BUFN402
PORTFOLIO MANAGEMENT

Assignment 3: tutorial

HW3-1: Bootstrapping

- ► When the data satisfies all these regularity conditions, we will have the closed form solutions for confidence intervals, p-values, etc.
- Great that we have them because statistical inference is just plugging numbers into them.
- How about when we cannot find the sampling distributions of estimators (even in a very large sample)?
 - ➤ Still, those closed forms could provide a reasonable first-order approximation (in most cases).
 - ▶ If you want (or must have) high accuracy of inference, but you are unsure whether your data satisfies the regularity conditions, then what?
- We can use computer as an intensive inferential engine: the bootstrap method!
 - Strictly optional: see details in Hastie's book if you want to torture yourself: https://web.stanford.edu/~hastie/CASI/index.html

Crash course on bootstrap method ***

- **Bootstrapping: simply performing thousands of estimations** (regressions).
 - Procedure is iterative but simple. Here is an algorithm:

```
for loop of n trials {
       resample with replacement from the dataset;
       run the regression model with the resampled dataset;
       save the coefficients;
```

In the end, we have n pairs of coefficients.

- Use theses bootstrap samples:
 - ▶ We find the standard deviation of the bootstrap samples and use it as $se[\hat{\beta}]$.
 - We approximate the true distribution and find the confidence intervals.

HW3-2: Distress Risk Puzzle

- ► Recently, a new anomaly **distress risk puzzle** attracts an attention.
 - ► Seminal papers (**strictly optional**): Campbell et al. (2008, Journal of Finance), Shumway (2008, Review of Financial Studies).
 - ▶ Will be posted on Canvas.
 - ► Read them if and only if you're interested in how to measure a firm's distress risk the expected default frequency (EDF, henceforth) (needs the basics of option pricing).
- Fama-French three-factor model <u>cannot</u> explain the distress-risk anomaly.

Distress Risk Puzzle

- You will be provided the following data
 - ► There are 1225787 firm-month observations
 - permno: firm identifier
 - curdat: year-month
 - ► retx: monthly return
 - edf: distress risk measure (EDF)
 - ► The higher EDF, the more likely a firm default.
 - ▶ EDF is between 0 and 1.
- ► **Note:** a firm has a different EDF measure in a different month.

	permno	curdat	retx	edf		
36	10001	199001	-0.018519	0.000030		
37	10001	199002	-0.006289	0.000030		
38	10001	199003	0.000000	0.000120		
39	10001	199004	0.000000	0.000070		
40	10001	199005	-0.012658	0.000070		
1498835	93436	201808	0.011806	0.000002		
1498836	93436	201809	-0.122290	0.008472		
1498837	93436	201810	0.274011	0.003664		
1498838	93436	201811	0.039013	0.003664		
1498839	93436	201812	-0.050445	0.001081		
1327031 rows × 4 columns						

Part I: Constricting EDF decile portfolios

Step 1: Assign EDF portfolio index to a firm in each month.

Example: in Oct. 2001, there are 3616 firms.

	permno	curdat	retx	edf
177	10001	200110	-0.033473	9.677194e-03
876	10012	200110	0.115789	7.290896e-02
1647	10025	200110	-0.198000	7.064424e-01
1990	10026	200110	0.180800	4.496810e-05
2597	10032	200110	0.060221	3.512910e-01
1322718	92340	200110	-0.026087	6.227358e-01
1323846	92399	200110	0.163743	2.567976e-01
1328732	92583	200110	0.015625	4.282934e-03
1330961	92655	200110	-0.011278	6.194238e-20
1335607	92874	200110	-0.043478	2.917798e-01
3616 rows	× 5 columr	าร		

EDF Cumulative Histogram October 2001

EDF

Part I: Constricting EDF decile portfolios

Step 1: Assign EDF portfolio index

- ➤ Suppose A firm's EDF in Oct. 2001 is given as 0.38.
- ► EDF 0.38 belongs 50-percentile and 60-percentile.
- ► That is, the firm in Oct. 2001 belongs to sixth portfolio in EDF decile portfolios.
- ► **IMPORTANT:** The firm may belong to different EDF portfolios in each month.
 - ▶ If, say in Dec. 2001, the firm's EDF measure is 0.22, then the firm should belong to the EDF PF 5 in Dec 2001.

