Proof. This result is analogous to (1.2.9) and is an immediate consequence of (1.1.8).

1.4.5 Corollary. Let X be any smooth space and E any vector space with a linearly generated smooth structure. Then the smooth structure of $C^{\infty}(X, E)$ is also linearly generated.

We give now some standard consequences of cartesian closedness.

1.4.6 Proposition. For any smooth spaces X, Y, Z the evaluation ev: $C^{\infty}(X, Y) \pi X \to Y$ and the composition comp: $C^{\infty}(Y, Z) \pi C^{\infty}(X, Y) \to C^{\infty}(X, Z)$ are C^{∞} -maps.

Proof. Since $ev = (id_{C^{\infty}(X, Y)})^{\wedge}$, the first part is obvious. So is the second part since $comp^{\wedge}(g, f, x) = ev(g, ev(f, x))$ for appropriately chosen evaluation maps.

- **1.4.7 Definition.** A smooth group G is a smooth space for which the underlying set has a given group structure such that the group multiplication $m: G \sqcap G \to G$ and the inversion $v: G \to G$ are C^{∞} -maps.
- **1.4.8 Proposition.** Let X be any smooth space. If one puts on the group Diff(X) of all C^{∞} -diffeomorphisms of X the initial smooth structure induced by the two maps $i, j: Diff(X) \to C^{\infty}(X, X)$, where i(f) := f and $j(f) := f^{-1}$, then Diff(X) is a smooth group.

Proof. One has the following identity for the group multiplication: $i \circ m = \text{comp} \circ (i \pi i)$. Hence, using (1.4.6), $i \circ m$ is a C^{∞} -map. Similarly $j \circ m = \text{comp} \circ (j \pi j) \circ \varphi$ where $\varphi(f, g) := (g, f)$ shows that $j \circ m$ is a C^{∞} -map. Together this shows that m is a C^{∞} -map. For the inversion map v it is even simpler, since $i \circ v = j$ and $j \circ v = i$.

- **1.4.9 Definition.** A smooth action of a smooth group G on a smooth space X is a C^{∞} -map $f: G \cap X \to X$ such that
 - (i) $f(g_1g_2, x) = f(g_1, f(g_2, x))$ for $g_1, g_2 \in G$, $x \in X$.
 - (ii) f(e, x) = x for $x \in X$, e the neutral element in G.

 $\operatorname{Act}(G,X)$ shall denote the smooth space formed by the C^{∞} -actions of G on X with the smooth structure induced by its inclusion in $C^{\infty}(G\pi X,X)$.

1.4.10 Proposition. There is a natural isomorphism between the space Act(G, X) of smooth actions of G on X and the space Hom(G, Diff(X)) formed by the C^{∞} -homomorphisms $G \rightarrow Diff(X)$, where Hom(G, Diff(X)) has the smooth structure induced by its inclusion in $C^{\infty}(G, Diff(X))$ and Diff(X) the one used in (1.4.8).