Recursie

In dit OPO bestuderen we twee speciale datastructuren: bomen en grafen. Omdat er hiervoor nogal veel recursief geprogrammeerd moet worden, is het zinvol om aan dit principe wat extra aandacht te besteden. Hieronder vind je de oefeningen van de eerste lesweek.

Oefening 1.1

Implementeer een recursieve methode fibonacci(int getal) die het getal-de fibonaccigetal berekent (zie https://nl.wikipedia.org/wiki/Rij_van_Fibonacci). Vermoedelijk vind je een eenvoudige en korte versie die echter heel inefficiënt is. Kan je uitleggen waarom?

Oefening 1.2

Schrijf een recursieve methode somCijfers(int getal). Uitvoer is de som van de cijfers van getal.

Voorbeeld: $234 \rightarrow 2 + 3 + 4 = 9$

Oefening 1.3

Schrijf een recursieve methode keerOm(String str). Uitvoer is een string waarbij alle karakters van str in omgekeerde volgorde voorkomen.

Voorbeeld: $abcd \rightarrow dcba$

Uitbreiding: Vind twee versies van het algoritme. In de eerste versie wordt de omgekeerde string van links naar rechts opgebouwd; in de tweede versie van rechts naar links.

Oefening 1.4

Implementeer een recursieve methode countX(String str). Invoer is de string str. Uitvoer is het aantal keer dat de letter x voorkomt in str.

Zie ook http://codingbat.com/prob/p170371.

Oefening 1.5

Implementeer een recursieve methode countHi(String str). Invoer is de string str. Uitvoer is het aantal keer dat de combinatie hi voorkomt in str.

Zie ook http://codingbat.com/prob/p184029.

Oefening 1.6

Implementeer een recursieve methode changeXY(String str). Invoer is de string str. Uitvoer is een nieuwe string waarin elk voorkomen van x vervangen wordt door y.

Voorbeelden:

- changeXY("codex") → "codey"
- changeXY("xxhixx") \rightarrow "yyhiyy"
- changeXY("xhixhix")→ "yhiyhiy"

Zie ook http://codingbat.com/prob/p101372

Oefening 1.7

Implementeer een recursieve methode changePi(String s). Invoer is de string s. Uitvoer is een nieuwe string waarin elke deelstring pi vervangen wordt door '3.14'.

Voorbeelden:

- changePi("xpix") → "x3.14x"
- changePi("pipi") \rightarrow "3.143.14"
- changePi("pip") → "3.14p"

Zie ook http://codingbat.com/prob/p170924.

Oefening 1.8

We zeggen dat de logaritme met grondtal 2 van het getal 8 gelijk is aan 3 omdat $2^3 = 2 \cdot 2 \cdot 2 = 8$. De tweelog van 256 is 8 want $2^8 = 256$. Schrijf een recursieve functie tweelog (int x). Je mag uitgaan van de veronderstelling dat x een macht van 2 is.

Oefening 1.9

Schrijf een recursieve methode findMaximum(List<double> lijst) die het grootste getal van lijst teruggeeft.

Oefening 1.10

Schrijf een recursieve methode findSubstrings (String string) die een lijst teruggeeft met alle mogelijke combinaties van de letters van string. Let op: Je hoeft geen rekening te houden met de volgorde van de letters. De combinatie abc beschouwen we gelijk aan de combinatie cab. Voorbeeld:

• Mogelijke combinaties van de letters abc zijn: [a, b, c, bc, ab, ac, abc]

Oefening 1.11

Schrijf een recursieve functie aantalKaarten(int n) die berekent hoeveel kaarten er nodig zijn voor een kaartenhuisje van n verdiepingen. Een kaartenhuisje wordt opgebouwd zoals getoond in figuur 1.1

Figuur 1.1 Tekening bij opgave 1.11

Voorbeeld:

1 Recursie

- een kaartenhuisje van 1 verdieping = 2 kaarten
- een kaartenhuisje van 2 verdiepingen = 7 kaarten
- een kaartenhuisje van 3 verdiepingen = 15 kaarten
- een kaartenhuisje van 12 verdiepingen = 222 kaarten
- een kaartenhuisje van 20 verdiepingen = 610 kaarten

Meer oefenmateriaal nodig? http://codingbat.com/java/Recursion-1

 $en \ \texttt{http://codingbat.com/java/Recursion-2.}$