Рабочая тетрадь № 1

«Информатика — это наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность ее использования для принятия решений».

Большая российская энциклопедия, 2008.

«Информация — это сведения, независимо от формы их представления, воспринимаемые человеком или специальными устройствами как отражение фактов материального мира в процессе коммуникации».

ΓΟCT 7.0-99.

1. Теоретический материал

Бит — это минимальная единица измерения информации. Бит может принимать только два значения 0 или 1 [1, 2].

В вычислительных системах приняты следующие единицы измерения представления цифровых данных:

8 бит = 1 байт (1 Б),

1024 байт (1024 Б) = 1 килобайт (1 Кбайт),

1024 килобайт (1024 Кбайт) = 1 мегабайт (1 Мбайт),

1024 мегабайт (1024 Мбайт) = 1 гигабайт (1 Гбайт),

1024 гигабайт (1024 Гбайт) = 1 терабайт (1 Тбайт).

2. Пример

Задача:

Сколько битов в 3 Мбайт?

Решение:

3 Мбайт = 3 * 1024 Кбайт = 3* 1024 * 1024 Б = = 3* 1024 * 1024 * 8 бит = 25165824 бит

Ответ:

25165824 бит

	3. Задания										
1.	Задача:										
	Сколько битов в 4 Мбайт?										
	Решение:										
	4*1024*1024*8										
	Ответ:										
2.	Задача:										
	Сколько байтов в 2 Гбайт?										
	Решение:										
	2*1024*1024*1024										
	Ответ:										
3.	Задача:										
	Переведите 6291456 байт в Мбайт?										
	Решение:										
	6291456/1024/1024										
	Ответ:										

Формула $N = log_2 K$, где K — количество возможных состояний, а N — минимальное количество информации в битах, необходимое для описания состояний системы — формула Хартли [1, 2]. При вычислении по формуле Хартли может получено нецелое значение N. В этом случае значение необходимо округлить вверх до целого значения.

2. Пример Задача: Сколько бит нужно отвести на кодирование букв русского алфавита, если НЕ различать буквы Е и Ё? ШЩъыь Решение: Если не различать буквы Е и Ё, то в русском алфавите 32 буквы. Тогда: $\log_2 32 = 5$. Получилось целое число. Ответ: 5 бит Задача: Сколько бит нужно отвести на кодирование букв русского алфавита, если различать буквы Е и Ё? Решение: Если различать буквы Е и Ё, то в русском алфавите 33 буквы. Тогда: $\log_2 33 = 5,044$. Получилось не целое число. Поэтому округлим в верхнюю сторону до 6. Ответ: 6 бит

3. Задания 1. Задача: Сколько бит нужно отвести на ABCDEFGH кодирование букв английского алфавита? IJKLMNOP QRSTUVWX YZ

	Решение:
	log2(26) = ~4.7 => 5
	Ответ:
2.	Задача:
	Сколько бит нужно отвести на кодирование гласных букв английского алфавита?
	Решение:
	$\log 2(5) = \sim 2.3 \Rightarrow 3$
	Ответ:
3.	Задача:
	Сколько бит нужно отвести на кодирование согласных букв английского алфавита?
	Решение:
	log2(21) = ~4.3 => 5
	Ответ:

Пусть теперь система может находиться в одном из K состояний с разными вероятностями [1]. В состоянии 1 с вероятностью p_1 , в состоянии 2 с вероятностью p_2 и продолжая рассуждения в состоянии K с вероятностью p_k , где $p_k \ge 0$. Тогда ценность знания, что система находится в состоянии p_k зависит от распределения вероятностей [1].

Фундаментальное понятие теории информации – энтропия информации. Под энтропией понимается мера неопределенности системы. Энтропией по Шеннону называется число

$$H = -\sum_{i=1}^{N} p_i \log_2(p_i).$$

Прирост информации – это уменьшение энтропии.

2. Пример

Задача:

Если двоечник не поступил в РТУ МИРЭА, то тут мало информации, потому что «мы это и так знали», а вот если он поступил, то это «новость»!

Полагая, что двоечник не поступает с вероятностью 0,9, а поступает с вероятностью 0,1, найдите энтропию по Шеннону [1].

Решение:

Частная энтропия для не поступления равна:

$$-0.9 * \log_2 0.9 = 0.137,$$

а для поступления равна:

$$-0.1 * \log_2 0.1 = 0.332.$$

А общая энтропия равна:

$$H = 0.137 + 0.332 = 0.469$$
.

Ответ:

H = 0,469.

3. Задания

1. **Задача:**

Найти энтропию подбрасывания одной монеты.

Решение:

2*(-0.5*log2(0.5))

Кодирование — это процесс преобразования данных в цифровой формат для хранения, передачи и обработки в вычислительных системах.

Вся цифровая информация в вычислительных системах представляется в двоичном коде — наборе нулей и единиц. Двоичный код — это кодирование каждого объекта последовательностью бит.

На рисунке представлена таблица ASCII кодов символов английского алфавита с учетом прописных букв, знаков препинания, чисел, арифметических операций и некоторых других вспомогательных символов.

Таблица ASCII однозначно определяет 128 символов, расширенная ASCII таблица содержит 256 символов (1 байт) и включает русский алфавит.

						A	SCII	Coc	de C	hart	li .					
L	0	1	2	3	4	5	6	7	8	9	ΙA	В	C	D	E	L F
Θ	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	&	-	()	*	+	,	i	٠	/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	II	^	?
4	0	Α	В	С	D	Е	F	G	Н	Ι	J	K	١	М	N	0
5	Р	Q	R	S	Т	J	٧	W	Х	Υ	Z]	1]	^	_
6	,	а	b	С	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	S	t	u	V	W	Х	у	z	{		}	~	DEL

При кодировании символов всех алфавитов (японского, китайского и других) одного байта недостаточно, поэтому применяется Unicode, который измеряется двумя байтами – количество символов $2^{16} = 65536$.

2. Пример

Задача:

Найти ASCII код символа N

Решение:

Символ **N** находится на пересечении строки **4** и столбца **E**, поэтому он кодируется **4E**₁₆ в шестнадцатеричной системе счисления.

Ответ:

 $4E_{16}$

3. Задания 1. Задача: Найти ASCII код символа w (строчная буква). Решение: w 7 7 => w = 0x77 Ответ: 0x77 2. Задача: Найти символ по ASCII коду 75₁₆.

	\times									
	Pe	Решение:								
		5 7 u => 0x75 = u								
	On	пвет:								
		u								
3.	<i>3a</i>	дача:								
	X	Запишите слово student набором символов ASCII кода.								
	Pe	шение:								
	X	s = 0x73; t = 0x74; u = 0x75; d = 0x64; e = 0x65; n = 0x6E => student = 0x73,0x74,0x75,0x64,0x65,0x6E,0x74								
	On	пвет:								
		0x73,0x74,0x75,0x64,0x65,0x6E,0x74								

Важная задача кодирования — это возможность обнаружения ошибок, которые возникают в процессе хранения и/или передачи информации [1].

Рассмотрим простейший способ обнаружения однократной ошибки — бит четности. Например, байт представлен восьмью битами. Тогда в пересылаемом сообщении добавляется девятый бит — бит четности, который равен единице, если количество бит в исходном байте нечетно и нулю, если количество бит четно.

Исходное	Пересылаемое	Полученное	Проверка			
сообщение	сообщение	сообщение				
01101101	01101101 1	01101101 1	Ок. Чётное число единиц			
01010101	01010101 0	01010101 0	Ок. Чётное число единиц			
01011101	01011101 1	010 <mark>0</mark> 1101 1	Ошибка. Нечётное число			
01011101	010111011		единиц			
01011101	01011101 1	010111010	Ошибка. Нечётное число			
01011101	010111011		единиц			

2. Пример
Задача:
Добавьте бит чётности к следующему сообщению: 01101011 .
Решение:
В сообщении не четное число бит, поэтому в конце к нему нужно дописать
единицу, чтобы пересылаемое сообщение содержало чётное число единиц,
T.e. 011010111
Ответ:
01101011 1
3. Задания
1 2 a d a u a .

Решение:							
Ответ:							
1. Теоретический материал							
Рассмотрим еще подход к обнаружению ошибки – троировании бита в							
передаваемом сообщении. Пусть имеется один байт 10010010, тогда при							
передаче сообщения каждый бит будет троирован и сообщение примет вид							
(111)(000)(000)(111)(000)(000)(111)(000). Скобки в примере применены для							
наглядности представления записи. Каждая скобка соответствует одному биту							
исходного сообщения закодированного по методу троирования. Искажение одного бита в скобке позволит выявить возникшие ошибки (101)=1, (100)=0.							
2. Пример 1. Задача:							
Используя кодирование с избытком, закодируйте следующее сообщение 10101101, троированием битов.							
Решение:							
111 000 111 000 111 111 000 111							
Ответ:							
111000111000111111000111							
2. Задача:							
В предположении, что в трех идущих подряд битах не может быть более							
одной ошибки, восстановите следующее сообщение							
101000111001111101001111 .							
Решение:							
\ / до 1 <mark>0</mark> 1 000 111 00 <mark>1</mark> 111 1 <mark>0</mark> 1 00 <mark>1</mark> 111							
X после 111 000 111 000 111 111 000 111							
результат 1 0 1 0 1 0 1							
Ответ:							
10101101							

