Computer Vision Light-Weight Facial Landmark Prediction Challenge

Team AAA

蕭郁澄 r09942168, 楊欣睿r10942079, 郭承賢 r09943098

Global picture and results

Leaderboard Rank	Validation NME	Public testing NME	Private testing NME	
4	1.87095	2.03235	2.024754	

Model selection

- It is well known that the MobileNet family perfoms well in the computer vision. Although [1] shows the MobileNetV3 outperforms the MobileNetV2 on the image classification taks.
- After the exhaustive experiments, we found the MobileNetV3 is easier to overfit the training dataset and the MobileNetV2 is more suitable for our task.
- Due to the model size constraint(15MB), we choose the **1.25 multiplier MobileNetV2 (14.25 MB)** as our training model.

Network	Top-1	MAdds	Params	P-1	P-2	P-3
V3-Large 1.0	75.2	219	5.4M	51	61	44
V3-Large 0.75	73.3	155	4.0M	39	46	40
MnasNet-A1	75.2	315	3.9M	71	86	61
Proxyless[5]	74.6	320	4.0M	72	84	60
V2 1.0	72.0	300	3.4M	64	76	56
V3-Small 1.0	67.4	56	2.5M	15.8	19.4	14.4
V3-Small 0.75	65.4	44	2.0M	12.8	15.6	11.7
Mnas-small [43]	64.9	65.1	1.9M	20.3	24.2	17.2
V2 0.35	60.8	59.2	1.6M	16.6	19.6	13.9

Scheduler

• optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0 = 8, T_mult = 1)

Preprocessing

- We adopt the following preprocessing for landmarks and images, respectively.
 - Landmarks:
 - Normalized to [-0.5, 0.5]

- Image:
 - RandColorJitter, RandGrayscale, Rrandom_horizontalfip
 - RandomRotation, Random_scale, Random_erasemargin, RandomBlur, RandomErasing

Visualize the preprocessing

ColorJitter

• RandomGrayscale

• Random_horizontalfip

• Train on synthetic data, test on real image

Black margin

Low resolution

Blocked by something

Black margin

Random_scale

• Random_erasemargin

Blocked by something

RandomErasing

Data augmentation (red : ground truth, blue: predicted landmarks)

Without data augmentation

• With data augmentation

Data augmentation (red : ground truth, blue: predicted landmarks)

Without data augmentation

• With data augmentation

Experiment: resize 384x384 image to 224x224

- Pros: reduce the training time by half and it's convenient to tune hyperparameters.
- Cons : loss of precision.

Except the image size, other parameters are same.

Thank you

Appendix: Fine-tune Hyper prarameter

```
hyper = {
    'batch_size': 16,
    'img_resize': 384,
    'lr':0.005,
    'num_epoch': 32,
    'cos_T_0':8,
    'cos_T_multi':1,
}
```

```
p dict = {
    'ColorJitter b':0.3,
    'ColorJitter c':0.3,
    'ColorJitter s':0.3,
    'ColorJitter h':0.1,
    'RandomGrayscale':0.4,
    'random scale p':0,
    'random scale scale':0.8,
    'random rotate p':0.4,
    'random_rotate_degree':45,
    'random blur p': 0.2,
    'random blur min': 128,
    'random horizontalfip p':0.5,
    'random_erasemargin_p':0.4,
    'random_erasemargin_ratio':0.7,
    'RandomErasing p':0.1,
    'RandomErasing_scale_min':0.02,
    'RandomErasing scale max':0.1,
```