# BIOLOGY Chapter 9



**CICLO CELULAR** 







# Day after amputation

**Before** 

0

36

60

80

148















# **CICLO CELULAR**

Es un conjunto ordenado de sucesos que conducen al crecimiento de la célula y su división





En esta etapa hay una intensa actividad metabólica, la célula crece y sintetiza diversas sustancias, se produce la duplicación del ADN

- A. Periodo G: Se caracteriza por un incremento en el volumen citoplasmático, el cual se debe a la formación de nuevas organelas y una síntesis de proteínas (citoesqueleto).
- B. Periodo S (de síntesis): El evento más importante, se duplica el material genético (ADN).
- **C. Periodo G**<sub>2</sub>: Se caracteriza por la acumulación del material genético.





# **CONOCIMIENTOS PREVIOS**

#### **CROMOSOMAS**

- Son la unidad de la herencia genetica
- Cada célula humana tiene 23 pares de cromosoma
- Se encuentran en el núcleo de la célula
- Estan formadas por ADN y proteinas (histonas)

#### **CROMOSOMAS HOMOLOGOS**

Par de cromosomas que presentan el mismo tipo de información, pero cuyo origen es diferente, es decir son entregados por progenitores diferentes







Male



CROMOSOMAS AUTOSÓMICOS

Female



**CROMOSOMAS SEXUALES** 



Célula haploide (n)



# CÉLULA HAPLOIDE

- Presenta solo un juego de cromosomas, todos diferentes entre si.
- El símbolo utilizado para identificar este tipo de célula es **n**

Célula diploide (2n)



## CÉLULA DIPLOIDE

- Presenta dos juegos de cromosomas, dispuestos en pares homólogos
- El símbolo utilizado para identificar este tipo de célula es
   2n

# **DIVISIÓN CELULAR: MITOSIS**



1. PROFASE

Suceden tres hechos principales.

- ✓ La condensación de la cromatina y se forman los cromosomas.
- ✓ Los pares de centriolos se desplazan hacia los polos formando el huso mitótico o acromático.
- ✓ El núcleo desaparece.









#### 2. METAFASE

- La cromatina llega a su máxima condensación.
- Los centriolos han llegado a los polos.
- Los cromosomas se ubican en la placa ecuatorial del huso mitótico



#### 3. ANAFASE

las fibras del huso se acortan, los centrómeros se dividen se separan las cromátides dirigiéndose a los polos respectivos



## 4. Telofase

Se forman los nuevos núcleos.

Se produce la citocinesis:

· Célula animal:

Estrangulamiento

• Célula vegetal :

Fragmoplasto





#### **RESUMEN DE MITOSIS**

#### Mitosis

#### Interfase



#### Profase :





#### Metafase



Anafase



Telofase





# **DIVISIÓN CELULAR: MEIOSIS**

#### A. MEIOSIS I











En esta etapa hay una intensa actividad metabólica, la célula crece y sintetiza diversas sustancias incluido el ADN,

Es la fase mas compleja y larga de la meiosis Las tétradas se ordenan en el plano ecuatorial, los centriolos están en los polos

Se separan los cromosomas homólogos dirigiéndose a los polos

Se forman los núcleos, cada uno de los cuales tiene numero haploide de cromosomas





# 2. Metafase I

Los cromosomas homólogos apareados se alinean en el plano ecuatorial de la célula. Un homólogo de cada par va hacia cada polo de la célula y ambas cromátidas de un homólogo dado están unidas a microtúbulos que las conducirán al mismo polo.



# 3. Anafase I

Los cromosomas homólogos apareados se separan y se mueven a los polos contrarios de la célula. Las cromátidas hermanas permanecen unidas.

Anafase I



# 4. Telofase I

El huso desaparece. En muchos casos, las membranas nucleares pueden no volverse a formar, especialmente en plantas. La citocinesis I puede no ocurrir tampoco, se forman dos núcleos haploides.

Intercinesis. Luego de la citocinesis I, las células formadas aumentan su volumen celular y duplican sus centriolos. A este periodo se denominará intercinesis porque es un evento comprendido entre meiosis I y meiosis II, pero no hay replicación de ADN.