EDF Cumulative Histogram October 2001

EDF

Task 1: Assign EDF portfolio index

- ► Assign the EDF portfolio index to all firms in Oct. 2001.
- ► Repeat this process every month from in the data.

	permno	curdat	retx	edf	edf_port
177	10001	200110	-0.033473	9.677194e-03	5
876	10012	200110	0.115789	7.290896e-02	6
1647	10025	200110	-0.198000	7.064424e-01	9
1990	10026	200110	0.180800	4.496810e-05	3
2597	10032	200110	0.060221	3.512910e-01	8
1322718	92340	200110	-0.026087	6.227358e-01	9
1323846	92399	200110	0.163743	2.567976e-01	7
1328732	92583	200110	0.015625	4.282934e-03	4
1330961	92655	200110	-0.011278	6.194238e-20	1
1335607	92874	200110	-0.043478	2.917798e-01	7
3616 rows					

Task 2: Construct EDF decile portfolios

Step 2: Find the mean returns of **each** portfolio in **each** month.

- ► Example: in Oct. 2010, 362 firms belong to sixth EDF portfolio.
- ► The mean monthly return of EDF PF 6 in Oct 2010 is 0.0818 (or 8.18%).
- ► Repeat this process for each PF in each month.

	permno	curdat	retx	edf	edf_port		
876	10012	200110	0.115789	0.072909	6		
5481	10080	200110	-0.029954	0.138232	6		
11314	10182	200110	0.126385	0.131321	6		
19456	10353	200110	0.533079	0.062590	6		
21359	10383	200110	-0.229630	0.048755	6		
1193338	88899	200110	0.141667	0.102292	6		
1194945	88938	200110	-0.068100	0.132415	6		
1224223	89587	200110	0.043902	0.091347	6		
1254353	90352	200110	0.036075	0.070537	6		
1291055	91287	200110	0.077778	0.113335	6		
362 rows × 5 columns							

Part I: Result (monthly returns of EDF decile portfolios)

edf_port	1	2	3	4	5	6	7	8	9	10
curdat										
199001	-0.071882	-0.063992	-0.068018	-0.051137	-0.058680	-0.068747	-0.054324	-0.043685	-0.040020	-0.040388
199002	0.017969	0.029681	0.016206	0.029345	0.022992	0.020108	0.006041	0.020147	0.003011	0.009783
199003	0.040453	0.053970	0.043579	0.030298	0.043341	0.038824	0.041638	0.022323	0.033330	0.015609
199004	-0.027157	-0.030853	-0.030442	-0.018969	-0.028502	-0.031579	-0.040148	-0.043685	-0.015234	-0.019144
199005	0.090579	0.073790	0.067727	0.058988	0.039807	0.069111	0.053870	0.032415	0.023465	0.031303
201808	0.026795	0.026750	0.035084	0.029055	0.028832	0.036536	0.015486	0.017422	0.014609	-0.012484
201809	-0.003578	0.004740	-0.001456	-0.014152	-0.006904	0.011755	-0.004069	-0.020193	-0.029168	-0.042230
201810	-0.083670	-0.098409	-0.097326	-0.102713	-0.095460	-0.095983	-0.097991	-0.099281	-0.106857	-0.105269
201811	0.026632	0.020180	0.011850	0.000355	0.008811	-0.005091	-0.026795	-0.023427	-0.020951	-0.053584
201812	-0.079095	-0.082695	-0.081875	-0.098785	-0.102752	-0.119083	-0.126161	-0.138438	-0.144276	-0.204715

Part II: Distress Risk Puzzle Analysis

- ▶ Use the EDF monthly decile portfolio returns, and perform the following:
 - ► CAPM regression
 - ► Fama-French 3 factor regression
- Interpret the results.
 - ▶ Reuse the codes you implemented in HW2 and HW1.