KATEDRA ELEKTRONIKI

LABORATORIUM PODSTAW ELEKTRONIKI

SPRAWDZANIE PRAWA OHMA

PRAWO OHMA DLA PRĄDU STAŁEGO

Prowadzący ćwiczenie podaje wartości L =...[H], $I_1 = ...[mA]$, $I_2 = ...[mA]$

Czynności do wykonania

- 1. Ustawić na dekadzie indukcyjnej wartość L wskazaną przez prowadzącego.
- 2. Zmierzyć wartość rezystancji dekady indukcyjnej R_R za pomocą miernika oporności.
- 3. W układzie (rys.1) zmieniają wartość napięcia stałego U_Z ustawić wartość prądu I_1 (potem I_2) wskazaną przez prowadzącego ćwiczenia i zmierzyć spadek napięcia na dekadzie U_{R1} (U_{R2}). Wyniki wpisz do Tabeli 1.
- 4. Oblicz na podstawie wskazań amperomierza i woltomierza rezystancję dekady indukcyjnej $R_{R1}\left(R_{R2}\right)$.
- 5. Obliczyć moce rozpraszane w dekadzie P_{R1} (P_{R2})

Tabela 1.

L	I_1	U_{R1}	R_{R1}	P_{R1}	I_2	U_{R2}	R_{R2}	P_{R2}	R_R
Н	mA	٧	Ω	mW	mA	V	Ω	mW	Ω

Rys 1. Pomiar spadku napięcia na dekadzie indukcyjnej dla prądu stałego

PRAWO OHMA DLA PRĄDU ZMIENNEGO (f=50Hz)

Do układu jak na rys 2 podłączyć zasilanie prądu zmiennego 50Hz

Tabela 2.

L	I_1	U_{RL1}	Z_{RL1}	X_{L1}	Р	Q	S	$\cos \varphi$	$\sin\!arphi$	φ	R_R
Н	mA	V	Ω	Ω	mW	mVAr	mVA			0	Ω

Tabela 3.

L	I_2	U_{RL2}	Z_{RL2}	X_{L2}	Р	Q	S	$\cos \varphi$	$\sin\!arphi$	φ	R_R
Н	mA	V	Ω	Ω	mW	mVAr	mVA			0	Ω

Rys 2. Pomiar spadku napięcia na dekadzie indukcyjnej dla prądu zmiennego

Zmieniając wartość napięcia U_Z tak aby uzyskać wartość prądu płynącego w obwodzie jakie wskazał prowadzący I_1 =...., $(I_2$ =), zmierzyć spadek napięcia na dekadzie indukcyjnej U_{RL1} =...., $(U_{RL2}$ =...)

Obliczenia

1. Oblicz na podstawie wskazań amperomierza i woltomierza impedancję dekady indukcyjnej Z_{RL1} (Z_{RL2}).

$$Z_{RL1} = R_R + jX_L = \frac{U_{RL1}}{I_1}$$

Wartość reaktancji X_L obliczyć ze wzorów(porównaj i zinterpretuj wyniki)

1.
$$X_L = \omega L = 2\pi f \cdot L$$

2.
$$X_L = \sqrt{Z_{RL1}^2 - R_R^2}$$

- 2.Przedstawić na wykresie wskazowym napięcia U_R, U_{RL}, U_L oraz prąd I
- 3. Obliczyć i zinterpretować spadek napięcia na oporności biernej U_L
- 4. Oblicz wartość współczynnika cosφ.

Obliczenia wykonaj dwoma sposobami

- a) na podstawie zmierzonych napięć $\cos \varphi = \frac{U_R}{U_{RL1}}$
- b) na podstawie zmierzonej rezystancji i ustawionej indukcyjności $\cos \varphi = \frac{R_R}{Z_{RL1}}$
- 5.Oblicz:

moc czynną
$$P = U \cdot I \cdot \cos \varphi$$

moc bierną $Q = U \cdot I \cdot \sin \varphi$
i moc pozorną $S = U \cdot I$

Podaj interpretacje i jednostki podanych mocy

- 6.Podaj jakie zjawiska mogą wystąpić w układzie, jeżeli w obwodzie znajdą się elementy RLC połączone w różnych konfiguracjach (obwody rezonansowe).
- 7. Podaj co to jest impedancja Y, konduktancja G i susceptancja B. Y = G + jB