



# Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

#### **Curtis Groves**

Ph.D. Candidate, University of Central Florida, Orlando, FL Fluids Engineer, NASA Kennedy Space Center, FL

#### Marcel Ilie, Ph.D.

Former Assistant Professor, University of Central Florida, Orlando, FL

#### Paul Schallhorn, Ph.D.

Environments and Launch Approval Branch Chief, NASA Kennedy Space Center, FL





#### Problem



- Spacecraft components may be damaged due to airflow produced by Environmental Control Systems (ECS).
- There are uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field around a spacecraft from the ECS System.
- This paper/presentation describes an approach to estimate the uncertainty in using CFD to predict the airflow speeds around an encapsulated spacecraft without using test data.





## **ECS System Overview**



- Environmental Control System AIAA 2002-3253
  - Prior to launch, cold air (air conditioning) flows downward around the spacecraft after it has been encapsulated in the Payload Fairing.
  - The cold air is delivered through an air-conditioning
     (AC) pipe, which intersects the fairing and flows past a diffuser located at the pipe/fairing interface
  - After passing over the spacecraft, it is finally discharged through vents
  - The Payload Fairing air conditioning is cut off at lift off.





# **ECS System Overview**



Example of Environmental Control System (ECS) CFD Model





# **ECS System Overview**



Example of an ECS system airflow test







Kandula, M., Hammad, K., and Schallhorn, P., "CFD Validation with LDV Test Data for Payload/Fairing Internal Flow," AIAA-2005-4910, 2005.



# Overview of the Validation Process









# Overview of the Validation Process



- Estimate Interval within which  $\delta_{\text{model}}$  falls with a given degree of confidence
  - Assume Gaussian normal distribution, 90 % confidence
    - $U_{90\%} = +/-1.65*(U_{val})$
- Error Sources (Unum, Uinput, UD)

$$U_{Val} = \sqrt{U_{num}^2 + U_{input}^2 - U_D^2}$$

Uncertainty Equation



$$U_{90\%} = +/-1.65*\sqrt{U_{num}^2 + U_{input}^2 - U_D^2}$$

# Proposed Methodology Without Experimental Data

Proposed Methodology \*\*conservative estimate to envelop true value

If there is no experimental data, D=0,  $\delta_D$ =0, and  $u_D$ =0.

$$E = S - D = S$$

$$\delta s = S - T$$

$$E = S - D = T + \delta S - (T + \delta_D) = \delta_S - \delta_D = \delta_S$$

$$u_{val} = k \left( \sqrt{u_{num}^2 + u_{input}^2 + u_D^2} \right)$$

$$u_{val} = k \left( \sqrt{u_{num}^2 + u_{input}^2} \right)$$

Report the simulated result, S as



$$S_{uval}^+$$

## Proposed Methodology Without JOHN F. KENNEDY SPACE CENTER

**Experimental Data** 

- Report  $S + /-u_s$
- *k value* (*Use Student-t* Distribution)
- Treat all input variables as 'random' and run separate CFD case
- Treat as an oscillatory convergence parameter

$$U_{Oscillatory} = \frac{1}{2}(S_U - S_L)$$

| LINVERSITY OF CONTRAL ELOPIDA |               | UCF             |
|-------------------------------|---------------|-----------------|
| UNIVERSITY OF GENTRAL PLORIDA | University of | CENTRAL FLORIDA |

