

Architektura operačních systémů, moderní přístupy k výstavbě operačních systémů

Ing. Pavel Smolka, Ph.D.

Koncepce virtuálního počítače

Základní pojmy v oblasti OS

- Proces spuštěná instance počítačového programu.
 - je umístěn v operační paměti počítače v podobě sledu strojových instrukcí vykonávaných procesorem,
 - obsahuje nejen kód vykonávaného programu, ale i dynamicky měnící se data, která proces zpracovává,
 - program může běžet v podobě jednoho či více procesů s různými.
- Soubor abstrakce s kterou pracuje OS prostřednictvím systémových volání.
 - jedná se o uloženou pojmenovanou sadu dat,
 - fyzické uspořádání soubor je závislé na souborovém systému.

Základní pojmy v oblasti OS

- Systémové programy
 - poskytují pohodlné prostředí pro vývoj a spouštění programů,
 - typická kategorizace systémových programů:
 - práce se soubory, kopírování, editace ...,
 - získávání, definování a údržba systémových informací,
 - podpora jazykových prostředí,
 - zavádění a provádění programů,
 - Komunikace,
 - aplikační programy.
- Významným systémovým programem je shell
 - shell implementuje příkazy sám nebo může volat externí programy.
- Uživatelský pohled na OS je dán především systémovými programy a ne voláními systému (system calls).

Typy operačních systémů

- Dle doby odezvy a způsobu vstupu úloh:
 - dávkové,
 - Interaktivní,
 - systémy pracující v reálném čase (RT),
 - hybridní systémy.
- Dle použití:
 - univerzální,
 - Specializované.

Dělení operačních systémů dle vnitřní struktury

- velké monolitické jádro,
- modulární, hierarchický přístup,
- malé jádro a samostatné procesy,

Monolitický operační systém

- velmi rozšířený,
- model jádra OS + systémových služeb,
- bez jasné vnitřní struktury,
- Unix, CP/M, MS-DOS
- různé režimy činnosti procesoru → různé fáze činnosti
 OS

Schéma monolitického

Monolitický systém – popis vnitřní struktury

- hlavní program volání obslužné procedury
- obslužné procedury pro jednotlivá systémová volání
- pomocné procedury pro obslužné procedury.

Výhody a nevýhody monolitických OS

Nevýhody:

- velké jádro (chyby)
- obtížné ladění
- složitá rozhraní procedur
- vliv HW

Výhody:

- relativně snadná implementace
- velký výkon

Vrstevnatý operační systém

- hierarchické uspořádání vrstev
- vyšší vrstva využívá pouze služeb nejbližší nižší vrstvy
- příklad návrh OS "THE System" (Technische Hogeschool Eidhoven – Dijkstra 1968): 6 vrstev

5	operátor
4	uživatelské programy
3	správa I/O zařízení
2	komunikace s procesy
1	správa paměti
0	přidělování procesoru

Základní rysy vrstevnaté struktury OS

- OS se dělí do jistého počtu vrstev (úrovní).
- Každá vrstva je budována na funkcionalitě nižších vrstev.
- Nejnižší vrstva (0) je hardware.
- Nejvyšší vrstva je uživatelské rozhraní.
- Pomocí principu modulů jsou vrstvy vybírány tak, aby každá používala funkcí (operací) a služeb pouze vrstvy n–1.

Základní rysy vrstevnaté struktury OS

- Řeší problém přílišné složitosti velkého systému.
- Provádí se dekompozice velkého problému na několik menších zvládnutelných problémů.
- Každá úroveň řeší konzistentní podmnožinu funkcí.
- Nižší vrstva nabízí vyšší vrstvě "primitivní" funkce (služby).
- Nižší vrstva nemůže požadovat provedení služeb vyšší vrstvy.
- Používají se přesně definovaná rozhraní.
- Jednu vrstvu lze uvnitř modifikovat, aniž to ovlivní ostatní vrstvy princip modularity.

Výhody a nevýhody hierarchické struktury

- Výhodou je modularita OS
- Nevýhodou je především vyšší režie a tím pomalejší vykonávání systémových volání
- Protože efektivita hraje v jádře OS významnou roli je třeba volit kompromis
 - pouze omezený počet úrovní pokrývající vyšší funkcionalitu
 - příklad: první verze Windows NT měli hierarchickou strukturu s řadou vrstev, avšak pro zvýšení výkonu OS bylo ve verzi NT 4.0 rozhodnuto přesunout více funkcionality do jádra a sloučit některé vrstvy

Virtuální počítač – implementace hierarchického přístupu

- Operační systém virtualizuje hardwarové prostředky
- Emulovaný běh různých hostovaných OS

Standardní nevirtualizovaný stroj

Jeden hardware
Dvě virtuální hardwarové
platformy
Tři virtuální operační systémy

Operační systém klient - server

- Trend minimalizace rozsahu jádra OS (mikrokernel),
- část funkcí OS implementována do úrovně uživatelských procesů (zasílání požadavků mezi procesy),
- mikrokernel zajišťuje zejména komunikaci.

v uživatelském módu v módu jádra

Výhody a nevýhody klient – server OS

Výhody:

- Oddělení adresových prostorů procesů → dobrá strukturovanost OS,
- odolnost systému v případě selhání serverového procesu,
- použitelnost v síťovém a distribuovaném prostředí.

