naive bayes

November 8, 2022

```
[1]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import category_encoders as ce
  import warnings
  warnings.simplefilter(action='ignore', category=FutureWarning)
  from sklearn.model_selection import train_test_split
  from sklearn.naive_bayes import GaussianNB
  from sklearn.preprocessing import RobustScaler
  from sklearn.metrics import accuracy_score
  from sklearn.metrics import confusion_matrix
  from sklearn.metrics import classification_report
```

```
[2]: # initializing df
df = pd.read_excel("naive_bayes_algorithm/test-data.xlsx")
print(df.head().to_string())

# Dimensions of df
print(df.shape)

# iloc controls which rows are used.
set_row = df.iloc[0:2]
print(set_row.to_string())
```

```
Date Venue Result
               Name
                                                             Squad
Opponent SoTA Saves Save%
                             CS PSxG Opposition XG
                                                      GA
0 kasper schmeichel 2021-08-13 23:00:00 Home W 1-0 Leicester City
        3.0
Wolves
               3.0 100.0 1.0
                                0.3
                                               1.1 0.0
1 kasper schmeichel 2021-08-22 23:00:00
                                       Away L 1-4 Leicester City
West Ham
          7.0
                 3.0
                       42.9 0.0
                                  3.4
                                                 2.5 4.0
2 kasper schmeichel 2021-08-27 23:00:00 Away W 2-1 Leicester City
Norwich City
              3.0
                     3.0 100.0 0.0
                                      1.1
                                                    1.6 1.0
3 kasper schmeichel 2021-09-10 23:00:00 Home L 0-1 Leicester City
Manchester City
                 8.0
                       7.0 87.5 0.0
                                         1.3
                                                       2.9 1.0
4 kasper schmeichel 2021-09-18 23:00:00 Away L 1-2 Leicester City
Brighton
          3.0
                 2.0
                      66.7 0.0
                                  1.1
                                                 1.4 2.0
(401, 13)
```

Name Date Venue Result Squad Opponent

```
SoTA Saves Save% CS PSxG Opposition XG GA
    O kasper schmeichel 2021-08-13 23:00:00 Home W 1-0 Leicester City
                                                                            Wolves
           3.0 100.0 1.0
                           0.3
                                            1.1 0.0
    1 kasper schmeichel 2021-08-22 23:00:00 Away L 1-4 Leicester City West Ham
    7.0
           3.0
                 42.9 0.0
                                            2.5 4.0
                             3.4
[3]: # Getting categorical columns
    categorical = [var for var in df.columns if df[var].dtype == '0']
    print('There are {} categorical variables\n'.format(len(categorical)))
    print('The categorical variables are :\n\n', categorical)
    print(f'\n{df[categorical].isnull().sum()}')
    # Getting numerical columns
    numerical = [var for var in df.columns if df[var].dtype != '0']
    print('There are {} numerical variables\n'.format(len(numerical)))
    print('The numerical variables are :\n\n', numerical)
    There are 5 categorical variables
    The categorical variables are :
     ['Name', 'Venue', 'Result', 'Squad', 'Opponent']
    Name
                1
    Venue
    Result
                1
    Squad
                1
    Opponent
    dtype: int64
    There are 8 numerical variables
    The numerical variables are :
     ['Date', 'SoTA', 'Saves', 'Save%', 'CS', 'PSxG', 'Opposition XG', 'GA']
[4]: # Replacing N/a in save% with 0.0 and dropping date
    df = df.fillna(0.0)
    df = df.drop(['Date'], axis=1)
     # Declare feature vector amd target variable
    X = df.drop(['GA'], axis=1)
    print(X)
    y = df['GA']
    print(y)
                      Name Venue Result
                                                               Opponent SoTA \
                                                  Squad
    0
         kasper schmeichel Home W 1-0 Leicester City
                                                                 Wolves
                                                                          3.0
```

