR coefficients from noisy quantum Monte Carlo (QMC) data?

- In general, DLR can fit noisy data well
- DLR can capture the tail of $G(i\omega_n)$
- The error of DLR fitting follows that of QMC

Reduction of Number of Matsubara Frequencies

• Like selected $\{\tau_j\}$, DLR coefficients g_k can be recovered from $G(i\omega_{n_j})$ with selected $\{i\omega_{n_j}\}$

$$G(i\omega_n) = \sum_{k=1}^r K(i\omega_n, \omega_k) g_k$$

$$K(i\omega_n) = (\omega + i\omega_n)^{-1}$$

$$O(\Lambda/\epsilon)$$

$$O(\log(\Lambda) \log(1/\epsilon))$$

Application: Acceleration of Dyson equation solver in dynamical mean-field theory (DMFT)

• Computing k sums is a bottleneck, and the number of k sums is proportional to the number of Matsubara frequency points

Reduction of Number of Matsubara Frequencies

$$\Sigma(i\omega_n) = \mathcal{G}^{-1}(i\omega_n) - G_{imp}^{-1}(i\omega_n)$$

2050 frequencies \xrightarrow{DLR} **30** frequencies

$$\Sigma(i\omega_{n_j}) = \mathcal{G}^{-1}(i\omega_{n_j}) - G_{imp}^{-1}(i\omega_{n_j})$$

$$G_{loc}(i\omega_n) = \frac{1}{N_k} \sum_{k} \left[i\omega_n - \epsilon_k + \mu - \Sigma(i\omega_n) \right]^{-1}$$

$$G_{loc}(i\omega_{n_j}) = \frac{1}{N_k} \sum_{k} \left[i\omega_{n_j} - \epsilon_k + \mu - \sum_{i} (i\omega_{n_j}) \right]^{-1}$$

Conclusions & Future Work

Conclusions

- Noisy Green's function can be well fitted by DLR
- Dyson equation solver in DMFT can be accelerated by DLR

Future Work

- A robust implementation for calculations of real materials
- Apply DLR to the GW approximation

the GW self-energy

$$\Sigma(\omega) = i \int_{-\infty}^{+\infty} \frac{d\omega'}{2\pi} G(\omega + \omega') W(\omega')$$

Discrete Lehmann Representation (DLR)

$$G(\tau) = -\int_{-\infty}^{+\infty} K(\tau, \omega) \rho(\omega) d\omega \qquad \qquad \omega \to \beta \omega$$

$$\tau \to \tau/\beta$$

$$K(\tau, \omega) = \frac{e^{-\omega \tau}}{1 + e^{-\beta \omega}} \qquad \qquad \text{Physical energy cutoff}$$

$$\Lambda = \beta \omega_{max}$$

- 1. $G(\tau)$ is represented by a simple basis set expansion, depending on Λ and ϵ only. The number of basis functions r scales as $O(\log(\Lambda)\log(1/\epsilon))$ instead of $O(\Lambda/\epsilon)$
- 2. FFT between $G(\tau)$ and $G(i\omega_n)$ can be simply done analytically
- 3. Instead of sparse sampling, $\{\tau_j\}$ and $\{i\omega_{n_j}\}$ could be simply obtained, with which we can recover DLR coefficients g_k

$$G(\tau) = -\int_{-\Lambda}^{+\Lambda} K(\tau, \omega) \rho(\omega) d\omega$$
$$K(\tau, \omega) = \frac{e^{-\omega \tau}}{1 + e^{-\omega}}$$

Energy resolution ϵ

DLR

$$G(\tau) = \sum_{k=1}^{r} K(\tau, \omega_k) g_k$$

$$K(\tau, \omega_k) = \frac{e^{-\omega \tau}}{1 + e^{-\omega}}$$

$$G(i\omega_n) = \sum_{k=1}^{r} K(i\omega_n, \omega_k) g_k$$

$$K(i\omega_n, \omega_k) = \frac{1}{\omega_k + i\omega_n}$$

Dynamical Mean-Field Theory (DMFT)

$$\mathcal{G}(i\omega_n) \xrightarrow{FFT} \mathcal{G}(\tau)
\mathcal{G}(\tau) \xrightarrow{CTQMC} G_{imp}(\tau)
G_{imp}(\tau) \xrightarrow{FFT} G_{imp}(i\omega_n)$$

$$\mathcal{G}(i\omega_n) = \left[G_{loc}^{-1}(i\omega_n) + \Sigma(i\omega_n)\right]^{-1}$$

$$\Sigma(i\omega_n) = \Sigma_{imp}(i\omega_n) = \mathcal{G}^{-1}(i\omega_n) - G_{imp}^{-1}(i\omega_n)$$

$$G_{loc}(i\omega_n) = \frac{1}{N_k} \sum_{k} \left[i\omega_n - \epsilon_k + \mu - \Sigma(i\omega_n) \right]^{-1}$$

Initial $\Sigma(i\omega_n)$

DLR for DMFT

$$\mathcal{G}(i\omega_{n_{j}}) \xrightarrow{DLR} \mathcal{G}(\tau)
\mathcal{G}(\tau) \xrightarrow{CTQMC} G_{imp}(\tau)
\mathcal{G}_{imp}(\tau) \xrightarrow{DLR} G_{imp}(i\omega_{n_{j}})$$

$$\mathcal{G}(i\omega_{n_j}) = \left[G_{loc}^{-1}(i\omega_{n_j}) + \Sigma(i\omega_{n_j})\right]^{-1}$$

$$\Sigma(i\omega_{n_j}) = \Sigma_{imp}(i\omega_{n_j}) = \mathcal{G}^{-1}(i\omega_{n_j}) - G_{imp}^{-1}(i\omega_{n_j})$$

$$G_{loc}(i\omega_{n_j}) = \frac{1}{N_k} \sum_{k} \left[i\omega_{n_j} - \epsilon_k + \mu - \Sigma(i\omega_{n_j}) \right]^{-1}$$

Initial $\Sigma(i\omega_{n_i})$