Chapitre l: Outils fondamentaux pour les probabilités

Probabilités 1

4^{me} année DS & INFINI

A.U: 2023-2024

- Motivation
- Espace de probabilité
- 3 Probabilité conditionnelle et indépendance
- 4 Variables aléatoires

On considère les trois expériences suivantes :

On considère les trois expériences suivantes :

Expérience 1:

On tire une boule dans une urne contenant trois boules blanches.

On considère les trois expériences suivantes :

Expérience 1 :

On tire une boule dans une urne contenant trois boules blanches.

Expérience 2 :

On tire une boule dans une urne contenant deux boules blanches et une boule noire.

On considère les trois expériences suivantes :

Expérience 1 :

On tire une boule dans une urne contenant trois boules blanches.

Expérience 2 :

On tire une boule dans une urne contenant deux boules blanches et une boule noire.

Expérience 3:

On tire une boule dans une urne contenant trois boules de couleurs différentes.

• Qu'elle-est la couleur de la boule tirée ?

- Qu'elle-est la couleur de la boule tirée ?
 - ► Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.

- Qu'elle-est la couleur de la boule tirée ?
 - Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.
 - ► Dans la deuxième expérience, il y a deux possibilités, on peut tirer une boule blanche comme on peut avoir une boule noire.

- Qu'elle-est la couleur de la boule tirée ?
 - Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.
 - Dans la deuxième expérience, il y a deux possibilités, on peut tirer une boule blanche comme on peut avoir une boule noire.
 - ▶ Dans la troisième expérience, on ne sait pas la couleur de la boule tirée.

- Qu'elle-est la couleur de la boule tirée ?
 - Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.
 - Dans la deuxième expérience, il y a deux possibilités, on peut tirer une boule blanche comme on peut avoir une boule noire.
 - ▶ Dans la troisième expérience, on ne sait pas la couleur de la boule tirée.
- Quelle est la différence entre ces trois expériences ?

- Qu'elle-est la couleur de la boule tirée ?
 - ► Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.
 - Dans la deuxième expérience, il y a deux possibilités, on peut tirer une boule blanche comme on peut avoir une boule noire.
 - ▶ Dans la troisième expérience, on ne sait pas la couleur de la boule tirée.
- Quelle est la différence entre ces trois expériences ?
 - ▶ Dans la première expérience, on est certains d'avoir la couleur blanche.

- Qu'elle-est la couleur de la boule tirée ?
 - Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.
 - Dans la deuxième expérience, il y a deux possibilités, on peut tirer une boule blanche comme on peut avoir une boule noire.
 - ▶ Dans la troisième expérience, on ne sait pas la couleur de la boule tirée.
- Quelle est la différence entre ces trois expériences ?
 - ► Dans la première expérience, on est certains d'avoir la couleur blanche.
 - Dans la deuxième expérience, on sait bien tous les résultats possibles, mais sans savoir qu'elle résultat va se produire.

• Qu'elle-est la couleur de la boule tirée ?

- ► Dans la première expérience, il y a une seule possibilité, la couleur de la boule tirée est blanche.
- Dans la deuxième expérience, il y a deux possibilités, on peut tirer une boule blanche comme on peut avoir une boule noire.
- ▶ Dans la troisième expérience, on ne sait pas la couleur de la boule tirée.

Quelle est la différence entre ces trois expériences ?

- ▶ Dans la première expérience, on est certains d'avoir la couleur blanche.
- Dans la deuxième expérience, on sait bien tous les résultats possibles, mais sans savoir qu'elle résultat va se produire.
- ▶ Dans la troisième expérience, on n'est pas capable de déterminer les résultats possibles.

Expérience aléatoire

Définition : expérience aléatoire

Une expérience aléatoire est une expérience renouvelable qui a plusieurs issues (résultats) possibles mais qui sont incertaines.

Expérience aléatoire

Définition : expérience aléatoire

Une expérience aléatoire est une expérience renouvelable qui a plusieurs issues (résultats) possibles mais qui sont incertaines.

Exemples

- Tirage pile ou face.
- Relever l'état d'une case mémoire.
- Interroger un électeur avant un référendum.
- Lancer un dé et regarder la face supérieure.
- Observer le nombre d'articles défectueux dans un lot.
- Observer la durée de fonctionnement d'une machine.

- Motivation
- 2 Espace de probabilité
 - Univers
 - Tribu
 - Probabilité
- Probabilité conditionnelle et indépendance
- 4 Variables aléatoires

Univers

Définition :Univers

L'univers désigne l'ensemble de tous les résultats possibles d'une expérience aléatoire, souvent noté $\Omega.$ On l'appelle également espace fondamental.