West Ham

7.0

kasper schmeichel Away L 1-4 Leicester City

1

```
3
         kasper schmeichel Home L 0-1 Leicester City Manchester City
                                                                             8.0
    4
         kasper schmeichel
                            Away L 1-2 Leicester City
                                                                  Brighton
                                                                             3.0
    . .
                                                                             3.0
    396
               Hugo Lloris Away D 1-1
                                               Tottenham
                                                                Liverpool
    397
               Hugo Lloris
                            Home
                                   W 3-0
                                               Tottenham
                                                                  Arsenal
                                                                             4.0
    398
               Hugo Lloris
                            Home
                                   W 1-0
                                               Tottenham
                                                                  Burnley
                                                                             1.0
               Hugo Lloris
    399
                            Away
                                   W 5-0
                                               Tottenham
                                                             Norwich City
                                                                             0.0
    400
                       0.0
                             0.0
                                     0.0
                                                     0.0
                                                                       0.0
                                                                             0.0
                        CS
                            PSxG
                                   Opposition XG
         Saves Save%
    0
           3.0 100.0
                       1.0
                             0.3
                                             1.1
    1
           3.0
                 42.9
                       0.0
                             3.4
                                             2.5
    2
           3.0 100.0
                       0.0
                             1.1
                                             1.6
    3
           7.0
                 87.5
                              1.3
                                             2.9
                       0.0
    4
           2.0
                 66.7
                       0.0
                             1.1
                                             1.4
    . .
                 66.7
                                             1.2
    396
           2.0
                       0.0
                             0.4
    397
           4.0 100.0 1.0
                             0.5
                                             0.4
    398
           1.0 100.0 1.0
                             0.0
                                             0.7
                                             0.3
    399
           0.0
                  0.0 1.0
                             0.0
    400
           0.0
                  0.0 0.0
                             0.0
                                             0.0
    [401 rows x 11 columns]
    0
           0.0
    1
           4.0
    2
           1.0
    3
           1.0
    4
           2.0
    396
           1.0
    397
           0.0
           0.0
    398
    399
           0.0
    400
           0.0
    Name: GA, Length: 401, dtype: float64
[5]: # Spliting Data into sep training sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
     print(X_train)
     print(X_test)
     # Getting Categorical/numerical columns in training set
     print(X_train.dtypes)
     categorical = [col for col in X_train.columns if X_train[col].dtypes == '0']
     print(f'Categorical:\n{categorical}')
     numerical = [col for col in X_train.columns if X_train[col].dtypes != '0']
```

kasper schmeichel Away W 2-1 Leicester City

Norwich City

3.0

2

Name Venue Result Squad Opponent SoTA 3.0 302 Jordan Pickford Away L 0-1 Everton Brentford 334 Allison Home D 2-2 Liverpool Brighton 6.0 249 Jose Sa L 0-1 Wolves Newcastle Utd 3.0 Away 18 kasper schmeichel Home L 2-3 Leicester City Tottenham 8.0 248 Jose Sa Home W 2-1 Wolves Aston Villa 4.0 . . 361 Allison Home W 3-1 Liverpool Wolves 5.0 L 1-2 Aston Villa 7.0 267 Emi Martinez Home Manchester City 196 Illan Meslier L 0-7 Leeds United Manchester City Away 15.0 Tottenham 378 Hugo Lloris Away D 1-1 Southampton 2.0 226 Jose Sa Away D 1-1 Wolves Leeds United 3.0 Saves Save% Opposition XG CS PSxG 302 3.0 100.0 0.0 1.1 1.2 334 3.0 66.7 0.0 1.4 1.1 249 3.0 100.0 0.0 1.2 1.6 18 5.0 62.5 0.0 3.7 3.7 100.0 248 4.0 0.0 2.0 2.1 . . 361 4.0 80.0 0.0 1.3 1.1 267 5.0 71.4 0.0 0.9 0.9 3.6 196 8.0 53.3 0.0 4.2 378 50.0 0.7 0.4 1.0 0.0 3.0 100.0 0.0 226 1.0 1.9 [320 rows x 11 columns] Opponent Name Venue Result Squad SoTA 107 David de Gea Away L 0-4 Manchester Utd Brighton 5.0 Arsenal 128 Ederson Away W 2-1 Manchester City 2.0 28 kasper schmeichel Home W 2-1 Leicester City Crystal Palace 2.0 191 Illan Meslier Leeds United Tottenham 4.0 Away L 1-2 39 Aaron Ramsdale Home W 3-1 Arsenal Tottenham 4.0 . . 389 0.0 Hugo Lloris Away W 2-0 Tottenham Brighton 121 Ederson Away W 2-1 Manchester City Aston Villa 3.0 kasper schmeichel D 1-1 Leicester City Leeds United 5.0 10 Away 217 Illan Meslier Away W 2-1 Leeds United Brentford 5.0 288 Emi Martinez Home L 1-2 Aston Villa Liverpool 5.0 Saves Save% CS PSxG Opposition XG 1.0 20.0 2.7 2.8 107 0.0 128 1.0 50.0 0.0 0.9 0.9 28 1.0 50.0 0.0 0.9 1.3

print(f'\nNumerical:\n{numerical}')

