МЛТА. Лекція 26.04.2021

Приклад 2. Нехай заданий алфавіт $T = \{a,b\}$ і λ — порожній символ. Перетворити слово P так, щоб на його початку виявилися всі символи a, а в кінці — усі символи b. Схема алгоритму складається з однієї підстановки:

1) $ba \rightarrow ab$

Наприклад, для слова P = babba результатом буде слово P' = aabbb.

P = babba

abbba

abbab

ababb

aabbb

Приклад 3. Побудувати НА Маркова для функції усіченої різниці f(x,y) = x - y.

Виберемо алфавіт $T = \{a,b,c\}$ і λ — порожній символ. Задаємо вхідне слово в вигляді $P = a \dots ab \dots b$, а вихідне слово (результат) — $P' = c \dots c$. Тоді x разів y разів y разів

маємо:

- 1) $ab \rightarrow \lambda$
- 2) $a \rightarrow c$
- 3) $b \rightarrow \lambda$

Наприклад, знайти f(2,3)=0. Вхідне слово має вигляд P=aabbb, а

вихідне слово (результат) — P' — порожнє слово.

aabbbb

abbb

bb

b

λ

Наприклад, знайти f(5,2)=3. Вхідне слово має вигляд $P=\underbrace{aaaaa}_{5 \text{ разів}} bb$,

а вихідне слово (результат) — P' = ccc.

3 рази

aaaaabb

aaaab

aaa

caa

cca

ccc

Приклад 4. Нехай заданий алфавіт $T = \{a,b,c\}$ і λ – порожній символ. Побудуємо НА над алфавітом T, який подвоює кожен символ слова $P \in T^*$. Наприклад, вхідне слово P = abcba, вихідним буде слово P' = aabbccbbaa.

- 1) $*a \rightarrow aa*$
- $2) *b \rightarrow bb*$
- 3) $*c \rightarrow cc *$
- 4) * $\rightarrow \cdot \lambda$
- 5) $a \rightarrow *a$
- 6) $b \rightarrow *b$
- 7) $c \rightarrow *c$

Продемонструємо роботу НА для деяких слів.

P = abcba	P = bccba	P = cbcba
*abcba	*bccba	*cbcba
aa*bcba	bb*ccba	cc*bcba
aabb* cba	bbcc*cba	ccbb*cba
aabbcc*ba	bbcccc*ba	ccbbcc*ba
aabbccbb*a	bbccccbb*a	ccbbccbb*a
aabbccbbaa*	$bbccccbbaa{}^*$	ccbbccbbaa*
aabbccbbaa	bbccccbbaa	ccbbccbbaa

Покажемо, що алгоритм зациклюється, якщо не використовувати додатковий символ.

- 1) $a \rightarrow aa$
- 2) $b \rightarrow bb$
- 3) $c \rightarrow cc$

P = abcba	P = bbcba	P = cbcba
aabcba	bbbcba	ccbcba
aaabcba	bbbbcba	cccbcba
aaaabcba	bbbbbcba	ccccbcba

... _ ...

Залежно з якого символу починається слово, буде зациклювання на відповідній першому символу підстановці.

Частково-рекурсивні функції

В теорії рекурсивних функцій, як і загалом, в теорії алгоритмів, прийнятий конструктивний підхід, основною особливістю якого є те, що все множина об'єктів (тут — функцій) будується з скінченного числа початкових об'єктів (базису) за допомогою простих операцій, ефективна виконуваність яких очевидна. Операції над функціями в подальшому будемо називати операторами.

Нехай $f\left(x_1,x_2,...,x_n\right)$ — функція, яку визначено на множині N_0^k розширеного натурального ряду $N_0=\left\{0,1,2...\right\}$, тобто аргументи $x_i\in N_0$ та значення функції з N_0 (поза цієї множини функцію вважають невизначеною).

Функції такого типу називають частково-числовими функціями зчисленнозначної логіки. Позначимо за P_N^r – множину всіх частково-числових (або арифметичних) функцій.

Елементарними (найпростішими, базисними) функціями називають такі функції:

- 1) O(x) = 0 нуль-функція;
- 2) S(x) = x + 1 функція додавання одиниці (функція слідування);
- 3) $I_m^n(x_1,...,x_m,...,x_n) = x_m$, $1 \le m \le n$ функція вибору аргументів (функція тотожності, координатна функція, функція введення фіктивних аргументів).

