Основные понятия

- \bullet Граф: пара G = (V, E)• V — непустое множество (множество вершин) • E — бинарное мультиотношение на V (множество ребер) \star Рассматриваем только конечные графы (V и E конечны) • кратность ребра — это его кратность как элемента Е • если Е симметрично — граф неориентированный иначе — ориентированный (орграф) • Матрица смежности — это матрица мультиотношения Е
 - обозначается Мс.
 - ребро упорядоченная пара
 - ullet ребро (u,v) (или u o v) исходит из u и входит в v
 - ребро (u,v) неориентированного графа это пара ребер $u \to v, v \to u$
 - \star это правило распространяется на петли ребра вида (u,u)
 - \star петля (u,u) неориентированного графа учитывается в матрице смежности как $M_G[u, u] = 2$
 - \star степень исхода вершины $\deg^-(u) = \mathsf{ч}$ исло ребер вида (u,v) с учетом кратности
 - \star степень захода вершины $\deg^+(u) = \mathsf{ч}$ исло ребер вида (v,u) с учетом кратности
 - \star в неориентированном графе просто степень вершины $\deg(u) = \deg^-(u) = \deg^+(u)$
- В ближайших лекциях граф = неориентированный граф
- * Обыкновенный граф неориентированный граф без петель и кратных ребер
- \star Полный граф обыкновенный граф с условием $E=V^2\setminus \Delta$
 - \bullet обозначается K_n , где n = |V|

Маршруты и связность

- ullet Маршрут это последовательность $\{v_0,e_1,v_1,e_2,\ldots,e_n,v_n\}$, где $e_i=(v_{i-1},v_i)$ для всех i
 - \star в графе без кратных ребер маршрут записывают как последовательность вершин
 - \star n длина маршрута, тривиальный маршрут $\{v_0\}$ имеет длину 0
 - \star часто говорят «маршрут из v_0 в v_n » или (v_0,v_n) -маршрут
 - * цепь: маршрут, в котором все ребра различны
 - ⋆ путь (простая цепь): цепь, в которой все вершины различны
 - \star циклический маршрут: $v_n = v_0, n > 0$
 - 🛨 цикл: циклический маршрут, в котором все ребра различны
 - \star простой цикл: цикл, в котором все вершины различны (кроме $v_0=v_n$)
- ★ На маршрут часто смотрят как на граф, состоящий из всех его вершин и ребер
 - \star стандартные обозначения: P_n / C_n путь / простой цикл на n вершинах
- Вершины u и v связаны, если существует (u, v)-маршрут
 - \star а значит и (v,u)-маршрут, поскольку граф неориентированный
- \star связанность отношение эквивалентности на V
 - \star его классы V_1,\ldots,V_k определяют графы $(V_1,E_1),\ldots,(V_k,E_k)$ такие, что $E_1\cup\ldots\cup E_k=E$
 - \star эти графы называются компонентами связности G
- \star Граф связен, если у него одна компонента связности
 - \star отношение связанности совпадает с V^2

Подграфы

- ullet Граф G'=(V',E')- подграф графа G=(V,E), если $V'\subseteq V$ и $E'\subseteq E$
 - \star G' суграф, если V' = V
 - \star G' порожденный подграф, если $E' = E_{|V'|}$

Для приведенного ниже графа G

- ullet суграфами являются G_1, G_2
- порожденными подграфами являются G_3, G_4

! Выведите формулу для числа подграфов полного графа K_n

Для графа G=(V,E) определены операции

- ullet удаление ребра $e:G-e=(V,E\setminus\{e\})$
 - ullet удаление вершины $v\colon G-v=(V\setminus\{v\},E\setminus\{(v,u)\mid u\in V\})$
- \star Любой подграф графа G можно получить из G удалением вершин и ребер
 - \star только удаление ребер ⇔ результат суграф
 - ⋆ только удаление вершин ⇒ результат порожденный подграф
 - \star любой порожденный подграф можно получить удалением вершин
- \star Компонента связности графа G связный подграф графа G

Циклы

- \star Циклы это не только маршруты, но и подграфы
 - поэтому можно говорить «граф содержит цикл»

Лемма о разрыве цикла

Ребро e принадлежит некоторому циклу графа $G\Rightarrow$ число компонент связности графов G и G-e совпадает.

Доказательство:

- ullet е входит в некоторый цикл \Rightarrow е входит в простой цикл e,e_1',\ldots,e_ℓ'
- ullet пусть вершины u и v связаны в G; докажем, то они связаны в G-e
- \bullet в G найдется (u, v)-путь, скажем, e_1, e_2, \ldots, e_k
- ullet если в этом пути нет ребра e, то u и v связаны в G-e этим же путем
- ullet если $e=e_i$, где $i\in\{1,2,\ldots,k\}$, то в графе G-e есть (u,v)-маршрут $e_1,\ldots,e_{i-1},e_1',\ldots,e_\ell',e_{i+1},\ldots,e_k$, как на рисунке

