

3D Sensing for vehicle technologies

通訊所 110064533 陳劭珩

Outline

- **■** Introduction
- Technology
- Applications
- Conclusion
- References

Introduction

■ Why radar?

- It's under-researched
- There is no dominant product or company in the market yet
- It has some irreplaceable advantages
 - Long detection range (up to 300 m)
 - All-weather operation
 - Low power consumption
 - Most importantly, low cost

■ What radar? Specifically?

- FMCW radar means an antenna system that transmits and receives EM waves with certain modulation to achieve certain task
 - Frequency-Modulated Continuous-Wave, FMCW

■ FMCW radar fundamentals

- Off-the-shelf automotive radars operate with a sequence of linear FMCW signals to simultaneously measure range, angle, and velocity
- The automotive radar is allowed to use **2** frequency bands in mmwaves
 - 24 GHz (24~24.25 GHz)
 - 77 GHz (77~79 GHz)
- There is a trend towards **77 GHz** for several reasons:
 - **■** Larger bandwidth
 - 76–77 GHz for long-range
 - 77–81 GHz for short-range
 - **Higher** Doppler **resolution**
 - Smaller antennas with sub-wavelength sized
- Different radar devices vary in their sensing capabilities
 - Different radar device normally means different **modulation patterns**

- **■** Fun facts about frequency bands
 - Licensed-band in 5G Spec
 - FR1 410 MHz 7.125 GHz
 - FR2-1 24.25 GHz 52.6 GHz
 - FR2-2 52.6 GHz 71 GHz
 - Up to 100 GHz belongs to 5G, but above 71 GHz are not licensed
 - Up to 6 GHz belongs to 4G
 - Aside from licensed-bands, there are also **private 5G** (**Local 5G**) bands, the specific regulations different from country to country
 - e.g. 4.6 GHz 4.9 GHz is a private 5G band in Japan
 - How expensive are the frequency bands in 5G in Taiwan?
 - A 15 year authorization cost \$150 billion NTD
 - 1 MHz bandwidth worth \$200 ~ 500 million NTD

Modulation patterns

- Unmodulated CW
 - This modulation pattern is used for some mmwave communication signals frequency

- Fast chirp FMCW (Sawtooth modulation)
 - This modulation pattern is used in a relatively large range (maximum distance) combined with a negligible influence of Doppler frequency (for example, a maritime navigation radar).
 - Account for 90% of the modulation we probably going to seen in out daily lives

Modulation patterns

- Slow chirp FMCW (Triangular modulation)
 - This modulation pattern allows easy separation of the difference frequency Δf of the Doppler frequency f_D

- Pulsed CW (Square-wave modulation)
 - This modulation is used for a very precise distance measurement at close range by phase comparison of the two echo signal frequencies.

 frequency
- FSK (Stepped modulation)
 - This is used for interferometric measurements and expands the f_{pcw} unambiguous measuring range.

■ FMCW signal is characterized by the following parameters

- \blacksquare the carrier frequency f_c
- \blacksquare the **sweep bandwidth** B_w
- the **chirp duration** *T*
- the slope $\rho = B_w / T$

■ FMCW waveform

$$s_T(t,k) = A_T exp\left(j2\pi\left(f_c t + \frac{\rho}{2}t^2\right)\right) \quad k = 0,1, ... K - 1, 0 \le t < T$$

■ FMCW waveform

- One FMCW waveform is referred to as a chirp
- One radar transmission is a frame of *K* chirps equally spaced by chirp cycle time *T*
 - The total time $T_f = K \cdot T$ is called **frame time** (time on target, TOT)

- In order to **avoid** the need for **high-speed sampling**, a frequency **mixer** combines the received signal with the transmitted signal to produce two signals
 - sum frequency
 - difference frequency

FMCW waveform

- Then, a low-pass filter is used to filter out the sum frequency component and obtain the **IF signal** (Intermediate Frequency, IF)
 - In this way, FMCW radar can achieve GHz with only MHz sampling
- Resulting complex exponential IF signal
- Next, the IF signal is sampled N times by an ADC converter, resulting in a discrete-time complex signal

$$s_R(t,k) = A_R exp\left(j2\pi\left((f_c - f_d)(t - t_d) + \frac{\rho}{2}(t - t_d)^2\right)\right)$$

