Khôlles de Mathématiques - Semaine 8

Kylian Boyet, George Ober, Hugo *Vangi*lluwen 19 novembre 2023

1 Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coefficients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression des solutions à valeurs complexes des EDLH2 à coeff. constants).

Démonstration. Notons $\mathcal{S}_{H,\mathbb{C}}$ et $\mathcal{S}_{H,\mathbb{R}}$ les ensembles des solutions complexes et réelles de l'équation différentielle, puisque nous nous plaçons dans le cas $\Delta < 0$ et $\alpha \pm i\beta$ les deux racines complexes conjuguées.

$$\mathcal{S}_{H,\mathbb{C}} = \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{C} \\ t \mapsto \lambda e^{(\alpha + i\beta)t} + \mu e^{(\alpha - i\beta)t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Montrons que $\forall f \in \mathcal{S}_{H,\mathbb{C}}, \operatorname{Re}(f) \in \mathcal{S}_{H,\mathbb{R}}$ Soit $f \in \mathcal{S}_{H,\mathbb{C}}$ fq.

$$f \in \mathcal{D}^2(\mathbb{R}, \mathbb{C}) \implies \operatorname{Re}(f) \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$$

Et, de plus, par morphisme additif de Re

$$a_2 \text{Re}(f)'' + a_1 \text{Re}(f)' + a_0 \text{Re}(f) = \text{Re}(a_2 f'' + a_1 f' + a_0 f) = 0$$

D'où, avec $f: t \mapsto e^{(\alpha+i\beta)t}$; $\operatorname{Re}(f(t)) = \operatorname{Re}(e^{(\alpha+i\beta)t}) = e^{\alpha t} \cos(\beta t)$. Qui appartient donc à $\mathcal{S}_{H,\mathbb{R}}$ En suivant le même raisonnement pour $\operatorname{Im}(f)$, $(t \mapsto e^{\alpha} \sin(\beta t)) \in \mathcal{S}_{H,\mathbb{R}}$

Ainsi, par combinaison linéaire (qui se base sur le principe de superposition),

$$\left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\} \subset \mathcal{S}_{H, \mathbb{R}}$$

Réciproquement, soit $f \in \mathcal{S}_{H,\mathbb{R}}$ fq. Puisque $\mathbb{R} \subset \mathbb{C}$, $f \in \mathcal{S}_{H,\mathbb{C}}$.

$$\exists (a,b) \in \mathbb{C}^2 : f \left| \begin{array}{l} \mathbb{R} \to \mathbb{C} \\ t \mapsto ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t} \end{array} \right.$$

Or, puisque toutes les valeurs de f sont réelles, en notant (a_r, a_i, b_r, b_i) les parties réelles et imaginaires respectives de a et b.

$$\forall t \in \mathbb{R}, f(t) = \operatorname{Re}(f(t))$$

$$= \operatorname{Re}(ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t})$$

$$= \operatorname{Re}((a_r + ia_i)e^{(\alpha+i\beta)t} + (b_r + ib_i)e^{(\alpha-i\beta)t})$$

$$= a_r \cos(\beta t)e^{\alpha} - a_i \sin(\beta t)e^{\alpha} + b_r \cos(\beta t)e^{\alpha} + b_i \sin(\beta t)e^{\alpha}$$

$$= (a_r + b_r)\cos(\beta t)e^{\alpha} + (b_i - a_i)\sin(\beta t)e^{\alpha}$$

Ainsi,

$$f \in \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Ce qui conclut la preuve par double inclusion.

2 Existence et unicité d'une solution au problème de Cauchy pour les EDL d'ordre 2 à coefficients constants et second membre continu sur *I* (cas complexe puis cas réel).

Considérons le problème de Cauchy suivant :

$$\begin{cases} a_2 y'' + a_1 y' + a_0 y = b \text{ sur } J \\ y(t_0) = \alpha_0 \\ y'(t_0) = \alpha_1 \end{cases} \quad \text{où } (\alpha_0, \alpha_1) \in \mathbb{K}^2, t_0 \in J, (a_0, a_1, a_2) \in \mathbb{K}^2 \times \mathbb{K}^*, b \in \mathcal{F}(J, \mathbb{K})$$

Si b est continu sur J, alors ce problème de Cauchy admet une unique solution définie sur J.

