Introduction to Residual Neural Network (ResNet)

Lu Lu

Jan 25, 2019 @Crunch Seminar

- Background
- Residual neural network
- Variants of residual blocks
- Some analysis

Why Deep Neural Networks?

- Shallow NNs (single hidden layer)
 - ▶ ¹Universal approximation theorem (uniformly)
 - $^2\epsilon^{-d/n}$ neurons can approximate any C^n -function on a compact set in \mathbb{R}^d with error ϵ
- ▶ Deep NNs: better than shallow NNs (of comparable size)
 - ³Exists a function expressible by a 3-layer NN, which cannot be approximated by any 2-layer network (unless exponentially large)
 - $ightharpoonup 4 \frac{\text{size}_{\text{deep}}}{\text{size}_{\text{shallow}}} \approx \epsilon^d$

¹Cybenko, Math. Control Signals Syst., 1989; Hornik et al., Neural Netw., 1989.

²Mhaskar, Neural Comput., 1996.

³Eldan & Shamir, COLT, 2016.

⁴Mhaskar & Poggio, Anal. Appl., 2016; Mhaskar et al., AAAI, 2017; Poggio et al., IJAC, 2017.

"In theory, theory and practice are the same. In practice, they are not." — Albert Einstein?

- Background
- ► Residual neural network
- Variants of residual blocks
- Some analysis

Residual Neural Network⁵

- ▶ Deep networks are hard to train: vanishing gradients
- Core idea: "identity shortcut connection" that skips one or more layers
- ► Widely used: simple & powerful

Figure: A residual block

⁵He et al., CVPR, 2016.

Residual Neural Network

Residual Neural Network

- $ightharpoonup \mathcal{H}(\mathbf{x}) = \mathcal{F}(\mathbf{x}) + \mathbf{x} \Rightarrow \mathcal{F}(\mathbf{x}) = \mathcal{H}(\mathbf{x}) \mathbf{x} \text{ (residual)}$
- Hypotheses: the residual may be an easier function to fit

\mathcal{F} ?

- ▶ If \mathcal{F} has two layers, $\mathcal{F}(\mathbf{x}) = W_2 \sigma(W_1 \mathbf{x})$
- ▶ If \mathcal{F} has one layers, $\mathcal{F}(\mathbf{x}) = W_1\mathbf{x}$, $\mathcal{H}(\mathbf{x}) = W_1\mathbf{x} + \mathbf{x} = (W_1 + 1)\mathbf{x}$. No advantage!

Figure: A residual block

- Background
- ► Residual neural network
- Variants of residual blocks
- Some analysis

Variants of Residual Blocks⁶

⁶He et al., ECCV, 2016.

Variants of Residual Blocks

Accuracy can be gained more efficiently by increasing the cardinality than by going deeper or wider.

Figure: ResNeXt⁷: split-transform-merge

Variants of Residual Blocks

Figure: DenseNet⁸

⁸Huang et al., CVPR, 2017.

- Background
- ► Residual neural network
- Variants of residual blocks
- Some analysis

Unraveled View⁹

$$y_3 = y_2 + f_3(y_2)$$

$$= [y_1 + f_2(y_1)] + f_3(y_1 + f_2(y_1))$$

$$= [y_0 + f_1(y_0) + f_2(y_0 + f_1(y_0))] + f_3(y_0 + f_1(y_0) + f_2(y_0 + f_1(y_0)))$$

 2^n paths connecting input to output layers

(a) Conventional 3-block residual network

⁹Veit et al., NIPS, 2016.

Ensemble-like Behavior¹⁰

- Lesion study: randomly deleting several modules
- Paths do not strongly depend on each other

¹⁰Veit et al., NIPS, 2016.

Vanishing Gradients?¹¹

- ► The effective paths are relatively shallow
- Only the short paths contribute gradients
- ResNet does not resolve vanishing gradients by preserving gradient flow throughout the entire network. Rather, they enable very deep networks by shortening the effective paths.

¹¹Veit et al., NIPS, 2016.

Universal Approximation

Recall¹²:

▶ To approximate any continuous function $[0,1]^d \to \mathbb{R}$ by ReLU NN: minimal width is d+1

ResNet with one hidden neuron:

$$\mathcal{H}(\mathbf{x}) = \mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \cdot \mathbf{x} + b) + \mathbf{x}$$

▶ Identity map (d dim) + one hidden neuron = d + 1 units

ResNet with one neuron per hidden layer: universal approximation (in L^1) for any Lebesgue-integrable function as the depth $\to \infty$.¹³

¹²Hanin et al., arXiv, 2017.

¹³Lin & Jegelka, NIPS, 2018.

Why Easier to Train?

- 2D visualization of the loss surface by "filter normalization" method¹⁴
- ▶ BoostResNet¹⁵: a training algorithm (non-differentiable), training error decays exponentially with depth

¹⁴Li et al., NIPS, 2018.

¹⁵Huang et al., ICML, 2018.

- Background
- ► Residual neural network
- Variants of residual blocks
- Some analysis

Cerebral Cortex

- Cajal Ramon (the father & the mother of modern neuroscience)
- Pyramidal cells (1888)

