This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

B 4 3

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-319935

(43) Date of publication of application: 16.11.2001

(51) Int. CI.

H01L 21/331 H01L 29/73 H01L 21/205 H01L 21/28 H01L 21/3205 H01L 29/165

(21) Application number : 2000-138994

00-138994 (71)Applic

(71) Applicant: MITSUBISHI MATERIALS SILICON

CORP

MITSUBISHI MATERIALS CORP

(22) Date of filing:

11. 05. 2000

(72) Inventor:

SHIONO ICHIRO
MIZUSHIMA KAZUKI

(54) SIGE FILM FORMING METHOD, METHOD OF MANUFACTURING HETEROJUNCTION TRANSISTOR AND HETEROJUNCTION BIPOLAR TRANSISTOR

(57) Abstract:

an insulating film from becoming rough and to improve film quality and film resistance in an SiGe film forming method, a manufacturing method of a heterojunction transistor and a heterojunction bipolar transistor. SOLUTION: A method for forming a SiGe film 8 on the insulating film 6 is provided with a buffer forming process for forming a first Si(1-x)Gex film 9 $(0 \times (0.05))$ on the insulating film and a main film forming process for forming a second Si(1-y)Gey film 10 (0.05 y < 1) on the first Si(1-x)Gex film. The buffer forming process forms the first Si(1-x)Gex in the thickness range of 0.5 nm to 5 nm.

PROBLEM TO BE SOLVED: To prevent an SiGe film on

LEGAL STATUS

[Date of request for examination]

30, 06, 2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of

rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-319935 (P2001-319935A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.CL'		識別記号		FI						ラーマコード(参考)
	21/331	may 102 ·)		H0	l L	21/205				4M104
	29/73					21/28		3 0	012	5F003
	21/205				1	29/165	i			5 F O 3 3
	21/28	3 0 1				29/72				5 F O 4 5
	21/3205			•		21/88		P		
	,		来西西来	未函求	語言	む真の数 6	OL	(全	9 🖪	() 段終頁に続く
(21)出頻番号		特顯2000-138994(P20	100 - 133994)	(71)	出項。	A 000228	925			
							-			株式会社
(22)出頭日		平成12年5月11日(200			書京東	千代田	区大	手町一	·丁目5番1号	
				(71)	出頭					
		:					テリア			
								区大	手町 1	丁目5番1号
				(72)	究明:	-				
		•								目297番地 三菱
						マテリ	アル株	式会	社総合	研究所内
				(74)	代理.	A 100064	908			4.5
	•					弁理士	志賀	Œ	R ((外6名)
		ie.								
				9						
										最終更に続く

(54) 【発明の名称】 SIGe 膜の形成方法とヘテロ接合トランジスタの製造方法、及びヘテロ接合パイポーラトランジスタ

(57)【要約】

【課題】 SiGe 膜の形成方法とヘテロ接合トランジスタの製造方法。及びヘテロ接合パイポーラトランジスタにおいて、絶縁膜上のSiGe 膜が荒れることを防いて装質及び膜紙痕を改善すること。

【解決手段】 絶縁膜6上に5:Ge 膜8を形成する方法であって、前記絶縁膜上に第1のSi(1-1)Ge,膜9(0 ≤ x < 0.05)を形成するバッファ形成工程と、前記第1のSi(1-1)Ge, 膜上に第2のS:(1-1)Ge,膜10(0.05 ≤ y < 1)を形成する主腹形成工程とを備え、前記バッファ形成工程は、前記第1のSi(1-1)Ge,膜を0.5nm以上5nm以下の厚さ範囲で成膜する。

【特許請求の範囲】

【請求項1】 絶縁膜上にS:GE膜を形成する方法で

()5)を形成するバッファ形成工程と、

前記第1のSignan Ge, 膜上に第2のSignan Ge, 膜(1)、(15≦y<1)を形成する主験形成工程とを備 ì.

前記バッファ形成工程は、前記第1のSiasы,Geょ膜 を 0. 5 n m以上 5 n m以下の厚さ範囲で成膜すること 10 を特徴とするSiGe膜の形成方法。

【請求項2】 請求項1に記載のSiGe膜の形成方法 であって、

少なくとも前記第2のSiィ、、、、、Ge、膜を、().133 Pa以上1.33×10*Pa以下の圧力範囲の減圧C VD注により成膜することを特徴とするSIGe膜の形 成方法。

【請求項3】 SIGeのベース領域を有するヘテロ接 台トランジスタを製造する方法であって、

コレクタ領域が形成されたS.基板上に絶縁膜を形成す 20

前記絶縁膜の一部に前記コレクタ領域に通じる窓部を形 成する工程と.

前記窓部上及び前記絶縁膜上にS!Ge膜を非選択的に 形成し窓部上に前記ペース領域を形成すると共に前記絶 縁膜上にベース電極までの引き出し線に供される領域を 形成するSIGe膜形成工程と、

前記ベース領域上にS」のエミッタ領域を形成する工程 とを備え、

前記S:Ge膜形成工程は、前記SiGe膜を請求項1 又は2に記載のSIGe膜の形成方法により形成するこ とを特徴とするヘテロ接合トランジスタの製造方法。

【請求項4】 請求項3に記載のヘテロ接合トランジス タを製造する方法において、

前記S:Ge膜形成工程は、前記第2のS:(...) Ge. 膜のGe組成比yが(). ()8≦y≦(). 3の範囲内であ ることを特徴とするヘテロ接合トランジスタの製造方

【請求項5】 SIGeのベース領域を有するヘテロ接 台トランジスタであって.

Si蟇板に形成されたコレクタ領域と、

前記S」基板上に形成され前記コレクタ領域に通じる窓 部を有した絶縁膜と、

前記窓部上に形成されSiGe膜からなるペース領域

前記絶縁膜上に形成され前記ペース領域に接続されたS · Ge膜からなる引き出し線と、

前記ペース領域上に形成されたS!のエミッタ領域とを

少なくとも前記引き出し線は、前記絶縁膜上に形成され、50、やJ.L.Regolinn等(Materials Science in Semiconducto

た第1のS₁₍₁₋₂₎Ges膜(0≦x<0.05)と、 前記第1の Si_{n+1} , Ge, 競上に形成された第2のS! (,,,)Ge,膜(0,05≦y<1)とを償え、

前記第1のSicary Ge, 機は、0.5nm以上5nm 以下の厚さであることを特徴とするヘテロ接合トランジ

【請求項6】 請求項5に記載のヘテロ接合トランジス タにおいて、

前記第2のSignayGe、膜は、Ge組成比yがり、() 8≦y≦0.3の範囲内であることを特徴とするヘテロ 接合トランジスタ。

【発明の詳細な説明】

[0001]

【発明の届する技術分野】本発明は、例えば、ヘテロ接 台トランジスタにおけるベース引き出し線として好適な SiGe膜の形成方法とヘテロ接合トランジスタの製造 方法、及びヘテロ接合バイボーラトランジスタに関す。 る.

[0002]

【従来の技術】ベース領域よりもエミッタ領域のバンド ギャップを大きくしてエミッタの注入効率を大幅に向上 させることにより、電流利得の増大を図るHBT(ヘテ 口接合トランジスタ》は、低雑音かつS」では達成し得 ない高速動作が可能であり、論理回路、通信システム、 マイクロ波デバイス (A/D変換に用いるアンプ等)等 に用いられる高機能デバイスである。

【0003】従来、HBTは、GaAsとAIGaAs との組み合わせ等により製作されていたが、近年、Si (シリコン) よりもSiGe (シリコンーゲルマニウ ム)のバントギャッフが小さいことから、SIGeを用 いたHBT (以下、SIGe-HBTと称す)が開発・ 研究されている。このSiGe-HBTは、技術整備の 豊富なS↑プロセスと整合し易い、Si−LSIとの痕 哉(1チップ化)が可能。GaAsデバイスに比べて製 造コストが下がる、SIに比べて環境的に扱いが難しい。 AS等を多置に用いないで済む等の利点がある。

【0004】ベース領域にS:Geを用いるSiGe-HBTの製造プロセスとしては、例えば、コレクタ領域 が形成されたシリコンウェーハ上にSiO,を形成し.

