

Logistic Regression

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

Learning Objectives

- Describe Logistic regression and how it differs from linear regression
- Identify metrics for classification errors and scenarios in which they can be used
- Apply Intel® Extension for Scikit-learn* to leverage underlying compute capabilities of hardware

Introduction to Logistic Regression

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

Number of Positive Nodes

If model result > 0.5: predict lost

If model result < 0.5: predict survived

Number of Positive Nodes

If model result > 0.5: predict lost

If model result < 0.5: predict survived

What is this Function?

The Decision Boundary

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \epsilon)}}$$

Logistic Regression

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

The Decision Boundary

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \epsilon)}}$$

Logistic Function

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Logistic Function

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$\frac{P(x)}{1 - P(x)} = e^{(\beta_0 + \beta_1 x)}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$\begin{vmatrix} \log \\ \text{Odds} \end{vmatrix} \log \left| \frac{P(x)}{1 - P(x)} \right| = \beta_0 + \beta_1 x$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$\log_{\text{Odds}} \log \left[\frac{P(x)}{1 - P(x)} \right] = \beta_0 + \beta_1 x$$

One feature (nodes)
Two labels (survived, lost)

Number of Positive Nodes

Two features (nodes, age)
Two labels (survived, lost)

Two features (nodes, age)

Two labels (survived, lost)

Multiclass Classification with Logistic Regression

Two features (nodes, age)

Three labels (survived, complications, lost) 60 40 Age 20 10 20 0 Number of Malignant Nodes

One vs All: Survived vs All

One vs All: Complications vs All

One vs All: Loss vs All

Multiclass Decision Boundary

Assign most probable class to each region

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

- Install <u>Intel® oneAPI AI Analytics Toolkit</u> (AI Kit)
- Add the following two lines of code after the code above:

```
from sklearnex import patch_sklearn patch_sklearn()
```


Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='l2', c=10.0)

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='I2', c=10.0)

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='I2', c=10.0)

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```


Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

```
LR = LogisticRegression(penalty='I2', c=10.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)
```

Tune regularization parameters with cross-validation: LogisticRegressionCV.

Classification Error Metrics

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct
- Build a simple model that always predicts "healthy"
- Accuracy will be 99%...

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Confusion Matrix

Accuracy: Predicting Correctly

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Recall: Identifying All Positive Instances

Recall or
$$=$$
 $\frac{TP}{TP + FN}$

Precision: Identifying Only Positive Instances

TP + FP

Specificity: Avoiding False Alarms

Specificity =
$$\frac{TN}{FP + TN}$$

Error Measurements

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
Precision =
$$\frac{TP}{TP + FP}$$

Error Measurements

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

$$\frac{TP}{TP + FN} = \frac{TP}{TP + FN}$$
Precision =
$$\frac{TP}{TP + FP}$$

$$\frac{TP}{TP + FP}$$
Specificity =
$$\frac{TN}{FP + TN}$$

Error Measurements

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Receiver Operating Characteristic (ROC)

Evaluation of model at all possible thresholds

Area Under Curve (AUC)

Measures total area under ROC curve

Precision Recall Curve (PR Curve)

Measures trade-off between precision and recall

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			ТРЗ

Accuracy =
$$\frac{TP1 + TP2 + TP3}{Total}$$

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3	
Actual Class 1	TP1			Aco
Actual Class 2		TP2		
Actual Class 3			TP3	

Accuracy =	$\frac{1P1 + 1P2 + 1P3}{}$	
Accordey —	Total	

Most multi-class error
metrics are similar to
binary versions—
just expand elements as
a sum

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

accuracy_value = accuracy_score(y_test, y_pred)

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

```
accuracy_value = accuracy_score(y_test, y_pred)
```

Lots of other error metrics and diagnostic tools:

```
from sklearn.metrics import precision_score, recall_score,
f1_score, roc_auc_score,
confusion_matrix, roc_curve,
precision_recall_curve
```


