デジタル信号処理

第12回 デジタルフィルタと利得(デシベル)

立命館大学 情報理工学部 岩居 健太

本日の講義内容

- ・【復習】前回講義の復習
 - z変換
 - z変換とは
 - システムの伝達関数
- ・z変換と逆z変換
 - ・逆z変換とは
- デジタルフィルタと利得
 - ・デジタルフィルタとは
 - ・利得(デシベル)とは

【復習】離散時間信号系

- 系とは
 - 英語表記はsystem (システム)
 - ・「様々な要素を持つ体系」
- 身近な系
 - 例えば電子レンジ
 - 冷えたご飯を入力すると、温めるという変化を加え、 温かいご飯を出力するシステム。

【復習】線形系 (線形システム)

•信号x(n)をシステム L に入力したときの出力を y(n)とする

・このシステムが「重ね合わせの原理」を満たすとき 線形系(線形システム)と呼ぶ

$$L\{x_1(n) + x_2(n)\} = L\{x_1(n)\} + L\{x_2(n)\}$$

$$L\{ax(n)\} = aL\{x(n)\}$$

上記2つをまとめると

$$L\{a_1x_1(n) + a_2x_2(n)\} = a_1L\{x_1(n)\} + a_2L\{x_2(n)\}$$

【復習】線形時不変システム

- ・線形時不変システムとは
 - ・線形システムの特性が時間によって変わらないシステム

$$y(n) = L\{x(n)\}\$$

・信号x(n)の時間をmサンプル分シフトした信号x(n-m)を入力したとき、システム出力が

$$y(n-m) = L\{x(n-m)\}\$$

となれば線形時不変システムである

• 身近な例: スピーカのパワーアンプなど もしパワーアンプが線形時不変でないと、ボリュームの大きさが時間とともに 変化してしまい、自分でボリュームの大きさを制御できなくなる。

【復習】インパルス応答

- インパルス応答とは
 - ・線形時不変システムにインパルス信号 $\delta(n)$ を入力したとき、 その出力h(n)をインパルス応答と呼ぶ

$$h(n) = L\{\delta(n)\}\$$

よってmサンプル分シフトしたインパルス信号に対する出力は、 線形時不変系の性質より

$$h(n-m) = L\{\delta(n-m)\}\$$

【復習】線形時不変システムの表記法

線形時不変システムの入出力関係

$$y(n) = L\{x(n)\}$$
 $= L\{\sum_{m=-\infty}^{\infty} x(m)\delta(n-m)\}$
 $= \sum_{m=-\infty}^{\infty} x(m)L\{\delta(n-m)\}$
 $= \sum_{m=-\infty}^{\infty} x(m)h(n-m)$
 $= \sum_{m=-\infty}^{\infty} x(m)h(n-m)$

これをたたみこみ和と呼ぶ

$$y(n) = \sum_{m=-\infty}^{\infty} h(m)x(n-m) = h(n) * x(n)$$

「インパルス応答h(n) を持つシステムに 信号を入力する」 と説明できる

【復習】z変換

- ・z変換とは
 - ・時間軸の信号x(n)から複素平面 (z平面) 上への

写像

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

zは複素数であり, $z=e^{\sigma+j\theta}$

線形時不変システムの 周波数特性を表すのに 適している

【復習】z変換の性質(1)

*X(z) = Z[x(n)]と表記する

• ①重ね合わせの原理が成り立つ

$$Z\{x_1(n) + x_2(n)\} = Z\{x_1(n)\} + Z\{x_2(n)\}$$

$$Z\{ax(n)\} = aZ\{x(n)\}$$

よって必ず線形時不変性が成り立つ

・②たたみこみ和のz変換はz変換の積になる

時間領域の演算
$$y(n) = \sum_{m=0}^{N-1} h(m)x(n-m)$$
$$= h(n) * x(n)$$

Z領域での演算

$$Y(z) = H(z)X(z)$$

この2式は同じ 演算を意味する

【復習】z変換の性質(2)

- ③時間がmサンプル分シフトした信号のz変換は $z^{-m}X(z)$ となる信号X(z)をmサンプル分シフトさせた信号x(n-m)のz変換は $z^{-m}X(z)$ となる
- ④周波数特性はzを $\exp(j2\pi f \Delta t)$ で置き替えればよい

x(n)のz変換をX(z)とするとき $z = \exp(j2\pi f \Delta t)$ とおくと、 $X(z = e^{j2\pi f \Delta t})$ は周波数fの関数となるから、信号の周波数特性を求めることができる

