ΛΥΣΗ

α) Από την εκφώνηση προκύπτει ότι (PH)=147,5 και (PE)=152,5 εκατομμύρια Km. Αλλά, η εξίσωση της έλλειψης είναι στη μορφή $\frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}=1$ με $\beta^2=\alpha^2-\gamma^2$ και γνωρίζουμε ότι $(PH)=\alpha-\gamma$, ενώ $(PE)=\alpha+\gamma$.

Προσθέτοντας κατά μέλη παίρνουμε $2\alpha=(PA)=300$ εκατομμύρια Km, ενώ αφαιρώντας κατά μέλη παίρνουμε $2\gamma=(HE)=5$ εκατομμύρια Km.

Όμως
$$\varepsilon = \frac{\gamma}{\alpha} = \frac{2\gamma}{2\alpha} = \frac{5}{300} = \frac{1}{60}$$
.

β) Από τον ορισμό της έλλειψης, κάθε σημείο της έχει σταθερό άθροισμα αποστάσεων από τις εστίες ίσο με 2α , δηλαδή $(\Gamma H) + (\Gamma E) = 2\alpha = 300$.

Αλλά $(HE) = 2\gamma = 5$. Ώστε η περίμετρος του μεταβλητού τριγώνου ΓHE είναι σταθερή και ίση με 305 εκατομμύρια Km.

γ) Σύμφωνα με την ανακλαστική ιδιότητα της έλλειψης, η κάθετη ευθεία $\Delta \Gamma$ στην t't στο σημείο Γ διχοτομεί την γωνία $H\widehat{\Gamma}E$, άρα έχουμε $H\widehat{\Gamma}\Delta=\Delta\widehat{\Gamma}E=\widehat{\omega}$.

$$\Omega$$
στε $t'\hat{\Gamma}H = t\hat{\Gamma}E = 90^{0} - \omega$.

