Artificial Neural Networks (ANNs)

Biologically inspired computational model:

- (1) Simple computational units (neurons).
- (2) <u>Highly interconnected</u> connectionist view
- (3) Vast <u>parallel</u> computation, consider:
 - Human brain has ~10¹¹ neurons
 - Slow computational units, switching time ~10⁻³ sec (compared to the computer >10⁻¹⁰ sec)
 - Yet, you can recognize a face in ~10⁻¹ sec
 - This implies only about 100 sequential, computational neuron steps - this seems too low for something as complicated as recognizing a face
 - Parallel processing

ANNs are naturally parallel - each neuron is a self-contained computational unit that depends only on its inputs.

Learning

We have seen machine learning with different representations:

- (1) Decision trees -- symbolic representation of various decision rules -- "disjunction of conjunctions"
- (2) Perceptron -- learning of weights that represent alinear decision surface classifying a set of objects into two groups

Different representations give rise to different <u>hypothesis</u> or <u>model spaces</u>. Machine <u>learning algorithms search</u> these model spaces for the <u>best fitting model</u>.

The Perceptron

- A simple, single layered neural "network" - only has a single neuron.
- However, even this simple neural network is already powerful enough to perform (linear) classification tasks.

The Architecture

Computation

A perceptron computes the value,

$$y = \operatorname{sgn}\left(b + \sum_{i=1}^{m} w_i x_i\right)$$

Ignoring the activation function sgn and setting m = 1, we obtain,

$$y' = b + w_1 x_1$$

But this is the equation of a line with slope w and offset b.

Observation: For the general case the perceptron computes a <u>hyperplane</u> in order to accomplish its classification task,

$$y' = b + \sum_{i=1}^{m} w_i x_i = b + \vec{w} \cdot \vec{x}$$

Perceptron Learning Revisited

```
Initialize \overline{w} and b to random values.

repeat

for each (\overline{x}_i, y_i) \in D do

if \hat{f}(\overline{x}_i) \neq y_i then

Update \overline{w} and b incrementally.

end if

end for

until D is perfectly classified.

return \overline{w} and b
```


Constructs a line (hyperplane) as a classifier

$$b + \vec{w} \cdot \vec{x}$$

Classification

In order for the hyperplane to become a classifier we need to find b and w => learning!

What About Non-Linearity?

Can we learn this decision surface? ... Yes! Multi-Layer Perceptrons

Multi-Layer Perceptrons (ANNs)

How do we train?

Perceptron was easy:

```
Initialize \overline{w} and b to random values.

repeat

for each (\overline{x}_i, y_i) \in D do

if \hat{f}(\overline{x}_i) \neq y_i then

Update \overline{w} and b incrementally.

end if

end for

until D is perfectly classified.

return \overline{w} and b
```

Every time we found an error of the predicted value $f(x_i)$ compared to the label in the training set y_i , we update w and b.

Not so easy in multi-layer neural networks – the error can occur deep in the network!

Artificial Neural Networks

Feed-forward with Backpropagation

We have to be a bit smarter in the case of ANNs: compute the signal (feed forward) and then use the error at the output to update all the weights by propagating the error back through the network.

Backpropagation

$$\delta_o = y(1 - y)\Delta = \frac{\partial \Delta}{\partial \vec{w} \cdot \vec{x}} = \frac{\partial (t - y)^2}{\partial \vec{w} \cdot \vec{x}}$$

$$E = (y' - y)^2$$
 (output error)

$$\delta_0 = y(1-y)E$$
 (output node error)

$$w_{ho} \leftarrow w_{ho} + \alpha \delta_o$$
 (weight update)

$$\delta_h = y(1-y)w_{ho}\delta_o$$
 (hidden node error)

$$w_{ih} \leftarrow w_{ih} + \alpha \delta_h$$
 (weight update)

Input Hidden Output Layer Layer Layer

For this to work transfer

Function has to be smooth!!

This only works because

$$\delta_o = y(1-y)E = \frac{\partial E}{\partial w \cdot x} = \frac{\partial (y'-y)^2}{\partial w \cdot x} = 2(y'-y)\left(\frac{\partial y'}{\partial w \cdot x} - \frac{\partial y}{\partial w \cdot x}\right)$$

and the output y is differentiable because the transfer function is differentiable. Also note, everything is based on the *rate of change* of the error...we are searching in the direction where the rate of change will minimize the output error.

Backpropagation Algorithm

Note: this algorithm is for a NN with a single output node o and a single hidden layer. It can easily be generalized.

```
Initialize the weights in the network (often randomly) Do  
For each example e in the training set  
// forward pass  
y = compute neural net output  
y' = label for e from training data  
Calculate error E = (y' - y)^2 at the output units  
// backward pass  
Compute error \delta_0 for weights from a hidden node h to the output node o using E  
Compute error \delta_h for weights from an input node i to hidden node h using \delta_0  
Update the weights in the network
Until all examples classified correctly or stopping criterion satisfied  
Return the network
```

Source: http://en.wikipedia.org/wiki/Backpropagation

Neural Network Learning

 Define the network error in terms of weights w as

$$E_{\chi}(w) = (y' - y)^2$$

for some training instance *x*.

 Use the gradient (slope) of the error surface to guide the search towards appropriate weights:

$$\Delta_{\mathcal{W}_k} = -\eta \, \frac{\partial E_x}{\partial_{\mathcal{W}_k}}$$

Backpropagation can be understood as a <u>stochastic gradient</u> <u>search</u> on the error surface of the network.

Representational Power

- Every bounded continuous function can be approximated with arbitrarily small error by a network with one hidden layer.
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Hidden Layer Representations

Target Function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Hidden Layer Representations

Input		Hidden			Output			
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

This neural network architecture is sometimes also called <u>autoencoder</u> because of its ability to invent new representations of the input data and is a popular building block in deep-learning.