Exam 2 April 24, 2021

Name:	IIID.
Name:	UID:

- The exam consists of FOUR problems.
- Unsupported answers will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.
- Upload your answers to Gradescope as a pdf only. Make sure to allocate your work to the appropriate question.
- Missing or blank pages will result in an automatic zero for the question.
- Time: 90 minutes.

Problem	Score	Points
1		8
2		12
3		8
4		24
Total		52

Problem 1. (8 points) For what value(s) of k is

$$S = \{(1,1,2), (1,0,-1), (1,-1,k)\}$$

a basis for \mathbb{R}^3 ? Justify your answer.

Problem 2. Let A and its reduced row echelon form B be given by

$$A = \begin{bmatrix} 1 & 0 & a_{13} & 1 & 3 \\ -1 & 1 & a_{23} & -1 & -3 \\ 0 & 2 & a_{33} & 0 & 1 \\ 1 & 1 & a_{43} & 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

i) (2 points) Find the rank and the nullity of A.

ii) (4 points) Find a basis for Nul(A), the null space of A.

iii) (3 points) Find the $3 \, \mathrm{rd}$ column of A.

iv) (3 points) Is Col(A) = Col(B)? Why?

Problem 3. (8 points) Let C[-1,1] be the space of all continuous functions on the closed interval [-1,1], and consider the inner product function

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Apply Gram-Schmidt process to transform the set

$$\{1, 1 + 3x, \cos(\pi x)\}$$

into an orthonormal set.

Problem 4. (4 points each) True or False (Circle one and state your reason):

i) The set $W = \{(x, y, z) : x + y - z \le 1\}$ is a subspace of \mathbb{R}^3 .

Reason: True False

ii) If two unit vectors $\underline{\bf u}$ and $\underline{\bf v}$ are orthogonal, then so are $\underline{\bf u}$ + $\underline{\bf v}$ and $\underline{\bf u}$ - $\underline{\bf v}$.

Reason:

True False

iii) The set $\{1, 3x, 1 - x^2, 1 - 7x\}$ is a basis for \mathcal{P}_2 (the space of all polynomials of degree ≤ 2).

Reason:

True False

iv) There exists a 3×6 matrix A such that Nullity(A) = 2.

Reason:

True False

v) For $\underline{\mathbf{u}} = (u_1, u_2, u_3), \underline{\mathbf{v}} = (v_1, v_2, v_3) \in \mathbb{R}^3$, the product

$$\langle \mathbf{\underline{u}}, \mathbf{\underline{v}} \rangle = u_1 v_1 + u_3 v_3$$

defines an inner product on \mathbb{R}^3 .

Reason:

True False

vi) The set $\{1, 1 - \sin^2(x), 1 - \cos^2(x)\}$ is linearly independent in $\mathcal{C}[-1, 1]$ (the space of all continuous functions on the closed interval [-1, 1]).

Reason:

True False

Draft: