5. MODELIRANJE I REPREZENTACIJA OBJEKATA

Modeliranje - postupak izrade 3D objekata

- različiti postupci modeliranja objekata
- različiti zapisi podataka koji čine objekt (različiti postupci prikaza engl. rendering)

Postupci modeliranja objekata:

- pomoću programskih alata (CAD)
- na osnovi uzorkovanih podataka (medicinski podaci, strojarstvo, stero slike)
- proceduralno modeliranje objekata (drveće, planine, oblaci, vatra)
- fizikalno temeljeno modeliranje (tkanina, kosa, tekućine, vatra)

Gotovi programski paketi:

- za crtanje CAD, animacije
- za obradu i prikaz podataka, Matlab
- postupci uzorkovanja objekata, pripadni programski paketi

4.1. MODELIRANJE OBJEKATA I SCENE

Modelirani objekti:

- modeliranje površine
 - definirana je vanjska ljuska objekta ("koža")
 - poligonima (trokuti), prednja i stražnja strana,
 - parametarska površina
 - elementima površine (engl. surfel) PBG (point base graphics)
- modeliranje **volumena** tijela
 - definirana je unutrašnjost objekta (*implicitno* definirano)
 - implicitnim funkcijama
 - elementima volumena (voxel)

možemo iz jednog oblika načiniti drugi (nije uvijek jednostavno)

Zapisivanje scene (strukture više razine):

- graf scene podaci o izvorima, promatračima, animaciji,
- specifični podaci ovisni o aplikaciji fizikalni elementi

površina i volumen

bitna razlika implicitnog i eksplicitnog oblika

- implicitni
 - jednostavno možemo odrediti
 pripada li neka točka površini je li "iznad" ili "ispod",
 udaljenost od površine
 booleove operacije nad tijelima, detekcija sudara
- eksplicitni, parametarski
 - određivanje točaka površine, tangentnih ravnina

• površina objekta - poligonima

- poligonalni model BREP (boundary representation)
- žična forma objekta
 - geometrijski podaci (položaj vrhova)
 - topološki podaci (povezanost vrhova –poligoni)

- poligon (trokut) definira jednadžbu ravnine
 - implicitni oblik jednadžbe ravnine

$$ax + by + cz + d = 0$$

• parametarski oblik jednadžbe ravnine

$$\mathbf{V} = \begin{bmatrix} u & v & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \end{bmatrix}$$

- površina patametarski zadana
 - modeliranje površine (engl. surface modelling)
 - površina je glatka i kontinuirano se može kontrolirati (obrada plohe)
 definirana je površinska ljuska tijela (može biti zatvorena)
 - slobodno oblikovane površine (engl. Freeform surfaces)
 - NURBS (B-površine), Bezierove površine,

- modeliranje plohe http://www.infogoaround.org/JBook/ShowRuleSurf.html
 http://www.infogoaround.org/JBook/ShowSweptSurf.html
- rotacione plohe http://www.infogoaround.org/JBook/ShowRevSurf.html

površina objekta – točkama

modeliranje elementima površine PBG (engl. point base graphics)

- +' sklopovska podrška za brzu izradu prikaza
- '-' pojava šupljina na rezultatu, alias
- surfeli se projiciraju na zaslon (splatting) s rekonstrukcijskom jezgrom ovisno o kutu između normale i promatrača
- http://graphics.cs.cmu.edu/projects/objewa/

273K surfel-a

• volumen tijela – implicitnim funkcijama

modeliranje volumena tijela (engl. volumetric modelling, solid modelling) implicitno definirane površine

$$f(x, y, z) = const$$

definirana je unutrašnjost tijela npr:

unutar tijela $f(x, y, z) \le const$, izvan tijela f(x, y, z) > const.

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$$

http://www.infogoaround.org/JBook/ShowTorus.html

ž. m, zemris, fer 5-7

- volumen tijela elementi volumena (engl. voxel)
 - po uzoru na slikovne elemente elementi volumena (vox el) svakoj točki prostora (x, y, z) imaju pridruženu neku vrijednost

• podaci su obično ostvareni postupkom uzorkovanja (CT, MR) u unutrašnjosti je objekt slojevito predstavljen (kao luk)

```
izo-površine:

f(x, y, z) \le con1,

f(x, y, z) \le con2,

f(x, y, z) \le con3,...
```

Konstruktivna geometrija tijela

CSG (engl. Constructive solid geometry)

- geometrijska tijela (kugla, kocka, valjak, stožac ...)
- + Booleove operacije (unija, presjek, razlika)
- obično se koristi u CAD

