井1.

For which values of x does \(\sum_{n=1}^{\infty} \frac{\chi^{\alpha}}{n} \conv. abs?

i.e For which values of x does $\sum_{n=1}^{\infty} \left| \frac{x^n}{n} \right| \cosh x^2$

Apply the Ratio Test.

$$= \lim_{n \to \infty} \left(\left| \frac{x}{n+i} \right| \right| = \left| \frac{x}{n+i} \right|$$

If
$$|x| < 1$$
, then $\sum_{n=1}^{\infty} \left| \frac{x^n}{n} \right| conv$.

If
$$|x| > 1$$
, then $\sum_{n\geq 1} \left| \frac{x^n}{n} \right| div$.

If
$$|x|=1$$
, we cannot conclude from Ratio Test
but $\sum_{n=1}^{\infty} |x^n| = \sum_{n=1}^{\infty} |\frac{1}{n}| div.$

Hene for
$$|x| < 1$$
, $\sum_{n=1}^{\infty} \left| \frac{x^n}{n} \right| conv.$

For which values of x does \(\frac{\sigma}{n} \) Conv. conditionally i.e For ulich values of x does $\sum_{n=1}^{\infty} \frac{x^n}{n}$ conv. but \(\frac{x^1}{n} \rightarrow 1 \) Apply Ratio's test to conclude about 2 n. (m) | x n+1 / x n | n | n | $= |\chi_{n}| \times ||\chi|| = |\chi|.$ If |x| > 1, $\sum_{n=1}^{\infty} \frac{x^n}{n}$ diverges S. 5 xh cannot conv. cond. If |X| < 1, $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges. and $\sum_{n=1}^{\infty} |x^n|$ converges. So $\sum_{n=1}^{\infty} \frac{x^n}{n}$ cannot be conv. cond.

#2. Assumig
$$|x| < 1$$
. Find a series whose Sum is $\frac{1}{x^2+1}$.

Let
$$r = -x^2$$
.

$$|r| = x^2 < |$$
.

#3. For which values of x does \(\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \conv.?

Method 1: Geometine series

observe that

Sisserve (use)
$$\frac{\cos x^n}{\sin x^n} = \sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^n \text{ is a seometric series}$$

then
$$\sum_{n=0}^{\infty} \left(\frac{x}{y}\right)^n conv. to \frac{1}{1-\frac{x}{y}}$$

Method 2: (Ratio Test).

$$= \left| \lim_{n \to \infty} \left(\frac{\times}{5} \right) \right| = \left(\frac{\times}{5} \right)$$

If |X| < 1 i.e |X| < 5, then series conv.

if $\left|\frac{x}{5}\right| > 1$ i.e $\left|x\right| > 5$, then series div.

if |\frac{\times |=5. Then.

we have $\sum_{n=0}^{\infty} \frac{x^n}{5^n} = \sum_{n=0}^{\infty} 1 = \infty. \ d.V.$

Hence $\sum_{n=0}^{\infty} \frac{x^n}{5^n} conv for |x| < 5$.