Formale Semantik o3. Mengen und Funktionen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- 1 Sets and Functions
 - The naive concept
 - Elements, subsets, power sets
 - Union, intersection, etc.
- 2 Functions and Relations
 - Ordered pairs/sets, n-tuples, Cartesian products
 - Relations

- Functions
- 3 More about relations and sets
 - Relations among themselves
 - Orders
- 4 Cardinalities
 - Denumerability
 - Non-denumerability

• a freely defined unordered collection of discrete objects

- a freely defined unordered collection of discrete objects
 - numbers,

- a freely defined unordered collection of discrete objects
 - numbers,
 - people,

- a freely defined unordered collection of discrete objects
 - numbers,
 - people,
 - pairs of shoes,

- a freely defined unordered collection of discrete objects
 - numbers,
 - people,
 - pairs of shoes,
 - ▶ words, ...

- a freely defined unordered collection of discrete objects
 - numbers,
 - people,
 - pairs of shoes,
 - words, ...
- not necessarily for any purpose

- a freely defined unordered collection of discrete objects
 - numbers,
 - people,
 - pairs of shoes,
 - words, ...
- not necessarily for any purpose
- no object occurs more than once

•
$$M_1 = \{a, b, c\}$$

- $M_1 = \{a, b, c\}$
- N₁ = {'my book'}
 vs. N₂ = {my book}
 vs. N₃ = {'my', 'book'}

- $M_1 = \{a, b, c\}$
- N₁ = {'my book'}
 vs. N₂ = {my book}
 vs. N₃ = {'my', 'book'}
- ill-formed: N₄ = {'my', book}

- $M_1 = \{a, b, c\}$
- N₁ = {'my book'}
 vs. N₂ = {my book}
 vs. N₃ = {'my', 'book'}
- ill-formed: N₄ = {'my', book}
- defined by a property of its members:
 M₂ = {x:x is one of the first three letters of the alphabet}

- $M_1 = \{a, b, c\}$
- N₁ = {'my book'}
 vs. N₂ = {my book}
 vs. N₃ = {'my', 'book'}
- ill-formed: N₄ = {'my', book}
- defined by a property of its members:
 M₂ = {x:x is one of the first three letters of the alphabet}
- alternatively:
 M₂ = {x||x is one of the first three letters of the alphabet}

- $M_1 = \{a, b, c\}$
- N₁ = {'my book'}
 vs. N₂ = {my book}
 vs. N₃ = {'my', 'book'}
- ill-formed: N₄ = {'my', book}
- defined by a property of its members:
 M₂ = {x:x is one of the first three letters of the alphabet}
- alternatively:
 M₂ = {x||x is one of the first three letters of the alphabet}
- U: the universal set (contains every discrete object)

Equality: =

Two sets with contain exactly the same members are equal

Equality: =

- Two sets with contain exactly the same members are equal
- independent of definition:

```
{a,b,c} =
```

{x:x is one of the first three letters of the alphabet}

Equality: =

- Two sets with contain exactly the same members are equal.
- independent of definition:

```
{a,b,c} = 
{x:x is one of the first three letters of the alphabet}
```

{x:x is human} = {x:x is from the planet earth and x can speak}

Subsets: ⊆

ullet A set N which holds no member which is not in M is a subset of M: N \subseteq N

Subsets: ⊆

- A set N which holds no member which is not in M is a subset of M: N \subseteq N
- $\{a\} \subseteq \{a,b,c\}$

Subsets: ⊆

- A set N which holds no member which is not in M is a subset of M: $N \subseteq N$
- $\{a\} \subseteq \{a,b,c\}$
- the inverse: the superset

 A set N which holds no member which is not in M and which is not equal to M is a proper subset of M: N ⊂ M

- A set N which holds no member which is not in M and which is not equal to M is a proper subset of M: $N \subset M$
- So, actually: $\{a\} \subset \{a,b,c\}$ and $\{a,b,c\} \subseteq \{a,\overline{b,c}\}$. Note that:

Proper subsets: ⊂

- A set N which holds no member which is not in M and which is not equal to M is a proper subset of M: $N \subset M$
- So, actually: $\{a\} \subset \{a,b,c\}$ and $\{a,b,c\} \subseteq \{a,b,c\}$. Note that:
- $M \subseteq M$ but $M \not\subset M$

- A set N which holds no member which is not in M and which is not equal to M is a proper subset of M: $N \subset M$
- So, actually: $\{a\} \subset \{a,b,c\}$ and $\{a,b,c\} \subseteq \{a,b,c\}$. Note that:
- $M \subseteq M$ but $M \not\subset M$
- $\bullet \ \{\{a\}\} \not\in \{a,b,c\}$

- A set N which holds no member which is not in M and which is not equal to M is a proper subset of M: $N \subset M$
- So, actually: $\{a\} \subset \{a,b,c\}$ and $\{a,b,c\} \subseteq \{a,b,c\}$. Note that:
- $M \subseteq M$ but $M \not\subset M$
- $\bullet \ \{\{a\}\} \not\in \{a,b,c\}$
- $\{\} \subset \{a,b,c\}$ (or any set), $\{\}$ is sometimes written \emptyset

All professors of English Linguistics are human.
 Herr Webelhuth is a professor of English Linguistics.

- All professors of English Linguistics are human.
 Herr Webelhuth is a professor of English Linguistics.
- w = Herr Webelhuth
 E = the set of professors of English Linguistics
 H = the set of human beings

- All professors of English Linguistics are human.
 Herr Webelhuth is a professor of English Linguistics.
- w = Herr Webelhuth
 E = the set of professors of English Linguistics
 H = the set of human beings
- $w \in E \& E \subset H \Rightarrow w \in H$

• But: Professors of English Linguistics are numerous.

- But: Professors of English Linguistics are numerous.
- N = the set of sets with numerous members

- But: Professors of English Linguistics are numerous.
- N = the set of sets with numerous members
- $w \in E \& E \in N \not\Rightarrow w \in P$

- But: Professors of English Linguistics are numerous.
- N = the set of sets with numerous members
- $w \in E \& E \in N \not\Rightarrow w \in P$
- Hence: *Herr Webelhuth is numerous.

Power sets: 6

• For any set M: $\wp(M) = \{X | X \subseteq M\}$

Power sets: 6

- For any set M: $\wp(M) = \{X | X \subseteq M\}$
- for $M = \{a, b, c\}$:

$$\wp(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}, \{b, c\}\}\}$$

Power sets: \wp

- For any set M: $\wp(M) = \{X | X \subseteq M\}$
- for $M = \{a, b, c\}$:

$$\wp(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}, \{b, c\}\}$$

Power sets: 6

- For any set M: $\wp(M) = \{X | X \subseteq M\}$
- for M= $\{a, b, c\}$: $\wp(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}, \{b, c\}\}$
- Why is the empty set in the power set of every set ...

Power sets: 6

- For any set M: $\wp(M) = \{X | X \subseteq M\}$
- for M= $\{a, b, c\}$: $\wp(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}, \{b, c\}\}$
- Why is the empty set in the power set of every set ...
- ...and why is the empty a set a proper subset of every set?

Union \cup and intersection \cap

• For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$

Union ∪ and intersection ∩

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$

Union ∪ and intersection ∩

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | x \in M \text{ and } x \in N\}$

Union ∪ and intersection ∩

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | x \in M \text{ and } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b\}$ then $M \cap N = \{a, b\}$

Union \cup and intersection \cap

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N \}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | x \in M \text{ and } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b\}$ then $M \cap N = \{a, b\}$
- as a general principle (Consitency): $M \subseteq N$ iff $M \cup N = N$ and $M \subseteq N$ iff $M \cap N = M$

• $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}$ then $\bigcup M = \{a, b, c\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a,b\}$, $M_3 = \{a,b,c\}$, $I = \{1,2,3\}$; $\bigcup_{i \in I} M = \{a,b,c\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}$ then $\bigcap M = \{a\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcap M = \{a\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcap_{i \in I} M = \{a\}$

• For any two sets M and N: $M - N = \{x | x \in M \text{ and } x \notin N\}$

- For any two sets M and N: $M N = \{x | x \in M \text{ and } x \notin N\}$
- $M = \{a, b, c\}$, $N = \{a\}$, $M N = \{b, c\}$

- For any two sets M and N: $M N = \{x | | x \in M \text{ and } x \notin N \}$
- $M = \{a, b, c\}, N = \{a\}, M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | x \in N \text{ and } x \notin M\}$

- For any two sets M and N: $M N = \{x | x \in M \text{ and } x \notin N \}$
- $M = \{a, b, c\}, N = \{a\}, M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | x \in N \text{ and } x \notin M\}$
- $O = \{a, b, c, k\} \ M \setminus O = \{k\}$

- For any two sets M and N: $M N = \{x | x \in M \text{ and } x \notin N \}$
- $M = \{a, b, c\}, N = \{a\}, M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | | x \in N \text{ and } x \notin M\}$
- $O = \{a, b, c, k\} M \setminus O = \{k\}$
- the universal complement: $M' = \{x | x \in U \text{ and } x \notin M\}$ (U the universal set)

• Idempotency: $M \cup M = M$, $M \cap M = M$

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...
- Distributivity for \cup and \cap : $M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$...

