Minimum Edit Distance

Backtrace for Computing Alignments

Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MinEdit with Backtrace

n	9	↓ 8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	/8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓9	/ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	<u> </u>	<u> </u>	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠←↓ 9	/ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	<u>/</u> ←↓9	<u> </u>	<u> </u>	∠ ↓ 10	
e	4	∠3	← 4	√ ← 5	← 6	← 7	←↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠ 7	←↓ 8	∠←↓ 9	↓ 8	
n	2	∠ ←↓ 3	∠←↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠←↓ 8	∠ 7	
i	1	∠ ←↓ 2	∠ ←↓ 3	∠←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	Z 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

Termination:

D(0,j) = j D(N,M) is distance

Recurrence Relation:

```
For each i = 1...M
                                                                         For each j = 1...N
                                                                                                                   D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) = Y(j) \end{cases}
\text{ptr}(i,j) = \begin{cases} D(i-1,j) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
\text{ptr}(i,j) = \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
\text{ptr}(i,j) = \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
\text{ptr}(i,j) = \begin{cases} D(i-1,j-1) + 1 & \text{deletion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
\text{ptr}(i,j) = \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
\text{ptr}(i,j) = \begin{cases} D(i-1,j-1) + 1 & \text{deletion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
```


The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

Two strings and their alignment:

Performance

• Time:

O(nm)

• Space:

O(nm)

Backtrace

O(n+m)

Minimum Edit Distance

Backtrace for Computing Alignments