Алгебра

Лектор: Жуков Игорь Борисович

Содержание

1	Теория чисел				
	1	Делимость	-		
	2	Отношение эквивалентности и разбиение на классы]		
	3	Сравнение по модулю	2		
	4	Кольцо классов вычетов	3		
	5	Наибольший общий делитель	6		
	6	Взаимно простые числа	8		
	7	Линейные диофантовы уравнения	Ĝ		
	8	Простые числа	10		
	9	Основная теорема арифметики	11		
	10	Китайская теорема об остатках	13		
	11	Функция Эйлера	14		
2	Комплексные числа				
	1	Построение поля комплексных чисел	18		
	2	Тригонометрическая форма комплексного числа	20		
	3	Корни из комплексных чисел	22		
3	Многочлены 2				
	1	Многочлены и формальные степенные ряды	27		
	2	Свойства степени	28		
	3	Деление с остатком	29		
	4	Гомоморфизм подстановки	30		
	5	Евклидовы области	33		
	6	Факториальность области главных идеалов	36		
	7	Кратные корни и производные	38		
	8	Формула Тейлора	41		
	9	Алгебраически замкнутые поля. Каноническое разложение над $\mathbb C$ и над $\mathbb R$	42		
	10	Рациональные дроби	43		
	11	Интерполяция	47		
4	Ли	Линейная алгебра 49			
	1		49		
	2	Элементарные преобразования и элементарные матрицы	51		
	3	Перестановки	54		

1 Теория чисел

1 Делимость

Определение 1.1. $a, b \in \mathbb{Z}, a \mid b \iff \exists c \in \mathbb{Z} : b = ac$

Свойства.

- 1. $a \mid a$ рефлексивность
- 2. $a \mid b, b \mid c \implies \exists c \in \mathbb{Z} : b = ac$ транзитивность
- 3. $a \mid b, k \in \mathbb{Z} \implies ka \mid kb$
- 4. $a \mid b_1, \ a \mid b_2 \implies a \mid (b_1 \pm b_2)$
- 5. $\pm 1 \mid a$
- $6. \begin{cases} ka \mid kb \\ k \neq 0 \end{cases} \implies a \mid b$

Определение 1.2. a, b называются accoulumeanth acco

$$a \sim b \iff a \mid b \land b \mid a$$

Свойства.

1. Пусть $a \sim a'$, $b \sim b'$. Тогда $a \mid b \iff a' \mid b'$.

2 Отношение эквивалентности и разбиение на классы

Определение 2.1. Отношение эквивалентности — бинарное отношение, удовлетворяющее следующим свойствам: рефлексивность, симметричность, транзитивность.

Определение 2.2. Разбиение на классы множества M — это представление M в виде $M = \bigcup_{i \in I} M_i$, где M_i — классы, I — индексное множество, $M_i \cap M_j = \varnothing$ при $i \neq j$.

Теорема 2.1. Пусть $M = \bigcup_{i \in I} M_i$ — разбиение на классы. Введем отношение \sim над M так, что $a \sim b \iff \exists i \in I: a,b \in M_i$. Тогда \sim — отношение эквивалентности.

Доказательство.

Рефлексивность и симметричность очевидны. Докажем транзитивность.

$$a \sim b, \ b \sim c \implies \exists i, j : \begin{cases} a, b \in M_i \\ b, c \in M_j \end{cases}$$

Тогда $b \in M_i \cap M_j$, но так как $M_i \cap M_j \neq \emptyset$ при неравных i и j, i = j. Значит $a, b, c \in M_i$.

Теорема 2.2. Пусть \sim — отношение эквивалентности на M. Значит существует разбиение на классы $M = \bigcup_{i \in I} M_i$ такое, что $\forall a, b \in M : a \sim b \iff \exists i : a, b \in M_i$.

Доказательство.

Рассмотрим $a \in M$. Назовем классом элемента a множество

$$[a] = \{b \in M \mid a \sim b\}.$$

Докажем, что для любых элементов a и b, либо [a] = [b], либо $[a] \cap [b] = \emptyset$.

Пусть $[a] \cap [b] \neq \emptyset$. Тогда

$$\exists x \in [a] \cap [b] \implies \begin{cases} x \in [a] & \text{ohd. Kalacca} \\ x \in [b] \end{cases} \xrightarrow{\text{кранзитивность } \sim} a \sim b.$$

$$(\forall c \in [a] \ c \sim a \stackrel{a \sim b}{\Longrightarrow} \ c \sim b \implies c \in [b]) \implies [a] \subset [b]$$
 (1)

$$(\forall c \in [b] \ c \sim b \stackrel{a \sim b}{\Longrightarrow} c \sim a \implies c \in [a]) \implies [b] \subset [a]$$
 (2)

Из (1) и (2) получаем [a] = [b].

Тогда искомое разбиение можно построить как

$$X = \{ [a] \mid a \in M \}.$$

Действительно $\forall a \in M$, так как $a \in [a]$, то $M = \bigcup_{\alpha \in I} M_i$, а так как различные классы не пересекаются (доказано выше) $\forall a, b \ [a] \neq [b]$.

Определение 2.3. Построенное множество X называют фактор-множеством множества M по отношению эквивалентности \sim , обозначение: M/\sim .

Пример.
$$\mathbb{Z}/\sim=\{[z]\mid z\in\mathbb{Z}\}=\{[0],[1],[2],\dots\}$$

3 Сравнение по модулю

Определение 3.1. $\exists a, b, m \in \mathbb{Z}$. Говорят, что

$$a \underset{m}{\equiv} b \quad \iff \\ a \underset{m}{\equiv} m \ b \quad \iff \\ a \underset{m}{\equiv} b \pmod{m} \quad \iff \quad m \mid (a - b)$$

Свойства.

- 1. $\equiv -$ рефлексивно
- $2. \equiv -$ симметрично
- 3. $\equiv -$ транзитивно
- 4. $a \equiv b, d \mid m \implies a \equiv b$
- 5. $a \equiv b, \ k \in \mathbb{Z} \implies ka \equiv kb$
- 6. $a \equiv b, \ k \in \mathbb{Z} \implies ka \equiv kb$ (ослабленная версия предыдущего свойства)

7.
$$a_1 \equiv b_1, \ a_2 \equiv b_2 \implies a_1 \pm a_2 \equiv b_1 \pm b_2$$

8.
$$a_1 \equiv b_1, \ a_2 \equiv b_2 \implies a_1 a_2 \equiv b_1 b_2$$

Замечание. Сравнение по модулю — отношение эквивалентности.

4 Кольцо классов вычетов

Определение 4.1. Множество классов вычетов по модулю m — это множество всех вычетов по модулю m.

Обозначается как $\mathbb{Z}/m\mathbb{Z} \iff \mathbb{Z}/m \iff \mathbb{Z}/\equiv m$

Теорема 4.1. $\exists m \in \mathbb{N}$. Тогда

- 1. $\mathbb{Z}/m\mathbb{Z} = {\overline{0}, \overline{1}, \dots, \overline{m-1}}$
- 2. $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство.

- 1. $\exists a \in \mathbb{Z}, (!) \ \overline{a} = \overline{r}, \quad 0 \leqslant r < m$
 - а) Случай $a\geqslant 0$: $\exists r$ наименьшее число, такое что $r\geqslant 0$ и $a\equiv r$.

Если $r \geqslant m$, то $r - m \equiv a, r - m \geqslant 0, r - m < r$. То есть r - m подходит под условие для r и меньше. Противоречие с выбором r.

Значит r < m, то есть r — искомое.

b) Случай a < 0:

Рассмотрим $a'=a\pm (-a)m=a(1-m)$. Тогда $a<0,\ 1-m\geqslant 0,$ и $a'\geqslant 0$. $\overline{a}=\overline{a'}=\overline{r},\ 0\leqslant r< m$

2. предположим $\overline{r} = \overline{r'}, \ 0 \leqslant r, r' < m.$

$$\begin{cases} |r' - r| < m \\ m \mid (r - r') \end{cases} \implies r' - r = 0 \implies r = r'.$$

Следствие. Теорема о делениии с остатком

Пусть $a \in \mathbb{Z}, b \in \mathbb{N}$. Тогда

$$\exists ! \, q, r \in \mathbb{Z} : \begin{cases} a = bq + r \\ \leqslant r < b \end{cases}$$

Доказательство.

Существование:

В $\mathbb{Z}/b\mathbb{Z}$ рассмотрим $\overline{a} \in \{\overline{0}, \overline{1}, \dots, \overline{b-1}\}$, тогда по теореме выше найдется $0 \leqslant r < b$ для которого $\overline{a} = \overline{r}$:

$$a \equiv r \iff a = bq + r, \quad q \in \mathbb{Z}.$$

Единственность: Пусть нашлось два таких $q, q' \in \mathbb{Z}$ и $r, r' \in \mathbb{Z}$ для которых a = bq + r, a = bq' + r'. Тогда

$$bq + r \equiv bq' + r' \iff r \equiv r' \stackrel{0 \geqslant r, r' < b}{\iff} r = r' \implies bq = bq' \iff q = q'.$$

Напомню, что вторая равносильнось выполняется благодаря единственности класса вычетов \bar{r} .

Определение 4.2. q — неполное частное при делении a на b, r — остаток при делении a на b.

Определение 4.3. Операция на множестве M — бинарное отображение $M \times M \to M$.

На $\mathbb{Z}/m\mathbb{Z}$ определим операцию сложения и умножения по модулю m:

- $\bullet \ \overline{a} + \overline{b} = \overline{a+b}$
- $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$

Предложение 4.1. Это правда операции над множеством $\mathbb{Z}/m\mathbb{Z}$:

Доказательство. То, что за пределы множества при сложении и умножении мы не выходим, очевидно. Надо доказать, что при подстановке одинаковых классов, получаеются одинаковые результаты, то есть:

$$(!) \ \overline{a} = \overline{a'}, \ \overline{b} = \overline{b'} \implies \overline{a+b} = \overline{a'+b'}, \ \overline{a\cdot b} = \overline{a'\cdot b'}$$

распишем условия через сравнения по модулю:

$$\overline{a} = \overline{a'}, \ \overline{b} = \overline{b'} \implies a \equiv a', \ b \equiv b'$$

Воспользуемся свойствами сравнения:

$$a \equiv a', \ b \equiv b' \implies a + b \equiv a' + b', \ a \cdot b \equiv a' \cdot b'$$

И перейдем обратно к классам:

$$a+b \equiv a'+b', \ a\cdot b \equiv a'\cdot b' \implies \overline{a+b} = \overline{a'+b'}, \quad \overline{a\cdot b} = \overline{a'\cdot b'}$$

Пример. $m=4,~\mathbb{Z}/4\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$

Определение 4.4. $e \in M$ — нейтральный элемент относительно операции * на M, если $\forall a \in M$ справедливо a*e=e*a=a.

Предложение 4.2. Операции сложения и умножения на $\mathbb{Z}/m\mathbb{Z}$ обладают следующими свойствами:

 $\forall A, B, C \exists A'$:

- 1. A + B = B + A коммутативность сложения
- 2. (A + B) + C = A + (B + C) ассоциативность сложения
- 3. $A + \overline{0} = A$ существование нейтрального элемента относительно сложения
- 4. $A + A' = \overline{0}$ существование обратного элемента относительно сложения
- 5. AB = BA коммутативность умножения
- 6. (AB)C = A(BC) ассоциативность умножения
- 7. $A \cdot \overline{1} = A$ существование нейтрального элемента относительно умножения
- 8. $A \cdot (B + C) = A \cdot B + A \cdot C$ дистрибутивность умножения относительно сложения.
- 9. $(B+C) \cdot A = B \cdot A + C \cdot A$ дистрибутивность сложения относительно умножения.

Определение 4.5. *Кольцом* называется множество M с операциями сложения и умножения, для которых выполнены аналоги свойств 1-4 и 8-9.

Определение 4.6. Кольцо коммутативное, если выполнено свойство 5.

Определение 4.7. Колько ассоциативное, если выполнено свойство 6.

Определение 4.8. Кольцо *с единицей*, если выполнено свойство 7.

Определение 4.9. Я оставлю это для полноты картины, но wtf is this?

 $\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} : x + y = n \implies n$ — нейтральный элемент относительно сложения.

 ${\it 3ame\, vahue}$. Если * — операция на M, то существует единственный нейтральный элемент относительно *.

Доказательство. e, e' — нейтральные элементы относительно *, тогда e = e * e' = e'.

Типа просто в определение нейтрального элемента подставили и получилось.

Предложение 4.3. В нашем курсе все кольца будут ассоциативные с единицей.

Лемма 4.1. В любом кольце $0 \cdot a = 0$.

Доказательство.

Предположим противное. Покажем, что $0 \cdot a + 0 \cdot a = 0 \cdot a$.

$$0+0=0 \stackrel{\exists 0}{\Longrightarrow} (0+0) \cdot a = 0 \cdot a \stackrel{\text{дистр.}}{\Longrightarrow} 0 \cdot a + 0 \cdot a = 0 \cdot a$$

Теперь вычтем $0 \cdot a$. Так как $\exists b : b + (0 \cdot a) = 0$, то

$$0 = b + (0 \cdot a) = b + (0 \cdot a + 0 \cdot a) = (b + 0 \cdot a) + (0 \cdot a) = 0 + (0 \cdot a) = 0 \cdot a$$

Противоречие.

Определение 4.10. A^* — множество обратимых элементов кольца A (по умножению, разумеется).

Примеры.

- $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$
- $\mathbb{Z}^* = \{-1, 1\}$
- $(\mathbb{Z}/4\mathbb{Z})^* = \{\overline{1}, \overline{3}\}$
- $(\mathbb{Z}/5\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Определение 4.11. Полем называется коммутативное кольцо F, такое что $F^* = F \setminus \{0\}$.

5 Наибольший общий делитель

Определение 5.1. R — коммутативное кольцо, $a, b \in R$.

Элемент d называется наибольшим общим делителем, если:

- 1. $d \mid a, d \mid b$
- $2. d' \mid a, d' \mid b \implies d' \mid d$

Предложение 5.1.

- 1. $d_1,\ d_2$ наибольшие общие делители, тогда $d_1 \sim d_2.$
- 2. $\exists d_1$ наибольший общий делитель, $d_2 \sim d_1$, тогда d_2 тоже наибольший общий делитель.

Доказательство.

- 1. По свойству 2 : $d_1 \mid d_2, \ d_2 \mid d_1 \implies d_1 \sim d_2.$
- $2. d_2 \mid d_1, d_1 \mid a, d_1 \mid b \implies d_2 \mid a, d_2 \mid b$

Пусть d_2 не наибольший, тогда $\exists d' > d_2$.

 $d'\mid a,\ d'\mid b\implies d'\mid d_1,$ так как d_1 наибольший общий делитель,

 $d'\mid d_1,\ d_1\mid d_2\implies d'\mid d_2,$ противоречие, так как $d'>d_2.$

Предложение 5.2. $\exists a, b \in \mathbb{Z} \implies$

- 1. $\exists d \in \mathbb{Z}: \ a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$, иначе говоря: $\forall x,y \in \mathbb{Z} \ \exists d,z \in \mathbb{Z}: ax + by = dz$
- 2. при этом d наибольший общий делитель a, b.

Доказательство.

1. Пусть $I = a\mathbb{Z} + b\mathbb{Z}$.

Заметим что $0 \in I$, так как 0a + 0b = 0.

Если $I=\{0\},$ то $I=0\mathbb{Z}.$

Иначе $I \neq \{0\} \implies c \in I \implies -c \in I$, так как $-(ax+by) = a \cdot -x + b \cdot -y$

То есть в I есть положительные числа.

Пусть $d = \min\{c \mid c \in I, c > 0\}$, и докажем что $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

«⊃»:

$$d \in I$$
 (по определению) $\Longrightarrow d = ax_0 + by_0, \quad x_0, y_0 \in \mathbb{Z} \Longrightarrow$

$$\forall z \in \mathbb{Z}: dz = a(x_0z) + b(y_0z) \in I$$
, значит $d\mathbb{Z} \subset a\mathbb{Z} + b\mathbb{Z}$

«C»:

$$\exists c \in I, d \in \mathbb{N} \implies \exists q, r \in \mathbb{Z} : c = dq + r, 0 \le r < d$$

$$c \in I$$
, значит $c = ax_1 + by_1$, $x_1, y_1 \in \mathbb{Z}$

Мы уже знаем, что $d \in I$, значит $d = ax_0 + by_0$, $x_0, y_0 \in \mathbb{Z}$

$$r = c - dq = a(x_1 - x_0q) + b(y_1 - y_0q) \in I$$

По определению остатка: $\begin{cases} r\geqslant 0,\\ r< d \end{cases} \ \ , \ \text{но} \ d=\min\{c\mid c\in I,\ c>0\} \implies$

$$\implies c \in d\mathbb{Z} \implies a\mathbb{Z} + b\mathbb{Z} \subset d\mathbb{Z}$$

2. Пусть d — наибольший общий делитель a, b.

$$a = a1 + b0 \in I = d\mathbb{Z} \implies d \mid a$$

$$b = a0 + b1 \in I = d\mathbb{Z} \implies d \mid b$$

$$\exists d' \mid a, d' \mid b, d = ax_0 + by_0$$

 $d' \mid ax_0, d' \mid by_0 \implies d' \mid d$, значит d действительно наибольший общий делитель a, b.

