ECE 595: Machine Learning I Lecture 05 Gradient Descent

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

Outline

Mathematical Background

- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 5: Gradient Descent

- Gradient Descent
 - Descent Direction
 - Step Size
 - Convergence
- Stochastic Gradient Descent
 - Difference between GD and SGD
 - Why does SGD work?

Gradient Descent

The algorithm:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \alpha^{(t)} \nabla f(\mathbf{x}^{(t)}), \qquad t = 0, 1, 2, \dots,$$

where $\alpha^{(t)}$ is called the **step size**.

Why is the direction $-\nabla f(x)$?

• Recall (Lecture 4): If x^* is optimal, then

$$\underbrace{\lim_{\epsilon \to 0} \frac{1}{\epsilon} [f(\mathbf{x}^* + \epsilon \mathbf{d}) - f(\mathbf{x}^*)]}_{\geq 0, \forall \mathbf{d}} = \nabla f(\mathbf{x}^*)^T \mathbf{d}$$

$$\Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{d} \geq 0, \forall \mathbf{d}$$

• But if $x^{(t)}$ is not optimal, then we want

$$f(\boldsymbol{x}^{(t)} + \epsilon \boldsymbol{d}) \leq f(\boldsymbol{x}^{(t)})$$

So,

$$\underbrace{\lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big[f(\mathbf{x}^{(t)} + \epsilon \mathbf{d}) - f(\mathbf{x}^{(t)}) \Big]}_{\leq 0, \text{ for some } \mathbf{d}} = \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}} \mathbf{d}$$

$$\Longrightarrow \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}} \mathbf{d} \leq 0$$

Descent Direction

Pictorial illustration:

- $\nabla f(x)$ is **perpendicular** to the contour.
- A search direction \mathbf{d} can either be on the positive side $\nabla f(\mathbf{x})^T \mathbf{d} \geq 0$ or negative side $\nabla f(\mathbf{x})^T \mathbf{d} < 0$.
- Only those on the negative side can reduce the cost.
- All such d's are called the descent directions.

The Steepest d

Previous slide: If $x^{(t)}$ is not optimal yet, then some d will give

$$\nabla f(\mathbf{x}^{(t)})^T \mathbf{d} \leq 0.$$

• So, let us make $\nabla f(\mathbf{x}^{(t)})^T$ as negative as possible.

$$d^{(t)} = \underset{\|d\|_2 = \delta}{\operatorname{argmin}} \nabla f(\mathbf{x}^{(t)})^T d,$$

- We need δ to control the magnitude; Otherwise \boldsymbol{d} is unbounded.
- The solution is

$$\boldsymbol{d}^{(t)} = -\nabla f(\boldsymbol{x}^{(t)})$$

Why? By Cauchy Schwarz,

$$\nabla f(\mathbf{x}^{(t)})^T \mathbf{d} \geq -\|\nabla f(\mathbf{x}^{(t)})\|_2 \|\mathbf{d}\|_2.$$

- Minimum attained when $\mathbf{d} = -\nabla f(\mathbf{x}^{(t)})$.
- Set $\delta = \|\nabla f(\mathbf{x}^{(t)})\|_2$.

Steepest Descent Direction

Pictorial illustration:

- Put a ball surrounding the current point.
- All d's inside the ball are feasible.
- Pick the one that minimizes $\nabla f(\mathbf{x})^T \mathbf{d}$.
- This direction must be parallel (but opposite sign) to $\nabla f(\mathbf{x})$.

Step Size

The algorithm:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \alpha^{(t)} \nabla f(\mathbf{x}^{(t)}), \qquad t = 0, 1, 2, \dots,$$

where $\alpha^{(t)}$ is called the step size.

1. Fixed step size

$$\alpha^{(t)} = \alpha.$$

2. Exact line search

$$\alpha^{(t)} = \underset{\alpha}{\operatorname{argmin}} f\left(\mathbf{x}^{(t)} + \alpha \mathbf{d}^{(t)}\right),$$

• E.g., if $f(x) = \frac{1}{2}x^T H x + c^T x$, then

$$\alpha^{(t)} = -\frac{\nabla f(\mathbf{x}^{(t)})^T \mathbf{d}^{(t)}}{\mathbf{d}^{(t)T} \mathbf{H} \mathbf{d}^{(t)}}.$$

• 3. Inexact line search:

Amijo / Wolfe conditions. See Nocedal-Wright Chapter 3.1.

Convergence

Let x^* be the global minimizer. Assume the followings:

- Assume f is twice differentiable so that $\nabla^2 f$ exist.
- Assume $0 \leq \lambda_{\min} I \leq \nabla^2 f(x) \leq \lambda_{\max} I$ for all $x \in \mathbb{R}^n$
- Run gradient descent with exact line search.