Univers

Définition : Univers

L'univers désigne l'ensemble de tous les résultats possibles d'une expérience aléatoire, souvent noté $\Omega.$ On l'appelle également espace fondamental.

Exemples

- Un tirage pile ou face : $\Omega = \{P, F\}$.
- Deux tirages de pile ou face : $\Omega = \{PP, PF, FP, FF\}$.
- Lancer un dé et regarder la face supérieure : $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Compter les clients d'une file d'attente : $\Omega = \{1, 2, 3, ...\}$.
- Observer la durée de fonctionnement d'une machine : $\Omega = \{]0, a], a > 0\}.$

Tribu

Définition : évènement

Un évènement est un ensemble de résultats possibles d'une expérience aléatoire, autrement dit est un sous-ensemble de l'univers Ω . On note $\mathcal A$ l'ensemble des évènements.

Terminologies:

Tribu

Définition : évènement

Un évènement est un ensemble de résultats possibles d'une expérience aléatoire, autrement dit est un sous-ensemble de l'univers Ω . On note $\mathcal A$ l'ensemble des évènements.

Terminologies:

Pour $A, B \in \mathcal{A}$ on adapte les terminologies suivantes :

- $A = \Omega$: évènement certain.
- $A = \emptyset$: évènement impossible.
- $\bar{A} = \Omega \setminus A$: évènement contraire de A.
- A ∩ B : l'évènement A et B, réalisé lorsque les évènements A et B sont réalisés.
- A ∪ B : l'évènement A ou B, réalisé lorsque l'un des évènements A et B est réalisé.

Définition :Evènements incompatibles

On dit que deux évènements A et B sont incompatibles ou disjoints si l'évènement $A \cap B$ est impossible. Autrement dit si ces deux évènements ne peuvent pas se réaliser en même temps (simultanément).

Définition : Evènements incompatibles

On dit que deux évènements A et B sont incompatibles ou disjoints si l'évènement $A \cap B$ est impossible. Autrement dit si ces deux évènements ne peuvent pas se réaliser en même temps (simultanément).

Définition :Système complet

Un ensemble d'évènements $A_1, A_2, \ldots A_n$ deux à deux incompatibles sur Ω est dit système complet s'il constitue une partition de Ω . Autrement dit, $A_1, A_2, \ldots A_n$ est un système complet d'évènement si et seulement si :

- $\bullet \ A_i \cap A_j = \emptyset, \forall i \neq j.$
- $\bullet \bigcup_{i=1:n} A_i = \Omega$.

Définition: Tribu

Une tribu ${\mathcal A}$ sur Ω est une classe de parties de Ω qui vérifie les trois propriétés suivantes :

- $\Omega \in \mathcal{A}$.
- ${\mathcal A}$ est stable par passage au complémentaire, i.e. si $A\in {\mathcal A}$ alors $\bar A\in {\mathcal A}$.
- \mathcal{A} est stable par union dénombrable, i.e. si $\forall n \in \mathbb{N}, A_1, A_2, \dots A_n \in \mathcal{A}$ alors $\bigcup_{i=1:n} A_i \in \mathcal{A}$.

Définition: Tribu

Une tribu ${\mathcal A}$ sur Ω est une classe de parties de Ω qui vérifie les trois propriétés suivantes :

- $\Omega \in \mathcal{A}$.
- ullet ${\cal A}$ est stable par passage au complémentaire, i.e. si ${\cal A}\in {\cal A}$ alors $ar{{\cal A}}\in {\cal A}$.
- \mathcal{A} est stable par union dénombrable, i.e. si $\forall n \in \mathbb{N}, A_1, A_2, \dots A_n \in \mathcal{A}$ alors $\bigcup_{i=1:n} A_i \in \mathcal{A}$.

Exemples

- Tribu grossière notée $\{\emptyset, \Omega\}$ désigne la plus petite tribu sur Ω .
- ullet Tribu discrète notée $\mathcal{P}(\Omega)$ désigne la plus grosse tribu sur Ω
- Si $A \subset \Omega$, alors $\{\emptyset, A, \bar{A}, \Omega\}$ est une tribu sur Ω .

