الإجابة النموذجية لموضوع الحقار مادة: العلوم الفيزيائية الشعب (ن): على تجريبية // بكالوريا: 2019

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عاصر الإباب (العوصوح الاون)
	3×0.25	u_{C} التمرين الأول: (06 نقاط) u_{R} التمرين الأول: ($i<0$) لقاطي لدارة التفريغ الكهربائية المنمذجة للظاهرة $i<0$) الموصوفة. $i<0$
	4×0.25	$i(t)$ التفاضلية لتطور شدة التيار $i(t)$ عدد $i(t)$ التيار أنية التفاضلية لتطور شدة التيار $u_C(t) + u_R(t) = 0$ عدد $u_C(t) + u_R(t) = 0$ الكهربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ او $u_C(t) = \frac{1}{C} \cdot q(t)$ المعادلة بالنسبة للزمن $u_R(t) = R \cdot i(t)$ عدد $u_R(t) = R \cdot i(t)$ المعادلة بالنسبة للزمن $u_R(t) = R \cdot i(t)$
	4×0.25	نشتق $i(t)=-I_0\cdot e^{-\frac{t}{\tau}}$. كل للمعادلة التفاضلية السابقة: $i(t)=-I_0\cdot e^{-\frac{t}{\tau}}$. عوض في المعادلة التفاضلية السابقة $i(t)=\frac{I_0}{dt}\cdot e^{-\frac{t}{\tau}}$ ومنه $i(t)=-I_0\cdot e^{-\frac{t}{\tau}}$
5	3×0.25	1.4.1 باستغلال البيان (الشكل 2) لتستنتج قيمة كل من: $I_0 = I_0 = I_0$ التيار الكهربائي العظمى I_0 : $I_0 = 2 \times 10^4 A$ عند اللحظة $I_0 = -2 \cdot 10^4 A$ عند اللحظة $I_0 = -2 \cdot 10^4 A$ ومنه $I_0 = -2 \cdot 10^4 A$ عند الزمن $I_0 = -2 \cdot 10^4 A$ عند اللحظة $I_0 = -1 \cdot 10^4 A$ عند اللحظة $I_0 = I_0 = -1 \cdot 10^4 A$ عند اللحظة $I_0 = I_0 = I_0 = I_0$ المعنى عند اللحظة $I_0 = I_0 = I_0 = I_0$ الزمن $I_0 = I_0 = I_0 = I_0$ المعنى عند المبدأ.
	4×0.25	$E=R\cdot I_0\Rightarrow R=rac{E}{I_0}=rac{10^8}{2\cdot 10^4}=5000\Omega=rac{0.25}{5k\Omega}:R$ قيمة $ au=R\cdot C\Rightarrow C$ $ au=\frac{5\cdot 10^{-5}}{R}$ $ au=\frac{10^8}{5\cdot 10^{-5}}$ $ au=\frac{0.25}{5\cdot 10^{-5}}$ $ au=\frac{0.25}{5\cdot 10^{-5}}$ $ au=\frac{0.25}{5\cdot 10^{-5}}$ $ au=\frac{0.25}{5\cdot 10^{-5}}$
	0.5	5.1. بعض قواعد الحماية من البرق: نكر قاعدتين على الاقل - تجنب التواجد في المرتفعات العالية عند حدوث البرق تجنب التواجد قرب الأبراج المعدنية تجنب التواجد قرب مصادر المياه تجنب التواجد قرب مصادر المياه

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية الشعب(ة). علوم تحريبية// بكالوريا: 2019

