cloudera[®]

Tuning Impala: The top five performance optimizations for the best BI and SQL analytics on Hadoop

The Leader for Analytic SQL on Hadoop

Cloudera Enterprise Making Hadoop Fast, Easy, and Secure

A new kind of data platform:

- One place for unlimited data
- Unified, multi-framework analytics

Cloudera makes it:

- Fast for business
- Easy to manage
- Secure without compromise

One Platform, Many Workloads

Batch, Interactive, and Real-Time.

Leading performance and usability in one platform.

- End-to-end analytic workflows
- Access more data
- Work with data in new ways
- Enable new users

Analytic SQL Requirements for Hadoop

Interactive BI requires:

Multi-User Performance & Usability	Meets user experience expectations at standard load
Compatibility	Familiar BI tools/SQL interfaces

Hadoop requires:

Flexibility	Use SQL to access any type of data, and access any type of data with more than just SQL
Native Integration	Unified resource management, metadata, security, and management across frameworks

Choosing the Right SQL Engine Know Your Audience, Know Your Use Case

Batch **Processing**

BI and **SQL** Analytics

Procedural Development

Apache Impala (incubating): Open Source & Open Standard

- > 1 MM downloads since GA
- Majority adoption across Cloudera customers
- Certification across key application partners: MicroStrategy Qlik Q SSAS # + a b | e a v COGNOS Microsoft ORACL and others
- De facto standard with multi-vendor support:

Impala Performance trend

- Track record in improving release to release performance
- 5x speedup in TPC-DS over the last 12 months
- Continued to add new features without introducing regressions

SQL on Hadoop benchmark: Definition

20x node cluster each with Hardware

- 384GB memory, 2x sockets, 12x total cores, Intel Xeon CPU E5-2630L 0 at 2.00GHz
- 24 disk drives at 932GB each

Workload

- TPC-DS 3TB stored in Parquet file format (default of 256MB block size)
- Ran 66 out of the 99 TPC-DS queries without any modifications
- Multi user test consisting of 8x concurrent streams
- Queries in streams 1 through 8 use different parameters (No query is ever repeated)
- Each stream executes queries in a randomized order

Comparative Set

- Impala 2.7
- Spark SQL 2.0
- Presto 0.148-t.1.2

Engines were configured to use all available cores and 256GB of memory per node Presto used a dedicated coordinator node

SQL on Hadoop benchmark: Results

- Impala outperforms Spark-SQL 2.0 by 9x & Presto by 23x
- 45% of the queries succeed with Spark-SQL, the remaining queries error out
- Only 66% of the queries succeed with Presto, the remaining queries error out

Impala The Leader in Analytic SQL for Hadoop

Impala delivers the best of both worlds

Multi-User Performance & Usability	 10x vs alternatives with latest benchmarks Cost-based optimization allows for more users and tools to run a broader range of queries
Compatibility	 Provides both ANSI SQL and vendor-specific extensions Compatibility with the leading BI partners
Flexibility	 Supports the common native Hadoop file formats Parquet provides best-of-breed columnar performance across Hadoop frameworks
Native Integration	 Unified with Hadoop resource management, metadata, security, and management

Impala The Leader in Analytic SQL for Hadoop

Impala delivers the best of both worlds

Performance Tuning: Agenda

Physical data modeling and schema design:

Choosing the best physical representation for your logical data model

- Partitioning
- Runtime filter and dynamic partition pruning
- Data types
- Nested types

Operational optimizations

- Computing statistics
- Admission control and memory management

Performance Tuning Basics: Partitioning

- What it is: physically dividing your data so that queries only need to access a subset
- Partition = minimum unit of work
- Partitioning expressed through DDL, applied automatically when queries contain matching predicates

```
CREATE TABLE Sales (...)

PARTITIONED BY (INT year,

INT month);

CREATE TABLE Sales (...)

PARTITIONED BY (INT date_key);
```

```
SELECT ...
FROM Sales
WHERE year >= 2012
AND month IN (1, 2, 3)
```

or

```
SELECT ...
FROM Sales JOIN DateDim d
   USING date_key
WHERE d.year >= 2012
AND d.month IN (1, 2, 3)
```


Performance Tuning Basics: Partitioning

- Choose partition granularity carefully
- Too low:
 - small number of files can hurt parallelism
 - increases minimum unit of work
- Too high:
 - small data files hurt large queries; scans less efficient
 - large number of files can cause metadata bloat and create bottlenecks on HDFS NameNode, Hive Metastore, Impala catalog service
- General guidelines:
 - Regularly compact tables to keep the number of files per partition under control and improve scan and compression efficiency
 - Keep number of partitions under 20K (not a hard limit, mileage will vary)

Business question: How much was sold in June

```
CREATE TABLE store_sales (...)

PARTITIONED BY (INT ss_sold_date_sk);

SELECT d_year,
    ,sum(ss_ext_sales_price) sum_agg

FROM DATE_DIM
    ,STORE_SALES

WHERE

DATE_DIM.d_date_sk = STORE_SALES.ss_sold_date_sk

AND d_moy = 6
GROUP BY d_year
```


Business question: How much was sold in June

```
SELECT d_year
,sum(ss_ext_sales_price) sup
FROM DATE_DIM
,STORE_SALES
WHERE
DATE_DIM.d_date_sk = STORE_SAL
AND d_moy = 6
GROUP BY d_year
```

The *planner* doesn't know what the set of d_date_sk and ss_sold_date_sk contains - even with statistics.

But there's clearly an opportunity to save some work - why bother sending 28 billion of those rows to the joins?

Runtime filters compute this predicate at runtime.

d date sk

SELECT d_year ,sum(ss ext sales price) sum agg FROM DATE DIM STORE SALES WHFRF

DATE DIM.d date sk = STORE SALES.ss sold date sk

AND d moy = 6

GROUP BY d year

Bloom filter: compact, probabilistic representation of a data set

Essentially a sophisticated bitmap


```
SELECT d_year
   ,sum(ss ext sales price) sum agg
FROM DATE DIM
   STORE SALES
WHFRF
DATE_DIM.d_date_sk = STORE_SALES.ss_sold_date_sk
```

Step 2: Join reads all rows from build side (right input), and populates Bloom filter containing all distinct values of d date sk

AND d moy = 6GROUP BY d_year

```
SELECT d_year
                                                                              Aggregate
    sum(ss ext sales price) sum agg
                                            Step 3: Query coordinator
FROM DATE DIM
                                            sends filter to store sales
                                                                            1.3 Billion rows
    STORE SALES
                                            scan before the scan
WHFRF
                                            starts.
                                                                              Broadcast
DATE_DIM.d_date_sk = STORE_SALES.ss_sold_date_sk
                                                                               Join #1
AND d moy = 6
GROUP BY d year
                                                                                      6,087 rows
                                                                   28 billion rows
                                                                                      DATE DIM
                                                                 STORE SALES
```



```
SELECT d_year
                                                                                Aggregate
    sum(ss ext sales price) sum agg
FROM DATE DIM
                                                                              1.3 Billion rows
    STORE SALES
WHFRF
                                                                                Broadcast
DATE DIM.d date_sk = STORE_SALES.ss_sold_date_sk
                                                                                 Join #1
AND d moy = 6
                            Step 4: Scan eliminates all
GROUP BY d year
                            partitions that don't have a
                                                                                        6,087 rows
                                                                     28 billion rows
                            match in the Bloom filter.
                            Only 150 out of the 1824
                                                                                        DATE DIM
                                                                   STORE SALES
                            partitions are read from disk
```


Performance Tuning Basics: Data Type Selection

Data type selection affects performance:

- computation: numerical types allow direct computation, string types require conversion
- on-disk storage size: numerical types are more compact
- more compact types also require less network traffic
- runtime code generation: some types are not supported (CHAR, TIMESTAMP, TINYINT)

General guidelines:

- choose numerical types over character types for numerical data
- use smallest data type that will accommodate the largest possible value

Performance Tuning Basics: Data Type Selection

Picking the incorrect data type can result in:

- Increase in on-disk storage by 40%
- 80% slower scans
- 80% slower aggregations
- 150% slower joins
- Increase in runtime memory utilization

Data set: L_ORDERKEY column from TPCH 3TB

Values domain: 1-18,000,000,000

Number of distinct values: 4,500,000,000

Performance Tuning Basics: Complex Schemas

- Complex/nested-relational schemas are the most natural way to model most data sources
- Nested schemas also present an opportunity for performance improvements: turning parent-child hierarchies into nested collections
 - logical hierarchy becomes physical hierarchy
 - nested structure = join index
 physical clustering of child with parent
- For distributed, big data systems, this matter: distributed join turns into local join

Example: TPC-H, Flat and Nested

Columnar Storage for Complex Schemas

- Columnar storage: a necessity for processing nested data at speed
 - complex schema = really wide tables
 - o row wise storage: ends up reading lots of data you don't care about
- Columnar formats effectively store a join index

Query Execution with Complex Schemas

- A "join" between parent and child is essentially free:
 - coordinated scan of parent and child columns
 - data effectively presorted in parent's PK
 - merge join beats hash join!

SELECT c.id, o.price FROM customers c, c.orders o

Query Execution with Complex Schemas

- Aggregating child data is cheaper
 - data already pre-grouped by the parent
 - amenable to vectorized execution
 - local non-grouping aggregation <<< distributed grouping aggregation

SELECT c.id, MAX(o.price)
FROM customers c
JOIN orders o
ON (c.id = o.cid)

17	9.95	
19	9.95	
18	7.99	
18	1.99	
19	3.95	
17	4.95	

SELECT c.id, max_price FROM customers c, (SELECT MAX(price) FROM c.orders)

9.95		
4.95		
1.99		
2.49		
17.8		
7.99		
9.95		

Performance Tuning Basics: Nested Queries

Example: find the 10 customers with the highest average per-item price

Flat

SELECT c.id, AVG(i.price)
FROM customer c, order o, item i
WHERE c.id = o.cid and o.id =
i.oid
GROUP BY c.id
ORDER BY avg price DESC LIMIT 10

Nested

SELECT c.id, AVG(orders.items.price)
FROM customer
ORDER BY avg_price DESC LIMIT 10

Performance Tuning Basics: Nested Queries

- Order scan predicates by selectivity and cost
- Compute selectivity of predicates for scans as well as joins
- Determine build and probe side for equi joins
- Select the ideal join type that minimizes resource utilization
 - Broadcast Join
 - Partition Join
- Identify joins which can benefit from Runtime filters
- Detection of common join pattern of Primary key/Foreign key joins

```
02:HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: 1_orderkey = o_orderkey
  runtime filters: RF000 <- o orderkey
  tuple-ids=1.0 row-size=113B cardinality=27.381.196
 --05:EXCHANGE [BROADCAST]
     hosts=20 per-host-mem=0B
      tuple-ids=0 row-size=8B cardinality=68,452,805
  00:SCAN HDFS [tpch 3000 parquet.orders, RANDOM]
      partitions=366/2406 files=366 size=28.83GB
      predicates: tpch 3000 parquet.orders.o orderkey < 100
     table stats: 4,500,000,000 rows total
      column stats: all
      tuple-ids=0 row-size=8B cardinality=68,452,805
01:SCAN HDFS [tpch 3000 parquet.lineitem, RANDOM]
  partitions=2526/2526 files=2526 size=1.36TB
  predicates: l orderkey < 100, l receiptdate >= '1994-01-01', l comment LIKE '%long string%
  runtime filters: RF000 -> 1 orderkey
  table stats: 18,000,048,306 rows total
  column stats: all
  tuple-ids=1 row-size=105B cardinality=1,800,004,831
```


- Order scan predicates by selectivity and cost
- Compute selectivity of predicates for scans as well as joins
- Determine build and probe side for equi joins
- Select the ideal join type that minimizes resource utilization
 - Broadcast Join
 - Partition Join
- Identify joins which can benefit from Runtime filters
- Detection of common join pattern of Primary key/Foreign key joins

```
02:HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: 1_orderkey = o_orderkey
  runtime filters: RF000 <- o orderkey
  tuple-ids=1.0 row-size=113B cardinality=27,381,196
 --05:EXCHANGE [BROADCAST]
     hosts=20 per-host-mem=0B
      tuple-ids=0 row-size=8B cardinality=68,452,805
  00:SCAN HDFS [tpch 3000 parquet.orders, RANDOM]
      partitions=366/2406 files=366 size=28.83GB
      predicates: tpch 3000 parquet.orders.o orderkey < 100
     table stats: 4,500,000,000 rows total
      column stats: all
      tuple-ids=0 row-size=8B cardinality=68,452,805
01:SCAN HDFS [tpch 3000 parquet.lineitem, RANDOM]
  partitions=2526/2526 files=2526 size=1.36TB
  predicates: 1 orderkey < 100, 1 receiptdate >= '1994-01-01', 1 comment LIKE '%long string%'
  runtime filters: RF000 -> 1 orderkey
  table stats: 18,000,048,306 rows total
  column stats: all
  tuple-ids=1 row-size=105B cardinality=1,800,004,831
```


- Order scan predicates by selectivity and cost
- Compute selectivity of predicates for scans as well as joins
- Determine build and probe side for equi joins
- Select the ideal join type that minimizes resource utilization
 - Broadcast Join
 - Partition Join
- Identify joins which can benefit from Runtime filters
- Detection of common join pattern of Primary key/Foreign key joins

```
02:HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: 1_orderkey = o_orderkey
  runtime filters: RF000 <- o orderkey
  tuple-ids=1.0 row-size=113B cardinality=27.381.196
 --05:EXCHANGE [BROADCAST]
     hosts=20 per-host-mem=0B
      tuple-ids=0 row-size=8B cardinality=68,452,805
  00:SCAN HDFS [tpch 3000 parquet.orders, RANDOM]
      partitions=366/2406 files=366 size=28.83GB
      predicates: tpch 3000 parquet.orders.o orderkey < 100
     table stats: 4,500,000,000 rows total
      column stats: all
      tuple-ids=0 row-size=8B cardinality=68,452,805
01:SCAN HDFS [tpch 3000 parquet.lineitem, RANDOM]
  partitions=2526/2526 files=2526 size=1.36TB
  predicates: 1 orderkey < 100, 1 receiptdate >= '1994-01-01', 1 comment LIKE '%long string%'
  runtime filters: RF000 -> 1 orderkey
  table stats: 18,000,048,306 rows total
  column stats: all
  tuple-ids=1 row-size=105B cardinality=1,800,004,831
```


- Order scan predicates by selectivity and cost
- Compute selectivity of predicates for scans as well as joins
- Determine build and probe side for equi joins
- Select the ideal join type that minimizes resource utilization
 - Broadcast Join
 - Partition Join
- Identify joins which can benefit from Runtime filters
- Detection of common join pattern of Primary key/Foreign key joins

```
02:HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: 1_orderkey = o_orderkey
  runtime filters: RF000 <- o orderkey
  tuple-ids=1.0 row-size=113B cardinality=27.381.196
 --05:EXCHANGE [BROADCAST]
     hosts=20 per-host-mem=0B
      tuple-ids=0 row-size=8B cardinality=68,452,805
  00:SCAN HDFS [tpch 3000 parquet.orders, RANDOM]
      partitions=366/2406 files=366 size=28.83GB
      predicates: tpch 3000 parquet.orders.o orderkey < 100
     table stats: 4,500,000,000 rows total
      column stats: all
      tuple-ids=0 row-size=8B cardinality=68,452,805
01:SCAN HDFS [tpch 3000 parquet.lineitem, RANDOM]
  partitions=2526/2526 files=2526 size=1.36TB
  predicates: 1 orderkey < 100, 1 receiptdate >= '1994-01-01', 1 comment LIKE '%long string%'
  runtime filters: RF000 -> 1 orderkey
  table stats: 18,000,048,306 rows total
  column stats: all
  tuple-ids=1 row-size=105B cardinality=1,800,004,831
```


- Order scan predicates by selectivity and cost
- Compute selectivity of predicates for scans as well as joins
- Determine build and probe side for equi joins
- Select the ideal join type that minimizes resource utilization
 - Broadcast Join
 - Partition Join
- Identify joins which can benefit from Runtime filters
- Detection of common join pattern of Primary key/Foreign key joins

```
02:HASH JOIN [INNER JOIN, BROADCAST]
  hash predicates: 1_orderkey = o_orderkey
  runtime filters: RF000 <- o orderkey
  tuple-ids=1.0 row-size=113B cardinality=27.381.196
 --05:EXCHANGE [BROADCAST]
     hosts=20 per-host-mem=0B
      tuple-ids=0 row-size=8B cardinality=68,452,805
  00:SCAN HDFS [tpch 3000 parquet.orders, RANDOM]
      partitions=366/2406 files=366 size=28.83GB
      predicates: tpch 3000 parquet.orders.o orderkey < 100
     table stats: 4,500,000,000 rows total
      column stats: all
      tuple-ids=0 row-size=8B cardinality=68,452,805
01:SCAN HDFS [tpch 3000 parquet.lineitem, RANDOM]
  partitions=2526/2526 files=2526 size=1.36TB
  predicates: 1 orderkey < 100, 1 receiptdate >= '1994-01-01', 1 comment LIKE '%long string%'
   runtime filters: RF000 -> 1 orderkey
  table stats: 18,000,048,306 rows total
  column stats: all
  tuple-ids=1 row-size=105B cardinality=1,800,004,831
```


Admission Control: Basics

Purpose

 Create a predictable multi-user environment by avoiding resource usage spikes and out-of-memory conditions

Approach

- Impose limits on concurrent SQL queries and memory usage
- Each incoming query is assigned to a resource pool
- The parameters of the resource pool, and current state of the system, determine whether a query gets to run, gets queued, or is rejected
- Pool parameters: max total memory, max running queries, max queued queries, queue timeout, ...

Performance Tuning Basics: Summary

Pick data types to match schema semantics as closely as possible.

Pick data partitioning to match workload characteristics as closely as possible.

Write queries to match the partitioning.

Express 1-n relationships as nested tables. Use nested aggregates over nested data.

Compute statistics. No, really.

Utilize admission control features to shape your workload.

Get Started

- •100% Apache-licensed open source
 - Download: <u>cloudera.com/downloads</u>
 - Project Page: http://impala.apache.org/
 - Join the discussion: <u>user@impala.incubator.apache.org</u>
- Questions/comments?
 - Resources: http://blog.cloudera.com/blog/category/impala/
 - Community: http://impala.apache.org/community.html
 - Email: <u>user@impala.incubator.apache.org</u>.

