104165 - Real functions

Baruch Solel

January 22, 2019

Abstract

1 Introduction

If $\forall x \quad f_n(x) \to f(x)$ (pointwise) does $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$? Define $f_n(x) = \chi_{r_1, r_2, \dots r_n}$, where $\{r_i\} = \mathbb{Q} \cap [0, 1]$, i.e., first n rational numbers. Those functions are integrable since they are non-zero in finite number of points. However, $f(x) = \chi_{\mathbb{Q} \cap [0, 1]}$ is not integrable.

Riemann integral: limit We defined Riemann integral as limit of Riemann sum:

By dividing on y, we bound the error by the size of each interval, ϵ :

$$g(x) = s\chi_{A_1} + (s + \epsilon)\chi_{A_2} + \dots$$

$$\forall x \quad |g(x) - f(x)| \le \epsilon$$

2 Measure

For $A \subseteq \mathbb{R}$ we want to define size of A which we will denote $\lambda(A)$. What do we require from λ ?

- 1. $\lambda([a,b]) = b a$
- $2. \ 0 \le \lambda(A) \le \infty$
- 3. $\lambda(\emptyset) = 0$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$ and $\forall i, j \quad A_i \cap A_j = \emptyset$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. $\lambda(A+x) = \lambda(A)$, where $A+x = \{s+x : a \in A\}$.

From those properties we get additional properties:

• Additivity:

$$A = \bigcup_{i=1}^{n} A_i \Rightarrow \lambda(A) = \sum_{i=1}^{n} \lambda(A_i)$$

• If $A \subseteq B$, then $\lambda(A) \leq \lambda(B)$.

Theorem 2.1. Function λ fulfilling 1-5 and defined on every subset of \mathbb{R} doesn't exist.

Proof. Suppose there exists such λ .

Define equivalence relation $x \sim y$ iff $x - y \in \mathbb{Q}$. Define E choose from each equivalence class one representative from $\left[0, \frac{1}{2}\right]$. Note that if $q_1 \neq q_2$, then $q_1 + E \cap q_2 + E = \emptyset$, since else $e_1 - e_2 = q_1 - q_2$ and $e_1 \sim e_2$, in contradiction. From definition $E \subset \left[0, \frac{1}{2}\right]$. Take a look at

$$\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E \right) \subseteq [0, 1]$$

Thus

$$\lambda \left(\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E \right) \right) \le \lambda([0,1]) = 1$$

On the other hand

$$\lambda\!\left(\bigcup_{k=2}^{\infty}\left(\frac{1}{k}+E\right)\right) = \sum_{k=2}^{\infty}\lambda\!\left(\frac{1}{k}+E\right)) = \lambda(E))$$

Thus $\lambda(E) = 0$. However,

$$\mathbb{R} = \bigcup_{r \in \mathbb{Q}} r + E$$

From sigma-additivity

$$\lambda(\mathbb{E}) = \sum_{r \in \mathbb{O}} \lambda(r + E) = 0$$

But $\lambda(\mathbb{R}) \geq \lambda([0,1])$, in contradiction.

Regirements for measure in \mathbb{R}

- 1. $0 \le \lambda(E) \le \infty$
- 2. $\lambda(\emptyset) = 0$
- 3. $\lambda([a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]) = \prod_{i=1}^n (b_i a_i)$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. If C is acquired from A by rotation or translation $\lambda(C) = \lambda(A)$.

Note In \mathbb{R}^3 it is impossible to define measure that fulfills those requirements eve if we replace sigma-additivity with additivity.

Banach-Tarski paradox Denote B – unit ball in \mathbb{R}^3 . We can write

$$B = \bigcup_{i=1}^{5} A_i$$

and find C_i by rotation or translation of A_i such that $\bigcup_{i=1}^5 C_i$ is two unit balls.

2.1 Construction of λ

Definition 2.1 (Special boxes). Let E box with edges parallel to axes:

$$E = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

For E we define

$$\lambda(E) = \prod_{i=1}^{n} (b_i - a_i)$$

Definition 2.2 (Special polygons). is a finite union of special boxes.

Note Each special polygon is a finite union of special boxes with disjoint interior.

Let P is special polygon written as $P = \bigcap_{i=1}^{k} A_i$ where A_i is special box and their interior is disjoint.

$$\lambda(P) = \sum_{i=1}^{k} \lambda(A_i)$$

Proposition 2.2. The definition is independent on choice of A_i .

Proof. Let $P = \bigcap A_i = \bigcap B_i$.

If we continue edges of both A_i and B_i we'll get net which divides P into C_i which refines both A_i and B_i and thus

$$\lambda(P) = \sum_{i} \lambda(A_i) = \sum_{i} \lambda(B_i) = \sum_{i} \lambda(C_i)$$

Proposition 2.3. If P_1 , P_2 are special polygons and $P_1 \subseteq P_2$ then $\lambda(P_1) \leq \lambda(P_2)$.

Proof. Let $P_2 = \bigcap A_i$ and choose the refinement which divides P_1 .

Proposition 2.4. If P_1 , P_2 are special polygons with disjoint interior then

$$\lambda(P_1 \cup P_2) = \lambda(P_1) + \lambda(P_2)$$

Proof. Find A_i which divides both P_1 and P_2 .

Proposition 2.5. For all $x \in \mathbb{R}^n$

$$\lambda(x+P) = \lambda(P)$$

Alternative proof. For special boxes

$$\lambda(E) = \lim_{N \to \infty} \frac{1}{N^n} \left| E \cap \frac{1}{N} \mathbb{Z}^n \right|$$

For n = 1, $I = [a, b] \subseteq \mathbb{R}$. We claim

$$b - a = \lim_{N \to \infty} \frac{1}{N} \left| E \cap \frac{1}{N} \mathbb{Z} \right|$$

First of all

$$b - a - 1 \le |[a, b] \cap \mathbb{Z}| \le b - a + 1$$

To find $|[a,b] \cap \frac{1}{2}\mathbb{Z}|$, we can use $|[2a,2b] \cap \mathbb{Z}|$, which means

$$2b-2a-1 \leq \left|E \cap \frac{1}{2}\mathbb{Z}\right| \leq 2b-2a+1$$

And for any N:

$$Nb-Na-1 \leq \left|[a,b] \cap \frac{1}{N}\mathbb{Z}\right| \leq Nb-Na+1$$

$$b-a-\frac{1}{N} \leq \frac{1}{N} \bigg| [a,b] \cap \frac{1}{N} \mathbb{Z} \bigg| \leq b-a+\frac{1}{N}$$

By sandwich rule, we get the equality.

We can do the same for higher dimension and for open sets, and then we can easily proof the claim.

If P is special polygon and we take $\lim_{N\to\infty} \frac{1}{N^n} |P \cap \frac{1}{N} \mathbb{Z}^n| = \sum \lambda(A_i)$ when $P = \bigcap A_i$

Open sets

Definition 2.3. G is open if $\forall x \in G$ exists ball B(x,r) such that $B \subset G$. Alternatively we can replace ball with special box.

Thus for any open $G \neq \emptyset$

$$G = \bigcup \{ P \text{ special polygon} \}$$

And we can define

$$\lambda(G) = \sup \left\{ \lambda(P) | P \subseteq G \right\}$$

Lemma 2.1. Let $K \subseteq \mathbb{R}^n$ compact set and $\{G_i\}_{i \in I}$ open cover $(K \subseteq \bigcup G_i)$. Then exists $\epsilon > 0$ such that $\forall x \in K$ exists $i \in I$ such that $B(x, \epsilon) \subseteq G_i$.

Lemma 2.2. For all polygon of dimension P

$$\lambda(P) = \inf \left\{ \lambda(G) : P \subset G \right\}$$

Proof.

$$P \subseteq G \Rightarrow \lambda(P) < \lambda(G)$$

Infimum would give

$$\lambda(P) \le \inf \{ \lambda(G) : P \subset G \}$$

Write $P = \bigcup_{k=1}^{N} I_k$. Then

$$\lambda(P) = \sum_{k=1}^{N} \lambda(I_k)$$

For ϵ find I_k^{ϵ} such that

$$\begin{cases} \operatorname{int} I_k^{\epsilon} \supseteq I_k \\ \lambda(I_k^{\epsilon}) \le \lambda(I_k) + \frac{\epsilon}{N} \end{cases}$$

Denote $G = \bigcup_{k=1}^{N} \operatorname{int}(I_k^{\epsilon})$, then, from subadditivity

$$\lambda(G) \leq \sum_{k=1}^{N} \lambda(\operatorname{int} I_k^{\epsilon}) = \sum_{k=1}^{N} \lambda(I_k^{\epsilon}) \leq \epsilon + \sum_{k=1}^{N} \lambda(I_k)$$

In addition,

$$\inf \lambda(G) \le \lambda(P)$$

Proposition 2.6.

$$0 < \lambda(G) < \infty$$

Proof. Obvious

Proposition 2.7.

$$\lambda(G) = 0 \iff G = \emptyset$$

Proof. If G is not empty, exists $x \in G$ and special box around x such that $P \subseteq G$ and thus $\lambda(G) \le \lambda(P) > 0$

Proposition 2.8.

$$\lambda(\mathbb{R}^n) = \infty$$

Proof. Any box is subset of \mathbb{R}^n thus $\lambda(\mathbb{R}^n) = \infty$

Proposition 2.9.

$$G_1 \subseteq G_2 \Rightarrow \lambda(G_1) \le \lambda(G_2)$$

Proof. Obvious

Proposition 2.10.

$$\lambda \left(\bigcup_{k=1}^{\infty} G_k \right) \le \sum \lambda(G_k)$$

Proof. Let P special polygon, $P \subseteq \bigcup_{k=1}^{\infty} G_k$. We'll show that it's possible to write

$$P = \bigcup_{j=1}^{N} I_j$$

finite union of special boxes with disjoint interior and for each j exists k such that $I_j \subset G_k$. Let ϵ from lemma for K = P. Write $P = \bigcup_{j=1}^N = I_j$ such that diameter of each $I_j < \epsilon$. If x_j is center of I_j , then $I_j \subseteq B(x_j, \epsilon) \subseteq G_k$. If this is possible, for such P denote

$$P_k = \bigcup_{i=1}^{\infty} I_j | I_j \subset G_k, \forall i < k \quad I_j \not\subset G_i$$

Obviously $\bigcup P_k = P$ and union is finite since for some m, for every k > m $P_m = \emptyset$, because there is finite number of I_j , and also internals of P_k are disjoint.

Thus $\lambda(P) = \sum \lambda(P_k) \leq \sum \lambda(G_k)$. This is right for any P, thus

$$\lambda\left(\bigcup(G_k)\right) = \sup\left\{\lambda(P)|P\subseteq\bigcup(G_k)\right\} \le \sum_{k=1}^{\infty}\lambda(G_k)$$

Proposition 2.11.

$$\lambda\left(\bigcup_{k=1}^{\infty} G_k\right) = \sum \lambda(G_k)$$

Proof. Since we have sigma-subadditivity, we need only one direction of inequality:

$$\lambda(G_k) = \sup \{\lambda(P) : P \subseteq G_k\}$$

For any N

$$\sum_{k=1}^{N} \lambda(G_k) = \sup \left\{ \sum_{k=1}^{N} \lambda(P_k) : P_k \subseteq G_k \right\} = \sup \left\{ \lambda \left(\bigcup_{k=1}^{N} P_k \right) : P_k \subseteq G_k \right\} \le \lambda \left(\bigcup_{k=1}^{N} G_k \right) \le \lambda \left(\bigcup_{k=1}$$

i.e.,

$$\sum_{k=1}^{\infty} \lambda(G_k) \le \lambda \left(\bigcup_{k=1}^{\infty} G_k \right)$$

Proposition 2.12.

$$\lambda(P) = \lambda(\operatorname{int} P) = \inf \{\lambda(G) : P \subseteq G\}$$

Proof. First, proof that $\lambda(P) = \lambda(\operatorname{int} P)$. If I = P is non-empty special box $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$. For any $\epsilon > 0$, $I_{\epsilon} = [a_1 + \epsilon, b_1 - \epsilon] \times [a_2 + \epsilon, b_2 - \epsilon] \times \cdots \times [a_n + \epsilon, b_n - \epsilon]$. $I_{\epsilon} \subseteq \operatorname{int} I$. That means that $\lambda(I_{\epsilon}) \leq \lambda(\operatorname{int} I)$. Obviously, $\lambda(I_{\epsilon}) \to \lambda(I)$, i.e. $\lambda(I) \leq \lambda(\operatorname{int} I)$.

Generally, for $P = \bigcup_{k=1}^{N} I_k$,

$$int P \ge \bigcup_{k=1}^{N} int I_k$$

thus

$$\lambda(\operatorname{int} P) \ge \lambda\left(\bigcup_{k=1}^{N} \operatorname{int} I_{k}\right) = \sum_{k=1}^{N} \lambda(\operatorname{int} I_{k}) \ge \sum_{k=1}^{N} \lambda(I_{k}) = \lambda(P)$$

For any P

$$\lambda(\text{int }P) \ge \lambda P$$

However

$$\lambda(\operatorname{int} P) = \sum \{\lambda(Q) : Q \subseteq \operatorname{int} P\}$$

$$Q \subseteq P \Rightarrow \lambda(Q) \le \lambda(P) \Rightarrow \lambda(\operatorname{int} P) \le \lambda(P)$$

Second part is obvious from Lemma 2.2.

