

Lecture 2: Graph Review

CSC 226: Algorithms and Data Structures II

What is a graph?

A graph G = (V, E) consists of

- a set **V** of **vertices** (nodes)
- a collection **E** of pairs of vertices from **V** called **edges** (arcs)

Example of a graph:

$$V = \{a, b, c, d, e\}$$

$$E = \begin{cases} \{a, b\}, \{a, b\}, \{a, c\}, \\ \{b, c\}, \{b, d\}, \\ \{c, d\}, \{c, e\}, \\ \{e, e\} \end{cases}$$

Undirected Edges

An **undirected edge** $oldsymbol{e}$ represents a **symmetric** relationship between vertices $oldsymbol{u}$ and $oldsymbol{v}$

- We write $e = \{u, v\}$, where $\{u, v\}$ is an unordered pair
- $oldsymbol{u}$ and $oldsymbol{v}$ are the **endpoints** of the edge
- u is adjacent to v & \vee is adjacent b \vee
- e is **incident** to u and v
- The **degree** of a vertex is the number of incident edges e.g. deg(u) = 4, deg(v) = 2

- Parallel edges (multi-edges): more than one edge between pairs of vertices e.g. ${\it f}$ and ${\it g}$
- **Self-loop**: edge that connects a vertex to itself e.g. h is a self loop. Note that deg(w) = 3. Self-loop alds two degrees to a node.
- Usually, we denote the number of vertices by n and the number of edges by m

Undirected Paths

A **walk** in a graph is a sequence of vertices $v_1, v_2, ..., v_k$ such that there exist edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{k-1}, v_k\}$ and a connection between $v_k \in V_k$.

- The **length** of a walk is the number of edges
- If $v_1 = v_k$, the walk is **closed**. Otherwise, it is **open**.

- If no edge is repeated, it is a **trail**.
- A closed trail is a circuit.

a, b, c, d, b, e, c

- If no vertex is repeated, it's a path.
- A **cycle** is a path with the same start and end vertices

Walk: A connection between two nodes V1 and Vk.
Closed Walk: Starting and ending node is the same.
Open Walk: Starting and ending nodes are different.

Trail: No repented edge.

Circuit: A closed trail. No repeated edge and starting node = ending node.

Pash: No repeated vertex.

Cycle: A closed path. No repeated vertex except starting node = ending node.

Connected Graphs

A graph is **connected** if every pair of vertices is connected by a path

Example:

Connected graph

Example:

- **Disconnected** graph
- Two connected components

Simple Graphs

A simple graph is a graph with no self-loops and no parallel / multi-edges

Not a simple graph:

Simple graph:

For the most part, we will only be working with simple graphs in this course.

A lot of algorithms only work on simple graphs-

Simple Graphs

A simple graph is a graph with no self-loops and no parallel / multi-edges

Theorem: If G = (V, E) is a graph with m edges, then

$$\sum_{v \in V} \deg(v) = 2m$$

Theorem: Let G be a simple graph with n vertices and m edges. Then,

Max No. of edges =
$$\frac{n(n-1)}{2}$$
 since $m \leq \frac{n(n-1)}{2}$ each node can be connected to all other nodes and this goes on. If n=5, 5+4+3+2+1.

Corollary: A simple graph with n vertices has $O(n^2)$ edges.

Complete Graphs

A complete graph is a simple graph where every pair of vertices is connected by an edge

- The complete graph on n vertices has exactly $\frac{n(n-1)}{2}$ edges
- The complete graph on n vertices with one self-loop per vertex has exactly $\frac{n(n+1)}{2}$ edges

Subgraphs

A subgraph of G = (V, E) is a graph G' = (V', E') where

- V' is a subset of V
- $\emph{\textbf{E}}'$ consists of edges $\{\emph{\textbf{u}},\emph{\textbf{v}}\}$ in $\emph{\textbf{E}}$ such that both $\emph{\textbf{u}}$ and $\emph{\textbf{v}}$ are in $\emph{\textbf{V}}'$

A spanning subgraph G' of G contains all vertices of G

Trees and Forests

A (free) tree is an undirected graph T such that

- T is connected
- T has no cycles

A **rooted tree** is a tree where one vertex is designated as the root

A forest is an undirected graph without cycles (collection of disconnected trees)

• The connected components of a forest are trees

Spanning Trees and Forests

A **spanning tree** of a connected graph is a spanning subgraph that is a tree

• A spanning tree is not unique unless the graph is a tree

A **spanning forest** of a graph is a spanning subgraph that is a forest

Properties of Graphs, Trees, and Forests

Theorem: Let G be an undirected simple graph with n vertices and m edges. Then have the following:

• If G is connected, then $m \ge n-1$. But if m=n-1, does not grantee it is connected.

