Exercícios de Eletrônica Digital

1. Efetue a operação:

$$10101001101_2 + 5006_8 - 544_{10} = ()_{16}$$

2. Dado o circuito, faça:

- 2.1 Encontre a Tabela verdade.
 2.2 Redesenhe o circuito utilizando somente NOR.
 2.3 Simule o circuito no circuit maker.
- 3. Dada a expressão, encontre a tabela verdade:

$$S = \left(\overline{C} \oplus B\right) \left(\overline{B}\overline{C}D + \overline{BC} + \overline{AD}\right)$$

4. Dada a tabela verdade:

		D	С	В	Α	S1	S2	
		0	0	0	0	1	1	
		0	0	0	1	0	1	
	L e S2.	0	0	1	0	0	1	
		0	0	1	1	0	1	
		0	1	0	0	1	0	
4.1 Encontre a expressão booleana para S1 e S2.		0	1	0	1	0	1	
4.2 Encontre o circuito simplificado.		0	1	1	0	0	1	
4.3 Simule o circuito no circuit maker		0	1	1	1	0	1	
		1	0	0	0	1	1	
		1	0	0	1	0	1	
		1	0	1	0	0	1	
		1	0	1	1	0	1	
		1	1	0	0	1	0	
		1	1	0	1	0	1	
		1	1	1	0	0	1	
		1	1	1	1	0	1	

5. Dados os decodificadores abaixo, indique a saída selecionada para a seguinte combinação de entrada. Verifique sua resposta no Circuit Maker.

E0	E1	E2	E3	E4	E5	E6	Saída
0	1	0	1	0	1	1	
1	1	0	0	0	0	1	
1	0	1	0	1	0	1	
1	1	0	1	1	0	1	
1	1	0	1	0	0	0	

6. Dado o demultiplexador abaixo, preencha a tabela. Verifique sua resposta no circuit maker.

7. Dado o muliplexador abaixo, indique a entrada de dados que é passada para S0. Verifique no Circuit Maker.

- 8. Projete um Mux de 16X1 utilizando Mux 74LS153. Simule o seu projeto no CircuitMaker.
- 9. Projete um Demux de 1X16 utilizando o 74LS139. Simule o seu projeto no CircuitMaker.
- 10. Projete um Somador de 8 bits utilizando o 74LS283. Simule o seu projeto no CircuitMaker.
- 11. Projete um comparador de magnitude de 8 bits utilizando o 74LS85. Simule o seu projeto no CircuitMaker.

OBS: Os datasheet dos componentes podem ser encontrados no site: www.ti.com.