Neural Networks

Lecture 08
Neural Representations in the Visual System –
Unsupervised Learning with Generative Models

http://www.informatik.uni-hamburg.de/WTM/

Hierarchical visual system

Generative auto-encoder architectures

- MLP backpropagation
- Transposed weights model
- Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising
- other

Representation in the Visual System of the Brain

Videos by Hubel & Wiesel

Hierarchy of the Visual System

"Outputs" are diverse:

Faces: who, emotion, attention

Objects: what, where,

how to grasp

Surround: where am I?

Attention: where to look next?

Recall: Perceptron/Connectionist Neurons

Activate one neuron:
$$h_j = \sum w_{jn} x_n = \vec{w}_{jn} \cdot \vec{x}$$

- Dot product between weight vector and input vector
- Activate all neurons:

$$\vec{h} = W\vec{x}$$

- Matrix product with weight matrix
- In Python: h = numpy.dot(W,x)
- In C: two nested for-loops
 - Outer loop over output neurons, inner loop does scalar product
- Then transfer function applied, e.g.:

$$s_j = \tanh(h_j)$$

Deep Learning

- Mostly supervised learning
 - Limits: availability of labelled data
- Remedy: unsupervised learning
 - particularly for lower layers
 - guided by findings from biology

Unsupervised – how?

Hierarchical visual system

- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising
- other

Generative Model

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising
- other

MLP / Error Backpropagation

- Used to learn a multi-layer perceptron
 - Biologically implausible for visual system:
 - assumes "output" units and labels
 - back-propagation of error
 - Error back-propagates badly through many layers
- Internal representations emerge
 - but these are hard to interprete

MLP / Error Backpropagation

- Special case of MLP: auto-encoder
- Training
 - Task: $y \approx x$
 - "Unsupervised" since no extra labels
 - Often just one hidden layer
 - Or, may be a deep architecture
- After training
 - The hidden code is of interest!

Error Minimization

"Feedforward" activation:

• Decoder: $\vec{y} = W^{dec} \vec{s}$

- Error function: $E(W, \vec{s}) = \sum_{j=1}^{data} \frac{1}{2} (\vec{x} \vec{y})^2$
 - input data is the target
- Learning: $\Delta W^{dec} \approx -\frac{\partial E}{\partial W^{dec}} = \vec{e} \vec{s}$
 - slightly modify weights for each data point, using the error
 - Error-backpropagation to train Wenc

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising
- other

Transposed Weights Model

- Disadvantage of MLP:
 - Need error-backpropagation for W^{enc}
 - Training of W^{dec} was OK

Solution:

- Train only W^{dec}
- Set: $W^{enc} = (W^{dec})^T$
- No backpropagation required
- Weights will scale to get the reconstruction right
- Still, biologically unrealistic

Interpretation of Weights

$$\vec{y} = W^{dec} \vec{s} = \sum_{j}^{N^{hidden}} \vec{w}_{j}^{dec} s_{j}$$
basis functions

- The reconstructed vector is a superposition of the outgoing vectors ("basis functions") of the hidden neurons
- The contributions of these functions is scaled by the hidden neuron activities
- If $W^{enc} = (W^{dec})^T$ then basis function ~ receptive field of a neuron
- A generative model decomposes its inputs into basis functions, which are often independent and which might represent meaningful components of the world

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine
- Constraints
 - few hidden neurons
 - weight constraints
 - sparse hidden activations
 - non-negativity
 - denoising
 - other

Helmholtz Machine

- Alternative to backpropagation or to transposing the weights
- Algorithm: Wake-sleep algorithm.

Wake phase learning step for W^{dec} (as previously):

$$\Delta W^{dec} \approx e \cdot s$$

- The sleep phase for Wenc turns the model upside down:
 - Generate random activities \tilde{S} (training "data")
 - From these, generate "imagined" inputs: $\widetilde{x} = W^{dec}\widetilde{s}$
 - Sleep phase learning step:

$$\Delta W^{enc} \approx (\widetilde{s} - W^{enc} \widetilde{x}) \widetilde{x}$$

Generative Models

 A perfect reconstruction of the input could be acieved trivially as

$$W^{enc} = W^{dec} = I$$
 (identity matrix)

and with linear units.

- → No extraction of interesting features from the data!
- We should apply some contraints:
 - let the hidden layer re-code the data in interesting ways

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising

Constraints on **Generative Models**

- Additional cost terms / "constraints" lead to interesting coding:

- few hidden neurons ~ PCA
- weight constraints → model of retinal ganglion cells
- On the code:
 - sparse hidden activations → model of V1 edge detector cells
- On structure and code:
 - non-negative matrix factorization → part-based coding
- On the data:
 - denoising autoencoder

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine
- Constraints
 - few hidden neurons
 - weight constraints
 - sparse hidden activations
 - non-negativity
 - denoising
 - other

Neural Principle Component Analysis

Bottleneck: few hidden linear neurons

- Training data: patches of grey-scale natural images
- Resulting basis functions span subspace with large variance
- Same subspace discovered as by PCA
- Sanger's rule finds 1st PC first, then 2nd PC, and so on

Neural PCA

Bottleneck: few hidden linear neurons

- Training data: grey scale images of faces, centred
- Resulting components show to direction of largest variance
 - Eigenfaces

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
 - sparse hidden activations
 - non-negativity
 - Denoising
 - other

Imposing a soft weight constraint (indirectly reduces firing

rate)

