AGA KHAN UNIVERSITY EXAMINATION BOARD SECONDARY SCHOOL CERTIFICATE

CLASS X

MODEL EXAMINATION PAPER 2020

Mathematics Paper I

Time: 50 minutes Marks: 35

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 35 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

Correct Way	Incorrect Ways	
1 (A) (B) (D)	1 (A) (B) (Ø) (D)	
	2 (A) (B) (C) (D)	
	3 (A) (B) (X) (D)	
	4 (A) (B) (Ø) (D)	

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. You may use a simple calculator if you wish.

Page 2 of 12

- 1. The ages (in years) of nine children in a group are 4, 7, 8, 9, 6, 10, 5, 8 and 10. The median age is
 - A. 6
 - B. 7
 - C. 8
 - D. 10

The given bar chart shows the number of employees hired by a hospital in various departments in the years 2015 and 2016.

Use the given information to answer Q.2 and Q.3.

- 2. In Paediatrics department, the percentage change shows that hiring in 2016 as compared to last year has
 - A. decreased by 25%
 - B. decreased by 33%
 - C. increased by 25%
 - D. increased by 33%
- 3. The number of employees hired in 2016 are
 - A. 4
 - B. 5
 - C. 23
 - D. 24
- 4. For a set of ungrouped data, $\overline{X} = 56.8$ and $\frac{\sum X^2}{n} = 3268.80$. The variance of the data is
 - A. 6.52
 - B. 32.12
 - C. 42.56
 - D. 56.67

Page 3 of 12

- The value of b, when $\sqrt{ax^2 + bx + 64} = \pm 4(x+2)$, will be 5.
 - 64 A.
 - B. 32
 - C. 4
- $45x^2$ is the least common multiple (LCM) of
 - A. $3x^2$ and 15x
 - B. 3x and 15x
 - C. $5x^2$ and 9x
 - D. 5x and 9x
- 7. $(\sqrt{x}-4) \div (x-4^2) \times (\sqrt{x}+4)$ is equal to
 - A. 1
 - B. $\frac{1}{4}$
- nle for the Which of the following forms is suitable for the partial fraction of $\frac{5x+3}{(x-2)(x+3)}$? 8.
 - A. $\frac{A}{(x-2)} + \frac{B}{(x+3)}$

 - B. $\frac{A+B}{(x-2)(x+3)}$ C. $\frac{A}{(x-2)} + \frac{Bx+C}{(x+3)}$
 - D. $\frac{Ax+B}{(x-2)} + \frac{C}{(x+3)}$
- 9. $\frac{b+c}{2} \frac{b+c}{3}$ is equal to
 - A. $-\frac{b+c}{6}$
 - B. $-\frac{b+5c}{6}$
 - C. $\frac{b+c}{6}$
 - D. $\frac{b+5c}{6}$

Which of the following fractions is a proper fraction?

(Note: $x \neq a$ and b)

- $\frac{(x-b)^4}{(x-a)^2(x-b)}$ A.
- $B. \qquad \frac{(x-b)^3}{(x-a)^2(x-b)}$
- $C. \qquad \frac{(x-a)^3}{(x-a)^2(x-b)}$
- $\frac{(x-a)^2}{(x-a)^2(x-b)}$ D.
- The solution set of $\frac{x-1}{2} = 0$ is 11.
 - A. $\{-1\}$
 - B. $\{-3\}$
 - C. {3}
 - D. {1}
- Given that |-x|=-1, the solution set which must satisfy the equation is 12.
 - A.
 - B.
 - C.
 - D.
- The inequality which BEST describes m(x-1) > m, where m is a natural number, will be 13.
 - A. *x*<1
 - В. x < 2
 - C. x>1
 - D. x>2
- If x is a negative number, then the mathematical statement which must be TRUE is
 - A. $-x \le 0$
 - B. $-x \ge 0$
 - C. x < 0
 - D. x>0

Page 5 of 12

15. The linear equation which satisfies the given pairs of values as shown in the given table will be

X	2	-1
Y	- 1	2

- A. Y = 1 X
- B. Y = X 1
- C. Y 1 = X
- D. Y = -1 X
- 16. The correct graphical representation of ay+a=0 is

Page 6 of 12

17. The given graph represents straight line(s)

II.
$$y = -x - c$$

III.
$$2y = x - c$$

- A. I and III.
- B. I and II.
- C. III only.
- D. II only.

