MAT1830 - Discrete Mathematics for Computer Science Assignment #6 Solutions

1.	E is reflexive and symmetric and transitive. E is not antisymmetric (for example, aEb and bEa).	[2]
	F is reflexive and antisymmetric and transitive. F is not symmetric (for example, aFb and $b \not F a$).	[2]
	G is not reflexive (for example, $f \not G f$). G is not symmetric (for example, aGb and $b \not G a$). G is not antisymmetric (for example, fGi and iGf). G is not transitive (for example, fGi and iGh but $f \not G h$).	[2]
2.	E is an equivalence relation. The equivalence classes of E are $\{a,b,d,e\},\{f,h,i\},\{c\}$ and $\{g\}.$	[1]
3.	F is a partial order relation. F is not a total order relation because, for example, $b \not\!\!F e$ and $e \not\!\!F b$.	[1]
4.	R is not reflexive. For example, $ \{1,2,3\}\cap\{1,2,3\} = \{1,2,3\} =3$ and so $\{1,2,3\}$ $R\{1,2,3\}$. R is symmetric because, for all $A,B\in\mathcal{P}(\mathbb{N})$, if ARB , then $ A\cap B \leq 2$, and so $ B\cap A = A\cap B \leq 2$ and BRA . R is not antisymmetric. For example $\{1\}R\{2\}$ and $\{2\}R\{1\}$. R is not transitive. For example $\{1,2,3,4\}R\{9\}$ and $\{9\}R\{2,3,4,5\}$ but $\{1,2,3,4\}$ $R\{2,3,4,5\}$. [No marks for just an answer without explanation.]	[2] [2] [2]
5.	The equivalence classes are $\{0\}$, $\{x: x \in \mathbb{R} \text{ and } 0 < x \le 1\}$, $\{x: x \in \mathbb{R} \text{ and } 1 < x \le 2\}$, $\{x: x \in \mathbb{R} \text{ and } 2 < x \le 3\}$, $\{x: x \in \mathbb{R} \text{ and } 3 < x \le 4\}$, and $\{x: x \in \mathbb{R} \text{ and } 4 < x \le 5\}$.	[2]
6.	T is not a total order relation because, for example, $(1,2)$ $\mathcal{T}(2,1)$ and $(2,1)$ $\mathcal{T}(1,2)$.	[2]