Mining Invariance from Nonlinear

Multi-Environment Data: Binary Classification

Austin Goddard, Kang Du, Yu Xiang 1

Department of Electrical and Computer Engineering 1

University of Utah 1

{austin.goddard, kang.du, yu.xiang}@utah.edu 1

Abstract—Making predictions in an unseen environment given data from multiple training environments is a challenging task. We approach this problem from an invariance perspective, focusing on binary classification to shed light on general nonlinear data generation mechanisms. We identify a unique form of invariance that exists solely in a binary setting that allows us to train models invariant over environments. We provide sufficient conditions for such invariance and show it is robust even when environmental conditions vary greatly. Our formulation admits a causal interpretation, allowing us to compare it with various frameworks. Finally, we propose a heuristic prediction method and conduct experiments using real and synthetic datasets.

I. Introduction 3

It is common practice to collect observations of a set of features $X = (X_1, ..., X_m)$ and response Y from different environments to train a model. The prediction of the response in an unseen environment is often referred to as multi-environment domain adaptation, with practical applications in various fields (e.g., genetics [1] and healthcare [2]). A common assumption in such problems is the principle of invariance, modularity, or autonomy [3]–[8]. This invariance assumption states that the conditional distribution of Y given X is invariant with respect to different environment.

The invariant causal prediction (ICP) framework [9], along with its various extensions [10], [11], employ the invariance principle to identify invariant predictors across environments Following this framework, various domain adaptation approaches have been developed [12]–[14]. Specifically, the stabilized regression (SR) [14] approach relies on a weaker form of invariance dependent on expectation as opposed to probability. The common assumption for the approaches mentioned is that the assignment of Y does not change over environments. In a causal sense, from which much of the literature in this area stems, this is referred to as an intervention on Y [8]. When Y is intervened, the invariance principle, as well as the frameworks mentioned above, fail. In a series of recent works [15], [16], an alternative approach called the invariant matching property (IMP) has been developed to detect *linear* invariant models in a regression setting even when the assignment of Y is altered over environment. 5

In this work, we extend general principles developed in [15], [16] to the binary classification setting as an attempt to generalize to nonlinear settings. The proposed approach works even when data-generating models change over environments (e.g., Y can be generated using a probit model for one environment

and a logistic model in another). Additionally, the approach is 6 not constrained by the data type, meaning it can be useful on continuous, discrete, or categorical variables. 6

II. PROBLEM FORMULATION 7

Consider the following setting. For different environmental conditions indexed by the set \mathcal{E} , we have a random vector $X = (X_1, \dots, X_m)$ and a binary random variable Y whose elements form a joint distribution $\mathcal{P}_e := \mathcal{P}_e^{X,Y}$ dependent on $e \in \mathcal{E}$. Denote X and Y as X^e and Y^e for a specific $e \in \mathcal{E}$, respectively. The supports of X and Y are $\mathcal{X} = \mathbb{R}^m$ and $\mathcal{Y} = \{0,1\}$, respectively. Let X_S be a random vector containing the elements in X indexed by the set $S \subseteq \{1,\dots,m\}$, and let X_S be its support. To simplify notation, let $X_0^e := Y^e$. For each $e \in \mathcal{E}$, we keep the distribution \mathcal{P}_e general, with the exception that there exists an X_i^e generated according to the form

$$X_i^e = g(X_{S_i}^e) + \epsilon^e$$
, for some $i \in \{1, \dots, m\}$, (1)

where $X_{S_i}^e$, for $S_i \subseteq \{0, \ldots, m\} \setminus i$, represents the variables that directly effect X_i^e , and ϵ^e is an independent, zero mean, noise variable. We assume the output of the function g is not constant with regards to any of its inputs; g is a constant function when $S_i = \emptyset$.

Additionally, while the function g does not change over environment (i.e., does not depend on e), the distribution of ϵ^e can change arbitrarily as long as the mean of the distribution remains zero. Aside from a binary Y and the form of X_i^e in (1), we make no assumptions on the distribution or functional form of any variable. As such, this formulation applies to any set of features, be it continuous, discrete, or a mixture of the two. We assume only a subset of all environments are observed

We assume only a subset of all environments are observed and denote this set by $\mathcal{E}_{\text{obs}} \subseteq \mathcal{E}$. Where $\mathcal{E}_{\text{obs}} = \mathcal{E}_{\text{train}} \cup \{e^{\text{test}}\}$, and $Y^{\text{test}} := Y^{e^{\text{test}}}$, our goal is to make predictions on Y^{test} , given a set of training environments $\mathcal{E}_{\text{train}}$. As such, we aim to find a function $\phi_e : \mathcal{X} \to \mathcal{W}$ such that, the probability of Y given $\phi_e(X)$ does not vary over any environment. Specifically, for all $w \in \mathcal{W}$ and $e, h \in \mathcal{E}_{\text{obs}}$,