Nevýhody:

Aplikace musí být napsány s ohledem na tuto architekturu.

Charakteristické rysy pří vývoji moderních OS

Reakce na rozvoj hardware

- Multiprocesorové a multijádrové stroje.
- Vysokorychlostní sítě.
- Rychlejší procesory, větší kapacity pamětí.

Požadavky nových softwarových technologií

- Multimédia, Internet a web.
- Klient/Server technologie.

Distribuované OS

- Iluze jedné společné paměti.
- Iluze jednoho paralelního stroje.
- Distribuované systém souborů s jednotnou tváří.

Objektově orientovaný návrh

- Modulární rozšiřování funkcionality z malého jádra.
- Přizpůsobování konkrétním potřebám bez porušení integrity celého systému.

Cíle při návrhu operačního systému

Cíle pro uživatele

OS musí být snadno použitelný, snadno naučitelný, spolehlivý, bezpečný, rychlý, ...

Systémový cíl

 OS se musí dát snadno navrhnout, implementovat, udržovat a musí být přizpůsobivý, spolehlivý, bezchybný, spolehlivý.

Realita - OS jsou:

- Obrovské až desítky milionů řádků zdrojového kódu,
- Složité,
- asynchronní (interaktivní),
- (vždy) plné chyb a (často) nespolehlivé,
- silně závislé na konkrétním hardware obtížně přenositelné.

Generické komponenty OS

Jádro OS

Správa procesů

- Proces (aktivní entita) je spuštěný program (pasivní entita)
 - jeden program může být zároveň spuštěn řadou uživatelů
 - proces je jednotkou práce systému
 - procesy jádra OS
 - uživatelské procesy
- Proces pro svou činnost potřebuje zdroje
 - procesor, paměť, soubory
 - zdroje se alokují při spuštění nebo při běhu
- Typické aktivity OS v oblasti správy procesů
 - vytváření a ukončování uživatelských a systémových procesů
 - potlačování (suspending) a obnovování (resuming) procesů
 - mechanismy pro synchronizaci procesů
 - mechanismy pro komunikaci mezi procesy
 - mechanismy pro detekci a řešení uváznutí (deadlock)

Správa operační paměti

- Při spuštění procesu musíme program nahrát do paměti
- Později může proces vyžadovat dodatečnou paměť pro data a tuto paměť OS vracet
- Jakmile proces končí, musí OS veškerou paměť užívanou procesem opět uvolnit
- Typické aktivity OS v oblasti správy paměti
 - znalost, která část paměti je využívána a kým (kterým procesem)
 - přidělování (alokace) a uvolňování (dealokace) paměti podle požadavků procesů
 - rozhodování o tom, který proces kdy zavést do paměti

Správa souborů

- Soubor
 - kolekce souvisejících informací definovaná svým tvůrcem
 - může mít strukturu, ale nemusí
 - z hlediska OS typicky jen posloupnost bajtů
- I/O zařízení na kterých jsou soubory uloženy mohou být nejrůznějšího typu
 - magnetické disky, optické disky, magnetické pásky
 - OS zavádí abstraktní koncept souboru
- Typické aktivity OS v oblasti správy souborů
 - vytváření a rušení souborů
 - vytváření a rušení adresářů (složek)
 - základní operace pro manipulaci se soubory a adresáři (např. čtení ze souboru, zápis do souboru, seznam souborů v adresáři)
 - zálohování na nevolatilní (energeticky nezávislá) média

Správa I/O zařízení

- Snaha o skrytí specifik jednotlivých I/O zařízení
 - co nejjednotnější přístup k jednotlivých I/O zařízením
 - mnoho OS zpřístupňuje I/O zařízení přes speciální soubory
 - /dev/sda, /dev/lp0 v UNIXu
 - \\.\PHYSICALDRIVE2, CONIN\$ ve Win32
- Ovladače jednotlivých HW komponent
- Řízení bufferů, kešování, spooling

Správa sekundární paměti

- Typické sekundární paměti jsou disky
- Správa sekundárních pamětí obvykle formou souborů souborového systému
- Typické aktivity OS
 - správa volného místa
 - přidělování místa
 - plánování činnosti disku (které požadavky kdy vyřídit)

