5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА

Глобальное потепление – угроза сельскому хозяйству. Ученые предполагают, что оно может привести к сокращению площади земель, пригодных для ведения сельского хозяйства, а также снизить эффективность традиционных агротехник вследствие изменения климата. Недостаток продуктов питания в этой ситуации становится вполне реальной угрозой для всего человечества. По этой причине исследователи занимаются разработкой новых технологий, позволяющих повысить урожайность и снизить связанные с изменением климата риски.

Тепличное растениеводство — один из наиболее популярных способов обеспечения урожайности в неблагоприятных для роста и развития растений условиях. Протяженность тепличных комплексов может достигать нескольких гектар, поэтому их руководство заинтересовано в автоматизации и роботизации обслуживания этих территорий. На текущий момент уже разработаны автоматизированные системы управления микроклиматом для крупных тепличных комбинатов, однако эти решения не подходят для мелких предприятий, а также личных подсобных хозяйств.

В Республике Беларусь значительная часть населения имеет садовоогороднические участки, при этом работает на них в свободное от основной деятельности время. Для домохозяйств с доходом до двух прожиточных минимумов на одного человека личные подсобные хозяйства являются основным растительного происхождения. Безусловно, источником владельцы таких участков в большей степени заинтересованы в сокращении физического труда, повышении урожайности, а также сокращении рисков, связанных с сельскохозяйственные погодными условиями, мелкие чем, например, предприятия. К сожалению, использование традиционных теплиц не способно решить все перечисленные задачи. Сейчас, в силу развития информационных и интеллектуальных технологий, всё больше владельцев садовых и огородных участков задумываются о внедрении роботизированных теплиц, которые по аналогии с технологией «умный дом» называют «умными В общем смысле умная теплица – это технология автоматизации (роботизации)

растениеводства, основанная на внедрении интеллектуальных информационных технологий в тепличные сооружения. Аппаратную часть умной теплицы составляют датчики температуры, освещенности и влажности, а также сеть электроприводов, приводящих в действие отдельные части систем освещения, полива и вентиляции; программную — интеллектуальная система мониторинга состояния датчиков и управления электроприводами, обеспечивающая оптимальный для выращиваемой сельскохозяйственной культуры микроклимат внутри теплицы.

Целевая аудитория:

- 1. Жители сельской местности или дачники, которые выращивают овощи или фрукты2. Жители сельской местности или дачники, которые живут в местах с неблагоприятными условиями для выращивания овощей и фруктов
- 3. Мелкие бизнесмены, которые выращивают овощи и фрукты для продажи Исходя из вышеперечисленных утверждений, возможен вариант экспорта в регионы СНГ, где климат не позволяет выращивать в природных условиях овощи и фрукты.

Разработанная система предназначена для автоматизации управления тепличным хозяйством.

Основными функциями разрабатываемой системы являются:

- 1) изменение микроклимата в зависимости от внешних воздействий;
- 2) информирование пользователя о состоянии микроклимата теплиц:
 - о атмосферном давлении;
 - о температуре и влажности воздуха;
 - об интенсивности света;
 - о влажности почвы;
- 3) автоматический анализ и систематизация данных;

Разрабатываемая информационная система предполагает использование

2.5 слоя архитектуры клиент-сервер. На сервере находится основная база данных, к которой происходят запросы от клиентских приложений. В базе данных сервера храниться информация о микроклимате теплицы, о состоянии датчиков, о системе полива, вентиляции и освещения.

Для системы разработаны мобильное и десктопное приложение, кото	poe
предназначено для мониторинга микроклимата теплицы и исправности	
аппаратной части системы	
Разработка информационной системы осуществляется в интегрирован	ной
среде разработки Qt, на языках программирования C++, QML.	
 	Лист
л. Лист № докум. Подпись Дата	
и. Учень на солум. Постасы дата	

Внедрение системы позволит:

- получать значительно больший урожай с тех же площадей;
- свести к минимуму участия человека в процессе выращивания тепличных растений;
- создать и поддержание оптимального для насаждений микроклимата;
- заниматься растениеводством в неблагоприятных условиях

В таблицах 5.1-5.12 описаны технико-экономические показатели проектируемого варианта информационной системы. Таблицы построены на основе методических указаний.

5.1 Расчет затрат на разработку и отпускной цены информационной системы

5.1.1 Определение объема и трудоемкости информационной системы

Общий объем информационной системы определяется на основе информации о функциях разрабатываемого программного модуля, исходя из количества и объема функций, реализуемых программным модулем, по формуле

$$V_o = \sum_{i=1}^n V_i, \tag{5.1}$$

где

n – общее число функций, шт.;

 V_i — объем i-ой функции программного модуля (количество строк исходного кода, (LOC)).

С учетом условий разработки общий объем программного модуля уточняется и определяется уточненный объем программного модуля по формуле

Изм.	Лист	№ докум.	Подпись	Дата

$$V_y = \sum_{i=1}^n V_{yi}, \tag{5.2}$$

n – общее число функций, шт.;

 V_{yi} – уточненный объем i-й функции программного модуля (LOC).

Определение общего объема программного модуля представлено в таблице 5.1.

