Schedule

Today: intersection points and distances

Next Monday: Extra problem sheet for Chapter 1.

Next Tuesday: Start Chapter 2.

Reminder: Term test 1 is at 1:30 - 3:00 p.m on 5th Oct

Test 1 covers to Section 2.1

Distances and intersection points

Recap: Lines in \mathbb{R}^2 or \mathbb{R}^3

	lines in \mathbb{R}^2	lines in \mathbb{R}^3
Point-parallel form	$\vec{x}(t) = (p_1, p_2) + t(v_1, v_2)$	$\vec{x}(t) = (p_1, p_2, p_3) + t(v_1, v_2, v_3)$
Parametric form	$x = p_1 + tv_1$ and $y = p_2 + tv_2$	$x = p_1 + tv_1, y = p_2 + tv_2$ and $z = p_3 + tv_3$
Two-point form		$\vec{x}(t) = (1-t)(p_1, p_2, p_3) + t(q_1, q_2, q_3)$
Point-normal form	$(n_1, n_2) \cdot (\vec{x} - (p_1, p_2)) = 0$?
Standard form	ax + by = c	?

Point-normal form for a plane in \mathbb{R}^3

$$(n_1, n_2, n_3) \cdot (\vec{x} - (p_1, p_2, p_3)) = 0.$$

Standard form for a plane in $\ensuremath{\mathbb{R}}^3$

$$ax + by + cz = d$$
.

The distance between a point P and a plane Π is the shortest distance between P and a point on Π .

The distance between a point P and a plane Π is the shortest distance between P and a point on Π .

An idea: find a point Q on the plane Π such that the directed line segment \overrightarrow{PQ} is normal (or perpendicular) to the plane.

The distance between a point P and a plane Π is the shortest distance between P and a point on Π .

An idea: find a point Q on the plane Π such that the directed line segment \overrightarrow{PQ} is normal (or perpendicular) to the plane.

Let $P(p_1, p_2, p_3)$ be a point in \mathbb{R}^3 and let ax + by + cz = d be a plane in \mathbb{R}^3 . We want to find a point $Q(q_1, q_2, q_3)$ on Π such that \overrightarrow{PQ} is normal to Π .

The distance between a point P and a plane Π is the shortest distance between P and a point on Π .

An idea: find a point Q on the plane Π such that the directed line segment \overrightarrow{PQ} is normal (or perpendicular) to the plane.

Let $P(p_1, p_2, p_3)$ be a point in \mathbb{R}^3 and let ax + by + cz = d be a plane in \mathbb{R}^3 . We want to find a point $Q(q_1, q_2, q_3)$ on Π such that \overrightarrow{PQ} is normal to Π .

- $aq_1 + bq_2 + cq_3 = d$ since Q is on Π
- (a, b, c) is parallel to $\vec{q} \vec{p}$

where $\vec{q} = (q_1, q_2, q_3)$ and $\vec{p} = (p_1, p_2, p_3)$.

Theorem Consider any plane Π . Let \vec{n} be any normal vector for the plane Π and let Q be any point on plane Π . Consider any other point P which is not on the plane Π . Then the distance between point P and plane Π is given by

$$extit{distance} = rac{|ec{n}\cdot(ec{q}-ec{p})|}{\|ec{n}\|}.$$

Theorem Consider any plane Π . Let \vec{n} be any normal vector for the plane Π and let Q be any point on plane Π . Consider any other point P which is not on the plane Π . Then the distance between point P and plane Π is given by

$$distance = \frac{|\vec{n} \cdot (\vec{q} - \vec{p})|}{\|\vec{n}\|}.$$

Example 1. Find the distance between the point P(1,2,3) and the plane with point-normal form equation $(1,2,1) \cdot (\vec{x} - (3,-1,0)) = 0$.

2. Find the distance from the origin to the plane x + 2y + 3z = 2.

Distance between a point to a line

Let P be a point and let L be a line. Then the distance between P and L is the shortest distance between P and point Q on the line.

