Teil 1 (15 min ohne Unterlagen)

Aufgabe 1 (5min)

a) Beantworten Sie die folgenden Fragen zum allgemeinen Verständnis der behandelten Regelungstechnik im Zustandsraum?

Aussage	Ja, stimmt	Nein, falsch
Die Pole der Übertragungsfunktion G(s) entsprechen den Eigenwerten der Systemmatrix A.	X	
Die Darstellung eines linearen dynamischen zeitinvarianten Systems im Zustandsraum ist eindeutig.		X
Die Polvorgabe ist eine Methode um einen Zustandsregler auszulegen.	X	
Um einen Zustandsregler auszulegen muss das System beobachtbar sein.		X
Der Rang der Systemmatrix A entscheidet über die Beobachtbarkeit des dynamischen Systems.		X
Der Vorfilter V wird beim Zustandsregler benötigt damit die Strecke steuerbar ist.		X
Bei der Herleitung der Systembeschreibung im Zustandsraum werden Differentialgleichungen n-ter Ordnung durch n Differentialgleichungen 1.ter Ordnung ersetzt.	X	
Die Systemordnung im Zustandsraum ist immer grösser als die Systemordnung der Übertragungsfunktion.		X
Für die Systembeschreibung in Beobachtungsnormalform kann kein Zustandsregler ausgelegt werden.		X

- b) Das charakteristische Polynom eines dynamischen Systems lautet $p(s) = s^3 17s + 4$
 - Eine Nullstelle dieses Polynoms liegt bei s=4. Wie lauten die beiden anderen Nullstellen?
- c) Ein dynamisches System $\{A,b,c^T,d\}$ wird mit einem Zustandsregler r^T ausgelegt. Wie lautet die Systemmatrix F geschlossenen Regelkreises?

125

J3- 175 + 4

+1

4

χ.

Finnes: 6-1 LAS media. 230 know !!

Aufgabe 2 (5min)

- a) Wie lautet die allgemeine Beschreibung eines linearen, zeitinvarianten dynamischen Systems im Zustandsraum?
- b) Welche Normalform ist im nachfolgenden Signalflussbild dargestellt?
- c) Wie lauten die Systemmatrizen $\{A,b,c,d\}$ für das untenstehende Signalflussbild?

d) Entwerfen Sie für das gegebene System einen Zustandsregler r^T der die Pole des geschlossenen Systems zu $s_{1,2,3}=-1$ legt. Verwenden Sie dabei die Werte

$$a_0 = 2, a_1 = -2, a_2 = 3$$

$$b_0 = 1, b_1 = 0, b_2 = 2$$

Aufgabe 3 (5min)

- a) Heben Sie im nachfolgenden Signalflussbild mit unterschiedlichen Farben die folgenden Teile hervor: Regelstrecke, Zustandsregler, Beobachter.
- b) Wie lautet der Eingang (die Eingänge) des Beobachters?
- c) Warum empfiehlt sich für die gezeigte Regelstrecke ein PI-Zustandsregler? Zeichnen Sie den PI-Zustandsregler in das bestehende Signalflussbild ein.

Aufgabe 3 (5min)

- a) Heben Sie im nachfolgenden Signalflussbild mit unterschiedlichen Farben die folgenden Teile hervor: Regelstrecke, Zustandsregler, Beobachter.
- b) Wie lautet der Eingang (die Eingänge) des Beobachters?
- c) Warum empfiehlt sich für die gezeigte Regelstrecke ein PI-Zustandsregler? Zeichnen Sie den PI-Zustandsregler in das bestehende Signalflussbild ein.

E.

Skede : Ver 400 has

Stings e e and Scriett

Aufgabe 4 (5 min)

Bestimme zum folgenden Regelkreis eine Zustandsvariablendarstellung $(A_{total}, b_{total}, c_{total}^T)$ des geschlossenen Regelkreises, wenn die Darstellung der Regelstrecke durch (A, b, c^T) gegeben ist und der Regler ein P-Regler mit der Konstanten K ist.

ctom = ct