ICCS310: Assignment 5

Possawat Sanorkam possawat2017@hotmail.com March 25, 2021

1: Reject TM

$$\mathsf{REJECT}_{\mathsf{TM}} = \{ \langle M, x \rangle | \text{ M is a TM that rejects input} \}$$

Show directly (i.e., without resorting to reduction) that $\mathsf{REJECT}_\mathsf{TM}$ is undecidable. *Proof*:

We want to show that $\mathsf{REJECT}_\mathsf{TM}$ is undecidable by showing the contradiction. Assume for the sake of contradiction that the TM M_REJECT decides $\mathsf{REJECT}_\mathsf{TM}$. On input $\langle M, w \rangle$:

$$M_{\mathsf{REJECT}} = \begin{cases} \text{reject} & \text{if } M \text{ accepts } w \\ \text{accept} & \text{if } M \text{ rejects } w \\ \text{reject} & \text{if } M \text{ loops on } w \end{cases}$$

Also, define TM $Y(\langle X \rangle)$ where X is a TM. On input $\langle X \rangle$,

- 1. Run M_{REJECT} on $\langle X, \langle X \rangle \rangle$.
- 2. If M_{REJECT} accepts, we accept. If M_{REJECT} rejects, we rejects. So we have,

$$Y(\langle X \rangle) = \begin{cases} \text{reject} & \text{if } X \text{ accepts } \langle X \rangle \\ \text{accept} & \text{if } X \text{ rejects } \langle X \rangle \\ \text{reject} & \text{if } X \text{ loops on } \langle X \rangle \end{cases}$$

Then,

$$Y(\langle Y \rangle) = \begin{cases} \text{reject} & \text{if } Y \text{ accepts } Y \\ \text{accept} & \text{if } Y \text{ rejects } Y \\ \text{reject} & \text{if } Y \text{ loops on } Y \end{cases}$$

We have that whatever Y try to decides on $\langle Y \rangle$ turns out to be that there is no certain answer and possibly failed to predict the outcome. Since Y cannot decides, then W also cannot decides. Hence, it contradicts to our assumption that M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$. Therefore, $\mathsf{REJECT}_{\mathsf{TM}}$ is undecidable. \square

2: Accept vs. Reject

$$ACCEPT_{TM} = \{ \langle M, x \rangle | M \text{ is a TM that accepts input x} \}$$

(i) Prove that ACCEPT_{TM} ≤ REJECT_{TM}Proof:

Suppose that TM M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{REJECT} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M by reversing the accept and reject states.
- 2. Run M_{REJECT} with $\langle M', w \rangle$.
- 3. If M_{REJECT} accepts, we accept. If M_{REJECT} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{REJECT}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, $M_{\sf ACCEPT}$ can correctly decide ${\sf ACCEPT}_{\sf TM}$ provided that there is a TM $M_{\sf REJECT}$. Therefore, ${\sf ACCEPT}_{\sf TM} \leq {\sf REJECT}_{\sf TM}$. \square

(ii)) Prove that $REJECT_{TM} \leq ACCEPT_{TM}$

Proof:

Suppose that TM M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{REJECT}_{\mathsf{TM}}$ using M_{ACCEPT} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M by reversing the accept and reject states.
- 2. Run M_{ACCEPT} with $\langle M', w \rangle$.
- 3. If M_{ACCEPT} accepts, we accept. If M_{ACCEPT} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{REJECT}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{REJECT} can correctly decide $\mathsf{REJECT}_{\mathsf{TM}}$ provided that there is a TM M_{ACCEPT} . Therefore, $\mathsf{REJECT}_{\mathsf{TM}} \leq \mathsf{ACCEPT}_{\mathsf{TM}}$. \square

3: Reverse on TM

$$T = \{\langle M \rangle | M \text{ is a TM that accepts } \mathbf{rev}(w) \text{ whenever it accepts } w\}$$

where $\mathbf{rev}(w)$ is the reverse of the string w. Show that T is undecidable.

Proof: $(ACCEPT_{TM} \leq T_{TM})$

Suppose that TM M_T decides T_{TM} and TM M_{ACCEPT} decides ACCEPT_{TM}, we want to show how to decide ACCEPT_{TM} using M_T .

On input $\langle M, w \rangle$:

- 1. Make TM M' that accepts a string w, then it also accepts w^R . On input x:
- 1.1 If x = 01, then accept x.
- 1.2 If $x \neq 01$, then run M on input w and accept if M accepts.
- 2. Run M_T on $\langle M', w \rangle$.

3. If M_{T} accepts, we accept. If M_{T} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{T}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

From observation, if M accepts w, then M' accepts every string, so $\langle M' \rangle \in \mathsf{T}_{\mathsf{TM}}$. If M does not accept w, then only 01 will be accepted which means $\langle M' \rangle \notin \mathsf{T}_{\mathsf{TM}}$

Then, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{T} .

