AI505 Optimization

Derivatives and Gradients

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Derivaties Symbolic Differentiation Numerical Differentiation Automatic Differentiation

- 1. Derivaties
- 2. Symbolic Differentiation
- 3. Numerical Differentiation
- 4. Automatic Differentiation

Definitions

- $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ closed interval $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$ open interval
- column vectors and matrices scalar product: $\mathbf{y}^T \mathbf{x} = \sum_{i=1}^n y_i x_i$
- Ax column vector combination of the columns of A;
 u^T A row vector combination of the rows of A
- linear combination

$$\mathbf{v}_1, \mathbf{v}_2 \dots, \mathbf{v}_k \in \mathbb{R}^n$$

$$\mathbf{\lambda} = [\lambda_1, \dots, \lambda_k]^T \in \mathbb{R}^k$$
 $\mathbf{x} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k = \sum_{i=1}^k \lambda_i \mathbf{v}_i$

moreover:

$$\lambda \geq 0$$
 conic combination $\lambda^{T} 1 = 1$ affine combination

$$\left(\sum_{i=1}^{k}\lambda_{i}=1\right)$$

Definitions

• convex set: if $x, y \in S$ and $0 \le \lambda \le 1$ then $\lambda x + (1 - \lambda)y \in S$

convex

• **convex function** if its epigraph $\{(x,y) \in \mathbb{R}^2 : y \ge f(x)\}$ is a convex set or if $f: \mathbb{R}^n \to \mathbb{R}$ and if $\forall x, y \in \mathbb{R}^n, \alpha \in [0,1]$ it holds that $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$

Definitions

• For a set of points $S \subseteq \mathbb{R}^n$

lin(5) linear hull (span)

cone(S) conic hull

aff(S) affine hull

conv(S) convex hull

the convex hull of X

$$conv(X) = \{\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n \mid x_i \in X, \lambda_1, \ldots, \lambda_n \ge 0 \text{ and } \sum_i \lambda_i = 1\}$$

5

Norms

<u>Def.</u> A **norm** is a function that assigns a length to a vector.

A function f is a norm if:

- 1. f(x) = 0 if and only if x is the zero vector
- 2. f(ax) = |a|f(x), such that lengths scale
- 3. $f(x + y) \le f(x) + f(y)$, also known as trinagle inequality

 L_p norms are commonly used set of norms paramterized by a scalar $p \geq 1$:

$$||x||_p = \lim_{\rho \to p} (|x_1|^\rho + |x_2|^\rho + \ldots + |x_n|^\rho)^{\frac{1}{\rho}}$$

 L_{∞} is also called the max norm, Chebyshev distance or chessboard distance.

Derivaties Symbolic Differentiation Numerical Differentiation Automatic Differentiation

$$L_1: ||\mathbf{x}||_1 = |x_1| + |x_2| + \cdots + |x_n|$$

$$L_2: \|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$L_{\infty}: \|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \cdots, |x_n|)$$

Outline

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

- 1. Derivaties
- 2. Symbolic Differentiation
- 3. Numerical Differentiation

4. Automatic Differentiation

Derivaties

• Derivatives tell us which direction to search for a solution

• Slope of Tanget Line

$$f'(x) := \frac{\mathrm{d}f(x)}{\mathrm{d}x}$$

(Leibniz notation)

Derivatives

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

$$f'(x) = \frac{\Delta x}{\Delta x}$$

$$f'(x) \equiv \underbrace{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}_{\text{forward difference}} = \underbrace{\lim_{h \to 0} \frac{f(x+h/2) - f(x-h/2)}{h}}_{\text{central difference}} = \underbrace{\lim_{h \to 0} \frac{f(x) - f(x-h)}{h}}_{\text{backward difference}}$$

Symbolic Differentiation Numerical Differentiation Automatic Differentiation

```
import sympy as sp
# Define the variable
x = sp.symbols('x')
# Define the function
f = x**2 + x/2 - sp.sin(x)/x
# Compute the derivative
df_dx = sp.diff(f, x)
# Display the result
print("The symbolic derivative of f is:")
print(df_dx)
```

derivative.py

Derivatives in Multiple Dimensions

Gradient Vector

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1}, & \frac{\partial f(\mathbf{x})}{\partial x_2}, & \dots, & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

Hessian Matrix

$$\nabla^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \ddots & & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{n}} \end{bmatrix}$$

Directional derivative

The directional derivative $\nabla_s f(x)$ of a multivariate function f is the instantaneous rate of change of f(x) as x is moved with velocity s.

$$\nabla_{\mathbf{s}} f(\mathbf{x}) \equiv \underbrace{\lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{s}) - f(\mathbf{x})}{h}}_{\text{forward difference}} = \underbrace{\lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{s}/2) - f(\mathbf{x} - h\mathbf{s}/2)}{h}}_{\text{central difference}} = \underbrace{\lim_{h \to 0} \frac{f(\mathbf{x}) - f(\mathbf{x} - h\mathbf{s})}{h}}_{\text{backward difference}}$$

To compute $\nabla_s f(x)$:

- compute $\nabla_s f(\mathbf{x}) = \nabla f(\mathbf{x})^T s$
- $g(\alpha) := f(\mathbf{x} + \alpha \mathbf{s})$ and then compute g'(0)

the direction $\mathbf{s} = [-1, -1]$:

We wish to compute the directional derivative of $f(\mathbf{x}) = x_1 x_2$ at $\mathbf{x} = [1, 0]$ in

 $\nabla_{\mathbf{s}} f(\mathbf{x}) = \nabla f(\mathbf{x})^{\top} \mathbf{s} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -1$

 $g(\alpha) = f(\mathbf{x} + \alpha \mathbf{s}) = (1 - \alpha)(-\alpha) = \alpha^2 - \alpha$

 $\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, & \frac{\partial f}{\partial x_2} \end{bmatrix} = [x_2, x_1]$

We can also compute the directional derivative as follows:

 $g'(\alpha) = 2\alpha - 1$ g'(0) = -1

Matrix Calculus

Derivaties Symbolic Differentiation Numerical Differentiation Automatic Differentiation

Common gradient:

$$\nabla_{\mathbf{x}} \mathbf{b}^T \mathbf{x} = ?$$

$$\mathbf{b}^{T}\mathbf{x} = [b_1x_1 + b_2x_2 + \ldots + b_nx_n]$$

$$\frac{\partial \boldsymbol{b}^T \boldsymbol{x}}{\partial x_i} = b_i$$

$$\nabla_{\mathbf{x}} \mathbf{b}^{\mathsf{T}} \mathbf{x} = \nabla_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{b} = \mathbf{b}$$

Matrix Calculus

Common gradient:

$$\nabla_{\mathbf{x}} \mathbf{x}^T A \mathbf{x} = ?$$

$$\mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}^{T} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}^{T} \begin{bmatrix} x_{1} a_{11} + x_{2} a_{12} + \dots + x_{n} a_{1n} \\ x_{1} a_{21} + x_{2} a_{22} + \dots + x_{n} a_{2n} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$\begin{array}{c} x_{1}^{2} a_{11} + x_{1} x_{2} a_{12} + \dots + x_{1} x_{n} a_{1n} + x_{2} a_{2n} + \dots + x_{n} a_{2n} \\ \vdots \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}^{T} \begin{bmatrix} x_{1} a_{11} + x_{2} a_{12} + \dots + x_{n} a_{2n} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$\begin{array}{c} x_{1} a_{21} + x_{2} a_{22} + \dots + x_{n} a_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

 $x_1 x_n a_{n1} + x_2 x_n a_{n2} + \dots + x_n^2 a_{nn}$

$$\frac{\partial}{\partial x_i} \mathbf{x}^T A \mathbf{x} = \sum_{i=1}^n x_j \left(a_{ij} + a_{ji} \right)$$

$$\nabla_{\mathbf{x}} \mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} \sum_{j=1}^{n} x_{j} (a_{1j} + a_{j1}) \\ \sum_{j=1}^{n} x_{j} (a_{2j} + a_{j2}) \\ \vdots \\ \sum_{j=1}^{n} x_{j} (a_{nj} + a_{jn}) \end{bmatrix} = \begin{bmatrix} a_{11} + a_{11} & a_{12} + a_{21} & \dots & a_{1n} + a_{n1} \\ a_{21} + a_{12} & a_{22} + a_{22} & \dots & a_{2n} + a_{n2} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n1} + a_{1n} & a_{n2} + a_{2n} & \dots & a_{nn} + a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = (A + A^{T}) \mathbf{x}$$

Smoothness

Symbolic Differentiation Numerical Differentiation Automatic Differentiation

Def. The smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.

