

MTH8302

Modèles de régression et d'analyse de la variance

Devoir 1

distribution: 14 mai 2018

remise: 27 mai 2018 à 23h59 (plus tard)

Ce travail est réalisé individuellement par chaque étudiant inscrit au cours.

Chaque étudiant le fait SEUL sans demander de l'aide à d'autres.

En apposant sa signature ci-dessous, l'étudiant (e) certifie sur son honneur avoir fait ce travail seul. L'obtention des résultats présentés et la rédaction de ce travail ne fait l'objet d'aucun plagiat, partiel ou total.

Information concernant le plagiat à Polytechnique : http://www.polymtl.ca/etudes/ppp/index.php

<u>Exigences pour la rédaction du rapport</u> consulter la page 4 du plan de cours http://www.groupes.polymtl.ca/mth6301/mth8302/Autres/2018-MTH8302-PlanCours.pdf

Compléter l'information suivante et transmettez cette page comme la page 1 de votre rapport de devoir.

Une copie de cette page est disponible sur le site du cours

MTH8302	Modèles de régression et d'analyse de variance						
NOM	BETTACHE	PRÉNOM	Lyes Heythem				
MATRICUL	E_1923715	SIGNATURE_					

Transmettez votre rapport par courriel à <u>bernard.clement@polymtl.ca</u>

obtenu

TABLEAU CORRECTION

No 1-Anscombe	30	
No 2-Vaccins	30	
No 3-Croissance	30	
Qualité	10	
TOTAL	100	

valeur

Les données pour la réalisation du devoir sont disponibles sur le site WEB du cours

http://www.groupes.polymtl.ca/mth6301/MTH8302.htm/

Données = Anscombe.sta

Réponse

1a)

mo	dèle couple	βο	β1	R ²	SSreg	SSresid	SStot
1	/X7 Y71		0,50009 090909		27,51000090 90909	•	41,2726909 090909
2	(X/ Y/)	3,0009 090909	•	0,6662420 3	•	13,7762909 090909	41,2762909 090909
3			0,49972 727272	0 ,66632404	27,47000818 18182	13,7561918 181818	41,2262
4			0,49990 909090	0 ,66670726	27,49000090 90909	•	41,2324909 090909

Ce tableau contient les coefficients ($\beta 0$, $\beta 1$) des modèles de régression linéaire simple pour prédire Y en fonction de X pour chacun des 4 couples (X, Y) [Y= $\beta 0$ + $\beta 1$ X + ϵ]

D'après le coefficient de détermination $R^2 > 0, 5$ (R > 0, 7), on remarque que on a une bonne corrélation entre X et Y pour les 4 couples. Par contre on remarque que la somme de carrés résiduelle presque 32%, il y a grand partie de la variabilité de X qui n'est pas expliqué par notre modèle (pour les 4 couples). Ce que qui montre que nos modèles n'est pas bon.

On conclure que \mathbb{R}^2 ne peut pas être suffisant pour juger la pertinence de la qualité de notre modèle

1b)

On remarque qu'il n'y a pas une corrélation linéaire, qui montre que notre modèle de prédiction n'est pas bon

On remarque qu'il n'y a pas une corrélation entre les 2 modèle réel et prédit, a cause de notre modèle réel qui n'est pas linéaire

Nous concluons que les valeurs aberrantes ont eu une grande influence sur les modèles prédits Et aussi d'après les remarques des graphes (Y en fonction de X), que nos modèles prédits ne sont pas bon, et on remarque que c'est le même résultat de la question 1a)

Nous concluons que les valeurs aberrantes ont eu une grande influence sur les modèles prédits

Et aussi d'après les remarques des graphes (résidus en fonction de la variable explicative X), que nos modèles prédits ne sont pas bon, et on remarque que c'est le même résultat de la question 1a)

1e) Refaire les calculs sans l'observation (X3 = 13 Y3 = 12,74).

On remarque que les résidus respectent la loi de distribution normale

modèle couple	β0	β1	R ²	SSreg	SSresid	SStot
1 X 3 3 Y 3 3 1		0,34538 961038		11,02276402 5974	0,00007597 4025971940	

D'après coefficient de détermination $R^2=0,9999931>0,5$, (R>0,7), on remarque que on a une excellente corrélation entre X3' et Y3'

Et aussi on remarque que la somme de carrés résiduelle presque 0%. Ce que qui montre que nos modèles prédit sont bien suivis le modèle réel.

