

IX Congress of the National Group of Bioengineering (GNB)

Palermo, Italy, 16th - 18th June 2025

Organized by University of Palermo

PATTERNS OF SPECTRAL AND FRACTAL CHANGES IN THE AGING BRAIN

Simone Cauzzo ^{1,2}, Sadaf Moaveninejad¹, Camillo Porcaro¹

¹Biomedical Engineering Research to Advance and Innovate Translational Neuroscience (BRAIN Unit), Department of Neuroscience, University of Padova, Italy

² Parkinson Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-END), Department of Neuroscience, University of Padova, Italy

Background

Aging

A complex process and a risk factor for neurodegenerative diseases

Population aging is a social burden to be targeted

Fractal Dimension Analysis

Summarizes effects related to local oscillations and network topology with univariate measures [1]

Detrended Fluctuation Analysis (DFA)

Assesses the strength of long-range correlations in a time series by estimating the power-law scaling

Similar to Hurst Exponent (HE), but DFA is suitable for non-stationary time series

fractional Amplitude of Low-Frequency Fluctuations (fALFF)

The most used univariate spectral feature in fMRI analysis

Associated with the amplitude of spontaneous neural activity

Rationale

Goal

Aging impact on BOLD time series has hardly been addressed with FD analysis It has been debated whether DFA provides additional information with respect to spectral analysis [2]

To investigate how aging alters resting-state fMRI network spectral and fractal features To compare the predictive power of spectral (fALFF) and fractal (DFA) measures for aging

Methods

Dataset:

- Publicly available fMRI dataset (Cambridge Ageing for Centre Neuroscience and (CamCAN)
- 97 Young Adults (YA, 50 F, 47M, aged 28,38]) vs 114 Old Adults (OA, 51F, 53M, aged [68,78]
- Pre-processed resting-state functional MRI, eyes closed, + information on age, sex, handedness

Definition of 14 Functional Networks:

- Group Independent Component Analysis (GIFT software) – intensity normalization preprocessing, infomax algorithm for component estimation, standard PCA for data reduction, GICA algorithm for component grouping.
- Akaike Information Criterion (AIC) to estimate the number of sources at subject level. Number of Sources at group level assessed using the inter-subject mode.
- Identification of Independent noisy Components (ICs) as in [3]
- IC selection by maximizing the Dice's overlap coefficient with a set of 14 resting-state network templates

DFA

- Computed on time series of ICs backprojected to subject level
- Quadratic Detrending
- Matlab 2024b, Toolbox "Detrended fluctuation analysis (DFA)" [4]

Hypothesis testing

- Multivariate analysis of variance (MANOVA) to assess group effect on DFA and fALFF for at least one IC.
- FDR-controlled using Post hoc t-tests, Benjamini-Hochberg.

Machine Learning Classifier

- Goal: To assess the predictive power of DFA and fALFF for age grouping
- 100-tree random forest classifier
- Data splitting: 80% training, 20% test
- Features: one DFA feature and one fALFF feature for each selected IC
- Features Ranked by importance of the out-ofbag predictor
- Same classification model trained evaluated using only DFA features and using only fALFF features.
- Comparison in terms of accuracies and confusion matrices

Fig. 1: Maps of selected group independent components, thresholded at Z-score≥2 and superimposed on the MNI template. Components are grouped by function, where appropriate, and displayed with different colormaps for visualization

Results

DFA – fALFF comparison

MANOVA: Group effect significant for both

DFA: F=6.92, p<10-10

fALFF: F=10.26, p<10-16

Post-hoc t-tests:

For DFA, statistically significant differences (p<0.05, Benjamini-Hochberg corrected) for

IC38- VsPa IC52-Audi

IC18-dDMN

IC31-ASal

IC64-PSal.

In all these comparisons, OA showed lower DFA values compared to YA.

For fALFF, statistically significant differences (p<0.05, Benjamini-Hochberg corrected) for

IC45-rECN IC57-IECN

IC38-VsPa

IC52-Audi

IC18-dDMN

IC23.IHVis

IC55-Lang IC64-PSal.

All ICs showed lower average fALFF in OA, except for IC31-ASal which showed a slight increase.

Machine Learning

Features: DFA+fALFF

85% accuracy on the test set.

4 features have importance score > 0.4,

fALFF of IC39-VsPa

fALFF of IC18-dDMN DFA of IC31-ASal

DFA of IC64-PSal.

Features: DFA only 62.5% accuracy on the test set

Features: fALFF only

75% accuracy on the test set.

6.00

2.00

Fig. 3: Histogram of out-of-bag importance scores obtained for the model trained on fALFF and DFA values. Features that reach the 0.40 threshold are highlighted in red

Importance Score

Fig. 4: ICs maps, thresholded at Z-score≥2 and superimposed on the MNI template, for the components that showed an importance score ≥0.4 as determined by the out-of-bag importance ranking. Two components were selected for their fALFF values (IC18-dDMN and IC38-VsPa, both in green), and two components were selected for their DFA values (IC31-ASal and IC64-PSal, both in yellow).

-0.2

DFA-IC39-vDMN DFA-IC67-SeMo

fALFF-IC24-VisPr

DFA-IC13-SHVis

Conclusion

- The use of both fALFF and DFA outperforms the use of fALFF alone and the use of DFA alone in predicting age
- The detrimental effects of aging on brain functions are most visible in visuospatial and default mode networks with fALFF, and in salience networks with DFA.
- We hypothesize here that changes in long-range connectivity previously reported [5] for salience networks are reflected by fractal properties but not necessarily by spectral properties.
- There is a complementarity relationship between fALFF and DFA in specific networks.
- While the default mode and the visuospatial networks have been extensively studied in aging using standard techniques, the insufficient literature on FD analysis in aging [1] may have missed important detrimental effects within the nodes of salience networks.

Acknowledgement

This work was supported by **NEXT-GENERATION EU**, in the context of the National Recovery and Resilience Plan, Investment PE8 – Project Age-It: "Ageing Well in an Ageing Society".

This resource was co-financed by the Next Generation EU [DM 1557 11.10.2022]. SM and CP were partially founded by **PRIN – MUR** (Grant No. 20228ARNXS) (to CP and SM)

References: [1] S. Moaveninejad, et al., 'Fractal dimension and clinical neurophysiology fusion to gain a deeper brain signal understanding: A systematic review', Information Fusion, Jun. 2025 [2] K. Willson, et al., 'Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability', Physiol. Meas., May 2002 [3] L. Griffanti et al., 'Hand classification of fMRI ICA noise components', Neurolmage, Jul. 2017 [4] M. Magris, Detrended fluctuation analysis (DFA). Central File Exchange. Accessed: Jan. 27, 2025 [MATLAB] [5] V. La Corte et al., 'Cognitive Decline and Reorganization of Functional Connectivity in Healthy Aging', Front. Aging Neurosci., Aug. 2016