Следствие.

- 1. $a, b \in \mathbb{Z}$: Тогда наибольший общий делитель a, b существует.
- 2. Если d наибольший общий делитель a, b, то $\exists x, y \in \mathbb{Z} : d = ax + by$ (Линейное представление наибольшего общего делителя).

Доказательство.

- 1. Доказали в двух частях предложения.
- 2. Из первой части знаем, что существует d_0 наибольший общий делитель a,b, то есть $d_0=ax_0+by_0$

$$d$$
 ассоциирован с $d_0 \implies d = d_0 \mathbb{Z}, \ z \in \mathbb{Z} \implies d = a(x_0 z) + b(y_0 z)$

Определение 5.2. $HOД(a,b) \iff \gcd(a,b)$ — неотрицательный наибольший общий делитель a,b.

Предложение 5.3. $\exists a_1, a_2, b \in \mathbb{Z}: a_1 \equiv a_2$

Тогда $gcd(a_1, b) = gcd(a_2, b)$.

Доказательство. (!) $\{c: c \mid a_1, c \mid b\} = \{c: c \mid a_2, c \mid b\}$

 $\langle\!\langle \; \subset \rangle\!\rangle$:

$$a_2 - a_1 = bm \implies a_2 = a_1 + bm$$

```
c \mid a_1, \ c \mid b \implies c \mid a_2 «\supset»: a_1 - a_2 = bm \implies a_1 = a_2 + bm c \mid a_2, \ c \mid b \implies c \mid a_1 Получается, что:
```

$$\forall x \in \{c : c \mid a_1, c \mid b\} : x \mid \gcd(a_1, b)$$
$$\forall x \in \{c : c \mid a_2, c \mid b\} : x \mid \gcd(a_2, b)$$
$$\gcd(a_1, b) = \gcd(a_2, b)$$

Определение 5.3. Алгоритм Евклида

```
\gcd(a,b)=\gcd(b,a\mod b), если b\neq 0 int \gcd(\inf a,\inf b) { if (b==0) return a; return \gcd(b,a\% b); }
```

6 Взаимно простые числа

Определение 6.1. Числа a и b называются взаимно простыми, если $\gcd(a,b)=1$. $a \perp b$ — сокращенная запись для обозначения взаимной простоты.

Предложение 6.1.

- 1. $\exists a, b \in \mathbb{Z}$, тогда $a \perp b \iff \exists m, n \in \mathbb{Z} : am + bn = 1$.
- $2. \ a_1 \perp b, \ a_2 \perp b \implies a_1 a_2 \perp b$

3.
$$\begin{cases} a_1, \dots, a_m \in \mathbb{Z} \\ b_1, \dots, b_n \in \mathbb{Z} \end{cases} \quad \text{if } \forall i, j : a_i \perp b_j \implies a_1 \dots a_m \perp b_1 \dots b_n.$$

- $4. \ a \mid bc, \ a \bot b \implies a \mid c.$
- 5. $ax \equiv ay$, $a \perp m \implies x \equiv y$.
- 6. $gcd(a, b) = d \implies a = da', b = db', a' \bot b'.$

Доказательство.

1. m и n существуют согласно линейному представлению НОД.

$$d = \gcd(a, b), \ d \mid a, \ d \mid b \implies d \mid (am + bn) = 1 \implies d \mid 1 \implies d = 1.$$

$$2. \begin{cases} 1 = a_1 m_1 + b n_1 & \xrightarrow{\text{перемножим}} \\ 1 = a_2 m_2 + b n_2 & \Longrightarrow \end{cases} 1 = a_1 a_2 (m_1 m_2) + b (a_1 m_1 n_2 + a_2 m_2 n_1 + b n_1 n_2) \implies a_1 a_2 \bot b.$$

$$3. \begin{cases} a_1 \perp b \\ \vdots \\ a_n \perp b \end{cases} \implies a_1 \dots a_n \perp b$$

$$\begin{cases} a_1 \dots a_n \perp b_1 \\ \dots \\ a_1 \dots a_n \perp b_n \end{cases} \implies a_1 \dots a_n \perp b_1 \dots b_n$$

 $4. 1 = am + bn \implies c = acm + bcn$

$$a \mid acm, \ a \mid bcn \implies a \mid c.$$

5.
$$m \mid (ax - ay), \ a \perp m \implies m \mid (x - y) \implies x \equiv y.$$

6.
$$d \mid a, d \mid b \implies \begin{cases} a = da' \\ b = db' \end{cases}$$
 : $a', b' \in \mathbb{Z}$ $d = am + bn, \quad m, n \in \mathbb{Z}$

$$d = 0 \implies a' = b' = 0 = da'm + db'm$$

$$d \neq 0 \implies 1 = a'm + b'n \implies a' \perp b'.$$

7 Линейные диофантовы уравнения

Определение 7.1. Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида ax + by = c, где $a, b, c \in \mathbb{Z}$.

Определение 7.2. Решением линейного диофантова уравнения называется множество всех пар $(x,y) \in \mathbb{Z}^2: ax + by = c.$

Замечание. Если $\gcd(a,b) \nmid c$, то решение — пустое множество, так как все линейные комбинации a,b делятся на $\gcd(a,b)$.

Замечание. Теперь заметим следующее: если $ax_1 + by_1 = c$ и $ax_2 + by_2 = c$, то $a(x_1 - x_2) + b(y_1 - y_2) = 0$. Иными словами, разность двух решений линейного диофантова уравнения — решение соответствующего однородного уравнения.

А значит все решения линейного диофантова уравнения можно найти, решив однородное уравнение и прибавив ко всем его решениям какое-то решение исходного уравнения.

Решим однородное уравнение:

$$ax + by = 0 \iff ax = -by$$

$$\exists d = \gcd(a, b), \ a = da', \ b = db'$$

$$ax = -by \iff da'x = -db'y \iff a'x = -b'y \iff \begin{cases} x = b'k \\ y = -a'k \end{cases}, \ k \in \mathbb{Z}$$

$$(\star)\gcd(a',b')=1 \implies a'\mid y,\ b'\mid x \implies x=b'k,\ k\in\mathbb{Z} \implies y=-a'k$$

Теперь найдём какое-то решение исходного уравнения, вспомнив о линейном представлении gcd:

$$gcd(a,b) = d = ax_0 + by_0 \implies c = dc' = a(c'x_0) + b(c'y_0)$$

Таким образом, решение исходного уравнения: $\{(c'x_0 + b'k, c'y_0 - a'k) \mid k \in \mathbb{Z}\}$, где:

 x_0, y_0 - коэффициенты при a, b в линейном представлении $\gcd(a, b)$,

$$a' = \frac{a}{\gcd(a,b)}, b' = \frac{b}{\gcd(a,b)}, c' = \frac{c}{\gcd(a,b)}$$

```
int extgcd(int a, int b, int &x, int &y) {
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    int x1, y1;
    int tmp = extgcd(b, a % b, x1, y1);
    x = y1, y = x1 - (a / b) * y1;
    return tmp;
}
void solve() {
    int a, b, c;
    cin >> a >> b >> c;
    int x, y;
    int gcd = extgcd(a, b, x, y);
    if (c % gcd != 0) {
        cout << "No solutions\n";</pre>
    } else {
        int k = c / gcd;
        cout << x * k << ' ' << b / gcd << '\n'; // c' * x_0 + b' * k
        cout << y * k << ' ' << -(a / gcd) << '\n'; // c' * y_0 - a' * k
    }
}
```

8 Простые числа

Определение 8.1. Число $p \in \mathbb{Z}$ называется простым, если $p \notin \{-1,0,1\}$ и все делители p — это ± 1 и p.

Свойства.

```
1. p — простое \iff -p — простое.
```

2.
$$p$$
 — простое, $a \in \mathbb{Z} \implies p \mid a$ или $p \perp a$.

3.
$$p,q$$
 — простые $\implies p \sim q$ или $p \perp q$.

4.
$$p \mid ab \implies p \mid a$$
 или $p \mid b$.

Предложение 8.1. $\exists a \neq \pm 1$, тогда существует простое число $p: p \mid a$.

Доказательство.

```
Пусть a = 0, тогда p = 239
```

Тогда $a \neq 0$, пускай a > 0, так как, случай a < 0 аналогичен.

Индукция по a:

«База»: a = 1, но a > 0, значит простое число уже встречалось.

«Переход»:

```
a — простое \implies p = a, p \mid a
```

a — не простое, значит $\exists d: 1 < d < a, d \mid a$

a=dd', тогда по индукционному переходу существует простое число $p:\ p\mid d$

$$p \mid d, d \mid a \implies p \mid a$$

Определение 8.2. Составное число — это число отличное от 0, и не являющееся простым.

Определение 8.3. Решето Эратосфена — это алгоритм, который позволяет найти все простые числа от 1 до n.

 $2, 3, 4, 5, 6, 7, 8, 9, \ldots, 100$

- 2 простое, вычеркиваем все числа кратные 2
- 3 простое, вычеркиваем все числа кратные 3
- 4 составное, пропускаем
- и т. д.

В итоге получим все простые числа от 1 до 100.

Замечание. \mathbb{P} — множество всех простых чисел.

Теорема 8.1 (Теорема Евклида). Существует бесконечно много простых чисел

Доказательство.

 $\exists p_1, p_2, \dots p_n$ — все простые числа. Возьмем $N = p_1 p_2 \dots p_n + 1$, пусть оно составное \implies

$$\exists p \in \mathbb{P}: p \mid N, p > 0 \implies \exists j: p = p_i$$

Тогда, $p \mid (N-1) \implies p \mid 1 \implies p = \pm 1$, противоречие.

9 Основная теорема арифметики

Теорема 9.1. Пусть $n \geqslant 2$. Тогда n можно представить в виде произведения простых чисел, и такое представление единственно с точностью до порядка сомножителей.

Доказательство.

«Существование»:

 $\exists n_0$ — наименьшее число ($\geqslant 2$), для которого такого представления нету.

 n_0 — составное число $\implies n_0 = ab, \ 2 \leqslant a, b < n_0$

Это число минимальное $\implies a = p_1 \dots p_k, \ b = q_1 \dots q_l$, где все p_i, q_i — простые.

Но тогда, $n_0=p_1\dots p_kq_1\dots q_l$, где все p_i,q_j — простые \implies такое представление существует, противоречие.

«Единственность»:

$$n = p_1 \dots p_k = q_1 \dots q_l, \quad p_i, q_i -$$
простые.

Нужно доказать, что k=l и что $q_1 \ldots, q_k$ совпадают с p_1, \ldots, p_k с точностью до порядка.

Не умаляя общности можно считать: $k \leq l$.

Индукция по k:

«База»:
$$k = 1$$
: $p_1 = q_1 \dots q_l, p_1$ — простое $\implies l = 1, p_1 = q_1$

«Переход»: k > 1: $p_k \mid n \implies p_k \mid (q_1 \dots q_l) \implies \exists j : p_k \mid q_j \implies p_k \sim q_j \implies p_k = q_j$

А значит $p_1 \dots p_{k-1} = q_1 \dots \hat{q_j} \dots q_l$, где $k-1 \leqslant l-1$

 $k-1 < k \implies$ применим индукционный переход:

k-1=l-1 и $q_1,\ldots,\hat{q_j},\ldots,q_k$ — это p_1,\ldots,p_{k-1} с точностью до порядка. \Longrightarrow

 $q_1,\ldots,(q_j=p_k),\ldots,q_k$ — это p_1,\ldots,p_k с точностью до порядка.

Определение 9.1. Каноническое разложение (факторизация) числа n — это представление n в виде $p_1^{r_1} \dots p_s^{r_s}$, где $\forall i: p_i \in \mathbb{P}, \ r_i \in \mathbb{N}$

Примеры.

- $n = 112 = 2^4 \cdot 7$
- $n = 6006 = 2^1 \cdot 3^1 \cdot 7^1 \cdot 11^1 \cdot 13^1$

Предложение 9.1. $\exists a = p_1^{r_1} \dots p_s^{r_s}, \ b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $a \mid b \iff r_i \leqslant t_i \ \forall i \in \{1, \dots, s\}$

Доказательство.

«**⇔**:

 $b = a \cdot p_1^{t_1 - r_1} \dots p_s^{t_s - r_s} \implies a \mid b$

«⇒»:

 $a \mid b \implies b = ac, \ c = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$

 $b = p_1^{t_1} \dots p_s^{t_s} = p_1^{r_1 + m_1} \dots p_s^{r_s + m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n} \implies$

$$\begin{cases} t_i = r_i + m_i, & \forall i \in \{1, \dots, s\} \\ m_{s+1} = \dots = m_n = 0 \end{cases} \implies t_i \geqslant r_i, \quad \forall i \in \{1, \dots, s\}$$

Cледcтвие. $\exists a = p_1^{r_1} \dots p_s^{r_s}$

Тогда $\{d > 0 \mid a : d\} = \{p_1^{t_1} \dots p_s^{t_s} \mid 0 \leqslant t_i \leqslant r_i, \forall i \in \{1, \dots, s\}\}$

Следствие. $\exists a=p_1^{r_1}\dots p_s^{r_s},\ b=p_1^{t_1}\dots p_s^{t_s}$

Тогда $\gcd(a,b)=p_1^{\min(r_1,t_1)}\dots p_s^{\min(r_s,t_s)}$

Определение 9.2. $\exists a,b \in \mathbb{Z}$. Число $c \in \mathbb{Z}$ называется наименьшим общим кратным чисел a и b, если:

- 1. $a \mid c, b \mid c$
- $2. \ a \mid c', \ b \mid c' \implies c \mid c'$

Предложение 9.2. $\exists a = p_1^{r_1} \dots p_s^{r_s}, \ b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $c = {p_1}^{\max(r_1,t_1)}\dots {p_s}^{\max(r_s,t_s)}$ — наименьшее общее кратное чисел a и b

Доказательство.

1. $a \mid c, b \mid c$ — очевидно

2.
$$\exists a \mid c', b \mid c', c' = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$$

$$a \mid c', b \mid c' \implies r_i \leqslant m_i, t_i \leqslant m_i, \forall i \in \{1, \dots, s\} \implies \max(r_i, t_i) \leqslant m_i, \forall i \in \{1, \dots, s\} \implies c \mid c'$$

Определение 9.3. $\mathrm{HOK}(a,b) \iff \mathrm{lcm}(a,b) - \mathrm{положительное}$ значение наименьшего общего кратного чисел a и b.

Cледствие. $\exists a, b \in \mathbb{N}$

Тогда $lcm(a, b) \cdot gcd(a, b) = ab$

Доказательство. $min(r_i, t_i) + max(r_i, t_i) = r_i + t_i$

10 Китайская теорема об остатках

Теорема 10.1. Пусть $m_1 \perp m_2$, $a_1, a_2 \in \mathbb{Z}$, тогда:

1.
$$\exists x_0 \in \mathbb{Z}$$
:
$$\begin{cases} x_0 \equiv a_1 \\ x_0 \equiv a_2 \\ x_0 \equiv a_2 \end{cases}$$

2. $\exists x_0$ удовлетворяет системе выше, тогда:

 $x \in \mathbb{Z}$, где x удовлетворяет системе выше $\iff x \equiv_{m_1 m_2} x_0$

Доказательство.

1. $x_0 = a_1 + km_1 = a_2 + lm_2 \implies km_1 - lm_2 = a_2 - a_1$ — линейное диофантово уравнение с двумя неизвестными k, l

 $m_1 \perp m_2 \implies$ у него есть решение (k_0, l_0)

$$x_0 = a_1 + k_0 m_1$$
 — искомое

$$2. \ll \approx x \underset{m_1 m_2}{\equiv} x_0 \implies \begin{cases} x \underset{m_1}{\equiv} x_0 \\ x \underset{m_2}{\equiv} x_0 \end{cases} \implies \begin{cases} x \underset{m_1}{\equiv} a_1 \\ x \underset{m_2}{\equiv} a_2 \end{cases}$$

«⇒»:
$$x$$
 удовлетворяет системе из теоремы \Longrightarrow
$$\begin{cases} x \equiv x_0 \\ x \equiv x_0 \end{cases} \Longrightarrow \begin{cases} m_1 \mid (x-x_0) \end{cases} \xrightarrow{m_1 \perp m_2} m_2 \mid (x-x_0) \end{cases}$$

Определение 10.1. $\exists R, S$ — кольца с единицей. Отображение $\varphi: R \to S$ называется изоморфизмом колец, если: φ биекция.

1.
$$\forall r_1, r_2: \varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

2.
$$\forall r_1, r_2 : \varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$$

Предложение 10.1. $\exists (m_1, m_2) = 1$

Тогда существует изоморфизм

$$\mathbb{Z}/m_1m_2\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z}$$

$$[a]_{m_1m_2} \mapsto ([a]_{m_1}, [a]_{m_2})$$

Доказательство. Проверим корректность:

$$\exists [a]_{m_1 m_2} = [a']_{m_1 m_2} \implies a \underset{m_1 m_2}{\equiv} a' \implies \begin{cases} a \underset{m_1}{\equiv} a' \\ a \underset{m_2}{\equiv} a' \end{cases} \implies ([a]_{m_1}, [a]_{m_2}) = ([a']_{m_1}, [a']_{m_2})$$

$$\varphi([a]_{m_1m_2} + [b]_{m_1m_2}) = \varphi([a+b]_{m_1m_2}) = ([a+b]_{m_1}, [a+b]_{m_2}) =$$

$$([a]_{m_1}, [a]_{m_2}) + ([b]_{m_1}, [b]_{m_2}) = \varphi([a]_{m_1 m_2}) + \varphi([b]_{m_1 m_2})$$

Для умножения аналогично.

