Pravděpodobnost a Statistika 1

Poznámky z přednášek

Letní semestr 2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1	První přednáška	2
	Druhá přednáška 2.1 Opakování	5
3	Třetí přednáška	8

1 První přednáška

Modely náhody \rightarrow Pravděpodobnost \rightarrow Pozorovaná data \rightarrow Modely náhody

Model náhody např. kostka 1,...,6,

Pozorovaná data: 1,5,4,3,3

otázka na pravděpodobnost: jaká je pravděpodobnost. . . hodně pozorovaných dat \to statistika na model náhody.

Příklad (Schwartz-Zippel algoritmus): Máme dány dva polynomy f(x), g(x) stupně d. Chceme zjistit, zda jsou stejné, a to co nejrychleji.

Problém: g(x) je součin několik polynomů stupně $\leq \frac{d}{4}$, dostávame víc než lineární čas.

Řešení: Algoritmus: zvolíme náhodně $x \in \{1, 2, ..., 100d\}$, ověříme, zda $f(x_1) = g(x_1)$. Když $f \neq g$, tak x_1 je kořen polynomu f - g. ... takových x_1 je $\leq d$.

$$P(f(x_1) = g(x_1) : f \neq g) \le \frac{1}{100}$$

Pokud jsme spokojeni s 1%, končíme, když ne, volíme $x_2, x_3 \dots \in \{1, 2, \dots, 100d\}$, pak

$$P(Prox_1, x_2, x_3 \dots f(x_i) = g(x_i) : f \neq g) \le \left(\frac{1}{3}\right)^3 = 10^{-6}$$

... aproximační algoritmy

Některé jevy neumíme/nechceme popsat kauzálně

- 1. hod kostkou
- 2. tři hody kostkou, nekonečně mnoho hodů kostkou
- 3. hod šipkou na terč
- 4. počet emailů za den
- 5. dobu běhu programu (v reálnem počítači)...

Důvody:

- fyzikální vlastnost přírody
- komplikovaný proces (počasí, medicína, molekuly plynu...)
- neznáme vlivy (působení dalších lidí, programů...)
- randomizované algoritmy (test prvočíselnosti, quicksort)
- náhodné grafy (Ramseyovy čísla)

Pro popis pomocí teorie pravděpodobnosti napřed vybereme množinu elementárních jevů Ω (sample space)

$$\Omega = \{1, 2 \dots, 6\} = [6] \implies \text{hod kostkou}$$

$$\Omega = [6]^3 \implies \text{hod třemi kostkami}$$

Definice (Prostor jevů): $\mathcal{F} \subseteq \mathcal{P}(\Omega)$

 $\mathbb{F} \subseteq \mathbb{P}(\Omega)$ je prostor jevů (též σ -algebra), pokud

1. $\emptyset \in \mathcal{F}$ a $\Omega \in \mathcal{F}$

2.
$$A \in \mathcal{F} \implies \Omega \backslash A \in \mathcal{F}$$

3.
$$A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

Často $\mathcal{F}=\mathcal{P}(\Omega)$, to je možné vždy, když je Ω spočetná, např. pro $\Omega=\mathbb{R}$ to již nejde.

Definice (Pravděpodobnost): $P: \mathcal{F} \to [0,1]$ se nazývá pravděpodobnost (probability), pokud:

1.
$$P(\emptyset) = 0, P(\Omega) = 1$$
, a

2.
$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$
, pro libovolnou posloupnost po dvou disjunktních jevů **TODOOT**

Šance (odds) jevu A je $O(A) = \frac{P(A)}{P(A^c)}$. Např. šance na výhru je 1 ku 2 znamená, že pravděpodobnost výhry je $\frac{1}{3}$; šance, že na kostce padne šestka je 1 ku 5.

