Nome	Cognome			Numero di matricola		

Secondo Appello di Fisica del 20/06/2023.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Un punto materiale di massa m_1 , scivolando senza attrito su un piano orizzontale con velocità iniziale v_0 , viaggia verso un secondo punto materiale, di massa m_2 , che può anch'esso scivolare senza attrito sullo stesso piano, inizialmente in quiete. Vincolata al secondo punto materiale, nella direzione dalla quale arriva il primo punto materiale, si trova una molla di massa trascurabile e costante elastica k. Si utilizzino i seguenti valori numerici: $m_1 = 1.20$ kg, $m_2 = 5.70$ kg, $v_0 = 1.20$ m/s, k = 93.0 N/m.

Determinare:

1.1)	il modulo $v_{\rm CM}$ della vel $v_{\rm CM}$ [m/s] =	ocità del centro di X 0.209	massa del sistema B 0.799	dopo l'urto; C 0.655	D 0.331	E 1.01
1.2)	il modulo v_1 della veloc v_1 [m/s] =		materiale dopo l'i	urto; C 0.457	D 0.521	E 1.08
1.3)	l'energia cinetica E_2 de E_2 [J] =	el secondo punto m X 0.497	ateriale dopo l'urto B 0.392	o; C 0.441	D 0.858	E 1.13
1.4)	la massima compressio $\Delta \ell^{\text{max}} \; [\text{m}] =$	ne $\Delta \ell^{\sf max}$ della mol ${\sf A}$ 0.101	la durante l'urto; B 0.208	C 0.0773	D 0.322	X 0.124
1.5)	il massimo modulo a_1^{ma} $a_1^{\text{max}} [\text{m/s}^2] =$		del primo punto m		urto. D 13.8	E 5.88

Problema 2: Un disco omogeneo di massa m_D e raggio R scivola su un piano liscio orizzontale, ruotando attorno al proprio asse con velocità angolare $\vec{\omega}_D = \omega_D \hat{z}$, dove \hat{z} è un versore cartesiano ortogonale al piano. Il centro di massa del disco percorre la retta $y \equiv 0$ con velocità $v_D \hat{x}$. Il disco urta in modo completamente anelastico un punto materiale di massa m_P , che scivola sul piano percorrendo la retta $y \equiv d$ con velocità $-v_P \hat{x}$. Si utilizzino i seguenti valori numerici: $m_D = 3.50$ kg, R = 0.970 m, $\omega_D = 2.60$ rad/s, $v_D = 1.30$ m/s, $m_P = 0.610$ kg, $v_P = 3.60$ m/s, d = 0.250 m.

Determinare:

