Speech Enhancement for Robust Automatic Speech Recognition

Sreeganesh Valathara Rajendran ¹ S. Hamid Nawab ¹

Motivation

- Automatic Speech Recognition (ASR) is a technology that converts spoken words into text. It is a core component of systems that enable humans to interact with machines through speech.
- Advancements in ASR models, particularly in their natural language understanding, have enabled the creation of robust speech recognition systems.
- This robustness is limited to speech mixed with audio signals of **different statistical characteristics**, often failing with similar ones like babble or overlapping speech.
- We train a speech enhancement model to suppress the lower-volume speaker in **two-speaker** audio, improving transcription robustness in cluttered environments.

Setup

ASR Model: Whisper

- Whisper[2] is a general-purpose **speech recognition model**.
- It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification.
- There are six model sizes offering speed and accuracy trade-offs: tiny, base, small, medium, turbo, large. We primarily experiment with "large".

Database: TIMIT (TIMIT Acoustic-Phonetic Continuous Speech Corpus)

- The TIMIT Database[1] consists of recordings of 630 speakers of 8 dialects of American English each reading 10 phonetically-rich sentences.
- It also comes with the word and phone-level transcriptions of the speech.
- Training Set: 4620, Test Set: 1680

Audio Model: U-Net

- Takes in magnitude-STFT of noisy-speech dimensions [512, 128]
- 6 Convolutional Layers, 6 transposed-convolution layers.

Training

- Loss function = $MAE(|STFT_{ldeal}| |STFT_{Processed}|) MAE(|STFT_{Processed}| |STFT_{Input}|)$
- Adversarial Training with two 1D Convolutional Neural Networks

Audio Processing Pipeline

Results

WER Histogram for SNR = 3

WER Histogram for SNR = 6

WER Histogram for SNR = 9

Outlier Reduction

For Whisper - Large

SNR (in dB)	Raw Input Audio	Processed Audio	Reduction in Outliers
3	321	275	46
6	163	101	62
9	60	43	17

Table 1. Outlier Reduction for Whisper - Large

Average Improvements in WER

Large				
SNR	Raw Input	Processed Input	\triangle WER	
3	24.1%	17.3%	6.8%	
6	13.9%	9.3%	4.6%	
9	7.1%	6.1%	1.0%	

		Turbo	
SNR	Raw Input	Processed Input	\triangle WER
3	27.88%	20.24%	7.64%
6	14.52%	10.34%	4.18%
9	7.79%	6.26%	1.53%

		Medium	
SNR	Raw Input	Processed Input	\triangle WER
3	30.21%	23.72%	6.49%
6	15.57%	11.77%	3.80%
9	10.13%	8.61%	1.52%

Small			
Raw Input	Processed Input	\triangle WER	
34.40%	28.54%	5.85%	
20.73%	16.50%	4.23%	
13.96%	12.5%	1.46%	
	34.40% 20.73%	Raw Input Processed Input 34.40% 28.54% 20.73% 16.50%	

Transcription Samples

1. Sample 1

- Ground-Truth: "Amoebas change shape constantly."
- Noisy-Speech Transcription: "Don't ask me to carry an oily rag like that."
- Processed-Speech Transcription: "Amoebas change shape constantly."

2. Sample 2

- Ground-Truth: "They all agree that the essay is barely intelligible."
- Noisy-Speech Transcription: "I took her word for it, but is she really going with you?"
- Processed-Speech Transcription: "They all agree that the essay is barely intelligible."

Conclusion

- Developed audio processing model to minimize on-device transcription errors.
- Evaluated model's impact on transcription accuracy across ASR systems, achieving an average improvement of 6.7% at SNR = 3, 4.2% at SNR = 6, and 1.37% at SNR = 9.

Future Directions

- The key challenges lies in the inability to directly backpropagate transcription error as the black-box nature of ASR systems results in broken computation graphs.
- Such situations call for reinforcement learning methods. This task can be addressed using Policy Gradient methods by reformulating loss-function as reward function, input-speech as agent-state and output-speech as agent-action.

References

- [1] John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, and Nancy L. Dahlgren.
 - Timit acoustic-phonetic continuous speech corpus.
 - Technical report, Linguistic Data Consortium, Philadelphia, PA, 1993.
- [2] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 - Robust speech recognition via large-scale weak supervision, 2022.
- [3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015.