Connecting Parts - A study of Continuous Mesh versus Bonded Contact versus Constraint Equations

Sean Harvey

August 2000

CSI Tip of the Week

Different ways of connecting parts

- •There are several ways to connect two finite element parts together in ANSYS
- •For this study, two solid meshed beams are connected together end to end with 3 different types of connectivity. Continuous mesh (shared common nodes), bonded contact, and constraint equations. The advantages, disadvantages, and results are discussed.
- •These examples shown here just illustrate the techniques and a single particular set of results. Your particular results may vary.

Model Description

- 2 Steel Beams connected end to end
- Fixed at wall
- •100 lbs. Evenly distributed over nodes on other end.
- •Meshed with 8 noded brick elements (solid45)
- •Section $Ixx = .847 \text{ in}^4$
- •Section Area = 1.4877 in^2
- •Modulus = 27.9e6 psi
- •Length = 24"

Different ways of connecting parts

Continous mesh - 2 Parts that share common nodes at their boundaries

- Advantages
 - Continuous stress between parts (in general)
 - •No limitations on type of analysis, and large deflections are allowed
- Disadvantages
 - •Mesh must be the same between parts. For mapped meshed assemblies, the node count can be large when mesh sizes can't change from part to part.
 - •Once parts are glued, difficult to move parts w/o rebuilding the model.

Different ways of connecting parts

Bonded Contact - 2 Parts that have surface to surface contact elements between solid element faces

- Advantages
 - Dissimilar meshes allowed between pieces
 - Large deflections allowed
 - Can easily move parts around (chips on a board)
 - Allow many heat transfer options (beta @5.6, Production @5.7)
- Disadvantages
 - Contact must be manually created between parts
 - Stresses between parts is discontinuous
 - Low contact stiffness can adversely affect results.

Different ways of connecting parts

Constraint Equations - 2 Parts with dissimilar meshes that have constrain equations written with the ceintf command. These equations "tie" two dissimilar meshes together.

- Advantages
 - Dissimilar meshes allowed between pieces
 - No additional elements or spring stiffnesses introduced
- Disadvantages
 - Equations need to be generated for each interface
 - Stresses between parts is discontinuous
 - Large deflections are not allowed.
 - Slower solutions and increased memory requirements
 - Not allowed with new domain solver.

Sample Problem

•The following steps will detail creating bonded contact.

Sample Beam Problem with Bonded Contact

Model of 2 beams that do not share common nodes, meshed, and boundary conditions applied.

CSI ANSYS Tip of the Week

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

- •Pick one of the two areas at the interface.
- •In general the target area should be the coarser meshed area.

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

- •Pick second of the two areas at the interface
- •In general the contact area should be the finer meshed area.

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

ANSYS Main Menu> Preprocessor> Create > Create Contact Pair > Contact Wizard

- Contact Elements
 have been created
- Pick Finish

Bonded Contact Solution Options

- •With contact elements, solution is non-linear, but with the bonded option, the element status never changes i.e always in contact.
- •Additionally, if solution is small deflection, the change in stiffness due to element rotations is negligible.
- •In these cases, there is no need to perform multiple sub-steps, nor multiple iterations to solve this problem, but ANSYS will iterate by default.
- •Specify **solcon,off** and **neqit,1** to solve this problem with 1 iteration. This is called linear bonded contact. This can save lots of time!

Sample Beam Problem with Constrain Equations

•The following steps will detail creating constraint equations to joint parts in a model.

ANSYS Utility Menu > Select Entities

ANSYS Utility Menu > Select Entities

ANSYS Main Menu > Preprocessor > Coupling / Ceqn > Adjacent Regions

Accept Defaults and Push OK

CSI ANSYS Tip of the Week

ANSYS Main Menu > Preprocessor > Coupling / Ceqn > Adjacent Regions

ANSYS 5.6.2 AUG 20 2000 14:45:22 E-N PowerGraphics EFACET=1 CE

- •Constraint Equations have been created.
- •Turn symbols on with /pbc,ce,1 or goto Plotctrls > symbols

Compare Tip Displacements

- •From Timoshenko tip deflection = $PL^3/(3EI) = .01949$ "
- •Continuous mesh tip deflection = .01949"
- •Bonded Contact (4 iterations) tip deflection = .01949"
- •Linear Bonded Contact (1 iteration) tip deflection = .01949"
- •Constraint Equation tip deflection = .01947"

CSI ANSYS Tip of the Week

Compare Stress across interface

Using path plot, plot top side beam stress across interface

Continuous Mesh

Constraint Equations

Compare Stress across interface

•Using path plot, plot top side beam stress across interface

Bonded Contact

Compare Natural Frequencies

<u>Mode</u>	Continuous Mesh	Constraint Equations	Bonded Contact
1	84.46	84.46	84.43
2	139.83	139.83	139.79
3	313.15	313.15	313.11
4	518.17	518.17	517.46
5	803.77	803.77	802.78
6	1020.20	1020.20	1019.94