NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD FOR DRIVING 1 SAME

Patent number:

JP11233744

Publication date:

1999-08-27

Inventor:

TAKAHASHI KEITA

Applicant:

MATSUSHITA ELECTRON CORP

Classification:

- international:

H01L27/115; G11C17/12; G11C16/04; H01L21/8247; H01L29/788; H01L29/792

- european:

Application number: JP19980340761 19981130

Priority number(s):

Abstract of JP11233744

PROBLEM TO BE SOLVED: To read data at a high speed under low voltage by connecting a plurality of memory cells included in a column with a first source line, connecting of a plurality of memory cells included in a neighboring column with a second source line, and by making the first source line electrically independent from the second source line. SOLUTION: A source line SL1 corresponds to a column including M11 to M14, a source line SL2 corresponds to a column including M21 to M24, a source line SL3 corresponds to a column including M31 to M34, and a source line SL4 corresponds to a column including M41 to M44. That is, in a non-volatile semiconductor memory device 10, a memory cell of one column does not share a source line with a memory cell of the other column. Further, an element- separating region and a bit line contact are provided, and the elementseparating region is positioned between the source line SL2 and the source line SL3, whereby neighboring source lines are electrically independent.

(19) 日本国特新庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開書号

特開平11-233744

(43)公開日 半成11年(1999)8月27日

(51) Int CL*		PSTEEP	Fl		
HOIL	·27 /115		HOIL	27/10 .	434
			G11C	17/00	304B
GllC					622A
	16/04		H01L	20/78	371
HOIL	21/8247		HULL	20,10	
	<i>:</i> 29/7 88				

審査論求 未請求 諸求母の数12 OL (全 14 頁) 最美日に統く

(21)出聯書号	特觀平10-340761
(22)出版日	平成10年(1998)11月30日

(31) 優先権主張者号 特置平9-342638 (32) 毎年日 平9 (1997) 12月12日

(33) 優先権主張国 日本 (JP)

(71)出版人 000005843

松下每子工業株式会社 大阪府高額市率町1番1号

(72)免明者 高橋 柱太

大阪府高橋市幸町1番1号 松下電子工業

株式会社内

(74)代理人 井理士 山本 秀策

(54) 【発明の名称】 不揮発性半導体記憶装置およびその駆動方法

(57)【要約】

【課題】 低電圧においても十分なオン状態のメモリセル読み出し電流を確保することができ、低電圧下での高速読み出しを可能とする不揮発性半等体記憶装置およびその駆動方法を提供する。

【解決手段】 本発明の不拘死性半等体記憶装置は、半等体工板の上に、マトリクス状に配置された状数のメモリセルと、行方向に延びる複数のワード級と、阿記行方向に延びる複数のソース線と、例方向に延びる複数のビット線とを備えた不存死性半導体記憶装置であって、ある行に戻する複数のメモリセルが、前記複数のソース線のうちの第1のソース線と接続され、前記複数のソース線のうちの第2のソース線と接続され、前記複数のソース線のうちの第2のソース線と接続され、前記第1のソース線は、前記第2のソース線と電気的に独立している。

【特許請求の範囲】

【請求項1】 半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のワード線と、該行方向に延びる複数のソース線と、列方向に延びる複数のピット線とを備えた不揮死性半導体配位装置であって、

ある行に属する複数のメモリセルが、該複数のソース線 のうちの第1のソース線と接続され、

該ある行と隣接する行に属する複数のメモリセルが、該 複数のソース線のうちの第2のソース線と接続され、

該第1のソース裁は、該第2のソース森と電気的に独立 している不振発性半導体記憶装置。

【請求項2】 前記第1のソースをは、前記第2のソースをと案子分離領域により絶縁されている請求項1に記載の不採発性半導体記憶表記。

【請求項3】 半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のワード線と、試行方向に延びる複数のソース線と、列方向に延びる複数のピット線とを備えた不揮先性半導体配位装置であって、

ある列に属する複数のメモリセルのうちの第1の組が、 該複数のピット線のうちの第1のピット線と接続され、 該ある列に属する複数のメモリセルのうちの第2の組 が、該複数のピット線のうちの第2のピット線と接続され

該第1のビット被は、該第2のピット線と電気的に独立: している不拝発性半導体記憶装置。

【論求項4】 前記第1の組が前記第2の組と前記列方向で階接している論求項3に記載の不揮発性半導体記憶 装置

【論求項5】 前記複数のメモリセルのそれぞれは、ゲート電極、ゲート絶縁膜、ドレイン領域およびソース領域を有するMOSトランジスタである請求項1~4のうちの1つに記載の不揮発性半導体配性装置。

【論求項6】 前定複数のメモリセルのそれぞれは、制御ゲート電極、浮遊ゲート電極、ドレイン領域およびソース領域を備えた浮遊ゲート電極型MOSトランジスタである論求項1~4のうちの1つに定数の不得発性半導体記憶装置。

【請求項7】 前記複数のメモリセルのうち、低い方の しさい値電圧を有するメモリセルが、デブレッション状態である請求項1~6のうちの1つに記載の不揮発性半 等体記憶表演。

【請求項片】 前記不揮発性半等体記憶装置は、前記行 方向に延びる複数の第1英電準のウェルを備え、

前記複数のメモリセルの1つは、該複数の第1等電型の ウェルの1つ上に、ゲート電極、ゲート地段膜、ドレイ ン領域およびソース領域を有するMOSトランジスタで あり、

該複数の第1等電型のウェルのそれぞれが電気的に独立

している請求項1または2に記載の不存発性半導体記憶 - 装置。

【請求項9】 前記不在死性半導体記憶装置は、前記行 方向に延びる複数の第1導電型のウェルを備え、

前記複数のメモリセルの1つは、該複数の第1項電型のウェルの1つ上に、制御ゲート電極、浮遊ゲート電極、 ゲート絶縁膜、ドレイン領域およびソース領域を有する MOSトランジスタであり、

該複数の第1等電型のウェルのそれぞれが電気的に独立 している請求項1または2に記載の不存死性半導体記憶 法置。

【請求項10】 前記複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発性 半導体記憶装置の駆動方法であって、

