© Laurent Garcin MP Dumont d'Urville

Devoir à la maison $n^{\circ}09$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I -

- **I.1** Pour $A \in \mathcal{M}_n(\mathbb{R})$, on a $A = AI_n \in J$.
- **I.2** Soit $U \in J$ inversible; alors $I_n = UU^{-1} \in J$, puis $J = \mathcal{M}_n(\mathbb{R})$ d'après la question précédente.
- **I.3 I.3.a** Comme rg A = r, il existe des matrices P et Q inversibles telles que $\Delta = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = PAQ$: comme $A \in J$, on a aussi $\Delta \in J$.
 - **I.3.b** Soit A_i la matrice diagonale, dont les n-r derniers éléments diagonaux sont nuls, à l'exception du $(r-1+i)^{\text{ème}}$, qui vaut 1, ainsi que les r-1 premiers éléments diagonaux. Chaque matrice A_i , étant de rang r, est équivalente à A. Leur somme est diagonale, d'éléments diagonaux tous non nuls, donc inversible.
- **I.4** L'idéal nul est bilatère. Si J est un idéal bilatère non nul, on choisit A de rang r comme à la question précédente, puis les A_i construites : on a $A_i = P_i A Q_i$, donc chaque A_i est dans J, puis leur somme aussi. Alors, d'après **I.2**, $J = \mathcal{M}_n(\mathbb{R})$.

Partie II -

II.1 La matrice nulle de $\mathcal{M}_n(\mathbb{R})$ appartient évidemment à J_E .

De plus, si $M, N \in J_E$, alors $Im(M-N) \subset Im(M) + Im(-N) = Im(M) + Im(N) \subset E$ donc $M-N \in J_E$. J_E est donc un sous-groupe de $\mathcal{M}_n(\mathbb{R}), +)$.

Enfin, si $A \in \mathcal{M}_n(\mathbb{R})$ et $M \in J_E$, on a $Im(MA) \subset Im(M) \subset E$, donc $B \in J_E$.

 J_E est donc bien un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.

- II.2 II.2.a C'est du cours.
 - **II.2.b** Pour tout entier i compris entre 1 et q, $v(e_i) \in \text{Im}(v) \subset \text{Im}(u)$. Comme u induit un isomorphisme de S sur Im(u), chaque $v(e_i)$ admet un unique antécédent ε_i dans S par u.
 - **II.2.c** Il suffit de considérer l'application linéaire w vérifiant $w(e_i) = \varepsilon_i$ pour tout entier i compris entre 1 et q. Cette application w est déterminée de manière unique puisqu'on l'a définie sur une base de \mathbb{R}^q . De plus, v et $u \circ w$ coïncident sur la base canonique de \mathbb{R}^q donc sont égales.
 - **II.2.d** Il suffit de considérer les applications linéaires u et v canoniquement associées à A et B. Ce qui précède montre qu'il existe une application linéaire w de \mathbb{R}^q dans \mathbb{R}^p telle que $v=u\circ w$. Notons C la matrice de w dans les bases canoniques de \mathbb{R}^q et \mathbb{R}^p . L'égalité $v=u\circ w$ se traduit matriciellement par B=AC.
- **II.3 II.3.a** L'image d'une matrice est l'espace vectoriel engendré par ses colonnes. Si on note ici C_i la $i^{\text{ème}}$ colonne d'une matrice C, on a

$$\begin{split} \text{Im}(D) &= \text{vect}(D_1, ..., D_n, D_{n+1}, ..., D_{2n}) = \text{vect}(A_1, ..., A_n, B_1, ..., B_n) \\ &= \text{vect}(A_1, ..., A_n) + \text{vect}(B_1, ..., B_n) = \text{Im}(A) + \text{Im}(B) \end{split}$$

© Laurent Garcin MP Dumont d'Urville

- II.3.b Il suffit d'appliquer II.2.d.
- **II.3.c** On écrit W en blocs : $W = \begin{pmatrix} U \\ V \end{pmatrix}$, on obtient avec un produit par blocs C = AU + BV.
- **II.4 II.4.a** L'ensemble des rangs des éléments de J est une partie non vide de \mathbb{N} , majorée par n, donc admet un plus grand élément r. On note M_0 une matrice de J de rang r. On a alors $\forall M \in J$, $rg(M) \le r = rg(M_0)$.
 - **II.4.b** Soit $F = Im(M) + Im(M_0)$, et C la matrice du projecteur sur F dans la direction d'un quelconque supplémentaire. On a $Im(C) = Im(M) + Im(M_0)$, donc l'existence de $U, V \in \mathcal{M}_n(\mathbb{R})$ telles que $C = MU + M_0V$ d'après **II.3.c**. Puisque J est un idéal à droite, $C \in J$. Or $Im(M) \not\subset Im(M_0)$ donc $Im(M_0) \subsetneq F$. Le rang de C est la dimension de F qui est strictement plus grande que r: il V a contradiction.
 - **II.4.c** Pour un quelconque élément M de J, on doit donc avoir $Im(M) \subset Im(M_0)$. Ceci signifie que $J \subset J_{Im(M_0)}$.
 - **II.4.d** Réciproquement, si $A \in J_{Im(M_0)}$, on a $Im A \subset Im(M_0)$. D'après **II.2.d**, il existe C telle que $A = M_0C$, et donc $A \in J$. On conclut : $J = J_{Im(M_0)}$.
- II.5 On vient de montrer qu'un idéal à droite est bien de la forme J_E où E est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$. On peut conclure grâce à II.1 que les idéaux à droite de $\mathcal{M}_n(\mathbb{R})$ sont exactement les J_E où E est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$.

