Optimal Approximation of Doubly Stochastic Matrices Supplementary Material

Nikitas Rontsis

Department of Engineering Science University of Oxford, OX1 3PJ, UK

Paul J. Goulart

Department of Engineering Science University of Oxford, OX1 3PJ, UK

1 Proof of Theorem 3.2

In this section we will prove Theorem 3.2 from the main paper, i.e. we will show that

$$A \operatorname{diag}(H_u \operatorname{vec}(D)) A^T = S \odot (D + D^T) + \operatorname{diag}(S \odot (D + D^T) \mathbf{1})$$

where $S(S_u)$ is an integer (0-1) matrix representing the sparsity pattern of $C(C_u)$ and D is an upper triangular $n \times n$ matrix.

Using the fact that $H_u H_u^T = I$, the definition of A and defining $d := H_u \operatorname{vec} D$ we get

$$A\operatorname{diag}(d)A^{T} = A\operatorname{diag}(\sqrt{d})H_{u}H_{u}^{T}\operatorname{diag}(\sqrt{d})A^{T}$$
$$= \left(A\operatorname{diag}(\sqrt{d})\operatorname{diag}(H_{u})\right)\left(A\operatorname{diag}(\sqrt{d})\operatorname{diag}(H_{u})\right)^{T}$$

where \sqrt{d} denotes the element-wise square root of d. Recalling that $A = A_1 + A_2$ we have

$$A\operatorname{diag}(\sqrt{d})\operatorname{diag}(H_u) = \underbrace{A_1\operatorname{diag}(\sqrt{d})\operatorname{diag}(H_u)}_{:=B_1} + \underbrace{A_2\operatorname{diag}(\sqrt{d})\operatorname{diag}(H_u)}_{:=B_2}$$

thus

$$A \operatorname{diag}(d) A^T = \begin{bmatrix} I_n & I_n \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}^T \begin{bmatrix} I_n \\ I_n \end{bmatrix}$$

We now focus on the first part of the above symmetric product, To this end, define $\sqrt{s_i}$ the i^{th} column of $S_u \odot \sqrt{D}$ where \sqrt{D} denotes the element-wise square root of D. Using the fact that

 $H_u^T \operatorname{diag}(x) H_u = \operatorname{diag}(\operatorname{vec}(S_u) \odot (H_u^T x))$ for any vector x of appropriate dimensions we get

$$H_u^T \operatorname{diag}(\sqrt{d}) H_u = \operatorname{diag}(\operatorname{vec}(S_u) \odot (H_u^T \sqrt{d})) = \operatorname{diag}(\operatorname{vec}(S_u) \odot (H_u^T H \operatorname{vec}(\sqrt{D})))$$

$$= \operatorname{diag}(\operatorname{vec}(S_u \odot S_u \odot \sqrt{D})) = \operatorname{diag}(\operatorname{vec}(S_u \odot \sqrt{D})). \tag{1}$$

Use the definitions of A_1, A_2 and (1) to get

$$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} \mathbf{1}^T \otimes I \\ I \otimes \mathbf{1}^T \end{bmatrix} H_u^T \operatorname{diag}(d) H_u = \begin{bmatrix} I & \cdots & I \\ \mathbf{1}^T & & & \\ & \ddots & & \\ & & \mathbf{1}^T \end{bmatrix} \begin{bmatrix} \operatorname{diag}(\sqrt{s_1}) & & & \\ & \ddots & & \\ & & \mathbf{1}^T \end{bmatrix} \begin{bmatrix} \operatorname{diag}(\sqrt{s_1}) & & & \\ & \ddots & & \\ & & & \ddots & \\ & & & \sqrt{s_n^T} \end{bmatrix} \\
= \begin{bmatrix} \operatorname{diag}(\sqrt{s_1}) & \cdots & \operatorname{diag}(\sqrt{s_n}) \\ & & \ddots & \\ & & & \ddots & \\ & & & & \sqrt{s_n^T} \end{bmatrix}$$

