1 Limites

I DEFINIÇÃO Escrevemos

$$\lim_{x\to a}f(x)=L$$

e dizemos

"o limite de f(x), quando x tende a a, é igual a L",

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tomando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

Exemplo 1.1. Estime o valor de $\lim_{x \to 1} \frac{x-1}{x^2-1}$.

SOLUÇÃO Observe que a função $f(x) = (x-1)/(x^2-1)$ não está definida quando x=1. Mas isso não importa, pois a definição de $\lim_{x\to a} f(x)$ diz que devemos considerar valores de x que estão próximos de a, mas não iguais a a.

As tabelas dão os valores de f(x) (corretos até a sexta casa decimal) para os valores de x que tendem a 1 (mas não são iguais a 1). Com base nesses valores podemos conjecturar que

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0.5$$

x < 1	f(x)
0,5	0,666667
0,9	0,526316
0,99	0,502513
0.999	0,500250
0,9999	0,500025

x > 1	f(x)
1,5	0,400000
1,1	0,476190
1,01	0,497512
1,001	0,499750
1,0001	0,499975

PROPRIEDADES DOS LIMITES Seja c uma constante e suponha que existam os limites

$$\lim f(x)$$

e
$$\lim g(x)$$
.

Então

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$3. \lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{se } \lim_{x \to a} g(x) \neq 0$$

PROPRIEDADE DE SUBSTITUIÇÃO DIRETA Se f for uma função polinomial ou racional e a estiver no domínio de f, então

$$\lim_{x\to a} f(x) = f(a)$$

Se f(x) = g(x) quando $x \neq a$, então $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, desde que o limite exista.

1

1.1 Exercício

1) Calcule os seguintes limites:

a)
$$\lim_{x \to 0} \frac{x^2 - 1}{x - 1}$$

e)
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$

i)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1}$$

a)
$$\lim_{x \to 0} \frac{x^2 - 1}{x - 1}$$
 e) $\lim_{x \to 3} \frac{x - 3}{x^2 - 9}$ i) $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1}$ m) $\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x}$

b)
$$\lim_{x \to 1} \frac{x^3 - 1}{x + 1}$$

f)
$$\lim_{x \to 0} \frac{x^4 - x}{x^2 + x}$$

j)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - x - 2}$$

b)
$$\lim_{x \to 1} \frac{x^3 - 1}{x + 1}$$
 f) $\lim_{x \to 0} \frac{x^4 - x}{x^2 + x}$ j) $\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - x - 2}$ n) $\lim_{x \to -2} \frac{x^3 - 3x + 2}{x^2 - 4}$ c) $\lim_{x \to 3} \frac{5x - 11}{x - 1}$ g) $\lim_{x \to 0} \frac{x^2 - 3x}{x - 5}$ k) $\lim_{x \to 0} \frac{x^2 + 2x - 3}{x^2 - 1}$ o) $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[3]{x} - 1}$

c)
$$\lim_{x \to 3} \frac{5x - 11}{x - 1}$$

g)
$$\lim_{x \to 0} \frac{x^2 - 3x}{x - 5}$$

k)
$$\lim_{x \to 0} \frac{x^2 + 2x - 3}{x^2 - 1}$$

o)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

d)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
 h) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$

h)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

1)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - x - 6}$$

1)
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - x - 6}$$
 p) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$

Respostas:

- a) 1
- e) $\frac{1}{6}$

- n) $-\frac{9}{4}$

b) 0 c) 2

d) 2

- f) -1
- h) 4 k) 3 i) 2 l) $\frac{4}{5}$ j) $\frac{1}{3}$ m) $-\frac{1}{2\sqrt{2}}$
- p) 1

2 Limites Laterais

2 DEFINIÇÃO Escrevemos

$$\lim_{x\to a^{-}}f(x)=L$$

e dizemos que o **limite à esquerda de** f(x) **quando** x **tende a** a [ou o **limite de** f(x)quando x tende a a pela esquerda] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x menor que a.

