

David Amorim

DevOps

FRANCISCO ALBERGARIA

Product Owner

FRANCISCA SILVAProject Manager

GABRIEL SANTOS

Quality Assurance (Product Tester)

GUILHERME AMARAL

DBA

JOÃO GASPAR

Architect

ABOUT TRACKING

Software designed to assist police agents in investigations. Using AI, the system can analyze multiple cameras in real time, detecting individuals based on specific characteristics, such as carrying a weapon, and logging their movements. The goal is to significantly reduce the time required to locate suspects, enabling a faster and more effective response in critical situations.

02

03

04

05

Use Cases

Description of the interaction between users and the system to achieve specific goals

System Architecture

Skeleton structure of the system. Sequence Diagrams

Weapon Detection Model

Improvements made in the weapon detection model

Segmentation, Pose models & Biometrics

YOLO pre-trained models for person segmentation and pose estimation

Tracking Algorithm

Tracking algorithm used.

TABLE OF CONTENTS

Re-identification Algorithm

Algorithm used for person reidentification

Next Steps

Future work

Conclusion

REGISTER AND UNREGISTER USER

Priority: 4

Priority: 3

Difficulty: 2

Difficulty: 2

DETECTION OF WEAPONS & SUSPECTS IN LIVE CAMERAS

Priority: 5

Difficulty: 5

UPLOADING VIDEO

Priority: 5

Difficulty: 3

Priority: 4

Difficulty: 3

VIDEO SUSPECT SELECTION FOR TRACKING

Priority: 5

Difficulty: 5

DETECTION OF WEAPONS & SUSPECTS UPLOADED VIDEOS

Priority: 4

Difficulty: 4

SUSPECT PATH DISPLAY IN MAP

Priority: 3

Difficulty: 3

RETRIEVING TRACKING LOGS FOR A SPECIFIC SUSPECT

Priority: 4

Difficulty: 3

FE Client Request Video analysis Subscribe Camera — Rest-API Results Websocket Broker FastAPI Broker Videos Images Output Entities DB Logs Image Metadata Images/Videos DB API Workers FastAPI MQ Pre-/Post-Cameras Queue processing Requests Queue Load NGINX Balancer Live Camera Live Video **Entrance** Provider GPU GPU Worker Worker **⊘** FastAPI

ARCHITECTURE

👙 + 🥏 spring Rest API to serve frontend API Intercepted Services Cameras Auth Reports Analysis Admin Logs Service Service Service Service Service Repositories Action Reports Cameras Users **Images** Logs Videos Results Message Broker Queue

ARCHITECTURE

DATABASE

User

(PK) badge_id: String

email: String

name: String

password: String

is_admin: Boolean

active: Boolean

Analyse Uploaded Videos

SEQUENCE DIAGRAM

Analyse Live Cameras

SEQUENCE DIAGRAM

Old Dataset

		True Weapon	True Knife
	Predicted Weapon	0.72	0.01
	Predicted Knife	0.02	0.56

New Dataset

	True Weapon	True Knite
Predicted Weapon	0.86 (+0.14)	0.01
Predicted Knife	0.02	0.90 (+0.34)

Detect weapon

First we use the same algorithm to detect a weapon on screen

Person detection

After detecting a weapon it detects the people on screen

Pose skeleton

Now we point out the skeleton and important joints in those people, focusing on the wrist

Calculate distances

Then we calculate the distance from the gun to the closest wrist in order to detect who's holding the weapon

Segment person

The closest person will be associated to the suspect and will be segmented for feature extraction

Person tracking

Then we proceed to track the person detected with the weapon

Upload picture of suspect

First we start by uploading the picture of the face of a suspect

Detect face

Use python library "face recognition" to detect and locate the face that matches the uploaded one

Tracking

We can keep track of a

suspect through

consecutive frames in the

same scenario

Limitations

Skipping too many frames, changing cameras or suspects going past obstacles makes the algorithm lose its track.

Re-id Algorithm

Model used: OSNet

Activation maps of OSNet vs other models

MODEL

Train the model with other types of weapon classes

OPTIMIZE

Optimizations on re-id and tracking logic.

Choose different models to execute, for model testing

MODEL SWAP

Use face recognition as fallback to the re-id model

BIOMETRICS

THANK YOU!

Does anyone have any questions?