MATEMÁTICA UNINOVE

Módulo - VI

Progressões Aritméticas

Soma dos "n" primeiros termos de uma P.A.

Objetivo: Resolver situações problemas envolvendo a soma dos termos de uma P.A.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Problema proposto

Um relógio que toca um sino de hora em hora, o número de vezes correspondentes àquela hora, baterá de zero às 12 horas, x vezes. Calcule o dobro da terça parte de x.

Como você resolveria essa situação?

Ao final da aula você saberá resolver esse problema.

Introdução

Já vimos nas aulas anteriormente que uma P.A. (progressão aritmética) é toda sucessão de números que, a partir do segundo, a diferença entre cada termo e o seu antecessor é constante.

Então, se pedirmos para que você calculasse a soma dos 30 primeiros termos, ou dos 300 primeiros, como você faria?

Essas somas poderão ser simbolizadas por S_{30} (soma dos 30 primeiros termos), por S_{300} (soma dos 300 primeiros termos) ou por S_{n} (soma dos "n" primeiros termos). Vamos ver um exemplo:

(0, 2, 4, 6, 8, 10, 12, 14, 16, 18)

Essa sequência possui 10 termos, como podemos ver, em que $a_1=0, a_{10}=18$ e r=2. Para sabermos a soma desse exemplo, podemos calcular manualmente, ou seja, 0+2+4+6+8+10+12+16+18=90, mas se fosse pedido para somarmos os 145 primeiros termos, manualmente iria demorar muito, não é?

Será que só existe esse modo ou há um mais prático?

Observe que a soma do primeiro com o último termo dessa sequência é 18.

Agora veja a soma do segundo com o penúltimo 2 + 16 = 18 e a soma do terceiro com o antepenúltimo também, e assim por diante.

Note que a soma 18 apareceu exatamente 5 vezes. Ao invés de somarmos termo a termo, poderíamos somar 5 vezes o 18, ou seja, 5 x 18 = 90 (mesmo resultado).

Agora, pense! Por que apareceu cinco vezes a soma 18?

Como tínhamos 10 termos, é óbvio que a soma iria aparecer um número de vezes igual à metade do número de termos.

E agora, se fosse uma sequência com 200 elementos?

Deveríamos proceder da mesma maneira.

A soma do primeiro com o último iria se repetir por 100 vezes (metade de 200), portanto, matematicamente falando, teríamos:

$$S_{100} = (a_1 + a_{100}).50$$

Para concluir, se tivéssemos que calcular a soma dos elementos de uma P.A. com "n" termos, a soma do primeiro com o último iria se repetir por $\frac{n}{2}$ vezes. Então, poderemos escrever que a soma dos "n" primeiros termos dessa P.A. será dada por:

$$S_n = \frac{(a_1 + a_n).n}{2}$$

 $a_1 \rightarrow \acute{e}$ o primeiro termo da P.A.

 $a_n \rightarrow \acute{\text{e}}$ o último termo a ser somado na P.A.

 $n \rightarrow \acute{e}$ o número de termos a serem somados na P.A.

Exemplo 1

Calcule a soma dos 20 primeiros termos da P.A. seguinte:

Solução

Note que para a utilização da fórmula da soma dos termos é necessário conhecer o valor de a_1 e a_{20} .

$$a_1 = 5$$
; $r = 8 - 5 = 3$; $n = 20$

Precisamos determinar qual é o 20° termo dessa P.A. ou a_{20} . Para isso, iremos utilizar a fórmula do termo geral.

$$a_n = a_1 + (n - 1)$$
. r

$$a_{20} = 5 + (20 - 1)$$
. 3

$$a_{20} = 5 + 19.3$$

$$a_{20} = 62$$

Agora, poderemos utilizar a fórmula da soma dos "n" primeiros termos da P.A.

$$S_n = \frac{(a_1 + a_n) \cdot n}{2} \rightarrow S_n = \frac{(5 + 62) \cdot 20}{2} \rightarrow S_n = \frac{67 \cdot 20}{2} \rightarrow S_{20} = 670$$

Agora, com as informações acima, poderemos solucionar o problema proposto. Dessa forma, teremos que 0 hora o relógio baterá 12 vezes (você não achou que bateria 0 vezes, não é?).

1 hora o relógio baterá uma vez.

2 horas o relógio baterá duas vezes.

3 horas o relógio baterá três vezes.

12 horas o relógio baterá 12 vezes.

Logo, teremos a seguinte sequência (12, 1, 2, 3, 4, 5, ...,12).

A partir do segundo termo da sequência acima, temos uma P.A. de 12 termos, cujo primeiro é igual a 1, a razão é 1 e o último termo é 12.

Portanto, a soma dos termos dessa P.A. será:

$$S = (1 + 12) \cdot \frac{12}{2} = 13 \cdot 6 = 78$$

A soma procurada será igual ao resultado anterior mais as 12 batidas da zero hora. Logo, o número ${\bf x}$ será igual a ${\bf x}=78+12=90$.

O dobro da terça parte de **x** será: $2 \cdot \left(\frac{90}{3}\right) = 2 \cdot 30 = 60$, que é a resposta do problema proposto.

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

GIOVANNI, José Ruy; BONJORNO, José. *Matemática Completa*: ensino médio - 1º ano. 2. ed. São Paulo: Ática, 2005.

IEZZI, Gelson; DOLCE, Osvaldo. *Matemática Ciência e Aplicação*: ensino médio. 6. ed. São Paulo: Saraiva, 2010.

SÃO PAULO. Secretaria da Educação. *Caderno do professor - Ensino Médio.* São Paulo: Secretaria da Educação, 2011.

XAVIER, Claudio da Silva; BARRETO, Benigno Filho. *Matemática Aula por Aula*: ensino médio - 1 º ano. São Paulo: FTD, 2005.