

Departamento de Ingeniería Industrial

RESUMEN DE FÓRMULAS - EXAMEN FINAL

Teorema de Bayes

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B)P(B) = P(B|A)P(A) = P(A \cap B)$$

Lev de Probabilidades Totales

$$\Omega = \{N1 \cup N2\} \quad \rightarrow \quad P(A) = P(A \cap N1) + P(A \cap N2)$$

Valor Esperado y Varianza

$$\begin{split} E[X] &= \mu = \sum_{R(X)} x_i g_X(x_i) \quad \text{6} \quad \int_{R(X)} x f_X(x) \, dx \\ Var[X] &= E[X^2] - (E[X])^2 \end{split}$$

Regla de la Multiplicación

 $\# Total \ de \ resultados = n_1 * n_2 * ... * n_r$

Muestra de Orden

$$#m(r; A) = n^r$$

Permutaciones

$$P(r;n) = \frac{n!}{(n-r)!}; \ r \le n$$

Combinaciones

$$C(r;n) = \frac{n!}{(n-r)! \, r!}$$

Particiones Ordenadas
$$\#P(n_1, n_2, \dots, n_r; A) = \binom{N}{n_1} \binom{N - n_1}{n_2} \dots \binom{N - n_1 - n_2 - \dots - n_{r-1}}{n_r}$$

$$\#P(n_1, n_2, \dots, n_r; A) = \frac{N!}{n_1! n_2! \dots n_r!}$$

DISTRIBUCIONES	Parámetros	Función de Probabilidad / fdp	E(X)	Var(X)
DISTRIBUCIÓN UNIFORME DISCRETA	k = número de valores distintos que puede tomar X	$\frac{1}{k}$ $x = x_1, x_2, \dots$	$\frac{1}{k} \sum_{i=1}^{k} x_i$	$\frac{1}{k} \sum_{i=1}^{k} (x_i - \mu)^2$
BERNOULLI	p = probabilidad de éxito	$p^{x}(1-p)^{1-x}$ $x = 0,1$	р	p(1-p)
BINOMIAL	p = probabilidad de éxito n = número de ensayos	$\binom{n}{x} p^x (1-p)^{n-x}$ $0 \le x \le n$	np	np(1-p)
GEOMÉTRICA	p = probabilidad de éxito	$(1-p)^{x-1}p$ $x = 1,2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
BINOMIAL NEGATIVA	p = probabilidad de éxito k — ésimo éxito	$ \binom{x-1}{k-1} (1-p)^{x-k} p^k $ $ x \ge k $	$\frac{k}{p}$	$\frac{k(1-p)}{p^2}$
POISSON	$\lambda = \frac{\text{# de arribos}}{\text{und.tiempo}}$ $t = \text{intervalo}$ $de \text{ tiempo}$	$x \ge k$ $\frac{(\lambda t)^x}{x!} e^{-\lambda t}$ $x = 0,1,$ $\lambda, t > 0$	λt	λt
DISTRIBUCIÓN UNIFORME CONTINUA	a = mínimo b = máximo	$\frac{1}{b-a} \qquad a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
DISTRIBUCIÓN NORMAL	$\mu = Media$ $\sigma^2 = Varianza$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	μ	σ^2
	Recuerde: $P(X_N \le x) = P\left(\frac{x_N - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$			
DISTRIBUCIÓN EXPONENCIAL	$\lambda = \frac{\text{# de arribos}}{\text{und. tiempo}}$	$\lambda e^{-\lambda x}$ $x, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
DISTRIBUCIÓN TRIANGULAR	a = mínimo m = moda b = máximo	$\begin{cases} \frac{2(x-a)}{(m-a)(b-a)} & a \le x < m \\ \frac{2(b-x)}{(b-m)(b-a)} & m \le x < b \end{cases}$	$\frac{a+b+m}{3}$	$\frac{a^2 + b^2 + m^2 - ab - am - bm}{18}$

Distribuciones Marginales

Discretas

$$g_X(x) = \sum_{R(Y)} g_{XY}(x, y)$$

Continuas

$$f_X(x) = \int_{R(Y)} f_{XY}(x, y) dy$$

Distribución Condicional

$$f_{X|Y}(x,y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

Valor Esperado

$$E(u(X,Y)) = \int_{R(Y)} \int_{R(X)} u(X,Y) f_{XY}(X,Y) dx dy$$

Varianza y Covarianza de una V.A.