 φ - отображение между конечными равномощными множествами, поэтому оно биективно \iff оно инъективно.

Действительно, если $\varphi: A \to B, \ |A| = |B| < \infty$ инъективно, то полный прообраз любого элемента из B состоит из не более чем одного элемента из A (определение инъективности).

А если сложить количества прообразов у всех элементов из B, то должно получиться в точности |A|, так как каждый прообраз - чей-то образ.

Но тогда каждый прообраз состоит из в точности одного элемента, т. е. φ - биекция.

Аналогично можно рассуждать и про сюрьективное отображение.

Проверим сюръективность φ

По китайской теореме об остатках
$$\forall a_1,a_2\in\mathbb{Z}\ \exists a\in\mathbb{Z}: egin{cases} a\equiv a_1\\ a\equiv a_2\\ m=1 \end{cases}$$

Таким образом φ - биекция.

11 Функция Эйлера

Предложение 11.1. $\exists m \in \mathbb{N}; \ a \in \mathbb{Z}$

$$[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff (a,m) = 1$$

Доказательство.

$$[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff \exists [b]_m : [a]_m \cdot [b]_m = [1]_m \iff$$

$$\exists b \in \mathbb{Z}: \ ab \equiv 1 \iff$$

$$\exists b, c \in \mathbb{Z}: \ ab = 1 + mc \iff$$

$$\exists b, c \in \mathbb{Z} : ab - mc = 1 \iff (a, m) = 1$$

Cледствие. $\mathbb{Z}/m\mathbb{Z}$ - поле $\iff m$ — простое число.

Доказательство. считаем $m \geqslant 1$

$$m=1: \mathbb{Z}/1\mathbb{Z}=\{\overline{0}\}$$

$$m$$
 — простое: $(a, m) = 1$ для $\forall a \in \{1, 2, ..., m - 1\} \implies$

Алгебра

14

$$(\mathbb{Z}/m\mathbb{Z})^* = \{\overline{1}, \overline{2}, \dots, \overline{m-1}\}$$

m — составное: m = ab, $2 \leqslant a \leqslant m - 1$

$$(a,m) \neq 1 \implies \overline{a} \notin (\mathbb{Z}/m\mathbb{Z})^*$$

Определение 11.1. \mathbb{F}_n — поле из n элементов.

Предложение 11.2. \mathbb{F}_n — поле из n элементов $\iff n=p^r,\ p\in\mathbb{P},\ r\in\mathbb{Z}_+.$ p - характеристика \mathbb{F}_n .

Доказательство. ТООО: Пока без доказательства.

Определение 11.2. $\exists m \in \mathbb{N} : \varphi(n) = |(\mathbb{Z}/m\mathbb{Z})^*|$

Функция $\varphi \times \mathbb{N} \to \mathbb{N}$ — функция Эйлера.

Предложение 11.3. $\exists p \in \mathbb{P}, r \in \mathbb{N}$.

Тогда $\varphi(p^r) = p^r - p^{r-1}$.

Доказательство. $\varphi(p^r) = |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ (a, p^r) = 1\}| = p^r - |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ (a, p) \neq 1\}| = p^r - |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ p \mid a\}| = p^r - p^{r-1}$

Предложение 11.4. Мультипликативность функции Эйлера.

 $\exists m, n \in \mathbb{N}, \ (m, n) = 1.$

Тогда $\varphi(mn) = \varphi(m) \cdot \varphi(n)$.

Доказательство. Построим отображение $\lambda: (\mathbb{Z}/mn\mathbb{Z})^* \to (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$:

$$[a]_{mn} = A \in (\mathbb{Z}/mn\mathbb{Z})^* \mapsto ([a]_m, [a]_n)$$

$$[a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^* \implies (a, mn) = 1 \implies \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases} \begin{cases} [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \\ [a]_n \in (\mathbb{Z}/n\mathbb{Z})^* \end{cases}$$

Проверка корректности:

$$[a]_{mn} = [a']_{mn} \implies a \underset{mn}{\equiv} a' \implies \begin{cases} a \underset{m}{\equiv} a' \\ a \underset{n}{\equiv} a' \end{cases} \implies \begin{cases} [a]_m = [a']_m \\ [a]_n = [a']_n \end{cases} \implies ([a]_m, [a]_n) = ([a']_m, [a']_n)$$

Проверим что λ — биекция:

Инъективность:

$$\lambda([a]_{mn}) = \lambda([b]_{mn}) \implies \begin{cases} [a]_m = [b]_m & \xrightarrow{\text{KTO}} a \equiv b \implies [a]_{mn} = [b]_{mn} \\ [a]_n = [b]_n & \xrightarrow{\text{KTO}} a \equiv b \end{cases} \implies [a]_{mn} = [b]_{mn}$$

Сюръективность:

Рассмотрим $([b]_m, [c]_n) \in (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

$$(m,n) = 1 \stackrel{\text{KTO}}{\Longrightarrow} \exists a : \begin{cases} a \equiv b \\ a \equiv c \end{cases}$$

$$\begin{cases} (b,m) = 1 \implies (a,m) = 1 \\ (c,n) = 1 \implies (a,n) = 1 \end{cases} \implies (a,mn) = 1 \implies [a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$$

$$\lambda([a]_{mn})=([a]_m,[a]_n)=([b]_m,[c]_n)\implies \lambda$$
 — биекция.

$$\lambda$$
 — биекция $\implies |(\mathbb{Z}/mn\mathbb{Z})^*| = |(\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*| \implies \varphi(mn) = \varphi(m) \cdot \varphi(n)$

Следствие. $\exists m_1, \dots, m_k$ — попарно взаимно простые числа.

Тогда
$$\varphi(\prod_{i=1}^k m_i) = \prod_{i=1}^k \varphi(m_i).$$

Доказательство. Индукция по k.

База:
$$k=1 \implies \varphi(m_1) = \varphi(m_1)$$

Переход: $n-1 \rightarrow n$

$$(m_n, m_1) = \ldots = (m_n, m_{n-1}) = 1 \implies (m_1, \ldots, m_n) = 1 \implies$$

$$\varphi(m_1 \dots m_n) = \varphi(m_1 \dots m_{n-1})\varphi(m_n) = \varphi(m_1) \dots \varphi(m_{n-1})\varphi(m_n)$$

Следствие. $\exists n = p_1^{r_1}, \dots, p_s^{r_s}$ — разложение числа n на простые множители.

$$\implies \varphi(n) = \prod_{i=1}^{s} (p_i^{r_i} - p_i^{r_i-1})$$

Доказательство. По следствию:
$$\varphi(n) = \varphi(\prod_{i=1}^s p_i^{r_i}) = \prod_{i=1}^s \varphi(p_i^{r_i}) = \prod_{i=1}^s (p_i^{r_i} - p_i^{r_i-1})$$

Теорема 11.1. $\exists m \in \mathbb{N}, a \in \mathbb{Z}, (a, m) = 1 \implies a^{\varphi(m)} \equiv 1$ — теорема Эйлера.

Лемма 11.1.

Пусть R — ассоциативное кольцо с единицей.

$$1. \ a,b \in R^* \implies ab \in R^*$$

$$2. \ a \in R^*, \ x, y \in R \implies ax = ay \implies x = y, \ xa = ya \implies x = y$$

Доказательство.

1. a' — обратный к a элемент, b' — обратный к b элемент.

$$(ab)(b'a') = a(bb')a' = aa' = 1$$

$$(b'a)(ab) = b'(aa')b = bb' = 1$$

2. a' — обратный к a элемент.

$$ax = ay \implies a'ax = a'ay \implies x = y$$

$$xa = ya \implies xaa' = yaa' \implies x = y$$

Доказательство. (теоремы Эйлера)

$$(\mathbb{Z}/m\mathbb{Z})^* = \{A_1, A_2, \dots, A_{\varphi(m)}\}\$$

$$[a]_m A_j \in (\mathbb{Z}/m\mathbb{Z})^* \stackrel{lemma-1}{\Longrightarrow}$$

$$[a]_m A_1, \ldots, [a]_m A_{arphi(m)}$$
 — различные элементы

$$([a]_m A_j = [a]_m A_k \stackrel{lemma-2}{\Longrightarrow} A_j = A_k) \implies$$

$$\{[a]_m A_1, \dots, [a]_m A_{\varphi(m)}\} = (\mathbb{Z}/m\mathbb{Z})^* \implies$$

$$[a]_m A_1 \cdot \ldots \cdot [a]_m A_{\varphi(m)} = A_1 A_2 \ldots A_{\varphi(m)} \implies$$

$$[a]_m^{\varphi(m)} A_1 A_2 \dots A_{\varphi(m)} = [1]_m A_1 A_2 \dots A_{\varphi(m)} \stackrel{lemma-2}{\Longrightarrow}$$

$$[a]_m^{\varphi(m)} = [1]_m \implies [a^{\varphi(m)}]_m = [1]_m \implies a^{\varphi(m)} \underset{m}{\equiv} 1$$

Теорема 11.2. (Малая теорема Ферма)

$$\exists p \in \mathbb{P}, a \in \mathbb{Z} \implies a^p \underset{p}{\equiv} a$$

Доказательство.

$$(a,p) = 1 \implies a^{p-1} \equiv 1 \implies a^{p-1}a \equiv 1a \implies a^p \equiv a$$

$$(a,p) \neq 1 \implies a \equiv 0 \implies a^p \equiv 0 \implies a^p \equiv a$$

Теорема 11.3. (Теорема Вильсона)

$$p \in \mathbb{P} \implies (p-1)! \equiv -1$$

Доказательство.

$$B (\mathbb{Z}/m\mathbb{Z})^*$$

$$\overline{(p-1)!} = \overline{1} \cdot \overline{2} \cdot \ldots \cdot \overline{p-1} = \prod_{A \in (\mathbb{Z}/m\mathbb{Z})^*} A = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 = \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 = \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 = \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 = \overline{1}} A \cdot \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 = \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot (A_1 \cdot A_1' \cdot \ldots) = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = \prod_{A^2 \neq \overline{1}} A = (\prod_{A^2 \neq \overline{1}} A) \cdot \overline{1} = (\prod_{A^2 \neq \overline{1}} A$$

$$A^2 = \overline{1} \iff A^2 - \overline{1}^2 = \overline{0} \iff (A - \overline{1})(A + \overline{1}) = \overline{0} \stackrel{\mathbb{Z}/p\mathbb{Z}-\text{OII}}{\iff} A - \overline{1} = \overline{0} \text{ или } A + \overline{1} = \overline{0} \implies$$

$$\begin{cases} p = 2 & \prod_{A^2 = \overline{1}} A = \overline{-1} \\ p \neq 2 & \prod_{A^2 = \overline{1}} A = \overline{-1} \end{cases}$$

2 Комплексные числа

1 Построение поля комплексных чисел

Определение 1.1. $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(a,b) \mid a,b \in \mathbb{R}\}$

Определение 1.2.

- Сложение на \mathbb{C} : $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- Умножение на \mathbb{C} : $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 b_1 b_2, a_1 b_2 + a_2 b_1)$

Предложение 1.1. $(\mathbb{C}, +, \cdot)$ - поле.

Доказательство.

- Коммутативность сложения очевидно.
- Ассоциативность сложения очевидно.
- (0,0) нейтральный элемент сложения.
- (-a, -b) обратный элемент к (a, b).
- Коммутативность умножения очевидно.
- Ассоциативность умножения проверяется.
- Дистрибутивность проверяется.
- (1,0) нейтральный элемент умножения.
- $(a,b)z_1z_2=(1,0): z_1=(a,-b), z_2=\frac{1}{a^2+b^2}$

Определение 1.3. \mathbb{C} — поле комплексных чисел.

Определение 1.4. $c \in \mathbb{C}$ — комплексное число.

Предложение 1.2. $\mathbb{R}' = \{(a,0) \mid a \in \mathbb{R}\}$

R' замкнуто относительно сложения, вычитания, умножения, содержит единицу, то есть является подкольцом поля \mathbb{C} .

 $\implies \mathbb{R}'$ — само является кольцом относительно сложения, умножения, ограниченных на \mathbb{R}' .

 $\mathbb{R} \stackrel{\varphi}{\to} \mathbb{R}'(a \mapsto (a,0)), \ \varphi(a)$ — изоморфизм колец, т.е. φ — биекция и $\varphi(a+b) = \varphi(a) + \varphi(b); \ \varphi(ab) = \varphi(a)\varphi(b).$

Отождествим (a, 0) с вещественным числом a.

$$(a,0)\cdot(0,1)=(0,a)$$

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + b \cdot (0,1) = a + bi$$

Определение 1.5. z = a + bi — комплексное число. a = Re(z), b = Im(z) — действительная и мнимая части комплексного числа z. В геометрическом виде это вектор z = (a, b).

Определение 1.6. z = a + bi — комплексное число. $\overline{z} = a - bi$ — сопряженное к z.

Определение 1.7. Автоморфизм — изоморфизм на себя.

Отступление про отображения

Определение 1.8. $id_M: M \to M, \ x \mapsto x$ — тождественное отображение на M.

Определение 1.9. $\exists \alpha : M \to N, \ \beta : N \to P$ — отображения

Тогда $\alpha \circ \beta : M \to P, \ x \mapsto \alpha(\beta(x))$ — композиция отображений.

Определение 1.10. $\exists \alpha : M \to N$ — отображение

Отображение $\beta: N \to M$ — обратное к α , если $\beta \circ \alpha = id_M$.

Предложение 1.3. У отображения $\alpha: M \to N$ есть обратное отображение, если и только если α — биекция.

Доказательство.

"⇒":

Инъективность:

$$\beta \circ \alpha = id_M, \ \alpha(x) = \alpha(y) \implies \beta(\alpha(x)) = \beta(\alpha(y)) \implies x = y$$

Сюръективность:

$$y \in N, \ y = \alpha(\beta(y)) \in Im(\alpha)$$
(Іт это прообраз)

"⇐":

Пусть α — биекция, назовем $\beta: N \to M$ — обратный, если $\forall y \in N\alpha^{-1}(y) = \{x\}, \ x \in M$

Положим $\beta(y) = x$, $\alpha \circ \beta = id_N$, $\beta \circ \alpha = id_M$

Продолжение

Предложение 1.4. $\sigma: \mathbb{C} \to \mathbb{C}, \ z \mapsto \overline{z}$ — автоморфизм.

Доказательство.

$$\sigma$$
 — биекция, т.к. $\sigma \circ \sigma = id_{\mathbb{C}}$

$$\sigma(z_1 + z_2) = \sigma(z_1) + \sigma(z_2)$$
 — очевидно

$$\sigma(z_1 z_2) = \sigma(z_1) \sigma(z_2)$$

$$\sigma(1) = 1$$
 — очевидно

$$z_1 = a_1 + b_1 i, \ z_2 = a_2 + b_2 i$$

$$\sigma(z_1 z_2) = \overline{a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)} = a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)$$

$$\sigma(z_1)\sigma(z_2) = \overline{(a_1 - ib_1)(a_2 - ib_2)} = a_1a_2 - b_1b_2 + i(a_1b_2 + a_2b_1)$$

2 Тригонометрическая форма комплексного числа

Определение 2.1. $a + bi = r(\cos \varphi + i \sin \varphi)$

$$a = r\cos\varphi$$

$$b = r \sin \varphi$$

Определение 2.2. Модулем комплексного числа $z = a + bi \in \mathbb{C}$ назовем:

$$|z| = \sqrt{a^2 + b^2}$$

Предложение 2.1.

1.
$$|z| \ge 0$$
, $|z| = 0 \iff z = 0$

$$2. |z_1 z_2| = |z_1||z_2|$$

3.
$$|z_1 + z_2| \leq |z_1| + |z_2|$$

4.
$$|\overline{z}| = |z|$$

5.
$$z\overline{z} = |z|^2$$

Доказательство.

1. очевидно

2.
$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$

$$|z_1 z_2|^2 = (a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2 = a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2 = (a_1^2 + b_1^2)(a_2^2 + b_2^2) = |z_1|^2 |z_2|^2$$

3.
$$\iff |z_1 + z_2|^2 \leqslant (|z_1| + |z_2|)^2$$

$$\iff (a_1 + a_2)^2 + (b_1 + b_2)^2 \leqslant a_1^2 + b_1^2 + a_2^2 + b_2^2 + 2|z_1||z_2|$$

$$\iff a_1 a_2 + b_1 b_2 \leqslant \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$\Leftarrow |a_1a_2 + b_1b_2| \leqslant \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$\iff a_1^2 a_2^2 + b_1^2 b_2^2 + 2a_1 a_2 b_1 b_2 \leqslant (a_1^2 + b_1^2)(a_2^2 + b_2^2)$$

$$\iff 2a_1a_2b_1b_2 \leqslant b_1^2a_2^2 + a_1^2b_2^2$$

$$\iff (b_1 a_2 - b_2 a_1)^2 \geqslant 0$$

4. очевидно

5.
$$z = a + bi \implies \overline{z} = a - bi$$

 $z\overline{z} = (a + bi)(a - bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$

Замечание.
$$z^{-1}=rac{\overline{z}}{|z|^2}=rac{a}{a^2+b^2}-irac{b}{a^2+b^2}$$

Определение 2.3. Пусть $z\in\mathbb{C}.$ Аргументом z назовем такое $\varphi\in\mathbb{R},$

что
$$z = |z|(\cos \varphi + i \sin \varphi)$$

Предложение 2.2.

