BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

How to deal with uncertainty in a principled way?

- Inaccuracy and imprecision in sensors.
- Missing/unobservable information.
- Decision making under uncertainty.
- Multiple information sources.
- Multiple hypotheses.

Odometry.

- Visual.
- Encoders.
- ...

Landmarks.

- Laser.
- Visual.
- •

Predicted motion.

- Continuity.
- Physics.
- ...

Answer: Probabilistic frameworks

Question: Where is the generative model and where is the discriminative model here?

MAP vs ML

Z=z is the event that the observed data Z has value z. X=x is the event that the state X has value x.

Maximum Likelihood (ML):

$$\underset{x}{argmax} P(Z=z|X=x)$$
 (easier to calculate)

Maximum A Posteriori (MAP):

$$\underset{x}{argmax} P(X = x | Z = z)$$

$$= \underset{x}{argmax} \frac{P(Z=z|X=x)P(X=x)}{P(Z=z)}$$

(Bayes' Law)

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Sample localisation scenario

Sample observation model

The **observation** Z one of *bright* or *dark*. The **state** X one of *cupboard* or *lab* or *outside*.

$$P(Z=bright|X=cupboard)$$
 probability it is bright **if** in cupboard.

('conditional on the state of being in the cupboard').

E.g.:

$$P(Z=bright|X=cupboard)=0.2$$

 $P(Z=dark|X=cupboard)=0.8$
 $P(Z=bright|X=lab)=0.8$
 $P(Z=dark|X=lab)=0.2$
 $P(Z=bright|X=outside)=0.6$
 $P(Z=dark|X=outside)=0.4$

Exercise

Assume we have learnt the following observation model:

$$P(Z=bright|X=cupboard)=0.2$$

$$P(Z=dark|X=cupboard)=0.8$$

$$P(Z=bright|X=lab)=0.8$$

$$P(Z=dark|X=lab)=0.2$$

$$P(Z=bright|X=outside)=0.6$$

$$P(Z=dark|X=outside)=0.4$$

Maximum Likelihood (ML): argmax P(Z=z|X=x)

Our robot observes that it is bright:

$$Z = bright$$

What is the ML estimate of the current location?

Exercise

We have learnt the following observation model:

$$P(Z=bright|X=cupboard)=0.2$$

$$P(Z=dark|X=cupboard)=0.8$$

$$P(Z=bright|X=lab)=0.8$$

$$P(Z=dark|X=lab)=0.2$$

$$P(Z=bright|X=outside)=0.6$$

$$P(Z=dark|X=outside)=0.4$$

Maximum Likelihood (ML): argmax P(Z=z|X=x)

Our robot observes that it is dark:

$$Z = dark$$

· What is the ML estimate of the current location?

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

MAP is more principled than ML

- To do MAP estimation need:
 - Prior model of state:
 - P(X).
- Do NOT need:
 - Prior model of observations:
 - P(Z).

Maximum A Posteriori (MAP):
$$argmax P(X=x|Z=z)$$

$$= argmax \frac{P(Z=z|X=x)P(X=x)}{P(Z=z)}$$

Exercise

Maximum A Posteriori (MAP): $\underset{x}{argmax} P(X=x|Z=z)$ $= \underset{x}{argmax} \frac{P(Z=z|X=x)P(X=x)}{P(Z=z)}$

For the same observation model, we have the following priors:

$$P(X = cupboard) = 0.2$$

$$P(X=lab)=0.8$$

$$P(X = outside) = 0.0$$

Our robot observes brightness:

$$Z = bright$$

Obs. Model:

$$P(Z=bright|X=cupboard)=0.2$$

$$P(Z=dark|X=cupboard)=0.8$$

$$P(Z=bright|X=lab)=0.8$$

$$P(Z=dark|X=lab)=0.2$$

$$P(Z=bright|X=outside)=0.6$$

$$P(Z=dark|X=outside)=0.4$$

· What is the MAP estimate of the current location?

$$P(X = cupboard | Z = bright) = \frac{P(Z = bright | X = cupboard)P(X = cupboard)}{P(Z = bright)} = 0.04 \cdot P(Z = bright)$$

$$P(X = lab | Z = bright) = \frac{P(Z = bright | X = lab)P(X = lab)}{P(Z = bright)} = 0.64 \cdot P(Z = bright)$$

$$P(X = outside | Z = bright) = \frac{P(Z = bright | X = outside)P(X = outside)}{P(Z = bright)} = 0.00 \cdot P(Z = bright)$$

Exercise

Maximum A Posteriori (MAP):
$$\underset{x}{argmax} P(X=x|Z=z)$$

$$= \underset{x}{argmax} \frac{P(Z=z|X=x)P(X=x)}{P(Z=z)}$$

For the same observation model, we have the following priors:

$$P(X = cupboard) = 0.2$$

$$P(X=lab)=0.8$$

$$P(X = outside) = 0.0$$

Our robot observes darkness:

$$Z = dark$$

Obs. Model:

$$P(Z=bright|X=cupboard)=0.2$$

$$P(Z=dark|X=cupboard)=0.8$$

$$P(Z=bright|X=lab)=0.8$$

$$P(Z=dark|X=lab)=0.2$$

$$P(Z=bright|X=outside)=0.6$$

$$P(Z=dark|X=outside)=0.4$$

· What is the MAP estimate of the current location?

Multiple observations

If $Z_1 = z_1$ and $Z_2 = z_2$ are **independent** observations,

$$P(Z_1 = z_1, Z_2 = z_2 | X = x)$$
=
 $P(Z_1 = z_1 | X = x) P(Z_2 = z_2 | X = x)$

Exercise

For the same observation model, same priors, extra observation in model:

$$P(Z_2=warm|X=cupboard)=0.8$$

 $P(Z_2=cold|X=cupboard)=0.2$
 $P(Z_2=warm|X=lab)=0.8$
 $P(Z_2=cold|X=lab)=0.2$
 $P(Z_2=warm|X=outside)=0.4$

 $P(Z_2 = cold | X = outside) = 0.6$

Maximum A Posteriori (MAP):

$$argmax P(X=x|Z=z)$$

 $= argmax \frac{P(Z=z|X=x)P(X=x)}{P(Z=z)}$

Our robot observes that it is dark and cold:

$$Z = dark$$

$$Z_2 = cold$$

· What is the MAP estimate of the current location?

Exercise

For the same observation model, same priors, extra observation in model:

$$P(Z_2=warm|X=cupboard)=0.8$$

 $P(Z_2=cold|X=cupboard)=0.2$
 $P(Z_2=warm|X=lab)=0.8$
 $P(Z_2=cold|X=lab)=0.2$

$$P(Z_2 = warm | X = outside) = 0.4$$

 $P(Z_2 = cold | X = outside) = 0.6$

$$P(Z_2 = cold | X = outside) = 0.6$$

Maximum A Posteriori (MAP):

$$argmax P(X=x|Z=z)$$

 $= argmax \frac{P(Z=z|X=x)P(X=x)}{P(Z=z)}$

Our robot observes that it is light and cold:

$$Z = light$$

$$Z_2 = cold$$

What is the MAP estimate of the current location?

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Let's simplify presentation by removing random variables

Independence Assumption

$$P(A=a|B=b)P(B=b)=P(A=a)P(B=b)$$

Same equation, random variables implicit:

$$P(a|b)P(b)=P(a)P(b)$$

Let's simplify presentation by removing random variables

Bayes' Law was:

$$P(A=a|B=b) = \frac{P(B=b|A=a)P(A=a)}{P(B=b)}$$

Bayes' Law, random variables implicit:

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

Let's simplify presentation by removing random variables

Joint probabilities rule was:

$$P(A=a)=\sum_{b} P(A=a,B=b)$$

Joint probabilities rule becomes:

$$P(a) = \sum_{b} P(a,b)$$

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

The importance of time

Patterns of change as you move.

- Only a single photo-cell?
- Travelling in a bus, eyes closed.

Moving to disambiguate.

- Eye movements.
- Craning to look.
- Searching.

Incorporating dynamics (change over time)

"Hidden Markov Model"

Independence assumptions (from diagram)

• **Markov Assumption:** State at time *t* is independent of state at earlier times if state at *t-1* is known.

Independence assumptions (from diagram)

• Observation Independence:

Observations at time *t* independent of all other variables except state at time *t*.

$$P(z_t|x_t,...,x_0,z_{t-1},...,z_0)$$

$$=$$

$$P(z_t|x_t)$$

Example dynamics model

$$\begin{split} &P(X_t = cupboard | X_{t-1} = cupboard) = 0.8 \\ &P(X_t = lab | X_{t-1} = cupboard) = 0.2 \\ &P(X_t = outside | X_{t-1} = cupboard) = 0.0 \\ &P(X_t = cupboard | X_{t-1} = lab) = 0.1 \\ &P(X_t = lab | X_{t-1} = lab) = 0.8 \\ &P(X_t = outside | X_{t-1} = lab) = 0.1 \\ &P(X_t = cupboard | X_{t-1} = outside) = 0.0 \\ &P(X_t = lab | X_{t-1} = outside) = 0.8 \\ &P(X_t = outside | X_{t-1} = outside) = 0.2 \end{split}$$

Importance of Markov Models

- Used for:
 - Localisation.
 - Mapping.
 - SLAM.
 - Object tracking.
 - Planning under uncertainty.
 - Robot action learning.

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Recursive estimation (simple picture)

• From

- Probability distribution over previous state.
- Current observation.

• Calculate:

• Distribution over current state.

$$P(x_{t-1}|z_{t-1},\ldots,z_0)$$

 Z_{t}

$$P(x_t|z_t,...,z_0)$$

Recursive estimation

- Makes use of:
 - A dynamics model. $P(x_t|x_{t-1})$
 - An observation model. $P(z_t|x_t)$

Recursive estimation (simple picture)

• From

- Probability distribution over previous state.
- Current observation.
- Dynamics & observation models.

$$P(x_{t-1}|z_{t-1},\ldots,z_0)$$

 Z_{i}

$$P(x_t|x_{t-1}) P(z_t|x_t)$$

• Calculate:

• Distribution over current state.

$$P(x_t|z_t,...,z_0)$$

Recursive estimation (with predict-update)

$$P(x_{t-1}|z_{t-1},\ldots,z_0)$$

Intermediate step:

• Prior over current state.

$$P(x_t|x_{t-1})$$

$$P(x_t|z_{t-1},...,z_0)$$

The filtering equations (I: Predict)

Dynamics prediction:

(From Markov property + joint distribution)

$$P(x_t|z_{t-1}...z_0) = \frac{\sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}|z_{t-1}...z_0)}{\sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}|z_{t-1}...z_0)}$$
Dynamics model Previous time-step posterior

Exercise: recursion

Dynamics model:

$$P(X_t = cupboard | X_{t-1} = cupboard) = 0.8$$

 $P(X_t = lab | X_{t-1} = cupboard) = 0.2$

$$P(X_t = outside | X_{t-1} = cupboard) = 0.0$$

$$P(X_t = cupboard | X_{t-1} = lab) = 0.1$$

$$P(X_t = lab | X_{t-1} = lab) = 0.8$$

$$P(X_t = outside | X_{t-1} = lab) = 0.1$$

$$P(X_t = cupboard | X_{t-1} = outside) = 0.0$$

$$P(X_t=lab|X_{t-1}=outside)=0.8$$

$$P(X_t = outside | X_{t-1} = outside) = 0.2$$

Initial state:

$$P(X_0 = cupboard) = 0.5$$

$$P(X_0 = lab) = 0.5$$

$$P(X_0 = outside) = 0.0$$

Calculate:

$$P(X_1 = cupboard)$$

$$P(X_1=lab)$$

$$P(X_1 = outside)$$

$$P(x_t|z_{t-1}...z_0)$$

$$\sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | z_{t-1} \dots z_0)$$

Exercise: recursion

Dynamics model:

$$P(X_t = cupboard | X_{t-1} = cupboard) = 0.8$$

 $P(X_t = lab | X_{t-1} = cupboard) = 0.2$

$$P(X_t = outside | X_{t-1} = cupboard) = 0.0$$

$$P(X_t = cupboard | X_{t-1} = lab) = 0.1$$

$$P(X_t = lab | X_{t-1} = lab) = 0.8$$

$$P(X_t = outside | X_{t-1} = lab) = 0.1$$

$$P(X_t = cupboard | X_{t-1} = outside) = 0.0$$

$$P(X_t=lab|X_{t-1}=outside)=0.8$$

$$P(X_t = outside | X_{t-1} = outside) = 0.2$$

Initial state:

$$P(X_0 = cupboard) = 1.0$$

$$P(X_0 = lab) = 0.0$$

$$P(X_0 = outside) = 0.0$$

Calculate:

$$P(X_1 = cupboard)$$

$$P(X_1=lab)$$

$$P(X_1 = outside)$$

$$P(x_t|z_{t-1}...z_0)$$

$$\sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | z_{t-1} ... z_0)$$

The filtering equations (II: Update)

Observation update:

(Observation independence + Bayes')

Example: update

Use same observation model as before:

$$P(Z=bright|X=cupboard)=0.2$$

$$P(Z = dark | X = cupboard) = 0.8$$

$$P(Z=bright|X=lab)=0.8$$

$$P(Z=dark|X=lab)=0.2$$

$$P(Z=bright|X=outside)=0.6$$

$$P(Z = dark | X = outside) = 0.4$$

Robot observes that it is *bright*.

Pre-update estimate of state at time 1:

$$P(X_1 = cupboard) = 0.8$$

$$P(X_1 = lab) = 0.2$$

$$P(X_1 = outside) = 0.0$$

1. Calculate:

$$P(X_1 = cupboard | Z_1 = bright)$$

$$P(X_1 = lab|Z_1 = bright)$$

$$P(X_1 = outside | Z_1 = bright)$$

2. Calculate MAP estimate of current location.

$$P(x_t|z_t...z_0) = \frac{P(z_t|x_t)P(x_t|z_{t-1}...z_0)}{P(z_t)}$$

Exercise: update

Use same observation model as before:

$$P(Z=bright|X=cupboard)=0.2$$

$$P(Z = dark | X = cupboard) = 0.8$$

$$P(Z=bright|X=lab)=0.8$$

$$P(Z=dark|X=lab)=0.2$$

$$P(Z=bright|X=outside)=0.6$$

$$P(Z = dark | X = outside) = 0.4$$

Robot observes that it is *dark*.

Pre-update estimate of state at time 1:

$$P(X_1 = cupboard) = 0.8$$

$$P(X_1 = lab) = 0.2$$

$$P(X_1 = outside) = 0.0$$

1. Calculate:

$$P(X_1 = cupboard | Z_1 = bright)$$

$$P(X_1 = lab|Z_1 = bright)$$

$$P(X_1 = outside | Z_1 = bright)$$

2. Calculate MAP estimate of current location.

$$P(x_t|z_t...z_0) = \frac{P(z_t|x_t)P(x_t|z_{t-1}...z_0)}{P(z_t)}$$

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Some possible state representations

- X = node in topological map (discrete).
- X = grid entry (discrete).
- X = pose (continuous).
- X = dynamic configuration (continuous).

Need:

- Dynamics model.
- Observation model.
- Observations.

A continuous representation of location

$$x_t = -1.0 \qquad x_t = 0.0 \qquad x_t = 1.0$$

Can extend Bayes' filter to continuous domains

Continuous domains:

- Infinite possible states.
- Can't update all of them!

Some possible solutions:

- Parametric distributions:
 - e.g. Kalman filter (normally distributed data).
- Sampling of continuous states:
 - e.g. Particle filter (any kind of distribution).

Representations of continuous distributions

• Discrete.

• Parametric continuous.

Sampled.

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Representation of uncertainty using particle filter

Particle filter: the key ideas I

• Sample states randomly from continuous domain.

(now have **finite list** of states)

• For each state keep a *weight* representing state's probability.

$$P(x_{t}|z_{t}...z_{0})$$

$$\sim \{(x_{t}^{0}, w_{t}^{0}), ..., (x_{t}^{i}, w_{t}^{i}), ..., (x_{t}^{N}, w_{t}^{N})\}$$

Particle filter: the key ideas II

Predict:

Sample state from dynamics model (usually).

Update:

Update weight from observation model (usually).

Resample:

Normalise weights, adding and removing particles (usually).

Variants:

- Importance sampling v. rejection sampling v. no resampling.
- Predict-update v. adapted particle filter v. auxiliary particle filter.
- Sampling v. no resampling.

Predict step moves samples estimate according to dynamics model

Update step changes particle weight according to observation model

Resampling

- Maintain particles in high-probability regions.
- For each particle:
 - If high weight:
 - Split into multiple particles according to weight.
 - If low weight:
 - Possibly delete it.

Representation of uncertainty using particle filter

Post-resampling representation of uncertainty

Particle filter algorithm (without resampling)

$$\begin{aligned} &Recurse\Big(\ \left[(x_{t-1}^0, w_{t-1}^0), \dots, (x_{t-1}^i, w_{t-1}^i), \dots, (x_{t-1}^N, w_{t-1}^N) \right] \ , \ z_t \ \Big) : \\ &\text{for } i {\in} [0, \dots, N] : \\ &\text{sample } x_t^i \text{ from } P(x_t | x_{t-1}^i) \quad \text{Predict} \\ &\text{let } w_t^i {\leftarrow} w_{t-1}^i {\cdot} P(z_t | x_t) \quad \text{Update} \\ &\text{for } i {\in} [0, \dots, N] : \\ &\text{let } w_t^i {\leftarrow} \frac{w_t^i}{\sum_j w_t^j} \quad \text{Normalise} \end{aligned}$$

BLG456E Robotics Estimation for Localisation

- Intro to probabilistic frameworks.
- Intro to ML and MAP.
- ML localisation.
- MAP localisation.
- Simplified notation.
- Recursive estimation.
- Particle filtering.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Review Questions

- How can a probabilistic observation model be acquired?
- What if we don't know the observation model?
- What is the difference between a discriminative and a generative observation model? Can you write it in probabilistic terms?
- When might you use MAP and when might you use ML?
- What is "recursive" about a "recursive estimator"?
- What does the "update" update in a predict-update cycle?

Reading

- Chapter 4. Perception.
- Chapter 5. Mobile Robot Localization.