Таблица 5.1 - Перечень и объем функции программного обеспечения

Номер	Наименование (содержание) функции	Объем фун	нкции (LOC)
функции	Паименование (содержание) функции	по каталогу	уточненный
	Сервер		
203	Обработка наборов и записей баз данных	2670	1120
206	Манипулирование данными	9550	3860
507	Обеспечение интерфейса между компонентами	1820	2000
Итого общи	й объем программного модуля	14040	6980
	Мобильный клиент		
101	Организация ввода информации	150	150
202	Формирование баз данных	2180	500
203	Обработка наборов и записей базы данных	2670	1230
507	Обеспечение интерфейса между компонентами	1820	2000
707	Графический вывод результатов	590	700
Итого общи	й объем программного модуля	7410	4580
	Десктопный клиент	'	
101	Организация ввода информации	150	150
102	Контроль, предварительная обработка и ввод информации	550	300

Изм.	Лист	№ докум.	Подпись	Дата

Окончание таблицы 5.1

202	Формирование баз данных	2180	500
206	Манипулирование данными	9550	6000
507	Обеспечение интерфейса между компонентами	1820	2000
707	Графический вывод результатов	590	800
Итого общи	й объем программного модуля	14840	9750
Итого общи	й объем программных модулей	36290	21310

В связи с использованием более совершенных средств автоматизации объемы функций были уменьшены и уточненный объем программного модуля составил 21310 LOC вместо 36290 LOC.

5.1.2 Расчет поправочных коэффициентов, учитывающих организационно — технические условия разработки программного обеспечения

Программный модуль относится ко второй категории сложности. На основании принятого к расчету объема ($V_y = 21\ 310\ LOC$) и категории сложности определяется нормативная трудоемкость ПО (T_H), представлены в таблице 5.2. Таблица 5.2 – Нормативная трудоемкость на разработку ПО (T_H)

Уточнённый объем, V _у	3-я категория сложности ПО	Номер нормы
21310	798	76

 K_{c} — коэффициент, учитывающий сложность программного модуля, который рассчитывается по формуле

$$K_{c} = 1 + \sum_{i=1}^{n} K_{i}$$
 (5.3)

Изм.	Лист	№ докум.	Подпись	Дата

гле

n – количество учитываемых характеристик, шт.;

 K_i — коэффициент, соответствующий степени повышения сложности программного модуля за счет i-ой характеристики (таблица 5.3).

Таблица 5.3 – Коэффициент степени повышения сложности программного модуля

№ п/п	Характеристики повышения сложности ПМ	Значение
1	Интерактивный доступ	0,5
2	Функционирование ПМ в расширенной операционной среде	0,7
3	Обеспечение хранения, ведения, поиска данных в сложных структурах.	0,6
	Итого три характеристики	0,18

Следовательно, коэффициент повышения сложности составит $K_c = 1 + 0.18 = 1.18, \ где \ K_T - \ поправочный коэффициент, учитывающий степень использования при разработке стандартных модулей.$

В разрабатываемом программном обеспечение степень охвата стандартными модулями составляет 45%, следовательно, значение $K_T = 0.65$.

Новизна разработанного ПО определяется путем экспертной оценки данных, полученных при сравнении характеристик разрабатываемого ПО с имеющимися аналогами. Влияние фактора новизны на трудоемкость учитывается путем умножения нормативной трудоемкости на соответствующий коэффициент, учитывающий новизну ПО (К_н).

В соответствии с таблицей П.2.2 разработанная программа обладает категорией новизны Б, а значение $K_{\text{\tiny H}}=0{,}72.$

Значение коэффициентов удельных весов трудоемкости стадий разработки ПО в общей трудоемкости ПО, определяются с учетом установленной категории новизны ПО согласно таблице П.2.5 .

При этом сумма значений коэффициентов удельных весов всех стадий в общей трудоемкости равна единице. Значения коэффициентов приведены в таблице 5.4.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 5.4 – Значения коэффициентов удельных весов трудоемкости стадий разработки ПО в общей трудоемкости ПО

	Без применения CASE-технологии							
	Стадии разработки ПО							
Категория новизны ПО	Т3	ЭП	ТΠ	РΠ	ВН			
	Значения коэффициентов							
	K _{T3}	Кэп	Ктп	$K_{P\Pi}$	Квн			
Б	0,10	0,20	0,30	0,30	0,10			

5.1.3 Расчет трудоемкости выполненных работ по стадиям разработки программного обеспечения

для стадии ТЗ
$$T_{y.т.3.} = T_H * K_{T.3} * K_C * K_H * K_y.p,$$
 (5.4) $T_{y.т.3.} = 798*0,10*1,18*0,72*1,3 = 88,14 чел./дн.;$ для стадии ЭП $T_{y.9.\Pi} = T_H * K_{9.\Pi} * K_C * K_H * K_y.p,$ (5.5) $T_{y.9.\Pi.} = 798*0,20*1,18*0,72*1,3 = 176,28 чел./дн.;$ для стадии ТП $T_{y.т.\Pi.} = T_H * K_{T.\Pi} * K_C * K_H * K_y.p,$ (5.6) $T_{y.т.\Pi.} = 798*0,30*1,18*0,72*1,3=264,41 чел./дн.;$ для стадии РП $T_{y.p.\Pi} = T_H * K_{p.\Pi} * K_C * K_H * K_T * K_y.p,$ (5.7) $T_{y.p.\Pi.} = 798*0,30*1,18*0,72*0,65*1,3=171,87 чел./дн.;$ для стадии ВН $T_{y.BH} = T_H * K_{BH} * K_C * K_H * K_y.p,$ (5.8) $T_{y.BH} = 798*0,10*1,18*0,72*1,3=88,14 чел./дн.$

5.1.4 Расчет общей трудоемкости разработки программного обеспечения

Нормативная трудоемкость служит основой для определения общей трудоемкости разработки программного модуля, который определяется по формуле

_				
Изм.	Лист	№ докум.	Подпись	Дата

$$T_{o} = \sum_{i=1}^{n} T_{yi}$$
 (5.9)

 T_{yi} — нормативная (скорректированная) трудоемкость разработки программного модуля на i-й стадии, чел./дн.;

n - количество стадий разработки, шт.

$$T_0 = 788,84$$
 чел./дн.

Все данные по расчету общей трудоемкости разработки программного обеспечения представлены в таблице 5.5.

Таблица 5.5 – Расчет общей трудоемкости разработки ПО

№	Показатели		Итого				
п/п	HORASALOJII	Т3	ЭП	ТП	РΠ	ВН	YIIOI O
1	Общий объем ПО (V_0), количество строк LOC	_	_	_	_	_	36 290
2	Общий уточненный объем ПО (V_y) , количество строк LOC	_	_	_	_	_	21 310
3	Категория сложности разрабатываемого ПО	_	_	_	_	_	3-я
4	Нормативная трудоемкость разработки ПО (T _н), челдн.	_	_	_	_	_	798
5	Коэффициент повышения сложности $\Pi O (K_c)$	1,18	1,18	1,18	1,18	1,18	_
6	Коэффициент, учитывающий новизну $\Pi O (K_{\scriptscriptstyle m H})$	0,72	0,72	0,72	0,72	0,72	_
7	Коэффициент, учитывающий степень использования стандартных модулей ($K_{\scriptscriptstyle T}$)	_	_	_	0,65	_	_
8	Коэффициент, учитывающий средства разработки $\Pi O (K_{y,p})$	1,3	1,3	1,3	1,3	1,3	_
9	Коэффициенты удельных весов трудоемкости стадий разработки ПО $(K_{\text{T.3}}, K_{\text{Э.П}}, K_{\text{Т.П}}, K_{\text{р.П}}, K_{\text{B.H}})$	0,10	0,20	0,30	0,30	0,10	1,0
10	Распределение скорректированной (с учетом $K_{\rm c}$, $K_{\rm H}$, $K_{\rm T}$, $K_{\rm y.p}$) трудоемкости ПО по стадиям, челдн.	88,14	176,28	264,41	171,87	88,14	788,84
11	Общая трудоемкость разработки ПО $(T_{\rm o})$, челдн.	_		_	_	_	788,84

				-
Изм.	Лист	№ докум.	Подпись	Дата

5.2 Расчет затрат на разработку (себестоимости) программного продукта

Суммарные затраты на разработку ПО (3_р) определяются по формуле

$$3_p = 3_{mp} + 3_{9m} + 3_{mex} + 3_{MB} + 3_{Mm} + 3_{oбw_np} + 3_{Henp},$$
 (5.10)

5.2.1 Расчет затрат на оплату труда разработчиков

Расходы на оплату труда разработчиков с отчислениями равны:

$$3_{mp} = 3\Pi_{OCH} + 3\Pi_{\partial On} + OTY_{3n}, \qquad (5.11)$$

где

 $3\Pi_{och}$ – основная заработная плата разработчиков, руб.;

 $3\Pi_{\partial on}$ — дополнительная заработная плата разработчиков, руб.;

 TY_{3n} – сумма отчислений от заработной платы (социальные нужды, страхование от несчастных случаев), руб.

Основная заработная плата разработчиков рассчитывается по формуле

$$3\Pi_{och} = C_{cp_uac} \times T_o \times K_{yg}, \qquad (5.12)$$

где

 C_{cp_uac} — средняя часовая тарифная ставка;

 T_o – общая трудоемкость разработки, чел-час;

 K_{ys} — коэффициент, учитывающий доплаты стимулирующего характера ($K_{ys}=1.5$) .

Средняя часовая тарифная ставка определяется по формуле

$$C_{cp_uac} = \frac{\sum_{i} C_{ui} \times n_{i}}{\sum_{i} n_{i}},$$
(5.13)

Изм.	Лист	№ докум.	Подпись	Дата

 C_{vi} - часовая тарифная ставка разработчика i-й категории;

 n_i – количество разработчиков i-й категории.

$$C_{qi} = \frac{C}{F} = \frac{C}{F} \times T$$

$$Mec = \frac{M1}{F} \frac{ki}{F},$$

$$Mec = \frac{M1}{M} \frac{ki}{F},$$

$$Mec = \frac{M1}{M} \frac{ki}{M}$$

$$M1 = \frac{M1}{M} \frac{ki}{M}$$

$$M2 = \frac{M1}{M} \frac{ki}{M}$$

$$M3 = \frac{M1}{M} \frac{ki}{M}$$

$$M4 = \frac{M1}{M} \frac{ki}{M}$$

$$M1 = \frac{M1}{M} \frac{ki}{M}$$

$$M2 = \frac{M1}{M} \frac{ki}{M}$$

$$M3 = \frac{M1}{M} \frac{ki}{M}$$

$$M4 = \frac{M1}{M} \frac{ki}{M}$$

$$M1 = \frac{M1}{M} \frac{ki}{M}$$

$$M2 = \frac{M1}{M} \frac{ki}{M}$$

$$M3 = \frac{M1}{M} \frac{ki}{M}$$

$$M4 = \frac{M1}{M} \frac{ki}{M}$$

$$M$$

где

 $F_{мес}$ – фонд рабочего времени(168 ч);

 $T_{\kappa i}$ — тарифный коэффициент.

