Modes of Operation

Mode 1 - Electronic Code Book(ECB) Mode

Mode 2 – Cipher Block Chaining(CBC) Mode

Mode 3 – Output Feedback(OFB) Mode

Mode 4 – Counter(CTR) Mode

Electronic Code Book(ECB) Mode

- a) Plaintext 'm' is divided into 'n' blocks.
- b) Each block is encrypted separately using Pseudorandom Permutation $\mathbf{F}_{\mathbf{k}}$ to generate 'n cipher's.
- c)This 'n' ciphers are combined into single cipher 'c'.

Cipher Block Chaining(CBC) Mode

- a) Plaintext 'm' is divided into 'n' blocks into m₁, m₂...m_n.
- b)' m_1 ' XOR IV(random Initialization Vector) is passed to \mathbf{F}_k to get ' c_1 ' and cycle is repeated for all m_1 .

Output Feedback(OFB) Mode

- a) Plaintext 'm' is divided into 'n' blocks into m₁, m₂...m_n.
- b)Random Intialization vector(IV) is passed to F_{k} .
- c)' $m_{_1}$ ' XOR with output of $F_{_k}$ to get ' $c_{_1}$ ' and cycle is repeated for all $m_{_i}$.

Counter(CTR) Mode

- a) Plaintext 'm' is divided into 'n' blocks into $m_1, m_2 ... m_n$.
- b)Random Intialization vector(ctr+1) is passed to $\mathbf{F}_{_{\mathbf{k}}}$ and ctr is incremented.
- c)' m_1 ' XOR with output of F_k to get ' c_1 ' and cycle is repeated for all m_i .

