

ЭТИКЕТКА <u>СЛКН.431223.001 ЭТ</u>

Микросхема интегральная 564 РП1В

Функциональное назначение – Буфферное ЗУ (емкостью 4х8 бит)

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

2	 WR		В0	
_		RAM;	Ъ	
11	 CE	4x8	0	 20
	SEL	4X8	U	
21	 0		1	 19
22	 1		•	
23	 2		2	 18
1	 3			
1			3	17
	В			
3	 0		4	16
4			_	
4	1		5	 15
5	 2			1.4
6	 3		6	14
			7	13
7	4		/	10
8	 5			
0				
9	6			
10	 7			

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	A3	Вход сигнала выбора слова 4	13	B0.7	Вход информационный
2	WR	Вход сигнала записи слова	14	B0.6	Вход информационный
3	B.0	Вход информационный	15	B0.5	Вход информационный
4	B.1	Вход информационный	16	B0.4	Вход информационный
5	B.2	Вход информационный	17	B0.3	Вход информационный
6	B.3	Вход информационный	18	B0.2	Вход информационный
7	B.4	Вход информационный	19	B0.1	Вход информационный
8	B.5	Вход информационный	20	B0.0	Вход информационный
9	B.6	Вход информационный	21	A0	Вход сигнала выбора слова 1
10	B.7	Вход информационный	22	A1	Вход сигнала выбора слова 2
11	CE	Вход разрешения сквозной передачи информации	23	A2	Вход сигнала выбора слова 3
12	OV	Общий	24	U _{cc}	Питание

1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Но	Норма	
панженование нараметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, В, при:				
$U_{CC} = 5 \text{ B}; U_{IH} = 5 \text{ B}; U_{IL} = 0 \text{ B}$	U_{OL}	-	0,01	
$U_{CC} = 10 \text{ B}; U_{IH} = 10 \text{ B}; U_{IL} = 0 \text{ B}$		-	0,01	
2. Выходное напряжение высокого уровня, В, при:				
$U_{CC} = 5 \text{ B}; U_{IH} = 5 \text{ B}; U_{IL} = 0 \text{ B}$	U_{OH}	4,99	-	
$U_{CC} = 10 \text{ B}; U_{IH} = 10 \text{ B}; U_{IL} = 0 \text{ B}$		9,99	-	
3. Максимальное выходное напряжение низкого уровня, В, при:				
$U_{CC} = 5 \text{ B}, U_{IL} = 1.5 \text{ B}, U_{IH} = 3.5 \text{ B}$	$U_{OL\;max}$	-	0,8	
$U_{CC} = 10 \text{ B}, U_{IL} = 3.0 \text{ B}, U_{IH} = 7.0 \text{ B}$		-	1,0	
4. Минимальное выходное напряжение высокого уровня, В, при:				
$U_{CC} = 5 \text{ B}, U_{IL} = 1,5 \text{ B}, U_{IH} = 3,5 \text{ B}$	U_{OHmin}	4,2	-	
$U_{CC} = 10 \text{ B}, U_{IL} = 3.0 \text{ B}, U_{IH} = 7.0 \text{ B}$		9,0	=	
5. Ток потребления, мкА, при:				
$U_{CC} = 5 B, U_{IL} = 0 B, U_{IH} = 5 B$	T	-	5,0	
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}$	I_{CC}	-	10,0	
$U_{CC} = 15 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 15 \text{ B}$		-	20,0	

Продолжение таблицы 1			
1	2	3	4
6. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B, U_{IL} = 0 \; B, U_{IH} = 15 \; B$	${ m I}_{ m IL}$	-	/-0,1/
7. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \ B, \ U_{IL} = 0 \ B, \ U_{IH} = 15 \ B$	I_{IH}	-	0,1
8. Выходной ток низкого уровня в состоянии «выключено», мкА, при: U_{CC} = 15 B, U_{IL} = 0 B, U_{IH} = 15 B, U_{O} = 15 B	I_{OZL}	-	0,4
9. Выходной ток высокого уровня в состоянии «выключено», мкА, при: $U_{CC}=15~B,U_{IL}=0~B,U_{O}=0~B$	I_{OZH}	-	/-0,4/
10 . Выходной ток низкого уровня, мА, при: $U_{CC}=5~B,~U_{IL}=0~B,~U_{IH}=5~B,~U_{O}=0,4~B$ $U_{CC}=10~B,~U_{IL}=0~B,~U_{IH}=10~B,~U_{O}=0,5~B$	I_{OL}	0,51 1,3	-
$11.$ Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B, $U_{O} = 4,6$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B, $U_{O} = 9,5$ B	I_{OH}	/-0,51/ /-1,3/	- -
12. Ток утечки низкого уровня на входе, мкА, при: U_{CC} = 15 B, U_{IL} = 0 B, U_{IH} = 15 B	I _{LIL}	-	/-0,4/
13. Ток утечки высокого уровня на входе, мкА, при: $U_{\rm CC}$ = 15 B, $U_{\rm IL}$ = 0 B, $U_{\rm IH}$ = 15 B	I _{LIH}	-	0,4
14. Время выборки адреса, н C , при: $U_{CC} = 5$ В, $C_L = 50$ п Φ $U_{CC} = 10$ В, $C_L = 50$ п Φ	t _{ALH} (t _{AHL})	-	1000 400
15. Время задержки распространения (от входа «сквозная передача» до информационных выходов при включении (выключении)), нС, при: $U_{CC} = 5 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 5 \text{ B, } C_L = 50 \text{ пФ}$ $U_{CC} = 10 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = 10 \text{ B, } C_L = 50 \text{ пФ}$	$t_{ m PHL} \ (t_{ m PLH})$		750 300
16. Время перехода при включении (выключении), нС, при: $U_{CC}=5$ B, $C_{L}=50$ пФ $U_{CC}=10$ B, $C_{L}=50$ пФ	t _{THL} (t _{TLH})		400 200

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г, в том числе: г/мм на 24 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1~{
 m M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{
 m u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{
 m C}$ не менее $100000~{
 m u}$., а в облегченных режимах, которые приводят в ТУ, при $U_{CC}=5B\pm10\%$ не менее $120000~{
 m u}$.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T $_{cm}$) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте 3ИП, должен быть 25 лет

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

A CREI	ІЕНИЯ С	Прие	MKE

Микросхемы 564 РП1В соответствуют техническим условиям бК0.347.064 – 33 ТУ/02 и признаны годными для эксплуатации.

Приняты по		ОТ		
	(извещение, акт и др.)	-	(дата)	
Место для шт	тампа ОТК			Место для штампа ВП
Место для шт	тампа «Перепроверка	произ	ведена	» (дата)
Приняты по		ОТ		
	(извещение, акт и др.)		(дата)	
Место для шт	ампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.