Atiyah-Singer Index Theorem Seminar.

Analysis of Dirac Operators (Andrew Lee).

Ohy so much analysis!

Idea: We have sections of our Clifford bundle, and we want to quantify how "smooth" they are.

Soboler Spaces.

We first define this for the torus In.

Def-: Let S be a (lifford bundle over II", and dufine an inner product on C (S) by (for he Z>0),

< f,g = \subsection D f, D g \ \ \ \ D istributional derivative)

Def: For $f \in L^2(S)$, the Farier transform of f is $\widehat{f}(\xi) = \int_{\mathbb{T}^n} f(x) e^{-i\xi \cdot x} dx$.

Jact:
$$\mathbb{D}^{\alpha}f(\xi) = (i\xi)^{\alpha}\hat{f}(\xi)$$
 (ID).

 $\mathbb{D}^{\alpha}f(\xi) = (i\xi)^{\alpha}\hat{f}(\xi)$ (ID).

	Theorem:
	For Da Dirac operator, kerD consists of smooth sections.
	sections.
	Post:
	If sekerD, suppose seWt. Consider
	$\ F_{\varepsilon}S\ _{k} \leq C_{k}(\ F_{\varepsilon}S\ _{k-1} + \ DF_{\varepsilon}S\ _{L-1})$
	=Ch(Fε≤ + [D,Fε]≤ +) < 0 indep of ε.
	Sa E a la l
	So Fe are bounded in W, so flere exists some wearly convergent subsequence in W
	$F_{\varepsilon}(s) \xrightarrow{L^2} s$ as $\varepsilon \to 0$.
	So, sel, so sell, so we have by the
	So, SELZ, so SEW, so we have by the above that SEW for all k, and we are done.
	M (coally 1 0')
_	Theorem (spectral-type for Dirac op.):
	Mass is a description of 12(5) into officer 1
	There is a decomposition of L2(S) into orthogonal subspaces of L2(S) into orthogonal subspaces of R. and EXS a discrete subset of R.
,	Dand 322 Cdicarete subset of P.
	y was a salacide subset of it.

Functional Calculus Spectral Mapping.
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Need a way to obtain F(D) for D a Dirac operator, f a bounded function on the spectrum of D (S(D)).
Fa bounded function on the spectrum of D (S(D))!
So for $f:S(D) \longrightarrow \mathbb{C}$, define a map from bounded functions on $S(D)$ to bounded operators on $L^2(S)$ as
on S(D) to bounded operators on L'(S) as
FF > Sif(x)R Prej to > eigenspace
+
Theorem:
DIEDIEM.
71 and E is a writed homomorphism for the de hounded
The map F is a unital homemorphism from the ring of bounded functions on $S(D)$ to the algebra of bounded operators on $L^2(5)$. The operator norm of $f(D)$ is bounded by $SUPF$.
The consister worm of PIDI is hounded by SUDE
a che avia via i d'an la production por significante de signif
Moreover, if A commutes with D for D Dirac and A a first order differential operator, then A commutes with $f(D)$.
first order differential operator, then A commutes with
‡(D).
If $f(x) = cg(x)$ for f, g bounded functions on $S(D)$, then $f(D) = Dg(D)$ as operators.
f(D)=Dq(D) as operators.
, 0,

Closed Graphs.
Bounded: If x, > x, then L(x) -> L(x),
Closed: If xn >x and L(xn) Cauchy, Hen L(xn) > L(x).
Def: The graph of an operator $L: H \rightarrow H$ is the subset of $H \times H$ given by $\{(x, Lx)\}$.
Theorem:
The closure of the graph G of a Dirac operator is also the graph of an operator D.
how does this the work? properties of D?
Tleoren:
Suppose $x,y \in L^2(S)$, and $Dx = y$ weakly, i.e. $\langle Dx,s \rangle = \langle y,s \rangle$. Then $x \in W^1(S)$, and $\overline{D}x = y$.