Machine Learning for Graphs and Sequential Data Exercise Sheet 03

Temporal Point Processes

Problem 1: Consider a temporal point process, where all the inter-event times $\tau_i = t_i - t_{i-1}$ are sampled i.i.d. from the distribution with the survival function

$$S(\tau) = \exp\left(-(e^{b\tau} - 1)\right)$$

with a parameter b > 0.

- a) Write down the closed-form expression for the conditional intensity function $\lambda^*(t)$ of this TPP. Simplify as far as you can.
- b) Write down the closed-form expression for the log-likelihood of a sequence $\{t_1, ..., t_N\}$ generated from this TPP on the interval [0, T]. Simplify as far as you can.

Problem 2: Consider an inhomogeneous Poisson process (IPP) on [0,1] with the intensity function $\lambda(t) = 2t$. We simulate a sample from this IPP using thinning. For this, we first simulate a homogeneous Poisson process (HPP) with intensity $\mu = 4$ and apply the thinning procedure described in the lecture. What is the expected number of events from the HPP that will be rejected when using this procedure?

Problem 3: Consider an inhomogeneous Poisson process on [0,4] with the intensity function $\lambda(t) = \beta t$, where $\beta > 0$ is a parameter that has to be estimated. You have observed a single sequence $\{1, 2.1, 3.3, 3.8\}$ generated from this IPP. What is the maximum likelihood estimate of the parameter β ?

Problem 4: Consider a neural temporal point process where the conditional intensity function is defined with a neural network. In particular, for a time point t_i , we represent the history $\{t_1, t_2, \ldots, t_{i-1}\}$ with a fixed-sized vector $\mathbf{h}_i \in \mathbb{R}^d$. The conditional intensity function $\lambda^*(t)$ is defined as a function of \mathbf{h}_i . We will use the transformer architecture (see previous lecture). We propose the following implementation.

Given the full sequence $\{t_1, t_2, \dots, t_n\}$, we calculate all $\{\boldsymbol{h}_1, \boldsymbol{h}_2, \dots, \boldsymbol{h}_n\}$ in parallel. We first calculate vectors $\boldsymbol{q}_i, \boldsymbol{k}_i, \boldsymbol{v}_i \in \mathbb{R}^d$ as a function of t_i . We stack these vectors into matrices $\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V} \in \mathbb{R}^{n \times d}$. The output of the transformer is: $\boldsymbol{H} = \operatorname{softmax}(\boldsymbol{Q}\boldsymbol{K}^T)\boldsymbol{V}$, then \boldsymbol{h}_i is the *i*th row of \boldsymbol{H} .

Identify the errors in this implementation compared to the original definition of h_i . Propose a solution.

Problem 1: Consider a temporal point process, where all the inter-event times $\tau_i = t_i - t_{i-1}$ are sampled i.i.d. from the distribution with the survival function

$$S(\tau) = \exp\left(-(e^{b\tau} - 1)\right)$$

with a parameter b > 0.

- a) Write down the closed-form expression for the conditional intensity function $\lambda^*(t)$ of this TPP. Simplify as far as you can.
- b) Write down the closed-form expression for the log-likelihood of a sequence $\{t_1, ..., t_N\}$ generated from this TPP on the interval [0, T]. Simplify as far as you can.

(a)
$$F^*(z) = I - S(z) = I - \exp(-(e^{bz} - 1))$$
 $P^*(z) = \frac{dF^*(z)}{dZ}$
 $= \exp(-(e^{bZ} - 1)) \cdot (-e^{bZ}) \cdot b$
 $X^*(z) = \frac{P^*(z)}{S^*(z)} = -\exp(-(e^{bZ} - 1)) \cdot (-e^{bZ}) \cdot b$
 $= b \cdot e^{bZ}$
 $X^*(t) = b \cdot \exp[b \cdot (t - t_{i-1})]$

(b) $P(f)X^*(t) - X^*(t)) = \left(\frac{1}{|I|} X^*(t_i) \cdot S^*(t_i)\right) \cdot S^*(\bar{I})$
 $= \frac{X}{|I|} (\log b + b(t_i - t_{i-1}) + I - \exp[b(t_i - t_{i-1})] + I - \exp[b(t_i - t_{i-1})]$
 $\Rightarrow N(\log b + b(t_i - t_{i-1}) + I - \exp[b(t_i - t_{i-1})] + I - \exp[b(t_i - t_{i-1})]$

Problem 2: Consider an inhomogeneous Poisson process (IPP) on [0,1] with the intensity function $\lambda(t) = 2t$. We simulate a sample from this IPP using thinning. For this, we first simulate a homogeneous Poisson process (HPP) with intensity $\mu = 4$ and apply the thinning procedure described in the lecture. What is the expected number of events from the HPP that will be rejected when using this procedure?

expected IPP =
$$S_0 = \int_0^1 \lambda(t) dt = t^2 \Big|_0^1 = 1$$

expected HPP = $4 \cdot 1 = 4$

: $4 - 1 = 3$

Problem 3: Consider an inhomogeneous Poisson process on [0,4] with the intensity function $\lambda(t) = \beta t$, where $\beta > 0$ is a parameter that has to be estimated. You have observed a single sequence $\{1, 2.1, 3.3, 3.8\}$ generated from this IPP. What is the maximum likelihood estimate of the parameter β ?

$$\beta = \max \log P(SS) | \beta)$$

$$= \sum_{i=1}^{N} \log x^{i} (t_{i}) - \int_{0}^{\infty} x^{i} (u) du$$

$$= \sum_{i=1}^{N} \log \beta + \log t - \int_{0}^{\infty} x^{i} (u) du$$

$$= N(u)\beta + \sum_{i=1}^{N} \log t_{i} - \int_{0}^{\infty} x^{i} (u) du$$

$$= N(u)\beta - \frac{1}{2} \beta u^{2} | \frac{1}{0} + \sum_{i=1}^{N} (u) t_{i}$$

$$= N(u)\beta - \frac{1}{2} \beta + \sum_{i=1}^{N} \log t_{i}$$

$$= N(u)\beta - \frac{1}{2} \beta + \sum_{i=1}^{N} \log t_{i}$$

$$\beta^{2} = \frac{N}{\beta} - \frac{T^{2}}{1} = 0$$

$$\frac{2N}{N} - \beta^{2} = \frac{1}{2}$$

$$\frac{2N}{N} - \frac{N}{N} = \frac{1}{2}$$

Problem 4: Consider a *neural* temporal point process where the conditional intensity function is defined with a neural network. In particular, for a time point t_i , we represent the history $\{t_1, t_2, \ldots, t_{i-1}\}$ with a fixed-sized vector $\mathbf{h}_i \in \mathbb{R}^d$. The conditional intensity function $\lambda^*(t)$ is defined as a function of \mathbf{h}_i . We will use the transformer architecture (see previous lecture). We propose the following implementation.

Given the full sequence $\{t_1, t_2, \ldots, t_n\}$, we calculate all $\{h_1, h_2, \ldots, h_n\}$ in parallel. We first calculate vectors $q_i, k_i, v_i \in \mathbb{R}^d$ as a function of t_i . We stack these vectors into matrices $Q, K, V \in \mathbb{R}^{n \times d}$. The output of the transformer is: $H = \operatorname{softmax}(QK^T)V$, then h_i is the ith row of H.

Identify the errors in this implementation compared to the original definition of h_i . Propose a solution.

 $\chi^*(t) = f(h)$

only consider the past point

consider future points