$$\mathcal{P}_e(Y|\phi_e(X) = w) = \mathcal{P}_h(Y|\phi_h(X) = w). \tag{2}$$

As Y is binary, it is equivalent to write (2) in the form: 14 3. $\mathbb{E}_{\mathcal{P}_e}[Y|\phi_e(X)=w]=\mathbb{E}_{\mathcal{P}_h}[Y|\phi_h(X)=w]$, for all $w\in\mathcal{W}$ 93 43 and $e,h\in\mathcal{E}_{\mathrm{obs}}$. It is well-known that (2) is satisfied if $\phi_e(X)=X_{S_Y}$ and for $S_Y\subseteq\{1,\ldots,m\}$,

$$Y^e = f(X_{S_Y}^e) + \epsilon_Y, \quad 37 \quad 57 \quad 14 \quad \boxed{3}$$

where ϵ_Y is an independent noise that does not vary over ϵ_Y replacing X_3^e with X_2^e . We can still decompose (4) similarly environment [9]. However, we are interested in a more general setting where the function f and distribution of the noise can vary over environment. From a causal perspective, this would ndicate that Y^e had been intervened (see Section IV-A). In such a setting, $\phi_e(X) = X_{S_Y}$ is no longer useful and other approaches must be considered. We now consider one such alternative, starting with a motivating example. 16

III. MOTIVATING EXAMPLE

Consider the following setting with $X^e = (X_1^e, X_2^e, X_3^e)$ Let X_1^e and X_2^e be independent and follow $X_1^e \sim \mathcal{N}(\mu_1^e, \sigma_1^2)$ and $X_2^e \sim \mathcal{N}(\mu_2^e, \sigma_2^2)$. The variable Y^e is generated such that $Y^e|X_1^e,X_2^e$ forms a probit model. Specifically,

$$Y^{e} = \begin{cases} 1, & \text{if } \beta_{1}^{e} X_{1}^{e} + \beta_{2} X_{2}^{e} + \epsilon_{Y} > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Following a similar form as (1), X_3^e is linear given Y^e so that

$$X_3^e = \begin{cases} \gamma_1 X_1^e + \epsilon_3, & \text{if } Y^e = 1, \\ \gamma_0 X_1^e + \epsilon_3, & \text{if } Y^e = 0. \end{cases}$$

The noise variables ϵ_Y and ϵ_3 are i.i.d. $\mathcal{N}(0, \sigma^2)$. Suppose we wish to predict Y^e given only X_1^e . Predicting Y^e for a particular $e \in \mathcal{E}$ becomes difficult as β_1^e and μ_2^e vary with environment. Specifically, 22

$$\mathsf{E}_{\mathcal{P}_e}[Y|X_1 = x_1] = \Phi \left(\frac{\beta_1^e x_1 + \beta_2 \mu_2^e}{\sqrt{(\beta_2 \sigma_2)^2 + \sigma^2}} \right), \tag{4}$$

where Φ is the cumulative distribution function of a standard normal random variable. As (4) varies over environment, it is not practical to use $\mathsf{E}_{\mathcal{P}_e}[Y|X_1]$ to estimate Y^e on different environments. Even while conditioning on both X_1^e and X_2^e the variables that directly affect Y^e), the variance (w.r.t. environment) still remains through β_1^e .

We can, however, decompose (4) into various variant and nvariant components such that $E_{\mathcal{P}_s}[Y|X_1=x_1]$ becomes the following (see the proof of Proposition 1 for a general case),

$$\frac{\mathsf{E}_{\mathcal{P}_e}[X_3|X_1 = x_1] \quad \mathsf{E}_{\mathcal{P}_e}[X_3|X_1 = x_1, Y = 0]}{\mathsf{E}_{\mathcal{P}_e}[X_3|X_1 = x_1, Y = 1] - \mathsf{E}_{\mathcal{P}_e}[X_3|X_1 = x_1, Y = 0]}, \quad (5)$$

where $\mathsf{E}_{\mathcal{P}_e}[X_3|X_1=x_1]$ is

$$\Phi\left(\frac{\beta_1^e x_1 + \beta_2 \mu_2^e}{\sqrt{(\beta_2 \sigma_2)^2 + \sigma^2}}\right) (\gamma_1 - \gamma_0) x_1 + \gamma_0 x_1, \tag{6}$$

and $\mathsf{E}_{\mathcal{P}_e}[X_3|X_1\,=\,x_1,Y\,=\,y]$ is γ_1x_1 if $y\,=\,1$ and γ_0x_1 f y = 0. We note that the variance (w.r.t environment) contributed by β_1^e and μ_2^e is completely accounted for in the term $\mathsf{E}_{\mathcal{P}_a}[X_3|X_1]$ and that $\mathsf{E}_{\mathcal{P}_a}[X_3|X_1,Y]$ is invariant over environment. Thus, (2) holds for the function $\phi_e(X)$ = $(X_1, \mathsf{E}_{\mathcal{P}_e}[X_3|X_1])$. In addition to this, we also note that conditioning on both X_1 and X_2 leads to a similar invariance we only condition on X_1 in this example for simplicity. 29

