# **AE 771 Combustion Design Project**

Due: Wednesday April 1st, 2020

#### **Henry Hunt**

#### **Project Objectives**

- 1. Designing a combustion chamber to connect to the conical and Rao nozzles.
- 2. Determining the frequencies of the first longitudinal, radial, and tangential modes for the combustor.
- 3. CAD model of the complete combustor-nozzle assemblies
- 4. Table of assumed and calculated values.

#### **Code and Workflow**

https://github.com/Drifterino/AE-771/blob/master/Design%20Project.ipynb

#### **Assumed and Given Values**

| Symbol | Value       | Variable                                   | Units              |
|--------|-------------|--------------------------------------------|--------------------|
| F      | 10000       | Thrust                                     | Lbf                |
| P1     | 1000        | Chamber Pressure                           | Psia               |
| MR     | 3.4         | Mixture Ratio                              | Unitless           |
| M      | 8.90        | Molecular mass                             | lbm/lb-mol         |
| T1     | 4380+459.67 | Combustion Temperature                     | Rankine            |
| K      | 1.26        | Ratio of Specific Heats                    | unitless           |
| Р3     | 1.58        | Ambient Pressure                           | psia               |
| P2     | P3          | Optimum Operation Pressure                 | Psia               |
| VCF    | 0.97        | Velocity correction factor                 | unitless           |
| TCF    | 0.98        | Thrust correction factor                   | unitless           |
| Go     | 32.2        | Acceleration due to gravity                | ft/s^2             |
| Тр     | 152         | Time of propulsion                         | Seconds            |
| R      | 1544        | Specific Gas Constant                      | ft·lbf·slug-1·°R-1 |
| ρο     | 71.1        | Liquid Weight Density of Oxygen (Oxidizer) | lbf/ft^3           |
| ρf     | 4.4         | Liquid Weight Density of Hydrogen (Fuel)   | lbf/ft^3           |
| SG     | 0.26        | Specific Gravity                           | unitless           |

#### **Combustion Chamber Values**

| Symbol | Value | Variable                  | Units   |
|--------|-------|---------------------------|---------|
| CCL    | 10    | Combustion Chamber Length | inches  |
| CDA    | 45    | Convergence Duct Angle    | degrees |
| CDL    | 2.2   | Convergence Duct Length   | inches  |
| CDD    | 5.4   | Combustion Duct Diameter  | inches  |

#### **Calculated Nozzle Values**

| Parameter                | Ideal Value | Actual Value | Unit     |
|--------------------------|-------------|--------------|----------|
| Exit Velocity, V2        | 13890       | 13890        | ft/sec   |
| Throat Area, At          | 5.67        | 5.79         | inch^2   |
| Exit Area, A2            | 234.5       | 239.3        | inch^2   |
| Mach at Exit, M2         | 4.6         | 4.6          | unitless |
| Total Weight Flowrate    | 23.2        | 24           | lbf/sec  |
| Oxidizer Weight Flowrate | 17.93       | 18.55        | lbf/sec  |
| Fuel Weight Flowrate     | 5.27        | 5.45         | lbf/sec  |
| Total Propellant Weight  | 3526.68     | 3648         | lbf      |
| Total Oxidizer Weight    | 2725.16     | 2819         | lbf      |
| Total Fuel Weight        | 801.52      | 829          | lbf      |
| Oxidizer Volume Flowrate | 0.25        | 0.26         | ft^3/sec |
| Fuel Volume Flowrate     | 1.2         | 1.24         | ft^3/sec |
| Total Oxidizer Volume    | 38.33       | 39.6         | ft^3     |
| Total Fuel Volume        | 182.16      | 188.4        | ft^3     |

### **Resonance Frequencies**

| Symbol | Value    | Variable                          | Unit |
|--------|----------|-----------------------------------|------|
| RFlong | 617.125  | 1 <sup>st</sup> Longitudinal Mode | Hz   |
| RFrad  | 1147.976 | 1 <sup>st</sup> Radial Mode       | Hz   |
| RFtan  | 365.412  | 1 <sup>st</sup> Tangential Mode   | Hz   |

## CAD Models | Available on the GitHub as ConeHW8.prt and RaoHW8.prt

