Part IA — Numbers and Sets

Supervised by Dr. Forster Solutions presented by Christopher Turnbull

Michaelmas 2017

1D 2012

(i) By Euclid,

$$23 = 18 + 5$$
 $18 = 3 \times 5 + 5$
 $5 = 3 + 2$
 $3 = 2 + 1$

So gcd(23,18) = 1.

Now expressing 1 as a linear combination of 23 and 18,

$$1 = 3 - 2$$

$$= 3 - (5 - 3)$$

$$= 2 \times 3 - 5$$

$$= 2(18 - 5 \times 3) - 5$$

$$= 2 \times 18 - 7 \times 5$$

$$= 2 \times 18 - 7 \times (23 - 18)$$

$$= 9 \times 18 - 7 \times 23$$

Hence multiplying by 101,

$$909 \times 18 - 707 \times 23 = 101$$

we see that

$$x = 909, y = -707$$

(ii) We know

$$9 \times 18 = 1 \pmod{23}$$

 $-7 \times 23 = 1 \pmod{18}$

So put

$$x = (9 \times 18 \times 2) - (7 \times 23 \times 3)$$

ie.

$$x = 106$$

2D 2012

A relation aRb on elements of a set $a, b \in X$ is an equivalence relation if it is

- Reflexive: $aRa \ \forall \ a \in X$
- Symmetric: $aRb \iff bRa \ \forall \ a,b \in X$
- Transitive: aRb and $bRc \Rightarrow aRc \forall a, b, c \in X$

If \sim is an equivalence relation on X, then the equivalence classes of \sim form a partition of X

Proof. By reflexivity, $x \in [x] \ \forall \ x \in X$.

Now suppose $[x] \cap [y] \neq \emptyset$. Let $z \in [x] \cap [y]$. Then $x \sim z$ and $y \sim z$. By symmetry, $z \sim y$. By transitivity, $x \sim y$.

For all $x' \in X$, we have $x' \sim x$, thus by transitivity, $x' \sim y$, and $[x] \subseteq [y]$. Similarly, $[y] \subseteq [x]$, and [x] = [y].

- (i) V is an equivalence relation: $xRx, xSx \ \forall \ x \in X$ hence $xVx \ \forall \ x \in X$. Similarly, symmetry and transitivity follow exactly.
- (ii) W is not necessarily an equivalence relation: take $X = \{1, 2, 3\}$, let R act such that 1R2, with 3 in its own equivalence class, and let S act such that 2S3 with 1 in it's own class.

By the definition of $W,\ 1W2$ and 2W3, but 1 is not related to 3, so transitivity fails.

5D 2012

(i) Not true if X is infinite. Let $X = \mathbb{N}$, g(x) = x + 1,

$$f(x) = \begin{cases} 1 & \text{if } x = 1\\ x - 1 & \text{otherwise} \end{cases}$$

Then $f \circ g$ is the identity map, but g(f(1)) = 2.

If X is finite and $f \circ g$ is the identity,

- $f \circ g$ is injective
- $f \circ g$ injective $\Rightarrow g$ injective
- X finite, g injective $\Rightarrow g$ bijective
- \Rightarrow f bijective, $f = g^{-1}$,
- Hence $f \circ g$ identity $\Rightarrow g \circ f$ identity

(ii) Can be false: Let $X \subseteq \mathbb{N}$, take g(x) to be the constant function g(x) = 1, and take $f(x) = x^2$.

("g destroys a lot of information, f has a lot of leeway")

- (iii) Take f(x) = 1 for all $x \in X$. It doesn't matter what g does now, but certainly need not be the identity, for any set X.
 - If X is a finite set, for each $x_i \in X$ there exists a positive integer n_i such that $f^{n_i}(x_i) = x_i$. Now simply take $\operatorname{lcm}(x_1, \dots, x_N)$, thus $f^N(x) = x$ for all $x \in X$
 - If X is a countably infinite set, biject it with $\mathbb N$ and take the function that maps

$$f(1) = 2, f(2) = 1$$

 $f(3) = 4, f(4) = 5, f(5) = 3$

and so on. Respectively we have $n=2,3,\cdots$, and there is no positive integer N such that $f^N(x)=x$ for all $x\in X$

– If X is an uncountably infinite set, eg. \mathbb{R} , simply set the function to be equal to the identity map on the points in $\mathbb{R} \setminus \mathbb{N}$, and equal to our previous function for points in \mathbb{N} .

