EBGeometry

CONTENTS

1	Intro	oduction
	1.1	Requirements
	1.2	Quickstart
	1.3	Third-party examples
2	Conc	cepts
	2.1	Geometry representations
	2.2	DCEL
	2.3	Bounding volume hierarchies
	2.4	Octree
	2.5	Constructive solid geometry
3	Impl	lementation 13
	3.1	Overview
	3.2	Vector types
	3.3	Geometry representation
	3.4	DCEL
	3.5	BVH 19
	3.6	Octree
	3.7	Reading data
4	Exar	mples 29
	4.1	EBGeometry
	4.2	AMReX
	4.3	Chombo3
Bi	bliogr	raphy 3

This is the user documentation for EBGeometry, a small C++ package for efficiently representing implicit functions and signed distance fields for complex geometries. Although EBGeometry is a self-contained package, it is was originally written for usage with embedded boundary (EB) and immersed boundary (IB) codes. EBGeometry provides the geometry representation through an implicit or signed distance function, but does not provide the discrete geometry generation, i.e. the generation of cut-cells for a given geometry.

The basic features of EBGeometry are as follows:

- Representation of water-tight surface grids as signed distance fields.
- Many analytic distance functions and transformations.
- Bounding volume hierarchies (BVHs) for use as acceleration structures for polygon or full object lookup. The BVHs can be represented in full or compact (i.e., linearized) forms.
- Support for both conventional and accelerated (using BVHs) constructive solid geometry (CSG).
- Examples of how to couple EBGeometry to AMReX and Chombo.

Important: This is the user documentation for EBGeometry. The source code is found at https://github.com/rmrsk/EBGeometry and a separate Doxygen-generated API of EBGeometry is available at https://rmrsk.github.io/EBGeometry/doxygen/html/index.html.

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Requirements

• A C++ compiler which supports C++14.

EBGeometry is a header-only library and is comparatively simple to set up and use. To use it, make EBGeometry.hpp (stored at the top level) visible to your code and include it.

1.2 Quickstart

To obtain EBGeometry, clone the code from github:

git clone git@github.com:rmrsk/EBGeometry.git

To compile the EBGeometry example codes, navigate to the EBGeometry/Examples folder. Folders that are named EBGeometry_<something> are pure EBGeometry examples and can be compiled without any third-party dependencies

To run the EBGeometry examples, navigate to one of the folders and execute

```
g++ -03 -std=c++17 main.cpp && ./a.out
```

All EBGeometry examples should run using this command. README files present in each folder provide more information regarding the functionality and usage of each example code.

1.3 Third-party examples

Exapmle folders that begin with e.g. AMReX_ or Chombo3_ are application code examples and require the user to install additional third-party software.

CHAPTER

TWO

CONCEPTS

2.1 Geometry representations

2.1.1 Signed distance fields

The signed distance function is defined as a function $S: \mathbb{R}^3 \to \mathbb{R}$, and returns the *signed distance* to the object. It has the additional property

$$|\nabla S(\mathbf{x})| = 1$$
 everywhere. (2.1)

Note that the normal vector is always

$$\mathbf{n} = \nabla S(\mathbf{x})$$
.

EBGeometry uses the following convention for the sign:

$$S(\mathbf{x}) = \begin{cases} > 0, & \text{for points outside the object,} \\ < 0, & \text{for points inside the object,} \end{cases}$$

which means that the normal vector **n** points away from the object.

2.1.2 Implicit functions

Like distance functions, implicit functions also determine whether or not a point \mathbf{x} is inside or outside an object. Signed distance functions are also *implicit functions*, but not vice versa. For example, the signed distance function for a sphere with center \mathbf{x}_0 and radius R can be written

$$S_{\text{sph}}(\mathbf{x}) = |\mathbf{x} - \mathbf{x}_0| - R.$$

An example of an implicit function for the same sphere is

$$I_{\mathrm{sph}}(\mathbf{x}) = |\mathbf{x} - \mathbf{x}_0|^2 - R^2.$$

An important difference between these is the Eikonal property in Eq. 2.1, ensuring that the signed distance function always returns the exact distance to the object. Signed distance functions are usually the more useful object, but many operations (e.g. CSG unions) do not preserve the signed distance property.

2.2 DCEL

2.2.1 Principle

EBGeometry uses a doubly-connected edge list (DCEL) structure for storing surface meshes. The DCEL structures consist of the following objects:

- Planar polygons (facets).
- Half-edges.
- Vertices.

As shown in Fig. 2.1, half-edges circulate the inside of the facet, with pointer access to the next half-edge. A half-edge also stores a reference to its starting vertex, as well as a reference to its pair-edge. From the DCEL structure we can easily obtain all edges or vertices belonging to a single facet, and also jump to a neighboring facet by fetching the pair edge.

Fig. 2.1: DCEL mesh structure. Each half-edge stores references to next half-edge, the pair edge, and the starting vertex. Vertices store a coordinate as well as a reference to one of the outgoing half-edges.

In EBGeometry the half-edge data structure is implemented in its own namespace. This is a comparatively standard implementation of the DCEL structure, supplemented by functions that permit signed distance computations to various features on such a mesh.

Important: A signed distance field requires a *watertight and orientable* surface mesh. If the surface mesh consists of holes or flipped facets, neither the signed distance or implicit function exist.

2.2.2 Signed distance

The signed distance to a surface mesh is equivalent to the signed distance to the closest polygon face in the mesh. When computing the signed distance from a point x to a polygon face (e.g., a triangle), the closest feature on the polygon can be one of the vertices, edges, or the interior of the polygon face, see Fig. 2.2.

Fig. 2.2: Possible closest-feature cases after projecting a point x to the plane of a polygon face.

Three cases can be distinguished:

1. Facet/Polygon face.

When computing the distance from a point x to the polygon face we first determine if the projection of x to the face plane lies inside or outside the face. This is more involved than one might think, and it is done by first computing the two-dimensional projection of the polygon face, ignoring one of the coordinates. Next, we determine, using 2D algorithms, if the projected point lies inside the embedded 2D representation of the polygon face. Various algorithms for this are available, such as computing the winding number, the crossing number, or the subtended angle between the projected point and the 2D polygon.

Tip: EBGeometry uses the crossing number algorithm by default.

If the point projects to the inside of the face, the signed distance is just $\mathbf{n}_f \cdot (\mathbf{x} - \mathbf{x}_f)$ where \mathbf{n}_f is the face normal and \mathbf{x}_f is a point on the face plane (e.g., a vertex). If the point projects to *outside* the polygon face, the closest feature is either an edge or a vertex.

2. Edge.

When computing the signed distance to an edge, the edge is parametrized as $\mathbf{e}(t) = \mathbf{x}_0 + (\mathbf{x}_1 - \mathbf{x}_0) t$, where \mathbf{x}_0 and \mathbf{x}_1 are the starting and ending vertex coordinates. The point \mathbf{x} is projected to this line, and if the projection yields $t' \in [0,1]$ then the edge is the closest point. In that case the signed distance is the projected distance and the sign is given by the sign of $\mathbf{n}_e \cdot (\mathbf{x} - \mathbf{x}_0)$ where \mathbf{n}_e is the pseudonormal vector of the edge. Otherwise, the closest point is one of the vertices.

3. Vertex.

2.2. DCEL 7

If the closest point is a vertex then the signed distance is simply $\mathbf{n}_v \cdot (\mathbf{x} - \mathbf{x}_v)$ where \mathbf{n}_v is the vertex pseudonormal and \mathbf{x}_v is the vertex position.

2.2.3 Normal vectors

The normal vectors for edges \mathbf{n}_e and vertices \mathbf{n}_v are, unlike the facet normal, not uniquely defined. For both edges and vertices we use the pseudonormals from [1]:

$$\mathbf{n}_e = \frac{1}{2} \left(\mathbf{n}_f + \mathbf{n}_{f'} \right).$$

where f and f' are the two faces connecting the edge. The vertex pseudonormal is given by

$$\mathbf{n}_v = \frac{\sum_i \alpha_i \mathbf{n}_{f_i}}{|\sum_i \alpha_i|},$$

where the sum runs over all faces which share v as a vertex, and where α_i is the subtended angle of the face f_i , see Fig. 2.3.

Fig. 2.3: Edge and vertex pseudonormals.

2.3 Bounding volume hierarchies

Bounding volume hierarchies (BVHs) are tree structures where the regular nodes are bounding volumes that enclose all geometric primitives (e.g. polygon faces or implicit functions) further down in the hierarchy. This means that every node in a BVH is associated with a *bounding volume*. The bounding volume can, in principle, be any type of volume. Moreover, there are two types of nodes in a BVH:

- **Regular/interior nodes.** These do not contain any of the primitives/objects, but store references to subtrees (aka child nodes).
- **Leaf nodes.** These lie at the bottom of the BVH tree and each of them contains a subset of the geometric primitives.

Fig. 2.4 shows a concept of BVH partitioning of a set of triangles. Here, P is a regular node whose bounding volume encloses all geometric primitives in its subtree. Its bounding volume, an axis-aligned bounding box or AABB for short, is illustrated by a dashed rectangle. The interior node P stores references to the leaf nodes L and R. As shown in Fig. 2.4, L contains 5 triangles enclosed by another AABB. The other child node R contains 6 triangles that are also enclosed by an AABB. Note that the bounding volume for P encloses the bounding volumes of L and R and that the bounding volumes for L and R contain a small overlap.

Fig. 2.4: Example of BVH partitioning for enclosing triangles. The regular node P contains two leaf nodes L and R which contain the primitives (triangles).

There is no fundamental limitation to what type of primitives/objects can be enclosed in BVHs, which makes BVHs useful beyond triangulated data sets. For example, analytic signed distance functions can also be embedded in BVHs, provided that we can construct bounding volumes that enclose them.

Note: EBGeometry is not limited to binary trees, but supports k -ary trees where each regular node has k child nodes.

2.3.1 Construction

BVH construction is fairly flexible. For example, the child nodes L and R in Fig. 2.4 could be partitioned in any number of ways, with the only requirement being that each child node gets at least one triangle/primitive.

Although the rules for BVH construction are highly flexible, performant BVHs are completely reliant on having balanced trees with the following heuristic properties:

- **Tight bounding volumes** that enclose the primitives as tightly as possible.
- **Minimal overlap** between the bounding volumes.
- **Balanced**, in the sense that the tree depth does not vary greatly through the tree, and there is approximately the same number of primitives in each leaf node.

Construction of a BVH is usually done recursively, from top to bottom (so-called top-down construction). Alternative construction methods also exist, but are not used in EBGeometry. In this case one can represent the BVH construction of a k-ary tree is done through a single function:

Partition
$$(\vec{O}): \vec{O} \to (\vec{O}_1, \vec{O}_2, \dots, \vec{O}_k),$$
 (2.2)

where \vec{O} is an input a list of objects/primitives, which is *partitioned* into k new list of primitives. Note that the lists \vec{O}_i do not contain duplicates, there is a unique set of primitives associated in each new leaf node. Top-down construction can thus be illustrated as a recursive procedure:

```
topDownConstruction(Objects):
   partitionedObjects = Partition(Objects)

forall p in partitionedObjects:
   child = insertChildNode(newObjects)

if(enoughPrimitives(child)):
   child.topDownConstruction(child.objects)
```

In practice, the above procedure is supplemented by more sophisticated criteria for terminating the recursion, as well as routines for creating the bounding volumes around the newly inserted nodes.

2.3.2 Tree traversal

When computing the signed distance function to objects embedded in a BVH, one takes advantage of the hierarchical embedding of the primitives. Consider the case in Fig. 2.5, where the goal of the BVH traversal is to minimize the number of branches and nodes that are visited. For the traversal algorithm we consider the following steps:

- When descending from node P we determine that we first investigate the left subtree (node A) since its bounding volume is closer than the bounding volumes for the other subtree. The other subtree will is investigated after we have recursed to the bottom of the A subtree.
- Since A is a leaf node, we find the signed distance from x to the primitives in A. This requires us to iterate over all the triangles in A.
- When moving back to P, we find that the distance to the primitives in A is shorter than the distance from \mathbf{x} to the bounding volume that encloses nodes B and C. This immediately permits us to prune the entire subtree containing B and C.

Fig. 2.5: Example of BVH tree pruning.

Warning: Note that all BVH traversal algorithms have linear complexity when the primitives are all at approximately the same distance from the query point. For example, it is necessary to traverse almost the entire tree when one tries to compute the signed distance at the origin of a tessellated sphere.

Note that types of tree traversal (that do not compute the signed distance) are also possible, e.g. we may want to compute the union $I(\mathbf{x}) = \min(I_1(\mathbf{x}), I_2(\mathbf{x}), \ldots)$. EBGeometry supports a fairly flexible approach to the tree traversal and update algorithms.

2.4 Octree

Octrees are tree-structures where each interior node has exactly eight children. Such trees are usually used for spatial partitioning (and in this case the eight children have no spatial overlap), and the leaf nodes may also contain actual data.

Octree construction can be done in (at least) two ways:

- 1. In depth-first order where entire sub-trees are built first.
- 2. In breadth-first order where tree levels are added one at a time.

EBGeometry supports both of these methods. Octree traversal is generally speaking quite similar to the traversal algorithms used for BVH trees.

2.5 Constructive solid geometry

2.5.1 Basic transformations

Implicit functions, and by extension also signed distance fields, can be manipulated using basic transformations (like rotations). EBGeometry supports many of these:

- · Rotations.
- · Translations.
- · Surface offsets.
- · Shell extraction.
- Mollification (e.g., smoothing)
- ... and others.

Warning: Some of these operations preserve the signed distance property, and others do not.

2.5.2 Combining objects

EBGeometry supports standard operations in which implicit functions can be combined:

- Union.
- Intersection.
- · Difference.

Some of these CSG operations also have smooth equivalents, i.e. for smoothing the transition between combined objects. Fast CSG operations are also supported by EBGeometry, e.g. the BVH-accelerated CSG union where one uses the BVH when searching for the relevant geometric primitive(s).

2.4. Octree 11

CHAPTER

THREE

IMPLEMENTATION

3.1 Overview

Here, we consider the basic EBGeometry API. EBGeometry is a header-only library, implemented under its own namespace EBGeometry. Various major components, like BVHs and DCEL, are implemented under namespaces EBGeometry::BVH and EBGeometry::DCEL. Below, we consider a brief introduction to the API and implementation details of EBGeometry.

3.2 Vector types

EBGeometry implements its own 2D and 3D vector types Vec2T and Vec3T.

Vec2T is a two-dimensional Cartesian vector. It is templated as

```
namespace EBGeometry {
   template<class T>
   class Vec2T {
   public:
        T x; // First component.
        T y; // Second component.
   };
}
```

Most of EBGeometry is written as three-dimensional code, but Vec2T is needed for DCEL functionality when determining if a point projects onto the interior or exterior of a planar polygon, see *DCEL*. Vec2T has "most" common arithmetic operators like the dot product, length, multiplication operators and so on.

Vec3T is a three-dimensional Cartesian vector type with precision T. It is templated as

```
namespace EBGeometry {
  template<class T>
  class Vec3T {
  public:
    T[3] x;
  };
}
```

Like Vec2T, Vec3T has numerous routines for performing most vector-related operations like addition, subtraction, dot products and so on.

3.3 Geometry representation

3.3.1 Implicit functions

EBGeometry implements implement functions and signed distance functions through virtual classes

```
// Implicit function implementation requires a value function
template <class T>
class ImplicitFunction
{
    T value(const Vec3T<T>& a_point) const noexcept = 0;
}

// Signed distance fields implementation require an additional function:
template <class T>
class SignedDistanceFunction : public ImplicitFunction<T>
{
    T value(const Vec3T<T>& a_point) const noexcept {
        return this->signedDistance(a_point);
    }

    T signedDistance(const Vec3T<T>& a_point) const noexcept = 0;
}
```

Note that T is a floating point precision, which is supported because DCEL meshes can take up quite a bit of computer memory. These declarations are found in

- Source/EBGeometry_ImplicitFunction.hpp for implicit functions.
- Source/EBGeometry_SignedDistanceFunction.hpp for signed distance field.

Various useful implementations of implicit functions and distance fields are found in:

- Source/EBGeometry_AnalyticDistanceFields.hpp for various pre-defined analytic distance fields.
- Source/EBGeometry_MeshDistanceFields.hpp for various distance field representations for DCEL meshes.

3.3.2 Transformations

Various transformations for implicit functions are defined in Source/EBGeometry_Transform.hpp, such as rotations, translations, etc. These are also available through functions that automatically cast the resulting implicit function to ImplicitFunction<T>:

```
Obrief Convenience function for taking the complement of an implicit function
 @param[in] a_implicitFunction Input implicit function
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Complement(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction) noexcept;
 Obrief Convenience function for translating an implicit function
 @param[in] a_implicitFunction Input implicit function to be translated
  @param[in] a_shift Distance to shift
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Translate(const std::shared_ptr<ImplicitFunction<T>>>& a_implicitFunction, const Vec3T<T>& a_shift) noexcept;
 Obrief Convenience function for rotating an implicit function.
  @param[in] a_implicitFunction Input implicit function to be rotated.
  @param[in] a_angle Angle to be rotated by (in degrees)
  @param[in] a_axis Axis to rotate about
template <class T>
std::shared_ptr<ImplicitFunction<T>>
```

```
Rotate(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_angle, const size_t a_axis) noexcept;
 Obrief Convenience function for scaling an implicit function.
 @param[in] a_implicitFunction Input implicit function to be scaled.
 @param[in] a_scale Scaling factor
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Scale(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_scale) noexcept;
 Obrief Convenience function for offsetting an implicit function
 @param[in] a_implicitFunction Input implicit function to be offset
 @param[in] a_offset Offset distance
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Offset(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_offset) noexcept;
 @brief Convenience function for creating a shell out of an implicit function
  @param[in] a_implicitFunction Input implicit function to be shelled.
  @param[in] a_delta Shell thickness
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Annular(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_delta) noexcept;
 Obrief Convenience function for blurring an implicit function
  @param[in] a_implicitFunction Input implicit function to be blurred
  @param[in] a_blurDistance Smoothing distance
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Blur(const std::shared_ptr<ImplicitFunction<T>>% a_implicitFunction, const T a_blurDistance) noexcept;
 Obrief Convenience function for mollification with an input sphere.
 @param[in] a_implicitFunction Input implicit function to be mollifier
  @param[in] a_dist Mollification distance.
template <class T>
std::shared_ptr<ImplicitFunction<T>>
```

