实验五 方差分析

动科 223 12122127 程文博

一、实验目的

了解方差分析的基本概念和分析原理:

掌握利用 Excel 电子表格和 SPSS 软件进行方差分析的数据输入格式和基本操作方法:

学会解释和分析统计结果。

二、实验原理

1、单因素方差分析

当需要对 k(k≥3)个总体平均数进行比较时,将产生 $\frac{1}{2}k(k-1)$ 个差数,如果要对这些差

数逐一进行检验,会随着 k 值的增加而大大增加犯 I 型错误的概率,导致试验误差增大、估计精确降低。因此,不能直接应用 t 检验或 u 检验进行两两平均数之间的假设检验。统计学家为此提出了检验 k≥3 系统中是否存在显著性影响因素的方法,其实质就是对观测值变异原因的量化分析,并称其为方差分析(ANOVA)。

2.两因素方差分析

当被研究性状同时受到两个因素的影响,需要同时对两个因素进行分析时,可进行两因素方差分析。各影响因素的相对独立作用称为该因素的主效应(main effect)。如果某一因素在另一因素的不同水平上所产生的效应不同,则两因素间存在交互作用,简称互作(interaction)。因素间互作显著与否关系到主效应的利用价值,若互作不显著,则各因素的效应可以累加,各因素的最优水平组合起来,即为最优的处理组合;若互作显著,则各因素的效应就不能直接累加,最优处理的选定应根据各处理组合的直接表现选定。

第一题(单因素方差分析)

题目:为研究饲料对猪肉品质的影响,用研发的 4 种新配方饲料进行饲养,每种饲料喂各饲喂 16 头育肥猪。试验结束后进行屠宰,并测定肌肉剪切力(N),结果见下表。试分析 4 种饲料对猪肌肉嫩度的影响有无显著差异。

A	В	С	D
40.3	85. 4	63.7	48. 7
41.0	84.0	54.7	48. 6
42.5	78. 9	66.5	56. 4
40.2	89. 9	54. 3	51. 3
43.9	71.8	53.8	50.9
38. 2	73. 9	51.5	45. 7
40.5	75. 0	47.4	51. 4
40.5	84. 7	55.6	44. 1
49.8	63. 1	56. 5	46. 2

表 1-1 饲喂结果

49.8	64.0	66. 2	47.8	
47.5	63.3	67. 5	46.4	
47.3	57. 3	64.0	48.6	
47. 2	53. 2	61.3	47.6	
47.0	73.8	68.6	46.8	
43.8	74.5	55. 9	48.8	
47.6	55.0	53. 5	47.4	

操作步骤:

打开 SPSS 软件,在"变量视图"中定义变量,在"名称"列中分别输入"饲料水平"和"肌肉剪切力",将小数点位数分到调为 0 和 1,其他参数均为默认;将变量"饲料水平"值标签设置如图 1-2,在 Excel 中输入表 1-1 的数据,数据输入格式如图 1-3,在 SPSS 中打开数据。

图 1-1 单因素方差分析 SPSS 数据输入格式

	A	В
1	饲料水平	肌肉剪切力
2	1	40.3
3	1	41.0
4	1	42.5
5	1	40. 2
6	1	43.9
7	1	38. 2
8	1	40.5
9	1	40.5
10	1	49.8
11	1	49.8
12	1	47.5
13	1	47.3
14	1	47. 2
15	1	47.0
16	1	43.8
17	1	47.6
18	2	85. 4
19	2	84. 0
20	2	78. 9
21	2	89. 9
22	2	71.8
23	2	73. 9
24	2 2 2 2 2 2 2 2	75. 0
25	2	84. 7

图 1-2 单因素方差分析 Excel 数据输入格式

【分析(A)】→【比较平均值】→【单因素 ANOVA 检验】,将左侧变量列表中"肌肉剪切力"选入"因变量列表(E)"框中,将"饲料水平"选入"因子"栏中,点击"选项",打开"选项"子对话框,在统计来那个中选择"描述"和"方差同质性检验",单击"继续",返回"单因素 ANOVA 检验"主对话框,打开"事后比较"子对话框。选择如图 1-4 的选项,点击确定,输出结果。

图 1-3 SPSS 单因素 ANOVA 检验事后多重比较对话框

图表和结论:

表 1-2 肌肉剪切力描述性统计量表

					平均值的 95%	置信区间		
	个案数	平均值	标准 偏差	标准 错误	下限	上限	最小值	最大值
饲料水平 A	16	44.194	3.8261	.9565	42.155	46.233	38.2	49.8
饲料水平 B'	16	71.738	11.4057	2.8514	65.660	77.815	53.2	89.9
饲料水平 C	16	58.813	6.5341	1.6335	55.331	62.294	47.4	68.6
饲料水平 D	16	48.544	2.9079	.7270	46.994	50.093	44.1	56.4
总计	64	55.822	12.6899	1.5862	52.652	58.992	38.2	89.9

表 1-3 方差齐性检验表

		莱文统计	自由度 1	自由度 2	显著性
肌肉剪切力	基于平均值	12.696	3	60	.000
	基于中位数	8.280	3	60	.000
	基于中位数并具有调整后自	8.280	3	30.374	.000
	由度				
	基于剪除后平均值	12.682	3	60	.000

表 1-4 单因素方差分析表

	平方和	自由度	均方	F	显著性
组间	7206.966	3	2402.322	49.057	.000
组内	2938.184	60	48.970		
总计	10145.149	63			

表 1-5 LSD 法事后多重统计量表

因变量:	肌肉剪切力						
					_	95% 置信	喜区间
	(I) 饲料水平	(J) 饲料水平	平均值差值 (I-J)	标准 错误	显著性	下限	上限
LSD	饲料水平A	饲料水平 B'	-27.5438 [*]	2.4741	.000	-32.493	-22.595
		饲料水平C	-14.6187*	2.4741	.000	-19.568	-9.670
		饲料水平 D	-4.3500	2.4741	.084	-9.299	.599
	饲料水平 B'	饲料水平 A	27.5438 [*]	2.4741	.000	22.595	32.493
		饲料水平C	12.9250*	2.4741	.000	7.976	17.874
		饲料水平 D	23.1938 [*]	2.4741	.000	18.245	28.143
	饲料水平C	饲料水平 A	14.6187*	2.4741	.000	9.670	19.568
		饲料水平 B'	-12.9250*	2.4741	.000	-17.874	-7.976
		饲料水平 D	10.2688*	2.4741	.000	5.320	15.218
	饲料水平 D	饲料水平 A	4.3500	2.4741	.084	599	9.299
		饲料水平 B'	-23.1938*	2.4741	.000	-28.143	-18.245
		饲料水平C	-10.2688 [*]	2.4741	.000	-15.218	-5.320
*. 平均(直差值的显著性水平	为 0.05。					

表 1-6 邓肯法事后多重比较表

	77	1 14 12 4 7	<u> </u>		
		_	Alph	a 的子集 = 0	0.05
	饲料水平	个案数	1	2	3
邓肯 a	饲料水平A	16	44.194		
	饲料水平 D	16	48.544		
	饲料水平C	16		58.813	
	饲料水平 B'	16			71.738
	显著性		.084	1.000	1.000

将显示齐性子集中各个组的平均值。

a. 使用调和平均值样本大小 = 16.000。

由表 1-3 得: P=0.000<0.01,说明各处理组间存在极显著差异(方差齐性检验),由表 1-4 得: P=0.000<0.01,说明各饲料水平间肌肉剪切力存在极显著差异(统计结果)。

由表 1-5 得: 只有饲料水平 A 与 D 之间不存在显著差异,其余两两之间均存在显著差异。表 1-6 为邓肯法,结果与 LSD 法一致

图 1-4 饲料水平对猪肌肉剪切力的影响

综上所述: 肌肉剪切力越小,肉质越嫩,只有饲料水平 A 与 D 之间不存在显著差异,其余两两之间均存在显著差异。饲料水平 A 和饲料水平 D 能喂养出肉质最嫩的猪,其次是饲料水平 C,最后是饲料水平 B。

第二题(组内无重复观测值的两因素方差分析)

题目:为了研究某饲料添加剂对增重的影响,现采用该添加剂4种不同浓度,测定3个品种牛的增重,每个品种随机抽取初始体重相近的4头牛,随机分配到4

种添加剂浓度的饲料组,其余条件均相同,经 90 天育肥后测定活重(kg),数据如下表所示。试分析添加剂浓度及品种对增重是否存在影响。

10 1	N. 24. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	TITIN/X JE	H (1) 1)	1 = 30,1/1
品种		饲	料	
	A1	A2	А3	A4
B1	505	545	590	530
B2	490	515	535	505
ВЗ	445	515	510	495

表 2-1 饲料添加剂浓度与品种对猪增重数据

操作步骤:

在 Excel 中输入格式如图 2-1 的数据,在 SPSS 中打开数据,【分析】→【一般线性模型】→【单变量】。在"单变量"主对话框中,将"增重"变量选入"因变量(D)"栏中,将"品种""饲料添加剂浓度"变量选入"固定因子(F)"栏中,见图 2-2;

	А	В	С
1	品种	饲料添加剂增	曾重
2	B1	1	505
3	B1	2	545
4	B1	3	590
5	B1	4	530
6	B2	1	490
7	B2	2	515
8	B2	3	535
9	B2	4	505
10	B3	1	445
11	B3	2	515
12	B3	3	510
3	B3	4	495
4			
5			

图 2-1 Excel 数据输入格式

图 2-2 SPSS 无重复观测值两因素资料方差分析单变量主对话框

点击【模型(M)】在"指定模型"框中选择"设定",将"品种"和"饲料添加剂浓度"导入模型中,点击"继续";单击【事后比较】,将"品种"和"饲料添加剂浓度"从"因子(F)"列表中导入"下列各项的事后检验(P)"栏中,在"假定等方差"下面选项中选择"LSD"与"邓肯(D)",见图 2-3;

	品	→ 饲料添加剂浓度	❷ 增重	4 单变量: 实测平均值的事后多重比较
1	B1	1	505	因子(E): 下列各项的事后检验(E):
2	B1	2	545	ロチで): トツ音が明神/1位級で): 品种 品种
3	B1	3	590	同科添加剂浓度
	_			FOI INDUSTRIES
4	B1	4	530	
5	B2	1	490	
6	B2	2	515	All Typichan, Politer sphere shapes
7	B2	3	535	假定等方差
8	B2	4	505	☑ LSD S-N-K 沃勒-邓肯(W)
9	B3	1	445	■ 邦弗伦尼(B) ■ 图基(I) 1 类川类误差率: 100
10	B3	2	515	■ 斯达克(!) ■ 图基 s-b(K) ■ 邓尼特(E)
11	B3	3	510	□ 雪夷(C) ☑ 邓肯(D) 控制类别(Y): 最后一个 ▼
12	B3	4	495	■ R-E-G-W-F 電
13				R-E-G-W-Q
14				
15	i			不假定等方差 一
16				■ 塔姆黑尼 T2(M) ■ 邓尼特 T3 ■ 盖姆斯-豪厄尔(A) ■ 邓尼特 C(U)
17				
18				继续(C) 取消 帮助

图 2-3 SPSS"单变量:实测平均值的事后多重比较"主对话框

点"继续"返回"单变量"主对话框;单击【EM 平均值】按钮,打开"单变量:估计边际平均值"对话框,在"显示下列各项的平均值(M)"栏中导入"品种"和"饲料添加剂浓度",勾选"比较主效应","置信区间调整"选 LSD。见图 2-4,点击"继续"按钮返回主对话框,单击【选项】按钮。打开"单变量选项"对话框。选择"描述统计""齐性检验"和"效应值估算"。见图 2-5,点击"继续"返回"单变量"主对话框,单击"确定"。

图 2-4 SPSS"单变量:估算边际平均值"对话框

显示	
☑ 描述统计(D)	▼ 齐性检验(出)
▼ 效应量估算(E)	□ 分布-水平图(P)
三 实测幂(B)	■ 残差图(R)
■ 参数估算值(I)	■ 失拟(L)
■ 对比系数矩阵(Q)	■ 一般可估函数(G)
异方差性检验	7.00
■ 修改布劳殊-帕甘检验(M)	■ F 检验
模型	模型
■ 布劳殊-帕甘检验(A)	■ 怀特检验(W
模型	
□ 具有健壮标准误差的参数值	古计(∐)
	言区间为 95.0%

图 2-5 SPSS"单变量:选项"对话框

图表和结论:

表 2-1 误差方差的莱文等同性检验。

F	自由度	1	自由度	2	显著性	
		11		0		

检验"各个组中的因变量误差方差相等"这一原假设。a. 设计:截距 + 品种 + 饲料添加剂浓度

表 2-2 主体间效应表

源	Ⅲ 类平方和	自由度	均方	F	显著性	偏 Eta 平方
修正模型	12087.500°	5	2417.500	11.963	.004	.909
截距	3182700.000	1	3182700.000	15749.443	.000	1.000
品种	5337.500	2	2668.750	13.206	.006	.815
饲料添加剂浓度	6750.000	3	2250.000	11.134	.007	.848
误差	1212.500	6	202.083			
总计	3196000.000	12				
修正后总计	13300.000	11				

a. R 方 = .909 (调整后 R 方 = .833)

