₹.	We know that group Normalisation normalizes over a group of channels as follows:
	$\mu_i = \frac{1}{m} \sum_{k \in C_i} x_k$, $\sigma_i = \sqrt{\frac{1}{m} \sum_{k \in C_i} (x_k - \mu_i)^2}$
	When G is the channel group from the parameter vector C , $m = C_i $ (size)
	which gives us for iesk
	$\hat{x}_{i} = \frac{1}{\sigma_{i}}(x_{i} - \mu_{i})$ as the normalized feature. For C_{K} group of channels
	It is easy to see that if all channels are put into a single group, we normalize the whole feature. But means we have achieved Layer Normalization for $N=1$.
	Alternatively, if all channels are in separate groups, we are normalizing for each channel in the pathene vector. This means we have achieved Instance Normalization for $ C_i =1 + 1 \le i \le N$ thin case $N=total$ number of channels, i.e. $N=\Sigma C_i $
	·