Лекция 9

Конечные автоматы. Задача о подстроке

9.1 Формальные языки

Будем называть $an\phi aвитом$ произвольное конечное множество (например, $\{0,1\}$ — алфавит). Строкой в алфавите Σ будет называться конечная последовательность его элементов (пустой строкой, обозначаемой ϵ , будет называться последовательность из нуля элементов). Для строки α будем обозначать α_i (а иногда — $\alpha[i]$) ее i-й символ, $\alpha[i..j]$ — ее подстроку с i-го по j-й символ включительно, а $|\alpha|$ — ее длину (количество символов).

Языком в алфавите Σ называется множество некоторых строк в алфавите Σ . Например: $\{\epsilon, 1, 00, 01\}$. Или: $\{\underbrace{0 \dots 0}_n \underbrace{1 \dots 1}_n | n \in \mathbb{N}\}$.

9.2 Конечные автоматы

[Полностью определенный] детерминированный конечный автомат — упорядоченная пятерка $(Q, \Sigma, q_S, F, \delta)$, где

- Q конечное множество состояний,
- Σ алфавит,
- $q_S \in Q$ стартовое состояние,
- $F \subseteq Q$ множество конечных состояний,
- $\delta: Q \times \Sigma \to Q$ функция перехода.

Автомату дают строку в алфавите Σ ; он, по очереди считывая ее символы, переходит из одного состояния в другое. Именно, считав символ $a \in \Sigma$, он переходит из текущего состояния q (начинает он с $q = q_S$) в состояние $\delta(q, a)$. На следующем шаге он будет считывать следующий символ. Если, считав входную строку полностью, он попадает в одно из конечных состояний, то говорят, что автомат принимает данную строку. Формально говоря, автомат принимает строку $s = s_1 \dots s_k$ (где $\forall i \ s_i \in \Sigma$), если существуют состояния q_1, q_2, \dots, q_{k+1} , такие, что $q_1 = q_S, q_{k+1} \in F$ и $\forall i \leqslant k \ q_{i+1} = \delta(q_i, s_i)$.

Множество всех строк в алфавите Σ , принимаемых данным автоматом \mathcal{A} , называ-

9.3 Задача о поиске подстроки (pattern matching)

Задача: даны строки p (образец — pattern) и t (текст — text); |p| = m, |t| = n. Вопрос: встречается ли подстрока p в строке t, то есть существует ли такое $i \ge 1$, что $i+m-1 \le n$ и $p=t_it_{i+1}\dots t_{i+m-1}$?

Тривиальный алгоритм работает O(mn) шагов. Мы построим алгоритм, которому достаточно O(m+n) шагов.

9.3.1 Конечный автомат для поиска заданного образца

ПРОБЕЛ В КОНСПЕКТЕ.

Чтобы построить этот автомат, к сожалению, мы потратим $O(m|\Sigma|)$ шагов (см. ниже), но это стоит сделать, если $m|\Sigma| < n$, поскольку исполнение конечного автомата делается за линейное количество шагов с чрезвычайно небольшой константой в $O(\cdot)$ и весьма эффективной реализацией каждого шага.

9.3.2 Линейный алгоритм

В алгоритме нам понадобится «таблица откатов» П,

$$\Pi[q] = \max\{k \mid k < q, \ p[1..k] - \text{суффикс} \ p[1..q]\}$$

(если таких k нет, $\Pi[q]=0$). (Заметим, что p[1..k] — суффикс p[1..q], если $p[1]\dots p[k]=p[q-k+1]\dots p[q]$.) Как вычислить эту таблицу, мы узнаем чуть позже.

Основной алгоритм. У нас будет два «указателя» q и i; первый указывает на текущий элемент образца; второй — текста.

```
q:=1; for i:=1 to n do begin (*) while q>1 and p[q]\neq t[i] do q:=\Pi[q-1]+1; if p[q]=t[i] then q:=q+1; if q=m+1 then «Нашли!»; end;
```

Покажем, что этот алгоритм заканчивает свою работу за O(n) шагов. Сомнения может вызывать лишь строка (*), так как в ней имеется вложенный цикл. Однако, в ней уменьшается q. Увеличиться же оно может лишь n раз (по одному разу для каждого i), причем всего на единицу. Следовательно, и тело цикла (*) не может выполниться более n раз за все время работы алгоритма.

Вычисление «таблицы откатов» П. У нас снова будет два «указателя» k и q; на сей раз оба указывают на текущие элементы образца.

¹Или если этот образец придется искать многократно в разных текстах: например, если в про-

```
\begin{split} k &:= 1; \\ \Pi[1] &:= 0; \\ \text{for } q &:= 2 \text{ to } m \text{ do} \\ \text{begin} \\ & \text{while } k > 1 \text{ and } p[k] \neq p[q] \text{ do } k := \Pi[k-1] + 1; \\ & \text{if } p[k] = p[q] \text{ then } k := k+1; \\ & \Pi[q] := k-1; \\ \text{end;} \end{split}
```

То, что таблица будет вычислена за O(m) шагов, показывается аналогично тому, как это было сделано для основного алгоритма (только теперь мы следим за «указателем» k).

Замечание 9.1. Эту таблицу откатов, разумеется, можно перестроить в упоминавшийся выше конечный автомат:

ПРОБЕЛ В КОНСПЕКТЕ.

