

Semester: Jan 2023 - May 2023 Examination: ESE Examination Maximum Marks: 100 Duration:3 Hrs. Programme code: 01/03 Class: SY Semester: IV (SVU 2020) **Programme:** B. Tech Computer/IT Engineering Name of the Constituent College: Name of the department: Computer/IT K. J. Somaiya College of Engineering Name of the Course: Probability, Statistics and Optimization **Course Code:** 116U01C401/116U03C401 Techniques Instructions: 1) All questions are compulsory 2) Assume suitable data wherever necessary

Que. No.	Question										Max. Marks		
Q1	Solve any Four of the following.										20		
i)	Three machines A, B, C produce respectively 60%, 30% & 10% of the total number of items of a factory. The percentage of defective outputs of these machines are respectively 2%,3% & 4%. An item is chosen at random and found to be defective . Using Bayes theorem find the probability that it was produced by the factory A										5		
ii)	Compute 1	Compute Rank correlation coefficient from the following data											
	X	105	104	102	101	100	99	98	96	93	92		
	у	101	103	100	98	95	96	104	92	97	94		
iii)	A sample is normal,											ion	5
iv)	Convert the given LPP into the standard form Minimise $z = 7x_1 - 48x_2 + 23x_3$ Subject to $61x_1 - 29x_2 + 12x_3 \le 93$ $3x_1 - 61x_2 + 81x_3 \ge 9$ $x_1 - 33x_2 + 53x_3 \le -5$ where $x_1, x_2, \ge 0$ and x_3 is unrestricted in sign									5			
v)	Find the average number of customers in the system and in the queue if the system is $(M/M/1/\infty)$ and $\mu = 10$, $\lambda = 8$ per hour										5		
vi)	The joint probability distribution function of (X, Y) is given by $f(x, y) = xy^2 + \frac{x^2}{8}$ where $0 \le x \le 2$, $0 \le y \le 1$. Compute(a) $P(X > 1)$ (b) $P(Y < 0.5)$ (c) $P(X > 1 \mid Y < 0.5)$										5		
Q2 A	Solve the	followi	ng.										10
i)	The regression lines of a sample are $x + 6y = 6$ and $3x + 2y = 10$ Find (a) \overline{x} and \overline{y} (b) correlation coefficient r. Also estimate y when $x = 12$. (c) verify that the sum of the coefficients of regression is greater than $2r$											5	
ii)	A sample of 50 pieces of certain type of string was tested. The mean breaking strength turned out to be 14.5 pounds. Test whether the sample is from a batch of string having a mean breaking strength of 15.6 pounds & standard deviation of 2.2 pounds.										5		

					C	R						
Q2 A	Using Lagrange's Multiplier method solve the following NLPP $z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$ subject to $x_1 + x_2 + x_3 = 20$, $x_1, x_2, x_3 \ge 0$									10		
Q 2 B	Solve any	One of the	ne followi	ng.								10
i)	The local one person barber shop can accommodate maximum of 5 people at a time (4 waiting and 1 getting haircut). Customers arrive according to a Poisson distribution with mean 5 per hour. The barber cuts hair according to an Exponential distribution at an average rate of 4 per hour. (a) What percentage of time is the barber idle? (b) What fraction of potential of customers are turned away? (c) What is the expected number of customers waiting for a haircut? (d) How much time can a customer expect to spend in the barber shop?										10	
ii)	Define probability mass function of Poisson distribution and Fit a Poisson distribution to the following data if the following mistakes per page were observed in a book.											
	No. of mistakes	0		1	2	2	3	}	4		Total	
	No. of pages	211	9	0	1	9	5	j	0	1	325	
Q3	Solve any '	Two of the	he follow	ing.								20
i)	(a) The height of 1000 soldiers in a regiment are distributed normally with mean 172 cm and standard deviation 5 cm. how many soldiers have height greater than 180 cm.											
