Exploratory graphs

Roger D. Peng, Associate Professor of Biostatistics

May 18, 2016

Why do we use graphs in data analysis?

- ► To understand data properties
- ► To find patterns in data
- ▶ To suggest modeling strategies
- ► To "debug" analyses
- To communicate results

Exploratory graphs

- ► To understand data properties
- ► To find patterns in data
- ▶ To suggest modeling strategies
- ► To "debug" analyses
- ▶ To communicate results

Characteristics of exploratory graphs

- ► They are made quickly
- ► A large number are made
- The goal is for personal understanding
- Axes/legends are generally cleaned up
- Color/size are primarily used for information

Background - perceptual tasks

Figure 1. Elementary perceptual tasks.

Position versus length

Position versus length - results

Position versus angle

Figure 3. Graphs from position-angle experiment.

Position versus angle - results

More experimental results

Graphical Perception and Graphical Methods for Analyzing Scientific

Summary

- ▶ Use common scales when possible
- When possible use position comparisons
- Angle comparisons are frequently hard to interpret (no piecharts!)
- ▶ No 3-D barcharts. Please.

Housing data

pData <- read.csv("./data/ss06pid.csv")

Boxplots

Important parameters: col, varwidth, names, horizontal

boxplot(pData\$AGEP, col="blue")

Boxplots

```
pData <- transform(pData, DDRS = factor(DDRS))
boxplot(AGEP ~ DDRS, data = pData, col = "blue")</pre>
```


Boxplots

Barplots

barplot(table(pData\$CIT), col = "blue")

Histograms

Important parameters: breaks,freq,col,xlab,ylab, xlim, ylim_ ,main

hist(pData\$AGEP, col = "blue")

Histogram of pData\$AGEP

Histograms

hist(pData\$AGEP, col = "blue", breaks = 100, main = "Age")

Density plots

Important parameters (to plot): col,lwd,xlab,ylab,xlim,ylim

```
dens <- density(pData$AGEP)
plot(dens, lwd = 3, col = "blue")</pre>
```

density.default(x = pData\$AGEP)

Density plots - multiple distributions

```
dens <- density(pData$AGEP)
densMales <- density(pData$AGEP[which(pData$SEX == 1)])
plot(dens, lwd = 3, col = "blue")
lines(densMales, lwd = 3, col = "orange")</pre>
```

density.default(x = pData\$AGEP)