18. The quadratic equation that gives real and equal roots will be

A.
$$x^2 + 4x + 3 = 0$$

B.
$$x^2 - 2x + 3 = 0$$

C.
$$2x^2 + 4x + 3 = 0$$

D.
$$2x^2 - 4x + 3 = 0$$

19. When four times of a number *x* is squared, then the result will be half of one less than that number. The given statement can be written mathematically as

A.
$$16x^2 = \frac{1}{2}(x-1)$$

B.
$$4x^2 = \frac{1}{2}(x-1)$$

C.
$$16x^2 = \frac{1}{2}x - 1$$

D.
$$4x^2 = \frac{1}{2}x - 1$$

20. Which of the following equation(s) is same as $2x^2 - 1 = 0$?

(Note:
$$x \neq 0$$
)

I.
$$3 - \left(\frac{1}{x^2} + 1\right) = 0$$

II.
$$2(x^2-1)=0$$

III.
$$\frac{1}{x} - 2x = 0$$

Page 7 of 12

- 21. The valid condition for the distance between two points (a,b) and (c,d) will be
 - A. $(a-c)^2 + (b-d)^2 \ge 0$
 - B. $(b-a)^2 + (d-c)^2 \ge 0$
 - C. $(a-c)^2 + (b-d)^2 < 0$
 - D. $(b-a)^2 + (d-c)^2 < 0$
- 22. Which of the following points is collinear with the points (x, y) and (x-1, y)?
 - A. (x+1, y+1)
 - B. (x-1, y-1)
 - C. (x+1, y)
 - D. (x, y+1)
- 23. $1\frac{1}{4}$ rotation in anticlockwise direction is equal to
 - A. 90°
 - B. 270°
 - C. 288°
 - D. 450°
- 24. If the central angle measured in radians is $\alpha + 2$ and the length of circular arc is 3π of radius r, then the value of α is equal to
 - A. $3\pi + 2$
 - B. $3\pi 2$
 - C. $\frac{3\pi}{2}$
 - D. 3π
- 25. In the given triangle XYZ, side XY is equal to
 - A. 2 cm
 - B. $2\sqrt{3}$ cm
 - C. 3 cm
 - D. 4 cm

NOT TO SCALE

- For $A=45^{\circ}$, the value of $(\sin A + \cos A)^2$ is equal to 26.
 - A.
 - B.
 - C.
 - D.
- 27. Which of the following lengths do NOT form a right angled triangle?
 - $3\sqrt{2}$, $4\sqrt{2}$ and $5\sqrt{2}$ A.
 - B. 6, 8 and 10
 - C. 5, 5 and 10
 - 3, 4 and 5 D.
- In the given diagram, if the diameter of the circle is AB, then radius of the circle, in terms of a and b, will be

$$D. \qquad \frac{\sqrt{a^2 - b^2}}{2}$$

NOT TO SCALE

If the length of the sides of a right angled triangle are k, l and m such that l < k < m, then 29. according to Pythagoras' theorem

A.
$$m^2 = k^2 - l^2$$

B.
$$l^2 = (k+m)^2$$

C. $m^2 = (k+l)^2$

C.
$$m^2 = (k+l)^2$$

D.
$$l^2 = m^2 - k^2$$

30. $\frac{\sin^2 \theta}{1-\sin^2 \theta}$ is equal to

A.
$$-\tan^2\theta$$

B.
$$\cot^2 \theta$$

C.
$$-\cot^2\theta$$

D.
$$\tan^2 \theta$$

Use the given information to answer Q.31, Q.32 and Q.33.

The given diagram shows a circle with centre O. Two tangents are drawn each from points P and Q to the circle at points S and R respectively that form a quadrilateral PSQR.

NOT TO SCALE

- If $\angle SQR = 72^{\circ}$, then the value of x is equal to
 - 18° A.
 - B. 36°
 - C. 54°
 - D. 81°
- 32. The angle SOP, in terms of y, will be
 - A. $90^{\circ} y^{\circ}$

 - C. $90^{\circ} 2y^{\circ}$
- The total length of the sides of quadrilateral *PSQR* 33.
 - A. is 2m + 2n
 - B. is 2m + n
 - C. is 2mn
 - D. cannot be determined.

Use the given information to answer Q.34 and Q.35.

In the given circle, two arcs KL and MN are congruent.

NOT TO SCALE

- Given that the half of chord MN is m, the length of chord KL will then be

 A. mB. $\frac{m}{2}$ C. 2mD. $\frac{1}{2} + m$ The angle MON will be

 A. 220° B. 140° C. 110° D. 70°
- 35.

Please use this page for rough work

Model Chino Postrino Con Chino Con Chino Con Chino Con Chino Chino Con Chino Chino Con Chino Con Chino Chino

Please use this page for rough work

