

Deep Learning Model for Eye Disease Detection

#### Problem statement

Health Promotion Board is searching for innovative, cutting-edge technological **solutions to facilitate mass eye screening** of common eye diseases in the general adult population.

They hope to **automate interpretation of retina screening images**, shorten the time taken to flag high-risk persons for further health assessment.

This would **allow early intervention**, lower risk of disease progression and **lower healthcare cost burden**. By minimising number of people in the population with severe eye disease, we minimise the use of more costly therapies.

Possible stakeholders: public health authorities, eye clinics, optical shops

# My proposed solution

Using 4,217 retinal images collected from various sources, I constructed a machine learning algorithm to help classify a RGB retina image to any of 3 classes of common adult eye diseases and a **normal** control group:

- Cataract
- Diabetic retinopathy
- Glaucoma
- normal

What do we want the model to look for in the images?

# Terminology

# Basic eye anatomy



Credit: Springer



Credit: stanfordmedicine25.stanford.edu

### Cataract





Credit: nvisioncenters.com

#### Glaucoma



Credit:

Credit: glaucoma.org





- cup-to-discratio > 0.5abnormal
- physiologic limit of 0.5

Credit: intechopen.com

# Diabetic retinopathy





# **Back to Project**

# Image dataset

- 4,217 images
  - Cataract: 1038
  - Diabetic retinopathy:1098
  - o Glaucoma: 1007
  - Normal: 1074
- Attributes:
  - Variety of sizes
  - o RGB
  - \*.png, \*.jpg, \*.bmp
- Various sources

#### Image hashing

4215 unique images

Train / Validation /

Hold-out:

0.5 / 0.25 / 0.25

#### Run base models

#### Metrics

- Categorical accuracy
- Precision
- Recall
- AUC
- F1 score (custom)

Optimizer = Adam Loss = Categorical

crossentropy

#### Models:

 Sequential Model – CNN

#### Weights

- ImageNet as reference
- Trainable = True

#### Added top layers:

- 1. BatchNormalization
- Dense (regularization)
- 3. Dropout (0.4)
- 4. Dense (4, softmax)

#### Model Loss vs Epoch



#### **Model Accuracy vs Epoch**



# Run models with augmentation layers

#### Added

- RandomFlip('horizontal')
- RandomRotation(0.1)
- RandomContrast(0.1)

#### Weights

- ImageNet as reference
- Trainable = True

#### Same metrics

- Categorical accuracy
- Precision
- Recall
- AUC
- F1 score (custom)

Optimizer = Adamax

Loss = Categorical crossentropy

# **Model Plot**



# **Model Summary**

| .ayer (type)<br>                   | Output Shape         | Param # |
|------------------------------------|----------------------|---------|
|                                    | (None, 180, 180, 3)  |         |
| conv2d (Conv2D)                    | (None, 180, 180, 16) | 448     |
| nax_pooling2d (MaxPooling2<br>))   | (None, 90, 90, 16)   | 0       |
| conv2d_1 (Conv2D)                  | (None, 90, 90, 32)   | 4640    |
| max_pooling2d_1 (MaxPoolin<br>g2D) | (None, 45, 45, 32)   | 0       |
| conv2d_2 (Conv2D)                  | (None, 45, 45, 64)   | 18496   |
| ax_pooling2d_2 (MaxPoolin<br>2D)   | (None, 22, 22, 64)   | 0       |
| latten (Flatten)                   | (None, 30976)        | Ø       |
| ense (Dense)                       | (None, 128)          | 3965056 |
| lense_1 (Dense)                    | (None, 6)            | 774     |

# **Class-level Accuracy**

```
Class-level accuracy:
cataract: 0.9188
diabetic_retinopathy: 0.9724
glaucoma: 0.8887
normal: 0.8702
```

# **Accuracy & Loss**

1.Training and Validation Loss2.Training and Validation Accuracy

| loss     | accuracy | val_loss | val_accuracy |
|----------|----------|----------|--------------|
| 0.043694 | 0.985833 | 0.357252 | 0.8830       |
| 0.082823 | 0.971833 | 0.308056 | 0.9065       |
| 0.050213 | 0.985000 | 0.347222 | 0.8985       |
| 0.051818 | 0.985500 | 0.342703 | 0.8965       |
| 0.031641 | 0.991833 | 0.297583 | 0.9130       |
|          |          |          |              |

# **Predicted Labels**



#### Limitations

- Model is restricted to identifying 1 disease class per image. Model is unable to identify multiple diseases if multiple abnormalities are present in retinal image
- Images with Low quality, Low differentiating features from normal may be wrongly classified
- Diabetic retinopathy abnormalities are not giving the strongest signals to the model, meaning images outside of dataset with diabetic retinopathy may be wrongly classified

#### Conclusions

- CNN base model with augmentation layers is chosen for <u>deployment</u> with 91% accuracy.
- This model is best used with other screening modalities to increase precision and sensitivity of diagnosis e.g.
  - tonometer (for anterior chamber pressure) for glaucoma
  - snellen chart (visual acuity) for overall vision ability
  - auto perimeter visual field analyser (glaucoma)
  - Optical coherence tomography (OCT) (study retina layers, and subretinal deposits)