

Supplementary Material for

On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study

by G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent and M. E. Houle

Data Mining and Knowledge Discovery 30(4): 891-927, 2016, DOI: 10.1007/s10618-015-0444-8

Shuttle (version#01)

This dataset has been preprocessed in different variants in the literature. We follow the procedure of Zhang et al. [1], using classes 1, 3, 4, 5, 6 and 7 as inliers and class 2 as outlier, selecting 1000 inliers vs. 13 outliers (class 2). The selection of instances is based on the test set. The processed dataset consists of 1013 instances represented in 9 attributes, with 13 outliers (1.28%) and 1000 inliers (98.72%).

References:

[1] K. Zhang, M. Hutter, and H. Jin. A new local distance-based outlier detection approach for scattered real-world data. In Proc. PAKDD, pages 813-822, 2009.

<u>Download all data set variants used (328.2 kB)</u>. You can also access the <u>original data</u>. (shuttle.tst, [1] only uses test set)

- Normalized, without duplicates
- Not normalized, without duplicates

Normalized, without duplicates

This version contains 9 attributes, 1013 objects, 13 outliers (1.28%)

<u>Download raw algorithm results (8.4 MB)</u> <u>Download raw algorithm evaluation table (46.3 kB)</u>

Best Parameters

The following table contains the best (overall and per-method) results for each method and evaluation measure (when the same score was achieved twice, only the smallest k is given). The Maximum F1-Measure is complimentary in addition to the measures in the original publication.

Algorithm	k	P@n	Adj. P@n	AP	Adj. AP	Max-F1	Adj. MF1	ROC AUC
KNN	3	0.38462	0.37662	0.38600	0.37802	0.58537	0.57998	0.98908
KNN	4	0.46154	0.45454	0.38494	0.37695	0.55319	0.54738	0.98746
KNNW	3	0.38462	0.37662	0.30430	0.29526	0.51429	0.50797	0.91754

KNNW	6	0.38462	0.37662	0.37464	0.36651	0.52941	0.52329	0.98592
KNNW	7	0.38462	0.37662	0.37166	0.36349	0.48649	0.47981	0.98615
LOF	6	0.30769	0.29869	0.31305	0.30412	0.56410	0.55844	0.92869
LOF	9	0.23077	0.22077	0.37864	0.37056	0.66667	0.66233	0.98962
SimplifiedLOF	9	0.38462	0.37662	0.29411	0.28494	0.46154	0.45454	0.98100
SimplifiedLOF	11	0.38462	0.37662	0.33752	0.32891	0.53333	0.52727	0.98692
SimplifiedLOF	15	0.23077	0.22077	0.31031	0.30135	0.55000	0.54415	0.98546
LoOP	9	0.30769	0.29869	0.20080	0.19041	0.35897	0.35064	0.95631
LoOP	20	0.30769	0.29869	0.34661	0.33812	0.57895	0.57347	0.98692
LDOF	16	0.23077	0.22077	0.12299	0.11159	0.23077	0.22077	0.92469
LDOF	5 7	0.15385	0.14285	0.25882	0.24919	0.47059	0.46371	0.97623
LDOF	62	0.23077	0.22077	0.26086	0.25125	0.42424	0.41676	0.97662
LDOF	77	0.15385	0.14285	0.25075	0.24101	0.39286	0.38496	0.97754
ODIN	46	0.26923	0.25973	0.38724	0.37927	0.55814	0.55240	0.98885
ODIN	56	0.33333	0.32467	0.38988	0.38195	0.55556	0.54978	0.98835
ODIN	81	0.56410	0.55844	0.36564	0.35739	0.59259	0.58730	0.94096
FastABOD	7	0.23077	0.22077	0.19030	0.17978	0.26471	0.25515	0.82708
FastABOD	82	0.23077	0.22077	0.23937	0.22948	0.35714	0.34879	0.83646
FastABOD	96	0.23077	0.22077	0.24103	0.23117	0.35714	0.34879	0.83754
FastABOD	100	0.23077	0.22077	0.24086	0.23099	0.35714	0.34879	0.83815
KDEOS	6 7	0.38462	0.37662	0.29315	0.28396	0.45714	0.45009	0.98108
KDEOS	70	0.46154	0.45454	0.31823	0.30937	0.50000	0.49350	0.98062
KDEOS	98	0.46154	0.45454	0.42922	0.42180	i	0.59480	0.96577
KDEOS	100	0.46154	0.45454	0.43398	0.42662	0.60000	0.59480	0.96600
LDF	5	0.53846	0.53246	0.43072	0.42332	0.61538	0.61038	0.97462
LDF	8	0.38462	0.37662	0.43793	0.43062	0.70270	0.69884	0.99223
INFLO	6	0.30769	0.29869	0.20006	0.18967	0.36667	0.35843	0.88362
INFLO	13	0.23077	0.22077	0.31486	0.30596	0.59459	0.58932	0.94100
INFLO	15	0.23077	0.22077	0.34284	0.33430	0.59459	0.58932	0.98623
INFLO	19	0.23077	0.22077	0.33360	0.32494	0.53659	0.53056	0.98631
COF	16	0.53846	0.53246	0.40798	0.40028	0.59459	0.58932	0.98969
COF	19	0.53846	0.53246	0.45899	0.45196	0.64865	0.64408	0.99177
COF	20	0.53846	0.53246	0.46190	0.45491	0.64865	0.64408	0.99200

Plots

Precision at *n*

Adjusted precision at n

A: KNN, B: KNNW, C: LOF, D: SimplifiedLOF, E: LoOP, F: LDOF
G: ODIN, H: KDEOS, I: COF, J: FastABOD, K: LDF, L: INFLO

Not normalized, without duplicates

This version contains 9 attributes, 1013 objects, 13 outliers (1.28%)

Download raw algorithm results (8.3 MB) Download raw algorithm evaluation table (44.5 kB)

Best Parameters

The following table contains the best (overall and per-method) results for each method and evaluation measure (when the same score was achieved twice, only the smallest k is given). The Maximum F1-Measure is complimentary in addition to the measures in the original publication.

