$$Y_{ijk} = \mathcal{U} + \alpha_i + \beta_i + \epsilon_{ijk}, \quad \epsilon_{ijk} \sim \mathcal{U}_{ijk}$$

$$\sum_{i=1}^{a} \alpha_i = \sum_{i=1}^{b} \beta_i = 0$$

$$\sum_{i=1}^{\infty} x_i = \sum_{i=1}^{\infty} x_i = 0$$

$$\sum_{i=1}^{\infty} x_i = \sum_{i=1}^{\infty} x_i = 0$$

$$\hat{x}_i = \sum_{i=1}^{\infty} x_i = 0$$

 $\hat{\beta}_{j} = \overline{Y}_{j}, \quad -\overline{Y}_{j},$ $E(Y_{ijK}) = \mathcal{U}_{ij} \Rightarrow \hat{\mathcal{U}}_{ij} = \hat{\mathcal{U}}_{ij} + \hat{\beta}_{j}$ => Qi; = 7... + 7... - 7... + 7... - 7... $= \overline{\gamma}_{i..} + \overline{\gamma}_{i..} - \overline{\gamma}_{i..}$ Lestus medias no son estadistica/

$$Var(\hat{\mathcal{U}}_{i,i}) = Var(\bar{Y}_{i,.}) + Var(\bar{Y$$

$$= ?? = \frac{8 (a+b-1)}{abn}$$

$$\frac{1}{abn} \sim N(u+\alpha_i+\beta_i) \cdot \frac{8 (a+b-1)}{abn}$$

ANOVA en un DCA balanceado, con dos factores de efectos aleatorios con interacción

ANOVA en un DCA balanceado, con dos factores de efectos aleatorios con interacción						
Fuente	g.l	SC	CM	CME	$\mathbf{F_0}$	Valor P
700000000000000000000000000000000000000	0.0000000000000000000000000000000000000	17.70.700	7,837,143	0077001	53.500	W201702170
A	a-1	SSA	$MSA = \frac{SSA}{a-1}$	$\sigma^2 + n\sigma_{\alpha\beta}^2 + nb\sigma_{\alpha}^2$	$\frac{MSA}{MS(AB)}$	$P(f_{a-1,\mathrm{dfi}} > F_0)$
		3313333	u-1	ар_	WI3(AB)	
В	<i>b</i> − 1	SSB	$MSB = \frac{SSB}{b-1}$	-222	MSB	$D(f \rightarrow F)$
D	0-1	330	$NISB = \frac{1}{b-1}$	$\sigma^2 + n\sigma_{\alpha\beta}^2 + na\sigma_{\beta}^2$	$\frac{MSB}{MS(AB)}$	$P(f_{b-1,\text{dfi}} > F_0)$
			00(4 P)		1.60 (4 D)	
AB	dfi	SS(AB)	$MS(AB) = \frac{SS(AB)}{df_1}$	$\sigma^2 + n\sigma_{\alpha\beta}^2$	$\frac{MS(AB)}{MSE}$	$P(f_{\text{dfi,dfe}} > F_0)$
			dii		IVISE	
	10	225	$MSE = \frac{SSE}{dS}$	2		
Error	dfe	SSE	$MSE = \frac{1}{dfe}$	σ^2		
Total	abn-1	SST	Con dfi = $(a-1)(b-1)$, dfe = $ab(n-1)$			

by Ho: Ho:
$$O_{\beta} = 0 \Rightarrow$$

Fo = M(B)

14s(AB)

E(MSCAB)) = E(MSE) = O