EEE 51 Assignment 2

2nd Semester SY 2018-2019

Due: 5pm Tuesday, February 12, 2019 (Rm. 220)

Instructions: Write legibly. Show all solutions and state all assumptions. Write your full name, student number, and section at the upper-right corner of each page. Start each problem on a new sheet of paper. Box or encircle your final answer.

Answer sheets should be color coded according to your lecture section. The color scheme is as follows:

THQ – yellow THU – white WFX – pink

1. Common Collector/Emitter Follower Sziklai Pair.

Figure 1 shows a Sziklai pair used as an emitter follower. The capacitor C_C is just an AC coupling capacitor (open circuit at DC and shorted at AC, the value is irrelevant as of now). For both of the transistors Q_1 and Q_2 , $|V_{be,on}| = 0.65 \text{ V}$, $|V_{ce,sat}| = 0.2 \text{ V}$, and $|V_A| \to \infty$. Moreover, $\beta_1 = 50$ for Q_1 and $\beta_2 = 100$ for Q_2 . The transistors are biased such that the voltage at node B is $V_B = 1.85 \text{ V}$. Answer the following questions. **DO NOT ASSUME THAT I**_C = **I**_E. Round all of your answers to one (1) decimal place only and use the appropriate unit of measure.

Figure 1: Emitter Follower Sziklai Pair

- (a) Calculate the value of the base current of Q_1 I_{B1} and the emitter current of Q_2 I_{E2} . If I_{E2} is treated as the collector current of the transistor pair, what is the overall current gain β_{SZ} ? (3 pts)
- (b) Determine the value of the DC voltage at the output node. (1 pt)
- (c) Draw the small-signal model of the circuit. Label the transistor terminals, small-signal parameters, external resistors, and their values. (2 pts)
- (d) Find the values of the overall input resistance R_{IN} , transconductance G_M , gain A_V , and output resistance R_O of the whole emitter follower. You may draw additional schematics/diagrams to aid in your solutions. (4 pts)

2. Common Emitter Amplifier with Load.

Figure 2: Common Emitter with biasing

Assume T=300K when necessary. For the CE amplifier in fig. 2 with $V_{BE,on}=0.7V$, $V_{CE,sat}=0.7V$, $\beta=200$, $V_A=100V$, $R_B=95K\Omega$, $R_C=204\Omega$, and $R_L=794\Omega$:

- (a) Calculate the DC biasing parameters:
 - i. base current (I_B) (0.5 pt)
 - ii. collector current (I_C) (0.5 pt)
 - iii. output voltage (V_{OUT}) (1 pt)
- (b) Draw the small-signal model of the circuit. You may omit R_B . Label the values of each small-signal parameter, and component. (3 pts)
- (c) Compare (a) R_{O1} = parallel combination of r_o , R_C and R_L , with (b) R_{O2} = parallel combination of R_C and R_L . Would r_o significantly affect the effective resistance? How much error relative to R_{O1} would you get, if you simply used R_{O2} rather than R_{O1} to simplify your calculations? Express this number as a percentage. (1.5 pts)
- (d) Calculate the small-signal gain (v_{out}/v_{in}) (1 pt)
- (e) Sketch v_{out} from 0 ms to 2 ms for $v_{in} = 10sin(2\pi ft)$ mV with f = 1KHz. Label the peak voltages, axes, and units. (1.5 pts)
- (f) Should you expect the amplifier to work linearly, with the same gain for $v_{in} = 52sin(2\pi ft)$ mV, with f = 1KHz? Why or why not? Prove mathematically. [Hint: You may revisit the Taylor series expansion of i_C .] (1 pts)

3. MOS Common Source and Common Gate Cascode.

Figure 3: CS-CG Cascode

Consider the circuit shown above. For this problem, use $V_{DD}=3V$, $I_{D1}=I_{D2}=1mA$, $k_{M1}=6.7m\frac{A}{V^2}$, $k_{M2}=1.4m\frac{A}{V^2}$, $V_{TH1}=V_{TH2}=0.7V$, $\lambda_{M1}=\lambda_{M2}=0.1V^{-1}$ and $R_D=1.5k\Omega$. Express your answers to four (4) decimal places and use the appropriate unit of measure.

- (a) Determine the minimum voltage, V_x , needed to keep M1 in saturation. (1 pt)
- (b) Choose the bias voltage, V_b such that M1 is 50mV away from the linear region of operation. (1 pt)
- (c) Draw the small-signal equivalent model of the circuit. Label the transistor terminals, the transistor small-signal parameters and their values. (2 pts)
- (d) Calculate for the overall transconductance, G_m , and output impedance, R_{out} . (5 pts)
- (e) Calculate the small-signal voltage gain. (1 pt)

TOTAL: 30 points.