LA CORRISPONDENZA DI LIE

Candidato:

Relatore:

Jessica Porta

Prof. Andrea Loi

Università degli Studi di Cagliari

23 Luglio 2020

- Gruppi di Lie
- Algebra di Lie
- Passaggio da un gruppo di Lie ad un'algebra di Lie
- Passaggio da un'algebra di Lie a un gruppo di Lie
- Teorema di corrispondenza di Lie

Gruppi di Lie

Definizione

Un *gruppo di Lie* è una varietà differenziabile *G* munita di una struttura di gruppo tale che le operazioni algebriche

$$\mu: G \times G \longrightarrow G$$
 $\iota: G \longrightarrow G$ $(g_1, g_2) \longmapsto \mu(g_1, g_2) = g_1 \cdot g_2$ $g \longmapsto \iota(g) = g^{-1}$

siano differenziabili, o equivalentemente, di classe C^{∞} .

Gruppi di Lie

Definizione

Un *gruppo di Lie* è una varietà differenziabile *G* munita di una struttura di gruppo tale che le operazioni algebriche

$$\mu: G \times G \longrightarrow G$$
 $\iota: G \longrightarrow G$ $(g_1, g_2) \longmapsto \mu(g_1, g_2) = g_1 \cdot g_2$ $g \longmapsto \iota(g) = g^{-1}$

siano differenziabili, o equivalentemente, di classe C^{∞} .

Si definisce *omomorfismo di gruppi di Lie* un omomorfismo di gruppi che sia differenziabile.

Un *isomorfismo tra gruppi di Lie* è un omomorfismo di gruppi che sia anche un diffeomorfismo.

Il gruppo moltiplicativo (\mathbb{R}^*,\cdot)

Il gruppo moltiplicativo (\mathbb{R}^*,\cdot)

In $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ possiamo definire le operazioni

$$\cdot: \mathbb{R}^* \times \mathbb{R}^* \to \mathbb{R}^*$$
 e $\iota: \mathbb{R}^* \to \mathbb{R}^*$ $(x, y) \mapsto x \cdot y$ $x \mapsto \iota(x) = x^{-1}$

che sono entrambe di classe C^{∞} .

Pertanto (\mathbb{R}^*,\cdot) è un gruppo di Lie.

Il gruppo abeliano $(\mathbb{R}^n,+)$

Il gruppo abeliano $(\mathbb{R}^n,+)$

In \mathbb{R}^n possiamo definire l'operazione

$$+ : \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$$

$$(x = (x^{1}, \dots, x^{n}), y = (y^{1}, \dots, y^{n})) \longmapsto x + y = (x^{1} + y^{1}, \dots, x^{n} + y^{n})$$

e l'operazione

$$\iota$$
 : $\mathbb{R}^n \longrightarrow \mathbb{R}^n$

$$x = (x^1, \dots, x^n) \longmapsto \iota(x) = -(x^1, \dots, x^n)$$

Entrambe sono di classe C^{∞} ; pertanto $(\mathbb{R}^n, +)$ è un gruppo di Lie.

Il gruppo lineare generale $GL(n,\mathbb{R})$

$$GL(n,\mathbb{R}) = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid det(A) \neq 0\}$$

Il gruppo lineare generale $GL(n,\mathbb{R})$

$$GL(n,\mathbb{R}) = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid det(A) \neq 0\}$$

Definiamo l'operazione

$$\mu: GL(n,\mathbb{R}) \times GL(n,\mathbb{R}) \longrightarrow GL(n,\mathbb{R})$$

$$(A,B) \longmapsto \mu(A,B) = AB$$

dove AB è il prodotto usuale delle due matrici A e B. Se $A=(a_{ij})$ e $B=(b_{ij})$, l'operazione $\mu(A,B)$ è definita come

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 $i, j = 1, 2, \dots, n$

Definiamo la funzione inversa

$$\iota: GL(n,\mathbb{R}) \longrightarrow GL(n,\mathbb{R})$$

$$A \longmapsto \iota(A) = A^{-1}$$

dove A^{-1} è l'inversa della matrice A rispetto alla moltiplicazione righe per colonne, così definita

$$A^{ij} = (A^{-1})_{ij} = \frac{c_{ij}}{\det A}$$

dove c_{ij} è il complemento algebrico dell'elemento a_{ij} , ovvero il determinante della matrice che si ottiene eliminando dalla matrice A la i-esima riga e la j-esima colonna.

Sia μ che ι sono di classe C^{∞} .

Pertanto $GL(n, \mathbb{R})$ è un gruppo di Lie.

Altri esempi di gruppi di Lie

$$\begin{aligned} &\textit{GL}(\textit{n},\mathbb{R}) = \{\textit{A} \in \mathcal{M}_{\textit{n} \times \textit{n}}(\mathbb{R}) \mid \textit{det}(\textit{A}) \neq 0\} \\ &\textit{GL}(\textit{n},\mathbb{C}) = \{\textit{A} \in \mathcal{M}_{\textit{n} \times \textit{n}}(\mathbb{C}) \mid \textit{det}(\textit{A}) \neq 0\} \end{aligned}$$

$$SL(n,\mathbb{R}) = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid det(A) = 1\}, \ SL(n,\mathbb{C})$$

$$O(n,\mathbb{R}) = \{ A \in GL(n,\mathbb{R}) \mid A^T A = I \}$$

$$SO(n,\mathbb{R}) = \{A \in SL(n,\mathbb{R}) \mid A^TA = I\}$$

Il gruppo moltiplicativo dei quaternioni non nulli (\mathbb{H}^*,\cdot)

Il gruppo moltiplicativo dei quaternioni unitari (\mathbb{H}_1,\cdot)

$$Aff(\mathbb{R}^n) = \{ F : \mathbb{R}^n \to \mathbb{R}^n | F(x) = Ax + b, A \in GL(n, \mathbb{R}), b \in \mathbb{R}^n \}$$

Gruppi di Lie come gruppi di trasformazioni

Per ogni elemento $g \in G$ fissato, consideriamo le applicazioni

Traslazione a Sinistra

Traslazione a destra

$$L_g: G \longrightarrow G$$
 $R_g: G \longrightarrow G$ $h \longmapsto R_g h$

dove

$$L_g h = \mu(h, g) = g \cdot h$$
 $R_g h = \mu(g, h) = h \cdot g$

 L_g e R_g sono diffeomorfismi (ma non omomorfismi di gruppi).

Algebra di Lie

Definizione

Un'algebra di Lie (reale) è uno spazio vettoriale reale \mathcal{L} in cui è definito un prodotto, chiamato parentesi di Lie, come

$$[\ ,\]\ : \mathcal{L} \times \mathcal{L} \longrightarrow \mathcal{L}$$
$$(X,Y) \longmapsto [X,Y]$$

che, $\forall X, Y, Z \in \mathcal{L}$ e $\forall \alpha, \beta \in \mathbb{R}$, gode delle seguenti proprietà

- riflessività: [X, X] = 0
- **2** R-bilinearità: $[\alpha X + \beta Y, Z] = \alpha [X, Z] + \beta [Y, Z]$
- **3** antisimmetria: [X, Y] = -[Y, X]
- identità di Jacobi: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Campi di vettori invarianti a sinistra

Sia
$$X \in \mathfrak{X}(G) = \{campi \ di \ vettori \ C^{\infty} \ su \ G\}.$$

Definizione

X è invariante a sinistra se $(L_g)_*X=X$ cioè se

$$(L_g)_{*h}X_h = X_{L_g(h)} = X_{gh} \quad \forall \quad g, h \in G.$$

Se X e Y sono due campi di vettori invarianti a sinistra allora anche i campi

$$X + Y$$
, $\lambda X \ (\lambda \in \mathbb{R})$, $[X, Y]$

sono invarianti a sinistra.

