Chapter 13: Graphs

Data Abstraction & Problem Solving with C++

Fifth Edition by Frank M. Carrano

- A graph G consists of two sets
 - A set V of vertices, or nodes
 - − A set *E* of edges
- $G = \{V, E\}$
- A subgraph
 - Consists of a subset of a graph's vertices and a subset of its edges

Figure 13-2 (a) A campus map as a graph; (b) a subgraph

- Adjacent vertices
 - Two vertices that are joined by an edge
- A path between two vertices
 - A sequence of edges that begins at one vertex and ends at another vertex
 - May pass through the same vertex more than once
- A simple path
 - A path that passes through a vertex only once

- A cycle
 - A path that begins and ends at the same vertex
- A simple cycle
 - A cycle that does not pass through a vertex more than once
- A connected graph
 - A graph that has a path between each pair of distinct vertices

- A disconnected graph
 - A graph that has at least one pair of vertices without a path between them
- A complete graph
 - A graph that has an edge between each pair of distinct vertices
- A multigraph
 - Not a graph
 - Allows multiple edges between vertices

Figure 13-3 Graphs that are (a) connected; (b) disconnected; and (c) complete

- Weighted graph
 - A graph whose edges have numeric labels
- Undirected graph
 - Edges do not indicate a direction

Figure 13-5a A weighted, undirected graph

- Directed Graph
 - Each edge has a direction; directed edges
 - Can have two edges between a pair of vertices,
 one in each direction
 - Directed path is a sequence of directed edges between two vertices
 - Vertex y is adjacent to vertex x if there is a directed edge from x to y

Figure 13-5b A directed, unweighted graph

Graphs As ADTs

- Variations of an ADT graph are possible
 - Vertices may or may not contain values
 - Many problems have no need for vertex values
 - Relationships among vertices is what is important
 - Either directed or undirected edges
 - Either weighted or unweighted edges
- Insertion and deletion operations for graphs apply to vertices and edges
- Graphs can have traversal operations

- Most common implementations of a graph
 - Adjacency matrix
 - Adjacency list
- Adjacency matrix for a graph that has n vertices numbered 0, 1, ..., n-1
 - An *n* by *n* array matrix such that matrix[i]
 [j] indicates whether an edge exists from vertex *i* to vertex *j*

- For an unweighted graph, matrix[i][j] is
 - 1 (or true) if an edge exists from vertex *i* to vertex *j*
 - 0 (or false) if no edge exists from vertex i to vertex j
- For a weighted graph, matrix[i][j] is
 - The weight of the edge from vertex *i* to vertex *j*
 - ∞ if no edge exists from vertex *i* to vertex *j*

Figure 13-7 (a) A weighted undirected graph and (b) its adjacency matrix

- Adjacency list for a directed graph that has n vertices numbered 0, 1, ..., n-1
 - An array of n linked lists
 - The ith linked list has a node for vertex j if and only if an edge exists from vertex i to vertex j
 - The list's node can contain either
 - Vertex j's value, if any
 - An indication of vertex j's identity

Figure 13-8

- For an undirected graph, treat each edge as if it were two directed edges in opposite directions

- Two common operations on graphs
 - 1. Determine whether there is an edge from vertex *i* to vertex *j*
 - 2. Find all vertices adjacent to a given vertex i
- Adjacency matrix
 - Supports operation 1 more efficiently
- Adjacency list
 - Supports operation 2 more efficiently
 - Often requires less space than an adjacency matrix

Implementing a Graph class Using the STL

- An adjacency list representation of a graph can be implemented using a *vector* of *maps*
- For a weighted graph
 - The vector elements represent the vertices of a graph
 - The map for each vertex contains element pairs
 - Each pair consists of an adjacent vertex and an edge weight

Graph Traversals

- Visits all the vertices that it can reach
- Visits all vertices of the graph if and only if the graph is connected
 - A connected component
 - The subset of vertices visited during a traversal that begins at a given vertex
- To prevent indefinite loops
 - Mark each vertex during a visit, and
 - Never visit a vertex more than once

DFS and BFS Traversals

- Depth-First Search (DFS) Traversal
 - Proceeds along a path from a vertex v as deeply into the graph as possible before backing up
 - A "last visited, first explored" strategy
 - Has a simple recursive form
 - Has an iterative form that uses a stack

DFS and BFS Traversals

- Breadth-First Search (BFS) Traversal
 - Visits every vertex adjacent to a vertex v that it can before visiting any other vertex
 - A "first visited, first explored" strategy
 - An iterative form uses a queue
 - A recursive form is possible, but not simple

DFS and BFS Traversals

Figure 13-10 Visitation order for (a) a depth-first search; (b) a breadth-first search

Implementing a BFS Class Using the STL

- A class providing a BFS traversal can be implemented using the STL vector and queue containers
 - Two vectors of integers
 - mark stores vertices that have been visited
 - parents stores the parent of each vertex for use by other graph algorithms.
 - A queue of Edges
 - BFS processes the edges from each vertex's adjacency list in the order that they were pushed onto the queue

Applications of Graphs: Topological Sorting

- Topological order
 - A list of vertices in a directed graph without cycles such that vertex x precedes vertex y if there is a directed edge from x to y in the graph
 - Several topological orders are possible for a given graph
- Topological sorting
 - Arranging the vertices into a topological order

Topological Sorting

Figure 13-14 A directed graph without cycles

Figure 13-15 The graph in
Figure 13-14 arranged
according to the topological
orders (a) a, g, d, b, e, c, f
and (b) a, b, g, d, e, f, c

