Pengujian Hipotesis Terhadap Dua Sampel

```
In []: # Import Libraries
    import pandas as pd
    import scipy.stats as st
    import statsmodels.stats.weightstats as ws
    from statsmodels.stats.proportion import proportions_ztest

# Read csv file
    df = pd.read_csv("../data/anggur.csv")

display(df)
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	5.90	0.4451	0.1813	2.049401	0.070574	16.593818	42.27	0.9982	3.27	0.71	8.64	7
1	8.40	0.5768	0.2099	3.109590	0.101681	22.555519	16.01	0.9960	3.35	0.57	10.03	8
2	7.54	0.5918	0.3248	3.673744	0.072416	9.316866	35.52	0.9990	3.31	0.64	9.23	8
3	5.39	0.4201	0.3131	3.371815	0.072755	18.212300	41.97	0.9945	3.34	0.55	14.07	9
4	6.51	0.5675	0.1940	4.404723	0.066379	9.360591	46.27	0.9925	3.27	0.45	11.49	8
995	7.96	0.6046	0.2662	1.592048	0.057555	14.892445	44.61	0.9975	3.35	0.54	10.41	8
996	8.48	0.4080	0.2227	0.681955	0.051627	23.548965	25.83	0.9972	3.41	0.46	9.91	8
997	6.11	0.4841	0.3720	2.377267	0.042806	21.624585	48.75	0.9928	3.23	0.55	9.94	7
998	7.76	0.3590	0.3208	4.294486	0.098276	12.746186	44.53	0.9952	3.30	0.66	9.76	8
999	5.87	0.5214	0.1883	2.179490	0.052923	16.203864	24.37	0.9983	3.29	0.70	10.17	7

1000 rows × 12 columns

Langkah-Langkah Pembuktian Hipotesis:

- 1. Tentukan hipotesis nol $H_{\rm 0}$.
- 2. Tentukan hipotesis alternatif $H_{\rm 1}$.
- 3. Tentukan tingkat signifikan α .
- 4. Tentukan uji statistik yang sesuai dan tentukan daerah kritis.
- 5. Hitung nilai uji statistik dari data sample. Hitung p-value sesuai dengan uji statistik yang digunakan.
- 6. Ambil keputusan "Tolak H_0 " jika nilai uji statistik terletak di daerah kritis, atau dengan tes signifikan, "Tolak H_0 " jika p-value lebih kecil dibanding tingkat signifikansi α yang diinginkan.

Q1: Data kolom fixed acidity dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata kedua bagian tersebut sama?

Sampel pengujian:

- sampel_1: bagian awal kolom 'fixed acidity'
- sampel_2: bagian akhir kolom 'fixed acidity'

Langkah-langkah:

- 1. H_0 : $\mu_1 \mu_2 = 0$ (rata-rata kedua sampel sama)
- 2. H_1 : $\mu_1 \mu_2
 eq 0$ (rata-rata kedua sampel berbeda)
- 3. Penentuan tingkat signifikan: $\alpha=0.05$
- 4. Penentuan uji statistik dan daerah kritis:
 - ullet Standar deviasi populasi (σ) dari kedua sampel diketahui sama karena diambil dari populasi yang sama
 - Uji hipotesis adalah two-tailed test
 - Oleh karena itu, rumus pengujian yang digunakan adalah sebagai berikut

$$z = rac{(ar{x_1} - ar{x_2}) - d_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

- $\bullet \ \ {\rm Daerah \ kritis \ adalah \ } z < -z_{\alpha/2} \ {\rm atau \ } z > z_{\alpha/2}$
- 5. Perhitungan nilai uji statistik z ada pada kode di bawah ini.
- 6. Pengambilan keputusan:
 - ullet Tolak H_0 jika $z < -z_{lpha/2}$ atau $z > z_{lpha/2}$
 - ullet \mathbf{H}_0 tidak ditolak jika $-z_{lpha/2} \leq z \leq z_{lpha/2}$

```
In []: # Sample setup
fixed_acidity = df['fixed acidity']
fixed_acidity_sample_1 = fixed_acidity[:len(fixed_acidity)//2]
fixed_acidity_sample_2 = fixed_acidity[len(fixed_acidity)//2:]

# Test statistic calculation
diff = 0
significance = 0.05

z_value_1, ztest_pvalue_1 = ws.ztest(fixed_acidity_sample_1, fixed_acidity_sample_2, value=diff)
```

```
z_alpha_over_2 = st.norm.ppf(1 - significance/2)
 # Drawina a conclusion
 print(f"Critical region: z < {-z alpha over 2} or z > {z alpha over 2}")
 print(f"Test statistic: z = {z_value_1}")
  print(f"p-value = {ztest_pvalue_1}")
  print()
 if (z_value_1 < -z_alpha_over_2 or z_value_1 > z_alpha_over_2):
    print("Nilai z berada dalam critical region")
      verdict = "H0 ditolak, rata-rata sampel 1 tidak sama dengan rata-rata sampel 2"
 else:
      print("Nilai z berada di luar critical region")
      verdict = "H0 tidak ditolak, rata-rata sampel 1 sama dengan rata-rata sampel 2"
 if (ztest_pvalue_1 < significance):
    print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")</pre>
      print("Keputusan dari uji ini adalah tolak H0")
  else:
      print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
      print("Keputusan dari uji ini adalah tidak tolak HO")
 print("\nKesimpulan: " + verdict)
Critical region: z < -1.959963984540054 or z > 1.959963984540054
Test statistic: z = 0.02604106999906379
p-value = 0.9792245804254097
Nilai z berada di luar critical region
Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan
Keputusan dari uji ini adalah tidak tolak H0
Kesimpulan: H0 tidak ditolak, rata-rata sampel 1 sama dengan rata-rata sampel 2
```

Q2: Data kolom chlorides dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata bagian awal lebih besar daripada bagian akhir sebesar 0.001?

Sampel pengujian:

- sampel_1: bagian awal kolom 'chlorides'
- sampel_2: bagian akhir kolom 'chlorides'

Langkah-langkah:

- 1. H_0 : $\mu_1-\mu_2=0.001$ (rata-rata bagian awal lebih besar daripada bagian akhir sebesar 0.001)
- 2. ${
 m H_1}$: $\mu_1-\mu_2
 eq 0.001$ (selisih rata-rata bagian awal dengan bagian akhir bukan 0.001)
- 3. Penentuan tingkat signifikan: lpha=0.05
- 4. Penentuan uji statistik dan daerah kritis:
 - ullet Standar deviasi populasi (σ) dari kedua sampel diketahui sama karena diambil dari populasi yang sama
 - Uji hipotesis adalah two-tailed test
 - Oleh karena itu, rumus pengujian yang digunakan adalah sebagai berikut

$$z = rac{\left(ar{x_1} - ar{x_2}
ight) - d_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

- Daerah kritis adalah $z < -z_{lpha/2}$ atau $z > z_{lpha/2}$
- 5. Perhitungan nilai uji statistik z ada pada kode di bawah ini.
- 6. Pengambilan keputusan:
 - Tolak H_0 jika $z < -z_{lpha/2}$ atau $z > z_{lpha/2}$

```
In [ ]: # Sample setup
         chlorides = df['chlorides']
         chlorides_sample_1 = chlorides[:len(chlorides)//2]
         chlorides_sample_2 = chlorides[len(chlorides)//2:]
          # Test statistic calculation
         diff = 0.001
         significance = 0.05
         z_value_2, ztest_pvalue_2 = ws.ztest(chlorides_sample_1, chlorides_sample_2, value=diff)
         z_alpha_over_2 = st.norm.ppf(1 - significance/2)
         print(f"Critical\ region:\ z\ <\ \{-z\_alpha\_over\_2\}\ or\ z\ >\ \{z\_alpha\_over\_2\}")
         print(f"Test statistic: z = {z_value_2}")
         print(f"p-value = {ztest_pvalue_2}")
         if (z_value_2 < -z_alpha_over_2 or z_value_2 > z_alpha_over_2):
    print("Nilai z berada dalam critical region")
              verdict = "H0 ditolak, selisih rata-rata sampel 1 dan sampel 2 tidak sama dengan 0.001"
              print("Nilai z berada di luar critical region")
              verdict = "HO tidak ditolak, rata-rata sampel 1 lebih besar dari rata-rata sampel 2 sebanyak 0.001"
         if (ztest_pvalue_2 < significance):
    print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")</pre>
              print("Keputusan dari uji ini adalah tolak H0")
              print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
print("Keputusan dari uji ini adalah tidak tolak H0")
```