このS、〇、に対してベース関口部(ベース窓部)を設 40 け、このベース閉口部にSiGeをエピタキシャル成長 してベース領域を形成した後、ベース領域上にSiのエ ミッタ領域を形成している。

【0005】なお、従来、例えば、特開平9-1810 91号公銀や特開2000-31155号公銀では、5. 1Geの非選択エピタキシャル成長を行う前にバッファ としてSiを10~50mm成膜する技術が関示されて いる。また、例えば、D.L.Harame等(IEEE Transactions on Electron Devices, Vol.42,No., March 1995,p469.)

r Processing)では、ベース関口部を加工する際、ウェ ーハ全面に多結晶S ! 薄膜を堆積し、これをマスクとし てベース部の絶縁膜をエッチングした後、多結晶SI薄 膜を剥離することなく、SiGeの非選択エピタキシャ ル成長を行う技術が提案されている。

[0006]

【発明が解決しようとする課題】しかしながら、上記従 来の技術では、以下のような課題が残されている。非選 択エピタキシャル成長によってSIGeを成膜させるS IGe-HBTでは、ベース関口部に成長するエピタキ 10 シャル屋がベース層(ベース領域)として用いられると 共に、ベース層に連続してSIO2上に成長する多結晶 層がベース引き出し線として用いられる。この場合、S !O,上に直接S!Geを成膜するとS!O,上に成長す る多結晶層が膜荒れを起こし、結果としてベース引き出 し線の抵抗が高くなり、トランジスタ特性を劣化させて しまう場合がある。特に、HBTのベース領域に要求さ れる高いGe組成比ほど膜荒れが生じ易く、また膜厚が 薄いほど、その効果が顕著になり易いという傾向があ

【りり07】上記従来技術では、SiO、上に予めSi のバッファ屋を10~50nm成膜しているため、その 上に成長するSiGeの膜荒れが生じ難いと思われる が、このバッファ屋をベース麿とする場合、バッファ麿 厚10~50mm分だけ実質的にベース層厚が厚くなっ てしまう。すなわち、一般的にトランジスタのベース層 幅は薄いほど高速なトランジスタとなるが、従来技術で はバッファ層厚の分だけ電子のベース走行時間が長くな り、高速動作のためにSiGeペース層を採用したメリ ットが低減し、トランジスタの動作速度がSiGeのみ 30 でベース領域を形成する場合よりも遅くなってしまう不 都合があった。

【0008】また、多結晶Sょ薄膜をマスクとしてベー ス部の絶縁膜をエッチングした後にSiGe成長を行う 上記従来技術では、多結晶Siの成膜とSiGeの成膜 とで異なる製造工程を必要とするが、近年のLSI製造 では微細配線の結果、製造工程中の熱履歴を極力抑える 必要があり、デバイスに対する熱影響の観点からも、こ の従来技術のように熱工程が多いことは好ましいことで はない。

【①①①9】本発明は、前途の課題に鑑みてなされたも ので、絶縁膜上のS · G e 膜が荒れることを防いで膜質 及び膜抵抗を改善することができるSiGe膜の形成方 法とヘテロ接合トランジスタの製造方法、及びヘテロ接 台バイポーラトランジスタを提供することを目的とす る。

[0010]

【課題を解決するための手段】本発明者らは、SiGe の成蹊技術について研究を行ってきた結果、一定範囲の Ge組成比であれば非常に薄いSiGeバッファ層厚で 50

も、映覧れ及び抵抗を大幅に改善することができること を見出した。すなわち、本発明者らは、SIO2上にG e組成化を変えたS・Ge膜を成長し、その成膜状態等 を調べると共に、バッファ層の厚さを変えたSiGe膜 を成長し、その抵抗を測定した。なお、図5、図6及び 図7は、それぞれGe組成比を()。()4、()。13及び 30としたSiGe膜のSEM写真である。また、 図8は、抵抗測定の一例であり、Si〇、上にバッファ 層としてSi膜を成長し、該バッフヶ層の層厚を0~5 nmまで変えた場合のSiGe膜(Ge組成比(). 3 () バッファ層上の層厚は同一)のシート抵抗を示すが ラフである。

