- Tau neutrinos $\nu_{ au}$
 - Only 19 ν_{τ} CC interactions are directly observed.
 - observed.
 - Super-K, IceCube: oscillated ν_τ:
 relative appearance rates and don't give precise cross-section constraints.
- No measurements for E > 250 GeV.

Muon neutrinos $\, u_{\mu}$

- IceCube: above 6.3 TeV (large

Accelerator data: up to 360 GeV.

IceCube: above 6.3 TeV (large uncertainties).

- Gap between 360 GeV – 6.3 TeV remains unexplored.

- Electron neutrinos ν_e
- Gargamelle: up to 12 GeV.
- E53 & DONuT: up to ~200 GeV.
- No direct data above 250 GeV.

Cool, but Why?

Neutrino Physics

[Umut Kose: A New Frontier with FASER. ETH-IPA Colloquium Presentation]

Primary goal: cross section measurements of different neutrino flavors at TeV energies.

Cool, but Why?

Neutrino Physics

• Electron neutrinos ν_{ρ}

- Gargamelle: up to 12 GeV.
- E53 & DONuT: up to ~200 GeV.
- No direct data above 250 GeV.

• Muon neutrinos $\, u_{\mu}$

- Accelerator data: up to 360 GeV.
- IceCube: above 6.3 TeV (large uncertainties).
- Gap between 360 GeV 6.3 TeV remains unexplored.

• Tau neutrinos $\, u_{ au}$

Primary goal: cross section measurements of different neutrino flavors at TeV energies.

- Only 19 ν_{τ} *CC* interactions are directly observed.
- Super-K, IceCube: oscillated ν_{τ} :
 - relative appearance rates and don't give precise cross-section constraints.
- No measurements for E > 250 GeV.

Methodology