

School of Computer Science and Engineering Winter Semester 2023-24 Continuous Assessment Test - 1

SLOT: B2+TB2

Programme Name & Branch: B.Tech

Course Name & code: BCSE304L Theory of Computation

Class Number (s): VL2023240500760, 0763,0766, 0768, 0771, 0774,0784, 0789, 0797, 0845,

0861, 1014, 1015, 1026,1029, 1036, 1037, 1042,1043, 1045, 1047, 1049,1051

Faculty Name (s): Prof. Sathiya Kumar C, Prof. Anand M, Prof. Arumuga Arun R, Prof. Viswanathan P, Prof. Shalini L, Prof. Kannadasan R, Prof. Krishna Rani Samal K, Prof. Navamani T M, , Prof. Rajarajan G, Prof. Madiajagan M, Prof. Saritha Murali, Prof. Vishnupriya, Prof. Mohana CM, Prof. Krishnaraj N, Prof. Kanagaraj R, Prof. Anand Bihari, Prof. Somasundaram S K, Prof. Hussain Ahmed Chowdhury, Prof. Sarwesh P, Prof. Umamaheswari M, Prof. Konatham Sumalatha Prof. Sabyasachi Kamila, Prof. Uma Priya D

Exam Duration: 90

Maximum Marks: 50

Q.No.	Question					Max Marks
1.	a) Prove by induction on the following $ \begin{array}{c} (uv)^r = v^r u^r, \text{ where u and v are strings over } \Sigma \text{ and r is the reversal} \\ \text{operator.} \\ \text{(3 Marks)} \\ \text{(4 Marks)} \\ \text{(3) Assume } \Sigma = \{a,b,c\}, \text{ then find } \Sigma^2. \\ \text{(i) Assume } \Sigma = \{0,1\}, \text{ then find } \Sigma^3. \\ \text{(5) Given L in } \Sigma^*, \text{ can both L \& L}^c \text{ (c is a complementary operation) be finite?} \\ \text{(3 Marks)} \\ \end{array} $					
2.	Justify?	he following	ng NFA w	vith ε to NFA v	vithout ε.	10
		a	В	E		
	-> q0	q1	Ø	{q0,q2}		
	q1	q2	q1	q1		
	*q2	q2	Ø	q0		
	divisible b	uct a DFA by 6. Vert the fol	that acce	State : copts all the stri	$\frac{1}{\text{ngs over } \Sigma = \{a,b\} \text{ whose lengt}}{(5 \text{ Marks})}$	his 1
		0		1		
	-> q0	{q1,0	[3]	ql		
	*ql	q2		{q1,q2}		
	q2	q3		q0		
	*q3	Ø		q0		
	Starting state	ate : q0	1,q3}		(5 M	arks)

1) withining	e the giver		sition table.	4			1
		A	В				
> q0		ql	q2				
ql		q2	q4				
*q2	100	93	q2				
*q3		qn	94				
*q4		94	q5				
95			-	and the second			
((ab)*.(a	t the given $b+a^+b)$	2,q3,q4} Regular E	q5 xpression into Fu		(5Ma	arks)	
final State fi) Convert ((ab)*.(a	t the given $(b+a^+b)$) The Finite A	2,q3,q4} Regular E	xpression into Pu		a. (5Ma	arks)	
final State fi) Convert ((ab)*.(a	t the given $(b+a^+b)$) The Finite A	2,q3,q4} Regular E	xpression into Pu		a. (5Ma	arks)	
final State fi) Convert ((ab)*.(a	t the given b+a+b)) he Finite A t Regular I	2,q3,q4} Regular E	xpression into Pu		a. (5Ma	arks)	
n) Conver ((ab)*.(a Convert the equivalen	t the given b+a*b)) ne Finite A t Regular I	2,q3,q4} Regular E utomata (wexpression.	xpression into Pu		a. (5Ma	arks)	
n) Conver ((ab)*.(a Convert the equivalen	t the given b+a*b)) ne Finite A t Regular I q0	2,q3,q4} Regular E utomata (w Expression 1 q1	xpression into Pu		a. (5Ma	arks)	

School of Computer Science and Engineering

Winter Semester 2023-24

Continuous Assessment Test - 1

SLOT: B1+TB1

Programme Name & Branch: B. Tech

Course Name & code: BCSE304L Theory of Computation Class Number (5): V12023240500758, 0762, 0764, 0767, 0769, 0770, 0773, 0783, 0788, 0794, 0842, Class Number (8): VL/2022, 1027, 1028, 1031, 1034, 1038, 1040, 0859, 1011, 1013, 1024, 1027, 1028, 1031, 1034, 1038, 1040

Faculty Name (s) Prof. Sathiya Kumar C, Prof. Anand M, Prof. Lakshmanan K, Prof. Viswanathan P, Faculty Name (8): Frof. Shalini L. Prof. Kannadasan R. Prof. Gunavathi C. Prof. Navamani T M. Prof. Arumuga Arun R. Prof. Shalini L. Prof. Sariba. Marchine R. Prof. Sariba. Prof. Arumuga Arum M. Prof. Saritha Murali, Prof. Radhakrishnan Delhibabu, Prof. Rajarajan G. Prof. Madiajagan M. Prof. Bhuvanosusai M. Prof. Radhakrishnan Delhibabu, Prof. Rajarajari G., Prof. Rajarajari G., Prof. Rajarajari G., Prof. Kishnaparaj R., Prof. Sathya K., Prof. Anand Prof. Vishnaparaj R., Prof. Sathya K., Prof. Anand Bihari, Prof.Baskaran P, Prof. Hussain Ahmed Chowdhury

Exam Duration: 90 Min.

Maximum Marks: 50

minstruction(s): - Step by Step Procedure is required to solve the Problem

Q.Na	Question	Max Marks
$ \mathbf{u} = \mathbf{u} + \mathbf{v} $ for	matical induction for the following u,v are strings over Σ . (3,0,20}, $\emptyset = \{\}$, L={ ϵ } and $\Sigma = \{0,1,2\}$. Then comp	3 Marks) oute the

 Σ^2 -A where – is a setminus operation. Give an example for

(4 Marks) (3 Marks)

(i) L & Le (c is a complementary operation of L) are infinite.

(ii) L is finite and L° is infinite.

Convert the following NFA with ϵ to NFA without ϵ

> q0	q0	Ø	-	3
qi	Ø	qi	0	q1
* 42	Ø	0	Ø	92

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - II

WINTER SEMESTER 2023-2024

SLOT: B1 + TB1

Programme Name & Branch

Course Code Course Name B.Tech

BCSE304L

Theory of Computation

Faculty Name(s)

; Prof. Sathiyakumar, Prof. Anand M, Prof. Lakshmanan K, Prof. Viswanathan P, Prof. Arumuga Arun R, Prof. Shalini L, Prof. Kannadasan R, Prof. Gunavathi C, Prof. Navamani T M, Prof. Rajarajan G, Prof. Madiajagan M, Prof. Saritha Murali, Prof. Delhibabu R, Prof. Vishnupriya, Prof. Krishnaraj N, Prof. Bhuvaneswari M, Prof. Kanagaraj R, Prof. Sathya K, Prof. Anand Bihari, Prof. Baskaran P, Prof. Hussain Ahmed Chowdhury

Class Number(s)

:V1.2023240500758, 0762, 0764, 0767, 0769, 0770, 0773, 0783, 0788, 0794, 0842, 0859, 1011, 1013, 1024, 1027, 1028,

1031, 1034, 1038, 1040

Duration: 90 min.

Max. Marks: 50

Q. No		Marks
1.	a) For languages A and B, let the perfect shuffle of A and B be the language $\{w \mid w = a_1b_1 \cdots a_kb_k, where a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ each } a_i,b_i \in \Sigma\}$. Show that the class of regular languages is closed under perfect shuffle.	5
	b) Prove using pumping lemma, the following language is not regular L={w $\in \{0,1\}^* \ w \ contains \ more \ 0's \ than \ 1's}$	5
	(a) Design a CFG for the language $L=\{ww^Rzz^R\mid w,z\in\{0,1\}^r,\ 011\ \text{is a substring of } w\ \text{and } z \ \text{is odd, } w^R\ \text{is the reverse of } w,z^R\ \text{is the reverse of } z\}.$ Explain the use of each production in the constructed grammar?	5
	(b) Convert the given Context free grammar G into an equivalent context free grammar G_1 in Chomsky normal form (CNF) $S \to aXbX \\ X \to aY \mid bX \mid \lambda \\ Y \to X \mid c$	5
	(a) Show that the language $L = \{\beta\#\beta^R\#\beta \mid \text{where } \Sigma = \{a,c,\#\} \text{ and } \beta \in \{a,c\}^*\}$ is not context free (β^R) is the reverse of β).	5
((b) Write the above language L (in Question 3(a)) as the intersection of two context-free languages (over Σ).	5