Proposition 2.13.

$$\lambda(x+G) = \lambda(G)$$

Proof. Obvious since it's right for polygons

2.2 Compact sets

Definition 2.4. For compact $K \subseteq \mathbb{R}^n$

$$\lambda(K) = \inf \{ \lambda(G) : K \subseteq G \mid G \text{ is open} \}$$

Proposition 2.14.

$$0 \le \lambda(K) < \infty$$

Proof. Each K is subset of open box A and $\lambda(A) < \infty$

Proposition 2.15.

$$K_1 \subseteq K_2 \Rightarrow \lambda(K_1) \leq \lambda(K_2)$$

Proof. Obvious

Proposition 2.16. Subadditivity

$$\lambda(K_1 \cup K_2) \le \lambda(K_1) + \lambda(K_2)$$

Proof.

$$K_i \subseteq G_i$$

$$K_1 \cup K_2 \subseteq G_1 \cup G_2$$

$$\lambda(K_1 \cup K_2) \le \lambda(G_1 \cup G_2) \le \lambda(G_1) + \lambda(G_2)$$

Thus

$$\lambda(K_1 \cup K_2) \le \lambda(K_1) + \lambda(K_2)$$

Proposition 2.17.

$$K_1 \cup K_2 = \emptyset \Rightarrow \lambda(K_1 \cup K_2) = \lambda(K_1) + \lambda(K_2)$$

Proof. For K_1 , K_2 exists $\epsilon > 0$ such that $\forall x \in K_1 \ y \in K_2$, $d(x,y) \ge \epsilon$. Denote

$$U_i = \bigcup_{x \in K_i} B\left(x, \frac{\epsilon}{2}\right) \supset K_i$$

Let $K_1 \cup K_2 \subset G_i$, since $K_i \subset U_i$,

$$K_i \subset G \cap U_i$$

i.e.,

$$\forall i \quad \lambda(K_i) \leq \lambda(G \cap U_i)$$

Since $U_1 \cap U_2 = \emptyset$ (from construction)

$$(G \cap U_1) \cap (G \cap U_2) = \emptyset$$

$$\lambda(G \cap U_1) + \lambda(G \cap U_2) = \lambda((G \cap U_1) \cap (G \cap U_2)) \le \lambda(G)$$

Thus

$$\lambda(G) \ge \lambda(G \cap U_1) + \lambda(G \cap U_2) \ge \lambda(K_1) + \lambda(K_2)$$

i.e.,

$$\lambda(K_1 \cup K_2) \ge \lambda(K_1) + \lambda(K_2)$$

2.3 General sets

Define outer and inner measure similar to Darboux sums:

$$\lambda^*(A) = \inf \{ \lambda(G) : A \subset G, \text{ open} \}$$

$$\lambda_*(A) = \sup \{\lambda(K) : A \supset G, \text{ compact}\}\$$

Proposition 2.18.

$$\lambda_*(A) \le \lambda^*(A)$$

Proof. If G is open and K compact and $K \subset A \subset G$ then $K \subset G$, i.e. $\lambda(K) \leq \lambda(G)$. From that, taking supremum on K and infimum on G, we get the required result.

Proposition 2.19.

$$A \subset B \Rightarrow \lambda^*(A) \leq \lambda^*(B) \quad \lambda_*(A) \leq \lambda_*(B)$$

Proof. Obvious.

Proposition 2.20.

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \le \sum_{k=1}^{\infty} \lambda^* (A_k)$$

Proof.

$$\lambda^*(A) = \inf \{ \lambda(G) : A \subset G, \text{ open} \}$$

Thus exists G_k such that

$$\lambda(G_k) < \lambda^*(A_k) + \frac{\epsilon}{2^k}$$

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \le \lambda \left(\bigcup_{k=1}^{\infty} G_k \right) \le \sum_{k=1}^{\infty} \lambda(G_k) < \sum_{k=1}^{\infty} \left(\lambda^*(A_k) + \frac{\epsilon}{2^k} \right) = \lambda^*(A_k) + \epsilon$$

Proposition 2.21. For disjoint A_k

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \ge \sum_{k=1}^{\infty} \lambda^* (A_k)$$

Proof. For all i choose $K_i \subseteq A_i$. Choose some N, then

$$\bigcup_{k=1}^{N} K_k \subseteq \bigcup_{k=1}^{\infty} A_k$$

Since $\bigcup_{k=1}^{N} K_k$ is compact,

$$\lambda_* \left(\bigcup_{k=1}^{\infty} A_n \right) \ge \lambda \left(\bigcup_{k=1}^{N} K_k \right) = \sum_{k=1}^{N} \lambda(K_k)$$

By taking supremum on K_i , we get

$$\lambda_* \left(\bigcup_{k=1}^{\infty} A_n \right) \ge \sum_{k=1}^{N} \lambda_* (A_n)$$

Proposition 2.22. If A is open or compact then

$$\lambda(A) = \lambda^*(A) = \lambda_*(A)$$

Proof. If A is compact, obviously $\lambda_*(A) = \lambda(A)$, and $\lambda^*(A) = \lambda(A)$ by definition. For open A, obviously $\lambda(A) = \lambda^*(A)$. In addition, for any special polygon $P \subset A$, $\lambda(P) \leq \lambda_*(A)$. However

$$\lambda^*(A) = \lambda(A) = \sup \{\lambda(P) : P \subseteq A\} \le \lambda_*(A)$$

meaning

$$\lambda^*(A) = \lambda(A) = \lambda_*(A)$$

Denote

$$\mathcal{L}_0 = \{ A \subset \mathbb{R}^n :: \lambda^* \} A_{=} \lambda_*(A) < \infty \}$$

All compact sets and all open set with finite measure are in \mathcal{L}_0 .

Proposition 2.23.

$$\lambda_*(A) = \lambda_*(A+x)$$

$$\lambda^*(A) = \lambda^*(A+x)$$

Definition 2.5. For set in \mathcal{L}_0 , $\lambda(A) = \lambda^*(A) = \lambda_*(A)$.

Lemma 2.3. If $A, B \in \mathcal{L}_0$ and $A \cap B = \emptyset$ then $A \cup B \in \mathcal{L}_0$ and

$$\lambda(A \cup B) = \lambda(A) + \lambda(B)$$

Proof.

$$\lambda^*(A \cup B) \le \lambda^*(A) + \lambda^*(B) = \lambda(A) + \lambda(B) = \lambda_*(A) + \lambda_*(B) \le \lambda_*(A \cup B) \le \lambda^*(A \cup B)$$

Theorem 2.24. $A \subseteq \mathbb{R}^n$ with $\lambda^*(A) < \infty$. $A \in \mathcal{L}_0$ iff for all $\epsilon > 0$ exists compact K and open $G, K \subseteq A \subseteq G$ and $\lambda(G \setminus K) < \epsilon$

Proof. \Rightarrow :

Let $A \in \mathcal{L}_0$. We can find compact K and open $G, K \subseteq A \subseteq G$ such that

$$\lambda(G) < \lambda^*(A) + \frac{\epsilon}{2}$$

$$\lambda(K) > \lambda_*(A) - \frac{\epsilon}{2}$$

Note that, by lemma

$$\lambda(G) = \lambda(K) + \lambda(G \setminus K)$$

$$\lambda(G \setminus K) = \lambda(G) - \lambda(K) < \epsilon$$

⇐:

$$\lambda^*(A) \le \lambda(G) = \lambda(K) + \lambda(G \setminus K) < \lambda(K) + \epsilon \le \lambda_*(A) + \epsilon$$

Thus $\lambda^*(A) = \lambda_*(A)$ and $A \in \mathcal{L}_0$.

Collary 2.24.1. If $A, B \in \mathcal{L}_0$, then $A \cup B, A \cap B, A \setminus B \in \mathcal{L}_0$

Proof. First, show that $A \setminus B \in \mathcal{L}_0$. Take $K_1 \subseteq A \subseteq G_1$ and $K_2 \subseteq A \subseteq G_2$.

$$\lambda(G_1 \setminus K_1) < \frac{\epsilon}{2}$$

$$\lambda(G_2 \setminus K_2) < \frac{\epsilon}{2}$$

Denote $K = K_1 \setminus G_2$ and $G = G_1 \setminus K_2$.

$$K \subseteq A \setminus B \setminus G$$

$$G \setminus K = (G_1 \setminus K_1) \cup (G_2 \setminus K_2)$$

$$\lambda(G \setminus K) \leq \lambda(G_1 \setminus K_1) + \lambda(G_2 \setminus K_2) < \epsilon$$

Now

$$A \cup B = (A \setminus B) \cup B \in \mathcal{L}_0$$

$$A \cap B = A \setminus (A \setminus B) \in \mathcal{L}_0$$

Theorem 2.25. Let $\{A_k\}$ set in \mathcal{L}_0 and $A\bigcup_{k=1}^{\infty} A_k$ such that $\lambda^*(A) < \infty$ then $A \in \mathcal{L}_0$ and

$$\lambda(A) \le \sum_{k=1}^{\infty} \lambda(A_k)$$

In addition, if $A_i \cap A_j = \emptyset$,

$$\lambda(A) = \sum_{k=1}^{\infty} \lambda(A_k)$$

Proof. Suppose $\{A_k\}$ are disjoint.

$$\lambda^*(A) \le \sum_{k=1}^{\infty} \lambda^*(A_k) = \sum_{k=1}^{\infty} \lambda_*(A_k) \le \lambda_*(A)$$

Thus $A \in \mathcal{L}_0$ and

$$\lambda(A) = \lambda^*(A) = \sum_{k=1}^{\infty} \lambda^*(A_k) = \sum_{k=1}^{\infty} \lambda(A_k)$$

Now generally, define

$$B_1 = A_1 \in \mathcal{L}_0$$
$$B_2 = A_2 \setminus A_1$$

and so on:

$$B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \in \mathcal{L}_0$$

Now $\{B_k\}$ are disjoint and $A = \bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} B_k \in \mathcal{L}_0$. Thus

$$\lambda(A) = \lambda \left(\bigcup_{k=1}^{\infty} A_k \right) = \lambda \left(\bigcup_{k=1}^{\infty} B_k \right) = \sum_{k=1}^{\infty} \lambda(B_k) \le \sum_{k=1}^{\infty} \lambda(A_k)$$

Note Any ball B(0,R) is in \mathcal{L}_{l} , since it is inside special box large enough.

Definition 2.6. Let $A \subseteq \mathbb{R}^n$, we say A is Lebesgue measurable if $\forall M \in \mathcal{L}_0$ $A \cap M \in \mathcal{L}_0$. It's measure equals

$$\lambda(A) = \sup \{\lambda(A \cap M), M \in \mathcal{L}_0\}$$

Denote a set of all such sets as \mathcal{L} .

Proposition 2.26. If $\lambda^*(A) < \infty$, $A \in \mathcal{L} \iff A \in \mathcal{L}_0$. For those sets λ definitions are equivalent.

Proof. If $A \in \mathcal{L}_0$ in, then $\forall M \in \mathcal{L}_0$ $A \cap M \in \mathcal{L}_0$, thus $A \in \mathcal{L}$.

Now, if $A \in \mathcal{L}$ and $\lambda^*(A) < \infty$. For all $N \in \mathbb{N}$,

$$A \cap B(0,N) \in \mathcal{L}_0$$

However

$$A = \bigcup_{N=1}^{\infty} \left[A \cap B(0, N) \right]$$

And $\lambda^*(A) < \infty$, thus $A \in \mathcal{L}_0$.

Denote

$$\tilde{\lambda}(A) = \sup \{\lambda(A \cap M), M \in \mathcal{L}_0\}$$

Obviously, $\lambda(A) \geq \lambda(A)$ (take M = A). On the other side,

$$\forall M \in \mathcal{L}_0 \quad \lambda(A \cap M) \leq \lambda(A)$$

thus $\tilde{\lambda}(A) = \lambda(A)$

Proposition 2.27.

 $\emptyset \in \mathcal{L}$

Proof.

 $\emptyset \in \mathcal{L}_0 \Rightarrow \emptyset \in \mathcal{L}$

Proposition 2.28.

 $A \in \mathcal{L} \Rightarrow \mathbb{R}^n \setminus A \in \mathcal{L}$

Proof. Take $M \in \mathcal{L}_0$.

$$(\mathbb{R}^n \cap A) \cap M = M \setminus A = M \setminus (A \cap M) \in \mathcal{L}_0$$

Proposition 2.29.

 $\{A_i\}_{i=1}^{\infty} \in \mathcal{L} \Rightarrow A = \bigcup A_i \in \mathcal{L}$

Proof. Take $M \in \mathcal{L}_0$.

$$A \cap M = \bigcup_{i=1}^{\infty} (A_k \cap M)$$
$$\lambda^*(A \cap M) \le \lambda(M)$$

Thus

$$A \cap M \in \mathcal{L}_0$$

Proposition 2.30. If $\forall N \in \mathbb{N}$, $A \cap B(0, N) \in \mathcal{L}_0$, then $A \in \mathcal{L}$.

Definition 2.7. For some set X, set M of its subsets is called σ -algebra if

- 1. $\emptyset \in M$
- 2. $A \in M \Rightarrow X \setminus A \in M$
- 3. $\{A_i\}_{i=1}^{\infty} \in M \Rightarrow A = \bigcup A_i \in M$

Examples

- 1. 2^X for any X is σ -algebra
- 2. All subsets of \mathbb{R} that are countable or their complement is countable.
- 3. All open sets in \mathbb{R} is not σ -algebra.

Proposition 2.31. If M is σ -algebra and $\{A_k\}_{k=1}^{\infty} \subset M$, then

$$\bigcap_{k=1}^{\infty} A_k \in M$$

Proof.

$$X \setminus \bigcap_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} (X \setminus A_k) \in M$$

Proposition 2.32. All open and closed sets are in \mathcal{L}

Proof. Let A some open set. Then $A \cap B(0, N) \in \mathcal{L}_0$. Since \mathcal{L} is closed for complementation, also closed sets are in \mathcal{L} .

Proposition 2.33. If $\{A_k\}_{k=1}^{\infty} \subset \mathcal{L}$ then

$$\lambda \left(\bigcup_{k=1}^{\infty} A_k \right) \le \sum_{k=1}^{\infty} \lambda(A_k)$$

Proof. Denote $A = \bigcup_{k=1}^{\infty} A_k$. For $M \in \mathcal{L}_0$

$$\lambda(A \cap M) = \lambda \left(\bigcup_{k=1}^{\infty} (A_k \cap M) \right) \le \sum_{k=1}^{\infty} \lambda(A_k \cap M) \le \sum_{k=1}^{\infty} \lambda(A_k)$$

Since it right for any M,

$$\lambda(A) \le \sum_{k=1}^{\infty} \lambda(A_k)$$

Proposition 2.34. If $\{A_k\}_{k=1}^{\infty} \subset \mathcal{L}$ and $A_i \cap A_j = 0$ then

$$\lambda \left(\bigcup_{k=1}^{\infty} \right) = \sum_{k=1}^{\infty} \lambda(A_k)$$

Proof. For some $N \in \mathbb{N}$, choose $\{M_p \in \mathcal{L}_0\}_{p=1}^N$. Define $\mathcal{L}_0 \ni M = \bigcup_{p=1}^N M_p$.

$$\lambda(A) \ge \lambda(A \cap M) = \sum_{k=1}^{\infty} \lambda(A_k \cap M) \ge \sum_{k=1}^{N} \lambda(A_k \cap M) \ge \sum_{k=1}^{N} \lambda(A_k \cap M_k)$$

Thus

$$\lambda_A \ge \sup \left\{ \sum_{k=1}^N \lambda(A_k \cap M_k), M_k \in \mathcal{L}_0 \right\} = \sum_{k=1}^N \sup \left\{ \lambda(A_k \cap M_k), M_k \in \mathcal{L}_0 \right\} = \sum_{k=1}^N \lambda(A_k)$$

Since it's right for any N,

$$\lambda_A \ge \sum_{k=1}^{\infty} \lambda(A_k)$$

Theorem 2.35. The defined λ fulfills properties of measure.

