Revision

P105 Roots of Polynomial Equations

CIE CAL FM P1 2008-06 Q5

The equation $x^3 + x - 1 = 0$ has roots α , β , γ . Show that the equation with roots α^3 , β^3 , γ^3 is $y^3 - 3y^2 + 4y - 1 = 0$. [4] Hence find the value of $\alpha^6 + \beta^6 + \gamma^6$. [3]

CIE CAL FM P1 2004-11 Q3

Given that $\alpha + \beta + \gamma = 0$, $\alpha^2 + \beta^2 + \gamma^2 = 14$, $\alpha^3 + \beta^3 + \gamma^3 = -18$, find a cubic equation whose roots are α , β , γ . [4] Hence find possible values for α , β , γ . [2]

CIE CAL FM P1 2005-11 Q5

In the equation $x^3 + ax^2 + bx + c = 0$, the coefficients a, b and c are real. It is given that all the roots are real and greater than 1.

- (i) Prove that a < -3. [1]
- (ii) By considering the sum of the squares of the roots, prove that $a^2 > 2b + 3$. [2]
- (iii) By considering the sum of the cubes of the roots, prove that $a^3 < -9b 3c 3$. [4]

CIE CAL FM P1 2002-11 Q2

The equation $x^4 + x^3 + Ax^2 + 4x - 2 = 0$, where A is a constant, has roots α , β , γ , δ . Find a polynomial

equation whose roots are
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$, $\frac{1}{\gamma}$, $\frac{1}{\delta}$. [2]

Given that
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$$
,

find the value of A. [3]

CIE CAL FM P1 2009-11 Q5

The equation $x^3 + 5x + 3 = 0$ has roots α , β , γ . Use the substitution $x = -\frac{3}{v}$ to find a cubic equation in y and show that the roots of this equation are $\beta \gamma$, $\gamma \alpha$, $\alpha \beta$. Find the exact values of $\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2$ and $\beta^3 \gamma^3 + \gamma^3 \alpha^3 + \alpha^3 \beta^3$. [5]

CIE CAL FM P1 2008-11 Q12

The roots of the equation $x^4 - 5x^2 + 2x - 1 = 0$ are α , β , γ , δ . Let $S_n = \alpha^n + \beta^n + \gamma^n + \delta^n$.

- (i) Show that $S_{n+4} 5S_{n+2} + 2S_{n+1} S_n = 0$. [2]
- (ii) Find the values of S_2 and S_4 . [3]
- (iii) Find the value of S_3 and hence find the value of S_6 .
- (iv) Hence find the value of

$$\alpha^{2}(\beta^{4} + \gamma^{4} + \delta^{4}) + \beta^{2}(\gamma^{4} + \delta^{4} + \alpha^{4}) + \gamma^{2}(\delta^{4} + \alpha^{4} + \beta^{4}) + \delta^{2}(\alpha^{4} + \beta^{4} + \gamma^{4}). [3]$$

KFC

<u>ASSIGNMENT</u>

Attempt all the questions in the following slides.

Assignment is to be submitted within **one week** after instruction!!!

Please write your name and your student's id in the script upon submission.

CIE CAL FM P1 2003-06 Q5

The equation $8x^3 + 12x^2 + 4x - 1 = 0$ has roots α , β , γ . Show that the equation with roots $2\alpha + 1$, $2\beta + 1$, $2\gamma + 1$ is $y^3 - y - 1 = 0$. [3] The sum $(2\alpha + 1)^n + (2\beta + 1)^n + (2\gamma + 1)^n$ is denoted by S_n . Find the values of S_3 and S_{-2} . [5]

CIE CAL FM P1 2007-11 Q4

The roots of the equation $x^3 - 8x^2 + 5 = 0$ are α , β , γ . Show that $\alpha^2 = \frac{5}{\beta + \gamma}$. [4]

It is given that the roots are all real. Without reference to a graph, show that one of the roots is negative and the other two roots are positive.

[3]

CIE CAL FM P1 2006-11 Q6

The roots of the equation $x^3 + x + 1 = 0$ are α , β , γ . Show that the equation whose roots are

$$\frac{4\alpha+1}{\alpha+1}$$
, $\frac{4\beta+1}{\beta+1}$, $\frac{4\gamma+1}{\gamma+1}$

is of the form $y^3 + py + q = 0$, where the numbers p and q are to be determined. [5]

Hence find the value of

$$\left(\frac{4\alpha+1}{\alpha+1}\right)^n+\left(\frac{4\beta+1}{\beta+1}\right)^n+\left(\frac{4\gamma+1}{\gamma+1}\right)^n$$

for n = 2 and for n = 3.

[4]

KFC

CIE CAL FM P1 2004-06 Q11

The roots of the equation $x^3 - x - 1 = 0$ are α , β , γ , and $S_n = \alpha^n + \beta^n + \gamma^n$.

- (i) Use the relation $y = x^2$ to show that α^2 , β^2 , γ^2 are the roots of the equation $y^3 2y^2 + y 1 = 0$.
- (ii) Hence, or otherwise, find the value of S_{Δ} . [2]
- (iii) Find the values of S_8 , S_{12} and S_{16} . [9]