Chapter 1: Preliminaries

Bayesian inference in simple conjugate families

Bayesian inference for real scientific problems is like playing with Legos: elaborate creations arise from simple building blocks. We start with a few of the simplest blocks: the beta/binomial, normal, and inversegamma conjugate families.

(A) Suppose that we take independent observations $x_1, ..., x_N$ from a Bernoulli sampling model with unknown probability w. That is, the x_i are the results of flipping a coin with unknown bias. Suppose that w is given a Beta(a,b) prior distribution:

$$p(w) = \frac{\Gamma(a+b)}{\Gamma(a) \cdot \Gamma(b)} w^{a-1} (1-w)^{b-1},$$

where $\Gamma(\cdot)$ denotes the Gamma function. Derive the posterior distribution $p(w \mid x_1, ..., x_N)$.¹

(B) The probability density function (PDF) of a gamma random variable, $x \sim Ga(a, b)$, is

$$p(x) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx).$$

Suppose that $x_1 \sim \text{Ga}(a_1,1)$ and that $x_2 \sim \text{Ga}(a_2,1)$. Define two new random variables $y_1 = x_1/(x_1 + x_2)$ and $y_2 = x_1 + x_2$. Find the joint density for (y_1, y_2) using a direct PDF transformation (and its Jacobian).² Use this to characterize the marginals $p(y_1)$ and $p(y_2)$, and propose a method that exploits this result to simulate beta random variables, assuming you have a source of gamma random variables.

- (C) Suppose that we take independent observations x_1, \ldots, x_N from a normal sampling model with unknown mean θ and known variance σ^2 : $x_i \sim N(\theta, \sigma^2)$. Suppose that θ is given a normal prior distribution with mean m and variance v. Derive the posterior distribution $p(\theta \mid x_1, \ldots, x_N)$.
- (D) Suppose that we take independent observations x_1, \ldots, x_N from a normal sampling model with *known* mean θ but *unknown* variance σ^2 . (This seems even more artificial than the last, but is conceptually important.) To make this easier, we will re-express things in terms of the precision, or inverse variance $\omega = 1/\sigma^2$:

$$p(x_i \mid \theta, \omega) = \left(\frac{\omega}{2\pi}\right)^{1/2} \exp\left\{-\frac{\omega}{2}(x_i - \theta)^2\right\}.$$

- ¹ I offer two tips here that are quite general. (1) Your final expression will be cleaner if you reduce the data to a sufficient statistic. (2) Start off by ignoring normalization constants (that is, factors in the density function that do not depend upon the unknown parameter, and are only there to make the density integrate to 1.) At the end, re-instate these normalization constants based on the functional form of the density.
- ² Take care that you apply the important change-of-variable formula from basic probability. See, e.g., Section 1.2 of http://www.stat.umn.edu/geyer/old/5102/n.pdf.

Suppose that ω has a gamma prior with parameters a and b, implying that σ^2 has what is called an inverse-gamma prior.³ Derive the posterior distribution $p(\omega \mid x_1, ..., x_N)$. Re-express this as a posterior for σ^2 , the variance, using the change-of-variables formula.

- ³ Written σ ² ∼ IG(a,b).
- (E) Suppose that, as above, we take independent observations x_1, \dots, x_N from a normal sampling model with unknown, common mean θ . This time, however, each observation has its own idiosyncratic (but known) variance: $x_i \sim N(\theta, \sigma_i^2)$. Suppose that θ is given a normal prior distribution with mean m and variance v. Derive the posterior distribution $p(\theta \mid x_1, \dots, x_N)$. Express the posterior mean in a form that is clearly interpretable as a weighted average of the observations and the prior mean.
- (F) Suppose that $(x \mid \sigma^2) \sim N(0, \sigma^2)$, and that $1/\sigma^2$ has a Gamma(a,b) prior, defined as above. Show that the marginal distribution of x is Student's t. This is why the t distribution is often referred to as a scale mixture of normals.

