Universidade do Minho Departamento de Matemática

Mestrado Integrado em Engenharia Informática 2019/2020

Tópicos de Matemática Discreta

______ 1.º teste — 8 de novembro de 2019 ______ duração: 120 minutos _____

- 1. Diga, justificando, se cada uma das afirmações que se seguem é verdadeira ou falsa.
 - (a) A fórmula $\varphi : \neg(p_0 \vee \neg p_1)$ do Cálculo Proposicional tem valor lógico verdadeiro se e somente se a fórmula $\psi : \neg(p_1 \to p_0)$ tem valor lógico falso.
 - (c) Se σ e θ são fórmulas do Cálculo Proposicional logicamente equivalentes, então a fórmula $\theta \to (\theta \to \sigma)$ é uma tautologia.
- 2. Considerando que p representa a proposição $\forall_{x \in A} (x > 0 \to \forall_{y \in A} xy^2 > 0)$,
 - (a) verifique, justificando, se p é verdadeira para:
 - (i) $A = \mathbb{R}$;
 - (ii) $A = \mathbb{R} \setminus [-2, 5]$.
 - (b) indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. Mostre que, para quaisquer inteiros m e n, se $m^2(n+3)$ é par, então m é par ou n é impar.
- 4. Dê exemplo de subconjuntos $A, B \in C$ de \mathbb{Z} , não vazios, tais que
 - (a) $A \cap (\overline{B} \cap \overline{C}) = \emptyset$.
 - (b) $(A \setminus B) \subseteq (C \setminus A)$.
 - (c) $A \in \mathcal{P}(\{2,4,5\})$.
- 5. Considere os conjuntos

$$A = \{x \in \mathbb{Z} \mid \exists_{n \in \mathbb{Z}} \ x = 2n + 5\}, \quad B = \{x \in \mathbb{Z} \mid \exists_{m \in \mathbb{Z}} \ x = 2m\},\$$

$$C = \{1, 2, 3\} \quad \text{e} \quad D = \left\{1, \left\{1\right\}, \left\{1, \left\{1\right\}\right\}\right\}.$$

- (a) Justificando, determine $\mathbb{Z} \setminus (A \cup B)$.
- (b) Justificando, determine $(C \setminus D) \times C$.
- (c) Determine $D \cap \mathcal{P}(D)$. Justifique a sua resposta.
- 6. Sejam A, B e C conjuntos. Mostre que $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.
- 7. Prove, por indução nos naturais, que

$$3^{0} + 3^{1} + 3^{2} + \ldots + 3^{n} = \frac{3^{n+1} - 1}{2},$$

para todo o natural n.

Cotações	1.	2.	3.	4.	5.	6.	7.
	2+2	2 + 1,5	1,75	1,25+1,25+1,25	1,25+1,25+1,25	1,25	2