なお、△tは標本化間隔を表す

【復習】z変換を用いた周波数特性の表記(1)

・線形時不変システムの出力

$$y(n) = h(n) * x(n)$$

= $\sum_{m=0}^{N-1} h(m)x(n-m)$

m=0両辺をz変換すると、z変換の性質②より

$$Y(z) = H(z)X(z)$$

式を変形すると

$$H(z) = \frac{Y(z)}{X(z)}$$

となり、インパルス応答h(n)のz変換H(z)を線形システムの伝達 関数 (システムの伝達特性) と呼ぶ

伝達関数H(z)から、システムの周波数特性を求めることができる

【復習】z変換を用いた周波数特性(2)

• 伝達関数

$$H(z) = \frac{Y(z)}{X(z)}$$

z変換の性質④よりシステムの周波数特性はzを

 $\exp(j2\pi f\Delta t)$ と置き替えるだけ

$$H(z) = H(e^{j2\pi f\Delta t})$$
 ←周波数fの関数

周波数特性は複素数なので実部と虚部を

$$H(e^{j2\pi f\Delta t}) = A(f) + jB(f)$$

とすると

振幅特性: $|H(e^{j2\pi f\Delta t})| = \sqrt{A^2(f) + B^2(f)}$

位相特性: $arg\{H(e^{j2\pi f\Delta t})\}=tan^{-1}\{B(f)/A(f)\}$

演習課題 (1/5) (5分間)

・下記のx(n)とx(n-1)のz変換を求めよ。

ヒント: z変換の式に当てはめるだけ $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

演習課題 (2/5) (5分間)

・下記のx(n) + x(n-1)のz変換を求めよ。

$$x(n) + x(n-1)$$
 $\xrightarrow{\begin{array}{c} 1 & 1 \\ 1 & 1 \\ \hline 0 & 1 & 2 & 3 \end{array}} n$

ヒント: z変換の公式に当てはめてもできるが、 演習課題 (1/5) の結果とz変換の性質① (z変換の線形性) を用いると簡単に計算可能

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

演習課題 (3/5) (5分間)

・下記のx(n)とx(n-1)のたたみこみ和をz変換を用いて求めよ。

ヒント: 演習課題 (1/5) の結果とz変換の性質② (たたみこみ和のz変換はz変換の積) を用いると簡単に計算可能

$$y(n) = \sum_{m=0}^{N-1} h(m)x(n-m) \implies Y(z) = H(z)X(z)$$

逆z変換

$$x(n)$$
 $\xrightarrow{z$ 変換 $X(z)$ 逆z変換

- z変換とは
 - ・時間領域の信号x(n)から複素平面(z平面)上への写像

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

- ・逆z変換とは
 - ・複素平面 (z平面) 上のスペクトルX(z)から時間領域の信号 への写像

$$x(n) = \frac{1}{2\pi i} \oint_{\Gamma} X(z) z^{n-1} dz$$

ただし、実際に逆z変換をこの式を用いて行うことは滅多にない。 z変換の逆変換があることだけ覚えておけばよい。

デジタルフィルタ

・フィルタとは

様々なものの中から、不要なものを除去して必要なものを取り出す 回路

例:掃除機、エアコン、コーヒードリップ用のフィルタ

*これらはアナログフィルタ

(電気回路なら、電気抵抗、コンデンサから成る低域通過フィルタ等)

・デジタルフィルタとは

- ・色々な周波数成分を持つ信号の中から、不要な周波数成分を除去し、必要な周波数成分のみを取り出す回路
- 例:ノイズキャンセラ、オーディオプレイヤーアプリのイコライザなど 雑音を抑圧したり、音を強調したりする機能

理想的なデジタルフィルタとは

- ・必要な信号をきれいに取り出すために
 - ・信号の大きさが変化しない 通過域の利得がフラット
 - 波形が変形しない歪みがゼロ
 - 余計な信号を付加しない ノイズがない
 - * キーポイントは所望の信号に歪みを与えないようにすること
- ・不要な信号をきれいに取り除くために
 - ・不要な周波数帯では利得がゼロ 減衰域の利得がゼロ
 - * キーポイントは不要な信号はゼロにすること

