Лекция 4. Разрешимость группы монодромии

Список фактов с подсказками:

- Если группа транзитивна и порождена транспозициями, то она есть S_n (комбинаторный факт)
- Группа монодромии транзитивна (нужно, чтобы $\mathbb{C} \setminus p^{-1}(B')$ было линейно связно, что верно, так как второе множество конечно, тогда все пути можно опустить, чтобы они стали петлями в фундаментальной группе).
- Группа монодромии порождена транспозициями (нужно понять, как устроены петли в $\mathbb{C} \setminus p^{-1}(B')$).
- Если E_1 вложено в E_2 (то есть поднакрытие), то можно индуцировать эпиморфизм i^* из группы монодромии $G_2 \to G_1$.
- Неразрешимая группа не может быть образом разрешимой при эпиморфизме.
- Группа монодромии накрытия, заданного функцей, выраженной в радикалах, разрешима (ближайшая цель).

1 Разрешимость группы монодромии накрытия функции, выраженной в радикалах

Так или иначе, доказывать придется по индукции. База:

- $g(x) = c, G = S_1$.
- $g(x) = \sqrt[n]{x}, X = \{(x,y) \mid x = y^n\}, p : X \to \mathbb{C}, p(x,y) = x, B' = \{0\}, x = f(y) = y^n.$

$$S_{\{\sqrt[n]{1}\}} \supset G_{p,1} = \psi(\underbrace{\pi_1(\mathbb{C}\setminus\{0\})}_{\cong \mathbb{Z}}).$$

$$G_{p,1} = \langle \psi([\varphi]) \rangle, \varphi(t) = \exp(2\pi i t), \psi([\varphi])(z) = \widetilde{\varphi}_z(1).$$

Пусть
$$\widetilde{\varphi}(t)=z\exp(2\pi i\frac{t}{n}), p\circ\widetilde{\varphi}(t)=(z\exp(2\pi i\frac{t}{n}))^n=z^n\exp(2\pi it)=\exp(2\pi it)=\varphi(t).$$

Тогда $\widetilde{\varphi}$ — действительно поднятие φ . Таким образом $\psi([\varphi])(z)=\widetilde{\varphi}_z(1)=z\exp(\frac{2\pi i}{n})$. Стало быть группа монодромии \mathbb{Z}_n — разрешима.

Для шага нужно две вещи: любой полином от двух разрешенных функций и их композиция.

Определение 1. Пусть $p_1, p_2: E_1, E_2 \to B$ — два разветвлённых накрытия. Тогда $p_1 \oplus p_2: E_3 \to B, E_3 = \{z_1, z_2 \mid p_1(z_1) = p_2(z_2)\} \subset E_1 \times E_2, p(z_1, z_2) = p_1(z_1) = p_2(z_2)$ называется прямой суммой разветвлённых накрытий.

Прямая сумма разветвлённых накрытий есть разветвлённое накрытие: нужно выяснить, в чём содержится бифуркационное множество.

Утверждение 1. $B \subset B_1 \cup B_2$.

Доказательство. Пусть $b \in B \setminus (B_1 \cup B_2)$. Дано: $\exists U_1 \ni b, U_2 \ni b, \xi_1, \xi_2, \xi_j$: $p_i^{-1}(U_j) \to U_j \times F_j$.

Рассмотрим тогда $U_3=U_1\cap U_2$. $(p_1\oplus p_2)^{-1}(U_3)=\{(z_1,z_2)\in E_1\times E_2\mid p_1(z_1)=p_2(z_2)\in U_3\}\subset p_1^{-1}(U_3)\times p_2^{-1}(U_3)=V_3$. Нам нужно найти $\xi_3:V_3\to U_3\times F_1\times F_2$. Определим её как $\xi_3(z_1,z_2)=(p_1(z_1)=p_2(z_2),\xi_1(z_1)_2,\xi_2(z_2)_2)$. $z_j=\xi_j^{-1}(p_j(z_j),\xi_j(z_j)_2)$, значит это гомеоморфизм.

Проекция ξ_3 на первый сомножитель и есть $p_1 \oplus p_2$, поэтому корректность разветвлённого накрытия доказана.

Утверждение 2. $G_{p_1 \oplus p_2} \cong G < G_{p_1} \oplus G_{p_2}$.

Доказательство. Идея: сопоставить $\sigma = \psi_{p_1 \oplus p_2}([\varphi]) \mapsto (\psi_{p_1}([\varphi]), \psi_{p_2}([\varphi])) =$ (σ_1, σ_2) . Нужно показать, что отображение определено корректно.

Утверждение: $\psi_{p_1 \oplus p_2}([\varphi])(z_1, z_2) = (\sigma_1(z_1), \sigma_2(z_2))$, где $\sigma_j = \psi_{p_j}([\varphi])$. То есть, $\sigma_3(z_1, z_2) = (\sigma_1(z_1), \sigma_2(z_2)).$

B самом деле $\widetilde{\varphi}_{z_1,z_2}(t)=(\widetilde{\varphi}_{z_1}(t),\widetilde{\varphi}_{z_2}(t))\in E_3$, так как $p_1(\widetilde{\varphi}_{z_1}(t))=\varphi(t)=$ $p_2(\widetilde{\varphi}_{z_2}(t)).$

 $\psi_{p_1 \oplus p_2}([\varphi])(z_1, z_2) = \widetilde{\varphi}_{z_1, z_2}(1) = (\psi_{p_1}([\varphi])(z_1), \psi_{p_2}([\varphi])(z_2)).$ Зная это, определеим $\chi: G_{p_1 \oplus p_2} \to G_{p_1} \oplus G_{p_2}$ по формуле $\chi(\sigma_3) = \sigma_{3,1} \oplus \sigma_{3,2}$

Из доказанного, это корректный гомоморфизм. Докажем, что это мономорфизм. В самом деле, если образ какого-то элемента тривиален, то и сам элемент есть тривиальная перестановка (обе компоненты тривиальны).

Пемма. Пусть p_j — накрытие многочлена $f_j, p_j: X_j \to \mathbb{C}, p_3: X_3 \to \mathbb{C}$ накрытие $f_1 + f_2$. Тогда существует эпиморфизм накрытий $h: E_3 \to X_3$, $r\partial e \ p_1 \oplus p_2 : E_3 \to \mathbb{C}, E_3 \subset X_1 \times X_2.$

Доказательство. Положим $((b, x_1), b(b, x_2)) = (b, x_1 + x_2)$. Легко видеть, что $p_3 \circ h = p_1 \oplus p_2$, а также, что h — непрерывна. Более того, h — сюрьекция. Значит h — эпиморфизм.

Замечание. Аналогичная лемма дословно верна для произведения.

Лемма. Пусть $h: E_1 \to E_2$ эпиморфизм накрытий $p_i: E_i \to B$. Тогда существует индуцированный эпиморфизм $h_*: G_{p_1} \to G_{p_2}$.

Из всего этого, G_{p_1}, G_{p_2} — разрешимы $\Rightarrow G_{f_1+f_2}, G_{f_1\cdot f_2}$ разрешимы.