Aerospace Propulsion

Lecture 19 Rocket Propulsion II

Rocket Propulsion: Part II

Definitions

Rocket Thrust

Basic Rocket Analysis

- Major differences between air-breathing and rocket engines
 - Rockets keep all propellants on board
 - Rockets directly overcome gravity with thrust (low/no lift forces)
 - Every little bit of propellant is important
- Rocket capabilities are often measured in terms of how much total energy can be extracted from propellants

- Total impulse
 - $I_t = \int_0^t F dt$
 - Thrust force F
 - May vary in time
 - T typically reserved for Torque
 - Time *t*

- For constant thrust with instant on/off
 - $I_t = F\Delta t$
- Proportional to total energy released by the propellant

F(t)

Definitions

Specific impulse

•
$$I_S = \frac{\int_0^t F dt}{g_0 \int_0^t \dot{m} dt} = \frac{\text{Total impulse}}{\text{Propellant weight}} = \frac{\text{Thrust}}{\text{Propellant weight flow rate}}$$

- Nominal earth gravity g_0
 - $g_0 = 9.8066 \text{ m/s}^2$
- Propellant mass flow rate \dot{m}
- Average value (useful over small Δt)

$$I_S = \frac{I_t}{m_p g_0}$$

- Mass exhausted m_p
- Important/common way to describe rockets

Low TSFC = good High I_s = good

Quick note – have we seen I_s before?

•
$$I_S = \frac{\int_0^t Fdt}{g_0 \int_0^t \dot{m}dt} \approx \frac{F}{\dot{m}g_0} \propto \frac{F}{\dot{m}}$$

•
$$TSFC = \frac{\dot{m}}{F}$$
 (air breathing propulsion)

$$I_S \propto \frac{1}{TSFC}$$

- Different fields use different quantities
 - TSFC is historically <u>not</u> used in the field of rockets

Effective Exhaust Velocity

- $c = I_s g_0 = F/\dot{m} (= V_e)$
- Mean velocity leaving rocket nozzle
- Note that this is basically a constant multiplied by specific impulse
 - Varies between source, I_s more common
- Measuring I_s and c for ground tests
 - Solid motor
 - Tough to measure flow rate, use m_p
 - Liquid Engine
 - Can measure flow rate (pumps), use \dot{m}

- Characteristic Velocity
 - $c^* = \frac{p_1 A_t}{\dot{m}}$
 - Both I_s and c are measured based on properties that come after the nozzle
 - Both quantities are measures of overall rocket efficiency
 - The characteristic velocity is a measure of the rocket's efficiency excluding the nozzle
 - Related to efficiency of combustion process
 - Note that the characteristic velocity is <u>not</u> related to any physical velocity, but has dimensions of velocity

Mass Ratio

•
$$MR = \frac{m_{end}}{m_0}$$

- Final vehicle mass m_{end}
 - Often m_f is used, this is <u>not</u> fuel mass
- Initial vehicle mass m_0

Assuming all mass lost was propellant

 m_{end}

Propellant Mass Fraction

tend

Represents how much of the rocket is propellant

- Impulse to Weight Ratio $\frac{I_t}{w_0}$
 - Total impulse divided by total sea-level weight w_0
 - Assuming constant thrust and instant on/off

•
$$\frac{I_t}{w_0} = \frac{I_t}{(m_{end} + m_p)g_0} = \frac{I_s}{m_{end}/m_p + 1}$$

$$\frac{I_{+}}{W_{0}} = \frac{I_{+}}{M_{+}M_{1}} = \frac{I_{+}}{(M_{ext}+M_{1})} = \frac{I_{+}M_{1}}{(M_{ext}+M_{1})} = \frac{I_{+}M_{1}}{(M_{ext}+M_{1}$$

- Thrust to Weight Ratio $\frac{F}{w_0}$
 - Acceleration that an engine can apply to itself (in g_0 's)

- For airbreathing propulsion, we derived
 - $T = \dot{m}(V_e V)$
- Airbreathing propulsion assumed:
 - Flow entering <u>and</u> exiting
 - Outlet pressure = ambient pressure
 - Not necessarily true for supersonic exhaust
 - Neglected over/under-expanded outlets

Vin Pe=Px 11 pt (v. i) LA= 5 F Pe Ve Ae - Pin Vin Ain = T T= m (Ve-Vin)

Airbreathing Engine

These assumptions do not hold for rockets!

- For rocket propulsion:
 - Inlet velocity V = 0
 - $p_e \neq p_a$
 - Extreme case of vacuum $(p_a = 0)$
 - *Actually, they are equal at one specific elevation
 - Variable area rocket nozzles are rare
 - · Most rockets are expendable
 - Multiple stages each designed for different p_a

Airbreathing Engine

Rocket Engine

•
$$F = \dot{m}V_e + (p_e - p_a)A_e$$

- $\bullet F = \dot{m}V_e + (p_e p_a)A_e$
- Rocket thrust consists of two terms
 - First term Momentum thrust
 - Differs from airbreathing propulsion because V = 0
 - Second term Pressure thrust
 - Can give negative thrust
 - Negative thrust avoided by making sure $p_e > p_a$
 - Generally, momentum thrust is larger than pressure thrust
- Note that in a vacuum, $p_a = 0$
 - $F = \dot{m}V_e + p_eA_e$ (max thrust)

- $\bullet F = \dot{m}V_e + (p_e p_a)A_e$
- A few notes about rocket thrust

- Both airbreathing and rocket engine thrust is affected by elevation
 - Pressure (and temperature) decreases with elevation
 - Airbreathing engines encounter inlet air with varying properties
 - Thrust <u>decreases</u> with elevation
 - Rocket engines have a varying pressure thrust
 - Thrust increases with elevation
 - Note that specific impulse also increases with elevation

Assure Pe=Pa

- Power
 - Exhaust Power

•
$$P_e = \frac{1}{2}\dot{m}V_e^2 = \frac{1}{2}\dot{w}g_0I_s^2 = \frac{1}{2}FV_e$$

- Power from exhaust gases
- Chemical Power
 - $P_c = \dot{m}(LHV)$
 - Same as airbreathing propulsion
- Vehicle Power
 - $P_v = FV$
 - Power transmitted to vehicle flying at speed V

- Multiple propulsion systems
 - Consider multiple simultaneous sources of thrust
 - E.g., Falcon 9 simultaneously uses 9 first stage engines
 - We are <u>not</u> considering staging here
 - $F_{tot} = \sum F_i$
 - Total thrust equal to sum of individual thrusts
 - $\dot{m}_{tot} = \sum \dot{m}_i$
 - Total mass flow rate equal to sum of individual flow rates
 - $(I_s)_{tot} = \frac{F_{tot}}{g_0 \dot{m}_{tot}}$
 - Total specific impulse calculated with above two parameters

- Major assumptions of the basic analysis
 - Quasi-1D approach from compressible flows
 - Flow throughout the engine is isentropic
 - Propellants are perfectly mixed

- This is even simpler than a ramjet
 - No inlet, propellants already mixed
 - Combustor
 - Isentropic Nozzle

- Start at state 0
 - Assume small initial velocity
 - $T_{t0} = T_0$
 - $p_{t0} = p_0$
- State 0 to state 1 (combustion)

•
$$T_{t1} = T_{t0} + \frac{\phi\left(\frac{F}{A}\right)_{st}LHV}{c_p} = T_{t0} + \frac{\left(\frac{F}{A}\right)LHV}{c_p}$$

• $p_{t1} = p_{t0}$

State 1 to exhaust (isentropic nozzle)

•
$$V_e = \sqrt{2 \frac{\gamma}{\gamma - 1} RT_{t1} \left[1 - \left(\frac{p_a}{p_{t1}} \right)^{\frac{\gamma - 1}{\gamma}} \right]}$$

- This is valid for isentropic flow only, which assumes that $p_e=p_a$
- Thrust (assuming $p_e = p_a$)
 - $F = \dot{m}V_e$

Fuel Oxidizer Mixing

- What are we expelling?
 - It's no longer mostly air
 - Rocket exhaust varies significantly depending on which propellants are used
- Lower molecular mass increases V_e

•
$$V_e = \sqrt{2 \frac{\gamma}{\gamma - 1} RT_{t1} \left[1 - \left(\frac{p_a}{p_{t1}} \right)^{\frac{\gamma - 1}{\gamma}} \right]}$$

•
$$V_e = \sqrt{2 \frac{\gamma}{\gamma - 1} \left(\frac{\bar{R}}{\bar{m}}\right) T_{t1} \left[1 - \left(\frac{p_a}{p_{t1}}\right)^{\frac{\gamma - 1}{\gamma}}\right]}$$

- Note that since this is an isentropic nozzle, all our previous equations from compressible flows are also valid
 - Account for combustion before the nozzle as an increased temperature
- Our equations for <u>non-isentropic</u> nozzles are also valid (considering combustion)
 - Normal shock within nozzle
 - Over/under-expanded nozzles

Relevant equations refresher

Isentropic Flows (Static)

$$\begin{split} \frac{T_2}{T_1} &= \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2} \\ \frac{p_2}{p_1} &= \left(\frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2}\right)^{\frac{\gamma}{\gamma - 1}} \\ \frac{\rho_2}{\rho_1} &= \left(\frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2}\right)^{\frac{1}{\gamma - 1}} \\ \frac{A_2}{A_1} &= \frac{M_1}{M_2} \left(\frac{1 + \frac{\gamma - 1}{2} M_2^2}{1 + \frac{\gamma - 1}{2} M_1^2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \end{split}$$

Isentropic Flows (Stagnation)

$$T_{t1} = T_{t2}$$

 $p_{t1} = p_{t2}$

Normal Shocks (Stagnation)

$$\begin{split} T_{t1} &= T_{t2} \\ \frac{p_{t2}}{p_{t1}} &= \left[\frac{\frac{\gamma+1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_1^2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{1}{\frac{2\gamma}{\gamma+1}M_1^2 - \frac{\gamma-1}{\gamma+1}}\right]^{\frac{1}{\gamma-1}} \end{split}$$

Normal Shocks (Static)

$$M_{2}^{2} = \frac{M_{1}^{2} + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_{1}^{2} - 1}$$

$$\frac{T_{2}}{T_{1}} = \frac{\left(1 + \frac{\gamma - 1}{2}M_{1}^{2}\right)\left(\frac{2\gamma}{\gamma - 1}M_{1}^{2} - 1\right)}{\left[\frac{(\gamma + 1)^{2}}{2(\gamma - 1)}\right]M_{1}^{2}}$$

$$\frac{p_{2}}{p_{1}} = \frac{2\gamma M_{1}^{2}}{\gamma + 1} - \frac{\gamma - 1}{\gamma + 1}$$

$$\frac{\rho_{2}}{\rho_{1}} = \frac{(\gamma + 1)M_{1}^{2}}{(\gamma - 1)M_{1}^{2} + 2}$$