ECE ING4 MACHINE LEARNING

Jeremy Cohen

Final Week

- Full Review
- Regularization
- Mini Project

Our Final Course: Regularization

The Problem

The Problem

UNDERFITTING

$$\theta_0 + \theta_1 x$$

JUST RIGHT

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

For Logistic Regression

UNDERFITTING

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

(g = sigmoid function)

JUST RIGHT

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

OVERFITTING

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

Overfitting

We fit the training data correctly but fail to generalize

For Logistic Regression

Regression

Regression

Regression

Regularization

Regularization

$$J(\theta)$$
 = Sum of squared errors + $\lambda * slope^2$

$$J(\theta) = 0 + 1*1.3^{2}$$

$$J(\theta) = 1.69$$

for now: $\lambda = 1$

$$J(\theta)$$
 = Sum of squared errors + $\lambda * slope^2$

 $J(\theta) = 0.74$

 $J(\theta) = 0.3^2 + 0.1^2 + 1*0.8^2$

The price is less sensitive to the size of the house

some bias low variance

What about λ

What about λ

If
$$\lambda = 1$$

What about λ

If
$$\lambda = 2$$

What about λ

If $\lambda = 10000$

What about λ

To estimate λ , we use cross-validation

Multiple Features

price = θ_0 + slope1 * size + slope2* rating + slope3 * number of bedrooms+...

We minimize

the sum of the squared errors

+ λ (slope1² + slope2² + slope3²)

Multiple features

2 features - 1 data point

Size of the house

Multiple features

2 features - 2 data points

Thousands of features

3 features - 2 data points

Thousands of features

If we have 4 parameters, we need 4 data points

In case of a dataset with not enough data points compared to the number of features, regularization can help setting some parameters to 0

Summary

Ridge Regularization makes the regression less sensitive to the training data (especially when in low number) and helps reduce overfitting by adding a penalty to the cost function.

Ridge Regression (L₂ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \right]$$

Demo

http://madrury.github.io/smoothers/

Lasso Regularization

Ridge Regression (L₂ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \right]$$

Lasso Regression (L₁ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

 λ is the regularization parameter:

- Ridge: Encourages small weights θ but not exactly 0
- Lasso: "Shrink" some weights θ exactly to 0

Gradient Descent

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \quad \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

With regularization:
$$\theta_j := \theta_j \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

 α , λ are learning parameters to choose manually

In practice: $(1 - \alpha \lambda/m)$ is between 0.99 and 0.95

Logistic Regression

Original Formula

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \; \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \; \log(1-h_ heta(x^{(i)}))]$$

Updated Formula

$$J(heta) = -rac{1}{m}\sum_{i=1}^m [y^{(i)}\ \log(h_ heta(x^{(i)})) + (1-y^{(i)})\ \log(1-h_ heta(x^{(i)}))] + rac{\lambda}{2m}\sum_{j=1}^n heta_j^2$$
regularization

term

Logistic Regression

MINI PROJECT

What now?

BOSTON HOUSING PRICE

https://www.kaggle.com/schirmerchad/bostonhoustingmlnd

US ACCIDENTS

https://www.kaggle.com/sobhanmoosavi/us-accidents/kernels

ENRON

https://www.kaggle.com/wcukierski/enron-email-dataset

FREE CHOICE

Solve a real-world problem of your choice

Solve a problem using Machine Learning

Teaming Up is allowed (up to 2)

FINAL THANK YOU

ECE STUDENTS GET 50% OFF ALL COURSES!

https://jeremycohen.podia.com

COUPON **ECE20**

One Step Ahead

See you soon!