The multivariate normal distribution

Basics

We all know the univariate normal distribution, whose long history began with de Moivre's 18th-century work on approximating the (analytically inconvenient) binomial distribution. This led to the probability density function

$$p(x) = \frac{1}{\sqrt{2\pi v}} \exp\left\{-\frac{(x-m)^2}{2v}\right\}$$

for the normal random variable with mean m and variance v, written $x \sim N(m, v)$.

Here's an alternative characterization of the univariate normal distribution in terms of moment-generating functions: 4 a random variable xhas a normal distribution if and only if $E\{\exp(tx)\} = \exp(mt + vt^2/2)$ for some real m and positive real v. Remember that $E(\cdot)$ denotes the expected value of its argument under the given probability distribution. We will generalize this definition to the multivariate normal.

(A) First, some simple moment identities. The covariance matrix cov(x)of a vector-valued random variable x is defined as the matrix whose (i, j) entry is the covariance between x_i and x_j . In matrix notation, $cov(x) = E\{(x - \mu)(x - \mu)^T\}$, where μ is the mean vector whose *i*th component is $E(x_i)$. Prove the following: (1)

⁴ Laplace transforms to everybody but statisticians.

 $cov(x) = E(xx^T) - \mu\mu^T$; and (2) $cov(Ax + b) = Acov(x)A^T$ for matrix *A* and vector *b*.

- (B) Consider the random vector $z = (z_1, ..., z_p)^T$, with each entry having an independent standard normal distribution (that is, mean o and variance 1). Derive the moment-generating function (MGF) of z, expressed in vector notation (i.e. no explicit summing).⁵ Use the MGF to compute the probability density function (PDF) of z. We say that z has a standard multivariate normal distribution.
- (C) We say that a vector-valued random variable $x = (x_1, ..., x_p)^T$ has a multivariate normal distribution if and only if its moment generating function is of the form

$$E(t^T x) = \exp(t^T \mu + t^T \Sigma t / 2)$$

for vector μ and symmetric, positive-semidefinite matrix Σ . Notice the parallel with the univariate case. We write $x \sim N(\mu, \Sigma)$.

A basic theorem is that a random vector is multivariate normal if and only if it is a linear combination of independent univariate normals. You will first prove the "if" statement. Let z have a standard multivariate normal distribution, and define the random vector $x = Lz + \mu$ for some $p \times p$ matrix L of full column rank. Prove that x is multivariate normal. In addition, use the moment identities you proved above to compute the mean and covariance matrix of x.

- (D) Now for the "only if." Suppose that *x* has a multivariate normal distribution. Prove that *x* can be written as a linear transformation of standard normal random variables. (Note: a good way to prove that something can be done is to do it! That is, write the explicit linear combination giving rise to x. The previous part may suggest a simple way to write Σ such that this becomes straightforward.)
- (E) Use this result to construct an algorithm for simulating multivariate normal random variables, and code it up in R.6 You may use built-in routines for drawing univariate normals, and for performing any relevant matrix operations. (This should be a very short code snippet; if you find youself writing something long, rethink your approach.) Then play around! Use your code to simulate 1000 draws or so from a few different bivariate normals of your choice. The covariance matrix of the bivariate normal has only two variance parameters and a single covariance parameter to specify.
- (F) Use your result, together with the PDF of a univariate normal, to derive the PDF of a multivariate normal $x \sim N(\mu, \Sigma)$ as p(x) = $C \exp\{-Q(x)/2\}$ for some constant C and quadratic form Q(x).

⁵ Remember that the MGF of a vectorvalued random variable x is the expected value of the quantity $\exp(t^Tx)$, as a function of the vector argument t.

⁶ For the result of this course, when I say R, you should feel free to substitute your own favorite language.

(G) Let $x_1 \sim N(\mu_1, \Sigma_1)$ and $x_2 \sim N(\mu_2, \Sigma_2)$, where x_1 and x_2 are independent of each other. Let $y = Ax_1 + Bx_2$ for matrices A, B of full column rank. Note that x_1 and x_2 need not have the same dimension, as long as Ax_1 and Bx_2 do. Use your previous results to characterize the distribution of *y*.

