Definition

A complex number is a number of the form

where

$$z = a + bi$$

- $a, b \in \mathbb{R}$
- i is an *imaginary unit* which satisfies $i^2 = -1$.

Notation. If z = a + bi is a complex number then

- Re(z) = a is called the *real part* of z
- Im(z) = b is called the *imaginary part* of z
- ullet C denotes the set of all complex numbers.

Geometric interpretation of complex numbers

Note. Every real number is a complex number.

Cojugate of complex number and division

Definition

The *conjugate* of a complex number z = a + bi is the number $\bar{z} = a - bi$.

Polar form of a complex number

Geometric interpretation of multiplication

Powers and roots of complex numbers

The Fundamental Theorem of Algebra

Let P(x) be a polynomial of degree $n \ge 1$ with complex coefficient:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

 $a_n,\ldots,a_0\in\mathbb{C}$. Then there exist complex numbers z_1,\ldots,z_n such that

$$P(x) = a_n(x - z_1) \cdot \ldots \cdot (x - z_n)$$

As a consequence $P(z_i) = 0$ for i = 1, ..., n.

Example.

$$P(x) = x^2 - 4x + 13$$