- Training data: randomly chosen natural image patches
- Resulting receptive fields have centre-surround structure like retinal ganglion cells

Implementation of the weight constraint (units are linear)

$$\Delta w_{ij} \approx \underbrace{e_j \cdot s_i}_{good \text{ reconstruction}} - \underbrace{const_1 \cdot sign(w_{ij})}_{\text{regularization term}} \checkmark$$

L2 regularizer

Here:
$$-\frac{\partial}{\partial w}|w| = -sign(w)$$
 as opposed to $-\frac{\partial}{\partial w}w^2 = -w$
Vincent, Baddeley. Synaptic energy efficiency in retinal processing. Vis. Res., 2003

Constraints with L1 or L2 Norm

L1 Norm

$$\parallel \vec{p} \parallel_1 = \sum_i \mid p_i \mid$$

- ightarrow L1 norm favours sparse parameters $ec{p}$ (weights)
- L2 Norm

$$||\vec{p}||_2 = \sqrt[2]{\sum_i p_i^2}$$

- \rightarrow L2 norm penalises large parameters, but will not rotate \vec{p}
- $||\vec{p}||_{\infty} = \max_{i} \{|p_{i}|\} \rightarrow L\infty \text{ norm favours all } p_{i} \text{ to be the same}$

Possible results for color images:
 color-opponent ganglion cell receptive fields

 Training data: randomly chosen natural colour image patches

6 clusters

Example cell from the "green" cluster

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
 - non-negativity
 - Denoising
 - other

Retinal Preprocessing

- Pre-processing of input images by filtering
- Filter in spatial frequency space

$$R(f) = f \cdot e^{-(f/const)^4}$$

has two terms:

- ullet f term reduces *low* frequencies
 - \rightarrow equalizes amplitude spectrum of 1/f
- $e^{-(f/const)^4}$ term reduces *high* frequencies
 - → reduces pixel noise
- Filter in image space resembles retinal ganglion cell receptive fields

Retinal Preprocessing

Training data: random image patches (to match the input layer size) from filtered images:

. . .

Sparse Coding

Barlow. Large Scale Neuronal Theories of the Brain., ch. What is the computational Goal of the Neocortex?, 1994

neuron activity

Sparse Coding

Primary visual cortex (V1) cell receptive fields (RF)

Selected trained RFs (from an overcomplete set)

- Constraint: sparse coding
- Resulting RFs are localized edges

Sparse Coding

possible results for color images

?⇒ color constancy

Sparse Coding

 Sparse transfer function on the hidden layer, e.g.

$$f(h) = h - \frac{0.3h}{1 + h^2}$$

 Reduces small activations but retains large activations

- A weight decay (regularization) term will be needed to keep weights small
 - (large weights would counteract sparseness)

Sparse Coding

generative sparse model applied to movies

→ spatiotemporal V1 receptive fields

Overview

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
 - denoising
 - other

Non-negative Matrix Factorization (NMF)

Constraint: non-negativity of all activations and weights

- Training data: centered faces (white pixels encoded by zero activity; dark pixels by positive activations)
- Resulting basis functions: part-based representations

Overview

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising
 - other

Denoising Autoencoder

Reconstruction from partially corrupted input patterns

Training inputs: MNIST digits corrupted with zero-value "blank" pixels Resulting basis functions: patchy, partially localised receptive fields

Overview

- Hierarchical visual system
- Generative auto-encoder architectures
 - MLP backpropagation
 - Transposed weights model
 - Helmholtz machine

Constraints

- few hidden neurons
- weight constraints
- sparse hidden activations
- non-negativity
- denoising

Newborn Looking Preferences to Faces

Table 1. Number of babies who preferred each stimulus

Feature inversion

Age	Config	Inversion	Neither
Newborns	9*	1	2
6-week-olds	0	0	12
12-week-olds	0	1	11

How explain neurons' innate complex shape preferences?

Model: newborn's face selective neurons have RFs in which weight patches are arranged in a *top-heavy triangle*.

Triangular prenatal activity patterns exist (for training)?

Data-Driven Prenatal Training

biological training data: pre-natal retinal waves

- → image-like properties:
- topographical relations
- edges
- convex figures
- coherent motion

Example: Autoencoder as Preprocessor for a Reinforcement Learner

- Autoencoder learns many parameters of a deep visual NN
 - → small reinforcement learner; partially shared parameters

Example: Autoencoder as Preprocessor for a Reinforcement Learner

Hafez, Weber, Kerzel, Wermter. Deep Intrinsically Motivated Continuous Actor-Critic for Efficient Robotic Visuomotor Skill Learning. In Preparation.

Generative Models in Vision – Summary

- Hierarchical visual system with growing abstraction
- Weight matrices transform the representations
- Generative autoencoder models for unsupervised learning
- Various constraints on hidden encoding during learning:
 - few hidden neurons
 - weight constraints
 - sparse hidden activations
 - non-negativity
 - denoising
- More constraints needed to explain variety of cortical areas?
 - innate face preferences
 - peripheral / foveal preferences
 - slow / fast responses, ...

Outlook

Next Lecture:

14th June: L09: Training Neural Networks

Seminar:

7th June 6pm: Draft paper deadline (today!)

Block seminar dates:

- Thu/Fri 19/20 July
- Mon/Tue 23/24 July

Oral exam dates (tentative): 8./9./10. Aug. & 26./27. Sept.