Wiki »

内存布局与数据格式

内存布局与数据格式

- 1 DMA数据格式
- 2 StoreBuffer数据格式
- 3 聚焦法则
- 4 聚焦法则数据格式

Jake Yang

1 DMA数据格式

CONFIG配置信息放在DMA内存的用处是:程序退出后(不是设备重启),其里面的数据是不会被释放掉,即程序再次启动时,仍可以读取上 次配置的信息。

2 StoreBuffer数据格式

storebuffer 数据格式 (size:0x10000000,256M)

3 聚焦法则

beam 组 (size <= 0x00300000,192K)

beam1	beam2	 	<u>beamN</u>

4 聚焦法则数据格式

聚焦法则 (beam) 数据格式

点 0 点 1 点 n-1 波形计数器 gate A gate B gate I 编码器 X 编码器 Y 保留 报警信息

注:单位 BYTE

聚焦法则 = beam = 波型

每个波形的数据结构如下:

起始位置	大小 (Bytes)	说明
0	n	波形数据,n表示为n个波形的点数
n	4	波形计数器参数,前6bit为闸门状态,余下高13bit为设置聚焦法则后开始计数的波形数,溢出继续相加,低13bit为此次波形对应聚焦法则的数值(现改成帧尾信息同步位:1_55_AA_55)
n+4	4	gate A参数,高12bit为闸门A检测数据的高度,低20bit为闸门A检测数据的位置
n+8	4	gate B参数,高12bit为闸门B检测数据的高度,低20bit为闸门B检测数据的位置
n+12	4	gate I参数,高12bit为闸门I检测数据的高度,低20bit为闸门I检测数据的位置
n+16	4	编码器X参数,32bit有符号整数
n+20	4	编码器Y参数,32bit有符号整数
n+24	4	保留
n+28	4	报警信息 , (31-24)bit: led0&led1&led2&buzzer&analog_da0(11 downto 8); 三个灯状态与蜂鸣器状态; (23-16)bit: 8位analog_da0(7 downto 0), 模拟输出0低8位; (15-8)bit: analog_da1(11 downto 4),模拟输出1高8位; (7-0)bit: analog_da1(3 downto 0),模拟输出1低4位

由此表可知,每个波形数据总存储大小为(n+32) Bytes。

1.png (42.9 KB) 杨 焕杰, 2017-05-24 17:07

2.png (24.9 KB) 杨 焕杰, 2017-05-24 17:08

3.png (15.8 KB) 杨 焕杰, 2017-05-24 17:08

4.png (41.5 KB) 杨 焕杰, 2017-05-24 17:09

Ţ