Conditionals and marginals

Suppose that $x \sim N(\mu, \Sigma)$ has a multivariate normal distribution. Let x_1 and x_2 denote an arbitrary partition of x into two sets of components. Because we can relabel the components of x without changing their distribution, we can safely assume that x_1 comprises the first k elements of x, and x_2 the last p - k. We will also assume that μ and Σ have been partitioned conformably with *x*:

$$\mu = (\mu_1, \mu_2)^T$$
 and $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$.

Clearly $\Sigma_{21} = \Sigma_{12}^T$, as Σ is a symmetric matrix.

- (A) You have shown that linear transformations of x are normal. Use this to characterize the marginal distribution of x_1 .
- (B) Derive the conditional distribution for x_1 , assuming that the elements of x_2 are known. There are multiple approaches here. If you decide to use Bayes' rule and brute force, there are several keys to inner peace: work with densities on a log scale, ignore constants that don't affect x_1 , and expand the quadratic form in p(x) in terms of the partitioned elements of x, μ , and Σ .⁷
- (C) Let $\Omega = \Sigma^{-1}$ be the inverse covariance matrix, or precision matrix, of x, and partition Ω just as you did Σ :

$$\Omega = \left(egin{array}{cc} \Omega_{11} & \Omega_{12} \ \Omega_{12}^T & \Omega_{22} \end{array}
ight) \, .$$

Using (or deriving!) identities for the inverse of a partitioned matrix, express each block of Ω in terms of blocks of Σ . Explain briefly how one may interpret the conditional distribution you just derived as a linear regression on x_2 , where the regression matrix can be read off the precision matrix.

$$x^{2}-2bx+c = x^{2}-2bx+b^{2}-b^{2}+c$$

= $(x-b)^{2}-b^{2}+c$.

⁷ Also remember the cute trick of completing the square from basic algebra. In scalar form:

Multiple regression: three classical principles for inference

Suppose we observe data that we believe to follow a linear model, where $y_i = x_i^T \beta + \epsilon_i$ for i = 1, ..., n. To fix notation: y_i is a scalar response; x_i is a *p*-vector of predictors or features; and the ϵ_i are errors. By convention we write vectors as column vectors. Thus $x_i^T \beta$ will be our typical way of writing the inner product between the vectors x_i and β .

Consider three classic inferential principles that are widely used to estimate β , the vector of regression coefficients. In this context we will let $\hat{\beta}$ denote an estimate of β —think, it wears a hat because it's masquerading as the true value.⁸

Least squares: make the sum of squared errors as small as possible.

$$\hat{\beta} = \arg\min_{\beta \in \mathcal{R}^p} \left\{ \sum_{i=1}^n (y_i - x_i^T \beta)^2 \right\}.$$

Maximum likelihood under Gaussianity: assume that the errors are independent, mean-zero normal random variables with common variance σ^2 . Choose $\hat{\beta}$ to maximize the likelihood:

$$\hat{\beta} = \arg\max_{\beta \in \mathcal{R}^p} \left\{ \prod_{i=1}^n p(y_i \mid \beta, \sigma^2) \right\}.$$

Here $p_i(y_i \mid \sigma^2)$ is the conditional probability density function of y_i , given the model parameters β and σ^2 . Two side points: 1) Why a product? 2) Why I have I not written $\hat{\beta}$ explicitly as a function of σ^2 , which is unknown and appears on the right-hand side?

Method of moments: Choose $\hat{\beta}$ so that the sample covariance between the errors and each of the p predictors is exactly zero. This gives you a system of p equations and p unknowns.

Show that all three of these principles lead to the same estimator. You will end up tearing your hair out if you try to deal with sums of scalar quantities. Thus convert everything to matrix-vector notation. This means exploiting results on moments of linear combinations of random variables, and—for (2)—appealing to the multivariate normal distribution.

