Solution Manual

Collected Problem Solutions

Author Information

Amir Faridi

 $amir faridi 2002 @\,gmail.com$

Contents

1	Domain Theoretic Foundations of Functional Programming		2
	1	Introduction	3
	2	PCF and its Operational Semantics	4
	3	The Scott Model of PCF	5
	4	Computational Adequacy	6
	5	Milner's Context Lemma	7
	6	The Full Abstraction Problem	8
	7	Logical Relations	9
2	Тур	pe Theory and Formal Proof	10

Part 1

Domain Theoretic Foundations of Functional Programming

Introduction

PCF and its Operational Semantics

Problem 2.1: page 14

Show that the σ with $\Gamma \vdash M : \sigma$ is uniquely determined by Γ and M.

Solution

We prove this by induction on the structure.

- if $M \equiv x$ (variable), then it must be by the variable rule: $\Gamma', x : \sigma \Delta' \vdash x : \sigma$; thus σ must be unique by the definition of the context Γ . ($\Gamma \equiv x_1 : \sigma_1, ..., x_n : \sigma_n$, where x_i are pairwise distinct variables).
- if $M \equiv Z$ (zero), then it must be derived by the zero rule: $\Gamma \vdash Z : \mathbb{N}$; thus its type is unique.
- if $M \equiv (\lambda x : \sigma.M)$, then it must be derived by the abstraction rule: $\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash (\lambda x: \sigma.M): \sigma \to \tau}$. By IH, M and x have unique types τ and σ , respectively. Thus, the type of the abstraction is uniquely determined as $\sigma \to \tau$.
- if $M \equiv (M(N))$, then by the application rule, we would have $\frac{\Gamma \vdash M: \sigma \to \tau}{\Gamma \vdash M(N):\tau}$. By IH, M and N have unique types $\sigma \to \tau$ and σ , respectively. Thus, the type of the application M(N) is uniquely determined as τ .
- Same goes for the other cases (*succ*, *pred*, Y_{σ} , and ifz).

The Scott Model of PCF

Computational Adequacy

Milner's Context Lemma

The Full Abstraction Problem

Logical Relations

Part 2 Type Theory and Formal Proof