

amclt#Q

SEQUENCE LISTING

<110> Lyons, Karen M

<120> Method and Composition for Modulating Bone Growth

<130> 22058-554

<140> 10/005,228

<141> 2001-12-03

<150> 60/250,535

<151> 2000-12-01

<160> 9

A1

<170> PatentIn Ver. 2.1

<210> 1

<211> 2952

<212> DNA

<213> Homo sapiens

<400> 1

gaagcgaata gcgttttcag agatattggg cggctcaagg gtcttactct gtcgccagt 60
ctgtaatgca gtgcgtgtac cataggccac tgcagcctcc acctcccagg ctcaagcagt 120
ccttcccccc tcgcctcat gaatagctgg gactacagcc tggagcattt gtaaggcgta 180
caactgccaat gtgagagctg ctggagaact cataatccca ggaacgcctc ttctactctc 240
cgagtacccc agtgaccaga gtgagagaag ctctgaacga gggcacgcgg cttgaaggac 300
tgtgggcaga tgtgaccaag agcctgcatt aagttgtaca atggtagatg gagtgatgat 360
tcttcctgtc cttatcatga ttgtctccc ctccccatgt attggaaatggatg agaaggccaa 420
ggtcaacccc aaactctaca tgtgtgtgtc tgaaggctc tccctgcgtt atgaggacca 480
ctgtgaaggc cagcagtgtc tttctctact gacatcaac gatggcttc acgtctacca 540
gaaaggctgc ttccagggtt atgagcaggg aaagatgacc tctaagaccc cggccgtcccc 600
tggccaagct gtggagtgct gccaaggggaa ctgggttaac aggaacatca cggcccgact 660
gcccactaaa ggaaaatctc tccctggAAC acagaatttc cacttggagg ttggcctcat 720
tattctctct gtatgttgc cagtatgtct tttagctgc ctgctggggat ttgctctccg 780
aaaatttaaa aggcccaacc aagaacgcct caatccccga gacgtggagt atggcactat 840
cgaaggcgtc atcaccacca atgttggaga cagcacatttta gcagatttat tggatcattc 900
gtgtacatca ggaagtggct ctgttcttcc ttttctggta caaagaacag tggctcgcca 960
gattacactg ttggagtggt tcggaaagg caggtatggt gaggtgtgg ggggcagctg 1020
gcaaggggaa aatgttggcg tgaagatctt ctccctccgt gatgagaagt catggttcag 1080
ggaaacggaa ttgtacaaca ctgtgatgct gaggcatgaa aatatcttag gtttcttgc 1140
ttcagacatg acatcaagac actccagttac ccagctgtgg ttaattacac attatcatga 1200
aatggatcg ttgtacgact atctttagct tactactctg gatacagttt gctgcctcg 1260
aatagtgtc tccatagcta gtggcttgc acatggcac atagagatat ttgggaccca 1320
agggaaacca gccattggcc atcgagattt aaagagaaaa aatattctgg ttaagaagaa 1380
tggacagtgt tgcatagccg atttgggcct ggcagtcgt cattccaga gcaccaatca 1440
gcttgatgtg gggacaatc cccgtgtggg caccaagcgc tacatggccc ccgaagttct 1500
agatgaaacc atccaggtgg attgttgcg ttcttataaa agggtcgata tttgggcctt 1560
tggacttgtt ttgtggaaag tggccaggcg gatgggtggc aatggtataag tggaggattt 1620
caagccaccg ttctacgatg tgggtcccaa tgacccaaatg ttgaaagata tgaggaaggt 1680
agtctgtgtg gatcaacaaa ggcaccaat acccaacaga tggttctcag acccgacatt 1740
aacctctctg gccaagctaa tggaaatggc ctggtatcaa aatccatccg caagactcac 1800
agcaactgcgt atcaaaaaga cttgaccaa aattgataat tccctcgaca aattgaaaac 1860
tgactgttga cattttcata gtgtcaagaa ggaagattt acgttgggtt cattgtccag 1920
ctgggaccta atgctggcct gactgggtt cagaatggaa tccatctgtc tccctccca 1980

