Получение изображения

Первые цифровые изображения

Цифровое изображение, полученное в 1921 г. с кодовой ленты на телеграфном аппарате с особым шрифтом [McFarlane]

Неретушированная фотография генералов Першинга и Фоша, переданная в 1929 г. по кабелю из Лондона в Нью-Йорк с помощью 15-градационного оборудования [McFarlane]

Первая цифровая фотография

Сын и инженера Russell Kirsch Год: 1957 Разрешение:

176*176 пикселов

Первая цифровая камера

Модель 1975 года Eastman Kodak весила 3.6 кг.

Что такое изображение?

Двумерное представление видимого спектра излучений.

THE ELECTRO MAGNETIC SPECTRUM Wavelength (metres) Radio Infrared Visible Ultraviolet Gamma Ray Microwave X-Ray 10-2 10-5 10-8 10-10 10-12 103 10-6 Frequency (Hz) 104 108 1012 1015 1016 1018 1020

Спектр света

IR UV

Свет

- Фотоны
- Волны

Основные характеристики

- Амплитуда
- Длина волны
 - Частота обратно пропорциональна длине волны
 - Соотношение длины волны(lambda) и частоты (f)

Длина волны (λ)

$$\lambda = c/f$$

где с = скорость света = 299,792,458 м/с

Энергия составляющей электромагнитного спектра

$$E = hv$$

где h — постоянная Планка

Строение глаза

Палочки и колбочки

Угол от оси зрения (от центра желтого пятна)

Кривая видности глаза

Световой поток

$$\Phi_v = K_m \cdot \int \limits_{380 \; nm}^{780 \; nm} V(\lambda) \cdot \Phi_{e,\lambda} \cdot d\lambda$$

Кривая относительной спектральной чувствительности глаза — кривая видности глаза.

Объект сцены

Формирование изображения в глазу

Схематическое изображение глаза, наблюдающего дерево (точка С — оптический центр хрусталика)

Поле зрения

Что видит человек

Что видит человек

Yarbus, A. L. (1967), Eye Movements and Vision, New York: Plenum.

Саккады

DANS, RÖNOCH JAGPROJEKT

På jakt efter ungdomars kroppsspråk och den synkretiska dansen, en sammansmålming av oftka kulturers dans hat jag i mitt fattarbete under hosten fort pårg på olika arenor mom skolans varld. Nordiska, afrikariska, syd- och osteuropeiska ungdomar gör sina röster horda genom sårer musik, skrik, skraft och gestattar kanslor och uttyck fued hjalp av kroppsspråk och dans.

Den individuelta estetiken frantrader i klader, frisyrer och symboliska tecken som forstärker ungdomarnas "jappfojekt" där också den egna stilen (kroppsrordserna spelar en betydande roll) i dentitetsprövningen. Uppehållsrummet fungerar som offentlig arena där ungdomarna spelar upp sina performanceliknande kroppssower

Число градаций яркости (закон фехнера)

Ощущение изменения яркости пропорционально не абсолютному приращению $\Delta L = |L1-L2|$, а логарифму её относительного изменения $\ln(\Delta L/L2)$, ΔL — приращение яркости (**Контрастная различительная способность глаза**), едва заметное на глаз; L — начальная яркость

$$K_{\text{max}} = L_{\text{макс}} / L_{\text{мин}}$$
- максимальный контраст $(L - L\phi o H) / L\phi o H = \Delta L / L\phi$ 1 2 3 4 5 m-1 m

 $M = [In(Lmax/Lmin)]/In(1+\delta)$. Разложив вряд u, m.к. малая δ . Отсюда число ступеней m или A определится как

$$A \approx \frac{\ln(L'_{\text{max}}/L'_{\text{min}})}{\sigma} \approx \frac{2.3}{\sigma} \lg \frac{L'_{\text{max}}}{L'_{\text{min}}}.$$

Lm-1 Lm

полагая, что Lmax/Lmin =100, δ = 0.05 получаем 92 градации [80..130]

В рабочем диапазоне изменения яркости фона можно считать, что $(\Delta L/L\phi)$ пор = δ = 0.02...0.005 ~=const

Первая различимая ступень яркости $L1=Lmin+\delta Lmin=(1+\delta)Lmin$, вторая $L2=L1+\delta L1=(1+\delta)^2Lmin$, итд. Последняя: $Lmax=(1+\delta)^mLmin$.