Probabilité

Définition :Probabilité

On appelle probabilité sur un espace mesurable (Ω, \mathcal{A}) toute mesure $\mathbb{P}: \mathcal{A} \to [0,1]$ vérifie :

- $\mathbb{P}(\Omega) = 1$.
- Pour tout ensemble dénombrable d'évènements incompatibles A_1, A_2, \dots, A_n , on a :

$$\mathbb{P}(\bigcup_{i=1}^{n}A_{i})=\sum_{i=1}^{n}\mathbb{P}(A_{i}), \qquad (\mathbb{P} \quad \sigma-\mathrm{additive}\).$$

Probabilité

On appelle probabilité sur un espace mesurable (Ω, A) toute mesure $\mathbb{P}:\mathcal{A}\to[0,1]$ vérifie :

- $\mathbb{P}(\Omega) = 1$.
- Pour tout ensemble dénombrable d'évènements incompatibles A_1, A_2, \ldots, A_n on a:

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i), \quad (\mathbb{P} \quad \sigma - \text{additive}).$$

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et $A, B \in \mathcal{A}$, alors on a :

- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- $\bullet \ \mathbb{P}(\bar{A}) = 1 \mathbb{P}(A) .$
- Si $A \subset B$, alors $\mathbb{P}(A) < \mathbb{P}(B)$.

- Motivation
- Espace de probabilité
- 3 Probabilité conditionnelle et indépendance
 - Définition et propriétés
 - Indépendance
- Variables aléatoires

Définition et propriétés

La notion de probabilité conditionnelle permet de déterminer la probabilité de réalisation d'un évènement en prenant en compte l'information dont on dispose (à savoir qu'un évènement B est réalisé) pour actualiser la probabilité que l'on donne à un évènement A.

Définition et propriétés

La notion de probabilité conditionnelle permet de déterminer la probabilité de réalisation d'un évènement en prenant en compte l'information dont on dispose (à savoir qu'un évènement B est réalisé) pour actualiser la probabilité que l'on donne à un évènement A.

Définition: Probabilité conditionnelle

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et $A, B \in \mathcal{A}$ avec $\mathbb{P}(B) > 0$. La probabilité de l'évènemet A sachant B notée $\mathbb{P}(A/B)$ est définie par :

$$\mathbb{P}(A/B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Définition et propriétés

La notion de probabilité conditionnelle permet de déterminer la probabilité de réalisation d'un évènement en prenant en compte l'information dont on dispose (à savoir qu'un évènement B est réalisé) pour actualiser la probabilité que l'on donne à un évènement A.

Définition : Probabilité conditionnelle

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et $A, B \in \mathcal{A}$ avec $\mathbb{P}(B) > 0$. La probabilité de l'évènemet A sachant B notée $\mathbb{P}(A/B)$ est définie par :

$$\mathbb{P}(A/B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Remarque

La probabilité conditionnelle est aussi une probabilité. En particulier , on a :

$$\mathbb{P}(\bar{A}/B) = 1 - \mathbb{P}(A/B)$$

Formule des probabilités totales

On se donne un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$, $(A_i)_{i=1:n}$ un système complet d'évènements tous de probabilité non nulle et B un événement alors :

$$\mathbb{P}(\mathcal{B}) = \sum_{i=1}^n \mathbb{P}(\mathcal{B} \cap \mathcal{A}_i) = \sum_{i \in \mathbb{N}} \mathbb{P}(\mathcal{B}/\mathcal{A}_i)\mathbb{P}(\mathcal{A}_i)$$

Formule des probabilités totales

On se donne un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$, $(A_i)_{i=1:n}$ un système complet d'évènements tous de probabilité non nulle et B un événement alors :

$$\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}(B \cap A_i) = \sum_{i \in \mathbb{N}} \mathbb{P}(B/A_i) \mathbb{P}(A_i)$$

Application : Une compagnie d'assurance estime que les gens peuvent être répartis en deux classes :

- Ceux qui sont enclins aux accidents 'à haut risque', qui représente 30% de la population.
- Ceux qui sont dits 'à risque modéré'.

Les statistiques de cette compagnie montrent qu'un individu 'à haut risque' a une probabilité de 0.40 d'avoir un accident dans un espace d'un an. Cette probabilité tombe à 0.20 pour les gens 'à risque modéré'.

Quelle est la probabilié qu'un nouvel assuré soit victime d'un accident durant l'année qui suit la signature de son contrat?

Solution : Définissons les évènements suivants :

B : " Le nouvel assuré a un accident durant l'année qui suit la signature de son contrat".

 A_1 : " Le nouvel assuré est 'à haut risque' ".

A₂ : " Le nouvel assuré est 'à risque modéré' ".