Démonstration. Cas 1. $\mathbb{K} = \mathbb{C}$

Nous savons que sous l'hyphothèse de continuité de b sur J, les solutions de (EDL2) définies sur J constituent le plan affine S:

$$S = \left\{ \lambda f_1 + \mu f_2 + s | (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

où s est une solution particulière de (EDL2), (f_1,f_2) sont deux solutions de (EDLH2) qui engendrent S_h . On a :

$$f: J \to \mathbb{C} \text{ est sol. du pb de Cauchy} \iff \begin{cases} f \text{ sol de (EDL2) sur } J \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \begin{cases} f \in S \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f_2(t_0) + s(t_0) = \alpha_0 \\ \lambda f'_1(t_0) + \mu f'_2(t_0) + s'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f'_2(t_0) = \alpha_0 - s(t_0) \\ \lambda f'_1(t_0) + \mu f'_2(t_0) = \alpha_1 - s'(t_0) \end{cases}$$

On en déduit donc que (λ, μ) doit être solution d'un système linéaire (2, 2). On a une unique solution si et seulement si les déterminant de ce système est nul. Explicitons alors le déterminant de ce système, que l'on notera D.

$$D = \begin{vmatrix} f_1(t_0) & f_2(t_0) \\ f'_1(t_0) & f'_2(t_0) \end{vmatrix} = f_1(t_0) \cdot f'_2(t_0) - f_2(t_0) \cdot f'_1(t_0)$$

Notons Δ le discriminant de l'équation caractéristique de (EDL2) $(a_2r^2 + a_1r^1 + a_0 = 0)$. On distingue alors deux cas selon la nullité ou non de Δ . Traitons d'abord le cas $\Delta \neq 0$. On peut choisir :

$$f_1(t_0) = e^{r_1 t_0}$$
 et $f_2(t_0) = e^{r_2 t_0}$
 $f'_1(t_0) = r_1 e^{r_1 t_0}$ et $f'_2(t_0) = r_2 e^{r_2 t_0}$

Donc (en sachant que $\Delta \neq 0 \Rightarrow r_1 \neq r_2$):

$$D = e^{r_1 t_0} \cdot r_2 e^{r_2 t_0} - r_1 e^{r_1 t_0} \cdot e^{r_2 t_0} = (r_2 - r_1) \cdot e^{r_1 t_0 + r_2 t_0} \neq 0$$

Dans le deuxième cas, on a $\Delta = 0$; on peut alors prendre :

$$f_1(t_0) = e^{r_0 t_0}$$
 et $f_2(t_0) = t_0 e^{r_0 t_0}$

Ainsi:

$$D = e^{r_0 t_0} \left(r_0 t_0 e^{r_0 t_0} + e^{r_0 t_0} \right) - r_0 e^{r_0 t_0} \times t_0 e^{r_0 t_0} = e^{2r_0 t_0} \neq 0$$

On remarque alors que, dans les deux cas, $D \neq 0$, donc le système (2,2) étudié admet une unique solution, donc il existe un unique couple (λ, μ) le vérifiant d'où l'unicité et existence d'une solution au problème de Cauchy.

Cas 2.
$$\mathbb{K} = \mathbb{R}$$

 $(a_0, a_1, a_2) \in \mathbb{R}^2 \times \mathbb{R}^*, (\alpha_0, \alpha_1) \in \mathbb{R}^2, b \in C^0(J, \mathbb{R})$

Existence : Puisque $\mathbb{R} \subset \mathbb{C}$, le problème de Cauchy admet, dans \mathbb{R} , une solution à valeurs complexes g. Posons f = Re(g) et montrons que f est une solution réelle du problème de Cauchy.

- $\star q \in \mathcal{D}^2(J,\mathbb{C}) \text{ donc } f \in \mathcal{D}^2(J,\mathbb{R})$
- $\star g$ vérifie $a_2g'' + a_1g' + a_0g = b$ sur J donc en prenant $\text{Re}(\cdot)$:

$$\operatorname{Re}(a_2 g'' + a_1 g' + a_0 g = b) = \operatorname{Re}(b) \iff a_2 \operatorname{Re}(g'') + a_1 \operatorname{Re}(g') + a_0 \operatorname{Re}(g) = b$$

$$\iff a_2 f'' + a_1 f' + a_0 f = b \operatorname{sur} J$$

- $\star f(t_0) = \operatorname{Re}(g(t_0)) = \operatorname{Re}(\alpha_0) = \alpha_0$
- $\star f'(t_0) = \text{Re}(g(t_0))' = \text{Re}(g'(t_0)) = \text{Re}(\alpha_1) = \alpha_1$

Donc f est une solution réelle définie sur J au problème de Cauchy.

Unicité: Soient f_1 et f_2 deux fonctions à valeurs réelles solutions du problème de Cauchy ci-dessus fixées quelconques: puisque $\mathbb{R} \subset \mathbb{C}$, f_1 et f_2 sont des fonctions à valeurs dans \mathbb{C} solutions du même problème de Cauchy; or il y a unicité de la solution au problème de Cauchy dans les fonctions à valeurs complexes, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{C})$, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{R})$.