|                 |                    | AUNCH SERVICES PROGRAM |
|-----------------|--------------------|------------------------|
| Number of Cases | Degrees of Freedom | Confidence 90%         |
| 2               | 1                  | 6.314                  |
| 3               | 2                  | 2.92                   |
| 4               | 3                  | 2.353                  |
| 5               | 4                  | 2.132                  |
| 6               | 5                  | 2.015                  |
| 7               | 6                  | 1.943                  |
| 8               | 7                  | 1.895                  |
| 9               | 8                  | 1.86                   |
| 10              | 9                  | 1.833                  |
| 11              | 10                 | 1.812                  |
| 12              | 11                 | 1.796                  |
| 13              | 12                 | 1.782                  |
| 14              | 13                 | 1.771                  |
| 15              | 14                 | 1.761                  |
| 16              | 15                 | 1.753                  |
| 17              | 16                 | 1.746                  |
| 18              | 17                 | 1.74                   |
| 19              | 18                 | 1.734                  |
| 20              | 19                 | 1.729                  |
| 21              | 20                 | 1.725                  |
| 22              | 21                 | 1.721                  |
| 23              | 22                 | 1.717                  |
| 24              | 23                 | 1.714                  |
| 25              | 24                 | 1.711                  |
| 26              | 25                 | 1.708                  |
| 27              | 26                 | 1.706                  |
| 28              | 27                 | 1.703                  |
| 29              | 28                 | 1.701                  |
| 30              | 29                 | 1.699                  |
| 31              | 30                 | 1.697                  |
| 41              | 40                 | 1.684                  |
| 51              | 50                 | 1.676                  |
| 61              | 60                 | 1.671                  |
| 81              | 80                 | 1.664                  |
| 101             | 100                | 1.66                   |
| 121             | 120                | 1.658                  |
| infty           | infty              | 1.645                  |



- The Rockets Behind the Missions:
  - Delta II
  - Delta IV
  - Atlas V
  - Pegasus
  - Taurus
  - Falcon 9
- http://www.nasa.gov/centers/kennedy/launching rockets/



- Each of these vehicles have a Payload Planners Guide or Users Guide
- http://www.ulalaunch.com/site/docs/product\_cards/guides/DeltaIIPayloa dPlannersGuide2007.pdf
- http://spacecraft.ssl.umd.edu/design\_lib/Delta4.pl.guide.pdf
- http://spacecraft.ssl.umd.edu/design\_lib/Atlas5.pl.guide.pdf
- http://www.orbital.com/NewsInfo/Publications/Pegasus\_UG.pdf
- http://www.orbital.com/NewsInfo/Publications/taurus-user-guide.pdf
- http://www.spacex.com/Falcon9UsersGuide 2009.pdf





#### Delta II



- Air-conditioning is supplied to the spacecraft via an umbilical after the payload fairing is mated to the launch vehicle.
- The payload air-distribution system provides air at the required temperature, relative humidity, and flow rate as measured
- The air-distribution system uses a diffuser on the inlet airconditioning duct at the fairing interface.
- If required, a deflector can be installed on the inlet to direct the airflow away from sensitive spacecraft components
- The air can be supplied to the payload between a rate of
- 1300 to 1700 scfm.
- Diameter of Fairing is 3meters





#### Delta II - Continued





Figure 4-1. Payload Air Distribution System



http://www.ulalaunch.com/site/docs/product\_cards/guides/ DeltaIIPayloadPlannersGuide2007.pdf



#### Delta IV





Figure 4-1. Standard 4-m Composite Fairing and 5-m Composite Fairing Air-Conditioning **Duct Inlet Configuration** 

Air flows around the payload and is discharged through vents in the aft end of the fairing.

Fairing sizes 4meter and 5 meters in diameter



The air is supplied to the payload at a maximum flow rate of 36.3 kg/min to 72.6 kg/min (80 to 160 lb/min) for 4-m fairing launch vehicles and 90.7 kg/min to 136.0 kg/min (200 to 300 lb/min) for 5-m fairing



Figure 4-2. 5-m Metallic Fairing Payload Air-Distribution System



#### Atlas V



- Internal ducting defectors in the PLF direct the gas upward to prevent direct impingement on the spacecraft.
- The conditioning gas is vented to the atmosphere through one-way flapper doors below the spacecraft.
- The PLF air distribution system will provide a maximum air flow velocity in all directions of no more than 9.75 mps (32 fps) for the Atlas V 400 and 10.67 mps (35 fps) for the Atlas V 500.
- There will be localized areas of higher flow velocity at, near, or associated with the air conditioning outlet.
- Maximum air flow velocities correspond to maximum inlet mass flow rates.
- Reduced flow velocities are achievable using lower inlet mass flow rates.
- Flow Rates
  - A) Atlas V 400: 0.38–1.21 kg/s ±0.038 kg/s (50–160 lb/min ±5 lb/min),
  - B) Atlas V 500: 0.38–2.27 kg/s ±0.095 kg/s (50–300 lb/min ±12.5 lb/min)
- Fairing sizes are 4meters and 5 meters in diameter