En appliquant la formule des probabilités totales (F.P.T), elle entraı̂ne que :

$$\mathbb{P}(B) = \mathbb{P}(B/A_1)\mathbb{P}(A_1) + \mathbb{P}(B/A_2)\mathbb{P}(A_2)$$

= 0.4 × 0.3 + 0.2 × 0.7
= 0.26

Théorème : formule de Bayes

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et $(A_i)_{i \in \mathbb{N}}$ un système complet d'événements de Ω alors :

$$\forall B \in \mathcal{A} \ tq \ \mathbb{P}(B) \neq 0, \quad \mathbb{P}(A_i/B) = \frac{\mathbb{P}(B/A_i)\mathbb{P}(A_i)}{\displaystyle\sum_{i \in \mathbb{N}} \mathbb{P}(B/A_i)\mathbb{P}(A_i)} = \frac{\mathbb{P}(B/A_i)\mathbb{P}(A_i)}{\mathbb{P}(B)}$$

Théorème : formule de Baves

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et $(A_i)_{i \in \mathbb{N}}$ un système complet d'événements de Ω alors :

$$\forall B \in \mathcal{A} \ tq \ \mathbb{P}(B) \neq 0, \quad \mathbb{P}(A_i/B) = \frac{\mathbb{P}(B/A_i)\mathbb{P}(A_i)}{\displaystyle\sum_{i \in \mathbb{N}} \mathbb{P}(B/A_i)\mathbb{P}(A_i)} = \frac{\mathbb{P}(B/A_i)\mathbb{P}(A_i)}{\mathbb{P}(B)}$$

Application: Dans un laboratoire, on a fait les constats suivants:

- la moitié de la population porte l'anticorps A.
 - si une souris porte l'anticorps A, alors 2 fois sur 5 elle porte aussi l'anticorps B.
 - si une souris ne porte pas l'anticorps A, alors 4 fois sur 5 elle ne porte pas l'anticorps B.
- Calculer la probabilité que, si une souris porte l'anticorps B, alors elle porte aussi l'anticorps A.
- Calculer la probabilité que, si une souris ne porte pas l'anticorps B, alors elle ne porte pas l'anticorps A.

Solution:

• En uilisant la formule des probabilités totales, on commence de calculer la probabilité de l'évènement :

B = "la souris porte l'anticorps B".

$$\mathbb{P}(B) = \mathbb{P}(B/A)\,\mathbb{P}(A) + \mathbb{P}(B/\bar{A})\,\mathbb{P}(\bar{A}) = \frac{2}{5}\,\frac{1}{2} + \frac{1}{5}\,\frac{1}{2} = \frac{3}{10}$$

avec A = "la souris porte l'anticorps A".

Par suite, en utilisant la formule de Bayes, on obtient :

$$\mathbb{P}(A/B) = \frac{\mathbb{P}(B/A)\,\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{2/10}{3/10} = \frac{2}{3}$$

2 De même manière, on trouve :

$$\mathbb{P}(\bar{A}/\bar{B}) = \frac{\mathbb{P}(\bar{B}/\bar{A})\,\mathbb{P}(\bar{A})}{\mathbb{P}(\bar{B})} = \frac{4/10}{7/10} = \frac{4}{7}$$

Indépendance

Indépendance

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et A et B deux événements de \mathcal{A} . On dit que A et B sont indépendants ssi :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

Indépendance

Indépendance

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et A et B deux événements de \mathcal{A} . On dit que A et B sont indépendants ssi :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

Remarque

L'indépendance est aussi caractérisée par la probabilité conditionnelle. Autrement dit, A et B sont indépendants ssi :

$$\mathbb{P}(A/B) = \mathbb{P}(A)$$

- Motivation
- 2 Espace de probabilité
- 3 Probabilité conditionnelle et indépendance
- Variables aléatoires
 - Définition et propriétés
 - Loi d'une variable aléatoire
 - Espérance et variance
 - Lois discrètes usuelles
 - Lois continues usuelles

Définition et propriétés

Définition

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et (E, \mathcal{B}) un espace mesurable. On appelle variable aléatoire (en abrégé v.a.) de Ω à valeurs dans E toute application mesurable :

$$X: \Omega \to E$$

 $\omega \to X(\omega)$

Définition et propriétés

Définition

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et (E, \mathcal{B}) un espace mesurable. On appelle variable aléatoire (en abrégé v.a.) de Ω à valeurs dans E toute application mesurable :

$$X: \Omega \to E$$

 $\omega \to X(\omega)$

- Lorsque l'image de Ω par X est un ensemble fini ou infini dénombrable, la v.a est dite discrète.
- Lorsque l'image de Ω par X est un ensemble non dénombrable, la v.a est dite continue.

