Population genomics in 2021

Andrea Manica

Dept of Zoology

Ancient DNA

But beware of the ethical issues of aDNA from human remains

Destructive sampling: capture vs shotgun sequencing

Environmental DNA

But we need extensive databases for eDNA!!!

Challenges: non-model species

Long and linked reads have dramatically decreased the cost of new reference genomes (~US\$ 3k)

A solution for building the extensive databases needed for eDNA?

Low coverage and genotype likelihoods

Challenges: biases from reference

A Korean reference genome

More of the same?

Many approaches based on metrics that describe SNP frequencies (especially the Site Frequency Spectrum)

Very challenging to model ascertained data

Whole genomes solve the problem of **ascertainment** present in SNP chips!!!

But does more data mean better answers?

ARTICLE

One wave only!

doi:10.1038/nature18299

A genomic history of Aboriginal Australia

ARTICLE

One wave (but it could have been two...)

doi:10.1038/nature18964

The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

list of authors and affiliations appears at the end of the paper

LETTER

Two waves!

doi:10.1038/nature19792

Genomic analyses inform on migration events during the peopling of Eurasia

A list of authors and affiliations appears at the end of the paper

Overview

- Type of data
- Demography
- Selection