العلامة		/ t &ti = ** ti\ I 1 kti = 1*-
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
1	2×0.25	1.2. تحدید نمط الاهتزاز واستنتج قیمة شبه الدور T : - نمط الاهتزاز: اهتزازات کهربائیة حرة متخامدة - استنتاج قیمة شبه الدور T : $0.2 ms$ T : $0.2 ms$ $0.2 ms$
	2×0.25	$T pprox T_0$ قيمة ذاتية الوشيعة L باعتبار أن $T pprox T_0$ قيمة ذاتية الوشيعة L باعتبار أن $T pprox T_0 = 2 \cdot \Pi \sqrt{L \cdot C} \Rightarrow L$ $\frac{T^2}{4 \cdot \Pi^2 \cdot C} \cdot \frac{4 \cdot 10^{-8}}{40 \cdot 10^{-8}}$ 0,1H
	0.25	التمرين الثاني: (07 نقاط) 1.1. الحمض الضعيف: يكون انحلاله في الماء وفق تفاعل غير تام(محدود).
5.25	4×0.25	2.1. انسب لكل محلول قيمة الـ pH الموافق له مع التبرير . كل المحاليل لها نفس التركيز : الحمض الأقوى الأكثر انحلال) يوافق قيمة pH أقل .0.25 كل المحاليل لها نفس التركيز : الحمض الأقوى الأكثر انحلال) يوافق قيمة pH أقل .3x0.25 $pH_3 = 3,2$ يوافق $pH_3 \cdot pH_2 = 2,9$ يوافق $pH_3 \cdot pH_3 = 3,2$ يوافق $pH_3 = 3,2$
	4×0.25	HA_1 عمض قوي: $ HA_2 = HA_1 = HA_2 $ وين $HA_3 = HA_2 = HA_3$ وين $HA_3 = HA_3 = HA_3$ $HA_3 = HA_3 = HA_3$ وين $HA_3 = HA_3 = HA_3 = HA_3$ وين $HA_3 = HA_3 = $
	0.25	$Ka = \frac{\left[H_3O^+\right]_{eq}\cdot\left[A^-\right]_{eq}}{\left[AH\right]_{eq}} : HA(aq)/A^-(aq)$ غبارة ثابت الحموضة 4.1 د عبارة ثابت الحموضة 3.1 للثنائية
	4×0.25	$: pH = -\frac{1}{2}\log[HA]_{eq} + \frac{1}{2}pKa$ البيان أن عبارة اله pH تعطى بالعلاقة pH عبارة اله pH عبارة اله pH عبارة اله pH عبارة اله عبارة اله pH عبارة اله عبارة اله pH عبارة اله اله عبارة اله pH عبارة اله pH اله pH اله اله عبارة اله اله عبارة اله pH اله اله عبارة اله
	3×0.25	$1.6.1$. ارفاق كل منحنى بالحمض الموافق له مع التعليل: 0.25 HA_3 وبالتالي: HA_3 مضان ضعيفان و HA_3 أكثر انحلال من HA_3 فإن HA_3 وبالتالي: المنحنى (2) يوافق HA_3 والمنحنى (1) يوافق HA_3 والمنحنى

0.25 0.25

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية الشعب(ة). علوم تحريبية// بكالوريا: 2019

العلامة		/ * E* .	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		PKa من المنحنين PKa لكل ثنائية PKa لكل ثنائية PKa من المنحنين PKa من المنحنين PKa البيان نقوم بتمديد المنحنيين الى غاية التقاطع مع محور التراتيب. $pH_1 = \frac{1}{2} pKa_1 = 2,4 \Rightarrow pKa_1 = 2 \times pH_1 4,8 \square$	
	4x0.25	$pH_2 = \frac{1}{2}pKa_2 = 1,9 \Rightarrow pKa_2 = 2 \times pH_2$ 3,8 ②	
	2×0.25	1.2. الوظيفة الكيميائية: إسترية. 0.25 اسم المركب العضوي الناتج: إيثانوات الإيثيل. 0.25	
1.75	3×0.25	0.25. سرعة اختفاء الحمض عند اللحظة $t=10min$ برسم المماس وحساب الميل 0.25. $v_{acide} = -\frac{dn_{acide}}{dt} = 10^{-2} mol \cdot min^{-1}$ استنتاج سرعة التفاعل عند نفس اللحظة: $v = v_{acide} = 10^{-2} mol \cdot min^{-1}$	
	2×0.25	2.2.2 العوامل التي تؤثر في سرعة التحول الحادث: درجة الحرارة والوسيط.	
	0.5	التمرين التجريبي: (07 نقاط) 1. المرحلة الأولى(المسار AB): 1.1. تعريف المرجع الغاليلي: هو كل مرجع يتحقق فيه مبدأ العطالة.	
	4×0.25	2.1. حساب قيم السرعة اللحظية: $v_3 = \frac{G_2G_4}{2 \cdot \tau} = \frac{1,8 \times 4}{1,6} = 4,5 m \cdot s^{-1} : G_3$ 2.2. عند الموضع $v_5 = \frac{G_4G_6}{2 \cdot \tau} = \frac{3 \times 4}{1,6} = 7,5 m \cdot s^{-1} : G_5$ 2.2. عند الموضع $v_7 = \frac{G_6G_8}{2 \cdot \tau} = \frac{4,2 \times 4}{1,6} = 10,5 m \cdot s^{-1} : G_7$ 2.3. عند الموضع $v_7 = \frac{G_6G_8}{2 \cdot \tau} = \frac{4,2 \times 4}{1,6} = 10,5 m \cdot s^{-1} : G_7$	
	2x0.25	بيان تطور السرعة اللحظية بدلالة الزمن $v(m \cdot s^{-1})$ بيان تطور السرعة اللحظية بدلالة الزمن $v(m \cdot s^{-1})$ ولائم المعالمة المع	

تابع للإجابة النموذجية لموضوع اختبار مادن العلوم الفيزيائية الشعب(ة). علوم تحريبية // بكالوريا: 2019

العلامة		عناصر الإجابة (الموضوع الأول)	
مجموع	مجزأة	عفاصر الإنجابة (الموضوع الاون)	
	3×0.25	0.25 $a = \frac{\Delta v}{\Delta t} = 1,88 m \cdot s^{-2}$: قيمة التسارع a بيانيا: 4.1	
		 طبیعة الحرکة: حرکة مستقیمة متسارعة بانتظام. 	
		$:G_{\scriptscriptstyle 8}$ و $:G_{\scriptscriptstyle 0}$ حساب المسافة المقطوعة بين الموضعين.	
	0.5	$t=0s$ بيانيا: المسافة G_0G_8 قيمتها تساوي عدديا مساحة المثلث المحصور بين اللحظتين –	
		$G_0G_8 = \frac{12 \times 6, 4}{2} = 38, 4m$ و $t = 6, 4s$ و بالتالي $t = 6, 4s$	0.25
		\overrightarrow{R} : $a_{\scriptscriptstyle G}$ عبارة التسارع : $a_{\scriptscriptstyle G}$	
*		الجملة المدروسة: متزحلق	
4.75		المعلم: سطحي أرضي نعتبره عطاليا. 0.25	
1.70		بتطبيق القانون الثاني لنيوتن لمركز عطالة P	
	5x0.25	0.25 $\sum \vec{F}_{ext} = m \cdot \vec{a}_G$ الجملة	
		$a_G' = g \cdot \sin \alpha$ بالإسقاط على محور الحركة: $\overrightarrow{P} + \overrightarrow{R} = m \cdot \overrightarrow{a}_G'$	
		$a'_G = g \cdot \sin \alpha = 9,80 \times \sin(41^\circ) = 6,4 m \cdot s^{-2}$).25
	0.5	2.6.1 تبرير اختلاف قيمتي التسارع: القيمة النظرية للتسارع أكبر من القيمة التجريبية يعود	
		الى وجود قوى معيقة للحركة 0.25	
		G الحصاء وتمثيل القوى الخارجية المطبقة على مركز عطالة الجملة:	
		$ ightharpoonup ec{R}$ قوة الثقل $ec{p}$ قوة الثقل $ec{p}$ قوة الثقال $ec{p}$ أن	
	3×0.25	\vec{f} 0.25 \vec{R} على المتزحلق – 0.25 قوة رد فعل السطح الأفقي على المتزحلق	
2.25		\overrightarrow{P} 0.25 \overrightarrow{f} قوة الاحتكاك \overrightarrow{P}	
		→	
		2.2. ايجاد شدة القوة \overline{f} بتطبيق معادلة انحفاظ الطاقة على الجملة المدروسة:	
	5x0.25	$E_f = E_i + E_{re} - E_{ced} \Rightarrow E_i E_{ced} 0$ 2x0.25	
		$\Rightarrow \frac{1}{2}mv_B^2 = f \cdot BC \qquad 2x0.25$	
		$\Rightarrow f 420N 0.25$	
		ملاحظة: تغيير الجملة المدروسة والنتيجة صحيحة 0.50	

