Development of a dynamic visco-elastic vehicle-soil interaction model for rut depth, energy and power determinations

Paul Ayers, George Bozdech – University of Tennessee Jeff Freeman - Mechanical Simulation Int., Inc. Al Reid, James O'Kins – US Army TARDEC

maintaining the data needed, a including suggestions for redu	and completing and reviewing the cing this burden, to Washington should be aware that notwithsta	e collection of information. Sen Headquarters Services, Directo	d comments regarding this trate for Information Operat	burden estimate or ar tions and Reports, 12	ions, searching existing data sources, gathering and by other aspect of this collection of information, 15 Jefferson Davis Highway, Suite 1204, Arlington ing to comply with a collection of information if it			
1. REPORT DATE		2. REPORT TYPE		3. DATES COVERED				
06 SEP 2011		N/A		-				
4. TITLE AND SUBTIT		5a. CONTRAC	T NUMBER					
	a dynamic visco-e	5b. GRANT NU	JMBER					
model for rut de	pth, and power do	5c. PROGRAM	ELEMENT NUMBER					
6. AUTHOR(S)				5d. PROJECT N	NUMBER			
Paul Ayers; Geo O'Kins	rge Bozdech; Jeff	Freeman; Al Rei	d; James	5e. TASK NUM	MBER			
O'Kins				5f. WORK UNIT NUMBER				
US Army RDEC	ANIZATION NAME(S) A COM-TARDEC 65 A; University of T Inc.	8. PERFORMING ORGANIZATION REPORT NUMBER 22268						
	TORING AGENCY NAM	` '	*	10. SPONSOR/MONITOR'S ACRONYM(S)				
48397-5000, USA	COM-TARDEC 65	501 E 11 Mile Rd	Warren, MI	TACOM/TARDEC/RDECOM				
40371-3000, OSF	•			11. SPONSOR/MONITOR'S REPORT NUMBER(S) 22268				
	AILABILITY STATEME Iblic release, distr							
13. SUPPLEMENTARY The original doc	NOTES ument contains co	olor images.						
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSI	FICATION OF:		17. LIMITATION	18. NUMBER OF PAGES 39	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR					

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Outline

- A) Review of Soil Model governing equations
- B) Development of pedo-transfer functions (terrain database to engineering properties)
- C) Ethan Allen Firing Range (EAFR) terrain database conversion
- D) Dynamic Soil Model example (Stryker tire with EAFR soil)

A) Soil Model Governing Equations

- 1) Boussinesq/Cerruti vertical stress distribution
- 2) Soil response Vertical visco-elasto-plastic displacement
- 3) Shear stress/deformation
 - Slip (longitudinal), Turning (lateral)
 - Bulldozing

Disturbed width for Wheeled vehicles (4 wheel)

$$DW = \frac{L}{\sin(\frac{L}{TR - R/2})} \cdot \left(\sin(\frac{\pi}{2} - \frac{W_r}{C_{\alpha r}} \frac{V^2}{g \cdot TR}) - \sin(\frac{\pi}{2} + \frac{W_r}{C_{\alpha r}} \frac{V^2}{g \cdot TR} - \frac{L}{TR - R/2})\right) + TW$$

Disturbed width for tracked vehicles

$$DW = \sqrt{\left(\frac{TL}{2} + \frac{v^2 \cdot TL}{4g\mu_l \cdot TR}\right)^2 + \left(TR - \frac{B}{2} + \frac{TW}{2}\right)^2} - \left(TR - \frac{B}{2} - \frac{TW}{2}\right)$$

UNCLASSIFIED

Compression Model Approaches

"Essentially, all models are wrong, but some are useful." --- George Box

- Wheel numerics Dimensionless numbers
- Bekker equation
- Boussinesq stress and Compression Index
- FEM or DEM

Boussinesq Vertical Stress Distribution due to Vertical Force

$$\sigma_z = \frac{3Pz^3}{2\pi[(x^2 + y^2 + z^2)]^{5/2}}$$

from Feda, 1978

Boussinesq Stress Distribution

- Assumes soil follows the theory of elasticity
- Assumes contact area of the tire is a rectangular plate
- Modified equation with Frohlich's concentration factor

$$\sigma_z = \frac{vWz^v}{2\pi(x^2 + y^2 + z^2)^{(v/2+1)}}$$

(Source: Wong, 2008)