設選択されたメモリセルに対応するピット故に、前記半 導体基板に対して逆パイアスとなる程性の第1の電圧を 印加する工程と、

該選択されたメモリセルに対応するワード級に該第1の 電圧と同一を性の第2の電圧を印加する工程と、

該選択されたメモリセル以外のメモリセルに対応するソース建に該第1の電圧と同一極性の第3の電圧を印加する工程と、

該選択されたメモリセルに対応するソース故に該半導体 基板の電位を印加する工程とを包含する請求項1~4の うちの1つに記載の不存発作半導体記位装置の駆動方 法。

【請求項11】 前記第1の電圧と前記第3の電圧とが はは同一電圧である請求項10に記載の不揮発性半導体 記憶装置の駆動方法。

【論求項12】 前記後数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不存発性 半導体記憶装置の駆動方法であって、

該選択されたメモリセルに対応するピット辞に、前記半 導体単板に対して逆パイアスとなる存件の第1の電圧を 印加する工程と、

該選択されたメモリセルに対応するワード線に該第1の 電圧と同一検性の第2の電圧を印加する工程と、

該選択されたメモリセルが属していない第1等電型のウェルに該第1の電圧と正核性の第3の電圧を印加する工程と、

該選択されたメモリセルが属している第1等電型のウェルに接地電位を印加する工程とを包含する請求項おまたは9に記載の不復発性半等体記憶装置の駆動方法。

【発明の詳細な説明】

[0001]

【発明の民する技術分野】本発明は、不揮発性半導体配 使装置、特にマスク型および浮遊ゲート電極型の不振発 性半等体配便装置およびその配動方法に関するものであ る

[0002]

【従来の技術】近年、低電圧で高速に動作する不揮発性 半導体記憶装置が利用されるようになっている。このよ うな不押発性半導体記憶装置を広く提供するために、低 電圧で高速動作が可能な不揮発性半導体記憶装置、なら びにこの不揮発性半導体記憶装置の駆動方法が求められ ている。

【0003】以下、従来の不存免性半導体記憶設置500を、図15、図16および図17を用いて説明する。 【0004】不排発性半導体記憶設置500は、複数のメモリセルがピット線に並列に接続される形式をとっているため、NOR型と呼ばれるメモリセルアレイ構造を有している。

【0005】図15は、従来の不揮発性半導体記憶装置 500のメモリセルアレイ構成を示す模式図である。

【0006】図15に示す不排発性半導体記憶装置500は、MOSトランジスタからなるメモリセルM11~M44、ワード線WL1~WL4、ソース線SL1~SL3、およびピット線BL1~BL4を備えている。

し3、およびピット秋BL1~BL4で協定でいる。
【0007】不拝発性半導体記憶装置500は、図15に示すように、メモリセルM24のゲートがワード 聴Wし2に接続され、メモリセルM24のドレインがピット 散Bし4に接続されている。不揮発性半導体記憶装置500では、メモリセルM21~M24が戻する行のメモリセルは、メモリセルM31~M34が戻する行のメモリセルとソース被Sし2を共有している。なお、メモリセルM11~M14が戻する行のメモリセルは、それに対向する行のメモリセル([2元されず] とソース被Sし1を共有している。また、ソース被Sし3についても、同様である。

【0008】図16は、図15に示す不極発性半導体配 性装置500のパターンレイアウトを示す模式的平面図 である。

【0009】図16に示すように、不揮発性半導体配位 装置500は、さらに、素子分離領域5とピット報コン タクト6を備えている。

【0010】以下、従来の不復発性平等体記憶装置50 0に情報を書き込む方法および消去方法を図17を用い て説明する。

【0011】図17は、不存発性半等体記憶装置500におけるメモリセルのしきい値電圧分布図(複数メモリセル)である。なお、図17において、摂触はメモリセルのしきい値電圧VTRを示し、超軸はメモリセルの個数を示している。

【0012】ここでは、不拘発性半等体記憶装置500は、2種類の異なるしきい値電圧を有するN型MOSトランジスタからなるマスクHOMとする。

【0013】 清玄状態 (四17中の "ビ" 状態) とは、 N型MOSトランジスタが、エンハンスメント状態である1V程度のしさい値電圧 (低い方のしさい値電圧) に 設定されることを定味し、消去状態はメモリアレイ全体 のメモリセルのチャネル部に対するイオン注入法により 制御される。

【0014】また、含き込み状態(図17中の"W"状態)とは、選択されたN型MOSトランジスタのチャネル部に対してのみ、さらにイオン注入を追加することにより、電源電圧V_nよりも高いエンハンスメント状態である4V程度のしきい値電圧(高い方のしきい値電圧)が設定される。

【0015】以下、従来の不揮発性半導体記憶装置50 0から情報を読み出す方法を、図15を用いて説明する。

【0016】図15中に破球で囲んだメモリセルM24が選択される場合は、半等体基板電位を接地電位(0V)として、ソードはWL2を3Vとし、ピットはBL4を1Vとする。また、他のワードはWL1、WL3、WL4、ソースはSL1、SL2、SL3、他のピットはBL1、BL2、BL3をOV、あるいはOPEN状態とする。なお、図15のメモリセルアレイが配置されている半等体基板は接地電位に固定されていて、他の部分への電圧を印加する駅の基準電位となっている。

【0017】もし、メモリセルM24が消去状態であれば、しきい他電圧が0.5V程度であるので、メモリモルM24がオン状態となり、ビット線BL4にメモリセル試み出し電流が流れる。一方、メモリセルM24が書き込み状態であれば、しきい他電圧が4V程度であるので、メモリセルM24がオフ状態となり、ビット線BL4にメモリセル読み出し電流は流れない。この電流量をセンスアンプで検知することにより、読み出し動作が行われる。

【0018】なお、上述したように、選択されたメモリセルM24に流れるメモリセル読み出し電流量を用いて、メモリセルM24に格納された情報の読み出し動作が行われるため、選択されたメモリセルM24と同一のビット報BL4に接続される非選択のメモリセル(M14、M34、M44)から流れる電流を、ほぼゼロに抑える必要がある。そのためには、これらの非選択メモリセルのしきい値運圧を約0、5V以上に設定しなければならない。

