3. Duomenų bazių projektavimas

- •DB projektavimo rezultatas loginė DB struktūra.
- •Ieškoma DB struktūros su geromis savybėmis.
- •DB kokybei įvertinti naudojami formalūs metodai.

3.1. Pagrindinės reliacinio modelio sąvokos

Reliaciniame modelyje duomenys vaizduojami lentelėmis, kitaip dar vadinamomis santykiais.

Santykis (angl. *relation*) – matematikos terminas – 2D lentelė.

Lentelės stulpelis dar vadinamas atributu.

Santykio eilutės – kortežai.

Eilučių tvarka santykyje yra neapibrėžta.

Visų atributo reikšmių aibė – **atributo sritimi** (**domenu**). Tuščia reikšmė – **NULL**.

Atributų aibė, vienareikšmiškai apibrėžianti kiekvieną lentelės kortežą (eilutę), vadinama lentelės **viršrakčiu** (**superraktu**).

Lentelės **raktas** – viršraktis, iš kurio pašalinus bet kurį atributą, jis nustoja būti viršrakčiu.

Lentelės *L* **raktas** – atributų aibės poaibis *K*, toks kad:

- (vienareikšmiška identifikacija) rakto atributų reikšmės vienareikšmiai apibrėžia visų lentelės L atributų reikšmes;
- 2) (**pertekliaus nebuvimas**) joks aibės *K* poaibis neturi vienareikšmės identifikacijos savybės.

Vykdytojai:

{Nr, Pavardė} - viršraktis, {Nr, Pavardė, Kategorija} - viršraktis, {Nr, Kategorija} - viršraktis, {Nr} - raktas.

Lentelė gali turėti kelis raktus.

Visi raktai vadinami (potencialiais, galimais) raktais.

Vienas raktas paskelbiamas pirminiu raktu.

Lentelės reliacinė schema (struktūra, aprašas) lentelės ir visų jos stulpelių pavadinimai, su pažymėtu pirminiu raktu:

Vykdytojai (<u>Nr</u>, Pavardė, Kvalifikacija, Kategorija, Išsilavinimas)

Projektai(<u>Nr</u>, Pavadinimas, Svarba, Pradžia, Trukmė) Vykdymas (Projektas, Vykdytojas, Statusas, Valandos) **Išoriniu** (**svetimuoju**) **raktu** vadinamas lentelės atributų rinkinys, kuris kitoje ar net toje pačioje lentelėje yra pirminis raktas.

Vykdymas.Vykdytojas – išorinis raktas, kurį atitinkantis stulpelis *Nr* lentelėje *Vykdytojas* yra pirminis raktas.

Išorinis raktas apibrėžiamas atributais ir kitos lentelės pavadinimu.

Vykdymas.Projektas – išorinis raktas, nukreipiantis į *Projektas*.

DB bazės reliacinė schema - visų jos lentelių reliacinių schemų rinkinys kartu su lentelių išoriniais raktais.

DB Darbai schema:

Vykdytojai (<u>Nr</u>, Pavardė, Kvalifikacija, Kategorija, Išsilavinimas);

Projektai(<u>Nr</u>, Pavadinimas, Svarba, Pradžia, Trukmė); Vykdymas (Projektas, Vykdytojas, Statusas, Valandos);

Išoriniai raktai: *Projektas* nukreipia į *Projektai*, *Vykdytojas* nukreipia į *Vykdytojai*.

Grafinis DB schemos vaizdavimas

. ..

3.2. Reliacinė algebra

Tarkime, $A_1, A_2, ..., A_n$ yra lentelės L atributų (stulpeliu) aibė.

$$L(A_1, A_2,..., A_n)$$
 – lentelės schema

Jei
$$R = \{A_1, A_2, ..., A_n\}$$
, tai $L(R)$ – schema.

Lentelė l su schema $L(A_1, A_2,..., A_n)$ - sutvarkytų reikšmių rinkinių aibė:

$$l = \{e_1, e_2, ..., e_m\}$$

Lentelė l su schema $L(A_1, A_2,..., A_n)$ žymima

$$l(A_1, A_2, ..., A_n)$$

Operacijų su lentelėmis sistema - reliacinė algebra.

Reliacine algebra - formali operacijų kalba (sistema), kuria iš lentelių, nekeičiant jų turinio, galima gauti kitas lenteles.

Operacijos rezultatas - lentelė.

Galima konstruoti reliacinės algebros reiškinius.

Reliacinės algebros operacijų grupės:

- 1) matematinės aibių operacijos: \cup , \cap , -, \times .
- 2) specifinės DB operacijos:
 - . išrinkimas (σ)
 - . projekcija (π)
 - . **jungimas** (\bowtie) ir kitos.

3.2.1. Pagrindinės operacijos su lentelėmis

Kiekviena eilutė e_i yra sutvarkytas reikšmių rinkinys

e(A), atributų $A \subseteq R$ reikšmių rinkinys eilutėje e

Lentele galima apibrėžti Dekarto sandaugos poaibiu

 $l(A_1, A_2, ..., A_n) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$

Schema L(R) ir konkretus jos turinys l(R) ne tas pat.

l(R) – lentelės su schema L(R) konkretus turinys.

 $e_i = \langle a_1, a_2, ..., a_n \rangle \in l, a_i \in dom(A_i)$

 $e(A_i)$ - atributo A_i reikšmė eilutėje e

 $V \subseteq R$ yra $l(R) = \{e_1, e_2, ..., e_m\}$ viršraktis, jei

 $\forall i, j = 1,...,m, i \neq j: e_i(V) \neq e_i(V)$

Išrinkimas – unarinė operacija. Tarkime, l = l(R) - lentelė, $A \in R$, $a \in dom(A)$

"iš l išrinkti visas eilutes, kuriose atributo A reikšmė yra lygi *a*":

$$\sigma_{A=a}(l) = l'(R) = \{e \in l : e(A) = a\}$$

$$\sigma_{A=a}(\sigma_{B=b}(l)) = \sigma_{B=b}(\sigma_{A=a}(l))$$
 - **komutatyvi**

$$\sigma_{A=a}(\sigma_{B=b}(l)) = \sigma_{A=a}(\{e \in l : e(B) = b\}) =$$

$$= \{e' \in \{e \in l : e(B) = b\} : e'(A) = a\} =$$

$$= \{e \in l : e(A) = a, e(B) = b\} =$$

$$= \{e' \in \{e \in l : e(A) = a\} : e'(B) = b\} = \sigma_{B=b}(\sigma_{A=a}(l))$$

Dėl komutyvumo, išrinkimo tvarka yra nesvarbi, todėl

$$\sigma_{A=a} \circ \sigma_{B=b} \equiv \sigma_{A=a,B=b}$$

 $\sigma_{A=a}$ – distributyvi aibių operacijų $(\cup, \cap, -)$ atžvilgiu:

$$\sigma_{A=a}(l_1 \cup l_2) = \sigma_{A=a}(l_1) \cup \sigma_{A=a}(l_2)$$

$$\sigma_{A=a}(l_1 \cap l_2) = \sigma_{A=a}(l_1) \cap \sigma_{A=a}(l_2)$$

$$\sigma_{A=a}(l_1 - l_2) = \sigma_{A=a}(l_1) - \sigma_{A=a}(l_2)$$

Projekcija – unarinė operacija.

l = l(R) projekcija aibėje A, $\pi_{A}(l)$,

 $A \subset R$, yra lentelė l'(A), kuri gaunama iš l(R)išbraukiant stulpelius R-A,

$$\pi_{A}(l) = l'(A) = \{e(A) : e \in l\}$$

Jei $A \subseteq B \subseteq R$, tai lentelei l(R) galioja:

$$\pi_{\mathcal{A}}(\pi_{\mathcal{B}}(l)) = \pi_{\mathcal{A}}(l)$$

Projekcija yra komutatyvi išrinkimo atžvilgiu.