• If G is a **tree**, then m = n - 1

$$n = 5$$

$$m = 4$$

• If G is a **forest**, then $m \le n-1$

$$n = 5$$

$$m = 4$$

Number of Possible Spanning Subgraphs

How many possible **spanning subgraphs** are there for a given graph? $= 2^n$

• Since all vertices must be included in the subgraph, we only have a "choice" about which edges to include

$$G = \bigcirc$$
 : \bigcirc , \bigcirc $m = 1$ $2^1 = 2$ possibilities

$$G = \begin{bmatrix} m & 2 \\ 2^2 & 4 \end{bmatrix}$$
 ; $m = 2$ $2^2 = 4$ possibilities

Number of Possible Subgraphs

How many possible **subgraphs** are there for a given graph?

• We choose which vertices to include **and** which edges to include between those vertices

Graph Representation: Set of Edges

Maintain a list of edges (array or linked list)

Each edge pair is only stored once.

- Also have to store a separate list of vertices since some vertices have no edges
- Simple representation, but can be inefficient (e.g. traversal algorithms)
- To find all the vertices adjacent to a vertex, need to look through the entire list of edges (O(m))
 - E.g. DFS will take $\mathbf{0}(n \cdot m)$ time with this representation

Graph Representation: Adjacency Matrix

Maintain a **2-dimensional** $n \times n$ boolean array

• For each edge $\{u, v\}$, adj[u][v] = adj[v][u] = true (1)

	0	1	2	3	4	5	6
0	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
2	1	0	0	0	0	0	0
3	1	1	0	0	1	0	0
4	0	0	0	1	0	0	0
5	0	0	0	0	0	0	1
6	0	0	0	0	0	1	0

- To find the vertices adjacent to a vertex, we need to look at a row in the matrix (O(n))
 - Slightly more efficient than the edge list representation since there could be many more edges than there are vertices
 - e.g. DFS will take $O(n^2)$ time with this representation
- Best representation for querying if two vertices are adjacent ($m{o}(\mathbf{1})$)
- Requires a lot of storage space ($m{O}(n^2)$), but good representation for dense graphs (many edges)

Graph Representation: Adjacency List

Maintain an array indexed by vertices which points to a list of adjacent vertices

- Commonly used representation since it is the most efficient for most graphs nodes, so O(n+m) & not O(m)
- If the graph is sparse, the space required (O(n+m)) is strictly less than the adjacency matrix representation
- To find the vertices adjacent to a vertex v, only takes $O(\deg(v))$ time
 - Faster than both previous representations
 - Adjacency lists are best for algorithms which involve finding all adjacent vertices
- DFS will take O(n + m) time with this representation

Depth First Search (DFS)

DFS(G,u):

Input: Graph G and vertex u of G

Output: Labeling of edges in the connected component as discovery edges and back edges

Label u as explored

for each edge $oldsymbol{e}$ incident to $oldsymbol{u}$ do

if *e* is unexplored **then**

 $v \leftarrow$ other endpoint of e

if v is unexplored **then**

Label *e* as an explored *discovery* edge

DFS(G, v)

else

Label e as an explored back edge

Depth First Search (DFS)

```
DFS (G, u):
```

Input: Graph $\emph{\textbf{G}}$ and vertex $\emph{\textbf{u}}$ of $\emph{\textbf{G}}$

Output: Labeling of edges in the connected component as discovery edges and back edges

Label ${\it u}$ as explored

for each edge ${\it e}$ incident to ${\it u}$ do

if *e* is unexplored **then**

 $v \leftarrow$ other endpoint of e

if v is unexplored **then**

Label *e* as an explored *discovery* edge

DFS(G, v)

else

Label ${m e}$ as an explored back edge

DFS Tree

- **Discovery edges** lead to unvisited nodes in the traversal and form a spanning tree
- **Back edges** go from nodes to one of its ancestors in the traversal discovery spanning tree

