Estatística Básica

Lista 3 GABARITO - Probabilidades

Luan Fiorentin

2019-03-17

- 1. Para cada um dos eventos abaixo, escreva o espaço amostral correspondente e conte seus elementos:
 - (a) Uma moeda é lançada duas vezes e observam-se as faces obtidas.
 - (b) Um dado é lançado duas vezes e a ocorrência de face par ou ímpar é observada.
 - (c) Uma urna contém 10 bolas azuis e 10 vermelhas. Duas bolas são selecionadas ao acaso, com reposição, e as cores são anotadas.
 - (d) Dois dados são lançados simultaneamente e estamos interessados na soma das faces observadas.
 - (e) Em uma cidade, famílias com 3 crianças são selecionadas ao acaso e anota-se o sexo de cada uma, de acordo com a idade.
 - (f) Uma máquina produz 20 peças por hora, escolhe-se um instante qualquer e observa-se o número de defeituosas na próxima hora.
 - (g) Uma moeda é lançada consecutivamente até o aparecimento da primeira cara.

Resposta:

- (a) $\Omega = \{CC, CR, RC, RR\}$ $n(\Omega) = 4$
- (b) $\Omega = \{PP, PI, IP, II\}$ $n(\Omega) = 4$
- (c) $\Omega = \{AA, AV, VA, VV\}$ $n(\Omega) = 4$
- (d) $\Omega = \{2, 3, 4, \dots, 12\}$ $n(\Omega) = 11$
- (e) $\Omega = \{MMM, MMF, MFM, FMM, FFM, FMF, MFF, FFF\}$ $n(\Omega) = 8$
- (f) $\Omega = \{\omega : 0 \le \omega \le 20\}$ $n(\Omega) = 21$
- (g) $\Omega = \{C, RC, RRC, RRRC, RRRC, \ldots\}$ $n(\Omega) = \infty$
- 2. Sendo A e B dois eventos em um mesmo espaço amostral, "traduza" para a linguagem da Teoria dos Conjuntos, as seguintes situações:
 - (a) Pelo menos um dos eventos ocorre.
 - (b) O evento A ocorre mas B não ocorre.
 - (c) Nenhum dos eventos ocorre.
 - (d) Exatamento um dos eventos ocorre.

- (a) $B \cup A$.
- (b) $A \cap B^c$.
- (c) $A^c \cap B^c$.
- (d) $(A \cap B^c) \cup (A^c \cap B)$.

3. Considere a tabela de frequência da variável idade:

Idade	ni
17	9
18	22
19	7
20	4
21	3
22	0
23	2
24	1
25	2
Total	50

- (a) Qual a probabilidade de uma pessoa ter 18 anos?
- (b) Qual a probabilidade de uma pessoa ter 23 anos?
- (c) Qual a probabilidade de uma pessoa ter 18 ou 23 anos?
- (d) Qual a probabilidade de união de todos os eventos da tabela?

Resposta:

- (a) P(18) = 0.36.
- (b) P(23) = 0.04.
- (c) $P(18 \cup 23) = 0,40$.
- (d) $P(17 \cup 18 \cup ... \cup 25) = 1$.
- 4. Uma universidade tem 10 mil alunos dos quais 4 mil são considerados esportistas. Temos, ainda, que 500 alunos são do curso de biologia diurno, 700 da biologia noturno, 100 são esportistas e da biologia diurno e 200 são esportistas e da biologia noturno. Um aluno é escolhido ao acaso e pergunta-se a probabilidade de:
 - (a) Ser esportista.
 - (b) Ser esportista e aluno da biologia noturno.
 - (c) Não ser da biologia.
 - (d) Ser esportista ou aluno da biologia.
 - (e) Não ser esportista e nem aluno da biologia.

Resposta: Dica: construa uma tabela resumindo as informações.

Período	Bio. Noite (N)	Bio. Diurno (D)	Outros (O)	Total
Esportista (E)	200	100	3700	4000
Não Esportista (E^c)	500	400	5100	6000
Total	700	500	8800	10000

- (a) P(E) = 0,40.
- (b) $P(E \cap N) = 0,02$.
- (c) $P(O) = P(N^c \cap D^c) = 0.88$.
- (d) $P(E \cup (N \cup D)) = 0,49$
- (e) $P(E^c \cap O) = 0,51$.

5. Sejam A e B dois eventos em um dado espaço amostral, tais que $P(A) = 0, 2, P(B) = p, P(A \cup B) = 0, 5$ e $P(A \cap B) = 0, 1$. Determine o valor de p.

Resposta: p = 0, 40.

- 6. Em replicação controlada, células são replicadas em um período de dois dias. DNA recém-sintetizado não pode ser replicado novamente até que a mitose seja completa. Dois mecanismos de controle foram identificados: um positivo e um negativo. Suponha que uma replicação seja observada em três células. Seja A o evento em que todas as células são identificadas como positivas, e B o evento em que todas as células são negativas. Descreva o espaço amostral e indique cada um dos seguintes eventos:
 - (a) A.
 - (b) B.
 - (c) $A \cap B$.
 - (d) $A \cup B$.

Resposta: $\Omega = \{PPP; PPN; PNP; NPP; NNN; NNP; NPN; PNN\}$

- (a) $A = \{AAA\}.$
- (b) $A = \{NNN\}.$
- (c) $A \cap B = \{\emptyset\}.$
- (d) $A \cup B = \{PPP, NNN\}.$
- 7. Dois processadores tipos A e B são colocados em teste por 50 mil horas. A probabilidade de que um erro de cálculo aconteça em um processador do tipo A é de 1/30, no tipo B é 1/80, e em ambos é 1/1000. Qual a probabilidade de que:
 - (a) Pelo menos um dos processadores tenha apresentado erro?
 - (b) Nenhum processador tenha apresentado erro?
 - (c) Apenas o processador A tenha apresentado erro?

