

Implementing and Improving Traditional Computer Vision Algorithms using DNN Techniques

Overview

- Introduction
- Mapping traditional vision to deep learning primitives
- Traditional vision to learning-based vision

Imagination: A global technology leader

A technology powerhouse for multimedia and communications IP

Developing innovative IP

- PowerVR GPU: leader in graphics & compute
- PowerVR Vision & AI: dedicated IP for vision & AI
- Ensigma: connectivity and broadcast communications IP

Delivering exceptional service

- Enabling very fast time to market
- Enabling customers to leverage IP to maximise differentiation

Driving major markets

- Helping our partners to create successful solutions
- Influencing new and emerging opportunities
- Showcasing and proving our technology with real products

Products

- More than 10bn units shipped
- Over 3m per day
- Around 1.2bn in past year

People

- HQ in UK
- >800 people world-wide
- >80% of staff are engineers

Introduction

- Traditional vision -> deep learning
- Significant investment in traditional vision
 - Expect to move over to deep learning for some or all algorithms
- Choices today when designing or selecting silicon
 - Optimise for deep learning
 - Optimise for traditional vision
 - Increased cost to provide dedicated support for both
- Programmable solutions available do not 'solve' the problem
 - Still need to make a choice about priorities

Traditional Vision v Deep Learning

- Traditional Vision
 - > 30 years investment by industry
 - Often good enough for specific tasks
 - Proven, mature and understood
 - Diverse set of primitive operations
 - Lots of algorithmic secretsauce

- Deep Learning
 - Huge investment over past 3-4 years
 - State-of-the-art for many tasks
 - New model development takes investment
 - Relatively small set of basic primitives
 - Although increasing

Processors for Embedded Vision

Processors for Embedded Vision

Deep Learning Primitives

- DNN primitives
 - Convolution
 - Deconvolution
 - Fully Connected
 - Activation
 - Pooling
 - Tensor Operations
 - Normalisation

Supported by DNN processors

- Expressing traditional vision using DL primitives
 - Run on DNN processor

Binary Morphological Operator - Dilate

Binary Morphological Operator - Dilate

2x Bilinear Up-Scaling

Make use of deconvolution primitives

Convolution with stride = 2

2x Bilinear Up-Scaling

Make use of deconvolution primitive

Deconvolution with scaling factor = 2

2x Bilinear Up-Scaling

Linear upscale with scaling factor = 2

2x Bilinear Up-Scaling

2D linear upsample filter with scaling factor = 2

Histogram

Histogram

Convolution, activation and pooling

Histogram

Convolution, activation and pooling

Histogram

Convolution, activation and pooling Histogram Convolution h bins 1x1x1xh filters Activation b_0 **Pooling**

 b_2

Feature Descriptor: Brisk

BRISK sampling positions

- Well-known & widely used binary image feature descriptor
- Good example of traditional vision
 - Hand designed, based on insights and intuition
- Defined 60 samples around feature point
- Set of 512 'short-distance' pairs defined S

$$B = \{b_{ij}\}, b_{ij} = \begin{cases} 1, I(p_i) > I(p_j) \\ 0, \text{ otherwise} \end{cases}$$

Generates a 512D patch descriptor

Feature Descriptor: Brisk

Express Brisk feature pairs as (sparse) matrix

$$\mathbf{\textit{D}} = \operatorname{sigmoid} \left(\begin{bmatrix} 1 & 0 & \cdots & -1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} \mathbf{\textit{I}}(p_1) \\ \mathbf{\textit{I}}(p_2) \\ \vdots \\ \mathbf{\textit{I}}(p_{60}) \end{bmatrix} \right)$$

- Map to DNN primitives
 - Fully connected (matrix-vector multiply)
 - Activation

Learning a better descriptor

Set up a trainable weight matrix

$$D = \operatorname{sigmoid} \left(\begin{bmatrix} w_{1,1} & \cdots & w_{1,60} \\ \vdots & \ddots & \vdots \\ w_{512,1} & \cdots & w_{512,60} \end{bmatrix} \begin{bmatrix} I(p_1) \\ I(p_2) \\ \vdots \\ I(p_{60}) \end{bmatrix} \right), \quad \downarrow^{p_1} NN$$

- Use triplet-loss to simultaneously
 - Maximise distance between different patches
 - Minimise distance between same patches
- Use HPatches dataset

Feature Descriptor: Brisk

Results: HPatches (Easy)

Example learnt 'features'

Summary

- Deep learning defines a set of basic primitives
- Traditional computer vision can be enabled in a deep learning world by exploiting these primitives
- Traditional vision algorithms can then be used as a starting point for learning
 - Leverage existing investment
 - Provides a path to take incremental steps into learning

Resources

- PowerVR Blog
 - https://www.imgtec.com/blog/
- Traditional Vision
 - Computer Vision: Algorithms and Applications (Richard Szeliski)
 - http://szeliski.org/Book/
- Other Reading
 - http://zbigatron.com/has-deep-learning-superseded-traditional-computer-vision-techniques/

