Cálculo de Probabilidades II — Febrero 2019 — Primera semana

Cuestión (2 puntos). Dar la definición de independencia de las variables aleatorias X_1, X_2, \ldots, X_n . Enunciar una caracterización de independencia de estas variables aleatorias en términos de funciones características.

Ejercicio 1 (4 puntos). Dados $n \ge 1$ y $\lambda > 0$, se dice que la variable aleatoria X tiene distribución exponencial $\exp(\lambda)$ cuando su función de densidad es $\lambda e^{-\lambda x}$ para $x \ge 0$; y distribución gamma $\gamma(n,\lambda)$ cuando su función de densidad es $\lambda^n e^{-\lambda x} x^{n-1}/(n-1)!$ para $x \ge 0$. Sean $\{X_i\}_{i\ge 1}$ variables aleatorias independientes con distribución $\exp(\lambda)$.

- (a) Demostrar por inducción que, para todo $n \geq 1$, la variable $X_1 + \ldots + X_n$ tiene distribución $\gamma(n, \lambda)$.
- (b) Sea N una variable aleatoria independiente de $\{X_i\}_{i\geq 1}$ y con distribución geométrica de parámetro p, con 0 , es decir,

$$P{N = n} = (1 - p)^{n-1}p$$
 para $n = 1, 2, ...$

Probar que $Y = X_1 + \ldots + X_N$ tiene distribución $\exp(\lambda p)$.

Ejercicio 2 (4 puntos). El número de personas N que acuden a lo largo de un día a una horchatería tiene distribución geométrica de parámetro p. La cantidad de horchata (en litros) que compra un cliente genérico tiene distribución $\exp(\lambda)$. Al principio del día, el dueño de la horchatería tiene en su cámara frigorífica un volumen C > 0 de horchata. Las variables aleatorias $\{X_i\}_{i\geq 1}$ y N son independientes.

- (a) Calcular el valor esperado E[Z] de la cantidad de horchata Z que se vende a lo largo de un día.
- (b) El dueño del negocio tiene los siguientes gastos e ingresos:
 - compra la horchata a un mayorista al precio de $\beta \in$ por litro;
 - la horchata que sobra al final del día es retirada por un gestor de residuos, que cobra al dueño una cantidad de $\delta \in /\ell$;
 - el dueño vende la horchata a sus clientes a un precio de $\alpha \in /\ell$.

Determinar el beneficio esperado del dueño del negocio a lo largo de un día y probar que el valor de C que maximiza este beneficio es

$$C^* = \frac{1}{\lambda p} \cdot \log \frac{\alpha + \delta}{\beta + \delta}.$$

Solución

Ejercicio 1. (a). El resultado es obvio para n=1. Supongamos que es cierto para un $n \ge 1$. Se considera el vector aleatorio

$$(Y,Z) = (X_1 + \ldots + X_n, X_{n+1}),$$

cuya función de densidad es, por la hipótesis de inducción,

$$f(y,z) = \frac{\lambda^n}{(n-1)!} y^{n-1} e^{-\lambda(y+z)}$$
 para $y \ge 0$ y $z \ge 0$.

La transformación $U=Y+Z,\,V=Z$ tiene como transformación inversa $Y=U-V,\,Z=V.$ Por tanto, la función de densidad de (U,V) es

$$g(u,v) = \frac{\lambda^n}{(n-1)!} (u-v)^{n-1} e^{-\lambda u}$$
 para $0 \le v \le u$.

La función de densidad marginal de U en el punto $u \geq 0$ es

$$\int_0^u \frac{\lambda^n}{(n-1)!} (u-v)^{n-1} e^{-\lambda u} dv = \frac{\lambda^{n+1}}{n!} e^{-\lambda u} u^n,$$

lo que prueba que $U = X_1 + \ldots + X_{n+1}$ tiene efectivamente distribución $\gamma(n+1,\lambda)$. (b) Dado $y \ge 0$ se tiene, para $n \ge 1$,

$$P\{Y \le y | N = n\} = P\{X_1 + \dots + X_n \le y\} = \int_0^y \frac{\lambda^n}{(n-1)!} e^{-\lambda x} x^{n-1} dx$$