```
print("\nKesimpulan: " + verdict)

Critical region: z < -1.959963984540054 or z > 1.959963984540054

Test statistic: z = -0.467317122852132
p-value = 0.640273007581107

Nilai z berada di luar critical region
Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan
Keputusan dari uji ini adalah tidak tolak H0

Kesimpulan: H0 tidak ditolak, rata-rata sampel 1 lebih besar dari rata-rata sampel 2 sebanyak 0.001
```

Q3: Benarkah rata-rata sampel 25 baris pertama kolom Volatile Acidity sama dengan rata-rata 25 baris pertama kolom Sulphates ?

Sampel pengujian:

- sampel_1: 25 baris pertama kolom 'volatile acidity'
- sampel_2: 25 baris pertama kolom 'sulphates'

Langkah-langkah:

- 1. H_0 : $\mu_1 \mu_2 = 0$ (rata-rata kedua sampel sama)
- 2. H_1 : $\mu_1 \mu_2
 eq 0$ (rata-rata kedua sampel berbeda)
- 3. Penentuan tingkat signifikan: $\alpha = 0.05$
- 4. Penentuan uji statistik dan daerah kritis:
 - ullet Standar deviasi populasi (σ) dari kedua sampel diketahui berbeda
 - Uji hipotesis adalah two-tailed test
 - Oleh karena itu, rumus pengujian yang digunakan adalah sebagai berikut

$$t = rac{(ar{x_1} - ar{x_2}) - d_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

$$v = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

- 5. Perhitungan nilai uji statistik t ada pada kode di bawah ini.
- 6. Pengambilan keputusan:
 - ullet Tolak H_0 jika $t<-t_{lpha/2}$ atau $t>t_{lpha/2}$
 - ullet \mathbf{H}_0 tidak ditolak jika $-t_{lpha/2} \leq t \leq t_{lpha/2}$

```
In [ ]: # Sample setup
         volatile_acidity = df['volatile acidity']
         sample_1_volatile_acidity = volatile_acidity[:25]
         sulphates = df['sulphates']
         sample_2_sulphates = sulphates[:25]
         # Test statistic calculation
         diff = 0
         significance = 0.05
         t value, ttest pvalue, dof = ws.ttest ind(sample 1 volatile acidity, sample 2 sulphates, value=diff)
         t_alpha_over_2 = st.t.ppf(1 - significance/2, dof)
         # Drawina a conclusion
         print(f"Critical region: t < {-t_alpha_over_2} or t > {t_alpha_over_2}")
         print(f"Degree of Freedom: v = {dof}")
print(f"Test statistic: t = {t_value}")
         print(f"p-value = {ttest_pvalue}")
         print()
         if (t_value < -t_alpha_over_2 or t_value > t_alpha_over_2):
             print("Nilai t berada dalam critical region")
verdict = "H0 ditolak, rata-rata sampel 1 tidak sama dengan rata-rata sampel 2"
             print("Nilai t berada di luar critical region")
verdict = "H0 tidak ditolak, rata-rata sampel 1 sama dengan rata-rata sampel 2"
         if (ttest_pvalue < significance):</pre>
             print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tolak H0")
             print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tidak tolak H0")
         print("\nKesimpulan: " + verdict)
       Critical region: t < -2.0106347546964454 or t > 2.0106347546964454
       Degree of Freedom: v = 48.0
       Test statistic: t = -2.6374821676748703
       p-value = 0.011223058174680032
       Nilai t berada dalam critical region
       Nilai p lebih kecil dari tingkat signifikansi yang diinginkan
       Keputusan dari uji ini adalah tolak H0
       Kesimpulan: H0 ditolak, rata-rata sampel 1 tidak sama dengan rata-rata sampel 2
```

Q4: Bagian awal kolom residual sugar memiliki variansi yang sama dengan bagian akhirnya?

Sampel pengujian:

- sampel 1: bagian awal dari kolom 'residual sugar'
- sampel_2: bagian akhir dari kolom 'residual sugar

Langkah-langkah

- 1. H_0 : $\sigma_1^2 = \sigma_2^2$ (variansi kedua sampel sama)
- 2. H_1 : $\sigma_1^2 \neq \sigma_2^2$ (variansi kedua sampel berbeda)
- 3. Penentuan tingkat signifikan: lpha=0.05
- 4. Penentuan uji statistik dan daerah kritis:
 - Uji hipotesis adalah two-tailed test
 - Oleh karena itu, rumus pengujian yang digunakan adalah sebagai berikut

$$f=\frac{s_1^2}{s_2^2}$$

- ullet Daerah kritis adalah $f < f_{1-lpha/2}(v_1,v_2)$ atau $f > f_{lpha/2}(v_1,v_2)$
- 5. Perhitungan nilai uji statistik f ada pada kode di bawah ini.
- 6. Pengambilan keputusan:
 - ullet Tolak H_0 jika $f < f_{1-lpha/2}(v_1,v_2)$ atau $f > f_{lpha/2}(v_1,v_2)$
 - ullet H_0 tidak ditolak jika $f_{1-lpha/2}(v_1,v_2) \leq f \leq f_{lpha/2}(v_1,v_2)$

```
In [ ]: # Sample setup
        residual_sugar = df['chlorides']
         residual_sugar_sample_1 = residual_sugar[:len(residual_sugar)//2]
         residual_sugar_sample_2 = residual_sugar[len(residual_sugar)//2:]
         # Hypothesis testing setup
        sample_1_variance = residual_sugar_sample_1.var(ddof=1)
        sample 2_variance = residual_sugar_sample 2.var(ddof=1)
print(f"Sample_1 variance: s1^2 = {sample_1_variance}")
        print(f"Sample_2 variance: s2^2 = {sample_2_variance}")
        print()
         # Test statistic calculation
        diff = 0
         significance = 0.05
         f_value = sample_1_variance / sample_2_variance
         # f-distribution test critical points, note: ppf accepts left-side percentage
          f\_right\_tail = st.f.ppf(1-(significance/2), len(residual\_sugar\_sample\_1)-1, len(residual\_sugar\_sample\_2)-1) 
        f\_test\_pvalue = st.f.cdf(f\_value, len(residual\_sugar\_sample\_1)-1, len(residual\_sugar\_sample\_2)-1)
         # Drawing a conclusion
        print(f"Critical region: f < {f_left_tail} or f > {f_right_tail}")
print(f"Test statistic: f = {f_value}")
         print(f"p-value = {f_test_pvalue}")
         print()
        if (f_value < f_left_tail or f_value > f_right_tail):
    print("Nilai f berada dalam critical region")
             verdict = "H0 ditolak, variansi kedua sampel berbeda"
         else:
             print("Nilai f berada di luar critical region")
             verdict = "H0 tidak ditolak, variansi kedua sampel sama"
         if (f_test_pvalue < significance):</pre>
             print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tolak H0")
             print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
print("Keputusan dari uji ini adalah tidak tolak H0")
        print("\nKesimpulan: " + verdict)
       Sample_1 variance: s1^2 = 0.00040667352898471836
       Sample_2 variance: s2^2 = 0.00040293091542206646
       Critical region: f < 0.8388857772763105 or f > 1.1920574017201653
       Test statistic: f = 1.0092884745731947
       p-value = 0.5411032946184126
       Nilai f berada di luar critical region
       Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan
       Keputusan dari uji ini adalah tidak tolak H0
```

Q5: Proporsi nilai setengah bagian awal alcohol yang lebih dari 7, adalah lebih besar daripada, proporsi nilai yang sama di setengah bagian akhir alcohol?

Sampel pengujian:

• sampel_1: bagian awal dari kolom 'alcohol' yang bernilai lebih dari 7

Kesimpulan: H0 tidak ditolak, variansi kedua sampel sama

sampel_2: bagian akhir dari kolom 'alcohol' yang bernilai lebih dari 7

Langkah-langkah:

- 1. ${
 m H}_0$: $p_1-p_2=0$ (proporsi kedua sampel sama)
- 2. ${
 m H_1}$: $p_1-p_2>0$ (proporsi sampel pertama lebih besar dari proporsi sampel kedua)
- 3. Penentuan tingkat signifikan: $\alpha=0.05\,$
- 4. Penentuan uji statistik dan daerah kritis:
 - Uji hipotesis adalah one-tailed test
 - Oleh karena itu, rumus pengujian yang digunakan adalah sebagai berikut

Kesimpulan: H0 tidak ditolak, proporsi sampel 1 sama dengan proporsi sampel 2

$$z = rac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}\hat{q}\left(1/n_1 + 1/n_2
ight)}}$$
 $\hat{p} = rac{x_1 + x_2}{n_1 + n_2}$

- Daerah kritis adalah $z>z_{lpha}$
- 5. Perhitungan nilai uji statistik z ada pada kode di bawah ini.
- 6. Pengambilan keputusan:
 - Tolak H_0 jika $z>z_{lpha}$
 - ullet H_0 tidak ditolak jika $z \leq z_lpha$

