

Caravan Insurance Challenge

Hard voting and soft voting bagging techniques

Alessandro Della Siega, Davide Capone, Gabriele Pintus, Giulio Modesti February 16, 2024

University of Trieste

Introduction

The aim of this is project is to apply a Bagging technique called Soft Voting on a real problem, discussing the results and compare it to others baseline models.

Table of contents

- 1. Dataset Overview
- 2. EDA, preprocessing
- 3. Logistic Regression
- 4. Bagging

Dataset Overview

Dataset Overview

- The dataset contains informations on customers of an insurance company.
- In particular, it includes product usage data and socio-demographic data derived by zip area codes.
- The goal is to predict potential buyers of caravan insurance policy and give explanation why.

Dataset Overview

Variables beginning with:

- M: refer only to demographic statistics of the postal code;
- *P* and *A*: refer to product ownership and insurance statistics in the postal code.

<u>M</u> FALLEEN	% of singles
<u>A</u> BRAND	Number of fire policies

Table 1: Example of two variables.

The target variable is CARAVAN: number of mobile home policies, but the interpretation is binary (0: no polices, 1: otherwise).

Train-test split

The original dataset has shape (9822 \times 87), but then it is **splitted** into train set and test set using the *ORIGIN* variable.

- · Training set has 5822 rows.
- Test set has 4000 rows (\approx 40% of the original dataset).

In the following, we conduct the EDA part only on the training set, the test set is only used for testing the models.

EDA, preprocessing

Variables type

- The majority of the variables are of type **ordinal categorical**;
- the only variables with a truly numeric interpretation are MAANTHUI and MGEMOMV;
- · Only two variables were purely categorical;

Spotting multicolinearity

Figure 1: Zooming on the upper-right correlation plot.

Examining the correlation plot reveals significant **multicollinearity** among certain variables: we will eliminate variables with high correlation coefficients with each other.

One-hot encoding, features scaling

- One-hot encoding is applied to the variable MOSTYPE because it is purely categorical nominal (*L0* customer subtype category, 41 levels in total).
- We conducted Min-Max Normalization on each variable, considering that each variable might belong to a different domain. The target variable CARAVAN was not normalized, as it is a binary variable.

Target variable distribution

The distribution plot of the target variable (CARAVAN) reveals a **highly unbalanced dataset**: \approx 6% of observations belonging to the positive class.

Table 2: Proportions of positive and negative classes in the training set.

Class	Proportion	
negative	94%	
positive	6%	

In order to **mitigate the class imbalance**, we utilized the *ROSE* (Random Over-Sampling Examples) technique to generate synthetic samples of the minority class through **oversampling**.

ROSE oversampling

(a) Original target variable distribution.

(b) Target variable distirbution after ROSE.

The target variable in the training set is now perfectly balanced.

Logistic Regression

Complete model

The train set includes 10948 observations and 94 variables (one of them is the target variable).

Use a logistic model using all the variables:

```
glm(formula = CARAVAN ~ ... family = binomial(link = "logit").
        data = train_rose)
    Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
    (Intercept) -5.758e+00 8.404e-01 -6.851 7.32e-12 ***
    MOSTYPE 1 7 198 e+00 5 382 e+00 1 337 0 181094
    MOSTYPE.2 4.951e+00 3.423e+00 1.446 0.148074
    MOSTYPE 3 6 259e+00 3 020e+00
                                       2 072 0 038238 *
    ####### TRUNCATED OUTPUT #######
    PELETS
               6.029e+00 1.190e+00 5.065 4.08e-07 ***
    PINBOED -1.680e+00 1.103e+00 -1.523 0.127797
    PBYSTAND 1.726e+00 4.259e-01 4.053 5.05e-05 ***
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ". 0.1 " 1
14
    (Dispersion parameter for binomial family taken to be 1)
15
        Null deviance: 15177 on 10947 degrees of freedom
16
    Residual deviance: 11897 on 10854 degrees of freedom
    AIC: 12085
    Number of Fisher Scoring iterations: 15
```

Variance Inflation Factor

Figure 2: Variance Inflation Factor Barplot

Reduced model

The reduced train set includes only 29 variables (one of them is the target variable). The features where selected using VIF information, magnitude of the coefficients, respective p-value and real meaning.

```
glm(formula = CARAVAN ~ ., family = "binomial", data = train_rose[,
        vars 1)
    Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
    (Intercent) -4 970447 0 244575 -20 323 < 2e-16 ***
    MOSTYPE 5 0 987707 2 306797 0 428 0 668526
    MOSTYPE.11 1.393457 1.176395 1.185 0.236209
    MOSTYPE.36 5.598584
                          0.972320
                                    5.758 8.51e-09 ***
    ###### TRUNCATED OUTPUT ######
    PPI F7IFR
                6.177039
                          0.679209
                                      9.094 < 2e - 16
    PFIETS 7.393364 1.115308 6.629 3.38e-11 ***
    PRYSTAND
                2.194998
                          0.405270
                                      5.416 6.09e-08 ***
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ". 0.1 " 1
14
    (Dispersion parameter for binomial family taken to be 1)
        Null deviance: 15177 on 10947 degrees of freedom
16
    Residual deviance: 12608 on 10920 degrees of freedom
    AIC: 12664
    Number of Fisher Scoring iterations: 5
```

