Равномерна сходимост на редица от функции.

1. Да разгледаме редица от функции $f_n(x)$, дефинирани в множеството D. Нека за всяко фиксирано $x \in D$, числовата редица $f_n(x)$ е сходяща. Да означим границата с f(x). Съгласно дефиницията на граница на редица за всяко $\varepsilon > 0$ съществува число N(x), такова че за всяко n > N(x) е изпълнено $|f(x) - f_n(x)| < \varepsilon$. Да обърнем внимание, че за различни x числото N(x) може да бъде различно.

При така дефинираната граница на редица от функции за свойствата на граничната функция не може да се каже нищо. Например всички функции $f_n(x)$ може да са непрекъснати, а граничната функция f(x) да не е непрекъсната.

2. Равномерна сходимост. Ще казваме, че редицата $f_n(x)$ е равномерно сходяща към f(x) в множеството D, ако за всяко $\varepsilon > 0$ съществува число N (не зависещо от x), такова че за всяко n > N е изпълнено $|f(x) - f_n(x)| < \varepsilon$ за всяко $x \in D$.

Да обърнем внимание, че равномерната сходимост зависи от множеството D.

3. Необходимо и достатъчно условия за равномерна сходимост. Редицата $f_n(x)$ клони равномерно към функцията f(x) тогава и само тогава, когато

$$\lim_{n\to\infty} \left(\sup_{x\in D} \left| f(x) - f_n(x) \right| \right) = 0.$$

Забележки.

- При търсене $\sup_{x \in D} |f(x) f_n(x)|$ на n е фиксирано число.
- Ако съществува $\max_{x \in D} \left| f(x) f_n(x) \right|$, то

$$\max_{\mathbf{x}\in D} \left| f(\mathbf{x}) - f_{\mathbf{n}}(\mathbf{x}) \right| = \sup_{\mathbf{x}\in D} \left| f(\mathbf{x}) - f_{\mathbf{n}}(\mathbf{x}) \right|.$$

4. Ако редицата $f_n(x)$ е равномерно сходяща към f(x) и функциите $f_n(x)$ са непрекъснати в D, то и функцията f(x) е непрекъсната.

Ясно е, че ако f(x) не е непрекъсната, то редицата не е равномерно сходяща.

Задача 1. Да се изследва равномерната сходимост на редицата

- а) $f_n(x) = x^n$ в интервала $0 \le x \le 1$;
- б) $f_n(x) = x^n$ в интервала $0 \le x < 1$;
- в) $f_n(x) = x^n$ в интервала $0 \le x \le \frac{1}{2}$;
- г) $f_n(x) = x^n x^{n+1}$ в интервала $0 \le x \le 1$.

Решение. а) При $0 \le x < 1$ (x е фиксирано) $x^n \to 0$, а $1^n \to 1$, т. е. граничната функция е $f(x) = \begin{cases} 0 & \text{при } x \in [0;1) \\ 1 & \text{при } x = 1 \end{cases}$. Тази функция е прекъсната в т. 1 и следователно редицата не е равномерно сходяща.

б) Граничната функция е f(x)=0 при $x \in [0;1)$. В този случай граничната функции е непрекъсната 1 в цялото множество, но това не дава никаква информация за сходимостта на редицата. Разглеждаме $\sup_{x \in [0;1)} |f(x)-f_n(x)|$ (n е фиксирано):

$$\sup_{x \in [0;1)} |f(x) - f_n(x)| = \sup_{x \in [0;1)} |x^n| = \sup_{x \in [0;1)} x^n = 1$$

$$\lim_{n \to \infty} \left(\sup_{x \in D} |f(x) - f_n(x)| \right) = \lim_{n \to \infty} 1 = 1.$$

Съгласно условието за равномерна сходимост, редицата не е равномерно сходяща.

