

MACHINE LEARNING

LESSON 5: Training II

CARSTEN EIE FRIGAARD

L05: Training II

Agenda

- Important: your feedback (positive as well as negative)...
- ► Course modification i): more OPTIONAL exercices
- Course modification ii): revision to 'Microlearning' (only one lecure session, beginning of class)
- Installing keras is slow/buggy, see WIKI...
- ► L04 Training I: Training a linear regression model OPTIONAL: Exercise: L04/linear_regression_1.ipynb OPTIONAL: Exercise: L04/linear_regression_2.ipynb
- ► L05 Training II: **Training and model concepts**

Exercise: L05/gradient_descent.ipynb

Exercise: L05/capacity_under_overfitting.ipynb

Exercise: L05/generalization_error.ipynb

OPTIONAL: Exercise: L05/train_test_split.ipynb

RESUMÉ: Metrics

Precision, recall and accuracy, F_1 -score, and confusion matrix

precision,
$$p = \frac{TP}{TP+FP}$$
recall (or sensitivity),
$$r = \frac{TP}{TP+FN}$$
accuracy,
$$a = \frac{TP+TN}{TP+TN+FP+FN}$$

$$F_1\text{-score}, \qquad F_1 = \frac{2pr}{D+F}$$

Confusion Matrix, binary-class data,

$M_{confusion} =$		
cornusion	actual	
	true	false
predicted true	TP	FP
predicted true predicted false	FN	TN

RESUMÉ: Training a Linear Regressor

Minimizing the Linear Regression: The argmin concept

Our linear regression cost function was

$$J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \quad \uparrow$$

and training amounts to finding a value of \mathbf{w} , that minimizes J. This is denoted as

$$\begin{aligned} \mathbf{w}^* &= \operatorname{argmin}_{\mathbf{w}} J(\mathbf{X}, \mathbf{y}; \mathbf{w}) \\ &= \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \end{aligned}$$

and by minima, we naturally hope for

thought for non-linear models this cannot be guarantied, hitting some

local minimum

RESUMÉ: L04/linear_regression_1.ipynb

Training: The Closed-form Linear-Least-Squares Solution

To solve for \mathbf{w}^* in closed form, we find the gradient of J with respect to \mathbf{w}

$$\nabla_{\mathbf{w}} J = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \dots, \frac{\partial J}{\partial w_m} \right]^{\top}$$

Taking the partial deriverty $\partial/\partial_{\mathbf{w}}$ of the J via the gradient (nabla) operator

$$\nabla_{\mathbf{w}} J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$
$$0 = \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{y}$$

with a small amount of matrix algebra, this gives the normal equation

$$\begin{aligned} \mathbf{w}^* &= \operatorname{argmin}_{\mathbf{w}} \ \tfrac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \\ &= \left(\mathbf{X}^\top \mathbf{X}\right)^{-1} \, \mathbf{X}^\top \mathbf{y} \end{aligned}$$

Numerically Solution: Gradient Descent (GD)

The GD Algorithm

First, find the deriverty of J, via $\nabla_{\mathbf{w}}J$, that after some matrix algebra gives

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \frac{2}{m} \mathbf{X}^{\top} \left(\mathbf{X} \mathbf{w} - \mathbf{y}^{(i)} \right)$$

Then move along in the opposite direction of this gradient, taking a step of size η

$$\mathbf{w}^{(step\ N+1)} = \mathbf{w}^{(step\ N)} - \eta \nabla_{\mathbf{w}} J(\mathbf{w})$$

The SG-algo in python code

NOTE: The X_b is a X with a all-1 column prepended, and using the contant factor 2/m instead of just 1/2 and with $\mathbf{w} = \boldsymbol{\theta}$

Learning rate, η

And understanding Scikit-learn's SGDRegressor

Scikit-learn η updating schemes:

constant, adaptive, invscaling, optimal

The SGDRegressor in Scikit-learn has a *hyperparameter* for this

```
learning_rate: string, optional
'invscaling':[default], eta=eta0/pow(t,power_t)
```

Learning rate, η

And understanding Scikit-learn's SGDRegressor

The SGDRegressor constructor in Scikit-learn

```
class sklearn.linear_model.SGDRegressor(
     loss ='squared_loss', penalty ='l2',
     alpha = 0.0001, l1_ratio = 0.15,
                          shuffle =True,
    tol =None.
   verbose = 0.
                          epsilon =0.1,
power_t =0.25,
    eta0 = 0.01.
   n_iter_no_change=5, warm_start =False,
7
     fit_intercept =True, max_iter =None,
8
     average =False, n_iter
                                     =None
     random_state =None, learning_rate='invscaling',
     early_stopping =False,
                          validation fraction=0.1
```

Important for now...

- ▶ loss, penalty (our MSE and \mathcal{L}_2 norm),
- eta, learning_rate,
- shuffle early_stopping,
- and perhaps random_state.

Stochastic Gradient Descent (SGD) Method

Exercise: gradient_descent.ipynb

The problem with the GD Algorithm, it takes \boldsymbol{X} as input, the complete dataset

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \frac{2}{m}\mathbf{X}^{\top}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

That's a big mouthful to matrix transpose and multiply! Introducing a per-data-sample, or stochastic, method

$$\nabla_{\mathbf{w}} J(\mathbf{w})^{(i)} = \frac{2}{m} \mathbf{x}^{(i)\top} (\mathbf{x}^{(i)} \mathbf{w} - \mathbf{y})$$

Model capacity and under/overfitting

Exercise: capacity_under_overfitting.ipynb

Dummy and Paradox classifier:

capacity fixed \sim 0, cannot generalize at all!

Linear regression for a polynomial model:

capacity \sim degree of polynomial, x^n

- underfitting: capacity of model too low,
- overfitting: capacity to high.

Generalization Error

Exercise: generalization_error.ipynb

RMSE-capacity plot for lin. reg. with polynomial features (capacity = degree of poly)

Inspecting the plots from [HOML] and [DL], extracting the concepts

- training/generalization error,
- underfit/overfit zone.
- generalization gab,

