Set Operations

Union: $A \cup B$: $\{x \in S : x \in A \text{ OR } x \in B\}$

Intersection: $A \cap B : \{x \in S : x \in A \text{ AND } x \in B\}$

Complement: $A^c: \{x \in S : x \notin A\}$

Difference: $A - B : \{x \in S : x \in A, x \notin B\}$ Infinite Union: $\bigcup_{i=1}^{\infty} A_i : \{x \in S, x \in A_i \ni A_i\}$ Infinite Intersection: $\bigcap_{i=1}^{\infty} A_i : \{x \in S, x \in A_i \forall A_i\}$

Set Relationships

Containment: $B \subseteq A$ (A is a subset of B): $x \in A$ means $x \in B$

Equality: Two sets are equal if they contain each other: $A = B : A \subseteq B, B \subseteq A$

Disjoint: $A \cap B = \{\}$

Set Properties

Commutativity: $A \cup B = B \cup A$, $A \cap B = B \cap A$

Associativity: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$

Distributive: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

DeMorgan's Law: $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$

Sigma Algebras

A collection of subsets of S is a σ -algebra (\mathcal{B}) iff:

a. $\emptyset \epsilon \mathcal{B}$

b.
$$A \in \mathcal{B} \implies A^c \in \mathcal{B}$$

b.
$$A \epsilon \mathcal{B} \implies A^c \epsilon \mathcal{B}$$

c. $A_1, A_2, ... \epsilon \mathcal{B} \implies \bigcup_{n=1}^{\infty} A_n \epsilon \mathcal{B}$