Übungen zur Vorlesung Physik 1

Aufgabe 11: Potentielle Energie

Auf einem Alpenpass mit gutem Asphalt können Sie 70% des Energiegehaltes des Akkus Ihres E-Bikes in potentielle Energie umwandeln, wenn Sie heute nicht treten wollen. Die Kapazität des Akkus ist mit 450 Wh angegeben, die Gesamtmasse aus Fahrrad und Fahrer betrage $m=100 \, \mathrm{kg}$ ($g_0=9.81 \, \mathrm{m/s^2}$). Welche Höhendifferenz können Sie so überwinden?

Aufgabe 12: Arbeit und Leistung (Klausuraufgabe W17)

Ein Baustellenkran hebt innerhalb von 30 Sekunden eine Materialpalette mit der Gesamtmasse von $m=0.8\,\mathrm{t}$ auf eine Höhe von $h=25\,\mathrm{m}$ an.

- a) Welche Arbeit hat der Kran verrichtet?
- b) Wie groß ist die durchschnittliche elektrische Leistungsaufnahme während des Anhebens, wenn der Gesamtwirkungsgrad zu $\eta=40\%$ angenommen wird?

Aufgabe 13: Potentielle und kinetische Energie

Welche Geschwindigkeit in km/h benötigen Sie mindestens, um ohne zu treten mit Ihrem Fahrrad eine Rampe von 3 m Höhe hochzurollen (Reibungen und Trägheiten der Räder vernachlässigt, $g_0 = 9.81 \text{ m/s}^2$)?

Aufgabe 14: Energieerhaltung

Ein großes Pendel mit Masse $m=25\,\mathrm{kg}$ und Länge $l=10\,\mathrm{m}$ (Seilmasse vernachlässigbar) wird anfänglich aus der Nulllage um $\alpha_0=15^\circ$ ausgelenkt ($g_0=9.81\,\mathrm{m/s^2}$).

- a) Welche potentielle Energie ist in dem Pendel gespeichert?
- b) Mit welcher Geschwindigkeit v durchläuft das Pendel nach dem Loslassen den unteren Scheitelpunkt?
- c) Welche Anfangsauslenkung α_2 müssen Sie wählen, um im unteren Scheitelpunkt die doppelte Geschwindigkeit zu erhalten?
- d) Das Pendel wird nun wieder aus der anfänglichen Auslenkung $\alpha_0=15^\circ$ losgelassen. Bei welcher Auslenkung α_1 hat das Pendel eine Geschwindigkeit von $v_1=1$ m/s.

Aufgabe 15: Kinetische und potentielle Energien

Eine Kugel der Masse $m=100\,\mathrm{g}$ wird durch eine anfänglich komprimierte Feder senkrecht nach oben geschossen und fällt dann wieder nach unten. Zum Zeitpunkt 1 ist die Kugel in Ruhe und die Feder mit Federkonstante $D=180\,\mathrm{N/m}$ um $x=10\,\mathrm{cm}$ gegenüber ihrer Ruhelage komprimiert. Nun wird der Abschuss ausgelöst. Zum Zeitpunkt 2 hat die Feder ihre Ruhelage erreicht und die Kugel bewegt sich mit v_2 senkrecht nach oben. Zum Zeitpunkt 3 wird die maximale Höhe h (siehe Skizze) erreicht und zum Zeitpunkt 4 trifft die Kugel wieder auf die (entspannte) Feder auf. Rechnen Sie mit $g_0=10\,\mathrm{m/s^2}$.

	Zeitpunkt 1	Zeitpunkt 2	Zeitpunkt 3	Zeitpunkt 4
Pot. Energie der Feder				
Pot. Energie der Masse				
Kin. Energie der Masse				

- a) Füllen Sie die Tabelle mit Ausdrücken für die Energien aus (mit obigen Größenbezeichnungen).
- b) Berechnen Sie mit Energieerhaltung die Geschwindigkeiten v_2 , v_4 und die erreichte Höhe h.
- c) Berechnen Sie die einzelnen Energiewerte und tragen Sie sie in die Tabelle ein.