Chemistry - Cheat sheet

Oscar von Löhneysen - ofreiherr@ethz.ch Anna-Yaroslava Bodnar - abodnar@ethz.ch

Solubility Guidelines for Common Ionic Compounds in H2O

Soluble, Ionic Com-	Important Exceptions		
pounds containing			
NO3	None		
CH_3COO^-	None		
Cl-	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+} Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+} Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}		
$_{Br}-$	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}		
I^-	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}		
SO_4^{2-}	Compounds of Sr^{2+} Ag^{+} , Hg^{2+}_{2} , and Pb^{2+}		
Insoluble, Ionic Com-	Important Exceptions		
pounds containing			
S^{2-}	Compounds of NH_4^+ , the alkali metal		
	cations, Ca^{2+} , Sr^{2+} , and Ba^{2+}		
CO_3^{2-}	Compounds of NH_A^+ and the alkali metal cations		
CO_3^{2-} PO_4^{3-}	Compounds of NH_{4}^{+} and the alkali metal cations		
OH-	Compounds of NH_A^+ , the alkali metal cations,		
	Ca^{2+} , Sr^{2+} , and Ba^{2+}		

Gases

Ideal gas law

ideal gas: no intermolecular interactions between particles STP: 273.15 K, 1 atm = 101.325 kPa

$$\rho = \frac{P}{RT}M$$

Partial pressure

v molecules that have average kinetic energy (mean root squared velocity)

Pressure measurement

 $P_{atm} = 101.325kPa = 760mmHg = 760torr$

Thermodynamics

Ethalpy H

Hess's Law

H = E + PV $\Delta H \stackrel{\dot{P}=0}{=} q_p$

• $\Delta H > 0 \Rightarrow$ system gained heat

• $\Delta H < 0 \Rightarrow$ system lost heat

state function: only depends on current state(p,V...)/path independent: E, H

 $\Delta H_{rxn} = \sum \Delta H_i$

 $\Delta H^0_{rxn} = \sum_{prod,j} b_j \cdot \Delta H^0_{f,j} - \sum_{react,i} a_i \Delta H^0_{f,i}$

Bond enthalpy

- Spontaneous p. = p. occur w/o assistance
- Reversible = p. can be reversed w/no change to surroundings infinitisimal change
- Irreversible = surroundings changed when process is reversed
- All real p. are irreversible
- · All spontaneous p. are real
- All spontaneous p. are Irreversible
- To return system to initial state ⇒ requires work
- While E is conserved during spontaneous p. E tends to spread out and become less usefull

3rd law of thermodynamics

- Pure, crystalline solid substance at T = 0K has S = 0
- For rxn: $\Delta S_{surr} = \frac{-q_{sys}}{T} = \frac{-\Delta H_{rxn}^0}{T}$
- \bullet $S = ln(W) * k_B$ whereas W increases with V,p,N, complexity of molecule
- Reversible p. : $\Delta S_{univ} = 0$ and $\Delta G = 0$ Irreversible p. : $\Delta S_{univ} > 0$ and $\Delta G > 0$ Entropy of the universe increases for any spontaneous p

Gibb's free energy

maximum amount of work can extract from

- G := H TS• at const. $T \Rightarrow \Delta G = \Delta H_{sys} - T\Delta S_{sys}$
- ΔS $-T\Delta S$ ΔG Rxn Characties
- + or -+ or -

Thermodynamics of solution

solvent + solute
$$\leftarrow \frac{crystallize}{disolve}$$
 solution

$$(solvent)_n \rightarrow n \cdot solvent$$
 $\Delta H_{solvent}(separatesolvent)$ (1)
 $(solute)_m \rightarrow m \cdot solute$ $\Delta H_{solute}(separatesolute)$ (2)

$$\begin{array}{ll} n \cdot solvent + m \cdot solute \rightarrow solution & \Delta H_{mix}(mixseparate solvent \& solute) \ \ (3) \\ \hline (solvent)_n + (solute)_m \rightarrow solution & \Delta H_{soln}(total enthalpy change) \end{array}$$

