Exam: Comparing Approaches for Finding a Maximum Cut in Graphs

Abstract

I implemented and compared various algorithms that tackle the problem of finding a maximum cut in a finite, simple, undirected graph, that is, a partition of the vertices into two sets, such that the weight of the edges between them is as great as possible. You can find a heuristic, an approximation, and an exact solution in this paper.

I describe the problem's characteristics, the ideas behind the different approaches, and the consequences of the implementation decisions in this report.

Furthermore, I performed various test cases on a range of different graphs whose results I provide as well to show how the algorithms are affected by parameters and graph characteristics.

1 Introduction

First of all, it is necessary to clarify the terminology. The term maximum cut problem is often used synonymous with weighted maximum cut problem. The difference is, that for the maximum cut problem, the input graph has no edge weights, whereas for the weighted maximum cut problem, the input graph is weighted and the goal is not to optimize the number of edges that are cut, but instead to maximize the weight of the cut edges.

Both problems are NP-complete [4, 8], but since the maximum cut problem can be emulated using an algorithm for a weighted maximum cut problem by setting all weights to 1, I will focus on the more general version and refer to it as **Max-Cut** from now on.

As for real-world scenarios, this problem is particularly interesting for finding ground states of spin glasses with exterior magnetic field, which is relevant for the field of physics, as well as planning of layouts of integrated circuits by minimizing the number of

holes on a printed circuit board, or contacts on a chip [1].

Max-Cut is usually demonstrated visually by drawing an actual cutting line between the vertices and looking at which edges are crossed by it. The only requirement is that the drawn line does not cross any edge multiple times. An example can be seen below.

Figure 1: Example of a 2-edge cut [public domain]

As for formulas and algorithms, it is easier to work with two colors, denoting all the edges that connect vertices of a different color as being cut. This definition is equivalent but easier to express mathematically or implement into code. The decision problem formulation is determining whether the following is true or false for some graph G(V, E) and given x:

 $\begin{array}{l} \exists A,B\subset V \text{ with } A\cap B=\varnothing \wedge A\cup B=V, \forall \{u,v\}\in Z\subset E \text{ with } (u\in A\wedge v\in B)\vee (v\in A\wedge u\in B):\\ \sum w(\{u,v\}\in Z)\geq x \end{array}$

Where w denotes the weight function.

Here is an overview of what the rest of this report consists of:

Section 2 introduces the two algorithms, their characteristics and correctness and explains how they work, while in Section 3 I write about the used algorithm engineering techniques and give imple-

mentation details. **Section 4** includes information about the experimental setup and provides empirical results. **Section 5** draws further conclusions from the gained knowledge. Finally, **Section 6** explains how the reader can execute the test cases that are provided.

2 Preliminaries

As said, there are three algorithms I will have a look at. The first one is a heuristic that is simple and quick, especially for large graphs. However, it might calculate an arbitrarily bad result for some inputs, though it is always a valid one. The second algorithm is a 0.5-approximation, meaning the result is always at least half as good as the optimal one. In most cases, it takes longer than the heuristic, but also provides a better result. The last algorithm is an Integer Linear Programming approach which can find the optimal solution but as the problem is NP-hard, it takes a lot of time, especially for medium-sized or large graphs.

The goal of all these algorithms is to find a partition into two subsets of V, such that there is no partition where the sum of all weights of edges between these subsets would be higher.

2.1 Heuristic

The idea that I had was that we always take the heaviest edge and add its two vertices to different subsets. Then we remove all edges adjacent to nodes which are already in one of the subsets, because else we would in many cases subtract cut cost, by putting two neighboring vertices into the same subset. This leads to the problem that in a complete graph, we would remove all edges after the first step, which on an arbitrarily large (unweighted) graph leads to an arbitrarily bad solution.

Correctness: I only have to prove that $A \cap B = \emptyset$ and $A \cup B = E$, since there is no quality guarantee. This is indeed true since in line 12 we add the difference of V and A to B so it matters not how many elements are in A, though in practice it can be up to half of all.

Algorithm 1 Heuristic G(V, E)

```
1: sort E descendingly by weights
 2: A := \emptyset
 3: while E \neq \emptyset do
        \{u_0, v_0\} := E.get(0)
        A.add(u_0)
 5:
        for \{u, v\} \in E do
 6:
            if u = u_0 \lor v = u_0 \lor u = v_0 \lor v = v_0 then
 7:
                E.\text{remove}(\{u,v\})
 8:
 9:
            end if
        end for
10:
11: end while
12: B := V - A
13: return A, B
```

It is also important that the algorithm terminates, which can be ensured by removing every edge sharing a vertex with the one added to A from E and that must be at least be one, which is the one added to A itself. By reducing the remaining edges in E by at least 1 per loop, E will at some point be empty.

Complexity: As we have just seen, the while-loop can run at most |E| times whereas the inner for-loop, in the n-th run, can at most run |E| - n times. Therefore the complexity is technically $\mathcal{O}(|E|^2)$.

Nevertheless, there is one interesting observation to be made: In every while-loop run, there is one vertex added to A. As we cannot have more than half of the total number of vertices in A (since we dismiss all neighboring vertices), the outer while-loop can in fact only run $\frac{|V|}{2}$ times, giving us a $\mathcal{O}(|V||E|)$ complexity. In practice, vertices without edges do not matter, as we can see in the loop conditions, so this is always better. There exist sorting algorithms in $\mathcal{O}(|E|\log|E|)$ [9], so the sorting part would only dominate if $|V| < \log |E|$ This can never be the case, as there cannot exist a simple graph with $2^{|V|}$ or more edges [2].

2.2 Approximation

For the approximation algorithm, I decided to implement Sahni et al.'s idea of a 0.5-approximation [12]. This is a greedy best-in algorithm. Such an algorithm usually starts with an empty graph, while members of the original graph are considered to be candidates for inclusion in the constructed feasible solution. The algorithm successively adds a candidate, which provides the best contribution to the objective. In this case, our objective is to maximize edge cut costs. Therefore we start with A=E and for each vertex, we evaluate how much we would profit by transferring it from A into B.

Algorithm 2 Approximation G(V, E)

```
1: Let w be the weight function
2: B := \emptyset
3: A := V
 4: repeat
       \max := 0
 5:
        Vertex heaviest := null
 6:
        for u \in V do
 7:
 8:
           if u \notin B then
               weight := 0
9:
               for \{u,v\} \in E do
10:
                  if v \in A then
11:
                      weight += w(\{u,v\})
12:
13:
                   else
                      weight -= w(\{u, v\})
14:
                   end if
15:
               end for
16:
               if weight > \max then
17:
                   \max = \text{weight}
18:
                   heaviest = u
19:
               end if
20:
21:
           end if
        end for
22:
        B.add(heaviest)
23:
24:
        A.remove(heaviest)
25: until no improvement is possible
26: return A, B
```

Correctness: Again, it is obvious that $A \cap B = \emptyset$ and $A \cup B = E$ are fulfilled with the same argument as before. Though it does not follow easily how this

produces a 0.5-approximation, which can be found as a Lemma 2.3 in Sahni et al.'s paper [12], and there is a more recent description from Kahruman et al. [5].