[0019]

【発明が解決しようとする認題】しかしながら、従来の不存発性半導体記憶装置500およびその書き換え方法では、消去状態のメモリセルのしきい毎電圧、つまり低い方のしきい価電圧を約0.5V以上に設定していることから、不御発性半等体記憶装置500を低電圧(低い電流電圧)で動作させると、記み出し時に消去状態(オン状態)のメモリセル証み出し電流が少なくなり、高速に読み出すことが困難になるという問題があった。

【0020】本発明は、上紀四題を鑑み、低電圧においても十分なオン状態のメモリセル設み出し電流を確保す

ることができ、低低圧下での高速競み出しを可能とする 不排死性半導体記憶装置およびその原動方法を提供する ことを目的とする。

[0021]

【課題を解決するための手段】本発明の不揮発性半導体記憶装置は、半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のソース線と、列方向に延びる複数のピット線とを備えた不揮発性半導体記憶装置であって、ある行に属する複数のメモリセルが、前記数のソース線のうちの第1のソース線と接続され、前記複数のソース線のうちの第2のソース線と接続され、前記数のソース線のうちの第2のソース線と接続され、前記第1のソースはは、前記第2のソース線と電気的に独立し、そのことにより上記目的が達成される。

【0022】前記第1のソース線は、前記第2のソース 線と素子分離領域により絶縁されてもよい。

【0023】本発明の他の不控発性半等体記憶設置は、 半導体基板の上に、マトリクス状に配置された複数のメ モリセルと、行方向に延びる複数のワード線と、前記行 方向に延びる複数のソース線と、列方向に延びる複数の ビット線とを備えた不理発性半導体記憶設置であって、 ある列に巨する複数のメモリセルのうちの第1の理が、 前記複数のビット線のうちの第1のビット線と接続され、前記ある列に巨する複数のメモリセルのうちの第2 の組が、前記複数のビット線のうちの第2のビット線と 接続され、前記第1のビット線は、前記第2のビット線 と電気的に独立し、そのことにより上記目的か達成される

【0024】前記第1の組が前記第2の組と前記列方向で際接していてもよい。

【0025】前記複数のメモリセルのそれぞれは、ゲート電極、ゲート絶縁膜、ドレイン領域およびソース領域を有するMOSトランジスタであってもよい。

【0026】前記複数のメモリセルのそれぞれは、制御ゲート電極、浮遊ゲート電極、ドレイン領域およびソース領域を備えた浮遊ゲート電極型MOSトランジスタであってもよい。

【0027】前記複数のメモリセルのうち、低い方のし さい何電圧を有するメモリセルが、デアレッション状態 であってもよい。

【0028】前記不揮発件半導体配性装置は、前記行方向に延びる複数の第1答電型のウェルを備え、前記複数のメモリセルの1つは、前記複数の第1等電型のウェルの1つ上に、ゲート電視、ゲート総設展、ドレイン領域およびソース領域を有するMOSトランジスタであり、前記複数の第1簿電型のウェルのそれぞれが電気的に独立していてもよい。

【0029】前記不揮発性半導体記憶茲間は、前記行方向に延びる複数の第1等電型のウェルを偏え、前記複数

のメモリセルの1つは、前記複数の第1導電型のウェル での1つ上に、制御ゲート電極、浮遊ゲート電極、ゲート 総縁膜、ドレイン領域およびソース領域を有するMOS トランジスタであり、前記複数の第1導電型のウェルの それぞれが電気的に独立していてもよい。

【0030】前記核数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不存死性半導体記性設置の駆動方法であって、前記選択されたメモリセルに対応するビット線に、前記半導体基板に対して選バイアスとなる極性の第1の電圧を印加する工程と、前記選択されたメモリセルに対応するソード線に前記第1の電圧と同一極性の第2の電圧を印加する工程と、前記選択されたメモリセル以外のメモリセルに対応するソース鍵に前記第1の電圧と同一極性の第3の電圧を印加する工程と、前記選択されたメモリセルに対応するソース線に前記半導体基板の電位を印加する工程とを包含してもよい。

【0031】前記第1の電圧と前記第3の電圧とがほぼ 同一電圧であってもよい。

【0032】前記複数のメモリセル中から選択されたメ モリセルに記憶されている情報を読み出してもよい。

【0033】前記選択されたメモリセルに対応するピット兼に、前記半導体基板に対して逆パイアスとなる接性の第1の電圧を印加する工程と、前記選択されたメモリセルに対応するワード兼に前記第1の電圧と同一存住の第2の電圧を印加する工程と、前記選択されたメモリセルが属していない第1等電型のウェルに前記第1の電圧と連存性の第3の電圧を印加する工程と、前記選択されたメモリセルが属している第1等電型のウェルに接地電位を印加する工程とを包含してもよい。

[-0034]以下、作用を説明する。

【0035】本発明は、選択するメモリセルのしきい値 電圧の下限としてデアレッション型を許容し、選択する メモリセルと同一ピット接上にある非選択のメモリセル のしきい値電圧の下限を、パックバイアス効果によりエ ンハンスメント型にするというものである。

【0036】本発明の不御発性半等体記憶装置では、選択されたメモリセルのソース線の電位を非選択のメモリセルのソース線と異なる電位に設定できるアレイ構造、あるいは選択されたメモリセルのウェル線の電位を非選択のメモリセルのウェル線と異なる電位に設定できるアレイ構造を有する。

【0037】また、本発明の不博発性半導体配位装置に おける情報の書き込みおよび消去は、消去状態にあるメ モリセルにおけるしきい質電圧の下限としてデアレショ ン状態を許容する。

