Feb 6, 2012

Lecture 17 : Reductions to \oplus -SAT: Amplified version

Lecturer: Jayalal Sarma Scribe: Princy Lunawat

The last few lectures focus on the Toda's theorem which states that $PH \subseteq P^{\#P}$. The first half of the proof of the theorem shows a randomized reduction from PH to $\oplus SAT$.

We proved the Valiant-Vazirani lemma which stated a randomized polynomial time algorithm that takes in a formula ϕ and produces a new formula ψ such that it gives a weak form of a randomized reduction from SAT to USAT. We have the following

$$\begin{split} \phi \in \mathsf{SAT} & \Rightarrow & Pr\left(\psi \in \mathsf{USAT}\right) \geq \frac{1}{8n} \\ \phi \notin \mathsf{SAT} & \Rightarrow & Pr\left(\psi \notin U\mathsf{SAT}\right) = 1 \end{split}$$

We also concluded that this gives a weak¹ randomized reduction from NP to \oplus SAT. Now we show how to amplify the success probability in the case of the reduction to \oplus SAT. ²

Indeed, something special about \oplus is going to help us. In this lecture, we explore some properties of the \oplus quantifier which are used to come up with a formula ϕ'' from a given formula $\phi \in \mathsf{SAT}$ such that $\phi'' \in \oplus \mathsf{SAT}$ with high probability. We thereby deduce that $\mathsf{NP} <_r^m \oplus \mathsf{SAT}$.

1 Parity Addition, Complementation and Multiplication

Given two boolean formulae, ϕ and ϕ' , their parity can be added as follows:

$$\oplus (\phi + \phi')(\bar{z}) = \oplus (z_0 = 0 \land \phi) \lor \oplus (z_1 = 0 \land \phi')$$

Similarly, the parity can be complemented as:

$$(z=0) \wedge (\sim x_1 \wedge \sim x_2 \wedge \ldots \wedge \sim x_n) \vee (\phi \wedge z=1)$$

which is represented as $\phi + 1$. Multiplication of parity is obtained as:

$$\oplus \phi(\bar{z}) \times \oplus \phi'(\bar{z}) = \oplus (\phi(\bar{z}) \wedge \phi'(\bar{z}))$$

¹The reduction is weak because the error probability $(1 - \frac{1}{8n})$ is much more than what is allowed in a randomized reduction $(\frac{1}{2})$

²Such an amplification is not known for the case of USAT.

2 Randomized Reduction

In our construction for the Valiant-Vazirani Lemma , we defined a formula $\psi_i = \phi \wedge (h_i(x) = 0^k)$ where x is an assignment of ϕ . Now consider a formula $\phi' = \bigwedge_{i=0}^{l-1} (\oplus \psi_i)$. if $\Pr[\psi_i \in \text{USAT}] \geq \frac{1}{8n}$, then $\Pr[\phi' \in \text{SAT}] = 1 - \left(1 - \frac{1}{8n}\right)^l]$. We now come up with a formula ϕ'' equivalent to ϕ' such that the parity of ϕ'' is odd. that is, $\phi'' \in \oplus \text{SAT}$ conditioned on the probability that at least one $\psi_i \in \oplus \text{SAT}$.

For simplicity, consider ψ_1 and ψ_2 , one of which is in $\oplus SAT$. We observe that both , $\psi_1 + 1$ and $\psi_2 + 1$ cannot have an odd parity. Therefore, we have,

Hence, $((\psi_1 + 1).(\psi_2 + 1) + 1) \in \oplus \mathsf{SAT}.$ In general, $\bigwedge_{i=0}^{l-1} ((\psi_i + 1) + 1) \in \oplus \mathsf{SAT}$ which is our new formula ϕ'' equivalent to ϕ . Hence, $\Pr[\phi'' \in \oplus \mathsf{SAT}]$ is the same as that of at least one ψ_i having an odd parity.

$$\phi \in \mathsf{SAT} \Rightarrow Pr\left[\phi'' \in \oplus \mathsf{SAT}\right] = 1 - \left(1 - \frac{1}{8n}\right)^l$$

To amplify this probabilty to $1-2^{-m}$ we choose an appropriate value of l such that,

$$1 - \left(1 - \frac{1}{8n}\right)^l \ge 1 - 2^{-m}$$

Hence, we have

$$\begin{split} \phi \in \mathsf{SAT} & \Rightarrow & Pr\left[\phi'' \in \oplus \mathsf{SAT}\right] \geq 1 - 2^{-m} \\ \phi \notin \mathsf{SAT} & \Rightarrow & Pr\left[\phi'' \in \oplus \mathsf{SAT}\right] = 0 \end{split}$$

Hence, $NP <_r^m \oplus SAT$.