Online Technical Interview Bootcamp at Stanford Session 4

Yongwhan Lim Sunday, April 30, 2023

Yongwhan Lim

Education

Part-time Jobs

Full-time Job

Workshops

Coach/Judge

https://www.yongwhan.io

Yongwhan Lim

- Currently:
 - CEO (Co-Founder) in a Stealth Mode Startup;
 - Co-Founder in Christian and Grace Consulting;
 - ICPC Internship Manager;
 - ICPC North America Leadership Team;
 - Columbia ICPC Head Coach;
 - ICPC Judge for NAQ and Regionals;
 - Lecturer at MIT;
 - Adjunct (Associate in CS) at Columbia;

https://www.yongwhan.io

Session 4: Overview

Part I

- Catalan number; Bell Number; Bernoulli number; Stirling numbers of the first kind; Stirling numbers of the second kind;
- Generating Function; Bernoulli polynomials; Bernoulli polynomials of the second kind; Stirling polynomials;

Part II: Problem Walkthroughs

- LeetCode Weekly 343
- AtCoder Beginner Contest 300
- Codeforces Round 869 (Div. 2)

Important Reminders

I. Catalan Numbers: Motivating Examples

- Number of correct bracket sequence consisting of n opening and n closing brackets.
- The number of rooted full binary trees with n + 1 leaves (vertices are not numbered). A rooted binary tree is full if every vertex has either two children or no children.
- The number of ways to completely parenthesize n + 1 factors.
- The number of ways to connect the 2n points on a circle to form n disjoint chords.
- The number of non-isomorphic full binary trees with n internal nodes (i.e. nodes having at least one son).

• ...

I. Catalan Numbers (A000108)

- 1
- '
- 2
- 5
- 14
- 42
- 132
- 429
- 1430
- ...

I. Catalan Numbers: Recursive Formula

$$C_0 = C_1 = 1$$

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}, n \geq 2$$

I. Catalan Numbers: Implementation

```
int catalan[MAX];
void init() {
    catalan[0] = catalan[1] = 1;
    for (int i=2; i<=n; i++) {
        catalan[i] = 0;
        for (int j=0; j < i; j++) {
            catalan[i] += (catalan[j] *
                           catalan[i-j-1]) % MOD;
            if (catalan[i] >= MOD) catalan[i] -= MOD;
```

I. Catalan Numbers: Analytical Formula

$$C_n = rac{1}{n+1} {2n \choose n}$$

$$C_n = {2n \choose n} - {2n \choose n-1} = rac{1}{n+1} {2n \choose n}, n \geq 0$$

II. Bell Numbers

- Bell numbers count the possible partitions of a set.
- For example, when n=3 (e.g., $\{a,b,c\}$), we have:
 - 0 {{a},{b},{c}};
 - {a},{b,c}};
 - o {{b},{a,c}};
 - o {{c},{a,b}};
 - {{a,b,c}};

II. Bell Numbers (<u>A000110</u>)

- 1
- 1
- 2
- 5
- 15
- 52
- 203
- 877
- 4140
- ...

II. Bell Numbers: Recurrence & Explicit

$$B_{n+1} = \sum_{k=0}^n inom{n}{k} B_k$$
 Binomial coefficient

$$B_n = \sum_{k=0}^n \left\{ rac{n}{k}
ight\}$$

Stirling number of second kind

number of ways to partition a set of cardinality n into exactly k nonempty subsets

III. Bernoulli Numbers

- Taylor series expansions of the tangent and hyperbolic tangent functions;
- Faulhaber's formula for the sum of m-th powers of the first n positive integers;
- the Euler–Maclaurin formula;
- Certain values of the Riemann zeta function;

III. Bernoulli Numbers: Numerator (A027641)

- 1
- -1
- 1
- 0
- -1
- C
- 1
- 0
- -1
- ...

III. Bernoulli Numbers: Denominator (A027642)

- ′
- 2
- 6
- 1
- 30
- 1
- 42
- 1
- 30
- ...

III. Bernoulli Numbers: Recurrence

$$B_m^- = \delta_{m,0} - \sum_{k=0}^{m-1} inom{m}{k} rac{B_k^-}{m-k+1}$$

$$\delta_{ij} = \left\{ egin{array}{ll} 0 & ext{if } i
eq j, \ 1 & ext{if } i = j. \end{array}
ight.$$
 Kronecker delta

 $B_n^+ = (-1)^n B_n^-$, or for integer n=2 or greater

III. Bernoulli Numbers: Explicit

$$B_m^- = \sum_{k=0}^m \sum_{v=0}^k (-1)^v inom{k}{v} rac{v^m}{k+1}$$

III. Bernoulli Numbers: Riemann Zeta Function

$$B_n^+ = -n\zeta(1-n) \qquad \text{for } n \ge 1$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

