6.867: Homework 1

1. Gradient descent

In this section, we explored the simplest and most-commonly discussed method of optimization for differentiable cost functions: gradient descent. We implemented a basic batch gradient descent procedure and applied it to minimize two different objective functions: the negative Gaussian function and the quadratic bowl function. Furthermore, after creating the implementations, we investigated how our choice of starting guess, step size, and convergence criterion/threshold impacted our resulting solution.

1.1. Starting guess

For the quadratic bowl, we saw that starting guess did not have a significant impact on the resulting solution. If the starting guess was farther away from the minimum, it took the algorithm more iterations to converge although convergence was eventually achieved. For the negative gaussian, however, the starting guess could significantly change the convergence outcome. The is because a starting guess too far from the center with a very small gradient could cause our change in yto be within the convergence threshold despite not yet reaching the minimum. For both objective functions, we saw that as long as the algorithm converged, the norm of the gradient continued to decrease in magnitude. The first row of Figure 1 illustrates gradient descent on the negative Gaussian objective function with a regular starting guess as well as a starting guess to result in premature and non-optimal convergence.

1.2. Step size

Throughout our research, we discovered that our choice of step size was fairly important. For example, a step size that was too large could result in the gradient descent diverging to infinity instead of converging. In this case, the algorithm would overstep the minimum on the first step, thus causing the norm of the new gradient to be larger than the original gradient norm. This would then proceed to compound at every step, ultimately causing the algorithm to diverge to infinity. Conversely, extremely small step sizes resulted in single-approach convergence, in which the gradient was always negative or always positive as we

Figure 1. Starting guesses, step sizes, and thresholds.

approached the minimum. For step sizes between these two extremes, we observed oscillatory convergence, in which the gradient alternated between positive and negative and eventually converged on the minimum (Figure 1, second row). When the algorithm converged, we saw that the norm of the gradient for both objective functions decreased in magnitude.

1.3. Convergence criterion/threshold

In addition to step size, the convergence criterion had a fairly significant impact on the resulting solution. In general, we found that accuracy was inversely proportional to the convergence criterion while speed (and inversely number of iterations) was directly proportional to the convergence criterion. With a large convergence criterion, the accuracy of the resulting solution was

reduced while the algorithm ran to completion faster. On the other hand, with a smaller convergence criterion, the accuracy of the resulting solution was increased while the algorithm took many more iterations to complete (third row of Figure 1). We also saw that as long as the algorithm converged, the magnitude of the norm of the gradients consistently decreased.

1.4. Numerical gradient descent

In order to verify that our gradient functions were correct, we created a numerical gradient function so that we could validate the gradients at various points. To calculate the numerical gradients, we utilized the central difference approximation. For the quadratic bowl, it appears that no matter what the difference step was, the numerical gradient was always identical to the true gradient. For the negative gaussian, we discovered that by making the difference step smaller, our numerical gradient gained accuracy and became closer to the true gradient. From a mathematical perspective this makes intuitive sense because the definition of a derivative is basically the numerical gradient as the difference step approaches 0.

1.5. Batch versus stochastic gradient descent

In the next part of our research, we utilized two forms of gradient descent (batch and stochastic gradient descent) in order to minimize the following function:

$$J(\theta) = \sum_{i} (x^{(i)T}\theta - y^{i})^{2}$$

As before, we had to be very particular in the convergence criterion and step sizes in order to ensure that the gradient descent converged. For batch gradient descent, we chose an initial guess of all 0's with a step size of 10^{-6} and a convergence criterion of 1. This resulted in a θ that converged to and ultimately gave a minimum $J(\theta)$ of 8343.21291982.

