My Presentation And Some Things About It

Fulano Ciclano de Tal

Institute of Mathematics Federal University of Some Place

Feb. 30, 2142

Summary

- 1 Blocks and Colors
- 2 boxes and columns
- 3 Equations and Figure
- 4 graphs and other tikz
- 5 End

Blocks and Colors

Color

- That's the blue2 color
- That's the green2 color
- That's the red2 color
- That's the violet2 color
- That's the orange2 color
- That's the yellow color

Blocks

	1 1		- 1
hagin	h	\sim	\sim L
begin	U	ıv	Сr

There's a block

begin alertblock

there's a alert block

begin example block

here comes example

Blocks

Theorem

Here comes a theorem

Proof.

Here comes the proof

boxes and columns

Box

phrase inside box

A big box

$$\{R^n_\alpha(0)\mid n\in\mathbb{N}\}=\{n\alpha\bmod 1\mid n\in\mathbb{N}\}$$

denso em [0,1).

Obs: $\alpha \stackrel{\mathrm{def}}{=} \log b \in \mathbb{R} \setminus \mathbb{Q}$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write some text Here we can write some text Here we text Here we can write some text Here we can write some text Here we can write some text Here we can write

$$R_{\alpha}^{n}(x) \stackrel{\text{def}}{=} R_{\alpha} \stackrel{n}{\overbrace{\circ \dots \circ}} R_{\alpha}(x)$$

Here we can write some text Here we can write some text Here we can write some text Here we text Here we can write some text Here we can write some text Here we can write some text

Question?????????? tell me if you want

the answer is YES!!!! because that that and that or

The answer is $\mathsf{NO}^{\{\}\}}$ because that that and

 $\underbrace{\mathsf{Obs:}}_{\alpha} \overset{\mathrm{def}}{=} \log b \in \mathbb{R} \backslash \mathbb{Q}$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write

$$R_{\alpha}^{n}(x) \stackrel{\text{def}}{=} R_{\alpha} \circ \dots \circ R_{\alpha}(x)$$

Here we can write some text Here we can write some text

Question?????????? tell me if you want

the answer is YES!!!! because that that and that or..

The answer is NO!!!! because that that and

Obs:
$$\alpha \stackrel{\mathrm{def}}{=} \log b \in \mathbb{R} \backslash \mathbb{Q}$$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write

$$R_{\alpha}^{n}(x) \stackrel{\text{def}}{=} R_{\alpha} \stackrel{n}{\circ \dots \circ} R_{\alpha}(x)$$

Here we can write some text Here we can write some text

Question?????????? tell me if you want

the answer is YES!!!! because that that and that or

The answer is NO!!!! because that that and

Obs:
$$\alpha \stackrel{\text{def}}{=} \log b \in \mathbb{R} \backslash \mathbb{Q}$$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write some text

Here we can write some text Here we can write some text

Question?????????? tell me if you wan

the answer is YES!!!! because tha

The answer is NO!!!! be

Obs:
$$\alpha \stackrel{\text{def}}{=} \log b \in \mathbb{R} \setminus \mathbb{Q}$$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write some text

$$R_{\alpha}^{n}(x) \stackrel{\text{def}}{=} R_{\alpha} \circ \cdots \circ R_{\alpha}(x)$$

Here we can write some text Here we can write some text Here we can write some text Here we text Here we can write some text Here we can write some text Here we can write some text

Question?????????? tell me if you want

the answer is YES!!!! because that that an that or..

The answer is NO!!!! because that that and

Obs:
$$\alpha \stackrel{\text{def}}{=} \log b \in \mathbb{R} \setminus \mathbb{Q}$$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write some text

$$R_{\alpha}^{n}(x) \stackrel{\text{def}}{=} R_{\alpha} \circ \cdots \circ R_{\alpha}(x)$$

Here we can write some text Here we can write some text

Question?????????? tell me if you want

the answer is 755500 because the discussion and

The answer is NO!!!! because that that and that

Obs:
$$\alpha \stackrel{\text{def}}{=} \log b \in \mathbb{R} \setminus \mathbb{Q}$$

$$R_{\alpha} \colon [0,1) \longrightarrow [0,1)$$

 $x \longmapsto x + \alpha \mod 1$

Here we can write some text Here we can write some text

$$R_{\alpha}^{n}(x) \stackrel{\text{def}}{=} R_{\alpha} \circ \cdots \circ R_{\alpha}(x)$$

Here we can write some text Here we can write some text

Question?????????? tell me if you want

the answer is YES!!!! because that that and that or..

The answer is NO!!!! because that that and that

								8		10		
2^n	2	4	8	16	32	64	128	2 56	5 12	1 024	2 048	

o dgito 1 mais frequente que o dgito 3?

Spoiler: YES.

Um conjunto de nmeros satisfaz a lei de Benford se o primeiro dgito $d \in \{1,2,3,4,5,6,7,8,9\} \text{ ocorre com}$ a seguinte proporo

							7				11	
2^n	2	4	8	16	32	64	128	2 56	5 12	1 024	2048	

o dgito 1 mais frequente que o dgito 3?

Spoiler: YES.

Um conjunto de nmeros satisfaz a lei de Benford se o primeiro dgito $d \in \{1,2,3,4,5,6,7,8,9\} \text{ ocorre com}$ a seguinte proporo

										10		
2^n	2	4	8	16	32	64	1 28	2 56	512	1024	2 048	

o dgito 1 mais frequente que o dgito 3?

Spoiler: YES.

Um conjunto de nmeros satisfaz a lei de Benford se o primeiro dgito $d \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ ocorre com a seguinte proporo

$$P(d) = \log\left(1 + \frac{1}{d}\right)$$

										10		
2^n	2	4	8	16	32	64	1 28	2 56	512	1024	2 048	

o dgito 1 mais frequente que o dgito 3?

Spoiler: YES.

Um conjunto de nmeros satisfaz a lei de Benford se o primeiro dgito $d \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ ocorre com a seguinte proporo

$$P(d) = \log\left(1 + \frac{1}{d}\right)$$

n	1	2	3	4	5	6	7	8	9	10	11	
2^n	2	4	8	16	32	64	1 28	2 56	5 12	1024	2 048	

o dgito 1 mais frequente que o dgito 3?

Spoiler: YES.

Um conjunto de nmeros satisfaz a *lei de Benford* se o primeiro dgito $d \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ ocorre com a seguinte proporo

$$P(d) = \log\left(1 + \frac{1}{d}\right)$$

Equations and Figure

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x) \tag{1}$$

Ordinary Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) + \frac{1}{CR}y(x) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x) \tag{1}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d}x} + \omega_0^2\right] y(x) = f(x)$$

$$y(x) = \frac{f(x)}{\frac{\mathrm{d}^2}{\frac{\mathrm{d}^2}{\mathrm{d} \cdot x^2} + \gamma \frac{\mathrm{d}}{\mathrm{d} \cdot x} + \omega_0^2}}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y(x) + \gamma \frac{\mathrm{d}}{\mathrm{d}x}y(x) + \omega_0^2 y(x) = f(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Imagem

Figure: Some words about the figure here

See how is cool the fourier serie

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

See how is cool the fourier serie

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f+\alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f+\alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$(\widehat{f + \alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f + \alpha g})(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f + \alpha g})(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$(\widehat{f} + \alpha g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f(x) + \alpha g(x)) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f} + \alpha g)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} dx + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$(\widehat{f} + \alpha g)(\xi) = \widehat{f}(\xi) + \alpha \widehat{g}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} \, \mathrm{d}x$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} \, \mathrm{d}x$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = \frac{f(x)e^{-ix\xi}}{\sqrt{2\pi}} \Big|_{-\infty}^{+\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix\xi} dx$$

$$\downarrow \downarrow$$

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

The inverse does work

for appropriate functions

and, sometimes, the Fourier Transform of a function is not in the same set as the original function, but let's forget about this since we do not know a decent theory of integration

graphs and other tikz

graphs and other tikz

Drawning within tikz

It's possible plotting graphs with pgfplots and tikz

Plotting 3d

References

- Análise de Fourier e Equações Diferenciais

 Parciais.
- 🛅 🔛 George Green e Suas Funções.
- Magnetism. Was to a Manual M Classical Electricity and
- 🖥 Mondon 🔻 Principles of Quantum Mechanics. Indian Common

The End