Lecture Notes: Logic

Vedant Patil

October 7, 2024

1 Overview

Key Points

• Understanding and combining logic statements with other logical expressions

2 Detailed Notes

2.1 Logical Statements

A statement is a declarative statement assertion that is either true or false but not both $(T, F \implies 1, 0)$ are called boolean values

Example

- Number 4 is even (T)
- Number 7 is odd (T)
- number 5 is divisible by 3 (F)

An open sentence is a statement that contains one or more verbs

The range of possible value of these variables is called the domain of open sentence, often denoted by $\mathbb S$

Number N is even so we usually denote open sentences by $p(x): x \in \mathbb{S}$

2.2 Combining Statements

2.2.1 Negation

Negation: given a statement P it's negation "Not P" is denoted by $\neg P$ Example

- Number 4 is not even
- Number 4 is odd

This is a more concrete example Establishing knowledge

Vedant Patil MATH 220

- P(N): Number n is odd, $S = \{1, 2, 3, 4\}$
- $\neg P(N)$: number n is even, $S = \{1, 2, 3, 4\}$
- $\neg P(1) : F$
- $\neg P(2) : T$
- $\neg P(3) : F$
- $\bullet \ \neg P(4):T$

2.2.2 Disjunction

Given statements P, Q their disjunction, denoted by $P \vee Q$ is a statement P or Q Example)

- P: I am going to be at a bar tonight
- Q: I am going to the movies tonight

Truth Table			
	р	q	
	Т	Т	
	Τ	F	
	F	Т	
	F	F	

2.2.3 Conjuctaion

Given statements P, Q their conjunction denoted by $P \wedge Q$ is the statement P and Q and is true only when the both of them are true

3 Important Formulas/Theorems/Definitions

Key Formula/Theorem

State an important formula or theorem here

Vedant Patil MATH 220

4 Examples

Example 1:

$$P(N)$$
: number n is odd, $s = \{1, 2, 3, 4\}$ (1)

- P(1):T
- P(2): F
- P(3):T
- P(4): F

Example 2:

$$P(x,y)$$
 is divisible by $x+y$ (2)

$$S = \{a, b\}a \in \{1, 2, 3\}, b \in \{1, 2\}$$
(3)

- P(1,1) = 1 * 1 is -1 1 1 + 1 this statement is false
- P(1,2) = 1 * 2 is -1 1 1 + 1 this statement is false
- P(2,1) this statement is false

5 Questions/Topics for Further Study

• Question or topic for further study