1.4 Invers	e and transpose (反矩陣嶼轉置矩陣)
這節當誤	
DeBuition 30	: In e Muxn (IR) is called an identity matrix (單弦框中) if
Delivition	
	$(In)ij = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$
That is,	In to of the form
	In ≈
	(前角鹬岛1. 买四都是0)
In gene	For all $A \in M_{n\times n}$ (IR), $A I_n = I_n A$. eral, for $A \in M_{m\times n}$ (IR), $A I_n = I_m A$.
In gene	eral, for $A \in Mmxn(R)$, $AIn = ImA$. : $A \in Mnxn(R)$ (必該是方陣才行) exse (matrix) (京京庫) of A is a matrix $B \in Mnxn(R)$
In gene Definition 32 The inv	eral, for $A \in Mmxn$ (R), $A In = ImA$. A $\in Mnxn$ (R) ($B \in Mnxn$) ($B \in Mnxn$) erse ($Matrix$) ($B \in Mnxn$) ($B \in Mnxn$) AB = $BA = In$.
In gene Definition 32 The inv	eral, for $A \in Mmxn$ (R), $AIn = ImA$. A $\in Mnxn$ (R) (R) (R) (R) R) Proce (R) (R) of R is a matrix R
In gene Definition 32 The inv satisfyin We den	eral, for $A \in Mmxn$ (R), $A In = ImA$. A $\in Mnxn$ (R) ($B \in Mnxn$) ($B \in Mnxn$) erse ($Matrix$) ($B \in Mnxn$) ($B \in Mnxn$) AB = $BA = In$.
In gene Definition 32 The inv satisfyin We den	$P(x)$ for $A \in Mmxn$ (R), $AIn = ImA$. Proof (Matrix) (区际) (18 独身方陣 7 方) Proof (Matrix) (反东区中) of A is a matrix $B \in Mnxn$ (IR) Oted by A^{-1} .
In gene Definition 32 The inv satisfyin We den	P(x) $P(x)$
In gene Definition 32 The inv satisfyin We den	eral, for A ∈ Mmxn (R), AIn = ImA. A ∈ Mnxn (R) (18 孩友方阵下)) Proce (matrix) (反矩阵) of A is a matrix B ∈ Mnxn (IR) AB = BA = In. Oted by A ¹ . DIE TO
In gene Definition 32 The inv satisfyin We den	eral, for A Minxin (R), A In ImA. A Minxin (R) (18 Mixin (R)) Mixin (R) O Onxin (今 The Thin Image of the control of the contro

	一些 張 面 款 的 問 题:
)	1. Inverse matrix - 反會門 在 感 ?
	2. 如果历在的話,是否唯一?
	3. 如果店在砌部、巷磨万?
	關於第一個問題,其實是很簡單心,剛剛我們將 R 婆 Muxin (IR)
	做了烟柳熙 R中的倒转是在一定改在?2000的有利的。
	同構的理话、零矩阵 onen也 为有 inverse matrix, since
	$A O_{N\times N} = O_{N\times N} A = O_{N\times N} \forall A \in M_{N\times N}(\mathbb{R})$
	产于WOnxn 並制有Thuexse matrix,担追也粉步出另一個問題:
,	4. 有物有部产活判别矩阵有剂有inverse matrix ?
	3,4 這面個問題、移動再誤、我們多蘇蘇及.
	matrix of A.
	proof of uniqueness: 雅
	\Rightarrow AB = BA = In. AC = CA = In.
	Thon
	$B = I_n B = (CA)B = C(AB) = CI_n = C$
	\Rightarrow B = C.
)	Definition 34: If AT exists, we say that A is invertible (可逆可)
)	Remark 35: (1) A to invertible \iff A to invertible,
	in fact, $(A^{-1})^{-1} = A$.
	(2) If A is invertible, the one and only one solution to Ax = b
)	$is \times = A^{-1}b$.
	所以 A×=b 的友友商业各乘上AT即可得.
	這是解稿#我務立方程,颜前才想之一.

(3) If there is a nonzero vector x s.t. Ax = 0, then A cannot have an inverse. 這個話果可以由(2) 得未、 HA 為 invertible. Ax = O 有 0 座 -解 x = A o = o, 题 然 矛 面. Lemma 36: (1) $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible \iff ad - bc \neq 0. Moreover, $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d - b \\ -c & a \end{pmatrix}$ (追是 axa matinx 立反矩陣的公式) (a) $A = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$ has an inverse \iff $d_1, d_2, \dots, d_n \neq 0$. Moreover, $A^{-1} = \begin{bmatrix} 1/d_1 & 0 & 0 \\ 0 & 1/d_2 & 0 \\ 0 & 1/d_n \end{bmatrix}$ Example 37' (1) $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ $A^{-1} = \frac{1}{1 \times 5 - \partial \times 3} \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} = -\begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$ (2) $A = \begin{bmatrix} 1 & 3 & 0 \\ 5 & 5 \end{bmatrix}$, then $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/5 & 1 \end{bmatrix}$ (3) $B = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 15 & not invertible. \end{bmatrix}$

Proposition 38: A. B & Mn×n (IR): invertible => AB: invertible and (AB) = BA-1 (AB)(BTAT) = A (BBT)AT = A InAT = AAT = In $(B^{T}A^{-1})(AB) = B^{T}(A^{T}A)B = B^{T}I_{n}B = B^{T}B = I_{n}$ ⇒ (AB) = B-A-1 Corollary 39: E. Es. Es. -- Em & Minxin (IR). invertible ⇒ EI Ez --- Em: invertible and (E, E2 --- Em) = Em --- EZ E, 注意顺序,顺序必须反過来 Remark 40: non-singular (非) 要 矩 阵) = invertible = non-sero determinant (引引引 + 0) 至部一部 invekse matrix 的方法,我們的原身来診 Definition 41: The transpose (轉置矩阵) AT of an mxn matrix A is the nxm matrix obtained from A interchanging the rows with columns; that is, (AT) = (1(TA) $\forall 1 \leq i \leq n, 1 \leq j \leq m.$ (打引)部 調) Example 42: $\begin{pmatrix} 1 & 3 & 4 & -1 \\ 2 & -1 & 0 & 1 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 0 \\ -1 & 1 \end{pmatrix}$ Proposition 43: A, B & Mmxn (R). C & Mnxp (R). Then (1) $(A + B)^T = A^T + B^T$ $(2) (A^T)^T = A.$

(3) (Ac)	$T = C^T A^T$	(- 3	清浓强点	切調)			Julie.	
Proof,	(8)	AC)T)	= (AC)jî = =	<u>n</u> Ajk	Ckî			
			$= \sum_{k=1}^{n}$	(C ^T);k	(A ^T),	= (C ^T	A ^T)ij		
		-	+ . +	₩ 1	≤ì≤ P	'. ı≤j≤	m		
		C) ^T = C							
Propos	sition 44:	$A \in M$ (A^T)	$n \times n (\mathbb{R}).$ $T = (A)$						
1.0	e., the in	nverse of			nopose	of A.			
proof:		A ^T · (A							
		Prop		9 A) =	= I _n =	= In			
31		$(A^{-1})^{T} \cdot A^{T} = (A^{T})^{-1} = (A^{T})^{-1$							