This invariance does not hold if we replace X_3^e with any other variable. For example, suppose we were to estimate Y^e

to (5) by replacing X_3^e with X_2^e . As $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1] = \mu_2^e$ does 1 not contain β_1^e , the portion of $E_{\mathcal{P}_e}[Y|X_1]$ that contains β_1^e must reside in $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1,Y]$. i.e., $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1,Y]$ is not invariant over environments as is $E_{\mathcal{P}_e}[X_3|X_1,Y]$. Thus, the function $\phi_e(X) = (X_1, \mathsf{E}_{\mathcal{P}_e}[X_2|X_1])$ will no longer satisfy (2). To further illustrate the difference in selecting X_3^e over

 X_2^e , suppose we wish to estimate on a new environment e^{test} . While we have access to X^{test} , we can easily construct $\mathsf{E}_{\mathcal{P}_{\mathsf{test}}}[X_i|X_1]$ for either $i \in \{2,3\}$. We cannot, however, use Y^{test} to construct our estimate, and $\mathsf{E}_{\mathcal{P}_{\text{test}}}[X_i|X_1,Y]$ must be obtained by leveraging invariances over environment. Thus, for either $i \in \{2,3\}$, we construct the estimate 31

$$\hat{Y}_{i}^{\text{test}} =: \frac{\mathbb{E}_{\mathcal{P}_{\text{test}}}[X_{i}|X_{1}]}{\mathbb{E}_{\mathcal{P}_{e}}[X_{i}|X_{1},Y=0]} = \mathbb{E}_{\mathcal{P}_{e}}[X_{i}|X_{1},Y=0], \quad (7)$$

where $e \in \mathcal{E}_{\text{train}}$. As $\mathsf{E}_{\mathcal{P}_e}[X_3|X_1,Y]$ is invariant and $\mathsf{E}_{\mathcal{P}_{\mathfrak{a}}}[X_2|X_1,Y]$ is not invariant as discussed above, $\hat{Y}_3^{\mathsf{test}}$ will provide a $\frac{1}{2}$ and estimate of Y^{test} , while \hat{Y}^{test} will not.

In Fig. 1 we compare Y_3^{test} and Y_2^{test} by simulating $(x^{\text{test}}, y^{\text{test}})$ pairs for a set of specific parameters. The estimate $Y_2^{
m test}$ does not fit the data as many $x_1^{
m test}$ corresponding to $y^{\text{fest}} = 0$ will be incorrectly classified to one. However, this is not the case when $\hat{Y}_{3}^{\text{test}}$ is used, and the fit is greatly improved

(Fig. 1). The poor fit on \hat{Y}_2^{test} is a result of $\mathsf{E}_{\mathcal{P}_e}[X_2|X_1,Y]$ varying across environments. 34

(4) 15 _{0.8} 104 59 0.8 0.6 0.6 0.2

2. Fig. 1: Comparisons of \hat{Y}_3^{test} (left) and \hat{Y}_2^{test} (right), where 23 $\beta_1^e = 2, \ \mu_2^e = 1, \ \beta_2^{\text{test}} = 0, \ \text{and} \ \mu_2^{\text{test}} = -1.$

IV. THE BINARY INVARIANT MATCHING PROPERTY 35

A deterministic relationship such as the one in (5) has been 39 previously referred to as *matching* [15], and can be generalized to the formulation outlined in Section II. 39

Definition_1. For $k \in \{1,\ldots,m\}$, $S \subseteq \{1,\ldots,m\}\setminus k$, and 41 $h(X_S^{2},Y)^{5} = \mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$, the pair (k,S) satisfies the binary invariant matching property $(bIMP)^1$ if,

$$\mathsf{E}_{\mathcal{P}_e}[Y|X_S] = \frac{\mathsf{E}_{\mathcal{P}_e}[X_k|X_S] - h(X_S, 0)}{h(X_S, 1) - h(X_S, 0)},\tag{8}$$

2 holds for all $e \in \mathcal{E}_{obs}$, where $h(X_S, Y)$ does not depend on e.

As seen in the example, there are a variety of choices for kand S, not all of which lead to invariant representations. We 42

There are degenerate cases when $h(X_S,0) = h(X_S,1)$, for which the 40 lower property implies $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S] = \mathsf{E}_{\mathcal{P}_e}[h(X_S,Y)|X_S] = h(X_S,0),$ 38 and the ratio in (8) reduces to 0 divided by 0. 40

now detail the sufficient conditions for which a pair (k, S)satisfies the bIMP (see Appendix for the proof). 42

Proposition 1. Let $k \in \{1, ..., m\}$ and $S = R \cup Q$ where $R,Q\subseteq\{1,\ldots,m\}\setminus k \text{ and } R\cap Q=\varnothing.$ The pair (k, S)satisfies the bIMP if, for every $e \in \mathcal{E}_{obs}$, 43 1) $X_k^e = g(X_R^e, Y^e) + \epsilon^e$ as in (1), 2) $X_Q^e \perp \!\!\! \perp X_k^e \mid (X_R^e, Y^e)$.

What remains is to show that the bIMP can be used to satisfy he invariance principle in (2), and thus, can be beneficial in predicting on unknown environments, as shown below. 45

Theorem 1. Let $k \in \{1, ..., m\}$ and $S = R \cup Q$ where $R,Q\subseteq\{1,\ldots,m\}\setminus k$ and $R\cap Q=arnothing$. When $\phi_e(X)=0$ $(X_R, X_Q, \mathsf{E}_{\mathcal{P}_e}[X_k|X_R, X_Q])$, (2) holds if the pair (k, S) satisfies the bIMP. 46

Proof. Let $\ell^e(X_R, X_Q) := \mathsf{E}_{\mathcal{P}_e}[X_k | X_R, X_Q]$ and $\phi_e(X)$ $\ell^e(X_R, X_Q)$ is a function of X_R and X_Q , 47

$$\begin{bmatrix} \mathsf{E}_{\mathcal{P}_e}[Y|\phi_e(X)=(x_Q,x_R,z)] \\ = \mathsf{E}_{\mathcal{P}_e}[Y|X_R=x_R,X_Q=x_q,\ell^e(X_R,X_Q)=z] \\ = \underbrace{\frac{z-g(x_R,0)}{g(x_R,1)-g(x_R,0)}}. \end{bmatrix} \tag{9}$$
 Thus, (2) holds as (9) does not vary over $e \in \mathcal{E}_{\text{obs}}$.

Remark 1. In this work, we focus specifically on settings where \overline{Y}^e is binary. However, there does exist a corresponding matching property with sufficient conditions similar to those in Proposition 1 for cases when Y^e is multi-class or continuous. We leave the analysis for the long version of this work. 50

A. A Causal Perspective 51

While the sufficient conditions in Theorem 1 may seem abstract, we now show that, in fact, they have a specific meaning in a causal sense. To do so, we introduce the structural causal model (SCM) [8]. Here, X^e and Y^e are part of an SCM S^e that varies over environment such that 52

where $\epsilon_1^e \dots \epsilon_m^e, \epsilon_Y^e$ are independent noise variables. To simplify notation, let $X_0^e := Y^e$. Thus, $PA(X_i^e) \subseteq \{0, \dots, 1\}$ denotes the set indexed by the direct causal parents of X_i^e for

As in Section II, Y^e is binary. Additionally, at least one structural assignment (i.e., $f_i^e(\cdot)$) in \mathcal{S}^e is an additive noise function that does not vary over environment. Specifically, for some $i \in \{0,\ldots,m\}$, let $f_i^e(X_{PA(X_i^e)}^e, \epsilon_i^e) = g(X_{PA(X_i^e)}^e) +$ ϵ_i^e , where ϵ_i^e has zero mean. An intervention on a variable from $\{X_1^e, \dots, X_m^e, Y^e\}$ occurs if the structural assignment changes for some $e \in \mathcal{E}$. Relating the SCM to the formation in Section II gives insight into the types of interventions that 55

55

```
may occur. While many methods [9], [14], [15] make various 55
  assumptions on the types of interventions (e.g., shifts in the 55
  mean or variance), the setting in (10) allows for very general
                                                              55
   nterventions, including general interventions on Y^e, which 55
  many other approaches do not allow. 55
```

Given \mathcal{S}^e for all $e \in \mathcal{E}_{\text{obs}}$, we can express the conditions of Proposition 1 in the language of SCMs, detailed below. 56

Corollary 1. Let $k \in \{1, ..., m\}$ and $S = R \cup Q$ where 57 ${}^{4}R,Q\subseteq\{1,\ldots,m\}\setminus k$ and $R\cap Q=\varnothing$. For the SCM \mathcal{S}^{e} , the 57 4 pair (k, S) satisfies the bIMP for all $e \in \mathcal{E}_{obs}$ if the following 57 cases hold. 57

```
1) X_k^e = g(X_{PA(X_k^e)}^e) + \epsilon_k^e,
2) X_R^e and Y^e constitute the parents of X_k^e, 58
```

3) The variables in X_O^e can be any non-descendants of X_k^e .

The first condition in Proposition 1 is analogous to the 59 4 first and second condition above as $PA(X_k^e) = (X_S, Y)$. $(X_R, X_Q, \ell^e(X_R, X_Q))$. Since (k, S) satisfies the bIMP and 4 Additionally, in an SCM, any variable conditioned on its 59 parents is independent of any non-descendant. As such, the 59 set X_Q^e can be any non-descendant of X_k^e , bridging the final 59 conditions in Proposition 1 and Corollary 1. 59

> In many cases, the set Q can be quite inclusive despite 60what may seem like a strong independence condition in Proposition 1. In Corollary 1, we learn that, in a causal sense, 60 X_O^e can be any non-descendant of X_k^e . For example, if half of $_{60}$ the predictors in an SCM are ancestors of Y^e , while the other 60half are descendants, then the set Q indexes at least half of 60all predictors (and potentially many more). 60

V. Proposed Method 60

For each $e \in \mathcal{E}_{\text{train}}$, we have n^e samples, represented as a matrix $\mathbf{X}^e \in \mathbb{R}^{n_e \times m}$, and a vector $\mathbf{Y}^e \in \{0,1\}^{n_e}$ (see [17] 62 for a discussion on the impact of different environments). 62 Additionally, we have n_{test} samples in the test environment, 62 and we denote $X^{ ext{test}} \in \mathbb{R}^{n_{ ext{test}} \times m}$ and $Y^{ ext{test}}$ as the predictor 62 matrix and target vector for the environment e^{test} , respectively. 62 We denote $m{X}$ as the pooled predictor matrix over all $e \in \mathcal{E}_{ ext{train}}$, 62 and $X_{Y=y}$ as the matrix comprising the rows of X in which Y = y, for $y \in \{0,1\}$. Let X^{-e} be the matrix of samples 62 indexed only by those samples not in $e \in \mathcal{E}_{\text{train}}$. 62 (10) 6 We now leverage insights gained from Theorem 1 and the 63

oIMP to develop a practical method for estimation in unknown 63 environments. At test time, we do not have access to Y^{test} . As such, one cannot say with definitive assurance that (2) holds 63 for all $e \in \mathcal{E}_{\text{obs}}$. Thus, the best that can be done in such settings 63 is to identify a ϕ_e such that (2) holds for all $e \in \mathcal{E}_{\mathsf{train}}$, implying that $\mathcal{E}_{\text{train}}$ must have at least two environments. ₆₃

Thus, our goal in a practical setting is to identify (k, S) pairs 64 that may satisfy the bIMP overall $e \in \mathcal{E}_{\text{train}}$. Simply put, we test 64 whether $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ is invariant. To do so, we consider a special form of the model in (1) where $X_k^e = g(X_S^e, Y^e) +$ ϵ^e with $\epsilon^e \sim \mathcal{N}(0, (\sigma^e)^2)$ is assigned a different nonlinear 64 5 additive noise function for each value of Y^e . Specifically, 64

$$g(X_S^e, Y^e) = \begin{cases} g_1(X_S^e), & \text{if } Y^e = 1, \\ g_0(X_S^e), & \text{if } Y^e = 0. \end{cases}$$
 (11)

As X_k^e can be split into two models, one for each value of Y^e , we can perform an invariance test on each model. If both are found to be invariant, we can consider $E_{\mathcal{P}_e}[X_k|X_S,Y]$ as a whole to be invariant. Invariance tests on additive noise models have been widely studied: Various tests have been proposed for linear [9] and nonlinear [10] models. We adopt one such approximate test from [10] known as the *residual distribution test* for our setting, as further detailed in Algorithm 1. 66

Algorithm 1 Binary Invariant Residual Distribution Test 67

Input: Y^e and X^e , for each $e \in \mathcal{E}_{train}$, significance level α , and the pair (k, S) 68

Output: accepted or rejected 69

```
Regress X_{k,Y=i} on X_{S,Y=i} to get \hat{g}_i, for i \in \{0,1\} for each e \in \mathcal{E}_{\text{train}} and i \in \{0,1\} do  \begin{aligned} & R_i^e = X_{k,Y=i}^e - \hat{g}_i(X_{S,Y=i}^e) \\ & R_i^{-e} = X_{k,Y}^{-e}|_{=i} - \hat{g}_i(X_{S,Y}^{-e}|_{=i}) \\ & \text{pval}_i^e = t\text{-test}(R_i^e, R_i^{-e}) \end{aligned}
```

Combine p-values in $pval_1^e$ and $pval_0^e$ via Bonferroni correction

 $\frac{\text{if } \min_{e \in \mathcal{E}_{\text{train}}} \text{pval}_1^e > \alpha \quad \text{and} \quad \min_{e \in \mathcal{E}_{\text{train}}} \text{pval}_2^e > \alpha \text{ then}}{\text{return } accepted}$

else return rejected

We use Algorithm 1 as an approximate test for whether $\mathbb{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ is invariant over environments. We now employ this test to develop a practical method for estimating Y^{test} which we refer to as bIMP. We adopt a similar approach to that of [14] and [15] in which we test the invariance of $\mathbb{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ for all possible pairs (k,S). We then train models using the X_k^e and X_S^e which are accepted according to Algorithm 1. Our bIMP models are a combination of two separate models trained to estimate both $\mathbb{E}_{\mathcal{P}_e}[X_k|X_S,Y]$ and $\mathbb{E}_{\mathcal{P}_e}[X_k|X_S]$. Given both of these estimates, we compute an estimate of Y^{test} using (8). As it is likely that more than one pair is accepted, the final estimate of Y^{test} is the average estimate over all accepted pairs.

While we can guarantee invariance via the bIMP, there is no guarantee that the estimation will predict well on e^{test} . As such, in addition to filtering pairs based on invariance, bIMP also filters based on a prediction score. Invariant pairs \mathcal{T}_{inv} computed using (8) are filtered using the mean squared prediction error. The threshold by which the pairs are filtered is identical to the procedure proposed in [14].

The bIMP method proposed gives freedom to the user to select the underlying models with which to estimate $E_{\mathcal{P}_e}[X_k|X_S]$ and $E_{\mathcal{P}_e}[X_k|X_S,Y]$. In the case of $E_{\mathcal{P}_e}[X_k|X_S]$, we have complete freedom to select whichever model suits the data, be it linear or nonlinear. For $E_{\mathcal{P}_e}[X_k|X_S,Y]$, we are restricted by the additive noise of (1). In addition, we have chosen to model X_k using two sub-models, one for each value of Y as in (11). This, however, is not the only option and depends on the invariance test used. When estimating each model, ordinary least squares (OLS) could be used for linear models, and a generalized additive model (GAM) or Gaussian

```
Algorithm 2 bIMP 65

Input: Y^e, for each e \in \mathcal{E}_{\text{train}}, and X^e, for each e \in \mathcal{E}_{\text{obs}} 65

Output: Estimate \hat{Y}^{\text{test}} 65

Identify the set of all invariant pairs \mathcal{T}_{\text{inv}} using Algorithm 1

Filter pairs from \mathcal{T}_{\text{inv}} based on prediction score

for each (k, S) in \mathcal{T}_{\text{inv}} do

Estimate \mathbb{E}_{\mathcal{P}_e}[X_k|X_S, Y] by regressing X_k on (X_S, Y)

Estimate \mathbb{E}_{\mathcal{P}_{\text{test}}}[X_k|X_S] by regressing X_k^{\text{test}} on X_S^{\text{test}}

Using (8), compute \hat{Y}_{k,S}^{\text{test}} for the pair (k, S)

\hat{Y}^{\text{test}} = \frac{1}{|\mathcal{T}_{\text{inv}}|} \sum_{(k,S) \in \mathcal{T}_{\text{inv}}} \hat{Y}_{k,S}^{\text{test}}
```

process regression could be used for nonlinear models. In practice, we found estimating each model using OLS to be the most efficient, as fitting two nonlinear models for all possible (k, S) pairs can be computationally expensive. 76

Remark 2. There are several challenges with this approach 77 that we leave for future work. We observe that nonlinear 77 implementations of the invariance test (Algorithm 1) may lead 77 to erroneously accepted invariant pairs. In addition to this, the 77 complexity of training a nonlinear model for all possible (k, S) 77 pairs can be high. Finally, the effects of model misspecification 77 can be challenging to analyze. 77

VI. Experiments 78

We provide one synthetic and two real datasets to test the effectiveness of bIMP and compare with the following two baselines: (1) a binary adaptation of Method II from [9] (ICP), and (2) logistic regression (LR). While we do not expect LR to perform well on unknown environments, it serves as a natural baseline. While ICP can handle the binary response setting via logistic regression, SR is specific to regression settings and thus not reported. In all experiments, we set $\alpha = 0.1$, 79

Fig. 2: Simulation accuracy over 1000 simulated datsets. 80

As there is some degree of freedom in selecting how the sub-models in bIMP are trained, we explore two variants of 81 bIMP: bIMP (linear) and bIMP (GAM). For both variants, we follow the invariance test in Algorithm 1 and estimate g_1 and g_0 using OLS. We estimate $E_{\mathcal{P}_e}[X_k|X_S]$ using OLS for bIMP (linear), and a GAM for bIMP (GAM), 81 synthetic data. The simulated dataset is generated as follows. We generate data from three environments, $e^1, e^2 \in \mathcal{E}_{\text{train}}$, and 81

 e^{test} . The number of predictors m is randomly selected from $\{3,\ldots,7\}$. For each $i\in\{2,\ldots,m\}$ and $e\in\mathcal{E}_{\text{train}}, X_i^e\sim \mathcal{N}(\mu_i^e,1)$, and μ_i^e is randomly selected on the interval [-2,0] for $e=e^1$, [0,2] for $e=e^2$, and [0,3] for $e=e^{\text{test}}$. Then, where $S_1=\{2,\ldots,m\}, Y^e|X_{S_1}^e$ follows a logistic model such that $\mathcal{P}_e(Y=1|X_{S_1})=1/(1+e^{-X_{S_1}\beta^e})$ for $e\in\mathcal{E}_{\text{train}}$. For $e^{\text{test}}, Y^{\text{test}}|X_{S_1}^{\text{test}}$ follows a probit model such that $Y^{\text{test}}=1$, if $X_{S_1}^{\text{test}}\beta^{\text{test}}+\epsilon<0$, where $\epsilon\sim\mathcal{N}(0,1)$. For all $e\in\mathcal{E}_{\text{obs}}$, randomly select β^e as $\beta^e\sim\text{Unif}[0,1]$. The coefficients are then scaled such that they sum to one. For all $e\in\mathcal{E}_{\text{obs}}$, the variable X_1^e is then simulated similarly to X_k^e in (11). Specifically, $g_1(X_{S_1}^e)=X_{S_1}^e\eta_1$ and $g_0(X_{S_1}^e)=X_{S_1}^e\eta_0$. The noise term associated with X_1^e is a standard normal. The coefficients $\eta_{1,i}\sim \text{Unif}[0,1]$ and $\eta_{0,i}\sim \text{Unif}[0,1]$ do not vary over the environment. The number of samples per environment is fixed to 1000. 81

