Математические основы информационной безопасности

Груздев Дмитрий Николаевич

Атаки по сторонним каналам

<u>Атака на реализацию</u>

реализация

Теоретическая разработка

- Лавинный эффект
- Дифференциальный криптоанализ
- Линейный криптоанализ
- Атака предвычислениями
- Атака человек посередине

Практическое выполнение

- Переполнение буфера
- Перебои электропитания
- Потребляемая мощность
- Излучение
- Использование кеш-памяти
- Человеческий фактор

Виды атак по сторонним каналам

- Атака по времени
- Атака по энергопотреблению
- Атака по электромагнитному излучению
- Акустическая атака
- Атака по видимому излучению

Атака по времени

<u>RSA</u>

```
N = p*q
р, q – простые
e*d = 1 \mod (p-1)*(q-1)
(e,N) – открытый ключ, d – закрытый ключ
c = me mod N – шифрование сообщения
m = cd mod N – расшифровывание сообщения
```

RSA-OAEP

Атака на основе подобранного шифротекста: n-k0-k1

 $c_1 = m_1^e \mod N, c_2 = m_2^e \mod N.$

Если $c_1 = c_2$, то $m_1 = m_2$.

Optimal Asymmetric Encryption Padding

c = RSA(OAEP(m, r));

 $m = OAEP^{-1}(RSA^{-1}(c)).$

Будем дополнять сообщение не нулями, а единицами, чтобы сервер отклонил пакет сразу после расшифровки и проверки дополнения.

Китайская теорема об остатках

```
N = p*q
\begin{cases} c^d \mod p \\ c^d \mod q \end{cases}
c^d \mod pq
```

Метод повторяющихся возведения в квадрат и умножения

```
ах – х итераций
а<sup>2x</sup> – 2х итераций
(a<sup>x</sup>)<sup>2</sup> – x+1 итерация
a^{2x+1} = (a^x)^{2*}a - x+2 итерации
a^{1010110} = (a^{101011})^2 = (a^{101010*}a)^2
= ((a^{10101})^2*a)^2 = \dots =
(((((a<sup>2</sup>)<sup>2</sup>*a)<sup>2</sup>)<sup>2</sup>*a)<sup>2</sup>*a)<sup>2</sup>
```

```
a^b, b = 1b_{k-1}b_{k-2}...b_2b_1b_0

res = a

for (i = k-1; i > -1)

eсли b_i == 0

res = res^2 (1 операция)

иначе

res = res^2*a (2 операции)

i--
```

в среднем 1.5*k умножений

Метод "скользящего окна"

q_mul					
0	0	0			
1	a¹	a ⁰⁰⁰⁰¹			
2	0	0			
3	a ³	a ⁰⁰⁰¹¹			
4	0	0			
5	a ⁵	a ⁰⁰¹⁰¹			
31	a ³¹	a ¹¹¹¹¹			

$$a^{1...0110101} = a^{1...0100000*}a^{10101} =$$

$$(((((a^{1...01})^2)^2)^2)^2*a^{10101} =$$

$$(((((a^{1...01})^2)^2)^2)^2*q_mul[21]$$

Умножений:

на создание массива: 16 на возведение в степень: k + k/5 всего: 16 + k + k/5

В общем случае:

размер окна: m на создание массива: 2^{m-1} на возведение в степень: k + k/m всего: 2^{m-1} + k + k/m

Пример: при k = 500, m = 5 ПКУ -1.5*k = 750 CO $-2^{m-1} + k + k/m = 632$

Преобразование Монтгомери

```
a*b mod q
R = 2^k
a_0 = a*R \mod q a = a_0/R \mod q
b_0 = b*R \mod q b = b_0/R \mod q
a_0*b_0 \mod q = a*R*b*R \mod q
a_0°b_0 mod q = a_0*b_0/R mod q = a*b*R mod q
a*b = a_0 b_0 R \mod q
c_{q} \mod d = c_{q} = 
c_0 = c*R \mod q
m = c_0 c_0 c_0 \dots c_0 \mod q
c^d = m/R \mod q
```

```
a_0^{\rm o}b_0 \mod q = a_0^{\rm *}b_0^{\rm }/{\rm R} \mod q a_0^{\rm *}b_0^{\rm }+{\rm x^*q}={\rm ****00...0} \mod q {\rm x^*q}- быстрее деления, медленнее умножения
```

Если a₀°b₀ > R, то производится дополнительное сокращение

Если вычисляется с^d, то вероятность дополнительного сокращения на каждом шаге равна:

P(доп.сокр) = (c mod q) / (2*R)

Метод Карацубы

```
A_{512}*B_{512} = A1_{256}A2_{256}*B1_{256}B2_{256}
A1_{256}A2_{256} * B1_{256}B2_{256} =
(2^{256}*A1 + A2) * (2^{256}*B1 + B2) =
2512*A1*B1 + 2256 * (A1*B2 + A2*B1) + A2*B2
A1*B1, A1*B2, A2*B1, A2*B2 — 4 умножения
A1_{256}A2_{256} * B1_{256}B2_{256} =
(2^{512} + 2^{256})*(A1*B1) - 2^{256}*((A1 - A2) * (B1 - B2)) + (2^{256} + 1)(A2*B2)
A1*B1, (A1 - A2) * (B1 - B2), A2*B2 - 3 умножения
```