2-3 s 品种间成对比较表(LSD)

					差值的 95%	置信区间 b
(I) 品种	(J) 品种	平均值差值 (I-J)	标准误差	显著性。	下限	上限
B1	B2	31.250*	10.052	.021	6.654	55.846
	В3	51.250 [*]	10.052	.002	26.654	75.846
B2	B1	-31.250*	10.052	.021	-55.846	-6.654
	В3	20.000	10.052	.094	-4.596	44.596
В3	B1	-51.250 [*]	10.052	.002	-75.846	-26.654
	B2	-20.000	10.052	.094	-44.596	4.596

基于估算边际平均值

- *. 平均值差值的显著性水平为 .05。
- b. 多重比较调节: 最低显著差异法(相当于不进行调整)。

表 2-4 饲料间成对比较表(LSD)

				_	差值的 95%	置信区间 b
(I) 饲料添加剂浓度	(J) 饲料添加剂浓度	平均值差值 (I-J)	标准误差	显著性 b	下限	上限
1	2	-45.000*	11.607	.008	-73.401	-16.599
	3	-65.000*	11.607	.001	-93.401	-36.599
	4	-30.000*	11.607	.042	-58.401	-1.599
2	1	45.000 [*]	11.607	.008	16.599	73.401

	3	-20.000	11.607	.136	-48.401	8.401
	4	15.000	11.607	.244	-13.401	43.401
3	1	65.000 [*]	11.607	.001	36.599	93.401
	2	20.000	11.607	.136	-8.401	48.401
	4	35.000*	11.607	.024	6.599	63.401
4	1	30.000*	11.607	.042	1.599	58.401
	2	-15.000	11.607	.244	-43.401	13.401
	3	-35.000*	11.607	.024	-63.401	-6.599

基于估算边际平均值

- *. 平均值差值的显著性水平为 .05。
- b. 多重比较调节: 最低显著差异法(相当于不进行调整)。

表 2-5 不同品种间邓肯法事后多重比较结果

	_	_		子集	
	饲料添加剂浓度	个案数	1	2	3
邓肯 a,b	1	3	480.00		
	4	3		510.00	
	2	3		525.00	525.00
	3	3			545.00
	显著性		1.000	.244	.136

将显示齐性子集中各个组的平均值。

基于实测平均值。

误差项是均方(误差)=202.083。

- a. 使用调和平均值样本大小 = 3.000。
- b. Alpha = .05.

表 2-6 不同饲料添加剂浓度间邓肯法事后多重比较结果

		子集			
品种	个案数	1	2		
В3	4	491.25			
B2	4	511.25			
B1	4		542.50		
显著性		.094	1.000		

由表 2-2 得: 品种因素和饲料添加剂浓度因素方差分析的概率值分别为 0.006 和 0.007, 小于显著水平 0.01, 差异极显著,表明品种和饲料添加剂浓度对仔猪增重的都存在极显著影响。

由表 2-3 得: 只考虑品种因素时,只有品种 B 和品种 C 之间不存在显著差异,其余组之间均存在差异

由表 2-4 得: 只考虑饲料添加剂浓度时,只有饲料添加剂浓度 2 与 3, 2 与 4 两组不存在显著差异,其余两两之间均存在显著差异。表 2-5 和表 2-6 邓肯法事后

多重比较结果与 LSD 法结果一致,子集中位于同一列中的水平表示差异不显著,不同列的水平间差异显著

图 2-6 饲料水平和品种对增重量的影响

综上所述:不同品种间,不同饲料添加剂浓度水平间均具有显著差异,品种B1 的增重速度最快,饲料添加剂浓度 A3 的猪增重速度最快。

第三题(交叉分组等重复资料的方差分析)

题目:为了比较两种基因治疗方法对肿瘤治疗的效果,选取 40 只小鼠,随机分成 4 组,采用 A 和 B 两种方法进行交叉治疗,14 天后测定肿瘤重量(g),结果下表。试进行方差分析。

	衣 3	L 小帆胛雅	里里		
B 处理	A 处理				
	F	FI.	A 处理	用	
	3.00	2.79	5. 40	5.01	
用	2.86	2.73	4. 70	3.99	
Д	3. 12	1.98	4.01	4.56	
	2.98	3.03	4. 87	4.19	

表 3-1 小鼠肿瘤重量

	3. 11	2.00	4. 19	4.80
	4. 45	3.40	7.94	6.88
	3. 20	3. 58	7.88	8.02
不用	3.90	3. 11	8.60	6.90
	4. 30	5.02	6.45	6.54
	4.00	4.04	7. 14	7.31

操作步骤

在 Excel 中输入格式如图 3-1 的数据,在 SPSS 中打开数据,【分析】→【一般线性模型】→【单变量】,在"单变量"主对话框中,将"肿瘤质量"变量选入"因变量(D)"栏中,将"A 处理"和"B 处理"变量选入"固定因子(F)"栏中,见图 3-2;

	А	В	C
1	A处理	B处理	肿瘤质量
2	用	用	3
3	用	用	2.86
4	用	用	3.12
5	用	用	2.98
6	用	用	3.11
7	用	用	2.79
8	用	用	2.73
9	用	用	1.98
10	用	用	3.03
11	用	用	2
12	用	不用	4.45
13	用	不用	3.2
14	用	不用	3.9
15	用	不用	4.3
16	用	不用	4
17	用	不用	3.4

图 3-1 excel 数据输入格式

图 3-2 SPSS 交叉分组等重复资料方差分析单变量主对话框

点击【模型(M)】,在"指定模型"框中选择"全因子",见图 3-3,点击"继续";单击【事后比较】,将"A处理"和"B处理"从"因子(F)"列表中导入"下列各项的事后检验(P)"栏中,在"假定等方差"下面选项中选择"LSD"和"邓肯",见图 3-4,点击"继续"返回"单变量"主对话框;

图 3-3 SPSS 交叉分组等重复资料方差分析"单变量:模型"对话框

图 3-4 SPSS 交叉分组等重复资料方差分析事后比较对话框

单击"EM 平均值"按钮,在"显示下列各项的平均值"栏中导入"A 处理"和"B 处理",勾选"比较主效应","置信区间调整"选"LSD"。见图 3-5,点击"继续"按钮返回主对话框,单击"选项"按钮。打开"单变量:选项"对话框。选择"描述统计""齐性检验"和"效应值估算"。见图 3-6,点击"继续"返回"单变量"主对话框,单击"确定"。

图 3-5 SPSS 交叉分组等重复资料方差分析"单变量:估算边际平均值"对话框

图 3-6 SPSS 交叉分组等重复资料方差分析"单变量:选项"对话框

图表和结论:

表 3-2 描述性统计量表

A 处理	B 处理	平均值	标准偏差	 个案数
A又生	D.处理	一一一	小山正洲左	一一大妖
不用	不用	7.3660	.71282	10
	用	4.5720	.46918	10
	总计	5.9690	1.54896	20
用	不用	3.9000	.59749	10
	用	2.7600	.42541	10
	总计	3.3300	.77255	20
总计	不用	5.6330	1.88975	20
	用	3.6660	1.02666	20
	总计	4.6495	1.80149	40

表 3-3 主体间效应比较表

源	Ⅲ 类平方和	自由度	均方	F	显著性	偏 Eta 平方
修正模型	115.173°	3	38.391	121.278	.000	.910

截距	864.714	1	864.714	2731.634	.000	.987
B处理	38.691	1	38.691	122.225	.000	.772
A 处理	69.643	1	69.643	220.003	.000	.859
B 处理 * A 处理	6.839	1	6.839	21.605	.000	.375
误差	11.396	36	.317			
总计	991.283	40				
修正后总计	126.569	39				

a. R 方 = .910 (调整后 R 方 = .902)

从表 3-3 可以看出: A 处理和 B 处理因素方差分析的概率值均为 0.000, 小于显著水平 0.01, 差异极显著,说明 A 处理和 B 处理对小鼠肿瘤质量都有极显著影响; A 处理*B 处理水平对应的概率值为 0.000, 小于显著水平 0.01, 差异极显著,表明两因素的互作效应对肿瘤质量有极显著影响。

由于 A 处理和 B 处理均不足三个组,因此对 A 处理和 B 处理执行事后检验。结果与表 3-2 结果一致。

图 3-7 A 处理和 B 处理因素对肿瘤质量的影响

综上所述, A 因素和 B 因素均能极显著地降低肿瘤的质量, 且 A 因素和 B 因素间存在互作作用, 四种组合间, A 处理和 B 处理同时使用对降低肿瘤质量最有帮助。