Algunas soluciones de Taller 7

1. Sea $G=D_4=\{\rho_0,\rho_1,\rho_2,\rho_3,\mu_1,\mu_2,\delta_1,\delta_2\}$. Etiquete los vértices del cuadrado como 1,2,3,4, los lados como s_1,s_2,s_3,s_4 , las diagonales como d_1,d_2 , los ejes vertical y horizontal como m_1,m_2 , el centro del cuadrado como C y los puntos medios de los lados como P_1,P_2,P_3,P_4 como se muestra en la figura.

Sea $X=\{1,2,3,4,s_1,s_2,s_3,s_4,m_1,m_2,d_1,d_2,C,P_1,P_2,P_4\}$ y sea φ una acción de G en X descrita en la siguiente tabla:

	1	2	3	4	s_1	s_2	s_3	s_4	m_1	m_2	d_1	d_2	C	P_1]
$ ho_0$	1	2	3	4	s_1	s_2	s_3	s_4	m_1	m_2	d_1	d_2	C	P_1	
$ ho_1$	2	3	4	1	s_2	s_3	s_4	s_1	m_2	m_1	d_2	d_1	C	P_2	
$ ho_2$	3	4	1	2	s_3	s_4	s_1	s_2	m_1	m_2	d_1	d_2	C	P_3	
$ ho_3$	4	1	2	3	s_4	s_1	s_2	s_3	m_2	m_1	d_2	d_1	C	P_4	
μ_1	2	1	4	3	s_1	s_4	s_3	s_2	m_1	m_2	d_2	d_1	C	P_1	j
μ_2	4	3	2	1	s_3	s_2	s_1	s_4	m_1	m_2	d_2	d_1	C	P_3	
δ_1	3	2	1	4	s_2	s_1	s_4	s_3	m_2	m_1	d_1	d_2	C	P_2	j
δ_2	1	4	3	2	s_4	s_3	s_2	s_1	m_2	m_1	d_1	d_2	C	P_4	

1. Encuentre los conjuntos X_σ para cada $\sigma \in G$:

$$\circ \ X_{
ho_0} = X$$

$$\circ \ X_{\rho_1} = \{C\}$$

$$\circ \ X_{
ho_2} = \{m_1, m_2, d_1, d_2, C\}$$

$$X_{\rho_3} = \{C\}$$

$$\circ \ X_{\mu_1} = \{s_1, s_3, m_1, m_2, C, P_1, P_3\}$$

$$\circ \ X_{\mu_2} = \{s_2, s_4, m_1, m_2, C, P_2, P_4\}$$

$$\circ \ X_{\delta_1} = \{2,4,d_1,d_2,C\}$$

$$\circ \ X_{\delta_2} = \{1, 3, d_1, d_2, C\}$$

2. Los grupos de isotropía G_x para cada $x \in X$:

$$G_1 = \{\rho_0, \delta_2\}$$

$$\circ~G_2=\{
ho_0,\delta_1\}$$

$$G_3 = \{\rho_0, \delta_2\}$$

$$G_4 = \{\rho_0, \delta_1\}$$

$$G_{s_1} = \{\rho_0, \mu_1\}$$

$$G_{s_2} = \{\rho_0, \mu_2\}$$

$$G_{s_3} = \{ \rho_0, \mu_1 \}$$

$$\circ \ G_{s_4} = \{
ho_0, \mu_2\}$$

$$G_{m_1} = \{\rho_0, \rho_2, \mu_1, \mu_2\}$$

$$\circ \ G_{m_2} = \{
ho_0,
ho_2, \mu_1, \mu_2\}$$

$$\circ \ G_{d_1} = \{
ho_0,
ho_2, \delta_1, \delta_2 \}$$

$$\circ~G_{d_2}=\{
ho_0,
ho_2,\delta_1,\delta_2\}$$

$$\circ G_C = G$$

$$G_{P_1} = \{\rho_0, \mu_1\}$$

$$\circ \ G_{P_2} = \{
ho_0, \mu_2 \}$$

$$G_{P_2} = \{\rho_0, \mu_1\}$$

$$G_{P_4} = \{\rho_0, \mu_2\}$$

3. Las órbitas en X bajo D_4

$$\circ \{1, 2, 3, 4\}$$

$$\circ \{s_1, s_2, s_3, s_4\}$$

$$\circ \ \{m_1, m_2\}$$

$$\circ \{d_1, d_2\}$$

$$\circ$$
 $\{C\}$

$$\circ \{P_1, P_2, P_3, P_4\}$$

2. Sea X un G-conjunto.

4. Muestre que para cada $g\in G$ la función $\sigma_g:X\to X$ deginida por $\sigma_g(x)=gx$ para cada $x\in X$ es una permutación en X.

