

# Winning Space Race with Data Science

Hoang Hien Anh 14 February 2022



#### **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

### **Executive Summary**

• Summary of methodologies:

We follow the below steps to determine predictive model:

- ✓ Data collection
- ✓ Perform data wrangling
- √ Perform exploratory data analysis
- √ Perform interactive visual analytics
- √ Perform predictive analysis
- Summary of all results: 4 models (Logistic regression, Support vector machine, Decision tree classifier, K nearest neighbors) are suitable to predict the success of the first stage

#### Introduction

- Project background and context
  - ✓ SpaceX advertises Falcon 9 rocket launches on its website with a surprisingly low cost.
  - ✓ The reason for this low cost is because SpaceX can reuse the first stage.
  - ✓ Therefore, we can determine if the first stage will land, we can determine the cost of a launch.
- Problems you want to find answers
  - ✓ We want to predict if the Falcon 9 first stage will land successfully



# Methodology

#### **Executive Summary**

- Data collection methodology: We want to collect data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome. We can collect data using two ways:
  - SpaceX API
  - Web Scraping
- Perform data wrangling
  - Examine the data to see which attributes can be used to determine if the first stage can be reused
- Perform exploratory data analysis (EDA) using visualization and SQL

# Methodology

#### **Executive Summary**

- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Load data and standardize the data
  - Split the data into training and test data
  - Fit the data using different models
  - Using accuracy score and confusion matrix to determine the best model

### Data Collection – SpaceX API

Request data from SpaceX API

- Perform a get request to obtain the launch data in the form of a JSON
- ✓ spacex url="https://api.spacexdata.com/v4/launches/past"
- √ response=requests.get(spacex\_url)
- ✓ print(response.content)

Transform data to a data frame

- Use json\_normalize method to convert the json result into a data frame
- Use the API again to get necessary features of the launches using the IDs
- Create a Pandas data frame from launch\_dict

Clean data

- Filter the dataframe to only include Falcon 9 launches
- Replace missing values in PayloadMass with its mean value

#### GitHub URL:

https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/Data%20collection\_API.ipynb

# **Data Collection - Scraping**

Extract a Falcon 9 launch records HTML table from Wikipedia

Extract all column/variable names from the HTML table header

Create a data frame by parsing the launch HTML tables

#### GitHub URL:

https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/Data%20collection\_.Web%20Scraping.ipynb

# **Data Wrangling**



#### **GitHub URL:**

https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/Data%20Wrangling.ipynb

#### **EDA** with Data Visualization

- In order to see how features of the launches affect the launch outcome, the following charts were plotted:
  - √ The relationship between Flight Number and Payload
  - √ The relationship between Flight Number and Launch Site
  - √ The relationship between Payload and Launch Site
  - ✓ The relationship between success rate of each orbit type
  - √ The relationship between Flight Number and Orbit type
  - √ The relationship between Payload and Orbit type
  - √ The launch success yearly trend

<u>GitHub URL</u>: https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/EDA%20with%20Visualization.ipynb

#### EDA with SQL

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- · List the date when the first successful landing outcome in ground pad was achieved
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster\_versions which have carried the maximum payload mass.
- List the failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Rank the count of landing outcomes between the date 2010-06-04 and 2017-03-20, in descending order

### Build an Interactive Map with Folium

- All launch sites are marked on the map to visualize their locations
- The launch outcomes for each site are added to see which sites have high success rates
- The lines visualizing the distances between a launch site to its proximities (coastline, railway, highway, city) are added to see the conditions surrounding a launch site

<u>GitHub URL</u>: https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/Interactive%20Visual%20Analytics%20with%20Folium.ipynb

#### Build a Dashboard with Plotly Dash

In order to see which launch site, payload range, and booster version has the highest success rates, these plots are rendered:

- Total Successful Launches for All Sites and for each site
- Scatter Plot of Payload vs. Launch Outcome with the point color set to the booster version