puesto que $X_1 + \ldots + X_n$ tiene distribución $\gamma(n, \lambda)$. Por tanto,

$$P\{Y \le y\} = \sum_{n=1}^{\infty} (1-p)^{n-1} p P\{Y \le y | N = n\}$$

$$= \lambda p \sum_{n=1}^{\infty} (1-p)^{n-1} \int_{0}^{y} \frac{\lambda^{n-1}}{(n-1)!} e^{-\lambda x} x^{n-1} dx$$

$$= \lambda p \int_{0}^{y} e^{-\lambda x} \sum_{n=1}^{\infty} \frac{(\lambda x (1-p))^{n-1}}{(n-1)!} dx$$

$$= \lambda p \int_{0}^{y} e^{-\lambda p x} dx = 1 - e^{-\lambda p y}.$$

Esta función de distribución es precisamente la de una variable aleatoria $\exp(\lambda p)$.

Ejercicio 2. (a). La variable aleatoria Y definida en el Ejercicio 1 es la demanda total de horchata a lo largo de un día. Si $Y \leq C$ entonces la cantidad de horchata vendida es Y, mientras que si Y > C entonces la cantidad vendida es C. Por tanto,

$$Z = Y \cdot \mathbf{I}_{\{Y \le C\}} + C \cdot \mathbf{I}_{\{Y > C\}},$$

luego

$$E[Z] = E[Y \cdot \mathbf{I}_{\{Y \le C\}}] + C \cdot P\{Y > C\}.$$

Por un lado se tiene $P\{Y>C\}=e^{-\lambda pC}$ y, por otra parte,

$$E[Y \cdot \mathbf{I}_{\{Y \le C\}}] = \int_0^C y \cdot \lambda p e^{-\lambda p y} dy.$$

El valor de esta integral es

$$\int_0^C y \cdot \lambda p e^{-\lambda p y} dy = \frac{1}{\lambda p} \int_0^{\lambda p C} u e^{-u} du = \frac{1}{\lambda p} \Big(1 - (1 + \lambda p C) e^{-\lambda p C} \Big).$$

Operando se llega a

$$E[Z] = \frac{1}{\lambda p} \Big(1 - e^{-\lambda pC} \Big).$$

- (b). Los costes e ingresos del dueño del negocio son:
 - un gasto de βC por comprar la horchata;
 - \bullet un gasto de $\delta(C-Z)$ por la retirada de la horchata sobrante;
 - ullet un ingreso de αZ por la horchata vendida.

El beneficio es $(\alpha + \delta)Z - (\beta + \delta)C$, luego el beneficio esperado es

$$\frac{\alpha + \delta}{\lambda p} \left(1 - e^{-\lambda pC} \right) - (\beta + \delta)C.$$

Derivando esta expresión con respecto a C e igualando a cero resulta que el máximo beneficio se alcanza en

$$C^* = \frac{1}{\lambda p} \cdot \log \frac{\alpha + \delta}{\beta + \delta}.$$

Cálculo de Probabilidades II — Febrero 2019 — Segunda semana

Cuestión (2 puntos). Definir la matriz de covarianzas Σ de un vector aleatorio (X, Y). Enunciar sus principales propiedades. Establecer una condición necesaria y suficiente para que sea $\det(\Sigma) = 0$.

Ejercicio 1 (4 puntos). Las variables aleatorias $\{Z_i\}_{i\geq 1}$ son independientes y con distribución uniforme en el intervalo [0,1]. Se definen las variables aleatorias

$$X_n = \min_{1 \le i \le n} Z_i, \quad Y_n = \max_{1 \le i \le n} Z_i \quad \mathbf{y} \quad R_n = Y_n - X_n,$$

que son, respectivamente, el mínimo, el máximo y el rango de la muestra de tamaño n.

- (a) Determinar la función de distribución de R_n . Se sugiere hallar, en primer lugar, la función de densidad conjunta de (X_n, Y_n) .
- (b) Demostrar que la sucesión $n(1 R_n)$ converge en distribución a una ley $\gamma(2, 1)$, con función de densidad $f(z) = ze^{-z}$ para $z \ge 0$.

