DIGITAL CIRCUITS

Week-11, Lecture-4 Sequential Circuits

Sneh Saurabh 27th October, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Registers and Counters

Universal Shift Register: Functionality

- Unidirectional/Bi-directional shift registers:
 - ➤ A register capable of shifting in one direction only is a unidirectional shift register.
 - ➤ One that can shift in both directions is a bidirectional shift register.
- If the register has both shifts and parallel-load capabilities, it is referred to as a *universal shift register*

Mode Control		_
s ₁	s 0	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

Universal Shift Register: Implementation

- When $s_0s_1 = 00$, the present value of the register is applied to the D inputs of the flip-flops
- No change in output

Universal Shift Register: Shift Right

- When $s_0 s_1 = 01$, the D pin gets input from the left flip-flop
- Shift Right Operation is performed

Universal Shift Register: Shift Left

- When $s_0 s_1 = 10$, the D pin gets input from the right flip-flop
- Shift Left Operation is performed

Universal Shift Register: Parallel Load

- When $s_0 s_1 = 11$, the D pin gets input from I_0 , I_1 ...
- Parallel Load is performed

Serial Adder

- Only one full-adder is used to add two binary numbers
- More number of clock cycles required
- Only one hardware (Adder) is required

Homework:

 Analyze the operation (from M. Morris Mano, Section 6.2)

Counters: Basics

- A group of flip-flops that goes through a prescribed sequence of states upon the application of input pulses is called a counter
- **Prescribed sequence**: Can be binary number sequence or some other sequence
- One that follows binary number sequence is called binary counter
 - \triangleright An *n*-bit binary counter consists of *n* flip-flops and count from 0 to (2^n-1)
- **Inputs pulse**: clock or some other external signal

Two types:

- 1. Asynchronous or Ripple Counter: Clock signal for different flip-flops can be different (Q output of a flip-flop serves as clock input for some other flip-flop)
- 2. Synchronous Counter: All flip-flops clocked by the same clock pulse

Binary Ripple Counter

A_3	A_2	A_1	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- T pin is tied to "1"
- The output of each flip-flop is connected to the Clock input of the next flip-flop in sequence
- LSB flip-flop receives clock pulse
- All clock pins are negative edged triggered
 - ➤ Whenever there is a fall edge at clock input the output Q will toggle
- The signal propagates in a form of a ripple from one stage to another
- Example: 0011 to 0010, then to 0000, and finally to 0100

Binary Ripple Counter

Problem:

What will happen if the flip-flops are positive edge triggered (instead of negative edge triggered) in the adjoining circuit?

- LSB is complemented at every clock-pulse
- Any other bit in the sequence is complemented if its previous least significant bit goes from 0 to 1.
- It works as a down counter

A_3	A_2	A_1	A_0
1	1	1	1
1	1	1	0
1	1	0	1
1	1	0	0
1	0	1	1
1	0	1	0
1	0	0	1
1	0	0	0
0	1	1	1
0	1	1	0
0	1	0	1

Synchronous Binary Counter

A_3	A_2	A_1	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- It works on the observation that the flipflop is complemented when all the bits in the lower significant positions are equal to 1.
- $Count_enable = 0$, then J = K = 0
- Count_enable = 1, then
 J = K = 1 if all previous
 least significant stages are
 equal to 1

Synchronous Binary Up/Down Counter

A_3	A_2	A_1	A_0
1	1	1	1
1	1	1	0
1	1	0	1
1	1	0	0
1	0	1	1
1	0	1	0
1	0	0	1
1	0	0	0
0	1	1	1
0	1	1	0
0	1	0	1
0	1	0	0
0	0	1	1
0	0	1	0
0	0	0	1
0	0	0	0

■ Down Counter: A bit in any other position is complemented if all lower significant bits are equal to 0

Up and Down Counters can be combined

Digital Circuits: Practice Problems

Problems 6.1-6.12

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

Problems 7.18

from Fundamentals of Digital Logic with Verilog Design - S. Brown, Z. Vranesic