<u>GitHub URL:</u> https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/Dashboard.ipynb

### Predictive Analysis (Classification)



<u>GitHub URL</u>: https://github.com/hienanhhoang/Coursera\_IBM\_Data-Science/blob/Capstone-Project/Machine%20Learning%20Prediction.ipynb

#### SpaceX Launch Records Dashboard

All Sites

Total Success Launches



#### Payload range (Kg):

0 100

Correlation between Payload and Success for all Sites





### Flight Number vs. Launch Site

Scatter plot of Flight Number vs. Launch Site



- For all three launch sites, as the flight number increases, the first stage is more likely to land successfully
- Launch site CCAFS SLC 40 has the highest number of launches.

### Payload vs. Launch Site

Scatter plot of Payload vs. Launch Site



- There are not many rockets launched for heavy payload mass (greater than 10000)
- It seems the more massive the payload, first stage is more likely to land successfully

# Success Rate vs. Orbit Type

• Bar chart for the success rate of each orbit type



- ES-L1, GEO, HEO, and SSO have the highest success rate (=1), while SO's success rate is O
- Other orbits' success rates hover around 0.5

# Flight Number vs. Orbit Type

Scatter point of Flight number vs. Orbit type



- There is only one launch in the orbits which have perfect success/unsuccess rate → not enough information to make predictions
- In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

### Payload vs. Orbit Type

Scatter point of payload vs. orbit type



- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- For GTO we cannot distinguish this well as both positive landing rate and negative landing (unsuccessful mission).

# Launch Success Yearly Trend

• Show a line chart of yearly average success rate



- The success rate is increasing since 2013 till 2017.
- The success rate fluctuates during 2017 2020.

#### All Launch Site Names

- Query: %sql select distinct(LAUNCH\_SITE) from SPACEX
- There are 4 unique launch sites: CCAFS LC-40, CCAFS SLC-40, KSC LC-39A, VAFB SLC-4E

# Launch Site Names Begin with 'CCA'

%sql select \* from SPACEX where launch\_site like '%CCA%' limit 5

| DATE           | timeutc_ | booster_version | launch_site     | payload                                                                   | payload_masskg_ | orbit        | customer              | mission_outcome | landing_outcome     |
|----------------|----------|-----------------|-----------------|---------------------------------------------------------------------------|-----------------|--------------|-----------------------|-----------------|---------------------|
| 2010-<br>06-04 | 18:45:00 | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon<br>Spacecraft<br>Qualification Unit                                | 0               | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-<br>12-08 | 15:43:00 | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon demo<br>flight C1, two<br>CubeSats, barrel<br>of Brouere<br>cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-<br>05-22 | 07:44:00 | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon demo<br>flight C2                                                  | 525             | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |
| 2012-<br>10-08 | 00:35:00 | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX CRS-1                                                              | 500             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |
| 2013-<br>03-01 | 15:10:00 | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX CRS-2                                                              | 677             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |

# **Total Payload Mass**

- %sql select sum(payload\_mass\_\_kg\_) as total\_payload\_mass from SPACEX where customer = 'NASA (CRS)'
- The total payload mass carried by boosters launched by NASA (CRS): 45596

#### Average Payload Mass by F9 v1.1

- %sql select avg(payload\_mass\_\_kg\_) as average\_payload\_mass from SPACEX where booster\_version like '%F9 v1.1%'
- Average payload mass carried by booster version F9 v1.1: 2534

# First Successful Ground Landing Date

%sql select date, landing\_outcome from SPACEX where landing\_outcome =

'Success (ground pad)' order by date

| DATE       | landingoutcome       |
|------------|----------------------|
| 2015-12-22 | Success (ground pad) |
| 2016-07-18 | Success (ground pad) |
| 2017-02-19 | Success (ground pad) |
| 2017-05-01 | Success (ground pad) |
| 2017-06-03 | Success (ground pad) |
| 2017-08-14 | Success (ground pad) |
| 2017-09-07 | Success (ground pad) |
| 2017-12-15 | Success (ground pad) |
| 2018-01-08 | Success (ground pad) |

#### Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select booster\_version from SPACEX where landing\_\_outcome =
'Success (drone ship)' and payload\_mass\_\_kg\_ between 4000 and 6000

booster\_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

#### Total Number of Successful and Failure Mission Outcomes

- %sql select count(landing\_outcome) from SPACEX where landing\_outcome like '%Success%' or landing\_outcome like '%Failure%'
- Total number of successful and failure mission outcomes: 71

# **Boosters Carried Maximum Payload**

%sql select booster\_version from SPACEX where payload\_mass\_\_kg\_ = (select max(payload\_mass\_\_kg\_) from SPACEX)

| b | 0 | ost | er_ | ve | rsic | on |
|---|---|-----|-----|----|------|----|
| F | 9 | B5  | B1  | 04 | 8.4  |    |
| F | 9 | B5  | B1  | 04 | 9.4  |    |
| F | 9 | В5  | B1  | 05 | 1.3  |    |
| F | 9 | В5  | B1  | 05 | 6.4  |    |
| F | 9 | В5  | B1  | 04 | 8.5  |    |
| F | 9 | В5  | B1  | 05 | 1.4  |    |
| F | 9 | В5  | B1  | 04 | 9.5  |    |
| F | 9 | B5  | B1  | 06 | 0.2  |    |
| F | 9 | В5  | B1  | 05 | 8.3  |    |
| F | 9 | B5  | B1  | 05 | 1.6  |    |
| F | 9 | B5  | B1  | 06 | 0.3  |    |
| F | 9 | B5  | B1  | 04 | 9.7  |    |

#### 2015 Launch Records

• %sql select DATE, landing\_\_outcome, booster\_version, launch\_site from SPACEX where landing\_\_outcome = 'Failure (drone ship)' and DATE like '%2015%'

| DATE       | landing_outcome      | booster_version | launch_site |
|------------|----------------------|-----------------|-------------|
| 2015-01-10 | Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
| 2015-04-14 | Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• %sql select landing\_\_outcome, count(landing\_\_outcome) as number from SPACEX where DATE between '2010-06-04' and '2017-03-20' group by landing\_\_outcome order by number desc

| landing_outcome        | number |
|------------------------|--------|
| No attempt             | 10     |
| Failure (drone ship)   | 5      |
| Success (drone ship)   | 5      |
| Controlled (ocean)     | 3      |
| Success (ground pad)   | 3      |
| Failure (parachute)    | 2      |
| Uncontrolled (ocean)   | 2      |
| Precluded (drone ship) | 1      |



#### Launch Sites' Locations

 All launch sites are in proximity to the Equator line and the coast.



#### The success/failed launches for each site









- Green color represents successful launch while red color represents unsuccessful launch.
- From the map, we can see that KSC LC-39A has the highest success rate

# A launch site and its proximities

- Launch sites are close to railway, highway, and coastline.
- Launch sites are far from the cities.







#### Successful Launches for All Sites



KSC LC-39A has the highest success rate.

#### Success rate for KSC LC-39A



KSC LC-39A has the success rate of 76.9%

# Payload vs. Launch Outcome



- Booster version FT has the highest success rate
- Payload range (2000 6000) has the highest success rate



# Classification Accuracy



• All models have the same accuracy score.

#### **Confusion Matrix**

• All models perform equally well.





#### Conclusions

- The following attributes can be used to predict the success of the first stage
  - √ Flight Number
  - √ Pay load
  - √ Launch Site
  - ✓ Orbit Type
  - ✓ Booster Version
- We can use all 4 models (Logistic regression, Support vector machine, Decision tree classifier, K nearest neighbors) to predict the success of the first stage

