Tópicos de Matemática Discreta

- 1. Sejam p_1 , p_2 e p_3 variáveis proposicionais. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) A fórmula $((p_1 \to (p_2 \lor p_3)) \land (\neg p_3)) \to (\neg p_1)$ é uma tautologia.

A afirmação não é verdadeira. Se p_1 e p_2 tiverem valor lógico 1 e p_3 tiver valor lógico 0, a fórmula tem valor lógico 0. De facto, nestas condições, a fórmula $p_2 \vee p_3$ tem valor lógico 1 e, por isso, a fórmula $p_1 \to (p_2 \vee p_3)$ tem valor lógico 1. Assim, tem também valor lógico 1 a fórmula $(p_1 \to (p_2 \vee p_3)) \wedge (\neg p_3)$. Logo, a fórmula dada é uma implicação onde o antecedente é verdadeiro e o consequente é falso, pelo que a fórmula tem o valor lógico 0. Como não é verdadeira para qualquer valor lógico das variáveis proposicionais, concluímos que a fórmula não é uma tautologia.

(b) O argumento representado por

$$\begin{array}{c}
p_1 \to (p_2 \lor p_3) \\
 \hline
 \neg p_3 \\
 \hline
 \vdots \neg p_1
\end{array}$$

é um argumento válido.

A afirmação não é verdadeira. O argumento apresentado é válido se e só se a fórmula $((p_1 \to (p_2 \lor p_3)) \land (\neg p_3)) \to \neg p_1$ é uma tautologia. Como já justificamos em (a), a fórmula não é uma tautologia.

2. Considere que A é um subconjunto de \mathbb{Z} e que p representa a proposição

$$\forall_{x \in A} (x < 4 \rightarrow \exists_{y \in A} (y \le x \rightarrow y^2 < 16)).$$

- (a) Dê exemplo de um conjunto A não vazio onde:
 - (i) p seja verdadeira;

Seja $A = \{7, 8, 9\}$. Como x < 4 nunca se verifica para qualquer elemento de A, podemos afirmar que do predicado $x < 4 \rightarrow \exists_{y \in A} (y \le x \rightarrow y^2 < 16)$, por ser uma implicação, se obtém uma proposição verdadeira se substituirmos x por qualquer valor possível. Assim, a proposição dada é verdadeira.

(ii) p seja falsa.

Seja $A=\{-5\}$. Para x=-5, como -5<4, para a proposição p ser verdadeira, teria de existir y nas condições dadas, ou seja, teria de existir um elemento y pertencente a A tal que $y \le x \to y^2 < 16$ seja uma proposição verdadeira. Mas, y=-5 é o único elemento de A e, embora seja verdadeiro que $y \le x$, $y^2=25<16$ é falso. Logo, a proposição é falsa.

(b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.

Temos

$$\neg(\forall_{x \in A}(x < 4 \to \exists_{y \in A} (y \le x \to y^2 < 16))) \Leftrightarrow \exists_{x \in A} (x < 4 \land \neg(\exists_{y \in A} (y \le x \to y^2 < 16))) \Leftrightarrow$$

$$\exists_{x \in A} (x < 4 \land (\forall_{y \in A} \neg (y \le x \to y^2 < 16))) \Leftrightarrow \\ \exists_{x \in A} (x < 4 \land (\forall_{y \in A} (y \le x \land y^2 \ge 16)))$$

3. Mostre que, para quaisquer inteiros m e n, se mn e m+n são pares, então m e n são ambos pares.

Queremos provar que

$$mn \text{ par } \wedge m + n \text{ par } \rightarrow m \text{ par } \wedge n \text{ par,}$$

o que, pela lei do contrarrecíproco, é o mesmo que provar que

$$m \text{ impar } \vee n \text{ impar } \rightarrow mn \text{ impar } \vee m+n \text{ impar.}$$

Como o consequente desta implicação é uma disjunção, podemos prová-la provando que

$$(m \text{ impar } \vee n \text{ impar}) \wedge m + n \text{ par } \rightarrow mn \text{ impar.}$$

Suponhamos que m é impar. Como m+n é par, podemos concluir que n=(m+n)-m é impar (porque é a diferença entre um número par e um número impar). Logo, mn é impar, pois é o produto de dois números impares. Suponhamos agora que n é impar. De modo análogo ao anterior, concluimos que m é impar e, por isso, mn é impar.

4. Considere os conjuntos

$$A = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x^2 \in B \land y = x+3\}, \quad B = \{0,4,\{9\}\}\}$$
$$C = (\mathbb{Z} \setminus \{1\}) \times (\mathbb{Z} \setminus \{3\}), \quad D = \{1,\{1\},\{1,\{1\}\}\}\}.$$

Justificando, determine

- (a) $A \cap C$.
 - Temos que $A = \{(0,3), (2,5), (-2,1)\}$ e $C = \{(m,n) \in \mathbb{Z} \times \mathbb{Z} : m \neq 1 \land n \neq 3\}$, pelo que $A \cap C = \{(2,5), (-2,1)\}$.
- (b) $D \cap \mathcal{P}(D)$.

