

Discord Link: https://discord.gg/nxwbTHd

Github Repo: https://github.com/codereport/FM2GP-2025

code_report: Twitter | BlueSky | Mastodon

CoC: https://berlincodeofconduct.org/

From Mathematics to Generic Programming

Chapter 6 & 8

- 1. What This Book Is About
- 2. The First Algorithm
- 3. Ancient Greek Number Theory
- 4. Euclid's Algorithm
- 5. The Emergence of Modern Number Theory
- 6. Abstraction in Mathematics
- 7. Deriving a Generic Algorithm
- 8. More Algebraic Structures
- 9. Organizing Mathematical Knowledge
- **10. Fundamental Programming Concepts**
- 11. Permutation Algorithms
- 12. Extensions of GCD
- 13. A Real-World Application

- 1. What This Book Is About
- 2. The First Algorithm
- 3. Ancient Greek Number Theory
- 4. Euclid's Algorithm
- 5. The Emergence of Modern Number Theory
- 6. Abstraction in Mathematics
- >7. Deriving a Generic Algorithm
 - 8. More Algebraic Structures
- 9. Organizing Mathematical Knowledge
- **10.Fundamental Programming Concepts**
- 11. Permutation Algorithms
- 12.Extensions of GCD
- 13. A Real-World Application

- 1. What This Book Is About
- 2. The First Algorithm
- 3. Ancient Greek Number Theory
- 4. Euclid's Algorithm
- 5. The Emergence of Modern Number Theory
- 6. Abstraction in Mathematics
- >7. Deriving a Generic Algorithm
 - 8. More Algebraic Structures
- 9. Organizing Mathematical Knowledge
- **10.Fundamental Programming Concepts**
- 11. Permutation Algorithms
- 12.Extensions of GCD
- 13. A Real-World Application

8 More Algebraic Structures 129 Stevin, Polynomials, and GCD 129 Göttingen and German Mathematics 8.2 135 Noether and the Birth of Abstract Algebra 8.3 140 8.4 Rings 142 Matrix Multiplication and Semirings 8.5 145 **Application: Social Networks and Shortest Paths** 8.6 147 **Euclidean Domains** 8.7 150

152

151

Fields and Other Algebraic Structures

Thoughts on the Chapter

8.8

8.9

STRUCTURE	OPERATIONS	ELEMENTS	AXIOMS	
semigroup	$x \circ y$		$x \circ (y \circ z) = (x \circ y) \circ z$	
Example: positive integers under addition				
monoid	$x \circ y$	е	$x \circ (y \circ z) = (x \circ y) \circ z$	
			$x \circ e = e \circ x = x$	
Example: strings under concatenation				
group	$x \circ y$	е	$x \circ (y \circ z) = (x \circ y) \circ z$	
	x^{-1}		$x \circ e = e \circ x = x$	
			$x \circ x^{-1} = x^{-1} \circ x = e$	
Example: invertible matrices under multiplication				

STRUCTURE	OPERATIONS	ELEMENTS	AXIOMS	
abelian group	$x \circ y$	е	$x \circ (y \circ z) = (x \circ y) \circ z$	
	χ^{-1}		$x \circ e = e \circ x = x$	
			$x \circ x^{-1} = x^{-1} \circ x = e$	
			$x \circ y = y \circ x$	
Example: two-dimensional vectors under addition				
semiring	x + y	0_R	x + (y+z) = (x+y) +	
	xy	1_R	x + 0 = 0 + x = x	
			x + y = y + x	
			x(yz) = (xy)z	
			$1 \neq 0$	
			1x = x1 = x	
			0x = x0 = 0	
			x(y+z) = xy + xz	
			(y+z)x = yx + zx	
Example: natural numbers				
	20 11	0_R	x + (y + z) = (x + y) +	
ring	x + y	24		
ring	-x	1_R	x + 0 = 0 + x = x	
ring		24	x + -x = -x + x = 0	
ring	-x	24	x + -x = -x + x = 0 $x + y = y + x$	
ring	-x	24	x + -x = -x + x = 0 x + y = y + x x(yz) = (xy)z	
ring	-x	24	$x + -x = -x + x = 0$ $x + y = y + x$ $x(yz) = (xy)z$ $1 \neq 0$	
ring	-x	24	$x + -x = -x + x = 0$ $x + y = y + x$ $x(yz) = (xy)z$ $1 \neq 0$ $1x = x1 = x$	
ring	-x	24	$x + -x = -x + x = 0$ $x + y = y + x$ $x(yz) = (xy)z$ $1 \neq 0$ $1x = x1 = x$ $0x = x0 = 0$	
ring	-x	24	$x + -x = -x + x = 0$ $x + y = y + x$ $x(yz) = (xy)z$ $1 \neq 0$ $1x = x1 = x$	

As we did before, we can also define some other structures more concisely in terms of others:

STRUCTURE	DEFINITION
integral domain	A commutative ring that has no zero divisors (elements
	other than 0 whose product is 0)
Euclidean domain	An integral domain that has quotient and remainder
	operations and a norm that decreases when remain-
	der is computed
field	An integral domain where every nonzero element is in-
	vertible (Example: rational numbers)

(Continues)

STRUCTURE	DEFINITION
prime field	A field that does not have a proper subfield
module	Consists of a primary set that is an additive group <i>G</i> and a secondary set of coefficients that is a ring <i>R</i> , with distributive multiplication of coefficients over elements of <i>G</i>
vector space	A module where the ring <i>R</i> is also a field

6 Abstraction in Mathematics 85 6.1 Groups 85 **Monoids and Semigroups** 89 Some Theorems about Groups 92 95 **Subgroups and Cyclic Groups** 6.5 Lagrange's Theorem 97 Theories and Models 102 **Examples of Categorical and Non-categorical Theories** 6.7 104

107

Thoughts on the Chapter

6.8

STRUCTURE	DEFINITION
additive semigroup	semigroup where operation is + and (by convention)
	commutes
additive monoid	additive semigroup with identity element 0
subgroup	group that is a subset of another group
cyclic group	group where all elements can be obtained by raising (at
	least) one element to different powers

discussion

