

2012 USAJMO AoPS Community

USAJMO 2012

www.artofproblemsolving.com/community/c3975 by BOGTRO, tc1729, rrusczyk

Day 1 April 24th

- Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that 1 AP = AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic (in other words, these four points lie on a circle).
- 2 Find all integers $n \geq 3$ such that among any n positive real numbers a_1, a_2, \ldots, a_n with $\max(a_1, a_2, \ldots, a_n) \leq n$ $n \cdot \min(a_1, a_2, \dots, a_n)$, there exist three that are the side lengths of an acute triangle.
- Let a,b,c be positive real numbers. Prove that $\frac{a^3+3b^3}{5a+b} + \frac{b^3+3c^3}{5b+c} + \frac{c^3+3a^3}{5c+a} \geq \frac{2}{3}(a^2+b^2+c^2)$. 3

Day 2 April 25th

- 4 Let α be an irrational number with $0 < \alpha < 1$, and draw a circle in the plane whose circumference has length 1. Given any integer $n \geq 3$, define a sequence of points P_1, P_2, \dots, P_n as follows. First select any point P_1 on the circle, and for $2 \le k \le n$ define P_k as the point on the circle for which the length of arc $P_{k-1}P_k$ is α , when travelling counterclockwise around the circle from P_{k-1} to P_k . Suppose that P_a and P_b are the nearest adjacent points on either side of P_n . Prove that $a + b \le n$.
- 5 For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers k with $1 \le k < 2012$ such that the remainder when ak divided by 2012 is greater than that of bkdivided by 2012. Let S be the minimum value of f(a, b), where a and b range over all pairs of distinct positive integers less than 2012. Determine S.
- 6 Let P be a point in the plane of $\triangle ABC$, and γ a line passing through P. Let A', B', C' be the points where the reflections of lines PA, PB, PC with respect to γ intersect lines BC, AC, ABrespectively. Prove that A', B', C' are collinear.

These problems are copyright © Mathematical Association of America (http://maa.org).