Logique

Basé sur le cours de Natacha Portier Notes prises par Hugo Salou

Table des matières

Τ.	Le (caicui p	ropositionnei.	4			
	1.1	Syntax	xe	4			
	1.2		ntique	6			
2	La I	ogique	du premier ordre.	12			
	2.1	Les te	termes				
	2.2	Les fo	rmules	15			
	2.3	Les dé	émonstrations en déduction naturelle	18			
	2.4	La sér	nantique	20			
	2.5	Théor	ème de complétude de Gödel	31			
		2.5.1	Preuve du théorème de correction	33			
		2.5.2	Preuve du théorème de complétude	35			
		2.5.3	Compacité	42			
3	L'arithmétique de Peano.						
	3.1	Les ax	axiomes				
	3.2	Liens	s entre $\mathbb N$ et un modèle $\mathcal M$ de $\mathcal P$				
	3.3	Les fo	fonctions représentables				
	3.4		dabilité des théories consistantes contenant \mathcal{P}_0 5				
		3.4.1	Codage des suites d'entiers	59			
		3.4.2	Les termes	60			
		3.4.3	Les formules.	61			
		3.4.4	Opérations sur les formules	62			
		3.4.5	Codage des preuves	63			
		3.4.6	Codage des preuves en déduction naturelle	63			
		3.4.7	Théories (in)décidables				
	3.5	Théor	èmes d'incomplétude de Gödel				

Introduction.

Dans ce cours, on s'intéressera à quatre thèmes :

- ▷ la théorie des modèles (▷ les « vraies » mathématiques);
- ▷ la théorie de la démonstration (▷ les preuves);
- ▷ la théorie des ensembles (▷ les objets);
- ▷ les théorèmes de Gödel (▷ les limites).

On ne s'intéressera pas à la calculabilité, car déjà vu en cours de FDI. Ce cours peut être utile à ceux préparant l'agrégation d'informatique.

1 Le calcul propositionnel.

Le calcul propositionnel, c'est la « grammaire » de la logique. Dans ce chapitre, on s'intéressera à

- 1. la construction des formules (▷ la syntaxe);
- 2. la sémantique et les théorèmes de compacité (▷ la compacité sémantique).

1.1 Syntaxe.

Définition 1.1. Le *langage*, ou *alphabet*, est un ensemble d'éléments fini ou pas. Les éléments sont les *lettres*, et les suites finies sont les *mots*.

Définition 1.2. On choisit l'alphabet :

- $\triangleright \mathcal{P} = \{x_0, x_1, \ldots\}$ des variables propositionnelles;
- \triangleright un ensemble de connecteurs ou symboles logiques, défini par $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$, il n'y a pas \exists et \forall pour l'instant.
- ⊳ les parenthèses {(,)}.

Les formules logiques sont des mots. On les fabriques avec des briques de base (les variables) et des opérations de construction : si F_1 et F_2 sont deux formules, alors $\neg F$, $(F_1 \lor F_2)$, $(F_1 \land F_2)$, $(F_1 \to F_2)$ et $(F_1 \leftrightarrow F_2)$ aussi.

Définition 1.3 (« par le haut », « mathématique »). L'ensemble \mathcal{F} des formules du calcul propositionnel construit sur \mathcal{P} est le plus petit ensemble contenant \mathcal{P} et stable par les opérations de construction.

Définition 1.4 (« par le bas », « informatique »). L'ensemble F des formules logique du calcul propositionnel sur \mathcal{P} est défini par

$$\triangleright \, \mathcal{F}_0 = \mathcal{P} \, ;$$

$$\Rightarrow \mathscr{F}_0 = \mathscr{F};$$

$$\Rightarrow \mathscr{F}_{n+1} = \mathscr{F}_n \cup \left\{ \begin{array}{c} \neg F_1 \\ (F_1 \vee F_2) \\ (F_1 \wedge F_2) \\ (F_1 \to F_2) \\ (F_1 \leftrightarrow F_2) \end{array} \middle| F_1, F_2 \in \mathscr{F} \right\}$$

puis on pose $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$

On peut montrer l'équivalence des deux définitions.

Théorème 1.1 (Lecture unique). Toute formule $G \in \mathcal{F}$ vérifie une et une seule de ces propriétés :

- $\triangleright G \in \mathcal{P}$;
- \triangleright il existe $F \in \mathcal{F}$ telle que $G = \neg F$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \vee F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \land F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \to F_2)$;
- \triangleright il existe $F_1, F_2 \in \mathcal{F}$ telle que $G = (F_1 \leftrightarrow F_2)$.

Preuve. En exercice.

Corollaire 1.1. Il y a une bijection entre les formules et les arbres dont

- ▷ les feuilles sont étiquetés par des variables;
- ▶ les nœuds internes sont étiquetés par des connecteurs;
- ▷ ceux étiquetés par ¬ ont un fils, les autres deux.

Exemple 1.1. La formule $((\neg x_0 \lor x_1) \to ((x_0 \land x_2) \leftrightarrow x_3))$ correspond à l'arbre

1.2 Sémantique.

Lemme 1.1. Soit ν une fonction de \mathcal{P} dans $\{0,1\}$ appelé valuation. Alors ν s'étend de manière unique en une fonction $\bar{\nu}$ de \mathcal{F} dans $\{0,1\}$ telle que

$$\triangleright \operatorname{sur} \mathcal{P}, \ \nu = \bar{\nu};$$

 \triangleright si $F, G \in \mathcal{F}$ sont des formules alors

$$- \bar{\nu}(\neg F) = 1 - \bar{\nu}(F);$$

$$-\bar{\nu}(F \vee G) = 1 \text{ ssi } \bar{\nu}(F) = 1 \text{ ou }^1 \bar{\nu}(G) = 1;$$

$$- \bar{\nu}(F \wedge G) = \bar{\nu}(F) \times \bar{\nu}(G);$$

$$-\bar{\nu}(F \to G) = 1 \text{ ssi } \bar{\nu}(G) = 1 \text{ ou } \bar{\nu}(F) = 0;$$

$$-\bar{\nu}(F \leftrightarrow G) = 1 \text{ ssi } \bar{\nu}(F) = \bar{\nu}(G).$$

Par abus de notations, on notera ν pour $\bar{\nu}$ par la suite.

Preuve. Existence. On définit en utilisant le lemme de lecture unique, et par induction sur \mathcal{F} :

- $\triangleright \bar{\nu}$ est définie sur $\mathcal{F}_0 = \mathcal{P}$;
- \triangleright si $\bar{\nu}$ est définie sur \mathcal{F}_n alors pour $F \in \mathcal{F}_{n+1}$, on a la disjonction de cas
 - si $F = \neg G$ avec $G \in \mathcal{F}_n$, et on définit $\bar{\nu}(F) =$

^{1.} C'est un « ou » inclusif : on peut avoir les deux (ce qui est très différent du « ou » exclusif dans la langue française).

$$1 - \bar{\nu}(F_1)$$
;

- etc pour les autres cas.

Unicité. On montre que si $\lambda = \nu$ sur \mathcal{P} alors $\bar{\lambda} = \bar{\nu}$ si $\bar{\lambda}$ et ν vérifient les égalités précédents.

Exemple 1.2 (Table de vérité). Pour la formule

$$F = ((x_1 \to x_2) \to (x_2 \to x_1)),$$

on construit la table

x_1	0	0	1	1
$\overline{x_2}$	0	1	0	1
$x_1 \rightarrow x_2$	1	1	0	1
$x_2 \rightarrow x_1$	1	0	1	1
\overline{F}	1	0	1	1

Définition 1.5. \triangleright Une formule F est dite satisfaite par une valuation ν si $\nu(F) = 1$.

- ▷ Une *tautologie* est une formule satisfaite pour toutes les valuations.
- \triangleright Un ensemble $\mathscr E$ de formules est *satisfiable* s'il existe une valuation qui satisfait toutes les formules de $\mathscr E$.
- ▷ Un ensemble & de formules est *finiment satisfiable* si tout sous-ensemble fini de & est satisfiable.
- \triangleright Une formule Fest cons 'equences 'emantique d'un ensemble de formules $\mathscr E$ si toute valuation qui satisfait $\mathscr E$ satisfait F.
- $\,\,{}^{\triangleright}\,$ Un ensemble de formules & est contradictoire s'il n'est pas satisfiable.
- ▶ Un ensemble de formules & est finiment contradictoire s'il existe un sous-ensemble fini contradictoire de &.

Théorème 1.2 (compacité du calcul propositionnel). On donne trois énoncés équivalents (équivalence des trois énoncés laissé en exercice) du théorème de compacité du calcul propositionnel.

- **Version 1.** Un ensemble de formules $\mathscr E$ est satisfiable si et seulement s'il est finiment satisfiable.
- **Version 2.** Un ensemble de formules & est contradictoire si et seulement s'il est finiment contradictoire.
- **Version 3.** Pour tout ensemble $\mathscr E$ de formules du calcul propositionnel, et toute formule F, F est conséquence sémantique de $\mathscr E$ si et seulement si F est conséquence sémantique d'un sous-ensemble fini de $\mathscr E$.

Preuve. Dans le cas où $\mathcal{P} = \{x_0, x_1, \ldots\}$ est au plus dénombrable (le cas non dénombrable sera traité après). On démontre le cas « difficile » de la version 1 (*i.e.* finiment satisfiable implique satisfiable). Soit \mathscr{E} un ensemble de formules finiment satisfiable. On construit par récurrence une valuation ν qui satisfasse \mathscr{E} par récurrence : on construit $\varepsilon_0, \ldots, \varepsilon_n, \ldots$ tels que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n, \ldots$

- \triangleright Cas de base. On définit la valeur de ε_n pour $x_0 \in \mathcal{P}$.
 - 1. soit, pour tout sous-ensemble fini B de \mathscr{E} , il existe une valuation λ qui satisfait B avec $\lambda(x_0) = 0$;
 - 2. soit, il existe un sous-ensemble fini B_0 de \mathscr{E} , pour toute valuation λ qui satisfait B_0 , on a $\lambda(x_0) = 1$.

Si on est dans le cas 1, on pose $\varepsilon_0 = 0$, et sinon (cas 2) on pose $\varepsilon_0 = 1$.

 $\,\triangleright\,$ Cas de récurrence. On montre, par récurrence sur n, la propriété suivante :

il existe une suite $\varepsilon_0, \ldots, \varepsilon_n$ (que l'on étend, la suite ne change pas en fonction de n) de booléens telle que, pour tout sous-ensemble fini B de $\mathscr E$, il existe une valuation ν satisfaisant B et telle que $\nu(x_0) = \varepsilon_0, \ldots$, et $\nu(x_n) = \varepsilon_n$.

- Pour n=0, soit on est dans le cas 1, et on prend $\varepsilon_0=0$ et on a la propriété; soit on est dans le cas 2;, et on prend B un sous-ensemble fini de \mathscr{E} , alors $B \cup B_0$ est un ensemble fini donc satisfiable par une valuation ν . La valuation satisfait B_0 donc $\nu(x_0)=1$ et ν satisfait B. On a donc la propriété au rang 0.
- Hérédité. Par hypothèse de récurrence, on a une suite $\varepsilon_0, \ldots, \varepsilon_n$.
 - 1. Soit, pour tout sous-ensemble fini B de \mathscr{E} , il existe ν qui satisfait B et telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, et $\nu(x_{n+1}) = 0$. On pose $\varepsilon_{n+1} = 0$.
 - 2. Soit il existe B_{n+1} un sous-ensemble fini de $\mathscr E$ tel que, pour toute valuation ν telle que ν satisfait B_{n+1} et $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, on a $\nu(x_{n+1}) = 1$ et on pose $\varepsilon_{n+1} = 1$.

Montrons l'hérédité:

- 1. vrai par définition;
- 2. soit B un sous-ensemble fini de \mathscr{E} . On considère $B \cup B_{n+1}$, soit ν telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$. On a que ν satisfait B_{n+1} donc $\nu(x_{n+1}) = 1 = \varepsilon_{n+1}$ et ν satisfait B.

On a donc la propriété pour tout n.

Finalement, soit δ une valuation telle que, pour tout i, $\delta(x_i) = \varepsilon_i$. Montrons que δ satisfait $\mathscr E$. Soit $F \in \mathscr E$. On sait que F est un mot (fini), donc contient un ensemble fini de variables inclus dans $\{x_0, \ldots, x_n\}$. D'après la propriété par récurrence au rang n, il existe une valuation ν qui satisfait F et telle que $\nu(x_0) = \varepsilon_0, \ldots, \nu(x_n) = \varepsilon_n$, et donc ν et δ coïncident sur les variables de F. Donc (lemme simple), elles coïncident sur toutes les formules qui n'utilisent que ces variables. Donc, $\delta(F) = 1$, et on en conclut que δ satisfait $\mathscr E$.

Dans le cas non-dénombrable, on utilise le lemme de Zorn, un équivalent de l'axiome du choix.

Définition 1.6. Un ensemble ordonné (X, \mathcal{R}) est inductif si pour tout sous-ensemble Y de X totalement ordonné par \mathcal{R} (*i.e.* une chaîne) admet un majorant dans X.

Remarque 1.1. On considère ici un majorant et non un plus grand élément (un maximum).

- **Exemple 1.3.** 1. Dans le cas $(\mathcal{P}(X), \subseteq)$, le majorant est l'union des parties de la chaîne, il est donc inductif.
 - 2. Dans le cas (\mathbb{R}, \leq) , il n'est pas inductif car \mathbb{R} n'a pas de majorant dans \mathbb{R} .

Lemme 1.2 (Lemme de Zorn). Si (X, \mathcal{R}) est un ensemble ordonné inductif non-vide, il admet au moins un élément maximal.

Remarque 1.2. Un élément maximal n'est pas nécessairement le plus grand.

Preuve. Soit $\mathscr E$ un ensemble de formules finiment satisfiable, et $\mathscr P$ un ensemble de variables. On note $\mathscr V$ l'ensemble des valuations partielles prolongeables pour toute partie finie $\mathscr E$ de $\mathscr E$ en une valuation satisfaisant $\mathscr E$. C'est-à-dire :

$$\mathcal{V} := \left\{ \left. \varphi \in \bigcup_{X \subseteq \mathcal{P}} \{0,1\}^X \, \right| \, \forall \mathcal{C} \in \wp_{\mathrm{f}}(\mathcal{C}), \exists \delta \in \{0,1\}^{\mathcal{P}}, \ \, \substack{\delta_{|\mathrm{dom}(\varphi)} = \varphi \\ \forall F \in \mathcal{C}, \delta(F) = 1} \, \right\}.$$

L'ensemble $\mathcal V$ est non-vide car contient l'application vide de $\{0,1\}^\emptyset$ car $\mathcal E$ est finiment satisfiable. On défini la relation

d'ordre \leq sur \mathcal{V} par :

$$\varphi \preccurlyeq \psi$$
 ssi ψ prolonge φ .

Montrons que (\mathcal{V}, \preceq) est inductif. Soit \mathscr{C} une chaîne de \mathscr{V} et construisons un majorant de \mathscr{C} . Soit λ la valuation partielle définie sur dom $\lambda = \bigcup_{\varphi \in \mathscr{C}} \operatorname{dom} \varphi$, par : si $x_i \in \operatorname{dom} \lambda$ alors il existe $\varphi \in \mathscr{C}$ tel que $x_i \in \operatorname{dom} \varphi$ et on pose $\lambda(x_i) = \varphi(x_i)$.

La valuation λ est définie de manière unique, *i.e.* ne dépend pas du choix de φ . En effet, si $\varphi \in \mathscr{C}$ et $\psi \in \mathscr{C}$, avec $x_i \in \text{dom } \varphi \cap \text{dom } \psi$, alors on a $\varphi \preccurlyeq \psi$ ou $\psi \preccurlyeq \varphi$, donc $\varphi(x_i) = \psi(x_i)$.

Autrement dit, λ est la limite de \mathscr{C} . Montrons que $\lambda \in \mathscr{V}$. Soit B une partie finie de \mathscr{C} . On cherche μ qui prolonge λ et satisfait B. L'ensemble de formules B est fini, donc utilise un ensemble fini de variables, dont un sous-ensemble fini $\{x_{i_1},\ldots,x_{i_n}\}\subseteq \mathrm{dom}(\lambda)$. Il existe $\varphi_1,\ldots,\varphi_n$ dans \mathscr{C} telle que $x_{i_1}\in \mathrm{dom}\,\varphi_1,\ldots,x_{i_n}\in \mathrm{dom}\,\varphi_n$. Comme \mathscr{C} est une chaîne, donc soit $\varphi_0=\max_{i\in [\![1,n]\!]}\varphi_i$ et on a $\varphi_0\in \mathscr{C}$. On a, de plus, $x_{i_1},\ldots,x_{i_n}\in \mathrm{dom}(\varphi_0)$. Soit $\varphi_0\in \mathscr{V}$ prolongeable en ψ_0 qui satisfait B. On définit :

$$\mu: \mathcal{P} \longrightarrow \{0, 1\}$$

$$x \in \operatorname{dom} \lambda \longmapsto \lambda(x)$$

$$x \in \operatorname{var} B \longmapsto \psi_0(x)$$

$$\operatorname{sinon} \longmapsto 0.$$

On vérifie que la définition est cohérente sur l'intersection car λ et ψ_0 prolongent tous les deux φ_0 et donc $\lambda \in \mathcal{V}$ d'où \mathcal{V} est inductif.

Suite la preuve plus tard.

2 La logique du premier ordre.

2.1 Les termes.

On commence par définir les *termes*, qui correspondent à des objets mathématiques. Tandis que les formules relient des termes et correspondent plus à des énoncés mathématiques.