【0011】図6~図7からわかるように、Ge組成比 がり、13の場合では、SiGe膜は部分的に不連続化 しており、さらにG e 組成比()。 3() の場合では完全に 不連続化してしまいほとんど成膜されていないのに対 し、()、()4の場合では、全体的に不迫続化しておら ず、良質な成膜状態が得られていることがわかった。ま た。図8からわかるように、バッファ層の歴度がり、5 nmでは抵抗値が約半分に低減され、さらに層厚がln mで抵抗値が一桁下がることがわかった。 【①①12】したがって、本発明は、この知見に基づい た技術であり、前記課題を解決するために以下の構成を

採用した。すなわち、本発明のS:Ge膜の形成方法 は、絶縁膜上にS!Ge膜を形成する方法であって、前 記絶録膜上に第1のS:(,,,,)Ge, 膜(0≤x<0.0 5)を形成するバッファ形成工程と、前記第1の5: (,..., Ge,膜上に第2のSi(,..., Ge,膜(0.05≦ y<1)を形成する主膜形成工程とを備え、前記パップ r形成工程は、前記第1のS:(1.5)Ge,膜を(). 5 n m以上5 n m以下の厚さ範囲で成膜することを特徴とす

【0013】とのSiGe膜の形成方法では、バッファ 形成工程において、第1のS:(1-2)Ge,膜を(). 5 n m以上5 nm以下の厚さ範囲で成膜するので、従来のよ。 ろに10~50mmという厚いバッファ層を不要とし、 非常に薄いバッファ層で第2のSiGe膜の不迫続化 (膜荒れ)を改善し、抵抗も大幅に抵抗させることがで きる。なお、上述したように、第1のS!(1-5)Ge,膜 40 を少なくとも0.5 n mとすると、全く第1のSi (..., Ge, 膜を設けない場合 (第2のS) (..., Ge, 膜 のみ)よりも抵抗値を大幅に低減する効果が得られる。 例えば、第2のS:(..., Ge. 膜がGe組成比y=0. 3であっても、第1のSignayGes膜をO. 5nmと すると抵抗値を約半分に低減でき、より好ましくは1ヵ mとすると抵抗値を一桁下げることができる。なお、第 1のS:(1-1)Ge,膜を5 nm以下としたのは、これ以 上厚くしても低低抗化の効果が小さく、抵抗値があまり 変わらないためである。

【①①14】また、本発明のS:Ge 膜の形成方法は、

Pa以上1.33×10*Pa以下の圧力範囲の減圧C VD注により成膜する場合に好適である。すなわち、減 ECVD法は、高真空で成膜を行うUHV-CVD法よ りもSiGe隣の腹荒れが顕著になるおそれがあるが、 玄奈明の第2のSign,Ge.膜の成膜方法に源圧CV D法を適用することにより、UHV~CVD法等の成長 方法に比べて顕著に膜荒れ抑制の効果を得ることができ る。また、減圧CVD法でも容易に良質なS:Ge膜を 得ることができるため、UHV-CVD法等の高真空技 10 衛を用いる必要が無くなり、生産性等を向上させること ができる。