A function of class C^k is a function of smoothness at least k; that is, a function of class C^k is a function that has a kth derivative that is continuous in its domain

The term smooth function refers to a C^{∞} -function. However, it may also mean "sufficiently differentiable" for the problem under consideration.

Smoothness

- Let U be an open set on the real line and a function f defined on U with real values. Let k be
 a non-negative integer.
- The function f is said to be of **differentiability class** C^k if the derivatives $f', f'', \ldots, f^{(k)}$ exist and are continuous on U.
- If f is k-differentiable on U, then it is at least in the class C^{k-1} since $f', f'', \ldots, f^{(k-1)}$ are continuous on U.
- The function f is said to be **infinitely differentiable**, **smooth**, or of **class** C^{∞} , if it has derivatives of all orders (continous) on U.
- The function f is said to be of class C^{ω} , or analytic, if f is smooth and its Taylor series expansion around any point in its domain converges to the function in some neighborhood of the point.
- There exist functions that are smooth but not analytic; C^{ω} is thus strictly contained in C^{∞} . Bump functions are examples of functions with this property.

Example: continuous (C0) but not differentiable (est)

The function

$$f(x) = \begin{cases} x & \text{if } x \geq 0, \\ 0 & \text{if } x < 0. \end{cases}$$

is continuous, but not differentiable at x = 0, so it is of class C^0 , but not of class C^1 .

Example: finitely-times differentiable (Ck) | | wik1

For each even integer k, the function

$$f(x) = |x|^{k+1}$$

is continuous and k times differentiable at all x. At x = 0, however, f is not (k + 1)times differentiable, so f is of class C^k , but not of class C^j where j > k.

Example: differentiable but not continuously differentiable (not C1) [edit]

The function

$$g(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

is differentiable, with derivative
$$g'(x) = \begin{cases} -\cos(\frac{1}{x}) + 2x\sin(\frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Because cos(1/x) oscillates as $x \to 0$, g'(x) is not continuous at zero. Therefore, g(x) is differentiable but not of class C^2 .

Example: differentiable but not Lipschitz continuous [ost]

The function

$$h(x) = \begin{cases} x^{4/3} \sin \left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

is differentiable but its derivative is unbounded on a compact set. Therefore, A is an example of a function that is differentiable but not locally Linschitz continuous.

Example: analytic (C*) [edit]

The exponential function e^{σ} is analytic, and hence falls into the class C^{ω} (where ss is the smallest transfinite ordinal). The trigonometric functions are also analytic wherever they are defined, because they are linear combinations of complex exponential functions eig and e-ig.

 $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0is differentiable Movement this function is not continuously differentiable.

Example: smooth (C[®]) but not analytic (C[®]) [add]

The hump function

$$f(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & \text{if } |x| < 1, \\ 0 & \text{otherwise} \end{cases}$$

is smooth, so of class Cⁿ, but it is not analytic at v = +1, and hence is not of class C^N. The function f is an example of a smooth function with compact support.

Positive Definteness

<u>Def.</u> A symmetric matrix A is positive definite if $\mathbf{x}^T A \mathbf{x}$ is positive for all points other than the origin: $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

<u>Def.</u> A symmetric matrix A is **positive semidefinite** if $x^T A x$ is always non-negative: $x^T A x \ge 0$ for all x.

If the matrix A is positive definite in the function $f(x) = x^T A x$, then f has a unique global minimum.

Recall that the second order Taylor approximation of a twice-differentiable function f at x_0 is

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T H_0(x - x_0)$$

where H_0 is the Hessian evaluated at \mathbf{x}_0 . If $(\mathbf{x} - \mathbf{x}_0)^T H_0(\mathbf{x} - \mathbf{x}_0)$ has a unique global minimum, then the overall approximation has a unique global minimum.

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

Outline

- 1. Derivaties
- 2. Symbolic Differentiation
- 3. Numerical Differentiation
- 4. Automatic Differentiation

Symbolic Derivatives

- Symbolic derivatives can give valuable insight into the structure of the problem domain and, in some cases, produce analytical solutions of extrema (e.g., solving for $\frac{d}{dx}f(x)=0$) that can eliminate the need for derivative calculation altogether.
- But they do not lend themselves to efficient runtime calculation of derivative values, as they can get exponentially larger than the expression whose derivative they represent

Derivaties Symbolic Differentiation Numerical Differentiation Automatic Differentiation

Outline

- 1. Derivaties
- 2. Symbolic Differentiation
- 3. Numerical Differentiation

4. Automatic Differentiation

Numerical Differentiation

Finite Difference Method

• Neighboring points are used to approximate the derivative

$$f'(x) \approx \underbrace{\frac{f(x+h) - f(x)}{h}}_{\text{forward difference}} \approx \underbrace{\frac{f(x+h/2) - f(x-h/2)}{h}}_{\text{central difference}} \approx \underbrace{\frac{f(x) - f(x-h)}{h}}_{\text{backward difference}}$$

• h too small causes numerical cancellation errors (square root or cube root of the machine precision for floating point values: sys.float_info.epsilon difference between 1 and closest representable number)

Derivation

from Taylor series expansion:

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \cdots$$

We can rearrange and solve for the first derivative:

$$f'(x)h = f(x+h) - f(x) - \frac{f''(x)}{2!}h^2 - \frac{f'''(x)}{3!}h^3 - \cdots$$

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(x)}{2!}h - \frac{f'''(x)}{3!}h^2 - \cdots$$

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- forward difference has error term O(h), linear error as h approaches zero
- central difference has error term is $O(h^2)$

```
import sys
import numpy as np
def diff_forward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
   return (f(x+h) - f(x))/h
def diff_central(f, x: float, h: float=np.cbrt(sys.float_info.epsilon)) -> float:
   return (f(x+h/2) - f(x-h/2))/h
def diff_backward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
   return (f(x) - f(x-h))/h
# Example usage
def func(x):
   return x**2 + np.sin(x)
x0 = 1.0
print(f"The derivative at x = {x0} is {diff_forward(func, x0)}")
```

Numerical Differentiation

Complex step method

Uses one single function evaluation after taking a step in the imaginary direction.

$$f(x+ih) = f(x) + ihf'(x) - h^2 \frac{f''(x)}{2!} - ih^3 \frac{f'''(x)}{3!} + \cdots$$

$$\operatorname{Im}(f(x+ih)) = hf'(x) - h^3 \frac{f'''(x)}{3!} + \cdots$$

$$\Rightarrow f'(x) = \frac{\operatorname{Im}(f(x+ih))}{h} + h^2 \frac{f'''(x)}{3!} - \cdots$$

$$= \frac{\operatorname{Im}(f(x+ih))}{h} + O(h^2) \text{ as } h \to 0$$

$$\operatorname{Re}(f(x+ih)) = f(x) - h^2 \frac{f''(x)}{2!} + \dots$$

$$\Rightarrow f(x) = \operatorname{Re}(f(x+ih)) + h^2 \frac{f''(x)}{2!} - \dots$$

```
import numpy as np
def diff_complex(f, x: float, h: float=1e-20) -> float:
    return np.imag(f(x + h * 1j)) / h
# Example usage
def func(x):
   return x**2 + np.sin(x)
x0 = 1.0
print(f"The derivative at x = {x0} is {diff_complex(func, x0)}")
                                     complex diff.py
```

Numerical Differentiation Error Comparison

At small h, round off errors dominate, and at large h, truncation errors dominate.

Note the log transformation.

complex

forward central

Numerical Differentiation in ML

- Approximation errors would be tolerated in a deep learning setting thanks to the well-documented error resiliency of neural network architectures (Gupta et al., 2015).
- The O(n) complexity of numerical differentiation for a gradient in n dimensions is the main obstacle to its usefulness in machine learning, where n can be as large as millions or billions in state-of-the-art deep learning models (Shazeer et al., 2017).

