TABLE II: The leading relativistic corrections $\mathcal{E}_{\infty}^{(4)}$ and $\mathcal{E}_{M}^{(4)}$ for helium-like atoms and their 1/Z-expansion coefficients. The analytical results for the coefficient c_1 for $\mathcal{E}_{\infty}^{(4)}$ were taken from Ref. [29] for the 1^1S , 2^3S , 2^3P_0 , and 2^3P_2 states. For the other states, this coefficient was evaluated numerically to high accuracy in this work by the same method as in Ref. [29]. The c_0 coefficient of $\mathcal{E}_{M}^{(4)}$ for the S states originates from the one-electron recoil effect and is well known from the hydrogen theory. For the P states, it contains also the two-electron contribution, which was derived in Ref. [36]. The remaining 1/Z-expansion coefficients were obtained by fitting the numerical data for $\mathcal{E}_{\infty}^{(4)}$ and $\mathcal{E}_{M}^{(4)}$. Atomic units are used.

\overline{Z}	1^1S	2^1S	2^3S	$2^{1}P_{1}$	$2^{3}P_{0}$	$2^{3}P_{1}$	$2^{3}P_{2}$
$\mathcal{E}_{\infty}^{(4)}/Z^4$							
2	-0.12198467	-0.12713546	-0.13527987	-0.12750160	-0.11804252	-0.12331623	-0.12372958
3	-0.14579473	-0.13188123	-0.14284030	-0.13095391	-0.12112829	-0.12660186	-0.12441072
4	-0.16326353	-0.13629775	-0.14735668	-0.13322953	-0.12666774	-0.13051205	-0.12556923
5	-0.17604864	-0.13988298	-0.15031008	-0.13478660	-0.13152271	-0.13370851	-0.12655782
6	-0.18567419	-0.14273756	-0.15238324	-0.13591790	-0.13544497	-0.13621654	-0.12734275
7	-0.19313821	-0.14502897	-0.15391610	-0.13677846	-0.13859636	-0.13819925	-0.12796582
8	-0.19907787	-0.14689544	-0.15509463	-0.13745597	-0.14115638	-0.13979329	-0.12846748
9	-0.20390905	-0.14843923	-0.15602856	-0.13800371	-0.14326617	-0.14109757	-0.12887810
10	-0.20791170	-0.14973447	-0.15678671	-0.13845596	-0.14502986	-0.14218211	-0.12921951
11	-0.21128006	-0.15083516	-0.15741435	-0.13883582	-0.14652358	-0.14309691	-0.12950741
12	-0.21415265	-0.15178123	-0.15794244	-0.13915946	-0.14780354	-0.14387826	-0.12975321
1/Z expansion coefficients							
c_0	-1/4	-21/128	-21/128	-55/384	-21/128	-59/384	-17/128
c_1	0.48013961	0.16947818	0.07693523	0.05540303	0.21976822	0.13042876	0.04063872
c_2	-0.63650686	-0.28185862	-0.04277547	-0.09063215	-0.30352335	-0.16212941	-0.04731568
c_3	0.45631423	0.20291921	0.01047395	0.15641239	0.09174625	0.04246890	0.00224438
c_4	-0.17117961	-0.04254210	-0.00446083	-0.17804253	-0.00884433	-0.00431944	-0.00023651
c_5	0.01858749	0.01886171	-0.00156673	0.05906831	0.01555282	0.00769846	0.00369105
$\mathcal{E}_M^{(4)}/(Z^4m/M)$							
2	-0.1349607	-0.0043516	0.0055741	-0.0036553	0.0155968	0.0166771	0.0127607
3	-0.1237592	-0.0016161	0.0114269	-0.0085744	0.0261482	0.0268552	0.0192485
4	-0.1076271	0.0023039	0.0152883	-0.0121396	0.0326665	0.0321855	0.0216508
5	-0.0937841	0.0057924	0.0179334	-0.0144516	0.0375802	0.0357681	0.0229265
6	-0.0826257	0.0086722	0.0198408	-0.0159704	0.0414077	0.0383887	0.0237369
7	-0.0736470	0.0110269	0.0212763	-0.0170051	0.0444505	0.0403953	0.0243047
8	-0.0663370	0.0129659	0.0223938	-0.0177366	0.0469152	0.0419814	0.0247276
9	-0.0602991	0.0145811	0.0232876	-0.0182710	0.0489462	0.0432663	0.0250561
10	-0.0552416	0.0159430	0.0240184	-0.0186728	0.0506455	0.0443280	0.0253193
11	-0.0509505	0.0171045	0.0246268	-0.0189822	0.0520864	0.0452197	0.0255351
12	-0.0472678	0.0181055	0.0251411	-0.0192256	0.0533228	0.0459791	0.0257155
1/Z expansion coefficients							
c_0	0	1/32	1/32	-0.0207447	0.0692059	0.0553920	0.0277642
c_1	-0.6450402	-0.1826434	-0.0784124	0.0025830	-0.2171136	-0.1253972	-0.0256050
c_2	0.9723728	0.3148003	0.0628343	0.2201046	0.3323021	0.1576070	0.0154532
c_3	-0.4600919	-0.1884436	-0.0188669	-0.3874951	-0.1520388	-0.0962265	-0.0366639
c_4	-0.0403680	-0.0482282	0.0004138	$-0.046\ 282\ 4$	-0.2528784	-0.0301604	-0.0176425