$$C_{\text{cp_vac}} = C_{\text{vi}} = \frac{36,4*2,81}{168} = 0,61 \text{ py6}.$$

$$3\Pi_{\text{och}} = 0.61 * 788.84 * 8 * 1.5 = 5774.31 \text{ pyg.}$$

Таблица 5.6 – Расчет средней часовой тарифной ставки

	Категория	Количе	Тарифный	Месячная	Часовая	Средняя
$\mathcal{N}_{\underline{0}}$	исполнителей-	ство	коэффициен	тарифная	тарифная	часовая
п/п	разработчиков	человек	$T(T_{\kappa i})$	ставка	ставка	тарифная
1211	(<i>i</i>)	(n_i)	1 (1 _{Ki})	(C_{Mi})	(C_{qi})	ставка (Сср.ч)
	Инженер-					
1	программист	1	2,81	36, 4	0,61	_
	(1 кат.)					
	Итого			_	_	0,61

Дополнительная заработная плата равна

$$3\Pi = 3\Pi \times H /100\%$$
, (5.15)

где

 $H_{\partial on}$ — норматив отчислений на дополнительную заработную плату разработчиков (10%).

$$3\Pi_{\text{доп}} = 5774,31 * \frac{10}{100} = 577,43 \text{ руб.}$$

Отчисления от основной и дополнительной заработной платы (отчисления на социальные нужды и обязательное страхование) рассчитываются по формуле

Изм. Лист	№ докум. Подпись	Дата

$$OTY_{CH} = (3\Pi_{OCH} + 3\Pi_{OON}) \times H_{3n} / 100\%,$$
 (5.16)

 $H_{\mbox{\tiny 311}}$ — процент отчислений на социальные нужды и обязательное страхование от суммы основной и дополнительной заработной платы ($H_{\mbox{\tiny 311}}=34\%$).

$$OT4_{CH} = (5774,31 + 577,43) * \frac{34}{100} = 2159,59 \text{ руб};$$
 $3_{TP} = 5774,31 + 577,43 + 2159,59 = 8511,33 \text{ руб}.$

5.2.2 Расчет затрат на машинное время

Таблица 5.7 – Параметры для расчета производственных затрат на разработку ПО

Параметр	Единица измерения	Значение
Количество ПЭВМ (Оэвм)	шт.	1
Затраты на приобретение единицы ПЭВМ	руб.	1000
Стоимость одного кВт-часа электроэнергии (Сэл) [20]	руб.	0,1746
Коэффициент потерь рабочего времени (Кпот)	-	0,15
Затраты на технологию (3 _{тех})	руб.	_
Норматив общепроизводственных затрат (Ндоп)	%	5
Норматив непроизводственных затрат (Н _{непр})	%	5

Затраты машинного времени определяются по формуле

$$3_{\mathcal{M}\mathcal{G}} = C_{\mathcal{U}} \times K_{\mathcal{m}} \times t_{\mathcal{H}\mathcal{M}}, \tag{5.17}$$

где

 C_{4} – стоимость 1 часа машинного времени (руб./ч.);

 K_m – коэффициент мультипрограммности, показывающий распределение времени работы ЭВМ в зависимости от количества пользователей ЭВМ ($K_T = 1$);

Изм.	Лист	№ докум.	Подпись	Дата

Стоимость машино-часа определяется по формуле

$$C_{q} = \frac{3\Pi + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3}{F}, \qquad (5.18)$$

$$O_{q} = \frac{3\Pi + 3 + 3 + 3 + 3 + 3 + 3 + 3}{F}, \qquad (5.18)$$

где

 $3\Pi_{oбcn}$ — затраты на заработную плату обслуживающего персонала с учетом всех отчислений, (руб. в год);

 3_{AP} – стоимость аренды помещения под размещение вычислительной техники, (руб. в год);

 3_{AM} – амортизационные отчисления за год, (руб. в год);

 $3_{Э\Pi}$ – затраты на электроэнергию, (руб. в год);

 3_{BM} — затраты на материалы, необходимые для обеспечения нормальной работы ПЭВМ (вспомогательные), (руб. в год);

 3_{TP} – затраты на текущий и профилактический ремонт ЭВМ (руб. в год);

 $3_{\Pi P}$ – прочие затраты, связанные с эксплуатацией ПЭВМ. (руб. в год);

 $F_{\it ЭВМ}$ — действительный фонд времени работы ЭВМ, (час/год).

Все статьи затрат формируются в расчете на единицу ПЭВМ.

Затраты на заработную плату обслуживающего персонала, аренду помещения:

$$3\Pi_{\text{обсл}} = 0$$
 руб., $3_{\text{AP}} = 0$ руб.,

так как обслуживающий персонал и помещение не требуются.

Сумма годовых амортизационных отчислений (З_{АМ}) определяется по формуле

$$3_{AM} = 3_{npuo\delta p} \times (1 + K_{\partial on}) \times H_{AM}, \qquad (5.19)$$

где

 $3_{npuo 6p}$ – затраты на приобретение (стоимость) единицы ПЭВМ, руб.;

Изм.	Лист	No dokum	Подпись	Пото
VI3IVI.	Jiucili	№ докум.	Подпись	Дата

 $K_{\partial on}$ — коэффициент, характеризующий дополнительные затраты, связанные с доставкой, монтажом и наладкой оборудования, $K_{\partial on}$ = 12-13 % от 3_{npuo6p} ;

 $3_{npuo 6p} \times (1 + K_{\partial on})$ – балансовая стоимость ЭВМ, руб.;

 H_{AM} – норма амортизации, %.

$$3_{AM} = 1000 * (1 + 0.12) * 0.125 = 140 \text{ py6}.$$

Стоимость электроэнергии, потребляемой за год, (3_{эп}) определяется по формуле

$$3 = M \times F \times C \times A, \qquad (5.20)$$

где

M – паспортная мощность ПЭВМ, (кВт), M = 0,72 кВт;

Сэл – стоимость одного кВт-часа электроэнергии, руб.;

А – коэффициент интенсивного использования мощности, А=0,98...0,9.

Действительный годовой фонд времени работы ПЭВМ (F_{ЭВМ}) рассчитывается по формуле

$$F_{\mathcal{B}M} = (\mathcal{I}_{\mathcal{E}} - \mathcal{I}_{\mathcal{B}ix} - \mathcal{I}_{np}) \times F_{\mathcal{C}M} \times K_{\mathcal{C}M} \times (1 - K_{nom}), \qquad (5.21)$$

где

 \mathcal{L}_{ϵ} – общее количество дней в году, $\mathcal{L}_{\Gamma} = 365$ дней;

 $A_{Bblx} + A_{np} = 0$ дней, т.к система работает круглосуточно;

 F_{cm} – продолжительность 1 смены, F_{cm} = 24 часов;

 $K_{\scriptscriptstyle {\it CM}}$ – коэффициент сменности, т.е. количество рабочих смен ЭВМ,

 $K_{cM}=1$;

 K_{nom} — коэффициент, учитывающий потери рабочего времени, связанные с профилактикой и ремонтом ЭВМ, $K_{nom} = 0.15$ - 0.30.

$$F_{\rm ЭВМ} = (365 - 0) * 24 * 1 * (1 - 0,15) = 7446$$
ч.;

Изм.	Лист	№ докум.	Подпись	

$$3_{9\Pi} = 0.72 * 7446 * 0.1746 * 0.9 = 842.45$$
 py6.

Затраты на материалы (3_{BM}), необходимые для обеспечения нормальной работы ПЭВМ составляют около 1% от балансовой стоимости ЭВМ и определяются:

$$3_{BM} = 3_{npuo\delta p} \times (1 + K_{\partial on}) \times K_{M3}, \tag{5.22}$$

где

 $3_{npuo 6p}$ – затраты на приобретение (стоимость) ЭВМ (руб.);

 $K_{\partial on}$ — коэффициент, характеризующий дополнительные затраты, связанные с доставкой, монтажом и наладкой оборудования,

$$K_{\partial on} = 12\text{-}13 \%$$
 от $3_{приобр}$;

 $K_{\!\scriptscriptstyle M\!3}$ — коэффициент, характеризующий затраты на вспомогательные материалы ($K_{\!\scriptscriptstyle M\!3}=0{,}01$) .

$$3_{BM} = 1000 * (1 + 0.12) * 0.01 = 11.2 \text{ py6}.$$

Затраты на текущий и профилактический ремонт (3_{TP}) принимаются равными 5% от балансовой стоимости ЭВМ

$$3_{TP} = 3_{npuo\delta p} \times (1 + K_{\partial on}) \times K_{mp}, \qquad (5.23)$$

где

 K_{mp} — коэффициент, характеризующий затраты на текущий и профилактический ремонт ($K_{M3}=0{,}05$).

$$3_{TP} = 1000 * (1 + 0.12) * 0.05 = 56 \text{ py}6.$$

Прочие затраты, связанные с эксплуатацией ЭВМ ($3_{\text{ПР}}$) состоят из амортизационных отчислений на здания, стоимости услуг сторонних организаций и составляют 5 % от балансовой стоимости

$$3_{\Pi P} = 3_{npuo\delta p} \times (1 + K_{\partial on}) \times K_{np}, \qquad (5.24)$$

 K_{np} – коэффициент, характеризующий размет прочих затрат, связанных с эксплуатацией ЭВМ ($K_{np}=0.05$).

$$3_{\text{IIP}} = 1000 * (1 + 0.12) * 0.05 = 56 \text{ py6.};$$

Для расчета машинного времени ЭВМ ($t_{\scriptscriptstyle \rm 2BM}$ в часах), необходимого для разработки и отладки проекта, следует использовать формулу

$$t_{96M} = (t_{P\Pi} + t_{BH}) \times F_{CM} \times K_{CM}, \qquad (5.25)$$

где

 $t_{P\Pi}$ – срок реализации стадии «Рабочий проект» (РП), 130 дней;

 t_{BH} – срок реализации стадии «Ввод в действие» (ВП), 4 дней;

 F_{cm} – продолжительность рабочей смены, (ч.), F_{cm} = 24 ч.;

 K_{cm} – количество рабочих смен, $K_{cm} = 1$.

$$t_{\scriptscriptstyle 3\text{BM}} = (130 + 4) * 24 * 1 = 3216 \text{ ч};$$

$$C_{\rm Y} = \frac{0 + 0 + 140 + 842,45 + 11,2 + 56 + 56}{7446} = 0,15 \text{ руб./ч};$$

$$3_{\scriptscriptstyle MB} = 0,15 * 1 * 3216 = 482,4 \text{ руб.}$$

5.2.3 Расчет затрат на изготовление эталонного экземпляра

Расчет затрат на изготовление эталонного экземпляра ($3_{\text{эт}}$) осуществляется по формуле

$$3_{9m} = (3_{mp} + 3_{mex} + 3_{M6}) \times K_{9m},$$
 (5.26)

где

 $K_{\text{эт}}$ — коэффициент, учитывающий размер затрат на изготовление эталонного экземпляра, ($K_{\text{эт}}$ =0,05).