Définition et propriétés

Définition

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité et (E, \mathcal{B}) un espace mesurable. On appelle variable aléatoire (en abrégé v.a.) de Ω à valeurs dans E toute application mesurable :

$$X: \Omega \to E$$

 $\omega \to X(\omega)$

Propriétés

- Lorsque l'image de Ω par X est un ensemble fini ou infini dénombrable, la v.a est dite discrète.
- Lorsque l'image de Ω par X est un ensemble non dénombrable, la v.a est dite continue.

Exemples:

- Le nombre des bactéries dans 100 ml de préparation.
- 2 La durée de vie d'une lampe électrique.

Loi d'une variable aléatoire

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, on appelle loi de probabilité ou distribution d'une v.a. X, notée \mathbb{P}_X , l'application qui a toute partie $B \in \mathcal{B}(\mathbb{R})$ associe :

$$\mathbb{P}_X(B) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) = \mathbb{P}(X^{-1}(B))$$

Loi d'une variable aléatoire

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, on appelle loi de probabilité ou distribution d'une v.a. X, notée \mathbb{P}_X , l'application qui a toute partie $B \in \mathcal{B}(\mathbb{R})$ associe :

$$\mathbb{P}_X(B) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) = \mathbb{P}(X^{-1}(B))$$

cas d'une variable aléatoire discrète

Soit X une variable aléatoire discrète à valeurs dans $X(\Omega) = \{x_1, x_2, \dots, x_n\}$. Loi de probabilité de X est donnée par l'ensemble des probabilités :

$$p_k = \mathbb{P}(X = x_k), \ \forall k = 1 \dots n, \quad \text{avec} \ \sum_{k=1}^n p_k = 1.$$

Loi d'une variable aléatoire

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, on appelle loi de probabilité ou distribution d'une v.a. X, notée \mathbb{P}_X , l'application qui a toute partie $B \in \mathcal{B}(\mathbb{R})$ associe :

$$\mathbb{P}_X(B) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) = \mathbb{P}(X^{-1}(B))$$

cas d'une variable aléatoire discrète

Soit X une variable aléatoire discrète à valeurs dans $X(\Omega) = \{x_1, x_2, \dots, x_n\}$. Loi de probabilité de X est donnée par l'ensemble des probabilités :

$$p_k = \mathbb{P}(X = x_k), \ \forall k = 1 \dots n, \quad \text{avec} \ \sum_{k=1}^n p_k = 1.$$

La loi d'une variable aléatoire continue est caractérisée par sa densité de probabilité telle que :

$$\forall a, b \in \mathbb{R}, \ \mathbb{P}(X \in]a, b[) = \int_a^b f(x) dx, \quad \text{avec} \ \int_{\mathbb{R}} f(x) dx = 1.$$

Définition : Fonction de répartition

Soit X une v.a. à valeurs réelles. La fonction de répartition de X notée \mathbb{F}_X est définie sur \mathbb{R} par :

$$F_X : \mathbb{R} \to [0, 1]$$

 $x \mapsto F_X(x) = \mathbb{P}(X \le x)$

Autrement dit:

$$F_X(x) = \begin{cases} \sum_{y \in X(\Omega) | y \le x} \mathbb{P}(X = y) & \text{si X est discrète} \\ \int_{-\infty}^x f(y) \, dy & \text{si X est continue} \end{cases}$$

Définition : Fonction de répartition

Soit X une v.a. à valeurs réelles. La fonction de répartition de X notée \mathbb{F}_X est définie sur \mathbb{R} par :

$$F_X : \mathbb{R} \to [0,1]$$

 $x \mapsto F_X(x) = \mathbb{P}(X \le x)$

Autrement dit:

$$F_X(x) = \begin{cases} \sum_{y \in X(\Omega) | y \le x} \mathbb{P}(X = y) & \text{si X est discrète} \\ \int_{-\infty}^x f(y) \, dy & \text{si X est continue} \end{cases}$$

Propriétés

Soient X et Y deux v.a. de fonctions de répartitions F_X et F_Y et $a,b\in\mathbb{R}$, alors on a :

- $\mathbb{P}(X > a) = 1 F_X(a)$.
- **2** $\mathbb{P}(a < X \leq b) = F_X(b) F_X(a)$.
- 3 X et Y sont égales en loi si et seulement si $F_X \equiv F_Y$.

