SIMATIC _{S7-200} Примеры

Группа

6

Тема

Использование PID-КОМАНДЫ

CPU, необходимые для этого примера

CPU 210 □ CPU 212 □ CPU 214 □ CPU 215 ☑ CPU 216 ☑ OTHER □

Краткий обзор

Следующая программа S7-200 - короткий пример того, как использовать PID команду. PID команда будет объясняться на примере резервуара с водой. Цель - поддерживать постоянное давление воды а также сохранять резервуар, чтобы не освободился.

Аппаратные Требования

- 1 S7-200 PLC
- 1 Модуль расширения EM 235 Аналоговая комбинация AI 3/ AQ 1x 12 Bits

Общее описание

В этом примере, резервуар с водой используется, чтобы поддержать постоянное давление воды. Вода - постоянно берётся из резервуара в изменяющемся режиме. Используется насос переменной скорости, чтобы добавлять воду в резервуар в режиме, который поддержит адекватное давление воды а также сохранять резервуар, чтобы он не освободился.

Уставка для этой системы -установленный уровень воды, который является эквивалентным резервуару, наполненному на 75 %. Переменная процесса имеет формат с плавающей точкой, который обеспечивает эквивалентное считывание того, насколько полон резервуар и который может изменяться от 0 % (пустой) до 100 % (полностью полный). Вывод - значение скорости насоса, которое позволяет насосу работать со скоростью от 0 % до 100 % максимального значения.

Уставка предопределена и будет введена непосредственно в таблицу цикла. Переменная процесса будет обеспечена как аналоговое значение от 4 до 20 ma в формате с плавающей точкой. Вывод цикла будет записан в аналоговый вывод (от 0 до 10 V), который используется, чтобы управлять скоростью насоса. Промежуток обоих, аналогового входа и аналогового выхода - 32,000.

ВНИМАНИЕ: аналоговое значение (AIW0) может быть усреднено подпрограммой усреднения, чтобы фильтровать ввод прежде, чем значение будет использовано как PV. Обратитесь к примеру номер 54 для более детального пояснения.

В этом примере будет использоваться только пропорциональное и интегральное управление. Усиление цикла и константы времени были определены из разработки вычислений и могут быть откорректированы для достижения оптимального управления. Расчетные значения констант времени:

TS - 0.1 секунд и TI - 30 минут. KC - 0.25

Скорость резервуара будет управляться вручную, пока резервуар с водой наполнен на 75 %, затем клапан будет открыт, для того чтобы позволить воде выливаться из резервуара. В то же самое время, насос будет переведен в автоматический или ручной режим управления. Цифровой ввод будет использоваться, для того чтобы переключать управление от ручного к автоматическому. Этот ввод описан ниже:

10. 0 - Ручное / автоматическое управление: 0 - ручное, 1 - автоматическое В ручном режиме быстродействие насоса будет описано оператором VD108 как значение вещественного числа от 0.0 до 1.0.

Следующая информация описывает программу и её работу, определение переменных, подпрограмм и подпрограмм прерывания, используемых программой.

Подпрограммы:

SBR0 Подпрограмма инициализации

SBR1 Подпрограмма проверки наличия ошибок аналогового модуля

Подпрограммы прерывания:

INT 0 100 ms установленное прерывание, которое вызывает выполнение PID Описание переменных:

10.0 Ручное/ Автоматическое управление

Q0.7 Ошибка в аналоговом модуле

Таблица цикла - длиной 36 байтов, и параметры в таблице V-памяти - стандартные

двойные слова (VD), таблица цикла имеет следующий формат:

Смеще	Вычисление	Формат	Тип	Описание	Определяется
ние			данных		пользователем
0	Переменная	Двойное	ln	Содержит переменную процесса,	NO
	процесса	слово -		которая должна масштабироваться	
		реальное		между 0.0 и 1.0	
4	Уставка	Двойное	IN	Содержит уставку, которая должна	YES
		слово -	.,	масштабироваться между 0.0 и 1.0	
		реальное			
8	Вывод	Двойное	In/Out	Содержит расчетный вывод,	NO
		слово -		Масштабированный между 0.0 и 1.0	
		реальное			
12	Усиление	Двойное	In	Содержит усиление, которое является	YES
		слово -		пропорциональной константой. Может	
		реальное		быть положительный или отрицательный	
				номер.	
16	Типовое время	Двойное	In	Содержит типовое время, в секундах.	YES
		слово -		Должен быть положительный номер.	
		реальное			
20	Интегральное	Двойное	ln	Содержит интегральное время или	YES
	время или	слово -		сброс, в минутах. Должен быть	
	сброс	реальное		положительный номер.	
24	Производное	Двойное	ln	Содержит производное время или	YES
	время или	слово -		режим, в минутах. Должен быть	
	режим	реальное		положительный номер	
28	Уклон	Двойное	In/Out	Содержит уклон или интегральное	YES
		слово -		значение суммы	
		реальное		Между 0.0 и 1.0	
32	Предыдущая	Двойное	In/Out	Содержит предыдущее значение	NO
	переменная	слово -		переменной процесса, сохраненной из	
	процесса	реальное		последнего выполнения PID команды.	

(Обратите внимание: базисный адрес программы примера - VD100.)

