Differentiating Parametric Equations Prige No.: Prouva
$y(t) = a\cos(t) + b\sin(t)$ $y(t) = 2a\sin(t) + t^{2}$
$\frac{dx}{dt} = -\frac{q\sin(t) + b\cos(t)}{dt}$ $\frac{dy}{dt} = \frac{2a\cos(t) + 2t}{dt}$
e dy dx - dy dt - dy t dt dt - dx dx - dx
dy = 2acos (t) +2t -a sin(t) +b cos(t)
2) x(t) = ct y(t) = c/t
$\frac{dx}{dt} = \frac{c}{dt} - \frac{c}{t^2}$
$\frac{dy}{dx} = \frac{-c}{t^2} \cdot \frac{-c}{t^2} \cdot \frac{1}{t^2} \cdot \frac{-1}{t^2}$
3) X(0) a cos 0 y(0)= bsin 0 1x = 3a cos 2 0 sin 0 1y = 3b sin 2 0 cos 0
$\frac{dy}{dx} = \frac{3b\sin^2\theta\cos\theta}{-3a\cos^2\theta\sin\theta} - \frac{b\tan\theta}{a}$
* Implicit differentiation: Let (0s $\Theta = \mathbb{Z}$ $f'(\mathbb{Z}^3) = 3\mathbb{Z}^2 = 3\cos^2\Theta$ $f'(\cos\Theta) = \sin\Theta$

