Diskrete Mathematik 2

Jan Fässler

2. Semester (FS 2012)

1 Quantifizierung

1.1 Einleitung

Die bekannten mathematischen Quantifizierungen haben den Nachteil, dass sie nicht immer 100% genau sind. Deshalb definieren wir eine neue, genauere Schreibweise:

$$\sum_{i=1}^{n} i^{2} = (+i : \mathbb{Z}|1 \le i \le n : i^{2})$$

1.2 Definition

 $(\oplus v_1: T_1, ..., v_n: T_n | R: P)$

- Anwendung von \oplus auf die Werte von P für alle Kombinationen von Werten für $v_1,...,v_n$ für die R wahr ist.
- \bullet Ist R für keine Kombination wahr, dann die Identität u von \oplus
- Datentyp der gesamten Quantifizierung: T

\oplus - binärer Operator

- Typ: $T \times T \to T$
- Eigenschaften:
 - $-a \oplus b = b \oplus a$ (kommutativ)
 - $-a \oplus (b \oplus c) = (a \oplus b) \oplus c$ (assoziativ)
 - $-a \oplus u = a$

$T_1,...,T_n$ - Datentypen

 $v_1,...,v_n$ - gebundene Variabeln

- Englisch: bound variables, dummies
- $n \ge 1$
- alle paarweise verschieden
- v_i hat den Typ T_i

R - boolescher Ausdruck

- ist der Bereich (Range)
- kann $v_1, ..., v_n$ enthalten

P - beliebiger Ausdruck von Typ T

- ist der Körper (Body)
- kann $v_1, ..., v_n$ enthalten

	Quantor	Operator	Idendität	Тур
	Σ	+	0	$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
•	П	*	1	$\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$
	\forall	\wedge	true	$\mathbb{B}\times\mathbb{B}\to\mathbb{B}$
	∃	V	false	$\mathbb{B}\times\mathbb{B}\to\mathbb{B}$

1.3 Beispiele

- $(+i|0 \le i < 4: i*8) = 0*8+1*8+2*8$
- $(*i|0 \le i < 3: i + (i+1)) = (0+0+1)*(1+1+1)*(2+2+1)$
- $(\land i | 0 \le i < 2 : i * d \ne 6) = 0 * d \ne 6 \land 1 * d \ne 6 = d \ne 6$
- $(\forall i | \leq i < 21 : b[i] = 0) = b[0] = 0 \lor b[1] = 0 \lor \dots \lor b[20] = 0$
- $(+k: \mathbb{N}|k^2=4:k^2)=2^2$
- $(+k: \mathbb{Z}|k^2=4:k)=2^2+(-2)^2$

1.4 Variabeln

1.4.1 Definition

Def. Eine Variable v heisst frei in einem Ausdruck E, falls v in E frei auftritt. FV(E) = Menge der freien Variablen in E

Bem. Werte der freien Variablen stehen nicht im Ausdruck selbst, diese Info muss aus anderer Quelle kommen. (Background Info)

Def. Ein Ausdruck E ohne freie Variable heisst geschlossen.

Bem. Die erste gebundene Variabel nennt man bindend und alle volgenden angewandt.

1.4.2 Beispiele

$$E_1: (\sum \underbrace{i:\mathbb{Z}})|0 \leq \underbrace{i} < \underbrace{n}: \underbrace{i^2}_{gebunden})$$

 $E_2: (\sum \underbrace{i: \mathbb{Z} | 0 \leq \underbrace{i} < n}_{aebunden} : \underbrace{i^2 + i}) + (\sum \underbrace{i: \mathbb{Z} | 0 \leq \underbrace{i} < n}_{aebunden} : \underbrace{i^3}))$

 $E_{3}: (\pi \overbrace{u} | \underbrace{k}_{frei} \leq \underbrace{u} \leq \underbrace{b}_{frei} : (\sum \underbrace{i}_{gebunden} | 0 \leq \underbrace{i}_{gebunden} \leq \underbrace{u} : \underbrace{i}_{gebunden}) * (\sum \underbrace{i}_{gebunden} | 0 \leq \underbrace{i}_{gebunden} \leq \underbrace{u} : \underbrace{i}_{gebunden})$

1.4.3 Umbenennung (dummy renaming)

Bed. $w \notin FV(R) \cup FV(P)$ (w darf nicht als FV im Ausdruck vorkommen)

Regel: $(\oplus v | R : P) = (\oplus w | R[v \leftarrow w] : P[v \leftarrow w])$

Def. $E[v \leftarrow F]$ bezeichnet den selben Ausdruck wie E, aber alle freien Aufteten von v ersetzt durch (F).

Bsp. $(i^2)[i \leftarrow (z+3)] = (z+3)^2$

Bsp. $(\sum i | 0 \nleq i < n : i^2) = (\sum j | (0 \nleq i < n)[i \leftarrow j] : (i^2)[i \leftarrow j] = (\sum j | 0 \nleq j \nleq n : j^2)$

Rechenregeln 1.5

Empty-Range

Bei einer leeren Range, ist das Resultat die Indendität:

$$(\oplus v|false:P) = neutral \oplus (identität)$$

One-Point

Eine gebundene Variabel wird durch eine freie ersetzt:

$$(\oplus v|v=E:P) = P[v \leftarrow E] \text{ wenn: } v \notin FV(E)$$

Bsp
$$(\sum i|i=j+3:i^2) = (i^2)[i \leftarrow (i+3)] = (j+3)^2$$

Split-Off Term

Die Range wird gekürzt. Weggenommenes Element anschliessend angefügt:

$$(\oplus i | 0 \le i < n+1 : P) = (\oplus i | 0 \le i < n : P) \oplus P[i \leftarrow n]$$

Bsp:
$$\underbrace{(\sum i | 0 \le i < n+1 : i^2)}_{0^2+1^2+\dots+(n-1)^2+n^2} = \underbrace{(\sum i | 0 \le i < n : i^2)}_{0^2+1^2+\dots+(n-1)^2} + \underbrace{(i^2)[i \leftarrow n]}_{n^2}$$

Trading

Bei mehreren Bedingungen in der Range, kann eine in den Body genommen werden:

$$(\oplus | \underbrace{R_1 \wedge R_2}_{Rool} : \underbrace{P}_{irgendeinDatentyp}) = (\oplus v | R_1 : \text{if } R_2 \text{ then P else } v_{\oplus} \text{ endif})$$

Bei mehreren Bedingungen in der Range, kann eine in den Body genommen werden:
$$(\bigoplus |\underbrace{R_1 \wedge R_2}_{Bool}: \underbrace{P}_{irgendeinDatentyp}) = (\bigoplus v|R_1: \text{if } R_2 \text{ then P else } v_{\bigoplus} \text{ endif})$$
 Bsp:
$$(\underbrace{\sum i|0 \leq i < 10 \wedge odd(i): i}_{1+3+5+7+9}) = (\underbrace{\sum i|0 \leq i < 10: if \ odd(i) \ then \ i \ else \ 0 \ endfi)}_{0+1+0+3+0+5+0+7+0+9}$$
 Prädikate

1.6 Prädikate

1.6.1 Definition

- $\oplus = \forall (\forall x | R : P) \Longrightarrow$ für alle x im Bereich R gilt P
- $\bullet \ \oplus = \exists (\exists x | R : P) \Longrightarrow$ es gibt ein x im Bereich R, das P erfüllt

1.6.2 Beispiele

• $\oplus = \forall (\forall x | R_1 \land R_2 : P) = (\forall u | R_1 : \text{if } R_2 \text{ then P else true endif }) = (\forall u | R_1 : R_2 \rightarrow P)$

R_2	Р	if	\rightarrow	
0	0	1	1	
0	1	1	1	Sei $R_1 = true \iff (\forall u R_2 : P) = (\forall u true : R_2 \to P) = (\forall u : R_2 \to P)$
1 1	0	0	0	
1	1	1	1	

• $\oplus = \exists (\exists u | R_1 \land R_2 : P) = (\exists u | R_1 : \text{if } R_2 \text{ then P else false endif}) = (\exists u | R_1 : R_2 \land P)$

R_2	Ρ	if	\wedge
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

1.6.3Übungen

b enthält eine -1: $(\exists i | 0 \le i < n : b[i] = -1)$

b enthält genau eine -1: $(\exists i | 0 \le i < n : b[i] = -1 \land (\forall j | 0 \le j < n \land j = i : b[j] \ne -1))$

b enthält keine -1: $(\forall i : \mathbb{Z} | 0 \le i < n : b[i] \ne -1)$

2 Induktion/Rekursion

2.1 Induktion

```
(P(0) \land (\forall n : \mathbb{N}| : P(n) \rightarrow P(n+1))) \rightarrow (\forall n : \mathbb{N}| : P(n))
```

Für alle $n : \mathbb{N}$ gilt $: n^3 + 5n$ ist Vielfaches von 6.

- 1.) Induktionsanfang zu zeigen: P(0), das heisst es gilt $r : \mathbb{Z}$ mit $0^3 + 5 * 0 = 6 * z$ klar, wähle z=0
- 2.) Induktionsschritt zu zeigen: $P(n) \to P(n+1)$ für alle $n \ge 0$. Sei n eine beliebige natürliche Zahl

Annahme: es gelte P(n), das heisst es gibt $r : \mathbb{Z}$ mit $n^3 + 5n = 6r$

zu Zeigen: es gibt ein $s : \mathbb{Z}$ mit $(n+1)^3 + 5(n+1) = 6s$

$$\begin{array}{l} (n+1)^3 + 5(n+1) \\ = & < Arith > \text{(arithmetische Veränderungen)} \\ (n^3 + 3n^2 + 3n + 1) + (5n + 5) \\ = & < Arith > \\ (n^3 + 5n) + (3n^2 + 3n + 6) \\ = & < Annahme > \\ 6r + 3n(n+1) + 6 \\ & < n(n+1) \text{ immer durch 2 teilbar, d.h. } n(n+1) = 2t, t = \mathbb{Z} > \\ 6r + 3 * 2t + 6 \\ = & < Arith > \\ 6(r+t+1) \\ = & < \text{ wähle } s : \mathbb{Z} = r+t+1 > \\ \frac{6s}{2} \end{array}$$

