Instructor: S. Zheng

§3.7 Implicit Differentiation

The implicit differentiation method. Given that y = y(x) is a function of x defined implicitly by the equation F(x, y) = C.

Step 1. Take derivative in x both sides of the equation using possibly chain rule.

Step 2. Then, from the resulting equation obtained in Step 1, solve for y' = dy/dx in terms of x and y.

Example 2. Find the slope of the circle $x^2 + y^2 = 25$ at the point (3, -4).

Solution. Step 1. Differentiating both sides of the equation with respect to x, we obtain

$$(1) 2x + 2y \cdot y' = 0$$

Step 2. Solve for y' in (1) to have

$$y' = -\frac{x}{y} \ .$$

... The slope at (3, -4) is given by $m = \frac{dy}{dx}|_{(3, -4)} = \frac{3}{4}$.

Example 3. Find dy/dx if $y^2 = x^2 + \sin xy$.

Solution. Step 1. Differentiating both sides of the equation w. r. t. x, we obtain

$$(2) 2yy' = 2x + (y + xy')\cos xy$$

Step 2. Solve for y' in (2) to have

$$y' = \frac{2x + y\cos xy}{2y - x\cos xy} \ .$$

Example 4. Find d^2y/dx^2 if $2x^3 - 3y^2 = 8$.

Solution. Step 1. Differentiating both sides of the equation in x, we have

$$6x^2 - 6y \cdot y' = 0$$

$$(3) x^2 - y \cdot y' = 0$$

Step 2. Solve for y' in (3) to obtain

$$y' = \frac{x^2}{y} \ .$$

Step 3. Repeat taking derivative in (3) in x again, we obtain

$$2x - y'^{2} - yy'' = 0$$
$$\Rightarrow y'' = \frac{2x - y'^{2}}{y} = \frac{2xy^{2} - x^{4}}{y^{3}}.$$

FIGURE 1. Plot of the implicit equation $2x^3 - 3y^2 = 8$ in Ex.4

The following graph for the implicit function y = y(x) is produced from demo

Example 5. Show that the point (2,4) lies on the curve $x^3+y^3-9xy=0$. Then find the tangent and normal to the curve there.

FIGURE 2. Plot of the implicit equation $x^3+y^3-9xy=0$ in Ex.5

Theorem 3 (The Derivative Rule for Inverses). If f has an interval I as domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain (the range of f). The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$
 or $\frac{df^{-1}}{dx}\Big|_{x=b} = \frac{1}{\frac{df}{dx}\Big|_{x=f^{-1}(b)}}$.

FIGURE 3. Plot of the inverse functions y=f(x) and $y=g=f^{-1}(x)$

Example 2. Let $f(x) = x^3 - 2$, x > 0. Find the value of df^{-1}/dx at x = 6 = f(2) without finding a formula for $f^{-1}(x)$.

[Solution] Step 1. Write $y = f(x) = x^3 - 2$, x > 0.

The inverse function $y = f^{-1}(x)$ satisfies $x = y^3 - 2$ by switching x and y in the equation above.

Step 2. In order to evaluate the derivative of $y = f^{-1}$, we apply the formula at the point (a, b) with b = f(a); note here (a, b) = (2, 6).

$$\frac{df^{-1}}{dx}|_{x=b=6} = \frac{1}{\frac{df}{dx}|_{x=f^{-1}(b)}} = \frac{1}{\frac{df}{dx}|_{x=a}}$$
$$= \frac{1}{\frac{df}{dx}|_{x=2}} = \frac{1}{12},$$

where $f'(x) = 3x^2 \Rightarrow f'(2) = 3(2)^2 = 12$.

Derivative of Logarithm.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}, \quad x > 0.$$

More generally,
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, x \neq 0.$$

The natural logarithm function $y = \ln x$ is the inverse of $y = e^x$, whose graph is given in Figure 4.

FIGURE 4. Plot of the logarithm function $y = \ln x$

Example 3. Find (a)
$$\frac{d}{dx}\ln(2x)$$
 (b) $\frac{d}{dx}\ln(x^2+3)$.

[answer: (a)
$$\frac{1}{x}$$
; (b) $\frac{2x}{x^2+3}$.]

Example 4. A line with slope m passes through the origin and is tangent to the graph $y = \ln x$. What is the value of m?

Example 6*. Find
$$dy/dx$$
 if $y = \frac{(x^2+1)(x+3)^{1/2}}{x-1}$, $x > 1$.

[Solution] By logarithmic differentiation method

$$\ln y = \ln(x^2 + 1) + \frac{1}{2}\ln(x+3) - \ln(x-1)$$

$$\frac{1}{y}y' = \frac{2x}{x^2 + 1} + \frac{1}{2}\frac{1}{x+3} - \frac{1}{x-1}$$

$$\Rightarrow y' = y\left(\frac{2x}{x^2 + 1} + \frac{1}{2}\frac{1}{x+3} - \frac{1}{x-1}\right)$$

$$y' = \frac{(x^2 + 1)(x+3)^{1/2}}{x-1}\left(\frac{2x}{x^2 + 1} + \frac{1}{2(x+3)} - \frac{1}{x-1}\right).$$

Example 7*. Differentiate $f(x) = x^x, x > 0$.

[Solution] Write $y = x^x$. Then $\ln y = x \ln x$. Implicit differentiation gives

$$\frac{1}{y}y' = \ln x + x(\frac{1}{x})$$
$$\Rightarrow y' = (1 + \ln x)x^{x}.$$

§3.9 Inverse Trigonometric Functions

Definition. $y = \sin^{-1} x$ is the number in $[-\pi/2, \pi/2]$ for which $\sin y = x$.

 $y = \cos^{-1} x$ is the number in $[0, \pi]$ for which $\cos y = x$.

 $y = \tan^{-1} x$ is the number in $(-\pi/2, \pi/2)$ for which $\tan y = x$.

 $y = \cot^{-1} x$ is the number in $(0, \pi)$ for which $\cot y = x$.

 $y = \sec^{-1} x$ is the number in $[0, \pi/2) \cup (\pi/2, \pi]$ for which $\sec y = x$.

 $y = \csc^{-1} x$ is the number in $[-\pi/2, 0) \cup (0, \pi/2]$ for which $\csc y = x$.

Table 1. Derivative formulae for inverse trigonometric functions

f	f'	f	f'
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$	$\cot^{-1} x$	$-\frac{1}{1+x^2}$
$\int \sec^{-1} x$	$\frac{1}{ x \sqrt{x^2-1}}$	$\int \csc^{-1} x$	$-\frac{1}{ x \sqrt{ x ^2-1}}$

Ex. Derivative of $\sin^{-1} x$. $\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, |x| < 1.$

Example 2. Find $\frac{d}{dx} (\sin^{-1} x^2)$.

[answer:
$$\frac{d}{dx} (\sin^{-1}(x^2)) = \frac{2x}{\sqrt{1-x^4}}$$
.]

Derivative of
$$\tan^{-1} x$$
. $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$.

Derivative of sec⁻¹
$$x$$
. $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1.$

Ex. From MML

FIGURE 5. graphs of $\sin^{-1} x$ and $\cos^{-1} x$

FIGURE 6. graphs of $\tan^{-1} x$ and $\cot^{-1} x$

FIGURE 7. graphs of $\sec^{-1} x$ and $\csc^{-1} x$

§3.10* Related Rates

Exercise 6. If $x = y^3 - y$ and dy/dt = 5, then what is dx/dt when y = 2?

Exercise 10. If $r + s^2 + v^3 = 12$, dr/dt = 4, and ds/dt = -3, find dv/dt when r = 3 and s = 1.