

Assignment_3

Toqa alaa ahmed (14)

Nada salama mohamed ali (58)

Part I: Data Classification

7 84458202

844981

M 13.710 20.83

```
Read Data
Results:
       - predicting field 2, diagnosis: B = benign, M = malignant
       - sets are linearly separable using all 30 input features
       - best predictive accuracy obtained using one separating plane
               in the 3-D space of Worst Area, Worst Smoothness and
               Mean Texture. Estimated accuracy 97.5% using repeated
               10-fold crossvalidations. Classifier has correctly
               diagnosed 176 consecutive new patients as of November
               1995.
5. Number of instances: 569
6. Number of attributes: 32 (ID, diagnosis, 30 real-valued input features)
7. Attribute information
1) ID number
2) Diagnosis (M = malignant, B = benign)
All feature values are recoded with four significant digits.
8. Missing attribute values: none
9. Class distribution: 357 benign, 212 malignant
 1 attr_names = ['Id', 'diagnosis']
  2 for i in range (1,31):
        attr_names.append("attr "+ str(i))
  5 data = pd.read_csv(data_path, sep=',',names=attr_names)
  6 print(data.shape)
```

```
7 data.head(30)
(569, 32)
                                                                                           attr
                                                                                                  attr
                         attr attr
                                             attr attr 5 attr 6 attr 7 attr 8
          Id diagnosis
     842302
                    M 17.990 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871 1.0950 0.9053
                    M 20.570 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667 0.5435 0.7339
      842517
 2 84300903
                    M 19.690 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790 0.2069 0.05999 0.7456 0.7869
 3 84348301
                    M 11 420 20 38
                                     77.58 386.1 0.14250 0.28390 0.24140 0.10520 0.2597 0.09744 0.4956 1.1560
                    M 20.290 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 0.1809 0.05883 0.7572 0.7813
   84358402
 5
      843786
                    M 12.450 15.70
                                     82.57 477.1 0.12780 0.17000 0.15780 0.08089 0.2087 0.07613 0.3345 0.8902
      844359
                    M 18.250 19.98 119.60 1040.0 0.09463 0.10900 0.11270 0.07400 0.1794 0.05742 0.4467 0.7732
```

90.20 577.9 0.11890 0.16450 0.09366 0.05985 0.2196 0.07451 0.5835 1.3770

M 13.000 21.82 87.50 519.8 0.12730 0.19320 0.18590 0.09353 0.2350 0.07389 0.3063 1.0020

Preprocessing

1- create feature and label

```
replace(['B','M'], [0,1])
Data.drop(columns=['Id', 'diagnosis'])
```

2- split to train and test

70% for training & 30% for test

3- Scaling

by using Standard Scaler It standardize features by removing the mean and scaling to unit variance The standard score of a sample x is calculated as: z = (x - u) / s

```
1 from sklearn.preprocessing import StandardScaler
2
3 scaler = StandardScaler()
4 X_train = scaler.fit_transform(X_train)
5 X_test = scaler.transform(X_test)
6 print(X_train.shape)
7 print(X_test.shape)
8

(398, 30)
(171, 30)
```

4- GridSearchCV

```
1 from sklearn.model_selection import GridSearchCV
2 from sklearn.linear_model import LogisticRegression
3 from sklearn import metrics
4
5 params = {
     'C': [1.0, 2.0, 2.5, 5.0, 10, 100, 1000]
7 }
9 model_GSCV = GridSearchCV(LogisticRegression(),scoring='accuracy', param_grid = params, cv = 10)
1 model_GSCV.fit(X_train, y_train)
2 print("best_parameters of model", model_GSCV.best_params_ )
3 y_pred = model_GSCV.predict(X_test)
5 # Model Accuracy
6 print("Train Accuracy: %.3f"% model_GSCV.score(X_train, y_train))
7 print("Test Accuracy:",metrics.accuracy_score(y_test, y_pred))
8 print(metrics.confusion_matrix(y_test, y_pred))
9 print(metrics.classification_report(y_test, y_pred,target_names=['M','B']))
```

5- feature selection/ feature projection (PCA)

```
7 plt.xlabel('number of components')
8 plt.ylabel('explained variance')
9 plt.show()
```



```
3 pca = PCA(0.9)
4 X_train_pca = pca.fit_transform(X_train)
5 X_test_pca = pca.transform(X_test)
6 X_train = pd.DataFrame(data = X_train_pca)
7 X_test = pd.DataFrame(data = X_test_pca)
8
9 print(X_train.shape)
10 print(X_test.shape)
11
12 scaler = StandardScaler()
13 X_train = scaler.fit_transform(X_train)
14 X_test = scaler.transform(X_test)
15

(398, 7)
(171, 7)

1 print (pca.explained_variance_ratio_ ) #percentage of variance explained by each of the selected components
[0.43669315 0.19415163 0.09661545 0.06716611 0.0549883 0.04012257 0.02183068]
```