Idea: find Q on the line L such that \overrightarrow{PQ} is perpendicular to L

Distance between a point to a line

Let P be a point and let L be a line. Then the distance between P and L is the shortest distance between P and point Q on the line.

Idea: find Q on the line L such that \overrightarrow{PQ} is perpendicular to L

Theorem Consider any line L. Let \vec{n} be any normal vector for line L and let Q be any point on line L. Consider any other point P which is not on line L. Then the distance between point P and line L is given by

$$distance = rac{|ec{n}\cdot(ec{q}-ec{p})|}{||ec{n}||}.$$

Distance between a point to a line

Let P be a point and let L be a line. Then the distance between P and L is the shortest distance between P and point Q on the line.

Idea: find Q on the line L such that \overrightarrow{PQ} is perpendicular to L

Theorem Consider any line L. Let \vec{n} be any normal vector for line L and let Q be any point on line L. Consider any other point P which is not on line L. Then the distance between point P and line L is given by

$$distance = \frac{|\vec{n} \cdot (\vec{q} - \vec{p})|}{\|\vec{n}\|}.$$

Example Find the distance between the point P(1,2) and the line L described by 2x + y = 1.

Find intersection points

Find the intersection point(s) of two lines or find the intersection point(s) of a line and a plane.

Find intersection points

Find the intersection point(s) of two lines or find the intersection point(s) of a line and a plane.

Use appropriate forms of lines or planes and find solutions of equations.

- To find the intersection point of two lines
- a) use parametric forms of lines or
- b) use one parametric form and one standard form of lines

Find intersection points

Find the intersection point(s) of two lines or find the intersection point(s) of a line and a plane.

Use appropriate forms of lines or planes and find solutions of equations.

- To find the intersection point of two lines
- a) use parametric forms of lines or
- b) use one parametric form and one standard form of lines
- To find the intersection point of a line and a plane use the parametric form of a line and the standard form of a plane.

- 1) Two lines are the same;
- 2) Two different lines but they are parallel;
- 3) Not the cases above.

- 1) two lines are the same;
- 2) two different lines but they are parallel;
- 3) Not the cases above.

You may also come across different situations in order to find the intersection point(s) of a line and a plane:

- 1) the line is on the plane;
- 2) the line is not on the plane but is parallel to the plane;
- 3) Not the cases above.

- 1) two lines are the same; infinitely many intersection points
- 2) two different but they are parallel; They do not have an intersection point;
- 3) Not the cases above.

If they are lines in \mathbb{R}^2 , then these two lines have a single intersection point. If they are lines in \mathbb{R}^3 , it might have one intersection point but it might also not intersect.

You may also come across different situations in order to find the intersection point(s) of a line and a plane:

- 1) the line is on the plane;
- 2) the line is not on the plane but is parallel to the plane;
- 3) Not the cases above.

- 1) two lines are the same; infinitely many intersection points
- 2) two different but they are parallel; They do not have an intersection point;
- 3) Not the cases above.

If they are lines in \mathbb{R}^2 , then these two lines have a single intersection point. If they are lines in \mathbb{R}^3 , it might have one intersection point but it might also not intersect.

You may also come across different situations in order to find the intersection point(s) of a line and a plane:

- the line is on the plane; infinitely many intersection points, i.e., all the points of the line are on the plane;
- the line is not on the plane but is parallel to the plane;They do not have an intersection point;
- 3) Not the cases above. only one intersection point.

Examples

- 1. Find the point of intersection of the line L_1 : $\vec{x}(t) = (1,1,2) + t(2,1,-1)$ with the line L_2 : $\vec{x}(s) = (0,1,2) + s(1,-1,1)$.
- 2. Find the point of intersection of the line $\vec{x}(t) = (2,1,3) + t(2,-2,1)$ with the plane x+2y-z=7.
- 3. Find the point of intersection of the lines L_1 : $\vec{x}(t) = (1,0) + t(3,-1)$ and L_2 : 2x y = 6.