Konvence:

- "A je jistý jev" znamená P(A)=1. Také se říká, že A nastáva skoro jistě (almost surely), zkráceně s.j. (a.s.).
- \bullet "A je nemožný jev" znamená P(A) = 0.

$$P(A) = 0 \Rightarrow ? A = \emptyset$$

$$\leftarrow$$
 axiom

$$\rightarrow$$
 platí často, ne vždy

 \bullet Např. A=střed kruhu (házení šipek na terč) $\implies P(A)=0$ B spočetná (konečná, velká jako $\mathbb N)$ množina:

$$P(B) = 0 + 0 + 0 + \dots = 0$$

$$B_i$$
 je *i*-tý bod, $B = \bigcup B_i$

Věta (Vlastnosti pravděpodobnostního prostoru): *V pravděpodobnostním prostoru* (Ω, \mathcal{F}, P) platí pro $A, B \in \mathcal{F}$:

1.
$$P(A) + P(A^c) = 1$$

$$2. A \subseteq B \implies P(A) < P(B)$$

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4. $P(A_1 \cup A_2 \cup ...) \leq \sum_i P(A_i)$ (subaditiva, Booleova nerovnost) (nevyžadujeme disjunktnost, pak by platila rovnost)

Důkaz:

1.
$$\Omega = A \cup A^c$$
; A, A^c disj.,
 $1 = P(\Omega) = P(A) + P(A^c)$

2.
$$P(B) = P(A) + P(B \setminus A) \ge P(A)$$

3. cvičení **TODOOT**

4. trik zdisjunktnění: z $A_1, A_2...$ uděláme disjunktní množiny

$$B_1 = A_1, B_2 = A_2 \backslash A_1, B_3 = A_3 \backslash A_1 \cup A_2 \dots$$

$$B_i \subseteq A_i \implies P(B_i) \le P(A_i)$$

$$B_i \cap B_j = \emptyset : j < i \dots B_i \cap B_j \subseteq B_i \cap A_j = \emptyset$$

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$$

$$\subseteq ok$$

opačná inkluze TODOOT

$$P(\bigcup A_i = P(\bigcup B_i) = \sum P(B_i) \le \sum P(A_i)).$$

Příklad (Pravděpodobnostní prostory):

- 1. Konečný s uniformní pravděpodobností Ω je libovolná konečná množina, $\mathcal{F} = \mathcal{P}(\Omega)$, $P(A) = \frac{|A|}{|\Omega|}$.
- 2. Diskrétní

 $\Omega = \{\omega_1, \omega_2 \dots\}$ je libovolná spočetná množina. Jsou dány $p_1, p_2 \dots \in [0, 1]$ se součtem 1. $P(A) = \sum_{i:\omega_i \in A} p_i$ (cinknutá loterie, nějaké možnosti mají jiné procenta)

3. Spojitý

 $\Omega \subseteq \mathbb{R}^d$ pro vhodné d (Ω např. uzavřená nebo otevřená) \mathcal{F} vhodná (obsahuje např. všechny otevřené množiny) $f: \Omega \to [0,1]$ je funkcne taková, že $\int_{\Omega} f(x) dx = 1$. $P(A) = \int_{A} f(x) dx$

Speciální případ: $f(x)=1/V_d(\Omega)$ $P(A)=\frac{V_d(A)}{V_d(\Omega)},$ kde $V_d(A)=\int_A 1$ je d-rozměrný objem A.

4. Bernoulliho krychle - nekonečné opakování $\Omega = S^{\mathbb{N}}$, kde S je diskrétní s pravděpodobností Q, \mathcal{F} vhodná (obsahuje např. všechny množiny tvaru $A = A_1 \times \cdots \times A_k \times S \times S \times \cdots$) $P(A) = Q(A_1) \dots Q(A_k)$

Příklad (Nepříklady):

1. Náhodné přirozené číslo: můžeme si vybrat mnoha způsoby, Ale všechna přirozená čísla nemají stejnou pravděpodobnost.

není možné, aby měly všechny stejnou nenulovou pravděpodobnost, protože pokud $P(0) = P(1) = P(2) \cdots = P$ tak $P(\mathbb{N}) = p + p + p \cdots = \infty$.

- 2. Náhodné reálne číslo
- 3. Betranův paradox

Definice (Podmíněná pravděpodobnost): Pokud $A, B \in \mathcal{F}$ a P(B) > 0, pak definujeme podmíněnou pravděpodobnost A při B (probability of A given B) jako

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Q(A) := P(A|B). Pak (Ω, \mathcal{F}, Q) je pravděpodobností prostor.

