Polynomials

Objectives of the course

- Introduction
- Definition
- Operations
- ► The indeterminate X
- Writing of a polynomial
- ► Constant polynomial, monomial
- Degree of a polynomial
- Rules of computation

Objectives of the course

- ▶ Leading coefficient, monic polynomial
- ► The ring structure
- Euclidean algorithm
- Division (ascending,,,)
- Evaluation and roots
- ▶ Derivative of a polynomial, Properties
- ► Taylor expansions
- ► Irreducible polynomials

Introduction

This course is devoted to polynomials with coefficients in a field K. In practice, it will be \mathbb{R} or \mathbb{C} , sometimes \mathbb{Q} or a finite field.

Most of you knows polynomials as « expression of the form »:

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

But what is X? And what is the multiplication $a_i X^i$?

Introduction

This presentation makes sense when the a_i are real numbers and X is a real variable. However, in the general case, when X is an *indeterminate*, we need to be more precise. We will give below a rigorous definition of this mathematical object, and we will then study its properties.

Definition of a polynomial

Definition

Let K be a field. A polynomial with one indeterminate and coefficients in K is a sequence $(a_0, a_1, ..., a_p, ...)$ of elements of K such that $a_p = 0$ for almost all p.

The term $\langle a_p = 0 \text{ for almost all } p \rangle$ means that:

 $\exists n \in \mathbb{N} \text{ such that } a_i = 0, \forall i > n$

Operations on polynomials

Let

$$P = (a_0, a_1, \dots, a_p, \dots)$$

and

$$Q = (b_0, b_1, \dots, b_p, \dots)$$

be two polynomials with one indeterminate and coefficients in K,

and let $\alpha \in K$. We define the following operations:

Sum of polynomials

Sum

$$P + Q =$$

$$(a_0 + b_0, a_1 + b_1, ..., a_p + b_p, ...)$$

Product of polynomials

Product

$$PQ = (c_0, c_1, \dots, c_p, \dots),$$

where

$$c_k = \sum_{i=0}^k a_i b_{k-i}, k \ge 0.$$

Multiplication by a scalar

Multiplication by a scalar

$$\alpha P = (\alpha a_0, \alpha a_1, \dots, \alpha a_p, \dots).$$

The indeterminate *X*

The indeterminate X is none other than the sequence given by (0,1,0,...,0,...).

With the product defined previously, we obtain

$$X^2 = (0,0,1,0,...,0,...),$$

 $X^3 = (0,0,0,1,0,...,0,...),$ etc.

We set by convention

$$X^0 = (1,0,...,0,...).$$

The product of a scalar $a \in K$ by X^i is given by

$$aX^{i} = (0, ..., 0, a, 0, ..., 0, ...),$$

where a is at the (i + 1)th position.

Writing a polynomial

With the definition of the indeterminate X and the operations given previously, a polynomial can be written in ascending powers of X

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + a_n X^n$$
,

or in descending powers of *X*

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$
,

the a_i being zero for all i > n.

Set of polynomials

Notation

The set of polynomials with coefficients in K and indeterminate X is denoted by K[X].

An element of K[X] will be denoted by P(X), or simply P.

Constant polynomial, zero polynomial, monomial

Definition

The polynomial

$$P = a_0 + a_1 X + \dots + a_n X^n$$

So that $a_i = 0$ for all $i \ge 1$ is called constant polynomial.

If $a_i = 0$ for all i, P is the zero polynomial, denoted by 0.

A monomial is a polynomial of the

form

$$P = a_i X^i.$$

The sum

Definition

Let

$$P = a_0 + a_1 X + \dots + a_n X^n$$

and

$$Q = b_0 + b_1 X + \dots + b_m X^m$$

Two polynomials in K[X]. Set r = max(m, n).

Then the sum of P and Q is given by

$$P + Q = \sum_{i=0}^{r} (a_i + b_i) X^i.$$

The product

Definition

Let

$$P = a_0 + a_1 X + \dots + a_n X^n$$

and

$$Q = b_0 + b_1 X + \dots + b_m X^m$$

two polynomials in K[X].

