

The gPROMS Platform v4.3

Costas Pantelides – Managing Director

gPROMS product family

"Fluids processing world"

"Formulated products world"

General mathematical modelling

g MODEL

gPROMS ModelBuilder provides essentially the full platform functionality

The gPROMS platform

Equation-oriented modelling & solution engine

g FUELCELL

depressurisation MLs

Fuel cell MLs

gPROMS Platform

Recent release timeline

■ v4.0.0 – April 2014

■ v4.3.0 – September 2016

■ v4.1.0 – June 2015

■ v4.4.0 - Q1/2017

v4.2.0 – December 2015

gPROMS platform v4.3 Highlights – process modelling

gPROMS v4.3 highlights Core capabilities

- Global System Analysis
 - new type of gPROMS activity
- A major new capability
 - applicable immediately to all gPROMS models
- New directions in
 - gPROMS computations
 - interactive results management

Presentation this morning

- New DAEBDF integrator now usable for all activities
 - Used for Simulation since v4.2.0
 - → significant improvements in speed & robustness
 - Now available for Parameter Estimation & Optimisation
 - Efficient computation of 1st-order sensitivities

New parallelized Parameter Estimation solver

- Parallel evaluation of multiple experiments
- Suitable for execution on multicore machines
 - 4-core machine → 2.7× acceleration
 - 12-core machine → 7× acceleration
- Straightforward use with existing parameter estimation problems SOLUTION PARAMETERS

```
PESolver := "MAXLKHD" [.... "ParallelProcessing" := TRUE, ....];
```


- Units of Measurement support in all activities
 - Simulation, parameter estimation, optimisation
 - Activity editors & result reports

- More extensive support for "friendly names" for parameters & variables visible to end-users across GUI
 - instead of long pathnames...

Model Initialisation Procedures (MIPs)

Model pruning during MIP execution

- Automatically identify & remove all equations/variables not needed during MIP
 - To be post-solved after converged solution is obtained
- Model Pruning concept & implementation already tested extensively in the context of gPROMS dynamic simulations
 - Significant enhancement in robustness
 & speed of solution

Automatic sequencing algorithm for multiple recycle closure

- No need for user to specify order in which recycles need to be handled
- Can handle flowsheets of arbitrary complexity

gPROMS platform v4.3 Highlights – materials modelling

gSAFT advanced materials modelling

1. Order-of-magnitude performance improvements

2. Accurate/predictive modelling of increasingly complex systems

3. Predictive modelling of systems with solid phases

4. Predictive modelling of reactive systems

gPROMS platform v4.3 Supporting online model-based applications

PSE

Integrated framework

Integrated framework

Examples

3 other OMBAs under development

- Each OMBA involves one or more gPROMS-based computations...
 - makes use of gPROMS model constructed, validated & tested offline
 - communicates with the gPROMS solution engine to perform calculations
- Each OMBA has a different software architecture...
 - ...but makes use of common software elements

gPROMS technology elements

gOPC

gPROMS OPC toolkit in gPROMS v4.3

OPC Client accessed via gPROMS Foreign Process Interface (FPI)

gPROMS simulation

```
PROCESS StartUpSimulation
UNIT R AS Reactor
SOLUTIONPAPAMETERS
  FPI := "gOPCFPI::opcconfig.json"
SCHEDULE
   SEQUENCE
      PAUSE SIGNALID "operator:start"
      WHILE TRUE DO
          GET
             R.Fin := "FeedFlowrate" ;
            R.Tin := "FeedTemperature" ;
          END
          CONTINUE FOR 10
          SEND
             "Conversion" := R.Conv;
             "ExitTemperature" := R.Tout;
          END
      END
   END
```

gOPC configuration file

```
"opcServer":
     "serverName" : "Matrikon.OPC.Simulation.1",
     "modelTimeUoM": "s",
     "realTimeSpeedUp": "3.0"
 },
 "opcItems":
        "serverTag"
                       :"R023.FX1432"
        "clientTag"
                       :"FeedFlowrate",
        "description" : "Main feed stream flowrate"
      },
         "serverTag"
                        : "R023.TX0124"
         "clientTag"
                        : "FeedTemperature",
         "description"
                        :"Main feed temperature"
      },
```


gPROMS technology elements

gPROMS technology elements

Real-time data connectivity (OPC)

Real-time
State Estimation
technology

Model configured, validated, tested in /exported in encrypted form from any gPROMS family product

gPROMS-based computations

Current focus: full productisation of State Estimation technology

- Packaged as stand-alone gPROMS-based Application (gBA)
- Direct data I/O via OPC interface
- v1.0: Extended Kalman Filter (EKF) algorit
 - Make use of new DAEBDF integrator

Real-time data connectivity (OPC)

gPROMS platform beyond v4.3

gPROMS platform beyond v4.3

Key development directions

1. Streamlined workflows

- Flowsheeting
- Relating models to experimental R&D
- Facilitating model deployment within the organisation

2. High-Performance Computing platforms

 Increased range of gPROMS algorithms taking advantage of HPC

3. Materials modelling

- Solids
- Electrolytes
- Reactive systems

4. Online Model-Based Applications

 Bringing the benefits of Advanced Process
 Modelling to process
 operations

Thank you

