Apéndices

- I Causas y Efectos
- II Datos Universales del Molde
- III Ecuaciones de Moldeo UniversalTM
- ${f IV}$ Procedimiento General para ${\it Moldeo~Universal^{TM}}$
- V Términos en Inglés al Español
- VI Términos en Español al Inglés
- **VII Costos Operacionales**

I - Causas y Efectos

Durante la solución de un problema la experiencia juega un factor importante. En el evento de tener problemas que no pueda resolver, busque ayuda. No sacrifique producción ni calidad; pregunte. Este listado es una referencia; utilícelo juiciosamente.

Partes quebradizas - Las partes se quiebran o se rompen

Posibles Causas	Remedios
1. Resina demasiada fría	1.a. Aumente contrapresión.
	1.b. Aumente temperaturas del
	fundido.
2. Degradación del material en el barril	2.a. Reduzca temperaturas del
	fundido.
	2.b. Reduzca la contra presión.
	2.c. Reduzca la velocidad de
	inyección.
	2.d. Purgue si es necesario.
3. Contaminación del material	3.a. Verifique material en la tolva.
	3.b. Purgue si es necesario.
4. Material degradado durante el	4. Disminuya tiempo y/o
proceso de secado	temperatura de secadora.
5. Humedad en el material	5. Verifique contenido de humedad,
	seque adecuadamente.

Burbujas (vacíos) - Aire atrapado dentro de la parte

Posibles Causas	Remedios
1. Humedad en el material	1. Verifique contenido de humedad, seque adecuadamente.
2. Material demasiado caliente	2. Disminuya la temperatura del fundido, ajustando un perfil de temperaturas adecuado del barril.
3. Ventosas inadecuadas	3. Asegure que el molde tiene ventilaciones adecuadas y limpias.
4. Burbujas internas ocasionadas por encogimiento	4.a. Aumente la contrapresión y/o la presión de empaque4.b. Disminuya la temperatura del fundido.

Unión de flujos - Raya en la pieza formada por el encuentro de dos o más flujos de fundido

Posibles Causas	Remedios
1. Temperatura del molde baja	1. Aumente temperatura de molde.
2. Material demasiado frió	2. Aumente temperaturas del
	fundido.
3. Velocidad de inyección baja	3. Aumente la velocidad. El tiempo
	de inyección debe reducir
	significativamente.
4. Resina húmeda	4. Seque material adecuadamente.

Descoloramiento - Color inadecuado

Posibles Causas	Remedios
1. Material degradado en el barril	1. Purgue el barril.
2. Temperatura de fundido alta	2. Disminuya temperatura del fundido, ajustando un perfil de temperaturas adecuado del barril.
3. Material contaminado	3. Verifique el material.
4. Ventilaciones inadecuadas	4. Limpie las ventosas existentes o ventile molde adecuadamente.

Quemaduras - Marcas en la pieza por degradación

Posibles Causas	Remedios
Velocidad de inyección alta	1. Disminuya velocidad de
	inyección.
2. Contrapresión alta	2. Disminuya contrapresión.
3. Ventosas inadecuadas	3.a. Asegure que hay ventosas.
	3.b. Limpie ventosas.
4. Problemas en diseño del molde	4.a. Cambie ubicación del bebedero.
(material sufre fricción, ocasionando	4.b. Asegure que la parte tiene
degradación)	radios generosos (sin esquinas
	agudas).
5. Orificio de boquilla demasiado	5. Cambie o limpie la boquilla.
pequeño u obstruido	
6. Rotación rápida del tornillo	6. Disminuya las revoluciones del
	tornillo.
7. Temperatura del fundido alta	7. Disminuya la temperatura del
	fundido, ajustando un perfil de
	temperaturas adecuado del barril.

Nebulosidad - Aspecto nublado en las piezas (más perceptibles en piezas claras)

Posibles Causas	Remedios
1. Contaminación del material	1. Verifique material y cambie si es
	necesario.
	1.b. Aumente temperatura del fundido.
2. Gases o humedad en la resina	2.a. Seque material adecuadamente.
	2.b. Ventile molde adecuadamente.
3. Material demasiado frío	3. Aumente la temperatura del fundido.
4. Molde demasiado frío	4. Aumente las temperaturas del molde.
5. Líquido desmoldante	5. Elimine el uso de líquido
	desmoldante.

Rebaba - Exceso de plástico alrededor de la pieza en líneas de partición

Posibles Causas	Remedios
1. Presión de empaque alta	1. Disminuya presión de empaque.
2. Molde demasiado caliente	2. Disminuya temperatura del molde.
3. Fuerza de cierre inadecuada	3. Aumente tonelaje.
4. Temperatura del derretido alta	4. Baje la temperatura del derretido.
5. Posición de transferencia a	5. Ajuste una posición de transferencia
empaque tardía	adecuada y compense la misma
	distancia en la posición de
	plastificación.
6. Material con humedad	6. Mejore el secado.

Líneas de flujo - Marcas en la dirección del flujo del fundido

Posibles Causas	Remedios
1. Temperatura del molde baja	1. Aumente la temperatura de molde.
2. Material demasiado frió	2. Aumente la temperatura del
	fundido.
3. Colada / bebedero inadecuado	3. Verifique el tamaño de bebederos
	y coladas, y solicite un rediseño.
4. Velocidad de inyección alta	4. Disminuya velocidad de inyección.
5. Resina humedad	5. Seque material adecuadamente.

Chorreo ("jetting") en forma de gusano en la superficie de la pieza

Posibles Causas	Remedios
1. Bebederos demasiado pequeños	1. Verifique y solicite un rediseño
	de bebedero.
2. Bebedero mal localizado	2. Solicite un rediseño.
3. Velocidad de inyección demasiado	3. Disminuya la velocidad de
alta	inyección.
4. Orificio de boquilla pequeño	4. Cambie boquilla.

Delaminación de la superficie - Capas en la superficie de las piezas se despegan

Posibles Causas	Remedios
1. Material contaminado	1. Verifique el material, y
	reemplácelo si es necesario.
2. Temperatura del fundido baja	2. Ajuste un perfil de temperaturas
	del barril adecuado.
3. Mezcla del fundido no es uniforme	3. Aumente contrapresión.
4. Temperatura de molde baja	4. Aumente temperatura de molde.
5. Velocidad de inyección baja	5. Aumente la velocidad y corrobore.
	El tiempo de inyección debe reducir
	significativamente.

Tiro incompleto - Piezas no quedan completamente llenas

1 · · · · · · · · · · · · · · · ·	
Posibles Causas	Remedios
1. Presión de empaque baja	1. Aumente presión de empaque.
2. Tiempo de empaque corto	2. Aumente tiempo de empaque.
3. Cavidades no balanceadas	3. Balancee el llenado, y rediseñe el molde
	si es necesario.
4. Temperatura del fundido baja	4. Aumente la temperatura del fundido,
	ajustando un perfil de temperaturas
	adecuado.
5. Coladas / bebederos	5. Solicite un rediseño de colada y/o
pequeños	bebedero.
6. Temperatura de molde baja	6. Aumente temperatura de molde.
7. Posición de plastificación	7. Verifique que la posición de transferencia
bajo	sea adecuada, y luego aumente la posición
	de plastificación.

Hundimientos - Depresiones o hundimientos en secciones de la pieza

prezu	
Posibles Causas	Remedios
1. Velocidad de inyección baja	1. Aumente la velocidad y
	corrobore. El tiempo de inyección
	debe reducir significativamente.
2. Diseño inadecuado del molde y/o	2. Rediseñe pieza (se necesitan
pieza	espesores uniformes de pared).
3. Temperatura del fundido baja	3. Aumente temperatura del fundido
	con un perfil de temperatura
	adecuado.
4. Gas atrapado en el molde	4. Ventile molde adecuadamente.
5. Presión de empaque baja	5. Aumente presión de empaque.
6. Temperatura del molde demasiado	6. Baje la temperatura del molde.
alta ocasiona encogimiento	
7. Tiempo de empaque bajo	7. Aumente tiempo de empaque
8. Temperatura del molde baja	8. Aumente la temperatura del
ocasionando congelamientos	molde.
prematuros de bebederos	

Las partes se pegan a la cavidad

Posibles Causas	Remedios
1. Cavidad rayada	1. Pulir en dirección del desmolde.
2. Estática	2. Desmagnetice la cavidad.
3. Presión de empaque alta	3. Disminuya la presión de empaque.
4. Tiempo de enfriamiento corto	4. Aumente el tiempo de
	enfriamiento.
5. Encogimiento en la dirección	5. Ajuste la temperatura del noyo
incorrecta	(core) mayor a la temperatura de la
	cavidad.
6. Insuficiente socavo y/o ángulo de	6. Considere cambios en diseño de
desprendimiento	piezas y/o molde.

Las partes se pegan al noyo ("core")

Posibles Causas	Remedios
1. Presión de empaque alta	1. Disminuya la presión de empaque.
2. Temperatura del noyo ("core") alta	2. Ajuste temperatura de molde.
3. Temperatura del fundido alta	3. Baje la temperatura del fundido
_	con un perfil de temperaturas
	adecuado.
4. Insuficiente socavo o ángulo de	4. Considere reparación o rediseño
desprendimiento	del molde.
5. Estática	5. Desmagnetice la cavidad.

Gasificación (líneas plateadas) - imperfecciones en la superficie de la pieza

Posibles Causas	Remedios
1. Humedad en la resina	1. Seque el material adecuadamente.
2. Obstrucción en la boquilla	2. Limpie la boquilla.
3. Velocidad de inyección alta	3. Disminuya velocidad de inyección.
4. Temperatura del fundido alta	4. Disminuya la temperatura del
	fundido con un perfil de temperaturas
	de barril adecuado.
5. Boquilla demasiado caliente	5. Disminuya temperatura de la
_	boquilla.
6. Resina contaminada	6. Verifique el material; reemplácelo
	si es necesario.
7. Bebederos demasiado pequeños	7. Aumente tamaño del bebedero.

Pandeamiento - Torcimiento o encovado de las partes debido a encogimiento desigual

Posibles Causas	Remedios
1. Partes calientes al expulsar	1. Baje la temperatura del molde, y
	aumente el tiempo de enfriamiento.
2. Enfriamiento de parte desiguales	2. Ajuste temperatura de las caras del
	molde.
3. Espesor de paredes no uniforme	3. Rediseñe la pieza.
4. Partes sobre empacadas	4. Disminuya la presión de empaque.

Alarma de límite de presión máxima de inyección

Posibles Causas	Remedios	
Cavidad bloqueada	1. Detenga la máquina. Revise y	
	limpie el molde.	
2. Etapa de inyección ajustada para	2. Reduzca la posición de	
llenar demasiado.	plastificación hasta cerca de un	
	95% del molde.	

Alarma de límite bajo del colchón

Posibles Causas	Remedios
1. Anilla (check ring) sucia o	1. Verificar y limpiar o reemplazar.
defectuosa	
2. Fundido fugándose entre el casquillo (sprue bushing) y la punta de la boquilla (nozzle tip)	2. Verificar si cualquiera de los componentes está rayado y/o machacado, o si los diámetros de los agujeros son incorrectos, o si los radios de contacto son incorrectos. Si es así,
3. El fundido se está colando en el	reemplácelos. 3. Verifique, y si es así, haga la
molde, ya sea como rebaba,	reparación o corrección lo más
filtración entre actuadores, o dentro	pronto posible. De lo contrario,
del sistema de colada caliente.	podrían surgir daños cuantiosos
	en el molde.

Alarma de límite alto del colchón

Posibles Causas	Remedios
1. Cavidad bloqueada o un bebedero	1. Verificar y limpiar.
obstruido.	
2. Si se trata de un molde con colada	2. Verificar, limpiar o reemplazar.
caliente, podría ser que una punta	
caliente esté obstruida o dañada.	

Alarma de tiempo límite de plastificación

iarma de tiempo minte de piastificación		
Posibles Causas	Remedios	
1. Flujo de resina inconsistente, que	1a. Reduzca la temperatura de la	
puede deberse a que el calor del	zona de calor próxima a la	
barril está afectando la garganta de	garganta del barril.	
alimentación, lo que provoca la	1b. Verifique el flujo de agua en la	
aglomeración del material.	garganta del barril. Si está	
	obstruido, corríjalo.	
	1c. Verifique la temperatura del	
	agua en la garganta del barril y	
	redúzcala si está muy alta.	
2. Se está quedando sin resina la tolva	2. Verifique y corrija el suministro	
de alimentación.	de material.	

II - Datos Universales del Molde

Recuerde que estos parámetros son del molde y el plástico. Para ser utilizados deben ser transferidos o convertidos a parámetros de la máquina de inyección.

- 1. nombre del molde y número
- 2. nombre y tipo de material
- 3. tiempo de llenado *T* para conseguir cerca de un 95% del llenado
- 4. peso de las piezas al momento de transferencia, con el empaque apagado
- 5. presión plástica al momento de la transferencia
- 6. ciclo total
- 7. tiempo de empaque
- 8. presión de empaque
- 9. peso total o volumen total de inyección
- 10. tiempo de enfriamiento
- 11. temperaturas del molde
- 12. flujos y de agua al molde
- 13. temperaturas del agua entrando al molde
- 14. temperaturas del agua saliendo del molde
- 15. presiones del agua entrando al molde
- 16. presiones del agua saliendo del molde
- 17. temperatura del fundido entrando al molde
- 18. tiempo en abrir el molde y expulsar las piezas
- 19. tiempo en cerrar totalmente el molde
- 20. volumen de plastificación

III - Ecuaciones de Moldeo UniversalTM

1- Secado

Volumen de la tolva secadora:

Para determinar el tamaño de la tolva secadora se requiere saber:

- el consumo de material en lb/h o en kg/h
- el tiempo de secado en horas
- la densidad granel de la resina plástica en lb/pies³ o en kg/m³.
- I. Con material virgen:

Volumen = consumo *
$$\frac{\text{tiempo de secado}}{\text{densidad granel}}$$

II. Con material virgen y molido:

Volume =
$$T * C * \left(\frac{\%V}{D_{virgen}} + \frac{\%M}{D_{molido}} \right)$$

Donde:

T = tiempo de secado (horas)

C = consumo de resina (lb/h o kg/h)

 D_{virgen} = densidad del virgen (lb/pies³ o kg/m³)

 D_{molido} = densidad del molido (lb/pies³ o kg/m³)

%V = % del virgen

%M = % del molido

Flujo de aire seco de la secadora:

Flujo = factor flujo del material * consumo

Factor de material máximo = 1 cfm / (1lb de material/h) = (63 litro/min) / (1 kg de material/h)

Temperatura Delta:

$$\Delta T_{Fahrenheit} = 9/5 * \Delta T_{Celsius}$$

 $\Delta T_{Celsius} = 5/9 * \Delta T_{Fahrenheit}$

Consumo de plastificación:

Consumo de plastificación = (peso del tiro de inyección) / (tiempo de plastificación)

Consumo de material:

Consumo de material = (cantidad de material por ciclo) / (duración del ciclo)

2- Enfriamiento

Calor removido:

Ecuación empírica para determinar el flujo del agua requerido del chiller:

$$gpm = \frac{24 * (toneladas de chiller)}{Delta T}$$

Donde:

- gpm = galones por minuto de agua
- tonelada de *chiller* = toneladas de *chiller* requeridas para enfriar el molde
- Delta *T* = temperatura saliendo del molde temperatura entrando (°F)

<u>Tiempo de enfriamiento extendido</u>:

Tiempo de enfriamiento extendido = tiempo de enfriamiento recomendado x 1.3

Método calculado para determinar el tiempo de enfriamiento (E):

$$E = -\frac{G^2}{2\pi\alpha} \ln\left(\frac{\pi}{4} \frac{(T_x - T_M)}{(T_m - T_M)}\right)$$

Donde:

 T_x = temperatura de deflexión

 T_M = temperatura del molde

 T_m = temperatura del fundido

G = grosor de la pieza

 α = difusividad térmica

Material	α	T _m (°F)	T _M (°F)	T _X (°F)
ABS	0.000185	475	135	203
CA, CAP	0.000181	400	110	192
CAB	0.0002	400	110	201
HIPS	0.000059	440	85	185
IONOM	0.000148	440	85	125
LDPE	0.000176	390	75	113
MDPE	0.000194	340	75	155
HDPE	0.000217	480	75	186
PA 6, 6/6	0.000109	530	150	356
PC	0.000132	560	180	280
PET	0.000138	540	120	153
PP	0.000077	470	105	204
PPO/PS	0.000144	530	185	234
PPS	0.000166	630	210	210
PS g.p.	0.000087	420	85	180
PSU	0.000149	700	250	345
PVC	0.000107	380	85	156
PVCrig	0.000123	380	85	174
SAN	0.000088	450	150	225

<u>Pérdida de presión (Delta *P*) y la pérdida de temperatura del agua (Delta *T*):</u>

Delta P =

presión del agua entrando - presión del agua saliendo

Delta T =

temperatura del agua saliendo – temperatura del agua entrando

3- Prensa

Fuerza de cierre:

Fuerza de cierre = (factor de presión del fundido) x (área proyectada)

tonelada USA = 2000 lbf tonelada métrica = 1.10 x tonelada USA tonelada USA = 8.90 kilo-Newtons (kN) tonelada métrica = 9.81 kilo-Newtons (kN)

Material	US ton/in ²		kN/cm ²	
Polipropileno	1.5	3.5	2.1	4.8
Polietileno alta densidad	1.5	2.5	2.1	3.5
Polietileno baja densidad	1.0	2.0	1.4	2.8
Nilón 66	3.0	5.0	4.1	6.9
Policarbonato	3.0	5.0	4.1	6.9
PVC flexible	1.5	2.5	2.1	3.5
PVC rígido	2.0	3.0	2.8	4.1
Poliestireno	2.0	4.0	2.8	5.5

Cálculo de pared fina, PF:

El cálculo de pared fina es un factor que representa la dificultad del llenado. Este factor considera la distancia que el fundido tiene que viajar y que tan estrechos son esos pasajes. Ese factor es representado por la siguiente ecuación:

Cálculo de pared fina =
$$\frac{\text{(trayecto del flujo más distante)}}{\text{(pared más fina de ese trayecto)}}$$

PF	Criterio	
	Utilice el factor de presión mayor.	
≥200	Fuerza =	
	(área proyectada) x (factor de presión mayor)	
	Utilice el factor de presión menor.	
≤100	Fuerza =	
	(área proyectada) x (factor de presión menor)	
	Interpole entre los factores de presión.	
entre 100 y 200	Fuerza =	
	(área proyectada) x (factor de presión interpolado)	

Fuerza de cierre adicional resultante de la acción lateral:

Estas cuñas son fabricadas con un ángulo, φ , y solo una fracción de esta fuerza lateral se reflejará en la dirección del cierre de la cuña. Esa fuerza resultante en dirección de la prensa se determina multiplicando la fuerza lateral por la tangente del ángulo de la prensa:

Fuerza de resultante de la acción lateral = fuerza lateral $x \tan(\phi)$

4- Unidad de inyección

Densidad y densidad específica:

Densidad =
$$\frac{\text{masa}}{\text{volumen}}$$

$$Densidad \ específica = \frac{densidad \ del \ material}{densidad \ agua}$$

Donde la densidad del agua $= 1 \text{ g/cm}^3$ a temperatura ambiente.

Velocidad y flujo de invección:

$$Velocidad de inyección = \frac{distancia}{tiempo}$$

Flujo de inyección =
$$\frac{\text{volumen}}{\text{tiempo}}$$

Flujo de inyección =
$$\frac{(\text{diámetro del tornillo})^2 * \pi/_{4} * (\text{desplazamiento})}{\text{tiempo}}$$

Utilización del barril:

La utilización del barril es una comparación entre la capacidad máxima de la unidad de inyección y la capacidad requerida para llenar el molde.

$$\%U = \%$$
 de utilización = $\frac{\text{(volumen utilizado)}}{\text{(volumen capaz del barril)}} * 100\%$

Donde:

volumen utilizado = la plastificación programada de acuerdo con lo requerido por el molde

volumen capaz del barril = lo máximo que puede plastificar el tornillo

Posición de plastificación:

La posición de plastificación es el lugar hasta donde debe cargar el tornillo para llenar el molde.