デジタルフィルタの基本特性

・デジタルフィルタの基本特性は下記の4種類

デジタルフィルタの特性

カットオフ周波数:振幅が1/√2となる周波数

これをdB表記で書くと、振幅が3 dB 減衰した周波数となる

デジタルフィルタに関する用語

- ・ 通過域 フィルタで取り出したい周波数帯域
- ・減衰域 フィルタで除去したい周波数帯域
- 遮断周波数 (カットオフ周波数)遮断周波数通過域と遮断域の境界の周波数
- ・フィルタ次数
 - *第13回講義で解説 理想特性を近似する関数の

次数で高い (大きい) ほど理想特性に近い

例:LPF

低域通過フィルタの設計

- ・ 理想的な低域通過フィルタ
 - 低周波数帯域だけをきれいに取り出す
 - ・高周波数帯域の利得はゼロ
 - ⇒ 非常に設計が難しい

- 一般的な低域通過フィルタ
 - ・ 遮断周波数で完全に利得を ゼロにできない
 - ・用途に合わせて、様々な低域通過 フィルタの設計方法がある

低域通過フィルタの種類と特性

・バタワースフィルタ

- 通過域をフラットにすることを重視
 - *一般的なフィルタ

・ベッセルフィルタ

- ・立ち上がり特性を最適にする
 - * 過渡応答特性を最適化

・チェビシェフフィルタ

- 通過域を犠牲にして遮断周波数 近辺での減衰傾度を重視
 - * 通過域にリプル (うねり) を持たせて 急峻な減衰特性を実現

* すべてアナログフィルタに由来

単位:dBについて

・ デシベル (dB) とは

- ベル (B): 比を常用対数で表したもの デシベル (dB): ベル (B) で表した値を10倍したもの
- 2つの値の比を対数で表現したもの
- デシベルの定義

$$A = 10 \log_{10} \left(\frac{P_2}{P_1}\right), (P_1, P_2 はパワーを表す)$$

パワー = 振幅²を用いて変形

$$A = 20 \log_{10} \left(\frac{E_2}{E_1}\right)$$
, $(E_1, E_2$ は振幅を表す)

* $P_1(E_1)$ を基準としたときの $P_2(E_2)$ の大きさを表している

例:振幅が $1/\sqrt{2}$ 倍になるといことは、 $20\log_{10}\left(\frac{1/\sqrt{2}}{1}\right)\approx 20\times(-0.15)=-3~\mathrm{dB}$ 、つまり $3~\mathrm{dB}$ 減衰となる。

身近な使用例:30 dB以下の騒音レベルのエアコン 基準音圧からのエネルギーが30 dB以下だということ 騒音のエネルギーが基準音圧(のエネルギー)の1/1000

演習課題 (4/5) (5分間)

・システムに振幅1の信号を入力すると出力では振幅が100に なった。このシステムの利得 (dB) はいくつか?

ヒント: $A = 20 \log_{10} \left(\frac{E_2}{E_1}\right)$ に

値を代入して計算するだけ

CMなどに出てくるdBのめやす

・例:騒音レベル。すべて基準音圧レベルからの比を表している

10 dB		70 dB	電話のベル
20 dB	置時計の秒針の音	80 dB	電車の中
30 dB	郊外の深夜	90 dB	騒々しい工場の
40 dB	市内の深夜・図書館	100 dB	高架ガード下
50 dB	静かな事務所	110 dB	自動車の警笛
60 dB	静かな乗用車	120 dB	飛行機エンジンの近く

- * 音圧レベル (音圧のデシベル表現) では、 基準音圧を20 μ Pa (= 20×10^{-6} Pa) としている。
- *ヒトの聴覚では、音圧レベル0~120 dBまで知覚できる (振幅で100 000倍の範囲)
- *0 dB未満の音、120 dB以上の音も存在するが、ヒトの聴覚では音として知覚できない。

演習課題 (5/5) (5分間)

・騒音レベルが60 dBの製品がある。この製品は基準音圧と比 較して、何倍の振幅と何倍のパワーを持つか計算せよ。

振幅は
$$A = 20 \log_{10} \left(\frac{E_2}{E_1} \right)$$
に値を代入して E_2/E_1 を求めればよい。
$$^{\prime\prime} \mathcal{P} - \mathcal{U} = 10 \log_{10} \left(\frac{P_2}{P_1} \right)$$
に値を代入して P_2/P_1 を求めればよい。