### Pegasus



- The fairing is continuously purged with filtered air.
- The flowrate of air through the fairing is maintained between 50 and 200 cfm.
- The air flow enters the fairing forward of the payload and exits aft of the payload. There are baffles on the inlet that minimize the impingement velocity of the air on the payload.
- Fairing diameter is 0.97 meters





#### **Taurus**



- Upon encapsulation within the fairing and for the remainder of ground operations, the payload environment will be maintained by the Taurus Environmental Control System (ECS).
- Fairing inlet conditions are selected by the Customer
- Fairing diameters are 63 inches and 92 inches



http://www.orbital.com/NewsInfo/Publications/ taurus-user-guide.pdf



#### Falcon 9



- Once fully encapsulated and horizontal, the Environmental Control System (ECS) is connected
- Payload environments during various processing phases are:
  - In hanger, encapsulated Flow Rate: 1,000 cfm
  - During rollout: 1,000 cfm
  - On pad: Variable from 1000 to 4500 cfm
- Fairing diameter is 5.2 meters







- Fairing Sizes are approximately 1m, 1.6m, 2.3m, 3m, 4m, 5m in diameter.
- (3) generic fairing diameters are selected to envelop the EELV fairing configurations
  - -0.75m
  - $-3.5 \, \text{m}$
  - $-5.5 \, \mathrm{m}$
- Inlet Conditions range from 1000 cfm to 4500 cfm
- Spacecraft diameters range with fairing sizes, a generic spacecraft was drawn and scaled accordingly







 CAD model of the spacecraft was created in Pro/ENGINEER, 0.75m











#### • 3.5m











• 5.5m









# CFD Modeling



Snappy Hex – Mesher





3.5m Configuration (8594480 number of cells)



5.5m Configuration (6980673number of cells)



# CFD Modeling



#### OpenFoam - SimpleFoam









3.5m Configuration (8594480 number of cells)

5.5m Configuration (6980673number of cells)



# **Uncertainty Calculation**



#### Proposed Methodology

$$S_{uval}^+$$

$$u_{val} = k \left( \sqrt{u_{num}^2 + u_{input}^2} \right)$$

#### Expanding

|   | Input@Variable@                     | <b>Description</b> <sup>2</sup>                      | Bias?            |
|---|-------------------------------------|------------------------------------------------------|------------------|
|   | Grid2                               | 3ॡridstonsideredfortachtonfiguration?                | <b>?</b> ?       |
|   | Inlet <b>:</b> Velocity             | Boundary Condition Ow And Thigh ?                    | 10%2             |
|   | Outlet@ressure@                     | Boundary Condition Ow And Thigh ?                    | 2%?              |
|   | Turbulence Model 2                  | SA,@ke-realizable,@kwSST@                            | <b>?</b> ?       |
|   | Wall <b>∄</b> unctions <sup>®</sup> | with@nd@vithout?                                     | <b>?</b> ?       |
| ſ | Rough <b>®</b> Wall®                |                                                      |                  |
|   | Function <sup>®</sup>               | smoothNs.1drough12                                   | <b>?</b>         |
|   | Compressibility 2                   | incompressible 18 vs. 12 compressible 12             | <b>?</b> ?       |
|   | Solver <sup>®</sup>                 | OpenFoam, If luent, ISTARCCM+13                      | <b>?</b> ?       |
| ſ |                                     | kinematic Viscosity Mu Presents Pair 10-50-100 Deg 2 | 1.36,1.5,2.306e- |
|   | Fluid Properties 2                  | C?                                                   | 052              |

$$\begin{split} u_{val} &= k \Bigg( \left( \left( \frac{\partial V}{\partial grid} \right)^2 B_{grid}^2 \right) + \left( \left( \frac{\partial V}{\partial pressure} \right)^2 B_{pressure}^2 \right) + \left( \left( \frac{\partial V}{\partial velocity} \right)^2 B_{velocity}^2 \right) + \left( \left( \frac{\partial V}{\partial rho} \right)^2 B_{rho}^2 \right) \\ &+ \left( \left( \frac{\partial V}{\partial wall \ functions} \right)^2 B_{wall \ functions}^2 \right) + \left( \left( \frac{\partial V}{\partial surface \ roughness} \right)^2 B_{surface \ roughness}^2 \right) \\ &+ \left( \left( \frac{\partial V}{\partial compressibility} \right)^2 B_{compressibility}^2 \right) + \left( \left( \frac{\partial V}{\partial solver} \right)^2 B_{solver}^2 \right) \\ &+ \left( \left( \frac{\partial V}{\partial turbulence} \right)^2 B_{turbulence}^2 \right) \\ \\ \mathbf{JCF} \end{split}$$