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - II SLO

WINTER SEMESTER 2023-2024

SLOT: B1 + TB1

	the start symbol) the nonterminal set will not be awarded.	o abbaa. Fi	C a A b B a	following cond $A \rightarrow BA \mid A$ $B \rightarrow CB \mid B$ $C \rightarrow AC \mid C$ algorithm for parked in the ta	Apply CYK	4.	
			SERVICE SERVIC	BOTTON.	X		
10				X			
				X			
			X				
					X		
	a	a	b	ь	a		
	2 h						

School of Computer Science and Engineering

Winter Semester 2023-24

Continuous Assessment Test - II

SLOT: B2+TB2

Programme Name & Branch: B.Tech

Course Name & Code: Theory of Computation & BCSE304L

 $\begin{array}{l} {\rm Class\ Number\ (s):\ VL2023240500789,\ VL2023240501047,\ VL2023240501029,\ VL2023240500774,\ VL2023240500845,\ VL2023240500760,\ VL2023240501015,\ VL2023240500784,\ VL2023240501045,\ VL2023240500861,\ VL2023240501036,\ VL2023240500763,\ VL2023240501026,\ VL2023240500766,\ VL20232405007971,\ VL2023240501043,\ VL2023240501049,\ VL2023240501049,\ VL2023240501047,\ VL2023240501042,\ VL2023240501051,\ VL2023240501014. \end{array}$

Faculty Name (s): NAVAMANI T M, KONATHAM, SUMALATHA, KANAGARAJ R, KANNADASAN R, MADIAJAGAN M, SATHIYA KUMAR C, MOHANA CM, KRISHNA RANI, SAMAL K, UMAMAHESWARI M, SARITHA MURALI, ANAND BIHARI, ANAND M, KRISHNARAJ N, ARUMUGA, ARUN R, SHALINI L, SARWESH P, RAJARAJAN G, SABYASACHI KAMILA,SOMASUNDARAM S K, HUSSAIN AHMED CHOWDHURY, UMA PRIYA D, VISHNUPRIYA.

Exam Duration: 90 Min.

Maximum Marks: 50

Q. No.	Question	Max Marks
1.	 a) The derivative of a language for a string x is defined as follows: L_x = { y xy ∈ L}. 1) what is L_{aa} for the language L={aⁿ⁺¹bⁿ n ≥ 1}. (1 mark) 2) what is L_b for the language L={aⁿ⁺¹bⁿ n ≥ 1}. (1 mark) 3) Prove that when L is regular, the derivative of L (ie., L_x) is also regular. (3 marks) 	5
	\mathcal{W} Consider the language $L_1 = \{a^pb^qa^r \mid pq,r \ge 1 \text{ and } p+q \ne r\}$. Prove or disprove that the language L is regular.	5
2.	$\label{eq:conditional} \mathscr{A}) \text{ Design a CFG for the language } \Upsilon = \{a^nb^ma^{2n}; \ n, m \geq 0\}.$	5
	b) Consider the grammar $S \to 0S1 \mid 1S0 \mid \lambda$, where S is the start symbol, $\{0,1\}$ are terminals. You can see that for every 0 there is a 1 and vice versa in the rule (other than $S \to \lambda$). Is the grammar generates the language $L_2 = \{w : w _0 = w _1\}$ where $ w _a$ refers to the occurrences of a in w . If not, justify with a string in the language L_2 that cannot be produced by the given grammar rules. What further changes you need to do in the given grammar in order to generate L_2	5
	a) Construct the CYK algorithm for the following CFG and check whether the string "aabcb" is derivable from the grammar. The Start Symbol is A.	10