Définition 2.1. Le langage \mathcal{L} (du premier ordre) est la donnée d'une famille (pas nécessairement finie) de symboles de trois sortes :

- \triangleright les symboles de *constantes*, notées c;
- \triangleright les symboles de fonctions, avec un entier associé, leur arité, notées $f(x_1, \ldots, x_n)$ où n est l'arité;
- \triangleright les symboles de relations, avec leur arité, notées R, appelés prédicats.

Les trois ensembles sont disjoints.

Remarque 2.1.

Les constantes peuvent être vues comme des fonctions d'arité 0.

- \triangleright On aura toujours dans les relations : « = » d'arité 2, et « \bot » d'arité 0.
- $\,\,{\triangleright}\,\,$ On a toujours un ensemble de variables $\mathcal{V}.$

Exemple 2.1. Le langage \mathcal{L}_g de la théorie des groupes est défini par :

 \triangleright une constante : c,

- \triangleright deux fonctions : f_1 d'arité 2 et f_2 d'arité 1;
- \triangleright la relation =.

Ces symboles sont notés usuellement $e, *, \square^{-1}$ ou bien 0, +, -.

Exemple 2.2. Le langage \mathcal{L}_{co} des corps ordonnés est défini par :

- \triangleright deux constantes 0 et 1,
- \triangleright quatre fonctions $+, \times, -$ et \square^{-1} ,
- \triangleright deux relations = et \leq .

Exemple 2.3. Le langage \mathcal{L}_{ens} de la théorie des ensembles est défini par :

- $\begin{tabular}{ll} $ \triangleright$ une constante \emptyset, \\ $ \triangleright$ trois fonctions \cap, \cup et \square^c, \\ \end{tabular}$
- \triangleright trois relations =, \in et \subseteq .

Définition 2.2. Par le haut. L'ensemble $\mathcal T$ des termes sur le langage \mathcal{L} est le plus petit ensemble de mots sur $\mathcal{L} \cup \mathcal{V} \cup$ $\{(,),,\}$ tel

- ▷ qu'il contienne 𝒯 et les constantes;
- dire que pour des termes t_1, \ldots, t_n et un symbole de fonction f d'arité n, alors $f(t_1,\ldots,t_n)$ est un terme. ¹

Par le bas. On pose

$$\mathcal{T}_0 = \mathcal{V} \cup \{c \mid c \text{ est un symbole de constante de } \mathcal{L}\},$$

puis

$$\mathfrak{T}_{k+1} = \mathfrak{T}_k \cup \left\{ f(t_1, \dots t_n) \middle| \begin{array}{c} f \text{ fonction d'arité } n \\ t_1, \dots, t_n \in \mathfrak{T}_k \end{array} \right\},$$

et enfin

$$\mathfrak{T} = \bigcup_{n \in \mathbb{N}} \mathfrak{T}_n.$$

Remarque 2.2. Dans la définition des termes, un n'utilise les relations.

Exemple 2.4. \triangleright Dans \mathcal{L}_g , $*(*(x, \square^{-1}(y)), e)$ est un terme, qu'on écrira plus simplement en $(x * y^{-1}) * e$.

- \triangleright Dans \mathcal{L}_{co} , $(x+x)+(-0)^{-1}$ est un terme.
- \triangleright Dans \mathscr{L}_{ens} , $(\emptyset^{\mathsf{c}} \cup \emptyset) \cap (x \cup y)^{\mathsf{c}}$ est un terme.

Définition 2.3. Si t et u sont des termes et x est une variable, alors t[x:u] est le mot dans lequel les lettres de x ont été remplacées par le mot u. Le mot t[x:u] est un terme (preuve en exercice).

Exemple 2.5. Avec $t = (x * y^{-1}) * e$ et u = x * e, alors on a

$$t[x:u] = ((x*e)*y^{-1})*e.$$

Définition 2.4. \triangleright Un terme *clos* est un terme sans variable (par exemple $(0+0)^{-1}$).

- \triangleright La hauteur d'un terme est le plis petit k tel que $t \in \mathcal{T}_k$.
- Exercice 2.1.

 Enoncer et prouver le lemme de lecture unique pour les termes.
 - ▶ Énoncer et prouver un lemme de bijection entre les termes et un ensemble d'arbres étiquetés.

^{1.} Attention : le « ... » n'est pas un terme mais juste une manière d'écrire qu'on place les termes à côté des autres.

2.2 Les formules.

Définition 2.5. \triangleright Les formules sont des mots sur l'alphabet

$$\mathcal{L} \cup \mathcal{V} \cup \{(,),,\exists,\forall,\wedge,\vee,\neg,\rightarrow\}.$$

- Une formule atomique est une formule de la forme $R(t_1, \ldots, t_n)$ où R est un symbole de relation d'arité n et t_1, \ldots, t_n des termes.
- ightharpoonup L'ensemble des formules ${\mathcal F}$ du langage ${\mathcal L}$ est défini par
 - on pose \mathcal{F}_0 l'ensemble des formules atomiques;

- on pose
$$\mathcal{F}_{k+1} = \mathcal{F}_k \cup \left\{ \begin{array}{c} (\neg F) \\ (F \to G) \\ (F \lor G) \\ (F \land G) \\ \exists x \ F \\ \exists x \ G \end{array} \right| \left. \begin{array}{c} F, G \in \mathcal{F}_k \\ x \in \mathcal{V} \end{array} \right\};$$

– et on pose enfin $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$.

Exercice 2.2. La définition ci-dessus est « par le bas ». Donner une définition par le haut de l'ensemble \mathcal{F} .

Exemple 2.6. \triangleright Dans \mathcal{L}_g , un des axiomes de la théorie des groupes s'écrit

$$\forall x \, \exists x \, (x * y = e \wedge y * x = e).$$

 \triangleright Dans \mathcal{L}_{co} , l'énoncé « le corps est de caractéristique 3 » s'écrit

$$\forall x (x + (x + x) = 0).$$

 \triangleright Dans \mathcal{L}_{ens} , la loi de De Morgan s'écrit

$$\forall x \,\forall y \,(x^{\mathsf{c}} \cup y^{\mathsf{c}} = (x \cap y)^{\mathsf{c}}).$$

Exercice 2.3. Donner et montrer le lemme de lecture unique.

▶ Énoncer et donner un lemme d'écriture en arbre.

Remarque 2.3 (Conventions d'écriture.). On note :

- $\triangleright x \leq y$ au lieu de $\leq (x, y)$;
- $\Rightarrow \exists x \geq 0 \ (F) \text{ au lieu de } \exists x \ (x \geq 0 \land F);$
- $\forall x \geq 0 \ (F)$ au lieu de $\forall x \ (x \geq 0 \rightarrow F)$;
- $\triangleright A \leftrightarrow B$ au lieu de $(A \to B) \land (B \to A)$;
- $\triangleright t \neq u$ au lieu de $\neg (t = u)$.

On enlèves les parenthèses avec les conventions de priorité

- 0. les symboles de relations (le plus prioritaire);
- 1. les symboles \neg , \exists , \forall ;
- 2. les symboles \land et \lor ;
- 3. le symbole \rightarrow (le moins prioritaire).

Exemple 2.7. Ainsi, $\forall x \ A \land B \rightarrow \neg C \lor D$ s'écrit

$$(((\forall x \ A) \land B) \to ((\neg C) \lor D)).$$

Remarque 2.4. Le calcul propositionnel est un cas particulier de la logique du premier ordre où l'on ne manipule que des relations d'arité 0 (pas besoin des fonctions et des variables) : les « variables » du calcul propositionnel sont des formules atomiques ; et on n'a pas de relation « = ».

Remarque 2.5. On ne peut pas exprimer *a priori*:

- $\triangleright \, \, \langle \, \exists n \, \exists x_1 \dots \exists x_n \, \rangle \,$ une formule qui dépend d'un paramètre ;
- ▷ le principe de récurrence : si on a $\mathcal{P}(0)$ pour une propriété \mathcal{P} et que si $\mathcal{P}(n) \to \mathcal{P}(n+1)$ alors on a $\mathcal{P}(n)$ pour tout n.

Quelques définitions techniques qui permettent de manipuler les formules.

Définition 2.6. L'ensemble des sous-formules de F, noté $\mathrm{S}(F)$ est défini par induction :

- \triangleright si F est atomique, alors on définit $S(F) = \{F\}$;
- \triangleright si $F = F_1 \oplus F_2$ (avec \oplus qui est \lor , \rightarrow ou \land) alors on définit $S(F) = S(F_1) \cup S(F_2) \cup \{F\}$;
- \triangleright si $F = \neg F_1$, ou $F = \mathbf{Q}x F_1$ avec $\mathbf{Q} \in \{\forall, \exists\}$, alors on définit $S(F) = S(F_1) \cup \{F\}$.

C'est l'ensemble des formules que l'on voit comme des sous-arbres de l'arbre équivalent à la formule F.

Définition 2.7. \triangleright La *taille* d'une formule, est le nombre de connecteurs $(\neg, \lor, \land, \rightarrow)$, et de quantificateurs (\forall, \exists) .

- ▷ La racine de l'arbre est
 - rien su la formule est atomique;
 - \oplus si $F = F_1 \oplus F_2$ avec \oplus un connecteur (binaire ou unaire);
 - $\ll Q \gg \text{si } F = Qx F_1 \text{ avec } Q \text{ un quantificateur.}$

Définition 2.8. \triangleright Une occurrence d'une variable est un endroit où la variable apparait dans la formule (*i.e.* une feuille étiquetée par cette variable).

- \triangleright Une occurrence d'une variable est *liée* si elle se trouve dans une sous-formule dont l'opérateur principal est un quantificateur appelé à cette variable (*i.e.* un $\forall x \ F'$ ou un $\exists x \ F'$).
- ightharpoonup Une occurrence d'une variable est libre quand elle n'est pas liée.
- ▷ Une variable est libre si elle a au moins une occurrence libre, sinon elle est liée.

^{2.} En dehors de \mathcal{L}_{ens} , en tout cas.

Remarque 2.6. On note $F(x_1, \ldots, x_n)$ pour dire que les variables libres sont F sont parmi $\{x_1, \ldots, x_n\}$.

Définition 2.9. Une formule est *close* si elle n'a pas de variables libres.

Définition 2.10 (Substitution). On note F[x:=t] la formule obtenue en remplaçant toutes les occurrences libres de x par t, après renommage éventuel des occurrences des variables liées de F qui apparaissent dans t.

Définition 2.11 (Renommage). On donne une définition informelle et incomplète ici. On dit que les formules F et G sont α -équivalentes si elle sont syntaxiquement identiques à un renommage près des occurrences liées des variables.

Exemple 2.8. On pose

$$F(x,z) := \forall y (x * y = y * z) \land \forall x (x * x = 1),$$

et alors

- $\begin{array}{l} \rhd \ F(z,z) = F[x:=z] = \forall y \ (z*y=y*z) \land \forall x \ (x*x=1) \ ; \\ \rhd \ F(y^{-1},x) = F[x:=y^{-1}] = \forall {\color{blue} u}(y^{-1}*{\color{blue} u} = {\color{blue} u}*z) \land \forall x (x*x=1). \end{array}$

On a procédé à un renommage de y à $\frac{\mathbf{u}}{\mathbf{v}}$.

2.3 Les démonstrations en déduction naturelle.

Définition 2.12. Un séquent est un coupe noté $\Gamma \vdash F$ (où \vdash se lit « montre » ou « thèse ») tel que Γ est un ensemble fini de formules appelé contexte (i.e. l'ensemble des hypothèses), la formule F est la conséquence du séquent.

Remarque 2.7. Les formules ne sont pas nécessairement closes. Et on note souvent Γ comme une liste.

Définition 2.13. On dit que $\Gamma \vdash F$ est *prouvable*, *démontrable* ou *dérivable*, s'il peut être obtenu par une suite finie de règles (*c.f.* ci-après). On dit qu'une formule F est *prouvable* si $\emptyset \vdash F$ l'est.

Définition 2.14 (Règles de la démonstration). Une règle s'écrit

 $\frac{pr\acute{e}misses: des s\'{e}quents}{conclusion: un s\'{e}quent}$ nom de la r\'{e}gle

Axiome.

$$\overline{\Gamma, A \vdash A}$$
 ax

Affaiblissement.

$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff }$$

Implication.

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_{\mathsf{i}} \qquad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to_{\mathsf{e}} {}^{3}$$

Conjonction.

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ \land_{\mathsf{i}} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ \lor^{\mathsf{g}}_{\mathsf{e}} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ \lor^{\mathsf{d}}_{\mathsf{e}}$$

Disjonction.

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \,\,\vee_{\mathsf{i}}^{\mathsf{g}} \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \,\,\vee_{\mathsf{i}}^{\mathsf{d}}$$

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} \ \lor_{\mathbf{e}}^{4}.$$

Négation.

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \neg_{\mathsf{i}} \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \neg_{\mathsf{e}}$$

Absurdité classique.

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \perp_{\mathsf{e}}$$

(En logique intuitionniste, on retire l'hypothèse $\neg A$ dans la prémisse.)

Quantificateur universel.

$$\begin{array}{ccc}
& \text{si } x \text{ n'est pas libre} \\
& \text{dans les formules de } \Gamma & \frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \forall_{i}
\end{array}$$

$$\begin{array}{c} \text{quitte à renommer les} \\ \text{variables liées de } A \text{ qui} \\ \text{apparaissent dans } t \end{array} \quad \frac{\Gamma \vdash \forall x \; A}{\Gamma \vdash A[x := t]} \; \forall_{\mathbf{e}}$$

Quantificateur existentiel.

$$\frac{\Gamma \vdash A[x := t]}{\Gamma \vdash \exists x \ A} \ \exists_{\mathsf{i}}$$

avec
$$x$$
 ni libre dans C ou dans les formules de Γ

$$\frac{\Gamma \vdash \exists x \ A \qquad \Gamma, A \vdash C}{\Gamma \vdash C} \ \exists_{\mathsf{e}}$$

2.4 La sémantique.

Définition 2.15. Soit $\mathcal L$ un langage de la sémantique du premier ordre. On appelle interprétation (ou modèle, ou structure) du langage $\mathcal L$ l'ensemble $\mathcal M$ des données suivantes :

 \triangleright un ensemble non vide, noté $|\mathcal{M}|$, appelé domaine ou ensemble de base de \mathcal{M} ;

^{3.} Aussi appelée modus ponens

^{4.} C'est un raisonnement par cas

- \triangleright pour chaque symbole c de constante, un élément $c_{\mathcal{M}}$ de $|\mathcal{M}|$;
- ho pour chaque symbole f de fonction n-aire, une fonction $f_{\mathcal{M}}: |\mathcal{M}|^n \to |\mathcal{M}|$;
- \triangleright pour chaque symbole R de relation n-aire (sauf pour l'égalité « = »), un sous-ensemble $R_{\mathcal{M}}$ de $|\mathcal{M}|^n$.

Remarque 2.8. \triangleright La relation « = » est toujours interprétée par la vraie égalité :

$$\{(a,a) \mid a \in |\mathcal{M}|\}.$$

- \triangleright On note, par abus de notation, \mathcal{M} pour $|\mathcal{M}|$.
- $\triangleright \text{ Par convention, } |\mathcal{M}|^0 = \{\emptyset\}.$

Exemple 2.9. Avec $\mathcal{L}_{corps} = \{0, 1, +, \times, -, \square^{-1}\}$, on peut choisir

- $\triangleright |\mathcal{M}| = \mathbb{R} \text{ avec } 0_{\mathbb{R}}, 1_{\mathbb{R}}, +_{\mathbb{R}}, \times_{\mathbb{R}}, -_{\mathbb{R}} \text{ et } \square_{\mathbb{R}}^{-1};$
- \triangleright ou $|\mathcal{M}| = \mathbb{R}$ avec $2_{\mathbb{R}}, 2_{\mathbb{R}}, -_{\mathbb{R}}, +_{\mathbb{R}}, etc.$

Définissions la vérité.

Définition 2.16. Soit \mathcal{M} une interprétation de \mathcal{L} .

- \triangleright Un environnement est une fonction de l'ensemble des variables dans $|\mathcal{M}|$.
- \triangleright Si e est un environnement et $a \in |\mathcal{M}|$, on note e[x := a] l'environnement e' tel que e'(x) = a et pour $y \neq x$, e(y) = e'(y).
- \triangleright La valeur d'un terme t dans l'environnement e, noté $\operatorname{Val}_{\mathcal{M}}(t,e)$, est définie par induction sur l'ensemble des termes de la façon suivante :
 - $Va\ell_{\mathcal{M}}(c,e) = c_{\mathcal{M}}$ si c est une constante;
 - $Val_{\mathcal{M}}(c, e) = e(x)$ si x est une variable;
 - $\operatorname{Val}_{\operatorname{M}}(f(t_1,\ldots,t_n),e) = f_{\operatorname{M}}(\operatorname{Val}_{\operatorname{M}}(t_1,e),\ldots,\operatorname{Val}_{\operatorname{M}}(t_n,e)).$

Remarque 2.9. La valeur est $\operatorname{Val}_{\mathcal{M}}(t,e)$ est un élément de $|\mathcal{M}|$.

Exemple 2.10. Dans $\mathcal{L}_{arith} = \{0, 1, +, \times\}$, avec le modèle

$$\mathcal{M}: \mathbb{N}, 0_{\mathbb{N}}, 1_{\mathbb{N}}, +_{\mathbb{N}}, \times_{\mathbb{N}},$$

et l'environnement

$$e: x_1 \mapsto 2_{\mathbb{N}} \quad x_2 \mapsto 0_{\mathbb{N}} \quad x_3 \mapsto 3_{\mathbb{N}},$$

alors la valeur du terme $t := (1 \times x_1) + (x_2 \times x_3) + x_2$ est $2_{\mathbb{N}} = (1 \times 2) + (0 \times 3) + 0$.

