OWL, DL and rules

OWL and Rules

- Rule based systems are an important and useful way to represent and reason with knowledge
- Adding rules to OWL has proved to be fraught with problems
- We'll look at the underlying issues and two approaches
 - SWRL: failed standard that ishas become widely used
 - RIF: a successful standard that's not yet widely used

Semantic Web and Logic

- The Semantic Web is grounded in logic
- But what logic?
 - OWL Full = Classical first order logic (FOL)
 - OWL-DL = Description logic
 - N3 rules ~= logic programming (LP) rules
 - SWRL ~= DL + LP
 - Other choices are possible, e.g., default logic, fuzzy logic, probabilistic logics, ...
- How do these fit together and what are the consequences

We need both structure and rules

- OWL's ontologies based on DL (and thus in FOL)
 - The Web is an open environment
 - Reusability / interoperability
 - An ontology is a model easy to understand
- Many rule systems based on logic programming
 - To achieve decidability, ontology languages don't offer the expressiveness we want. Rules do it well
 - Efficient reasoning support already exists
 - Rules are well-known and often more intuitive

Description Logics vs. Horn Logic

- Neither is a subset of the other
- Impossible in OWL DL: people who study & live in same city are local students,
- Easily done with a a rule
 studiesAt(X,U), loc(U,L), lives(X,L) → localStud(X)
- Impossible in horn rules: every person is either a man or a woman
- Easily done in OWL DL: :Person owl:disjointUnionOf (:Man :Woman).

What's Horn clause logic

- Prolog and most 'logic'-oriented rule languages use <u>horn clause</u> logic
 - Defined by UCLA mathematician <u>Alfred Horn</u>
- Horn clauses are a subset of FOL where every sentence is a disjunction of literals (atoms) where at most one is positive

```
~P V ~Q V ~R V S
~P V ~Q V ~R
```

 Atoms are propositional variables (isRaining) or predicates (married(alice, ?x))

An alternate formulation

 Horn clauses can be re-written using the implication operator

P
 V Q = P → Q
 P V Q V R = P A Q → R
 P V Q Q = P A Q →

- What we end up with is ~ "pure prolog"
 - Single positive atom as the rule conclusion
 - Conjunction of positive atoms as the rule antecedents (conditions)
 - No **not** operator
 - Atoms can be predicates (e.g., mother(X,Y))

We can relax this a bit

- Head can contain a conjunction of atoms
 - P \land Q ← R is equivalent to P←R and Q←R
- Body can have disjunctions
 - P←R \vee Q is equivalent to P←R and P←Q
- But something are just not allowed:
 - No disjunction in head
 - No negation operator, i.e. NOT

Where are the quantifiers?

- Quantifiers (forall, exists) are implicit
 - Variables in rule head are universally quantified
 - Variables only in rule body are existentially quantified
- Example:
 - isParent(X) ← hasChild(X,Y)
 - forAll X: isParent(X) if Exisits Y: hasChild(X,Y)

Facts & rule conclusions are definite

- Definite means not a disjunction
- Facts are rule with the trivial true condition
- Consider these true facts:

```
P \vee Q # either P or Q (or both) are true
P \rightarrow R # if P is true, then R is true
Q \rightarrow R # if Q is true, then R is true
```

- What can you conclude?
- Can this be expressed in horn logic?

Facts & rule conclusions are definite

Consider these true facts where not is classical negation rather than "negation as failure" not(P) → Q, not(Q) → P # i.e. P ∨ Q
 P → R, Q → R

- A horn clause reasoner can't prove that either P or Q is necessarily true or false so can't show that R must be true
- Treating not as negation as failure yields a loop

Non-ground entailment

- The LP-semantics is defined in terms of minimal Herbrand model, i.e., sets of ground facts
- Because of this, Horn clause reasoners can not derive rules, so that can not do general subsumption reasoning

Decidability

- The largest obstacle!
 Tradeoff between expressiveness and decidability
- Facing decidability issues from
 - In LP: Finiteness of the domain
 - In classical logic (and thus in DL): combination of constructs

• Problem:

Combination of "simple" DLs and Horn Logic are undecidable. (Levy & Rousset, 1998)

SWRL: Semantic Web Rule Language

- SWRL is the union of DL and horn logic + many built-in functions (e.g., for math)
- Submitted to the W3C in 2004, but failed to become a recommendation
 - W3C pursued a more general solution: RIF
- Problem: full SWRL specification leads to undecidability in reasoning
- SWRL is well specified and subsets are widely supported (e.g., in Pellet, HermiT)

SWRL

 OWL classes are unary predicates, properties are binary ones

```
Person(?p) ^{\circ} sibling(?p,?s) ^{\circ} Man(?s) \rightarrow brother(?p,?s)
```

- As in Prolog, bulit-ins can be booleans or do a computation and unify the result to a variable
 - swrlb:greaterThan(?age2, ?age1) # age2>age1
 - swrlb:subtract(?n1,?n2,?diff) # diff=n1-n2
- SWRL predicates for OWL axioms and data tests
 - differentFrom(?x, ?y), sameAs(?x, ?y), xsd:int(?x),[3, 4, 5](?x), ...

The Essence of SWRL

- Combines OWL DL (and thus OWL Lite)
 with function-free Horn logic
- Thus it allows Horn-like rules to be combined with OWL DL ontologies

Rules in SWRL

B1, ..., Bn \rightarrow A1, ..., Am

A1, . . . , Am, B1, . . . , Bn have one of the forms:

- -C(x)
- -P(x,y)
- sameAs(x,y) differentFrom(x,y)

where C is an OWL description, P is an OWL property, and x,y are variables, OWL individuals or OWL data values

SWRL Built-Ins

- SWRL defines a set of built-in predicate that allow for comparisons, math evaluation, string operations and more
- See <u>here</u> for the complete list
- Examples
 - Person(?p), hasAge(?p, ?age), swrlb:greaterThan(?age, 18) -> Adult(?p)
 - Person(?p), bornOnDate(?p, ?date), xsd:date(?date), swrlb:date(?date, ?year, ?month, ?day, ?timezone) -> bornInYear(?p, ?year)
- Some reasoners (e.g., Pellet) allow you to define new built-ins in Java

Drawbacks of SWRL

- Main source of complexity:
 - arbitrary OWL expressions, such as restrictions, can appear in the head or body of a rule
- Adds significant expressive power to OWL, but causes undecidability
 - there is no inference engine that draws exactly the same conclusions as the SWRL semantics

SWRL Sublanguages

- SWRL adds the expressivity of DLs and function-free rules
- One challenge: identify sublanguages of SWRL with right balance between expressivity and computational viability
- A candidate OWL DL + DL-safe rules
 - every variable must appear in a nondescription logic atom in the rule body

DL-safe rules

- Standard reasoners support only DL-safe rules
 - Rule variables bind only to known individuals (i.e., owl2 owl:NamedIndividual)
- Example

```
:Vehicle(?v) ^ :Motor(?m) ^ :hasMotor(?v,?m) -> :MotorVehicle(?v)
```

Where

:Car = :Vehicle and some hasMotor Motor

:x a :Car

 The reasoner will not bind ?m to a motor since it is not a known individual

Protégé 5 had SWRLTab

Add/edit rules and optionally run a separate rules engine

SWRL limitations

SWRL rules do not support many useful features of of some rule-based systems

- Default reasoning
- Rule priorities
- Negation as failure (e.g., for closed-world semantics)
- Data structures
- ...

The limitations gave rise to RIF

Summary

- Horn logic is a subset of predicate logic that allows efficient reasoning, orthogonal to description logics
- Horn logic is the basis of monotonic rules
- DLP and SWRL are two important ways of combining OWL with Horn rules.
 - DLP is essentially the intersection of OWL and Horn logic
 - SWRL is a much richer language

Summary (2)

- Nonmonotonic rules are useful in situations where the available information is incomplete
- They are rules that may be overridden by contrary evidence
- Priorities are sometimes used to resolve some conflicts between rules
- Representation XML-like languages is straightforward