Восприятие яркости граничных состояний

Восприятие контраста

Камера обскура

Проецирование изображения

Когда свет отражается от поверхности объекта и попадает на сенсор или сетчатку Размытое изображение

Проецирование изображения

Использование малооткрытого препятствия (диафрагмы) позволяет блокировать большинство лучей, уменьшая размытие

Модель пинхол-камеры

Проецирование изображения

Глаз и камера используют адаптивные линзы для контроля параметров формирования изображения:

- 1. Размер диафрагмы
 - количество проникающего света (f-stops)
 - глубина резкозти
- 2. Ширина линзы подстройка фокусного расстояния

Регистрация светового потока

Регистрация светового потока

Аналоговое изображение— это двумерное изображение F(x, y), характеризующееся бесконечной точностью представления по пространственным параметрам x и y и бесконечной точностью представления значений интенсивности в каждой пространственной точке (x, y).

Цифровое изображение— это двумерное изображение I[r, c], представленное в виде двумерного массива дискретных значений интенсивности, каждое из которых представлено с ограниченной точностью.

Матрица

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.

CCD - Прибор с зарядовой связью (ПЗС) CMOS(КМОП)-матрица — светочувствительная матрица, выполненная на основе КМОПтехнологии (комплементарная структура металл-оксид-полупроводник).

Saturation

FIGURE 2.19 An image exhibiting saturation and noise. Saturation is the highest value beyond which all intensity levels are clipped (note how the entire saturated area has a high, constant intensity level). Noise in this case appears as a grainy texture pattern. Noise, especially in the darker regions of an image (e.g., the stem of the rose) masks the lowest detectable true intensity level.

FIGURE 2.21

(a) 452 × 374, 256-level image. (b)–(d) Image displayed in 128, 64, and 32 gray levels, while keeping the spatial resolution constant.

FIGURE 2.21
(Continued)
(e)—(h) Image
displayed in 16, 8,
4, and 2 gray
levels. (Original
courtesy of
Dr. David
R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

Геометрические искажения

Дисперсия

При прохождении через вещество световые лучи могут преломляться и рассеиваться.

Блюминг (избыточная яркость)

Поскольку дискретные детекторы, такие, как ячейки ПЗС, не идеально изолированы друг от друга, то заряд, накопленный в одной ячейке, может стекать в соседние ячейки.

Неоднородности ПЗС-матрицы

Из-за дефектов производства у элементов ПЗС-матрицы может оказаться различная чувствительность, так что при одинаковой освещенности различные ячейки будут генерировать различный выходной сигнал.

Хроматическая дисторсия

Световые волны различной длины преломляются линзой по-разному (показатель преломления линзы зависит от длины волны). В результате, световые волны различной длины от одного и того же малого участка сцены могут попасть в несколько различных пикселов изображения

Эффекты дискретизации

В процессе дискретизации значение интенсивности формируется для некоторой дискретной области сцены. Оно представляется одним из дискретных значений интенсивности и поэтому подвержено ошибкам смешивания и округления

Представление изображения

/	227	219	221	209	212	211	198	197	194	194	19	191	190	192
	225	212	210	191	190	185	201	192	200	204	219	214	226	232
	207	189	200	195	226	230	222	214	196	179	181	151	141	122
	214	212	232	205	183	130	135	113	J.A.	113	120	131	143	167
	209	229	121	85	117	147	143	163	184	164	158	196	181	182
	220	155	138	176	196	188	194	198	179	165	157	170	181	169
	208	163	164	178	176	177	191	168	172	186	157	194	161	194