

PLL - Phase Locked Loop

Grundlagen, Modellierung und Praxis
J.H.

Überblick - Teil 1

- 1. Grundlagen
 - 1.1 Einstieg
 - 1.2 Aufbau
 - 1.3 Anwendungen
- 2. Modellierung & Auslegung
 - 2.1 Modellierung im linearisiertem Phasenraum
 - 2.2 SPICE
- Praxis
 - 3.1 Schaltung
 - 3.2 Messungen

Definition - PLL

PLL = Phase-Locked Loop = Phasenregelschleife

Grundprinzip

Eine PLL besteht unter anderem aus einem VCO, der über einen Regelkreis so abgestimmt wird, dass sich am Ausgang eine konstante Phasenbeziehung zum Eingangssignal einstellt

$$\phi_{\text{out}}(t) = \phi_{\text{ref}}(t) + \text{const}$$

$$\omega_{\text{out}}(t) = \omega_{\text{ref}}(t)$$

Blockdiagramm

Aus was besteht eine PLL?

Minimalaufbau aus drei Systemkomponenten:

Kann komplett Analog, komplett Digital oder als Kombination realisiert werden.

Phasenkomparator

Vergleicht die Phase zweier Eingänge und gibt eine zur Phasenverschiebung proportionale Spannung (PWM) aus.

- Multiplizierer
- XOR Glied
- Flip-Flop

Phasenkomparator

$$f_{ref} = f_{fb}$$

$$\Delta \phi = 90 (\pi/2)$$

$$\Delta \phi = 45 \, (\pi/4)$$

Phasenkomparator

 $f_{ref} \neq f_{fb}$

Phasenkomparator - Implementierung

Einfacher Multiplizierer:

Multiplizierer mit Offset und Skalierung:

Schleifenfilter

- Glättet Signal von Phasenkomparator
- Im einfachsten Fall RC Tiefpass
- Bestimmt unmittelbar das Regelverhalten → Kritisches Element

niedrig **Bandbreite** hoch

- Unterdrückt Phasekomp. Jitter
- Langsames Einregeln

- Unterdrückt VCO Jitter
- Phase-Margin hoch

VCO

Voltage Controlled Oscillator

PLL

Funktionsweise

PLL mit Teiler

Erzeugung vielfacher Frequenzen

$$f_{out} = N \cdot f_{ref}$$

mit $N \in \mathbb{N}$

Anwendungen

Beispiel:

• i.MX6 (ARM A9 SOC) → 6 PLLs

¹https://www.flickr.com/photos/snazzyguy/4150705616/ (Lizenz: CC BY-SA 2.0)

Überblick - Teil 2

- Grundlagen
 - 1.1 Einstieg
 - 1.2 Aufbau
 - 1.3 Anwendungen
- 2. Modellierung & Auslegung
 - 2.1 Modellierung im linearisiertem Phasenraum
 - 2.2 SPICE
- Praxis
 - 3.1 Schaltung
 - 3.2 Messungen

Modellierung im linearisiertem Phasenraum

Modellierung der PLL als LTI System im "Phasenraum"

- Auslegung des Filters G(s)
- Stabilitätsbetrachtungen
- Capture Range optimieren

Modellierung im linearisiertem Phasenraum

Stabilitätsbetrachtung (Open Loop)

Auslegung des Filters G(s) auf $f_c \approx 50 \, Hz \rightarrow Phase Margin: 21,1°$

Modellierung im linearisiertem Phasenraum

Closed Loop Bandbreite

-3 dB Cuttof Frequenz: 138 Hz → Capture Bandbreite ≈ 276 Hz

SPICE Simulation - Einschwingen

Überblick - Teil 3

- Grundlagen
 - 1.1 Einstieg
 - 1.2 Aufbau
 - 1.3 Anwendungen
- 2. Modellierung & Auslegung
 - 2.1 Modellierung im linearisiertem Phasenraum
 - 2.2 SPICE
- 3. Praxis
 - 3.1 Schaltung
 - 3.2 Messungen

Schaltung

VCO Kennlinie

PLL - Time domain

Lock Range

Capure Range Lock Range

"Vielfaches" Phänomen

Bei bestimmten Bias-Spannungen "lockt" die PLL auch bei Vielfachen der Referenzfrequenz

Jitter

fref	Cycle Jitter	Absolute Jitter
500 Hz	19,80 μ s (9,9 $\%$)	24,30 μs (12,0 $\%$)
1 kHz	3,60 μ s (3,6 $\%$)	7,44 μ s (7,44 $\%$)
2 kHz	0,68 μ s (1,36 $\%$)	3,70 μ s (3,7 $\%$)

¹Max. Wert über 3 min ermittelt

Phasenbeziehung

Arbeitsbereich des Phasenkomparators (45° - 180) wird nicht vollständig ausgenutzt.

Fazit