Posición de plastificación = posición de transferencia + desplazamiento de inyección

Combinando las ecuaciones de peso, densidad, y volumen, resumimos:

Desplazamiento de inyección
$$=\frac{1.27W}{\rho D^2}$$

Posición de plastificación = posición de transferencia + $\frac{1.27W}{\rho D^2}$

Donde:

 ρ = densidad específica del fundido (gr/cm³)

W = peso de las partes con la colada (gr)

D = diámetro del tornillo de inyección (cm)

Note que esta ecuación no considera que, durante la inyección, se llena alrededor de un 95% del molde. Este exceso se desprecia a consecuencia de que, durante la etapa de inyección, algún material siempre se cuela al otro lado de la anilla, ya sea durante el cierre de la anilla o a consecuencia de filtraciones entre la anilla y el barril.

Densidad de descarga:

Esta densidad es más precisa para determinar las posiciones de plastificación, ya que considera varios factores:

- masa
- volumen
- temperatura del fundido
- contra presión
- fugas de fundido a través de la anilla ("check ring") durante la inyección.

La densidad de descarga se calcula en un proceso existente, midiendo el volumen inyectado y el peso total inyectado. El volumen inyectado se determina mediante la ecuación del cilindro:

Donde:

Area =
$$(diámetro del tornillo)^2 * \pi/4$$

Largo = posición de plastificación – posición del colchón

El peso de inyección se obtiene pesando las partes moldeadas más la colada (si existe).

Densidad de descarga =

peso total de inyección

((diámetro del tornillo)² x $\pi/4$) x (pos. de plastificación – pos. del colchón)

Si se sabe la densidad de descarga, las ecuaciones de desplazamiento de inyección y la posición de inyección se verían así:

Desplazamiento de inyección₉₅ = 95% *
$$\frac{1.27W}{\rho_d D^2}$$

Posición de plastificación = posición de transferencia + 95% *
$$\frac{1.27W}{\rho_d D^2}$$

Donde:

 ρ_d = densidad de descarga (g/cm³)

W = peso de las partes con la colada (g)

D = diámetro del tornillo de inyección (cm)

Reología por potencia:

Potencia pico – la potencia máxima alcanzada por la unidad de inyección, normalmente al momento de la transferencia (cambio de inyección a empaque).

Potencia pico =

flujo de inyección promedio x presión al momento de la transferencia

Flujo de inyección promedio – Este flujo es una función del volumen inyectado durante la etapa de inyección y del tiempo de inyección.

Flujo de inyección promedio = volumen de inyección / tiempo de inyección

Reología por viscosidad:

Cambio de velocidad V_x en la dirección Y;

Velocidad cambiante =
$$\dot{\delta} = \frac{\text{cambio de velocidad}}{\text{distancia}} = \frac{\Delta V_x}{\Delta y}$$

Esfuerzo cortante = viscosidad x velocidad cambiante
$$\tau = \mu \, x \, \dot{\delta}$$

Viscosidad aparente = presión plástica x tiempo de inyección

Velocidad cambiante aparente =
$$\frac{1}{\text{tiempo de inyección}}$$

Razón de intensificación, R_i = presión plástica, P_p / presión hidráulica, P_H

$$\mu_R = P_H R_i T$$
$$\mu_R = P_P T$$

Reología aproximada:

Inicio de meseta de tiempo de inyección

$$T_{meseta} = T_{min} + (T_{max} - T_{min}) / 9$$

Industrias de moldeo convencional

$$T_{intermedio} = T_{min} + (T_{max} - T_{min}) / 18$$

Industrias que moldean materiales sensitivos

$$T_{mat. sensitivo} = T_{min} + (T_{max} - T_{min}) / 12$$

Industrias de alto volumen de inyección

$$T_{rápido} = T_{min} + (T_{max} - T_{min}) / 36$$

Donde:

 T_{min} = tiempo de inyección correspondiente a la velocidad máxima de inyección

 T_{max} = tiempo de inyección correspondiente a la velocidad mínima de inyección

 T_{meseta} = tiempo de inyección donde se inicia la meseta en la gráfica

Balance del llenado:

Suma del peso de todas las cavidades:

$$W_T = \sum_{\#cav.}^1 W_i$$
, $i = 1$ a # cavidades

Desviación del volumen por cada cavidad, Vd_i

$$Vd_i = \left[\frac{W_i}{\left(\frac{W_T}{\# cavities}\right)} - 1\right] 100\%, i = 1 \text{ a # cavidades}$$

% volumen inyectado por etapa:

% volumen en la etapa de inyección = $\frac{\text{posición de plastificación - posición de transferencia}}{\text{posición de plastificación - posición del colchón}} * 100\%$

En caso de que esté utilizando un control con parámetros *Universales* y trabaje con volumen en lugar de posición, aplique esta fórmula:

$\frac{\text{volumen en la etapa de inyección} = }{\text{volumen de plastificación - volumen de transferencia}} * 100\%$

% volumen en la etapa de empaque = 100% - % volumen en la etapa de inyección

IV - Procedimiento General para $Moldeo\ Universal^{TM}$

I. Cál	culos y Datos Iniciales
1.	Determine fuerza cierre →
	Determine volumen de inyección requerido →
3.	Seleccione un ciclo aproximado total →
	Determine consumo aproximado de resina por hora
5.	Marca y tipo de resina →
	Marca y tipo de colorante →
7.	% de colorante →
	% de picado →
II. Eq	uipo Auxiliar
1.	Control de temperatura de agua
	Determine los gpm de agua al molde →
	Seleccione una temperatura de agua inicial →
2.	Secadora
	Determine el volumen de la tolva →
	Determine el flujo de aire seco →
	Temperatura de secado →
3.	Dosificador de colorante
	% de pigmento requerido →
	Determine consumo de pigmento/hora →
4.	Dosificador de picado
	% de picado requerido →
	Determine consumo de picado/hora →
	atos del Molde y Máquina
1.	Medida horizontal → < entre barras
2.	Medida vertical →< entre barras
3.	Medida cerrado →> apertura mínima
4.	Medida abierto → < apertura máxima
5.	Patrón de los expulsores → =
IV. Ve	erifique la Capacidad de la Máquina Inyectora
1.	Unidad de inyección
	Determine el % de utilización, $\%U \rightarrow$
	Determine la posición de transferencia >

	Determine el correspondiente perfil de temperatura	\rightarrow
	Determine la contrapresión. Ej: 750 psi plástica (máquina plástica/ R_i)	=
	Calcule la posición de plastificación aproximada	\rightarrow
2.	Boquilla	
	Largo →	
	Largo → Diámetro agujero →	
	Radio de contacto →	
3.	Casquillo	
	Diámetro agujero →	
	Radio de contacto →	
V. Aju	ustes Iniciales del Proceso	
1.	Encienda y ajuste los equipos auxiliares	
	Secadora	
	Controlador de temperatura de agua	
	Dosificador de colorante	
	Control de temperaturas de la colada caliente	
2.	Unidad de Inyección	
	Encienda y ajuste las temperaturas del barril	
	Ajuste la contrapresión	
	Ajuste la velocidad plastificación (ejemplo 30%)	
	Ajuste la posición de plastificación aproximada	
	Ajuste el tiempo de enfriamiento extendido	
3.	Ajustes de Platinas	
	Ajuste las posiciones y velocidades de apertura del molde	
	Ajuste la protección del molde	
	Ajuste los movimientos de los expulsores	
	Ajuste los movimientos de noyos si los tiene	
	eterminación de Parámetros de Máquina	
(despu	iés que los equipos auxiliares estén listos y las temperaturas se	an
alcanz	,	
1.	Llenado	
	Determine la presión de inyección limite →	
	Encuentre el tiempo de inyección ideal →	
	Reajuste la unidad de inyección a que llene cerca de un 95%	
	Anote la posición de plastificación final →	

Haga el balanceo del flujo	
2. Empaque	
Encuentre la presión de empaque →	
Determine el tiempo de empaque →	
3. Enfriamiento	
Encuentre la temperatura de agua al molde	
Fijo/Movible→/	
Encuentre el tiempo de enfriamiento →	
4. Plastificación	
Ajuste la velocidad de plastificación de acuerdo al tiempo	de
enfriamiento	
Anote el tiempo de plastificación →	
5. Recalcule los equipos auxiliares con el nuevo ciclo total encontrac	ob
VII. Convierta a Parámetros Universales	
Equipo Auxiliar	
1. Control de temperatura de agua	
(gpm/lpm) de agua al molde →	
Temperatura de agua al molde Fijo/Movible →/	
2. Secadora	
Volumen de la tolva →	
Flujo de aire seco 🗲	
Temperatura de secado →	
3. Dosificador de colorante, % de pigmento →	
Consumo de pigmento por hora 🗕	
4. Dosificador de picado, % de picado →	
Consumo de picado por hora →	
<u>Datos del molde</u>	
1. Medida horizontal →	
2. Medida vertical →	
3. Medida cerrado →	
4. Medida abierto →	
5. Patrón expulsores →	
6. Material →	
7. Colorante →	
Máquina inyectora – (m) máquina / (u) Universal	
1. Fuerza cierre →	

2.	Ciclo total →
3.	Consumo de resina por hora →
4.	Platinas de la prensa
	Espacio horizontal entre barras 🗕
	Espacio vertical entre barras 🗕
	Verifique el patrón de expulsores →
	Apertura máxima →
	Apertura mínima →
5.	Ajustes de Platinas
	Posición de apertura del molde 🗲
	Tiempo de apertura y cierre del molde →
6.	Inyección
	% de utilización 🗕
	Presión de inyección limite \rightarrow (m) (u)
	Velocidad de inyección ideal \rightarrow (m) (u)
	<i>Posición del cambio</i> → (m) (u)
	Posición de plastificación → (m) (u)
	Perfil de temperatura →//
<i>7</i> .	Empaque
	Presión de empaque \rightarrow (m) (u)
	Tiempo de empaque \rightarrow
8.	Enfriamiento
	Temperatura de agua al molde Fijo/Movible →/
	Tiempo de enfriamiento →
9.	Plastificación
	Velocidad de plastificación >
	Tiempo de plastificación →
	Contrapresión \rightarrow (m) (u)

V - Términos en Inglés al Español

- Tel lillios en Higles al Es	
auger	tornillo sin fin
backpressure	contrapresión
barrel	barril
barrier screw	tornillo con barrera
blower	bomba
boost to hold	de inyección a empaque
cavity	cavidad
check ring	anilla
chiller	equipo de refrigeración
cold slugs	pedazos fríos
cores	noyos
cushion	colchón
dew point	temperatura de condensación/
	temperatura de rocío
discharge factor	densidad de plastificación
drying hopper	tolva de secado
eject-on-the-fly	expulsión mientras el molde
	abre
ejector pins	botadores
ejector plates	platos de expulsión
fill time	tiempo de inyección
flash	rebaba
gate	bebedero
gate freeze	endurecimiento de bebederos
hold	empaque
hold pressure	presión de empaque
hold time	tiempo de empaque
hot runner	colada caliente
hot drop/hot tip	punta caliente
injection rate	flujo de llenado
injection screw	tornillo de inyección
injection speed	velocidad de llenado
jetting	chorreo
manifold	distribuidor
melt flow	flujo del fundido
melt flow number	índice de fluidez
melt pressure	presión del fundido
melt temperature	temperatura del fundido

mold protect	protección del cierre del
- Ferrer	molde
molecular weight	peso molecular
nozzle	boquilla
nozzle tip	punta de la boquilla
parting line	partición del molde
pellet	gránulo
plastic residence time	tiempo de residencia
recovery	plastificación
robot	brazo mecánico
runners	coladas
shear rate	cambio cortante/
	velocidad cambiante
shear stress	esfuerzo cortante
shear thinning	licuar por fricción
shot size	volumen de llenado/volumen
	de la unidad de inyección
sprue	palo
sprue bushing	casquillo
stack mold	molde doble
stress	esfuerzo
suck-back	rechupe
tie bars	máquina con barras
tiebarless	máquina sin barras
transfer point	posición de transferencia
transfer pressure	presión de transferencia
valve gate	válvulas de bebederos
vents	ventosas

VI - Términos en Español al Ingles

1 - Terminos en Espanoi ai	8
anilla	check ring
barril	barrel
bebedero	gate
bomba	blower
boquilla	nozzle
botadores	ejector pins
brazo mecánico	robot
cambio cortante/	shear rate
velocidad cambiante	
casquillo	sprue bushing
cavidad	cavity
chorreo	jetting
colada caliente	hot runner
coladas	runners
colchón	cushion
contrapresión	backpressure
de inyección a empaque	boost to hold
densidad de plastificación	discharge factor
distribuidor	manifold
empaque	hold
endurecimiento de bebederos	gate freeze
equipo de refrigeración	chiller
esfuerzo	stress
esfuerzo cortante	shear stress
expulsión mientras el molde	eject-on-the-fly
abre	
flujo de llenado	injection rate
flujo del fundido	melt flow
gránulo	pellet
índice de fluidez	melt flow number
licuar por fricción	shear thinning
máquina con barras	tie bars
máquina sin barras	tiebarless
molde doble	stack mold
noyos	cores
palo	sprue
partición del molde	parting line
pedazos fríos	cold slugs
peso molecular	molecular weight
plastificación	recovery
platos de expulsión	ejector plates

posición de transferencia	transfer point
presión de empaque	hold pressure
presión de transferencia	transfer pressure
presión del fundido	melt pressure
protección del cierre del molde	mold protect
punta caliente	hot drop/hot tip
punta de la boquilla	nozzle tip
rebaba	flash
rechupe	suck-back
temperatura de condensación/	dew point
temperatura de rocío	
temperatura del fundido	melt temperature
tiempo de empaque	hold time
tiempo de inyección	fill time
tiempo de residencia	plastic residence time
tolva de secado	drying hopper
tornillo con barrera	barrier screw
tornillo de inyección	injection screw
tornillo sin fin	auger
válvulas de bebederos	valve gate
velocidad de llenado	injection speed
ventosas	vents
volumen de llenado/volumen de	shot size
la unidad de inyección	

VII - Costos Operacionales

O	costo oper	Costo operacional por hora, con operador más ganancia (moldeadores Norteamericanos)	or hora, co	n operado	ır más gan	ancia (mo	Ideadores	Norteame	ericanos)	
Fuerza en toneladas Norte Americanas	<50	20-99	100-299	100-299 300-499 500-749 750-999	500-749	750-999	1000- 1499	1500- 1999	2000-	3000+
Promedio (US\$/hr)	\$33.31	\$35.24	\$41.92	\$41.92 \$52.13	\$68.14	\$83.22	\$110.28	\$119.95	\$83.22 \$110.28 \$119.95 \$181.68	\$230.00
Promedio (US\$/seg.)	\$0.009	\$0.010	\$0.012	\$0.014	\$0.019	\$0.023	\$0.031	\$0.033	\$0.050	\$0.064
Nota: - valores son una referencia, para valores más exactos consulte a su departamento de finanzas. - se presume que de un 10 a 15% en ganancias está incluido.	res son un? ne que de u	a referencia In 10 a 15%	a, para valo sen ganano	res más ex cias está inc	ractos cons cluido.	sulte a su d	epartamen	ito de finar	12as.	

(Utilizar únicamente para estimar mejorías en productividad, en US\$)

Nota: El costo se podría dividir en tres partidas, Básicos, Opcionales y Especiales.

Básicos	Opcionales	Especiales
Depreciación	Robot	Cuarto limpio clase
		8
Edificio	TCU	Inspección o QC
Intereses	Equipo de empaque	Asistencia
		ingenieril
Mantenimiento	Inyectora especial;	Soporte en
	LIM, dos colores, alta velocidad,	herramental
Electricidad	Grúa	Pruebas de material
Agua	Cambio de molde	Equipo de empaque
	rápido	y etiquetado
Misceláneos	Tornillo especial	Manejador de
		producto especial
Labor	Dosificador	Almacenamiento de molde
Beneficios		Mantenimiento de
marginales		moldes
Inspección y QC		
Material		
Desperdicios		
Servicios		
secundarios		
Molde		
"Overhead"		
Ganancia		

Bibliografía

A. Brent Strong, 2000, "Plastics Materials and Processing", ISBN: 0-13-021626-7

Application Engineering, 1981, "Application Manual Water Group Products"

Douglas C. Montgomery, 2001, "Design and Analysis of Experiment", Arizona State University, ISBN 0-471-31649-0

Georg Menges and Paul Moren, 1993, "How to Make Injection Molds", Society of Plastics Engineers, ISBN 3-446-16305-0

Hansjurgen Saechtling , 1992, "Saechtling International Plastic Handbook", Society of Plastics Engineers, ISBN 3-46-14924-4

Jay Carender, 1997, "Injection Molding Reference Guide", Advance Process Engineering

John Bozzelli, Jan 1998, "Process Optimization and Setup-card Data Requirements", Cycleset

John Bozzelli, Jan. 1997, "How to Set First-Stage Pressure", Plastics World

Lawrence E. Nielsen and Robert F. Landel, 1994, "Mechanical Properties of Polymers and Composites", ISBN 0-8247-8964-4

Peter Kennedy, 1995 "Flow Analysis of Injection Molds", ISBN:1-56990-181-3

R. J. Young and P. A. Lovell, 1991, "Intruction to Polymers", ISBN: 0-412-30640-9

Shiro Matsuoka, 1992, "Relaxation Phenomena in Polymers", Society of Plastics Engineers

Thermoplastic Troubleshooting Guide, 2000, Ashland Distribution Company

Thomas Pyzdek and Roger W. Berger, 1992, "Quality Engineering Handbook", ISBN: 0-8247-8132-5

Tony Whealan and John Goff, 1994, "The Dynisco Injection Molders Hand Book", Dynisco Instruments

ULF W. Gedde, 1995, "Polymer Physics", ISBN 0-412-62640-3

Contestaciones

II. Parámetros del proceso de inyección

1) b. 2) b. 3) c. 4) b, c. 5) a. 6) b. 7) b, d. 8) a, d. 9) a. 10) b. 11) c, d. 12) b, c, d. 13) a. 14) b. 15) b. 16) b. 17) a. 18) b, c, d.

III. Gráficas del proceso

1) b. 2) b. 3) c. 4) b. 5) c. 6) a. 7) c. 8) c. 9) b. 10)

IV. Morfología de plásticos

1) b. 2) c. 3) c. 4) a. 5) c. 6) c. 7) c.

V. Equipos Auxiliares

15)

Dosificación y manejo se materiales 1) b. 2) a.

Control de temperatura de agua al molde 1) b. 2) b. 3) c. 4) a. 5) b. 6) a.

VI. Moldeo Desde el Escritorio 1) b. 2a) b. 2b) a. 2c) a. 3) d.

Tamaño de la unidad inyección

1) b. 2) a. 3) a. 4) a. 5) a. 6) c. 7) a. 8) d.

