Лабораторная работа №2

«Канальные матрицы»

Вариант 1

Цель работы: научиться работать с различными канальными матрицами, вычислять характеристики источника и приёмника информации.

1

Условие:

P(B/A)	b ₁	b ₂	b ₃
a ₁	0,57	0,05	0,38
a ₂	0,31	0,65	0,04
a ₃	0,06	0,24	0,7

$$P(a_1) = 0.76$$
; $P(a_2) = 0.05$; $P(a_3) = 0.19$

Решение:

Восстановим оставшиеся канальные матрицы и вероятности. Сперва найдем матрицу P(A;B):

$$\begin{split} &P(a_1;b_1) = P(b_1/a_1) \times P(a_1) = 0,57 \times 0,76 = 0,43 \\ &P(a_1;b_2) = P(b_2/a_1) \times P(a_1) = 0,05 \times 0,76 = 0,03 \\ &P(a_1;b_3) = P(b_3/a_1) \times P(a_1) = 0,38 \times 0,76 = 0,28 \\ &P(a_2;b_1) = P(b_1/a_2) \times P(a_2) = 0,31 \times 0,05 = 0,02 \\ &P(a_2;b_2) = P(b_2/a_2) \times P(a_2) = 0,65 \times 0,05 = 0,03 \\ &P(a_2;b_3) = P(b_3/a_2) \times P(a_2) = 0,04 \times 0,05 = 0,01 \\ &P(a_3;b_1) = P(b_1/a_3) \times P(a_3) = 0,06 \times 0,19 = 0,01 \\ &P(a_3;b_2) = P(b_2/a_3) \times P(a_3) = 0,24 \times 0,19 = 0,05 \\ &P(a_3;b_3) = P(b_3/a_3) \times P(a_3) = 0,7 \times 0,19 = 0,13 \end{split}$$

Получаем матрицу:

P(A;B)	b ₁	b ₂	b ₃
a ₁	0,43	0,03	0,28
a ₂	0,02	0,03	0,01
a ₃	0,01	0,05	0,13

Для проверки просуммируем все элементы матрицы:

$$0,43 + 0,03 + 0,28 + 0,02 + 0,03 + 0,01 + 0,01 + 0,05 + 0,13 \approx 1$$

Теперь найдем вероятности событий b_i:

$$P(b_1) = 0.43 + 0.02 + 0.01 = 0.46$$

$$P(b_2) = 0.03 + 0.03 + 0.05 = 0.12$$

$$P(b_3) = 0.28 + 0.01 + 0.13 = 0.42$$

Восстановим матрицу Р(А/В):

$$P(a_1/b_1) = \frac{P(a_1;b_1)}{P(b_1)} = \frac{0.43}{0.46} = 0.94$$

$$P(a_2/b_1) = \frac{P(a_2; b_1)}{P(b_1)} = \frac{0.02}{0.46} = 0.03$$

$$P(a_3/b_1) = \frac{P(a_3;b_1)}{P(b_1)} = \frac{0.01}{0.46} = 0.03$$

$$P(a_1/b_2) = \frac{P(a_1; b_2)}{P(b_2)} = \frac{0.03}{0.12} = 0.33$$

$$P(a_2/b_2) = \frac{P(a_2; b_2)}{P(b_2)} = \frac{0.03}{0.12} = 0.28$$

$$P(a_3/b_2) = \frac{P(a_3; b_2)}{P(b_2)} = \frac{0.05}{0.12} = 0.39$$

$$P(a_1/b_3) = \frac{P(a_1; b_3)}{P(b_3)} = \frac{0.28}{0.42} = 0.68$$

$$P(a_2/b_3) = \frac{P(a_2; b_3)}{P(b_2)} = \frac{0.01}{0.42} = 0.01$$

$$P(a_3/b_3) = \frac{P(a_3;b_3)}{P(b_2)} = \frac{0.13}{0.42} = 0.31$$

Получаем матрицу:

P(A/B)	b ₁	b ₂	b ₃
a ₁	0,94	0,33	0,68
a ₂	0,03	0,28	0,01
a ₃	0,03	0,39	0,31

Найдем информационные характеристики канала связи:

$$H(A) = -\Sigma P(a_i) \times log_2(P(a_i)) \approx 0.97$$

$$H(B) = -\Sigma P(b_j) \times log_2(P(b_j)) \approx 1.4$$

$$H(A/B) = -\Sigma P(b_i) \times (\Sigma P(a_i/b_i) \times log_2(P(a_i/b_i))) \approx 1,04$$

$$H(B/A) = -\Sigma P(a_i) \times (\Sigma P(b_i/a_i) \times log_2(P(b_i/a_i))) \approx 1,18$$

$$H(A;B) = -\Sigma\Sigma P(a_i;b_i) \times log_2(P(a_i/b_i)) \approx 2,15$$

$$I(A;B) = H(A) + H(B) - H(A;B) = 0,97 + 1,4 - 2,15 = 0,22$$
 б/сим

Условие:

P(A/B)	b ₁	b ₂	b ₃	b ₄
a ₁	0,65	0,38	0,07	0,3
a ₂	0,08	0,39	0,13	0,05
a ₃	0,01	0,13	0,68	0,32
a ₄	0,26	0,1	0,12	0,33

$$P(b_1) = 0.6$$
; $P(b_2) = 0.09$; $P(b_3) = 0.28$; $P(b_4) = 0.03$

Решение:

Восстановим оставшиеся канальные матрицы и вероятности. Сперва найдем матрицу P(A;B):

$$\begin{split} P(a_1;b_1) &= P(a_1/b_1) \times P(b_1) = 0,65 \times 0,6 = 0,39 \\ P(a_2;b_1) &= P(a_2/b_1) \times P(b_1) = 0,08 \times 0,6 = 0,05 \\ P(a_3;b_1) &= P(a_3/b_1) \times P(b_1) = 0,01 \times 0,6 = 0,01 \\ P(a_4;b_1) &= P(a_4/b_1) \times P(b_1) = 0,26 \times 0,6 = 0,16 \\ P(a_1;b_2) &= P(a_1/b_2) \times P(b_2) = 0,38 \times 0,09 = 0,03 \\ P(a_2;b_2) &= P(a_2/b_2) \times P(b_2) = 0,39 \times 0,09 = 0,03 \\ P(a_3;b_2) &= P(a_3/b_2) \times P(b_2) = 0,13 \times 0,09 = 0,01 \\ P(a_4;b_2) &= P(a_4/b_2) \times P(b_2) = 0,1 \times 0,09 = 0,01 \\ P(a_1;b_3) &= P(a_1/b_3) \times P(b_3) = 0,07 \times 0,28 = 0,02 \\ P(a_2;b_3) &= P(a_2/b_3) \times P(b_3) = 0,13 \times 0,28 = 0,04 \\ P(a_3;b_3) &= P(a_1/b_3) \times P(b_3) = 0,12 \times 0,28 = 0,04 \\ P(a_4;b_3) &= P(a_1/b_3) \times P(b_3) = 0,12 \times 0,28 = 0,03 \\ P(a_1;b_4) &= P(a_1/b_4) \times P(b_4) = 0,3 \times 0,03 = 0,01 \\ P(a_2;b_4) &= P(a_2/b_4) \times P(b_4) = 0,32 \times 0,03 = 0,01 \\ P(a_3;b_4) &= P(a_3/b_4) \times P(b_4) = 0,32 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,32 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,01 \\ P(a_4;b_4) &= P(a_4/b_4) \times P(b_4) = 0,33 \times 0,03 = 0,0$$

Получаем матрицу:

P(A;B)	b ₁	b ₂	b ₃	b ₄
a ₁	0,39	0,03	0,02	0,01
a ₂	0,05	0,03	0,04	0,01
a ₃	0,01	0,01	0,19	0,01
a ₄	0,16	0,01	0,03	0,01

Для проверки просуммируем все элементы матрицы:

$$0,39 + 0,05 + 0,06 + 0,16 + 0,03 + 0,03 + 0,01 + 0,01 + 0,02 + 0,04 + 0,19 + 0,03 + 0,01 + 0,01 + 0,01 + 0,01 \approx 1$$

Теперь найдем вероятности событий а:

$$P(a_1) = 0.39 + 0.03 + 0.02 + 0.01 = 0.45$$

$$P(a_2) = 0.05 + 0.03 + 0.04 + 0.01 \approx 0.12$$

$$P(a_3) = 0.01 + 0.01 + 0.19 + 0.01 = 0.22$$

$$P(a_4) = 0.16 + 0.01 + 0.03 + 0.01 = 0.21$$

Восстановим матрицу Р(В/А):

$$\begin{split} P(b_1/a_1) &= \frac{P(a_1;b_1)}{P(a_1)} = \frac{0,39}{0,45} = 0,87 \\ P(b_2/a_1) &= \frac{P(a_1;b_2)}{P(a_1)} = \frac{0,03}{0,45} = 0,07 \\ P(b_3/a_1) &= \frac{P(a_1;b_3)}{P(a_1)} = \frac{0,02}{0,45} = 0,04 \\ P(b_4/a_1) &= \frac{P(a_1;b_4)}{P(a_1)} = \frac{0,01}{0,45} = 0,02 \\ P(b_1/a_2) &= \frac{P(a_2;b_1)}{P(a_2)} = \frac{0,05}{0,12} = 0,38 \\ P(b_2/a_2) &= \frac{P(a_2;b_2)}{P(a_2)} = \frac{0,03}{0,12} = 0,23 \\ P(b_3/a_2) &= \frac{P(a_2;b_3)}{P(a_2)} = \frac{0,04}{0,12} = 0,31 \\ P(b_4/a_2) &= \frac{P(a_2;b_4)}{P(a_3)} = \frac{0,05}{0,12} = 0,08 \\ P(b_1/a_3) &= \frac{P(a_3;b_1)}{P(a_3)} = \frac{0,01}{0,27} = 0,04 \\ P(b_2/a_3) &= \frac{P(a_3;b_2)}{P(a_3)} = \frac{0,01}{0,27} = 0,04 \\ P(b_4/a_3) &= \frac{P(a_3;b_3)}{P(a_3)} = \frac{0,01}{0,27} = 0,04 \\ P(b_4/a_3) &= \frac{P(a_3;b_4)}{P(a_3)} = \frac{0,01}{0,27} = 0,04 \\ P(b_4/a_4) &= \frac{P(a_4;b_1)}{P(a_4)} = \frac{0,01}{0,21} = 0,05 \\ P(b_2/a_4) &= \frac{P(a_4;b_2)}{P(a_4)} = \frac{0,01}{0,21} = 0,05 \\ P(b_3/a_4) &= \frac{P(a_4;b_3)}{P(a_4)} = \frac{0,03}{0,21} = 0,14 \\ P(b_4/a_4) &= \frac{P(a_4;b_3)}{P(a_4)} = \frac{0,01}{0,21} = 0,05 \\ P(b_4/a_4) &= \frac{P(a_4;b_4)}{P(a_4)} = \frac{0,01}{0,21} = 0,05 \\ P(a_4/a_4) &= \frac{P(a_4;b_4)}{P(a_4)} = \frac{0,01}{0,21} = 0,05 \\ P(a_4/a_4) &= \frac{P(a_4;b_4)}{P(a_4)} = \frac{0,01}{0,21} = 0,05 \\ P(a_4/a_4) &= \frac{0,01}{0,21} = 0,05 \\ P(a_4/a_4)$$

Получаем матрицу:

P(B/A)	b ₁	b ₂	b ₃	b ₄
a ₁	0,87	0,07	0,04	0,02
a ₂	0,38	0,23	0,31	0,08
a ₃	0,04	0,04	0,70	0,04
a ₄	0,76	0,05	0,14	0,05

Найдем информационные характеристики канала связи:

$$\begin{split} &H(A) = -\Sigma \; P(a_i) \times log_2(P(a_i)) \approx \text{1,88} \\ &H(B) = -\Sigma \; P(b_j) \times log_2(P(b_j)) \approx \text{1,42} \\ &H(A/B) = -\Sigma \; P(b_j) \times \left(\Sigma \; P(a_i/b_j) \times log_2(P(a_i/b_j))\right) \approx \text{1,37} \\ &H(B/A) = -\Sigma \; P(a_i) \times \left(\Sigma \; P(b_j/a_i) \times log_2(P(b_j/a_i))\right) \approx \text{1,13} \\ &H(A;B) = -\Sigma \Sigma \; P(a_i;b_j) \times log_2(P(a_i;b_j)) \approx \text{3,02} \\ &I(A;B) = H(A) + H(B) - H(A;B) = \text{1,88} + \text{1,42} - \text{3,02} = \text{0,28} \; \text{6/сим} \end{split}$$

Условие:

P(A;B)	b ₁	b ₂
a ₁	0,23	0,28
a ₂	0,45	0,04

Решение:

Восстановим оставшиеся канальные матрицы и вероятности. Сперва найдем вероятности событий a_i и b_i :

$$P(a_1) = 0.23 + 0.28 = 0.51$$

 $P(a_2) = 0.45 + 0.04 = 0.49$
 $P(b_1) = 0.23 + 0.45 = 0.68$

$$P(b_2) = 0.28 + 0.04 = 0.32$$

Восстановим матрицу (А/В):

$$\begin{split} P(a_1/b_1) &= \frac{P(a_1;b_1)}{P(b_1)} = \frac{0,23}{0,68} = 0,39 \\ P(a_2/b_1) &= \frac{P(a_2;b_1)}{P(b_1)} = \frac{0,45}{0,68} = 0,66 \\ P(a_1/b_2) &= \frac{P(a_1;b_2)}{P(b_2)} = \frac{0,28}{0,32} = 0,88 \\ P(a_2/b_2) &= \frac{P(a_2;b_2)}{P(b_2)} = \frac{0,04}{0,32} = 0,13 \end{split}$$

Получаем матрицу:

P(A/B)	b ₁	b ₂
a ₁	0,39	0,88
a ₂	0,66	0,13

Восстановим матрицу (В/А):

$$P(a_1/b_1) = \frac{P(a_1;b_1)}{P(a_1)} = \frac{0,23}{0,51} = 0,45$$

$$P(a_1/b_2) = \frac{P(a_1;b_2)}{P(a_1)} = \frac{0,28}{0,51} = 0,55$$

$$P(a_2/b_1) = \frac{P(a_2;b_1)}{P(a_2)} = \frac{0,45}{0,49} = 0,92$$

$$P(a_2/b_2) = \frac{P(a_2;b_2)}{P(a_2)} = \frac{0,04}{0,49} = 0,08$$

Получаем матрицу:

P(B/A)	b ₁	b ₂
a ₁	0,45	0,55
a ₂	0,92	0,08

Найдем информационные характеристики канала связи:

$$\begin{split} &H(A) = -\Sigma \; P(a_i) \times log_2(P(a_i)) \approx 1 \\ &H(B) = -\Sigma \; P(b_j) \times log_2(P(b_j)) \approx 0,9 \\ &H(A/B) = -\Sigma \; P(b_j) \times (\Sigma \; P(a_i/b_j) \times log_2(P(a_i/b_j))) \approx 0,8 \\ &H(B/A) = -\Sigma \; P(a_i) \times (\Sigma \; P(b_j/a_i) \times log_2(P(b_j/a_i))) \approx 0,7 \\ &H(A;B) = -\Sigma \; \Sigma \; P(a_i;b_j) \times log_2(P(a_i/b_j)) \approx 1,7 \\ &I(A;B) = H(A) + H(B) - H(A;B) = 1 + 0,9 - 1,7 = 0,2 \; 6/\text{сим} \end{split}$$