в) Граничната функция е f(x) = 0 при $x \in \left[0; \frac{1}{2}\right]$. Разглеждаме $\sup_{x \to [0;1)} \left| f(x) - f_n(x) \right|$ (n е фиксирано):

$$\sup_{x \in [0; \frac{1}{2}]} |f(x) - f_n(x)| = \max_{x \in [0; \frac{1}{2}]} |f(x) - f_n(x)| = \max_{x \in [0; \frac{1}{2}]} x^n = \frac{1}{2^n}.$$

$$\lim_{n\to\infty} \left(\sup_{x\in D} \left| f(x) - f_n(x) \right| \right) = \lim_{n\to\infty} \frac{1}{2^n} = 0.$$

Редицата е равномерно сходяща.

в) При $0 \le x < 1$ имаме (x фиксирано) $\lim_{n \to \infty} (x^n - x^{n+1}) = 0 - 0 = 0$ и

$$\lim_{n\to\infty} (1^n - 1^{n+1}) = 1 - 1 = 0.$$

Граничната функция е f(x) = 0 при $x \in [0;1]$.

— При фиксирано n търсим най-голямата стойност на 0 n + 1 функцията

$$\varphi(x) = |f_n(x) - f(x)| = |x^n - x^{n+1}| = x^n - x^{n+1} \text{ при } x \in [0;1].$$

Производната
$$\varphi'(x) = nx^{n-1} - (n+1)x^n = (n+1)x^{n-1}(\frac{n}{n+1}-x)$$
 е

положителна при $0 \le x < \frac{n}{n+1}$ — следователно $\varphi(x)$ е растяща и

отрицателна при $\frac{n}{n+1} < x \le 1$ – следователно $\varphi(x)$ е намаляваща.

С това показахме, че

$$\left(\sup_{x\in[0,1]} |f(x)-f_n(x)|\right) = \max_{x\to[0,1]} \varphi(x) = \varphi(\frac{n}{n+1}) = (\frac{n}{n+1})^n - (\frac{n}{n+1})^{n+1} = (\frac{n}{n+1})^n (1-\frac{n}{n+1}) = \frac{1}{n+1} \cdot (\frac{n}{n+1})^n.$$

Оттук получаваме

$$\lim_{n \to \infty} \left(\sup_{x \in D} |f(x) - f_n(x)| \right) = \lim_{n \to \infty} \left(\max_{x \in [0;1)} \varphi(x) \right) = \lim_{n \to \infty} \frac{1}{n+1} \cdot \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} \frac{1}{n+1} \cdot \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^n} = 0 \cdot \frac{1}{e} = 0$$

Следователно редицата е равномерно сходяща.

Задача 2. Да се изследва сходимостта на редицата $f_n(x) = \frac{nx}{1+n+x}$ при $0 \le x \le 1$.

Решение. При всяко фиксирано
$$x$$
 имаме $f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{n}+1+\frac{x}{n}} \xrightarrow{n\to\infty} x$.

Граничната функция е f(x) = x при f(x) = x.

Нека сега n е фиксирано.

$$\sup_{x \in [0:1]} |f(x) - f_n(x)| = \max_{x \in [0:1]} \left| x - \frac{nx}{1 + n + x} \right| = \max_{x \in [0:1]} \left| \frac{x + x^2}{1 + n + x} \right| = \max_{x \in [0:1]} \frac{x + x^2}{1 + n + x}.$$

— Разглеждаме функцията $\varphi(x) = \frac{x + x^2}{1 + n + x}$ в $x \in [0;1]$ (фиксирано n). Имаме

$$\varphi'(x) = \frac{(1+2x)(1+n+x)-(x+x^2)}{(1+n+x)^2} = \frac{x^2+(2n+2)x+n+1}{(1+n+x)^2} \ge 0.$$

Функцията $\varphi(x) = \frac{x + x^2}{1 + n + x}$ е растяща в $x \in [0;1]$. Тогава

$$\sup_{x \in [0,1]} |f(x) - f_n(x)| = \max_{x \in [0,1]} \frac{x + x^2}{1 + n + x} = \varphi(1) = \frac{2}{2 + n}.$$

Оттук

$$\lim_{n\to\infty} \left\{ \sup_{x\in D} \left| f(x) - f_n(x) \right| \right\} = \lim_{n\to\infty} \left[\max_{x\in [0;1)} \varphi(x) \right] = \lim_{n\to\infty} \frac{2}{2+n} = 0.$$

Следователно редицата $f_n(x) = \frac{nx}{1+n+x}$ е равномерно сходяща при $0 \le x \le 1$.