Jei $A \in B$, $B \subset R$ ir l(R) - lentelė, tai

$$\pi_{B}(\sigma_{A=a}(l)) = \pi_{B}(\{e \in l : e(A) = a\}) =$$

$$= \{e'(B) : e' \in \{e \in l : e(A) = a\}\} =$$

$$= \{e(B) : e \in l \text{ ir } e(A) = a\} =$$

$$= \sigma_{A=a}(\{e(B) : e \in l\})$$

$$= \sigma_{A=a}(\pi_{B}(l))$$

Jungimas – binarinė operacija.

Kombinuojamos dvi lentelės.

 $l_1(R_1)$ ir $l_2(R_2)$ junginys $l_1 \bowtie l_2$ yra lentelė $l_3(R_3)$:

$$R_3 = R_1 \cup R_2$$

$$l_1 \bowtie l_2 = l_3(R_3) =$$

{
$$e: \exists e_1, e_2 (e_1 \in l_1, e_2 \in l_2, e(R_1) = e_1, e(R_2) = e_2, e_1(R_1 \cap R_2) = e_2(R_1 \cap R_2)$$
}

Jei $R_1 \cap R_2 = \emptyset$, tai jungimas yra ekvivalentiškas Dekarto sandaugai.

14 - 32

Jungimu galima išreikšti išrinkimo operaciją $\sigma_{A=a}(l)$. Tarkime, l'(A) yra 1 eilutės lentelė, e(A) = a.

$$l \bowtie l' = \{e : \exists e_1, e_2 (e_1 \in l, e_2 \in l', e(R) = e_1, e(A) = e_2)\}$$

= \{e : \emptyre e_1 (e_1 \in l, e(R) = e_1, e(A) = a)\}
= \sigma_{A=a}(l)

$$\sigma_{A=a_1\vee A=a_2}(l)$$
 – į l' reikia įrašyti 2 eilutes e_1 , e_2 : $e_1(A)=a_1,\ e_2(A)=a_2.$

Jei
$$l'(AB)$$
 yra 1 eilutė e , $e(A) = a$, $e(B) = b$, tai $l \bowtie l' = \sigma_{A=a,B=b}(l)$

 $(l_1 \bowtie l_2) \bowtie l_3 = l_1 \bowtie (l_2 \bowtie l_3)$

- dėl simetrijos apibrėžime

C

 c_2

 c_2

$l_1 \bowtie l_2 \bowtie l_3$				
A	В	C		
a_1	b_1	c_2		
a_2	b_1	c_2		

 l_1 eilutė $\langle a_1, b_2 \rangle$ ir l_2 eilutė $\langle b_2, c_1 \rangle$ liko nesujungtos. $l_1, l_2, ..., l_m$ – **visiškai sujungiamos**, jei kiekviena kiekvienos lentelės eilutė yra lentelių junginio konkrečios eilutės dalis.

 l_3 papildžius $\langle a_1, c_1 \rangle$, l_1, l_2, l_3 tampa visiškai sujungiamomis.

$$\begin{array}{c|cccc}
l_1 \bowtie l_2 \bowtie l_3 \\
\hline
A & B & C \\
\hline
a_1 & b_1 & c_2 \\
a_1 & b_2 & c_1 \\
a_2 & b_1 & c_2
\end{array}$$

 $\begin{array}{c|cc}
 I_1 \\
\hline
 A & B \\
\hline
 a_1 & b_1 \\
 a_1 & b_2 \\
 a_2 & b_1 \\
\hline
\end{array}$

 $\begin{array}{c|c}
l_2 \\
B & C \\
b_1 & c_2 \\
b_2 & c_1
\end{array}$

 $\begin{array}{c|ccccc}
l_1 \bowtie l_2 \bowtie l_3 \\
\hline
A & B & C \\
\hline
a_1 & b_1 & c_2 \\
a_1 & b_2 & c_1 \\
a_2 & b_1 & c_2
\end{array}$

