

WITH BLOCK MODEL

Outcome: L_i = pulled left

```
L_i \sim Bernoulli(p_i)
logit(p_i) = \alpha_{actor[i]} + \gamma_{block[i]} + \beta_{treatment[i]}
```


|Accounts systematic differences across blocks. Next step is to add priors that introduce dependencies across coefficients.

MODEL WITH BLOCK EFFECTS

Outcome: L_i = pulled left

 $L_i \sim Bernoulli(p_i)$

$$logit(p_i) = \alpha_{actor[i]} + \gamma_{block[i]} + \beta_{treatment[i]}$$

Accounts systematic differences across blocks.

Next step is to add priors that introduce dependencies across coefficients.

ADDING REGULARIZING PRIORS FOR BLOCK

Outcome: L_i = pulled left $L_i \sim Bernoulli(p_i)$ $logit(p_i) = \alpha_{actor[i]} + \gamma_{block[i]} + \beta_{treatment[i]}$ $\gamma_i \sim Normal(0, \ \sigma_{\gamma}), \text{for } j = 1..6$