Announcements

Announcements

- HW2 is due today
 - Any questions on HW2?
- HW3 has been posted
- If you have not yet signed up for an oral exam slot, do that today! (Check BB for link)
- Exam questions will be posted on March 7 (Sunday), due March 14
- Exams start March 15

Graphs

Depth First Search

```
procedure explore (G, v)
Input: G = (V, E) is a graph; v \in V
Output: visited(u) is set to true for
           all nodes u reachable from v
previsit(v) \leftarrow
 visited(v) = true
                                 Ignore for now
for each edge (v,u) \in E_{\bullet}
    if not visited(u): explore(u)
 postvisit(v)
```

What is the running time of Depth First Search?

DFS on Directed Graphs

- We can run DFS on directed graphs, making sure to only follow edges in their correct direction
- The starting node is the root of the DFS tree
- u is an ancestor of v if there is a path from u to v in the DFS tree. v is a descendant of u.
- *u* is the parent of *v* if there is a directed edge from *u* to *v* in the DFS tree. *v* is the child of *u*.

DFS on Directed Graphs

 We can run DFS on directed graphs, making sure to only follow edges in their correct direction

tree

forward

A is the root

B is a child of A

B is a parent of C

A is an ancestor of D

DFS on Directed Graphs

- How do we know whether u is a parent/child/ancestor/descendant of v?
- Use pre/post times!

In-Class Exercise

What types of edges are these?

```
pre/post ordering for (u, v)
                 J - can't happen
```

Finding Paths in Graphs

- Remember, a path between two nodes is a sequence of edges connecting those nodes
 A shortest path is the path between two nodes
- A shortest path is the path between two nodes with the fewest edges (nweighted graph)

DFS and Paths

 DFS finds paths between nodes... but does it always find shortest paths?

Prove or give a counter-example

Breadth-first search (BFS)

```
N=#nodes
M=#edges
procedure bfs(G,s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
                      to the distance from s to u.
for all u \in V: O(N) \# edges O(N) O(N)
p(e|[s]=0)
dist(s) = 0 \quad O(||)
\begin{array}{ll} \operatorname{dist}(s) = 0 & \mathcal{O}(\ | \ ) \\ Q = [s] & \text{(queue containing just } s) & \mathcal{O}(\ | \ ) \\ \text{while } Q & \text{is not empty: } \mathcal{O}(\ | \ ) & \text{Put all neighbors} \\ \underline{u = \operatorname{eject}(Q) \quad \mathcal{O}(\ | \ )} & \text{on queue} \\ & \text{for all edges } (u,\overline{v}) \in E \colon \mathcal{O}(\ | \ | \ ) & \text{on } \mathbf{queue} \end{array}
              if dist(v) = \infty: \mathcal{O}(M)
           \forall inject(Q, v) \bigcirc (\nearrow)
\forall dist(v) = dist(u) + 1
\forall Distance to neighbor = 1 + distance to current
                                                                      1 + distance to current node
```

Breadth-first search (BFS)

Order	Queue contents
of visitation	after processing node
S	[A C D E]
A	[C D E B]
C	[D E B]
D	[E B]
E	[B]
B	

In-Class Exercise

dist

 Does the BFS tree always give you the shortest path from the starting node to every other node?

Prove or give a counter-example. Let pa denote the actual s.p. length From Sau. Induction on pr. Base case, p=0. This occurs when u=s. BFS sets dist(s) before 100p. I.H.: Assume that BFS is correct for all rodes u with putk.

In-Class Exercise

CIS 675

Running Time of BFS

What is the running time of BFS?

Shortest Paths via BFS

- In an unweighted graph, the visit time of a BFS search gives the length of the shortest path from the source!
- How can we modify the BFS code to keep track of what the edges in the shortest path are?

In-Class Exercise

 How can we modify the code to keep track of what the edges on the shortest paths are?

```
for all u \in V:
     dist(u) = \infty
prod(s)~ 0
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
     u = \operatorname{eject}(Q)
     for all edges (u,v) \in E:
         if dist(v) = \infty:
             inject(Q, v)
             dist(v) = dist(u) + 1
\rho(c) (v) = c
```

Shortest Paths via BFS

What about in weighted graphs?

 One way to deal with edges with positive, integer weights is to use dummy nodes

• What does this do to the running time? vastly

 With dummy nodes, most of the search process is uninteresting

 Idea: set <u>alarm clocks</u> to go off when we expect something interesting to happen

- To implement this, we're going to use a priority queue
- Each element (node) has a key value
- Added operations:
 - Insert (add new element to set)
 - Decrease-key (reduce the value of the key)
 - Delete-min (find the element with the smallest key value, return it and delete from priority queue)
 - Make queue (build queue)

```
assumes that all weights \geq 0 for all u \in V:

Weight O = no edge
   (dist(u) = \infty)
                                       lower is better
  (prev(u) = nil
dist(s) = 0
 H = makequeue(V) (using dist-values as keys)
 while H is not empty:
\sim u = deletemin(H)
 for all edges (u(v) \in E:
         if dist(v) > dist(u) + l(u, v):
        \operatorname{dist}(v) = \operatorname{dist}(u) + l(u,v)
         \longrightarrow prev(v) = u
         \longrightarrow decreasekey(H, v)
```