Bet kurioms lentelėms $l_1(R_1)$ ir $l_2(R_2)$ galioja

$$\pi_{R_1}(l_1 \bowtie l_2) \subseteq l_1$$

ir

$$\pi_{R_2}(l_1 \bowtie l_2) \subseteq l_2$$

Čia ⊂ tampa =, kai

$$\forall e_1 \in l_1, \exists e_2 \in l_2 : e_1(R_1 \cap R_2) = e_2(R_1 \cap R_2)$$

Lygybei nėra būtina, kad l_1 ir l_2 būtų visiškai sujungiamos.

 l_2 ir l_3 nėra visiškai sujungiamos, nes negalima sujungti $<\!b_2,\,c_1\!>\;\in l_2$

 $\begin{array}{c|cccc}
l_2 \bowtie l_3 \\
\hline
A & B & C \\
\hline
a_1 & b_1 & c_2 \\
a_2 & b_1 & c_2
\end{array}$

 $l_3 = \pi_{AC}(l_2 \bowtie l_3), \quad \pi_{BC}(l_2 \bowtie l_3) \subset l_2$

 $\pi_{AC}(l_2 \bowtie l_3)$

 $\begin{array}{c|cc} A & C \\ \hline a_1 & c_2 \\ \hline a_2 & c_3 \end{array}$

 $\begin{array}{c|c}
\pi_{\mathrm{BC}}(l_2 \bowtie l_3) \\
\hline
B & C \\
\hline
b_1 & c_2
\end{array}$

Tarkime $l_3(R_1 \cup R_2)$ yra lentelė, o $l_1(R_1)$ ir $l_2(R_2)$ – jos projekcijos,

$$l_1 = \pi_{R_1}(l_3), l_2 = \pi_{R_2}(l_3)$$

Jei $e \in l_3$, tai $e(R_1) \in l_1$, $e(R_2) \in l_2 \implies l_3 \subseteq l_1 \bowtie l_2$

Jei $l_3 = l_1 \bowtie l_2$, tai l_3 skaidymas į l_1 ir l_2 -dekompozicija be praradimo.

Taip skaidant neprarandami jokie duomenys.

l_3	l_I	l_2	$l_l \bowtie l$	l_2
$A \mid B \mid C$	$A \mid C$	$B \mid C$	$A \mid B \mid$	C
$a_1 b_1 c_1$	$a_1 c_1$	$b_1 c_1$	$a_1 b_1 $	c_1
$a_2 b_1 c_1$	$ a_2 c_1$	$b_1 c_2 $	$a_2 b_1 $	
$a_2 b_1 c_2$	$a_2 c_2$		$ a_2 b_1$	c_2

Operacijų aibė $\{\sigma, \pi, \cup, -, \times\}$ yra **pilnoji**.

Pvz., \cap galima išreikšti per \cup ir -

$$l_1 \cap l_2 = (l_1 \cup l_2) - ((l_1 - l_2) \cup (l_2 - l_1))$$

 $l_1(R_1)$ ir $l_2(R_2)$ jungini $l_1 \bowtie l_2$ galima išreikšti per σ , π ir \times

$$l_1 \bowtie l_2 = \pi_{R_1 \cup R_2} (\sigma_{l_1.A_1 = l_2.A_1,...,l_1.A_N = l_2.A_N} (l_1 \times l_2)),$$

 $\{A_1, A_2,..., A_N\} = R_1 \cap R_2$

3.2.3. Palyginimo apibendrinimas operacijose

Domeno reikšmėms palyginti naudojome '=' operaciją. Reliacinėje teorijoje bet kurias domeno reikšmes galima įvertinti, ar jos tarpusavyje lygios (=), ar nelygios (≠)

Dažnai domeno 2 reikšmes galima įvertinti,

kuri iš jų yra didesnė.

Daugelyje domenų naudojama: =, \neq , <, \leq , \geq , >

Šią operacijų **aibę** žymėsime Θ.