Then the product of P by Q is given by

$$PQ = \sum_{k=0}^{m+n} c_k X^k \,,$$

where

$$\sum_{i=0}^{k} a_i b_{k-i}, k \ge 0.$$

The product by a scalar

Definition

Let

$$P = a_0 + a_1 X + \dots + a_n X^n$$

a polynomial in K[X] and let $\alpha \in K$. Then the product of α by P is given by

$$\alpha \sum_{i=0}^{n} a_i X^i = \sum_{i=0}^{n} \alpha a_i X^i.$$

Rules of computation

If P, Q and R are polynomials in K[X], then

$$P + Q = Q + P,$$

$$(P+Q)+R=P+(Q+R),$$

$$\triangleright$$
 $PQ = QP$,

$$\triangleright$$
 $(PQ)R = P(QR),$

$$(P+Q)R = PR + QR,$$

$$PQ = 0 \Rightarrow P = 0 \text{ ou } Q = 0.$$

Leading coefficient, monic polynomial

Definition

If $P = a_0 + a_1X + \cdots + a_nX^n$ is of degree n, a_n is called the leading coefficient of P. If, moreover, $a_n=1$, we say that P is a monic polynomial.

Example

The polynomial $3 + 4X - X^2 - 2X^3$ is of degree 3, it has -2 as leading coefficient, so it is not monic.

The polynomial $X^4 - 2X + 3$ is a monic polynomial of degree 4.

Degree of a polynomial

Definition

The degree of the polynomial

$$P = a_0 + a_1 X + \dots + a_n X^n$$

is the greatest integer h such that $a_h \neq 0$.

We denote it by degP.

By convention, we set $deg(0) = -\infty$.

Properties of the degree

The degree verify the properties given in the next proposition.

Proposition

Let P and Q two polynomials in K[X]. Then we have

- 1) $deg(P+Q) \leq max(degP, degQ)$,
- 2) deg(PQ) = degP + degQ.

Ring structure

Proposition

Endowed with the sum and the product defined previously,

K[X] is an integral domain.

The invertible elements of this ring are the nonzero constant polynomials.

Euclidean division

Theorem

Let A and B two polynomials in K[X] with $B \neq 0$. Then there exists a unique ordered pair $(Q, R) \in K[X]^2$ such that

$$A = BQ + R$$
 and $degR < degB$.

Definition

The polynomials Q and R are called respectively quotient and remainder of the Euclidean division of A by B.

Proof of the theorem

Existence

If degA < degB, it suffices to take Q = 0 and R = A.

If $degA \ge degB$, we proceed as follows. Let

$$A = a_m X^m + \dots + a_1 X + a_0$$

and

$$B = b_n X^n + \dots + b_1 X + b_0,$$

with $a_m \neq 0$ and $b_n \neq 0$, and set $D_0 = a_m/b_n X^{m-n}$. We have then

$$deg(A - D_0 B) \le m - 1 < deg A.$$

Proof of the theorem

If $deg(A - D_0B) < degB$, we take $Q = D_0$ and $R = A - D_0B$.

Otherwise, we choose D_1 as previously so that

$$deg(A - D_0B - D_1B) < deg(A - D_0B).$$

After a finite number of iterations, we obtain

$$deg(A - D_0B - \dots - D_k B) < degB.$$

We take then

$$Q = D_0 + \cdots + D_k$$

and

$$R = A - D_0 B - \dots - D_k B.$$

Proof of the theorem

Unicity

Suppose that there exist two orderd pairs (Q_1, R_1) and (Q_2, R_2) in $K[X]^2$ so that $A = BQ_1 + R_1 = BQ_2 + R_2$ with $degR_i < degB$ for $1 \le i \le 2$. We have then

$$R_2 - R_1 = B(Q_1 - Q_2)$$
, and so $deg(R_2 - R_1) = degB + deg(Q_1 - Q_2)$.

On the other hand, we have

$$deg(R_2 - R_1) \le max(degR_1, degR_2) < degB,$$

which gives $degB + deg(Q_1 - Q_2) < degB$.

It follows that $deg(Q_1 - Q_2) = -\infty$, which means that $Q_1 = Q_2$ and, therefore, $R_1 = R_2$.

Take $K = \mathbb{R}$, $A = X^3 + 2X^2 - X + 1$ and $B = X^2 + X + 1$.

$$X^3$$
 + $2X^2$ - X +3 $X^2 + X + 1$ X

$$X^3 + X^2 - X + 3$$

 $X^3 + X^2 + X$

$$\frac{X^2 + X + 1}{X}$$

 X^3 $-(X^3)$

$$+2X^{2}$$

 $+X^2$

$$-X$$

$$-X +3 | X^2 + X + 1$$

$$+X$$
)

$$+X^2$$

$$-2X$$

$$X^3$$
 $-(X^3)$

$$+2X^{2}$$

$$-X$$

$$X^2 + X + 1$$

$$-(X^3)$$

$$+X^2$$

$$+X$$
)

$$X+1$$

$$+X^2$$

$$-2X$$

$$+X^2$$

$$+X$$

$$X^3 + 2X^2$$
 $-(X^3 + X^2 + X^2)$

$$-X$$

 $+X$)

-2X

$$+3 \qquad X^2 + X + 1 \qquad X + 1$$

$$-(+X^2)$$

$$+X$$

+3

$$-3X +2$$

Since the degree of -3X + 2 is less than the degree of $X^2 + X + 1$, then we have Q = X + 1

and

$$R = -3X + 1$$
.