aatggctgct ttgacaaggc agacgtcgta cccagccatg tggggag acatcaaaac 2040
 caccctaacc tcgctcgatg actgtgaact gggcattca cgaactgttc acactgcaga 2100
 gactaatgtt ggacagacac tggcaaaag gtagggactg gaggaacaca gagaatcct 2160
 aaaagagatc tggcattaa gtcagtggct ttgcatacg ttcacaagtc tcctagacac 2220
 tccccacggg aaactcaagg aggtggtaa ttttaatca gcaatattgc ctgtgcttct 2280
 ctctttatt gcacttaggaa ttcttgcat tccttacttg cactgttact cttatTTTA 2340
 aagacccaac ttgccaaaat gttggctgcg tactccactg gtctgtctt ggataatagg 2400
 aattcaattt ggcaaaacaa aatgtaatgt cagacttgc tgcatTTTAC acatgtgctg 2460
 atgtttacaa tggccgaa cattaggaat tggataaca caactttgca aattatTTTAT 2520
 tacttgtgca cttgttagtt ttacaaaac tgctttgtgc atatgttAA gcttatttt 2580
 atgtggtctt atgatTTTAT tacagaaatg ttttaaacac tatactctaa aatggacatt 2640
 ttctttattt atcagttaaa atcacattt aagtgcTTCA cattttgtatg tggtagact 2700
 gtaactttt ttcaGTTcat atgcagaacg tatTTAGCCA ttaccacgt gacaccaccc 2760
 aatatattat cgatTTAGAA gcaaagattt cagtagaatt ttatGCTGA acgctacggg 2820
 gaaaatgcattt ttatTCAGA attatCCATT acgtgcATT AAACtCTGCC agaaaaaaat 2880
 aactatTTTGTt tttatATCTA cttttgtat ttatGTTAA ttaataaaac 2940
 tggggcaag tc 2952

<210> 2
 <211> 509
 <212> PRT
 <213> Homo sapiens

<400> 2				
Met Val Asp Gly Val Met Ile Leu Pro Val Leu Ile Met Ile Ala Leu				
1	5	10	15	
Pro Ser Pro Ser Met Glu Asp Glu Lys Pro Lys Val Asn Pro Lys Leu				
20	25	30		
Tyr Met Cys Val Cys Glu Gly Leu Ser Cys Gly Asn Glu Asp His Cys				
35	40	45		
Glu Gly Gln Gln Cys Phe Ser Ser Leu Ser Ile Asn Asp Gly Phe His				
50	55	60		
Val Tyr Gln Lys Gly Cys Phe Gln Val Tyr Glu Gln Gly Lys Met Thr				
65	70	75	80	
Cys Lys Thr Pro Pro Ser Pro Gly Gln Ala Val Glu Cys Cys Gln Gly				
85	90	95		
Asp Trp Cys Asn Arg Asn Ile Thr Ala Gln Leu Pro Thr Lys Gly Lys				
100	105	110		
Ser Phe Pro Gly Thr Gln Asn Phe His Leu Glu Val Gly Leu Ile Ile				
115	120	125		
Leu Ser Val Val Phe Ala Val Cys Leu Leu Ala Cys Leu Leu Gly Val				
130	135	140		
Ala Leu Arg Lys Phe Lys Arg Arg Asn Gln Glu Arg Leu Asn Pro Arg				
145	150	155	160	
Asp Val Glu Tyr Gly Thr Ile Glu Gly Leu Ile Thr Thr Asn Val Gly				
165	170	175		

Asp Ser Thr Leu Ala Asp Leu Leu Asp His Ser Cys Thr Ser Gly Ser
180 185 190

Gly Ser Gly Leu Pro Phe Leu Val Gln Arg Thr Val Ala Arg Gln Ile
195 200 205

Thr Leu Leu Glu Cys Val Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg
210 215 220

Gly Ser Trp Gln Gly Glu Asn Val Ala Val Lys Ile Phe Ser Ser Arg
225 230 235 240

Asp Glu Lys Ser Trp Phe Arg Glu Thr Glu Leu Tyr Asn Thr Val Met
245 250 255

Leu Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ser Asp Met Thr Ser
260 265 270

Arg His Ser Ser Thr Gln Leu Trp Leu Ile Thr His Tyr His Glu Met
275 280 285

Gly Ser Leu Tyr Asp Tyr Leu Gln Leu Thr Thr Leu Asp Thr Val Ser
290 295 300

Cys Leu Arg Ile Val Leu Ser Ile Ala Ser Gly Leu Ala His Leu His
305 310 315 320

Ile Glu Ile Phe Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp
325 330 335

Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Gln Cys Cys Ile
340 345 350

Ala Asp Ile Gly Leu Ala Val Met His Ser Gln Ser Thr Asn Gln Leu
355 360 365

Asp Val Gly Asn Asn Pro Arg Val Gly Thr Lys Arg Tyr Met Ala Pro
370 375 380

Glu Val Leu Asp Glu Thr Ile Gln Val Asp Cys Phe Asp Ser Tyr Lys
385 390 395 400

Arg Val Asp Ile Trp Ala Phe Gly Leu Val Leu Trp Glu Val Ala Arg
405 410 415

Arg Met Val Ser Asn Gly Ile Val Glu Asp Tyr Lys Pro Pro Phe Tyr
420 425 430

Asp Val Val Pro Asn Asp Pro Ser Phe Glu Asp Met Arg Lys Val Val
435 440 445

Cys Val Asp Gln Gln Arg Pro Asn Ile Pro Asn Arg Trp Phe Ser Asp
450 455 460

Pro Thr Leu Thr Ser Leu Ala Lys Leu Met Lys Glu Cys Trp Tyr Gln
465 470 475 480

Asn Pro Ser Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Thr
485 490 495

Lys Ile Asp Asn Ser Leu Asp Lys Leu Lys Thr Asp Cys
500 505

<210> 3
<211> 1969
<212> DNA
<213> Homo sapiens

<400> 3
agaaaacggt ttattaggag ggagtgggtgg agctgggcca ggcaggaaga cgctggaata 60
agaaacattt ttgctccagc cccatccca gtcccggag gctgccgc cagctgcgcc 120
gagcgagccc ctccccggct ccagcccggt ccggggccgc gccggacccc agcccggcgt 180
ccagcgctgg cggtaact gcggccgcgc ggtggaggg agtgtggcccc ggtccggcga 240
aggctagcgc cccgccaccc gcagagcggg cccagagggg ccatgacctt gggctccccc 300
aggaaaaggcc ttctgatgtc gctgatggcc ttggtgaccc agggagaccc tgtgaagccg 360
tctcggggcc cgctgggtac ctgcacgtgt gagagcccac attgcaaggg gcctacactgc 420
cggggggccct ggtcacagt agtgctgggt cgggaggagg ggaggcacc ctaggaacat 480
cggggctgcg ggaacttgca caggagactc tgcagggggc gcacctaccga gttcgtaaac 540
cactactgct ggcacagcca cctctgcaac cacaacgtgt ccctgggtct ggaggccacc 600
caacccctt cggagcagcc gggAACAGAT ggccagctgg ccctgatcct gggcccccgtg 660
ctggccttgc tggccctgtt ggcctgggt gtcctggcc tggcatgt ccgacggagg 720
caggagaagc agcgtggct gcacagcggag ctggagagat ccagtctcat cctgaaagca 780
tctgagcagg ggcacacgat gttggggac ctccctggaca gtgactgcac cacagggagt 840
ggctcagggc tccccttcct ggtgcagagg acagtggcac ggcagggttgc cttggggag 900
tgtgtggaa aaggccgcta tggcgaagtg tggcggggct tggcacgg tgagagtgtg 960
gccgtcaaga tcttctcctc gagggatgaa cagtcctgg tccgggagac tgagatctat 1020
aacacagtat tgctcagaca cgacaacatc ctggcttca tcgcctcaga catgacactcc 1080
cgcaactcga gcacgcagct gtggctcatc acgcactacc acgagcacgg ctccctctac 1140
gactttctgc agagacagac gctggagccc catctggctc tgaggctacg tggatccgc 1200
gcatgcggcc tggcgcaccc gcacgtggag atcttcggta cacaggcaca accagccatt 1260
cccaccgcga cttcaagagc cgcaatgtgc tggcaagag caacctgcag tggatccatcg 1320
ccgacactggg cctggctgtg atgcactcac agggcagcga ttacctggac atccgcaca 1380
acccgagagt gggcaccagg cggtatcatgg caccggaggt gctggacgag cagatccgca 1440
cggaactgctt tgagtccctac aagtggactg acatctggc cttggccctg gtgctgtggg 1500
agattggcccg ccggaccatc gtgaatggca tcgtggagga ctatagacca cccttctatg 1560
atgtgggtcc caatgacccc agctttgagg acatgaagaa ggtgggtgtgt gtggatcagc 1620
agaccccccac catccctaacc cggctggctg cagaccggc ctctcaggc ctagctcaga 1680
tgatgcggga gtgctggta ccaaaccctt ctggccgact caccgcgtg cggatcaaga 1740
agacactaca aaaaattagc aacagtccag agaagcctaa agtgattcaa tagcccgag 1800
gcacactgatt ccttctgccc tgcagggggc tgggggggtg gggggcagtg gatgggtccc 1860
tatctggta gaggtatgtt gagtggtgt tggctgggg atggcagct ggcctgcct 1920
gctcgccccc cagccaccc agccaaaaat acagctggc tggaaacctg 1969