The algorithm terminates because there cannot be improvement possible forever as there has to exist an optimal solution for every finite graph. It is also impossible, that the algorithm makes the solution worse and better again forever since max is set as 0, so only improvements are allowed.

Complexity: If we have a closer look, we can see that the outermost loop can run at most |V| times since every time an improvement is possible, a vertex gets added to B. if every vertex would be added to B, the if-condition in line 7 would never be true and we would not add anything to B in that run, therefore not making an improvement. In practice, we would of course stop way before that. The inner for-loop runs exactly |V| times, and the innermost one |E| times, which is how we get a running time complexity of $\mathcal{O}(|V|^2|E|)$.

Note: You can also find a discussion of a parallelized version of this algorithm in **Section 3.2**.

2.3 Exact Solution

I decided to state Max-Cut as an Integer Linear Programming (**ILP**) problem, which can be solved optimally. For that matter, it is important to find an expression of the problem with the variables, which in this case are in which subset a vertex is, as conditions. We can use the following:

Let n = |V|, u < v and $u, v, \{u, v\} \in \{0, 1\}$.

$$\max \sum_{u,v=1}^{n} w(\{u,v\}) \cdot \{u,v\}$$
$$\{u,v\} - u - v \le 0$$
$$\{u,v\} + u + v \le 2$$

Note: $\{v, w\} = 1$ if the edge is cut and 0 else. Note: u = 1 if $u \in A$, v = 1 if $v \in A$ w.l.o.g.

To give some quick example for this rather confusing formula let us assume, u and v are in the same subset, say they are both in A. Then u = v = 1.

Therefore, for the formula $\{u,v\} + u + v \leq 2$ to be true, $\{u,v\}$ needs to be 0. That means, that the edge is not cut, just as we expected, when we put both vertices u and v into the same subset. Let us now instead assume u and v are both in B. Then u=v=0. $\{u,v\}-u-v\leq 0$ can then only be true if $\{u,v\}$ is 0, again the edge is not cut. Only if u=1,v=0 or vice versa $\{u,v\}$ can be 1, meaning the edge can be cut. Of course, the naming of A and B does not matter.

Since we want to maximize the sum of weights of cut edges, we can assume the solving algorithm will ensure that the right edges are cut. After that, we can get the result of which edges are 0 and which ones are 1 and assign them to their respective subsets.

Algorithm 3 ILP G(V, E)

```
1: A, B = \emptyset
2: List cond := \{\}
3: for u \in V do
       for v > u \in V do
4:
           if \{u,v\} \in E then
5:
               cond.add(\{u, v\} - u - v \le 0)
6:
               cond.add(\{u, v\} + u + v \le 2)
7:
           end if
8:
       end for
9:
10: end for
11: solveBinary(cond, \max Sum(\{u, v\} * w(\{u, v\})))
12: for u \in V do
       if u = 1 then
13:
           A.add(u)
14:
       else
15:
           B.add(u)
16:
       end if
17:
   end for
19: return A, B
```

Correctness: It is difficult to argue about the correctness of the ILP-solver, since there are many different ones, so I will treat it as a black box. The used formula is rather intuitive once understood and has been proven to be correct [5].

With unlimited time, we can always get a perfect result. Concerning the result quality in limited time, my findings are in **Section 4**.

Complexity: Creating the conditions takes $\mathcal{O}(|V|^2)$ steps, and |E| many conditions are created. Even though there are some very sophisticated approaches as to how to make solving these equations easier, there can never exist an ILP-solver solving this in under $\mathcal{O}(2^{|E|})$ if $P \neq NP$, since Max-Cut is NP-Complete.

3 Algorithm & Implementation

To compare the actual performances of these presented algorithms, it is necessary to convert the ideas into code that works efficiently. In this chapter, I will describe the details of how that has been done and what changes I deemed necessary to improve practical running times. Specifically, you can find pseudocode of a parallelized approach for Algorithm 2 at the end of this section.

3.1 Algorithm Engineering

Formally, a Max-Cut is a partition of all vertices of a graph into two subsets which is why for all pseudocode implementation the return value was two sets of vertices. However, for the results, I am not interested that much in what vertices are in which subset, but much rather in the total weight of the edges. This is why instead of adding vertices to lists and removing them as well as calculating the difference or if an element is contained in a list, which is a rather expensive operation, I avoided all of this by enabling nodes to be marked. The subsets are then all nodes that are marked, and those that are not. I implemented functions for displaying the total weight of cut edges, the subsets, and the cut edges individually.

For the exact ILP solution, we would technically create $|V|^2$ conditions, but a lot of them would not include an edge in the equation, meaning that it would only be $u+v \leq 2$ and $-u-v \leq 0$ which is not an actual restriction for $u,v \in \{0,1\}$. Though the library immediately sorts these entries out, it still takes some time to create them, which is why I of

course did not do so.

3.2 Implementation Details

I implemented all algorithms in Java (Version 15.0.1), using the included standard libraries and data structures as well as the library LpSolve. I decided to create separate Graph, Node, and Edge classes since those Objects are used very often and make abstraction easier. Every mentioned algorithm is a method taking the graph on which Max-Cut is to be done as an argument and as mentioned earlier does not return a partition of the graph but instead directly marks nodes in the graph. These marks can then be evaluated by separate functions which determine the weight, number of cut edges, etc. Before running a different algorithm, all nodes are unmarked first.

As promised in the beginning, every problem on unweighted graphs can also be solved with weighted ones, which is why I included the possibility to use both weighted as well as unweighted graphs as input files.

Something that might be confusing is what format the ILP-solver uses for its conditions, which is an array of coefficients, where the positions encode the variable names, which is why the code is way more extensive than the pseudo-code provided in **Section** 2

Now, I will be discussing the parallelization part that I omitted earlier. Specifically, I parallelized the most work-intensive part of the approximation algorithm which is evaluating the possible improvement in the sum of cut edge weights, if one vertex was transferred to subset B. For that purpose, I split the list of vertices into as many parts as there are cores and calculate a local maximum. The maximum of these is determined sequentially.

Of course this is just as correct as the non-parallelized approach making use of $\max(a, b, c) = \max(\max(a, b), c)$.