We can then form the symmetric product of this matrix with itself to obtain

$$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}^T = \begin{bmatrix} \operatorname{diag}(\sqrt{s_1}) & \cdots & \operatorname{diag}(\sqrt{s_n}) \\ \sqrt{s_1}^T & & & \\ & \ddots & & \\ & & \sqrt{s_n}^T \end{bmatrix} \begin{bmatrix} \operatorname{diag}(\sqrt{s_1}) & \sqrt{s_1} & & \\ \vdots & & \ddots & \\ \operatorname{diag}(\sqrt{s_n}) & & & \sqrt{s_n} \end{bmatrix}$$

or, noting that $\sqrt{s_i}^T \sqrt{s_i} = \mathbf{1}^T s_i$, $\operatorname{diag}^2(\sqrt{s_i}) = \operatorname{diag}(s_i)$, $\operatorname{diag}(\sqrt{s_i}) \sqrt{s_i} = s_i$ where s_i denotes the i-th column of $S_u \odot \operatorname{mat}(d)$,

$$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}^T = \begin{bmatrix} \operatorname{diag}(\sum_i s_i) & s_1 & \dots & s_n \\ s_1^T & \mathbf{1}^T s_1 & & & \\ \vdots & & \ddots & & \\ s_n^T & & & \mathbf{1}^T s_n \end{bmatrix} = \begin{bmatrix} \operatorname{diag}((S_u \odot D)\mathbf{1}) & (S_u \odot D) \\ (S_u \odot D)^T & \operatorname{diag}((S_u \odot D)^T\mathbf{1}) \end{bmatrix}.$$

Thus

$$A \operatorname{diag}(d) A^{T} = \begin{bmatrix} I & I \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \end{bmatrix} \begin{bmatrix} B_{1}^{T} B_{2}^{T} \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix}$$
$$= \operatorname{diag}((S_{u} \odot D)\mathbf{1}) + (S_{u} \odot D) + (S_{u} \odot D)^{T} + \operatorname{diag}((S_{u} \odot D)^{T}\mathbf{1})$$

or, recalling that D is upper triangular,

$$A \operatorname{diag}(H_n \operatorname{vec}(D)) A^T = S \odot (D + D^T) + \operatorname{diag}(S \odot (D + D^T)).$$

2 Detailed Results for the SuiteSparse Matrices

In this Section we provide detailed results for §4.3 of the main paper.

Table 1: Results of Algorithm 1 for Undirected Weighted Graph Matrices from the SuiteSparse collection. A tolerance of 10^{-4} is used for the termination of our Algorithm. The timings are in seconds and they are compared against the solution times of Gurobi with its default settings (on $\mathcal{P}1$). Hardware used: a single thread running on an Intel Gold 5120 with 192GB of memory.

Problem Name	n	$n_{ m nz}$	$t_{ m admm}$	$t_{ m gurobi}$
GD97_b	47	311	1.14×10^{-3}	4.07×10^{-2}
Journals	124	12068	1.24×10^{-2}	7.80×10^{-2}
MISKnowledgeMa	ap 2427	59449	8.75×10^{-2}	1.47
$Sandi_authors$	86	334	1.17×10^{-3}	3.87×10^{-2}
Stranke94	10	100	6.40×10^{-4}	9.81×10^{-3}
USAir97	332	4584	5.26×10^{-3}	3.27×10^{-2}
ak2010	45292	262390	4.60×10^{-1}	2.22
al2010	252266	1482748	2.87	1.61×10^{1}
ar2010	186211	1090521	1.39	1.17×10^{1}
astro-ph	16706	259208	9.47×10^{-1}	2.31×10^{1}
az2010	241666	1437760	2.71	1.45×10^{1}
ca2010	710145	4199511	5.65	5.57×10^{1}
co2010	201062	1175636	2.19	1.24×10^{1}
cond-mat-2003	31163	271221	1.12	3.26×10^{1}
${\rm cond\text{-}mat\text{-}}2005$	40421	391803	2.31	9.90×10^{1}
cond-mat	16726	111914	1.90×10^{-1}	3.35
ct2010	67578	403930	5.07×10^{-1}	3.76
de2010	24115	140171	1.23×10^{-1}	1.21
fl2010	484481	2830775	5.20	3.04×10^{1}
ga2010	291086	1709142	3.18	2.10×10^{1}
geom	7343	31139	1.21×10^{-1}	2.49×10^{-1}
hep-th	8361	39863	6.28×10^{-2}	5.76×10^{-1}
hi2010	25016	149142	2.82×10^{-1}	1.25
$human_gene1$	22283	24669643	2.47×10^2	8.94×10^{3}
$human_gene2$	14340	18068388	1.21×10^2	3.36×10^3
ia2010	216007	1237177	2.78	1.69×10^{1}
id2010	149842	878106	1.01	8.30
il2010	451554	2616018	5.14	3.70×10^{1}

