Оглавление

	Экз	аменационная программа	3	
1	Обратное и неявное отображения			
	1.1	Теорема о неподвижной точке сжимающего отображения	5	
	1.2	Теорема об обратном отображении	7	
	1.3	Теорема о неявно заданном отображении	8	
2	Экстремумы функций нескольких переменных			
	2.1	Необходимые и достаточные условия экстремума	11	
	2.2	Условный экстремум	15	
	2.3	Признаки существования условного экстремума	17	
3	Kp	атный интеграл	20	
	3.1	Кратный интеграл Римана	20	
	3.2	Классы интегрируемых функций	24	
	3.3	Свойства кратного интеграла	25	
	3.4	Элементарное множество	29	
	3.5	Сведение кратного интеграла к повторному	30	
4	Замена переменных в кратном интеграле			
	4.1	Геометрические свойства меры Жордана	36	
	4.2	Геометрический смысл модуля якобиана	40	
	4.3	Формула замены переменной в кратном интеграле	44	
	4.4	Геометрический смысл знака якобиана	48	
5	Фо	рмула Грина	50	
	5.1	Ориентация замкнутой кривой	50	
	5.2	Формула Грина	53	
6	Поверхностные интегралы			
	6.1	Гладкие многомерные поверхности	58	
	6.2	Кусочно-гладкие поверхности	63	
	6.3	Поверхностный интеграл первого рода	66	
	6.4	Ориентация кусочно-гладкой поверхности	70	
	6.5	Поверхностный интеграл второго рода	73	
7	Фо	рмуна Острогранского-Гаусса	78	

	7.1	Теорема Остроградского-Гаусса 7	'8
	7.2	Геометрический смысл дивергенции	31
	7.3	Соленоидальные векторные поля	32
8	Фор	омула Стокса 8	4
	8.1	Теорема Стокса	34
	8.2	Геометрический смысл ротора	37
	8.3	Потенциальные векторные поля	38
	8.4	Безвихревые векторные поля	1

Экзаменационная программа

- 1. Теорема о неподвижной точке сжимающего отображения. Теорема о неявном отображении (без доказательства). Теорема об обратном отображении (без доказательства).
- 2. Экстремумы функций многих переменных: необходимые условия, достаточные условия.
 - Условный экстремум функции многих переменных при надичии связей, исследование при помощи функции Лагранжа. Необходимые условия. Достаточные условия (без доказательства).
- 3. Кратный интеграл Римана. Критерии интегрируемости. Интегрируемость функции, непрерывной на измеримом компакте. Линейность интеграла, аддитивность интеграла по множествам, интегрирование неравенств.
 - Сведение кратного интеграла к повторному.
 - Интегрируемость функции, непрерывной всюду, кроме множества жордановой меры ноль.
 - Непрерывность интеграла по множеству.
- Связь меры образа множества с мерой самого множества при движении (без доказательства), геометрический смысл определителя; геометрический смысл модуля и знака якобиана отображения.
 - Теорема о замене переменных в кратном интеграле.
- 5. Формула Грина.
- 6. Простая гладкая поверхность. Неявное задание поверхности (без доказательства). Касательное и нормальное пространства к поверхности. Кусочно-гладкие поверхности.

Поверхностный интеграл первого рода. Независимость выражения интеграла через параметризацию поверхности. Площадь поверхности.

Ориентация кусочно-гладкой поверхности. Поверхностный интеграл второго рода, выражение через параметризацию поверхности.

- 7. Теорема Остроградского—Гаусса. Геометрический смысл дивергенции. Соленоидальные векторные поля. Связь соленоидальности с обращением в нуль дивергенции поля.
- 8. Теорема Стокса. Геометрический смысл ротора. Потенциальные векторные поля. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Связь потенциальности с обращением в нуль ротора векторного поля.

1. Обратное и неявное отображения

1.1. Теорема о неподвижной точке сжимающего отображения

ТЕОРЕМА 1.1 (Банах). Пусть отображение $h: \mathbb{R}^n \supset M \to \mathbb{R}^n$ обладает следующими свойствами:

- 1. отображает замкнутое подмножество $M=\overline{M}$ в себя, т. е. образ $h(M)\subset M;$
- 2. является сжимающим с коэффициентом $k \in (0,1), m. e.$

$$\forall x^1, x^2 \in M \hookrightarrow |h(x^2) - h(x^1)| \le k|x^2 - x^1|.$$

 $Tor \partial a$:

- 1. существует и притом единственная **неподвижная точка** $x^* \in M$ отображения $h, \ m. \ e. \ h(x^*) = x^*;$
- 2. неподвижная точка является пределом **итерационного процесса**, который можно начать из произвольной точки $x^0 \in M$:

$$\forall n \in \mathbb{N}$$
 полагаем, что $x^n := h(x^{n-1}),$ тогда $x^* = \lim_{n \to \infty} x^n;$

3. погрешность на n-м шаге оценивается сверху по первому шагу как убывающая геометрическая прогрессия с коэффициентом k:

$$|x^n - x^*| \le \frac{k^n}{1 - k} |h(x^0) - x^0|.$$
 (1.1)

Обсуждение 1.1. Отметим, что в теореме:

1. исследуемое уравнение h(x) = x имеет специфический eud, отличный от традиционного $h(x) = x^0$, где x^0 – фиксированная точка;

- 2. сформулированы достаточные условия не только *существования* неподвижной точки, но и ее *единственности*;
- 3. указан *итерационный* процесс, сходящийся к неподвижной точке (см. рис. 1.1);
- 4. итерации можно начинать с *произвольной* точки (этот факт иллюстрирует рис. 1.2):
- 5. указана погрешность итераций;
- 6. идея доказательства теоремы содержится в п. 2 формулировки.

Рис. 1.1

Рис. 1.2

Доказательство. Покажем, что последовательность итераций $x^n:=h(x^{n-1})$ является фундаментальной. Для произвольных $n,p\in\mathbb{N}$ верны оценки:

$$|x^{n+p} - x^n| = |h^{n+p}(x^0) - h^n(x^0)| \le k|h^{n+p-1}(x^0) - h^{n-1}(x^0)| \le \dots$$

$$\le k^n|h^p(x^0) - x^0| \le k^n(|x^1 - x^0| + |x^2 - x^1| + \dots + |x^p - x^{p-1}|) \le$$

$$\le k^n \cdot |x^1 - x^0| \cdot (1 + k + k^2 + \dots + k^{p-1}) \le k^n \frac{|x^1 - x^0|}{1 + k^p} \xrightarrow{n \to \infty} 0$$
 (1.2)

(мы воспользовались сжатием, применили p раз неравенство треугольника и оценили конечную сумму убывающей геометрической прогрессией). Из фундаментальности последовательности и замкнутости множества M следует, что существует предел $x^*:=\lim_{n\to\infty}x^n\in M$. Покажем, что x^* – неподвижная точка. Из условия сжатия следует, что отображение h непрерывно на всей области определения (докажите), поэтому

$$h(x^*) = h(\lim_{n \to \infty} x^n) = \lim_{n \to \infty} h(x^n) = \lim_{n \to \infty} x^{n+1} = x^*.$$

Существование неподвижной точки доказано. Докажем ее единственность. Допустим противное: существует точка $\widehat{x} \in M$, для которой $h(\widehat{x}) = \widehat{x}$. Тогда

$$|x^* - \widehat{x}| = |h(x^*) - h(\widehat{x})| < k|x^* - \widehat{x}|.$$

Так как $k \in (0,1)$, то $|x^* - \widehat{x}| = 0$, т. е. $x^* = \widehat{x}$.

В неравенстве (1.2) перейдем к пределу при $p \to \infty$; поскольку $\lim_{n \to \infty} x^{n+p} = x^*$, получаем оценку (1.1). \blacksquare

1.2. Теорема об обратном отображении

Ниже понятие **окрестность** точки означает произвольное открытое подмножество, содержащее эту точку, в частности, это может быть шаровая окрестность.

ТЕОРЕМА 1.2. Пусть отображение $f: \mathbb{R}^n \supset U \to \mathbb{R}^n$ непрерывно дифференцируемо на области U, и в некоторой точке $x^0 \in U$ определитель $\det Df(x^0) \neq 0$. Тогда существуют такие окрестности $V(x^0) = V \subset U$ и $W(y^0) = W$ точек x^0 и $y^0 = f(x^0)$ соответственно, что:

- 1. сужение $f: V \to W$ является биекцией;
- 2. обратное отображение $f^{-1}: W \to V$ непрерывно дифференцируемо;
- 3. производная обратного отображения вычисляется по формуле

$$\forall y \in W \hookrightarrow Df^{-1}(y) = (Df(x))^{-1}, \ \ i \partial e \ x = f^{-1}(y).$$
 (1.3)

Обсуждение 1.2. 1. Теорема 1.2 является локальным аналогом теоремы об обратимости числовой функции числового аргумента, про- изводная которой имеет на интервале постоянный знак.

- 2. Размерности пространства-прообраза и пространства-образа совпадают.
- Формула (1.3) означает, что взятие обратного отображения и дифференцирование перестановочны. Эта формула позволяет найти производную обратного отображения, не находя самого обратного отображения.
- 4. Идея доказательства теоремы: если матрица производной $Df(x^0)$ обратима, то само отображение f локально обратимо, поскольку оно отличается от своего дифференциала на бесконечно малую величину более высокого порядка.

Пример 1.1. Рассмотрим полярную систему координат как отображение

$$p:[0,+\infty)\times\mathbb{R}\to\mathbb{R}^2,\ p(\rho,\varphi)=(\rho\cos\varphi,\ \rho\sin\varphi).$$

Матрица Якоби и ее определитель равны:

$$J(\rho,\varphi) = \left(\begin{array}{cc} \cos\varphi & -\rho\sin\varphi \\ \sin\varphi & \rho\cos\varphi \end{array} \right) \ \Rightarrow \ \det J(\rho,\varphi) = \rho \geq 0.$$

Значит, сужение \widetilde{p} отображения p на открытую полуплоскость $(0, +\infty) \times \mathbb{R}$ имеет невырожденную производную в каждой точке. Согласно теореме 1.2, отображение \widetilde{p} в любой точке открытой полуплоскости является локальной биекцией. Образ $\mathrm{Im}(\widetilde{p})$ всей открытой полуплоскости есть вся плоскость без начала координат. Однако отображение \widetilde{p} НЕ является глобальной биекцией поскольку $\widetilde{p}(\rho,\varphi+2\pi k)=\widetilde{p}(\rho,\varphi)$ для любого $k\in\mathbb{Z}$, т. е. отображение 2π -периодично по второму аргументу.

Рис. 1.3

1.3. Теорема о неявно заданном отображении

Пример 1.2. Уравнение $x^2 + y^2 - 1 = 0$, задающее на координатной плоскости окружность, порождает две *непрерывные* неявные функции

$$y = f_{1,2}(x) = \pm \sqrt{1 - x^2}, \quad x \in [-1, 1],$$

графиками которых являются верхняя и нижняя полуокружности (рис. 1.3). Заметим, что разрывных функций, порожденных этим уравнением, бесконечное множество: разобьем отрезок [-1,1] на два произвольных непересекающихся множества

$$[-1,1] = X_1 \cup X_2, \ X_1 \cap X_2 = \emptyset$$

и определим неявную функцию по правилу

$$f(x) = \begin{cases} +\sqrt{1-x^2}, & x \in X_1, \\ -\sqrt{1-x^2}, & x \in X_2. \end{cases}$$

Если же мы хотим сосредоточиться на $odno\~u$ неявной функции, то достаточно выбрать на окружности точку $A(x^0,y^0)$, причем $x^0\neq \pm 1$, и потребовать, чтобы график неявной функции принадлежал ее достаточно мало $\~u$ окрестности (рис. 1.3). Заметим, что ни в какой окрестности точек $A^\pm(\pm 1,0)$ дуга окружности $x^2+y^2-1=0$ не является графиком функции.

Принципиальное наблюдение: только в особых точках A^\pm касательные к окружности вертикальны, что равносильно обнулению в этих точках частных производных данной функции по переменной y, т. е. $\frac{\partial}{\partial y}(x^2+y^2-1)|_{(\pm 1,0)}=0$.

TEOPEMA 1.3. Пусть отображение $F: \mathbb{R}^n \times \mathbb{R}^m \supset U \to \mathbb{R}^m$

1) непрерывно дифференцируемо на открытом подмножестве U, содержащем точку $A(x^0, y^0) \in U$;

Рис. 1.4

- 2) $F(x^0,y^0)=O_y$, где O_y начало координат в точечном пространстве \mathbb{R}^m ;
- 3) в точке $A(x^0,y^0)$ матрица частной производной отображения F по переменной y невырождена: $\det D_y F(x^0,y^0) \neq 0$.

Tor ∂a :

1. существуют окрестность $Q_A\subset\mathbb{R}^n imes\mathbb{R}^m$ точки $A(x^0,y^0)$ (причем $Q_A\subset U$), шаровая окрестность $X_{x^0}\subset\mathbb{R}^n$ точки x^0 и единственное **неявное отображение** $f:X_{x^0}\to\mathbb{R}^m$, для которого условие разрешимости уравнения

$$F(x,y) = O_y, \ \imath \partial e \ (x,y) \in Q_A$$
 (1.4)

эквивалентно условию

$$y = f(x), \ \ i \partial e \ x \in X_{x^0}; \tag{1.5}$$

2. отображение f непрерывно дифференцируемо на X_{x^0} , причем в точке $x \in X_{x^0}$ матрица производной неявного отображения определяется по правилу

$$Df(x) = -(D_y F(x, f(x)))^{-1} \circ D_x F(x, f(x)); \tag{1.6}$$

3. пересечение полного прообраза $F^{-1}(O_y) = \{(x,y) : F(x,y) = O_y\}$ с окрестностью Q_A точки $A(x^0,y^0)$ является **графиком** неявного отображения f (puc. 1.4):

$$Gr(f) = F^{-1}(O_y) \cap (Q_A).$$

Обсуждение 1.3.

1) Первый пункт теоремы 1.3 можно переформулировать так: уравнение $F(x,y)=O_y$, рассмотренное в малой окрестности точки $A(x^0,y^0)$, порождает такое единственное отображение $x\xrightarrow{f}y$ в окрестности X_{x^0} точки x_0 , что

$$\forall x \in X_{x^0} \hookrightarrow F(x, f(x)) \equiv O_y$$
, в частности $f(x^0) = y^0$.

2) В координатном виде уравнение (1.4) есть система из m уравнений с n+m неизвестными:

$$\begin{cases} F_1(x_1, \dots, x_n; y_1, \dots, y_n) = 0, \\ F_2(x_1, \dots, x_n; y_1, \dots, y_n) = 0, \\ \dots & \dots \\ F_m(x_1, \dots, x_n; y_1, \dots, y_n) = 0, \end{cases}$$

а неявное отображение (1.5) есть система из m функций от n переменных:

$$\begin{cases} y_1 = f_1(x_1, \dots, x_n), \\ y_2 = f_2(x_1, \dots, x_n), \\ \dots \\ y_m = f_m(x_1, \dots, x_n). \end{cases}$$

3) Утверждение теоремы является нелинейным аналогом теоремы о множестве решений *совместной* системы линейных уравнений, в которой неизвестных больше, чем уравнений.

2. Экстремумы функций нескольких переменных

2.1. Необходимые и достаточные условия экстремума

Определение 2.1. Пусть функция $f: \mathbb{R}^n \supset U \to \mathbb{R}$ задана на некотором открытом множестве. Точка $x^0 \in U$ называется точкой строгого (нестрогого) локального максимума (минимума), если в некоторой проколотой шаровой окрестности этой точки $f(x) < f(x^0)$ $(\leq, >, \geq)$. Точку локального максимума или минимума называют точкой локального экстремума функции. \boxtimes

ТЕОРЕМА 2.1. (необходимые условия локального экстремума) Если в точке локального экстремума x^0 функция f дифференцируема, то вектор производной (градиент) в этой точке обнуляется, т. е. обнуляются все частные производные:

$$f'(x^{0}) = \left(\frac{\partial f(x^{0})}{\partial x_{1}}, \dots, \frac{\partial f(x^{0})}{\partial x_{n}}\right)^{T} = \mathbf{0} \iff$$

$$\frac{\partial f(x^{0})}{\partial x_{1}} = 0, \dots, \frac{\partial f(x^{0})}{\partial x_{n}} = 0. \tag{2.1}$$

Доказательство. Если $x^0=(x_1^0,\dots,x_n^0)$ – точка локального экстремума функции f, то число x_i^0 является точкой локального экстремума функции

$$f_i(x_i) := f(x_1^0, \dots, x_{i-1}^0, x_i, x_{i+1}^0, \dots, x_n^0)$$

одного (то есть числового) переменного x_i . В силу теоремы Ферма

$$0 = (f_i)'(x_i^0) = \partial f(x^0)/\partial x_i.$$

Решения системы (2.1) являются точками подозрительными на экстремум. Их называют **стационарными**. Если функция f дифференцируема на U, кроме стационарных, других точек, подозреваемых на экстремум, нет. Заметим, что система уравнений (2.1) имеет квадратный вид – состоит из n уравнений с n неизвестными. В "типичном" случае такая система имеет изолированные решения. Если дополнительно известно, что множество стационарных точек ограничено, тогда их количество конечно. Условие (2.1) не является достаточным. Так, функция $y=x^3$ имеет стационарную точку x=0, которая не является точкой экстремума.

Приведите пример функции двух переменных, которая обладает стационарной точкой не являющейся точкой экстремума.

Возникает проблема получения обозримых достаточных условий существования экстремума. Пусть функция $f \in C^2(U)$ в некоторой окрестности U стационарной точки x^0 . Как и в случае функции одной переменной воспользуемся формулой Тейлора:

$$f(x) - f(x^{0}) = df(x^{0}; \Delta x) + \frac{1}{2}d^{2}f(x^{0}, \Delta x) + o(|\Delta x|^{2}),$$

где $\Delta x = x - x^0$ и $\Delta x \to \mathbf{0}$ $(x \in U)$. Напомним, что:

1) дифференциал второго порядка $d(df)=d^2f=d^2f(x,dx)$ есть функция 2n переменных

$$(x;dx) = (x_1,\ldots,x_n;\ dx_1,\ldots,dx_n),\ x \in \mathbb{R}^n,\ dx \in \mathbf{V}^n;$$

2) $d^2f(x,dx)$ относительно вектора dx является $\kappa вадратичной формой, которая порождена симметрической матрицей$

$$D^2 f(x) := (\partial^2 f(x)/\partial x_i \partial x_j), \quad i, j = 1, \dots, n$$

вторых производных:

$$d^{2}f(x, dx) = d(df)(x) = d(\operatorname{grad} f(x), dx) =$$

$$= (D^{2}f(x)dx, dx) = (dx)^{T} \cdot D^{2}f(x) \cdot dx. \quad (2.2)$$

В силу (2.1), в точке x^0 первый дифференциал $df(x^0,dx)\equiv 0$ по переменной dx. Поэтому в точке x^0 разложение Тейлора имеет вид:

$$f(x) - f(x^0) = \frac{1}{2}d^2f(x^0, \Delta x) + o(|\Delta x|^2)$$
 при $\Delta x \to \mathbf{0}$. (2.3)

Напомним, что квадратичная форма K(w) называется

- 1. положительно-определенной, если K(w) > 0 для всех $w \neq \mathbf{0}$;
- 2. отрицательно-определенной, если K(w) < 0 для всех $w \neq 0$;
- 3. знаконеопределенной, если существуют w_1, w_2 такие, что $K(w_1) > 0, K(w_2) < 0$;

4. положительно- (отрицательно-) полуопределенной, если она не принимает отрицательных (положительных) значений и существует $w \neq 0$, что K(w) = 0.

Знакоопределенность квадратичной формы проверяют с помощью критерия Сильвестра. Исследуя функцию с помощью разложения (2.3), мы рассчитываем на то, что в нем ведущую роль играет именно квадратичная форма, а не остаточный член, имеющий более высокий порядок малости. Именно так и происходит в устойчивом случае:

ТЕОРЕМА 2.2. (достаточные условия экстремума) Пусть x^0 – стационарная точка функции $f,\ u\ f\in C^2$ в некоторой окрестности точки x^0 . Тогда:

- 1. если квадратичная форма $d^2f(x^0,dx)$ является положительноопределенной, то x^0 – точка **строгого** локального минимума функции f;
- 2. если квадратичная форма $d^2f(x^0,dx)$ является отрицательно-определенной, то x^0 точка **строгого** локального максимума функции f;
- 3. если квадратичная форма $d^2 f(x^0, dx)$ знаконеопределенная, то x^0 HE является точкой локального экстремума функции f;
- 4. если квадратичная форма $d^2f(x^0,dx)$ является или положительно-, или отрицательно- полуопределенной, то x^0 может быть точкой локального экстремума (как строгого, так и нестрогого), а может и не быть таковой.

Примеры 2.1. Примерами случаев 1-4 в точке O(0,0) являются:

1) $z = x^2 + y^2$, 2) $z = -x^2 - y^2$, 3) $z = x^2 - y^2$, 4 a) $z = x^2 + y^4$ (точка строгого минимума), 4 б) $z = x^2$ (точка нестрогого минимума), 4 в) $z = x^2 - x^4$ (экстремум отсутствует).

Замечание 2.1. Случаи 1-3 устойчивые, т. е. малое изменение элементов матрицы $D^2f(x^0)$ не меняет тип точки x^0 .

Доказательство. Прежде всего заметим, что свойство точки x^0 быть экстремальной для функции f является геометрическим. Другими словами, если $A: \mathbf{V}^n \to \mathbf{V}^n$ ортогональное преобразование (сохраняющее расстояние между точками), то функции f(x) и $g(y):=f(Ay+x^0)$ в точках $x^0=A(0)+x^0$ и $y^0=0$ имеют одни и те же экстремальные свойства. В силу линейности A, первый дифференциал $d(Ay+x^0)=A(dy)$, а второй дифференциал $d^2(Ay+x^0)=d(A(dy))\equiv 0$. Применяя правило Лейбница к

Рис. 2.1

скалярному произведению и инвариантность формы первого дифференциала, получаем:

$$\begin{split} &d^2g(0,dy) = d(dg(y,dy))|_{y=0} = d(\text{grad } f(Ay + x^0), A(dy))|_{y=0} = \\ &= (D^2f(Ay + x^0)|_{y=0} \circ A(dy), A(dy)) + (\text{grad } f(Ay + x^0), 0) = \\ &= (A(dy))^T \circ D^2f(x^0) \circ (A(dy)) = (dy)^T \cdot (A^T \circ D^2f(x^0) \circ A) \cdot dy. \end{split}$$

Сравнивая с (2.2), мы видим, что матрица $D^2f(x^0)$ вторых производных в результате линейной замены независимых переменных преобразуется по закону преобразования матрицы $\kappa \epsilon a d p a m u u n o u$ формы. Значит, существует такое преобразование A, что квадратичная форма $d^2g(0,dy)$ приобретает канонический диагональный вид

$$\sum_{i=1}^{n} \lambda_i \ dy_i^2, \quad \lambda_i = \frac{\partial^2 g}{\partial y_i^2}.$$

После липейной замены $x=Ay+x^0$ остаточный член в формуле Тейлора сохраняет порядок малости, т. е. $o(|dy|^2)$. Без ограничения общности рассуждений считаем, что исходная система координат уже каноническая и $x^0=0$. Тогда, в силу (2.3),

$$\Delta f(x) = \frac{1}{2} (\lambda_1(x_1)^2 + \ldots + \lambda_k(x_k)^2 + \lambda_{k+1}(x_{k+1})^2 + \ldots + \lambda_{k+l}(x_{k+l})^2) + o(|x|^2),$$

где $\lambda_1, \ldots, \lambda_k > 0, \ \lambda_{k+1}, \ldots, \lambda_{k+l} < 0, \ k+l \le n.$

Квадратичная форма положительно определена только при условии, что все $\lambda_i > 0$ $(i = 1, \ldots, n)$. Пусть $\lambda = \min\{\lambda_1, \ldots, \lambda_n\} > 0$. Следовательно, существует такое малое $\varepsilon > 0$, что для любого вектора $x \neq \mathbf{0} \land |x| < \varepsilon$ верно:

$$\Delta f(x) > \frac{1}{2}\lambda |x|^2 + o(|x|^2) = |x|^2 \left(\frac{1}{2}\lambda + \frac{o(|x|^2)}{|x|^2}\right) > \frac{\lambda}{4}|x|^2 > 0.$$

Первый пункт доказан. Доказательство второго пункта сводится к первому заменой функции f на функцию -f.

Знаконеопределенность означает, что среди чисел λ_i имеются хотя бы два числа разных знаков: пусть $\lambda_1>0, \lambda_2<0.$ Тогда существует такое $\varepsilon>0$, что

$$f(x_1,0,\ldots,0)=\frac{1}{2}\lambda_1(x_1)^2+o((x_1)^2)>0$$
 при $0<|x_1|$

$$f(0,x_2,0,\ldots,0)=\frac{1}{2}\lambda_2(x_2)^2+o((x_2)^2)<0$$
 при $0<|x_2|$

Пункт 3 доказан.

Полуопределенность квадратичной формы означает, что те числа λ_i , которые отличны от нуля, одного знака, но их количество *строго* меньше, чем n. В качестве примеров возьмем две функции двух переменных, у которых совпадают вторые дифференциалы:

$$f_1(x,y) = x^2 + y^4$$
, $f_2(x,y) = x^2 - y^4$.

Для f_1 точка O(0,0) является точкой строгого минимума, а для f_2 точка O не является точкой экстремума. \blacksquare

2.2. Условный экстремум

Определение 2.2. Пусть в области $U \subset \mathbb{R}^p$ задана скалярная функция f и отображение

$$F: U \to \mathbb{R}^m, F(x) = (F_1(x), \dots, F_m(x)), m < p.$$

Обозначим через $S:=\{x\in U: F(x)=O_y\}\subset U$ подмножество, заданное неявно отображением F. Точка $x^0\in S$ называется точкой локального условного экстремума функции f на множестве S, если существует такая шаровая окрестность $B_{\varepsilon}(x^0)$, что в пересечении $\forall x\in \overset{\circ}{B}_{\varepsilon}(x^0)\cap S$ выполняется неравенство: $f(x)>f(x^0)$ $(\geq,<,\leq)$. В отсутствие дополнительных условий точку экстремума называют безусловной.

Множество S задается системой $F_i(x_1,\ldots,x_p)=0$ из m уравнений с p неизвестными, причем m < p. Предположим, что система разрешима относительно m переменных, т. е. точка x представима в виде пары x=(z,y) (где

 $y\in\mathbb{R}^m,\ z\in\mathbb{R}^{p-m})$, для которой условие $F(z,y)=O_y$ равносильно функциональной зависимости y=H(z). В этом случае задача отыскания условного экстремума сводится к задаче отыскания безусловного экстремума функции $\widetilde{f}(z):=f(z,H(z))$. Указанный метод называется **прямым**. Аналитическое осуществление прямого метода, как правило, не представляется возможным.

Возникает естественный вопрос: насколь ко существенно дополнительные условия могут повлиять на экстремальные свойства функции? Ясно, что если точка x^0 является точкой безусловного *строгого* экстремума, то при любых дополнительных условиях она останется таковой. Если x^0 — точка безусловного *нестрогого* экстремума, то она останется точкой экстремума того же типа; возможно, нестрогого, возможно строгого (приведите примеры обоих случаев). Если же x^0 не является точкой экстремума данной функции f(x), то дополнительные условия могут приводить к любой ситуации.

Пример 2.1. Рассмотрим функцию от двух переменных f(x,y)=y+2. Очевидно, у данной функции нет даже стационарных точек. Условие связи $x^2+y^2-1=0$ задает на плоскости единичную окружность S. Суженная на S функция $f|_S$ имеет максимум и минимум в точках $(0,\pm 1)$ соответственно (рис. 2.2).

Обсуждение 2.1. (геометрическая интерпретация задачи на условный экстремум) Пусть функция f(x,y) определена на плоской области, а дополнительное условие задано уравнением F(x,y)=0, удовлетворяющим теореме о неявном отображении. Значит, речь идет о задаче на экстремум на кривой $S=\{F(x,y)=0\}$ (рис. 2.3). Пусть в точке $(x_1,y_1)\in S$ поверхность уровня $f^{-1}(c_1)=\{(x,y):\ f(x,y)=f(x_1,y_1)=c_1\}$ геометрически пересекает S, т. е. касательная прямая $T_{(x_1,y_1)}S$ пересекает касательную прямую $T_{(x_1,y_1)}f^{-1}(c_1)$. Тогда для всех достаточно малых $\varepsilon>0$ линии уровней $f^{-1}(c_1\pm\varepsilon)$ геометрически пересекают S. Следовательно, (x_1,y_1) НЕ является точкой условного экстремума. Если же линия уровня $f^{-1}(c_0)$ касается S в (x_0,y_0) , то точка (x_0,y_0) может оказаться точкой условного экстремума.

На рис. $2.3~(x_0,y_0)$ является точкой условного минимума функции f, а точка (x_1,y_1) — НЕ является точкой экстремума. Заметим, что в точке условного экстремума выполнено условие *ортогональности*: grad $f(x_0,y_0) \perp T_{(x_0,y_0)}S$. Оказывается, это ключевое наблюдение, лежащее в основе теории Лагранжа об условном экстремуме.

2.3. Признаки существования условного экстремума

Всюду ниже предполагается, что:

- 1. функция f и отображение F принадлежат классу гладкости $C^1(U)$;
- 2. в каждой точке $x\in S$ ранг матрицы DF(x) максимален, т. е. равен m. Из условия 2, в силу теоремы о неявном отображении, следует, что подмножество S является гладкой поверхностью размерности n=p-m, касательное пространство в точке $x\in S$ задается системой линеаризованных уравнений (6.2)

$$T_x S = \{ v \in \mathbb{R}^p : (\operatorname{grad} F_1(x), v) = 0, \dots, (\operatorname{grad} F_m(x), v) = 0 \},$$

а система векторов $\{\operatorname{grad} F_1(x), \ldots, \operatorname{grad} F_m(x)\}$ является базисом в ортогональном дополнении N_xS к T_xS .

В принятых предположениях о функции f и отображении F справедливо следующее необходимое условие существования условного экстремума:

ТЕОРЕМА 2.3. Пусть x^0 – точка локального условного экстремума, тогда справедливы следующие равносильные между собой утверждения:

- 1. grad $f(x^0) \perp T_{x^0}S \Leftrightarrow$
- 2. существует единственный набор $\Lambda=(\lambda_1,\ldots,\lambda_m)$ из m чисел, для которого

$$\operatorname{grad} f(x^0) = \lambda_1 \operatorname{grad} F_1(x^0) + \ldots + \lambda_m \operatorname{grad} F_m(x^0).$$

Доказательство. Переформулируем задачу на условный экстремум. Пусть $\Phi:V\to\mathbb{R}^p$ – произвольная локальная параметризация поверхности S в некоторой окрестности точки $x^0\in S$. Рассмотрим сложную функцию

$$\widetilde{f}: V \to \mathbb{R}, \ \widetilde{f}(t) := f(\Phi(t)).$$
 (2.4)

Мы утверждаем, что задача $f(x) \to \exp$ при условии $F(x) = O_y$ равносильна безусловной задаче $\widetilde{f} \to \exp$ т. Точнее, точка $x^0 = \Phi(t^0)$ является для функции f точкой локального условного экстремума любого из указанных типов только тогда, когда точка t^0 является для функции \widetilde{f} точкой локального безусловного экстремума того же типа. Утверждение следует из того

обстоятельства, что параметризация Φ является непрерывной в обе стороны биекцией между некоторой окрестностью $V_{\varepsilon}(x^0):=B_{\varepsilon}(x^0)\cap S$ точки x^0 и некоторой окрестностью $W(t^0,\varepsilon)=\Phi^{-1}(V_{\varepsilon}(x^0))$ точки t^0 .

Теперь, если x^0 – точка локального условного экстремума, то для сложной гладкой функции $\widetilde{f}=f(\Phi(t))$ точка t^0 стационарная:

$$\forall j \in \{1, \dots, n\} \hookrightarrow \frac{\partial \widetilde{f}(t^0)}{\partial t_j} = 0 \Leftrightarrow Df(\Phi(t^0)) \circ \frac{\partial \Phi(t^0)}{\partial t_j} = 0 \Leftrightarrow \left(\operatorname{grad} f(x^0), \frac{\partial \Phi(t^0)}{\partial t_j}\right) = 0.$$

Из леммы о задании касательного пространства следует, что вектор grad $f(x^0)$ ортогонален каждому базисному вектору касательного пространства $T_{x^0}S$, что доказывает первое утверждение.

Из того, что нормальное подпространство является ортогональным дополнением к касательному пространству, вытекает: 1) утверждение п. 1 равносильно принадлежности $\operatorname{grad} f(x^0) \in N_{x^0}S;$ 2) вектор $\operatorname{grad} f(x^0)$ единственным образом раскладывается по базису $\{\operatorname{grad} F_1(x^0), \ldots, \operatorname{grad} F_m(x^0)\}$.

Из теоремы 2.3 сразу вытекает следующее утверждение о точках, подозрительных на условный экстремум:

Следствие 2.1. Точка $x=(x_1,\ldots,x_p)\in S$ может оказаться точкой условного экстремума функции f только g том случае, когда ее g координат g еще g чисел g удовлетворяют системе из g туравнений

$$\begin{cases}
\frac{\partial f(x)}{\partial x_j} = \lambda_1 \frac{\partial F_1(x)}{\partial x_j} + \ldots + \lambda_m \frac{\partial F_m(x)}{\partial x_j} & (j = 1, \ldots, p), \\
F_i(x) = 0 & (i = 1, \ldots, m).
\end{cases}$$
(2.5)

Первые р уравнений есть покоординатная запись $n.\ 2$ теоремы $2.3.\ Oсталь-$ ные m уравнений есть условие принадлежности $x\in S.$

Утверждение следствия 2.1 удобно формулировать с помощью вспомогательной функции Лагранжа, зависящей от p+m переменных:

$$L: U \times \mathbb{R}^m \to \mathbb{R}, \ L(x, \Lambda) := f(x) - \lambda_1 F_1(x) - \ldots - \lambda_m F_m(x).$$

Функция L понадобиться нам и для формулировки достаточных признаков условного экстремума, но с ее помощью можно также сформулировать необходимое условие:

ЛЕММА 2.1. Если точка $x \in S$ является точкой условного экстремума функции f, то существует такой единственный набор чисел $\Lambda \in \mathbb{R}^m$, для которого x является стационарной точкой функции Лагранжа:

x- точка условного экстремума $\Rightarrow \operatorname{grad}_x L(x,\Lambda) = \mathbf{0} \wedge F(x) = O_y$.

Доказательство. Достаточно заметить, что

$$\frac{\partial L}{\partial x_j} = \frac{\partial f(x)}{\partial x_j} - \lambda_1 \frac{\partial F_1(x)}{\partial x_j} - \dots - \lambda_m \frac{\partial F_m(x)}{\partial x_j}, \quad j = 1, \dots, p. \blacksquare$$

Чтобы сформулировать достаточные признаки условного экстремума, ужесточим требования к гладкости функции f и отображения F: потребуем, чтобы $f, F \in C^2(U)$.

Пусть точка $x \in S$ и набор Λ фиксированы. Обозначим через $d^2L_T(x,\Lambda;v)$ сужение второго дифференциала $d^2L(x,\Lambda;dx)$ по переменной x на касательное пространство T_xS , т. е. переменная $v \in T_xS$ и $d^2L_T(x,\Lambda;v) \equiv d^2L(x,\Lambda;v)$ при условии $v \in T_xS$.

ТЕОРЕМА 2.4 (достаточные признаки условного экстремума). *Пусть* $f, F \in C^2(U)$. Пусть пара (x^0, Λ^0) удовлетворяет системе (2.5). Тогда:

- 1. если квадратичная форма $d^2L_T(x^0, v)$ положительно определена (т. е. $\forall v \in T_{x^0}S \setminus \{\mathbf{0}\} \hookrightarrow d^2L_T(x^0, \Lambda^0; v) > 0$), то x^0 точка локального условного строгого минимума функции f;
- 2. если квадратичная форма $d^2L_T(x^0, \Lambda^0; v)$ отрицательно определена (т. е. $\forall v \in T_{x^0}S \setminus \{\mathbf{0}\} \hookrightarrow d^2L_T(x^0, \Lambda^0; v) < 0$), то x^0 точка локального условного строгого максимума функции f;
- 3. если квадратичная форма $d^2L_T(x^0,\Lambda^0;\upsilon)$ знаконеопределенная (т. е. $\exists \ \upsilon_1, \upsilon_2 \in T_{x^0}S$, что $d^2L_T(x^0,\Lambda^0;\upsilon_1) > 0 \land d^2L_T(x^0,\Lambda^0;\upsilon_2) < 0$), то x^0 не является точкой локального условного экстремума функции f;
- 4. если квадратичная форма $d^2L_T(x^0,\Lambda^0;v)$ является или положительно, или отрицательно полуопределенной, то x^0 может быть точкой локального условного экстремума (как строгого, так и нестрогого), а может и не быть таковой.

3. Кратный интеграл

3.1. Кратный интеграл Римана

Ниже приведены обобщения на многомерный случай понятий, которые были введены для определения интеграла Римана на отрезке.

1. Пусть $G \subset \mathbb{R}^n$ – измеримое множество. Конечная совокупность

$$P(G) = P := \{G_1, \dots, G_N\}$$

непустых измеримых подмножеств называется разбиением множества G, если

(a) попарно подмножества пересекаются по множеству нулевой меры:

$$\mu(G_i \cap G_j) = 0 \quad \forall i \neq j;$$

(b) их объединение образует исходное множество:

$$\bigcup_{i=1}^{N} G_i = G.$$

2. **Диаметром** произвольного множества G называют супремум расстояний между двумя точками этого множества:

$$diam(G) := \sup_{x,y \in G} \rho(x,y).$$

Максимальный диаметр подмножеств разбиения называют **мелкостью** разбиения:

$$p(P) := \max_{i=1,\dots,N} \operatorname{diam}(G_i).$$

3. Разбиение P' называется **измельчением** разбиения P (обозначаем $P \prec P'$), если каждое подмножество из P' содержится в некотором полмножестве из P:

$$\forall i \in \{1, \dots, N'\} \ \exists j \in \{1, \dots, N\}: \ G'_i \subset G_j.$$

4. Пусть $f: G \to \mathbb{R}$ – ограниченная функция. Обозначим

$$M_i(f) = M_i := \sup_{G_i} f(x) < +\infty, \quad m_i(f) = m_i := \inf_{G_i} f(x) > -\infty.$$

Неотрицательная величина

$$v(f, G_i) = \sup_{x,y \in G_i} |f(x) - f(y)| = \sup_{G_i} f - \inf_{G_i} f = M_i - m_i \ge 0$$

называется колебанием функции f на множестве G_i .

5. Определим

верхнюю сумму Дарбу:
$$S_P^*(f)=S_P^*:=\sum\limits_{i=1}^N M_i \; \mu(G_i)<+\infty,$$
 нижнюю сумму Дарбу: $S_{*P}(f)=S_{*P}:=\sum\limits_{i=1}^N m_i \mu(G_i)>-\infty,$ разность сумм Дарбу:

$$V_P(f) := S_P^* - S_{*P} = \sum_{i=1}^N (M_i - m_i)\mu(G_i) = \sum_{i=1}^N v(f, G_i) \ \mu(G_i) \ge 0.$$

ЛЕММА 3.1. Свойства разбиения и измельчения:

- 1. мера множества G равна сумме мер подмножеств из разбиения: $\mu(G) = \sum_{i=1}^{N} \mu(G_i);$
- 2.

если
$$P \prec P'$$
, то $p(P') \leq p(P)$;

3. транзитивность измельчения:

если
$$P \prec P' \land P' \prec P''$$
, то $\prec P''$;

4. для любых двух разбиений существует их общее измельчение:

$$\forall P, P' \exists P'' : P \prec P'' \land P' \prec P'';$$

5. существует разбиение сколь угодно малой мелкости.

Доказательство п. 4. В качестве P'' можно взять объединение всевозможных попарных пересечений $P_i \cap P'_i$, отбросив пустые пересечения.

Доказательство п. 5. Построим разбиение мелкости не большей данного $\delta>0$. Погрузим данное множество G в n-мерную клетку K (т. е. прямо-угольный параллелепипед, стороны которого параллельны осям координат). Разобьем каждую сторону $[a_i,b_i]$ ($i=1,\ldots,n$) клетки на отрезки $[x_{i,j},x_{i,j+1}]$ ($j=1,\ldots,N_i$) длиной меньше, чем $x_{i,j+1}-x_{i,j}<\delta/\sqrt{n}$. Рассмотрим всевозможные прямые произведения

$$K_{j_1...j_n} := [x_{1,j_1}, x_{1,j_1+1}] \times ... \times [x_{n,j_n}, x_{n,j_n+1}].$$

Получим разбиение клетки K на $N_1 \cdot \ldots \cdot N_n$ клеток:

$$K = \bigcup_{j_1, \dots, j_n = 1}^{N_1, \dots, N_n} K_{j_1 \dots j_n}.$$

Затем пересечем каждый элемент из разбиения клетки с данным множеством, отбросив пустые пересечения: $G_{j_1...j_n}:=G\cap K_{j_1...j_n}$. В результате получим разбиение

$$G = \bigcup_{j_1, \dots, j_n = 1}^{N_1, \dots, N_n} G_{j_1 \dots j_n}.$$

Поскольку диаметр каждой клетки $K_{j_1...j_n}$ меньше, чем δ (докажите), то диаметр каждого подмножества $G_{j_1...j_n}$ тем более меньше, чем δ .

Определение 3.1. кратного интеграла Римана по схеме Дарбу:

- 1. Нижним интегралом Дарбу называется $I_* := \sup_P S_{*P};$ верхним интегралом Дарбу называется $I^* := \inf_P S_P^*.$
- 2. Если $I_* = I^*$, то ограниченная функция f называется **интегрируемой по Риману на** G по схеме Дарбу, а общее значение $I_D = I_* = I^*$ называется **интегралом Римана** по схеме Дарбу.

Лемма 3.2. Для произвольных разбиений P,P' справедливы двусторонние оценки

$$-\infty < S_{*P} \le I_* \le I^* \le S_{P'}^* < +\infty.$$

Доказательство повторяет доказательство аналогичного утверждения для интегральных сумм и интегралов Дарбу на отрезке.

Следующее утверждение о связи интегралов Дарбу с мелкостью разбиения формулируется так же, как и в одномерном случае, но его доказательство, которое весьма сложно в многомерном случае, мы опускаем.

ЛЕММА 3.3. Для произвольного $\varepsilon > 0$ существует такое $\delta(\varepsilon) > 0$, что для произвольного разбиения P, у которого мелкость $p(P) < \delta$, выполняются оценки:

$$0 \le I_* - S_{*P}(f) < \varepsilon \wedge 0 \le S_P^*(f) - I^* < \varepsilon.$$

Теперь мы можем сформулировать

ТЕОРЕМА 3.1. (критерии интегрируемости функции по схеме Дарбу) Если функция f ограничена, то равносильны утверждения:

- 1. Существует интеграл $I_D \Leftrightarrow$
- 2. $\forall \varepsilon > 0 \ \exists P : \ V_P(f) < \varepsilon \Leftrightarrow$
- 3. $\forall \varepsilon > 0 \ \exists \delta > 0$, что разность $V_P(f) < \varepsilon$ для любого разбиения P, мелкость которого $p(P) < \delta$.

Доказательство теоремы повторяет доказательство аналогичной теоремы для интеграла на отрезке.

Чтобы определить интеграл Римана по схеме Римана, на каждом подмножестве $G_i \in P$ выберем произвольную точку $\xi_i \in G_i$. Объединение этих точек назовем выборкой, подчиненной разбиению P, и обозначим через $\Xi = \{\xi_1, \ldots, \xi_N\}$. Интегральной суммой Римана (отвечающей разбиению P и выборке Ξ) функции f называется

$$S_{P,\Xi}(f) = S_{P,\Xi} := \sum_{i=1}^{N} f(\xi_i) \ \mu(G_i).$$

Определение 3.2. *Кратным интегралом Римана по схеме Римана* ограниченной функции f называется конечный предел

$$I_R = I := \lim_{p(P) \to 0} S_{P,\Xi}(f) \in \mathbb{R},$$

m. e. makoe число I, чmo

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ (\forall P: \ p(P) < \delta) \ \land \ (\forall \Xi) \ \hookrightarrow \ |S_{P,\Xi}(f) - I| < \varepsilon. \tag{3.1}$$

Овозначение:

$$I = \int_{G} f(x)dx = \int \cdots \int_{G} f(x_1, \dots, x_n) \ dx_1 \dots dx_n.$$

Замечание 3.1. Заметим, что: 1) символ dx не является обозначением дифференциала независимой переменной $x \in \mathbb{R}^n$; 2) символ $dx_1 \dots dx_n$ произведения дифференциалов координат не является таковым в полном смысле слова, хотя в некоторых случаях ведет себя как произведение (см. п. 3.5 ниже). Исходя из происхождения указанных обозначений, их можно понимать как меры "бесконечно малых" элементов разбиения измеримого множества G. Мы будем их называть дифференциалами меры независимой переменной x.

Терминология:

- 1) при $n \geq 2$ интеграл называют **кратным**, при n = 2 **двойным**, при n = 3 **тройным**;
 - 2) функцию f называют **интегрируемой**.

ТЕОРЕМА 3.2. (о совпадении интегралов по схемам Дарбу и Римана) Интеграл I_R существует только тогда, когда существует интеграл I_D ; при этом они совпадают: $I_R = I_D$.

Доказательство повторяет доказательство аналогичной теоремы об интегрировании на отрезке, но сейчас мы опираемся на ограниченность функции f как на ycnosue, заложенное в определении 3.2.

Замечание 3.2. Ранее мы установили, что существование интеграла Римана по схеме Римана *па отрезке* влечет ограниченность подынтегральной функции. Для интеграла на *измеримом* множестве G это утверждение в общем случае неверно даже при n=1. Поэтому ограниченность функции f присутствует в определении 3.2.

Замечание 3.3. При n=1 отличие определения 3.2 от определения интеграла Римана на отрезке состоит, во-первых, в том, что понятие измеримого множества $G \subset \mathbb{R}^1$ шире понятия отрезка. Во-вторых, согласно определению интеграла на отрезке, $\int_b^a f(x)dx := -\int_a^b f(x)dx$, т. е. интеграл Римана на *ориентированном* отрезке есть криволинейный интеграл второго рода по ориентированной кривой [a,b]. Интеграл Римана на отрезке как на измеримом множестве есть интеграл первого рода $\int_{[a,b]} f(x)dx$ по неориентированной кривой [a,b].

Точнее, имеет место

ЛЕММА 3.4 (о преемственности). Интеграл Римана от ограниченной функции f на измеримом множестве [a,b] (a < b) существует в смысле определения 3.2 только тогда, когда существует интеграл Римана в смысле определения, данного для отрезка [a,b] (a < b); при этом интегралы совпадают:

$$\int_a^b f(x) dx = \int_{[a,b]} f(x) dx, \ \operatorname{ide} a < b.$$

3.2. Классы интегрируемых функций

ТЕОРЕМА 3.3. Если функция f непрерывна на компактном измеримом множестве, то она интегрируема на нем.

Доказательство такое же, как у аналогичной теоремы об интеграле по отрезку.

Докажем более общую теорему, продемонстрировав удобство применения критерия п. 2 теоремы 3.1.

TEOPEMA 3.4. Пусть функция f ограничена на компактном измеримом множестве G и множество $\Gamma \subset G$ ее точек разрыва имеет жорданову меру ноль: $\mu(\Gamma) = 0$. Тогда f интегрируема на G.

Доказательство. Обозначим $M:=\sup_{x\in G}|f(x)|$. Пусть $\varepsilon>0$ – произвольное число. В силу ранее доказанной леммы, существует *открытое* измеримое подмножество D, которое обладает такими свойствами: $\Gamma\subset D,\ \mu(D)<\varepsilon$. В силу открытости D, на измеримом *компактном* дополнении $G\setminus D$ функция f непрерывна и, стало быть, интегрируема. В силу п. 2 теоремы 3.1, существует такое разбиение P' множества $G\setminus D$, что $V_{P'}(f)<\varepsilon$.

Пересечение $G_D = D \cap G$ двух измеримых множеств является измеримым, и его мера удовлетворяет оценке: $\mu(G_D) \leq \mu(D) < \varepsilon$. Добавим к разбиению P' подмножество G_D , получим разбиение $P = P' \cup G_D$ всего множества G. Используя полученные выше оценки, имеем:

$$V_P(f) = V_{P'}(f) + v(f, G_D)\mu(G_D) < \varepsilon + 2M\varepsilon = (1 + 2M)\varepsilon.$$

Остается еще раз сослаться на п. 2 теоремы 3.1. ■

Следствие 3.1. Пусть функция f ограничена на компактном измеримом подмножестве $G \subset \mathbb{R}^n$ и множество ее точек разрыва $\Gamma \subset G$ представляет собой конечное объединение $\Gamma = \cup_{i=1}^m Gr(g_i)$ графиков непрерывных функций меньшего числа переменных, т. е. $Def(g_i) \subset \mathbb{R}^{k_i}$, где $k_i < n$. Тогда функция f интегрируема на G.

Доказательство следует из леммы о нулевой (n+1)-мерной мере графика непрерывной функции, определенной на подмножестве пространства \mathbb{R}^n .

3.3. Свойства кратного интеграла

Свойства кратного интеграла связаны с изменением подынтегральной функции и с изменением множества, по которому осуществляется интегрирование.

Теорема 3.5. (зависимость от подынтегральной функции) Пусть G – измеримое множество. Справедливы утверждения:

1. О связи меры и интеграла:

$$\int_{G} dx = \int_{G} 1 \cdot dx = \mu(G);$$

2. **Линейность интеграла**: пусть функции f, g интегрируемы на G, α , β – произвольные числа, тогда существует интеграл

$$\int_{G} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{G} f(x) dx + \beta \int_{G} g(x) dx.$$

- 3. Интегрируемость произведения и частного: пусть функции f, g интегрируемы на G, тогда их произведение fg, а если $\inf_G |g| > 0$, то и частное f/g интегрируемы на G.
- 4. Интегрируемость модуля функции: Если функция f интегрируема на G, то и функция |f| интегрируема на G, при этом

$$\left| \int_{G} f(x)dx \right| \le \int_{G} |f(x)|dx.$$

5. **Интегрирование неравенств**: если функции f, g интегрируемы на G и $f \leq g$ на G, то

$$\int_G f(x)dx \le \int_G g(x)dx.$$

6. **Теорема о среднем**: (а) Пусть функции f, g интегрируемы на G, функция $g(x) \geq 0$, а $m \leq f(x) \leq M$ на G. Тогда существует такое число $\lambda \in [m, M]$, что

$$\int_{G} f(x)g(x)dx = \lambda \int_{G} g(x)dx. \tag{3.2}$$

(б) Если, дополнительно, G – замыкание области, а f непрерывна на G, то

$$\exists x^0 \in G: \ \int_G f(x)g(x)dx = f(x^0) \int_G g(x)dx;$$

в частности, при $g(x) \equiv 1$

$$\int_{G} f(x)dx = f(x^{0}) \ \mu(G).$$

Доказательства пунктов 1-6(a) аналогичны доказательствам тех же свойств интеграла на отрезке.

Доказательство п. 6(б). Поскольку G – измеримое множество, то оно ограничено; по условию G замкнуто. Следовательно, G – компактное множество. Согласно доказанной нами теореме, непрерывная функция достигает на компактном множестве своих нижней и верхней граней. Поэтому существуют точки x^1 , x^2 , в которых

$$m = \inf_{G} f = f(x^{1}), \quad M = \sup_{G} f = f(x^{2}).$$

Итак:

$$\forall x \in G \hookrightarrow f(x^1) < f(x) < f(x^2).$$

Согласно п. 6 (a), существует число $\lambda \in [f(x^1), f(x^2)]$, для которого выполнено равенство (3.2). Если $\lambda = f(x^i)$, где i равно 1 или 2, то утверждение доказано. Если же $\lambda \in (f(x^1), f(x^2))$, то из определения точных граней и в силу непрерывности функции f:

- 1) в окрестности точки x^1 найдется точка x^3 , принадлежащая внутренности G^0 множества G, в которой $f(x^3) < \lambda$,
- 2) в окрестности точки x^2 найдется точка $x^4 \in G^0$, в которой $f(x^4) > \lambda$ (обоснуйте это утверждение).

Поскольку внутренность G^0 , будучи областью, является линейносвязным множеством, на G^0 справедлива теорема о промежуточных значениях непрерывной функции: существует точка $x^0 \in G^0$, в которой $f(x^0) = \lambda$.