VD100	Переменная процесса (PV) , из аналогового ввода AWI0
VD104	точка отсчета (SP)
VD108	вывод (М), сщдержит расчитанный выход
VD112	Усиление (Кс), пропорциональная константа
VD116	Типовое время (Ts)
VD120	Интегральное время (Ті)
VD124	Производное время (Td) или режим
VD128	Уклон (MX) или интегральная сумма
VD132	Предыдущая переменная процесса (PVN-1)

Дополнительная информация относительно PID-команды содержится в руководстве по системе S7-200. Основы Управления с PID-регулятором объясняются в примере 32. Информация относительно аналогового модуля обеспечивается в руководстве по системе S7-200 и в примере 34.

Copyright ©1997 by SIEMENS страница 3 / 7 Выпуск: 08/97

LAD (S7-MicroDOS)

STL (IEC)

// INT 0: Подпрограмма прерывания - PID- Подпрограмма (установленное прерывание для PIDвыполнения). INT 0 TNT: 0 Q0.7 WXOR_DW-LDN Q0.7 // МодульО.К.? 11 / EN XORD AC0, AC0 ACO IN1 OUT ACO // Очистка аккумулятора ACO-IN2 MOV_W-EN MOVW AIW0, AC0 NI -OWIA OUT AC0 // сохранение аналогового //значения в аккумуляторе DI REAL-EN DTR AC0, AC0 ACO-IN OUT ACO // Перевод 32-битового SUB_R //значнения в вещественное ΕN KR+6400.00 IN1 OUT AC0 ACO-IN2 -R 6400.0, AC0 // Коррекция смещения от 4 до 20 MUL RmA EN KR+1.20000 IN1 OUT AC0 ACO-IN2 *R 1.20, AC0 DIV R-// Масштаб для смещения 20 % ΕN KR+32000.0-IN1 OUT AC0 ACO-IN2 32000.0, AC0 // Нормализация MOV R //PV значения в аккумуляторе EN ACO-IN OUT-VD100 MOVR AC0, VD100 I0.0 PID // Сохранение аккумулятора в 12 EN //таблице цикла VB100-TBL 0-LOOP // В авто режиме, LD 10.0 SM0.0 MUL_R PID VB100, 0 // вызов выполнения PID 13 EN VD108-IN1 OUT AC0 KR+32000.0-IN2 // Аналоговый выход TRUNC LD SM0.0 EN MOVR VD108, AC0 // выход цикла в ACO-IN OUT ACO //акумулятор 32000.00, АСО // масштабирование MOV_W // значения в аккумуляторе EN ACO-IN OUT -AQWO TRUNC ACO, ACO // Перевод 14 -(RETI //вещественного значения в 32-битное //целое MOVW AC0, AQW0 // запись значения в аналоговый //выход **RETI**

K4)

Блок данных DB1 (V Память):						
// Инициал	пизация знач	нений				
VD104	0.75	// точка отсчета = 0.75 = 75% наполнения				
VD112	0.25	// Усиление цикла = 0.25				
VD116	0.10	// Типовое время = 0.1 секунды				
VD120	30.0	// Интегральное время = 30 минут				
VD124	0.0	// никаких действий				

Примечания преобразования

Для перевода из IEC STL в S7-Micro/DOS STL:

- Добавить 'К' перед всеми не шестнадцатиричными константами (например 4 ⇒
- Заменить '16#' на 'КН' для всех шестнадцатиричных констант (например16#FF ⇒ KHFF)
- Запятые обозначают разделение полей. Используйтее стрелку или клавишу ТАВ для переходов между полями.
 - Чтобы преобразовывать S7-Micro/DOS программу STL в форму LAD, каждая сеть должна начинаться со слова 'CETь' и номера. Каждая сеть в Application Tip программы обозначена номером на диаграмме. Используйте команду INSNW под меню РЕДАКТИРОВАНИЯ, чтобы ввести новую сеть. MEND, RET, RETI, LBL, SBR, и INT команды получают каждая свою собственную сеть.
 - Линия комментариев, обозначенная '//' не возмона в S7-Micro/DOS, но Сеть комментариев возможна

Общие примечания

SIMATIC S7-200 Примеры применения предназначены для того, чтобы дать пользователям S7-200 некоторое представление относительно того, как, некоторые задачи программирования могут быть решены этим контроллером. Эти инструкции не учитывают все детали или разнообразие в оборудовании, и при этом они не предусматривают какое - либо непредвиденное обстоятельство. Использование S7-200 Примеров применения - свободное.

Siemens оставляет за собой право делать изменения в спецификациях, показанных здесь или делать усовершенствования в любое время без оповещения или обязательств. Это не освобождает пользователя от ответственности, за использование методов на практике, установке, обработке, и сопровождении приобретенного оборудования. Если конфликт возникает между общей информацией, содержащейся в этой публикации, содержанием рисунков или дополнительным материалом, или обоих, более поздние должны иметь приоритет.

Siemens не ответственен, по любой допустимой причине, в повреждениях или персональном ущербе, последующим из использования примеров применения.

Все права зарезервированы. Любая форма дублирования или распространения, включая выдержки, разрешается только с конкретным разрешением SIEMENS