Lemme 2.1. La valeur $\operatorname{Val}_{\mathcal{M}}(t,e)$ ne dépend que de la valeur de e sur les variables de t.

- **Notation.** \triangleright Lorsque cela est possible, on oublie \mathcal{M} et e dans la notation, et on note $\mathcal{V}a\ell(t)$.
 - \triangleright À la place de $\operatorname{Val}_{\mathcal{M}}(t,e)$ quand x_1,\ldots,x_n sont les variables de t et $e(x_1)=a_1,\ldots,e(x_n)=a_n$, on note $t[a_1,\ldots,a_n]$ ou aussi $t[x_1:=a_1,\ldots,x_n:=a_n]$. C'est un terme à paramètre, mais attention ce n'est **ni un terme**, **ni une substitution**.

Définition 2.17. Soit \mathcal{M} une interprétation d'un langage \mathcal{L} . La valeur d'une formule F de \mathcal{L} dans l'environnement e est un élément de $\{0,1\}$ noté $\operatorname{Val}_{\mathcal{M}}(F,e)$ et définie par induction sur l'ensemble des formules par

```
\triangleright \operatorname{Val}_{\mathcal{M}}(R(t_1,\ldots,t_n),e) = 1 \operatorname{ssi}\left(\operatorname{Val}_{\mathcal{M}}(t_1,e),\ldots,\operatorname{Val}_{\mathcal{M}}(t_n,e)\right) \in R_{\mathcal{M}};
```

$$\triangleright \operatorname{Val}_{\mathcal{M}}(\neg F, e) = 1 - \operatorname{Val}_{\mathcal{M}}(F, e);$$

$$\quad \qquad \forall \text{$d\ell_{\mathcal{M}}(F \wedge G, e) = 1$ ssi $Va\ell_{\mathcal{M}}(F, e) = 1$ et $Va\ell_{\mathcal{M}}(G, e) = 1$};$$

$$\quad \qquad \forall \text{$d\ell_{\mathcal{M}}(F \vee G,e) = 1$ ssi $\forall \text{$d\ell_{\mathcal{M}}(F,e) = 1$ ou $} \forall \text{$d\ell_{\mathcal{M}}(G,e) = 1$;}$$

$$\quad \ \, \forall \! \mathit{Al}_{\mathcal{M}}(F \to G, e) = 1 \; \mathrm{ssi} \; \forall \! \mathit{Al}_{\mathcal{M}}(F, e) = 0 \; \mathrm{ou} \; \forall \! \mathit{Al}_{\mathcal{M}}(G, e) = 1 \, ;$$

$$\quad \qquad \forall a \ell_{\mathcal{M}}(\forall x \, F, e) = 1 \text{ ssi pour tout } a \in |\mathcal{M}|, \, \forall a \ell_{\mathcal{M}}(F, e[x := a]) = 1 \, ;$$

 $[\]triangleright \operatorname{Val}_{\mathcal{M}}(\bot, e) = 0;$

 $\triangleright \text{ Val}_{\mathcal{M}}(\exists x \, F, e) = 1 \text{ ssi il existe } a \in |\mathcal{M}|, \text{ Val}_{\mathcal{M}}(F, e[x := a]) = 1.$

Remarque 2.10. Donse débrouille pour que les connecteurs aient leur sens courant, les « mathématiques naïves ».

- $\,\triangleright\,$ Dans le cas du calcul propositionnel, si R est d'arité 0, i.e.une variable propositionnelle, comme $|\mathcal{M}|^0 = \{\emptyset\}$ alors on a deux possibilité:
 - ou bien $R = \emptyset$, et alors on convient que $\operatorname{Val}_{\mathcal{M}}(R, e) =$
 - ou bien $R = \{\emptyset\}$, et alors on convient que $\operatorname{Va\ell}_{\operatorname{M}}(R, e) =$

Remarque 2.11. On verra plus tard qu'on peut construire les entiers avec

- $\triangleright 0:\emptyset,$
- $\triangleright 1: \{\emptyset\},$
- $\triangleright \ 2: \{\emptyset, \{\emptyset\}\},\$
- $\begin{tabular}{ll} \rhd & \vdots & \vdots \\ \rhd & n+1: n \cup \{n\}, \end{tabular}$

Notation. À la place de $Val_{\mathcal{M}}(F,e) = 1$, on notera $\mathcal{M}, e \models F$ ou bien $\mathcal{M} \models F$. On dit que \mathcal{M} satisfait F, que \mathcal{M} est un modèle de F(dans l'environnement e), que F est est vraie dans \mathcal{M} .

Lemme 2.2. La valeur $Val_{\mathcal{M}}(F,e)$ ne dépend que de la valeur de e sur les variables libres de F.

Preuve. En exercice.

Corollaire 2.1. Si F est close, alors $Val_{\mathcal{M}}(F,e)$ ne dépend pas de e et on note $\mathcal{M} \models F$ ou $\mathcal{M} \not\models F$.

Remarque 2.12. Dans le cas des formules closes, on doit passer un environnement à cause de \forall et \exists .

Notation. On note $F[a_1, \ldots, a_n]$ pour $Val_{\mathcal{M}}(F, e)$ avec $e(x_1) = a_1, \ldots, e(x_n) = a_n$. C'est une formule à paramètres, mais ce n'est **pas** une formule.

Exemple 2.11. Dans $\mathcal{L} = \{S\}$ où S est une relation binaire, on considère deux modèles :

$$\triangleright \mathcal{N} : |\mathcal{N}| = \mathbb{N} \text{ avec } S_{\mathcal{N}} = \{(x, y) \mid x < y\},\$$

$$\triangleright \Re : |\Re| = \mathbb{R} \text{ avec } S_{\Re} = \{(x, y) \mid x < y\};$$

et deux formules

$$\triangleright F = \forall x \, \forall y \, (S \, x \, y \to \exists z \, (S \, x \, z \land S \, z \, y)),$$

alors on a

$$\mathcal{N} \not\models F \quad \mathcal{R} \models F \quad \mathcal{N} \models G \quad \mathcal{R} \not\models G.$$

En effet, la formule F représente le fait d'être un ordre dense, et G d'avoir un plus petit élément.

Définition 2.18. Dans un langage \mathcal{L} , une formule F est un théorème (logique) si pour toute structure \mathcal{M} et tout environnement e, on a $\mathcal{M}, e \models F$.

Exemple 2.12. Quelques théorèmes simples : $\forall x \neg \bot$, et $\forall x \, x = x$ et même x = x car on ne demande pas que la formule soit clause.

Dans $\mathcal{L}_{\mathbf{g}} = \{e, *, \square^{-1}\}$, on considère deux formules

$$F = \forall x \, \forall y \, \forall z \, ((x * (y * z) = (x * y) * z) \land x * e = e * x = x \land \exists t \, (x * t = e \land t * x = e));$$

$$\triangleright$$
 et $G = \forall e' = \forall e' \ (\forall x \ (x * e' = e' * x = x) \rightarrow e = e').$

Aucun des deux n'est un théorème (il n'est vrai que dans les groupes pour F (c'est même la définition de groupe) et dans les monoïdes pour G (unicité du neutre)), mais $F \to G$ est un théorème logique.

Définition 2.19. Soient \mathcal{L} et \mathcal{L}' deux langages. On dit que \mathcal{L}' enrichit \mathcal{L} ou que \mathcal{L} est une restriction de \mathcal{L}' si $\mathcal{L} \subseteq \mathcal{L}'$.

Dans ce cas, si \mathcal{M} est une interprétation de \mathcal{L} , et si \mathcal{M}' est une interprétation de \mathcal{L}' alors on dit que \mathcal{M}' est un enrichissement de \mathcal{M} ou que \mathcal{M} est une restriction de \mathcal{M}' ssi $|\mathcal{M}| = |\mathcal{M}'|$ et chaque symbole de \mathcal{L} a la même interprétation dans \mathcal{M} et \mathcal{M}' , i.e. du point de vue de \mathcal{L} , \mathcal{M} et \mathcal{M}' sont les mêmes.

Exemple 2.13. Avec $\mathcal{L} = \{e, *\}$ et $\mathcal{L}' = \{e, *, \square^{-1}\}$ alors \mathcal{L}' est une extension de \mathcal{L} . On considère

$$\triangleright \mathcal{M}: \quad |\mathcal{M}| = \mathbb{Z} \quad e_{\mathcal{M}} = 0_{\mathbb{Z}} \quad *_{\mathcal{M}} = +_{\mathbb{Z}};$$

$$\begin{array}{lll} \triangleright \ \mathcal{M}: & |\mathcal{M}| = \mathbb{Z} & e_{\mathcal{M}} = 0_{\mathbb{Z}} & *_{\mathcal{M}} = +_{\mathbb{Z}}; \\ \triangleright \ \mathcal{M}': & |\mathcal{M}'| = \mathbb{Z} & e_{\mathcal{M}'} = 0_{\mathbb{Z}} & *_{\mathcal{M}'} = +_{\mathbb{Z}} & \square_{\mathcal{M}'}^{-1} = \mathrm{id}_{\mathbb{Z}}, \end{array}$$

et alors \mathcal{M}' est une extension de \mathcal{M} .

Proposition 2.1. Si \mathcal{M} une interprétation de \mathcal{L} est un enrichissement de \mathcal{M}' , une interprétation de \mathcal{L}' , alors pour tout environnement e,

- 1. si t est un terme de \mathcal{L} , alors $\operatorname{Val}_{\mathcal{M}}(t,e) = \operatorname{Val}_{\mathcal{M}'}(t,e)$;
- 2. si F est une formule de \mathcal{L} alors $Val_{\mathcal{M}}(F,e) = Val_{\mathcal{M}'}(F,e)$.

Preuve. En exercice.

Corollaire 2.2. La vérité d'une formule dans une interprétation ne dépend que de la restriction de cette interprétation au langage de la formule.

Définition 2.20. Deux formules F et G sont équivalentes si $F \leftrightarrow G$ est un théorème logique.

Proposition 2.2. Toute formule est équivalente à une formule n'utilisant que les connecteurs logiques \neg , \lor et \exists .

Définition 2.21. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} .

- 1. Un \mathcal{L} -morphisme de \mathcal{M} est une fonction $\varphi: |\mathcal{M}| \to |\mathcal{N}|$ telle que
 - \triangleright pour chaque symbole de constante c, on a $\varphi(c_{\mathcal{M}}) = c_{\mathcal{N}}$;
 - \triangleright pour chaque symbole f de fonction n-aire, on a

$$\varphi(f_{\mathcal{M}}(a_1,\ldots,a_n))=f_{\mathcal{N}}(\varphi(a_1),\ldots,\varphi(a_n));$$

 \triangleright pour chaque symbole R de relation n-aire (autre que $\ll = \gg$), on a

$$(a_1, \ldots, a_n) \in R_{\mathcal{M}} \text{ ssi } (\varphi(a_1), \ldots, \varphi(a_n)) \in R_{\mathcal{N}}.$$

- \triangleright Un \mathscr{L} -isomorphisme est un \mathscr{L} -morphisme bijectif.
- ightharpoonup Si $\mathcal M$ et $\mathcal N$ sont isomorphes s'il existe un $\mathcal L$ -isomorphisme de $\mathcal M$ à $\mathcal N$.
- Remarque 2.13. 1. On ne dit rien sur $\ll =$ » car si on impose la même condition que pour les autres relations alors nécessairement φ est injectif.
 - 2. La notion dépend du langage \mathcal{L} .
 - 3. Lorsqu'on a deux structures isomorphes, on les confonds, ce sont les mêmes, c'est un renommage.

Exemple 2.14. Avec $\mathcal{L}_{ann} = \{0, +, \times, -\}$ et $\mathcal{L}' = \mathcal{L}_{ann} \cup \{1\}$, et les deux modèles $\mathcal{M} : \mathbb{Z}/3\mathbb{Z}$ et $\mathcal{N} = \mathbb{Z}/12\mathbb{Z}$, on considère la

fonction définie (on néglige les cas inintéressants) par $\varphi(\bar{n}) = \overline{4n}$.

Est-ce que φ est un morphisme de \mathcal{M} dans \mathcal{N} ? Oui... et non... Dans \mathcal{L} c'est le cas, mais pas dans \mathcal{L}' car $\varphi(1) = 4$.

Exemple 2.15. Dans $\mathcal{L} = \{c, f, R\}$ avec f une fonction binaire, et R une relation binaire, on considère

$$\triangleright \mathcal{M}: \mathbb{R}, 0, +, \leq;$$

$$\triangleright \mathcal{N}:]0, +\infty[, 1, \times, \leq.$$

Existe-t-il un morphisme de \mathcal{M} dans \mathcal{N} ? Oui, il suffit de poser le morphisme $\varphi: x \mapsto e^x$.

Proposition 2.3. La composée de deux morphismes (resp. isomorphisme) est un morphisme (resp. un isomorphisme).

Notation. Si φ est un morphisme de \mathcal{M} dans \mathcal{N} et e un environnement de \mathcal{M} , alors on note $\varphi(e)$ pour $\varphi \circ e$. C'est un environnement de \mathcal{N} .

Lemme 2.3. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} , et φ un morphisme de \mathcal{M} dans \mathcal{N} . Alors pour tout terme t et environnement e, on a

$$\varphi(\operatorname{Val}_{\operatorname{M}}(t,e))=\operatorname{Val}_{\operatorname{N}}(t,\varphi(e)).$$

Lemme 2.4. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} , et φ un morphisme *injectif* de \mathcal{M} dans \mathcal{N} . Alors pour toute formule atomique F et environnement e, on a

$$\mathcal{M}, e \models F$$
 ssi $\mathcal{N}, \varphi(e) \models F$

Lemme 2.5. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} , et φ un $isomorphisme^5$ de \mathcal{M} dans \mathcal{N} . Alors pour toute formule F et

environnement e, on a

$$\mathcal{M}, e \models F \text{ ssi } \mathcal{N}, \varphi(e) \models F$$

Corollaire 2.3. Deux interprétations isomorphismes satisfont les mêmes formules closes.

Exercice 2.4. Les groupes $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ sont-ils isomorphes? Non. En effet, les deux formules

- $\exists x (x \neq e \land x * x \neq e \land x * (x * x) \neq e \land x * (x * (x * x)) = e),$
- $\triangleright \ \forall x (x * x) = e$

ne sont pas vraies dans les deux (pour la première, elle est vraie dans $\mathbb{Z}/4\mathbb{Z}$ mais pas dans $(\mathbb{Z}/2\mathbb{Z})^2$ et pour la seconde, c'est l'inverse).

Remarque 2.14. La réciproque du corollaire est *fausse* : deux interprétations qui satisfont les mêmes formules closes ne sont pas nécessairement isomorphes. Par exemple, avec $\mathcal{L} = \{\leq\}$, les interprétations \mathbb{R} et \mathbb{Q} satisfont les mêmes formules closes, mais ne sont pas isomorphes.

Définition 2.22. Soit \mathcal{L} un langage, \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} . On dit que \mathcal{N} est une *extension* de \mathcal{M} (ou \mathcal{M} est une *sous-interprétation* de \mathcal{N}) si les conditions suivants sont satisfaites :

- $\triangleright |\mathcal{M}| \subseteq |\mathcal{N}|;$
- \triangleright pour tout symbole de constante c, on a $c_{\mathcal{M}} = c_{\mathcal{N}}$;
- \triangleright pour tout symbole de fonction n-aire f, on a $f_{\mathcal{M}} = f_{\mathcal{N}}\Big|_{|\mathcal{M}|^n}$ (donc en particulier $f_{\mathcal{N}}(|\mathcal{M}|^n) \subseteq |\mathcal{M}|$);
- \triangleright pour tout symbole de relation *n*-aire R, on a $R_{\mathcal{M}} = R_{\mathcal{N}} \cap |\mathcal{M}|^n$.

^{5.} On utilise ici la $surjectivit\acute{e}$ pour le « \exists ».

Proposition 2.4. Soient \mathcal{M} et \mathcal{N} deux interprétations de \mathcal{L} . Alors \mathcal{M} est isomorphe à une sous-interprétation \mathcal{M}' de \mathcal{N} si et seulement si, il existe un morphisme injectif de \mathcal{M} dans \mathcal{N} .

Exemple 2.16 (Construction de \mathbb{Z} à partir de \mathbb{N}). On pose la relation $(p,q) \sim (p',q')$ si p+q'=p'+q. C'est une relation d'équivalence sur \mathbb{N}^2 . On pose $\mathbb{Z}:=\mathbb{N}^2/\sim$ (il y a un isomorphisme $\mathbb{N}^2/\sim\to\mathbb{Z}$ par $(p,q)\mapsto p-q$). Est-ce qu'on a $\mathbb{N}\subseteq\mathbb{N}^2/\sim$? D'un point de vue ensembliste, non. Mais, généralement, l'inclusion signifie avoir un morphisme injectif de \mathbb{N} dans \mathbb{N}^2/\sim .

Définition 2.23. Une *théorie* est un ensemble (fini ou pas) de formules closes. Les éléments de la théorie sont appelés *axiomes*.

Exemple 2.17. La théorie des groupes est

$$\begin{split} T_{\text{groupe}} &:= \left\{ \forall x \: (x*e=e*x=x), \right. \\ & \forall x \: (x*x^{-1}=e \land x^{-1}*x=e), \\ & \forall x \: \forall y \: \forall z \: (x*(y*z)=(x*y)*z) \right\} \end{split}$$

dans le langage \mathcal{L}_{g} .

Exemple 2.18. La théorie des ensembles infinis est

$$T_{\text{ens infinis}} := \left\{ \exists x \ (x = x), \\ \exists x \ \exists y \ (x \neq y), \\ \exists x \ \exists y \ \exists z \ (x \neq y \land y \neq z \land z \neq x) \\ \dots \right\}$$

dans le langage \mathcal{L}_{ens} .