Notice we have no explicit intercept. For now you can imagine that all the variables have had their sample means subtracted, making an intercept superfluous. Or you can just assume that the leading entry in every x_i is equal to 1, in which case β_1 will be an intercept term.

⁸ This metaphor once came back to me in somewhat garbled fashion on an undergraduate's midterm: " $\hat{\beta}$ wears a hat because he is an impostor."

Quantifying uncertainty: some basic frequentist ideas

In linear regression

In frequentist inference, inferential uncertainty is usually characterized by the sampling distribution, which expresses how one's estimate is likely to change under repeated sampling. The idea is simple: unstable estimators shouldn't be trusted, and should therefore come with large error bars. This should be a familiar concept, but in case it isn't, consult the tutorial on sampling distributions in this chapter's references.

Suppose, as in the previous section, that we observe data from a linear regression model with Gaussian error:

$$y = X\beta + \epsilon$$
, $\epsilon \sim N(0, \sigma^2 I)$.

- (A) What is the sampling distribution of the estimator for β that you just derived?
- (B) Your answer depends on σ^2 , but this is unknown. Suppose you wanted to quantify your uncertainty about β_1 , the first regression coefficient. How would you proceed?

Bootstrapping

If you're unfamiliar with the idea of the bootstrap, consult my tutorial on sampling distributions, along with the review paper by Efron and Gong entitled "A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation." The basic idea is to simulate the process of repeated sampling from the population by re-sampling from your sample (with replacement). The ties and duplicates in your "bootstrapped samples" will mimic the sampling variability of the true data-generating process.

Consult the data set on ozone concentration in Los Angeles, where the goal is to regress daily ozone concentration on a set of other atmospheric variables. This is available from the R package "mlbench," with my R script "ozone.R" giving you a head start on processing things.

Use your estimator to fit a linear model for ozone concentration (after subtracting the mean) versus the other variables. Compute the covariance matrix of the sampling distribution of your estimator.

Propagating uncertainty

Suppose you have taken data and estimated some parameters $\theta_1, \dots, \theta_P$ of a multivariate statistical model—for example, the regression model of the previous problem. Call your estimate $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_P)^T$. Suppose

that you also have an estimate of the covariance matrix of the sampling distribution of $\hat{\theta}$:

$$\hat{\Sigma} \approx \text{cov}(\hat{\theta}) = E\left\{ (\hat{\theta} - \bar{\theta})(\hat{\theta} - \bar{\theta})^T \right\} ,$$

where the expectation is under the sampling distribution for the data, given the true parameter θ . Here $\bar{\theta}$ denotes the mean of the sampling distribution.

If you want to report uncertainty about the $\hat{\theta}_j$'s, you can do so by peeling off the diagonal of the estimated covariance matrix: $\hat{\Sigma}_{jj} = \hat{\sigma}_j^2$ is the square of the ordinary standard error of $\hat{\theta}_j$. But what if you want to report uncertainty about some function involving multiple components of the estimate $\hat{\theta}$?

(A) Start with the trivial case where you want to estimate

$$f(\theta) = \theta_1 + \theta_2$$
.

Calculate the standard error of $f(\hat{\theta})$, and generalize this to the case where f is the sum of all p components of $\hat{\theta}$.

(B) What now if f is a nonlinear function of the $\hat{\theta}_j$'s? Propose an approximation for var $\{f(\hat{\theta})\}$, where f is any sufficiently smooth function. (As above, the variance is under the sampling distribution of the data, given the true parameter.)

There are obviously many potential strategies that might work, but here's one you might find fruitful: try a first-order Taylor approximation of $f(\hat{\theta})$ around the unknown true value θ . Try to bound the size of the likely error of the approximation, or at least talk generally about what kinds of assumptions or features of f or $p(\hat{\theta} \mid \theta)$ might be relevant. You should also reflect on some of the potential caveats of this approach.