Devoir surveillé n°15

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 E3A Maths 1 MP 2016

On considère les fonctions F et G définies par :

$$F(x) = \sum_{n=1}^{+\infty} \frac{1}{1 + 4n^2 x^2} \quad \text{et} \quad G(x) = \int_0^{+\infty} \frac{\sin t}{e^{2xt} - 1} \, dt$$

1. Pour un réel x > 0, justifier la convergence de l'intégrale

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1 + 4t^2 x^2}$$

puis calculer la valeur de cette intégrale (on pourra utiliser le changement de variable u = 2xt).

- **2.** Démontrer que F est définie sur \mathbb{R}^* et étudier la parité de F.
- **3.** Soient a et b des réels tels que 0 < a < b. Démontrer que F est de classe \mathcal{C}^1 sur]a, b[. Que peut-on en déduire?
- **4.** Pour x > 0 et $n \in \mathbb{N}^*$, justifier l'inégalité

$$\frac{1}{1+4n^2x^2} \le \int_{n-1}^n \frac{\mathrm{d}t}{1+4t^2x^2}$$

1

puis établir que $F(x) \le \int_0^{+\infty} \frac{dt}{1 + 4t^2x^2}$.

- 5. Pour x > 0, démontrer de même l'inégalité $\int_0^{+\infty} \frac{\mathrm{d}t}{1 + 4t^2x^2} 1 \le \mathrm{F}(x)$.
- **6.** En déduire un équivalent de F(x) lorsque $x \to 0^+$ et la limite de F(x) lorsque $x \to +\infty$.
- 7. Etudier les variations de F puis représenter graphiquement la fonction F sur \mathbb{R}^* .
- **8.** Démontrer que G est définie sur \mathbb{R}_+^* .
- **9.** Démontrer que G est continue sur \mathbb{R}_+^* .

10. Pour $\alpha \in \mathbb{R}_+^*,$ établir la convergence de l'intégrale :

$$I_{\alpha} = \int_{0}^{+\infty} \sin(t)e^{-\alpha t} dt$$

et calculer sa valeur.

11. En déduire que quels que soient t > 0 et x > 0:

$$\frac{\sin t}{e^{2xt} - 1} = \sum_{n=1}^{+\infty} \sin(t)e^{-2nxt}$$

12. En déduire une relation entre F et G (on justifiera la réponse).

© Laurent Garcin MP Dumont d'Urville

Problème 1 – CCINP PSI 2018

Notations et définitions

- \mathbb{N} désigne l'ensemble des entiers naturels, \mathbb{N}^* désigne l'ensemble des entiers naturels non nuls.
- R désigne l'ensemble des nombres réels.
- $\mathbb{R}[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels et, pour tout entier $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à n.
- Si n_1 et n_2 sont deux entiers naturels, on note $[n_1, n_2]$ l'ensemble des entiers naturels compris (au sens large) entre n_1 et n_2 .

Objectifs

On s'intéresse dans ce problème à l'équation différentielle $x^2y'' + axy' + by = 0$. La **partie I** est une partie d'algèbre qui traite des solutions polynomiales de cette équations lorsque a et b sont des constantes réelles. Dans la **partie II**, on détermine l'ensemble des solutions de l'équation lorsque a et b sont des constantes réelles. La **partie III** traite des solutions de cette équation lorsque a = 1 et b est la fonction carré.

I Endomorphismes

Dans toute cette partie, n désigne un entier naturel non nul et a et b des constantes réelles.

 $\boxed{1}$ On note Δ l'endomorphisme de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \ \Delta(P) = XP'$$

Calculer $\Delta(X^k)$ pour tout $k \in [0; n]$.

- Montrer que pour tout $P \in \mathbb{R}[X]$, $X^2P'' = \Delta \circ (\Delta Id)(P)$, où Id désigne l'endomorphisme identité sur $\mathbb{R}[X]$.
- **3** Montrer que si $P \in \mathbb{R}_n[X]$, alors $\Delta(P) \in \mathbb{R}_n[X]$.

On notera Δ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Δ .

- **4** Déterminer la matrice de Δ_n dans la base canonique $(1, X, ..., X^n)$ de $\mathbb{R}_n[X]$.
- [5] On définit l'application Φ par :

$$\forall P \in \mathbb{R}[X], \ \Phi(P) = X^2 P'' + aXP'$$

Montrer que $\Phi = \Delta^2 + (a-1)\Delta$ et en déduire que Φ définit un endomorphisme de $\mathbb{R}[X]$.

- **6** Montrer que Φ induit un endomorphisme Φ_n de $\mathbb{R}_n[X]$.
- **7** Montrer que Φ_n est diagonalisable.

On considère l'endomorphisme φ de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \ \varphi(P) = X^2 P'' + aXP' + bP$$

8 Montrer que φ induit un endomorphisme de $\mathbb{R}_n[X]$, endomorphisme que l'on notera φ_n . Exprimer φ_n en fonction de Δ_n .

© Laurent Garcin MP Dumont d'Urville

9 Exprimer la matrice de φ_n dans la base canonique de $\mathbb{R}_n[X]$.

On considère l'équation :

$$s^2 + (a-1)s + b = 0 (1)$$

- **10** Expliciter le noyau de φ_n lorsque l'équation (1) admet deux racines entières distinctes m_1 , m_2 dans [0; n].
- 11 Expliciter le noyau de φ_n lorsque l'équation (1) admet une unique racine entière $m \in [0; n]$.
- 12 Déterminer le noyau de φ. En déduire qu'il est de dimension finie et déterminer sa dimension.

