CMSC 303 Introduction to Theory of Computation, VCU Assignment: 3

Name: Steven Hernandez

1. (a) $R_a = 0\Sigma^*1$

Which says: 0 concatenated with zero or more character concatenated with 1.

(b) $R_b = (\Sigma^* 0 \Sigma^*)^4$

Says: zero or more characters followed by a 0 follower by zero or more of any character, which is then repeated 4 times.

(c) $R_c = 1 \bigcup 11 \bigcup \epsilon$

Which explicitly states the contents of the language.

(d) $R_d = \{\Sigma\} \bigcup \{\Sigma\Sigma\} \bigcup \{\Sigma\Sigma\Sigma\} \bigcup \{\epsilon\}$

Explicitly allows for any strings with one character or two characters or three characters of no characters.

- (e) $R_e =$
- (f) $R_f = \Sigma^+$

Plus indicates 1 or more.

2. (a) $M_a = (Q, \Sigma, \delta, q, F)$ such that:

$$Q = \{q_0\}\Sigma isourlanguageq = q_0F = \{q_0\}\delta = \epsilon$$

because any transitions would mean a character was read, which would not be a part of the language we are looking for.

(b) $M_b = (Q, \Sigma, \delta, q, F)$ such that:

$$Q = \{q_0, q_1, q_2, q_3\}q = q_0F = \{q_3\}$$

Define δ by:

δ	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

3. State Diagram for M:

Steps for reaching regular expression for M:

(a) Add q_{start} and q_{end} as explained in Lemma 1.60 $\,$

(b) Update each transition to a regular expression.

(c) $q_{rip} = q_2$

(d) Simplified to:

(e) $q_{rip} = q_3$

(f) $q_{rip} = q_1$

Thus our regular expression is $((\Sigma 0^*1)0)^*(\Sigma 0^*1)(11)^*$.

- 4. (a)
 - (b)
 - (c)
- 5. (a)
 - (b)