Алчни алгоритми

ИТ Кариера

Съдържание

- Алчни (greedy) алгоритми и приложение
- Упражнения: алчни алгоритми

Алчни алгоритми (Greedy)

Greedy подходът включва изграждане на решение чрез избиране на последователни стъпки, всяка от които произвежда частично решение на задачата, до получаване на цялостното решение. В същото време на всяка стъпка изборът трябва да бъде:

- допустим, т.е. да отговаря на ограниченията на задачата;
- локално оптимален, т.е. да е най-добрият локален избор между всички възможни варианти, налични на всяка стъпка;
- окончателен, т.е. веднъж направен, не може да променя следващите стъпки на алгоритъма.

Оптимизационни решения

В компютърните науки задачите, свързани с оптимизацията са такива, в които е необходимо да се намери най-доброто решение от всички възможни решения. Пример за такива задачи са:

- Представяне на сума от неограничен брой налични монети
- Задача за египетските дроби
- Задача за раницата
- Задача за възлагане на дейности
- Задача за магнитната лента и други

Да се намери начин за получаване на дадена сума S (S е естествено число), като се използват минимален брой монети, с номинали от множеството $C = \{a_1, a_2, ..., a_N\}$.

Сума: 48

Сума: 48

Начална стойност: 0

Взимайте от най-голямата монета, докато е възможно.

Сума: 48

Актуализация: 25

Вземете необходимия брой от втората по големина.

Сума: 48

Актуализация: 45

Вземете необходимия брой от третата по големина.

Представяне на суми – решение

```
int finalSum = 18;
int currentSum = 0;
int[] coins = { 10, 10, 5, 5, 2, 2, 1, 1 };
Queue<int> resultCoins = new Queue<int>();
// Следващия слайд
Console.WriteLine("Sum not found");
```

Представяне на суми – решение

```
for (int i = 0; i < coins.Length; i++)
 if (currentSum + coins[i] > finalSum) continue;
  currentSum += coins[i];
  resultCoins.Enqueue(coins[i]);
 if (currentSum == finalSum)
      // Sum Found
```

$$7/9 = 1/2 + 1/4 + 1/36$$

$$7/9 = 1/3 + 1/3 + 1/9$$

$$7/9 = 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9$$

Задача

Древните египтяни са използвали означение само за дробите с числител единица. Всяка друга дроб р/q представяли и записвали като сума от такива дроби (с числител единица). Нека р и q са две естествени числа (q ≠ 0, p < q; p,q∈N). Да се намери представяне на дробта р/q във вид на сума:

$$p/q = 1/a_1 + 1/a_2 + ... + 1/a_N$$

при което знаменателите да бъдат различни $(a_i \neq a_{j,} 1 \leq i, j \leq N, i \neq j, a_i \geq 2, a_i \geq 2, a_i, a_i \in N).$

Търсим най-голямата възможна дроб, която не надвишава 7/9.

Дроб: 7/9

$$1/a_1 = 1/2$$

Търсим следващия член в сумата - $1/a_2$, който трябва да бъде максималната дроб, която може да се добави към 1/2 така, че резултатът да не надвишава 7/9.

Дроб: 7/9

$$1/a_1 = 1/2$$

 $1/a_2 \le 7/9 - 1/2 \le 5/18$

Търсим следващия член в сумата - 1/а₃, който трябва да бъде максималната дроб, която може да се добави към ½+¼ така, че резултатът да не надвишава 7/9.

Дроб: 7/9

$$1/a_1 = 1/2$$

$$1/a_2 = 1/4$$

 $1/a_3 \le 7/9 - 1/2 - 1/4 \le 5/18 - 1/4 \le 2/72$

$$1/a_1 = 1/2$$

$$1/a_2 = 1/4$$

$$1/a_2 = 1/36$$

$$1/2 + 1/4 + 1/36 = 7/9$$

Стъпка 1. Дайте стойности за числителя и знаменателя на дробта р/q.

Стъпка 2. Докато числителят е по-голям от 1 търсим максималната дроб 1/r, ненадвишаваща р/q (q ≠0).

Изход: 1/2 +

Стъпка 3. Разликата p/q – 1/r се пресмята чрез привеждане под общ знаменател. Така, новите стойности за р и q ще бъдат:

```
p=p*r-q;
//p=7*2-9 = 5
q=q*r;
//q=9*2=18
```

Стъпка 4. Проверяваме дали новите стойности на числителя и знаменателя са кратни.

```
is divided(p, q)
//is divided(5, 18)
```

Изход: 1/2+

Стъпка 5. Числителя е по-голям от 1. Изпълняваме стъпка 2 с новите стойности за р и q.

```
r=(p+q)/p
//r=(5+18)/5
//r=4
```

Изход: 1/2+1/4+

Стъпка 5. Изпълняваме стъпка 3 с новите стойности за р и q.

```
p=p*r-q

//p=5*4-18 = 2

q=q*r;

//q=18*4=72
```

Стъпка 6. Изпълняваме стъпка 4 за новите стойности на р и q.

```
is divided(p, q)
//is divided(2, 72) ->1, 36
```

Изход: 1/2+1/4+

Стъпка 7. Числителят след съкращението на дробта е 1. Добавяме съкратената дроб към получения до тук израз.

Изход: 1/2+1/4+1/36

Стъпка 8. Край на алгоритъма.

Задача за раницата

Дадени са N предмета с тегла w_1 , w_2 ..., w_N и съответните им цени v_1, v_2 ..., v_N , както и раница, която може да издържи тегло W. Необходимо е да се намери подмножество от предмети, които могат да бъдат поставени в раницата и които в същото време да имат максимална цена.

Ще подредим резултатите в таблица, разглеждайки всички възможни подмножества.

- Разглеждат се всички подмножества от 4 елемента, като е необходимо:
 - тяхното общо тегло да е по-малко или равно на теглото на раницата
 - тяхната обща цена да е максимална
- Прилага се метода на изчерпващото търсене, т.е. преглеждат се всички подмножества и се търси това, което отговаря на условието.
- Необходими са два масива за пазене на стойностите съответно на теглата m[i] и цените c[i] на всеки един от предметите.

Разглеждаме подмножеството, състоящо се от първия предмет. Неговото общо тегло е 7, а общата му цена е 42. Към него се опитваме да добавим нов предмет, който не е взет до момента. Запазваме максималната обща цена, намерена до момента и отговаряща на тегло по-малко или равно на 10. (МАХС=42)

Подмножес тво	Общо тегло	Обща цена
{1}	7	42
{1, 2}	10	36
{1, 3}	11	недопустим
{1, 4}	12	недопустим

Подмножес тво	Общо тегло	Обща цена
{1, 2, 3}	14	недопустим
{1, 2, 4}	15	недопустим
{1, 3, 4}	16	недопустим
{1, 2, 3, 4}	19	недопустим

Разглеждаме подмножеството, състоящо се от втория предмет. Неговото общо тегло е 3, а общата му цена е 12. Към него се опитваме да добавим нов предмет, който не е взет до момента. Запазваме максималната обща цена, намерена до момента и отговаряща на тегло по-малко или равно на 10. (42<52 -> MAXC=52)

Подмножество	Общо тегло	Обща цена
{2}	3	12
{2, 3}	7	52
{2, 4}	8	37
{2, 3, 4}	12	недопустим

Разглеждаме подмножеството, състоящо се от третия предмет. Неговото общо тегло е 4, а общата му цена е 40. Към него се опитваме да добавим нов предмет, който не е взет до момента и отговаряща на тегло по-малко или равно на 10. Запазваме максималната обща цена, намерена до момента. (52<65->MAXC = 65)

Подмножество	Общо тегло	Обща цена
{3}	4	40
{3, 4}	9	65

Задача за раницата

Разглеждаме подмножеството, състоящо се от четвъртия предмет. Неговото общо тегло е 5, а общата му цена е 25. Към него се опитваме да добавим нов предмет, който не е взет до момента и отговаряща на тегло по-малко или равно на 10. Запазваме максималната обща цена, намерена до момента. (MAXC=65)

Подмножество	Общо тегло	Обща цена
{4}	5	25

Нека имаме N служители, които трябва да изпълнят N дейности, по една дейност всеки (т.е. всеки служител е назначен да изпълнява само една дейност, а всяка дейност е възложена само на един човек).

Разходите за изпълнение на ј-тата дейност от і-тия служител са известни и са равни на C[i, j] за всички двойки i, j = 1, ...N.

Задачата е следната: необходимо е да се разпределят дейностите между работниците, така че те да бъдат изпълнени с най-ниска обща цена.

Задачата може да се представи чрез матрицата на разходите. Идеята е да се избере по един елемент от всеки ред на матрицата, така че избраните елементи да са в различни колони и общото им количество да има наймалката възможна стойност.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4

Очевидната стратегия за решаване на тази задача е да изберете наймалките елементи във всеки ред, но тя реално не е вярна, тъй като елементите се появят в една и съща колона. Всъщност най-малките елементи въобще може да не влизат в оптималното решение.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4	
Работник 1	9	2	7	8	
Работник 2	6	4	3	7	
Работник 3	5	8	1	8	
Работник 4	7	6	9	4	NU!

{1, 2, 3, 4}

Случай в който на 1-ия работник е възложена първата дейност, на 2-ия - втората, на 3-ия - третата и на 4-ия - четвъртата.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4

{1, 2, 4, 3}

Случай в който на 1-ия работник е възложена първата дейност, на 2-ия - втората, на 3-ия - четвъртата и на 4-ия - третата.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4 <u>.</u>	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4

{1, 3, 2, 4}

Случай в който на 1-ия работник е възложена първата дейност, на 2-ия - третата, на 3-ия - втората и на 4-ия - четвъртата.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4.

{1, 3, 4, 2}

Случай в който на 1-ия работник е възложена първата дейност, на 2-ия - третата, на 3-ия - четвъртата и на 4-ия - втората.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4

 $\{1, 4, 2, 3\}$

Случай в който на 1-ия работник е възложена първата дейност, на 2-ия - четвъртата, на 3-ия - втората и на 4-ия - третата.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4

{1, 4, 3, 2}

Случай в който на 1-ия работник е възложена първата дейност, на 2-ия - четвъртата, на 3-ия - третата и на 4-ия - втората.

	Дейност 1	Дейност 2	Дейност 3	Дейност 4
Работник 1	9	2	7	8
Работник 2	6	4	3	7
Работник 3	5	8	1	8
Работник 4	7	6	9	4

В задачата за възлагане на дейности, броят на разглежданите пермутации са равни на N!. При N=4 е необходимо да разгледаме 24 случая. Ние разгледахме само 6. Оказва се, че изчерпващото търсене е непрактично за всички стойности на N, с изключение на малките. Този проблем има значително по-ефективно решение, наречен унгарски метод в чест на унгарските математици Koning и Egervary, които са го открили.

Обобщение

- Greedy алгоритмите се използват за решаване на оптимизационни задачи
- Обикновено са по-ефективни от другите алгоритми, но може да доведат и до не толкова оптимален резултат
- Алчните алгоритми избират най-доброто локално решение
- Алчните алгоритми предполагат, че винаги изборът на локално оптимално решение води до глобално такова, но понякога не е така

Министерство на образованието и науката (МОН)

Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист"

Курсът се разпространява под свободен лиценз СС-ВҮ-NС-SA

