Procesos estacionarios ergódicos

Antonio Sala

Control de Sistemas Complejos

DISA – Universitat Politècnica de València

Presentación

Motivación:

Los procesos estocásticos definen el "ruido" dependiente del tiempo o espacio. En problemas de control usuales, las señales son funciones del tiempo. Las señales aleatorias nunca llegan al "equilibrio", debe redefinirse el concepto.

Objetivos:

Comprender el significado de estacionariedad ("equilibrio") más "ergodicidad" (da igual repetir el experimento que recoger más datos).

Contenidos:

Revisión de definiciones básicas. Procesos estacionarios. Procesos ergódicos. Conclusiones.

Procesos estocásticos temporales

Conjunto de vbles aleatorias $\mathcal{X}:=\{X(t),t\in T\},\quad X(t)\in\Omega$, o "función aleatoria" de T a Ω .

- Señal discreta con ruido: $T \equiv \{0, 1, 2, \dots\}, \Omega = \mathbb{R}$.
- ullet Señal contínua con ruido: $T\equiv \mathbb{R}$, $\Omega=\mathbb{R}$

Realización: una trayectoria de un experimento concreto.

Análisis "finito": Seleccionando un número finito de instantes t_1, t_2, \ldots, t_n (n fijado), $X(t_1), \ldots X(t_n)$ forma un vector n-dimensional de variables aleatorias al que se le podría aplicar el análisis multivariante usual (densidad conjunta, marginal, condicional, varianza, covarianza, correlación, predicción,...).

A. Sala

Procesos estacionarios

Es una generalización del concepto de equilibrio (valor determinista constante) a "función de densidad (conjunta) constante":

▶ Un proceso estocástico es "estacionario en sentido estricto" si, para todo conjunto finito de instantes $t_1, t_2, \ldots t_n$, con n arbitrario, la función de densidad conjunta no cambia con un desplazamiento temporal $\tau \in \mathbb{R}$:

$$f_{t_1,...,t_n}(x_1,...,x_n) = f_{t_1+\tau,...,t_n+\tau}(x_1,...,x_n)$$

▶ WSS (sentido amplio): media y varianza constante. Covarianza $R(t_1, t_2) = R(0, t_2 - t_1)$ sólo depende de distancia temporal.

Procesos estacionarios ergódicos

Un proceso estacionario es **ergódico** si sus propiedades estadísticas pueden ser determinadas por una **única** realización suficientemente (infinitamente) larga del mismo.

Ergódico: \Leftrightarrow **Repetir** el experimento "r" veces y promediar sobre las r realizaciones obtiene el mismo resultado que **prolongarlo** y promediar sobre el tiempo.

Formalmente, cuando r tiende a infinito y la duración de la prolongación también.

Teoría complicada... https://en.wikipedia.org/wiki/Ergodic_theory relacionada con que no existan conjuntos invariantes de probabilidad no cero aparte del espacio de estados completo.

Ejemplo (1)

El proceso alcanza el estado "estacionario" en aproximadamente 150 segundos. La teoría de procesos estacionarios aplicaría para comprender las características de la señal a partir de t=150. Si todo lo que subyace es lineal excitado por ruido de distrib. constante, será ergódico y prolongando desde 150 a 15000 el experimento izuquerdo obtendremos la misma información que con las repeticiones de la derecha.

A. Sala

Procesos NO ergódicos

Ejemplo procesos NO ergódicos:

- Proceso inestable lineal, excitado con ruido media cero: la media "formal" es cero, pero la media de las muestras experimentales diverge.
- Proceso no lineal con dos puntos de equilibrio estables. Dependiendo de la "suerte", el sistema acabará en uno o en otro con una cierta probabilidad, pero la media a largo plazo de UNA muestra sólo estará en uno de los equilibrios.
- Con ruido, varios "puntos de equilibrio" se cambia la definición a más de un "atractor/conjunto de estados absorbentes/cojunto invariante" (que si las trayectorias "entran" en dicho conjunto no vuelven a salir).

Condiciones "informales" de *ergodicidad*: estacionario + asintóticamente estable + sin varios subconjuntos de estados "absorbentes" (un único equilibrio) + invariante en el tiempo... básicamente, el comportamiento ante entradas "ruido blanco" de un sistema lineal LTI exponencialmente estable alrededor de cero es "ergódico".

Ejemplo (2)

Registro de vibración:

Parece régimen estacionario (no se aprecia diferencia de comportamiento en instantes iniciales vs. finales), ergódico si sabemos que es un único pto. equilibrio de sist. lineal.

Conclusiones

- El ruido en señales temporales para control se formaliza como procesos estocásticos (funciones aleatorias) en el tiempo. Las aplicaciones necesitan calcular medias, varianzas y correlaciones entre distintos instantes; estos parámetros son funciones del tiempo.
- El concepto de "equilibrio" debe cambiarse a "estacionario", de modo que medias y varianzas son constantes en el tiempo, y que la correlación sólo dependa de la distancia temporal.
- Un proceso estacionario es ergódico si se pueden extraer las características estadísticas del mismo mediante la observación del mismo durante "mucho rato" (sin "reiniciar todo el experimento").
- Los sistemas lineales estables invariantes en el tiempo sometidos a entradas "ruido blanco" de distrib. normal durante mucho rato son estacionarios y ergódicos.

A Sala