3.3.3 CSG operations

CSG operations for implicit functions are defined in Source/EBGeometry_CSG.hpp. These also include accelerated variants that take advantage of BVH partitioning of the objects.

```
@param[in] a_smooth Smoothing distance.
  @note P must derive from ImplicitFunction<T>
template <class T, class P = ImplicitFunction<T>>
std::shared_ptr<ImplicitFunction<T>>
SmoothUnion(const std::vector<std::shared_ptr<P>>& a_implicitFunctions, const T a_smooth) noexcept;
 @brief Convenience function for taking the union of two implicit functions
 @param[in] a_implicitFunctionA First implicit function.
  @param[in] a_implicitFunctionB Second implicit function.
  @param[in] a_smooth Smoothing distance.
 @note P1 and P2 must derive from ImplicitFunction<T>
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
SmoothUnion(const std::shared_ptr<P1>& a_implicitFunctionA,
            const std::shared_ptr<P2>& a_implicitFunctionB,
            const T
                                       a_smooth) noexcept;
 @brief Convenience function for taking the BVH-accelerated union of a bunch of a implicit functions
  @param[in] a_implicitFunctions Implicit functions
  @param[in] a_boundingVolumes Bounding volumes for implicit functions.
  @note P must derive from ImplicitFunction<T>
template <class T, class P, class BV, size_t K>
std::shared_ptr<ImplicitFunction<T>>
FastUnion(const std::vector<std::shared_ptr<P>>& a_implicitFunctions,
          const std::vector<BV>&
                                                 a_boundingVolumes) noexcept;
  @brief Convenience function for taking the BVH-accelerated union of a bunch of a implicit functions
  @param[in] a_implicitFunctions Implicit functions
  @param[in] a_boundingVolumes Bounding volumes for the implicit functions.
  @param[in] a_smoothLen Smoothing length
  @note P must derive from ImplicitFunction<T>
template <class T, class P, class BV, size_t K>
std::shared_ptr<ImplicitFunction<T>>
FastSmoothUnion(const std::vector<std::shared_ptr<P>>& a_implicitFunctions,
                const std::vector<BV>&
                                                       a_boundingVolumes,
                const T
                                                       a_smoothLen) noexcept;
 @brief Convenience function for taking the intersection of a bunch of a implicit functions
  @param[in] a_implicitFunctions Implicit functions
  @note P must derive from ImplicitFunction<T>
template <class T, class P>
std::shared ptr<ImplicitFunction<T>>
Intersection(const std::vector<std::shared_ptr<P>>& a_implicitFunctions) noexcept;
 @brief Convenience function for taking the intersection of two implicit functions
 @param[in] a_implicitFunctionA First implicit function.
  @param[in] a implicitFunctionB Second implicit function.
 @note P1 and P2 must derive from ImplicitFunction<T>
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
Intersection (\textbf{const} \ std::shared\_ptr < std::shared\_ptr < P1 >> \& \ a\_implicitFunction \textbf{A}, \\
             const std::shared_ptr<std::shared_ptr<P2>>& a_implicitFunctionB) noexcept;
 @brief Convenience function for taking the smooth intersection of a bunch of a implicit functions
  @param[in] a_implicitFunctions Implicit functions
  @param[in] a_smooth Smoothing distance.
 @note P must derive from ImplicitFunction<T>
template <class T, class P>
std::shared_ptr<ImplicitFunction<T>>
SmoothIntersection(const std::vector<std::shared_ptr<P>>& a_implicitFunctions, const T a_smooth) noexcept;
 @brief Convenience function for taking the smooth intersection of two implicit functions
  @param[in] a_implicitFunctionA First implicit function.
  @param[in] a_implicitFunctionB Second implicit function.
```

```
@param[in] a smooth Smoothing distance.
  @note P1 and P2 must derive from ImplicitFunction<T>
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
SmoothIntersection(const std::shared_ptr<P1>& a_implicitFunctionA,
                   const std::shared_ptr<P2>& a_implicitFunctionB,
                   const T
                                              a_smooth) noexcept;
 @brief Convenience function for taking the CSG difference.
  @param[in] a_implicitFunctionA Implicit function.
  @param[in] a_implicitFunctionB Implicit function to subtract.
  @note P1 and P2 must derive from ImplicitFunction<T>
template <class T, class P1 = ImplicitFunction<T>, class P2 = ImplicitFunction<T>>
std::shared_ptr<ImplicitFunction<T>>
Difference(const std::shared_ptr<std::shared_ptr<P1>>& a_implicitFunctionA,
           const std::shared_ptr<std::shared_ptr<P2>>& a_implicitFunctionB) noexcept;
```

3.3.4 Bounding volumes

For simple shapes, bounding volumes can be directly constructed given an implicit function. E.g. one can easily find the bounding volume for a sphere with a known center and radius, or for a DCEL mesh. However, more complicated implicit functions require us to compute the bounding volume, or at the very least an approximation to it. ImplicitFunction<T> has a member function that uses spatial subdivision (based on octrees) for doing this:

```
// Compute an approximate bounding volume BV.

template <class BV>
inline BV
approximateBoundingVolumeOctree(const Vec3T<T>& a_initialLowCorner,
const Vec3T<T>& a_initialHighCorner,
const unsigned int
const T& a_maxTreeDepth,
a_safety = 0.0) const noexcept;
```

This function initializes a cubic region in space and uses octree refinement near the implicit surface. At the end of the octree recusion the vertices of the octree leaves are collected and a bounding volume of type BV that encloses them is computed. The success of this method relies on the implicit function being a signed distance function (or at least an approximation to it).

3.4 DCEL

The DCEL functionality exists under the namespace EBGeometry::DCEL and contains the following functionality:

- Fundamental data types like vertices, half-edges, polygons, and entire surface grids.
- BVH functionality for putting DCEL grids into bounding volume hierarchies.

Important: The DCEL functionality is *not* restricted to triangles, but supports N-sided polygons.

3.4. DCEL 17

3.4.1 Main types

The main DCEL functionality (vertices, edges, faces) is provided by the following classes:

• Vertices are implemented as a template EBGeometry::DCEL::EdgeT

```
template <class T>
class VertexT
```

The DCEL vertex class stores the vertex position, normal vector, and the outgoing half-edge from the vertex. Note that the class has member functions for computing the vertex pseudonormal, see *Normal vectors*.

The full API is given in the doxygen documentation here.

• Edges are implemented as a template EBGeometry::DCEL::EdgeT

```
template <class T>
class EdgeT
```

The half-edges store a reference to their face, as well as pointers to the next edge, pair edge, and starting vertex.

The full API is given in the doxygen documentation here.

• Faces are implemented as a template EBGeometry::DCEL::FaceT

```
template <class T>
class FaceT
```

Faces also store

- · The normal vector.
- A 2D embedding of the polygon face.
- · Centroid position.

The normal vector and 2D embedding of the facet exist because the signed distance computation requires them. The centroid position exists only because BVH partitioners will use it for partitioning the surface mesh.

The full API is given in the doxygen documentation here.

Mesh is implemented as a template EBGeometry::DCEL::MeshT

```
template <class T>
class MeshT : public SignedDistanceFunction<T>
```

The mesh stores all the vertices, half-edges, and faces, and if it is watertight and orientable it is also a signed distance function. Typically, the mesh is not created by the user but automatically created when reading the mesh from an input file.

The above DCEL classes have member functions of the type:

```
T signedDistance(const Vec3T<T>& a_point) const noexcept;
T unsignedDistance2(const Vec3T<T>& a_point) const noexcept;
```

which can be used to compute the distance to the various features on the mesh.

3.4.2 BVH integration

DCEL grids can easily be embedded in BVHs by enclosing bounding volumes around the polygons (e.g., triangles). Partitioning and bounding volume constructors are provided in Source/EBGeometry_DCEL_BVH.hpp.

3.5 BVH

The BVH functionality is encapsulated in the namespace EBGeometry::BVH. For the full API, see the doxygen API. There are two types of BVHs supported.

- Full BVHs where the nodes are stored in build order and contain references to their children.
- Compact BVHs where the nodes are stored in depth-first order and contain index offsets to children and primitives

The full BVH is encapsulated by a class

```
template <class T, class P, class BV, int K>
class NodeT;
```

The above template parameters are:

- T Floating-point precision.
- P Primitive type to be partitioned.
- BV Bounding volume type.
- K BVH degree. K=2 will yield a binary tree, K=3 yields a tertiary tree and so on.

NodeT describes regular and leaf nodes in the BVH, and has member functions for setting primitives, bounding volumes, and so on. Importantly, NodeT is the BVH builder node, i.e. it is the class through which we recursively build the BVH, see *Construction*. The compact BVH is discussed below in *Compact form*.

3.5.1 Bounding volumes

EBGeometry supports the following bounding volumes, which are defined in EBGeometry_BoundingVolumes.hpp`:

- **BoundingSphere**, templated as EBGeometry::BoundingVolumes::BoundingSphereT<T> and describes a bounding sphere. Various constructors are available.
- Axis-aligned bounding box, which is templated as EBGeometry::BoundingVolumes::AABBT<T>.

For full API details, see the doxygen API.

3.5.2 Construction

Constructing a BVH is done by

- Creating a root node and providing it with the geometric primitives and their bounding volumes.
- Partitioning the BVH by providing a partitioning function.

The first step is usually a matter of simply constructing the root node using the full constructor, which takes a list of primitives and their associated bounding volumes. The second step is to recursively build the BVH, which is done through the function topDownSortAndPartition(), see the code below:

3.5. BVH 19

Listing 3.1: Header section of the BVH implementation.

```
namespace BVH {
   Obrief Alias for a list geometric primitive and BV
 template <class P, class BV>
 using PrimAndBV = std::pair<std::shared_ptr<const P>, BV>;
   @brief List of primitives and their bounding volumes.
   Qdetails P is the primitive type and BV is the bounding volume enclosing the implicit surface of each P.
 template <class P, class BV>
 using PrimAndBVListT = std::vector<PrimAndBV<P, BV>>;
   @brief Polymorphic partitioner for splitting a list of primitives and BVs into K new subsets.
    \textit{@details P is the primitive type bound in the BVH and K is the BVH degrees. BV is the bounding volume type. } \\
   @param[in] a_primsAndBVs Vector of primitives and their bounding volumes.
   @return Return a K-length array of subset lists.
 template <class P, class BV, size_t K>
 using PartitionerT = std::function<std::array<PrimAndBVListT<P, BV>, K>(const PrimAndBVListT<P, BV>& a_primsAndBVs)>;
   @brief Stop function for deciding when a BVH node can't be divided into
   sub-volumes.
   Odetails T is the precision used in the BVH computations, P is the enclosing
   primitive and BV is the bounding volume used in the BVH. K is the tree degree.
   @param[in] a_node BVH node
   @return True if the node can't be divided into subvolumes and false otherwise.
 template <class T, class P, class BV, size_t K>
 using StopFunctionT = std::function<bool(const NodeT<T, P, BV, K>& a_node)>;
 template <class T, class P, class BV, size_t K>
 class NodeT : public std::enable_shared_from_this<NodeT<T, P, BV, K>>
 public:
     Obrief Construct a BVH node from a set of primitives and their bounding volumes
     @param[in] a_primsAndBVs Primitives and their bounding volumes
   NodeT(const std::vector<PrimAndBV<P. BV>>& a primsAndBVs) noexcept:
     @brief Function for using top-down construction of the bounding volume hierarchy.
     @details The rules for terminating the hierarchy construction, and how to partition them
      are encoded in the input arguments (a_partitioner, a_stopCrit).
     @param[in] a_partitioner Partitioning function. This is a polymorphic function which divides a set of
     primitives into two or more sub-lists.
     @param[in] a_stopCrit Termination function which tells us when to stop the recursion.
   inline void
   topDownSortAndPartition(const Partitioner& a_partitioner = BVCentroidPartitioner<T, P, BV, K>,
                            const StopFunction& a_stopCrit
                                                             = DefaultStopFunction<T, P, BV, K>) noexcept;
} // namespace BVH
```

The optional input arguments to topDownSortAndPartition are polymorphic functions of type indicated above, and have the following responsibilities:

- PartitionerT is the partitioner function when splitting a leaf node into K new leaves. The function takes a list of primitives which it partitions into K new lists of primitives.
- StopFunctionT simply takes a NodeT as input argument and determines if the node should be partitioned further.

Default arguments for these are provided, bubt users are free to partition their BVHs in their own way should they choose.

3.5.3 Compact form

In addition to the standard BVH node NodeT<T, P, BV, K>, EBGeometry provides a more compact formulation of the BVH hierarchy where the nodes are stored in depth-first order. The "linearized" BVH can be automatically constructed from the standard BVH but not vice versa.

Fig. 3.1: Compact BVH representation. The original BVH is traversed from top-to-bottom along the branches and laid out in linear memory. Each interior node gets a reference (index offset) to their children nodes.

The rationale for reorganizing the BVH in compact form is it's tighter memory footprint and depth-first ordering which occasionally allows a more efficient traversal downwards in the BVH tree, particularly if the geometric primitives are sorted in the same order. To encapsulate the compact BVH we provide two classes:

• LinearNodeT which encapsulates a node, but rather than storing the primitives and pointers to child nodes it stores offsets along the 1D arrays. Just like NodeT the class is templated:

```
template <class T, class P, class BV, size_t K>
class LinearNodeT
```

LinearNodeT has a smaller memory footprint and should fit in one CPU word in floating-point precision and two CPU words in double point precision. The performance benefits of further memory alignment have not been investigated.

Note that LinearNodeT only stores offsets to child nodes and primitives, which are assumed to be stored (somewhere) as

```
std::vector<std::shared_ptr<LinearNodeT<T, P, BV, K> > linearNodes;
std::vector<std::shared_ptr<const P> > primitives;
```

Thus, for a given node we can check if it is a leaf node (m_numPrimitives > 0) and if it is we can get the children through the m_childOffsets array. Primitives can likewise be obtained; they are stored in the primitives array from index m_primitivesOffset to m_primitivesOffset + m_numPrimities - 1.

3.5. BVH 21

• LinearBVH which stores the compact BVH *and* primitives as class members. That is, LinearBVH contains the nodes and primitives as class members.

```
template <class T, class P, class BV, size_t K>
class LinearBVH
{
  public:
  protected:
    std::vector<std::shared_ptr<const LinearNodeT<T, P, BV, K>>> m_linearNodes;
    std::vector<std::shared_ptr<const P>> m_primitives;
};
```

The root node is, of course, found at the front of the m_linearNodes vector. Note that the list of primitives m_primitives is stored in the order in which the leaf nodes appear in m_linearNodes.

Constructing the compact BVH is simply a matter of letting NodeT aggregate the nodes and primitives into arrays, and return a LinearBVH. This is done by calling the NodeT member function flattenTree():

```
template <class T, class P, class BV, size_t K>
class NodeT
{
public:
   inline std::shared_ptr<LinearBVH<T, P, BV, K>>
   flattenTree() const noexcept;
};
```

which returns a pointer to a LinearBVH. For example:

```
// Assume that we have built the conventional BVH already
std::shared_ptr<EBGeometry::BVH::NodeT<T, P, BV, K> > builderBVH;

// Flatten the tree.
std::shared_ptr<LinearBVH> compactBVH = builderBVH->flattenTree();

// Release the original BVH.
builderBVH = nullptr;
```

Warning: When calling flattenTree, the original BVH tree is *not* destroyed. To release the memory, deallocate the original BVH tree. E.g., the set pointer to the root node to nullptr or ensure correct scoping.

3.5.4 Tree traversal

Both NodeT (full BVH) and LinearBVH (flattened BVH) include routines for traversing the BVH with user-specified criteria. For both BVH representations, tree traversal is done using a routine

The BVH trees use a stack-based traversal pattern based on visit-sort rules supplied by the user.

Node visit

Here, a_visiter is a lambda function for determining if the node/subtree should be investigated or pruned from the traversal. This function has a signature

```
template <class NodeType, class Meta>
using Visiter = std::function<bool(const NodeType& a_node, const Meta a_meta)>;
```

where NodeType is the type of node (which is different for full/flat BVHs), and the Meta template parameter is discussed below. If this function returns true, the node will be visisted and if the function returns false then the node will be pruned from the tree traversal.

Traversal pattern

If a subtree is visited in the traversal, there is a question of which of the child nodes to visit first. The a_sorter argument determines the order by letting the user sort the nodes based on order of importance. Note that a correct visitation pattern can yield large performance benefits. The user is given the option to sort the child nodes based on what he/she thinks is a good order, which is done by supplying a lambda which sorts the children. This function has the signature:

```
template <class NodeType, class Meta, size_t K>
using Sorter = std::function<void(std::array<std::pair<std::shared_ptr<const NodeType>, Meta>, K>& a_children)>;
```

Update rule

If a leaf node is visited in the traversal, distance or other types of queries to the geometric primitive(s) in the nodes are usually made. These are done by a user-supplied update-rule:

```
template <class P>
using Updater = std::function<void(const PrimitiveListT<P>& a_primitives)>;
```

Meta-data

During the traversal, it might be necessary to compute meta-data that is helpful during the traversal, and this meta-data is attached to each node that is queried. This meta-data is usually, but not necessarily, equal to the distance to the nodes' bounding volumes. The signature for meta-data construction is

```
template <class NodeType, class Meta>
using MetaUpdater = std::function<Meta(const NodeType& a_node)>;
```

Traversal example

The DCEL mesh distance fields use a traversal pattern based on

- Only visit bounding volumes that are closer than the minimum distance computed (so far).
- When visiting a subtree, investigate the closest bounding volume first.
- When visiting a leaf node, check if the primitives are closer than the minimum distance computed so far.

These rules are given below.

3.5. BVH 23

Listing 3.2: Tree traversal criterion for computing the signed distance to a DCEL mesh using the BVH accelerator. See Source/EBGeometry_MeshDistanceFunctionsImplem.hpp for details.

```
template <class T, class BV, size_t K>
FastCompactMeshSDF<T, BV, K>::signedDistance(const Vec3T<T>& a_point) const noexcept
 T minDist = std::numeric_limits<T>::infinity();
 BVH::Updater<Face> updater = [&minDist, &a_point](const std::vector<std::shared_ptr<const Face>>& faces) -> void {
    for (const auto& f : faces) {
      const T curDist = f->signedDistance(a_point);
      minDist = std::abs(curDist) < std::abs(minDist) ? curDist : minDist;</pre>
 BVH::Visiter<Node, T> visiter = [&minDist, &a_point](const Node& a_node, const T& a_bvDist) -> bool {
   return a_bvDist <= std::abs(minDist);</pre>
 BVH::Sorter<Node, T, K> sorter =
   [&a_point](std::array<std::pair<std::shared_ptr<const Node>, T>, K>& a_leaves) -> void {
     a_leaves.begin(),
      a_leaves.end(),
      [&a_point](const std::pair<std::shared_ptr<const Node>, T>& n1,
                 const std::pair<std::shared_ptr<const Node>, T>& n2) -> bool { return n1.second > n2.second; });
 BVH::MetaUpdater<Node, T> metaUpdater = [&a_point](const Node& a_node) -> T {
   return a_node.getDistanceToBoundingVolume(a_point);
 m_bvh->traverse(updater, visiter, sorter, metaUpdater);
 return minDist:
```

3.6 Octree

The octree functionality is encapsulated in the namespace EBGeometry::Octree. For the full API, see the doxygen API. Currently, only full octrees are supported (i.e. pointer-based representation).

Octrees are encapsulated by a class

```
template <typename Meta, typename Data = void>
class Node : public std::enable_shared_from_this<Node<Meta, Data>>
```

where the template parameters are:

- Meta Meta-information contained in the node (e.g. upper/lower corners).
- Data Data contained in the node.

Node describes both regular and leaf nodes in the octree.

```
Warning: Octree::Node<Meta, Data> should only be used as std::shared_ptr<Octree::Node<Meta, Data>>.
```

3.6.1 Construction

Constructing the octree is done by first initializing the root node and then building it in either depth-first or breadth-first ordering:

The input functions to buildDepthFirst and buildBreadthFirst are as follows:

- 1. StopFunction determines if the node should be split or not. If it returns true, the node will *not* be split.
- 2. MetaConstructor constructs meta-data in the child nodes. This can/should include the physical corners of the node, but this is not a requirement.
- 3. DataConstructor constructs data in the child node. This can e.g. be a partitioning of the parent data.

3.6.2 Tree traversal

```
template <typename Meta, typename Data = void>
class Node : public std::enable_shared_from_this<Node<Meta, Data>> {
    using Updater = std::function<void(const Node<Meta, Data>& a_node)>;
    using Visiter = std::function<bool(const Node<Meta, Data>& a_node)>;
    using Sorter = std::function<void(std::array<std::shared_ptr<const Node<Meta, Data>>, 8>& a_children)>;
    inline void
    traverse(
        const Updater& a_updater,
        const Visiter& a_visiter,
        const Sorter& a_sorter = [](std::array<std::shared_ptr<const Node<Meta, Data>>, 8>& a_children) -> void {
            return;
        }) const noexcept;
};
```

The input functions to traverse are as follows:

- 1. Updater executes a user-specified update rule when visiting a leaf node.
- 2. Visiter determines if the node should be visited during the traversal or not.
- 3. Sorter permits the user to sort the nodes in the current subtrees and visit them in a specified pattern. By default, no sorting is done and the nodes are visited in lexicographical order.

3.6. Octree 25

3.6.3 Example

An example of how to use the Octree functionality is given in EBGeometry_ImplicitFunctionImplem.hpp where the octree functionality is used for spatial partitioning of an implicit function. This includes both the octree construction and traversal.

3.7 Reading data

Routines for parsing surface files from grids into EBGeometry's DCEL grids are given in the namespace EBGeometry::Parser. The source code is implemented in Source/EBGeometry_Parser.hpp.

Warning: EBGeometry is currently limited to reading binary and ASCII STL files and reconstructing DCEL grids from those. However, it is a simple matter to also reconstructor DCEL grids from triangle soups read using third-party codes (see *Using third-party sources*).

3.7.1 Quickstart

If you have one of multiple STL files, you can quickly turn them into implicit functions with

```
std::vector<std::string> files; // <---- List of file names.
const auto distanceFields = EBGeometry::Parser::readIntoLinearBVH<float>(files);
```

See DCEL mesh SDF with compact BVH for further details.

3.7.2 Reading STL files

EBGeometry supports a native parser for binary and ASCII STL files, which can be read into a few different representations:

- 1. Into a DCEL mesh, see *DCEL*.
- 2. Into a signed distance function representation of a DCEL mesh, see *Geometry representation*.
- 3. Into a signed distance function representation of a DCEL mesh, but using a BVH accelerator in full representation.
- Into a signed distance function representation of a DCEL mesh, but using a BVH accelerator in compact representation.

DCEL representation

To read one or multiple STL files and turn it into DCEL meshes, use

```
/*!
    @brief Read a file containing a single watertight object and return it as a DCEL mesh
    @param[in] a_filename File name

*/
template <typename T>
inline static std::shared_ptr<EBGeometry::DCEL::MeshT<T>>
readIntoDCEL(const std::string a_filename) noexcept;

/*!
    @brief Read multiple files containing single watertight objects and return them as DCEL meshes
    @param[in] a_files File names

*/
```

```
template <typename T>
inline static std::vector<std::shared_ptr<EBGeometry::DCEL::MeshT<T>>>
readIntoDCEL(const std::vector<std::string> a_files) noexcept;
```

DCEL mesh SDF

To read one or multiple STL files and turn it into signed distance representations, use

```
/*!
    @brief Read a file containing a single watertight object and return it as an implicit function.
    @param[in] a_filename File name
*/
template <typename T>
inline static std::shared_ptr<MeshSDF<T>>
readIntoMesh(const std::string a_filename) noexcept;

/*!
    @brief Read multiple files containing single watertight objects and return them as an implicit functions.
    @param[in] a_files File names
*/
template <typename T>
inline static std::vector<std::shared_ptr<MeshSDF<T>>>
readIntoMesh(const std::vector<std::string> a_files) noexcept;
```

DCEL mesh SDF with full BVH

To read one or multiple STL files and turn it into signed distance representations using a full BVH representation, use

```
/*!
    @brief Read a file containing a single watertight object and return it as a DCEL mesh enclosed in a full BVH.
    @param[in] a_filename File name
*/
template <typename T, typename BV = EBGeometry::BoundingVolumes::AABBT<T>, size_t K = 4>
inline static std::shared_ptr<FastMeshSDF<T, BV, K>>
readIntoFullBVH(const std::string a_filename) noexcept;

/*!
    @brief Read multiple files containing single watertight objects and return them as DCEL meshes enclosed in BVHs.
    @param[in] a_files File names
*/
template <typename T, typename BV = EBGeometry::BoundingVolumes::AABBT<T>, size_t K = 4>
inline static std::vector<std::shared_ptr<FastMeshSDF<T, BV, K>>>
readIntoFullBVH(const std::vector<std::string> a_files) noexcept;
```

DCEL mesh SDF with compact BVH

To read one or multiple STL files and turn it into signed distance representations using a compact BVH representation, use

```
/*!
    @brief Read a file containing a single watertight object and return it as a DCEL mesh enclosed in a linearized BVH
    @param[in] a_filename File name
*/
template <typename T, typename BV = EBGeometry::BoundingVolumes::AABBT<T>, size_t K = 4>
inline static std::shared_ptr<FastCompactMeshSDF<T, BV, K>>
readIntoLinearBVH(const std::string a_filename) noexcept;

/*!
    @brief Read multiple files containing single watertight objects and return them as DCEL meshes enclosed in linearized BVHs.
    @param[in] a_files File names
*/
template <typename T, typename BV = EBGeometry::BoundingVolumes::AABBT<T>, size_t K = 4>
inline static std::vector<std::shared_ptr<FastCompactMeshSDF<T, BV, K>>>
readIntoLinearBVH(const std::vector<std::string> a_files) noexcept;
```

3.7. Reading data 27

3.7.3 From soups to DCEL

EBGeometry also supports the creation of DCEL grids from polygon soups, which can then be later turned into an SDF representation. A triangle soup is represented as

```
std::vector<Vec3T<T>> vertices;
std::vector<std::vector<size_t>> faces;
```

Here, vertices contains the x, y, z coordinates of each vertex, while each entry faces contains a list of vertices for the face.

To turn this into a DCEL mesh, one should compress the triangle soup (get rid of duplicate vertices) and then construct the DCEL mesh:

The compress function will discard duplicate vertices from the soup, while the soupToDCEL will simply turn the remaining polygon soup into a DCEL mesh.

Tip: soupToDCEL will issue plenty of warnings if the polygon soup is not watertight and orientable.

3.7.4 Using third-party sources

By design, EBGeometry does not include much functionality for parsing files into polygon soups. There are many open source third-party codes for achieving this (and we have tested several of them):

- 1. happly or miniply for Stanford PLY files.
- 2. stl reader for STL files.
- 3. tinyobjloader for OBJ files.

In almost every case, the above codes can be read into polygon soups, and one can then turn the soup into a DCEL mesh as described in *From soups to DCEL*.

CHAPTER

FOUR

EXAMPLES

Below, we consider a few examples that show how to use EBGeometry. All the examples are located in the Examples folder. For instructions on how to compile and run the examples, refer to the README file in the example folder.

4.1 EBGeometry

EBGeometry-specified examples are given in Examples/EBGeometry_<something>. These examples display most of the EBGeometry functionality:

- Generating analytic implicit or signed distance functions.
- Representation of surface grids as signed distance functions.
- Using BVH-acceleration when combining multiple analytically defined implicit functions with CSG.
- Using BVH-acceleration when combining multiple surface grids functions with CSG.

Note that these examples do not provide any output for visualization.

4.2 AMReX

The AMReX examples are given in Examples/AMReX_<something>. These examples are intended to expose the same features as the EBGeometry-specific examples.

4.3 Chombo3

The Chombo-3 examples are given in Examples/Chombo3_<something>. These examples are intended to expose the same features as the EBGeometry-specific examples.

BIBLIOGRAPHY

[1] J.A. Baerentzen and H. Aanaes. Signed distance computation using the angle weighted pseudonormal. *IEEE Transactions on Visualization and Computer Graphics*, 11(3):243–253, 2005. doi:10.1109/TVCG.2005.49.