<210> 4
<211> 503
<212> PRT
<213> Homo sapiens

<400> 4
Met Thr Leu Gly Ser Pro Arg Lys Gly Leu Leu Met Leu Leu Met Ala
1 5 10 15

Leu Val Thr Gln Gly Asp Pro Val Lys Pro Ser Arg Gly Pro Leu Val
 20 25 30

Thr Cys Thr Cys Glu Ser Pro His Cys Lys Gly Pro Thr Cys Arg Gly
 35 40 45

Ala Trp Cys Thr Val Val Leu Val Arg Glu Glu Gly Arg His Pro Gln
 50 55 60

Glu His Arg Gly Cys Gly Asn Leu His Arg Glu Leu Cys Arg Gly Arg
 65 70 75 80

Pro Thr Glu Phe Val Asn His Tyr Cys Cys Asp Ser His Leu Cys Asn
 85 90 95

His Asn Val Ser Leu Val Leu Glu Ala Thr Gln Pro Pro Ser Glu Gln
 100 105 110

Pro Gly Thr Asp Gly Gln Leu Ala Leu Ile Leu Gly Pro Val Leu Ala
 115 120 125

Leu Leu Ala Leu Val Ala Leu Gly Val Leu Gly Leu Trp His Val Arg
 130 135 140

Arg Arg Gln Glu Lys Gln Arg Gly Leu His Ser Glu Leu Gly Glu Ser
 145 150 155 160

Ser Leu Ile Leu Lys Ala Ser Glu Gln Gly Asp Thr Met Leu Gly Asp
 165 170 175

Leu Leu Asp Ser Asp Cys Thr Thr Gly Ser Gly Ser Gly Leu Pro Phe
 180 185 190

Leu Val Gln Arg Thr Val Ala Arg Gln Val Ala Leu Val Glu Cys Val
 195 200 205

Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg Gly Leu Trp His Gly Glu
 210 215 220

Ser Val Ala Val Lys Ile Phe Ser Ser Arg Asp Glu Gln Ser Trp Phe
 225 230 235 240

Arg Glu Thr Glu Ile Tyr Asn Thr Val Leu Leu Arg His Asp Asn Ile
 245 250 255

Leu Gly Phe Ile Ala Ser Asp Met Thr Ser Arg Asn Ser Ser Thr Gln
 260 265 270

Leu Trp Leu Ile Thr His Tyr His Glu His Gly Ser Leu Tyr Asp Phe
 275 280 285

Leu Gln Arg Gln Thr Leu Glu Pro His Leu Ala Leu Arg Leu Ala Val
 290 295 300

Ser Ala Ala Cys Gly Leu Ala His Leu His Val Glu Ile Phe Gly Thr
 305 310 315 320

Gln Gly Lys Pro Ala Ile Ala His Arg Asp Phe Lys Ser Arg Asn Val
 325 330 335

 Leu Val Lys Ser Asn Leu Gln Cys Cys Ile Ala Asp Leu Gly Leu Ala
 340 345 350

 Val Met His Ser Gln Gly Ser Asp Tyr Leu Asp Ile Gly Asn Asn Pro
 355 360 365

 Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu Gln
 370 375 380

 Ile Arg Thr Asp Cys Phe Glu Ser Tyr Lys Trp Thr Asp Ile Trp Ala
 385 390 395 400

 Phe Gly Leu Val Leu Trp Glu Ile Ala Arg Arg Thr Ile Val Asn Gly
 405 410 415

 Ile Val Glu Asp Tyr Arg Pro Pro Phe Tyr Asp Val Val Pro Asn Asp
 420 425 430

 Pro Ser Phe Glu Asp Met Lys Lys Val Val Cys Val Asp Gln Gln Thr
 435 440 445

 Pro Thr Ile Pro Asn Arg Leu Ala Ala Asp Pro Val Leu Ser Gly Leu
 450 455 460

 Ala Gln Met Met Arg Glu Cys Trp Tyr Pro Asn Pro Ser Ala Arg Leu
 465 470 475 480

 Thr Ala Leu Arg Ile Lys Lys Thr Leu Gln Lys Ile Ser Asn Ser Pro
 485 490 495

 Glu Lys Pro Lys Val Ile Gln
 500

<210> 5
 <211> 16
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Signal peptide

