# **Linear Regression**

#### **Importing libraries**

- pandas
- Inumpy
- mathplotlib.pyplot
- Vinear molde from sklearn

```
In [2]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from sklearn import linear_model
```

### **Loading Dataset using pandas**

```
In [3]: df = pd.read_csv('./LR.csv')
df
```

| Out[3]: |   | Income | Food Expenditure |
|---------|---|--------|------------------|
|         | 0 | 35     | 9                |
|         | 1 | 49     | 15               |
|         | 2 | 21     | 7                |
|         | 3 | 39     | 11               |
|         | 4 | 15     | 5                |
|         | 5 | 28     | 8                |
|         | 6 | 25     | 9                |

### Initial plot of the points

```
In [5]: %matplotlib inline
   plt.xlabel('Income')
   plt.ylabel('Food Expenditure')
   plt.scatter(df.Income, df["Food Expenditure"], color='red', marker='+')
```

Out[5]: <matplotlib.collections.PathCollection at 0x26b4a0ea790>

8/13/24, 4:09 PM linearRegression



#### Linear Regression using sicket learn (linear model)

#### Slope of line (m)

#### Intercept (c)

```
In [17]: m = reg.coef_[0]
    c = reg.intercept_
# Print Linear equation
    print('y = m*x + c')
    print('y =', m, '* x +', c)

y = m*x + c
y = 0.2641711229946525 * x + 1.1422459893048096
```

## Plot the points and Linear Regression

8/13/24, 4:09 PM linearRegression

```
In [21]: %matplotlib inline
  plt.xlabel('Income')
  plt.ylabel('Food Expenditure')
  plt.scatter(df.Income, df["Food Expenditure"], color='red', marker='+')
  plt.plot(df.Income, reg.predict(df[['Income']]), color='blue', label='Best fitted l
```

Out[21]: [<matplotlib.lines.Line2D at 0x26b4c934110>]