(we can always biject eg. $\mathbb{R}^2 to\mathbb{R}$)

6D 2012

Theorem. Fermat's (Little) Theorem. Let p be a prime. Then $a^p \equiv a \pmod{p}$, for all $a \in \mathbb{Z}$.

Theorem. Wilsons Theorem. Let p be a prime. Then $(p-1)! \equiv -1 \pmod{p}$

Proposition. $x^2 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{4}$

Proof. By Wilson's,

$$-1 \equiv (p-1)! \equiv (1)(2) \cdots \left(\frac{p-1}{2}\right) \left(-\frac{p-1}{2}\right) \cdots (-2)(-1)$$
$$= (-1)^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)!^2$$

If $p \equiv 1 \mod 4$, write p = 4k + 1, and the RHS becomes $(2k!)^2$. But for $p \equiv -1 \pmod 4$, ie. p = 4k + 3, suppose we have some x st. $x^2 \equiv -1 \pmod p$. Then, by Fermat's, $x^p \equiv x \Rightarrow x^{p-1} \equiv 1$, and

$$1 \equiv x^{4k+2}$$
$$= (x^2)^{2k+1}$$
$$\equiv (-1)^{2k+1}$$
$$= -1$$

Contradiction.

x has order $d \pmod p$, so d is the least positive integer st. $x^d \equiv 1 \pmod p$. Suppose $x^k \equiv 1 \pmod p$. Then k > d, so write k = qd + r for q > 0, with remainder $r \in \{0, \dots, d-1\}$.

Then

$$1 = x^k = x^{qd+r}$$
$$= (x^d)^q x^r$$
$$\equiv x^r \pmod{p}$$

ie $x^r \equiv 1$ Since $r \in \{0, \dots, d-1\}$, and d is the least positive integer st. $x^d \equiv 1$, we must have r = 0, and hence d divides k.

Now, suppose p is a prime factor of $F_n = 2^{2^n} + 1$. We want to determine the order of $2 \pmod{p}$, ie. the least positive integer d st. $2^d \equiv 1 \pmod{p}$. Now, as p is a factor of F_n we have

$$2^{2^n} + 1 \equiv 0 \pmod{p}$$
$$2^{2^n} \equiv -1 \pmod{p}$$

and by squaring both sides we have

$$2^{2^{n+1}} \equiv 1 \pmod{p}$$

thus the order of 2 (mod p) divides 2^{n+1} .

I think the order is 2^{n+1} but don't know how to justify this. F_n and F_m are pairwise relatively coprime iff their gcd is 1.

Next, if p is of the form 4k+3 and is a factor of some F_n , we have $\left(2^{2^{n-1}}\right)^2 \equiv -1$, but in the first part of the question we showed that x^2 only has a solution when p is of the form 4k+1.

7D 2012

(i) CLAIM: $\sqrt{6}$ is irrational

Assume otherwise,

$$\sqrt{6} = \frac{p}{q}, \quad (p,q) = 1$$

Then $6q^2 = p^2 \Rightarrow 2|p^2$.

CLAIM: p^2 even $\Rightarrow p$ even.

Proof. Proof by contrapositive, if p not even, write p=2k+1 for some integer k. Then

$$p^2 = 4k^2 + 4k + 1$$
$$= 2(2k^2 + 2) + 1$$

Thus p^2 is not even. Hence p^2 even $\Rightarrow p$ even.

Thus p even, and we can write p=2p' and $\sqrt{6}=\frac{2p'}{q}\Rightarrow 2|q$ also, which contradicts (p,q)=1.

Now to show $\sqrt{2} + \sqrt{3}$ is irrational, all we need to do is assume it is rational and we get the following contradiction: then so is $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$. But this is absurd since we have just showed $\sqrt{6}$ is irrational

(ii)
$$e := 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Suppose is rational, $e=\frac{p}{q}$ for some integers p,q s.t. (p,q)=1 Then $q!e\in\mathbb{N}.$ But

$$q!e = \underbrace{q! + q! + \frac{q!}{2!} + \frac{q!}{3!} + \dots + \frac{q!}{q!}}_{n} + \underbrace{\frac{q!}{(q+1)!} + \frac{q!}{(q+2)!} + \dots}_{x},$$

where $n \in \mathbb{N}$ and

$$x = \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \cdots$$

We can bound it by

$$0 < x < \frac{1}{q+1} + \frac{1}{(q+1)^2} + \frac{1}{(q+1)^3} + \dots = \frac{1}{q+1} \cdot \frac{1}{1 - 1/(q+1)} = \frac{1}{q}.$$

Now clearly e > 2, and

$$\frac{1}{2!} + \frac{1}{3!} + \dots < \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$$
$$< \frac{1/2}{1 - 1/2} = 1$$

Thus 2 < e < 3, so $e = \frac{p}{q}$ is not an integer $\Rightarrow q > 1$. Hence

$$x < 5\frac{1}{q} < 1$$

Thus q!e is the sum of an integer part n plus a non-integer part x. Contradiction.

(iii) Suppose the real root $x = \frac{p}{q}$, (p,q) = 1 Then

$$\frac{p^3}{q^3} + 4\frac{p}{q} - 7 = 0 \Rightarrow \frac{p^3}{q} + 4pq - 7q^2$$
$$\Rightarrow \frac{p^3}{q} = 7q^2 - 4pq$$

Then RHS is an integer \Rightarrow LHS is an integer also, which contradicts the fact that (p,q)=1.

(iv) Let $\log_2 3 = \frac{p}{q}$, (p,q) = 1 Now it must hold that

$$2^{q} = 3^{p}$$

which is nonsense as LHS is even, while the RHS is odd. Note this could be true if either p or q are equal to zero, but it is clear that this is not the case here.

8D 2012

Proposition. There is no injection from the power-set of \mathbb{R} to \mathbb{R}

Proof. – Suppose for the sake of contradiction that $f: \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ is an injection.

– For each $t \in \text{Im}(f)$, there exists a unique $s \in \mathcal{P}(\mathbb{R})$ st. f(s) = t. Define g as

$$g(t) = \begin{cases} s & \text{if } (t \in \text{Im } f) \text{ and } (f(s) = t) \\ s_0 & \text{if } t \notin \text{Im } f \end{cases}$$

where s_0 is any element of S.

By construction, given any $s \in S \exists f(s) \in \mathbb{R}$ that maps to s under g, so $g : \mathbb{R} \to \mathcal{P}(R)$ is a surjection.

- Let $S = \{r \in \mathbb{R} : r \notin f(r)\}$. Since g is surjective, there must exist $r \in \mathbb{R}$ st. g(r) = S. If $r \in \mathbb{R}$, then $r \notin \mathbb{R}$ by the definition of S. Conversely if $r \notin S$, then $r \in S$.
- This is absurd, and we arrive at the conclusion that f cannot be an injection.

Proof. Suppose such an injection exists, $f: R \to \mathcal{P}(\mathbb{R})$. Take

$$S = \{ r \in \mathbb{R} : r \notin f^{-1}(r) \}$$

where f^{-1} denotes the preimage of f.

Proposition. There is an injection from \mathbb{R}^2 to \mathbb{R}

Proof. Let's construct an injective function $f:(0,1)\times(0,1)\to(0,1)$. Since there exist bijections between $\mathbb R$ and (0,1) (eg. take $g(t)=(\tan t+\frac{\pi}{2})/2$), the proposed function f is sufficient to show such an injection exists.

Let the decimal representation of x be $0.x_1x_2x_3\cdots$, and that of y be $0.y_1y_2y_3\cdots$. Let f(x,y) be $0.x_1y_1x_2y_2x_3y_3\cdots$

To make this function well-defined, avoid decimal representations that end with infinite successions of 9s. Then, f is injective.

6

To specify some $f \in X := \{f : f(x) = x \text{ for all but finitely many } x \in \mathbb{R}\}$, I need

$$(r_1, f(r_1), r_2, f(r_2), \cdots, (r_n, f(r_n)))$$

ie. a finite set of ordered pairs or reals, where the r_i represents the points at which the function is not the identity.

Given the number of ordered pairs $n \in \mathbb{N}$ we then encode these orders pairs as a member of the set $\mathbb{N} \times \mathbb{R}$, and inject this into \mathbb{R} :

$$N\times\mathbb{R}\to\mathbb{R}\times\mathbb{R}\to\mathbb{R}$$

Hence an injection $X \to \mathbb{R}$