Then, (Nocedal-Wright Chapter 3, Theorem 3.3)

$$f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^*) \le \left(1 - \frac{\lambda_{\min}}{\lambda_{\max}}\right)^2 \left(f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*)\right)$$

$$\le \left(1 - \frac{\lambda_{\min}}{\lambda_{\max}}\right)^4 \left(f(\mathbf{x}^{(t-1)}) - f(\mathbf{x}^*)\right)$$

$$\le \vdots$$

$$\le \left(1 - \frac{\lambda_{\min}}{\lambda_{\max}}\right)^{2t} \left(f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)\right).$$

Thus, $f(\mathbf{x}^{(t)}) \to f(\mathbf{x}^*)$ as $t \to \infty$.

Understanding Convergence

- Gradient descent can be viewed as successive approximation.
- Approximate the function as

$$f(\mathbf{x}^t + \mathbf{d}) \approx f(\mathbf{x}^t) + \nabla f(\mathbf{x}^t)^T \mathbf{d} + \frac{1}{2\alpha} \|\mathbf{d}\|^2.$$

- We can show that the **d** that minimizes $f(\mathbf{x}^t + \mathbf{d})$ is $\mathbf{d} = -\alpha \nabla f(\mathbf{x}^t)$.
- This suggests: Use a **quadratic function** to locally approximate f.
- ullet Converge when curvature lpha of the approximation is not too big.

Advice on Gradient Descent

- Gradient descent is useful because
 - Simple to implement (compared to ADMM, FISTA, etc)
 - Low computational cost per iteration (no matrix inversion)
 - Requires only first order derivative (no Hessian)
 - Gradient is available in deep networks (via back propagation)
- Most machine learning has built-in (stochastic) gradient descents
- Welcome to implement your own, but you need to be careful
 - Convex non-differentiable problems, e.g., ℓ_1 -norm
 - Non-convex problem, e.g., ReLU in deep network
 - Trap by local minima
 - Inappropriate step size, a.k.a. learning rate
- Consider more "transparent" algorithms such as CVX when
 - Formulating problems. No need to worry about algorithm.
 - Trying to obtain insights.

Outline

Mathematical Background

- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 5: Gradient Descent

- Gradient Descent
 - Descent Direction
 - Step Size
 - Convergence
- Stochastic Gradient Descent
 - Difference between GD and SGD
 - Why does SGD work?

Stochastic Gradient Descent

Most loss functions in machine learning problems are separable:

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(g_{\theta}(\mathbf{x}^n), \mathbf{y}^n) = \frac{1}{N} \sum_{n=1}^{N} J_n(\theta). \tag{1}$$

For example,

Square-loss:

$$J(\theta) = \sum_{n=1}^{N} (g_{\theta}(\mathbf{x}^n) - y^n)^2$$

• Cross-entropy loss:

$$J(\boldsymbol{\theta}) = -\sum_{n=1}^{N} \left\{ y^n \log g_{\boldsymbol{\theta}}(\boldsymbol{x}^n) + (1-y^n) \log(1-g_{\boldsymbol{\theta}}(\boldsymbol{x}^n)) \right\}$$

Logistic loss:

$$J(\boldsymbol{\theta}) = \sum_{n=1}^{N} \log(1 + e^{-y^n \boldsymbol{\theta}^T \mathbf{x}^n})$$

Full Gradient VS Partial Gradient

Vanilla gradient descent:

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \underbrace{\eta^t \nabla J(\boldsymbol{\theta}^t)}_{\text{main computation}}.$$
 (2)

The full gradient of the loss is

$$\nabla J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \nabla J_n(\theta)$$
 (3)

Stochastic gradient descent:

$$\nabla J(\theta) \approx \frac{1}{|\mathcal{B}|} \sum_{\sigma P} \nabla J_n(\theta)$$
 (4)

where $\mathcal{B} \subseteq \{1, \dots, N\}$ is a random subset. $|\mathcal{B}| = \text{batch size}$.