Soient X et Y deux v.a. discrètes à valeurs dans $X(\Omega)$ et $Y(\Omega)$. On dit que X et Y sont indépendantes ssi :

$$\forall x \in X(\Omega) \text{ et } y \in Y(\Omega), \ \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \mathbb{P}(Y = y)$$

Proposition: indépendance

Soient X et Y deux v.a. discrètes à valeurs dans $X(\Omega)$ et $Y(\Omega)$. On dit que X et Y sont indépendantes ssi :

$$\forall x \in X(\Omega) \text{ et } y \in Y(\Omega), \ \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \mathbb{P}(Y = y)$$

Application : Soient X_1, X_2 et X_3 trois v.a. indépendantes de même loi de Bernoulli de paramètre $p \in]0,1[$. On définit les v.a. :

$$Y_1 = X_1 X_2$$
 et $Y_2 = X_2 X_3$

- **1** Déterminer les lois de Y_1 et Y_2 .
- 2 Y_1 et Y_2 sont-elles indépendantes?

Correction:

• Déterminer les lois de Y_1 et Y_2 .

La loi de Y_1 en tant qu'une variable aléatoire discrète est donnée par l'ensemble de ses valeurs possibles ainsi que leurs probabilités de réalisation. En fait, on a :

D'une part, les valeurs possibles de Y_1 sont 0 et 1, ainsi $Y_1(\Omega) = \{0, 1\}$. D'autre part, en utilisant l'indépendance des X_i , on montre que

 $\mathbb{P}(Y_1=1)=rac{1}{4}$ et $\mathbb{P}(Y_1=0)=rac{3}{4}$.

De même, pour Y_2 (même loi que Y_1).

② Y_1 et Y_2 sont-elles indépendantes? Comme $\mathbb{P}(Y_1=1,Y_2=1)=\frac{1}{8}\neq \mathbb{P}(Y_1=1)\mathbb{P}(Y_2=1)$, on conclut que les variables Y_1 et Y_2 ne sont pas indépendantes.

Espérance et variance

Définition

Soit X une v.a. à valeurs réelles. On définit les deux paramètres :

• Espérance de X :

$$\mathbb{E}[X] = \begin{cases} \sum_{k \in X(\Omega)} k \mathbb{P}(X = k) & \text{si X est discrète} \\ \int_{\mathbb{R}} y f(y) \, dy & \text{si X est continue} \end{cases}$$

• Variance de $X : \mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Espérance et variance

Définition

Soit X une v.a. à valeurs réelles. On définit les deux paramètres :

• Espérance de X :

$$\mathbb{E}[X] = \begin{cases} \sum_{k \in X(\Omega)} k \mathbb{P}(X = k) & \text{si X est discrète} \\ \int_{\mathbb{R}} y f(y) \, dy & \text{si X est continue} \end{cases}$$

• Variance de $X : \mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

La variance est une mesure permet d'expliquer comment une variable aléatoire se disperse autour de sa moyenne.

Espérance et variance

Définition

Soit X une v.a. à valeurs réelles. On définit les deux paramètres :

• Espérance de X :

$$\mathbb{E}[X] = \begin{cases} \sum_{k \in X(\Omega)} k \mathbb{P}(X = k) & \text{si X est discrète} \\ \int_{\mathbb{R}} y f(y) \, dy & \text{si X est continue} \end{cases}$$

• Variance de $X : \mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

La variance est une mesure permet d'expliquer comment une variable aléatoire se disperse autour de sa moyenne.

Propriétés

Soit X et Y deux v.a. et $a, b \in \mathbb{R}$, alors on a :

- **3** Si X et Y sont indépendantes, alors $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.

Définition : épreuve de Bernoull

En probabilité, une épreuve de Bernoulli de paramètre $p \in]0,1[$ est une expérience aléatoire comportant deux issues :

- le succès S, avec une probabilité p;
- l'échec E, avec une probabilité 1 p.

Définition : épreuve de Bernoulli

En probabilité, une épreuve de Bernoulli de paramètre $p \in]0,1[$ est une expérience aléatoire comportant deux issues :

- le succès S, avec une probabilité p;
- l'échec E, avec une probabilité 1 p.

Définition : schéma de Bernoulli

On appelle schéma de Bernoulli de paramètres n et p toute expérience aléatoire consistant à répéter n fois de façon indépendante une épreuve de Bernoulli de paramètre p.

Définition : loi de Bernoulli

On définit une variable aléatoire de Bernoulli de paramètre p en posant :

$$X = \begin{cases} 1, & \text{si l'issue de l'épreuve de Bernoulli est un succès} \\ 0, & \text{si l'issue de l'épreuve de Bernoulli est un échec} \end{cases}$$

On note $X \sim \mathcal{B}(p)$.

