4. Punkt-Schätzer

- Punktschätzung
- Konstruktion von Schätzfunktionen
- Maximum-Likelihood-Methode
- Momentenmethode
- Gütekriterien für Punktschätzer
 - Erwartungstreue
 - Effizienz
 - Konsistenz
 - Asymptotische Effizienz
- Zusammenfassung

4 Punktschätzer

Statistik wird häufig eingesetzt, um Informationen über bestimmte Charakteristika einer Grundgesamtheit zu beschaffen.

z.B.: Durchschnittseinkommen aller Bachelorstudenten, durchschnittliche erwartete Verspätung einer Zuglinie, Defektrate im Fertigungsprozess, Basisreproduktionszahl bei einer Epidemie etc.

- → Vollerhebung der Grundgesamtheit i.A. nicht möglich.
- \hookrightarrow Idee: Ziehe aus einer "repräsentativen" Stichprobe Rückschlüsse auf die Grundgesamtheit.
- → Dabei wichtig: homogene Grundgesamtheit muss vorliegen (Partitionierung von Grundgesamtheit bzw. Stichprobe durch Clusterverfahren)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

1) Punktschätzverfahren

- → liefern einen einzelnen Schätzwert für einen unbekannten Parameter einer Grundgesamtheit/Verteilung.

1) Punktschätzverfahren

- \hookrightarrow liefern einen einzelnen Schätzwert für einen unbekannten Parameter einer Grundgesamtheit/Verteilung.
- → Stichprobenwerte werden mit Hilfe einer Schätzfunktion aggregiert. Die dabei verwendeten Datenkennzahlen (gemäß DuW) korrespondieren oft zum unbekannten Parameter (z.B. aufgrund der Gesetze großer Zahlen).

2) Intervallschätzverfahren

- \hookrightarrow Schätzergebnis ist ein Intervall, in das der unbekannte Parameter der Grundgesamtheit mit einer bestimmten Wahrscheinlichkeit fällt.
- → Oft ist ein "plausibler" Punktschätzer die Intervallmitte, und die Intervallbreite reflektiert die Unsicherheit über die Genauigkeit des Schätzers.

1) Punktschätzverfahren

- \hookrightarrow liefern einen einzelnen Schätzwert für einen unbekannten Parameter einer Grundgesamtheit/Verteilung.

2) Intervallschätzverfahren

- → Oft ist ein "plausibler" Punktschätzer die Intervallmitte, und die Intervallbreite reflektiert die Unsicherheit über die Genauigkeit des Schätzers.

3) Statistische Tests

4.1 Punktschätzung

Möglichst genaue Annäherung eines unbekannten Grundgesamtheitsparameters.

Kennwerte einer beliebigen, unbekannten Verteilung

- \hookrightarrow Erwartungswert bzw. Varianz einer Zufallsvariablen
- → Median oder allg. Quantil einer Zufallsvariablen
- → Korrelation zweier Zufallsvariablen ...

4.1 Punktschätzung

Möglichst genaue Annäherung eines unbekannten Grundgesamtheitsparameters.

Kennwerte einer beliebigen, unbekannten Verteilung

- $\hookrightarrow \ \mathsf{Erwartungswert} \ \mathsf{bzw}. \ \mathsf{Varianz} \ \mathsf{einer} \ \mathsf{Zufallsvariablen}$
- \hookrightarrow Korrelation zweier Zufallsvariablen ...

Spezifische Parameter eines zugrundegelegten Verteilungsmodells

- \hookrightarrow z.B. X: Anzahl Schadensmeldungen innerhalb eines Monats, $X \sim Poisson(\lambda)$, interessierender Parameter λ
- \hookrightarrow z.B. X: Durchmesser von produzierten Schrauben, $X \sim \mathcal{N}(\mu, \sigma^2)$, interessierende Parameter μ und σ^2
- \hookrightarrow z.B. X: Lebensdauer von Glühbirnen, $X \sim Exp(\lambda)$, interessierender Parameter λ

Ausgangspunkt:

- \hookrightarrow *n* Stichprobenziehungen/Zufallsexperimente, repräsentiert durch ZV X_1, \ldots, X_n
- $\hookrightarrow X_1, \dots, X_n$ heißen auch Stichprobenvariablen

Ausgangspunkt:

- \hookrightarrow *n* Stichprobenziehungen/Zufallsexperimente, repräsentiert durch ZV X_1, \ldots, X_n
- $\hookrightarrow X_1, \dots, X_n$ heißen auch Stichprobenvariablen
- \hookrightarrow häufig: Stichprobenvariablen sind unabhängige Wiederholungen von X:
 - Experimente, die den ZVen X_1, \ldots, X_n zugrundeliegen, sind unabhängig,
 - jedes Mal wird dasselbe Zufallsexperiment durchgeführt

Für Konsistenzuntersuchung angenommen: u.i.v.-**Folge** X_1, \ldots, X_n, \ldots

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 4

Ausgangspunkt:

- \hookrightarrow *n* Stichprobenziehungen/Zufallsexperimente, repräsentiert durch ZV X_1, \ldots, X_n
- $\hookrightarrow X_1, \dots, X_n$ heißen auch Stichprobenvariablen
- \hookrightarrow häufig: Stichprobenvariablen sind unabhängige Wiederholungen von X:
 - Experimente, die den ZVen X_1, \ldots, X_n zugrundeliegen, sind unabhängig,
 - jedes Mal wird dasselbe Zufallsexperiment durchgeführt

Für Konsistenzuntersuchung angenommen: u.i.v.-**Folge** X_1,\ldots,X_n,\ldots

 \hookrightarrow auf Basis der Realisierungen x_1, \dots, x_n soll auf θ geschlossen werden.

Eine **Punktschätzung** für θ ist eine Funktion $t = g(x_1, \dots, x_n)$.

$$\hookrightarrow$$
 z.B. $g(x_1,\ldots,x_n)=\sum\limits_{i=1}^n\frac{x_i}{n}$ ist (sinnvolle) Punktschätzung für $\theta=E(X)$.

 \hookrightarrow die Stichproben sind Realisationen von Zufallsvariablen X_1, \ldots, X_n

- \hookrightarrow die Stichproben sind Realisationen von Zufallsvariablen X_1, \ldots, X_n

- \hookrightarrow die Stichproben sind Realisationen von Zufallsvariablen X_1, \ldots, X_n
- \hookrightarrow Variabilität wird durch die Variabilität der ZVen X_1, \ldots, X_n bestimmt

- \hookrightarrow die Stichproben sind Realisationen von Zufallsvariablen X_1, \ldots, X_n
- \hookrightarrow Variabilität wird durch die Variabilität der ZVen X_1, \ldots, X_n bestimmt

Eine **Schätzfunktion** oder **Schätzstatistik** für den Grundgesamtheitsparameter θ ist eine Funktion der Stichprobenvariablen X_1, \ldots, X_n :

$$T = g(X_1, \ldots, X_n)$$

Der **Schätzwert** ergibt sich aus den Realisationen x_1, \ldots, x_n :

$$\hat{\theta} = g(x_1, \dots, x_n)$$

$$\bar{X} = g(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$
 (Schätzfkt. für $E(X)$)

$$\bar{X} = g(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$
 (Schätzfkt. für $E(X)$)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad X_i \in \{0,1\}$$
 (Schätzfkt. für Anteilswert $\pi = P(X=1)$)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$\bar{X} = g(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$
 (Schätzfkt. für $E(X)$)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad X_i \in \{0,1\}$$
 (Schätzfkt. für Anteilswert $\pi = P(X=1)$)

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 (Schätzfkt. für $\sigma^2 = Var(X)$)

$$\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 (Schätzfkt. für $\sigma^2 = Var(X)$)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

X: Verspätung der Rückgabe eines Mathebuches in der Bibliothek in Tagen.

 X_i : X bei *i*-ter Messung.

Seien $(x_1, \ldots, x_{10}) = (2, 14, 10, 0, 9, 20, 8, 2, 3, 2)$. $\mu = E(X) = ???$

Annahme: $X \sim F$ mit unbekannter Verteilung $F \Rightarrow X_1, \dots, X_n \stackrel{uiv}{\sim} F$

Mögliche Schätzungen: $\hat{\mu}_1 = \bar{x} = 7$

X: Verspätung der Rückgabe eines Mathebuches in der Bibliothek in Tagen.

 X_i : X bei *i*-ter Messung.

Seien $(x_1, \ldots, x_{10}) = (2, 14, 10, 0, 9, 20, 8, 2, 3, 2)$. $\mu = E(X) = ???$

Annahme: $X \sim F$ mit unbekannter Verteilung $F \Rightarrow X_1, \dots, X_n \stackrel{uiv}{\sim} F$

Mögliche Schätzungen: $\hat{\mu}_1 = \bar{x} = 7$ $\hat{\mu}_2 = x_1 = 2$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

X: Verspätung der Rückgabe eines Mathebuches in der Bibliothek in Tagen.

 X_i : X bei i-ter Messung.

Seien
$$(x_1, \ldots, x_{10}) = (2, 14, 10, 0, 9, 20, 8, 2, 3, 2)$$
. $\mu = E(X) = ???$

Annahme: $X \sim F$ mit unbekannter Verteilung $F \Rightarrow X_1, \dots, X_n \stackrel{uiv}{\sim} F$

Mögliche Schätzungen:
$$\hat{\mu}_1 = \bar{x} = 7$$
 $\hat{\mu}_2 = x_1 = 2$ $\hat{\mu}_3 = 3 \cdot x_8 = 6$

X: Verspätung der Rückgabe eines Mathebuches in der Bibliothek in Tagen.

 X_i : X bei *i*-ter Messung.

Seien
$$(x_1, \ldots, x_{10}) = (2, 14, 10, 0, 9, 20, 8, 2, 3, 2)$$
. $\mu = E(X) = ???$

Annahme: $X \sim F$ mit unbekannter Verteilung $F \Rightarrow X_1, \dots, X_n \stackrel{uiv}{\sim} F$

Mögliche Schätzungen:
$$\hat{\mu}_1 = \bar{x} = 7$$
 $\hat{\mu}_2 = x_1 = 2$ $\hat{\mu}_3 = 3 \cdot x_8 = 6$ $\hat{\mu}_4 = \frac{1}{9} \sum_{i=1}^9 x_i = 7.56$

Welche ist die "Beste"?

Antwort allgemein abhängig vom verwendeten WS-Modell und Gütekriterium.

Idee: Suche für Realisationen x_1, \ldots, x_n denjenigen Parameter $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$, der die plausibelste Erklärung für die Beobachtung dieser Realisationen liefert.

Idee: Suche für Realisationen x_1, \ldots, x_n denjenigen Parameter $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$, der die plausibelste Erklärung für die Beobachtung dieser Realisationen liefert.

 \hookrightarrow **ML-Schätzer** $\hat{\theta}_{ML}$: Durch Maximierung der gemeinsamen WS-Dichte der Stichprobenvariablen als Funktion des Parameters.

Idee: Suche für Realisationen x_1, \ldots, x_n denjenigen Parameter $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$, der die plausibelste Erklärung für die Beobachtung dieser Realisationen liefert.

- \hookrightarrow **ML-Schätzer** $\hat{\theta}_{ML}$: Durch Maximierung der gemeinsamen WS-Dichte der Stichprobenvariablen als Funktion des Parameters.
- \hookrightarrow **MM-Schätzer** $\hat{\theta}_{MM}$: Durch Gleichsetzung von theoretischen und Stichproben-Kennzahlen und Auflösen dieser Gleichung(en) nach θ .

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 8

Idee: Suche für Realisationen x_1, \ldots, x_n denjenigen Parameter $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$, der die plausibelste Erklärung für die Beobachtung dieser Realisationen liefert.

- \hookrightarrow **ML-Schätzer** $\hat{\theta}_{ML}$: Durch Maximierung der gemeinsamen WS-Dichte der Stichprobenvariablen als Funktion des Parameters.
- \hookrightarrow MM-Schätzer $\hat{\theta}_{MM}$: Durch Gleichsetzung von theoretischen und Stichproben-Kennzahlen und Auflösen dieser Gleichung(en) nach θ .

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 8

Idee: Suche für Realisationen x_1, \ldots, x_n denjenigen Parameter $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$, der die plausibelste Erklärung für die Beobachtung dieser Realisationen liefert.

