Part III Category Theory

Based on lectures by Prof P.T. Johnstone

Michaelmas 2016 University of Cambridge

Contents

1 Definitions and Examples

1

1 Definitions and Examples

Definition (Category). A category C consists of

- a. a collection ob C of objects A, B, C, \ldots
- b. a collection mor C of morphisms f, g, h, \ldots
- c. two operations dom, cod from morphisms to objects. We write $f:A\to B$ or $A\xrightarrow{f} B$ to mean 'f is a morphism and dom f=A and cod f=B'
- d. an operation assigning to each object A a morphism $1_A:A\to A$
- e. a partial binary operation $(f,g) \mapsto gf$, s.t. gf is defined \iff dom g =cod f, and then gf: dom $f \to$ cod g

Definition (Functor). Let C and D be categories. A functor $C \to D$ consists of

- a. a mapping $A \to FA$ from ob C to ob D
- b. a mapping $f \to Ff$ from $\operatorname{mor} \mathcal{C}$ to $\operatorname{mor} \mathcal{D}$

satisfying dom Ff = Fdom f, cod Ff = Fcod f for all f, $F(1_A) = 1_{FA}$ for all A, and F(gf) = (Fg)(Ff) whenever gf is defined.

Definition. By a contravariant functor $\mathcal{C} \to \mathcal{D}$ we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or equivalently $\mathcal{C}^{op} \to \mathcal{D}$). A functor $\mathcal{C} \to \mathcal{D}$ is sometimes said to be **covariant**.

Definition (Natural transformation). Let C and D be two categories and F, G: $C \rightrightarrows D$ two functors. A **natural transformation** $\alpha : F \to G$ assigns to each $A \in \text{ob } C$ a morphism $\alpha_A : FA \to GA$ in D, such that

$$\begin{array}{ccc} FA & \xrightarrow{Ff} & FB \\ \downarrow^{\alpha_A} & & \downarrow^{\alpha_B} \\ GA & \xrightarrow{Gf} & GB \end{array}$$

commutes.

We can compose natural transformations: given $\alpha: F \to G$ and $\beta: G \to H$, the mapping $A \mapsto \beta_A \alpha_A$ is the A-component of a natural transformation $\beta \alpha: F \to H$.

Definition. Given categories C, D, we write [C, D] for the category of all functors $C \to D$ and natural transformations between them.

Lemma 1. Given $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \to G$, α is an isomorphism in $[\mathcal{C}, \mathcal{D}] \iff each \alpha_A$ is an isomorphism in \mathcal{D} .

Definition (Faithful and full). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say that F is **faithful** if, given $f, g \in \text{mor } C$, the equations dom f = dom g, cod f = cod g and Ff = Fg imply f = g.
- b. F is **full** if, given any $g: FA \to FB$ in \mathcal{D} , there exists $f: A \to B$ in \mathcal{C} with Ff = g.
- c. We say a subcategory C' of C is **full** if the inclusion $C' \hookrightarrow C$ is a full functor.

For example, **Gp** is a full subcategory of the category **Mon** of monoids, but **Mon** is a non-full subcategory of the category **Sgp** of semigroups.

Definition (Equivalence of categories). Let C and D be categories. An equivalence between C and D is a pair of functors $F: C \to D$, $G: D \to C$ together with natural isomorphisms $\alpha: 1_C \to GF$, $\beta: FG \to 1_D$. We write $C \simeq D$ to mean that C and D are equivalent.

We say a property P of categories is **categorical** if whenever C has P and $C \simeq D$ then D has P.

For example, being a groupoid is a categorical property, but being a group is not.

Definition (Slice category). Given an object B of a category C, define the slice category C/B to have morphisms $A \xrightarrow{f} B$ as objects, and morphisms $(A \xrightarrow{f} B) \to (A' \xrightarrow{f'} B)$ are morphisms $h : A \to A'$ making

commute.