OPTIMAL FORECASTING UNDER PARAMETER INSTABILITY

Yu Bai Monash University

November 1, 2023

Available at

https://jdluxun1.github.io/research/Yu_Monash_JMP.pdf

MOTIVATING EXAMPLE

Predictive regression under parameter instability

$$y_{t+1} = X_t' \theta_t + \varepsilon_{t+1}, \quad t = 1, 2, \dots, T - 1.$$
 (1)

• Under mean squared error (MSE) loss: $L(y_{T+1}, \hat{y}_{T+1|T}) = (y_{T+1} - \hat{y}_{T+1|T})^2, \text{ the optimal forecast is } \hat{y}_{T+1|T} = X_T' \hat{\theta}_T.$

Rolling window forecast scheme:

$$\hat{\theta}_T = \left(\sum_{t=T-R_0+1}^{T-1} X_t X_t'\right)^{-1} \left(\sum_{t=T-R_0+1}^{T-1} X_t y_{t+1}\right),\tag{2}$$

where R_0 is the window size.

▶ Return to main slide

MOTIVATING EXAMPLE

(2) can be written more generally as

$$\hat{\theta}_{b,T} = \left(\sum_{t=1}^{T-1} k_{tT} X_t X_t'\right)^{-1} \left(\sum_{t=1}^{T-1} k_{tT} X_t y_{t+1}\right),\tag{3}$$

where

- $-k_{tT} = K((t-T)/(Tb))$ is the weighting function;
- $b = b_T$ > 0 is a tuning parameter satisfying $b \to 0$, $Tb \to \infty$ as $T \to \infty$.
- If $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$, (3) becomes (2) with $R_0 = \lfloor Tb \rfloor$.

RESEARCH QUESTION

- What types of time variation are allowable for using estimator like (3)?
- ② How to select the tuning parameter *b* optimally?
- ③ Is the weighting function $K(u) = \mathbb{1}_{\{-1 < u < 0\}}$ always the best choice?

RESEARCH QUESTION

- What types of time variation are allowable for using estimator like (3)?
- ② How to select the tuning parameter b optimally?
- ③ Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?

RESEARCH QUESTION

- What types of time variation are allowable for using estimator like (3)?
- Output
 Output
 Output
 Description
 Descri
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?

THE ESTIMATOR

- y_{t+h}: target
- X_t: predictors
- $\hat{y}_{t+h|t}(\theta)$: forecast
- $\ell_t(\theta) = L(y_{t+h}, \hat{y}_{t+h|t}(\theta))$: loss function
- · Parameter estimates:

$$\hat{\theta}_{K,b,T} = \arg\min_{\theta \in \Theta} \frac{1}{Tb} \sum_{t=1}^{T} k_{tT} \ell_t(\theta), \tag{4}$$

where

- $-k_{tT} = K((t-T)/(Tb)), K(\cdot)$ is a weighting function;
- $b = b_T > 0$ is the tuning parameter satisfying $b \to 0$, $Tb \to \infty$ as $T \to \infty$.

- We adopt the framework of locally stationary: Karmakar et al. (2022, JoE), Dahlhaus et al. (2019, Bernoulli), etc..
- We assume that

$$\theta_{t,T} = \theta(t/T) = \theta(u), \ \theta(\cdot) : (0,1] \longrightarrow \Theta.$$

• What are the minimal conditions on $\theta(\cdot)$ to ensure that $\hat{\theta}_{K.b.T} \stackrel{p}{\to} \theta_1$?

Hölder-type continuity condition:

$$|\theta_{\ell}(t/T) - \theta_{\ell}(s/T)| \leq c_{\ell} \left(\frac{|t-s|}{T}\right)^{\gamma}, \quad t, s = 1, 2, \cdots, T,$$

for each $\ell = 1, 2, \dots, k$ where $0 < \gamma \le 1$ and c_{ℓ} is a positive bounded constant.

Example

- ① Abrupt structural change: $\theta_{\ell}(\cdot) = a_T \mathbb{1}_{\{t/T > e\}}$, where $e \in (0, 1]$ and $a_T = o(1)$ as $T \to \infty$;
- ② Smooth structural change: $\theta_{\ell}(\cdot)$ is twice continuously differentiable;
- (3) Realization of persistent bounded stochastic processes: $\theta_{\ell,t} = \frac{1}{\sqrt{T}} v_t$, where $(1 L)^{d-1} v_t$, i.i.d. \mathcal{N} .

Hölder-type continuity condition:

$$|\theta_{\ell}(t/T) - \theta_{\ell}(s/T)| \leq c_{\ell} \left(\frac{|t-s|}{T}\right)^{\gamma}, \quad t, s = 1, 2, \cdots, T,$$

for each $\ell = 1, 2, \dots, k$ where $0 < \gamma \le 1$ and c_{ℓ} is a positive bounded constant.

Example

- ① Abrupt structural change: $\theta_{\ell}(\cdot) = a_T \mathbb{1}_{\{t/T > e\}}$, where $e \in (0, 1]$ and $a_T = o(1)$ as $T \to \infty$;
- ② Smooth structural change: $\theta_{\ell}(\cdot)$ is twice continuously differentiable;
- ® Realization of persistent bounded stochastic processes: $\theta_{\ell,t} = \frac{1}{\sqrt{T}} v_t$, where $(1 L)^{d-1} v_t$, i.i.d. \mathcal{N} .

Hölder-type continuity condition:

$$|\theta_{\ell}(t/T) - \theta_{\ell}(s/T)| \leq c_{\ell} \left(\frac{|t-s|}{T}\right)^{\gamma}, \quad t, s = 1, 2, \cdots, T,$$

for each $\ell = 1, 2, \dots, k$ where $0 < \gamma \le 1$ and c_{ℓ} is a positive bounded constant.

Example

- ① Abrupt structural change: $\theta_{\ell}(\cdot) = a_T \mathbb{1}_{\{t/T > e\}}$, where $e \in (0, 1]$ and $a_T = o(1)$ as $T \to \infty$;
- ② Smooth structural change: $\theta_{\ell}(\cdot)$ is twice continuously differentiable;
- (3) Realization of persistent bounded stochastic processes: $\theta_{\ell,t} = \frac{1}{\sqrt{T}} v_t$, where $(1 L)^{d-1} v_t$, i.i.d. \mathcal{N} .

· It can be shown that

$$\|\hat{\theta}_{K,b,T} - \theta_1\| = O_p \left((Tb)^{-1/2} + b^{\gamma} \right).$$

• Easier to estimate if γ is large.

END-OF-SAMPLE RISK

- Two inputs $\Rightarrow K$ and b
- End-of-sample risk:

$$E_T\left(\ell_{T+h}(\hat{\theta}_{K,b,T})\right)\approx R_T^1+R_T^2+R_T^3,$$

where

$$\begin{split} R_T^1 &= E_T \left(\ell_{T+h}(\theta_1) \right) \\ R_T^2 &= E_T \left(\frac{\partial \ell_{T+h}(\theta_1)}{\partial \theta'} \right) \left(\hat{\theta}_{K,b,T} - \theta_1 \right) \\ R_T^3 &= \frac{1}{2} (\hat{\theta}_{K,b,T} - \theta_1)' \, E_T \left(\frac{\partial^2 \ell_{T+h}(\overline{\theta}_1)}{\partial \theta \partial \theta'} \right) \left(\hat{\theta}_{K,b,T} - \theta_1 \right), \end{split}$$

and $\overline{\theta}_1$ lies between $\hat{\theta}_{K,b,T}$ and θ_1 .

DECOMPOSITION

- R_T^1 : does not involve parameter estimates
- R_T^2 : drops out if $E_T\left(\frac{\partial \ell_{T+h}(\theta_1)}{\partial \theta'}\right) = 0$
 - ε_{t+h} are uncorrelated → Back to example
- Minimizing the conditional expected loss is equivalent to minimize R_T^3 .
- Define the regret risk Hirano and Wright (2017, ECTA):

$$R_{T}(K,b) = (\hat{\theta}_{K,b,T} - \theta_{1})' E_{T} \left(\frac{\partial^{2} \ell_{T+h}(\overline{\theta}_{1})}{\partial \theta \partial \theta'} \right) (\hat{\theta}_{K,b,T} - \theta_{1}). \tag{5}$$

• Select *b* by minimizing R_T^3 :

$$\hat{b} := \arg\min_{b \in I_T} (\hat{\theta}_{b,T} - \theta_1)' \, \omega_T(\overline{\theta}_1) \, (\hat{\theta}_{b,T} - \theta_1). \tag{6}$$

where $I_T = [\underline{b}, \overline{b}]$ is the candidate choice set of b.

Theorem

Under certain regularity conditions, the optimal tuning parameter \hat{b} obtained by minimizing (6) is of order $T^{-\frac{1}{2\gamma+1}}$ in probability for some $0 < \gamma \le 1$.

- (6) is not feasible since it involves θ_1 .
- If $\theta(\cdot)$ is twice continuously differentiable, we can approximate $\theta(1)$ by

$$\theta(t/T) \approx \theta + \theta' \left(\frac{t-T}{T}\right) + \frac{\theta''}{2} \left(\frac{t-T}{T}\right)^2,$$
 (7)

where $\theta = \theta_1$, $\theta' = \theta_1^{(1)}$ and $\theta'' = \theta^{(2)}(c)$, where c lies between 1 and t/T.

▶ More on example

• Then, the local-linear estimator is defined by the minimizer of

$$\min_{(\theta,\theta')\in\Theta\times\Theta'} \frac{1}{T\tilde{b}} \sum_{t=1}^{I} \tilde{k}_{tT} \ell_t \Big(\theta + \theta'(t/T - 1)\Big), \tag{8}$$

where

$$- \tilde{k}_{tT} = K\left(\frac{t-T}{T\tilde{h}}\right);$$

- \tilde{b} is such that $\tilde{b} \to 0$ and $T\tilde{b} \to \infty$ as $T \to \infty$.

• This leads to the following feasible selection criteria:

$$\hat{b} := \arg\min_{b \in I_T} (\hat{\theta}_{b,T} - \tilde{\theta}_T)' \, \omega_T (\tilde{\theta}_T) \, (\hat{\theta}_{b,T} - \tilde{\theta}_T). \tag{9}$$

where

 $-\tilde{\theta}_T$: first $k \times 1$ elements of the minimizer of (8).

Theorem

Under certain regularity conditions, choosing \hat{b} by (9) is asymptotically optimal in the sense that

$$(\hat{\theta}_{b,T} - \tilde{\theta}_T)' \, \omega_T (\tilde{\theta}_T) \, (\hat{\theta}_{b,T} - \tilde{\theta}_T) \asymp \inf_{b \in I_T} \, (\hat{\theta}_{b,T} - \theta_1)' \, \omega_T (\theta_1) \, (\hat{\theta}_{b,T} - \theta_1)$$

where $\tilde{\theta}_T$ is the local linear estimator from (8) with tuning parameter \tilde{b} .

Typical choices of weighting function:

$$K_1(u) = \mathbb{1}_{\{-1 \le u \le 0\}}, \quad K_2(u) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) \mathbb{1}_{\{u \le 0\}},$$

$$K_3(u) = \frac{3}{2} (1 - u^2) \mathbb{1}_{\{-1 \le u \le 0\}}.$$

- All data are used for $K_2(u)$, but not for $K_1(u)$ and $K_3(u)$. G
 - Kapetanios et al. (2019, JAE), Dendramis et al. (2020, JRSSa): find $K_2(u)$ is the best
 - Farmer et al. (2023, JF): recommend to use $K_3(u)$
- What types of weighting function shall we choose?

• (4) admits the following decomposition:

$$\hat{\theta}_{K,b,T} - \theta_1 = -H_{1,T}^{-1}(\theta_1) \Big(\underbrace{S_{1,T}}_{variance} + \underbrace{B_{2,T}}_{bias}\Big),$$

where

$$\begin{split} H_{1,T}(\theta_1) &= \frac{1}{Tb} \sum_{t=1}^T k_{tT} \frac{\partial^2 \ell_t(\theta_1)}{\partial \theta \partial \theta'}, \quad S_{1,T} = \frac{1}{Tb} \sum_{t=1}^T k_{tT} \frac{\partial \ell_t(\theta(t/T))}{\partial \theta}, \\ B_{2,T} &= \frac{1}{Tb} \sum_{t=1}^T k_{tT} \frac{\partial^2 \ell_t(\overline{\theta}_1)}{\partial \theta \partial \theta'} \left(\theta_1 - \theta(t/T)\right), \end{split}$$

and $\overline{\theta}_1$ lies between $\hat{\theta}_{K,b,T}$ and θ_1 .

① If $T^{1/2}b^{1/2+\gamma} \rightarrow 0$, we have

$$Tb \cdot R_T(K, b) \stackrel{d}{\longrightarrow} \varphi_{0,K} \Sigma_1^{1/2} Z' \omega_T(\theta_1) Z \Sigma_1^{1/2},$$

where $\Phi_{0,K} = \int_{\mathcal{C}} K^2(u) du$, $Z \sim \mathcal{N}(0, I_k)$ and Σ_1 is defined as in Lemma C1;

 \blacksquare If $T^{1/2}b^{1/2+\gamma} \to \infty$, we have

$$b^{-2\gamma} \cdot R_T(K, b) \stackrel{p}{\longrightarrow} \mu_{\gamma, K}^2 \mathcal{C}' \omega_T(\theta_1) \mathcal{C},$$

where $\mu_{\gamma,K} = \int u^{\gamma} K(u) du$ and $\mathcal{C} = (c_1, \dots, c_{\overline{k}})'$ is a collection of Hölder constant;

(ii) If $T^{1/2}b^{1/2} \approx b^{-\gamma}$, we have

$$Tb \cdot \left(R_T(K,b) + b^{2\gamma} \mu_{\gamma,K}^2 \mathfrak{C}' \omega_T \big(\theta_1 \big) \mathfrak{C} \right) \stackrel{d}{\longrightarrow} \varphi_{0,K} \Sigma_1^{1/2} Z' \omega_T \big(\theta_1 \big) Z \Sigma_1^{1/2},$$

where $\mu_{V,K}$, \mathbb{C} and $\phi_{0,K}$ are defined as in (i) and (ii).

WHAT HAVE WE LEARNED?

- Reflects the usual bias-variance trade-off:
 - When variance dominates $T^{1/2}b^{1/2+\gamma} \to 0$, choose a weighting function which has smallest $\phi_{0,K}$;
 - Otherwise, $\mu_{\gamma,K}$ also plays a role.
- Assume $\gamma = 1$:
 - → May fall into cases (ii) and (iii), but at the slowest rate

SUMMARY OF THE RESULTS

- We consider DGPs used in Pesaran and Timmermann (2007, JoE) and Inoue et al. (2017, JoE).
- Types of time variation include all considered in → Example
- We find that our methods are useful: results are robust under various types of structural change.
- Using all data and downweighting them $(K_2(u))$ is generally preferred.

TARGET

• (log) Yield of an *n*-year bond:

$$y_t^{(n)} = -\frac{1}{n} p_t^{(n)},$$

where

- $-p_t^{(n)}$ is the log price of the *n*-year zero-coupon bond at time *t*.
- Holding-period return:

$$r_{t+12}^{(n)} = p_{t+12}^{(n-1)} - p_t^{(n)}.$$

The excess return is

$$rx_{t+12}^{(n)} = r_{t+12}^{(n)} - y_t^{(1)},$$

where

 $-y_t^{(1)}$ is the one-year risk-free rate.

PREDICTIVE REGRESSIONS

Fama-Bliss (FB) univariate

$$rx_{t+12}^{(n)} = \alpha + \beta fs_t^{(n)} + \varepsilon_{t+12};$$

Cochrane-Piazzesi (CP) univariate

$$rx_{t+12}^{(n)} = \alpha + \beta CP_t + \varepsilon_{t+12};$$

Fama-Bliss and Cochrane-Piazzesi predictors

$$rx_{t+12}^{(n)} = \alpha + \beta_1 fs_t^{(n)} + \beta_2 CP_t + \varepsilon_{t+12}.$$

▶ More details

DATA

- Bond markets:
 - United States (Liu and Wu (2021, JFE))
 - Canada (Bank of Canada)
 - United Kingdom (Bank of England)
 - Japan (Ministry of Finance Japan)
- Sample period: 1986M1 2022M12
- Maturity up to 5 years
- n = 2, 3, 4, 5

FORECAST EVALUATION

- Benchmark: 3 PCs from global yield curve
- Starts from 2000M1
- MSE loss:

$$R(K,b) = (\hat{\theta}_{K,b,T} - \theta_1)' \left(X_T X_T' \right) (\hat{\theta}_{K,b,T} - \theta_1)$$
 (10)

- Set $b = cT^{-1/3}$, c ranges from 1 to 7 with a course grid of width 0.1
- $\tilde{b} = 1.06T^{-1/5}$
- Weighting functions:

$$K_1(u) = \mathbb{1}_{\{-1 < u < 0\}}, \quad K_2(u) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) \mathbb{1}_{\{u < 0\}},$$

$$K_3(u) = \frac{3}{2} (1 - u^2) \mathbb{1}_{\{-1 < u < 0\}}.$$

RESULTS

- ▶ details
 - VERY PROMISING: sizable and sometimes significant improvement over the benchmark forecasts
 - particularly when $K_3(u)$ is used with optimal tuning parameter selection
 - Japan: $K_2(u)$ is better, but differences are small
 - Non-local estimator?
 - Not useful, particularly for Canada

CONCLUSION

- What types of time variation are allowable for using estimator like (3)?
 - A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
 - A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?
 - A: No, properties of TVP, rolling window selection outperformed

CONCLUSION

- What types of time variation are allowable for using estimator like (3)?
 - A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
 - A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?
 - A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like (3)?
 - A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
 - A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?
 - A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like (3)?
 - A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
 - A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?
 - A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like (3)?
 - A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
 - A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?
 - A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like (3)?
 - A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
 - A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = \mathbb{1}_{\{-1 \le u \le 0\}}$ always the best choice?
 - A: No, properties of TVP, rolling window selection outperformed

Notes: black line: $\theta(t/T) = 0.9 - \frac{1}{T^{0.2}}\mathbbm{1}\{t \geqslant 0.5T + 1\}$; blue line: $\theta(t/T) = 0.9 - 0.4(t/T)^2$; red line: $\theta(t/T)$ is a realization from the process $\frac{1}{\sqrt{T}}v_t$, where Δv_t i.i.d. (0,1).

• $\overline{\theta}_{\ell,t}$ satisfies:

$$|\overline{\theta}_{\ell,t} - \overline{\theta}_{\ell,s}| \leqslant \xi_{\ell,ts} \left(\frac{|t-s|}{T}\right)^{\gamma}$$

where

– $\xi_{\ell,ts}$ has a thin-tailed distribution:

$$-\zeta_{\ell,ts}$$
 has a triff-tailed distribution.

 $\mathbb{P}\left(|\xi_{\ell,ts}| > \omega\right) \leqslant \exp\left(-c_0|\omega|^{\alpha}\right), \omega > 0, \text{ for some } c_0 > 0, \alpha > 0$

▶ Return to main slide

Example

suppose that $\theta(t/T)$ is a realization of a bounded random walk process:

suppose that
$$\theta(t/T)$$
 is a realization of a bounded random walk process: $\frac{1}{\sqrt{T}}v_t$, where $\Delta v_t \stackrel{i.i.d.}{\sim} \mathcal{N}$. Simple algebra gives $\theta(t/T) = \sqrt{\frac{t}{T}} \frac{1}{\sqrt{t}}v_t$. We know that $\frac{1}{\sqrt{T}}v_t = O_D(1)$, this implies that $\theta(t/T) = C_t \sqrt{\frac{t}{T}}$, where C_t is a positive

that $\frac{1}{\sqrt{t}}v_t = O_p(1)$, this implies that $\theta(t/T) = C_t\sqrt{\frac{t}{T}}$, where C_t is a positive bounded constant.

▶ Return to main slide

Notes: Shape of the weighting function with T = 500, $b = cT^{-1/3}$ with c equal to 1,2.5 and 5.

• Return to main slide

• The Fama-Bliss (FB) forward spreads are given by

$$fs_t^{(n)} = f_t^{(n)} - y_t^{(1)} = p_t^{(n-1)} - p_t^{(n)} - y_t^{(1)}.$$

 The Cochrane-Piazzesi (CP) factor is constructed as the linear combination of forward rates:

$$CP_t = \hat{\gamma}' \, \boldsymbol{f}_t,$$

where

$$- \ \, \boldsymbol{f}_t = (y_t^{(1)},\, f_t^{(2)},\, f_t^{(3)},\, f_t^{(4)},\, f_t^{(5)})';$$

- The coefficient vector $\hat{\gamma}$ is estimated from a predictive regression of $\frac{1}{4}\sum_{n=2}^{5} rx_{t+12}^{(n)}$ on $[1 \ \mathbf{f}'_t]'$.

▶ Return to main slide

Table 1: Out-of-sample forecasting performance on bond returns: United States

	Non-local	R = 60	Opt-R	Opt-G	Opt-E		Non-local	R = 60	Opt-R	Opt-G	Opt-E
		US	;				US.	A - 3 years	s		
PC-yields	1.592					PC-yields	6.046				

			,						,	-	
PC-yields	1.592					PC-yields	6.046				
FB	1.047	1.150	1.103	0.958	0.852	FB	0.979	1.038	0.967	0.922	0.743
CP	1.113	1.122	0.949	1.005	0.744	CP	1.106	1.075	0.899	0.965	0.705
FB+CP	1.107	0.964	0.876	0.919	0.652	FB+CP	1.116	0.903	0.780	0.882	0.578*
		US	A - 4 years	s				US	A - 5 years	5	
PC-yields	11.836					PC-yields	18.670				

