Utilização de Métodos Númericos para Encontrar Raizes

Jhonattan C. B. Cabral¹, Daniel M. P. Carvalho¹

¹Instituto de Informática e Matemática Aplicada (DIMAp) Universidade Federal do Rio Grande do Norte (UFRN)

jhonattan.yoru@gmail.com, danielmarx08@gmail.com

Abstract. Task applied in the first unit of the Numerical Calculus discipline (DIM0404), aims to use some numerical methods to find approximate roots for some specific problems.

Resumo. Tarefa aplicada na primeira unidade da disciplina de Cálculo Numérico (DIM0404), tem como objetivo utilizar de alguns métodos numéricos para encontrar raízes aproximadas para alguns determinados problemas.

1. Descreva o método da Bisseção e utilize-o para encontrar as raízes de:

$$f(x) = x^3 + 4.6x^2 + 1.6x - 7.2$$
.

O método da Bisseção trata-se da primeira técnica baseada no Teorema do Valor Intermediário para encontrar raízes aproximadas. Suponha que f seja uma função contínua definida no intervalo [a,b], com f(a) e f(b) de sinais opostos. De acordo com o Teorema do Valor Intermediário, existe um número p em (a,b) com f(p)=0. [Burden and Faires 2008]

1.1. Gráfico

Visando a facilitação da aplicação do método numérico, optamos em estudar o gráfico, possibilitando assim a aplicação de intervalos tendenciosos no algoritmo.

Figura 1. Gráfico da função $f(x) = x^3 + 4.6x^2 + 1.6x - 7.2$.

Observando o gráfico, percebemos que a função possui 3 raízes (-3.6, -2 e 1). Para facilitar o encontro de cada uma delas, deixamos fixos alguns intervalos no algoritmo, são eles: [-5, -3], [-3, -1] e [-1, 2].

1.2. Algoritmo

```
* @file questao01.cpp
    * @brief Universidade Federal do Rio Grande Do Norte (UFRN)
    * @brief DIM0404 - Calculo Numerico
    * @brief Tarefa: Encontrar raizes de equacoes
    * @date 27/02/2018
    * @author Jhonattan Cabral e Daniel Marx.
   */
  #include <iostream>
  #include <math.h>
11
  #include <stdlib.h>
  using namespace std;
14
15
  double funcao01(double x);
  double (*func01) (double) = funcao01; //Ponteiro para a funcao01
17
  bool funcaoBissecao(double a, double b, double (*func)(double),
      double *p);
19
  int main()
20
21
       double p = 0;
       std::cout << ">>Consultando o grafico percebemos que a
23
          funcao possui 3 raizes" << std::endl;</pre>
       //>>Primeira raiz
24
       bool r1 = funcaoBissecao (-1, 2, \text{ func01}, \&p);
25
       if(r1)
26
           std::cout << "Para o intervalo de -1 ate 2, temos a raiz</pre>
               (aproximada): " <<</pre>
   p << std::endl;</pre>
28
       else
29
           std::cout << "O metodo falhou" << std::endl;</pre>
30
31
       p = 0;
32
       //>>Segunda raiz
33
       bool r2 = funcaoBissecao(-3, -1, func01, &p);
34
       if(r2)
35
           std::cout << "Para o intervalo de -3 ate -1, temos a
36
               raiz(aproximada): " <<</pre>
  p << std::endl;
       else
38
           std::cout << "O metodo falhou" << std::endl;</pre>
39
40
       p = 0;
41
       //>>Terceira raiz
42
       bool r3 = funcaoBissecao(-5, -3, func01, &p);
```

```
if(r3)
44
           std::cout << "Para o intervalo de -5 ate -3, temos a</pre>
45
               raiz(aproximada): " <<</pre>
  p << std::endl;
46
       else
47
           std::cout << "O metodo falhou" << std::endl;</pre>
48
49
           return 0;
50
51
52
53
    *@brief Funcao da questao 01
54
    *@param x - Valor de entrada para a funcao
55
    *@return Resultado da funcao
56
   */
57
  double funcao01(double x)
58
       return pow(x,3) + 4.6*pow(x,2) + 1.6*x - 7.2;
  }
61
62
63
    * @brief Metodo iterativo da bissecao
64
    * @param a - Inicio do intervalo
65
    * @param b - Fim do intervalo
    * @param *p - ponteiro para a variavel que ira receber o valor
67
       da raiz
    * @param *func - Ponteiro pra funcao na qual se deseja
68
    * encontrar as raizes
69
    * @return true - Se o metodo conseguir encontrar a raiz(
       aproximada)
    * @return false - Caso o metodo falhe e nao consiga encontrar a
71
        raiz
   */
72
  bool funcaoBissecao (double a, double b, double (*func) (double),
      double *p)
74
  {
       double fa, fp;
75
76
       for (int i = 0; i < 1000; i++)
77
78
           fa = func(a);
           *p = (a + b)/2;
80
           fp = func(*p);
81
82
           //Tolerancia de 0.000001
83
           if(fp == 0 or ((b - a)/2) < 0.000001)
84
85
                return true;
86
```

```
else
             {
89
                  //Verifica se possui o mesmo sinal
90
                  if(fa*fp > 0)
91
                       a = *p;
92
                  else
                      b = *p;
94
             }
95
        }
96
        return true;
97
```

Com o algoritmo, podemos perceber que a função que contém o método da Bisseção possui uma clara semelhança com o método de busca binária.

1.3. Resultados

Para a obtenção dos resultados, utilizamos uma tolerância fixa de 0.000001(mostrado no algoritmo). E como falado antes, observando o gráfico da função, inserimos no algoritmo intervalos tendenciosos, assim facilitando o encontro das raízes.

```
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI/CN/Atividade01/códigos - S S

Arquivo Editar Ver Pesquisar Terminal Ajuda
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $ ./questao01
>>Consultando o grafico percebemos que a funcao possui 3 raizes
Para o intervalo de -1 ate 2, temos a raiz(aproximada): 1
Para o intervalo de -3 até -1, temos a raiz(aproximada): -2
Para o intervalo de -5 ate -3, temos a raiz(aproximada): -3.6
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $
```

Figura 2. Resultados obtidos.

2. Descreva o método de Newton-Raphson e utilize-o para encontrar as raízes de $x^3 - 1.7x^2 - 12.78x - 10.08$.

O método de Newton é um dos métodos numéricos mais eficientes e conhecidos para a solução de um problema de determinação de raiz e pode ser introduzido de várias formas. [Burden and Faires 2008]. Uma das formas é escolhendo uma aproximação inicial para a função. Depois, calculasse a Derivada da função nesse ponto e a interseção dela com o eixo das abcissas, a fim de encontrar uma melhor aproximação para a raiz. Repetindo-se o processo, cria-se um método iterativo para encontrarmos a raiz da função.

2.1. Gráfico

Ainda usando a estratégia que foi aplicada para resolver a questão 1, decidimos estudar o gráfico a fim de estabelecer pontos que facilitem o encontro das raízes.

Figura 3. Gráfico da função $f(x) = x^3 - 1.7x^2 - 12.78x - 10.08$.

Na analise do gráfico concluímos que a função contem 3 raízes (-2.1, -1 e 4.8). Analogamente a questão 1, deixamos fixos 3 pontos, são eles: -4, 2 e 9.

2.2. Derivada da função

Como já falado antes, o Método de Newton-Raphson exige o cálculo da derivada da função a qual se deseja encontrar as raízes. Calculando a derivada simples de $f(x) = x^3 - 1.7x^2 - 12.78x - 10.08$, podemos obter $f'(x) = 3x^2 - 3.4x - 12.78$.