- \hookrightarrow **ML-Schätzer** $\hat{\theta}_{ML}$: Durch Maximierung der gemeinsamen WS-Dichte der Stichprobenvariablen als Funktion des Parameters.
- \hookrightarrow MM-Schätzer $\hat{\theta}_{MM}$: Durch Gleichsetzung von theoretischen und Stichproben-Kennzahlen und Auflösen dieser Gleichung(en) nach θ .
- → MD-Schätzer: Gegenüberstellung von Stichprobenverteilung und theoretischer Verteilung (z.B. deren Verteilungsfunktion, Quantilfunktion) und Minimierung der "Distanzen" dazwischen. Hier nicht behandelt.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Idee: Suche für Realisationen x_1, \ldots, x_n denjenigen Parameter $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$, der die plausibelste Erklärung für die Beobachtung dieser Realisationen liefert.

- \hookrightarrow **ML-Schätzer** $\hat{\theta}_{ML}$: Durch Maximierung der gemeinsamen WS-Dichte der Stichprobenvariablen als Funktion des Parameters.
- \hookrightarrow MM-Schätzer $\hat{\theta}_{MM}$: Durch Gleichsetzung von theoretischen und Stichproben-Kennzahlen und Auflösen dieser Gleichung(en) nach θ .
- → MD-Schätzer: Gegenüberstellung von Stichprobenverteilung und theoretischer Verteilung (z.B. deren Verteilungsfunktion, Quantilfunktion) und Minimierung der "Distanzen" dazwischen. Hier nicht behandelt.
- → Bayes-Schätzer: Gewichtetes Mittel aus datenabhängiger Schätzung und "Vorinformation" des Schätzers (Idee: von der a-priori-Verteilung zur a-posteriori-Verteilung). Hier nicht behandelt.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 8

4.3 Maximum-Likelihood-Methode (ML)

- \hookrightarrow Betrachtung der "Plausibilität" innerhalb einer parametrischen Verteilungsklasse anhand einer konkreten Stichprobe x_1, \dots, x_n .
- \hookrightarrow geht v.a. auf Sir Ronald Aylmer Fisher zurück (Anfang des 20. Jahrhunderts)

- $\hookrightarrow \ \mathsf{Genetiker}, \ \mathsf{Evolutionstheoretiker}, \ \mathsf{Eugeniker}, \ \mathsf{Statistiker},$
- * 17.02.1890 in London; + 29.07.1962 in Adelaide

Maximum-Likelihood-Prinzip

Seien X_1, \ldots, X_n unabhängige und identische Wiederholungen eines Experimentes.

 \hookrightarrow **Likelihood-Funktion**: Fasse die gemeinsame Dichte als Funktion des unbekannten Parameters θ bei festen Realisationen x_1, \ldots, x_n auf:

$$L(\theta) = L(\theta|x_1,\ldots,x_n) := f(x_1,\ldots,x_n|\theta) = f(x_1|\theta)\cdots f(x_n|\theta)$$

Maximum-Likelihood-Prinzip

Seien X_1, \ldots, X_n unabhängige und identische Wiederholungen eines Experimentes.

 \hookrightarrow **Likelihood-Funktion**: Fasse die gemeinsame Dichte als Funktion des unbekannten Parameters θ bei festen Realisationen x_1, \dots, x_n auf:

$$L(\theta) = L(\theta|x_1,\ldots,x_n) := f(x_1,\ldots,x_n|\theta) = f(x_1|\theta)\cdots f(x_n|\theta)$$

→ Maximum-Likelihood-Schätzung

$$\hat{\theta}_{ML} = \hat{\theta}_{ML}(x_1, \dots, x_n)$$
 ist erklärt als Maximalstelle der Funktion $\theta \mapsto L(\theta)$

□ Maximum-Likelihood-Schätzer: $g(X_1, ..., X_n) = \hat{\theta}(X_1, ..., X_n)$ (ist eine Zufallsvariable, die ML-Schätzung ist deren Realisation)

Maximum-Likelihood-Prinzip

Seien X_1, \ldots, X_n unabhängige und identische Wiederholungen eines Experimentes.

 \hookrightarrow **Likelihood-Funktion**: Fasse die gemeinsame Dichte als Funktion des unbekannten Parameters θ bei festen Realisationen x_1, \dots, x_n auf:

$$L(\theta) = L(\theta|x_1,\ldots,x_n) := f(x_1,\ldots,x_n|\theta) = f(x_1|\theta)\cdots f(x_n|\theta)$$

→ Maximum-Likelihood-Schätzung

$$\hat{\theta}_{ML} = \hat{\theta}_{ML}(x_1, \dots, x_n)$$
 ist erklärt als Maximalstelle der Funktion $\theta \mapsto L(\theta)$

- \hookrightarrow **Log-Likelihood**: Statt *L* wird meist $\ln(L(\theta)) = \sum_{i=1}^{n} \ln(f(x_i|\theta))$ maximiert.
- □ Maximum-Likelihood-Schätzer: $g(X_1, ..., X_n) = \hat{\theta}(X_1, ..., X_n)$ (ist eine Zufallsvariable, die ML-Schätzung ist deren Realisation)
- \square Durch die Logarithmierung wird das Maximierungsproblem i.A. einfacher. Das maximierende θ selbst ist identisch, da der Logarithmus eine streng monotone Transformation ist.

11

Bsp: Elfmeter (aus DuW)

- \hookrightarrow Ergebnis werde als Bernoulli-Experiment mit Treffer-WS p angesehen (problematisch: u.i.v-Annahme)
- \hookrightarrow Bei n=10 Schüssen folgende Ergebnisse: 1,1,0,0,1,0,0,0,1,0 (k=4 Treffer)

Ziel: Schätzung von p mit ML-Methode.

Bsp: Elfmeter (aus DuW)

- \hookrightarrow Ergebnis werde als Bernoulli-Experiment mit Treffer-WS p angesehen (problematisch: u.i.v-Annahme)
- \hookrightarrow Bei n=10 Schüssen folgende Ergebnisse: 1,1,0,0,1,0,0,1,0 (k=4 Treffer)

Ziel: Schätzung von *p* mit ML-Methode.

Likelihood=Gemeinsame Dichte, hier allgemein (mit $k = x_1 + \cdots + x_n$)

$$f_p(x_1,\ldots,x_n) = p^{x_1}(1-p)^{1-x_1}\cdots p^{x_n}(1-p)^{1-x_n}$$

Bsp: Elfmeter (aus DuW)

- \hookrightarrow Ergebnis werde als Bernoulli-Experiment mit Treffer-WS p angesehen (problematisch: u.i.v-Annahme)
- \hookrightarrow Bei n=10 Schüssen folgende Ergebnisse: 1,1,0,0,1,0,0,0,1,0 (k=4 Treffer)

Ziel: Schätzung von p mit ML-Methode.

Likelihood=Gemeinsame Dichte, hier allgemein (mit $k = x_1 + \cdots + x_n$)

$$f_p(x_1,...,x_n) = p^{x_1}(1-p)^{1-x_1}\cdots p^{x_n}(1-p)^{1-x_n}$$

$$= p^{x_1+\cdots+x_n}(1-p)^{n-(x_1+\cdots+x_n)} = p^k(1-p)^{n-k}$$

Bsp: Elfmeter (aus DuW)

- \hookrightarrow Ergebnis werde als Bernoulli-Experiment mit Treffer-WS p angesehen (problematisch: u.i.v-Annahme)
- \hookrightarrow Bei n=10 Schüssen folgende Ergebnisse: 1,1,0,0,1,0,0,0,1,0 (k=4 Treffer)

Ziel: Schätzung von p mit ML-Methode.

Likelihood=Gemeinsame Dichte, hier allgemein (mit $k = x_1 + \cdots + x_n$)

$$f_p(x_1,...,x_n) = p^{x_1}(1-p)^{1-x_1}\cdots p^{x_n}(1-p)^{1-x_n}$$

$$= p^{x_1+\cdots+x_n}(1-p)^{n-(x_1+\cdots+x_n)} = p^k(1-p)^{n-k}$$

Plot der WS (n = 10, diverse p) für k = 0, ..., 10

Hervorgehoben: jeweils k = 4

12

Likelihoodfunktion der konkreten Stichprobe ($k = x_1 + \cdots + x_{10} = 4$):

Dichte (s.o.)

Likelihoodfunktion der konkreten Stichprobe ($k = x_1 + \cdots + x_{10} = 4$):

Dichte (s.o.)

Likelihood: Stelle Werte der Dichte gebündelt nach k dar:

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 12

Likelihoodfunktion der konkreten Stichprobe ($k = x_1 + \cdots + x_{10} = 4$):

Dichte (s.o.)

Likelihood: Stelle Werte der Dichte gebündelt nach k dar:

vollständige Graphen der Likelihood (Polynome 10. Grades):

$$\hookrightarrow$$
 Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$

- \hookrightarrow Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$
- \hookrightarrow Log-Likelihood: $\ln(L(p)) = \ln(p^k(1-p)^{n-k}) = k \ln(p) + (n-k) \ln(1-p)$

Bsp (Elfmeter): Likelihoodfunktion der konkreten Stichprobe (k = 4)

- \hookrightarrow Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$
- \hookrightarrow Log-Likelihood: $\ln(L(p)) = \ln(p^k(1-p)^{n-k}) = k \ln(p) + (n-k) \ln(1-p)$
- Maximierung der Log-Likelihood: $\frac{\partial \ln(L(p))}{\partial p} = \frac{k}{p} \frac{n-k}{1-p}$

Datenanalyse Sommersemester 2022

- \hookrightarrow Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$
- \hookrightarrow Log-Likelihood: $\ln(L(p)) = \ln(p^k(1-p)^{n-k}) = k \ln(p) + (n-k) \ln(1-p)$
- \hookrightarrow Maximierung der Log-Likelihood: $\frac{\partial \ln(L(p))}{\partial p} = \frac{k}{p} \frac{n-k}{1-p}$
 - □ Notwendig: $0 \stackrel{!}{=} \frac{k}{p} \frac{n-k}{1-p} \Leftrightarrow \frac{k}{p} = \frac{n-k}{1-p} \Leftrightarrow k kp = np kp \Leftrightarrow p = \frac{k}{n}$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- \hookrightarrow Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$
- \hookrightarrow Log-Likelihood: $\ln(L(p)) = \ln(p^k(1-p)^{n-k}) = k \ln(p) + (n-k) \ln(1-p)$
- \hookrightarrow Maximierung der Log-Likelihood: $\frac{\partial \ln(L(p))}{\partial p} = \frac{k}{p} \frac{n-k}{1-p}$
 - □ Notwendig: $0 \stackrel{!}{=} \frac{k}{p} \frac{n-k}{1-p} \Leftrightarrow \frac{k}{p} = \frac{n-k}{1-p} \Leftrightarrow k kp = np kp \Leftrightarrow p = \frac{k}{n}$
 - \Box Hinreichend: Zielfunktion ist konkav: $rac{\partial^2 \ln(L(p))}{\partial^2 p} = -rac{k}{p^2} rac{n-k}{(1-p)^2} \leq 0$

- \hookrightarrow Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$
- \hookrightarrow Log-Likelihood: $\ln(L(p)) = \ln(p^k(1-p)^{n-k}) = k \ln(p) + (n-k) \ln(1-p)$
- \hookrightarrow Maximierung der Log-Likelihood: $\frac{\partial \ln(L(\rho))}{\partial \rho} = \frac{k}{\rho} \frac{n-k}{1-\rho}$
 - □ Notwendig: $0 \stackrel{!}{=} \frac{k}{p} \frac{n-k}{1-p} \Leftrightarrow \frac{k}{p} = \frac{n-k}{1-p} \Leftrightarrow k kp = np kp \Leftrightarrow p = \frac{k}{n}$
 - □ Hinreichend: Zielfunktion ist konkav: $\frac{\partial^2 \ln(L(p))}{\partial^2 p} = -\frac{k}{p^2} \frac{n-k}{(1-p)^2} \le 0$

Maximal ist die (Log-)Likelihood für $p = \frac{k}{n} = \frac{x_1 + \dots + x_n}{n} = \bar{x}$

