EE3019 - Integrated Electronics Tutorial 10

- 1. A bias source is depicted in Figure 10.1 where Q_2 is twice the size of Q_1 . The other transistors are the same size as Q_1 .
 - (a) State the basic mechanism of this bias source.
 - (b) Derive the variation of the fractional temperature coefficient for the output current.
 - (c) Determine the resistance R_2 for the current bias reference circuit to obtain an output of $100\mu\text{A}$ and the resultant TC_F at room temperature (T=300K). Assume that the resistor temperature coefficient is 1500 ppm/°C.

[(c) 180Ω , 1800ppm/°C]

Figure 10.1 Figure 10.2

2. A differential amplifier depicted in Figure 10.2 comprises 4 transistors where MOS transistors: $\mu_n C_{ox} W / L = 0.2 \times 10^{-3} \text{ A/V}^2$, $V_t = 0.5 \text{ V}$

Bipolar transistors: $V_{CE(sat)} = 0.2 \text{ V}.$

Assume that the two MOSFETs have an identical aspect (i.e. W/L) ratio and that the two BJTs have identical emitter areas.

- (d) Show that all the MOSFETs and BJTs are active for the zero-input condition, i.e. $V_{in} = 0$.
- (e) Find the maximum and minimum common-mode input voltages, i.e. the limits of operation where the circuit remains in active operation.

[(b) -6.14V $\leq V_{in} \leq 7.5V$]

3. Explain the function of each transistor in the op amp shown in Figure 10.3.

Figure 10.3