2) Soil response - Vertical visco-elastoplastic displacement

- Compression index
- Influence of soil type and moisture
- Rebound
- Time dependent sinkage

$$\rho = \left[\rho_k + S_T(S_1 - S_k)\right] + C\log(\sigma_a/\sigma_k)$$

where S_T , S_1 and S_k are the moisture factors

Elasto-plastic deformation (rebound)

3) Shear stress/deformation

- Lateral/longitudinal stress-strain, shear deformation modulus (Janosi/Wong)
- Bulldozing (soil displacement) analysis, passive lateral earth pressure

Lateral shear deformation modulus slip displacement

$$\tau = \tau_{\text{max}} \cdot \left(1 - e^{-j/K}\right) = \left(c + \sigma \cdot \tan \phi\right) \cdot \left(1 - e^{-j/K}\right)$$

- Where τ is the shear stress,
- j is the shear displacement,
- c is the internal cohesion of the soil,
- ullet ϕ is the angle of internal friction of the soil,
- K is defined as the shear deformation modulus (Wong, 2001).

"Bulldozer" forces

(passive lateral earth pressure)

$$P = b(\frac{1}{2}\gamma Z^{2}N_{\phi} + 2cZ\sqrt{N_{\phi}})$$
$$N_{\phi} = \tan^{2}(45 + \phi/2)$$

B) Development of pedo-transfer functions

Engineering parameters needed by soil model

- compression index
- rebound index
- time constant
- cohesion
- friction angle
- shear deformation modulus
- density

Ethan Allen Firing Range Database (what we are starting with)

Elevation >=	= 0										
Hex code	Decimal code	Terrain Condition	Soil Type	Moisture content code	RCI 0-6 psi RCI 6-12		Snow Depth	Snow Density	Frost Depth	Thaw Depth	
4A00	18944	NFG	ML	NOR	50	80		0	0	0	0
4A02	18946	NFG	ML	NOR	50	80		0	0	0	0
Elevation >	152										
Hex code	Decimal code	Terrain Condition	Soil Type	Moisture content code	RCI 0-6 psi RCI 6-12		Snow Depth	Snow Density	Frost Depth	Thaw Depth	
530	0 44308	NFG	CL	SLP	80	80		0	0	0	0
530	0 21248	NFG	CL	SLP	80	80		0	0	0	0
530	4 21252	NFG	CL	SLP	80	80		0	0	0	0
530C	21260	NFG	CL	SLP	80	80		0	0	0	0
531	4 21268	NFG	CL	SLP	80	80		0	0	0	0
532C	21292	NFG	CL	SLP	80	80		0	0	0	0
533	4 21300	NFG	CL	SLP	80	80		0	0	0	0
534	0 21312	NFG	CL	SLP	80	80		0	0	0	0
534	4 21316	NFG	CL	SLP	80	80		0	0	0	0

Terrain database descriptors (off-road soil conditions):

- Terrain Condition Fine-grained soil NFG, coarse-grained soil NCG, road, other.
- Soil Type Uses Unified Soil Classification System (USCS) CL, CH, ML)
- Moisture content code NOR (normal) and SLP (slippery) for fine-grained soil, normal for coarsegrained soil)
- RCI 0-6 Soil strength 0-6 inches, RCI for fine-grained soils, CI for coarse-grained soils.
- RCI 6-12 Soil strength 6-12 inches, RCI for finegrained soils, CI for coarse-grained soils.

Pedo-transfer function

 Need to transfer existing terrain database descriptors to soil engineering properties.

Unified Soil Classification System (USCS)

