## Introduction to Algorithms 0-1 Knapsack Problem

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2021

#### Outline

**Knapsack Problem** 

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

#### Contents

#### Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

- The knapsack problem is a NP-complete problem of combinatorial optimization. Similar problems often appear in the fields of business, mathematics, computational complexity theory, cryptography, and applied mathematics.
- ► The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.
- Application: find the least wasteful way to cut raw materials, choose investment and portfolio, choose asset-backed asset securitization, generate keys for Merkle-Hellman and other backpack cryptosystems.

- Suppose we are planning a hiking trip; and we are, therefore, interested in filling a knapsack with items that are considered necessary for the trip.
- ▶ There are *n* different item types that are deemed desirable; these could include bottle of water, apple, orange, sandwich, and so forth. Each item type has a given set of two attributes, namely a weight (or volume) and a value that quantifies the level of importance associated with each unit of that type of item.
- ➤ Since the knapsack has a limited weight (or volume) capacity, the problem of interest is to figure out how to load the knapsack with a combination of units of the specified types of items that yields the greatest total value.

#### **Problem Definition(Knapsack):**

- ▶ **Input:** Knapsack takes a set S of n items, each with benefit  $b_i$  and weight  $w_i$ , and a knapsack with weight bound W (for simplicity we assume that all elements have  $w_i \le W$ ).
- ▶ **Output:** Find a subset of items  $I \subseteq S$  that maximizes  $\sum_{i \in I} b_i$ , and satisfies the constraint  $\sum_{i \in I} w_i \leq W$ .

There are two versions of the problem:

- ► Fractional knapsack problem: Items are divisible; you can take any fraction of an item.
- ▶ **0-1 knapsack problem**: Items are indivisible; you either take an item or not.

#### Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

#### Greedy Algorithm for Knapsack

#### GREEDY-ALGORITHM()

- 1: Sort items in non-increasing order of  $\frac{b_i}{w_i}$ .
- 2: Greedily pick items in the above order.
  - ► To solve the fractional problem, we first compute the **benefit per** weight  $b_i/w_i$  for each item;
  - Obeying a greedy strategy, we begins by taking as much as possible of the item with the greatest value per pound;
  - ► Then we takes the next greatest valuable item, and so forth until he fills the knapsack;
  - ► Thus, by sorting the items by value per pound, the greedy algorithm runs in  $O(n \lg n)$  time.
  - The fractional knapsack problem has the greedy-choice property.

#### Greedy Algorithm for Knapsack

- ▶ But this greedy strategy **does not work** for the 0 − 1 knapsack problem. To see the reason, consider the problem instance illustrated in Figure 16.2(a).
- ▶ The benefit per weight of item 1 is 6 per weight, which is greater than that of either item 2 (5 per weight) or item 3 (4 per weight).
- ► However, the optimal solution takes items 2 and 3, leaving 1 behind. The two possible solutions that involve item 1 are both suboptimal.



## Greedy Algorithm for Knapsack

- ► The reason is that taking item 1 we are unable to fill the knapsack to capacity, and the empty space lowers the effective profit per size of our load.
- ▶ But for the comparable fractional problem, the greedy strategy, which takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c).



#### Greedy Algorithm for Knapsack: Very Bad

#### Greedy performs arbitraruly bad in the worst case.

Assume that there are two items. The first one has weight  $\varepsilon > 0$  and benefit  $2\varepsilon$ , and the second one has weight B and benefit B. The capacity of the knapsack is B.

Our greedy algorithm will only pick the small item, and the benefit is  $2\varepsilon$ . The optimal solution is to pick the second item, with benefit B. This example makes this greedy method a pretty bad algorithm.

#### Greedy-Redux Algorithm for Knapsack: Small Twist

Therefore, we make the following small adjustment to our greedy algorithm:

#### GREEDY-ALGORITHM REDUX()

- 1: Sort items in non-increasing order of  $\frac{b_i}{w_i}$  // we here denote each item as  $a_i$ , where  $1 \le i \le n$ .
- 2: Greedily add items until we hit an item  $a_i$  that is too big.  $(\sum_{k=1}^{i} w_k > W \ge \sum_{k=1}^{i-1} w_k)$ .
- 3: Pick the better of  $\{a_1, a_2, ..., a_{i-1}\}$  and  $a_i$ .

