Practical Session 2

MM, HMM and sequences

REMEMBER!

NOTATION HMM

State at position $i = \pi_i$

Sequence of states = π

Category at position $i = x_i$

Sequence of categories = x

$$P(x,\pi) = a_{0\pi} \prod_{i}^{N} e_{\pi_{i}}(x_{i}) a_{\pi_{i}\pi_{i}+1}$$

Initial state ("Probability that I started the chain at state π ")

Probability of changing from state k to state $r = a_{kr} = P(\pi_i = r | \pi_{i-1} = k)$

Given that I was in the previous position using state *k*

I am using state r

Transmission matrix

			Juliu N
	Fast Evolving	Intermediate Evolving	Slow Evolving
Fast Evolving			
Intermediate Evolving			
Slow Evolving			

Emission Probability matrix for each possible state

Category	Probability
category	Trobability
Α	
С	
Т	
G	

Fast evolving

Category	Probability
А	
С	
Т	
G	

Intermediate

Category	Probability
А	
С	
Т	
G	

Slow evolving

Probability of emission of category b at position i given that I am using state $k = e_k(b) = P(x_i = b | \pi_i = k)$

	1	3	4	
F	0.5*1/6			
L	0.5*1/10			

1 10
4
1
10
1
10
1
10
1
10
1

x	P(x F)		x	P(x C)
1	1		1	1
-	- 6			10
2	1		2	1
-	- 6	P(C F)=0.01		10
3	1		3	1
	- 6			10
4	1		4	1
	- 6			10
5	1	P(FIG) 0.4	5	1
	- 6	P(F C)=0.1		10
6	1		6	1
	- 6			2
	6			2

F,F C,F

	1	3	4	
F	0.5*1/6	0.5*1/6*0.99*1/6+ 0.5*1/10*0.1*1/6		
L	0.5*1/10	0.5*1/10*0.9*1/10		

x	P(x F)		x	P(x C)
1	1		1	1
-	- 6			10
2	1		2	1
-	- 6	P(C F)=0.01		10
3	1		3	1
	- 6			10
4	1		4	1
	6			10
5	1	D(E G) 0.4	5	1
	- 6	P(F C)=0.1		10
6	1		6	1
	6			2

We have searched all the combinations

HMM

• Scale the probability at each step (Rabiner 1989)

State	$\widehat{f}_l(i)$	$\widehat{f}_l(i+1)$
State1		
State2		
StateK		

Probability of moving from state r to state I in i+1

$$\widehat{f}_{l}(i+1) = \frac{1}{S_{i+1}} e_{l}(x_{i+1}) \sum_{r=1}^{K} \widehat{f}_{r}(i) a_{rl}$$

Scaled forward

HMM

Scale the probability at each step (Rabiner 1989)

State	$\widehat{f}_l(i)$		$\widehat{f}_l(i+1)$	
State1				
State2				
StateK				
ve impose that	Then si+1 is			

$$\sum_{l} \widehat{f}_{l}(i) = 1$$

$$s_{i+1} = \sum_{l} e_l(x_{i+1}) \sum_{k} \widehat{f}_k(i) a_{kl}$$

$$P(X|HMM) = \prod_{i}^{L} s_{i}$$

Total of the scaled value

- Create in Python a class called HMM
- The constructor takes as input the transition probability matrix between states and a list of emission matrices, one for each state. Code these objects as a dictionary.

```
from AliasVose import RandomMultinomial
111
A class to code methods that are used in HMM.
class HiddenMarkovModel(object):
   Create an object HiddenMarkovModel with transition states and emission probabilities for each state
   Transition is a dictionary where, for each state, we count the probability to move to another state
    Emission is a dictionary where, for each state, we store the probabilities of each category
   def init (self, transition, emission):
        if transition. len ()!=emission. len ():
           raise Exception("for each state, we must have an emission probability vector, but found " + transition.__len__() + " " + emission.__len__())
        self.n = transition.__len__()
        self.transition = transition
        self.emission = emission
        dictionary to store the random multinomial
        self.random transition = {}
        self.random emission = {}
```

• Implement a function that takes as input an observed sequence of categories and returns the log-likelihood. The scaled version is already implemented. Implement the unscaled version.

• Implement a method that returns a sequence and the hidden states given the transition and emission probabilities of the HMM