Définition 2.24 (Sémantique). \triangleright Une interprétation \mathcal{M} satisfait T (ou \mathcal{M} est un modèle de T), noté $\mathcal{M} \models T$, si \mathcal{M} satisfait toutes les formules de T.

 \triangleright Une théorie T est contradictoire s'il n'existe pas de modèle de T. Sinon, on dit qu'elle est non-contradictoire, ou satisfiable, ou satisfiable.

Exemple 2.19. Les deux théories précédentes, T_{groupes} et $T_{\text{ens infinis}}$, sont non-contradictoires.

Définition 2.25 (Syntaxique). Soit T une théorie.

- \triangleright Soit A une formule. On note $T \vdash A$ s'il existe un sousensemble fini T' tel que $T' \subseteq T$ et $T' \vdash A$.
- \triangleright On dit que T est consistante si $T \nvDash \bot$, sinon T est inconsistante.
- ightharpoonup On dit que T est complète (« axiome-complète ») si T est consistante et, pour toute formule $F \in \mathcal{F}$, on a $T \vdash F$ ou on a $T \vdash \neg F$.

Exemple 2.20. La théorie des groupes n'est pas complète : par exemple,

$$F := \forall x \, \forall y \, (x * y = y * x)$$

est parfois vraie, parfois fausse, cela dépend du groupe considéré.

Exemple 2.21. La théorie

$$T = \mathbf{Th}(\mathbb{N}) := \{ \text{les formules } F \text{ vraies dans } \mathbb{N} \}$$

est complète mais pas pratique.

De par le théorème d' $incomplétude\ de\ G\"{o}del$ (c'est un sens différent du « complet » défini avant), on montre qu'on ne peut pas avoir de joli ensemble d'axiomes pour \mathbb{N} .

Proposition 2.5. Soit T une théorie complète.

- 1. Soit A une formule close. On a $T \vdash \neg A$ ssi $T \nvdash A$.
- 2. Soient A et B des formules closes. On a $T \vdash A \lor B$ ssi $T \vdash A$ ou $T \vdash B$.

Preuve. $ightharpoonup \operatorname{Si} T \vdash \neg A \text{ et } T \vdash A, \text{ alors il existe } T', T'' \subseteq_{\operatorname{fini}} T$ tels que $T' \vdash \neg A \text{ et } T'' \vdash A$. On a donc $T' \cup T'' \vdash \bot$ par :

$$\frac{T' \vdash \neg A}{T' \cup T'' \vdash \neg A} \text{ aff } \frac{T'' \vdash A}{T' \cup T'' \vdash A} \text{ aff } \\ T' \cup T'' \vdash \bot$$

On en conclut que $T \vdash \bot$, absurde car T supposée complète donc consistante. On a donc $T \vdash \neg A$ implique $T \nvdash A$.

Réciproquement, si $T \nvdash A$ et $T \nvdash \neg A$, alors c'est impossible car T est complète. On a donc $T \nvdash A$ implique $T \vdash \neg A$.

 \triangleright Si $T \vdash A$ ou $T \vdash B$, alors par la règle \vee_i^{g} ou \vee_i^{d} , on montre que $T \vdash A \vee B$.

2.5 Théorème de complétude de Gödel.

Théorème 2.1 (Complétude de Gödel (à double sens)).

Version 1. Soit T une théorie et F une formule close. On a $T \vdash F$ ssi $T \models F$.

Version 2. Une théorie T est consistante (syntaxe) ssi elle est non-contradictoire (sémantique).

Remarque 2.15. La version 1 se décompose en deux théorèmes :

⊳ le théorème de correction (ce que l'on prouve est vrai)

$$T \vdash F \implies T \models F$$
;

⊳ le théorème de complétude (ce qui est vrai est prouvable)

$$T \models F \implies T \vdash F$$
.

Pour la version 2, on peut aussi la décomposer en deux théorèmes 6 :

- \triangleright la correction, T non-contradictoire implique T consistante;
- $\,\,\vartriangleright\,\,$ la $complétude,\,T$ consistante implique T non-contradictoire.

Par contraposée, on a aussi qu'une théorie contradictoire est inconsistante.

Proposition 2.6. Les deux versions du théorème de correction sont équivalentes.

- **Preuve.** ightharpoonup D'une part, on montre (par contraposée) « non V2 implique non V1 ». Soit T non-contradictoire et inconsistante. Il existe un modèle \mathcal{M} tel que $\mathcal{M} \models T$ et $T \vdash \bot$. Or, par définition, $\mathcal{M} \not\models \bot$ donc $T \not\models \bot$.
 - D'autre part, on montre « V2 implique V1 ». Soit T et F tels que $T \vdash F$. Ainsi, $T \cup \neg F \vdash \bot$, d'où $T \cup \{\neg F\}$ est inconsistante, et d'où, par la version 2 de la correction, on a que $T \cup \{\neg F\}$ contradictoire, donc on n'a pas de modèle. On a alors que, touts les modèles de T sont des modèles de F, autrement dit $T \models F$.

^{6.} On a une négation dans ce théorème, donc ce n'est pas syntaxe implique sémantique pour la correction, mais non sémantique implique non syntaxe.

Proposition 2.7. Les deux versions du théorème de complétude (sens unique) sont équivalentes.

- **Preuve.** \triangleright Soit T contradictoire. Elle n'a pas de modèle. Ainsi, on a $T \models \bot$ d'où $T \vdash \bot$ par la version 1, elle est donc inconsistante.
 - ightharpoonup Soit $T \models F$. Considérons $T \cup \{\neg F\}$: cette théorie n'a pas de modèle, donc est contradictoire, donc est inconsistante, et on a donc que $T \cup \{\neg F\} \vdash \bot$ d'où $T \vdash F$ par \bot_e .

Remarque 2.16 (Attention!). On utilise $\langle | = \rangle$ dans deux sens.

- \triangleright Dans le sens $mod\`ele \models formule$, on dit qu'une formule est vraie dans un mod $\`ele$, c'est le sens des mathématiques classiques.
- Dans le sens théorie ⊨ formule, on dit qu'une formule est vraie dans tous les modèles de la théorie, c'est un sens des mathématiques plus inhabituel.

2.5.1 Preuve du théorème de correction.

Exercice 2.5. Montrer que le lemme ci-dessous implique la version 1 de la correction.

Lemme 2.6. Soient T une théorie, \mathcal{M} un modèle et F une formule close. Si $\mathcal{M} \models T$ et $T \vdash F$ alors $\mathcal{M} \models F$.

Preuve. Comme d'habitude, pour montrer quelque chose sur les formules closes, on commence par les formules et même les termes. On commence par montrer que la substitution dans les termes a un sens sémantique.

Lemme 2.7. Soient t et u des termes et e un environnement. Soient v:=t[x:=u] et $e':=e[x:=\mathcal{V}\!a\ell(u,e)]$. Alors, $\mathcal{V}\!a\ell(v,e)=\mathcal{V}\!a\ell(t,e')$.

Preuve. En exercice.

Lemme 2.8. Soit A une formule, t un terme, et e un environnement. Si $e' := e[x := \mathcal{V}a\ell(t, e)]$ alors $\mathcal{M}, e \models A[x := t]$ ssi $\mathcal{M}, e' \models A$.

Preuve. En exercice.

On termine la preuve en montrant la proposition ci-dessous. \qed

Montrons cette proposition plus forte que le lemme.

Proposition 2.8. Soient Γ un ensemble de formules et A une formule. Soit \mathcal{M} une interprétation et soit e un environnement. Si $\mathcal{M}, e \models \Gamma$, et $\Gamma \models A$ alors $\mathcal{M}, e \models A$.

Preuve. Par induction sur la preuve de $\Gamma \vdash A$, on montre la proposition précédente.

- ▷ Cas inductif \rightarrow_i . On sait que A est de la forme $B \rightarrow C$, et on montre que de $\Gamma, B \vdash C$ on montre $\Gamma \vdash B \rightarrow C$. Soient \mathcal{M} et e tels que $\mathcal{M}, e \models \Gamma$. Montrons que $\mathcal{M}, e \models B \rightarrow C$. Il faut donc montrer que si $\mathcal{M}, e \models B$ alors $\mathcal{M}, e \models C$. Si $\mathcal{M}, e \models B$ alors $\mathcal{M}, e \models \Gamma \cup \{B\}$. Or, comme $\Gamma, B \vdash C$ alors par hypothèse d'induction, on a que $\mathcal{M}, e \models C$.
- ▷ Cas inductif \forall_e . Si A est de la forme B[x:=t], alors de $\Gamma \vdash \forall x \, B$, on en déduit que $\Gamma \vdash B[x:=t]$. Soit $\mathcal{M}, e \models \Gamma$ et $a := \mathcal{V}a\ell(t,e)$. Par hypothèse de récurrence, on a que $\mathcal{M}, e \models \forall x \, B$ donc $\mathcal{M}, e[x:=a] \models B$ et d'après le lemme précédent, on a que $\mathcal{M}, e \models B[x:=t]$.
- ▶ Les autre cas inductifs sont laissé en exercices.

- \triangleright Cas de base ax. Si $A \in \Gamma$ et $\mathcal{M}, e \models \Gamma$ alors $\mathcal{M}, e \models A$.
- $\,\,\vartriangleright\,\,$ Cas de base =;. On a, pour tout \mathcal{M}, e que $\mathcal{M}, e \models t = t.$

Cette proposition permet de conclure la preuve du lemme précédent.

2.5.2 Preuve du théorème de complétude.

On va montrer la version 2, en **trois étapes**. Soit T une théorie consistante sur le langage \mathcal{L} .

- 1. On enrichit le langage \mathcal{L} en \mathcal{L}' avec des constantes, appelées $t\'{e}moins$ de Henkin, et qui nous donnerons les éléments de notre ensemble de base : les termes.
- 2. Pour définir complètement le modèle, on complète la théorie T en une théorie Th sur \mathcal{Z}' .
- 3. On quotiente pour avoir la vraie égalité dans le modèle.

Cette construction est assez similaire à la définition de \mathbb{C} comme le quotient $\mathbb{R}[X]/(X^2+1)$.

Proposition 2.9. On peut étendre \mathcal{L} en \mathcal{L}' et T en T' consistante telle que, pour toute formule F(x) de \mathcal{L}' , ayant pour seule variable libre x, il existe un symbole de constante c_F de \mathcal{L}' telle que l'on ait $T' \vdash \exists x \ F(x) \to F(c_F)$, d'où le nom de témoin.

Preuve. On fait la construction « par le bas » :

- $\triangleright \mathcal{L}_0 = \mathcal{L}$;
- $ightharpoonup T_0 = T$;
- $\triangleright \mathcal{L}_{n+1} = \mathcal{L}_n \cup \{c_F \mid F \text{ formule à une variable libre de } \mathcal{L}_n\};$
- $\triangleright T_{n+1} = T_n \cup \{\exists x \ F \to F(c_F) \mid F \text{ formule de } \mathcal{Z}_n\};$
- \triangleright et enfin $\mathcal{L}' = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n$ et $T' = \bigcup_{n \in \mathbb{N}} T_n$.

On commence par montrer quelques lemmes.

Lemme 2.9. Soient Γ un ensemble de formules et A une formule. Soit c un symbole de constante qui n'apparait ni dans Γ ni dans A. Si $\Gamma \vdash A[x := c]$ alors $\Gamma \vdash \forall x A$.

Preuve. Idée de la preuve. On peut supposer que x n'apparait pas dans Γ , ni dans la preuve de $\Gamma \vdash A[x := c]$, sinon on renomme x en y dans l'énoncé du lemme. Alors, de la preuve de $\Gamma \vdash A[x := c]$, on peut déduire une preuve de $\Gamma \vdash A(x)$ en replaçant c par x. Avec la règle \forall_i , on en conclut que $\Gamma \vdash \forall x A$.

Lemme 2.10. Pour toute formule F à une variable libre x sur le langage \mathcal{L}' ,

$$T' \vdash \exists x \ F(x) \rightarrow F(c_F).$$

Preuve. La formule F a un nombre fini de constantes (car c'est un mot fini), donc F est une formule sur \mathcal{L}_n pour un certain $n \in \mathbb{N}$, donc $(\exists x F(x) \to F(c_F)) \in T_{n+1} \subseteq T'$.

Il nous reste à montrer que la théorie T' est consistante.

Il suffit de montrer que tous les T_n sont consistantes. En effet, si T' est non-consistante, il existe un ensemble fini $T'' \subseteq T'$ et $T'' \vdash \bot$. Comme T'' fini, il existe un certain $n \in \mathbb{N}$ tel que $T'' \subseteq T_n$ et donc $T_n \vdash \bot$.

On montre par récurrence sur n que T_n est consistante.

- \triangleright On a $T_0 = T$ qui est consistante par hypothèse.
- \triangleright Supposons T_n consistante et que $T_{n+1} \vdash \bot$. Alors, il existe des formules à une variable libre F_1, \ldots, F_k écrites sur \mathscr{L}_n et

$$T_n \cup \{ \exists x \ F_i \to F_i(c_{F_i}) \mid 1 \le i \le k \} \vdash \bot.$$

Ainsi (exercice)

$$T_n \vdash \left(\bigwedge_{1 \leq i \leq k} \left(\exists x \ F_i \to F_i(c_{F_i})\right)\right) \to \bot.$$

Les c_{F_i} ne sont pas dans T_n d'où, d'après le lemme 2.9, que

$$T_n \vdash \forall y_1 \, \forall y_2 \, \dots \, \forall y_n \left(\bigwedge_{1 \leq i \leq k} \left(\exists x \, F_i \to F_i(y_i) \right) \right) \to \bot.$$

On peut montrer que (théorème logique)

$$(\star) \qquad \vdash \forall y \ (A(y) \to \bot) \leftrightarrow (\exists y \ A(y) \to \bot),$$

d'où

$$T_n \vdash \left(\exists y_1 \exists y_2 \dots \exists y_n \bigwedge_{1 \le i \le k} \left(\exists x \ F_i \to F_i(y_i)\right)\right) \to \bot.$$

On a aussi

$$(\star\star) \qquad \vdash \exists y_1 \exists y_2 \Big(A(y_1) \land A(y_2) \Big) \leftrightarrow \Big(\exists y_1 A(y_1) \Big) \land \Big(\exists y_2 A(y_2) \Big),$$

et pour y non libre dans A, on a

$$\vdash \exists y (A \rightarrow B) \leftrightarrow (A \rightarrow \exists y B).$$

On a donc

$$T_n \vdash \left(\bigwedge_{1 \le i \le k} (\exists x \ F_i(x) \to \exists y_i \ F_i(y_i)) \right) \to \bot.$$

Or,

$$(\star\star\star) \qquad \vdash \bigwedge_{1 \le i \le k} (\exists x \ F_i(x) \to \exists y_i \ F_i(y_i)).$$

On a donc $T_n \vdash \bot$, ce qui contredit l'hypothèse, d'où T_{n+1} consistante.

En exercice, on pourra montrer les théorèmes logiques (\star) , $(\star\star)$, et $(\star\star\star)$.

Ensuite, on veut compléter T' en préservant le résultat de la proposition précédente. On cherche Th (axiome-)complète telle que $T' \subseteq Th$ et pour toute formule à une variable libre F de \mathcal{L}' , on a

Th
$$\vdash \exists x \ F \to F(c_F)$$
.

Faisons le cas dénombrable (sinon, lemme de Zorn) : supposons \mathcal{L}' au plus dénombrable. Soit $(F_n)_{n\in\mathbb{N}}$ une énumération des formules closes de \mathcal{L}' . On définit par récurrence

- $\triangleright K_0 := T'$;
- \triangleright si K_n est complète, alors $K_{n+1} := K_n$;
- \triangleright si K_n n'est pas complet, alors soit le plus petit $p \in \mathbb{N}$ tel que l'on ait $K_n \nvdash F_p$ et $K_n \nvdash \neg F_p$, et on pose $K_{n+1} := K_n \cup \{F_p\}$.

Lemme 2.11. On pose Th := $\bigcup_{n\in\mathbb{N}} T_n$. La théorie Th a les propriétés voulues.

Preuve. 1. On a $T' \subseteq Th$.

- 2. La théorie Th est consistante. En effet, il suffit de montrer que tous les K_n le sont (par les mêmes argument que la preuve précédente). Montrons le par récurrence.
 - \triangleright La théorie $K_0 = T'$ est consistante par hypothèse.
 - \triangleright Si $K_{n+1} = K_n$ alors K_{n+1} est consistante par hypothèse de récurrence.
 - $ightharpoonup ext{Si } K_{n+1} = K_n \cup \{F_p\}, ext{ et si } K_n, F_p \vdash \bot, ext{ alors par la règle } \neg_i, ext{ on a } K_n \vdash \neg F_p, ext{ ce qui est faux. Ainsi } K_{n+1} ext{ est consistante.}$

On en conclut que Th est consistante.

3. La théorie Th est complète. Sinon, à chaque étape K_{n+1}

 $K_n \cup \{F_{q_n}\}$ et il existe F_p telle que Th $\nvdash F_p$ et Th $\nvdash \neg F_p$. Ainsi, pour tout $n \in \mathbb{N}$, $K_n \nvdash F_p$ et $K_n \nvdash \neg F_p$, d'où pour tout $n \in \mathbb{N}$, $p_n \leq p$ avec des p_n distincts. C'est absurde, il n'y a qu'un nombre fini d'entiers inférieurs à un entier donné.

On construit un quotient avec « = » comme relation d'équivalence, puis on vérifie que les fonctions et relations sont bien définies (ne dépendent pas du représentant choisit, comme pour les groupes quotients).