# Greedy-Redux Algorithm for Knapsack: Bounded Approximation Ratio

**Theorem:** Greedy Algorithm Redux is a 2-approximation for the knapsack problem.

**Proof:** We employed a greedy algorithm. Therefore we can say that if our solution is suboptimal, we must have some leftover space  $W_{rest}$  at the end. Imagine for a second that our algorithm was able to take a fraction of an item. Then, by adding  $\frac{W_{rest}}{w_i}b_i$  to our knapsack value, we would either match or exceed OPT (remember that OPT is unable to take fractional items), i.e.,  $\sum_{k=1}^{i-1}b_k + \frac{W_{rest}}{w_i}b_i \geq OPT$ .

Therefore, either  $\sum_{k=1}^{i-1} b_k \ge \frac{1}{2} OPT$  or  $b_i \ge \frac{W_{rest}}{w_i} b_i \ge \frac{1}{2} OPT$ 

< 마 > (리 > (리 > (린 > ) 틴 + ) 및 + ) 역()

#### Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

- We can do better with an algorithm based on dynamic programming.
- ▶ We need to carefully identify the subproblems.

#### Defining a Subproblem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight  $w_i$  and benefit  $b_i$  (Here, we can assume all  $w_i$  and W are integer values.)
- ▶ Problem: How to pack the knapsack to achieve maximum total value of packed items?
- Lets add another parameter: w, which will represent the weight of the knapsack for a subproblem.

#### Defining a Subproblem

- ► The subproblem will then be to compute V[k, w], i.e., to find an optimal solution for  $S_k$  = items labeled 1, 2, ...k in a knapsack of size w
- Assuming knowing V[i,j], where i = 0, 1, 2, ..., k-1, j = 0, 1, 2, ..., w, how to derive V[k, w]?

Recursive Formula for subproblems:

$$V[k,w] = \begin{cases} V[k-1,w] & \text{if } w_k > w \\ \max\{V[k-1,w], V[k-1.w-w_k] + b_k\} & \text{else} \end{cases}$$

It means, that the best subset of  $S_k$  that has total weight w is:

- the best subset of  $S_{k-1}$  that has total weight  $\leq w$ , or
- ▶ the best subset of  $S_{k-1}$  that has total weight ≤  $w w_k$  plus the item k

```
DP FOR KNAPSACK()
 1. for w = 0 to W do
   V[0,w]=0
3: for i = 1 to n do
    V[i,0]=0
4:
5: for i = 1 to n do
       for w = 0 to W do
6.
          if w_i < W then
7:
              if b_i + V[i-1, w-w_i] > V[i-1, w] then
8:
                  V[i, w] = b_i + V[i-1, w-w_i]
9:
          else
10:
              V[i,w] = V[i-1,w]
11:
```

- ▶ What is the running time of this algorithm? O(nW)
- Let's run our algorithm on the following data:

$$n = 4$$
 (number of items)

$$W = 5$$
 (weight bound)

| i∖W | V 0 | 1 | 2 | 3 | 4 | 5 |
|-----|-----|---|---|---|---|---|
| 0   | 0   | 0 | 0 | 0 | 0 | 0 |
| 1   |     |   |   |   |   |   |
| 2   |     |   |   |   |   |   |
| 3   |     |   |   |   |   |   |
| 4   |     |   |   |   |   |   |

for 
$$w = 0$$
 to  $W$   
 $V[0,w] = 0$ 

| i∖W | <i>I</i> 0 | 1 | 2 | 3 | 4 | 5 |
|-----|------------|---|---|---|---|---|
| 0   | 0          | 0 | 0 | 0 | 0 | 0 |
| 1   | 0          |   |   |   |   |   |
| 2   | 0          |   |   |   |   |   |
| 3   | 0          |   |   |   |   |   |
| 4   | 0          |   |   |   |   |   |

