Chapitre 7

Logarithme népérien

I. Logarithme népérien

1) <u>Définition</u>

f est la fonction définie sur]0;+ ∞ [par $f(x) = \frac{1}{x}$.

Cette fonction usuelle est continue et admet donc des primitives sur $]0;+\infty[$.

Définition:

La fonction logarithme népérien est la fonction notée ln :

- elle est définie sur des réels strictement positifs : $x \in]0; +\infty[$
- sa dérivée est la fonction inverse : $\ln ' = \frac{1}{x}$
- elle s'annule en 1 : ln(1)=0

Remarques:

- La fonction ln est dérivable sur $]0;+\infty[$.
- Le logarithme de zéro n'existe pas.
- Le logarithme d'un nombre négatif n'existe pas.

2) Propriété fondamentale du logarithme

Propriété:

Pour tous réels a et b strictement positifs :

$$\ln(a \times b) = \ln(a) + \ln(b)$$

Démonstration:

a étant un réel strictement positif, on considère la fonction h définie sur $]0;+\infty[$ par $h(x)=\ln(ax)-(\ln a+\ln x)$.

Cette fonction est dérivable sur $]0;+\infty[$ comme somme et composée de fonctions dérivables.

Ainsi pour tout
$$x > 0$$
, $h'(x) = a \times \ln'(ax) - 0 - \ln'(x) = a \times \frac{1}{ax} - \frac{1}{x} = \frac{1}{x} - \frac{1}{x} = 0$.

La dérivée de h est toujours nulle, ce qui signifie que h est une fonction constante sur $]0;+\infty[$. Or $h(1)=\ln(a\times 1)-(\ln a+\ln 1)=\ln a-\ln a=0$

Par conséquent, la fonction h est constamment nulle sur $]0;+\infty[$, et ainsi $\ln(ax)=\ln a+\ln x$. x étant quelconque dans $]0;+\infty[$, en posant x=b, on retrouve la propriété fondamentale.

1

Exemple:

$$\ln 6 + \ln 5 + \ln \frac{1}{30} = \ln \frac{6 \times 5 \times 1}{30} = \ln 1 = 0$$

3) Propriétés algébriques

Propriétés :

Pour tous réels a et b strictement positifs et n entier relatif :

$$\ln\left(\frac{1}{a}\right) = -\ln(a) \qquad ; \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$\ln(a^n) = n \times \ln(a) \qquad ; \qquad \ln(\sqrt{a}) = \frac{1}{2}\ln(a)$$

Démonstrations:

• Soit
$$a > 0$$
. $a \times \frac{1}{a} = 1$, donc $\ln\left(a \times \frac{1}{a}\right) = \ln 1 \Leftrightarrow \ln a + \ln\left(\frac{1}{a}\right) = 0$. D'où $\ln\left(\frac{1}{a}\right) = -\ln(a)$.

• Soit
$$a > 0$$
 et $b > 0$. $\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right) = \ln a + \ln\left(\frac{1}{b}\right) = \ln a - \ln b$.

• Si
$$n=0$$
, l'égalité est évidente : $\ln(a^0) = \ln 1 = 0 = 0 \times \ln a$.
Si $n \ge 1$ et $a > 0$, alors $a^n = a \times ... \times a$, donc $\ln(a^n) = \ln a + ... + \ln a = n \ln a$.
Si $n \le -1$ et $a > 0$, alors $a^n = \frac{1}{a^{-n}}$, donc $\ln(a^n) = -\ln(a^{-n}) = -(-n) \ln a = n \ln a$.

•
$$(\sqrt{a})^2 = a$$
, donc $\ln((\sqrt{a})^2) = \ln a$, ou encore $2\ln(\sqrt{a}) = \ln a$. Ainsi $\ln(\sqrt{a}) = \frac{1}{2}\ln a$.

Exemples:

•
$$\ln 12 - \ln 6 + \ln \frac{3}{2} = \ln \frac{12}{6} + \ln 3 - \ln 2 = \ln 3$$

•
$$\ln 4^{-3} + 5 \ln 2 = -3 \ln 4 + 5 \ln 2$$
. Or $\ln 4 = \ln 2^2 = 2 \ln 2$.
D'où $\ln 4^{-3} + 5 \ln 2 = -\ln 2$

•
$$\ln \sqrt{3} + \frac{1}{2} \ln \frac{5}{3} = \frac{1}{2} \ln 3 + \frac{1}{2} (\ln 5 - \ln 3) = \frac{1}{2} \ln 5$$

II. Fonction In

Propriétés analytiques de la fonction In 1)

Propriétés:

La fonction ln est **continue** et **strictement croissante** sur $]0;+\infty[$.

 $\lim_{x\to\infty} \ln(x) = +\infty$

 $\lim_{x \to 0} \ln(x) = -\infty$, donc l'axe des ordonnées d'équation x = 0 est asymptote verticale à la courbe représentative de la fonction ln.

X	0		1		+∞
$\ln'(x) = \frac{1}{x}$		+	1	+	
ln(x)	-∞	1	0	1	+∞

La tangente à \mathscr{C} au point d'abscisse 1 est y=x-1

Démonstrations:

- La fonction ln est dérivable donc continue.
- Comme la dérivée de la fonction ln est la fonction inverse et lorsque x > 0, alors $\frac{1}{x} > 0$. Ainsi la dérivée est strictement positive, donc la fonction ln est strictement croissante.
- De plus $\ln'(1) = \frac{1}{1} = 1$; ainsi la tangente T à \mathcal{C}_{ln} en A(0;1) a pour équation y = x 1.
- Soit M un réel fixé aussi grand que l'on veut, et n un entier naturel vérifiant $n \ln (10) > M$. Pour tout x tel que $x > 10^n$, on a $\ln(x) > \ln(10^n)$ (car ln est strictement croissante) $\Leftrightarrow \ln(x) > n \times \ln(10) \Leftrightarrow \ln(x) > M$

Cela signifie que $\lim_{x \to +\infty} \ln(x) = +\infty$

En posant $X = \frac{1}{x}$, on a $\ln(x) = \ln\left(\frac{1}{X}\right) = -\ln(X)$. Or si $x \to 0$ avec x > 0, alors $X \to +\infty$ et $ln(X) \to +\infty$ $d'où -ln(X) \rightarrow +\infty$ Ainsi, $\lim_{x\to 0} \ln(x) = -\infty$

Propriétés:

Pour A > 0 et B > 0:

- $\ln(A) = \ln(B) \iff A = B$
- $\ln(A) \leq \ln(B) \iff A \leq B$

2) <u>Le nombre e</u>

La fonction ln est continue et strictement croissante sur [2;3] et $\ln(2) \approx 0.7 < 1$ et $\ln(3) \approx 1.1 > 1$. Donc d'après le théorème des valeurs intermédiaires, ln prend une seule fois la valeur 1.

Définition:

Il existe un unique nombre, noté e, tel que $\ln(e)=1$.

Avec la calculatrice on vérifie e ≈ 2,718281828.

Propriétés:

Soit *m* un entier relatif : l'équation

- $\ln(x) = m$ a pour unique solution $x = e^m$.
- $\ln(x) \ge m \Leftrightarrow x \ge e^m$
- $\ln(x) \leq m \Leftrightarrow 0 < x \leq e^m$

Démonstration :

• Si *m* est un entier naturel, on peut écrire :

$$m=m\times 1=m\times \ln(e)=\ln(e^m)$$

• Si m est entier relatif négatif, alors il existe un entier naturel n tel que m=-n:

$$m=-n\times 1=n\times (-\ln(e))=n\ln\left(\frac{1}{e}\right)$$
, d'où $m=\ln\left(\frac{1}{e^n}\right)=\ln(e^{-n})=\ln(e^m)$.

L'équation $\ln(x) = m$, avec $m \in \mathbb{Z}$, s'écrit donc $\ln(x) = \ln(e^m) \Leftrightarrow x = e^m$.

Exemples:

- La solution de l'équation $\ln(x)=2$ est $x=e^2$.
- La solution de l'équation ln(x) = -1 est $x = e^{-1}$

Or
$$\ln\left(\frac{1}{e}\right) = -\ln(e) = -1$$
, donc cette solution s'écrit $x = e^{-1} = \frac{1}{e}$.

• La solution de l'équation $ln(x) = \frac{1}{2}$ est $x = e^{\frac{1}{2}}$.

Or
$$\ln(\sqrt{e}) = \frac{1}{2} \ln(e) = \frac{1}{2}$$
, donc cette solution s'écrit $x = e^{\frac{1}{2}} = \sqrt{e}$.

III. Croissances comparées

Propriétés :

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \qquad \qquad \lim_{x \to 0} x \ln x = 0$$

• Pour tout entier nature
$$n \ge 2$$
, $\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$

•
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$$
 $\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$

Démonstrations:

On souhaite comparer $\ln(x)$ et \sqrt{x} , En étudiant la fonction g définie sur $]0;+\infty[$ par $g(\underline{x})=\sqrt{x}-\ln(x)$.

$$g'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = \frac{\sqrt{x} - 2}{2x}$$

Comme x > 0, la dérivée est du signe de $\sqrt{x} - 2$.

Or
$$\sqrt{x}-2 \ge 0 \Leftrightarrow \sqrt{x}-2 \ge 0 \Leftrightarrow x \ge 4$$

D'où le tableau de variations de g :

Le minimum de la fonction g est $2-\ln 4$, strictement positif:

pour
$$x \in]0; +\infty[, \sqrt{x} - \ln(x) > 0]$$

 $\Leftrightarrow \sqrt{x} > \ln(x)$

$$\frac{x > 0}{x}$$
 donc on a:
 $\frac{\sqrt{x}}{x} > \frac{\ln(x)}{x} \Leftrightarrow \frac{1}{\sqrt{x}} > \frac{\ln(x)}{x}$

Sur l'intervalle $[1;+\infty[, \ln(x) \ge 0]$.

Ainsi pour $x \ge 1$, on obtient l'encadrement $0 \le \frac{\ln(x)}{x} < \frac{1}{\sqrt{x}}$.

Or $\lim_{x\to 0} \frac{1}{\sqrt{x}} = 0$; donc, par limite par encadrement, on obtient $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$.

• On pose
$$X = \frac{1}{x}$$
, alors $x \times \ln(x) = \frac{1}{X} \times \ln\left(\frac{1}{X}\right) = -\frac{\ln(X)}{X}$.

Or lorsque $x \to 0$, avec x > 0, alors $X \to +\infty$; donc $\frac{\ln(X)}{X} \to 0$, c'est-à-dire $x \ln(x) \to 0$.

• Comme
$$\frac{\ln(x)}{x^n} = \frac{1}{x^{n-1}} \times \ln \frac{(x)}{x}$$
 et de plus $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{x \to +\infty} \frac{1}{x^{n-1}} = 0$, car $n-1 \ge 1$, par produit, on obtient $\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$.

•
$$\ln'(x) = \frac{1}{x}$$
. Donc pour $x = 1$, $\ln'(1) = \frac{1}{1} = 1$.

Or d'après la définition du nombre dérivé en un point :
$$\ln'(1) = \lim_{x \to 1} \frac{\ln(x) - \ln(1)}{x - 1} = \lim_{x \to 1} \frac{\ln(x)}{x - 1} \text{ (car } \ln 1 = 0 \text{). D'où le résultat.}$$

Il suffit d'utiliser le résultat précédent en posant 1+x=X.

Exemples:

- La fonction $f: x \mapsto \frac{\ln(x^4)}{x^3}$ présente en $+\infty$ la forme indéterminée $\frac{\infty}{\infty}$. $\frac{\ln(x^4)}{x^3} = \frac{4 \ln x}{x^3} = \frac{4}{x^2} \times \frac{\ln x}{x} \text{ Or } \lim_{x \to +\infty} \frac{4}{x^2} = 0 \text{ et } \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \text{ D'où } \lim_{x \to +\infty} f(x) = 0.$
- La fonction $g: x \mapsto x^2 \ln(x^3)$ présente en 0 la forme indéterminée $0 \times \infty$ $x^2 \ln(x^3) = x^2 \times (3 \ln x) = (3 x) \times (x \ln x)$. Or $\lim_{x \to 0} 3 x = 0$ et $\lim_{x \to 0} (x \ln x) = 0$. D'où $\lim_{x \to 0} g(x) = 0$
- $\lim_{x \to 1} \frac{\ln(x)}{x 1} = 1$; donc $\lim_{x \to 1} \frac{2x \ln(x)}{x 1} = 2$. En effet, $\frac{2x \ln x}{x - 1} = 2x \times \frac{\ln x}{x - 1}$ et $\lim_{x \to 1} 2x = 2$

IV. Logarithme d'une fonction

On considère une fonction u, définie sur un intervalle I et telle que, pour tout x de I, on a u(x) > 0. On souhaite étudier la composée $\ln \circ u$, notée aussi $\ln u$.

1) Sens de variation de In u

Propriété:

Soit u une fonction définie et **strictement positive** sur un intervalle I. Les fonctions u et $\ln u$ ont même sens de variation sur I.

Démonstration :

Comme la fonction ln est strictement croissante sur $]0;+\infty[$, par composée, si la fonction u est croissante sur I, alors la fonction $\|u\|$ est croissante sur I et si la fonction u est décroissante sur I, alors la fonction $\|u\|$ est décroissante sur I.