Définition : loi de Bernoulli

On définit une variable aléatoire de Bernoulli de paramètre p en posant :

$$X = \begin{cases} 1, & \text{si l'issue de l'épreuve de Bernoulli est un succès} \\ 0, & \text{si l'issue de l'épreuve de Bernoulli est un échec} \end{cases}$$

On note $X \sim \mathcal{B}(p)$.

- Valeurs possibles : $X(\Omega) = \{0, 1\}$.
- Loi de probabilité : $\mathbb{P}(X = k) = p^k (1 p)^{1-k}$.
- Espérance : $\mathbb{E}(X) = p$.
- Variance : V(X) = p(1-p).

Définition : loi binomiale

On considère un schéma de Bernoulli de paramètres $n \in \mathbb{N}^*$ et $p \in]0,1[$. On définit alors la variable aléatoire X associée au nombre de succès obtenus. On dit que X suit la loi binomiale de paramètres n et p et on note $X \sim \mathcal{B}(n,p)$.

Définition : loi binomiale

On considère un schéma de Bernoulli de paramètres $n \in \mathbb{N}^*$ et $p \in]0,1[$. On définit alors la variable aléatoire X associée au nombre de succès obtenus. On dit que X suit la loi binomiale de paramètres n et p et on note $X \sim \mathcal{B}(n,p)$.

- Valeurs possibles : $X(\Omega) = \{0, 1, \dots, n\}$.
- Loi de probabilité : $\mathbb{P}(X = k) = C_n^k p^k (1 p)^{n-k}$.
- Espérance : $\mathbb{E}(X) = np$.
- Variance : V(X) = np(1-p).

Définition : loi binomiale

On considère un schéma de Bernoulli de paramètres $n \in \mathbb{N}^*$ et $p \in]0,1[$. On définit alors la variable aléatoire X associée au nombre de succès obtenus. On dit que X suit la loi binomiale de paramètres n et p et on note $X \sim \mathcal{B}(n,p)$.

Propriété

- Valeurs possibles : $X(\Omega) = \{0, 1, \dots, n\}$.
- Loi de probabilité : $\mathbb{P}(X = k) = C_n^k p^k (1 p)^{n-k}$.
- Espérance : $\mathbb{E}(X) = np$.
- Variance : V(X) = np(1-p).

Proposition

Soit X_1 et X_2 deux variables aléatoires indépendantes telles que $X_1 \sim \mathcal{B}(n_1, p)$ et $X_2 \sim \mathcal{B}(n_2, p)$. Alors la variable $X = X_1 + X_2 \sim \mathcal{B}(n_1 + n_2, p)$.

Définition : loi Géométrique

On renouvelle une épreuve de Bernoulli de paramètre p d'une manière indépendante. On définit alors la variable aléatoire X associée au rang de premier succès. On dit que X suit la loi Géométrique de paramètres p et on note $X \sim \mathcal{G}(p)$.

Définition : loi Géométrique

On renouvelle une épreuve de Bernoulli de paramètre p d'une manière indépendante. On définit alors la variable aléatoire X associée au rang de premier succès. On dit que X suit la loi Géométrique de paramètres p et on note $X \sim \mathcal{G}(p)$.

Une telle suite se modélise à l'aide d'une suite $(X_i)_{i\geq 1}$ de variables aléatoires indépendantes et identiquement distribuées (i.i.d) suivant la loi de Bernoulli de paramètre p. L'évènement "la ième expérience est un succès" s'écrit alors $X_i=1$ et le rang de premier succès est donné par :

$$X = \inf\{i \ge 1; X_i = 1\}$$

Définition : loi Géométrique

On renouvelle une épreuve de Bernoulli de paramètre p d'une manière indépendante. On définit alors la variable aléatoire X associée au rang de premier succès. On dit que X suit la loi Géométrique de paramètres p et on note $X \sim \mathcal{G}(p)$.

Une telle suite se modélise à l'aide d'une suite $(X_i)_{i\geq 1}$ de variables aléatoires indépendantes et identiquement distribuées (i.i.d) suivant la loi de Bernoulli de paramètre p. L'évènement "la ième expérience est un succès" s'écrit alors $X_i=1$ et le rang de premier succès est donné par :

$$X = \inf\{i \ge 1; X_i = 1\}$$

- Valeurs possibles : $X(\Omega) = \mathbb{N}^*$.
- Loi de probabilité : $\forall k \in \mathbb{N}^*, \mathbb{P}(X = k) = (1 p)^{k-1}p$.
- Espérance/Variance : $\mathbb{E}(X) = \frac{1}{p}$ et $V(X) = \frac{1-p}{p^2}$.

