### Department of Software Engineering Mehran University of Engineering and Technology, Jamshoro

| Course: SW222 - Database Management & Administration |                                                   |                  |         |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------|------------------|---------|--|--|--|--|
| Instructor                                           | Instructor Ms Shafiya Qadeer Practical/Lab No. 04 |                  |         |  |  |  |  |
| Date                                                 | 03/04-02-2021                                     | CLOs             | 2       |  |  |  |  |
| Signature                                            |                                                   | Assessment Score | 2 Marks |  |  |  |  |

Objectives - To become familiar with Data De-Normalization

### Lab Discussion: Theoretical concepts and Procedural steps

### **Database normalization:**

- Database normalization is the process of organizing the fields and tables
  of a relational database to minimize redundancy. Normalization usually
  involves dividing large tables into smaller (and less redundant) tables and
  defining relationships between them.
- The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database using the defined relationships.

Good for OLTP(Online transaction processing system)

### **DISADVANTAGES OF NORMALIZATION**

- 1. running time of query increases because of joins.
- 2. It decreases database performance.

#### **IOINS**

• A JOIN clause is used to combine rows from two or more tables.



#### **WHAT IS DENORMALIZATION**

- It is the reverse process of Normalization i.e, to combine two or more tables into a single table.
- De-normalization increases the performance (Searching data from one table is quiet faster than searching data from multiple tables).
- Good for OLAP(Online analytical Processing system)

### WHY DO WE NEED DENORMALIZATION

- The usual goal is to decrease the running time of select queries by making data more accessible to the queries.
- and to increase the performance of a database.
- Denormalization makes data retrievals easier to express and speeds up the database performance.
- So, denormalize only when there is a very clear advantage to doing it.
- Low number of updates
- · Large number of selects and fetching data

#### **METHOD OF DENORMALIZATION**

- 1) Adding Redundant Columns.
- 2) Combining Tables
- 3) Repeating Groups

### 1. Adding Redundant Columns

You can add redundant columns to eliminate frequent joins. For example,
if frequent joins are performed on the titleauthor and authors tables in
order to retrieve the author's last name, you can add the au\_lname
column to title author.

select ta.title\_id, a.au\_id, a.au\_Iname from titleauthor ta, authors a where ta.au\_id = a.au\_id



authors id lau Iname

select title\_id, au\_id, au\_lname from titleauthor

|          | titleauthor | r        |      |
|----------|-------------|----------|------|
| title id | au id       | au Iname | au i |
|          |             |          |      |
|          |             |          |      |

- Adding redundant columns eliminates joins for many queries. The problems with this solution are that it:
- Requires maintenance of new column. All changes must be made to two tables, and possibly to many rows in one of the tables.
- Requires more disk space, since *au\_lname* is duplicated.

### 2. Combining Tables

• Combine two or more tables into a single table to eliminate the joins and increase the database performance.



## 3. Repeating Groups

The repeating groups can be stored as a nested table within the original table.

• **example:**(before denormalization)

#### Branch

| branchNo | street       | city     | postcode |  |
|----------|--------------|----------|----------|--|
| B005     | 22 Deer Rd   | London   | SW1 4EH  |  |
| B007     | 16 Argyll St | Aberdeen | AB2 3SU  |  |
| B003     | 163 Main St  | Glasgow  | G11 9QX  |  |
| B004     | 32 Manse Rd  | Bristol  | BS99 1NZ |  |
| B002     | 56 Clover Dr | London   | NW10 6EU |  |

### Telephone

| telNo         | branchNo |  |  |
|---------------|----------|--|--|
| 0207-886-1212 | B005     |  |  |
| 0207-886-1300 | B005     |  |  |
| 0207-886-4100 | B005     |  |  |
| 01224-67125   | B007     |  |  |
| 0141-339-2178 | B003     |  |  |
| 0141-339-4439 | B003     |  |  |
| 0117-916-1170 | B004     |  |  |
| 0208-963-1030 | B002     |  |  |

### after denormalization

#### Branch

| branchNo                             | street | city                           | postcode            | telNo1                                                                          | telNo2                         | telNo3        |
|--------------------------------------|--------|--------------------------------|---------------------|---------------------------------------------------------------------------------|--------------------------------|---------------|
| B005<br>B007<br>B003<br>B004<br>B002 |        | Aberdeen<br>Glasgow<br>Bristol | G11 9QX<br>BS99 1NZ | 0207-886-1212<br>01224-67125<br>0141-339-2178<br>0117-916-1170<br>0208-963-1030 | 0207-886-1300<br>0141-339-4439 | 0207-886-4100 |

# **ADVANTAGES**

- Minimizing the need for joins.
- Reducing the number of foreign keys in relations.
- Reducing the number of relations/tables.
- <u>DISADVANTAGES</u>
- **Updates:** May speed up retrievals but can slow down updates.
- **Disk Space:** need more memory space to store redundant data.
- **Data anomalies:** We have to be very aware of the fact that data now can be changed in more than one place. We must adjust every piece of duplicate data accordingly.

### **EXAMPLE: (MUET CASE STUDY)**

# **EXAMPLE: (MUET CASE STUDY)**

MUET contains many faculties. Each of the faculty is identified by a unique faculty ID number. And has a name.

There are many departments in each of the faculty. Each department has a unique department ID number and a name.

Every teacher has a unique teacher ID, name, father's name, mobile number, CNIC number and is associated with one of the department.

Every student has a unique roll number, name, father's name, mobile number, CNIC number and is associated with one of the department.

A teacher can teach multiple courses during a session.

A student can take multiple courses during the session.

Every course is identified by a unique course ID number and has course name.

- convert the entitites into tables and attributes in columns of the table.
- Below diagram shows that the tables are in normalized form
- **Perform** Combining Tables method on the tables shown in diagram

| FacID | Facname |
|-------|---------|
|       |         |
|       |         |
|       |         |
|       |         |

| st_ID | st_name |  |  |
|-------|---------|--|--|
|       |         |  |  |
|       |         |  |  |
|       |         |  |  |
|       |         |  |  |

| c_id | c_name |
|------|--------|
|      |        |
|      |        |
|      |        |
|      |        |

| T_ID | T_name |
|------|--------|
|      |        |
|      |        |
|      |        |

| dname |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

To convert it in denormalization, combine all the tables to make it a single table

| FacI | Facname | Deptno | dname | T_ID | T_name | st_ID | st_name | c_id | c_name |
|------|---------|--------|-------|------|--------|-------|---------|------|--------|
|      |         |        |       |      |        |       |         |      |        |

• Consider the image below. The top contains several distinct tables that encapsulate logically separate bits of info. The bottom shows the results of those tables joined together. This is denormalization.

### **Lab Tasks**

1. Convert Following Data Base into De normalization form

