$12a_{1164} (K12a_{1164})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{19} + u^{18} + \dots + 2b - 1, \ u^6 - 3u^4 + 2u^2 + a + 1, \ u^{21} + u^{20} + \dots + u + 1 \rangle \\ I_2^u &= \langle -1056266u^{33} - 534744u^{32} + \dots + 2309809b - 234638, \\ &- 619436u^{33} - 841682u^{32} + \dots + 6929427a - 2733846, \ u^{34} + u^{33} + \dots + 6u - 3 \rangle \\ I_3^u &= \langle b^2 + 2, \ a + 1, \ u - 1 \rangle \\ I_4^u &= \langle b, \ a + 1, \ u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{19} + u^{18} + \dots + 2b - 1, \ u^6 - 3u^4 + 2u^2 + a + 1, \ u^{21} + u^{20} + \dots + u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} - 1 \\ -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{19} + \frac{1}{2}u^{18} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{20} - 5u^{18} + \dots - u - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{20} - \frac{1}{2}u^{19} + \dots + \frac{1}{2}u^{2} + \frac{5}{2}u \\ \frac{1}{2}u^{20} + \frac{1}{2}u^{19} + \dots - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} - 1 \\ -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} - 1 \\ -\frac{1}{2}u^{19} - \frac{1}{2}u^{18} + \dots + \frac{1}{2}u + \frac{1}{2}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iii) Cusp Shapes
$$= -u^{20} + u^{19} + 13u^{18} - 10u^{17} - 67u^{16} + 44u^{15} + 175u^{14} - 107u^{13} - 225u^{12} + 145u^{11} + 63u^{10} - 83u^9 + 168u^8 - 36u^7 - 146u^6 + 70u^5 - 25u^4 - 11u^3 + 41u^2 - 17u - 6$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{21} - 3u^{20} + \dots + 16u^2 - 16$
$c_2, c_3, c_8 \ c_9$	$u^{21} + 3u^{20} + \dots - 4u - 2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$u^{21} + u^{20} + \dots + u + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{21} + 11y^{20} + \dots + 512y - 256$
$c_2, c_3, c_8 \ c_9$	$y^{21} + 23y^{20} + \dots - 32y - 4$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$y^{21} - 21y^{20} + \dots - 3y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.121015 + 0.802604I		
a = 1.51299 - 1.34586I	-2.09551 - 4.69375I	-3.63503 + 3.84735I
b = -0.16702 + 1.51542I		
u = 0.121015 - 0.802604I		
a = 1.51299 + 1.34586I	-2.09551 + 4.69375I	-3.63503 - 3.84735I
b = -0.16702 - 1.51542I		
u = -0.040007 + 0.789380I		
a = 1.62258 + 0.43481I	4.51526 + 2.01021I	0.41448 - 3.78371I
b = -0.588267 - 0.491565I		
u = -0.040007 - 0.789380I		
a = 1.62258 - 0.43481I	4.51526 - 2.01021I	0.41448 + 3.78371I
b = -0.588267 + 0.491565I		
u = 1.283400 + 0.250591I		
a = 0.110044 + 0.250523I	-9.03034 - 2.72457I	-12.33705 + 3.20097I
b = -0.205916 - 1.377950I		
u = 1.283400 - 0.250591I		
a = 0.110044 - 0.250523I	-9.03034 + 2.72457I	-12.33705 - 3.20097I
b = -0.205916 + 1.377950I		
u = -1.35078		
a = -0.736116	-7.60400	-10.4800
b = 0.673734		
u = -1.319980 + 0.321329I		
a = 0.757736 - 0.419310I	-3.53789 + 5.93688I	-7.80246 - 3.12775I
b = -0.688597 + 0.357279I		
u = -1.319980 - 0.321329I		
a = 0.757736 + 0.419310I	-3.53789 - 5.93688I	-7.80246 + 3.12775I
b = -0.688597 - 0.357279I		
u = 1.388650 + 0.093259I		
