

APRENDIZAJE PROFUNDO POR REFUERZO PARA AUTÓMATAS CELULARES MULTI-POBLACIONALES: DISEÑO DE POLÍTICAS LOCALES, GRUPALES Y GLOBALES

Alumno: Fernández López-Areal, Mateo

Director: Del Ser Lorente, Javier

GRADO EN INGENIERÍA EN TECNOLOGÍA DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Índice

- Introducción
 - Objetivo
 - Contexto
- Estado del arte
 - Conceptos básicos
 - Alternativas
- Desarrollo
 - Creación del escenario
 - Metodología
 - Resultados
- Conclusión
 - Planificación
 - Coste

Explorar cómo controlar las dinámicas comportamentales de sistemas multiagente multipoblacionales empleando aprendizaje por refuerzo profundo.

Contexto

- Necesidad de entender como opera la inteligencia artificial en diferentes escenarios
- Comprender cómo múltiples agentes interactúan entre sí en un entorno restringido

Conceptos básicos

Agente

Decide que acciones tomar sobre el entorno.

Recompensa

Señal numérica que representa el grado de éxito de la acción

Entorno

Todo con lo que pueda interactuar el agente de forma directa o indirecta

Política

Es el mapeo estado-acción

Estado

Cada escenario en la que el agente se encuentra en el entorno

Algoritmo de aprendizaje

Método en el que el modelo aprende

Reinforcment Learning

Diagrama de bloques

Alternativas

Algoritmos de aprendizaje

- Q-Learning
- Policy Gradient
- Actor-Critic

Entornos de simulación

- AirSim
- ML-Agents
- DeepMind Lab
- OpenAl Gym

Creación del escenario

- Crear y programar los agentes Ejecutar el entrenamiento sobre el entorno de simulación
- Configurar los hiperparámetros

Agentes → Modelos 2D de cubos estáticos apilados en una matriz 12x12

Metodología

Local

Busca la supervivencia del agente

Grupal

Busca que los agentes de una misma población se agrupen entre ellos en bloques con el fin de encontrar poblaciones diferenciadas en el entorno.

Global

Busca que todas las poblaciones perduren en el tiempo, es decir, que no haya una sola población viva en el entorno.

Resultados

Estados del entorno

Observar como evoluciona el entorno sobre el simulador a cada paso

Gráficas TensorBoard

Estudiar las gráficas de la recompensa acumulada y de la entropia obtenidas a través de TenorBoard.

Resultados

Planificación

Cuatro etapas diferenciadas:

- Planteaminto incial del proyecto
- Preparación del proyecto
- Desarrollo del proyecto
- Documentación del proyecto

Coste

Concepto	Coste (€)
Recursos humanos	14.500
Materiales amortizables	175
Documentación	90
Subtotal	14.765

Conclusiones finales

- El agente siempre va a tender a evolucionar y sobrevivir.
- Cuanto más complejo se hace el sistema, más le cuesta al agente el aprendizaje.
- Si las soluciones técnicas empleadas son las adecuadas, el conocimiento adquirido por parte del agente tenderá a ser óptimo