CSG Tree The Resulting Solid Figure 4. An Example Of Constructive Solid Geometry

5-9 Ž. M. ZEMRIS, FER

CSG stablo

5-10

Objekti

Ostvarivanje prikaza (rendering)

prikaz poligona – klasičan način – fotorealističan prikaz

NPR - ne fotorealističan prikaz (engl. Non-Photorealistic Rendering)

- ne želimo biti ograničeni samo na foto realističan prikaz
- skica objekta
- tehnika prikaza primjenjiva na objekte definirane volumno i površinom

http://bandviz.cg.tuwien.ac.at/basinviz/compression/paperindex.html

ž. m, zemris, fer 5-12

prijenosna funkcija (engl. transfer function)

određuje što će biti i na koji način preslikano u optičke parametre
to može biti boja objekta izravno, no može biti i neka druga informacija
kod NPR tehnike to je mjesto gdje je normala na površinu okomita prema
vektoru prema promatraču

upotreba boje za prokaz dodatne informacije

- razlikovanje dijelova objekta odjeljivanje cjelina
- razna svojstva objekta u pojedinoj točki (temperatura, brzina)

Složeni zapis objekta

- isti objekt nam je često potreban u različitim razinama složenosti (LOD)
 - prikaz objekta ovisno o udaljenosti i veličini prikaza
 - proračun sudara (kolizije)
- ugrubljivanje
 - krećemo od najsitnije podjele

 \check{z} . M, ZEMRIS, FER 5-14

Original mesh (level 14)

- ugrubljivenje poligonalne mreže
 - spajamo poligone u veće tako da važna obilježja
 - objekta budu sačuvana
 - stapamo vrhove

- usitnjavanje poligonalne mreže (engl. Subdivision)
 - dijelimo poligone najgrublje razine i novonastale vrhove pomičemo (tako da novi objekt bude gladak ili hrapav

http://www.gvu.gatech.edu/~jarek/demos/polyEditor/

Modeliranje:

http://www.mtl.t.u-tokyo.ac.jp/~takeo/teddy/teddy/ted

fraktalna podjela pri izradi planine

4.2 REPREZENTACIJA OBJEKATA

Površina objekta – zapis poligonima odnosno trokutima

- objekte najčešće predstavljamo mrežom poligona (samo površina objekta)
- trokuti planarni su,
 - sklopovlje GPU podržava trokute
- kako načiniti strukture podataka
- osnovni elementi (poligonalna mreža)
 - geometrijski podaci vrh (točka u prostoru)
 - atributi boja, normala, koordinate teksture
 - topološki podaci brid (povezuje 2 vrha)
 - poligon (povezuje više vrhova)

- geometrijski podaci, atributi, topološki podaci
- LOD jedan objekt može imati više poligonalnih mreža
 različite složenosti ovisno o udaljenosti prikazuju se različite mreže

Primitive u OpenGL-u:

- točke
 - GL_POINTS
- dužina, niz dužina,
 - GL_LINES,
 - GL_LINE_STRIP,
 - GL_LINE_LOOP
- poligon
 - GL_POLYGON,
- četverokut, niz četverokuta
 - GL_QUADS,
 - GL_QUAD_STRIP,
- trokut, niz trokuta
 - GL_TRIANGLES
 - GL_TRIANGLE_STRIP
 - GL_TRIANGLE_FAN

ž. m, zemris, fer 5-17

• primjer naredbe u OpenGL-u primjer u Tutor – shapes.exe

```
GLfloat x1, y1; // zbog različitih realizacija u OpenGL-u je definiran tip GLfloat, GLint ...
// ekvivalentan kao u C-u - prenosivost
glBegin (Primitiva) // Primitiva je npr. GL_LINES
glVertex2f (x1, y1);
glVertex2f (3,27, 5,226);
glEnd;
```

Primitiva – određuje na koji način će točke koje slijede biti kombinirane

Izravan način:

• individualan prijenos podataka (ne uzimamo u obzir da su neki vrhovi zajednički)

```
glBegin(GL_TRIANGLES); //slijede podaci - trokuti
glVertex3f (1f, 2.2f, 3.4f);
glVertex3f (x1, y1, z1);
glVertex3f (x2, y2, z2);
glEnd();
```

• **indeksirani pristup** (polje podataka vrhova)

• nije efikasno, za svaki vrh se poziva glVertex(), puno **funkcijskih poziva** i prijenosa podataka može biti **vrlo sporo**

Polje vrhova i primitiva GL_LINE_STRIP:

• definiranje tipa točke 2Df i polja od 3 točke

na ovaj način poslati ćemo odjednom niz točaka koje povezuje linija

• želimo jedan funkcijski poziv i odjednom poslati veću količinu podataka

```
glVertexPointer (3, GL_FLOAT, 0, &vertices[0]); // (2,3,4) 3 – x, y, z, koordinate vrha // 0 – stride – razmak offset [byte] između uzastopnih vrhova, ako su npr vrhovi u strukturi glEnableClientState(GL_VERTEX_ARRAY); glDrawArrays(GL_TRIANGLES, 0, num_vertices); // nema glBegin(), glEnd()
```

korištenja priručne memorije (engl. cache) vrhova

- procesiranje vrhova je sekvencijsko
 glDrawArrays(GL_TRIANGLES, 0, num_vertices);
- slučajni pristup vrhovima omogućeno je dijeljenje vrhova
 glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, indices[0]);
- u priručnoj memoriji su transformirani vrhovi
- neki vrhovi se višestruko ponavljaju, tj. za svaki trokut su vrhovi zasebno navedeni

Niz trokuta (triangle strip):

- neki vrhovi zajednički trokutima (značajna ušteda)
- za n trokuta imamo n + 2 vrha umjesto $3 \times n$

glDrawElements(GL_TRIANGLE_STRIP, indices.size(), GL_UNSIGNED_SHORT, &indices[0]);

GL_QUAD_STRIP za n četverokuta imamo 2n + 2 vrha


```
// pozivi glArrayElement()
glEnableClientState( GL VERTEX ARRAY );
glEnableClientState( GL COLOR ARRAY );
glVertexPointer( 3, GL_FLOAT, 0, CubeVertices );
glColorPointer( 3, GL_FLOAT, 0, CubeColors );
glBegin(GL QUADS);
           glArrayElement(0);
           glArrayElement(2);
           glArrayElement(3);
           glArrayElement(1);
           glArrayElement(4);
           glArrayElement(5);
           qlArrayElement(7);
           glArrayElement(6);
           glArrayElement(1);
           glArrayElement(3);
           glArrayElement(7);
           glArrayElement(5);
           glArrayElement(0);
           glArrayElement(4);
           glArrayElement(6);
           glArrayElement(2);
           glArrayElement(2);
           glArrayElement(6);
           glArrayElement(7);
           glArrayElement(3);
           glArrayElement(0);
           glArrayElement(1);
           glArrayElement(5);
           glArrayElement(4);
glEnd();
```

```
// poziv glDrawElements()
glEnableClientState( GL_VERTEX_ARRAY );
glEnableClientState( GL_COLOR_ARRAY );
glVertexPointer( 3, GL_FLOAT, 0, CubeVertices );
glColorPointer( 3, GL_FLOAT, 0, CubeColors );
glDrawElements( GL_QUADS, 24, GL_UNSIGNED_INT,
CubeIndices );
```

Primitive –

GL_TRIANGLE_STRIP

Promjena stanja –

```
glPointSize( size );
glLineStipple( repeat, pattern );
glShadeModel( GL_SMOOTH );
```

Aktiviranje mogućnosti –

```
glEnable( GL_LIGHTING );
glDisable( GL_TEXTURE_2D );
```


• Primjeri organizacije podataka i atributa:

- http://www.gris.uni-tuebingen.de/grisalt/projects/grdev/doc/html/Overview.html

- višestruki podaci
- npr. za eksploziju poligona

indeksirani pristup

- zajednički podaci za pojedini vrh
- npr. sjenčanje Gouraud

ž. m, zemris, fer 5-27

višestruko indeksirani pristup

- poseban pristup normalama, boji i sl.
- povećan broj indeksa (×3)
- npr. normale poligona konstantno

4.3 STRUKTURE PODATAKA ZA ZAPIS POLIGONALNIH OBJEKATA

Objekti zadani poligonima

- ovisno o tome za što je potrebno načiniti s objektima potrebno je formirati strukture podataka
 - samo prikaz i osnovne transformacije
 - modificiranje objekta (npr. izobličavanje, promjena broja poligona stapanjem vrhova)
 - ispitivanje kolizije (sudara) objekata
 - eksplozija objekta

Zapis površine objekta B-rep BREP (engl. boundary representation)

Strukture podataka

- 1. Tablica poligona
- 2. Tablice vrhova i poligona
- 3. Tablica bridova, vrhova i poligona
- 4. Liste susjednosti
- 5. Krilati brid

1. Tablica poligona

- nužno ako objekt "eksplodira" ili se poligoni rasprše, tada koordinate vrhova moraju biti posebno definirane iako su početno na istom mjestu
- nije efikasno ako objekt čini cjelinu, repliciramo podatke
- ako su vrhovi višestruko definirani može doći do pojave pukotina na spojevima poligona
- općeniti poligoni, nisu nužno trokuti
- redoslijed vrhova je u primjeru suprotno smjeru kazaljke na satu gledano izvan tijela CCW (određuje redoslijed bridova, određuje normalu po pravilu desne ruke)
- http://www.gris.uni-tuebingen.de/edu/projects/grdev/doc/html/Overview.html

2. Tablice vrhova i poligona

- vrhovi su dijeljeni, zajednički za različite poligone, nisu replicirani,
- u tablici poligona su indeksi
- pomicanje jednog vrha izobličiti će sve poligone koji ga dijele
- razdvojena je informacija o geometriji (vrhovi) i topologiji (povezanosti poligoni)
- nemamo informaciju o susjednosti
 - ako nas zanima za vrh V₂ koji poligoni sadrže taj vrh morati ćemo pretražiti sve poligone,
 ili koji poligoni čine brid B₂₄
- pogodno je što su istovrsni podaci (vrhovi) zajedno
- redoslijed vrhova u tablici poligona može biti upotrijebljen za određivanje normale

Tablica vrhova							
V ₁ V ₂ V ₃ V ₄ V ₅	X ₁	Y ₁	Z ₁				
	X ₂	Y ₂	Z ₂				
	X ₃	Y ₃	Z ₃				
	X ₄	Y ₄	Z ₄				
	X ₅	Y ₅	Z ₅				

ž. m, zemris, fer 5-31

3. Tablice bridova, vrhova i poligona

- tablica poligona sadrži pokazivače na bridove,
- tablica bridova sadrži pokazivače na vrhove
- redoslijed bridova određuje orijentaciju poligona, redoslijed vrhova određuje orijentaciju bridova
- http://www.gris.uni-tuebingen.de/edu/projects/grdev/doc/html/Overview.html

npr: brid2 ide od V1 do V0

ako nam trebaju poligoni koji čine taj brid moramo pretražiti indekse vrhova u listi poligona

4. Liste susjednosti

- tablica bridova
 - koji vrhovi čine brid (orijentacija brida V₂V₃, V₃V₂)
 - koji bridovi su susjedni (diraju prvi ili drugi vrh)
 - koji poligoni čine brid
- tablica vrhova
 - susjedni vrhovi
 - incidentni bridovi
 - incidentni poligoni
- tablica poligona
 - vrhovi
 - bridovi koji ga čine
 - susjedni poligoni
- želimo imati informaciju o susljednosti ali želimo pohranjivati manje podataka

kompromis: potrebna memorija ↔ vrijeme potrebno za određivanje susjednosti

9 relacija susjednosti

5. Krilati brid (engl. winged edge)

- tablica bridova
 - koji vrhovi čine brid (početni, završni) V₁ V₂
 - koji poligoni čine brid (lijevi, desni) F₁ F₂
 - bridovi lijevog poligona (brid koji prethodi, brid koji slijedi) e₁₁ e₂₁
 - bridovi desnog (brid koji prethodi, brid koji slijedi) e₁₂ e₂₂
- tablica vrhova
 - jedan brid (bilo koji)
- tablica poligona
 - jedan brid (bilo koji)
- krila brida \mathbf{e} su \mathbf{e}_{11} \mathbf{e}_{21} \mathbf{e}_{12} \mathbf{e}_{22}

Različite varijante zapisivanja bridova

- orijentacija poligona može biti CW, CCW, određena bridom e,
- zapis samo 2 krila
- ispitivanje **relacije susjednosti**:
 - da li je vrh V₁ susjedan poligonu F₃?
 - da li su poligoni F₁ i F₃ susjedni?
- proizvoljni poligoni (nisu nužno trokuti)

primjer: krilati brid (engl. winged edge)

• redoslijed krila brida određen je bridom **e**

Tablica vrhova						
٧1	X ₁	Υ ₁	Z ₁	e ₁		
V ₂	X ₂	Y_2	Z_2	e ₆		
٧3	Х3	Υ ₂ Υ ₃	Z_3	ез		
V ₄	X ₄	Y ₄ Y ₅	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

Та	Tablica bridova					12	21	22
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	V_1	V_2	F ₁		e ₁	e ₁	e ₃	e ₆
e ₃	V_2	٧3	F ₁	F_2	e_2	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	е7	e ₅
e ₅	V_2	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V_2	٧5	F_3		е5	e_2	e ₇	e ₇
e ₇	V_4	٧5		F_3	e_4	e ₅	e ₆	e ₆