Správa síťových služeb

- Komunikace je řízena protokolem
 - protokol je několikastranný algoritmus pro dosažení určitého cíle
- Snaha o transparentnost
 - síťové souborové systémy (SMB, NFS, ...)
 - API podobné jako přístup k souborům

Ochranný systém

- V multitaskingovém a multiuživatelském OS musíme jednotlivé procesy navzájem chránit
- Ochrana je mechanismus, který řídí přístup programů, procesů a uživatelů ke zdrojům počítačového systému
 - HW za pomocí OS zajišťuje, že proces může používat pouze adresy svého adresového prostoru
 - časovač brání jednomu procesu v získání plného přístupu k CPU
 - režim CPU brání uživatelským procesům spouštět privilegované instrukce
- Ochranný mechanismus rozlišuje autorizované a neautorizované použití prostředků

Interpret příkazů

- Interpret příkazů, neboli command-line interpreter, neboli shell
 - úkolem je získávat příkazy od uživatele a provádět je
- Za tento interpret příkazů můžeme považovat i moderní GUI
- Někdy je interpret příkazů přímo součást jádra operačního systému, někdy je to jen speciální program

Služby OS

- Spouštění programů
 - zavedení programu do paměti, běh procesu
- I/O operace
 - uživatelské procesy nemají přístup k I/O instrukcím, vše musí poskytovat OS
- Souborový systém
 - manipulace se soubory a adresáři
- Komunikace
 - mezi procesy nebo počítači
- Detekce chyb
 - musí počítat s chybami HW (např. parita paměti)

Interní služby OS

- Zabezpečují efektivní provoz samotného OS
- Alokace zdrojů
 - plánovací algoritmy pro přidělování CPU
 - přidělování přístupu k tiskárnám apod.
- Účtování
 - máme přehled o tom, kteří uživatelé kdy využily které zdroje
- Ochrana
 - Autentizace identifikace, řízení přístupu autorizace

Systémová volání

- Systémová volání tvoří rozhraní mezi uživatelským procesem a OS
 - typicky jsou popsána jako instrukce assembleru a jsou uvedena v programátorském manuálu k OS
 - vyšší programovací jazyky obsahují některé funkce, které odpovídají systémovým voláním (např. open, write) a dále knihovní funkce, které poskytují vyšší funkčnost a v rámci této spouští (třeba hned několik) systémových volání (např. fopen, fwrite).

Systémová volání (2)

- Různé OS a různé HW platformy mívají různé způsoby jak volat služby OS a různou strukturu těchto služeb
- Nicméně existují určité standardy, které usnadňují přenositelnost programového kódu
 - v oblasti UNIXu: POSIX
 - V oblasti Windows: Win32
- Teoreticky kód který bude psán podle standardu bude přeložitelný na kompatibilních platformách, v praxi však existuje celá řada verzí standardu a mnoho výjimek co je a není implementováno

Kategorie systémových volání

- Správa procesů
 - spusť, ukonči, čekej, nastav atributy
- Správa souborů
 - vytvoř, smaž, otevři, čti, zapiš, zavři
- Správa I/O
 - získej přístup, připoj, čti, zapiš, odpoj
- Správa informací
 - datum a čas, atributy procesů a souborů
- Komunikace
 - vytvoř spojení, odešli, přijmi

Další funkce operačního systému

- Monitorování a "účtování" systému
 - Sběr statistiky o využití systému
 - Pro účtování "placených služeb"
 - Pro dlouhodobé plánování v systému
 - Monitorování výkonnosti a chování systému
 - Slouží k podpoře dalšího vývoje systému
- Je třeba rozlišovat
 - služby OS jako celku
 - služby jádra OS (<u>JOS</u>) (system calls)

Základní pojmy v oblasti OS II

- Bootování
 - Spuštění činnosti počítače zavedením jádra a předáním řízení na vstupní bod jádra pro spuštění činnosti
- Bootstrap program
 - Program uchovávaný v ROM, který je schopný naleznout jádro, zavést ho do paměti a spustit jeho provedení
- SYSGEN
 - Program pro získání informací týkajících se konkrétní konfigurace konkrétního hardwarového systému

Proces Bootování

Řídí BIOS nebo UEFI (Unified Extensible Firmware Interface)

- provede se inicializace HW komponent,
- na základě uložené konfigurace zjistíme z kterého zařízení se má OS zavést,
- v případě pevného disku se spustí kód uložený v Master Boot Record (MBR),
- tento kód například zjistí, která partition je aktivní a spustí boot sektor této partition.
 Kód uložený v boot sektoru načte soubory s jádrem OS do paměti,
- zavaděče, např. LILO, GRUB umožní interaktivně vybrat který OS bude zaveden (bootsektor které partition se má spustit, kde je soubor s jádrem OS),
- jelikož tento kód může být delší než je délka MBR, musí pak být uložen v jiné oblasti disku.

Děkuji za pozornost