Osciloscopios Digitales

Diagrama en bloques simplificado de un Osciloscopio Digital

Osciloscopios Digitales

Sistema de Adquisición: toma muestras de la señal a intervalos discretos de tiempo y convierte la tensión de la señal en esos puntos a valores digitales.

Sistema Horizontal: El reloj determina con qué frecuencia el CAD toma las muestras (Velocidad

de muestreo; [GS/s], [MS/s], [S/s])

Los puntos correspondientes a la forma de onda constituyen un registro de la misma y se almacenan en la memoria.

(Longitud de Registro)

Pantalla

Muestreo en Tiempo Real

Forma de onda construida con puntos de muestra

Velocidad de muestreo

Velocidad de Muestreo, Longitud de Registro y Memoria

Velocidad de Muestreo: cantidad de muestras que el aparato puede registrar por segundo (número de muestras por unidad de tiempo, $f_{muestreo}$).

Longitud de Registro: número de muestras para una dada onda registrada.

Memoria: capacidad del osciloscopio de almacenar formas de ondas y configuraciones de uso de sus controles.

Como ejemplo, un osciloscopio digital puede adquirir **1000 puntos** por onda (*longitud de registro*), pero tener una *memoria* con capacidad para almacenar varias ondas (por ejemplo *1 Mb*)

Ejemplo: se tiene un osciloscopio con *Velocidad Máxima* de Muestreo de **10 MS/s** ($f_{muestreo}$ = 10 MHz; 1 muestra cada 0,1 μs) y Longitud de Registro de **1000 puntos**

Tiempo de Registro Total (barrido total), a la máxima velocidad de muestreo: $1000 \, puntos * 0.1 \, \mu s = 0.1 \, ms$

Para 10 divisiones horizontales: $\frac{0.1 \text{ ms}}{10 \text{ divisiones}} = 10 \text{ }\mu\text{s}/\text{div}$

Caso a) - Barrido de 1 ms/div

Barrido Total =
$$1 \frac{ms}{div} * 10 \ div = 10 ms$$

Longitud de Registro de 1000 puntos: $\Rightarrow \frac{10 \text{ ms}}{1000} = 10 \,\mu\text{s}$ $\Rightarrow 1 \text{ muestra cada 10 } \mu\text{s}$ $(f_{muestro} = 0,1 \text{ MHz})$

Caso b) - Barrido de 1 μS/div

Barrido Total =
$$1 \frac{\mu s}{div} * 10 \ div = 10 \ \mu s$$

Longitud de Registro de 1000 puntos:
$$\Rightarrow \frac{10 \mu s}{1000} = 0.01 \mu s$$

 \Rightarrow 1 muestra cada 0,01 μ s

(Imposible con este osciloscopio, pues su velocidad de muestreo de 10MS/s le permite registrar como máximo $1 \text{ muestra cada 0,1 } \mu s$)

En este caso,

Longitud de Registro =
$$\frac{IO}{0.1 \mu s}$$
 = 100 puntos

$$f_{m} = \frac{N \acute{u}mero\ de\ Muestras}{\left(basedetiempo\ [\ s/div\]\right)*\left(N^{o}\ de\ divisiones\ horizontaks\right)}$$

Técnicas de Muestreo

"Aliasing"

"Aliasing" real

Forma de onda de alta frecuencia real

Forma de onda con aspecto de baja frecuencia debido al efecto alias

Puntos muestreados

"Aliasing" perceptual

Presentación de puntos

Interpolación Lineal

(Técnicas de Presentación)

Interpolación

Lineal o Sinusoidal

Técnicas de Presentación

Onda sinusoidal reproducida utilizando interpolación sinusoidal

Onda sinusoidal reproducida utilizando interpolación lineal

Ancho de Banda Equivalente

("USBW: useful storage bandwidth")

Representación por Puntos

$$USBW [MHz] = \frac{m\'{a}xima\ frecuencia\ de\ muestreo}{20...25}$$

Interpolación Lineal

$$USBW [MHz] = \frac{m\'{a}xima\ frecuencia\ de\ muestreo}{10}$$

Interpolación Sinusoidal

$$USBW [MHz] = \frac{m\'{a}xima\ frecuencia\ de\ muestreo}{2.5}$$

2.5 MHz 1 MHz **f**_{muestreo} 10 MHz 5 MHz INPUT SIGNAL: 25 MHz **USBW** $f_m/25$ 1 MHz

Muestras por ciclo:

2,5

5

10

25

USBW f_m / 10 2,5 MHz

PULSE INTERPOLATOR

USBW f_m / 2,5 10 MHz

Medición de

Tiempos

de Subida

Resolución

Analógico (con 1/50 a 1/100 div.):

- 8 div (vertical):
 - \Rightarrow 400 a 800 líneas
- 10 div (horizontal):
 - \Rightarrow 500 a 1000 líneas

Analog Resolution

DSO Data Resolution

Digital (2ⁿ puntos):

- 8 bits \Rightarrow 256 puntos
- 10 bits \Rightarrow 1024 puntos
- 12 bits \Rightarrow 4096 puntos
- 15 bits \Rightarrow 32768 puntos

Resolución

BITS	PERCENTAGE	PPM	LEVELS
1	50%	500,000	2
2	25%	250,000	4
3	12.5%	125,000	8
4	6.25%	62,500	16
5	3.125%	31,250	32
6	1.563%	15,625	64
7	0.781%	7,812	128
8	0.391%	3,906	256
9	0.195%	1,953	512
10	0.098%	977	1024
11	0.049%	488	2048
12	0.024%	244	4096
13	0.012%	122	8192
14	0.006%	61	16,384
15	0.003%	31	32,768
16	0.0015%	15	65,536
17	0.0008%	7.6	131,072
18	0.0004%	3.8	262,144
19	0.0002%	1.9	524,288
20	0.0001%	.95	1,048,576

Osciloscopios Digitales

Diagrama en bloques de un Osciloscopio Digital

Specification

Display

8 x 10 cm rectangular CRT operating at 4 kV Illuminated Graticule

Vertical Deflection

Two identical input channels

Bandwidth: DC-10 MHz (±3 dB) in the Normal

mode

Sensitivity: 5 mV/cm to 20 V/cm in 12 ranges Uncalibrated fine gain control gives between

range sensitivity adjustment.

Accuracy: ±3% in calibrated positions.

Input Impedance: 1 M Ω /28 pF Input Coupling: AC-GND-DC

Maximum Input: 400 V DC or pk AC

Horizontal Deflection

Timebase: 1 µs/cm to 20 sec/cm in 23 ranges.

Accuracy: ±3%

X Expansion: Continuously variable from 1X to

10X with calibrated stops at each end.

Voltage

Resolution 0.025% of full scale.

Accuracy \pm 0.25% of full scale or better.

Linearity Within 0.1% of best straight line or better.

Drift 0.05% of full scale per °Č. Noise 0.02% of full scale rms.

0.1 to 10 6Hz.

Common Mode Rejection 10.000:1. dc to 10 kHz.

1.000:1. 1 kHz to 100 kHz.

greatest, but not exceeding \pm 100 volts. Voltage Limits \pm 100 times full scale, dc, and not exceeding

±200 volts, peak.

Sample and Hold Aperture Uncer-

tainty 5 ns.

DC Offset 100% of full scale.

Scale Ranges \pm 100 millivolts, \pm 1 volt, and \pm 10 volts and x2,

and x4 multiples of these.

Sweep and Timing

Sweep Timing Accuracy ±0.02% with an additional sweep start uncer-

tainty of 25 nanoseconds. In the mode called "cursor trigger" used for observing pre-trigger information, a sweep timing uncertainty of one unit is additionally involved. One unit is the

selected sweep time per point.

Sweep Time Range From 500 nanoseconds per point to 200 sec-

onds per point, in 1, 2, 5 and factor of 10 steps.

		2002A	2004A	2012A	2014A	2022A	2024A	
Bandwidth ¹ (–3 dB)		70 MHz		100	100 MHz		200 MHz	
Calculated rise time (10 t	o 90%)	≤ 5 ns		≤ 3	≤ 3.5 ns		≤ 1.75 ns	
Input channels	DSOX	2	4	2	4	2	4	
	MSOX	2 + 8	4 + 8	2 + 8	4 + 8	2 + 8	4 + 8	
Maximum sample rate ¹		2 GSa/s half-channel interleaved, 1 GSa/s per channel						
Maximum memory depth		1M points per channel (standard)						
Display size and type	8.5-inch WVGA with 64 levels of intensity grading							
Waveform update rate		200,000 waveforms per second						
Vertical system analog channels								
Input coupling		AC, DC						
Input sensitivity range		1 mV/div to 5 V/div ²						
Input impedance		1 MΩ ± 2% (11 pF)						
Vertical resolution		8 bits (measurement resolution is 12 bits with averaging)						
Dynamic range		± 8 divisions from center screen						

Maximum input voltage	135 Vrms; 190 Vpk					
	Probing technology allows testing of higher voltages. For example, the included N2841A or N2842A 10:1 probe supports testing up to 300 Vrms Use this instrument only for measurements within its specified measurement category (not rated for CAT II, III, IV). No transient overvoltage allowed					
DC vertical accuracy	± [DC vertical gain accuracy + DC vertical offset accuracy + 0.25% full scale] ²					
DC vertical gain accuracy ¹	± 3% full scale (≥ 10 mV/div); ± 4% full scale (< 10 mV/div) 2					
DC vertical offset accuracy	± 0.1 div ± 2mV ± 1% of offset setting					
Channel-to-channel isolation	≥ 40 dB from DC to maximum specified bandwidth of each model					
Position/offset range 1 MΩ	1 mV to 200 mV/div: ± 2 V, > 200 mV to 5 V/div: ± 50 V					
Hardware bandwidth limits	Approximately 20 MHz (selectable)					
Horizontal system analog channels						
	2002A	2004A	2012A	2014A	2022A	2024A
Time base range	5 ns/div to 50 s/div 2 ns/div to 50 s/div					o 50 s/div
Time base accuracy ¹	25 ppm ± 5 ppm per year (aging)					

Horizontal system analog channels								
		2002A	2004A	2012A	2014A	2022A	2024A	
Time base	Pre-trigger	Greater of 1 screen width or 200 μs (400 μs in interleaving mode)						
delay time range	Post-trigger	1 s to 500 s	6		·			
Channel-to-channel deskew range		± 100 ns						
Δ Time accuracy (using cursors)		± (time base accuracy ¹ reading) ± (0.0016 ¹ screen width) ± 100 ps						
Acquisition modes								
Normal								
Peak detect		Capture glitch as narrow as 500 ps at all timebase settings						
Averaging		Select from 2, 4, 8, 16, 64 to 65,536						
High resolution mode		12 bits of resolution when ≥ 20 μs/div						
Segmented		Re-arm time= 19 µs (minimum time between trigger events)						

Trigger system					
Trigger modes	 Normal (triggered): Requires trigger event for scope to trigger Auto: Triggers automatically in absence of trigger event Single: Triggers only once on a trigger event, press [Single] again for scope to find another trigger event, or press [Run] to trigger continuously in either Auto or Normal mode Force: Front panel button that forces a trigger 				
Trigger coupling	Coupling selections: AC, DC, noise reject, LF reject and HF reject				
Trigger source	Each analog channel, each digital channel (MSO models or DSOX2MSO upgrade, Ext, WaveGen, line)				
Trigger sensitivity (internal) ¹	< 10 mV/div: greater of 1 div or 5 mV; ≥ 10 mV/div: 0.6 div				
Trigger sensitivity (external) 1	200 mV (DC to 100 MHz); 350 mV (100 to 200 MHz)				
External trigger input	Included on all models				

Cursors		
Types	Amplitude, time, frequency (FFT), manual, tracking, binary, HEX	
Measurements	ΔT , $1/\Delta T$, $\Delta V/X$, $1/\Delta X$, ΔY , Phase and Ratio	
Cursors ²	 Single cursor accuracy: ± [DC vertical gain accuracy + DC vertical offset accuracy + 0.25% full scale] Dual cursor accuracy: ± [DC vertical gain accuracy + 0.5% full scale] ¹ 	
Automatic waveforms measurements		
Voltage	Snapshot all, maximum, minimum, peak-to-peak, top, base, amplitude, overshoot, preshoot, average- N cycles, average-full screen, DC RMS- N cycles, DC RMS- full screen, AC RMS- N cycles, AC RMS- full screen (std dev)	
Time	Period, frequency, rise time, fall time, + width, – width, duty cycle, delay $A \rightarrow B$ (rising edge), delay $A \rightarrow B$ (falling edge), phase $A \rightarrow B$ (rising edge,) and phase $A \rightarrow B$ (falling edge), bit rate	
Waveform math		
Operators	Add, subtract, multiply, divide, FFT, Ax + B, Square, Absolute, Common Log, Natural Log, Exponential, Base 10 Exponential, LP Filter, HP Filter, Magnify, Measurement Trend, Chart Logic Bus (Timing or State)	

Display characteristics	
Display	8.5-inch WVGA color TFT LCD
Resolution	800 (H) x 480 (V) pixel format (screen area)
Interpolation	Sin(x)/x interpolation (using FIR filter; used when there is less than one sample per column of the display)
Persistence	Off, infinite, variable persistence (100 ms to 60 s)
Intensity gradation	64 intensity levels
Modes	Normal XY – XY mode changes the display from voltage versus time scale to a volts versus volts scale Roll – Displays the waveform moving across the screen from right to left much like a strip chart recorder

(keysight.com)

Panel frontal de un Osciloscopio Digital de Dos Canales

Panel frontal de un Osciloscopio Digital de Cuatro Canales

Pantalla de un Osciloscopio Digital de Dos Canales

Ejemplo: En el circuito que se muestra la figura, se necesita estudiar las formas de onda de la tensión en bornes del capacitor y de la corriente que circula por él, al cerrar la llave L. Es imprescindible lograr una presentación simultánea de la tensión y la corriente, y efectuar las mediciones con el menor error límite posible.

Para efectuar la medición propuesta se dispone de:

- un osciloscopio HP54603B;
- puntas atenuadoras pasivas de tensión x1, x10 y x100, con 1 m de cable de 100 pF;
- derivadores de 0,1 Ω y 0,5 Ω , con tolerancia ±0,2 % y $P_{\text{admisible}} = 5$ W.

Justificando las respuestas, indicar:

- a) cómo realizaría las medidas solicitadas, qué puntas utilizaría y como las conectaría al circuito;
- b) el ajuste propuesto para los siguientes controles del osciloscopio, para medir el tiempo de subida y el valor final de la corriente: disparo (fuente, modo, nivel y pendiente), acoplamiento y atenuador vertical, base de tiempo y "pretrigger" (si fuera necesario);
- c) la imagen que espera ver en la pantalla del osciloscopio para los ajustes seleccionados;
- d) todos los términos que intervienen en el cálculo del error límite que afecta a las medidas del tiempo de subida y el valor final de la corriente, cuantificando cada uno de ellos y expresando el valor final obtenido correctamente acotado;
- e) qué resolución tiene el osciloscopio en vertical (expresada en volts) y en horizontal (expresada en segundos), para la selección de controles efectuada.

$$\tau_S = R * C = 1 k\Omega * 200 pF = 200 ns$$

$$\Rightarrow t_{S_S} = 2.2 * \tau_S = 440 \text{ ns}$$

$$BW_{osciloscopio} = 60 \text{ MHz} \implies t_{s_O} = 5.8 \text{ } ns$$

$$t_{s_m} = \sqrt{t_{s_o}^2 + t_{s_s}^2} = 440,04 \, ns$$

$$\Rightarrow e_{inserción_{t_s}} = 0.009 \%$$

(comparable a la exactitud el osciloscopio en horizontal $\approx \pm 0.01\%$)

Por otra parte:

Máxima velocidad de muestreo = $20 \, {}^{MS}/_{s} \Rightarrow 1 \, muestra \, cada \, 50 \, ns$

con lo cual, para el t_{s_s} tendríamos: $\frac{440 \, ns}{50 \, ns} \approx 8,8 \, muestras$

(Por lo que podemos decir que el osciloscopio tiene ancho de banda y velocidad de muestreo adecuados para efectuar las medidas propuesta)

Y para poder medir el valor final, necesitaríamos visualizar

$$\approx 5 * \tau_s \approx 1 \,\mu s$$

Medición de U_c :

Circuito equivalente para punta 1X:

Punta 1X - Rta. forzada (CC – valor final)

$${
m e}_{inserci\'on_{U_{m\'ax}}} pprox rac{-R}{R_O} \ . \ 100 = rac{-1 \ k\Omega}{1 \ M\Omega} \ . \ 100 = -0.1 \ \%$$

(despreciable frente al ±2% de la exactitud vertical del osciloscopio)

Punta 1X - Rta. natural (transitorio inicial)

$$t_{s_m} \approx 2.2 * 1 \, k\Omega * 313 \, pF = 689 \, \text{ns}$$

$$e_{inserción_{t_s}} = 100 * \frac{689 ns - 440 ns}{440 ns} \approx 57 \%$$

(demasiado grande)

Circuito equivalente con punta 10X o 100X:

Dado que debe cumplirse: $R_P \cdot C_P = R_O \cdot (C_C + C_O)$

Punta	10X	100X
R_P	9 ΜΩ	99 ΜΩ
C_P	12,6 pF	1,14 pF

Punta 10X - Rta. forzada (CC – valor final)

$$e_{inserción} \approx \frac{-R}{R_P + R_O}$$
. $100 = \frac{-1 \, k\Omega}{9 \, M\Omega + 1 \, M\Omega}$. $100 = -0.01 \, \%$

(despreciable frene al $\pm 2\%$ de la exactitud vertical del osciloscopio)

Punta 10X - Rta. natural (transitorio inicial)

$$t_{s_m} \approx 2.2 * 1 \ k\Omega * 211 \ pF = 464 \ \text{ns}$$

$$\Rightarrow e_{inserción_{t_{S_S}}} = \frac{t_{S_m} - t_{S_S}}{t_{S_S}} \approx 5 \%$$

(grande si se lo compara con la exactitud del osciloscopio en horizontal $\approx \pm 0.01\%$)

También podríamos evaluar el error de inserción en el t_S de la siguiente forma (Punta 10X):

Con lo cual se obtiene, aproximadamente:

$$\Rightarrow t_{s_m} \approx 2.2*1 \ k\Omega * 211 \ pF = 464 \ \text{ns}$$

$$\Rightarrow e_{inserci\acute{o}n_{t_{S_s}}} = \frac{t_{s_m} - t_{s_s}}{t_{s_s}} \approx 5 \%$$

(con lo que se llega a un resultado similar al obtenido por el método anterior: $e_{inserción_{ts_s}}$ es grande si se lo compara con la exactitud del osciloscopio en horizontal $\approx \pm 0,01\%$)

Punta 100X - Rta. forzada (CC – valor final)

$$e_{inserción} \approx \frac{-R}{R_P + R_\Omega}$$
. $100 = \frac{-1 \, k\Omega}{99 \, M\Omega + 1 \, M\Omega}$. $100 = -0.001 \, \%$

(despreciable frene al $\pm 2\%$ de la exactitud vertical del osciloscopio)

Punta 100X - Rta. natural (transitorio inicial)

$$t_{s_m} \approx 2.2 * 1 \ k\Omega * 201 \ pF = 442 \ \text{ns}$$

$$\Rightarrow e_{inserción_{t_{S_S}}} = \frac{t_{S_m} - t_{S_S}}{t_{S_S}} \approx 0.5 \%$$

(aceptable, aunque no es despreciable frente a la exactitud del osciloscopio en horizontal $\approx \pm 0.01\%$, ya que no se dispone de una alternativa mejor)

Entonces se elige la <u>punta 100X</u> para la medición de U_c .

Medición de I_c :

$$e_{inserci\acute{o}n_{R_D}} \approx \frac{R_D}{R}$$
. $100 = \frac{0.1 \,\Omega}{1 \,k\Omega}$. $100 = 0.01 \,\%$

(aceptable, aunque no es despreciable frente a la exactitud del osciloscopio en horizontal $\approx \pm 0,01\%$, ya que no se dispone de una alternativa mejor)

Por otra parte:

$$I_{C_{m\acute{a}x}} = \frac{100 V}{1 k\Omega} = 0.1 A$$

$$\Rightarrow U_{R_{D_{m\acute{a}x}}} = 0.1 A * 0.1 \Omega = 10 mV$$

(medible con el osciloscopio elegido ya que la ganancia mínima es de 2 mV/div.)

En cuanto a la tolerancia de R_D , considerando que el osciloscopio elegido tiene una exactitud vertical de $\pm 2\%$, convendría que fuese $e_{R_D} \leq 0.2$ %, lo que se cumple para el resistor elegido.

El circuito equivalente completo sería entonces:

(criterio de selección de la punta 1X para R_D)

Selección de atenuadores y base de tiempo

Suponiendo que se elige <u>CH1</u> para U_C (punta 100X) y <u>CH2</u> para U_{R_D} (punta 1X):

$$U_{C_{m\acute{a}x_{osc}}}[V] = \frac{100 \, V}{100} = 1 \, V$$

Entonces, para ver la señal en toda la pantalla:

$$Atenuador_{U_C} \left[\frac{V}{div} \right] = \frac{1 \, V}{8 \, div} = 0,125 \, \frac{V}{div}$$

$$\Rightarrow$$
 Atenuador_{U_C} = 0,2 $\frac{V}{div}$

Y, para
$$R_D$$
:

$$U_{R_{D_{m\acute{a}x_{OSC}}}}[V] = 10 \ mV$$

Entonces, para ver la señal en toda la pantalla:

$$Atenuador_{R_{D_{máx}}}\left[\frac{mV}{div}\right] = \frac{10 \ mV}{8 \ div} = 1,25 \ \frac{mV}{div}$$

$$\Rightarrow$$
 Atenuador _{U_{R_D}} = 2 $\frac{mV}{div}$

En cuanto a la base de tiempo, para ver $\approx 5 *_{\tau s} \approx 1 \,\mu s$ en toda la pantalla:

Base de Tiempo
$$\left[\frac{\mu s}{div}\right] = \frac{1 \mu s}{10 \ div} = 0,1 \ \frac{\mu s}{div}$$

Ajustes del disparo:

- Fuente: CH1

- Modo: simple disparo.