Algorithm 4 Parallel Approximation G(V, E)

```
1: Let w be the weight function
 2: B := \emptyset
3: A := V
 4: repeat
       i := 0
       List results = \{\}
 6:
       for core in cores do
 7:
 8:
           X = Sublist from i/|cores| * |V| to (i +
    1)/|cores| * |V| \text{ of } V
9:
           i++
10:
           results.add(core.\mathbf{Task}(X, A, B))
11:
       end for
       heaviest := max(results.max)
12:
        B.add(heaviest)
13:
        A.remove(heaviest)
15: until no improvement is possible
16: A := V
17: return A, B
```

$\overline{\mathbf{Algorithm}}$ 5 Task (X, A, B)

```
1: for u \in X do
       if u \notin B then
 2:
3:
           weight := 0
           for \{u,v\} \in E do
 4:
               if v \in A then
 5:
                   weight += w(\{u, v\})
 6:
 7:
                   weight -= w(\{u, v\})
 8:
               end if
9:
10:
           end for
           if weight > \max then
11:
               \max = \text{weight}
12:
               heaviest = u
13:
           end if
14:
       end if
15:
16: end for
17: return [heaviest, max]
```

4 Experimental Evaluation

4.1 Data and Hardware

I ran all the tests on the following hardware: Intel Core i7-6700K CPU, 4x4.4 GHz (Hyper-Threading enabled) 16 GB RAM, 3200 MHz

4.2 Test Graph Sources

Most graphs I used are from $SteinLib^1$ Additionally, I used datasets from the US road network [10], Bitcoin OTC trust [6, 7], and Last.fm's social network [11].

4.3 Results

I decided to use a time limit of 180 seconds for the ILP-solver so I could do all the tests at once. The results are consistent with what was expected from the theoretical analysis of the algorithms. The only surprises were slightly increased running times in the first run, which might be attributed to the Java Runtime Environment.

The results of the tests can be found on the following pages consisting of a table and the acquired insights into the algorithms' performances in practice. Moreover, I included three charts on the last page.

An interesting thought for future work would be allowing the approximation algorithm to make small losses in the objective function to avoid getting stuck in a local optimum, perhaps by removing vertices from the subsets at random. Depending on the implementation, this would however make proving its correctness more difficult.

For **Table 1**, consider the following legend and explanation:

 ${f H}$ - Heuristic

A - Approximation

AP - Parallelized Approximation

- 2 Odd cycle
- ³ Odd wheel
- 4 Root = 7/8n for n = 3
- ⁵ Composition of odd wheels as an odd cycle
- ⁶ Goemans design 4, 3, 2 facett
- 7 Odd antiwheel
- 8 Real life VLSI
- 9 BTC network
- ¹⁰ Last.fm social network
- ¹¹ US road map

The ILP-solver is considered timed out after 180 seconds. Since it produces intermediate results, the last one will be used as the final result in the table. Be aware that such an intermediate result is not necessarily optimal. For larger graphs, the ILP was not able to find any feasible solution which is noted in the results. Graphs with even more edges than those for which no feasible solution was found have not been tested, as they would not be solved either.

 $m{H}$ Miss and $m{A}$ Miss denote the percentage by which the corresponding algorithms result was worse than the optimum, while $m{H}$ vs. $m{A}$ Miss indicates how much better the result of $m{A}$ was in comparison to $m{H}$. Lastly, $m{AP}$ Speed Change indicates the difference in time it took to execute $m{A}$ and $m{AP}$.

