特異值分解

k 本の左特異ベクトルの正規直交系 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k$ を拡張して、 \mathbb{R}^m の正規 直交基底 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k,\boldsymbol{u}_{k+1},\ldots,\boldsymbol{u}_m$ が定義できる

同様に、k 本の右特異ベクトルの正規直交系 $oldsymbol{v}_1,\ldots,oldsymbol{v}_k$ を拡張して、 \mathbb{R}^n

ref: 線形代数セミナー p28~30

の正規直交基底 $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k,\boldsymbol{v}_{k+1},\ldots,\boldsymbol{v}_n$ が定義できる

 $m{u}_1,\ldots,m{u}_n$ と $m{v}_1,\ldots,m{v}_n$ はそれぞれ AA^{\top} と $A^{\top}A$ の固有ベクトルであり、これらに対応する共通の固有値を $\lambda_1,\ldots,\lambda_n$ とおく

 AA^{T} および $A^{\mathsf{T}}A$ は半正定値行列であるので、その固有値はすべて零か正の数である

また、 AA^{T} および $A^{\mathsf{T}}A$ は対称行列であり、対称行列の階数 r は非零の固有値の個数に等しい

n 個の固有値のうち、r 個ある正の固有値は特異値の条件を満たすので、

- $\lambda_1, \ldots, \lambda_r$ は特異値(正の固有値) $\sigma_1, \ldots, \sigma_r$
- $\lambda_{r+1}, \ldots, \lambda_n$ は零の固有値

とする

特異値がr個あることから、左特異ベクトルと特異値の組の個数、右特異ベクトルと特異値の組の個数は、どちらもrであることがいえる

$$k = r$$

以上の議論をまとめると、

$$AA^{ op}oldsymbol{u}_i = egin{cases} \sigma_ioldsymbol{u}_i & (i=1,\ldots,r) \ oldsymbol{0} & (i=r+1,\ldots,m) \end{cases}$$
 $A^{ op}Aoldsymbol{v}_i = egin{cases} \sigma_ioldsymbol{v} & (i=1,\ldots,r) \ oldsymbol{0} & (i=r+1,\ldots,n) \end{cases}$

ここで、 $i=1,\ldots,r$ の範囲に限っては、特異値と特異ベクトルの関係

より、

$$A^{\top} \boldsymbol{u}_i = \sigma_i \boldsymbol{v}_i$$

 $A \boldsymbol{v}_i = \sigma_i \boldsymbol{u}_i$

という形で書ける

i > r の場合についても同じ形で書くために、次の定理を示す

i.
$$AA^{\mathsf{T}}\boldsymbol{u} = \mathbf{0} \Longrightarrow A^{\mathsf{T}}\boldsymbol{u} = \mathbf{0}$$

ii.
$$A^{\top}A\boldsymbol{v}=\mathbf{0}\Longrightarrow A\boldsymbol{v}=\mathbf{0}$$

証明

(i) $AA^{\mathsf{T}}\boldsymbol{u}=\mathbf{0}$ について

 $AA^{\mathsf{T}}\boldsymbol{u} = \boldsymbol{0}$ の両辺で \boldsymbol{u} との内積をとって、

$$(\boldsymbol{u}, AA^{\mathsf{T}}\boldsymbol{u}) = 0$$

このとき、左辺は、

$$(\boldsymbol{u}, AA^{\top}\boldsymbol{u}) = (\boldsymbol{u}, A(A^{\top}\boldsymbol{u}))$$
 外側の A に $= (A^{\top}\boldsymbol{u}, A^{\top}\boldsymbol{u})$ 随伴公式を適用 $= \|A^{\top}\boldsymbol{u}\|^2$

と変形できるので、

$$\|A^{\mathsf{T}}\boldsymbol{u}\|^2 = 0$$

が成り立つ

ここで、内積の正値性

$$\|A^{\mathsf{T}}\boldsymbol{u}\|^2 = (A^{\mathsf{T}}\boldsymbol{u}, A^{\mathsf{T}}\boldsymbol{u}) \geq 0$$

において、等号が成立するのは、

$$A^{\mathsf{T}}\boldsymbol{u} = \mathbf{0}$$

の場合のみである

(ii) $A^{\top}A\boldsymbol{v}=\mathbf{0}$ について

 $A^{\mathsf{T}}A\boldsymbol{v}=\mathbf{0}$ の両辺で \boldsymbol{v} との内積をとって、

$$(\boldsymbol{v}, A^{\top} A \boldsymbol{v}) = 0$$

このとき、左辺は、

$$(\boldsymbol{v}, A^{\top} A \boldsymbol{v}) = (A \boldsymbol{v}, A \boldsymbol{v}) = \|A \boldsymbol{v}\|^2$$

と変形できるので、

$$||A\boldsymbol{v}||^2 = 0$$

が成り立つ

ここで、内積の正値性

$$||A\boldsymbol{v}||^2 = (A\boldsymbol{v}, A\boldsymbol{v}) \ge 0$$

において、等号が成立するのは、

$$A\mathbf{v} = \mathbf{0}$$

の場合のみである

この定理を用いると、

$$egin{aligned} egin{aligned} eta oldsymbol{v}_i &= egin{cases} \sigma_i oldsymbol{u}_i & (i=1,\ldots,r) \ oldsymbol{0} & (i=r+1,\ldots,m) \end{cases} \ egin{aligned} eta^ op oldsymbol{u}_i &= egin{cases} \sigma_i oldsymbol{v}_i & (i=1,\ldots,r) \ oldsymbol{0} & (i=r+1,\ldots,n) \end{aligned}$$

とまとめられる

これより、A は \mathbb{R}^n の正規直交基底 $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ をそれぞれ

$$\sigma_1 \boldsymbol{u}_1, \ldots, \sigma_r \boldsymbol{u}_r, \boldsymbol{0}, \ldots, \boldsymbol{0}$$

に写像するから、正規直交基底による表現行列の展開より、A は

$$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\top + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\top \quad (\sigma_1 > \dots > \sigma_r > 0)$$

と表すことができる

同様に、 A^{T} は \mathbb{R}^m の正規直交基底 $\{oldsymbol{u}_1,\ldots,oldsymbol{u}_m\}$ をそれぞれ

$$\sigma_1 \boldsymbol{v}_1, \ldots, \sigma_r \boldsymbol{v}_r, \boldsymbol{0}, \ldots, \boldsymbol{0}$$

に写像するから、 A^{T} は

$$A^{\top} = \sigma_1 \boldsymbol{v}_1 \boldsymbol{u}_1^{\top} + \dots + \sigma_r \boldsymbol{v}_r \boldsymbol{u}_r^{\top} \quad (\sigma_1 \ge \dots \ge \sigma_r > 0)$$

と表すことができる

このように、任意の行列は、その特異値と特異ベクトルによって表すことができ、これを特異値分解と呼ぶ