Задача 3. Да се изследва сходимостта на редицата

- a) $f_n(x) = \operatorname{arctg} nx \text{ B } (0; \infty);$
- б) $f_n(x) = \operatorname{arctg} nx$ в $(1; \infty)$;
- в) $f_n(x) = x \arctan nx$ в $(0; \infty)$.

Решение. a) При всяко фиксирано x от $(0;\infty)$ имаме $f_n(x) = \arctan nx \to \frac{\pi}{2}$.

Граничната функция е $f(x) = \frac{\pi}{2}$ при $(0,\infty)$.

Разглеждаме $\varphi(x) = \frac{\pi}{2} - \arctan nx$ при фиксирано n и $x \in (0, \infty)$.

От $\varphi'(x) = -\frac{n}{1 + n^2 x^2} < 0$ следва, че $\varphi(x) = \frac{\pi}{2} - \arctan n x$ е намаляваща в $x \in (0, \infty)$ и

следователно $\sup_{0 < x < \infty} |f(x) - f_n(x)| = \sup_{0 < x < \infty} \left| \frac{\pi}{2} - \operatorname{arctg} nx \right| = \varphi(0) = \frac{\pi}{2}.$

Оттук
$$\lim_{n\to\infty} \left(\sup_{x\in D} \left| f(x) - f_n(x) \right| \right) = \lim_{n\to\infty} \left[\sup_{0 < x < \infty} \left| \frac{\pi}{2} - \operatorname{arctg} nx \right| \right] = \lim_{n\to\infty} \frac{\pi}{2} = \frac{\pi}{2} \neq 0.$$

Следователно редицата $f_n(x) = \operatorname{arctg} nx$ не е равномерно сходяща в $(0,\infty)$.

б) При всяко фиксирано x от $(1;\infty)$ имаме $f_n(x) = \arctan nx \to \frac{\pi}{2}$.

Граничната функция е $f(x) = \frac{\pi}{2}$ при (1; ∞).

Разглеждаме $\varphi(x) = \frac{\pi}{2} - \arctan nx$ при фиксирано n и $x \in (0, \infty)$.

От $\varphi'(x) = -\frac{n}{1+n^2x^2} < 0$ следва, че $\varphi(x) = \frac{\pi}{2} - \arctan nx$ е намаляваща в $x \in (1,\infty)$ и следователно

$$\sup_{1 < x < \infty} |f(x) - f_n(x)| = \sup_{1 < x < \infty} \left| \frac{\pi}{2} - \arctan nx \right| = \max_{1 < x < \infty} \left(\frac{\pi}{2} - \arctan nx \right) = \varphi(1) = \frac{\pi}{2} - \arctan n.$$

Оттук
$$\lim_{n\to\infty} \left[\sup_{x\in D} |f(x)-f_n(x)| \right] = \lim_{n\to\infty} \left[\sup_{1< x<\infty} \left| \frac{\pi}{2} - \operatorname{arctg} nx \right| \right] = \lim_{n\to\infty} \left(\frac{\pi}{2} - \operatorname{arctg} n\right) = \frac{\pi}{2} - \frac{\pi}{2} = 0$$
.

Следователно редицата $f_n(x) = \arctan nx$ е равномерно сходяща в $(1;\infty)$.

в) При всяко фиксирано x от $(0,\infty)$ имаме $f_n(x) = x \arctan nx \to \frac{\pi x}{2}$.

