# WarpGAN: Automatic Caricature Generation

## CVPR2019 Oral

2019.09.24

발표자 박성현







# Introduction

#### **Caricature Generation**







# 1

# Introduction

#### **Various Studies on Caricature Generation**

| Approach          | Methodology                                                          |                                      | Examples                                    |      |        |
|-------------------|----------------------------------------------------------------------|--------------------------------------|---------------------------------------------|------|--------|
|                   | Study                                                                | Exaggeration Space                   | Warping                                     |      | 011 W. |
| Shape Deformation | Brennan <i>et al.</i> [8] Liang <i>et al.</i> [4] CaricatureShop [9] | Drawing Line 2D Landmarks 3D Mesh    | User-interactive User-interactive Automatic | [8]  | [9]    |
| Texture Transfer  | Zheng et al. [10] CariGAN [11]                                       | Image to Image Image + Landmark Mask | None<br>None                                | [10] |        |
| Texture + Shape   | CariGANs [12]<br>WarpGAN                                             | PCA Landmarks Image to Image         | Automatic<br>Automatic                      | [12] | Ours   |





# 1 In

## Introduction

CariGANs (SIGGRAPH 2018)







## Introduction

### **Image Warping**



(a) Global Parameters [14] [15] [16] (b) Dense Deformation Field [17]



(c) Landmark-based [18]

(d) Control Points Estimating





Figure 3: The generator module of WarpGAN. Given a face image, the generator outputs an image with a different texture style and a set of control points along with their displacements. A differentiable module takes the control points and warps the transferred image to generate a caricature.





#### **Generator - Texture Style Transfer**

| Nam            | ne Meaning               | Nar        | ne Meaning                |
|----------------|--------------------------|------------|---------------------------|
| $\mathbf{x}_p$ | real photo image         | $y^p$      | label of photo image      |
| $\mathbf{x}_c$ | real caricature image    | $y^c$      | label of caricature image |
| $E_c$          | content encoder          | R          | decoder                   |
| $E_s$          | style encoder            | D          | discriminator             |
| p              | estimated control points | $\Delta p$ | displacements of $p$      |
| M              | number of identities     | k          | number of control points  |

Table 2: Important notations used in this paper.



$$\mathcal{L}_{idt}^{p} = \mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}} [\|R(E_{c}(\mathbf{x}_{p}), E_{s}(\mathbf{x}_{p})) - \mathbf{x}_{p}\|_{1}]$$

$$\mathcal{L}_{idt}^{c} = \mathbb{E}_{\mathbf{x}_{c} \in \mathcal{X}_{c}} [\|R(E_{c}(\mathbf{x}_{c}), E_{s}(\mathbf{x}_{c})) - \mathbf{x}_{c}\|_{1}]$$

[Identity Loss]





#### **Generator - Automatic Image Warping**

| Nam            | ne Meaning               | Nar        | me Meaning                |
|----------------|--------------------------|------------|---------------------------|
| $\mathbf{x}_p$ | real photo image         | $y^p$      | label of photo image      |
| $\mathbf{x}_c$ | real caricature image    | $y^c$      | label of caricature image |
| $E_{c}$        | content encoder          | R          | decoder                   |
| $E_s$          | style encoder            | D          | discriminator             |
| p              | estimated control points | $\Delta p$ | displacements of $p$      |
| M              | number of identities     | k          | number of control points  |

Table 2: Important notations used in this paper.



[Control points & Displacement vectors]



$$f(\mathbf{q}) = \sum_{i=1}^k w_i \phi(||\mathbf{q} - \mathbf{p}_i'||) + \mathbf{v}^T \mathbf{q} + \mathbf{b}$$
[TPS Transformation]

$$G(\mathbf{x}, \mathbf{s}) = \text{Warp}\left(R(E_c(\mathbf{x}), \mathbf{s}), p, \Delta p\right)$$
[Generator]





#### **Appendix - Thin Plate Spline**

#### [Minimize the following function]

$$E_{ ext{tps}}(f) = \sum_{i=1}^K \|y_i - f(x_i)\|^2$$

$$E_{ ext{tps,smooth}}(f) = \sum_{i=1}^K \|y_i - f(x_i)\|^2 + \lambda \iint \left[ \left( rac{\partial^2 f}{\partial x_1^2} 
ight)^2 + 2 \left( rac{\partial^2 f}{\partial x_1 \partial x_2} 
ight)^2 + \left( rac{\partial^2 f}{\partial x_2^2} 
ight)^2 
ight] \mathrm{d}x_1 \, \mathrm{d}x_2 \, .$$

#### [Radial Basis Function (RBF)]

$$f(x) = \sum_{i=1}^K w_i arphi(\|x-c_i\|) \qquad \qquad arphi(r) = r^2 \log r$$











#### **Discriminator - Patch Adversarial Loss**

| Nam            | ne Meaning               | Nar        | ne Meaning                |
|----------------|--------------------------|------------|---------------------------|
| $\mathbf{x}_p$ | real photo image         | $y^p$      | label of photo image      |
| $\mathbf{x}_c$ | real caricature image    | $y^c$      | label of caricature image |
| $E_{c}$        | content encoder          | R          | decoder                   |
| $E_s$          | style encoder            | D          | discriminator             |
| p              | estimated control points | $\Delta p$ | displacements of $p$      |
| M              | number of identities     | k          | number of control points  |

Table 2: Important notations used in this paper.



$$\mathcal{L}_{p}^{G} = -\mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}, \mathbf{s} \in S}[\log D_{1}(G(\mathbf{x}_{p}, \mathbf{s}))]$$

$$\mathcal{L}_{p}^{D} = -\mathbb{E}_{\mathbf{x}_{c} \in \mathcal{X}_{c}}[\log D_{1}(\mathbf{x}_{c})] - \mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}}[\log D_{2}(\mathbf{x}_{p})]$$

$$-\mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}, \mathbf{s} \in S}[\log D_{3}(G(\mathbf{x}_{p}, \mathbf{s}))]$$

#### → Patch discriminator is trained as a 3-class classifier

 $D_1$ : Caricature /  $D_2$ : Photos /  $D_3$ : Generated Images





#### **Discriminator - Identity-Preservation Adversarial Loss**

| Nam            | e Meaning                | Nan        | ne Meaning                |
|----------------|--------------------------|------------|---------------------------|
| $\mathbf{x}_p$ | real photo image         | $y^p$      | label of photo image      |
| $\mathbf{x}_c$ | real caricature image    | $y^c$      | label of caricature image |
| $E_{c}$        | content encoder          | R          | decoder                   |
| $E_s$          | style encoder            | D          | discriminator             |
| p              | estimated control points | $\Delta p$ | displacements of $p$      |
| M              | number of identities     | k          | number of control points  |

Table 2: Important notations used in this paper.



$$\mathcal{L}_{g}^{G} = -\mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}, \mathbf{s} \in S}[\log D(y_{p}; G(\mathbf{x}_{p}, \mathbf{s}))]$$

$$\mathcal{L}_{g}^{D} = -\mathbb{E}_{\mathbf{x}_{c} \in \mathcal{X}_{c}}[\log D(y_{c}; \mathbf{x}_{c})]$$

$$-\mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}}[\log D(y_{p} + M; \mathbf{x}_{p})]$$

$$-\mathbb{E}_{\mathbf{x}_{p} \in \mathcal{X}_{p}, s \in S}[\log D(y_{p} + 2M; G(\mathbf{x}_{p}, \mathbf{s}))]$$

→ Discriminator is trained as a 3M-class classifier (M is the number of identities)





### **Overview of WarpGAN**



Figure 4: Overview of the proposed WarpGAN.





#### **Dataset**







#### **Comparison of Image Translation**



Figure 5: Comparison of 3 different caricature styles from WarpGAN and four other state-of-the-art style transfer networks. WarpGAN is able to deform the faces unlike the baselines.





## **Comparison of Caricature Generation**



Figure 10: Comparison with previous works on caricature generation. In each cell, the left and middle images are the input and result images taken from the baseline paper, respectively. The right images are the results of WarpGAN.





## **Ablation Study**



Figure 6: Different variants of the WarpGAN without certain loss functions.





#### **Shape Exaggeration Styles**



Figure 7: A few typical exaggeration styles learned by WarpGAN. First row shows hand-drawn caricatures that have certain exaggeration styles. The second and third row show the input images and the generated images of WarpGAN with the corresponding exaggeration styles. All the identities are from the testing set.





#### Customizing the exaggeration

| Input | $\alpha = 0.5$ | $\alpha = 1.0$ | $\alpha = 1.5$ | $\alpha = 2.0$ |
|-------|----------------|----------------|----------------|----------------|
|       |                |                |                |                |
|       |                |                |                |                |

Figure 8: The result of changing the amount of exaggeration by scaling the  $\Delta p$  with an input parameter  $\alpha$ .

$$\mathbf{p}'_i = \mathbf{p}_i + \Delta \mathbf{p}_i \rightarrow \mathbf{p}'_i = \mathbf{p}_i + \alpha * \Delta \mathbf{p}_i$$





#### **Quantitative Analysis**

#### [Face Recognition]

| Method              | COTS               | SphereFace [35]    |
|---------------------|--------------------|--------------------|
| Photo-to-Photo      | $94.81 \pm 1.22\%$ | $90.78 \pm 0.64\%$ |
| Hand-drawn-to-Photo | $41.26 \pm 1.16\%$ | $45.80 \pm 1.56\%$ |
| WarpGAN-to-Photo    | $79.00 \pm 1.46\%$ | $72.65 \pm 0.84\%$ |

Table 3: Rank-1 identification accuracy for three different matching protocols using two state-of-the-art face matchers, COTS and SphereFace [35].

#### [Perceptual Study]

| Method        | Visual Quality | Exaggeration |
|---------------|----------------|--------------|
| Hand-Drawn    | 7.70           | 7.16         |
| CycleGAN [13] | 2.43           | 2.27         |
| MUNIT [7]     | 1.82           | 1.83         |
| WarpGAN       | 5.61           | 4.87         |

Table 4: Average perceptual scores from 5 caricature experts for visual quality and exaggeration extent. Scores range from 1 to 10.



Figure 9: Example result images generated by the WarpGAN trained without texture/warping and with both.

