Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale

2 Novembre 2021

Prima Prova Parziale - Compito D

Va consegnato anche questo testo.

Nome	Cognome	
	· ·	
Numero di Matricola	CFU	Iscritto su ESSE3

1. Si consideri un condensatore da $C = 10.0 \, \mu\text{F}$, carica $Q = 1 \cdot 10^3 \, \mu\text{C}$ e vuoto tra le armature. Una particella con carica $q = -3.00 \, \mu\text{C}$ e massa $m = 2 \cdot 10^{-16} \, \text{kg}$ viene sparata, dalla piastra positiva verso la piastra negativa, con una velocità iniziale $v_0 = 2 \cdot 10^6 \, \text{m/s}$.

Determinare se la particella raggiunge l'armatura negativa.

In caso affermativo, si determini la sua velocità d'impatto $v_{\rm f}$.

In caso negativo, si determini la frazione di lunghezza rispetto alla distanza totale raggiunta all'interno del condensatore.

- 2. Considerando il circuito mostrato in figura si calcoli
- a) la corrente nel resistore da 2.00Ω
- b) la differenza di potenziale $V_{a,b}$ specificando quale dei due punti è a potenziale maggiore.

3. In figura è riportata la sezione trasversale di un cavo coassiale. La corrente nel conduttore interno è $I_{\rm i}=1.00~{\rm A}$ con verso uscente dalla pagina e la corrente nel conduttore esterno è $I_{\rm e}=3.00~{\rm A}$ con verso entrante nella pagina. Determinare modulo e direzione del campo magnetico nei punti a (1 mm dal centro) e b (3 mm dal centro).