【()()38】また、複数のメモリモル中から選択されたメモリモルに記憶されている情報を読み出す不得発性半 導体記憶装置の配動方法では、選択されたメモリセルの ソース接を接地電位に、非選択メモリモルのソース接を

e in the San Land Land

正電圧に設定するか、あるいは、選択されたメモリセルのウェル線を接地電位に、非選択メモリセルのウェル線を会性電位に、非選択メモリセルのウェル線を負電圧に設定する。

【0039】本発明の不揮発性半導体記憶装置では、非 選択メモリセルのソース線に半導体基板に対して逆バイ アスとなる電圧を印加することによるバックバイアス効 果によって、非選択メモリセルのしきい値電圧を高くし ている。このため、本発明の不揮発性半導体記憶装置で は、メモリセルの低い方のしきい値電圧を、従来の不揮 発性半導体記憶装置より低く設定することができ、低電 圧においても十分なオン状態のメモリセルの読み出し電 流量を確保できる。その結果、本発明の不揮発性半導体 記憶装置は、低電圧下での高速読み出しを可能とする。

【0040】本発明の不揮発性半導体記憶装置では、メモリセルの低い方のしきい値電圧状態の少なくとも一部がデアレッション状態であるので、その状態における読み出し電流を多くすることができ、低電圧下での読み出し速度をさらに高めることができる。

【0041】本発明の、複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発性半等体記憶設置の駆動方法は、非選択メモリセルのソース線に半導体基板に対して達パイアスとなる電圧を印加することによるバックパイアス効果によって、非選択メモリセルのしきい値電圧を高くすることができる。したがって、本発明の駆動方法では、メモリセルの低い方のしきい値電圧を、従来の駆動方法より低く設定でき、低電圧においても十分なオン状態のメモリセルの試み出し電流量を確保できる。その結果、本発明の駆動方法は、低電圧下での高速流み出しを可能とする。

【0042】本発明の駆動方法では、バックバイアス効果が大きく、かつソース線から電流が流れないので、最も高速読み出し性能を高くできる。

【0043】本発明の他の不揮発性半等体記憶装置では、非選択メモリセルのウェル接に半等体上板に対して網バイアスとなる電圧を印加することによるバックバイアス効果によって、非選択メモリセルのしきい価電圧を高くしている。このため、本発明の他の不揮発性半等体記憶装置より低く設定でき、低電圧においても十分なオン状態のメモリセルの読み出し電流量を確保できる。その結果、本発明の他の不預発性半等体記憶装置は、低電圧トでの高速競み出しを可能とする。

【()()44】本発明の他の不採発性半導体記憶装置では、メモリセルの低い方のしさい何電圧状態の少なくとも一部がデアレッション状態であるので、その状態における銃み出し電流を多くすることができ、低電圧下での銃み出し速度をさらに高めることができる。

【0045】本売明の、複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不祥発

性半導体記憶法面の他の駆動方法は、非選択メモリモルのウェル線に半導体基板に対して順バイアスとなる電圧を印加することによるバックバイアス効果によって、非選択メモリセルのしきい質電圧を高くすることができる。したがって、本発明の他の駆動方法は、メモリセルの低い方のしきい値電圧を従来の駆動方法より低く設定でき、低電圧においても十分なオン状態のメモリセルの読み出し電流量を確保できる。その結果、本発明の他の駆動方法は、低電圧下での高速読み出しを可能とする。【0046】

【発明の実施の形態】(第1の実施の形態)以下、本発明の第1の実施の形態について、図面を参照しながら説明する。

【0047】図1は、本発明の第1の実施の形態における不理発性半導体記憶装置10のメモリセルアレイ構成の模式図である。

【0048】不算発性半導体記憶装置10は、MOSトランジスタからなるメモリセルM11~M44、ソードはWL1~WL4、ソース線SL1~SL4、およびピット線BL1~BL4を備えている。

【0049】不押光性半導体記憶装置】0では、メモリセルM24のゲートがワード級WL2に接続され、メモリセルM24のソースがソース線SL2に接続され、メモリセルM24のドレインがピット線BL4に接続されている。

【0050】メモリセルM11~M14が属する行にソース報SL1が対応し、メモリセルM21~M24が属する行にソース報SL2が対応し、メモリセルM31~M34が属する行にソース報SL3が対応し、メモリセルM41~M44が属する行にソース報SL4が対応する。つまり、不揮発性半導体記憶装置10では、ある行のメモリセルは、他の行のメモリセルとソース線を共有していない。

【0051】図2は、不揮発性半導体記憶装置10のバターンレイアウトを示す模式的平面図である。すなわち、図2は、図1に示す不揮発性半導体記憶装置10のアレイ構造の一例を示している。また、図3は、図2に示す不複発性半導体記憶装置10を競分AーAで切断した場合における断面を示す図であり、図4は、図2に示す不複発性半導体記憶装置10を競分BーBで切断した場合における所面を示す図である。

【0052】なお、不存発性半導体記憶装置10は、複数のメモリセルがピット銀に並列に接続される形式をとっているため、NOR型と呼ばれるメモリセルアレイ積造を有している。

【0053】四2に示すように、不恒発性半導体記憶装置10は、さらに、素了分離領域5、素了分離領域5 X、およびビット設コンタクト6a、6bを備えている。たとえば、素子分離領域5Xは、廃接した、ソースはSL2とソースはSL3の間に位置する。このため、

om training of the

院接したソースはは、電気的に独立している。素子分離 領域5および素子分離領域5Xは、LOCOS(LOC al Oxidationof Silicon)や、 STI(Shallow Trench Isolat ion)などで形成されるが、他の方法でもよい。 【0054】以下、不理発性半導体記憶装置10に情報

【0054】以下、不揮発性半導体記憶装置 10に情報を書き込む方法および消去方法を、図5を用いて説明する。

【0055】図5は、不控発性半導体記述設置10におけるメモリセルのしきい質電圧分布図(複数メモリセル)である。なお、図5において、花軸はメモリセルのしきい質電圧V₁₈を示し、経転はメモリセルの個数を示している。

【0056】ここでは、不揮発性半導体記憶装置10 は、2種類の異なるしきい値電圧を有するN型MOSト ランジスタからなるマスクROMとする。

【0057】消去状態(図5中の"E"状態)とは、N型MOSトランジスタが、デブレッション状態であるー1V程度のしきい値電圧(低い方のしきい値電圧)に設定されることを意味し、消去状態はメモリプレイ全体のメモリセルのチャネル部に対するイオン注入法により制備される。