2.1.1 Schema

Induktionsanfang zu zeigen: P(0)

Induktionsschritt zu zeigen: $P(n) \to P(n+1)$ für alle $n : \mathbb{N}$

Sei n eine beliebige natürliche Zahl

Annahme: Es gelte P(n) zu zeigen: Es gilt P(n+1)

2.1.2 Beispiel 1

Für alle
$$n : \mathbb{N}$$
 gilt: $(+i|1 \le i < n : i) = \frac{n(n+1)}{2}$

1. Induktionsanfang:

zu zeigen:
$$< neutral + > 0 = \frac{0(0+1)}{2} = 0$$
 \checkmark

2. Induktionsschritt:

zu zeigen: $P(n) \to P(n+1)$ für alle $n : \mathbb{N}$ Sei n eine beliebige Zahl **Annahme:** es gelte $(i+|1 \le i \le n : i) = \frac{n(n+1)}{2}$

Annahme: es gelte $(i + | 1 \le i \le n : i) = \frac{n(n+1)}{2}$ **zu zeigen:** es gilt $(i + | 1 \le i \le n : i) = \frac{(n+1)(n+2)}{2}$

$$\begin{aligned} &(i+|1\leq i\leq n+1:i)\\ &< split of>\\ &=(i+|1\leq i\leq n:i)+n+1 \end{aligned}$$

$$< Annahme > \\ = \frac{n(n+1)}{2} + n + 1 \\ < Arith > \\ = \frac{n^2 + n}{2} + \frac{2n+2}{2} \\ < Arith > \\ = \frac{(n+1)(n+2)}{2}$$

2.1.3 Beispiel 2

Für alle $n : \mathbb{N}$ gilt: $(+i : \mathbb{N} | 1 \le i \le n : 2i - 1) = n^2$

1. Induktionsanfang:

zu zeigen:
$$\underbrace{(+i: \mathbb{N}|1 \le i \le n: 2i-1)}_{0(< neutral+>)} = \underbrace{n^2}_{=0}$$

2. Induktionsschritt:

zu zeigen: $P(n) \to P(n+1)$ für alle $n : \mathbb{N}$ Sei n eine beliebige Zahl **Annahme:** es gelte $(+i : \mathbb{N}|1 \le i \le n : 2i-1) = n^2$ **zu zeigen:** es gilt $(+i : \mathbb{N}|1 \le i \le (n+1) : 2i-1) = (n+1)^2$

$$\begin{aligned} &(+i:\mathbb{N}|1 \leq i \leq (n+1):2i-1) \\ &< split of> \\ &= (+i:\mathbb{N}|1 \leq i \leq n:2i-1+2(n+1-1) \\ &< Annahme> \\ &= n^2+2(n+1)-1 \\ &< Arith> \\ &= n^2+2n+1 \\ &< Arith> \\ &= (n+1)^2) \end{aligned}$$

2.1.4 Induktion mit einem anderer Anfangswert

 $\underbrace{P(k)}_{IA} \wedge \underbrace{(\forall n: \mathbb{N} | n \geq k: P(n) \Rightarrow P(n+1))}_{IS} \Rightarrow (\forall n: \mathbb{N} | n \geq k: P(n))$

Theorem

Für alle $n: \mathbb{N}$ mit $n \geq 3$ gilt: $2n+1 < 2^n$

Beweis

IA: zu zeigen: P(3) $2*3+1<2^3$ IS: zu zeigen: $P(n) \Rightarrow P(n+1)$ für alle $n \geq 3$ Sei n eine beliebige nat. Zahl ≥ 3 . **Annahme:** Es gelte: $2n + 1 < 2^n$ **zu zeigen:** Es gilt: $2(n+1) + 1 < 2^{n+1}$ 2(n+1)+1= < Arith >2n + 2 + 1= < Arith >(2n+1)+2<< Anahme > $2^{n} + 2$ <<für n+1 ist $2^n>2>$ $2^{n} + 2^{n}$ = < Arith > 2^{n+1}

2.2 Rekursion

$$\begin{split} & fact: \mathbb{N} \to \mathbb{N} \\ & fact(0) = 1 \\ & \underbrace{fact(n) = n + fact(n-1)}_{Rekursion}, \text{ für alle } n > 0. \end{split}$$

2.2.1 Factorial Beispiel

Für alle $n : \mathbb{N}$ gilt: $\text{fact}(n) = (*i : \mathbb{N} | 1 \le i \le n : i)$