¹http://steinlib.zib.de/

1 10 10 10 10 10 10 10		17.71	1.00	I vv m.					** ** ***				T www	T . T	II sv .
1	#	V	E	H Time	H weight	A Time	A Weight	AP Time	ILP Time	ILP Weight	H Miss	A Miss	H vs. A Miss	AP Speed Change	Notes
1															
1															
1. 10 10 10 10 10 10 10															
Columb															
The color of the			100		353					485		2%	26%	1147%	
1	7	75	94		357	0.4	477	1.8		500	29%	5%	25%		
10 75 75 75 75 75 75 75 7			94							483	19%			382%	
10 75	9	75	94	0,2	356	0,4	463	2,2	13,5	476	25%	3%	23%	449%	
12 75	10			0,4	568	1,0	709		timeout	737				80%	
15 100									timeout						
14 100 125															
15 100 125 250 277 0.3 0.3 0.1 1.8 196.3 627 996 996 796 996 997 996 997 997 997 998															
10 200															
17 10 250 250 241 272 21 21 21 21 21 21											30%	7%			
18 100 200 201 244 773 241 252 201															
19 2000 3125 3131 11060 91,4 3237 91,2 1100001 10170 10271 2388 0.5,															
20 200 315 6,7 11900 92,1 15791 80.9 timeout 15710 2378 -1278															
27 2500 3125 8.3 12175 1022 1518 88.5 timout 15090 1238 33%															
22 200 315 6.5 1182 12.7 11997 97.8 timoott 1052 1268 2406 2406 487.															
28 2600 5000 1120 17540 115.2 22022 88.5 timont 21566 2207 2207 427° 427															
25 2000 5000 12.1 17850 15.5.4 22914 88.0 timocat 2379 2296 -4378 -4	23	2500	3125	6,5	12149	91,7	15961	84,8	timeout	16829			24%	-8%	
50 5000 5000 14.8 17490 152.1 22845 91.6 1 1 1 27841			5000		17849			88,5	timeout	23456					
27 280 200 118 1779 1243 2365 2355 295 200 200 118 1779 1243 2366 23				12,1	17850				timeout	23759				-070	
Section Section 18.8 1779 1943 23966 84.2 timocal 2054 1978						152,1									
290 12500 44.9 38978 379.0 4994 136.6 11moord 11moord 16moord 1275 49															
10 1500 1500 14,3 2014 2015 37,4 2014 2015 2015 2014 2015 20															\blacksquare
131 2500 1500 37.4 391.4 398.4 398.5 125.4 timeout infrashle solution 21% 59% 59% 313 2500 1250 44.0 390.1															\blacksquare
132 2500 1500 447 30501 3070 4088 140.3 1 1 1 1 1 1 1 1 1											-				-
131 2500 12500 14.0 39941 399.1 39944 399.1 13961												-			\vdash
34 5500 6500 386,6 178588 2501,2 200020 500,2 not run not run 13% 770% 135 2500 62500 375,0 170916 2140,2 275747 504,5 not run not run 14% 770% 146,5 1470 1574 1470											-	-			\vdash
55 5500 63500 373.6 177962 2229.8 205486 339.8 not run not run 147% 770% 7												-			
150						2229.8									
37 2500 2500 367,1 177261 2113,5 206911 472,3 not run not run not run 14% 7.78% 198 350 360 30,0 324 0.0 4315 0.7 20,3 4629 30% 8% 248 2810% 361 362 278 362 363 360 0.0 4315 1.0 1.4 4632 20% 27% 18% 3575% 3575% 361 361 361 362 362 363 362 365 3675% 362												 			
188 2500 62500 317.2 1785.27 1880.2 296497 513.1 10.7 mol rum 1.4% 7.4%															
33 80 0.0 3424 0.0 4531 0.7 20.3 4920 396; 8%; 24%; 280%; 4173%; 41 67 84 0.0 3843 0.0 4600 1.1 34.3 4915 22%; 5%; 18%; 4173%; 4173%; 4173%; 41 65 67 67 67 67 67 67 67															
14											30%	8%			
44 77 84 0.0 3843 0.0 4660 1.1 34.3 4915 22% 5% 18% 4173% 43 160 260 0.1 11041 0.3 13675 2.2 250,11 14185 22% 4% 19% 588% 44 115 274 0.1 10684 0.2 13595 2.2 250,11 14165 22% 4% 19% 588% 46 311 53 0.2 32589 0.8 34140 1.3 1606 14166 1 19% 1608 12% 412% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
143 160 269 0.1 11011 0.3 13675 2.2 2591.1 14185 22% 4% 19% 508% 44 155 274 0.1 10984 0.2 13599 2.4 1 1 1 1 1 1 1 1 1								1,1			22%	5%			
146	42	157	266	0,1	10910	0,2	13620	2,2	31781,4	14102	23%	3%	20%	1053%	
46 31 530 0.2 3829 0.8 3423 5.1 timeout 35442 23% 562% 42% 42% 44% 43 313 532 0.2 26388 0.8 34143 4.8 timeout 35805 23% 425% 425% 425% 44% 44% 43 48 44% 43 48 44% 4	43		269	0,1	11041	0,3	13675	2,2	2591,1	14185	22%	4%		598%	
147 313 590 0.2 26226 0.8 3149 3.9 timeout 35422 23% 412% 412% 414% 414 3135 320 0.2 26308 0.8 31413 4.8 timeout 34302 21% 440% 440% 440 816 4160 1.4 68826 6.9 92180 15.3 timeout 94824 26% 112% 440% 456 1.4 68844 6.9 92182 15.2 timeout 94824 26% 119% 440%															
48 313 592 0.2 26388 0.8 34143 4.8 timeout 35805 23% 527% 527% 3485 3485 3490 1.4 68826 6.9 92180 15.3 timeout 94855 25% 121% 440% 518 34802 14.4 68844 6.9 92182 15.2 timeout 94855 25% 121% 12								- /							
48 321 540 0.2 20700 0.8 33790 4.3 timeout 34302 21% 440% 440% 540 816 6.9 92180 15.2 timeout 94855 25% 121% 550 818 1462 1.4 68644 6.9 92182 15.2 timeout 94854 26% 110% 551 522 1466 1.4 68738 7.1 99164 15.7 timeout 94733 25% 122% 122% 122% 122% 1466 1.4 68738 7.1 99246 15.7 timeout 94730 25% 110															
\$\frac{9}{50} \$816 \$1460 \$1.4 \$68826 \$6.9 \$92180 \$15.3 \$\text{timeout}\$ \$94824 \$26\% \$119\% \$\frac{11}{50}\$ \$188 \$1462 \$1.4 \$68644 \$6.9 \$91282 \$15.2 \$\text{timeout}\$ \$94824 \$26\% \$119\% \$\frac{11}{50}\$ \$1585 \$129\% \$122\% \$1606 \$1.4 \$68644 \$7.1 \$9374 \$15.2 \$\text{timeout}\$ \$94733 \$25\% \$122\% \$16665 \$1525 \$1665 \$1445 \$1.4 \$69014 \$7.1 \$9374 \$15.2 \$\text{timeout}\$ \$94733 \$25\% \$116\% \$1535 \$1646 \$1.4 \$1.5 \$1.6 \$															
50 818 1462															
52 822 1466															
S28 1472															
54 1981 4344 1,4 69678 7,3 92446 15,3 timeout 91299 25% 110% 110% 54 1981 3631 9,9 15380 64,4 207952 57,4 timeout 216121 26% 511% 55 1998 3641 9,7 154158 63,9 207746 55,4 timeout 214377 26% 37% 3860 398 154328 63,9 207746 55,3 timeout 21597 26% 39% 39% 3978 39															-
55 1981 3633 9.9 153896 64.4 207952 57.4 timeout 216121 20% -113% 55 1989 3646 9.8 154328 63.9 207776 58.3 timeout 215197 20% -9% 57 2010 3662 10.0 153543 67.3 207771 65.2 timeout 215197 20% -9% 58 3675 6709 41.9 280880 270.4 370329 143.7 timeout 379971 24% 4.7% 59 3683 67.17 33.4 280978 232.6 370434 138.9 timeout 379971 24% 4.47% 60 3692 6726 42.9 280991 274.9 370061 147.7 timeout 378734 24% -46% 61 3716 6750 42.3 281140 276.4 370178 138.6 timeout 378734 24% -46% 62 7998 14734 234.6 616357 1440.5 811862 468.8 timeout 378734 24% -67% 63 8007 14743 240.8 615963 1674.5 811862 468.8 timeout infeasible solution 24% -67% 64 8013 14749 227.9 616282 1355.5 812275 647.9 timeout infeasible solution 24% -67% 65 8017 14753 215.9 615929 1535.5 812275 647.9 timeout infeasible solution 24% -67% 66 8062 14798 230.3 615710 1937579 1838.8 timeout infeasible solution 24% -70% 67 1903 35636 1142.7 1443131 7411.7 1937539 1838.8 tort un 20% -82% 68 91901 35644 1455.6 1443479 12941.0 1938552 2083.2 tort un 20% -82% 719 19112 35665 1598.1 144379 12941.0 1938552 2083.2 tort un 20% -82% 719 3379 71546 6349.3 278053 3804066 82361 tort un 27% -80% 719 3379 71546 6349.3 278053 3804066 82361 tort un 27% -80% 719 3379 71546 6349.3 278053 50483 80492 tort un 100 trun 27% -80% 719 3379 71546 6349.3 278053 3894066 82361 tort un 100 trun 27% -80% 719 3379 71546 6349.3 278053 389486 62361 tort un 100 trun 27% -80% 719 3397 71546 6349.3 278053 389486 63231 tort un 100 trun															
55 1989 3641 9.7 154188 63.9 207376 55.4 timeout 214377 29% -13% -13% -135 -134 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -134 -135 -1															
1994 3646 9.8 154328 63.9 207776 58.3 timeout 215197 26% 9% 9% 575 2010 3662 10.0 15543 67.3 207741 65.2 timeout 215195 268% 35% 35% 3675 6709 41.9 280880 270.4 370329 143.7 timeout 379971 24% 47% 47% 59 3683 6717 33.4 280978 232.6 370344 138.9 timeout 379971 24% 440% 440% 46% 66 3692 6726 42.9 280991 274.9 37061 147.7 timeout 379735 24% 46															
55 3675 6799 419 28080 270.4 370329 143,7 timeout 214925 24% -47% -															
Section Sect			3662							214925					
59 3683 6717 33.4 280978 232.6 370434 138.9 timeout 3787516 24% 40% 40% 60 3692 6726 42.9 280991 274.9 370061 147.7 timeout 3787534 24% 46% 46% 46% 46% 4787 48.0 48	58	3675	6709	41,9	280880	270,4	370329	143,7	timeout	379971			24%	-47%	
61 3716 6750 42.3 281140 276.4 370178 138.6 timeout 379735 24.9 5.6 5.6 6.2 798 14734 234.6 616557 1441.5 811862 468.8 timeout tinfeasible solution 24.9 6.7 6.7 6.8 6174 474.3 240.8 615963 1674.5 811597 475.9 timeout tinfeasible solution 24.9 6.7 6.8 617 14753 215.9 616282 1426.3 811940 474.7 timeout tinfeasible solution 24.9 6.6 6.8 61.0 2.4 6.6 6.8 61.0 2.4 6.6 6.8 61.0 2.4 6.6 6.8 61.0 2.4 6.6 6.8 61.0 2.4 6.6 61.0 61.	59	3683	6717	33,4	280978		370434	138,9	timeout	378516			24%	-40%	
63 8097 14743 234,6 616357 1440,5 811862 468.8 timeout infeasible solution 24% 467% 468.8	60	3692	6726	42,9	280991	274,9	370061	147,7	timeout	378734			24%	-46%	
63 8007 14743 240.8 615963 1674.5 811597 475.9 timeout infeasible solution 24% -72% 65 8017 14753 215.9 615929 1535.5 812275 547.9 timeout infeasible solution 24% -67% 66 8062 14798 230.3 615710 1507.0 811674 448.0 timeout infeasible solution 24% -67% 67 19083 35636 1142.7 143131 7411.7 1337539 1883.8 not run not run 26% -75% -75% 68 19091 35644 1557.6 1443479 11728.7 1937771 2123.7 not run not run 26% -85% -85% -85% 19101 35655 1598.1 1443179 12941.0 1938552 2083.2 not run not run 26% -85% -85% -85% 19117 35730 1583.8 1443179 12941.0 1938552 2083.2 not run not run 26% -84% -85%															
64 8013 14749 227,9 616282 1426,3 811940 474,7 timeout infeasible solution 24% .67% 65 8017 14753 215,9 615929 1535,5 812275 547,9 timeout infeasible solution 24% .64% 66 8062 14798 230,3 615710 1507,0 811674 448,0 timeout infeasible solution 24% .70% 67 19083 35536 1142,7 1443131 7411,7 1937539 1883,8 not run not run 26% .75% 68 19091 35644 1457,6 1443131 7411,7 1937539 1883,8 not run not run 26% .75% 69 19100 35653 1805,4 1443520 12661,5 1938260 1943,7 not run not run 26% .85% 70 19112 35665 1598,1 1443179 12941,0 1938552 2083,2 not run not run 26% .85% 71 19177 35730 1763,8 1443293 12567,0 1937075 2349,9 not run not run 26% .84% 72 38282 71521 11647,7 2780439 72887,5 3804838 7803,1 not run not run 27% .89% 73 38294 71533 7039,1 2780487 50463,9 3804066 8236,1 not run not run 27% .89% 74 38307 71546 6349,3 2780533 43667,4 3801218 8550,2 not run not run 27% .80% 75 38418 71657 11722,0 2781881 6717,1 3802893 9108,2 not run not run 27% .80% 76 6 9 0,1 6 0,0 6 0,7 1,7 6 0,0 0,7 27% .86% 77 7 9 0,0 6 0,0 9 0,5 1,2 9 33% 0% 33% 35550% 78 13 21 0,0 16 0,0 33 0,6 1,4 33 52% 0% 52% 19023% 79 3997 10278 55,6 7994 193,3 10278 147,6 3889,2 262 55% 0% 52% 19023% 78 18 18 1374 4,2 3082 12,8 3174 19,9 337,8 3174 3% 0% 33% 35550% 81 181 3174 4,2 3082 12,8 3174 19,9 337,8 3174 3% 0% 33% 35550% 81 181 3174 4,2 3082 12,8 3174 19,9 337,8 3174 3% 0% 3% 56% 81 181 3174 4,2 3082 12,8 3174 19,9 337,8 3174 3% 0% 3% 56% 388 388 388 388 388 388 388 388 388 388 388 388 388 3															