Définition : loi de Poisson

On dit qu'une variable aléatoire X suit la loi de Poisson de paramètre $\lambda>0$ et on note $X\sim \mathcal{P}(\lambda)$ si et seulement si pour tout $k\in\mathbb{N}$, on a :

$$\mathbb{P}(X=k)=\frac{\lambda^k}{k!}\,\mathrm{e}^{-\lambda}\,.$$

Définition : loi de Poisson

On dit qu'une variable aléatoire X suit la loi de Poisson de paramètre $\lambda>0$ et on note $X\sim \mathcal{P}(\lambda)$ si et seulement si pour tout $k\in\mathbb{N}$, on a :

$$\mathbb{P}(X=k)=\frac{\lambda^k}{k!}\,\mathrm{e}^{-\lambda}\,.$$

- Valeurs possibles : $X(\Omega) = \mathbb{N}$.
- Loi de probabilité : $\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.
- Espérance/variance : $\mathbb{E}(X) = V(X) = \lambda$.

Définition : loi de Poisson

On dit qu'une variable aléatoire X suit la loi de Poisson de paramètre $\lambda > 0$ et on note $X \sim \mathcal{P}(\lambda)$ si et seulement si pour tout $k \in \mathbb{N}$, on a :

$$\mathbb{P}(X=k)=\frac{\lambda^k}{k!}\,e^{-\lambda}\,.$$

Propriétés

- Valeurs possibles : $X(\Omega) = \mathbb{N}$.
- Loi de probabilité : $\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.
- Espérance/variance : $\mathbb{E}(X) = V(X) = \lambda$.

Théorème: théorème d'approximation

Pour n assez grand et p assez faible (proche de 0), la loi binomiale $\mathcal{B}(n,p)$ peut être approchée par la loi de Poisson de paramètre $\lambda = np$.

Loi uniform

La loi uniforme est la loi exacte de phénomènes continus uniformément répartis sur un intervalle. Pour $a,b\in\mathbb{R}$, une variable aléatoire X dite suit la loi uniforme sur l'intervalle [a,b] si sa densité de probabilité est donnée par :

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a, b] \\ 0 & \text{sinon} \end{cases}$$

Loi uniform

La loi uniforme est la loi exacte de phénomènes continus uniformément répartis sur un intervalle. Pour $a,b\in\mathbb{R}$, une variable aléatoire X dite suit la loi uniforme sur l'intervalle [a,b] si sa densité de probabilité est donnée par :

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a, b] \\ 0 & \text{sinon} \end{cases}$$

- Espérance : $\mathbb{E}[X] = \frac{a+b}{2}$
- Variance : $\mathbb{V}[X] = \frac{(a-b)^2}{12}$
- Fonction de répartition :

$$F_X(x) = \begin{cases} 0 & \text{si } x \in]-\infty, a[\\ \frac{x-a}{b-a} & \text{si } x \in [a, b[\\ 1 & \text{si } x \in [b, +\infty[$$

Loi exponentielle

Une loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement. Pour λ un réel strictement positif, une variable aléatoire X dite suit une loi exponentielle de paramètre λ si sa densité de probabilité est donnée par :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \in [0, +\infty[\\ 0 & \text{sinon} \end{cases}$$

Loi exponentielle

Une loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement. Pour λ un réel strictement positif, une variable aléatoire X dite suit une loi exponentielle de paramètre λ si sa densité de probabilité est donnée par :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \in [0, +\infty[\\ 0 & \text{sinon} \end{cases}$$

- Espérance : $\mathbb{E}[X] = \frac{1}{\lambda}$
- variance : $\mathbb{V}[X] = \frac{1}{\lambda^2}$
- Fonction de répartition :

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \in [0, +\infty[\\ 0 & \text{sinon} \end{cases}$$

Loi normale

La loi est celle qui rend compte de diverses mesures d'une grandeur donnée, opérées à diverses reprises, chaque mesure étant sujette à des erreurs. Cette loi désigne la loi de certains phénomènes continus qui fluctuent autour d'une valeur moyenne μ , de manière aléatoire, résultante d'un grand nombre de causes indépendantes dont les effets s'ajoutent sans que l'un d'eux soient dominant : par exemple la taille d'un individu, influencée par le sexe, la nourriture, l'environnement, l'hérédité, le lieu géographique.

Pour $m \in \mathbb{R}$ et $\sigma > 0$, une variable aléatoire X dite suit la loi normale de moyenne m et de variance σ^2 si sa densité de probabilité est donnée par :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-1}{2}(\frac{x-m}{\sigma})^2}$$