Definice (Zřetězené podmíňování): $P(A \cap B) = P(B)P(A|B)$

Věta: Pokud $A_1, \ldots A_n \in \mathcal{F}$ a $P(A_1, \cap \cdots \cap A_n) > 0$, tak

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)...TODOOT$$

2 Druhá přednáška

2.1 Opakování

- 1. definice pravděpodobnostního prostoru (Ω, \mathcal{F}, P) : dva axiomy,
- 2. naivní pravděpodobnostní prostor: Ω konečná, $\mathcal{F} = \mathcal{P}(\Omega)$ $P(A) := |A|/|\Omega|$
- 3. **diskrétní** pravděpodobnostní prostor: $\Omega = \omega_1, \omega_2, ..., \mathcal{F} = \mathcal{P}(\Omega), \sum_i p_i = 1 P(A) := \sum_{i:\omega_i \in A} p_i$
- 4. **geometrický** pravděpodobnostní prostor: $\omega \subseteq \mathbb{R}^d$ s konečným objemem, $P(A) := V_d(A)/V_d(\Omega)$
- 5. pravděpodobnostní prostor **spojitý s hustotou**: $\Omega \subseteq \mathbb{R}^d$ s funkcí f, kde $\int_{\Omega} f = 1$, $P(A) := \int_A f$

V pravděpodobnostním prostoru (Ω, \mathcal{F}, P) platí pro $A, B \in \mathcal{F}$

- 1. $P(A^c) = 1 P(A) \dots (A^c = \Omega \backslash A)$
- $2. \ A \subseteq B \implies P(A) \le P(B)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$... PIE
- 4. $P(A_1 \cup A_2 \cup ...) \leq \sum_i P(A_i)$ (subaditivita, Booleova nerovnost)
- 5. Definujeme podmíněnou pravdě
podobnost (pro P(B)>0).

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

6. Q(A) = P(A|B) splňuje axiomy pro pravděpodobnost.

$$P(\emptyset|B) = 0$$

$$P(\Omega|B) = \frac{P(B)}{P(B)} = 1$$

$$P(A_1 \circ A_2|B) = \frac{P((A_1 \circ A_2) \cup B)}{P(B)} = \frac{P((A_1 \cap B) \cup (A_2 \cap B))}{P(B)} = \frac{P(A_1 \cap B)}{P(B)} = P(A_1|B) + P(A_2|B)$$

Definice (Zřetězené podmíňování):

$$P(A \cup B) = P(B)P(A|B)$$

Věta: Pokud $A_1, \ldots, A_n \in \mathcal{F}$ a $P(A_1 \cap \cdots \cap A_n) > 0$, tak

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) =$$

$$P(A_1)P(A_2|A_1)P(A_3)|A_1 \cap A_2) \dots P(A_n|\bigcap_{i=1}^{n-1} A_i)$$

Důkaz: indukcí □

Příklad: Příklad: vytáhneme 3 karty z balíčku 52 karet. Jaká je P(žádne srdce)? $A_i = \text{i-t\'a}$ karta není srdce

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \times P(A_2|A_1) P(A_3|A_2 \cap A_1) = \frac{13 * 3}{52} \times \frac{13 * 3 - 1}{51} \times \frac{13 * 3 - 2}{50}$$

$$\frac{\text{\#dobrých}}{\text{\#všech}} = \frac{\binom{39}{3}}{\binom{52}{3}}$$

Definice: Spočetný systém množin $B_1, B_2, ... \in \mathcal{F}$ je rozklad (partition) Ω , Pokud

- 1. $B_i \cap B_j = \emptyset$ pro $i \neq j$ a
- 2. $\bigcup_i B_i = \Omega$.

Věta: Věta o úplné pravd. = Rozbor všech možností $Pokud\ B_1, B_2, ...$ je rozklad Ω a $A \in \mathcal{F}$, tak

$$P(A) = \sum_{i} P(B_i)P(A|B_i)$$

(sčítance s $P(B_i) = 0$ považujeme za 0).

