(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-106128 (P2001-106128A)

(43)公開日 平成13年4月17日(2001.4.17)

(51) Int.CL7

識別記号

ΡI

テーヤコート*(参考)

B62D 55/10 E02F 9/02 B62D 55/10

A

E02F 9/02

С

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特額平11-286904

(71)出度人 000246273

コペルコ建模株式会社

(22)出顧日 平成11年10月7日(1999.10.7)

広島県広島市安佐南区祇園3丁目12番4号

(72)発明者 山田 正敏

岐阜県大垣市本今町1682番地の2 株式会

社神劉造機内

(74)代理人 100067828

弁理士 小谷 悦司 (外2名)

(54) 【発明の名称】 建設機械の下部走行体

(57)【要約】

【課題】 組立て、分解が容易であり、スパンナシリングを最大ストロークで作動させることができる建設機械の下部走行体を提供する。

【解決手段】 上部旋回体を支持する旋回体支持フレーム1と、この旋回体支持フレーム1の左右両側に張出し自在に接続されるクローラフレーム4,7とを有し、このクローラフレーム4,7の張出し量を油圧シリング10の伸縮によって調整し得る建設機械の下部走行体において、油圧シリング10の端部に、シリング軸方向と直交する取付板11,11を設け、この取付板11,11をクローラフレーム内側壁面に面当接状態で着脱自在にボルト止めすることにより、油圧シリング10とクローラフレーム4,7とを分解可能に連結したことを特徴とする。

【特許請求の範囲】

【請求項1】 上部旋回体を支持する旋回体支持フレームと、この旋回体支持フレームの左右両側に張出し自在に接続されるクローラフレームとを有し、このクローラフレームの張出し量を油圧シリンダの伸縮によって調整し得る建設機械の下部走行体において、

前記油圧シリングの端部に、シリング軸方向と直交する 取付板を設け、この取付板をクローラフレーム内側壁面 に面当接状態で着脱自在にボルト止めすることにより、 前記油圧シリングと前記クローラフレームとを分解可能 10 に連結したことを特徴とする建設機械の下部走行体。

【請求項2】 前記油圧シリンダのロッド側端部及びへッド側端部に前記取付板が設けられている請求項1記載の建設機械の下部走行体。

【請求項3】 前記取付板は、前記油圧シリンダの端部 にピンを介して固定されるブラケットに設けられている 請求項1または2に記載の建設機械の下部走行体。

【請求項4】 前記取付板を除く前記ブラケットが前記 クローラフレーム内に収納されるように構成されている 請求項3記載の建設機械の下部走行体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、油圧シリングを伸縮させることによりクローラフレームの張り出し量を調整する建設機械の下部走行体に関するものである。

[0002]

【従来の技術】従来、建設機械において、左右のクローラ取付けフレーム(以下、クローラフレームと呼ぶ)を 車幅方向に張り出し、作業時の安定性を確保する構成の 油圧ショベルが知られている。

【0003】図6は、そのクローラフレームの張出し機構を示したものである。同図に示す下部走行体は、旋回体支持フレーム50の前後に中空角管からなるガイド筒51、52が車幅方向に平行して備えられ、これらのガイド筒51、52の開口に対しクローラフレーム53、54から突設された角管からなるアーム55、56を入子式に挿入するようになっている。

【0004】ガイド筒51,52の間にはスパンナシリング57が車幅方向に取り付けられており、そのロッド 先端部57aはクローラフレーム53に、ヘッド側端部 4057bはクローラフレーム54にそれぞれ接続されている。従ってスパンナシリング57を作動させてロッド57aを伸長させると、ガイド筒51,52に案内されてクローラフレーム53,54が車幅方向に張り出されることになる。なお、図中58及び59は、クローラフレーム53及び54に装着されるクローラである。

[0005]

【発明が解決しようとする課題】しかしながら、従来の クローラフレームでは、ロッド先端部57aとクローラ フレーム53との間に連結手段としてのブラケット60 50

が配置され、また、ヘッド側端部57bとクローラフレーム54との間にブラケット61が配置されており、それらのブラケット60,61の長さ分、スパンナシリング57のロッド引込み量が制限されるため、スパンナシリング57のストロークを最大限利用することができないという欠点があり、特に車幅が小さく制限されるミニショベル等と称される小型油圧ショベルにおいて問題となっていた。

