Random KNN

Arya Bharath & James Wright

Introduction

- Drawn to ensemble learning method
- Random Forest uses bagging with Decision Trees
- Were Decision Trees the best model for RF?
- Random KNN pros
 - Clustered, nonlinear data
 - Reducing Decision Tree instability

Related Work

- Limited Random KNN research
- Shengqiao Li introduced RKNN and its hyperparameters
 - o r: Number of KNNs used in prediction
 - o k: Number of nearest neighbors, 1-15
 - m: Features per RKNN, sqrt(dimensionality)

Datasets & Features

- Generated artificial datasets using sklearn
 - Varied samples, features, clusters, standard devs
- No need for discretization or normalization
- Examples
 - o (100 samples, 5 features, 3 clusters, std 1.0)
 - o (300 samples, 6 features, 5 clusters, std 0.8)

Methods

- Random Forest (RF)
 - Uses bagging to create DTs
 - Features selected randomly per tree
 - Predictions made by aggregating votes
- K-Nearest-Neighbors (KNN)
 - Classifies based on distance to neighbors
 - o Different distance metrics (Euclidean, Manhattan)
- Random KNN (RKNN)
 - o RF but with KNN instead of DT on sub-samples

Experimental Setup

- Generated 10 synthetic datasets
- Compared RKNN and RF accuracy
- Used square root of sample size for k in RKNN

Results

Sample #	n_samples	n_features	n_clusters	cluster_std	RKNN	RF
1	100	5	3	1.00	0.63	1.00
2	200	5	4	1.5	1.00	1.00
3	300	6	5	0.8	0.99	1.00
4	150	4	2	2.0	1.00	1.00
5	250	3	3	0.5	1.00	0.97
6	400	7	6	1.2	0.99	1.00
7	180	4	2	1.8	1.00	1.00
8	220	5	4	0.7	1.00	1.00
9	350	6	5	1.1	1.00	1.00
10	100	3	2	1.5	1.00	1.00

Results (cont.)

- RKNN performs similarly to RF but has inconsistencies.
- Most datasets showed RKNN accuracy close to RF.
- One dataset (Sample #1) showed significant underperformance.

Discussion

• Key Findings:

- RKNN generally performs well but is sensitive to k selection.
- RF is more stable across datasets.
- o RKNN can underperform if k is poorly chosen.

Potential Improvements

- Better hyperparameter tuning (r, k, m).
- Analyzing RKNN performance on real-world datasets.

Conclusions & Future Work

- RKNN is a viable alternative to RF in certain datasets
- Performance variability suggests need for future testing
- Extensive testing on diverse datasets
- Investigating optimal k selection strategies
- Exploring hybrid models combining RF and RKNN