【0058】また、書き込み状態(図5中の"W"状態)とは、選択されたN型MOSトランジスタのチャネル部に対してのみ、さらにイオン注入を追加することにより、電源電圧Vppよりも高いエンハンスメント状態である4 V程度のしきい値電圧(高い方のしきい値電圧)が設定される。

【0059】以下、不揮発性半導体配性装置10から情報を読み出す方法について、図6を用いて説明する。

【0060】図6は、不復発性半導体記憶装置10から 情報を読み出すためのフローチャートの一例を示す図で ある。

【0061】ステップS1では、選択されなかったソース級、つまり非選択のソース級に第1の電圧と同一極性の第3の電圧が印加される。なお、第1の電圧とは、後述するステップS3で、選択されたビット級に印加される電圧である。

【0062】ステップS2では、選択すべき任意のメモリセルに対応するソース親が選択される。具体的には、選択されたソース様には、半導体基板の電位とほぼ同一の電圧が印加される。

【0063】ステップS3では、前記任意のメモリセルに対応するビット級が選択される。具体的には、選択されたビット級には、半零体基板に対して逆パイアスとなる特性の第1の電圧が印加される。

【0064】ステップS4では、前記任意のメモリセルに対応するワード級が選択される。具体的には、選択されたワード線には、第1の電圧と同一様性の第2の電圧が印加される。

【0065】上述したステップにより、選択されたメモリセルから情報を認み出す際、非選択のメモリセルが低い方のしきい信電圧を持つ場合、低い方のしきい信電圧を持つ非選択のメモリセルがデブレッション型であっても、バックバイアス効果により、エンハンスメント型にすることができる。このため、選択されたメモリセルに設視されたビット線に、非選択メモリセルから認れるリーク電流を抑えることができる。

【0066】また、選択されたメモリセルが消去状態である場合、つまり、選択されたメモリセルが低い方のしきい値電圧を持つ場合、選択されたメモリセルをデアレッション状態に設定することができる。このため、選択されたメモリセルのゲートに印加される電圧としきい値電圧との電位差が大きくなり、選択されたメモリセルからの読み出し電流量を増やすことができる。

【0067】なお、本実施の形態では、処理はステップ S1~ステップS4の順番に実行される必要はない。つまり、ステップS1~ステップS4が任意の順番で実行 されても、本実施の形態は上述した効果を有する。

【0068】また、選択されたピット球に印加される第 1の年圧と、非選択のソース線に印加される第3の電圧 とがほぼ同一であってもよい。

【0069】以下、具体的な、不存発性半導体記憶装置 10のメモリセルM24から情報を読み出す方法を説明 する。

【0070】図1および図2の中で、破職で囲んだメモ リセルM24が選択される場合、半導体基板電位を接地 で位(OV)として、ワード統Wし2を3V(第2の電 圧) とし、ピット被BL4を1V(第1の電圧)とす る。また、他のワード執WL1、WL3、WL4および 他のピット級BL1、BL2、BL3をOVとし、ソー ス枚SL2を0Vとする。さらに、他のソース破SL 1, SL3, SL4を1V(第3の電圧)とする。な お、図には示していないが、メモリセルの属するウェル の性位はOVとする。もし、メモリセルM24が消去状 放であれば、しきい何電圧は**ー1 V程度であるので、メ** モリセルM24がオン状態となり、ピット疎日し4にメ モリセル試み出し電波が流れる。この場合のメモリセル M24の銃み出し電流は、従来の不揮発性半導体記憶装 酒が有するメモリセルのしきい値電圧が0.5Vである 場合のものに比べて、多くなる。

【0071】一方、メモリセルM24が書き込み状態であれば、メモリセルM24のしきい値電圧は4V程度であるので、メモリゼルM24がオフ状態となり、ビット設BL4にメモリセル銃み出し電流は流れない。上述した電流量がセンスアンプで検知されることにより、銃み出し動作が行われる。

【0072】本発明の第1の実施の形態では、バックバイアス効果を利用することにより、選択されたメモリセルM24と同一のピット銀BL4に接続される非選択メ

e in the first trace with the

モリセルM14、M34、M44のしきい住宅圧を約0.5 V以上に設定することができる。すなわち、非選択メモリセルのソース線SL1、SL3、SL4に電圧1 Vを印かすることにより、たとえ仮に、非選択メモリセルのしきい信電圧が一1 Vであったとしても、バックパイアス効果により、非選択メモリセルのしきい信を約0.5 V以上とすることができる。このため、非選択メモリセルから流れる電流を、ほぼゼロに抑えることができる。

【0073】非選択のメモリセルM14、M34、M44が低い方のしきい質電圧を有する場合、読み出し動作時に、非選択のメモリセルM14、M34、M44の低い方のしきい値電圧をバックバイアス効果によりエンハンスメント型にでき、選択されたメモリセルM24が接続されたピットはBL4に接続されている他の非選択メモリセルM14、M34、M44から流れるリーク電流を抑えられる。

【0074】また、選択されたメモリセルが消去状態である場合、消去状態のメモリセルのしきい値電圧(低い方のしきい値電圧)をデアレッション状態に設定することができる。このため、選択されたメモリセルにおけるオン状態の読み出し電流量が増加する。その結果、低電圧においても十分なオン状態のメモリセル読み出し電流を確保することができ、第1の実施の形態における不揮発作半3体記憶装置は、低電圧下での高速読み出しを可能とする。

【0075】以上のように、この実施の形態によれば、非芸択メモリセルに接続されるソース数に半導体基板に対して逆バイアスとなる正理圧を印加することにより、清去状態にあるメモリセルのしきい値電圧、つまり低い方のしきい値電圧をデアレッション状態に設定できる。このため、芸択されたメモリセルのゲートに印加される電圧が低電圧であっても、十分にオン状態のメモリセルの読み出し電流量を確保できる。その結果、選択されたメモリセルのゲートに印加される電圧が低電圧であったとしても、高速にメモリセルの情報の読み出しを可能とする。

