Maximum Likelihood Estimation

Aakash Daswani Aayush Arora

Intro To AI / ML , February 2019

Table of Contents

Introduction

Table of Contents

Introduction

Introduction

What are Parameters?

- Often in machine learning we use a model to describe the process that results in the data that are observed.
- Each model contains its own set of parameters that ultimately defines what the model looks like.
- For a linear model we can write this as y = mx + c, m and c are parameters for this model. Different values for these parameters will give different lines
- parameters define a blueprint for the model. It is only when specific values are chosen for the parameters that we get an instantiation for the model that describes a given phenomenon

Table of Contents

1 Introduction

- likelihood estimation is a method that determines values for the parameters of a model.
- parameter values are found such that they maximise the likelihood that the process described by the model produced the data that were actually observed.

Three Major Steps in Applying MLE

- Define the likelihood, ensuring you're using the correct distribution for your regression or classification problem
- Take the natural log and reduce the product function to a sum function.
- Maximize or minimize the negative of the objective function

Example

 Let's suppose we have observed 10 data points from some process. For example, each data point could represent the length of time in seconds that it takes a student to answer a specific exam question. These 10 data points are shown in the figure below

- we'll assume that the data generation process can be adequately described by a Gaussian (normal) distribution
- The Gaussian distribution has 2 parameters. The mean and the standard deviation, Different values of these parameters result in different curves
- We want to know which curve was most likely responsible for creating the data points we observed
- We'll use MLE to estimate these parameters

Calculating MLE

- Suppose we have three data points this time and we assume that they have been generated from a process that is adequately described by a Gaussian distribution. These points are 9, 9.5 and 11
- How do we calculate the maximum likelihood estimates of the parameter values of the Gaussian distribution ?

The probability density of observing a single data point x, that is generated from a Gaussian distribution is given by:

$$P(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

In our example the total (joint) probability density of observing the three data points is given by:

$$\begin{split} P(9,9.5,11;\mu,\sigma) &= \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \\ &\quad \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right) \end{split}$$

log likelihood

Taking logs of the original expression gives us:

$$\begin{split} \ln(P(x;\mu,\sigma)) &= \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9-\mu)^2}{2\sigma^2} + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9.5-\mu)^2}{2\sigma^2} \\ &\quad + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(11-\mu)^2}{2\sigma^2} \end{split}$$

$$\ln(P(x;\mu,\sigma)) = -3\ln{(\sigma)} - \frac{3}{2}\ln{(2\pi)} - \frac{1}{2\sigma^2}\left[(9-\mu)^2 + (9.5-\mu)^2 + (11-\mu)^2\right]$$

To do this we take the partial derivative of the function with respect to μ , giving

$$\frac{\partial \ln(P(x;\mu,\sigma))}{\partial \mu} = \frac{1}{\sigma^2} [9 + 9.5 + 11 - 3\mu].$$

which gives $\mu=9.833$ Differentiating with respect to σ gives : $\sigma=0.848$