Division in ascending power

Theorem

Let A and B two polynomials in K[X],

with $B(0) \neq 0$. Then, for any non negative integer k,

there exists a unique ordered pair $(Q, R) \in K[X]^2$ such that

$$A = BQ + X^{k+1}R$$
 and $degQ \le k$.

Remark

k is called the order of the division.

 $+X^3$

2
$$-X + X^2$$

2 $+2X -2X^2$

$$1+X-X^2$$

$$-X + X^2$$

$$+X^3$$

$$+2X -2X^2$$

$$-3X +3X^2$$

$$+X^3$$

$$1+X-X^2$$

2

$$1+X-X^2$$

$$2 - 3X$$

Example

2

$$-X + X^2$$

 $+X^3$

 $1 + X - X^2$

2

$$+2X$$
 $-2X^2$

 $+X^3$

$$-3X$$

$$+3X^{2}$$

 $3X^3$

$$-3X -3X^2$$

$$6X^2$$

 $-2X^{3}$

 $6X^2$

 $+6X^3 - 6X^4$

 $-8X^3 + 6X^4$

 $2 - 3X + 6X^2$

Derivative of a polynomial

Definition

The derivative of the polynomial

$$P = a_n X^n + \dots + a_1 X + a_0 \in K[X],$$

is the polynomial $P' \in K[X]$ given by

$$P' = na_n X^{n-1} + \dots + 2a_2 X + a_1.$$

The derivative of order k of the polynomial P, denoted by $P^{(k)}$, where k is a nonnegative integer, is given by the recurrence relation

$$P^{(0)} = P \text{ et } P^{(k+1)} = (P^{(k)})' \text{ pour } k \ge 0.$$

Remark

This definition of the derivative is *formal*, ie, we do not use any notion of limit.

Properties of the derivatives

The rules of derivation are given by the next theorem.

Theorem

Let P and Q be two polynomials in K[X] and let $\alpha \in K$. Then we have

- 1) (P+Q)'=P'+Q',
- $(\alpha P)' = \alpha P',$
- (PQ)' = P'Q + PQ',
- 4) $(P^n)' = nP'P^{n-1}$, where n is a positive integer,
- 5) $(PQ)^{(k)} = \sum_{i=0}^{k} C_k^i P^{(i)} Q^{(k-i)}$.

Remark

The formula given in 5) is known as Leibniz formula.

Evaluation, root of a polynomial

Definition

Let

$$P = a_0 + a_1 X + \dots + a_n X^n \in K[X].$$

If we replace the indeterminate X by $\alpha \in K$, we get an element of K denoted by

$$P(\alpha) = a_0 + a_1 \alpha + \dots + a_n \alpha^n,$$

called evaluation of P at α .

If $P(\alpha) = 0$, we say that α is a root of P.

Remark

Some authors use the term « zéro of P » instead of « root of P ».

Example

Example

The polynomial

$$P = X^2 + 1 \in \mathbb{R}[X] \subset \mathbb{C}[X]$$

has i et -i as roots in \mathbb{C} , but it has no root in \mathbb{R} .

Taylor expansion

The following formula allows to develop any polynomial in K[X] in ascending powers of $X - \alpha$, where α is an arbitrary element of K.

Theorem (Taylor expansion)

Let $P \in K[X]$ a polynomial of degree n and let $\alpha \in K$. Then we have

$$P(X) = P(\alpha) + \frac{P'(\alpha)}{1!} (X - \alpha) + \dots + \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n.$$

Example

Example

Consider in $\mathbb{R}[X]$ the polynomial

$$P = 2X^3 + 2X - 3$$

and let $\alpha = 1$.

We have

$$P' = 6X^2 + 2$$
, $P'' = 12X$, and $P^{(3)} = 12$,

which gives

$$P(X) = 1 + \frac{8}{1!}(X - 1) + \frac{12}{2!}(X - 1)^2 + \frac{12}{3!}(X - 1)^3$$
$$= 1 + 8(X - 1) + 6(X - 1)^2 + 2(X - 1)^3.$$

Multiple roots

Definition

Let $P \in K[X]$ and let α be a root of P. The multiplicity of the root α is the integer $k \ge 1$ verifying

$$P(X) = (X - \alpha)^k Q(X), Q \in K[X] \text{ and } Q(\alpha) \neq 0.$$

When k = 1 (resp. k = 2, k = 3), we say that α is a simple (resp. double, triple) root.