- Acoplamiento: DC

 Nivel de disparo = 0 V, pendiente +. (comentarios sobre nivel de disparo y pre-trigger)

Resolución:

- En vertical (8 bits):

$$Res_{Vert_{CH1}} = \pm \frac{8 \, div * 0.2 \, V/_{div}}{256} = \pm 6.3 \, mV$$

$$Res_{Vert_{CH2}} = \pm \frac{8 \ div * 2 \ mV}{256} = \pm 0.063 \ mV$$

- En horizontal (¿2000 puntos?):

$$Res_{Hor} = \pm \frac{10 \ div * 0.1^{\mu S} / div}{2000} = \pm 0.5 \ ns$$

¡imposible! ya que la máxima velocidad de muestreo es de 20 MS/s (⇒ 1 muestra cada 50 ns).

$$\Rightarrow Res_{Hor} = \pm 50 \, ns$$

$$\Rightarrow$$
 Nro. de puntos en Horizontal = $\frac{10 \ div * 0.1^{\mu S}}{50 \ ns} = 20$

Errores:

- En vertical, para $U_{C_{máx}}$:

$$U_{C_{m\acute{a}x_m}}[V] = 100 * 5 div * 0.2 \frac{V}{div} = 100 V$$

$$\mathbf{e}_{U_{C_{m\acute{a}x_{m}}}} \; = \; \pm \; \left(e_{punta} + \; e_{resoluci\acute{o}n_{U_{C_{m\acute{a}x_{m}}}}} + \; e_{Atenuador} \right) =$$

$$= \pm \left(\approx 0 + \frac{8 \, div}{5 \, div} * 100 + 2 \right) = \pm (\approx 0 + 0.6 + 2)\% = \pm 2.6 \,\%$$

$$\Rightarrow U_{C_{m\acute{a}x}} = (100 \pm 3) V$$

- En vertical, para
$$I_{C_{m\acute{a}x_m}}=rac{U_{R_{D_{m\acute{a}x_m}}}}{R_{D}}$$
:

$$U_{R_{D_{m\acute{a}x_m}}}[V] = 5 \ div * 2 \ \frac{mV}{div} = 10 \ mV$$

$$e_{U_{R_{D_{m\acute{a}x_{m}}}}} = \pm \left(e_{punta} + e_{resoluci\acute{o}n_{U_{R_{D_{m\acute{a}x_{m}}}}}} + e_{Atenuador}\right) =$$

$$= \pm \left(\approx 0 + \frac{8 \, div}{5 \, div} * 100 + 2\right) = \pm (\approx 0 + 0.6 + 2)\% = \pm 2.6 \%$$

$$\Rightarrow \ {\rm e}_{I_{C_{m\acute{a}x_{m}}}} \ = \ \pm \left({\rm e}_{U_{R_{D_{m\acute{a}x_{m}}}}} \ + e_{R_{D}} \right) = \pm (2.6 + 0.2)\% = \ \pm 2.8 \ \%$$

$$\Rightarrow I_{C_{m\acute{a}x}} = (100 \pm 3) \, mA$$

- En horizontal (suponiendo que se determinan sin error los puntos correspondientes al 10 % y al 90 % del valor final):

$$t_{s_m}[\mu s] = 4.4 \ div * 0.1 \ \frac{\mu s}{div} = 0.44 \ \mu s$$

$$\mathbf{e}_{t_{s_m}} = \pm \left(e_{resoluci\'on_{t_{s_m}}} + e_{Base\ de\ Tiempo} + e_{inserci\'on_{t_{s_s}}} \right) =$$

$$= \pm \left(\frac{10 \ div/20}{4,4 \ div} * 100 + 0,01 + 0,5\right) = \pm 11,5 \%$$

$$\Rightarrow t_S = (0.44 \pm 0.05) \,\mu s$$