- $\Delta H_{soln} > 0 \Rightarrow -T\Delta S_{soln}$ muss be sufficient \Rightarrow more likely at high T $\Delta H_{soln} < 0$ typically forms solution for any c(solute), completly miscible (mixable)

Lattice energy and phase diagram

supercritical fluid: no distinction between liquid and gas, no surface tension

Factors affecting solubility

- strong solute-solvent interactions favor higher solubility
- substances with similar interactions tend to be soluble in each other
- Temperature
- Ion solubility in H_2O increases with T $\Rightarrow \Delta S_{soln} > 0$ Gas solubility in H_2O decreases with T $\Rightarrow \Delta S_{soln} < 0$
- Pressure $S_g = kP_g$ S_g gas solubility, k Henry's law constant, P_g partial pressure

Colligative Properties

= Solute effects liquid, depends only on amount of solute

ideal solution: solvent-solvent and solute-solvent interaction are the same

- \bullet Boiling point elevation $\Delta T_{bp} = T_{bp}^{soln} T_{bp}^{soln} = iK_bm \quad , \, \mathbf{m} = \mathbf{molar} .$ ity of solute, $K_b = \text{molal bp elevation constant}$, i = van't Hoff factor =1, for non-electrolytes # ions produced, for electrolytes
- Vapor pressure lowering Raoult's law: $P_{vap}^{soln} = X_{solvent} \cdot P_{vap}^{pure}$
- Freezing point depression $\Delta T_{fp} = -iK_f m$
- Osmotic pressure $\Pi = iMRT$ Π osmotic pressure to counteract osmotic flow
- hypertonic $\Pi > \Pi_{ref}$ and hypotonic $\Pi < \Pi_{ref}$

Expressions of concentration

mole fraction = $\frac{n(solute)}{}$ $\begin{array}{l} \text{mole fraction} = \frac{}{n_{tot}} \\ \text{molarity} = \frac{n(\text{solute})}{V_{tot}} \\ \text{molality} = \frac{n(\text{solute})}{m(\text{solvent})} \end{array}$ $ppm = mass\% \cdot 10^6$

Properties of liquids

- · viscosity: resitsance to flow, interactions slow flow
- · surface tension: Energy unit per area of liquid surface, minimize surface where intermol, interactions are missing

 vapor pressure: pressure of molecules in gas phase (volatile liquid has small \hat{E}_{int} and high p_v

Clausius-Clapeyron equation

$$\ln P_{vap} = -\frac{\Delta H_{vap}}{RT} + C$$

Chemical Kinetics

Reaction rate:
$$|\dot{c}(A)|$$
 For general rxn: $\alpha A + \beta B \rightarrow \gamma C + \delta D$ Rate $= -\frac{1}{\alpha} \frac{d[A]}{dt} = -\frac{1}{\beta} \frac{d[B]}{dt} = \frac{1}{\gamma} \frac{d[C]}{dt} = \frac{1}{\delta} \frac{d[D]}{dt}$

- general Rate = $k[A]^n[B]^m \cdots$
- m,n reaction orders
- $m, n \in \{0, \frac{1}{2}, 1, 2, \cdots\}$
- m,n are \underline{not} necessarily equal α, β
- overall reaction order = $m + n + \cdots$
- fast rxns $k > 10^9$ slow rxns k < 10

Using rate laws $rxn A \rightarrow B$ • $-\frac{d[A]}{dt} = k[A]^m$

- First-order m = 1: $\ln[A]_t \ln[A]_0 = -kt$
- Second-order m = 2:
- Zero-order m = 0: $[A]_t = -kt + [A]_0$

Temperature dependence of rate law

- $k(t) = (collision per time) \cdot (fraction of collisions properly oriented)$ (fraction molecules with $E > E_A$)
- $ln(\frac{k_1}{k_2}) = \frac{E_A}{R}(\frac{1}{T_2} \frac{1}{T_1})$ for typical E_A, T , rxn rate doubles for $\delta T = +10K$

