Scalable Post-Training Optimization for Large Language Models

Lei Li

Carnegie Mellon University June 19, 2025

LLM training pipeline

Stage 1: Pretraining (Learn rich knowledge from raw texts)

Stage 2: SFT (Align LLM with instruction format)

Question: Why is the sky blue?

Answer: The sky appears blue because of

Stage 3: Post-training (RLHF, knowledge distillation)

Question: Why is the sky blue?

y1: The sky appears blue because ...

y2: The sky is not always blue ...

Outline

- Aligning with online preference optimization (BPO)
- Iterative refinement with fine-grained feedback (LLMRefine)
- Learning Optimized Sample Compute Allocation (OSCA)

Learning from Reward / Quality-Estimation Metric(QE)

PPO training

RL objective:

Maximize reward

Training stability + Avoid reward hacking

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi_{\theta}(y \mid x) \mid\mid \pi_{\mathrm{ref}}(y \mid x) \right]$$

$$\longrightarrow \text{Constrained optimization}$$

Issues with PPO:

- 1. Many hyperparameters to tune
- 2. Involve four different models: ref model, old model, optimized model, reward model

Direct Preference Optimization

$$\mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\mathrm{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\mathrm{ref}}(y_l \mid x)} \right) \right]$$

Illustration of DPO

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Fixed reference model

Limitation of offline DPO (and online DPO)

Synthetic data distribution shifts

Data distribution shift during training

Iter 1

 π_{ref}

Prompt: Translate this Assamese sentence into English...

I don't know this language

In the past, in the past, in the past

Iter 2

Prompt: Translate this Assamese sentence into English...

It was to last for the next 40 years ...

This has been going on for 40 years ...

7

Introducing BPO (B=Behavior)

- Data collection needs to be online
- The reference model needs to be updated and has to be close to the behavior LLM

BPO

Wenda Xu, Jiachen Li, William Yang Wang, Lei Li. BPO: Staying Close to the Behavior LLM Creates Better Online LLM Alignment. EMNLP 2024.

BPO

use new behavior model to generate samples

Wenda Xu, Jiachen Li, William Yang Wang, Lei Li. BPO: Staying Close to the Behavior LLM Creates Better Online LLM Alignment. EMNLP 2024.

Practical implementation of BPO (Lora ensemble)

We use model averaged LoRA weights to perform sampling

Practical implementation of BPO (Lora ensemble)

Each lora weight is updated independently

Evaluation on TLDR dataset

- Tasks:
 - o TLDR, helpfulness and harmfulness
- Baselines:
 - o DPO, SLIC, IPO in offline, online and on-policy settings
- Base model: Gemma-2B
- Preference simulator (Oracle): RM-deberta (In practice, it should be human)

BPO outperforms online and offline alignment methods

BPO outperforms baselines across three tasks

Wenda Xu, Jiachen Li, William Yang Wang, Lei Li, BPO: Staving Close to the Behavior LLM Creates Better Online LLM Alignment, EMNLP 2024.

BPO Highlight

- Reference model should stay close to the behavior LLM and create better online LLM alignment
- Practical applicability: We empirically show our online BPO with >=2 data collection steps can significantly improve offline baselines
- The effectiveness of BPO stems from proximity to the behavior model, rather than improvements in the reference model's quality.

Outline

- Aligning with online preference optimization (BPO)
- Iterative refinement with fine-grained feedback (LLMRefine)
 - Learning Optimized Sample Compute Allocation (OSCA)

Input: Translate "新冠疫情危机爆发" into English.

LLM's output:

the outbreak of the new crown crisis

What feedback can we give to LLM?

Input: Translate "新冠疫情危机爆发" into English.

LLM's output:

the outbreak of the new crown crisis

Ask LLM to improve?

Source:新冠疫情危机爆发

Translation: the outbreak of the new crown crisis

Please Improve current translation.

Input: Translate "新冠疫情危机爆发" into English.

LLM's output:

the outbreak of the new crown crisis

Use binary feedback to guide LLM?

Source:新冠疫情危机爆发

Translation: the outbreak of the new crown crisis

Your translation contains errors. Please improve current

translation.

Input: Translate "新冠疫情危机爆发" into English.

LLM's output:

the outbreak of the new crown crisis

Use scalar feedback to guide LLM?

Source:新冠疫情危机爆发

Translation: the outbreak of the new crown crisis

Your translation has score of 70/100. Please improve current

translation.

Input: Translate "新冠疫情危机爆发" into English.

LLM's output:

the outbreak of the new crown crisis

Use fine-grained feedback to guide LLM!

Source:新冠疫情危机爆发

Translation: the outbreak of the new crown crisis

"new crown" is a major terminology error. Please improve

current translation.

InstructScore's Fine-grained Explanation

Input: Translate "新冠疫情危机爆发" into English.

Candidate: The outbreak of the new crown crisis

Error location: new crown

Error type: Terminology is used inconsistently

Major/Minor: Major

Explanation: The term "new crown" is not the correct term for "Covid-19".

