

GMFS02 Analog Force Sensor

General Introduction

GMFS02 is an analog force sensor especially designed for consumer applications like touch panels, seamless buttons, and smart shoes. It is housed in a compact 2.5×2.1×0.9 mm³ package. The force sensor is based on the industry-recognized piezo-resistive technology featuring long-term stability and EMC robustness. The force sensor is capable of continuously measuring forces from 0N up to 10N.

Focusing on micro force measurement, the high sensitivity, and the high resolution makes GMFS02 especially suitable for applications that detect forces from hand related movement such as finger taps or pen drawing.

Features

- O Operation range:
 - Force: 0~10N
 - Temperature: -40~+85°C
- O Force resolution:
 - Up to1mN
- O Supply voltage:
 - VDD: +1V ~ +5V

- O RoHS-compliance package:
 - LGA-4L package
 - Footprint: $2.5 \times 2.1 \text{ mm}^2$
 - Height: 0.8 mm; 0.9mm at force point

Applications

Force buttons, painting stylus, gaming, robotic end-effectors, and insoles of smart shoes

Side View

Top View

Bottom View

Specifications

Table 1: Pin Descriptions

Pin#	Name	Description
1	Vin+	Power supply in
2	Vout-	Analog output voltage -
3	GND	Ground pin
4	Vout+	Analog output voltage +

Table 2: Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operation voltage	VDD		1	3.0	5	V
Operation current				550		μА
Impedance				5.4		$\mathrm{k}\Omega$
Temperature range	Ta		-40	+25	+85	$^{\circ}\mathrm{C}$
Force range	F		0	_	10	N
Span				600		mV
Zero offset			-10	0	10	mV
Sensitivity			_	60	_	mV/N at 3V
Linearity				±5		%Span
Noise (RMS)				0.01		mV

Table 3: Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Unit
Power supply voltage	VDD		5.5	V
Overload force	FMAX	0	20	N
Storage temperature	TST	-40	+85	$^{\circ}\mathrm{C}$
ESD	HBM	_	±2	kV

Block diagram

Package

Outline Dimension

Figure 1: Package Outline Dimension

RoHS Compliance

GMEMS LGA packaged sensors are compliant with Restrictions on Hazardous Substances (RoHS) and having lead-free terminations. Reflow profiles applicable to those processes can be used successfully for soldering the devices.

Recommended PCB Foot Print Layout

Figure 2: Layout Recommendation for PCB Land Pad

Moisture Sensitivity Level

GMFS02 package MSL rating is Level 3.

Document History and Modification

Revision No.	Description	Date
V0.10	Preliminary datasheet	2018.04.10
	Modification of the force range to 10N	
V0.20	Modification of the overload force to 20N	2018.09.13
	Addition of the block diagram	