- 1. Если z=0, то любой $\varphi\in\mathbb{R}$ аргумент z
- 2. Если $z \neq 0$, то:
 - (а) аргумент существует
 - (b) если φ_0 аргумент z, то φ аргумент $z\iff \varphi=\varphi_0+2\pi k,\ k\in\mathbb{Z}$

Доказательство.

- 1. тривиально
- 2. $z_0 = \frac{1}{|z|} \cdot z$

$$|z_0| = \left| \frac{1}{|z|} \right| \cdot |z| = \frac{1}{|z|} \cdot |z| = 1$$

$$z_0 = a_0 + ib_0, \ |z_0| = a_0^2 + b_0^2 = 1 \implies \exists \varphi_0 : \begin{cases} a_0 = \cos \varphi_0 \\ b_0 = \sin \varphi_0 \end{cases}$$

$$z = |z| \cdot z_0 = |z|(\cos \varphi_0 + i \sin \varphi_0)$$

$$\varphi = \varphi_0 + 2\pi k \implies \begin{cases} \cos \varphi = \cos \varphi_0 \\ \sin \varphi = \sin \varphi_0 \end{cases} \implies \varphi - \text{аргумент}$$

$$\varphi \text{ - аргумент } \implies z = |z|(\cos\varphi + i\sin\varphi) \implies \begin{cases} \cos\varphi = \cos\varphi_0 \\ \sin\varphi = \sin\varphi_0 \end{cases} \implies \varphi - \varphi_0 = 2\pi k, \ k \in \mathbb{Z}$$

Определение 2.4. $arg(z)=\varphi$ означает φ - один из аргументов z

Замечание. Предположим оказалось, что $z=r(\cos\varphi+i\sin\varphi)$ для некоторых $r\geqslant 0,\ \varphi\in\mathbb{R}.$ Тогда $r=|z|,\ \varphi=\arg z$

Доказательство. $|z| = \sqrt{(r\cos\varphi)^2 + (r\sin\varphi)^2} = \sqrt{r^2} = r \implies \varphi$ - аргумент по определению

Предложение 2.3.

- 1. $\arg \overline{z} = -\arg z$
- $2. z \in \mathbb{R} \iff \arg z = k\pi, \ k \in \mathbb{Z}$
- 3. $\arg(z_1 z_2) = \arg z_1 + \arg z_2$
- 4. $\exists z_2 \neq 0 \implies \arg \frac{z_1}{z_2} = \arg z_1 \arg z_2$

Доказательство.

1.
$$\arg z = \varphi$$

$$z = |z|(\cos \varphi + i \sin \varphi)$$

$$\overline{z} = |z|(\cos \varphi - i \sin \varphi) = |\overline{z}|(\cos(-\varphi) + i \sin(-\varphi)) \implies$$

$$\arg \overline{z} = -\varphi$$

 $2. "\Rightarrow ":$

$$z > 0$$
:

$$z = |z| \cdot 1 = |z|(\cos 0 + i \sin 0) \implies \arg z = 0$$

$$z < 0:$$

$$z = |z| \cdot (-1) = |z|(\cos \pi + i \sin \pi) \implies \arg z = \pi$$

$$"\Leftarrow":$$

$$\sin(k\pi) = 0$$
3. $\arg z_1 = \varphi_1, \ \arg z_2 = \varphi_2 \implies$

$$(!) \ \varphi_1 + \varphi_2 = \arg(z_1 z_2)$$

$$z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2) \implies$$

$$z_1 z_2 = |z_1| \cdot |z_2|(\cos \varphi_1 \cdot \cos \varphi_2 - \sin \varphi_1 \cdot \sin \varphi_2 + i(\sin \varphi_1 \cdot \cos \varphi_2 + \cos \varphi_1 \cdot \sin \varphi_2)) =$$

 $|z_1 z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)) \implies \arg(z_1 z_2) = \varphi_1 + \varphi_2$

4. $z_1 = \frac{z_1}{z_2} \cdot z_2 \implies \arg z_1 = \arg \frac{z_1}{z_2} + \arg z_2 \implies \arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2$

Следствие. (Формула Муавра)

Пусть $z \in \mathbb{C}$, |z| = r, $\arg z = \varphi$, $n \in \mathbb{Z}$.

Тогда
$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

Доказательство.

n > 0 — индукция по n

Bаза: n = 1 — тривиально

$$\Pi$$
ереход: $n-1 \rightarrow n$

Переход:
$$n-1 \to n$$

$$z^{n} = z^{n-1} \cdot z = r^{n-1}(\cos((n-1)\varphi) + i\sin((n-1)\varphi)) \cdot z = r^{n-1}(\cos((n-1)\varphi) + i\sin((n-1)\varphi)) \cdot r(\cos\varphi + i\sin\varphi) = r^{n}(\cos((n-1)\varphi + \varphi) + i\sin((n-1)\varphi + \varphi)) = r^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

$$n = 0, \ 1 = r^{0}(\cos(0) + i\sin(0)) = 1$$

$$n < 0: \ n = -k, \ k \in \mathbb{N}$$

$$z^{n} = \frac{1}{z^{k}}$$

$$|z^{n}| = \frac{1}{|z^{k}|} = \frac{1}{|z|^{k}} = |z|^{-k} = |z|^{n}$$

$$\arg z^{n} = \arg 1 - \arg z^{k} = 0 - k\varphi = n\varphi$$

3 Корни из комплексных чисел

$$\begin{split} z^n &= w, \ n \in \mathbb{N}, \ w \in \mathbb{C} \\ w &= 0 \implies z = 0 \\ w &\neq 0, \ w = r(\cos \varphi + i \sin \varphi), \ r > 0, \ \varphi \in \mathbb{R}, \ z = p(\cos \alpha + i \sin \alpha), \ p > 0, \ \alpha \in \mathbb{R} \end{split}$$

$$z^{n} = w \iff p^{n}(\cos n\alpha + i\sin n\alpha) = r(\cos \varphi + i\sin \varphi) \iff \begin{cases} p^{n} = r \\ n\alpha = \varphi + 2\pi k, \ k \in \mathbb{Z} \end{cases} \iff \begin{cases} p = \sqrt[n]{r} \\ \alpha = \frac{\varphi + 2\pi k}{n}, \ k \in \mathbb{Z} \end{cases}$$

$$z^n = w \iff z = \underbrace{\sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)}_{z_k}, \ k \in \mathbb{Z}$$

При каких $k, l: z_k = z_l$?

$$z_k = z_l \iff \frac{\varphi + 2\pi k}{n} = \frac{\varphi + 2\pi l}{n} + 2\pi s, \ s \in \mathbb{Z} \iff \frac{k}{n} + \frac{l}{n} + s, \ s \in \mathbb{Z} \iff k = l + ns, \ s \in \mathbb{Z} \iff k \equiv l \iff z \in \{z_0, z_1, \dots, z_{n-1}\}$$

Таким образом, мы доказали:

Теорема 3.1. $\exists n \in \mathbb{N}, w \in \mathbb{C}$

- 1. Если w=0, То уравнение $z^n=w$ имеет единственный корень z=0.
- 2. Если $w \neq 0$, То уравнение $z^n = w$ имеет ровно n различных корней:

$$z_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k = 0, 1, \dots, n - 1$$

Изображение на окружности

Комплексные корни образуют праильный n-угольник на окружности.

Лемма 3.1. Пусть
$$z_0, z_1, \dots, z_{n-1}$$
 — все корни $z^n = w, \ n > 1$ Тогда $z_0 + z_1 + \dots + z_{n-1} = 0$

Доказательство.

$$z_k = z_{k-1} \underbrace{\left(\cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}\right)}_{\mathcal{E}}$$

$$S = z_0 + z_1 + \ldots + z_{n-1}$$

$$z_k = z_0 \cdot \xi^k$$

$$\xi \cdot S = z_1 + z_2 + \dots + \underbrace{z_n}_{=z_0} = S \implies (\xi - 1)S = 0$$

$$n \neq 1 \implies \xi \neq 1$$

$$(\xi - 1)S = 0 \implies S = 0$$

Определение 3.1. Группа — это множество G с операцией $*: G \times G \to G$ такая, что:

- 1. * ассоциативна: (a * b) * c = a * (b * c)
- 2. Существует нейтраальный элемент $e \in G$ такой, что a * e = e * a = a для любого $a \in G$
- 3. У любого элемента $a \in G$ существует обратный элемент $a^{-1} \in G$ такой, что $a * a^{-1} = a^{-1} * a = e$

Примеры.

- 1. $(\mathbb{Z}, +)$
- 2. $((\mathbb{Z}/n\mathbb{Z})^*, \cdot)$
- 3. Если R ассоциативное кольцо с 1, то $R^* = \{r \mid \exists s \in R : rs = sr = 1\}$ группа относительно умножения.

Проверить замкнутость относительно умножения.

Зафиксируем $n \in \mathbb{N}$

$$\mu_n = \{z \in \mathbb{C} \mid z^n = 1\} = \{\underbrace{\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}}_{\xi_k} \mid k = 0, 1, \dots, n-1\}$$
 — группа относительно

умножения

 $z,w\in\mu_n\implies zw\in\mu_n$ — замкнутость относительно умножения

$$(zw)^n = z^n w^n = 1 \cdot 1 = 1$$

Доказательство, что μ_n — группа:

- ullet Ассоциативность так как есть ассоциативность в ${\mathbb C}$
- $1 \in \mu_n \ (1 = \xi_0)$

•
$$\xi_k \cdot \xi_{-k} = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\right) \left(\cos\frac{2\pi(-k)}{n} + i\sin\frac{2\pi(-k)}{n}\right) = 1$$

Лемма 3.2. $\xi_k = \xi_1^k$

Доказательство. $\left(1\cdot\cos\frac{2\pi k}{n}+i\sin\frac{2\pi}{n}\right)^k=1\cdot\left(\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}\right)$ (по формуле Муавра)

Определение 3.2. G — группа с операцией $*, g \in G, n \in \mathbb{Z}$

$$g^{n} = \begin{cases} g * g * \dots * g & n > 0 \\ e & n = 0 \\ g^{-1} * g^{-1} * \dots * g^{-1} & n < 0 \end{cases}$$

Определение 3.3. Группа G называется циклической, если $\exists g \in G : G = \{g^n \mid n \in \mathbb{Z}\}$

Пишут: $G = \langle g \rangle$

Определение 3.4. g — образующий элемент группы G

Примеры.

•
$$\mathbb{Z}=\langle 1 \rangle=\langle -1 \rangle$$
 (по сложению) $g^n= egin{cases} 1+1+\ldots+1 & n>0 \\ 0 & n=0 \\ -1+-1+\ldots+-1 & n<0 \end{cases}$

- $\mathbb{Z}/5\mathbb{Z}=\langle\overline{1}\rangle=\langle\overline{2}\rangle=\langle\overline{3}\rangle=\langle\overline{4}\rangle$ (по сложению)
- $\mathbb{Z}/6\mathbb{Z} = \langle \overline{1} \rangle = \langle \overline{5} \rangle$ (по сложению)
- $(\mathbb{Z}/5\mathbb{Z})^* = \langle \overline{2} \rangle = \langle \overline{3} \rangle$ (по умножению)
- ($\mathbb{Z}/8\mathbb{Z}$)* не циклическая группа $g^2=e\implies g^{2k}=e,\ g^{2k+1}=g$

Определение 3.5. G — группа, $g \in G$

Если $\forall n \in \mathbb{N} : g^n \neq e$, то говорят, что g — бесконечный порядок

Если $\exists n \in \mathbb{N} : g^n = e$, то минимальное такое n называют порядком g (пишут: ord g = n)

Пример. $\mathbb{Z}/5\mathbb{Z}$

$$\operatorname{ord} \overline{1} = 1$$

$$\operatorname{ord} \overline{2} = 4$$

$$\operatorname{ord} \overline{3} = 4$$

$$\operatorname{ord} \overline{4} = 2$$

Предложение 3.1. Пусть G — конечная группа, $|G| = n, g \in G$.

Тогда:
$$G = \langle g \rangle \iff \text{ord } g = n$$

Доказательство. "⇒":

$$\exists k, l : g^k = g^l, \ k, l \in \{0, 1, \dots, n\}, \ k \neq l \ ($$
так как G конечная $)$

$$k < l \colon g^{-k} \cdot g^k = g^{-k} \cdot g^l = g^{l-k} = e$$

$$0 < l - k \leqslant n$$

Таким образом, порядок g не превосходит n

Предположим, ord q = m < n

$$G = \{g^k \mid k \in \mathbb{Z}\} = \{g^{mq+r} \mid q \in \mathbb{Z}, \ 0 \leqslant r < m\} = \{g^0, g^1, \dots, g^{m-1}\}$$
 — противоречие, так как $|G| \leqslant m < n$

$$\operatorname{ord} q = n$$

$$\implies g^0, g^1, g^2, \dots, g^{n-1}$$
 — они попарно различны

$$\implies \{g^0, g^1, \dots, g^{n-1}\} = G$$
$$\implies G = \langle g \rangle$$

Определение 3.6. Первообразным корнем из 1 степени n называется такой элемент $z\in\mathbb{C}^*,$ что ord z=n

Пример. $\mu_6=\{1,\xi_1,\xi_2,\xi_3,\xi_4,\xi_5\}$ ord 1=1, ord $\xi_1=6,$ ord $\xi_2=3,$ ord $\xi_3=2,$ ord $\xi_4=3,$ ord $\xi_5=6$ ξ_2 — первообразный корень из 1 степени 3

3 Многочлены

1 Многочлены и формальные степенные ряды

Определение 1.1. Последовательность финитная $\iff \exists N : \forall n \geqslant N : a_n = 0.$

Определение 1.2. Многочленом над R (от одной переменной) называется финитная последовательность $(a_i), a_i \in \mathbb{R}, i = 0, 1, 2, \dots$

Определение 1.3. R — коммутативное кольцо с 1.

 $R[x] = \{(a_i) \mid a_i \in R, i = 0, 1, \dots; a_i = 0 \text{ при } i \to \infty\}$ — кольцо многочленов над R.

Введём сложение и умножение на R[x]

$$(a_i) + (b_i) = (a_i + b_i)$$

$$(a_i)\cdot (b_i)=(p_i)$$
, где $p_k=\sum\limits_{i=0}^k a_i b_{k-i}$

 $\exists a \in R, [a] = (a, 0, 0, \ldots)$ — многочлен, равный a.

$$[a] + [b] = [a+b]$$

$$[a] \cdot [boba] = (aboba, 0, 0, \ldots) = [aboba]$$

Отождествим [a] с a.

$$[a] \cdot (b_0, b_1, \ldots) = (ab_0, ab_1, \ldots)$$

$$(a_0, a_1, \ldots, a_n, 0, 0, \ldots) = (a_0, 0, 0, \ldots) + (0, a_1, 0, 0, \ldots) + \ldots + (0, 0, \ldots, a_n, 0, 0, \ldots) = (0, 0, 0, \ldots)$$

$$a_0 \cdot \underbrace{(1,0,0,\ldots)}_{x_0} + a_1 \cdot \underbrace{(0,1,0,\ldots)}_{x_1} + \ldots + a_n \cdot \underbrace{(0,0,\ldots,1,0,0,\ldots)}_{x_n} =$$

$$a_0 + a_1 \cdot x_1 + \ldots + a_n \cdot x_n$$

$$x_j \cdot x_1 = (0, \dots, 1, 0, 0, \dots) \cdot (0, 1, 0, 0, \dots) = (0, \dots, 0, 1, 0, 0, \dots) = x_{j+1} \implies$$

$$\forall m \in \mathbb{N} : x_m = x_1^m$$

$$x_1 = x \implies x_m = x_1^m = x^m$$

Значит получили стандартную запись многочленов $(a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n)$

Определение 1.4. $\exists f \in R[x], f \neq 0$ (то есть не (0))

Тогда степенью f называется максимальное j такое что $a_i \neq 0$

Обозначим $\deg(f) = j$.

Если f = 0, то $\deg(f) \in \{-1, -\infty\}$ (по разному обозначают).

Определение 1.5. $d = \deg f \implies a_d$ называется старшим коэффициентом f.

Определение 1.6. Константой называется множество f такое что $\deg(f) \leq 0$.

Определение 1.7. Мономом называется множество вида ax^{j} .

Предложение 1.1. R[x] — коммутативное ассоциативное кольцо с 1.

Доказательство. Аксиомы относящиеся к сложению очевидны.