Stepwise regression

Using only the selected variables, we built a model using a stepwise regression. Both directions were used and BIC criterion was taken into consideration.

```
glm(formula = CARAVAN ~ (variables...) , family = "binomial", data = train rose[,
       vars 1)
    Coefficients .
               Estimate Std. Error z value Pr(>|z|)
    MOSTYPE 36 5 39975 0 96818 5 577 2 44e-08 ***
    MOSTYPE 38 5 53579 0 83983 6 592 4 35e-11 ***
    MOSTYPF 39 2.97858 0.83748 3.557 0.000376 ***
    ##### TRUNCATED OUTPUT #####
    PWAOREG
               2 67156
                        0.42184 6.333 2.40e-10 ***
    PBRAND 0.89802 0.12476 7.198 6.11e-13 ***
    PPI F7 IFR 6 25528 0 68387 9 147 < 2e-16 ***
    PFIETS 7.38016 1.10747 6.664 2.67e-11 ***
14
    PBYSTAND 2.25831 0.40124 5.628 1.82e-08 ***
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1
16
    (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 15177 on 10947 degrees of freedom
18
    Residual deviance: 12634 on 10929 degrees of freedom
    ΔIC · 12672
    Number of Fisher Scoring iterations: 5
```

Interpretation

The most important features in order to determine the target variable are:

- -PPLEZIER Contribution boat policies, if PPLEZIER increases by 1 (one category), the log odds of the target variable to be 1 increases by 6.25/9 = 0.69
- -PFIETS Contribution bicycle policies, \rightarrow 7.38/9 = 0.82
- -PPERSAUT Contribution car policies, \rightarrow 2.07/9 = 0.23.
- -MOSTYPE.36 Couples with teens, \rightarrow 5.39.
- -MOSTYPE.38 Traditional families, \rightarrow 5.5

Bayes Information Criteria

Let's compare the threee models using the BIC.

```
df BIC
complete_model 94 12771.04
reduced_model 28 12868.38
stepwise_model 19 12810.30
```

Test Set Confusion Matrix

g

14 15

16

Let's test the stepwise model on the test set.

```
Reference
Prediction
        0 2576 1186
            84 154
              Accuracy: 0.6825
                95% CI: (0.6678, 0.6969)
   No Information Rate: 0.665
   P-Value [Acc > NIR] : 0.009728
                 Kappa : 0.1047
Monemars Test P-Value · < 2.2e-16
           Sensitivity: 0.1149
            Specificity: 0.9684
        Pos Pred Value : 0.6471
        Neg Pred Value: 0.6847
            Prevalence: 0.3350
         Detection Rate: 0.0385
   Detection Prevalence : 0.0595
     Balanced Accuracy: 0.5417
```

Bagging

Bagging

An ensemble technique which has been proved to provide stability

- 1. Generate m bootstrap samples from \mathcal{D}_{train}
- 2. Fit *m* models, one for sample
- 3. Select a voting mechanism to combine all the predictions

Briefly - Hard voting

Every of the *m* voter express his opinion on the data point to belong to class 1.

- m_1 voters think the data point belongs to class 1
- m_0 voters think the data point belongs to class 0

Majority wins

Briefly - Soft voting

Every of the *m* voter express his **level of confidence** on the data point to belong to class 1.

- m voters think the point belongs to class 1 with a lof $\geq l_1$
- m-1 voters think the point belongs to class 1 with a lof $\geq l_2 \geq l_1$...
- 1 voter thinks the point belongs to class 1 with a lof $\geq l_m$

The overall level of confidence is the weighted average:

$$l = \frac{m}{m}l_1 + \frac{m-1}{m}(l_2 - l_1) + \cdots + \frac{1}{m}(l_m - l_{m-1})$$

Eventually the point is classified in 1 if the level of confidence is greater than 50%, in 0 otherwise.

proof

Define $F_Y(a,b) = \int_a^b f_Y(t) dt$ Suppose wlog that $\eta_1 \le \eta_2 \le \cdots \le \eta_3$.

