

Tecnicatura Superior en Telecomunicaciones

Materia: Electrónica Microcontrolada

Profesor: C. GONZALO VERA

Profesor: JORGE E. MORALES

Tema: Práctica Semana 2

Ciclo lectivo: 2022

Alumnos: Grupo 6

- Guzmán, Lilén https://github.com/lilenguzman01
- López, Maximiliano https://github.com/Maxilopez28
- Moyano, Emilio https://github.com/TerraWolf
- Muguruza, Sergio https://github.com/sergiomuguruza
- Gonzalez, Mario https://github.com/mariogonzalezispc
- Ripoli, Enrique https://github.com/enriqueripoli

Ejercicio a)

Según el régimen de funcionamiento del sensor distinguimos dos conjuntos de características: estáticas (cuando se tiene un régimen permanente en la variable a medir o ésta varía de forma lenta) y dinámicas (relativas a un régimen transitorio de la variable a medir).

Ejercicio b y c)

Características Estáticas:

- Campo de medida: rango de valores del objeto físico (X) que puede medir el sensor.
- Sensibilidad: ratio dY/dX
- Resolución: mínimo cambio de X detectable en Y
- Umbral: mínimo valor de X con salida no nula en Y
- Precisión: error de medida máximo esperado (si el sensor es preciso, el error relativo entre varias medidas es pequeño)
- **Exactitud**: diferencia entre el valor real X y el valor medido Y (si el sensor es exacto, la medida de Y estará en un entorno cercano al valor real de X)
- Repetibilidad: máxima desviación entre valores de salida obtenidos al medir varias veces la misma entrada con el mismo sensor y en idénticas condiciones ambientales.
- Linealidad: Proporcionalidad entre X e Y
- Histéresis: Diferentes valores de Y para un mismo X en función de la evolución de X (ascendente o descendente)

Ejercicio d)

Tech Support: services@elecfreaks.com

Ultrasonic Ranging Module HC - SR04

Product features:

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact measurement function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters, receiver and control circuit. The basic principle of work:

- (1) Using IO trigger for at least 10us high level signal,
- (2) The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.
- (3) IF the signal back, through high level, time of high output IO duration is the time from sending ultrasonic to returning.

Test distance = (high level time velocity of sound (340M/S) / 2,

Wire connecting direct as following:

- 5V Supply
- Trigger Pulse Input
- Echo Pulse Output
- 0V Ground

Electric Parameter

Working Voltage	DC 5 V
Working Current	15mA
Working Frequency	40Hz
Max Range	4m
Min Range	2cm
MeasuringAngle	15 degree
Trigger Input Signal	10uS TTL pulse
Echo Output Signal	Input TTL lever signal and the range in
	proportion
Dimension	45*20*15mm

Debemos hacer ajustes en nuestro código(cualquier lenguaje) para pasar la velocidad del sonido de m/s a cm/s.

Por otro lado la función pulseln que se encarga de medir el tiempo que tarda un pin en cambiar de estado devuelve microsegundos y hay que pasarlo a segundos multiplicando por 0.000001.

Con estos dos datos ya tenemos para poder sensar distancia.

The Timing diagram is shown below. You only need to supply a short 10uS pulse to the trigger input to start the ranging, and then the module will send out an 8 cycle burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is pulse width and the range in proportion. You can calculate the range through the time interval between sending trigger signal and receiving echo signal. Formula: uS / 58 = centimeters or uS / 148 =inch; or: the range = high level time * velocity (340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent trigger signal to the echo signal.

Ejercicio e)