# Report on the Experiment

No. 19

Subject ディジタル論理回路演習Ⅱ:組合せ論理回路

Date 2019. 12. 16

Weather 曇り Temp 16.7 °C Wet 50.5 %

Class E3

Group 2

Chief

Partner 井上 隆治

木下 拓真

重見 達也

DANDAR TUGULDUR

No 15

Name 小畠 一泰

Kure National College of Technology

## 1 目的

ディジタル論理回路の機能と動作原理を理解するとともに,基本的な組み合わせ論理回路 について学ぶことを目的とする.

## 2 実験方法と結果の整理

#### 2.1 基本回路の確認

理論の 図  $1 \sim 図 11$  の回路を TINA で作成し、インタラクティブで動作確認した. レポートには回路図をエクスポート (Windows Metafile(\*.EMF)) した画像を貼り付けた.



図 1: 4 入力エンコーダ



図 2: OR を追加した回路



図 3: プライオリティ・エンコーダ



図 4: 2 入力デコーダ



図 5: BCD-7 セグメント・デコーダ



図 6: 2 進-グレイ変換



図 7: グレイ-2 進変換



図 8: マルチプレクサ



図 9: デマルチプレクサ



図 10: 半加算器



図 11: 半減算器

## 2.2 演習

1. 10 進数から BCD 符号を得るための 10 進-BCD エンコーダについて, 真理値表と 回路を作成し, 動作確認した.



図 12: 10 進-BCD エンコーダ

| 10 進数 | F0 | F1 | F2 | F3 |
|-------|----|----|----|----|
| 0     | 0  | 0  | 0  | 0  |
| 1     | 0  | 0  | 0  | 1  |
| 2     | 0  | 0  | 1  | 0  |
| 3     | 0  | 0  | 1  | 1  |
| 4     | 0  | 1  | 0  | 0  |
| 5     | 0  | 1  | 0  | 1  |
| 6     | 0  | 1  | 1  | 0  |
| 7     | 0  | 1  | 1  | 1  |
| 8     | 1  | 0  | 0  | 0  |
| 9     | 1  | 0  | 0  | 1  |

2. BCD 符号から 10 進数出力を得るための BCD-10 進エンコーダについて, 真理値 表と回路を作成し, 動作確認した.



図 13: BCD-10 進エンコーダ

| A | В | С | D | F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 |
|---|---|---|---|----|----|----|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0 | 0 | 1 | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0 | 1 | 0 | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0 | 1 | 1 | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 1 | 0 | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 0 | 1 | 0 | 1 | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 0 | 1 | 1 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| 0 | 1 | 1 | 1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 1 | 0 | 0 | 1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |

## 3. BCD-7 セグメントデコーダを基本論理素子で作成せよ.



図 14: BCD-7 セグメントデコーダ

| A | В | С | D | Fg | Ff | Fe | Fd | Fc | Fb | Fa |
|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 0  | 0  | 1  |
| 0 | 0 | 1 | 0 | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| 0 | 0 | 1 | 1 | 0  | 1  | 1  | 0  | 0  | 0  | 0  |
| 0 | 1 | 0 | 0 | 0  | 0  | 1  | 1  | 0  | 0  | 1  |
| 0 | 1 | 0 | 1 | 0  | 0  | 1  | 0  | 0  | 1  | 0  |
| 0 | 1 | 1 | 0 | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 0 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 1 | 0  | 0  | 1  | 1  | 0  | 0  | 0  |

4. 4 ビットの 2 進-グレイ変換, グレイ-2 進変換回路について, 真理値表と回路を作成し, 動作確認せよ.



図 15: 2 進-グレイ変換回路



図 16: グレイ-2 進変換回路

| G3 | G2 | G1 | G0 | D4 | D3 | D2 | D1 | 10 進数 |
|----|----|----|----|----|----|----|----|-------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     |
| 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 1     |
| 0  | 0  | 1  | 1  | 0  | 0  | 1  | 0  | 2     |
| 0  | 0  | 1  | 0  | 0  | 0  | 1  | 1  | 3     |
| 0  | 1  | 1  | 0  | 0  | 1  | 0  | 0  | 4     |
| 0  | 1  | 1  | 1  | 0  | 1  | 0  | 1  | 5     |
| 0  | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 6     |
| 0  | 1  | 0  | 0  | 0  | 1  | 1  | 1  | 7     |
| 1  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 15    |
| 1  | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 14    |
| 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 13    |
| 1  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 12    |
| 1  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 11    |
| 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 10    |
| 1  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 9     |
| 1  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 8     |

5. 1 ビットの 2 進数 A,B と下位からの桁上がり C の加算 A+B+C を行い、その和 S と上位ビットへの桁上がり Cf を表示する回路を全加算器 (full adder) という. 真 理値表と回路を作成し動作を確認せよ.



図 17: 全加算器

| A | В | С | S | Cf |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 0  |
| 0 | 0 | 1 | 1 | 0  |
| 0 | 1 | 0 | 1 | 0  |
| 0 | 1 | 1 | 0 | 1  |
| 1 | 0 | 0 | 1 | 0  |
| 1 | 0 | 1 | 0 | 1  |
| 1 | 1 | 0 | 0 | 1  |
| 1 | 1 | 1 | 1 | 1  |

## 3 検討課題

1. プライオリティ・エンコーダが次の式となることを導出せよ.

$$F_0 = D_1 \overline{D_2} + D_3$$
$$F_1 = D_2 + D_3$$

図 3 より、出力  $L_1, L_2$ 、入力  $HL_1, HL_2, HL_3, HL_4$  とすると

$$L_1 = Hl_3 + HL_4$$

$$L_2 = HL_2\overline{HL_3} + HL_4$$

2. 全加算器を半加算器 2 個と OR1 個で回路を構成せよ.



図 18: 全加算器

1. 4 ビットの加算 (A1, A2, A3, A4 と B1, B2, B3, B4 の加算) 回路を, 全加算器 3 個と半加算器 1 個で構成せよ.



図 19: 4 ビット加算器