Unidad III: Teoría de conjuntos

Teoría de conjuntos: Axiomas básicos

Clase 08 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Lógica de predicados y matemáticas

- La lógica de predicados nos da un lenguaje formal con una sintaxis y semántica clara.
- Una aplicación fundamental: teorías matemáticas.

Idea general:

- Escoger un conjunto de oraciones o axiomas Σ que capturen las verdades básicas de cierto dominio de interés:
 - números naturales, números reales, teoría de grupos, teoría de espacios vectoriales, ...
- Descubrir nuevos **teoremas**: oraciones φ que se deducen de los axiomas Σ .
 - Formalmente: $\Sigma \models \varphi$.

Lógica de predicados y matemáticas

- Nos gustaría una sola teoría, para toda la matemática.
- Un conjunto de axiomas del cual se deduzcan todos los teoremas.
- La teoría más aceptada actualmente: teoría axiomática de conjuntos (ZFC).
- Desarrollada por Ernst Zermelo y Abraham Fraenkel.

Veremos los axiomas y construcciones más relevantes de esta teoría.

Teoría de conjuntos: nociones primitivas

- Los objetos básicos de estudio son los conjuntos.
- Tenemos disponible un predicado ∈ ("pertenece a").

Notación:

- Si $a \in b$ también decimos que a es un elemento de b.
- $\{a_1,\ldots,a_k\}$ denota al conjunto con elementos a_1,\ldots,a_k .

- $a \in \{a, b\}.$
- $\{a,b\} \in \{\{a,b\},\{c,d\}\}.$

Axioma del vacío

Nuestro primer axioma garantiza la existencia de al menos un conjunto.

Axioma del conjunto vacío:

Existe un conjunto sin elementos.

¿Cómo escribiría esto en lógica de predicados?

$$\exists A \forall x \neg (x \in A)$$

Observación: A y x son variables. Cuando sea posible:

- Si la variable aparece a la derecha de un ϵ , usaremos A, B, C, \ldots
- Si aparece a la izquierda de un \in , usaremos x, y, z, ...

Axioma de extensionalidad

Axioma de extensionalidad:

Si dos conjuntos tienen los mismos elementos, entonces son iguales.

¿Cómo escribiría esto en lógica de predicados?

$$\forall A \forall B ((\forall x (x \in A \leftrightarrow x \in B)) \rightarrow A = B)$$

- $\{a\} = \{a, a\}.$
- $\{a,b\} = \{b,a\}.$
- ¿Es cierto que $\{a, b\} = \{\{a, b\}\}$?

Un primer resultado

Proposición:

Existe un único conjunto sin elementos.

Demostración:

Supongamos que A y B son dos conjuntos sin elementos. Luego, se cumple:

$$\forall x (x \in A \leftrightarrow x \in B)$$

Por el axioma de extensionalidad, concluimos que A = B.

Notación:

A este único conjunto le llamamos el conjunto vacío, y lo denotamos por Ø.

La noción de subconjunto

Definición:

Un conjunto A es subconjunto de un conjunto B si todos los elementos de A son elementos de B.

Notación: $A \subseteq B$.

- ¿Es cierto que $\{a,b\} \subseteq \{b,c,a\}$?
- ¿Es cierto que $\{a, \{b\}\} \subseteq \{a, b\}$?
- ¿Es cierto que $\{a,b\} \subseteq \{a,\{a,b\}\}$?

La noción de subconjunto

Definición:

Un conjunto A es subconjunto de un conjunto B si todos los elementos de A son elementos de B.

¿Cómo escribiría $A \subseteq B$ en lógica de predicados?

$$\forall x \, \big(x \in A \to x \in B \big)$$

La noción de subconjunto: propiedades

Proposición:

Para todo conjunto A, se cumple que $\emptyset \subseteq A$.

Demostración:

Siempre se cumple que $\forall x (x \in \emptyset \rightarrow x \in B)$. (¿por qué?)

La noción de subconjunto: propiedades

Proposición:

A = B si y sólo si $A \subseteq B$ y $B \subseteq A$.

Demostración:

(⇒): directa de la definición de igualdad.

