CAMPOS VECTORIALES

CAMPO VECTORIAL

Sea D $\subset \mathbb{R}^3$. Un campo vectorial en tres dimensiones es una función vectorial F que asigna a cada punto $P(x,y,z) \in D$ un único vector tridimensional $F(x,y,z) \in V^3$

$$F(x, y, z) = M(x, y, z)\tilde{t} + N(x, y, z)\tilde{j} + P(x, y, z) \tilde{k}$$

Donde M(x,y,z), N(x,y,z) y P(x,y,z) son funciones escalares definidas en D.

EJEMPLO a): El campo vectorial F(x, y, z) = (x, 0, 0) trazando algunos de los vectores.

Observamos que el campo es siempre un múltiplo escalar del versor $\check{\iota}$; efectivamente $F(x,y,z)=x(1,0,0)=x\check{\iota}$. Entonces, se representa mediante flechas paralelas al eje x, con sentido alejándose del plano yz, de módulo creciente a medida que aumenta x en valor absoluto.

(a) Campo vectorial en el espacio.

Ejercicio 1 a) (TP N°14)

Realizar la descripción gráfica del campo vectorial F: F(x,y) El dominio es \mathbb{R}^2 .

$$F(x,y) = -y\ \breve{\imath} + x\ \breve{\jmath}$$

(x,y)F(x,y)(0,1) $-1 \, \mathbf{i} + 0 \, \mathbf{j}$ (-1,1) $-1 \, i - 1 \, j$ $0 \, \breve{i} + 1 \, \breve{j}$ (1,0)(1,1) $-1 \, \tilde{i} + 1 \, \tilde{j}$ (0,2) $-2\ddot{\imath} + 0\ddot{\jmath}$ $-2\check{\imath}-2\check{\jmath}$ (-2,2) $0 \, \tilde{\imath} - 1 \, \tilde{\jmath}$ (-1,0) $1 \, \mathrm{i} - 1 \, \mathrm{j}$ (-1, -1) $1 \ddot{i} + 0 \ddot{j}$ (0, -1)(1, -1) $1 \ddot{i} + 1 \ddot{j}$

 $-2\ddot{\imath} + 2\ddot{\jmath}$

(2,2)

Si a cada punto K(x,y) de una región se asocia un vector único con inicio en K(x,y), entonces el conjunto de vectores recibe el nombre de

CAMPO VECTORIAL.

Sigamos con el ejemplo anterior. Evaluemos el campo en algunos puntos del plano, por ej.: F(1,0) = 1ĭ, F(0,1) = -1ĭ, F(-1,0) = -1j, F(0,-1) = 1i. Estos vectores tienen módulo 1, y los puntos donde se aplican están a 1 unidad de distancia del origen. El módulo de F para cualquier punto (x,y) es $|F(x,y)| = \sqrt{(-y)^2 + (x)^2} = |\vec{r}|$, donde \vec{r} denota el vector posición del punto de coordenadas (x,y). Esto significa que, para todos los puntos sobre circunferencia dada centrada en el origen, el campo tiene el mismo módulo; a medida que aumenta el radio de la circunferencia, el módulo del campo es mayor.

EJERCICIO 1 e) Realizar la descripción gráfica del campo vectorial F: $F(x,y,z) = -x \ \ddot{\imath} - y \ \ddot{\jmath} - z \ \ddot{k}$

(x,y,z)	F(x,y,z)
(0,0,2)	$-2\breve{k}$
(0,2,0)	−2 <u>ĭ</u>
(2,0,0)	−2 ĭ
(3,3,3)	$-3\ \breve{\imath} - 3\ \breve{\jmath} - 3\breve{k}$
(2,2,0)	−2 ĭ − 2 <u>ў</u>

Campo vectorial concurrente al origen

ROTACIONAL DE UN CAMPO VECTORIAL

Sea F(x,y,z) un campo vectorial dado por $F(x,y,z) = M(x,y,z)\tilde{t} + N(x,y,z)\tilde{j} + P(x,y,z)\tilde{k}$ donde M(x,y,z), N(x,y,z) y P(x,y,z) tienen derivadas parciales en alguna región.

El rotacional de F(x, y, z) es la función vectorial dada por :

$$rot F = \nabla X F = \begin{vmatrix} \vec{i} & \vec{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$

Resulta:

$$rot F = \nabla X F = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right) \breve{i} + \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right) \breve{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \breve{k}$$

El rotacional es un operador vectorial sobre campos vectoriales definidos que muestra la tendencia de un campo a inducir rotación alrededor de un punto

DIVERGENCIA DE UN CAMPO VECTORIAL:

Sea F(x,y,z) un campo vectorial dado por F(x,y,z) = M(x,y,z)i + N(x,y,z)j + P(x,y,z)k donde M(x,y,z), N(x,y,z)y P(x,y,z) tienen derivadas parciales en alguna región.

La divergencia de F(x, y, z) es la función escalar dada por :

$$Div F = \nabla * F = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

La divergencia de un campo vectorial mide la diferencia entre el flujo entrante y el flujo saliente de una superficie que encierra un fluido.

- Si la Div F < 0 la masa fluye hacia el punto (sumidero)
- Si la Div F > 0 la masa fluye desde el punto (fuente)
- Si la Div F = 0 fluido incompresible

EJEMPLO 1 Encontrar el rotacional y la divergencia para: $F(x,y,z) = 2xy \ \ddot{\imath} + xz^2 \ddot{\jmath} + 3z \ddot{k}$ en P(2,1,1)

Primero debemos determinar el $rot\ F$, entonces: $F(x,y,z) = 2xy\ \check{i} + xz^2\check{j} + 3z\check{k}$

$$rot F = \nabla X F = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right) \breve{i} + \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right) \breve{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \breve{k}$$

$$rot F = (0 - 2xz) \breve{i} + (0 - 0) \breve{j} + (z^2 - 2x) \breve{k}$$

$$rot F = -2xz\ddot{\imath} + 0\ddot{\jmath} + (z^2 - 2x) \ \breve{k}$$

$$rot \ F(2,1,1) = -2 * 2 * 1 \tilde{\iota} + 0 \tilde{\jmath} + (1^2 - 2 * 2) \ \tilde{k} = -4 \ \tilde{\iota} + 0 \tilde{\jmath} - 3 \ \tilde{k}$$

Segundo debemos determinar la $\operatorname{Di} v F$:

$$Div F = \nabla * F = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial v} + \frac{\partial P}{\partial z}$$

$$Div F(x, y, z) = \nabla * F = 2y + 0 + 3 = 2y + 3$$

$$Div F(2,1,1) = 2 * 1 + 3 = 5$$
 FUENTE

EJEMPLO 2 Encontrar el rotacional y la divergencia para:

$$F(x,y,z) = \underbrace{sen(yz)i + 3j + (2x + 3z)k}_{M} en P(1,0,-2)$$

$$rot F = \nabla X F = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right) \ddot{i} + \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right) \ddot{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \ddot{k}$$

$$rot F = (0 - 0)\check{t} + (\cos(yz) * y - 2)\check{j} + (0 - \cos(yz) * z) \check{k}$$

$$rot F = 0 \ \breve{\iota} + (\cos(yz) * y - 2)\breve{\jmath} - \cos(yz) * z \ \breve{k}$$

$$rot F(1,0,-2) = 0 \ \breve{i} + (0-2)\breve{j} - \cos 0 * (-2) \breve{k}$$

$$rot F(1,0,-2) = 0 \ \breve{i} - 2\breve{j} + 2\breve{k}$$

Determinamos la
$$Div F$$
:

Determinamos la Di
$$v$$
 F : Div $F = \nabla * F = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

Div
$$F = 0 + 0 + 3 = 3$$
 Constante para $\forall P$

CAMPO VECTORIAL CONSERVATIVO

Dada una función escalar f(x, y, z) se definió el vector gradiente como:

$$\nabla f(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} \ddot{i} + \frac{\partial f(x, y, z)}{\partial y} \ddot{j} + \frac{\partial f(x, y, z)}{\partial z} \ddot{k}$$

Si un campo vectorial es gradiente de una función escalar, tal que: $\vec{F}(x,y,z) = \vec{\nabla}f(x,y,z)$ se dice que F es un campo vectorial conservativo y f(x,y,z) se llama Función Potencial de F y sus superficies (o curvas) de nivel se llaman, precisamente, superficies (o curvas) equipotenciales, y brindan una representación gráfica alternativa para el campo vectorial.

$$\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z} \qquad \qquad \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x} \qquad \qquad \frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$$

Cuando las derivadas parciales son continuas y se cumplen la anteriores igualdades, \vec{F} es conservativo, por lo que va a existir una función potencial f(x,y,z)

La representación gráfica de un campo gradiente en el espacio (o en el plano) puede darse por medio de vectores que son perpendiculares a las superficies (o curvas) de nivel de la función escalar f de la cual deriva el campo. El sentido de cada vector estará determinado por las direcciones de crecimiento/decrecimiento de la función f.

EJEMPLO:

Curvas de nivel de la función $f(x,y) = -x^2 - y^2$ y su campo gradiente asociado $\nabla f(x,y) = -2x\vec{\imath} - 2y\vec{\jmath}$

Demostrar que $\vec{F} = (e^x \cos y + yz)\vec{\imath} + (xz - e^x \sin y)\vec{\jmath} + (xy + z)\vec{k}$ es conservativo en su EJEMPLO 1 dominio y determinar una función potencial para él.

$$M(x,y,z) = e^x cosy + yz$$
 $N(x,y,z) = xz - e^x seny$ $P(x,y,z) = xy + z$

Si

$$\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z}$$

$$\frac{\partial M}{\partial z} = \frac{\partial P}{\partial x}$$

$$\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z} \qquad \qquad \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x} \qquad \qquad \frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$$

Calculamos

$$\frac{\partial P}{\partial y} = x = \frac{\partial N}{\partial z}$$

$$\frac{\partial M}{\partial z} = y = \frac{\partial P}{\partial x}$$

$$\frac{\partial P}{\partial y} = x = \frac{\partial N}{\partial z} \qquad \frac{\partial M}{\partial z} = y = \frac{\partial P}{\partial x} \qquad \frac{\partial N}{\partial x} = z - e^x seny = \frac{\partial M}{\partial y}$$

Las derivadas parciales son continuas, de manera que estas igualdades nos dicen que $ec{F}$ es conservativo, por lo que existe una función f(x,y,z) con $\vec{F}(x,y,z) = \vec{\nabla} f(x,y,z)$. Encontramos f(x,y,z)integrando las ecuaciones:

$$\frac{\partial f(x,y,z)}{\partial x} = M(x,y,z) \qquad \qquad \frac{\partial f(x,y,z)}{\partial y} = N(x,y,z) \qquad \qquad \frac{\partial f(x,y,z)}{\partial z} = P(x,y,z)$$

Integramos la primera ecuación con respecto a x, dejando a y y z constantes, para obtener:

$$f(x,y,z) = \int (e^x \cos y + yz) dx + \phi(y,z)$$

$$f(x, y, z) = \int (e^x \cos y + yz) dx + \emptyset(y, z)$$
$$f(x, y, z) = e^x \cos y + xyz + \emptyset(y, z)$$

Escribimos la constante de integración como función de y y z, pues su valor depende de y y z, aunque no de x. Después, calculamos $\frac{\partial f}{\partial y}$ a partir de esta ecuación y la igualamos con N(x,y,z).

Esto nos da:

$$\frac{\partial f(x,y,z)}{\partial y} = -e^x seny + xz + \frac{\partial \phi(y,z)}{\partial y} = N(x,y,z)$$
$$-e^x seny + xz + \frac{\partial \phi(y,z)}{\partial y} = xz - e^x seny$$
$$\frac{\partial \phi(y,z)}{\partial y} = 0$$

Integramos respecto a y:

$$\emptyset(y,z) = \varphi(z)$$

$$f(x, y, z) = e^{x} cos y + xyz + \emptyset(y, z)$$

$$f(x, y, z) = e^x cosy + xyz + \varphi(z)$$

Ahora calculamos $\frac{\partial f}{\partial z}$ a partir de esta ecuación e igualamos con P(x,y,z). Esto nos da:

$$\frac{\partial f(x, y, z)}{\partial z} = xy + \varphi'(z) = P(x, y, z)$$
$$xy + \varphi'(z) = xy + z$$
$$\varphi'(z) = z$$

Integramos respecto a z:

$$\varphi(z) = \frac{z^2}{2} + C$$

Entonces reemplazando en:
$$f(x, y, z) = e^x \cos y + xyz + \varphi(z)$$

$$f(x,y,z) = e^x cosy + xyz + \frac{z^2}{2} + C$$

Tenemos un número infinito de funciones potenciales de F, una por cada valor de C.