POO et Algo Lab x003 – Pointeurs - Algèbre matricielle

L3 Info - Univ Lumière Lyon 2 S1 2022-2023

Exercice 1

Écrivez un code qui déclare qu'un entier i prend la valeur 5. Déclarez un pointeur sur un entier p_j, et stocke l'adresse de i dans ce pointeur. Multipliez la valeur de la variable par 5 en utilisant une ligne de code qui n'utilise que la variable pointeur. Déclarez un autre pointeur vers un nombre entier p_k et utilisez le mot-clé new pour allouer un emplacement dans la mémoire que ce pointeur stocke. Stockez ensuite le contenu de la variable i dans cet emplacement.

Exercice 2

Attribuez des valeurs à deux variables entières. Intervertissez les valeurs stockées par ces variables en utilisant uniquement des pointeurs vers des entiers.

Exercice 3

Écrire un code qui alloue dynamiquement de la mémoire à deux vecteurs de nombres à virgule flottante en double précision de longueur 3, affecte des valeurs à chacune des entrées, puis désalloue la mémoire avant la fin du code. Étendez ce code pour qu'il calcule le produit scalaire de ces vecteurs et l'imprime à l'écran avant que la mémoire ne soit désallouée.

Placez l'allocation de mémoire, le calcul et la désallocation de mémoire à l'intérieur d'une boucle for qui s'exécute 1 000 000 000 de fois : si la mémoire n'est pas désaffectée correctement, votre code utilisera toutes les ressources disponibles et votre ordinateur et votre ordinateur peut avoir des difficultés =).

Exercice 4

Écrivez un code qui alloue dynamiquement de la mémoire pour trois matrices 2 × 2 de nombres à virgule flottante en double précision, A, B, C, et qui attribue des valeurs aux entrées de A et B. Soit C = A + B. Étendez votre code de manière à ce qu'il calcule les entrées de C, puis imprime les entrées de C à l'écran. Enfin, désallouez la mémoire. Encore une fois, vérifiez que vous avez correctement désalloué la mémoire en utilisant une boucle for comme dans l'exercice précèdent.

Problème

Nous allons écrire un programme (aka solver) qui permet de résoudre un système d'équations linéaires. Pour commencer, considérons le système suivant

$$\begin{cases} x + 3y + 2z = 8 \\ 3x - 2y + 3z = 6 \\ -x + 3y + 5z = 1 \end{cases}$$

- 1. Obtenir manuellement la forme matricielle du système Ax = b (vous devrez identifier qui est A, qui est x et qui est b, ainsi que leurs dimensions).
- 2. Vérifier manuellement que la matrice A n'est pas singulière, et obtenir A⁻¹ l'inverse de la matrice A.
- 3. Coder la matrice dans un programme C++. Créer les tableaux nécessaires pour stocker A et b, ainsi que pour la solution x.
- 4. Utilisez la code méthode de Gauss Jordan vu en cours pour obtenir la version triangulaire associée à A
- 5. Obtenir la solution du problème. Vous pouvez afficher le résultat en sortie.