```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [4]: df=pd.read_csv(r"C:\Users\Admin\Downloads\21_cities.csv")
df

Out[4]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afgha
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afgha
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afgha
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afgha
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afgha
150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW	Zim
150450	131502	Shangani	1957	MI	Midlands Province	247	ZW	Zim
150451	131503	Shurugwi	1957	MI	Midlands Province	247	ZW	Zim
150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW	Zim
150453	131508	Zvishavane District	1957	MI	Midlands Province	247	ZW	Zim
150454 rows × 11 columns								

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150454 entries, 0 to 150453
        Data columns (total 11 columns):
             Column
                            Non-Null Count
                                             Dtype
         - - -
              -----
                                             _ _ _ _ _
         0
             id
                            150454 non-null int64
         1
             name
                            150454 non-null object
         2
                            150454 non-null int64
             state_id
         3
             state code
                            150129 non-null object
                            150454 non-null object
         4
             state name
         5
                            150454 non-null int64
             country_id
         6
             country_code 150406 non-null object
         7
             country_name 150454 non-null object
         8
             latitude
                            150454 non-null float64
         9
             longitude
                            150454 non-null float64
         10 wikiDataId
                            147198 non-null object
        dtypes: float64(2), int64(3), object(6)
        memory usage: 12.6+ MB
In [6]: | df.columns
Out[6]: Index(['id', 'name', 'state id', 'state code', 'state name', 'country id',
                'country code', 'country name', 'latitude', 'longitude', 'wikiDataI
        d'],
              dtype='object')
        df1=df.head(100)
In [7]:
In [8]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100 entries, 0 to 99
        Data columns (total 11 columns):
         #
             Column
                            Non-Null Count
                                            Dtype
              _ _ _ _ _ _
                                            _ _ _ _ _
             id
         0
                            100 non-null
                                            int64
         1
             name
                            100 non-null
                                            object
                                            int64
         2
             state id
                            100 non-null
         3
                            100 non-null
                                            object
             state_code
         4
             state name
                            100 non-null
                                            object
         5
                            100 non-null
                                            int64
             country_id
         6
             country_code 100 non-null
                                            object
         7
             country_name
                           100 non-null
                                            object
                                            float64
         8
             latitude
                            100 non-null
         9
             longitude
                            100 non-null
                                            float64
         10 wikiDataId
                            100 non-null
                                            object
        dtypes: float64(2), int64(3), object(6)
        memory usage: 8.7+ KB
```

```
In [9]: x=df1[['state_id', 'country_id','latitude']]
         y=df1[['longitude']]
In [10]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [11]: from sklearn.linear_model import LinearRegression
         lr= LinearRegression()
         lr.fit(x_train,y_train)
Out[11]: LinearRegression()
In [12]:
         print('Linear Regresion(score):',lr.score(x_test,y_test))
         print('Linear Regression(train score)',lr.score(x_train,y_train))
         Linear Regresion(score): 0.9807952040111171
         Linear Regression(train score) 0.9257581704223419
In [13]: from sklearn.linear_model import Ridge,Lasso
         rr=Ridge(alpha=10)
         rr.fit(x train,y train)
Out[13]: Ridge(alpha=10)
In [14]: | print('Ridge(test score):',rr.score(x_test,y_test))
         Ridge(test score): 0.9806792416936592
In [15]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[15]: Lasso(alpha=10)
In [16]: print('Lasso (test score)',la.score(x_test,y_test))
         Lasso (test score) 0.97371122886158
In [17]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[17]: ElasticNet()
In [18]: |print(en.score(x_test,y_test))
         0.9793617406524431
In [19]: import pickle
         file="predict"
         pickle.dump(lr,open(file,'wb'))
```

```
In [20]: prediction= lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[20]: <matplotlib.collections.PathCollection at 0x2d453b6fa60>

