Poll: Strong vs. Structural Induction

What is the difference between strong induction and structural induction?

- A) Strong induction is less complex, but also less powerful: some claims can be proven using structural induction that cannot be proven using strong induction.
- B) Strong induction can be used to prove statements parameterized by an integer (e.g., ∀n ∈ Z²P(n)), whereas structural induction can be used to prove statements about non-integer things like data structures (lists, trees, etc.).
- C) In the inductive step of the proof, strong induction requires making fewer assumptions (hence it is stronger).
- D) None of the above

Plan for today

- 1. Examples of strong induction
- 2 Structural Induction

COSC 290 Discrete Structures

Lecture 15: Structural induction on trees

Prof. Michael Hay Monday, Mar. 5, 2018

Colgate University

Examples of strong induction

Jacobsthal numbers & Tilings

Jacobsthal numbers are defined as follows:

- J₀ := 0
- · /₁ := 1
- $J_n := J_{n-1} + 2J_{n-2}$ for $n \ge 2$

We have two separate claims about Jacobsthal numbers.

- 1. Claim: for any $n \ge 0$, given $n \times 2$ grid, the number of tilings using either 1×2 dominoes or 2×2 squares is J_{n+1} .
- 2. Claim: $J_n = \frac{2^n (-1)^n}{3}$

Proof for first claim shown on board.

Proof continued...

Inductive case
$$(n \ge 2)$$
: Assume for all $0 \le m \le n-1$, that $J_m = \frac{2^m - (-1)^m}{2}$. Want to show $J_n = \frac{2^n - (-1)^n}{2}$.

Proof of closed form solution for J_n

Claim: $J_0 = \frac{2^n - (-1)^n}{2}$

Proof by strong induction Proof by induction on n.

- Base case (n = 0): $J_0 := 0$ and when n = 0, we have $\frac{2^n (-1)^n}{2^n} = \frac{2^n (-1)^n}{2^n} = \frac{1-1}{2^n} = 0$.
- Base case (n = 1): $J_1 := 1$ and when n = 1, we have $\frac{2^n (-1)^n}{3} = \frac{2^1 (-1)^1}{3} = \frac{2 (-1)}{3} = 1.$
- Inductive case ($n \ge 2$): Assume for all $0 \le m \le n-1$, that $J_m = \frac{2^m-(-1)^m}{3}$. Want to show $J_n = \frac{2^n-(-1)^n}{3}$. Math on next slide...

Structural Induction

.

Recursively defined structures

A recursively defined structure is a structure defined in terms of one or more base cases and one or more inductive cases.

Real-world Example: Apache Spark RDDs

Many practical systems/applications are built using recursively defined structures.

Apache Spark Resilient Distributed Datasets (RDDs).

An RDD is either a dataset (e.g., collection of files) or it is the result of a transformation of one or more RDDs. Transformations include operations such as map, filter, sample, intersection, union, etc.

Applications in computer science

Many fundamental computer science structures are recursively defined structures:

- lists
- trees
- · propositional logic
 - · circuits
- · syntax of all programming languages

Having the ability to reason about such structures is important!

Example: Binary Tree

A binary tree is either:

- a) (base case) an empty tree, denoted null
- b) (inductive case) a root node x, a left subtree T_ℓ , and a right subtree T_r where x is an arbitrary value and T_ℓ and T_r are both binary trees.

Tree: nodes and edges

A tree with six nodes and five edges.

Proof of claim

- Claim: Let T be a binary tree. If T is non-empty, then
 edges(T) = nodes(T) 1.
- · Proof by structural induction:
 - · Base cases: T is empty, therefore...
 - Inductive case: T is non-empty, consisting of node x and left and right subtrees T_ℓ and T_r.
 Therefore

Property of trees

Claim: For any binary tree T, if T is non-empty, then edges(T) = nodes(T) - 1 where edges(T) denotes the number of edges in T and nodes(T) denotes the number of nodes.

11

Poll: proof for the base case?

- Claim: If T is non-empty, then edges(T) = nodes(T) 1.
- · Proof by structural induction:
 - · Base cases: T is empty, therefore... what goes here?
- A) nodes(T) = 1 and edges(T) = 0 because T is empty.
- B) The claim does not apply because T is empty.
- C) The claim does is false because T is empty.
- D) The claim is true because T is empty.
- E) None of the above.

Base case

- Claim: If T is non-empty, then edges(T) = nodes(T) 1.
- · Proof by structural induction:
 - . Base cases: T is empty, therefore the statement is true (because

Proof of claim

```
Claim: If T is non-empty, then edges(T) = nodes(T) - 1.
```

Inductive case: T is non-empty, consisting of node x and left and right subtrees Tr and Tr. Cases: T_f = null and T_f = is null: nodes(T) = 1 and edges(T) = 0.

```
 T<sub>ℓ</sub> ≠ null and T<sub>ℓ</sub> = null;

   nodes(T) = 1 + nodes(T_{\ell})
```

- $edges(T) = 1 + edges(T_{\ell}) = 1 + (nodes(T_{\ell}) 1) = nodes(T) 1$
- T_ℓ = null and T_ℓ ≠ null; same ideas as previous.
- T_ℓ ≠ null and T_ℓ ≠ null:

```
nodes(T) = 1 + nodes(T_e) + nodes(T_e)
edges(T) = 2 + edges(T_e) + edges(T_e)
          = 2 + (nodes(T_t) - 1) + (nodes(T_t) - 1)
          = nodes(T_{\ell}) + nodes(T_{\ell}) = nodes(T) - 1
```

Poll: Inductive case

```
Claim: If T is non-empty, then edges(T) = nodes(T) - 1.
```

Inductive case: T is non-empty, consisting of node x and left and right subtrees T_r and T_r .

```
Inductive hypothesis: edges(T_{\ell}) = nodes(T_{\ell}) - 1 (same for T_{\ell}).
nodes(T) = 1 + nodes(T_c) + nodes(T_c)
                                                                    (b. +1 for root)
edges(T) = (1 + edges(T_f)) + (1 + edges(T_f))
                                                              (c. +1 for each edge)
         = (1 + (nodes(T_t) - 1)) + (1 + (nodes(T_t) - 1)) (d. inductive hypo.)
          = nodes(T_r) + nodes(T_r)
         = nodes(T) - 1
```

- A) The proof is correct.
- B) Step b C) Step c
- D) Step d
- F) None of above / more than one
 - trees!
- What if T_e is empty? What if T_e is empty?