Тема. «Объёмы многогранников». Методическое пособие по решению задач для студентов 2 курса СПО. Дистанционная форма обучения.

1. Теоретический материал.

Вид многогранника	Формула объёма
1. Призма	
H	V=S _{och} H
2. Прямоугольный параллелепипед	
c b	V=abc
3. Ky6	$V=a^3$
4. Пирамида	
H	$V=\frac{1}{3}S_{\text{осн}}H$
5.Усеченная пирамида	
S_2 $\begin{array}{c} \vdots \\ \vdots \\ S_1 \end{array}$	$\mathbf{V} = \frac{1}{3} \mathbf{h} \left(S_1 + \sqrt{S_1 S_2} + S_2 \right)$

2. Решение задач.

Задача № 1

Найдите объем прямой призмы, в основании которой лежит ромб с диагоналями, равными 25 и 60, и боковым ребром, равным 25.

Дано: $ABC \bot A_1 B_1 C_1 \bot I_1$ - прямая четырехугольная призма AC = 60; $B \coprod = 25$; $AA_1 = 25$ Найти: V призмы Решение $V_{\text{призмы}} = S_{\text{осн}} H; \quad H = AA_1$ АВСД - ромб, следовательно $\frac{60.25}{2}$ = 750; V_{призмы} = 750 ¿ 25=18750

Задача № 2

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 8 и 15, боковое ребро равно 9. Найдите объем призмы.

Дано:

Ответ. 18750

 $ABCA_{1}B_{1}C_{1}$ - прямая треугольная призма. △ ABC - прямоугольный; АС и ВС - катеты AC = 15; BC = 8; $AA_1 = 9$ Найти: V призмы $H=AA_1$ $V_{\text{призмы}} = S_{\text{осн}} H;$ $\Delta \overrightarrow{ABC}$ - прямоугольный треугольник, следовательно

$$S_{\text{осн}} = \frac{15 \cdot 8}{2} = 60$$
 ; $V_{\text{призмы}} = 60 \stackrel{?}{\sim} 9 = 540$ Ответ. 540

Задача № 3.

В основании наклонной треугольной призмы лежит треугольник со сторонами 14; 12 и 12. Боковое ребро равно 6 и наклонено к плоскость основания под углом 30°. Найти объём призмы.

Дано:

 $ABCA_1B_1C_1$ - наклонная треугольная призма. AC = 12; BC = 12; AB = 14; $CC_1 = 6$; \angle $C_1CO=30$

Найти: V призмы $V_{\text{призмы}} = S_{\text{осн}} H;$

 Δ OCC₁ - прямоугольный треугольник, так как

 C_1O $\stackrel{\bullet}{\iota}$ плоскости $\stackrel{\Delta}{}$ ABC; $\stackrel{\iota}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$

$$C_1O = C_1C^2 \sin 30^\circ = 6^2 \cdot \frac{1}{2} = 3$$

 $H = OC_1 = 3$

$$S_{\text{och}} = \sqrt{p(p-a)(p-e)(p-c)}$$
; $p = \frac{AB+BC+AC}{2}$

$$\begin{aligned} & \frac{14+12+12}{p} = 19 \\ & p = \frac{2}{2}; \\ & S_{\text{осн}} = \sqrt{19 \left(19-14\right) \left(19-12\right) \left(19-12\right)} = \sqrt{19 \cdot 5 \cdot 7 \cdot 7} = 7 \sqrt{95} \\ & V_{\text{призмы}} = 7 \sqrt{95} \cdot 3 = 21 \sqrt{95} \\ & \text{Ответ.} \quad 21 \sqrt{95} \end{aligned}$$

Задача № 4.

Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.

Дано: прямоугольный параллелепипед;

a=4; b=6; c=9. $V_{\text{\tiny II.II}} = V_{\kappa}$

Найти : d Решение:

 $V_{\text{п.п}} = a_{BC}; V_{\text{п.п}} = 4 \stackrel{?}{\sim} 6 \stackrel{?}{\sim} 9 = 216;$

 $V_{\kappa} = d^3; \quad d^3 = 216; \quad d = \sqrt[3]{216} = 6$

Ответ. 6

Задача № 5

От треугольной пирамиды, объем которой равен 34, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

Дано:

 $V_{SABC} = 34;$ ΔSMN - сечение SABC

MN - средняя линия треугольника ABC

Найти: V_{SMNC}

Решение:

Так как MN - средняя линия треугольника ABC, то

 $\frac{1}{2}$ AB , поэтому Δ ABC подобен Δ MNC. Коэффициент подобия к=2, следовательно

$$\frac{S_{ABC}}{S_{MNC}} = \kappa^2; \quad \frac{S_{ABC}}{S_{MNC}} = \frac{S_{ABC}}{S_{MNC}} = \frac{S_{ABC}}{S_{MNC}} = \frac{S_{ABC}}{4};$$

Так как высоты пирамид SABC и SMNC совпадают, то $V_{\text{SMNC}} = V_{\text{SABC}}$: 4= 34:4=8,5

Ответ. 8,5

Задача № 6

Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

Дано: SABCD - пирамида; ABCD - прямоугольник; AB=3; BC = 4;
$$V_{SABCD}$$
 = 16 Найти: H Решение:
$$\frac{1}{V=3} \sum_{S_{OCH}} H; V_{SABCD} = \frac{1}{3} \sum_{S_{ABCD} \stackrel{\checkmark}{\leftarrow} H} H; S_{ABCD} = AB\stackrel{\checkmark}{\leftarrow} BC; S_{ABCD} = 3\stackrel{\checkmark}{\leftarrow} 4=12; \frac{1}{16=3} \cdot 12 \cdot H$$
 16=3 ; 4H=16; H=4 Ответ. 4

Задача № 7

Сторона основания правильной четырехугольной пирамиды равна $6^{\sqrt{3}}$ см, боковая грань наклонена к плоскости основания под углом 60° . Найти объем пирамиды.

Дано: SABCD - правильная четырехугольная пирамида;

$$AB=6\sqrt{3}$$
 cm; \angle SKO= 60°

Найти: V_{SABCD}

Решение:

$$V_{SABCD} = \frac{1}{3} S_{och} H;$$

$$S_{\text{och}} = AB^2$$
; $S_{\text{och}} = (6\sqrt{3})^2 = 36 \text{ i} 3 = 108 \text{ (cm2)}$

 Δ SKO - прямоугольный треугольник, так как

SO - высота пирамиды;

∠ SKO - линейный угол двугранного угла при основании пирамиды SABCD, следовательно

$$\geq$$
 SKO = 60°; OK= $\frac{1}{2}$ AB; OK= $\frac{1}{2}$ $\stackrel{1}{\sim}$ 6 $\sqrt{3}$ = 3 $\sqrt{3}$ (cm)
 $\frac{SO}{OK}$ = tg 60°; SO=OK $\stackrel{1}{\sim}$ tg 60°=3 $\sqrt{3}$ $\stackrel{1}{\sim}$ $\sqrt{3}$ = 9(cm);
H=SO = 9cm;
 V_{SABCD} = $\frac{1}{3}$ 108 $\stackrel{1}{\sim}$ 9=324(cm³)
OTBET. 324 cm³

Задача № 8

Основанием пирамиды является прямоугольник со сторонами 6см и 8см. Все боковые ребра равны 13 см. Найти объём пирамиды.

Дано: SABCD - пирамида; ABCD - прямоугольник;

AB= $6c_{\text{M}}$; BC = $8c_{\text{H}}$; SA=SB=SC=SD= $13c_{\text{M}}$.

Найти: V_{SABCD}

Решение:

$$V_{SABCD} = \frac{1}{3} S_{och} H;$$

 $S_{ABCD} = AB \stackrel{?}{\cdot} BC; S_{ABCD} = 6 \stackrel{?}{\cdot} 8 = 48 (cm^2)$

△ ABC - прямоугольный, по теореме Пифагора

 $AC^2 = AB^2 + BC^2$; $AC^2 = 6^2 + 8^2 = 100$; AC=10; AO=5cMSO $\stackrel{\cdot}{\iota}$ ABCD, поэтому $\stackrel{\Delta}{\circ}$ SAO прямоугольный, по

теореме Пифагора

$$SO^2 = AS^2 - AO^2$$
; $SO^2 = 13^2 - 5^2 = 169-25 = 144$; $SO = 12cM$ H=SO

$$V_{SABCD} = \frac{1}{3} 48$$
¿ $12 = 192$ (cm³)
Ответ. 192 cm³

Задача № 9

Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2см, а объем равен $\sqrt{3}$ см³.

Дано: SABC-правильная треугольная пирамида; AB=2cm;

$$V_{\rm SABC} = \sqrt{3}\,c_{M}{}^{3}$$

Найти: Н

Решение:

$$V_{SABC} = \frac{1}{3} S_{och} H;$$

 Δ ABC - правильный, поэтому $S_{ABC} = \overline{2}$ AB Δ AC Δ $\sin 60^{\circ}$;

$$S_{ABC} = \frac{1}{2} \sum_{2 \le 2 \le \sin 60^0 = 2 \le 2} \frac{\sqrt{3}}{2} = \sqrt{3} \text{ (cm}^2);$$

$$\sqrt{3} = \frac{1}{3} \sum_{2 \le 4} \sqrt{3} \sum_{2 \le 4} H; H = \frac{3\sqrt{3}}{\sqrt{3}} = 3 \text{ (cm)}$$

$$\sqrt{3} = \frac{1}{3} \sqrt{3} \sqrt{3}$$
 $= 3$ (cm)

Ответ. 3

Задача № 10

Стороны оснований правильной четырехугольной усеченной пирамиды равны 3см и 5см. Найдите объем пирамиды, если ее боковое ребро равно $2^{\sqrt{3}}$ см и наклонено к плоскости основания под углом 60 градусов.

Дано: $ABCDA_1B_1C_1D_1$ -правильная усеченная четырехугольная пирамида;

AB=5cm;
$$A_1B_1 = 3$$
 cm; $DD_1 = 2\sqrt{3}$ cm; D_1F^{2} (ABCD); $\angle D_1DF=60^{0}$

Найти: V

Решение:

$$\mathbf{V}^{=\frac{1}{3}}\mathbf{h}\left(S_1 + \sqrt{S_1S_2} + S_2\right)$$

$$S_1 = S_{ABCD};$$
 $S_2 = S_{A_1B_1C_1D_1};$ $h = D_1F$
 $S_{ABCD} = AB^2;$ $S_{ABCD} = 5^2 = 25(cM^2)$
 $S_{A_1B_1C_1D_1} = A_1B_1^2;$ $S_{A_1B_1C_1D_1} = 3^2 = 9(cM^2);$

$$S_{ABCD} = AB^2$$
; $S_{ABCD} = 5^2 = 25(cm^2)$

$$S_{A_1B_1C_1D_1} = A_1B_1^2$$
; $S_{A_1B_1C_1D_1} = 3^2 = 9(cM^2)$;

 $\Delta D_1 DF$ - прямоугольный, поэтому $D_1 F = D_1 D \epsilon \sin 60^0;$

$$D_{1}F = 2\sqrt{3} \stackrel{\cdot}{\iota} \sin 60^{0} = 2\sqrt{3} \stackrel{\cdot}{\iota} \frac{\sqrt{3}}{2} = 3 \text{ (cm)};$$

$$V = \frac{1}{3} \cdot 3(25 + \sqrt{25 \cdot 9} + 9) = 25 + 5 \cdot 3 + 9 = 49 \text{ (cm}^{3})$$

Ответ. 49 см³

Задания для самостоятельного решения

- 1. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна $\sqrt{3}$.
- 2. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.
- 3. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
- 4. Основанием прямой призмы является ромб со стороной 12см и углом 60°. Меньшее из диагональных сечений призмы является квадратом. Найти объем призмы.
- **5.** В кубе AD_1 через середину ребер AB, DC и вершину D_1 проведено сечение. Найдите

объем куба, если площадь этого сечения равна