Exercise 7 - Dry convection (infinite Prandtl number)

The following dimensionless conservation equations describe convection in a fluid with high viscosity (e.g. Earth's mantle):

$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = \nabla^2 T \tag{1}$$

$$-\nabla^2 \omega = \operatorname{Ra} \cdot \frac{\partial T}{\partial x} \tag{2}$$

$$\nabla^2 \psi = -\omega \tag{3}$$

where ω is the vorticity, Ra is the Rayleigh number, and ψ is the stream function. Your task in this exercise is to write a Fortran program that solves these equations. For this purpose, combine the Poisson solver from Exercise 6 with the advection-diffusion model from Exercise 5.

- 1. Read in the control parameters from a namelist:
 - Number of grid points nx and ny.
 - Integration time total_time
 - Time step constants a_adv and a_diff
 - NEW: Convergence criterion for Poisson solver max_err.
 - NEW: Rayleigh number Ra.
 - NEW: Temperature initialization T_ini_type: random or cosine.
- 2. Initialize the variables:
 - Temperature T with random numbers or a cosine function.
 - Cosine e.g. $T(x) = 0.5 \cdot (1 + \cos(3\pi \cdot x/x_{max}))$
 - Stream function and vorticity S=W=0 (only at the beginning)
 - Grid spacing h=1./(ny-1.)
- 3. Perform several time steps until the integration time is reached:
 - Compute $\operatorname{Ra} \cdot \partial T/\partial x$.
 - Determine ω from $\operatorname{Ra} \cdot \partial T/\partial x$ using the Poisson solver (equation 2).
 - Determine ψ from ω using the Poisson solver (equation 3).
 - Compute the wind velocities u and v from ψ .
 - Compute the time step from a_{adv} , a_{diff} , and the maximum wind speed in the model domain
 - Compute $abla^2 T^n_{i,j}$ and $\vec{v}_{i,j} \cdot
 abla T^n_{i,j}$ using the subroutines from Exercise 5.
 - Integrate forward in time:
 - $T_{i,j}^{n+1} = T_{i,j}^n + \dots$ (equation 1, note without κ)
 - $-t = t + \Delta t$

Marina Dütsch 1

- Boundary conditions:
 - T: as in Exercise 5 (T=1 bottom, T=0 top, $\partial T/\partial x=0$ left and right).
 - ψ and ω : 0 at all boundaries
- If the integration time has not yet been reached, perform the next time step.
- 4. Test the model with the following two namelists, and save the output in binary files.

```
&INPUTS
                                         &INPUTS
2
     nx=257
                                           nx=1025
3
                                           ny=65
    ny=65
                                           a_diff=0.23
     a_diff=0.23
4
5
    a_adv=0.4
                                      5
                                           a_adv=0.4
6
    total_time=0.1
                                      6
                                           total_time=0.1
7 max_err=1.E-3
                                           max_err=1.E-3
                                      7
8 Ra=1.E5
                                           Ra=1.E5
                                      8
9
     T_ini_type='cosine'
                                      9
                                           T_ini_type='random'
10 /
                                      10 /
```

5. Plot the temperature fields with your favorite plotting tool.

Deadline: Please hand in your solutions (. f90 files and plots of T) by **Tuesday, 14 May 2024, 23:59**.

Marina Dütsch 2