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$Var(X) = E[(x - \mu)^{2}] = \sum_{R(X)} (x - \mu)^{2} f_{X}(x) = \int_{-\infty}^{\infty} (x - \mu)^{2} f_{X}(x) dx$$

Valor Esperado Condicional

$$E(X|Y = b) = \sum_{R(X|Y)} x f_{X|Y}(x, Y = b)$$

$$E(X|Y = b) = \int_{R(X|Y = b)} x f_{X|Y}(x, Y = b) dx$$

Probabilidades Condicionales

$$P(X \le a | Y = b) = \int_{R(X \le a | Y = b)} f_{X|Y}(x, Y = b) dx$$

$$P(X \le a | Y \le b) = \frac{P(X \le a \cap Y \le b)}{P(Y \le b)}$$

Coeficiente de Correlación

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Suma de VAs independientes

Sean $X_1 y X_2$ variables aleatorias independientes con generadoras $\psi_{x1}(t)y \,\psi_{x2}(t)$, respective mente, y sea $W=X_1+X_2$ Entonces:

$$\psi_W(t) = \psi_{r1}(t) * \psi_{r2}(t)$$

Sesgo

$$E(\hat{\theta}) - \theta$$

Mínima Varianza

$$Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$$

Error Cuadrático Medio (ECM)

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + [Sesgo(\hat{\theta})]^2$$

Consistencia

$$\lim_{n \to \infty} E(\hat{\theta}) = \theta \; ; \; \lim_{n \to \infty} Var(\hat{\theta}) = 0$$

$$\frac{\text{Cota Rao-Cramer (CRC)}}{CRC} = \frac{1}{nE\left(\left[\frac{\delta}{\delta\theta}\left(\ln f_X(x;\theta)\right)\right]^2\right)} = \frac{1}{-nE\left(\left[\frac{\delta^2}{\delta\theta^2}\left(\ln f_X\left(x;\theta\right)\right)\right]\right)}$$

Estimador de Máxima Verosimilitud

- 1) $L(x_1,...,x_n;\theta) = \prod_{i=1}^n f_X(x_i)$
- 2) $ln(L(x_1,...,x_n;\theta))$ 3) $\frac{\delta}{\delta\theta}[ln(l)(x_1,...,x_n)] = 0$ 4) $despejar \theta = \hat{\theta}$

Bondad de Ajuste

$$Y_{(m-1)} = \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^m \frac{(x_i - np_i)^2}{np_i} \sim \chi^2_{(m-1)}$$

 $x_i = Frecuencia Observada, n =$ # de Observaciones Totales

m = # de Clases

$$Si Y_{calculado} > \chi^2_{(m-1;(1-\alpha))} \rightarrow rechazo H_o$$

Distribuciones Muestrales

 χ^2 : $X_1^2 + X_2^2 + \cdots + X_n^2 \rightarrow \chi^2_{(n)}$ Donde X_i es N(0,1) y X_i es independiente de X_j.

 $t: \frac{X}{|\overline{Y}|} \to t_{(n)}$

Donde X es N(0,1) y Y es $x^{2}_{(n)}$, siendo X y Y independientes.

 $F: \frac{X/_{n1}}{Y/_{n2}} \to F_{(n1,n2)}$

Donde X y Y son Vas independientes con distribuciones $\chi^2_{(n1)}$ y $\chi^2_{(n2)}$ respectivamente.

