Marks²CSV

A simple solution to convert tabular mark fields to CSV file

Mini Project Presentation: First Review

Guided by: Dr. Deepa V.

Presented by:

Ajay T Shaju, SJC20AD004 Emil Saj Abraham, SJC20AD028 Justin Thomas Jo, SJC20AD046 Vishnuprasad K G, SJC20AD063

Outline

- Introduction
- Problem Statement
- Application
- Literature Survey
- Block Diagram
- Data Collection
- Work Done So Far
- Performance Evaluation
- Work To Be Done
- Conclusion
- References

Introduction

- Idea: Answer sheet marks to CSV File.
- Saves time and resources.
- Reduce errors.

Problem Statement

- Manual data entry is a labor-intensive process that requires significant time and effort.
 - Prone to errors
 - Inaccurate data
 - Loss of valuable time
- This project aims to develop an automated solution that streamlines the aforementioned problems.

Application

- **Detection of handwritten marks** from images and their **conversion into CSV** format.
- Simplify the mark data entry process by avoiding manual input of marks on each cell.
- Final output as a CSV file comprising all numbers extracted from the input images.
- Automated generation of mark list saves time.
- Designed specifically for SJCET Teachers.

Literature Review

[1] A.Raj, S.Sharma, J.Singh, A.Singh, "Revolutionizing Data Entry: An In-Depth Study of Optical Character Recognition Technology and Its Future Potential", International Journal for Research in Applied Science & Engineering Technology, Vol. 11 No.2, pp: 645-653, Feb 2023.

- OCR,artificial intelligence,document scanning,machine learning,image recognition.
- Increased speed and efficiency, improved accuracy, reduced costs and increased accessibility.
- Gap recognition accuracy of complex data structures is poor.
- Future scope impact of OCR increases as technology advances, thereby giving more importance and emphasis to using it in businesses and organizations.

[2] Ömer Aydin, "Classification of Documents Extracted from Images with Optical Character Recognition Methods", Anatolian Journal of Computer Sciences, Vol.6 No.2 pp:46-55, 01 Jun, 2021.

- OCR classification and image processing with use of Naive Bayes algorithm.
- Identification of text from handwritten documents, extracting features and training them.
- Gap accuracy is only 53%, lack of implementation of better model.
- Future scope apply same method with a neural network.

[3] Raajkumar G., Indumathi D., "Optical Character Recognition using Deep Neural Network", International Journal of Computer Applications, Vol. 176 No. 41 pp:61-65, July 2020.

- Image processing, OCR model, long short term memory.
- Related work text and image segmentation, CNN.
- Gap cannot identify text set at a particular angle.
- Future scope implies more usage of PyTesseract over SVM.

[4] J.Memon, R.Sami, Rizwan A.Khan, M.Uddin, "Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR)", IEEE Access, Vol. 8, pp:142642-142668, 2020.

- Optical character recognition, classification, languages, feature extraction, deep learning.
- Implementation of MLP, use of datasets like CEDAR, MNIST, CHARS74K.
- Gap Publicly available datasets also include stimuli that are aligned well with each other and fail to incorporate examples that correspond well with real-life scenarios, i.e. writing styles, distorted strokes, variable character, thickness and illumination.
- Future scope implementation of deep learning architectures like CNN,RNN and LSTM will steadily increase.

Block Diagram

Neural Network Architecture

Data Collection

Work Done So Far

- Used a library 'img2table' for detecting and extracting cells.
- Created dataset using an online handwritten dataset & images from answer sheets.

 3

 4

 5

 6

 7

Online Dataset Header Image

Answer Sheet Dataset Sample Images

- Mistakes in Paddle OCR predictions.
- Created neural network for number detecting (Custom OCR tool).

1a	1b	2a	3a	3c	4a	5a	6a	7a	7c	8a	9a	9b	10a	11c	12 a
			2												
	((dr)					2	44		51		
22	22			25					65	65	7	7		6X	6X
		13				3	53	4			6		6		6
					2	23					3				
			M					6					7		
					3	3							63		

Output of Paddle OCR tool

Performance Evaluation

Testing accuracy: 95.81%

Neural Network Accuracy

Total completion time: 14.81 minutes

Time taken for Prediction

```
Accuracy of 0: 93.97%
Accuracy of 1: 99.29%
Accuracy of 2: 96.22%
Accuracy of 3: 95.10%
Accuracy of 4: 97.59%
Accuracy of 5: 93.33%
Accuracy of 6: 97.33%
Accuracy of 7: 97.57%
```

Prediction Accuracy

Work To Be Done

- Collect more datasets
- Analyze model performance using additional methods
- Integrate custom OCR tool
- Preprocess DataFrame
- Physical equipment for holding the camera

Conclusion

- Dataset consist of 18,068 Images
- Testing accuracy of CNN is 95.81%.
- Custom OCR tool has achieved greater accuracy than previous OCR tool(Paddle OCR).

References

- [1] A.Raj, S.Sharma, J.Singh, A.Singh, "Revolutionizing Data Entry: An In-Depth Study of Optical Character Recognition Technology and Its Future Potential", International Journal for Research in Applied Science & Engineering Technology, Vol. 11 No.2, pp: 645-653, Feb 2023.
- [2] Ömer Aydin, "Classification of Documents Extracted from Images with Optical Character Recognition Methods", Anatolian Journal of Computer Sciences, Vol.6 No.2 pp:46-55, 01 Jun, 2021.
- [3] Raajkumar G., Indumathi D., "Optical Character Recognition using Deep Neural Network", International Journal of Computer Applications, Vol. 176 No. 41 pp:61-65, July 2020.
- [4] J.Memon, R.Sami, Rizwan A.Khan, M.Uddin, "Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR)", IEEE Access, Vol. 8, pp:142642-142668, 2020.
- [5] Colin G.White-Dzuro, Jacob D.Schultz, C.Ye, Joseph R. Coco, Janet M. Myers, C.Shackelford, S.T.Rosenbloom, D.Fabbri, "Extracting Medical Information from Paper COVID-19 Assessment Forms", Applied Clinical Informatics Vol. 12 No. 1, pp:170–178, 2021.

Questions?

Thank You

Presentation Setting

Introduction – Ajay

Problem statement – Ajay

Don't Present this

Literature Survey – Justin

Application – Emil

Block Diagram – Justin

Data Collection – Vishnu

Work To Be Done

– Emil

References – Vishnu

Don't Present this

work done so far – Ajay

performance evaluation – justin

Conclusion – Vishnu

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 88, 138, 16)	160
max_pooling2d_4 (MaxPoolin 2D)	g (None, 44, 69, 16)	0
conv2d_5 (Conv2D)	(None, 42, 67, 32)	4640
max_pooling2d_5 (MaxPoolin 2D)	g (None, 21, 33, 32)	0
flatten_2 (Flatten)	(None, 22176)	0
dense_4 (Dense)	(None, 64)	1419328
dense_5 (Dense)	(None, 8)	520

Conclusion

- Ensure that the predictions are accurate need to improve the accuracy further.
- need to <u>integrate the table detection algorithm & a custom OCR model</u>.
- aim to reduce the time taken by teachers to do the mark data entry procedure.
- Preliminary results has yielded great success but can still be improved.
- Validation accuracy of CNN is 95.81%.

Data Description

Excluded May be useful in future

- Primary data are 'Answer sheets of our college', which are image data of A4 size
- The data comes under '<u>college documents' domain</u>
- <u>Initial data</u> can be collected <u>from our department</u>, for <u>more data variability</u>, <u>we could request it</u> <u>from other departments</u> of our college itself.
- Data can be <u>compressed to file format like PDF</u> for easy portability
- Data size: <u>Input data</u> can have <u>5-10MB (PDF)</u>, and <u>output data</u> can have <u>4KB 2MB (CSV)</u>
- Data may be <u>unstructured</u> and papers may be damaged or faded.