a = -0.673057 - 0.380782I	-10.38940 - 3.55849I	-14.4570 + 4.3859I
b = 0.353596 - 0.874613I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.388650 - 0.093259I		
a = -0.673057 + 0.380782I	-10.38940 + 3.55849I	-14.4570 - 4.3859I
b = 0.353596 + 0.874613I		
u = 1.353780 + 0.356484I		
a = 1.326430 + 0.422608I	-4.33607 - 10.34760I	-9.08482 + 8.30410I
b = -0.624029 + 0.625071I		
u = 1.353780 - 0.356484I		
a = 1.326430 - 0.422608I	-4.33607 + 10.34760I	-9.08482 - 8.30410I
b = -0.624029 - 0.625071I		
u = -1.38701 + 0.37866I		
a = 1.88840 - 0.29011I	-11.6562 + 13.3679I	-11.96534 - 7.27527I
b = -0.19424 - 1.57233I		
u = -1.38701 - 0.37866I		
a = 1.88840 + 0.29011I	-11.6562 - 13.3679I	-11.96534 + 7.27527I
b = -0.19424 + 1.57233I		
u = 0.445437 + 0.325177I		
a = -1.38881 - 0.40146I	-6.40486 - 1.31691I	-7.01863 + 5.01587I
b = 0.02269 - 1.49213I		
u = 0.445437 - 0.325177I		
a = -1.38881 + 0.40146I	-6.40486 + 1.31691I	-7.01863 - 5.01587I
b = 0.02269 + 1.49213I		
u = -1.47176 + 0.13523I		
a = -0.818744 + 1.112050I	-18.9337 + 4.9859I	-15.7556 - 3.2060I
b = 0.06951 + 1.62601I		
u = -1.47176 - 0.13523I		
a = -0.818744 - 1.112050I	-18.9337 - 4.9859I	-15.7556 + 3.2060I
b = 0.06951 - 1.62601I		
u = -0.198124 + 0.264706I		
a = -0.969512 + 0.228317I	-0.126670 + 0.730510I	-4.11837 - 9.53132I
b = 0.185405 + 0.382871I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198124 - 0.264706I		
a = -0.969512 - 0.228317I	-0.126670 - 0.730510I	-4.11837 + 9.53132I
b = 0.185405 - 0.382871I		

$$II. \\ I_2^u = \langle -1.06 \times 10^6 u^{33} - 5.35 \times 10^5 u^{32} + \dots + 2.31 \times 10^6 b - 2.35 \times 10^5, \ -6.19 \times 10^5 u^{33} - 8.42 \times 10^5 u^{32} + \dots + 6.93 \times 10^6 a - 2.73 \times 10^6, \ u^{34} + u^{33} + \dots + 6u - 3 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0893921u^{33} + 0.121465u^{32} + \dots + 3.10263u + 0.394527 \\ 0.457296u^{33} + 0.231510u^{32} + \dots - 1.08414u + 0.101583 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.408040u^{33} - 0.237636u^{32} + \dots + 4.75198u - 0.453759 \\ -0.180498u^{33} + 0.325687u^{32} + \dots - 2.48353u + 0.264153 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0764438u^{33} - 0.0671149u^{32} + \dots - 1.96468u + 3.75923 \\ -0.151130u^{33} - 0.0265009u^{32} + \dots + 1.29755u - 1.23819 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.328926u^{33} - 0.0100975u^{32} + \dots + 5.68192u - 0.510619 \\ 0.418318u^{33} + 0.131562u^{32} + \dots - 2.57929u - 0.0948537 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.350446u^{33} + 0.00787828u^{32} + \dots + 1.10883u + 1.78222 \\ -0.352234u^{33} - 0.131296u^{32} + \dots + 1.866235u - 0.633064 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{113576}{2309809}u^{33} + \frac{5887808}{2309809}u^{32} + \dots \frac{11535388}{2309809}u \frac{230526}{2309809}u^{33} + \dots$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$(u^{17} - 3u^{16} + \dots + 9u - 3)^2$
$c_2, c_3, c_8 \ c_9$	$(u^{17} - u^{16} + \dots + u + 1)^2$
