I. for Bern.

• Binom: Conj prior o Beta(lpha,eta)

$$lpha' = lpha + \sum x_i$$
 , $eta' = eta + n - \sum x_i$

$$mean=rac{lpha+r}{lpha+eta+n}$$
 , $var=rac{lphaeta(lpha+eta+n)}{(lpha+eta)^2(lpha+eta+1)}$ (need to substitute $lpha'$ and eta')

If m and s of the Beta are given

$$lpha = ig(rac{1-m}{s^2} - rac{1}{m}ig)m^2$$
 , $eta = lphaig(rac{1}{m} - 1ig)$

• Geom: Beta prior \Rightarrow Beta post w/ lpha' = lpha + n , $eta' = eta + \sum (k_i - 1)$

I. for Pois.

The likelihood is \propto to a $Gamma(y, lpha, \lambda)$ with $lpha = \sum y_i + 1$, $\lambda = n$

Priors

- Uniform \Rightarrow post is Gamma w/ $lpha = \sum y_i + 1$, $\lambda = n$
- Jeffrey \Rightarrow post is Gamma w/ $lpha = \sum y_i + rac{1}{2}$, $\lambda = n$
- Gamma ightarrow conj prior $ightarrow lpha = r+1 \quad , \quad \lambda = n$
- single obs: \Rightarrow post is Gamma w/ $~\alpha'=\alpha+y~~,~~\lambda'=\lambda+1$
- n obs $\{y_i\}$: \Rightarrow post is Gamma w/ $lpha'=lpha+\sum y_i$, $\lambda'=\lambda+n$

\$\$\begin{equation}

 $E[n|y] = \frac{\alpha}{\lambda}{\lambda}^{2}$

\end{equation}\$\$

If m and s of the Gamma are given

$$lpha = \left(rac{m}{s}
ight)^2 \quad , \quad \lambda = rac{m}{s^2}$$

If likelihood is Exp and we use Gamma prior \Rightarrow post is Gamma w/ lpha'=lpha+n , $eta'=eta+nar{x}$

I. for Norm.

 σ^2 is known, while μ is a parameter. Likelihood is $Norm(\mu, \sigma^2)$

Priors

• Uniform \Rightarrow post is Norm w/ $\mu_0=rac{1}{N}\sum y_i$ (true empirical mean) , $s^2=rac{\sigma^2}{N}$

The inference will be $\mu=\mu_0\pmrac{\sigma}{\sqrt{N}}$

- If the data has errors $o \mu_0=rac{\sum y_i/\sigma_i^2}{\sum 1/\sigma_i^2} \quad , \quad s^2=\left(\sum 1/\sigma_i^2
 ight)^{-1}$
- $Norm(m, s^2) \Rightarrow \mathsf{post}$ is Norm w/

- single obs:
$$m'=rac{\sigma^2 m + s^2 y}{\sigma^2 + s^2}$$
 , $s'^2=rac{\sigma^2 s^2}{\sigma^2 + s^2}$

- n obs
$$\{y_i\}$$
: $m'=rac{1/s^2}{n/\sigma^2+1/s^2}m+rac{n/\sigma^2}{n/\sigma^2+1/s^2}ar{y}$, $s'^2=rac{\sigma^2s^2}{\sigma^2+ns^2}$

 μ is known, while σ^2 is a parameter.

o prior is the Inverse Gamma o $E[x]=rac{eta}{lpha-1} \quad , \quad var(x)=rac{eta^2}{(lpha-1)^2(lpha-2)}$

 \Rightarrow post is inverse Gamma w/ $lpha'=lpha+rac{n}{2}$, $eta'=eta+rac{\sum(x_i-\mu)^2}{2}$

Distributions

ullet Binom: x successes in n trials. E[x]=np , var=np(1-p)

• Geom: x failures to get the 1st success. $E[x]=rac{1}{p}$, $var=rac{1-p}{p^2}$

ullet Multinomial: generalize Binom o outcome A_i with prob $p_i.\,E[x_i]=np_i$, $var(x)=np_i(1-p_i)$

ullet Pois: $E[x]=\lambda$, $var=\lambda$

• NegBinom: prob of obtaining r-th success in n trials. $E[x] = \frac{r}{n}$, $var(x) = \frac{r(1-p)}{r^2}$

• Exp: prob of the distance between events in a Pois process. $E[x]=rac{1}{\lambda}$, $var=rac{1}{\lambda^2}.$ $Exp(\lambda)\sim Gamma(1,\lambda)$

• Erlang: prob of waiting time x for the n-th event to occur. $E[x]=rac{n}{\lambda}$, $var(x)=rac{n}{\lambda^2}$. $Eral(n,\alpha)\sim Gamma(n,\lambda)$

ullet Gamma: $E[x]=rac{lpha}{eta}$, $var(x)=rac{lpha}{eta^2}$

• Beta: $E[x]=rac{lpha}{lpha+eta}$, $var(x)=rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$

Combinatory

• Unique pairs (no order): $\frac{n(n-1)}{2}$

• Unique ordering: n!

• Permutations (order matter):

- yes rep: n^r (seq of r obj from n)

- no rep: $\frac{n!}{(n-r)!}$ (unique selection of r obj among n)

• Combinations (order doesn't matter):

- yes rep: $\frac{(n+r+1)!}{r!(n-1)!}$ (n° of ways of choosing r obj from n, w/ replacement)

- no rep: $\frac{n!}{r!(n-r)!}$ (n° of ways of choosing r obj from n, w/o regard of order)

Ineq.

Very useful when we don't have enough infos about the distr of random variables, but for which we can calculate E[x] and/or var(x)

• Markov: $X \geq 0$ w/ $E[x] = \mu \Rightarrow P(X \geq k) \leq rac{\mu}{k}$

• Jensen: $E[x^2] \geq (E[x])^2$ since $var(c) \geq 0
ightarrow X$ w/

 $E[x] = \mu$ and g(x) is a convex func \Rightarrow $g(E[x]) \leq E[g(x)]$

• Cheby: $X \geq 0$ w/ $E[x] = \mu$ and $var(x) = \sigma^2 \Rightarrow P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2}$ if $k = r\sigma \quad \rightarrow \quad P(|X - \mu| \geq r\sigma) \leq \frac{1}{\sigma^2}$