

Vorlesung Algorithmische Geometrie Sichtbarkeitsgraphen

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Martin Nöllenburg 12.07.2011

Bewegungsplanung für Roboter

Problem: Gegeben ein (punktförmiger) Roboter an Position p_{start} in einem Gebiet mit polygonalen Hindernissen finde einen möglichst kurzen Weg zum Ziel p_{ziel} um die Hindernisse herum.

Erste Idee: Kürzeste Wege in Graphen

- erstelle Trapezzerlegung
- entferne Segmente in Hindernissen
- Knoten in Trapezen und Vertikalen
- ullet euklidisch gewichteter "Dualgraph" G mit Viaknoten auf Vertikalen

- Lokalisiere Start und Ziel
- ullet kürzester Weg mit Dijkstra in G

Erste Idee: Kürzeste Wege in Graphen

- Knoten in Trapezen und Vertikalen
- ullet euklidisch gewichteter "Dualgraph" G mit Viaknoten auf Vertikalen

Kürzeste Wege in Polygongebieten

Lemma 1: Für eine Menge S von disjunkten Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

Beweisskizze:

Sichtbarkeitsgraph

Gegeben sei eine Menge S disjunkter offener Polygone...

...mit Knotenmenge V(S).

Def.: Dann ist $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ der **Sichtbarkeitsgraph** von S mit $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\}$ und w(uv) = |uv|. Dabei gilt u **sieht** $v :\Leftrightarrow \overline{uv} \subset \mathcal{C}_{\text{free}} = \mathbb{R}^2 \setminus \bigcup S$

Definiere $S^* = S \cup \{s, t\}$ und $G_{vis}(S^*)$ analog.

Lemma 1 \Rightarrow Der kürzeste st-Weg, der die Hindernisse in S vermeidet, entspricht einem kürzesten Weg in $G_{vis}(S^*)$.

Algorithmus

SHORTESTPATH(S, s, t)

$$n = |V(S)|, m = |E_{\mathsf{vis}}(S)|$$

Input: Hindernismenge S, Punkte $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: kürzester kollisionsfreier st-Weg in S

1
$$G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$$

$$O(n^2 \log n)$$

2 foreach $uv \in E_{vis}(S)$ do $w(uv) \leftarrow |uv|$

3 return DIJKSTRA (G_{vis}, w, s, t)

$$O(n\log n + m)$$

$$O(n^2 \log n)$$

Satz 1: Ein kürzester st-Weg in einem Gebiet mit Polygon-Hindernissen mit n Kanten kann in $O(n^2 \log n)$ Zeit berechnet werden.

Sichtbarkeitsgraph berechnen

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

- 1 $E \leftarrow \emptyset$
- 2 foreach $v \in V(S)$ do
- $W \leftarrow VISIBLEVERTICES(v, S)$
- $\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$
- $\mathbf{5}$ return E

Sichtbare Knoten berechnen

VISIBLE VERTICES (p, S)

Aufgabe: Gegeben p und S finde in $O(n \log n)$ Zeit alle von p aus sichtbaren Knoten in V(S)!

Sichtbare Knoten berechnen

VISIBLE VERTICES (p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$

$$v \prec v' :\Leftrightarrow$$

$$\angle v < \angle v'$$
 or $(\angle v = \angle v' \text{ and } |pv| < |pv'|)$

Sweep-Verfahren mit Rotation

Sichtbare Knoten berechnen

VISIBLE VERTICES (p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$

$$W \leftarrow \emptyset$$

for i = 1 to n do

if
$$Visible(p, w_i)$$
 then

$$W \leftarrow W \cup \{w_i\}$$

füge in \mathcal{T} zu w_i inzidente Kante aus $\overrightarrow{pw_i}^+$ ein lösche aus \mathcal{T} zu w_i inzidente Kanten aus $\overrightarrow{pw_i}^-$

return W

Fallunterscheidung Sichtbarkeit

 $Visible(p, w_i)$

if $\overline{pw_i}$ schneidet Polygon von w_i then \bot return false

if i=1 oder $w_{i-1} \not\in \overline{pw_i}$ then $e \leftarrow \text{Kante im linkesten Blatt von } \mathcal{T}$ if $e \neq \text{nil und } \overline{pw_i} \cap e \neq \emptyset$ then | return false else return true

else

if w_{i-1} nicht sichtbar then return false else

 $e \leftarrow$ suche Kante in \mathcal{T} , die $\overline{w_{i-1}w_i}$ schneidet if $e \neq$ nil then return false else return true

Zusammenfassung

Satz 1: Ein kürzester st-Weg in einem Gebiet mit Polygon-Hindernissen mit n Kanten kann in $O(n^2 \log n)$ Zeit berechnet werden.

Beweis:

- Korrektheit folgt direkt aus Lemma 1
- Laufzeit:
 - VISIBLE VERTICES benötigt $O(n \log n)$ Zeit pro Knoten
 - -n Aufrufe von VISIBLEVERTICES

Diskussion

Roboter sind meistens nicht punktförmig...

Für den Fall von Robotern, deren Grundfläche ein konvexes Polygon ist und die nicht rotieren können, geht es trotzdem durch geeignete

Vergrößerung der Hindernisse

(\rightarrow Minkowski-Summe, Kap. 13 in [BCKO08]).

Geht es schneller als $O(n^2 \log n)$ **?**

Ja, durch Ausnutzung der Dualität und einen simultanen Rotations-Sweep für alle Punkte im dualen Geradenarrangement geht es auch in $O(n^2)$. Da $G_{\rm vis}$ $\Omega(n^2)$ Kanten haben kann, lässt sich der

Sichtbarkeitsgraph im Allgemeinen auch nicht schneller konstruieren.

Es gibt jedoch einen ausgabesensitiven $O(n \log n + m)$ -Algorithmus.

[Ghosh, Mount 1987]

Diskussion

Roboter sind meistens nicht punktförmig...

Für den Fall von Robotern, deren Grundfläche ein konvexes Polygon ist und die nicht rotieren können, geht es trotzdem durch geeignete

Vergrößerung der Hindernisse

(\rightarrow Minkowski-Summe, Kap. 13 in [BCKO08]).

Geht es schneller als $O(n^2 \log n)$ **?**

Ja, durch Ausnutzung der Dualität und einen simultanen Rotations-Sweep für alle Punkte im dualen Geradenarrangement geht es auch in $O(n^2)$. Da $G_{\rm vis}$ $\Omega(n^2)$ Kanten haben kann, lässt sich der

Sichtbarkeitsgraph im Allgemeinen auch nicht schneller konstruieren.

Es gibt jedoch einen ausgabesensitiven $O(n \log n + m)$ -Algorithmus.

[Ghosh, Mount 1987]

Sucht man jedoch nur einen kürzesten Euklidischen st-Weg, gibt es einen Algorithmus mit optimaler Laufzeit $O(n \log n)$. [Hershberger, Suri 1999]