c_4, c_5, c_6 c_7, c_{10}, c_{12}	$u^{34} + u^{33} + \dots + 6u - 3$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y^{17} + 11y^{16} + \dots + 57y - 9)^2$
c_2, c_3, c_8 c_9	$(y^{17} + 19y^{16} + \dots + y - 1)^2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$y^{34} - 25y^{33} + \dots - 48y + 9$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.180995 + 0.883653I		
a = -1.35621 + 1.29271I	-6.70220 - 8.83664I	-8.37368 + 5.87120I
b = 0.17426 - 1.55100I		
u = 0.180995 - 0.883653I		
a = -1.35621 - 1.29271I	-6.70220 + 8.83664I	-8.37368 - 5.87120I
b = 0.17426 + 1.55100I		
u = 0.595797 + 0.672047I		
a = 0.993055 - 0.599481I	-12.06090 - 2.39923I	-12.86600 + 3.27109I
b = -0.02780 + 1.57600I		
u = 0.595797 - 0.672047I		
a = 0.993055 + 0.599481I	-12.06090 + 2.39923I	-12.86600 - 3.27109I
b = -0.02780 - 1.57600I		
u = -1.13369		
a = 0.407824	-2.28510	-1.13090
b = -0.387802		
u = -0.136716 + 0.824881I		
a = -1.58020 - 0.51459I	0.35577 + 6.09306I	-4.70703 - 6.87425I
b = 0.580614 + 0.569922I		
u = -0.136716 - 0.824881I		
a = -1.58020 + 0.51459I	0.35577 - 6.09306I	-4.70703 + 6.87425I
b = 0.580614 - 0.569922I		
u = -1.101130 + 0.389395I		
a = 0.509094 - 0.606456I	-2.59185 - 1.70542I	-7.89077 + 4.02096I
b = -0.488571 + 0.501958I		
u = -1.101130 - 0.389395I		
a = 0.509094 + 0.606456I	-2.59185 + 1.70542I	-7.89077 - 4.02096I
b = -0.488571 - 0.501958I		
u = 1.128290 + 0.347386I		
a = 0.098642 - 0.298753I	-5.15765 + 0.50801I	-6.42549 + 0.23246I
b = 0.14171 + 1.46572I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.128290 - 0.347386I		
a = 0.098642 + 0.298753I	-5.15765 - 0.50801I	-6.42549 - 0.23246I
b = 0.14171 - 1.46572I		
u = 1.080650 + 0.504832I		
a = -0.224516 + 0.457220I	-9.44087 + 3.91820I	-11.59784 - 2.39256I
b = -0.13662 - 1.53895I		
u = 1.080650 - 0.504832I		
a = -0.224516 - 0.457220I	-9.44087 - 3.91820I	-11.59784 + 2.39256I
b = -0.13662 + 1.53895I		
u = 0.078456 + 0.750182I		
a = -1.69151 - 0.36066I	0.85249 - 2.05778I	-2.98070 + 0.37816I
b = 0.601563 + 0.400803I		
u = 0.078456 - 0.750182I		
a = -1.69151 + 0.36066I	0.85249 + 2.05778I	-2.98070 - 0.37816I
b = 0.601563 - 0.400803I		
u = 1.213590 + 0.290321I		
a = 1.38485 + 0.75199I	-2.59185 - 1.70542I	-7.89077 + 4.02096I
b = -0.488571 + 0.501958I		
u = 1.213590 - 0.290321I		
a = 1.38485 - 0.75199I	-2.59185 + 1.70542I	-7.89077 - 4.02096I
b = -0.488571 - 0.501958I		
u = 1.260460 + 0.061296I		
a = 0.428262 + 0.963327I	-4.41315 - 1.83062I	-11.59303 + 5.22267I
b = -0.151255 + 0.679822I		
u = 1.260460 - 0.061296I		
a = 0.428262 - 0.963327I	-4.41315 + 1.83062I	-11.59303 - 5.22267I
b = -0.151255 - 0.679822I		
u = -1.230380 + 0.338033I		
a = -0.652848 + 0.475134I	0.85249 + 2.05778I	-2.98070 - 0.37816I
b = 0.601563 - 0.400803I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.230380 - 0.338033I		
a = -0.652848 - 0.475134I	0.85249 - 2.05778I	-2.98070 + 0.37816I
b = 0.601563 + 0.400803I		
u = -0.502282 + 0.483544I		
a = 0.782134 + 0.681918I	-4.41315 + 1.83062I	-11.59303 - 5.22267I
b = -0.151255 - 0.679822I		
u = -0.502282 - 0.483544I		
a = 0.782134 - 0.681918I	-4.41315 - 1.83062I	-11.59303 + 5.22267I
b = -0.151255 + 0.679822I		
u = 1.293540 + 0.343405I		
a = -1.35895 - 0.53387I	0.35577 - 6.09306I	-4.70703 + 6.87425I
b = 0.580614 - 0.569922I		
u = 1.293540 - 0.343405I		
a = -1.35895 + 0.53387I	0.35577 + 6.09306I	-4.70703 - 6.87425I
b = 0.580614 + 0.569922I		
u = 0.043766 + 0.657258I		
a = -1.87701 + 1.49405I	-5.15765 - 0.50801I	-6.42549 - 0.23246I
b = 0.14171 - 1.46572I		
u = 0.043766 - 0.657258I		
a = -1.87701 - 1.49405I	-5.15765 + 0.50801I	-6.42549 + 0.23246I
b = 0.14171 + 1.46572I		
u = -1.312420 + 0.277525I		
a = 2.25755 - 0.93271I	-9.44087 + 3.91820I	-11.59784 - 2.39256I
b = -0.13662 - 1.53895I		
u = -1.312420 - 0.277525I		
a = 2.25755 + 0.93271I	-9.44087 - 3.91820I	-11.59784 + 2.39256I
b = -0.13662 + 1.53895I		
u = -1.370680 + 0.056095I		
a = 0.56793 - 2.07715I	-12.06090 + 2.39923I	-12.86600 - 3.27109I
b = -0.02780 - 1.57600I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.370680 - 0.056095I		
a = 0.56793 + 2.07715I	-12.06090 - 2.39923I	-12.86600 + 3.27109I
b = -0.02780 + 1.57600I		
u = -1.343580 + 0.346101I		
a = -2.09386 + 0.46604I	-6.70220 + 8.83664I	-8.37368 - 5.87120I
b = 0.17426 + 1.55100I		
u = -1.343580 - 0.346101I		
a = -2.09386 - 0.46604I	-6.70220 - 8.83664I	-8.37368 + 5.87120I
b = 0.17426 - 1.55100I		
u = 0.376966		
a = 2.21933	-2.28510	-1.13090
b = -0.387802		

III.
$$I_3^u=\langle b^2+2,\; a+1,\; u-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -b+1\\-2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} b+1\\-b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ b+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =-12

Crossings	u-Polynomials at each crossing
c_1,c_{11}	u^2
c_2, c_3, c_8 c_9	$u^2 + 2$
c_4, c_5, c_{10}	$(u-1)^2$
c_6, c_7, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	y^2
c_2, c_3, c_8 c_9	$(y+2)^2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$(y-1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-8.22467	-12.0000
b = 1.414210I		
u = 1.00000		
a = -1.00000	-8.22467	-12.0000
b = -1.414210I		

IV.
$$I_4^u = \langle b, a+1, u+1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_8, c_9, c_{11}	u
c_4, c_5, c_{10}	u+1
c_6, c_7, c_{12}	u-1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \\ c_8, c_9, c_{11}$	y
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	y-1

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u^{3}(u^{17} - 3u^{16} + \dots + 9u - 3)^{2}(u^{21} - 3u^{20} + \dots + 16u^{2} - 16)$
$c_2, c_3, c_8 \ c_9$	$u(u^{2}+2)(u^{17}-u^{16}+\cdots+u+1)^{2}(u^{21}+3u^{20}+\cdots-4u-2)$
c_4, c_5, c_{10}	$((u-1)^2)(u+1)(u^{21}+u^{20}+\cdots+u+1)(u^{34}+u^{33}+\cdots+6u-3)$
c_6, c_7, c_{12}	$(u-1)(u+1)^{2}(u^{21}+u^{20}+\cdots+u+1)(u^{34}+u^{33}+\cdots+6u-3)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{3}(y^{17} + 11y^{16} + \dots + 57y - 9)^{2}(y^{21} + 11y^{20} + \dots + 512y - 256)$
$c_2, c_3, c_8 \ c_9$	$y(y+2)^{2}(y^{17}+19y^{16}+\cdots+y-1)^{2}(y^{21}+23y^{20}+\cdots-32y-4)$
c_4, c_5, c_6 c_7, c_{10}, c_{12}	$((y-1)^3)(y^{21}-21y^{20}+\cdots-3y-1)(y^{34}-25y^{33}+\cdots-48y+9)$