ТЕОРЕМА 3.6 (зависимость от множества интегрирования). Справедливы утверждения:

- 1. Если функция f интегрируема на измеримом множестве G, то она интегрируема на любом измеримом подмножестве $G' \subset G$.
- 2. Если функция $f: \mathbb{R}^n \supset G_1 \cup G_2 \to \mathbb{R}$ интегрируема на G_1 и на G_2 , тогда она интегрируема на объединении $G_1 \cup G_2$ и имеет место формула

$$\int_{G_1 \cup G_2} f(x) dx = \int_{G_1} f(x) dx + \int_{G_2} f(x) dx - \int_{G_1 \cap G_2} f(x) dx.$$

В частности, имеет место аддитивность интеграла: если функция f интегрируема на подмножествах $G_1, G_2 \subset \mathbb{R}^n$, которые пересекаются по подмножеству нулевой меры (то есть $\mu(G_1 \cap G_2) = 0$), то интеграл на объединении этих множеств равен сумме интегралов:

$$\int_{G_1 \cup G_2} f(x)dx = \int_{G_1} f(x)dx + \int_{G_2} f(x)dx.$$

3. Пусть функция f интегрируема на G, а $\{G_i\}_{i=1}^{\infty}$ – последовательность измеримых множеств $G_i \subset G$ таких, что $\lim_{i \to \infty} \mu(G_i) = \mu(G)$. Тогда имеет место непрерывность интеграла по множеству:

$$\lim_{i \to \infty} \int_{G_i} f(x) dx = \int_G f(x) dx.$$

Доказательство п. 1. Дополним разбиение P' множества G' мелкости p(P') до разбиения P множества G с сохранением мелкости: p(P) = p(P'). Это можно сделать, присоединив к элементам разбиения P' все элементы разбиения uзмеримого дополнения $P \setminus P'$ с мелкостью, которая не превосходит p(P'). Для разности сумм Дарбу справедлива оценка:

$$V_{P'}(f) = \sum_{i=1}^{N'} v(G'_i, f) \ \mu(G_i) \le \sum_{j=1}^{N} v(G_j, f) \ \mu(G_j) = V_P(f),$$

поскольку все слагаемые неотрицательные и правая сумма содержит все слагаемые из левой суммы. В силу интегрируемости f на G, при $p(P) \to 0$ разность $V_P(f) \to 0$ (п. 3 теоремы 3.1). Значит, и разность $V_{P'}(f) \to 0$ при $p(P') \to 0$. Что, согласно п. 3 теоремы 3.1, доказывает интегрируемость f на G'.

Доказательство п. 2. Обозначим пересечение $E_0=G_1\cap G_2$ и дополнения $E_i=G_i\setminus E_0$ (i=1,2). Все введенные множества измеримы и, в силу п. 1, функция f интегрируема на каждом из них. Пусть P_k (k=0,1,2) произвольные разбиения множеств E_k . Поскольку множества E_k не имеют общих точек, объединение разбиений $P:=P_0\cup P_1\cup P_2$ является разбиением

объединения $E=G_1\cup G_2=E_0\cup E_1\cup E_2$. В силу п. 2 теоремы 3.1, разбиения P_k можно выбрать такими, чтобы разности $V_{P_k}(f)<\varepsilon/3$, где $\varepsilon>0$ произвольное. Тогда разность

$$V_P(f) = V_{P_0} + V_{P_1}(f) + V_{P_2}(f) < \varepsilon,$$

что доказывает существование интеграла на объединении E. Теперь можно составить интегральную сумму Римана, подчиненную разбиению $P = P_0 \cup P_1 \cup P_2$, и перейти к пределу при условии, что мелкость стремиться к нулю:

$$S_{P,\Xi}(f) := S_{P_0,\Xi_0}(f) + S_{P_1,\Xi_1}(f) + S_{P_2,\Xi_2}(f) \overset{p \to 0}{\to} \int\limits_{E_0} f dx + \int\limits_{E_1} f dx + \int\limits_{E_2} f dx.$$

С другой стороны,

$$S_{P_0 \cup P_1, \Xi}(f) := S_{P_0, \Xi_0}(f) + S_{P_1, \Xi_1}(f) \overset{p \to 0}{\to} \int\limits_{E_0 \cup E_1} f dx = \int\limits_{G_1} f dx,$$

$$S_{P_0 \cup P_2, \Xi}(f) := S_{P_0, \Xi_0}(f) + S_{P_2, \Xi_1}(f) \stackrel{p \to 0}{\to} \int_{E_0 \cup E_2} f dx = \int_{G_2} f dx,$$

что доказывает утверждение.

Доказательство п. 3 следует из аддитивности интеграла и оценок

$$\left| \int_{G} f(x)dx - \int_{G_{i}} f(x)dx \right| = \left| \int_{G \setminus G_{i}} f(x)dx \right| \leq \sup_{G} |f(x)| \ \mu(G \setminus G_{i}) =$$

$$= \sup_{G} |f(x)| \ (\mu(G) - \mu(G_{i})) \to 0 \text{ при } i \to \infty. \blacksquare$$

Из п. 2 теоремы 3.6 получаем

Следствие 3.2 (интегрирование и множество меры нуль).

- 1. Если функция f ограничена и интегрируема на измеримом множестве G, то при изменении ее значений на подмножестве $G' \subset G$ меры ноль (c сохранением ограниченности) ее интегрируемость сохраняется, а величина интеграла не меняется.
- 2. Пусть функция f определена и ограничена на замыкании \overline{G} измеримого множества. Тогда, если интегралы

$$\int_{G} f(x)dx, \quad \int_{\overline{G}} f(x)dx, \quad \int_{\text{int } G} f(x)dx$$

существуют, то все три одновременно, и при этом они равны.

3.4. Элементарное множество

В этом пункте мы обобщим теорему о площади криволинейной трапеции и заодно подготовимся к теореме о *повторном* интеграле. Напомним, что подграфиком непрерывной неотрицательной функции ψ , определенной на замкнутом измеримом множестве $G \subset \mathbb{R}^n$, мы называем множество

Under
$$Gr(\psi) = UGr(\psi) := \{(x, y) \in G \times \mathbb{R}_0^+ : 0 \le y \le \psi(x)\} \subset \mathbb{R}^{n+1}$$
.

Ранее было доказано, что подграфик – измеримое множество. Следующее понятие является обобщением понятия подграфика:

Определение 3.3. Множество $F \subset \mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}^1$ называется элементарным относительно оси $x_{n+1} = y$, если существуют такое измеримое замкнутое множество $G \subset \mathbb{R}^n$ и такие непрерывные функции $\varphi, \psi : G \to \mathbb{R}$, удовлетворяющие оценке $\varphi(x) \leq \psi(x)$ на G, что

$$F = \{(x_1, \dots, x_n, y) = (x, y) : x \in G \land (\varphi(x) \le y \le \psi(x))\}.$$

ТЕОРЕМА 3.7. Элементарное множество измеримо и

$$\mu(F) = \int_{G} (\psi(x) - \varphi(x)) dx. \tag{3.3}$$

Доказательство. Мы построим два объединения цилиндров: объединение A – вписанное в F, а B – описанное около F. Затем покажем, что меры A и B есть суммы Дарбу интеграла (3.3).

Для произвольного разбиения $P(G) = \{G_i\}_{i=1}^N$ обозначим

$$m_i^{\varphi} = \inf_{x \in G_i} \varphi(x), \quad M_i^{\varphi} = \sup_{x \in G_i} \varphi(x), \quad m_i^{\psi} = \inf_{x \in G_i} \psi(x), \quad M_i^{\psi} = \sup_{x \in G_i} \psi(x);$$

$$A_i = \left\{ \begin{array}{ll} G_i \times [M_i^\varphi, m_i^\psi] \text{ при } M_i^\varphi \leq m_i^\psi, \\ \emptyset \text{ при } M_i^\varphi > m_i^\psi, \end{array} \right. \quad B_i = G_i \times [m_i^\varphi, M_i^\psi];$$

$$A = \bigcup_{i=1}^{N} A_i, \quad B = \bigcup_{i=1}^{N} B_i.$$

Поскольку мы доказали, что мера цилиндра с измеримым основанием равна произведению меры основания на высоту, то

$$\mu(A_i) = \left\{ \begin{array}{l} \mu(G_i)(m_i^\psi - M_i^\varphi) \text{ при } M_i^\varphi \leq m_i^\psi, \\ 0 \text{ при } M_i^\varphi > m_i^\psi, \end{array} \right.$$

$$\mu(B_i) = \mu(G_i) \cdot (M_i^{\psi} - m_i^{\varphi}).$$

По определению, при $i \neq j$ множества G_i, G_j пересекаются по подмножеству нулевой меры. Поэтому цилиндры A_i и A_j (а также B_i и B_j) также пересекаются по подмножеству нулевой меры (докажите). Следовательно,

$$\mu(A) = \sum_{i=1}^{N} \mu(A_i) \ge \sum_{i=1}^{N} \mu(G_i) \cdot (m_i^{\psi} - M_i^{\varphi}) = S_{*P}(\psi) - S_P^*(\varphi).$$

То есть мера множества A оценивается снизу разностью интегральных сумм. Поскольку $A \subset F$, а функции φ и ψ интегрируемы на G, то для нижней меры $\mu_*(F)$ (которая всегда существует) получаем нижнюю оценку:

$$\mu_*(F) \ge \mu(A) = S_{*P}(\psi) - S_P^*(\varphi) \implies$$

$$\mu_*(F) \ge \lim_{p(P) \to 0} (S_{*P}(\psi) - S_P^*(\varphi)) = \int_G (\psi(x) - \varphi(x)) dx.$$

Аналогично рассуждая, получаем верхнюю оценку для верхней меры:

$$\mu^*(F) \le \int_G (\psi(x) - \varphi(x)) dx,$$

что и доказывает теорему.

3.5. Сведение кратного интеграла к повторному

Сначала рассмотрим частный случай, когда множество, по которому осуществляется интегрирование, является цилиндром.

Теорема 3.8. (о повторном интеграле на цилиндре) Пусть $G \subset \mathbb{R}^n$ – измеримое множество, функция f задана на цилиндре $cyl(G) := G \times [a,b]$ и интегрируема на нем. Пусть для любой точки $x = (x_1,\dots,x_n) \in G$ существует интеграл $\int_a^b f(x,y) dy$. Тогда функция $g(x) := \int_a^b f(x,y) dy$ интегрируема на G и

$$\int_{cyl(G)} \dots \int_{cyl(G)} f(x_1, \dots, x_n, y) \ dx_1 \dots dx_n \ dy =$$

$$= \int_{G} \dots \int_{G} \left(\int_a^b f(x_1, \dots, x_n, y) dy \right) dx_1 \dots dx_n =$$

$$= \int_{G} \dots \int_{G} dx_1 \dots dx_n \int_a^b f(x_1, \dots, x_n, y) dy.$$

Полученный интеграл называют повторным.

Доказательство. Пусть $P(G)=\{G_i\}_{i=1}^N$ – произвольное разбиение мелкости $p(P)=\delta$ и $\Xi=\{\xi_i\}_{i=1}^N$ – произвольная выборка, подчиненная разбиению P. Пусть $Q([a,b])=\{[y_{j-1},y_j]\}_{j=1}^K$ – произвольное разбиение отрезка [a,b] мелкости $p(Q)=\sigma$. Введенные разбиения порождают специальное разбиение

$$P(G) \times Q([a,b]) = \{P_i \times [y_{j-1}, y_j]\}$$

и специальную выборку $\{(\xi_i,y_{j-1})\}$ $(i=1,\ldots,N;\ j=1,\ldots,K)$ цилиндра cyl(G). Из теоремы Пифагора следует, что мелкость ν специального разбиения равна $\nu=\sqrt{\delta^2+\sigma^2}$.

Нам надо доказать существование повторного интеграла

$$\int_{G} dx \int_{a}^{b} f(x,y) dy.$$

С этой целью мы сравним значение данного кратного интеграла с *произвольной* интегральной суммой Римана повторного интеграла; по ходу мы воспользуемся *специальной* интегральной суммой Римана данного кратного интеграла:

$$\Delta := \left| \int \dots \int_{cyl(G)} f(x_1, \dots, x_n, y) dx_1 \dots dx_n \ dy - \sum_{i=1}^N \left(\int_a^b f(\xi_i, y) dy \right) \mu(G_i) \right| \le$$

$$\le \left| \int \dots \int_{cyl(G)} f(x, y) \ dx dy - \sum_{i=1}^N \sum_{j=1}^K f(\xi_i, y_{j-1}) \ \mu(G_i) \ (y_j - y_{j-1}) \right| +$$

$$+ \left| \sum_{i=1}^N \sum_{j=1}^K f(\xi_i, y_{j-1}) \ \mu(G_i) \ (y_j - y_{j-1}) - \sum_{i=1}^N \left(\int_a^b f(\xi_i, y) dy \right) \mu(G_i) \right|$$

(мы воспользовались леммой о мере цилиндра). Возьмем произвольное $\varepsilon > 0$. Поскольку интеграл

$$\int_{cyl(G)} f(x,y) dx dy$$

существует, то его *любая* интегральная сумма сходиться к нему при единственном условии, что мелкость ν стремиться к нулю. Значит, первое слагаемое Δ_1 в оценке меньше, чем $\varepsilon/2$, если σ и δ выбраны достаточно малыми. Второе слагаемое Δ_2 оценивается так:

$$\Delta_2 \le \sum_{i=1}^N \left| \sum_{j=1}^K f(\xi_i, y_{j-1})(y_j - y_{j-1}) - \int_a^b f(\xi_i, y) dy \right| \, \mu(G_i).$$

Но $\sum_{j=1}^K f(\xi_i,y_{j-1})(y_j-y_{j-1})$ есть интегральная сумма интеграла $\int_a^b f(\xi_i,y)dy$, который, согласно условию, существует. Следовательно, для

каждого $i=1,\ldots,N$ существует такая мелкость σ_i разбиения Q_i отрезка [a,b], что

$$\left| \sum_{j=1}^{K} f(\xi_i, y_{j-1})(y_j - y_{j-1}) - \int_{a}^{b} f(\xi_i, y) dy \right| < \frac{\varepsilon}{2\mu(G)}.$$

Из N мелкостей σ_i выберем наименьшую, что обеспечит оценку

$$\Delta_2 \le \frac{\varepsilon}{2\mu(G)} \sum_{i=1}^N \mu(G_i) = \frac{\varepsilon}{2\mu(G)} \cdot \mu(G) = \frac{\varepsilon}{2}.$$

Следовательно, $\Delta = \Delta_1 + \Delta_2 < \varepsilon$. Поскольку ε произвольно, то, согласно определению 3.2, существует интеграл

$$\int \cdots \int_{G} \left(\int_{a}^{b} f(x_{1}, \dots, x_{n}, y) dy \right) dx_{1} \dots dx_{n} =$$

$$= \int \cdots \int_{G} dx_{1} \dots dx_{n} \int_{a}^{b} f(x_{1}, \dots, x_{n}, y) dy =$$

$$= \lim_{p(P) \to 0} \sum_{i=1}^{N} \left(\int_{a}^{b} f(\xi_{i}, y) dy \right) \mu(G_{i}) =$$

$$= \int \cdots \int_{Gd(G)} f(x_{1}, \dots, x_{n}, y) dx_{1} \dots dx_{n} dy. \blacksquare$$

Обобщением теоремы 3.8 является

ТЕОРЕМА 3.9. Пусть $F \subset \mathbb{R}^{n+1}$ – элементарное множество относительно оси x_{n+1} , т. е.

$$F = \{(x_1, \dots, x_n, x_{n+1}) : (x_1, \dots, x_n) \in G \land \varphi(x_1, \dots, x_n) \le x_{n+1} \le \psi(x_1, \dots, x_n)\},$$

где $G \subset \mathbb{R}^n$ – измеримое замкнутое множество, а функции φ и ψ непрерывны на G и всюду удовлетворяют оценке $\varphi \leq \psi$. Пусть функция f задана на множестве F и интегрируема на нем. Пусть для любой точки $(x_1, \ldots, x_n) \in G$ существует интеграл

$$g(x_1,\ldots,x_n) := \int_{\varphi(x_1,\ldots,x_n)}^{\psi(x_1,\ldots,x_n)} f(x_1,\ldots,x_n,x_{n+1}) \ dx_{n+1}.$$

Рис. 3.1

Тогда функция д интегрируема на G и

$$\int \cdots \int_{F} f(x_1, \dots, x_n, x_{n+1}) \ dx_1 \dots \ dx_n dx_{n+1} =$$

$$= \int \cdots \int_{G} dx_1 \dots \ dx_n \int_{\varphi(x_1, \dots, x_n)} f(x_1, \dots, x_n, x_{n+1}) \ dx_{n+1}.$$

Доказательство основано на замене элементарного множества F цилиндром с основанием G. Пусть

$$a = \min_{G} \varphi(x_1, \dots, x_n),$$

$$b = \max_{G} \psi(x_1, \dots, x_n),$$

$$cul(G) := G \times [a, b] \supset F.$$

Доопределим функцию f с множества F на цилиндр cyl(G) нулем (рис. 3.1), то есть построим функцию $\widetilde{f}: cyl(G) \to \mathbb{R}$ по формуле

$$\widetilde{f} = \begin{cases} f(x_1, \dots, x_n, x_{n+1}), & (x_1, \dots, x_n, x_{n+1}) \in F, \\ 0, & (x_1, \dots, x_n, x_{n+1}) \notin F. \end{cases}$$

Поскольку \widetilde{f} интегрируема на измеримых множествах F и $cyl(G)\setminus F$, то, в силу аддитивности интеграла и определения функции \widetilde{f} ,

$$\int_{cul(G)} \widetilde{f}(x)dx = \int_{F} \widetilde{f}(x)dx + \int_{cul(G)\backslash F} \widetilde{f}(x)dx = \int_{F} \widetilde{f}(x)dx = \int_{F} f(x)dx.$$

Но на цилиндре справедлива теорема 3.8. Поэтому, и опять же в силу определения функции \widetilde{f} , получаем

$$\int_{cyl(G)} \widetilde{f}(x)dx = \int \cdots \int_{G} dx_1 \dots dx_n \int_{a}^{b} \widetilde{f}(x_1, \dots, x_n, x_{n+1}) dx_{n+1} =$$

$$= \int \cdots \int_{G} dx_{1} \cdots dx_{n} \int_{\varphi(x_{1},\dots,x_{n})}^{\psi(x_{1},\dots,x_{n})} f(x_{1},\dots,x_{n},x_{n+1}) dx_{n+1}. \blacksquare$$

Если в условиях теоремы 3.9 множество G, в свою очередь, является элементарным относительно оси x_n и еще раз выполнены условия теоремы 3.9, то кратный интеграл

$$\int\limits_{G} g(x_1,\ldots,x_n) \ dx_1\ldots dx_n$$

можно заменить повторным:

$$\int \cdots \int_{F} f(x_1, \dots, x_n, x_{n+1}) \ dx_1 \dots dx_n \ dx_{n+1} =$$

$$= \int \cdots \int_{\widetilde{G}} dx_1 \dots dx_{n-1} \int_{\widetilde{\varphi}(x_1, \dots, x_{n-1})}^{\widetilde{\psi}(x_1, \dots, x_{n-1})} dx_n \int_{\varphi(x_1, \dots, x_n)}^{\psi(x_1, \dots, x_n)} f(x_1, \dots, x_{n+1}) dx_{n+1}.$$

Чтобы проверить, является ли множество G элементарным относительно оси x_n , нужно $cnpoe\kappa muposamb$ его на дополнительное подпространство \mathbb{R}^{n-1} вдоль выбранной оси x_n ; получим проекцию $\widetilde{G} \subset \mathbb{R}^{n-1}$, которую следует рассмотреть как возможную область определения тех функций $\widetilde{\varphi}$ и $\widetilde{\psi}$, графики которых ограничивают элементарное множество G. На практике особенно важен случай, когда удается кратный интеграл свести к цепочке одномерных. В этом случае есть надежда на применение формулы Ньютона—Лейбнипа.

Если множество, по которому осуществляют интегрирование, не является элементарным, то нужно попытаться разбить его на элементарные подмножества. Для множеств, граница которых состоит из конечного количества гладких поверхностей, такое разбиение всегда возможно.

Не исключено, что теорему 3.9 можно применить к разным координатам. В этом случае говорят об изменении порядка интегрирования в повторном интеграле. Если F – плоское множество, и теорема 3.9 применима по каждой оси, то (см. рис. 3.2)

$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) dy = \int_{c}^{d} dy \int_{\alpha(y)}^{\beta(y)} f(x, y) dx.$$
 (3.4)

Формула (3.4) понадобиться нам для вычисления несобственных интегралов.

ТЕОРЕМА 3.10. Пусть $G \subset \mathbb{R}^{n+1}$ – замкнутое измеримое множество, проекция которого на ось $y := x_{n+1}$ есть отрезок [a,b]. Пусть для произвольного $c \in [a,b]$ сечение множества G n-мерной плоскостью y = c есть

Рис. 3.2

Рис. 3.3

измеримое n-мерное подмножество G(c). Пусть функция f интегрируема на G и для любого $c \in [a,b]$ существует интеграл

$$\int_{G(c)} f(x_1, \dots, x_n, c) \ dx_1 \dots dx_n.$$

Тогда функция

$$h(y) := \int_{G(y)} f(x_1, \dots, x_n, y) \ dx_1 \dots dx_n$$

uнтегрируема на [a,b] u

$$\int \cdots \int_G f(x_1, \dots, x_n, y) \ dx_1 \dots dx_n dy =$$

$$= \int_a^b dy \int_{G(y)} f(x_1, \dots, x_n, y) \ dx_1 \dots dx_n.$$

По сравнению с теоремой 3.9 в последней изменился порядок интегрирования.

4. Замена переменных в кратном интеграле

4.1. Геометрические свойства меры Жордана

- 1) Сдвигом точечного пространства \mathbb{R}^n на вектор $E \in \mathbb{V}^n$ называется его преобразование $\mathcal{T}_E(x) = \mathcal{T}(x) := x + E$.
- 2) **Аффинным** преобразованием \mathcal{A} точечного пространства \mathbb{R}^n называется композиция сдвига пространства \mathbb{R}^n и линейного преобразования векторного пространства \mathbb{V}^n , порожденного некоторой квадратной (порядка n) матрицей A:

$$\mathcal{A}(x) = ((\mathcal{T} \circ A)x)^{T} = (Ax + E)^{T}. \tag{4.1}$$

Преобразование A является сдвигом, если матрица A – единичная.

3) Аффинное преобразование \mathcal{A} называется движением пространства \mathbb{R}^n , если оно сохраняет расстояние между двумя любыми точками:

$$d(\mathcal{A}(x), \mathcal{A}(y)) = d(x, y), \quad \forall x, y \in \mathbb{R}^n.$$

Аффинное преобразование A, заданное формулой (4.1), является движением, если линейное преобразование A является **ортогональным** преобразованием евклидова пространства \mathbb{V}^n , то есть оно сохраняет скалярное произведение:

$$(\mathcal{A}oldsymbol{x},\mathcal{A}oldsymbol{y})=(oldsymbol{x},oldsymbol{y}) \ \ orall oldsymbol{x},oldsymbol{y}\in\mathbb{V}^n.$$

4) Если в формуле (4.1) матрица A симметрическая $(A = A^T)$, то соответствующее аффинное преобразование \mathcal{A} действует как растяжение с коэффициентами $\lambda_1, \ldots, \lambda_n$, являющихся собственными значениями матрицы A, вдоль n попарно ортогональных направлений, которые соответствуют собственными векторам матрицы A. В каноническом ортонормированном базисе, составленном из этих векторов, матрица A преобразуется к диагональному виду $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

5) Если в формуле (4.1) матрица A диагональная с одинаковыми элементами $\lambda \neq 0$, то соответствующее аффинное преобразование $\mathcal A$ называется гомотетией с коэффициентом $\lambda \neq 0$ и обозначается H_{λ} .

Многомерным (n-мерным) **параллелепипедом**, построенном на векторах v^1, \dots, v^n , называется множество

$$\Pi = \{x \in \mathbb{R}^n : x = (\alpha_1 \mathbf{v}^1 + \ldots + \alpha_n \mathbf{v}^n)^T, \alpha_i \in [0, 1], i = 1, \ldots, n\}.$$

Определение 4.1. Пусть $U, V \subset \mathbb{R}^n$ – открытые подмножества. Биекция $F: U \to V$ называется **диффеоморфизмом**, если она и обратное отображение непрерывно дифференцируемы: $F \in C^1(U)$ и $F^{-1} \in C^1(V)$.

Опираясь на теорему об обратном отображении можно доказать:

- 1) Непрерывно дифференцируемая биекция $F:U\to V$ открытых подмножеств является диффеоморфизмом только в том случае, когда в каждой точке $x\in U$ производная отображения невырождена, т. е. det $DF(x)\neq 0$.
 - 2) Композиция двух диффеоморфизмов является диффеоморфизмом.

ЛЕММА 4.1 (о сохранении меры при сдвиге). Мера измеримого множества не меняется при сдвиге: $\mu(\mathcal{T}(X)) = \mu(X)$.

Доказательство сразу следует из того, что сдвиг преобразует клетку в равную ей $\kappa nem xy$.

ЛЕММА 4.2 (об изменении меры при гомотетии). При гомотетии H_{λ} мера изменяется в $|\lambda|^n$ раз: $\mu(H_{\lambda}(X)) = |\lambda|^n \cdot \mu(X)$.

Доказательство сразу следует из того, что гомотетия преобразует клетку в *клетку*, причем мера клетки изменяется в $|\lambda|^n$.

ЛЕММА 4.3 (о сохранении меры шара при движении). *Мера шара при движении не меняется*.

Доказательство. Во-первых, нами доказано, что n-мерный шар — измеримое множество. Во-вторых, любой шар с центром в точке x^0 является образом шара moro жее paduyca с центром в начале координат при сдвиге на вектор x^0 . Поэтому все шары одинакового радиуса имеют одинаковую меру.

ЛЕММА 4.4 (о связи меры шара с его радиусом). Мера п-мерного шара пропорциональна n-й степени его радиуса, причем коэффициент пропорциональности зависит только от размерности n.

Доказательство. Два шара $\mathrm{Ball}^n(1,O)$ и $\mathrm{Ball}^n(R,O)\subset\mathbb{R}^n$ радиусов $R_1=1$ и $R_2=R$ с центром в начале координат гомотетичны с коэффициентом гомотетии $\lambda=R$. Согласно лемме 4.2, отношение мер шаров равно R^n . Поэтому

$$\mu(\operatorname{Ball}^n(R, O)) = \mu(\operatorname{Ball}^n(1, O)) \cdot R^n.$$

Пусть $Q^n(a,O):=[-a,a]^n\subset\mathbb{R}^n$ есть клетка-куб со стороной 2a>0, центр которой совпадает с точкой O. По аналогии с двумерным и трехмерным случаями, шар $\operatorname{Ball}^n(a\sqrt{n},O)$ назовем описанным около куба, а шар $\operatorname{Ball}^n(a,O)$ – вписанным в куб.

Легко видеть, что $\mathrm{Ball}^n(a,O)\subset Q^n(a,O)\subset \mathrm{Ball}^n(a\sqrt{n},O)$, причем вершины куба принадлежат сфере описанного шара, а центры граней куба – сфере вписанного шара.

