What Is Claimed Is:

1	1. A system for regulating communications between a plurality of		
2	transmitters and a receiver, comprising:		
3	a plurality of cells, wherein each cell controls communications from a		
4	transmitter in the plurality of transmitters to the receiver;		
5	wherein the plurality of cells are arranged in a token ring that regulates		
6	communications from the plurality of transmitters to the receiver; and		
7	wherein the presence of a token within a token ring cell indicates that the		
8	corresponding transmitter may communicate with the receiver.		
1	2. The system of claim 1, further comprising:		
2	a plurality of receivers; and		
3	a plurality of token rings, wherein each token ring passes a corresponding		
4	token among token ring cells that control communications from the plurality of		
5	transmitters to a receiver corresponding to the token ring.		
1	3. The system of claim 2, wherein the plurality of cells are aranged in		
2	a grid wherein a row corresponds to a transmitter and a column corresponds to a		
3	receiver.		
l	4. The system of claim 1, wherein the communications can include		
2	one of:		
3	an electrical signal;		
1	a mechanical signal; and		
5	an optical signal.		

1	5.	The system of claim 1, wherein each cell is configured to receive a		
2	request signal from a corresponding transmitter, and in response to the request			
3	signal, is configured to issue an acknowledgement signal to the corresponding			
4	transmitter which allows the corresponding transmitter to begin transmitting if the			
5	cell has the token.			
1	6.	The system of claim 5, wherein each transmitter further comprises		
2	a reset mechan	nism that is configured to release the clearance to communicate with		

- 7. The system of claim 6, wherein the system further comprises an acknowledgement mechanism configured to confirm the release of the clearance by resetting the acknowledgement signal.
- 1 8. The system of claim 1, further comprising an initialization 2 mechanism configured to initialize the single token in the token ring.
- 1 9. The system of claim 1, wherein the system operates 2 asynchronously.

the receiver by resetting the request signal.

3

- 1 10. The system of claim 1, wherein the system additionally comprises 2 a flow control mechanism configured to selectively limit the communications 3 from the transmitter to the receiver at the request of the receiver.
- 1 11. A method for regulating communications between a plurality of 2 transmitters and a receiver, comprising:

3	receiving a request signal from a transmitter at a cell in a plurality of cells			
4	requesting to communicate with the receiver;			
5	wherein the plurality of cells are arranged in a token ring that regulates			
6	communications from the plurality of transmitters to the receiver; and			
7	in response to the request signal, issuing an acknowledgement signal to the			
8	transmitter which allows the transmitter to begin transmitting if the presence of a			
9	token is detected within the cell.			
1	12. The method of claim 11, wherein the plurality of cells include a			
2	plurality of token rings, wherein each token ring passes a corresponding token			
3	among token ring cells that control communications from the plurality of			
4	transmitters to a receiver corresponding to the token ring.			
1	13. The method of claim 11, wherein a plurality of cells that regulate			
2	communications between the transmitters and receivers are arranged in a grid			
3	wherein a row corresponds to a transmitter and a column corresponds to a			
4	receiver.			
1	14. The method of claim 11, wherein the communications can include			
2	one of:			
3	an electrical signal;			
4	a mechanical signal; and			
5	an optical signal.			
1	15. The method of claim 11, further comprising revoking the			

transmitter resets the request signal.

permission for the transmitter to communicate with the receiver when the

2

3

1	16. The method of claim 15, further comprising resetting the			
2	acknowledgement signal to confirm the revocation of the permission for the			
3	transmitter to communicate with the receiver.			
1	17. The method of claim 11, further comprising initializing the token			
2	in the token ring.			
1	18. The method of claim 11, wherein the system operates			
2	asynchronously.			
1	19. The method of claim 11, further comprising controlling the flow of			
2	communications by selectively limiting the communications from the transmitter			
3	to the receiver at the request of the receiver.			
1	20. A multi-processor system, comprising:			
2	a plurality of processors;			
3	a plurality of transmitters associated with the processors;			
4	a plurality of receivers associated with the plurality of processors;			
5	a plurality of cells, wherein each cell controls communications from a			
6	transmitter in the plurality of transmitters to a receiver;			
7	wherein the plurality of cells are arranged in a token ring that regulates			
8	communications from the plurality of transmitters to a receiver; and			
9	wherein the presence of a token within a token ring cell indicates that the			

10 corresponding transmitter may communicate with the receiver.