InstructScore-QE (source-based) to provide fine-grained feedback

Introducing LLMRefine

Source:新冠疫情危机爆发 **Translation:** the outbreak of the new crown crisis new crown" is a major terminology error. Please improve current translation. Reject LLM's proposal: the outbreak of the new crisis resample from LLM Accept Repeat above steps for n iterations LLM's final output:

the outbreak of the Covid-19 crisis

Source Translation: 新冠疫情危机爆发

LLMRefine Algorithm

Repeat n times

Obtain feedback F_i from error pinpoint

Sample revision c_i based on feedback f_i and last generation y_{i-1}

$$P_{accept} = \min(1, e^{\frac{s(F(c_i)) - s(F(y_i))}{n * T_i}})$$

Accept new revision

Keep the last step candidate

$$T_{i+1} = max(T_i - c * T_i, 0)$$

Source Translation: 新冠疫情危机爆发

the outbreak of the the Covid-19 crisis the outbreak of the new crisis the Covid-19 crisis the outbreak of the new crown crisis

"the new crisis" is a major mistranslation error. The correct translation should be: "the Covid-19 crisis"

LLMRefine results in better translations than

coarse feedback

Simulated Annealing in LLMRefine

Translation Summarization Long form QA

Key insights of LLMRefine

- Binary feedback is not enough
- Fine-grained feedback is better
- Algorithmic iterative refinement is superb

Outline

- Aligning with online preference optimization (BPO)
- Iterative refinement with fine-grained feedback (LLMRefine)
- Learning Optimized Sample Compute Allocation (OSCA)

Inference-Time Scaling Law

Inference-Time Scaling Law

same for Agentic Tasks like SWE-Bench.

More agents, more runs → Better solve rate.

Inference-Time Scaling Law

 Solve rates scale log-linearly with longer CoT.

Sample Compute Allocation Problem for LLM Inference

- Allocate the total amount of compute (# samples, # tokens, FLOPs) C.
- Sampling configurations (i.e. inference hyperparameters):
 - o Model to use: gpt-4o, gemini, deepseek, qwen, ...
 - o Temperature:
 - Output language: python / C++ / Chinese / English
- Pure Strategy
 - o one config uses all compute
- Mixed Strategy

TEMPERATURE
0.0
1.0
1.3
1.3
1.5

Sample Compute Allocation

Mixed Strategy could be better

- Two problems p1 and p2, two inference settings d1 and d2.
- P(d1 solving p1) = 10%, P(d2 solving p1) = 1%.
- P(d1 solving p2) = 1%, P(d2 solving p2) = 10%.
- Expected number of problems solved given 10 samples:
 - o Pure strategy (select either d1 or d2): 37.3%
 - Mixed strategy (5 samples for d1 & d2): 43.8%
- Better to use mixed strategy!

Optimizing Sample Compute Allocation

The task:

- Given a set of sampling configurations.
- Given a training problem set
 i.i.d. with the test.
- o Given a compute budget C.
- \circ Find the optimal allocation π that maximizes pass@C.

 $\max_{\pi} \mathbb{E}[\mathsf{pass@}C]$

$$= \frac{1}{|\mathcal{D}|} \sum_{j=1}^{|\mathcal{D}|} \left(1 - \prod_{i=1}^{|\mathcal{H}|} (1 - p_{ij})^{\pi_i} \right),$$

s.t.
$$0 \le \pi_i \le C$$
,

$$\sum_{i=1}^{|\mathcal{H}|} \pi_i = C, \pi_i \in \mathbb{N}.$$

OSCA: Learning to Scale Inference Optimally

- If we ignore the integral constraints, this is a convex problem.
- We run hill climbing algorithm to find the solution.

 $\max_{\pi} \mathbb{E}[\operatorname{pass}@C]$ $= \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \left(1 - \prod_{i=1}^{|\mathcal{H}|} (1 - p_{ij})^{\pi_i} \right),$

s.t.
$$0 \le \pi_i \le C$$
,
$$\sum_{i=1}^{|\mathcal{H}|} \pi_i = C, \pi_i \in \mathbb{N}.$$

OSCA learned strategies excel!

Qwen2, LLaMA3, Deepseek-70B

GPT4o, Gemini, Deepseek

OSCA Learns to Scale Inference Optimally

Figure 5: OSCA's pass rates on LiveBench when it is banned from allocating compute to multiple temperatures or multiple models.

Highlight of OSCA

- LLM's problem solve-rate grows log-linearly with # of samples.
- Allocating compute to different inference settings could lead to huge improvement
- Estimating the passing rate for each problem and each configuration
- Hill-climbing to find the optimal allocation

Summary

- Aligning with online preference optimization (BPO)
 - o online and on-policy alignment is better
- Iterative refinement with fine-grained feedback (LLMRefine)
 - o simulated annealing with fine-grained feedback improves LLM
- Learning Optimized Sample Compute Allocation (OSCA)
 - o sample compute configuration as hyperparameters to optimize

Reference

- Wenda Xu, Jiachen Li, William Yang Wang, Lei Li. BPO: Staying Close to the Behavior LLM Creates Better Online LLM Alignment. EMNLP 2024.
- Xu, Deutsch, Finkelstein, Juraska, Zhang, Liu, Wang, Li, Freitag. LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback. NAACL 2024.
- Kexun Zhang, Shang Zhou, Danqing Wang, William Yang Wang, Lei Li. Scaling LLM inference with optimized sample compute allocation. NAACL 2025.