Add WeChat powcoder

COGNITIVE SCIENCE SPEAKER SERIES PRESENTS...

FB event: "Cognitive Science Speaker Series: Dr. Jackie Cheung"

AI IN THE WALD: CHALLENGES AND OPPORTUNIHITES://powcoder.com

Add WeChat powcoder

DR. JACKIE CHEUNG

November 19th 6PM via Zoom

Add WeChat powcoder

NOVEMBER 14 (2-5 PM EDT)

Assignment Project Exam Help

https://powcoder.com_competitive_programming_competitive_programming_competition_Add_WeChat powcoder

3-hour contest over zoom

10 problems ranging in difficulty

Great chance to apply COMP 251 theory

Amazon gift cards to be won!

BROUGHT TO YOU BY COMPETE MCGILL SIGN UP

Assignment Project Exam Help Add WeChat powcoder

COMP251: Amortized Analysis

https://powcoder.com

Add WeChat powcoder Jerôme Waldispühl

School of Computer Science
McGill University

Based on (Cormen et al., 2009)

Assignment Project Exam Help Add Wecharpoweder

- Analyze a sequence of operations on a data structure.
- We will talk about average cost in the worst case (i.e. not averaging Averaging the interiture of information of the physical p
- Goal: Show that the ugh word or dividual operations may be expensive, on average the cost per operation is small. Add WeChat powcoder
- 3 methods:
 - 1. aggregate analysis
 - 2. accounting method
 - 3. potential method (See textbook for more details)

Assignment Project Exam Help Assignment Project Exam Help Assignment Project Exam Help

Stack operations

- PUSH(S, x): O(1) each $\Rightarrow O(n)$ for any sequence of n operations.
- POP(S): O(1) each the of n operations.
- MULTIPOP(S,k): Add WeChat powcoder while $S \neq \emptyset$ and k > 0 do POP(S) $k \leftarrow k-1$

Running time of MULTIPOP?

Assignment Project Exam Help Running time of multiple operations

Running time of MULTIPOP:

- Let each PUSH/POP cost 1.
- # of iterations of **while** loop is min(s, k), where s = # of objects on stack. Therefore s is the stack in the stack in the stack. Therefore s is the stack in th

Sequence of *n* PUSH, PARABARER Aperations:

- Worst-case cost of MULTIPOP is O(n).
- Have *n* operations. Add WeChat powcoder
- Therefore, worst-case cost of sequence is $O(n^2)$.

But:

- Each object can be popped only once per time that it is pushed.
- Have $\leq n$ PUSHes $\Rightarrow \leq n$ POPs, including those in MULTIPOP.
- Therefore, total cost = O(n).
- Average over the *n* operations $\Rightarrow O(1)$ per operation on average.

AdBinary counter

- k-bit binary counter A[0..k-1] of bits, where A[0] is the least significant bit and A[k-1] is the most significant bit.
- Counts upward from 0.
- Value of counter is: X^{k-1} roject Exam Help
- Initially, counter value is 0, so A[0:k-1] = 0.

Add Example (1)

Let k=3

Counter	Α	
Value	210	cost
0	0 0 <u>0</u>	0

Assignment Project Exam Help

We underline the bits we will flip at the next increment

https://powcoder.com

Add WeChat powcoder

6 110 10

7 111 11

0 000 14

Cost of INCREMENT = Θ (# of bits flipped) **Analysis:** Each call could flip k bits,

so n INCREMENTs takes O(nk) time.

Assignment Project Exam Help Add Freehar polec(2)

Bit	Flips how often	Time in n INCREMENTs
0	Every time	n
A_{SS}^{1}	ignment Project Example 1/2 Project 1/2 Pr	
	https://powcoder.co	m
i 	Add WeChat powco	floor(n/2 ⁱ) oder
i≥k	Never	0

Thus, total # flips =
$$\sum_{i=0}^{k-1} \lfloor n/2^i \rfloor < n \cdot \sum_{i=0}^{\infty} 1/2^i = n \left(\frac{1}{1-1/2} \right) = 2 \cdot n$$

Therefore, n INCREMENTs costs O(n). Average cost per operation = O(1).

Assignment Project Exam Help Accounting method

Assign different charges to different operations.

- Some are charged more than actual cost.
- Some are charged less.

Amortized costA-sairgnunenteParajiget Exam Help

- When amortized cost is higher than the actual cost, store the difference on specific objects in the data structure as **credit**.
- Use credit later to day We operations whose actual cost is higher than the amortized cost.

But we need to guarantee that the credit never goes negative!

Differs from aggregate analysis:

- In the accounting method, different operations can have different costs.
- In aggregate analysis, all operations have same cost.

Assignment Project Exam Help Add Wechat poweder

Let $c_i = \cos t$ of actual ith operation. $\hat{c}_i = \operatorname{amortize} \operatorname{Broject} \operatorname{Exam} \operatorname{Help}$

Then require $\sum_{i=1}^{n} \frac{\text{https://powcoder.com}}{\text{Add}_{=1}^{i} \text{WeChat powcoder}}$

Total credit stored =
$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \ge 0$$

Assignment Project Exam Help Add WeChat Dowcoder

Operation	Actual cost	Amortized cost		
PUSH	1	2		
Pasignment Project Exam Help				
MULTIPORttp	s://poweboler.co	<u>m</u> 0		

Add WeChat powcoder Intuition: When pushing an object, pay \$2.

- \$1 pays for the PUSH.
- \$1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has \$1, which is credit, the credit can never go negative.
- Total amortized cost (= O(n)) is an upper bound on total actual cost.

Assignment Project Exam Help AdBinary counter

Charge \$2 to set a bit to 1.

- \$1 pays for setting a bit to 1 arm Help
 \$1 is prepayment for flipping it back to 0.
- Have \$1\text{to sed ip for eveley 1 cior the counter.}
- Therefore, credit ≥ 0.

Add WeChat powcoder

Amortized cost of INCREMENT:

- Cost of resetting bits to 0 is paid by credit.
- At most 1 bit is set to 1.
- Therefore, amortized cost ≤ \$2.
- For *n* operations, amortized cost = O(n).

Assignment Project Exam Help Adamic tables

Scenario

- Have a table (maybe a hash table).
- Don't know in advance how many objects will be stored in it.
- When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
 When it gets sufficiently small, might want to reallocate with
- When it gets sufficiently small, might want to reallocate with a smaller size. Add WeChat powcoder

Goals

- 1. O(1) amortized time per operation.
- 2. Unused space always ≤ constant fraction of allocated space.

Load factor α = (# items stored) / (allocated size)

Never allow $\alpha > 1$; Keep $\alpha > a$ constant fraction \Rightarrow Goal 2.

ATablehexpansion

Consider only insertion.

- When the table becomes full, double its size and reinsert all existing items.
- Guarantees that $\alpha \ge \frac{1}{2}$.
- Each time we insert an item into the table, it is an *elementary insertion*.

```
TABLE-INSERT (T, x) ment Project Exam Help
if size[T]=0
   then allocate trable Two with form
size[T] \leftarrow 1

if num[T] = size[T] dd WeChat powcoder
   allocate new-table with 2 · size[T] slots
    insert all items in table[T] into new-table
    free table[T]
    table[T] \leftarrow new-table
   size[T] \leftarrow 2 \cdot size[T]
insert x into table[T]
                                  (Initially, num[T] = size[T] = 0)
num[T] \leftarrow num[T] + 1
```

Aggregate analysis

- Cost of 1 per elementary insertion.
- Count only elementary insertions (other costs = constant).

 c_i = actual cost of ith operation

- If not full, c_i Assignment Project Exam Help
- If full, have i-1 items in the table at the start of the i^{th} operation. Have to copy all i https://pgwtendername.

Naïve: n operations $\rightarrow d \leftarrow (p) \times (p) \times$

$$c_{i} = \begin{cases} i & \text{if } i-1 \text{ is power of } 2\\ 1 & \text{Otherwise} \end{cases}$$

Total cost =
$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j = n + \frac{2^{\lfloor \log n \rfloor + 1} - 1}{2 - 1} < n + 2n = 3n$$

Amortized cost per operation = 3.

Assignment Project Exam Help Acquenting method

Charge \$3 per insertion of x.

- \$1 pays for x's insertion.
- \$1 pays for x to be moved in the future.
- \$1 pays for some etherent Project heven Help

Prove the credit nevertepes/negativeder.com

- size=m before and size=2m after expansion.
- Assume that the expansion is no credit available after the expansion.
- We will expand again after another *m* insertions.
- Each insertion will put \$1 on one of the m items that were in the table just after expansion and will put \$1 on the item inserted.
- Have \$2m of credit by next expansion, when there are 2m items to move. Just enough to pay for the expansion...