2_5_Parallel-Pipeline Mix Model

1. Timing AnalysisDesign Space2. Controller DesignSummary

For parallel + pipeline model, we will still use the example IBC system used in last part. But now, we assume we may use parallel structure and pipeline structure

1. Timing Analysis

Compared to standard configuration, we assume we have 4 available cores and 2 pipes.

A example parallel-pipeline structure is shown in the following figure

- ullet First we calculate the sensor-to-actuator delay: au=59ms
- Then we can calculating sampling period $h=\lceil rac{ au}{p imes f_h}
 ceil f_h=30ms$
- ullet Then for simplifying, we can calculate $T_1=T_2=p imes h-e_c-e_a=59ms$

Design Space

	No. of cores n_{avl}	Degree of parallelism $n_c^{ }$	Pipeline depth p	(h, τ)
Sequential	1	1	1	h=90ms, τ=89ms
Parallel	2	2 (equal load sharing)	1	h=60ms, τ=59ms
Pipelined	2	1	2	h=50ms, τ=89ms
Pipelined + Parallel	4	2 (equal load sharing)	2	h=30ms, τ=59ms
Parallel	4	4	1	h=50ms, τ=49ms
Pipelined	4	1	4	h=30ms, τ=89ms

2. Controller Design

After decide h and au, we need to design the controller

Summary

• We can mix parallel processing and pipeline