```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pylab
from sklearn.model_selection import train_test_split
from sklearn import metrics

from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics
from sklearn import preprocessing
```

Loading the Dataset

First we load the dataset and find out the number of columns, rows, NULL values, etc.

```
In [2]: df = pd.read_csv('uber.csv')
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):
Column Non-Null Count

Dtype 0 Unnamed: 0 200000 non-null int64 200000 non-null object key fare_amount 200000 non-null float64 pickup_datetime 200000 non-null object pickup_longitude 200000 non-null float64 pickup_latitude 200000 non-null float64 dropoff_longitude 199999 non-null float64 dropoff_latitude 199999 non-null float64 passenger_count 200000 non-null int64 dtypes: float64(5), int64(2), object(2)

memory usage: 13.7+ MB

In [4]: df.head()

Out[4]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5

In [5]: df.describe()

Out[5]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	199999.000000	200000.000000
mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	39.923890	1.684535
std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	6.794829	1.385997
min	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	-881.985513	0.000000
25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	40.733823	1.000000
50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	40.753042	1.000000
75%	4.155530e+07	12.500000	-73.967154	40.767158	-73.963658	40.768001	2.000000
max	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	872.697628	208.000000

Cleaning

```
In [6]: df = df.drop(['Unnamed: 0', 'key'], axis=1)
In [7]: df.isna().sum()
Out[7]:
```

```
fare_amount 0
pickup_datetime 0
pickup_longitude 0
pickup_latitude 0
```

```
Remove null rows
 In [8]: df.dropna(axis=0,inplace=True)
 In [9]: df.dtypes
Out[9]: fare_amount
                               float64
         pickup_datetime
                                object
                               float64
         pickup_longitude
         pickup_latitude
                               float64
         dropoff_longitude
                               float64
         dropoff_latitude
                               float64
         passenger_count
                                 int64
         dtype: object
         Fix data type of pickup_datetime from Object to DateTime
In [10]: df.pickup_datetime = pd.to_datetime(df.pickup_datetime, errors='coerce')
         Separating the date and time into separate columns for more usability.
In [11]: df= df.assign(
             second = df.pickup_datetime.dt.second,
             minute = df.pickup_datetime.dt.minute,
             hour = df.pickup_datetime.dt.hour,
             day= df.pickup_datetime.dt.day,
             month = df.pickup_datetime.dt.month,
             year = df.pickup_datetime.dt.year,
             dayofweek = df.pickup_datetime.dt.dayofweek
         df = df.drop('pickup_datetime',axis=1)
In [12]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 199999 entries, 0 to 199999
         Data columns (total 13 columns):
          # Column
                                 Non-Null Count
                                                   Dtype
                                  199999 non-null float64
          0
              fare_amount
              pickup_longitude 199999 non-null float64
              pickup_latitude
                                  199999 non-null float64
              dropoff_longitude 199999 non-null float64
              dropoff_latitude 199999 non-null float64 passenger_count 199999 non-null int64
              second
                                  199999 non-null
                                                   int64
```

In [13]: df.head()

minute

12 dayofweek

dtypes: float64(5), int64(8)
memory usage: 21.4 MB

hour

daν

10 month

11 year

199999 non-null

199999 non-null

199999 non-null int64

199999 non-null int64

199999 non-null int64

199999 non-null int64

int64

int64

Out[13]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	second	minute	hour	day	month	year	dayofweek
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1	6	52	19	7	5	2015	3
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1	56	4	20	17	7	2009	4
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1	0	45	21	24	8	2009	0
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3	21	22	8	26	6	2009	4
4	16.0	-73.925023	40.744085	-73.973082	40.761247	5	0	47	17	28	8	2014	3

Haversine Formula

Calculatin the distance between the pickup and drop co-ordinates using the Haversine formual for accuracy.

$$d = 2rsin^{-1} \left(\sqrt{sin^2 \left(\frac{\Phi_2 - \Phi_1}{2} \right) + cos(\Phi_1)cos(\Phi_2)sin^2 \left(\frac{\lambda_2 - \lambda_1}{2} \right)} \right)$$