【0076】なお、第1の実施の形態では、読み出し時に選択したビット親に印加する電圧と非選択のソース線に印加する電圧を同一電圧としたが、それらの電圧が異なる電圧であってもよい。ただし、非選択ソース親の電圧が選択したビット線に印加される電圧よりも低い場合には、バックバイアス効果が小さいため、また、逆の場合には、ソース強からの電流が流れるようになるため、本発明の効果が小さくなる。

【0077】(第2の実施の形態)以下、本発明の第2の実施の形態について、図面を参照しながら説明する。 【0078】図7は、本発明の第2の実施の形態における不揮発性半導体記憶装置20のメモリセルアレイ構成の模式図である。図8は、不揮発性半導体記憶装置20 のパターンレイアウトを示す模式的平面図である。すな あち、図8は、図7に示す不揮死性半導件記憶装置20 のアレイ構造の一例を示している。また、図9は、図8 に示す不揮死性半導体記憶装置20を複分C-Cで切断 した場合における断面を示す図であり、図10は、図8 に示す不揮死性半導体記憶装置20を複分D-Dで切断 した場合における断面を示す図である。なお、図10で は、断面をD方向から見た場合、ビット線BL7は実際 には見えないが、ビット線BL7がビット線コンタクト 6 bと接続されることが理解しやすいように、図示して いる。

【0079】不接死性半導体記憶装置20は、MOSトランジスタからなるメモリセルM11〜M64、ソードはWL1〜WL6、ソースはSL1〜SL4、およびピットはBL1〜BL8を備えている。

【0080】さらに、不揮死性半導体記憶法置20は、素子分離領域5、ピット載コンタクト6a、6bを備えている。素子分離領域5は、LOCOSやSTIなどで形成されるが他の方法でもよい。なお、不揮死性半導体記憶装置20は、複数のメモリセルがピット設に並列に接続される形式をとっているため、NOR型と呼ばれるメモリセルアレイ構造を有している。

【0081】不揮発性半導体記憶装置20では、メモリセルM14のゲートがワード線WL1に接続され、メモリセルM14のソースがソース線SL1に接続され、メモリセルM14のドレインがピット線BL8に接続され、メモリセルM24のゲートがワード線WL2に接続され、メモリセルM24のソースがソース線SL2に接続され、メモリセルM24のドレインがピット後BL8に接続され、メモリセルM24のドレインがピット後BL8に接続されている。

【0082】また、メモリセルM34のゲートがワード 該WL3に接続され、メモリセルM34のソースがソー ス銀SL2に接続され、メモリセルM34のドレインが ピット接BL7に接続され、メモリセルM44のゲート がワード級WL4に接続され、メモリセルM44のソー スがソース線SL3に接続され、メモリセルM44のド レインがピット録BL7に接続されている。

【0083】さらに、メモリセルM54のゲートがワード競WL5に接続され、メモリセルM54のソースがソース規SL3に接続され、メモリセルM54のドレインがピットはBL8に接続され、メモリセルM64のゲートがワード線WL6に接続され、メモリセルM64のソースがソースはSL4に接続され、メモリセルM64のドレインがピットはBL8に接続されている。

【0084】つまり、メモリセルM14〜M64が尽する列には、ピットはBL7、BL8が対応する。言い模えると、第1の組のメモリセルが第1のピット報に接続され、列方向つまり、第1のピットはが延びる方向で、第1の組のメモリセルに保護する第2の出のメモリセルが第2のピット報に接続される。本実施の形態では、あ

る組に含まれるメモリセルは2つであり、そのある組に 含まれる2つのメモリセルは、1つのピットはコンタク トを共有している。

【0085】たとえば、メモリセルM14とメモリセルM24が第1の組となり、それらのメモリセルM14、M24はビットはコンタクト6aを共有し、第1の組のメモリセルM14、M24はビットはコンタクト6aを介して第1のビットはBL8に接続されている。また、メモリセルM34とメモリセルM44が第2の組となり、第2の組は列方向で第1の組と際接している。それらのメモリセルM34、M44はビットはコンタクト6bを共有し、第2の組のメモリセルM34、M44はビットはコンタクト6bを介して第2のビットはBL7に接続されている。

【0086】不接免性半導体記憶装置20に情報を書き込む方法および消去方法は、不採免性半導体記憶装置1 0と同じである。

【0087】以下、不揮発性半導体記憶装置20から情報を読み出す方法について、図11を用いて説明する。

【0088】図11は、不揮発性半導体記憶装置20から情報を読み出すためのフローチャートの一例を示す図である。

【0089】ステップS11では、選択されなかったソース線、つまり非選択のソース線に第1の電圧と同一極性の第3の電圧が印加される。なお、第1の電圧とは、後述するステップS13で、選択されたピット線に印加される電圧である。

【0090】ステップS12では、選択すべき任意のメモリセルに対応するソース線が選択される。具体的には、選択されたソース線には、半導体基板の電位とはば同一の電圧が印加される。

【0091】ステップS13では、前記任意のメモリセルに対応するビットはが選択される。具体的には、選択されたビット接には、半等体基板に対して逆パイプスとなる極性の第1の電圧が印加される。

【0092】ステップS14では、前記任意のメモリセルに対応するワード兼か選択される。具体的には、選択されたワード兼には、第1の電圧と同一極性の第2の電圧が印加される。

【0093】ト述したステップにより、選択されたメモリセルから情報を読み出す際、非選択のメモリセルが低い方のしきい値電圧を持つ場合、低い方のしきい値電圧を持つ非選択のメモリセルをエンハンスメント型にできる。このため、選択されたメモリセルに接続されたビット課に、非選択メモリセルから流れるリーク電流を抑えることができる。

 されたメモリセルのゲートに印加される電圧としまい値で 電圧との電位差が大きくなり、選択されたメモリセルからの読み出し電流量を増やすことができる。

【0095】なお、本実施の形態では、処理はステップ S11~ステップS14の順番に実行される必要はない。つまり、ステップS11~ステップS14が任意の 順番で実行されても、本実施の形態は上述した効果を有 する