2.3. Algoritmo

```
* @file questao02.cpp
    * @brief Universidade Federal do Rio Grande Do Norte (UFRN)
    * @brief DIM0404 - Calculo Numerico
    * @brief Tarefa: Encontrar raizes de equacoes
    * @date 27/02/2018
   * @author Jhonattan Cabral e Daniel Marx.
    */
8
  #include <iostream>
  #include <math.h>
  #include <cmath>
  #include <stdlib.h>
13
  double funcao02 (double x);
15
  double func02Derivada(double x);
  double (*func02) (double) = funcao02; //Ponteiro para a funcao02
  double (*funcDerivate) (double) = func02Derivada; //Ponteiro para
      a derivada.
  bool funcaoNewton(double p0, double (*func)(double), double (*
19
     funcDerivate) (double), double *p);
20
  int main()
21
22
           double p = 0;
23
       std::cout << ">>Consultando o grafico percebemos que a
24
          funcao possui 3 raizes" << std::endl;</pre>
```

```
25
       //>>Primeira raiz
26
       bool r1 = funcaoNewton(-4, func02, funcDerivate, &p);
27
28
                std::cout << "Para o ponto inicial -4, temos a raiz(</pre>
                   aproximada): " << p << std::endl;</pre>
           else
30
                std::cout << "O metodo falhou" << std::endl;</pre>
31
32
       p = 0;
33
       //>>Segunda raiz
34
       bool r2 = funcaoNewton(2, func02, funcDerivate, &p);
35
       if(r2)
36
                std::cout << "Para o ponto inicial 2, temos a raiz(</pre>
37
                   aproximada): " << p << std::endl;</pre>
38
                std::cout << "O metodo falhou" << std::endl;</pre>
40
       p = 0;
41
       //>>Terceira raiz
42
       bool r3 = funcaoNewton(9, func02, funcDerivate, &p);
43
       if(r3)
44
                std::cout << "Para o ponto inicial 9, temos a raiz(</pre>
45
                   aproximada): " << p << std::endl;</pre>
             else
46
                std::cout << "O metodo falhou" << std::endl;</pre>
47
48
           return 0;
49
50
51
52
    *@brief Funcao da questao 02
53
    *@param x - Valor de entrada para a funcao
54
    *@return Resultado da funcao
   */
  double funcao02(double x)
58
       return pow(x,3) - 1.7 * pow(x,2) - 12.78 * x - 10.08;
59
60
61
62
    *@brief Derivada da funcao da questao 02
    *@param x - Valor de entrada da funcao
64
    *@return Resultado da funcao
65
   */
  double func02Derivada(double x)
           return 3*pow(x,2) - 3.4*x - 12.78;
69
```

```
71
   /*
72
   * @brief Metodo iterativo de Newton
73
   * @param p0 - Ponto de inicio para a estimativa
74
   * @param *p - Ponteiro para uma variavel que ira receber a raiz
75
       (se houver)
    * @param *func - Ponteiro pra funcao na qual se deseja
    * encontrar as raizes.
77
   * @param *funcDerivate - Ponteiro pra derivada da funcao da
78
       questao 02
    * @return true - Caso o metodo seja eficiente e retorne a raiz(
       aproximada)
   * @return false - Caso o metodo falhe e nao consiga encontrar a
80
        raiz.
   */
81
  bool funcaoNewton(double p0, double (*func)(double), double(*
82
      funcDerivate) (double), double *p)
83
           for (int i = 0; i < 1000; i++)
85
                    *p = p0 - func(*p)/funcDerivate(*p);
86
                    //Tolerancia fixa de 0.000001
87
                    if(std::abs(*p - p0) < 0.000001)
88
                            return true;
90
91
                   p0 = *p;
92
93
           return false;
```

2.4. Resultados

Utilizamos uma tolerância fixa igual a questão anterior, e também como já mencionado antes, fizemos o uso de pontos tendenciosos a fim de achar todas as raízes.

```
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI/CN/Atividade01/códigos - ♥ ♥
Arquivo Editar Ver Pesquisar Terminal Ajuda
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $ ./questao02
>>Consultando o grafico percebemos que a funcao possui 3 raizes
Para o ponto inicial -4, temos a raiz(aproximada): -2.1
Para o ponto inicial 2, temos a raiz(aproximada): -1
Para o ponto inicial 9, temos a raiz(aproximada): 4.8
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $ ■
```

Figura 4. Resultados obtidos.

3. (Burden, pag.62) Um objeto em queda vertical no ar está sujeito á resistência, bem como à força da gravidade. Suponha que um objeto com massa m seja solto a uma altura s_0 e que a altura do objeto após t segundos seja

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m})$$

Onde $g=32.17pes/s^2$ e k representa o coeficiente de resistência do ar em lbs/pe. Suponha que $s_0=300pes, m=0.25lb$ e k=0.1lbs/pe. Determine, com precisão de 0.00001s, o tempo decorrido até que o objeto alcance o solo.

Para solucionar este problema decidimos utilizar o método da Bisseção. Dessa vez optamos por uma situação mais real e decidimos não estudar o gráfico da função. Após substituir os valores dados pelo questão, teremos a seguinte função:

$$s(t) = 300 - \frac{0.25 * 32.17}{0.1}t + \frac{0.25^2 * 32.17}{0.1^2}(1 - e^{-0.1t/0.25})$$

3.1. Algoritmo

```
* @file questao03.cpp
   * @brief Universidade Federal do Rio Grande Do Norte (UFRN)
   * @brief DIM0404 - Calculo Numerico
   * @brief Tarefa: Encontrar raizes de equacoes
   * @date 27/02/2018
   * @author Jhonattan Cabral e Daniel Marx.
   */
  #include <iostream>
 #include <math.h>
 #include <cmath>
  #include <stdlib.h>
13
14
  double funcao03(double t);
  double (*func03) (double) = funcao03; //Ponteiro para a funcao03
  double funcaoBissecao(double t1, double t2, double (*func)(
17
     double));
18
  int main(void)
20
       std::cout << "Tempo decorrido ate certo objeto alcancar o</pre>
21
          solo, seguindo a formula da questao" << std::endl;</pre>
22
      //>>Primeira raiz
23
       double r1 = funcaoBissecao(0, 1000, func03);
```

```
std::cout << "Tempo aproximado para chegada ao solo, foi de:</pre>
           " << r1 << std::endl;
           return 0;
26
27
  }
28
    *@brief Funcao da questao 03
30
    *@param x - Valor de entrada para o tempo de queda
31
    *@return Resultado da funcao
32
   */
33
  double funcao03(double t)
35
           double g = 32.17;
36
           double s0 = 300;
37
           double m = 0.25;
38
           double k = 0.1;
39
40
           return s0 - ((m*g)/k)*t + ((pow(m,2)*g)/pow(k,2))*(1 -
41
               pow(M_E,((-1*k)*t)/m)); //M_E - constante do C++ para
                numero de Euler
  }
42
43
   * @brief Metodo iterativo da bissecao
45
    * @param t1 - Inicio do intervalo
46
    * @param t2 - Fim do intervalo
47
    * @param *func - Ponteiro pra funcao na qual se deseja
48
    * encontrar as raizes
49
    * @return p - Valor aproximado do tempo decorrido ate o objeto
       chegar ao solo
51
  double funcaoBissecao(double t1, double t2, double (*func)(
52
      double))
53
       double fa, fp, p;
54
       for(int i = 0; i < 10000; i++)</pre>
56
       {
57
           fa = func(t1);
58
           p = (t1 + t2)/2;
59
           fp = func(p);
61
           if(fp == 0 \text{ or } ((t2 - t1)/2) < 0.00001)
62
63
               return p;
64
           }
65
           else
           {
67
                //Verifica se possui o mesmo sinal
```

```
if (fa*fp > 0)
t1 = p;

else

t2 = p;

}

return p;

69

if (fa*fp > 0)
t1 = p;

return p;

69

if (fa*fp > 0)
t1 = p;

69

if (fa*fp > 0)
t1 = p;

69

if (fa*fp > 0)
t2 = p;

69

if (fa*fp > 0)
t2 = p;

69

if (fa*fp > 0)
t2 = p;

69

if (fa*fp > 0)
t3 = p;

69

if (fa*fp > 0)
t4 = p;

69

if (fa*fp > 0)
t5 = p;

69

if (fa*fp > 0)
t6 = p;

69

if (fa*fp > 0)
t7 = p;

69

if (fa*fp > 0)
t1 = p;

69

if (fa*fp > 0)
t2 = p;

69

if (fa*fp > 0)
t3 = p;

69

if (fa*fp > 0)
t4 = p;

69

if (fa*fp > 0)
t5 = p;

69

if (fa*fp > 0)
t6 = p;

69

if (fa*fp > 0)
t7 = p;

69

if (fa*fp >
```

No código fizemos algumas poucas alterações se compararmos com o código da questão 1. Primeiro atualizamos a função, alteramos a tolerância fixa para 0.000001, que é a tolerância exigida no problema, aumentamos a quantidade de iterações para 10000.

3.2. Resultados

Com um cenário mais realista, colocamos um intervalo maior de [1,1000] para garantir o encontro da raiz, assim conseguimos obter 6.00373 como resposta.

```
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI/CN/Atividade01/códigos ~ S Arquivo Editar Ver Pesquisar Terminal Ajuda
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $ ./qu estao03
Tempo decorrido até certo objeto alcançar o solo, seguindo a fórmula da questão Tempo aproximado para chegada ao solo, foi de: 6.00373
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $
```

Figura 5. Resultados obtidos.

4. (Burden, pag. 95) Duas escadas se cruzam em um beco de largura L. Cada escada tem uma extremidade apoiada na base de uma parede e a outra extremidade apoia em algum ponto na parede oposto. As escadas se cruzam a uma altura A acima do pavimento. Calcule L, sendo $x_1 = 20m$ e $x_2 = 30m$ os respectivos comprimentos das escadas e A = 8m.

Figura 6. Relações entre as escadas.

Para a execução do cálculo e a obtenção da equação, usamos técnicas como semelhança de triângulos e o teorema de Tales.

4.1. Cálculo

Figura 7. Relações entre as escadas - Analise.

Analisando detalhadamente a figura 7, podemos chegar as seguintes relações:

$$x_1^2 = L^2 + m^2 \Rightarrow m = \sqrt{x_1^2 - L^2}$$

$$x_2^2 = L^2 + n^2 \Rightarrow n = \sqrt{x_2^2 - L^2}$$

Por semelhança de triângulos temos:

$$\frac{m}{L} = \frac{A}{a}$$

$$\frac{n}{L} = \frac{A}{L}$$

Temos ainda que: L = a + l (I).

Faremos então: $a = \frac{AL}{m}$ e $l = \frac{AL}{n}$. Substituindo em (I):

$$L = \frac{AL}{m} + \frac{AL}{n} \Rightarrow L * \frac{1}{L} = \frac{AL}{m} * \frac{1}{L} + \frac{AL}{n} * \frac{1}{L}$$

$$\Rightarrow 1 = \frac{A}{m} + \frac{A}{n} \Rightarrow 1 = \frac{Am + An}{m*n} \Rightarrow 1 = \frac{A(m+n)}{m*n}$$

$$\Rightarrow \frac{1}{A(m+n)} = \frac{1}{m*n} \Rightarrow \frac{1}{A} = \frac{m+n}{m*n}$$

$$\Rightarrow \frac{1}{A} = \frac{m}{m*n} + \frac{n}{m*n} \Rightarrow \frac{1}{A} = \frac{1}{n} + \frac{1}{m}$$
$$\frac{1}{A} = \frac{1}{\sqrt{x_2^2 - L^2}} + \frac{1}{\sqrt{x_1^2 - L^2}}$$