SGD Algorithm

Algorithm (Stochastic Gradient Descent)

- **1** Given $\{(\mathbf{x}^n, \mathbf{y}^n) \mid n = 1, ..., N\}$.
- $oldsymbol{artheta}$ Initialize $oldsymbol{ heta}$ (zero or random)
- **3** For $t = 1, 2, 3, \dots$
 - Draw a random subset $\mathcal{B} \subseteq \{1, \dots, N\}$.
 - Update

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \eta^t \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla J_n(\boldsymbol{\theta})$$
 (5)

- If $|\mathcal{B}| = 1$, then use only one sample at a time.
- The approximate gradient is unbiased: (See Appendix for Proof)

$$\mathbb{E}\left[rac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}
abla J_n(oldsymbol{ heta})
ight] =
abla J(oldsymbol{ heta}).$$

Interpreting SGD

• Just showed that the SGD step is unbiased:

$$\mathbb{E}\left[\frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}
abla J_n(oldsymbol{ heta})
ight]=
abla J(oldsymbol{ heta}).$$

Unbiased gradient implies that each update is

- Step size: SGD with constant step size does not converge.
- If θ^* is a minimizer, then $J(\theta^*) = \frac{1}{N} \sum_{n=1}^{N} J_n(\theta^*) = 0$. But

$$\frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} J_n(\boldsymbol{\theta}^*) \neq 0,$$
 since \mathcal{B} is a subset.

• Typical strategy: Start with large step size and gradually decrease: $\eta^t \to 0$, e.g., $\eta^t = t^{-a}$ for some constant a.

Perspectives of SGD

Classical optimization literature have the following observations.

- Compared to GD in **convex** problems:
- SGD offers a trade-off between accuracy and efficiency
- More iterations
- Less gradient evaluation per iteration
- Noise is a by-product

Recent studies of SGD for non-convex problems found that

- SGD for training deep neural networks works
- SGD finds solution faster
- SGD find a better local minima
- Noise matters

GD compared to SGD

Smoothing the Landscape

Analyzing SGD is an active research topic. Here is one by Kleinberg et al. (https://arxiv.org/pdf/1802.06175.pdf ICML 2018)

• The SGD step can be written as GD + noise:

$$\mathbf{x}^{t+1} = \mathbf{x}^{t} - \eta(\nabla f(\mathbf{x}^{t}) + \mathbf{w}^{t})$$

$$= \underbrace{\mathbf{x}^{t} - \eta\nabla f(\mathbf{x}^{t})}_{\overset{\text{def}}{=}\mathbf{y}^{t}} - \eta\mathbf{w}^{t}.$$

- y^t is the "ideal" location returned by GD.
- Let us analyze y^{t+1} :

$$\mathbf{y}^{t+1} \stackrel{\text{def}}{=} \mathbf{x}^{t+1} - \eta \nabla f(\mathbf{x}^{t+1})$$
$$= (\mathbf{y}^t - \eta \mathbf{w}^t) - \eta \nabla f(\mathbf{y}^t - \eta \mathbf{w}^t)$$

• Assume $\mathbb{E}[\mathbf{w}] = 0$, then

$$\mathbb{E}[\boldsymbol{y}^{t+1}] = \boldsymbol{y}^t - \eta \nabla \mathbb{E}[f(\boldsymbol{y}^t - \eta \boldsymbol{w}^t)]$$

Smoothing the Landscape

• Let us look at $\mathbb{E}[f(\mathbf{y}^t - \eta \mathbf{w}^t)]$:

$$\mathbb{E}[f(\mathbf{y} - \eta \mathbf{w})] = \int f(\mathbf{y} - \eta \mathbf{w}) p(\mathbf{w}) d\mathbf{w},$$

where $p(\mathbf{w})$ is the distribution of \mathbf{w} .

- $\int f(y \eta w)p(w) dw$ is the **convolution** between f and p.
- $p(w) \ge 0$ for all w, so the convolution always **smoothes** the function.
- Learning rate controls the smoothness
- Too small: Under-smooth. You have not yet escaped from bad local minimum.
- Too large: Over-smooth. You may miss a local minimum.

Smoothing the Landscape

Reading List

Gradient Descent

- S. Boyd and L. Vandenberghe, "Convex Optimization", Chapter 9.2-9.4.
- J. Nocedal and S. Wright, "Numerical Optimization", Chapter 3.1-3.3.
- Y. Nesterov, "Introductory lectures on convex optimization", Chapter 2.
- CMU 10.725 Lecture https://www.stat.cmu.edu/~ryantibs/ convexopt/lectures/grad-descent.pdf

Stochastic Gradient Descent

- CMU 10.725 Lecture https://www.stat.cmu.edu/~ryantibs/ convexopt/lectures/stochastic-gd.pdf
- Kleinberg et al. (2018) "When Does SGD Escape Local Minima", https://arxiv.org/pdf/1802.06175.pdf

Appendix

Proof of Unbiasedness of SGD gradient

Lemma

If n is a random variable with uniform distribution over $\{1,\ldots,N\}$, then

$$\mathbb{E}\left[\frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}
abla J_n(oldsymbol{ heta})
ight] =
abla J(oldsymbol{ heta}).$$

Denote the density function of n as p(n) = 1/N. Then,

$$\mathbb{E}\left[\frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}\nabla J_n(\theta)\right] = \frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}\mathbb{E}\left[\nabla J_n(\theta)\right] = \frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}\left\{\sum_{n=1}^N J_n(\theta)p(n)\right\}$$
$$= \frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}\left\{\frac{1}{N}\sum_{n=1}^N J_n(\theta)\right\} = \frac{1}{|\mathcal{B}|}\sum_{n\in\mathcal{B}}\nabla J(\theta) = \nabla J(\theta).$$

Q&A 1: What is momentum method?