$$S_{m} = F_{Y}(0, \eta_{1}) + F_{Y}(0, \eta_{2}) + \dots + F_{Y}(0, \eta_{m}) =$$

$$= F_{Y}(0, \eta_{1})$$

$$+ F_{Y}(0, \eta_{1}) + F(\eta_{1}, \eta_{2})$$

$$+ F_{Y}(0, \eta_{1}) + F(\eta_{1}, \eta_{2}) + F(\eta_{2}, \eta_{3})$$

$$\vdots$$

$$+ F_{Y}(0, \eta_{1}) + F(\eta_{1}, \eta_{2}) + \dots + F(\eta_{m-1}, \eta_{m}) =$$

$$= mF_{Y}(0, \eta_{1}) + (m-1)F_{Y}(\eta_{1}, \eta_{2}) + \dots + F(\eta_{m-1}, \eta_{m})$$

Every model is a logistic regression We assume all the covariates to be indepent one another

The parameters vector $\hat{\boldsymbol{\beta}}$ is estimated via maximum likelihood, therefore:

$$\hat{\boldsymbol{\beta}} \stackrel{d}{\rightarrow} \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}} | \mathbf{x}),$$

The linear predictor $\hat{\eta}$ is a linear combination of the vector of parameters, therefore:

$$\hat{\eta} \sim \mathcal{N}(\mu_{\eta}, \sigma_{\eta}^2 | \mathbf{x})$$

where:

$$\cdot \mu_{\eta} = \mathbf{x}^{\mathsf{T}} \boldsymbol{\mu}_{\beta}$$

$$\cdot \ \sigma_{\eta}^2 = \mathbf{x}^{\mathsf{T}} \mathbf{\Sigma}_{\beta} \mathbf{x}$$

The model response variable Y the logistic transformation of $\hat{\eta}$

$$g(t) = \frac{1}{1 + e^{-t}}$$
$$Y = g(\hat{\eta})$$

We do not have a closed form for

- the distribution
- · the expected value
- · the variance

But we can still compute them numerically using sample statistics.

The ensemble can output just two numbers, hence:

$$R \sim \text{Be}(p_R|\mathbf{x})$$

The question now is: How do we make inference on p_R ? Two main strategies:

- · Soft voting
- Hard voting (most popular)

Soft voting

We make inference on p_R using as estimator $\hat{p}_R = \overline{Y}$. Under the independence assumption, the sample variance is disitrbuted normally:

Hard voting

We first define $W = \begin{cases} 1 \text{ if } Y > \frac{1}{2} \\ 0 \text{ if } Y \leq \frac{1}{2} \end{cases}$,

so $W \sim \text{Be}(\tilde{p}|\mathbf{x})$, where $\tilde{p} = \mathbb{P}\left(Y > \frac{1}{2}\right) = \Phi\left(\frac{\mu_{\eta}}{\sigma_{\eta}}\right)$. Therefore we indirectly make inference on p_R by computing the sample mean over \underline{W} .

Under the independence assumption, we have that:

Estimators comparison

Soft voting

$$\hat{p}_{\mathsf{R}} \sim \mathcal{N}\left(\mu_{\mathsf{Y}}, rac{\sigma_{\mathsf{Y}}^2}{m}
ight)$$

- Unbiased
- Lower variance
- · Lower or equal MSE

Hard voting

$$\hat{p}_R \sim \mathcal{N}\left(\tilde{p}, \frac{\tilde{p}(1-\tilde{p})}{m}\right)$$

- Biased
- · Higher variance
- Higher or equal MSE

Self question

At this point I have a question for myself Why does hard voting works?

Why hard voting works?

Consider the plot as an example of a possible distribution of Y:

Estimator	Mean	SS
ρ̂s	0.651	0.173852
р̂н	0.655	0.225975

Why hard voting works?

Expected value

 The better are the single models fitted to the data, the more concentrated would be the distribution around 0 and 1. If we consider the extreme case of Y following a Bernoulli distribution, then it follows that:

$$\overline{Y} = \mathbb{P}\left(Y > \frac{1}{2} \middle| X\right) = \mathbb{P}\left(Y = 1 \middle| X\right)$$

Which you can esteem by using the sample ratio $\frac{\#1}{\#1+\#0}$, which again, is equivalent to the sample mean.

· Another case is when the distribution of Y is simmetric.

Performance on CARAVAN

The validation set is 30% of the ROSE balanced set, while the test set is unbalanced

	Accuracy	Balanced Accuracy	F1 Score
Hard Voting - Validation	64.08	64.08	71.71
Soft Voting - Validation	69.06	69.06	72.84
Hard Voting - Test	88.83	61.19	93.97
Soft Voting - Test	80.70	63.96	88.99

Thank You!

Questions or Comments?