65 8017 14753 215.9 615929 1535.5 812275 547.9 timeout infeasible solution 24% 4-64% 66 8062 14798 230.3 615710 15170 8157															
66 8062 14798 230.3 615710 1507.0 811674 448.0 timeout infeasible solution 24% -70% 77 908 35536 1142.7 1443131 7411.7 1937771 2123.7 not run not run 26% -85% 78 19091 35644 1557.6 1443479 11728.7 1937771 2123.7 not run not run 26% -82% 70 19112 35665 1805.4 1443520 12661.5 1938260 1943.7 not run not run 26% -85% 70 19112 35665 1508.1 1443179 1291.0 1938552 2083.2 not run not run 26% -84% 71 19177 35730 1763.8 1443293 12567.0 1937075 2349.9 not run not run 25% -81% 72 38282 71521 11647.7 2780487 59463.9 3804066 8236.1 not run not run 27% -89% 73 38294 71533 7039.1 2780487 59463.9 3804066 8236.1 not run not run 27% -84% 74 38307 71546 6349.3 2780553 3667.4 3804218 8550.2 not run not run 27% -84% 75 38418 71657 11722,0 2781681 67171.1 3802893 9108.2 not run not run 27% -86% 78 3 21 0.0 6 0.0 6 0.7 1.7 6 0.0 0.7 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.0 0.7 0.0												-			
68 1990 35644 143479 11728,7 1937539 1883.8 not run not run 26% -75% 68 1990 35644 1443479 11728,7 1937771 2123,7 not run not run 26% -82% -82% 69 19100 35653 1805.4 1443379 12941.0 1938552 2083.2 not run not run 26% -88% -88% 70 19112 35665 1598.1 1443179 12941.0 1938552 2083.2 not run not run 25% -84%											-	-			\vdash
68 1999 35644 1557.6 1443479 11728.7 1937771 2123.7 not run not run 26% 82% 85% 70 19112 35665 1598.1 1443179 12941.0 1938552 2983.2 not run not run 26% 84% 85% 848% 71 19177 35730 1763.8 1443293 12667.0 1937075 2349.9 not run not run 25% -81%															\vdash
69 19100 35653 1895,4 1443520 12661,5 1938260 1943,7 not run not run 26% -85% 70 19112 35665 1598,1 1443179 12941,0 1938552 2083,2 not run not run 26% -84% 71 19177 35730 1763,8 1443293 12567,0 1937075 2349,9 not run not run 25% -81% 72 38282 71521 11647,7 2780439 72887,5 3804883 7803,1 not run not run 27% -89% 73 38294 71533 7039,1 2780487 50463,9 3804066 8236,1 not run not run 27% -84% 74 38307 71546 6349,3 2780553 43667,4 3804218 8550,2 not run not run 27% -80% 75 38418 71657 11722,0 2781681 6717,1,1 3802893 9108,2 not run not run 27% -86% 76 6 9 0,1 6 0,0 6 0,7 1,7 6 0,0 0% 0% 48050% 77 7 9 0,0 6 0,0 9 0,5 1,2 9 33% 0% 33% 35550% 78 13 21 0,0 16 0,0 33 0,6 1,4 33 52% 0% 52% 19023% 79 3997 10278 55,6 7994 193,3 10278 147,6 3889,2 262 55% 0% 52% 19023% 81 1081 3174 4,2 3082 12,8 3174 19,9 337,8 3174 3% 0% 3% 56% 82 8 20 0,0 32 0,0 32 0,6 1,6 32 0% 0% 0% 0% 28805% 83 10 15 0,0 10 0,0 12 0,6 1,9 12 17% 0% 17% 23322% 84 666 221445 1974,2 1001545679 90,9 106261489 413,8 not run not run not run 18% -86% 85 640 40896 73,5 3095773 78,9 3375566 36,2 not run not run not run 19% -78% 86 17127 27352 884,3 309065 575,3 488818 2893,7 not run not run not run 19% -78% 87 27019 39407 2773,7 1221574848 20620,9 1483648581 2893,7 not run not run not run 11% -89% 88 1728 28512 79,4 1562187 299,9 177010 101,9 not run not run not run 12% -85% 90 3763 24186 71,5 15668 318.7,5 28989 28989 not run not run 10 run 46% -64% 91 3783 24186 71,5 15668 318.7,5				1557.6								-			
To 19112 35665 1598.1 1443179 12941.0 1938552 2083.2 not run not run 26% 84% 71 19177 35730 1763.8 1443293 12567.0 1937075 2349.9 not run not run 27% -89% -81% -89				1805.4											
Texas															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1443293		1937075							-81%	
73 38294 71533 7039.1 2780487 50463.9 3804066 8236.1 not run not run				11647,7		72687,5								-89%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		38294	71533	7039,1	2780487	50463,9		8236,1		not run					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
78 13 21 0.0 16 0.0 33 0.6 1.4 33 52% 0% 52% 19023% 79 3997 10278 55.6 7994 193.3 10278 147.6 3889.2 10278 22% 0% 22% -24% 80 783 2262 2,2 2146 7,0 2262 13.5 182.2 2262 5% 0% 5% 93% 81 1081 3174 4.2 3082 10.0 32 0.6 1.6 32 0% 0% 3% 56% 82 8 20 0.0 32 0.0 32 0.6 1.6 32 0% 0% 0% 28805% 83 10 15 0.0 10 0.0 12 1.6 1.1 12 17% 0% 17% 233222% 84 666 221445 1943.8 305737 78.9 3375566<															2
79 3997 10278 55,6 7994 193.3 10278 147,6 3889.2 10278 22% 0% 22% 24% 80 783 2262 2,2 2146 7,0 2262 13,5 182,2 2262 5% 0% 5% 93% 81 1081 3174 4,2 3082 12,8 3174 19,9 337,8 3174 3% 0% 3% 56% 82 8 20 0,0 32 0,0 32 0,6 1,6 32 0% 0% 0% 0% 28805% 83 10 15 0,0 10 0,0 12 0,6 1,9 12 17% 0% 17% 23322% 84 666 221445 1974,2 1001545679 901,9 1062614849 413.8 not run not run 6% -54% 85 640 40896 73,5 3905773 78,9 3375566 36,2 not run not run 8% -54% 86 17127 27352 894,3 399055 5752,3 489847 1279,1 not run not run 19% -78% 87 27019 39407 2773,7 1221574848 2062,9 148364581 2893,7 not run not run 18% -86% 88 1728 28512 79,4 1562187 229,9 1777010 101,9 not run not run 12% -56% 89 36711 68117 9775,4 487778 40444,3 550923 4399,2 not run not run 11% -89% 90 34479 55494 616,2 319289 30798,0 443419 3872,4 not run not run 12% -86% 91 5880 35592 161,9 21218 6283,8 39027 39027 not run not run 12% -87% 93 7624 27806 516,4 13183 999,9 10087 10087 not run not run 100							-		-,-						3
80 783 2262 2.2 2146 7.0 2262 13.5 182.2 2262 5% 0% 5% 93% 81 1081 3174 4.2 3082 12.8 3174 19.9 337.8 3174 3% 0% 0% 3% 56% 82 8 20 0.0 32 0.0 32 0.6 1.6 32 0% 0% 0% 0% 28805% 83 10 15 0.0 10 0.0 12 0.6 1.9 12 17% 0% 0% 0% 17% 28805% 84 666 221445 1974.2 1001545679 90.9 19.0 1062614849 413.8 not run not run 17% 0% 17% 233222% 85 640 40896 73.5 3095773 78.9 3375566 36.2 not run not run not run 19% -54% 86 17127 <td></td> <td>-</td>															-