IV. Stirling numbers of the first kind

 Count permutations according to their number of cycles (counting fixed points as cycles of length one)

IV. Stirling numbers of the first kind: Recurrence

$$\left[egin{array}{c} n+1 \ k \end{array}
ight] = n \left[egin{array}{c} n \ k \end{array}
ight] + \left[egin{array}{c} n \ k-1 \end{array}
ight]$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \quad \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0$$

IV. Stirling numbers of the first kind: Explicit

$$s(n,n-p) = rac{1}{(n-p-1)!} \sum_{0 \leq k_1, \ldots, k_p : \sum_1^p m k_m = p} (-1)^K rac{(n+K-1)!}{k_1! k_2! \cdots k_p! \ 2!^{k_1} 3!^{k_2} \cdots (p+1)!^{k_p}}$$

IV. Stirling numbers of the second kind

 the number of ways to partition a set of n objects into k non-empty subsets

IV. Stirling numbers of the second kind: Recurrence

$$\left\{ egin{aligned} n+1 \ k \end{aligned}
ight\} = k \left\{ egin{aligned} n \ k \end{aligned}
ight\} + \left\{ egin{aligned} n \ k-1 \end{aligned}
ight\} & ext{for } 0 < k < n \end{aligned}$$

$$\left\{ egin{aligned} n \ n \end{aligned}
ight\} = 1 \quad ext{ for } n \geq 0 \quad ext{ and } \quad \left\{ egin{aligned} n \ 0 \end{aligned}
ight\} = \left\{ egin{aligned} 0 \ n \end{aligned}
ight\} = 0 \quad ext{ for } n > 0.$$

IV. Stirling numbers of the second kind: Explicit

$$\left\{ {n \atop k} \right\} = rac{1}{k!} \sum_{i=0}^k (-1)^i {k \choose i} (k-i)^n$$

V. Generating Function

• a way of encoding an infinite sequence of numbers (a_n) by treating them as the **coefficients** of a formal **power series**.

V. Ordinary Generating Function (OGF)

$$G(a_n;x)=\sum_{n=0}^\infty a_n x^n.$$

$$G(a_{m,n};x,y)=\sum_{m,n=0}^\infty a_{m,n}x^my^n$$

V. Exponential Generating Function (EGF)

$$\mathrm{EG}(a_n;x) = \sum_{n=0}^\infty a_n rac{x^n}{n!}$$

V. Generating Function: Example: Geometric Series

$$\sum_{n=1}^{\infty}x^n=rac{1}{1-x}$$

1, 1, 1, 1, 1, ...

$$\sum_{n=0}^{\infty} (ax)^n = \frac{1}{1-ax}$$

1, a, a^2 , a^3 , a^4 , a^5 , ...

VI. Bernoulli Polynomials

$$rac{te^{xt}}{e^t-1} = \sum_{n=0}^\infty B_n(x) rac{t^n}{n!}$$

$$B_n(x) = \sum_{k=0}^n inom{n}{k} B_{n-k} x^k$$

VI. Bernoulli Polynomials of the second kind

$$rac{z(1+z)^x}{\ln(1+z)} = \sum_{n=0}^{\infty} z^n \psi_n(x), \qquad |z| < 1$$

VII. Stirling polynomials

$$\left(rac{t}{1-e^{-t}}
ight)^{x+1} = \sum_{k=0}^{\infty} S_k(x) rac{t^k}{k!}$$

Problem Walkthroughs

- LeetCode Weekly 343
- AtCoder Beginner Contest 300
- Codeforces Round 869 (Div. 2)

Request 1:1 Meeting, through Calendly

- Use <u>calendly.com/yongwhan/one-on-one</u> to request 1:1 meeting:
 - Mock Interview
 - Career Planning
 - Resume Critique
 - Practice Strategy
 - Volunteering Opportunity
 - 0 ...
- I am always inspired by driven students like yourself!
- Since I'd feel honored/thrilled to talk to you, do not feel shy to sign up!!!

Terse Guide Google Drive

- Browse through <u>Terse Guides</u>, which include:
 - Behavioral interview preparation
 - System design interview preparation
 - ICPC preparation
 - Live contests
 - Useful resources

Discord Server Invitations

- Some discord server invitations:
 - [Online Technical Interview Bootcamp at Stanford]
 https://discord.gg/a]wHBccg3n
 - [ICPC CodeForces Zealots] https://discord.gg/QC9ss6WJPy

Contact Information

• Email: yongwhan.io

Personal Website: https://www.yongwhan.io/

- LinkedIn Profile: https://www.linkedin.com/in/yongwhan/
 - Feel free to send me a connection request!
 - Always happy to make connections with promising students!