Soit $\mathscr E$ l'ensemble des termes clos de $\mathscr L'$, qui n'est pas vide car il contient les termes $c_{x=x}$ (avec la définition de c_F ci-avant). On définit sur $\mathscr E$ une relation \sim , où $t \sim t'$ ssi Th $\vdash t = t'$.

Exercice 2.6. Montrer que \sim est une relation d'équivalence.

On pose enfin $|\mathcal{M}|:=\mathcal{E}/\sim$. On notera \bar{t} la casse de t. On définit l'interprétation des symboles de \mathcal{L}' :

- \triangleright si c est une constante, alors $c_{\mathcal{M}} := \bar{c}$;
- \triangleright si f est un symbole de fonctions d'arité n,

$$f_{\mathcal{M}}(\bar{t}_1,\ldots,\bar{t}_n) := \overline{f(t_1,\ldots,t_n)}.$$

Lemme 2.12. La définition de dépend pas des représentants choisis, c'est-à-dire si $\bar{u}_1 = \bar{t}_1, \dots, \bar{u}_n = \bar{t}_n$ alors

$$\overline{f(t_1,\ldots,t_n)}=\overline{f(u_1,\ldots,u_n)}.$$

Preuve. \triangleright On a Th $\vdash t_i = u_i$ pour tout i par hypothèse

- \triangleright donc avec $=_i$, on a Th $\vdash f(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$
- \triangleright donc avec $=_{\mathsf{e}}$, on a Th $\vdash f(u_1,\ldots,t_n)=f(t_1,\ldots,t_n)$
- ▷ ...etc...
- \triangleright donc avec $=_{\mathsf{e}}$, on a Th $\vdash f(u_1,\ldots,u_n)=f(t_1,\ldots,t_n)$

[suite de la définition de l'interprétation]

 \triangleright si R est un symbole de relation d'arité n, on définit

$$(\bar{t}_1,\ldots,\bar{t}_n) \in R_{\mathcal{M}} \text{ ssi Th} \vdash R(t_1,\ldots,t_n).$$

Exercice 2.7. Montrer que cette définition de dépend pas des représentants choisis.

Lemme 2.13. Soit F une formule à n variables libres et t_1, \ldots, t_n des termes clos. Alors, $\mathcal{M} \models F[\bar{t}_1, \ldots, \bar{t}_n]$ ssi Th $\vdash F[t_1, \ldots, t_n]$, où l'on interprète la formule à paramètre dans l'environnement e avec $e(y_i) = \bar{t}_i$ alors $\mathcal{M}, e \models F(y_1, \ldots, y_n)$.

Preuve. Par induction sur F en supposant que F n'utilise que \neg , \vee , \exists comme connecteurs. En effet, on a pour toute formule G, il existe F qui n'utilise que \neg , \vee , \exists et $\vdash F \leftrightarrow G$, ce qui permet de conclure directement pour G si le résultat est vrai sur F.

- ▷ Pour $F = \bot$, alors on a Th $\nvdash \bot$ car Th consistante et $\mathcal{M} \models \bot$ par définition.
- ightharpoonup Pour $F=R(u_1,\ldots,u_m)$, où les u_i sont des termes non nécessairement clos et où u_1,\ldots,u_m sont des termes à n variables x_1,\ldots,x_n . On pose

$$F[t_1,\ldots,t_n]:=R(\underbrace{u_1(t_1,\ldots,t_n)}_{v_1},\ldots,\underbrace{u_m(t_1,\ldots,t_n)}_{v_m})$$

où l'on définit $v_i := u_i(t_1, \dots, t_n)$ qui est clos car les t_i sont clos. On veut montrer que

$$\mathcal{M} \models \underbrace{F[\bar{t}_1, \dots, \bar{t}_n]}_{R(\bar{v}_1, \dots, \bar{v}_m)} \text{ ssi Th} \vdash \underbrace{F[t_1, \dots, t_n]}_{R(v_1, \dots, v_m)}.$$

Or, on a l'équivalence $\mathcal{M} \models R(\bar{v}_1, \dots, \bar{v}_m)$ ssi $(\bar{v}_1, \dots, \bar{v}_m) \in R_{\mathcal{M}}$ ssi Th $\vdash R(v_1, \dots, v_m)$.

 \triangleright Pour $F = F_1 \lor F_2$, et t_1, \ldots, t_n sont des termes clos, on veut montrer que

$$\mathcal{M} \models F_1[\bar{t}_1, \dots, \bar{t}_n] \lor F_2[\bar{t}_1, \dots, \bar{t}_n]$$

ssi Th $\vdash F_1[t_1, \dots, t_n] \lor F_2[t_1, \dots, t_n].$

Or,

$$\mathcal{M} \models F_1[\bar{t}_1, \dots, \bar{t}_n] \lor F_2[\bar{t}_1, \dots, \bar{t}_n]$$

ssi $\mathcal{M} \models F_1[\bar{t}_1, \dots, \bar{t}_n]$ ou $\mathcal{M} \models F_2[\bar{t}_1, \dots, \bar{t}_n]$
ssi Th $\vdash F_1[t_1, \dots, t_n]$ ou Th $\vdash F_2[t_1, \dots, t_n]$

par hypothèse. Ainsi,

- avec \vee_{i}^{g} et \vee_{i}^{d} , on a que Th $\vdash F_{1}[t_{1},\ldots,t_{n}]\vee F_{2}[t_{1},\ldots,t_{n}]$;
- réciproquement, on utilise le lemme 2.5 car Th est complète.
- \triangleright Pour $F = \neg G$, en exercice.
- \triangleright Si $F = \exists x G \text{ et } t_1, \ldots, t_n \text{ des termes clos, on a}$
 - on a $\mathcal{M} \models \exists x G[\bar{t}_1, \dots, \bar{t}_n, x]$
 - ssi il existe $t \in \mathscr{C}$ tel que $\mathscr{M} \models G[\bar{t}_1, \dots, \bar{t}_n, \bar{t}]$
 - ssi il existe $t \in \mathcal{E}$ tel que Th $\vdash G(t_1, \ldots, t_n, t)$

et donc Th $\vdash \exists x G(t_1, \ldots, t_n, x)$ avec \exists_i . Réciproquement, si Th $\vdash \exists x G(t_1, \ldots, t_n, x)$ alors Th $\vdash G(t_1, \ldots, t_n, c_{G(t_1, \ldots, t_n, x)})$, donc il existe un terme t et Th $\vdash G(t_1, \ldots, t_n, t)$.

Lemme 2.14. On a $\mathcal{M} \models \text{Th (et donc } \mathcal{M} \models T)$.

Preuve. On montre que, pour toute formule F de Th, on a que $\mathcal{M} \models F$. Pour cela, on utilise le lemme précédent : si F est close,

alors

$$\mathcal{M} \models F \text{ ssi Th} \vdash F.$$

2.5.3 Compacité.

Théorème 2.2 (Compacité (sémantique)). Une théorie T et contradictoire ssi elle est finiment contradictoire, *i.e.* il existe $T' \subseteq_{\text{fini}} T$ telle que T' est contradictoire.

Preuve. Soit T contradictoire. On utilise le théorème de complétude. Ainsi T est inconsistante. Il existe donc $T' \subseteq_{\text{fini}} T$ avec T' inconsistante par le théorème de compacité syntaxique ci-dessous (qui est trivialement vrai). On applique de nouveau le théorème de complétude pour en déduire que T' est contradictoire.

Théorème 2.3 (Compacité (syntaxique)). Une théorie T est inconsistante ssi elle est finiment inconsistante.

Preuve. Ceci est évident car une preuve est nécessairement finie.

Dans la suite de cette sous-section, on étudie des applications du théorème de compacité.

Théorème 2.4. Si une théorie T a des modèles finis arbitrairement grands, alors elle a un modèle infini.

Corollaire 2.4. Il n'y a pas de théorie des groupes finis i.e. un ensemble d'axiomes dont les modèles sont exactement les groupes finis.

Théorème 2.5 (Löwenheim-Skolem). Soit T une théorie dans un langage \mathcal{L} et κ un cardinal et $\kappa \geq \operatorname{card} \mathcal{L}$ et $\kappa \geq \aleph_0$. Si T a un modèle infini, alors T a un modèle de cardinal κ .

Exemple 2.22. \triangleright Avec $T = \mathbf{Th}(\mathbb{N})$, on a $\kappa = \operatorname{card} \mathbb{R}$.

 $\quad \quad \triangleright \ \, \text{Avec} \,\, T = \mathbf{ZFC}, \, \text{on a} \,\, \kappa = \aleph_0 = \text{card} \,\, \mathbb{N}.$

^{7.} Ici, \aleph_0 est le cardinal de \mathbb{N} , on dit donc que κ est infini.

3 L'arithmétique de Peano.

- DEDEKIND (1988) et PEANO (1889) formalisent l'arithmétique.
- ▶ En 1900, David HILBERT, lors du 2ème ICM à Paris, donne un programme et dont le 2nd problème est la cohérence de l'arithmétique.
- ▶ En 1901, Russel donne son paradoxe concernant l'« ensemble » de tous les ensembles.
- ▶ En 1930, (Hilbert) est toujours optimiste : « On doit savoir, on saura! »

La formalisation de l'arithmétique engendre deux questions :

- 1. est-ce que tout théorème est prouvable? (▷ complétude)
- 2. existe-t-il un algorithme pour décider si un théorème est prouvable? (▷ décidabilité)

Le second point est appelé « *Entscheidungsproblem* », le problème de décision, en 1928.

▶ En 1931, Gödel répond NON à ces deux questions.

On a donné plusieurs formalisations des algorithmes :

- \triangleright en 1930, le λ -calcul de Church;
- ▶ en 1931–34, les fonctions récursives de Herbrand et Gödel;
- ▶ en 1936, les machines de Turing.

On démontre que les trois modèles sont équivalents.

La thèse de Church–Turing nous convainc qu'il n'existe pas de modèle plus évolué « dans la vraie vie ».

3.1 Les axiomes.

On définit le langage $\mathcal{L}_0 = \{ \textcircled{0}, \textcircled{\textbf{S}}, \oplus, \otimes \}$ où

- ▷ ① est un symbole de constante;
- ▷ (S) est un symbole de fonction unaire;
- \triangleright \oplus et \otimes sont deux symboles de fonctions binaires.

On verra plus tard que l'on peut ajouter une relation binaire \leq .

Remarque 3.1 (Convention). La structure \mathbb{N} représente la \mathcal{L}_0 structure dans laquelle on interprète les symboles de manière habituelle :

- \triangleright pour ①, c'est 0;
- \triangleright pour **§**), c'est $\lambda n.n + 1$ (*i.e.* $x \mapsto x + 1$);
- \triangleright pour \oplus , c'est $\lambda n \, m.n + m$;
- \triangleright pour \otimes , c'est $\lambda n \, m.n \times m$.

Les axiomes de Peano.

On se place dans le cas égalitaire. L'ensemble \mathcal{P} est composé de \mathcal{P}_0 un ensemble fini d'axiomes (A1–A7) et d'un schéma d'induction (SI).

Trois axiomes pour le successeur :

- **A1.** $\forall x \neg (\widehat{\mathbf{S}}) x = \widehat{(0)}$
- **A2.** $\forall x \exists y \left(\neg (x = \bigcirc) \rightarrow x = \bigcirc y \right)$
- **A3.** $\forall x \, \forall y \, (\mathbf{S}) \, x = \mathbf{S}) \, y \to x = y)$

Deux axiomes pour l'addition :

- **A4.** $\forall x (x \oplus \bigcirc) = x$
- **A5.** $\forall x \, \forall y \, (x \oplus (\widehat{\mathbf{S}}) \, y) = (\widehat{\mathbf{S}})(x \oplus y))$

Deux axiomes pour la multiplication:

- **A6.** $\forall x (x \otimes \bigcirc = \bigcirc)$
- **A7.** $\forall x \, \forall y \, (x \otimes (\mathbf{S}) \, y) = (x \otimes y) \oplus x$

Et le schéma d'induction :

SI. Pour toute formule F de variables libres x_0, \ldots, x_n ,

$$\forall x_1 \cdots \forall x_n \left(\left(F(\underline{0}, \dots, x_1, \dots, x_n) \wedge \forall x \left(F(x, x_1, \dots, x_n) \rightarrow F(\underline{\$}) x, x_1, \dots, x_n \right) \right) \right) \rightarrow \forall x F(x, x_1, \dots, x_n) \right).$$

Remarque 3.2. \triangleright Le schéma est le SI avec hypothèse faible, qui permet de montrer le SI avec hypothèse forte. On adopte la notation $\forall y \leq x \ F(y, x_1, \dots, x_n)$ pour

$$\forall y ((\exists z \ z \oplus y = x) \to F(y, x_1, \dots, x_n)).$$

Le SI avec hypothèse forte est :

$$\forall x_1 \cdots \forall x_n \left(\left(F(\textcircled{0}, \dots, x_1, \dots, x_n) \land \forall x \left((\forall y \leq x \, F(y, x_1, \dots, x_n)) \rightarrow F(\textcircled{S}(x, x_1, \dots, x_n)) \right) \rightarrow \forall x \, F(x, x_1, \dots, x_n) \right) \right) \rightarrow \forall x \, F(x, x_1, \dots, x_n)$$

- \triangleright L'ensemble $\mathcal P$ est non-contradictoire car $\mathbb N$ est un modèle, appelé modèle standard.
- ▶ On peur remplacer le SI par une nouvelle règle de démonstration :

$$\frac{\Gamma \vdash F(\textcircled{\scriptsize{0}}) \qquad \Gamma \vdash \forall y \left(F(y) \to F(\textcircled{\scriptsize{\textbf{S}}})y)\right)}{\Gamma \vdash \forall x \ F(x)} \ \text{rec}$$

Exercice 3.1. Montrer l'équivalence entre SI et la nouvelle règle rec, *i.e.* on peut démontrer les mêmes théorèmes.

Notation. On note @ le terme $\underbrace{\mathbb{S}\cdots\mathbb{S}}_{n \text{ fois}} @$ pour $n \in \mathbb{N}$.

Définition 3.1. Dans une \mathcal{L}_0 -structure, on dit qu'un élément est standard s'il est l'interprétation d'un terme \widehat{w} avec $n \in \mathbb{N}$.

Remarque 3.3. Dans \mathbb{N} (le modèle standard), tout élément est standard.

Théorème 3.1. Il existe des modèles de \mathcal{P} non isomorphes à \mathbb{N} .

Preuve. 1. Avec le théorème de Löwenheim-Skolem, il existe un modèle de \mathcal{P} de cardinal κ pour tout $\kappa \geq \aleph_0$, et card $\mathbb{N} = \aleph_0$.

2. Autre preuve, on considère un symbole de constante c et on pose $\mathcal{L} := \mathcal{L}_0 \cup \{c\}$. On considère la théorie

$$T := \mathcal{P} \cup \{ \neg (c = \widehat{n}) \mid n \in \mathbb{N} \}.$$

Montrons que T a un modèle. Par le théorème de compacité de la logique du premier ordre, il suffit de montrer que T est finiment satisfiable. Soit $T' \subseteq_{\text{fini}} T$: par exemple,

$$T' \subseteq \mathcal{P} \cup \{ \neg (c = \overline{n_1}), \neg (c = \overline{n_2}), \dots, (c = \overline{n_k}) \},$$

et $n_k \geq n_1, \ldots, n_{k-1}$. On construit un modèle de T' correspondant à \mathbb{N} où c est interprété par $n_k + 1$. Ainsi, T' est satisfiable et donc T aussi avec un modèle \mathcal{M} .

Montrons que \mathbb{N} et \mathcal{M} ne sont pas isomorphes. Par l'absurde, supposons que $\varphi: \mathcal{M} \to \mathbb{N}$ soit un isomorphisme. Alors $\gamma := \varphi(c_{\mathcal{M}})$ satisfait les mêmes formules que $c_{\mathcal{M}}$, par exemple, pour tout $n \in \mathbb{N}$, $\mathcal{M} \models \neg(c = @)$. Or, on ne peut pas avoir $\mathbb{N} \models \neg(@) = @)$ pour tout $n \in \mathbb{N}$. **Absurde.**

On a montré que tous les modèles isomorphes à $\mathbb N$ n'ont que des éléments standards.

Théorème 3.2. Dans tout modèle \mathcal{M} de \mathcal{P} ,

- 1. l'addition est commutative et associative;
- 2. la multiplication aussi;
- 3. la multiplication est distributive par rapport à l'addition;
- 4. tout élément est régulier pour l'addition :

$$\mathcal{M} \models \forall x \, \forall y \, \forall z \, (x \oplus y = x \oplus z \to y = z) ;$$

5. tout élément non nul est régulier pour la multiplication :

$$\mathcal{M} \models \forall x \, \forall y \, \forall z \, ((\neg(x=\bigcirc)) \land x \otimes y = x \otimes z) \rightarrow y = z) \; ;$$

6. la formule suivante définie un ordre total sur $\mathcal M$ compatible avec + et \times :

$$x \le y \text{ ssi } \exists z (x \oplus z = y).$$

Preuve. On prouve la commutativité de + en trois étapes.

- 1. On montre $\mathcal{P} \vdash \forall x \ (\textcircled{0} \oplus x = x)$. On utilise le SI avec la formule $F(x) := (\textcircled{0} \oplus x = x)$.
 - \triangleright On a $\mathcal{P} \vdash \bigcirc \bigcirc \oplus \bigcirc \bigcirc = \bigcirc \bigcirc$ par A4.
 - \triangleright On montre $\mathcal{P} \vdash \forall x \ F(x) \rightarrow F(\widehat{\mathbf{S}})x$, c'est à dire :

$$\forall x \left((\textcircled{0} \oplus x = x) \to (\textcircled{0} \oplus (\textcircled{\textbf{S}} x) = \textcircled{\textbf{S}} x) \right).$$

On peut le montrer par A5.

Questions/Remarques:

- \triangleright Pourquoi pas une récurrence normale? On n'est pas forcément dans \mathbb{N} !
- ▷ Grâce au théorème de complétude, on peut raisonner sur les modèles, donc en maths naïves.
- 2. On montre $\mathcal{P} \vdash \forall x \forall y \ \mathbf{S}(x \oplus y) = (\mathbf{S}) x) \oplus y$. On veut utiliser le schéma d'induction avec $F(x,y) := \mathbf{S}(x \oplus y) = (\mathbf{S}) x) \oplus y$. Mais ça ne marche pas. . .(Pourquoi?)

La bonne formule est $F(y,x) := (\mathbf{S})(x \oplus y) = ((\mathbf{S})x) \oplus y$.

 \triangleright On montre $\mathcal{P} \vdash F((0), x)$, c'est à dire

$$\mathcal{P} \vdash \mathbf{S}(x \oplus \mathbf{0}) = (\mathbf{S}) x) \oplus \mathbf{0}.$$

Ceci est vrai car

$$(S)(x \oplus \textcircled{0}) \underset{A4}{=} (S) x \underset{A4}{=} (S) x) \oplus \textcircled{0}.$$

$$\triangleright$$
 On a $\mathscr{P} \vdash F(y,x) \to F(\mathbf{S})y,x)$ car : si $\mathbf{S}(x \oplus y) = (\mathbf{S})x) \oplus y,$ alors

$$(\mathbf{S}(x \oplus (\mathbf{S})y)) \underset{A5}{=} (\mathbf{S})(\mathbf{S})(x \oplus y) \underset{hyp}{=} (\mathbf{S})((\mathbf{S})x) \oplus y) \underset{A5}{(}(\mathbf{S})x) = \oplus (\mathbf{S})y).$$

3. On utilise le SI avec $F(x,y) := (x \oplus y = y \oplus x)$. D'une part, on a $F(\bigcirc,y) = (\bigcirc \oplus y = y \oplus \bigcirc)$ par 1 et A4. D'autre part, si l'on a $x \oplus y = y \oplus x$ alors $(\widehat{\mathbf{S}}x) \oplus y = y \oplus (\widehat{\mathbf{S}}x)$ par A5 et 2. Par le SI, on conclut.

Exercice 3.2. Finir la preuve du théorème.

3.2 Liens entre \mathbb{N} et un modèle \mathcal{M} de \mathcal{P} .

Définition 3.2. Si $\mathcal{M} \models \mathcal{P}_0$ et $\mathcal{N} \models \mathcal{P}_0$ et \mathcal{N} une sous-interprétation de \mathcal{M} , on dit que \mathcal{N} est un segment initial de \mathcal{M} , ou que \mathcal{M} est une extension finale de \mathcal{N} , si pour tous $a, b, c \in |\mathcal{M}|$ avec $a \in |\mathcal{N}|$ on a :

- 1. si $\mathcal{M} \models c \leq a \text{ alors } c \in |\mathcal{N}|;$
- 2. si $b \notin |\mathcal{N}|$ alors $\mathcal{M} \models a \leq b$.

Remarque 3.4. \triangleright Les points peuvent être incomparables et dans \mathcal{M} .

 \triangleright L'ensemble \mathcal{P}_0 est très faible, on ne montre même pas que \oplus commute ou que \leq est une relation d'ordre (*c.f.* TD).

Théorème 3.3. Soit $\mathcal{M} \models \mathcal{P}_0$. Alors, le sous-ensemble de \mathcal{M} sui-

vant est une sous-interprétation de $\mathcal M$ qui est un segment initial et qui est isomorphe à $\mathbb N$:

$$\left\{ a \in |\mathcal{M}| \middle| \begin{array}{c} \text{il existe } n \in \mathbb{N} \text{ et } a \\ \text{est l'interprétation} \\ \text{de } @ \text{ dans } \mathcal{M} \end{array} \right\}.$$

Preuve. 1. Pour tout $n \in \mathbb{N}$, on a $\mathcal{P}_0 \vdash (n+1) = (\mathbf{S}) \hat{w}$.

- 2. Pour tout $n, m \in \mathbb{N}$, on a $\mathcal{P}_0 \vdash \overline{m} \oplus \overline{m} = \overline{m+n}$.
- 3. Pour tout $n, m \in \mathbb{N}$, on a $\mathcal{P}_0 \vdash \underline{m} \otimes \underline{m} = \underline{m \times n}$.
- 4. Pour tout $n \in \mathbb{N}_{\star}$, on a $\mathcal{P}_0 \vdash \neg(\widehat{w} = \widehat{w})$.
- 5. Pour tout $n \neq m$, on a $\mathcal{P}_0 \vdash \neg (m = \underline{m})$.
- 6. Pour tout $n \in \mathbb{N}$ (admis), on a

$$\mathcal{P}_0 \vdash \forall x \ (x \leq @ \rightarrow (x = @) \lor x = @) \lor \cdots \lor x = @)$$
.

7. Pour tout x, on a $\mathcal{P}_0 \vdash \forall x (x \leq \emptyset) \lor \emptyset \leq x$).

3.3 Les fonctions représentables.

Cette section détaille un outil technique pour montrer le théorème d'incomplétude de Gödel vu plus tard. On code tout avec des entiers!

Définition 3.3. Soit $f: \mathbb{N}^p \to \mathbb{N}$ une fonction totale et $F(x_0, \dots, x_p)$ une formule de \mathcal{L}_0 . On dit que F représente f si, pour tout p-uplet d'entiers (n_1, \dots, n_p) on a :

$$\mathcal{P}_0 \vdash \forall y \left(F(y, n_1, \dots, n_p) \leftrightarrow y = (f(n_1, \dots, n_p)) \right).$$

On dit que f est représentable s'il existe une formule qui la représente.

Un ensemble de *p*-uplets $A \subseteq \mathbb{N}^p$ est représenté par $F(x_1, \dots, x_p)$

si pour tout p-uplet d'entiers (n_1, \ldots, n_p) , on a

- 1. si $(n_1, \ldots, n_p) \in A$ alors $\mathcal{P}_0 \vdash F(n_1, \ldots, n_p)$;
- 2. si $(n_1, \ldots, n_p) \notin A$ alors $\mathcal{P}_0 \vdash \neg F(n_1, \ldots, n_p)$.

On dit que A est représentable s'il existe une formule qui le représente.

Exercice 3.3. Montrer qu'un ensemble est représentable ssi sa fonction indicatrice l'est.

Exemple 3.1 (Les briques de base des fonctions récursives).

- ▷ La fonction nulle $f: \mathbb{N} \to \mathbb{N}, x \mapsto 0$ est représentable par $F(x_0, x_1) := x_0 = \bigcirc$.
- ▷ Les fonctions constantes $f: \mathbb{N} \to \mathbb{N}, x \mapsto n$ sont représentables par $F(x_0, x_1) := x_0 = \emptyset$, où $n \in \mathbb{N}$.
- ▷ Les projections $\pi_p^i : \mathbb{N}^p \to \mathbb{N}, (x_1, \dots, x_p) \mapsto x_i$ sont représentables par $F(x_0, x_1, \dots, x_p) := x_0 = x_i$.
- ▷ La fonction successeur $f: \mathbb{N} \to \mathbb{N}, x \mapsto x+1$ est représentable par $F(x_0, x_1) := x_0 = (\mathbf{S})x_1$.
- ightharpoonup L'addition $f: \mathbb{N}^2 \to \mathbb{N}, (x,y) \mapsto x+y$ est représentable par $F(x_0,x_1,x_2) := x_0 = x_1 \oplus x_2.$
- ▷ La multiplication $f: \mathbb{N}^2 \to \mathbb{N}, (x, y) \mapsto x \times y$ est représentable par $F(x_0, x_1, x_2) := x_0 = x_1 \otimes x_2$.

On introduit trois nouvelles opérations.

Récurrence. Soient $g(x_1, \ldots, x_p)$ et $h(x_1, \ldots, x_{p+2})$ des fonctions partielles. On définit la fonction partielle f par :

$$\triangleright f(0, x_1, \dots, x_p) := g(x_1, \dots, x_p);$$

$$f(x_0 + 1, x_1, \dots, x_p) := h(x_0, f(x_0, \dots, x_p), x_1, \dots, x_p).$$

Composition. Soient f_1, \ldots, f_n des fonctions partielles de p variables et g une fonction partielle de n variables. Alors, la fonction composée $g(f_1, \ldots, f_n)$ est définie en (x_1, \ldots, x_p) ssi les fonctions f_i le sont et g est définie en $(f_1(x_1, \ldots, x_p), \ldots, f_n(x_1, \ldots, x_p))$.

Schéma μ . Soit $f(x_1, \dots x_{p+1})$ une fonction partielle. Soit

$$g(x_1,\ldots,x_p) := \mu y. (f(x_1,\ldots,x_p,y) = 0).$$

Elle est définie en (x_1, \ldots, x_p) si et seulement s'il existe y tel que $f(x_1, \ldots, x_p, y) = 0$ et tous les $f(x_1, \ldots, x_p, x)$ sont définies pour $x \leq y$. Dans ce cas, $g(x_1, \ldots, x_p)$ est le plus petit y tel que $f(x_1, \ldots, x_p, y) = 0$.

Définition 3.4. L'ensemble des fonctions récursives primitives (resp. récursives) est le plus petit ensemble des fonctions contenant les briques de base et stable par composition et récurrence (resp. par composition, récurrence et schéma μ).

Exemple 3.2. Les fonctions

$$f(x_1, x_2, y) := y^2 - (x_1 + x_2)y + x_1x_2$$

et

$$f(x_1, x_2) := \min(x_1, x_2)$$

sont récursives primitives.

Définition 3.5. Une fonction récursive *totale* est une fonction récursive définie partout.

Remarque 3.5. Due fonction récursive primitive est totale.

- \triangleright Une fonction récursive primitive peut se fabriquer avec un seul schéma μ à la fin (*c.f.* cours de FDI).
- ightharpoonup Rappel. Une fonction $f: \mathbb{N}^p \to \mathbb{N}$ totale est représentée par la formule $F(x_0, \ldots, x_p)$ de \mathcal{L}_0 su pour tout p-uplet d'entiers (n_1, \ldots, n_p) on a :

$$\mathcal{P}_0 \vdash \forall y \ (F(y, \overline{n_1}, \dots, \overline{n_p}) \leftrightarrow y = (f(n_1, \dots, n_p)).$$

- \triangleright Rappel. Si $\mathcal{M} \models \mathcal{P}_0$ alors l'ensemble de $|\mathcal{M}|$ constitué de l'interprétation des termes standards est une sousinterprétation de \mathcal{M} qui en est un segment initial et qui est isomorphe à N.
- \triangleright Rappel. Une sous-interprétation \mathcal{N} est un segment initial $de \mathcal{M} si$
 - $-a \in \mathcal{N} \text{ et } b \in \mathcal{M} \setminus \mathcal{N} \text{ alors } b \geq a;$
 - $-a \in \mathcal{N} \text{ et } c \leq a \text{ alors } c \in \mathcal{N}.$

Théorème 3.4. Toute fonction récursive totale est représentable.

On a déjà montré que les briques de base sont représentables. On montre trois lemmes qui montreront le théorème ci-dessus.

Lemme 3.1. L'ensemble des fonctions représentables est clos par composition.

Preuve. Soient $f_1(x_1,\ldots,x_p),\ldots,f_n(x_1,\ldots,x_p)$ et $g(x_1,\ldots,x_n)$ des fonctions représentées par $F_1(x_0,\ldots,x_p),\ldots,F_n(x_0,\ldots,x_p)$ et $G(x_0,\ldots,G_n)$. On va montrer que $h=g(f_1,\ldots,f_n)$ est représentée par

$$H(x_0,\ldots,x_o) := \exists y_0\cdots\exists y_n\Big(G(x_0,y_1,\ldots,y_n)\wedge \bigwedge_{1\leq i\leq n}F_i(y_i,x_1,\ldots,x_p)\Big).$$

En effet, pour tous entiers $n_1, \ldots, n_{\max(p,n)}$:

$$\triangleright \mathscr{P}_0 \vdash \forall y \; F_i(y_1, \overline{n_1}, \dots, \overline{n_p}) \leftrightarrow y = \underbrace{f_i(n_1, \dots, n_p)};$$

$$\triangleright \mathscr{P}_0 \vdash \forall y \; G(y_1, \overline{n_1}, \dots, \overline{n_n}) \leftrightarrow y = \underbrace{g(n_1, \dots, n_n)}.$$

$$\triangleright \mathscr{P}_0 \vdash \forall y \; G(y_1, \underline{n_1}, \dots, \underline{n_n}) \leftrightarrow y = (g(n_1, \dots, n_n)).$$

Dans tout modèle \mathcal{M} de \mathcal{P}_0 , pour tout $y \in |\mathcal{M}|$, et tous $n_1, \ldots, n_p \in \mathbb{N}$ on a $H(y, n_1, \ldots, n_p)$ est vraie ssi il existe y_1, \ldots, y_n dans $|\mathcal{M}|$ et pour tout $i, F_i(y_i, x_1, \ldots, x_p)$ est vrai et $G(y, y_1, \ldots, y_n)$. Donc, par les hypothèses précédents, on a $H(y, n_1, \ldots, n_p)$ ssi il existe y_1, \ldots, y_n dans $|\mathcal{M}|$ et pour tout $i, y_i = f_i(n_1, \ldots, n_p)$ et $y = g(y_1, \ldots, y_p)$, ssi

$$y = g(f_1(n_1, \dots, n_p), \dots, f_n(n_1, \dots, n_p))$$

ssi $y = h(n_1, \dots, n_p)$. On conclut

$$\mathcal{P}_0 \vdash \forall y \left(H(y, \underline{n_1}, \dots, \underline{n_p}) \leftrightarrow y = (\underline{h(n_1, \dots, n_p)}) \right).$$

Lemme 3.2. Si, à partir d'une fonction représentable totale, on obtient par schéma μ une fonction totale, alors cette fonction est représentable.

Preuve. Soit $g: \mathbb{N}^{p+1} \to \mathbb{N}$ une fonction représentable totale, et soit $f: \mathbb{N}^p \to \mathbb{N}$ définie par

$$f(x_1,\ldots,x_p) := \mu x_0. (g(x_0,\ldots,x_p) = 0).$$

Montrons que si f est totale alors elle est représentable. Soit $G(y, x_0, \ldots, x_p)$ qui représente g. Alors, pour tous n_1, \ldots, n_p on a

$$\mathcal{P}_0 \vdash \forall y \ G(y, n_1), \dots, n_p) \leftrightarrow y = (g(n_1, \dots, n_p)).$$

Considérons la formule

$$F(y, n_1, \dots, n_p) := G(0, y, x_1, \dots, x_p) \land \forall z < y, \neg G(0, z, x_1, \dots, x_p),$$

où l'on note $\forall z < y \ H$ pour $\forall z \ (\exists u \ \neg (h = \textcircled{0}) \land z \oplus h = y) \rightarrow H$. Montrons que F représente f. Soit \mathcal{M} un modèle de \mathcal{P}_0 . Soient n_1, \ldots, n_p des entiers et $y \in |\mathcal{M}|$. On a $F(y, n_1, \ldots, n_p)$ vrai ssi $G(0, y, n_1, \ldots, n_p)$ vrai et, pour tout $z < y, \neg G(0, z, n_1, \ldots, n_p)$

est vrai. Montrons que $b:=f(n_1,\ldots,n_p)$ est le seul élément à satisfaire $F(y,n_1,\ldots,n_p)$. On a bien $G(0,b,n_1,\ldots,n_p)$ par définition de f et pour tout entier z< b, on a $\neg G(0,z,n_1,\ldots,n_p)$. Mais, si on a z< b et z n'est pas un entier? Ce cas n'existe pas car la sous-représentation isomorphe à $\mathbb N$ est un segment initial, il n'y a donc que des entiers qui sont inférieurs à b dans $|\mathcal M|$. Ainsi, $F(b,n_1,\ldots,n_p)$. Montrons que b est le seul. Soit b tel que b0, b1, b2, b3. Montrons que b3 est le seul.

- \triangleright Si y est un entier, c'est vrai par définition de b.
- ▷ Si y n'est pas un entier, alors y > b. Donc, $g(y, x_1, ..., x_p) = 0$ et b < y avec $g(b, x_1, ..., x_p) = 0$. Ainsi, $\forall z < y \neg G(0, z, x_1, ..., x_p)$ est fausse, et donc $F(y, n_1, ..., n_p)$ est fausse.

Lemme 3.3. L'ensemble des fonctions totales est stable par définition par récurrence.

Preuve. Soient f, g, h telles que

$$ightharpoonup f(0, x_1, \dots, x_p) = g(x_1, \dots, x_p)$$

$$f(x_0 + 1, x_1, \dots, x_p) = h(x_0, f(x_0, \dots, x_p), x_1, \dots, x_p)$$

Soient G, H représentant g et h. On a dans $\mathbb{N} : y = f(x_0, \dots, x_p)$ ssi il existe z_0, \dots, z_{x_0} tel que

$$\triangleright z_0 = g(x_1, \ldots, x_p)$$

$$\triangleright z_1 = h(0, z_0, x_1, \dots, x_p)$$

$$\triangleright z_2 = h(1, z_1, x_1, \dots, x_p)$$

▷ :

$$\triangleright z_{x_0} = h(x_0 - 1, z_{x_0 - 1}, x_1, \dots, x_p)$$

$$\triangleright y = z_{x_0}$$

Zut! On ne peut pas écrire $\exists z_0 \cdots \exists z_{x_0}$! On va utiliser une fonction qui permet de coder une suite d'entiers dans un couple d'entier (a, b). Interruption de la preuve.

Lemme 3.4 (Fonction β de Gödel). Il existe une fonction β à trois variables, récursive primitive et représentable, tel que pour tout $p \in \mathbb{N}$ et toute suite $(n_0, \ldots, n_p) \in \mathbb{N}^{p+1}$, il existe des entiers a et b tels que pour tout $0 \le i \le p$, on ait $\beta(i, a, b) = n_i$.

Preuve. Soient (a_0, \ldots, a_p) une suite d'entiers deux à deux premiers, et (n_0, \ldots, n_p) une suite d'entiers. Alors il existe $b \in \mathbb{N}$ tel que, pour tout $0 \le i \le p$, $b \equiv n_i \pmod{a_i}$ (par le théorème Chinois).

Choisissons a et les a_i (qui induisent b)? On pose a=m!. Alors, on pose $a_i:=a(i+1)+1$ pour tout $0 \le i \le p$. Les a_i sont bien deux à deux premiers. En effet, pour j>i, si $c\mid a_i$ et $c\mid a_j$ avec c premier, alors $c\mid (a_i-a_j)$ donc $c\mid a(j-i)$ et donc $c\le m$, donc $c\mid m$. Ainsi, il existe bien b tel que $b\equiv n_i\pmod{a_i}$. On définit ainsi $\beta(i,a,b)$ comme le reste de la division de b par a(i+1)+1. La fonction β est représentée par

$$B(x_0, i, a, b) := \exists x_4 \, b = x_4 \otimes (\mathbf{S})(a \otimes (\mathbf{S})i)) \land x_4 < (\mathbf{S})(x \otimes (\mathbf{S})i).$$

On considère $B'(x_0, x_1, x_2, x_3) := B(x_0, x_1, x_2, x_3) \land \forall x_4 < x_0 \neg B(x_4, x_1, x_2, x_3)$. Cette dernière formule représente aussi β mais aussi que x_0 sera un entier standard.

On reprend la preuve du lemme 3.3.

Preuve. Soient f, g, h telles que

$$f(0, x_1, \dots, x_p) = g(x_1, \dots, x_p)$$

$$f(x_0 + 1, x_1, \dots, x_p) = h(x_0, f(x_0, \dots, x_p), x_1, \dots, x_p)$$

Soient G, H représentant g et h. On a dans $\mathbb{N}: y = f(x_0, \dots, x_p)$ ssi il existe z_0, \dots, z_{x_0} tel que

$$\triangleright \ z_0 = g(x_1, \dots, x_p)$$

$$> z_1 = h(0, z_0, x_1, \dots, x_p)$$

Soit $\mathcal{M} \models \mathcal{P}_0$, et n_0, \ldots, n_p des entiers et $c \in |\mathcal{M}|$.

- \triangleright Si c interprète $f(n_0, \ldots, n_p)$ alors en choisissant a et b avec le lemme précédent sur la fonction β , on a bien $F(c, n_0, \ldots, n_p)$.
- ightharpoonup Réciproquement, si $\mathcal{M} \models F(d, n_0, \dots, n_p)$ alors il existe a, b, z_0 tels que $B'(z_0, 0, a, b)$ et $G(z_0, n_1, \dots, n_p)$, et donc $z_0 = g(n_1, \dots, n_p)$. Et, pour tout $i \leq n_0$, il existe r_i et s_i tels que

$$B'(r_i, i, a, b) \wedge B'(s_i, i + 1, a, b) \wedge H(s_i, i, r_i, n_1, \dots, n_p)$$

donc $r_i = f(i, n_1, \dots, n_p)$ grâce aux propriétés de B' et car r_i est un entier naturel, et donc par récurrence $d = f(n_0, \dots, n_p)$.

Ceci conclut la preuve du théorème 3.4.

Maintenant que l'on a transformé les fonctions en formules, on va faire l'opposé. Notre but est de montrer le théorème suivant : soit T une théorie consistante contenant \mathcal{P}_0 alors T est indécidable. La « partie technique » de l'indécidabilité de Gödel est la preuve par diagonalisation.

3.4 Indécidabilité des théories consistantes contenant \mathcal{P}_0 .

On va coder:

- 1. les suites d'entiers;
- 2. les termes;
- 3. les formules;
- 4. les preuves.

Lemme 3.5 (Récursion). Soient $p, n \in \mathbb{N}$ et

- $\triangleright k_1, \ldots, k_n : \mathbb{N} \to \mathbb{N} \text{ telles que } \forall y, \forall i, k_i(y) < y;$
- $\triangleright g: \mathbb{N}^p \to \mathbb{N};$
- $\triangleright h: \mathbb{N}^{p+n+1} \to \mathbb{N}$

des fonctions récursives primitives (resp. récursives). Alors, la fonction $f: \mathbb{N}^{p+1} \to \mathbb{N}$ définie de la façon suivante est récursive primitive (resp. récursive primitive) :

$$f(0,x_1,\ldots,x_p):=g(x_1,\ldots,x_p)$$

et
$$f(y, x_1, \ldots, x_p) := h(y, f(k_1(y), x_1, \ldots, x_p), \ldots, f(k_n(y), x_1, \ldots, x_p), x_1, \ldots, x_p).$$

Lemme 3.6 (Définition par cas). Soient P_1, \ldots, P_n des ensembles récursifs primitifs (resp. récursifs) disjoints de \mathbb{N}^m et f_1, \ldots, f_{n+1} des fonctions récursives primitives (resp. récursives) $\mathbb{N}^m \to \mathbb{N}$

alors la fonction suivante est récursive primitive (resp. récursive) :

$$f(x_1, \dots, x_m) := \begin{cases} f_1(x_1, \dots, x_m) & \text{si } P_1(x_1, \dots, x_m) \\ f_2(x_1, \dots, x_m) & \text{si } P_2(x_1, \dots, x_m) \\ \vdots & \vdots \\ f_n(x_1, \dots, x_m) & \text{si } P_n(x_1, \dots, x_m) \\ f_{n+1}(x_1, \dots, x_m) & \text{sinon} \end{cases}$$

Lemme 3.7 (Définition par cas et récursion). Soient $p, n, m \in \mathbb{N}$,

 $\triangleright q: \mathbb{N}^p \to \mathbb{N}$

 $\triangleright k_1,\ldots,k_m:\mathbb{N}\to\mathbb{N}$

 $\triangleright f_1, \dots, f_n : \mathbb{N}^{m+p+1} \to \mathbb{N}$

 $\triangleright f_{n+1}: \mathbb{N}^p \to \mathbb{N}$

des fonctions récursives primitives (resp. récursives) et P_1, \ldots, P_n des ensembles disjoints de \mathbb{N}^p récursifs primitifs (resp. récursifs) alors la fonction suivante est récursive primitive :

$$f(0, x_1, \dots, x_p) := g(x_1, \dots, x_p)$$

$$f(y,x_1,\ldots,x_p) := \begin{cases} f_1(y,f(k_1(y),x_1,\ldots,x_p),\ldots,f(k_m(y),x_1,\ldots,x_p),x_1,\ldots,x_p) & \text{si } P_1(x_1,\ldots,x_p) \\ f_2(y,f(k_1(y),x_1,\ldots,x_p),\ldots,f(k_m(y),x_1,\ldots,x_p),x_1,\ldots,x_p) & \text{si } P_2(x_1,\ldots,x_p) \\ \vdots \\ f_n(y,f(k_1(y),x_1,\ldots,x_p),\ldots,f(k_m(y),x_1,\ldots,x_p),x_1,\ldots,x_p) & \text{si } P_n(x_1,\ldots,x_p) \\ f_{n+1}(x_1,\ldots,x_p) & \text{si } P_n(x_1,\ldots,x_p) \end{cases}$$

Codage des suites d'entiers.

Proposition 3.1. Pour tout entier non nul p il existe des fonctions récursives primitives bijectives $\alpha_p: \mathbb{N}^p \to \mathbb{N}$ et $\beta_p^1, \ldots, \beta_p^p: \mathbb{N} \to$

N telles que la réciproque de α_p est $(\beta_p^1, \ldots, \beta_p^p)$ et, de plus, si x > 1 et $p \ge 2$ alors $\beta_p^i(x) < x$.

Preuve. L'idée est qu'on utilise la fonction de Cantor (ou l'énumération de Peano) :

$$\alpha_2(n,m) := \frac{(n+m)(n+m+1)}{2} + n$$

et on pose

$$\alpha_{p+1}(x_1,\ldots,x_{p+1}) := \alpha_p(x_1,\ldots,x_{p-1},\alpha_2(x_p,x_{p+1})).$$

Ainsi,

$$\alpha_p(x_1,\ldots,x_p)=\alpha_2(x_1,\alpha_2(x_2,\ldots)).$$

3.4.2 Les termes.

On suppose que l'ensemble des variables est $\{x_i \mid i \in \mathbb{N}\}.$

Définition 3.6. Le nombre de Gödel d'un terme t sur \mathcal{L} , noté $\sharp t$, est défini par :

$$\triangleright t = (0) \text{ alors } \sharp t := \alpha_3(0, 0, 0);$$

$$\triangleright t = x_n \text{ alors } \sharp t := \alpha_3(n+1,0,0);$$

$$\triangleright t = (\mathbf{S})t_1 \text{ alors } \sharp t := \alpha_3(\sharp t_1, 0, 1);$$

$$\triangleright t = t_1 \oplus t_2 \text{ alors } \sharp t := \alpha_3(\sharp t_1, \sharp t_2, 2);$$

$$\triangleright t = t_1 \otimes t_2 \text{ alors } \sharp t := \alpha_3(\sharp t_1, \sharp t_2, 3).$$

Lemme 3.8. Le codage est injectif.

Preuve. Expliciter la fonction de décodage définie sur l'espace image. \Box

Lemme 3.9. L'ensemble Term := $\{\sharp t \mid t \text{ est un terme de } \mathcal{L}_0\}$ est récursif primitif.

Preuve. Montrons que la fonction caractéristique T de Term est récursif primitif. On utilise le lemme de définition par cas et récursion donné précédemment :

- ▷ si $\beta_3^3(x) = 0$ et $\beta_3^2(x) = 0$ alors T(x) = 1 (x est le code de ① ou $x_{\beta_3^1(x)-1}$);
- \triangleright si $\beta_3^3(x)=1$ et $\beta_3^2(x)=0$ alors $T(x)=T(\beta_3^1(x))$ (x est le code de $(\mathbf{\hat{S}})t)$;
- \triangleright si $\beta_3^3(x) = 2$ alors $T(x) = T(\beta_3^1(x)) \cdot T(\beta_3^2(x))$ (x est le code de $t \oplus t$);
- \triangleright si $\beta_3^3(x) = 3$ alors $T(x) = T(\beta_3^1(x)) \cdot T(\beta_3^2(x))$ (x est le code de $t \otimes t$);
- \triangleright sinon, T(x) = 0.

3.4.3 Les formules.

Définition 3.7. On étend ♯ · aux formules :

$$ho \ \sharp (t_1 = t_2) := \alpha_3(\sharp t_1, \sharp t_2, 0)$$

$$\triangleright \ \sharp(\neg F) := \alpha_3(\sharp F, 0, 1)$$

$$Arr \sharp (F_1 \lor F_2) := \alpha_3(\sharp F_1, \sharp F_2, 2)$$

$$Arr \sharp (F_1 \wedge F_2) := \alpha_3(\sharp F_1, \sharp F_2, 3)$$

$$\triangleright \ \sharp (F_1 \to F_2) := \alpha_3(\sharp F_1, \sharp F_2, 4)$$

$$\Rightarrow \sharp(\exists x_k F) := \alpha_3(\sharp F, k, 6)$$

$$\triangleright \ \sharp \bot = \alpha_3(0,0,7).$$

Lemme 3.10. Le codage ci-dessus est injectif.

Lemme 3.11. L'ensemble Form := $\{\sharp F \mid F \text{ formule de } \mathcal{L}_0\}$ est récursif primitif.

3.4.4 Opérations sur les formules.

Lemme 3.12. Les ensembles suivants sont récursifs primitifs :

```
\triangleright \theta_0 := \{(\sharp t, n) \mid t \text{ est un terme et } x_n \text{ n'a pas d'occurrence dans } t\}
```

- $\theta_1 := \{(\sharp t, n) \mid t \text{ est un terme et } x_n \text{ a une occurrence dans } t\}$
- $\triangleright \phi_0 := \{(\sharp F, n) \mid F \text{ est une formule et } x_n \text{ n'a pas d'occurrence dans } F\}$
- $\triangleright \phi_1 := \{(\sharp F, n) \mid F \text{ est une formule et } x_n \text{ n'a pas d'occurrence libre dans } F\}$
- $\triangleright \phi_2 := \{(\sharp F, n) \mid F \text{ est une formule et } x_n \text{ n'a pas d'occurrence liée dans } F\}$
- $\triangleright \phi_3 := \{(\sharp F, n) \mid F \text{ est une formule et } x_n \text{ a une occurrence libre dans } F\}$
- $\triangleright \phi_4 := \{(\sharp F, n) \mid F \text{ est une formule et } x_n \text{ a une occurrence liée dans } F\}$
- $\triangleright \phi_5 := \{ \sharp F \mid F \text{ est une formule close } \}$

Preuve. On montre le résultat pour θ_0 (le reste en exercice). On définit la fonction caractéristique de θ_0 , notée $g_0(x, y)$, par (en utilisant le lemme de définition par cas et récursion) :

- \triangleright si $\beta_3^3(x) = \beta_3^2(x) = 0$ et $\beta_3^1(x) 1 \neq y$ alors $g_0(x, y) := 1$;
- \triangleright si $\beta_3^2(x) = 1$ et $\beta_3^2(x) = 0$ alors $g_0(x, y) := g_0(\beta_3^2(x), y)$;
- \triangleright si $\beta_3^3(x) = 2$ ou 3 alors $g_0(x, y) := g_0(\beta_3^1(x), y) \times g_0(\beta_3^2(x), y)$;
- \triangleright sinon, $g_0(x,y) := 0$.

Lemme 3.13 (Substitutions). Il existe des fonctions récursives primitives $Subst_t$ et $Subst_f$ à trois variables telles que, si t t u sont des termes, et si G est une formule, alors pour tout entier n,

- $\triangleright \operatorname{Subst}_{\mathsf{t}}(n,\sharp t,\sharp u) := \sharp (u[x_n := t])$
- \triangleright Subst_f $(n, \sharp t, \sharp F) := \sharp (F[x_n := t]).$

Preuve. On définit Subst_t par cas/récursion. Pour (n, y, x), on a :

$$\triangleright$$
 si $\beta_3^3(x) = 0$ alors

```
- si \beta_3^1(x) = n + 1 alors Subst_t(n, y, x) := y,
                     - sinon Subst_t(n, y, x) := x;
        \triangleright \operatorname{si} \beta_3^3(x) = 1 \operatorname{alors Subst}_{\mathsf{t}}(n, y, x) := \alpha_3(\operatorname{Subst}_{\mathsf{t}}(n, y, \beta_3^1(x)), 0, 1);
        \triangleright si \beta_3^3(x) = 1 alors
              \mathrm{Subst}_{\mathsf{t}}(n,y,x) := \alpha_3(\mathrm{Subst}_{\mathsf{t}}(n,y,\beta_3^1(x)), \mathrm{Subst}_{\mathsf{t}}(n,y,\beta_3^2(x)), \beta_3^3(x)) \, ;
        \triangleright sinon Subst<sub>t</sub>(n, y, x) := 0.
Puis, on définit Subst<sub>f</sub> par :
          \triangleright si \beta_3^3(x) = 0 alors Subst<sub>f</sub>(n, y, x) = \alpha_3(\operatorname{Subst}_t(n, y, \beta_3^1(x))), \operatorname{Subst}_t(n, y, \beta_3^1(x), 0);
          \beta_3(x) = 1 \text{ alors Subst}_f(n, y, x) = \alpha_3(\text{Subst}_f(n, y, \beta_3^1(x)), 0, 1);
         \, \triangleright \  \, \mathrm{si} \, \beta_3^3(x) = 2, 3, \,\, \mathrm{ou} \,\, 4 \, \mathrm{alors} \, \mathrm{Subst}_\mathrm{f}(n,y,x) = \alpha_3(\mathrm{Subst}_\mathrm{f}(n,y,\beta_3^1(x)), \mathrm{Subst}_\mathrm{f}(n,y,\beta_3^2(x)), \beta_3^3(x)) \,;
         \triangleright si \beta_3^3(x) = 5 ou 6 alors
                      - si \beta_3^2(x) = n et x_n est liée dans F donc \operatorname{Subst}_f(n, y, x) := x;
                      - sinon donc \operatorname{Subst}_{f}(n, y, x) := \alpha_{3}(\operatorname{Subst}_{f}(n, y, \beta_{3}^{1}(x)), \beta_{3}^{2}(x), \beta_{3}^{3}(x));
         \triangleright si \beta_3^3(x) = 7 alors Subst_f(n, x, y) := x;
          \triangleright sinon, Subst<sub>f</sub>(n, x, y) := 0.
```

3.4.5 Codage des preuves.

On code un contexte comme des suites finies, *i.e.* des listes, de formules (c'est plus facile que pour les ensembles).

```
Lemme 3.14. Le décodage est unique. □
```

Lemme 3.15. La substitution d'une formule dans un contexte est récursif primitif. Tester si une variable est libre (resp. liée) dans un contexte est récursif primitif.

3.4.6 Codage des preuves en déduction naturelle.

Remarque 3.6. Le contexte de la conclusion et des prémisses est

le même sauf pour

$$\begin{split} \frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff } & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_{\mathbf{i}} & \frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \to_{\mathbf{i}} \\ & \frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \perp_{\mathbf{c}} & \frac{\Gamma}{\Gamma \vdash A} \text{ ax} \end{split}$$

On peut toujours déterminer le contexte du haut à partir du bas donc donner le contexte de la racine suffit. Une preuve est donc finalement un contexte et un arbre de dérivation où les nœuds sont étiquetés par une formule et un numéro de règle.

Exemple 3.3. La preuve

$$\frac{\overline{\neg A, A \vdash A} \text{ ax } \overline{\neg A, A \vdash \neg A}}{\underbrace{\neg A, A \vdash \bot}_{\neg A \vdash A \to \bot} \rightarrow_{\mathsf{i}}} \xrightarrow{\neg_{\mathsf{e}}} \frac{\overline{A \to \bot, A \vdash A} \text{ ax } \overline{A \to \bot, A \vdash A \to \bot}}{\underbrace{\frac{A \to \bot, A \vdash \bot}{\neg A \to \bot, A \vdash \bot}}_{\neg_{\mathsf{i}}} \xrightarrow{\neg_{\mathsf{i}}} \xrightarrow{\neg_{\mathsf{i}}} \xrightarrow{\vdash \neg A \leftrightarrow (A \to \bot)}} \xrightarrow{\land_{\mathsf{i}}} \xrightarrow{\land_{\mathsf{i}}}$$

peut être codée par l'arbre suivant avec le contexte [] à la racine :

Définition 3.9. On numérote

 $\triangleright \ \sharp \mathsf{ax} := 0$

 $\triangleright \ \sharp \lnot_{\mathsf{e}} := 1$

 $\triangleright \ \sharp \neg_{\mathsf{i}} := 2$

 $\triangleright \ \sharp \rightarrow_{\mathsf{e}} := 3$

 $\triangleright \ \sharp \rightarrow_{\mathsf{i}} := 4$

 $\triangleright \ \sharp \wedge_{\mathsf{e}} := 5$

 $\triangleright \ \sharp \land_{\mathsf{i}} := 6$

 \triangleright etc.

- **Définition 3.10** (Nombre de Gödel des preuves). \triangleright Si D^* est un arbre de preuve à un seul nœud étiqueté par la formule F et la règle n alors $\sharp D^* := \alpha_3(n, \sharp F, 0)$.
 - \triangleright Si D^* est un arbre de preuve dont la racine est étiquetée par la formule F et la règle n à k prémisses avec les sous arbres D_1^*, \ldots, D_k^*

$$\frac{D_1^{\star} \quad \cdots \quad D_k^{\star}}{F} \text{ règle } n$$

alors $\sharp D^* := \alpha_3(n, \sharp F, \alpha_k(\sharp D_1^*, \dots, \sharp D_k^*) + 1).$

On pose ensuite $\sharp D := \alpha_2(\sharp D^*, \sharp \Gamma)$ pour une preuve D.

Lemme 3.16. C'est un code injectif.

Lemme 3.17. L'ensemble Preuve := $\{\sharp D \mid D \text{ est une preuve}\}$ est récursif primitif.

3.4.7 Théories (in)décidables.

Définition 3.11. Un ensemble A de formules est un ensemble d'axiomes de la théorie T si $A \vdash T$ et $T \vdash A$.

Définition 3.12. Une théorie T sur \mathcal{L}_0 a un ensemble d'axiomes Ax_T récursif si l'ensemble des numéros de formules de Ax_T est récursif.

Remarque 3.7. Si Ax_T est fini, alors il est récursif (exemple : \mathcal{P}_0).

Lemme 3.18. L'ensemble des axiomes de Peano $\mathcal P$ est récursif.

Preuve. Il suffit de montrer que l'ensemble des axiomes du schéma de récurrence est récursif. On définit

$$A_F := \forall x_1 \ \cdots \ \forall x_n \Big(\Big(F(0,x_1,\ldots,x_n) \land \forall x_0 \ (F(x_0,\ldots,x_n) \to F(\textcircled{\textbf{\textbf{S}}} x_0,x_1,\ldots,x_n)) \Big) \to \forall x_0 \ F(x_0,\ldots,x_n) \Big) \Big).$$

Idée pour décider si N est le code d'une formule A_F :

- 1. décoder pour trouver n et F;
- 2. calculer $\sharp A_F$ et vérifier si c'est N.

Proposition 3.2. Si une théorie T a un ensemble d'axiomes Ax_T alors l'ensemble

 $Dem_T = \{ (\sharp D, \sharp F) \mid D \text{ est une preuve de } F \text{ dans } T \text{ avec } Ax_T \}.$

Preuve. L'idée de la preuve est la suivante :

- 1. décider x et y;
- 2. vérifier que x est une preuve et y une formule;
- 3. vérifier que D est une preuve de F;
- 4. vérifier que le contexte final ne contient que des éléments de Ax_T .

Dans la suite, on prend $\mathcal{L} \supseteq \mathcal{L}_0$.

Définition 3.13. Une théorie est *décidable* si l'ensemble de ses théorèmes est récursif.

Remarque 3.8 (Rappel). Une théorie est *consistante* si elle a un modèle.

Théorème 3.5. Soit T une théorie consistante contenant \mathcal{P}_0 . Alors, T est indécidable.

Preuve. On suppose que T est décidable et on construit par diagonalisation une formule F telle que $T \vdash F$ et $T \vdash \neg F$. Soit

$$\theta := \{ (m, n) \mid m = \sharp (F(n)) \text{ et } T \vdash F(\widehat{m}) \}.$$

L'ensemble T est décidable donc T aussi. On pose

$$B := \{ n \in \mathbb{N} \mid (n, n) \notin \theta \},\$$

qui est récursif.

D'après le théorème de représentation, il existe une formule G(x) représentant B :

- $\triangleright n \in B \implies \mathcal{P}_0 \vdash G(\widehat{n}) \text{ donc } T \vdash G(\widehat{n});$
- $\triangleright n \notin B \implies \mathcal{P}_0 \vdash \neg G(\widehat{w}) \text{ donc } T \vdash \neg G(\widehat{w}).$

Soit $a = \sharp(G(x))$. Est-ce que $a \in B$?

- \triangleright On a $a \in B \iff (a, a) \notin \theta \iff T \not\vdash G(@)$. Or, si $a \in B$ alors, par définition de G, on a $T \vdash G(@)$. **Absurde!**
- $ightharpoonup On a \ a \not\in B \iff (a,a) \in \theta \iff T \vdash G(@). Or, si \ a \not\in B$ alors, par définition de G, on a $T \vdash \neg G(@)$. Donc T non consistante. **Absurde!**

Exemple 3.4 (Application du théorème). La théorie $T = \mathbf{Th}(\mathbb{N})$ est indécidable.

Exemple 3.5 (Quelques théories décidables).

Les ordres denses sans extrémités (la théorie linéaire des rationnels) est une théorie décidable.

- ▶ Les corps réels clos (*théorème de Tarski*) est une théorie décidable.
- ▶ L'arithmétique de Presburger (la théorie linéaire des entiers) est une théorie décidable.
- ightharpoonup Pour chaque p, les corps algébriquement clos de caractéristique p est une théorie décidable.

On peut donc répondre à l'Entscheidungsproblem, le problème de décision.

Théorème 3.6 (Church, indécidabilité du calcul des prédicats). Si $\mathcal{L} \supseteq \mathcal{L}_0$, l'ensemble T des théorèmes logiques sur \mathcal{L} n'est pas récursif.

Preuve. Soit T_0 l'ensemble des théorèmes logiques sur \mathcal{L}_0 . Soit G la conjonction des axiomes de \mathcal{P}_0 . Pour toute formule F, on a $\mathcal{P}_0 \vdash F$ ssi $T_0 \vdash (G \to F)$. Donc, si T_0 est récursif alors \mathcal{P}_0 est décidable. Donc, si T est récursif, alors T_0 aussi. Donc \mathcal{P}_0 est décidable, **absurde**.

3.5 Théorèmes d'incomplétude de Gödel

Théorème 3.7 (Premier théorème d'incomplétude de Gödel). Soit T une théorie qui a un ensemble d'axiomes récursifs, et qui est consistante, et qui contient \mathcal{P}_0 . Alors, T n'est pas axiomecomplète.

Preuve. Une théorie qui a un ensemble d'axiomes récursifs et qui est complète, est décidable, ce qui est faux.

En effet, pour F une formule, comment déterminer (algorithmiquement) su $T \vdash F$? On énumère toutes les preuves jusqu'à en trouver une de F ou de $\neg F$.

Corollaire 3.1. La théorie \mathcal{P} n'est pas complète.

Question.

Peut-on exhiber une formule F telle que $T \not\vdash F$ et $T \not\vdash \neg F$?

On va construire F qui « dit » que T est consistante.

Définition 3.14. On pose :

- $\triangleright \operatorname{Dem}_T := \{ (\sharp D, \sharp F) \mid D \text{ preuve de } F \text{ dans } T \};$
- $\triangleright \operatorname{Dem}_{\mathscr{P}_0} := \{ (\sharp D, \sharp F) \mid D \text{ preuve de } F \text{ dans } \mathscr{P}_0 \}.$

Proposition 3.3. \triangleright Ces ensembles sont récursifs donc représentés par F_T et $F_{\mathcal{P}_0}$.

▷ La fonction neg : $\mathbb{N} \to \mathbb{N}, \sharp F \mapsto \sharp (\neg F) = \alpha_3(\sharp F, 0, 1)$ est récursive et représentée par $F_{\text{neg}}(x_0, x_1)$:

$$\forall n \in \mathbb{N}, \quad \mathcal{P}_0 \vdash \forall x \ (F_{\text{neg}}(x, @) \leftrightarrow x = (\overline{\text{neg}(n)})).$$

Définition 3.15. On pose

$$Coh(T) := \neg \exists x_0 \cdots \exists x_3 \left(F_T(x_0, x_2) \land F_T(x_1, x_3) \land F_{neg}(x_2, x_3) \right).$$

Remarque 3.9. La fonction Coh n'est pas complètement définie, car elle dépend du choix de F_T et de F_{neg} .

Proposition 3.4. La théorie T est consistante ssi $\mathbb{N} \models \operatorname{Coh}(T)$.

Remarque 3.10. On pourrait avoir $\mathcal{M} \models T$, avec T consistante et $\mathcal{M} \models \neg \text{Coh}(T)$. En effet, il suffit que x_0, x_1, x_2, x_3 ne soient pas

des entiers standards.

Théorème 3.8 (Second théorème d'incomplétude de Gödel). Soit T une théorie consistante, axiome-récursive, et contenant \mathcal{P}_0 . Alors, $T \not\vdash \operatorname{Coh}(T)$.

Remarque 3.11. Si $\mathbb{N} \models T$, ce théorème implique le 1er théorème d'incomplétude car $\mathbb{N} \not\models \neg \text{Coh}(T)$, donc $T \not\models \neg \text{Coh}(T)$ et donc T incomplète.

Dans le cas général, ce n'est pas vrai : $T \cup \{\neg \text{Coh}(T)\}$ est une théorie consistante. Par exemple, $\mathcal{P} \cup \{\neg \text{Coh}(\mathcal{P})\}$ est consistante mais \mathbb{N} n'en est pas un modèle.

Définition 3.16. L'ensemble Σ est le plus petit ensemble de formules contenant \mathcal{L}_0 qui

- ▷ contient les formules sans quantificateurs;
- \triangleright est clos par \land , \lor , \exists ;
- \triangleright est clos par quantification universelle bornée, i.e. si $F\in\Sigma$ alors

$$(\forall v_0 (v_0 < v_1) \to F) \in \Sigma.$$

Exemple 3.6. Les relations « $n \mid m$ » et « m est premier » peuvent s'exprimer avec des formules de Σ .

Lemme 3.19 (Représentation (bis)). Toute fonction récursive totale est représentable par une formule de Σ .

Preuve. Les formules que l'on construit dans le lemme 3.3 sont des formules de Σ .

Lemme 3.20. Il existe des formules F_T et $F_{\mathcal{P}_0}$ qui satisfont :

- 1. $\vdash \forall v_0 \ \forall v_1 \ F_{\mathcal{P}_0}(v_0, v_1) \to F_T(v_0, v_1)$;
- 2. F_T et $F_{\mathcal{P}_0}$ sont dans Σ ;
- 3. si F est une formule close de Σ alors

$$\mathfrak{P} \vdash (F \to \exists x \, F_{\mathfrak{P}_0}(x_1, \sharp F)).$$

Preuve. 1. Il suffit de remplacer F_T par par $F_T \vee F_{\mathcal{P}_0}$.

- 2. C'est une conséquence du lemme précédent.
- 3. On va le montrer pour une théorie \mathcal{P}_1 contenant \mathcal{P}_0 et conséquence de \mathcal{P} mais, a priori, plus faible que \mathcal{P} . Puis, on l'admet pour \mathcal{P} , et on admet que $\mathcal{P} \vdash \mathcal{P}_1$. On a le montrer par la proposition suivante.

Proposition 3.5. Soit F une formule close sur \mathcal{L}_0 dans Σ . Alors,

$$\mathbb{N} \models F \to \exists x_1 F_{\mathscr{P}_0}(x_1, \sharp F).$$

Preuve. \triangleright Si F est fausse, c'est montré.

 \triangleright Si $\mathbb{N} \models F$, il faut montrer que F a une preuve dans \mathcal{P}_0 , *i.e.* que tout modèle $\mathcal{M} \models \mathcal{P}_0$, on a $\mathcal{M} \models F$ *i.e.* que dans tout extension finale \mathcal{M} de \mathbb{N} alors $\mathcal{M} \models F$, pour cela il suffit de montrer le lemme suivant.

Lemme 3.21. Soient \mathcal{N} une \mathcal{L}_0 -structure et \mathcal{M} une extension finale de \mathcal{N} . Soient $F(x_1, \ldots, x_p) \in \Sigma$ et $a_1, \ldots, a_p \in \mathcal{N}$. Alors, $\mathcal{N} \models F(a_1, \ldots, a_p)$ implique $\mathcal{M} \models F(a_1, \ldots, a_p)$.

Preuve. Par induction sur $F(x_1, \ldots, x_p) \in \Sigma$.

On termine la preuve du point 3.

Preuve. On pose

$$\mathcal{P}_1 := \mathcal{P}_0 \cup \{ F \to \exists x \ F_F(x_1, \sharp F) \mid F \text{ formule close de } \Sigma \}.$$

On a montré que $\mathbb{N} \models \mathcal{P}$. On admet que $\mathcal{P} \vdash \mathcal{P}_1$ donc $T \vdash \mathcal{P}_1$.

Lemme 3.22 (Cœur du 2nd théorème d'incomplétude). Soit T une théorie consistante, axiome-récursive, et contenant \mathcal{P}_0 . Alors, $T \not\vdash \operatorname{Coh}(T)$.

Preuve. $ightharpoonup \operatorname{Soit} g: \mathbb{N} \to \mathbb{N}$ définie par $n = \sharp F(x_0) \mapsto \sharp F(\widehat{w}) = \sharp F(\underbrace{\sharp F(x_0)})$. C'est la formule appliquée à ellemême. La fonction g est primitive récursive, donc représentée par une formule G(x,y) telle que

$$\forall n \in \mathbb{N}, \quad \mathcal{P}_0 \vdash \forall x \ G(x, \textcircled{n}) \leftrightarrow x = (g(n)).$$

 \triangleright On considère la formule « il existe une preuve de x_0 appliquée à elle-même » :

$$\varepsilon(x_0) := \exists x_1 \, \exists x_2 \, F_T(x_1, x_2) \wedge G(x_2, x_0).$$

- \triangleright On pose $a := \sharp \neg \varepsilon(x_0)$, « il n'existe pas de preuve de x_0 appliquée à elle-même ».
- \triangleright On pose $b := g(a) = \sharp \neg \varepsilon(@)$, « il n'existe pas du preuve du fait qu'il n'existe pas de preuve de x_0 appliquée à ellemême ».
- \triangleright Dans \mathcal{P}_0 , on a $\forall x_2 \ G(x_2, @) \leftrightarrow x_2 = (b)$.
- ▷ Par définition, $\varepsilon(@)$ est $\exists x_1 \ \exists x_2 \ F_T(x_1, x_2) \land G(x_0, @)$. « Il existe une preuve du fait qu'il n'existe pas de preuve de nous-même ». Dans \mathcal{P}_0 , $\varepsilon(@)$ est équivalent à $\exists x_1 F_T(x_1, @) \land G(@)$, ce qui est équivalent à $\exists x_1 F_T(x_1, @)$ car b = g(a) (*). Ainsi, on a « $\varepsilon(@)$ ssi il y a une preuve de $\neg \varepsilon(@)$ »

Voici le paradoxe :

- ▶ Prouvons que $T \vdash \operatorname{Coh}(T) \to \neg \varepsilon(@)$. Il suffit de montrer que $\mathscr{P}_1 \vdash \varepsilon(@) \to \neg \operatorname{Coh}(T)$. Soit $T_1 := \mathscr{P}_1 \cup \{\varepsilon(@)\}$. Alors $T_1 \vdash \exists v_1 F_T(v_1, \textcircled{b})$ et $b = \sharp \neg \varepsilon(@)$ On a donc une preuve de $\varepsilon(@)$ et une preuve de $\neg \varepsilon(@)$, donc de $\neg \operatorname{Coh}(T)$.
- ▷ On va montrer que $T \vdash \neg \varepsilon(@)$ mène à un paradoxe. Si c'est vrai, soit C le numéro d'une preuve de $\neg \varepsilon(@)$ dans T. Alors, $\mathscr{P}_0 \vdash F_T(@, \textcircled{b})$. D'où, avec (\star) , $\mathscr{P}_0 \vdash \varepsilon(@)$ impossible car T consistante. Donc $T \not\vdash \neg \varepsilon(@)$ et donc $T \not\vdash \operatorname{Coh}(T)$.

- *73/73* -