Example

Let $P(X) = X^3 - 3X - 2 \in \mathbb{R}[X]$. We have

$$P(X) = (X+1)^2(X-2),$$

Then -1 is a double root and 2 is a simple root.

Multiple roots and derivative

In the next proposition and the following theorem, we assume that the field K contains the field of rational numbers \mathbb{Q} .

Proposition

If α is a root of $P \in K[X]$ of multiplicity k > 1, then α is a root of P' of multiplicity k - 1.

Preuve

As α is a root of P of ordre k, then we can write

$$P(X) = (X - \alpha)^k Q(X), Q \in K[X] \text{ with } Q(\alpha) \neq 0.$$

Multiple roots and derivatives

Therefore

$$P'(X) = k(X - \alpha)^{k-1}Q(X) + (X - \alpha)^k Q'(X)$$

= $(X - \alpha)^{k-1} (kQ(X) - (X - \alpha)Q'(X)).$

Setting $Q_1(X) = kQ(X) - (X - \alpha)^k Q'(X)$, we obtain

$$P'(X) = (X - \alpha)^{k-1}Q_1(X), Q_1 \in K[X] \text{ and}$$
$$Q_1(\alpha) = kQ(\alpha) \neq 0,$$

which means that α is a root of P' of multiplicity k-1.

Multiplicity of a root

Theorem

Let $P \in K[X]$ a polynomial of degree $n \ge 1$ and let k be an integer such that $1 \le k \le n$. Then a root α of P has multiplicity k if and only if

$$P^{(i)}(\alpha) = 0 \text{ for } 0 \le i \le k - 1 \text{ and } P^{(k)}(\alpha) \ne 0$$

Example

Let $P(X) = X^3 - 3X - 2 \in \mathbb{R}[X]$. We have $P' = 3X^2 - 3$ and P'' = 6X, then P(-1) = P'(-1) = 0 and $P''(-1) \neq 0$.

Therefore, -1 is a double root of P.

Proof of the theorem

Proof

If α is a root of P of multiplicity k, then, by the previous proposition, α is a root of P' of multiplicity k-1. By iteration, we obtain $P^{(i)}(\alpha)=0$ for $0 \le i \le k-1$ and $P^{(k)}(\alpha) \ne 0$, since α is a simple root of $P^{(k-1)}$.

Conversely, if $P^{(i)}(\alpha) = 0$ for $0 \le i \le k-1$ and $P^{(k)}(\alpha) \ne 0$, the Taylor expansion gives

$$P(X) = \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^k + \dots + \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n$$

= $(X - \alpha)^k \left(\frac{P^{(k)}(\alpha)}{k!} + \dots + \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^{n-k} \right).$

Then $P(X) = (X - \alpha)^k Q(X)$, with $Q(\alpha) = \frac{P^{(k)}(\alpha)}{k!} \neq 0$. This proves that α is a root of P of multiplicity k.

Roots and divisibility in K[X]

Definition

Let $A, B \in K[X]$.

We say that B divides A in K[X] if there exists Q in K[X] such that A = BQ. We will say That A is a multiple of B in K[X].

Theorem (D'Alembert-Gauss)

Any polynomial $P \in \mathbb{C}[X]$ has a root in \mathbb{C} .

Roots and divisibility in K[X]

Theorem

Let a_1 , a_2 , \cdots , a_n be n distinct elements of K and $P \in K[X]$.

Then P is divisible by $(X - a_1)$ $(X - a_2)$ \cdots $(X - a_n)$ if, and only if, $P(a_1) = P(a_2) = \cdots = P(a_n) = 0$.

Theorem

Let $P = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{Z}[X]$. Let $\frac{p}{q} \in \mathbb{Q}$ with

gcd(a, b) = 1, such that $P\left(\frac{p}{q}\right) = 0$. Then p divides a_0 and q divides a_n .

Irreducible polynomial

Definition

Two polynomials $A, B \in K[X]$ are called associated if $A = \lambda B$, $\lambda \in K^*$.

Definition

A polynomial $P \in K[X]$ is called irreducible in K[X] if $degP \ge 1$ and if the only divisors of P are the polynomials associated to 1 or to P.

Irreducible polynomial

Theorem

- The irreducible polynomials of $\mathbb{C}[X]$ are The polynomials of degree 1.
- The irreducible polynomials of $\mathbb{R}[X]$ are the polynomials of degree 1 and the polynomials of degree 2 with discriminant $\Delta < 0$.