Online Policy Training vs Heuristic Search Using Reinforcement Learning to Avoid Dynamic Obstacles cs980 project

Tianyi Gu, Mostafa Hussein, Yishan Luo, Yuncong Zhou
University of New Hampshire

October 2, 2017

MOTIVATION

- ► Avoid dynamic obstacles is crucial
 - ► Autonomous vehicle navigation
 - ► Indoor robot navigation

ONLINE POLICY TRAINING

- ► Given start state, goal state, and static obstacles
- Compute online policy based on observation of dynamic obstacles

ONLINE POLICY TRAINING: MDP

► MDP:

► States: grid world states

► Actions: up, down, left, right

► Rewards: goal: 1, collision: -1000

► Transition: Unknown

ONLINE POLICY TRAINING: MDP

- ► MDP:
 - ► States: grid world states
 - ► Actions: up, down, left, right
 - ► Rewards: goal: 1, collision: -1000
 - ► Transition: Unknown
- ► Approach:
 - ▶ $TD(\lambda)$, Q learning, Sarsa
 - ► Monte Carlo Tree Search

ONLINE PATH PLANNING

- ► Real Time Heuristic Search
 - estimate obstacles' movement
 - ▶ deterministic problem with different cost function

ONLINE PATH PLANNING

- ► Real Time Heuristic Search
 - ► estimate obstacles' movement
 - ► deterministic problem with different cost function
- ► Approach:
 - ► Greedy, A*
 - ► LSS-LRTA*

EXPERIMENT

- ► Compare Policy Training vs Heuristic Search
- ► Theoretically prove the value functions are the same

