Math 445 Number Theory

October 00, 2004

We have seen (because there is a primitive root mod p^k for p an odd prime): Theorem: If p is an odd prime, $k \ge 1$, and (a,p)=1, then the equation $x^n \equiv a \pmod{p^k}$ has a solution $\Leftrightarrow a^{\frac{\Phi(p^k)}{(n,\Phi(p^k))}} \equiv 1 \pmod{\Phi p^k}$

But what about p=2? This case is a bit different, since for $k \geq 3$ there is no primitive root mod 2^k . But we can almost manage it:

Proposition: 5 has order $2^{k-2} = \Phi(2^k)/2 \mod 2^k$.

This is because $\operatorname{ord}_{16}(5) = 4 = 2 \cdot \operatorname{ord}_{8}(5)$, and so our earlier result tells us that it will keep rising by a factor of 2 ever afterwards. This in turn implies that

Proposition: If $k \geq 3$ and $(a, 2^k) = 1$ (i.e., a is odd), then $a \equiv 5^j$ or $a \equiv -5^j \mod 2^k$, for some $1 \leq j \leq 2^{k-2}$

This is because the integers $5^j: 1 \le j \le 2^{k-2}$ are all distinct mod 2^k , as are the $-(5^j): 1 \le j \le 2^{k-2}$, and they are distinct from one another, because mod 4, $5^j \equiv 1^j = 1$, and $-(5^j) \equiv -(1^j) \equiv -1 \equiv 3$, so the two collections have nothing in common. But together they account for $2^{k-2} + 2^{k-2} = 2^{k-1} = \Phi(2^k)$ of the elements relatively prime to 2^k , i.e., all of them. In particular, the representation of such an a is unique. With this in hand, we can show:

Theorem: If n is odd and (a,2)=1, then for every $k\geq 1$, $x^n\equiv a\pmod{2^k}$ has a solution.

To see this, note that $a \equiv \pm 5^j$ by the above result. If $a \equiv 5^j$, then as in the case of an odd prime, we simply <u>assume</u> that the solution x (since it also must have (x,2)=1) is $x=5^r$ for some r, and solve $5^{nr} \equiv 5^j \pmod{2^k}$ by solving $nr \equiv j \pmod{3^k}$ mod $\operatorname{ord}_{2^k}(5) = 2^{k-2}$ for r, which we can do, since $(n,2^{k-2})=1$. If $a \equiv -(5^j)$, then we just solve $y^n \equiv 5^j$ first; then since n is odd, x=-y will solve our equation; $x^n=(-y)^n=-y^n\equiv -(5^j)\equiv a$.

For even exponents, things are slightly more complicated.

Theorem: If $k \geq 3$, (a,2) = 1 and $n = 2^m \cdot d$ with d odd, $m \geq 1$, then $x^n \equiv a \pmod{2^k}$ has a solution $\Leftrightarrow a \equiv 1 \pmod{2^{m+2}}$.

- (\Rightarrow): If $x^n \equiv a \pmod{2^k}$ has a solution, then (x,2) = 1, so $x \equiv \pm 5^j \mod 2^k$ for some j. We may assume that $m \leq k-2$, otherwise $x^n = (x^{2^{k-2}})^s \equiv 1^s = 1$ for all x, so only $a \equiv 1$ will have a solution. So, since n is even, $a \equiv (\pm 5^j)^n = 5^{jn} = 5^{jd2^m} \equiv (5^{dj})^{2^m} \mod 2^k$, so this is also true mod 2^{m+2} . So $a \equiv x^n \equiv (5^{dj})^{2^m} = y^{2^m} \equiv 1 \mod 2^{m+2}$, since all (odd) integers have order, mod 2^{m+2} , dividing 2^m .
- (\Leftarrow): If $a \equiv 1 \pmod{2^{m+2}}$, then $a = 1 + N2^{m+2}$, so $a^{2^{k-m-2}} = (1 + N2^{m+2})^{2^{k-m-2}} = 1 + N2^k$ + higher powers of $2 \equiv 1 \pmod{2^k}$. But $a \equiv \pm 5^j \pmod{2^k}$, and we must have $\pm 1 = 1$, since $a \equiv 1 \pmod{4}$. So $a \equiv 5^j \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $a^{2^{k-m-2}} = 1 \pmod{2^k}$,