- 1. $0 \le \lambda(A) \le \infty$
- $2. \ \lambda(\emptyset) = 0$
- 3. $\lambda([a_1,b_1] \times [a_2,b_2] \times \ldots \times [a_n,b_n]) = \prod_{i=1}^n (b_i a_i)$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. If C is acquired from A by rotation or translation $\lambda(C) = \lambda(A)$.

Definition 2.8 (Measure). For some set X, measure of X is function μ defined on σ -algebra M of subsets of X and fulfills

- 1. $0 \le \mu(A) \le \infty$
- 2. $\mu(\emptyset) = 0$
- 3. If $A = \bigcup_{k=1}^{\infty} A_k$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.

We denote measure space as (X, μ, M) .

Theorem 2.36. Let (X, μ, M) measure space.

1. If $\{A_k\}_{k=1}^{\infty} \subset M$ and $\forall k A_k \subset A_{k+1}$, then

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} \mu(A_k)$$

2. If $\{A_k\}_{k=1}^{\infty} \subset M$ and $\forall k A_k \supset A_{k+1}$ and $\mu(A_1) < \infty$, then

$$\mu\left(\bigcap_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} \mu(A_k)$$

Proof.

$$\bigcup_{k=1}^{\infty} A_k = A_1 \cup \left[\bigcup_{k=1}^{\infty} A_{k+1} \setminus A_k \right]$$

Since those sets are disjoint

$$\mu\left(\bigcup_{k=1}^{\infty}A_{k}\right) = \mu(A_{1}) + \sum_{k=1}^{\infty}\mu(A_{k+1}\setminus A_{k}) = \lim_{N\to\infty}\mu(A_{1}) + \sum_{k=1}^{N}\mu(A_{k+1}\setminus A_{k}) = \lim_{N\to\infty}\mu\left(A_{1}\cup\left[\bigcup_{k=1}^{N}A_{k+1}\setminus A_{k}\right]\right) = \lim_{N\to\infty}\mu(A_{N+1})$$

Proposition 2.37. If $\lambda^*(A) = 0$, $A \in \mathcal{L}$ and for any $B \subset A$, $B \in \mathcal{L}$ and $\lambda(B) = 0$.

Proof.

$$\lambda_*(A) < \lambda^*(A) = 0 \Rightarrow A \in \mathcal{L}_0$$

Monotonity of upper measure

Theorem 2.38. A is measurable iff $\forall \epsilon > 0$ exist open G and closed F such that

$$F \subseteq A \subseteq G$$

and

$$\lambda(G \setminus F) \le \epsilon$$

 $Proof. \Leftarrow:$

Suppose exist such G and K. For all k choose G_k and F_k such that

$$\lambda(G_k \setminus F_k) < \frac{1}{k}$$

Denote

$$B = \bigcup_{k=1}^{\infty} F_k$$
$$\lambda^*(A \setminus B) = 0$$

and

$$A \setminus B \subseteq G_k \setminus B \subseteq G_k \setminus F_k$$

Thus

$$\lambda^*(A \setminus B) \le \lambda(G_k \setminus F_k) < \frac{1}{k}$$

Thus $\lambda^*(A \setminus B) = 0$ and $A \setminus B \in \mathcal{L}$.

However $B \in \mathcal{L}$ and $A = B \cup (A \setminus B)$, thus $A \in \mathcal{L}$.

 \Rightarrow :

Suppose $A \in \mathcal{L}$. Denote $E_k = B(0, k) \setminus B(0, k - 1)$. This is partition of \mathbb{R}^n . $E_k \in \mathcal{L}_0$ and so is $A \cap E_k \in \mathcal{L}$. Thus for all k there is

$$K_k \subseteq A \cap E_k \subseteq G_k$$

such that $\lambda(G_k \setminus K_k) < \frac{\epsilon}{2^k}$. Denote

$$F = \bigcup_{k=1}^{\infty} K_k$$

$$G = \bigcup_{k=1}^{\infty} G_k$$

$$\lambda(G \setminus F) = \lambda \left(\bigcup_{k=1}^{\infty} (G_k \setminus F)\right) \le \lambda \left(\bigcup_{k=1}^{\infty} (G_k \setminus K_k)\right) \le \sum_{k=1}^{\infty} \lambda(G_k \setminus K_k) < \epsilon$$

Now, F is closed. Let $F \ni x_k \to x$. The sequence converges and thus bounded, and thus exists N such that $\{x_k\} \cup \{x\} \in B(0, N)$. Thus $\{x_k\} \subseteq \left(\bigcup_{i=1}^N E_i\right) \cap F$ and $\{x_k\} \subseteq \bigcup_{i=1}^N K_i$ and thus $\{x_k\} \cup \{x\} \in F$.

Proposition 2.39. If A is measurable then $\lambda(A) = \lambda^*(A) = \lambda_*(A)$.

Proof. If $\lambda^*(A) < \infty$ we've already seen this.

Suppose $\lambda^(A) = \infty$. Thus inf $\{\lambda(G) : A \subseteq G\} = \infty$. By previous theorem exists closed F such that $F \subseteq A \subseteq G$ and $\lambda(G \setminus A) \le 1$.

$$\infty = \lambda(G) = \lambda(G \setminus A) + \lambda(A) \le bda(G \setminus F) + \lambda(A) \le 1 + \lambda(A)$$

Thus, $\lambda(A) = \infty$.

Now, take a look at $\{A \cap B(0,N)\}_N$.

$$\infty = \lambda(A) = \lambda \left(\bigcup_{N} (A \cap B(0, N)) \right) = \lim_{N \to \infty} \lambda(A \cap B(0, N))$$
$$\infty \leftarrow \lambda(A \cap B(0, N)) = \lambda_*(A \cap B(0, N)) \le \lambda_*(A)$$

Reminder We've built $E \subseteq \left[0, \frac{1}{2}\right]$ such that $q + E : q \in \mathbb{Q}$ is disjoint. And

$$\forall k \in \mathbb{N} \ \frac{1}{k} + E \subseteq [0, 1]$$

$$\bigcup_{q\in\mathbb{Q}}q+E=\mathbb{R}$$

Proposition 2.40. E is not measurable

Proof.

$$\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E\right) \subseteq [0, 1]$$

$$1 = \lambda_* \left(\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E\right)\right) \ge \sum_{k=2}^{\infty} \lambda_* \left(\frac{1}{k} + E\right)$$

i.e., $\lambda_*(E) = 0$. On the other hand

$$\infty = \lambda^*(\mathbb{R}) = \lambda^* \left(\bigcup_{q \in \mathbb{Q}} q + E \right) \le \sum_q \lambda^*(q + E) = \sum_q \lambda^*(E)$$

Thus $\lambda^*(E) > 0$, i.e., E is not measurable.

Proposition 2.41. For any measurable $A \subseteq \mathbb{R}$ such that $\lambda(A) > 0$, exists non-measurable $B \subseteq A$.

Proof. We've seen that

$$\bigcup_{q \in \mathbb{O}} q + E = \mathbb{R}$$

thus

$$A = \bigcup_{q \in \mathbb{O}} A \cap (q + E)$$

$$0 \le \lambda^*(A) = \lambda^* \left(\bigcup_{q \in \mathbb{Q}} A \cap (q + E) \right) \le \sum_q \lambda^*(A \cap (q + E))$$

Thus exists q_0 such that $0 < \lambda^*(A \cap (q + E))$, denote

$$B = A \cap (q_0 + E)$$

$$\lambda_*(B) \le \lambda_*(q_0 + E) = \lambda_*(E) = 0$$

i.e. $B \notin \mathcal{L}$.

Proposition 2.42. B measurable, $A \subseteq B$, then

$$\lambda^*(A) + \lambda_*(B \setminus A) = \lambda(B)$$

Proof.

$$\lambda^*(A) = \inf \{ \lambda(G) : A \cap G \}$$

$$\lambda(G) + \lambda_*(B \setminus A) \ge \lambda(G) + \lambda_*(B \setminus B) = \lambda(G) + \lambda(B \setminus G) \ge \lambda(B)$$

On the other hand, for any $K \subseteq B \setminus A$

$$\lambda^*(A) + \lambda(K) \le \lambda(B \setminus K) + \lambda(K) = \lambda(B)$$

By taking supremum on K, we get

$$\lambda^*(A) + \lambda(B \setminus A) \le \lambda(B)$$

Proposition 2.43 (Carathéodory's condition).

$$A \subseteq \mathbb{R}^n$$
 measurable $\iff \forall E \subseteq \mathbb{R}^n \quad \lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \setminus A)$

 $Proof. \Rightarrow$:

Let A measurable set. Choose general E. For open $G \supset E$,

$$\lambda(G) = \lambda(G \cap A) + \lambda(G \setminus A) \ge \lambda^*(E \cap A) + \lambda^*(E \setminus A)$$

Since it's right for any G, by taking infimum:

$$\lambda^*(E) \ge \lambda^*(E \cap A) + \lambda^*(E \setminus A)$$

And by subadditivity

$$\lambda^*(E) \le \lambda^*(E \cap A) + \lambda^*(E \setminus A)$$

i.e.,

$$\lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \setminus A)$$

⇐:

Suppose the condition is right for A. Let $M \in \mathcal{L}_0$, then

$$\lambda(M) = \lambda^*(M \cap A) + \lambda^*(M \setminus A)$$

From previous proposition

$$\lambda(M) = \lambda^*(M \cap A) + \lambda_*(M \setminus A)$$

Thus

$$\lambda_*(M \setminus A) = \lambda^*(M \setminus A)$$

and thus $M \setminus A \in \mathcal{L}_0$, i.e. $A \in \mathcal{L}$.

Lemma 2.4. Let $A \subseteq \mathbb{R}$ with positive measure, and let $\epsilon > 0$ then there exists an interval $J \subseteq \mathbb{R}$ $\frac{\lambda(A \cap J)}{\lambda(J)} = 1 - \epsilon$

Proof. Denote $C = \lambda(A) > 0$.

$$\lambda(A) = \lambda^*(A) = C$$

Thus exists open $G \supseteq A$ such that $\lambda(G) < (1 + \frac{\epsilon}{2})C$.

Since G is open, it is disjoint union of open intervals:

$$G = \bigcup_{i=1}^{\infty} J_i$$

$$\left(1 + \frac{\epsilon}{2}\right)C > \lambda(G) = \sum \lambda(J_i)$$

Assume that $\forall i \ \lambda(A \cap J) leq(1 - \epsilon) \lambda(J)$. Then

$$C = \lambda(A) = \lambda\left(A \cap \left(\bigcup_{i=1}^{\infty} J_i\right)\right) = \sum_{i=1}^{\infty} \lambda(A \cap J_i) \le (1 - \epsilon) \sum_{i=1}^{\infty} \lambda(A \cap J_i)$$

Theorem 2.44. Let $A \subset \mathbb{R}$ measurable set with positive measure. $A - A = \{x - y | x, y \in A\}$.

Proof. If A has non-empty interior, the theorem is obvious. since there exists $a \in A$, $(a - \delta, a + \delta) \subset A$ and thus $(-\delta, \delta) \subset A - A$.

$$t \in A - A \iff A + t \cap A \neq \emptyset$$

Let J=(a,b) from previous lemma with $\epsilon=\frac{1}{3}$. Assume $t\notin A-A$, i.e. $A\cap (A+t)=\emptyset$. And thus

$$(A \cap J) \cap [(A+t) \cap (J+t)] = \emptyset$$

$$\lambda(A \cap J) \ge \frac{2}{3}\lambda(J)$$

$$\frac{2}{3}\lambda(J) + \frac{2}{3}\lambda(J) \leq \lambda(A\cap J) + \lambda\big((A+t)\cap(J+t)\big) = \lambda\big((A\cap J) \cup \big[(A+t)\cap(J+t)\big]\big) \leq \lambda(J\cup(J+t))$$

Now, if $t \ge 0$, $J \cup (J+t) \subseteq (a,b+t)$, and if t < 0, $J \cup (J+t) \subseteq (a+t,b)$. Anyway

$$\frac{4}{3}\lambda(J) \le \lambda(J \cup (J+t)) \le \lambda(J) + |t|$$

i.e.,

$$|t| \ge \frac{1}{3}\lambda(J)$$

Thus $\forall 0 < t < \frac{1}{3}\lambda(J), (-t, t) \subseteq A - A$.

Let a set of subsets in \mathbb{R}^n . Exists σ -algebra that is superset of a, and also

$$\bigcup \{m: a \subset m | ; \sigma\text{-algebra} \}$$

is σ -algebra and is called σ -algebra generated by a.

Denote \mathcal{B} σ -algebra generated by all open sets in \mathbb{R}^n . \mathcal{B} is Borel σ -algebra. Since all open sets are in \mathcal{L} , $\mathcal{B} \subseteq \mathcal{L}$.

Theorem 2.45. Let measurable $A \subseteq \mathbb{R}^n$, we can write $A = E \cup N$, such that

- $1. \ E \cap N = 0$
- 2. $E \in \mathcal{B}$
- 3. $\lambda(N) = 0$

Proof. For all $k \in \mathbb{N}$, find

$$F_k \subset A \subset G_k$$

 G_k open and F_k closed, and

$$\lambda(G_k \setminus F_k) \le \frac{1}{k}$$

Denote $E = \bigcup_{k=1}^{\infty} F_k \in \mathcal{E}$. $N = A \setminus E \in \mathcal{L}$.

$$\lambda(N) = \lambda(A \setminus E) \le \lambda(G_k \setminus F_k) < \frac{1}{k}$$

i.e., $\lambda(N) = 0$.

Reminder $f: E \to \mathbb{R}^n$ is continuous iff $\forall G \subseteq \mathbb{R}^n$, $f^{-1}(G)$ is open in E.

Theorem 2.46. Let $f: E \to \mathbb{R}^n$ be continuous for Borel set $E \subseteq \mathbb{R}^n$. Then $f^{-1}(\mathcal{B}) \subseteq \mathcal{B}$.

Proof. Let

$$m = \left\{ A \subseteq \mathbb{R}^n : f^{-1}(A) \in \mathcal{B} \right\}$$

We need to show that $\mathcal{B} \subseteq m$, i.e., that m is σ -algebra containing all open sets. $\emptyset \in m$, since $\emptyset = f^{-1}(\emptyset)$.

If $\{A_k\} \subseteq m$, then $f^{-1}(A_k) \in \mathcal{B}$ and

$$f^{-1}\left(\bigcup_{k} A_{k}\right) = \bigcup_{k} f^{-1}(A_{k}) \in \mathcal{B}$$

If $A \in m$, then

$$f^{-1}(\mathbb{R}^n \setminus A) = E \setminus f^{-1}(A) \in \mathcal{B}$$

Now lets show that all open sets are in m. If G is open,

$$f^{-1}(G) = E \cap U_G \in \mathcal{B}$$

Theorem 2.47. There exists measurable set in \mathbb{R} which is not Borel.

Proof. Define $f:[0,1]:\mathbb{R}$. Let x in ternary basis $0.a_1a_2...$ Then

$$f(x) = \frac{1}{2^N} + \sum_{1}^{N-1} \frac{1}{2^n} \frac{a_n}{2}$$

where N is first index such that $a_N = 1$.

Note that f is constant on $I \subset [0,1]$ such that $I \not\subset C$ (Cantor set).

f is monotonous and onto, and thus continuous.

Define also g(x) = x + f(x), which is one-to-one and onto, thus it is homeomorphism.

Denote \mathcal{C} set of intervals in $[0,1] \setminus \mathcal{C}$. Any interval $J \in \mathcal{C}$ exists r such that

$$q(x) = x + r$$

(f is constant on J). That means $\lambda(g(J)) = \lambda(J)$.

We see that

$$\lambda(G) - \lambda\left([0,2] \setminus \bigcup_{J \in \mathcal{C}} g(J)\right) = 2 - \sum_{J \in \mathcal{C}} \lambda(g(J)) = 2 - \sum_{J \in \mathcal{C}} \lambda(J) = 2 - 1 = 1$$

Let $B \subseteq g(C)$ which is not measurable. Denote

$$A = g^{-1}(B)$$

It is obvious that $A \subseteq C$, and since $\lambda(C) = 0$, $\lambda(A) = 0$.

If A was Borel, then, since B = g(A) and g is homeomorphism, we get that B is Borel. However, this is impossible, since B is non-measurable.

3 Measurable functions and integrals

We want to define integral as the sum of possible values of function times the size of set for which function gets this values:

$$\int f \sim \sum f(t_i \in A_i) \times \lambda(A_i)$$

where

$$A_i = \{x : f(x) \in [a, a + \epsilon]\}$$

Let X space with σ -algebra M. We work with functions

$$f: X \to [-\infty, \infty]$$

Definition 3.1. We say f is M-measurable if for all $-\infty < t < \infty$

$$f^{-1}(-\infty,t) \in M$$

Proposition 3.1. The following conditions are equivalent:

1. f is M-measurable:

$$\forall -\infty < t \le \infty \quad f^{-1}([-\infty, t]) \in M$$

2.

$$\forall \ -\infty < t \leq \infty \quad f^{-1}([-\infty,t)) \in M$$

3.

$$\forall -\infty \le t \le \infty \quad f^{-1}([t,\infty]) \in M$$

4.

$$\forall -\infty \le t < \infty \quad f^{-1}((t,\infty]) \in M$$

5. $f^{-1}(\infty) \in M$, $f^{-1}(-\infty) \in M$, and $\forall E \in \mathcal{B}(\mathbb{R})$ $f^{-1}(E) \in M$

6.
$$f^{-1}(\infty) \in M$$
, $f^{-1}(-\infty) \in M$, and $\forall a, b \in \mathbb{R}$ $f^{-1}([a, b]) \in M$

Proof. $1 \Rightarrow 2$:

$$f^{-1}([-\infty,t)) = \bigcup_{\mathbb{Q}\ni r < t} f^{-1}([-\infty,r])$$

thus $f^{-1}([-\infty,t)) \in M$.

If $t = -\infty$, $f^{-1}([-\infty, \infty]) = X \in M$. Otherwise

$$f^{-1}([t,\infty]) = X \setminus (f^{-1}([-\infty,t)))$$

thus $f^{-1}([t,\infty]) \in M$.

 $3 \Rightarrow 4$: just like $1 \Rightarrow 2$

 $4 \Rightarrow 1$: just like $2 \Rightarrow 3$

 $1-4 \Rightarrow 5$:

Taking $t = \pm \infty$, we get $f^{-1}(\infty)$ and $f^{-1}(-\infty)$.

$$S = \{ E \subset \mathbb{R} | f^{-1}(E) \in M \}$$

S is σ -algebra.

$$f^{-1}\bigg((a,b)\bigg) = f^{-1}((a,\infty]) \cap f^{-1}([-\infty,b]) \in M$$

Thus open intervals are in \mathbb{R} , and thus open sets and thus $\mathcal{B} \subset S$.

 $5 \Rightarrow 6$: Obvious, since 5 is stronger

 $6 \Rightarrow 1$: Left as an exercise

Collary 3.1.1. If $f: E \to [-\infty, \infty]$ and $E \in M$, then the definition is conserved.

Collary 3.1.2. $\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$ is measurable iff $A \in M$.

Proof. $A = \chi_A^{-1}(\{1\})$, thus one direction is obvious. Else,

$$\chi_A^{-1}(A) = \begin{cases} X & 0, 1 \in E \\ A & 1 \in E, 0 \notin E \\ X \setminus A & 1 \notin E, 0 \in E \\ \emptyset & 0, 1 \notin E \end{cases}$$

Collary 3.1.3. $f: E \to \mathbb{R}$, for Borel set $E \subset \mathbb{R}$. If f is continuous then f Borel-measurable and Lebesgue-measurable.

Theorem 3.2. Let $f: X \to \mathbb{R}$ M-measurable functions.

If $\phi: B \to \mathbb{R}$ for Borel set $B \subseteq \mathbb{R}$ and $f(x) \subseteq B$ and ϕ Borel-measurable, then $\phi \circ f$ are M-measurable.

Proof. We need to show

$$f^{-1}(\phi^{-1}(E)) = (\phi \circ f)^{-1}(E) \in M$$

Now, $\phi^1(E) \in \mathcal{B}$, since ϕ is Borel-measurable. Then $f^{-1}(\phi^{-1}(E)) \in M$.

Collary 3.2.1. If f is non-zero, $\frac{1}{f}$ is measurable.

Collary 3.2.2. If $0 , <math>|f|^p$ is measurable.

Proposition 3.3. If f is weaker (for example, Lebesgue-measurable), the theorem is not true, even if ϕ is homeomorphism. For example, we've seen g and non measurable g(A) for measurable A. Then

$$\chi_A \circ \phi = \chi_{q(A)}$$

which is non-measurable.

Theorem 3.4. Let $f, g: X \to \mathbb{R}$ M-measurable functions. Then f + g, cf, $f \cdot g$ are M-measurable.

Proof.

$$(f+g)^{-1}(-\infty,t)\bigcup_{r\in\mathbb{Q}}\left[f^{-1}(-\infty,r)\cap g^{-1}(-\infty,t-r)\right]$$

That means measurable functions are vector space.

$$f \cdot g = \frac{1}{4}(f+g)^2 - \frac{1}{4}(f-g)^2$$

Theorem 3.5. Let $\{f_k\}_{k=1}^{\infty}: X \to [-\infty, \infty]$ sequence of M-measurable functions. Then also $\liminf f_k$, $\limsup f_k$, $\limsup f_k$, $\inf f_k$ and so is $\lim f_k$ if exists.

Proof.

$$(\sup f_k)^{-1}([-\infty, t]) = \{x : \sup f_k(x) \le t\} = \bigcap \{x : f_k(x) \le t\} = \bigcap f_k^{-1}([-\infty, t]) \in M$$

$$\lim \sup f_k(x) = \inf_n \left(\sup_n j \le n f_j(x)\right)$$

Definition 3.2 (Simple function). $f: X \to [-\infty, \infty]$ is called simple function if it acquires only finite number of values. If we denote those values as $\{a_i\}_{i=1}^n$ and $A_k = \{x: f(x) = a_k\}$. Then we can rewrite function as

$$f(x) = \sum_{k=1}^{n} a_k \chi_{A_k}(x)$$

In fact, all functions that can be written as

$$f(x) = \sum_{k=1}^{m} b_K \chi_{B_k}(x)$$

is simple. If $\{B_k\}$ are disjoint and b_k are not equal, this is called canonical representation.

Proposition 3.6. f is measurable iff $\forall k \ A_k \in M$

Proof. χ_A measurable $\Rightarrow f$ is measurable. $A_k = \{x : f(x) = a_k\}$ is measurable.

Theorem 3.7. $f: X \to [-\infty, \infty]$. f m-measurable if there is sequence $\{s_k\}$ of measurable simple functions such that $\forall x s_k(x) \to f(x)$. We can choose s_k such that $|s_{k-1}| \le |s_k|$.

 $Proof. \Leftarrow obvious.$

 \Rightarrow :

Suppose $f \geq 0$. Define

$$s_k(x) = \begin{cases} k & f(x) \ge k \\ \frac{i-1}{2^k} & \frac{i-1}{2^k} \le f(x) < \frac{i}{2^k} \end{cases}$$

We can rewrite as

$$s_k(x) = k\chi_{A_k f^{-1}(k,\infty)} + \sum_{i=1}^{k \cdot 2^k} \frac{i-1}{2^k} \chi_{f^{-1}\left[\frac{i-1}{2^k}, \frac{i}{2^k}\right]}$$

which is canonical form, and we conclude s_k are measurable.

Obviously, $s_k \leq s_{k+1}$.

If $f(x) = \infty$, $s_k = k \to \infty = f(x)$.

Else, $\exists k_0 > f(x)$, and then

$$s_k(x) \le f(x) \le s_k(x) + \frac{1}{2^k}$$

i.e., $s_k(x) \to f(x)$.

In general case we define $f_+ = \max\{f(x), 0\}$ and $f_- = \max\{-f(x), 0\}$. Note that $f = f_+ - f_-$ and $f_- \cdot f_+ = 0$. Both f_-, f_+ are measurable. For f_\pm exist sequences $\{s_k'\}$, $\{s_k''\}$, we can define $s_k = s_k' - s_k''$. For any x either $s_k'(x)$ or $s_k''(x)$ is 0, thus in any point $s_k = s_k'$ or $s_k = -s_k''$, i.e., $|s_{k-1}| \le |s_k|$.

Definition 3.3. If some property is fulfilled for all x except, maybe, some set A which is subset of set of measure 0, we say that property is fulfilled almost everywhere (a.e.). In probability we say the property fulfilled almost surely (a.s.).

Theorem 3.8. Let $f: \mathbb{R}^n \to [-\infty, \infty]$ be Lebesgue-measurable function. Then $\exists g(x)$, Borel-measurable function, such that $\lambda(\{x: f(x) \neq g(x)\}) = 0$, i.e. f(x) = g(x) a.e.

Proof. Suppose $f \geq 0$. Let $\{s_k\}$ as in previous theorem and thus $f = \sup s_k$.

$$s_k = \sum_{j=1}^m a_j \chi_{A_j}$$

Since $A_j \in \mathcal{L}$ we can rewrite it as $A_j = E_j \cup N_j$. Define

$$h_k = \sum_{j=1}^m a_j \chi_{E_j} \le s_k$$

Since $h_k = s_k$ except for $\bigcup N_j$, which is of measure 0, $h_k = s_k$ a.e.

Denote $N = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{m_k} N_j$, obviously $\lambda(N) = 0$. Also define $g = \sup h_k$.

g(x) = f(x) if $x \notin N$, i.e., a.e. and g(x) is Borel-measurable as supremum of Borel-measurable functions. For general f, we do same with f_{\pm} and acquire g_{\pm} .

Lemma 3.1. If f is Lebesgue measurable, then if $g: \mathbb{R}^n \to [-\infty, \infty]$ fulfilling

$$\lambda^* \left\{ x : f(x) \neq q(x) \right\} = 0$$

then q is measurable.

Proof. Let $-\infty \le t \le \infty$, we need to show that $B = g^{-1}([-\infty, t])$ is Lebesgue-measurable. We now that $A = f^{-1}[-\infty, t]$ is Lebesgue-measurable.

$$B \setminus A \subseteq \{x : f(x) \neq g(x)\}$$

Thus $B \setminus A$ is measurable with measure 0.

$$B = (A \cup B) \setminus (A \setminus B) \in \mathcal{L}$$

Theorem 3.9 (Tietze extension theorem). Let $Y \subseteq \mathbb{R}^n$ and $f: Y \to \mathbb{R}$ continuous and bounded $(|f| \le M)$. Exists continuous function $F: \mathbb{R}^n \to \mathbb{R}$ such that F = f on Y and $|F| \le M$.

Theorem 3.10 (Lusin's theorem). Let $f: \mathbb{R}^n \to \mathbb{R}$ which vanishes outside of measurable set A. The for all $\epsilon > 0$ exists closed set $E \subseteq A$ and continuous function $g: \mathbb{R}^n \to \mathbb{R}$ such that f = g on E and $\lambda(A \setminus E) < \epsilon$.

Proof. Let f be a simple function in canonical form:

$$f(x) = \sum_{j=1}^{m} a_j \chi_{A_j}(x)$$

and $A = \bigcup_{j=1}^m A_i$. A_i are measurable, thus exists closed set $F_i \subseteq A_i \subseteq A$ such that $\lambda(A_i \setminus F_i) < \frac{\epsilon}{m}$. Denote $E = \bigcup_{i=1}^m F_i$.

$$\lambda(A \setminus E) = \sum_{i} \lambda(A_i \setminus F_i) < \le \epsilon$$

Define f_0 on E such that $f_0|_{E_i} = a_i$. f is continuous and thus by 3.9 exists g as required.

Now, let f be measurable and bounded. Let $\epsilon > 0$. We know there exists $\{s_k\}_{k=1}^{\infty}$ such that $s_k \to f$ uniformly. For all k exists continuous g_k and L_k such that $\lambda(A \setminus L_k) < \frac{\epsilon}{2^k}$ and $g_k = s_k$ on L_k . Denote $E = \bigcap L_k$.

$$\lambda(E \setminus E) = \lambda(A \setminus \bigcap L_k) = \lambda(\bigcup (A \setminus L_k)) \le \sum \lambda(A \setminus L_k) < \epsilon$$

On E, g_k converges uniformly to f, thus f is continuous of E and from 3.9 we get what we wanted. Let f measurable function which vanishes outside of measurable set A such that $\lambda(A) < \infty$.

$$\bigcap_{N} \underbrace{\{x \in A : |f(x)| \ge N\}}_{A_N} = \emptyset$$

 $A_N \subset A_{N+1}$, measurable and $\lambda(A) < \infty$, then $0 = \lambda(\bigcap_N A_N) = \lim_{N \to \infty} \lambda(A_N)$.

Thus exists N_0 such that $\lambda(A_{N_0}) < \frac{\epsilon}{2}$. Denote

$$G = \{ x \in A : |f(x)| < N_0 \}$$

$$A_{N_0} = \{ x \in A : |f(x)| \ge N_0 \}$$

Then $\lambda(A \setminus G) = \lambda(A_{N_0}) < \frac{\epsilon}{2}$.

Then $\chi_G f: G \to \mathbb{R}$ is bounded and measurable, i.e., exists closed $E \subseteq G$ such that $\chi_G f$ is continuous on E and $\lambda(G \setminus E) < \frac{\epsilon}{2}$. Since $\lambda(A \setminus E) < \epsilon$, once again we use 3.9 and get what we wanted.

Denote $A_k = A \cap (B(0,k) \setminus B(0,k-1))$. Define $f_k = f|_{A_k}$ then exists closed $E_k \subseteq A_k$ such that $f_k|_{E_k}$ such that $\lambda(A_k \setminus E_k) < \frac{\epsilon}{2^k}$. $E = \bigcup E_k$ is closed and $f|_E$ is continuous and $\lambda(A \setminus E) < \epsilon$.

Collary 3.10.1. Let f measurable and vanishing outside measurable A. Then there exists sequence of continuous functions $\{g_k\}$ such that $g_k \to f$ a.e. on A.

Proof. For all natural K exists closed $E_k \subseteq A$ and continuous g_k suxh that $g_k = f$ on E_k and $\lambda(A \setminus E_k) < \frac{1}{2^k}$. Denote $E \bigcup_m \left(\bigcap_{k \ge m} E_k\right) \subseteq A$.

 $\forall x \in E \text{ exists } m \text{ such that } \forall k \geq m \text{ } x \in E_k.$ That means $\forall k \geq m \text{ } g_k(x) = f(x),$ which means $g_k(x) \to f(x)$ for every such x, i.e. for all $x \in E$.

$$A \setminus E = \bigcap_{m} \bigcup_{k \ge m} (A \setminus E_k)$$
$$\lambda(A \setminus E) \le \lambda \left(\bigcup_{k \ge m} A \setminus E_k\right) \le \sum_{k=m}^{\infty} \lambda(A \setminus E_k) \le \sum_{k=m}^{\infty} \frac{1}{2^k} = \frac{1}{2^{m-1}}$$

Definition 3.4 (Almost uniform convergence). Let $\{f_n\}$, f be real functions measurable on A. We say that $f_n \to f$ almost uniformly, if for all $\epsilon > 0$ exists measurable E such that $\lambda(A \setminus E) \le \epsilon$ and on E $f_n \to f$ uniformly.

Theorem 3.11 (Egorov's theorem). Let $A \subseteq \mathbb{R}^n$ be a measurable set with finite measure. Let $\{f_n\}$, f real functions measurable on A and $f_n \to f$ a.e. on A. Then for all $\epsilon > 0$ exists E such that $\lambda(A \setminus E) \le \epsilon$ and on E $f_n \to f$ uniformly a.e.

Proof. $f_n \to f$, then exists n such that for $j \ge n |f_j - f| < \frac{1}{k}$. Denote

$$E_n^k = \left\{ c : |f_j(x) - f(x)| < \frac{1}{k} \quad \forall k \ge n \right\}$$

Then for all k $x \in \bigcup_{n=1}^{\infty} E_n^k$.

From the assumption we get $\lambda(A \setminus \bigcup_{n=1}^{\infty} E_n^k) = 0$. Note that $E_n^k \subseteq E_{n+1}^k$ thus

$$\forall k \ A \setminus E_n^k \supseteq A \setminus E_{n+1}^k$$

$$A \setminus \bigcup_{n=1}^{\infty} E_n^k = \bigcap_{n=1}^{\infty} A \setminus E_n^k$$

$$0 = \lambda \left(A \setminus \bigcup_{n=1}^{\infty} E_n^k \right) = \lambda \left(\bigcap_{n=1}^{\infty} A \setminus E_n^k \right) = \lim_{n \to \infty} \lambda (A \setminus A_n^k)$$

Thus for all $k \lambda(A \setminus A_n^k) \to 0$. For all $\epsilon > 0$ exists n_k such that

$$n \ge n_k \Rightarrow \lambda(A \setminus E_n^k) < \frac{\epsilon}{2^k}$$

Denote $E = \bigcup_{k=1}^{\infty}$ (it is measurable).

$$\lambda(A \setminus E) = \lambda\left(\bigcup_{k} A \setminus E_{n_k}^k\right) \le \sum \lambda(A \setminus E_{n_k}^k) < \sum \frac{\epsilon}{2^k} = \epsilon$$

For all $x \in E \subseteq E_{n_k}^k \subseteq E_n^k$, thus for all k exists n_k such that

$$|f_k(x) - f(x)| \le \frac{1}{k}$$

Thus $f_n \to f$ uniformly on E.

Example The condition $\lambda(A) < \infty$ is necessary. Take $A = \mathbb{R}$ and

$$f_n = \chi_{[n,\infty]}$$

 $f_n \to 0$ for all x.

4 Lebesgue integral

4.1 Stage 1

Let s simple measurable function we can write

$$s(x) = \sum_{i=1}^{m} a_i \chi_{A_i}(x)$$

Such that $\{A_i\}$ are measurable and disjoint and $\mathbb{R}^n = \bigcup_{i=1}^n A_i$ and $0 \leq a_i \in \mathbb{R}$. We define

$$\int s \, \mathrm{d}\lambda = \sum_{i=1}^{m} a_i \lambda(A_i)$$

where $0 \cdot \infty = 0$

Proposition 4.1. $\int s \, d\lambda$ is well-defined

Proof. Directly from 4.5

Proposition 4.2.

$$0 \le \int s \, \mathrm{d}\lambda \le \infty$$

Proposition 4.3. For all $0 \le c \in \mathbb{R}$, $\int cs \, d\lambda = c \int s \, d\lambda$

Proposition 4.4.

$$\int (s+t) \, \mathrm{d}\lambda = \int s \, \mathrm{d}\lambda + \int t \, \mathrm{d}\lambda$$

Proposition 4.5. $s \le t$ a.e. $\Rightarrow \int s \, d\lambda \le \int t \, d\lambda$

Proof. Denote $N = \{x : s(x) > t(t)\}$

$$s(x) = \sum_{i=1}^{m} a_i \chi_{A_i}(x)$$

$$t(x) = \sum_{i=1}^{k} b_i \chi_{B_i}(x)$$

For all i

$$A_i = \bigcup_{j=1}^k (A_i \cap B_j)$$

Then

$$\int s \, d\lambda = \sum a_i \lambda(A_i)$$

$$\lambda(A_i) = \lambda \left(\bigcup_{j=1}^k A_i \cap B_j\right) = \sum_{j=1}^k \lambda(A_i \cap B_j)$$

$$\int s \, d\lambda = \sum_{i,j} a_i \lambda(A_i \cap B_j)$$

$$\int t \, d\lambda = \sum_{i,j} b_j \lambda(A_i \cap B_j)$$

For all i, j,

$$a_i \lambda(A_i \cap B_j) \le b_j \lambda(A_i \cap B_j)$$

If $\lambda(A_i \cap B_j) = 0$ it's obvious. Else $\exists x \in A_i \cap B_j \setminus N$, and for that $x \ s(x) \le t(x)$ and thus $a_i \le b_j$ and thus $\int s \, d\lambda \le \int t \, d\lambda$.

Proposition 4.6. s = t a.e. $\Rightarrow \int s \, d\lambda = \int t \, d\lambda$

Proof. Directly from 4.5

Proposition 4.7. If $\alpha \in \mathbb{R}$ and $s'(x) = s(x + \alpha)$, then s' is simple and

$$\int s' \, \mathrm{d}\lambda = \int s \, \mathrm{d}\lambda$$

4.2 Stage 2

Let $f: \mathbb{R}^n \to [0, \infty]$ be a measurable function. We define

$$\int f \,\mathrm{d}\lambda = \sup \left\{ \int s \,\mathrm{d}\lambda : s < \infty, s \le f, \text{ simple masurable} \right\}$$

Proposition 4.8. $\int f d\lambda$ is well-defined

Proposition 4.9.

$$0 \le \int f \, \mathrm{d}\lambda \le \infty$$

Proposition 4.10. For all $0 \le c \in \mathbb{R}$, $\int cf \, d\lambda = c \int f \, d\lambda$

Proposition 4.11. If $f \leq g$ a.e.

$$\int f \, \mathrm{d}\lambda \le \int g \, \mathrm{d}\lambda$$

Proof. Denote $N = \{x; f(x) > g(x)\}$ and $I = \int f d\lambda$.

For all $\epsilon > 0$ exists s such that

$$\int s \, \mathrm{d}\lambda \ge I - \epsilon$$
$$\tilde{s} = \begin{cases} s(x) & x \notin N \\ 0 & x \in N \end{cases}$$

Then $\tilde{s} \leq g$.

$$I - \epsilon = \int s \, d\lambda = \int \tilde{s} \, d\lambda \le \int g \, d\lambda$$
$$\int \tilde{s} \, d\lambda \ge I$$

Thus

Proposition 4.12. If f = g a.e.

$$\int f \, \mathrm{d}\lambda = \int g \, \mathrm{d}\lambda$$

Proposition 4.13. If $f'(x) = f(x + \alpha)$ a.e.

$$\int f \, \mathrm{d}\lambda = \int f' \, \mathrm{d}\lambda$$

Theorem 4.14 (Monotone convergence theorem). Let $\{f_n\}$ sequence of measurable functions such that $0 \leq f_1 \leq \ldots$ Let $f(x) = \lim_{n \to \infty} f_n(x)$ then $\int f \, d\lambda = \lim_{n \to \infty} \int f_n \, d\lambda$.

Proof. For all n

$$\int f_n \, \mathrm{d}\lambda \le \int f \, \mathrm{d}\lambda$$

Denote $I = \lim_{n \to \infty} \infty f_n$.

Assume $I < \int f d\lambda$. Then $\exists c \in \mathbb{R}$ such that

$$I < c < \int f \, \mathrm{d}\lambda$$

From definition of $\int f \, d\lambda$ exists simple t such that $0 \le t \le f$ such that $\int t \, d\lambda > c$. Exists 0 < q < 1 such that $\int t \, d\lambda > \frac{c}{q}$ Define s = qt, then $c < \int s \, d\lambda$ and f(x).s(x).

Define

$$E_k = \{x : f_k(x) \ge s(x)\}$$

, then

$$E_1 \subseteq E_2 \subseteq \dots$$
$$\mathbb{R}^n = \bigcup_{k=1}^{\infty} E_k$$

For all k

$$f_k \ge f_k \chi_{E_k} \ge s(x) \chi_{E_k}$$

By writing $s(x) = \sum_{i=1}^{m} a_i \chi_{A_i}$ we get

$$s(x)\chi_{E_k} = \sum a_i \chi_{A_i \cap E_k}$$

Then

$$\int f_k \, \mathrm{d}\lambda \ge \int s(x) \chi_{E_k} \, \mathrm{d}\lambda = \sum a_i \lambda (A_i \cap E_k)$$

But

$$\lambda(A_i) = \lim_{k \to \infty} \lambda(A_i \cap E_k)$$

and

$$I = \lim_{k \to \infty} \int f_k \, \mathrm{d}x = \lim_{k \to \infty} \sum_{i=1}^m a_i \lambda(A_i \cap E_k) = \sum_{i=1}^m a_i \lambda(A_i) = \int s \, \mathrm{d}x > c$$

Collary 4.14.1.

$$\int (f+g) \, \mathrm{d}\lambda = \int f \, \mathrm{d}\lambda + \int g \, \mathrm{d}\lambda$$

Proof. Find $\{s_k\} \to f$, $\{t_k\} \to g$, then

$$\int f + g \, d\lambda = \lim_{k \to \infty} \int s_k + t_k \, d\lambda = \lim_{k \to \infty} \int s_k \, d\lambda + \lim_{k \to \infty} \int t_k \, d\lambda = \int s \, d\lambda + \int t \, d\lambda$$

Collary 4.14.2. Let $\{f_k\}$ sequence of measurable functions, $f_k \geq 0$ on \mathbb{R}^n then

$$\int \left[\sum_{k=1}^{\infty} f_k\right] d\lambda = \sum_{k=1}^{\infty} \int f_k d\lambda$$

Theorem 4.15 (Fatou's lemma). Let $\{f_k\}_{k=1}^{\infty}$ a sequence of nonegative measurable functions.

$$\int \liminf f_k \, \mathrm{d}\lambda \le \liminf \int f_k \, \mathrm{d}\lambda$$

Proof.

$$\lim \inf f_k(x) = \sup_{m} \inf_{j \ge m} f_j(x)$$
$$g_m(x) = \inf_{j \ge m} f_j(x)$$

Since $0 \le g_m \le g_{m+!}$ and $g_m \le f_m$,

$$\lim\inf f_k(x) = \sup_m g_m(x) = \lim g_m(x)$$

$$\int \liminf f_k \, d\lambda = \int \lim_{m \to \infty} g_m \, d\lambda = \int \lim_{m \to \infty} g_m \, d\lambda \le \lim \inf \int f_m \, d\lambda$$

4.3 Stage 3

Definition 4.1. Let $f: \mathbb{R}^n \to [-\infty, \infty]$ measurable. f is called integrable if $\int f^+(x) d\lambda < \infty$ and $\int f^-(x) d\lambda < \infty$ and in this case

$$\int f \, d\lambda = \int f^+(x) \, d\lambda - \int f^-(x) \, d\lambda$$

Set of all integrable functions is denoted $\mathcal{L}^!(\mathbb{R}^n)$.

Proposition 4.16.

$$\int |f| \, \mathrm{d}\lambda \le \infty \iff f \in \mathcal{L}^1$$

Proof. $f \in \mathcal{L}^1$, then

$$\int |f| \, \mathrm{d}\lambda = \int (f_+ + f_-) \, \mathrm{d}\lambda = \int f_+ \, \mathrm{d}\lambda + \int f_- \, \mathrm{d}\lambda < \infty$$

 $f_+, f_- \leq |f|$, then $\int f_+ d\lambda$, $\int f_- d\lambda \leq \int |f| d\lambda < \infty$.

Proposition 4.17.

$$\int |f| \, \mathrm{d}\lambda \ge \left| \int f \, \mathrm{d}\lambda \right|$$

Proof.

$$\left| \int f \, \mathrm{d}\lambda \right| = \left| \int f_+ \, \mathrm{d}\lambda + \int f_- \, \mathrm{d}\lambda \right| \le \int f_+ \, \mathrm{d}\lambda + \int f_- \, \mathrm{d}\lambda = \int |f|$$

Proposition 4.18. If $f \in \mathcal{L}^1$ then

$$\lambda(f^{-1}(-\infty)) = \lambda(f^{-1}(\infty)) = 0$$

Proof. Let $A = \lambda(f^{-1}(\infty))$ and $\lambda(A) > 0$. $f_+ \ge \infty \cdot \chi_A$. Then $\int f_+ d\lambda \ge \int \infty \cdot \chi_A d\lambda = \infty$.

Proposition 4.19. If f = g a.e. and $f \in \mathcal{L}_1$, then $g \in \mathcal{L}_1$ and $\int f \, d\lambda = \int g \, d\lambda$.

Proposition 4.20. If $f \in \mathcal{L}_1$ and $\int |f| d\lambda = 0$, then f = 0 a.e.

Proof. Define

$$A_k = \left\{ x : |f(x)| > \frac{1}{k} \right\}$$
$$|f| \ge |f| \chi_{A_k} \ge \frac{1}{k} \chi_{A_k}$$
$$0 = \int |f| \, \mathrm{d}\lambda \ge \frac{1}{k} \int \chi_{A_k}$$

Thus $\lambda(A_k) = 0$ and thus

$$\lambda(\bigcup A_k) = 0$$

Proposition 4.21. \mathcal{L}^1 is vector space.

Proof. For $a \geq 0$,

$$af = af_+ + af_-$$

$$\int af \,d\lambda = \int af_+ - \int af_- = a \int f_+ - a \int f_- = a \int f$$

For a < 0, we note that $(af)_{\pm} = -af_{\mp}$.

Let h = f + g

$$h_{+} - h_{-} = h = (f_{+} - f_{-}) + (g_{+} - g_{-})$$

$$h_{+} + f_{-} + g_{-} = h_{-} + f_{+} + g_{+}$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} + \int g_{+}$$

Then $h_+ \leq f_+ + g_+$ and $\int h_+ < \infty$, i.e. $h \in \mathcal{L}^1$.

Theorem 4.22 (Monotonic convergence theorem). Let $\{f_n\}$ sequence of integrable functions such that $f_1 \leq f_2 \leq \ldots$ and $\sup \int f_n d\lambda < \infty$ Let $f(x) = \lim_{n \to \infty} f_n(x)$ then $\int f d\lambda = \lim_{n \to \infty} \int f_n d\lambda$.

Proof. Define $g_n = f_n - f_1$ then g_n are non-negative and thus converge as we've shown.

Theorem 4.23 (Dominated convergence theorem). Let $\{f_n\}$ be a sequence of measurable functions on \mathbb{R}^n such that exists $0 \leq g \in \mathcal{L}^1$ such that $|f_k(x)| \leq g_x$ a.e.

$$f(x) = \lim_{k \to \infty} f_k(x)$$

then

$$\int f \, \mathrm{d}\lambda = \lim_{k \to \infty} \int f_k \, \mathrm{d}\lambda$$

Proof.

4.4 Riemann integral

Reminder: Riemann integral in rectangle is limit of Darboux sums: for \mathcal{I}_j subrectangle

$$U(P) = \sum M_j \lambda(I_j)$$

$$D(P) = \sum m_j \lambda(I_j)$$

where m_j and M_j are supremum and infimum on subrectangle. f is integrable if sums converge to same number. Define

$$\tau_P(x) = \begin{cases} M_j & x \in \text{int } I_j \\ M & \text{otherwise} \end{cases}$$

$$\sigma_P(x) = \begin{cases} m_j & x \in \text{int } I_j \\ m & \text{otherwise} \end{cases}$$

 σ , τ are simple, Lebesgue integrable, in particular measurable, and Riemann integrable and continuous a.e.

$$\int \sigma_p \, \mathrm{d}\lambda = L(P) = \int \sigma_p \, \mathrm{d}x$$

$$\int \tau_p \, \mathrm{d}\lambda = U(P) = \int \sigma_p \, \mathrm{d}x$$

and $\sigma_p \leq f \leq \tau_p$.

Theorem 4.24. Let f bounded $(|f| \leq M)$ on special box I then

- 1. f is Riemann integrable iff f continuous a.e.
- 2. If f is Riemann integrable it is measurable and

$$\int f \, \mathrm{d}\lambda = \int f \, \mathrm{d}x$$

Proof. Suppose f is Riemann integrable, for each k exists partition P_k such that $U(P_k) - L(P_k) < \frac{1}{k}$ and $P_{k-1} \subset P_k$. Denote σ_k , τ_k . $\int \tau_k d\lambda = U(P_k)$ and $\tau_k \geq f$.

In every point of continuity of σ_p , $\sigma_k \leq f$ thus

$$\sigma_k \le \underline{\sigma}_k \le f$$

Thus

$$\sigma_k \le f \le \bar{f} \le \tau_k$$

a.e. Obviously $\sigma_{k+1} \geq \sigma_k$ and $\tau_{k+1} \leq \tau_k$. Define $g = \sup \sigma_k$ and $h = \inf \tau_k$. By definition

$$g \le f \le \bar{f} \le h$$

a.e., and $h - g \le \tau_k - \sigma_k$.

$$\int (h - g) \, d\lambda \le \varepsilon \, t\tau_k - \sigma_k \, d\lambda = U(P_k) - L(P_k) < \frac{1}{k}$$

$$\int (h - g) \, \mathrm{d}\lambda = 0$$

Thus h=g a.e., and $\underline{f}=\bar{f}$ a.e., thus f continuous a.e.

$$\int_{I} f \, \mathrm{d}x \le U(P_k) < L(P_k) + \frac{1}{k} = \int \sigma_k \, \mathrm{d}\lambda + \frac{1}{k} \le \int f \, \mathrm{d}\lambda + \frac{1}{k}$$

$$\int_{I} f \, \mathrm{d}x \ge L(P_k) > U(P_k) - +\frac{1}{k} = \int \tau_k \, \mathrm{d}\lambda - \frac{1}{k} \ge \int f \, \mathrm{d}\lambda - \frac{1}{k}$$

Thus

$$\int f \, \mathrm{d}\lambda - \frac{1}{k} \le \int f \, \mathrm{d}x \le \int f \, \mathrm{d}\lambda + \frac{1}{k}$$

i.e., $\int f d\lambda = \int f dx$

Suppose f continuous a.e. denote by P_k partition of each rectangle side to 2^k equal parts. We know that

$$\sigma_1 \leq \sigma_2 \leq \cdots \leq f$$

For x which is not on the boundary,

$$\underline{f}(x) \leq \lim_{k \to \infty} \sigma_k(x)$$

else there is t such that

$$\lim_{k \to \infty} \sigma_k(x) < t < \underline{f}(x)$$

Thus exists $\delta > 0$ such that inf $\{f(y) : y \in B(x, \delta)\} > t$ and

$$\lim_{k \to \infty} \sigma_k(x) < t < f(y)$$

However we can increase k such that the partition will include the whole δ -neighborhood, and thus there is contradiction with the definition of the σ . Thus

$$\underline{f}(x) \le \lim_{k \to \infty} \sigma_k(x)$$

and similarly

$$\bar{f}(x) \ge \lim_{k \to \infty} \tau_k(x)$$

a.e.

Since f is continuous a.e., $f = \underline{f} = \overline{f}$ a.e. Thus

$$\lim_{k \to \infty} \sigma_k(x) \ge f \ge \lim_{k \to \infty} \tau_k(x)$$

a.e. However $\sigma_k \leq \tau_k$, i.e.

$$\lim_{k \to \infty} \sigma_k(x) = f = \lim_{k \to \infty} \tau_k(x)$$

a.e.

$$f = \lim_{k \to \infty} \int \sigma_k(x) \, d\lambda = \lim_{k \to \infty} \int \tau_k(x) \, d\lambda$$

where we switch limit and integral by DCT with $M\chi$. We got that

$$\lim U(P_k) = \lim L(P_k)$$

and thus f is Riemann integrable.

Proposition 4.25. The Riemann and Lebesgue integrals are equivalent only for bounded functions on finite intervals. **Theorem 4.26.** Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and $A \subseteq \mathbb{R}^n$. Then

$$\lambda^*(TA) = |\det\{T\}|\lambda^*(A)$$

$$\lambda_*(TA) = |\det\{T\}|\lambda_*(A)$$

and if A is measurable, TA is measurable and

$$\lambda(TA) = |\det\{T\}|\lambda(A)$$

Proof. If T is not invertible, then dimension of the image is less than dimension of the space, and thus

$$\lambda^*(TA) = \lambda_*(TA) = 0$$

and since $\det T = 0$, we are done.

If T is not invertible, denote matrix corresponding to T as B. We can rewrite B as

$$B = E_1 E_2 \dots E_n$$

. Assuming A is special rectangle, without loss of generality it is

$$A = [0, b_1] \times [0, b_2] \times \cdots \times [0, b_n] \times$$

If E_i multiplies row by c then

$$EA = [0, b_1] \times [0, b_2] \times \cdots \times [0, cb_i] \times \cdots \times [0, b_n] \times$$
$$\lambda(EA) = |c|\lambda(A) = |\det E|\lambda(A)$$

If E_i swaps two rows the area doesn't change. If E_i adds row to another row, we get a parallelogram whose area still equals to original.

We continue step-by-step for steps of building of Lebesgue measure.

Theorem 4.27. Let T invertible linear transformation on \mathbb{R}^n and f function on \mathbb{R}^n .

- 1. If f is measurable $f \circ T$ is measurable
- 2. If $f \ge 0$ measurable then $\int f d\lambda = |\det T| \int f(Tx) d\lambda$.
- 3. If f is measurable then $\int f d\lambda = |\det T| \int f(Tx) d\lambda$.

Theorem 4.28. Let T linear transformation and f function defined on \mathbb{R}^n then

- 1. If f measurable then so is $f \circ T$
- 2. If f is measurable and $f \ge 0$ then $\int f d\lambda = |\det(T)| \int f(Tx) d\lambda$.
- 3. If $f \in \mathcal{L}^1$ then $f \circ T \in L^1$.

5 $L^1(\mathbb{R}^n)$ space

Definition 5.1. Vector space X over \mathbb{R} is called norm space if exists function $\|\cdot\|: X \to \mathbb{R}$ such that

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. For $c \in \mathbb{R} \|cx\| = |c|\|x\|$
- 4. $||x + y|| \le ||x|| + ||y||$

Norm space is metric space with metric d(x, y) = ||x - y||.

Definition 5.2 (Convergence). $x_n \to x$ if $d(x_n, x) \to 0 \iff ||x_n - x|| \to 0$.

If $x_n \to x$ then $||x_n|| \to ||x||$.

Definition 5.3 (Open and closed balls). Open ball: $B(x,r) = \{y \in X | ||y-x|| < r\}$ Closed ball: $B(x,r) = \{y \in X | ||y-x|| \le r\}$

Definition 5.4 (Open set). $A \subset X$ is open if $\forall a \in A \exists r > 0$ such that $B(a,r) \subseteq A$.

Definition 5.5 (Closed set). $A \subset X$ is open if $A \ni x_n \to x \Rightarrow x \in A$.

Definition 5.6 (Closure). \bar{A} , the closure of A:

$$\bar{A} = \{x : \exists x_n \in A, x_n \to x\}$$

Definition 5.7 (Dense set). A is dense if $\bar{A} = X$.

For $f \in \mathcal{L}^1(\mathbb{R}^n)$ denote

$$\|f\|_1 = \int |f| \, \mathrm{d}\lambda$$

Note that this is almost norm, except that there exists non-zero functions with norm 0. To fix it, we define

$$N = \{ f \in \mathcal{L}^1 : f = 0 \text{ a.e.} \}$$

and

$$L_1(\mathbb{R}^n) = \mathcal{L}^1(\mathbb{R}^n)/N$$

i.e., we define equivalence relation, $f \sim g$ if f = g a.e.

Usually we'll look at members of L_1 as functions and not as equivalence classes. However, it's impossible to talk about value or limit of function in point in this case. Now we can define

$$||f||_1 = \int |f| \, \mathrm{d}\lambda$$

norm on $L_1(\mathbb{R}^n)$.

Definition 5.8. $C_c(\mathbb{R}^n)$ are continuous functions with compact support, i.e., f=0 outside of some ball.

Definition 5.9. $[f] \in L_1(\mathbb{R}^n)$ is continuous if there is continuous $f \in [f]$.

6 Question 1

 $L_C^1(\mathbb{R}^n)$ - functions in L^1 with compact support a.e.

 \mathcal{C}^{m} - function with continuous partial derivatives up to order m.

 \mathcal{C}_c^m - function in \mathcal{C}^m with constant support.

 $\mathcal{C}^{\infty} = \bigcap_{k=1}^{\infty} \mathcal{C}^k$.

Convergence in L^1 :

$$f_n \stackrel{L^1}{\to} f \Rightarrow \int |f_n - f| \, \mathrm{d}\lambda \to 0$$

If $Y_1 \subset Y_2$ then $\bar{Y}_1 \subset \bar{Y}_2$. Also $\bar{\bar{Y}} = \bar{Y}$.

Lemma 6.1. If $f_n \to f$ a.e. and $|f_n| < |f|$ and $\{f_n, f\} \subseteq L^1$ then $f_n \stackrel{L^1}{\to} f$.

Proof. Since

$$\int |f_n - f| \, \mathrm{d}\lambda \stackrel{a.e.}{\to} 0$$
$$|f_n - f| \le |f_n| + |f| \le 2|f| \in L^1$$

From dominated convergence,

$$\int |f_n - f| \, \mathrm{d}\lambda = 0$$

Lemma 6.2 (Urysohn's lemma). Let B,C closed disjoint sets, then exists continuous $f:\mathbb{R}^n\to [0,1]$ such that $f\big|_C=1$ and $f\big|_B=0$.

Lemma 6.3. Simple function are dense in L^1 .

Proof. First lets show that L_c^1 is dense in L^1 . Let $f \in L^1$ and denote

$$f_n = f\chi_{B_0(n)}$$

Since $f_n \stackrel{a.e.}{\to} f$ and $|f_n| \leq |f|$ we get

$$L_c^1 \ni f_n \xrightarrow{L^1} f$$

Thus L_c^1 is dense in L^1 .

Now lets show that simple functions are dense in L_c^1 . It's enough to show that for nonnegative functions. For each function $f \in L_c^1$ exists sequence $s_k \ge 0$ such that $s_k \stackrel{a.e.}{\to} f$ and $|s_k| \le |f|$ we get

$$s_k \stackrel{L^1}{\rightarrow} f$$

Lemma 6.4. C_c is dense in L^1 .

Proof. We want to show that any nonnegative simple function with compact support can be approximated with functions from C_c . It's enough to show that for χ_A , where A is closed and measurable. Suppose $A \subseteq B_0(n)$. $\forall \epsilon > 0$ exists open G and compact K such that

$$K \subseteq A \subseteq G$$

 $G \subseteq B_0(n)$.

From 6.2, exists $g: \mathbb{R}^n \to [0,1]$ such that $g|_{K} = 1$ and $g|_{\mathbb{R}^n \setminus G} = 0$. $g \in C_c$.

$$g(x) - \chi_A(x) = \begin{cases} 0 & x \in K \\ 0 & x \in \mathbb{R}^n \setminus G \\ \le 1 & x \in G \setminus K \end{cases}$$

$$\int |g(x) - \chi_A(x)| \, d\lambda = \int_{G \setminus K} |g(x) - \chi_A(x)| \, d\lambda \le \lambda(G \setminus K) < \epsilon$$

Theorem 6.1. Let $f \in L_1$ and $f_y(x) = f(x+y)$

$$||f_y - f|| \stackrel{y \to 0}{\to} 0$$

Proof. Let $f \in L^1$ and $\epsilon > 0$. Exists $g \in C_c$ such that $||f - g|| < \frac{\epsilon}{3}$. Suppose g = 0 outside of $B_0(r)$.

 $\int |f - g| \, \mathrm{d}\lambda < \frac{\epsilon}{3}$

But

$$\int |f_y - g_y| \,\mathrm{d}\lambda < \frac{\epsilon}{3}$$

i.e., $||f_y - g_y|| < \frac{\epsilon}{3}$. g is uniformly continuous. Thus exists $1 > \delta > 0$ such that if $||y|| < \delta$ then

$$|g(x+y) - g(x)| < \frac{\epsilon}{3\lambda(B_0(r+1))}$$

For ||x|| > r + 1

$$|q(x+1) - q(x)| = 0$$

Thus for $||y|| < \delta$

$$\int |g_y(x) - g(x)| \, d\lambda = \int_{B_0(r+1)} |g(x+y) - g(x)| \le \lambda (B_0(r+1)) \frac{\epsilon}{3\lambda (B_0(r+1))} = \frac{\epsilon}{3}$$

Thus

$$||f_y - f|| \le ||f_y - g_y|| + ||g_y - g|| + ||g_y - f|| < \epsilon$$

Definition 6.1. We say that $f_n \to f$ in measure if

$$\lambda(\{x: |f_n(x) - f(x)| \ge \epsilon\}) = 0$$

Note that $f_n \stackrel{L^1}{\to} f \Rightarrow f_n \stackrel{\text{measure}}{\to} f$.

Definition 6.2. $\{x_n\}$ in metric space X is called Cauchy sequence if for all $\epsilon > 0$ exists N such that for all n, m > N

$$||x_n - x_m|| < \epsilon$$

Definition 6.3. Metric space is called complete space if each Cauchy sequence converges.

Definition 6.4. Complete normed space is called Banach space.

Theorem 6.2. L^1 is Banach space.

Proof. Let $\{f_n\}$ Cauchy sequence in L^1 . For all $\epsilon > 0$ exists $N(\epsilon)$ such that $||f_n - f_m|| < \epsilon$ for n, m > N. We can require that $\{N(\frac{1}{2^k})\}$ is non-decreasing sequence. Denote $n_k = N(\frac{1}{2^k})$ and $g_k = f_{n_k}$.

$$\int |g_k - g_{k+1}| = ||g_k - g_{k+1}|| = |f_{n_k} - f_{n_{k+1}}| < \frac{1}{2^k}$$

Thus

$$\sum_{k=1}^{\infty} \int |g_k - g_{k+1}| < \infty$$

We've shown that from that we can conclude that

$$h(x) = \sum_{k=1}^{\infty} (g_{k+1} - g_k)$$

exists and $h \in L^1$.

$$\int h \, d\lambda = \sum_{k=1}^{\infty} g_{k+1} - g_k \, d\lambda$$
$$h(x) = \lim_{N \to \infty} \sum_{k=1}^{N} g_{k+1} - g_k = \lim_{N \to \infty} g_N(x) - g_1(x)$$

Thus

$$\lim_{N \to \infty} g_N(x) = h(x) + g_1(x)$$

On the other hand

$$\sum_{k=m}^{\infty} g_{k+1}(x) - g_k(x) = \lim_{N \to \infty} g_N(x) - g_m(x) = g_1(x) + h(x) - g_m(x)$$

$$\|g_1 + h - g_m\| = \left\| \sum_{k=m}^{\infty} g_{k+1} - g_k \right\| \le \sum \|g_k - g_{k+1}\| \le \sum_{k=m}^{\infty} \frac{1}{2^k} \stackrel{m \to \infty}{\to} 0$$

Thus $g_m \xrightarrow{L_1} g_1 + h$ meaning partial sequence of $\{f_n\}$ converges and thus $\{f_n\}$ converges.

Collary 6.2.1. If $f_n \stackrel{L_1}{\to} f$ then exists subsequence $\{f_{n_k}\}$ such that $f_n \stackrel{\text{a.e.}}{\to} f$

Proof.
$$g_k = f_{n_k} \to g_1 + h$$
 a.e. and $g_k = f_{n_k} \xrightarrow{L_1} g_1 + h$ but $g_k \xrightarrow{L_1} f_1$ thus $f = g_1 + h$ a.e. and thus $g_k \to f$ a.e.

Proposition 6.3. In normed space if exists $\sum x_n$ then

$$\left\| \sum x \right\| \le \sum \|x\|$$

Note that since there is unique completion of metric space we could define L^1 differently. Start with $X = C_c(\mathbb{R}^n)$ with Riemann integral as a metric. Its completion is L^1 and we can define integral as a limit of Riemann integrals.

6.1 Parameter-dependent integrals

Let $J \subseteq \mathbb{R}$ and $f: \mathbb{R}^n \times \mathbb{R} \to [-\infty, \infty]$ and

$$f_t: x \mapsto f(x,t) \in \mathbb{L}^1(\mathbb{R}^n)$$

Denote

$$F(t) = \int f_t(x) \, \mathrm{d}x$$

Theorem 6.4. Let f, F. Suppose $h \in L^1(\mathbb{R}^n)$ such that

$$\forall x, t \mid f(x,t) \mid < q(x)$$

Let $t_0 \in J$. Suppose for almost every $x \ t \mapsto f(x,t)$ if continuous in t_0 . Then F is continuous in t_0 .

Proof. We want to show that

$$\lim F(t_n) = F(t_0)$$

for $t_n \to t_0$.

$$F(t_n) = \int f_{t_n} \, \mathrm{d}\lambda$$

$$F(t_0) = \int f_{t_0} \, \mathrm{d}\lambda$$

also, $f_{t_n} \to f_{t_0}$ a.e., from DCT we get the required.

Theorem 6.5. Let J open and assume that for almost all x ($x \notin N$) $t \mapsto f_t(x)$ differentiable for all $t \in J$. Also assume that exists $h \in L^1$ such that for all x and t

$$\frac{\partial f}{\partial t}(x,t) \le (x)$$

Then F is differentiable in J and

$$\frac{\mathrm{d}F}{\mathrm{d}t}(t) = \int \frac{\partial f}{\partial t}(x,t) \,\mathrm{d}\lambda(x)$$

Proof. For all $t \in J$ $\frac{\partial f}{\partial t}(x,t)$ is measurable as a limit of measurable functions. Choose $t \in J$ and $\delta > 0$ such that $t + s \in J$ for all $|s| < \delta$. Define

$$g(x,s) = \begin{cases} \frac{\partial f}{\partial t}(x,t) & x \notin N, s = 0\\ \frac{f(x,t+s) - f(x,t)}{s} & x \notin N, s \neq 0\\ 0 & x \in N \end{cases}$$

Now

$$\int g(x,0) \, d\lambda(x) = \int \frac{\partial f}{\partial t}(x,t) \, d\lambda(x)$$
$$\int g(x,s) \, d\lambda(x) = \frac{F(t+s) + F(t)}{s}$$

Thus we need

$$\lim_{s\to 0} \int g(x,s) \,\mathrm{d}\lambda(x) = \int g(x,0) \,\mathrm{d}\lambda(x)$$

Note that $s \mapsto g(x,s)$ is continuous in s=0 and $x \mapsto g(x,s)$ is integrable for all s. Also $|g(x,s)| \le h(x)$ (for s>0 from Lagrange) and thus from previous theorem we get the required.

Functions in C_c^{∞}

$$h(t) = \begin{cases} 0 & t \le 0\\ e^{-\frac{1}{t}} & t > 0 \end{cases}$$

h is differentiable infinite times

$$h^{(n)} = P_{2n} \left(\frac{1}{t}\right) e^{-\frac{1}{t}}$$

Define

$$\tilde{\phi}(x) = h(1 - x_1^2 - x_2^2 - \dots x_n^2) \in C^{\infty}(\mathbb{R}^n)$$

Note that $\tilde{\phi}(x) = 0$ if $||x|| \ge 1$, thus $\tilde{\phi}(x) \in C_c^{\infty}(\mathbb{R}^n)$ denote $C = \int \tilde{\phi} d\lambda$ and define

$$\phi(x) = \frac{1}{C}\tilde{\phi}(x)$$

We get $\phi(x) \in C_c^{\infty}(\mathbb{R}^n)$, $\phi \geq 0$, $\int \phi \, d\lambda = 1$ and $\phi(x) > 0$ iff ||x|| < 1. Let $f : \mathbb{R}^n = \mathbb{R}^l \times \mathbb{R}^m \to \mathbb{R}$. Denote for $y \in \mathbb{R}^m$ and $x \in \mathbb{R}^l$ $f_y(x) = f(x,y)$

Lemma 6.5. If the theorem is right for a sequence of functions $0 \le f_1 \le f_2 \dots$ and $f = \lim_{j \to \infty} f_j$ then the theorem is right for f.

Proof. For all $y \in \mathbb{R}^m$ $(f_j)_y \uparrow f_y$, thus f is measurable for almost all y:

$$F_{j}(y) = \int (f_{j})_{y} dx \uparrow \int f_{y} dx = F(y)$$

$$\int_{\mathbb{R}^{m}} F dy = \lim_{j \to \infty} \int F_{j} dy = \lim_{j \to \infty} \int f_{j} d\lambda = \int f d\lambda$$

Theorem 6.6 (Fubini theorem). Let $f: \mathbb{R}^n \to [-, \infty]$ be a measurable function. Then for almost all $y \in \mathbb{R}^m$ a function f_y is measurable and thus $F(y) \int_{\mathbb{R}^l} f_y(x) \, d\lambda(x)$ and F is measurable on \mathbb{R}^m and

$$\int_{\mathbb{R}^m} F(y) \, \mathrm{d}\lambda(y) = \int_{\mathbb{R}^n} f \, \mathrm{d}\lambda$$

7 Differentiation and integration in \mathbb{R}

Definition 7.1. Let $E \subseteq \mathbb{R}$ and M set of closed intervals of positive lengths. M is called Vitali cover if for all $\epsilon > 0$ and $\forall x \in E$ $\exists I \in M$ such that $x \in I$ and $\lambda(I) < \epsilon$.

Theorem 7.1 (Vitaly). Let $E \subset \mathbb{R}$, $\lambda^*(E) < \infty$ and M Vitaly cover of E. Then either E is contained in finite disjoint union $\bigcup_{k=1}^{N} I_K$ for $I_k \in M$ or exists $\{I_k\}_{k=0}^{\infty} \subset M$ such that $I_k \cap I_j = \emptyset$ and for all $\epsilon > 0$ exists $N = N(\epsilon)$ such that $\lambda^*(E \setminus \bigcup^N I_k) < \epsilon$ Definition 7.2. Let g defined in neighbourhood of x_0 . Define

$$\liminf_{x \to x_0} g(x) = \sup_{\delta > 0} \left(\inf \left\{ g(y) : 0 < |y - x_0| < \delta \right\} \right)$$

$$\lim_{x \to x_0} \sup g(x) = \inf_{\delta > 0} \left(\sup \left\{ g(y) : 0 < |y - x_0| < \delta \right\} \right)$$

Lemma 7.1. 1.

