

Module 5: Newtonian World and Astrophysics

⊕ Date	@April 11,	2023	6:02	AM
≣ Subject	Physics A2			

5.1 Thermal Physics

- ullet Brownian motion is the <u>random</u> movement caused by the uneven bombardment and collisions with air molecules
- ullet Internal energy is the sun of the ${\hbox{\scriptsize RANDOM}}$ distribution of kinetic and potential energies of all particles
- Absolute temperature in Kelvin: T= heta+273
- Specific heat capacity: $E=mc\Delta T$

Experiment. Use a heater on an insulated substance, $c=\frac{IVt}{mc\Delta\theta}$

- Specific latent heat of fusion/vaporisation: E=mL **Experiment.** Heat ice and measure mass melted, $L_f=rac{IVt}{m}$
- PE depends on the <u>state</u>: solids have large negative PE, gases have <u>zero</u> PE

KE depends on the $\underline{\text{temperature}}$ (independent of the gas used): $E=\frac{3}{2}kT$

1

- Ideal gas (kinetic theory of gases)
 - large number of molecules moving with random speeds in random directions
 - collisions are perfectly elastic
 - time during collisions is negligible compared to time between collisions
 - volume of molecules is negligible compared to volume of the gas
 - no electrostatic interaction between molecules besides collisions
- Combining gas laws: pV=nRT=NkT where $N=n imes N_A$ and Boltzmann constant $k=rac{R}{N_A}$

Module 5: Newtonian World and Astrophysics

- Explaining pressure with Newton's laws:
 - molecules collides with the wall and exerts a force; according to Newton 3rd the wall exerts an equal force in the opposite direction
 - \circ the collision changes the momentum of the particle, according to Newton 2nd $F \propto rac{\Delta p}{\Delta t}$
- Root mean squared speed: $pV=rac{1}{3}Nm\overline{c^2}$

5.2 Circular Motion

- Centripetal force $F=rac{mc^2}{r}$ acting towards the centre is needed to maintain circular motion
 - Velocity is perpendicular to force, hence work done is zero
 - \circ **Experiment.** In the whirling bung experiment, weight = tension = centripetal force

5.3 Oscillations

- Simple Harmonic Motion is defined by $a=-\omega^2 x$:
 - acceleration is <u>proportional</u> to the displacement from the equilibrium position
 - acceleration acts in the opposite direction of the displacement

• Pendulum (small
$$\angle$$
)

$$T=2\pi\sqrt{rac{L}{g}}$$

• Mass-spring system:

$$T=2\pi\sqrt{rac{m}{k}}$$

- Damping decreases amplitude
 - in <u>light damping</u>, frequency and period is unchanged
 - in <u>critical damping</u>, the oscillations stop the most quickly (or no oscillations performed)
 - in heavy damping, period increases
- Resonance happens when driving frequency is equal to natural frequency

2

5.4 Gravitational Fields

A gravitational field has <u>infinite range</u>, and affects anything with <u>mass</u>

Vectors	<pre>gravitational field strength (g=F/m); acceleration</pre>	gravitational force (F=-GMm/r^2)
Scalars	gravitational potential (V=-GM/r)	gravitational potential energy (E=-GMm/r)

Module 5: Newtonian World and Astrophysics

- ullet Gravitational potential V_g is the work done per unit mass to move an object from infinity to a point
 - it takes energy to move objects apart, hence the negative sign
 - gravitational potential is ZERO AT INFINITY
 - \circ total $V_g = \sum V_g$ from each mass
- Escape velocity removes a mass from a field: $E_k + E_g = 0 \implies v = \sqrt{rac{2GM}{r}}$
- **Geostationary orbit** is above the equator with a period of 24h **Polar orbit** covers the entire Earth
- Kepler's laws:
 - 1. The orbit of a planet is an $\underline{\text{ellipse}}$ with the Sun as one of the foci
 - The line joining the Sun and the planet sweeps out the same area in the same amount of time
 - 3. $T^2 \propto r^3$, in circular orbits $T^2 = rac{4\pi^2}{GM} r^3$

5.5 Astrophysics and Cosmology

 Parsec corresponds to a parallax angle of 1 arcsecond (1/3600°) as Earth moves through 1 AU

$$an heta=rac{1}{d}pprox heta$$

- **Cosmic parallax** is the <u>apparent shift</u> in position of a relatively close star against the distant backdrop as Earth orbits the Sun.
- Life cycle of stars
 - Nebula from supernovae → Protostar → Main sequence star
 volume ↓, temperature ↑, pressure ↑; nuclear fusion begins
 - 2. When core H_2 is used up, the core collapses under gravity and increased pressure enables shell hydrogen burning. More massive stars carry out nuclear fusion up till Fe.

3

3. Stars < $10 M_{\odot}$ Red giant \rightarrow White dwarf + Planetary nebula

Electron degeneracy pressure prevents the white dwarf from further collapse when the core mass is under the Chandrasekhar limit of $1.44 M_{\odot}$

- a. Core < $3M_{\odot}$ Neutron star
- b. Core > $3M_{\odot}$ Black hole
- Hertzsprung-Russell Diagram uses logarithmic scale

Supergiant's temperature decreases throughout its life

• Emission & Absorption Spectra

 $n=\infty$ has zero energy; n=1 (ground state) is the most negative

- Diffraction grating $d\sin\theta=n\lambda$
- Black body absorbs all EM radiation that shines onto it and emits a characteristic distribution of EM radiation at a specific temperature Wien's displacement law: peak wavelength $\lambda_{\rm max} \propto \frac{1}{T}$ Stefan's law calculates the luminosity (total power output) $L = 4\pi r^2 \sigma T^4$
- **Doppler's effect**: red shift moves away, blue shift moves towards $\frac{\Delta f}{f} \approx \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$ For a given star, $\Delta \lambda \approx \frac{v}{c} \lambda \implies \Delta \lambda \propto \lambda$
- The Big Bang Theory
 - \circ **Hubble's law:** expansion of the Universe $v=H_0d$
 - Microwave background radiation: gamma photons are stretched into microwave (average temperature of the Universe is 2.7K, see Wien's)
- Timeline: age of the Universe is 13.7 billion years
 - 1. Universe started with infinitely hot and dense singularity
 - 2. Expands rapidly with only γ photons, INFLATION
 - 3. Order of formation (PAIR PRODUCTION): Quarks & Leptons \rightarrow Hadrons \rightarrow H-2 and He nuclei
 - 4. Atoms capture electrons, RECOMBINATION
 - 5. The Sun and the Earth is about 4.6B years old
- **Cosmological principle** states that on a <u>large scale</u>, the Universe is <u>homogeneous</u> (every part is identical), <u>isotropic</u> (looks the same from every direction) and the laws of physics are universal
- 5% baryonic matter, 25% dark matter which speeds up stars on the edges of galaxies, 70% dark energy that accelerates the expansion of the Universe