This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 96/16983
C07K 7/08, 14/49, 14/54, 14/62, 14/65, 14/78, 17/02, 17/10, A61K 9/00, 38/10, 38/18, 38/20, 38/28, 38/30, 38/39		(43) International Publication Date:	6 June 1996 (06.06.96)
(21) International Application Number: PCT/US (22) International Filing Date: 30 November 1995 (BE, CH, DE, DK, ES, FR, GD,	R, European patent (AT GR, IE, IT, LU, MC, NL
(30) Priority Data: 08/347,942 30 November 1994 (30.11.5	94) ¹	Published With international search report.	•
(71) Applicant: LA JOLLA CANCER RESEARCH F TION [US/US]; 10901 N. Torrey Pines Road, La 92037 (US).			
(72) Inventors: VUORI, Kristiina; 3391 Lebon Drive Diego, CA 92122 (US). RUOSLAHTI, Erkki, I.; 1054, Rancho Santa Fe, CA 92037 (US).		·	
(74) Agents: IMBRA, Richard, J. et al.; Campbell and Fl 700, 4370 La Jolla Village Drive, San Diego, (US).	lores, S CA 92	aite 122	

(54) Title: COOPERATIVE COMBINATIONS OF LIGANDS CONTAINED WITHIN A MATRIX

The present invention provides compositions and methods for promoting cell migration and tissue regeneration. The composition contains a ligand for the $\alpha \beta_3$ integrin and a ligand for the insulin receptor, the PDGF receptor, the IL-4 receptor, or the IGF receptor, combined in a matrix. The combination of $\alpha \neq \beta_3$ ligand and growth factor produces an unexpected synergistic effect in enhancing wound healing compared with the effect of each component separately. The present invention also provides a method of wound healing and a method of inducing tissue regeneration by applying the compositions of the present invention to the site of the wound.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	. JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhsian	SK	Slovakia
CM	Cameroon	Li	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
cz	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
CA	Caban		· · · · · • · ·		

COOPERATIVE COMBINATIONS OF LIGANDS CONTAINED WITHIN A MATRIX

ACKNOWLEDGMENT

This invention was made in part with Government support under National Cancer Institute Grants CA 42507, CA 28896 and Cancer Center Support Grant CA 30199. Therefore, the Government may have certain rights in the invention.

BACKGROUND OF THE INVENTION

The present invention relates to compositions and methods for enhancing cell growth and tissue regeneration in the wound healing process.

Slow wound healing, inappropriate wound healing, or lack of healing represent serious medical problems affecting millions of individuals. These problems occur in dermal wounds such as decubitus ulcers, severe burns and diabetic ulcers and eye lesions including dry eye and corneal ulcer, as well as surgical wounds, and other pathologies.

In the wound healing process, tissue is replaced through the migration of cells and the synthesis of extracellular matrix by these cells. This repair process requires that the correct type of cell migrate into the wound in sufficient numbers to have a healing effect: macrophages to debride wounds, fibroblasts for the formation of extracellular matrix components in wounds where the extracellular matrix was damaged, capillary endothelial cells to promote angiogenesis and provide the blood supply, and epithelial cells to ultimately cover the wound.

The unwounded dermis owes much of its structure and strength to interaction of cells with the extracellular matrix. The matrix contains proteins known to support the attachment of a wide variety of cells; fibronectin,

vitronectin, thrombospondin, collagens and laminin are examples of matrix proteins. Plasma fibronectin deposition, for example, occurs at the wound site soon after wounding, although fibronectin is found in low concentrations in unwounded skin.

In addition to providing a scaffold for cell during migration wound attachment and extracellular matrices also direct cellular proliferation and differentiation. Thus, matrix influences healing of a 10 tissue in such a way that the correct tissue geometry is restored. When applied to wounds, exogenous fibronectin results in increased wound healing, epithelial migration However, fibronectin and other and collagen deposition. extracellular matrix proteins are less than ideal for 15 treatment due to cost, availability and instability. addition, as blood-derived products, extracellular matrix proteins may be vectors for infectious disease.

Cell growth factors, such as platelet derived growth factor (PDGF), fibroblast growth factor (FGF) or epidermal growth factor (EGF) also have been used to promote healing of dermis. However, growth factors primarily affect cell proliferation, when used alone, they do not confer the correct geometry of the new tissue, and can lead to overly vascularized tissue and abnormal healing. Moreover, it is known that an overabundance of growth factors such as TGF-B (transforming growth factor-B) and PDGF actually drive fibrosis, which in turn can impair successful healing. Additionally, many growth factors are known to be unstable and break down in topical or surface applications before a desired effect can be obtained.

Therefore, there remains a need for an effective agent to promote cell proliferation in association with cell attachment in the wound healing process.

3

SUMMARY OF THE INVENTION

The present invention provides compositions and promoting cell migration and for methods The composition contains a ligand for the regeneration. 5 $\alpha_{\nu}\beta_{\nu}$, integrin and a ligand for either the insulin receptor, the PDGF receptor, the IGF receptor, or the interleukin-4 (IL-4) receptor combined in a matrix. The combination of $\alpha_{\nu}\beta_{3}$ ligand and growth factor produces an unexpected synergistic effect in enhancing wound healing compared with the effect of each component separately. The present 10 invention also provides a method of promoting wound healing and a method of inducing tissue regeneration by applying the compositions of the present invention to the site of In addition the compositions of the present the wound. invention are useful as matrices to support cell growth and 15 tissue regeneration in vitro.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A shows cell lysates of quiescent and insulin-stimulated HIRcB cells immunoprecipitated with various anti-integrin antibodies and immunoblotted with 20 anti-phosphotyrosine antibody; Figure 1B shows HIRCB cell lysates fractionated on GRGDSPK-Sepharose and GRGESPKantiphosphotyrosine immunoblotted with an Sephārose antibody; Figure 1C shows extracts from quiescent and insulin-stimulated HIRCB cells immunoprecipitated with 25 anti-integrin antibodies and immunoblotted with anti-IRS-1 antibody; and Figure 1D shows extracts of insulin-treated cells immunoprecipitated with various antibodies, then immunoblotted with antiphosphotyrosine antibodies.

Figure 2A shows quiescent and insulin-stimulated HIRCB cell extracts immunoprecipitated with various antibodies and immunoblotted with anti-Grb2 antibody, and Figure 2B shows quiescent and insulin-stimulated HIRCB cells immunoprecipitated with various antibodies and immunoblotted with anti-PI 3-kinase antibody.

4

Figure 3 shows cell lysates of quiescent and insulin-stimulated FG-C (\$\alpha_i\beta\$, integrin negative), and FG-B (\$\alpha_i\beta\$, integrin positive) cells immunoprecipitated with various antibodies, and immunoblotted with antiphosphotyrosine and anti-IRS-1 antibodies.

Figure 4 shows DNA synthesis, as measured by thymidine incorporation, of FG-B (α , β , integrin positive) and FG-C (α , β , integrin negative) cells plated on vitronectin or collagen with (columns 9 to 12) and without 10 (columns 1 to 8) insulin stimulation.

Figure 5 shows DNA synthesis in human fibroblasts plated on vitronectin or collagen with (columns 3 and 4) and without (columns 1 and 2) PDGF treatment.

Figure 6 shows DNA synthesis in Rat-1 cells plated on vitronectin or collagen with (columns 3 and 4) or without (columns 1 and 2) EGF treatment.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a composition useful for promoting cell attachment, migration, and 20 proliferation, and methods of using the composition to promote wound healing and tissue regeneration. The composition contains an $\alpha_*\beta_*$ integrin ligand and a growth factor receptor ligand combined within a matrix.

A Combination of Ligands

Adhesion of cells to extracellular matrix (ECM) is a prerequisite for cell proliferation and survival. (Stoker et al., Int. J. Cancer 3:683 (1968); Meredith et al., Mol. Biol. Cell 4:953 (1993); Frisch and Frances, J. Cell Biol. 124:619 (1994); Ruoslahti and Reed, Cell 77:1 (1994)). Adhesion of cells to extracellular matrix (ECM) is mediated mainly by integrins. (Ruoslahti, E., J. Clin. Invest. 87:1 (1991); Hynes, R.O., Cell 69:11 (1992)).

Integrins are transmembrane receptors expressed on a wide variety of cells. There are eight known B subunits and sixteen known α subunits which associate in different heterodimeric $\alpha\beta$ pairs to give more than 20 transmembrane glycoproteins with different ligand specificities, (Albelda and Buck, FASEB J 4:2868 (1990). Ruoslahti, J. Clin. Invest. 87:1 (1991), Hynes, Cell 69:11 (1992)). several of the integrins are for ligands fibronectin, matrix proteins such as extracellular vitronectin, collagens and laminin. Many of the integrins recognize the sequence Arg-Gly-Asp in fibronectin and in a number of other adhesive proteins, as well as in synthetically derived peptides.

In some cases, cells must be adhered to the extracellular matrix in order for cells to respond to some 15 growth factors. (Lilien et al. J. Cell. Biol. 111:635 (1990), Schubert and Kimura, J. Cell. Biol. (1991)). Integrin-mediated cell adhesion and motility can be modulated by growth factors (Schlessinger and Geiger, Exp. Cell Res. 134:273 (1981); Bockus and Stiles, Exp. Cell Res. 153:186 (1984); Mellstrom et al., J. Muscle Res. Cell Motil. 4:589 (1983); Kadowaki et al., J. Biol. Chem. 261:16141 (1986); Stracke et al., Biochem. Biophys. Res. Commun. 153:1076 (1988)). For instance, growth factor treatment can disrupt focal adhesions, the presumed sites of integrin-mediated signaling (Schwartz, M.A., Trends Cell Biol. 2:304 (1992); Burridge et al., Curr. Biol. 2:537 (1992); Sastry and Horwitz, Curr. Opin. Cell Biol. 5:819 (1993); Juliano and Haskill, <u>J. Cell Biol.</u> 3:577 (1993)).

20 Integrins also mediate signals both from the exterior of the cell into the cell's interior (Juliano and Haskill, <u>J. Cell. Biol.</u> 120:577 (1993)), as well as from the inside out (Springer, <u>Nature</u> 346:425 (1990), Ginsberg, <u>Curr. Opin. Cell Biol.</u> 4:766 (1992)). These signals appear to play an important role in determining whether a cell

6

lives or dies, proliferates, differentiates, migrates, invades tissues, or otherwise acts (Juliano and Haskill, <u>J. Cell. Biol.</u> 120:577 (1993), Ruoslahti and Reed, <u>Cell</u> 77:102 (1994)).

Tyrosine kinases and tyrosine phosphorylation play a role in cell signaling involving integrins. For example, an intracellular tyrosine kinase localized in focal adhesions (Focal Adhesion Kinase, FAK) is activated as a result of integrin ligation (Kornberg et al. Proc. Natl. Acad. Sci. USA 88:8392 (1991), Guan et al. Cell Req. 2:951 (1991), Shaller and Parsons, Trends Cell Biol 3:258 (1993)). Protein kinase C (PKC) is also activated upon integrin ligation (Vuori and Ruoslahti, J. Biol. Chem 268:21459 (1993), Chun and Jacobson, Mol. Biol. Cell 4:271 (1993)). The activation of FAK and PKC appears to be a general response to integrin-mediated cell attachment.

The present invention is based on the discovery that growth factor receptor ligands in combination with ligands to integrins, particularly ligands to α,-containing integrins such as the α,β, integrin, enhance cell growth and tissue regeneration in a synergistic manner which exceeds the activity of each ligand separately. This has been demonstrated for a number of ligands, as described in the Examples below. For example, insulin, insulin-like growth factor (IGF), interleukin-4 (IL-4), and platelet-derived growth factor (PDGF), when combined with an α,β, ligand, such as vitronectin, enhance cell proliferation over that exhibited by cells in contact with only one of the ligands.

As demonstrated in the Examples given below,

30 an unexpected link between α, integrins and insulin signal transduction pathway has now been established. In one instance, Rat-1 fibroblasts expressing the human insulin receptor (HIRCB cells) were grown in the presence or absence of insulin. Integrins present on HIRCB cells were

7

immunoprecipitated using anti-integrin antibodies, the precipitates were separated on SDS-PAGE, and subsequently blotted with antiphosphotyrosine antibodies. In those cells treated with insulin, immunoprecipitates obtained with α_v and β_v integrin subunit antibodies contained a tyrosine phosphorylated 185 kDa band. Cells grown without insulin also exhibited α_v and β_v , however the 185 kDa band was absent, indicating it had not associated with $\alpha_v\beta_v$ in these cells.

The 185 Kda band is now known to be insulin 10 receptor substrate-1 (IRS-1), which is the major target protein phosphorylated on tyrosine by ligand-activated receptor for insulin and insulin-like growth factor, and which has an apparent molecular mass of 185 Kd on SDSpolyacrylamide gels (Myers and White, <u>Diabetes</u> 42:643 (1993); White and Kahn, J. Biol. Chem. 269:1 (1994); Keller and Lienhard, Trends Cell Biol. 4:115 (1994)). phosphorylated IRS-1 appears to connect the activation of downstream of number receptor a to insulin intracellular signaling pathways by binding signaling molecules containing the Src homology 2 (SH2)-domain. Such proteins include the Ras guanine-nucleotide-releasing complex Grb2-Sos, phosphatidyl inositol 3'-kinase (PI 3kinase), the phosphotyrosine phosphatase Syp, and the 25 adaptor protein Nck (Myers and White, Diabetes 42:643 (1993); White and Kahn, J. Biol. Chem. 269:1(1994); Keller and Lienhard, Trends Cell Biol. 4:115 (1994)).

Further testing was performed on the FG human pancreatic carcinoma cells which express the $\alpha_s \beta_s$ integrin but not the $\alpha_s \beta_s$ integrin and the FG-B subline which expresses both $\alpha_s \beta_s$ and $\alpha_s \beta_s$ integrins. These studies confirmed association of $\alpha_s \beta_s$ specifically, and not $\alpha_s \beta_s$, with the insulin receptor pathway when cells were contacted with a ligand for each receptor.

8

experiments demonstrate that insulin stimulation promotes association of the α , β , integrin with insulin receptor substrate-1 (IRS-1), an intracellular protein that mediates insulin and insulin-like growth Cells expressing the a,B, integrin, a factor signaling. vitronectin receptor, responded to insulin with greater DNA synthesis when plated on vitronectin than on other substrates, whereas cells expressing another vitronectin receptor, a,B,, did not show this difference. 10 demonstrates the specificity of the $\alpha.\beta$, integrin-IRS-1 association, well suggests a mechanism as as synergistic action of the two ligands. Increased DNA synthesis for a cell population is an indication of promotion of cell proliferation.

Similarly, PDGF promotes DNA synthesis in human fibroblasts when administered in conjunction with the α,β, ligand vitronectin, as shown in the Example below. When the human fibroblast cells were plated on collagen, which is not a α,β, ligand, these cells did not show enhanced 'H
20 thymidine incorporation into DNA as can be seen in Figure 5. In contrast, when Rat-1 cells were plated on vitronectin and treated with EGF, DNA synthesis was not enhanced compared to that exhibited by the same cells treated with EGF and plated on collagen. Thus, the synergistic effect observed for PDGF in conjunction with α,β, ligand is not present for EGF.

Therefore, these results indicate that some growth factor receptor ligands, but not others, together with $\alpha_{\nu}\beta_{3}$ integrin-mediated cell adhesion promote cell proliferation in a synergistic manner which exceeds that achieved by either the growth factors or $\alpha_{\nu}\beta_{3}$ -mediated cell adhesion individually.

Based on this finding, the present invention provides a composition for promoting cell attachment,

migration, and proliferation useful in wound healing and The composition contains a first tissue regeneration. ligand to an $\alpha_{\rm v}$ -containing integrin, preferably a ligand to $\alpha_{\nu}\beta_{1}$, and a second ligand to a growth factor receptor. 5 composition also includes a matrix. The matrix serves as a physical support for cell migration and tissue repair, as well as a delivery vehicle for the growth factor. the composition of the present invention contains a matrix support, a ligand for the α, β , integrin, and a ligand for a 10 growth factor receptor. In a preferred embodiment, the matrix is a biodegradable polymer capable of forming a conjugate with the integrin ligand and further containing the growth factor dispersed within it. In addition to containing a ligand for the $\alpha_{\nu}\beta_{3}$ integrin, a ligand for a growth factor receptor, and a matrix, the composition of the present invention also may contain one or more ligands for other integrin receptors, and/or additional ligands for growth factor receptors.

INTEGRIN LIGAND

Ligands to α_v -containing integrins, in particular the $\alpha_v\beta_s$, integrin, have proven to be effective in producing the desired synergistic activity in combination with a growth factor receptor ligand.

As used herein, the term "ligand for the $\alpha_{\nu}\beta_{3}$ integrin" or " $\alpha_{\nu}\beta_{3}$ integrin ligand" refers to all compounds 25 capable of binding the $\alpha_*\beta_3$ integrin and thereby triggering a desired biological response, such as cell adhesion, cell migration, differentiation, and the like. compound binds to $\alpha_s \beta_3$ integrin can be readily determined by 30 methods known in the art, such as an $\alpha_{\nu}\beta_{3}$ ELISA, cell binding assays, binding to $\alpha_{\nu}\beta_{3}$ affixed to a column. assays are described, for example, in Pytela et al., (1987), which is 144:475 Methods Enzymol. incorporated by reference. To determine if a compound that binds $\alpha_{\nu}\beta_{3}$ also triggers a biological response, that 35

10

compound is contacted with a cell expressing α, β , and the response evaluated. For instance, a compound that binds α, β , and triggers cell adhesion can be detected by coating a substrate with the compound, contacting a cell expressing 5 α, β_3 , such as the cells described herein, with the coated substrate, and assaying for cell adhesion to the substrate. Cell migration can also be evaluated by contacting cells with a substrate coated with a potential ligand and evaluating cell motility on the substrate. Such assays are described in the references, for example, Vuori and Ruoslahti, J. Biol. Chem. 268:21459 (1993), and Zhang et al., J. Cell Biol. 122:235 (1993), both of which are herein incorporated by reference.

α,β, integrin-binding ligands include Arg-Gly-Asp D-Arg-Gly-Asp containing peptides having 15 attachment promoting activity, as described in application serial number 08/176,999, and U.S. Patent No. 5,120,829, both of which are incorporated by reference, which are hereinafter referred to as peptide ligands. 20 Peptide ligands containing the Arg-Gly-Asp and D-Arg-Gly-Asp sequence are capable of promoting cell attachment when they are presented on a matrix or as an insoluble substrate as well as inhibiting cell attachment to vitronectin or other adhesive proteins when in solution. As used herein, 25 the terms "Arg-Gly-Asp" peptide or "RGD peptide" refer to a peptide having at least one Arg-Gly-Asp-containing sequence which can function as a binding site for an integrin type receptor, as described, for example Ruoslahti et al., In Morphoregulatory Molecules, G.M. Edelman et al, ed. (1990) and Ruoslahti et al., J. Clin. Invest. 87:1 (1991), both of which are incorporated by reference. It is intended that the term "RGD peptide" in its broadest sense includes a peptide comprising Arg-Gly-Asp or a functional equivalent. For example, an amino acid such as lysine, homoarginine (homoArg) or a mimic of these 35 amino acids is a functional equivalent of arginine.

PCT/US95/15542 WO 96/16983

11

Similarly mimics of Gly and Asp are functional equivalents of glycine and aspartic acid, respectively. Therefore, a peptide including, for example, Lys-Gly-Asp is considered an RGD peptide within the meaning of the present invention. 5 As used herein, the term "mimic" means an amino acid or an amino acid analog that has the same or similar functional characteristic of an amino acid. Thus, for example, an arginine analog can be a mimic of arginine if the analog contains a side chain having a positive charge 10 physiological pH, as is characteristic of the guanidinium side chain reactive group of arginine. A peptide mimetic or peptidomimetic is an organic molecule that retains similar peptide chain pharmacophore groups as are present in the corresponding peptide. Peptide mimetics also can be functional equivalents of Arg-Gly-Asp. 15

As used herein, the term "amino acid" in its broadest sense includes naturally occurring proteogenic amino acids and imino acids as well as non-naturally occurring amino acids and imino acids and analogs and mimics thereof. As used herein, the term "proteogenic" indicates that the amino acid can be incorporated into a protein in a cell through well-known metabolic pathways. In view of this broad definition of an amino acid, one of skill in the art would know that this definition includes, unless otherwise specifically indicated, naturally 25 occurring proteogenic (L) amino acids, (D) amino acids, chemically modified amino acids including amino acid analogs, naturally occurring non-proteogenic amino acids such as norleucine and chemically synthesized compounds that have properties known in the art to be characteristic 30 of an amino acid.

A preferred $\alpha_{\nu}\beta_{3}$ integrin ligand of the present invention is G(dR)(dR)(dR)(dR)(GR)GGG(dR)GDSPASSK (Seq ID No. 1), also known as WH-18. dR refers to the D isomer of arginine; all other amino acids are identified using the 35

20

12

common one letter code. The peptide ligands including WH-18 can be produced synthetically or recombinantly or derived from naturally occurring ligands such as fibronectin or vitronectin.

Pentide ligands are synthetic and relatively easy 5 to manufacture and do not need to be extracted from blood. In addition, the smaller size of the peptides allows many more binding sites to be attached to a given volume of matrix-like polymer. These peptides are also much more stable than fibronectin or other larger molecules in 10 particular, D-Arg confers protease solution. In resistance. Moreover, because they do not carry speciesspecific immunological determinants, they can therefore be used in both veterinary and human applications. Preferably such peptides contain at least one group of at least three · 15 amino acids selected from the D or L forms of Arg, Lys, or ornithine to the N terminal side of the Arg-Gly-Asp sequence.

extracellular matrix proteins such as vitronectin or biologically active fragments thereof. These ligands are combined with the growth factor receptor ligands and preferably attached to a polymer to form a matrix which is applied to wounds. a, B, integrin ligands also include all synthetic, non-peptide compounds capable of binding the a, B, integrin, and producing the desired biological response.

The $\alpha_r \beta_3$ integrin is involved in a variety of cellular activities, including angiogenesis, tumor cell migration, and bone resorption. The $\alpha_r \beta_3$ integrin is also known to be present in fibroblasts and migrating epidermal keratinocytes. Synthetic peptides and other synthetic compounds designed to bind $\alpha_r \beta_3$ and thereby modulate its activity in these and other cellular processes are

considered α, β_3 integrin ligands according to this invention. Thus α, β_3 integrin ligands according to EP 578,083 and Koivunen et al., <u>J. Biol. Chem.</u> 268:20205 (1993), both of which are incorporated herein by reference, are α, β_3 integrin ligands if they are capable of binding α, β_3 and triggering a desired biological response.

GROWTH FACTOR LIGAND

growth factor receptor ligand includes ligands to the insulin receptor, the insulin-like growth factor (IGF) receptor, the platelet derived growth factor 10 (PDGF) receptor, and the interleukin-4 (IL-4) receptor. As used herein the term "ligand" to a growth factor receptor refers to all compounds capable of binding to one of the receptors listed above, and thereby activating cells 15 containing the receptor. Binding is determined using well known receptor-ligand binding techniques. Activation is evidenced by phosphorylation of related internal signal molecules, enhanced DNA synthesis, and other parameters which would be known to those of skill in the art. For 20 example, insulin, IL-4, and insulin-like growth factor bind a receptor and effect phosphorylation of the IRS-1 molecule associated with the insulin receptor (as seen in Example I below, and as described in Sun et al., Nature 352:73 (1991), Morla et al., Mol. Cell. Biol. 8:2214 (1988)). PDGF binds a receptor and effects the phosphorylation of a 25 190 kDa protein, as described in Bartfeld et al., J. Biol. Chem. 268: 17270 (1993). Compounds which are capable of binding to receptors for PDGF, insulin, insulin-like growth factor, or IL-4 and effecting phosphorylation of IRS-1 or the 190 kDa protein associated with PDGF binding, for 30 example, are considered ligands to a growth factor receptor according to the present invention.

Growth factor receptor ligands include substantially purified growth factors such as all active

14

insulin, insulin-like growth factor forms of interleukin-4 (IL-4) and platelet-derived growth factor (PDGF), or biologically active analogs thereof. receptor ligands, insulin receptor ligands, IL-4 receptor ligands, and PDGF receptor ligands may be obtained by synthetic or recombinant production, from commercial sources, or otherwise obtained as would be known by one of skill in the art. For example, U.S. Patent No. 4,861,747, which is herein incorporated by reference, describes a method for purifying PDGF from human platelets, as well as 10 a method for producing it recombinantly, for example, in mammalian cell cultures infected with Simian Sarcoma virus. Growth factors which are purified from natural sources or recombinantly produced are readily available commercially, for example, from Amgen (Thousand Oaks, CA), and Genzyme 15 The B chain of recombinant human BB (Cambridge, MA). homodimeric platelet-derived growth factor (rPDGF-BB) is commonly used for clinical purposes. Insulin is readily obtainable from several sources including Sigma (St. Louis, 20 MO). IGF and IL-4 are commercially available from several sources, including Genzyme (Cambridge, MA).

A concentration of about 0.1 μ g/cm² to 10 μ g/cm² of relatively pure PDGF, IGF, IL-4 and insulin or analogs thereof produces the desired effect when combined with an effective concentration of $\alpha_v \beta_3$ integrin ligand.

MATRIX

In addition to the ligand components, the compositions of the present invention also include a matrix, which facilitates the administration of the composition to a wound site and provides a provisional scaffold for cell attachment and migration. As used herrin, the term "matrix" refers to a biocompatible solid or non-solid support which functions as a scaffold for tissue repair when $\alpha_{\nu}\beta_{3}$ ligands are attached. The matrix is

25

30

preferably a biodegradable polymer capable of conjugating to an α_v -containing ligand as described in application U.S. serial number 08/176,999, and application number WO 89/05771, which is herein incorporated by reference, as well as containing the growth factor receptor ligand of the composition. Examples of such polymers include hyaluronate, chondroitin sulfate, heparin, heparan sulfate, polyglactate, polyglycolic acid, starch or gelatin.

are preferably biodegradable polymers 10 provided as a conjugate together with a ligand to the $\alpha_{\nu}\beta_{3}$ A preferred integrin to form a "synthetic matrix". biodegradable polymer component of the compositions of the present invention is hyaluronic acid (HA). Hyaluronic acid consists of alternating residues of D-glucuronic acid and 15 N-acetyl-D-glucosamine. The polymer is naturally found in the dermal matrix and is commercially available from many It can form gels or viscous sources in pure form. solutions because it is a water soluble polymer. Other gel forming biodegradable polymers that can be advantageously used include, but are not limited to, collagen, agarose and 20 The polymers may be cross-linked to stabilize starch. their physical properties.

An alternatively preferred biodegradable polymer particularly for ophthalmic applications, is chondroitin sulfate, due to its ability to specifically bind exposed Such conjugates form stable solutions collagen/matrix. which can be provided in liquid form, such as eye drops. Other polymers that can be advantageously used include polylactate dextran, sulfate, heparan heparin, polyglycolic acid. In addition, these materials could be used in dermal application by crosslinking them to form a The preparation gel, or by forming mesh-like structures. of a peptide-chondroitin sulfate ionic conjugate held together by the ionic interaction between peptide and chondroitin sulfate is described in Japanese patent 10

15

application number 3-220614 (publication number 6-80694), which is herein incorporated by reference.

Effective concentrations of the a,B, integrin ligand and the growth factor receptor ligand in the matrix 5 for a particular purpose may be determined using assays and the art. The known in well concentration of each ligand within a matrix is determined independently. For example, a variety of matrices can be assembled, each containing a different ratio of the a,B, integrin ligand to matrix weight, for example, combinations 100% ligand to matrix by weight. 40% to combination is then evaluated for its ability to support cell attachment and migration using in vitro and in vivo assays as described in the examples below. The combination of cell adhesion and supporting the greatest amount migration is then combined with a range of concentrations of growth factor receptor ligand and tested for the ability to promote cell proliferation in addition to supporting cell attachment and migration. Cell proliferation can be 20 measured using thymidine incorporation, as described in Example III below, as well as cell counting techniques well known in the art. An effective ratio of ligands within a matrix is that which supports cell proliferation, cell attachment and cell migration.

25

30

The $\alpha_*\beta_*$ integrin ligand and matrix components of the conjugate can be joined by a number of procedures. 1-ethy1-3-3using joined dimethylaminopropylcarbodmiide (EDC), Other cross-linking/coupling linking/coupling agent. reagents can also be used such as dicyclohexylcarbomide bromide glutaraldehyde, cyanogen (DDC), hydroxysuccinimide. Other methods, well known in the art, can alternatively be used.

Growth factor receptor ligands such as active forms of PDGF are incorporated into the synthetic matrix conjugate in order to produce the composition of the present invention. The ratio of ligands to polymer scaffold 5 will vary depending on the intended usage and can be determined by the methods and assays disclosed herein. These ligands can be advantageously incorporated into a synthetic matrix described above using cross-linking. growth factor receptor ligand can be added to the hyaluronic acid scaffold, for example, using epoxides such 10 butane 1,4-butanediol diglycidyl epoxide (BDDE), polyglycerolpolyglycidyl ether (PGPGE), according to a method similar to that described in Yui et al. Controlled Rel. 24:133 (1993), which is herein incorporated by reference. The use of epoxide for the immobilization of growth factor receptor ligands allows for the potential of controlled release from the matrix because ester bonds formed at low pH are hydrolyzable. This methodology will not affect the activities of peptide ligands since the primary amine of the peptides do not react with the epoxide 20 at low pHs.

Alternatively, growth factor receptor ligands can be incorporated into peptide ligand/polymer matrices using entrapment within microspheres in a method similar to that described in Goa et al. Drugs 47:536 (1993), which is 25 herein incorporated by reference, for hyaluronic acid ester Entrapment consists of modifying the microspheres. hyaluronic acid chain/peptide integrin conjugate to contain a surplus of positive charges when in place on the matrix. peptide preferred example, а 30 G(dR)(dR)(dR)(dR)GGG(dR)GDSPASSK (Seq contains six argidines and has a net of six positive charges. Another method to entrap proteins is the use of radical free to induce methods photoactivation polymerization, according to Pathak et al. J. Am Chem Soc

18

114:8311 (1992), which is herein incorporated by reference, using in this case a photoactive dye such as eosin Y.

Alternatively, in some cases, the growth factor receptor ligands can be cross-linked to form a co-polymer 5 which could be cross-linked to the synthetic matrix described above. The growth factor receptor ligands could also be mixed into the $\alpha_{\nu}\beta_{3}$ ligand matrix and thereby incorporated into the composition.

The use of HA and other biodegradable polymer scaffolds containing bioactive components advantageously provides a matrix which stabilizes the bioactive components and provides a provisional matrix for cell migration and tissue repair. This is particularly important when growth factors or analogs are the growth factor receptor ligands, since many growth factors have been found to break down before a therapeutic effect can be produced.

Release of the growth factor receptor ligand from the synthetic matrix such as hyaluronic acid can be assured by the subsequent application of hyaluronidase, for example. However, it has been found that the matrix breaks down over time when applied to a wound to provide a steady release of the bioactive components (see, for example, Polarek et al., Wounds 6 (2):46 (1994) at page 50, which is herein incorporated by reference) since the biodegradable polymer scaffolds are selected so as to be normally broken down when applied to a skin surface.

The viscosity of the semi-gel can be altered by the addition of unconjugated hyaluronate or varying the degree of peptide conjugate. The semi-gel can be placed directly in a wound to aid in healing by providing an artificial biodegradable matrix along with cell attachment, migration, and proliferation signals. In alternate embodiments the conjugate can be coated on a biodegradable

19

mesh or other implanted material, or it can itself be formed into sheets or other structures, or can be provided as a stable solution.

As a semi-gel, the conjugate does not tend to migrate away from the wound site, either due to physical effects such as movement by the patient or by absorption by The conjugate acts as a the patient's own system. temporary replacement matrix that encourages cell migration into the wound and speeds healing. As the wound heals, the 10 conjugate is slowly broken down by the migrating cells and replaced by natural replacement matrix. applications, such as with corneal abrasion caused by the dry eye condition or other circumstances, a conjugate consisting of an $\alpha_{\nu}\beta_{3}$ receptor ligand coupled to chondroitin sulfate and having a growth factor is preferable. 15 conjugate binds to expose dermis collagen matrix, proving attachment sites for corneal epithelial cells. material can be provided in liquid form, such as eye drops.

Various compositions in the form of hyaluronic containing scaffolds) (HA scaffolds acid 20 proportions of the two ligands can be tested in commonly used in vivo dermal wound healing models such as those described for the RGD polymer conjugates described in patent application U.S. serial number 08/176,999. 25 compositions can be used on any wounds which involve body tissues being cut, abraded or otherwise damaged. wounds include chronic skin ulcers, burns, corneal wounds and incisions. Regeneration of tissue (such as cartilage, bone, or nervous tissue) can also be enhanced by applying 30 the compositions of the present invention. Additional in vivo animal models useful for testing compositions of the present invention include subcutaneous implantation of the composition in guinea pigs (Polarek et al., supra (1994), Buckley et al., PNAS USA 82: 7340 (1985)); rat incisional models (Shah et al., Lancet, 339: 213 (1992); rabbit ear 35

ulcer model (Pierce et al., Amer. J. Path., 138: 629-646 (1991); rabbit knee femoral medial condyl defect (Von Shroeder et al., J. Biomed. Mater. Bes. 25:329 (1991); and pig burn model (Polarek et al., supra (1994)), all of which are herein incorporated by reference. Those of skill understand that the results of such in vivo experiments are analyzed for tissue enhanced deposition, rate epithelialization, cell type reactivity, and growth factor delivery.

The compositions of the present invention are 10 therefore preferably provided in the form of synthetic matrices with the two types of ligand incorporated as described above. Compositions in the form of matrices or semi-gels are easily applied to wound areas as described 15 above and in patent application U.S. serial 08/176,999. For example, a semi-gel can be applied to dermal wounds such as chronic ulcer wounds resulting from various disease conditions such as diabetes or sickle-cell anemia which result in slower than normal wound healing. The semi-gel containing the two types of ligands is applied 20 topically to the wound, and the ulcer covered with a gauze dressing. Clinical studies employing a conjugate of HA and WH-18, the preferred $\alpha_{\nu}\beta_{\nu}$ integrin ligand (known ARGIDENE™ gel or Telio-DermR, Telios Pharmaceuticals, San 25 Diego, CA) are described in Wethers et al. Blood 84:1775 (1994), which is herein incorporated by reference. In addition, the peptides described in U.S. Patent No. 5,120,829, which is herein incorporated by reference, can also be used as ligands.

The present invention also provides a method of promoting wound healing by applying the composition of the present invention. A preferred form of the composition for use in this method is a composition which includes a ligand for the PDGF receptor. For example, a preferred embodiment of a composition for promoting wound healing is a synthetic

hyaluronic acid matrix containing the WH-18 peptide and a ligand for the PDGF receptor, such as PDGF. The method of applying the composition contemplated by the present invention is identical to the methods disclosed for the synthetic matrix lacking the growth factor ligand with the exception of instances where an additional enzyme is applied over the semi-gel to hasten the synthetic matrix breakdown.

In addition, a method of promoting tissue 10 regeneration is provided by the present invention by applying the compositions of the present invention in a manner described above.

The compositions of the present invention are also useful as matrices to support cell growth and tissue regeneration in vitro. The ligand-containing matrix can be used to coat surfaces to support and enhance primary and secondary tissue cultures, for example.

The following examples are intended to more clearly illustrate aspects of the invention, but are not intended to limit the scope thereof.

EXAMPLES

Throughout these examples, various publications are referred to more fully disclose the state of the art. These references are hereby incorporated by reference.