1. Induktionsanfang:

$$fact(0) = (*i : \mathbb{N} | 1 \le i \le 0 : i)$$

2. Induktionsschritt:

```
Zeigen: P(n) \rightarrow P(n+1), für alle n \ge 0

Sei n eine beliebige natürliche Zahl.

fact(n) = (*i : \mathbb{N} | 1 \le i \le n : i)

fact(n) = (*i : \mathbb{N} | 1 \le i \le (n+1) : i)

(*i : \mathbb{N} | 1 \le i \le (n+1) : i)

< splitoff >

= (*i : \mathbb{N} | 1 \le i \le n : i) * (n+1)

< Annahme >

= fact(n) * (n+1)

< Rekursion >

= fact(n+1)
```

2.2.2 Fibonaci Beispiel

Für alle $n: \mathbb{N}$ gilt: $(+i: \mathbb{N}|1 \le i \le n: fib(i)) = fib(n+2) - 1$

1. Induktionsanfang:

$$(+i: \mathbb{N}|1 \le i \le 0: fib(i)) = fib(0+2) - 1$$

2. Induktionsschritt:

```
Zeigen: P(n) \to P(n+1), für alle n \ge 0

Sei n eine beliebige natürliche Zahl.

(+i: \mathbb{N}|1 \le i \le n: fib(i)) = fib(n+2) - 1

(+i: \mathbb{N}|1 \le i \le (n+1): fib(i)) = fib(n+3) - 1

(+i: \mathbb{N}|1 \le i \le (n+1): fib(i))

< splitoff >

(+i: \mathbb{N}|1 \le i \le n: fib(i)) + fib(n+1)

< Annahme >

fib(n+2) - 1 + fib(n+1)

< Rekursion >

= fib(n+3) - 1
```

3 Zahlentheorie

3.1 Teilbarkeit

3.1.1 Definition

```
c \ b
c teilt b
b ist teilbar durch c
c ist ein Teiler von b
b ist Vielfaches von c
```

Beispiel

$$7 \setminus 13 \equiv false$$
$$(-7) \setminus 14 \equiv true$$

oft c|b statt $c \setminus b$

Formal $c|b \equiv (\exists k : \mathbb{Z}|b = k * c)$

Sätze

- (1) $c \setminus c$ (reflexiv)
- (2) $c \setminus 0$
- (3) $1 \setminus b$
- (4) $c \setminus 1 \Rightarrow c = 1 \lor c = -1$
- (5) $d \setminus c \wedge c \setminus b \Rightarrow d \setminus b$ (transitiv)
- (6) $b \setminus c \land c \setminus b \Rightarrow (b = c) \lor (b = -c)$ (antisymmetrie für Zahlen > 0)
- (7) $b \setminus c \Rightarrow b \setminus (c * b)$
- (8) $b \setminus c \Rightarrow (b*d) \setminus (c*d)$
- (9) $1 < b \land b \setminus c \Rightarrow \neg(b \setminus (c+1))$

Der Fall Null

- $0 \setminus 0 \equiv true$
- $0 \setminus 7 \equiv false$

3.1.2 Beweise

Beweis von Regel 5

```
\begin{array}{l} d \setminus c \wedge c | b \Rightarrow d \setminus b \\ \underline{\text{Annahmen:}} \ d \setminus c, c \setminus b \\ \underline{\text{zu zeigen:}} \ d \setminus b \\ \text{wegen } d \setminus c \ \text{gibt es } k_1 : \mathbb{Z} \ \text{mit } c = k_1 * d \\ \text{wegen } c \setminus b \ \text{gibt es } k_2 : \mathbb{Z} \ \text{mit } b = k_2 * d \\ \text{also } b = k_2 * c = k_2 * (k_1 * d) = (k_2 * k_1) * d = k_3 * d \\ \text{mit } k_3 = k_2 * k_1 : \mathbb{Z} \\ \text{also } d \setminus b \end{array}
```

Beweis von $a \setminus b \wedge a \setminus c \Rightarrow a \setminus (b+c)$

```
Annahmen: a \setminus b, a \setminus c
\overline{\text{zu zeigen: }} a \setminus (b+c)
a \setminus b, also existiert ein k_1 : \mathbb{Z} mit b=k_1*a
a \setminus c, also existiert ein k_2 : \mathbb{Z} mit c=k_2*a
also b+c=k_1*a+k_2*a=(k_1+k_2)*a=k_3*a
mit k_3=k_2+k_1
also a \setminus (b+c)
```

3.2 Division

Theorem

 $b, c : \mathbb{Z}, c \neq 0$. Dann gibt es eindeutig bestimmte $q, r : \mathbb{Z}$ mit $b = q * c + r \land 0 \leq r < c$. Wir nennen q den **Quotienten** und r den **Rest** von c geteilt durch b.