Граничната функция е $f(x) = \frac{\pi x}{2}$ при $(0,\infty)$.

Разглеждаме $\varphi(x) = \frac{\pi x}{2} - x \arctan nx$ при фиксирано n и $x \in (0,\infty)$.

Нека $\varphi(x) = \frac{x\pi}{2} - x \arctan nx = (\frac{\pi}{2} - \arctan nx)x = \frac{1}{n}(\frac{\pi}{2} - \arctan nx)nx = \frac{1$

$$\psi'(t) = \frac{\pi}{2} - \operatorname{arctg} t - \frac{t}{1+t^2} \quad \text{if}$$

$$\psi''(t) = -\frac{1}{1+t^2} - \frac{1+t^2-t \cdot 2t^2}{(1+t^2)^2} = \frac{-1-t^2-1+t^2}{(1+t^2)^2} = \frac{-2}{(1+t^2)^2}.$$

Тъй като $\psi''(t)$ < 0, то функцията $\psi'(t) = \frac{\pi}{2} - \arctan t - \frac{t}{1+t^2}$ е намаляваща в $t \in [0,\infty)$ или

$$\psi'(0) \ge \psi'(t) \ge \lim_{t \to \infty} \psi'(t) = \lim_{t \to \infty} (\frac{\pi}{2} - \operatorname{arctg} t - \frac{t}{1+t^2}) = \frac{\pi}{2} - \frac{\pi}{2} + 0 = 0.$$

Функцията $\psi'(t) = \frac{\pi}{2} - \operatorname{arctg} t - \frac{t}{1+t^2}$ приема само положителни стойности.

Следователно функцията $\psi(t) = (\frac{\pi}{2} - \operatorname{arctg} t)t$ е растяща. Оттук

$$0 \le \psi(t) = (\frac{\pi}{2} - \operatorname{arctg} t)t < \lim_{t \to \infty} (\frac{\pi}{2} - \operatorname{arctg} t) = \sup_{0 \le t < \infty} \psi(t).$$

За да намери границата $\lim_{t\to\infty} (\frac{\pi}{2} - \operatorname{arctg} t)t = \lim_{t\to\infty} \frac{\frac{\pi}{2} - \operatorname{arctg} t}{\frac{1}{t}}$ ще приложим теоремата

на Лопитал за $\frac{0}{0}$ (проверете): От $\frac{-\frac{1}{1+t^2}}{-\frac{1}{t^2}} = \frac{t^2}{t^2+1} \underset{t \to \infty}{\longrightarrow} 1$ следва $\lim_{t \to \infty} (\frac{\pi}{2} - \operatorname{arctg} t)t = 1$ или

$$\lim_{t\to\infty}(\frac{\pi}{2}-\arctan t)=\sup_{0\leq t<\infty}\psi(t)=1$$

И така

$$\sup_{0 < x < \infty} \left| f(x) - f_n(x) \right| = \sup_{0 < x < \infty} \left| \frac{x\pi}{2} - x \arctan nx \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \frac{\pi nx}{2} - nx \arctan nx \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right) t \right| = \frac{1}{n} \sup_{0 < x < \infty} \left| \left(\frac{\pi}{2} - \arctan t \right)$$

$$\lim_{n\to\infty} \left(\sup_{0\le x<1} |f(x) - f_n(x)| \right) = \lim_{n\to\infty} \frac{1}{n} = 0$$

Редицата $f_n(x) = x \arctan nx \rightarrow \frac{\pi x}{2}$ равномерно.

Задача 3. (За домашна работа) Изследвайте за равномерна сходимост редиците

a)
$$f_n(x) = \frac{x}{1 + n^2 x}$$
 B [0;1];

6)
$$f_n(x) = \frac{\sin nx}{n} x \in R;$$

B)
$$f_n(x) = \sin \frac{x}{n}$$
, $x \in R$;

$$f_n(x) = x^n - x^{2n} B[0;1].$$