【0015】本発明のヘテロ接合トランジスタの製造方 法は、SIGeのペース領域を有するヘテロ接合トラン シスタを製造する方法であって、コレクタ領域が形成さ れたS!基板上に絶縁膜を形成する工程と、前記絶縁膜 の一部に前記コレクタ領域に通じる窓部を形成する工程 と、前記窓部上及び前記絶縁膜上にSiGe膜を非選択 的に形成し窓部上に前記ベース領域を形成すると共に前 記絶録膜上にベース電極までの引き出し線に供される鎖 20 域を形成するSiGe膜形成工程と、前記ペース領域上 にSiのエミッタ領域を形成する工程とを償え、前記S ・Ge膜形成工程は、前記S・Ge膜を上記本発明のS ,Ge膜の形成方法により形成することを特徴とする。 【1)1)16】また、本発明のヘテロ接合トランジスタ は、SiGeのベース領域を有するヘテロ接合トランジ スタであって、S、基板に形成されたコレクタ領域と、 前記S」基板上に形成され前記コレクタ領域に通じる窓 部を有した絶縁膜と、前記窓部上に形成されSiGe膜 からなるベース領域と、前記絶縁膜上に形成され前記ペ 30 ース領域に接続されたSiGe膜からなる引き出し線 と 前記ペース領域上に形成されたSiのエミッタ領域 とを備え、少なくとも前記引き出し線は、前記絶縁膜上 に形成された第1のS 1 (1-3) G e s 膜 (0 ≦ x < 0 . 0 5) と、前記第1のS:(1-1) G e, 膜上に形成された第 2のS:(1-1)Ge,膜(0.05≦y<1)とを備え、 前記第1のSican Ges膜は、0.5nm以上5nm 以下の厚さであることを特徴とする。

【0017】とれるのヘテロ接合トランジスタの製造方 法及びヘテロ接合トランジスタでは、第1のSianax Ge,膜(0≤x<0.05)上に第2のSiq.nGe 、膜(O. 0.5 ≦y<1)が形成され、第1のS + (---) Ge.膜がり、5nm以上5nm以下の厚さであるの で、
・
徐禄膜上に

炭荒れが抑制された

SiGe膜が得ら れ、ベース引き出し線を低抵抗化できると共に、ベース 領域のS:Ge膜として、薄い第1のS:(1-3) Gex膜 をバッファとしているので、全体としてベース層幅を薄 くすることができる。

【0.018】また、本発明のヘテロ接合トランジスタの 製造方法は、前記SIGE競形成工程が、前記第2のS 50

! co..., G e、膜のG e 組成比yが0. 08≦y≦0. 3 の範囲内であることが好ましい。また、本発明のヘテロ 接合トランジスタは、前記第2のSinnのGe、膜のG e組成比yが0. ()8≦y≦(). 3の範囲内であること が好ましい。

【0019】とれるのヘテロ接合トランジスタの製造方 法及びヘテロ接合トランジスタでは、第2のSican Ge.膜のGe組成比yが0.08≦y≦0.3の範囲 内であるので、HBTのベース領域として好適なバンド ギャップが得られる。

[0020]

【発明の実施の形態】以下、本発明に係るS:Ge膜の 形成方法とヘテロ接合トランジスタの製造方法。及びヘ テロ接合バイポーラトランジスタの一実施形態を、図1 から図3を参照しながら説明する。

【① ①21】図1は、本発明のヘテロ接合バイポーラト ランジスタシリコン (HBT) の微略的な断面構造を示 すものである。該HBTの構造をその製造プロセスと合 わせて説明すると、図2の(8)に示すように、p型シ リコンウェーハ (S) 基板) 1 表面には、ヒ素打ち込み により n いにドーピングされた坦込みサブコレクタ領域 2が形成され、さらにシリコンウェーハ1表面にn型単 結晶シリコンのn-SIエピタキシャル層3をエピタキ シャル成長により形成する。

【0022】次に、図2の(b)に示すように、n-S 1エピタキシャル層3に埋込みサブコレクタ領域2に達 するようにリン打ち込みにより、n*にドービングされ た第1のコレクタウェル4及び第2のコレクタウェル5 (コレクタ領域)が生成される。そして、図2の(c) に示すように、11-81エピタキシャル層3の表面に絶 縁襞として第1のS · O 2厘(二酸化シリコン厘)6を 熱酸化工程により形成する。この後、第1のSiO.層 6にマスク処理を施して選択的にエッチングを行い、第 1のコレクタウェル4に迫じるベース窓部7を形成す

