CprE 381: Computer Organization and Assembly Level Programming

Multi-core and GPU Architectures

Henry Duwe
Electrical and Computer Engineering
Iowa State University

Administrative

- HW11 due on Mon April 29
 - Real cache exploration
 - Final HW
- Part 4 due in lab next week
 - WARNING: No extensions!!!
- Final Exam
 - When: Mon May 6 at 7:30am
 - Where: Marston 2155 (everyone)
 - What: Control hazards and data forwarding through HW security

Dynamic Power

Energy/transition =
$$C_L * V_{DD}^2 * P_{0/1 \rightarrow 1/0}$$

Power =
$$C_L * V_{DD}^2 * f$$

Dynamic Power

Energy/transition =
$$t_{sc} * V_{DD} * I_{peak} * P_{0/1\rightarrow1/0}$$

Power =
$$t_{sc} * V_{DD} * I_{peak} * f$$

Static Power

Independent of switching

Total Power

$$P = \alpha f C_L V_{DD}^2 + V_{DD} I_{peak} (P_{0\to 1} + P_{1\to 0}) + V_{DD} I_{leak}$$

Dynamic power (≈ 40 - 70% today and decreasing relatively) Short-circuit power (≈ 10 % today and decreasing absolutely)

Leakage power
(≈ 20 – 50 % today
and increasing
relatively)

Existing Processors

Performance

Computer Architecture Today

Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

Instruction and Data Streams

A classification

		Data Streams	
		Single	Multiple
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD: SSE instructions of x86
	Multiple	MISD: No examples today	MIMD: Intel Xeon e5345

- SPMD: Single Program Multiple Data
 - A parallel program on a MIMD computer
 - Conditional code for different processors

Instruction and Data Streams

A classification

Data Streams

In-class Assessment! Access Code: TaxTime

Note: sharing access code to those outside of classroom or using access code while outside of classroom is considered cheating

- SPMD: Single Program Multiple Data
 - A parallel program on a MIMD computer
 - Conditional code for different processors

History of GPUs

- Early video cards
 - Frame buffer memory with address generation for video output
- 3D graphics processing
 - Originally high-end computers (e.g., SGI)
 - Moore's Law ⇒ lower cost, higher density
 - 3D graphics cards for PCs and game consoles
- Graphics Processing Units (Trend: Accelerators!)
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization

Foundation: Computer Graphics

 Use of fundamental geometrical primitives (points, lines, triangles) to convert from 3D coordinates to a 2D screen

 Typically defined as a set of pipeline stages corresponding to rendering tasks:

 Each rendering stage then corresponds to multiple (programmable) hardware pipeline stages

So Why Do We Care?

A (once quiet) revolution and build-up

Graphics in the System

Acknowledgments

- These slides contain material developed and copyright by:
 - Joe Zambreno (Iowa State)
 - Akhilesh Tyagi (Iowa State)
 - David Patterson (UC Berkeley)
 - Mary Jane Irwin (Penn State)
 - Christos Kozyrakis (Stanford)
 - Onur Mutlu (Carnegie Mellon)
 - Krste Asanović (UC Berkeley)
 - Karu Sankaralingam (UW Madison)
 - Morgan Kaufmann