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...
- Distributivity for \cup and \cap : $M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$...
- Identity: $M \cup \emptyset = X$, $M \cup U = U$...what about \cap

More interesting equalities

• Complement laws: $M \cup \emptyset = M$, M'' = M, $M \cap M' = \emptyset$, $X \cap U = U$

More interesting equalities

- Complement laws: $M \cup \emptyset = M$, M'' = M, $M \cap M' = \emptyset$, $X \cap U = U$
- DeMorgan: $(M \cup N)' = M' \cap X' \dots$

• ...without introducing ordered tuples as a new primitive

- ...without introducing ordered tuples as a new primitive
- take $S=\{\{a\},\{a,b\}\}$

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{ \{a\}, \{a, b\} \}$

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$
- orderend n-tuples defined recursively

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$
- orderend n-tuples defined recursively
- $\langle a, b \rangle \neq \langle b, a \rangle$

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$
- orderend n-tuples defined recursively
- $\langle a, b \rangle \neq \langle b, a \rangle$
- first and second coordinate of the tuple

Cartesian products

sets of ordered pairs

Cartesian products

- sets of ordered pairs
- tupling each member of the first argument with each of the second

Cartesian products

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | x \in S_1 \text{ and } y \in S_2 \}$

Cartesian products

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | x \in S_1 \text{ and } y \in S_2 \}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$

Cartesian products

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | | x \in S_1 \text{ and } y \in S_2 \}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$
- $\langle x_1, x_2, \dots, x_n \rangle$ abbreviated \vec{x}

Cartesian products

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | x \in S_1 \text{ and } y \in S_2\}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$
- $\langle x_1, x_2, \dots, x_n \rangle$ abbreviated \vec{x}
- for $S \times S \times \cdots$: n-fold products $S^n = \{\vec{s} | | s_i \in S \text{ for } 1 \le i \le n\}$

• hold between (sets of) objects

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb
- a ∈ A and b ∈ B: R ⊆ A × B,
 R is from A (domain) to B (range)

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb
- a ∈ A and b ∈ B: R ⊆ A × B,
 R is from A (domain) to B (range)
- R from A to A is in A

• complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the **arguments**)

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ▶ R' = all pairs $\langle b, a \rangle$ s.t. it is false that the first member is the teacher of the second member

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ▶ R' = all pairs $\langle b, a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ightharpoonup R' = all pairs $\langle b,a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b: Herr Webelhuth is the teacher of Herr Schäfer.

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ▶ R' = all pairs $\langle b, a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b: Herr Webelhuth is the teacher of Herr Schäfer.
 - ▶ R^{-1} = all pairs $\langle b, a \rangle$ where a is the teacher of b: Herr Schäfer is the inverse-teacher of Herr Webelhuth.

Functions

A function F from A to B is a relation s.t. for every a ∈ A there is exactly on tuple
 ⟨a, b⟩ ∈ A × B s.t. a is the first coordinate.

Functions

- A function F from A to B is a relation s.t. for every $a \in A$ there is exactly on tuple $\langle a, b \rangle \in A \times B$ s.t. a is the first coordinate.
- partial function from A to B: for some $a \in A$ there is no tuple $\langle a, b \rangle \in A \times B$, F is not defined for some a

• B the range of F, F is **into** B

- B the range of F, F is **into** B
- F from A to B is onto (a surjection) B iff there is no $b_i \in B$ s.t. there is no $(a, b_i) \in F$

- B the range of F, F is into B
- F from A to B is onto (a surjection) B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$
- F from A to B is one-to-one (an injection) iff there are no two pairs s.t. $\langle a_i, b_j \rangle \in F$ and $\langle a_k, b_j \rangle \in F$

- B the range of F, F is **into** B
- F from A to B is **onto** (a surjection) B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$
- F from A to B is one-to-one (an injection) iff there are no two pairs s.t. $\langle a_i, b_j \rangle \in F$ and $\langle a_k, b_j \rangle \in F$
- one-to-one, onto, and total function: correspondence (bijection)

Composition

• One can take the range of a function and make it the domain of another function.

