

Towards a Precise Determination of the Reactor Antineutrino Flux at Daya Bay

Wenqiang Gu (Shanghai Jiao Tong University) on behalf of the Daya Bay Collaboration

Detection of Antineutrinos

- Antineutrinos are detected via Inverse Beta Decay (IBD)
- Prompt-delayed coincidence between positron and neutron

"Reactor Antineutrino Anomaly" (RAA)

In 2011, improved theoretical treatment of reactor antineutrino flux by Huber and Mueller (HM) *et al*.

- Daya Bay observed a flux deficit in comparison to the HM flux: $5.4\% \pm 2\%$ (exp.)
- Past global average: $5.8\% \pm 0.9\%$ (exp.)

- Possible explanation
- The existence of eV scale sterile neutrinos!
- Systematic uncertainties in reactor flux calculations
 Daya Bay data implies that HM flux overestimates the antineutrino flux from ²³⁵U (Phys. Rev. Lett. **118**, 251801)

Systematic uncertainties

- detection efficiency (dominant!)
- reactor related
- statistics

Neutron Calibration Campaign

- At the end of 2016
- AmC and AmBe source
- Along three z-axes of the automated calibration units (ACUs)
- Target: improve the IBD detection efficiency (x2)
- ⇒ more precise reactor flux measurement

Data and MC Comparison

Delayed energy spectra at two edgy locations

- Efficiency
- F = N([6,12]MeV) / N([1.5,12]MeV)
- Efficiency difference between data and MC along three z-axes.
 Reasonable agreement with MC

Efficiency Correction for IBD

- The physics models were varied in the simulation
 - neutron transportation
 - n-Gd capture γ spectrum

common systematics for IBD and neutron sources!

IBD and neutron source efficiency correlated for given model in the MC

- Measured neutron source efficiency \Rightarrow correction to IBD
- Different subsets of calibration data
 - ⇒different correction
 - ⇒ systematic uncertainty

Summary

- The RAA is being probed experimentally at Daya Bay
 - The incorrect theoretical prediction for ²³⁵U may be responsible for RAA
- An elaborate neutron calibration campaign was performed at Daya Bay in 2016, aiming to further improve the IBD detection efficiency