Day 3: Overfitting and Generalization Summer STEM: Machine Learning

Department of Electrical Engineering NYU Tandon School of Engineering Brooklyn, New York

August 5, 2020

- What if we have multivariate data with **x** being a vector?
- Ex: $\mathbf{x}_i = [x_{i1}, x_{i2}]^T$

$$\hat{y}_1 = w_0 + w_1 x_{11} + w_2 x_{12}$$

$$\hat{y}_2 = w_0 + w_1 x_{21} + w_2 x_{22}$$

$$\vdots$$

$$\hat{y}_N = w_0 + w_1 x_{N1} + w_2 x_{N2}$$

lacksquare The model can be written as $\hat{y_i} = egin{bmatrix} 1 & x_{i1} & x_{i2} \end{bmatrix} egin{bmatrix} w_0 \ w_1 \ w_2 \end{bmatrix}$

■ In matrix-vector form

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_{n2} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

- Solution remains the same $\mathbf{w} = (X^T X)^{-1} X^T Y$
- Exercise: open demo_multilinear.ipynb

Outline

- 1 Polynomial Regression
- 2 Overfitting and Validation
- 3 Regularization

Polynomial Fitting

- We have been using linear model to fit our data. But it doesn't work well every time
- Some data have more complex relation that cannot be fitted well using a straight line
 - Ex: Projectile motion, Coulomb's law, Exponential growth/decay, ...

- Linear model does not look like a good fit for this data
- Can we use some other model to fit this data?

Polynomial Fitting

- Can we use a polynomial to fit our data?
- Polynomial: A sum of different powers of a variable
 - **Examples:** $y = x^2 + 2$, $y = 5x^3 3x^2 + 4$

■ New model: $f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + ...$

Polynomial Fitting

- The process of fitting a polynomial is similar to linearly fitting multivariate data
- Recall the multivariable linear model
- $f(x) = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + \dots$
 - Where x_1 , x_2 , x_3 ... are different features
- If we treat x^2 as our second feature, x^3 as our third feature, x^4 as our fourth feature.... We can use the same procedure in multivariate regression.

Design matrix with the original feature:

$$X = \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{vmatrix}$$

■ Design matrix with augmented polynomial features:

$$\Phi(X) = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^D \\ 1 & x_2 & x_2^2 & \cdots & x_2^D \\ \vdots & & \ddots & & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^D \end{bmatrix}$$

■ For the polynomial fitting, we just added columns of features that are powers of the original feature

■ You are given the data set below with x and y values

- Try to fit the data using a polynomial with a certain degree
- Calculate mean square error between the sample y and your predicted y
- Try different polynomial degree and see if you can improve the mse
- Plot your polynomial over the data points

Outline

- 1 Polynomial Regression
- 2 Overfitting and Validation
- 3 Regularization

Overfitting

- We learned how to fit our data using polynomials of different order
- With a higher model order, we can fit the data with increasing accuracy
- As you increase the model order, at certain point it is possible find a model that fits your data perfectly (ie. zero error)
- What could be the problem?

Overfitting

■ Which of these model do you think is the best? Why?

Overfitting

- The problem is that we are only fitting our model using data that is given
- Data usually contains noise
- When a model becomes too complex, it will start to fit the noise in the data
- What happens if we apply our model to predict some data that the model has never seen before? It will not work well.
- This is called over-fitting

Tuning Hyper-parameters

- Motivation: never determine a **hyper-parameter** using the training set
- **Hyper-Parameter**: a parameter of the algorithm that is not a model-parameter solved for in optimization.
 - Ex: The order of the polynomials *M*
- Solution: split dataset into three
 - Training set: to compute the model-parameters (w)
 - Validation set: to tune hyper-parameters (M)
 - **Test set**: to compute the performance of the algorithm (MSE)

Training and Test Error

We use the training set to find the model parameters and the validation set to tune the hyper-parameters. Finally, we use a **test** set to evaluate the model performance.

- As we increase the order of the polynomials M, the training error decreases.
- However, the test error first decreases but increases again at a certain point.

Outline

- 1 Polynomial Regression
- 2 Overfitting and Validation
- 3 Regularization

■ **Regularization**: methods to prevent overfitting

How can we prevent overfitting without knowing the model order before-hand?

- **Regularization**: methods to prevent overfitting
 - We just covered regularization by model order selection

How can we prevent overfitting without knowing the model order before-hand?

- **Regularization**: methods to prevent overfitting
 - We just covered regularization by model order selection
- Is there another way? Talk among your classmates.

How can we prevent overfitting without knowing the model order before-hand?

- **Regularization**: methods to prevent overfitting
 - We just covered regularization by model order selection
- Is there another way? Talk among your classmates.
 - Solution: We can change our cost function.

Weight Based Regularization

- Looking back at the polynomial overfitting
- Notice that weight-size increases with overfitting

New Cost Function

$$J = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{D} (w_j)^2$$

- Penalize complexity by simultaneously minimizing weight values.
- lacktriangle λ here is also a **hyper-parameter**
 - lacktriangle λ determines relative importance

Table 1.2 Table of the coefficients w^+ for $M=9$ polymonials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Fig. the graph at the bottom right in Fig. λ increases, the typical magnitude of the coefficients gets smaller.	w_0^{\star} w_1^{\star} w_2^{\star} w_3^{\star} w_4^{\star}	0.35 232.37 -5321.83 48568.31 -231639.30 640042.26	$\begin{array}{c} \ln \lambda = -18 \\ \hline 0.35 \\ 4.74 \\ -0.77 \\ -31.97 \\ -3.89 \\ 55.28 \end{array}$	$ \begin{array}{r} \ln \lambda = 0 \\ \hline 0.13 \\ -0.05 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.02 \end{array} $	
	w_5	640042.26 -1061800.52	55.28 41.32	-0.02 -0.01	
	w_6^{\star} w_7^{\star}	1042400.18	-45.95	-0.00	
	w_8^* w_9^*	-557682.99 125201.43	-91.53 72.68	0.00 0.01	