Проверим коммутативность умножения и дистрибутивность.

$$(f \cdot g) \cdot h = f \cdot (g \cdot h)$$
 — сводится к сложению, f, g, h — мономы.

$$\begin{cases} (aX^i \cdot bX^j) \cdot cX^k = abX^{i+j} \cdot cX^k = abc \cdot X^{i+j+k} \\ aX^i \cdot (bX^j \cdot cX^k) = aX^i \cdot bcX^{j+k} = abc \cdot X^{i+j+k} \end{cases}$$

$$(fg)h = f(gh)$$

$$f = \sum_{i=0}^{k} f_i, \ g = \sum_{j=0}^{l} g_j, \ h = \sum_{m=0}^{n} h_m$$

$$(fg)h = (\sum f_i \cdot \sum g_j) \cdot \sum h_k = \sum (f_i \cdot g_j) \cdot \sum h_k \stackrel{\text{ассоц. для мономов}}{=} \sum f_i \cdot \sum (g_j \cdot h_k) = f(gh)$$

Определение 1.8. $R[[x]] = \{(a_i) \mid a_i \in R, i = 0, 1, \ldots\}$ — множество формальных степенных рядов над R.

$$(a_i) = \sum_{i=0}^{\infty} a_i X^i$$

Упражнение. R[[x]] — коммутативное ассоциативное кольцо с 1.

2 Свойства степени

Предложение 2.1. $f, g \in R[x], \deg f = m, \deg g = n$

1.
$$\deg(f+g) \leqslant \max(m,n)$$

При этом:
$$m \neq n \implies \deg(f+g) = \max(m,n)$$

$$2. \deg(fg) \leqslant m + n$$

Доказательство.

1.
$$f = \sum_{i=0}^{m} a_i X^i$$
, $g = \sum_{i=0}^{n} b_i X^i$, $d = \max(m, n)$

$$f = \sum_{i=0}^{d} a_i X^i, \ g = \sum_{i=0}^{d} b_i X^i$$

$$f + g = \sum_{i=0}^{d} (a_i + b_i) X^i \implies \deg(f + g) \leqslant d$$

$$m \neq n \implies \begin{cases} a_d = 0 \\ b_d \neq 0 \end{cases} \quad \text{или} \begin{cases} a_d \neq 0 \\ b_d = 0 \end{cases} \implies a_d + b_d \neq 0 \implies \deg(f + g) = d$$
2. $\left(\sum_{i=0}^{m} a_i X^i\right) \left(\sum_{i=0}^{n} b_i X^i\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + \ldots + a_m b_n X^{m+n} \implies \deg fg \leqslant m + n$

Замечание. $\deg fg < m+n,$ если $a_m \neq 0$ или $b_n \neq 0$ и $a_m b_n = 0$

Замечание. Будем считать, что $\deg 0 = -\infty$

Определение 2.1. Область целостности (целостное кольцо, область) — коммутативное ассоциативное кольцо с $1 \neq 0$ и без делителей нуля.

$$a \neq 0$$
 так чтобы $\exists b \neq 0 : ab = 0$

Предложение 2.2. Пусть $R - O \coprod (oбласть целостности).$

- 1. $\forall f, g \in R[x] : \deg(fg) \leq \deg f + \deg g$
- $2. R[x] O\coprod$

Доказательство.

1. В предыдущем доказательстве
$$\begin{cases} a_m \neq 0 \\ b_n \neq 0 \end{cases} \implies a_m b_n \neq 0 \implies \deg(fg) = m+n$$

$$2. \ f \neq 0 \implies \deg f \geqslant 0, \ g \neq 0 \implies \deg g \geqslant 0 \implies \deg(fg) \geqslant 0 \implies fg \neq 0$$

 \pmb{C} ле $\pmb{\partial}$ ствие. Пусть R- ОЦ: тогда $R[x]^*=R^*$

Доказательство. Очевидно $R^* \subset R[x]^*$

Обратно, пусть $f \in R[x]^*$

$$\exists g \in R[x] : f \cdot g = 1 (\implies f, g \neq 0)$$

$$\deg(fg) = 0 = \deg f + \deg g \implies \deg f = \deg g = 0 \implies f \in R^*$$

Примеры.

- 1. $\mathbb{Z}[x]^* = \{\pm 1\}$
- $2. \ \mathbb{R}[x]^* = \mathbb{R} \setminus \{0\}$
- 3. $(\mathbb{Z}/4\mathbb{Z})[x]^*$ бесконечное множество

Упражнение. $R[[x]]^* = \{\sum_{i=0}^{\infty} a_i X^i \mid a_0 \in R^*\}$

3 Деление с остатком

Теорема 3.1 (о делении с остатком для многочленов). $R-\mathrm{O} \ \Box$.

Пусть $f,g\in R[x],\ g\neq 0$ и старший коэффициент g обратим.

Тогда $\exists !\ q,r\in R[x]$:

- $1. \ f = gq + r$
- $2. \, \deg r < \deg g$

Доказательство. $\deg g = d, \ g = b_d X^d + \dots$

1. Существование q и r

Индукция по $\deg f \colon \deg f < d \implies$ подходит q = 0, r = f

Пусть $\deg f = n \geqslant d$

 $f_1 = f - g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d}$, где b_d — старший коэффициент g

$$g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} = (b_d X^d + \dots) \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} = a_n X^n + \dots \implies \deg f_1 < n$$

По индукционному предположению $\exists q_1, r_1 \in R[x]$ такие, что:

(a)
$$f_1 = gq_1 + r_1$$

(b)
$$\deg r_1 < d$$

$$f = g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} + f_1 = g \underbrace{(a_n \cdot b_d^{-1} \cdot X^{n-d} + q_1)}_q + \underbrace{r_1}_r$$

2. Предположим $f = g \cdot q_1 + r_1 = g \cdot q_2 + r_2$, $\deg r_1 < d, \deg r_2 < d$

$$g(q_1 - q_2) = r_2 - r_1$$

Предположим
$$q_1 \neq q_2 \implies \deg g \cdot (q_1 - q_2) = \underbrace{\deg g}_d + \underbrace{\deg q_1 - q_2}_{\geqslant 0} \geqslant d, \ \deg(r_2 - r_1) < d$$

Замечание. Условие $R-\mathrm{O} \ \square$ не существенно.

$$g = b_d X^d + \dots, \ b_d \in R^*$$

$$b_d \cdot a = 0 \implies b_d^{-1}(b_d a) = 0 \implies a = 0$$
 (что это значит?)

4 Гомоморфизм подстановки

Определение 4.1. Пусть R, S – кольца. Гомоморфизм из кольца R в кольцо S называется отображение $\varphi: R \to S$ так что:

1.
$$\varphi(a+b) = \varphi(a) + \varphi(b), \forall a, b \in R;$$

$$2. \ \varphi(ab) = \varphi(a)\varphi(b)$$

3.
$$\varphi(1_R) = 1_S$$

Предложение 4.1 (свойства гомоморфизма).

1.
$$\varphi(0_R) = 0_S$$

$$2. \ \forall a \in R : \varphi(-a) = -\varphi(a)$$

3.
$$\forall a, b \in R : \varphi(a - b) = \varphi(a) - \varphi(b)$$

Доказательство.

1.
$$0_R = 0_R + 0_R \implies \varphi(0_R) = \varphi(0_R) + \varphi(0_R) \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \varphi(0_R) + \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \varphi(0_R) = 0_S$$

2.
$$a + (-a) = 0_R \implies \varphi(a) + \varphi(-a) = \varphi(0_R) = 0_S \implies \varphi(-a) = -\varphi(a)$$

3.
$$\varphi(a-b) = \varphi(a) + \varphi(-b) = \varphi(a) - \varphi(b)$$

Определение 4.2. Пусть S-кольцо, $R \subset S$. R называется подкольцом S, если:

1.
$$\forall a, b \in R : a - b \in R$$

2.
$$\forall a, b \in R : ab \in R$$

$$3. 1_S \in R$$

Замечание. Этих условий достаточно (остальные выражаются)

$$1 \in R \implies 0 = 1 - 1 \in R$$

$$a \in R \implies -a = 0 + (-a) = 0 - a \in R$$

$$a, b \in R \implies a + (-(-b)) = a - (-b) \in R$$

Примеры.

- 1. Пусть R подкольцо в S. Тогда $i_R: R \to S$ гомоморфизм, $a \mapsto a$.
- 2. $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ гомоморфизм, $a \mapsto \overline{a}$
- 3. $\mathbb{C} \to \mathbb{C}$ гомоморфизм, $z \mapsto \overline{z}$

Теорема 4.1. Пусть B - кольцо, A - подкольцо такое что, $\forall a \in A \ \forall b \in B : ab = ba$

Зафиксируем $b \in B$. Тогда отображение $\varphi_b : A[x] \to B$

 $a_nX^n+\ldots+a_1X+a_0\mapsto a_nb^n+\ldots+a_1b+a_0$ является гомоморфизмом колец.

Доказательство.

Если
$$f = a_n X^n + \ldots + a_1 X + a_0$$
, то $f(b) = a_n b^n + \ldots + a_1 b + a_0 = \varphi_b(f)$

Нужно проверить: (f + g)(b) = f(b) + g(b)

$$(fg)(b) = f(b)g(b)$$

$$1(b) = 1$$
 — тривиально

$$(f+g)(b)=f(b)+g(b)$$
 — очевидно из определения $f+g$.

$$f = \sum_{i=0}^{n} a_i X^i, g = \sum_{i=0}^{m} c_i X^i$$

$$fg = \sum_{k=0}^{n+m} d_k X^k, d_k = \sum_{i+j=k} a_i c_j$$

$$(fg)(b) = \sum_{k=0}^{n+m} d_k b^k$$

$$f(b)g(b) = \left(\sum_{i=0}^n a_i b^i\right) \left(\sum_{j=0}^m c_j b^j\right) = \sum_{i=0}^n \sum_{j=0}^m a_i b^i c_j b^j \stackrel{\text{коммут.}}{=}$$

$$\sum_{i=0}^{n} \sum_{j=0}^{m} a_i c_j b^{i+j} = \sum_{k=0}^{n+m} \left(\sum_{i,j \ge 0, i+j=k} (a_i c_j) \right) b^k = (fg)(b)$$

Примеры.

1. A — любое коммутативное кольцо, B = A[x]

A - подкольцо в $B=A[x] \implies$ можно рассмотреть f(g), где $f,g\in A[x]$

2. $\mathbb{R}[x] \xrightarrow{\varphi} \mathbb{R}[x], f \mapsto f(5)$

$$\operatorname{Im}\varphi=\mathbb{R}\neq\mathbb{R}[x]$$

 $3. A \rightarrow A$

$$f \stackrel{lpha}{\longmapsto} f(x_2,x_3,x_4,\ldots)$$
 — инъективный, но не сюръективный

$$f \stackrel{\beta}{\longmapsto} f(0,x_1,x_2,x_3,\ldots)$$
 — сюръективный, но не инъективный

Упражнение.

- 1. Найти все автоморфизмы Q
- 2. Найти все автоморфизмы \mathbb{R}
- 3. Найти все автоморфизмы $\mathbb{R}[x]$

Теорема 4.2 (Безу). Пусть $f \in R[X]$, $c \in R$. Тогдаа остаток при делении f на X - c есть f(c).

Доказательство.

$$f = (X - c) \cdot q + r$$
, по теореме о делении с остатком $\deg r < \deg(X - c) = 1 \implies$

$$f(c) = (c - c) \cdot q(c) + r(c) = r(c)$$

Следствие. Пусть $f \in R[X]$, $c \in R$. Тогда $f(c) = 0 \iff (X - c) \mid f$

Определение 4.3. Пусть R — подкольцо S, элементы R коммутируют с элементами S. Тогда $s \in S$, такой что f(s) = 0, где $f \in R[x]$ — называется корнем из f в R.

Примеры.

1.
$$f = x^4 - 2$$
 в $\mathbb{Z}[x]$

f не имеет корней в \mathbb{Z}

f имеет 2 корня в \mathbb{R}

f имеет 4 корня в \mathbb{C}

Предложение 4.2. Пусть R – область целостности, $f \in R[x]$, $\deg f = d \geqslant 0$. Тогда число корней f в R не превосходит d.

Доказательство. Индукция по *d*

База: $d=0 \implies f$ ненулевой $d \implies$ корней нет

 Π ереход: d > 0

y f нет корней в $R \implies y$ тверждение выполнено

У f есть корни в R, пусть $c \in R$ — какой-либо из корней f

$$f(c) = 0 \implies f = (X - c) \cdot g$$
, где $g \in R[x]$

 $\deg f = \deg(X - c) + \deg g \implies \deg g = d - 1$

Пусть c_1, \ldots, c_l — все корни g в R

По предположению индукции: $l \leqslant d-1$

Утверждение: $\{c_1, \dots c_l, c\}$ — все корни f в R

$$f(c_1) = \ldots = f(c_l) = f(c) = 0$$

Предположим $\exists c' \notin \{c_1, \ldots, c_l, c\}$, такой что f(c') = 0

 $\implies (c'-c) \cdot g(c') = 0$ — противоречие с тем, что R — область целостности

 \implies у f не более $l+1 \leqslant d$ корней в R.

Пример. $x^2 - 1$ имеет 4 корня в $\mathbb{Z}/8\mathbb{Z}$ или в $\mathbb{Z}/5\mathbb{Z}$

$$x^{2} \equiv 1 \iff \begin{cases} x^{2} \equiv 1 \\ x^{2} \equiv 1 \end{cases} \iff \begin{cases} x \equiv 1 \text{ или } x \equiv -1 \\ x \equiv 1 \text{ или } x \equiv -1 \end{cases}$$

Предложение 4.3 (формальное и функциональное равенство многочленов).

Пусть R – бесконечная область: $f, g \in R[x]$

таковы, что $\forall a \in R : f(a) = g(a)$

Тогда f = g

Доказательство.

h=f-g, предположим, что $h\neq 0 \implies \deg h=d\geqslant 0 \implies$ у h есть $\leqslant d$ корней.

Но $\forall a \in R : h(a) = f(a) - g(a) = 0$, R - бесконечная область, противоречие. Так как их не больше чем d, но R бесконечно.

Пример. $R = \mathbb{Z}/3\mathbb{Z}, f = X, q = X^3$

 $\forall A \in \mathbb{Z} : a^3 \equiv a \implies \forall \alpha \in \mathbb{Z}/3\mathbb{Z} : f(\alpha) = g(\alpha)$

5 Евклидовы области

Определение 5.1. Евклидовой областью целостности (евклидовой областью, евклидовым кольцом) называется область целостности R, для которой существует функция $\nu: R \setminus \{0\} \to \mathbb{Z}_{\geqslant 0}$, называемая евклидовой нормой, такая что:

- 1. Если $d \mid a$, то $\nu(d) \leqslant \nu(a)$, причем $\nu(d) = \nu(a) \iff d \sim a$.
- 2. Для любых $a, b \in R, \ b \neq 0$: существует представление a = bq + r, где r = 0 или $\nu(r) < \nu(b)$.

Замечание: свойство один можно убрать, но доказательства будут сложнее.

Примеры.

- 1. R = K[x], (K поле), где $\nu(P) = \deg P$
- 2. $R = \mathbb{Z}$, где $\nu(a) = |a|$

3. $R = \mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$, где $\nu(a+bi) = a^2 + b^2$ (подробнее в книжке Аейрленд, Роузен - «Классическое введение в современную теорию чисел»)

4.
$$R = K[[x]], (K$$
 - поле)
$$R^* = \{a_0 + a_1x + a_2x + \dots \mid a_0 \neq 0\}$$
 ord $f = \min\{j \mid a_j \neq 0\}$

$$f = x^{\operatorname{ord} f} \cdot (a_i + a_{i+1}x + \ldots) \sim x^{\operatorname{ord} f}$$

Упражнение. Докажите, что это евклидова область.

5.
$$R = \mathbb{Z}_{(5)} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, 5 \nmid b \}$$

Упражнение. Докажите, что это евклидова область.

Лемма 5.1. Пусть R - область целостности, $a,b \in R$. Тогда $a \sim b \iff a = \varepsilon b, \ \varepsilon \in R^*$

Доказательство.

«←=»:

Пусть $a = \varepsilon b \implies b$. Так как ε — обратим, $b = \varepsilon^{-1}a$.

$$\left. \begin{array}{l} a = \varepsilon b \implies a \mid b \\ b = \varepsilon^{-1} a \implies b \mid a \end{array} \right\} \iff a \sim b$$

«==>»:

$$a \sim b \implies egin{cases} a \mid b \\ b \mid a \end{cases} \implies egin{cases} b = arepsilon a \\ a = arepsilon' b \end{cases} \implies b = arepsilon arepsilon' b \implies (arepsilon arepsilon' - 1) b = 0 \implies arepsilon - ext{обратим}.$$

Определение 5.2. R — коммутативное кольцо, $I \subset R$ называется udeanom в R, если:

- 1. $I \neq \emptyset$
- $2. \ \forall a, b \in I : a + b \in I$
- 3. $\forall a \in I \ \forall b \in R : ab \in I$

Примеры.

- 1. $R = \mathbb{Z}, I = 2\mathbb{Z}$
- 2. $R = K[X], I = \{ f \in R \mid f(0) = 0 \}$
- 3. R = C[0,1] (непрерывные функции на отрезке [0,1]), $I = \{f \in R \mid f(0) = 0\}$

Определение 5.3. Пусть R — коммутативное кольцо, $r \in R$. Из свойств кольца очевидно, что $\langle r \rangle \rightleftharpoons \{rs \mid s \in R\}$ — идеал в R.

Тогда (r) называется главным идеалом порожденный элементом r.