```
In [14]: incorrect_coordinates = df.loc[
    (df.pickup_latitude > 90) | (df.pickup_latitude < -90) |
    (df.dropoff_latitude > 90) | (df.dropoff_latitude < -90) |</pre>
```

In [17]: df.head()

Out[17]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	second	minute	hour	day	month	year	dayofweek
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1	6	52	19	7	5	2015	3
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1	56	4	20	17	7	2009	4
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1	0	45	21	24	8	2009	0
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3	21	22	8	26	6	2009	4
4	16.0	-73.925023	40.744085	-73.973082	40.761247	5	0	47	17	28	8	2014	3

Outliers

We can get rid of the trips with very large distances that are outliers as well as trips with 0 distance.

(df.pickup_longitude > 180) | (df.pickup_longitude < -180) |</pre>

```
In [18]: plt.scatter(df['Distance'], df['fare_amount'])
    plt.xlabel("Distance")
    plt.ylabel("fare_amount")
```

Out[18]: Text(0, 0.5, 'fare_amount')


```
In [19]: plt.figure(figsize=(20,12))
sns.boxplot(data = df)
```

Out[19]: <AxesSubplot:>


```
In [20]: df.drop(df[df['Distance'] >> 60].index, inplace = True)
    df.drop(df[df['fare_amount'] << 0].index, inplace = True)

df.drop(df[(df['fare_amount']>100) & (df['Distance']<1)].index, inplace = True )

df.drop(df[(df['fare_amount']<100) & (df['Distance']>100)].index, inplace = True )
```

```
In [21]: plt.scatter(df['Distance'], df['fare_amount'])
    plt.xlabel("Distance")
    plt.ylabel("fare_amount")
```

Out[21]: Text(0, 0.5, 'fare_amount')

Coorelation Matrix

To find the two variables that have the most inter-dependence

Out[22]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	second	minute	hour	
fare_amount	1.000000	0.005885	-0.006253	0.005501	-0.006142	0.011693	-0.000995	-0.007795	-0.020692	0.001
pickup_longitude	0.005885		-0.973204		-0.981941	-0.000649	-0.014677	0.002796	0.001547	0.00
pickup_latitude	-0.006253	-0.973204		-0.973206		-0.001190	0.016809	-0.002295	-0.001823	-0.008
dropoff_longitude	0.005501		-0.973206		-0.981942	-0.000650	-0.014638	0.002803	0.001316	0.005
dropoff_latitude	-0.006142	-0.981941		-0.981942		-0.001035	0.017202	-0.002593	-0.001460	300.0-
passenger_count	0.011693	-0.000649	-0.001190	-0.000650	-0.001035		-0.202987	0.000733	0.013226	0.003

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	second	minute	hour	
second	-0.000995	-0.014677	0.016809	-0.014638	0.017202	-0.202987		0.001893	-0.013419	-0.002
minute	-0.007795	0.002796	-0.002295	0.002803	-0.002593	0.000733	0.001893		0.001352	-0.001
hour	-0.020692	0.001547	-0.001823	0.001316	-0.001460	0.013226	-0.013419	0.001352		0.004
day	0.001059	0.005300	-0.008901	0.005307	-0.008900	0.003146	-0.002100	-0.001255	0.004849	
month	0.023759	-0.002667	0.004098	-0.002656	0.004143	0.009921	-0.049734	-0.001606	-0.003989	-0.017
year	0.121195	0.005907	-0.008466	0.005878	-0.008553	0.004841	0.083106	-0.002687	0.002171	-0.012
dayofweek	0.006181	0.003006	-0.004787	0.003082	-0.004648	0.033360	-0.000113	-0.002405	-0.086995	0.00

Standardization

For more accurate results on our linear regression model

```
In [23]: X = df['Distance'].values.reshape(-1, 1)
                                                          #Independent Variable
         y = df['fare_amount'].values.reshape(-1, 1)
                                                          #Dependent Variable
In [24]: from sklearn.preprocessing import StandardScaler
         std = StandardScaler()
         y_std = std.fit_transform(y)
         print(y_std)
         x_std = std.fit_transform(X)
         print(x_std)
         [[-0.39820843]
          [-0.37738556]
          [ 0.1640092 ]
          [ 2.03806797]
          [ 0.3305922 ]
          [ 0.28894645]]
         [[-0.43819769]
          [-0.22258873]
          [ 0.49552213]
          [ 2.67145829]
          [ 0.07874908]
          [ 0.60173174]]
```

Splitting the Dataset

Training and Test Set