Dadas as duas primeiras relações encontradas, então: $x_1 = 20cm, x_2 = 30cm, A = 8cm.$

4.2. Algoritmo

```
* @file questao04.cpp
 * @brief Universidade Federal do Rio Grande Do Norte (UFRN)
* & @brief DIM0404 - Calculo Numerico
 * @brief Tarefa: Encontrar raizes de equacoes
  * @date 27/02/2018
  * @author Jhonattan Cabral e Daniel Marx.
  */
 #include <iostream>
#include <math.h>
#include <cmath>
 #include <stdlib.h>
double funcao04 (double L);
  double(*func04) (double) = funcao04; //Ponteiro para a funcao03.
  double funcaoBissecao(double t1, double t2, double(*func)(double
     ));
  int main(void)
20
           std::cout << "Calculo da largura do beco, por meio do</pre>
21
              metodo da bissecao" << std::endl;</pre>
22
           double r1 = funcaoBissecao(0, 1000, func04);
23
           std::cout << "Largura aproximada do beco e: " << r1 <<</pre>
              std::endl;
          return 0;
25
26
27
  *@brief Funcao da questao 04; Desrita por: 1/A = 1/(x1^2 - L^2)
     + 1/(x2^2 - L^2)
  *@param L -> Valor que se espera ser igual a largura do beco
  *@return Resultado da funcao
 double funcao04 (double L)
```

```
double x1 = 20;
           double x2 = 30;
36
           double A = 8;
37
38
           return A/(sqrt(pow(x1, 2) - pow(L, 2))) + A/(sqrt(pow(x2)
39
              , 2) - pow(L, 2));
40
41
  /*
42
  * @brief Metodo iterativo da bissecao; Retorna a largura de um
     beco no problema da questao 04
  * @param 11 - Inicio do intervalo
  * @param 12 - Fim do intervalo
  * @param *func - Ponteiro pra funcao na qual se deseja
  * encontrar as raizes
  * @return p - Valor aproximado do tempo decorrido ate o objeto
      chegar ao solo
  double funcaoBissecao(double 11, double 12, double(*func)(double
      ) )
51
           double fa, fp, L;
52
53
           for (int i = 0; i < 10000; i++)
55
           {
                    fa = func(11);
56
                    L = (11 + 12) / 2; //Valor da largura do beco
57
                    fp = func(L);
58
                    if (fp == 1 \text{ or } ((12 - 11) / 2) < 0.000001) //
                       Diferentemente das outras questoes, o valor
                       da funcao devera ser igual a 1 para encontrar
                        o tamanho do beco
61
                            return L;
62
                    }
                    else
64
                    {
65
                            //Verifica se possui o mesmo sinal
66
                            if (fa*fp > 0)
67
                                     11 = L;
                            else
69
                                     12 = L;
70
71
           }
72
           return -1; //Algum erro ocorreu
73
```

Novamente utilizamos o método da Bisseção para resolver o problema, uma vez encontrado a equação e os valores, moldamos os novos parâmetros no código. Diferentemente das questões anteriores o valor resultante deverá ser próximo de 1 para que assim possamos encontrar a largura aproximada do beco.

4.3. Resultados

Para a obtenção do resultado, novamente simulamos um ambiente mais real para o problema. Colocamos um intervalo maior de [1, 1000] e uma tolerância de 0.000001. Assim conseguimos obter como resultado uma largura aproximada de 20cm.

```
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI/CN/Atividade01/códigos - S S Arquivo Editar Ver Pesquisar Terminal Ajuda
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $ ./qu
estac04
Calculo da largura do beco, por meio do metodo da bissecao
Largura aproximada do beco e: 20
jhon@jhon-HP-ProBook-6475b ~/Área de Trabalho/BTI /CN/Atividade01/códigos $ ■
```

Figura 8. Resultados obtidos.

Referências

[Burden and Faires 2008] Burden, R. L. and Faires, J. D. (2008). *Análise Numérica*. Addison-Wesley, 8th edition.