Undirected Graphs

CS112 Recitation

Ashwin H

Original slides by: Hoai-An Nguyen hnn14@scarletmail.rutgers.edu

Exam 3 coming up...

- Question 1: Old material
 - Review old exams
- Question 2: Priority Queues
 - Understand different implementations of priority queues
 - Insertion / deletion into min/max heap
 - Swim/sink operations
 - Visual representation (tree), actual implementation (array)
- Question 3: Hash Tables
 - Representation of hash table (array)
 - How to insert key, value pairs into hash table
 - Hash functions!
 - Collision resolution
 - Chaining
 - Linear Probing
- Review code from lectures
- Big-O!

Let's Review

- A graph is a set of vertices connected pairwise by edges
- You can store an undirected graph in an adjacency matrix or an adjacency list
 - AM: a 2D V-by-V boolean array
 - AL: a vertex-indexed array of lists
- The degree of a vertex is the number of edges incident to it
 - For instance, node 9 has a degree of 3

Two drawings of the same graph

Adjacency Matrix

Adjacency List

Warm-Up

- 1. What is the maximum number of edges in a undirected graph with V vertices and no parallel edges?
 - a. Hint: (n choose k) = n! / k!(n-k)!

2. What is the minimum number of edges in a graph with V vertices, none of which is isolated (have degree 0)?

Warm-Up

- 1. What is the maximum number of edges in a undirected graph with V vertices and no parallel edges?
 - a. The maximum number of edges in a graph with V vertices and no parallel edges is V * (V 1) / 2. Since we do not have self-loops or parallel edges, each vertex can connect to V 1 other vertices. In an undirected graph vertex v connected to vertex w is the same as vertex w connected to vertex v, so we divide the result by 2.
 - b. Example: V = 4, E = 4 * (4 1) / 2 = 6
- 2. What is the minimum number of edges in a graph with V vertices, none of which is isolated (have degree 0)?
 - a. The minimum number of edges in a graph with V vertices, none of which are isolated (have degree 0) is V 1.
 - b. Example: V = 3, E = 3-1 = 2

Question 1 - hasEdge()

Add a method has Edge() to Graph (page 526) which takes two integer arguments v and w and returns true if the graph has an edge v-w, false otherwise.

Example: hasEdge(0, 1) outputs True hasEdge(0, 4) outputs False

HINT: The method adjacency(vertex_num) returns a list of vertices connected to the vertex "vertex_num"

Question 1 - hasEdge() Solution

```
public boolean hasEdge(int vertex1, int vertex2) {
  for(int neighbor: adjacent(vertex1)) {
     if (neighbor == vertex2) {
       return true;
  return false;
```

Depth-first search demo

To visit a vertex v:

- Mark vertex v.
- lacktriangle Recursively visit all unmarked vertices adjacent to v.

vertices reachable from 0

```
marked[] edgeTo[]
10
11
12
```

```
private void dfs(Graph G, int v)
 marked[v] = true;
 for (int w : G.adj(v))
   if (!marked[w])
     edgeTo[w] = v;
     dfs(G, w);
```

Question 2 - DFS

Show a detailed trace of the call dfs(0) for the following graph.

Also, draw the tree represented by the edgeTo[].

The first line corresponds to the number of vertices, the second line corresponds to the number of edges. The remaining lines represent edges between two vertices.

Adjacency list representation on next slide.

Question 2 - DFS Pt 2

Question 2: DFS

Adjacency List:		After dfs(0)	marked[]
0	0526	Arter dis(o)	
1	14811		1
2	25603		2
3	3 10 6 2		3
4	418		4
5	50102		5
6	6230		6
7	7811		7
8	811174		8
9	9		9
10	1053		10
11	11871		11

Adjacency List:		After dfs(0)	marked[]	edgeTo[]
0	0526	Arter dis(0)	niai keu[]	O Cuge To[]
1	14811	-look at marked[0], it is	1	1
2	25603	True so move on	2	2
3	3 10 6 2	ii de 30 move on	3	3
4	418	-look at marked[5], it is	4	4
5	50102	false, so	5 T	5 0
6	6230		6	6
7	7811	edgeTo[5] = 0	7	7
8	811174	Call dfs(5)	8	8
9	9		9 10	9 10
10	10 5 3		10	10
11	11871		11	TT

Adjacency List:		After calling dfs(5)	marked[]	edgeTo[]	
0	0526	Arter calling dis(3)	narkearj O T	0	
1	14811	-look at marked[5], it is	1	1	
2	25603	True so move on	2	2	
3	31062	nuc 30 move on	3	3	
4	418	-look at marked[0], it is	4	4	
5	50102	True so move on	5 T	5 0	
6	6230		6	6	
7	7811	-look at marked[10], it is	7	7	
8	811174	False so	8	8	
9	9		9 40 T	9	
10	1053	edgeTo[10]=5	10 T	10 5	
11	11871	Call dfs(10)	11	TT	

Adjacency List:		After calling dfs(10),	marked[]		edgeTo[]	
0	0526	Arter canning dis(10),	0 7	ca _l j T	0	c lo[]
1	14811	-look at marked[10], it is	1	•	1	
2	25603	True so move on	2		2	
3	3 10 6 2	ride 30 move on	3 1	Т	3	10
4	418	-look at marked[5], it is	4		4	
5	50102	True so move on	5 7	Τ	5	0
6	6230		6		6	
7	7811	-look at marked[3], it is	7		7	
8	811174	False so	8		8	
9	9		9	_	9	_
10	1053	edgeTo[3]=10	10 7		10	5
11	11871	Call dfs(3)	11		11	