Partie III -

- **III.1** La matrice nulle de $\mathcal{M}_n(\mathbb{R})$ appartient évidemment à J^E .
 - De plus, si M, N \in J^E, E \subset Ker(M) + Ker(N) = \subset Ker(M) + Ker(-N) \subset Ker(M N) donc M N \in J^E. J^E est donc un sous-groupe de $(\mathcal{M}_n(\mathbb{R}), +)$.
 - Enfin, si $M \in J^E$ et $A \in \mathcal{M}_n(\mathbb{R})$, alors $E \subset Ker(M) \subset Ker(AM)$ donc $AM \in J^E$.
 - J^{E} est donc bien un idéal à gauche de $\mathcal{M}_{n}(\mathbb{R})$.
- III.2 III.2.a $S = \text{vect}(e_1, \dots, e_r)$ est un supplémentaire de Ker(u). On a vu que u induit un isomorphisme de S sur Im(u). Comme (e_1, \dots, e_r) est une famille libre de \mathbb{R}^n , $(u(e_1), \dots, u(e_r))$ est une famille libre de \mathbb{R}^p .
 - **III.2.b** On pose $f_i = u(e_i)$ pour tout entier i comprise entre 1 et r et on complète (f_1, \ldots, f_r) en une base (f_1, \ldots, f_p) de \mathbb{R}^p . On définit alors une application w de \mathbb{R}^p dans \mathbb{R}^q de la manière suivante. Pour $1 \le i \le r$, on pose $w(f_i) = v(e_i)$ et pour i > r, on pose $w(f_i) = 0$. On constate alors que si $1 \le i \le r$, $w(u(e_i)) = w(f_i) = v(e_i)$ et si i > r, $w(u(e_i)) = v(e_i) = 0$ car $e_i \in \text{Ker}(u) \subset \text{Ker}(v)$.
 - III.2.c Il suffit de considérer les applications linéaires u et v canoniquement associées à A et B. Ce qui prède montre qu'il existe une application linéaire w de \mathbb{R}^p dans \mathbb{R}^q telle que $v = w \circ u$. Notons C la matrice de w dans les bases canoniques de \mathbb{R}^p et \mathbb{R}^q . L'égalité $v = w \circ u$ se traduit matriciellement par B = CA.
- **III.3** On prend cette fois $D = \begin{pmatrix} A \\ B \end{pmatrix}$. On a pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $DX = \begin{pmatrix} AX \\ BX \end{pmatrix}$, de sorte que $Ker(D) = Ker(A) \cap Ker(B)$. Ainsi, $Ker(C) \subset Ker(D)$, on trouve $W = (U, V) \in \mathcal{M}_{n,2n}(\mathbb{R})$ telle que C = WD, et ainsi C = UA + VB.
- III.4 Si un idéal à gauche J est non nul, soit $d = \dim \operatorname{Ker}(M_0)$ la plus petite dimension du noyau d'un élément de J. Si, pour un M de J, $\operatorname{Ker}(M_0) \subsetneq \operatorname{Ker}(M)$, soit $C \in \mathcal{M}_n(\mathbb{R})$ de noyau $\operatorname{Ker}(M) \cap \operatorname{Ker}(M_0)$ (une matrice de projecteur, par exemple); par III.3, on trouve $U, V \in \mathcal{M}_n(\mathbb{R})$ telles que $C = UM + VM_0$, et donc $C \in J$. Or $\operatorname{Ker}(M) \cap \operatorname{Ker}(M_0) \subsetneq \operatorname{Ker}(M_0)$ donc la dimension du noyau de C est strictement plus petite que d, absurde. C'est donc que pour tout M de J, $\operatorname{Ker}(M_0) \subset \operatorname{Ker}(M)$.
 - Réciproquement, si $Ker(M_0) \subset Ker(M)$, par **III.2.c**, on trouve $C \in \mathcal{M}_n(\mathbb{R})$ telle que $M = CM_0$, donc $M \in J$. On a montré que $J = J^{Ker(M_0)}$.
 - ² On vient de montrer qu'un idéal à gauche est bien de la forme J^E où E est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$. On peut conclure grâce à **III.1** que les idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$ sont les J^E où E est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$.