מבחנים סטטיסטיים 7 ו -8: הסקה על הפרש תוחלות של שתי אוכלוסיות ב"ת שונויות אוכ' לא ידועות

סימנים:

אוכלוסיות

ערך מספרי של ההפרש - ∆

1: \bar{x}_1 ; S_1 ; n_1 1: μ_1 ; σ_1

 $\mu_1 - \mu_2$

2: \bar{x}_2 ; S_2 ; n_2

מדגמים

2: μ_2 ; σ_2

בדיקת השערות:

	ז האפס	השערו
(השערת מחקר)	ז נגדית	השערו

אינן ידועות אך שוות $\sigma_1, \sigma_2[1]$

 $\sigma_1 = \sigma_2$ כלל הכרעה לדחיית

 $t_{\bar{x}_1 - \bar{x}_2} = \frac{\bar{x}_1 - \bar{x}_2 - \Delta}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}}$ $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

לא ידועות אך לא שוות $\sigma_1, \sigma_2[2]$

 $t_{\bar{x}_1 - \bar{x}_2} = \frac{\bar{x}_1 - \bar{x}_2 - \Delta}{\sqrt{\frac{s_1^2 + s_2^2}{n_1} + \frac{s_2^2}{n_2}}}$

 $df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} - 2$

מציאת מ

 $lpha \geq \hat{lpha}$ אם H_0 דוחים את H_0 דוחים את $f = \begin{cases} n_1 + n_2 - 2, & \sigma_1 = \sigma_2 \\ df, & \sigma_1 \neq \sigma_2 \end{cases}$

 $H_0: \mu_1 - \mu_2 = \Delta$

 $H_1: \mu_1 - \mu_2 \neq \Delta$

 $-t_{n_{1_1}+n_2-2,1-\frac{\alpha}{2}}$ $t_{n_1+n_2-2,1-\frac{\alpha}{2}}$ H_0 דוחים את -

 $\begin{array}{l} R \\ = \left\{ t_{\hat{x}_1 - \hat{x}_2} < -t_{n_1 + n_2 - 2, 1 - \alpha} \right\} \end{array} \quad \begin{cases} R = \left\{ t_{\hat{x}_1 - \hat{x}_2} > t_{n_1 + n_2 - 2, 1 - \frac{\alpha}{2}} \right\} \cup \\ \left\{ t_{\hat{x}_1 - \hat{x}_2} < -t_{n_1 + n_2 - 2, 1 - \frac{\alpha}{2}} \right\} \end{cases}$

 $-t_{n_1+n_2-2,1-\alpha}$ H_0 דוחים את -

 $H_0: \mu_1 - \mu_2 \geq \Delta$

 $H_1: \mu_1 - \mu_2 < \Delta$

 H_0 דותים את -

מתקבל כפתרון של $\hat{\alpha}$

 $|t_{\hat{x}_1-\hat{x}_2}| = t_{df,\hat{\alpha}_one_tail}$

המשוואה

 $R = \left\{ t_{\dot{x}_1 - \dot{x}_2} < -t_{df, 1 - \alpha} \right\}$

 $-t_{df,1-\alpha}$

 H_0 דוחים את -

 $R = \left\{ t_{\bar{x}_1 - \bar{x}_2} > t_{n_1 + n_2 - 2, 1 - \alpha} \right\}$

 $H_0: \mu_1 - \mu_2 \leq \Delta$ $H_1: \mu_1 - \mu_2 > \Delta$

 $t_{n_1+n_2-2,1-\alpha}$

 H_0 דוחים את -

 $R = \{t_{\hat{x}_1 - \hat{x}_2} > t_{df, 1 - \alpha_i}\}$

מתקבל כפתרון של $\hat{\alpha}$

המשוואה $t_{\hat{x}_1 - \hat{x}_2} = t_{df, \hat{\alpha}_one_tail}$

 $-t_{df,1-\frac{\alpha}{2}}$

 $R = \left\{ t_{\hat{x}_1 - \hat{x}_2} > t_{df, 1 - \frac{\alpha}{2}} \right\} \cup$ $\cup \left\{ t_{\bar{x}_1 - \bar{x}_2} < -t_{df, 1 - \frac{\alpha}{2}} \right\}$

מתקבל כפתרון של המשוואה \hat{a}

 $|t_{\hat{x}_1-\hat{x}_2}|=t_{df.\hat{a}_two_tail}$

 $t_{df,1-\frac{\alpha}{2}}$ + דוחים את 10 − − −

רווח סמך להפרש התוחלות:

[1]
$$a, b = \bar{x}_1 - \bar{x}_2 \pm t_{n_1 + n_2 - 2, 1 - \frac{\alpha}{2}} \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}$$

[2] $a, b = \bar{x}_1 - \bar{x}_2 \pm t_{df, 1 - \frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$

 $(a < \mu_1 - \mu_2 < b) = 1 - \alpha$

הנחות המודל

- 1. שונויות אוכלוסיות לא ידועות
 - 2. מדגמים בלתי תלויים.

Scanned with CamScanner