Ejercicio 2 (4 puntos). Se escoge un punto P al azar y de manera uniforme en el cuadrado $[0,1] \times [0,1]$. Sea R la longitud del segmento OP (el segmento que forma el punto P con el origen), y sea Θ el ángulo que forma OP con el eje de las abscisas.

- (a) Calcular la función de densidad conjunta de (R, Θ) .
- (b) Hallar, para cada $0 \le \theta \le \pi/2$, la esperanza condicionada $E[R|\Theta = \theta]$.

Solución

Cuestión. La matriz de covarianzas de un vector aleatorio (X,Y) es

$$\Sigma = \begin{pmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(X,Y) & \operatorname{Var}(Y) \end{pmatrix}.$$

Dado $(a, b) \in \mathbb{R}^2$ se tiene que

$$(a \ b) \cdot \mathbf{\Sigma} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = E \Big[\big(a(X - \mu_X) + b(Y - \mu_Y) \big)^2 \Big],$$

siendo μ_X y μ_Y las medias de X e Y, respectivamente. Así, la matriz Σ es simétrica y semi-definida positiva.

La condición necesaria y suficiente para que sea $\det(\Sigma) = 0$ es que existan $(a, b) \neq \mathbf{0}$ y $c \in \mathbb{R}$ tales que aX + bY = c con probabilidad uno. En efecto, si $\det(\Sigma) = 0$ entonces existe $(a, b) \neq \mathbf{0}$ tal que $\begin{pmatrix} a & b \end{pmatrix} \cdot \mathbf{\Sigma} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = 0$, luego debe ser $a(X - \mu_X) + b(Y - \mu_Y) = 0$ casi seguramente. Recíprocamente, si aX + bY = c con probabilidad uno, debe ser $c = a\mu_X + b\mu_Y$, luego $a(X - \mu_X) + b(Y - \mu_Y) = 0$ casi seguramente, deduciéndose que $\begin{pmatrix} a & b \end{pmatrix} \cdot \mathbf{\Sigma} = \mathbf{0}$, por lo que necesariamente $\det(\mathbf{\Sigma}) = 0$.

Ejercicio 1. (a). Se fijan $0 \le x \le y \le 1$. Se tiene que

$$P\{X_n \le x, Y_n \le y\} = P\{Y_n \le y\} - P\{x < X_n \le Y_n \le y\}$$

= $y^n - (y - x)^n$.

Así, la función de densidad de (X_n, Y_n) viene dada por

$$f(x,y) = n(n-1)(y-x)^{n-2}$$
 para $0 \le x \le y \le 1$.

Se considera ahora la transformación $(U_n, V_n) = (X_n, Y_n - X_n)$, de transformación inversa $(X_n, Y_n) = (U_n, U_n + V_n)$. La función de densidad de (U_n, V_n) es $g(u, v) = n(n-1)v^{n-2}$ en el recinto $u, v \ge 0$ y $u + v \le 1$. La función de densidad marginal de V_n es

$$\int_0^{1-v} g(u,v)du = n(n-1)v^{n-2}(1-v) \text{ para } 0 \le v \le 1.$$

Se deduce finalmente que la función de distribución de R_n es

$$F_n(z) = \int_0^z n(n-1)v^{n-2}(1-v)dv = nz^{n-1} - (n-1)z^n = nz^{n-1}(1-z) + z^n \quad \text{para } 0 \le z \le 1.$$

(b) Sea $y \ge 0$ y sea n > y. Se tiene que

$$P\{n(1 - R_n) \le y\} = P\{R_n \ge 1 - \frac{y}{n}\}$$

$$= 1 - F_n \left(1 - \frac{y}{n}\right)$$

$$= 1 - y \left(1 - \frac{y}{n}\right)^{n-1} - \left(1 - \frac{y}{n}\right)^n.$$

Su límite cuando $n \to \infty$ es $1 - e^{-y}(1+y)$ para $y \ge 0$. Se trata precisamente de la función de distribución de una $\gamma(2,1)$ cuya función de densidad es ye^{-y} para $y \ge 0$. Por tanto, el rango R_n verifica que $n(1-R_n) \xrightarrow{d} \gamma(2,1)$.

