# Using Reinforcement Learning to solve the pendulum swing up

Bruno Costa

June 23, 2014

### 1 Objective

We want to solve the pendulum swing-up problem [Figure 1] using Reinforcement Learning techniques, more specifically, using Actor-Critic framework. For that, we will consider both action and state space as continuos, and for such, we will need to use a Function Approximator (FA) for them both. The FA we will use is the tile coding. For the sake of organization, we will split our goal in two:



Figure 1: The Pendulum Swing-up problem

#### Solve the pendulum balancing

In this scenario, the pendulum start on top, and our policy must only balancing it there.

#### Swing-up

Finally, in this scenario, we will consider the full problem, starting the pendulum on the bottom.

| Actor               |       |
|---------------------|-------|
| $\alpha$            | 0.005 |
| Critic              |       |
| $\alpha$            | 0.1   |
| Parameter           |       |
| $\overline{\gamma}$ | 0.97  |
| $\lambda$           | 0.65  |
| $\sigma$            | 0.2   |
| $\alpha$ -decay     | 0.75  |

Table 1: Parameters used in Pendulum Balancing

### 2 Pendulum Balancing

For the balancing, we changed the code and created a new environment. Now we have  $env\_mops\_sim\_up$  and the first observation is  $[\pi, 0]$ . Using the attributes listed in Table 1 we could make it as we can see in Figures 2, 3 and 4.



Figure 2: Total reward for each trial in the balacing problem

As we can see, it works (Figure 5). In Figure 2 we can see that the average reward is good after 40 trials, and as we low the  $\alpha$  learning rate after that, it stays high. Otherwise, it diverges! Another interesting thing to notice is the policy in Figure 3: as the angle goes to the left, the action is to push to the right and vice-versa. The critic, in Figure 4 shows that the central position is the best.



Figure 3: The Actor for the balancing problem



Figure 4: The Critic for the balancing problem

## 3 Sample Calculation

## 4 Results and Conclusions



Figure 5: The final position for the balancing problem