Probability Theory and Statistics Lecture 6

November 5, 2013

Robert Dahl Jacobsen robert@math.aau.dk

Department of Mathematical Sciences
Aalborg University

Agenda

Estimation

Two means

Likelihoods

Matlab

Statistics in a nutshell

► Model:

$$X_i \sim N(\mu, \sigma^2)$$

► Estimation:

$$\widehat{\mu} = \overline{X}, \quad \widehat{\sigma}^2 = s^2$$

► Hypothesis test:

$$\mu = \mu_0, \quad \sigma^2 = \sigma_0^2$$

Estimation

- ▶ Point estimate: Estimate of population parameter (θ) from sample $(\widehat{\theta})$.
- **Estimator**: Corresponding random variable $(\widehat{\Theta})$.

parameter	estimate	estimator
$\mu \sigma^2$	\overline{X} s^2	\overline{X} S^2

Unbiased estimate

Unbiased estimator:

$$\mathsf{E}(\widehat{\Theta}) = \theta$$

► Example:

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, \dots, n$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$$

Then:

 \overline{X} and S^2 are independent

$$\mathsf{E}(\overline{X}) = \mu$$
$$\mathsf{E}(S^2) = \sigma^2$$

Confidence interval for mean

► Sample:

Known variance

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, \ldots, n$$

▶ Notation:

$$z_{\alpha} = \alpha$$
 fractile of $N(0, 1)$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

• $(1 - \alpha)100\%$ confidence interval for μ :

$$\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

► Shorthand:

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Confidence interval: Interpretation

- ▶ We are $(1 \alpha)100\%$ confident that μ is in the CI.
- ▶ 20 samples with 100 observations from N(0, 2):

▶ 95% confidence interval:

$$\overline{x} \mp 1.96 \cdot \frac{2}{10}$$

► Expect one \$\overline{x}_k\$ outside confidence interval: http://xkcd.com/882

Confidence intervals

Chocolate bars

In a sample of 20 chocolate bars the amount of calories has been measured. We have:

- the corresponding random variable is approx. normally distributed.
- ▶ the population standard deviation is 10 calories.
- ▶ the sample mean is 224 calories.

Calculate 90% and 95% confidence intervals for the mean. Which one is larger?

Confidence interval for mean

► Sample:

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, \ldots, n$$

► Notation:

$$t_{\alpha} = \alpha$$
 fractile of $t(n-1)$
$$s^{2} = \frac{1}{n} \sum_{k=1}^{n} (x_{i} - \overline{x})^{2}$$

• $(1 - \alpha)100\%$ confidence interval for μ :

$$\overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}}$$

or

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

▶ Note: $t_{\alpha} < z_{\alpha}$

Normal or t distribution?

General form of confidence interval for mean:

$$\overline{x} \pm \text{fractile } \frac{\text{std}}{\sqrt{n}}$$

Situation 1

- ► Observations from N(·,·) (unknown mean and variance)
- ▶ Estimate:

$$mean = \overline{x}, \quad variance = s^2$$

- ▶ Use
 - fractile from t distribution
 - std = s^2

Situation 2

- ► Observations from N(·, σ²) (unknown mean)
- Estimate:

$$\mathsf{mean} = \overline{x}$$

- ▶ Use
 - fractile from normal distribution
 - std = σ^2

More chocolate bars

In a sample of 20 chocolate bars the amount of calories has been measured. We have:

- the corresponding random variable is approx. normally distributed.
- ▶ the sample standard deviation is 10 calories.
- ▶ the sample mean is 224 calories.

Calculate 90% and 95% confidence intervals for the mean. How are the confidence intervals compared to the ones with known variance?

Confidence interval for variance

► Sample:

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, \ldots, n$$

▶ Notation:

$$s^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{i} - \overline{x})^{2}$$
$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$
$$\chi^{2}_{\alpha,n-1} = \alpha \text{ fractile of } \chi^{2}(n-1)$$

• $(1 - \alpha)100\%$ confidence interval for s^2 :

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

Variating chocolate bars

In a sample of 20 chocolate bars the amount of calories has been measured. We have:

▶ the sample standard deviation is 10 calories.

Calculate 90% and 95% confidence intervals for the variance.

Difference in means

Known variances

$$X_{1,i} \sim N(\mu_1, \sigma_1^2)$$

 $X_{2,i} \sim N(\mu_2, \sigma_2^2)$

► Two samples:

$$X_{1,1}, X_{1,2}, \dots, X_{1,n_1}$$

 $X_{2,1}, X_{2,2}, \dots, X_{2,n_2}$

▶ Estimate of $\mu_1 - \mu_2$:

$$\overline{x}_1 - \overline{x}_2 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1,i} - \frac{1}{n_2} \sum_{i=1}^{n_2} x_{2,i}$$

▶ Confidence interval:

$$(\overline{x}_1 - \overline{x}_2) + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Test of two means Unknown & equal variances

- ▶ Degrees of freedom: $\nu = n_1 + n_2 2$
- ► Pooled variance estimate:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Confidence interval:

$$(\overline{x}_1 - \overline{x}_2) + t_{\alpha/2,\nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) - t_{\alpha/2,\nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Test of two means Unknown & unequal variances

Degrees of freedom:

$$\nu = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{s_1^2/n_1}{n_1 - 1} + \frac{s_2^2/n_2}{n_2 - 1}}$$

Confidence interval:

$$(\overline{x}_1 - \overline{x}_2) + t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) - t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

The general approach

Likelihood function

▶ Joint density function of $X_1, X_2, ..., X_n$:

$$f(x_1, x_2, \ldots, x_n; \theta)$$

- \bullet *h* is the parameter (vector) of f = parameter of interest.
- ► The likelihood function:

$$L(\theta; x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n; \theta)$$

► The log-likelihood function:

$$I(\theta; x_1, x_2, \dots, x_n) = \log L(\theta; x_1, x_2, \dots, x_n)$$

► Notice:

Density:
$$(x_1, x_2, ..., x_n) \mapsto f(x_1, x_2, ..., x_n; \theta)$$
 (θ fixed)
Likelihood: $\theta \mapsto f(x_1, x_2, ..., x_n; \theta)$ (data fixed)

Likelihood function

Maximum likelihood estimate (MLE):

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmax}} f(x_1, x_2, \dots, x_n; \theta)$$

- ► MLE is not necessarily unique
- Exact optimization can be difficult
- Numerical optimization can be
 - ► time consuming to run
 - time consuming to program
- Easier with independent observations:

$$f(x_1, x_2, \ldots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Likelihood function: Example

- Propos university 19
- ▶ Independent observations: $x_1, x_2, ..., x_n$, $X_i \sim N(\mu, \sigma^2)$
- ▶ Parameter vector: $\theta = (\mu, \sigma^2)$.
- ► Likelihood function:

$$L(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i; \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

Log-likelihood function:

$$I(\theta; x_1, x_2, \dots, x_n) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

► Maximum likelihood estimate:

$$\mu = \overline{x}, \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \neq s^2$$

Matlab

- $(1 \alpha)100\%$ Confidence interval for mean with known variance: $mean(x) + [-1 \ 1] * norminv(1-alpha/2) * std(x) / sqrt(n)$
- $(1 \alpha)100\%$ Confidence interval for mean with unknown variance:

```
mean(x) + [-1 \ 1] * tinv(1-alpha/2, n-1) * std(x) / sqrt(n)
```

• $(1 - \alpha)100\%$ Confidence interval for variance: $(n-1)*std(x)^2 ./ chi2inv([alpha/2 1-alpha/2], n-1)$