Breadth First Search (BFS)

BFS(G,u):

```
Input: Graph G and vertex u of G
Output: Labeling of edges in the connected component as discovery edges and cross edges
Q \leftarrow new empty queue
Label u as explored
\boldsymbol{Q}.enqueue(\boldsymbol{u})
while Q is not empty do
     \boldsymbol{u} \leftarrow \boldsymbol{Q}.dequeue()
     for each edge e = \{u, v\} incident to u do
           if e is unexplored then
                if v is unexplored then
                      Label e as an explored discovery edge
                      Mark \boldsymbol{v} as explored
                      oldsymbol{Q}.enqueue(oldsymbol{v})
                else
                      Label \boldsymbol{e} as an explored cross edge
```


Breadth First Search (BFS)

BFS(G,u):

```
Input: Graph G and vertex u of G
Output: Labeling of edges in the connected component as discovery edges and cross edges
Q \leftarrow new empty queue
Label u as explored
\boldsymbol{Q}.enqueue(\boldsymbol{u})
while Q is not empty do
     \boldsymbol{u} \leftarrow \boldsymbol{Q}.dequeue()
     for each edge e = \{u, v\} incident to u do
           if e is unexplored then
                if v is unexplored then
                      Label e as an explored discovery edge
                      Mark \boldsymbol{v} as explored
                      \boldsymbol{Q}.enqueue(\boldsymbol{v})
                else
                      Label \boldsymbol{e} as an explored cross edge
```


BFS Tree

- Discovery edges lead to unvisited nodes in the traversal and form a spanning tree
- Cross edges connect two nodes which do not have any ancestor and descendant relationship in the traversal discovery spanning tree

Directed Graphs (Digraphs)

A directed graph (digraph) is a graph whose edges are all directed

- Can implement undirected graphs using directed graphs
- Applications include one-way streets, flights, task scheduling

A **directed edge** $oldsymbol{e}$ represents an **asymmetric** relationship between two vertices $oldsymbol{u}$ and $oldsymbol{v}$

- We write e = (u, v) is an ordered pair
- $oldsymbol{u}$ and $oldsymbol{v}$ are the **endpoints** of the edge
- $oldsymbol{u}$ is **adjacent** to $oldsymbol{v}$ and vice versa
- e is **incident** to u and v
- u is the source vertex and v is the destination vertex

- The **indegree** of a vertex is the number of incoming edges (**indeg**(w) = 1)
- The **outdegree** of a vertex is the number of outgoing edges (**outdeg**(w) = 3)

Simple Digraphs

A simple digraph is a graph with no self-loops and no parallel / multi-edges

• Note that parallel edges in digraphs refer to edges pointing in the same direction

Theorem: If G = (V, E) is a digraph with m edges, then

$$\sum_{v \in V} \operatorname{indeg}(v) = \sum_{v \in V} \operatorname{outdeg}(v) = m$$

Theorem: Let G be a simple digraph with n vertices and m edges. Then,

$$m \leq n(n-1)$$

Corollary: A simple digraph with n vertices has $O(n^2)$ edges

$$\frac{n(n-1)}{2}$$
 edges

n(n-1) edges

Digraph Representation: Set of Edges

Maintain a list of directed edges (array or linked list)

(0, 1)
(0, 2)
(0,3)
(1,3)
(2,3)
(2,4)
(3,4)
(4,0)

• Also have to store a separate list of vertices since some vertices have no edges

Digraph Representation: Adjacency Matrix

Maintain a **2-dimensional** $n \times n$ boolean array

• For each directed edge (u, v), i.e $u \rightarrow v$, adj[u][v] = true(1)

		Destination							
		0	1	2	3	4			
Source	0	0	1	1	1	0			
	1	0	0	0	1	0			
	2	0	0	0	1	1			
	3	0	0	0	0	1			
	4	1	0	0	0	0			

• In undirected graphs, every edge appears twice. In directed graphs, each edge appears once.

Digraph Representation: Adjacency List

Maintain an array indexed by vertices which points to a list of adjacent vertices

• In undirected graphs, every edge appears twice. In directed graphs, each edge appears once.