2022-23 First Semester MATH1053 Linear Algebra I

Assignment 3b

Due Date: 1/Nov/2022 (Tuesday), 11:00 in class.

- Write down your **CHN** name and **student ID**. Write neatly on **A4-sized** paper (*staple if necessary*) and **show your steps**.
- Late submissions or answers without steps won't be graded.
- 1. For each of the following matrices, compute the determinant and state whether the matrix is singular or nonsingular.

a).
$$\begin{pmatrix} 2 & -1 & 3 \\ -1 & 2 & -2 \\ 1 & 4 & 0 \end{pmatrix}$$
; b). $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 7 & 3 \end{pmatrix}$; c). $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$.

- 2. Let A be a nonsingular matrix. Show that $det(A^{-1}) = \frac{1}{det(A)}$.
- 3. Let A and B be $n \times n$ matrices with $\det(A) = 4$ and $\det(B) = 5$. Find the value of a) $\det(AB)$; B) $\det(kA)$, $k \neq 0$; c) $\det(2BA)$; d) $\det(A^{-1}B)$; f) $\det\begin{pmatrix}O & A \\ B & O\end{pmatrix}$
- 4. Find the value of the determinant of the following matrices.

$$\begin{pmatrix}
 a - b - c & 2a & 2a \\
 2b & b - c - a & 2b \\
 2c & 2c & c - a - b
 \end{pmatrix}$$

$$\begin{pmatrix}
 a - b - c & 2a & 2a \\
 a_1 & x + a_2 & \cdots & a_n \\
 \vdots & \vdots & \vdots & \vdots \\
 a_1 & a_2 & \cdots & x + a_n
 \end{pmatrix}.$$

5. For any integer $n \geq 2$, let

$$D_n = \begin{pmatrix} x & 0 & 0 & \cdots & 0 & a_0 \\ -1 & x & 0 & \cdots & 0 & a_1 \\ 0 & -1 & x & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & a_{n-2} \\ 0 & 0 & 0 & \cdots & -1 & x + a_{n-1} \end{pmatrix}.$$

1

Express the determinant of D_n as a polynomial of x.

6. Consider the distinct real numbers a_0, a_1, \dots, a_n . Define an $(n+1) \times (n+1)$ matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ a_0 & a_1 & \cdots & a_n \\ a_0^2 & a_1^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_0^n & a_1^n & \cdots & a_n^n \end{bmatrix}.$$

Use mathematical induction to show that $det(A) = \prod_{i>j} (a_i - a_j)$.

7. Find the inverse matrix of the rotation matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

8.

$$\begin{cases} x_1 & +2x_2 & +x_3 = 1 \\ & -x_2 & +x_3 = 2 \\ 2x_1 & +3x_2 & -2x_3 = 3 \end{cases}.$$

- (a) Use Cramer's rule to solve the linear system.
- (b) Find A^{-1} using the adjoint of A. Then solve the system by computing $\mathbf{x} = A^{-1}\mathbf{b}$.

9. Label the following statements as true or false, and BRIEFLY state the reason why.

- (a) If all entries of a $k \times k$ matrix A are 7 for $k = 2, 3, \dots$, then $\det(A) = 7^k$.
- (b) If $A^2 I_n = I_n$, then matrix A must be invertible.
- (c) If A is an $n \times n$ matrix such that $A^2 = O$, then matrix $I_n A$ must be invertible.
- (d) There exists an invertible 3×3 matrix A with real entries such that $A^{-1} = -A$.
- (e) Matrix $\begin{bmatrix} k & -2 \\ 5 & k-6 \end{bmatrix}$ is invertible for all real numbers k.

10. For square matrices A and B, prove that

$$\det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A+B)\det(A-B).$$

11. (Bonus!) Prove that the matrix $A = I + \mathbf{u}\mathbf{u}^T$ is nonsingular where $\mathbf{u} \in \mathbb{R}^n$ is a column vector.

2

- 12. (MATLAB exercise) Building matrices and compute the determinants
 - (a) Define a square matrix by yourself and compute the determinant by hand;
 - (b) use the command "det()" in MATLAB to verify your answer in part(a). For example,

```
>> A = [1 \ 2 \ 3 \ 2 \ 1;0 \ 0 \ 0 \ 1 \ -1;1 \ 2 \ 0 \ -1 \ 1;3 \ 2 \ 1 \ 2 \ 3; \ 1 \ 0 \ 0 \ 0 \ 0]
>> \det(A)
```

- (c) Get familiar with the commands "eye(k)", "ones(m,n)", "zeros(m,n)", "magic(k)", "diag", "rand" and "rref".
- 13. (MATLAB exercise) Building matrices using partitioning
 - (a) Matrices in MATLAB can be built up by patching together smaller matrices into a big matrix. The smaller matrices must fit together exactly along rows and columns and not leave any spaces unfilled. For example type the following in MATLAB:

$$A=[1,2,3;3,2,1]$$
 $B=[7;8]$
 $C=[4,5,6]$
 $D=[A,B;C,0]$
 $E=[A,zeros(3,7);eye(2,6),A]$

All these cases should have worked fine. Try to understand why.

Crosto the following matrix: 4 in MATI AR by defining A1-[1 2:3 4] and A2

(b) Create the following matrix A in MATLAB by defining A1=[1,2;3,4] and A2=3*eye(3) first, then using "blkdiag".

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

- 14. (MATLAB exercise) Upper(lower) triangular matrix and LU factorization
 - (a) Get familiar with the commands "triu", "tril", "lu".
 - (b) Create a matrix A=magic(4) and see what are triu(A) and tril(A)?
 - (c) Can A=ones(4,4) be LU factorized? If yes, find L and U.