Александр Андрианов

Физика Стандартной Модели элементарных частиц

Программа курса 2019 года

- Краткая история теории слабых взаимодействий → электрослабых взаимодействий → Стандартной Модели. Спектр фундаментальных частиц Стандартной Модели. Точные и приближенные симметрии Стандартной модели.
- 2. Сохраняющиеся заряды. Калибровочные симметрии сильных (КХД) и электрослабых взаимодействий.
- 3. Квантовые аномалии в Стандартной модели. Универсальность взаимодействий СМ.
- 4. Матрица смешивания Кабиббо-Кобаяши-Маскавы.
- 5. Феномен Хиггса: массы векторных бозонов, массы фермионов.
- 6. Перенормировка Стандартной модели: калибровки унитарная (физическая) и т'Хуфта-Велтмана, духи Фаддеева-Попова, метод фонового поля и эффективные («бегущие») заряды СМ.
- 7. Безмассовые частицы в СМ. Массы нейтрино: дираковская и майорановская, и осциляции нейтрино. Механизм качелей образования майорановских масс.
- 8. Распады векторных бозонов. Рождение векторных бозонов в электрон-позитронных столкновениях.
- 9. Лептонные распады.Полулептонные распады адронов.
- 10. Нелептонные слабые распады адронов.
- 11. СР-нарушение в стандартной модели. Феноменология СР-нарушения.
- 12. Эффективные лагранжианы электрослабых взаимодействий: низкоэнергетические ток-токовые гамильтонианы, эффективные лагражианы тяжелых кварков.
- 13. Модели Больших объединений.

<u>Лекция 1. 15.02.2019</u>

ФЕНОМЕНОЛОГИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОСЛАБОЙ МОДЕЛИ

Существование слабых взаимодействий было постулировано для объяснения экспериментальных данных по временам жизни нейтрона, π-, μ-мезонов:

$$\begin{split} n &\to p e^- \overline{\nu}_e \;, & \tau_n = 920 \; \mathrm{c}, \\ \pi^- &\to \mu^- \nu_\mu \;, & \tau_{\pi^-} = 2, 6 \cdot 10^{-8} \; \mathrm{c}, \\ \mu^- &\to e^- \overline{\nu}_e \nu_\mu \;, & \tau_{\mu^-} = 2, 2 \cdot 10^{-6} \; \mathrm{c}. \end{split}$$

Эти времена гораздо больше времен жизни частиц, распадающихся по сильным и электрослабым взаимодействиям:

$$\begin{split} \Delta &\to p\pi \;, & \tau_{\pi^-} = &10^{-23} \,\mathrm{c}, \\ \pi^0 &\to \gamma\gamma \;, & \tau_{\pi^0} = &10^{-16} \,\mathrm{c}. \end{split}$$

Вообще история развития представлений о слабых взаимодействиях до создания электрослабой модели представляет собой интересный пример взаимосвязи теории и эксперимента. В свое время существовало множество феноменологических моделей, которые проверялись и опровергались при сравнении с экспериментальными данными. Среди этих теорий следует отметить теорию Ферми, (V-A) теорию Фейнмана и Гелл-Манна, а также теорию IVB (промежуточного векторного бозона) Ли, Янга и Глэшоу. Обсудим основные идеи предшественников электрослабой модели.

. Токи. Структура слабых токов

Электромагнитное взаимодействие можно описать как взаимодействие электромагнитного тока с фотонами. Например, упругое рассеяние $ee \rightarrow ee$ (рис.1 |) описывается взаимодействием двух электромагнитных токов с γ -квантом.