【0006】そこで、例えば図7に示す掘削機の走行装置(実開平6-53381号)のように、旋回体支持フレーム50の前後にスパンナシリンダ62,62を配設し、ロッド側端部62a,62aとクローラフレーム53,54とを接続するブラケットをクローラフレーム53,54内に収納し、ピン62b,62bを差し込んで固定する構成のものが提案されている。この構成によれば、スパンナシリンダ62のストロークを最大限利用することが可能になる。

【0007】ところが、上記据削機の走行装置では、クローラフレーム53を分解する際にピン62bを引き抜かなければならず、そのピン62bを引き抜くためには、クローラ58を取り外さなければならない。しかもピン62bの挿入位置には通常、上部天輪が配置されているため、クローラフレーム53,54の分解が困難であるという問題がある。

【0008】本発明は以上のような従来のクローラフレームにおける課題を考慮してなされたものであり、組立て、分解が容易であり、スパンナシリングのストロークを最大限利用することのできる建設機械の下部走行体を提供するものである。

30 [0009]

【課題を解決するための手段】請求項1の本発明は、上部旋回体を支持する旋回体支持フレームと、この旋回体支持フレームの左右両側に張出し自在に接続されるクローラフレームとを有し、このクローラフレームの張出し量を油圧シリンダの伸縮によって調整し得る建設機械の下部走行体において、油圧シリンダの端部に、シリンダ軸方向と直交する取付板を設け、この取付板をクローラフレーム内側壁面に面当接状態で着脱自在にボルト止めすることにより、油圧シリンダとクローラフレームとを分解可能に連結した建設機械の下部走行体である。

【0010】請求項2の本発明は、油圧シリンダのロッド側端部及びヘッド側端部に取付板が設けられている建設機械の下部走行体である。

【0011】請求項3の本発明は、取付板は、油圧シリングの端部にピンを介して固定されるブラケットに設けられている建設機械の下部走行体である。

【0012】請求項4の本発明は、取付板を除くブラケットがクローラフレーム内に収納されるように構成されている建設機械の下部走行体である。

【0013】請求項1の本発明に従えば、油圧シリンダ

の端部に直列にブラケットを配置して油圧シリンダとク ローラフレームとを接続する従来構成に比べ、左右のク ローラフレームの間隔をより縮小させることができる。 また、ボルトを取り外せばクローラを取り外すことなく クローラフレームを容易に分解することができる。

【0014】請求項2の本発明に従えば、クローラフレ ームから取付板を取り外すことにより油圧シリングを下 部走行体から取り外すことができる。

【0015】請求項3の本発明に従えば、油圧シリンダ の端部に着脱し得るブラケットに取付板を形成したた め、ブラケットを容易に交換することができ、且つ市販 の油圧シリンダを利用することができる。

【0016】請求項4の本発明に従えば、取付板を除く ブラケットがクローラフレーム内に収納されているた め、左右のクローラフレームを最大限縮小させることが できる。

[0017]

【発明の実施の形態】以下、図面に示した一実施形態に 基づいて本発明を詳細に説明する。

【0018】図1は、本発明に係る建設機械の下部走行 20 体をミニショベルに適用した場合の構成を示す分解斜視 図である。同図において、1は上部旋回体(図示しな い)を旋回自在に支持する旋回体支持フレームであり、 その旋回体支持フレーム1の前側及び後側に角パイプか らなるガイド筒2及び3がそれぞれ車幅方向に平行して 配設されている。

【0019】4は右側クローラフレームであり、その内 壁(平行配置されるクローラフレームの一方内壁)4a には上記ガイド筒2、3の各開口に挿入し得る、角パイ プからなる挿入筒5、6が平行して突設されている。 【0020】一方、7は左側クローラフレームであり、 右側クローラフレーム4と同様に、内壁(平行配置され るクローラフレームの他方内壁) 7aにガイド筒2,3 の各開口2a,3aに挿入し得る挿入筒8,9が平行し て突設されている。

【0021】10は旋回体支持フレーム1を貫通してク ローラフレーム4及び7に架設されるスパンナシリンダ であり、そのロッド先端部 (ロッド側端部) 10 a は右 側クローラフレーム4の内壁4aに形成された開口4b 内に挿入され、また、ヘッド側端部10bは左側クロー 40 ラフレーム7に形成された開口7b内に挿入される。な お、各クローラフレーム4及び7には図示しない走行モ ータ、ローラ等が取り付けられるとともにゴムクローラ が装着される。