Outline

- 1. Derivaties
- 2. Symbolic Differentiation
- 3. Numerical Differentiation
- 4. Automatic Differentiation

Automatic Differentiation

Automatic differentiation techniques are founded on the observation that any function is evaluated by performing a sequence of simple elementary operations involving just one or two arguments at a time:

- addition
- multiplication
- division
- power operation a^b
- trigonometric functions
- exponential functions
- logarithmic
- chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = \frac{\mathrm{d}}{\mathrm{d}x}f\circ g(x) = \frac{\mathrm{d}f}{\mathrm{d}g}\frac{\mathrm{d}g}{\mathrm{d}x}$$

- Forward Accumulation is equivalent to expanding a function using the chain rule and computing the derivatives inside-out
- Requires *n*-passes to compute *n*-dimensional gradient
- Example:

$$f(a,b) = \ln(ab + \max(a,2))$$

$$\frac{\partial f}{\partial a} = \frac{\partial}{\partial a} \ln(ab + \max(a, 2))$$

$$= \frac{1}{ab + \max(a, 2)} \frac{\partial}{\partial a} (ab + \max(a, 2))$$

$$= \frac{1}{ab + \max(a, 2)} \left[\frac{\partial(ab)}{\partial a} + \frac{\partial \max(a, 2)}{\partial a} \right]$$

$$= \frac{1}{ab + \max(a, 2)} \left[\left(b \frac{\partial a}{\partial a} + a \frac{\partial b}{\partial a} \right) + \left((2 > a) \frac{\partial 2}{\partial a} + (2 < a) \frac{\partial a}{\partial a} \right) \right]$$

$$= \frac{1}{ab + \max(a, 2)} [b + (2 < a)]$$

Automatic Differentiation

Computational graph: nodes are operations and the edges are input-output relations. leaf nodes of a computational graph are input variables or constants, and terminal nodes are values output by the function

Forward accumulation for $f(a, b) = \ln(ab + \max(a, 2))$

Computational graph: nodes are are operations and the edges are input-output relations. leaf nodes of a computational graph are input variables or constants, and terminal nodes are values output by the function

Forward accumulation for $f(a, b) = \ln(ab + \max(a, 2))$

 $\frac{\partial b}{\partial a} = \dot{b}$ Newton notation

Computational graph: nodes are are operations and the edges are input-output relations. leaf nodes of a computational graph are input variables or constants, and terminal nodes are values output by the function

Forward accumulation for $f(a, b) = \ln(ab + \max(a, 2))$

 $\frac{\partial b}{\partial a} = \dot{b}$ Newton notation

Computational graph: nodes are are operations and the edges are input-output relations. leaf nodes of a computational graph are input variables or constants, and terminal nodes are values output by the function

Forward accumulation for $f(a, b) = \ln(ab + \max(a, 2))$

 $\frac{\partial b}{\partial a} = \dot{b}$ Newton notation

for $\frac{\partial f}{\partial b}$ set $\dot{a} = 0, \dot{b} = 1$

Dual numbers

- Dual numbers can be expressed mathematically by including the abstract quantity ϵ , where ϵ^2 is defined to be 0.
- Like a complex number, a dual number is written $a + b\epsilon$ where a and b are both real values.

•
$$(a+b\epsilon)+(c+d\epsilon)=(a+c)+(b+d)\epsilon$$

 $(a+b\epsilon)\times(c+d\epsilon)=(ac)+(ad+bc)\epsilon$

• by passing a dual number into any smooth function f, we get the evaluation and its derivative. We can show this using the Taylor series:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

$$= f(a) + bf'(a)\epsilon + \epsilon^2 \sum_{k=2}^{\infty} \frac{f^{(k)}(a)b^k}{k!} \epsilon^{(k-2)}$$

$$= f(a) + bf'(a)\epsilon$$

$$= f(a) + bf'(a)\epsilon$$

$$= f(a) + bf'(a)\epsilon$$

Note that

$$(v + \dot{v}\epsilon) + (u + \dot{u}\epsilon) = (v + u) + (\dot{v} + \dot{u})\epsilon$$
$$(v + \dot{v}\epsilon)(u + \dot{u}\epsilon) = (vu) + (v\dot{u} + \dot{v}u)\epsilon ,$$

satisfies the rules of differentiation

Setting:

$$f(v + \dot{v}\epsilon) = f(v) + f'(v)\dot{v}\epsilon$$

The chain rule follows:

$$f(g(v + \dot{v}\epsilon)) = f(g(v) + g'(v)\dot{v}\epsilon)$$

= $f(g(v)) + f'(g(v))g'(v)\dot{v}\epsilon$.