25 EXAMPLE I

ASSOCIATION OF p185/IRS-1 WITH INTEGRINS

The following studies demonstrate that the $\alpha_s \beta_s$ integrin, but not the β_s integrins or the $\alpha_s \beta_s$ integrins, is associated with a known signal transduction protein, the insulin receptor substrate 1 (IRS-1) protein, also known as

25

30

4PS. The cDNA for IRS-1 encodes a cytoplasmic protein with a calculated molecular weight of 131 kDa, however IRS-1 migrates at 165-185 kDa on SDS-PAGE (Sun et al., Nature 352:73 (1991), White and Kahn, J. Biol. Chem. IRS-1 is constitutively phosphorylated on serine 5 (1994)). and threonine residues and becomes heavily phosphorylated on tyrosine after insulin stimulation. IRS-1 has no known enzymatic function, but is capable of binding a number of phosphorylated that recognize its residues through their SH2 (src homology 2) domains. 10 proteins include phosphatidyl inositol-3-kinase (PI-3 and the adaptor protein Grb2. known kinase) consequence of these interactions is the enhancement of PI-3 kinase activity. Thus IRS-1 is thought to mediate the actions of insulin receptor by connecting the receptor to 15 also signaling pathways. IRS-1 of number phosphorylated by the insulin-like growth factor (IGF-1) (Sun et al., supra (1991)), and following stimulation of cells with IL-4 (Morla et al., Mol. Cell Biol. 8:2214 (1988), Proc Natl Acad Sci USA 90:4032 (1993)). · 20

Integrins were immunoprecipitated from Rat-1 fibroblasts (HIRcB cells) that had been stably transfected with the human insulin receptor, as described in McClain et al., J. Biol. Chem. 262:14663 (1987). HIRCB cells used in these experiments were obtained from Dr. Jerrold University of California, San Diego, CA. Immunoblotting with anti-phosphotyrosine antibodies was performed to determine whether tyrosine-phosphorylated proteins were coprecipitated. Two polyclonal antisera raised against human placental vitronectin receptor (anti- $\alpha_{\nu}\beta_{3}$ antibodies) and a polyclonal antibody raised against platelet $\alpha_{rib}\beta_i$ integrin coprecipitated phosphorylated protein (p185) from insulin-stimulated HIRcB cells as shown in Figure 1A, lanes 3, 4, 5.

Figure 1A shows cell lysates from quiescent (lane 1) or insulin-stimulated (lanes 2 to 8) HIRCB cells. HIRCB cells were grown to 80% confluency in Dulbeccos's modified Eagle's medium (DMEM) containing 10% fetal calf serum (FCS) and 500 nM methotrexate, incubated in DMEM + 0.1% BSA for 36 hours, and either left quiescent, or stimulated with 100 nM insulin (Sigma) for 3 minutes. Cell monolayers were rinsed with PBS, frozen with liquid nitrogen and lysed in NP-40 lysis buffer (20 mM Tris-HCl (pH-8.0), 1% NP-40, 10% glycerol, 137 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM sodium 10 fluoride, sodium mM 50 orthovanadate, phenylmethylsulfonylfluoride, 0.1 U/ml aprotinin, 10 μ g/ml HIRCB cells were immunoprecipitated with pepstatin A). anti- $\alpha_r \beta_3$ 237 according to Suzuki et al., <u>PNAS USA</u> 83:8614 (1986), as shown in lanes 1 and 3, 237 preimmune serum in lane 2, anti- $\alpha_r\beta_1$ 1343 in lane 4, anti- $\alpha_{rrb}\beta_3$ in lane 5, anti- $\alpha_5\beta_1$ 488 in lane 6 (made according to Argraves et al., <u>J.</u> Cell Biol. 105:1183 (1987)) and an unrelated rabbit antiserum (lane 7). Anti- $\alpha_{\nu}\beta_{3}$ 1343 was obtained from Ms. Helena Hessle (Telios Pharmaceuticals, Inc.) and anti- $\alpha_{\text{IIb}}\beta_3$ 20 from Dr. Elisabetta Dejana (Mario Negri Institute, Milan, Three anti- $\alpha_5\beta_1$ antibodies and six unrelated polyclonal antibodies tested gave results similar to those shown in lanes 6 and 7. Separate stained gels showed that each of the integrin antibodies immunoprecipitated the 25 appropriate integrins (not shown). In lane 8, anti- $\alpha_v \beta_3$ 237 immunocomplexes from insulin-treated cells were dissociated and reprecipitated with the same antibody as follows. Anti- $\alpha_r \beta_3$ 237 immunocomplexes from insulin-treated cells were resuspended in 10 mM Tris-HCl (pH 7.5), 2% SDS, 1 mM 30 sodium orthovanadate, 50 mM sodium fluoride, and heated at 95 degrees C for 5 minutes. The supernatant was diluted 10-fold to 10 mM Tris-HCl (pH 7.5) and reprecipitated with the anti- $\alpha_{\nu}\beta_{1}$ 237 antibody. Similar results were obtained with anti- $\alpha_{\nu}\beta_{3}$ 1343 and anti- $\alpha_{\nu}\beta_{3}$ antibodies. 35

24

The immunocomplexes were analyzed bv SDSpolyacrylamide electrophoresis gel (SDS-PAGE) and immunoblotted monoclonal _ anti-phosphotyrosine with a 125 I-labeled antibody and anti-mouse IqG. phosphotyrosine antibody py20, anti-Grb2 mAb and polyclonal antibody against the 85-kD subunit of PI 3-kinase were obtained from Transduction Laboratories (Lexington, KY). 125 I-labeled anti-mouse IgG was obtained from Amersham Corp, Arlington Heights, IL.

10 No phosphorylated protein was precipitated if the HIRCB cells were not insulin-stimulated (see Figure 1A, No coprecipitation of p185 occurred when polyclonal antibodies against the $\alpha_s\beta_s$ integrin were used (Figure 1A, lane 6). The Rat-1 (HIRCB) cells express this fibronectin receptor; however, as all B, integrins are 15 precipitated by this antibody, the result demonstrates that the other B, integrins fail to associate with p185 as well. Cell surface iodination followed by immunoprecipitation antibodies against integrin subunit cytoplasmic with domains showed that at least the $\alpha_3\beta_1$ and $\alpha_5\beta_1$ integrins are 20 expressed by the HIRCB cells. Both of these ßl-integrins were expressed at approximately the same level as $\alpha_{\nu}\beta_{1}$. Antibodies against several unrelated proteins also failed to coprecipitate p185 (Figure 1A, lane 7). When anti- $\alpha_{\nu}\beta_{1}$ 25 immunocomplexes were dissociated in SDS and reprecipitated with the same antibodies, pl85 was not detectable in the reprecipitated receptor complex. Immunoblot analysis with anti- $\alpha_{\kappa}\beta_{1}$, antibodies showed that the $\alpha_{\kappa}\beta_{1}$ integrin is precipitated with anti- $\alpha_{i}\beta_{i}$, antibodies to the same extent with and without SDS treatment. This has also been demonstrated for the anti $\alpha_{a}\beta_{1}$ 237, as described in Bartfeld et al. J. Biol. Chem. 268:17270 (1993). The anti-integrin antibodies therefore do not directly cross-react with p185 under these conditions (Figure 1A, lane 8).

Moreover, human cells were tested with commonly available monoclonal antibodies (mAbs); two mAbs reactive with the α_v -integrins coprecipitated p185, an anti- β_1 and an anti- α_5 mAb did not (data not shown).

peptide column confirmed the association of p185 with integrins. The phosphorylated p185 copurified with detergent extracts from insulin-treated cells on GRGDSPK (Seq ID NO. 2) -Sepharose, a known ligand for $\alpha_s \beta_s$ and other integrins (Ruoslahti and Pierschbacher, Cell 44:517 (1986); Ruoslahti and Pierschbacher, Science 238:491 (1987)), but not on a control peptide linked to Sepharose (Figure 1B, lanes 1 and 2).

insulin-Figure 1B shows cell lysates from stimulated HIRcB cells. After insulin stimulation, 5x10° 15 HIRCB cells were lysed in octylglucoside buffer [100 mM octyl-B-D-glucopyranoside in PBS containing 1 mM CaCl2, 1 mM and the following phosphatase and protease sodium 50 mM 1 mM sodium orthovanadate, inhibitors: 20 fluoride, 1 mM phenylmethylsulfonylfluoride, 0.1 U/ml aproptinin, 10 μ g/ml leupeptin and 4 μ g/ml pepstatin A. Octylglucoside was used as the detergent in affinity chromatography, because it is known to give a higher yield of integrins than other detergents (Pytela et al., Methods Integrins were isolated on 25 Enzymol. 144:475 (1987)). GRGDSPK (Seq. ID No. 2)-Sepharose (lane 1) or GRGESPK (Seq. ID No. 3)-Sepharose (lane 2) as described in Pytela et al., supra, and eluates were analyzed by anti-phosphotyrosine immunoblotting.

It is known that the insulin receptor substrate 1 (IRS-1) is the major target protein phosphorylated on tyrosine by ligand-activated insulin receptor and has an apparent molecular mass of 185 kD on SDS-polyacrylamide gels (Myers and White, <u>Diabetes</u> 42:643 (1993); White and

26

Kahn, J. Biol. Chem. 269:1(1994); Keller and Lienhard, Trends Cell Biol. 4:115 (1994)). Immunoblot analysis with an antiserum against the NH₂-terminus of IRS-1 is shown in Figure 1C. The anti-IRS-1 antibody prepared against the NH₂-terminus of IRS-1 (as described in Rose et al., PNAS USA 91:797 (1994) and provided by Dr. J.M. Olefsky, UCSD, CA.), demonstrated the presence of a reactive band in anti-α,β, immunocomplexes from insulin-stimulated, but not from unstimulated, HIRCB cells.

10 Figure 1C shows extracts from quiescent (lanes 1, 3, 5 and 7) or insulin-stimulated (lanes 2, 4, 6 and 8) HIRCB cells immunoprecipitated with anti-a, B, 237 (lanes 1 and 2), anti $\alpha_{\nu}\beta_{3}$ 1343 (lanes 3 and 4), anti- $\alpha_{5}\beta_{1}$ 488 (lanes 5 and 6) and an anti-IRS-1 antibody (lanes 7 and 8). 15 immunoprecipitates separated were by SDS-PAGE, immunoblotted with the anti-IRS-1 antibody followed by chemiluminescence detection with anti-rabbit IqG (ECL, Amersham, Arlington Heights, IL). The amount of protein loaded in lanes 1 to 6 was five times that in lanes 7 and 20 8.

Similar results were obtained with two other polyclonal antibodies to IRS-1, one raised against the COOH-terminus of IRS-1, and the other against recombinant IRS-1 produced in insect cells. Polyclonal anti-IRS-1 antibodies were obtained from Upstate Biotechnology, Inc., Lake Placid, NY. Immunoblot analyses were performed as in Figure 1C. Additionally, dissociation of the anti-α,β, immunocomplexes from insulin-treated cells followed by reprecipitation with anti-IRS-1 antibodies yielded a band corresponding to IRS-1 as shown in Figure 1D.

Figure 1D shows anti- α , β , 237 immunocomplexes from insulin-treated cells (lane 1) dissociated as in Figure 1A. The supernatant was subjected to three rounds of reprecipitation with the anti-IRS-1 antibody (lane 2),

27

and the supernatant cleared of IRS-1 was immunoprecipitated with py20 (lane 3). The immunoprecipitates were run on SDS-PAGE and immunoblotted with anti-phosphotyrosine antibodies.

The fact that the bands in Figure 1D, lanes 1 and 5 2 were about equal intensity, and the failure of the immunoprecipitate antibody to phosphotyrosine phosphotyrosine-containing proteins from the dissociated anti- $\alpha_{\nu}\beta_{3}$ complexes after they had been depleted of IRS-1 (Figure 1D, lane 3), showed that IRS-1 represents a major 10 portion of p185 associated with the vitronectin receptor. Insulin receptor was not detectable in the integrin immunocomplex. Polyclonal anti-insulin receptor antibody was obtained from Upstate Biotechnology, Inc., Lake Placid, Immunoblot analyses were performed as in Figure 1C. NY. 15

Five to eight percent of IRS-1 was complexed with the vitronectin receptor and maximal association was reached after 3 minutes of insulin stimulation. Comparison of the amount of integrin-associated IRS-1 with the amount of IRS-1 from total cell lysate was carried out by immunoblot analysis as described above for Figure 1 by using anti-IRS-1 antibody and 125I-labeled anti-rabbit IgG (Amersham Corp., Arlington Heights, IL). Ambis radioanalytic imaging system was used for densitometric analysis of the bands (not shown).

The $\alpha_{\nu}\beta_{3}$ -IRS-1 association was also found in normal kidney cells stimulated with IGF-1 (not shown). By using similar immunoprecipitation and immunoblotting techniques, it can be demonstrated that treatment of normal kidney cells with IGF-1, which also signals through IRS-1, would result in the $\alpha_{\nu}\beta_{3}$ -IRS-1 association.

28

EXAMPLE II

ASSOCIATION OF Grb2 and P1 3-KINASE WITH IRS-1

Immunoblot analysis with anti-Grb2 and anti-Pl 3-kinase antibodies showed that both of these proteins coprecipitated with $\alpha_s \beta_s$, integrin when immunoprecipitated with anti- $\alpha_s \beta_s$, antibodies from the insulin-stimulated HIRCB cells (Figure 2). Both proteins also precipitated with IRS-1 when immunoprecipitated with anti-IRS-1 anitibodies from insulin-stimulated cells.

Figure 2A shows the association of Grb2 and 10 2B shows the association of PI 3-kinase with Figure integrins. Cell lysates from quiescent (lanes 1 to 3) or insulin-stimulated (lanes 4 to 6) HIRCB cells were prepared as described for Figure 1, and immunoprecipitated with the 15 antibodies indicated. Anti-phosphotyrosine antibody py20, anti-Grb2 mAb and polyclonal antibody against the 85-kD subunit of PI 3-kinase were obtained from Transduction Laboratories (Lexington, KY). 125 I-labeled anti-mouse IgG was obtained from Amersham. The amount of protein loaded 20 in (A) in the anti- $\alpha_{\nu}\beta_{1}$ 237 lanes was five times that in the anti-IRS-1 lanes, and ten times that in the anti-Grb2 In (B), equal amounts of proteins were loaded in banes. The immunoprecipitates were separated on SDS-PAGE and immunoblotted with the anti-Grb2 mAb or anti-PI 3-25 kinase followed by detection with anti-mouse IgG or antirabbit IgG, respectively, and chemiluminescence.

EXAMPLE III

EFFECT OF INSULIN STIMULATION ON HUMAN PANCREATIC CARCINOMA CELLS

30 FG human pancreatic carcinoma cells do not express the $\alpha_s \beta_s$ integrin but rather use integrin $\alpha_s \beta_s$ as their vitronectin receptor as described in Cheresh et al., Cell 57:59 (1989). FG-C is a FG subline transfected with

the expression vector pcDNAINeo which does not express $\alpha_i \beta_i$ intregin. FG-B cell line obtained from Dr. D. Cheresh is a FG subline transfected with a full-length β_i cDNA in pcDNAINeo, and thus expresses $\alpha_i \beta_i$ as described in Leavesley et al., J. Cell. Biol. 117:1101 (1992). Therefore, as demonstrated by Leavesley et al., the FG-C cells express the $\alpha_i \beta_i$ integrin and β_i integrins; the FG-B cells express the $\alpha_i \beta_i$ integrin as well. The expression level of β_i in the FG-B cells is about 60% of the expression level of β_i .

- Figure 3 shows integrin-IRS-1 association in insulin-stimulated human pancreatic carcinoma cells. IRS-1 10 becomes tyrosine-phosphorylated in insulin-stimulated FG-C cells (Figure 3A, lane 2), but it did not associate with the $\alpha_s\beta_s$ integrin (Figure 3A, lanes 3 and 4). Cell lysates 15 from quiescent (lane 1) or insulin-stimulated (lanes 2 to 7) FG-C cells (lanes 1 to 4) and FG-B cells (lanes 5 to 7) antibodies. various with immunoprecipitated Immunoprecipitates with anti-IRS-1 antibody are shown in lanes 1 and 2, anti- $\alpha_{\nu}\beta_{1}$ 237 is shown in lanes 3 and 5, mAb 20 P3G2 $(\alpha_r \beta_s)$ is shown in lanes 4 and 6, anti- $\alpha_{IIb} \beta_s$ is shown in lane 7, and anti- $\alpha_5 B_1$ 488 is shown in lane 8. against human $\alpha_{\nu}\beta_{5}$ integrin is described in Wayner et al., J. Cell Biol. 113:919 (1991), and was obtained from Dr. D. Cheresh.
 - 1 Immunoprecipitates of the α,β, and β,-expressing FG-C cells were subjected to SDS-PAGE and immunoblotted with anti-phosphotyrosine (lanes 1 and 2) and anti-IRS-1 (lanes 3 and 4). Anti-IRS-1 precipitated a phosphorylated IRS-1 band from cells treated with insulin, but not from cells grown without insulin. Anti-vitronectin receptor antibodies, however, fail to coprecipitate the IRS-1 band in these cells regardless of insulin treatment (Figure 3, lanes 3 and 4). As determined by immunoblotting, these antibodies coprecipitate efficiently the α,β, integrin.

 35 This is confirmed by the results in Leavesley, et al.,

supra and Bartfeld et al., J. Biol. Chem. 268:17270 (1993), showing that the α , β , integrin does not interact with IRS-1. These findings confirm the absence of $\alpha_{\nu}\beta_{\nu}$, integrin on FG-C cells, and indicate IRS-1 does not associate with $\alpha_s \beta_s$ in 5 the presence of insulin. In contrast, anti- $\alpha_v \beta_3$ and anti- $\alpha_{\text{11b}}\beta_3$ antibodies (Figure 3, lanes 5 and 7) coprecipitated IRS-1 from insulin-stimulated FG-B cells that had been stably transfected with a cDNA encoding the integrin β_3 subunit and thus express the $\alpha_{\nu}B_{\nu}$ 10 Immunoprecipitation of the $\alpha_{\nu}\beta_{5}$ or β_{1} -integrins with anti- $\alpha_{\nu}\beta_{5}$ or anti- $\alpha_{5}\beta_{1}$ antibodies, respectively, showed association of the $\alpha_*\beta_*$ or β_1 -integrins with IRS-1 (Figure 3, lanes 6 and 8).

In a separate experiment, attachment assays performed according to Pytela et al., PNAS USA 82:5766 (1985), revealed no differences between the adhesion of the FG-B and FG-C cells. Adhesion to vitronectin was inhibited by polyclonal anti- $\alpha_s\beta_1$, but not anti- $\alpha_s\beta_1$, antibodies. The reverse was true for adhesion to collagen; the dependence of collagen adhesion on β_1 -containing integrins has also been demonstrated by inhibition with anti- β_1 mAb in Cheresh et al., 1989 supra. Therefore, FG-B/FG-C cell adhesion to vitronectin is mediated by α_s -integrins, whereas adhesion to collagen is mediated by β_1 -integrins.

25 Figure 4 shows DNA synthesis ([3H]-thymidine incorporation into DNA) in insulin-stimulated pancreatic carcinoma cells on various substrates. (columns 1, 2, 5, 6, 9, and 10) and FG-C cells (columns 3, 4, 7, 8, 11, and 12) were plated at 1x105 cells/well on 24-30 well plates that had been coated either with vitronectin (dark column) or type I collagen (open column). were coated with $10\mu g/ml$ of either vitronectin or type I collagen for 12 hours followed by blocking with 0.5% bovine serum albumin for 2 hours. Cells were incubated for 36 hours in DMEM containing 10% FCS (columns 1 to 4), or in 35

PCT/US95/15542 WO 96/16983

31

DMEM containing 0.1% BSA followed by addition of buffer (columns 5 to 8) or 100 mM insulin (columns 9 to 12). FCS is used as a control because it provides maximal stimulation owing to the presence of high levels of growth factors and adhesion proteins.

Trypan blue exclusion demonstrated cell viability to be over 85% on both vitronectin and collagen after 36 hour incubation in DMEM + 0.1 % BSA. After 15 hours, the cells were pulse-labeled with 1 μCi/ml [³H]-thymidine cells described activity 6.7 Ci/mmol, DuPont NEN) for 3 hours and thymidine incorporation into DNA was determined by trichloroacetic acid precipitation and liquid scintillation counting. Error bars indicate the standard error of triplicate determinations.

The FG-B cells responded to insulin with about 2.5-fold higher DNA synthesis when plated on the $\alpha_{\nu}\beta_{3}/\alpha_{\nu}\beta_{5}$ integrin ligand vitronectin than they did on collagen, where attachment is mediated by β_{1} -integrins (Figure 4, columns 9, 10). The FG-C cells, which lack $\alpha_{\nu}\beta_{3}$, showed no difference in the response on vitronectin and collagen (Figure 4, columns 3, 4, 7, 8, 11, 12).

correlation between $\alpha_{\tau}\beta_{3}$ expression increased insulin responsiveness on vitronectin was also found in a panel of three cell lines expressing $\alpha_{\nu}\beta_{3}$ and By using these cell 25 three lines expressing only $\alpha_{\nu}\beta_{5}$. lines, it was demonstrated that attachment to laminin did The $\alpha_{\nu}\beta_{3}$ -expressing not increase insulin responsiveness. cell lines were HIRCB, NIH 3T3 and NRK cells, and the cell lines expressing $\alpha_s \beta_s$ but not $\alpha_s \beta_s$ were HT29 colon carcinoma, UCLA-P3 lung adenocarcinoma and Panc-l pancreatic carcinoma cells. $\alpha_{\nu}\beta_{3}$ was found to associate with IRS-1 in all the 30 $\alpha_{\nu}\beta_{3}$ expressing cell lines following insulin stimulation. All the cell lines attached equally to vitronectin. NRK, HT29, UCLA-P3 and Panc-1 attached also to laminin and collagen, and HIRcB and NIH 3T3 cells attached to laminin. The attachment to laminin and collagen was inhibited by anti-\$\beta_1\$ antibodies (Vuori and Ruoslahti, unpublished data, and Hayman et al., \$\overline{J}\$. Cell Biol. 100:1948 (1985); Hayashi et al., \$\overline{J}\$. Cell biol. 110:175 (1990); Schreiner et al., \$\overline{Clin}\$. Expl. Metastasis 9:163 (1991); and Cheresh et al., supra).

In a similar manner to insulin treatment it was demonstrated that NRK cells responded to IGF-1 with about 0 2.3-fold higher DNA synthesis when plated on vitronectin than they did on collagen or laminin (not shown).

In summary, these results demonstrate physical association of an integrin with a known signaling molecule. The coprecipitation experiments inherently 15 distinguish a preexisting protein-protein association from one that occurs after the cells have been extracted. However, the cell proliferation data suggest that the $\alpha_{\nu}\beta_{3}$ integrin, presumably through its interaction with IRS-1, modulates cellular responses to insulin in a ligand-20 dependent manner. The integrin association increases the level of phosphorylated IRS-1 at the plasma membrane, where some of the targets for the IRS-1-associated signaling molecules are localized. The effects of insulin on pathways such as the one employing Grb2-Sos and, possibly, 25 PI3-kinase are enhanced as a result.

Unlike the activation of focal adhesion kinase, which seems to be mediated by a number of integrins (Schwartz, M.A., <u>Trends Cell Biol.</u> 2:304 (1992); Burridge et al., <u>Curr. Biol.</u> 2:537 (1992); Sastry and Horwitz, <u>Curr.</u>

30 <u>Opin. Cell Biol.</u> 5:819 (1993); Juliano and Haskill, <u>J. Cell Biol.</u> 3:577 (1993); Schaller and Parsons, <u>Trends Cell Biol.</u> 3:258 (1993)), the association with IRS-1 appears to be limited to the α , integrin. IRS-1 could therefore mediate

integrin-specific signals, such as the enhanced growth response to insulin observed.

EXAMPLE IV

EFFECT OF LIGAND BINDING OF THE α,Β, INTEGRIN ON DNA SYNTHESIS IN PDGF-STIMULATED HUMAN FORESKIN FIBROBLASTS

This example demonstrates the effect of the ligand binding of the $\alpha_v \beta_i$ integrin on platelet derived growth factor (PDGF)-stimulated cell proliferation measured by DNA synthesis in human foreskin fibroblasts.

Human foreskin fibroblasts (Coriell) were plated at 1x105 cells/well on 24-well plates that had been coated 10 for 12 hours either with 20 μ g/ml of vitronectin of 20 Cells were incubated for 36 μ g/ml of type I collagen. hours in Dulbecco's modified Eagle's medium containing 0.1% bovine serum albumin followed by addition of buffer or 40 After 15 hours, the ng/ml PDGF-BB (Boehringer Mannheim). ['H]-thymidine cells were pulse-labeled with lµCi/ml (specific activity 6.7 Ci/mmol, DuPont NEN) for 3 hours and thymidine incorporation into DNA was determined by liquid scintillation counting. 20

Figure 5 shows the incorporation of 'H-thymidine into DNA in human fibroblasts. Cells were serum-starved and treated with buffer only (samples 1 and 2) or with PDGF (samples 3 and 4). Data points are the average of duplicate samples.

responded to PDGF with about 2.3-fold higher DNA synthesis when plated on vitronectin than they did on collagen (compare column 3 with column 4). In parallel attachment assays, performed as described in Pytela et al., PNAS USA 82:5766 (1985), no differences were observed between human foreskin fibroblast adhesion to vitronectin and collagen.

25

30

5

10

20

Because cell adhesion to vitronectin was completely inhibited by a polyclonal anti- α , antibody or a monoclonal α , antibody, the observed adhesion of the cells on vitronectin is solely mediated by the α , integrin. The antibodies mentioned above did not have any effect on cell adhesion to collagen, demonstrating that the α , integrin does not mediate this adhesion. There is thus an increase in the PDGF-responsiveness of human foreskin fibroblasts in the presence of the α , integrin binding to its ligand. This effect may be mediated by the α , β , associated 190 kDa protein described by Bartfeld et al. J Biol. Chem. 268:17270 (1993) which might be analogous to IRS-1 in

Example V

15 <u>EFFECT OF LIGAND BINDING OF THE α,β, INTEGRIN ON DNA</u> <u>SYNTHESIS IN EGF-STIMULATED RAT-1 CELLS</u>

insulin-stimulated cells.

This example demonstrates the effect of the ligand binding of the $\alpha_r\beta_3$ integrin on Epidermal growth factor (EGF)-stimulated cell proliferation measured by DNA synthesis in Rat-1 fibroblast cells.

well plates that had been coated for 12 hours either with 20 μg/ml of vitronectin or 20 μg/ml of type I collagen. Cells were incubated for 36 hours in Dulbecco's modified Eagle's medium containing 0.1% bovine serum albumin followed by addition of buffer or 40 ng/ml EGF (Boehringer Mannheim). After 15 hours, the cells were pulse-labeled with 1μCi/ml [³H]-thymidine (specific activity 6.7 Ci/mmol, DuPont NEN) for 3 hours and thymidine incorporation into 30 DNA was determined by liquid scintillation counting.

The incorporation of ³H-thymidine into DNA in Ratlells is shown in Figure 6. After being serum-starved, the cells were treated with buffer only (samples 1 and 2)

PCT/US95/15542 WO 96/16983

35

or with EGF (samples 3 and 4). Data points are the average of triplicate samples.

As demonstrated in Figure 6, the Rat-1 cells showed the same response to EGF whether plated on 5 vitronectin or collagen. In parallel attachment assays, performed as in Pytela et al., PNAS USA 82:5766 (1985), no differences were observed between rat-1 cell adhesion to Because cell adhesion to vitronectin and collagen. vitronectin was completely inhibited by a polyclonal anti-10 $\alpha_{\nu}\beta_{3}$ antibody, the observed adhesion of the cells on vitronectin is solely mediated by the a,B, integrin. antibodies did not have any effect on cell adhesion to collagen, demonstrating that the $\alpha_{\nu}\beta_{3}$ integrin does not The EGF-responsiveness of Rat-1 mediate this adhesion. . 15 cells therefore is not dependent on whether the $lpha_{\nu}eta_{3}$ integrin binds to its ligand.

Although this invention has been described with reference to the presently preferred embodiments, it is understood that various modifications can be made without departing from the spirit of the invention. According, the invention is limited only by the following claims.

20

36

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: LA JOLLA CANCER RESEARCH FOUNDATION
 - (ii) TITLE OF INVENTION: COOPERATIVE COMBINATIONS OF LIGANDS CONTAINED WITHIN A MATRIX
 - (iii) NUMBER OF SEQUENCES: 3
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: CAMPBELL AND FLORES
 - (B) STREET: 4370 LA JOLLA VILLAGE DRIVE, SUITE 700
 - (C) CITY: SAN DIEGO
 - (D) STATE: CALIFORNIA
 - (E) COUNTRY: UNITED STATES (F) 2IP: 92122
 - (V) COMPUTER READABLE FORM:

 - (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (Vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 30-NOV-1995
 - (C) CLASSIFICATION:
 - (Vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/347,942
 - (B) FILING DATE: 30-NOV-1994
 - (Vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/176,999
 - (B) FILING DATE: 03-JAN-1994
 - (Vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/142,842
 - (B) FILING DATE: 25-OCT-1993
 - (Vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/978,054
 - (B) FILING DATE: 18-NOV-1992
 - (viii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/286,973
 - (B) FILING DATE: 20-DEC-1988
 - ATTORNEY/AGENT INFORMATION:

 - (A) NAME: IMBRA, RICHARD J. (B) REGISTRATION NUMBER: 37,643 (C) REFERENCE/DOCKET NUMBER: FP-LA 1879
 - TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 619-535-9001
 - (B) TELEFAX: 619-535-8949
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

- (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 2..6
 - (D) OTHER INFORMATION: /note= "X=(dR), WHICH IS THE D ISOMER OF ARGININE"
 - (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 10
 - (D) OTHER INFORMATION: /note= "X=(dR), WHICH IS THE D ISOMER OF ARGININE"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Gly Xaa Xaa Xaa Xaa Gly Gly Gly Xaa Gly Asp Ser Pro Ala Ser

Ser Lys

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Gly Arg Gly Asp Ser Pro Lys

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
 - Gly Arg Gly Glu Ser Pro Lys

We claim:

- 1. A composition comprising a first ligand to the $\alpha_{\nu}\beta_{\nu}$ integrin and a second ligand selected from the group consisting of a ligand to a PDGF receptor, a ligand to an insulin growth factor receptor, a ligand to an IL-4 receptor, and a ligand to an insulin-like growth factor receptor, wherein both ligands are contained within a matrix.
- 2. The composition of claim 1 wherein the ligand to the $\alpha_s\beta_s$ integrin is a peptide containing the amino acid sequence Arg-Gly-Asp or D-Arg-Gly-Asp.
- 3. The composition of claim 1 wherein the ligand to the $\alpha_v\beta_1$ integrin is vitronectin.
- 4. The composition of claim 1 wherein the second ligand is selected from the group consisting of insulin, insulin-like growth factor, IL-4, PDGF, and biologically active analogs thereof.
- 5. The composition of claim 1, wherein the matrix is a biodegradable polymer conjugated to a ligand to the $\alpha_{\nu}\beta_{3}$ integrin.
- 6. The composition of claim 5 wherein the biodegradable polymer is selected from the group consisting of hyaluronic acid, chrondroitin sulfate, heparin, heparan sulfate, polylactate, polyglycolic acid, starch or collagen.
- 7. The composition of claim 5 wherein the ligand to the $\alpha_v \beta_1$ integrin is a peptide containing the amino acid sequence Arg-Gly-Asp or D-Arg-Gly-Asp.

WO 96/16983 PCT/US95/15542

39

- 8. The composition of claim 6 wherein the biodegradable polymer is hyaluronic acid.
- 9. The composition of claim 1 wherein the ligand to the α_*B , integrin is G(dR)(dR)(dR)(dR)GGG(dR)GDSPASSK (Seq ID No. 1).
- 10. The composition of claim 9 wherein the matrix is hyaluronic acid conjugated to G(dR)(dR)(dR)(dR)GGG(dR)GDSPASSK (Seq ID No. 1) to form a synthetic matrix semi-gel.
- 11. The composition of claim 10 wherein the second ligand is associated with the synthetic matrix semigel and is selected from the group consisting of insulin, insulin-like growth factor, IL-4, PDGF and biologically active analogs thereof.
 - 12. A composition comprising a G(dR)(dR)(dR)(dR)(dR)GGG(dR)GDSPASSK (Seq ID No. 1) peptide, hyaluronic acid, and PDGF or a biologically active analog thereof, wherein the peptide and PDGF are contained within the hyaluronic acid.
 - 13. A composition comprising a G(dR)(dR)(dR)(dR)(dR)GGG(dR)GDSPASSK (Seq ID No. 1) peptide, hyaluronic acid, and insulin or a biologically active analog thereof, wherein the peptide and insulin are contained within the hyaluronic acid.
 - 14. A composition comprising a
 G(dR)(dR)(dR)(dR)GGG(dR)GDSPASSK (Seq ID No. 1)
 peptide, hyaluronic acid, and IGF or a biologically active
 analog thereof, wherein the peptide and IGF are contained
 within the hyaluronic acid.

- 15. A composition comprising a G(dR)(dR)(dR)(dR)(GGG(dR)GDSPASSK (Seq ID No. 1) peptide, hyaluronic acid, and IL-4 or a biologically active analog thereof, wherein the peptide and IL-4 are contained within the hyaluronic acid.
 - 16. A method of treating a wound comprising placing the composition of claim 1 into the wound.
 - 17. A method of treating a wound comprising placing the composition of claim 11 into the wound.
 - 18. A method of inducing tissue regeneration comprising placing the composition of claim 1 into the wound.
 - 19. A method of inducing tissue regeneration comprising placing the composition of claim 11 into the wound.

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Internatio vapplication No.
PCT/US95/15542

IPC(6) :Please See Extra Sheet. US CL :424/85.2, 486, 488; 530/303, 326, 351, 356, 399, 402; 536/4.1; 514/2, 3, 13 According to International Patent Classification (IPC) or to both national classification and IPC				
	124/85.2, 486, 488; 530/303, 326, 351, 356, 399, 402; 53			
U.S. : 4	(24/85.2, 480, 488; 530/303, 328, 331, 330, 339, 402, 33	94.1, 3143, 3, 13		
_	ion searched other than minimum documentation to the exten			
	ata base consulted during the international search (name of se Extra Sheet.	data base and, where practicable,	scarch terms used)	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropr	iate, of the relevant passages	Relevant to claim No.	
Y	US, A, 4,578,079 (RUOSLAHTI ET AL column 6, lines 49-55.) 25 March 1986, see	1-19	
Y	US, A, 4,703,108 (SILVER ET AL) 27 October 1987, see column 2, lines 6-31, column 4, lines 30-35, and column 6, line 46 to column 7, line 4.			
Y	Proc. Natl. Acad. Sci. USA, Volume 82, issued September 1985, Pytela et al, "A 125/115-kDa Cell Surface Receptor Specific for Vitronectin Interacts with the Arginine-Glycine-Aspartic Acid Adhesion Sequence from Fibronectin", pages 5766-5770, see pages 5767-5679.		1-19	
X Purt	her documents are listed in the continuation of Box C.	See patent family annex.		
.B	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevances outlier document published on or after the interestional filing date "X" decument published after the interestional filing date "X" decument published after the interestional filing date "X" decument published after the interestional filing date "X" decument of particular relevances; the claimed invent considered nevel or connot be considered to involve an when the document is taken alone		nation but cated to understand the vention to claimed invention cannot be ared to involve an inventive step	
ci 9	sourcest visites may be a sense of constant citation or other expecial reason (as specified) sourcest referring to us and disclarate, use, exhibition or other	document of particular relevance; if cancillared to involve on investive combined with one or more other me being obvious to a person diciled in	the decrements, such combination	
_	necessity published prior to the interestional filing date but later them	decrement member of the same pates	t fumily	
·p-		e of mailing of the international se	arch report	
Date of the	e actual completion of the international search UARY 1996	06 MAR 1996		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/15542

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	US, A, 5,128,326, (BALAZS ET AL) 07 July 1992, see column 2, lines 15-35 and column 4, lines 19-30.	8-15, 17, 19
,	US, A, 4,683,291 (ZIMMERMAN ET AL) 28 July 1987, see column 2, line 60 to column 3, line 12 and table in column 5.	9-15, 17, 19
		·
•		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/15542

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

C07K 7/08, 14/49,14/54, 14/62, 14/65; 14/78, 17/02, 17/10; A61K 9/00, 38/10, 38/18, 38/20, 38/28, 38/30, 38/39

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS/USPAT, STN/MEDLINE, BIOSIS, World Patent Index

Search terms: growth factors, matri?, biomaterial, biodegradable, platelet derived growth factor, PDGF, insulin like

growth factor, IGF, interleukin 4, IL-4, insulin, hyaluronic acid, hyaluronate

THIS PAGE BLANK (USPTO)