Лемма 4.5 (о связи мер шара и куба). Отношения мер

$$\Gamma_n := \frac{\mu(\operatorname{Ball}^n(a\sqrt{n}, O))}{\mu(Q^n(a, O))} > 1, \quad \gamma_n := \frac{\mu(\operatorname{Ball}^n(a, O))}{\mu(Q^n(a, O))} \in (0, 1)$$

описанного шара и куба и вписанного шара и куба соответственно есть величины постоянные, зависящие только от размерности пространства.

Доказательство сразу следует из леммы 4.4.

Напомним, что клеточным мы называем множество, являющиеся объединением клеток, которые попарно не пересекаются по внутренним точкам; такое объединение мы назвали стыковкой клеток.

ЛЕММА 4.6. Пусть X – измеримое множество. Пусть $K_{\rm int} \subset X \subset K_{\rm ext}$ – вписанное в X и описанное около X клеточные множества. Тогда $\forall \varepsilon > 0$ существуют клеточные множества $Q_{\rm int}$ и $Q_{\rm ext}$, являющиеся стыковкой клеток-кубов и обладающие свойствами:

$$Q_{\rm int} \subset K_{\rm int} \subset X \subset K_{\rm ext} \subset Q_{\rm ext}$$

$$\mu(K_{\rm int}) - \mu(Q_{\rm int}) < \varepsilon, \quad \mu(Q_{\rm ext}) - \mu(K_{\rm ext}) < \varepsilon.$$

Другими словами, измеримость множества и его меру можно определить, пользуясь только клеточными множествами, состыкованными из клеток-кубов.

ЛЕММА 4.7. (о сохранении измеримости при диффеоморфизме) Пусть $F: U \to V \subset \mathbb{R}^n$ – диффеоморфизм областей, $X \subset U$ есть измеримое компактное подмножество. Тогда образ Y:=F(X) – измеримое множество.

ЛЕММА 4.8. (о заполнении измеримого множества шарами) В любое измеримое множество X положительной меры можно вложить конечное не пересекающееся объединение $B:=\cup_i B_i\subset X$ шаров B_i одинакового (достаточно малого) радиуса, обладающее свойством $\mu(B)/\mu(X)\geq \chi=\chi(n)>0$, где коэффициент $\chi\in(0,1)$ зависит только от размерности пространства n. То есть шарами одинакового малого радиуса можно заполнить некую гарантированную χ -ю по мере часть множества X.

ТЕОРЕМА 4.1 (о сохранении меры при движении). Мера инвариантна относительно преобразования движения \mathcal{A} , т. е. для любого измеримого множества X его образ $\mathcal{A}(X)$ измерим и мера $\mu(\mathcal{A}(X)) = \mu(X)$. В частности, мера инвариантна относительно ортогональных преобразований.

Замечание 4.1. Из теоремы 4.1 следует, что мера плоских множеств совпадает с их площадью, а мера трехмерных – с их объемом, если понимать площадь и объем в духе классической евклидовой геометрии.

ТЕОРЕМА 4.2 (геометрический смысл модуля определителя). Справедливы утверждения:

- 1. Аффинное преобразование $\mathcal{A}(x) = (Ax + E)^T$, задаваемое матрицей A и вектором сдвига E, изменяет меру произвольного измеримого множества по правилу: $\mu(\mathcal{A}(X)) = |\det A| \cdot \mu(X)$.
- 2. Мера n-мерного параллелепипеда Π , построенного на векторах $\mathbf{v}^1, \dots, \mathbf{v}^n$, равна модулю определителя матрицы, столбцы которой образованы координатами векторов \mathbf{v}^i в произвольном ортонормированном базисе: $\mu(\Pi) = |\det(\mathbf{v}^1 \dots \mathbf{v}^n)|$.

Доказательство. Рассмотрим основной невырожденный случай $\det A \neq 0$. Пусть, пока, A – симметрическая матрица. Обозначим через $\{g_1,\ldots,g_n\}$ ортонормированные собственные векторы этой матрицы. В базисе $\{g^i\}_{i=1}^n$ данная матрица преобразуется к диагональному виду diag, где на i-м месте стоит собственное значение λ_i . Наконец, пусть A – ортогональная матрица, которая векторы g^i преобразует в векторы $e^i = (0,\ldots,1,\ldots,0)^T$ стандартного базиса $\{e^i\}_{i=1}^n$. Тогда $A = A^{-1} \cdot \operatorname{diag} \cdot A$. Диагональная матрица diag преобразует клетку в клетку, размеры которой изменяются по каждой оси в $|\lambda_i|$ раз. Поэтому diag изменяет меру клетки в $|\lambda_1 \cdot \ldots \cdot \lambda_n| = |\det A|$ раз. Следовательно, матрица diag изменяет меру любого измеримого множества в $|\det A|$ раз. Ортогональные матрицы A и изменяет меру в $|\det A|$ раз.

Пусть A – произвольная невырожденная матрица. Из курса линейной алгебры известно, что она представима в виде произведения ортогональной и симметрической матриц (полярное разложение). Значит, и в этом случае преобразование A изменяет меру в $|\det A|$ раз. Остается вспомнить, что сдвиг сохраняет меру. П. 1 доказан.

Утверждение п. 2 есть следствие того факта, что параллеленинед есть образ единичного куба при его отображении матрицей $(v^1 \dots v^n)$.

Замечание 4.2. Утверждение п. 2 для случая n=2 есть известное из аналитической геометрии правило нахождения площади параллелограмма, а при n=3 – правило нахождения объема параллелепипеда с помощью смешанного произведения.

4.2. Геометрический смысл модуля якобиана

ТЕОРЕМА 4.3. Пусть $F: \mathbb{R}^n \supset U \to V \subset \mathbb{R}^n$ — диффеоморфизм областей. Пусть $x^0 \in U$, а t>0. Рассмотрим n-мерный клетку-куб с вершиной в точке x^0 и ребром длины t:

$$Q(x^0, t) = \{x = x^0 + \mathbf{h} \in \mathbb{R}^n : 0 \le h_i \le t, i = 1, \dots, n\}.$$

Пусть постоянная $t^0 > 0$ такая, что $Q(x^0, t^0) \subset U$. Тогда:

1. Для любого $t \in (0,t^0)$ образ куба $F(Q(x^0,t))$ является измеримым множеством и справедливо предельное равенство:

$$\lim_{t \to +0} \frac{\mu(F(Q(x^0, t)))}{\mu(Q(x^0, t))} = \lim_{t \to +0} \frac{\mu(F(Q(x^0, t)))}{t^n} = |\det DF(x^0)|, \tag{4.2}$$

m. e. модуль якобиана диффеоморфизма в точке x^0 равен коэффициенту изменения меры в данной точке.

2. Если замыкание подмножества $\overline{W}\subset U$, то предел (4.2) равномерен на $\overline{W},$ т. е.

$$\begin{split} \forall \varepsilon > 0 \ \exists \delta : \ \forall x^0 \in \overline{W} \ \land \ \forall t < \delta \ \hookrightarrow \ |\nu(x^0,t)| < \varepsilon, \\ & \imath \partial e \ \nu(x^0,t) := |\det DF(x^0)| - \frac{\mu(F(Q(x^0,t)))}{t^n}. \end{split}$$

Доказательство. Обсудим идею доказательства. В окрестности точки x^0 отображение F представимо в виде

$$F(x) = F(x^{0} + \mathbf{h}) = F(x^{0}) + DF(x^{0})\mathbf{h} + \eta(x^{0}, \mathbf{h}),$$

где $\mathbb{V}^n \ni \eta(x^0, \boldsymbol{h}) = o(|\boldsymbol{h}|)$ при $|\boldsymbol{h}| \to 0$.

Ecnu отбросить остаточный член η , то оставшееся аффинное отображение $h \to F(x^0) + DF(x^0)h$ изменяет меру в точности в $|\det DF(x^0)|$ раз (п. 1 теоремы 4.2). Т. е. смысл теоремы в том, что в пределе невырожденное дифференцируемое отображение искажает меру так же, как его производная.

Приступим к доказательству. Во-первых, из леммы 4.7 следует измеримость образа $F(Q(x^0,t))$. Рассмотрим n-мерный векторный клетку-куб с ребром длины $t\colon Q(t)=\{\pmb{h}\in\mathbb{V}^n:\ 0\leq h_i\leq t,\ i=1,\dots,n\}$. Из п. 1 теоремы 4.2 следует, что предельное равенство (4.2) достаточно доказать для отображения

$$\widehat{F}: \ Q(t) \to \mathbb{V}^n,$$

$$\widehat{F}(\boldsymbol{h}) := (DF(x^0))^{-1} \circ (F(x^0 + \boldsymbol{h}) - F(x^0)) = \boldsymbol{h} + \sigma(\boldsymbol{h}),$$
 где $\sigma(\boldsymbol{h}) = (DF(x^0))^{-1} \eta(x^0, \boldsymbol{h}) = o(|\boldsymbol{h}|)$ при $|\boldsymbol{h}| \to 0$.

Рис. 4.1

Обозначим через

$$Q_c(4t) = \{ \mathbf{h} \in \mathbb{V}^n : -2t \le h_i \le 2t, i = 1, ..., n \}$$

n-мерный клетку-куб с qenmpom в начале координат точке O и ребром длины 4t. Так как $D\hat{F}(O)=D\hat{F}^{-1}(O)=Id$, то для всех достаточно малых t>0 верно вложение $\hat{F}^{-1}(Q(t))\subset Q_c(4t)$. Пусть $\sigma_{\max}(t):=\max_{\boldsymbol{h}\in Q_c(4t)}|\sigma(\boldsymbol{h})|$ (определение корректно в силу непрерывности отображения σ).

Из определения отображения \widehat{F} сразу следует, что образ куба $\widehat{F}(Q(t))$ целиком содержится в кубе $Q_{\mathrm{ext}}(t)$ с тем же центром и ребром $[-\sigma_{\mathrm{max}}(t),t+\sigma_{\mathrm{max}}(t)]$. Покажем, что образ куба $\widehat{F}(Q(t))$ целиком содержит куб $Q_{\mathrm{int}}(t)$ с тем же центром и ребром $[\sigma_{\mathrm{max}}(t),t-\sigma_{\mathrm{max}}(t)]$ (рис. 4.1). Пусть $\boldsymbol{y}\in Q_{\mathrm{int}}(t)$, тогда прообраз $\boldsymbol{h}=\widehat{F}^{-1}(\boldsymbol{y})\in Q_{c}(4t)$. Следовательно, $|\boldsymbol{y}-\boldsymbol{h}|=|\sigma(\boldsymbol{h})|\leq \sigma_{\mathrm{max}}(t)$, т. е. $\boldsymbol{h}\in Q(t)$ и $\boldsymbol{y}\in \widehat{F}(Q(t))$. Поэтому

$$(t - 2\sigma_{\max}(t))^n \le \mu(\widehat{F}(Q(t))) \le (t + 2\sigma_{\max}(t))^n \Leftrightarrow t^n \left(1 - 2\frac{\sigma_{\max}(t)}{t}\right)^n \le \mu(\widehat{F}(Q(t))) \le t^n \left(1 + 2\frac{\sigma_{\max}(t)}{t}\right)^n.$$

Максимум $\sigma_{\max}(t) = \max_{\boldsymbol{h} \in Q(t)} |\sigma(\boldsymbol{h})|$ достигается при каком-то значении $\boldsymbol{h}^*(t) \in Q(t)$. Если для всех допустимых t > 0 верно $|\boldsymbol{h}^*(t)| > 0$, то полученную двустороннюю оценку можно записать так:

$$\begin{split} t^n \left(1 - 2\frac{|\sigma(\boldsymbol{h}^*(t))|}{|\boldsymbol{h}^*(t)|}\frac{|\boldsymbol{h}^*(t)|}{t}\right)^n &\leq \mu(\widehat{F}(Q(t))) \leq \\ &\leq t^n \left(1 + 2\frac{|\sigma(\boldsymbol{h}^*(t))|}{|\boldsymbol{h}^*(t)|}\frac{|\boldsymbol{h}^*(t)|}{t}\right)^n. \end{split}$$

Если же при некотором $\hat{t} > 0$ верно $|\boldsymbol{h}^*(\hat{t})| = 0$, то $|\sigma(\boldsymbol{h}^*(t))| \equiv 0$ для всех $t \in [0, \hat{t}]$; в этом случае положим $|\sigma(\boldsymbol{h}^*(t))|/|\boldsymbol{h}^*(t)| := 0$. В результате дробь

 $|\sigma({m h}^*(t))|/|{m h}^*(t)|$ определена для всех достаточно малых t>0. Но $|{m h}^*(t)|$ не больше диагонали n-мерного куба со стороной t, значит, $|{m h}^*(t)| \leq \sqrt{n} \cdot t$. Следовательно, при $t \to +0$ верно, что $|{m h}^*(t)| \to +0$, $|\sigma({m h}^*(t))| = o(|{m h}^*(t)|)$ и

$$1 \leftarrow \left(1 - 2\frac{|\sigma(\boldsymbol{h}^*(t))|}{|\boldsymbol{h}^*(t)|}\sqrt{n}\right)^n \le \frac{\mu(\widehat{F}(Q(t)))}{t^n} \le$$

$$\le \left(1 + 2\frac{|\sigma(\boldsymbol{h}^*(t))|}{|\boldsymbol{h}^*(t)|}\sqrt{n}\right)^n \to 1.$$

$$(4.4)$$

Но и определитель $\det D\widehat{F}(0) = \det(id) = 1$. Значит, равенство (4.2) доказано.

Докажем второе утверждение. Поскольку теперь мы рассматриваем произвольную точку $x^0 \in \overline{W}$, то возвращаемся от вспомогательного отображения \widehat{F} к исходному F (см. (4.3)). С этой целью умножим двустороннюю оценку (4.4) на $|\det DF(x^0)|$ и раскроем скобки с помощью бинома Ньютона. Из теоремы 4.2 и определения малого отображения σ следует, что исследуемая разность допускает оценку

$$\left\| \det DF(x^{0}) \right\| - \frac{\mu(F(Q(x^{0}, t)))}{t^{n}} \right\| \leq$$

$$\leq \left| \det DF(x^{0}) \right| \sum_{k=1}^{n} C_{n}^{k} 2^{k} \left(\frac{|\sigma(\boldsymbol{h}^{*}(t))|}{|\boldsymbol{h}^{*}(t)|} \sqrt{n} \right)^{k} \leq$$

$$\leq \left| \det DF(x^{0}) \right| \sum_{k=1}^{n} C_{n}^{k} 2^{k} \left(\frac{\|DF^{-1}(x^{0})\| \cdot |\eta(x^{0}, \boldsymbol{h}^{*}(t))|}{|\boldsymbol{h}^{*}(t)|} \sqrt{n} \right)^{k} \leq$$

$$\leq \frac{|\eta(x^{0}, \boldsymbol{h}^{*}(t))|}{|\boldsymbol{h}^{*}(t)|} \left(C_{1} + C_{2} \frac{|\eta(x^{0}, \boldsymbol{h}^{*}(t))|}{|\boldsymbol{h}^{*}(t)|} + \dots + C_{n} \left(\frac{|\eta(x^{0}, \boldsymbol{h}^{*}(t))|}{|\boldsymbol{h}^{*}(t)|} \right)^{n-1} \right), \tag{4.5}$$

где положительные коэффициенты C_k $(k=1,\ldots,n)$ непрерывно зависят от определителя $\det DF(x^0)$ и нормы $\|DF^{-1}(x^0)\|$ пока $x^0\in \overline{W}$. Поскольку F есть диффеоморфизм на области U, на компактном множестве $\overline{W}\subset U$ коэффициенты C_k ограничены.

Обозначим через $\mathrm{Ball}(r,\mathbf{0})\subset \mathbb{V}^n$ шар радиуса r с центром в нуле. Радиус r выбран настолько малым, чтобы точки $x+\mathbf{h}\in U$ при $(x,\mathbf{h})\in \overline{W} imes \overline{\mathrm{Ball}}(r,\mathbf{0})$ (компактность множества \overline{W} гарантирует, что такой радиус существует).

Исследуем числовую функцию от двух *n*-мерных переменных

$$\omega: \overline{W} \times \overline{\mathrm{Ball}}(r, \mathbf{0}) \to \mathbb{R},$$

$$\omega(x, \mathbf{h}) := \frac{|\eta(x, \mathbf{h})|}{|\mathbf{h}|} = \frac{|F(x + \mathbf{h}) - F(x) - DF(x)\mathbf{h}|}{|\mathbf{h}|}$$

при
$$\mathbf{h} \neq \mathbf{0} \wedge \omega(x, \mathbf{0}) := 0.$$

Мы утверждаем, что функция ω всюду непрерывна. Собственно, в доказательстве нуждается непрерывность в точках вида $(x^0,\mathbf{0})$. Докажем, что $\lim \omega(x,\boldsymbol{h}) = \omega(x^0,\mathbf{0}) = 0$ при $(x,\boldsymbol{h}) \to (x^0,\mathbf{0})$. С этой целью осуществим оценку сверху:

$$\begin{split} \omega(x, \boldsymbol{h}) &= \frac{|F(x + \boldsymbol{h}) - F(x) - DF(x)\boldsymbol{h}|}{|\boldsymbol{h}|} \leq \\ &\leq \frac{|(F(x + \boldsymbol{h}) - F(x^0 + \boldsymbol{h})) - (F(x) - F(x^0)) - (DF(x)\boldsymbol{h} - DF(x^0)\boldsymbol{h})|}{|\boldsymbol{h}|} + \\ &\quad + \frac{|F(x^0 + \boldsymbol{h}) - F(x^0) - DF(x^0)\boldsymbol{h}|}{|\boldsymbol{h}|} \leq \\ &\leq \frac{|(F(x + \boldsymbol{h}) - F(x^0 + \boldsymbol{h})) - (F(x) - F(x^0))|}{|\boldsymbol{h}|} + \\ &\quad + \|(DF(x) - DF(x^0))\| + \frac{|\eta(x^0, \boldsymbol{h})|}{|\boldsymbol{h}|}. \end{split}$$

Последнее слагаемое не зависит от переменной x и стремится к нулю при $h \to 0$ в силу определения отображения $\eta(x^0,h)$. Второе слагаемое не зависит от переменной h и стремится к нулю при $x \to x^0$ в силу непрерывной дифференцируемости отображения F. Первое слагаемое зависит от пары переменных (x,h). Для его исследования введем дифференцируемое отображение $\Delta F(x,h) := F(x+h) - F(x^0+h)$. Его производная по второму аргументу в точке (x,h) равна: $D_2(\Delta F)(x,h) = DF(x+h) - DF(x^0+h)$. Заметим, что

$$\Delta F(x, \mathbf{h}) - \Delta F(x, \mathbf{0}) = (F(x + \mathbf{h}) - F(x^{0} + \mathbf{h})) - (F(x) - F(x^{0})).$$

Поэтому

$$\frac{|(F(x+\boldsymbol{h})-F(x^0+\boldsymbol{h}))-(F(x)-F(x^0))|}{|\boldsymbol{h}|} = \frac{|\Delta F(x,\boldsymbol{h})-\Delta F(x,\boldsymbol{0})|}{|\boldsymbol{h}|} \leq$$

$$\leq \frac{\|D_2(\Delta F)(x,\vartheta \boldsymbol{h})\|\cdot |\boldsymbol{h}|}{|\boldsymbol{h}|} = \|DF(x+\vartheta \boldsymbol{h}) - DF(x^0+\vartheta \boldsymbol{h})\|, \text{ где } \vartheta \in (0,1).$$

Но $\|DF(x+\vartheta h) - DF(x^0+\vartheta h)\| \to 0$ при $(x,h) \to (x^0,0)$, опять же в силу непрерывной дифференцируемости F.

Значит, функция ω непрерывна на компактном множестве $\overline{W} \times \overline{\text{Ball}}(r, \mathbf{0})$. Из теоремы Кантора следует, что она равномерно непрерывна. Поэтому выражение в скобках в оценке (4.5) равномерно ограничено на $\overline{W} \times \overline{\text{Ball}}(r, \mathbf{0})$. Теперь, из равномерной непрерывности функции ω , в силу оценки (4.5), следует второе утверждение теоремы 4.3.

Рис. 4.2

4.3. Формула замены переменной в кратном интеграле

ЛЕММА 4.9. (о погружении множества нулевой меры в клетки-кубы) Пусть клетка-куб $Q_a = [0,a]^n \subset \mathbb{R}^n$ содержит множество нулевой меры $\Upsilon \subset Q$. Пусть $\bigcup_{i=1}^{k^n} q_i(k) = Q_a$ – разбиение куба на "малые" клетки-кубы со стороной a/k $k \in \mathbb{N}$. Обозначим через $I_k(\Upsilon)$ объединение всех таких номеров і кубов q_i , которые пересекаются с Υ . Тогда

$$\forall \varepsilon > 0 \ \exists k_0 : \ \forall k > k_0 \ \hookrightarrow \ \mu\Big(\bigcup_{i \in I_k(\Upsilon)} q_i\Big) < \varepsilon.$$

Обсуждение 4.1. По определению, множество нулевой меры может быть погружено в клеточное множество сколь угодно малой меры. В лемме сформулировано более тонкое свойство: если клетку, которая содержит множество меры ноль, разбивать на равные "малые" кубы так, чтобы мелкость разбиения стремилась к нулю, то автоматически множество нулевой меры будет погружено в клеточное множество сколь угодно малой меры.

Доказательство. Погрузим множество Υ в некоторое фиксированное клеточное множество $C=\cup_{j=1}^N C_j\subset Q_a$ меры $\varepsilon/2$. Покажем, что C можно погрузить в клеточное множество из малых клеток-кубов, мера которого меньше ε . Для этого оценим меру объединения $\cup_{i\in I_k(\Upsilon)}q_i(k)$ всех тех малых кубов $q_i(k)$, которые могут пересечься с C. Пусть $C_j\cap q_i(k)\neq\varnothing$, где клетка C_j имеет размеры $c_j^{(l)}$ ($l=1,\ldots,n$). Тогда клетка-куб $q_i(k)$ наверняка целиком принадлежит "раздутой" клетке C_j' с размерами $c_j^{(l)}+2a/k$ (рис. 4.2). Мера последней равна

$$\mu(C_j') = \left(c_j^{(1)} + \frac{2a}{k}\right) \cdot \ldots \cdot \left(c_j^{(n)} + \frac{2a}{k}\right) = c_j^{(1)} \cdot \ldots \cdot c_j^{(n)} + P_j^{(n)} \left(\frac{2a}{k}\right), \quad (4.6)$$

где $c_j^{(1)}\cdot\ldots\cdot c_j^{(n)}=\mu(C_j)$, а $P_j^{(n)}\left(2a/k\right)$ – многочлен по переменной 2a/k степени n, у которого все коэффициенты положительны, а свободный член

равен нулю. Поэтому $P_j^{(n)}\left(2a/k\right)=(1/k)R_j^{(n-1)}(1/k)$, где $R_j^{(n-1)}(1/k)$ – многочлен по степеням 1/k степени n-1 с положительными коэффициентами, которые определяются константами $c_j^{(i)}$ и a. Значит, $R_j^{(n-1)}(1/k) < R_j$, где R_j некоторая константа. Получаем, что

$$\Upsilon \subset \bigcup_{i \in I_k(\Upsilon)} q_i(k) \subset \bigcup_{j=1}^N C'_j$$

И

$$\mu\Big(\bigcup_{i\in I_k(\Upsilon)}q_i\Big) \le \mu\Big(\bigcup_{j=1}^N C_j'\Big) \le \sum_{j=1}^N \mu(C_j') \le \mu(C) + \sum_{j=1}^N \frac{1}{k}R_j < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

если натуральное k выбрано достаточно большим.

ТЕОРЕМА 4.4 (о замене переменных в интеграле). Пусть $F: \mathbb{R}^n \supset U \to V \subset \mathbb{R}^n$ – диффеоморфизм областей. Пусть $X \subset U$ – измеримое компактное подмножество, а Y = F(X). Пусть $f: Y \to \mathbb{R}$ – непрерывная функция. Тогда

$$\int_{Y} f(y)dy = \int_{X} f(F(x)) |\det DF(x)| dx.$$
(4.7)

Доказательство. Прежде всего заметим, что оба интеграла в равенстве (4.7) существуют: подынтегральные функции непрерывны, множество X измеримо по условию, а множество Y=F(X) измеримо в силу леммы 4.7. Поэтому любые последовательности разбиений множеств X и Y, у которых мелкости стремятся к нулю, устремляют интегральные суммы Римана к соответствующим интегралам из (4.7).

Погрузим множество X в клетку-куб Q_a . Рассмотрим разбиение куба $Q_a = \bigcup_{i=1}^{k^n} q_i(k)$ на малые клетки-кубы со стороной a/k, $k \in \mathbb{N}$. Все клетки разбиваются на три класса (рис. 4.3):

- 1) не пересекающиеся с X = X,
- 2) пересекающиеся с границей ∂X ,
- 3) целиком принадлежащие внутренности int (X).

Клетки из первого класса нас не интересуют. Объединение $\bigcup_{i \in I_k(\partial X)} q_i$ всех клеток из второго класса имеет сколь угодно малую меру, если k достаточно велико (лемма 4.9). Выберем в каждой клетке q_i , где $i \in I_k(\partial X)$, произвольную точку $\xi_i \in q_i \cap X$, составим для этих клеток интегральную сумму Римана и оценим ее модуль, опираясь на лемму 4.9:

$$\Big| \sum_{i \in I_k(\partial X)} f(F(\xi_i)) \mid \det DF(\xi_i) \mid \mu(q_i \cap X) \Big| \le$$

$$\leq \max_{y \in Y} |f(y)| \cdot \max_{x \in X} |\det DF(x)| \cdot \mu \Big(\bigcup_{i \in I_k(\partial X)} q_i\Big) \ \to \ 0 \ \text{при} \ k \to \infty; \eqno(4.8)$$

Рис. 4.3

в оценке (4.8) мы воспользовались непрерывностью функции f, непрерывностью производной DF, компактностью множества X и компактностью образа Y = F(X).

Обозначим через $J_k(\operatorname{int}(X))$ объединение всех таких номеров i кубов q_i , которые принадлежат третьему классу, т. е. $q_i \subset \operatorname{int}(X)$. Выберем в каждой клетке $q_i \subset \operatorname{int}(X)$ точку $\xi_i \in q_i$ с минимальным набором координат. (Если n=2, то это будет точка в левом нижнем углу, см. рис. 4.3. Такой выбор точки $\xi_i \in q_i$ позволит нам использовать теорему 4.2.) Тогда, с учетом (4.8), для интегральной суммы Римана получим предельное равенство:

$$\int_{X} f(F(x)) |\det DF(x)| dx =$$

$$= \lim_{k \to \infty} \left(\sum_{i \in I_{k}(\partial X)} f(F(\xi_{i})) |\det DF(\xi_{i})| \mu(q_{i} \cap X) +$$

$$+ \sum_{i \in J_{k}(\operatorname{int}(X))} f(F(\xi_{i})) |\det DF(\xi_{i})| \mu(q_{i}) \right) =$$

$$= \lim_{k \to \infty} \sum_{i \in J_{k}(\operatorname{int}(X))} f(F(\xi_{i})) |\det DF(\xi_{i})| \mu(q_{i}).$$

$$(4.9)$$

Таким образом, интеграл по X является пределом интегральной суммы Римана только по *внутренним* кубам разбиения.

Перейдем к интегралу в левой части равенства (4.7). Отображение F порождает разбиение множества $Y = \bigcup_{i=1}^{k^n} (F(q_i(k)) \cap Y)$ на "криволинейные" кубы. Из компактности множества X и непрерывной дифференцируемости отображения F следует, что мелкость разбиения множества Y стремится к

нулю при $k \to +\infty$. Поэтому интеграл по Y является пределом интегральной суммы Римана:

$$\int_{Y} f(y)dy =$$

$$= \lim_{k \to \infty} \left(\sum_{i \in I_{k}(\partial X)} f(F(\xi_{i}))\mu(F(q_{i} \cap X)) + \sum_{i \in I(\text{int }(X))} f(F(\xi_{i}))\mu(F(q_{i})) \right).$$

Для первой суммы, с учетом п. 2 теоремы 4.2 и леммы 4.3, получаем оценку

$$\begin{split} \Big| \sum_{i \in I_k(\partial X)} f(F(\xi_i)) \mu(F(q_i \cap X)) \Big| &\leq \sum_{i \in I_k(\partial X)} |f(F(\xi_i))| \; \mu(F(q_i)) \leq \\ &\leq \max_{y \in Y} |f(y)| \sum_{i \in I(\partial X)} (|\det DF(\xi_i)| + \nu(\xi_i, 1/k)) \mu(q_i) \leq \\ &\leq \max_{y \in Y} |(f(y))| \cdot (\max_{x \in X} |\det DF(x)| + \varepsilon) \cdot \mu \Big(\bigcup_{i \in I_k(\partial X)} q_i\Big) \; \to \; 0 \; \text{при } k \to \infty. \end{split}$$

Для второй суммы получаем

$$\sum_{i \in J_k(\text{int }(X))} f(F(\xi_i))\mu(F(q_i)) =$$

$$= \sum_{i \in J_k(\text{int }(X))} f(F(\xi_i))(|\det DF(\xi_i)| + \nu(\xi_i, 1/k))\mu(q_i).$$

Но, в силу п. 2 теоремы 4.3, $|\nu(\xi_i,1/k)|\to 0$ при $k\to\infty$ равномерно по всем $\xi_i\in X$. Поэтому

$$\lim_{k \to \infty} \sum_{i \in J_k(\text{int }(X))} f(F(\xi_i)) \mu(F(q_i)) =$$

$$= \lim_{k \to \infty} \sum_{i \in J_k(\text{int }(X))} f(F(\xi_i)) |\det DF(\xi_i)| \mu(q_i).$$

Сравнивая с (4.9), получаем утверждение теоремы.

Формула (4.7) замены переменной позволяет усилить теорему 4.3 о модуле якобиана:

Следствие 4.1. В условиях теоремы 4.3 рассмотрим $\Omega_t \subset U$ — множество измеримых областей, зависящих от числового параметра $t \in (0, \delta)$ и удовлетворяющих условиям:

- 1) $\partial uamemp\ diam(\Omega_t) \to 0\ npu\ t \to +0$,
- 2) пересечение $\cap_{t\in(0,\delta)}\Omega_t=x^0$. Тогда

$$\lim_{t \to +0} \frac{\mu(F(\Omega_t))}{\mu(\Omega_t)} = |\det DF(x^0)|. \tag{4.10}$$

Можно сказать, что "дифференциал меры" зависимой переменной y=F(x) выражается линейно через "дифференциал меры" независимой переменной с коэффициентом $|\det DF(x^0)|$. Подчеркивая аналогию дифференциала меры с обычным дифференциалом, заметим, что в случае композиции диффеоморфизмов $F_2\circ F_1$ коэффициент искажения меры равен произведению коэффициентов, поскольку справедливо

$$|\det D(F_2 \circ F_1)(x^0)| = |\det DF_2(y^0)| \cdot |\det DF(x^0)|.$$

4.4. Геометрический смысл знака якобиана

ЛЕММА 4.10 (о двух классах базисов). Множество всех базисов пмерного пространства разбивается на два непересекающихся класса по следующему отношению: два базиса $\{e_1,\ldots,e_n\}$ и $\{g_1,\ldots,g_n\}$ принадлежат одному классу только тогда, когда матрица невырожденного линейного преобразования $A(e_i):=g_i$ имеет положительный определитель: $\det A>0$.

Доказательство. Указанное отношение является отношением эквивалентности поскольку оно:

- 1) рефлексивно: $id(e_i) = e_i$ и det(id) = 1 > 0;
- 2) симметрично: если $A^{-1}(\mathbf{g}_i) = \mathbf{e}_i$, то $\det(A^{-1}) = (\det A)^{-1} > 0$;
- 3) транзитивно: если $B(\boldsymbol{g}_i)=\boldsymbol{h}_i$ и $\det B>0$, то $(B\cdot A)(\boldsymbol{e}_i)=\boldsymbol{h}_i$ и $\det(B\cdot A)=\det B\cdot \det A>0$.

Остается только заметить, что для знака определителя невырожденной матрицы есть в точности две возможности – или быть положительным, или отрицательным. \blacksquare

Определение 4.2. Задать ориентацию в \mathbb{R}^n означает произвольно выбрать один из двух классов эквивалентных базисов и назвать его правым, а второй класс – левым.

Обсуждение 4.2. Во-первых, заметим, что в классе правых (левых) базисов имеются ортонормированные базисы. Во-вторых, чтобы поменять ориентацию базиса достаточно поменять местами два соседних базисных вектора (в том числе первый с последним). На плоскости традиционно правым называют ортонормированный базис $\{i,j\}$, в котором поворот по меньшему углу от первого вектора ко второму осуществляется против часовой стреми. В трехмерном пространстве традиционно правым называют базис $\{i,j,k\}$, в котором третий вектор определяется по правилу буравчика.

Заметим, что *выбор* поворота на плоскости против часовой стрелки возможен только в том случае, когда:

- 1) плоскость погружена в трехмерное пространство,
- 2) выбрана нормаль n к плоскости,

3) мы рассматриваем плоскость npomus направления нормали; базис $\{i, j, k\}$ на рис. 4.4 правый.

ТЕОРЕМА 4.5 (о знаке якобиана). Пусть $F: \mathbb{R}^n \supset U \to V \subset \mathbb{R}^n$ – диффеоморфизм областей. Если в какой-либо точке $x_0 \in U$ определитель $\det DF(x_0) > 0$, тогда в каждой точке $x \in U$ линейное преобразование DF(x) сохраняет ориентацию; если же $\det DF(x_0) < 0$, то в каждой точке $x \in U$ преобразование DF(x) меняет ее на противоположную.

Доказательство основано на *постоянстве знака якобиана*. Допустим, что в двух точках он противоположный. Соединим эти точки непрерывной кривой в U; тогда получим, в силу непрерывности определителя, такую точку $x \in U$, в которой $\det DF(x) = 0$. Последнее противоречит определению диффеоморфизма. Остается сослаться на определение 4.2.

5. Формула Грина

5.1. Ориентация замкнутой кривой

Пусть $\gamma \subset \mathbb{R}^2$ –плоская замкнутая кусочно-гладкая кривая (ЗКГК). Напомним (см. рис 5.1), что такая кривая непрерывна и состоит из конечного количества гладких $\partial y z$:

1. каждая из дуг задана вектор-функцией $r_i \in C^1[t_{i-1}, t_i]$:

$$\forall t \in (t_{i-1}, t_i) \hookrightarrow \mathbf{r}'_i(t) \neq \mathbf{0}, i = 1, \dots, N.$$

2. дуги правильно состыкованы в концаx:

$$r_i(t_i) = r_{i+1}(t_i) \ (i = 1, ..., N-1), \quad r_N(t_N) = r_1(t_0),$$

существуют односторонние производные $\mathbf{r}_i'(t_{i-1}+0) \neq \mathbf{0}$ и $\mathbf{r}_i'(t_i-0) \neq \mathbf{0}$;

3. вектор-функция ${m r}(t) := {m r}_i(t)$ для $t \in [t_{i-1}, t_i]$ инъективна.

Примем без доказательства "очевидное" (но трудно доказываемое) утверждение

Рис. 5.1

Рис. 5.2 К теореме Жордана.

Лемма 5.1 (теорема Жордана). Замкнутая кусочно-гладкая кривая γ разбивает плоскость \mathbb{R}^2 на две области – ограниченную $\Omega_{int}(\gamma)$ и неограниченную $\Omega_{ext}(\gamma)$ и является их общей границей:

$$\mathbb{R}^2 = \Omega_{\rm int}(\gamma) \cup \Omega_{\rm ext}(\gamma) \cup \gamma, \quad \partial \Omega_{\rm int}(\gamma) = \partial \Omega_{\rm ext}(\gamma) = \gamma.$$

Ограниченная область $\Omega_{\rm int}(\gamma)$ называется внутренностью кривой, неограниченная $\Omega_{\rm ext}(\gamma)$ – внешностью кривой.

Из теоремы о существовании обратного отображения следует, что в любой точке гладкости $t \neq t_i$ существует такой вектор внутренней нормали $n_{\rm int}(t) \perp r'(t)$, что точка $r(t) + \varepsilon n_{\rm int}(t) \in \Omega_{\rm int}$ для всех достаточно малых $\varepsilon > 0$. Мы знаем, что параметризация кривой уже задает ее ориентацию – порядок точек, порожденный ростом параметра. Оказывается, с помощью $n_{\rm int}(t)$ ориентацию замкнутой кривой можно согласовать с ориентацией всей плоскости:

Определение 5.1. Назовем ориентацию замкнутой кусочно-гладкой кривой положительной относительно внутренности $\Omega_{\rm int}(\gamma)$, если в каждой точке гладкости базис $\{r'(t), n_{\rm int}(t)\}$ правый.

ЛЕММА 5.2 (о корректности определения положительной ориентации). Если ориентация $3K\Gamma K$, порожденная ростом параметра t, положительная в одной точке гладкости, то она положительная в каждой точке гладкости.

Доказательство леммы для случая гладкой кривой сразу следует из компактности кривой и непрерывности вектор-функции $r'(t) \neq 0$ (обоснуйте). Случай кусочно-гладкой кривой примем без доказательства.

Перейдем к уточнению понятия линейной связности.

Определение 5.2. Плоская область G называется односвязной, если любая замкнутая кусочно-гладкая кривая $\gamma \subset G$ принадлежит области вместе со своей внутренностью: $\Omega_{\mathrm{int}}(\gamma) \subset G$.

Обсуждение 5.1. Множество G, будучи областью, уже линейно связно. Односвязность, интуштивно, означает, что область не имеет дырок.

Примеры 5.1. односвязных областей: 1) полуплоскость, 2) открытый круг, 3) внутренность многоугольника, 4) введенная в лемме 5.1 область $\Omega_{\rm int}(\gamma)$ (рис. 5.1).

Определение 5.3. Пусть замкнутые кусочно-гладкие кривые γ_j $(j=1,\ldots,N-1)$ попарно не пересекаются, принадлежат внутренности кусочно-гладкой кривой γ и не принадлежат внутренности друг друга:

$$\forall j \neq k \ (j, k = 1, \dots, N - 1) \ \hookrightarrow \ \gamma_j \cap \gamma_k = \varnothing, \ \gamma_j \subset \Omega_{\mathrm{int}}(\gamma), \ \gamma_i \not\subset \Omega_{\mathrm{int}}(\gamma_k)$$

(в этом случае замыкания внутренностей $\overline{\Omega}_{\rm int}(\gamma_j)\subset\Omega_{\rm int}(\gamma)$, puc. 5.3).

Область

$$\Omega_{\mathrm{int}}(\gamma, N) := \Omega_{\mathrm{int}}(\gamma) \setminus \bigcup_{j=1}^{N-1} \overline{\Omega}_{\mathrm{int}}(\gamma_j),$$

в которой N-1 "дырок" $\overline{\Omega}_{\mathrm{int}}(\gamma_j)$, называется N- связной, или, проще, – многосвязной.

Рис. 5.3

Граница N-связной области

$$\partial\Omega_{\mathrm{int}}(\gamma,N) = \gamma \cup \gamma_1 \cup \gamma_2 \ldots \cup \gamma_{N-1}$$

состоит из N связных компонент. Например, кольцо R является двусвязной областью: $\partial R = S^1_{\rm int} \cup S^1_{\rm ext}$ (рис. 5.3).

Определение 5.4. Граница $\gamma \cup \gamma_1 \cup \gamma_2 \dots \cup \gamma_{N-1}$ многосвязной области называется ориентированной положительно, если:

- 1) замкнутая кривая γ ориентирована положительно относительно своей внутренности $\Omega_{\rm int}(\gamma)$;
- 2) для каждого $j=1,\dots,N-1$ замкнутая кривая γ_j ориентирована отрицательно относительно своей внутренности $\Omega_{\mathrm{int}}(\gamma_j)$.

Образно говоря, правым мы называем такое направление обхода границы многосвязной области, при которой область остается слева (см. рис. 5.3).

5.2. Формула Грина

Напомним понятие криволинейного интеграла второго рода (КИВР). Пусть: $G \subset \mathbb{R}^2$ – область, содержащая кривую $\gamma = \widetilde{AB}$, которая задана гладкой вектор-функцией $\mathcal{R}(s) = (x(s),y(s))$ от натурального параметра $s \in [0,S]$ ($\overrightarrow{OA} = \mathcal{R}(0)$, $\overrightarrow{OB} = \mathcal{R}(S)$); $d\mathcal{R}(s) = (dx(s),dy(s))^T$ – дифференциал; $f(x,y) = (P(x,y),Q(x,y))^T$ ($(x,y) \in G$) – непрерывное векторное поле. КИВР по γ – это определенный интеграл

$$\int_{\gamma} Pdx + Qdy := \int_{0}^{S} (\boldsymbol{f}(\mathcal{R}(s)), d\mathcal{R}(s)).$$

Для кусочно-гладких кривых КИВР определяется как сумма интегралов по гладким дугам. Если кривая задана явно $y=\varphi(x)$, то из формулы замены переменной следует, что

$$\int_{\gamma} Pdx + Qdy = \int_{a}^{b} (P(x, \varphi(x)) + Q(x, \varphi(x))\varphi'(x))dx. \tag{5.1}$$

ТЕОРЕМА 5.1. (формула Γ рина для односвязной области) Π усть $G \subset \mathbb{R}^2$ – односвязная область, вектор-функция $f(x,y) = (P(x,y),Q(x,y))^T$ принадлежит классу $C^1(G)$, $\gamma \subset G$ – положительно ориентированная замкнутая кусочно-гладкая кривая, ограничивающая область $\Omega \subset G$ (т. е. $\gamma = \partial \Omega$). Тогда справедлива формула Γ рина:

$$\oint_{\partial\Omega} Pdx + Qdy = \iint_{\Omega} \left(\frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y} \right) dxdy.$$
 (5.2)

Обсуждение 5.2. Сравним формулу (5.2) с формулой Ньютона–Лейбница:

$$\int_a^b f(x)dx = \int_a^b F'(x)dx = F(b) - F(a), \text{ где } F \in C^1[a,b].$$

Последнюю мы привыкли трактовать так: интеграл непрерывной функции f по отрезку равен "интегралу" от ее первообразной F по ориентированной

Рис. 5.4

границе отрезка. Поскольку на отрезке любая непрерывная функция имеет первообразную, кажется, что только такая трактовка представляет интерес. Однако в случае функции нескольких переменных понятие первообразной отсутствует, но сохраняется понятие дифференцирования; точнее сказать, понятие дифференциального оператора. Формулы Ньютона—Лейбница и Грина единообразно следует понимать так: интегрирование данной функции по краю можно заменить интегрированием по внутренности, применив к данной функции специальный дифференциальный оператор.

Доказательство. Поскольку формула Грина линейна относительно векторного поля \boldsymbol{f} , достаточно доказать ее для одномерных полей $\boldsymbol{f}_1=(P,0)^T$ и $\boldsymbol{f}_2=(0,Q)^T$.

Предположим, дополнительно, что область Ω элементарна относительно обеих координатных осей. Т. е. существуют такие кусочно-гладкие функции $\varphi(x), \psi(x)$ ($x \in [a,b]$) и $\alpha(y), \beta(y)$ ($y \in [c,d]$), что (см. рис. 5.4)

$$\Omega = \{(x, y): x \in (a, b), \varphi(x) < y < \psi(x)\} =$$

$$= \{(x, y): y \in (c, d), \alpha(y) < x < \beta(y)\}.$$

Переходя от двойного интеграла к повторному, получаем для второго слагаемого

$$-\iint\limits_{\Omega}\frac{\partial P(x,y)}{\partial y}dxdy = -\int\limits_{a}^{b}dx\int\limits_{\varphi(x)}^{\psi(x)}\frac{\partial P(x,y)}{\partial y}dy =$$
$$\int\limits_{a}^{b}P(x,\varphi(x))dx - \int\limits_{a}^{b}P(x,\psi(x))dx =$$

$$\int_{\widetilde{ABCD}} Pdx + \int_{\widetilde{DE}} Pdx + \int_{\widetilde{EFMN}} Pdx + \int_{\widetilde{NA}} Pdx = \oint_{\partial\Omega} Pdx.$$

Переходя от интегралов по отрезку [a,b] к криволинейным интегралам, мы учли, во-первых, формулу (5.1) (взяв $Q\equiv 0$) и, во-вторых, что на вертикальных отрезках DE и NA криволинейный интеграл обнуляется, поскольку дифференциал $dx\equiv 0$ (отрезок DE задается явно как график функции $x=\psi(y)\equiv b$, значит $dx=0\cdot dy\equiv 0$).

Аналогично доказывается, что

$$\iint\limits_{\Omega} (\partial Q/\partial x) dx dy = \int\limits_{\partial \Omega} Q dy.$$

Это доказывает формулу (5.2).

Теперь рассмотрим случай, когда область Ω не является элементарной, но кусочно-гладкой кривой \widetilde{AC} ее можно разбить на две подобласти Ω_1 и Ω_2 , каждая из которых является элементарной относительно обеих осей (рис. 5.5). Поскольку

$$\int\limits_{\widetilde{CA}}Pdx+Qdy=-\int\limits_{\widetilde{AC}}Pdx+Qdy,$$

КИВР (в силу аддитивности) представим как сумма интегралов, к каждому из которых можно применить формулу (5.2):

$$\begin{split} \oint\limits_{\partial\Omega} Pdx + Qdy &= \int\limits_{\widetilde{ABC}} Pdx + Qdy + \int\limits_{\widetilde{CDA}} Pdx + Qdy = \\ &= \left(\int\limits_{\widetilde{ABC}} Pdx + Qdy + \int\limits_{\widetilde{CA}} Pdx + Qdy\right) + \\ &+ \left(\int\limits_{\widetilde{AC}} Pdx + Qdy + \int\limits_{\widetilde{CDA}} Pdx + Qdy\right) = \\ &= \int\limits_{\partial\Omega_1} Pdx + Qdy + \int\limits_{\partial\Omega_2} Pdx + Qdy = \\ &= \iint\limits_{\Omega_1} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy + \iint\limits_{\Omega_2} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy = \\ &= \iint\limits_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy. \end{split}$$

Рис. 5.5

Индукцией утверждение теоремы доказывается в том случае, когда Ω можно разбить кусочно-гладкими дугами на конечное количество областей, которые элементарны относительно обеих осей.

Доказательство формулы Грина для общего случая опускаем в виду его громоздкости. \blacksquare

Теорема 5.2. (формула Грина для многосвязной области) Пусть по-прежнему G – односвязная область, а вектор-функция $f(x,y) = (P(x,y),Q(x,y))^T$ принадлежит классу $C^1(G)$. Пусть $\Omega \subset G$ – N-связная область, ограниченная кусочно-гладкими замкнутыми кривыми: внешней γ и внутренними γ_i ($i=1,\ldots,N-1$). Пусть граница $\partial\Omega = \gamma \cup \gamma_1 \cup \ldots \cup \gamma_{N-1}$ ориентирована положительным образом. В этом случае формула (5.2) остается верной:

$$\oint_{\gamma \cup \gamma_1 \cup \dots \cup \gamma_{N-1}} Pdx + Qdy = \iint_{\Omega} \left(\frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y} \right) dxdy.$$
(5.3)

Докажем утверждение для двусвязной области (т. е. N=2). С помощью кусочно-гладких дуг \widetilde{AB} , \widetilde{CD} область Ω разбивается на две односвязные области Ω_1 и Ω_2 ; доказательство существования таких дуг опускаем, ограничившись рис. 5.6. Для каждой области Ω_i (i=1,2) запишем формулу (5.2) Грина и сложим полученные равенства, воспользовавшись ориентированностью КИВР:

$$\int_{\widetilde{AB}} = -\int_{\widetilde{BA}}, \quad \int_{\widetilde{CD}} = -\int_{\widetilde{DC}}.$$

В результате получим формулу (5.3). (Воспользовавшись рис. 5.6, дайте подробное доказательство утверждения).

Индукцией формула Грина доказывается для произвольного $N\in\mathbb{N}.$

Из формулы Грина сразу получаем

Рис. 5.6

Следствие 5.1 (о площади плоской области). Площадь (мера) плоской области Ω , которая ограничена кусочно-гладкой кривой $\partial\Omega$, вычисляется по формулам

$$S(\Omega) = \iint\limits_{\Omega} dx dy := \oint\limits_{\partial \Omega} x dy = -\oint\limits_{\partial \Omega} y dx = \frac{1}{2} \oint\limits_{\partial \Omega} x dy - y dx. \tag{5.4}$$

6. Поверхностные интегралы

6.1. Гладкие многомерные поверхности

Определение 6.1. Подмножество $S \subset \mathbb{R}^p$ называется n-мерной **простой гладкой поверхностью** в p-мерном пространстве, если S является образом отображения $\Phi: \mathbb{R}^n \supset V \to \mathbb{R}^p$, обладающего следующими свойствами:

- 1. n < p;
- 2. $V \subset \mathbb{R}^n$ область;
- 3. отображение Φ интективно, т. е. $\forall t^1, t^2 \in V, t^1 \neq t^2$ верно неравенство $\Phi(t^1) \neq \Phi(t^2);$
- 4. $\Phi \in C^1(V)$ и в каждой точке $t \in V$ ранг матрицы частных производных максимален, т. е. $\mathrm{rank}(D\Phi(t)) = n$.

Отображение Φ называют **параметризацией** поверхности, а переменную $t \in \mathbb{R}^n$ – параметром.

Обсуждение 6.1. Одна и та же поверхность всегда параметризована бесконечным количеством способов: если $K:\mathbb{R}^n\supset V'\to V$ есть биекция класса C^1 , производная которой в каждой точке невырождена, то отображение

$$\Phi':V'\to\mathbb{R}^p,\ \Phi'(t'):=\Phi(K(t'))$$

также является параметризацией (см. рис. 6.1). Можно доказать, что таким образом получаются все параметризации данной поверхности.

Зафиксируем все координаты параметра t, кроме одной t_j . Изменяя ее, получим кривую $\gamma_j \subset S$, принадлежащую данной поверхности, которая параметризована отображением $\Gamma_j(t_j) := \Phi(t_1^0, \dots, t_j, \dots t_n^0)$. В результате прямолинейная координатная сеть пространства \mathbb{R}^n преобразуется в криволинейную координатную сеть на S (рис. 6.1).

Рис. 6.1

Определение 6.2. Пусть $\Phi(t^0)=x^0\in S$ – фиксированная точка простой гладкой поверхности. Векторное подпространство $T_{x^0}S:=\operatorname{Im}(D\Phi(t^0))\subset \mathbf{V}^p$ (т. е. образ производной $D\Phi(t^0)$) называется касательным пространством к поверхности в точке x^0 .

Обсуждение 6.2. Отметим, что:

- 1. Требование максимальности ранга матрицы $D\Phi(t^0)$ означает, что поверхность в каждой точке имеет касательное пространство одной и той же размерности n.
- 2. В геометрических исследованиях удобно откладывать векторы $v \in T_{x^0}S$ касательного пространства от точки касания x^0 . В такой трактовке касательное пространство является точечным. Можно доказать, что расстояние от точки $x \in S$ поверхности до касательного пространства $T_{x^0}S$ есть величина более высокого порядка малости, чем расстояние от x до точки касания x^0 (рис. 6.2): $\rho(x, T_{x^0}S) = o(\rho(x, x^0))$ при $x \to x^0$, $x \in S$.

ЛЕММА 6.1 (о задании касательного пространства).

- 1. Касательное пространство не зависит от параметризации Φ поверхности.
- 2. Столбцы матрицы

$$D\Phi(t) = \begin{pmatrix} \frac{\partial \Phi_1(t)}{\partial t_1} & \cdots & \frac{\partial \Phi_1(t)}{\partial t_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \Phi_p(t)}{\partial t_1} & \cdots & \frac{\partial \Phi_p(t)}{\partial t_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial \Phi(t)}{\partial t_1} & \cdots & \frac{\partial \Phi(t)}{\partial t_n} \end{pmatrix}$$
(6.1)

образуют базис касательного пространства; каждый из столбиов является касательным вектором соответствующей кривой γ_j (puc. 6.1).

Доказательство п. 1. Из обсуждения 6.1 следует, что образ $\operatorname{Im}(D\Phi'(t')) = \operatorname{Im}(D\Phi(t) \circ DK(t'))$, где t = f(t'). Поскольку производная DK(t') невырождена, ее образом является все пространство \mathbf{V}^n . Поэтому $\operatorname{Im}(D\Phi'(t')) = \operatorname{Im}(D\Phi(t) \circ DK(t')) = \operatorname{Im}(D\Phi(t))$.

Утверждение п. 2 является прямым следствием геометрического смысла столбцов матрицы, определения касательного пространства и определения криволинейной координатной сети. ■

Примеры 6.1.

- 1) Гладкая незамкнутая кривая на плоскости или в пространстве есть 1-мерная простая гладкая поверхность.
- 2) Плоскость, эллиптический и гиперболический параболоиды, одна из полостей двуполостного гиперболоида 2-мерные простые гладкие поверхности в трехмерном пространстве.

Определение 6.3. Подмножество $S \subset \mathbb{R}^n$ называется n -мерной гладкой поверхностью в p-мерном пространстве, если S локально является n-мерной простой гладкой поверхностью. То есть у каждой точки $x \in S$ имеется окрестность, пересечение которой с S является n-мерной простой гладкой поверхностью.