Algebra di Lie di un gruppo di Lie

Infatti, se X e Y sono L_g -invarianti si ha che

$$L_{g*}[X, Y] = [L_{g*}X, L_{g*}Y] = [X, Y]$$

Pertanto

L'insieme di tutti i campi di vettori invarianti a sinistra su un gruppo di Lie G forma una sottoalgebra di $(\mathfrak{X}(G), [,])$ che viene chiamata *algebra di Lie di G* e si denota con

$$\mathcal{L}(G) = \{X \in \mathfrak{X}(G) \mid L_{g*}X = X \ \forall g \in G\} \subset \mathfrak{X}(G)$$

Algebre di Lie di un gruppo di Lie

Teorema

L'algebra di Lie $\mathcal{L}(G)$ di un gruppo di Lie G è isomorfa (come spazio vettoriale) a T_eG e quindi $dim \mathcal{L}(G) = dim G$.

L'isomorfismo è dato da

$$\mathcal{L}(G) o T_e G$$

$$X\mapsto X_{\mathrm{e}}$$

Algebre di Lie di un gruppo di Lie

Teorema

L'algebra di Lie $\mathcal{L}(G)$ di un gruppo di Lie G è isomorfa (come spazio vettoriale) a T_eG e quindi $dim \mathcal{L}(G) = dim G$.

L'isomorfismo è dato da

$$\mathcal{L}(G)
ightarrow \mathcal{T}_e G \qquad \qquad \mathcal{T}_e G
ightarrow \mathcal{L}(G) \ X \mapsto X_e \qquad \qquad X_e \mapsto X$$

dove

$$X_h \stackrel{\text{def}}{=} L_{h_{*e}} X_e \qquad \forall h \in G$$

Algebre di Lie di un gruppo di Lie

Definendo

$$[\ ,\]\ : \mathcal{T}_eG \times \mathcal{T}_eG o \mathcal{T}_eG$$

$$(X_e,Y_e) \mapsto [X_e,Y_e] \stackrel{\mathrm{def}}{=} [X,Y]_e$$

l'isomorfismo

$$\mathcal{L}(G)
ightarrow \mathcal{T}_e G$$
 $X \mapsto X_e$

permette di dotare T_eG della struttura di algebra di Lie.

Esempio di algebra di Lie di un gruppo di Lie

Esempio

L'algebra di Lie $\mathcal{L}(\mathit{GL}(n,\mathbb{R}))$ dello spazio lineare generale

$$GL(n,\mathbb{R}) = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid det(A) \neq 0\}$$

Esempio di algebra di Lie di un gruppo di Lie

Esempio

L'algebra di Lie $\mathcal{L}(\mathit{GL}(n,\mathbb{R}))$ dello spazio lineare generale

$$GL(n,\mathbb{R}) = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) \mid det(A) \neq 0\}$$

 $GL(n,\mathbb{R})$ è un gruppo di Lie.

Definendo

$$[,] : \mathcal{M}_{n \times n}(\mathbb{R}) \times \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathcal{M}_{n \times n}(\mathbb{R})$$

$$(A, B) \mapsto [A, B] = AB - BA$$

È facile vedere che

$$\mathcal{L}(GL(n,\mathbb{R})) = (\mathcal{M}_{n\times n}(\mathbb{R}), [,]) \stackrel{\text{not}}{=} \mathfrak{gl}(n,\mathbb{R})$$

Dalle algebre di Lie ai gruppi di Lie

Definizione

Sia G un gruppo di Lie. Un **sottogruppo ad un parametro di G** è definito come un omomorfismo tra gruppi di Lie $\gamma:\mathbb{R}\to G$, con \mathbb{R} considerato gruppo di Lie con l'addizione.

Valgono, pertanto, le seguenti corrispondenze biunivoche :

 $\{Sottogruppi\ a\ un\ parametro\ di\ G\}\longleftrightarrow \mathcal{L}(G)\longleftrightarrow \mathcal{T}_eG$

Dalle algebre di Lie ai gruppi di Lie

Definizione

Sia G un gruppo di Lie con algebra di Lie T_eG . Si definisce applicazione esponenziale di G, la seguente applicazione:

$$exp: T_eG \longrightarrow G$$

$$X \mapsto \operatorname{exp} X \stackrel{\mathrm{def}}{=} \gamma(1)$$

dove γ è il sottogruppo a un parametro generato da X.