II Une équation différentielle

On considère dans cette partie l'équation différentielle

$$x^2y'' + axy' + by = 0 (2)$$

où a et b sont des constantes réelles.

- Que déduit-on du théorème de Cauchy quant à la structure de l'ensemble des solutions de l'équation (2) sur $I =]0, +\infty[$? Et sur $J =]-\infty, 0[$?
- Montrer que si y est une solution de (2) sur I, alors $g = y \circ \exp$ est une solution sur \mathbb{R} de l'équation différentielle linéaire à coefficients constants :

$$u'' + (a-1)u' + bu = 0 (3)$$

- Réciproquement, soit $t \mapsto g(t)$ une solution de (3) sur \mathbb{R} . Montrer que la fonction $g \circ \ln$ est solution de (2) sur \mathbb{I} .
- Donner les solutions à valeurs réelles de l'équation (3) dans le cas où a = 3 et b = 1 et dans le cas où a = 1 et b = 4. En déduire, dans chacun des cas, les solutions à valeurs réelles de l'équation (2) sur l'intervalle I. On suppose dans les deux questions suivantes uniquement que a = 1 et b = -4.
- 17 Montrer que si y est solution de (2) sur J, alors $h = y \circ (-\exp)$ est solution de (3) sur \mathbb{R} .
- **18** Déduire de ce qui précède l'ensemble des solutions de (2) de classe \mathcal{C}^2 sur \mathbb{R} .

III Une équation de Bessel

On se propose dans cette partie d'étudier l'équation différentielle :

$$x^2y'' + xy' + x^2y = 0 (4)$$

19 Rappeler la définition du rayon de convergence d'une série entière.

Série entière dont la somme est solution de (4)

On suppose qu'il existe une série entière $\sum_{k\geq 0} c_k x^k$, avec $c_0=1$, de rayon de convergence R non nul et dont la fonction somme J_0 est solution de (4) sur $J_0=0$ 0.

20 | Montrer que pour tout $k \in \mathbb{N}$, on a :

$$\begin{cases} c_{2k+1} = 0 \\ c_{2k} = \frac{(-1)^k}{4^k (k!)^2} \end{cases}$$

- 21 Déterminer le rayon de convergence de la série entière $\sum_{k>0} c_k x^k$.
- Soient r > 0 et f une autre solution de (4) sur]0, r[. Montrer que si (J_0, f) est liée dans l'espace vectoriel des fonctions de classe \mathcal{C}^2 sur]0, r[, alors f est bornée au voisinage de 0.

Inverse d'une série entière non nulle en 0

Soit $\sum_{k\geq 0} \alpha_k x^k$ une série entière de rayon de convergence $R_\alpha > 0$ telle que $\alpha_0 = 1$. L'objectif de ce paragraphe est de montrer l'existence et l'unicité d'une série entière $\sum_{k\geq 0} \beta_k x^k$ de rayon de convergence $R_\beta > 0$ telle que pour tout x appartenant aux domaines de convergence des deux séries :

$$\left(\sum_{k=0}^{+\infty}\alpha_k x^k\right)\left(\sum_{k=0}^{+\infty}\beta_k x^k\right)=1.$$

23 Montrer que si $\sum_{k\geq 0} \beta_k x^k$ est solution , alors la suite $(\beta_k)_{k\in\mathbb{N}}$ satisfait aux relations suivantes :

$$\begin{cases} \beta_0 = 1 \\ \forall n \in \mathbb{N}^*, \ \sum_{k=0}^n \alpha_k \beta_{n-k} = 0 \end{cases}$$
 (5)

Soit r un réel tel que $0 < r < R_{\alpha}$.

24 Montrer qu'il existe un réel $M > \text{tel que pour tout } k \in \mathbb{N} : |\alpha_k| \leq \frac{M}{r^k}$

25 Montrer que (5) admet une unique solution $(\beta_k)_{k\in\mathbb{N}}$ et que, pour tout $k\in\mathbb{N}^*$:

$$|\beta_k| \le \frac{M(M+1)^{k-1}}{r^k}.$$

On pourra raisonner par récurrence.

26 Que peut-on dire du rayon de convergence $R_{\beta} > 0$ de la série entière $\sum_{k>0} \beta_k x^k$?

Ensemble des solutions de (4)

Soient r > 0 et λ une fonction de classe C^2 sur]0, r[.

Montrer que la fonction $y: x \mapsto \lambda(x)J_0(x)$ est solution de (4) sur]0, r[si et seulement si la fonction $x \mapsto xJ_0^2(x)\lambda'(x)$ est de dérivée nulle sur]0, r[.

Montrer que J_0^2 est somme d'une série entière dont on donnera le rayon de convergence. Que vaut $J_0^2(0)$?

En déduire l'existence d'une fonction η somme d'une série entière de rayon de convergence $R_{\eta}>0$ telle que :

$$x \mapsto \eta(x) + J_0(x) \ln(x)$$

soit solution de (4) sur un intervalle]0, R_{η} [.

[30] En déduire l'ensemble des solutions de (4) sur $[0, R_n]$.