for 
$$i = 1$$
 to n  

$$V[i,0] = 0$$

























| i∖V | V 0               | 1                                           | 2 | 3 | 4 | 5  | i=3                               |
|-----|-------------------|---------------------------------------------|---|---|---|----|-----------------------------------|
| 0   | 0                 | 0                                           | 0 | 0 | 0 | 0  | b.=5                              |
| 1   | 0                 | 0                                           | 3 | 3 | 3 | 3  | $b_i=5$ $w_i=4$                   |
| 2   | 0                 | 0                                           | 3 | 4 | 4 | 17 | w=5                               |
| 3   | 0                 | 0                                           | 3 | 4 | 5 | 7  | $\mathbf{w} = \mathbf{w}_{i} = 1$ |
| 4   | 0                 |                                             |   |   |   |    | w-w <sub>i</sub> -1               |
|     | if w <sub>i</sub> | Items:  1: (2,3) 2: (3,4) 3: (4,5) 4: (5,6) |   |   |   |    |                                   |

|     | _    |            |    |          |                |   |                   |  |  |
|-----|------|------------|----|----------|----------------|---|-------------------|--|--|
| i∖V | V 0  | 1          | 2  | 3        | 4              | 5 | i=4               |  |  |
| 0   | 0    | 0          | 0  | 0        | 0              | 0 | b <sub>i</sub> =6 |  |  |
| 1   | 0    | 0          | 3  | 3        | 3              | 3 | $w_i=5$           |  |  |
| 2   | 0    | 0          | 3  | 4        | 4              | 7 | w = 14            |  |  |
| 3   | 0    | 10         | _3 | _4       | _5             | 7 | W 1I              |  |  |
| 4   | 0    | <b>+</b> 0 | +3 | <b>4</b> | <sup>+</sup> 5 |   |                   |  |  |
|     | if w | Items:     |    |          |                |   |                   |  |  |
|     | •    | 1: (2,3)   |    |          |                |   |                   |  |  |
|     |      | 2: (3,4)   |    |          |                |   |                   |  |  |
|     |      | 3: (4,5)   |    |          |                |   |                   |  |  |
|     | else | 4: (5,6)   |    |          |                |   |                   |  |  |
|     |      |            |    |          |                |   |                   |  |  |

| i∖V                                                                 | 0    | 1        | 2 | 3 | 4 | 5              | i=4                               |  |  |
|---------------------------------------------------------------------|------|----------|---|---|---|----------------|-----------------------------------|--|--|
| 0                                                                   | 0    | 0        | 0 | 0 | 0 | 0              | b <sub>i</sub> =6                 |  |  |
| 1                                                                   | 0    | 0        | 3 | 3 | 3 | 3              | $w_i=5$                           |  |  |
| 2                                                                   | 0    | 0        | 3 | 4 | 4 | 7              | w=5                               |  |  |
| 3                                                                   | 0    | 0        | 3 | 4 | 5 | 17             | $\mathbf{w} - \mathbf{w}_{i} = 0$ |  |  |
| 4                                                                   | 0    | 0        | 3 | 4 | 5 | <sup>+</sup> 7 | w-w <sub>i</sub>                  |  |  |
| if w <sub>i</sub> <= w // item i can be part of the solution Items: |      |          |   |   |   |                |                                   |  |  |
| if $b_i + V[i-1,w-w_i] > V[i-1,w]$ 1: (2,3)                         |      |          |   |   |   |                |                                   |  |  |
| $V[i,w] = b_i + V[i-1,w-w_i]$ else 2: (3,4)                         |      |          |   |   |   |                |                                   |  |  |
| V[i,w] = V[i-1,w] 3: (4,5)<br>else $V[i,w] = V[i-1,w] // w_i > w$   |      |          |   |   |   |                |                                   |  |  |
|                                                                     | else | 4: (5,6) |   |   |   |                |                                   |  |  |
|                                                                     |      |          |   |   |   |                |                                   |  |  |

### **Dynamic Programming**

#### How to find actual Knapsack Items

- ▶ All of the information we need is in the table.
- ▶ V[n, W] is the maximal value of items that can be placed in the Knapsack.
- ightharpoonup Let i = n and k = W.