Ejercicio 2. (a). Sea (X, Y) el vector aleatorio de las coordenadas del punto P. Su función de densidad es f(x, y) = 1 para $0 \le x, y \le 1$. Se considera la transformación a coordenadas polares, dada por el argumento y el módulo:

$$(\Theta, R) = \left(\arctan(Y/X), \sqrt{X^2 + Y^2}\right)$$

de transformación inversa $(X,Y)=(R\cos\Theta,R\sin\Theta)$. Analizamos en primer lugar el soporte de (Θ,R) .

- Para cada θ del intervalo $[0, \pi/4]$, los posibles valores de r son $0 \le r \le 1/\cos\theta$.
- Para cada θ del intervalo $[\pi/4, \pi/2]$, los posibles valores de r son $0 \le r \le 1/\sin \theta$.

Figura 1: Recinto \mathcal{U} .

Por tanto, el recinto en el que toma valores (R, Θ) es $\mathcal{U} = C_1 \cup C_2$ con

$$C_1 = \{(\theta, r) : 0 \le \theta \le \pi/4, \ 0 \le r \le 1/\cos\theta\}$$

$$C_2 = \{(\theta, r) : \pi/4 \le \theta \le \pi/2, \ 0 \le r \le 1/\sin\theta\}.$$

El jacobiano de la transformación es R. Por tanto, la función de densidad de (Θ, R) es $g(\theta, r) = r$ cuando $(\theta, r) \in \mathcal{U}$; véase Figura 1.

- (b). Calculamos en primer lugar la función de densidad marginal de Θ .
 - Si $0 \le \theta \le \pi/4$ entonces el conjunto $\{\Theta \le \theta\}$ se corresponde, en el cuadrado $[0,1] \times [0,1]$, con el triángulo de vértices (0,0), (1,0) y $(1,\tan\theta)$, cuya área es $\frac{1}{2}\tan\theta$.
 - Si es $\pi/4 \le \theta \le \pi/2$ entonces el conjunto $\{\Theta \le \theta\}$ se corresponde, en el cuadrado $[0,1] \times [0,1]$, con el complementario del triángulo de vértices (0,0), (0,1) y $(1/\tan\theta,1)$. El área de este triángulo es $1/2\tan\theta$.

Así, la función de distribución de Θ es

$$F(\theta) = \begin{cases} \frac{1}{2} \tan \theta & \text{si } 0 \le \theta \le \pi/4\\ 1 - \frac{1}{2 \tan \theta} & \text{si } \pi/4 \le \theta \le \pi/2 \end{cases}$$

(se define $F(\theta/2) = 1$ por continuidad) y su función de densidad es

$$f(\theta) = \begin{cases} \frac{1}{2\cos^2\theta} & \text{si } 0 \le \theta \le \pi/4\\ \frac{1}{2\sin^2\theta} & \text{si } \pi/4 \le \theta \le \pi/2. \end{cases}$$

El mismo resultado puede obtenerse por integración de $g(\theta, r)$. Así, la función de densidad de R condicionada por $\Theta = \theta$ es

$$g(r|\theta) = \begin{cases} 2r\cos^2\theta & \text{si } 0 \le \theta \le \pi/4 \text{ y } 0 \le r \le 1/\cos\theta \\ 2r\sin^2\theta & \text{si } \pi/4 \le \theta \le \pi/2 \text{ y } 0 \le r \le 1/\sin\theta \end{cases}$$

y las esperanzas condicionadas son, cuando $0 \le \theta \le \pi/4$

$$E[R|\Theta = \theta] = \int_0^{1/\cos\theta} 2r^2 \cos^2\theta \, dr = \frac{2}{3\cos\theta}$$

y cuando $\pi/4 \le \theta \le \pi/2$

$$E[R|\Theta = \theta] = \int_0^{1/\sin\theta} 2r^2 \sin^2\theta \, dr = \frac{2}{3\sin\theta}.$$

Cálculo de Probabilidades II — Septiembre 2019

Cuestión (2 puntos). Dar la definición de sucesión de variables aleatorias $\{X_n\}$ que converge en distribución a una variable aleatoria X. Encontrar un ejemplo en el que se cumpla $X_n \stackrel{d}{\longrightarrow} X$ pero que no sea $E[X_n] \to E[X]$.