# **Uncertainty Calculation**



JOHN F. KENNEDY SPACE CENTER

|        |           |        |      | Configuration |     |  |
|--------|-----------|--------|------|---------------|-----|--|
|        | Parameter |        | 0.75 | 3.5           | 5.5 |  |
| Case # | Grid      |        |      |               |     |  |
| 1      |           | coarse | 1    | 1             | 1   |  |
| 2      |           | med    | 2    | 2             | 2   |  |
| 3      |           | fine   | 3    | 3             | 3   |  |

|    | Boundary Conditions |                          |    |    |    |
|----|---------------------|--------------------------|----|----|----|
| 4  |                     | inlet velocity low       | 4  | 4  | 4  |
| 5  |                     | inlet velocity high 5    |    |    |    |
| 6  |                     | pressure outlet low      | 6  | 6  | 6  |
| 7  |                     | pressure outlet high     | 7  | 7  | 7  |
|    | Turbulence Models   |                          |    |    |    |
| 8  |                     | SA                       | 8  | 8  | 8  |
| 9  |                     | ke-realizable - same as1 | 9  | 9  | 9  |
| 10 |                     | kwsst                    | 10 | 10 | 10 |

| 11 | Wall Functions                               | without wall functions | 11 | 11 | 11 |
|----|----------------------------------------------|------------------------|----|----|----|
| 12 | Surface Roughness rough wall function        |                        | 12 | 12 | 12 |
| 13 | Compressibility different openfoam solver 13 |                        | 13 | 13 |    |
|    | Solver                                       |                        |    |    |    |
| 14 |                                              | fluent                 | 14 | 14 | 14 |
| 15 |                                              | starccm                | 15 | 15 | 15 |

|   |    | Fluid Properties |          |    |    |    |
|---|----|------------------|----------|----|----|----|
| ľ | 16 |                  | nut high | 16 | 16 | 16 |
|   | 17 |                  | nut low  | 17 | 17 | 17 |
| ı |    |                  |          |    |    |    |

$$u_{val} = 1.746 * \left| \frac{1}{2} (S_U - S_L) \right|$$

| <b>Number of Cases</b> | Degrees of Freedom | Confidence 90% |
|------------------------|--------------------|----------------|
| 2                      | 1                  | 6.314          |
| 3                      | 2                  | 2.92           |
| 4                      | 3                  | 2.353          |
| 5                      | 4                  | 2.132          |
| 6                      | 5                  | 2.015          |
| 7                      | 6                  | 1.943          |
| 8                      | 7                  | 1.895          |
| 9                      | 8                  | 1.86           |
| 10                     | 9                  | 1.833          |
| 11                     | 10                 | 1.812          |
| 12                     | 11                 | 1.796          |
| 13                     | 12                 | 1.782          |
| 14                     | 13                 | 1.771          |
| 15                     | 14                 | 1.761          |
| 16                     | 15                 | 1.753          |
| 17                     | 16                 | 1.746          |
| 18                     | 17                 | 1.74           |
| 19                     | 18                 | 1.734          |
| 20                     | 19                 | 1.729          |
| 21                     | 20                 | 1.725          |
| 22                     | 21                 | 1.721          |
| 23                     | 22                 | 1.717          |
| 24                     | 23                 | 1.714          |
| 25                     | 24                 | 1.711          |
| 26                     | 25                 | 1.708          |
| 27                     | 26                 | 1.706          |
| 28                     | 27                 | 1.703          |
| 29                     | 28                 | 1.701          |
| 30                     | 29                 | 1.699          |
| 31                     | 30                 | 1.697          |
| 41                     | 40                 | 1.684          |
| 51                     | 50                 | 1.676          |
| 61                     | 60                 | 1.671          |
| 81                     | 80                 | 1.664          |
| 01                     | •                  |                |
|                        | 100                | 1.66           |
| 101<br>121             | 100<br>120         | 1.66<br>1.658  |





COLLEGE OF ENGINEERING AND COMPUTER SCIENCE





JOHN F. KENNEDY SPACE CENTER

LAUNCH SERVICES PROGRAM

Solution Line Plot



#### Uncertainty Line Plot







#### Uncertainty Ranking

 The uncertainty for each of the input variables were ranked by the nondimensionalizing the difference in the results by the freestream value and ranking from greatest uncertainty to least uncertainty.

| Input <b>∄</b> /ariable®                       | Description <b></b> ☑                                             | Bias⊞            | Mean  Velocity  Uncertainty  (m/s) | Mean∄Non-<br>Dimensionalized∑<br>Uncertainty② | Normalized®<br>Ranking®%® | Numbered<br>Ranking 2 |
|------------------------------------------------|-------------------------------------------------------------------|------------------|------------------------------------|-----------------------------------------------|---------------------------|-----------------------|
| Grid                                           | 3@grids2<br>considered2                                           | <b>??</b>        | 1.62872                            | 0.05432                                       | 13.402                    | 2?                    |
| Inlet <sup>®</sup> Velocity®                   | Boundary <sup>®</sup> Condition®                                  | 10%?             | 1.31152                            | 0.047372                                      | 11.692                    | 5?                    |
| Outlet <sup>[]</sup><br>Pressure <sup>[]</sup> | Boundary <sup>®</sup> Condition®                                  | 2%?              | 1.14782                            | 0.03832                                       | 9.452                     | 8?                    |
| Turbulence Model M                             | SA,康e-<br>realizable,②<br>kwSST②                                  | [379]            | 1.46282                            | 0.04882                                       | 12.042                    | 42                    |
| Wall <b>∄</b> unctions <b>②</b>                | with@nd@<br>without@                                              | <b>3</b> ?       | 0.82862                            | 0.02762                                       | 6.812                     | 92                    |
| Rough®Wall®<br>Function®                       | smoothllys.[]<br>rough[]                                          | <b>3</b> P       | 1.5237🛭                            | 0.05082                                       | 12.532                    | 3?                    |
| Compressibility 2                              | incompressible  vs.  compressible                                 | <b>3</b> 21      | 1.31282                            | 0.0438⊡                                       | 10.817                    | 62                    |
| Solver <sup>®</sup>                            | OpenFoam, <sup>®</sup><br>Fluent, <sup>®</sup><br>STARCCM+®       | <b>3</b> 2       | 1.6732                             | 0.05582                                       | 13.77?                    | 1?                    |
| Fluid?                                         | kinematic?<br>viscosity@hu?<br>represents@air?<br>[0-50-100]@deg? | 1.36,1.5,2.306e- |                                    |                                               |                           |                       |
| Properties 2                                   | C?                                                                | 05 <sup>2</sup>  | 1.15362                            | 0.03852                                       | 9.502                     | 7?                    |





LAUNCH SERVICES PROGRAM

#### Solution and Uncertainty Contour Plots









#### LAUNCH SERVICES PROGRAM

#### Solution Line Plot















# LAUNCH SERVICES PROGRAM

#### Uncertainty Ranking

| Input Variable         | Description                                 | Bias                   | Mean<br>Velocity<br>Uncertainty<br>(m/s) | Mean Non-<br>Dimensionalized<br>Uncertainty | Normalized<br>Ranking % | Numbered<br>Ranking |
|------------------------|---------------------------------------------|------------------------|------------------------------------------|---------------------------------------------|-------------------------|---------------------|
| Grid                   | 3 grids<br>considered                       |                        | 0.6829                                   | 0.0228                                      | 8.28                    | 7                   |
| Inlet Velocity         | Boundary<br>Condition                       | 10%                    | 0.7919                                   | 0.0264                                      | 9.59                    | 6                   |
| Outlet<br>Pressure     | Boundary<br>Condition                       | 2%                     | 1.4606                                   | 0.0487                                      | 17.70                   | 1                   |
| Turbulence<br>Model    | SA, ke-<br>realizable,<br>kwSST             |                        | 1.3487                                   | 0.045                                       | 16.35                   | 2                   |
| Wall Functions         | with and<br>without                         |                        | 0.6139                                   | 0.0205                                      | 7.45                    | 9                   |
| Rough Wall<br>Function | smooth vs.<br>rough                         |                        | 1.0531                                   | 0.0351                                      | 12.75                   | 3                   |
| Compressibility        | incompressible<br>vs.<br>compressible       |                        | 0.8252                                   | 0.0275                                      | 9.99                    | 5                   |
| Solver                 | OpenFoam,<br>Fluent,<br>STARCCM+            |                        | 0.841                                    | 0.028                                       | 10.17                   | 4                   |
|                        | kinematic<br>viscosity nu<br>represents air |                        |                                          |                                             |                         |                     |
| Fluid<br>Properties    | [0-50-100] deg<br>C                         | 1.36,1.5,2.306e-<br>05 | 0.6345                                   | 0.0212                                      | 7.70                    | 8                   |





LAUNCH SERVICES PROGRAM

Solution and Uncertainty Contour Plots







# LAUNCH SERVICES PROGRAM

#### Solution Line Plot





# LAUNCH SERVICES PROGRAM

#### Uncertainty Line Plot







# LAUNCH SERVICES PROGRAM

#### Uncertainty Ranking

| Input Variable         | Description                                 | Bias                   | Mean<br>Velocity<br>Uncertainty<br>(m/s) | Mean Non-<br>Dimensionalized<br>Uncertainty | Normalized<br>Ranking % | Numbered<br>Ranking |
|------------------------|---------------------------------------------|------------------------|------------------------------------------|---------------------------------------------|-------------------------|---------------------|
| Grid                   | 3 grids<br>considered                       |                        | 2.0203                                   | 0.0673                                      | 12.44                   | 3                   |
| Inlet Velocity         | Boundary<br>Condition                       | 10%                    | 1.6198                                   | 0.054                                       | 9.98                    | 6                   |
| Outlet<br>Pressure     | Boundary<br>Condition                       | 2%                     | 2.0173                                   | 0.0672                                      | 12.42                   | 4                   |
| Turbulence<br>Model    | SA, ke-<br>realizable,<br>kwSST             |                        | 2.3049                                   | 0.0768                                      | 14.19                   | 1                   |
| Wall Functions         | with and<br>without                         |                        | 1.4902                                   | 0.0497                                      | 9.18                    | 7                   |
| Rough Wall<br>Function | smooth vs.<br>rough                         |                        | 1.4901                                   | 0.0497                                      | 9.18                    | 8                   |
| Compressibility        | incompressible<br>vs.<br>compressible       |                        | 1.4256                                   | 0.0475                                      | 8.78                    | 9                   |
| Solver                 | OpenFoam,<br>Fluent,<br>STARCCM+            |                        | 1.8172                                   | 0.0606                                      | 11.20                   | 5                   |
|                        | kinematic<br>viscosity nu<br>represents air |                        |                                          |                                             |                         |                     |
| Fluid<br>Properties    | [0-50-100] deg<br>C                         | 1.36,1.5,2.306e-<br>05 | 2.05                                     | 0.0683                                      | 12.62                   | 2                   |







Kandula, M., Hammad, K., and Schallhorn, P., "CFD Validation with LDV Test Data for Payload/Fairing Internal Flow," AIAA-2005-4910, 2005.

| Variable            | Dies                         |
|---------------------|------------------------------|
| <u>Variable</u>     | <u>Bias</u>                  |
| Velocity Inlet      | 3%                           |
| Kinematic Viscosity |                              |
| [0-100] Deg C       | [1.36, 1.50, 2.306] e-5 m2/s |
| Pressure Outlet     | 3%                           |
| Turbulence          | ke-realiazable, kwsst, SA    |













Assumes 99% Confidence















#### Conclusion / Recommendation



- Proper validation with experimental data should be used to verify ECS impingement requirements
- This research proposes a CFD uncertainty methodology when experimental data is unavailable and unobtainable
  - Couples Student-T Distribution to the number of CFD models and input parameters
  - All input parameters considered had the same order of magnitude uncertainty

