mas550 homework

20208209 오재민

2020년 9월 15일

Problem (1.3.1).

Since $\sigma(X)$ is the smallest σ -field which makes X measurable, it sufficient to show that X is measurable with respect to $\sigma(X^{-1}(A))$.

Let $X : \Omega \to S$. It is clear that $\{X \in A\} \in \sigma(X^{-1}(A))$ for all $A \in A$. But by theorem 1.3.1, since A generates S, X is measurable with respect to $\sigma(X^{-1}(A))$.

Therefore we can conclude that $\sigma(X^{-1}(A)) \subset \sigma(X)$, and reverse inclusion is canonical since $X^{-1}(A) \subset \sigma(X)$.

Problem (1.4.1).

Let $E_n = \{x : f(x) > \frac{1}{n}\}$. Then $\int f d\mu \geq \int_{E_n} f d\mu \geq \int_{E_n} \frac{1}{n} d\mu = \frac{1}{n} \mu(E_n)$. Therefore $\mu(E_n) = 0$ for every positive integer n. So, $\mu(\{f > 0\}) = \sum_{n=1}^{\infty} \mu(E_n) = 0$. This says f = 0 a.e.

Problem (1.4.2). Since $E_{n+1,2m} \cup E_{n+1,2m+1} = E_{n,m}$ and $\frac{2m+1}{2^{n+1}} \ge \frac{m}{2^n}$, we can easily see that $\sum_{m\ge 1} \frac{m}{2^n} \mu\left(E_{n,m}\right)$ is monotonically increasing as n grows.

For every positive integer M, $\sum_{m=1}^{M} \frac{m}{2^n} \mu(E_{n,m}) \leq \int f d\mu$. So $\sum_{m\geq 1} \frac{m}{2^n} \mu(E_{n,m}) \leq \int f d\mu$.

Let $s_n = \sum_{m=1}^{n2^n} \frac{m}{2^n} 1_{E_{n,m}}$. Then $\int s_n d\mu \leq \sum_{m\geq 1} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$. But $s_n \uparrow f$ monotonically. By monotone convergence theorem, $\lim_{n\to\infty} \int s_n d\mu = \int f d\mu$. Hence by sandwich lemma, the desired result follows.