Ejercicio 1 (4 puntos). El vector aleatorio (X,Y) tiene función de densidad

$$f(x,y) = (y-x)e^{-y} \quad \text{si } 0 \le x \le y$$

y f(x,y) = 0 en otro caso.

- (a) Determinar las funciones de densidad marginales de X e Y.
- (b) Calcular E[X|Y=y] y E[Y|X=x] para cada valor y>0 y x>0. Deducir el valor del coeficiente de correlación entre X e Y.

Ejercicio 2 (4 puntos). En todo este ejercicio, se supone fijado el valor de un entero k > 1.

Las variables aleatorias $\{Z_i\}_{i\geq 1}$ son independientes con distribución uniforme en el intervalo [0,1]. Supuesto que $n\geq k$, se ordenan las observaciones Z_1,\ldots,Z_n en orden creciente y se define X_n como el k-ésimo valor de esa ordenación.

(a) Demostrar que la función de distribución F_n de X_n es

$$F_n(x) = 1 - \sum_{i=0}^{k-1} {n \choose i} x^i (1-x)^{n-i}$$
 para $0 \le x \le 1$.

Establecer que $\{X_n\}$ converge en probabilidad y casi seguramente a 0 cuando $n \to \infty$.

(b) Probar que la sucesión $\{nX_n\}$ converge en distribución, cuando $n \to \infty$, a una distribución $\gamma(k,1)$ con función de densidad

$$f(z) = z^{k-1}e^{-z}/(k-1)!$$
 para $z \ge 0$.

Solución

Cuestión. Se dice que $X_n \stackrel{d}{\longrightarrow} X$ cuando $\lim_n F_n(x) = F(x)$ para todo $x \in \mathbb{R}$ que sea punto de continuidad de F, donde F_n y F son las funciones de distribución de X_n y X, respectivamente. Esta definición es equivalente a que sea $E[f(X_n)] \to E[f(X)]$ para toda $f: \mathbb{R} \to \mathbb{R}$ acotada y continua.

Si X_n toma el valor 0 con probabilidad $1 - \frac{1}{n}$ y el valor n con probabilidad $\frac{1}{n}$, es claro que $X_n \stackrel{d}{\longrightarrow} 0$. Sin embargo, $E[X_n] = 1$ y no se verifica que $E[X_n] \to 0$.

Nótese que para la función identidad f (dada por f(x) = x) no se cumple que sea $E[f(X_n)] \to E[f(X)]$. Esto no es contradictorio con la convergencia $X_n \stackrel{d}{\longrightarrow} X$ puesto que la función f no es acotada.

Ejercicio 1. (a). Fijado $x \ge 0$, la función de densidad marginal de X en x vale

$$f_X(x) = \int_x^\infty (y - x)e^{-y} dy = e^{-x} \int_x^\infty (y - x)e^{-(y - x)} dy = e^{-x} \int_0^\infty ue^{-u} du = e^{-x}.$$

Por tanto, X tiene distribución exponencial de parámetro 1.

Ahora, fijado $y \ge 0$, la función de densidad marginal de Y en y vale

$$f_Y(y) = \int_0^y (y-x)e^{-y}dx = y^2e^{-y}/2.$$

Así, Y tiene distribución gamma $\gamma(3,1)$.

(b). La función de densidad de Y condicionada por X = x es

$$f(y|x) = (y-x)e^{-(y-x)}$$
 para $y \ge x$.

Es una distribución $\gamma(2,1)$ "desplazada x unidades". Por tanto, E[Y|X=x]=2+x. La función de densidad de X condicionada por Y=y es

$$f(x|y) = \frac{2}{y^2}(y-x)$$
 para $0 \le x \le y$.

