

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, யூன் - 2017

Term Examination, June - 2017

தரம் :- 12 (2018)

இணைந்த கணிதம்

நேரம் :- 3 மணித்தியாலங்கள்

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த	5 கணிதம்
பகுதி	ഖിങ്ങ ഒൽ	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	(C)
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
В .	15	
	16	
	17	
	மொத்தம்	

					பகுதி						
(1)	<i>x</i> இன்	எல்லா	மெய்ப்	பெறுமா	ானங்களுக்	கும்	<u> </u>	$4x^{2} +$	2(k +	4) $x +$	9 > 0
					க் காண்க.						
						A					
	•••••									•••••	•••••••
	•••••									••••••	•••••••
	•••••										•••••••••••
(2)	சமனிலி	$\frac{x}{2x-1} \le$	–2 ஐத் தி	ிருப்தி (செய்யும் x (இன் செ	பெறுமானத்	தொை	டயைக்	காண்க	
						• • • • • • • • • • • • • • • • • • • •					
				••••••					•••••		
								•••••	•••••	•••••	
	•••••		•••••					•••••			
				•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••			••••••
	•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	
	•••••			•••••		•••••		•••••	•••••	•••••	•••••
	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		•••••
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••
	•••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••		••••••

(3)	$\lim_{x \to 0} \frac{1 + 2x^2 - \cos 3x}{x \sin x} = \frac{13}{2}$ எனக் காட்டுக.
(4)	x + 7y - 11 = 0.2x - y + 3 = 0 என்னம் நேர்கோடுகள் வெட்டும் பள்ளிக்கூருக்
(4)	x + 7y - 11 = 0, 2x - y + 3 = 0 என்னும் நேர்கோடுகள் வெட்டும் புள்ளிக்கூடாகச் செல்வதும் உர்பத்திப் புள்ளியை தொடுப்பதுமான நேர்கோட்டின் சமன்பாட்டைக் காண்க.
(4)	x+7y-11=0, $2x-y+3=0$ என்னும் நேர்கோடுகள் வெட்டும் புள்ளிக்கூடாகச் செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நேர்கோட்டின் சமன்பாட்டைக் காண்க.
(4)	
(4)	
(4)	
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.
(4)	செல்வதும் உற்பத்திப் புள்ளியை தொடுப்பதுமான நோகோட்டின் சமன்பாட்டைக் காண்க.

$0 , 0 இற்கு \cos(lpha+eta)=rac{4}{5} எனவும் \sin{(lpha-eta)}=rac{5}{13} எனவும் கொள்வோம் \tan 2lpha இன் பெறுமானத்தைக் காண்க.$
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
கவன் (catapult) ஒன்றில் இருந்து விடுபட்டு 56ms ⁻¹ வேகத்தோடு நிலைக்குத்தாக மேல்
கவன் (catapult) ஒன்றில் இருந்து விடுபட்டு 56ms ⁻¹ வேகத்தோடு நிலைக்குத்தாக மேல் எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது.
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது.
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்
எழுப்பும் கல் உயர்ந்த கோபுரம் ஒன்றின் உச்சியை 16ms ⁻¹ வேகத்துடன் தாண்டுகின்றது. கோபுரத்தின் உச்சியை மட்டுமட்டாக அடைவதற்கு கவனில் இருந்து என்ன வேகத்தில்

(7)	P,Q (P>Q) என்னும் இரு நிகரா சமாந்தர விசைகள் முறையே A,B இல் தாக்குகின்றன.
	தாக்குப் புள்ளியை மாற்றாது P இன் திசை புறமாற்றப்படின் விளையுள் ஆனது $rac{2PQ}{P^2-Q^2}$ AB
	என்னும் தூரத்தின் ஊடாக நகருமெனக் காட்டுக.
(8)	படத்தில் காட்டியவாறு தொகுத <mark>ி ஓய்வில் விடப்படும் போது m</mark> இன் ஆர்முடுகலையும் இழையில் உள்ள இழுவையையும் காண்க.
	ρ
	(Sw)

(i)	AUB æ	க் காண்க.	. 0 – உ <u>ர்</u>	3பத்தி			
(ii)	$OC \perp A$	<i>B</i> எனக் க	காட்டுக.				
12m		270N	ரியைம்	<mark>உ</mark> ள்ள	ΔD σάσ	றும் சீரான	கோல், கே
	களமும	2./UN	[h[h(0)]][K[J]][I]		AD 6160160		
நடுப்ப							
	ள்ளியில்	இருந்து	5m, 4m	தூரங்களில்	் உள்ள	புள்ளிகளில்	கட்டப்பட்ட
நிலை	ள்ளியில்	இருந்து இழைகளி	5m, 4m	தூரங்களில்	் உள்ள		கட்டப்பட்ட
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி	5m, 4m	தூரங்களில்	் உள்ள	புள்ளிகளில்	கட்டப்பட்ட
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி	5m, 4m	தூரங்களில்	் உள்ள	புள்ளிகளில்	கட்டப்பட்ட
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி	5m, 4m	தூரங்களில்	் உள்ள	புள்ளிகளில்	கட்டப்பட்ட
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில்	் உள்ள தாங்கப்படு	புள்ளிகளில்	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9
நிலை	ள்ளியில் க்குத்து	இருந்து இழைகளி காண்க.	5m, 4m ினால் கி	தூரங்களில் டையாகத்	் உள்ள தாங்கப்படு	புள்ளிகளில் கின்றது. இச	கட்டப்பட்ட ழைகளில் 9

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, யூன் - 2017

Term Examination, June - 2017

தரம் :- 12 (2018)

இணைந்த கணிதம்

பகுதி – B

- (11) (a) α, β என்பன $ax^2 + bx + c = 0 (a \neq 0)$ இன் மூலங்களாகவும் $\alpha + k, \beta + k$ என்பன $ax^2 + ax + r = 0 \ (p \neq 0)$ இன் மூலகங்களாகவும் இருப்பின் $\frac{b^2 4ac}{a^2} = \frac{q^2 4pr}{p^2}$ எனக் காட்டுக.
 - **(b)** f(x) = (a b c) $x^2 + ax + (b + c)$ எனக் கொள்வோம். இங்கு $a, b \in R$ உம் a b c $\neq o$ உம் ஆகும்.
 - (i) f(x) = 0 இன் மூலங்கள் மெய்யானவை எனக் காட்டுக.
 - $(\mathbf{ii})\,f(x)=o$ இன் ஒரு மூலம் மற்றையதன் இரு மடங்காயின் $b\,+\,c=rac{a}{3}$ அல்லது $b\,+\,c=rac{2a}{3}$ எனக் காட்டுக.
 - (C) $g(x) = x^4 + 4x^3 + 4x^2 4x 5$ என்க.
 - (i) (x-1), (x+1) என்பன g(x) இன் காரணிகள் எனக் காட்டுக.
 - (ii) குணங்களை சமன் செய்வதன் மூலம் g(x) இன் மற்றைய இருபடிக்காரணியைக் காண்க. g(x) = 0 ஆனது ஒரு சோடி மெய்மூலங்களை கொண்டிருக்கும் என உய்த்தறிக.
- (12) (a) (i) $x^2 + y^2 = 7xy$ எனின் $\log(x + y) = \log 3 + \frac{1}{2} (\log x + \log y)$ என நிறுவுக.
 - (ii) $\log_{mn} x = \frac{\log_n x}{1 + \log_n m}$ என நிறுவுக. x, m, n > o
 - (**b**) (**i**) a,b,c என்பன $a^2+b^2+c^2=1$ ஆகுமாறு உள்ள மெய்யென்கள் ஆகும். $-\frac{1}{2} \le ab + bc + ca \le 1$ என நிறுவுக.
 - (ii) $|x-3| \le 2|x-2|$ ஐ திருப்தியாக்கும் x இன் பெறுமான வீச்சைக் காண்க.
- (13) (a) y = l n (1 + sin x) எனின் $e^y \frac{d^2y}{dx^2} + e^y \left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\} = 1$ எனக்காட்டுக.
 - **(b)** $x = e^t, y = \sin t$ எனின் $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$ எனக் காட்டுக.
 - (c) $x \neq \pm 1$ இந்கு $f(x) = \frac{x^2 + 1}{x^2 1}$ எனக் கொள்வோம். $f'(x) = \frac{-4x}{(x^2 1)^2}$ எனக் காட்டுக.

அணுகுகோடுகளையும் திரும்பற்புள்ளியையும் காட்டி y = f(x) இன் வரைபை பருமட்டாக வரைக.

- (14) (a) m,n என்பன வெவ்வேறான மெய்யென்கள் எனவும் $mtan(\theta 30^\circ) = ntan \ (\theta + 120^\circ)$ எனக் கொள்க. $\cos 2\theta = \frac{m+n}{2(m-n)}$ எனக் காட்டுக.
 - (b) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ எனக் காட்டுக. இதிலிருந்து $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ $\cos^{-1} x \cos^{-1} y = \frac{\pi}{3}$ என்னும் ஒருங்கமை சமன்பாட்டுகளைத் தீர்க்க.
 - (c) வழமையான குறியீடுகளுடன், $\cos A \, \sin^2 \frac{A}{2} + \, \cos B \, \sin^2 \frac{B}{2} + \cos C \, \sin^2 \frac{C}{2} = \frac{3}{8} \quad \text{எனின்} \quad \text{முக்கோணி ABC} \quad \text{ஒரு}$ சமபக்க முக்கோணி எனக்காட்டுக.
- (15) (a) ஒரு மோட்டார் சைக்கிள் A என்னும் இடத்தை ஒரு குறித்த வேகத்தில் கடந்து சீரான ஆர்முடுகலுடன் ஒரே நேர்கோட்டில் இயங்கி t செக்கனில் AB = s ஆகவுள்ள B என்னும் இடத்தை கடந்து செல்கின்றது. அது தனது பயணத்தின் முதல் m செக்கனில் a தூரத்தையும் இறுதி m செக்கனில் b தூரத்தையும் கடந்தது எனின்
 - (i) மோட்டார் சைக்கிளின் A இல் இருந்து B வரையான இயக்கத்துக்கான வேகநேர வரைபை வரைக.
 - (ii) வரைபில் இருந்து மோட்டார் சைக்கிள் A,B ஐக் கடக்கும் போதான கதிகளின் கூட்டுத்தொகை முதல் a தூரத்தைக் கடக்கும் போதான கதியினதும் இறுதி b தூரத்தின் ஆரம்பத்தில் உள்ள கதியினதும் கூட்டுத்தொகைக்கு சமன் எனக் காட்டுக.
 - (iii) (ii) ஐப் பயன்படுத்தி $s=\frac{(a+b)\,t}{2m}$ எனக் காட்டுக.
 - (iv) முதல் a தூரத்துக்கும் இறுதி b தூரத்துக்கும் இடைப்பட்ட இயக்கத்துக்குமான சராசரி கதியை a,b,m சார்பில் உய்த்தறிக.
 - (b) A என்னும் ஒரு விமான நிலையத்துக்குத் தெற்கே $60 \, \mathrm{km}$ தூரத்தில் B என்னும் இன்னோர் விமான நிலையம் உண்டு. $a60^\circ \, \mathrm{sh}$ திசையில் இருந்து சீராக மணிக்கு $10\sqrt{3} \, kmh^{-1}$ வேகத்தில் காற்று வீசிக் கொண்டிருக்கின்றது. x,y என்னும் இரு விமானங்களும் நிலையான வளியில் $30 \, \mathrm{kmh}^{-1}$ என்னும் கதியில் பறக்க வல்லன. X ஆனது A இல் இருந்து B ஐ நோக்கியும் Y ஆனது B இல் இருந்து A ஐ நோக்கியும் ஒரே நேரத்தில் பறக்கின்றன. அவை B இல் இருந்து எவ்வளவு தூரத்தில் ஒன்றையொன்று தாண்டும் என்பதையும் அதற்கு எடுக்கும் நேரத்தையும் காண்க.

உருவில் உள்ள ΔABC ஆனது திணிவு M ஐ உடைய ஒரு சீரான தரப்பட்ட ஒப்பமான ஆப்பின் புவியீர்ப்பு மையத்தின் ஊடாக உள்ள ஒரு நிலைக்குத்து குறுக்குவெட்டை வகைகுறிக்கின்றது. கோடு AC ஆனது அதனைக் கொண்ட முகத்தின் அதியுயர் சரிவுக் கோடாக இருக்கும் அதேவேளை ${
m A}\hat{\cal C}{
m B}=lpha$, ${
m A}\hat{\cal B}{
m C}=rac{\pi}{2}$ ஆகும். ${
m B}{
m C}$ ஐக் கொண்ட முகம் ஓர் ஒப்பமான கிடை நிலத்தில் இருக்குமாறு ஆப்பு வைக்கப்பட்டு திணிவு $\frac{M}{2}$ ஐ உடைய ஒரு துணிக்கை AC இன் மீது வைக்கப்பட்டு மெதுவாக விடுவிக்கப்படுகின்றது. துணிக்கை ஆப்பில் உள்ள போது.