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \dots$$

(sjednocení disjunktních množin)

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(B_i)P(A|B_i)$$

Příklad: Máme tři mince: P+O, P+P, O+O. Jaká je pravděpodobnost, že padne orel? Označíme M_1, M_2, M_3 pro P+O, P+P, O+O.

$$P(O) = P(M_1)P(O|M_1) + P(M_2)P(O|M_2) + P(M_3)P(O|M_3)$$
$$= \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = \frac{1}{2}$$

Rychlejší je vypsat si strom a pak posčítat výsledné jevy

Příklad (Gambler's ruin - zbankrotování hazardního hráče.): Máme a korun, náš protihráč b korun. Hrajeme opakovaně spravedlivou hru o 1kč, dokud někdo nepřijde o všechny peníze. Jaká je pravděpodobnost, že vyhrajeme?

Důkaz:

$$P_a = P(\mathbf{z} \text{ této pozice vyhrajeme})$$
 $P_0 = 0, P_n = 1 \dots (a+b=n)$
 $P(\mathbf{v}\hat{\mathbf{y}}\mathbf{h}\mathbf{r}\mathbf{a}|\mathbf{1}. \text{ kolo v}\hat{\mathbf{y}}\mathbf{h}\mathbf{r}\mathbf{a})P(\mathbf{1}. \text{ kolo v}\hat{\mathbf{y}}\mathbf{h}\mathbf{r}\mathbf{a})$
 $+P(\mathbf{v}\hat{\mathbf{y}}\mathbf{h}\mathbf{r}\mathbf{a}|\mathbf{1}. \text{ kolo prohra})P(\mathbf{1}. \text{ kolo prohra})$
 $\mathbf{v}\hat{\mathbf{y}}\mathbf{h}\mathbf{r}\mathbf{a} \Longrightarrow P_{a+1}, \mathbf{p}\mathbf{r}\mathbf{o}\mathbf{h}\mathbf{r}\mathbf{a} \Longrightarrow P_{a-1}$
 $P_a = \frac{P_{a+1}}{2} + \frac{P_{a-1}}{2}$
 $\mathbf{e}\mathbf{k}\mathbf{v}\mathbf{v}\mathbf{v}\mathbf{a}\mathbf{e}\mathbf{n}\mathbf{c}\mathbf{a} <=> \mathbf{p}\mathbf{a}$
 $P_a - P_{a-1} = P_{a+1} - P_a = \Delta$
 $P_a - P_{a-1} = P_{a+1} - P_a = \Delta$
 $P_a = \frac{a}{a+b} = \frac{a}{n}$

Věta (Bayesova Věta): Pokud B_1, B_2, \ldots je rozklad $\Omega, A \in \mathcal{F}, P(A) > 0$ a $P(B_j) > 0$, tak

$$P(B_j)|A) = \frac{P(B_j)P(A|B_j)}{P(A)} = \frac{P(B_j)P(A|B_j)}{\sum_i P(B_i)P(A|B_i)}.$$

(sčítance s $P(B_i) = 0$ považujeme za 0).

Důkaz:

$$P(B_j|A)P(A) = P(B_j)P(A|B_j)$$
$$P(A \cap B_j) = P(B_j \cap A)$$

Příklad: $N = \text{nemocn}\acute{y}, T = \text{testovan}\acute{y}, \text{specif. } P(N|T), \text{sens. } P(T|N).$

$$P(N|T) = \frac{P(N)P(T|N)}{P(N)P(T|N) + P(N^c)P(T|N^c)} = \frac{p*0.8}{p*0.8 + (1-p)*0.01}$$

$$p = 0.001 \dots 7\%$$

$$p = 0.0016 \dots 56\% \dots \text{momentální stav testování}$$

$$p = 0.05 \dots 80\%$$

Definice: Jevy $A, B \in \mathcal{F}$ jsou nezávislé (independenet) pokud $P(A \cap B) = P(A)P(B)$. Pak také platí P(A|B) = P(A), pokud P(B) > 0.

Definice: Jevy $\{A_i: i \in I\}$ jsou (vzájemně) nezávislé, pokud pro každou konečnou množinu $J \subseteq I$

$$P(\bigcap_{i \in J} A_i) = \prod_{i \in J} P(A_i).$$

Pokud podmínka platí jen pro dvouprvkové množiny J, nazýváme jevy $\{A_i\}$ po dvou nezávislé (pairwise independenet).

Definice: Nechť pro množiny z prostoru jevů platí

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$

a $A = \bigcup_{i=1}^{\infty} A_i$. Pak platí

$$P(A) = \lim_{i \to \infty} P(A_i).$$

Důkaz:

$$A = A_1 \cup (A_2 \backslash A_1) \cup (A_3 \backslash A_2) \cup \dots$$

$$P(A) = P(A_1) + P(A_2 \backslash A_1) + P(A_3 \backslash A_2) + \dots$$

$$\lim_{i \to \infty} (P(A_1) + \dots + P(A_i \backslash A_{i-1})) = \lim_{i \to \infty} P(A_i).$$

 $A_n \subset P, O^{\mathbb{N}}, A_n =$ mezi prvníminhody padl aspoň jednou orel.

$$P(A) = P(\geq 1 orelv \otimes hodech) = \lim_{n \to \infty} \dots = 1$$

Definice (Náhodná veličina): Mějme pravděpodobnostní prostor (Ω, \mathcal{F}, P) . Funkci $X : \Omega \to \mathbb{R}$ nazveme diskrétní náhodná veličina, pokud $I_m(X)$ je spočetná množina a pokud pro všechna reálna x platí

$${x \in \Omega : X(\omega) = x} \in \mathcal{F}.$$

Definice: Pravděpodobnostní funkce diskrétní náhodné veličiny X je funkce $p_X : \mathbb{R} \to [0,1]$ taková, že

$$p_X(x) = P(X = x) = P(\{x \in \Omega : X(\omega) = x\})$$

Definice: $\sum_{x \in I_m(X)} p_X(x) = 1$

Definice: $S := I_m(X)1, Q(A) := \sum_{x \in A} p_X(x)$ ($S, \mathcal{P}(S), Q$) je diskrétní pravděpodobnostní prostor.

Definice: Pro $S = \{s_i : i \in I\}$ spočetnou množinu reálných čísel a $c_i \in [0,1]$ $\sum_{i \in I} c_i = 1$ existuje pravděpodobnostní prostor a diskrétní n.v. X na něm taková, že $p_X(s_i) = c_i$ pro $i \in I$.

3 Třetí přednáška

Definice (Distribuční funkce): Distribuční funkce (cumulative distribution function, CDF) n.v. X je funkce

$$F_X(x) := P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

- 1. F_X je neklesajíci funkce
- 2. $\lim_{x\to-\infty} F_X(x)=0$
- 3. $\lim_{x\to+\infty} F_X(x) = 1$
- 4. F_X je zprava spojitá

Příklad: $X = \{0 \text{ s pravděpodobností } \frac{1}{2}, 1 \text{ s psravděpodobností } \frac{1}{2}\}$

Důkaz: F_X je neklesajíci funkce

$$\begin{array}{l} x < y \implies P(X \leq x) \leq P(X \leq y) \\ \text{protože } A = \omega : X(\omega) \leq x, \\ B = \omega : X(\omega) \leq y, \text{ pak} \end{array}$$

$$A \subseteq B \implies P(A) \le P(B)$$
 Důkaz: $\lim_{x \to +\infty} F_X(x) = 1$

$$A_n = X \le n$$
; platí $A_1 \subseteq A_2 \subseteq \dots$

Takže $\bigcup_{n=1}^{\infty} A_n = \Omega$, podle véty o spojitosti pak

$$P(\Omega) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} F_X(n)$$

druhá limita obdobně

Definice (Bernoulliho/alternativní rozdělení):

- 1. X = počet orlů při jednom hodu nespravedlivou mincí.
- 2. Značíme $X \sim Bern(p)$. Někdy se značí Alt(p).
- 1. Dáno $p \in [0, 1]$.
- 2. $p_X(1) = p$
- 3. $p_X(0) = 1 p$
- 4. $p_X(k) = 0$ pro $k \neq 0, 1$
- 1. Pro libovolný jev $A \in \mathcal{F}$ definujeme indikátorovou n.v. I_A :
- 2. $I_A(\omega) = 1$ pokud $\omega \in A, I_A(\omega) = 0$ jinak.
- 3. $I_A \sim Bern(P(A))$.