9.4 Конечные автоматы: продолжение

Регулярные языки — синоним для языков, принимаемых конечными автоматами (чуть позже мы увидим, почему).

Лемма 9.1 (лемма о разрастании для регулярных языков (pumping lemma)). Пусть L- регулярный язык. Тогда существует константа c, такая, что любую строку $x \in L$ длины не менее c можно разбить на три части $x = u \cdot v \cdot w$, такие что $0 < |v| \leqslant c$ и $\forall i \geqslant 0$ $u \cdot v^i \cdot w \in L$.

Доказательство. Рассмотрим детерминированный конечный полностью определенный автомат для языка L. Пусть c = |Q| + 1. Посмотрим, как он работает на цепочке x: $q_s \to q_1 \to \ldots \to q_k \in F$. На каждом шаге считывается некоторый символ. Поскольку $|x| \geqslant c$, мы должны были побывать в каком-то состоянии дважды, и в нашем пути есть циклы. Выберем несамопересекающийся цикл; пусть до первого прохождения по нему считывалась строка u, при прохождении по нему считывалась строка v (ее длина не превосходит c, поскольку цикл — несамопересекающийся), а после прохождения по нему (в том числе, если по нему пошли еще раз) — строка w. Очевидно, наш автомат примет любую строку вида uv^iw .

С помощью этой леммы можно доказывать, что какой-нибудь язык не является регулярным.

Пример 9.1. $L = \{0^n 1^n | n \in \mathbb{N} \cup 0\}$ не является регулярным.

- 1. В строку попадают только нули \Rightarrow в uv^2w количество 0 увеличится, а количество 1 останется неизменным \Rightarrow строка не будет принадлежать L.
- 2. В строку попадают только единицы аналогично.
- 3. $v = 0^i 1^j \Rightarrow$ в $uv^2 w$ после 1 будет идти $0 \Rightarrow$ строка опять не будет принадлежать языку.

9.5 Регулярные выражения

Определим регулярные выражения в алфавите Σ . Они будут определяться индуктивно:

- Ø регулярное выражение;
- $\{\epsilon\}$ регулярное выражение;
- $\{a\}$ регулярное выражение (для каждого $a \in \Sigma$);
- Если A, B регулярные выражения, то $A \cup B$ тоже регулярное выражение;
- Если A, B регулярные выражения, то $A \cdot B$ тоже регулярное выражение;
- Если A регулярное выражение, то A^* тоже регулярное выражение.

Это определение исчерпывает все возможные регулярные выражения.

Каждое регулярное выражение определяет некоторый язык. Для большинства пунктов определения очевидно, какой язык имеется в виду; оставшиеся пункты:

- для данных языков A и B язык $A \cdot B$ состоит из строк вида ab, где $a \in A$, $b \in B$ (значок операции "точка" конкатенации строк часто опускается);
- $A^* = \{\epsilon\} \cup A \cup A \cdot A \cup A \cdot A \cdot A \dots$ (все конечные $A \cdot \dots \cdot A$).

Например, $(\{0\} \cup \{11\})^* \cdot \{000\}$ обозначает множество всех последовательностей нулей и пар единиц, заканчивающихся на три нуля.

Теорема 9.1. Множества языков, задаваемых

- (1) конечными автоматами,
- (2) регулярными выражениями

в одном и том же алфавите Σ , совпадают.

Задача 9.1. Доказать теорему 9.1.

9.6 Замкнутость регулярных языков относительно некоторых операций и разрешимые проблемы, связанные с регулярными языками

Полезные свойства.

- 1. Множество всех регулярных языков в данном алфавите замкнуто относительно операций, которые их порождают: \cup , \cdot , *.
- 2. **Лемма 9.2.** Множество всех регулярных языков в данном алфавите замкнуто относительно дополнения.

Доказательство. Рассмотрим детерминированный конечный полностью определенный автомат, задающий язык L. Поменяем местами его конечные состояния с остальными: $F' := Q \setminus F$. Полученный автомат задает язык \overline{L} .

3. Следствие 9.1. ... и замкнуто относительно пересечения.

Разрешимые проблемы.

1. Принадлежность. Рассмотрим детерминированный конечный полностью определенный автомат, принимающий данный язык. Чтобы узнать, принадлежит ли этому языку некоторая строка, запустим наш автомат на этой строке x. После

- 2. Пустота языка. Чтобы решить эту проблему, достаточно проверить, достижимо ли какое-нибудь конечное состояние автомата из начального. Эта задача, очевидно, алгоритмически разрешима.
- 3. Равенство языков. Чтобы построить алгоритм для этой задачи, достаточно заметить, что

$$L_1 = L_2 \Leftrightarrow L_1 \cap \overline{L_2} = \emptyset \wedge L_2 \cap \overline{L_1} = \emptyset$$
 (или: $(L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1}) = \emptyset$).

4. Включение языков. Чтобы построить алгоритм для этой задачи, достаточно заметить, что

$$L_1 \subseteq L_2 \Leftrightarrow (L_1 \cap \overline{L_2} = \emptyset)$$
 (или: $(L_1 \cap L_2 = L_1)$).

9.7 Простой алгоритм для поиска подстроки, использующий случайные числа

ПРОБЕЛ В КОНСПЕКТЕ.