

Infinite-Fidelity Coregionalization for Physical Simulation

Shibo Li, Zheng Wang, Robert M. Kirby *and* Shandian Zhe School of Computing, University of Utah

Presenter: Shibo Li

shibo@cs.utah.edu

Physical Simulations by Solving PDEs

Fluid dynamics

Heat

$$rac{\partial u}{\partial t} = lpha rac{\partial^2 u}{\partial x^2}$$
 thermal diffusivity

Physical Simulations by Solving PDEs

Numerical methods

- (Exactly) Accurate Solution
- Slow
- Do not generalize over the same domain

Data-driven methods

- Fast inference with new PDE
- Generalize over domain
- Prepare large amount of data from numerical solvers

Multi-Fidelity Modeling

High-dimensional outputs for physical simulations

Linear Model of Coregionalization (LMC)

$$\mathbf{f}(\mathbf{x}) = \sum_{k=1}^{K} h_k(\mathbf{x}) \mathbf{b}_k = \mathbf{B} \cdot \mathbf{h}(\mathbf{x})$$

Low-dimensional output

$$\mathbf{h}(x) = [h_1(\mathbf{x}), \dots, h_K(\mathbf{x})]^{\top}$$

Basis Matrix

$$\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_K]$$

Learnable

Multi-Fidelity Modeling

Motivation: infinitely "continuous" fidelity

Element length continuous

- Existing methods: fixed set of fidelities, do not generalize over the fidelities
- Our methods: model all fidelities simultaneously, capture rich information

	DRC (Xing et al 2021)	MFHoGP (Wang et al. 2021)	DMF (Li et al. 2022)	IFC (Ours)
Multi-Fidelity Modeling ?				
Capture Complex Fidelities Correlations?				
Models <u>all</u> fidelities?	X	X	X	
Predict on unseen fidelities?	×	×	X	
Extrapolate to higher than target fidelities?	×	×	×	

Infinite-Fidelity Modeling

Recall LMC $\mathbf{h}_m(\mathbf{x}) = \alpha(\mathbf{h}_{m-1}(\mathbf{x}), \mathbf{x}), \quad \mathbf{f}_m(\mathbf{x}) = \mathbf{B}_m \mathbf{h}_m(\mathbf{x})$

infinitesimal

correction term $\lim_{\Delta \to 0} \psi = 0$

$$\mathbf{h}(m, \mathbf{x}) = \mathbf{h}(m - \Delta, \mathbf{x}) + \Delta \cdot \phi(m, \mathbf{h}(m - \Delta, \mathbf{x}), \mathbf{x})$$

$$\frac{\partial \mathbf{h}(m, \mathbf{x})}{\partial m} = \phi(m, \mathbf{h}(m, \mathbf{x}), \mathbf{x})$$

$$\mathbf{h}(0, \mathbf{x}) = \boldsymbol{\beta}(\mathbf{x})$$

ODE dynamic model

 $\mathbf{h}_1(\mathbf{x})$

ODE initial model $\mathbf{h}_0(\mathbf{x})$

ODE model

 $\mathbf{h}_T(\mathbf{x})$

×

 \mathbf{B}_T

5/9

Infinite-Fidelity Modeling

IFC-GPODE (GP treatment of basis matrix)

$$b_{ij}(m) \sim \mathcal{GP}(0, \kappa(m, m'))$$
$$p(\mathcal{B}, \mathcal{Y}|\mathbf{X}) = \prod_{i=1}^{d} \prod_{k=1}^{K} \mathcal{N}(\mathbf{b}_{ij}|\mathbf{0}, \mathbf{K}) \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_{n}|\mathbf{B}_{n}\mathbf{h}(m_{n}, \mathbf{x}_{n}), \sigma^{2}\mathbf{I})$$

IFC-ODE² (ODE treatment of basis matrix)

$$\frac{\partial b_{ij}(m)}{\partial m} = \gamma(b_{ij}, m), \quad b_{ij}(0) = \nu_{ij}$$
$$p(\mathcal{Y}|\mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n|\mathbf{B}_n\mathbf{h}(m_n, \mathbf{x}_n), \sigma^2\mathbf{I})$$

We have proposed *efficient* algorithms to train those two models. Refer our paper for more details.

Experiment

• Predictive performance

Experiment

Visualize error field

Experiment

Predict on unseen fidelities

(a) Poisson's equation

(b) *Heat* equation

Welcome to our poster!

Shibo Li (shibo@cs.utah.edu)