

MEDSERVICE

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Integrantes: Adriano da Silva Lima – CP300936X

Professor: Antônio Queiroz da Silva Neto

SUMÁRIO

- □ Introdução
- Justificativa
- Objetivos
- Material e Métodos
- Resultados
- Conclusões

Introdução

□ O que é o projeto MedService?

É um sistema WEB utilizado gerenciar ordens de serviço e realizar laudos de calibração e manutenção preventiva de equipamentos médicos.

Introdução

Relevância do tema:

- Área da saúde.
- Exigência da ANVISA.
- Identificar falhas iminentes.
- Confiabilidade dos equipamentos médicos.
- Segurança aos pacientes.

JUSTIFICATIVA

Motivação:

- Dificuldade encontradas com o software atualmente utilizado na empresa em que eu atuo para realizar os laudos de calibração e preventiva dos equipamentos médicos
- Baixa concorrência de softwares para atender esse tipo de demanda no mercado

OBJETIVOS

Específico:

 Desenvolver um sistema web para Realizar a calibração e manutenção preventiva de equipamentos médicos.

Detalhes:

- □ Autenticar Usuário
- □ Cadastrar clientes
- □ Cadastrar equipamentos
- □ Abrir ordens de serviço
- □ Realizar calibração
- □ Preencher checklist de manutenção preventiva
- □ Emitir Laudos de Calibração e preventiva no formato PDF

OBJETIVOS

- Otimizar o processo de calibração e manutenção preventiva de equipamentos médicos.
- □ Explorar as dificuldade encontradas com a utilização de softwares da áreas e trazer uma melhoria significativa em meu sistema.
- Interface intuitiva.
- Praticidade no uso.

- Linguagens de Programação: Python, JavaScript, Html,
 CSS
- □ Frameworks: Django, React, Tailwind CSS
- Banco de Dados: Realcional, MySQL

Django:

É Frameworks escrito em Python para desenvolvimento de sistemas web.

- Realiza autenticação de Usuários
- Gerenciamento do banco de dados
- □ Modelo MVT, ORM, REST
- Criação de API's
- Módulo de segurança integrado

React:

É um Framework baseado em JavaScript para desenvolvimento de interfaces de usuário em aplicações web.

- Utiliza o conceito de componentes.
- Sistema mais eficiente,
- Conceito de código Limpo.
- Conceito de reaproveitamento de código.

Método de desenvolvimento:

Modelo Espiral de desenvolvimento de software.

Modelagem do Sistema:

Diagrama de casos de uso.

Modelagem do Sistema:

Diagrama de classes.

C Cliente +nome_fantasia: CharField +razao_social: CharField +tipo cliente: CharField +cnpj cpf: CharField +cep: CharField +uf: CharField +cidade: CharField +endereco: CharField +numero: CharField +complemento: CharField

MATERIAL E INSTITUTO FEDERAL MÉTODO SÃO PAULO

patrimonio VARCHAR(100)

analisador_id BIGINT

Modelagem do Sistema:

□ DER.

Modelagem do Sistema:

Diagrama de Atividades.

MATERIAL E MÉTODO

Modelagem do Sistema

Fluxograma.

MATERIAL E MÉTODO

Estrutura do Back-end

Estrutura do Front-end

□ Tela Login

Tela Inicial

Menu de Navegação.

Análise comparativa:

- O sistema foi apresentado e testado por colegas de trabalho.
- □ Usuários deram uma nota de 0 a 10 para funcionalidades do software MedService e para o software atualmente utilizado.
- Gerado um gráfico comparativo do desempenho dos sistemas.

Análise comparativa:

Tópicos avaliados.

Grau de facilidade e satisfação das seguintes funcionalidades:

- Cadastro de Clientes
- Cadastro de Equipamentos
- □ Abertura de ordens de serviço
- Dashboard das ordens de serviço
- Realizar Preventiva
- Realizar Calibração

Resultado da Análise Comparativa:

CONCLUSÕES

- O Sistema desenvolvido atingiu seu objetivo em:
- Sistema com um Desing gráfico mais intuitivo
- Sistema mais rápido e otimizado
- Melhoria no processo de gestão de ordens de serviço, calibração e preventiva dos equipamentos.

CONCLUSÕES

- □ Foi observado uma melhora significativa na gestão das ordens de serviço e no processo de calibração e manutenção preventiva com o sistema MedService.
- O usuário teve uma melhor experiencia para realizar o laudo de calibração e manutenção preventiva dos equipamento, conseguindo realizar o preenchimento das informações dos laudos mais rapidamente por conter campos com preenchimento automático.

REFERENCIAL BIBLIOGRÁFICO

- ANTUNES, E. et al. Gestão da tecnologia biomédica: tecnovigilância e engenharia clínica. Editions scientifiques ACODESS, 2002. ISBN 9788588900011. Disponível em: ">https://books.google.com.br/books?id=CXdgAAAMAAJ>
- CENTENO, C. A. et al. Web software for technology and medical infrastructure management of a clinical engineering department. In: SPRINGER. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering: Proceedings of CLAIB-CNIB 2019, October 2-5, 2019, Cancún, México. [S.l.], 2020. p. 1386–1397
- □ CHIEN, C.-H.; HUANG, Y.-Y.; CHONG, F.-C. A framework of medical equipment management system for in-house clinical engineering department. In: IEEE. 2010 annual international conference of the IEEE engineering in medicine and biology. [S.l.], 2010. p. 6054–6057.

Muito obrigado!

lima.adriano@aluno.ifsp.edu.br