Training

1- train before applying feature selection/ feature projection (PCA)

```
best_parameters of model {'C': 5.0}
Train Accuracy: 0.952
Test Accuracy: 0.9532163742690059
[[101 7]
[ 1 62]]
            precision recall f1-score support
               0.99 0.94 0.96
0.90 0.98 0.94
                                            108
                                            63
                                  0.95
   accuracy
                                            171
              0.94 0.96
                                 0.95
                                            171
  macro avg
              0.96
                        0.95 0.95
weighted avg
                                           171
```

7- train after applying feature selection/ feature projection (PCA)

Without GridSearchCV

	1]	649122807017	544		
[> >	0]]	precision	recall	f1-score	support
	М	0.96	0.99	0.97	108
	В	0.98	0.92	0.95	63
accuracy				0.96	171
macro	avg	0.97	0.96	0.96	171
weighted	avg	0.97	0.96	0.96	171

```
#if {'C': 1.0}
train score: 0.977
Accuracy: 0.9649122807017544
[[107 1]
[ 5 58]]
       precision recall f1-score support
          0.96 0.99 0.97
     M
                                   108
          0.98 0.92 0.95
     В
                                  63
                         0.96
                                  171
accuracy
                 0.96 0.96
                                  171
macro avg 0.97
weighted avg 0.97
                  0.96
                         0.96
                                  171
```

With GridSearchCV

```
best_parameters of model {'C': 2.5}
Train Accuracy: 0.980
Test Accuracy: 0.9590643274853801
[[106 2]
[ 5 58]]
             precision recall f1-score support
                0.95 0.98 0.97
0.97 0.92 0.94
                                                 108
          В
                                                 63
                                      0.96
   accuracy
                                                 171
                                            171
171
             0.96 0.95 0.96
0.96 0.96 0.96
   macro avg
weighted avg
```

Part II: Image Classification

Two-layer neural network classifier

Figure 1: Articificial Neural Network Architecture

Softmax classification and regularization

· Softmax classification

$$p(y_j = 1|x) = \frac{\exp(W_j \cdot x)}{\sum_{c=1}^{C} \exp(W_c \cdot x)}$$

$$x: word \ vector$$

$$W: weight$$

$$C: class$$

· Cross-entropy loss function

$$-\sum_{j=1}^{C} y_j \log \left(p(y_j = 1 | x) \right) = -\sum_{j=1}^{C} y_j \log \left(\frac{\exp(W_j \cdot x)}{\sum_{c=1}^{C} \exp(W_c \cdot x)} \right)$$

· Simplified version

$$-\log(\frac{\exp(W_k \cdot x)}{\sum_{C=1}^C \exp(W_C \cdot x)})$$
 k: index of the correct class

· Loss to a dataset of N points

$$-\sum_{l=1}^{N} \log(\frac{\exp(W_{k(l)} \cdot x^{(l)})}{\sum_{c=1}^{C} \exp(W_{c} \cdot x^{(l)})})$$

Inline Question

Now that you have trained a Neural Network classifier, you may find that your testing accuracy is much lower than the training accuracy. In what ways can we decrease this gap? Select all that apply.

- 1. Train on a larger dataset.
- 2. Add more hidden units.
- 3. Increase the regularization strength.
- 4. None of the above.

Your answer.

1 and 3

Your explanation:

- 1: if we get more data the train and test data set will increase so we can generalize our data and get better result
- 3: to avoid noisy features which make overfitting, where these noisy be useful at training but they are actually redundant

Softmax Classifier

Data Representation

Inputs have dimension D

There are C classes

The mini batches are of size of N examples.

W: A numpy array of shape (D, C) containing weights. --> initialized randomly

X: A numpy array of shape (N, D) containing a minibatch of data. --> random choice

$$S_y = \frac{e^{f_y}}{\sum_{i=1}^C e^{f_i}}$$

$$L = -log(S_y) + \frac{1}{2}\lambda \sum W^2$$

$$\frac{\partial L}{\partial W_i} = \begin{cases} -\frac{1}{S_y} S_y (1-S_i) X + \lambda W_i & \text{if } i = y \\ -\frac{1}{S_y} (-S_i S_y) X + \lambda W_i & \text{if } i \neq y \end{cases} = \begin{cases} (S_i - 1) X + \lambda W_i & \text{if } i = y \\ S_i X + \lambda W_i & \text{if } i \neq y \end{cases}$$

