

Viewport Proposal CNN for 360° Video Quality Assessment

Mai Xu Beihang University

Collaborated with Chen Li, Lai Jiang, Shanyi Zhang and Xiaoming Tao

- Background
- Related Works
- Our V-CNN Approach
- Experimental Results

Most recently, 360° video has become part of our daily life.

Amount of 360° video on YouTube: 100 million+

Live streaming of CCTV Spring Festival Gala in 360° format

Video Demo: Skydiving

Background

However, the source of 360° video varies.

Meanwhile, the quality degradation in the viewport is more noticeable.

Thus, it is necessary to study visual quality assessment (VQA) for 360° video.

Related Works

> VQA on 360° video

Non-Deep-Learning: S-PSNR (Yu et al., 2015), CPP-PSNR (Zakharchenko et al., 2016), WS-PSNR (Sun et al., 2017), AW-SPSNR (Xiu et al., 2017).

Deep-Learning: VR-IQA-NET (Lim et al., 2018).

No work considers that the visual quality highly depends on the viewports in 360° video.

➤ Attention models on 360° video

HM prediction: Cheng et al., 2018, Spherical U-Net (Zhang et al., 2018), DHP (Xu et al., 2019), etc.

EM prediction: Ling et al., 2018, Xu et al., 2018, etc.

No existing 360° VQA work benefits from the auxiliary tasks of attention modelling.

➤ Great success of R-CNN approaches in object detection

R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick et al., 2015), Faster R-CNN (Ren et al., 2017), Mask R-CNN (He et al., 2017)

Two staged, multi-task approaches with region proposal.

Motivation: Human's way of viewing 360° video:

Head Movement (HM) + Eye Movement (EM)

Motivation: Two-staged procedure of viewing 360° video with viewport.

Framework

Viewport proposal

VP-net: Viewport proposal.

Loss:
$$\mathcal{L}^{ ext{I}} = \lambda_w \mathcal{L}_w + \lambda_{ extbf{v}} \mathcal{L}_{ extbf{v}}$$
Importance Anchor Weight Location

$$\begin{array}{c} \text{Loss:} \ \ \mathcal{L}^{\text{I}} = \lambda_{w} \mathcal{L}_{w} + \lambda_{\mathbf{v}} \mathcal{L}_{\mathbf{v}} \\ \text{Importance} \\ \text{Weight} \ \ \text{Location} \end{array} \begin{array}{c} \text{Where} \ \mathcal{L}_{w} = D_{\text{KL}}(\{w_{i}\}_{i=1}^{I} \| \{\hat{w}_{i}\}_{i=1}^{I}) = \sum_{i=1}^{I} w_{i} \log \left(\frac{w_{i}}{\hat{w}_{i}}\right) \\ \mathcal{L}_{\mathbf{v}} = \sum_{i=1}^{I} w_{i} \cdot L_{1}^{\text{smooth}}(\Delta \mathbf{v}_{i}, \Delta \mathbf{v}_{i}^{\text{g}}) \\ \Delta \mathbf{v}_{i}^{\text{g}} = \operatorname*{arg\,min}_{i} d(\mathbf{v}_{i}^{\text{a}}, \mathbf{v}_{j}^{\text{h}}) - \mathbf{v}_{i}^{\text{a}} \\ \{\mathbf{v}_{j}^{\text{h}}\}_{j=1}^{J} \end{array}$$

VQ-net: Viewport quality assessment.

Loss:
$$\mathcal{L}_{k}^{\text{II}} = \lambda_{\mathbf{M}} \mathcal{L}_{\mathbf{M}_{k}} + \lambda_{s} \mathcal{L}_{s_{k}}$$
 where $\mathcal{L}_{\mathbf{M}_{k}} = D_{\text{KL}}(\mathbf{M}_{k} || \hat{\mathbf{M}}_{k}) = \sum_{(x',y')} M_{k}(x',y') \log \left\{ \frac{M_{k}(x',y')}{\hat{M}_{k}(x',y')} \right\}$
Prediction Score $\mathcal{L}_{s_{k}} = (s - s_{k})^{2}$

Dataset

□ Collection Procedure

□ Dataset Details

- Sequences in total: **600**
- Reference sequences: **60**
- Projection format: ERP, RCMP, TSP
- Quality level: QP = 27, 37, 42

- Subjects in total: 221
- Including Data: Subjective quality scores, HM and EM tracking data

Evaluation on VQA (Quantitative).

Approaches	Attributes				Evaluation on VQA-ODV [19]				
	For 360° video	Full reference	Deep learning	Re-trained*	PLCC	SROCC	KROCC	RMSE	MAE
S-PSNR	/	/			0.6929	0.6976	0.4981	8.5407	6.6810
WS-PSNR		V			0.6721	0.6839	0.4860	8.7707	6.9089
CPP-PSNR		✓			0.6812	0.6896	0.4912	8.6718	6.7932
BP-QAVR				/	0.6588	0.6801	0.4780	8.9112	7.0823
Li et al.	V	√	✓	✓	0.7821	0.7953	0.5902	7.3817	5.7793
VR-IQA-NET	/		/		0.3713	0.3379	0.2260	10.9984	9.1016
DeepQA		V	~	✓	0.6936	0.7296	0.5213	8.5325	6.7720
WaDIQaM-FR		✓	~		0.6207	0.6162	0.4206	9.2868	7.4574
V-CNN (Ours)	V	V	V	✓	0.8740	0.8962	0.7137	5.7551	4.4893

Evaluation on VQA (Scatter Plots).

Evaluation on other auxiliary tasks.

Viewport Proposal

Approaches	NSS	CC	KL
Cheng et al.	1.96	0.35	2.50
DHP	1.98	0.37	2.41
GBVS360	1.16	0.22	2.31
BMS360	1.85	0.34	1.88
V-CNN (Ours)	2.65	0.63	2.38

Saliency Prediction

Approaches	NSS	CC	KL	
DeepVS	1.10	0.36	1.95	
BMS	0.89	0.26	1.42	
GBVS	0.81	0.30	1.34	
PQFT	0.73	0.19	1.60	
V-CNN (Ours)	0.97	0.37	1.33	

Thank You!

Viewport Proposal CNN for 360° Video Quality Assessment

Mai Xu
Beihang University
Collaborated with Chen Li, Lai Jiang, Shanyi Zhang and Xiaoming Tao