PODSTAWOWE DEFINICJE I PRAWA PRZYRODY

11 PYTAŃ PROF. KOZŁOWSKIEGO NA EGZAMIN SESJI ZIMOWEJ ROK STUDIÓW: I

1. Definicja wektora wodzącego, prędkości i przyśpieszenia, obliczenie V i a, jeśli dana jest czasowa zależność wektora wodzącego.

Wektor wodzący to wektor który łączy początek układu współrzędnych (punkt 0,0,0) z miejscem w przestrzeni, w którym znajduje się punkt materialny w jakiejś chwili.

Wektor wodzący obrysowuje nam krzywą po której porusza się punkt materialny (czyli tor tego punktu materialnego). Każda chwila czasu, w której istnieje nasz obiekt, ma przypisany swój wektor położenia. Długość wektora wodzącego, czyli promień wodzący, jest odległością punktu od początku układu współrzędnych.

Prędkość definiujemy jako zmianę położenia ciała w jednostce czasu.

Sposób obliczania:

Prędkość chwilowa jest pochodną drogi względem czasu.

$$V(t) = dx/dt$$

Np. Mamy równanie ruchu: $x=2\,t^2+\sin(t)$. A więc $V=\frac{\partial x(t)}{\partial t}=4\,t+\cos(t)$.

Przyspieszeniem nazywamy tempo zmian prędkości.

Sposób obliczania:

Przyspieszenie chwilowe definiujemy jako pierwszą pochodną V względem t. Jest to więc druga pochodna położenia po czasie.

$$a(t) = d V/dt$$

Zadanie:

Znajdź zależności prędkości i przyspieszenia od czasu jeżeli zależność położenia od czasu t dana jest przez: $x=5\,t^3+t-\sin(t)$.

Odpowiedzi znajdziesz na końcu.

2. Zasady dynamiki Newtona; przedstawienie wektora przyśpieszenia, jeśli dany jest wektor siły, lub odwrotnie.

<u>I zasada dynamiki Newtona</u>: Jeżeli na ciało nie działają żadne siły, lub działające siły równoważą się, to ciało to pozostaje w spoczynku, lub porusza się ruchem jednostajnym prostoliniowym.

II zasada dynamiki: Jeśli siły działające na ciało nie równoważą się (czyli siła wypadkowa jest różna od zera), to ciało porusza się z przyspieszeniem wprost proporcjonalnym do siły wypadkowej, a odwrotnie proporcjonalnym do masy ciała.

$$\overrightarrow{a} = \overrightarrow{F}/m$$

III zasada dynamiki: Oddziaływania ciał są zawsze wzajemne. Siły wzajemnego oddziaływania dwóch ciał mają takie same wartości, taki sam kierunek, przeciwne zwroty i różne punkty przyłożenia (każda działa na inne ciało).

Jeśli ciało A działa na ciało B siłą F (akcja), to ciało B działa na ciało A siłą (reakcja) o takiej samej wartości i kierunku, lecz o przeciwnym zwrocie.

Zasady dynamiki s prawdziwe tylko w układach inercjalnych, tzn. poruszaj cych si bez przyspieszenia.

3. Praca siły zmiennej; obliczenie pracy, jeśli pokazany jest wykres siły od położenia, lub jeśli dany jest wektor stałej siły i wektor zmiany położenia.

Sposób obliczania:

1. Mamy podany wektor stałej siły i wektor zmiany położenia.

Praca W wykonana przez stałą siłę F jest iloczynem skalarnym tej siły F i wektora przesunięcia s.

$$W = \vec{F} \cdot \vec{s} = Fs \cos \alpha$$

2. Pokazany jest wykres siły od położenia

Praca jest sumą prac wykonanych na niewielkich odcinkach, na tyle małych, że spełnione są powyższe warunki.

Liczmy pole pod wykresem(całkujemy).

$$W = \int_{x_1}^{x_2} F(x) \, \mathrm{d} x$$

4. Zasada zachowania energii mechanicznej.

Zasada zachowania energii - empiryczne prawo fizyki, stwierdzające, że w układzie izolowanym suma wszystkich rodzajów energii układu jest stała (nie zmienia się w czasie).