Composition

- One can take the range of a function and make it the domain of another function.
- A function $F_1:A\to B$ and a function $F_2:B\to C$ can be composed as B(A(a)), short $B\circ A$

Composition

- One can take the range of a function and make it the domain of another function.
- A function $F_1:A\to B$ and a function $F_2:B\to C$ can be composed as B(A(a)), short $B\circ A$
- the compound function can be empty, it will be total if both A and B are bijections.

Reflexivity

	if	(ex.)
reflexive	for every $a \in A$: $\langle a, a \rangle \in R$	is as heavy as
irreflexive non-reflexive	for every $a \in A$: $\langle a, a \rangle \not\in R$ for some $a \in A$: $\langle a, a \rangle \not\in R$	A: physical objects is the father of has hurt

Symmetry

	if	(ex.)
symmetric	for every $\langle a,b \rangle \in R$:	has the same car as
	$\langle b,a angle \in R$	
asymmetric	for every $\langle a,b angle \in R$:	has a different car than
	$\langle b,a\rangle ot\in R$	
non-symmetric	for some $\langle a,b \rangle \in R$:	is the sister of
	$\langle b,a\rangle \not\in R$	
anti-symmetric	for every $\langle a,b\rangle\in R$: $a=b$	beats oneself
		not every human does

Transitivity

	if	(ex.)
transitive	if $\langle a,b \rangle \in R$ and $\langle b,c \rangle \in R$	is to the left of
	then $\langle a,c \rangle \in R$	
intransitive	the above is never the case	is the father of
non-transitive	the above is sometimes not the case	likes

Connectedness

	if	(ex.)
connected	for every $a, b \in A$, $a \neq b$:	>
	either $\langle a,b\rangle\in R$ or $\langle b,a\rangle\in R$	(A: the natural numbers)
non-connected	for some $a, b \in A$ the above is not the case	likes

• reflexive $(\langle a, a \rangle \in R \text{ for every } a)$

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$
- is as stupid as

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \ \& \ \langle b,c\rangle \in R \ \to \langle a,c\rangle \in R)$
- is as stupid as
- partition the range into equivalence classes:

```
\mathsf{A} = \{a,b,c,d\} \text{, for example } \mathsf{P}_{\mathsf{A}_1} = \{\{a,b\},\{c\},\{d\}\}
```

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$
- is as stupid as
- partition the range into equivalence classes:

```
A = \{a, b, c, d\}, for example P_{A_1} = \{\{a, b\}, \{c\}, \{d\}\}
```

• not {{a}, {b, c}} or {{a, b}, {b, c}, {d}}

Defining ordering relations

An ordering relation R in A is ...

• transitive ($\langle a,b\rangle\in R\ \&\ \langle b,c\rangle\in R \to \langle a,c\rangle\in R$) ...plus ...

Defining ordering relations

An ordering relation R in A is ...

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: strict order

Defining ordering relations

An ordering relation R in A is ...

- transitive ($\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R$) ...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$

Defining ordering relations

An ordering relation R in A is ...

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$
- reflexive and anti-symmetric: weak order

Defining ordering relations

An ordering relation R in A is ...

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$
- reflexive and anti-symmetric: weak order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$

Orders: an example

ullet a strict order: greater than (>) in $\mathbb N$

Orders: an example

- a strict order: greater than (>) in $\mathbb N$
- what is the corresponding weak order

Orders: an example

- a strict order: greater than (>) in $\mathbb N$
- what is the corresponding weak order
- ≥

• minimal: x is not preceded

- minimal: x is not preceded
- least: x precedes every other lement

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded
- greatest: x succeeds every other element

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded
- greatest: x succeeds every other element
- well-ordering: total order, every subset has a least element

•
$$A = \{a, b, c\}$$

- $A = \{a, b, c\}$
- $B = \{a, b, c\}$

- $\bullet A = \{a, b, c\}$
- $B = \{a, b, c\}$
- obviously, A = B (equal)