Cada célula hija haploide origina 2 células hijas también haploides.

**TELOFASE I TELOFASEII PROFASEII** METAFASEII ANAFASEII CITOQUINESÍS Y CITOQUINESIS Surcos de segmentación Los cromosomas se Se forman los Las cromátidas Cromosomas se convierten en ubican en el centro hermanas se cromosomas cromatina y se fijan al huso y se rompe el separan y migran Cuatro células hijas a los polos núcleo acromático haploides Se forman dos células hijas diploides (2n)

# **RESUMEN: MEIOSIS**





### ESQUEMA COMPARATIVO DE LA MITOSIS Y LA MEIOSIS

| ESQUEMA COMPARATIVO DE LA MITOSIS Y LA MEIOSIS |                                                                                                                    |                                                                                                                                                           |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                | MITOSIS                                                                                                            | MEIOSIS                                                                                                                                                   |  |  |
| 1.                                             | Es una división ecuacional que separa las cromátidas.                                                              | <ol> <li>Presenta dos etapas.</li> <li>Primera: división reduccional</li> </ol>                                                                           |  |  |
| 2.                                             | No hacen sinapis los cromosomas, no se for-<br>man quiasmas, no hay intercambio entre los<br>cromosomas homólogos. | <ul> <li>Segunda: división ecuacional</li> <li>Los cromosomas homólogos se unen (hacen sinapsis) y forman quiasmas; en estos sitios se efectúa</li> </ul> |  |  |
| 3.                                             | Dos elementos (células hijas) producidos en cada ciclo                                                             | el intercambio genético entre los cromosomas.  3. Cuatro elementos celulares (gametos o esporas)                                                          |  |  |
| 4.                                             | Igualdad del contenido genético de los pro-<br>ductos mitóticos                                                    | producidas por ciclo  4. El contenido genético de los productos meióti-                                                                                   |  |  |
| 5.                                             | Célula: somática<br>Progenitora: diploide                                                                          | cos es diferente.                                                                                                                                         |  |  |
| 6.                                             | Duración: corta                                                                                                    | 5. Célula: germinal Progenitora: diploide                                                                                                                 |  |  |
| 7.                                             | Objetivo: regeneración, crecimiento                                                                                | <ul><li>6. Duración: larga</li><li>7. Objetivo: reproducción sexual</li></ul>                                                                             |  |  |





# **BIOLOGY**

# **HELICOPRACTICE**









1. ¿Qué es el ciclo celular? Sustentación

Conjunto de etapas desde el nacimiento de una célula hasta su división.

2. Mencione las etapas del ciclo celular. Sustentación

Interfase y división

**3.** ¿Cuál es la diferencia entre el periodo G1 y el periodo S? **Sustentación** 

G1: Duplicación de organelas y crecimiento celular. S: Duplicación del ADN.

**4.** ¿Cuál es la diferencia entre la citocinesis animal y vegetal? **Sustentación** 

| Citocinesis animal            | Citocinesis vegetal      |
|-------------------------------|--------------------------|
| Se forma un surco de división | Se forma el fragmoplasto |

- 5. Identifique las proposiciones correctas con respecto a la gametogénesis.
- I. Se lleva a cabo en células somáticas.
- II. Da origen a células haploides.
- III. Permite la variabilidad genética.
- IV. En los varones se realiza en los túbulos seminíferos.

#### II, III y IV

BIOLOGY

6. El profesor de Biología explicó sobre la gametogenesis, donde enfatizó la base meiotica. Identifique las proposiciones correctas que indicó el profesor que ocurría durante la meiosis.

- I. Implica dos divisiones (reduccional y ecuacional).
- II. Las células hijas son haploides.
- III. No hay intercambio genético.
- IV. En la mujer empieza entre los 10 y 14 años.

Las correctas serian \_\_\_\_ I y II \_\_\_

7. En el gráfico se observa el proceso de la meiosis. ¿En qué momento de la meiosis se reducen los cromosomas?