■ FMCW signal processing

- Multiple frames of chirp signals are assembled into a 2D matrix
 - The dimension of the sampling points within a chirp is referred to as fast time
 - The dimension of the **chirp index within one frame** is referred to as **slow time**
- Next, a **range FFT** is applied in the fast-time dimension to resolve the frequency change, followed by a **Doppler FFT** in the slow-time dimension to resolve the phase change.
 - As a result, we obtain a **2D complex-valued data matrix** called the Range—Doppler map, **RD map**

■ FMCW radar detection pipeline

- First, RD maps are integrated coherently along the **virtual receiver dimension** to increase the SNR
 - e.g. say, we have a simple MIMO radar system with 4 Tx and 4 Rx antenna, which means we can synthesize a virtual array with $4 \times 4 = 16$ channels
- Then, a CFAR detector is applied to **detect peaks** or **estimate the noise level** in the RD map
- Finally, the **DOA estimation** method is applied for angle estimation
 - for conventional radars, only **azimuth angle** is resolved
 - for next-generation radars, both azimuth and **elevation angles** can be resolved
- The output of the radar is a **point cloud** with measurements of range, Doppler, and angle

TI AWR2944EVM

Features

- 76 to 81 GHz mmwave radar sensor
- Onboard four-transmit four-receive (4Tx / 4Rx) antenna
- On-chip C66x DSP core and Arm Cortex-R5F controller
- On-chip **hardware accelerator** for FFT
- AWR2944 Evaluation Module (EVM) (\$549 USD)

TI AWR2944 Spec

Parameters

Number of receivers	4
Number of transmitters	3, 4
ADC sampling rate (Max) (MSPS)	37.5
Interface type	2 CAN-FD, Ethernet, I2C
DSP	C66x DSP 360MHz
Hardware accelerators	Radar hardware accelerator
Rating	Automotive
Operating temperature range (C)	-40 to 140
Power supply solution	LP87745-Q1
Security	Cryptographic acceleration, Device identity/keys, Secure boot, Secure software update, Software IP protection, Trusted execution environment

TI AWR2944 Spec

■ Functional Block Diagram

TI AWR 2944 Spec

Functional Block Diagram

Applications

- Active safety functions
 - Automatic Emergency Braking (AEB)
 - Forward Collision Warning (**FCW**)
- **■** Autonomous driving
 - Provide range and velocity estimation for the decision fusion algorithm
- **■** Non-contact vital sign detection
 - Breath rate
 - Heart rate
 - Use cases
 - Burn patients
 - Patients that have been isolated due to infectious disease

Opponents

- Vision Comma ai Driver Assistance System (\$2499 USD)
 - Camera
 - Three 1080p cameras w/ 120 dB of dynamic range: dual-cam 360° vision
 - One narrow cam to see far-away objects
 - Processor
 - Qualcomm Snapdragon 845
 - Storage
 - 32 GB built-in storage
 - 1TB Samsung 980 NVMe SSD
 - Connectivity
 - LTE
 - Wi-Fi
 - High-Precision GPS
 - Night-vision
 - IR LEDs for interior night-vision monitoring

Opponents

■ LiDAR – Velodyne HDL-64E LiDAR Sensor (\$80000 USD)

Sensor

- Time of Flight Distance Measurement with Intensity
- 64 channels
- Measurement Range: Up to 120 m
- Single or Dual Returns
- Field of View (Vertical): $+2.0^{\circ}$ to -24.9° (26.9°)
- Angular Resolution (Vertical): 0.4°
- Field of View (Horizontal): 360°
- Angular Resolution (Horizontal/Azimuth): $0.08^{\circ} 0.35^{\circ}$
- Rotation Rate: 5 Hz 20 Hz

Laser

- Laser Product Classification: Class 1 Eye-safe
- Wavelength: 903 nm
- Dynamic Laser Power Selection for Larger Dynamic Range

Conclusion

SWOT

- Strengths
 - Long detection range
 - All-weather operation
 - Low power consumption
 - Low cost
- Weaknesses
 - Low angular resolution
 - Hard to detect stationary object
- Opportunities
 - Autonomous driving
 - Vital sign detection
- Threats
 - Vision
 - LiDAR

References

- Zhou, Yi, et al. "Towards Deep Radar Perception for Autonomous Driving: Datasets, Methods, and Challenges." *Sensors* 22.11 (2022): 4208. (https://www.mdpi.com/1424-8220/22/11/4208)
- AWR2944EVM (https://www.ti.com/tool/AWR2944EVM)
- AWR2944 Spec (https://www.ti.com/product/AWR2944)
- Comma ai (https://comma.ai/shop/comma-three)
- Velodyne 64-line LiDAR (https://www.neuvition.com/media/blog/lidar-price.html)