9a) Area =
$$19.4$$
in x 8.9 in = **173 pulg**²

9b)

Trayecto más distante = 8.5" + 9.95" = 18.45" Grosor más estrecho en el trayecto = 0.08" Pared Fina = 18.45"/0.08" = 230PF = 230 > 200; el factor de fuerza sería 2.5 ton/pulg²

- 9c) Fuerza de cierre requerida = 173pulg² x 2.5 ton/pulg² = 433 toneladas de fuerza USA (1 ton = 2000 lb)
- **9d**) Consumo = 1100/50s x 3600s/1h x 1 lb/454 gr = **174** lb/h
- **9e**) Volumen requerido = 1100gr/0.92gr/cc = **1196 cc**
- **9f**) %U = 1196cc/2480cc = 48%
- 9g) ton_{enf.} = 174 lb/h / 50 lb/h/ton = 3.5 ton_{enf}
- **9h**) gpm = $3.5 \text{ ton}_{enf} \times 24 / 3^{\circ}F = 28 \text{gpm}$
- 9i) %U = 48% y está entre 35% y 65%. La trasferencia estaría entre 12mm y 25mm. Transferencia = 25mm - 13mm (0.48-0.65)/0.3 = 17.6mm = 0.69in
- 9j) Posición de plastificación = 1.27W/ δ D² + transferencia = 1.27*1100gr/[0.92gr/cc*(9cm)²] + 1.76cm = 20.51cm = 8.07in
- 9k) Iniciar con un 700 psi (47 bar) presión plástica.
- **91**) 5% del llenado = 0.05 * 8.07in = **0.4 in**
- **9m**) De la ficha técnica del material = 410^{0} F
- 9n) De una ficha técnica de un PS genérico:

Injection	Nominal Value	Unit
Rear Temperature	424 to 480	°F
Middle Temperature	424 to 480	°F
Front Temperature	390 to 415	°F
Nozzle Temperature	415 to 469	°F
Mold Temperature	60 to 150	°F

Dado a que el %U es casi 50% utilizar el promedio.

zona de dosificación = zona de compresión = zona de alimentación =

boquilla ("nozzle") = $(415^{\circ}F + 469^{\circ}F)/2 = 442^{\circ}F$

90)

U%	Tr (# ciclos)
1%	140
2%	70
3%	47
4%	35
5%	28
6%	24
7%	20
8%	18
9%	16
10%	14
11%	13
12%	12
13%	11
14% - 15%	10
16% - 17%	9
18% - 19%	8
20% - 23%	7
24% - 27%	6
28% - 34%	5
35% - 46%	4
47% - 69%	3)
>70%	2

Tiempo de residencia (ciclos) = 3 ciclos Tiempo de residencia (s) = 3 ciclos x 50s/ciclos = 150 segundos

Volumen tolva secadora = $174 \text{ lb/h} \times 2 \text{ horas } / 35 \text{ lb/pies}^3$ = $9.94 \text{ pies}^3 = 281.5 \text{ litros}$

9q) Flujo de aire seco = 174lb/h x 0.75 cfm/(lb/h) = **130.5** cfm

10) c.

VII. Reología en máquina

1) b. 2) c. 3) c. 4) b. 5) c. 6) a. 7) a.

VIII. Determinación de la Velocidad de Inyección

1) a. 2) b. 3) b. 4) a. 5) b. 6) a, c. 7) b. 8) b, c. 9) c. 10) d.

IX. Verificación del Balance del Llenado

1) c. 2) b. 3) a. 4) a. 5) d. 6) b. 7) a. 8) b.

X. Determinación de Parámetros en la Etapa de Empaque

1) a. 2) b. 3) b. 4) c. 5) a. 6) a, c. 7) b. 8) a. 9) c. 10) a.

XI. Determinación de Parámetros en la Etapa de Enfriamiento 1) b. 2) b. 3) d. 4) a. 5) a. 6) a. 7) d. 8) b.

9)

$$\frac{\overline{D}_{C} + \beta_{0}T_{M} + \beta_{1}t + \beta_{2}T_{F} + \beta_{3}T_{M}t + \beta_{4}T_{M}T_{F} + \beta_{5}tT_{F} + \beta_{6}T_{M}T_{F}t}{(1)(5)(2)(4)}$$

XII. Límites del Proceso

Índice

Α

agua entrando, 119 aire seco, 76, 95 aleatorio, 264 amorfos, 59 anilla, 23 apertura máxima, 145 apertura mínima, 145 área proyectada, 129

В

bebederos, 22, 32, 67, 254 bomba, 82 boquilla, 25, 153 burbujas, 73, 285

C

cálculos, 127, 148 calor removido, 109 cambio cortante (shear stress), 182 cargador de resina, 81 casquillo, 150 cavidad, 113, 138, 231 centro de mezclado, 106 chiller, 123 chorreo (jetting), 287 circuito de regeneración, 84 circuito de secado, 82 cojín, 33, 44 colada, 22, 130, 236, 254 colada caliente (hot runner), 48 colchón, 33, 49, 159, 251 comité Universal, 16 consumo de material, 95, 108 contestaciones, 314 contrapresión, 25, 36, 160, 174 core (noyo), 25, 38

D

datos Universales, 292 delaminación, 288 Delta T, 111 densidad, 156, 297 densidad específica, 156, 297 densidad granel, 79 densidades, 93 desbalance, 235 descoloramiento, 286 descompresión, 25 desplazamiento, 160, 298 diagrama PVT, 54 dimensiones de masa, 22, 32, 49 dimensiones térmicas, 24 dosificación, 100, 171 dosificación directa, 100 dosificación gravimétrica, 103 dosificación volumétrica, 100 dosificador, 100

Ε

efecto fuente, 155
empaque (pack), 21, 68, 210, 244, 252, 292
encogimiento, 20, 65, 290
endurecimiento de bebederos, 22, 49, 252
enfriamiento, 24, 34, 118, 253, 270
esfuerzo, 153
esfuerzo cortante, 182, 300
esfuerzo cortante (shear stress), 183
espacio de la prensa, 143
espacio en platinas, 144
etapa de empaque, 31
etapa de enfriamiento, 22, 260
etapa de plastificación, 26
expulsores, 146

F

factores, 128, 271 filtro, 82 flujo de agua, 111 flujo de aire, 75, 95 flujo de inyección, 19, 46, 156, 186, 300 flujo del fundido, 287 fuerza de cierre, 25, 39, 128, 296, 316 fuerza lateral, 139 fuerza resultante, 140, 297

G

gasificación, 290

Н

hot drops, 238 hot runner, 238 hot runner (colada caliente), 48 humedad, 75, 76 hundimientos, 289

ı

Inyección, 19

J

jetting (chorreo), 287

L

laboratorio de *Moldeo Universal™*, 208, 231, 243, 270
límite
alto del cojín, 279
bajo del colchón, 278
contrapresión, 279
presión máxima de inyección, 278
tiempo de plastificación, 279
líneas de flujo, 19, 287
llenado, 159, 213, 231

M

molde doble (*stack mold*), 142
Moldear con gráficas, 44
moldeo desde el escritorio, 141 *Moldeo Universal*TM, 16, 66, 192, 206, 261
moldes de tres platos, 141
movimientos de la prensa, 38

Ν

nebulosidad, 287 normalizar, 199 noyo (core), 25, 38

P

pack (empaque/hold), 21, 31, 68, 210, 244 pandeamiento, 290 parámetros de invección, 29 parámetros de máquina, 28 parámetros Universales, 16, 28, 156 paredes, 136 patrón de expulsores, 143 perfil de temperaturas, 171 plastificación, 24, 35, 148 posición de plastificación, 25, 161 posición de transferencia, 30, 44, 161, 210, potencia, 17, 186, 218, 220 potencia pico, 186, 193, 222, 300 preguntas, 40, 56, 70, 96, 107, 125, 147, 177, 203, 228, 240, 256, 274 presión de empaque, 23, 243 Presión de empaque, 292 presión de transferencia, 30, 192 presión del fundido, 23, 36, 128, 138 presión limitada, 51 presión límite, 19 punta de la boquilla, 150