Definice:

- 1. X = počet orlů při n hodech nespravedlivou mincí.
- 2. Dáno $p \in [0,1]$ pravděpodobnost orla při jednom hodu.
- 3. Značíme $X \sim Bin(n, p)$.
- 1. $X = \sum_{i=1}^{n} X_i$ pro nezávislé n.v. $X_1, \dots X_n \sim Bern(p)$.
- 2. $p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ pro } k \in \{0, 1, \dots, n\}$

$$\sum_{k=1}^{n} \binom{n}{k} p^k (1-p)^{n-k} = 1$$

$$(p + (1 - p))^n = 1^n = 1$$

Definice (Hypergeometrické rozdělení):

- 1. X = počet vytažených červených míčku při n tazích, v osudí je K červených z N celkových míčků
- 2. Dáno n, N, K.
- 3. Značíme $X \sim Hyper(N, K, n)$.

4.
$$p_X(k) = P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{k}}$$

Definice (Poissonovo rozdělení (poasón)):

- 1. Značíme $X \sim Pois(\lambda)$.
- 2. Dáno reálné $\lambda > 0$.
- 3. $p_X(k) = \frac{\lambda^k}{k!}e^{-\lambda}$
- 4. $Pois(\lambda)$ je limitou $Bin(n, \lambda/n) \dots \sim X_n \dots \lambda$ pevné
- 5. X popisuje např. počet emailů, které dostaneme za jednu hodinu.

cheeme $\sum \frac{\lambda^k}{k!} e^{-1} = 1$

$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

$$P(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} =$$

$$= \frac{n(n-1)\dots(n-k+1)}{k!} \frac{\lambda^k}{n^k} \left(1 - \frac{1}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k} =$$

$$= \frac{\lambda^k}{k!} e^{-\lambda}$$

Poznámka (Poissonovo paradigma): $A_1, \dots A_n$ jsou (skoro-)nezávislé jevy s $P(A_i) = p_i$, $\lambda = \sum_j p_j$. Nechť n je velké, každé z p_i malé. Pak přibližně platí

$$\sum_{i=1}^{n} I_{A_i} \sim Pois(\lambda)$$

Definice (Geometrické rozdělení):

- 1. X = kolikátým hodem mincí padl první orel.
- 2. Značíme $X \sim Geom(p)$.
- 3. Dáno $p \in [0, 1]$.
- 4. $p_X(k) = (1-p)^{k-1}p$, pro k = 1, 2, ...
- 5. Někdy se tomuto rozdělení říká posunuté geometrické, a za normální geometrické se považuje rozdělení X-1, t.j. počet neúspěšných hodů.

Důkaz: chceme $\sum (1-p)^{k-1}p = 1$

$$= \frac{(1-p)^0 p}{1-(1-p)} = \frac{p}{p} = 1$$

Definice (Střední hodnota): Pokud X je diskrétní n.v., tak její střední hodnota (expectation) je označovaná $\mathbb{E}(X)$ a definovaná

$$\mathbb{E}(X) = \sum_{x \in Im(X)} x \times P(X = x),$$

pokud součet má smysl.

Nechť X je definovaná na diskrétním prostoru (Ω, \mathcal{F}, P) . Pak střední hodnotu lze také definovat

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega).$$

... vážený průměr **Důkaz:** dk., že obě definice souhlasí.

$$\sum_{x \in Im(X(\omega))} \sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{x \in Im(X)} (x \times P(\omega \in \Omega : X(\omega) = x))$$

Definice (Rozptyl): Rozptyl(variace) n.v. X nazveme číslo $\mathbb{E}((X - \mathbb{E}X)^2)$. Značíme jej var(X)

Věta:

$$var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Definice (LOTUS (Law of The Unconscious Statistist)): Pro reálnou funkci g a diskrtétni n.v. X je Y = g(X) také diskrétní n.v.

Věta (LOTUS): Pokud X je diskrétní n.v. a g reálná funkce, tak

$$\mathbb{E}(g(X)) = \sum_{x \in Im(X)} g(x)P(X = x)$$

pokud součet má smysl.

Důkaz:

$$Y = g(X)$$

$$\begin{split} \mathbb{E}Y &= \sum_{y \in Y} y \times P(Y = y)... \text{ definice} \\ &= \sum_{y \in Y} \sum_{x \in Im(X)} g(x) P(X = x) \\ &= \sum_{x \in Im(X)} g(x) P(X = x) \end{split}$$

The End