Всі елементарні функції ϵ всюди визначеними і алгоритмічно обчислюваними функціями.

На множині P_N^r визначено три обчислювальні операції: S – суперпозиції, R – примітивної рекурсії, μ – мінімізації.

1. Суперпозиція

Операція суперпозиції S^{n+1} ставить у відповідність n—арній функції $g(u_1,...,u_n)$ та n функціям $g_1(x_1,...,x_m)$, $g_2(x_1,...,x_m)$, ..., $g_n(x_1,...,x_m)$ однакової арності функцію $f(x_1,...,x_m)$:

$$f(x_1,...,x_m) = g(g_1(x_1,...,x_m),...,g_n(x_1,...,x_m)).$$

Будемо позначати $f = S^{n+1}(g, g_1, ..., g_n)$.

Наприклад:

$$\Phi(x) = O(S(x)) = 0,$$
 $\Phi(x) = S(O(x)) = 1,$ $\Phi(x) = S(S(O(x))) = 2,$
 $\Phi(x) = g(S(x), O(x)) = x,$ $g(x, y) = x + y.$

Якщо функції g, g_1 , g_2 , ..., g_n всюди визначені і алгоритмічно обчислювані, то функція $f = S^{n+1} \left(g, g_1, ..., g_n \right)$ також усюди визначена і алгоритмічно обчислювана.

2. Операція примітивної рекурсії

Операція примітивної рекурсії R ставить у відповідність n-арній функції g та (n+2)-арній функції h (n+1)-арную функцію f, яка задається рекурсивним визначенням:

$$\begin{cases} f(x_1,...,x_n,0) = g(x_1,...,x_n), \\ f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)). \end{cases}$$

Будем позначати f = R(g,h).

Істотним в операторі примітивної рекурсії ϵ те, що незалежно від числа змінних функції f рекурсія ведеться тільки за одні ϵ ю змінною y, інші n

змінних $x_1, ..., x_n$ на момент застосування схеми примітивної рекурсії зафіксовані і грають роль параметрів.

Це означає, що для всіх значень $x_1,...,x_n,m$, значення $f(x_1,...,x_n,m)$ визначається так:

Схема примітивної рекурсії для функції однієї змінної (n = 0).

$$\begin{cases} f(0) = a, \\ f(x+1) = h(x, f(x)). \end{cases}$$

Якщо функції g й h всюди визначені і алгоритмічно обчислювані, то функція f = R(g,h) також усюди визначена і алгоритмічно обчислювана.

3. Операція мінімізації

Операція мінімізації M(n+1) – арній функції g ставить у відповідність n – арну функцію f, яка задається співвідношенням:

$$f(x_1,...,x_n) = \mu_y(g(x_1,...,x_n,y) = 0).$$

Будемо позначати f = M(g).

Для всіх значень x_1, \dots, x_n , значення функції $f(x_1, \dots, x_n)$ визначається так. Послідовно обчислюємо значення $g(x_1, \dots, x_n, y)$ для $y = 0,1,2,\dots$ Перше таке значення y, для якого $g(x_1, \dots, x_n, y) = 0$ буде шуканим значенням функції $f(x_1, \dots, x_n)$. При цьому для всіх t < y значення $g(x_1, \dots, x_n, t)$ визначено і не дорівнює нулю.

Процес знаходження значення $f(x_1,...,x_n)$ ніколи не закінчиться у таких випадках:

- 1) для всіх значень y значення $g(x_1,...,x_n,y)$ визначено і не дорівнює нулю,
- 2) для всіх t < y значення $g(x_1,...,x_n,t)$ визначено і не дорівнює нулю, а значення $g(x_1,...,x_n,y)$ невизначено,
- 3) значення $g(x_1,...,x_n,0)$ невизначено.

Функція g може бути всюди визначеною (тотальною), а функція f = M(g) навіть ніде не визначеною функцією.

Наприклад, $f(x) = \mu_y(x+y+1=0)$ – ніде не визначена функція.

$$f(x_1, x_2) = \mu_y(x_2 + y = x_1) = x_1 - x_2$$
 – часткова функція.

