Lab session (22nd Dec)

Easy:

1. For $i \leftarrow 0$, to 19, do the following, while incrementing i by 1 each time:

$$arr[i] \leftarrow 3 * i * i * i + 2 * i * i + 42.$$

- 2. Trivial. Just use the scanf and IF condition syntax correctly.
- 3. Pseudocode:
 - Let A be an array of positive integers of length n.
 - Let count_even and count_odd be integer variables.
 - Initialize count_even and count_odd to 0.
 - For $i \leftarrow 0$ to n-1, while incrementing i at each step, do the following:
 - \circ if 2 divides A[i] with remainder 0, then increment count_even.
 - Else increment count odd.
 - Print count_even and count_odd.
- 4. Pseudocode:
 - \circ Let str be a char array with value "Hello World\n".
 - \circ Let len be an integer that denotes the length of str. Initialize len to 12.
 - For $i \leftarrow (len 1)$ to 0, do the following while decrementing i at each step:
 - print str[i]

Part 2:

- 1. Pseudocode:
 - Let *n* be the integer that was taken as input.
 - \circ For loop with init $i \leftarrow 0$, as long as (i*i) < n, do the following while incrementing i at each step:
 - print the value of i * i.
- 2. Pseudocode:
 - \circ Let n be the integer that was taken as input.
 - For $i \leftarrow 4$, as long as i < n, do the following while incrementing i at each step:

We check if i is composite as follows:

- For $j \leftarrow 2$, as long as (j does not divide i) and (j < i/2), iterate while incrementing j.
- If j divides i, then print i.

Remark 2: Loop starts at 4 because 4 is the smallest composite number. The loop that checks if i is composite has an empty body! The if condition that follows is *outside* the loop.

3. Let n_1 and n_2 be the input numbers. Pseudocode is exactly like the solution to 2.2 from Lab 2 exercises. Replace the following line:

Print the value of next followed by space

If $(next > n_1 \text{ and } next < n_2)$ or $(next > n_2 \text{ and } next < n_1)$ then print the value of next.

Remark: Alternatively, we could first check if $n_1 < n_2$. If this is not true, then we swap the values of n_1 and n_2 so that $n_1 < n_2$ after swap. In mathematics, we typically skip all these trivialities by saying: "Without loss of generality, assume that $n_1 < n_2$ ".

4. Trivial. Use the correct syntax, and index bounds when handling the array.