	(b) Two groups A & B of patients each consisting of 200 people are used to test effectiveness of a new serum. Group A is given serum while group B not. It is found that mean of two groups of A & B are 140 & 120 respectively and standard deviation of 14 & 12 respectively. Test at 1% LOS whether the new serum helps to cure the disease.											05
ii)	Find the lines of regression for the following data to estimate y corresponding to $x = 155$ and value of x corresponding to $y = 152$											
	x 100		20 130	140	150	160	170	180	190			
	y 45		4 61	66	70	74	78	85	89			
iii)	Define the following terms Solution of LPP, Basic solution of LPP, Feasible solution and degenerate solution of LPP. Also Find (a) All basic solutions (b) All feasible basic solutions (c) All degenerate solutions hence decide the optimal feasible basic for the following L.P.P. Maximise $z = 2x_1 + 3x_2 + x_3 + x_4$ Subject to $x_1 - 3x_2 + 2x_3 + x_4 = 5$ $x_1 + x_2 + 3x_3 - 2x_4 = 4$ where $x_1, x_2, x_3, x_4 \ge 0$								10			

Q4	Solve any Two of the following.								
i)	The probability that an electronic component will fail in less than 1200 hours of continuous use is 0.25 Use Normal approximations to find the probability that among 200 such components exactly 45 will fail in less than 1200 hours of continuous use								
ii)	A certain drug is claimed to be effective in curing cold in an experiment on 500 persons with cold. Half of them were given drug and half of them were given the sugar pills. The patients reaction to the treatment are recorded in the following table using χ^2 -test (use 5% LOS)								
		Helped	Harmed	No Effect	Total				
	Drug	150	30	70	250				
	Sugar pills	130	40	80	250				
	Total	280	70	150	500				
	L	of this data	, can it be co	II.	the drug and su	gar pills differ			
iii)	Solve the give	n LPP by	Simplex me	thod			10		
,	Maximise $z = 4x_1 + 3x_2 + 6x_3$								
	Subject to								
	$ \begin{aligned} 2x_1 + 5x_2 &\le 430 \\ 4x_1 + 3x_3 &\le 470 \end{aligned} $								
	$\begin{vmatrix} 4x_1 + 3x_3 & \pm 470 \\ 2x_1 + 3x_2 + 2x_3 & \leq 440 \end{vmatrix}$								
	where x_1, x_2	_							
Q5	Solve any For	ur of the fo	ollowing.				20		
i)	X follows a Uniform Distribution over the range (2,b) such that P(3 <x<6)=0.3 and="" find="" mean="" of="" td="" variance="" x.<=""><td>5</td></x<6)=0.3>						5		
ii)	If the tangent	C 41 1	le made by	the lines of re					
		of the ang		uic iiiics oi ic	gression of y on	x is 0.6 and	5		
	$\sigma_y = 2\sigma_x$, find	_	•		•	x is 0.6 and	5		
iii)	$\sigma_y = 2\sigma_x$, find A random same	d the corre	lation coeff) items give	s the mean 4.	•	. Can it be	5		
iii)	$\sigma_y = 2\sigma_x$, find A random sand regarded as dissignificance?	d the corre	lation coeff) items give a normal po	s the mean 4. opulation with	n x and y. 45 & variance 4 n mean 4 at 5% 1	. Can it be			
,	$\sigma_y = 2\sigma_x$, find A random sand regarded as dissignificance? Find the relation $z = 20 + x_1$. Find the trafficance $z = 20 + x_1$.	d the corresponding to the co	lation coefficients give a normal pour minimum or minimum of the system	icient between sthe mean 4. Spulation with mum of the function $\frac{x_2^2 - x_3^2}{x_1^2}$ and $\frac{(M/M/1/\alpha)}{x_2^2}$ that a custome	n x and y. 45 & variance 4 n mean 4 at 5% l	. Can it be evel of $1 per hour, \lambda = 8$	5		