Si $X \to F_{(\alpha;n1.n2)}$ entonces $Y = \frac{1}{v} \to F_{(1-\alpha;n2.n1)}$

Intervalos de Confianza

		MED	DIA POBLACIONAL(
Distr. Pob.	Var. Pob.		Tamaño Muestra	Intervalo de Confianza (1-a)%
Normal	Conocida		Pequeño	$ar{X} \pm z_{\left(1-rac{lpha}{2} ight)} rac{\sigma}{\sqrt{n}}$
Normal	Desconocida		Pequeño	$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}$ $\bar{X} \pm t_{\left(1-\frac{\alpha}{2},n-1\right)} \frac{S}{\sqrt{n}}$ $\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}$ $\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{s}{\sqrt{n}}$ $\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{s}{\sqrt{n}}$
Cualquiera	Conocida		Grande	$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}$
Cualquiera	Desco	nocida	Grande	$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\bar{S}}{\sqrt{n}}$
	ES'	TIMACIÓN DE U	NA PROPORCIÓN PO	OBLACIONAL (p)
Distr. Pob.	Var. Pob.		Tamaño Muestra	Intervalo de Confianza (1- α)%
Binomial, Bernoulli, Binomial Negativa	Desco	nocida	Grande $ \hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} $ $ \hat{p} = \frac{x}{n}, \text{ donde } x \text{ es } \# \text{ éxitos} $	
	E	STIMACIÓN DE I	UNA VARIANZA POB	
Distr. Pob.	Var.	Pob.	Intervalo de Confianza (1- α)%	
Normal	Cualquiera		$\left(\frac{(n-1)S^2}{\chi^2_{\left(1-\frac{\alpha}{2}:(n-1)\right)}};\frac{(n-1)S^2}{\chi^2_{\left(\frac{\alpha}{2}:(n-1)\right)}}\right)$	
	ESTIMACI			S POBLACIONALES μ1-μ2
Distr. Pob.	Var. Pob.	Tamaño Muestra		Intervalo de Confianza (1- a)%
ပ္သံ Desconocidas Pequeños		$ar{X}_1$	$(1-a)\%$ $-\bar{X}_2 \pm t_{\left(1-\frac{\alpha}{2},(n_1+n_2-2)\right)} S_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $de S_c = \sqrt{\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}}$	
o Z	Conocidas	Cualquiera	$\bar{X}_1 - \bar{X}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
Cualquiera	Conocidas	Grande	$\bar{X}_1 - \bar{X}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
	ESTIMACIÓN D	E UNA DIFEREN	NCIA DE PROPORCIO	ONES POBLACIONALES p ₁ -p ₂
Distr. Pob.	Var. Pob.	Tamaño Muestra	Intervalo de Confianza (1- α)%	
Bernoulli	Desconocidas	Grandes		$z_2 \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
	ESTIMACIÓ	N DE UN COCIEN	NTE DE VARIANZAS	POBLACIONALES σ_1^2/σ_2^2
Distr. Pob.	Var. Pob.		Intervalo de Confianza (1- α)%	
Normales	Cualquiera		$\left(\frac{S_1^2}{S_2^2}F_{\frac{C_2}{2}}\right)$	$\left(\frac{x}{2^{j}}(n_{2}-1);(n_{1}-1)\right)^{j},\frac{S_{1}^{2}}{S_{2}^{2}}F\left(1-\frac{\alpha}{2^{j}}(n_{2}-1);(n_{1}-1)\right)$