191

1.0

50.0 0.0

1.8

2.0

```
39
           2.0
                 75.0 0.0
                                            1.0
                             1.1
    . .
                                            0.7
    389
           0.0
                  0.0 1.0
                             0.0
    121
           2.0
                 66.7 0.0
                             0.6
                                            0.9
                                            1.2
    10
           4.0
                 80.0 0.0
                             1.1
    217
           4.0
                             1.2
                                            1.2
                 80.0 0.0
    288
           3.0
                 60.0 0.0
                             1.5
                                            1.9
    [81 rows x 11 columns]
    Name
                      object
    Venue
                      object
    Result
                      object
    Squad
                      object
    Opponent
                      object
    SoTA
                     float64
    Saves
                     float64
    Save%
                     float64
    CS
                     float64
    PSxG
                     float64
    Opposition XG
                     float64
    dtype: object
    Categorical:
    ['Name', 'Venue', 'Result', 'Squad', 'Opponent']
    Numerical:
    ['SoTA', 'Saves', 'Save%', 'CS', 'PSxG', 'Opposition XG']
[6]: # encode remaining variables with one-hot encoding
    encoder = ce.OneHotEncoder(cols=['Name', 'Venue', 'Result', 'Squad', |
     X_train = encoder.fit_transform(X_train)
    X test = encoder.transform(X test)
    print(X_train.head(2).to_string())
    print(X_test.head(2).to_string())
    # Feature Scaling
    cols = X_train.columns
    scaler = RobustScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
    X_train = pd.DataFrame(X_train, columns=[cols])
    X_test = pd.DataFrame(X_test, columns=[cols])
    print(X_train.head(2).to_string())
         Name 1 Name 2 Name 3 Name 4 Name 5 Name 6 Name 7 Name 8 Name 9
```

Result_3 Result_4 Result_5 Result_6 Result_7 Result_8 Result_9 Result_10

Name_10 Name_11 Name_12 Venue_1 Venue_2 Venue_3 Result_1 Result_2

Name_2 Name_3 Name_4 Name_5 Name_6 Name_7 Name_8 Name_9 Name_10 Name_11 Name_12 Venue_1 Venue_2 Venue_3 Result_1 Result_2 Result_3 Result_4 Result_5 Result_6 Result_7 Result_8 Result_9 Result_10 Result_11 Result_12 Result_13 Result_14 Result_15 Result_16 Result_17 Result_21 Result_22 Result_23 Result_24 Result_18 Result_19 Result_20 Result_25 Result_26 Result_27 Result_28 Result_29 Result_30 Result_31 Result_32 Result_33 Result_34 Result_35 Result_36 Result_37 Result 38 Result_43 Result_44 Result_39 Result_40 Result_41 Result_42 Result_45 Result_46 Result_47 Result_48 Squad_1 Squad_2 Squad_3 Squad_4 Squad_5 Squad_6 Squad_7 Squad_8 Squad_9 Squad_10 Squad_11 Squad_12 Opponent_1 Opponent_2 Opponent_3 Opponent_4 Opponent_5 Opponent_6 Opponent_7

Opponent_8 Opponent_9 Opponent_10 Opponent_11 Opponent_12 Opponent_13										
Oppone	ent_14 Op	ponent_15	Oppon	ent_16	Opponent	t_17 Opp	onent_18	Opponen	t_19	
Oppone	ent_20 Op	ponent_21	SoTA	Saves	Save%	CS PSxC	Opposit	tion XG		
107	0	0	0	0	0	0	0	0	1	
0	0	0	1	0	0		0	0	0	
0	0	0	0	1	0	0	0	(0	
0	0	0		0	0		0	0	0	
0	0	0		0	0		0	0	1	
0	0	0		0	0		0	0	0	
0	0	0		0	0		0	0	0	
0	0	0		0	0	0	0	0		
0	0	0	0	0	1		0	0	0	
0	1		0	0		0	0	(0	
0	0		0		0	0		0	0	
0	0		0		0	0		0	0)
5.0	1.0 20	0.0	2.7		2.8					
128	0	0	0	0	0	0	0	0	0	
0	1	0	1	0	0		0	0	0	
1	0	0	0	1	0	0	0	(0	
0	0	0		0	0		0	0	0	
0	0	0		0	0		0	0	0	
0	0	0		0	0		0	0	0	
0	0	0		0	0		0	0	0	
0	0	0		0	0	0	0	0		
0	0	0	0	0	0		0	1	0	
0	0		0	0		0	0	(0	
0	0		1		0	0		0	0	
0	0		0		0	0		0	0)
2.0	1.0 50	0.0 0.0	0.9		0.9					

