Geometría Diferencial 2023

Práctico 2

1. Sean $u, v : \mathbb{R} \to \mathbb{R}^3$ funciones diferenciables. Hallar $\frac{d}{dt}(u(t) \times v(t))$ en términos de u, v y sus derivadas.

- 2. ¿Cambian la curvatura y la torsión de una curva parametrizada por longitud de arco en el espacio si se la recorre en sentido opuesto?
- 3. Graficar la trayectoria de la curva $\alpha(t) = \frac{e^t}{\sqrt{3}}(\cos t, \sin t, 1)$. Hallar la reparametrización por longitud de arco $\beta(s)$ con $\beta(0) = \alpha(0)$. Calcular el tiedro de Frenet, la curvatura y la torsión de β .
- 4. Sea $\alpha:I\to\mathbb{R}^3$ una curva parametrizada regular (no necesariamente por longitud de arco). Probar que:
 - (a) La curvatura de α viene dada por

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3}.$$

(b) La torsión de α está determinada por

$$\tau = -\frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|^2}$$

- 5. Sea $\alpha:(a,b)\to\mathbb{R}^3$ una curva parametrizada por longitud de arco. Suponer que existe $t_0\in(a,b)$ tal que $\|\alpha(t)\|$ alcanza el máximo en t_0 . Probar que $\kappa(t_0)\geq 1/\|\alpha(t_0)\|$.
- 6. Considerar la hélice circular $\alpha(s)=(a\cos(s/c),a\sin(s/c),bs/c)$, con $c^2=a^2+b^2,\,a,b,c>0$.
 - (a) Mostrar que α tiene rapidez unitaria.
 - (b) Calcular el triedro de Frenet de α .
 - (c) Hallar el plano osculador y el plano osculador afín de α en $s=\pi$.
 - (d) ¿Cómo cambia la curvatura de una hélice circular si se la comprime o dilata en la dirección del eje z? ¿Y si se lo hace en la dirección ortogonal al eje z?
 - (e) ¿Qué relación existe entre la torsión de la hélice dada y la torsión de su reflejada respecto del plano x-z?
- 7. Una curva α parametrizada por longitud de arco se llama hélice si las rectas tangentes a α forman un ángulo constante con una dirección fija. Asumiendo $\kappa(t) \neq 0$ para todo t probar:
 - (a) α es una hélice si y sólo si τ/κ = constante.
 - (b) α es una hélice si y sólo si las rectas que contienen a N(t) y pasan por $\alpha(t)$ son paralelas a un plano fijo.
 - (c) α es una hélice si y sólo si las rectas que contienen a B(t) y pasan por $\alpha(t)$ forman un ángulo constante con una dirección fija.
- 8. Probar que una curva regular α esta contenida en una recta si y sólo si existe un punto p tal que cada recta tangente a α pasa por p. ¿Qué ocurre si no pedimos como hipótesis que la curva sea regular?

- 9. Sea $\beta(t) = (\beta_1(t), \beta_2(t), 0)$ una curva regular (contenida en el plano z = 0) y sea $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ una transformación lineal inyectiva.
 - (a) Mostrar que la curva $\gamma = T \circ \beta$ es regular.
 - (b) ¿Cómo son las torsiones de β y γ ?
- 10. Probar que la curva de menor longitud que une dos puntos de \mathbb{R}^3 es el segmento de recta que los une. Para ello considerar $\alpha: [a,b] \longrightarrow \mathbb{R}^3$ una curva, $p = \alpha(a), q = \alpha(b)$ y probar que:
 - (a) Dado $v \in \mathbb{R}^3$, ||v|| = 1, se tiene

$$\langle q - p, v \rangle = \int_a^b \langle \alpha'(t), v \rangle dt \le \int_a^b \|\alpha'(t)\| dt.$$

(b) $\|\alpha(b) - \alpha(a)\| \le \int_a^b \|\alpha'(t)\| dt.$

Curvas planas

- 11. ¿Cambia la curvatura signada de una curva plana parametrizada por longitud de arco si se la recorre en sentido opuesto?
- 12. Sea $\alpha: I \to \mathbb{R}^2$ una curva plana parametrizada por longitud de arco, y supongamos que $0 \in I$. Una circunferencia de centro p y radio r se llama circunferencia osculatriz de α en 0 si es una aproximación de orden dos de α en t=0, o más precisamente, si la función $f(s)=\|\alpha(s)-p\|^2$ cumple que $f(0)=r^2$ y f'(0)=f''(0)=0. Probar que si $\kappa(0)\neq 0$, entonces la circunferencia de centro $p=\alpha(0)+\frac{1}{\kappa(0)}\mathbf{n}(0)$ y radio $\frac{1}{|\kappa(0)|}$ es la única circunferencia osculatriz de α en t=0.
- 13. Se
a $\alpha:I\to\mathbb{R}^2$ una curva regular plana. Mostrar que su curvatura signada viene dada por

$$\kappa = \frac{\det(\alpha', \alpha'')}{\|\alpha'\|^3}$$

- 14. La Catenaria. Sea $\alpha(t) = (t, \cosh t)$.
 - (a) Dibujarla.
 - (b) Mostrar que la curvatura de α es $\kappa(t) = 1/\cosh^2 t$.
 - (c) ¿En qué punto es máxima la curvatura?
- 15. * Sea $\alpha:I\to\mathbb{R}^2$ una curva cerrada y simple, tal que en la región acotada por α se puede colocar un disco de radio r. Probar que la longitud de α es al menos $2\pi r$.
- 16. \star Encontrar los *vértices* de la curva $\alpha:[0,2\pi]\to\mathbb{R}^2, \ \alpha(t)=(a\cos(t),b\sin(t)).$

EJERCICIOS EXTRAS

- 17. Sea $\alpha:(a,b)\to\mathbb{R}^2$ una curva de rapidez unitaria y sean $\kappa,k:(a,b)\to\mathbb{R}$ su curvatura y su curvatura signada, respecivamente. Mostrar que $\kappa=|k|$.
- 18. Supongamos que todas las rectas normales a una curva parametrizada pasan por un punto fijo. Probar que la traza de la curva está contenida en una circunferencia.

- 19. Calcular el triedro de Frenet de la curva $\beta(t)=(\frac{4}{5}\cos(t),1-\sin(t),-\frac{3}{5}\cos(t))$ y mostrar que es una circunferencia. ¿Cuáles son su centro y su radio?
- 20. Se
a $\alpha:[-1,1]\longrightarrow \mathbb{R}^3$ la curva definida por

$$\alpha(t) = \left(\frac{(1+t)^{3/2}}{3}, \frac{(1-t)^{3/2}}{3}, \frac{t}{\sqrt{2}}\right).$$

Probar que está parametrizada por longitud de arco y calcular su triedro de Frenet.