Boolean Algebra

Complement of a Function

- The complement of a function F is F' and is
 obtained from an interchange of O's for 1's and
 1's for O's in the value of F.
- The complement of a function may be derived algebraically through DeMorgan's theorems

Finding the complement of the functions (Method 1: *By De-Morgan's laws*)

Finding the complement of the functions (Method 2:By Dual & complement)

- A simpler procedure for deriving the complement of a function is of
 - take the dual of the function
 - then complement each literal.

Dual of a function is obtained from the interchange of AND and OR operators and 1's and 0's.

- F1 = x'yz' + x'y'z
 - The dual of F1 is (x' + y + z')(x' + y' + z).
 - Complement each literal: (x + y' + z)(x + y + 'z) = F1'
- F2 = x(y'z' + yz)
 - The dual of F2 is x + (y' + z')(y + z).
 - Complement each literal: x' + (y + z)(y' + 'z) = F2'

Minterm or Standard Product

- A binary variable may appear either in its normal form (x) or in its complement form (x).
- n variables forming an AND term, with each variable being primed or unprimed, provide 2ⁿ possible combinations, called minterm, or a standard product
- If The binary numbers from 0 to 2ⁿ - 1 are listed under the n variables
 - Each minterm is obtained from an AND term of the n variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1

			Minterms	
X	y	Z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Maxterm or Standard Sum

- A binary variable may appear either in its normal form (x) or in its complement form (x).
- n variables forming an OR term, with each variable being primed or unprimed, provide 2ⁿ possible combinations, called maxterm, or a standard sum
- If The binary numbers from 0 to 2ⁿ - 1 are listed under the n variables
 - Each minterm is obtained from an OR term of the n variables, with each variable being unprimed if the corresponding bit of the binary number is a 0 and primed if a 1

			Maxterms		
x	y	z	Term	Designation	
0	0	0	x + y + z	M_0	
0	0	1	x + y + z'	M_1	
0	1	0	x + y' + z	M_2	
0	1	1	x + y' + z'	M_3	
1	0	0	x' + y + z	M_4	
1	0	1	x' + y + z'	M_5	
1	1	0	x' + y' + z	M_6	
1	1	1	x' + y' + z'	M_7	

Boolean function using minterms & maxterms & canonical form

- A Boolean function can be expressed algebraically from a given truth table by
 - forming a minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms.

(or)

- forming a maxterm for each combination of the variables that produces a 0 in the function and then taking the AND of all those terms.
- Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form

Example

	X	y	Z	Function f_1
Ī	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	4	-1	-1	4

• Sum of minterms:

$$f1 = x'y'z + xy'z' + xyz$$
$$= m1 + m4 + m7$$

Product of maxterms:

$$f1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z)$$

= $M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$

• Complement of f1:

$$f1'=x'y'z'+x'yz'+x'yz+xy'z+xyz'$$
 (minterms not present in f1)

• Complement of *f1'*:

$$f1''=f1=(x+y+z)(x+y'+z)(x'+y+z')(x'+y'+z)$$

= M_0 . M_2 . M_3 . M_5 . $M_6=f1$

Sum of Minterms

- It is sometimes convenient to express a Boolean function in its sum-of-minterms form.
- If the function is not in minterm form, it can be made so by first expanding the expression into a sum of AND terms.
 - Each term is then inspected to see if it contains all the variables.
 - If it misses one or more variables, it is ANDed with an expression such as x + x', where x is one of the missing variables.
- The summation symbol g stands for the ORing of terms
- An alternative procedure for deriving the minterms of a Boolean function
 - obtain the truth table of the function directly from the algebraic expression and then read the minterms from the truth table.

Sum of Minterms - Example

- Express the Boolean function F = A + BC' as a sum of minterms.
 - The function has three variables: A, B, and C.
 - The first term A is missing two variables;
 - A = A(B + B') = AB + AB'
 - The above function is still missing one variable;
 - A = AB(C + C') + AB'(C + C') = ABC + ABC' + AB'C + AB'C'
 - The second term BC is missing one variable;
 - B'C = B'C(A + A') = AB'C + A'B'C
 - Combining all terms:

But AB'C appears twice, hence keep only one of those occurrences.

- F = A + BC = ABC + ABC' + AB'C' + AB'C' + A'B'C
- Rearranging the minterms in ascending order

•
$$F = ABC + ABC + ABC + ABC + ABC$$

= $m_1 + m_4 + m_5 + m_6 + m_7$
(ie) $F(A, B, C) = \sum (1, 4, 5, 6, 7)$