3 Les solutions d'une EDL₂ constituent un espace vectoriel.

Soient $(a,b) \in \mathbb{C}^2$, f et g les solutions, définies sur \mathbb{R} à valeurs dans \mathbb{C} , des problèmes de Cauchy suivants :

$$\begin{cases} y'' + ay' + by = 0 \\ y(3) = 1 \\ y'(3) = 0 \end{cases} \text{ et } \begin{cases} y'' + ay' + by = 0 \\ y(3) = 0 \\ y'(3) = 1 \end{cases}$$

Comment s'exprime la solution définie sur $\mathbb R$ de $\begin{cases} y'' + ay' + by = 0 \\ y(3) = \alpha & \text{pour } (\alpha, \beta) \in \mathbb R^2 \text{ fixés ?} \\ y'(3) = \beta \end{cases}$

Peut-on affirmer que le plan vectoriel des solutions définies sur \mathbb{R} à valeurs dans \mathbb{C} de y'' + ay' + by = 0 est $\{\lambda \cdot f + \mu \cdot g | (\lambda, \mu) \in \mathbb{C}^2\}$

Démonstration. La solution s'exprime simplement comme combinaison linéaire de f et g, plus précisément, la combinaison linéaire en α et β . En effet, soient de tels scalaires, et soient f et g de telles solutions, on a :

$$(\alpha \cdot f + \beta \cdot g)'' + a(\alpha \cdot f + \beta \cdot g)' + b(\alpha \cdot f + \beta \cdot g) = 0$$
, par définition des espaces vectoriels.

Et de même, $(\alpha \cdot f + \beta \cdot g)'(3) = \alpha \cdot f'(3) + \beta \cdot g'(3) = \alpha$, et $(\alpha \cdot f + \beta \cdot g)''(3) = \alpha \cdot f''(3) + \beta \cdot g''(3) = \beta$. Ce qui suffit par unicité des solutions (de la donc) d'un problème de Cauchy dans le cadre du théorème du cours.

Pour ce qui est du plan vectoriel des solutions, noté Ω , notons aussi Φ l'ensemble proposé. L'inclusion $\Phi \subset \Omega$ est triviale par propriété de linéarité des espaces vectoriels. Finalement, pour $\Omega \subset \Phi$, soit $\omega \in \Omega$, forcément, ω vérifie l' EDL_2 , mais aussi des conditions de Cauchy bien que celles-ci soient non-spécifiées, ainsi posons $\omega'(3) = \delta$ et $\omega''(3) = \theta$, donc en particulier, $\omega = \delta \cdot f + \theta \cdot g$, d'où l'égalité par double inclusion.

4 Formules de Cramer pour les systèmes 2×2

Résolution générale des systèmes linéaires à 2 équations et 2 inconnues en fonction du déterminant du systèmes (tous les cas ne sont pas nécessairement à envisager)

Considérons le système linéaire à deux équations et à deux inconnues (x, y):

$$(S) \begin{cases} ax + by = b_1 & (E_1) \\ cx + dy = b_2 & (E_2) \end{cases}$$
 (1)

dont $(a, b, c, d) \in \mathbb{K}^4$ sont les coefficients et $(b_1, b_2) \in \mathbb{K}^2$ sont les seconds membres.

1. (S) admet une unique solution si et seulement si $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$. De plus, dans ce cas, la solution est

$$\left(\begin{array}{c|c} b_1 & b \\ b_2 & d \\ \hline \begin{vmatrix} a & b_1 \\ c & d \\ \end{vmatrix}, \begin{vmatrix} a & b_1 \\ c & d \\ \end{vmatrix}, \begin{vmatrix} a & b \\ c & d \\ \end{array}\right)$$
(2)

2. Si ad - bc = 0, alors l'ensemble des solutions est soit vide, soit une droite affine de \mathbb{K}^2 , soit \mathbb{K}^2 .

Démonstration. Procédons par disjonction de cas.

- Supposons que $ad bc \neq 0$.
 - Supposons que $a \neq 0$.

$$(S) \iff \begin{cases} ax + by = b_1 \\ (d - \frac{bc}{a})y = b_2 - \frac{c}{a}b_1 & (L_1 \leftarrow L_1 - \frac{c}{a}L_2) \end{cases}$$

$$\iff \begin{cases} ax + by = b_1 \\ (ad - bc)y = ab_2 - cb_1 & (L_1 \leftarrow aL_1) \end{cases}$$

$$\iff \begin{cases} ax = \frac{1}{a}\left(b_1 - b\frac{ab_2 - cb_1}{ad - bc}\right) = \frac{1}{a}\frac{adb_1 - bcb_1 + abb_2 - bcb_2}{ad - bc}$$

$$y = \frac{ab_2 - cb_1}{ad - bc}$$

$$\iff \begin{cases} ax = \frac{db_1 - bb_2}{ad - bc} = \frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

$$y = \frac{ab_2 - cb_1}{ad - bc} = \frac{\begin{vmatrix} a & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} a & b_1 \\ c & d \end{vmatrix}}$$

Donc le système admet une unique solution qui est celle annoncée.

• Supposons que a = 0. L'hypothèse $ad - bc \neq 0$ implique $bc \neq 0$ donc $b \neq 0$ et $c \neq 0$.

$$(S) \iff \begin{cases} by &= b_1 \\ cx &+ dy &= b_2 \end{cases}$$

$$\iff \begin{cases} x &= \frac{1}{c} \left(b_2 - d \frac{b_1}{b} \right) \\ y &= \frac{b_1}{b} \end{cases}$$

$$\iff \begin{cases} ax &= \frac{db_1 - bb_2}{-bc} = \frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} 0 & b \\ c & d \end{vmatrix}}$$

$$y &= \frac{-cb_1}{-bc} = \frac{\begin{vmatrix} 0 & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} c & b_2 \\ c & d \end{vmatrix}}$$

Donc le système admet une unique solution qui est celle annoncée. $ad-bc=0. \label{eq:contraction}$

• Supposons $a \neq 0$. En reprenant la méthode pivot de Gauss,

$$(S) \iff \begin{cases} ax + by = b_1 \\ (d - \frac{bc}{a})y = b_2 - \frac{c}{a}b_1 \quad (L_1 \leftarrow L_1 - \frac{c}{a}L_2) \end{cases}$$

$$\iff \begin{cases} ax + by = b_1 \\ (ad - bc)y = ab_2 - cb_1 \quad (L_1 \leftarrow aL_1) \end{cases}$$

Donc le système est de rang 1 avec une condition de compatibilité.

Si $ab_2 - cb_1 \neq 0$, (S) n'admet aucune solution.

Sinon $ab_2 - cb_1 = 0$

$$(S) \iff ax + by = b_1 \iff \binom{x}{y} \in \left\{ \binom{\frac{b_1}{a} - b\frac{t}{a}}{t} \mid t \in \mathbb{K} \right\}$$
 (3)

Donc (S) admet un droite affine de solutions.

• Supposons a = 0. Puisque ad - bc = 0, alors bc = 0 donc b ou c est nul.

• Si c = 0,

$$(S) \iff \left\{ \begin{array}{lcl} by & = & b_1 \\ dy & = & b_2 \end{array} \right.$$

• Si b = 0.

$$(S) \iff \left\{ \begin{array}{ccc} by & = & b_1 \\ 0 & = & b_2 \end{array} \right.$$

- Si $b_2 = 0$, (S) n'admet aucune solution.
- Si $b_2 \neq 0$, $(S) \iff dy = b_2$

• Si d=0, $(S)\iff 0=b_2$. (S) n'admet aucune solution $(b_2\neq 0)$ ou admet \mathbb{K}^2 comme ensemble des solutions $(b_2=0)$.

• Si $d \neq 0$, $(S) \iff y = \frac{b_2}{d} \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} \frac{t}{b_2} \\ \frac{b_2}{d} \end{pmatrix} \mid t \in \mathbb{K} \right\}$. Donc (S) admet une droite affine de solutions.

• Si $b \neq 0$

$$(S) \iff \begin{cases} y = \frac{b_1}{b} \\ 0 = b_2 - \frac{db_1}{b} \end{cases}$$

- Si $b_2 \frac{db_1}{b} \neq 0$, (S) n'admet aucune solution.
- Si $b_2 \frac{db_1}{b} = 0$, $(S) \iff y = \frac{b_1}{b} \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} t \\ \frac{b_1}{d} \end{pmatrix} \mid t \in \mathbb{K} \right\}$ donc (S) admet une droite affine de solutions.

• Si $c \neq 0$ alors b = 0

$$(S) \iff \left\{ \begin{array}{rcl} 0 & = & b_1 \\ cx + dy & = & b_2 \end{array} \right.$$

- Si $b_1 \neq 0$, (S) n'admet aucune solution.
- Si $b_1 = 0$, $(S) \iff x = \frac{b_2}{c} \frac{d}{c}y \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} \frac{b_2}{c} \frac{d}{c}t \\ t \end{pmatrix} \mid t \in \mathbb{K} \right\}$ donc (S) admet une droite affine de solutions.