```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

data = pd.read\_csv("housing.csv")

data

|     | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX | PTRATIO | В      | LSTAT | MEDV |     |
|-----|---------|------|-------|------|-------|-------|------|--------|-----|-----|---------|--------|-------|------|-----|
| 0   | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1   | 296 | 15.3    | 396.90 | 4.98  | 24.0 | ıl. |
| 1   | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2   | 242 | 17.8    | 396.90 | 9.14  | 21.6 |     |
| 2   | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2   | 242 | 17.8    | 392.83 | 4.03  | 34.7 |     |
| 3   | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3   | 222 | 18.7    | 394.63 | 2.94  | 33.4 |     |
| 4   | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3   | 222 | 18.7    | 396.90 | NaN   | 36.2 |     |
|     |         |      |       |      |       |       |      |        |     |     |         |        |       |      |     |
| 501 | 0.06263 | 0.0  | 11.93 | 0.0  | 0.573 | 6.593 | 69.1 | 2.4786 | 1   | 273 | 21.0    | 391.99 | NaN   | 22.4 |     |
| 502 | 0.04527 | 0.0  | 11.93 | 0.0  | 0.573 | 6.120 | 76.7 | 2.2875 | 1   | 273 | 21.0    | 396.90 | 9.08  | 20.6 |     |
| 503 | 0.06076 | 0.0  | 11.93 | 0.0  | 0.573 | 6.976 | 91.0 | 2.1675 | 1   | 273 | 21.0    | 396.90 | 5.64  | 23.9 |     |
| 504 | 0.10959 | 0.0  | 11.93 | 0.0  | 0.573 | 6.794 | 89.3 | 2.3889 | 1   | 273 | 21.0    | 393.45 | 6.48  | 22.0 |     |
| 505 | 0.04741 | 0.0  | 11.93 | 0.0  | 0.573 | 6.030 | NaN  | 2.5050 | 1   | 273 | 21.0    | 396.90 | 7.88  | 11.9 |     |

506 rows × 14 columns

X=data.iloc[:,:-1].values
Y=data.iloc[:,-1].values

data.head()

|   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX | PTRATIO | В      | LSTAT | MEDV |
|---|---------|------|-------|------|-------|-------|------|--------|-----|-----|---------|--------|-------|------|
| 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1   | 296 | 15.3    | 396.90 | 4.98  | 24.0 |
| 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2   | 242 | 17.8    | 396.90 | 9.14  | 21.6 |
| 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2   | 242 | 17.8    | 392.83 | 4.03  | 34.7 |
| 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3   | 222 | 18.7    | 394.63 | 2.94  | 33.4 |
| 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3   | 222 | 18.7    | 396.90 | NaN   | 36.2 |

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

| Data | COTUIIII | (cocar 14 corunn | ٥).     |
|------|----------|------------------|---------|
| #    | Column   | Non-Null Count   | Dtype   |
|      |          |                  |         |
| 0    | CRIM     | 486 non-null     | float64 |
| 1    | ZN       | 486 non-null     | float64 |
| 2    | INDUS    | 486 non-null     | float64 |
| 3    | CHAS     | 486 non-null     | float64 |
| 4    | NOX      | 506 non-null     | float64 |
| 5    | RM       | 506 non-null     | float64 |
| 6    | AGE      | 486 non-null     | float64 |
| 7    | DIS      | 506 non-null     | float64 |

```
8
     RAD
              506 non-null
                              int64
 9
     TAX
              506 non-null
                              int64
 10
    PTRATIO
              506 non-null
                              float64
 11
              506 non-null
                              float64
 12
    LSTAT
              486 non-null
                              float64
13 MEDV
              506 non-null
                              float64
dtypes: float64(12), int64(2)
memory usage: 55.5 KB
```

data['CRIM'].fillna(data['CRIM'].mean() , inplace = True)
data['ZN'].fillna(data['ZN'].mean() , inplace = True)
data['INDUS'].fillna(data['INDUS'].mean() , inplace = True)
data['CHAS'].fillna(data['CHAS'].mean() , inplace = True)
data['AGE'].fillna(data['AGE'].mean() , inplace = True)
data['LSTAT'].fillna(data['LSTAT'].mean() , inplace = True)

data.isnull().sum()

CRIM 0 ΖN 0 **INDUS** 0 CHAS 0 NOX 0 RM0 AGE 0 DIS 0 RAD 0 TAX 0 PTRATIO 0 **LSTAT** MEDV dtype: int64

data.plot.scatter('RM', 'MEDV')

<Axes: xlabel='RM', ylabel='MEDV'>



data.boxplot(column\_names, rot=15)

## <Axes: >



x=data.iloc[:,:-1].values
y=data.iloc[:,-1].values

plt.figure(figsize=(15,10))
sns.heatmap(data.select\_dtypes(include=['int','float']).corr(),annot=True,center = 2)
plt.show()

| CRIM    | 1      | -0.18  | 0.39  | -0.052 | 0.41  | -0.22 | 0.34  | -0.37  | 0.61   | 0.57   | 0.27  | -0.37 | 0.43   | -0.3 |
|---------|--------|--------|-------|--------|-------|-------|-------|--------|--------|--------|-------|-------|--------|------|
| NZ -    | -0.18  | 1.     | -0.51 | -0.036 | -0.5  | 0.32  | -0.54 | 0.64   | -0.31  | -0.31  | -0.4  | 0.17  | -0.41  | 0.3  |
| SNDNS   | 0.39   | -0.51  | 1     | 0.058  | 0.74  | -0.38 | 0.61  | -0.7   | 0.59   | 0.72   | 0.38  | -0.35 | 0.57   | -0.4 |
| CHAS    | -0.052 | -0.036 | 0.058 | 1      | 0.073 | 0.1   | 0.075 | -0.092 | 0.0014 | -0.031 | -0.11 | 0.05  | -0.046 | 0.1  |
| XON -   | 0.41   | -0.5   | 0.74  | 0.073  | 1     | -0.3  | 0.71  | -0.77  | 0.61   | 0.67   | 0.19  | -0.38 | 0.57   | -0.4 |
| RM -    | -0.22  | 0.32   | -0.38 | 0.1    | -0.3  | 1     | -0.24 | 0.21   | -0.21  | -0.29  | -0.36 | 0.13  | -0.6   | 0.   |
| AGE     | 0.34   | -0.54  | 0.61  | 0.075  | 0.71  | -0.24 | 1     | -0.72  | 0.45   | 0.5    | 0.26  | -0.27 | 0.57   | -0.3 |
| DIS     | -0.37  | 0.64   | -0.7  | -0.092 | -0.77 | 0.21  | -0.72 | 1      | -0.49  | -0.53  | -0.23 | 0.29  | -0.48  | 0.2  |
| RAD     | 0.61   | -0.31  | 0.59  | 0.0014 | 0.61  | -0.21 | 0.45  | -0.49  | 1      | 0.91   | 0.46  | -0.44 | 0.47   | -0.3 |
| TAX -   | 0.57   | -0.31  | 0.72  | -0.031 | 0.67  | -0.29 | 0.5   | -0.53  | 0.91   | 1      | 0.46  | -0.44 | 0.52   | -0.4 |
| PTRATIO | 0.27   | -0.4   | 0.38  | -0.11  | 0.19  | -0.36 | 0.26  | -0.23  | 0.46   | 0.46   | 1     | -0.18 | 0.37   | -0.5 |
| В -     | -0.37  | 0.17   | -0.35 | 0.05   | -0.38 | 0.13  | -0.27 | 0.29   | -0.44  | -0.44  | -0.18 | 1     | -0.37  | 0.3  |
| LSTAT   | 0.43   | -0.41  | 0.57  | -0.046 | 0.57  | -0.6  | 0.57  | -0.48  | 0.47   | 0.52   | 0.37  | -0.37 | 1      | -0.  |
| 2       | 0.20   | 0.27   | 0.40  | 0.10   | 0.42  | 0.7   | 0.20  | 0.25   | 0.20   | 0.47   | 0.51  | 0.32  | 0.72   | ,    |

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=1)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
     (404, 13)
     (102, 13)
     (404,)
     (102,)
X = data[['LSTAT', 'RM', 'PTRATIO', 'INDUS', 'TAX', 'NOX' , 'RAD' ,
'AGE' , 'CRIM' , 'ZN']]
Y = data['MEDV']
seed= 1
X_train , X_test, Y_train , Y_test = train_test_split(X, Y,
test size=0.20, random state=seed)
X.shape
     (506, 10)
Y.shape
     (506,)
from sklearn.linear_model import LinearRegression
LR=LinearRegression()
LR.fit(X_train , Y_train)
LinearRegression()
     ▼ LinearRegression
     LinearRegression()
y_pred= LR.predict(X_test)
from sklearn import metrics
import numpy as np
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,y_pred))
print("Mean Squred Error:",metrics.mean_squared_error(y_test,y_pred))
print("Root Mean Squred Error:",metrics.mean_squared_error(y_test,y_pred))
     Mean Absolute Error: 4.311333848096257
     Mean Squred Error: 29.58597268132346
     Root Mean Squred Error: 29.58597268132346
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,y_pred))
     Mean Absolute Error: 4.311333848096257
plt.scatter(y_test, y_pred, c = 'Blue')
plt.xlabel("Price: in $1000's")
```

nlt.vlahel("Predicted value")