Изм.	Лист	№ докум.	Подпись	Дата

При написании дипломной работы были использованы бесплатные среда разработки Qt и СУБД MySQL Server, поэтому затраты на технологию ($3_{\text{тех}}$) будут нулевыми.

$$3_{\text{эт}} = (56 + 246,56) * 0,05 = 15,1 \text{ руб.}$$

5.2.4 Расчет затрат на материалы

Затраты на материалы (носители информации и пр.), необходимые для обеспечения нормальной работы ПЭВМ рассчитываются следующим образом

$$3_{Mam} = 3_{npuo\delta p} \times (1 + K_{\partial on}) \times K_{M3}, \qquad (5.27)$$

где

 $3_{npuo 6p}$ — затраты на приобретение ЭВМ, руб.;

 $K_{\partial on}$ — коэффициент, характеризующий дополнительные затраты, связанные с доставкой, монтажом и наладкой оборудования, $K_{\partial on}=12\text{-}13$ % от $3_{npuo\delta p}$;

 K_{M3} — коэффициент, характеризующий затраты материалы ($K_{M3} = 0.01$).

$$3_{\text{MAT}} = 1000 * (1 + 0.12) * 0.01 = 11.2 \text{ py6}.$$

Общепроизводственные затраты рассчитываются по формуле

$$3_{oom} = 3\Pi_{och} \times H_{oon} / 100\%,$$
 (5.28)

где

 $H_{\partial on}$ – норматив общепроизводственных затрат.

$$3_{\text{общ-пр}} = 5 774,31 * 0,05 = 288,72 руб.$$

Непроизводственные затраты рассчитываются по формуле

$$3_{Henn} = 3\Pi_{OCH} \times H_{\partial ON} / 100\%$$
, (5.29)

где

 $H_{\text{\tiny Henp}}$ – норматив непроизводственных затрат.

$$3_{\text{непр}} = 5774,31 * 0,05 = 288,72$$
 руб.

Изм.	Лист	№ докум.	Подпись	Дата

Итого получаем суммарные затраты на разработку:

$$3_p = 8511,33 + 246,56 + 0 + 15,1 + 11,2 + 288,72 + 288,72 = 9361,63$$
 py6.

Таблица 5.8 – Затраты на себестоимость ПО

Статья затрат	Итого
Затраты на оплату труда разработчиков (Зтр), бел.руб.	8511,33
Основная заработная плата разработчиков, бел.руб.	5774,31
Дополнительная заработная плата разработчиков, бел.руб.	577,43
Отчисления от основной и дополнительной заработной платы, бел.руб.	2159,59
Затраты машинного времени (Змв), бел.руб.	246,56
Стоимость машино-часа, бел.руб/ч	0,23
Сумма годовых амортизационных отчислений, бел.руб.	140
Действительный годовой фонд времени работы ПЭВМ, ч.	1714
Затраты на текущий и профилактический ремонт, бел.руб.	56
Прочие затраты, связанные с эксплуатацией ЭВМ, бел.руб.	56
Машинное время ЭВМ, ч.	1072
Затраты на изготовление эталонного экземпляра (Зэт), бел.руб.	15,1
Затраты на технологию (Зтех), бел.руб.	0
Общепроизводственные затраты (Зобщ.пр), бел.руб.	288,72
Непроизводственные (коммерческие) затраты (Знепр), бел.руб.	288,72
Затраты на материалы (Змат), бел.руб.	11,2
Суммарные затраты на разработку ПО (3р), бел.руб.	9361,63

5.3 Формирование цены при создании программного обеспечения

5.3.1 Расчет оптовой цены программного продукта

Оптовая цена ПП (Цопт) определяется следующим образом

$$\coprod_{\text{опт}} = C(3_{\text{p}}) + \Pi_{\text{p}},$$
(5.30)

$$\Pi_{p} = \frac{3_{p} \times Y_{p}}{100},$$
(5.30)
$$\Pi_{p} = \frac{3_{p} \times Y_{p}}{100},$$

где

C(3_p) – себестоимость ПО, руб.;

 Π_{p} – прибыль от реализации ПП, руб.;

Изм.	Лист	№ докум.	Подпись	Дата

 y_p – уровень рентабельности ПП, % ($y_p = 30 \%$).

$$\Pi_{\rm p} = \frac{9361,63 \times 30}{100} = 2\,808,49$$
 руб. $\Pi_{\rm out} = 9\,331,63 + 2\,808,49 = 12\,140,12$ руб.

5.3.2 Расчет отпускной цены программного продукта

Прогнозируемая отпускная цена ПП без НДС рассчитывается по формуле

$$\coprod_{\text{отп}} = 3_{\text{p}} + \Pi_{\text{p}} + P_{\text{HДC}}, \tag{5.32}$$

Налог на добавленную стоимость (Р_{ндс}) рассчитывается по формуле

$$P_{H,C} = (3_p + \Pi_p) \times \frac{H_{H,C}}{100},$$
 (5.33)

где

 $H_{\text{ндс}}\!-$ ставка налога на добавленную стоимость, %, $H_{\text{ндс}}=20$ % .

$$P_{\text{HДC}} = (9\ 361,63 + 2\ 808,49) \times \frac{20}{100} = 2\ 434,02\ \text{руб}.$$
 $U_{\text{отп.ндс}} = 9\ 361,63 + 2\ 808,49 + 2\ 434,02 = 14\ 604,14\ \text{руб}.$

Таблица 5.9 – Плановая калькуляция разработки программного продукта, руб.

№ п/п	Наименование статьи расходов	Условные обозначения	Значение
1	Затраты на оплату труда разработчиков	$3_{\rm rp}$	8 511,33
1.1	Основная заработная плата разработчиков		5 774,31
1.2	Дополнительная заработная плата разработчиков		577,43
1.3	Отчисления от основной и дополнительной заработной платы		2 159,59
2	Затраты машинного времени	3 _{м.в}	246,56
3	Полная себестоимость	3 _p	9 361,63
4	Прибыль от реализации ПО	Π_{p}	2 808,49
5	Отпускная цена ПО без НДС	Цотп	12 140,12
6	Налог на добавленную стоимость	$P_{\scriptscriptstyle ext{HДC}}$	2 434,02
7	Отпускная цена ПО с НДС	Цотп.ндс	14 604,14

Изм.	Лист	№ докум.	Подпись	Дата

5.4 Определение экономической эффективности внедрения программного продукта

Эффективность — одно из общих экономических понятий, это характеристика системы с точки зрения соотношения затрат и результатов ее функционирования. Экономический эффект — результат внедрения мероприятия, выраженный в стоимостной форме, в виде экономии от его осуществления.

5.4.1 Динамическая система оценки экономической эффективности проекта

Оценка эффективности инвестиций базируется на сопоставлении ожидаемого чистого дохода от реализации проекта с затратами инвестиционного характера. На основании чистого потока наличности рассчитываются основные показатели оценки эффективности инвестиций: чистый дисконтированный доход (ЧДД), внутренняя норма доходности (ВНД), индекс рентабельности (доходности) (Ір), динамический срок окупаемости (Тдин).

Для расчета этих показателей применяется коэффициент дисконтирования, который используется для приведения будущих потоков и оттоков денежных средств за каждый расчетный период реализации проекта к начальному периоду времени.

Коэффициент дисконтирования в расчетном периоде (K_t)

$$K_t = \frac{1}{(1+r)^t} \,, \tag{5.34}$$

где

r – норма дисконта (применяется на уровне ставки рефинансирования);

t — период реализации проекта.

Чистый дисконтированный доход (ЧДД) характеризует интегральный эффект от реализации проекта и определяется как величина, полученная

Изм.	Лист	№ докум.	Подпись	Дата

дисконтированием разницы между годовыми оттоками и притоками средств, накапливаемых в течение горизонта расчета проекта

ЧДД =
$$\sum_{t=0}^{n} \frac{A_t}{(1+r)^t} - \sum_{t=0}^{n} \frac{\mathbf{N}_t}{(1+r)^t}$$
, (5.35)

где

 \mathcal{L}_t – доходы (эффекты) от внедрения информационных технологий, руб.;

 U_t — затраты инвестиционного характера (единовременные, капитальные) на разработку и внедрение информационных технологий, руб.

Если ЧДД ≥ 0 , то проект может быть принят; если ЧДД < 0, то проект неэффективен. При рассмотрении альтернативных вариантов наиболее приемлем тот, который имеет большее значение ЧДД.

Если инвестиционные затраты, связанные с разработкой программного продукта и приобретением компьютерной техники, периферийных устройств, кабелей и т. д. производится только в год разработки, а первые доходы ожидаются в следующем году, то формула (5.35) примет вид

ЧДД =
$$-\text{И}_{0} + \frac{\underline{\Lambda}_{1}}{(1+r)^{1}} + \frac{\underline{\Lambda}_{2}}{(1+r)^{2}} + \dots + \frac{\underline{\Lambda}_{n}}{(1+r)^{n}},$$
 (5.36)

Внутренняя норма доходности (ВНД) — интегральный показатель, рассчитываемый нахождением ставки дисконтирования, при которой стоимость будущих поступлений равна стоимости инвестиций (ЧДД = 0)

ВНД =
$$\sum_{t=0}^{n} \frac{A_t}{(1+r)^t} - \sum_{t=0}^{n} \frac{\mathbf{H}_t}{(1+r)^t} = 0,$$
 (5.37)

Индекс рентабельности (доходности) (ИР) — это отношение суммарного дисконтированного дохода к суммарным дисконтированным затратам. Проект эффективен, если норма дисконта оказывается больше или равной ставке рефинансирования, требуемой инвестором, кредитором.

$$MP = \sum_{t=0}^{n} \frac{A_t}{(1+r)^t} / \sum_{t=0}^{n} \frac{N_t}{(1+r)^t} , \qquad (5.38)$$

Инвестиционные проекты эффективны при ИР > 1.

Динамический срок окупаемости ($T_{\text{дин}}$). Расчет динамического срока окупаемости проекта осуществляется по накопительному дисконтированному чистому потоку наличности. Динамический срок окупаемости в отличие от

простого учитывает стоимость капитала и показывает реальный период окупаемости.

$$T_{\text{дин}} = \sum_{t=0}^{n} \frac{\mathbf{u}_{t}}{(1+r)^{t}} / \sum_{t=0}^{n} \frac{\mathbf{u}_{t}}{(1+r)^{t}}, \qquad (5.39)$$

Расчёт вложений, требуемых при внедрении информационной системы:

- Единоразовые:
 - Покупка планшета на каждую точку продаж 500 руб.
 - Итого: 500*2 = 1000 руб.
- Ежегодные:
 - Аренда сервера 25 руб./мес. [19]
 - Оплата интернета для каждой точки продаж 12 руб./мес. [20]
 - Итого: 25*12 + (12*2)*12 = 588 руб.

Внедрение информационной системы позволит ускорить работу, связанную с обслуживанием клиентов, а также уменьшит количество работы администратору (автоматический анализ и вывод статистики).

