

(19)

Russian Agency for Patents and Trademarks

(11) Publication number: RU 2083798 C1

(46) Date of publication: 19970710

(21) Application number: 95100927

(22) Date of filing: 19950117

(51) Int. Cl: E21B33/12

(71) Applicant: Tovarishchestvo s ogranicennoj otvetstvennost'ju "LOKS"

(72) Inventor: Fatkullin R.Kh., Abdrakhmanov G.S., Vakula Ja.V., Zajnulin A.G., Fatkullin R.Kh., Abdrakhmanov G.S., Vakula Ja.V., Zajnulin A.G.,

(73) Proprietor: Tovarishchestvo s ogranicennoj otvetstvennost'ju "LOKS"

(54) METHOD FOR SEPARATING BEDS IN WELL BY SHAPED BLOCKING UNIT

(57) Abstract:

FIELD: oil and gas industry. SUBSTANCE: this is used when difficult conditions occur in drilling holes. Method ensures higher reliability and tightness in isolation of beds. According to method, pipes are specifically profiled so that to make them longitudinally corrugated. Ends of pipes are left cylindrical without corrugations. Sections of profiled parts adjacent to cylindrical ends are upset to diameter of circumference described around them which is by 2-3% is less than diameter of circumference described around middle part of pipes. Made over perimeter of upset sections are endless rims and they are of height at which diameter of circumference described around them is close to diameter of circumference described around middle part of pipes. Then, corrugations are filled with sealing compound. Pipes are screwed together and blocking unit is lowered down to required level of well. EFFECT: high efficiency. 6 dwge

(21) Application number: 95100927

(22) Date of filing: 19950117

(51) Int. Cl: E21B33/12

(56) References cited:

Нефтяное хозяйство, N 4, 1982, с. 26 - 28. Авторское свидетельство СССР N 907220, кл. Е 21 В 33/12, 1982.

(71) Applicant: Товарищество с ограниченной ответственностью "ЛОКС"

(72) Inventor: Фаткуллин Р.Х., Абдрахманов Г.С., Вакула Я.В., Зайнуллин А.Г., Фаткуллин Р.Х., Абдрахманов Г.С., Вакула Я.В., Зайнуллин А.Г.,

(73) Proprietor: Товарищество с ограниченной ответственностью "ЛОКС"

(54) СПОСОБ РАЗОБЩЕНИЯ ПЛАСТОВ В СКВАЖИНЕ ПРОФИЛЬНЫМ ПЕРЕКРЫВАТЕЛЕМ

(57) Abstract:

Использование: в нефтегазодобывающей промышленности, в частности в технологии изоляции зон осложнения при бурении скважин с помощью профильных перекрывателей. Обеспечивает повышение надежности и герметичности разобщения пластов. Сущность изобретения: по способу осуществляют профилирование труб, для этого на трубах образуют продольные гофры. Концы труб оставляют с цилиндрическими концами. Участки профильных частей, прилегающих к цилиндрическим концам, осаживают до диаметра описанной вокруг них окружности на 2-3% меньшего диаметра окружности, описанной вокруг средней части труб. По периметру осаженных участков выполняют замкнутые ободья. Они имеют высоту, при которой диаметр описанной вокруг них окружности приближен к диаметру окружности, описанной вокруг средней части труб. Затем гофры заполняют герметиком. Трубы свинчивают и осуществляют спуск перекрывателя в необходимый интервал скважины. 6 ил.

Description [Описание изобретения]:

Изобретение относится к нефтегазодобывающей промышленности, в частности к технологии изоляции зон осложнения бурения скважин с помощью профильных перекрываемателей.

Известен способ разобщения пластов в скважине профильным перекрываемателем, включающий профилирование составляющих его обсадных труб с образованием продольных гофр (складок) и цилиндрических концов, заполнение впадин гор герметиком, свинчивание спрофилированных труб, спуск перекрываемателя в необходимый интервал скважины, радиальное расширение его до диаметра скважины и развалицовывание (1).

Недостатком этого способа является то, что при расширении перекрываемателя давлением изнутри выпуклые части гофр при упирании в стенку скважины препятствуют распространению герметика вокруг перекрываемателя, вследствие чего он выдавливается в продольных направлениях по впадинам гофр, оставляя разгерметизированные участки, в результате чего не обеспечиваются герметичность и надежность разобщения пластов.

Известна попытка устранить этот недостаток путем установки на концах перекрываемателя цилиндрических пакеров, в которых уплотнительный элемент размещен в наружной кольцевой проточке патрубка (патент США п 5083608 от 28.01.92 г. кл. 166-55).

Однако при развалицовывании пакеров до плотного прижатия их стенок к стенке скважины нарушалась целостность патрубков и уплотнительных элементов из-за чрезмерной деформации их, что также не обеспечивало необходимых надежности и герметичности разобщения пластов.

Наиболее близким к предлагаемому по количеству совпадающих существенных признаков является способ разобщения пластов в скважине профильным перекрываемателем, включающий профилирование составляющих его труб с образованием продольных гофр (складок) и цилиндрических концов, осаждение этих концов труб до диаметра описанной окружности их профильной части, заполнение впадин гофр (складок) герметиком, свинчивание труб и спуск перекрываемателя в необходимый интервал скважины, радиальное расширение перекрываемателя до диаметра скважины в интервале его установки и развалицовывания (2).

Этот способ имеет те же недостатки, которые отмечены при критике аналога (1), поскольку вопрос герметизации затрубного пространства в обоих случаях решается закладкой герметика в складки гофр.

Цель изобретения повышение надежности и герметичности разобщения пластов.

Указанная цель достигается тем, что в описываемом способе, включающем профилирование составляющих его труб с образованием продольных гофр (складок) и цилиндрических концов, осаживание этих концов труб до диаметра описанной окружности их профильной части, заполнение складок гофр герметиком, свинчивание труб и спуск перекрываемателя в необходимый интервал скважины, радиальное расширение перекрываемателя внутренним давлением до диаметра скважины в интервале его установки и развалицовывания, согласно изобретению; участки профильных частей концевых труб перекрываемателя, прилегающие к их цилиндрическим концам, перед свинчиванием труб осаживают до диаметра описанной вокруг них окружности на 2-3% меньшего по сравнению с диаметром окружности, описанной вокруг их средней части, и по периметру осаженных профильных участков выполняют замкнутые ободья (рубцы) с высотой, при которой диаметр окружности, описанной вокруг этих ободьев (рубцов), приблизительно равен диаметру окружности, описанной вокруг средней профильной части труб.

При проведении патентного поиска не обнаружены способы изоляции пластов профильными перекрываемателями с указанной совокупностью признаков. Следовательно, данное техническое решение соответствует критерию патентоспособности "Новизна", а "промышленная применимость" его очевидна.

Проверка изобретательского уровня не выявила технических решений, содержащих указанные отличительные признаки. Следовательно, данное изобретение соответствует и третьему критерию патентоспособности "Изобретательский уровень".

На фиг. 1 показан профильный перекрываематель, позиционированный в интервале его установки в скважине; на фиг. 2 профильный перекрываематель, установленный в скважине; на фиг. 3 сечение по А-А на фиг. 1; на фиг. 4 процесс профилирования трубы с одновременным осаживанием ее цилиндрических концов и калиброванием профильной части; на фиг. 5 осаживание концевых участков профильной части концевых труб перекрываемателя; на фиг. 6 концевая труба перекрываемателя с укрепленными на ней ободьями (рубцами).

Способ осуществляют следующим образом. Входящие в компоновку перекрываемателя 1 (фиг. 1) трубы 2 (фиг. 4) профилируют известным способом с помощью протяжного механизма (не показан) и устройства для профилирования 3, оставляя концы 4 цилиндрическими. Одновременно с профилированием с помощью фильтры 5 концы 4 осаживают до диаметра D_1 , равного диаметру D_2 окружности, описанной вокруг профильной части трубы 2, и спрофилированную часть ее калибруют. В результате профилирования трубы 2 образуются две продольные гофры (складки) 6 с выпуклостями 7 и впадинами 8 (фиг. 3).

Затем прилегающие к цилиндрическим концам 4 участки 9 профильных труб 2, предназначенных для установки на концах перекрываемателя 1, с помощью фильтры 10 (фиг. 5) дополнительно осаживают до диаметра D_3 описанной вокруг этих участков 9 окружности на 2-3% меньшего по сравнению с диаметром D_2 - окружности, описанной вокруг их средней части после ее калибрования. Протяженность участков 9 определяют с учетом общей длины перекрываемателя, диаметра скважины и состояния стенок в интервале его установки. На практике она варьируется в пределах 1-2 м. Пределы дополнительного осаживания участков 9 труб 2 обосновываются тем, что осадка менее 2% не даст желательного результата, а при осадке более 3% произойдет чрезмерное уменьшение радиуса изгиба впадин 8 гофр 6, вследствие чего в местах изгиба стенок труб будет происходить перенапряжение металла с образованием микротрещин, что при последующем радиальном расширении перекрываемателя может привести к нарушению целостности его стенки.

Далее по периметру участков 9 с интегралом примерно 200-300 мм выполняют замкнутые рубцы (ободья) 11 (фиг. 1, 3, 6), например, при варной проволоки, шин и т.п. При этом высота рубцов (ободьев) 11 принимается такой, при которой диаметр D_4 описанной вокруг них окружности приблизительно равен диаметру D_2 окружности, описанной вокруг средней профильной части труб 2 после их калибрования. Таким образом, после выполнения указанных выше операций диаметры D_1 цилиндрических концов труб 2 и диаметры D_2 и D_4 описанных окружностей вокруг средней профильной части труб 2 и рубцов (ободьев) 11 приблизительно равны.

Затем подготовленные указанным образом трубы 2 свинчивают между собой, располагая при этом трубы с ободьями (рубцами) 11 по концам перекрываемателя 1, который потом на колонне бурильных труб спускают в необходимый интервал скважины (фиг. 1). При этом в складки (впадины) 8 гофр 6 закладывают герметик 12, например, мастику ЛТ-1 и т.п. (фиг. 2). В позиционированном в зоне установки перекрываемателе 1 закачкой жидкости создают давление, необходимое для его радиального расширения до прижатия его стенки к стенке скважины. При этом нижний конец перекрываемателя снабжают башмаком 13 с клапаном (не показан). Далее колонну бурильных труб отсоединяют от перекрываемателя и, подняв ее из скважины и присоединив к ней разводы, снова спускают в скважину. Затем вращением колонны разводы вываживают перекрываематель 1, прижимая его стенки еще более плотнее к стенке скважины с одновременным калиброванием его проходного канала 14 (фиг. 2). При этом рубцы (ободья) 11, врезаясь частично в стенку скважины, образуют замкнутые полости 15, которые при раздаче осаженных участков 9 перекрываемателя 1 заполняются герметиком 12 по всей окружности, образуя уплотнения в виде колец. В свою очередь рубцы (ободья) 11, упираясь в стенку скважины, дополнительно уплотняют затрубное пространство скважины на участках 9 перекрываемателя 1. В целом обеспечивается надежное разобщение пластов в скважине.

Claims [Формула изобретения]:

Способ разобщения пластов в скважине профильным перекрываемателем, включающий профилирование составляющих его труб с образованием продольных гофр и цилиндрических концов, осаживание этих концов труб до диаметра описанной окружности их профильной части, заполнение впадин гофр герметиком, свинчивание труб и спуск перекрываемателя в необходимый интервал скважины, радиальное расширение перекрываемателя до диаметра скважины в интервале его установки и развалицовывание, отличающийся тем, что участки профильных частей концевых труб перекрываемателя, прилегающие к цилиндрическим их концам, перед свинчиванием труб осаживаются до диаметра описанной вокруг них окружности, на 2-3% меньшего по сравнению с диаметром окружности, описанной вокруг их средней части, и по периметру осаженных профильных участков выполняют замкнутые ободья с высотой, при которой диаметр описанной вокруг них окружности приближен к диаметру окружности, описанной вокруг средней профильной части труб.

Drawing(s) [Чертежи]:

Фиг.1

Фиг. 2

A-A

Фиг.3

Фиг.4