iv)	$\sigma_y = 2\sigma_x$, find A random sand regarded as dissignificance? Find the relation $z = 20 + x_1$. Find the traffing per hour. Also	d the corresponding to the co	lation coeff items give a normal pour um or mining $2x_3 - x_1^2 - x_1^2$ of the system probability the	icient between sthe mean 4. Expulation with mum of the function $\frac{x_2^2 - x_3^2}{x_3^2}$ and $\frac{M/M}{1/\alpha}$ that a custome ion.	n x and y. 45 & variance 4 n mean 4 at 5% 1 notion b) model if $\mu =$. Can it be evel of $1 per hour, \lambda = 8$	5		
iv)	$\sigma_y = 2\sigma_x$, find A random sand regarded as dissignificance? Find the relation $z = 20 + x_1$. Find the trafficance per hour. Also minutes to be	d the corresponding to the corresponding to the point of the following and the following the corresponding to the corresponding to the following the corresponding to the corresponding	lation coefficients give a normal point of the system of	icient between sthe mean 4. Expulation with mum of the function $\frac{x_2^2 - x_3^2}{x_3^2}$ and $\frac{M/M}{1/\alpha}$ that a custome ion.	n x and y. 45 & variance 4 n mean 4 at 5% 1 notion b) model if $\mu =$. Can it be evel of $1 per hour, \lambda = 8$	5 5 5		
iv)	$\sigma_y = 2\sigma_x$, find A random sand regarded as dissignificance? Find the relation $z = 20 + x_1$. Find the traffic per hour. Also minutes to be obtain the dual Minimise $z = 3$. Subject to	d the corresponding to the following the fo	lation coefficients give a normal point of the system of	icient between sthe mean 4. Expulation with mum of the function $\frac{x_2^2 - x_3^2}{x_3^2}$ and $\frac{M/M}{1/\alpha}$ that a custome ion.	n x and y. 45 & variance 4 n mean 4 at 5% 1 notion b) model if $\mu =$. Can it be evel of $1 per hour, \lambda = 8$	5 5 5		
iv)	$\sigma_y = 2\sigma_x$, find A random san regarded as dissignificance? Find the relation $z = 20 + x_1$. Find the traffic per hour. Also minutes to be Obtain the dual Minimise $z = 3$. Subject to $-x_2 + x_3 \ge 3$.	d the corresponding to the following the fo	lation coefficients give a normal point of the system of	icient between sthe mean 4. Expulation with mum of the function $\frac{x_2^2 - x_3^2}{x_3^2}$ and $\frac{M/M}{1/\alpha}$ that a custome ion.	n x and y. 45 & variance 4 n mean 4 at 5% 1 notion b) model if $\mu =$. Can it be evel of $1 per hour, \lambda = 8$	5 5 5		
iv)	$\sigma_y = 2\sigma_x$, find A random san regarded as draignificance? Find the relative $z = 20 + x_1$. Find the traffication per hour. Also minutes to be Obtain the dual Minimise $z = 3$. Subject to $-x_2 + x_3 \ge 3$. $-3x_1 + 2x_3 \ge 3$.	d the correspond to the corresponding to the property of the	lation coefficients give a normal point of the system of	icient between sthe mean 4. Expulation with mum of the function $\frac{x_2^2 - x_3^2}{x_3^2}$ and $\frac{M/M}{1/\alpha}$ that a custome ion.	n x and y. 45 & variance 4 n mean 4 at 5% 1 notion b) model if $\mu =$. Can it be evel of $1 per hour, \lambda = 8$	5 5 5		
iv)	$\sigma_y = 2\sigma_x$, find A random san regarded as dissignificance? Find the relation $z = 20 + x_1$. Find the traffic per hour. Also minutes to be Obtain the dual Minimise $z = 3$. Subject to $-x_2 + x_3 \ge 3$.	d the correspond to the corresponding to the point of th	lation coefficients give a normal point of the system of	icient between sthe mean 4. Expulation with mum of the function $\frac{x_2^2 - x_3^2}{x_3^2}$ and $\frac{M/M}{1/\alpha}$ that a custome ion.	n x and y. 45 & variance 4 n mean 4 at 5% 1 notion b) model if $\mu =$. Can it be evel of $1 per hour, \lambda = 8$	5 5 5		