 <400> 5
 Met Pro Leu Leu Leu Leu Leu Leu Pro Ser Pro Leu His Pro
 1 5 10 15

<210> 6
 <211> 1774
 <212> DNA
 <213> Homo sapiens

<400> 6

agatcttcaa aacacccggg ccacacacgc cgcgacacctac agctctttct cagcggttggaa 60
 gtggagacgg cgcccgcagc gcccgcgcg ggtgagggtcc ggcgcagctgc tggggaaagag 120
 cccacctgtc aggctgcgct gggtcagcgc agcaagtggg gctggccgct atctcgctgc 180
 accccggccgc gtccccggct ccgtgcgcgc tcgccccagc tggtttgag ttcaaccctc 240
 ggctccgccc cggcgtcctt gcgccttcgg agtgtccccgc agcgacgcgg ggagccgacg 300
 cgccgcgcgg gtaccttagcc atggctgggg cgagcaggct gctttctg tggctggct 360
 gcttctgcgt gaggctggcg cagggagaga gaccgaagcc acctttcccg gagctccgca 420
 aagctgtgcc aggtgaccgc acggcagggtg gtggcccgga ctccgagctg cagccgcaag 480
 acaagggtctc tgaacacatg ctgcggctct atgacaggtt cagcacggc caggccggccc 540
 ggacacccggg ctccctggag ggaggctcgc agccctggcg ccctcggtc ctgcgcgaag 600
 gcaacacggt tcgcagctt cggcgccag cagcagaaac tcttgaaaaga aaaggactgt 660
 atatcttcaa tctgacatcg ctaaccaagt ctgaaaacat tttgtctgcc acactgtatt 720
 tctgtattgg agagcttagga aacatcagcc tgagttgtcc agtgtctggaa ggatgctccc 780
 atcatgctca gaggaaacac attcagatttgc atctttctgc atggaccctc aaattcagca 840
 gaaaccaaag tcaactcctt ggcacatctgt cagtggatata ggcacaaatct catcgagata 900
 ttatgtcctg gctgtctaaa gatatcactc aactcttgag gaaggccaaa gaaaatgaag 960
 agttcctcat aggatttaac attacgttcca agggacgcca gctgcacaaag aggaggttac 1020
 ctttccaga gccttatatc ttggtatatg ccaatgatgc cgccatttctt gagccagaaa 1080
 gtgtggtatac aagtttacag ggacacccggaa atttccac ttggactgtt cccaaatggg 1140
 atagccacat cagagctgc ctttccatttgc agcggaggaa gaagcgtct actggggtct 1200
 tgctgcctct gcagaacaac gagcttcctg gggcagaata ccagtataaa aaggatgagg 1260
 tgtgggagga gagaaagcc tacaagaccc ttcaaggctca ggcacccgtt gggacttggaa 1320
 ataaaaagaa acagagaaaag gggcctcatttgc ggaagagcc gacgctccaa tttgtatgagc 1380
 agaccctgaa aaaggcaagg agaaagcagt ggatttgc accgcatttgc gccaggagat 1440
 acctcaaggt agacttttgc gatattggctt ggagtgaatg gattatctcc cccaaatccct 1500
 ttgatgccta ttattgcctt ggacatgc agttcccat gccaaatgtt ttgaagccat 1560
 caaatcatgc taccatccat agtatagttca gagctgtggg ggtcgttccctt gggatttccctg 1620
 agccttgctg tgtaccagaa aagatgtcctt cactcgtat ttatttctt gatgaaaata 1680
 agaatgttgtt gcttaaagta taccctaaaca tgacagttaga gtcttgcgtc tgcaagataac 1740
 ctggcaaaaga actcatttgc atgcttaattt caat 1774