В среднем после внедрения системы ежедневная прибыль на каждой точке продаж увеличится на 20 руб. Соответственно к ежегодной прибыли прибавиться $(20*2)*365 = 14\ 600\ \text{руб}$.

Таблица 5.10 – Расчёт чистого дисконтированного дохода (ЧДД), руб.

No	Показатель	Годы реализации проекта					
п/п	Показатель	0-й	1-й	2-й	3-й		
1	Отток денежных средств	15 604	588	588	588		
1.1	Вложения для ПО	1000	588	588	588		
1.2	Затраты на покупку ПО	14 604	-	-	-		
2	Приток денежных средств	-	14 600	14 600	14 600		
2.1	Экономический эффект внедрения нового ПО	-	14 600	14 600	14 600		
3	Чистый поток денежных средств	-15 604	14 012	14 012	14 012		

_				
Изм.	Лист	№ докум.	Подпись	Дата

Продолжение таблицы 5.10

4	Коэффициент дисконтирования (при $r = 20 \%$)	1	0,83	0,69	0,58
5	Текущая стоимость потока	-15 604	11 630	9 668	8 127
6	Накопленная стоимость потока	-15 604	-3 974	5 694	13 821

Далее определяем:

- 1. Чистый дисконтированный доход к концу 3-го года внедрения информационной системы составит: ЧДД = 13 821 руб.
- 2. Динамический срок окупаемости проекта:

$$T_{\text{дин}} = 1 + (3\,974\,/\,9\,668) = 1 + 0.41 = 1.41$$
 (года).

3. Простой срок окупаемости проекта:

$$T_{np} = 15 604 / 14 012 = 1,11$$
 (года).

4. Индекс доходности (рентабельности) проекта:

$$ИД = (11630 + 9668 + 8127) / 15604 = 1,89.$$

Рассчитанное значение ИД = 1,89>1, следовательно, разработку программы можно считать эффективной.

5. Средняя рентабельность разработки в случае реализации проекта в течение 3-х лет составит:

$$P\Pi = (1.89 / 3)*100 = 63 \%.$$

Внутренняя норма доходности (рентабельность) представляет собой ту ставку дисконта (ВНД), при которой ЧДД = 0. Ее вычисление является итеративным процессом, который начинается с барьерной ставки (r), если при этом ЧДД положительный, то в следующей итерации используют более высокую ставку, если отрицательная — то более низкую. Точное значение ВНД вычисляется по формуле

ВНД =
$$r_{\text{ЧДД(+)}} + \frac{\text{ЧДД(+)}}{\text{ЧДД(+)} - \text{ЧДД(-)}},$$
 (5.40)

_				
Изм.	Лист	№ докум.	Подпись	Дата

 $r_{\rm ЧДД(+)}-$ значение ставки дисконта, при которой ЧДД принимает последнее положительное значение;

ЧДД(+) – последнее положительное значение ЧДД;

ЧДД(-) - первое отрицательное значение ЧДД

В соответствии с условиями приведенной выше задачи ВНД рассчитывается по алгоритму, приведенному в таблице 5.11.

Точное значение ВНД составит

ВНД =
$$76 + \frac{0,083}{0,083 - (-0,064)} = 76,56\%$$
.

Таблица 5.11 – Расчёт внутренней нормы дисконта

E	Денежные	При г	= 76%	При r = 77%		
Год	потоки	K_t	Текущий	K_t	Текущий	
		Νt	поток	Nt.	поток	
0	-15 604	1	-15 604	1	-15 604	
1	14 600	0,5682	8296	0,5650	8249	
2	14 600	0,3228	4713	0,3191	4659	
3	14 600	0,1834	2678	0,1803	2632	
		ЧДД = 0,083		ЧДД = -0,064		

Заключительным этапом работы над организационно-экономической частью диплома является составление по результатам проведенных расчетов таблицы технико-экономических показателей проекта.

Все итоговые данные приведены в таблице 5.12.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 5.12 – Технико-экономические показатели проекта

№ п/п	Наименование показателя	Единица измерения	Проектный вариант
	Показатели затрат на раз	работку	
1	Общая трудоемкость разработки ПО	челдн.	788,84
2	Затраты на разработку программы	руб.	9 361,63
2.1	Затраты на оплату труда разработчиков	руб.	8 511,33
2.2	Затраты машинного времени	руб.	246,56
2.3	Затраты на изготовление эталонного экземпляра	руб.	15,1
2.4	Затраты на материалы	руб.	11,2
2.5	Общепроизводственные затраты	руб.	288,72
2.6	Непроизводственные (коммерческие) затраты	руб.	288,72
	Показатели стоимост	ти	
3	Число снимаемых копий ПП	шт.	1
4	Отпускная цена ПП с НДС	руб.	14 604,14
	Показатели экономической эфф	<i>рективности</i>	
5	Рентабельность затрат	%	63
6	Простой срок окупаемости проекта	лет	1,41
7	Чистый дисконтированный доход	руб.	13 821
8	Внутренняя норма доходности	%	76,56
9	Индекс рентабельности (доходности)	%	1,89
10	Динамический срок окупаемости	лет	1,11

Таким образом, по результатам проведенной оценки установлено, что реализация проекта обоснована и является экономически целесообразной. Об этом свидетельствуют следующие показатели: величина ЧДД > 0 и значение ИД > 1, а рассчитанная внутренняя норма дисконта превышает фактическое значение (76,56 % > 20 %).

Изм.	Лист	№ докум.	Подпись	Дата