6.6 Do Now: Tangents, systems of equations, frequency tables Calculator practice ${\bf E}$

1. A cubic function $f(x) = -2x^3 + 3x + 1$ is shown on the axes below.

A tangent to the function at x = 1 is drawn with the point of tangency P.

- (a) Find the coordinates of P. [1]
- (b) Write down the derivative of the function, f'(x). [2]
- (c) Show that the gradient of the tangent line is -3. [1]
- (d) Write down the equation of the tangent line. [2]
- (e) Find the coordinates of the two extrema of f. [2]

Working:	
	Answers:
	(a)
	(b)
	(c)
	(d)
	(e) ·····

J (**) 2	$x^2 + x - 4$	g(x)	$x) = -\frac{1}{3}x - 3$		
Working:					
		A	answers:		
		((a)		
The SAT Mat	h scores of a repi	resentative 100 No	orth Carolina stu	dents are shown b	oel
Score	$400 \le x < 450$	$450 \le x < 500$	$500 \le x < 550$	$550 \le x < 600$	
Freq	k	24	40	26	
(a) Find the	value of k .				
(b) Write do	wn the modal cl	ass.			
(b) Wille do	the mean \overline{x} .				
,		eviation of the de	ata, σ .		
(c) Estimate	the standard de	eviation of the da	,		

Answers:

(a) ·····

(b)

(c)

(d)