So, $ACCEPT_{TM} \leq T_{TM}$. Therefore, T is undecidable. \square

4: Undecidability

(i) Show that

$$\mathsf{TOTAL} = \{ \langle M \rangle | \text{ M is a Turing machine that halts on every input} \}$$

is undecidable

Proof: $(ACCEPT_{TM} \leq TOTAL_{TM})$

Suppose that TM M_{TOTAL} decides $\mathsf{TOTAL}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{TOTAL} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M where if M accepts, we accept and enter loops when M rejects.
- 2. Run M_{TOTAL} with $\langle M', w \rangle$.
- 3. If M_{TOTAL} accepts, we accept. If M_{TOTAL} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{TOTAL}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{TOTAL} . So, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{TOTAL}_{\mathsf{TM}}$. Therefore, TOTAL is undecidable. \square

(ii) Show that

$$\mathsf{FINITE} = \{ \langle M \rangle | \text{ M is a Turing machine and } L(M) \text{ is a finite set} \}$$

is undecidable

 $Proof: (ACCEPT_{TM} \leq FINITE_{TM})$

Suppose that TM M_{FINITE} decides $\mathsf{FINITE}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{FINITE} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M where if M accepts, we accept and enter loops when M rejects.
- 2. Run M_{FINITE} with $\langle M', w \rangle$.
- 3. If M_{FINITE} accepts, we accept. If M_{FINITE} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{FINITE}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{FINITE} . So, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{FINITE}_{\mathsf{TM}}$. Therefore, FINITE is undecidable. \square

(iii) Show that

$$REGULAR = \{\langle M \rangle | M \text{ is a Turing machine and } L(M) \text{ is regular} \}$$

is undecidable

Proof: $(ACCEPT_{TM} \leq REGULAR_{TM})$

Suppose that TM M_{REGULAR} decides $\mathsf{REGULAR}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{REGULAR} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M. On input x:
- 1.1 If x has the form $0^n 1^n$, accepts.
- 1.2 If x does not have the form $0^n 1^n$, run M on input w and accept if M accepts w.
- 2. Run M_{REGULAR} with $\langle M', w \rangle$.
- 3. If M_{REGULAR} accepts, we accept. If M_{REGULAR} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{RFGULAR}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{REGULAR} . So, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{REGULAR}_{\mathsf{TM}}$. Therefore, $\mathsf{REGULAR}$ is undecidable. \square

5: Total Is No Harder Than Finite

Prove that

TOTAL
$$\leq_T$$
 FINITE

Proof:

Suppose that TM M_{TOTAL} decides $\mathsf{TOTAL}_{\mathsf{TM}}$ and TM M_{FINITE} decides $\mathsf{FINITE}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{TOTAL}_{\mathsf{TM}}$ using M_{FINITE} .

Given $\langle M \rangle$ as input:

- 1. Run M_{FINITE} on $\langle M \rangle$.
- 2. If M_{FINITE} accepts, we accept. If M_{FINITE} rejects, we rejects.

Refer to the fact that M_{FINITE} can determine whether M has finite set of L(M) or not, M will halt on every input only if L(M) is a finite set. If L(M) is not a finite set, we would not be able to determine that it will halt on every input since there would be at least one input that would not halt.

Hence, M_{TOTAL}	can correctly	$\mathrm{decide}\;TOTAL_{TM}$	provided	that there is a	$TM M_{FINITE}$.	Therefore,
$ACCEPT_{TM} \leq R$	EGULAR _{TM} .					

6: Finite Is No Harder Than Total

Prove that

 $\mathsf{FINITE} \leq_T \mathsf{TOTAL}$

Proof:

Suppose that TM M_{TOTAL} decides $\mathsf{TOTAL}_{\mathsf{TM}}$ and TM M_{FINITE} decides $\mathsf{FINITE}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{FINITE}_{\mathsf{TM}}$ using M_{TOTAL} .

Given $\langle M \rangle$ as input:

- 1. Run M_{TOTAL} on $\langle M \rangle$.
- 2. If M_{TOTAL} accepts, we accept. If M_{TOTAL} rejects, we rejects.

Refer to the fact that M_{TOTAL} can determine whether M halt on every input or not, L(M) has to be finite set if M halt on every input. If M does not halt on every input, we can tell that L(M) is not finite set since there would be another input to be execute.

Hence, M_{TOTAL} can correctly decide $\mathsf{TOTAL}_{\mathsf{TM}}$ provided that there is a TM M_{FINITE} . Therefore, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{REGULAR}_{\mathsf{TM}}$. \square

7: Extra: Undecidability of Nontrivial Properties

Proof: It is non trivial. How to decide on it though?