#### FIND ACTUAL KNAPSACKS ITEMS()

- 1: **if** i = n and k = W **then**
- 2: mark the *i*-th item as in the knapsack
- 3:  $i = i 1, k = k w_i$
- 4: else
- 5: i = i 1

| i∖W | V 0    | 1        | 2 | 3 | 4 | 5 | i=4          |
|-----|--------|----------|---|---|---|---|--------------|
| 0   | 0      | 0        | 0 | 0 | 0 | 0 | k= 5         |
| 1   | 0      | 0        | 3 | 3 | 3 | 3 | $b_i=6$      |
| 2   | 0      | 0        | 3 | 4 | 4 | 7 | $w_i=5$      |
| 3   | 0      | 0        | 3 | 4 | 5 | 7 | V[i,k] = 7   |
| 4   | 0      | 0        | 3 | 4 | 5 | 7 | V[i-1,k] = 7 |
|     | Items: |          |   |   |   |   |              |
|     | whil   | 1: (2,3) |   |   |   |   |              |
|     |        | 2: (3,4) |   |   |   |   |              |
|     |        | 3: (4,5) |   |   |   |   |              |
|     |        | 4: (5,6) |   |   |   |   |              |

| i∖W | V 0  | 1        | 2        | 3 | 4 | 5 | i=4          |
|-----|------|----------|----------|---|---|---|--------------|
| 0   | 0    | 0        | 0        | 0 | 0 | 0 | k= 5         |
| 1   | 0    | 0        | 3        | 3 | 3 | 3 | $b_i=6$      |
| 2   | 0    | 0        | 3        | 4 | 4 | 7 | $w_i=5$      |
| 3   | 0    | 0        | 3        | 4 | 5 | 7 | V[i,k] = 7   |
| 4   | 0    | 0        | 3        | 4 | 5 | 7 | V[i-1,k] = 7 |
|     | i=n, | Items:   |          |   |   |   |              |
|     | whil |          | 1: (2,3) |   |   |   |              |
|     |      |          |          |   |   |   |              |
|     |      | 2: (3,4) |          |   |   |   |              |
|     |      | 3: (4,5) |          |   |   |   |              |
|     |      | 4: (5,6) |          |   |   |   |              |
|     |      | (3,0)    |          |   |   |   |              |







| i∖W                                                       | 0    | 1          | 2 | 3 | 4 | 5 | i=0                                 |  |
|-----------------------------------------------------------|------|------------|---|---|---|---|-------------------------------------|--|
| 0                                                         | 0    | 0          | 0 | 0 | 0 | 0 | k= 0                                |  |
| 1                                                         | 0    | 0          | 3 | 3 | 3 | 3 | The optimal knapsack should contain |  |
| 2                                                         | 0    | 0          | 3 | 4 | 4 | 7 |                                     |  |
| 3                                                         | 0    | 0          | 3 | 4 | 5 | 7 |                                     |  |
| 4                                                         | 0    | 0          | 3 | 4 | 5 | 7 | {1, 2}                              |  |
| i=n, k=W Items:                                           |      |            |   |   |   |   |                                     |  |
|                                                           | whil | le i,k > 0 | ) |   |   |   | 1. (2.2)                            |  |
| if $V[i,k] \neq V[i-1,k]$ then $1: (2,3)$                 |      |            |   |   |   |   |                                     |  |
| mark the $n^{\text{th}}$ item as in the knapsack 2: (3,4) |      |            |   |   |   |   |                                     |  |
| $i = i - l, k = k - w_i$ 3: (4,5)                         |      |            |   |   |   |   |                                     |  |
| else                                                      |      |            |   |   |   |   |                                     |  |
| i=i-1 4: (5,6)                                            |      |            |   |   |   |   |                                     |  |



#### Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

#### Discussion: Pseudo-polynomial

#### Pseudo-polynomial time:

a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in **the numeric value of the input** but not necessarily in **the length of the input** (the number of bits required to represent it)

