ARITHMETIC

Chapter 21 Sesión I

Números Racionales I

HELICO MOTIVATING

NÚMEROS FRACCIONARIOS

Interprete el gráfico de la rica torta

HELICO THEORY

NUMEROS RACIONALES

$$Q = \left\{ \frac{a}{b} / a \in Z \land b \in Z - \{0\} \right\}$$

$$\frac{12}{5}$$
; $\frac{-9}{13}$; $\frac{8}{-5}$; $\frac{1}{4}$; $\frac{18}{6}$

Números enteros

FRACCIONES

Son aquellos números fraccionarios $\frac{a}{b}$, donde a y b son positivos, a no es divisible entre b.

$$\frac{9}{25}$$
; $\frac{7}{3}$; $\frac{15}{10}$

En general:

$$F = \left\{ \frac{a}{b} / a \in Z^+ \land b \in Z^+; a \neq \dot{b} \right\}$$

Llamamos:

a:Numerador

b:Denominador

HELICO THEORY

Por la comparación de su valor con respecto a la unidad

1. Propia

$$\frac{15}{25}$$
; $\frac{9}{13}$; $\frac{19}{30}$

2. Impropia

Ejm
$$\frac{18}{12}; \frac{11}{3}; \frac{5}{2}$$

$$f = \frac{a}{b} > 1 \rightarrow a > b$$

Por su denominador

1. Decimal

Ejm
$$\frac{7}{10^2}; \frac{23}{10}; \frac{45}{10^3}$$

$$f = \frac{a}{b} \rightarrow b = 10^{n}$$

$$\forall n\epsilon \mathbb{Z} +$$

2. Ordinaria

Ejm
$$\frac{5}{26}; \frac{12}{8}; \frac{15}{6}$$

$$\Rightarrow \mathbf{f} = \frac{\mathbf{a}}{\mathbf{b}} \to \mathbf{b} \neq \mathbf{10^{\mathbf{n}}} \qquad \forall \ \mathbf{n} \in \mathbf{Z} + \mathbf{b}$$

HELICO THEORY

Por los divisores comunes de los términos

Por grupo de

$$\frac{\text{fracciones}}{9}; \frac{8}{9}; \frac{5}{9}$$

1. Irreductible

$$\frac{16}{25}$$
; $\frac{7}{13}$; $\frac{19}{5}$

$$f = \frac{a}{b} \rightarrow MCD(a,b)=1$$

a y b son PESI

2. Reductible

$$\frac{9}{15}$$
; $\frac{16}{10}$; $\frac{45}{24}$

$$f = \frac{a}{b}$$
 a y b no son PESI

1.Homogéneas

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \dots, \frac{a_n}{b_n}$$

$$b_1 = b_2 = b_3 = \dots = b_n$$

2. Heterogéneas

$$\frac{8}{15}$$
; $\frac{32}{10^2}$; $\frac{15}{6}$

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \dots, \frac{a_n}{b_n}$$

Realice las siguientes operaciones.

Resolución

$$\frac{5}{8} - \frac{2}{5} = \frac{5 \times 5}{8 \times 5} = \frac{9}{40}$$

$$\Rightarrow \frac{3}{4} \times \frac{2}{7} = \frac{3 \times 2}{4 \times 7} = \frac{6}{28} = \frac{3}{14}$$

Cuántas fracciones propias con denominador 15 existen?

Resolución

f. propia:
$$\frac{a}{15} < 1 \implies a < 15$$

Cuántas fracciones propias e irreductibles con denominador 16 existen?

<u>Resolución</u>

f. propia:
$$\frac{a}{16} < 1 \Rightarrow a < 16$$

a: 1; 2; 3;...;15

f. irreductible: a y 16 son (PESI)
$$\Rightarrow$$
 16 = 2⁴ a \neq 2

RPTA: 8

¿Cuántas fracciones propias irreductibles con numerador 24 existen?

Resolución

f. propia:
$$\frac{a}{24} < 1 \implies a < 24$$

a: 1; 2; 3;...; 23

f. irreductible:
$$a \ y \ 24 \ \text{son (PESI)} \Rightarrow 24 = 2^3 x \ 3$$

$$a \neq 2 \qquad a \neq 3$$

Entonces: a: 1; 5; 7; 11; 13; 17; 19; 23

RPTA: 8

Doña Irma fue al mercado a comprar algunas frutas y coloca en una canasta 5 plátanos, 3 naranjas y 8 mangos. Al observar las frutas que ha colocado en la canasta se hace las siguientes preguntas: ¿Qué fracción representa los mangos? ¿Qué fracción representa las naranjas? Ayuda a doña Irma a calcular la diferencia de las fracciones resultantes.

Resolución

Recordar

$$F = \frac{parte}{todo} \qquad \begin{array}{l} Todo: \\ 5+3+8=16 \end{array}$$

Mangos:
$$M = \frac{8}{16}$$

Naranjas:
$$N = \frac{3}{16}$$

Piden:

$$\frac{8}{16} - \frac{3}{16} = \frac{8 - 3}{16}$$

En una fiesta de promoción de 5° año de secundaria «Tolerancia» de la sede de Pueblo Libre del colegio Apeiron, se observa en un momento determinado que todos los varones están bailando y 40 mujeres no bailan, además en la pista de baile se encuentran 20 parejas. ¿Cuántos varones deben llegar para que los varones sean la mitad de las mujeres?

Resolución

Una mediante flechas según corresponda.

Resolución / 3/6	$\frac{2}{8}$
a. Fracción propia	b. $\frac{15}{21}$ Fracción reductible
Fracción impropia $\frac{12}{7}$	Fracción irreductible $\frac{\frac{7}{9}}{\frac{8}{17}}$
$\frac{2}{\frac{71}{3}}$	$\frac{20}{21}$

Resolución

f. propia:
$$\frac{a}{15} < 1 \Rightarrow a < 15$$

$$\frac{a}{15} < 1 \Rightarrow a$$

Realice las siguientes operaciones.

Resolución

$$\frac{\frac{210H}{5}}{\frac{1}{5}} + \frac{2}{3} = \frac{1 \times 3 + 5 \times 2}{5 \times 3} = \frac{13}{15}$$

$$> \frac{5}{8} - \frac{2}{5} = \frac{5 \times 5 - 8 \times 2}{8 \times 5} = \frac{9}{40}$$

$$\Rightarrow \frac{3}{4} \times \frac{2}{7} = \frac{3 \times 2}{4 \times 7} = \frac{6}{28} = \frac{3}{14}$$

$$\Rightarrow \frac{8}{12} \div \frac{5}{10} = \frac{8 \times 10}{12 \times 5} = \frac{80}{60} = \frac{4}{3}$$

Resolución

f. propia:
$$\frac{a}{16} < 1 \Rightarrow a < 16$$
 $a: 1; 2; 3; ...; 15$

f. irreductible: $a \ y \ 16 \ \text{son (PESI)} \implies 16 = 2^4$

 $a \neq \dot{2}$

Entonces: a: 1; 3; 5; 7; 11; 13; 15.