W konsekwencji, energia w układzie izolowanym nie może być ani utworzona, ani zniszczona, może jedynie zmienić się forma energii. Tak np. podczas spalania wodoru w tlenie energia chemiczna zmienia się w energię cieplną.

Sformułowanie 1:

W dowolnym ruchu przebiegającym bez tarcia (i innych strat energii) energia mechaniczna układu izolowanego jest stała.

$$E_{\text{mechaniczna}} = \text{const}$$

Jeśli przyjrzymy się wzorowi na energię mechaniczną:

$$E_{\text{mechaniczna}} = E_{\text{potencialna}} + E_{\text{kinetyczna}}$$

To ze stałości energii mechanicznej wyniknie nam, że:

$$E_{\text{potencialna}} + E_{\text{kinetyczna}} = \text{const}$$

Dlaczego tak się dzieje?

Jeśli przyjrzymy się wzorowi:

$$E_{\text{mechaniczna}} = E_{\text{potencjalna}} + E_{\text{kinetyczna}}$$

to pewnie bez trudu zorientujemy się, że stałość sumy można zachować, jeśli ubytek jednego składnika jest natychmiast zrównoważony przyrostem drugiego składnika. Jeżeli więc podczas ruchu ubywa 5 J energii kinetycznej, to musi przybyć dokładnie 5 J energii potencjalnej (lub na odwrót).

Sformułowanie 2:

Zmienić energię mechaniczną ciała można tylko poprzez dostarczenie jej z zewnątrz, lub w wyniku oddania obiektom zewnętrznym.

Sformulowanie 3:

Energia mechaniczna nie ginie, ani nie powstaje samorzutnie.

Sformułowanie 4:

Gdy nie występuje tarcie (lub inne straty energii), energia mechaniczna w jednym momencie ruchu jest taka sama jak w innym, dowolnie wybranym momencie ruchu.

5. Definicja pędu i zasada zachowania pędu; graficzne przedstawienie pędu po zderzeniu, jeśli znane są wektory pędu zderzających się ciał.

Pęd ciała definiujemy jako iloczyn jego masy i prędkości (wektorowej).

$$\overrightarrow{\mathbf{p}} = \overrightarrow{\mathbf{mV}}$$

Zasada zachowania pędu: suma wektorowa pędów wszystkich elementów układu izolowanego pozostaje stała.

Np.

Dwa ciała leciały z danymi pędami p1, p2. Po zderzeniu złączyły się razem.

Ich wspólny pęd po tym zdarzeniu musi być jak przed, czyli będzie sumą wektorową p1 i p2.

Inny przykład:

Dwa ciała leciały z danymi pędami p1, p2. Po zdarzeniu jedno z nich miało pęd p3. Jaki pęd miało drugie ciało.

Sposób obliczania:

Obliczamy sumę pędów() przed zderzeniem. Po zderzeniu suma musi być taka sama. Odejmujemy od niej pęd pierwszego ciała otrzymując pędy pozostałych ciał układu – w tym wypadku pęd wyłącznie drugiego ciała.

6. Definicja środka masy i jego podstawowa własność; przedstawienie wektora przyśpieszenia środka masy jeśli znane są siły zewnętrzne działające na ciało.

<u>Środek masy</u> lub inaczej środek bezwładności, jest to punkt, który charakteryzuje rozmieszczenie mas w ciele lub układzie ciał. Środek masy ma taką właściwość, że w czasie ruchu ciała porusza się tak, jakby masa całego ciała była skupiona w tym jednym punkcie, i poruszała się pod wpływem wszystkich sił działających na to ciało.

$$x_{\mathit{sr.m.}} = \frac{m_1 x_1 + m_2 x_2 + + m_n x_n}{m_1 + m_2 + + m_n} = \frac{\displaystyle \sum_{i=1}^n m_i x_i}{\displaystyle \sum_{i=1}^n m_i}$$

PODSTAWOWE WŁASNOŚCI:

Środek masy układu punktów materialnych porusza się w taki sposób, jakby cała masa układu była skupiona w środku masy i jakby wszystkie siły zewnętrzne nań działały.