Аналогично электромагнитному, слабое взаимодействие можно рассматривать как взаимодействие слабого тока с промежуточным W^{\pm} - и Z^0 -бозонами. Слабые токи, связанные с испусканием и поглощением W^{\pm} , называются заряженными токами, так как они изменяют электрические заряды входящих в них частиц. Пример таких токов приведен на рис.1

Рис. І. Диаграмма процесса ее→ее

С Z^0 -бозонами связаны нейтральные токи типа $\overline{e}e$, $\overline{\nu}_{\mu}\nu_{\mu}$, $\overline{\mu}\mu$ и т.д., когда входящие и выходящие частицы в вершину взаимодействия одинаковые. С нейтральными токами связано, например, рассеяние $\nu_{\mu}e \rightarrow \nu_{\mu}e$ (рис. .3).

Заряженные и нейтральные слабые токи содержат лептонную и адронную части. Для трех поколений лептонов

Рис. .2. Диаграмма процесса $\mu^{-} \to e^{-} \overline{\nu}_{e} \nu_{\mu}$

Рис. 3. Диаграмма процесса ev→ev

 $\begin{pmatrix} \mathbf{v}_e \\ e^- \end{pmatrix} \quad \begin{pmatrix} \mathbf{v}_{\mu} \\ \mu^- \end{pmatrix} \quad \begin{pmatrix} \mathbf{v}_{\tau} \\ \tau^- \end{pmatrix}$

у каждого заряженного лептона есть свое нейтрино. Заряженный лептонный ток j_e образует лептон со своим нейтрино:

$$j_e = \overline{e} \nu_e + \overline{\mu} \nu_\mu + \overline{\tau} \nu_\tau \,.$$

Очевидно, что при этом испускаются W^+ -бозоны или поглощаются W^- -бозоны. Эрмитово-сопряженный ток

$$j_e^+ = \overline{\nu}_e e + \overline{\nu}_\mu \mu + \overline{\nu}_\tau \tau$$

содержит испускание $\,W^-\,$ -бозонов или поглощение $\,W^+\,$ -бозонов.

Нейтральный лептонный ток j_e^0 включает шесть слагаемых: $\overline{\nu}_e \nu_e$, $\overline{\nu}_\mu \nu_\mu$, $\overline{\nu}_\tau \nu_\tau$, $\overline{e}e$, $\overline{\mu}\mu$, $\overline{\tau}\tau$. Лептонные токи описывают процессы как с участием лептонов, так и с участием антилептонов (e^+ , $\mu^+, \tau^+, \overline{\nu}_e, \overline{\nu}_u, \overline{\nu}_\tau).$

Как известно, адроны участвуют в слабых взаимодействиях. Рассмотрим это взаимодействие на кварковом уровне. Сейчас известно, как и в случае лептонов, три семейства кварков:

$$\begin{pmatrix} u \\ d \end{pmatrix} \quad \begin{pmatrix} c \\ s \end{pmatrix} \quad \begin{pmatrix} t \\ b \end{pmatrix}.$$

Наиболее хорошо изучены слабые превращения кварков первых двух семейств. В заряженный ток кварки входят не только со своими партнерами, но и с «чужими». Например, наряду с токами $\overline{u}d$ и $\overline{c}s$ существует и ток $\overline{u}s$. В самом деле, если бы тока $\overline{u}s$ не было, то странные частицы были бы абсолютно стабильными, а они распадаются. Например, ток $\bar{u}d$ определяет распад нейтрона (рис. .4). Ток $\overline{u}s$ входит в диаграмму распада Λ -гиперона (рис 1.5).

нейтрона

Если каждый «верхний» кварк может переходить в каждый из «нижних» кварков, то заряженный адронный ток будет содержать девять слагаемых: $\overline{u}d$, $\overline{u}s$, $\overline{u}b$, $\overline{c}d$, $\overline{c}s$, $\overline{c}b$, $\overline{t}d$, $\overline{t}s$, $\overline{t}b$. Девять компонент содержатся и в эрмитово-сопряженном токе.

Нейтральный адронный ток j_0^h имеет шесть компонент: $\overline{u}u$, $\overline{d}d$, $\overline{s}s$, $\overline{c}c$, $\overline{b}b$, $\overline{t}t$. Нейтральные токи типа $\overline{d}s$, $\overline{u}c$ (горизонтальные превращения) отсутствуют.

Следует заметить, что кварки несут цветовые степени свободы. Поскольку цветовая симметрия не нарушена, то слабые кварковые токи, как и адроны, являются бесцветными. Поэтому, например, ток $\overline{u}d$ представляет собой сумму трех слагаемых:

$$\overline{u}d = \overline{u}^i d_i = \overline{u}^1 d_1 + \overline{u}^2 d_2 + \overline{u}^3 d_3.$$

Суммирование ведется по цветовым индексам.

Теория Ферми слабых взаимодействий

В 1934 г. для описания β -распада нейтрона $n \to pe^-\overline{\nu}_e$ Э.Ферми предложил 4-фермионную теорию, лагранжиан которой

$$L_{\rm F} = -\frac{G_{\rm F}}{\sqrt{2}} \left(\overline{p}(x) \gamma_{\lambda} n(x) \right) \left(\overline{e}(x) \gamma^{\lambda} \nu_{e}(x) \right) + \text{s.c.}$$

Этот лагранжиан выглядит как произведение двух токов — адронного и лептонного с векторным взаимодействием в вершине. Величина $G_{\rm F}=1,166\cdot 10^{-5}~\Gamma$ эВ $^{-2}$ — размерная фермиевская константа слабых взаимодействий. Лагранжиан $L_{\rm F}$ подразумевает локальный характер четырехфермионных взаимодействий: два тока взаимодействуют в одной пространственно-временной точке x.

Следует отметить, что из-за векторной структуры слабых токов в теории Ферми эта теория не объясняет наблюдаемое экспериментально нарушение четности в слабых взаимодействиях.

Нарушение четности и (V-A) форма заряженных слабых токов

Наблюдение распадов каонов на состояния с противоположными четностями: $K^+ \to \pi^+\pi^0$ и $K^+ \to \pi^+\pi^+\pi^-$ привело в 1956 г. Ли и Янга к предположению о несохранении четности в слабых взаимодействиях, «ответственных» за эти распады. Нарушение четности открыто в 1957 г. (мадам Ву и коллабораторы) при анализе β -распада ядра кобальта 60 Co \to 60 Ni $e^-\overline{\nu}_e$, происходящего при распаде нейтрона $n \to pe^-\overline{\nu}_e$. Ядра поляризовались внешним магнитным полем таким образом, чтобы угловые моменты Со и Ni,

равные J=5 и J=4 соответственно, были выстроены в направлении внешнего поля. При сохранении углового момента угловой момент системы электрон—антинейтрино должен быть $J(e^-\overline{\nu}_e)=1$ и выстроен так же, как другие моменты. Поэтому спины электрона и антинейтрино (это фермионы) должны быть выстроены в том же направлении. Электрон от распада всегда наблюдается движущимся в направлении, противоположном внешнему полю. По закону сохранения импульса недетектируемое антинейтрино должно двигаться в направлении, противоположном направлению движения электрона. Это означает, что рожденный электрон имеет отрицательную спиральность (левую), а антинейтрино — положительную спиральность (правую). Напомним, что фермионное поле можно представить в виде

$$\Psi = \Psi_L + \Psi_R,$$

$$\Psi_L = \frac{1 - \gamma_5}{2} \Psi, \qquad \Psi_R = \frac{1 + \gamma_5}{2} \Psi.$$

Таким образом, заряженные слабые токи, связанные с этим распадом, всегда порождаются левыми компонентами электронов и правыми компонентами антинейтрино. Ненаблюдение левых антинейтрино, а также правых нейтрино в заряженных слабых токах является сигналом нарушения четности, поскольку преобразование четности меняет левые фермионы на правые фермионы.

Как оказалось, слабый заряженный ток имеет «векторную минус аксиально-векторную форму»

$$J_{\mu} \sim V_{\mu} - A_{\mu}$$
.