In stochastic gradient descent, instead of evaluating all training data in every parameter update, each update was based on a single training sample. When specifying the learning rate for each step, we used the Robbins-Monro conditions in order to guarantee convergence. Specifically, in our update rule

$$\theta_{t+1} = \theta_t - \eta_t \nabla_{\theta} J(\theta_t; x^{(i)}, y^{(i)}),$$

we define

$$\eta_t = (\tau_0 + t)^{-\kappa}$$

where $\kappa = 0.75$ and $\tau_0 = 10^8$. We considered our convergence criterion to be when the change in each sample update was smaller than some threshold value for

all samples in the data set. In other words, for a given round of evaluating the stochastic gradient descent, changes for all data samples needed to be within the threshold cutoff in order to terminate the algorithm. Batch and stochastic gradient descent are illustrated in Figure 2, with a starting guess of 0, step size of 10^{-6} , and threshold value of 1.

In terms of accuracy (which was derived from comparison with the closed-form solution), we saw that both batch and SGD were able to converge to values within 0.1 of the true ones. The big difference between the two methods was in number of single-point evaluations. In batch gradient descent there were 12,800 single-step evaluations while in SGD there were only 728 single step evaluations. This was because in each iteration of batch gradient descent, n evaluations were necessary, compared with stochastic gradient descent which evaluated the a single point-wise gradient per update iteration.

Figure 2. Batch and stochastic gradient descent.

2. Linear basis function regression

We consider linear basis function regression as a method to benchmark the robustness of the gradient descent solution presented above. By using the closed-form maximum likelihood equation, we calculated the maximum likelihood weight vector for our list of basis functions to approximate the data in the form of our basis. In this scenario, we used data generated by $y(x) = \cos(\pi x) + 1.5\cos(2\pi x) + \epsilon(x)$, where $\epsilon(x)$ was some added noise to the dataset. Running linear regression on a simple polynomial basis of order M, where $\phi_0(x) = x^0$, $\phi_1(x) = x^1$, $\phi_2(x) = x^2$, ..., $\phi_M(x) = x^M$, we calculated the maximum likelihood weight vector by the following:

$$w_{ML} = (\Phi^T \Phi)^{-1} \Phi^T y$$

where w_{ML} was the maximum likelihood weight vector and Φ was given by:

$$\Phi = \begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \phi_2(x_0) & \dots & \phi_M(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_M(x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_n) & \phi_1(x_n) & \phi_2(x_n) & \dots & \phi_M(x_n) \end{bmatrix}$$

Our choice of M, the degree of our polynomial basis, largely determined the fit of the regression to the data (Figure 3). More specifically, at small values of M, the polynomial basis could not adequately capture all the data points. At higher values of M however, overfitting occured in which the weight vector performs well on the training data, but was not well generalized to new data. The value of M therefore must be carefully considered in order to prevent too high variability in our generated regression polynomial.

Figure 3. Linear regression for varying values of M.

After using the closed-form solution to determine the optimum weights for a given M, we then proceeded to reproduce these weights through batch and stochastic gradient descent. Our objective function was chosen to be the sum of squared errors: $(x \cdot w - y)^2$. We additionally were able to calculate the gradientand verify the gradient with the numeric gradient. We discovered that at multiple M values and weight vectors, the gradients were consistent with each another. Due to the nature of the fact that the dataset was created by a cosine function we found that M=1 gave an order of magnitude larger loss than $M=\frac{2}{3}$. For M=2 and M=3, we made the following observations regarding the impact of initial guess, step size, and convergence threshold.

2.1. Starting guess

Regarding choice of starting guess, as the magnitude of the guess increased exponentially, the number of steps needed to converge increased linearly. Furthermore, the initial guess did not have a significant impact on the final resulting converged weight. For example, with M=2, and an initial guess of 100, the algorithm converged in 626 steps. With an initial guess of 1,000, the algorithm converged in 1178 steps. With an initial guess of 10,000, the algorithm converged in 1790 steps. Interestingly however, with an initial guess of 1, it required 817 steps to converge. We hypothesized that this strange phenomenon was because some components of the initial guess were smaller than the converged value and some were greater, thus requiring more steps to converge.

2.2. Step size

Regarding the impact of step size on gradient descent convergence, we found that for M=2, a step size equal to or above 0.07 resulted in a divergent solution. For a step size of 0.06 however, we got a converged weight of [2.398, -11.799, 10.001] which was quite close to the actual weights. Surprisingly, at step sizes smaller than 0.06, we actually found the converged weight to be less accurate. Although seemingly counterintuitive at first, this could be due to the fact that extremely small step sizes might reduce accuracy because the convergence criterion is met faster.

2.3. Convergence criterion/threshold

Regarding convergence criterion, a larger convergence thresholds meant fewer steps and decreased accuracy in the converged weight vector compared with the true weights calculated using the closed-form solution. Using M=2, the true weights are [2.456, -12.150, 10.338]. At a convergence threshold of 0.0001, the converged weight is [2.393, -11.767, 9.969]. At a convergence threshold of 0.001, the converged weight is [2.657, -13.367, 11.504] (farther away from the true weights). At a convergence threshold of 0.1, the converged weight is [3.978, -20.651, 18.206] (extremely far from the true weights).

2.4. Batch versus stochastic gradient descent

When we compared performance of SGD with bath gradient descent, we found that for both M=1 and M=2, SGD was able to converge to a more accurate weight in less single-point evaluation steps. More specifically, batch gradient descent (with optimum step size of 0.06) required 626 steps (6886 single

point evaluations) to converge, while SGD (with $\kappa = 6$ and $t_0 = 100$) converged with only 2679 single-point evaluations. A similar phenomenon was noticed with M = 1.

2.5. Cosine basis functions

We could also choose our set of basis functions to be the set of cosine functions, where $\phi_1(x) = \cos(\pi x)$, $\phi_2(x) = \cos(2\pi x)$, ..., $\phi_M(x) = \cos(M\pi x)$. This was again calculated for multiple values of M and compared in Figure 4. Interestingly, even when we used the same family of basis functions as used to generate the initial data (M=2), due to the noise $\epsilon(x)$ added to the initial dataset, the maximum likelihood weight vector did not identically match the actual function used:

$$w = \begin{bmatrix} 1\\1.5 \end{bmatrix}$$

$$w_{MLE} = \begin{bmatrix} 0.779\\1.174 \end{bmatrix}$$

where w was the actual weight vector and w_{MLE} was the maximum likelihood estimated weight vector.

Figure 4. Linear regression for varying values of M.

3. Ridge regression

As illustrated in the previous section, some values of M resulted in overfitting to the training set. Thus, in an attempt to reduce overfitting, we implemented ridge regression, which added a regularization parameter λ to the regression function. In this case, we have chosen a regularizer to serve as a weight decay, in order to encourage weight vector values to tend

towards zero unless otherwise supported by the data. For any given value of M therefore, with greater weight decay regularization coefficients, the weight vector decays more strongly towards zero. In other words, for higher values of λ , the data must more strongly support greater weight vector values in order to achive the same magnitude of coefficients in the weight vector.

This is illustrated in Figure 5, where the first row illustrates the fit of ridge regression using a polynomial basis of degree 3 with $\lambda=0.1$ and 1 and the second row shows the fit of the ridge regression using a polynomial basis of degree 10. As illustrated, the weight vector coefficients in the regression are dampened towards zero with greater values of the regularization coefficient. This is compared with the regression computed with a $\lambda=0$ to illustrate the decay effect of the regularization parameter.

Figure 5. Ridge regression for values of M and λ .

Using additional data sets for validation and testing, we can select for the best M and λ parameters in our regression model using a polynomial basis. More specifically, for many combinations of values of M and λ , the maximum likelihood weight vector w_{MLE} was calculated based on the training data set. Through model selection on the validation data set, the best model and optimal values for M and λ were chosen based on the evaluation metric. This optimal regression model was then run on the testing data set to evaluate the performance of the model on the new data. The maximum likelihood weight vectors were generated for all $M \in [0, 10]$ and $\lambda \in \{0, 0.1, 0.2, ..., 1.4, 1.5\}$, and this was performed multiple times with data set

A as the training data and data set B as the testing data, as well as vice versa. The performance of the regression model was evaluated using the sum of squared errors (SSE) and the mean squared errors (MSE); qualitatively, both evaluation metrics result in the same conclusions, although quantitatively, some additional information can be gleaned from each evaluation metric.

When data set A was used as the training data and data set B was used as the testing data, the validation step indicated that M=2 and $\lambda=0.0$ yielded the optimal regression model with a minimum SSE of 2.35 and a minimum MSE of 0.11. Running this model on the testing data demonstrated that the regression fit the testing data remarkably well, excepting a single outlier in the testing data. Thus, despite a relatively low MSE of 2.58 on the testing data, the SSE was relatively high at 25.75 due to the significant error in the outlier data point. The training, validation, and testing steps are illustrated in Figure 6, in which the best regression line chosen in model selection is plotted against each data set used for training, validation, and testing, respectively.

Figure 6. Training on data A, testing on data B.

When data set B was used as the training data and data set A was used as the testing data, the validation step indicated that M=3 and $\lambda=0.6$ gave the optimal regression model with a minimum SSE of 28.10 and minimum MSE of 1.28. In this case, as the model and maximum likelihood weight vectors were computed based on the data set with the outlier data point, the model was trained to try to account for this outlier data point as well. Thus, during the validation step during model selection, the minimum SSE and

MSE were significantly greater than when the data set without the outlier was used for training. This can additionally be seen in the testing step, in which the SSE was 40.09 and the MSE was 3.08. This regression model on the training, validation, and testing data sets is again visualized in Figure 7.

Figure 7. Training on data B, testing on data A.

Under both evaluation metrics (SSE and MSE), we can conclude that the polynomial basis yielded better linear regression when trained on data set A and tested on data set B. By examining and comparing both metrics however, we can gain additional information regarding the spread of the data and any potential outliers. This makes intuitive sense when considering the roles of training, validation, and testing and allows us to draw conclusions about the relationships and relative importance of each step with respect to each other.

4. Sparsity and LASSO

In this section of our research, we begin to tackle problems in which the closed-form solutions do not exist. In this case, we specifically used the LASSO estimator to approximate sparse weights for a dataset generated by the function

$$y = w_{true}^T \phi(x) + \epsilon,$$

(where ϵ is a small amount of noise), working with a sin basis of the form:

$$\phi(x) = (x, \sin(0.4\pi x \times 1), \sin(0.4\pi x \times 2), ..., \sin(0.4\pi x \times 12))$$

By using LASSO with varying values of λ , we can seek to optimize our resulting weight vector for the sine ba-

sis with respect to sparseness. Sparseness, the property in which there are few non-zero components of the weight vector, is of particular interest to us because it minimizes the ability for the weight vector to overfit the data. Furthermore, as a sparse feature vector is weighted by some but not all components, it is less suspectible to noise in the data. In this case, LASSO is able to attain sparseness by making the regularization penalty λ use the L_1 norm.

We used the sklearn package to implement LASSO, and we found that we were indeed able to produce a sparse approximated weight vector for the data: [0, 0, 5.411, 0.476, 0, 0.994, 2.357, 0, 0, 0, 0, 0, 0]. Comparing this with the true weight vector w_{true}^T , which was given as [0, 0, 5.646, 0.779, 0, 0.811, 2.683, 0, 0, 0, 0, 0, 0], we can see that in both weight vectors, there are only four non-zero components. In contrast, when $\lambda = 0$, we get a weight vector in which all component weights are non-zero.

Figure 8 outlines the results of these various approaches for different values of λ . At $\lambda=0.1$, the LASSO curve approximates the actual curve surprisingly well despite minor differences. For $\lambda=0$, in which the regularization penalty is not taken into account, the resulting curve has higher variability and tries to overfit the data too much. Thus, despite not having a closed-form solution in this scenario, we can employ LASSO and principles of sparsity to still generate an acceptable approximation and regression of the data.

Figure 8. LASSO with varying values of lambda.

Comparing ridge regression with LASSO, we can see how both approaches seek to minimize overfitting in our approximation to the data. Unlike ridge regression which minimizes the component weights of the weight vector however, LASSO allows some weights to take values not close to 0 and instead focuses on optimizing for sparseness. These results, comparing ridge regression versus LASSO, are illustrated in Figure 9.

Figure 9. Ridge regression vs. LASSO.