Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum

Úloha č. A7

Název úlohy: Pozitronová emisní tomografie

Jméno: Michal Grňo Obor: FOF

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů	
Práce při měření	0-3		
Teoretická část	0-2		
Výsledky a zpracování měření	0-9		
Diskuse výsledků	0-4		
Závěr	0-1		
Použitá literatura	0-1		
Celkem	max. 20		

Posuzoval: dne:

1 Pracovní úkoly

- 1. Poté, co vyučující umístí silnější zářič ²²Na do stojánku, změřte úhlové rozdělení koincidencí v oblasti úhlů potřebné pro nalezení polohy zářiče, doba měření 20s. Vysvětlete tvar naměřeného úhlového rozdělení, získané poznatky využijte při domácím zpracování.
- 2. Změřte četnost koincidencí pro úhly $\phi=60^\circ,\,90^\circ,\,120^\circ$ bez plechu a 120° s Pb plechem mezi detektory, doba měření 100s. Vysvětlete pozorované četnosti.
- 3. Poté, co vyučující přidá do krabičky druhý zářič, změřte úhlové rozdělení koincidencí s krokem 5°.
- 4. Zvolte aspoň 2 další vhodné úhly otočení krabičky ψ a opakujte měření 3).
- 5. Narýsujte přímky spojující detektory do obrázku připraveného u úlohy a odečtěte polohu průsečíku polohu zářiče vůči krabičce. Pozn.: Při volbě otočení krabičky ψ se můžete řídit polohou už zakreslených průsečíků.
- 6. Vzdálenost detektoru od zářiče zakresleného na obrázku porovnejte s měřením skutečné vzdálenosti.
- 7. Polohy zářičů vůči krabičce určujte pomocí vztahů a metod popsaných v návodu. Podle výsledků zpracování nakreslete obrázky analogické k obrázkům narýsoaným během praktika. Chyby polohy zářičů určete graficky

2 Teoretická část

Teorie[1]

Obrázek 1: Schéma koincidenčního měření, převzato z [1].

3 Výsledky měření

Naměřil jsem 3.

ψ	φ	$\Delta \varphi$
0	3.51	0.30
30	17.48	0.33
60	29.63	0.21
90	36.38	0.20

Tabulka 1: Úhly získané regresí

4 Diskuse

Bylo to špatně protože (2)

Obrázek 2: Naměřené koincidence, jednovzorkový setup

Obrázek 3: Naměřené koincidence, dvouvzorkový setup

ψ	φ_1	$\Delta \varphi_1$	φ_2	$\Delta \varphi_2$
0	-20.76	0.29	7.21	0.25
60	-21.59	0.25	21.14	0.18
90	-14.97	0.14	22.05	0.10

Tabulka 2: Úhly získané regresí

5 Závěr

Bylo to hezké. assadfasd

6 Literatura

Reference

[1] J. Doe, A7 – Pozitronová emisní tomografie. 3.10.2017.