【0023】次に、図2の(d)に示すように、ベース 窓部7上及び第1のS:〇、暦6上にS:Ge膜8を非 選択的に形成する。このSiGe順8は、バッファ厚と して形成される第1のSi、、、、、Ge、膜(0≦x<0. 05) 9と、該第1のSi,..., Ge, 膜9上に形成され る第2のS₁₍₁₋₁₎Ge、膜(0.05≦y<1)10と の2層構造を有する。

【0024】すなわち、SiGe膜8を形成するには、 まず、ペース窓部7上及び第1のSiO,層6上に第1 のSi(1-x)Ge,膜9を0.5nm以上5nm以下の厚 さ節囲で非選択エピタキシャル成長により成膜する(バ ッファ形成工程)。さらに、第1のSi(1-x)Ge,膜9 上に第2のSi‹、・・、Ge、膜10を非遊択エピタキシャ ル成長により成膜する。

【0025】なお、第1のSianGe,膜9及び第2

のSian, Ge、膜10は、0、133Pa以上1、3 3×101Pa以下の圧力範囲の減圧CVD法により成 膜する。また、第2のSi,,,,Ge、襞10のGe組成 比yは、より好ましくは0.08≦y≦0.3の範囲内 に設定される。また、この源圧CVD法における成膜温

度は、600~800℃であると共に、キャリアガスと してH」を、ソースガスとしてSi目、及びGeH。を用 いている。

【10026】との成膜工程では、ベース窓部7に形成さ れる第1のSi,,,,,Ge,膜9及び第2のSi,,,,,G e、膜10が、単結晶のエピタキシャル層として形成さ れ、第1のSiO,層6上に形成される第1のS:(,,,,)

Ge,膜9及び第2のSign,Ge,膜10が、多結晶 の非エピタキシャル層として形成される。なお、第1の Si,...,Ge,膜9及び第2のSi,...,Ge,膜10 は、水ウ素によりpにドーピングされる。このようにし

て、ベース窓部?にS!Ge膜&によるヘテロ接合のベ ース領域11が形成される。

【0027】次に、第2のSiainGe,膜10上にマ スク処理を施して選択的にエッチングを行い、図3の (a)に示すように、ベース引き出し線12及びベース 領域11に供される部分を残して第1のSignalGex 膜9及び第2のS:(1-1)Gev膜10を除去する。 さら に、図3の(b)に示すように、残った第2のSig... 、Ge、順10上及び露出した第1のSiO、層6上に第 2のS:O,屋13を成膜する。

【0028】次に、第2の5:0,213上にマスク処 理を施して選択的にウェットエッチングを行い、ベース 領域11に通じるエミッタ窓部14を形成する。この 後、エミッタ窓部14及び第2のSiO,層13上にC VD注によりSiをエピタキシャル成長させ、エミッタ 窓部14にSi単結晶層15を成膜してエミッタ領域1 6を形成する。そして、エミッタ窓部14にマスク処理 を縮し、エミッタ領域16に供される部分を残して第2 のSi〇、屋13上のS:をエッチング処理により除去 する。

【0029】次に、第2のS:O,屋13上にマスク処 **運を縮して選択的にウェットエッチングを行い。図3の** (c)に示すように、ベース引き出し線12に通じるべ ース電極窓部17と、エミッタ領域16に通じるエミッ ヶ電極窓部18と、第2のコレクタウェル5に通じるコ レクタ電極窓部19とを形成する。この後、ペース電極 窓部17、エミッタ電極窓部18及びコレクタ電極窓部 19に、金属材料を選択的に埋め込んでそれぞれベース 電極20、エミッタ電極21及びコレクタ電極22を形 成することにより、本実施形態のHBTが製造される。 【0030】本実施形態のSIGE膜の形成方法、HB 丁の製造方法及びHBTでは、第1のS:(1.5) Ge,膜 9 (0≤x<0. 05)上に第2のSianGe、膜1 ()(),()5≦y<1)が形成され、第1のSignery

