POS Tagging

from last time

Distribution

• Words that appear in similar contexts have similar representations (and similar meanings, by the distributional hypothesis).

Parts of speech

• Parts of speech are categories of words defined **distributionally** by the morphological and syntactic contexts a word appears in.

Morphological distribution

 POS often defined by distributional properties; verbs = the class of words that each combine with the same set of affixes

	-8	-ed	-ing
walk	walks	walked	walking
slice	slices	sliced	slicing
believe	believes	believed	believing

	-\$	-ed	-ing
walk	walks	walked	walking
sleep	sleeps	slept	sleeping
eat	eats	ate	eating
give	gives	gave	giving

Syntactic distribution

• Substitution test: if a word is replaced by another word, does the sentence remain grammatical?

Kim saw the	elephant	before we did
	dog	
	idea	
	*of	
	*goes	

Syntactic distribution

 These can often be too strict; some contexts admit substitutability for some pairs but not others.

both verbs but transitive vs. intransitive

Bender 2013

Nouns	People, places, things, actions-made-nouns ("I like swimming"). Inflected for singular/plural
Verbs	Actions, processes. Inflected for tense, aspect, number, person
Adjectives	Properties, qualities. Usually modify nouns
Adverbs	Qualify the manner of verbs ("She ran downhill extremely quickly yesteray")
Determiner	Mark the beginning of a noun phrase ("a dog")
Pronouns	Refer to a noun phrase (he, she, it)
Prepositions	Indicate spatial/temporal relationships (on the table)
Conjunctions	Conjoin two phrases, clauses, sentences (and, or)

Nouns	fax, affluenza, subtweet, bitcoin, cronut, emoji, listicle, mocktail, selfie, skort		
Verbs	text, chillax, manspreading, photobomb, unfollow, google		
Adjectives	crunk, amazeballs, post-truth, woke		
Adverbs	hella, wicked		
Determiner	OOV? Guess Noun		
Pronouns			
Prepositions	English has a new preposition, because internet [Garber 2013; Pullum 2014]		
Conjunctions			

POS tagging

- Words often have more than one PO
 - The back door (adjective)
 - On my back (noun)
 - Win the voters back (particle)
 - Promised to back the bill (verb)

(Just tags in evidence within the Penn Treebank — more are possible!)

- The POS tagging task: Determine the POS tag for all tokens in a sentence.
- Due to ambiguity (and unknown words), we cannot rely on a dictionary to look up the correct POS tags.

How Much Ambiguity is There?

- Most word types appear with only one POS tag....
 - Brown corpus with 87-tag set: 3.3% of word types are ambiguous,
 - Brown corpus with 45-tag set: 18.5% of word types are ambiguous
- ... but a large fraction of **word** *tokens* are ambiguous Original Brown corpus: 40% of tokens are ambiguous

Creating a POS Tagger

- To handle ambiguity and coverage, POS taggers rely on learned models.
- For a new language (or domain)
 - Step 0: Define a POS tag set
 - Step 1: Annotate a corpus with these tags
- For a well-studied language (and domain):
 - Step 1: Obtain a POS-tagged corpus
- For any language....:
 - Step 2: Choose a POS tagging model (e.g. an HMM)
 - Step 3: Train your model on your training corpus
 - Step 4: Evaluate your model on your test corpus

POS Tagging

Raw text

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .

Tagged text

Pierre_NNP Vinken_NNP ,_, 61_CD
years_NNS old_JJ ,_, will_MD join_VB
 the_DT board_NN as_IN a_DT
nonexecutive_JJ director_NN Nov._NNP
 29_CD ._.

Evaluation Metric: Test Accuracy

- How many words in the unseen test data can you tag correctly?
 - State of the art on Penn Treebank: around 97%
 - → How many sentences can you tag correctly?
- Compare your model against a baseline
 - Standard: assign to each word its most likely tag
 - (use training corpus to estimate P(t|w))
 - Baseline performance on Penn Treebank: around 93.7%
- ... and a (human) ceiling
 - How often do human annotators agree on the same tag?
 - Penn Treebank: around 97%

Qualitative evaluation

 Generate a confusion matrix (for development data): How often was a word with tag i mistagged as tag j:

See what errors are causing problems

Domain difference

Why is part of speech tagging useful?

POS indicative of syntax

POS indicative of MWE

at least one adjective/noun or noun phrase

and definitely one noun

$$((A | N) + | ((A | N)*(NP))(A | N)*)N$$

AN: linear function; lexical ambiguity; mobile phase

NN: regression coefficients; word sense; surface area

AAN: Gaussian random variable; lexical conceptual paradigm; aqueous mobile

phase

ANN: cumulative distribution function; lexical ambiguity resolution; accessible

surface area

NAN: mean squared error; domain independent set; silica based packing

NNN: class probability function; text analysis system; gradient elution chromatog-

raphy

NPN: degrees of freedom; [no example]; energy of adsorption

POS is indicative of pronunciation

• Content:

Noun: CONtent

Adjective: conTENT

Object

Noun: OBject

• Verb: obJECT

Defining a Tag Set

Tag sets have different granularities:

- Brown corpus (Francis and Kucera 1982): 87 tags
- Penn Treebank (Marcus et al. 1993): 45 tags
- Simplified version of Brown tag set (de facto standard for English now)

NN: common noun (singular or mass): water, book

NNS: common noun (plural): books

Verbs

tag	description	example
VB	base form	I want to like
VBD	past tense	I/we/he/she/you liked
VBG	present participle	He was liking it
VBN	past participle	I had liked it
VBP	present (non 3rd-sing)	I like it
VBZ	present (3rd-sing)	He likes it
MD	modal verbs	He can go

Nouns

non-proper

proper

tag	description	example
NN	non-proper, singular or mass	the company
NNS	non-proper, plural	the companies
NNP	proper, singular	Carolina
NNPS	proper, plural	Carolinas

JJ (Adjectives)

- General adjectives
 - happy person
 - new mail
- Ordinal numbers
 - fourth person

```
2002 other/jj
1925 new/jj
1563 last/jj
1174 many/jj
1142 such/jj
1058 first/jj
824 major/jj
715 federal/jj
698 next/jj
644 financial/jj
```

RB (Adverb)

- Most words that end in -ly
- Degree words (quite, too, very)
- Negative markers: not, n't, never

```
4410 n't/rb
2071 also/rb
1858 not/rb
1109 now/rb
1070 only/rb
1027 as/rb
961 even/rb
839 so/rb
810 about/rb
804 still/rb
```

IN (preposition, subordinating conjunction)

- All prepositions (except to) and subordinating conjunctions
 - He jumped on the table because he was excited

```
31111 of/in
22967 in/in
11425 for/in
7181 on/in
6684 that/in
6399 at/in
6229 by/in
5940 from/in
5874 with/in
5239 as/in
```

Sequence labeling

$$x = \{x_1, \dots, x_n\}$$
$$y = \{y_1, \dots, y_n\}$$

 For a set of inputs x with n sequential time steps, one corresponding label y_i for each x_i

Named entity recognition

tim cook is the ceo of apple

3 or 4-class:

- person
- location
- organization
- (misc)

• person

7-class:

location

organization

time

- money
- percent
- date

Majority class

• Pick the label each word is seen most often with in the training data

fruit	flies	like	а	banana
NN 12	VBZ 7	VB 74	FW 8	NN 3
	NNS 1	VBP 31	SYM 13	
		JJ 28	LS 2	
		IN 533	JJ 2	
			IN 1	
			DT 25820	
			NNP 2	

Naive Bayes

Treat each prediction as independent of the others

$$P(\mathbf{y} \mid x) = \frac{P(\mathbf{y})P(x \mid \mathbf{y})}{\sum_{y' \in \mathcal{Y}} P(y')P(x \mid y')}$$

$$P(VBZ \mid flies) = \frac{P(VBZ)P(flies \mid VBZ)}{\sum_{y' \in \mathcal{Y}} P(y')P(flies \mid y')}$$

