```
In [1]: import numpy as np
        import pandas as pd
         from scipy import spatial
         import re
         import os
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: anime = pd.read_csv('anime.csv')
        anime = anime.dropna()
        anime = anime[anime['episodes'] != 'Unknown']
        rating = pd.read_csv('rating.csv')
In [3]: anime_full=pd.merge(anime,rating,on='anime_id',suffixes= ['', '_user'])
In [4]: rating.shape
Out[4]: (7813737, 3)
In [5]: rating.head()
Out[5]:
            user_id anime_id rating
         0
                1
                       20
                             -1
                1
                       24
                             -1
         2
                1
                       79
                             -1
                1
                      226
                             -1
                1
                      241
                             -1
In [6]: ratings = rating[rating['rating'] != -1]
```

In [7]: ratings.head()

Out[7]:

	user_id	anime_id	rating
47	1	8074	10
81	1	11617	10
83	1	11757	10
101	1	15451	10
153	2	11771	10

In [8]: ratings['rating'].hist()

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9d01b7a240>


```
In [9]: ratings['rating'].plot(kind = 'box', subplots = True)
Out[9]: rating    AxesSubplot(0.125,0.125;0.775x0.755)
    dtype: object
```


Anime ratings aggregated by user

```
In [10]: uRatings = ratings.groupby(['user_id']).agg({'rating' : [np.size, np.mean]})
In [11]: uRatings.reset_index(inplace = True)
```

```
In [12]: uRatings['rating'].describe()
```

Out[12]:

	size	mean
count	69600.000000	69600.000000
mean	91.052313	8.227761
std	135.764253	0.902856
min	1.000000	1.000000
25%	13.000000	7.666667
50%	45.000000	8.193548
75%	114.000000	8.815789
max	3747.000000	10.000000

```
In [13]: uRatings['rating'].plot(kind = 'box', subplots = True)
```


Anime ratings aggregated by anime

```
In [14]: mRatings = ratings.groupby(['anime_id']).agg({'rating' : [np.size, np.mean]})
    mRatings.reset_index(inplace = True)
```

In [15]: mRatings['rating'].describe()

Out[15]:

	size	mean
count	9927.000000	9927.000000
mean	638.384305	6.637940
std	1795.865541	1.298863
min	1.000000	1.000000
25%	9.000000	6.066667
50%	57.000000	6.897959
75%	395.000000	7.491484
max	34226.000000	10.000000

In [16]: mRatings.head()

Out[16]:

anime	ıd	rating

		size	mean
0	1	13449	8.869433
1	5	5790	8.439724
2	6	9385	8.419393
3	7	2169	7.533426
4	8	308	7.198052

```
In [17]: mRatings['rating'].plot(kind = 'box', subplots = True)
Out[17]: size
                      AxesSubplot(0.125,0.125;0.352273x0.755)
                  AxesSubplot(0.547727,0.125;0.352273x0.755)
          mean
          dtype: object
           35000
                         0
                                     10
           30000
                                      8
           25000
           20000
           15000
           10000
            5000
                         size
                                                mean
```

Ger genre Matrix

```
In [18]: animes = anime.merge(mRatings, on = 'anime_id', how = 'left')
    animes.columns = ['anime_id', 'name', 'genre', 'type', 'episodes', 'rating', 'members', 'rating_coun
    t', 'rating_avg']

/Users/boris/anaconda3/envs/python/lib/python3.7/site-packages/pandas/core/reshape/merge.py:522: Use
    rWarning: merging between different levels can give an unintended result (1 levels on the left, 2 on
    the right)
    warnings.warn(msg, UserWarning)
    /Users/boris/anaconda3/envs/python/lib/python3.7/site-packages/pandas/core/generic.py:3812: Performa
    nceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performanc
    e.
        new_axis = axis.drop(labels, errors=errors)
In [19]: animes.fillna(0,inplace = True)
```