81 1081 3174 4.2 3082 12.8 3174 19.9 337.8 3174 3% 0% 3% 56% 82 8 20 0,0 32 0,6 1,6 32 0% 0% 0% 28805% 83 10 15 0,0 10 10 12 0,6 1,9 12 17% 0% 0% 28805% 84 666 221445 1974,2 100154679 90,9 1062614849 413,8 not run not run 6% -54% 85 640 40896 73,5 3995773 78,9 3375566 36,2 not run not run not run 8% -54% 86 17127 27352 894,3 399065 5752,3 489847 1279,1 not run not run not run 119% -78% 87 2719 39407 2773,7 1221574848 20020,9 148364851 2893,7 n															5
82 8 20 0.0 32 0.0 32 0.6 1.6 32 0% 0% 0% 28805% 83 10 15 0.0 10 0.0 12 0.6 1.9 12 17% 0% 0% 0% 28805% 84 666 221445 1974,2 1001545679 901,9 1062614849 413,8 not run not run 6% -54% 85 640 40896 73,5 3095773 78,9 3375566 36,2 not run not run not run 8% -54% 86 17127 27352 894,3 399065 5752,3 489847 1279,1 not run not run 19% -78% 87 27019 39407 2773,7 1221574848 26020,9 1483648581 2893,7 not run not run not run 18% -86% 88 1728 28512 794 1562187 229,9 1777010<															5
83 10 15 0,0 10 0,0 12 0,6 1,9 12 17% 0% 17% 23322% 84 666 221445 1974,2 1001545679 901,9 1062614849 413.8 not run not run 6% -54% 85 640 40896 73,5 399573 78.9 3375566 36.2 not run not run not run 8% -54% 86 17127 27352 894,3 399065 5752,3 489847 1279.1 not run not run not run 19% -78% 87 27019 39407 2273.7 1221574848 2062.0 143846851 2893.7 not run not run not run 118% -86% 88 1728 28512 79.4 1562187 229.9 1777010 101.9 not run not run 10 run 11% -89% 90 34479 55494 4016.2 3979.9 143419															6
84 666 221445 1974,2 1001545679 901,9 1662614849 413.8 not run not run 6% .54% 85 640 40896 73.5 3095773 78.9 3375566 36,2 not run not run 8% -54% 86 17127 27352 894.3 399065 5752,3 48947 1279,1 not run not run 19% -78% 87 27019 39407 2773,7 1221574848 20620,9 1483648581 2893,7 not run not run 119% -86% 88 1728 28512 794 1562187 229,9 1777010 101,9 not run not run not run 118% -86% 89 36711 68117 9775,4 487778 404443 550923 4399,2 not run not run 111% -89% 90 34479 55494 616,2 391289 30798,0 434319 3872,4 not run															7
85 640 40896 73,5 3095773 78,9 3375566 36,2 not run not run 8% -54% 86 17127 27352 894,3 399065 575,2 3489847 1279,1 not run not run 19% -78% 87 27019 39407 2773,7 1212154488 209,9 1483648581 2893,7 not run not run 118% -86% 88 1728 28512 79,4 1562187 229,9 1777010 101,9 not run not run 12% -56% 89 36711 68117 975,4 487778 40444,3 550923 4399,2 not run not run 11% -89% 90 34479 55494 161,2 391289 30798,0 434319 3872,4 not run not run not run 12% -87% 91 5880 35592 161,9 21218 6283.8 39027 39027 not run not run															
86 17127 27352 884,3 399065 5752,3 489847 1279,1 not run not run 19% -78% 87 27019 39407 2773,7 1221574848 20620,9 1483648581 2893,7 not run not run 18% -86% 88 1728 28512 79,4 1502187 229,9 1777010 101,9 not run not run 12% -56% 89 36711 68117 9775,4 487778 4044,3 550923 4399,2 not run not run 11% -89% 90 34479 55494 616,2 391289 3979,0 443419 3872,4 not run not run not run 11% -89% 91 5880 35592 161,9 21218 6283,8 39027 39027 not run not run not run 46% -64% 92 3783 24180 71,5 15968 3187,5 28989 not run not												—			
87 27019 39407 2773,7 1221574848 20620,9 1483648581 2893,7 not run not run 118% -86% 8 88 1728 28512 794 1562187 229,9 1777010 101,9 not run not run 12% -56% 89 36711 68117 9775,4 487778 40444,3 550923 4399,2 not run not run 11% -89% 90 34479 55494 6116,2 391289 30798,0 443419 3872,4 not run not run 11% -87% 91 5880 35592 161,9 21218 6283,8 39027 39027 not run not run not run 46% -64% 92 3783 24186 71,5 15668 3187,5 28989 90 run not run not run not run 45% -37% 93 7624 27806 516,4 13183 999,9 19087 19087						5752,3	489847	1279,1							
88 1728 28512 79.4 1562187 229.9 1777010 101.9 not run not run 12% -56% 89 36711 68117 9775.4 487778 40444.3 550923 4399.2 not run not run 11% -89% 90 34479 55494 6616.2 391289 30798.0 443419 3872.4 not run not run 12% -87% 91 5880 35592 161.9 21218 6283.8 39027 39027 not run not run 46% -64% 93 7624 27806 516.4 13183 995.9 19087 19087 not run not run 31% -60%						20620,9		2893,7							
90 34479 55494 6116,2 391289 30798,0 443419 3872,4 not run not run 12% -87% 91 5880 35592 161,9 21218 6283,8 39027 39027 not run not run 46% -64% 92 3783 24186 71,5 15968 3187,5 28989 28989 not run not run 45% -37% 93 7624 27806 516,4 13183 995,9 19087 19087 not run not run 31% -66%	88	1728	28512	79,4	1562187	229,9	1777010	101,9	not run						
91 5880 35592 161,9 21218 6283,8 39027 39027 not run not run 46% 4-64% 92 3783 24186 71,5 15968 3187,5 28989 28989 not run not run 45% -37% 93 7624 27806 516,4 13183 995,9 19087 19087 not run not run 31% -60%															8
92 3783 24186 71,5 15968 3187,5 28989 28989 not run not run not run 45% -37% 93 7624 27806 516,4 13183 9959,9 19087 19087 not run not run 31% -60%															8
93 7624 27806 516,4 13183 9959,9 19087 19087 not run not run 31% -60%						6283,8									9
95 7624 27806 516,4 15185 9959,9 19087 19087 100 run 100 run 100 run						3187,5									9
1 94 1 29104 100400 1 144004.2 1 32500 0 0 0 pot run not run													31%	-60%	10
	94	129164	100430	144504,2	132300	U	v	U	not run	not run	1		l	1	