Q

quebradizas, 285 quemaduras, 19, 208, 286

R

razón de intensificación, 175
rebaba, 19, 51, 287
recámara secante, 83
rechupe, 20
regeneración, 85
reología aproximada, 18, 192, 218
reología completa, 18, 218
reología en máquina, 17, 186
residencia, 164
resistencia de calor, 84, 121
rigidez, 24, 60

S

secado, 73, 91 secadora, 77 secante, 82 semi-cristalinos, 59 shear stress (esfuerzo cortante), 183 sistema gravimétrico, 103 sistemas de secado, 87 stack mold (molde doble), 142

Т

tamaño de la unidad de inyección, 148 TCU, 118 temperatura de condensación, 74, 86 temperatura de secado, 74 temperatura del fundido, 25, 54 temperatura del molde, 264 termoestables, 59 termoplásticos, 59, 150 T_g, 60 tiempo de empaque, 254 Tiempo de empague, 292 tiempo de enfriamiento, 116, 244 tiempo de inyección, 17, 69, 186, 200, 213 tiempo de residencia, 79, 164 tiempo de secado, 76 tiro incompleto, 288 tolva secadora, 77, 90 torcimiento, 290

tornillo, 19, 164 transferencia por posición, 30 transferencia prematura, 51

U

unidad integrada, 88 unidad inyección, 17 unidad portátil, 87 unión de flujos, 286 utilización del barril, 158, 298

V

válvula proporcional neumática, 105 velocidad, 19, 25, 53, 184, 232 velocidad cambiante, 184, 198 velocidad de inyección, 19, 156, 220, 232 velocidad de plastificación, 25 viscosidad, 19, 182, 191 viscosidad aparente, 191, 300 volumen de inyección, 186

Z

zona de control de velocidad, 46 zona de empaque, 47 zona de plastificación, 50 zonas de calor del barril, 171

Opiniones de Expertos

"*Moldeo Universal*TM es en República Dominicana una plataforma esencial para el desarrollo de los moldeadores dominicanos y la industrial local se hace eco cada vez más aplicando los conocimientos en el mejoramiento de sus procesos."

Miguel Calcaño, Plastics Consultant HDI Inc., Republica Dominicana

"Uno de los placeres más grandes de Wallyco siempre fue la investigación y desarrollo profesional de jóvenes puertorriqueños. Si no me equivoco fue para el año 2000 que proveímos resina y tiempo de maquina a estudiantes del Phd. Ivan Baiges entre los que recuerdo a Roberto Pastor. Días de más preguntas que respuestas, que sentaron las bases para corroborar o desmentir cuentos de moldeadores y entender la ciencia detrás de la técnica. Si ciencia, no magia, caja negra o arte oscuro. Una vez verificada la técnica, gracias a la ayuda de personas como los PhD. Gregorio Velez e Ivan, se reduce a su esencia mínima y se desarrollaba un proceso, verificado, de mejores prácticas. Escrito al nivel de su usuario, la persona que tiene que mejorar el proceso sin educación formal. Son muchos los cambios del 2000 al día de hoy y seguirán pues *Moldeo Universal*TM todavía tiene mucho que descubrir y enseñar. Es para mí un gran orgullo haber estado en su inicio, haber usado sus procesos y entrenarme como instructor y le deseo a Héctor y a *Moldeo Universal*TM que continúen ayudando a la industria del plástico y a todo aquel joven puertorriqueño que quiera mejorarse y hacer "patria" con su desempeño."

J. Wally Cruz, Empresario e Ingeniero Especialista en Plásticos

"Moldeo UniversalTM es una excelente herramienta, no solo para comprender el proceso de moldeo por inyección, sino también para entender el comportamiento de los diferentes tipos de plásticos de una manera sencilla pero siempre con una base científica. Como estudiante de MU^{TM} y sin ninguna experiencia en el mundo del plástico, logré sentar las bases y fundamentos de moldeo por inyección. Luego como instructor, pude ver como MU^{TM} ayudaba a tantas personas e industrias a optimizar sus procesos de moldeo con resultados asombrosos, no solo en calidad si no también en economía."

Laureano J. Rodríguez, Sr. Account Manager West Contract Manufacturing "A inicios de la primera década del 2000, fui partícipe de la revolución que apenas se gestaba en Costa Rica acerca de cómo establecer proceso científicamente durante mi período laboral en Abbott Laboratories, que luego llegó a ser Hospira, hoy en día ICU Medical. Fue ahí donde se hizo el primer ejercicio de MU^{TM} fuera de Puerto Rico, totalmente en español y por primera vez en Costa Rica, encontrando una mejor manera de obtener evidencia objetiva acerca de dónde venían los parámetros validados en el proceso de moldeo por inyección, convirtiendo a MU^{TM} como el pionero de esta revolución en CR. Después de ahí se abrió el curso a otras compañías de la industria en Costa Rica el cual se ha impartido año tras año hasta el día de hoy. Posteriormente, del 2008 al 2014 tuve el privilegio y placer como miembro de HDI Inc de ser partícipe de seminarios y conferencias al lado de Héctor Dilán como expositor."

Harold Gamboa Calderón, Sr. Account Manager - Distribution PolyOne Corporation (Central America and Andean Region)

"Conocí el *Moldeo Universal*TM cuando apenas comenzaba mi carrera profesional. Gracias a Héctor y al *Moldeo Universal*TM logre que mi curva de aprendizaje en el campo del moldeo por inyección fuera una exponencial. Éste me dio las herramientas necesarias para aplicar la ciencia durante el desarrollo de diferentes procesos de moldeo y fue mi base para el futuro de mi carrera en la ingeniería del plástico.

Durante esos primeros pasos con el *Moldeo Universal*TM, junto a Héctor, logramos desarrollar la Reología por Potencia, la cual se alejaba de la teología por viscosidad, pero a su vez obtenía resultados específicos y en menor tiempo. La Reología por Potencia nos ayuda grandemente a optimizar la etapa de inyección de una manera simple, corta y precisa.

Ya, después de sobre 15 años trabajando en la industria del moldeo por inyección puedo decir que el $Moldeo\ Universal^{TM}$ es la base y la herramienta de aprendizaje más útil para cualquier persona trabajando en esto.

Héctor, gracias por la confianza y la oportunidad de trabajar contigo cuando apenas comenzaba en la industria."

Billy Torres, Technical Services Manager Microsystems UK