Proof. If the sequence (a_n) of points $a_n \in A$ converges to x, then for every open subset U of E containing x, there is some n_0 such that $a_n \in U$ for all $n \geq n_0$, so $U \cap A \neq \emptyset$, and Proposition 37.4 implies that $x \in \overline{A}$.

Conversely, assume that $x \in \overline{A}$. Then for every $n \geq 1$, consider the open ball $B_0(x, 1/n)$. By Proposition 37.4, we have $B_0(x, 1/n) \cap A \neq \emptyset$, so we can pick some $a_n \in B_0(x, 1/n) \cap A$. This, way, we define a sequence (a_n) of points in A, and by construction $d(x, a_n) < 1/n$ for all $n \geq 1$, so the sequence (a_n) converges to x.

We still need one more concept of limit for functions.

Definition 37.20. Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be topological spaces, let A be some nonempty subset of E, and let $f: A \to F$ be a function. For any $a \in \overline{A}$ and any $b \in F$, we say that f(x) approaches b as x approaches a with values in A if for every open set $V \in \mathcal{O}_F$ containing b, there is some open set $U \in \mathcal{O}_E$ containing a, such that, $f(U \cap A) \subseteq V$. See Figure 37.21. This is denoted by

$$\lim_{x \to a, x \in A} f(x) = b.$$

Figure 37.21: A schematic illustration of Definition 37.20.

First, note that by Proposition 37.4, since $a \in \overline{A}$, for every open set U containing a, we have $U \cap A \neq \emptyset$, and the definition is nontrivial. Also, even if $a \in A$, the value f(a) of f at a plays no role in this definition. When E and F are metric space with metrics d_E and d_F , it can be shown easily that the definition can be stated as follows:

For every $\epsilon > 0$, there is some $\eta > 0$, such that, for every $x \in A$,

if
$$d_E(x, a) \leq \eta$$
, then $d_F(f(x), b) \leq \epsilon$.

When E and F are normed vector spaces with norms $\| \|_E$ and $\| \|_F$, it can be shown easily that the definition can be stated as follows: