Problem 1: Decision Trees

Answer to the problem goes here.

1. With the increase in the number of nodes, the tree starts overfitting. This is because as the number of nodes increases (that are considered for prediction), the training accuracy increases while the validation and testing accuracy decreases.

2. When we prune the tree, the number of nodes decreases. Because of this the accuracy on the training set reduces , while there is increase in accuracies of testing and validation set.

3.


```
height of tree = 18
no of nodes in the tree = 1623
Train data Accuracy:
                     99.944
Test data Accuracy: 70.98
Validation data Accuracy: 72.45
att= 0 splits at= [120000.0, 255000.0, 280000.0, 340000.0, 425000.0]
att= 4 splits at= [27.5, 30.0, 36.0]
att= 11 splits at= [14835.0, 17441.0, 18537.0]
att= 12 splits at= [0.0, 1e-05, 1695.0]
att= 13 splits at= [0.0, 1e-05]
att= 14 splits at= [158.0, 784.0, 1663.0, 5277.0]
att= 15 splits at= [17787.5, 18762.0, 20361.0]
att= 16 splits at= [14799.0, 17328.0]
att= 17 splits at= [1200.0, 2015.0]
att= 18 splits at= [1808.0, 3000.0]
att= 19 splits at= [5000.0, 7000.0]
```

```
att= 20 splits at= [466.0]
att= 21 splits at= [3500.0, 23738.0]
att= 22 splits at= [3498.0, 5000.0]
```


As the max_depth parameter is increased, the accuracy on the validation set decreases. This suggests overfitting.

with the Increase in the min_sample_split parameter prevents the tree from growing too much, therefore the validation accuracy increases.

The min_sample_leaf has a similar effect on the tree as the min_sample_split parameter as it prevents the tree from growing too much hence preventing it from overfitting. It can be concluded that by decreasing the number of nodes in the tree the validation accuracy increases.

Problem 2:Neural Networks

- 1. csv files link.
- 2. Neural Network implemented.
- 3. Single hidden layer
 Stopping Criteria: Number of epochs = 200
 Accuracy for each hidden unit: 5,10,15,20,25
 For training data-
 - 62.98

- 66.25
- 69.11
- 73.33
- 81.18

For testing data-

- 60.8163
- 63.1418
- 64.6877
- 68.994
- 78.1292

confusion matrix for each hidden layer: For hidden layers=5

Gaurav Shukla 2018MCS2141			A	SS	ignn	nent	3					COL 77 l 5, 201	
	[51 [4	723 2 152 5 160 147 46 43 8 0 5		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0] 0] 0] 0] 0] 0] 0]		
For hidden layers=10													
		0039 3818 225 45 39 43 2 0 4	2454 6781 981 468 54 11 34 6		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0] 0] 0] 0] 0] 0] 0] 0]
For hidden layers=15													
	[3 [[[0304 3548 215 30 73 49 [0 4 5	7051 991 483 20 5	5	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0	0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0] 0] 0] 0] 0] 0] 0] 0]

Gaurav Shukla		COL 774
2018MCS2141	Assignment 3	April 5, 2019

For hidden layers=20

[[1	0722	1771	0	0	0	0	0	0	0	0]
[2874	7725	0	0	0	0	0	0	0	0]
	121	1085	0	0	0	0	0	0	0	0]
[31	482	0	0	0	0	0	0	0	0]
	72	21	0	0	0	0	0	0	0	0]
[48	6	0	0	0	0	0	0	0	0]
	0	36	0	0	0	0	0	0	0	0]
	0	6	0	0	0	0	0	0	0	0]
[5	0	0	0	0	0	0	0	0	0]
	5	0	0	0	0	0	0			
C)	0 (D]]							

For hidden layers=25

[[11	1642	851	0	0	0	0	0	0	0	0]
[21	162	8437	0	0	0	0	0	0	0	0]
[42	1164	0	0	0	0	0	0	0	0]
[28	485	0	0	0	0	0	0	0	0]
[81	12	0	0	0	0	0	0	0	0]
[50	4	0	0	0	0	0	0	0	0]
[0	36	0	0	0	0	0	0	0	0]
[0	6	0	0	0	0	0	0	0	0]
[4	1	0	0	0	0	0	0	0	0]
[5	0	0	0	0	0	0	0	0	0]]