Name_1 Name_2 Name_3 Name_4 Name_5 Name_6 Name_7 Name_8 Name_9 Name_10 Name_11 Name_12 Venue_1 Venue_2 Venue_3 Result_1 Result_2 Result_3 Result_4 Result_5 Result_6 Result_7 Result_8 Result_9 Result_10 Result_11 Result_12 Result_13 Result_14 Result_15 Result_16 Result_17 Result_18 Result_19 Result_20 Result_21 Result_22 Result_23 Result_24 Result_25 Result_26 Result_27 Result_28 Result_29 Result 30 Result 31 Result 32 Result 33 Result 34 Result 35 Result 36 Result 37 Result_38 Result_39 Result_40 Result_41 Result_42 Result_43 Result_44 Result_45 Result 46 Result 47 Result 48 Squad 1 Squad 2 Squad 3 Squad 4 Squad 5 Squad 6 Squad_7 Squad_8 Squad_9 Squad_10 Squad_11 Squad_12 Opponent_1 Opponent_2 Opponent_3 Opponent_4 Opponent_5 Opponent_6 Opponent_7 Opponent_8 Opponent_9 Opponent_10 Opponent_11 Opponent_12 Opponent_13 Opponent_14 Opponent_15 Opponent_16 Opponent_17 Opponent_18 Opponent_19 Opponent_20 Opponent_21 SoTA Saves Save% PSxG Opposition XG CS 0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 1.0 1.0 0.0

```
0.0
              0.0
                                             0.0
                                                                   0.0
                         0.0
                                   0.0
                                                        0.0
                                                                             0.0
    0.0
              0.0
                       1.0
                               0.0
                                       0.0
                                                0.0
                                                        0.0
                                                                0.0
                                                                         0.0
                                                                                 0.0
    0.0
                                                       0.0
                                                                              0.0
             0.0
                       0.0
                                0.0
                                            1.0
                                                                  0.0
    0.0
               0.0
                           0.0
                                      0.0
                                                  0.0
                                                              0.0
                                                                           0.0
                                                                               0.0
    0.0
                 0.0
                             0.0
                                                      0.0
                                         0.0
                                                                   0.0
    0.0
                0.0
                             0.0 0.0 0.333333 0.500 0.0 0.076923
                                                                                  0.1
                               0.0
                                              0.0
                                                     0.0
                                                            0.0
                                                                   0.0
    1
                 1.0
                        0.0
                                      0.0
                                                                            0.0
                                                                                    0.0
    0.0
            0.0
                     0.0
                             0.0
                                                1.0
                                                         0.0
                                                                   0.0
                                                                            0.0
                                      0.0
    0.0
             0.0
                       0.0
                                0.0
                                          0.0
                                                     0.0
                                                               0.0
                                                                          0.0
                                                                                    0.0
    0.0
              0.0
                         0.0
                                   0.0
                                              0.0
                                                        0.0
                                                                   0.0
                                                                             0.0
    0.0
              0.0
                         0.0
                                   0.0
                                              0.0
                                                        0.0
                                                                   0.0
                                                                             0.0
    0.0
              0.0
                         0.0
                                   0.0
                                              0.0
                                                        0.0
                                                                  0.0
                                                                             0.0
    0.0
              0.0
                         0.0
                                   0.0
                                              0.0
                                                        0.0
                                                                  0.0
                                                                             0.0
    0.0
              0.0
                                                                         0.0
                       0.0
                               1.0
                                       0.0
                                                0.0
                                                        0.0
                                                                0.0
                                                                                 0.0
    0.0
             0.0
                       0.0
                                0.0
                                            0.0
                                                       1.0
                                                                   0.0
                                                                              0.0
                                                                           0.0
    0.0
               0.0
                           0.0
                                      0.0
                                                  0.0
                                                              0.0
    0.0
                 0.0
                             0.0
                                         0.0
                                                      0.0
                                                                   0.0
                                                                               0.0
    0.0
                             0.0 1.0 0.333333 -0.166 0.0 0.307692
                 0.0
                                                                                  0.0
[7]: # Training our df
     gnb = GaussianNB()
     gnb.fit(X_train, y_train)
     # Predicting results
     y_pred = gnb.predict(X_test)
     print(y_test.head(5))
     print(y_pred)
     print('Model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
     y_pred_train = gnb.predict(X_train)
     print(y_pred_train)
     print('Training-set accuracy score: {0:0.4f}'. format(accuracy_score(y_train,_

y_pred_train)))
    107
           4.0
    128
           1.0
    28
           1.0
           2.0
    191
           1.0
    Name: GA, dtype: float64
    [4. 1. 1. 2. 1. 1. 5. 0. 2. 2. 0. 3. 4. 0. 1. 0. 2. 2. 0. 1. 0. 1. 1. 2.
     0. 0. 4. 2. 2. 0. 1. 1. 0. 5. 0. 0. 1. 0. 2. 0. 3. 1. 0. 3. 0. 0. 2. 1.
     0. 2. 0. 1. 2. 3. 1. 1. 1. 1. 1. 2. 0. 1. 1. 0. 0. 4. 2. 0. 4. 1. 4. 4.
     2. 3. 1. 1. 0. 1. 1. 1. 2.]
    Model accuracy score: 0.9136
    [1. 2. 1. 3. 1. 1. 3. 3. 1. 1. 0. 3. 0. 1. 1. 0. 5. 0. 1. 1. 1. 3. 0. 4.
     0. 1. 1. 1. 1. 2. 0. 0. 1. 0. 3. 1. 0. 0. 0. 1. 1. 0. 0. 0. 3. 2. 0. 2.
     0. 1. 0. 3. 0. 0. 0. 1. 1. 2. 1. 1. 2. 2. 0. 4. 0. 0. 0. 0. 0. 3. 3.
```

4. 1. 0. 1. 0. 0. 6. 0. 2. 1. 1. 1. 2. 3. 0. 1. 3. 4. 2. 0. 1. 6. 1. 1.

```
0. 1. 1. 0. 2. 2. 0. 3. 0. 1. 2. 1. 3. 3. 0. 2. 0. 2. 0. 1. 1. 1. 1. 0. 0. 1. 0. 3. 0. 2. 0. 1. 1. 1. 1. 0. 0. 1. 0. 3. 0. 2. 0. 1. 1. 1. 2. 1. 1. 1. 1. 2. 1. 0. 1. 1. 4. 1. 0. 2. 2. 0. 0. 2. 1. 5. 0. 0. 1. 1. 0. 0. 1. 3. 1. 1. 2. 0. 1. 2. 0. 1. 2. 1. 0. 2. 1. 2. 1. 0. 0. 3. 1. 1. 3. 1. 1. 2. 0. 1. 0. 0. 2. 0. 4. 1. 0. 4. 0. 2. 2. 3. 1. 1. 0. 0. 3. 1. 2. 1. 1. 2. 2. 0. 0. 5. 1. 2. 0. 0. 2. 1. 3. 0. 1. 2. 0. 0. 2. 1. 1. 1. 2. 0. 0. 2. 1. 3. 0. 1. 2. 0. 0. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 0. 0. 1. 2. 2. 2. 1. 1. 2. 0. 0. 1. 2. 0. 0. 1. 2. 2. 2. 1. 1. 1. 2. 2. 0. 0. 0. 0. 1. 2. 2. 2. 1. 1. 1. 2. 0. 0. 1. 2. 2. 2. 1. 1. 2. 0. 0. 0. 1. 2. 2. 2. 1. 1. 1. 2. 0. 0. 1. 2. 2. 3. 0. 0. 0. 0. 1. 0. 2. 1. 5. 1. 0. 0. 1. 2. 2. 1. 1. 2. 0. 0. 0. 0. 3. 2. 1. 1. 2. 7. 1. 1.]
```

Training-set accuracy score: 1.0000

```
[8]: # Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print('Confusion matrix\n\n', cm)
cm_matrix = pd.DataFrame(data=cm)
heat = sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')
plt.show()
print(classification_report(y_test, y_pred))
```

Confusion matrix

```
[[24 0 0
        0 0 01
[ 0 27 0
              07
         1
           1
[ 0 0 16 0
           0
              0]
[ 0 0 0 3
           2
              01
0 0 0
              2]
        1
           4
0 0 0 0
              0]]
           0
```


| | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| | | | | |
| 0.0 | 1.00 | 1.00 | 1.00 | 24 |
| 1.0 | 1.00 | 0.93 | 0.96 | 29 |
| 2.0 | 1.00 | 1.00 | 1.00 | 16 |
| 3.0 | 0.60 | 0.60 | 0.60 | 5 |
| 4.0 | 0.57 | 0.57 | 0.57 | 7 |
| 5.0 | 0.00 | 0.00 | 0.00 | 0 |
| | | | | |
| accuracy | | | 0.91 | 81 |
| macro avg | 0.70 | 0.68 | 0.69 | 81 |
| weighted avg | 0.94 | 0.91 | 0.93 | 81 |

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

[]: