ACKNOWLEDGEMENT

We take the opportunity to acknowledgement with thanks and deep sense of gratitude towards our Principal **Dr. P.V.S. SRINIVAS**, who extended his whole hearted cooperationand encouragement in the successful completion of our project.

We express our sincere thanks to **Dr. K. NEELIMA**, HoD, Department of Electrical and Electronics Engineering who has given her invaluable suggestions and encouraging support and guidance in carrying out the project.

We were very much thankful to our guide **Dr. B. NAGI REDDY**, Associate Professor, who extended invaluable suggestions, encouragement and guidance in carrying out the project.

We hereby, one and all who extended helping hand in the accomplishment of our project.

by
G. VINAY KUMAR (20P65A0222)
B. JHANSI (19P61A0218)
B. VINAY KUMAR (19P61A0217)
B. SANDEEP (20P65A0205)

ABSTRACT

Due to the more vigorous regulations on carbon gas emissions and fuel economy, Fuel cell electric vehicles (FCEV) are becoming more popular in the automobile industry. This article presents a 1.26-kW proton exchange membrane fuel cell (PEMFC), supplying electric vehicle powertrain through a Ultra voltage-gain dc-dc boost converter. High switching-frequency and high voltage-gain dc-dc converters are essential for the propulsion of FCEV. In order to attain high voltage-gain, a Ultra voltage-gain boost converter is also designed for FCEV system. The main principle of this converter is to operate in a continuous conduction mode under steady-state analysis and it makes use of switched Inductors for obtaining high voltage gain. This converter includes two diodes, three inductors, two capacitors and three switches. Even with the small values of duty ratios, higher voltage gain can be obtained with the help of proposed converter. The traditional boost converter has the minimum boosting capability, while the proposed converter has the higher voltage gain among the different topologies. The proposed converter provides high voltage-gain while at the same time, imposing small voltage stresses on the switches. Such features make the proposed converter to suitable well for electric vehicle applications. A stack of PEMFC produces an unregulated low DC output voltage. A Ultra gain Boost converter regulates the PEMFC output voltage. Boost converter is extensively used as a front-end power conditioner for the fuel cell. The output voltage of the proposed converter is given to the electric motor through an inverter for propulsion of the vehicle. The electric motor plays an important role in FCEVs. An adequate motor considerably reduces the cost and size of the fuel cell. Adversely, DC motors have high maintenance cost and low efficiency due to the brushes and rotating devices. At present, permanent magnet BLDC motor is mostly using in FCEV applications due to simple control, high reliability and high ruggedness. The Proposed configuration is simulated using MATLAB software and verified theoretically.

CONTENTS

LIST OF CONTENTS	PAGE NO
ACKNOWLEDGEMENT	i
ABSTRACT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	ix
ABBREVIATIONS	X
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	1
1.2 DC-DC Converters for Fuel Cell Electric Vehicles	3
1.2.1 Buck Converter	4
1.2.2 Boost Converter	5
1.2.3 Buck – Boost Converter	5
1.2.4 DC/DC converters for electric vehicles	7
1.3 Fuel Cell	7
1.3.1 Key Components of a Hydrogen FCEV	8
1.4 Electric vehicle converters requirements	9
1.5 Brushless DC Motors	10
1.5.1 Working principle of BLDC Motor	11
1.5.2 Comparison of DC motors	12
1.6 Literature Review	14
1.7 Problem Formulation	16
1.8 Objective of the project	17
1.9 Organization of the Project	17
1.10 Summary	17
CHAPTER-2: PROPOSED HIGH STEP – UP	18
CONVERTER	
2.1 Introduction	18
2.2 Fuel Cell Modelling	18

	2.3 Proposed Ultra Gain Boost Converter	20
	2.4 Modes of operation	21
	2.4.1 Mode 1	21
	2.4.2 Mode-2	21
	2.5 BLDC Motor Modelling	23
	2.6 Summary	25
CHAPTE	R-3: DESIGN OF PROPOSED	26
	CONVERTER	
	3.1 Introduction	26
	3.2 Inductor Lx Design	26
	3.3 Inductor L_Y and L_Z	27
	3.4 Capacitor C_Y Design	28
	3.5 Capacitor C_X Design	28
	3.6 Fuel Cell Modelling	30
	3.7 VSI and BLDC motor	31
	3.8 BLDC motor Controller and commutation	32
	3.9 Speed control system	32
	3.10 The Back Electro Motive Force (BEMF)	33
	3.11 Summary	35
CHAPTE	R-4: RESULTS AND DISCUSSIONS	36
	4.1 Introduction	36
	4.2 Simulation Waveforms of proposed converter	37
	4.3 Characteristics of Proposed Converter with	41
	Different Topologies	
	4.4 Simulation results of proposed configuration	44
	4.5 Summary	51
CHAPTE	R-5: CONCLUSION & FUTURE SCOPE	52
	5.1 Conclusion	52
	5.2 Future Scope	52
	5.3 POs & PSOs attainment	52
REFEREN	CES	53

LIST OF FIGURES

FIGURE NO	NAME OF THE FIGURE	PAGE NO
1.1	Operational block diagram of DC/DC converter	3
1.2	Buck converter	4
1.3	Boost converter	5
1.4	Buck-Boost converter	6
1.5	Block diagram of fuel cell electric vehicle	10
1.6	Construction of BLDC Motor	11
1.7	Interaction between magnetic field lines	12
1.8	Rotational motion of permanent magnet	12
1.9	Brushed DC motor	13
1.10	Brushless DC motor	13
1.11	BLDC motor with different pole configurations	14
2.1	Electrical Equivalent circuit of fuel cell	19
2.2	Operation of fuel cell	19
2.3	The proposed configuration circuit	20
2.4	The ideal key waveforms of the converter	21
2.5	The configuration of mode I	22
2.6	The configuration of mode 2	22
2.7	Circuit Diagram of Stator Winding	24
2.8	Block Diagram of proposed converter topology	25
3.1	Inductor L _X current	26
3.2	The inductors L _Y and L _Z currents	27
3.3	The capacitor C _Y output voltage	28
3.4	The capacitor C _X current and voltage	29
3.5	Block Diagram of BLDC Motor Speed Control	33

3.6	Back EMF of Decoder for MATLAB Drive	34
3.7	Inverter Switching for MATLAB Drive	34
3.8	Proposed converter with BLDC Motor	34
4.1	Simulation diagram of the proposed converter	37
4.2	Simulation diagram of whole proposed system	37
4.3	Simulated waveform of input capacitor voltage (V_{CX})	38
4.4	Simulated waveform of Diode voltage (V_{DX})	38
4.5	Simulated waveform of Diode voltage (VDY)	39
4.6	Simulated waveform of Diode current (I _{DX})	39
4.7	Simulated waveform of Diode current (I _{DY})	40
4.8	Input power Pin, Output power Pout, Losses	40
4.9	Output voltage (Vo)	43
4.10	Voltage Gain	44
4.11	Fuel cell voltage vs time	44
4.12	Fuel cell current vs Time	45
4.13	Boost Converter voltage vs Time	45
4.14	Boost converter Current vs Time	46
4.15	Decoder- EMF pulses of A, B & C Hall signals	46
4.16	Gate Pulses Provided by Inverter- Switching Block	47
4.17	Inverter Output Voltage	47
4.18	Hall Signals vs Time	48
4.19	Speed Vs time	48
4.20	Torque vs Time	49
4.21	Stator Current vs Time	49
4.22	Stator Back emf signals Vs Time	50

LIST OF TABLES

TABLE NO	NAME OF THE TABLE	PAGE NO
2.1	The voltage stresses of the Switching devices	23
2.2	The current stresses of the switching devices	23
3.1	1.26kW PEMFC parameter specifications	31
3.2	Truth Table for BLDC drive with Hall Sensor	32
4.1	Simulation component values	36
4.2	Comparison values of proposed converter with	42
	different converter topologies	

ABBREVATIONS

PEMFC Proton Exchange Membrane Fuel Cell

EV Electric Vehicle

FCEV Fuel Cell Electric Vehicle

IC Integrated Circuit

CCM Continuous Conduction Mode

DCM Discontinuous Conduction Mode

DC Direct Current

BLDC Brushless Direct Current

VSI Voltage source inverter