Exemple:

u est la fonction et \mathcal{C}_u la courbe représentative de u. $u(x) > 0 \Leftrightarrow x \in]-\infty; -1[\cup]-1; 2[$, donc $\ln u$ est définie sur $]-\infty; -1[\cup]-1; 2[$.

u et $\ln u$ ont même sens de variation :

x	$-\infty$	_	1	2
$f(x) = \ln(u(x))$		1		

6

Dérivée de In u 2)

Propriétés:

Soit u une fonction définie, dérivable et strictement positive sur un intervalle I.

- La fonction $\ln u$ est dérivable sur I et sa dérivée est $(\ln u)' = \frac{u'}{u}$.
- Une primitive de $\frac{u'}{u}$ sur I est $\ln(u)$.

Démonstration:

La fonction u est dérivable sur I de dérivée u'. On applique la dérivée d'une fonction composée :

$$(\ln \circ u)'(x) = u'(x) \times \ln'(u(x)) = u'(x) \times \frac{1}{u(x)} = \frac{u'(x)}{u(x)}$$

Exemples:

f est la fonction définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$. Le polynôme u définie par $u(x)=x^2+1$ est strictement positif et dérivable sur \mathbb{R} . Donc, pour tout réel x :

$$f'(x) = \frac{2x}{x^2 + 1}$$
.

- La fonction $g: x \mapsto \ln(2x-1)$ est définie pour 2x-1>0, c'est-à-dire pour $x>\frac{1}{2}$. Alors, pour tout *x* de l'intervalle $I = \left| \frac{1}{2}; + \infty \right|$: $g'(x) = \frac{2}{2x-1}$.
- Une primitive sur $]0;+\infty[$ de la fonction $x \mapsto \frac{1}{x}$ est la fonction ln.
- Sur l'intervalle $]-\infty;0[$, x est strictement négatif. Une primitive sur $]-\infty;0[$ de $x \mapsto \frac{1}{x}$ est donc la fonction $x \mapsto \ln(-x)$.
- La fonction $\frac{4x^3}{x^4+1}$ se présente sous la forme $\frac{u'}{u}$ avec $u(x)=x^4+1$. Or pour tout x de \mathbb{R} , $x^4 + 1 > 0$. Donc une primitive sur \mathbb{R} de la fonction f est la fonction $x \mapsto \ln(x^4 + 1)$.

Limites de In u 3)

Propriétés:

 α désigne un nombre, ou $+\infty$ ou $-\infty$, et ℓ un nombre strictement positif :

- si $\lim_{x \to a} u(x) = +\infty$, alors $\lim_{x \to a} \ln(u(x)) = +\infty$
- si $\lim_{x \to \alpha} u(x) = 0$, avec u(x) > 0, alors $\lim_{x \to \alpha} \ln(u(x)) = -\infty$ si $\lim_{x \to \alpha} u(x) = \ell$, avec $\ell > 0$, alors $\lim_{x \to \alpha} \ln(u(x)) = \ln(\ell)$

Exemple:

Soit $\overline{f} = \ln u$; u étant connue par sa courbe \mathcal{C}_{u} dans l'exemple précédent.

- Si $x \to -\infty$, alors $u(x) \to 1$; et par composée $\ln(u(x)) \to \ln 1 = 0$.
- Si $x \to -1$, avec x < -1, alors $u(x) \to +\infty$; et par composée $\ln(u(x)) \to +\infty$.
- Si $x \to -1$, avec x > -1, alors $u(x) \to +\infty$; et par composée $\ln(u(x)) \to +\infty$.
- Si $x \to 2$, avec x < 2, alors $u(x) \to 0$ avec u(x) > 0; et par composée $\ln(u(x)) \to -\infty$.

On a donc:

$$\lim_{x \to -\infty} \ln(u(x)) = 0 \qquad \qquad \lim_{x \to -1^{-}} \ln(u(x)) = +\infty$$

$$\lim_{x \to -1^{+}} \ln(u(x)) = +\infty \qquad \qquad \lim_{x \to 2^{-}} \ln(u(x)) = -\infty$$

V. La fonction logarithme décimal

Définition:

La fonction logarithme décimal, notée log, est la fonction définie sur $]0;+\infty[$ par :

$$\log x = \frac{\ln x}{\ln 10}$$

Remarque:

- On a done $\log 1=0$, $\log 10=1$.
- Posons $k = \frac{1}{\ln 10}$. Ce nombre k est positif, et $\log x = k \ln x$.

On en déduit que les propriétés de la fonction log sont analogues à celles de la fonction ln : logarithme d'un produit, d'un quotient, limites,...

• $\log x$ et $\ln x$ sont de même signe (car $\ln 10 > 0$)

8

Exemple:

$$\log 100 = \frac{\ln(10^2)}{\ln(10)} = \frac{2 \ln 10}{\ln 10} = 2$$