- ▶ The Running time of dynamic programming algorithm on 0-1 Knapsack problem is O(W\*n), the number W needs  $\log W$  bits to describe, so it is **pseudo-polynomial**.
- Other pseudo-polynomial algorithm: Primality testing

#### Discussion: Another DP apprach, Pseudo-polynomial

- Let P be the profit of the most profitable object, i.e.  $P = \max_{a \in S} p(a)$ . From this, we can upper bound the profit that can be achieved as nP for the n objects. Here, we can assume the benefit of each item are interger values.
- ▶ For each  $i \in \{1,...,n\}$  and  $p \in \{1,...,nP\}$ , let  $S_{i,p}$  denote a subset of  $\{a_1,...,a_i\}$  that has a total profit of exactly p and takes up the **least amount of sapce** possible.
- Let A(i,p) be the size of the set  $S_{i,p}$ , with a value of  $\infty$  to denote no such subset.
- ► For A(i,p), we have the base case A(1,p) where  $A(1,p(a_1))$  is  $s(a_1)$  and all other values are  $\infty$ .

#### Discussion: Another DP apprach, Pseudo-polynomial

• We can use the following recurrence to caculate all values for A(i,p):

$$A(i+1,p) = \begin{cases} \min\{A(i,p), s(a_{i+1}) + A(i,p-p(a_{i+1}))\}, & \text{if } p(a_{i+1}) \le p \\ A(i,p), & \text{otherwise} \end{cases}$$

- The optimal subset then corresponds with the set  $S_{n,p}$  for which p is maximized and  $A(n,p) \leq B$ . Since this iterates through at most n different values to caculate each A(i,p) we get a total running time of  $O(n^2P)$  and thus a pseudo-polynomial algorithm for knapsack.
- It is easy to modify the above DP algorithm to achieve a full polynomial-time approximation scheme (FPTAS) for 0-1 knapsack.

#### Another Dynamic Programming for Knapsack

#### DP FOR KNAPSACK()

- 1: Let *P* be the maximum benefit of all items.
- 2: Given  $\varepsilon > 0$ , let  $K = \frac{\varepsilon \cdot P}{n}$ .
- 3: **for** each object  $a_i$  **do**
- 4: define a new profit  $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$ .
- 5: With these as profits of n items, using the dynamic programming algorithm presented in previous slide, find the most profitable set, say S'.
- 6: Output S' as the final solution for the original knapsack problem

### Another Dynamic Programming for Knapsack

#### **Theorem**

The set S', output by the aforementioned algorithm, satisfies that

$$P(S') \ge (1 - \varepsilon) \cdot OPT$$
.

Here P(S') denotes the profit (or benefit) from the set S', and OPT is the optimum benefit of the original problem.

#### Another Dynamic Programming for Knapsack

#### Proof.

Let O be the optimal set for the original problem, and let P'(X) be the modified profit of set X with profit function p'(). Clearly,

$$p(a) - K \le K \cdot p'(a) \le p(a);$$

$$P(O) - K \cdot P'(O) \le n \cdot K$$
.

Then we have

$$P(S') \ge K \cdot P'(S') \ge K \cdot P'(O) \ge P(O) - nK = OPT - \varepsilon \cdot P \ge (1 - \varepsilon)OPT$$

This finishes the proof.

<ロト < 同 > < 言 > < 言 > の ○ ○

#### Discussions: Variations of Knapsack Problem

There are many variations of the knapsack problem that have arisen from the vast number of applications of the basic problem.

- ▶ **Basic knapsack**: n items, each with benefit  $b_i$  and weight  $w_i$ , and a knapsack with weight bound W.
- ▶ **Unbounded knapsack problem**: For each item  $a_i$ , it can be selected unlimited times, i.e., we do not put any upper bounds on the number of times an item may be selected.
- **Bounded knapsack problem**: For each item  $a_i$ , it can only be selected by at most  $k_i$  times in the final solution, i.e., there is an upper bound that an item may be selected.
- ► Multidimensional knapsack problem There are more than one constraints (for example, both a volume limit and a weight limit). This problem has 0-1, bounded, and unbounded etc. variants.