A First Course in the Finite Element Method

Daryl L. Logan 9781305635111 Sixth Edition

Errata for First and Second Printings

Page	Correction Description	Printing
Number		Affected
79	In the first line, "rectangular plane" should be "plane quadrilateral"	1
90	In Figure 3-11, an angle theta should be added as shown: 2 2 1 2 1 2 1 3 4 4 4 4 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1	1
173	In Equation (4.1.2), remove the term " a_3x^2 +"	1&2
187	In the first line of Equation (4.3.15), "20,000" should be "25,000"	1
200	Delete the superscript 2 that follows "-6L" in Equation (4.4.12)	1
200	Delete the superscript 2 that follows "-6L" in Equation (4.4.13)	1
207	In Equation (4.4.31), delete the third to last column and add a minus sign before the rightmost "6L" in the bottom row	1
209	In Equation (4.5.4), add a subscript "1" following "C"	1&2
209	In Equation (4.5.5), the x in the second to last term should not be in subscript	1
209	In the first line of Equation (4.5.9), "rac" should be "rad"	1
221	In the equation 7 lines from the bottom, "-5" should be "-10"	1
229	Near the bottom of the page, "Compute Answers with P4—5" should be "Compute Answers with P4—7"	1
235	In Problem 4.38, insert "Let $E = 200$ GPa." after "of the span."	1&2
308	Replace the current version of Figure P5–16 with the version shown	1&2
	5.16–5.18 Solve the structures in Figures P5–16 through P5–18 by using substance $E = 200 \text{ GPa}$ $A = 1 \times 10^{-2} \text{ m}^2$	
344	In the first line of Equation (6.2.2), " a_2 " should be " a_2x "	1
346	In Equation (6.2.15), the middle term of the top row of the matrix should be " $\alpha_j u_j$ " instead of " $\alpha_i u_j$ "	1
346	Two lines under Equation (6.2.15), " α_1 " should be " α_i "	1
382	A minus sign (-) should be inserted after the equal sign in Equation (6.2.43)	1
384	In Problem 6.4, "v²" should be "v₂"	1