 $\liminf g \le \limsup g$

2. If $g(x) \geq M$

 $\liminf q > M$

3. If q(x) < M

 $\limsup g \leq M$

4. $\lim g$ exists if $\lim \inf g = \lim \sup g$

Definition 7.3.

$$UDf(x) = \limsup_{h \to 0} [f(x+h) - f(x)]$$

$$LDf(x) = \liminf_{h \to 0} [f(x+h) - f(x)]$$

Lemma 7.2. Let $A \subseteq [a,b]$ such that for all $x \in A$, $0 \le LDf(x) \le r$ then

$$\lambda^*(f(A)) \le r\lambda^*(A)$$

Proof. Let $\epsilon > 0$ and G open such that $A \subseteq G$ and $\lambda(G) \leq \lambda^*(A) + \epsilon$. Thus

$$r. \sup_{\delta > 0} \left(\inf \left\{ \frac{1}{h} [f(x+h) - f(x)] : 0 < |h| < \delta \right\} \right)$$

For all $x \in A$ choose $\delta_0 > 0$ such that $(x - \delta_0, x + \delta_0) \subseteq G$. For all $\delta < \delta_0$ exists $0 < |h| < \delta$ such that $\frac{1}{h}[f(x+h) - f(x)] < r$. Denote

$$M = \left\{ [f(x), f(x+h)] : [x, x+h] \subseteq G, \ \frac{1}{h} [f(x+h) - f(x)] < r \right\}$$

Then M is Vitali cover of f(A), since

$$\lambda([f(x),f(x+h)])<|h|r<\delta r$$

By theorem, exists

$$\{[f(x+h)-f(x)]\}\subseteq M$$

of disjoint intervals such that

$$\lambda^* \Big(f(A) \setminus \bigcup [f(x_n), f(x_n + h_n)] \Big) = 0$$

Thus

$$\lambda^*(f(A)) \leq \lambda^*\Big(f(A) \setminus \bigcup [f(x_n), f(x_n + h_n)]\Big) + \lambda^*\Big(\bigcup [f(x_n), f(x_n + h_n)]\Big) \leq \sum \lambda[f(x_n), f(x_n + h_n)] = \sum |[f(x_n) - f(x_n + h_n)]| \leq \sum \lambda[f(x_n) - f(x_n + h_n)]$$

Lemma 7.3. Let $A \subseteq [a,b]$ such that for all $x \in A$

then $\lambda^*(f(A)) \geq s\lambda^*(A)$

Proof. Let G open. $f(A) \subseteq G$ and $\lambda(G) \le \lambda^*(A) + \epsilon$. Since f has only countable number of discontinuity points, we can remove a null set of such points and assume f is continuous on A.

Thus, for all $x \in A$ exists $\delta_0(x) > 0$ such that

$$[f(x-\delta), f(x+\delta)] \subseteq G$$

for all $0 < \delta < \delta_0$ and for all δ_0 exists |h| such that $0 < |h| < \delta$ and

$$s < \frac{1}{h}[f(x+h) - f(x)]$$

and $[f(x), f(x+h)] \subseteq G$.

Let

$$M = \{[x, x+h]\}$$

which is Vitali cover.

$$\lambda^*(A) \le \lambda^* \left(A \setminus \bigcup [x_n, x_n + h_n] \right) + \lambda^* \left(\bigcup [x_n, x_n + h_n] \right) = \le \lambda \bigcup [x_n, x_n + h_n] = \sum |h_n| \le \frac{1}{s} \sum |f(x_n + h_n) - f(x_n)| < \frac{1}{s} \lambda(G) \le \frac{1}{s} \lambda^*(G) \le \frac{1}{s} \lambda^*(G$$

Collary 7.1.1. If f is monotonic on [a, b] and $A = \{x \in [a, b] : UDf(x) = \infty\}$ then $\lambda^*(A) = 0$.

Proof. For all s > 0

Thus $\lambda^*(A) = 0$.

$$\infty > f(b) - f(a) = \lambda([f(a), f(b)]) = \lambda^*(f([a, b])) \ge \lambda^*(f(A)) \ge s\lambda^*(A)$$

Theorem 7.2 (Lebesgue). If f is monotoneous on [a,b] it is differentiable a.e. there.

Proof. Assume f is non-decreasing and if we replace f with f(x) + x it is increasing. From corollary, $UDf(x) < \infty$ a.e. and it has to be UDf(x) = LDf(x) a.e.

For all r < s in \mathbb{Q} define

$$A_{r,s} = \{x : LDf(x) < r < s < UDf(x)\}$$

$$\bigcup A_{r,s} = \{x : LDf(x) < UDf(x)\}\$$

It's enough to show that for any r, $s \lambda^*(A_{r,s}) = 0$.

From lemmas we get

$$s\lambda^*(A_{r,s}) \le \lambda^*(fA_{r,s}) \le r\lambda^*(A_{r,s})$$

Bur r < s and thus $\lambda^*(A_{r,s}) = 0$.

Collary 7.2.1. For all $f \in L^1[a,b]$ the function $F(x) = \int_a^x f \, d\lambda$ os differentiable a.e.

Proof. Use
$$f_+$$
 and f_- .

Proposition 7.3. Let f non-decreasing on [a,b] then f' is measurable and integrable and

$$\int_{a}^{b} f' \, \mathrm{d}\lambda \le f(b) - f(a)$$

Proof. Define f to be f(b) on [b, b+1] from Lebesgue theorem f' exists a.e. If f' exists,

$$f'(x) = \lim_{n \to \infty} \underbrace{n \left[f\left(x + \frac{1}{n}\right) - f(x) \right]}_{q_n(x) > 0}$$

 g_n is measurable and so is f'. By Fatou lemma

$$\int_{a}^{b} f' \, \mathrm{d}\lambda \leq \liminf \int g_{n} \, \mathrm{d}\lambda = \liminf \left(n \int_{a}^{b} \left[f\left(x + \frac{1}{n}\right) - f(x) \right] \, \mathrm{d}\lambda \right) = \liminf n \int_{a}^{b} f\left(x + \frac{1}{n}\right) \, \mathrm{d}\lambda - n \int_{a}^{b} f(x) \, \mathrm{d}\lambda = \liminf n \int_{a + \frac{1}{n}}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a + \frac{1}{n}}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \inf n \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \int_{a}^{b + \frac{1}{n}} f(x) \, \mathrm{d}\lambda = \lim \int_{a}^{b + \frac$$

7.1 Functions of bounded variation

Definition 7.4. Let f real on [a,b] and $T=\{T_i\}_{i=0}^n$ partition of [a,b]. Denote

$$V_f(T) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

And

$$V_a^b f = \sup_{T} \left\{ V_F(T) \right\}$$

variation of f

Definition 7.5. We say f has bounded variation if $f \in BV[a,b]$. Note that $V_a^b f + V_b^c f = V_a^c f$.

Proposition 7.4. Let $f \in BV[a,b]$ and define for all $x \in [a,b]$

$$g(x) = V_a^x f$$

Then g is monotonous non decreasing, and if f is continuous from left/right, so is g.

Proof.

$$V_a^y f = V_a^x f + V_x^y f$$

Now suppose f is continuous from the left in x_0 . Choose partition of $[a, x_0]$ such that $V_f(T) > V_a^{x_0} f - \frac{\epsilon}{2}$. From continuity from the left exists $t_{n-1} < y < x_0$ such that $|f(x_0) - f(y)| < \frac{\epsilon}{2}$ Now

$$g(y) = V_a^y f \ge \sum_{i=1}^{n-1} |f(t_i) - f(t_{i-1})| + |f(y) - f(t_{n-1})| > \sum_{i=1}^{n-1} |f(t_i) - f(t_{i-1})| + |f(y) - f(t_{n-1})| + |f(x_0) - f(y)| - \frac{\epsilon}{2} \ge V_f(T) - \frac{\epsilon}{2} > g(x_0) - \frac{\epsilon}{2} = 0$$

Now let
$$y \le z \le x_0$$
 then $|g(x_0) - g(z)| = g(x_0) - g(z) \le g(x_0) - g(y) < \epsilon$

Theorem 7.5. $f \in BV[a, b]$ iff f is difference of two non-decreasing monotonic functions. If f is continuous we get difference of two continuous functions then $f \in BV[a, b]$ and f differentiable a.e. and Reimann integrable.

Proof. $f(x) = V_a^x(f) - [V_a^x f - f(x)]$, we need $V_a^x f - f(x) = h(x)$ monotonous non-decreasing. If x < y

$$f(y) - f(x) \le |f(x) - f(y)| \le V_x^y f$$

$$h(y) - h(x) = V_a^y - f(y) - V_a^x + f(x) = V - x^y - f(y) + f(x) \ge 0$$

Proposition 7.6. Let f integrable on [a,b], define $F(x) = \int_a^x f \,d\lambda$ then F is continuous and $F \in BV[a,b]$.

Proof. Continuity of integral relative to the boundaries gives us continuity of F. $F \in BV[a,b]$ since $F = \int_a^x f_+ - \int_a^x f$, i.e., F is a difference of two non-decreasing monotonic functions.

Theorem 7.7. Let f integrable on [a, b]. Define

$$F(x) = \int_{a}^{x} f \, \mathrm{d}\lambda$$

Then F is differentiable a.e. and F' = f a.e.

Proof. We'll proof that $\int_a^x F' d\lambda = \int_a^x f d\lambda$.

Denote $M = \sup |x|$.

$$f_n(x) = n \left[F\left(x + \frac{1}{n}\right) - F(x) \right] \to F'(x)$$

Define f(x) = 0 for x > b, i.e. F(x) = F(b) for those x.

$$|f_n(x)| = \left| n \left[F\left(x + \frac{1}{n}\right) - F(x) \right] \right| = n \left| \int_x^{x + \frac{1}{n}} f \, d\lambda \right| \le M$$

Since $|f_n| \leq M\chi_{[a,b]}$ and $f_n \to F'$ a.e., we get

$$\int_{a}^{c} F' \, \mathrm{d}\lambda = \lim_{n \to \infty} \int_{a}^{c} f_{n} \, \mathrm{d}\lambda = \lim_{n \to \infty} n \int_{a}^{c} F\left(x + \frac{1}{n}\right) - F(x) \, \mathrm{d}\lambda = \lim_{n \to \infty} n \int_{a}^{c} F\left(x + \frac{1}{n}\right) \, \mathrm{d}\lambda - n \int_{a}^{c} F(x) \, \mathrm{d}\lambda = \lim_{n \to \infty} n \int_{a}^{c + \frac{1}{n}} F(x) \, \mathrm{d}\lambda - n \int_{a}^{c} F(x) \, \mathrm{d}\lambda = \lim_{n \to \infty} n \int_{a}^{a + \frac{1}{n}} F(x) \, \mathrm{d}\lambda - \lim_{n \to \infty} n \int_{c}^{c + \frac{1}{n}} F(x) \, \mathrm{d}\lambda = \lim_{n \to \infty} n \int_{a}^{c$$

Definition 7.6. f is uniformly continuous on [a,b] if for all $\epsilon > 0$ exists $\delta > 0$ such that

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$$

Definition 7.7. f is absolutely continuous on [a,b] $(f \in AC[a,b])$ if for $\{(x_i,y_i)\}_{i=1}^m$ are disjoint open intervals in [a,b] such that $\sum (y_i - x_i) < \delta$ then

$$|f(x)_i - f(y)_i| < \epsilon$$

Proposition 7.8. AC is subspace.

Proposition 7.9. $f \in AC[a,b] \Rightarrow f \in BV[a,b]$

Proof.

Proposition 7.10. $f \in AC[a, b]$ and f' = 0 a.e., then f is constant.

Proof. Choose $a < c \le b$ and show that f(c) = f(a). Denote $E = \{x \in (a,c) : f'(x)\}$ and $\lambda((a,c) \setminus E) = 0$. Let s > 0. For all $x \in E$

$$\lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} = 0$$

Thus for h > 0 small enough

$$|f(x+h) - f(x)| < \frac{sh}{n-a}$$
$$[x, x+h] \subseteq (a, c)$$

Denote

$$M = \{ [x, x+h] : x \in E, h > 0 \}$$

Thus is Vitaly cover (it obviously covers [a, c] and the size of interval depends on h).

Let $\epsilon > 0$ and corresponding $\delta > 0$ by absolute continuity. By Vitaly theorem exists finite set of disjoint intervals $\{[x_k, x_k + h_k]\}\subseteq M$ such that

$$\lambda \Big(E \setminus \bigcup [x_k, x_k + h_k] \Big) < \delta$$

and then

$$\lambda\Big((a,c)\setminus\bigcup[x_k,x_k+h_k]\Big)<\delta$$

Then

$$\sum x_{i+1} - y_i < \delta$$

and thus

$$\sum |f(x_{i+1}) - f(y_i)| < \epsilon$$

$$\sum |f(y_i) - f(y_i)| < \sum \frac{s}{b-a} (y_k - x_k) \le s$$

$$|f(c) - f(a)| = \left| \sum f(x_{k+1}) - f(y_k) + \sum f(y_k) - f(x_k) \right| \le \sum |f(x_{k+1}) - f(y_k)| + \sum |f(y_k) - f(x_k)| \le \epsilon + s$$

Theorem 7.11. f on [a,b] is absolutely continuous iff exists $h \in \mathcal{L}^{[a,b]}$ and $c \in \mathbb{R}$ such that

$$f(x) = c + \int_{a}^{x} h \, \mathrm{d}\lambda$$

In this case h = f' a.e.

Proof. \Rightarrow : $h \in \mathcal{L}^1$, $f(x) = c + \int_a^x h \, d\lambda$ thus we've seen that for $\lambda(E) < \delta$

$$\int\limits_{E} |h| \, \mathrm{d}\lambda < \epsilon$$

We'll use it to show that $\int_a^x h \, d\lambda$ is absolutely continuous. Let $\{x_i, y_i\}$ set of disjoint intervals such that $\lambda(\bigcup^m (x_i, y_i)) < \delta$ denote $E = \bigcup^m (x_i, y_i)$, thus

$$\int_{E} |h| \, \mathrm{d}\lambda < \epsilon$$

$$\sum_{i=1}^{m} |f(y_i) - f(x_i)| = \sum_{i=1}^{m} \left| \int_{x_i}^{y_i} h \, \mathrm{d}\lambda \right| \le \sum_{i=1}^{m} \int_{x_i}^{y_i} |h| \, \mathrm{d}\lambda = \int_{E} |h| \, \mathrm{d}\lambda < \epsilon$$

(=

Suppose $f \in AC[a,b]$ thus $f \in BV[a,b]$ and thus f' exists a.e. and $f' \in \mathcal{L}^1$. Define $g(x) = \int_a^x f' \, \mathrm{d}\lambda$, by previous direction $g \in AC[a,b]$ and thus $f-g \in AC[a,b]$. We know that g' exists a.e. and g' = f' a.e. Thus f' - g' = 0 a.e., i.e., f-g = 0.

Collary 7.11.1. If $f \in AC[a, b]$ then for all $a \le x \le b$

$$\int_{a}^{x} f' \, \mathrm{d}\lambda = f(x) - f(a)$$

Proposition 7.12. $f \in AC[a,b]$ and $E \subseteq [a,b]$ such that $\lambda(E) = 0$ then f(E) measurable and $\lambda(f(E)) = 0$.