Toward Controlled Generation of Text

Hu, Yang, Liang, Salakhutdinov & Xing

ICML 2017

Motivation

 $^{^{1}} https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png$

Motivation

Distentangled Latent Representations

I love this movie \rightarrow I hate this movie \rightarrow

0.21	0.32	0.74	0.43
0.45	0.78	0.97	0.17

Motivation

Distentangled Latent Representations

I love this movie \rightarrow I hate this movie \rightarrow

0.21	0.32	0.74	0.43
0.45	0.78	0.97	0.17

I	love	this	movie	>
ı	hate	thic	movie	

0.68	0.12	0.33	1.00
0.68	0.12	0.33	0.00

Problem Statement

Generate fake samples similar to the source distribution by conditioning their generation on a tunable set of attributes.

Notation

 $x \Rightarrow$ source corpus

- \hat{x} \Rightarrow **output corpus** c \Rightarrow **structured code**, known label for each document z \Rightarrow **unstructured latent code**
 - $E \Rightarrow$ **encoder**, parameterized to generate z $G \Rightarrow$ **decoder/generator**, produces \hat{x} conditioned on (z, c) $D \Rightarrow$ **discriminator**, predicts c given \hat{x} .
- au $\;\Rightarrow\;$ **softmax temperature**, for decoder word prediction

Architecture

Unrolled Architecture

Optimization Objectives

Discriminator Optimization

 Maximize the likelihood of predicting the correct distribution of the structured code c given the labeled examples X_L.

$$\mathcal{L}_s(\theta_D) = -\mathbb{E}_{X_L}[logq_D(c_L|x_L)]$$

 Maximize the likelihood of predicting the correct distribution of the structured code c given the generated sentences x̂.
 Also minimize the empirically observed Shannon entropy of the discriminator predictions q_D(c'|x̂).

$$\mathcal{L}_{u}(\theta_{D}) = -\mathbb{E}_{p_{G}(\hat{x}|z,c)p(z)p(c)}[logq_{D}(c|\hat{x}) + \beta\mathcal{H}(q_{D}(c'|\hat{x}))]$$

Optimization Objectives

Generator Optimization

• Maximize the likelihood of predicting the original document x, given the latent spaces and the generator G(z,c).

$$\mathcal{L}_{VAE}(\theta_G, \theta_E; x) = -\mathbb{E}_{q_E(z|x)q_D(c|x)}[logp_G(x|z, c)] + KL(q_E(z|x)||p(z))$$

 Maximize the likelihood of generating the output documents with the correct structured code c

$$\mathcal{L}_{attr,c}(\theta_G) = -\mathbb{E}_{p(z)p(c)}[logq_D(c|\tilde{G}_{\tau}(z,c))]$$

Training Objectives

Additional Generator Optimization: Independency Constraint

The encoder is re-used to regenerate the latent distribution z devoid of the structured code c, from the output distribution $\tilde{G}_{\tau}(z,c)$.

$$\mathcal{L}_{attr,z}(\theta_G) = -\mathbb{E}_{p(z)p(c)}[logq_E(z|\tilde{G}_{\tau}(z,c))]$$

Training Objectives

Generator:

$$\begin{split} \min_{\theta_G} \mathcal{L}_G = & \mathcal{L}_{V\!AE} & \text{(reconstruction loss)} \\ & + \lambda_c \mathcal{L}_{attr,c} & \text{(style entanglement)} \\ & + \lambda_z \mathcal{L}_{attr,z} & \text{(independency constraint)} \end{split}$$

Discriminator:

$$\min_{\theta_D} \mathcal{L}_D = \mathcal{L}_s$$
 (labeled example classification)
$$+ \lambda_u \mathcal{L}_{\textit{attr},u} \quad \text{(synthesized example classification)}$$

Algorithm

Require: A large corpus of unlabeled sentences $\mathcal{X} = \{x\}$

A few sentence attribute labels $\mathcal{X}_L = \{(x_L, c_L)\}$

Parameters: $\lambda_c, \lambda_z, \lambda_u, \beta$ – balancing parameters

- 1: Initialize the base VAE by minimizing $\mathcal{L}_{\textit{VAE}}$ on \mathcal{X}
- 2: repeat
- 3: Train the discriminator D by minimizing \mathcal{L}_u
- 4: Train the generator G and the encoder E by minimizing \mathcal{L}_G and $\mathcal{L}_{V\!AE}$, respectively.
- 5: until convergence

Ensure: Sentence generator G conditioned on disentangled representation (z, c)

Wake-Sleep Algorithm

Simple Reconstruction

- 350K IMDB movie reviews
- Sentence length ≤ 15
- Total sentence count = 1.4*M*
- Vocab size = 16K

Binary Sentiment Classification and Conditioned Generation

- Stanford Sentiment Treebank-2: Movie reviews
 - 2837 training examples
 - Sentence length ≤ 15
- **Sentiment Lexicon**: Words used as sentences
 - 2700 words
 - Sentence length ≤ 15
- IMDB: Movie reviews
 - 16K training examples

Tense Classification and Conditioned Generation

- TimeBank² Lexicon
- 5250 words and phrases labeled with one of past, present, future
- Verbs in different tenses (e.g., was, will be) as well as time expressions (e.g., in the future)

²http://timeml.org

Parameters

- The generator and encoder are set as single-layer LSTM RNNs with input/hidden dimension of 300 and max decoding time-step count of 15
- Discriminators are set as Convolutional Nets
- VAE KL-Divergence weight linearly annealed from 0 to 1 during training
- ullet Softmax temperature au annealed from 1 to 0
- ullet Balancing λ weights all set to 0.1, eta is selected on the dev set

Results

Results

Without 'Independency Constraint'

the acting is bad ⇒ the movie is so much fun

none of this is very original ⇒ highly recommended viewing for its courage , and ideas

too bland ⇒ highly watchable

i can analyze this movie without more than three words ⇒ i highly recommend this film to anyone who appreciates music

With 'Independency Constraint'

the film is strictly routine \Rightarrow the film is full of imagination after watching this movie , i \Rightarrow after seeing this film , i 'm a felt that disappointed fan the acting is uniformly bad either \Rightarrow the performances are uniformly good this is just awful \Rightarrow this is pure genius

Varying the unstructured code z

("negative", "past") the acting was also kind of hit or miss .	("positive", "past") his acting was impeccable
("negative", "present") the era seems impossibly distant	("positive", "present") i 've always been a big fan of the smart dialogue .
("negative", "future") and that would be devastating!	("positive", "future") i will definitely be buying this on dvd

Commentary

- Non-parallel attribute-controlled generation
- Encoder independency constraint

 No quantifiable results for content preservation

Related Work

- Shen, Tianxiao, et al. 'Style transfer from non-parallel text by cross-alignment.' Advances in Neural Information Processing Systems. 2017.
- Kim, Yoon, et al. 'Adversarially regularized autoencoders for generating discrete structures.' arXiv preprint arXiv:1706.04223 (2017).
- Fu, Zhenxin, et al. 'Style Transfer in Text: Exploration and Evaluation.' arXiv preprint arXiv:1711.06861 (2017).
- Melnyk, Igor, et al. 'Improved Neural Text Attribute Transfer with Non-parallel Data.' arXiv preprint arXiv:1711.09395 (2017).

Questions?