```
In [25]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x_std, y_std, test_size=0.2, random_state=0)
```

Simple Linear Regression

Training the simple linear regression model on the training set

Out[27]:

	Actual	Predicted
1537	0.330592	0.026083
15346	-0.335740	0.233531
3541	-0.710552	-0.265730
36499	-0.044220	0.134647
29055	-0.502323	-0.233261
32339	-0.710552	-0.492669

```
20741 -0.419031 -0.777099

25517 -0.668906 -0.397673

In [28]: print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    print('Mean Absolute % Error:', metrics.mean_absolute_percentage_error(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
    print('R Squared (R^2):', np.sqrt(metrics.r2_score(y_test, y_pred)))

Mean Absolute Error: 0.26621298757938955
Mean Absolute % Error: 1.983074763340738
Mean Squared Error: 0.2705243510778542
Root Mean Squared Error: 0.5201195546005305
R Squared (R^2): 0.8567653080822022
```

Visualization

Actual Predicted

```
In [29]: plt.subplot(2, 2, 1)
    plt.scatter(X_train, y_train, color = 'red')
    plt.plot(X_train, l_reg.predict(X_train), color = "blue")
    plt.title("Fare vs Distance (Training Set)")
    plt.ylabel("fare_amount")
    plt.xlabel("Distance")

plt.subplot(2, 2, 2)
    plt.scatter(X_test, y_test, color = 'red')
    plt.plot(X_train, l_reg.predict(X_train), color = "blue")
    plt.ylabel("fare_amount")
    plt.xlabel("Distance")
    plt.title("Fare vs Distance (Test Set)")

plt.tight_layout()
    plt.show()
```



```
In [30]: cols = ['Model', 'RMSE', 'R-Squared']

# create a empty dataframe of the colums
# columns: specifies the columns to be selected
result_tabulation = pd.DataFrame(columns = cols)

# compile the required information
linreg_metrics = pd.DataFrame([[
    "Linear Regresion model",
    np.sqrt(metrics.mean_squared_error(y_test, y_pred)),
    np.sqrt(metrics.r2_score(y_test, y_pred))
]], columns = cols)

result_tabulation = pd.concat([result_tabulation, linreg_metrics], ignore_index=True)
result_tabulation
```

Out[30]:

 Model
 RMSE
 R-Squared

 0
 Linear Regresion model
 0.52012
 0.856765

RandomForestRegressor

Training the RandomForestRegressor model on the training set

```
In [32]: # predict the values on test dataset using predict()
y_pred_RF = rf_reg.predict(X_test)
```

```
result = pd.DataFrame()
result[['Actual']] = y_test
result['Predicted'] = y_pred_RF
result.sample(10)
```

Out[32]:

```
        Actual
        Predicted

        16558
        -0.606437
        -0.763858

        31259
        -0.330592
        -0.495868

        23833
        -0.606437
        -0.706491

        21759
        -0.450266
        -0.439750

        23057
        -0.710552
        -0.357291

        9115
        -0.346151
        -0.391545

        28306
        -0.242037
        -0.340113

        19079
        -0.242037
        -0.356042

        9708
        4.005830
        3.895468

        34415
        -0.242037
        -0.044532
```

```
In [33]: print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred_RF))
    print('Mean Absolute % Error:', metrics.mean_absolute_percentage_error(y_test, y_pred_RF))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred_RF))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred_RF)))
    print('R Squared (R<sup>2</sup>):', np.sqrt(metrics.r2_score(y_test, y_pred_RF)))
```

Mean Absolute Error: 0.3077087698385678 Mean Absolute % Error: 2.161623761570947 Mean Squared Error: 0.33297733033643484 Root Mean Squared Error: 0.5770418791876677 R Squared (R²): 0.8201518783882692

Visualization

```
In [34]: # Build scatterplot
plt.scatter(X_test, y_test, c = 'b', alpha = 0.5, marker = '.', label = 'Real')
plt.scatter(X_test, y_pred_RF, c = 'r', alpha = 0.5, marker = '.', label = 'Predicted')
plt.xlabel('Carat')
plt.ylabel('Price')
plt.grid(color = '#D3D3D3', linestyle = 'solid')
plt.legend(loc = 'lower right')

plt.tight_layout()
plt.show()
```


Out[35]:

	Model	RMSE	R-Squared
0	Linear Regresion model	0.520120	0.856765
1	Linear Regresion model	0.577042	0.820152