発展: テキスト分析の紹介

川田恵介

Table of contents

1	テキストデータ	2
1.1	実例	2
1.2	テキスト分析	2
1.3	例:Open-end question	2
1.4	例: 武蔵大学の印象	2
1.5	本講義での応用	2
2	前処理	3
2.1	復習: 母平均の推定問題	3
2.2	VS カテゴリー変数	3
2.3	VS 連続変数	3
2.4	テキスト変数の難しさ	4
2.5	テキストデータを使った予測モデル構築	4
2.6	前処理: Token	4
2.7	例: 武蔵大学の印象	4
2.8	前処理:Bag of words	Ē
2.9	例: 武蔵大学の印象	5
3	頻度分析	5
3.1	全体	
3.2	グループの特徴づけ	6
3.3	一般	6
3.4	専門	6
4	線型予測モデル	7
4.1	OLS の前提条件	7
4.2	LASSO	7
4.3	実例	7
1.1	宝例: LASSO	7

Type	Title
一般般門門門	新型コロナ対策としてのマスク着用義務化――アメリカの政策評価と日本への示唆 現状放置なら5月下旬に緊急事態宣言の恐れ 緊急事態宣言、ステージ II まで継続を 日本の新型コロナウイルス感染症拡大の現状と感染リスク
4.5	まとめ

1 テキストデータ

1.1 実例

• 日本 & 経済学におけるコロナ研究リスト

1.2 テキスト分析

- 事例の多くは、"テキスト"で記録されてきた
 - 電子化された膨大なテキストデータが容易に入手可能(SNS, オンラインアンケート、口コミ評価)
- テキスト分析への需要拡大
 - 統計・機械学習的手法の応用が急速に進む

1.3 **例:**Open-end question

- 多くの調査には、自由記述欄が含まれる
 - 例:商品への感想を書いてください
- 回答結果を制約しない
 - Closed-end: 回答できる範囲を研究者が指定 (例: 年齢)
 - いろんな回答結果が記録できる
 - 分析者が想定していない情報を得られる可能性

1.4 例: 武蔵大学の印象

1.5 本講義での応用

• 特定のグループが使いがちな単語とは?

ID	Text
1	キャンパスが綺麗
2	池袋から近い
3	キャンパスがおしゃれ

- 予測モデル Y ~ テキスト の構築
 - "変数の数"が爆発的に増加するので、機械学習に比較優位

2 前処理

2.1 復習: 母平均の推定問題

- 基本: "似ている"複数の事例を集計して、母平均を推定する
 - 例: 練馬区の物件は"似ている"
- 予測変数 X の役割 = 似ている事例かどうかの判断基準
 - 統計・機械学習 = データから似ている度を判定する
- 伝統的な X:カテゴリー/連続変数
 - テキスト変数は大きく異なる特徴を持つ

2.2 VS カテゴリー変数

- 性別、国籍、学部など
- カテゴリー変数 = "少数" の値しかない
 - 同じ値をとるサンプルが複数存在
 - "値が同じであれば似ている"
- テキスト変数 = 無限大の種類がある

2.3 VS 連続変数

- 年齢、身長など
- 連続変数 = 同じ値をとるサンプルは極めて少数だが、
 - 値が近いかどうかは自明
 - 例: 160cm は、190cm よりも、161cm と似ている

- テキスト変数
 - テキストが近いかどうかは自明ではない

2.4 テキスト変数の難しさ

- テキストは情報が"豊富"すぎるため、変数の値間の距離が定義できない
 - 似ている文章とは?
- 何らかの単純化が必要

2.5 テキストデータを使った予測モデル構築

- 合わせ技でモデル構築
 - 事前に Text を単純化する (前処理)
 - 大量の X に対応した手法で推計 (機械学習)

2.6 **前処理**: Token

- テキストを単語の羅列として単純化(Token 化)
- 日本語は単語化が難しい
 - 分かち書きをしない
 - quanteda パッケージを用いれば解決可能

2.7 例: 武蔵大学の印象

Tokens consisting of 3 documents and 1 docvar.

text1 :

[1] "キャンパス" "が" "綺麗"

text2:

[1] "池袋" "から" "近い"

text3:

[1] "キャンパス" "が" "おしゃれ"

2.8 前処理: Bag of words

- Token 化しただけでは、依然として、全ての事例が異なる値を有する
 - さらなる単純化が必須
- 代表的な手法は、Bag of words
 - 単語の出現頻度を数える
- 文脈や語順は捨象
 - 発展: N-gram, embedding

2.9 例: 武蔵大学の印象

Document-feature matrix of: 3 documents, 7 features (57.14% sparse) and 1 docvar. features

docs キャンパス が 綺麗 池袋 から 近い おしゃれ

text1	1	1	1	0	0	0	0
text2	0	0	0	1	1	1	0
text3	1	1	0	0	0	0	1

3 頻度分析

- どのような単語が使われているか
 - グループごとに集計も可能
 - テキスト分析版、記述統計分析

3.1 全体

の	コロナ	ک	新型	感染	_	に	を
167	96	64	55	39	31	31	29
経済	症	:	・ウイル	ス分析		禍 影響	
29	27	27	25	24	22	22	21
における	^	で	企業				
19	16	15	15				

• よくわからない

3.2 グループの特徴づけ

- 単純に集計すると助詞や助動詞など、"文章を特徴づける上で、そこまで重要ではない単語"が上位に来る
- グループ (例: 満足度が高い VS 低い, 一般むけ VS 専門むけ) を特徴づける単語の探索
- chi2 指標: 単語がグループ間で偏りなく使用される場合に比べて、分布がどの程度偏っているのか?

3.3 一般

	feature	chi2	р	n_target	n_reference
1	Г 7.30	5724 0.006	- 5873528	8	1
2	」7.30	5724 0.006	6873528	8	1
3	学 7.3	05724 0.00	6873528	8	1
4	で 7.2	85821 0.00	6950095	11	4
5	2 5.3	373110 0.0	20449490	5	0
6	pos 5.3	373110 0.0	20449490	5	0
7	みる 5.3°	73110 0.02	0449490	5	0
8	経済 4.5	50576 0.03	2907684	17	12
9	格差 3.8	82136 0.04	8802424	4	0
10	編 3.8	82136 0.04	18802424	4	0

3.4 専門

	feature	chi2	. p	n_target	n_reference
1	における	6.704033	0.009619509	17	2
2	調査	3.727837	0.053512636	12	2
3	た	3.699188	0.054438951	8	0
4	データ	3.077562	0.079379450	10	1
5	感染	2.092691	0.148005189	28	11
6	い	1.815805	0.177813428	5	0
7	による	1.815805	0.177813428	5	0
8	関係	1.815805	0.177813428	5	0
9	行動	1.745022	0.186503736	10	2
10	ウィルス	1.435926	0.230799676	7	1

4 線型予測モデル

- Y ~ テキスト を推定する
- 変数の数が多すぎて (事例数を超える)、伝統的な手法は一般に機能しない
 - テキスト分析が難しかった理由
 - LASSO などの大量の変数に対応した手法を活用

4.1 OLS の前提条件

- $Y_i \sim \beta_0 + ... + \beta_L X_L$
 - ざっくり、事例数 > 3× 変数数であれば、ある程度の推定精度を期待できる
- 変数数 > 事例数であれば、原理的に推定できない
 - テキスト分析ではしばしば発生する

4.2 LASSO

• 変数数 > 事例数でも推定できる

4.3 実例

- Y=1 一般むけの文章, Y=0 専門家向けの文章
- X = 論文のタイトル

4.4 実例: LASSO

• 一般むけ/専門的を予測する単語

pos 集中 い た 関係 5.340909e-01 5.340909e-01 6.869854e-15 -4.659091e-01 -4.659091e-01 家計 による 組織 -4.659091e-01 -4.659091e-01 -4.659091e-01

4.5 まとめ

• 前処理 + 機械学習が最有力な選択肢

- 大量の発展的議論
 - 経済学における量的テキスト分析入門
 - Text as Data
 - Text Algorithms in Economics