- \hookrightarrow Likelihood mit $k = \sum x_i$ rechnerisch: $L(p) = L(x_1, \dots, x_n, p) = p^k (1-p)^{n-k}$
- \hookrightarrow Log-Likelihood: $\ln(L(p)) = \ln(p^k(1-p)^{n-k}) = k \ln(p) + (n-k) \ln(1-p)$
- \hookrightarrow Maximierung der Log-Likelihood: $\frac{\partial \ln(L(p))}{\partial p} = \frac{k}{p} \frac{n-k}{1-p}$
 - □ Notwendig: $0 \stackrel{!}{=} \frac{k}{p} \frac{n-k}{1-p} \Leftrightarrow \frac{k}{p} = \frac{n-k}{1-p} \Leftrightarrow k kp = np kp \Leftrightarrow p = \frac{k}{n}$
 - \square Hinreichend: Zielfunktion ist konkav: $\frac{\partial^2 \ln(L(p))}{\partial^2 p} = -\frac{k}{p^2} \frac{n-k}{(1-p)^2} \le 0$

Maximal ist die (Log-)Likelihood für $p = \frac{k}{n} = \frac{x_1 + \dots + x_n}{n} = \bar{x}$

Der ML-Schätzer ist $g(X_1,\ldots,X_n)=\hat{p}_{ML}(X_1,\ldots,X_n)=\hat{p}_{ML}=ar{X}$

Bei Ergebnisfolge 1,1,0,0,1,0,0,0,1,0 (k = 4 Treffer) ML-Schätzung $\hat{p}_{ML} = 0.4$

Übung: In einem Fertigungsprozess werden 5x wöchentlich je 4 Items auf Fehler überprüft. Die Defektzahlen X_1, \ldots, X_5 seien st.u., $\mathcal{L}(X_i) = Bin(4, p)$. In einer bestimmten Woche werden die Defektzahlen 2.0.0.1.0 beobachtet. Berechnen Sie eine ML-Schätzung für die Defektwahrscheinlichkeit p eines Items.

Memo (DuW) Normalverteilung $\mathcal{N}(\mu, \sigma^2)$ mit $\mu \in \mathbb{R}, \sigma > 0$

$$\hookrightarrow$$
 Träger: $\mathcal{X} = \mathbb{R}$

$$\hookrightarrow$$
 Dichte: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

$$\hookrightarrow VF F(x) = \Phi(\frac{x-\mu}{\sigma})$$

$$\hookrightarrow E(X) = med(X) = \mu$$

$$\hookrightarrow var(X) = \sigma^2$$

$$\hookrightarrow$$
 Speziell: VF, Dichte zu $\mathcal{N}(0,1)$: $\Phi(x) = \int_{-\infty}^{x} \phi(t) dt = 1 - \Phi(-x),$ $\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{t^2}{2}}$

Schreibweise:
$$u_{\alpha} := \Phi^{-1}(\alpha)$$

- $\hookrightarrow \mbox{ Als Modellverteilung stetiger Merkmale verwendet (z.B. Regressionsanalyse),} \\ \mbox{ aber oft ungerechtfertigt} \mbox{ fehlende Symmetrie, begrenzter Träger der Daten}$
- → Approximative Stichprobenverteilung standardisierter Summen (Zentraler Grenzwertsatz), für derart kumulierte Daten dann auch Modellverteilung.

Beispiel: Statistico (DuW)

- \hookrightarrow Der Spielehersteller "R-Games" benötigt zum Testen seines Spiels "Statistico" eine Gruppe von Testspielern , deren IQ demjenigen der Grundgesamtheit entspricht (Annahme: normalverteilt, $\mu=100,\,\sigma=15$).
- \hookrightarrow Kennzahlen der Stichprobe: $\bar{x}=100.05, \ \tilde{s}^2=\frac{1}{n}\sum (x_i-\bar{x})^2=221.8475$
- \hookrightarrow Kann man bei dieser Stichprobe davon ausgehen, dass sie die Grundgesamtheit ausreichend genau repräsentiert?
- \hookrightarrow Unter der Annahme, dass die IQ-Werte über die Grundgesamtheit normalverteilt sind, sind zunächst (ML-)Schätzungen für μ und σ gesucht.

Ziel: ML-Schätzung von $\theta = (\mu, \sigma)$ in u.i.v. Stichprobe $X_1, \dots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu, \sigma^2)$

Ziel: ML-Schätzung von $\theta = (\mu, \sigma)$ in u.i.v. Stichprobe $X_1, \ldots, X_n \stackrel{u.i.v.}{\sim} \mathcal{N}(\mu, \sigma^2)$ 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \ldots, x_n)$

Ziel: ML-Schätzung von $\theta = (\mu, \sigma)$ in u.i.v. Stichprobe $X_1, \dots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu, \sigma^2)$

1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$

$$L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 - \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)$$

- 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n \mu)^2}{2\sigma^2}\right)$
- 2.) Log-Likelihood:

$$\ln L(\mu, \sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

- 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 - \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)$
- 2.) Log-Likelihood:

$$\ln L(\mu, \sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(\mathsf{x}_i - \mu)^2}{2\sigma^2} \right] = \sum_{i=1}^{n} \left[-\ln \left(\sqrt{2\pi} \right) - \ln \left(\sigma \right) - \frac{(\mathsf{x}_i - \mu)^2}{2\sigma^2} \right]$$

- 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n \mu)^2}{2\sigma^2}\right)$
- 2.) Log-Likelihood:

$$\ln L(\mu, \sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \sum_{i=1}^{n} \left[-\ln \left(\sqrt{2\pi} \right) - \ln \left(\sigma \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

3.) Maximierung (hier nur notwendige Bedingungen)

$$\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} \stackrel{!}{=} 0$$

- 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n \mu)^2}{2\sigma^2}\right)$
- 2.) Log-Likelihood:

$$\ln L(\mu, \sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \sum_{i=1}^{n} \left[-\ln \left(\sqrt{2\pi} \right) - \ln \left(\sigma \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

3.) Maximierung (hier nur notwendige Bedingungen)

$$\Box \frac{\partial \ln L(\mu, \sigma)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} \stackrel{!}{=} 0 \qquad \text{d.h.} \qquad \sum_{i=1}^{n} x_i - n \cdot \mu = 0 \Leftrightarrow \hat{\mu} = \bar{x}$$

- 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n \mu)^2}{2\sigma^2}\right)$
- 2.) Log-Likelihood:

$$\ln L(\mu,\sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \sum_{i=1}^{n} \left[-\ln \left(\sqrt{2\pi} \right) - \ln \left(\sigma \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

3.) Maximierung (hier nur notwendige Bedingungen)

$$\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} \stackrel{!}{=} 0 \qquad \text{d.h.} \qquad \sum_{i=1}^{n} x_i - n \cdot \mu = 0 \Leftrightarrow \boxed{\hat{\mu} = \bar{x}}$$

$$\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \sigma} = \sum_{i=1}^{n} \left(-\frac{1}{\sigma} + \frac{2(x_i - \mu)^2}{2\sigma^3} \right) \stackrel{!}{=} 0,$$

- 1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n \mu)^2}{2\sigma^2}\right)$
- 2.) Log-Likelihood:

$$\ln L(\mu, \sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \sum_{i=1}^{n} \left[-\ln \left(\sqrt{2\pi} \right) - \ln \left(\sigma \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$
3.) Maximierung (hier nur notwendige Bedingungen)

3.) Maximierung (hier nur notwendige Bedingungen) $\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} \stackrel{!}{=} 0 \qquad \text{d.h.} \qquad \sum_{i=1}^{n} x_i - n \cdot \mu = 0 \Leftrightarrow \hat{\mu} = \bar{x}$

$$\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \sigma} = \sum_{i=1}^{n} \left(-\frac{1}{\sigma} + \frac{2(x_i - \mu)^2}{2\sigma^3} \right) \stackrel{!}{=} 0,$$

$$d.h. -\frac{n}{\sigma} + \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma^3} = 0 \Leftrightarrow \sum_{i=1}^{n} (x_i - \mu)^2 = n \cdot \sigma^2,$$

$$d.h. \hat{\sigma} := \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

1.) Likelihood: Schreibe $L(\mu, \sigma)$ für $L(\mu, \sigma, x_1, \dots, x_n)$ $L(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_1 - \mu)^2}{2\sigma^2}\right) \cdots \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)$

2.) Log-Likelihood:

$$\ln L(\mu,\sigma) = \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right] = \sum_{i=1}^{n} \left[-\ln \left(\sqrt{2\pi} \right) - \ln \left(\sigma \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

3.) Maximierung (hier nur notwendige Bedingungen)

$$\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_{i} - \mu}{\sigma^{2}} \stackrel{!}{=} 0 \qquad \text{d.h.} \qquad \sum_{i=1}^{n} x_{i} - n \cdot \mu = 0 \Leftrightarrow \boxed{\hat{\mu} = \bar{x}}$$

$$\Box \frac{\partial \ln L(\mu,\sigma)}{\partial \sigma} = \sum_{i=1}^{n} \left(-\frac{1}{\sigma} + \frac{2(x_{i} - \mu)^{2}}{2\sigma^{3}} \right) \stackrel{!}{=} 0,$$

$$\text{d.h.} -\frac{n}{\sigma} + \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{3}} = 0 \Leftrightarrow \sum_{i=1}^{n} (x_{i} - \mu)^{2} = n \cdot \sigma^{2},$$

$$\text{d.h.} \hat{\sigma} := \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \hat{\mu})^{2}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

ML-Schätzer für (μ, σ) sind die Schätzstatistiken (\bar{X}, \tilde{S}) .

Statistico-Stichprobe: $\hat{\mu} = \bar{x} = 100.05$, $\hat{\sigma} = \tilde{s} \approx 14.89$

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- → Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- $\hookrightarrow \mbox{ Verwendung anstelle Normalverteilung (h\"{o}here WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)}$
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$

→ ML-Schätzer sind oft nicht (nur) mittels Differentialrechnung zu bestimmen:

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- \hookrightarrow Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$
 - \square Maximierung in μ bei festem σ :

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- \hookrightarrow Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$
 - \square Maximierung in μ bei festem σ :

L maximal, wenn $\sum_{i=1}^{n} |x_i - \mu|$ minimal, d.h. (DuW) für $\hat{\mu} = med(x)$

(dieser Schritt zwangsläufig ohne Differentialrechnung)

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

→ ML-Schätzer sind oft nicht (nur) mittels Differentialrechnung zu bestimmen:

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- \hookrightarrow Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$
 - \square Maximierung in μ bei festem σ :
 - L maximal, wenn $\sum\limits_{i=1}^{\infty}|x_i-\mu|$ minimal, d.h. (DuW) für $\hat{\mu}=\mathit{med}(x)$
 - (dieser Schritt zwangsläufig ohne Differentialrechnung)
 - \square Maximierung in σ bei $\mu = \hat{\mu}$:

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- \hookrightarrow Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$
 - \square Maximierung in μ bei festem σ :
 - L maximal, wenn $\sum\limits_{i=1}^{}|x_i-\mu|$ minimal, d.h. (DuW) für $\hat{\mu}=\mathit{med}(x)$
 - (dieser Schritt zwangsläufig ohne Differentialrechnung)
 - \square Maximierung in σ bei $\mu = \hat{\mu}$:

$$\ln(L(\hat{\mu}, \sigma)) = -n \ln(2\sigma) - \frac{n \cdot MA(x)}{\sigma} \text{ mit } MA(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i - med(x)|$$

18

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$, $\mu \in \mathbb{R}$, $\sigma > 0$.
- \hookrightarrow Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$
 - \square Maximierung in μ bei festem σ :

L maximal, wenn $\sum_{i=1}^n |x_i - \mu|$ minimal, d.h. (DuW) für $\hat{\mu} = med(x)$

(dieser Schritt zwangsläufig ohne Differentialrechnung)

 \square Maximierung in σ bei $\mu = \hat{\mu}$:

$$\ln(L(\hat{\mu}, \sigma)) = -n \ln(2\sigma) - \frac{n \cdot MA(x)}{\sigma} \text{ mit } MA(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i - med(x)|$$

Notwendig:
$$\frac{\partial L(\hat{\mu},\sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{n \cdot MA(x)}{\sigma^2} \stackrel{!}{=} 0 \Rightarrow \hat{\sigma} = MA(x)$$

