

Polar[™] Power MOSFET

Symbol

IXTT170N10P IXTQ170N10P IXTK170N10P

 $V_{DSS} = 100V$ $I_{D25} = 170A$ $R_{DS(on)} \le 9m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Test Conditions

Maximum Ratings

5.5

10.0

TO-268 (IXTT)
G S Tab

V_{DSS} $T_1 = 25^{\circ}C$ to $175^{\circ}C$ 100 $T_{_{\rm J}}~=25^{\circ}{\rm C}$ to 175°C, $R_{_{\rm GS}}=1{\rm M}\Omega$ V_{DGR} 100 ٧ $\overline{\mathbf{V}}_{\mathrm{GSS}}$ ± 20 V Continuous $\mathbf{V}_{\mathsf{GSM}}$ Transient ± 30 ٧ $T_{c} = 25^{\circ}C$ 170 Α I_{D25} External Lead Current Limit 160 L(RMS) $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{im} 350 Α l_{DM} I $T_{c} = 25^{\circ}C$ 60 Α $T_{c} = 25^{\circ}C$ 2 J E_{AS} dv/dt $I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 175^{\circ}C$ 10 V/ns P_{D} $T_{c} = 25^{\circ}C$ 715 W °С T_{J} -55 to +175 +175 ٥С T_{JM} ٥С $\mathbf{T}_{\mathrm{stg}}$ -55 to +175 $\mathbf{T}_{\!\scriptscriptstyle L}$ 1.6mm (0.063in) from Case for 10s 300 ٥С °С T_{SOLD} Plastic Body for 10s 260 Mounting Torque (TO-264 & TO-3P) 1.13/10 Nm/lb.in. M, TO-268 4.0 Weight g

Tab

G	= Gate	D	=	Drain
S	= Source	Tab	=	Drain

Features

g

g

- International Standard Packages
- Fast Intrinsic Rectifier
- Avalanche Rated
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C,$, Unless Otherwise Specified)	Min.	Тур.	Max.
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	100		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		5.0 V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25 μΑ
	$T_{_{\rm J}} = 150^{\circ} \text{C}$			250 μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$			9 mΩ
	$V_{GS}^{0} = 15V, I_{D} = 350A$		7	mΩ

TO-3P

TO-264

			cteristic Values Typ. Max.		
g _{fs}		V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	50	72	S
C _{iss})			6000	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1MHz$		2340	pF
\mathbf{C}_{rss}	J			730	pF
t _{d(on)})	Resistive Switching Times		35	ns
t _r		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 60A$		50	ns
$\mathbf{t}_{d(off)}$		$R_a = 3.3\Omega$ (External)		90	ns
$\mathbf{t}_{_{\mathbf{f}}}$	J	G ,		33	ns
Q _{g(on)})			198	nC
Q _{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		39	nC
\mathbf{Q}_{gd}	J			107	nC
R _{thJC}					0.21 °C/W
\mathbf{R}_{thCS}		(TO-3P) (TO-264)		0.25 0.15	°C/W

Source-Drain Diode

Symbol	Test Conditions Cha	Characteristic Values		
$(T_{J} = 25^{\circ})$	C, Unless Otherwise Specified) Mir	ı. Typ.	Max.	
Is	$V_{GS} = 0V$		170	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}		350	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1		1.5	V
t _{rr}	$I_{E} = 25A$, -di/dt = 100A/ μ s,	120		ns
Q_{RM}	$ \begin{cases} I_F = 25A, -di/dt = 100A/\mu s, \\ V_R = 50V, V_{GS} = 0V \end{cases} $	2.0		μC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 85A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 85A Value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

Fig. 8. Transconductance $T_{J} = -40^{\circ}C$ g fs - Siemens 150°C I_D - Amperes

 $\overline{\text{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance