UberVest

•••

Health Monitoring Vest

The UberVest Team

Hayden Ball - Hardware / Website

Filip Frahm - Data Analysis

Roy Hotrabhavnon - Hardware

Milan Pavlik - API

Jonathan Redmond - Android (unlucky)

What is it?

- Wearable vest
- Monitors heart rate
- Monitors temperature
- Communicates to users mobile application
- Provides realtime information about the wearer

Architecture

Two parts:

A compression shirt containing electrodes and sensors

A "brain" that includes analogue signal processing circuits and the NRF51 DK

"Brain"

NRF51 DK

High gain differential amplifier with low pass filter for ECG

Buffer for temperature sensor

Hardware NRF51 DK

Hardware NRF51 DK

ECG Amplifier / Voltage Regulator

Compression Shirt

Mobile Application

- Simplistic UI for ease of use
- Detects changes in Bluetooth LE Characteristics
- Uploads the changes to Firebase
- Loads the website to allow live viewing of data

API - Infrastructure

- Django, PostgreSQL, Openshift
- Firebase
 - Scalability
 - Real time updates
 - NoSQL storage

Messaging Queue - Firebase

Django (Python) **PostgreSQL**

Openshift

API - Data

- Manage devices
- Data collection
- Data processing and analysis

- Live data
- Historic data

ECG Data Processing - BPM

```
"1447759255322":187,
1447759255361":185,
1447759255365":185,
1447759255409":230.
1447759255417":181,
"1447759255459":177,
1447759255465":184,
1447759255508":192,
1447759255511":193,
'1447759255555":195,
"1447759255559":196,
"1447759255606":201,
"1447759255614":204,
1447759255653":204,
1447759255658":202,
"1447759255700":195,
"1447759255701":188,
"1447759255752":181,
1447759255797":181
```


Assumption: beats are evenly spaced BPM = 60/avg time in between beats

API - ECG Data Processing

1. Peak detection

```
{"1447759255322":187,
"1447759255361":185,
"1447759255365":185,
"1447759255409":230,
"1447759255417":181,
"1447759255459":177,
"1447759255465":184,
1447759255508":192.
"1447759255511":193,
1447759255555":195,
1447759255559":196,
1447759255606":201,
1447759255614":204,
1447759255653":204.
1447759255658":202,
1447759255700":195,
"1447759255701":188,
"1447759255752":181.
"1447759255797":181
```


peak = 191

2. Gradient

```
{"1447759255322":187,
"1447759255361":185,
"1447759255365":185,
1447759255409":230,
"1447759255417":181,
"1447759255459":177,
"1447759255465":184,
"1447759255508":192,
"1447759255511":193,
"1447759255555":195,
"1447759255559":196,
"1447759255606":201,
"1447759255614":204,
"1447759255653":204,
"1447759255658":202,
"1447759255700":195,
"1447759255701":188,
"1447759255752":181,
"1447759255797":181
```


Web Interface

Improvements

- Improve dimensions with minimized SMD PCB
- Improve sensory readings and stability
- Additional sensors, Reflectance based pulse oximeter.

Health and Sport Applications

- Rugby world cup teams tracked GPS and heart rate
- heart attack / stroke detection
- Continuous temperature monitoring as an indicator of diseases
- Continuous monitoring of patients
 - o COPD

Q & A

Dashboard