PSALTer results panel $S = \iiint \left(\frac{1}{4} \left(2 \, a_{0} \, \mathcal{A}_{\alpha}^{\alpha \beta} \, \mathcal{A}_{\beta \chi}^{\chi} + \mathcal{A}^{\alpha \beta \chi} \left(-2 \, a_{0} \, \mathcal{A}_{\beta \chi \alpha} + 4 \, \mathcal{W}_{\alpha \beta \chi} \right) + 4 \, \mathcal{T}^{\alpha \beta} \, h_{\alpha \beta} - a_{0} \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + a_{0} \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}^{\alpha \beta} - 2 \, a_{0} \, h_{\alpha \chi} \, \partial_{\beta} \mathcal{A}^{\alpha \beta \chi} + 2 \, a_{0} \, h_{\beta \chi} \, \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha \beta} \right) \right) [t, \, \chi, \, y, \, z] \, dz \, dy \, dx \, dt$ **Wave operator** ${}^{1^{+}}_{\cdot}\mathcal{A}_{\mathsf{S}}{}^{\perp}\,\dagger^{\alpha\beta}$ $^{1}_{\bullet}h^{\perp}\uparrow^{\alpha}$ $-\frac{i a \cdot k}{4 \sqrt{2}}$ ${}^{1} \mathcal{A}_{a}{}^{\parallel} \uparrow^{\alpha}$ $^{1}_{\cdot}\mathcal{A}_{a}^{\perp}\dagger^{\alpha}$ ${}^{1} \mathcal{A}_{\mathsf{S}}{}^{\perp \mathsf{t}} \, {\dagger}^{\alpha}$ ${}^{1} \mathcal{A}_{s} {}^{\parallel t} \dagger^{\alpha}$ ${}^{1} \cdot \mathcal{A}_{\mathsf{S}}^{\perp \mathsf{h}} \dagger^{\alpha}$ ${}^{1} \cdot \mathcal{A}_{s}^{\parallel h} \uparrow^{\alpha}$ $\mathcal{A}_{a}^{2^{+}}\mathcal{A}_{a}^{\parallel}\uparrow^{\alpha\beta}$ $^{2}\mathcal{A}_{a}^{\parallel}\uparrow^{\alpha\beta\chi}$ $^{3}\mathcal{A}_{s}^{\parallel} \uparrow^{\alpha\beta\chi}$ Saturated propagator

	${\overset{0^{\scriptscriptstyle +}}{\cdot}}{\mathcal T}^{\scriptscriptstyle \perp}$	^{0⁺} . T	"Wa"	"W _s "	"W _s "	"W _S III	"Wa"	
${\overset{0^{\scriptscriptstyle +}}{\cdot}}{\mathcal T}^{\scriptscriptstyle \perp}$ †	$-\frac{36 k^2}{a_{0} (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{2 i \sqrt{6} k}{16 a + 3 a k^2}$	$-\frac{72 i k}{a_{0} \left(16+3 k^{2}\right)^{2}}$	$\frac{8 i k (19+3 k^2)}{a_0 (16+3 k^2)^2}$	$-\frac{4 i \sqrt{2} k (10+3 k^2)}{a_0 (16+3 k^2)^2}$	Θ	
^{0⁺} ∵″†	$\frac{4\sqrt{3}}{16a_{\cdot +}3a_{\cdot k}^2}$	$\frac{4}{a_{\stackrel{\bullet}{0}} k^2}$	$\frac{2i\sqrt{2}}{a.k}$	$\frac{8 i \sqrt{3}}{16 a. k+3 a. k^3}$	$-\frac{8 i}{\sqrt{3} \left(16 a. k+3 a. k^3\right)}$	$-\frac{8 i \sqrt{\frac{2}{3}}}{16 a_0 k+3 a_0 k^3}$	0	
^{0⁺} Wa [∥] †	$-\frac{2 i \sqrt{6} k}{16 a +3 a k^2}$	$-\frac{2i\sqrt{2}}{a.k}$	Θ	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a.+3a.k^2}$	$-\frac{8}{\sqrt{3}\left(16a_{\stackrel{.}{\theta}}+3a_{\stackrel{.}{\theta}}k^2\right)}$	Θ	
^{0⁺} Ws ^{⊥t} †	$\frac{72 i k}{a \cdot \left(16+3 k^2\right)^2}$	$-\frac{8 i \sqrt{3}}{16 a \cdot k+3 a \cdot k^3}$	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{144}{a_{0}\left(16+3k^{2}\right)^{2}}$	$\frac{16(19+3 k^2)}{a_{0}(16+3 k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_{\theta}(16+3k^2)^2}$	Θ	
^{0⁺} Ws †	$-\frac{8 i k (19+3 k^2)}{a \cdot (16+3 k^2)^2}$	$\frac{8 i}{\sqrt{3} \left(16 a. k+3 a. k^3\right)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_{0}+3a_{0}k^{2}}$	$\frac{16(19+3 k^2)}{a_0(16+3 k^2)^2}$	$-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_{0}(16+3k^2)^2}$	Θ	
${}^{0^{\scriptscriptstyle +}}_{}W_{{\scriptscriptstyle S}}{}^{{\scriptscriptstyle \perp}h}$ †	$\frac{4 i \sqrt{2} k (10+3 k^2)}{a \cdot (16+3 k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}}{16a.k+3a.k^3}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_{\theta}(16+3k^2)^2}$	$\frac{32 (13+3 k^2)}{3 a_0 (16+3 k^2)^2}$	0	
⁰⁻ Wa [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$	1
							1+ μ αβ	Γ

