Nikita Kazeev

Generative Adversarial Network (GAN)

2021

Generative models in general

Want:

- A neural network generator. When applied to noise z, samples the target distribution: $G(z) \sim P(x)$
- OR a neural network approximation of probability density
 - Not covered now, Artem Ryzhikov will teach them in a few sections

Training:

- Minimize some divergence $D(P_{\text{train}}||Q_{\text{generated}})$
- **▶** Challenges:
 - Both the training and generated distributions are not known explicitly

Consider an f-divergence

Spherical generative adversarial network in vacuum

Repeat until convergence:

- Fit a classifier to estimate $\frac{p(x)}{q(x)}$
- ▶ Compute the value of an f-divergence between the real and generated data via Monte-Carlo sampling
- Train the generator: take a gradient descent step to minimize the distance

Challenges:

- Finite training data
- Finite computing resources

Divergence selection

- Not KL, it is infinite if $\exists x : p(x) \neq 0, q(x) = 0$
 - For a complex distribution (e. g. images), it is almost certain to happen
- Most of the papers on GANs with f-divergencies use JS
 - It works well enough
 - No tangible benefit from using other divergencies
 - See a review paper: https://arxiv.org/pdf/1606.00709.pdf

JS GAN scheme

Training algorithm

Repeat while not good enough

- ightharpoonup Train discriminator for $N_{\rm d}$ iterations:
 - sample a batch of training data x_r
 - sample a batch of noise z
 - compute discriminator loss $L_D = -\log[1 D(G(z))] \log D(x_r)$
 - take an optimization step for discriminator, minimizing $L_{
 m D}$
- Train generator
 - sample a batch of noise z
 - compute generator loss $L_G = -\log D(G(z))$
 - take an optimization step for generator, minimizing $L_{\rm G}$

Conditional GAN scheme

Problem #1: vanishing gradients

- ▶ Consider the case of disjoint support of real and generated data
- An ideal discriminator can perfectly tell the real and generated data apart: $D(G(z)) \approx 0$

Problem #1: vanishing gradients

- $L_{G} = -\log D(G(z))$
- $| \mathbf{r} |^{dD(x)} / dx \approx 0$ for generated x
- $\mathbb{P}^{dL_{G}(x)}/_{dx} \approx 0$ for generated x
- Generator can't train!

Fight for the gradients

Start with heavily restricted discriminator:

- don't train discriminator fully
- add noise to the samples:
 - nicely works for target on low-dimensional manifolds;
 - easy to control.
- discriminator regularization:
 - might interfere with the convergence.

As learning progresses gradually relax restrictions.

(or use a different class of divergencies – see the next lecture)

Fight for the gradients: regularization

Fight for the gradients: noise

Problem #2: mode collapse

- Generator only trains on the objects it generates: $L_G = -\log D(G(z))$
- If there are different modes in the data distribution, the generator can get stuck in a local minimum of the discriminator
- Example. If a generator has learned to generate only "1", but perfectly, it might fail to learn to generate "5"

Image: Adiga, Sudarshan, et al. "On the tradeoff between mode collapse and sample quality in generative adversarial networks." 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018.

Summary

- Classic generative adversarial networks with JS loss
 - Powerful method for generative modelling
 - Hard to train
 - Need to balance discriminator and generator power
 - Vanishing gradients
 - Mode collapse
 - Are the starting point of many image-specific advances
- See the next lecture for a newer approach based on integral probability measures

Thank you!

nkazeev@hse.ru

<u>kazeevn</u>

hse_lambda

Nikita Kazeev

Acknowledgements

The presentation is based on the previous MLHEP editions: vanishing gradients slides my Maxim Borisyak