Векторный и аксиально-векторный токи при преобразовании четности (Р) трансформируются следующим образом:

$$V^{\mu} = \overline{\psi} \gamma^{\mu} \psi \xrightarrow{P} \begin{cases} +\overline{\psi} \gamma^{0} \psi; \\ -\overline{\psi} \gamma^{k} \psi, k = 1, 2, 3; \end{cases}$$
$$A^{\mu} = \overline{\psi} \gamma^{\mu} \gamma^{5} \psi \xrightarrow{P} \begin{cases} -\overline{\psi} \gamma^{0} \gamma^{5} \psi; \\ +\overline{\psi} \gamma^{k} \gamma^{5} \psi, k = 1, 2, 3. \end{cases}$$

Соответственно, произведения токов при Р-преобразовании изменяются так:

$$V_{\mathfrak{u}}V^{\mathfrak{u}} \xrightarrow{P} V^{\mathfrak{u}}V_{\mathfrak{u}}; \qquad (1.13a)$$

$$A_{\mathbf{u}}A^{\mu} \xrightarrow{\mathbf{P}} A^{\mu}A_{\mathbf{u}}; \qquad (1.136)$$

$$A_{\mathbf{u}}V^{\mu} \xrightarrow{\mathbf{P}} -A_{\mathbf{u}}V^{\mu} . \tag{1.13b}$$

Поэтому любая комбинация векторных и аксиально-векторных токов, например $J_{\mu} \sim \alpha V_{\mu} + \beta A_{\mu}$, будет приводить к нарушению четности в лагранжиане $L \sim J_{\mu} J^{\mu +}$. При этом «максимальное» нарушение четности достигается в случае, если $J_{\mu} \sim V_{\mu} - A_{\mu}$, поскольку

$$J_{\mu} J^{\mu +} \sim (V_{\mu} - A_{\mu})(V^{\mu} - A^{\mu}) \xrightarrow{P} (V_{\mu} + A_{\mu})(V^{\mu} + A^{\mu}),$$

а это происходит тогда, когда заряженные слабые взаимодействия связаны с левыми фермионами и правыми антифермионами. Это можно увидеть, воспользовавшись тождеством

$$\gamma_{\mu}(1-\gamma_{5}) = \frac{1}{2}(1+\gamma_{5})\gamma_{\mu}(1-\gamma_{5})$$

и переписав ток в терминах левых компонент полей

$$J_{\mu} \sim V_{\mu} - A_{\mu} = \overline{V}_e \gamma_{\mu} (1 - \gamma_5) e = 2(\overline{V}_e)_L \gamma_{\mu} e_L.$$

(V-A) теория заряженных слабых взаимодействий

Лагранжиан (V-A) теории слабых взаимодействий, предложенный в 1953 г. Фейнманом и Гелл-Манном для двух поколений фермионов, имеет вид

$$L_{\text{V-A}} = -\frac{G_{\text{F}}}{\sqrt{2}} J_{\mu}^{\text{CC}}(x) J^{\mu\text{CC+}}(x) ,$$

где

$$J_{\mu}^{\rm CC} = \overline{\mathbf{v}}_e(x) \gamma_{\mu} (1 - \gamma_5) e + \overline{\mathbf{v}}_{\mu} \gamma_{\mu} (1 - \gamma_5) \mu + \overline{u} \gamma_{\mu} (1 - \gamma_5) d'.$$

Заметим, что в структуру заряженного тока входит кварковое состояние d', а не d-кварк. Причина — смешивание кварков, т.е. $d' = d \cos \theta_C + s \sin \theta_C$, где θ_C — угол Кабиббо.

