Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине

«Методы машинного обучения»

на тему

«Обработка признаков часть 1»

Выполнил:

студент группы ИУ5И-23М

Цзян Юхуэй

Москва-2024 г.

Цель лабораторной работы:

Изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - і. устранение пропусков в данных;
 - іі. кодирование категориальных признаков;
 - ііі. нормализация числовых признаков.

Часть 1. Для обработки пропусков

Для обработки пропусков мы используем набор данных UCI "Болезни сердца".

```
import pandas as pd

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import OneHotEncoder, StandardScaler, LabelEncoder

# 加载数据集

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data"

column_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target']

data = pd.read_csv(url, header=None, names=column_names, na_values="?")

# 显示数据集的前几行

print(data.head())

age sex cp trestbps chol fbs restecg thalach exang oldpeak \
0 63.0 1.0 1.0 1.0 145.0 233.0 1.0 2.0 150.0 0.0 2.3
```

	age	sex	cp	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	1
0	63.0	1.0	1.0	145.0	233.0	1.0	2.0	150.0	0.0	2.3	
1	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	
2	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	
3	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	
4	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	
	slope	ca	thal	l target							
0	3.0	0.0	6.0) 0							
1	2.0	3.0	3.0) 2							
2	2.0	2.0	7.0	1							
3	3.0	0.0	3.0	0							
4	1.0	0.0	3.0) 0							

Рис 1. Первые пять строк набора данных.

Случай пропуска значений в наборе данных:

```
0
age
sex
ср
            0
trestbps
            0
chol
fbs
restecg
thalach
exang
oldpeak
            0
slope
ca
thal
target
dtype: int64
```

Рис 2. Случай пропуска значений в наборе данных.

Среднее значение использовалось для восполнения недостающих значений для числовых характеристик, а множественное число - для восполнения недостающих значений для категориальных характеристик:

```
#使用平均值填补数值缺失值
imputer = SimpleImputer(strategy='mean')
data[['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'ca']] = imputer.fit_transform(data[['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'ca']])
#使用众数填补分类特征缺失值
data['thal'] = data['thal'].fillna(data['thal'].mode()[0])
#查看数据集的缺失值情况
print(data.isnull().sum())
```

```
0
age
sex
          0
ср
trestbps
         0
chol
          0
fbs
          0
restecg
         0
thalach
         0
exang
         0
oldpeak
         0
slope
         0
ca
thal
         0
target
         0
dtype: int64
```

Рис 3. Появление недостающих значений в наборе данных после заполнения.

Часть 2. Для категориальных признаков

Для категориальных признаков мы используем библиотеку Scikit-Learn для загрузки набора данных Iris.

```
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.datasets import load_iris

# 加穀数据集
iris = load_iris()
data = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data['target'] = iris.target

# 显示数据集的前几行
print(data.head())
```

```
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
            5.1 3.5
4.9 3.0
4.7 3.2
                                        1.4
                                       1.4
1.4
1.3
1
                                                      0.2
            4.9
                                                       0.2
3
            4.6
                         3.1
                                        1.5
                                                       0.2
4
            5.0
                         3.6
                                                       0.2
  target
0
1
2
3
      0
```

Рис 4. Первые пять строк набора данных.

Классификационные признаки кодируются с помощью метода One-Hot Encoding:

```
# 编码分类特征

# One-Hot Encoding

one_hot_encoder = OneHotEncoder(sparse=False)

encoded_features = one_hot_encoder.fit_transform(data[['target']])

encoded_df = pd.DataFrame(encoded_features, columns=one_hot_encoder.get_feature_names_out(['target']))

data = pd.concat([data, encoded_df], axis=1).drop(['target'], axis=1)

# 标准化数值特征
```

```
scaler = StandardScaler()
data[data.columns[:-3]] = scaler.fit_transform(data[data.columns[:-3]])
# 显示处理后的数据集的前几行
print(data.head())
```

```
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
0
          -0.900681
                            1.019004
                                              -1.340227
                                                               -1.315444
1
          -1.143017
                            -0.131979
                                              -1.340227
                                                               -1.315444
2
          -1.385353
                            0.328414
                                              -1.397064
                                                               -1.315444
3
          -1.506521
                            0.098217
                                              -1.283389
                                                               -1.315444
4
          -1.021849
                            1.249201
                                              -1.340227
                                                               -1.315444
  target_0 target_1 target_2
0
       1.0
                 0.0
                           0.0
1
       1.0
                 0.0
                           0.0
2
       1.0
                 0.0
                           0.0
3
       1.0
                 0.0
                           0.0
4
       1.0
                 0.0
                           0.0
```

Рис 5. Первые пять строк набора данных после процесса классификации.