```
In [ ]: # Sample setup
alcohol = df['alcohol']
          alcohol_sample_1 = alcohol[:len(alcohol)//2]
alcohol_sample_2 = alcohol[len(alcohol)//2:]
           # Filter sample to greater than 7
          alcohol_sample_1.gt7 = alcohol_sample_1[alcohol_sample_1 > 7]
alcohol_sample_2.gt7 = alcohol_sample_2[alcohol_sample_2 > 7]
           # Hypothesis testing setup
          x1_x2 = [len(alcohol_sample_1_gt7), len(alcohol_sample_2_gt7)]
n1_n2 = [len(alcohol_sample_1), len(alcohol_sample_2)]
           print(f"x1, x2 = \{x1\_x2\}")
          print(f"n1, n2 = {n1_n2}")
           # Test statistic calculation
           significance = 0.05
          z_value_5, proportion_ztest_pvalue = proportions_ztest(x1_x2, n1_n2, value=diff, alternative="larger")
           z_alpha = st.norm.ppf(1 - significance)
           # Drawing a conclusion
           print(f"Critical region: z > {z_alpha}")
           print(f"Test statistic: z = {z_value_5}")
           print(f"p-value = {proportion_ztest_pvalue}")
           print()
           if (z_value_5 > z_alpha):
                print("Wilai z berada dalam critical region")
verdict = "H0 ditolak, proporsi sampel 1 lebih besar dari proporsi sampel 2"
           else:
                print("Nilai z berada di luar critical region")
verdict = "H0 tidak ditolak, proporsi sampel 1 sama dengan proporsi sampel 2"
           if (proportion_ztest_pvalue < significance):
    print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
    print("Keputusan dari uji ini adalah tolak H0")</pre>
                print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
                print("Keputusan dari uji ini adalah tidak tolak H0")
          print("\nKesimpulan: " + verdict)
        x1, x2 = [495, 495]
        n1, n2 = [500, 500]
        Critical region: z > 1.6448536269514722
        Test statistic: z = 0.0
        p-value = 0.5
        Nilai z berada di luar critical region
Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan
        Keputusan dari uji ini adalah tidak tolak H0
```