Числову функцію $f\left(x_1,...,x_n,y\right)$ називають **примітивно-рекурсивною функцією** (скорочено **ПРФ**), якщо вона отримана з базисних (найпростіших арифметичних) функцій O(x), S(x), $I_m^n(x_1,...,x_m,...,x_n)$, $1 \le m \le n$ за допомогою скінченного числа застосувань операцій суперпозиції і примітивної рекурсії.

Функцію, яку можна отримати з базисних функцій за допомогою скінченного числа застосувань операцій суперпозиції, примітивної рекурсії і мінімізації, називають *частково-рекурсивною функцією* (скорочено $\mathbf{\Psi}\mathbf{\Phi}$).

Усюди визначену ЧРФ називають *рекурсивною функцією* (скорочено $P\Phi$).

Множину $P_{_{up}}$ називають класом частково-рекурсивних функцій, множину $P_{_{np}}$ – класом рекурсивних функцій, а множину $P_{_{np}}$ – класом примітивно-рекурсивних функцій.

3 наведених визначень випливають наступні твердження:

- 1. Якщо функції $g_0, g_1, ..., g_n$ всюди визначені і алгоритмічно обчислювані, то функція $f = S^{n+1}(g_0, g_1, ..., g_n)$ всюди визначена і алгоритмічно обчислювана.
- 2. Якщо функції g і h всюди визначені і алгоритмічно обчислювані, то функція f = R(g,h) всюди визначена і алгоритмічно обчислювана.
- 3. Якщо функція g алгоритмічно обчислювана, то і функція f = M(g) алгоритмічно обчислювана.
 - 4. Кожна ПРФ всюди визначена, алгоритмічно обчислювана функція.
 - 5. Каждая ЧРФ алгоритмічно обчислювана функція.
 - 6. Каждая РФ всюди визначена, алгоритмічно обчислювана функція.
- 7. Для відповідних класів функцій мають місце співвідношення $P_{np} \subseteq P_p \subseteq P_{up}$.

Приклади ПРФ, ЧРФ та РФ

Наведемо приклади частково рекурсивних функцій і встановимо часткову рекурсивність основних числових функцій, використовуваних в арифметиці і аналізі.

1. Функції-константи – ПРФ.

$$f(x) = m = \underbrace{S(S(...S(O(x))...))}_{m-pasis}$$

2. Функція $f(x_1, x_2) = x_1 + x_2 - \Pi P \Phi$.

Схема примітивної рекурсії:

$$\begin{cases} f(x_1,0) = x_1 + 0 = x_1 = I_1^1(x_1), \\ f_1(x_1,x_2+1) = x_1 + (x_2+1) = (x_1+x_2) + 1 = S(x_1+x_2) = S(f(x_1,x_2)). \end{cases}$$

 $g(x_1) = I_1^1(x_1),$ примітивна рекурсія за допомогою функцій $h(x_1, x_2, x_3) = I_3^3(x_1, x_2, S(x_3)) = S(x_3).$

Функція $f(x_1, x_2) = x_1 \cdot x_2 - \Pi P \Phi$.

Схема примітивної рекурсії:

$$\begin{cases} f(x_1,0) = 0 = O(x_1), \\ f_2(x_1,x_2+1) = x_1(x_2+1) = x_1 \cdot x_2 + x_1 = f(x_1,x_2) + x_1. \end{cases}$$

Це є примітивна рекурсія за допомогою функцій $g(x_1) = O(x_1)$, $h(x_1, x_2, x_3) = x_1 + x_3$. Згідно з прикладом 2 функція $h(x_1, x_2, x_3) = x_1 + x_3 - \Pi P \Phi$. Отже, $f - \Pi P \Phi$.

4. Функція
$$f(x) = sg(x) = \begin{cases} 0, \text{ якщо } x = 0 \\ 1, \text{ якщо } x > 0 \end{cases}$$
 — ПРФ. Схема примітивної рекурсії:
$$\begin{cases} f(0) = 0, \\ f(x+1) = 1 = S(O(x)) \end{cases}$$
 Пе примітивна рекурсія в якій $a = 0, h(x, x_0) = S(O(x))$

$$\begin{cases}
f(0)=0, \\
f(x+1)=1=S(O(x))
\end{cases}$$

Це примітивна рекурсія, в якій a = 0, $h(x_1, x_2) = S(O(x_1))$.

Функція ще має позначення sgn(x), sign(x).

5. Функція
$$f(x) = nsg(x) = \begin{cases} 1, \text{ якщо } x = 0 \\ 0, \text{ якщо } x > 0 \end{cases}$$
 — ПРФ.

Схема примітивної рекурсії:

$$\begin{cases} f(0)=1, \\ f(x+1)=0=O(x) \end{cases}$$

Це примітивна рекурсія, в якій a = 1, $h(x_1, x_2) = O(x_1)$.

Функція ще має позначення $\overline{sg}(x)$, nsgn(x), nsign(x).

- 6. Функція $f(x_1, x_2) = x_1 \div x_2 = \begin{cases} x_1 x_2, & x_1 \ge x_2, \\ 0, & x_1 < x_2 \end{cases}$ (усічена різниця, будемо позначати знаком (\div) » або (\div) ») — ПРФ.
 - Спочатку покажемо, що функція $x = 1 = \begin{cases} x 1, & x \ge 1, \\ 0, & x < 1 \end{cases}$ ПРФ.

Схема примітивної рекурсії:

$$\begin{cases} 0 - 1 = 0, \\ (x_1 + 1) - 1 = x_1 = I_1^2 (x_1, x_2). \end{cases}$$

Запишемо схему примітивної рекурсії для функції $x_1 \div x_2$.

$$\begin{cases} f(x_1,0) = x_1 \div 0 = x_1 = I_1^1(x_1), \\ f(x_1,x_2+1) = x_1 \div (x_2+1) = (x_1 \div x_2) \div 1 = f(x_1,x_2) \div 1. \end{cases}$$

Це примітивна рекурсія, в якій $g(x_1) = x_1$, $h(x_1, x_2, x_3) = x_3 \div 1$.

7. Функція $f(x_1, x_2) = |x_1 - x_2| - \Pi P \Phi$.

Цю функцію можна записати в такому вигляді:

$$|x-y| = (x - y) + (y - x).$$

Так як для такого подання використовуються функції, примітивну рекурсивність яких доведено, то задана функція ϵ примітивно-рекурсивною.

8. Функція $min(x_1, x_2) - \Pi P \Phi$. $min(x_1, x_2) = x_1 \div (x_1 \div x_2).$

9. Функція $max(x_1, x_2) - \Pi P \Phi$.

$$max(x_1, x_2) = x_2 + (x_1 - x_2).$$

10. Функція $f(x_1, x_2) = x_1 - x_2 - \Psi P \Phi$.

Ця функція не ϵ всюди визначеною, вона часткова. За допомогою операції мінімізації ма ϵ мо

$$f(x_1,x_2) = \mu_y(|x_1-(x_2+y)|=0).$$

11. Функція $f(x_1, x_2) = \left[\frac{x_1}{x_2}\right]$ — ціла частина від ділення x_1 на x_2 . Ця функція невизначена при $x_2 = 0$, тому не ϵ ПРФ.

Якщо довизначити цю функцію при $x_2 = 0$ так: $\left[\frac{x_1}{0}\right] = x_1$, тоді маємо

$$\left[\frac{x_1}{x_2}\right] - \Pi P \Phi.$$

Покажемо це. Значення n дорівнює кількості нулів в послідовності

$$1 \cdot x_2 \doteq x_1, \ 2 \cdot x_2 \doteq x_1, \dots, \ n \cdot x_2 \doteq x_1, \dots, \ x_1 \cdot x_2 \doteq x_1.$$

Тому маємо

$$\left[\frac{x_1}{x_2}\right] = \sum_{k=1}^{x_1} nsg\left(k \cdot x_2 \div x_1\right).$$

Наприклад, $\left\lceil \frac{x_1}{x_2} \right\rceil = \left\lceil \frac{13}{3} \right\rceil = 4$.

Маємо

$$1 \cdot 3 \div 13 = 0$$
, $2 \cdot 3 \div 13 = 0$, $3 \cdot 3 \div 13 = 0$, $4 \cdot 3 \div 13 = 0$, $5 \cdot 3 \div 13 = 2$, $6 \cdot 3 \div 13 = 5$, $7 \cdot 3 \div 13 = 8$, $8 \cdot 3 \div 13 = 11$, $9 \cdot 3 \div 13 = 14$, $10 \cdot 3 \div 13 = 17$, $11 \cdot 3 \div 13 = 20$, $12 \cdot 3 \div 13 = 23$.