Estimating the State of Robot with Dynamic Bayesian Network

Zhuofu Bai Nov 19 2010

Purpose Of Project

- About the Robot
 - http://www.youtube.com/watch?v=2yplqpR-mjA&feature=player_embedded
- ☐ The Data of the Project
 - A 34-dimensional vector represents the state of the robot at time t.
 - Noise and Noise free
- □ Goal
 - Estimate the robot state with Dynamic Bayesian Network

The purpose of the Project

Definition

- □ A dynamic Bayesian network, or DBN, is a Bayesian network that represents a temporal probability model of the kind described by the figure below.
- Every Slice of DBN is a Bayesian Network.

Semantic of DBN

First-order markov assumption: the parents of a node can only be in the same time slice or the previous time slice, i.e., arcs do not across slices

$$P(X_{t} | X_{t-1}) = \prod_{i=1}^{N} P(X_{t}^{i} | Pa(X_{t}^{i}))$$

- Inter-slice arcs are all from left to right, reflecting the time
- □ Intra-slice arcs can be arbitrary as long as the DBN is a DAG

DBN for Robot

Base Line: A Simple Gaussian Model for the whole data DBN model: Fully Connected between two slices

Regression Tree

Regression Tree for Multiple Attribute

Potential Problem: some model may not be well trained.

Regression Tree requires large training data.

Experiment Results

- Needle Position X, Y, Z
- ☐ Direction of Movement Rx, Ry, Rz
- □ DBN:6 nodes per slice.
- \square Prediction: X, Y, Z at time $t+\triangle t$

 $\triangle t = 0.1s$

Mean Residual Square	X	Y	Z
DBN	1.7891	7.0827	4.8960
Base Line(Simpe Gaussian)	12.3634	11.1598	20.025
			7

Tracking

 $\hfill \Box$ $\triangle t\!=\!0.1s$ Training and Testing with noise data

Tracking

 $\triangle t = 0.01$ S Training with noise data Testing with noise free data Base Line DBN

Generating Trajectory Automatically

 \Box \triangle t=0.01s Base Line

- Build a 3 level Regression Tree with 34 attributes to estimate the X value of Needle Position.
- ☐ X value's range is [130 260]
- □ Result: Mean Residual Square = 46.5910
- ☐ The mean value of estimation error is about 7.
- A 3 level tree is not enough for well estimating a state with 34 attributes. More training is necessary.

Thank you

Questions?