Sprawozdanie 13.

Szacowanie całek przy użyciu kwadratur Gaussa

Mirosław Kołodziej

10.06.2021

1. Wstęp teoretyczny

1.1 Kwadratury Gaussa

Rozpatrujemy kwadratury typu:

$$S(f) = \sum_{k=0}^{N} A_k f(x_k), \qquad A_k = \int_a^b p(x) \Phi_k(x) dx$$

Ustalamy funkcję wagową p(x) oraz liczbę węzłów jako N+1. Poszukujemy położenia węzłów i współczynników A_k w taki sposób, żeby rząd kwadratury był jak najwyższy. Do wyznaczenia takich kwadratur używa się wielomianów ortogonalnych. Ciąg wielomianów:

$$\{\varphi_n(x)\} = \{\varphi_0(x), \varphi_1(x), ..., \varphi_N(x)\}\$$

nazywamy ortogonalnymi na przedziale [a, b], jeśli zachodzi pomiędzy nimi następujący związek:

$$(\varphi_r, \varphi_s) = \int_a^b p(x)\varphi_r(x)\varphi_s(x)dx = 0, \qquad r \neq s.$$

Dla kwadratu Gaussa zachodzą trzy twierdzenia:

- 1. Wielomiany ortogonalne mają tylko pierwiastki rzeczywiste, które leżą w przedziale [a, b].
- 2. Nie istnieje kwadratura Gaussa rzędu wyższego niż 2(N+1), zaś kwadratura Gaussa jest rzędu 2(N+1) wtedy i tylko wtedy, gdy węzły x_k są pierwiastkami wielomianu $P_{N+1}(x)$.
- 3. Wszystkie współczynniki A_k w kwadraturach Gaussa są dodatnie.

1.2 Kwadratura Gaussa-Legendre'a

Kwadratura Gaussa-Legendre'a ma postać:

$$\int_{a}^{b} f(x)dx \approx S(f) = \sum_{k=0}^{N} A_{k}f(x_{k}).$$

Występuje ona na przedziale [a, b] z funkcją wagową p(x) = 1.

1.3 Kwadratura Gaussa-Laguerra

Kwadratura Gaussa-Laguerra ma postać:

$$\int_{0}^{\infty} e^{-x} f(x) dx \approx S(f) = \sum_{k=0}^{N} A_k f(x_k).$$

Występuje ona na przedziale $[0, \infty]$ z funkcją wagową $p(x) = e^{-x}$.

1.4 Kwadratura Gaussa-Hermite'a

Kwadratura Gaussa-Hermite'a ma postać:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx S(f) = \sum_{k=0}^{N} A_k f(x_k).$$

Występuje ona na przedziale $[-\infty, \infty]$ z funkcją wagową $p(x) = e^{-x^2}$.

2. Problem

Celem naszych zajęć było obliczenie numeryczne całki przez oszacowanie jej przy użyciu kwadratury:

$$C = \int_a^b p(x)f(x)dx = \sum_{i=1}^n A_i f(x_i),$$

gdzie A_i to współczynniki kwadratury, zaś x_i to położenia węzłów kwadratury. W powyższej całce poza funkcją podcałkową f(x) pod całką znajduje się również funkcja wagowa p(x), której postać determinuje sposób wyznaczania węzłów i wartości współczynników kwadratury. My rozważaliśmy trzy typy kwadratur:

kwadratura Gaussa-Legandre'a, dla której korzystaliśmy z funkcji:

void gauleg(float x1, float x2, float x[], float w[], int n)

• kwadratura Gaussa-Laguerra:

void gaulag(float x[], float w[], int n, float alf)

kwadratura Gaussa-Hermite'a:

void gauher(float x[], float w[], int n)

W powyższych funkcjach obowiązują następujące oznaczenia: x_1 to lewy kraniec przedziału całkowania, x_2 to prawy kraniec przedziału całkowania, n to liczba węzłów, x[] to tablica z położeniami węzłów kwadratury, w[] to tablica z wartościami współczynników kwadratury, zaś alf=0 to parametr określający typ wielomianów Laguerre'a (dla alf=0 zwykłe).

Do wykonania mieliśmy trzy zadania. Pierwszym z nich było wyznaczenie wartości całki niewłaściwej $(\lim_{x\to 0}f(x)=\infty)$ kwadraturą Gaussa-Legendre'a:

$$C_1 = \int_0^a \ln(x) dx = a \ln(a) - a,$$

dla a=10 oraz liczby węzłów $n=5,6,7,\ldots,70$. Wynik przedstawiliśmy w postaci wykresu modułu różnicy wartości dokładnej i numerycznej $|\mathcal{C}_{dok}-\mathcal{C}_{num}|$.

Kolejnym zadaniem było wyznaczenie wartości całki:

$$C_2 = \int_0^\infty (x - 10)^2 \sin(4x)e^{-x} dx = 22.95461022,$$

przy użyciu kwadratury Gaussa-Laguerre'a, dla: $x \in [0,\infty)$, $f(x) = (x-10)^2 \sin(4x)$ i $p(x) = e^{-x}$, oraz przy użyciu kwadratury Gaussa-Legendre'a dla: $x \in [0,10]$ (zmiana górnej granicy całkowania), $f(x) = (x-10)^2 \sin(4x)e^{-x}$ i p(x) = 1. Obliczenia wykonaliśmy dla liczby węzłów $n = 5, 6, 7, \ldots, 70$, zaś wyniki przedstawiliśmy w postaci wykresów modułów różnicy wartości dokładnej i numerycznej $|C_{dok} - C_{num}|$.

Ostatnim zadaniem było wyznaczenie wartości całki:

$$C_3 = \int_{-\infty}^{\infty} x^7 \cdot 2^{(-x^2 + x + 4)} \cdot e^{-x^2} dx = 14.83995751,$$

przy użyciu kwadratury Gaussa-Hermite'a, dla: $x \in [0,\infty)$, $f(x) = x^7 \cdot 2^{(-x^2+x+4)}$ i $p(x) = e^{-x^2}$, oraz przy użyciu kwadratury Gaussa-Legendre'a dla: $x \in [-10,15]$, $f(x) = x^7 \cdot 2^{(-x^2+x+4)} \cdot e^{-x^2}$ i p(x) = 1. Obliczenia wykonaliśmy dla liczby węzłów $n = 5,6,7,\ldots,70$, zaś wyniki przedstawiliśmy w postaci wykresów modułów różnicy wartości dokładnej i numerycznej $|\mathcal{C}_{dok} - \mathcal{C}_{num}|$.

3. Wyniki

3.1 Wykres modułu różnicy wartości dokładnej i numerycznej $|\mathcal{C}_{dok} - \mathcal{C}_{num}|$ dla całki \mathcal{C}_1

3.2 Wykres modułu różnicy wartości dokładnej i numerycznej $|\mathcal{C}_{dok} - \mathcal{C}_{num}|$ dla całki \mathcal{C}_2

3.3 Wykres modułu różnicy wartości dokładnej i numerycznej $|\mathcal{C}_{dok} - \mathcal{C}_{num}|$ dla całki \mathcal{C}_3

3.4 Wykres iloczynu funkcji podcałkowej i funkcji wagowej $f(x) \cdot p(x)$ dla całki \mathcal{C}_1

3.5 Wykres iloczynu funkcji podcałkowej i funkcji wagowej $f(x) \cdot p(x)$ dla całki \mathcal{C}_2

3.6 Wykres iloczynu funkcji podcałkowej i funkcji wagowej $f(x) \cdot p(x)$ dla całki \mathcal{C}_3

4. Wnioski

Wyznaczyliśmy wartości całek \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 za pomocą kwadratur Gaussa. Możemy stwierdzić, że dokładność jest zależna od liczby węzłów – im większa jest ich ilość, tym bardziej dokładne są wykresy. Patrząc na wykresy 2 i 3, widzimy, że metoda Gaussa-Legendre'a osiąga szybciej dokładniejsze wyniki od metody Gaussa-Laguerre'a, zaś metoda Gaussa-Hermite'a jest szybsza w porównaniu z metodą Gaussa-Legendre'a.

W niektórych przypadkach możliwe jest zastąpienie kwadratur Laguerre'a i Hermite'a kwadraturą Legendre'a, ze względu na mniejszą oscylację w przypadku tej metody.