- Reverse accumulation is performed in a single run using two passes $O(m \cdot ops(f))$ (forward and back) for $f : \mathbb{R}^n \to \mathbb{R}^m$
- Note: this is central to the backpropagation algorithm used to train neural networks because it needs only one pass for the *n*-dimensional function to find the gradient.
- implemented through two different operation overloading functions (for forward and backward)
- Many open-source software implementations are available: eg, Tensorflow

Forward implements:

$$\frac{df}{dx} = \frac{df}{dc_4}\frac{dc_4}{dx} = \frac{df}{dc_4}\left(\frac{dc_4}{dc_3}\frac{dc_3}{dx}\right) = \frac{df}{dc_4}\left(\frac{dc_4}{dc_3}\left(\frac{dc_3}{dc_2}\frac{dc_2}{dx} + \frac{dc_3}{dc_1}\frac{dc_1}{dx}\right)\right)$$

Backward implements:

$$\frac{df}{dx} = \frac{df}{dc_4} \frac{dc_4}{dx} = \left(\frac{df}{dc_3} \frac{dc_3}{dc_4}\right) \frac{dc_4}{dx} = \left(\left(\frac{df}{dc_2} \frac{dc_2}{dc_3} + \frac{df}{dc_1} \frac{dc_1}{dc_3}\right) \frac{dc_3}{dc_4}\right) \frac{dc_4}{dx}$$

Derivaties Symbolic Differentiation Numerical Differentiation Automatic Differentiation

Complementing each intermediate variable v_i with an adjoint

$$\bar{\mathbf{v}}_i = \frac{\partial \mathbf{y}_j}{\partial \mathbf{v}_i}$$

which represents the sensitivity of a considered output y_j with respect to changes in v_i .

Example

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$$

Example: Forward Accumulation

$$y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$$

Forward Primal Trace $\begin{vmatrix} v_{-1} = x_1 & = 2 \\ v_0 = x_2 & = 5 \end{vmatrix}$ $v_1 = \ln v_{-1} & = \ln 2$ $v_2 = v_{-1} \times v_0 & = 2 \times 5$ $v_3 = \sin v_0 & = \sin 5$ $v_4 = v_1 + v_2 & = 0.693 + 10$ $v_5 = v_4 - v_3 & = 10.693 + 0.959$ $\hline y = v_5 & = 11.652$

Forward Tangent (Derivative) Trace			
ı	\dot{v}_{-1}	$\dot{x}=\dot{x}_1$	= 1
١.	\dot{v}_0	$=\dot{x}_2$	=0
	\dot{v}_1	$=\dot{v}_{-1}/v_{-1}$	= 1/2
	\dot{v}_2	$=\dot{v}_{-1}\times v_0+\dot{v}_0\times v_{-1}$	$=1\times 5+0\times 2$
	\dot{v}_3	$=\dot{v}_0 \times \cos v_0$	$= 0 \times \cos 5$
	\dot{v}_4	$=\dot{v}_1+\dot{v}_2$	=0.5+5
١.	\dot{v}_5	$=\dot{v}_4-\dot{v}_3$	=5.5-0
▼	\dot{y}	$=\dot{v}_{5}$	= 5.5

Example: Reverse Accumulation

Forward Primal Trace $v_{-1} = x_1$ $v_1 = \ln v_{-1} = \ln 2$ $v_2 = v_{-1} \times v_0 = 2 \times 5$ $v_3 = \sin v_0 = \sin 5$ $v_4 = v_1 + v_2 = 0.693 + 10$ $v_5 = v_4 - v_3 = 10.693 + 0.959$ =11.652 $=v_5$

 $O(m \cdot \mathsf{ops}(f))$

Summary

- Derivatives are useful in optimization because they provide information about how to change a given point in order to improve the objective function
- For multivariate functions, various derivative-based concepts are useful for directing the search for an optimum, including the gradient, the Hessian, and the directional derivative
- computation of derivatives in computer programs can be classified into four categories:
 - 1. manually working out derivatives and coding them (error prone and time consuming)
 - 2. numerical differentiation using finite difference approximations

 Complex step method can eliminate the effect of subtractive cancellation error when taking small steps
 - 3. symbolic differentiation using expression manipulation in computer algebra systems
 - 4. automatic differentiation, (aka algorithmic differentiation) forward and reverse accumulation on computational graphs