Partiendo de la definición, veamos que

$$\sigma_g: X o X \ x \mapsto qx$$

Es una función biyectiva:

• Inyectividad: Sean $\sigma_g(x)=\sigma_g(y)$, esto es $gx=gy\in X$. Como G es un grupo, $g^{-1}\in G$ y por tanto podemos usar $\sigma_{g^{-1}}:X\to X$ que sabemos es una función, por lo tanto tenemos que

$$egin{aligned} x &= \sigma_e(x) \ &= \sigma_{g^{-1}g}(x) \ &= \sigma_{g^{-1}}(\sigma_g(x)) \ &= \sigma_{g_{-1}}(\sigma_g(y)) \ &= \sigma_{g^{-1}g}(y) \ &= \sigma_e(y) \ &= y \end{aligned}$$

- Sobreyectividad: Sea $z\in X$, como $\sigma_{g^{-1}}:X o X$ es una función, $\sigma_{g^{-1}}(z)\in X$ y por tanto $\sigma_g(\sigma_{g^{-1}}(z))=z$.
- 2. Pruebe que la aplicación definida por $\phi:G\to S_X$ definida por $\phi(g)=\sigma_g$ es un homomorfismo tal que $\phi(g)(x)=gx$ Sea S_X el conjunto de todas las simetrías sobre X, veamos que ϕ define un homomorfismo:
- Sean $g_1,g_2\in G$,

$$egin{aligned} \phi(g_1g_2)(x) &= \sigma_{g_1g_2}(x) \ &= \sigma_{g_1}(\sigma_{g_2}(x)) \ &= \phi(g_1)\phi(g_2)(x) \end{aligned}$$

Ahora veamos que ϕ es un monomorfismo:

• Sean $g_1,g_2\in G$ tales que $\phi(g_1)=\phi(g_2)$, entonces $\sigma_{g_1}(x)=\sigma_{g_2}(x)$ para todo $x\in X$, esto es, $g_1x=g_2x$ para todo x y por tanto, $g_2^{-1}(g_1(x))=g_2^{-1}(g_2(x))$ luego $g_2^{-1}g_1(x)=e(x)$ y por tanto $g_2^{-1}g_1=e$, es decir $g_1=g_2$.

3. Sea $H \leq G$, definimos L_H como el conjunto de todas las clases laterales izquierdas de H. Muestre que L_H es un G-conjunto

Definamos la función φ dada por

$$arphi:G imes L_H o L_H\ (g,xH)\mapsto (gx)H$$

Veamos que φ define una accióñ de G sobre L_H :

• Sea xH una clase lateral en L_H , sabemos que

$$\varphi(e, xH) = e(xH)$$
$$= (ex)H$$
$$= xH$$

• Sean $g_1,g_2\in G$ y $xH\in L_H$,

$$egin{aligned} arphi(g_1g_2,xH) &= (g_1g_2x)H \ &= g_1[(g_2x)H] \ &= g_1[arphi(g_2,xH)] \ &= arphi(g_1,arphi(g_2,xH)) \end{aligned}$$

Así, se suplen las dos condiciones para que φ represente una acción y por tanto L_H es un G-conjunto.

4. Calcule todas las acciones del grupo \mathbb{Z}_3 sobre el conjunto \mathbb{Z}_2

- La acción trivial $arphi_0$ tal que $arphi_0(m,n)=n$, $orall m\in\mathbb{Z}_3$, $orall n\in\mathbb{Z}_2$.
- · La acción definida por

$$arphi: \mathbb{Z}_3 imes \mathbb{Z}_2
ightarrow \mathbb{Z}_2 \ (\overline{n}, \overline{m}) \mapsto \overline{n+m}$$

Usando la asociatividad de la suma en \mathbb{Z}_2 y que el $\overline{0}$ es neutro en ambos grupos.

Aquí no supe sacar más acciones de manera intuitiva.

Análisis más profundo:

Intentando asignar manualmente una imágen a cada elemento, primero comprendiendo a $\mathbb{Z}_3:=\{a:a^3=e\}$ y a $\mathbb{Z}_2:=\{a':(a')^2=e'\}$ vemos que es de la forma:

$$egin{aligned} arphi: \mathbb{Z}_3 imes \mathbb{Z}_2 &
ightarrow \mathbb{Z}_2 \ (e,e') &\mapsto e' \ (e,a') &\mapsto a' \ (a,e') &\mapsto ae' \ (a,a') &\mapsto aa' \ (a^2,e') &\mapsto a^2e' \ (a^2,a') &\mapsto a^2a' \end{aligned}$$

Dado que estamos trabajando con acciones y un grupo cíclico abeliano, sabemos que $\varphi(a^{n+1},x)=\varphi(a\cdot a^n,x)=\varphi(a,\varphi(a^n,x))$ por lo que podemos definir las acciones de forma recursiva, así, sólo tenemos que definir ae' y aa', usando que $|\mathbb{Z}_2|=2$ y que tanto ae' como aa' deben ser elementos de este, podemos definir cuatro acciones φ_i distintas:

- φ_0 : Si ae'=e' y aa'=a', entonces $a^2e'=a(ae')=a(e')=e'$ y análogamente $a^2a'=a'$, por lo que φ_0 representa la acción trivial.
- φ_1 : Si ae'=a' y aa'=e', entonces $a^2e'=a(ae')=a(a')=e'$ y análogamente $a^2a'=a'$, por lo que φ_1 coincide con la segunda acción que definimos arriba.

Aquí asumo que puede darse que aa^\prime puede ser igual a ae^\prime , por lo que ví sigue siendo acción.

- $arphi_2$: Si ae'=e'=aa' entonces $a^2e'=a(ae')=ae'=e'=aa'=a^2a'$.
- $arphi_3$: Si ae'=a'=aa' entonces $a^2e'=a(ae')=aa'=a'=ae'=a^2a'$.

¿Son las únicas? Como lo veo si en lugar de definir ae' y aa' defino a^2e' y a^2a' como $(a^2)^2=a$ entonces necesariamente debo usarlos para definir ae' y aa'. Entonces no conozco otra forma de construir una acción diferente.