# fn sample\_geometric\_exp\_slow

Michael Shoemate

September 17, 2025

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of fn sample\_geometric\_exp\_slow in mod.rs at commit 0be3ab3e6 (outdated<sup>1</sup>). This proof is an adaptation of subsection 5.2 of [CKS20].

## Vetting history

• Pull Request #519

## 1 Hoare Triple

### Precondition

 $\mathbf{x} \in \mathbb{Q} \land \mathbf{x} > 0$ 

#### Pseudocode

#### Postcondition

For any setting of the input parameter x such that the given preconditions hold, sample\_geometric\_exp\_slow either returns Err(e) due to a lack of system entropy, or Ok(out), where out is distributed as Geometric(1 - exp(-x)).

### 2 Proof

Assume the preconditions are met.

Lemma 2.1. sample\_geometric\_exp\_slow only returns Err(e) when there is a lack of system entropy.

*Proof.* The preconditions on x satisfy the preconditions on sample\_bernoulli\_exp, so by its definition, it only returns an error if there is a lack of system entropy. The only source of errors is from this function, therefore sample\_geometric\_exp\_slow only returns Err(e) when there is a lack of system entropy.

 $<sup>^{1}\</sup>mathrm{See}\ \mathrm{new}\ \mathrm{changes}\ \mathrm{with}\ \mathrm{git}\ \mathrm{diff}\ \mathrm{Obe3ab3e6...e4fb7f4}\ \mathrm{rust/src/traits/samplers/cks20/mod.rs}$ 

Theorem 2.2. [CKS20] If the outcome of sample\_geometric\_exp\_slow is Ok(out), then out is distributed as Geometric(1 - exp(-x)). That is,  $P[\text{out} = k] = exp(-x)(1 - exp(-x))^k$ 

*Proof.* The distribution of the  $i^{th}$  boolean returned on line 4 is  $B_i \sim Bernoulli(exp(x))$ , because the preconditions on x satisfy the preconditions for sample\_bernoulli\_exp.

$$\begin{split} P[\mathsf{out} = k] &= P[B_1 = B_2 = \ldots = B_k = \bot \land B_{k+1} = \top] \\ &= P[B_{k+1} = \top] \prod_{i=1}^k P[B_i = \bot] \\ &= exp(-x)(1 - exp(-x))^k \end{split} \qquad \text{All } B_i \text{ are independent.}$$

Proof. 1 holds by 2.1 and 2.2.

# References

[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy. *CoRR*, abs/2004.00010, 2020.