Course Code: OMC100C Last Date of Submission: 31.12.2023

Course Title: Mathematical Foundation of Computer Science

Maximum Marks: 30

Assignment No.: 1 Session: July 2023

Note:

- 1. The assignment will have two parts, A and B. Part A is of 10 MCQ-type Questions of 1 mark each.
- 2. Part B is of 20 Marks having 8 Descriptive Questions. Attempt any 5 out of 8.

Part-A (10x1=10 Marks)

Q.No	Question	СО
1	If x is a set and the set contains an integer which is neither positive nor negative then the set x is a) Set is Empty b) Set is Non-empty c) Set is Finite. d) Set is both Non- empty and Finite.	CO1
2	If a relation R has the property that for every (a, b) in R, (b, a) is also in R, what type of relation is R? a. Reflexive b. Symmetric c. Transitive d. Antisymmetric	CO1
3	What is a partial order relation? a. Any relation with more than two elements b. A relation that is neither symmetric nor antisymmetric c. A relation that is reflexive, antisymmetric, and transitive d. A relation with only one element	CO1
4	In the principle of mathematical induction, find which of the following steps is mandatory? a) induction hypothesis b) inductive reference c) induction set assumption d) minimal set representation	CO1
5	According to principle of mathematical induction, if $P(k+1) = m^{k+1} + 5$ is true then must be true. a) $P(k) = 3m^k$ b) $P(k) = m^k + 5$ c) $P(k) = m^{k+2}$ d) $P(k) = m^k$	CO1
6	If {1, 3, 5} and B = {1, 3, 5, 7} then A is a subset of B A) smaller B) proper C) improper D) normal	CO1
7	A is a set S with a relation R on it which is reflexive, anti-symmetric, and transitive. A) equivalent set B) ordered set	CO1

	C) implicit set D) Partially ordered set		
8	If every element in the domain is mapped to a unique codomain, the function is said to be: a. One-to-one b. Onto c. Invertible d. Surjective	element in the	CO1
9	Which function is often used to round down a real numinteger? a. Floor function b. Ceiling function c. Ackermann's function d. Mod function	nber to the nearest	CO1
10	A function f: A → B is said to be If for every y least one element x in A such that f(x) = y. A) surjective B) bijective C) injective D) Automorphism	in B there exists at	CO1

Q.N	Question	CO
1	Determine whether the relation R on the set of all Web pages is reflexive, symmetric, antisymmetric, and/or transitive, where (a,b)∈ R if and only if a) everyone who has visited Web page a has also visited Web page b. b) There are no common links found on both Web page a and Web page b. c) There is at least one common link on Web page a and Web page b. d) There is a Web page that includes links to both Web page a and Web page b.	CO 5
2	Given $f(x)=2x$ and $g(x)=x^2$, find the composition $g\circ f$ and evaluate it for $x=3$.	CO 3
3	Write set builder notation to give a description of each of these sets. a) {0,3,6,9,12} b) {-3,-2,-1,0,1,2,3} c) {m,n,o,p}	CO 1
4	Let $X = \{1, 2, 3, 4, 5\}$ and relation $R = \{(x, y)/x > y\}$. Construct the graph of 'R' and also give its matrix.	CO 3
5	Use Mathematical Induction to show that $1^2 + 2^2 + \cdots + 2^n = 2^{n+1}$ - 1	CO 3
6	Write the Procedure for Euclidean algorithm to calculate gcd of two numbers.	CO 3
7	Verify by mathematical induction, $1^2 + 2^2 + \cdots + n^2 = (n(n+1)(2n+1))/6$	CO 5

8	Use the Euclidean algorithm to Compute the greatest common divisor of 46	CO 2
	and 21.	