Transformador no LTspice

Beleza pessoal! Vamos continuar nossa série de artigos para entender um pouco mais sobre o LTspice. Eu curto LTspice por ter uma interface muito simples e muito manuseável. Algumas desvantagens podem não ser um problema se você sabe dar a devida tratativa.

Como outros simuladores de circuitos o LTspice não tem o componente Transformador em sua biblioteca padrão, mas, há um comando especial para cria-lo rapidamente.

Se o lance é descomplicar, então...

O Transformador no LTspice é apenas um acoplamento de indutores, que no mundo real não deixa de ser o mesmo princípio. Você verá que é muito fácil e flexível a forma que o LTspice trata esse componente.

O Esquemático

Monte o circuito a seguir. Se necessário consulte o artigo anterior para entender o básico de como montar circuitos no LTspice.

ATENÇÃO! Um detalhe importante, caso contrário, ocorrerá um erro na simulação. Ao definir um valor para o indutor do primário é obrigatório colocar uma resistência em série com o indutor do primário de 0,01 Ohms, conforme mostrado a seguir.

Vamos Simula-lo!

Traço verde é V_{IN} e traço azul é V_{OUT}. O Transformador ainda não funcionou!

O agora o que faremos?

Vamos inserir o seguinte comando no esquemático 'K1 L1 L2 1', usando o botão [SPICE Directive]. O coeficiente de acoplamento K1 = 1, significa que não há perdas de linhas magnéticas, o que no mundo real não é verdadeiro. Observe que um pequeno circulo apareceu em cada indutor. Isto representa a fase do enrolamento do indutor, então, nesse caso eu deixei em fase. Você deixa conforme sua aplicação.

Vamos Simula-lo Novamente!

Funcionou! E criamos um Transformador isolador porque a relação entre as indutâncias do primário e secundário é um.

Relação de Espiras e Indutância

$$(Relação\ de\ Espiras)^2 = \frac{Indutância\ do\ Primário}{Indutância\ do\ Secundário}$$

$$\left(\frac{V_{PRIM \hat{A}RIO}}{V_{SECUND \hat{A}RIO}} \right)^2 = \frac{Indut \hat{a}ncia\ do\ Prim rio}{Indut \hat{a}ncia\ do\ Secund rio}$$

$$\frac{V_{PRIM \hat{A}RIO}}{V_{SECUND \hat{A}RIO}} = \sqrt{\frac{Indut \hat{a}ncia\ do\ Prim \hat{a}rio}{Indut \hat{a}ncia\ do\ Secund \hat{a}rio}}$$

Transformador Abaixador

Esse é um exemplo mais realístico, onde eu parametrizei um coeficiente de acoplamento de 80%, então, considero algumas perdas no acoplamento magnético. Também observe as relações entre as indutâncias do primário e secundário. Pelo cálculo teríamos uma redução de 3 vezes, mas, ainda deve ser considerado 80% de acoplamento que reduzirá mais a tensão no secundário.

É Isso Aí Pessoal! Espero que tenha descomplicado.

Vou parando por aqui. Gostou? Se sim, compartilhe e de seu feedback! Caso tenha dúvidas comente aqui embaixo.

Ismael Lopes