

0.+			
0.+			
nrui	Hidden	Output	target
0	0	o æ3	o tı
0	0	ο α ³ 2	0 t2
	o o	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$$\frac{2L}{\partial W^{\Delta}} = \begin{pmatrix} \frac{-1}{35} \\ \frac{-1}{30} \end{pmatrix} \begin{pmatrix} (++) \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{-1}{35} \\ \frac{-1}{30} \\ \frac{-1}{30} \end{pmatrix} \begin{pmatrix} \frac{2L}{3b^{\Delta}} = \begin{pmatrix} \frac{-1}{33} \\ \frac{-1}{30} \\ \frac{-1}{30} \end{pmatrix}$$

$$W^{\Delta} = 0.01 \frac{2L}{3b^{\Delta}} = \begin{pmatrix} \frac{1.01}{1.69} \\ \frac{-1.69}{1.69} \\ \frac{-1.69}{3.6} \end{pmatrix}$$

$$b^{\Delta} = 0.01 \frac{2L}{3b^{\Delta}} = \begin{pmatrix} \frac{1.01}{1.69} \\ \frac{-1.69}{3.6} \end{pmatrix}$$

[2 21] 2]				
in Put: $\alpha^l \mathcal{Z} \vdash target : t \mathcal{T} \vdash \alpha^l = \binom{l}{l}, \ t = \binom{2}{3} OIZ$	Input	H idden	Output	target
$W^{\lambda} = \begin{pmatrix} 1 & -\lambda \\ 1 & 1 \end{pmatrix}$ $\delta^{\lambda} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	_			- 1
$W^2 = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$, $b^3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $O(ti Vation : \delta(x) = x^2)$			ο α ³ ι ο α ³ 2	
$\begin{pmatrix} a_1^3 \\ a_2^4 \end{pmatrix} = \int (w^3 \cdot \delta(w^2 \cdot a^1 + b^2) + b^3) q^{[B]}$	0	0	0 tr ₂	0 t2
$L_{oss} = \frac{1}{2} \left[(Q_1^3 - t_1)^2 + (Q_2^3 - t_2)^2 \right] \text{ or } CH \gg 10^{-1} r = 0.0 \frac{3}{2}$				
Weight Unlute 및 한 경과를 구해보자.				
[forward]				
$ayer: L$ forword $\xrightarrow{Wa+b}$ $z^{l} \xrightarrow{\sigma(z)} a^{l}$				
/ ('')				
$2 \qquad W^2 O' + V^2 \longrightarrow \binom{-1}{2} \longrightarrow \binom{\prime}{4}$				
$3 \qquad w^{2}\alpha^{2} + b^{3} \longrightarrow {\binom{-3}{2}} \longrightarrow {\binom{9}{4}}$				
[Back ward]				
Layer: λ back Ward \longrightarrow λ^{A}				
$3 \qquad \frac{\partial L}{\partial z^3} \qquad \longrightarrow \begin{pmatrix} -42 \\ -4 \end{pmatrix}$	<u> 21 2 21 200</u>	= (4, - ±,) () (2·83) = (1)	0 (-6) = (-42)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{pmatrix} 2 & 2\frac{3}{2} \end{pmatrix} \bigcirc \begin{pmatrix} -4 \\ -4 \end{pmatrix} \bigcirc \begin{pmatrix} -1 \\ 4 \end{pmatrix}$	
~ ((W) 8 / 0 * (1) / (/94 /	((₩),8)0	(1)	//-4 / · (4/	(1847)
[Weight uplate]				
$\frac{\partial L}{\partial w^3} = \begin{pmatrix} -42 \\ -4 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} = \begin{pmatrix} -42 \\ -4 & -16 \end{pmatrix} \qquad \qquad \frac{\partial L}{\partial w^3} = \begin{pmatrix} -42 \\ -4 \end{pmatrix}$				
$\frac{\partial L}{\partial W^3} = \begin{pmatrix} -43 \\ -4 \end{pmatrix} \begin{pmatrix} (1 & 4 \end{pmatrix}) = \begin{pmatrix} -43 \\ -4 & -16 \end{pmatrix} \qquad , \qquad \frac{\partial L}{\partial b^3} = \begin{pmatrix} -43 \\ -4 \end{pmatrix}$ $W^3 - 0.01 \frac{dL}{dW^3} = \begin{pmatrix} 1.42 & 0.68 \\ 2.04 & -0.84 \end{pmatrix}$				
$b^3 - 0.01 \frac{dL}{db} = {0.42 \choose 0.04}$				
·				
$\frac{\partial L}{\partial w^k} = \begin{pmatrix} 100 \\ 184 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} = \begin{pmatrix} 100 \\ 184 \end{pmatrix} \begin{pmatrix} 194 \\ 184 \end{pmatrix} \begin{pmatrix} \frac{\partial L}{\partial b^k} \end{pmatrix} = \begin{pmatrix} 100 \\ 194 \end{pmatrix}$				
$W^{2} - 0.01 \frac{\partial L}{\partial w^{2}} = \begin{pmatrix} 0 & -3 \\ -0.94 & -0.94 \end{pmatrix}$				
.,				

 $\frac{1}{b^2}$ - 0.01 $\frac{\partial L}{\partial b^2}$ = $\begin{pmatrix} -1 \\ -1.84 \end{pmatrix}$