Pruebas de Hipótesis

		a de Hipótesis para la Me		
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba (EP)	Región Crítica de Rechazo
	$H_1: \mu < \mu_0$		```	$EP < -z_{(1-\alpha)}$
**	$H_1: \mu > \mu_0$	$X \to N(\mu, \sigma_0^2)$	$\bar{X} - \mu_0$	$EP > z_{(1-\alpha)}$
H_0 : $\mu = \mu_0$		σ_0^2 : conocida	$\frac{X-\mu_0}{\sigma_0/\sqrt{n}} \to N(0,1)$	$EP < -z_{(1-\alpha/2)}$
	$H_1: \mu \neq \mu_0$	X_1, X_2, \dots, X_n	307 1.12	$EP > z_{(1-\alpha/2)}$
	$H_1: \mu < \mu_0$			$EP < -t_{(1-\alpha);n-1}$
	$H_1: \mu > \mu_0$	$X \to N(\mu, \sigma^2)$	$\bar{X} - \mu_0$	$EP > t_{(1-\alpha);n-1}$
$H_0: \mu = \mu_0$	11.14.5 140	σ^2 : desconocida	$\frac{\bar{X} - \mu_0}{S/\sqrt{n}} \to t_{(n-1)}$	$EP < -t_{(1-\alpha/2);n-1}$
	$H_1: \mu \neq \mu_0$	X_1, X_2, \dots, X_n	5/ \/ \(\tau_{\tau} \)	$EP > t_{(1-\alpha/2);n-1}$
		tesis para la Diferencia d		
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba (EP)	Región Crítica d Rechazo
	H_1 : $\mu_X - \mu_Y < a$	$X \to N(\mu_X, \sigma_X^2)$		$EP < -z_{(1-\alpha)}$
	$H_1: \mu_X - \mu_Y > a$	$Y \to N(\mu_Y, \sigma_Y^2)$		$EP > z_{(1-\alpha)}$
	1172 11	σ_X^2, σ_Y^2 : conoc	$\bar{X} - \bar{Y} - (\mu_X - \mu_Y)$	(1 11)
**		X y Y independientes	$\frac{X - Y - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} \to N(0,1)$	
$H_0: \mu_X - \mu_Y = a$		X_1, X_2, \dots, X_{n_X}		$EP < -z_{(1-\alpha/2)}$
	$H_1: \mu_X - \mu_Y \neq a$	Y_1, Y_2, \dots, Y_{n_v}	$\sqrt{n_X}^{\top} n_Y$	$EP > z_{(1-\alpha/2)}$
		Si las poblaciones no se distribuyen	,	Δ1 / Δ(1-α/2)
		Normal el tamaño de muestra debe ser grande, $n_X, n_Y \ge 3 \rightarrow TLC$		
	$H_1: \mu_X - \mu_Y < a$	granue, $n_X, n_Y \ge 5 \rightarrow 120$	+	$EP < -t_{(1-\alpha; n_X + n_Y - 1)}$
		$X \to N(\mu_X, \sigma^2)$	$\bar{X} - \bar{Y} - (\mu \dots - \mu \dots)$	FP > t
	$H_1: \mu_X - \mu_Y > a$	$X \to N(\mu_X, \sigma^2)$ $Y \to N(\mu_Y, \sigma^2)$	$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{Sp\sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}} \rightarrow t_{(n_X + n_Y - 2)}$	$EP > t_{(1-\alpha; n_X + n_Y - 2)}$
		$Y \rightarrow N(\mu_Y, \sigma^2)$ X y Y independientes	$Sp\left(\frac{1}{1}+\frac{1}{1}\right)$	
$H_0: \mu_X - \mu_Y = a$		σ^2 : desconocidas e iguales	$\sqrt{n_X \cdot n_Y}$	$EP < -t_{\ell}$, α
*	$H_1: \mu_X - \mu_Y \neq a$	o o		$EP < -t_{\left(1 - \frac{\alpha}{2}, n_X + n_Y - \frac{\alpha}{2}\right)}$
	1-1-2 1-1	X_1, X_2, \dots, X_{n_X}	$(n_v - 1)S_v^2 + (n_v - 1)S_v^2$	$EP > t_{\left(1 - \frac{\alpha}{2}; n_X + n_Y - 2\right)}$
		Y_1, Y_2, \dots, Y_{n_Y}	$Sp = \sqrt{\frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}}$	
	Pri	ueba de Hipótesis para la		
Hipótesis Nula	Hipótesis	Supuestos	Estadístico de Prueba	Región Crítica
nipotesis Nuia	Alterna	-	(EP)	de Rechazo
H_0 : $p = p_0$	$H_1: p < p_0$	$X \rightarrow Bernoulli(p)$		$EP < -z_{(1-\alpha)}$