Logistic regression

 Treat each prediction as independent of the others but condition on much more expressive set of features

$$P(y \mid x; \beta) = \frac{\exp(x^{\top} \beta_y)}{\sum_{y' \in \mathcal{Y} \exp(x^{\top} \beta_{y'})}}$$

$$P(VBZ \mid flies) = \frac{\exp(x^{\top}\beta_{VBZ})}{\sum_{y' \in \mathcal{Y} \exp(x^{\top}\beta_{y'})}}$$

Sequence

- Models that make independent predictions for elements in a sequence can reason over expressive representations of the input x (including correlations among inputs at different time steps x_i and x_j .
- But they don't capture another important source of information: correlations in the labels y.

Sequences

 Most common tag bigrams inPenn Treebank training

DT	NN	41909
NNP	NNP	37696
NN	IN	35458
IN	DT	35006
JJ	NN	29699
DT	JJ	19166
NN	NN	17484
NN	,	16352
IN	NNP	15940
NN		15548
JJ	NNS	15297
NNS	IN	15146
ТО	VB	13797
NNP	,	13683
IN	NN	11565

Sequences

Х	time	flies	like	an	arrow
У	NN	VBZ	IN	DT	NN

 $P(y = \text{NN VBZ IN DT NN} \mid x = \text{time flies like an arrow})$

Generative vs. Discriminative models

 Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$P(x, y) = P(y) P(x \mid y)$$

 Discriminative models specify the conditional distribution of the label y given the data x. These models focus on how to discriminate between the classes

$$P(y \mid x)$$

Generative

$$P(y \mid x) = \frac{P(x \mid y)P(y)}{\sum_{y' \in \mathcal{Y}} P(x \mid y)P(y)}$$

$$P(y \mid x) \propto P(x \mid y)P(y)$$

$$\max_{y} P(x \mid y) P(y)$$

How do we parameterize these probabilities when x and y are sequences?

Prior probability of label sequence

$$P(y) = P(y_1, \dots, y_n)$$

$$P(y_1, \dots, y_n) \approx \prod_{i=1}^{n+1} P(y_i \mid y_{i-1})$$

 We'll make a first-order Markov assumption and calculate the joint probability as the product the individual factors conditioned only on the previous tag.

- Remember: a Markov assumption is an approximation to this
- exact decomposition (the chain rule of probability)

$$P(y_1, \dots, y_n) = P(y_1)$$

$$\times P(y_2 \mid y_1)$$

$$\times P(y_3 \mid y_1, y_2)$$

$$\cdots$$

$$\times P(y_n \mid y_1, \dots, y_{n-1})$$

- Here again we'll make a strong assumption: the probability of
- the word we see at a given time step is only dependent on its
- Label

$$P(x \mid y) = P(x_1, \dots, x_n \mid y_1, \dots, y_n)$$

$$P(x_1,\ldots,x_n\mid y_1,\ldots,y_n)\approx \prod_{i=1}^N P(x_i\mid y_i)$$

NNP VBZ

1	V	Ν	۱	/	R	7
- 1	N	I١	١ ١	V I	ı)	/

is	1121
has	854
says	420
does	77
plans	50
expects	47
's	40
wants	31
owns	30
makes	29
hopes	24
remains	24
claims	19
seems	19
estimates	17

İS	2893
has	1004
does	128
says	109
remains	56
's	51
includes	44
continues	43
makes	40
seems	34
comes	33
reflects	31
calls	30
expects	29
goes	27

$$P(x_i \mid y_i, y_{i-1})$$

HMM

$$P(x_1, \dots, x_n, y_1, \dots, y_n) \approx \prod_{i=1}^{n+1} P(y_i \mid y_{i-1}) \prod_{i=1}^{n} P(x_i \mid y_i)$$

HMM

HMM

 $P(VB \mid NNP)$

 $P(was \mid VB)$

Parameter estimation

$$P(y_t \mid y_{t-1}) \qquad \frac{c(y_1, y_2)}{c(y_1)}$$

MLE for both is just counting (as in Naive Bayes)

$$P(x_t \mid y_t) \qquad \frac{c(x,y)}{c(y)}$$