Email: steinhage@cs.uni-bonn.de, {s6flkopp,s6aapoll,s6bewude}@uni-bonn.de

Übungsblatt 4

Abgabe bis Sonntag, 12.11.2023, 12:00 Uhr in Gruppen von 3 Personen

1 ImageToolBox: Medianfilter (1P)

Implementieren Sie das Medianfilter. Wenden Sie das Medianfilter auf die Bilder Testbild_Lena_512x512.ppm und Testbild_Rauschen_640x480.ppm aus dem Verzeichnis image der ImageToolBox an. Fügen Sie die Ergebnisbilder Ihrer Lösung als Anlage bei.

2 ImageToolBox: Diffusionsfilter (5P)

Implementieren Sie ein isotropes inhomogenes Diffusionsfilter, wobei Sie von einem Grauwertbild als Eingabe ausgehen können. Der benötigte Parameter ϵ_0 sowie die Anzahl der Iterationen sollen vom Benutzer wählbar sein. Gehen Sie dabei in jeder Iteration wie folgt vor:

- A. Schätzen Sie zunächst die Gradienten $\partial I(x,y)/\partial x$ sowie $\partial I(x,y)/\partial y$ durch Differenzen in x- bzw. y-Richtung wie auf Folie 24 von Vorlesung 4 vorgeschlagen.
- B. Erstellen Sie daraus den Diffusionstensor laut Folie 29 in Vorlesung 4 und berechnen für jeden Pixel den Fluss $\vec{j}(x,y)$ laut Folie 20.
- C. Schätzen Sie nun die Gradienten $\partial j_x(x,y)/\partial x$ und $\partial j_y(x,y)/\partial y$, indem Sie die Differenzen des Flusses $\vec{j}(x,y)$ in x- bzw. y-Richtung betrachten analog zur Schätzung der Intensitätsgradienten wie in Folie 24 von Vorlesung 4 vorgeschlagen.
- D. Die Divergenz an den Koordinaten (x, y) ergibt sich nun als

$$div \ \vec{j}(x,y) = \frac{\partial j_x(x,y)}{\partial x} + \frac{\partial j_y(x,y)}{\partial y}$$

E. Die Ergebnisintensität des Pixels (x,y) in Iteration i ergibt sich durch $I(x,y,t_{i-1})-div\vec{j}(x,y,t_i)$.

Testen Sie Ihr Filter auf Testbild_Rauschen_640x480.ppm aus dem Verzeichnis image der ImageToolBox mit $\epsilon_0=1$ und 500 Iterationen. Fügen Sie das Ergebnisbild Ihrer Lösung als Anlage bei.

Email: steinhage@cs.uni-bonn.de, {s6flkopp,s6aapoll,s6bewude}@uni-bonn.de

3 Vertiefende Überlegungen (2P)

Wendet man das Medianfilter aus Aufgabe 1 sowie ein isotropes inhomogenes Diffusionsfilter auf das Bild Testbild_Rauschen_640x480.ppm an, so erhält man als Ergebnisse die beiden Bilder Testbild_Rauschen_640x480_Median.ppm bzw. Testbild_Rauschen_640x480_Diffusion.ppm, die mit diesem Aufgabenblatt zusammen hinterlegt sind.

- A. Welche visuellen Unterschiede bemerken Sie?
- B. Schreiben Sie ein Filter in ImageToolBox, das die pixelweise Differenz zwischen zwei Eingabebildern berechnet und anschließend eine lineare Streckung auf den gesamten Intensitätsbereich durchführt. Entspricht das Ergebnis Ihren Erwartungen? Wie können Sie die Unterschiede zwischen den Bildern erklären?

4 Tensorberechnung für anisotropes inhomogenes Diffusionsfilter (2P)

Gegeben sei der folgende 5×5 -Grauwertbildausschnitt:

ſ	10	10	10	10	20
Ī	10	10	10	20	20
Ī	10	10	20	20	20
Ī	10	20	20	20	20
	20	20	20	20	20

Der Diffusionstensor wird durch Eigenwertzerlegung ermittelt (Folien 32 ff.)

- A. Berechnen Sie mit expliziter Herleitung die beiden Eigenvektoren und Eigenwerte für die Anwendung des Diffusionstensors im zentralen Pixel des obigen Ausschnitts. Die Intensitätsgradienten in x- und y-Richtung sind dabei durch Differenzen der Intensitäten zu approximieren: I(x+1,y) I(x-1,y) bzw. I(x,y+1) I(x,y-1). (1,0) P)
- B. Berechnen mit expliziter Herleitung den resultierenden Diffusionstensor für die Anwendung im zentralen Pixel des obigen Ausschnitts. Setzen Sie dabei der Einfachheit halber $\epsilon_0=1$ und $\lambda=1$. $(0,5\ P)$
- C. Begründen Sie, warum der resultierende Diffusionstensor positiv definit ist.(0.5P)