	(3. Задания									
1.	. Задача:										
	Используя кодирование с избытком, закодируйте следующее сообщего 00111011, троированием битов.										
	$/\setminus$										
	Решение:										
	\times	000 000 111 111 111 000 111 111									
	On	лвет:									
	\bigvee	0000001111111111000111111									
2.	3a	дача:									
	\ /	В предположении, что в трех идущих подряд битах не может быть более									
	$ \setminus / $	одной ошибки, восстановите следующее сообщение:									
	$ $	001011010110011010001111 .									
	$/\setminus$										
	Pe	шение:									
		001 011 010 110 011 010 001 111									
	\setminus	000 111 000 111 111 000 000 111									
	On	лвет:									
		01011001									
	\bigwedge										
3.	3a	છે લ પ a :									
	\setminus /	В сообщении троировались байты (символы таблицы ASCII). Было									
	$ \setminus / $	получено следующее сообщение:									
	$ $	CCzoYomdmppSuRutptweeQrr_*RssacciBieeenn%Fccjee.									
	$/ \setminus$	Восстановите исходное сообщение.									

Pe	шение:
	CCz oYo mdm ppS uRu tpt wee Qrr * Rss acc iBi eee nn% Fcc jee
X	CCC 000 mmm ppp uuu ttt eee rrr sss ccc iii eee nnn ccc eee
$/\setminus$	= Computer_science
On	пвет:
\bigvee	Computer_science

Определим расстояние между символами кода. Пусть каждый символ кодируется последовательностью из N битов $x=(x_1,x_2,...x_N), y=(y_1,y_2,...,y_N)$. Расстояние $\rho(x,y)$ определим следующей формулой [1]:

$$\rho(x,y) = \sum_{i=1}^{N} |x_i - y_i|,$$

где x_i и y_i принимают значения ноль или единица. Представленная формула позволяет определить расстояние между представлениями символов в виде кода. Тогда n количество ошибок, которые можно исправить, если определить наименьшее из расстояний d определяется по следующей формуле:

$$d \ge 2n + 1$$
.

Обобщим, идея метода состоит в определении количество отличных битов в кодовом представлении символов. Далее из всех выбирается наименьшее значение — это значение с использованием формулы $d \ge 2n + 1$, позволяет найти количество ошибок, которые можно исправить. То есть, чтобы исправлять n ошибок, необходимо учитывать расстояние между любыми символами, которое должно быть не меньше 2n+1.

Ответ:

$$\rho(B,C) = \rho(11100,00111) = 4$$

2. Задача:

Сколько ошибок можно исправить при использовании кодов из предыдущего примера?

Решение:

Найдём минимальное расстояние d между кодами.

$$u = \min(3, 4, 3) = 3$$

$$d \ge 2n+1$$
 \rightarrow $3 \ge 2n+1$

Из этого условия найдем n. Получим n=1. Таким образом, всегда можно исправить 1 ошибку.

Ответ:

Можно гарантированно исправить 1 ошибку

3. Задания

1. **Задача:**

Найти расстояние между кодами для В и С.

Решение:

p(B,C) = 3 (:0,3,5 (,))

Ответ:

p(B,C) = 3

Задача: Верны ли следующие утверждения: $\rho(A,B) \le \rho(A,C) + \rho(C,B) ,$ $\rho(A,C) \le \rho(A,B) + \rho(B,C) ,$ $\rho(B,C) \le \rho(B,A) + \rho(A,C) ?$ Решение: 6 <= 3+3: True 3 <= 6+3: False p(A,B) = 6; p(A,C) = 3; p(B,C) = 3p3 <= 6+3: False Ответ: 1. True; 2. False; 3. False 3. Задача: Сколько ошибок можно гарантированно исправить при использовании кодов из задачи 1? Решение: $d = min(6,3,3) = 3 \Rightarrow 3 \Rightarrow 2n+1 \Rightarrow n = 1$ Ответ:

					Te	ст 1				
1.	Сколько бит в 1 Кбайт?									
	1.819	2 бит		2. 75	699	бит				
	3. 458	9 бит		4. 34	773	бит				
	Ответ:									
2.	Сколько	бит	нужно	отвести	на	кодирование	е одной	игральной	карты	
	стандарт	ной к	олоды и	з 36 карт	?					
	1.4		2.	5		3. 6	۷	l. 7		
	Ответ:									
]								

3.	Сколько бит нужно	отвести на к	одирование ди	вузначного деся	теричного				
	числа?								
	1.6	2. 7	3. 8	4. 9					
	Ответ:								
4.	Если не прогуливать	занятия, то в	ероятность сда	ть сессии на «	хорошо» и				
	«отлично» равна 0,7.	Найдите энтр	опию системы	•					
	10,05	2. 0,91	3. 0,13	4. 0,88					
	Ответ:								
	(4) 0,88								
5.	Укажите ASCII код с	имвола G							
	1. 67	2. 43	3. 6A	4. 47					
	Ответ:								
	(4) 0x47								
6.	Бит четности служит	для							
	1. исправления оп	ибок в даннь	IX						
	2. обнаружения ошибки в данных								
	3. шифрования да	нных							
	/ 4. выравнивания д	цанных							
	Ответ:								
7.	Если при пересылке	сообщения	в нём произоп	ило ДВЕ ошиб	ки, то бит				
	четности								
	1. позволит исправить две ошибки								
	2. позволит их обнаружить								
	3. не позволит их обнаружить								
	/ 4. позволит испра	вить только о,	дну ошибку						
	Ответ:								
8.	В предположении, чт	го в трех иду	щих подряд бі	итах не может (быть более				
	одной ошибки,	восстан	овите сле	едующее с	ообщение:				
	001011101010100000	001110 .							
	1. 01100001	2. 01101							
	3. 11100001	4. 01000	0011						

	Ответ:
	(1) 01100001
9.	Найдите, между какими кодами расстояние наибольшее
	1. 11100010 и 00001111
	\/ 2. 00010111 и 01110101
	3. 01011010 и 10110101
	/
	Ответ:
	(2) 01011010 10110101 (= 7)
10.	Иконка на рабочем столе имеет разрешение 32х32 пикселя. На
	кодирование каждого пикселя отводится 24 бита. Найдите сколько бит
	нужно отвести на кодирование одной иконки.
	1. 54576 бит
	∖/ 2. 32679 бит
	🖔 3. 16384 бит
	/ \ 4. 24576 бит
	Ответ:

Реализация задач на языке программирования Python

Для реализации задач необходимо установить интерпретатор языка Python. Среду разработки и интерпретатор можно бесплатно установить с официального сайта www.python.org. Также, можно бесплатно установить среду разработок Anaconda с сайта https://www.anaconda.com/products/individual. Однако, для начального ознакомления с синтаксисом языка можно использовать онлайн интерпретаторы, например, https://www.online-python.com.

1. Теоретический материал

Давайте создадим первую программу на Python.

print('Hello world!')

Функция print() выводит на экран сообщение в скобках. Кавычки окаймляют текст 'Hello world!'.

Функция input() используется для ввода данных с клавиатуры:

```
name = input('Введите имя')
print('Привет, ' + name)
```

Здесь name – имя переменной. Имена переменных используются для хранения значений. Символ + используется для соединения (конкатенации) строк.

Pythonсодержит все необходимые математические операции.

```
print(5 + 7) # сложение
print(4 * 5) # умножение
print(4 ** 3) # возведение в степень
```

После символа # записываются комментарии, которые игнорируются интерпретатором.

2. Пример

Задача:

Найти значение функции $f(x) = x^2 + 3x - 100$. Значение x вводится с клавиатуры.

Решение (код программы):

```
x = input('Введите x') # возвращается строка, не число x = float(x) # преобразуем строку в вещественное число y = x**2 + 3*x - 100 print(y)
```

3. Задания

1. Задача:

Выведите на экран вашу Фамилию, Имя и номер студенческой группы.

Решение (код программы):

print("; ; -01-24")

2. Задача:

Введите с клавиатуры два числа и сложите их. Выведите результат на экран.

Решение (код программы):

print(sum([int(i) for i in input().split(" ")]))

3. **Задача:**

Найти значение функции $f(x) = x^5 - 2x^3 + 1$. Значение x вводится с клавиатуры.

