

Description d'une variable quantitative.

Les indicateurs de tendance centrale

- Mode : valeur la plus fréquente d'une variable = valeur qui apparaît le plus souvent
 - non sensible aux valeurs extrêmes (outliers), mais sensible à l'amplitude des classes
 - peut être unique : distribution unimodale ou multiple : distribution bimodale (2 modes), trimodale (3 modes) ou plus généralement multimodale (plusieurs modes)
 - indicateur de population hétérogène → pour une distribution multimodale, la population peut-être divisée en plusieurs sous-groupes

/!\ peut également être calculé pour une variable **qualitative** (seul indicateur de tendance centrale qui peut être identifié pour ce type de variable)

Exemple

Source: Lakner C and Milanovic B, (2013) Global Income Distribution: From the Fall of the Berlin Wall to the Great Recession. Policy Research Working Paper;No. 6719. © World Bank, Washington, DC. http://hdl.handle.net/10986/16935 License: CC BY 3.0 IGO

Description d'une variable quantitative.

Les indicateurs de tendance centrale

- Moyenne : somme de toutes les observations divisée par le nombre d'observations
 - Formule mathématique : $\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$
 - indicateur le plus simple pour résumer l'information fournie par un ensemble de données statistiques
 - très sensible aux valeurs extrêmes
 - représente mal les populations hétérogènes
- Moyenne pondérée : somme des observations pondérées par un coefficient, le tout divisé par la somme des coefficients
 - Formule mathématique : $\bar{X} = \frac{\sum_{i=1}^{n} x_i \times c_i}{\sum_{i=1}^{n} c_i}$
 - utile lorsqu'on travaille sur des unités de tailles différentes (ex. : unités géographiques)

Description d'une variable quantitative.

Les indicateurs de tendance centrale

- **Médiane** : valeur qui partage la distribution des valeurs, classées par ordre croissant, en deux classes d'effectifs égaux
- → 50 % des valeurs se situent sous la médiane et 50 % au-dessus
- non sensible aux valeurs extrêmes ni à l'amplitude des classes

Exercice

On interroge au hasard 5 diplômés d'un master, et on obtient les revenus suivant, en euros mensuels :

1. Calculer le revenu moyen

Revenu moyen =
$$(1480 + 1590 + 2130 + 1180 + 9350) / 5 = 15730 / 5 = 3146$$

2. Calculer le revenu médian

On classe les valeurs par ordre croissant pour trouver la valeur centrale

- Quel indicateur retenir...
 - a) ... pour convaincre vos parents de vous laisser faire ces études?
 - b) ... pour avoir une estimation raisonnable de vos revenus futurs?

Le revenu médian synthétise mieux la distribution

La médiane est moins sensible aux valeurs extrêmes (aux « queues » de distribution)

Description d'une variable quantitative. Les mesures de dispersion

- Les **mesures de dispersion** principales sont les suivantes :
 - L'étendue (range) : différence entre la plus petite valeur et la plus grande (mesure sensible aux valeurs extrêmes)
 - L'écart interquartile (interquartile range IQR)
 - La variance
 - **L'écart-type** (standard deviation)

Indicateur de tendance centrale	Mesure de dispersion	
Médiane	Écart interquartiles	
Moyenne	Écart-type	

Description d'une variable quantitative. Dispersion autour de la médiane

- Quantiles : valeurs qui coupent la distribution en groupes d'effectifs égaux
 - quantiles d'ordre 4 = quartiles, notés Q : divisent la distribution en 4 groupes égaux
 - Q1, le premier quartile, est la valeur au-dessous de laquelle se situent 25 % des valeurs
 - Q2, le deuxième quartile, est la valeur au-dessous de laquelle se situent 50 % des valeurs = médiane
 - Q3, le troisième quartile, est la valeur au-dessous de laquelle se situent 75 % des valeurs

/!\ Q4 n'existe pas à proprement parler, c'est la valeur maximale

- quantiles d'ordre 5 = quintiles : coupent la distribution en 5 groupes égaux
- quantiles d'ordre 10 = **déciles** (deciles), notés **D** : coupent la distribution en 10 groupes égaux
- quantiles d'ordre 100 = **centiles** (*percentiles*), notés **C** : coupent la distribution en 100 groupes égaux

Description d'une variable quantitative. Dispersion autour de la médiane

- L'écart ou intervalle interquartile : différence entre Q3 et Q1 : IQR = Q3-Q1
 - grande robustesse aux valeurs aberrantes
 - 50% des valeurs de la série sont comprises dans l'intervalle interquartile
- Le **rapport inter-quantile** (*inter-quantile ratio*) : division du quantile supérieur par le quantile inférieur Exemple : pour les inégalités de revenus, on utilise le plus souvent les déciles, on calcule alors D9/D1

Description d'une variable quantitative. Dispersion autour de la moyenne

• La moyenne ne dit rien quant à la dispersion de la distribution, autrement dit on ne sait rien des écarts de chaque individu à la moyenne

Écart-type

 plus les valeurs sont dispersées autour de la moyenne, plus il est important (= moins la moyenne synthétise bien l'ensemble des observations)
plus il est faible, plus la population est homogène (si 0, cela signifie que toutes les observations sont égales)

Variance

• il s'agit de l'écart moyen au carré par rapport à la moyenne

/!\ Comme les valeurs sont élevées au carré, la variance une unité différente (l'unité au carré), ce qui la rend difficilement interprétable, mais qui permet de raisonner en valeur absolue

→ il est conseillé de toujours utiliser l'écart-type pour décrire un échantillon, car cela facilite l'interprétation

Description d'une variable quantitative. Dispersion autour de la moyenne

- Notations mathématiques
 - Écart-type = racine carrée des écarts à la moyenne

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2}$$

 Variance = distance de chaque individu statistique à la moyenne de la variable observée

$$V = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})^2$$

- Propriétés de l'écart-type
 - Il est nécessairement positif
 - Il est exprimé dans la même mesure que la variable correspondante (en année, en mètre, en points, etc.)
 - Il est sensible aux valeurs extrêmes (outliers) et permet donc d'en identifier la présence

Description d'une variable qualitative. Le tableau de fréquence (tri à plat)

- Le **tableau de fréquence** ou **tri à plat** : tableau de la répartition des répondants dans les différentes modalités de la variable
 - il permet d'avoir une première idée des résultats et constitue naturellement la base des rapports d'enquête

Exemple

Pour chaque variable qualitative, les effectifs pour chacune des modalités sont présentées

Fréquence de supp

supp	Effectifs	% du total	% cumulés
OJ	30	50.0%	50.0%
VC	30	50.0%	100.0%
Total	60	100.0%	