【0096】また、選択されたビット線に印加される第 1の電圧と、非選択のソース線に印加される第3の電圧 とがほぼ同一であってもよい。

【0097】以下、具体的な、不揮死性半導体記憶法置20のメモリセルM24から情報を読み出す方法を説明する。

【0098】図7および図8の中で、改載で囲んだメモ リセルM24が選択される場合、半導体基板電位を接地 電位 (OV) として、ワード線WL2を3V (第2の電 圧)とし、ピット被BL8を1V(第1の電圧)とす る。また、他のワード森WL1、WL3~WL6および 他のピット級BL1~BL7をOVあるいはOPEN状 取とし、ソース被SL2をOVとする。さらに、他のソ ース故SL1、SL3、SL4を1V (第3*の*軍圧) と する。なお、図には示していないが、メモリセルの尽す るウェルの空位はOVとする。 もし、 メモリセルM24 が消去状態であれば、しきい何電圧は-1V程度である ので、メモリセルM24がオン状態となり、ビット歳B L8にメモリセル試み出し電流が流れる。この場合のメ モリセルM24の試み出し電流は、従来の不存発性半等 体記性装置が有するメモリセルのしきい値電圧が0.5 Vである場合のものに比べて、多くなる。

【0100】本発明の第2の実施の形態では、バックバイアス効果を利用することにより、選択されたメモリセルM24と同一のピットはBLBに接続される非選択メモリセルM14、M54、M64のしきい値電圧を約0、5 V以上に設定することができる。

【0101】すなわち、非選択メモリセルのソースはS し1、Sし3、Sし4に電圧1Vを印加することにより、たとえ仮に、非選択メモリセルのしきい値電圧が 1Vであったとしても、バックバイアス効果により、非 選択メモリセルのしきい値を約0、5V以上とすること ができる。このため、非選択メモリセルから流れる電流 を、ほぼゼロに抑えることができる。

【0102】また、選択されたメモリセルが消去状態である場合、消去状態のメモリセルのしきい値電圧(低い

- 70 1 1 1 7 - 40 A A A A

方のしきい他選圧)をデアレッション状態に設定することができる。このため、選択されたメモリセルにおけるオン状態の読み出し電流量が増加する。その結果、低電圧においても十分なオン状態のメモリセル読み出し電流を確保することができ、第2の実施の形態における不揮発性半導体記憶装置は、低電圧下での高速読み出しを可能とする。

【0103】なお、第2の実施の形態では、読み出し時に選択したピット数に印加する電圧と非選択のソース線に印加する電圧を同一電圧としたが、それらの電圧が異なる電圧であってもよい。

(第3の実施の形態)以下、本発明の第3の実施の形態 について、図面を参照しながら説明する。

【0104】図12は、本見明の第3の実施の形態における不揮発性半導体記憶装置30のメモリセルアレイ構成の模式図である。図13は、不揮発性半導体記憶装置30のパターンレイアウトを示す模式的平面図である。すなわち、図13は、図12に示す不揮発性半導体記憶装置30のアレイ構造の一例を示している。また、図14は、図13に示す不揮発性半導体記憶装置30を超分E-Eで切断した場合における断面を示す図である。

【0105】不採死性半導体記憶装置30は、MOSトランジスタからなるメモリセルM11~M44、ワード被WL1~WL4、ソース線SL1~SL4、およびピット線BL1~BL4を備えている。

【0106】さらに、不採発性半導体記憶弦置30は、 素子分離領域5A、5B、ピット載コンタクト6a、6 b、およびウェル裁WEL1〜WEL4を備えている。 素子分離領域5A、5Bは、LOCOSやSTIなどで 形成されるが他の方法でもよい。

【0107】不揮発件半導体記憶装置30は、図12に示すように、メモリセルM11~M14が厚する行のメモリセルにウェル線WEL1が接致され、メモリセルM21~M24が厚する行のメモリセルにウェル線WEL2が接続され、メモリセルM31~M34が厚する行のメモリセルにウェル線WEL3が接続され、メモリセル M41~M44が厚する行のメモリセルにウェル線WEL4が接続される。つまり、ある行のメモリセルは、そのある行に対応するウェル線に接致される。ウェル線は、行毎に独立している。

【() 1 () 8】また、不知発性半導体記憶装置3 () は、図12に示すように、メモリセルM11~M14が属する行のメモリセルのソースにソース報SL1が接続され、メモリセルM21~M24が属する行のメモリセルのソースにソース報SL2が接続され、メモリセルM31~M34が属する行のメモリセルのソースにソース報SL3が接続され、メモリセルM41~M44が展する行のメモリセルのソースにソース報SL4が接続される。つまり、不知発性半導体記憶装置30では、ある行のメモリセルは、他の行のメモリセルとソース報を共有してい

ない。

【0109】なお、同一ワードはおよび同一ソースはに 接続された接致のメモリセルは、1つのウェル接を共有 する。

【0110】以下、本発明の不揮発性半導体記憶装置3 0の競み出し方法について、図12を用いて説明する。 【0111】図13中に戦線で囲んだメモリセルM14 を選択する場合は、半導体基板電位を接地電位(0V) として、ソード謀WL1を3V(第2の電圧)とし、ビット線BL4を1V(第1の電圧)とする。ウェル線W EL1を0Vとし、他のソード線WL2、WL3、WL 4を0Vとし、ソース線SL1〜SL4を0Vとし、ビット線BL1〜BL3を0Vとし、他のウェル線WEL 2〜WEL4を-3V(第3の電圧)とする。なお、少なくともウェル線WEL1〜WEL4は、デコーダによって制御される。

【0112】上述した第1および第2の実施の形態では、ソース線を利用したパックバイアス効果によって、非選択メモリセルのしきい管理圧を上げることができた。仮に、非選択メモリセルが低い方のしきい値理圧たとえばー1Vを有していたとしても、パックバイアス効果により、その低い方のしきい値理圧を約0、5V以上とすることができる。一方、第3の実施の形態では、ウェル線を利用して同様な効果を得ることができる。

【0113】 ト述したように、第3の実施の形態によれば、非選択メモリセルのウェル線に負電圧、つまり半導体基板に対して風バイアスとなる電圧を印加することにより、非選択メモリセルのしきい値電圧を上げることができる。つまり、非選択メモリセルが消去状態である場合、そのメモリセルのしきい値電圧をデブレッション状態に設定することができる。