Примеры 6.2.

- 1) Простая гладкая поверхность автоматически гладкая поверхность.
- 2) Замкнутая гладкая кривая.
- 3) Сфера, однополостный гиперболоид, тор 2-мерные гладкие поверхности (обоснование в конце пункта).

Применение параметризации для задания поверхности, во-первых, не всегда возможно; так, гладкую поверхность, которая не является простой, задать целиком одной параметризацией невозможно по определению. Вовторых, пользоваться параметризацией неудобно из-за ее аналитической громоздкости. Существует другой способ задания поверхности.

Определение 6.4. Пусть $S \subset \mathbb{R}^p$ – гладкая поверхность некоторой размерности n. Если отображение $F: \mathbb{R}^p \supset U \to \mathbb{R}^m$ такое, что $S = \{x \in U: F(x) = O_y\}$, то говорят о **неявном** способе задания поверхности S. Другими словами, поверхность $S = F^{-1}(O_y)$ есть полный прообраз точки O_y .

Аналитически применение неявного способа приводит к исследованию множества всех решений системы $F_i(x_1,\ldots,x_p)=0$ $(i=1,\ldots,m)$ из m уравнений с p неизвестными. Возникает вопрос: каким должно быть отображение F, чтобы оно порождало гладкую поверхность, и какой размерности будет эта поверхность?

ТЕОРЕМА 6.1 (о неявном задании поверхности). Пусть $m,p\in\mathbb{N}$ и $m< p,\ U\subset\mathbb{R}^p$ – область, отображение $F:U\to\mathbb{R}^m$ принадлежит классу

гладкости $C^1(U)$ и в каждой точке $x \in F^{-1}(O_y)$ ранг матрицы частных производных максимален (то есть $\operatorname{rank}(DF(x)) = m$). Тогда:

- 1. $S = F^{-1}(O_y)$ есть гладкая поверхность размерности n = p m;
- 2. касательное пространство к поверхности S в точке x есть ядро матрицы Якоби отображения F, m. e.

$$T_x S = Ker DF(x) = (DF(x))^{-1}(\mathbf{0}) =$$

$$= \{ \mathbf{v} \in \mathbf{V}^p : DF(x)\mathbf{v} = \mathbf{0} \}. \tag{6.2}$$

Замечание 6.1. Из теоремы следует, что каждое уравнение $F_i(x)=0$ "забирает" одну размерность в прообразе $F^{-1}(O_u)$.

Как известно из курса линейной алгебры, ранг матрицы равен количеству линейно независимых строк. Поскольку в условиях теоремы 6.1 rank(DF(x))=m максимален, то все строки матрицы DF(x) линейно независимы. Но транспонированная i-я строка есть вектор градиента функции $F_i(x)$. Следовательно, условие максимальности ранга матрицы частных производных геометрически равносильно линейной независимости m градиентов grad $F_i(x)$.

Определение 6.5. Линейную т-мерную оболочку векторов $\operatorname{grad} F_i(x), \ i=1,\ldots,m,$ называют нормальным подпространством N_xS к поверхности S в точке $x\in S$.

Следствие 6.1. Нормальное подпространство N_xS является ортогональным дополнением к касательному пространству T_xS :

а) в каждой точке $x=\Phi(t)$ справедливы $m\cdot n$ условий ортогональности:

$$\left(\operatorname{grad} F_i(x), \frac{\partial \Phi(t)}{\partial t_j}\right) = 0 \quad \forall i = 1, \dots, m, \ \forall j = 1, \dots, n;$$

б) прямая сумма указанных подпространств образует все р-мерное пространство: $T_xS \oplus N_xS = V^p$, где p = m + n.

Доказательство. Распишем полученное выше матричное равенство:

$$DF(x) \circ D\Phi(t) = O \Leftrightarrow$$

$$\begin{pmatrix} \frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_1(x)}{\partial x_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m(x)}{\partial x_1} & \cdots & \frac{\partial F_m(x)}{\partial x_p} \end{pmatrix} \circ \begin{pmatrix} \frac{\partial \Phi_1(t)}{\partial t_1} & \cdots & \frac{\partial \Phi_1(t)}{\partial t_n} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial \Phi_p(t)}{\partial t_1} & \cdots & \frac{\partial r_p(t)}{\partial t_n} \end{pmatrix} = O,$$

где $x=\Phi(t)$, а O – nyneeas матрица размером $m\times n$. Умножая i -ю строку левой матрицы на j-й столбец правой матрицы, получаем попарную ортогональность названных векторов.

На рис. 6.3 показаны два возможных случая размерностей касательного пространства и его ортогонального дополнения в трехмерном пространстве.

Так как касательное пространство T_xS имеет размерность n, а нормальное пространство N_xS является m=(p-n)-мерным, их прямая сумма является p-мерным подпространством, т. е. всем пространством. Значит, N_xS является ортогональным дополнением к T_xS .

Рис. 6.3

В заключение пункта обсудим различные аналитические задания двумерной сферы S^2 радиуса R. Во-первых, она задается *неявно одним* уравнением в \mathbb{R}^3 :

$$S^{2} = \{A(x, y, z): x^{2} + y^{2} + z^{2} - R^{2} = 0\}.$$

Поскольку в произвольной точке $A(x,y,z)\in S^2$ градиент grad $F=2(x,y,z)^T\neq \mathbf{0}$, сфера является гладкой двумерной поверхностью (теорема 6.1). Во-вторых, для фиксированной точки $A(x_0,y_0,z_0)\in S^2$ выберем какую-то координату, которая не равна нулю; пусть это $z_0\neq 0$. Тогда в некоторой окрестности точки A сфера задается явло функцией $z=\mathrm{sgn}(z^0)\cdot\sqrt{R^2-x^2-y^2}$.

Наконец, параметризуем сферу с помощью сферических координат

$$(\rho, \varphi, \vartheta) \in \mathbb{R}_0^+ \times [-\pi, \pi] \times [-\pi/2, \pi/2],$$

взяв $\rho = R = const$:

$$\Phi: [-\pi, \pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}^3, \ \Phi(\varphi, \vartheta) = (x, y, z),$$

где

$$x = R\cos\theta\cos\varphi, \quad y = R\cos\theta\sin\varphi, \quad z = R\sin\theta.$$

Обратим внимание на специфику этой параметризации:

- 1) отрезки $\{\vartheta=\pm\pi/2\}$ отображаются в северный полюс N и в южный полюс S соответственно: $\Phi(\varphi,\pm\pi/2)=(0,0,\pm R);$
 - 2) точки $(\pm \pi, \vartheta)$ отображаются в одну и ту же точку на сфере:

$$\Phi(\pm \pi, \vartheta) = (-R\cos\vartheta, 0, R\sin\vartheta);$$

Рис. 6.4

- 3) параметры (φ, ϑ) на географических картах называются «долготой» и «широтой» точки A:
- 4) криволинейную координатную сеть из «параллелей» ($\vartheta={\rm const}$) и «меридианов» ($\varphi={\rm const}$) мы видим на глобусе.

Значит, на открытом прямоугольнике $(-\pi,\pi)\times(-\frac{\pi}{2},\frac{\pi}{2})$ параметризация Φ является инъективной. Покажем, что ранг матрицы $D\Phi$ равен двум. Матрица Якоби равна

$$D\Phi(\varphi, \vartheta) = R \begin{pmatrix} -\cos\vartheta\sin\varphi & -\sin\vartheta\cos\varphi \\ \cos\vartheta\cos\varphi & -\sin\vartheta\sin\varphi \\ 0 & \cos\vartheta \end{pmatrix}.$$

Минор, порожденный двумя верхними строками, есть

$$\det R \left(\begin{array}{cc} -\cos\vartheta\sin\varphi & -\sin\vartheta\cos\varphi \\ \cos\vartheta\cos\varphi & -\sin\vartheta\sin\varphi \end{array} \right) = R^2 \frac{\sin 2\vartheta}{2}.$$

Следовательно $\mathrm{rank}(D\Phi(\varphi,\vartheta))\neq 0$ при $\vartheta\neq\frac{\pi}{2}$. Значит, во всех точках, кроме полюсов и меридиана $\vartheta=\pi$, выполнены требования определения 6.1. Поворотом осей декартовой системы (x,y,z) описанную параметризацию можно задать в любой точке сферы.

Замечание 6.2. Оказывается, всю сферу целиком параметризовать с учетом требований определения 6.1 невозможно, т. е. сфера НЕ является простой гладкой поверхностью.

6.2. Кусочно-гладкие поверхности

Итак, простой гладкой (двумерной) поверхностью в трехмерном пространстве (ПГП) мы называем образ $M=\mathrm{Im}(\Phi)\subset\mathbb{R}^3$ инъективного гладкого отображения Φ плоской области $G\subset\mathbb{R}^2$; причем в каждой точке $(u,v)\in G$ ранг матрицы производной максимален:

$$\operatorname{rank}(D\Phi(u,v)) = 2.$$

Нам удобно задавать поверхность отображением $r: G \to \mathbb{V}^3$, где $r(u,v) = \overrightarrow{O\Phi}(u,v)$ — радиус-вектор точки $\Phi(u,v)$. В дальнейшем мы не различаем точку и ее радиус-вектор.

Касательная плоскость $T_AM=\mathrm{Im}(D\boldsymbol{r}(u,v))$ к M в точке $A=\boldsymbol{r}(u,v)$ порождена линейно независимыми векторами частных производных, т.е. пара $\{\boldsymbol{r}'_u(u,v),\boldsymbol{r}'_v(u,v)\}$ является базисом в T_AM . Трехмерность объемлющего пространства позволяет использовать, кроме скалярного, векторное и смешанное произведения. Так, ортогональное дополнение N_AM представляет собой одномерное подпространство, порожденное векторным произведением $\boldsymbol{N}(A):=\boldsymbol{r}'_u(u,v)\times\boldsymbol{r}'_v(u,v)$. Из курса аналитической геометрии известно, что площадь (мера) параллелограмма $\mathrm{Par}(u,v)$, построенного на векторах $\boldsymbol{r}'_u(u,v),\boldsymbol{r}'_v(u,v)$, равна модулю векторного произведения: $\mu(\mathrm{Par}(u,v))=|\boldsymbol{N}(A)|$.

Определение 6.6. Пусть $\Omega \subset \mathbb{R}^2$ – плоская область, замыкание которой $\overline{\Omega} \subset G$, а граница $\partial \Omega$ является кусочно-гладкой замкнутой кривой. Образ $\overline{\Theta} := r(\overline{\Omega})$ называется ПГП с краем или куском. Краем ПГП называется образ границы плоской области: $\partial \Theta := r(\partial \Omega)$. Точки, не принадлежащие краю, называют точками гладкости.

Рис. 6.5

Примеры 6.3. кусков: многоугольник, сферический сегмент с краем.

Чтобы параметризовать сферический сегмент Θ , применим **стереографическую проекцию**:

$$\Phi: \mathbb{R}^2 \to S^2 \setminus \{N\}, \ \Phi(A') = A.$$

Область Ω – открытый круг с центром в южном полюсе сферы, граница $\partial\Omega$ – окружность, краем сферического сегмента является параллель $\partial\Theta$ ($B'\in\partial\Omega$, $B\in\partial\Theta$).

Рис. 6.6

Замечание 6.3. (о крае и границе) Поскольку $\overline{\Omega} \subset G$, кусок принадлежит ПГП M = r(G), а его край $\partial\Theta$ является пространственной кусочно-гладкой замкнутой кривой, т. е. конечным объединением краевых дуг $\partial\Theta = \cup_i \vartheta_i$, которые правильно состыкованы в концах C_i . Край поверхности совпадает с ее границей в том случае, когда поверхность плоская, т. е. принадлежит выделенной фиксированной плоскости. Заметим, что поверхность, принадлежащая пространству, не имеет внутренних точек – она вся состоит из граничных точек! Традиционно край поверхности обозначают как границу.

"Правильно сшитые" куски приводят к следующему понятию:

Определение 6.7. Кусочно-гладкой поверхностью (КГП) называется конечное объединение кусков $\Pi = \bigcup_{i=1}^{I} \overline{\Theta}_{i}$, которое удовлетворяет условиям:

- 1. два произвольных куска могут пересекаться или по нескольким общим краевым дугам $\vartheta_{ij} \subset \overline{\Theta}_i$ (соседние куски) и нескольким общим концам дуг C_{ij} , или только по нескольким общим концам дуг;
- 2. для любых двух произвольных кусков $\overline{\Theta}_i, \overline{\Theta}_k$ существует связывающий их набор соседних кусков: $\overline{\Theta}_i$ соседствует с $\overline{\Theta}_{i_1}$, который соседствует с $\overline{\Theta}_{i_2}$ и т. д., который соседствует с $\overline{\Theta}_k$;
- 3. три различных куска могут пересекаться не более, чем в концах дуг.

Возможные случаи правильно сшитых кусков и неправильно сшитых изображены на рис. 6.7. Для всех точек гладкости кусков $\overline{\Theta}_i$ определено понятие касательной плоскости к КГП и понятие нормали к ней.

Определение 6.8. **Край КГП**, если он не пуст, есть (конечное) объединение тех краевых дуг, которые НЕ являются общими для соседних кусков.

В силу определения, край КГП является кусочно-гладкой кривой. Примем без доказательства, что край КГП есть конечное объединение замкну-mux кусочно-гладких кривых.

Рис. 6.7

Примеры 6.4. кусочно-гладких поверхностей: двугранный угол, поверхность многогранника, коническая поверхность с краем, цилиндрическая поверхность с краем $\overline{Cyl} = S^1 \times [0,1]$ (край – *песвязное* объединение двух окружностей), лист Мебиуса с краем.

6.3. Поверхностный интеграл первого рода

ПИПР можно определить по аналогии с криволинейным интегралом первого рода: сначала конструктивно определить площадь поверхности в духе определения длины кривой (как супремум площадей вписанных многогранных поверхностей), затем определить интегральную сумму Римана и т. д. Однако такой путь является весьма сложным. Поэтому мы дадим только мотивацию ПИПР и сразу его аналитическое определение.

Пусть $\overline{\Theta}$ — ПГП с краем, параметризованная инъекцией замыкания $\overline{\Omega}$ (см. определение 6.6). Погрузим $\overline{\Omega}$ в "большой" квадрат со стороной a; разобьем стороны квадрата на k отрезков длины a/k — в результате квадрат разобьется на k^2 малых квадратов q_{ij} с вершинами Q_{ij} ($i,j=0,\ldots,k-1$). Рассмотрим только те малые квадраты, которые целиком принадлежат Ω . Объединение образов $\bigcup_{q_{ij}\subset\Omega} \boldsymbol{r}(q_{ij})\subset\Theta$ есть "почти" разбиение ПГП с краем на малые "криволинейные параллелограммы". Касательные к сторонам криволинейных параллелограммов суть векторы $\boldsymbol{r}'_u(Q_{ij})$ и $\boldsymbol{r}'_v(Q_{ij})$ (рис. 6.5). Наряду с малыми криволинейными параллелограммами рассмотрим малые параллелограммы \widehat{q}_{ij} , построенные на дифференциалах $\boldsymbol{r}'_u(Q_{ij})(du)$ и $\boldsymbol{r}'_v(Q_{ij})dv$, где du=dv=a/k. Каждый такой параллелограмм лежит в своем касательном пространстве $T_{A_{ij}}\Theta$, где $A_{ij}=\boldsymbol{r}(Q_{ij})$. Удобно прикрепить его именно к точке A_{ij} — получим "чешую" $\bigcup_{i,j}\widehat{q}_{ij}$, которая "близка" к ПГП при больших $k\mathbf{g}1$. Площади малых параллелограммов равны

$$\mu(\widehat{q}_{ij}) = |\mathbf{r}'_u(Q_{ij}) \times \mathbf{r}'_v(Q_{ij})| \, dudv.$$

Дифференциалом площади поверхности M в точке $A={m r}(Q),\,Q\in G,$ назовем полученное выражение

$$dS := |\boldsymbol{r}'_u(Q) \times \boldsymbol{r}'_v(Q)| \, dudv.$$

Заметим, что согласно данного определения, дифференциал площади зависит от параметризации поверхности; ниже будет показано, что это не так – дифференциал инвариантен относительно замены параметризации.

Описанная конструкция мотивирует

Определение 6.9. Пусть $f: \overline{\Theta} \to \mathbb{R}$ - непрерывная функция. Поверхностным интегралом первого рода от функции f по ПГП Θ называется двойной интеграл

$$\iint\limits_{\Theta} f(x,y,z)dS := \iint\limits_{\Omega} f(\boldsymbol{r}(u,v)) \cdot |\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)| \, du dv. \tag{6.3}$$

Замечание 6.4. Определение (6.3) сконструировано по принципу формулы (4.7) замены переменной в интеграле: вместо модуля якобиана стоит модуль векторного произведения частных производных. Отметим аналогию в обозначениях поверхностного интеграла первого рода и криволинейного интеграла первого рода.

Корректность определения 6.9 вытекает из следующей леммы:

Лемма 6.2. Интеграл (6.3) существует. Его вид не меняется при замене параметризации поверхности Θ .

Доказательство. Из определения области Ω , поверхности Θ и функции f следует, что подынтегральная функция непрерывна на измеримом компактном множестве $\overline{\Omega}$. Что влечет (см. теорему 3.4) существование интеграла (6.3).

Другая параметризация $\hat{r}: H \to M$ порождена некоторым диффеоморфизмом $F: H \to G$ плоских областей: $\hat{r}(s,t) = r(F(s,t))$, где $(s,t) \in H$. Диффеоморфизм F порождает $\Xi:=F^{-1}(\Omega)$ – плоскую область с кусочногладкой границей $\partial \Xi=F^{-1}(\partial \Omega)$. После замены переменных интеграл (6.3) примет вид

$$\begin{split} &\iint\limits_{\Theta} f(x,y,z)dS = \iint\limits_{\Omega} f(\boldsymbol{r}(u,v)) \cdot |\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)| du dv = \\ &= \iint\limits_{\Xi} f(\boldsymbol{r}(F(s,t))) \cdot |\boldsymbol{r}'_u(F(s,t)) \times \boldsymbol{r}'_v(F(s,t))| \cdot |\det DF(s,t)| ds dt. \end{split}$$

С другой стороны (согласно дифференцированию сложного отображения, линейности векторного произведения и его антикоммутативности) получаем

$$\begin{split} \widehat{\boldsymbol{r}}_s'(s,t) \times \widehat{\boldsymbol{r}}_t'(s,t) &= \\ &= \left(\frac{\partial \boldsymbol{r}}{\partial u} \frac{\partial F_1}{\partial s} + \frac{\partial \boldsymbol{r}}{\partial v} \frac{\partial F_2}{\partial s}\right) \times \left(\frac{\partial \boldsymbol{r}}{\partial u} \frac{\partial F_1}{\partial t} + \frac{\partial \boldsymbol{r}}{\partial v} \frac{\partial F_2}{\partial t}\right) = \end{split}$$

$$= \frac{\partial F_1}{\partial s} \frac{\partial F_2}{\partial t} \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) + \frac{\partial F_1}{\partial t} \frac{\partial F_2}{\partial s} \left(\frac{\partial \mathbf{r}}{\partial v} \times \frac{\partial \mathbf{r}}{\partial u} \right) =$$

$$= \frac{\partial F_1}{\partial s} \frac{\partial F_2}{\partial t} \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) - \frac{\partial F_1}{\partial t} \frac{\partial F_2}{\partial s} \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) =$$

$$= \det DF(s, t) \cdot (\mathbf{r}'_u \times \mathbf{r}'_v).$$

Следовательно,

$$|\widehat{\boldsymbol{r}}_s'(s,t) \times \widehat{\boldsymbol{r}}_t'(s,t)| = |\boldsymbol{r}_u' \times \boldsymbol{r}_v'| \cdot |\det DF(s,t)|. \tag{6.4}$$

Значит

$$\iint\limits_{\Xi} f(\widehat{\boldsymbol{r}}(s,t)) \cdot |\widehat{\boldsymbol{r}}_s'(s,t) \times \widehat{\boldsymbol{r}}_t'(s,t)| \ dsdt = \iint\limits_{\Theta} f(x,y,z) dS. \ \blacksquare$$

Замечание **6.5.** Из равенства (6.4) следует, что дифференциал площади поверхности

$$dS := | {m r}_u' imes {m r}_v' | \ du dv = | {m r}_u' imes {m r}_v' | \ (|\det DF(s,t)| \ ds dt) = | \widehat{m r}_s'(s,t) imes \widehat{m r}_t'(s,t) | \ ds dt$$
 инвариантен относительно замены переменных! Сравните этот результат с формулой (4.10) и комментарием к ней.

Частным случаем параметризации поверхности является ее явное задание, т. е. задание поверхности как графика гладкой функции $z=\varphi(x,y)$, где $(x,y)\in\overline{\Omega}$. В этой параметризации $r(x,y):=(x,y,\varphi(x,y))$. Определение (6.3) приобретает вид:

Следствие 6.2.

$$\iint_{\Theta} f(x, y, z) dS =$$

$$= \iint_{\Omega} f(x, y, \varphi(x, y)) \sqrt{1 + (\varphi'_{x})^{2} + (\varphi'_{y})^{2}} dx dy.$$
(6.5)

Доказательство. В самом деле, ${m r}'_x=(1,0,\varphi'_x)^T$ и ${m r}'_y=(0,1,\varphi'_y)^T$, поэтому

$$m{r}_x' imes m{r}_y' = (-arphi_x', -arphi_y', 1)^T,$$
 и следовательно, $|m{r}_x' imes m{r}_y'| = \sqrt{1+(arphi_x')^2+(arphi_y')^2}.$

Имея в виду принцип аддитивности, дадим

Определение 6.10. Для $K\Gamma\Pi$ $\Pi = \cup_{i=1}^I \overline{\Theta}_i$ положим

$$\iint_{\Pi} f(x, y, z)dS := \sum_{i=1}^{I} \iint_{\Theta_i} f(x, y, z)dS.$$
 (6.6)

Поскольку интеграл (6.3) по ПГП определен как кратный интеграл, а интеграл (6.6) по КГП определен как сумма интегралов по ПГП, то, в конечном итоге, имеет место утверждение, которое мы примем без доказательства:

ТЕОРЕМА 6.2. Поверхностный интеграл первого рода, во-первых, не зависит от разбиения поверхности на куски и, во-вторых, обладает свойством аддитивности.

Опираясь на мотивацию, изложенную выше, и аддитивность ПИПР, мы можем дать

Определение 6.11. *Площадью (плоской мерой)* простой гладкой поверхности Θ называют интеграл

$$\mu(\Theta) := \iint\limits_{\Theta} dS = \iint\limits_{\Omega} |\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)| \, du dv.$$

Площадью кусочно-гладкой поверхности $\Pi = \bigcup_{i=1}^{I} \overline{\Theta}_i$ полагаем сумму

$$\mu(\Pi) := \sum_{i=1}^{I} \mu(\Theta_i).$$

В качестве косвенного подтверждения естественности определения 6.11 докажем, что

Лемма 6.3. Площадь инвариантна относительно ортогонального преобразования $O: \mathbb{R}^3 \to \mathbb{R}^3$.

Доказательство. Из определения векторного произведения следует, что ортогональное преобразование сохраняет его модуль:

$$\forall E, F \; \hookrightarrow \; |O(E) \times O(F)| = |E \times F|.$$

Поэтому, а также в силу линейности преобразования O и правила дифференцирования сложного отображения, получаем:

$$\begin{split} \mu(O(\Theta)) := \int_{\Omega} |(O\boldsymbol{r})'_u \times (O\boldsymbol{r})'_v| \ dudv &= \iint_{\Omega} |O(\boldsymbol{r}'_u) \times O(\boldsymbol{r}'_v)| \ dudv = \\ &= \iint_{\Omega} |\boldsymbol{r}'_u \times \boldsymbol{r}'_v| \ dudv = \mu(\Theta). \ \blacksquare \end{split}$$

Вычисление ПИПР приводит к необходимости каждый раз находить модуль векторного произведения. Можно воспользоваться известной из аналитической геометрии формулой, которая выражает модуль векторного произведения через скалярное:

$$\forall E, F \; \hookrightarrow \; |E \times F| = \sqrt{E^2 F^2 - (E, F)^2}.$$

Мы получаем следующую формулу для вычисления ПИПР:

$$\iint\limits_{\Theta} f(x,y,z)dS := \iint\limits_{\Omega} f(\boldsymbol{r}(u,v)) \cdot \sqrt{(\boldsymbol{r}'_u)^2 (\boldsymbol{r}'_v)^2 - (\boldsymbol{r}'_u,\boldsymbol{r}'_v)^2} \ dudv.$$

Обсуждение 6.3. Дифференциал параметризации гладкой поверхности имеет вид $d\mathbf{r}(u,v) = \mathbf{r}'_u du + \mathbf{r}'_n dv$. Его скалярный квадрат

$$d\mathbf{r}^2 = (\mathbf{r}'_u du + \mathbf{r}'_v dv)^2 = (\mathbf{r}'_u, \mathbf{r}'_u) du^2 + 2(\mathbf{r}'_u, \mathbf{r}'_v) du dv + (\mathbf{r}'_v, \mathbf{r}'_v) dv dv$$

называется **первой квадратичной формой** поверхности. Коэффициенты первой квадратичной формы обычно обозначают через

$$E(u, v) := (\mathbf{r}'_u, \mathbf{r}'_u) = (\mathbf{r}'_u)^2,$$

$$F(u, v) := (\mathbf{r}'_u, \mathbf{r}'_v),$$

$$G(u, v) := (\mathbf{r}'_v, \mathbf{r}'_v) = (\mathbf{r}'_v)^2.$$

Формула (6.3) приобретает вид

$$\iint\limits_{\Theta} f(x,y,z)dS := \iint\limits_{\Omega} f(\boldsymbol{r}(u,v)) \cdot \sqrt{EG - F^2} \ dudv.$$

6.4. Ориентация кусочно-гладкой поверхности

Напомним те виды поверхностей, которые мы уже ввели:

- простая гладкая поверхность (без края и с краем),
- гладкая поверхность,
- кусочно-гладкая поверхность (у которой может быть край).

Целесообразно ввести подвиды кусочно-гладких поверхностей:

Определение 6.12. Кусочно-гладкую поверхность Θ мы называем гладкой поверхностью с краем= $\Gamma\Pi K$, если разность $\Theta\setminus\partial\Theta$ является гладкой поверхностью.

Определение 6.13. Замкнутой гладкой (кусочно-гладкой) поверхностью= $3\Gamma\Pi$ (ЗКГП) называют линейно связную $\Gamma\Pi$ (КГП), которая является границей некоторой ограниченной трехмерной области.

