ardigen

Graph Convolutional Neural Networks

Lukasz Maziarka

Convolution operation

Source: towardsdatascience

Convolutional Neural Network

Convolutional Neural Network

ardigen

Pros of trainable convolutional filters & weight sharing

- Custom filters (representation suitable for the given dataset)
- Equivariance for affine transform
- Much less parameters to train
 - faster training
 - less training data needed
 - less prone to overfitting
- CNNs were inspired by how the visual cortex in a human brain works. It can detect simple patterns in small receptive fields

Graph Convolution

Images can be represented as a graph

However usually graphs do not have such nice structure

Graph Convolutional Layer

Neighborhood Aggregation

- Nodes have embeddings at each layer.
- Model can be arbitrary depth.
- "layer-0" embedding of node u is its input feature, i.e. x_u .

Source: AAAI workshop

Graph Convolutional Layer

gnun of machine ardigen

Learning new nodes representation

Calculating new node vectors

$$h_i^{(k)} = ReLU(W^{(k)}x_i)$$
$$x_i^{(k+1)} = \frac{1}{|j: (i,j) \in E|} \sum_{j: (i,j) \in E} h_j^{(k)}$$

Calculating graph representation

$$x_{graph} = \frac{1}{|V|} \sum_{v \in V} x_v^{(N)}$$

Message Passing Neural Network

1. Message passing phase

$$m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw})$$
$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

2. Readout phase

$$\hat{y} = R(\{h_v^T \mid v \in G\}).$$

The message functions $\mathbf{M_t}$, vertex update functions $\mathbf{U_t}$ and readout function \mathbf{R} are all learned differentiable functions (Neural networks).

R operates on the set of node states and must be invariant to permutations of the node states in order for the MPNN to be invariant to graph isomorphism.

Neighborhood "Convolutions"

 Neighborhood aggregation can be viewed as a center-surround filter.

 Mathematically related to spectral graph convolutions (see <u>Bronstein et al., 2017</u>)

Input atom representations

Indices	Description
0 - 10	Atomic identity as a one-hot vector of B, N, C, O, F, P, S, Cl, Br, I, other
11 - 16	Number of heavy neighbors as one-hot vector of 0, 1, 2, 3, 4, 5
17 - 21	Number of hydrogen atoms as one-hot vector of 0, 1, 2, 3, 4
22	Formal charge
23	Is in a ring
24	Is aromatic

Source: Coley et al

Add edge features

Indices	Description
0-3	Bond order as one-hot vector of 1, 1.5, 2, 3
4	Is aromatic
5	Is conjugated
6	Is in a ring
7	Placeholder, is a bond

Source: Coley et al

Super node

Add higher order convolutions

Add attention

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_i]\right)\right)}$$

Self attention & distances

Molecule Transformer

Figure 1: Molecule Transformer architecture. In the first layer we embed each atom using one-hot encoding and atomic features. The main innovation is the Molecule Multi-Head Self-Attention block that augments the self-attention module with distance, and graph structure of the molecule.

Source: Maziarka et al

PyTorch Geometric

PyTorch Geometric (PyG) is a geometric deep learning extension library for PyTorch.

- Github
- <u>Documentation</u>
- <u>Tutorial</u>
- Paper

Representing Graphs

Working with data

- Merging them into batches
- Create Datasets
- Create Data Loaders
- Making Data Transformations

Many included datasets

For both graph and node classification

- KarateClub
- TUDataset
- Planetoid
- CoraFull
- Coauthor
- Amazon
- PPI
- Reddit
- QM7b
- QM9
- Entities
- GEDDataset
- MNISTSuperpixels
- FAUST
- PascalVOCKeypoints

- DynamicFAUST
- ShapeNet
- ModelNet
- CoMa
- SHREC2016
- TOSCA
- PCPNetDataset
- S3DIS
- GeometricShapes
- BitcoinOTC
- ICEWS18
- GDELT
- DBP15K
- WILLOWObjectClass
- PascalPF

Creating Message Passing Networks

"MessagePassing" is a base class in Torch Geometric

Base class for c	reating message passing layers
	$\mathbf{x}_{i}^{\prime} = \gamma_{\mathbf{\Theta}}\left(\mathbf{x}_{i}, \Box_{j \in \mathcal{N}(i)} \ \phi_{\mathbf{\Theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{e}_{i, j} ight) ight),$
	es a differentiable, permutation invariant function, e.g., sum, mean or max, and note differentiable functions such as MLPs. See here for the accompanying
Parameters:	 aggr (string, optional) - The aggregation scheme to use ("add" , "mean" or "max"). (default: "add") flow (string, optional) - The flow direction of message passing ("source_to_target"

Creating Message Passing Networks

Implementing GCN layer

$$\mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{i\}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left(\mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)}\right)$$

```
class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self). init (aggr='add') # "Add" aggregation.
        self.lin = torch.nn.Linear(in_channels, out_channels)
    def forward(self, x, edge_index):
        # x has shape [N, in channels]
        # edge_index has shape [2, E]
        # Step 1: Add self-loops to the adjacency matrix.
        edge index, = add self loops(edge index, num nodes=x.size(0))
        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)
        # Step 3-5: Start propagating messages.
        return self.propagate(edge index, size=(x.size(0), x.size(0)), x=x)
    def message(self, x_j, edge_index, size):
        # x j has shape [E, out channels]
        # Step 3: Normalize node features.
        row, col = edge_index
        deg = degree(row, size[0], dtype=x_j.dtype)
        deg inv sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]
        return norm.view(-1, 1) * x_j
    def update(self, aggr out):
        # aggr_out has shape [N, out_channels]
        # Step 5: Return new node embeddings.
        return aggr_out
```

And many more implemented layers!