	MAJOR DIVISI	SION	IS	GROUP SYMBOLS	TYPICAL NAMES	(excluding part	NTIFICATION PRO rticles larger than ctions on estimated	3 inches and	INFORMATION REQUIRED FOR DESCRIBING SOILS		
1	(I) ======V	2		3	4		5	6			
	6.0 as	0	an els or es)	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	Wide range in grain intermediate particle	n sizes and substantial le sizes	amounts of all	For undisturbed soils add information on stratification, degree of		
uer	of coarse than No.	DE PROPE	(Clean Gravels Little or no fines)	GP	Poorly graded gravels or gravel-sand mixtures, little or no fines	Predominatly one si intermediate sizes n	size or a range of sizes missing	s with some	compactness, cementation, moisture conditions, and drainage characteristics.		
gerth	Gravels han half of is larger the sleve size.	sieve)	the second	GM	Silty gravels, gravel-sand-silt mixtures		fines with low plasticity dures see ML below)	y (for	Give typical name: Indicate		
Coarse-grained Soils: More than half of material is larger than No. 200 sleve size. Ithde visible to the naked eye.	si ris	assification, the N-in, size ma equivalent to the No. 4 sieve) Clean (Gravels with Sands Fines (Little Appreciable or no amount of		GC	Clayey gravels, gravel-sand-clay mixtures	Plastic fines (for identification see CL below)		approximate percentage of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive			
alf of the to the	ion,	- 25	an rids the rids no	SW	Well-graded sands, gravelly sands, little or no fines	Wide range in grain intermediate sizes n	n sizes and substantial missing	amounts of all	information, and symbol in parentheses.		
Coal No.	on ts on ts on ts sifical	uivak	Clean Sands (Little or no fines)	SP	Poorly graded sands or gravelly sands, little or no fines	Predominantly one sintermediate sizes n	size or a range of size missing	s with some	Example:		
ore th	Sands than h e fracti han No size al class	90	a po	SM	Silty sands, sand-silt mixtures	Nonplastic fines or fines with low plasticity (for identification			Silty sand gravelly; about 20% hard, angular gravel particles 1/2in. maximum size: rounded and		
Coarse-g More than half of n No. 200 smallest particle visible to the	Sands More than half of coarse fraction is smaller than No. 4 sieve size (For visual classification equivalent		Sands with Fines (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures	Plastic fines (for identification procedures see CL below)			subangular sand grains, coarse to fine; about 15% non plastic fines with low dry strength; well compacted and moist in place; alluvial sand (SM).		
							lentification Procedures n smaller than No. 40 S	Hotel in breed many and family			
naller than size is about the						Dry Strength (Crushing Characteristics)	Dilatancy (Reaction to Shaking)	Toughness (Consistency near PL)			
ils smaller ze. we size		S 685		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	None to slight	Quick to slow	None	For undisturbed soils add information on structure, stratification, consistency in undisturbed and		
Fine-grained Soils half of material is si No. 200 sieve size. The No. 200 sieve	Silts and Clays	Silts and Clays Liquid limit is less than 50.		than 50		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	None to very slow	Medium	remolded states, moisture and drainage conditions.
of m 200	₹ S	Liqu		OL	Organic silts and organic silty clays of low plasticity	Slight to medium	Slow	Slight	Give typical name, indicate degree and character or plasticity, amount		
Fire-grained Soils More than half of material is smaller than No. 200 sieve size. The No. 200 sieve size is abo		nd Clays firmt is than 50.		MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Slight to medium	Slow to none	Slight to medium	and maximum size of coarse grains, color in wet conditions, odor (if any), local or geologic name, and other		
More	Soils and Clays	Liquid lim	D. D	СН	Inorganic clays of high plasticity, fat clays	High to very high	None	High	pertinent descriptive information, and symbol in parentheses.		
	S	OH OH		ОН	Organic clays and silts of medium to high plasticity	Medium to high None to very slow Slight to medium			Example: Clayey silt, brown; slightly plastic;		
	Highly Organic S	Readily identified by color odor snormy feel and						ieel and	 small percentage of fine sand; numerous vertical root holes; firm and dry and place; loess (ML). 		

The centroid percent Sand, Silt, and Clay and particle size for 9 USCS Classes

USCS Soil Type	%Clay Avg	%Silt Avg	%Sand Avg	Average Grain Size (mm)	Clay Index (0-5)	Grain Size Index (0-5)
СН	73.3	13.3	13.3	0.35	5.00	5.00
CL	47.2	24.0	28.9	0.76	3.21	2.32
мн	34.8	50.0	15.2	0.41	2.38	4.27
ML	13.6	61.5	24.9	0.67	0.93	2.63
sc	26.2	8.8	65.0	1.69	1.79	1.04
SM	8.8	26.2	65.0	1.70	0.60	1.04
SW/SP-SC	6.9	2.3	90.8	2.36	0.47	0.75
SW/SP-SM	2.3	6.9	90.8	2.36	0.16	0.75
SW & SP	1.7	1.7	96.7	2.51	0.11	0.70

Ethan Allen Firing Range terrain database over 1000 soil units (rows). Ignoring the elevation and non-soil units, a set of 13 unique soil units were identified as shown below.

	Soil		
Terrain	Туре	Moisture	RCI
NFG	CL	SLP	80
NFG	GM	NOR	150
NFG	ML	NOR	100
NFG	ML	NOR	65
NFG	ML	NOR	43.5
NFG	ML	NOR	30
ОТН	PT	NOR	17.5
NFG	SM	NOR	130
NFG	SM	NOR	110
NFG	SM	NOR	65
NCG	SP	NOR	130
NFG	CL	SLP	130
NFG	sc	SLP	∪ 80 ∟

Pedo-transfer functions

$$\varphi = 24.03 - 3.06 \cdot (Clay_Index) + 1.03 \cdot (Grain_Size_Index) + .0047 \cdot (RCI)$$

$$c = 8.65 + 12.15 \cdot (Clay_Index) - 8.94 \cdot (Grain_Size_Index) + .0070 \cdot (RCI)$$

$$C = .2175 + .01245 \cdot (\% Clay) - .000131 \cdot (\% Clay)^{2}$$

$$K = 21.74 - 3.22 \cdot (Clay_Index) + 0.47 \cdot (GSI)$$

$$\rho = 1.68 - 0.10 \cdot (Clay_Index) - 0.04 \cdot (GSI)$$

Rebound_Constant = $0.011 + 0.004 \cdot (GSI)$

$$\rho_K = 1.544 - 0.00556 \cdot (\% Clay) - 3.468 \times 10^{-5} \cdot (\% Clay)^2$$

$$S_T = 0.003461 + 1.742 \times 10^{-4} \cdot (\% Silt) - 2.980 \times 10^{-6} \cdot (\% Silt)^2$$
 (C, M)

$$S_T = 0.003217 + 3.251 \times 10^{-4} \cdot (\% Clay) - 5.385 \times 10^{-6} \cdot (\% Clay)^2$$
 (s)

C) Predicted Soil Engineering Properties for the EAFR Terrain Codes

Terrain	Soil Type	Moisture	RCI	Clay Index	Grain Size Index	Friction Angle (º)	c (kPa)	K (cm)	C (g/cm3)	Bulk Density,ρ (g/cm3)	Rebound Constant (g/cm3)	Time Constant (s)
NFG	CL	SLP	80	3.21	2.32	17.0	27.4	10	0.51	1.25	0.020	
NFG	GM	NOR	150			-	-	-			ı	-1
NFG	ML	NOR	100	0.93	2.63	24.4	0.0	18	0.36	1.48	0.022	
NFG	ML	NOR	65	0.93	2.63	24.2	0.0	18	0.36	1.48	0.022	
NFG	ML	NOR	43.5	0.93	2.63	24.1	0.0	18	0.36	1.48	0.022	
NFG	ML	NOR	30	0.93	2.63	24.0	0.0	18	0.36	1.48	0.022	
ОТН	PT	NOR	17.5									
NFG	SM	NOR	130	0.60	1.04	23.9	7.5	19	0.32	1.58	0.015	
NFG	SM	NOR	110	0.60	1.04	23.8	7.4	19	0.32	1.58	0.015	
NFG	SM	NOR	65	0.60	1.04	23.6	7.1	19	0.32	1.58	0.015	
NCG	SP	NOR	130	0.11	0.70	25.0	4.6	21	0.24	1.64	0.014	
NFG	CL	SLP	130	3.21	2.32	17.2	27.8	10	0.51	1.25	0.020	
NFG	sc	SLP	80	1.79	1.04	20.0	21.6	15	0.45	1.45	0.015	

D) Dynamic Soil Compression Model

- A 1 cm³ soil element, 5 cm below the soil surface, positioned along the tire centerline
- EAFR terrain CL (USCS), 80 psi (RCI), SLP (moisture)
- Simple Stryker tire (22.25 kN normal load) traveling at 3 m/s with a tire inflation pressure of 276 kPa (40 psi). (uniformly distributed rectangular surface load)

EAFR Soil Engineering Properties

- Terrain NFG
- Soil Type CL
- Moisture SLP
- RCI 80

- Clay Index 3.21
- Grain Size Index 2.32
- Friction Angle (°) 17.0
- c (kPa) 27.4
- K (cm) 10
- C (g/cm3) 0.51
- Bulk Density, ρ (g/cm3) 1.25
- Rebound Constant (g/cm3) 0.020
- Time Constant (s) 0.2

Stryker Soil Stress at 0.05 m - Centerline - (3 m/s)

Model E Output

Model P Output

Benefits of New Soil Model

- Theoretical (soil deformation, energy, power)
- Not dependent of scale
- Real-time modeling
- Include visco-elastic (time constant/rebound)
- Uses existing terrain database with pedotransfer functions.

Disclaimer: Reference herein to any specific commercial company, product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.