Hands-on Session 2: Obtaining Data from On-line Sources

Katherine St. John
Lehman College and the Graduate Center
City University of New York
stjohn@lehman.cuny.edu

Session Organization

Goal: To be comfortable building trees from real data

• Lecture:

- Standard Software Packages
- Details on Web-based Software
- Motivating Problem

• Lab:

- Organized so you can use the DIMACS lab, or your own laptop
- Welcome to work singly or in groups

Motivating Problem

- Motivating Problem
- Building Trees Overview

- Motivating Problem
- Building Trees Overview
- Using Sequence Databases

- Motivating Problem
- Building Trees Overview
- Using Sequence Databases
- Aligning Sequences

Motivating Problem: Building Trees with Serial Data?

Rodrigo *et al.*,
"Coalescent estimates of
HIV-1 generation time in vivo." *PNAS* '99

Motivating Problem: Using Serial Data

Rodrigo et al. includes 55 HIV-env partial sequences,
 all from the same patient

Table 1. Summary statistics for each sequence sample set

Sample	Days from first sample	No. of sequences	Average pairwise diversity,	θ	N
1	0	13	3.6	0.088	1100
2	214	15	3.9	0.106	1325
3	671	15	5.0	0.074	925
4	699	9	4.2	0.144	1800
5	1005	8	4.1	0.092	1150

• Starting question: what is the genealogy samples (from the same patient) taken at different times?

1. Get data (from wet lab, authors, genBank, etc).

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.
- 4. Use software program(s) to build trees.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.
- 4. Use software program(s) to build trees.
- 5. Analyze Results.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.
- 4. Use software program(s) to build trees.
- 5. Analyze Results.

We'll focus on the first two today.

Using PubMed

An on-line index of scientific papers:

Can search by all standard methods...

Sequence Databases

- GenBank: repository of sequences from NCBI (NIH).
- As of August 2005, GenBank had 100 gigabases of sequences.
- Almost all sequences from published articles are there, and can be located by their unique accession number or PubMed ID.

LANL HIV Databases

- Los Alamos National Laboratory maintains databases of sequences, resistance, immunology, and vaccine trials.
- Can be searched in numerous ways including accession number or PubMed ID.

Aligning Sequences

 Before building a tree, the similar regions of the sequences need to be aligned.

Aligning Sequences

- Before building a tree, the similar regions of the sequences need to be aligned.
- One of the most common alignment programs is ClustalW:
 - Available via multiple servers including EBI & the
 Pasteur Institute
 - Does a global multiple sequence alignment

• Find the Rodrigo et al. paper on PubMed.

- Find the Rodrigo et al. paper on PubMed. Download the paper, and note it's PubMed ID (PMID).
- Use the PMID to find the sequences in the HIV Sequence Database.

- Find the Rodrigo et al. paper on PubMed. Download the paper, and note it's PubMed ID (PMID).
- Use the PMID to find the sequences in the HIV Sequence Database.
- Use ClustalW to align the sequences.

- Find the Rodrigo et al. paper on PubMed. Download the paper, and note it's PubMed ID (PMID).
- Use the PMID to find the sequences in the HIV Sequence Database.
- Use ClustalW to align the sequences.
- Using your favorite phylogenetic reconstruction method, build a tree from the sequences.

- Find the Rodrigo et al. paper on PubMed. Download the paper, and note it's PubMed ID (PMID).
- Use the PMID to find the sequences in the HIV Sequence Database.
- Use ClustalW to align the sequences.
- Using your favorite phylogenetic reconstruction method, build a tree from the sequences.
- Analyze resulting trees

• Choose the "fast" tree building option for ClustalW.

- Choose the "fast" tree building option for ClustalW.
- To use a distance based method, you need to create a distance matrix (dnadist) to give to the method (ie BioNJ or QuickTree).

- Choose the "fast" tree building option for ClustalW.
- To use a distance based method, you need to create a distance matrix (dnadist) to give to the method (ie BioNJ or QuickTree).
- At the Pasteur Institute site, at each step, you can choose the next step, without reloading the file.

- Choose the "fast" tree building option for ClustalW.
- To use a distance based method, you need to create a distance matrix (dnadist) to give to the method (ie BioNJ or QuickTree).
- At the Pasteur Institute site, at each step, you can choose the next step, without reloading the file.

For example, after returning the distance matrix, you have the option of applying a method to the matrix.

Helpful Websites

Dataset for this tutorial:

http://comet.lehman.cuny.edu/stjohn/dimacsTutorial

PubMed & Genbank:

http://www.ncbi.nlm.nih.gov/entrez

• HIV Sequence Database:

http://hiv-web.lanl.gov/content/index

The Pasteur Institute:

http://bioweb.pasteur.fr/intro-uk.html