

Simulated Annealing

Algoritmo Têmpera simulada

INSTITUTO DE INFORMÁTICA UNIVERSIDADE FEDERAL DE GOIÁS

Simulação do processo de tratamento térmico de têmpera de um sólido.

Aplicação a problemas de otimização, em que a pesquisa pelo mínimo de uma função objetivo corresponderá a procurar o valor mínimo de energia na matéria solidificada após tratamento térmico de têmpera.

Têmpera real vs simulada

Microestados	Soluções viáveis
Energia de um microestado	Qualidade de uma solução
Perturbação de um microestado	Transição para solução vizinha
Temperatura	Parâmetro de controle
Tempo de arrefecimento	Número de iterações
Microestado de energia mínima	Solução ótima global

Acomodação de moléculas

Estado desordenado das moléculas (início do processo) $(temperatura inicial = T_o)$

Estado ordenado das moléculas (fim do processo)

$$T_f \approx 0$$

$$T_i = \alpha T_{i-1}$$
 $0.1 < \alpha < 1$

$$T_{\eta} = \alpha^{\eta} T_{0} \qquad \eta \rightarrow \infty \qquad T_{\eta} \rightarrow 0$$

Variação da temperatura

$$T_{m} = \alpha^{m} T_{0}$$
 $m = \log_{\alpha} (T_{m} / T_{0})$

T ₀	$\alpha = 0.8$	$\alpha = 0.30$	$\alpha = 0.60$	$\alpha = 0.80$	$\alpha = 0.90$	$\alpha = 0.95$	$\alpha = 0.99$
0.5	3	6	13	28	59	122	619
1	3	6	14	31	66	135	688
5	4	8	17	39	81	167	848
10	4	8	19	42	88	180	917
50	5	9	22	49	103	211	1077
100	5	10	23	52	110	225	1146
1000	6	12	28	62	132	270	1375

Número de iterações para que $T_m = 0,001$

Variação do coeficiente de redução α

Faixa ideal								
r:	2000	20.1						

T ₀	$\alpha = 0.8$	$\alpha = 0.30$	$\alpha = 0.60$	$\alpha = 0.80$	$\alpha = 0.90$	$\alpha = 0.95$	$\alpha = 0.99$
0.5	3	6	13	28	59	122	619
1	3	6	14	31	66	135	688
5	4	8	17	39	81	167	848
10	4	8	19	42	88	180	917
50	5	9	22	49	103	211	1077
100	5	10	23	52	110	225	1146
1000	6	12	28	62	132	270	1375

Número de iterações para que $T_m = 0.001$

Pseudo-código

```
procedimento TEMPERA SIMULADA()
       s ← GerarSoluçãoInicial()
       T \leftarrow T_0
       enquanto condições de parada não for atingida faça
           s' \leftarrow EscolherRandomicamente(N(s))
           se_{s}(f(s') < f(s)) = nt\tilde{a}o
Problema de
           senão
minimização
                                                e^{-(f(s') - f(s))/T}
              Aceita s' com probabilidade
           fim se
           Atualiza (T)
       fim enquanto
                                      Critério de Metrópolis
    fim TEMPERA SIMULADA
```

Pseudocódigo da Têmpera Simulada

Ilustração

- Diminuição da temperatura;
- Problema de maximização.

Cálculo da Temperatura Inicial

i) $T_0 = -\overline{\Delta E}^+ / Ln(\chi_0)$ proposta por Johnson (1987)

onde $\overline{\Delta E}^+$ é a média aritmética, para um número randômico de perturbações, dos incrementos da função objetivo e χ_o é um valor empírico, em torno de 0.8.

Ex. $T_0 = -\overline{\Delta E}^+ / \text{Ln}(0.8)$ ou $T_0 = (4.48)$. $\overline{\Delta E}^+$, sendo $\overline{\Delta E}^+ = (\Delta E_1 + \Delta E_2 + ... + \Delta E_k) / k$, onde "k" é o número de termos em que $\Delta E > 0$ (positivos) e $1 \le k \le 100$.

Cálculo da Temperatura Inicial

ii)
$$T_0 = -\overline{\Delta E}^+ / Ln(\beta)$$
 proposta por Aarts & Korst (1989)

$$\beta = k_2 / [k_2 \cdot \chi_0 - (1 - \chi_0) \cdot k_1]$$

onde $\overline{\Delta E}^+$ e χ_o são os mesmos parâmetros da fórmula acima; k_1 é o número de perturbações em que $\Delta E < 0$ e k_2 , em que $\Delta E \ge 0$.

iii) $T_0 = -3\delta / Ln(\chi_0)$ proposta por Aarts & Korst [AAR89],

semelhante à fórmula "i", substituindo a média aritmética pelo desvio padrão de uma quantidade aleatória de termos em que a função objetivo sofre alteração (redução ou aumento).

Análise do Critério de Metropolis (probabilidade de aceitação)

ΔΕ	T = 0.1	T=0.5	T=1	T=10
0.001	99,00 %	99,80 %	99,90 %	99,99 %
0.1	36,79 %	81,87 %	90,48 %	99,00 %
1	0 %	13,53 %	36,79 %	90,48 %
10	0 %	0 %	0 %	36,79 %
50	0 %	0 %	0 %	0,67 %

Valores da Função: exp(-ΔE / T)

- Quanto maior f(s') f(s), menor a probabilidade de aceitação;
- Quanto maior T, maior a probabilidade de aceitação.

Critérios de parada

- Estagnação (Número de iterações sem melhora);
- Número de iterações (soluções visitadas);
- Qualidade da Solução;
- Tempo.

Referência/Créditos

- Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi.
 "Optimization by simulated annealing." science 220.4598 (1983): 671-680.
- Valdísio Viana. "Minicurso de metaheurísticas" Universidade Estadual do Ceará, Fortaleza, 2014.
- Jerffeson Souza. "Curso de otimização em engenharia de software"
 Universidade Estadual do Ceará, Fortaleza, 2015.

Obrigado!

Perguntas?

altinoneto@inf.ufg.br