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة الموضوع الثاني)
		التمرين الأول: (06 نقاط)
		1. أنواع التفككات وتحديد الجسيمات:
0.75	3×0.25	$lpha$ و هو نواة الهليوم 4He و هو نواة الهليوم $lpha$
		و التفكك eta^- جسيم له مواصفات الالكترون $ ho^-$ جسيم له مواصفات الالكترون $ ho^-$
		و هو البوزيتون $e^{0}_{+1}e^{0}$ و هو البوزيتون eta^{+}
		1.2. استنتاج العددين A و Z وكتابة رمز النواة الموافقة:
	3×0.25	من المخطط: $N = 16$ ، $Z = 16$ من المخطط
	3^0.23	A=32 ومنه $A=32$ لدينا $A=N+Z$
		و منه رمز النواة 3^{22}_{16} 0.25
1.5		2.2. معادلة التفكك وتحديد نوع الإشعاع:
	3×0.25	0.25 $_{15}^{32}P \rightarrow _{16}^{32}S _{Z}^{A}X$
	3×0.23	ر بتطبيق معادلة الانحفاظ : $A=0$ و $Z=-1$ و منه المعادلة $P o {32 \over 15} P o {32 \over 15} $
		$ ho^-$ نوع الإشعاع هو $ ho^-$ نوع الإشعاع
		1.3. حساب عدد الأنوية المتواجدة في الجرعة:
	2×0.25	0.25 $N_0 = n_0.N_A$
		$N_0 = 3.12 \times 10^{-10} \times 6.02 \times 10^{23} = 1.88 \times 10^{14} $ noyaux 0.25
		2.3. حساب مدة زوال مفعول الجرعة:
2	6×0.25	$\frac{N}{N_0} = e^{-\lambda t}$ \rightarrow t $\frac{1}{\lambda} \ln \frac{N_0}{N}$ 0.25 $N = N_0 e^{-\lambda t}$
		$t = \frac{t_{1/2}}{\ln 2} \ln \frac{N_0}{N} \qquad 0.25$
		ميث عدد الأنوية المتبقية $N = (100 - 99)\%$ ميث عدد الأنوية المتبقية معدد الأنوية المتبقية $N = (100 - 99)\%$
		$t = \frac{14.32}{\ln 2} \ln 100 = 95 jours$ تصبح $t = \frac{14.32}{\ln 2} \ln 100 = 95 jours$ المقلوب 100 وعليه فإن بعد 95 يوما يزول مفعول الجرعة 0.25
		وعليه فإن بعد 95 يوما يزول مفعول الجرعة 0.25