Решение (код программы):

 $x = int(input("x:")); print("f(x) = \{0\}".format((x^{**}5) - 2^{*}(x^{**}3) + 1))$

1. Теоретический материал

Примеры различных типов данных:

```
_string = 'строка' # строка
```

_integer = 12 # целое число

_float_1 = 3.14 # вещественное число

_float_2 = -2.7e-3 # -0.0027

_boolean = True # False

Тип переменной всегда можно узнать с помощью функции **type**()

print(type(_boolean)) # <class 'bool'>

В Python есть следующие операции сравнения: == (проверка на равенство), !=(не равняется), < , <=(меньше или равняется), >, >=

print(2+1 > 3*4) # False

В Python есть следующие логические операции: and(логическое И),or(логическое V), not(логическое отрицание).

print(not (3>1 and False)) # True

В Python есть также тип list (список), который позволяет хранить совокупность различных объектов:

_list = [1, 3.14, 'свет', True, []] # список с элементами

empty_list.append(12) # добавление элемента

empty_list.append([2.7, 3])

print(empty_list, _list) #
 _list[0] = 'перезаписываем первый элемент на этот текст'
print(_list, empty_list[1])

2. Пример

1. Задача:

Проверить тип результата сложения целого числа с вещественным.

Решение (код программы):

a = 12 + 3.14

print(type(a)) # функцияtуревозвращает тип её аргумента

2. Задача:

Определите истинность следующего выражения:

$$\frac{9}{3} > 2 * 3 \text{ or } \neg (12 \neq 3^2 + 3 \text{ and } 57 - 24 > 30)$$

Решение (код программы):

print(9/3 > 2*3 or not(12 != 3**2+3 and 57-24 > 30))

3. Задания

1. Задача:

Напишите код для определения типа переменной strange, если:

strange = [[],1]

Решение (код программы):

strange = [[],1]; print(type(strange))

Задача:

С помощью Python найдите такие значения xи y, которые обратят выражение в значение True.

Выражение: $(x \text{ or } y) \text{ and } (\neg x \text{ or } y) \text{ and } \neg (x \text{ and } y)$.

Решение (код программы):

3. **Задача:**

Добавьте в пустой список четыре любых значения и выведете их на экран в обратном порядке, использую для этого индексы элементов.

Решение (код программы):

s = [] for i in range(4): s.append(i)

print(s[::-1])

1. Теоретический материал

Язык Python включает в себя множество полезных библиотек. Библиотека **math** является одной из таких. Она содержит все стандартные математические функции. Для использования библиотеку необходимо подключить:

import math as m

a = m.sin(m.pi/2) #
$$sin\left(\frac{\pi}{2}\right)$$

b = m.sqrt(16) #
$$\sqrt{16}$$

$$c_1 = m.e^{**2}$$
 # e^2

$$c_2 = m.exp(2)$$
 # e^2

$$d_1 = m.log(8, 2)$$
 # $log_2(8)$

$$d_2 = m.log2(8)$$
 # $log_2(8)$

2. Пример

1. **Задача:**

Написать программу для решения квадратного уравнения, через дискриминант: $3x^2 - 10x + 1 = 0$.

Решение (код программы):

import math as m

$$D = b^{**}2-4^*a^*c$$

$$x_1 = (-b-m.sqrt(D))/(2*a)$$

$$x_2 = (-b+m.sqrt(D))/(2*a)$$

print(x1, x2)

2. Задача:

Напишите программу для вычисления $\log_2(7*x)*\cos\left(\frac{x}{3}\right)$, где x вводит

пользователь с клавиатуры. **Решение (код программы):**import math as m

x = float(input("Введите x: "))

print(m.log2(7*x)*m.cos(x/3))

	3. Задания
1.	Задача:
	Запрограммируйте формулы Хартли. Количество состояний вводится с
	клавиатуры.
	Решение (код программы):
	import math; print(int(math.ceil(math.log(int(input("n: ")),2))))
2.	Задача:
	Запрограммируйте вычисление энтропии по Шеннону для систем из
	двух состояний. Вероятности вводятся с клавиатуры.
	Решение (код программы):
3.	Задача:
	Напишите программу для вычисления $\left\{ \tan \left(\frac{\cos(x) * \sin(2x)}{x * e^x} \right) \right\}^{\log_7(x)}$, где x
	вводит пользователь с клавиатуры.
	Решение (код программы): res = m.tan((m.cos(x)*m.sin(2*x))/(x*(m.e**x)))**\ m.log(x)
4.	Задача:
	Напишите программу для добавления бита четности к байту. Байт можете записать в виде списка (list) нулей и единиц.
	Решение (код программы):
	b = [int(i) for i in str(input("byte (00010100): "))] b.append(b.count(1)%2) print(b)
	print("" join([etr(i) for i in h]))

2