

CHEMISTRY

Chapter 11

IONES Y SALES

MOTIVATING STRATEGY

 NO^+

IONES POSITIVOS (Cationes)

Son iones de carga eléctrica positiva. Estas pueden ser:

(Ion cúprico)

1. Monoatómicos

(Ion cobre (II))

2. Poliatómicos

Mg ²⁺	N. Stock (Ion magnesio)	N. tradicional (lon magnésico)	H_3O^+	Ion hidronio
Fe ²⁺	(lon hierro (II))	(Ion ferroso)	NH_4^+	Ion amonio
Fe ³⁺	(Ion hierro (III))	(lon férrico)	$P{H_4}^+$	lon fosfonio
Cu ¹⁺	(lon cobre (I))	(lon cuproso)	<i>CO</i> ²⁺	Ion carbonilo

Ion nitrosilo

IONES NEGATIVOS (aniones)

Resultan al quitarle uno o más átomos de hidrógeno al ácido.

1. Aniones Monoatómicos

Derivan de los Ácidos hidrácidos

ácido	anión
<u>hídrico</u>	<u>uro</u>

$$HCl_{(ac)} \rightarrow Cl^{1-}$$

Ácido Clorhídrico Cloruro

$$H_2S_{(ac)} \rightarrow S^{2-}$$

Ácido Sulfhídrico Sulfuro

2. Aniones Poliatómicos

Derivan de los Ácidos oxácidos

anión	ácido
ito	oso
ato	ico

HClO Ácido hipocloroso

Ácido cloroso

Ácido clórico

 $\begin{array}{ccc} & -H^+ \\ \text{HClO}_2 & \longrightarrow & \text{ClO}_2^{1-} \end{array}$ clorito

 $\begin{array}{ccc} & -H^+ \\ \text{HClO}_3 & \xrightarrow{} & \text{ClO}_3^{1-} \end{array}$

clorato

hipoclorito

Acido perciórico

perclor<u>ato</u>

CHEMISTRY

ácido	anión
oso	ito
ico	ato

$$\begin{array}{ccc} & -H^+ \\ & \rightarrow & \text{NO}_2^{1-} \\ & \text{Acido nitroso} & & \text{nitrito} \\ & & & -2H^+ \\ & & & \rightarrow & \text{SO}_4^{2-} \end{array}$$

ulfúrico sulfato
$$-3H^{+}$$

$$H_{3}PO_{4} \rightarrow PO_{4}^{3-}$$
sfórico fosfato

Las sales se obtienen al combinar un ácido con un hidróxido.

ÁCIDO + HIDRÓXIDO → SAL OXISAL + AGUA

NOTITA: A diferencia de las sales haloideas, las sales oxisales, si tienen oxígeno.

NaCl Cloruro de sodio Fe₂S₃
Sulfuro férrico

KNO₃ Nitrato de potasio Al₂(SO₄)₃
Sulfato de aluminio

La fórmula general de una sal es:

C = catión

A = anión

m = carga del catión (+)

n = carga del anión (-)

Nomenclatura:

$$Fe_2(SO_4)_3$$

sulfato férrico

Complete las siguientes reacciones químicas:

Ácido hidrácido + hidróxido

Sal Haloidea

agua

Ácido Oxácido + hidróxido

_Sal Oxisal

agua

Formule los siguientes aniones:

Carbonato: ______

C(2+, 4+)

Sulfato:

SO₄²

S(2+, 4+, 6+)

RESOLUCIÓN

Carbonato

Ácido carbónico

$$H_2CO_{4+2} \xrightarrow{-2H^+}$$

Sulfato

Ácido sulfúrico

$$H_2SO_{\frac{6+2}{2}}$$

$$-2H^+$$

Complete la reacción y nombre la sal obtenida.

$$Fe^{3+} + S^{2-} \rightarrow \underline{Fe_2S_3}$$
(Fe^{2+, 3+})

RESOLUCIÓN

Sulfuro férrico

Complete la reacción de neutralización para la obtención de la sal.

$$HNO_3 + Ca(OH)_2 \rightarrow \frac{Ca(NO_3)_2}{} + H_2O$$

RESOLUCIÓN

$$\frac{\text{ÁCIDO}}{\text{OXÁCIDO}} + \text{HIDRÓXIDO} \rightarrow \frac{\text{SAL}}{\text{OXISAL}} + \text{AGUA}$$

$$+ \text{HNO}_3 + \text{Ca} \rightarrow (\text{OH})_2 \rightarrow -1H^+$$

$$+ \text{NO}_3 + \text{Ca}^2 + \rightarrow \text{Ca}(\text{NO}_3)_2 + \text{H}_2\text{O}_3$$

5

¿Qué sal se obtiene al combinar hidróxido de calcio Ca(OH)₂ y el ácido sulfúrico H₂SO₄?

Se denomina sales a los compuestos químicos que son el resultado de un enlace iónico entre partículas químicas con carga positiva (cationes) y otras con carga negativa (aniones). Son el resultado típico de la reacción química entre un ácido y una base, también conocida como reacción de neutralización. Existen distintos tipos de sales, según su composición química, su utilidad para las industrias humanas y su nomenclatura.

En relación al clorato férrico, determinar la cantidad de átomos de oxigeno.

(Cl 1+, 3+, 5+, 7+; Ni 2+, 3+)

determinar la cantidad de átomos de oxigeno

Anión

Catión

RESOLUCIÓN

Ácido clórico

$$CI(1+, 3+, 5+, 7+)$$
 $HClO_{\frac{5+1}{2}} \xrightarrow{-H^+} ClO_3$

$$Fe^{(2+,3+)} \longrightarrow Fe^{3+}$$

átomos de oxigeno

9

Rpta: 9

El cloro tiene estados de oxidación 1+, 3+, 5+ y 7+; por lo tanto puede generar cuatro óxidos diferentes de la forma Cl₂O_x. Estos óxidos son ácidos ya que reaccionan con el agua para formar los respectivos oxácidos. Finalmente los ácidos oxácidos pierden hidrógenos (H+) resultando las oxoaniones hipoclórito, clorito, clorato y perclorato. ¿Qué fórmulas tienen las sales que forman las oxoaniones del cloro al unirse con el ion calcio (II)?

HClO

RESOLUCIÓN

 $HClO_{\frac{x+1}{2}}$

$$Six=1$$

$$Six=3$$

$$Six=5$$

$$Six=7$$

$$HClO_2 \xrightarrow{-H^+} ClO_2^1$$

Ácido cloroso

$$HClO_3 \xrightarrow{-n} ClO_3$$

clor<u>ito</u>

hipoclorito

$$HClO_{4(ac)} \xrightarrow{-H^+} ClO_4^1$$