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
1.75	3×0.25	$^{32}_{15}P$ و $^{30}_{15}P$
	4×0.25	0.25 $\frac{E_{\ell}}{A} {30 \choose 15} = \frac{242,926}{30} = 8,097 MeV / nuc$.2.4 $\frac{E_{\ell}}{A} {32 \choose 15} = \frac{263,158}{32} = 8,224 MeV / nuc$ النواة الأكثر استقرارا هي $\frac{32}{15} P = \frac{32}{15} P = \frac{32}{15} P$ التعليل: $\frac{E_{\ell}}{A} {32 \choose 15} > \frac{E_{\ell}}{A} {30 \choose 15} > \frac{E_{\ell}}{A} = \frac{E_{\ell}}{A} {30 \choose 15} > \frac{E_{\ell}}{A} = \frac{E_{\ell}}{A} {30 \choose 15} > \frac{E_{\ell}}{A} > \frac{E_{\ell}}{A} = \frac{E_{\ell}}{A} = \frac{E_{\ell}}{A} = \frac{E_{\ell}}{A} = \frac{E_{\ell}}{A} $
0.25	0.25	التمرين الثاني: (07 نقاط) أولا: دراسة الحركة الاهتزازية للنواس البسيط أولا: دراسة الحركة الاهتزازية للنواس البسيط 1. تعريف دور النواس البسيط: زمن اهتزازة كاملة. ثقبل صبغ أخرى للتعبير عن الدور
0.25	0.25	0.25 $T_0 = \frac{t}{10} = 1,4s$: قيمة الدور الذاتي: 2.
0.75	3×0.25	$T_0=2\pi\sqrt{rac{\ell}{g}}$ أو إلغاء الخاطئة منها $T_0=2\pi\sqrt{rac{\ell}{g}}$ أو إلغاء الخاطئة منها $T_0=2\pi\sqrt{rac{\ell}{g}}$ بما أنّ للدور $T_0=[T_0]=\left[rac{l}{g} ight]^{\frac{1}{2}}=rac{[l]^{\frac{1}{2}}}{[g]^{\frac{1}{2}}}=rac{L^{\frac{1}{2}}.T}{L^{\frac{1}{2}}}=T$
0.5	2×0.25	طول النواس البسيط. $\ell = \frac{T_0^2 \cdot g}{4\pi^2} \approx 0.5 m$
1	4×0.25	5 - الدور V يتعلق بالكتلة M

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية الشعب(ة). علوم تحربية// بكالوريا: 2019

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
2	8×0.25	المعادلتين الزمنيتين للحركة قذيفة المعادلتين الزمنيتين للحركة: الجملة المدروسة: الكرية المحملة المدروسة: الكرية المرجع المناسب: السطحي الأرضي المعتبر غاليليا 0.25 0.25 0.25 0.25 </th
1	0.25 3×0.25	0.25 $y = \frac{g}{2v_0^2}.x^2$: معادلة المسار: $x^2 = \frac{g}{2v_0^2}.x^2$: معادلة المسار: $y = h - l = 1m$ 0.25 $y = h - l = 1m$ 0.25 $y = \frac{1}{2}.g.t^2 \rightarrow t = \sqrt{\frac{2.y}{g}} \approx 0,45s$ 0.25 $x = v_0.t \approx 0,14m$ $x = v_0.t \approx 0,14m$ $x = v_0.t \approx 0,14m$
1.25	5x0.25	E. خصائص شعاع السرعة: E المبدأ: موضع السقوط E المبدأ: موضع السقوط E المبدأ: موضع السقوط E الحامل: مستقيم مماس للمسار في الموضع v_E الاتجاه: يجب تحديد الزاوية التي يصنعها الشعاع المحصل v_E مع المحور الأفقي v_E و v_E