Temos $X \in D \cap \mathcal{P}(D) \leftrightarrow X \in D \land X \in \mathcal{P}(D) \leftrightarrow X \in D \land X \subseteq D$. Como $1 \in D$, temos que $\{1\} \subseteq D$ e, como $1 \in D$ e $\{1\} \in D$, temos que $\{1, \{1\}\} \subseteq D$. Logo, $D \cap \mathcal{P}(D) = \{\{1\}, \{1, \{1\}\}\}$.

- 5. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira para quaisquer conjuntos $A, B \in C$.
 - (a) $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C)$. A afirmação não é verdadeira. Contraexemplo: Para $A = \{1\}$, $B = \{2\}$ e $C = \{3\}$, temos $B \setminus C = B$, $A \cup B = \{1,2\}$ e $A \cup C = \{1,3\}$, pelo que $A \cup (B \setminus C) = A \setminus B = A \neq \{2\} = (A \cup B) \setminus (A \cup C)$.
 - (b) Se $B \cap C \subseteq A$, então $(B \setminus A) \cap (C \setminus A) = \emptyset$.

A afirmação é verdadeira. Demonstração (por contrarrecíproco): suponhamos que $(B \setminus A) \cap (C \setminus A) \neq \emptyset$, i.e., que existe $x \in (B \setminus A) \cap (C \setminus A)$. Mas,

$$(x \in (B \setminus A) \land x \in (C \setminus A)) \Leftrightarrow ((x \in B \land x \notin A) \land (x \in C \land x \notin A))$$

$$\Leftrightarrow ((x \in B \land x \in C) \land x \notin A)$$

$$\Leftrightarrow (x \in B \cap C \land x \notin A).$$

Assim, estamos em condições de concluir que $B \cap C \nsubseteq A$.

(c) $\mathcal{P}(A) \setminus \mathcal{P}(B) \subseteq \mathcal{P}(A \setminus B)$.

A afirmação não é verdadeira. Contraexemplo: Para $A = \{1,2\}$ e $B = \{2\}$, $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}, \mathcal{P}(B) = \{\emptyset, \{2\}\}, A \setminus B = \{1\}$ e, por isso, $\mathcal{P}(A) \setminus \mathcal{P}(B) = \{\{1\}, \{1,2\}\} \not\subseteq \{\emptyset, \{1\}\} = \mathcal{P}(A \setminus B)$, pois $\{1,2\}$ é elemento do primeiro conjunto e não é do segundo.

6. Sejam A e B conjuntos. Mostre que $(A \times B) \setminus (B \times B) = (A \setminus B) \times B$.

Temos

$$(x,y) \in (A \times B) \setminus (B \times B) \quad \Leftrightarrow (x,y) \in A \times B \wedge (x,y) \notin B \times B$$

$$\Leftrightarrow (x \in A \wedge y \in B) \wedge (x \notin B \vee y \notin B)$$

$$\Leftrightarrow (x \in A \wedge y \in B \wedge x \notin B) \vee (x \in A \wedge y \in B \wedge y \notin B)$$

$$\Leftrightarrow x \in A \setminus B \wedge y \in B$$

$$\Leftrightarrow (x,y) \in (A \setminus B) \times B$$

o que prova a igualdade dos dois conjuntos.

7. Prove, por indução nos naturais, que

$$2 \times 2 + 3 \times 2^{2} + 4 \times 2^{3} + \ldots + (n+1) \times 2^{n} = n \times 2^{n+1},$$

para todo o natural n.

i. Base de indução: Considerando n=1, temos

$$2 \times 2 = 1 \times 2^2,$$

o que é uma afirmação verdadeira.

ii. Seja $k \in \mathbb{N}$. Sabendo que

$$2 \times 2 + 3 \times 2^2 + 4 \times 2^3 + \ldots + (k+1) \times 2^k = k \times 2^{k+1}$$

queremos provar que

$$2 \times 2 + 3 \times 2^{2} + 4 \times 2^{3} + \ldots + (k+1) \times 2^{k} + (k+2) \times 2^{k+1} = (k+1) \times 2^{k+2}$$

Temos

$$2 \times 2 + 3 \times 2^{2} + 4 \times 2^{3} + \ldots + (k+1) \times 2^{k} + (k+2) \times 2^{k+1} = k \times 2^{k+1} + (k+2) \times 2^{k+1}$$
$$= (2k+2) \times 2^{k+1}$$
$$= 2(k+1) \times 2^{k+1}$$
$$= (k+1) \times 2^{k+2}.$$

Por i. e ii., pelo Princípio de Indução Matemática, concluímos que

$$\forall n \in \mathbb{N}, \ 2 \times 2 + 3 \times 2^2 + 4 \times 2^3 + \ldots + (n+1) \times 2^n = n \times 2^{n+1}.$$

Cotações	1.	2.	3.	4.	5.	6.	7.
	1,75+1,5	1,25+1,25+1,5	2,0	1,5+1,5	1,25+1,25+1,25	1,5	2,5