FB

CP

FB+CP

0.941

1.099

1.075

0.872 0.875 0.900

1.025

0.751 0.693 0.861

0.862 0.941

0.707

0.738*

0.535*

0.709

0.518*

0.943 0.708*

FB

CP

FB+CP

0.960

1.101

1.099

0.943 0.884 0.905

1.037 0.863

0.778 0.694 0.841

Table 2: Out-of-sample forecasting performance on bond returns: Canada

Non-local	R = 60	Opt-R	Opt-G	Opt-E	Non-local	R = 60	Opt-R	Opt-G	Opt-E
	Cana	da - 2 yea	rs			Canad	da - 3 year	'S	

	Non-local	R = 60	Opt-R	Opt-G	Opt-E		Non-local	R = 60	Opt-R	Opt-G	Opt
		Cana	da - 2 yea	rs				Cana	da - 3 yea	rs	
C-yields	1.171					PC-yields	3.534				
FB	1.011	0.920	0.953	0.826	0.726	FB	1.029	0.868	0.905	0.859	0.70
CP	1.051	0.888	0.908	0.809	0.744	CP	1.094	0.907	0.898	0.852	0.75

PC-yields

FB

CP

FB+CP

10.133

1.032

1.165

1.149

0.873 0.899 0.929 0.730

0.931 0.864 0.914 0.781

0.843 0.867 0.895 0.682

		Cana	da - 2 yea	rs	Canada - 3 years						
PC-yields	1.171					PC-yields	3.534				
FB	1.011	0.920	0.953	0.826	0.726	FB	1.029	0.868	0.905	0.859	0.706
CP	1.051	0.888	0.908	0.809	0.744	CP	1.094	0.907	0.898	0.852	0.757
FB+CP	1.034	0.861	0.931	0.798	0.687	FB+CP	1.096	0.813	0.852	0.826	0.642
		Cana	da - 4 yea	rs			Cana	da - 5 yea	rs		

PC-yields

FB

CP

FB+CP

6.545

1.033

1.129

1.137

0.860 0.887 0.892 0.707

0.911 0.859 0.882 0.758

0.822 0.847 0.861 0.661

Table 3: Out-of-sample forecasting performance on bond returns: UK

	Non-local	R = 60	Opt-R	Opt-G	Opt-E		Non-local	R = 60	Opt-R	Opt-G	Opt-E
				UK	- 3 years						
PC-yields	1.415					PC-yields	4.378				
FB	0.807	0.821	0.907	0.790	0.648	FB	0.897	0.897	1.057	0.866	0.769
CP	0.923	0.764	0.704	0.646	0.593	CP	1.041	0.839	0.769	0.729	0.650
FB+CP	0.921	0.688	0.669	0.645	0.514	FB+CP	1.050	0.751	0.745	0.724	0.591
		UK	- 4 years					UK	- 5 years		
PC-yields	8.224					PC-yields	12.962				
FB	0.949	0.942	1.042	0.897	0.884	FB	0.980	0.983	1.028	0.923	0.936
CP	1.087	0.884	0.811	0.782	0.691*	CP	1.097	0.916	0.850	0.813	0.727

FB+CP

1.075

0.835 0.811 0.789 0.669

FB+CP

0.797 0.780 0.770 0.638

1.092

Table 4: Out-of-sample forecasting performance on bond returns: Japan

						I					
	Non-local	R = 60	Opt-R	Opt-G	Opt-E		Non-local	R = 60	Opt-R	Opt-G	Opt-E
				Jap	an - 3 year	r's					
PC-yields	0.333					PC-yields	1.146				
FB	0.222	0.105*	0.115*	0.099*	0.097*	FB	0.244	0.148*	0.167*	0.145*	0.150*
CP	0.582	0.102*	0.112*	0.093*	0.098*	CP	0.677	0.155*	0.164*	0.140*	0.144*
FB+CP	0.610	0.101*	0.134*	0.091*	0.094*	FB+CP	0.679	0.149*	0.179*	0.140*	0.141*
		Jap	oan - 4 yea	rs		Japan - 5 years					
PC-yields	2.517					PC-yields	4.050				
FB	0.246	0.197*	0.186*	0.186*	0.165*	FB	0.291	0.267*	0.243*	0.247*	0.219*
CP	0.817	0.181*	0.182*	0.162*	0.160*	CP	0.902	0.220*	0.223*	0.196*	0.190*
FB+CP	0.772	0.186*	0.189*	0.162*	0.168*	FB+CP	0.871	0.182*	0.187*	0.167*	0.169*

[▶] Return to main slide