Adjacency List:		After calling dfs(3)	marked[]		edgeTo[]	
0	0526	Arter canning dis(o)	0	T	0	,c ro[]
1	14811	-look at marked[3], it is	1	•	1	
2	25603	True so move on	2		2	
3	3 10 6 2	True 30 move on	3	Т	3	10
4	418	-look at marked[10], it is	4		4	
5	50102	True so move on	5	Т	5	0
6	6230		6	Т	6	3
7	7811	-look at marked[6], it is	7		7	
8	811174	False so	8		8	
9	9		9	_	9	_
10	1053	edgeTo[6]=3	10		10	5
11	11871	Call dfs(6)	11		11	

Adjacency List:		۸ ۲ ۲ - ۱۱: ۱۰ - ۱۲ - ۱۲ - ۱۲ - ۱۲ - ۱۲ - ۱۲ - ۱۲ -	م دا بر مرس	م االم	lasTa[]
0	0526	After calling dfs(6)	marke	all ec	lgeTo[]
1	14811	-look at marked[6], it is	1	1	
2	25603	True so move on	2 T	. 2	6
3	3 10 6 2		3 T	3	10
4	418	-look at marked[2], it is	4	4	
5	50102	False so	5 T	5	0
6	6230		6 T	6	3
7	7811	edgeTo[2]=6	/	/	
8	811174	Call dfs(2)	8 9	8	
9	9		9 10 T	·) 5
10	1053		10 1	11	
11	11871		4 4		

Adjacency List:		After calling dfs(2)	mai	rked[]	eda	eTo[]
0	0526	Arter canning ara(2)	0	T	0	CIO[]
1	14811	-marked[2] = True so move on	1	·	1	
2	25603	marked[2] - True 30 move on	2	Т	2	6
3	3 10 6 2	-marked[5] = True so move on	3	Т	3	10
4	418	markea[5] True 30 move on	4		4	
5	50102	-marked[6] = True so move on	5	Т	5	0
6	6230	markea[o] True so move on	6	Т	6	3
7	7811	-marked[0] = True so move on	7		7	
8	811174	markea[o] True so move on	8		8	
9	9	-marked[3] = True so move on	9	_	9	_
10	1053	markea[o] Hae so move on	10	Т	10	5
11	11871		11		11	

Adjace	ncy List:	(We are back in the call of	mai	rked[]	ada	eTo[]
0	0526	dfs(6))	0	T	O Cug	CIO[]
1	14811	u13(0))	1	•	1	
2	25603	-marked[3] = True so move on	2	Т	2	6
3	3 10 6 2	-marked[0] = True so move on	3	Т	3	10
4	418	markea[e] naesemeteen	4		4	
5	50102	Backtrace to call of dfs(3)	5	Т	5	0
6	6230	2 d. c. (c.)	6	Т	6	3
7	7811	-marked[2] = True so move on	7		7	
8	811174		8		8	
9	9	Backtrace to call of dfs(5)	40	_	9	_
10	1053		10 11		10	5
11	11871	-marked[2] = True, terminate	11		11	

Adjacen	cy List:	edg	eTo[]	edgeTo[] tree
0	0526	0		oago oli aoo
1	14811	1		
2	25603	2	6	0
3	3 10 6 2	3	10	U
4	418	4	0	5
5	50102	5	0	(a) 201
6	6230	6	3	10
7	7811	8		3
8	811174	9		3
9	9	10	5	6
10	1053	11		0
11	11871			2

Good Work!

Go to https://dynrec.cs.rutgers.edu/live/

Enter the Quiz Code:

Recommendations:

1. Try tracing problem 1 but with BFS instead (the solution will be on Dynrec)

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

V	edgeTo[]	distTo[]
0	-	0
1	0	1
2	0	1
3	2	2
4	2	2
5	0	1

```
private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 distTo[s] = 0;
   int v = q.dequeue();
   for (int w : G.adj(v)) {
     if (!marked[w]) {
       q.enqueue(w);
       marked[w] = true;
       edgeTo[w] = v;
       distTo[w] = distTo[v] + 1;
```

Optional - BFS

Show a detailed trace of the call dfs(0) for the following graph.

Also, draw the tree represented by the edgeTo[].

The first line corresponds to the number of vertices, the second line corresponds to the number of edges. The remaining lines represent edges between two vertices.

Adjacency list representation on next slide.

Question 2: BFS

Adjace	ency List:	edgeTo[]	distance[]
0	0526	0 _	0 _
1	14811	1 _	1 _
2	25603	2 _	2 _
3	3 10 6 2	3 _	3 _
4	418	4 _	4 _
5	50102	5 _	5 _
6	6230	6 _	6 _
7	7811	7 _	7 _
8	811174	8 _	8 _
9	9	9 _	9 _
10	1053	10 _	10 _
11	11871	11 _	11 _

Solution

Tree represented by edgeTo[] after call to bfs(G, 0):

0

5 2 6

10 3