Doppelexponentialverteilung

- $\hookrightarrow X_1, \ldots, X_n$ u.i.v. mit Dichte (!) $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}, \ \mu \in \mathbb{R}, \ \sigma > 0$.
- → Verwendung anstelle Normalverteilung (höhere WS extremer Ereignisse, Verteilungen mit "schweren Flanken", z.B. bei Finanzdaten)
- \hookrightarrow Log-Likelihood: $\ln(L(\mu, \sigma)) = -n \ln(2\sigma) \frac{1}{\sigma} \sum_{i=1}^{n} |x_i \mu|$
 - \square Maximierung in μ bei festem σ :

$$L$$
 maximal, wenn $\sum\limits_{i=1}^{\infty}|x_i-\mu|$ minimal, d.h. (DuW) für $\hat{\mu}=\mathit{med}(x)$

(dieser Schritt zwangsläufig ohne Differentialrechnung)

 \square Maximierung in σ bei $\mu = \hat{\mu}$:

$$\ln(L(\hat{\mu}, \sigma)) = -n \ln(2\sigma) - \frac{n \cdot MA(x)}{\sigma} \text{ mit } MA(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i - med(x)|$$

Notwendig:
$$\frac{\partial L(\hat{\mu},\sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{n \cdot MA(x)}{\sigma^2} \stackrel{!}{=} 0 \Rightarrow \hat{\sigma} = MA(x)$$

MA-Schätzer sind also $\hat{\mu}_{ML} = med(X)$ und $\hat{\sigma}_{ML} = MA(X)$

Übung: Berechnen Sie im vorigen Beispiel mit $f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$ die angegebene Log-Likelihood $\ln(L(\mu,\sigma)) = -n\ln(2\sigma) - \frac{1}{\sigma}\sum_{i=1}^n |x_i - \mu|$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 19

Fritzbrötchen

Bäcker Kalkoves neueste Kreation ist das Fritzbrötchen, welches er in der Bäckerei neben dem Hörsaal verkaufen möchte. Unter 10 Studierenden hat er folgende Preisbereitschaften (PB) erfragt (in EuroCent): 20, 70, 85, 50, 75, 0, 40, 90, 95, 60.

Übung: Die Likelihood-Funktion für (mit $\theta > 0$) u.i.v. Re $(0, \theta)$ -verteilte PB lautet $L(\theta) = \frac{1}{\theta n} \mathbb{1}_{[v:\infty]}(\theta)$ mit $v = \max(x_1, \dots, x_n)$

Übung: Begründen Sie $\hat{\theta}_{ML} = \max(X_1, \dots, X_n)$ mit einer Skizze von L.

4 Punkt-Schätzer 4.4 Momentenmethode

4.4 Momentenmethode (MM)

- \hookrightarrow Vergleich der Momente der Stichprobenvariablen X_1, \ldots, X_n mit den empirischen Momenten der konkreten Stichprobe x_1, \ldots, x_n .

- → britischer Mathematiker, * 27.03.1857 in London; + 27.04.1936 in Coldharbour
- \hookrightarrow Gründung der weltweit ersten Statistik-Fakultät 1911, University College of London

Modellannahmen: Wir wollen $\theta = (\theta_1, \dots, \theta_m)$ schätzen. Betrachte hierzu eine Stichprobe x_1, \dots, x_n zu den Stichprobenvariablen $X_1, \dots, X_n \stackrel{u.i.v.}{\sim} F$.

Vorgehen (Kochrezept)

1.) Bestimme k-te empirische Momente $\hat{m}_k(x_1,\ldots,x_n) = \frac{1}{n}\sum_{i=1}^n x_i^k \ \forall \ k$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Modellannahmen: Wir wollen $\theta = (\theta_1, \dots, \theta_m)$ schätzen. Betrachte hierzu eine Stichprobe x_1, \dots, x_n zu den Stichprobenvariablen $X_1, \dots, X_n \stackrel{u.i.v.}{\sim} F$.

Vorgehen (Kochrezept)

- 1.) Bestimme k-te empirische Momente $\hat{m}_k(x_1,\ldots,x_n) = \frac{1}{n}\sum_{i=1}^n x_i^k \ \forall \ k$
- 2.) Gleichsetzen empirischer und theoretischer Momente:

$$\hat{m}_k(x_1,\ldots,x_n)=g_k(\theta)=E(X_1^k) \quad \forall \ k \qquad (\star)$$

Beachte: $E(X_1^k)$ hängt von $\theta_1, \ldots, \theta_m$ ab.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Modellannahmen: Wir wollen $\theta = (\theta_1, \dots, \theta_m)$ schätzen. Betrachte hierzu eine Stichprobe x_1, \dots, x_n zu den Stichprobenvariablen $X_1, \dots, X_n \stackrel{u.i.v.}{\sim} F$.

Vorgehen (Kochrezept)

- 1.) Bestimme k-te empirische Momente $\hat{m}_k(x_1,\ldots,x_n) = \frac{1}{n}\sum_{i=1}^n x_i^k \ \forall \ k$
- 2.) Gleichsetzen empirischer und theoretischer Momente:

$$\hat{m}_k(x_1,\ldots,x_n)=g_k(\theta)=E(X_1^k) \quad \forall \ k \qquad (\star)$$

Beachte: $E(X_1^k)$ hängt von $\theta_1, \ldots, \theta_m$ ab.

3.) Bestimmung der Lösung $\hat{\theta}(x_1,\ldots,x_n)$ des Gleichungssystems. (vorausgesetzt werden die eindeutige Lösbarkeit sowie die "Messbarkeit" von $\hat{\theta}: \mathbb{R}^n \to \Theta \subset \mathbb{R}^m$ als Stichprobenfunktion.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 22

Modellannahmen: Wir wollen $\theta = (\theta_1, \dots, \theta_m)$ schätzen. Betrachte hierzu eine Stichprobe x_1, \dots, x_n zu den Stichprobenvariablen $X_1, \dots, X_n \stackrel{u.i.v.}{\sim} F$.

Vorgehen (Kochrezept)

- 1.) Bestimme *k*-te empirische Momente $\hat{m}_k(x_1,\ldots,x_n) = \frac{1}{n}\sum_{i=1}^n x_i^k \ \forall \ k$
- 2.) Gleichsetzen empirischer und theoretischer Momente:

$$\hat{m}_k(x_1,\ldots,x_n)=g_k(\theta)=E(X_1^k) \quad \forall \ k \qquad (\star)$$

Beachte: $E(X_1^k)$ hängt von $\theta_1, \ldots, \theta_m$ ab.

3.) Bestimmung der Lösung $\hat{\theta}(x_1,\ldots,x_n)$ des Gleichungssystems. (vorausgesetzt werden die eindeutige Lösbarkeit sowie die "Messbarkeit" von $\hat{\theta}:\mathbb{R}^n\to\Theta\subset\mathbb{R}^m$ als Stichprobenfunktion.

Momentenschätzer

Der durch (\star) gegebene Zufallsvektor $\hat{\theta}_{MM}(X_1, \dots, X_n)$ heißt **Momentenschätzer** des Parametervektors θ .

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 22

$$X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu, \sigma^2), \ \mu \text{ und } \sigma^2 \text{ unbekannt}$$

 $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2), \ \Theta = \mathbb{R} \times (0, \infty)$

1.) Bestimmung der 1. und 2. empirischen Momente der Stichprobe:

$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{m}_2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$X_1, \ldots, X_n \overset{u.i.v.}{\sim} \mathcal{N}(\mu, \sigma^2), \ \mu \text{ und } \sigma^2 \text{ unbekannt}$$

 $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2), \ \Theta = \mathbb{R} \times (0, \infty)$

1.) Bestimmung der 1. und 2. empirischen Momente der Stichprobe:

$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i, \quad \hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$$

2.) Gleichsetzen der empirischen und theoretischen Momente:

$$g_1(\mu, \sigma^2) = E(X_1) = \mu = \frac{1}{n} \sum_{i=1}^n x_i,$$

 $g_2(\mu, \sigma^2) = E(X_1^2) = \sigma^2 + \mu^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

3.) Auflösen des Gleichungssystems:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \hat{\mu}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\frac{1}{n} \sum_{i=1}^{n} x_i)^2$$

$$= \frac{1}{n} \left[\sum_{i=1}^{n} x_i^2 - n \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 \right] = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

4.) Konstruktion der Momentenschätzer

$$\hat{\mu}_{MM}(X_1,\ldots,X_n) = \frac{1}{n}\sum_{i=1}^n X_i$$

$$(\hat{\sigma}^2)_{MM}(X_1,\ldots,X_n) = \frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$$

$$\hookrightarrow (\hat{\sigma}^2)_{MM} \stackrel{\wedge}{=} \tilde{S}^2$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1, \ldots, X_n \stackrel{u.i.v.}{\sim} Bin(k, p), \ \theta = (\theta_1, \theta_2) = (k, p), \ \Theta = \mathbb{N} \times (0, 1)$$

1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1, \ldots, X_n \overset{u.i.v.}{\sim} Bin(k, p), \ \theta = (\theta_1, \theta_2) = (k, p), \ \Theta = \mathbb{N} \times (0, 1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\square g_1(k,p) = E(X_1) = k \cdot p \stackrel{!}{=}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} Bin(k,p), \ \theta=(\theta_1,\theta_2)=(k,p), \ \Theta=\mathbb{N}\times(0,1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\Box g_1(k,p) = E(X_1) = k \cdot p \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Box g_2(k,p) = E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = k \cdot p \cdot (1-p) + (k \cdot p)^2$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} Bin(k,p), \ \theta=(\theta_1,\theta_2)=(k,p), \ \Theta=\mathbb{N}\times(0,1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\Box g_1(k,p) = E(X_1) = k \cdot p = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Box g_2(k,p) = E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = k \cdot p \cdot (1-p) + (k \cdot p)^2 \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i^2$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} Bin(k,p), \ \theta=(\theta_1,\theta_2)=(k,p), \ \Theta=\mathbb{N}\times(0,1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\Box g_1(k,p) = E(X_1) = k \cdot p \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Box g_2(k,p) = E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = k \cdot p \cdot (1-p) + (k \cdot p)^2 \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i^2$$

3.) Auflösen des Gleichungssystems:

$$\Box \hat{k} = \frac{1}{n \cdot \hat{p}} \sum_{i=1}^{n} x_i = \frac{1}{\hat{p}} \bar{x}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} Bin(k,p), \ \theta=(\theta_1,\theta_2)=(k,p), \ \Theta=\mathbb{N}\times(0,1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\Box g_1(k,p) = E(X_1) = k \cdot p \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Box g_2(k,p) = E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = k \cdot p \cdot (1-p) + (k \cdot p)^2 \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i^2$$

3.) Auflösen des Gleichungssystems:

$$\Box \hat{k} = \frac{1}{n \cdot \hat{\rho}} \sum_{i=1}^{n} x_{i} = \frac{1}{\hat{\rho}} \bar{x}$$

$$\Box \qquad \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = kp(1-p) + (kp)^{2}$$

$$\Leftrightarrow \qquad \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = \bar{x}(1-p) + \bar{x}^{2}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} Bin(k,p), \ \theta=(\theta_1,\theta_2)=(k,p), \ \Theta=\mathbb{N}\times(0,1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\Box g_1(k,p) = E(X_1) = k \cdot p \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Box g_2(k,p) = E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = k \cdot p \cdot (1-p) + (k \cdot p)^2 \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i^2$$

3.) Auflösen des Gleichungssystems:

$$\Box \hat{k} = \frac{1}{n \cdot \hat{\rho}} \sum_{i=1}^{n} x_{i} = \frac{1}{\hat{\rho}} \bar{x}$$

$$\Box \qquad \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = kp(1-p) + (kp)^{2}$$

$$\Leftrightarrow \qquad \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = \bar{x}(1-p) + \bar{x}^{2}$$

$$\Leftrightarrow \qquad \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \bar{x}(1-p)$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

$$X_1,\ldots,X_n \overset{u.i.v.}{\sim} Bin(k,p), \ \theta=(\theta_1,\theta_2)=(k,p), \ \Theta=\mathbb{N}\times(0,1)$$