Simulation results on both accuracy and mean squared error (MSE) indicate that bIMP can generalize to the test environment while LR and ICP are not (Fig 2). In addition, bIMP (linear) slightly outperforms bIMP (GAM). While we expect LR to behave poorly, ICP also performs poorly as all parents of *Y* are intervened in every simulation.

		bIMP (linear)	bIMP (GAM)	LR 83		
П	Environment	Accuracy 83				
Π	born in US	85.0	84.9	78.2 83		
П	overtime	68.4	59.1	77.0 83		
Ш	caucasian	85.0	85.2	78.1 83		

 TABLE I: census: performance and training environments.

Two real-world data. We also include experiments on two real datasets: census [18] and mushroom [19]. The census dataset is data gathered from the 1994 US census and contains 14 societal and demographic variables such as age, education, marital status, and working class. The target variable used is whether or not an individual's income exceeded 50k/yr. The data is first split into test and training data by whether or not a person graduated from a college. Thus, we train only on those who did not graduate college with the aim of extending our trained model to those who did. We further split the training data and run the methods on each set of training environments. The variables used to split the training data into environments are "was the person born in the US", "do they regularly work more than 40hr/week", and "does the person identify as Caucasian". The experiment shows that bIMP outperforms LR and ICP in all environments aside from the overtime environment (Table I). The ICP method returns no invariant predictors for any environment, thus no predictions can be made and no accuracy is reported; this is also the case for the mushroom data below.

	bIMP (linear)	bIMP (GAM)	LR 84
Environment	Accuracy 84		
meadows	76.0	87.5	46.2 84
paths	88.1	90.9	11.8 84

 TABLE II: mushroom: performance and training environments.

The mushroom dataset contains 16 features related to 85 naturally growing mushrooms' size, shape, and color and 85 showcases how the proposed approach can handle discrete and 85 8 categorical data. We aim to predict whether or not a mushroom 85 is edible based on these factors. The environments on which 85 we predict are the habitats in which the mushrooms grow. 85 Specifically, we train on mushrooms that grow in grass or 85 urban habitats and test on mushrooms that grow in meadows 85 or paths. Results in Table II indicate that bIMP outperforms 85 CP and LR for both the linear and GAM variants, while the 85 GAM variant performed the best. 85 81 VII. ACKNOWLEDGEMENTS 86 We thank the anonymous reviewers for their helpful comments that improved the quality of this work. 87 APPENDIX Proof of Proposition 1. First, we show that (8) holds for any all $i \in \{1, \dots, m\}$. The pdf of $X_k^e | X_S^e$ for any $e \in \mathcal{E}_{obs}$ is $f_{X_{k}^{e}|X_{S}^{e}}(x_{k}|x)$ $= f_{X_{\iota}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,1) \cdot p_{Y^{e}|X_{S}^{e}}(1|x)$ $+ f_{X_k^e|X_S^e,Y^e}(x_k|x,0) \cdot p_{Y^e|X_S^e}(0|x)$ $= f_{X_k^e|X_s^e,Y^e}(x_k|x,1) \cdot p_{Y^e|X_s^e}(1|x)$ $+ f_{X_{L}^{e}|X_{c}^{e},Y^{e}}(x_{k}|x,0) \cdot \left[1 - p_{Y_{L}^{e}|X_{c}^{e}}(1|x)\right]$ $= p_{Y^e|X_S^e}(1|x) \left[f_{X_k^e|X_S^e,Y^e}(x_k|x,1) - f_{X_k^e|X_S^e,Y^e}(x_k|x,0) \right]$ $+ f_{X_k^e|X_S^e,Y^e}(x_k|x,0).$ (12)

We now show (I) $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S=x,Y=y]$ does not depend on e and (II) the denominator of (14) is non-zero. Since $X_S^e=(X_R^e,X_Q^e)$, 93 $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y]=\mathsf{E}_{\mathcal{P}_e}[X_k|X_R,X_Q,Y]\stackrel{(a)}{=}\mathsf{E}_{\mathcal{P}_e}[X_k|X_R,Y]$

$$\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y] = \mathsf{E}_{\mathcal{P}_e}[X_k|X_R,X_Q,Y] \cong \mathsf{E}_{\mathcal{P}_e}[X_k|X_R,Y]$$

$$\stackrel{(b)}{=} \mathsf{E}_{\mathcal{P}_e}[g(X_R,Y) + \epsilon|X_R,Y] = g(X_R^e,Y^e), \quad (15)$$

$$\mathsf{E}_{\mathcal{P}_e}[g(X_R,Y) + \epsilon|X_R,Y] = g(X_R^e,Y^e), \quad (15)$$

where (a) follows since $X_Q^e \perp X_k^e | X_R^e, Y^e$, (b) follows from the assumption $X_k^e = g(X_R^e, Y^e) + \epsilon^e$, and (c) follows since ϵ has zero mean. Thus, the $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S = (x_Q, x_R), Y = y]$ does not depend on e as $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S = (x_Q, x_R), Y = y] = g(x_R, y)$. As the output of the function g is not constant with regards to any of its inputs as in (1), the denominator of (14) $\frac{1}{4}$ is non-zero.

REFERENCES

References	[10]	C. Heinze-Deml, J. Peters, and N. Meinshausen, "Invariant causal	105
[1] N. Mainghanan, A. Hanna, I. M. Marii, I. Daton, D. Vanatara, and C.	, μ	prediction for nonlinear models," Journal of Causal Inference, vol. 6,	105
[1] N. Meinshausen, A. Hauser, J. M. Mooij, J. Peters, P. Versteeg, and	Φ	no. 2, 2018. 105	
P. Bühlmann, "Methods for causal inference from gene perturbation	[11]	N. Pfister, P. Bühlmann, and J. Peters, "Invariant causal prediction for	106
	96	sequential data," Journal of the American Statistical Association, vol. 1	106
Sciences, vol. 113, no. 27, pp. 7361–7368, 2016, 96		114, no. 527, pp. 1264–1276, 2019. 106	
[2] A. V. Goddard, Y. Xiang, and C. J. Bryan, "Invariance-based causal		M. Rojas-Carulla, B. Schölkopf, R. Turner, and J. Peters, "Invariant	107
prediction to identify the direct causes of suicidal behavior," Frontiers		models for causal transfer learning," The Journal of Machine Learning	107
in psychiatry, p. 2598, 2022. 97		Research, vol. 19, no. 1, pp. 1309–1342, 2018. 107	
[3] T. Haavelmo, "The probability approach in econometrics," <i>Economet</i> -	[13]	D. Rothenhäusler, N. Meinshausen, P. Bühlmann, and J. Peters, "Anchor	108
rica: Journal of the Econometric Society, vol. 12, pp. 1–115, 1944. 98		regression: Heterogeneous data meet causality," Journal of the Royal	108
[4] J. Aldrich, "Autonomy," Oxford Economic Papers, vol. 41, no. 1, pp. 9	99	Statistical Society Series B: Statistical Methodology, vol. 83, no. 2, pp. 1	
15–34, 1989. 99		215–246, 2021, 109	
[5] K. D. Hoover, "The logic of causal inference: Econometrics and the	(19 41	N. Pfister, E. G. Williams, J. Peters, R. Aebersold, and P. Bühlmann,	109
	ФО	"Stabilizing variable selection and regression," The Annals of Applied	109
no. 2, pp. 207–234, 1990. 100		Statistics, vol. 15, no. 3, pp. 1220–1246, 2021. 109	
[6] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij,	1151	K. Du and Y. Xiang, "Learning invariant representations under general	110
"On causal and anticausal learning," arXiv preprint arXiv:1206.6471, 1	Ø 1	interventions on the response," IEEE Journal on Selected Areas in	110
2012. 101		Information Theory, 2023. 110	
[7] A. P. Dawid and V. Didelez, "Identifying the consequences of dynamic 1	461		111
treatment strategies: A decision-theoretic overview," Statistics Surveys, 1	02	2023-2023 IEEE International Conference on Acoustics, Speech and	111
vol. 4, pp. 184–231, 2010. 102		Signal Processing (ICASSP). IEEE, 2023, 111	
[8] J. Pearl, <i>Causality</i> . Cambridge university press, 2009. 104	[17]	A. Goddard, Y. Xiang, and I. Soloveychik, "Error probability bounds	112
[9] J. Peters, P. Bühlmann, and N. Meinshausen, "Causal inference by using	04	for invariant causal prediction via multiple access channels," Asilomar	112
invariant prediction: identification and confidence intervals," Journal of	Φ4	Conference on Signals, Systems, and Computers, 2023 112	
the Royal Statistical Society. Series B (Statistical Methodology), pp. 947–1	148 1		113
1012, 2016. 104		1996, DOI: https://doi.org/10.24432/C5XW20.113	
	[19]	"Mushroom," UCI Machine Learning Repository, 1987, DOI:	114
		https://doi.org/10.24422/C5050T 44.4	