Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 29 : Fonctions de deux variables. Les exercices portent sur le chapitre 29 : Fonctions de deux variables.

Topologie de \mathbb{R}^2 .

On munit \mathbb{R}^2 de sa norme euclidienne canonique. Boules ouvertes, fermées. Parties ouvertes, fermées. (\star) Toute boule ouverte est ouverte. Toute boule fermée est fermée. Notion de limite dans \mathbb{R}^2 . Soit $(a_n)_{n\in\mathbb{N}}=(x_n,y_n)_{n\in\mathbb{N}}\in (\mathbb{R}^2)^{\mathbb{N}}$ et $a=(x,y)\in\mathbb{R}^2$, il y a équivalence $a_n\xrightarrow[n\to+\infty]{}a\iff x_n\xrightarrow[n\to+\infty]{}x\wedge y_n\xrightarrow[n\to+\infty]{}y$. Continuité de fonctions de \mathbb{R}^2 dans \mathbb{R} . Pour Ω ouvert de \mathbb{R}^2 , l'ensemble $C(\Omega,\mathbb{R})$ des fonctions continues de \mathbb{R}^2 dans \mathbb{R} est un sev et un sous-anneau de $\mathcal{F}(\Omega,\mathbb{R})$.

Différentiation, dérivation dans \mathbb{R}^2 .

Dérivées partielles, notations $\partial_1 f(a)$, $\partial_x f(a)$, $\partial_2 f(a)$, $\partial_y f(a)$. Règles opératoires. Notion de fonction C^1 via la continuité des dérivées partielles. (\star) Si f est de classe C^1 sur Ω , alors pour tout point (x_0, y_0) de Ω , on a le développement limité à l'ordre 1 au voisinage de (0,0)

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \partial_1 f(x_0, y_0) h + \partial_2 f(x_0, y_0) k + o(||(h, k)||)$$

Notion de gradient, expression du DL1 à l'aide du gradient. Dérivée directionnelle, règles opératoires, expression à l'aide du gradient. Le gradient est la direction de plus grande croissance. Plan tangent à une surface z = f(x,y). Notion de différentielle de f en a, définie comme $(h,k) \mapsto \partial_1 f(a)h + \partial_2 f(a)k$. Unicité de la différentielle sous réserve d'existence. Expression de la différentielle à l'aide du gradient et des dérivées directionnelles.

Dérivation de composées.

Notion d'arc à valeurs dans Ω . (*) Règle de la chaîne (V1): pour f de classe C^1 sur Ω et $\gamma=(x,y)$ arc C^1 tracé sur Ω , $f\circ \gamma$ est de classe C^1 et $\forall t\in I, (f\circ \gamma)'(t)=\partial_1 f(\gamma(t))x'(t)+\partial_2 f(\gamma(t))y'(t)=\langle \nabla f(\gamma(t)), \gamma'(t)\rangle$. Orthogonalité du gradient aux lignes de niveau. Règle de la chaîne (V2): soit $\varphi:O\to\mathbb{R}$ et $\psi:O\to\mathbb{R}$ de classe C^1 sur un ouvert O de \mathbb{R}^2 telle que $\mathrm{Im}(\varphi,\psi)\subset\Omega$ et f de classe C^1 sur Ω , alors $g:(u,v)\mapsto f(\varphi(u,v),\psi(u,v))$ est de classe C^1 sur O et pour tout (u,v) dans O

$$\partial_1 g(u,v) = \partial_1 f(\varphi(u,v),\psi(u,v)) \partial_1 \varphi(u,v) + \partial_2 f(\varphi(u,v),\psi(u,v)) \partial_1 \psi(u,v)$$

$$\partial_2 g(u,v) = \partial_1 f(\varphi(u,v),\psi(u,v)) \partial_2 \varphi(u,v) + \partial_2 f(\varphi(u,v),\psi(u,v)) \partial_2 \psi(u,v)$$

Optimisation dans \mathbb{R}^2

Notion d'extremum global, local. (\star) Soit f de classe C^1 sur Ω ouvert, $a \in \Omega$. Si f présente un extremum local en a, alors $\nabla(f)(a) = 0$.

* * * * *