Gradient checking result

```
numerical: 0.494256 analytic: 0.494256, relative error: 2.452256e-08
numerical: 0.671965 analytic: 0.671965, relative error: 8.584771e-08
numerical: -1.860149 analytic: -1.860149, relative error: 1.077599e-08
numerical: 0.910240 analytic: 0.910240, relative error: 4.060607e-08
numerical: 1.316211 analytic: 1.316211, relative error: 2.368138e-08
numerical: 1.178860 analytic: 1.178860, relative error: 5.385546e-08
numerical: 1.007153 analytic: 1.007153, relative error: 2.923655e-08
numerical: 1.076064 analytic: 1.076064, relative error: 1.094703e-08
numerical: 1.285390 analytic: 1.285390, relative error: 1.268162e-08
numerical: 0.525046 analytic: 0.525046, relative error: 5.140283e-08
numerical: -3.720903 analytic: -3.720903, relative error: 5.991534e-09
numerical: 0.888902 analytic: 0.888902, relative error: 4.451598e-09
numerical: 0.327333 analytic: 0.327333, relative error: 1.192196e-07
numerical: -0.673430 analytic: -0.673430, relative error: 1.234302e-07
numerical: 1.372302 analytic: 1.372302, relative error: 4.447484e-08
numerical: -1.415692 analytic: -1.415692, relative error: 5.324776e-09
numerical: -1.701768 analytic: -1.701768, relative error: 7.368061e-09
numerical: 0.643266 analytic: 0.643266, relative error: 2.835033e-08
numerical: 0.066093 analytic: 0.066093, relative error: 7.075825e-07
numerical: 3.777125 analytic: 3.777125, relative error: 7.164153e-10
```

Relative error is very low so we can conclude that grad is computed correctly.

Comparison between naive and vectorized loss

naive loss: 2.336267e+00 computed in 27.606042s vectorized loss: 2.336267e+00 computed in 0.008121s

Loss difference: 0.000000 Gradient difference: 0.000000

As shown from the result, they both have the same value but vectorized loss is computed much faster.

Validation and Test accuracy

```
lr 1.000000e-07 reg 2.500000e+04 train accuracy: 0.337612 val accuracy: 0.348000 lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.328612 val accuracy: 0.339000 lr 5.000000e-07 reg 2.500000e+04 train accuracy: 0.345204 val accuracy: 0.366000 lr 5.000000e-07 reg 5.000000e+04 train accuracy: 0.320061 val accuracy: 0.340000 best validation accuracy achieved during cross-validation: 0.366000
```

softmax on raw pixels final test set accuracy: 0.325000

Inline Questions

Inline Question 1:

Why do we expect our loss to be close to -log(0.1)? Explain briefly.**

Your answer: because W is initilaized randomly so the probability of select any of the classes are equal. As we have 10 classes, p = 0.1 and then loss = $-\log(p) = -\log(0.1)$

Inline Question - True or False

It's possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.

Your answer: True for softmax

Your explanation: The Softmax classifier takes all datapoints scores into account in the calculation of the loss

Features

Extract The HOG and color histogram features from the data set and use them to train the two-layer net classifier.

```
X_train shape =(49000, 154)
Where number of images = 49000 and number of features = 154
hidden_dim = 500
num classes = 10
```

Training results

```
lr 1.000000e-02 reg 5.000000e-06 train accuracy: 0.865898 val accuracy: 0.595000
lr 1.000000e-02 reg 5.000000e-05 train accuracy: 0.861061 val accuracy: 0.606000
lr 1.000000e-02 reg 5.000000e-04 train accuracy: 0.854673 val accuracy: 0.606000
lr 5.000000e-02 reg 5.000000e-06 train accuracy: 0.844347 val accuracy: 0.593000
lr 5.000000e-02 reg 5.000000e-05 train accuracy: 0.815878 val accuracy: 0.603000
lr 5.000000e-02 reg 5.000000e-04 train accuracy: 0.784571 val accuracy: 0.609000
lr 1.000000e-01 reg 5.000000e-06 train accuracy: 0.755837 val accuracy: 0.606000
lr 1.000000e-01 reg 5.000000e-05 train accuracy: 0.680224 val accuracy: 0.606000
lr 1.000000e-01 reg 5.000000e-04 train accuracy: 0.584673 val accuracy: 0.560000
best validation accuracy achieved during cross-validation: 0.609000

1 # Run your best neural net classifier on the test set. You should be able
2 # to get more than 55% accuracy.
3
4 test_acc = (best_net.predict(X_test_feats) == y_test).mean()
5 print(test_acc)
```

0.59