- 1.) Bestimmung des 1./2. emp. Moments: $\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i$, $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$
- 2.) Gleichsetzen der empirischen und theoretischen Momente:

$$\Box g_1(k,p) = E(X_1) = k \cdot p \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Box g_2(k,p) = E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = k \cdot p \cdot (1-p) + (k \cdot p)^2 \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^n x_i^2$$

3.) Auflösen des Gleichungssystems:

$$\Box \hat{k} = \frac{1}{n \cdot \hat{\rho}} \sum_{i=1}^{n} x_{i} = \frac{1}{\hat{\rho}} \bar{x}$$

$$\Box \qquad \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = kp(1-p) + (kp)^{2}$$

$$\Leftrightarrow \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = \bar{x}(1-p) + \bar{x}^{2}$$

$$\Leftrightarrow \qquad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \bar{x}(1-p)$$

$$\Leftrightarrow \qquad \hat{\rho} = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}}{\bar{x}} = \frac{\bar{x} - \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{\bar{x}}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

4.) Konstruktion der Momentenschätzer

$$\hat{k}(X_1,\ldots,X_n) = \frac{\bar{X}^2}{\bar{X} - \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{p}(X_1,\ldots,X_n) = \frac{\bar{X}}{\hat{k}(X_1,\ldots,X_n)}$$

für
$$(X_1, ..., X_n) \neq (0, ..., 0)$$
.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

4.) Konstruktion der Momentenschätzer

$$\hat{k}(X_1,\ldots,X_n) = \frac{\bar{X}^2}{\bar{X} - \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{p}(X_1,\ldots,X_n) = \frac{\bar{X}}{\hat{k}(X_1,\ldots,X_n)}$$

für
$$(X_1, ..., X_n) \neq (0, ..., 0)$$
.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

4 Punkt-Schätzer 4.4 Momentenmethode

Fritzbrötchen

Bäcker Kalkoves neueste Kreation ist das Fritzbrötchen, welches er in der Bäckerei neben dem Hörsaal verkaufen möchte. Unter 10 Studierenden hat er folgende Preisbereitschaften (PB) erfragt (in EuroCent): 20, 70, 85, 50, 75, 0, 40, 90, 95, 60.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

4.5 Gütekriterien für Punktschätzer

Nachfolgend betrachten wir folgende Problemstellungen:

Fragestellung 1

Gegeben: Punktschätzer T für μ_X

Frage: Wie "gut" ist *T*?

Beispiel: Gegeben Körpergrößen X_1, \ldots, X_n in cm. Wir schätzen die mittere

Körpergröße konstant durch T=150. Gut oder schlecht?

4.5 Gütekriterien für Punktschätzer

Nachfolgend betrachten wir folgende Problemstellungen:

Fragestellung 1

Gegeben: Punktschätzer T für μ_X

Frage: Wie "gut" ist *T*?

Beispiel: Gegeben Körpergrößen X_1, \ldots, X_n in cm. Wir schätzen die mittere

Körpergröße konstant durch T = 150. Gut oder schlecht?

Fragestellung 2

Gegeben: Mehrere Punktschätzer T_1, \ldots, T_k für μ_X

Frage: Welcher Schätzer ist "der beste"? Bzw. wie kann man überhaupt Schätzer

vergleichen?

Beispiel: Betrachte erneut Körpergrößen X_1, \ldots, X_n und die zwei Schätzer $T_1 = 150$ und $T_2 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Welcher ist besser?

29

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Zu Fragestellung 1

Betrachten wir erneut Körpergrößen X_1, \ldots, X_n . Die Schätzung des Erwartungswertes μ_X mit Hilfe des Schätzers

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

"macht intuitiv Sinn"!

Zu Fragestellung 1

Betrachten wir erneut Körpergrößen X_1, \ldots, X_n . Die Schätzung des Erwartungswertes μ_X mit Hilfe des Schätzers

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

"macht intuitiv Sinn"!

Wir werden sehen, dass \bar{X} tatsächlich ein "guter" Schätzer (für μ_X) ist. Aber was heißt denn nun überhaupt gut?

Eine Analogie: Darts

Wir stellen uns eine Stichprobe eines Schätzers T für den Parameter θ als Pfeilwurf auf eine Dartscheibe mit Bullseye θ vor:

Eine Analogie: Darts

Wir stellen uns eine Stichprobe eines Schätzers T für den Parameter θ als Pfeilwurf auf eine Dartscheibe mit **Bullseye** θ vor:

Eine Analogie: Darts

Wir stellen uns eine Stichprobe eines Schätzers T für den Parameter θ als Pfeilwurf auf eine Dartscheibe mit **Bullseye** θ vor:

Eine Analogie: Darts

Wir stellen uns eine Stichprobe eines Schätzers T für den Parameter θ als Pfeilwurf auf eine Dartscheibe mit **Bullseye** θ vor:

Im Mittel richtig

Systematisch daneben

Zur Erinnerung

Eine **Schätzfunktion** oder **Schätzstatistik** für einen Parameter θ ist eine **Funktion der Stichprobenvariablen** X_1, \dots, X_n :

$$T = g(X_1, \ldots, X_n)$$

Zur Erinnerung

Eine **Schätzfunktion** oder **Schätzstatistik** für einen Parameter θ ist eine **Funktion der Stichprobenvariablen** X_1, \ldots, X_n :

$$T = g(X_1, \ldots, X_n)$$

D. h. der Schätzer ist selbst eine Zufallsvariable!

Zur Erinnerung

Eine Schätzfunktion oder Schätzstatistik für einen Parameter θ ist eine Funktion der Stichprobenvariablen X_1, \dots, X_n :

$$T = g(X_1, \ldots, X_n)$$

- D. h. der Schätzer ist selbst eine Zufallsvariable!
- D. h. wiederum, dass wir etwa Erwartungswert und Varianz von \mathcal{T} betrachten können!

4.5.1 Erwartungstreue

Erwartungstreue

Eine Statistik $T=g(X_1,\ldots,X_n)$ heißt **erwartungstreu** oder unverzerrt, wenn gilt

$$E_{\theta}(T) = \theta$$

4.5.1 Erwartungstreue

Erwartungstreue

Eine Statistik $T = g(X_1, \dots, X_n)$ heißt **erwartungstreu** oder unverzerrt, wenn gilt

$$E_{\theta}(T) = \theta$$

Erwartungstreue des Stichprobenmittels einer u.i.v.-Stichprobe

 \bar{X} ist erwartungstreue Schätzstatistik für den Erwartungswert $\mu = E(X)$:

$$E_{\mu}(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E_{\mu}(X_i) = \frac{1}{n} \cdot n \cdot \mu = \mu$$

Beispiel Buchrückgabe: $\mu_1 = \bar{X}$

$$E(\hat{\mu}_1) = \frac{1}{10} \sum_{i=1}^{n} E(X_i) = \frac{1}{10} \cdot 10 \cdot \mu = \mu$$
 erwartungstreu

Beispiel Buchrückgabe: $\mu_1 = ar{X}$

$$E(\hat{\mu}_1) = \frac{1}{10} \sum_{i=1}^n E(X_i) = \frac{1}{10} \cdot 10 \cdot \mu = \mu$$
 erwartungstreu

Übung: Sind
$$\hat{\mu}_2 = X_1$$
, $\hat{\mu}_3 = 3 \cdot X_8$ bzw. $\hat{\mu}_4 = \frac{1}{9} \sum_{i=1}^9 X_i$ erwartungstreu für μ ?

 \sim "Erwartungstreue" als einziges Kriterium ist nicht ausreichend - und auch nicht immer sinnvoll.

4.5.1 Erwartungstreue

Weitere Beispiele (u.i.v.-Wiederholungen)

$$E_p(\bar{X}) = p \quad \text{mit } X_i \in \{0,1\}, p = P(X_i = 1)$$

erwartung streu

Weitere Beispiele (u.i.v.-Wiederholungen)

$$E_p(\bar{X}) = p$$
 mit $X_i \in \{0,1\}, p = P(X_i = 1)$ erwartungstreu

$$E_{\sigma^2}(S^2) = E_{\sigma^2}\left(\frac{1}{n-1}\sum_{i=1}^n \left(X_i - \bar{X}\right)^2\right) = \sigma^2$$
 erwartungstreu

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Weitere Beispiele (u.i.v.-Wiederholungen)

$$E_p(\bar{X}) = p \quad \text{mit } X_i \in \{0,1\}, p = P(X_i = 1)$$

erwartungstreu

$$E_{\sigma^2}(S^2) = E_{\sigma^2} \left(\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \right) = \sigma^2$$
 $E_{\sigma^2}(\tilde{S}^2) = E_{\sigma^2} \left(\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \right)$

erwartungstreu

Weitere Beispiele (u.i.v.-Wiederholungen)

$$E_p(\bar{X}) = p \quad \text{mit } X_i \in \{0,1\}, p = P(X_i = 1)$$
 er

erwartungstreu

35

$$\begin{split} E_{\sigma^2}(S^2) &= E_{\sigma^2}\left(\frac{1}{n-1}\sum_{i=1}^n \left(X_i - \bar{X}\right)^2\right) = \sigma^2 & \text{erwartungstreu} \\ E_{\sigma^2}(\tilde{S}^2) &= E_{\sigma^2}\left(\frac{1}{n}\sum_{i=1}^n \left(X_i - \bar{X}\right)^2\right) \\ &= \frac{n-1}{n} \cdot E_{\sigma^2}(S^2) = \frac{n-1}{n} \cdot \sigma^2 & \text{nicht erwartungstreu} \end{split}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Weitere Beispiele (u.i.v.-Wiederholungen)

$$E_{p}(\bar{X}) = p \quad \text{mit } X_{i} \in \{0,1\}, p = P(X_{i} = 1) \quad \text{erwartungstreu}$$

$$E_{\sigma^{2}}(S^{2}) = E_{\sigma^{2}}\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}\right) = \sigma^{2} \quad \text{erwartungstreu}$$

$$E_{\sigma^{2}}(\tilde{S}^{2}) = E_{\sigma^{2}}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}\right)$$

$$= \frac{n-1}{n} \cdot E_{\sigma^{2}}(S^{2}) = \frac{n-1}{n} \cdot \sigma^{2} \quad \text{nicht erwartungstreu}$$

(dabei
$$\sigma^2 = var(X_i)$$
)

Beachten Sie: Wie in diesen Beispielen entstehen Schätzfunktionen oft aus deskriptiven Lage- und Streuungskennzahlen, denen eine Zufallstichprobe mit geeigneten Zufallsvariablen (d.h. WS-Modell) zugrundeliegt.

Übung: Zeigen Sie in verschiedenen Schritten $E_{\sigma^2}(S^2) = \sigma^2$

$$E(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2})=\frac{1}{n-1}\sum_{i=1}^{n}E(X_{i}-\bar{X})^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(E(X_{i}^{2}-2E(X_{i}\bar{X})+E(\bar{X}^{2}))$$

- 1. Zeigen Sie zunächst: $E(X_i^2) = \sigma^2 + \mu^2$ (mit $\mu = E(X_i)$)
- 2. Stellen Sie entsprechend den zweiten Erwartungswert dar
- Verfahren Sie ebenso mit dem dritten Erwartungswert.
- 4. Zeigen Sie $E_{\sigma^2}(S^2) = \sigma^2$ mit den Ergebnissen aus 1. bis 3.

Beispiel Buchrückgabe $((x_1, ..., x_{10}) = (2, 14, 10, 0, 9, 20, 8, 2, 3, 2))$

 X_i : Verspätung der Buchabgabe bei i-ter Messung ($i=1,\ldots,10$),

 $X_i \sim F$ (unbekannt)

Erwartungstreue Schätzung der Varianz σ^2 durch $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

$$S^{2} = \frac{1}{9} \left[(2-7)^{2} + (14-7)^{2} + (10-7)^{2} + (0-7)^{2} + (9-7)^{2} + (20-7)^{2} + (8-7)^{2} + (2-7)^{2} + (3-7)^{2} + (2-7)^{2} \right]$$

$$= \frac{1}{9} (25 + 49 + 9 + 49 + 4 + 169 + 1 + 25 + 16 + 25)$$

$$= \frac{1}{9} \cdot 372 = 41.\overline{3}$$

$$> x = c(2, 14, 10, 0, 9, 20, 8, 2, 3, 2)$$

> var(x)

[1] 41.33333

4.5.1 Erwartungstreue

Bias / Verzerrung

Eine Statistik
$$T = g(X_1, \dots, X_n)$$
 heißt **erwartungstreu** , wenn gilt $E_{\theta}(T) = \theta$.

Bias / Verzerrung

Eine Statistik $T = g(X_1, \dots, X_n)$ heißt **erwartungstreu** , wenn gilt $E_{\theta}(T) = \theta$.

Der systematische Fehler einer Schätzstatistik heißt Verzerrung oder Bias:

$$Bias_{\theta}(T) = E_{\theta}(T) - \theta$$

Bias / Verzerrung

Eine Statistik $T = g(X_1, \dots, X_n)$ heißt **erwartungstreu** , wenn gilt $E_{\theta}(T) = \theta$.

Der systematische Fehler einer Schätzstatistik heißt Verzerrung oder Bias:

$$Bias_{\theta}(T) = E_{\theta}(T) - \theta$$

Verzerrung eines nicht erwartungstreuen Schätzers

$$E_{\sigma^2}(\tilde{S}^2) = E_{\sigma^2}\left(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\right) = \frac{n-1}{n}\cdot\sigma^2$$
 nicht erwartungstreu

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Bias / Verzerrung

Eine Statistik $T = g(X_1, \dots, X_n)$ heißt **erwartungstreu** , wenn gilt $E_{\theta}(T) = \theta$.

Der systematische Fehler einer Schätzstatistik heißt Verzerrung oder Bias:

$$Bias_{\theta}(T) = E_{\theta}(T) - \theta$$

Verzerrung eines nicht erwartungstreuen Schätzers

$$E_{\sigma^2}(\tilde{S}^2) = E_{\sigma^2}\left(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\right) = \frac{n-1}{n}\cdot\sigma^2$$
 nicht erwartungstreu

$$ightharpoonup Bias_{\sigma^2}(\tilde{S}^2) = E_{\sigma^2}(\tilde{S}^2) - \sigma^2 = \left(\frac{n}{n} \cdot \sigma^2 - \frac{1}{n} \cdot \sigma^2\right) - \sigma^2 = -\frac{1}{n} \cdot \sigma^2$$

4.5.1 Erwartungstreue

Beispiel Buchrückgabe: Annahme:
$$E(X_i)=\mu$$

$$E(\hat{\mu}_3) = E(3 \cdot X_8) = 3 \cdot \mu \neq \mu$$
 nicht erwartungstreu

4.5.1 Erwartungstreue

Beispiel Buchrückgabe: Annahme: $E(X_i) = \mu$

$$E(\hat{\mu}_3) = E(3 \cdot X_8) = 3 \cdot \mu \neq \mu$$
 nicht erwartungstreu

Übung: Bestimmen Sie den Bias des Schätzers $\hat{\mu}_3$.

4.5.1 Erwartungstreue

Asymptotische Erwartungstreue

Eine Schätzstatistik heißt asymptotisch erwartungstreu für θ , wenn gilt:

$$\lim_{n\to\infty} E_{\theta}(T) = \theta$$

Asymptotische Erwartungstreue

Eine Schätzstatistik heißt **asymptotisch erwartungstreu** für θ , wenn gilt:

$$\lim_{n\to\infty} E_{\theta}(T) = \theta$$

$$\hookrightarrow$$
 $ilde{S}^2=rac{1}{n}\sum\limits_{i=1}^n(X_i-ar{X})^2$ ist asymptotisch erwartungstreu, da

$$\lim_{n\to\infty} E_{\sigma^2}(\tilde{S}^2) = \lim_{n\to\infty} \frac{n-1}{n} \cdot \sigma^2 = \sigma^2$$

•

 \hookrightarrow aber: für kleines *n* kann der Bias erheblich sein.

Eine Analogie: Darts

Eine Analogie: Darts

Eine Analogie: Darts

Im Mittel richtig, aber ungenau

im Mittel richtig und ziemlich genau

4.5.2 Effizienz

Standardfehler und Varianz einer Schätzstatistik

Die **Schätzervarianz** einer Schätzstatistik $T = g(X_1, \dots, X_n)$ ist

$$var(T) = E([T - E(T)]^2)$$

Der Standardfehler einer (meist erwartungstreuen) Schätzstatistik ist

$$\sigma_T = \sqrt{var(T)}$$
.

Standardfehler und Varianz einer Schätzstatistik

Die **Schätzervarianz** einer Schätzstatistik $T = g(X_1, \dots, X_n)$ ist

$$var(T) = E([T - E(T)]^2)$$

Der Standardfehler einer (meist erwartungstreuen) Schätzstatistik ist

$$\sigma_T = \sqrt{var(T)}$$
.

Beispiel: Standardfehler des Gruppenmittels

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{Var(X)}{n}}.$$

Standardfehler und Varianz einer Schätzstatistik

Die **Schätzervarianz** einer Schätzstatistik $T = g(X_1, \dots, X_n)$ ist

$$var(T) = E([T - E(T)]^2)$$

Der Standardfehler einer (meist erwartungstreuen) Schätzstatistik ist

$$\sigma_T = \sqrt{var(T)}$$
.

Beispiel: Standardfehler des Gruppenmittels

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{Var(X)}{n}}.$$

→ Gütekriterium für Schätzer: erwartungstreu mit minimaler Schätzervarianz (nur in Ausnahmefällen realisierbar).

Standardfehler und Varianz einer Schätzstatistik

Die **Schätzervarianz** einer Schätzstatistik $T = g(X_1, \dots, X_n)$ ist

$$var(T) = E([T - E(T)]^2)$$

Der Standardfehler einer (meist erwartungstreuen) Schätzstatistik ist

$$\sigma_T = \sqrt{var(T)}$$
.

Beispiel: Standardfehler des Gruppenmittels

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{Var(X)}{n}}.$$

- → Gütekriterium für Schätzer: erwartungstreu mit minimaler Schätzervarianz (nur in Ausnahmefällen realisierbar).
- → Der (theoretische) Standardfehler ist unbekannt. Für ihn werden in den Anwendungen Schätzungen benötigt, welche selber als (empirische) Standardfehler bezeichnet werden (z.B. für Intervallschätzer benötigt).

Effiziente Schätzstatistiken

Die Verteilung eines "guten" Schätzers sollte:

□ keine oder nur geringe systematische Abweichung nach oben und unten zum unbekannten Parameter aufweisen

43

□ eine geringe Streuung besitzen.

Beide Kriterien lassen sich im MSE vereinen.

Fehler eines Schätzers (MSE)

$$MSE(T) = E([T - \theta]^2)$$

Fehler eines Schätzers (MSE)

$$MSE(T) = E([T - \theta]^2) = E([T - E(T) + E(T) - \theta]^2)$$

Fehler eines Schätzers (MSE)

$$MSE(T) = E([T - \theta]^2) = E([T - E(T) + E(T) - \theta]^2)$$
$$= E([T - E(T)]^2 + 2 \cdot [T - E(T)] \cdot [E(T) - \theta] + [E(T) - \theta]^2)$$

Fehler eines Schätzers (MSE)

$$MSE(T) = E([T - \theta]^2) = E([T - E(T) + E(T) - \theta]^2)$$

$$= E([T - E(T)]^2 + 2 \cdot [T - E(T)] \cdot [E(T) - \theta] + [E(T) - \theta]^2)$$

$$= E([T - E(T)]^2) + 2 \cdot E([T - E(T)] \cdot [E(T) - \theta])$$

$$+ E([E(T) - \theta]^2)$$

$$MSE(T) = E([T - \theta]^2) = E([T - E(T) + E(T) - \theta]^2)$$

$$= E([T - E(T)]^2 + 2 \cdot [T - E(T)] \cdot [E(T) - \theta] + [E(T) - \theta]^2)$$

$$= E([T - E(T)]^2) + 2 \cdot E([T - E(T)] \cdot [E(T) - \theta])$$

$$+ E([E(T) - \theta]^2) \qquad \text{beachte: } [E(T) - \theta] \text{ ist konstant}$$

$$MSE(T) = E([T - \theta]^{2}) = E([T - E(T) + E(T) - \theta]^{2})$$

$$= E([T - E(T)]^{2} + 2 \cdot [T - E(T)] \cdot [E(T) - \theta] + [E(T) - \theta]^{2})$$

$$= E([T - E(T)]^{2}) + 2 \cdot E([T - E(T)] \cdot [E(T) - \theta])$$

$$+ E([E(T) - \theta]^{2}) \qquad \text{beachte: } [E(T) - \theta] \text{ ist konstant}$$

$$= E([T - E(T)]^{2}) + [E(T) - \theta] \cdot 2 \cdot \underbrace{E([T - E(T)])}_{=E(T) - E(T) = 0} + [E(T) - \theta]^{2}$$

Die erwartete mittlere quadratische Abweichung (MSE: mean squared error) bestimmt sich durch

$$MSE(T) = E([T - \theta]^{2}) = E([T - E(T) + E(T) - \theta]^{2})$$

$$= E([T - E(T)]^{2} + 2 \cdot [T - E(T)] \cdot [E(T) - \theta] + [E(T) - \theta]^{2})$$

$$= E([T - E(T)]^{2}) + 2 \cdot E([T - E(T)] \cdot [E(T) - \theta])$$

$$+ E([E(T) - \theta]^{2}) \qquad \text{beachte: } [E(T) - \theta] \text{ ist konstant}$$

$$= E([T - E(T)]^{2}) + [E(T) - \theta] \cdot 2 \cdot \underbrace{E([T - E(T)])}_{=E(T) - E(T) = 0} + [E(T) - \theta]^{2}$$

$$= E([T - E(T)]^{2}) + [E(T) - \theta]^{2}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Die erwartete mittlere quadratische Abweichung (MSE: mean squared error) bestimmt sich durch

$$MSE(T) = E([T - \theta]^{2}) = E([T - E(T) + E(T) - \theta]^{2})$$

$$= E([T - E(T)]^{2} + 2 \cdot [T - E(T)] \cdot [E(T) - \theta] + [E(T) - \theta]^{2})$$

$$= E([T - E(T)]^{2}) + 2 \cdot E([T - E(T)] \cdot [E(T) - \theta])$$

$$+ E([E(T) - \theta]^{2}) \qquad \text{beachte: } [E(T) - \theta] \text{ ist konstant}$$

$$= E([T - E(T)]^{2}) + [E(T) - \theta] \cdot 2 \cdot \underbrace{E([T - E(T)])}_{=E(T) - E(T) = 0} + [E(T) - \theta]^{2}$$

$$= E([T - E(T)]^{2}) + [E(T) - \theta]^{2} = Var(T) + [Bias(T)]^{2}$$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

- \hookrightarrow meist nur in "linearen" Ausnahmefällen (Existenz erwartungstreuer Schätzer) verwendbar, wird asymptotisch (Stichprobenumfang $\to \infty$) nützlich.

Eigenschaften erwartungstreuer Schätzer

Für einen zum Parameter θ erwartungstreuen Schätzer T gilt:

- a) $E_{\theta}(T) = \theta$
- b) $Bias_{\theta}(T) = E_{\theta}(T) \theta \stackrel{a)}{=} 0$
- c) $MSE_{\theta}(T) = Var_{\theta}(T) + [Bias_{\theta}(T)]^2 \stackrel{b)}{=} Var_{\theta}(T)$.

Schätzervergleich durch MSE

Im Vergleich zweier Schätzstatistiken T_1 und T_2 heißt T_1 MSE-effizienter, wenn für alle zugelassenen Verteilungen gilt:

$$MSE(T_1) \leq MSE(T_2)$$

Eine Schätzstatistik heißt **MSE-effizient**, wenn ihr MSE den kleinsten möglichen Wert für alle zugelassenen Schätzer annimmt.

Schätzervergleich durch MSE

Im Vergleich zweier Schätzstatistiken T_1 und T_2 heißt T_1 **MSE-effizienter**, wenn für alle zugelassenen Verteilungen gilt:

$$MSE(T_1) \leq MSE(T_2)$$

Eine Schätzstatistik heißt **MSE-effizient**, wenn ihr MSE den kleinsten möglichen Wert für alle zugelassenen Schätzer annimmt.