Ge,膜9が0.5mm以上5mm以下の厚さであるの。 で、第1のSiO」層6上に膜流れが抑制されたSiG e膜8が得られ、ベース引き出し級12を低抵抗化でき ると共に、ベース領域!1のSiGe膜8としては、薄 い第1のS:(,,,)Ge, 膜9をバッファとしているの で、全体としてベース層幅が薄くなり、高速動作を得る ことができる。

【0031】また、第2のS1a...Ge,膜10を0. 133Pa以上1.33×101Pa以下の圧力範囲の 減圧CVD法で成膜するので、UHV-CVD法等の成 長方法に比べて顕著に膜荒れ抑制の効果を得ることがで きると共に、減圧CVD法でも容易に負債なSiGe膜 を得ることができるため、U目V‐CVD法等の高真型 技術を用いる必要が無くなり、生産性等を向上させるこ とができる。なお、第2のS : (1-1) G e .膜10のG e 組成比yが()。()8≦y≦()。3の範囲内であるので、 月BTのペース領域11として好適なバンドギャップが 得られる。

[0032]

【実能例】次に、本発明に係るSiGe膜の形成方法と ヘテロ接合トランジスタの製造方法、及びヘテロ接合バ イポーラトランジスタを、実施例により具体的に説明す

【()()33】上記実施形態と同様に第1のS:〇ュ層上 に第1のS:(,,,)Ge, 膜及び第2のS:(,,,)Ge, 膜 を実際に成膜し、その成膜状態及び抵抗(シート抵抗) を調べた。なお、本発明に係る実施例の第2のSi (1-1) Ge,膜は、Ge組成比yが0.30である。ま た。第1のSi(----)Ge, 膜は、層厚が5nmであって Ge組成比がり、すなわちSI膜を用いている。

【① ① 3.4 】図4は、本発明の実施例によるSiGe膜 のSEM写真を示したものである。との図4と、比較例 としての図りとを比較すると、バッファ層を有しない比 較例の場合は、SIGeが不連続化してほとんど成膜さ れていないのに対し、本実能例の場合では、連続かつ良 質な成膜状態が得られていることがわかる。

【0035】また、S:Ge暦 (Ge組成比0.30) を成膜した際のシート抵抗を調べたところ、図8に示す よろに、バッファ層のないSiGe層の場合は1×10 *章であったのに対し、本発明の実施例では、1×10* 章であり、一桁も低抵抗化していた。とのように、本発 明を適用した場合では、従来と比べて良質な膜が得られ ると共に大幅な低抵抗化が得られた。

【0036】なお、本発明は、次のような実施形態をも 含むものである。上記実施形態では、本発明のSiGe 膜の形成方法をHBTにおけるペース引き出し線形成に 適用したが、絶縁膜上にSiGe膜を成膜した構造を有 する他のデバイス等の製造に適用しても構わない。例え は、MOSトランジスタ等のMOS構造において、ゲー 50 ト酸化膜上にゲート電極としてS・Ge膜を形成する場 台等に本発明を適用してもよい。

【()()37】また、上記実施形態では、第1のSiGe 膜としてGe組成比が一定の層を形成したが、Ge組成 比xが0≤x<0.05の範囲内で変化している第1の SiGe膜でも構わない。例えば、絶縁膜(SiOℷ) 上にGe組成比xを0からり、15まで徐々に増加させ ながら組成が傾斜したSiGe層を形成し、この傾斜組 成のSIGe層上にさらにGe組成比xが0.15のS 1 Ge層を形成する場合も本発明に含まれる。

SiGe煙のうち初期の()≦x<(). ()5のGe組成比 ×を有する層の領域が、O. 5 n m ≤ 5 n m以下の厚さ であれば、この層の領域が本発明における第1のSiG e 購とみなすことができる。そして、この領域以降のG e組成化xが()。() 5から()。15までのSIGe領域 は、本発明における第2のS:Ge膜とみなすことがで きる。このように、本発明における第1の5.6 e 膜上 に成職する第2のSiGe膜は、第1のSiGe膜の成 膜後に成膜工程を中断することなく連続的に成験される SiGe層も含むものである。