Topological Sorting Algorithms

- topSort1
 - 1. Find a vertex that has no successor
 - 2. Add the vertex to the beginning of a list
 - 3. Remove that vertex from the graph, as well as all edges that lead to it
 - 4. Repeat the previous steps until the graph is empty
 - When the loop ends, the list of vertices will be in topological order

Topological Sorting Algorithms

- topSort2
 - A modification of the iterative DFS algorithm
 - Push all vertices that have no predecessor onto a stack
 - Each time you pop a vertex from the stack, add
 it to the beginning of a list of vertices
 - When the traversal ends, the list of vertices will be in topological order

A Trace of topSort2

Action	Stack s (bottom to top)	List aList (beginning to end)
Push a	a	, ,
Push g	a g	
Push d	a g d	
Push e	a g d e	С
Push c	a g d e c	С
Pop c, add c to aList	a g d e	fc
Push f	a g d e f	e f c
Pop f, add f to aList	a g d e	defc
Pop e, add e to aList	a g d	g d e f c
Pop d, add d to aList	a g	g d e f c
Pop g, add g to aList	a	b g d e f c
Push b	a b	a b g d e f c
Pop b, add b to aList	a	
Pop a, add a to aList	(empty)	

Figure 13-14

Figure 13-17 A trace of topSort2 for the graph in Figure 13-14

- A tree is an undirected connected graph without cycles
- A spanning tree of a connected undirected graph *G* is
 - A subgraph of G that contains all of G's
 vertices and enough of its edges to form a tree

- To obtain a spanning tree from a connected undirected graph with cycles
 - Remove edges until there are no cycles

Figure 13-11 A connected graph with cycles

Figure 13-18 A spanning tree for the graph

- Detecting a cycle in an undirected connected graph
 - A connected undirected graph that has n vertices must have at least n-1 edges
 - A connected undirected graph that has n
 vertices and exactly n 1 edges cannot contain
 a cycle
 - A connected undirected graph that has n vertices and more than n-1 edges must contain at least one cycle

Figure 13-19 Connected graphs that each have four vertices and three edges

The DFS Spanning Tree

- To create a depth-first search (DFS) spanning tree
 - Traverse the graph using a depth-first search and mark the edges that you follow
 - After the traversal is complete, the graph's vertices and marked edges form the spanning tree

The BFS Spanning Tree

- To create a breath-first search (BFS) spanning tree
 - Traverse the graph using a bread-first search and mark the edges that you follow
 - When the traversal is complete, the graph's vertices and marked edges form the spanning tree

Minimum Spanning Trees

- Cost of the spanning tree
 - Sum of the costs of the edges of the spanning tree
- A minimum spanning tree of a connected undirected graph has a minimal edge-weight sum
 - A particular graph could have several minimum spanning trees

Minimum Spanning Trees: Prim's Algorithm

- Find a minimum spanning tree that begins at any given vertex
 - 1. Find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u
 - 2. Mark u as visited
 - 3. Add the vertex u and the edge (v, u) to the minimum spanning tree
 - 4. Repeat the above steps until all vertices are visited

Shortest Paths

- Shortest path between two vertices in a weighted graph is
 - The path that has the smallest sum of its edge weights

Shortest Paths: Dijkstra's Algorithm

- Find the shortest paths between a given origin and all other vertices
- Dijkstra's algorithm uses
 - A set vertexSet of selected vertices
 - An array weight, where weight[v] is the weight of the shortest (cheapest) path from vertex 0 to vertex v that passes through vertices in vertexSet

Shortest Paths: Dijkstra's Algorithm

Figure 13-24a

A weighted directed graph

			weight				
Step	<u>v</u>	vertexSet	[0]	[1]	[2]	[3]	[4]
1	_	0	0	8	∞	9	4
2	4	0, 4	0	8	5	9	4
3	2	0, 4, 2	0	7	5	8	4
4	1	0, 4, 2, 1	0	7	5	8	4
5	3	0, 4, 2, 1, 3	0	7	5	8	4

Figure 13-25 A trace of the shortest-path algorithm applied to the graph

Circuits

• A circuit

 A special cycle that passes through every vertex (or edge) in a graph exactly once

• Euler circuit

- A circuit that begins at a vertex v, passes through every edge exactly once, and terminates at v
- Exists if and only if each vertex touches an even number of edges

Circuits

- A Hamilton circuit
 - Begins at a vertex v, passes through every vertex exactly once, and terminates at v
 - The traveling salesman problem
- A planar graph
 - Can be drawn so that no two edges cross
 - The three utilities problem
 - The four-color problem

- The most common implementations of a graph use either an adjacency matrix or an adjacency list
- Graph searching
 - Depth-first search goes as deep into the graph as it can before backtracking
 - Uses a stack
 - Bread-first search visits all possible adjacent vertices before traversing further into the graph
 - Uses a queue

- Topological sorting produces a linear order of the vertices in a directed graph without cycles
- Trees are connected undirected graphs without cycles
- A spanning tree of a connected undirected graph is
 - A subgraph that contains all the graph's vertices and enough of its edges to form a tree

- A minimum spanning tree for a weighted undirected graph is
 - A spanning tree whose edge-weight sum is minimal
- The shortest path between two vertices in a weighted directed graph is
 - The path that has the smallest sum of its edge weights

- An Euler circuit in an undirected graph is
 - A cycle that begins at vertex v, passes through every edge in the graph exactly once, and terminates at v
- A Hamilton circuit in an undirected graph is
 - A cycle that begins at vertex v, passes through every vertex in the graph exactly once, and terminates at v