 (\Leftarrow) : Si A ⊆ B y B ⊆ A, entonces se cumple:

$$\forall x (x \in A \rightarrow x \in B) \ y \ \forall x (x \in B \rightarrow x \in A).$$

Luego: $\forall x (x \in A \leftrightarrow x \in B)$.

Por axioma de extensionalidad, concluimos que A = B.

La noción de subconjunto

Notación:

- Si A **no** es subconjunto de B, entonces escribimos $A \notin B$.
- $A \not\subseteq B$ si y sólo si **existe** un elemento en A que no está en B.

Construcción de nuevos conjuntos

Hasta el momento sólo tenemos garantizada la existencia del conjunto \varnothing .

¿Podemos definir otros conjuntos a partir de esto?

Necesitamos agregar axiomas que nos permitan construir nuevos conjuntos.

Construcción de nuevos conjuntos

Intuitivamente, hay dos grandes formas de definir conjuntos:

Por extensión: Si a_1, \ldots, a_k son conjuntos, entonces

$$\{a_1,\ldots,a_k\}$$

debería ser un conjunto también.

Por comprensión: Si tenemos una "propiedad" P, entonces

```
\{a \mid a \text{ satisface la propiedad } P\}
```

debería ser un conjunto.

Ejemplos:

- $\{n \mid n \text{ es un número natural par}\}.$
- $\{a \mid a \text{ es un conjunto con exactamente dos elementos}\}.$

Agregaremos axiomas que nos permitan hacer este tipo de definiciones.

Axioma de emparejamiento

Axioma de emparejamiento:

Si A y B son conjuntos, entonces existe un conjunto C cuyos elementos son exactamente A y B.

Notación: $C = \{A, B\}$.

Propuesto: escriba el axioma en lógica de predicados.

Ejemplos:

Ahora sí sabemos que los siguientes conjuntos existen:

- Ø.
- $= \{\emptyset, \{\emptyset\}\}.$
-

Axioma de emparejamiento

Axioma de emparejamiento:

Si A y B son conjuntos, entonces existe un conjunto C cuyos elementos son exactamente A y B.

Notación: $C = \{A, B\}$.

Corolario:

Si A es un conjunto, entonces $\{A\}$ también es un conjunto.

Notación:

Un conjunto de la forma $\{A\}$ (es decir, con 1 sólo elemento) se llama singleton.

Axioma de unión

Axioma de unión:

Si A es un conjunto, entonces existe un conjunto U tal que para todo conjunto e se cumple:

 $e \in U$ si y sólo si existe un conjunto $B \in A$ tal que $e \in B$.

Notación: U = Union(A).

Propuesto: escriba el axioma en lógica de predicados.

- $Union(\{\{a,b\},\{b,c\}\}) = \{a,b,c\}.$
- $Union(\{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}) = \{\varnothing,\{\varnothing\}\}.$
- $Union(\{\varnothing, \{\varnothing\}\}) = \{\varnothing\}.$

Definiciones por extensión

El siguiente teorema nos dice que siempre es posible hacer definiciones por extensión.

Dado: $k \ge 1$.

Teorema:

Si A_1, \ldots, A_k son conjuntos, entonces existe un conjunto B cuyos elementos son exactamente A_1, \ldots, A_k .

Notación: $B = \{A_1, \ldots, A_k\}.$

Definiciones por extensión

Teorema:

Si A_1, \ldots, A_k son conjuntos, entonces existe un conjunto B cuyos elementos son exactamente A_1, \ldots, A_k .

Notación: $B = \{A_1, \ldots, A_k\}.$

Demostración:

Por axioma de emparejamiento, $\{A_1, A_2\}$ es un conjunto.

Por corolario anterior, $\{A_3\}$ es un conjunto.

Nuevamente por emparejamiento, $\{\{A_1, A_2\}, \{A_3\}\}$ es un conjunto.

Por axioma de unión, $\{A_1, A_2, A_3\}$ es un conjunto.

Repitiendo este argumento una cantidad finita de veces, obtenemos que $\{A_1,\cdots,A_k\}$ es un conjunto. (verifíquelo.)