4. Minimizacija Booleovih izraza (2)

Sadržaj predavanja

- Quine-McCluskeyeva metoda
- minimizacija višeizlazne funkcije
- Quine-McCluskey za višeizlazne funkcije

- tablična metoda prikladna za minimizaciju funkcija većeg broja varijabli:
 - može se svesti na manipuliranje indeksima standardnih članova
 - numerički postupak
 pogodan za programsku implementaciju
- W. V. Quine, 1952;
 poboljšanje: E. J. McCluskey, 1956

- potpuno specificirana funkcija u obliku sume standardnih produkata
- postupak u dvije faze:
 - prva faza
 - ~ nalaženje *primarnih implikanata* (→ potpune sume):
 najveća zaokruženja u K-tablicama
 - druga faza
 - ~ određivanje optimalnog (*minimalnog*) skupa primarnih implikanata (→ minimalne sume)

- prva faza:
 - svrstavanje minterma u klase prema broju jedinica
 - uspoređivanje elemenata susjednih klasa
 kombiniranje elemenata koji se mogu simplificirati (T9)
 - $A \cdot \varphi + A \cdot \varphi = \varphi$ (*)
 - dobiveni produkti
 klasa u novoj tablici
 - elementi koji nisu kombinirani
 ~ primarni implikanti
 - ponavljanje prethodnog koraka za elemente koji su izgubili istu varijablu
 - postupak se zaustavlja
 nema više kandidata za kombiniranje

- dodaci za numerički postupak:
 - klase su susjedne
 - elementi se razlikuju za 2^k, k = 0, 1, 2, ...
 - element u višoj klasi mora biti veći
 - eliminira se varijabla 2^k

Primjer:
$$z = f(A, B, C, D) = \sum (1,3,5,6,9,11,12,13,14,15)$$

• prva faza

	Α	В	С	D	1	1	\checkmark	1	1,3	(2)	\checkmark	1	1,3,9,11	(2,8)
0	8	4	2	1 0	2	3	✓		1,5	(4)	\checkmark		1,5,9,13	(4,8)
1	0	0	0 1	1		5	\checkmark		1,9	(8)	\checkmark		1,9,3,11	(8,2)
2 3 4	0	0 1	1	1		6	\checkmark	2	3,11	(8)	✓		1,9,5,13	(8,4)
5 6 7	0	1 1	0	1		9	\checkmark		5,13	(8)	\checkmark	2	9,11,13,15	(2,4)
7 8 9	0 1	1 0	1 0	1 0	!	12	\checkmark		6,14	(8)			12,14,13,15	(2,1)
10	1 1	0 0	0 1	1 0	3	11	✓		9,11	(2)	\checkmark		12,13,14,15	(1,2)
11 12	1 1	0 1	1 0	1 0		13	\checkmark		9,13	(4)	\checkmark		9,13,11,15	(4,2)
13 14	1	1	0 1	0		14	\checkmark		12,13	(1)	\checkmark			
15	1	1	1	1	4	15	✓		12,14	(2)	√			
								3	11,15	(4)	✓			
									13,15	(2)	\checkmark			
					 	! ! !			14.15	(1)	\checkmark			

• rezultat prve faze: z = f(A, B, C, D)= $\sum (1,3,5,6,9,11,12,13,14,15)$

primarni članovi

```
6,14 (8) \equiv BC\overline{D} = a CD_{00} OD_{01} OD_{02} OD_{03} OD_{04} OD_{04} OD_{05} OD_{05}
```

druga faza:

- formiranje tablice primarnih implikanata i označavanje prekrivanja minterma
- nalaženje bitnih primarnih implikanata, koji jedini prekrivaju pojedini minterm
 označiti minterme koje taj član pokriva
- bitni primarni implikanti ulaze u minimalnu sumu
- preostale minterme prekriti minimalnim podskupom preostalih primarnih implikanata
 - prednost:
 primarni implikanti s manjim brojem literala

• druga faza:

		1	3	5	6	9	11	12	13	14	15
$BC\overline{D}$	a				X					Х	
$\overline{B}D$	b	Χ	Χ			Χ	Χ				
$\overline{C}D$	C	Χ		X		X			X		
AD	d					X	X		Х		X
AB	е							X	X	X	X
		✓	√	✓	✓	✓	✓	✓	✓	√	\checkmark

$$z = a + b + c + e$$
$$= BC\overline{D} + \overline{B}D + \overline{C}D + AB$$

- druga faza:
 - nakon nalaženja bitnih primarnih članova
 ~ moguća pojava cikličke tablice:
 - Pyne-McCluskeyev pristup: preostale primarne implikante tretirati kao logičke varijable i izgraditi funkciju F
 - F = (suma pi koji prekrivaju m_{i1})¹ (suma pi koji prekrivaju m_{i2})¹ ...
 = ... = suma produkata
 - uzeti produkt s minimalnim brojem primarnih implikanata

- minimizacija *nepotpuno specificiranih funkcija* u obliku sume produkata: $f = \sum_{i=1}^{n} m_i + \sum_{j=1}^{n} d_j$ ~ modifikacija osnovnog postupka uvođenjem "vektora redundancija"
- postupak:
 - početna tablica
 ~ mintermi i nespecificirane kombinacije
 - svaki produktni član dobiva oznaku redundantnosti:
 - d = 0 : produkt *nije* zanemariv
 - ~ simplifikacija je uključila barem jedan m_i
 - d = 1: produkt je zanemariv (\rightarrow redundancija!)
 - ~ nastao kombiniranjem samo d_i

- prva faza:
 - kombiniranje produkata kao u osnovnom postupku, uz evidenciju redundantnosti
 - $d = d_{i1} \cdot d_{i2}$: produkt zanemariv samo ako je nastao simplifikacijom zanemarivih produkata
 - priprema druge faze
 - \sim izbor pi_i koji *nisu zanemarivi* (d = 0):
 - tablica za izbor minimalne sume
 - ~ upis samo pi_i koji *nisu zanemarivi*
 - stupci tablice
 - ~ m_i (X ne treba prekriti)
- druga faza postupka
 - ~ identična osnovnom postupku

Primjer: $f(A, B, C, D) = \sum m(5,9,12,15) + \sum d(2,7,8,10,13)$

	ABCD	d			ABCD	d	
2	0010	1	✓	2,10	-010	1	
8	1000	1	✓	8,9	100-	0	✓
5	0101	0	✓	8,10	10-0	1	
9	1001	0	✓	8,12	1-00	0	✓
10	1010	1	✓	5,7	01-1	0	✓
12	1100	0	✓	5,13	-101	0	✓
7	0111	1	✓	9,13	1-01	0	✓
13	1101	1	✓	12,13	110-	0	✓
15	1111	0	✓	7,15	-111	0	✓
				13,15	11-1	0	✓

8,9,12,131-0-08,12,9,131-0-05,7,13,15-1-105,13,7,15-1-10

• druga faza:

$$f = A\overline{C} + BD$$

Sadržaj predavanja

- Quine-McCluskeyeva metoda
- minimizacija višeizlazne funkcije
- Quine-McCluskey za višeizlazne funkcije

višeizlazna funkcija

~ skup Booleovih funkcija nad istim skupom varijabli:

definira "višeizlazni sklop" (engl. multiple-output circuit)

Primjer: pretvorba 3-bitovnog broja u (3-bitovni) Grayev kod

pretvornik koda
$$g_2 = \varphi_2(b_2, b_1, b_0)$$

$$g_1 = \varphi_1(b_2, b_1, b_0)$$

$$g_0 = \varphi_0(b_2, b_1, b_0)$$

	b2	b1	b0	g2	g1	g0
•	0	0	0	0	0	0
	0	0	1	0	0	1
	0	1	0	0	1	1
	0	1	1	0	1	0
	1	0	0	1	1	0
	1	0	1	1	1	1
	1	1	0	1	0	1
	1	1	1	1	0	0

- minimizacija višeizlazne funkcije
 ~ mogućnosti:
 - zasebna minimizacija komponentnih funkcija f_i
 - združena minimizacija svih komponentnih funkcija višeizlazne funkcije (f₁, ..., f_n)
 povoljnije rješenje?
- minimizirana višeizlazna funkcija:
 - višestruko korištenje pojedinih produktnih članova
 ušteda sklopovlja višeizlaznog sklopa
 - prilagodba (prethodnih) postupaka minimizacije
 ~ istovremena minimizacija komponentnih funkcija

Primjer:

$$f_0 = AC + AB = pi_1 + pi_2$$

$$= AC + AB\overline{C} = pi_1 + m_6$$

$$f_1 = \overline{AB} + B\overline{C} = pi_3 + pi_4$$
$$= \overline{AB} + AB\overline{C} = pi_3 + m_6$$

 višeizlazna funkcija {f₀, f₁} ima povoljnije rješenje (pi₁, pi₃, m₆) u odnosu na zasebnu minimizaciju f₀ i f₁ što daje (pi₁, pi₂, pi₃, pi₄)

- konceptualizacija postupka višeizlazne minimizacije:
 - višeizlazni primarni implikant pi_i nije nužno primarni implikant pojedinih funkcija:

$$pi_1, pi_2 \Rightarrow f_0$$

 $pi_3, pi_4 \Rightarrow f_1$
 $m_6 = pi_5 \Rightarrow f_0 \cdot f_1$

- združena minimizacija n funkcija f₁÷f_n:
 - odrediti pi_i ∀ f_i
 - odrediti pi_i ∀ kombinaciju f_i: produkti 2 i više f_i

Primjer:
$$f(A, B, C, D) = \{f_1, f_2, f_3\}$$

f_2		00	01	11	AB 10
CD	00	1	1		10
	01			1	
	11			1	
	10	1			

f_3					AB
		00	01	11	10
CD	00	1	1		
	01	1		1	
	11	1	1	1/	
	10				

Primjer: $f(A, B, C, D) = \{f_1, f_2, f_3\}$

f_3					AB
		00	01	11	10
CD	00	1	<u></u>		
	01	1		<u></u>	
	11	<u>~</u> /	$\overline{}$	1	
	10				

čitanje primarnih implikanata

Minimizacija višeizlazne funkcije

01

00

01

c¹¹

11

a

$$f_1 = c + d + f$$

$$f_2 = b + c + e$$

$$f_3 = b/d + e/h + g$$

- izbor minimalnog skupa višeizlaznih pi
 koji će prekrivati sve tri funkcije f₁, f₂, f₃:
 - povoljan izbor
 pi_i koji se javljaju u max broju f_i:
 max zajedničko korištenje produkata
 - početi od f₁·f₂·f₃
 - izabrani složeniji pi_i javljaju se u "nižim" K tablicama kao zalihosti X
- komentar rješenja primjera:
 - h (f₃) ne doprinosi prekrivanju
 - f₂ ne daje p_i
 - a je nepotreban, jer ga prekrivaju f, e, h
 - f₃ ima opcije (*b* ili *d*, te *e* ili *h*)

Sadržaj predavanja

- Quine-McCluskeyeva metoda
- minimizacija višeizlazne funkcije
- Quine-McCluskey za višeizlazne funkcije

- sustavna metoda nalaženja minimalne sume
 npr. modifikacija Quine-McCluskeyeve metode
 - prva faza
 - ~ nalaženje skupa svih *višeizlaznih* primarnih implikanata (potpune sume)
 - prekrivanje komponentnih funkcija s pi_i
 vektor prekrivanja
 - druga faza
 - ~ nalaženje *minimalnog* skupa *višeizlaznih* primarnih implikanata (minimalne sume)

- prva faza
 - ~ utvrđivanje potpune sume:
 - raspodjela m_i svih f_i u indeksne grupe
 broj 1
 - paziti na pripadnost m_i pojedinoj f_i
 vektor prekrivanja!
 - označiti produkt (~ nije pi_i!) iz prethodne tablice jedino ako se u narednoj pojavljuje isti uzorak f_i, ∀i
 - $\langle f_1 f_2 \dots f_n \rangle = \langle 00...0 \rangle$ ("sve nule") *nije valjani* implikant

Primjer:
$$f_1 = \sum (0.1, 2.4, 5.11, 15), f_2 = \sum (0.2, 4.13, 15), f_3 = \sum (0.1, 3.4, 5.7, 13, 15)$$

		$f_1f_2f_3$				$f_1f_2f_3$				$f_1f_2f_3$
0	0000	111	✓	0,1	000-	101	\checkmark	0,1,4,5	0-0-	101
1	0001	101	✓	0,2	00-0	110		1,3,5,7	0-1	001
2	0010	110	\checkmark	0,4	0-00	111		5,7,13,15	-1-1	001
4	0100	111	✓	1,3	00-1	001	√			
3	0011	001	✓	1,5	0-01	101	\checkmark			
5	0101	101	✓	4,5	010-	101	✓			
7	0111	001	✓	3,7	0-11	001	✓			
11	1011	100	\checkmark	5,7	01-1	001	\checkmark			
13	1101	011	✓	5,13	-101	001	✓			
15	1111	111		7,15	-111	001	\checkmark			
				11,15	1-11	100				
				13,15	11-1	011				

druga faza:

		f_1							f_2				f_3							
	0	1	2	4	5	11	15	0	2	4	13	15	0	1	3	4	5	7	13	15
a							X					X								X
b	X			X				X		\mathbf{X}			X			X				
c	X		(\mathbf{X})					X	(\mathbf{x})											
\mathbf{d}	X	\mathbf{x}	(X	\mathbf{x}								X	X		X	X			
e											(\mathbf{x})	X							X	X
$\left(\mathbf{f}\right)$						\mathbf{x}	X)									
g														X	(\mathbf{x})		X	X		
h	·		·														X	X	X	X

- rezultat:
 - bitni primarni implikanti: b, c, d, e, f, g
 - dobiveno je *potpuno prekrivanje*

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 4: Minimizacija logičkih funkcija.
- Quine-McCluskeyeva metoda: str. 147-151
- minimizacija višeizlazne funkcije: str. 151-157
- Quine-McCluskey za višeizlazne funkcije: str. 157-159

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 4: Minimizacija logičkih funkcija.
- Quine-McCluskeyeva metoda: 4.12, 4.13, 4.15, 4.17
- minimizacija višeizlazne funkcije: 4.22-4.24
- Quine-McCluskey za višeizlazne funkcije: ponoviti 4.23, 4.24

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 4: Minimizacija logičkih funkcija.
- Quine-McCluskeyeva metoda:
 - riješeni zadaci: 4.8e, 4.9-4.12, 4.17-4.19, 4.23
 - zadaci za vježbu: 5, 11, 12 (str.165-166)
- Quine-McCluskey za višeizlazne funkcije:
 - riješeni zadaci: 4.19, 4.23,
 - zadaci za vježbu: 9, 13 (str.165-166)