【0022】図2はクローラフレームの組立状態を示し たものであり、同図(a)は平面図、同図(b)は正面 図を示している。両図において、右側クローラフレーム 4の挿入筒5、6はガイド筒2、3の一方開口から入子 式に挿入され、左側クローラフレーム7の挿入筒8.9 はガイド筒2,3の他方開口から入子式に挿入され、そ 50 ム4の補強板4cとを貫通してボルト13が挿通され、

れぞれ伸縮アームを構成している。ガイド筒2,3の略 中間には1つのスパンナシリンダ (油圧シリンダ) 10 が配置され、図2ではスパンナシリンダ10のロッドが シリンダチューブ内に格納された状態を示している。従 ってこの状態でクローラフレーム4,7は車幅方向に縮 小されている。

【0023】上記スパンナシリンダ10のヘッド側端部 10bには図3に示すブラケット11が取り付けられ る。このブラケット11は、取付け時にクローラフレー 10 ム内壁7aに平行するように構成された略長方形状の取 付板である縦板部11aを有し、その縦板部11aの略 中心部に矩形状の開口11bが形成され、その開口11 bの縁部から水平方向に一対の横板部11c, 11cが 平行して突設されている。その一対の横板部11c,1 1 cには垂直方向に貫通する貫通孔11 dが形成されて いる。

【0024】縦板部11aにおける開口11bの左右両 側には、ブラケット11固定用のポルト13を挿通する ためのばか穴11e, 11eが形成されている。

【0025】また、経板部11aの長手方向一方端部に は貫通孔が形成され、長尺ボルト14が挿通されナット 15で締め付け固定されている。この長尺ボルト14 は、クローラフレームを張り出す際のストッパ (後述す る) として機能するようになっている。

【0026】このブラケット構造では、ブラケット11 の開口11bからスパンナシリンダ10のヘッド側端部 10bを通し、その取付孔10cを貫通孔11c, 11 cと一致させ、ピン16を差し込むことにより、スパン ナシリンダ10のヘッド側端部10bにブラケット11 30 が固定される。なお、スパンナシリンダ10のロッド先 端部10aについても上記ブラケット11と同じ構成の ブラケットが取り付られている。

【0027】図4は図2のC-C断面図であり、上記ブ ラケット11,11とクローラフレーム4,7との接続 状態を示している。

【0028】 同図において、スパンナシリンダ10のロ ッド先端部10aが固定されるクローラフレーム4に は、その内壁4aを補強する補強板4c及びその天板を 補強する補強板4dがL字状に付設されており、補強板 4cと内壁4aを貫通して開口4bが形成されている。 【0029】一方、スパンナシリンダ10のヘッド側端 部10bが固定されるクローラフレーム7についても同 様に補強板7c及び補強板7dがそれぞれ付設されてお り、補強板7cと内壁7aを貫通して開口7bが形成さ

【0030】図5は図2のD-D断面図であり、ブラケ ット11の固定構造を示している。 同図において、スパ ンナシリンダ10のロッド先端部10aに取り付られた ブラケット11における縦板部11aとクローラフレー

5

ナット17を螺合させることにより、ブラケット11が クローラフレーム4に固定される。

【0031】スパンナシリンダ10のヘッド側端部10 bに取り付けられるブラケット11についても同様にし てクローラフレーム7に固定される。それにより、スパ ンナシリンダ10は両クローラフレーム4及び6に架設 されることになる。

【0032】次に上記構成を有する下部走行体の動作を 図2を参照しながら説明する。

【0033】スパンナシリンダ10のヘッド側油室に圧油を供給すると、シリンダチューブからロッドが伸長され、クローラフレーム4及び7を車幅方向に拡張させる。このとき、負荷の小さいクローラフレーム側が優先して移動するが、例えばクローラフレーム4のみ移動するような場合であっても、クローラフレーム4側に固定されているストッパ14bが、旋回体支持フレーム1に形成されているリブ18bに当接し、クローラフレーム4の移動が規制される。それにより、今度はクローラフレーム7が移動し始め、クローラフレーム7側に固定されているストッパ14aがリブ18aに当接すると、クローラフレーム4及び7の移動が停止する。ただし、リブ18a及び18bにはストッパ14a及び14bの軸部を通すことができるがボルト頭を通過させない直径からなる貫通穴が形成されているものとする。

