LECCION 2 continuación

Ejemplos:

10 n2 log2 n + 5n2 + 36 O(n2 log2 n)

 $, 5.2^{n} + 3n \in O(2^{n})$

CLASES ESPECIALES de Ordeno de EFICIENCIA

. Constante 0(1)

. Logantmiso O(log2(n)) . Cuadrático O(n2)

. Polinamial O(uK) K>1

. Expanencial O(an) n>1 a>1

. O(1) CO(log2(n) EO(n2) EO(nK) EO(an)

MAS CLASES

0(1) CO(logz (n) CO(Vn) €0(n) C O(nlogin) CO(n2) CO(nK) CO(2n) co(ni) co(nn)

KEGLAS de O-GRANDE

4f(n) €O(g(n)) y g(n) €O(h(n)) entonas $f(n) \in O(h(n))$

2 adnot ad-1 nd-1 +... + ann tao E (nd)

3. La base de los logantmos no importa $loga(n) \in O(logb(n))$

4. El exponente en los logavitmos no importa 'loga(n) (O (loga(n))

5.- La ban y exponente en los exponenciales si importu 3º, £0(2º) 3n \$0(2n) an2 \$0(an)

PECULIARIDADES de O-grande

Ejemplo

. E1(n) = 100 u ← A1

 $.t_2(n) = \frac{n^2}{5} \leftarrow A_2$

¿ Cual es cogeriamos?

-Donde se conzau

1000 = C. MZ

 $n\left(n\frac{c}{5}-100\right)=0=)n=\frac{100.5}{c}$ - cm c=1
- no= 500

Luego el algontmo As se comporta peur hasta un tamaño de 500 (tiene per trempo).

. Si tus muestras no superau et tamaño de 500 puede intereserte ejeutar Az.

. Debennos tambien estudiar el espacio (municia) que requiere cada algontino.

. Coste de la implementacion y mantenimiento.

5) LECCION 2.

Ordenar las signientes funciones de acuerdo a su velocadad de crecimiento.

orecimiento.

or, Jn, logn, loglogn, log²n, nlogn, Jn log²n, (1/3)ⁿ,

(3)ⁿ, 1/2, n²

SOLUCION $O(17) \subset O(17) \subset O(\log \log \log n) \subset O(\log n) \subset O(\log n)$ $O((\frac{1}{3})^n) \subset O(17) \subset O(\log \log \log n) \subset O(\log n) \subset O(1)$ $CO(\sqrt{n}) \subset O((\sqrt{3}/2)^n)$ $CO(n^2) \subset O((\sqrt{3}/2)^n)$

Jerarquía de costes computacionales: consecuencias prácticas (II)

Tiempos de ejecución en una **máquina que e**jecuta 10^9 pasos por segundo $(\sim 1~\mathrm{GHz})$, en función del coste del algoritmo y del tamaño del problema

	2n		SM T	L ms	V	10.2		13 días	40 1012 E	TATA GILES					
9	n^3	1 11.8	ort = 0	Sm o	27 us	64 118	0m +0	$125 \mu s$	1 me	2011 7	ST	16.7 min	11 6 díac	200	31.7 años
G	72	100 ms	WOU WE	<i>∞31</i> 00±	= 900 ms	2 1/8		3 4.8	2// 01Ec		C 1160	100~ms	10 s		10.7 min
	10.E2.T	33 718	86 70		Su /bT	213 ns		207 TIS	664 ns	10 // e		155 µs	2 ms		70 ms
8	1.6	10 ns	20 n.s) CC	su ns	40 ns	CL	on ms	100~ns	1118		10 \ms	$100~\mu s$		\circ 1 ms
100, 11	105210	3.322 ns	4.322 ns	7 00 1	4.301 768	5.322 ns	E 641 m2	20.7 440.0	6.644 ms	10 ns	12 %	S91. CT	17 ns	OU WG	20 160
Talla eller		01	20	30	3	40	25	3	001	1000	1000	222	100000	100000	2222

Jerarquía de costes computacionales: consecuencias prácticas (II)

Tiempos de ejecución en una **máquina que** ejecuta $10^9\,$ pasos por segundo $(\sim 1~GHz)$, en función del coste del algoritmo y del tamaño del problema

	u.G		SM T	1 ms	, V	18 2 M	III C.OT	13 d'as	40 TO 12 18	TO TO AIRCS	-			
	n^3	1/18	Cord =	sm o	27 µs	64 110	ort to	125 us	1 me	2011 7	ST	16.7 min	11 6 días	31.7 años
	n^2	100 ns	Ann me	Sal Dut	900 ns	2.1.5		37 168	S// 013		271.7	100~ms	10 s	16.7 min
	$n\log_2 n$	33 ns	86 %		14/ 78	213 ns		20.7 NS	664 ns	10 18		133 µs	2 ms	20 ms
	u	10~ns	20 ns	20. 25	Sul Tus	40 ns	203	on ns	100~ns	1118		10 468	$100~\mu s$	31ms
p -	$\log_2 n$	3.322 ns	4.322 ns	A 007	291 106.1	5.322 ns	5 611 mg	2.07 440.0	6.644 ms	$10 \ ns$	0	SU CT	17 ns	(20 ns
15.	alla a	10	20	SE		40	2	3	001	1000	1000	70007	100000	1000000

 $\Delta 2 < \Delta 1 < \Delta 1$

En general, tendríamos un comportamiento relativo de A1, A2, A3 tal como: Cálculo de nº: costes relativos de A1, A2, A3

Coste asintótico

Coste temporal A3 < A2 < A1 A2 < A1 < A3 급 A1 < A2 < A3 R A

Una buena caracterización computacional de un programa:

Dependencia funcional del coste con la talla – ¡para tallas grandes!

Notación asintótica: jerarquía de costes computacionales

Algunas relaciones entre órdenes usuales:

Extremos del coste: casos mejor, peor y promedio

Número de PASOS requeridos por 'busca'

LECCION 3- CALCULO de la EfiCIENCIA de un códico

_ RECURSOS MATEMÁTICOS NECESARIOS

$$-\log_b x^y = y \cdot \log_b x$$

$$-\log_{a} \times = \frac{\log_{b} \times}{\log_{b} a}$$

L×J: representa al mayor entero menor o igual que ×

TXT: representa el menor entero mayor o igual que x

SUMATORIAS

MATORIAS

$$\frac{\sum_{i=s}^{s} f(i) = f(s) + f(s+1) + \dots + f(t)}{\sum_{i=s}^{s} f(i) = f(s) + f(s+1) + \dots + f(t)}$$

-PROGRESION ARITHÉTICA
$$f(i)=i$$

 $\sum_{i=0}^{N} i=0+1+2+\cdots+n=n\cdot\frac{(n+1)}{2}$

PROGRESION GEOMÉTRICA
$$f(i) = a^i$$

$$= \sum_{i=0}^{n} a^i = a^0 + a^1 + \dots + a^n = \frac{a^{n+1} - a^0}{a^{-1}}$$

- SUMA de CUADRADOS
$$\overset{\sim}{=} i^2 = \frac{n \cdot (n+1) (2n+1)}{6}$$

- Normas para obtener la eficiencia de un codiqo

. Operación Elemental -> 0(1)

. Declaraciones
$$o(1)$$
 intab; $\rightarrow o(1)$

Asignaciones
$$a=b \rightarrow O(1)$$

REGLA de la SUHA

(a, (2) Sean dos trozos de codiçó independien can epiciencia Tran) y Tz(n). Entonas la epiciencia del codeso union es:

$$T_2(n) \in O(f(n))$$
 $T_1(n) + T_2(n) \in T_2(n) \in O(g(n))$ $O(max(f(n),g(n)))$