EE527: Programming Assignments

Linear Algebra & Statistics

Prithwijit Guha Dept. of EEE, IIT Guwahati

Generation of Points

Randomly generate n=1000 2D points $S_e=\{x_1,x_2,...x_n\}$ inside a 2D ellipse of axes $r_x=150$, $r_y=100$ and centered at $x_c=(-10,20)$. The axes of ellipse are aligned with the co-ordinate system axes.

Randomly generate n=1000 points $S_{hs}=\{x_1,x_2,...x_n\}$ inside a 10 Dimensional hypersphere of radius r=100, centered at $x_c=(-1,2,-1,0,0,0,3,4,9,0)$.

Generation of Points

Randomly generate n=1000 2D points $S_{eo}=\{x_1,x_2,...x_n\}$ inside an oriented 2D ellipse of axes $r_x=150$, $r_y=100$ and centered at $x_c=(-10,20)$. The major axis makes an angle of $\theta=\frac{\pi}{3}$ with the horizontal axis \widehat{X} .

Covariance Matrix Computation

Compute the 2×2 Covariance Matrix C using the points in S_{eo} . Plot the Eigen Vectors (\hat{e}_1, \hat{e}_2) of C and the axes of the oriented ellipse, all originating from the center x_c . The lengths of (\hat{e}_1, \hat{e}_2) should be respectively set to $(k\sqrt{\lambda_1}, k\sqrt{\lambda_2})$. Change the value of n and report observations. Try plotting with k=3,4,5.

Distribution Estimation

Generate n=5000 numbers $S=\{x_1,x_2,...x_n\}$ between $x_{min}=-750$ and $x_{max}=750$. Estimate the distribution (p.m.f.) \hat{P} from this dataset by using a bin-size of $b_S=5$.

Data Generation & Distribution Estimation

Generate n'=3000 random numbers $S'=\{x'_1,x'_2,...x'_n\}$ between $x_{min}=-750$ and $x_{max}=750$ by using the distribution (p.m.f.) \hat{P} . Estimate the distribution (p.m.f.) \hat{Q} from S' by using a bin-size of $b_S=5$.

Comparing the Distributions

Compute the Similarity between Distributions \hat{P} and \hat{Q} by using the Bhattacharya Coefficient $BC(\hat{P}$, \hat{Q}).

$$BC(\hat{P}, \hat{Q}) = \sum_{k=1}^{m} \sqrt{\hat{P}[k]\hat{Q}[k]}$$

m is the number of bins in Distributions \hat{P} and \hat{Q}

Experiment with different values of n, n' and b_s ($n \ge n'$). Report the different values of $BC(\widehat{P}, \widehat{Q})$.

Thank You