1	385	In Problem 6.9, "u₃" should be "u₂"	1
182 183 182 182 182 183	389	In Problem 6.15, remove "on the next page" from the second and third lines	1
182 182	484	In Figure P9–26b, change "(0, 1, 0)" near the bottom of the figure to "(0, 0, 1)	1&2
18.2 18.2	531	In Problem 10.6, the reference to "P10–5" in the first line should be to "P10–6"	1&2
182 182	617	In Equations (13.4.47a) and (13.4.47b), add "Btu/h" at the end of the equations	1&2
In Figure P14-17, swap the long and short lines where shown 18.2	655	In Figure P13-2, insert " h , T_{∞} " at the right side of the first diagram	1&2
757 In Figure P15-12, insert the following above the figure: $E_{Priss} = 15 \times 10^6 \text{ psi}, \text{ Gross} = 11.3 \times 10^5 \text{ ps}; E_{Priss} = 15 \times 10^6 \text{ psi}, \text{ Gross} = 14.3 \times 10^5 \text{ psi}; C_{Priss} = 15 \times 10^6 \text{ psi}, \text{ Gross} = 14.3 \times 10^5 \text{ psi}; C_{Priss} = 15 \times 10^6 \text{ psi}, \text{ Gross} = 14.3 \times 10^5 \text{ psi}; C_{Priss} = 15 \times 10^6 \text{ psi}, \text{ Gross} = 14.3 \times 10^5 \text{ psi}; C_{Priss} = 15 \times 10^6 \text{ psi}; C_{Priss} = 15 \times 10^6$	656	In Problem 13.4, change "50°F" to "100°F"	1&2
In Figure P15-12, insert the following above the figure: $E_{brass} = 15 \times 10^6 \text{ ps}_1$, $G_{brass} = 11.3 \times 10^6 \text{ ps}_1$, $G_{brass} = 11.3 \times 10^6 \text{ ps}_1$ $G_{brass} = 14.5 \times 10^6 \text$		In Figure P14-17, swap the long and short lines where shown $\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	
850 Add prime symbols as shown below: $a_{21} = a_{21} - a_{11} \frac{a_{21}}{a_{11}} = 2 - 2\left(\frac{2}{2}\right) = 0$ $a_{22} = a_{22} - a_{12} \frac{a_{21}}{a_{11}} = 0 - 1\left(\frac{2}{2}\right) = -1$ $a_{23} = a_{23} - a_{13} \frac{a_{21}}{a_{11}} = 0 - 1\left(\frac{2}{2}\right) = -5$ Note that these new coefficients correspond to those of the second of Eqs. (B.3. where the right-side a_{23} is of Eqs. (B.3.1.8) are those from the previous step (here f Eqs. (B.3.16)), the right side a_{23} is related to the state a_{24} is the new $a_{25} = a_{23} - a_{12} \frac{a_{21}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{23} = a_{23} - a_{12} \frac{a_{21}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{23} = a_{23} - a_{12} \frac{a_{21}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{23} = a_{23} - a_{12} \frac{a_{21}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{24} = a_{24} - a_{14} \frac{a_{24}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{25} = a_{23} - a_{12} \frac{a_{21}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{25} = a_{23} - a_{12} \frac{a_{21}}{a_{21}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{25} = a_{23} - a_{22} \left(\frac{a_{22}}{a_{22}}\right) = 0 - (-1)\left(\frac{0}{-1}\right) = 0$ $a_{25} = a_{23} - a_{22} \left(\frac{a_{22}}{a_{22}}\right) = 1 - (-1)\left(\frac{0}{-1}\right) = \frac{1}{2}$ $a_{34} = a_{34} - a_{24} \left(\frac{a_{22}}{a_{22}}\right) = \frac{3}{2} - (-5)\left(\frac{0}{-1}\right) = \frac{3}{2}$	757		1&2
850 Add prime symbols as shown below: $a_{21} = a_{21} - a_{11} \frac{a_{31}}{a_{11}} = 2 - 2\left(\frac{2}{2}\right) = 0$ $a_{22} = a_{22} - a_{12} \frac{a_{21}}{a_{11}} = 1 - 2\left(\frac{2}{2}\right) = -1$ $a_{33} = a_{33} - a_{13} \frac{a_{23}}{a_{11}} = 0 - 1\left(\frac{2}{2}\right) = -1$ $a_{34} = a_{24} - a_{14} \frac{a_{31}}{a_{11}} = 4 - 9\left(\frac{2}{2}\right) = -5$ Note that these new coefficients correspond to those of the second of Eqs. (B.3. where the right-side a_{23} is fight side a_{24} is fight side a_{24} is the new $a_{24} = -1$ for $a_{24} = -1$	737		102
850 Add prime symbols as shown below:			
$a'_{21} = a_{21} - a_{11} \frac{a_{21}}{a_{11}} = 2 - 2\left(\frac{2}{2}\right) = 0$ $a'_{22} = a_{22} - a_{12} \frac{a_{21}}{a_{11}} = 1 - 2\left(\frac{2}{2}\right) = -1$ $a'_{23} = a_{23} - a_{13} \frac{a_{21}}{a_{11}} = 0 - 1\left(\frac{2}{2}\right) = -1$ $a'_{24} = a_{24} - a_{14} \frac{a_{21}}{a_{11}} = 4 - 9\left(\frac{2}{2}\right) = -5$ Note that these new coefficients correspond to those of the second of Eqs. (B.3. where the right-side a_{23} is Eqly $c_{22} = 4$, and the left side a_{24} is the new $c_{2} = -1$. For $k = 1$, $i = 3$, and j indexing from 1 to 4. $a'_{31} = a_{34} - a_{11} \frac{a_{31}}{a_{11}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a'_{32} = a_{32} - a_{12} \frac{a_{31}}{a_{11}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a'_{33} = a_{33} - a_{13} \frac{a_{31}}{a_{11}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a'_{34} = a_{34} - a_{14} \frac{a_{31}}{a_{11}} = 6 - 9\left(\frac{1}{2}\right) = \frac{3}{2}$ (B.3) Add double prime symbols as shown below: $a'_{32} = a_{32} - a_{22} \left(\frac{a_{32}}{a_{22}}\right) = 0 - (-1)\left(\frac{0}{-1}\right) = 0$ $a'_{33} = a_{33} - a_{23} \left(\frac{a_{32}}{a_{22}}\right) = \frac{1}{2} - (-1)\left(\frac{0}{-1}\right) = \frac{1}{2}$ $a'_{34} = a_{34} - a_{24} \left(\frac{a_{32}}{a_{22}}\right) = \frac{3}{2} - (-5)\left(\frac{0}{-1}\right) = \frac{3}{2}$	850		1
$a_{32} = a_{32} - a_{22} \left(\frac{a_{32}}{a_{22}}\right) = 0 - (-1)\left(\frac{0}{-1}\right) = 0$ $a_{33} = a_{33} - a_{23} \left(\frac{a_{32}}{a_{22}}\right) = \frac{1}{2} - (-1)\left(\frac{0}{-1}\right) = \frac{1}{2}$ $a_{34} = a_{34} - a_{24} \left(\frac{a_{32}}{a_{22}}\right) = \frac{3}{2} - (-5)\left(\frac{0}{-1}\right) = \frac{3}{2}$	054	$a_{22} = a_{22} - a_{12} \frac{a_{21}}{a_{11}} = 1 - 2\left(\frac{2}{2}\right) = -1$ $a_{23}^{\prime} = a_{23} - a_{13} \frac{a_{21}}{a_{11}} = 0 - 1\left(\frac{2}{2}\right) = -1$ $a_{24}^{\prime} = a_{24} - a_{14} \frac{a_{21}}{a_{11}} = 4 - 9\left(\frac{2}{2}\right) = -5$ Note that these new coefficients correspond to those of the second of Eqs. (B.3. where the right-side a_{3} of Eqs. (B.3.18) are those from the previous step [here Eqs. (B.3.16)], the right side a_{24} is really $c_{2} = 4$, and the left side a_{24} is the new $c_{2} = 4$ for $a_{24}^{\prime} = a_{34} - a_{11} \frac{a_{31}}{a_{11}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{31}^{\prime} = a_{31} - a_{11} \frac{a_{31}}{a_{11}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{32}^{\prime} = a_{32} - a_{12} \frac{a_{31}}{a_{11}} = 1 - 2\left(\frac{1}{2}\right) = 0$ $a_{33}^{\prime} = a_{33} - a_{13} \frac{a_{31}}{a_{11}} = 1 - 1\left(\frac{1}{2}\right) = \frac{1}{2}$ $a_{34}^{\prime} = a_{34} - a_{14} \frac{a_{31}}{a_{11}} = 6 - 9\left(\frac{1}{2}\right) = \frac{3}{2}$ (B.3.16)]	5. fi
909 In 3.16, add prime symbols as shown below:	851	$a_{32} = a_{32} - a_{22} \left(\frac{a_{32}}{a_{22}} \right) = 0 - (-1) \left(\frac{0}{-1} \right) = 0$ $a_{33} = a_{33} - a_{23} \left(\frac{a_{32}}{a_{22}} \right) = \frac{1}{2} - (-1) \left(\frac{0}{-1} \right) = \frac{1}{2}$	1
	909	In 3.16, add prime symbols as shown below:	1

	-	1
	3.16 a. $u_1' = 0.3536 \text{ in.}, u_2' = 0.707 \text{ in.}$ b. $u_1' = 0.433 \text{ in.}, u_2' = -0.1585 \text{ in.}$	
913	In 4.7, "-1.344" should be "-0.672", "0.0072" should be "0.0036", and "0.0024"	1
313	should be "0.0012"	1
914	In 4.12, "7230" should be "2230" and the "-" before "534" should be removed	1
914	In 4.13, "-0.014" should be "-0.0159"	1
915	In 4.28, "-20.3" should be "-46.9", and "at midspan of AB" should be inserted right below "at midspan of BC"	1
915	In 4.31, "-0.495" should be "-0.0137", "at C" should be "at midspan of BC", "5625"	1
	should be "4821", "at A" should be "at B", and the last line should be removed	
917	In the final line for the solution of Problem 5.5, insert "-" before "2171 k-in."	1&2
917	In 5.6, "-0.0363" should be "-0.063"	1
917	In the fourth line of Problem 5.6's solution, "58.31 kip" should be "28.31 kip"	1&2
922	In the answer for 6.7b, change all instances of "MPa" to "GPa"	1&2
923	For part e of Problem 6.9, "-3.73 ksi" should be "-4.73 ksi"	1&2
923	In the first line of part c for Problem 6.14, "-1.63" should be "-3.256"	1&2
926	Change the answer for 9.4a to " σ_r = 25800 psi, σ_z = 5400 psi, σ_ϑ = 25800 psi, τ_{rz} = -5400 psi"	1&2
926	Change the answer for 9.4b to " σ_r = 3514 psi, σ_z = -85.7 psi, σ_ϑ = 2143 psi, τ_{rz} = -700 psi"	1&2
926	In the answer for 9.4c, change " τ_{rz} = 900 psi" to " τ_{rz} = 0"	1&2
927	Change the answer for 9.7a to " σ_r = -75.6 MPa, σ_z = -58.8 MPa, σ_ϑ = 92.4 MPa, τ_{rz} = -58.8 MPa"	1&2
927	Change the answer for 9.7b to " σ_r = -72.8 MPa, σ_z = -50.4 MPa, σ_ϑ = 39.2 MPa, τ_{rz} = -39.2 MPa"	1&2
927	Change the answer for 9.7c to " σ_r = -2100 MPa, σ_z = -1260 MPa, σ_ϑ = 1260 MPa, τ_{rz} = -1050 MPa"	1&2
927	In the answer for Problem 10.5, change the current "c." to "d." Then insert the following before the new "d.": "c. $u = 0.0024$ in."	1&2
927	In the answer for Problem 10.8, change "4.859" to "3.885". Change "2.793" to "2.916". After "(center)", insert a comma and then " σ = 39.9 MPa at x = 0"	1&2