- (i) துணிக்கை, ஆப்பின் மீத<mark>ு தாக்கும் வி</mark>சைகள், அவற்றின் ஆர்முடுகல்களை தெளிவாக குறித்துக் காட்டுக.
- (ii) துணிக்கையின் பூமி சார்பான ஆர்முடுகலை சார்பு ஆர்முடுகல் கோட்பாட்டை பயன்படுத்தி எழுதுக.
- (iii) துணிக்கை, ஆப்பின் ஆர்முடுகல்களை துணிவதற்கான பொருத்தமான இயக்கச் சமன்பாடுகளை எழுதுக.
- (iv) ஆப்பின் ஆர்முடுகல், ஆப்பு சார்பாக துணிக்கையின் ஆர்முடுகல் ஆகியவற்றைக் காண்க.
- (v) துணிக்கையின் பூமி சார்பான ஆர்முடுகலின் பருமனையும் திசையையும் காண்க.
- (b) கிடைத்தரையில் உள்ள O என்னும் புள்ளியில் இருந்து d தூரத்தில் உள்ள பொருள் X ஐ அடிக்கும் நோக்குடன் O இல் இருந்து கிடையுடன் $\frac{\pi}{12}$ கோணத்தில் நிலைக்குத்து தளத்தில் எறியப்படும் துணிக்கை OX ஐ இணைக்கும் கோட்டில் X இற்கு முன்பாக a தூரத்தில் விழுகிறது. O இலிருந்து கிடையுடன் $\frac{\pi}{8}$ கோணத்தில் அதே கதியுடன் எறியப்படும் துணிக்கை OX ஐ இணைக்கும் கோட்டில் X இற்கு அப்பால் b தூரத்தில் விழுகிறது. எறியல் கதியை மாற்றாது கிடையுடன் θ கோணத்தில் O இலிருந்து எறியப்படும் போது துணிக்கையானது சரியாக பொருளின் மீது விழுகின்றது. d-a,d+b என்பவற்றுக்குப் பொருத்தமான சமன்பாடுகளைப் பெற்று $\sin 2\theta = \frac{\sqrt{2}\,a+b}{2(a+b)}$ எனக் காட்டுக.

3

- (17) (a) ஒரு தெக்காட்டின் தளத்தில் P,Q,R என்பன மூன்று புள்ளிகள் ஆகும். இங்கு O உற்பத்தி ஆகும். $\overrightarrow{OP} = -8\mathfrak{i} 6\mathfrak{i}, \ \overrightarrow{OQ} = 2\mathfrak{i} + 4\mathfrak{j}, \ \overrightarrow{OR} = h\mathfrak{i} 3\mathfrak{j}$ எனத் தரப்பட்டிருப்பின்,
 - (i) \overrightarrow{PQ} ஐ காண்க.
 - (ii) *P, Q, R* என்ற புள்ளிகள் ஒரு நேர்கோட்டில் இருப்பின் h இன் பெறுமானத்தைக் கணிக்க.
 - (iii) h=1 ஆகவுள்ள வகையில்
 - (a) $\overrightarrow{OP}-m\overrightarrow{OQ}-n\overrightarrow{OR}=0$ ஆகுமாறு m,n ஆகியவந்நின் பெறுமானங்களைக் காண்க.
 - (b) PQRS ஓர் இணைகரம் ஆகுமாறு காவி \overrightarrow{OS} ஐக் காண்க.

(b)

இங்கு தரப்பட்டுள்ள உருவில் காணப்படுகின்றவாறு ABCDEF என்பது AF = FE = ED = DC = CB = a மீற்றர் ஆகவும் $B\hat{A}F = A\hat{B}C = 60^\circ, F\hat{E}D = C\hat{D}E = 90^\circ$ ஆகவும் உள்ள ஓர் அறுகோணி ஆகும். $I, P, 2, \lambda P, 3, \lambda^2 P \ (P > 0, \lambda > 0)$ நியூற்றன் என்னும் விசைகள் முறையே AB, BC, CD, DE, EF, FA வழியே எடுத்து ஒழுங்கு முறையினால் காட்டப்படும் திசைகளில் தாக்குகின்றன.

- (i) தொகுதி ஓர் இணைக்குச் சமவலுவுள்ளதாக இருப்பதந்கு $\lambda = 2 \sqrt{3}$ எனக் காட்டுக.
- (ii) தொகுதி AC வழியே தாக்கும் ஒரு தனி விசையாக ஒடுங்குமெனின், P ஐ au இன் சார்பில் காண்க.
 - இதிலிருந்து, λ இன் பெறுமானங்களின் வீச்சைக் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

