2 Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f **from** a **to** b is

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

Properties of the Definite Integral

$$\int_b^a f(x) \ dx = -\int_a^b f(x) \ dx$$

If a = b, then $\Delta x = 0$ and so

$$\int_a^a f(x) \, dx = 0$$

Properties of the Integral

- 1. $\int_a^b c \, dx = c(b-a)$, where c is any constant
- **2.** $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
- 3. $\int_a^b c f(x) dx = c \int_a^b f(x) dx$, where c is any constant

4.
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

FIGURE 13

$$\int_{a}^{b} c \, dx = c(b-a)$$

FIGURE 14

$$\int_{a}^{b} [f(x) + g(x)] dx =$$

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

EXAMPLE 6 Use the properties of integrals to evaluate $\int_0^1 (4 + 3x^2) dx$.

$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

SOLUTION By Property 5, we have

$$\int_0^8 f(x) \, dx + \int_8^{10} f(x) \, dx = \int_0^{10} f(x) \, dx$$

so

$$\int_{8}^{10} f(x) \, dx = \int_{0}^{10} f(x) \, dx - \int_{0}^{8} f(x) \, dx = 17 - 12 = 5$$

Comparison Properties of the Integral

6. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.

7. If
$$f(x) \ge g(x)$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

8. If $m \le f(x) \le M$ for $a \le x \le b$, then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$