第二章 极限与连续

一、选择题(选择正确的选项)

1. 当 $x \to 0^+$ 时,若 $\ln^{\alpha}(1+2x)$, $(1-\cos x)^{\frac{1}{\alpha}}$, 均是比 x 高阶无穷小量,则 α 的取值 范围是(B).

$$(A)(2,+\infty)$$

(C)
$$(\frac{1}{2}, 1)$$

(C)
$$(\frac{1}{2}, 1)$$
 (D) $(0, \frac{1}{2})$

2. 函数 $f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)}$ 在 $[-\pi, \pi]$ 上的第一类间断点是 x = (A).

(C)
$$-\frac{\pi}{2}$$

(D)
$$\frac{\pi}{2}$$

3. 下列极限中, 极限不为0的是(D).

(A)
$$\lim_{x \to \infty} \frac{\arctan x}{x}$$

(B)
$$\lim_{x \to \infty} \frac{2\sin x + 3\cos x}{x}$$

(D) $\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$

(C)
$$\lim_{x \to 0} x^2 \sin \frac{1}{x}$$

(D)
$$\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$$

4. 下列运算正确的是(C).

(A)
$$\lim_{x \to 0} \left(\sin x \cdot \cos \frac{1}{x} \right) = 0 \cdot \lim_{x \to 0} \cos \frac{1}{x} = 0$$

(B)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = 0$$

(C)
$$\lim_{x \to \infty} \frac{\sin x + 2}{x} = \lim_{x \to \infty} \frac{\sin x}{x} + \lim_{x \to \infty} \frac{2}{x} = 0$$

(D)
$$\lim_{x \to \pi} \frac{\tan 3x}{\sin 5x} = \lim_{x \to \pi} \frac{3x}{5x} = \frac{3}{5}$$

5. 设函数 $f(x) = \frac{x \ln x^2}{|x-1|}$, 则 f(x) 有 (B).

(A) 两个可去间断点

(B) 一个可去间断点, 一个跳跃间断

(C) 两个无穷间断点

(D) 一个可去间断点, 一个无穷间断点

- **6.** 当 $x \to 0$ 时, $\sqrt{2+x^3} \sqrt{2}$ 与 x^2 比较是 (A).
 - (A) 高阶无穷小量 (B) 等价无穷小量 (C) 低阶无穷小量 (D) 同阶无穷小量
- 7. 函数 $f(x) = \frac{\sin(x-1)}{x^2-1}$ 的第二类间断点是(B).
 - (A) x = 1
- (B) x = -1 (C) $\frac{1}{2}$
- (D) $-\frac{1}{2}$
- 8. 函数 $f(x) = \frac{x}{\cos x}$ 的第一类间断点个数是(A).
 - (A) 0
- (B) 1
- (D) 3
- **9.** 函数 $f(x) = \frac{x}{\tan x}$ 的第一类间断点是(C).
 - (A) $x = 2\pi$
- (B) $x = -\pi$
- (C) x = 0
- (D) $x = \pi$

- **10.** 当 $x \to 0$ 时, $x \sin x$ 是比 x^2 的(B).
 - (A) 低阶无穷小

(B) 高阶无穷小

(C) 等价无穷小

(D) 同阶但非等价无穷小

- 11. $\lim_{x \to 1} \frac{\sin(1-x^2)}{x-1} = (C)$
- (C) -2

- 12. 下列函数在其定义域内连续的是(A)
 - $(A) f(x) = \frac{1}{x}$

- (B) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- (C) $f(x) = \begin{cases} \frac{1}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- (D) $f(x) = \begin{cases} \sin x, & x \neq 0 \\ \cos x, & x = 0 \end{cases}$
- **13.** 若 $\lim_{x \to x_0} f(x) = a$, 则必有 (A) .
 - (A) f(x) 在点 x_0 的某一个去心领域内有定义;
 - (B) f(x) 仕点 x_0 处有定义;
 - (C) f(x) 在点 x_0 的任意一个去心领域内有定义;
 - (D) $a = f(x_0)$.

14. 函数
$$f(x) = \frac{x}{\sin x}$$
 的第一类间断点是(C).

(A)
$$x = \frac{\pi}{2}$$
; (B) $x = -\pi$; (C) $x = 0$; (D) $x = \pi$.

(B)
$$x = -\pi$$
;

(C)
$$x = 0$$
;

(D)
$$x = \pi$$
.

二、填空题(请将答案写在横线上)

1. 设函数
$$f(x) = \begin{cases} (1 - \frac{3x}{2})^{\frac{1}{x}}, & x \neq 0 \\ A, & x = 0 \end{cases}$$
 在点 $x = 0$ 处连续,则 $A = \underline{e^{-\frac{3}{2}}}$.

- **2.** 当 $x \to 0$ 时, $1 \cos kx$ 与 x^2 是等价无穷小量, 则 $k = \pm \sqrt{2}$.
- **3.** 设 $f(x) = x \sin \frac{3}{x} + \frac{\sin x}{x}$, 则 $\lim_{x \to \infty} f(x) = \underline{\qquad 3}$.

4.
$$\lim_{x \to 0} \frac{x}{e^x - e^{-x}} = \frac{1}{2}$$
.

5.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right) = \underline{\qquad 1}$$

6. 若
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{kx} = 9$$
,则 $k = \underline{\ln 3}$.

7.
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right)$$
等于_____.

三、计算题(请给出必要的步骤)

1. 求极限
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
.

P.
$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \lim_{x \to 0} \frac{\sin x}{6x} = \frac{1}{6}$$
.

2. 求极限
$$\lim_{n\to\infty} (1-\frac{1}{n})^{\sqrt{n}}$$
.

解. 由条件可得

$$\begin{split} \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{\sqrt{n}} &= \lim_{n \to \infty} \left(1 - \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} \left(1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} \\ &= \lim_{n \to \infty} \left(1 - \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} \lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} \\ &= \mathrm{e}^{-1} \mathrm{e} = 1. \end{split}$$