$-{a}$	$^{1^{+}}W_{a}^{\parallel}_{\alpha\beta}$	$\mathbf{\dot{\cdot}^{1^{+}}W_{a}}^{\perp}{}_{\alpha\beta}$	$^{1^{+}}_{\bullet}W_{S}^{\perp}{}_{\alpha\beta}$	${}^{1}_{\bullet}\mathcal{T}^{\perp}{}_{\alpha}$	${}^{1}_{\cdot}W_{a}{}^{\parallel}{}_{\alpha}$	$^{1}_{\cdot}W_{a}^{\perp}{}_{\alpha}$	${}^{1}_{\cdot}W_{s}^{\perp t}{}_{\alpha}$	${}^{1}_{\cdot}W_{s}{}^{\parallel t}{}_{\alpha}$	¹⁻Ws ^{⊥h} α	${}^{1}_{\bullet}W_{S}{}^{\parallelh}{}_{\alpha}$
$^{1^+}W_a^{\parallel}\dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_{\bullet}}$	0	0	0	0	Θ	0	0	0
$^{1^{+}}_{\bullet}W_{a}^{\perp}\dagger^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_{\stackrel{\bullet}{\Theta}}}$	$\frac{2}{a_{\bullet}}$	Θ	0	0	0	Θ	Θ	0	0
$^{1^{+}}_{\cdot}W_{S}^{\perp}\dagger^{\alpha\beta}$	Θ	0	$\frac{4}{a}$	Θ	0	0	Θ	0	0	0
1 $^{-}$ \mathcal{T}^{\perp} $^{\alpha}$	0	0	0	$\frac{2 k^2}{a_{\cdot \theta} (2+k^2)^2}$	$\frac{2 i \sqrt{2} k}{a \cdot (2+k^2)}$	$\frac{i k (4+k^2)}{a_0 (2+k^2)^2}$	$-\frac{i k (6+5 k^2)}{\sqrt{6} a_0 (2+k^2)^2}$	$\frac{i \sqrt{\frac{5}{6}} k}{a \cdot (2+k^2)}$	$-\frac{2 i k (3+k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$\frac{i \sqrt{\frac{2}{3}} k}{a \cdot (2+k^2)}$
1 1 2 2	0	Θ	0	$-\frac{2 i \sqrt{2} k}{a \cdot (2+k^2)}$	0	$\frac{\sqrt{2} (4+k^2)}{a_{\theta} (2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} a_{\bullet} (2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_{\cdot 0} (2+k^2)}$	0
1 · W_{a} · $^{+}$ † $^{\alpha}$	0	Θ	0	$-\frac{i k (4+k^2)}{a \cdot (2+k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_{\theta} (2+k^2)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$\frac{k^2 \left(-2+k^2\right)}{2 \sqrt{6} \ a_{0} \left(2+k^2\right)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 \left(5+2 k^2\right)}{\sqrt{3} \ a_{\frac{1}{9}} \left(2+k^2\right)^2} -$	$-\frac{k^2}{\sqrt{6} \ a_{\bullet} (2+k^2)}$
1-W _s + † α	0	Θ	0	$\frac{i k \left(6+5 k^2\right)}{\sqrt{6} a_{\theta} \left(2+k^2\right)^2} -$	$\frac{2 k^2}{\sqrt{3} a_{\theta} (2+k^2)}$	$\frac{k^2 \left(-2+k^2\right)}{2 \sqrt{6} \ a_{0} \left(2+k^2\right)^2}$	$-\frac{76+52 k^2+3 k^4}{12 a_0 (2+k^2)^2}$	$\frac{\sqrt{5} \left(10+3 k^2\right)}{12 a_0 \left(2+k^2\right)}$	$\frac{-2+k^2}{3 \sqrt{2} a_{0}(2+k^2)^2}$	$\frac{1}{-2 a \cdot -\frac{8 a \cdot \theta}{2+3 k^2}}$
¹·w _s ∥t † ^α	0	Θ	0	$-\frac{i\sqrt{\frac{5}{6}}k}{a\cdot(2+k^2)}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} \left(10+3 k^2\right)}{12 a_{\cdot 0} \left(2+k^2\right)}$	$\frac{1}{12 a_{\bullet}}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a \cdot +3 a \cdot k^2}$	$-\frac{\sqrt{5}}{6a}_{0}$
1-W _s ^{⊥h} † ^α	0	Θ	0	$\frac{2 i k (3+k^2)}{\sqrt{3} a_{\theta} (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{a \cdot (2+k^2)}$	$\frac{k^2 (5+2 k^2)}{\sqrt{3} a_{\stackrel{.}{\Theta}} (2+k^2)^2}$	$\frac{-2+k^2}{3 \sqrt{2} \ a_{0} (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a.+3 a. k^2}$	$\frac{2\left(17+14k^2+3k^4\right)}{3a_{0}\left(2+k^2\right)^2}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$
1 1 1 1	0	0	0	$-\frac{i\sqrt{\frac{2}{3}}k}{2a\cdot +a\cdot k^2}$	0	$-\frac{k^2}{\sqrt{6} \ a_{\cdot 0}(2+k^2)}$	$\frac{1}{-2a\cdot -\frac{8a\cdot }{243}r^2}$	$-\frac{\sqrt{5}}{6 a}_{0}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a \cdot (2+k^2)}$	5 3 a.

3 a.	$^{2^{+}}\mathcal{T}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}_{\cdot}W_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}W_{S}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}W_{\text{S}}^{\perp}{}_{\alpha\beta}$	$^{2}W_{a}^{\parallel}_{\alpha\beta\chi}$	2 $w_{s}^{\parallel}_{\alpha\beta\chi}$
$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta		$-\frac{4i\sqrt{2}}{a.k\atop 0}$	$\frac{4i}{\sqrt{3} a_{i} k}$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	0
$^{2^{+}}W_{a}^{\parallel}\dagger^{\alpha\beta}$	$\frac{4 i \sqrt{2}}{a \cdot k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{\stackrel{\bullet}{0}}}$	$\frac{4}{\sqrt{3} \ a_{0}}$	0	Θ
$\overset{2^{+}}{\cdot}W_{S}^{\parallel} + \overset{\alpha\beta}{\cdot}$ $\overset{2^{+}}{\cdot}W_{S}^{\perp} + \overset{\alpha\beta}{\cdot}$	$-\frac{4i}{\sqrt{3} a_{0} k}$	$\frac{2\sqrt{\frac{2}{3}}}{a_{\stackrel{\bullet}{0}}}$	$-\frac{8}{3 a_{\bullet}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\circ}{0}}}$	0	Θ
$^{2^{+}}_{\bullet}W_{S}^{\perp}$ † $^{\alpha\beta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{4}{\sqrt{3} \ a_{\theta}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\bullet}{\theta}}}$	$\frac{8}{3 a_{\bullet}}$	0	0
2 $\mathcal{W}_{a}^{\parallel}$ $\dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0
$ \stackrel{2^{-}}{\cdot} W_{a}^{\parallel} \uparrow^{\alpha\beta\chi} $ $ \stackrel{2^{-}}{\cdot} W_{s}^{\parallel} \uparrow^{\alpha\beta\chi} $	0	0	0	Θ	0	$\frac{4}{a}$
						$3^{-}W_{S}^{\parallel} \uparrow^{\alpha\beta\chi}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k \cdot W_{S}^{\parallel} + 2 k \cdot W_{S}^{\perp h} - 6 i \cdot V_{S}^{\perp T} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{ \beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k \stackrel{0^*}{\cdot} W_S^{\perp t} + 2 i \stackrel{0^*}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathbf{w}^{\alpha\beta\chi}$	1
$\frac{1}{6k} \frac{1}{1} w_a^{\perp \alpha} + 2k \frac{1}{1} w_s^{\parallel h^{\alpha}} + k \frac{1}{1} w_s^{\parallel t^{\alpha}} + 3k \frac{1}{1} w_s^{\perp t^{\alpha}} + 12i \frac{1}{1} \tau^{\perp \alpha} = 0$	$ \boxed{ 4 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \mathcal{W}^{\alpha \beta}_{ \beta} = 4 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi}_{ \chi} } $	3
$k : W_s^{\perp h^{\alpha}} - 6i : T^{\perp \alpha} = k (3 : W_a^{\perp \alpha} + 1 : W_s^{\perp t^{\alpha}})$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} w^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} w^{\beta \chi \delta}$	3
Total expected gauge generators:		R

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: Polarisations: 2

Unitarity conditions