CSCI E-82a Probabilistic Programming and Al Introduction

Steve Elston

Why Probabilistic AI?

The common theme of this course is making optimal decisions in complex and uncertain environments

- Intelligent agents must interact with a complex world
- Complex environments lead to uncertainty
- Agents require algorithms that deal with uncertainty
- Probabilistic models, such as Bayesian models and Markov decision processes (MDP), allow us to address these problems

Why Probabilistic AI?

Intelligent agent interacts with uncertain environment

- Information from the environment is incomplete and prone to errors
- Agent must take optimal actions given uncertain information

The Intelligent Agent

Fundamental functions of a probabilistic intelligent agent

- Representation: A good representation is often the key to good machine intelligence. A good representation is a mapping of the model and the environment. Good representation is key to effective AI!
- Representations are often approximate given high complexity of real world

Representation

The Intelligent Agent

Fundamental functions of a probabilistic intelligent agent

- Inference or Reasoning: The process of computing actions or decisions from queries of the model given the evidence. In the simplest form a query returns a mathematical result, such as the marginal probability distribution or the maximum a posteriori value.
- Reasoning computes a specific action which is applied to the environment.

The Intelligent Agent

Fundamental functions of a probabilistic intelligent agent

 Learning: The agent performs learning using data or evidence to update the model. The evidence is observed by sensors which provide information to the model on the state of the environment

Uncertainty in the Environment

Agent must navigate to destination

- Plans optimal route
- How much does the traffic volume change?
- Does the plan account for road repair?
- Does an accident block a route?
- In other words, which decisions are required to minimize travel time?
- Poor response to unexpected information is known a brittleness in a model

Uncertainty in the Environment

Integrate sensors for collision avoidance in self-driving car

- Sensors have different range and accuracy
- How are sensors affected by fog, rain or darkness?
- How accurate is traffic sign recognition?
- What is the response of each sensor to snow and ice covered roads?
- In other words, what is the posterior probability that a change in speed or direction is required?

Uncertainty in the Environment

Unobservable information adds to uncertainty

- The intentions of other drivers
- The cards held by other players in a game of poker
- The spot price of wheat in the future
- Net result is incomplete information

Probabilistic Reasoning Recognized as Fundamental Method

Check out videos: https://amturing.acm.org/award_winners/pearl_2658896.cfm

About Your Instructor

- Principle Consultant at Quantia Analytics
- Instructor, Harvard Extension School, University of Washington
- MS and PhD in Geophysics from Princeton University
- Work in machine learning starting in 1980s
- Co-founded analytics businesses
- Worked in a number of areas:
 - Capital markets risk
 - Image analysis
 - Fraud detection
 - Forecasting
 - Failure prediction

About Your Teaching Fellow

- Sarah Asano asano.sar@gmail.com
- Electro-Optical Engineer, Lockheed Martin, Sunnyvale, California
- MS Robotics, Carnegie Mellon University
- BS Mechanical Engineering, California Institute of Technology
- Experience in:
 - App development
 - Game development
 - Internet of things
 - Embedded systems
 - Robots

Focus on two different classes of probabilistic algorithms

- Graphical models
 - Computationally efficient method to compute posterior probabilities distributions
 - Sequential decision models
 - Explainable models
- Reinforcement learning algorithms
 - Agent learns by experience
 - Model free
 - Learn policy for complex and stochastic environment
- Models related through Markov Decision Processes (MDP)

Grading is based on hands on work and class participation

- Homework assignments 70%
 - Assignment most weeks
 - Focus on hands-on coding
 - Read directions carefully and answer all questions; don't miss points!
- On campus weekend 30%
 - 9am 5 pm Dec 7-8. You must attend the entire session for course credit!
 - Meet at one Braddle Square, Cambridge
 - Team challenges
 - Book rooms, etc. early

Course participation

- Your participation important to get maximum value from this course!
 - Students who attend lection and sections tend to do better.
- On-line lecture Wednesdays 5:50 7:50 pm US Eastern Time
 - Lecture focused on theory
 - Lectures will be recorded
 - Please remind your instructor to record!!
- Section TBD
 - Section focused on code, questions and homework
 - Perhaps, some background supplement for theory

Text Books

- Readings are from two text books
- Both available at the Coop: https://tinyurl.com/300-F19-CSCI-E-82A-1
- Or free pdf downloads
 - Bayesian Reasoning and Machine Learning, Barber, 2012, Cambridge University Press: http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/091117.pdf
 - Reinforcement Learning, an introduction, Second edition, Sutton and Barto, 2018, MIT Press: https://mitpress.ublish.com/book/reinforcement-learning-an-introduction-2

Other reference sources I draw material from:

- Artificial Intelligence, A Modern Approach, Stuart Russell and Peter Norvig, Prentice Hall, Third edition, 2010
- Probabilistic Graphical Models, Principles and Techniques, Daphne Koller and Nir Freedman, MIT Press, 2009
- Decision Theory Under Uncertainty: Theory and Applications, Kochenderfer, et. al., MIT Press, 2015.
- Machine Learning: A Probabilistic Perspective, Murphy, MIT Press, 2012.
- Deep Learning, Ian Goodfellow, Yushua Bengio, and Arron Courville, MIT Press, 2016

Getting help with this course – essential component of class participation

- 1. Plan to attend the section
 - Bring your questions for class discussion
- 2. Use Piazza https://piazza.com/class#fall2019/cscie82a
 - Ask questions
 - Answer questions
- 3. Email Steve stephen.elston@quantia.com
 - Please only ask questions of a private nature; e.g. grading questions
 - Please direct general questions on course material and homework to the aforementioned venues – if you have a question, others likely will too!
- 4. Grading questions: email Sarah asano.sar@gmail.com

Course Materials

- Obtain course materials from course Github repository
 - https://github.com/StephenElston/CSCI E 82A Probabalistic Programming
 - Course material will be updated regularly plan on doing a pull regularly
- Homework assignments will be at: <u>https://github.com/StephenElston/CSCI_E_82A_Probabalistic_Programming/Homework</u>
- Submit completed homework and receive grades in Canvas

First Assignments

- Homework 0 Self-paced
 - Review of probability concepts In Github repository
 - Not graded
 - Decide if this class is for you!
- Homework 1 Directed graphical models
 - Due September 18 at 24:00 (midnight) US Eastern Time