Solar Energy Forecasting

By: Matt Carr

Subject Matter Overview

Problem:

- Current energy sources are limited and harmful to the environment
- Renewable sources are intermittent and difficult to integrate

Solution:

- Utilize weather observations and forecasts to predict solar energy production
- Improve efficiency of grid management

Background:

- Solar panels use solar radiation to create electricity
- Time and weather influence how much solar radiation reaches panels

Project Overview

Data Gathering

- Energy data scraped from University of Illinois Solar Farm 1.0 dashboard
- Weather data collected from NOAA ISD database

Data Prep

- Aggregated energy and weather data to hourly time frame
- Incorporated three hour lag between energy data and weather observations
- Filtered for times between 5am and 8pm

Data Split

- Training: January 30, 2018 October 16, 2019
- o Validation: October 17, 2019 March 3, 2020
- Testing: March 4, 2020 July 2020, 2020

Metric

RMSE

Problem

Renewable energy sources are intermittent

Energy Fluctuation

Weather Dependence

Direct:

- Visibility
- Temperature

Indirect:

- Cloud Cover
- Humidity

Solution

Forecast renewable energy production

Baseline Model

Day: October 19, 2019

Base Features

RMSE: 4484

Best Model

Day: October 19, 2019

Base Features and Time

RMSE: 2316

Next Steps

- Modeling Iterations
- Dimensionality Reduction
- Gather weather forecasts data to extend forecast capability
- Include solar radiation measurement

Stretch Goals

- Include solar elevation angle
- Deploy as flask app

Contact Info

Email: mhcarr17@gmail.com

Github: github.com/mattcarr17

LinkedIn: linkedin.com/in/matthewhcarr

Project Repo: github.com/mattcarr17/solar_energy_prediction