Table 1: All Test Results. Do not hesitate to zoom in.

5 Discussion and Conclusion

5.1 Findings

5.1.1 Average Time

Excluding the test #94 on US roads, **H** took an average of 0.76 s, **A** 4.65 s, and **AP** 0.78 s to finish. The average time for ILP, where we could get an optimal result was 1.622 s, whereas if also counting tests, where we got an intermediate result, but no guarantee that this is an optimum, the average would be at 89.28 s instead.

5.1.2 Largest Input Graph Size

The largest graphs that can be efficiently handled on average hardware for each algorithm are approximately |E| = 250000 for \mathbf{H} , |E| = 130000 for \mathbf{AP} , |E| = 90000 for \mathbf{A} , and |E| = 280 for \mathbf{ILP} . Though for \mathbf{A} and \mathbf{AP} , it depends more on |V| as well, the above numbers are valid for an average degree of about 10.

5.1.3 H Worst Result

Since **H** vs. **A** Miss was at most 46% in #91 for graphs where we could not find the optimal solution, and knowing that **A** provides a 0.5-approximation, we can conclude that at worst, **H** only found a 23%-approximation, which is nice, considering that in theory, it could be arbitrarily bad. The worst solution we can actually prove was a 48%-approximation in #78

5.1.4 A Worst Result

The optimum solution is only known for a few graphs, but there $\bf A$ could deliver a 92%-approximation at worst, meaning that it takes a very special graph to worsen the quality to 0.5 of the optimum.

5.1.5 Parallelization Speedup

AP managed to complete runs #72 and #89 in 89% less time than **AP** which means that it can fully use all 8 (virtual) cores on large graphs. Interestingly, an 8x speedup would only result in -87.5% running

time, so there might be some further Java, Windows, or hardware optimization techniques at work, or it was just a coincidence.

The average compared running time for graphs with |E| > 1000 was -40%, while the global average is a terrible 1967% because of the outliers for tiny graphs.

5.2 Overview

What I conclude from this experiment data for the different algorithms is the following:

5.2.1 H - Heuristic

- Only suitable if a quality guarantee is not required
- An average quality of about 78% of the optimum
- Quality worse on denser graphs and graphs with very similar weights
- Often the fastest in comparison, especially for graphs with |E| > 100000

5.2.2 A - Approximation

- Offers a quality guarantee of 0.5
- Very good average quality of about 97% of the optimum
- Quality similar on all graphs
- Almost as fast as **H** for dense graphs with |E| < 90000 on modern hardware

5.2.3 AP - Parallelized Approximation

- Same quality as A
- Parallelization overhead makes it slower than **A** for |E| < 3000 (see #1)
- Performs especially well on real life instances of Max-Cut problems (see #89 and #90)
- Faster than **H** for some large ($|E| \approx 30000$), dense graphs

5.2.4 ILP - Integer Linear Programming

- Only discussed algorithm which guarantees an optimal solution
- Performance for graphs with |E| < 130 barely distinguishable on modern hardware if only doing one run
- Offers intermediate results of very good quality for graphs with |E| < 5000
- Unable to completely solve most graphs with |E| > 500 in a realistic time span (exception see #79)

5.3 Discussion

It is possible to adjust the heuristic in a way that the list of edges will not be sorted. That does not improve theoretical running time in big O notation, but in practice, especially for small, dense graphs, this does have quite some impact (**A** sometimes performed better for tiny graphs as it did not need a sort function), though it worsens the average result quality.

An even simpler heuristic would be flipping a coin for each vertex which determines to which subset it belongs, here as well the result is 'just' arbitrarily bad as well.

However, these approaches are not so useful for actual applications.

It has been proven, that it is NP-hard to approximate a Max-Cut to more than $\frac{16}{17}$ of the optimal solution [3], therefore, considering our implementation on average gives a 97%-approximation and in the worst observed case a $\frac{23}{25}$ one, I can be glad about the algorithm choice.

An alternative to the ILP method would be a bounded search tree. One could modify the heuristic to serve as a base for a BST algorithm: instead of always choosing (deterministically or at random) vertex u or v of the heaviest edge, we could branch on that decision, thereby creating every possible

subset if we go deep enough. With the employment of appropriate algorithm engineering techniques, this could very well lead to another efficient solving method.

5.4 Algorithm Engineering Success

The idea of marking nodes instead of creating subsets made the code easier to read and stopped the process of finding elements in lists from having an impact on run time analysis. Instead, the subsets are added to lists after stopping the timer.

The idea of reducing ILP constraints was essential to even run LpSolve on larger graphs as it stopped the library from crashing, though it had no real effect on run times since the process of removing unnecessary entries takes less than a millisecond.

6 Test-case Instructions

I included a guide for installing the LpSolve library in readme.txt.

In the folder 'Resources' you can find the table and graphs I used in this document as well as 5 pictures of the graphs I used for the test cases, including optimal solutions. All installation files for LpSolve are included in the folder 'Installation Files'.

I did not include any JRE or JDK installation files since they are large and I assume the reader to have those installed already, but you can find a link to them in the LpSolve installation guide.

First, you have to compile the files. For that matter, navigate to the 'Code' folder and run:

```
javac exam/*.java
```

There might be a warning message for deprecated API and unsafe operations which come from the library, but this should not be an issue. To execute all of the 5 test cases, run:

```
java exam.Test 1
java exam.Test 2
java exam.Test 3
java exam.Test 4
java exam.Test 5
```

If you want to do even more testing, you can also use:

java exam. Test <filename>

You can find all graph files in the 'Code' subfolder titled 'files'. A good example would be 'b04.stp', which is a rather small graph that can be solved with ILP.

References

- [1] Francisco Barahona et al. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design". In: *Operations Research* 36.3 (1988), pp. 493–513.
- [2] Claude Berge. Théorie des graphes et ses applications. Dunod, Paris, 1958.
- [3] Johan Håstad. "Some Optimal Inapproximability Results". In: *J. ACM* 48.4 (July 2001), pp. 798–859.
- [4] Guan-Shieng Huang. Theory of Computation. Chapter 9. National Chi Nan University, 2003, p. 8.
- [5] Sera Kahruman et al. "On greedy construction heuristics for the MAX-CUT problem". In: Int. J. of Computational Science and Engineering 1 (Apr. 2007).
- [6] Srijan Kumar et al. "Edge weight prediction in weighted signed networks". In: Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE. 2016, pp. 221–230.
- [7] Srijan Kumar et al. "Rev2: Fraudulent user prediction in rating platforms". In: *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.* ACM. 2018, pp. 333–341.
- [8] Harry R Lewis. Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman, 1983, Appendix A2.2.
- [9] Doina Precup. MergeSort proof of correctness, and running time. McGill University, 2014, p. 2.

- [10] Ryan A. Rossi and Nesreen K. Ahmed. "The Network Data Repository with Interactive Graph Analytics and Visualization". In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015. URL: http:// networkrepository.com.
- [11] Benedek Rozemberczki and Rik Sarkar. "Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models". In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20). ACM. 2020, pp. 1325–1334.
- [12] Sartaj Sahni and Teofilo Gonzalez. "P-Complete Approximation Problems". In: J. ACM 23.3 (July 1976), pp. 555–565.