<210> 7
 <211> 472
 <212> PRT
 <213> Homo sapiens

<400> 7
 Met Ala Gly Ala Ser Arg Leu Leu Phe Leu Trp Leu Gly Cys Phe Cys
 1 5 10 15

Val Ser Leu Ala Gln Gly Glu Arg Pro Lys Pro Pro Phe Pro Glu Leu
 20 25 30

Arg Lys Ala Val Pro Gly Asp Arg Thr Ala Gly Gly Pro Asp Ser
 35 40 45

Glu Leu Gln Pro Gln Asp Lys Val Ser Glu His Met Leu Arg Leu Tyr
 50 55 60

Asp Arg Tyr Ser Thr Val Gln Ala Ala Arg Thr Pro Gly Ser Leu Glu
 65 70 75 80

Gly Gly Ser Gln Pro Trp Arg Pro Arg Leu Leu Arg Glu Gly Asn Thr
 85 90 95

Val Arg Ser Phe Arg Ala Ala Ala Glu Thr Leu Glu Arg Lys Gly

100 105 110

Leu Tyr Ile Phe Asn Leu Thr Ser Leu Thr Lys Ser Glu Asn Ile Leu
115 120 125

Ser Ala Thr Leu Tyr Phe Cys Ile Gly Glu Leu Gly Asn Ile Ser Leu
130 135 140

Ser Cys Pro Val Ser Gly Gly Cys Ser His His Ala Gln Arg Lys His
145 150 155 160

Ile Gln Ile Asp Leu Ser Ala Trp Thr Leu Lys Phe Ser Arg Asn Gln
165 170 175

Ser Gln Leu Leu Gly His Leu Ser Val Asp Met Ala Lys Ser His Arg
180 185 190

Asp Ile Met Ser Trp Leu Ser Lys Asp Ile Thr Gln Leu Leu Arg Lys
195 200 205

Ala Lys Glu Asn Glu Glu Phe Leu Ile Gly Phe Asn Ile Thr Ser Lys
210 215 220

Gly Arg Gln Leu Pro Lys Arg Arg Leu Pro Phe Pro Glu Pro Tyr Ile
225 230 235 240

Leu Val Tyr Ala Asn Asp Ala Ala Ile Ser Glu Pro Glu Ser Val Val
245 250 255

Ser Ser Leu Gln Gly His Arg Asn Phe Pro Thr Gly Thr Val Pro Lys
260 265 270

Trp Asp Ser His Ile Arg Ala Ala Leu Ser Ile Glu Arg Arg Lys Lys
275 280 285

Arg Ser Thr Gly Val Leu Leu Pro Leu Gln Asn Asn Glu Leu Pro Gly
290 295 300

Ala Glu Tyr Gln Tyr Lys Lys Asp Glu Val Trp Glu Glu Arg Lys Pro
305 310 315 320

Tyr Lys Thr Leu Gln Ala Gln Ala Pro Glu Lys Ser Lys Asn Lys Lys
325 330 335

Lys Gln Arg Lys Gly Pro His Arg Lys Ser Gln Thr Leu Gln Phe Asp
340 345 350

Glu Gln Thr Leu Lys Lys Ala Arg Arg Lys Gln Trp Ile Glu Pro Arg
355 360 365

Asn Cys Ala Arg Arg Tyr Leu Lys Val Asp Phe Ala Asp Ile Gly Trp
370 375 380

Ser Glu Trp Ile Ile Ser Pro Lys Ser Phe Asp Ala Tyr Tyr Cys Ser
385 390 395 400

Gly Ala Cys Gln Phe Pro Met Pro Lys Ser Leu Lys Pro Ser Asn His

405 410 415

Ala Thr Ile Gln Ser Ile Val Arg Ala Val Gly Val Val Pro Gly Ile
420 425 430

Pro Glu Pro Cys Cys Val Pro Glu Lys Met Ser Ser Leu Ser Ile Leu
435 440 445

Phe Phe Asp Glu Asn Lys Asn Val Val Leu Lys Val Tyr Pro Asn Met
450 455 460

Thr Val Glu Ser Cys Ala Cys Arg
465 470

<210> 8
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: RT-PCR primer

<400> 8
tgttctacga ctcactc 17

<210> 9
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: RT-PCR Primer

<400> 9
ggacagacgc tgctatt 17

A' d
conc