Отчет о выполнении лабораторной работы 1.4.5

Калашников Михаил, Б03-205

Цель работы: исследование зависимости частоты колебаний струны от величины натяжения, а также условий установления стоячей волны, получающейся в результате сложения волн, идущих в противоположных направлениях.

Рис. 1: Схема установки

В лабораторной работе использовалась установка, схема которой представлена на рис. . На массивной металлической рейке 1 установлены опора 2 и магнит 3, которые можно перемещать вдоль рейки, а также неподвижная опора 4. Один конец струны закреплен в изоляторе опоры 4. От него струна проходит между полюсами магнита и через опору 2, которая дает возможность струне перемещаться в горизонтальном направлении, неподвижный блок и соединяется с чашкой 5, на которую помещают грузы. Такое устройство необходимо для натяжения струны. К концу струны, закрепленному в изоляторе опоры 4, и к массивной металлической рейке 1 подводится переменное напряжение от звукового генератора 6. Движение струны вызывается силой Ампера, действующей на проводник с током в магнитном поле. Постепенно нагружая чашу, будем находить частоты колебаний струны, при которых образуются стоячие волны. Опыт проведем с пятью разным нагрузками при повышении и понижении частоты сигнала генератора. Зафиксированные значения занесем в таблицу ??.

N	m a	n	1	2	3	4	5	6	
11	m, g	ν, Hz							
1	949.9	1	127	255	383	512	640	771	
1		₩	127	255	383	511	640	771	
2	1442.3	1	157	314	470	629	787	946	
		₩	156	314	471	629	787	946	
3	1939.7	1	182	364	546	729	912	1096	
5		₩	182	364	547	729	913	1096	
4	2432.9	1	204	408	612	816	1021	1227	
		₩	203	407	611	816	1020	1225	
5	2852.1	1	223	446	669	893	1117	1341	
		#	222	445	669	892	1116	1340	

Таблица 1: Измерения частоты колебаний струны

Частота ν_n связана с числом полуволн n соотношением $\nu_n = n \frac{u}{2l} = nk_1$. Выразим скорость распространения звука в струне u. Коэффициент k_1 найдем с помошью МНК, построив экспериментальную зависимость $\nu_n(n)$.

$$u = 2lk_1, \sigma_u = u\sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{k_1}}{k_1}\right)^2}.$$

Рис. 2: График зависимости $\nu_n(n)$

	N	1	2	3	4	5	
	m, g 949.9		1442.3	1939.7	2432.9	2852.1	
	k_1, s^{-1}	128.67 ± 0.08	157.86 ± 0.08	182.8 ± 0.08	204.46 ± 0.08	223.61 ± 0.08	
Ì	$u, m \cdot s^{-1}$	128.67 ± 0.27	157.86 ± 0.33	182.8 ± 0.38	204.46 ± 0.42	223.61 ± 0.46	

Таблица 2: Вычисление скорости звука в струне

Аналогичным образом с помощью МНК может быть получен коэффициент k_2 , связывающий квадрат скорости звука u и массу нагрузки m. Построим график по точкам, которые мы получили ранее и проведем через них прямую. На основе коэффициента k_2 может быть рассчитана погонная плотность струны ρ_l .

Рис. 3: График зависимости $u^2(m)$

$$u^{2} = \frac{F}{\rho_{l}} = mk_{2}$$

$$k_{2} = 17.28 \pm 0.08 \ m^{2} s^{-2} g^{-1}$$

$$\rho_{l} = \frac{g}{k_{2}}, \sigma_{\rho_{l}} = \rho_{l} \frac{\sigma_{k_{2}}}{k_{2}}$$

$$\rho_{l} = 568.06 \pm 2.73 \ mg \cdot m^{-1}$$

Значение погонной плотности указанное на установке составляет

$$\rho_{l0} = 568.4 \ mg \cdot m^{-1}.$$