【0034】メンテナンスにおいてクローラフレーム4を取り外す場合、クローラフレーム4側の2本のボルト13,13をそれぞれ取り外すだけで、スパンナシリンダ10のロッド先端部10aを切り離すことができるため、ゴムクローラを外すことなくクローラフレーム4を旋回体支持フレーム1から取り外すことができる。

【0035】また、クローラフレーム7側の2本のボルト13,13を取り外すと、スパンナシリンダ10のヘッド側端部10bが切り離され、クローラフレーム7を旋回体支持フレーム1から取り外すことができる。この状態でスパンナシリンダ10も自由となり、取り外すことができる。

【0036】また、クローラフレーム4を最大に伸長させた状態でボルト13,13を取り外し、スパンナシリンダ10のロッドを縮小させると、ブラケット11を備えたロッド先端部10aがクローラフレーム4から引き 40抜かれる。この状態によれば、ロッド先端部10aとブラケット11とを接続しているピン16が、旋回支持フレーム1とクローラフレーム4との間の空間部に位置することになり、ピン16を容易に引き抜くことができる。このスパンナシリンダ10のロッドをさらに縮小させると、ブラケット11とロッド先端部10aとが完全に離脱する。次いでブラケット11を長尺ボルト14bを回転中心として回転させロッド先端部10aから遠ざければ、ロッド先端部10aのシール部等のメンテナンスが容易になる。このとき、ブラケット11は長尺ボル 50

ト14bにより常に旋回支持フレーム1側に保持されているため、ブラケット11を着脱する手間が省かれメンテナンスがより簡便となる。

【0037】本発明における取付板部は、上記実施形態では長方形状の縦板部で構成したが、これに限らず、クローラフレーム4または7を車幅方向に押圧することのできる部材であれば、例えば円板状プレート等のように任意の形状の部材を使用することができる。

図2を参照しながら説明する。 【0038】本発明の建設機械の下部走行体は上記実施 【0033】スパンナシリンダ10のヘッド傾油室に圧 10 形態に示したように、車幅が小さく制限されるミニショ 油を供給すると、シリンダチューブからロッドが伸長さ ベル等と称される小型油圧ショベルに適用することが好 れ、クローラフレーム4及び7を車幅方向に拡張させ ましいが、小型油圧ショベルに限らず、小型以外のクラ る。このとき、負荷の小さいクローラフレーム側が優先 スの油圧ショベルに適用することもできる。

[0039]

【発明の効果】以上説明したことから明らかなように、請求項1の本発明によれば、油圧シリングの端部に直列にブラケットを配置して油圧シリングとクローラフレームとを接続する従来構成に比べ、左右のクローラフレームの間隔をより縮小させることができる。従ってクローラフレームの車幅方向伸縮量を拡張することができる。また、ボルトを取り外せばクローラを取り外すことなくクローラフレームを容易に分解することができる。【0040】請求項2の本発明によれば、油圧シリングのロッド側端部とヘッド側端部がそれぞれ取付板を介してクローラフレームの内側時間に用空されているため

のロッド側端部とヘッド側端部がそれぞれ取付板を介し てクローラフレームの内側壁面に固定されているため、 取付板のボルトを取り外せば、油圧シリンダを下部走行 体から取り外すことができる。

【0041】請求項3の本発明によれば、油圧シリンダの端部に着脱し得るブラケットに取付板を形成したた

30 め、ブラケットを容易に交換することができ、且つ市販の油圧シリンダを利用することができる。

【0042】請求項4の本発明によれば、取付板を除く ブラケットがクローラフレーム内に収納されているた め、左右のクローラフレームを最大限縮小させることが できる。

【図面の簡単な説明】

【図1】本発明に係る下部走行体の構成を示す分解斜視 図である。

【図2】(a)は本発明に係る下部走行体の組立状態を 示す平面図、(b)は一部切り欠きを有する正面図であ る。

【図3】本発明のブラケットの構成を示す分解斜視図で ある。

【図4】図2のC-C断面図である。

【図5】図2のD-D断面図である。

【図6】従来のクローラフレーム伸縮機構を示す平面図 である。

【図7】従来の別のクローラフレーム伸縮機構を示す平 面図である。

50 【符号の説明】

7

1 上部旋回体

2,3 ガイド筒

4 クローラフレーム

5,6 挿入筒

7 クローラフレーム

10 スパンナシリンダ (油圧シリンダ)

10a ロッド先端部(ロッド側端部)

10b ヘッド側端部

11 ブラケット

11a 縦板部(取付板部)

13 ボルト

【図6】

【図7】

