«Исследование статистических связей»

Шарифуллин Ринас Рамилевич гр. 09-131

Вариант – 13

Задание 4 1

- 1. Говорят, что уровень успеваемости студентов по математической статистики зависит от их роста.
- 2. В выборку вошло n = 103 человек. В данных, представленных ниже, горизонтальный столбец таблицы показывает рост студента (в см.). Вертикальный баллы учащегося за экзамен по математической статистике.
- 3. Рост студента есть случайная величина с функцией распределения F_1 , а F_2 функция распределения баллов.
- 4. Ожидается, что F_1 и F_2 зависимые случайные величины. Т.о., нулевая гипотеза \mathbf{H}_0 : F_1 и F_2 независимые сл. вел. при альтернативе \mathbf{H}_1 : F_1 и F_2 зависимые сл. вел.
- 5. Уровень значимости α = 0.03.
- 6. Применим критерий сопряженности хи-квадрат. Области признаков разобьём на r=3 и s=5 интервалы. Ожидания будут подтверждены, если X^2 примет маленькое значение, т.е. критическая область имеет вид $\{X^2>C\}$.

$$\mathbb{X}^{2} = n \sum_{k=1}^{r} \sum_{j=1}^{s} \frac{\left(\frac{n_{kj}}{n} - \frac{n_{*j}}{n} \frac{n_{k*}}{n}\right)^{2}}{\frac{n_{*j}}{n} \frac{n_{k*}}{n}} = \frac{1}{n} \sum_{k=1}^{r} \sum_{j=1}^{s} \frac{\left(n \, n_{kj} - n_{*j} \, n_{k*}\right)^{2}}{n_{*j} \, n_{k*}}.$$

- 7. При справедливости нулевой гипотезы функцию распределения статистики X^2 можно приблизить функцией хи-квадрат распределения $\mathbb{K}\mathbb{h}\mathbb{1}(x\mid (r-1)*(s-1)) = \mathbf{P}_{H0}\{X^2\leq x\}$ с (r-1)*(s-1)=8 степенями свободы.
- 8. Критическая константа C_{α} находится как решение неравенства

$$P_{H0} \{X^2 \ge C_\alpha\} = 1 - \mathbb{K} \text{hi}(C_\alpha \mid 8) = 0.03,$$

- т.е. C_{α} равна квантили порядка 0.97 хи-квадрат распределения с 8 ст. св. По таблице хи-квадрат распределения (процедурой Excel), находим C_{α} = 17,01.
- а. Вид критерия: гипотеза однородности отвергается, если $\{X^2 \ge 17,01\}$.

а. По представленным данным найдено

172,45	182,83	>182,83	Σ
0	3	7	10
8	13	9	30
6	8	8	22
10	5	5	20
11	9	1	21
35	38	30	n = 103
Статистика X^2			19,74
степени свободы			8
3%-я критическая область		$X^2 \ge 17,01$	
Гипотеза независимости		отвергается	
с критическим уровнем		<i>p-val</i> < 0,0041	
значимости			
	0 8 6 10 11 35 X^2 ободы неская облас зависимости	0 3 8 13 6 8 10 5 11 9 35 38 X² ободы неская область зависимости зим уровнем	$egin{array}{c ccccccccccccccccccccccccccccccccccc$

b. Критический уровень значимости p-value вычисляется по формуле p-val = 1 – \mathbb{K} \mathbb{h} i(19,74 | 8) = 0,0041. Есть все основания считать, что успеваемость студента по математической статистике зависит от его роста.

Задание 4 2

- 1. Говорят, что уровень успеваемости студентов по математической статистики зависит от их роста.
- 2. В выборку вошло n = 103 человек. В данных, представленных ниже, горизонтальный столбец таблицы показывает рост студента (в см.). Вертикальный баллы учащегося за экзамен по математической статистике.
- 3. Рост студента есть случайная величина с функцией распределения F_1 , а F_2 функция распределения баллов.
- 4. Ожидается, что F_1 и F_2 зависимые случайные величины. Т.о., нулевая гипотеза \mathbf{H}_0 : F_1 и F_2 независимые сл. вел. при альтернативе \mathbf{H}_1 : F_1 и F_2 зависимые сл. вел.
- 5. Уровень значимости α = 0.01.
- 6. Применим критерий независимости компонент двумерного случайного вектора. Статистика Стьюдента вычисляется по следующей формуле:

$$t = \sqrt{n-2} \frac{R}{\sqrt{1-R^2}}.$$

Критическая область будет принимать вид: $|t| \geq C$

- 7. Функция распределения тестовой статистики совпадает с функцией распределения Стьюдента $\mathbb{St}_{(n-2)}$ с n-2=101 степенями свободы.
- 8. Критическая константа \mathcal{C}_{α} находится из уравнения

$$2(1-\mathbb{St}_{101}(C))=0.01,$$

т.е. – равна верхней 0.005-квантили распределения Стьюдента с 101 степенями свободы.

- а) Воспользовавшись таблицей (пакетом Excel), нашли, что C_{α} = 2,87.
- b) Окончательный вид критической области |t| ≥ 2,87

9.

а. По представленным данным найдено

	Х	У
Среднее,	177,12	50,56
Дисперсия, s ²	65,99	40,91
Станд. отклонение, s	8,12	6,39
Объем выборки, n	103	103
Коэффициент корреляц	0,39	
Преобразование Стьюд	4,28	
1%-я критическая область		t > 2,87

Гипотеза независимости	отвергается
с критическим уровнем значимости	p-val < 0,000043

b. Критический уровень значимости p-value вычисляется по формуле p-val = $2(1 - \mathbb{S}\mathbb{t}_{101}(4,28)) = 0,000043$. Есть все основания считать, что успеваемость студента по математической статистике зависит от его роста.

Задание 4_3

- 1. По результатам независимых измерений значения баллов за экзамен по математической статистике и роста n=103 студентов найти оценки коэффициентов линейной среднеквадратической регрессии роста учащегося (ξ) на полученную оценку (η); представить график линии регрессии в поле всех данных; найти прогноз значения ξ при значении $\eta=56$; дать оценку точности прогноза, изобразить эллипс рассеяния.
- 2. Для проверки предположения в эксперименте приняло участие n = 103 студента, у которых были измерены рост и уровень успеваемости по математической статистике.
- 3. По представленным данным найдено

Коэффициент линейной регрессии	$\beta = 0,49$
Уравнение регрессии η на ξ	y = 0.49x + 152.16
Прогноз при $y = 56$	x = 179,8
Коэфф.корреляции	R = 0.39
Стандарт.отклонение наблюдений	$S_x = 8,12$
Оценка стандарт. ошибки прогноза	7,49

Вывод. При таком невысоком значении коэффициента корреляции (R = 0,39; стандартная ошибка прогноза равна 7,49) прогностические качества линии регрессии очень низкие.