Процесс вычислений

Восстановление ф

Пусть восстановлены старшие ј бит в q и разрядность q.

$$c_0 = q_0 q_1 q_2 ... q_j 000...$$
 проверяется за время t_0

$$c_1 = q_0 q_1 q_2 ... q_j 100...$$
 проверяется за время t_1

$$P(доп.cokp) = (c mod q) / (2*R)$$

$$q_{i+1} = 1$$
, если $t_1 \approx t_0$

$$q_{i+1} = 0$$
, если $t_1 < t_0$

Атака по энергопотреблению

Корреляция случайных величин

Теория вероятности

Х, Y – случайные величины

M_x – математическое ожидание X

 D_X – дисперсия X

 $\sigma_X = D_X^{1/2} -$ стандартное отклонение X

 $cov_{XY} = M((X - M_X)(Y - M_Y)) - ковариация X и Y$

$$r_{xy} = \frac{cov_{xy}}{\sigma_x \sigma_y}$$

коэффициент линейной корреляции (коэффициент корреляции Пирсона)

Математическая статистика

 $X = \{x_1, \dots, x_N\}, Y = \{y_1, \dots, y_N\}$ — выборки

 $\overline{X} = \frac{1}{n} \sum_{X_i}$ - выборочное среднее

 $S_{x}^{2} = \frac{1}{n} \sum (x_{i} - \overline{x})^{2}$ - выборочная дисперсия

 $cov_{xy} = \frac{1}{n} \Sigma (x_i - \overline{X})(y_i - \overline{Y})$ - выборочная ковариация

$$r_{XY} = \frac{cov_{XY}}{S_X S_Y} = \frac{\sum (x_i - \overline{X})(y_i - \overline{Y})}{\sqrt{\sum (x_i - \overline{X})^2 \sum (y_i - \overline{Y})^2}}$$

коэффициент корреляции Пирсона

<u>AES</u>

Измерительная установка

В момент подачи команды на шифрование осцилограф начинает считывать напряжение на карте.

 $M \sim 100000$, $N \sim 1000$

T=	0	1	2		t	М
PT ₀	U ₀₀	U ₀₁	U ₀₂	:	U _{ot}	 U _{OM}
PT ₁	U ₁₀	U ₁₁	U ₁₂		U _{1t}	 U _{1M}
PT _N	U _{N0}	U _{N1}	U _{N2}		U _{Nt}	 U _{NM}

Исследуемая корреляция

$$Y = S(X) = S(PT ^ K_0)$$

$$Y[0] = S(PT[0] ^ K_0[0])$$

$$U(t_0) \sim U(Y[0]) \sim HW(Y[0])$$

(Hamming weight)

Восстановление первого байта ключа

Текст	Выходное напряжение						
PT ₀	U _{oo}	U ₀₁	U ₀₂		U _{ot}		U _{om}
PT ₁	U ₁₀	U ₁₁	U ₁₂		U _{1t}		U _{1M}
PT _N	U _{N0}	U _{N1}	U _{N2}		U _{Nt}		U _{NM}

Текст	HW(S(PT[0] ^ K ₀ [0]))						
PT ₀	HW _{0,0}	HW _{0,1}		$HW_{0,k}$		HW _{0,255}	
PT ₁	HW _{1,0}	HW _{1,1}		HW _{1,k}		HW _{1,255}	
PT _N	HW _{N,0}	HW _{N,1}		$HW_{N,k}$		HW _{N,255}	
K ₀ [0] =	0	1		k		255	

Если $K_0[0] = k$ и выбираем момент съема t, то

$$r(U_{t},HW_{k}) = \frac{\sum (U_{it} - \overline{U}_{t})(HW_{ik} - \overline{HW}_{k})}{\sqrt{\sum (U_{it} - \overline{U}_{t})^{2}\sum (HW_{ik} - \overline{HW}_{k})^{2}}}$$

Восстановление первого байта ключа

- 1. Вычислить $r(U_t, HW_k)$ для всех $0 \le t \le M, 0 \le k \le 255$ (всего 256*(M+1) значение).
- 2. Выбрать наибольший коэффициент корреляции $r(U_{t0}, HW_{k0})$.
- 3. Тогда первый байт ключа шифрования $K_0[0] = k0$, а преобразование $S(PT[0] \wedge K_0[0])$ происходит в момент времени t0.

Аналогично восстанавливаются остальные байты ключа.

Стеганография

Классическая стеганография

Скрытие носителя информации

Симпатические чернила

Микронадписи и микроточки

Литературные приемы

- пустышечный шифр читаются некоторые буквы или слова
- акростих первые буквы строк стиха
- решетка Кардано трафарет для чтения нужных букв
- аллюзия определенные фразы, которые понимает получатель

Семаграммы – сообщение из любых символов кроме букв и цифр

Компьютерная стеганография

- Передача конфиденциальной информации.
- Преодоление систем мониторинга.
- Камуфлирование программного обеспечения.
- Защита авторских прав.

https://sesc-infosec.github.io/