Beispiel

$$17 = 5 * 3 + 2 \land 0 \le 2 < 3$$

$$b = q * c + r \land 0 \le r < |c|$$

Eindeutigkeit

Seien
$$b, c: \mathbb{Z}, c>0$$
 Ausserdem $q, q', r, r': \mathbb{Z}$ mit $b=q*c+r$ $\land 0 \le r < c$ $b=q'*c+r'$ $\land 0 \le r' < c \mid *(-1)$ $b-b=(q-q')*c+(r-r')$ $-0 \ge -r' > -c \mid \text{umdrehen}$ $0 \Rightarrow r-r'=(q'-q)*c$ $-c < -r' \le -0$ $0 \le r < c$ $r=r' \equiv q=q'$ $-c < r-r' < c$ $-c < (q'-q)*c < c$ $-1 < q'-q < 1$ $\Rightarrow q'-q=0$, also $q'=q$, also $r=r'$

Definition

Sei b, c, q, r :
$$\mathbb{Z}$$
, $c \neq 0$, $b = q * c + r, 0 \le r < |c|$

Nach Satz q, r existent und eindeutig. Definieren die Funktionen div und mod.

$$\begin{array}{l} \operatorname{div}(b,c) = b \ \operatorname{div} \ c = \operatorname{def} \ q, \\ \operatorname{mod}(b,c) = b \ \operatorname{mod} \ c = \operatorname{def} \ r \ \operatorname{div}, \ \operatorname{mod} \colon \mathbb{Z} \ x \ \mathbb{Z}^{\neq 0} \to \mathbb{Z} \end{array}$$

3.3 Greatest Common Divisor (GCD)

$$x \uparrow y \Rightarrow \text{if } x \ge y \text{ then } x \text{ else y (max)}$$

 $x \downarrow y \Rightarrow \text{if } x \le y \text{ then } x \text{ else y (min)}$

Sei
$$M \subseteq \mathbb{Z}, M \neq \emptyset$$
, M endlich Dann $\max(M) = (\uparrow b : \mathbb{Z} | b \in M : b)$

Definition

$$D_m = \{d : \mathbb{Z} | d \backslash m\}$$
 (Menge aller Teiler von m)

Beispiele

$$\begin{aligned} &D_{12} = \{-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12\} \\ &D_0 = \{\mathbb{Z}\} \\ &1 \in D_m, \text{ also } D_m \neq \varnothing \end{aligned}$$

Definition

$$D_{m,n} = D_m \cap D_n$$
 (Menge der gemeinsamen Teiler von m und n)

Beispiele

$$\begin{array}{l} D_{4,6} = \{-4,-2,-1,1,2,4\} \cap \{-6,-3,-2,-1,1,2,3,6\} = \{-2,-1,1,2\} \\ D_{2,0} = \{-3,-1,1,3\} \cap \mathbb{Z} = \{-3,-1,1,3\} \\ D_{0,0} = \mathbb{Z} \\ 1 \in D_{m,n}, \text{ also } D_{m,n} \neq \varnothing \end{array}$$

Sei b, c : \mathbb{Z} , $b \neq 0 \lor c \neq 0$.

Dann ist $D_{b,c} \neq \emptyset$ und $D_{b,c}$ hat ein grösstes Element.

$$\gcd(b,c) = b \gcd c = \max(D_{b,c})$$
$$\gcd(0,0) = 0 \gcd 0 = 0$$

Satz

- a) b gcd b = |b|
- b) $0 \gcd b = |b|$
- c) b gcd c = |b| gcd |c| (ged Algo für N genug)
- d) $b \gcd c = c \gcd b$
- e) $b = a * c + d \Rightarrow b \gcd c = c \gcd d$

Beweis

Annahme: Sei b = a*c + dzu zeigen: Es gilt $b \gcd = c \gcd d$

1. Fall:

b = c = 0 Dann d = 0Dann b gcd c = c gcd d

2. Fall:

$$b \neq 0 \lor c \neq 0$$

Wir zeigen $D_{b,c} = D_{c,d}$. Damit folgt b gcd = $\max(D_{b,c}) = \max(D_{c,d}) = c$ gcd d.

zu zeigen: $D_{b,c} = D_{c,d}$ also $t \in D_{b,c} \Leftrightarrow t \in D_{c,d}$

Teil 1
$$(t \in D_{b,c} \Rightarrow t \in D_{c,d})$$

$$t \in D_{b,c}$$

$$\Rightarrow < Def D_{m,n} >$$

$$t \in D_b \cap D_c$$

$$\Rightarrow < Def \cap >$$

$$t \in D_b \land t \in D_c$$

$$\Rightarrow < DefD_m >$$

$$t \backslash b \wedge t \backslash c$$

$$\Rightarrow < Def \setminus mit \ k_1, k_2 : \mathbb{Z} >$$

$$b = k_1 * t \wedge c = k_2 * t$$

 $\Rightarrow < d = b - a * c$, nach Annahme>

$$d = k_1 * t - a * (k_2 * t)$$

$$\Rightarrow < Arith >$$

$$d = t * (k_1 - a * k_2)$$

$$\Rightarrow < Def \setminus mit \ k_1 - a * k_2 : \mathbb{Z} >$$

$$t \backslash d \wedge t \backslash c$$

$$\Rightarrow < DefD_m >$$

$$t \in D_d \land t \in D_c$$

$$\Rightarrow < Def \cap >$$

$$t \in D_d \cap D_c$$

$$\Rightarrow < Def D_{d,c} >$$

 $t \in D_{d,c}$

Teil 2
$$(t \in D_{b,c} \Leftarrow t \in D_{c,d})$$

 tbd

3.4 Euklid ged(27,10)

Regel e: $b = a * c + d \Rightarrow b \gcd c = c \gcd d$

Algo:

Algo terminiert. Sei n Anzahl Iterationen. Dann
$$\gcd(bc) = x_n$$
 oder y_n (beides richtig) $(x_0,y_0) = b,c$ $i:=0$ while $x_i \neq <_i$ do if $x_i < y_i$ then $(x_i+1,y_i-1) = (x_i-y_i,y_i)$ else $(x_i+1,y_i-1) = (x_i,y_i-x_i)$

 $\begin{array}{l} \mathbf{endif} \\ i := i{+}1 \end{array}$

end

3.5 Erweiterter Euklid

Satz:

Satz:

$$r_{-2} = a$$
 $r_{-1} = b$
 $p_{-2} = 0$ x $p_{-1} = 1$
 $q_{-2} = 1$ $q_{-1} = 0$
 $i := 0$

while
$$r_{i-1} \underset{G}{\underbrace{>}} 0$$
 do

berechne
$$c_i$$
 und r_i mit $r_{i-2} = c_i * r_{i-1} + r_i \wedge 0 \le r_i < r_{i-1}$

$$p_i \underbrace{=}_K c_i * p_{i-1} + p_{i-2}$$

$$q_i = c_i * q_{i-1} + 1_{i-2}$$
$$i := i + 1$$

end

Seien a, $b : \mathbb{N}$.

Dann gibt es Zahlen $x, y : \mathbb{Z}$ mit $x * a + y * b = \gcd(a,b)$.

Wir konstruieren diese Zahlen durch erteiterten Euklidschen Algorithmus.

- 1) $r_{n-1} = gcd(a,b)$
- 2) $p_n \gcd(a,b) = a$
- 3) $q_n \ gcd(a,b) = b$

4)
$$a * \frac{q_{n-1}}{(-1)^{n-1}} + b * \frac{p_{n-1}}{(-1)^n} = gcd(a, b)$$

 r_i p_i -2 654 1 -1 4440 $210 \quad 1 \quad 1 \quad 1 = b$ $24 \quad 2 \quad 3 \quad 2 = 210$ 1 $18 \quad 8 \quad 25 \quad 17 = 24$ 2 28 19 = 181 3 109 74

Beweis

Es gibt offensichtlich $n:\mathbb{N}$ mit $r_n=0 \land (\forall i|0 \le i < n:r_i>0)$ Invarianten für alle $i:0 \le i \le n+1$

$$I_1: \gcd(r_{i-2}, r_{i-1}) = \gcd(a,b)$$

$$I_2$$
: $p_{i-2} * r_{i-1} + p_{i-1} * r_{i-2} = a$

$$I_3: q_{i-2} * r_{i-1} + q_{i-1} * r_{i-2} = b$$

$$I_4$$
: $q_{i-2} * p_{i-1} - q_{i-1} * p_{i-2} = (-1)^{i-1}$

Beispiel I_2 :

Induktionsanfang

$$\begin{split} i &= 0, p_{-2} * r_{-1} + p_{-1} * r_{-2} \\ &= < C, B, D, A > \\ 0 * b + 1 + a \\ &= < Arith > a \end{split}$$

Induktionsschritt

zu zeigen:
$$I_2(i) \wedge r_{i-1} > 0 \Rightarrow I_2(i+1)$$
 für alle i mit $0 \le i \le n$. Sei n eine $\mathbb N$ mit $0 \le i \le n$

Annahme: es gibt
$$I_2(i) \wedge r_{i-1} > 0$$
 zu zeigen: es gibt $I_2(i+1)$

$$\begin{array}{l} p_{(i+1)-2} * r_{(i+1)-1} + p_{(i+1)-1} * r_{(i+1)-2} \\ = < Arith > \\ p_{i-1} * r_i + p_i * r_{i-1} \\ = < H, <> \\ p_{i-1} * (r_{i-2} - c_i * r_{i-1}) + (c_i * p_{i-1} + p_{i-2}) * r_{i-1} \\ = < Arith > \\ p_{i-1} * r_{i-2} + p_{i-2} * r_{i-1} \end{array}$$

$$= < Annahme >$$

Es gilt insbesondere:
$$p_n*r_{n-1}+p_{n-1}*\overbrace{r_n}^0=a$$
 $p_n*gcd(a,b)=a\to (2)$

3.6 Primzahlen

Def. Eine Zahl $n:\mathbb{N}$ heisst prim, wenn ihre einzigen positiven Teiler 1 und n sind, mit $1\neq p$:

p ist prim =
$$p \ge 2 \land (\forall i : \mathbb{N} | 1 < i < p : i \neg \backslash p)$$
 $|D_p^+| = 2$

Sonst heissst, p zusammengesetzt.

