北京理工大学《数学分析 B》

2008-2009 学年第二学期期末试题(A 卷)

班级		学号				姓名				
(本试卷共 5 页, 九个大题)										
题号	_		三	四	五	六	七	八	九	总分
得分										
签名										
2. 已知方	线 <i>L</i> : <i>x</i> 2到平面 程 <i>x</i> ² + :	$\frac{-1}{3} = \frac{y-2}{2}$ 第 第 的距离 $y^3 + z^2 = \frac{y-2}{2}$	$\frac{+1}{2} = \frac{z-n}{n}$ $\frac{1}{2} = \frac{z-n}{n}$ $\frac{1}{2} = 4z$,贝	$\int \frac{\partial z}{\partial x} = \underline{}$			$\frac{\partial^2 z}{\partial x^2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
)的值 <i>I</i> =	` •								
4. 设 f(u,	,v) 具有:	连续偏导	导数,且	$f_u'(u,v)$	$+f_{v}^{\prime}(u)$	(v) = uv	,则 y(:	$x)=e^{-2x}$	f(x,x)	听满足的微
分方程	是为			:	,此微分	分方程的		J	-X0	
5. 曲线 y	$=x^2$ 与国	直线 y =	1围成-	一均匀薄	片 D,	其面密质		,则D的	的质量 m	, *
质心生	坐标为 <u></u>		·						5 ************************************	
6. 设 f(x	$) = \begin{cases} x & \\ 1 & \end{cases} $	$0 \le x < \frac{\pi}{2} \le x < \frac{\pi}{2}$	$\frac{\pi}{2}$, $\sum_{n=1}^{\infty}$	$b_n \sin nx$	· 是 f(x)的以2	2π 为周	期的正	弦级数,	<i>S</i> (<i>x</i>) 是此

- 二. (8 分) 求曲面 $S: xyz = a^2$ (其中 x, y, z > 0)上点 M(x, y, z) 处的法向量 \vec{n} 以及曲面 S 在 点 M 处的切平面与三坐标面所围立体的体积.

三. (9 分) 求级数 $\sum_{n=1}^{\infty} n(\frac{x+1}{2})^n$ 的收敛域及和函数.

随米云打印 网址:sui.me

四. (9 分) 设 V 是曲面 $x^2+y^2+z^2=2z$ $(z\geq 1)$ 与 $z=\sqrt{x^2+y^2}$ 所围成的有界闭区域,计算积分 $I=\iiint_V \sqrt{x^2+y^2+z^2} dV$.

五. (10 分) 设 $f(x,y) = x^2y + y^3 - y$, 求 f(x,y) 的极值点和极值.

随米云打印 网址:sui.me

六. (10 分) 已知沿平面任意闭曲线 L, 都有 $\oint_L (2xy + \varphi(y))dx + (x-y)^2 dy = 0$, 且 $\varphi(0) = 1$, 求 $\varphi(y)$ 的表达式及积分 $I = \int_{(0,0)}^{(1,2)} (2xy + \varphi(y))dx + (x-y)^2 dy$ 的值.

七. (8 分) 将
$$f(x) = \begin{cases} \frac{x^2 + 1}{x} \ln(1 + x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 展成 x 的幂级数, 并指出收敛域.

随米云打印 网址:sui.me

八. (9 分) 设 S 是曲面 $z=\sqrt{x^2+y^2}$ $(1 \le z \le 2)$ 的下侧,利用高斯公式计算曲面积分 $I=\iint_S x^3 dy dz + y^3 dz dx + (z+1) dx dy \, .$

九. (9 分) 设函数 f(x) 在 x = 0 的某邻域内有二阶导数,且 $\lim_{x \to 0} \frac{f(x)}{x} = a \ (a \ge 0$ 为实数), 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{n})$ 的敛散性,若收敛指出是条件收敛还是绝对收敛.