- SplineConv from Fey et al.: SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels (CVPR 2018)
- . GCNConv from Kipf and Welling: Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)
- ChebConv from Defferrard et al.: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (NIPS 2016)
- NNConv from Gilmer et al.: Neural Message Passing for Quantum Chemistry (ICML 2017)
- CGConv from Xie and Grossman: Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties (Physical Review Letters 120, 2018)
- ECConv from Simonovsky and Komodakis: Edge-Conditioned Convolution on Graphs (CVPR 2017)
- GATConv from Veličković et al.: Graph Attention Networks (ICLR 2018)
- SAGEConv from Hamilton et al.: Inductive Representation Learning on Large Graphs (NIPS 2017)
- GraphConv from, e.g., Morris et al.: Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)
- GatedGraphConv from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)
- GINConv from Xu et al.: How Powerful are Graph Neural Networks? (ICLR 2019)
- ARMAConv from Bianchi et al.: Graph Neural Networks with Convolutional ARMA Filters (CoRR 2019)
- SGConv from Wu et al.: Simplifying Graph Convolutional Networks (CoRR 2019)
- APPNP from Klicpera et al.: Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019)
- AGNNConv from Thekumparampil et al.: Attention-based Graph Neural Network for Semi-Supervised Learning (CoRR 2017)
- TAGConv from Du et al.: Topology Adaptive Graph Convolutional Networks (CoRR 2017)
- RGCNConv from Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional Networks (ESWC 2018)
- SignedConv from Derr et al.: Signed Graph Convolutional Network (ICDM 2018)
- DNAConv from Fey: Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks (ICLR-W 2019)
- EdgeConv from Wang et al.: Dynamic Graph CNN for Learning on Point Clouds (CoRR, 2018)
- PointConv (including Iterative Farthest Point Sampling, dynamic graph generation based on nearest neighbor or maximum distance, and k-NN interpolation for upsampling) from Qi et al.: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR 2017) and PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS 2017)
- XConv from Li et al.: PointCNN: Convolution On X-Transformed Points (official implementation) (NeurlPS 2018)
- PPFConv from Deng et al.: PPFNet: Global Context Aware Local Features for Robust 3D Point Matching (CVPR 2018)
- GMMConv from Monti et al.: Geometric Deep Learning on Graphs and Manifolds using Mixture Model CNNs (CVPR 2017)

- FeaStConv from Verma et al.: FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis (CVPR 2018)
- HypergraphConv from Bai et al.: Hypergraph Convolution and Hypergraph Attention (CoRR 2019)
- A MetaLayer for building any kind of graph network similar to the TensorFlow Graph Nets library from Battaglia et al.:
 Relational Inductive Biases, Deep Learning, and Graph Networks (CoRR 2018)
- GlobalAttention from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)
- Set2Set from Vinyals et al.: Order Matters: Sequence to Sequence for Sets (ICLR 2016)
- Sort Pool from Zhang et al.: An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)
- Dense Differentiable Pooling from Ying et al.: Hierarchical Graph Representation Learning with Differentiable Pooling (NeurlPS 2018)
- Graclus Pooling from Dhillon et al.: Weighted Graph Cuts without Eigenvectors: A Multilevel Approach (PAMI 2007)
- Voxel Grid Pooling from, e.g., Simonovsky and Komodakis: Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)
- Top-K Pooling from Gao and Ji: Graph U-Nets (ICML 2019), Cangea et al.: Towards Sparse Hierarchical Graph Classifiers (NeurlPS-W 2018) and Knyazev et al.: Understanding Attention and Generalization in Graph Neural Networks (ICLR-W 2019)
- SAG Pooling from Lee et al.: Self-Attention Graph Pooling (ICML 2019) and Knyazev et al.: Understanding Attention
 and Generalization in Graph Neural Networks (ICLR-W 2019)
- Edge Pooling from Diehl et al.: Towards Graph Pooling by Edge Contraction (ICML-W 2019) and Diehl: Edge Contraction Pooling for Graph Neural Networks (CoRR 2019)
- Local Degree Profile from Cai and Wang: A Simple yet Effective Baseline for Non-attribute Graph Classification (CoRR 2018)
- Jumping Knowledge from Xu et al.: Representation Learning on Graphs with Jumping Knowledge Networks (ICML 2018)
- Node2Vec from Grover and Leskovec: node2vec: Scalable Feature Learning for Networks (KDD 2016)
- Deep Graph Infomax from Veličković et al.: Deep Graph Infomax (ICLR 2019)
- All variants of Graph Auto-Encoders from Kipf and Welling: Variational Graph Auto-Encoders (NIPS-W 2016) and Pan
 et al.: Adversarially Regularized Graph Autoencoder for Graph Embedding (IJCAI 2018)
- RENet from Jin et al.: Recurrent Event Network for Reasoning over Temporal Knowledge Graphs (ICLR-W 2019)
- GraphUNet from Gao and Ji: Graph U-Nets (ICML 2019)
- NeighborSampler from Hamilton et al.: Inductive Representation Learning on Large Graphs (NIPS 2017)

Source: Geometric Github

ardigen

Artificial Intelligence & Bioinformatics for Precision Medicine

group of machine

GMUM

learning research

Thank You!