Def. Zahlen $b, c : \mathbb{N}$ heisst relativ prim $(b \perp c)$ falls der ged(b, c) = 1

Satz Jede natürliche Zahl $n: \mathbb{N}, n \geq 1$ kann als Produkt von PRimzahlen geschrieben werden. D.h. es existiert eine Zahl $m: \mathbb{N}$ und m Primzahlen $(p_0, p_1, ..., p_{m-1})$

$$n := (*i|0 \le i < m : p^i)$$

Satz Sei $n : \mathbb{N}, n \geq 1$. Die Zerlegung von n in Primzahlen ist eindeutig.

Bsp.
$$328 = 2 * 164 = 2 * 2 * 82 = 2 * 2 * 2 * 41$$

 $328 = 2^3 * 41^1$
 $328 = p_0^{\alpha 0}, p_1^{\alpha 1}, ..., p_{m-1}^{\alpha m-1}$

Satz Es gibt unendlich viele Primzahlen.

3.7 Modulare Arithmetik

3.7.1 Kongruenz

Def
$$a, b : \mathbb{Z}, m : \mathbb{N}^{>0}$$
. a heisst kongruent b modulo n, wenn $n \setminus (a - b)$ $a \equiv_n b = n \setminus (a - b)$ $a \equiv b \pmod{n}$

Bsp.
$$5\equiv_3 7 = false$$
 $5\equiv_3 8 = true$

Satz Sei $n: \mathbb{N}^{>0} \equiv_n$ eine Äquivalenzrellation.

Beweis

Symmetrisch
$$n \setminus (a-b) \rightarrow a-b = k*n \rightarrow b-a = (-k)*n \rightarrow n \setminus (b-a)$$

Reflexiv
$$a \equiv_n a \to n \setminus (a-a) \to n \setminus 0$$

Transitiv $a \equiv_n b \land b \equiv_n c \rightarrow a \equiv_n c$

1. Annahme

$$a \equiv_n b$$

$$< \operatorname{def} \setminus k : \mathbb{Z} >$$

$$a - b = k_n * n$$

2. Annahme

$$b \equiv_n c$$

< def \k_2 : \mathbb{Z} >
(b-c) = k_2 * n

zu zeigen

$$\begin{split} a &\equiv_n c \\ a - b &= k_1 * n \\ b - c &= k_2 * n \\ a - c &= (k_1 + k_2) * n \\ &< \operatorname{def} \setminus \operatorname{mit} (k_1 + k_2) : \mathbb{Z} > n \setminus (a - c) \end{split}$$

3.7.2 Restklasse modulo n

Def.
$$[a]_n = \{n : \mathbb{Z} | : a + k * n\}$$

Jedes $a' \in [a]_n$ ist ein Repräsentant von $[a]_n$

Satz Sei
$$a \equiv_n a'$$
 Dann $[a] = [a']$

Bsp.
$$[3]_7 = \{k : \mathbb{Z} | 3 + k * 7 :\} = \{..., -11, -4, 3, 10, 17, ...\}$$

 $[-4]_7 = \{k : \mathbb{Z} | -4 + k * 7 :\} = \{..., -11, -4, 3, 10, 17, ...\}$
 $[2]_7 = \{k : \mathbb{Z} | 2 + k * 7 :\} = \{..., -12, -5, 2, 9, 16, ...\}$

3.7.3 Zerlegung, Partition

Def.
$$Z_n = \{a : \mathbb{N} | 0 \le a < n : [a]_n \}$$

$$\begin{aligned} \mathbf{Bsp.} \ \ Z_3 &= \{[0]_3, [1]_3, [2]_3\} \\ Z_3 &= \{\{..., -3, 0, 3, 6, ...\}, \\ \{..., -2, 1, 4, 7, ...\}, \\ \{..., -1, 2, 5, 8, ...\} \} \end{aligned}$$

Satz
$$a, a', b, b' : \mathbb{Z}, n : \mathbb{N}^{>0}$$

 $a \equiv_n a' \text{ und } b \equiv_n b'$
 $a + b \equiv_n a' + b'$
 $a * b \equiv_n a' * b'$

Def
$$a, b : \mathbb{Z} \ n : \mathbb{N}^{>0}$$

 $[a]_n +_n [b]_n = [a+b]_n$
 $[a]_n *_n [b]_n = [a*b]_n$

Bsp.
$$[5]_n +_n [4]_n = [5+4]_n = [9]_7 = [2]_7$$

3.7.4 Gruppe

Eine Gruppe (S, \oplus) ist eine Menge S mit einer Operation \oplus aus S mit: $\oplus: S \times S \to a'$

1. Abgeschlossenheit

$$a \oplus b \in S'$$

 $\forall a, b \in S'$

2. Identität, neutrales Element

$$\exists e \in S' \text{ mit } e \oplus a = a = a \oplus e$$

3. Assoziativität

$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$
$$\forall a, b, c \in S$$

4. Inverse

für jedes $a \in S$ gibt es ein $b \in S$ mit $a \oplus b = b \oplus a = e$

5. Symmetrie

$$\begin{array}{l} a\oplus b=b\oplus a\\ \forall a,b \end{array}$$

dan heisst (S', \oplus) abelsche Gruppe.

