CS 472 HW 7

Aaron Havens

November 3, 2017

14.1) a.)

b.) First apply Bayes Rule to reverse the dependency.

$$P(G|2 \text{ heads}, 1 \text{ tail}) = P(2 \text{ heads}, 1 \text{ tails}|G)P(G)/P(2 \text{ heads}, 1 \text{ tails})$$
 (1)

$$P(2 \text{ heads}, 1 \text{ tails}|G)$$
 (2)

G	P(G)
a	1/3
b	1/3
С	1/3

(a)	The	${\rm CPC}$
for	G	

G	X_i	P(G)
a	heads	0.2
b	head	0.6
c	heads	0.8

(b) The CPC for x_i given G

 x_1, x_2 and x_3 are conditionally independent of given G (they are d separated by G). The highest conditionally probability in question can then calculated, where there are 3 choose 2 combinations of the event for a.

$$P(x_1 = tails | G = a)P(x_2 = heads | G = a)P(x_3 = heads | G = a) = 0.032$$
(3)

$$P(2 \text{ heads}, 1 \text{ tails}|G = a) = 3 * 0.032 = 0.096$$

(4)

(5)

It follows that.

$$P(2 \text{ heads}, 1 \text{ tails}|G = b) = 0.432$$
 (6)

$$P(2 \text{ heads}, 1 \text{ tails}|G=c) = 0.384$$
 (7)

(8)

The condition G = b provides the highest conditionally probability.

- **14.6)** a). The network c represent represents the expression. The independence of genes is asserted.
- b). a and b both consistent with the claim. However, b may have some unnecessary dependencies based on the description.
- c.) a is the best representation for reasons stated above.

d.)

Table 1: CPC for handedness

G_{mother}	G_{father}	$P(G_{child} = l)$	$P(G_{child} = r)$
1	1	1-m	m
1	r	0.5	0.5
r	1	0.5	0.5
r	r	m	1-m

e.)

$$P(G_{child} = l) = \sum_{g_m, g_f} P(G_{child} = l|g_m, g_f) P(g_m, g_f)$$
(9)

$$= \sum_{g_m, g_f} P(G_{child} = l | g_m, g_f) P(g_m) P(g_f)$$
 (10)

$$= (1-m)q^2 + 0.5q(1-q) + 0.5(1-q)q + m(1-q)^2$$
(11)

$$= q + m - 2mq \tag{12}$$

f.) left-handedness is humans is fairly uncommon ($\approx 10\%$ according to Google). For equilibrium, $P(G_{child}=l)=P(G_{mother}=l)=P(G_{father}=l)$. This implies that $q+m-2mq=q, \quad q=0.5$. This seems too high for current global statistics.

14.14) a.) ii, and iii are asserted by the network. b.) $P(b, i, \neg m, g, j) = P(b)P(\neg m)P(i|b, \neg m)P(g|b, i, \neg m)P(j|g) = 0.9*0.9*0.5*0.8*0.9 = 0.2916$ c.) B, I and M are given as evidence with values of *true*. This gives G a prior of 0.9. The probability of going to jail is:

$$P(J|b,i,m) = \alpha \sum_{g} P(J,g)$$
 (13)

$$= \alpha(P(J,g) + P(J,\neg g)) \tag{14}$$

$$= \alpha(\langle P(j,g), P(\neg j,g)\rangle + \langle P(j,\neg g), P(\neg j,\neg g)\rangle) \tag{15}$$

$$= \langle 0.81, 0.19 \rangle \tag{16}$$

$$= \alpha(\langle 0.81, 0.09 \rangle + \langle 0, 0, 1 \rangle) = \langle 0.81, 0.19 \rangle \tag{17}$$

The probability of jail is 0.81.

Markov Blanket for variable M in the network includes M's parents, children and its childrens' other parents: I, G, B