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	كالفر الإجاب (الموصوح الثاني)
0.50	2×0.25	التمرين التجريبي: (07 نقاط) أولا: دراسة تفاعل الكحول (B) مع شوارد البرمنغنات 1. المؤكسد: هو كل فرد كيميائي يكتسب الكترون أو أكثر خلال تحول كيميائي. 0.25
		المرجع: هو كل فرد كيميائي يفقد الكترون أو أكثر خلال تحول كيميائي. 0.25. 2. المعادلتين النصفيتين والثنائيتين Ox/Red:
1	4×0.25	0.25 C_3H_6O/C_3H_8O 0.25 $C_3H_8O=C_3H_6O+2H^++2\acute{e}$ م.ن للأكسدة : من للإرجاع: MnO_4^-/Mn^{2+} 0.25 $MnO_4^-+8H^++5\acute{e}=Mn^{2+}(aq)+4H_2O(l)$ التفاعل الحادث تفاعل أكسدة إرجاع لأن هناك انتقال في الإلكترونات.
0.25	0.25	3. دور حمض الكبريت المركز هو توفير شوارد H_3O^+ اللازمة للتفاعل ولا يُعتبر وسيطا لأن H_3O^+ تشارك في التفاعل.
0.75	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,25	$n_f(B)=50$ التقدم النهائي x_f والتحقق أنّ التفاعل تام: $n_f(B)=50$ التقدم لدينا $n_f(B)=n_0(B)-5$ ومن المنحنى لدينا $x_f=2,5$ ومنه نجد $x_f=2,5$
1,50	0,25	بما أن $x_f = x_{max}$ فإن التفاعل تام. 0.25. عريف زمن نصف التفاعل $t_{1/2}$ هو المدة الزمنية اللازمة لبلوغ تقدم التفاعل نصف قيمته الأعظمية. 0.25
	0,25	$t_{1/2}=2,4min$ وبالإسقاط نجد $n_{B}(t_{1/2})=rac{n_{0}(B)+n_{f}(B)}{2}$ وبالإسقاط نجد ويمة ويمة العلاقة ويما العلاقة ويما العلاقة العلاقة ويما
	0,50	: $t=0$ عند اللحظة (B) عند الكحول (B) عند الحجمية لاختفاء الكحول (B) عند اللحظة $v_{Vol}(B) = -\frac{1}{V_T} \cdot \frac{dn(B)}{dt}$, $v_{Vol(B)}(0) = -\frac{1}{0,06} \cdot \frac{0-62,5}{18-0} = 57,87 \text{mmol} \cdot L^{-1} \text{min}^{-1}$

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية الشعب(ة). علوم تحريبية// بكالوريا: 2019

العلامة		عناصر الإجابة (الموضوع الثاني)	
مجموع	مجزأة	عناصر الإجابة (الموصوع الناني)	
0.25	0.25	CH_3COOH ثانيا: دراسة تفاعل الكحول C_3H_8O مع حمض الايثانويك	
0,25	0,25	1. دور حمض الكبريت المركز: تسريع التفاعل ويُعتبر وسيطا. 0.25	
0.25	0,25	0.25 $C_3H_8O(l) + CH_3COOH(l) = CH_3COOC_3H_7(l) + H_2O(l)$: کتابة معادلة التفاعل 2.	
		3. جدول تقدم التفاعل:	
	0,50	ماء + إستر = حمض + كحول	
		كمية المادة (mmol) التقدم حالة الجملة	
0.75		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0,25	x_f $50-x_f$ x_f x_f x_f x_f	
		$x_{max} = 50$ ومنه: $x_{max} = 50$ ومنه: $x_{max} = 50$ ومنه: 0.25 ومنه: 0.25 ومنه: 0.25 ومنه: 0.25 ومنه: 0.25 ومنه: $x_{max} = 50$	
		1.4. البروتوكول التجريبي	
	0.70	نقسم المزيج الابتدائي بالتساوي على عدة انابيب اختبار، نسدها بإحكام ونضعها في حمام مائي	
	0,50	درجة حرارته ثابتة. نأخذ من حين لآخر أحد الأنابيب ونبرده ثم نعاير الحمض المتبقي بواسطة	
		0.25 محلول أساسي ذو تركيز مولي معلوم.	
		كمية الكحول المتبقية هي نفسها كمية الحمض المتبقية.	
1.50	0,25	$n_f(B) = 50 - x_f$ ايجاد قيمة التقدم النهائي x_f من جدول التقدم لدينا: x_f	
		ومن المنحنى لدينا: $n_f(B) = 20$ ومنه نجد: 0.25 $n_f(B) = 20$	
	0,25	التحقق أنّ التفاعل غير تام: بما أن $x_f < x_{max}$ فإن التفاعل غير تام. $x_f < x_{max}$	
	0,25	0.25 $r = 60\%$ و منه: $r = \frac{x_f}{x_{max}} \times 100$ دينا: .3.4	
	0,25	صنف الكحول (B) المستعمل: ثانوي 0.25	
0.25	0,25	5. يمكن تحضير الإستر الناتج بتفاعل تام: استعمال كلور الإيثانويل بدل حمض الإيثانويك.	