Observe que a Definição 2 difere da Definição 1 pelo fato de exigirmos que x seja menor que a. Analogamente, se for exigido que x seja maior que a, obteremos "o limite à direita de f(x) quando x tende a a é igual a L", e escrevemos

$$\lim_{x \to a^+} f(x) = L$$

 $\lim_{x \to a^{-}} f(x) = L \quad \text{se e somente se} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{e}$

 $\lim_{x\to a^+} f(x) = L$

Exemplo 2.1. Dada a função

$$f(x) = \begin{cases} x^2 - x + 3; & se \ x \le -1; \\ -5x; & se \ -1 < x \le 1; \\ 2x + 1; & se \ x > 1. \end{cases}$$

Calcule:

- $a) \lim_{x \mapsto -1^+} f(x),$

c) $\lim_{x \to -1} f(x)$,

 $e) \lim_{x \to 1^{-}} f(x),$

 $b) \lim_{x \mapsto -1^-} f(x),$

 $d) \lim_{x \to 1^+} f(x),$

f) $\lim_{x \to 1} f(x)$.

Resposta:

- a) 5,
- c) 5,
- e) -5,

- b) 5,
- d) 3,
- f) não existe.

EXEMPLO 7 O gráfico de uma função g está na Figura 10. Use-o para dizer os valores (caso existam) dos seguintes limites:

- (a) $\lim_{x \to a} g(x)$
- (b) $\lim_{x \to 2^+} g(x)$
- (c) $\lim_{x\to 2} g(x)$

- (d) $\lim_{x\to 5^-} g(x)$
- (e) $\lim_{x\to 5^+} g(x)$
- (f) $\lim_{x\to 5} g(x)$

SOLUÇÃO A partir do gráfico, vemos que os valores de g(x) tendem a 3 à medida que os de x tendem a 2 pela esquerda, mas se aproximam de 1 quando x tende a 2 pela direita. Logo

- (a) $\lim_{x\to 2^{-}} g(x) = 3$
- (b) $\lim_{x \to 2^+} g(x) = 1$
- (c) Uma vez que são diferentes os limites à esquerda e à direita, concluímos de (3) que o $\lim_{x\to 2} g(x)$ não existe.

O gráfico mostra também que

- (d) $\lim_{x \to 5^{-}} g(x) = 2$ e (e) $\lim_{x \to 5^{+}} g(x) = 2$
- (f) Agora, os limites à esquerda e à direita são iguais; assim, de (3) segue que

$$\lim_{x\to \infty}g(x)=2$$

Apesar desse fato, observe que $g(5) \neq 2$.

Limites infinitos 3

Exemplo 3.1. Encontre, se existir, o $\lim_{x\to 0} \frac{1}{x^2}$.

Solução: Observe que quanto mais x se aproxima de 0, a função $\frac{1}{x^2}$ fica cada vez maior. Assim, os valores de f(x) não tendem a um número, e para indicar o comportamento da função $f(x) = \frac{1}{r^2}$ $pr\'oximo\ do\ 0\ usamos\ a\ notaç\~ao\ \lim_{x\mapsto 0} \frac{1}{r^2} = +\infty.$

x	$\frac{1}{x^2}$
±1	1
±0,5	4
±0,2	25
±0,1	100
±0,05	400
±0,01	10 000
±0,001	1 000 000

$$\lim_{x\to a}f(x)=\infty$$

para indicar que os valores de f(x) tendem a se tornar cada vez maiores (ou "a crescer ilimitadamente"), à medida que x se tornar cada vez mais próximo de a.

4 DEFINIÇÃO Seja f uma função definida em ambos os lados de a, exceto possivelmente em a. Então

$$\lim_{x\to a} f(x) = \infty$$

significa que podemos fazer os valores de f(x) ficarem arbitrariamente grandes (tão grandes quanto quisermos) tomando x suficientemente próximo de a, mas não igual a a.

Exercícios 4

1) Calcule os seguintes limites:

a)
$$\lim_{x \to 3^-} \frac{2x}{x-3}$$

a)
$$\lim_{x \to 3^{-}} \frac{2x}{x - 3}$$
 d) $\lim_{x \to 5^{-}} \frac{e^{x}}{(x - 5)^{3}}$ f) $\lim_{x \to \frac{\pi}{2}^{+}} \operatorname{tg} x$

f)
$$\lim_{x \mapsto \frac{\pi}{2}^+} \operatorname{tg} x$$

h)
$$\lim_{x \mapsto 2^{-}} \frac{2x-4}{(x-2)^5}$$

b)
$$\lim_{x \to 3^+} \frac{2x}{x-3}$$

b)
$$\lim_{x \to 3^{+}} \frac{2x}{x - 3}$$

c) $\lim_{x \to 0^{+}} \ln x$
e) $\lim_{x \to 1} \frac{2 - x}{(x - 1)^{2}}$
g) $\lim_{x \to \frac{\pi}{2}^{-}} \operatorname{tg} x$
i) $\lim_{x \to 1} -\frac{2^{x}}{(x^{2} - 1)}$

g)
$$\lim_{x \mapsto \frac{\pi}{2}^-} \operatorname{tg} x$$

i)
$$\lim_{x \to 1} -\frac{2^x}{(x^2 - 1)^x}$$

Respostas:

a)
$$-\infty$$
 c) $-\infty$ e) $+\infty$ g) $+\infty$
b) $+\infty$ d) $-\infty$ f) $-\infty$ h) $+\infty$

c)
$$-\infty$$

$$e) +\infty$$

$$g) +\infty$$

i)
$$-\infty$$

b)
$$+\infty$$

$$d$$
) $-\infty$

f)
$$-\infty$$

h)
$$+\infty$$

5 Limites no infinito

Quando escrevemos $\lim_{x \to +\infty} f(x) = L$ queremos dizer que f(x) se aproxima de L à medida que xtorna-se arbitrariamente grande.

15) Calcule os seguintes limites:

a)
$$\lim_{x \to +\infty} 2^x$$

e)
$$\lim_{x \to +\infty} \frac{1}{x}$$

$$j) \lim_{x \to -\infty} \ln x^2$$

$$n) \lim_{x \to +\infty} \frac{2x+5}{\sqrt{2x^2-5}}$$

b)
$$\lim_{x \to +\infty} (\frac{1}{2})^x$$

f)
$$\lim_{x \mapsto +\infty} x^2 + 1$$

$$\mathbf{k}) \lim_{x \mapsto -\infty} e^x$$

$$o) \lim_{x \to -\infty} \frac{2x+5}{\sqrt{2x^2-5}}$$

c)
$$\lim_{x \to -\infty} 2^x$$

h)
$$\lim \frac{1}{2+1}$$

$$l) \lim_{x \mapsto +\infty} e^x$$

$$\mathrm{d}) \lim_{x \mapsto -\infty} (\frac{1}{2})^x$$

i)
$$\lim_{x \to +\infty} \ln x$$

m)
$$\lim_{x \to -\infty} \frac{2x^3 - 3x + 5}{4x^5 - 2}$$

q)
$$\lim_{x \to +\infty} \frac{2x^4 + 2x + 1}{4 - x^2}$$

Respostas:

- a) $+\infty$
- f) $+\infty$
- k) 0
- p) 3

b) 0

- $g) +\infty$
- l) $+\infty$
- q) -2

- $\begin{array}{c} c) \ 0 \\ d) \ +\infty \end{array}$
- h) 0
- m) 0

e) 0

- i) $+\infty$
- n) $\sqrt{2}$
- $j) +\infty$
- o) $-\sqrt{2}$