1. For the n-channel MOSFET as shown in Fig. 1 has K_n = 0.2 mA/V² and V_{Th} = 1 V. Given that V_{DD} = 10 V and R_D = 1 k Ω . Find (a) the region operation, (b) V_{GS} (c) V_{DS} and (d) i_D .

Fig. 1 Fig. 2

2. For the circuit in Figure 2, the p-channel transistor has threshold voltage (V_{Th}) = -0.8~V and $K_p = 200~\mu\text{A/V}^2$. Determine V_S and V_{SD} .

 $V_D = -5 + 18.80$ $V_{SD} = V_{S} - V_{SD} = 2.214 - (-3)$ $V_{SD} = -5 + 0.4 \times 5$ V_{SD}

3. A particular n-channel MOSFET has parameters $V_{Th} = 0.6 \text{ V}$, $L = 0.8 \mu\text{m}$, $t_{ox} = 200 \text{ Å}$, and $\mu_n = 600 \text{ cm}^2/\text{V}$ -s. A drain current of $I_D = 1.2 \text{ mA}$ is required when the device is biased in the saturation region at $V_{GS} = 3 \text{ V}$. Determine the required channel width of the device.

(3) $\frac{m-ch \ device}{v + 200 \ h}$ $\frac{1.2 = \frac{1}{2} \times 600 \times \frac{600}{10^{-4}} \times \frac{1}{200} \times \frac{1}{200}$

4. For a p-channel enhancement-mode MOSFET, the parameters are $K_P = 2 \text{ mA/V}^2$ and $V_{TP} = -0.5 \text{ V}$. The gate is at ground potential, and the source terminals is at +5 V. Determine I_D when the drain terminal voltage is: (a) $V_D = 0 \text{ V}$, (b) $V_D = 2 \text{ V}$, (c) $V_D = 4 \text{ V}$, and (d) $V_D = 5 \text{ V}$.

(i) When, $V_D = 2V$, $V_S = V_S - V_D = V_S - V_S = V$

Cox = tox = tox Co=8.854×104 Cr=3.9 Cr=3.9 pmos, Veh <0 MMOS, VTh?

1) to January VSD

5. In the circuit shown in Fig. 3, the transistor parameters are $V_{Th} = 0.8 \text{ V}$ and $K_n = 0.5 \text{ mA/V}^2$. Calculate (i) Drain current I_D , (ii) Gate-source voltage (V_{GS}) , and (iii) Drain-source voltage (V_{DS}) .

6. The transistors (M₁ & M₂) in the circuit shown in Fig. 4 have parameters $V_{Th} = 0.4 \text{ V}$ and $K'_n = 120 \text{ }\mu\text{A/V}^2$. (a) If the width-to-length ratios of M₁ and M₂ are (W/L)₁ = (W/L)₂ = 30, determine V_{GS1}) V_{GS2}, V_O, and I_D (b) Repeat part (a) if the width-to-length ratios are changed to (W/L)₁ = 30 and (W/L)₂ = 15.

Fig. 3 Fig. 4

Vs = Va-Vas = Va-Va-Vs) = Va-Va+Vs = Vs

VsD

094

$$N_{as}^{2} - 1.6N_{as} + 0.64 = 3.6 - N_{as}$$

$$N_{as}^{2} - 0.6N_{as} - 2.96 = 0.$$

Practice Paper 5 Page 4

7. In the circuit shown in Fig. 5, find the value of R_S and R_D when $V_D = -3$ V and I_D = 0.5 mA. The transistor parameters are given as $K'_p = 30$ μ A/V², W/L = 20 and V_{Th} = -1.2 V.

Fig. 5

8. The circuit shown in Fig. 6 have transistor parameters $V_{Th} = -1.75 \text{ V}$ and $K_p = 3 \text{ mA/V}^2$. The drain current (I_D) in the circuit is 5 mA, $V_{SD} = 6 \text{ V}$ and $R_{in} = 80 \text{ k}\Omega$. Find R_1 , R_2 and R_D .

Practice Paper 5 Page 5

$$g_{m}(P_{0} || P_{L}) = 1 + g_{m}(1 \cdot 33 - P_{0}) \qquad \text{form}(D).$$

$$g_{m}, P_{L}, \quad \text{Known}, \quad P_{1} \text{ ind} \quad P_{D}$$

$$2 \cdot 2 R_{D}^{2} + 0.47 P_{D} - 9 \cdot 93 = 0$$

$$P_{D} = 1 \cdot 23 R_{D}. \quad \text{inglut the (-) value.}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} = 1 \cdot 33 - 1 \cdot 23 = 0.1 \text{ K}$$

$$R_{S} =$$

10. The parameters of the circuit shown in Fig. 8 are $V_{DD} = 5 \text{ V}$, $R_1 = 520 \text{ k}\Omega$, $R_2 = 320 \text{ k}\Omega$, $R_D = 10 \text{ k}\Omega$, and $R_{Si} = 0$. Assume transistor parameters of $V_{Th} = 0.8 \text{ V}$, $K_n = 0.20 \text{ mA/V}^2$, and $\lambda = 0$. (a) Determine the small-signal transistor parameters g_m and r_o . (b) Find the small-signal voltage gain. (c) Calculate the input and output resistances. (d) Repeat (a) and (b) considering $R_{Si} = 1 \text{ k}\Omega$.

11. Consider the NMOS amplifier with saturated load in Fig. 9. The transistor parameters are $V_{Th_D} = V_{Th_N} = 0.6 \text{ V}$, $k_n' = 100 \text{ } \mu\text{A/V}^2$, $\lambda = 0$, and $(W/L)_L = 1$. Estimate the W/L ratio of M_D for realizing the overall small-signal voltage gain |Av| = 5.

VIS JOGSWITH WE VOSE & (W)

Please Note: For n-channel MOSFET

 $K_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{T}$ is the conduction parameter

$$K_n = \frac{1}{2}\mu_n C_{ox} \frac{W}{L}$$
 is the conduction parameter

$$K_n = \frac{1}{2} K_n' \frac{W}{I}$$

 $K'_n = \mu_n C_{ox}$ is the process conduction parameter

Jas Marrygs July June