Замечание. $(r)=(r')\iff r\sim r'$

Пример. Пример неглавного идеала:

$$R = \mathbb{Z}[X], I = \{f : 2 \mid f(0)\}$$

Предложение 5.1. В евклидовой области все идеалы главные.

Доказательство. Пусть I - идеал в области целостности R.

Случай $I = \{0\}$ — тривиален, тогда I = (0). Пусть $I \neq \{0\}$.

Зафиксируем норму ν и рассмотрим $c \in I$ с минимальной нормой. Докажем, что I = ().

«⊃»:

Так как для любого $b \in R$ должно быть выполнено $cb \in I$, то $I \supset (c)$.

«⊂»:

Предположим, $\exists a \in I \setminus (c)$. Представим евклидову норму в виде a = cq + r, $q, r \in R$. Если r = 0, то $a \in (c)$ по определению главного идеала. Но иначе $\nu(r) < \nu(c)$. Выразим r:

$$r = a - cq = a + c(-q).$$

Так как $c \in I$ и $a \in I$, то и $c(-q) \in I$, следовательно $r \in I$. Но $\nu(r) < \nu(c)$, что противоречит минимальности нормы $\nu(c)$

Определение 5.4. Область целостности, в которых все идеалы главные, называется областью главных идеалов ($O\Gamma H$).

Предложение 5.2. Пусть R — область главных идеалов. Тогда:

- 1. $a, b \in R \implies y \ a \ u \ b$ существует наибольший общий делитель
- 2. Если d наибольший общий делитель a и b, то $d = am + bn, \ m, n \in R$

Доказательство.

Можно считать $a \neq 0$ или $b \neq 0$, если a = b = 0, то d = 0 подходит, $d \neq 0$ не подходит.

1. Рассмотрим множество $I = \{am + bn \mid m, n \in R\}$ — идеал в R. Тогда можно записать I = (d). Заметим, что d — общий делитель a и b.

$$\begin{cases} a = a \cdot 1 + b \cdot 0 \in I = (d) \\ b = a \cdot 0 + b \cdot 1 \in I = (d) \end{cases} \implies \begin{cases} d \mid a \\ d \mid b \end{cases}$$

Покажем, что d - наибольший общий делитель a и b. То есть, что

$$\begin{cases} d' \mid a & \xrightarrow{(!)} d' \mid d \\ d' \mid b & \end{cases}$$

Так как $d \in I$, $d = am_0 + bn_0$, $m_0, n_0 \in R$.

$$\begin{cases} d' \mid a \\ d' \mid b \end{cases} \implies \begin{cases} d' \mid am_0 \\ d' \mid bn_0 \end{cases} \implies d' \mid d.$$

Что и требовалось доказать.

2. Если d' - наибольший общий делитель a и b, то:

$$d' \sim d \in I \implies d' \in I \implies d' = am + bn, \ m, n \in R.$$

Замечание. Наибольший общий делитель в ОГИ обозначают (a,b).

Определение 5.5. Элементы ОГИ a и b называют взаимно простыми, если (a,b)=1.

Предложение 5.3. $(a, b) = 1 \iff m, n \in R : am + bn = 1$

Доказательство. «⇒»: Из предыдущего предложения

$$\ll \gg : d = (a, b) \implies d \mid a, d \mid b \implies d = 1 \implies d \sim 1$$

6 Факториальность области главных идеалов

Определение 6.1. Пусть R - коммутативное кольцо. Элемент a называется nenpusodumum, если $a \neq 0, a \notin R^*$ и $a = bc \implies b \in R : *$ или $c \in R^*$.

То есть неприводимый элемент — необратимый элемент, который не раскладывается в произведение двух обратимых.

Определение 6.2. *Приводимый элемент* — не 0, не обратный, не неприводимый.

Примеры.

1. R = K[x], (K - поле)

 $\deg f=1\implies f$ - неприводимый, так как $f=bc,\deg f=\deg b+\deg c=1+0=0+1=1$

 $2. \mathbb{R}[x]$:

$$x^2-4$$
 приводим $x^2-4=(x-2)(x+2)$

 $x^{2} + 1$ неприводим, иначе имел бы корень в \mathbb{R}

Лемма 6.1. Пусть $f \in K[x]$ — многочлен степени 2 или 3. Тогда f приводим \iff у него есть корень в K.

Доказательство.

 $\ll \Longrightarrow \gg$:

a - корень $f \stackrel{\text{т. Безу}}{\Longrightarrow} (X-a) \mid f$. Рассмотрим разложение $f = (X-a) \cdot g$. Так как $\deg g = \deg f - 1 \geqslant 1$, оно нетривиально и f — приводимый.

«=»:

Пусть f = gh и $\deg g$, $\deg h \geqslant 1$, не умаляя общности, $\deg g \geqslant \deg h$. Тогда:

$$\underbrace{\deg f}_{2 \text{ или } 3} = \deg g + \deg h$$

Есть два стула: 2 = 1 + 1 и 3 = 2 + 1 (на какой сам сядешь, на какой друга посадишь?)

$$\deg h = 1 \implies h = aX + b \implies h\left(-\frac{b}{a}\right) = 0 \implies f\left(-\frac{b}{a}\right) = 0.$$

Значит $-\frac{b}{a}$ — корень f.

Замечание. Многочлены большей степени могут быть приводимыми, но не иметь корней в K.

Пример. Рассмотрим $f = x^4 + x^2 + 1$ в $\mathbb{R}[x]$:

$$f = (x^2 + 1)^2 = (x^2 + x + 1)(x^2 - x + 1).$$

Замечание. $R-\mathrm{O}\Gamma\mathrm{M}$

Лемма 6.2. Пусть $p, f \in R$. p - неприводимый элемент. Тогда $p \mid f$ либо (p, f) = 1.

Доказательство.
$$(p, f) \mid p \implies (p, f) = 1$$
 или $(p, f) = p \implies (p, f) = 1$ или $p \mid f$.

Предложение 6.1. Пусть p - неприводимый, $p \mid ab \implies p \mid a$ или $p \mid b$.

Доказательство. Пусть
$$p \nmid a, p \nmid b \implies (p, a) = (p, b) = 1 \implies pm + an = 1, pm' + an' = 1 \stackrel{\text{перемножим}}{\Longrightarrow} p(pmm' + mbn' + anm') + abnn' = 1 \implies p \mid 1$$

Определение 6.3. Область целостности R называют факториальным кольцом, если:

- 1. Любой $a \in \mathbb{R}$ отличный от 0 и не являющийся обратимым можно представить в виде $a = p_1 \dots p_s, s \geqslant 1$ и p_1, \dots, p_s неприводимые элементы.
- 2. Если $p_1 \dots p_s = q_1 \dots q_t$, где все p_i, q_i неприводимые элементы, то s = t и после перенумерации q_i выполнено $q_1 \sim p_1, \dots, q_s \sim p_s$.

Теорема 6.1. Область главных идеалов является факториальным кольцом.

Доказательство. Есть элемент a, докажем что существует неприводимый p такой, что $p \mid a$.

Возьмем a, если он неприводимый, то доказывать нечего (т.к. $a \mid a$), иначе: $a = a_1b_1$, где $a_1, b_1 \notin R^*$ (не являются обратимыми)

 a_1 – неприводимый, следовательно утверждение доказано, иначе $a_1=a_2b_2$, где $a_2,b_2\notin R^*$

и так далее

Предположим, утверждение неверно. Обозначим $I=\bigcup_{i=1}^{\infty}(a_i)$

$$x, y \in I \implies x + y \in I$$

Можно заметить, что $a_2 \mid a_1, a_3 \mid a_2, \ldots \implies (a_1) \subset (a_2) \subset \ldots$

 $x \in (a_i), y \in (a_i)$, не умаляя общности $i \leqslant j$

$$x, y \in (a_i) \implies x + y \in (a_i) \subset I$$

 $x \in I \implies x \in (a_i)$ для некоторого i

$$a \in R \implies ax \in (a_i) \subset I$$

$$I = (c), c \in I \implies c \in (a_i)$$
 для некоторого i

$$a_{i+1} \in I \implies c \mid a_{i+1}$$

$$a_i \mid c \implies a_i \mid a_{i+1}$$

$$a_i = a_{i+1} \cdot b_{i+1} \implies b_{i+1} \in R^*$$

Значит любой обратимый элемент делится на неприводимый.

$$a \in R, a \neq 0, a \notin R^*$$

a неприводимый \implies все доказано, иначе $a=p_1a_1,\;p_1\notin R^*,\;p_1$ – неприводимый

 a_1 неприводимый \implies все доказано, иначе $a_1 = p_2 a_2, \ p_2 \notin R^*, \ p_2$ – неприводимый

и так далее

Можно заметить, что $a_2 \mid a_1, a_3 \mid a_2, \ldots \implies (a_1) \subset (a_2) \subset \ldots$

Аналогично доказывается, что существуют $a_i \sim a_{i+1}$ ассоциированные $\implies p_{i+1} \in R^*$. Противоречие.

Единственность разложения:

Пусть $p_1 \dots p_s = q_1 \dots q_t$, где все p_i, q_i , не умаляя общности $s \leqslant t$

Индукция по S

База: s = 1

$$p_1 = q_1 \dots q_t$$
. p_1 - неприводимый $\implies t = 1, \ q_1 = p_1$.

 Π ереход: s > 1

$$p_s \mid (p_1 \dots p_s) \implies p_s \mid (q_1 \dots q_t) \implies \exists j : p_s \mid q_j$$

Перенумеруем, так чтобы j=t. $q_t=p_s\cdot \varepsilon$, но q_t неприводим $\implies \varepsilon\in R^*$

$$p_1 \dots p_s = q_1 \dots q_{t-1} \cdot \varepsilon p_s \implies p_1 \dots p_{s-1} = q_1 \dots q_{t-1} \cdot \varepsilon = \underbrace{\left(\varepsilon q_1\right)}_{\text{неприводимый}} \cdot q_2 \dots q_{t-1}$$

По индукционному предположению $p_1 \dots p_{s-1}$ совпадает с $(\varepsilon q_1) \cdot q_2 \dots q_{t-1}$ с точностью до порядка и ассоциировнности.

Примеры.

- 1. R факториальное кольцо $\implies R[X]$ факториальное кольцо.
- 2. $\mathbb{Z}[X]$ факториальное кольцо.
- 3. $K[X][Y] = K[X,Y] \implies K[X,Y] факториальное кольцо.$

7 Кратные корни и производные

Определение 7.1. Пусть $f \in R[x]$ и $f \neq 0$. Пусть $a \in R$ — корень.

 $(X-a)\mid f$ по теореме Безу.

Наибольший n, такой что $(X-a)^n \mid f$, называется кратностью корня a. Можно заметить, что $n \leqslant \deg f$, поэтому он всегда существует.

Корни кратности 1 называются простыми корнями f,

корни кратности ≤ 2 называются кратными корнями f,

корни кратности 2 — двойными, 3 — тройными

Теорема 7.1. Пусть K поле, $f \in K[X]$, $d = \deg f > 0$

 a_1,\ldots,a_s — его корни, n_1,\ldots,n_s — их кратности.

Тогда $n_1 + \ldots + n_s \leqslant d$.

Доказательство. Разложим f на неприводимые множители.

 $X - a_j$ — неприводимые

$$f = (X - a_1)^{m_1} \dots (X - a_s)^{m_s} \cdot g, \ g \in K[x]$$

$$(X - a_1) \neq g, \dots, (X - a_s) \neq g$$

$$m_1 \leqslant n_1, \dots, m_s \leqslant n_s$$

Предположим, при некотором $j: n_i > m_i \implies$

$$(X - a_j)^{m_j + 1} \mid f \implies (X - a_j)^{m_j + 1} \cdot h = (X - a_1)^{m_1} \dots (X - a_s)^{m_s} \cdot g \implies$$

$$(X-a_i)\cdot h=(X-a_1)^{m_1}\dots(\widehat{X-a_i})^{m_j}\dots(X-a_s)^{m_s}\cdot g \Longrightarrow$$

$$(X-a_i) \mid (X-a_1)^{m_1} \dots (\widehat{X-a_i})^{m_j} \dots (X-a_s)^{m_s} \cdot g \Longrightarrow$$

Очевидно, $(X - a_i) \mid (X - a_i), (i \neq j).$

$$(X - a_i) \nmid g$$
 — противоречие.

T.o.
$$m_j = n_j, j = 1, ..., s$$
.

$$d = \deg f = m_1 + \ldots + m_s + \underbrace{\deg g}_{\geqslant 0} \geqslant n_1 + \ldots + n_s$$

Определение 7.2. Пусть $f \in K[X]$, $f = a_n X_n + a_{n-1} X_{n-1} + \ldots + a_1 X_1 + a_0$

Его производной будет называться многочлен $f' \in K[X], f' = na_n X_{n-1} + (n-1)a_{n-1} X_{n-2} + \ldots + a_1$

Предложение 7.1.

1.
$$(f+g)' = f' + g'$$

$$2. (fg)' = f'g + fg'$$

3.
$$(f^n)' = nf^{n-1}f'$$

Доказательство.

- 1. лёгкая непосредственная проверка (сначала очевидно, потом тривиально)
- 2. Пусть f, g мономы, то есть $f = aX^n, g = bX^m$

$$(fg)' = (abX^{n+m})' = (n+m)abX^{n+m-1} = n \cdot abX^{n+m-1} + m \cdot abX^{n+m-1} = n \cdot$$

$$\underbrace{naX^{n-1}}_{f'} \cdot \underbrace{bX^m}_g + \underbrace{aX^n}_f \cdot \underbrace{mbX^{m-1}}_{g'}$$

$$f = \sum f_i, \ g = \sum g_i, f_i, g_i$$
 — мономы

$$(fg)' = \left(\sum_{i,j} f_i g_j\right) = \sum_{i,j} (f_i g_j)' = \sum_{i,j} (f_i' g_j + f_i g_j') = \sum_{i,j} f_i' g_j + \sum_{i,j} f_i g_j' = \sum_i f_i' \sum_j g_j + \sum_i f_i \sum_j g_j' = f'g + fg'$$

3. Индукция по n

База:
$$n = 1$$

$$f' = f'$$

 Π ереход: n > 1

$$(f^n)' = (f^{n-1} \cdot f)' = (f^{n-1})' \cdot f + f^{n-1} \cdot f' \stackrel{\text{MII}}{=} ((n-1) \cdot f' \cdot f^{n-2}) \cdot f + f^{n-1} \cdot f' = (n-1)f' \cdot f^{n-1} + f' \cdot f^{n-1} = nf^{n-1}f'$$

Предложение 7.2. *K*-поле. $f \in K[X], f \neq 0, a \in K$

Тогда a кратный корень $f \iff f(a) = f'(a) = 0$

Доказательство.

«==>»:

a кратный корень $f \implies (X-a)^2 \mid f \implies f = (X-a)^2 \cdot g, g \in K[X]$

$$f' = ((X - a)^2)' \cdot g + (X - a)^2 \cdot g' = 2(X - a) \cdot g + (X - a)^2 \cdot g' \implies f'(a) = 0$$

«=>:

Пусть f(a) = f'(a) = 0.

$$f(a) = 0 \stackrel{\text{\tiny T.Besy}}{\Longrightarrow} f = (X - a) \cdot g, g \in K[X] \implies$$

$$f' = g + (X - a)g'$$

$$f'(a)=0 \implies g(a)=0 \implies (X-a)\mid g \implies (X-a)^2\mid f \implies a$$
 кратный корень f

 ${\it Cnedcmode.}\ K$ -поле. $f\in K[X], f\neq 0, a\in K$

Пусть D = (f, f')

Тогда a кратный корень $f \iff D(a) = 0$

Доказательство. a кратный корень $\iff f(a) = f'(a) = 0 \stackrel{\text{\tiny т.Безу}}{\iff} (X-a) \mid f$ и $(X-a) \mid f' \iff (X-a) \mid D \stackrel{\text{\tiny т.Безу}}{\iff} D(a) = 0$

Предложение 7.3. K-поле. Характеристика 0, то есть $\underbrace{1+\ldots+1\neq 0}_n, \forall n\in\mathbb{N}$

 $f \in K[X], a \in K$ — корень f кратности $s \geqslant 2.$

Тогда a — корень f' кратности s-1

Доказательство. $f = (X - g)^s g$

$$(X-a) \nmid g \stackrel{\text{\tiny T.Besy}}{\Longrightarrow} g(a) \neq 0$$

$$f' = ((X-a)^s)' \cdot g + (X-a)^s \cdot g' = s(X-a)^{s-1} \cdot g + (X-a)^s \cdot g' = (X-a)^{s-1} \cdot h$$
, где $h = s \cdot g + (X-a)g'$ $h(a) = s \cdot g(a) \neq 0 \implies (X-a) \nmid h$

8 Формула Тейлора

Предложение 8.1. K - поле, $f, g \in K[x], f \neq 0, d = \deg(g) \geqslant 1$.

Тогда f можно представить единственным образом:

$$f = h_n g^n + \dots + h_1 g + h_0,$$

где
$$n \ge 0, h_i \in K[x], h_n \ne 0, \deg(h_i) < d, i = 0, \dots, n.$$

Доказательство. Индукция по $l = \deg f$.

$$l < d: n = 0, h_0 = f.$$

$$l >= d$$
: $f = gq + r$, $\deg(r) < d$, $q \neq 0$.