Cette observation est adéquate, avec cette observation nous avons obtenir un meilleur résultat.

Nous concluons que les points aberrants ont eu une grande influence sur les modèles prédits

1f) Conclusion Générale

les points aberrantes ont eu une grande influence sur les modèles prédits

On conclure que \mathbb{R}^2 ne peut pas suffisant pour juger la pertinence de la qualité de notre modèle

Données = Vaccins.sta

Réponse

2a) modèle de régression logistique entre Y et X1_âge $\pi(x) = \exp(\alpha + \beta x)/(1 + \exp(\alpha + \beta x))$

Ce graphique nous montre la probabilité prédite pour les personnes qui reçut le vaccin en fonction de l'Age. Par exemple la probabilité pour une personne de l'Age 67ans a reçu le vaccin est 80% (0,8), et d'autre de l'Age 84ans a reçu le vaccin est 40% (0,4).

Pour trouver la valeur prédite de Y on a choisi la probabilité 50% (0,5) comme un seuil de probabilité. Donc, il est possible de dire que toutes les personnes de 81 ans et moins sont vaccinées, par contre toutes les personnes de 81 ans et plus ne sont pas reçu le vaccin.

Ce graphique nous montre la probabilité prédite pour les hommes qui reçut le vaccin en fonction de l'Age. Par exemple la probabilité pour un homme de l'Age 70ans a reçu le vaccin est 73% (0,73), et d'autre de l'Age 85ans a reçu le vaccin est 33% (0,33).

Pour trouver la valeur prédite de Y on a choisi la probabilité 50% (0,5) comme un seuil de probabilité. Donc, il est possible de dire que tous les hommes de 79 ans et moins sont vaccinées, par contre tous les hommes de 79 ans et plus ne sont pas reçu le vaccin

2c) pour les femmes seulement

Ce graphique nous montre la probabilité prédite pour les femmes qui reçut le vaccin en fonction de l'Age. Par exemple la probabilité pour une femme de l'Age 80ans a reçu le vaccin est 60% (0,60), et d'autre de l'Age 70ans a reçu le vaccin est 80% (0,80).

Pour trouver la valeur prédite de Y on a choisi la probabilité 50% (0,5) comme un seuil de probabilité. Donc, il est possible de dire que toutes les femmes de 84 ans et moins sont vaccinées, par contre toutes les femmes de 84 ans et plus ne sont pas reçu le vaccin.

2d) effet de l'âge et du sexe sur Y

Pour trouver la valeur prédite de Y on a choisi la probabilité 50% (0,5) comme un seuil de probabilité.

D'après les graphes on remarque que toutes les personnes (159 personnes) de 81 ans et moins sont vaccinées ($\hat{Y}=1~ou~\hat{Y}_c=0$).

Et par sexe, on a trouvé que les hommes (78 hommes) de 79 ans et moins sont vaccinées ($\hat{Y} = 1 \ ou \ \hat{Y}_c = 0$), et 84 ans et moins sont vaccinées ($\hat{Y} = 1 \ ou \ \hat{Y}_c = 0$) pour les femmes (81 femmes).

On remarque que le sexe joux un rôle sur la variation de Y ou on a trouvé que l'intervalle de l'Age des femmes qui sont vaccinées est supérieur par rapport l'intervalle de l'Age des hommes.

Et à partir de ces remarques et les remarques précédents, on peut déduire les valeurs prédites de Y.

2e)

Les équations utilisées pour trouver le tableau :

Valeurs observer :

P_Y1= (Y=1) / n_total

 $P_Y0 = (Y=0) / n_total$

logit(p) = ln[p/(1-p)]

Et pour trouver les valeurs de probabilité prédit on a fait la régression de logit(p)(obs) sur X1_catAge2, et à la fin on a utilisé l'équation p_pred = exp (logit(p)(pred)) / (1 + exp(logit(p)(pred))) pour trouver la probabilité prédit.

Pour Y=1

Pour Y=0

On remarque que le modèle 2a) plus précis par rapport le modèle 2e) puisque le modèle 2a) il nous donne toutes les probabilités pour chaque Age définie, par contre le 2^{eme} modèle 2e) il nous donne la probabilité de chaque catégorie de l'Age mais ce modèle plus facile a étudié.

Données = croissance.sta

Réponse

3a) le graphique des données.

