PHY 517 Spring 2021 Midterm

Name:

1. A particle's non-normalized wavefunction is given by

$$\psi(\vec{r}) = (2Y_2^1(\theta, \phi) + 3Y_2^{-1}(\theta, \phi) + Y_2^{-2}(\theta, \phi)) f(r)$$

where f(r) is the normalized radial function. Calculate the expectation value of \vec{L}^2 .

2. The state $|\alpha\rangle_x = |j=1, m_x=0\rangle$ can be understood as the eigenstate of J_x with eigenvalue $m_x=0$. The state, using the normal J_z basis $|j,m\rangle$, is written as the following:

$$|\alpha\rangle = \frac{1}{\sqrt{2}}\{|j=1, m=1\rangle - |j=1, m=-1\rangle\}$$

- a) Verify that the expectation value of J_x for the state $|\alpha\rangle$ is indeed as expected, given $m_x=0$.
- b) Rotate the state $|\alpha\rangle$ by $\pi/2$ around the \hat{z} axis. Write the new state.
- c) What is the probability of measuring the original state $|\alpha\rangle$ after the rotation done in part b)?

*you may do this problem in bra-ket notation, or matrix notation