Top 10 Animes based on rating count

Out[20]:

name		rating_count
40	Death Note	34226.0
801	Sword Art Online	26310.0
85	Shingeki no Kyojin	25290.0
19	Code Geass: Hangyaku no Lelouch	24126.0
158	Angel Beats!	23565.0
757	Elfen Lied	23528.0
838	Naruto	22071.0
1	Fullmetal Alchemist: Brotherhood	21494.0
199	Fullmetal Alchemist	21332.0
13	Code Geass: Hangyaku no Lelouch R2	21124.0

```
In [21]: ax=sns.barplot(x="name", y="rating_count", data=top10_animerating, palette="Dark2")
    ax.set_xticklabels(ax.get_xticklabels(), fontsize=11, rotation=40, ha="right")
    ax.set_title('Top 10 Anime based on rating counts',fontsize = 12)
    ax.set_xlabel('Anime',fontsize = 10)
    ax.set_ylabel('User Rating count', fontsize = 10)
```

Out[21]: Text(0, 0.5, 'User Rating count')

Top 10 Animes based on Community size

In [22]: top10_animemember=animes[['name', 'members']].sort_values(by = 'members', ascending = False).head(10)
top10_animemember

Out[22]:

	members	
40	Death Note	1013917
85	Shingeki no Kyojin	896229
801	Sword Art Online	893100
1	Fullmetal Alchemist: Brotherhood	793665
158	Angel Beats!	717796
19	Code Geass: Hangyaku no Lelouch	715151
838	Naruto	683297
3	Steins;Gate	673572
443	Mirai Nikki (TV)	657190
130	Toradora!	633817

```
In [23]: ax=sns.barplot(x="name", y="members", data=top10_animemember, palette="Dark2")
    ax.set_xticklabels(ax.get_xticklabels(), fontsize=11, rotation=40, ha="right")
    ax.set_title('Top 10 Anime based on Community Size', fontsize = 12)
    ax.set_xlabel('Anime', fontsize = 10)
    ax.set_ylabel('Members', fontsize = 10)
```


Distribution of ratings

```
In [24]: hist_kws = {'histtype':'bar', 'edgecolor':'black', 'alpha':0.2}
fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (14,6))
sns.distplot(animes['rating'], hist_kws=hist_kws, ax = ax[0])
sns.distplot(animes[animes['rating_avg'] != 0]['rating_avg'], hist_kws=hist_kws, ax = ax[1])
ax[0].set_title('Distribution of ratings')
ax[0].set_xlabel('Rating of Websites')
ax[1].set_title('Distribution of ratings')
ax[1].set_xlabel('Rating of Users')
plt.show()
```


Streaming Type

```
In [25]: import plotly.graph objects as go
         labels = anime full['type'].value counts().index
         values = anime full['type'].value counts().values
         colors = ['gold', 'mediumturquoise', 'darkorange', 'lightgreen']
         fig = go.Figure(data=[go.Pie(labels=labels,
                                      values=values)])
         fig.update traces(hoverinfo='label+percent', textinfo='value', textfont size=20,
                           marker=dict(colors=colors, line=dict(color='#000000', width=2)))
         fig.update layout(
             title={
                 'text': "Number of Streaming",
                 'y':0.9,
                 'x':0.5,
                 'xanchor': 'center',
                 'yanchor': 'top'})
         fig.show()
```

Number of Streaming


```
In [26]: nonull_anime=anime_full.copy()
    nonull_anime.dropna(inplace=True)
    from collections import defaultdict

all_genres = defaultdict(int)

for genres in nonull_anime['genre']:
        for genre in genres.split(','):
            all_genres[genre.strip()] += 1

from wordcloud import WordCloud

genres_cloud = WordCloud(width=800, height=400, background_color='white', colormap='gnuplot').generat
        e_from_frequencies(all_genres)
    plt.imshow(genres_cloud, interpolation='bilinear')
    plt.axis('off')
```

Out[26]: (-0.5, 799.5, 399.5, -0.5)

Movie recommendation algorithm

```
In [27]: #Preprocessing
anime_feature=anime_full.copy()
```

```
In [28]: anime_feature["rating_user"].replace({-1: np.nan}, inplace=True)
    anime_feature.head()
```

Out[28]:

	anime_id	name	genre	type	episodes	rating	members	user_id	rating_user
0	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie	1	9.37	200630	99	5.0
1	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie	1	9.37	200630	152	10.0
2	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie	1	9.37	200630	244	10.0
3	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie	1	9.37	200630	271	10.0
4	32281	Kimi no Na wa.	Drama, Romance, School, Supernatural	Movie	1	9.37	200630	278	NaN

```
In [29]: anime_feature = anime_feature.dropna(axis = 0, how ='any')
    anime_feature.isnull().sum()
```

```
Out[29]: anime_id 0 name 0 genre 0 type 0 episodes 0 rating 0 members 0 user_id 0 rating_user 0 dtype: int64
```

```
In [30]: counts = anime_feature['user_id'].value_counts()
```

```
In [31]: anime_feature = anime_feature[anime_feature['user_id'].isin(counts[counts >= 200].index)]
```

```
In [32]:
          #Pivot Table
          anime pivot=anime feature.pivot table(index='name',columns='user id',values='rating user').fillna(0)
          anime pivot.head()
Out[32]:
                         5
                                                123 129 139
                                                             160 ...
                                                                     73406 73417 73422 73457 73460 73476 73499
                                                                                                                73502 73503
           user id
                                 17
                                     38
                                        43
                                            46
           name
            "0" 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...
                                                                        0.0
                                                                              0.0
                                                                                    0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                             0.0
                                                                                                                   0.0
                                                                                                                         0.0
            "Bungaku
             Shoujo"
                 Kyou no 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                                    0.0
                                                                                                 0.0
                                                                                                       0.0
                                                             7.0 ...
                                                                        0.0
                                                                              0.0
                                                                                          0.0
                                                                                                             0.0
                                                                                                                  10.0
                                                                                                                         0.0
                 Oyatsu:
                 Hatsukoi
            "Bungaku
             Shoujo" 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 ...
                                                                                    0.0
                                                                                                 0.0
                                                                        0.0
                                                                              0.0
                                                                                          0.0
                                                                                                       0.0
                                                                                                             0.0
                                                                                                                   0.0
                                                                                                                         0.0
                 Memoire
           "Bungaku
             Shoujo" 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                     0.0
                                                         0.0
                                                              8.0 ...
                                                                        0.0
                                                                              0.0
                                                                                    0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                             0.0
                                                                                                                  10.0
                                                                                                                         0.0
                   Movie
                                                     0.0
                                                                              0.0
                                                                                    0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                       0.0
                                                                                                             0.0
                                                                                                                   0.0
                                                                                                                         0.0
           "Eiji" 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                        0.0
```

5 rows × 8713 columns

Collaborative Filtering

Clean Anime name

```
In [34]: import re
    def text_cleaning(text):
        text = re.sub(r'"', '', text)
        text = re.sub(r'.hack//', '', text)
        text = re.sub(r''', '', text)
        text = re.sub(r'A's', '', text)
        text = re.sub(r'I'', 'I\'', text)
        text = re.sub(r'&', 'and', text)
        return text
In [35]: anime['name'] = anime['name'].apply(text_cleaning)
```

Term Frequency (TF) and Inverse Document Frequency (IDF)

```
In [39]: indices = pd.Series(anime.index, index=anime['name']).drop_duplicates()
```

Recommendation Function (content based)

Anime name

Rating

```
In [41]: recommendation('One Punch Man')
```

Out[41]:

	Anime name	nating
0	One Punch Man Specials	7.86
1	One Punch Man: Road to Hero	7.85
2	Genji Tsuushin Agedama	6.58
3	Oh! Super Milk-chan	6.07
4	Super Milk-chan	5.88
5	Bobobo-bo Bo-bobo Recap	6.54
6	Gungrave	7.97
7	Darker than Black: Kuro no Keiyakusha Special	7.65
8	Haiyore! Nyaruko-san W	7.43
9	Haiyore! Nyaruko-san: Yasashii Teki no Shitome	7.27

```
In [ ]:
```