Resposta:

- (a) $P(A \cup B) = 0,045$.
- (b) $P(A^c \cup B^c) = P(A \cup B)^c = 0,96.$
- (c) $P(A \cap B^c) = P(A) P(A \cap B) = 0.03$.
- 8. Considere dois eventos A e B, mutuamente exclusivos, com P(A) = 0, 3 e P(B) = 0, 5. Calcule:
 - (a) $P(A \cap B)$.
 - (b) $P(A \cup B)$.
 - (c) P(A|B).
 - (d) $P(A^c)$.
 - (e) $P((A \cup B)^c)$.

- (a) $P(A \cup B) = 0$.
- (b) $P(A \cup B) = 0.80$.
- (c) P(A|B) = 0.
- (d) $P(A^c) = 1 P(A) = 0.70$

- (e) $P((A \cup B)^c) = 0,20$
- 9. Se $P(A \cup B) = 0, 8, P(A) = 0, 5$ e P(B) = x, determine o valor de x no caso de:
 - (a) $A \in B$ serem mutuamente exclusivos.
 - (b) $A \in B$ serem independentes.

Resposta:

- (a) Como $P(A \cap B) = 0$, então x = 0,30
- (b) Como são independentes, temos que $P(A \cap B) = P(A)P(B) = 0.5x$. Então, x = 0.60.
- 10. Peças produzidas por uma máquina são classificadas como defeituosas, recuperáveis ou perfeitas com probabilidade de 0,1; 0,2 e 0,7; respectivamente. De um grande lote, foram sorteadas duas peças com reposição. Calcule:
 - (a) Probabilidade de 2 defeituosas (evento A).
 - (b) Probabilidade de pelo menos uma ser perfeita (evento B).
 - (c) Probabilidade de uma ser recuperável e uma ser perfeita (evento C).

Resposta:

- (a) P(A) = 0.01
- (b) P(B) = 0.91
- (c) P(C) = 0.28
- 11. A tabela a seguir apresenta informações de alunos de uma universidade quanto as variáveis: Período, Gênero e Opinião sobre a Reforma Agrária. Determine a probabilidade de escolhermos:
 - (a) Uma pessoa do sexo masculino e sem opinião sobre a reforma agrária?
 - (b) Uma mulher contrária a reforma agrária?
 - (c) Dentre os estudantes do noturno, um que seja a favor da reforma agrária?
 - (d) Uma pessoa sem opinião sabendo que ela é do sexo feminino?

——————————————————————————————————————	Gênero	Reforma Agrária		
remodo		Contra	A Favor	Sem Opinião
Diurno	Feminino	2	8	2
	Masculino	8	9	8
Noturno	Feminino	4	8	2
	Masculino	12	10	1

- (a) $P(M \cap O) = 0, 12$.
- (b) $P(M \cap C) = 0.08$.
- (c) P(F|N) = 0,49.
- (d) P(O|F) = 0.15.
- 12. Três candidatos disputam eleições para o Governo do Estado. O candidato do partido de direita tem 30% da preferência eleitoral, o de centro tem 30% e o da esquerda tem 40%. Em sendo eleito, a probabilidade de dar, efetivamente, prioridade para Educação e Saúde é 0,4; 0,6 e 0,9 para os candidatos de direita, centro e esquerda, respectivamente.
 - (a) Qual é a probabilidade de não ser dada prioridade a essas áreas no próximo governo?

(b) Se a área teve prioridade, qual a probabilidade do candidato de direita ter ganho a eleição? E o partido de centro? e o partido de esquerda?

Resposta:

(a) Considere A o evento dar prioridade a essas áreas no próximo governo. Podemos calcular a probabilidade de um governo não dar prioridade pelo complementar A^c . Assim, $P(A^c) = 1 - P(A) =$ $1 - (0,30 \cdot 0,40 + 0,30 \cdot 0,60 + 0,40 \cdot 0,90) = 1 - 0,66 = 0,34$

(b)
$$P(D|A) = \frac{P(A \cap D)}{P(A)} = \frac{0,30 \cdot 0,40}{0,66} = 0, 18.$$

 $P(C|A) = \frac{P(A \cap C)}{P(A)} = \frac{0,30 \cdot 0,60}{0,66} = 0, 27.$
 $P(E|A) = \frac{P(A \cap E)}{P(A)} = \frac{0,40 \cdot 0,90}{0,66} = 0, 55.$

13. A tabela a seguir apresenta dados dos 1000 ingressantes de uma universidade, com informações sobre a área de estudo e classe sócio econômica. Se um aluno ingressante é escolhido ao acaso, determine a probabilidade de:

Área/Classe	Alta	Média	Baixa
Exatas	120	156	68
Humanas	72	85	112
Biológicas	169	145	73

- (a) Ser da classe econômica mais alta.
- (b) Estudar na área de exatas.
- (c) Estudar na área de humanas, sendo da classe média.
- (d) Ser da classe baixa, dado que estuda na área de biológicas.

- (a) P(Baixa) = 0.36
- (b) P(Exatas) = 0.34

(c)
$$P(Humanas|M\acute{e}dia) = \frac{P(M\acute{e}dia|Humanas)}{P(M\acute{e}dia)} = \frac{0.085}{0.39} = 0,22$$

(c)
$$P(Humanas|M\acute{e}dia) = \frac{P(M\acute{e}dia|Humanas)}{P(M\acute{e}dia)} = \frac{0.085}{0.39} = 0, 22$$

(d) $P(Baixa|Biol\acute{o}gicas) = \frac{P(Biol\acute{o}gicas|Baixa)}{P(Biol\acute{o}gicas)} = \frac{0.073}{0.39} = 0, 18$