【0114】その結果、不揮発性半導体記憶装置30に おけるメモリセルのゲートに印加される電圧が低電圧で あっても、メモリセルから情報を読み出すための読み出 し電波量を十分に確保することができる。

【0115】なお、第1~第3の実施の形態では、マスクROMを用いて説明したが、2種の異なるしきい何電圧を用いて記憶する不存発性半導体記憶装置である、浮遊ゲート電極型不振発性半導体記憶装置に適用することもできる。この場合、回路的には、図1、図7、および図12に示すメモリセルが浮遊ゲート電極型のメモリセルに置き換えられるだけである。

【0116】また、第1~第3の実施の形態では、消去状態のしきい値電圧をデアレッション状態としたが、特に、デアレッション状態にする必要もない。従来の不健発性半等体配性装筒では、非型状メモリセルのリーク電流を抑えるために消去状態のしきい値電圧を10.5 V程度に設定する必要があった。しかしながら、本実施の形態では、非型状のメモリセルのリーク電流を供減できるため、消去状態のしきい値電圧を0.5 Vよりも低く設

n maraka ka Lusak 🕮

定することもできる。

【0117】用途によるが、たとえば、メモリセルの消去状態のしさい信電圧をデブレッション状態にまでしなくとも、例えば、0V程度に設定したい場合もあり得る。本発明は、このような場合にも適用される。

【0118】また、第1~第3の実施の形態では、消去 状態をしきい値電圧の低い方としたが、逆に書き込み状態をしきい値電圧の低い方に設定してもよい。

【0119】また、第1~第3の実施の形態では、含き込み状態のしきい色電圧を電源電圧以上としたが、消去状態との差があればよいので、含き込み状態のしきい色電圧が電源電圧以下でもよい。

【0120】また、第1~第3の実施の形態では、N型MOSトランジスタを用いて説明したが、P型MOSトランジスタを用いてもよい。

【0121】なお、第1の実施の形態と第2の実施の形態とを組み合わせて、本発明を実施してもよい。

【0122】本発明によれば、低しさい値程圧の状態をデアレッション状態にできるため、書き込み状態と消去状態のしさい値電圧の差を広げることが可能であり、浮遊ゲート電極型不揮発性半導体記憶装置に持有の、書き込み後もしくは消去後しさい値電圧のばらつきの問題や、多値しさい値電圧化への対応も容易となる。

【0123】また、本発明は、メモリセルに流れる電流の変化により記性動作、すなわち試み出し動作を実施するメモリ全般に適用することができる。なお、マスクROMではビット裁コンタクトの有無により情報を記憶する方式もあるが、その場合は、書き込み状態を無限に高いしきい値電圧と置き換えれば、本発明を適用することができる。

(0124)

【発明の効果】本発明によれば、同一ビット線上にあるメモリセルのソース設またはウェル銀に加える電圧を独立して制御可能な構成を採用し、同一ビット線上にある非選択メモリセルのしきい値電圧をソース設またはウェル線に加える電圧を制御し、バックバイアス効果によりしきい値電圧を引き上げるようにしているので、低い方のしきい値電圧をデブレッション状態に設定でき、低電圧においてもメモリセル読み出し電流量が確保できるために、低電圧高速読み出し動作が可能な不恒発性半導体記憶装置を実現できる。

【0125】また、メモリセルの低い方のしきい値電圧 状態の少なくとも一部をデフレッション状態とすると、 その状態における競み出し電波を多くすることができ、 低電圧下での競み出し速度をさらに高めることができ、

【0126】また、ビット設に印加する第1の電圧と非 選択のソース設に印加する第3の電圧とをほぼ同一電圧 に設定すると、バックパイアス効果が大きく、かつソー ス裁から電流が流れないので、最も高速読み出し住能を 高くできる。

【図面の簡単な説明】

[図1]本発明の第1の実施の形態における不揮発性半導体記憶装置10のメモリセルアレイ構成の模式図である。

【図2】不揮死性半導体記憶装置10のパターンレイア ウトを示す模式的平面図である。

【図3】図2に示す不存死性半導体記性装置10を線分 A-Aで切断した場合における断面を示す図である。

【図4】図2に示す不祥発性半導体記憶装置10を線分B-Bで切断した場合における断面を示す図である。

【図5】不得発性半導体記憶装置10におけるメモリセルのしきい値型圧分布図(複数メモリセル)である。

【図6】不包発性半導体記憶装置10から情報を読み出すためのフローチャートの一例を示す図である。

【図7】本発明の第2の実施の形態における不揮発性半導体記憶装置20のメモリセルアレイ構成の模式図である。

【図8】不得発性半導体記憶装置20のパターンレイプウトを示す模式的平面図である。

【図9】図8に示す不揮発性半導体記憶装置20を線分 C-Cで切断した場合における断面を示す図である。

【図10】図8に示す不揮発性半導体記憶装置20を載 分D-Dで切断した場合における断面を示す図である。

【図11】不拝発性半導体記憶装置20から情報を読み出すためのフローチャートの一例を示す図である。

【図12】本発明の第3の実施の形態における不得発作 半導体記憶装置30のメモリセルアレイ構成の模式図で まる

【図】3】不存発性半導体記憶装置30のパターンレイ アウトを示す模式的平面図である。

【図14】図13に示す不御発性半導体記憶装置30を 競分E-Eで切断した場合における断面を示す図である。

【図15】従来の不揮発性半等体記憶装置500のメモリセルアレイ構成を示す模式区である。

【図16】図15に示す不揮発性半導体記憶装置500のパターンレイアウトを示す模式的平面図である。

【図17】不得発性半等体配位装置500におけるメモリセルのしさい値電圧分布図(弦数メモリセル)である。

【行号の説明】

M14~M44 メモリセル

WL1~WL4 ワード段

SL1~SL4 ソース建

リレ1~リレ4 ピット線

5、5X 紫イ分離領域 6a、6b ピット級コンタクト

[図9]

[図11]

[図14]

[图16]

[315]

フロントページの統合

(51) Int. Cl. 6

当为记号

F I

HOIL 29/792