Идея смешивания кварков возникла у Н. Кабиббо в 1963 г. для объяснения подавления распада каона ($K^- \to \mu^- \overline{\nu}_\mu$) по сравнению

с распадом пиона ($\pi^- \to \mu^- \overline{\nu}_{\mu}$), причем экспериментальный фактор подавления составил $\sim 1/20$. Численное значение величины $\theta_{\rm C}$ было получено при сравнении экспериментальных данных с предсказаниями ширин распадов K^- - и π^- -мезонов в (V-A) теории:

$$\frac{\Gamma(K^- \to \mu^- \overline{\nu}_{\mu})}{\Gamma(\pi^- \to \mu^- \overline{\nu}_{\mu})} \approx \frac{\sin^2 \theta_C}{\cos^2 \theta_C} \sim \frac{1}{20} .$$

Отсюда $\theta_{\rm C} \approx 13^{\circ}$. Как оказалось, смешивание кварков, природа которого остается неясной, является общим свойством трех поколений. Электрослабые собственные состояния кварков представляют собой смесь кварковых состояний с определенной массой.

Величину эффективной константы слабых взаимодействий $G_{\rm F}$ можно извлечь из экспериментальных данных по времени жизни мюона $\tau_{\mu}^{_{\rm 9KCH}}=2,2\cdot 10^{-6}\,{\rm c.}$ (V-A) теория предсказывает для времени жизни μ -мезона

$$\frac{1}{\tau_{\mu}} = \Gamma(\mu^{-} \to e^{-} \tilde{v}_{e} v_{\mu}) = \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}.$$

(V-A) теория хорошо описывала экспериментальные данные по слабым взаимодействиям вплоть до 1973 г., когда были открыты нейтральные токи. Отметим, что нейтральные токи в (V-A) теории отсутствуют. Кроме того, (V-A) теория имеет, как теория поля, существенные противоречия. Действительно, (V-A) теория нарушает условие унитарности и является неперенормируемой теорией.

Нарушение унитарности в (V-A) теории можно обнаружить, сравнивая предсказания (V-A) теории для сечения упругого рассеяния электрона на нейтрино

$$\sigma_{\text{(V-A)}}(ve^- \rightarrow ve^-) = \frac{G_F^2}{6\pi}s$$

с унитарным пределом для полных сечений (σ_{tot}), полученным из условия унитарности S-матрицы рассеяния: $SS^+ = S^+S = 1$.

Поскольку для всех парциальных волн $|a_J(s)|^2 < 1$, то

$$\sigma_{\text{tot}}(s) = \frac{16\pi}{s} \sum_{J} (2J+1) |a_{J}(s)|^{2} < \frac{16\pi}{s} \sum_{J} (2J+1).$$

Сечение упругого рассеяния уже при $\sqrt{s} \approx 300 \, \Gamma$ эВ нарушает унитарный предел, поэтому такая теория не может быть самосогласованной.

Неперенормируемость (V-A) становится очевидной при вычислении петлевых поправок к сечению. Эти поправки содержат квадратичные расходимости, которые не могут быть устранены переопределением параметров этой теории. Как и в случае с унитарностью, «плохое» поведение (V-A) теории возникает при высоких энергиях. Поэтому (V-A) теория не способна давать разумные предсказания при высоких энергиях, и ее можно рассматривать лишь как «эффективную» теорию при малых энергиях.

Теория промежуточного векторного бозона

Теория промежуточного векторного бозона (IVB) слабых взаимодействий предполагает, что эти взаимодействия осуществляются путем обмена массивным векторным бозоном со спином S=1. Сначала предполагалось существование заряженных векторных бозонов W^{\pm} , связанных с заряженными слабыми токами, а затем (после открытия нейтральных токов) был введен нейтральный векторный бозон Z. Подчеркнем, что эти бозоны еще не были тогда калибровочными бозонами, относящимися к какой-либо группе симметрии. Лагранжиан IVB, включающий заряженные (СС) и нейтральные (NC) токи, имеет вид

$$\begin{split} L_{\text{IVB}} &= L_{\text{CC}} + L_{\text{NC}} \;, \\ L_{\text{CC}} &= \frac{g}{\sqrt{2}} \Big(J_{\mu} W^{+\mu} + J_{\mu}^{+} W^{-\mu} \Big) \,, \\ L_{\text{NC}} &= \frac{g}{\cos \theta_{\text{w}}} J_{\mu}^{\text{NC}} Z^{\mu} \;, \end{split}$$