[0039]

【発明の効果】本発明によれば、以下の効果を奏する。 本発明のS:Ge膜の形成方法によれば、バッファ形成 工程において、第1のSi、、、、Ge、鰻をO、5nm以 上5 n m以下の厚さ範囲で成膜するので、従来のように 10~50mmという厚いバッファ層を不要とし、非常 に薄い厚さのバッファ唇で第2のSiGe膜の不迫続化 (膜荒れ)を改善し、抵抗も大幅に低抵抗化させること ができ、絶縁膜上のS:Ge膜を種々のデバイスにおけ る低低抗な配線や電極として用いることが可能になる。 【① ① 4 ① 】また、本発明のヘテロ接合トランジスタの 製造方法及びヘテロ接合トランジスタによれば、第1の Sign, Ge, 膜 (0 ≦x < 0.05) 上に第2のSi (1-1) Ge,膜(0.05≦y<1)が形成され、第1の Si,..., Ge, 競が0. 5 n m以上5 n m以下の厚さで あるので、絶縁膜上に膜荒れが抑制されたSIGe膜が 得られ、薄いバッファ層厚にもかかわらず、低低抗ベー ス引き出し減として使用し得る膜を得ることができる。 この結果、SiGeベース領域を厚いバッファ層無しで 作製することができるようになり、非選択エピタキシャ 40 16 エミッタ領域 ル成長によって、より高速な動作が可能なSiGeーH

BTを実現することができる。

【図面の簡単な説明】

【図1】 本発明に係るSiGe膜の形成方法とヘテロ 接合トランジスタの製造方法、及びヘテロ接合バイボー ラトランジスタの一実施形態におけるHBTを示す機略 的な断面図である。

【図2】 本発明に係るSiGe膜の形成方法とヘテロ 接合トランジスタの製造方法、及びヘテロ接合バイボー ラトランジスタの一実施形態において、HBTの第2の 【① ① 38】すなわち、絶縁膜上に形成される傾斜組成 10 SiGe膜形成までの製造プロセスを工程順に示す断面 図である。

> 【図3】 本発明に係るSiGe膜の形成方法とヘテロ 接合トランジスタの製造方法、及びヘテロ接合バイボー ラトランジスタの一実施形態において、HBTの第2の SiGe膜形成後から各電極形成までの製造プロセスを 工程順に示す断面図である。

【図4】 本発明に係るSiGe膜の形成方法とヘテロ 接合トランジスタの製造方法、及びヘテロ接合バイボー ラトランジスタの一実施形態において、HBTの第2の 2G SiGe膜の成膜状態を示すSEM写真である。

【図5】 SiO,上に形成したGe組成比(). 04の SiGe膜の成膜状態を示すSEM写真である。

【図6】 SiO,上に形成したGe組成比(). 13の SiGe膜の成膜状態を示すSEM写真である。

【図7】 SiO,上に形成したGe組成比(). 30の SiGe膜の成膜状態を示すSEM写真である。

【図8】 バッファ屋の層厚を0~5 nmまで変えた場 台のSIGe膜のシート抵抗を示すグラフである。

【符号の説明】

- 30 l p型シリコンウェーハ (S i 基板)
 - 第1のコレクタウェル (コレクタ領域)
 - 第2のコレクタウェル(コレクタ領域)
 - 6 第1のSiO,層(総縁膜)
 - 7 ベース窓部(窓部)
 - SIGe膜
 - 9 第1のSi,,,,,Ge, 膜
 - 10 第2のSignonGe、膜
 - 11 ベース領域
 - 12 ベース引き出し線(引き出し線)

 - 20 ベース電極

特闘2001-319935

特闘2001-319935 (8)

[図6] [図5]

[28] [27] Sheel Resistance [C] Thickness of Bullet Si [am]

フロントページの続き

(51)Int.Cl.' HOIL 29/165 識別記号

Fi

5-72-1" (容考)