My Note

Jiandong Zhao

May 16, 2022

Abstract

This is a note.

1 Category Theory

1.1 Structure of category

The fundamental structure in category are composition and identity.

Composition: For any pair of morphisms where the first ends where the second starts there exists a composition.

Identity: For any object there exists an identity morphism.

1.2 Functor

Functor is the morphisms from one category to another category that preserve the structure of category, i.e. the compositions and identities.

Natural transformation is a morphisms from one functor to another functor that preserve the structure of functor.

1.3 Acset

1.3.1 C-Set

For a functor $F: C \to Set$.

Algebra over an operad is a functor from multicategory to Sets, where C is a multicatoegory. Multicategory means multi input single output. The functor F gives concrete meaning to C, in the sense that it picks out some objects(Sets) and morphisms(n-ary Functions).

1.3.2 C-FinSet

For a functor $C - FinSet : C \rightarrow FinSet$, where C is a free category and FinSet is a finite Set. C consists of objects and morphisms:

- objects: Box, Port, Junction, BoundaryPort, PortType
- morphisms: box, ij, bj, ipt, jpt, bpt

FinSet consists of objects and morphisms:

- objects: finite sets: set of boxes, set of ports, set of junctions, set of boundaryports, set of port types.
- morphisms: functions between finite sets (I will call it sets of mapping), e.g. $\{p_1 \to b_1, p_1 \to b_2, p_2 \to b_2 \dots \}$, $\{p_1 \to j_1, p_1 \to j_2, p_2 \to j_2 \dots \}$, ..., where $S_f(Port)(p_1) = b_1$ means port 1 belongs to box 1.

C-Set is a functor:

- In terms of objects: it sends the objects in **C** to the objects in **FinSet**, e.g. $S_f(Box) = \{b_1, b_2, b_3 \dots\},$ $S_f(Port) = \{p_1, p_2, p_3 \dots\}, \dots$
- In terms of morphisms: it sends the morphisms in **C** to the morphisms in **FinSet**, e.g. $S_f(box) = \{p_1 \rightarrow b_1, p_1 \rightarrow b_2, p_2 \rightarrow b_2 \dots\}, S_f(ij) = \{p_1 \rightarrow j_1, p_1 \rightarrow j_2, p_2 \rightarrow j_2 \dots\}, \dots$

1.3.3 Coproduct

For a functor $\prod : FinSet \times FinSet \rightarrow FinSet$

Coproduct in FinSet or in category is defined by the disjoint union of sets.

1.3.4 Acset

Attributed C-Set

Port	box	ij	ipt
p_1	b_1	α_1	P_1
p_2	b_2	α_1	P_1
p_3	b_2	α_2	P_2

Junctio	n jpt
α_1	P_1
α_2	P_2

В	oundaryPort	bj	bpt
	P_4	α_2	P_2

1.4 Syntax and Semantics

Principle of compositionality:

The meaning of the whole is determined by the meaning of the parts and how the parts are combined.

the whole: the composite system

the meaning of the whole: semantics of the composite system

the parts: subsystems

the meaning of the parts: semantics of the subsystems

how the parts are combined: syntax

conclusion: The semantics of the composite system is determined by the meaning of the semantics of the subsystems and syntax.

Syntax:

- objects: all boxes box is a typed set of ports, e.g. $b = \{p_1 : P_1, p_2 : P_2, \dots \}$
- morphisms: all composition patterns types correspond to the nature of physical interface

There are three types of expressions to represent syntax and semantics: diagrammatic representation(schema, e.g. free category C), mathematical structure(mapping or tables), data structure/data type(in julia code)

1.5

1.6