	$H_1: p > p_0$	σ^2 : desconocida	$\hat{p}_{-p_0} = N(0.1)$	$EP > z_{(1-\alpha)}$
	11 10	X_1, X_2, \dots, X_n	$\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{2}}} \sim N(0,1)$	$EP < -z_{(1-\alpha/2)}$
	$H_1: p \neq p_0$	$n \ge 30$	$\sqrt{\frac{\sigma}{n}}$	$EF \subset -z_{(1-\alpha/2)}$
		$\hat{p} = \bar{X}$		$EP > z_{(1-\alpha/2)}$
	Prueba de Hipótesis	Hipótesis para la Diferen	cia de Proporciones Estadístico de Prueba	Región Crítica
Hipótesis Nula	Alterna	Supuestos	(EP)	de Rechazo
	$H_1: p_x - p_y < 0$		(2.7)	$EP < -z_{(1-\alpha)}$
		$X \to Bernoulli(p_x)$		
	$H_1: p_x - p_y > 0$	$Y \to Bernoulli(p_y)$	$\frac{\hat{p}_x - \hat{p}_y - (p_x - p_y)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim N(0,1)$	$EP > z_{(1-\alpha)}$
		X y Y in'dependientes	~N(0,1)	
$H_0: p_x - p_y = 0$		X_1, X_2, \dots, X_{n_X}	$\left \hat{p}\hat{q}\left(\frac{1}{n}+\frac{1}{n}\right)\right $	$EP < -z_{(1-\alpha/2)}$
	$H_1: p_x - p_y \neq 0$	Y_1, Y_2, \dots, Y_{n_Y}	$\sqrt{n_x n_y}$	$EP > z_{(1-\alpha/2)}$
	•	$n_X, n_Y \geq 30$	$n_x \hat{p}_x + n_y \hat{p}_y$	$EF > Z(1-\alpha/2)$
		$\widehat{p_X} = \overline{X} \ \ \ \ \widehat{p_Y} = \overline{Y}$	$\hat{p} = \frac{n_x \hat{p}_x + n_y \hat{p}_y}{n_x + n_y} \qquad \hat{q} = 1 - \hat{p}$	
		rueba de Hipótesis para la		•
Hipótesis Nula	Hipótesis	Supuestos	Estadístico de Prueba (EP)	Región Crítica de
	Alterna		(LP)	Rechazo $EP < \chi^2_{(\alpha; n-1)}$
$H_0: \sigma^2 = \sigma^2_0$	$H_1: \sigma^2 < \sigma^2_0$	$X \to N(\mu, \sigma^2)$	6 43.03	$L\Gamma \sim \chi_{(\alpha; n-1)}$
	$H_1: \sigma^2 > \sigma^2_0$	σ^2 : desconocida	$\frac{(n-1)S^2}{\sigma_0^2} \to \chi^2_{(n-1)}$	$EP > \chi^2_{(1-\alpha; n-1)}$
	112 2	σ^2 : aesconociaa X_1, X_2, \dots, X_n		$EP < \chi^2_{(\alpha/2; n-1)}$
	$H_1: \sigma^2 \neq \sigma_0^2$	n_1, n_2, \dots, n_n		$EP > \chi^2_{(1-\alpha/2; n-1)}$
		i <mark>pótesis para las Varianz</mark> a		
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba (EP)	Región Crítica de Rechazo
$H_0: \frac{\sigma_X^2}{\sigma_V^2} = 1$	$H_1: \frac{\sigma_X^2}{\sigma_Y^2} > 1$	$X \to N(\mu_X, \sigma_X^2)$	(27)	$EP > F_{(1-\alpha; n_X-1; n_Y-1)}$
	σ_{Y}^{2}	$Y \to N(\mu_X, \sigma_X^2)$ $Y \to N(\mu_Y, \sigma_Y^2)$	62	- (1-α; n _X -1; n _Y -1)
	σ_{x}^{2}	$\sigma_X^2 y \sigma_Y^2$: desconocidas	$\frac{S_X^2}{S_Y^2} \to F_{(n_X - 1; n_Y - 1)}$	$EP < F_{(\alpha; n_X - 1; n_Y - 1)}$
$H_0: \frac{\sigma_X}{\sigma^2} = 1$	$H_1: \frac{\pi}{\sigma^2} < 1$		$C^2 \xrightarrow{\Gamma(n_X-1; n_Y-1)}$	(u, nx-1, ny-1)
$H_0: \frac{\sigma_X}{\sigma_Y^2} = 1$	$H_1: \frac{\sigma_X^2}{\sigma_Y^2} < 1$	X y Y independientes	$S_Y^2 \xrightarrow{\Gamma(n_X-1; n_Y-1)}$	
$H_0: \frac{\sigma_X}{\sigma_Y^2} = 1$	$H_1: \frac{\sigma_Y^2}{\sigma_Y^2} < 1$ $H_1: \frac{\sigma_X^2}{\sigma_Y^2} \neq 1$		$S_Y^2 \xrightarrow{r(n_X-1; n_Y-1)}$	$EP < F_{(\alpha/2; n_X - 1; n_Y - 1)}$ $EP > F_{(1-\alpha/2; n_X - 1; n_Y - 1)}$