- → ansonsten alleiniger Varianzvergleich sinnlos (z.B. konstante Schätzstatistiken)

4.5.2 Effizienz

Beispiel: 200-facher Wurf einer verbogenen Münze

Seien X_1,\ldots,X_{200} u.i.v. mit $X_i\sim \mathcal{B}(1,p)$ $(1\equiv\!\mathsf{Z},\,0\equiv\!\mathsf{W})$

Beispiel: 200-facher Wurf einer verbogenen Münze

Seien
$$X_1, \ldots, X_{200}$$
 u.i.v. mit $X_i \sim \mathcal{B}(1, p)$ $(1 \equiv Z, 0 \equiv W)$

Mögliche Schätzer für *p* sind bspw.:

$$\Box T = \bar{X}_{200}$$
 (hier: $t = 0.45$)

(e-treu)

$$MSE(T) = var(T) = \frac{p \cdot (1-p)}{200}$$

(minimal unter e-treuen)

Beispiel: 200-facher Wurf einer verbogenen Münze

Seien X_1, \ldots, X_{200} u.i.v. mit $X_i \sim \mathcal{B}(1, p)$ $(1 \equiv Z, 0 \equiv W)$

Mögliche Schätzer für *p* sind bspw.:

$$\Box$$
 $T = \bar{X}_{200}$ (hier: $t = 0.45$) (e-treu)

$$MSE(T) = var(T) = \frac{p \cdot (1-p)}{200}$$
 (minimal unter e-treuen)

$$\square R = \frac{1}{2}T + \frac{1}{4} \text{ (hier: } r = 0.475\text{)}$$
 (nicht e-treu)

$$MSE(R) = var(R) + [E(R) - p]^{2}$$

$$= var(\frac{1}{2} \cdot T + \frac{1}{4}) + [E(\frac{1}{2} \cdot T + \frac{1}{4}) - p]^{2}$$

$$= \frac{1}{4} \cdot var(T) + (\frac{1}{4} - \frac{p}{2})^{2}$$

$$= \frac{1}{4} \cdot \frac{p \cdot (1 - p)}{200} + \frac{1}{4} \cdot (p - \frac{1}{2})^{2}$$

4.5.2 Effizienz

→ Beispiel für die Unvergleichbarkeit von Schätzern

4.5.2 Effizienz

Übung: Vergleichen Sie die drei erwartungstreuen Schätzer $\hat{\mu}_1 = \frac{1}{10} \sum_{i=1}^{10} X_i$, $\hat{\mu}_2 = X_1$ und $\hat{\mu}_4 = \frac{1}{9} \sum_{i=1}^9 X_i$ im Buch-Beispiel hinsichtlich der MSE-Effizienz.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Verallgemeinerung des MSE: Verlustfunktion, Risikofunktion

- \hookrightarrow Es bezeichne:
 - Θ die Menge aller möglichen Parameter,
 - ullet den Wertebereich der (zur Verfügung stehenden) Schätzer.
- \hookrightarrow Eine **Verlustfunktion** ist eine Funktion $L: \Theta \times \mathcal{T} \to [0; \infty]$.

Verallgemeinerung des MSE: Verlustfunktion, Risikofunktion

- \hookrightarrow Es bezeichne:
 - Θ die Menge aller möglichen Parameter,
 - ullet den Wertebereich der (zur Verfügung stehenden) Schätzer.
- \hookrightarrow Eine **Verlustfunktion** ist eine Funktion $L: \Theta \times \mathcal{T} \to [0; \infty]$.
- \hookrightarrow Das **Risiko** einer Schätzfunktion T = T(X) bei vorliegendem Parameter θ ist

$$R(\theta, T) = E_{\theta}(L(\theta, T(X)).$$

Die **Risikofunktion** von T = T(X) ist die Funktion $R : \theta \mapsto R(\theta, T(X))$.

Verallgemeinerung des MSE: Verlustfunktion, Risikofunktion

- \hookrightarrow Es bezeichne:
 - Θ die Menge aller möglichen Parameter,
 - ullet den Wertebereich der (zur Verfügung stehenden) Schätzer.
- \hookrightarrow Eine **Verlustfunktion** ist eine Funktion $L: \Theta \times \mathcal{T} \to [0; \infty]$.
- \hookrightarrow Das **Risiko** einer Schätzfunktion T = T(X) bei vorliegendem Parameter θ ist

$$R(\theta,T)=E_{\theta}(L(\theta,T(X)).$$

Die **Risikofunktion** von T = T(X) ist die Funktion $R : \theta \mapsto R(\theta, T(X))$.

Beispiele von Verlustfunktionen

$$\hookrightarrow L(\theta, t) = (t - \theta)^2$$
 (= MSE)

$$\hookrightarrow L(\theta, t) = |\theta - t|^r \text{ mit } r > 0$$

 \hookrightarrow Auch Fehlerwahrscheinlichkeiten 1./2. Art bei statistischen Tests lassen sich als Risiken darstellen (0/1-wertige Verlustfunktion)

- \hookrightarrow Entsprechend den verschiedenen Konvergenzarten (s.o. Gesetze großer Zahlen) gibt es verschiedene Konzepte für Konsistenz:

 - → schwache Konsistenz

4.5.3 Konsistenz

Konsistenz im quadratischen Mittel (für einen Schätzer)

Eine Schätzstatistik T_n heißt konsistent im quadratischen Mittel, wenn gilt

$$MSE(T_n) = Var(T_n) + [Bias(T_n)]^2 \stackrel{n \to \infty}{\longrightarrow} 0.$$

Konsistenz im quadratischen Mittel (für einen Schätzer)

Eine Schätzstatistik T_n heißt konsistent im quadratischen Mittel, wenn gilt

$$MSE(T_n) = Var(T_n) + [Bias(T_n)]^2 \stackrel{n \to \infty}{\longrightarrow} 0.$$

- → sowohl Verzerrung als auch Varianz verschwinden für wachsende Stichprobenumfänge
- → asymptotische Eigenschaft, kann f
 ür endliches n erhebliche Bias- und Varianzanteile aufweisen

Schwache Konsistenz eines Schätzers

Die Schätzstatistik $T_n = g(X_1, ..., X_n)$ heißt **schwach konsistent**, wenn zu beliebigem $\varepsilon > 0$ gilt:

$$\lim_{n\to\infty} P(|T_n - \theta| < \varepsilon) = 1 \quad \text{bzw}.$$

$$\lim_{n\to\infty} P(|T_n-\theta|\geq \varepsilon) = 0$$

Schwache Konsistenz eines Schätzers

Die Schätzstatistik $T_n = g(X_1, \dots, X_n)$ heißt **schwach konsistent**, wenn zu beliebigem $\varepsilon > 0$ gilt:

$$\lim_{n\to\infty} P(|T_n - \theta| < \varepsilon) = 1 \quad \text{bzw}$$

$$\lim_{n\to\infty} P(|T_n - \theta| \ge \varepsilon) = 0$$

D.h. für wachsendes n konvergiert die Wahrscheinlichkeit, mit der die Schätzstatistik T_n höchstens um ε vom wahren Wert θ abweicht, gegen Null (Konvergenz in Wahrscheinlichkeit).

Schwache Konsistenz ist oft eine Folge des schwachen Gesetzes großer Zahlen bzw. der Tschebytscheff-Ungleichung (s.o.)

4.5.3 Konsistenz

 T_n ist konsistent im quadratischen Mittel $\Rightarrow T_n$ ist schwach konsistent.

4.5.3 Konsistenz

 T_n ist konsistent im quadratischen Mittel $\Rightarrow T_n$ ist schwach konsistent.

Beweis: mit der Markoff-Ungleichung (mit $g(x) = x^2$) gilt für $\varepsilon > 0$

 T_n ist konsistent im quadratischen Mittel $\Rightarrow T_n$ ist schwach konsistent.

Beweis: mit der Markoff-Ungleichung (mit $g(x) = x^2$) gilt für $\varepsilon > 0$

$$P(|T_n - \theta| \ge \varepsilon) \le \frac{E([T_n - \theta]^2)}{\varepsilon^2} = \frac{1}{\varepsilon^2} \cdot MSE(T_n) \stackrel{n \to \infty}{\longrightarrow} 0$$

 T_n ist konsistent im quadratischen Mittel $\Rightarrow T_n$ ist schwach konsistent.

Beweis: mit der Markoff-Ungleichung (mit $g(x) = x^2$) gilt für $\varepsilon > 0$

$$P(|T_n - \theta| \ge \varepsilon) \le \frac{E\left([T_n - \theta]^2\right)}{\varepsilon^2} = \frac{1}{\varepsilon^2} \cdot MSE(T_n) \stackrel{n \to \infty}{\longrightarrow} 0$$

Folglich ist auch eine Schätzstatistik schwach konsistent, wenn sie erwartungstreu ist und $Var(T_n) \to 0$ für $n \to \infty$ gilt.

 T_n ist konsistent im quadratischen Mittel $\Rightarrow T_n$ ist schwach konsistent.

Beweis: mit der Markoff-Ungleichung (mit $g(x) = x^2$) gilt für $\varepsilon > 0$

$$P(|T_n - \theta| \ge \varepsilon) \le \frac{E([T_n - \theta]^2)}{\varepsilon^2} = \frac{1}{\varepsilon^2} \cdot MSE(T_n) \stackrel{n \to \infty}{\longrightarrow} 0$$

Folglich ist auch eine Schätzstatistik schwach konsistent, wenn sie erwartungstreu ist und $Var(T_n) \to 0$ für $n \to \infty$ gilt.

Beweis: Wegen obiger Abschätzung (inkl. Markoff-Ungleichung) und $E(T_n) = \theta$ gilt

$$P(|T_n - \theta| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \cdot \underbrace{MSE(T_n)}_{=Var(T_n) + [E(T_n) - \theta]^2} = \frac{1}{\varepsilon^2} \cdot Var(T_n) \stackrel{n \to \infty}{\longrightarrow} 0.$$

Beispiel

Sei $X \sim \mathcal{N}(\mu, \sigma^2)$. Für unabhängige Wiederholungen X_1, \dots, X_n erhält man

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, d.h. $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

 $\hookrightarrow \bar{X}$ ist erwartungstreu, abnehmende Varianz für wachsendes n \Rightarrow konsistent im quadratischen Mittel

Beispiel

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, d.h. $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

- $\hookrightarrow \bar{X}$ ist erwartungstreu, abnehmende Varianz für wachsendes n \Rightarrow konsistent im quadratischen Mittel
- \hookrightarrow Überprüfung der schwachen Konsistenz:

$$P(|\bar{X} - \mu| \le \varepsilon)$$

Beispiel

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, d.h. $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

- $\hookrightarrow \bar{X}$ ist erwartungstreu, abnehmende Varianz für wachsendes n \Rightarrow konsistent im quadratischen Mittel
- \hookrightarrow Überprüfung der schwachen Konsistenz:

$$P(|\bar{X} - \mu| \le \varepsilon) = P\left(\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| \le \frac{\varepsilon}{\sigma/\sqrt{n}}\right)$$

Beispiel

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, d.h. $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

- $\hookrightarrow \bar{X}$ ist erwartungstreu, abnehmende Varianz für wachsendes n \Rightarrow konsistent im quadratischen Mittel
- \hookrightarrow Überprüfung der schwachen Konsistenz:

$$P(|\bar{X} - \mu| \le \varepsilon) = P\left(\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| \le \frac{\varepsilon}{\sigma/\sqrt{n}}\right)$$
$$= P\left(-\frac{\varepsilon}{\sigma} \cdot \sqrt{n} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right)$$

Beispiel

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, d.h. $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

- $\hookrightarrow \bar{X}$ ist erwartungstreu, abnehmende Varianz für wachsendes n \Rightarrow konsistent im quadratischen Mittel
- \hookrightarrow Überprüfung der schwachen Konsistenz:

$$P(|\bar{X} - \mu| \le \varepsilon) = P\left(\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| \le \frac{\varepsilon}{\sigma/\sqrt{n}}\right)$$

$$= P\left(-\frac{\varepsilon}{\sigma} \cdot \sqrt{n} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right)$$

$$= \Phi\left(\frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right) - \Phi\left(-\frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right)$$

Beispiel

Sei $X \sim \mathcal{N}(\mu, \sigma^2)$. Für unabhängige Wiederholungen X_1, \dots, X_n erhält man

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, d.h. $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

- $\hookrightarrow \bar{X}$ ist erwartungstreu, abnehmende Varianz für wachsendes n \Rightarrow konsistent im quadratischen Mittel
- \hookrightarrow Überprüfung der schwachen Konsistenz:

 $P(|\bar{X} - \mu| \le \varepsilon) = P\left(\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| \le \frac{\varepsilon}{\sigma/\sqrt{n}}\right)$

$$= P\left(-\frac{\varepsilon}{\sigma} \cdot \sqrt{n} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right)$$

$$= \Phi\left(\frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right) - \Phi\left(-\frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right) = 2 \cdot \Phi\left(\frac{\varepsilon}{\sigma} \cdot \sqrt{n}\right) - 1 \xrightarrow{n \to \infty} 1$$

55

 $\Rightarrow \bar{X}$ ist schwach konsistent.