Algorithm	k	P@n	Adj. P@n	AP	Adj. AP	Max-F1	Adj. MF1	ROC AUC
KNN	2	0.23077	0.22077	0.14835	0.13728	0.25926	0.24963	0.80992
KNN	5	0.23077	0.22077	0.18879	0.17824	0.30380	0.29475	0.96496
KNNW	7	0.23077	0.22077	0.15511	0.14413	0.25806	0.24842	0.93515
KNNW	9	0.23077	0.22077	0.15912	0.14819	0.25000	0.24025	0.94362
KNNW	13	0.23077	0.22077	0.15514	0.14416	0.24000	0.23012	0.94585
LOF	4	0.30769	0.29869	0.11507	0.10356	0.30769	0.29869	0.62969
LOF	21	0.07692	0.06492	0.18285	0.17223	0.39130	0.38339	0.95715
LOF	79	0.07692	0.06492	0.20549	0.19516	0.45455	0.44745	0.93685
LOF	98	0.07692	0.06492	0.20225	0.19188	0.47619	0.46938	0.92308
SimplifiedLOF	14	0.30769	0.29869	0.17533	0.16461	0.35714	0.34879	0.93385
SimplifiedLOF	26	0.07692	0.06492	0.18432	0.17372	0.31579	0.30689	0.96754
SimplifiedLOF	93	0.07692	0.06492	0.22147	0.21135	0.47619	0.46938	0.95954
SimplifiedLOF	95	0.07692	0.06492	0.22065	0.21052	0.48780	0.48115	0.95746
LoOP	2	0.23077	0.22077	0.09070	0.07888	0.28571	0.27643	0.69569
LoOP	26	0.15385	0.14285	0.17358	0.16284	0.31579	0.30689	0.95992
LoOP	97	0.07692	0.06492	0.20922	0.19894	0.44444	0.43722	0.95369
LoOP	98	0.07692	0.06492	0.20959	0.19932	0.44444	0.43722	0.95385

LDOF	3	0.23077	0.22077	0.09675	0.08501	0.30000	0.29090	0.51015
LDOF	4 7	0.15385	0.14285	0.18127	0.17063	0.33333	0.32467	0.96377
LDOF	91	0.07692	0.06492	0.18936	0.17882	0.40909	0.40141	0.95969
LDOF	95	0.07692	0.06492	0.19040	0.17988	0.40000	0.39220	0.95938
ODIN	47	0.26154	0.25194	0.25108	0.24135	0.45000	0.44285	0.93788
ODIN	50	0.28994	0.28071	0.25128	0.24154	0.43902	0.43173	0.93050
FastABOD	3	0.15385	0.14285	0.06976	0.05767	0.18750	0.17694	0.63615
FastABOD	4	0.23077	0.22077	0.08641	0.07454	0.24000	0.23012	0.62692
KDEOS	52	0.00000	-0.01300	0.07039	0.05830	0.21212	0.20188	0.89346
KDEOS	70	0.15385	0.14285	0.07662	0.06462	0.15385	0.14285	0.86031
KDEOS	84	0.15385	0.14285	0.11446	0.10295	0.23529	0.22535	0.85262
KDEOS	89	0.15385	0.14285	0.15401	0.14301	0.23529	0.22535	0.85615
LDF	4	0.30769	0.29869	0.13649	0.12526	0.33333	0.32467	0.63923
LDF	8	0.30769	0.29869	0.25542	0.24574	0.45000	0.44285	0.96023
LDF	10	0.23077	0.22077	0.21041	0.20014	0.40816	0.40047	0.96662
LDF	48	0.07692	0.06492	0.19742	0.18699	0.46154	0.45454	0.92331
INFLO	10	0.30769	0.29869	0.12542	0.11405	0.30769	0.29869	0.83577
INFLO	50	0.07692	0.06492	0.19598	0.18553	0.36667	0.35843	0.96585
INFLO	68	0.07692	0.06492	0.20272	0.19236	0.39024	0.38232	0.96054
INFLO	97	0.07692	0.06492	0.19693	0.18649	0.46512	0.45816	0.93685
COF	2	0.23077	0.22077	0.07538	0.06336	0.26087	0.25126	0.61927
COF	5	0.15385	0.14285	0.09903	0.08732	0.27586	0.26645	0.66462
COF	26	0.15385	0.14285	0.15235	0.14133	0.25000	0.24025	0.95038

Plots

Average precision

A: KNN, B: KNNW, C: LOF, D: SimplifiedLOF, E: LoOP, F: LDOF
G: ODIN, H: KDEOS, I: COF, J: FastABOD, K: LDF, L: INFLO