Su esperanza es

$$E[X|Y=y] = \frac{y}{3}.$$

Las curvas de regresión son rectas, luego coinciden con las rectas de regresión. Puesto que E[Y]=3 y E[X]=1 las rectas de regresión se escriben

$$(y-3) = 1 \cdot (x-1)$$
 y $(x-1) = \frac{1}{3} \cdot (y-3)$.

La pendiente de la recta de regresión de Y sobre X es 1 = Cov(X,Y)/Var(X) y la pendiente de la recta de regresión de X sobre Y es 1/3 = Cov(X,Y)/Var(Y). Su producto es

$$\rho^2 = \frac{(\text{Cov}(X,Y))^2}{\text{Var}(X)\,\text{Var}(Y)} = \frac{1}{3},$$

luego $\rho = \frac{\sqrt{3}}{3}$. Nótese que no puede ser $\rho = -\frac{\sqrt{3}}{3}$ porque el signo de Cov(X,Y) es positivo (tiene el mismo signo que las pendientes de las rectas de regresión).

Ejercicio 2. (a). Dado $0 \le x < 1$, para que sea $X_n > x$, de los n valores de las Z_i , debe haber menos de k en el intervalo [0, x]. En efecto, si hubiese k o más de estos valores en [0, x], se tendría $X_n \le x$. Por tanto,

$$P\{X_n > x\} = \sum_{i=0}^{k-1} \binom{n}{i} x^i (1-x)^{n-i}.$$

Dado un valor $0 < \epsilon < 1$ se tiene que

$$P\{X_n > \epsilon\} = \sum_{i=0}^{k-1} \binom{n}{i} \epsilon^i (1-\epsilon)^{n-i}.$$

Haciendo $n \to \infty$, cada uno de estos sumandos tiende a cero; en efecto, se escriben

$$\frac{n(n-1)\dots(n-i+1)}{i!}(1-\epsilon)^n(\epsilon/(1-\epsilon))^i$$

que, como función de n, son un polinomio en n multiplicado por la n-ésima potencia de un número de (0,1). Como el número de sumandos no depende de n, resulta

$$\lim_{n \to \infty} P\{X_n > \epsilon\} = 0,$$

por lo que $X_n \stackrel{p}{\to} 0$.

Podemos observar ahora que la sucesión X_n es monótona. En efecto, al hacer la (n+1)ésima observación, si $Z_{n+1} \geq X_n$ entonces el k-ésimo valor más pequeño de la muestra Z_1, \ldots, Z_{n+1} sigue siendo X_n , es decir, $X_{n+1} = X_n$. En cambio, si $Z_{n+1} < X_n$ entonces el k-ésimo valor más pequeño de la muestra disminuye: $X_{n+1} \leq X_n$. Se deduce de la monotonía de $\{X_n\}$ que también es $X_n \xrightarrow{c.s.} 0$.

(b). Sea $y \ge 0$ fijo y supongamos que n > y. Tenemos que

$$P\{nX_n \le y\} = P\{X_n \le y/n\}$$

$$= 1 - \sum_{i=0}^{k-1} \binom{n}{i} \left(\frac{y}{n}\right)^i \left(1 - \frac{y}{n}\right)^{n-i}$$

$$= 1 - \sum_{i=0}^{k-1} \frac{y^i}{i!} \cdot \frac{n(n-1)\dots(n-i+1)}{n^i} \left(1 - \frac{y}{n}\right)^n / \left(1 - \frac{y}{n}\right)^i.$$

Cuando $n \to \infty$, la segunda fracción tiende a 1, el primer paréntesis tiende a e^{-y} y el paréntesis en el denominador tiende a 1. Por tanto,

$$\lim_{n \to \infty} P\{nX_n \le y\} = 1 - e^{-y} \left(1 + y + \frac{y^2}{2!} + \dots + \frac{y^{k-1}}{(k-1)!}\right).$$

Esta función de la variable y vale 0 cuando y=0, y tiende a 1 cuando $y\to\infty$. Además, su derivada es $e^{-y}y^{k-1}/(k-1)!$, luego $\{nX_n\}$ converge efectivamente a una distribución $\gamma(k,1)$.