4.5.3 Konsistenz

Übung: Ist folgende Aussage richtig? Eine asymptotisch erwartungstreue Schätzstatistik T_n ist schwach konsistent, wenn $var(T_n) \to 0$ für $n \to \infty$ gilt.

Starke Konsistenz eines Schätzers

Die Schätzstatistik $T_n = g(X_1, \dots, X_n)$ heißt **stark konsistent**, falls:

$$P_{\theta}\left(\lim_{n\to\infty}|T_n-\theta|=0\right) = 1 \qquad \forall \ \theta$$

 \hookrightarrow fast sichere Konvergenz $(T_n \xrightarrow{f.s.} \theta)$

Starke Konsistenz eines Schätzers

Die Schätzstatistik $T_n = g(X_1, \dots, X_n)$ heißt **stark konsistent**, falls:

$$P_{\theta}\left(\lim_{n\to\infty}|T_n-\theta|=0\right) = 1 \quad \forall \, \theta$$

- \hookrightarrow fast sichere Konvergenz $(T_n \xrightarrow{f.s.} \theta)$
- \hookrightarrow T ist stark konsistent \Rightarrow T ist schwach konsistent.
- \hookrightarrow Unter bestimmten Zusatzannahmen gilt auch: T ist stark konsistent $\Rightarrow T$ ist konsistent im quadratischen Mittel.
- → Die starke Konsistenz eines Schätzers ergibt sich fast immer aus dem starken Gesetz großer Zahlen.

 \hookrightarrow Viele Schätzer T_n lassen sich bei festem n nicht vergleichen bzw. es existieren keine optimalen Schätzer bei festem n.

4.5.4 Asymptotische Effizienz

- \hookrightarrow Viele Schätzer T_n lassen sich bei festem n nicht vergleichen bzw. es existieren keine optimalen Schätzer bei festem n.
- \hookrightarrow Um die Schätzer zu "selektieren", wird oft die Konsistenz von $T_n(X)$ für θ in einem geeigneten Sinne gefordert. Das reicht aber oft auch noch nicht aus.

- \hookrightarrow Viele Schätzer T_n lassen sich bei festem n nicht vergleichen bzw. es existieren keine optimalen Schätzer bei festem n.
- \hookrightarrow Um die Schätzer zu "selektieren", wird oft die Konsistenz von $T_n(X)$ für θ in einem geeigneten Sinne gefordert. Das reicht aber oft auch noch nicht aus.
- → Zusätzlich zur Konsistenz wird dann die asymptotische Normalität gefordert:

$$\lim_{n\to\infty}P(\sqrt{n}\frac{T_n-\theta}{\sigma(\theta)}\leq t)=\Phi(t)$$

Diese ist oft aufgrund des zentralen Grenzwertsatzes erfüllt.

58

- \hookrightarrow Viele Schätzer T_n lassen sich bei festem n nicht vergleichen bzw. es existieren keine optimalen Schätzer bei festem n.
- \hookrightarrow Um die Schätzer zu "selektieren", wird oft die Konsistenz von $T_n(X)$ für θ in einem geeigneten Sinne gefordert. Das reicht aber oft auch noch nicht aus.
- → Zusätzlich zur Konsistenz wird dann die asymptotische Normalität gefordert:

$$\lim_{n\to\infty}P(\sqrt{n}\frac{T_n-\theta}{\sigma(\theta)}\leq t)=\Phi(t)$$

Diese ist oft aufgrund des zentralen Grenzwertsatzes erfüllt.

 $\hookrightarrow \sigma^2(\theta)$ wird als **asymptotische Schätzervarianz** bezeichnet. Je kleiner $\sigma^2(\theta)$, desto (asymptotisch) besser ist der Schätzer. Ein Schätzer mit minimalem $\sigma^2(\theta)$ heißt **asymptotisch effizient**.

- \hookrightarrow Viele Schätzer T_n lassen sich bei festem n nicht vergleichen bzw. es existieren keine optimalen Schätzer bei festem n.
- \hookrightarrow Um die Schätzer zu "selektieren", wird oft die Konsistenz von $T_n(X)$ für θ in einem geeigneten Sinne gefordert. Das reicht aber oft auch noch nicht aus.
- → Zusätzlich zur Konsistenz wird dann die asymptotische Normalität gefordert:

$$\lim_{n\to\infty} P(\sqrt{n}\frac{T_n-\theta}{\sigma(\theta)}\leq t) = \Phi(t)$$

Diese ist oft aufgrund des zentralen Grenzwertsatzes erfüllt.

- $\hookrightarrow \sigma^2(\theta)$ wird als **asymptotische Schätzervarianz** bezeichnet. Je kleiner $\sigma^2(\theta)$, desto (asymptotisch) besser ist der Schätzer. Ein Schätzer mit minimalem $\sigma^2(\theta)$ heißt **asymptotisch effizient**.
- \hookrightarrow Untergrenze für $\sigma^2(\theta)$ ist oft die Cramer-Rao-Schranke $1/I(\theta)$ mit der Fisher-Information $I(\theta) = var_{\theta}(S_{\theta})$ und Score-Funktion $S_{\theta} = \frac{\partial}{\partial \theta} \ln(f(x,\theta))$.

- \hookrightarrow Viele Schätzer T_n lassen sich bei festem n nicht vergleichen bzw. es existieren keine optimalen Schätzer bei festem n.
- \hookrightarrow Um die Schätzer zu "selektieren", wird oft die Konsistenz von $T_n(X)$ für θ in einem geeigneten Sinne gefordert. Das reicht aber oft auch noch nicht aus.

$$\lim_{n\to\infty}P(\sqrt{n}\frac{T_n-\theta}{\sigma(\theta)}\leq t)=\Phi(t)$$

Diese ist oft aufgrund des zentralen Grenzwertsatzes erfüllt.

- $\hookrightarrow \sigma^2(\theta)$ wird als **asymptotische Schätzervarianz** bezeichnet. Je kleiner $\sigma^2(\theta)$, desto (asymptotisch) besser ist der Schätzer. Ein Schätzer mit minimalem $\sigma^2(\theta)$ heißt **asymptotisch effizient**.
- \hookrightarrow Untergrenze für $\sigma^2(\theta)$ ist oft die Cramer-Rao-Schranke $1/I(\theta)$ mit der Fisher-Information $I(\theta) = var_{\theta}(S_{\theta})$ und Score-Funktion $S_{\theta} = \frac{\partial}{\partial \theta} \ln(f(x,\theta))$.
- \hookrightarrow Viele ML-Schätzer sind asymptotisch effizient, d.h. (stark) konsistent und ihre asymptotische Schätzervarianz ist $1/I(\theta)$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette,
$$X_1, X_2, \dots \sim Bin(1, p)$$
, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = rac{\partial}{\partial p} \ln(p^x (1-p)^{1-x})$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p}$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

 \hookrightarrow Fisher-Information: $I(p) = var(S_p(X_1))$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1 - p}{p(1 - p)})$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2}$

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2} = \frac{1}{p(1-p)}$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

4.5.4 Asymptotische Effizienz

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2} = \frac{1}{p(1-p)}$

 \hookrightarrow Cramer-Rao-Schranke: 1/I(p) = p(1-p)

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2} = \frac{1}{p(1-p)}$

- \hookrightarrow Cramer-Rao-Schranke: 1/I(p) = p(1-p)
- \hookrightarrow Asymptotische Schätzervarianz des ML-Schätzers $T_n = \bar{X}_n$:

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2} = \frac{1}{p(1-p)}$

- \hookrightarrow Cramer-Rao-Schranke: 1/I(p) = p(1-p)
- \hookrightarrow Asymptotische Schätzervarianz des ML-Schätzers $T_n = \bar{X}_n$:
 - \Box T_n ist stark konsistent wegen des SGGZ: $\bar{X} \rightarrow p$ f.s.

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

- \hookrightarrow Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2} = \frac{1}{p(1-p)}$
- \hookrightarrow Cramer-Rao-Schranke: 1/I(p) = p(1-p)
- \hookrightarrow Asymptotische Schätzervarianz des ML-Schätzers $T_n = \bar{X}_n$:
 - \Box T_n ist stark konsistent wegen des SGGZ: $\bar{X} \to p$ f.s.
 - \Box T_n ist asymptotisch normal wegen des ZGS: $\sqrt{n} \frac{\bar{X}_{n-p}}{\sqrt{p(1-p)}} \to \mathcal{N}(0,1)$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Elfmeter (Bernoullikette, $X_1, X_2, \dots \sim Bin(1, p)$, u.i.v.-Folge)

$$\hookrightarrow$$
 Score-Funktion: $S_p(x) = \frac{\partial}{\partial p} \ln(p^x (1-p)^{1-x}) = \frac{x}{p} - \frac{1-x}{1-p} = \frac{x-p}{p(1-p)}$

$$\hookrightarrow$$
 Fisher-Information: $I(p) = var(S_p(X_1)) = var(\frac{X_1-p}{p(1-p)}) = \frac{var(X_1)}{p^2(1-p)^2} = \frac{1}{p(1-p)}$

- \hookrightarrow Cramer-Rao-Schranke: 1/I(p) = p(1-p)
- \hookrightarrow Asymptotische Schätzervarianz des ML-Schätzers $T_n = \bar{X}_n$:
 - $\ \square$ T_n ist stark konsistent wegen des SGGZ: $\bar{X} \to p$ f.s.
 - \Box T_n ist asymptotisch normal wegen des ZGS: $\sqrt{n} \frac{\bar{X}_{n-p}}{\sqrt{p(1-p)}} o \mathcal{N}(0,1)$
 - \square Die asymptotische Schätzervarianz ist dann $\sigma^2(p)=p(1-p)$
- → Der ML-Schätzer hat die Cramer-Rao-Schranke als asymptotische Schätzervarianz.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Übung: X_1, X_2, \ldots sei eine u.i.v.-Folge von Poi (λ) -verteilten ZV (z.B. die Anzahl der Patienten in einer Notaufnahme an aufeinander folgenden Tagen). Bestimmen Sie zunächst einen ML-Schätzer für λ auf Basis von X_1, \ldots, X_n und prüfen Sie, ob der Schätzer asymptotisch effizient ist. Hinweis: Dichte: $f_{\lambda}(x) = \frac{\lambda^x}{x!} e^{-\lambda}, x \in \mathbb{N}_0$

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022 60

4.6 Zusammenfassung

Schätzer sind Zufallsvariablen $T(X_1,...,X_n)$ mit denen (z.B.) Parameter der Modellverteilung ermittelt werden sollen.

- → Konstruktionsprinzipien: ML, MM,...
- \hookrightarrow Nicht jeder Schätzer ist gut. Es gilt Vor- und Nachteile abzuwägen.
- \hookrightarrow Erwartungstreue als eine grundlegende Eigenschaft (zumindest asymptotisch)
- \hookrightarrow Unter den erwartungstreuen Schätzern sind die mit der kleinsten Varianz zu bevorzugen.
- → Allgemein werden Schätzer anhand ihres Risikos verglichen.
- \hookrightarrow Schätzervergleich oft nur für wachsendes n durchführbar. Hier sind konsistente Schätzer vorzuziehen. Unter den konsistenten Schätzern sind diejenigen zu bevorzugen, welche asymptotisch effizient sind.

Ausblick: Weil Schätzer zufällig sind, können sie den "richtigen" Wert eines Parameters nicht angeben. Statt dessen Bestimmung von Bereichen, welche den Parameter mit einer bestimmten (Mindest-)-WS "überdecken".

61