Regresión Lineal

$$Y = \beta_0 + \beta_1 X + e$$

Supuestos:

$$E(e_i) = 0; Var(e_i) = \sigma^2;$$

 $Cov(e_i, e_i) = 0 \ \forall i \neq j; e_i \sim N(0, \sigma^2)$

Estimación de parámetros

$$e_i = y_i - \widehat{y}_i$$

 $Hallar \widehat{\beta_0} y \widehat{\beta_1} con SCE = \sum \widehat{e_i}^2$

$$\widehat{\beta_0} = \bar{y} - \widehat{\beta_1}\bar{x}$$

$$\widehat{\beta_0} = \bar{y} - \widehat{\beta_1}\bar{x}$$
 $\widehat{\beta_1} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$

Propiedades de los estimadores (Centrados)

$$E(\hat{\beta}_1) = \beta_1$$

$$Var(\beta_1) = \frac{\sigma^2}{S_{XX}}$$
 donde $S_{XX} = \sum (x_i - \bar{x})$

Prueba asociada

$$SCT = SCR + SCE$$

$$\sum (y_i - \overline{y})^2 = \sum (\widehat{y}_i - \overline{y})^2 + \sum (y_i - \widehat{y}_i)^2$$

$$F_{(1;n-2)} \to \frac{SCR}{SCE/n-2}$$

$$R^2 = \frac{SCR}{SCT} = 1 - \frac{SCE}{SCT} \qquad 0 \le R^2 \le 1$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i + e$$

Estimación de parámetros

$$\widehat{e}_i = y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i + \dots + \widehat{\beta}_i x_{ii})$$

Prueba asociada

$$SCT = SCR + SCE$$

Recuerde:

 $Prueba\ significancia\ global \rightarrow F$ $Prueba\ significancia\ individual \rightarrow t$

$$t_{(gl\ error)} = \frac{\widehat{\beta}_l}{des(\widehat{\beta}_l)}$$

$$F_{(q;n-q-1)} \to \frac{\frac{SCR}{q}}{SCE/n-q-1} = \frac{MCR}{MCE}$$

Intervalo de Confianza

$$IC_{(1-\alpha)}(\beta_i) = \hat{\beta} \pm t_{\left(1 - \frac{\alpha}{2}, n - q - 1\right)} \, d. \, e\left(\hat{\beta}\right)$$