где

$$J_{\mu} = \sum_{l} \overline{\nu}_{l} \gamma_{\mu} \frac{1 - \gamma_{5}}{2} l + \sum_{q} \overline{q} \gamma_{\mu} \frac{1 - \gamma_{5}}{2} q,$$

$$J_{\mu}^{\text{NC}} = \sum_{f=l,q} g_L^f \overline{f} \gamma_{\mu} \frac{1-\gamma_5}{2} f + \sum_{f \neq \nu} g_L^f \overline{f} \gamma_{\mu} \frac{1+\gamma_5}{2} f.$$

В этих выражениях W_{μ}^{\pm} и Z_{μ} — заряженные и нейтральные векторные бозоны, g — безразмерная константа связи. Угол $\theta_{\rm W}$, определяющий вращение в нейтральном секторе от «слабых собственных состояний» к состояниям с физическими массами, связан со слабой константой связи g и электрическим зарядом соотношением:

$$g = \frac{e}{\sin \theta_{\rm W}}.$$

Подчеркнем, что взаимодействие токов вследствие обмена промежуточными векторными бозонами, в отличие от (V-A) теории, нелокально. Кроме того, нейтральные токи имеют как (V-A), так и (V+A) компоненты, хотя экспериментальные данные указывают на доминирование (V-A) компоненты.

Замечательно, что предсказанные в 1961 году нейтральные токи были обнаружены экспериментально гораздо позже, в 1973 г. на установке GARGAMEL в ЦЕРН. Это было большим успехом IVВ теории, которая позже стала одним из «кирпичиков» электрослабой теории.

Связь между параметрами IVB и (V-A) теориями можно установить, сравнивая предсказания этих теорий для сечения рассеяния $ev \to ev$ при низких энергиях ($\sqrt{s} \le m_w$):

$$\frac{G_{\rm F}}{\sqrt{2}} = \frac{g^2}{8m_W^2} \ .$$

Однако IVB теория не свободна от внутренних противоречий. Подобно (V-A) теории IVB теория неперенормируема и нарушает при высоких энергиях унитарный предел. При энергиях $\sqrt{s} \ll m_W$ IVB теория хорошо описывает экспериментальные данные. Проблемы возникают при высоких энергиях. Однопетлевые поправки к сечению рассеяния $e^+e^- \to e^+e^-$ при высоких энергиях расходятся из-за «плохого» поведения пропагатора W-бозона в IVB теории:

$$(i\Delta_W)_{\text{IVB}} \xrightarrow{k^2 \approx m_W^2} \frac{1}{m_W^2} .$$

В электрослабой же <u>калибровочной теории</u> пропагатор W-бозона ведет себя иначе:

$$(i\Delta_W)_{\text{калибр}} \xrightarrow{k^2 \approx m_W^2} \frac{1}{k^2}$$
,

и расходимостей не возникает.

Что касается нарушения унитарности в IVB теории, то оно происходит при бо́льших, чем в (V-A) теории, энергиях. Как видно из структуры IVB теории, она не содержит самовзаимодействия векторных бозонов, характерного для неабелевых калибровочных бозонов.

ЛИТЕРАТУРА

Приведенный выше обзор истории создания Стандартной модели заимствован из

- 1. В.М. Емельянов, К.М.Белоцкий. Лекции по основам электрослабой модели и новой физике: Учебное пособие. М.: МИФИ, 2007. 236 с.
- 2. Л.Б. Окунь. Лептоны и кварки. М.: Наука, 1990.