Примеры 6.5. ГПК: полусфера с краем, прямое произведение отрезка на окружность $[a,b] \times S^1$ – цилиндрическая поверхность с краем; ЗГП: сфера (граница шара), тор (граница "бублика"); ЗКГП: поверхности многогранников. Заметим, что граница ограниченной трехмерной области не обязана быть линейно связным множеством (удалим из открытого шара концентрический замкнутый шар меньшего радиуса, граница полученной области – объединение двух концентрических сфер.

Обсуждение 6.4. Требования, которые определение 6.13 предъявляет к поверхности, являются весьма жесткими: с одной стороны – локальное требование гладкости, с другой – глобальное требование быть линейно связной границей некоторой области. Примем без доказательства, что замкнутая поверхность не имеет края. Нетрудно проверить, что замкнутые поверхности являются компактными множествами. Нетривиальным является обратное утверждение: кусочно-гладкие компактные линейно связные поверхности без края в трехмерном пространстве являются замкнутыми. Уже в четырехмерном пространстве двумерные компактные поверхности без края могут не быть границами (точнее, краями) какой-то трехмерной поверхности. Например, проективная плоскость, бутылка Клейна.

Замечание 6.6. Замкнутая поверхность, конечно, замкнутое подмножество пространства; однако не наоборот.

Сейчас мы введем понятие ориентации поверхности, а потом согласуем с ней ориентацию края (если край существует, сравните с определением 5.1).

Определение 6.14. Гладкая поверхность Θ (с краем или без) называется ориентируемой, если на множестве ее точек гладкости существует непрерывное поле единичных нормалей, т. е. определено такое непрерывное отображение $n:\Theta \to \mathbb{V}^3$, что для любой точки $A \in \Theta$ справедливы условия:

- 1) |n(A)| = 1,
- 2) $\mathbf{n}(A) \perp T_A \Theta$.

Если непрерывное поле единичных нормалей существует, то умножив его на минус один, мы получим второе непрерывное поле единичных нормалей. Без доказательства примем "очевидное" утверждение:

Пемма 6.4. Если гладкая поверхность ориентируема, то существует в точности два непрерывных векторных поля единичных нормалей, отличающиеся знаком.

Выбор одного из названных полей задает ориентацию поверхности. В результате поверхность становится ориентированной.

ЛЕММА 6.5. Простые $\Gamma\Pi$ (с краем или без) и замкнутые $\Gamma\Pi$ ориентируемы.

Доказательство очевидно для простых поверхностей. Для них (см. п. 6.1) непрерывное поле единичных нормалей имеет вид

$$\boldsymbol{n}(A) = \pm \frac{\boldsymbol{N}(A)}{|\boldsymbol{N}(A)|} = \pm \frac{\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)}{|\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)|},$$
(6.7)

где именно $\mathit{выбор}$ знака перед дробью задает ориентацию ПГП.

Можно доказать, что у гладкой замкнутой (линейно связной!) поверхности Θ , ограничивающей область V, в каждой точке $A \in \Theta$ из двух единичных нормалей $\pm \boldsymbol{n}(A)$ одна и только одна является *внутренней* (т. е. $\boldsymbol{n}_{\mathrm{int}}(t) \bot T_A \Theta$, и точка $A + \varepsilon \boldsymbol{n}_{\mathrm{int}}(t) \in V$ для всех достаточно малых $\varepsilon > 0$, см. п. 5.1). Поле внутренних нормалей (как и поле внешних, рис. 6.8) определяет ориентацию.

Замечание 6.7. Одного требования гладкости недостаточно для ориентируемости. Существуют неориентируемые гладкие поверхности! Самым известным примером является лист Мебиуса.

Рис. 6.8

Рис. 6.9

Пусть $\overline{\Theta}$ – ПГП с краем. Опишем процедуру согласования ориентации Θ с ориентацией ее края $\partial \Theta$. Пусть граница прообраза $\partial \Omega$ ориентирована ее параметризацией $E(t)=(u(t),v(t))\;(t\in[0,T]).$ Пусть $Q=E(t_0)$ – произвольная точка гладкости, т. е. Q не совпадает с концом дуги. Тогда край ПГП параметризован вектор-функцией $\mathcal{R}(t):=\mathbf{r}(E(t)),$ а точка $A=\mathbf{r}(Q)$ также не совпадает с концом дуги. Таким образом, в точке A определен касательный к краю $\partial \Theta$ вектор

$$\overrightarrow{\tau}(A) := (\mathbf{r}(E))'(t_0) = D\mathbf{r}(Q) \cdot (E'(t_0)).$$

Далее, в точке Q определен вектор внутренней нормали $\boldsymbol{n}_{\mathrm{int}}(Q)$ к кривой γ . Поскольку $\overline{\Omega}\subset G$ (см. определение 6.6), то к вектору $\boldsymbol{n}_{\mathrm{int}}(Q)$ можно применить линейное отображение $D\boldsymbol{r}(Q):\mathbb{R}^2\to T_AM$. Получим вектор $\overrightarrow{\nu}(A):=D\boldsymbol{r}(Q)\cdot\boldsymbol{n}_{\mathrm{int}}(Q)$.

Наконец, в точке A определены в точности два вектора единичной нормали

$$\overrightarrow{\beta}(A) := \pm \boldsymbol{n}(A) \perp T_A M.$$

Поскольку отображение производной Dr(Q) имеет ранг два, а векторы E'(Q) и $n_{\text{int}}(Q)$ перпендикулярны, векторы $\overrightarrow{\tau}(A)$ и $\overrightarrow{\nu}(A)$ образуют базис в касательной плоскости T_AM . Следовательно, тройка

$$\{\overrightarrow{\tau}(A), \overrightarrow{\nu}(A), \overrightarrow{\beta}(A)\}\$$
 (6.8)

образует базис в \mathbb{V}^3 (рис. 6.10).

Рис. 6.10

Определение 6.15. (согласование ориентации ПГП с краем с ориентацией ее края) Назовем ориентацию края $\partial\Theta$ положительной относительно ПГП $\overline{\Theta}$, если в любой точке гладкости $A \in \partial\Theta$ базис (6.8) правый.

ЛЕММА 6.6. Если ориентация края ПГП положительная в одной точке гладкости края, то она положительная в каждой точке гладкости края.

Примем утверждение леммы без доказательства.

Определение 6.16. Кусочно-гладкая поверхность называется ориентируемой, если ее куски можно ориентировать согласованно, т. е. так, что положительные ориентации краев соседних кусков противоположны (рис. 6.7). \boxtimes

Обсуждение 6.5. Теперь понятно, что пункты 2 и 3 в определении 6.7 КГП предназначены для введения понятия согласования ориентации всех кусков. Чтобы ориентировать КГП нужно в одном куске ориентировать край; после чего разнести ориентацию по принципу противоположности по всем кускам. Если это получится, значит, во-первых, поверхность ориентируемая и, во-вторых, она нами ориентирована.

6.5. Поверхностный интеграл второго рода

Пусть на области $W\subset \mathbb{R}^3$ задано непрерывное векторное поле $m{f}:W o\mathbb{V}^3$

$$(x, y, z) \to f(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))^{T}.$$

Пусть $\Theta \subset W$ – ПГП, ориентированная непрерывным полем единичных нормалей n(x,y,z). Назовем **векторным дифференциалом площади** произведение $\overrightarrow{dS} := n \ dS$, где dS – дифференциал площади поверхности.

Определение 6.17. Поверхностным интегралом второго рода от непрерывного векторного поля $f = (P,Q,R)^T$ по ПГП Θ называется поверхностный интеграл первого рода

$$\iint_{\Theta} (\boldsymbol{f}, \overrightarrow{dS}) := \iint_{\Theta} (\boldsymbol{f}(x, y, z), \boldsymbol{n}(x, y, z)) dS.$$
 (6.9)

Первое обозначение является символическим (оно аналогично обозначению криволинейного интеграла второго рода); второе обозначение является ПИПР, в котором подынтегральная функция $f(x,y,z) := (f(x,y,z), \mathbf{n}(x,y,z))$ (см. формулу (6.3)).

ЛЕММА 6.7. Интеграл (6.9) существует. Его вид не меняется при замене параметризации поверхности Θ .

Доказательство. Существование интеграла следует из непрерывности функции

$$f(x, y, z) := (f(x, y, z), n(x, y, z)).$$

Поле нормалей n(x,y,z)) не зависит от параметризации (см. формулу (6.7) и лемму 6.1 о корректности определения касательной плоскости). Теперь корректность поверхностного интеграла второго рода вытекает из корректности определения интеграла первого рода.

Чтобы получить удобную формулу для вычисления ПИВР, вспомним, что смешанное произведение трех векторов $(E,F,G):=(E,F\times G)$. В произвольном ортонормированном базисе $(E,F,G)=\det(E^T,F^T,G^T)$, где второе выражение в скобках означает квадратную матрицу 3×3 , заполненную по строкам координатами указанных векторов.

ТЕОРЕМА 6.3 (о вычислении ПИВР). Пусть ПГП Θ параметризована вектор-функцией $r:\Omega\to\Theta$, где непрерывное поле единичных нормалей n(x,y,z) определяется формулой (6.7). Тогда

$$\iint_{\Theta} (\boldsymbol{f}(x,y,z), \boldsymbol{n}(x,y,z)) dS = \pm \iint_{\Omega} (\boldsymbol{f}, \boldsymbol{r}'_u, \boldsymbol{r}'_v) du dv.$$
 (6.10)

Доказательство немедленно следует из определения (6.3) ПИПР, определения (6.7) поля единичных нормалей и определения смешанного произведения:

$$\iint\limits_{\Theta} (\boldsymbol{f}(x,y,z),\boldsymbol{n}(x,y,z))dS =$$

$$= \pm \iint\limits_{\Omega} (\boldsymbol{f}, \frac{\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)}{|\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)|}) \cdot |\boldsymbol{r}'_u(u,v) \times \boldsymbol{r}'_v(u,v)| \cdot dudv =$$

$$=\pm\iint\limits_{\Omega}(m{f},m{r}'_u,m{r}'_v)dudv.$$

Следствие 6.3 (о вычислении ПИВР в случае явного задания ПГП). Пусть ПГП Θ является графиком гладкой функции $z=\varphi(x,y),$ где $(x,y)\in \Omega$, а ориентирующее поле нормалей ${\bf n}$ образует острый угол c осью Oz. Пусть поле ${\bf f}(x,y,z)=(0,0,R(x,y,z))^T$. Тогда

$$\begin{split} &\iint\limits_{\Theta}(\boldsymbol{f}(x,y,z),\boldsymbol{n}(x,y,z))dS = \\ &= \iint\limits_{\Theta}R(x,y,z)dxdy = \iint\limits_{\Omega}R(x,y,\varphi(x,y))dxdy. \end{split}$$

Доказательство. Воспользовавшись доказательством следствия 6.2, заполним определитель из формулы (6.10):

$$(E, \mathbf{r}'_u, \mathbf{r}'_v) = \det \begin{pmatrix} 0 & 0 & R(x, y, \varphi(x, y)) \\ 1 & 0 & \varphi'_x \\ 0 & 1 & \varphi'_y \end{pmatrix} = R(x, y, \varphi(x, y)).$$

Теперь убедимся, что поле нормалей, порожденное явным заданием поверхности, требуемое:

$$\mathbf{r}'_x \times \mathbf{r}'_y = (-\varphi'_x, -\varphi'_y, 1)^T \Rightarrow (\mathbf{k}, \mathbf{r}'_x \times \mathbf{r}'_y) = 1 > 0. \blacksquare$$

Замечание 6.8. Описанный в следствии случай ориентации поверхности традиционно называют интегрированием по верхней стороне Θ^+ , а противоположную ориентацию называют интегрированием по нижней стороне Θ^- (рис. 6.11). В указанных обозначениях

$$\iint_{\Theta^{+}} R(x, y, z) dx dy = -\iint_{\Theta^{-}} R(x, y, z) dx dy =$$

$$= \iint_{\Omega} R(x, y, \varphi(x, y)) dx dy. \tag{6.11}$$

Находя ПИВР без проверки ориентации мы рискуем потерять знак. Проверку можно осуществить в любой точке поверхности.

Замечание **6.9** (обозначение ПИВР). Общеупотребительным является еще одно символическое обозначение ПИВР:

$$\iint\limits_{\Theta}P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy:=\iint\limits_{\Theta}(\boldsymbol{f},\boldsymbol{n})dS.$$

Рис. 6.12

Оно является не только исторически сложившимся, но имеет обобщение в теории интегрирования по ориентируемой поверхности произвольной размерности $n \in \mathbb{N}$. Ограничимся только объяснением происхождения этого обозначения.

Пусть точка $A = r(u, v) \in \Theta$, а $\sigma(A)$ – параллелограмм, построенный на касательных векторах $r'_u du$ и $r'_v dv$. Обозначим через α , β и γ углы, которые векторный дифференциал площади $\overrightarrow{dS}(A) = \pm (r'_u \times r'_v) du dv$ образует с базисными векторами i, j, k соответственно (рис. 6.12). Тогда

$$(f(A), \overrightarrow{dS}(A)) = P \cdot dS \cos \alpha + Q \cdot dS \cos \beta + R \cdot dS \cos \gamma.$$

Поскольку вектор $\overrightarrow{dS}(A)\bot T_A\Xi$, а базисные векторы i,j,k перпендикулярны координатным плоскостям $\{y,z\},\{z,x\}$ и $\{x,y\}$ соответственно, то $\alpha(A),\beta(A),\gamma(A)$ — это двугранные углы между касательной плоскостью и соответствующими координатными плоскостями. Поэтому произведения $dS\cos\alpha,dS\cos\beta,dS\cos\gamma$ суть площади проекций параллелограмма σ на соответствующие координатные плоскости:

$$dS\cos\alpha = S(Pr_{yz}(\sigma)), \ dS\cos\beta = S(Pr_{zx}(\sigma)), \ dS\cos\gamma = S(Pr_{xy}(\sigma)).$$

Заменив площади проекций на одноименные произведения дифференциалов dydz, dzdx, dxdy, мы лишь указали на соответствующую координату вектора f. Отметим, что указание на ориентацию поверхности Θ в этом символическом обозначении ПИВР отсутствует.

Определение 6.18. Пусть $\Pi = \cup_{i=1}^I \overline{\Theta}_i$ – кусочно-гладкая ориентируемая поверхность. Положим, что

$$\iint_{\Pi} (\boldsymbol{f}, \overrightarrow{dS}) := \sum_{i=1}^{I} \iint_{\Theta_i} (\boldsymbol{f}, \overrightarrow{dS}). \tag{6.12}$$

Можно показать, что в силу определения 6.7 КГП и определения 6.14 ориентации КГП, поверхностный интеграл второго рода на КГП:

- 1) не зависит от разбиения поверхности на куски,
- 2) обладает свойством аддитивности,
- 3) меняет знак при изменении ориентации поверхности.

7. Формула Остроградского-Гаусса

7.1. Теорема Остроградского-Гаусса

Определение 7.1. Пусть на области $U\subset\mathbb{R}^3$ задано гладкое векторное поле

$$f(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))^{T}.$$

Его дивергенцией называют числовую функцию $\mathrm{div}\, m{f}: U o \mathbb{R},$ определенную формулой

$$\operatorname{div} \boldsymbol{f}(x,y,z) := \frac{\partial P(x,y,z)}{\partial x} + \frac{\partial Q(x,y,z)}{\partial y} + \frac{\partial R(x,y,z)}{\partial z}.$$

ТЕОРЕМА 7.1. Пусть $\overline{G} \subset U \subset \mathbb{R}^3$ – замыкание ограниченной области, граница которой ∂G есть кусочно-гладкая замкнутая поверхность, ориентированная полем внешних нормалей $\mathbf{n}(x,y,z)$. Пусть векторное поле $\mathbf{f} \in C^1(U)$. Тогда поток этого поля через границу области ∂G равен интегралу по самой области от дивергенции поля:

$$\oint_{\partial G} (\boldsymbol{f}, \boldsymbol{n}) dS = \iiint_{G} \operatorname{div} \boldsymbol{f} \ dV, \tag{7.1}$$

где dS – дифференциал площади поверхности ∂G , а dV=dxdydz – дифференциал объема. (Петля на обозначении ПИВР напоминает, что поверхность ∂G замкнутая.)

Доказательство. Сначала рассмотрим случай, когда замыкание \overline{G} элементарно относительно каждой оси. Примерами областей, замыкания которых элементарны относительно всех осей, являются выпуклые области.

Прежде всего заметим, что требования, предъявленные к векторному полю f и к области G, гарантируют существование обоих интегралов в равенстве (7.1). Пусть G_z – ортогональная проекция множества G на плоскость

 $\{x,y\}$. Тогда

$$G = \{(x, y, z) : (x, y) \in G_z, \ \varphi(x, y) < z < \psi(x, y)\},\$$

где φ и ψ – непрерывные функции на \overline{G}_z . Обозначим через ${\rm Gr\,}(\varphi)$, ${\rm Gr\,}(\psi)$ графики указанных функций. Согласно теореме 3.9 о повторном интеграле, формуле Ньютона–Лейбница и формуле (6.11),

$$\begin{split} & \iiint_{G} \frac{\partial R}{\partial z} dx dy dz = \iint_{G_{z}} dx dy \int_{\varphi(x,y)}^{\psi(x,y)} \frac{\partial R(x,y,z)}{\partial z} dz = \\ & = \iint_{G_{z}} R(x,y,\psi(x,y)) dx dy - \iint_{G_{z}} R(x,y,\varphi(x,y)) dx dy = \\ & = \iint_{G_{\Gamma}(\psi)^{+}} R(x,y,z) dx dy + \iint_{G_{\Gamma}(\varphi)^{-}} R(x,y,z) dx dy, \end{split}$$

где ${\rm Gr}\,(\psi)^+$ верхняя, а ${\rm Gr}\,(\varphi)^-$ нижняя стороны указанных графиков. Внешне ориентированная поверхность

$$\partial G = \operatorname{Gr}(\psi)^+ \cup \operatorname{Gr}(\varphi)^- \cup \operatorname{Cyl}_z$$

где Cyl_z – цилиндрическая поверхность, образующие которой параллельны оси z. В произвольной точке $A \in \mathrm{Cyl}_z$ вектор нормали $\boldsymbol{n}(A)$ к цилиндрической поверхности Cyl_z и вектор $\boldsymbol{f}_3(A) = (0,0,R(A))^T$ перпендикулярны (рис. 7.1).

Поэтому

$$\iint\limits_{\mathrm{Cyl}_z}(\boldsymbol{f}_3,\boldsymbol{n})dS=\iint\limits_{\mathrm{Cyl}_z}R(x,y,z)dxdy=0.$$

Окончательно получаем, что

$$\iiint\limits_{G}\frac{\partial R}{\partial z}dxdydz=\oint\limits_{\partial G}R(x,y,z)dxdy.$$

В силу элементарности \overline{G} относительно других осей, получаем равенства

$$\iiint_{G} \frac{\partial P}{\partial x} dx dy dz = \oint_{\partial G} P(x, y, z) dy dz,$$
$$\iiint_{G} \frac{\partial Q}{\partial y} dx dy dz = \oint_{\partial G} Q(x, y, z) dz dx.$$

Остается сложить полученные формулы и воспользоваться линейностью как тройного, так и поверхностного интегралов.

Рис. 7.1

Теперь рассмотрим случай, когда замыкание \overline{G} разбивается на конечное количество замыканий элементарных областей (сравните с завершением доказательства теоремы 5.1). Точнее, пусть $\overline{G} = \bigcup_{i=1}^I \overline{G}_i$, где замыкания \overline{G}_i элементарны по всем осям, не пересекаются по внутренностям, а пересечение границ $\partial_{ij}G := \partial G_i \cap \partial G_j$ (если оно не пусто) представляет собой КГП. Для каждой такого подмножества

$$\iiint_{G_i} \operatorname{div} \mathbf{f} \ dV = \oint_{\partial G_i} (\mathbf{f}, \mathbf{n}) dS,$$

где поверхностный интеграл берется по внешней стороне границы ∂G_i . Суммируя, получаем:

$$\iiint_{G} \operatorname{div} \boldsymbol{f} \ dV = \sum_{i=1}^{I} \oint_{\partial G_{i}} (\boldsymbol{f}, \boldsymbol{n}) dS.$$

В последней сумме интегралы по общим кускам границ $\partial_{ij}G$ берутся дважды с противоположными ориентациями. Поскольку ПИВР меняет знак при изменении ориентации поверхности, указанные слагаемые взаимно уничтожаются. В сумме остаются лишь те слагаемые, которые отвечают всем кускам внешне ориентированной границы ∂G . В силу аддитивности ПИВР, получаем

$$\sum_{i=1}^{I} \oint_{\partial G_i} (\boldsymbol{f}, \boldsymbol{n}) dS = \oint_{\partial G} (E, \boldsymbol{n}) dS.$$

Доказательство общего случая мы опускаем в виду его громоздкости.

Завершение доказательства теоремы 7.1 подсказывает, что требование замкнутости границы ∂G (т. е. ее линейной связности, см. определение 6.13) можно ослабить.

Следствие 7.1. Пусть $U \subset \mathbb{R}^3$ – область, на которой определено гладкое векторное поле $f \subset C^1(U)$. Пусть множество G удовлетворяет следующим свойствам:

- 1. замыкание $\overline{G} \subset U \subset \mathbb{R}^3$;
- 2. замыкание $\overline{G} = \bigcup_{i=1}^{I} \overline{G}_{i}$, где G_{i} области, ограниченные кусочногладкими замкнутыми поверхностями $\partial G_{i} = \bigcup_{j=1}^{J_{i}} \Theta_{ij}$ (Θ_{ij} куски соответствующих границ ∂G_{i});
- 3. для произвольных $i_1 \neq i_2$ замыкания \overline{G}_{i_1} и \overline{G}_{i_2} или не пересекаются, или их пересечение есть общий кусок границы $\Theta_{i_1j_1} = \Theta_{i_2j_2}$;
- 4. каждая граница ∂G_i ориентирована полем \mathbf{n} внешних нормалей. Тогда поле \mathbf{n} ориентирует границу ∂G внешним образом и справедлива формула (7.1).

Доказательство. Граница ∂G есть объединение только тех кусков Θ_{ij} , которые не являются общими для каких-то двух границ ∂G_{i_1} и ∂G_{i_2} . На каждом таком куске уже задано поле \boldsymbol{n} внешних нормалей по отношению к G. Таким образом, граница ∂G ориентирована. Принимая во внимание, что общие куски ориентированы противоположным образом, и повторяя рассуждения из второй части доказательства теоремы 7.1 (теперь не для элементарных подмножеств, а для областей, ограниченных замкнутой поверхностью), мы получаем искомую формулу.

Следствие 7.2. (нахождение объемов с помощью ΠUBP) Объем (мера) области G, удовлетворяющей условиям теоремы 7.1, равен

$$V(G) = \mu(G) = \frac{1}{3} \oint_{\partial G} x dy dz + y dz dx + z dx dy.$$

7.2. Геометрический смысл дивергенции

Теорема 7.2 (геометрический смысл дивергенции). *Пусть векторное поле*

$$f \in C^1(Ball(A, R)),$$

r де $\mathrm{Ball}(A,R)$ – открытый шар c центром e точке A радиуса R. Тогда

$$\operatorname{div} \mathbf{f}(A) = \lim_{r \to 0} \frac{1}{\mu(\operatorname{Ball}(A, r))} \oint_{\partial \operatorname{Ball}(A, r)} (\mathbf{f}, \mathbf{n}) \, dS. \tag{7.2}$$

Доказательство. Применяя формулу (7.1) и п. 6(b) теоремы 3.5 (теорема о среднем), получаем

$$\lim_{r\to 0}\frac{\oint\limits_{\operatorname{Ball}(A,r)}(E,\boldsymbol{n})dS}{\mu(\operatorname{Ball}(A,r))}=\lim_{r\to 0}\frac{\operatorname{div}\boldsymbol{f}(\widetilde{A}(r))\iint\limits_{\operatorname{Ball}(A,r)}dV}{\mu(\operatorname{Ball}(A,r))}=$$

$$= \lim_{r \to 0} \operatorname{div} \mathbf{f}(\widetilde{A}(r)) = \operatorname{div} \mathbf{f}(A),$$

где
$$\widetilde{A}(r) \in \operatorname{Ball}(A, r)$$
.

Следствие 7.3 (инвариантность определения 7.1). Дивергенция векторного поля не зависит от выбора прямоугольной декартовой системы координат (ПДСК).

Доказательство. Поток векторного поля и мера множества – геометрические понятия, т. е. инвариантные относительно замены ПДСК. ■

7.3. Соленоидальные векторные поля

Определение 7.2. Векторное поле f класса гладкости $C^1(U)$ на области $U \subset \mathbb{R}^3$ называется соленоидальным (или трубчатым в переводе с греческого), если поток через любую замкнутую кусочно-гладкую поверхность $\partial G \subset U$ равен нулю:

$$\oint_{\partial G} (\boldsymbol{f}(x, y, z), \boldsymbol{n}(x, y, z)) dS = 0.$$

Определение 7.3. Область $U \subset \mathbb{R}^3$ называется объемно односвязной, если для любой замкнутой поверхности $\partial G \subset U$ внутренность $G \subset U$.

Образно говоря, объемно односвязная область не содержит $\mathit{enympennux}$ полостей.

Примеры 7.1. Объемно односвязными являются шар и полноторий. Шаровое кольцо и "сыр с дырками" не являются объемно односвязными областями.

ТЕОРЕМА 7.3 (критерий соленоидальности). Чтобы векторное поле f класса гладкости $C^1(U)$ было соленоидальным на области $U \subset \mathbb{R}^3$ необходимо, а в случае объемной односвязности U и достаточно, чтобы его дивергенция равнялась нулю:

$$f$$
 соленоидально $ightharpoonup$ объемно односв. обл. $_U$ $\mathrm{div}\, f(x,y,z)=0$ для $\mathrm{scex}\, (x,y,z)\in U.$

Доказательство необходимости следует непосредственно из определения 7.2 и теоремы 7.2.

Если дивергенция в каждой точке равна нулю, то, согласно теореме 7.1 и определению 7.3 объемной односвязности, поток через любую замкнутую поверхность ∂G равен нулю.

Следствие 7.4 (о локальной соленоидальности). Если дивергенция гладкого поля на области U равна нулю, то оно соленоидально на каждом шаре, принадлежащем U.

8. Формула Стокса

8.1. Теорема Стокса

Криволинейный интеграл второго рода по *замкнутой* кривой называется **циркуляцией**. Мы уже имели дело с циркуляцией в теореме Грина.

Определение 8.1. Пусть на области $U\subset\mathbb{R}^3$ задано гладкое векторное поле

$$f(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))^{T}.$$

Его **ротором** называют векторное поле, координаты которого вычисляют с помощью символического определителя:

$$\operatorname{rot} \mathbf{f}: \ U \to \mathbb{R}^{3}, \ \operatorname{rot} \mathbf{f}:= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \\ = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) i + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}. \tag{8.1}$$

ТЕОРЕМА 8.1. Пусть $\overline{\Theta} \subset U \subset \mathbb{R}^3$ – кусочно-гладкая ориентируемая поверхность с кусочно-гладким краем $\partial \Theta$, причем ориентация поверхности полем единичных нормалей $\boldsymbol{n}(x,y,z)$ согласована с ориентацией края. Пусть векторное поле \boldsymbol{f} принадлежит классу гладкости $C^1(U)$. Тогда циркуляция поля \boldsymbol{f} по кривой $\partial \Theta$ равна потоку поля $\cot \boldsymbol{f}$ через поверхность Θ , m. e.

$$\oint_{\partial \Theta} (\mathbf{f}, \mathbf{\tau}) ds = \iint_{\Theta} (\operatorname{rot} \mathbf{f}, \mathbf{n}) \ dS, \tag{8.2}$$

где $\tau(x,y,z)$ – поле ориентирующих единичных касательных к кривой $\partial\Theta$, ds – дифференциал длины дуги кривой $\partial\Theta$, dS – дифференциал площади поверхности Θ . (Петля на обозначении КИВР напоминает, что кривая $\partial\Theta$, будучи краем, есть объединение замкнутых кривых, см. обсуждение ??.)

Обсуждение 8.1. Теорема Стокса является обобщением теоремы Грина. Отметим, что в теоремах Грина и Остроградского-Гаусса интегрирование по области заменялось интегрированием по ее границе; в теореме Стокса интегрирование по поверхности заменяется интегрированием по краю. Именно теорема Стокса явилась основой для дальнейшего обобщения на случай поверхности произвольной размерности n, принадлежащей пространству произвольной размерности p > n. Также отметим, что на фиксированную замкнутую кривую $\partial \Theta$ может быть натянута другая пленка $\widehat{\Theta}$ (т. е. $\partial \Theta = \partial \widehat{\Theta}$), но при этом поток ротора rot f не изменяется.

Доказательство. Пусть пока $\overline{\Theta} \subset U \subset \mathbb{R}^3$ – простая гладкая поверхность с кусочно-гладким краем $\partial \Theta$. Доказательство будет дано только для случая, когда поверхность $\overline{\Theta}$ имеет класс гладкости два. Т. е. существуют плоские области $\Omega \subset G \subset \mathbb{R}^2$ и отображение, задаваемое радиус-вектором

$$r: G \to \mathbb{R}^3, \ r(u,v) = (x(u,v), y(u,v), z(u,v)) \in C^2(G),$$

которым параметризована поверхность $\overline{\Theta} = {m r}(\overline{\Omega}).$

Мы рассмотрим три векторных поля: $\boldsymbol{f}_1 = (P,0,0)^T, \ \boldsymbol{f}_2 = (0,Q,0)^T, \ \boldsymbol{f}_3 = (0,0,R)^T.$ Для каждого из них докажем формулу Стокса, после чего сложим полученные равенства. Доказательство осуществляется в три этапа: 1) заменяем циркуляцию по пространственной кривой $\partial \Theta$ на циркуляцию по плоской кривой $\partial \Omega$; 2) воспользовавшись формулой Грина, заменяем циркуляцию по $\partial \Omega$ интегрированием по плоской области Ω ; 3) "узнаем" в полученном интеграле по Ω ПИВР от ротора по Θ .

Без ограничения общности можно считать, что в \mathbb{R}^2 система координат (u,v) правая, а поверхность Θ ориентирована семейством единичных нормалей

$$oldsymbol{n} = rac{oldsymbol{r}_u' imes oldsymbol{r}_v'}{|oldsymbol{r}_u' imes oldsymbol{r}_v'|}.$$

Пусть кусочно гладкий край $\partial\Omega$ параметризован против часовой стрелки вектор-функцией $(u(t),v(t))^T$ $(t\in[0,T])$. Тогда край $\partial\Theta$ параметризован вектор-функцией

$$r(u(t), v(t)) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t)))^{T}.$$

Поэтому

$$\oint\limits_{\partial\Theta} (\boldsymbol{f}_1,\boldsymbol{\tau})ds = \oint\limits_{\partial\Theta} Pdx = \int\limits_0^T P(\boldsymbol{r}(u(t),v(t)))(x(u(t),v(t)))_t' \ dt = \int\limits_0^T P(\boldsymbol{r}(u(t),v(t)))(x(u(t),v(t)))(x(u(t),v(t)))_t' \ dt = \int\limits_0^T P(\boldsymbol{r}(u(t),v(t)))(x(u(t),v(t))$$

$$=\int\limits_0^T P(\boldsymbol{r}(u(t),v(t)))(x_u'u_t'+x_v'v_t')dt = \oint\limits_{\partial\Omega} P(\boldsymbol{r}(u,v))x_u'du + P(\boldsymbol{r}(u,v))x_v'dv.$$

Итак, мы заменили циркуляцию поля $\boldsymbol{f}_1=(P,0,0)^T\subset\mathbb{V}^3$ по $\partial\Theta$ на циркуляцию плоского поля $\hat{\boldsymbol{f}}_1:=(Px'_u,Px'_v)^T$ по $\partial\Omega$.

Применим формулу Грина (5.2):

$$\oint_{\partial\Omega} P(\boldsymbol{r}(u,v))x'_u du + P(\boldsymbol{r}(u,v))x'_v dv =$$

$$= \iint_{\Omega} (P(\boldsymbol{r}(u,v))x'_v)'_u - (P(\boldsymbol{r}(u,v))x'_u)'_v) \ du dv.$$

Преобразуем подынтегральное выражение, воспользовавшись совпадением смешанных производных (вот для чего понадобилась гладкость класса C^2):

$$\begin{split} (P(\boldsymbol{r}(u,v))x'_v)'_u - (P(\boldsymbol{r}(u,v))x'_u)'_v &= \\ &= P(\boldsymbol{r}(u,v))'_ux'_v + Px''_{uv} - P(\boldsymbol{r}(u,v))'_vx'_u - Px''_{vu} = \\ (P'_xx'_u + P'_yy'_u + P'_zz'_u)x'_v - (P'_xx'_v + P'_yy'_v + P'_zz'_v)x'_u &= \\ &= -P'_y(x'_uy'_v - x'_vy'_u) + P'_z(x'_vz'_u - x'_uz'_v) = -P'_y \left| \begin{array}{cc} x'_u & y'_u \\ x'_v & y'_v \end{array} \right| + P'_z \left| \begin{array}{cc} z'_u & x'_u \\ z'_v & x'_v \end{array} \right| \;. \end{split}$$

Теперь, после второго этапа, получаем:

$$\oint_{\partial \Theta} (\boldsymbol{f}_1, \boldsymbol{\tau}) ds = \iint_{\Omega} \left(-P'_y \left| \begin{array}{cc} x'_u & y'_u \\ x'_v & y'_v \end{array} \right| + P'_z \left| \begin{array}{cc} z'_u & x'_u \\ z'_v & x'_v \end{array} \right| \right) du dv.$$

С другой стороны, в силу определения 8.1 ротора векторного поля,

$$\operatorname{rot} \boldsymbol{f}_1 = \left| \begin{array}{ccc} i & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & 0 & 0 \end{array} \right| = P_z' \boldsymbol{j} - P_y' \boldsymbol{k}.$$

Поэтому из формулы (6.10) вычисления ПИВР следует

$$\iint_{\Theta} (\operatorname{rot} \boldsymbol{f}_{1}, \boldsymbol{n}) \ dS = \iint_{\Omega} (\operatorname{rot} \boldsymbol{f}_{1}, \boldsymbol{r}'_{u}, \boldsymbol{r}'_{v}) du dv = \iint_{\Omega} \begin{vmatrix} 0 & P'_{z} & -P'_{y} \\ x'_{u} & y'_{u} & z_{u} \\ x'_{v} & x'_{v} & x'_{v} \end{vmatrix} du dv =$$

$$= \iint_{\Omega} \left(-P'_{y} \begin{vmatrix} x'_{u} & y'_{u} \\ x'_{v} & y'_{v} \end{vmatrix} + P'_{z} \begin{vmatrix} z'_{u} & x'_{u} \\ z'_{v} & x'_{v} \end{vmatrix} \right) du dv,$$

что совпадает с результатом преобразований после второго этапа.

Для поля \boldsymbol{f}_1 справедливость формулы установлена. Аналогично доказывается формула для полей \boldsymbol{f}_2 и \boldsymbol{f}_3 . Остается сложить полученные формулы и воспользоваться линейностью операций скалярного и векторного произведений по каждому сомножителю и линейностью интегрирования относительно подынтегральной функции.

Замечание 8.1. Чтобы доказать теорему в предположении, что поверхность Θ только класса гладкости C^1 , нужно аппроксимировать (приблизить) Θ пленками Θ_n класса C^2 с тем жее краем $\partial \Theta$ и перейти к пределу $\Theta_n \overset{n \to \infty}{\to} \Theta$. Поскольку мы пока не владеем методами теории аппроксимации, доказательство опускаем.

Доказательство теоремы для кусочно-гладкой поверхности осуществляется по тому же принципу сложения *противоориентированных* слагаемых, что и доказательства теорем Грина 5.1 и Остроградского–Гаусса 7.1. Пусть КГП Θ составлена из конечного количества ПГП – кусков Θ_i . Тогда для каждого куска справедлива формула Стокса. Складывая все равенства, справа мы получим, в силу определения (6.12),

$$\sum_{i=1}^{I} \iint_{\Theta_i} (\operatorname{rot} \boldsymbol{f}, \boldsymbol{n}) \ dS = \iint_{\Theta} (\operatorname{rot} \boldsymbol{f}, \boldsymbol{n}) \ dS$$

поток ротора через всю поверхность Θ . В сумме криволинейных интегралов слева интегралы по *общим* кускам границ $\partial_{ij}\Theta$ берутся дважды с противоположными ориентациями. Поскольку КИВР меняет знак при изменении ориентации кривой, указанные слагаемые взаимно уничтожаются. В сумме остаются лишь те слагаемые, которые отвечают всем кускам ориентированной границы $\partial \Theta$. В силу аддитивности КИВР, получаем

$$\sum_{i=1}^{I} \oint_{\partial \Theta_i} (\boldsymbol{f}, \boldsymbol{\tau}) ds = \oint_{\partial \Theta} (\boldsymbol{f}, \boldsymbol{\tau}) ds. \blacksquare$$

8.2. Геометрический смысл ротора

Теорема 8.2. Пусть векторное поле $f \in C^1(Ball(A, R))$, где Ball(A, R) – открытый шар с центром в точке A радиуса R. Пусть n – фиксированный единичный вектор, Circ(A, r, n) – круг с центром в точке A, радиуса r, лежащий в плоскости перпендикулярной вектору n (рис. 8.1).

Тогда в точке A проекция ротора на направление n есть предел:

$$(\operatorname{rot} \mathbf{f}(A), \mathbf{n}) = \lim_{r \to 0} \frac{\oint_{\operatorname{Circ}(A, r, \mathbf{n})} (\mathbf{f}, \boldsymbol{\tau}) ds}{\mu(\operatorname{Circ}(A, r, \mathbf{n}))} , \tag{8.3}$$

где окружность $\partial \mathrm{Circ}(A,r,\boldsymbol{n})$ ориентирована согласованно с вектором \boldsymbol{n} , а мера (площадь) круга $\mu(\mathrm{Circ}(A,r,\boldsymbol{n}))=\pi r^2$.

Доказательство. Применяя формулу (8.2) и теорему о среднем $3.5~\mathrm{n}.$ $6(\mathrm{b}),$ получаем

$$\lim_{r\to 0} \frac{\oint (\boldsymbol{f},\boldsymbol{\tau})ds}{\partial \mathrm{Circ}(A,r,\boldsymbol{n})} = \lim_{r\to 0} \frac{(\mathrm{rot}\,\boldsymbol{f}(\widetilde{A}(r)),\boldsymbol{n})}{\mu(\mathrm{Circ}(A,r,\boldsymbol{n}))} \iint_{\mathrm{Circ}(A,r,\boldsymbol{n})} dS =$$

$$= \lim_{r\to 0} (\mathrm{rot}\,\boldsymbol{f}(\widetilde{A}(r)),\boldsymbol{n}) = (\mathrm{rot}\,\boldsymbol{f}(A),\boldsymbol{n}),$$

где $\widetilde{A}(r) \in \mathrm{Circ}(A, r, \boldsymbol{n})$.

Рис. 8.1

Следствие 8.1. (инвариантность определения 8.1) Ротор векторного поля не зависит от выбора прямоугольной декартовой системы координат.

Доказательство. Циркуляция векторного поля и мера множества, как было доказано, инвариантны относительно замены ПДСК. В силу формулы (8.3), этим же свойством обладает ротор. ■

8.3. Потенциальные векторные поля

Изучая понятие производной для числовых функций одной переменной, мы выяснили, что произвольная пепрерывная на (a,b) функция f(x) является производной другой функции: существует первообразная $F\in C^1(a,b)$, для которой F'(x)=f(x); все первообразные имеют вид $F(x,C)=\int_{x_0}^x f(t)dt+C$, где $x_0\in (a,b)$ – произвольная фиксированная точка, C – произвольная постоянная. В силу топологических причин этот вывод НЕ справедлив для функции нескольких переменных. Поскольку транспонирование производной функции u(x,y,z) является вектором $(u')^T=\operatorname{grad} u$, возникает важный вопрос: каковы условия, при которых векторное поле является полем градиента некоторой функции.

Определение 8.2. Пусть $U \subset \mathbb{R}^3$ – область, функция $u \in C^1(U)$, векторное поле $f = (P,Q,R)^T \in C^0(U)$. Функция u называется потенциалом поля f, если $grad\ u = f$, m. e.

$$\frac{\partial u}{\partial x} = P, \quad \frac{\partial u}{\partial y} = Q, \quad \frac{\partial u}{\partial z} = R.$$

(В случае двух переменных останется два условия.) Само векторное поле в указанном случае называется потенциальным.

ТЕОРЕМА 8.3 (глобальный критерий существования потенциала). Пусть векторное поле $f = (P, Q, R)^T \in C^0(U)$ непрерывно в некоторой области U. Следующие утвержедения равносильны:

Рис. 8.2

1. Циркуляция поля по любой замкнутой кусочно-гладкой кривой $\gamma \subset U$ (возможно, с самопересечениями) равна нулю, т. е.

$$\oint_{\gamma} (\boldsymbol{f}, d\beta) = \int_{0}^{T} (\boldsymbol{f}(\boldsymbol{r}(t)), \boldsymbol{r}'(t)) dt = 0,$$

где r – кусочно-гладкая вектор-функция, удовлетворяющая условию периодичности r(0) = r(T) (рис. 8.2).

- 2. Для произвольных точек $A,B\in U$ интеграл $\int_{\widetilde{AB}}(\boldsymbol{f},\mathrm{dB})$ HE зависит от кусочно-гладкой кривой $\widetilde{AB}\subset U$ (возможно, с самопересечениями), а зависит только от самих точек A и B.
- 3. Векторное поле f потенциально.

Доказательство. будет дано для случая, когда у рассматриваемых кривых нет самопересечений.

 $1\Rightarrow 2$. Во-первых заметим, что, в силу определения области, существует непрерывная кривая, соединяющая произвольные точки $A,B\in U$ и принадлежащая U. Методами теории аппроксимации можно доказать, что существует бесконечное множество кусочно-гладких (и даже гладких) кривых, соединяющих точки A и B (доказательство будет дано позже). Поэтому формулировка п. 2 корректна. Пусть \widehat{AB} и \widehat{AB} две такие ориентированные кривые. Обозначим через \widehat{BA} кривую \widehat{AB} с противоположной ориентацией. Тогда кривая $\gamma:=\widehat{AB}\cup\widehat{BA}$ является замкнутой и, в силу аддитивности КИВР, справедливо:

$$0 = \oint_{\gamma} (\boldsymbol{f}, d\mathbb{B}) = \int_{\widetilde{AB}} + \int_{\widehat{BA}} = \int_{\widetilde{AB}} - \int_{\widehat{AB}},$$

что доказывает утверждение.

 $2\Rightarrow 3$. Мы предъявим функцию, которая является потенциалом. Пусть $A(x_0,y_0,z_0)\in U$ – фиксированная точка, $B(x,y,z)\in U$ – произвольная, $\widehat{AB}\subset U$ – произвольная кусочно-гладкая кривая, которая их соединяет. В условиях п. 2, независимо от выбора кривой \widehat{AB} , корректно определена

Рис. 8.3

функция

$$u:U\to\mathbb{R},\ \forall B\in U$$
 значение $u(B):=\int\limits_{\widetilde{AB}}(f,d\mathbb{S}).$ (8.4)

Покажем, что она дифференцируема на U, и в произвольной точке $B\in U$ справедливо $\operatorname{grad} u(B)=f(B)$. С этой целью докажем существование частной производной $\partial u(B)/\partial x$. В силу открытости U, существует такое r=r(B)>0, что шар $\operatorname{Ball}(B,r)\subset U$. Если модуль возмущения $|\Delta x|< r$, тогда точка $D(x+\Delta x,y,z)\in U$ вместе с отрезком [BD] (рис. 8.3). Поэтому предел

$$\lim_{\Delta x \to 0} \frac{u(x + \Delta x, y, z) - u(x, y, z)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{\widetilde{AD}} - \int_{\widetilde{AB}}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{[BD]}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} (\mathbf{f}(x + s, y, z), i) ds}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x + \xi, y, z) \Delta x}{\Delta x} = P(x, y, z).$$

Мы воспользовались аддитивностью интеграла, п. 2, теоремой о среднем (ξ лежит строго между x и $x+\Delta x$) и непрерывностью функции P. Следовательно, $\partial u(B)/\partial x=P(B)$. Аналогично $\partial u(B)/\partial y=Q(B)$, $\partial u(B)/\partial z=R(B)$. Поскольку функции P,Q,R непрерывны, то утверждение полностью доказано.

 $3\Rightarrow 1.$ В силу потенциальности поля $\boldsymbol{f}=(P,Q,R)^T,$ существует функция $u\in C^1(U),$ для которой

$$\frac{\partial u}{\partial x} = P, \ \frac{\partial u}{\partial y} = Q, \ \frac{\partial u}{\partial z} = R.$$

Поэтому для произвольной параметризации ${m r}(t) = (x(t),y(t),z(t))^T$ циркуляция

$$\begin{split} &\oint_{\gamma}(\boldsymbol{f},d\boldsymbol{\beta}) = \int_{0}^{T}(\boldsymbol{f}(\boldsymbol{r}(t)),\boldsymbol{r}'(t))dt = \\ &= \int_{0}^{T}\left(\frac{\partial u}{\partial x}x'(t) + \frac{\partial u}{\partial y}y'(t) + \frac{\partial u}{\partial z}z'(t)\right)dt = \end{split}$$

$$= \int_0^T (u(\mathbf{r}(t)))'_t dt = u(\mathbf{r}(T)) - u(\mathbf{r}(0)) = 0. \blacksquare$$

Теперь мы можем дать

ТЕОРЕМА 8.4 (описание всех потенциалов). При выполнении любого из трех условий теоремы 8.3 справедливы следующие утверждения:

- 1. Для любой точки $A \in U$ функция (8.4) является потенциалом.
- 2. Для любого потенциала u=u(A) поля f имеет место формула Ньютона-Лейбница для КИВР:

$$\int_{\widetilde{AB}} (\mathbf{f}, d\mathfrak{B}) = u(B) - u(A).$$

3. Любые два потенциала отличаются на константу, т. е. все потеницалы описывает формула

$$u(B) := \int_{\widetilde{AB}} (\mathbf{f}, d\mathbf{B}) + C,$$

 $rde\ C$ - произвольная постоянная.

Доказательство п. 1 содержится в доказательстве п. 2 теоремы 8.3. Доказательство п. 2 осуществляется по той же схеме, что и доказательство п. 3 теоремы 8.3:

$$\int_{\overline{AB}} (\boldsymbol{f}, d\mathfrak{B}) = \int_{\alpha}^{\beta} (u(\boldsymbol{r}(t)))'_t dt = u(\boldsymbol{r}(\beta)) - u(\boldsymbol{r}(\alpha)) = u(B) - u(A).$$

Если u и v – два потенциала одного поля, то, в силу предыдущего пункта,

$$\int_{\widehat{AB}} (\mathbf{f}, d\mathbb{B}) = u(B) - u(A) = v(B) - v(A).$$

Значит, разность $u(B)-v(B)=u(A)-v(A)=\mathrm{const}=C$ не зависит от точки $B\in U.$

8.4. Безвихревые векторные поля

Критерии потенциальности, сформулированные в п. 1 и 2 теоремы 8.3 трудно проверяемые. Оказывается, в условиях гладкости поля f проверить потенциальность поля можно с помощью локальной характеристики (а именно rot f) и одного глобального топологического свойства области U. Этот подход аналогичен применению дивергенции и объемной односвязности при исследовании соленоидальности поля.

Определение 8.3. Векторное поле $f \in C^1(G)$ называется безвих-ревым на U, если тождественно rot $f(A) \equiv 0$ для любой точки $A \in U$.

Определение 8.4. Область $U \subset \mathbb{R}^3$ называется поверхностно односвязной, если для любой замкнутой кусочно-гладкой кривой $\gamma \subset U$ существует кусочно-гладкая поверхность $\Theta \subset U$, краем которой является кривая γ .

Образно говоря, поверхностно односвязная область вместе с любой своей петлей содержит некоторую пленку (не обязательно все), натянутую на эту петлю. Или иначе, поверхностно односвязная область не имеет *сквозных* отверстий, т. е. дырок.

Примеры 8.1. поверхностно односвязных областей: пространство, из которого удалили точку или шар, сам шар, шаровое кольцо. Пространство, из которого удалили прямую (но не плоскость), или удалили окружность, или удалили полноторий, сам полноторий — не являются поверхностно односвязными областями (рис. 8.4 – 8.6, сравните объемно односвязные и поверхностно односвязные области).

Замечание 8.2. Определение 8.4 нуждается в доказательстве корректности, а именно: у любой замкнутой КГК существует хотя бы одна кусочно-гладкая поверхность, для которой эта кривая является краем (т. е. доказательство теоремы типа Жордана). Попросту говоря: на любую петлю можно натянуть пленку, в чем мы убеждаемся, поместив проволочный контур в мыльную воду. Мы не будем доказывать это утверждение.

ТЕОРЕМА 8.5. (критерий потенциальности) Чтобы векторное поле f класса гладкости $C^1(U)$ было потенциальным на области $U \subset \mathbb{R}^3$ необходимо, а в случае поверхностной односвязности U и достаточно, чтобы оно было безвихревым:

$$m{f}$$
 потенциально $ightharpoonup D$ U поверхн. односв. $orall \ A(x,y,z) \in U \ \hookrightarrow \ \mathrm{rot} \ m{f}(x,y,z) = m{0}.$

Доказательство необходимости следует непосредственно из п. 1 теоремы 8.3 и теоремы 8.2 о геометрическом смысле ротора.

Пусть поле безвихревое. В силу п. 1 теоремы 8.3 для доказательства потенциальности достаточно проверить, что циркуляция по любой замкнутой кусочно-гладкой кривой (возможно с самопересечениями) равна нулю. Ограничимся случаем кривой γ без самопересечений. Из поверхностной односвязности следует, что существует кусочно-гладкая поверхность $\Theta \subset U$, для которой $\partial \Theta = \gamma$. Из формулы Стокса (8.2) и безвихревости поля следует, что циркуляция по γ равна нулю.

Следствие 8.2 (о локальной потенциальности). Если гладкое поле безвихревое на области U, то оно потенциально на каждом шаре, принадлежащем U.

Пример 8.1. безвихревого, но непотенциального векторного поля. Рассмотрим поле

$$\mathbf{f} = (-y/(x^2 + y^2), x/(x^2 + y^2), 0)$$

на толстостенном цилиндре $U=\{1< x^2+y^2<9,\ z\in\mathbb{R}\}$, который является поверхностно неодносв'язной областью. На U ротор

$$\mathrm{rot}\,oldsymbol{f} = \left|egin{array}{ccc} i & oldsymbol{j} & oldsymbol{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ rac{-y}{x^2+y^2} & rac{x}{x^2+y^2} & 0 \end{array}
ight| = oldsymbol{0}.$$

Но циркуляция по окружности $S^1=\{{m r}(t)=(2\cos t,2\sin t,0),\ t\in [0,2\pi]\}\subset U$ равна

$$\oint_{S^1} (\mathbf{f}, d\mathbf{r}) = \int_0^{2\pi} \left(\frac{-2\sin t}{4} \cdot (-1)2\sin t + \frac{2\cos t}{4} \cdot 2\cos t \right) dt = 2\pi \neq 0.$$

Выпишем как выглядят условия потенциальности на плоскости. Пусть на области $\Omega \subset \mathbb{R}^2$ задано непрерывное векторное поле $\boldsymbol{f} = (P(x,y),Q(x,y))^T$. Содержание теорем 8.3 и 8.4 переносится на него без изменений. Теорема 8.5 получает следующую переформулировку:

Теорема 8.6 (критерий потенциальности плоского поля). *Чтобы векторное поле* $(P,Q) \in C^1(\Omega)$ было потенциальным на области $\Omega \subset \mathbb{R}^2$ необходимо, а в случае односвязности Ω и достаточно, чтобы оно было безвихревым в следующем смысле:

$$\operatorname{rot} \boldsymbol{f} := \frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y} = 0 \text{ dis } \operatorname{scex} (x,y) \in \Omega. \tag{8.5}$$

Замечание 8.3. Теорема является частным случаем теоремы 8.5, если положить в ней $P(x,y,z)=P(x,y),\ Q(x,y,z)=Q(x,y),\ R(x,y,z)\equiv 0.$

Доказательство. Если поле f потенциально, то существует функция $u \in C^2(\Omega)$, для которой $P(x,y) = u_x', \, Q(x,y) = u_y'$ при всех $(x,y) \in \Omega$. Следовательно, смешанные производные второго порядка функции u существуют и совпадают: $P_y' = u_{yx}'' = u_{yx}'' = Q_x'$. Значит, условие (8.5) выполнено.

Пусть справедливо (8.5). В силу п. 1 теоремы 8.3, для доказательства потенциальности достаточно проверить, что циркуляция по любой замкнутой кусочно-гладкой кривой γ нулевая. Из односвязности следует, что внутренность int (γ) принадлежит области Ω . Поэтому можно воспользоваться формулой Грина (5.2):

$$\oint_{\gamma} (\mathbf{f}, d\mathbf{r}) = \oint_{\gamma} P dx + Q dy = \iint_{\text{int } (\gamma)} \left(\frac{\partial Q(x, y)}{\partial x} - \frac{\partial P(x, y)}{\partial y} \right) dx dy = 0. \blacksquare$$