3.7.5 endliche Gruppe

Ist S endlich, dann ist (S, \oplus) eine endliche Gruppe.

Def. $(Z_n, +_n)$ heisst additive Gruppe modulo n.

Satz $(Z_n, +_n)$ ist endliche abelsche Gruppe.

Beispiel:

$+_{4}$	$[0]_4$	$[1]_4$	$[2]_4$	$[3]_4$
$[0]_4$	$[0]_4$	$[1]_4$	$[2]_4$	$[3]_4$
$[1]_4$	$[1]_4$	$[2]_4$	$[3]_4$	$[0]_4$
$[2]_4$	$[2]_4$	$[3]_4$	$[0]_4$	$[1]_4$
$\overline{[3]_4}$	[3]4	[0]4	$[1]_{4}$	$[2]_{4}$

Beweis:

- 1. Abgeschlossen: klar aus Def
- 2. Identität $[0]_n$
- 3. Asso: aus Def
- 4. Inv: $[a]_n + [n-a]_n = [a+(n-a)]_n = [n]_n = [0]_n$
- 5. Sym: aus Def
- 6. $|Z_n| = n$ endlich

3.7.6 reduzierte Menge

Def. $Z_n^* = \{a: \mathbb{Z} | gcd(a, n) = 1: [a]_n \}$ heisst reduzierte Menge Des Rest modulo n

Bsp.
$$Z_{10}^* = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\}$$

*10	$[1]_{10}$	$[3]_{10}$	$[7]_{10}$	$[9]_{10}$
$[1]_{10}$	$[1]_{10}$	$[3]_{10}$	$[7]_{10}$	$[9]_{10}$
$[3]_{10}$	$[3]_{10}$	$[9]_{10}$	$[1]_{10}$	$[7]_{10}$
$[7]_{10}$	$[7]_{10}$	$[1]_{10}$	$[9]_{10}$	$[3]_{10}$
$[9]_{10}$	$[9]_{10}$	$[7]_{10}$	$[3]_{10}$	$[1]_{10}$

Beweis:

1. Abgeschlossen:

$$\underbrace{\gcd(a,n)=1}_{a\in Z_n^*} \wedge \underbrace{\gcd(b,n)=1}_{b\in Z_n^*} \Rightarrow \underbrace{\gcd(a*b,n)=1}_{a*b\in Z_n^*}$$

2. Identität:

$$[1]_n$$
 weil $[a]_n * [1]_n = [a * 1]_n = [a]_n$

3. Assozativität:

$$[a]_n *_n ([b]_n * [c]_n)$$
= $< \text{Def } *_n >$

$$[a]_n *_n [b * c]_n$$
= $< \text{Def } *_n >$

$$[a * (b * c)]_n$$
= $< \text{Asso } * >$

$$[(a * b) * c]_n$$
= $< \text{Def } *_n >$

$$[a * b]_n *_n [c]_n$$
= $< \text{Def } *_n >$

$$([a]_n *_n [b]_n) *_n [c]_n$$

4. Inv: (erweiterter Euklid)
$$\exists x, y$$

$$x*b+y*c=\gcd(b,c)$$

$$x*a+y*n=\gcd(a,n)=1$$
 also
$$x*a\equiv_n 1$$

$$[x]_n \text{ ist also multiplikativ Inverses}$$

$$[x]_n*[a]_n=[x*a]_n=[1]_n$$
 x ausrechenbar mit erweitertem Euklid

- 5. Sym: wie Asso
- 6. $|Z_n^*| < |Z_n|'$ endlich

Berechnung multiplikatives Inverses, am Beispiel 105mod31

1. Überprfen ob die beiden Werte koPrim sind.

$$105 *_{x} - 31 *_{y} = 1$$

$$105 = 3 * 31 + 12$$

$$31 = 2 * 12 + 7$$

$$12 = 1 * 7 + 5$$

$$7 = 1 * 5 + 7$$

$$5 = 2 * 2 + 1$$

$$2 = 2 * 1 + 0$$

- Da diese Abfolge erstellen lässt ohne Rest, sind die beiden Zahlen koPrim
- 2. Rücksubstitution

$$\begin{array}{l} 1=5-(2*2)\\ 1=5-2*(7-5)=3*5-2*7-1\\ 1=5-2*(7-5)=3*5-2*7-1\\ 1=3*(12-7)-5*(31-2*12)=-5*31+13*12\\ 1=13*12-5*31\\ 1=13*(105-3*31)-5*31\\ 1=13*105-39*31-5*31\\ 1=\underbrace{13}*105-44*31\\ \text{gesuchter Wert für }105^-1=_{31}13 \end{array}$$