- The momentum method was originally proposed by Polyak (1964).
- Momentum method says:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \left[\beta \mathbf{g}^{t-1} + (1 - \beta) \mathbf{g}^t \right],$$

where $g^t = \nabla f(\mathbf{x}^t)$, and $0 < \beta < 1$ is the damping constant.

- Momentum method can be applied to both gradient descent and stochastic gradient descent.
- A variant is the Nesterov accelerated gradient (NAG) method (1983).
- Importance of NAG is elaborated by Sutskever et al. (2013).
- The key idea of NAG is to write x^{t+1} as a linear combination of x^t and the span of the past gradients.
- Yurii Nesterov proved that such combination is the best one can do with first order methods.

Q&A 1: What is momentum method?

Here are some references on momentum method.

- Sutskever et al. (2013), "On the importance of initialization and momentum in deep learning", http://proceedings.mlr.press/v28/sutskever13.pdf
- UIC Lecture Note https://www2.cs.uic.edu/~zhangx/teaching/agm.pdf
- Cornell Lecture Note http: //www.cs.cornell.edu/courses/cs6787/2017fa/Lecture3.pdf
- Yurii Nesterov, "Introductory Lectures on Convex Optimization", 2003. (See Assumption 2.1.4 and discussions thereafter)
- G. Goh, "Why Momentum Really Works", https://distill.pub/2017/momentum/

Q&A 2: With exact line search, will we get to a minimum in one step?

- No. Exact line search only allows you to converge faster. It does not guarantee convergence in one step.
- Here is an example. The function is called the rosenbrock function.

Q&A 3: Any example of gradient descent?

Consider the loss function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \| \boldsymbol{A} \boldsymbol{\theta} - \boldsymbol{y} \|^2$$

Then the gradient is

$$abla J(oldsymbol{ heta}) = oldsymbol{A}^T (oldsymbol{A} oldsymbol{ heta} - oldsymbol{y})$$

• So the gradient descent step is

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \underbrace{\boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{\theta}^t - \boldsymbol{y})}_{\nabla J(\boldsymbol{\theta}^t)}.$$

• Since this is a quadratic equation, you can find the exact line search step size (assume $\mathbf{d} = -\nabla f(\theta)$):

$$\eta = -\|\boldsymbol{d}\|^2/(\boldsymbol{d}^T\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{d}).$$

Q&A 4: In finding the steepest direction, why is δ unimportant?

- The constraint $\|\boldsymbol{d}\| = \delta$ is necessary for minimizing $\nabla f(\boldsymbol{x})^T \boldsymbol{d}$. Without the constraint, this problem is unbounded below and the solution is $-\infty$ times whatever direction \boldsymbol{d} that lives on the negative half plane of ∇f .
- ullet For any δ , the solution (according to Cauchy Schwarz inequality), is

$$\boldsymbol{d} = -\delta \frac{\nabla f(\boldsymbol{x})}{\|\nabla f(\boldsymbol{x})\|}.$$

You can show that this **d** minimizes $\nabla f(\mathbf{x})^T \mathbf{d}$ and satisfies $\|\mathbf{d}\| = \delta$.

- Now, if we use this ${\bf d}$ in the gradient descent step, the step size α will compensate for the δ .
- ullet So we can just choose $\delta=1$ and the above derivation will still work.

Q&A 5: What is a good batch size for SGD?

There is no definite answer. Generally you need to look at the validation curve to determine if you need to increase/decrease the mini-batch size. Here are some suggestions in the literature.

- Bengio (2012) https://arxiv.org/pdf/1206.5533.pdf [batch size] is typically chosen between 1 and a few hundreds, e.g. [batch size] = 32 is a good default value, with values above 10 taking advantage of the speedup of matrix-matrix products over matrix-vector products.
- Masters and Luschi (2018) https://arxiv.org/abs/1804.07612

 The presented results confirm that using small batch sizes achieves the best training stability and generalization performance, for a given computational cost, across a wide range of experiments. In all cases the best results have been obtained with batch sizes m = 32 or smaller, often as small as m = 2 or m = 4.