AlphaGo

Титизян Армине, 172

Го

- 19 х 19 доска с сеткой
- Черные и белые камни стоят на узлах
- Выиграл тот, кто больше занял территории
- Нельзя повторять позиции
- Коми

Го

Свободы камней

Захват камней

Захват камней

Го

Конец партии

В чем проблема?

В го примерно $b^d=250^{150}$ возможных партий, b — количество разрешенных ходов, d — длина игры; в шахматах всего 35^{80} .

Отсюда проблема в обходе дерева позиций

До AlphaGo

 Monte Carlo Tree Search (MCTS) — алгоритм принятия решений через поиск по дереву. Дерево представляет из себя структуру, в которой помимо хода и указателей есть количество сыгранных и количество выигранных партий. На основе этих двух параметров метод выбирает следующий шаг. **Шаг 1: Выбор — Selection.** На этом шаге алгоритм выбирает ход своего противника. Если такой ход существует — мы его выберем, если нет — добавим.

Шаг 2: Расширение — Expansion. К выбранному узлу с ходом противника мы добавим узел со своим ходом и с нулевыми результатами.

Шаг 3: Симуляция — Simulation. Отыграем партию от текущего состояния игрового поля до чей-либо победы. Отсюда мы возьмём только первый ход (т.е. свой ход) и результаты.

Шаг 4: Обратное распространение — Backpropagation. Результаты из симуляции мы будем распространять от текущего до корня. Ко всем родительским узлам мы добавим единицу в количество сыгранных

Общая архитектура

Общая архитектура

Supervised learning Policy

- Учится
 предсказывать
 человеческие ходы
- 12 уровней convolution layers с нелинейностью и softmax на каждую клетку в конце.
- Использует человеческие партии на старте

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Extended Data Table 2: **Input features for neural networks.** Feature planes used by the policy network (all but last feature) and value network (all features).

SL policy

 σ — Beca

$$\Delta\sigma\propto \frac{\partial \log p_{\sigma}(a\,|s)}{\partial \sigma}$$

максимизируем правдоподобие стохастическим градиентным подъемом

Rollout

Feature	# of patterns	Description
Response	1	Whether move matches one or more response features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move

- Быстрая модель с плохими предсказаниями
- Линейный softmax
- Проверяем разные паттерны

RL policy

Архитектура как у
 SL + fully connected слой

$$\Delta
ho \propto rac{\partial {\log p_{
ho}(a_t|s_t)}}{\partial
ho} z_t$$

MCTS

$$a_t = \underset{a}{\operatorname{argmax}}(Q(s_t, a) + u(s_t, a))$$

$$u(s,a) \propto \frac{P(s,a)}{1+N(s,a)}$$

Инициализация новой вершины

$$V(s_L) = (1 - \lambda) \nu_{\theta}(s_L) + \lambda z_L$$

$$N(s, a) = \sum_{i=1}^{n} 1(s, a, i)$$

$$Q(s, a) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i) V(s_L^i)$$

Итоговый выбор хода

Вопросы

- Назовите составные части AlphaGo и опишите их роль в модели.
- Опишите алгоритм MCTS. В чем отличия версии для AlphaGo от базового варианта?
- Зачем нужен rollout policy?
- Почему AlphaGo всегда выигрывает с маленьким отрывом (0.5-3 очка)?