

UNIVERSIDADE CATÓLICA DE PELOTAS ENGENHARIA DE COMPUTAÇÃO BANCO DE DADOS

ÍCARO GONÇALVES SIQUEIRA

COMUNICAÇÃO ENTRE APLICATIVO E BANCO DE DADOS

ETAPA 1

O sistema desta avaliação é um script gráfico feito em python com a função de se comunicar com o banco de dados.

Para a execução do script python de interface gráfica funcionar por completa, é necessário um segundo script que coleta os dados e armazena no banco. Este script é usado na etapa de monitoramento em tempo real, no qual é feito de forma visual plotando os novos valores registrados em um gráfico animado.

A outra utilidade do sistema é a pesquisa de dados no banco, que pode ser personalizada com alguns parâmetros de busca, esses dados retornados são escritos em uma tabela e podem, também, ser plotados individualmente em um gráfico.

ETAPA 2

ETAPA 3

Ocupação (CPU_Uso, GPU_Uso, GPU_MB, RAM_Livre, RAM_Usada, <u>Data_Hora</u>)

Performance(CPU Mhz, GPU Mhz, Rede Kbps, Data Hora)

Temperatura(CPU °C, GPU °C, HDD °C, SSD °C, Data Hora)

ETAPA 4

```
CREATE DATABASE 'pivi'
CREATE TABLE 'Ocupação' (
 'CPU Uso' double DEFAULT NULL,
 `GPU Uso` int(11) DEFAULT NULL,
 `GPU MB` int(11) DEFAULT NULL,
 'RAM Livre' double DEFAULT NULL,
 'RAM Usada' double DEFAULT NULL,
 'Data Hora' timestamp NOT NULL DEFAULT CURRENT TIMESTAMP ON
UPDATE CURRENT TIMESTAMP,
PRIMARY KEY ('Data_Hora')
CREATE TABLE 'Performance' (
 'CPU Mhz' double DEFAULT NULL,
 `GPU Mhz` int(11) DEFAULT NULL,
 `Rede_Kbps` double DEFAULT NULL,
 'Data Hora' timestamp NOT NULL DEFAULT CURRENT TIMESTAMP ON
UPDATE CURRENT TIMESTAMP,
PRIMARY KEY ('Data_Hora')
)
CREATE TABLE `Temperaturas` (
 `CPU °C` int(11) DEFAULT NULL,
 `GPU °C` int(11) DEFAULT NULL,
 `HDD_°C` int(11) DEFAULT NULL,
 `SSD °C` int(11) DEFAULT NULL,
 `Data Hora` timestamp NOT NULL DEFAULT CURRENT TIMESTAMP ON
UPDATE CURRENT TIMESTAMP,
PRIMARY KEY ('Data Hora')
)
```

ETAPA 5

SELECT CPU_Uso, GPU_Uso, GPU_MB, RAM_Usada, RAM_Livre, CPU_Mhz, GPU_Mhz, Rede_Kbps, CPU_°C, GPU_°C, HDD_°C, SSD_°C, Ocupação.Data_Hora from Ocupação inner join Performance on Performance.Data_Hora = Ocupação.Data_Hora inner join Temperaturas on Temperaturas.Data_Hora = Performance.Data_Hora where (Ocupação.Data_Hora between "2020-05-16 00:00:00" and "2020-11-27 00:00:00" and CPU Mhz between "3000" and "4500")

SELECT GPU_Uso, GPU_MB, GPU_Mhz, GPU_°C, Ocupação.Data_Hora from Ocupação inner join Performance on Performance.Data_Hora = Ocupação.Data_Hora inner join Temperaturas on Temperaturas.Data_Hora = Performance.Data_Hora where (Ocupação.Data_Hora between "2020-05-16 00:00:00" and "2020-11-27 00:00:00" and CPU_Uso >= "85") order by CPU Uso desc

SELECT CPU_°C,GPU_°C,HDD_°C,SSD_°C,Temperaturas.Data_Hora from Temperaturas where (Temperaturas.Data_Hora > "2020-11-16 00:00:00" and CPU_°C <= "90") order by CPU_°C

SELECT RAM_Usada,RAM_Livre,CPU_Mhz,GPU_Mhz,Ocupação.Data_Hora from Ocupação inner join Performance on Performance.Data_Hora = Ocupação.Data Hora where (CPU Uso between "50" and "90")