

- (7) S Calculate the Young's modulus of material and say what it means.
- (8) C Interpret a stress strain graph in terms of young's modulus.

Stress Check

In pairs **estimate** the stress in your leg bone when standing up. Show all you working and be ready to justify your approximations.

Explain why your leg bones need to withstand greater stresses.

Ex: Start on this Q

A 70kg man jumps horizontally from a wall 2m high, lands on both feet together and takes 0.1 s to come to rest. The cross-sectional area of the bones in each of his lower legs is 30 cm².

synoptic link

- (a) How fast is he moving vertically just as he reaches the ground?
- (b) What is his average deceleration when landing?
- (c) What is the average force exerted as he comes to rest?
- (d) What is the stress in his legs?

Table 1. 630 000 Pe

Bone	Test		1		
		Figure 2.			
		Male		Female	
		σ_{R} [MPa] (ex)	σ_R [MPa](F.E.M.)	σ_R [MPa](ex)	σ_R [MPa] (F.E.M.)
Femur	Compresion	1.6005	1.6806	1.587	1.6155
	Traction	4.4168	4.3995	4.4286	4.3407
	Binding	4.0218	4.1003	4.0328	4.1134
Tibia	Compresion	0.6506	0.6592	0.6458	0.6554
	Traction	1.4872	1.4501	1.4722	1.4437
	Binding	4.2616	4.2561	4.2732	4.3159

- (6) M Define and calculate stress and strain
- (7) S Calculate the Young's modulus of material and say what it means.
- (8) C Interpret a stress strain graph in terms of young's modulus.

Strain

Tensile strain is defined as the fractional change in the original length of a wire / material

Quick check

A rubber band is stretched from 10cm to 18cm long. What is the strain?

Extension: Explain the significance of using the correct SI unit here in your calculation..

- (6) M Define and calculate stress and strain
- (7) S Calculate the Young's modulus of material and say what it means.
- (8) C Interpret a stress strain graph in terms of young's modulus.

Young's Modulus

The **young modulus** is defined as the ratio of stress to strain. It is a **constant** for a material and a measure of the **stiffness** of a material

Me or Pa

Can you order these materials from highest to lowest youngs modulus: Ex: estimate them?

rubber	diamond	steel	
$0.10D_{\odot}$	1000CDa	200CDa	click for
U. IGPa	1000GPa	200GPa	answer

Example

Question

A load of 20 N on a metal wire of length 3.0 m and cross-sectional area 8.0×10^{-7} m² produces an extension of 0.10 mm. Calculate

- a the tensile stress in the wire
- b the tensile strain
- c the Young modulus of the metal
- d the elastic potential energy stored in the wire when it is extended.

- (6) M Define and calculate stress and strain
- (7) S Calculate the Young's modulus of material and say what it means.
- (8) C Interpret a stress strain graph in terms of young's modulus.

Questions

1 Calculate the stress in a wire of cross-sectional area 2.0×10^{-6} m² when it is subject to a force of 12 N.

(1 mark)

2 Calculate the strain produced in a metal bar of Young modulus 1.2×10^{11} N m⁻² when it is subject to a tensile stress of 1.8×10^6 N m⁻².

(2 marks)

3 a Calculate the force which will produce an extension of 0.30 mm in a steel wire with a length of 4.0 m and a cross-sectional area of 2.0×10^{-6} m².

(2 marks)

Young modulus of steel = $2.1 \times 10^{11} \, \text{Pa}$

b Calculate the energy stored in the stretched wire.

(2 marks)

- 4 A load of 15 N produces an extension of 0.10 mm in a metal wire 10 m in length. If the Young modulus of the metal is 1.8×10^{11} Pa, calculate
 - a the cross-sectional area of the wire

(2 marks)

b the diameter of the wire.

(2 marks)

Ex: How could you measure the young's modulus of spiders silk?

$$\frac{A}{A} = \frac{A^{2}}{1.8 \times 10^{1} \times 0.1 \times 10^{-3}} \\
= 8.3 \times 10^{-6} \, \text{M}^{2}$$

Answer
Step 1
Write out the values given in the question, converting them where necessary.

F ?20 N L ?3.0 m

A ?8.0 ?10⁻⁷ m²

a Step 2 Calculate the tensile stress.

$$\frac{F}{-}$$

 σ ?A

$$\frac{20}{28.0 \times 10^{-7}}$$

$$22.5 ? 0' Pa$$

b Step 3
Calculate the tensile strain.

$$\frac{x}{\varepsilon ? L}$$

$$\frac{1.0\times10^{-4}}{}$$

3.0

c Step 4

Calculate the Young modulus.

$$\frac{\sigma}{}$$

E?€

$$\frac{2.5 \times 10^7}{3.33 \times 10^{-5}}$$
 2.5×10^{-5}

d Step 5
Calculate the stored elastic potential energy in the stretched wire.

elastic energy stored $2 F_x$

$$\frac{1}{2} 202.020^{-4}$$