- $A = \{a, b, c\}$
- $B = \{a, b, c\}$
- obviously, A = B (equal)
- there is an R from A to B s.t. $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}$

- $A = \{a, b, c\}$
- $B = \{a, b, c\}$
- obviously, A = B (equal)
- there is an R from A to B s.t. $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}$
- for every set C with the same number of elements (e.g., $C = \{1,2,3\}$): $R = \{\langle a,1\rangle, \langle b,2\rangle, \langle c,3\rangle\}$

- $A = \{a, b, c\}$
- $B = \{a, b, c\}$
- obviously, A = B (equal)
- there is an R from A to B s.t. $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}$
- for every set C with the same number of elements (e.g., $C = \{1,2,3\}$): $R = \{\langle a,1\rangle, \langle b,2\rangle, \langle c,3\rangle\}$
- such relations are one-to-one correspondences

• N is infinite

- N is infinite
- for every A there is some R_{card}

- N is infinite
- for every A there is some R_{card}
 - a one-to-one correspondence

- N is infinite
- for every A there is some R_{card}
 - a one-to-one correspondence
 - ▶ from A's members to the first n members of \mathbb{N}

- N is infinite
- for every A there is some R_{card}
 - a one-to-one correspondence
 - ▶ from A's members to the first n members of \mathbb{N}
 - ▶ s.t. *n* is the cardinality of A, ||A||

- N is infinite
- for every A there is some R_{card}
 - a one-to-one correspondence
 - from A's members to the first n members of \mathbb{N}
 - ▶ s.t. *n* is the cardinality of A, ||A||
- sets A,B with ||A|| = ||B|| are equivalent

- N is infinite
- for every A there is some R_{card}
 - ▶ a one-to-one correspondence
 - from A's members to the first n members of \mathbb{N}
 - ► s.t. *n* is the cardinality of A, ||A||
- sets A,B with ||A|| = ||B|| are equivalent
- $\|\mathbb{N}\| = \aleph^0$

A problem

for some sets there is no such R_{care}

A problem

- for some sets there is no such R_{card}
- no way of bringing their elements into an exhaustive linear order

A problem

- for some sets there is no such R_{care}
- no way of bringing their elements into an exhaustive linear order
- no problem with \mathbb{Q} :

- $\langle 0, 1 \rangle$
- $\langle 0, 2 \rangle$
- $\langle 0, 3 \rangle$

. . .

 $\langle 1, 0 \rangle$

- $\langle 1, 1 \rangle$
- $\langle 1, 2 \rangle$
- $\langle 1, 3 \rangle$
- • •

- $\langle 2, 0 \rangle$
- $\langle 2, 1 \rangle$
- $\langle 2, 2 \rangle$
- $\langle 2, 3 \rangle$

• •

:

:

:

:

The non-denumerable real numbers

• now: \mathbb{R}

The non-denumerable real numbers

- now: \mathbb{R}
- \bullet some elements cannot be represented as an ordered pair of two elements of $\mathbb N$

The non-denumerable real numbers

- now: \mathbb{R}
- ullet some elements cannot be represented as an ordered pair of two elements of ${\mathbb N}$
- in [0,1], every real can be represented as 0.abcdefg..., $a,b,c,d,e,f,g,... \in \{0,1,2,3,4,5,6,7,8,9\}$

Trying to enumerate

• an enumeration of [0,1] in \mathbb{R} ?

```
X_1
                    . a<sub>11</sub>
                                      a<sub>12</sub>
                                                a<sub>13</sub>
                                                           a<sub>14</sub>
        = 0 . a_{21} a_{22} a_{23}
X_2
                                                          a<sub>24</sub>
                                                                     •••
              O . a_{31} a_{32} a_{33}
                                                          a<sub>34</sub>
X_3
                                                                     •••
Xn
               0
                           a<sub>n1</sub>
                                     a_{n2}
                                                a<sub>n3</sub>
                                                           a_{n4}
```

• What about an x_m which differs from x_n at a_{nn}

• What about an x_m which differs from x_n at a_{nn}

It won't be in the array..

• What about an x_m which differs from x_n at a_{nn}

- It won't be in the array..
- ullet R is non-denumerable

• What about an x_m which differs from x_n at a_{nn}

- It won't be in the array...
- R is non-denumerable
- If $||A|| = \aleph^0$ then $||\wp(A)|| = 2^{\aleph_0}$ (cf. Partee et al. 62f.)

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.