Całkowity pęd układu punktów materialnych jest równy iloczynowi całkowitej masy układu i prędkości jego środka masy.

- 1. Każdy układ punktów materialnych ma środek masy.
- 2. Środek masy S dwóch punktów materialnych m1X1 i m2X2 leży na odcinku łączącym punkty X1 i X2. Przy tym jest spełnione prawo dźwigni:

Jeżeli d1 = |SA| oraz d2 = |SB|, to m1d1 = m2d2.

3. Jeżeli podzbiór układu punktów materialnych zastąpimy punktem materialnym położonym w środku masy tego podzbioru o masie równej sumie mas podzbioru, to położenie środka masy całego układu nie zmieni się.

7. Definicja momentu pędu i zasada zachowania momentu pędu.

Moment pędu (inaczej kręt) wielkość fizyczna opisująca ruch ciała, zwłaszcza ruch obrotowy.

$$L = r \times p$$

gdzie p jest pędem punktu materialnego, a r reprezentuje jego położenie względem wybranego inercjalnego układu odniesienia. Wartość L wynosi

$$L = r p \sin \theta$$

Zasada zachowania momentu pędu mówi, że dla dowolnego izolowanego układu punktów materialnych całkowita suma ich momentów pędu jest stała. Jedną z bardziej widowiskowych konsekwencji istnienia tej zasady są znaczne prędkości kątowe gwiazd neutronowych, dochodzące do kilkuset obrotów na minutę (pulsary milisekundowe).

Zasada zachowania momentu pędu wynika z niezmienności hamiltonianu względem obrotów w przestrzeni.

Zasada ta również mówi, że prędkość zmiany momentu pędu układu jest równa sumie momentów sił zewnętrznych działających na punkty układu.

Prawo, zasada, twierdzenie

Wypadkowy moment siły działający na punkt materialny jest równy prędkości zmian momentu pędu.

Prawo, zasada, twierdzenie

Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza

się ruchem obrotowym jednostajnym.

8. Ruch harmoniczny prosty: równanie ruchu i rozwiązanie; obliczenie parametrów ruchu (całkowitej energii, częstości, prędkości) jeśli dana jest zależność wychylenia od czasu i masa drgającego ciała.

Ruch harmoniczny to każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi.

Rozwiązaniem jest ruch harmoniczny prosty o częstości kołowej ω_0 , amplitudzie A i fazie ϕ

W ruchu harmonicznym prostym częstość nie zależy od amplitudy

Energia potencjalna
$$U = \frac{kx^2}{2} = \frac{k}{2}A^2\cos^2\omega_0 t$$
Energia kinetyczna
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega_0^2\sin^2\omega_0 t \text{ ale } \omega_0 = \sqrt{\frac{k}{m}}$$

$$E_k = \frac{k}{2}A^2\sin^2\omega_0 t = \frac{k}{2}(A^2 - x^2)$$
Energia całkowita
$$E_c = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

$$V(t) = \frac{dx}{dt} = -A\omega_0\sin(\omega_0 t + \varphi)$$

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -A\omega_0^2\cos(\omega_0 t + \varphi)$$

9. Ruch harmoniczny wymuszony i zależność amplitudy drgań od częstości siły wymuszającej; rezonans.

Oscylator pobudzany też może być zewnętrznymi drganiami.

Siła wymuszająca musi być siłą o charakterze oscylacyjnym. Stała siła nie zmienia drgań oscylatora harmonicznego, zmienia jedynie położenie równowagi oscylatora.

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \omega_0^2 x = f(t)$$

gdzie:

ω_O - częstość drgań własnych

Zmienną okresową siłę wymuszającą można przedstawić jako sumę funkcji harmonicznych $\cos(\omega t)$. Dlatego analizę równania można ograniczyć do:

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \omega_0^2 x = A\cos(\omega t)$$

gdzie:

- ω częstość siły wymuszającej,
- A amplituda przyspieszenia (siły na jednostkę bezwładności) wymuszającego,
- β współczynnik tłumienia

W przypadku gdy A = 0, otrzymamy tzw. równanie oscylatora harmonicznego z tłumieniem, a gdy dodatkowo założymy że B = 0, równanie oscylatora prostego.

Drgania wymuszone i rezonans – Jeżeli zewnętrzna siła wymuszająca o częstości kołowej ω_{wym} działa na układ drgający o własnej częstości kołowej ω układ drga z częstością kołową ω_{wym} . Amplituda zmian prędkości V_m układu jest największa gdy spełniony jest warunek rezonansu:

$$\omega_{wym} = \omega$$

Również amplituda drgań A układu jest wtedy największa.

Rezonans – zjawisko fizyczne zachodzące dla drgań wymuszonych, objawiające się pochłanianiem energii poprzez wykonywanie drgań o dużej amplitudzie przez układ drgający dla określonych częstotliwości drgań.

10. Równanie fali biegnącej; od czego zależy energia fali; obliczenie amplitudy fali, częstości, wektora falowego, prędkości fali, prędkości punktów ośrodka dla podanego równania fali biegnącej.

Fale harmoniczną opisuje równanie fali biegnącej, które jest rozwiązaniem równania falowego w jednym wymiarze (wzdłuż np. osi z). Wielkością drgającą jest pewna wielkość fizyczna y (np. wysokość nad poziomem morza, gęstość, natężenie pola elektrycznego). Dla fali o okresie T i długości λ rozwiązanie równania falowego można przedstawić w postaci^[1]:

$$y(t,z) = A \sin\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}z + \varphi\right),$$

co można zapisać prościej:

$$y(t,z) = A\sin(\omega t - kz + \varphi),$$

gdzie:

- A amplituda fali,
- T okres drgań,
- λ długość fali,
- ω częstość kołowa zwana krótko częstością lub pulsacją fali, $\omega=rac{2\pi}{T}$,
- k liczba falowa, $k=rac{2\pi}{\lambda}$,
- φ faza początkowa

Argument funkcji sinus $rac{2\pi}{T}t-rac{2\pi}{\lambda}z+arphi=\omega t-kz+arphi$ to faza fali.

Punkt o danej fazie porusza się z prędkością, zwaną prędkością fazowa:

$$v_f = \frac{\lambda}{T} = \frac{\omega}{k},$$

Z innego źródła:

Ogólne równanie fali biegnącej w prawo: y = f(x - vt) w lewo: y = f(x+vt).

Liczba falowa

Częstość kołowa

Prędkość fazowa

11. Zasady dynamiki Newtona w układzie nieinercjalnym; przedstawienie wektora przyśpieszenia, jeśli dany jest wektor siły i przyśpieszenie układu.

Aby do takich układów móc stosować mechanikę newtonowską należy wprowadzić do układu siły pozorne, tzw. siły bezwładności.

II ZASADA DYNAMIKI W UKŁADZIE NIEINERCJALNYM:

PRZYDATNE DEFINICJE:

Precesja lub ruch precesyjny – zjawisko zmiany kierunku osi obrotu obracającego się ciała. Oś obrotu sama obraca się wówczas wokół pewnego kierunku w przestrzeni zakreślając powierzchnię boczną stożka.

Wahadło proste (matematyczne) jest to wyidealizowane ciało o masie punktowej, zawieszone na cienkiej, nieważkiej, nierozciągliwej nici.

Transformacja Galileusza – jest to transformacja współrzędnych przestrzennych i czasu z jednego układu odniesienia do innego poruszającego się ruchem jednostajnym prostoliniowym względem pierwszego.

Układami inercjalnymi nazywa się te układy odniesienia, które albo spoczywają, albo poruszają się ze stałą prędkością względem średnich pozycji gwiazd stałych.

BRUDNOPIS:

Odpowiedzi do zadań:

1.
$$V = \frac{d}{dt} (5t^3 + t - \sin(t)) = 15t^2 - \cos(t) + 1$$
 $a = \frac{d}{dt} (15t^2 - \cos(t) + 1) = 30t + \sin(t)$