Bendruoju atveju gali būti lyginamos skirtingų domenu reikšmės.

Jei $\theta \in \Theta$, o A ir B – atributai,

tai A ir B – vadinsime θ –palyginamais,

jei tik θ yra apibrėžta aibėje $dom(A) \times dom(B)$.

Išrinkimą ir jungimą galima išplėsti palyginimo operacijoms.

Jei l = l(R) - lentelė, $A, B \in R, a \in dom(B), \theta \in \Theta, A$ ir B yra θ –palyginami,

tai $\sigma_{A\theta a}(l)$ žymi θ – išrinkimo operaciją

$$\sigma_{A\theta a}(l) = \{ e \in l : e(A) \ \theta \ a \}$$

Vietoje atributo lyginimo su reikšme, galima lyginti du atributus: $\sigma_{A\theta B}(l) = \{e \in l : e(A) \theta e(B)\}$

Išrinkimą galima dar apibendrinti, leidžiant sąlygoje naudoti logines operacijas bei skliaustelius, pvz.

$$\sigma_{A \leq B \land (A=a \lor B\neq b)}(l)$$

Jungiant lenteles galima naudoti bet kuria palyginimo operacija $\theta \in \Theta$.

Dviejų lentelių $l_1(R_1)$ ir $l_2(R_2)$ θ – junginiu $l_1 \bowtie_{\theta} l_2$ vadinama lentelė, sudaryta iš stulpelių $R_3 = R_1 \cup R_2$, ir kurios eilutės apibrėžiamos taip

$$l_1 \bowtie_{\theta} l_2 = \{e : \exists e_1 \in l_1, \exists e_2 \in l_2, e(R_1) = e_1, e(R_2) = e_2, e_1(R_1 \cap R_2) \mid \theta \mid e_2(R_1 \cap R_2) \}$$

Tiek θ – išrinkimas, tiek ir apibendrintasis išrinkimas yra plačiai naudojami, θ – jungimas rečiau.

Visos anksčiau apibrėžtos išrinkimo ir jungimo operacijų savybės būdingos ir jų pateiktiesiems apibendrinimams.

3.2.4. Reliacinės operacijos SQL kalboje

Visas pagrindines reliacines operacijas realizuoja SQL sakinys **SELECT**.

Lentelės l(R) išrinkimo operacija $\sigma_{A=a}(l)$:

SELECT * FROM l WHERE A = a

 $\sigma_{A \leq B \land (A=a \lor B \neq b)}(l)$ galima užrašyti taip

SELECT * FROM l

WHERE $A \le B$ AND $(A = a \text{ OR } B \le b)$

Lentelės l(R) projekciją $\pi_A(l)$ galima išreikšti sakiniu SELECT DISTINCT A FROM L

Kadangi reliacinėje teorijoje lentelėje vienodų eilučių nėra, tai projekcijai išreikšti prireikė raktažodžio DISTINCT.

$$l_1(R_1)$$
 ir $l_2(R_2)$ junginys $l_1 \bowtie l_2$

SELECT
$$R_1 \cup R_2$$
 FROM l_1 , l_2
WHERE $l_1.A_1 = l_2.A_1$ AND . . . AND $l_1.A_N = l_2.A_N$
čia $(A_1, A_2, ..., A_N) = R_1 \cap R_2$

 θ –junginys $l_1 \bowtie_{\theta} l_2$ išreiškiamas panašiai.

Aibių operacijų: \cup , \cap , – atitikmenys:

UNION, INTERSECT ir EXCEPT

Dekarto sandauga $l_1(R_1) \times l_2(R_2)$ yra ypatingas junginio atvejis:

SELECT
$$R_1$$
, R_2 **FROM** l_1 , l_2

Galima pradžioje apibrėžti Dekarto sandaugą SQL kalba. Tada lentelių junginys SQL išreiškiamas per išrinkimo, projekcijos ir Dekarto sandaugą.