Dagli omomorfismi di gruppi di Lie agli omomorfismi di algebre di Lie

Se considero un omomorfismo tra gruppi di Lie

$$\varphi : G \to H$$

posso considerare il differenziale nell'identità

$$\varphi_{*_e}$$
 : $T_eG \to T_eH$

Dagli omomorfismi di gruppi di Lie agli omomorfismi di algebre di Lie

Se $\varphi:G\to H$ è un omomorfismo allora si dimostra che anche φ_{*_e} è un omomorfismo di algebre di Lie.

$$(\varphi_{*_e}([X_e, Y_e]) = [\varphi_{*_e} X_e, \varphi_{*_e} Y_e])$$

In particolare, se φ è un isomorfismo allora anche il differenziale lo è. Pertanto, gruppi di Lie isomorfi possiedono algebre di Lie isomorfe.

Dagli omomorfismi di algebre di Lie agli omomorfismi di gruppi di Lie

Teorema

Siano G e H gruppi di Lie semplicemente connessi.

Siano T_eG e T_eH le rispettive algebre di Lie.

Per ogni omomorfismo tra algebre di Lie $\varphi: T_eG \to T_eH$ esiste un unico omomorfismo tra gruppi di Lie $\Phi: G \to H$ tale che $\Phi_{*_e} = \varphi$.

$$\begin{array}{ccc}
T_e G & \xrightarrow{\Phi_{*e} = \varphi} & T_e H \\
\operatorname{exp} \downarrow & & \downarrow \operatorname{exp} \\
G & \xrightarrow{\Phi} & H
\end{array}$$

In particolare,

se T_eG e T_eH sono isomorfe allora anche G e H sono isomorfi.

Osservazione

Se T_eG e T_eH sono isomorfe allora anche G e H sono isomorfi, se i gruppi sono semplicemente connessi.

Eliminando l'ipotesi di semplice connessione, il risultato non è più vero.

Esempio

$$G = \mathbb{R}^n$$

$$H = T^n$$

Osservazione

Se T_eG e T_eH sono isomorfe allora anche G e H sono isomorfi, se i gruppi sono semplicemente connessi.

Eliminando l'ipotesi di semplice connessione, il risultato non è più vero.

Esempio

$$G = \mathbb{R}^n$$

$$H = T^n$$

$$\mathcal{L}(\mathbb{R}^n) \simeq \mathbb{R}^n$$
 $\mathcal{L}(T^n) \simeq \mathbb{R}^n$

$$\mathcal{L}(T^n) \simeq \mathbb{R}^n$$

 \mathbb{R}^n e T^n hanno stessa algebra di Lie *n*-dimensionale \mathbb{R}^n .

Ma \mathbb{R}^n e T^n non sono gruppi di Lie isomorfi.

Osservazione

Esempio

$$G = SU(2) \simeq \mathbb{H}_1$$
 $H = SO(3)$

Si dimostra che SU(2) e SO(3) sono gruppi di Lie.

Non sono gruppi isomorfi ma possiedono algebre di Lie isomorfe.

Il teorema di corrispondenza di Lie

Corrispondenza di Lie

Esiste una corrispondenza biunivoca tra la classe di isomorfismi delle algebre di Lie finito dimensionali e la classe di isomorfismi dei gruppi di Lie semplicemente connessi, data associando a ogni gruppo di Lie semplicemente connesso la sua algebra di Lie.

Il teorema di corrispondenza di Lie

Teorema di Ado

Ogni algebra di Lie reale finito-dimensionale è isomorfa ad una sottoalgebra di Lie di qualche algebra matriciale $\mathfrak{gl}(n,\mathbb{R})$ con il commutatore standard.

GRAZIE PER L'ATTENZIONE!