Table 1: Continued.

Problem Name	n	$n_{ m nz}$	$t_{ m admm}$	$t_{ m gurobi}$
in2010	267071	1548787	3.00	1.92×10^{1}
ks2010	238600	1360398	2.58	1.69×10^{1}
ky2010	161672	949450	1.14	9.44
la2010	204447	1185081	5.54	1.40×10^{1}
lesmis	77	585	8.87×10^{-3}	4.28×10^{-2}
ma2010	157508	934118	1.08	9.49
md2010	145247	845625	9.59×10^{-1}	8.17
me2010	69518	404994	4.99×10^{-1}	3.69
mi2010	329885	1907975	3.60	2.53×10^{1}
mn2010	259777	1486879	2.89	1.95×10^{1}
mo2010	343565	2000133	3.84	2.57×10^{1}
$mouse_gene$	45101	28967291	5.97×10^2	3.52×10^4
ms2010	171778	1011758	3.78	1.12×10^{1}
mt2010	132288	770956	9.05×10^{-1}	7.16
nc2010	288987	1705607	3.05	1.88×10^{1}
nd2010	133769	759715	1.35	9.30
ne2010	193352	1107206	2.03	1.35×10^{1}
netscience	1589	7073	1.36×10^{-2}	8.19×10^{-2}
nh2010	48837	283387	3.87×10^{-1}	2.46
nj2010	169588	999500	1.23	1.02×10^{1}
nm2010	168609	999579	1.61	9.92
nopoly	10774	70842	7.05×10^{-2}	5.35×10^{-1}
nv2010	84538	501536	4.66×10^{-1}	4.61
ny2010	350169	2059713	3.66	2.29×10^{1}
oh2010	365344	2133584	3.93	2.88×10^{1}
ok2010	269118	1543266	2.83	1.68×10^{1}
or2010	196621	1176133	1.44	1.22×10^{1}
pa2010	421545	2480007	4.80	2.76×10^{1}
$rgg_n_2_15_s0$	32768	353248	3.44×10^{-1}	2.69
ri2010	25181	150931	1.42×10^{-1}	1.29
sc2010	181908	1075068	1.30	1.12×10^{1}
sd2010	88360	499082	9.10×10^{-1}	5.57
tn2010	240116	1434082	1.77	1.53×10^{1}
tx2010	914231	5370503	1.00×10^{1}	7.65×10^{1}

Nikitas Rontsis, Paul J. Goulart

Table 1: Continued.

Problem Name	n	$n_{ m nz}$	$t_{ m admm}$	$t_{ m gurobi}$
ut2010	115406	687472	9.04×10^{-1}	6.15
va2010	285762	1687890	1.99	1.69×10^{1}
vt2010	32580	188178	2.98×10^{-1}	1.58
wa2010	195574	1143006	2.05	1.25×10^{1}
wi2010	253096	1462500	3.21	1.98×10^{1}
wv2010	135218	798140	9.75×10^{-1}	7.99
wy2010	86204	513790	4.89×10^{-1}	4.93