 $\deg gq \geqslant \deg g > \deg r$

$$\implies \deg f = \deg gq \implies \deg q = l - d$$

$$\Pi_0 \text{ M}\Pi: q = h_n q^n + \dots + h_1 q + h_0, \ h_n \neq 0, \ \deg(h_i) < d, \ i = 0, \dots, n.$$

$$\implies f = h_n g^{n+1} + \dots + h_0 g + r.$$

Единственность.

Индукция по $l = \deg f$.

l < d:

$$\deg h_n g^n \geqslant nd > \deg h_i g^i, \ i = 0, \dots, n-1 \implies \deg f = \deg h_n g^n \implies \deg h_n g^n < d.$$

$$nd+d-1\geqslant l\geqslant nd\implies n$$
 - неполное частное при делении l на d .

База
$$l < d \ n = 0 \implies h_0 = f$$
.

Предположим, то есть еще разложение $f = \hat{h_n} g^n + \dots + \hat{h_1} g + \hat{h_0}$.

$$f = g(h_n g^{n-1} + \dots + h_1) + h_0 = g(\hat{h_n} g^{n-1} + \dots + h_1) + h_0, \operatorname{deg} \hat{h_0}, \operatorname{deg} \hat{h_0} < d$$

Тогда $h_0 = \hat{h_0}$.

По ИП:
$$\deg f_1 = h_n g^{n-1} + \dots + h_1 < \deg f \implies h_i = \hat{h_i}, \ i = 1, \dots, n-1.$$

Предложение 8.2. $char K = 0, \ f \in K[x], \ f \neq 0, \ d = \deg(f) = n \geqslant 0, \ a \in K.$

$$\implies f = \sum_{i=0}^{n} \frac{f^{(i)}(x-a)^{i}}{i!}, \ f_i \in K[x], \ \deg(f_i) < d, \ i = 0, \dots, n.$$

Напоминание: char
$$K = \min\{l \mid \underbrace{1+1+\ldots 1}_{l \text{ раз}} = 0\}.$$

Доказательство. $f = \sum_{i=0}^{n} c_i(x-a)^i, \ c_i \in K, \ i=0,\ldots,n, \ c_n \neq 0.$

$$f^{(i)} = \sum_{j=i}^{n} c_j j! (x-a)^{j-i}, \ i = 0, \dots, n.$$

$$f^{(j)}(a) = c_j j!$$

$$c_i = \frac{f^{(i)}(a)}{i!}$$
.

9 Алгебраически замкнутые поля. Каноническое разложение над $\mathbb C$ и над $\mathbb R$.

Определение 9.1. Поле K называется алгебраически замкнутым, если любой $f \in K[x]$ имеет корень в K.

Теорема 9.1. Основная теорема алгебры.

С алгебраически замкнуто.

Доказательство. Не будет в курсе.

Идея доказательства:

$$f = a_n x^n + \dots + a_1 x + a_0, \ z \in \mathbb{C}, \ f(z) = 0.$$

$$r > max\{|a_0|, \dots, |a_n|\}.$$

$$f(r(\cos(\varphi) + i\sin(\varphi))) = r^n(\cos(n\varphi) + i\sin(n\varphi)) + g(r(\cos(\varphi) + i\sin(\varphi))).$$

$$|g(r(\cos(\varphi) + i\sin(\varphi)))| < r^{n-1}(|a_{n-1}| + \dots + |a_1| + |a_0|) < r^n.$$

$$\implies \Delta \arg f(r(\cos(\varphi) + i\sin(\varphi))) = 2\pi n.$$

$$D = \{ z \in \mathbb{C} \mid |z| \geqslant r \}$$

 $\overset{\text{Топология}}{\Longrightarrow} f(D)$ - односвязная область.

$$\implies 0 \in f(D) \implies \exists z \ f(z) = 0.$$

Замечание. Любое поле можно вложить в алгебраически замкнутое поле.

Всегда есть минимальное такое поле.

Для Q это поле алгебраических чисел.

Алгебраическое число - комплексный корень многочлена над Q.

Предложение 9.1. K - алгебраически замкнутое поле, $f \in K[x]$.

Тогда f - неприводим \iff deg f = 1.

Доказательство. Все многочлены deg = 1 неприводимы.

$$\deg f \neq 1 \implies \exists x \in K : f(x) = 0$$

$$\stackrel{\text{T. Besy}}{\Longrightarrow} (x-c) \mid f$$

Таким образомб если $f \in K[x], \deg f \ge 1$, то его каноническое разложение имеет вид:

$$f = c_0 \prod_{i=1}^n (x - c_i)^{d_i}$$
, где $c_i \in K$, $d_i \in \mathbb{Z}_+$.

Предложение 9.2. $f \in \mathbb{R}[x], \ a \in CC$ - его корень.

Тогда \bar{a} - корень f той же кратности.

Доказательство. l - кратность a.

B
$$\mathbb{C}[x]$$
 $f = (x-a)^l g$, $g \in \mathbb{C}[x]$, $g(a) \neq 0$.

Пусть $g = b_n x^n + \cdots + b_1 x + b_0$.

Рассмотрим $\bar{g} = \bar{b_n}x^n + \cdots + \bar{b_1}x + \bar{b_0}$.

Тогда
$$f=ar f=\overline{(x-a)^l}ar g=(x-ar a)^lar g\implies f(ar a)=0$$

$$g(a) = \overline{\bar{g}(\bar{a})} \implies x - \bar{a} \nmid \bar{g}$$

 $\implies \bar{a}$ - корень f кратности l

⇒ все корни входят парами

$$\implies f = r_0 \left(\prod_{i=1}^n (x - r_i)^{d_i} \right) \cdot \left(\prod_{i=1}^m ((x - c_i)(x - \bar{c_i}))^{p_i} \right),$$
 где $r_i \in \mathbb{R}, \ d_i \in Z_+, \ c_i \in \mathbb{C}, \ p_i \in \mathbb{Z}_+.$

$$\implies f = r_0 \left(\prod_{i=1}^n (x-r_i)^{d_i}\right) \cdot \left(\prod_{i=1}^m B_i^{p_i}\right), \ B_i$$
 - квадратичные многочлены, неприводимые в \mathbb{R} .

Предложение 9.3. Унитарные неприводимые многочлены в \mathbb{R} - это:

 $1. x - a, a \in \mathbb{R}$

2.
$$x^2 + ax + b$$
, $a, b \in \mathbb{R}$, $b^2 - 4ac < 0$

Доказательство. С многочленами степени 1 и 2 все ясно.

Если степень многочлена больше 2, то справедливо разложение 9.2, значит он приводим.

10 Рациональные дроби

Определение 10.1. Пусть R область целостности. Мы вложим R в поле Q(R), назовем её полем частных.

Рассмотрим $M = R \times (R \setminus \{0\})$ и введём на M отношение \sim :

$$(a,b) \sim (a',b') \iff ab' = a'b$$

Проверим: ~ — отношение эквивалентности

рефлексивность и симметричность очевидны

транзитивность:
$$\begin{cases} (a,b) \sim (a',b') \\ (a',b') \sim (a'',b'') \end{cases} \implies ab'b'' = a'bb'' = a''bb' \implies b'(ab'' - a''b) = 0$$

$$b \neq 0 \implies ab'' - a''b \implies ab'' = a''b \implies (a,b) \sim (a'',b'')$$

То есть \sim — это отношение эквивалентности на M.

$$Q(R) = M/\sim = \{[(a,b)] \mid a \in R, b \in R \setminus \{0\}\}$$

Определение 10.2. Обозначим $\frac{a}{b}$ — это $[(a,b)] \in Q(R)$.

Введём в Q(R) операции сложения и умножения:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}$$
$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$$

43

Замечание. $(a,b) \sim (ac,bc) \quad \forall c \in R \setminus \{0\}$

Такая замена не изменит результат.

Замечание.
$$(a,b) \sim (a',b') \iff (ab',bb') = (a'b,b'b)$$

Предложение 10.1. Операции на Q(R) определены корректно, при этом Q(R) с этими операциями — поле.

Доказательство. Коммутативность и ассоциативность сложения очевидны в случае одинакого знаменателя.

$$\frac{a_1}{b} + \frac{a_2}{b} = \frac{a_1b + a_2b}{b^2} = \frac{a_2b + a_1b}{b^2} = \frac{a_2}{b} + \frac{a_1}{b}$$

Но любые 2 дроби можно привести к общему знаменателю:

$$\frac{a_1}{b_1} = \frac{a_1b_2}{b_1b_2}$$
 $\frac{a_2}{b_2} = \frac{a_2b_1}{b_1b_2}$

Нейтральный по сложению элемент — это $\frac{0}{1}$

Противоположный по сложению элемент к $\frac{a}{b}$ — это $\frac{-a}{b}$

Дистрибутивность:
$$\left(\frac{a_1}{b} + \frac{a_2}{b}\right) \frac{a'}{b'} = \frac{a_1 + a_2}{b} \frac{a'}{b'} = \frac{(a_1 + a_2)a'}{bb'} = \frac{a_1a' + a_2a'}{bb'} = \frac{a_1}{b} \frac{a'}{b'} + \frac{a_2}{b} \frac{a'}{b'} = \frac{a_1}{b} \frac{a'}{b'} + \frac{a_2}{b} \frac{a'}{b'}$$

Нейтральный по умножению элемент — это $\frac{1}{1}$

$$\frac{a}{b} \neq \frac{0}{1} \implies a \cdot 1 \neq b \cdot 0 \iff a \neq 0$$

Обратный по умножению элемент к $\frac{a}{b}$ — это $\frac{b}{a}$

$$R \stackrel{\varepsilon}{\mapsto} Q(R), \ r \mapsto \frac{r}{1}$$

To есть, считаем $R \subset Q(R)$

Определение 10.3. Пусть K-поле. Тогда поле K(x) = Q(K[x]) назовем полем рациональных дробей (дробно-рациональных функций) над полем K.

Предложение 10.2 (Несократимое представление). Пусть R — факториальное кольцо. Тогда любой $S \in Q(R)$ представимых в виде $s = \frac{p}{q}, \ (p,q) = 1$. Такое представление единственно с точностью до умножения p и q на $\varepsilon \in R^*$.

Доказательство. $s=\frac{a}{b},\ d=\gcd(a,b)\implies a=da',b=db'\implies s=\frac{a'}{b'},\ (a',b')=1$

$$\frac{p}{q} = \frac{p'}{q'}, (p,q) = (p',q') = 1$$

$$\begin{cases} p \mid (p'q) \\ (p,q) = 1 \end{cases} \implies p \mid p', \text{ аналогично } p' \mid p$$

To есть p и p' ассоциативны $\implies p' = \varepsilon p, \ \varepsilon \in R^*$

$$pq' = \varepsilon pq \implies q' = \varepsilon q$$

Лемма 10.1. Пусть $s \in K(x), s = \frac{p}{q}, p, q \in K[x]$

Тогда $\deg p - \deg q$ — инвариант s.

Доказательство. $\frac{p}{q} = \frac{p'}{q'} \implies pq' = p'q \implies \deg p + \deg q' = \deg p' + \deg q \implies \deg p - \deg q = \deg p' - \deg q'$

$$\deg \frac{p}{q} = \deg p - \deg q$$

Определение 10.4. $s \in K(x)$ называется правильной дробью, если $\deg s < 0$

В частности 0 — правильная дробь

Замечание. Очевидно сумма и произведение правильных дробей — правильная дробь

Лемма 10.2. Любая рациональная дробь однозначно представляется в виде суммы многочленов и правильной дроби.

Доказательство. $s = \frac{p}{q}$

 $p = q \cdot t + r$, где r = 0 или $\deg r < \deg q$

$$\implies \frac{p}{q} = t + \frac{r}{q}, \ t \in K[x], \ \frac{r}{q}$$
 — правильная дробь

$$t+rac{r}{q}=t_1+rac{r_1}{q_1},t_1\in K[x],rac{r_1}{q_1}$$
 — правильная дробь

$$t-t_1=rac{r_1}{q_1}-rac{r}{q}$$
 — правильная дробь

$$t - t_1 = \frac{t - t_1}{1} \implies \deg(t - t_1) < 0 \implies t - t_1 = 0$$

Лемма 10.3. Пусть (f,g)=1. Тогда любую дробь со знаменателем fg можно представить как сумму дробей со знаменателем f и g.

Доказательство. 1=cf+dg для некоторых $c,d\in K[x]$

$$\frac{a}{fg} = \frac{a(cd+dg)}{fg} = \frac{acf}{fg} + \frac{adg}{fg} = \frac{ac}{g} + \frac{ad}{f}$$

Доказательство. Дробь s называется примарной (p-примарной), если $s=\frac{a}{p^n},\, p$ — неприводимый многочлен, $n\in\mathbb{N}$

Предложение 10.3. Любую правильную дробь можно однозначно представить в виде суммы нескольких отличных от 0 правильных p-примарных дробей, где p-различные унитарные неприводимые многочлены.

Доказательство. «Существование»:

Запишем значение s в виде $p_1^{m_1} \dots p_t^{m_t}$, где p_i — унитарные неприводимые многочлены

$$p_1^{m_1}\dots p_t^{m_t} = (p_1^{m_1}\dots p_{t-1}^{m_{t-1}})\cdot p_t^{m_t}$$
 (старшие коэффиценты ушли в числитель)

По лемме

$$s = \frac{\dots}{p_1^{m_1}} + \frac{\dots}{p_t^{m_t}} = \frac{a_1}{p_1^{m_1}} + \dots + \frac{a_t}{p_t^{m_t}}$$
 (многочлен и правильная дробь, с тем же знаменателем)

$$\implies s = f + \frac{b_1}{p_1^{m_1}} + \ldots + \frac{b_t}{p_t^{m_t}}, \ f \in K[x], \ \frac{b_j}{p_j^{m_j}}$$
— правильная дробь

$$\implies f = s - \frac{b_1}{p_1^{m_1}} - \ldots - \frac{b_t}{p_t^{m_t}}$$

$$\implies \frac{f}{1}$$
 — правильная дробь

$$\implies \deg f < 0 \implies f = 0$$

«Единственность»:

Пусть у S есть 2 различных таких разложения

Вычитаем из первого разложения второе, получим:

$$\frac{c_1}{p_1^{n_1}} + \ldots + \frac{c_l}{p_l^{n_l}} = 0, \ p_i$$
 — унитарные неприводимые многочлены

$$c_1,\ldots,c_l\neq 0$$

Можно считать все эти дроби несократимыми.

$$\implies \frac{c_1}{p_1^{n_1}} + \ldots + \frac{c_{l-1}}{p_{l-1}^{n_{l-1}}} = \frac{-c_l}{p_l^{n_l}}$$

Приведем к общему знаменателю и сделаем их сократимыми

знаменатель будет делиться на $p_1^{n_1}\dots p_{l-1}^{n_{l-1}}$

не может быть ассоциированно с $p_l^{n_l}$

$$\frac{b_i}{p_i^{m_i}} - \frac{b_i'}{p_i^{m_i}} = \frac{\dots}{p_i^{n_i}}$$

Определение 10.5. Простейшей дробью называется дробь вида $\frac{a}{p^n}$, где p — неприводимый многочлен, $n \in \mathbb{N}$, $\deg a < \deg p$

Teopema 10.1. Любая ненулувая правильная дробь единственным образом представляется в виде суммы нескольких простых дробей с различными знаменателями.

Доказательство. «Существование»:

Достаточно разложить правильную примарную дробь $\frac{a}{n^n}$

$$a = r_m p^m + \ldots + r_1 p + r_0, \deg r_i < \deg p, \ r_m \neq 0$$

m < n, так как $\deg a < \deg p$

 $\frac{a}{p^n} = \frac{r_m}{p^{n-m}} + \frac{r_{m-1}}{p^{n-m+1}} + \ldots + \frac{r_1}{p^{n-1}} + \frac{r_0}{p^n}$ — искомое представление, если удалить нулевые слагаемые «Единственность»:

Пусть для s есть представления в виде суммы примарных. Обозначим C_p за сумму p-примарных дробей в этом представлении.

 C_p-p -примарная правильная дробь

$$s = C_{p_1} + \ldots + C_{p_t} \implies$$
 все C_p определены однозначно

Пусть у C_p есть лва разных разложения в сумму простейших дробей со степенями p в знаменателях.

$$\frac{r_n}{p_n}+\ldots+\frac{r_1}{p_1}=\frac{s_n}{p_n}+\ldots+\frac{s_1}{p_1},$$
 где n — максимальная показатель степени p в знаменателях

Пусть m — максимальный индекс, такой что $r_m \neq s_m$, некоторые r_i и s_i могут быть нулевыми

$$\frac{r_m - s_m}{p^m} + \ldots + \frac{r_1 - s_1}{p_1} = 0$$

$$\implies \frac{r_m - s_m}{p} = -(r_{m-1} - s_{m-1}) - p(r_{m-2} - s_{m-2}) - \dots \in K[X]$$

11 Интерполяция

Теорема 11.1. Пусть K — поле, $n \in \mathbb{N}$: $x_1, x_2, \ldots, x_n \in K$, различные между собой. $y_1, y_2, \ldots, y_n \in K$. Тогда $\exists ! f \in K[x] : \deg f \leqslant n-1$ и $f(x_i) = y_i, \ i = 1, \ldots, n$.

Доказательство.

«Единственность»:

Предположим, что существует $f, g \in K[x]$, $\deg \leqslant n-1$, $\deg g \leqslant n-1$, $f(x_i) = g(x_i) = y_i$, $i = 1, \ldots, n$ $\exists h = f - g, \ \deg h \leqslant n-1, \ h(x_i) = 0, \ i = 1, \ldots, n$

Предположим, $h \neq 0 \implies$ у $h \leqslant n-1$ корней, но такого не может быть.

«Существование»:

Формула Лагранжа

Решим интерполяционную задачу в специальном случае, когда $y_1 = 1, y_2 = \ldots = y_n = 0.$

Найдем соответствующий многочлен f_1 .

$$x_1, \dots, x_n$$
 — корни многочлена $f_1 \implies (x - x_2) \mid f_1, \dots, (x - x_n) \mid f_1 \implies \underbrace{(x - x_2)(x - x_3) \dots (x - x_n)}_{\text{Стецен и } n - 1} \mid f_1 \implies f_1 = c(x - x_2) \dots (x - x_n), \ c \in K$

$$f_1(x_1) = 1 \iff c(x_1 - x_2) \dots (x_1 - x_n) = 1 \implies c = \frac{1}{(x_1 - x_2) \dots (x_1 - x_n)}$$

Получился многочлен $f_1 = \frac{(x-x_2)...(x-x_n)}{(x_1-x_2)...(x_1-x_n)}$

Аналогичная задача с $y_i = 1, \forall_{j \neq i} \ y_j = 0$ имеет решение:

$$f_i = \frac{(x-x_1)...(\widehat{x-x_i})...(x-x_n)}{(x_i-x_1)...(\widehat{x_i-x_i})...(x_i-x_n)} = \frac{(x-x_1)...(\widehat{x-x_i})...(x-x_n)}{F'(x_i)}$$

Рассмотрим $f = y_1 f_1 + y_2 f_2 + \ldots + y_n f_n, y_1, \ldots, y_n$ теперь произвольные.

$$\deg \leqslant \max(\deg f_1, \dots, \deg f_n) = n - 1$$

Получилась такая формула
$$f(x_i) = y_1 \underbrace{f_1(x_i)}_{0} + y_2 \underbrace{f_2(x_i)}_{0} + \dots + y_i \underbrace{f_i(x_i)}_{1} + \dots + y_n \underbrace{f_n(x_i)}_{0} = y_i$$

Замечание. Про связь с производной

$$F = (x - x_1) \dots (x - x_n)$$

$$F' = \sum_{i=1}^{n} (x - x_1) \dots (\widehat{x - x_i}) \dots (x - x_n)$$

$$F'(x_j) = \sum_{i=1}^{n} (x_j - x_1) \dots (\widehat{x_j - x_i}) \dots (x_j - x_n) = (x_j - x_1) \dots (\widehat{x_j - x_j}) \dots (x_j - x_n)$$

Метод Ньютона

Рассмотрим интерполяционную задачу и предположим, что мы уже нашли $f_{(n-1)} \in K[x]$, такой что $f_{(n-1)}$ решение интерполяционной задачи $(x_1, \ldots, x_{n-1}; y_1, \ldots, y_{n-1})$, то есть

$$\deg f_{(n-1)} \leqslant n-2$$
 и $f_{(n-1)}(x_i) = y_i, i = 1, \dots, n-1$

Пусть f решение интерполяционной задачи

$$f=f_{(n-1)}+g,\ g=?$$

$$f(x_i)=y_i=f_{(n-1)}(x_i),\ i=1,\dots,n-1$$

$$g=f-f_{(n-1)},\ g(x_1)=\dots=g(x_{n-1})=0$$

$$\deg g\leqslant n-1\ \Longrightarrow\ g=c(x-x_1)\dots(x-x_{n-1})$$

$$g(x_n)=f(x_n)-f_{(n-1)}(x_n)=y_n-f_{(n-1)}(x_n)\ \Longrightarrow\ \text{ отсюда находится }c$$

4 Линейная алгебра

1 Матрицы

Определение 1.1. R — кольцо, $m, n \in \mathbb{N}$

Матрица $m \times n$ над кольцом R — прямоугольная таблица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
, где $a_{ij} \in R$

Есть краткая запись $A = (a_{ij})_{i=1,\dots,m;\ j=1,\dots,n} = (a_{ij})$

Определение 1.2. Множество матриц $m \times n$ над кольцом R обозначается как $M_{m,n}(R)$

Так же обозначают, как: $R^{m \times n}$, M(m, n, R), $M_{m \times n}(R)$

Пусть $A, B \in M_{m,n}(R)$ — матрицы. $A = (a_{ij}), B = (b_{ij})$

Их суммой называется матрица $C = (c_{ij})$, где $c_{ij} = a_{ij} + b_{ij}$.

Пусть $A = (a_{ij}) \in M_{m,n}(R), B = (b_{ij}) \in M_{n,p}(R)$

Их произведением называется матрица $C = (c_{ij}) \in M_{m,p}(R)$, где $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Пусть $c \in R$, $A \in M_{m,n}(R)$

Тогда $c \cdot A = (c \cdot a_{ii}) \in M_{m,n}(R)$

Замечание. По умолчанию R — коммутативное кольцо

Определение 1.3. Транспонированная матрица $A=(a_{ij})\in M_{m,n}(R)$ — матрица $B=(b_{ij})\in M_{n,m}(R)$, где $b_{ij}=a_{ji}$

Обозначается как A^T

Пример.
$$\begin{pmatrix} 2 & 0 & -3 \\ 1 & 5 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 \\ 0 & 5 \\ -3 & 4 \end{pmatrix}$$

Определение 1.4. Матрица $A = (a_{ij}) \in M_{m,n}(R)$ — квадратная, если m = n

Обозначается как $A \in M_n(R)$

Теорема 1.1 (Свойства операций над матрицами).

1.
$$A + (B + C) = (A + B) + C$$

2.
$$0 = (0)$$
, тогда $A + 0 = 0 + A = A$

3. Для любой
$$A$$
 есть $-A$, такая что $A+(-A)=(-A)+A=0$

$$4. \ A + B = B + A$$

5. (AB)C = A(BC), нужно чтобы $A \in M_{m,n}(R)$, $B \in M_{n,p}(R)$, $C \in M_{p,q}(R)$ Обе матрицы принадлежат $M_{m,q}(R)$

$$6. \ A(B+C) = AB + AC$$

7.
$$(B+C)A = BA + CA$$

8.
$$(\lambda + \mu)A = \lambda A + \mu A, \ \lambda, \mu \in R$$

9.
$$\lambda(A+B) = \lambda A + \lambda B, \ \lambda \in R$$

10.
$$(\lambda A)B = \lambda(AB) = A(\lambda B), \ \lambda \in R$$

11.
$$(\lambda \mu)A = \lambda(\mu A), \ \lambda, \mu \in R$$

12.
$$(A+B)^T = A^T + B^T$$

13.
$$(AB)^T = B^T A^T$$

Определение 1.5. Пусть $n \in \mathbb{N}$. Единичная матрицой порядка n называется:

$$E_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \in M_n(R)$$

Как кратко обозначить: $E_n=(\delta_{ij})$, где $\delta_{ij}=\begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$ — символ Кронекера

Предложение 1.1. Пусть $A \in M_{m,n}(R)$.

Тогда
$$E_m A = A E_n = A$$

Доказательство.

$$E_m A = (b_{ij}), A = (a_{ij})$$

$$b_{ij} = \sum_{k=1}^{m} \delta_{ik} a_{kj} = a_{ij}$$

To есть $E_m A = A$

$$E_n A^T = A^T \implies (E_n A^T)^T = (A^T)^T \implies (A^T)^T E_n^T = (A^T)^T \implies A E_n = A^T$$

 ${\it Cnedcmeue.}\ M_n(R)$ — кольцо, где E_n — нейтральный элемент по умножению

Называют кольцом квадратных матриц порядка n.

Замечание. Кольцо не обязательно коммутативное при $n\geqslant 2$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A \neq B$$

Замечание. $M_1(R)\cong R$

Определение 1.6. $GL_n(R) = M_n(R)^* = \{A \in M_n(R) \mid \exists B \in M_n(R), \ AB = BA = E_n\}$

Такая B единственная и называется обратной к A, обозначается A^{-1}

Предложение 1.2.

1.
$$E_n \in GL_n(R), E_n^{-1} = E_n$$

2.
$$A_1, \ldots, A_k \in GL_n(R) \implies \prod_{i=1}^k A_i \in GL_n(R), \ (A_1 \ldots A_k)^{-1} = A_k^{-1} \ldots A_1^{-1}$$

3.
$$A \in GL_n(R) \implies A^T \in GL_n(R), (A^T)^{-1} = (A^{-1})^T$$

Доказательство.

1.
$$E_n E_n = E_n E_n = E_n$$

2.
$$(A_1 ldots A_k)(A_k^{-1} ldots A_1^{-1}) = A_1 ldots A_{k-1}(A_k A_k^{-1}) ldots A_1^{-1} = A_1 ldots A_{k-1} ldots A_1^{-1} ldots A_1^{-1} = A_1 A_1^{-1} = E_n$$

 $(A_k^{-1} ldots A_1^{-1})(A_1 ldots A_k) = ldots = A_k^{-1} A_k = E_n$

3.
$$(A^T \cdot (A^T)^{-1}) = (A^{-1} \cdot A)^T = E_n^T = E_n$$

 $((A^T)^{-1} \cdot A^T) = (A \cdot A^{-1})^T = E_n^T = E_n$

Определение 1.7. Матричная единица — это матрица, где все элементы нулевые, кроме одного, который равен единице.

Обозначается как e_{ij} .

Замечание.
$$A=(a_{ij})=\sum\limits_{i,j}a_{ij}e_{ij}$$

2 Элементарные преобразования и элементарные матрицы

Определение 2.1. Элементарное преобразование 1 типа:

К i строке прибавить j строку, умноженную на $\lambda \in R$. Обозначается $T_{ij}(\lambda)$

Определение 2.2. Элементарное преобразование 2 типа:

Поменять местами i и j строки. Обозначается S_{ij}

Определение 2.3. Элементарное преобразование 3 типа:

Умножить i строку на $\lambda \in R$, $\lambda \neq 0$. Обозначается $D_{ij}(\lambda)$

Замечание. Аналогичные преобразования можно делать с столбцами.

Определение 2.4. Матрица $A \in M_{m,n}(k)$ называется ступенчатой, если существует $0 \le r \le m$ и числа $j_1, \ldots, j_r : 1 \le j_1 < \ldots < j_r \le n$ такие, что:

51

1.
$$a_{kj_k} \neq 0, \ k = 1, \dots, r$$

2.
$$a_{kj} = 0, k = 1, \ldots, r, j < j_k$$

3.
$$a_{kj} = 0, k > r$$

Предложение 2.1. Любую матрицу можно превратить в ступенчатую с помощью преобразования строк 1 и 2 типа.

Доказательство. (короче Гаусса пишем и работает)

$$A = a(i, j) \in M_{m,n}(k)$$

Индукция по m.

База: m = 1. A ступенчатая по определению.

Переход: m > 1:

Если A = 0, то A ступенчатая по определению.

 j_1 — номер первого ненулевого столбца.

$$\exists i: a_{ij_1} \neq 0$$

 $i \neq 1 \implies$ применим S_{1i}

Таким образом можно считать $a_{1j_1} \neq 0$.

Применим
$$T_{21}\left(-\frac{a_{2j_1}}{a_{1j_1}}\right), T_{31}\left(-\frac{a_{3j_1}}{a_{1j_1}}\right), \dots, T_{m1}\left(-\frac{a_{mj_1}}{a_{1j_1}}\right)$$

Получим
$$A' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{mm} & \dots & a_{mn} \end{pmatrix}$$

По индукции A' ступенчатая.

Определение 2.5. Окаймленная единичная матрица — матрица вида:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$

Теорема 2.1. Пусть $A \in M_{m,n}(k)$. Тогда ее можно преобразовать в окаемленную единичную с помощью преобразования строк и столбцов.

Доказательство.

Сделаем A ступенчатой.

Превратим ступеньки разной длины в единичные. (меняя столбцы)

Применим $D_1(a_{11}^{-1}), \dots, D_r(a_{rr}^{-1}).$

Потом будем от верхней строки к нижней превращать их в строки с одной 1 и нулями. (вычитая строки)

Определение 2.6. Элементарная матрица:

«Первого типа»:

Пусть $1 \leqslant i, j \leqslant n, i \neq j, \lambda \in K$

$$T_{ij}(\lambda)$$
 — матрица вида:
$$\begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & \lambda \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix} = E_n + \lambda e_{ij}$$

«Второго типа»:

$$S_{ij} = E_n - e_{ii} - e_{jj} + e_{ij} + e_{ji}$$

«Третьего типа»:

$$D_i(\lambda) = E_n + (\lambda - 1)e_{ii}$$

Предложение 2.2. Пусть $A \in M_{m,n}(k)$. Тогда при элементарных преобразованиях строк $T_{ij}(\lambda)$, S_{ij} , $D_i(\lambda)$ из A получаются матрицы $T_{ij}A$, $S_{ij}A$, D_iA .

Доказательство.

 $T_{ij}A =$ **TODO**: умножить

 $S_{ij}, D_i(\lambda)$ — аналогично.

Следствие.

1.
$$T_{ij}(-\lambda)T_{ij}(\lambda) = E_n$$

$$2. S_{ij}S_{ij} = E_n$$

3.
$$D_i(\lambda)D_i(\lambda^{-1}) = E_n$$

 $Cnedcmeue. \ T_{ij}(\lambda), S_{ij}, D_i(\lambda) \in GL_n(k)$ — все они обратимы.

Доказательство.

 $A \longrightarrow A'$ — результат прибавления к i столбцу j-го с коэффицентом λ .

$$\implies (A')^T = T_{ij}(\lambda)A^T$$

$$\implies A' = (T_{ij}(\lambda)A^T)^T = (A^T)^T(T_{ij}(\lambda))^T = AT_{ii}(\lambda)$$

Аналогично: элементарные преобразования столбцов 2 и 3 типов сводятся к умножению справа на S_{ij} и $D_i(\lambda)$ соответственно.

Предложение 2.3. (PDQ -разложение матриц)

Пусть $A \in M_{m,n}(k)$. Тогда существуют элементарные матрицы $P_1, \ldots, P_k \in GL_m(k), \ Q_1, \ldots, Q_l \in GL_n(k)$, окаймленная единичная матрица $D \in M_{m,n}(k)$, такие, что $A = P_1 \ldots P_k DQ_1 \ldots Q_l$.

Доказательство. Существуют элементарные преобразования строк и столбцов, превращающие A в окаймленную единичную матрицу D.

$$\Longrightarrow D = \underbrace{u_k \dots u_1}_{\text{обратимы}} A \underbrace{v_1 \dots v_l}_{\text{обратимы}},$$
 где $u_1, \dots, u_k, v_1, \dots, v_l$ — элементарные матрицы

$$\implies A = u_1^{-1} \dots u_k^{-1} D v_l^{-1} \dots v_1^{-1}$$

Следствие. Пусть $A \in M_n(k)$? Тогда условия эквивалентны:

- 1. $A \in GL_n(k)$
- 2. $A = P_1 \dots P_m$, где P_1, \dots, P_m элементарные матрицы

Доказательство. «2 \Longrightarrow 1»: так как все $P_i \in GL_n(k)$

 $\langle 1 \implies 2 \rangle$:

$$A = P_1 \dots P_k DQ_1 \dots Q_l, D = \begin{pmatrix} E_n & 0 \\ 0 & 0 \end{pmatrix}$$

$$\implies D = P_k^{-1} \dots P_1^{-1} AQ_l^{-1} \dots Q_1^{-1} \implies D \in GL_n(k)$$

В D есть нулевая строка $\implies \forall C \in M_n(k)$: в DC есть нулевая строка $\implies DC \neq E_n \implies D = E_n \implies A = P_1 \dots P_k DQ_1 \dots Q_l$

3 Перестановки

Определение 3.1. M — множество. Перестановкой M называется биекция на себя.

 $S(M) = \{$ перестановка $M\}$

$$S(M) \times S(M) \to S(M)$$

$$(g,f)\mapsto g\circ f$$

Предложение 3.1. $(S(M), \circ)$ — группа.

Доказательство.

- 1. Ассоциативность очевидна.
- 2. id_{M} нейтральный элемент.
- $3. \ f \in S(M) \implies f^{-1} \in S(M)$ обратный элемент.

Определение 3.2. S_n — симметрическая группа степени n (группа перестановок n-элементного множества)

Замечание. $|S_n|=n!$

Пример.
$$S_3 = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}$$

Определение 3.3. Циклом (i_1, i_2, \dots, i_k) называется $\sigma \in S_n$ такая что $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \dots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1$, а так же $\sigma(i_j) = i_j$ для всех $j \notin \{1, 2, \dots, k\}$.

 $k \geqslant 2$ — длина цикла.

Определение 3.4. Циклы (i_1,i_2,\ldots,i_k) и (j_1,j_2,\ldots,j_l) называются независимыми, если $i_r \neq j_s \forall r,s$

Предложение 3.2. Любая перестановка является произведением нескольких попарно независимых циклов.