 $K_P = K_C (RT)^{\Delta n}$

Elementary reactions

- simple step where 1 'thing' happens, typically 1 bond breaks/forms
- $m = \alpha$ and $n = \beta$ for elementary rxn
- process to determine rxn mechanism
 - 1. measure rates
- 2. propose mechanism
- 3. check consistency

$$K = \frac{k_{forward}}{k_{reverse}} = \frac{(a_C)^{\gamma} (a_D)^{\delta}}{(a_A)^{\alpha} (a_B)^{\beta}} \qquad a_i = \begin{cases} \frac{[i]}{1M} \\ \frac{i}{1\text{bar}} \end{cases}$$

- · note: requires closed system
- · all rxns are elementary near equilibrium
- K is rxn specific
- K_C & K_P are unitless
- for pure solids/liquids a = 1
- for multistep $\operatorname{rxn} K = \Pi_i K_i$ • rate-limiting step: $k1 << k2 \rightarrow$ rate overall is only dependent on k1

$[C]^{\gamma}[D]^{\delta}$ Reaction quotient $[A]^{\alpha}[B]^{\beta}$

- Q < K forward rxn forms more product
- Q > K reverse rxn forms more reactant

Le Chatelier Principle: If a system at equil. is disturbed by change in T, P or system shifts its equil. to counteract disturbance

endothermic: $A + \Delta E \rightleftharpoons B$ and exothermic: $A \rightleftharpoons \Delta E + B$

V decreases \rightarrow p increases \rightarrow reaction is preferred which produces less molecules

Relation to thermodynamics: $\Delta G = \Delta G^0 + RT \ln Q$

At equil.: $\Delta G = 0 \Rightarrow \Delta G^0 = -RT \ln K$

Electronic Structure

- Rydberg Equ: $E_H = \frac{hc}{\lambda_H} = hcR_H(\frac{1}{n^2} \frac{1}{n^2})$
- - principal quantum number, $n \in \{1, \ldots\}$
 - angular quantum number, $l \in \{1..., n-1\}$ 0 1 2 3 p d f
 - Magnetic quantum number, $m_l \in \{-l, ..., l\}$ (orientation in space) - Spin magnetic quantum number, $m_S \in \{-\frac{1}{2}, \frac{1}{2}\}$
 - Ex. Se: $[Ar]3d^{10}4s^24p^4$

Pauli exclusion principle

- Order of subshells? \rightarrow use periodic table s=2, p=6, d=10, f=14• Hunds rule
- Exception: half/filled orbitals are more favourable

 \bullet For given shell(s) v.e. repelled by core e ('screen') \Rightarrow v.e. feel $Z_{eff} < Z$ Effect stronger for subshells further from nucleus

Bonds

Bond polarity

If electro negativity > 2 ⇒ ionic bond

Dipol Moments

- pointing from to +
- very polar bonds \Rightarrow large $|\vec{\mu}|$

Ionic vs covalent

- continuum of behavior
- more covalent = 'molecular behavior' low melting/boiling T
- more ionic ⇒ ionic solid brittle high boiling T
- electro negativity difference not perfect: oxidation # of metals increases ⇒ bonding more covalent

Molecular geometry

domain: bonding + nonbonding pairs

molecular geometry: just position of atoms

Drawing Lewis Structures

- Octet rule Atoms want 8 v.e.'s
- 1. sum v.e.'s of all atoms
- 2. write symbols and connect with single bonds
- 3. complete octets around non-central atoms
- place remaining v.e.'s around central atom
- 5. try multiple bonds if central atom doesn't have octet

Exceptions to the octet rule

- odd # e
- less then octet v.e.'s
- · more then octet of v.e.'s

- Formel Charge = v.e.'s $\frac{1}{2}$ atom's bonding e's atom's non-bonding e's
- ullet dominent Lewis structure have formel charges closet to 0, and \ominus on more electro negative atoms

Valance-shell electron pair repulsion

- 1. draw Lewis
- 2. count e domains
- 3. determine e domain geometry
- 4. determine molecular geometry from position of atoms

#	electron domain	geometry	molecular geometry	angle	examples
2	х—A—X	AX_2	linear	180°	H_2
	X—A'''''X				
3	Λ.	AX_3	triangular planar	120°	NO_3^-
	AX_2E_1	Ü	bent	≈ 115°	so_2^3
4	X X X X X X X X	AX_4	tetrahedral trigonal planar	109.5° ≈ 107°	$_{NH_{3}}^{CH_{4}}$
	AX_2E_2		bent	≈ 104°	H_2O

Intermolecular forces

ion-dipole > H-bonding > dipole-dipole ≈ dispersion $> 50kJ/mol \approx 25kJ/mol$ $\approx 10kJ/mol$

Only for charged molecules: ion-ion & ion-dipol interaction

For neutral molecules:

A Dispersion

Induced dipole attractive at short distance

B Dipole-dipole polar molecules

Molecular dipoles interact \Rightarrow attractive E_{int} over short distance

A + B = van der Waals forces

- always present
- · increase with molecular size
- · effected by shape

Hydrogen bonding

- in molecules with N − H, O − H, F − H
- N, O, F very electro negative, small \Rightarrow very polar

Acid Base

Auto-ionization of water

- $2H_2O \rightleftharpoons OH^-(aq) + H_3O^+(aq)$
- $K_C = [OH^-] \cdot [H_3O^+] \equiv K_W = \text{ ion-product const } = 1.0 \cdot 10^{-14} (25^{\circ}C)$

Acid-base pairs

generic rxn of acid with H₂O:

$$H_2O + AH \rightarrow H_3O^+ + A^ K_A = \frac{[A^-][H_3O^+]}{[HA]}$$
 base acid conjugate conjugate acid base

generic rxn of base with H₂O:

- amphiprotic substance: can act as both acid & base, ex: H_2O, HCO_2^-, \cdots
- each acid/base has its conjugate base/acid

Strength of acids and bases

- $pOH = -\log[OH]$
- $pK_W = 14.00 = pH + pOH$
- the smaller $pK_A = -\log K_A$ pKR, the stronger acid/base

Common-ion effect

Add common ion to manipulate acid-base equil.

Ex: $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$ Add strong electrolyte: $CH_3COONa \rightarrow$ Shifts acid-base equil left, decreasing $[H_3O^+]$

Buffer

- weak acid-base conjugate pair $HA/A^- \Rightarrow$ protect against $H^+/OH^ HA + OH^- \rightleftharpoons A^- + H2O \quad [H_3O^+] = K_A \frac{[HA]}{[A^-]}$
- $A^- + H_3O^+ \rightleftharpoons HA + H_2O$ • as long as disturbance $\ll [A^-] \wedge [HA] \Rightarrow \Delta pH \approx 0$
- · Henderson-Hasselbalch equation, only useful for

$$pH = pK_A + \log \frac{[base]}{[acid]}$$
 [acid], [base] concentration of weak acid/conjugate base, for $K_A \ll [acid]$, [base]

Electrochemistry

Redox equations

Acidic aqueous solution

- 1. divide into oxidation & reduction
- 2. balance
 - balance elements not H/O
 - balance O by adding H₂O
 - balance H by adding H
 +
 - balance charge by adding e⁻
- 3. multiply each half rxn to equate e
- 4. add half rxn
- 5. check

Basic aqueous solution

anode - oxidation

- 1. balance half rxns as if in acidic solution
- add #H⁺ of OH⁻ to each side
- 3. multiply each half rxn to equate e^-
- 4. add half rxns
- 5. check Batteries

Galvanic cell:

Energy & batteries

- $\bullet \ \ E_{cell}^{0} = {\it cell voltage at standard conditions} \ (298.15K, 1 {\it atm}) \\$
- standard reduction potential $e \cdot E_{red}^0 = \text{pot.}$ energy available if reduced
- $E_{cell}^0 = E_{red}^0 E_{ox}^0 = E_{cathode}^0 E_{anode}^0$
- to be useful/spontaneous reaction $E_{cell}^0 > 0$
- at anode lower potential
- E^0_{cell} is intensive
- \bullet E_{red}^{0} half cell can't measured directly \Rightarrow standard hydrogen electrode
- $\Delta G = -nFE_{cell}^{0}$

No guarantee of correctness