On remarque que la courbe est en forme de S (sigmoide)

3b) fonction de Gompertz

 $Y = a^* exp [-exp (b - cx)]$

y=(723,109)*exp(-exp((2,50018)-(0,450103)*x))

On remarque que notre modèle prédit est bien suivi le modèle réel

	Model: Y = a*exp(-exp(b-c*X)) (Croissance sta in 2018-MTH8302-Devoirs-Data) Dep. var: Y Loss: (OBS-PRED)**2 Final loss: 13606,142708 R= ,99366 Variance explained: 98,736%							
	а	b	С					
Estimate	723,1086	2,500185	0,450103					
Std.Err.	22,6246	0,325911	0,057625					
t(12)	31,9612	7,671375	7,810844					
-95%CL	673,8139	1,790086	0,324548					
+95%CL	772,4033	3,210283	0,575658					
p-value	0,0000	0,000006	0,000005					

D'après la Variance explained (98,736%) on conclure que on a une bonne corrélation entre le modèle prédit et réel

	Model is: Y = a*exp(-exp(b-c*X)) (Croissance.sta in 2018-MTH8302-Devoirs-Data)								
	Dep. Var. : Y	Dep. Var. : Y							
	Observed	Predicted	Residuals						
1	16,0800	0,3058	15,7742						
2	33,8300	5,1071	28,7229						
3	65,8000	30,7461	35,0539						
4	97,2000	96,5698	0,6302						
5	191,5500	200,3287	-8,7787						
6	326,2000	318,9979	7,2021						
7	386,8700	429,1448	-42,2748						
8	520,5300	518,4801	2,0499						
9	590,0300	584,9167	5,1133						
10	651,9200	631,6521	20,2679						
11	724,9300	663,3799	61,5501						
12	699,5600	684,4353	15,1247						
13	689,9600	698,2070	-8,2470						
14	637,5600	707,1316	-69,5716						
15	717,4100	712,8811	4,5289						

3c) Fonction Logistique 3P Y = a / [1 + exp (b - cx)] y= (702,871)/(1+exp((4,44256)-(0,688566)*x))

On remarque que notre modèle prédit est bien suivi le modèle réel

	Model: Y = a/(1+exp(b-c*X)) (Croissance.sta in 2018-MTH8302-Devoirs-Data) Dep. var: Y Loss: (OBS-PRED)**2 Final loss: 8929,8829725 R= ,99584 Variance explained: 99,170%						
N=15	a	a b c					
Estimate	702,8714	4,442564	0,688566				
Std.Err.	15,5738	0,455089	0,075819				
t(12)	45,1317	9,761972	9,081712				
-95%CL	668,9391	3,451011	0,523371				
+95%CL	736,8038	5,434117	0,853761				
p-value	0,0000	0,000000	0,000001				

D'après la Variance explained (99,170%) on conclure que on a une bonne corrélation entre le modèle prédit et réel

	Model is: Y = a/(1+exp(b-c*X)) (Croissance.sta in 2018-MTH8302-Devoirs-Data)					
	Dep. Var. : Y					
	Observed	Predicted	Residuals			
1	16,0800	16,0872	-0,0072			
2	33,8300	31,3171	2,5129			
3	65,8000	59,7116	6,0884			
4	97,2000	109,6476	-12,4476			
5	191,5500	189,0680	2,4820			
6	326,2000	297,1948	29,0052			
7	386,8700	416,9752	-30,1052			
8	520,5300	522,8158	-2,2858			
9	590,0300	599,2142	-9,1842			
10	651,9200	646,6804	5,2396			
11	724,9300	673,4774	51,4526			
12	699,5600	687,7931	11,7669			
13	689,9600	695,2159	-5,2559			
14	637,5600	699,0051	-61,4451			
15	717,4100	700,9241	16,4859			

3d) Fonction Weibull.

3e)

Pour trouver le meilleur choix de fonction pour modéliser les données on a utilisé le R-Square : proportion de la variation de la variable de réponse expliquée par le modèle.

	Gompertz	Logistique 3P	Weibull
Variance explained	98,736%	99,170%	98,585%
R-Square	0,993659	0,995841	0,992899

Nous avons trouvez que le meilleur choix de fonction pour modéliser les données est la fonction Logistique

Remarque : dans ce cas on peut aussi utilisé le critère SE : Sum of Square of Errors =différences entre les valeurs observées et les valeurs prédites.