⇒ ии∨связаны в G—е

Равенство и изоморфизм графов

- Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ равны, если $V_1=V_2,E_1=E_2$ \star в упражнении из предыдущего фрагмента надо считать неравные подграфы
 - * в упражнении из предыдущего фрагмента надо считать неравные подг
- * Иногда считают, что множество вершин это некое «стандартное» множество, например, $\{1, \ldots, n\}$
 - ullet тогда равенство графов G_1 и G_2 определяют равенством $M_{G_1}=M_{G_2}$
- Изоморфизм графов G_1 и G_2 это биекция $\phi:V_1 \to V_2$, сохраняющая ребра для любых $u,v \in V$ число ребер (u,v) в E_1 равно числу ребер $(\phi(u),\phi(v))$ в E_2
- ullet G_1 и G_2 изоморфны $(G_1\cong G_2)$, если между ними существует изоморфизм
- Использование матрицы смежности подразумевает линейный порядок на множестве вершин

•
$$V = \{v_1 < v_2 < \cdots < v_n\}$$

- \bigstar Изоморфизм указывает, как надо переупорядочить вершины G_2 , чтобы матрица смежности совпала с M_{G_1}
 - а именно, $\phi(v_1) < \phi(v_2) < \cdots < \phi(v_n)$

Пример: графы на рисунке изоморфны, $\phi(u_i)=v_i$ — изоморфизм

70	1	0	1	1	1\
$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	0	1	2	1	1
0	1	0	1	1	1
1	2	1	0	1	0
1	1	1	1	0	1
$\backslash 1$	1	1	0	1	0/

Изоморфизм графов (2)

Теорема

Графы G_1 и G_2 изоморфны $\Leftrightarrow M_{G_1} = \Pi M_{G_2} \Pi^{-1}$, где Π — матрица некоторой перестановки.

Доказательство: упражнение

- Доказательство изоморфизма графов довольно сложная задача
 - перебирать все n! биекций долго
- * Два заданных графа неизоморфны, если у них различаются такие элементы, которые у изоморфных графов должны совпасть
- ★ Изоморфизм сохраняет степени вершин
 - \Rightarrow G_1 и G_2 имеют одно и то же мультимножество степеней вершин
 - \star мультимножество степеней вершин это разбиение числа 2m, где m=|E| \bullet сумма степеней вершин равна 2m
- * Изоморфизм сохраняет подграфы
 - \bullet Если $G_1 \cong G_2$, G' подграф G_1 , то G_2 содержит подграф, изоморфный G'
 - Пример: графы на рисунке неизоморфны
 - имеют одно и то же распределение степеней вершин (3,3,2,2,2), но первый граф содержит подграф K_3 (на вершинах u,v,w), а второй нет

Двудольные графы

- * В этом фрагменте графы содержат более одной вершины и не имеют петель
- ullet Граф G=(V,E) двудольный, если
 - существует разбиение V на классы X и Y (доли) такое, что у всякого ребра графа G одна вершина принадлежит X, а другая Y
 - \star для двудольного графа часто пишут G=(X,Y,E)

Пример:

- ★ Граф G двудольный \Leftrightarrow каждая компонента связности G двудольный или одноэлементный граф
 - ullet если G не связен, то разбиение G на доли не единственно
- Частные случаи двудольных графов:
 - деревья и леса
 - паросочетания
 - паросочетанием называется граф, в котором все вершины имеют степень 1

Двудольные графы (2)

- \star Обычно двудольные графы возникают, когда множества X и Y имеют различную природу и существует естественное бинарное отношение $E\subseteq X\times Y$
 - Задача о назначениях: дан список из не более чем |X| подмножеств некоторого множества X, выбрать в каждом подмножестве элемент так, чтобы все выбранные элементы были различны
 - Построим двудольный граф (X,Y,\in) , где Y список подмножеств; нужно найти паросочетание, содержащее все вершины из Y
 - Задача об узловых станциях: дан набор маршрутов в некотором графе, найти наименьшее множество вершин, пересекающееся с каждым из маршрутов
 - ! опишите двудольный граф для этой задачи самостоятельно

Критерий двудольности

Теорема (критерий двудольности)

Граф G двудольный \Leftrightarrow любой цикл в G имеет четную длину.

- Доказательство (необходимость):
 - \bullet пусть $(v_0, e_1, v_1, e_2, \dots, e_k, v_k)$ цикл в $G, v_k = v_0$
 - \Rightarrow для любого i вершины v_i и v_{i+1} принадлежат разным долям (определение двудольности)
 - $\Rightarrow k$ четно
- Доказательство (достаточность):
 - \bullet пусть G граф, в котором все циклы имеют четную длину
 - если все компоненты связности G двудольны или одноэлементны, то G двудолен
 - \Rightarrow можно считать, что G связен
 - ullet d(u,v) (расстояние между u и v) наименьшая длина (u,v)-маршрута в G
 - ullet зафиксируем в G произвольные вершины u,v,w так, чтобы v и w были смежны
 - \bullet докажем, что $\delta = |d(u, v) d(u, w)| = 1$
 - ullet к любому (u,v)-маршруту можно добавить ребро (v,w), получая (u,w)-маршрут на единицу большей длины
 - $\Rightarrow d(u, w) \leq d(u, v) + 1$
 - ullet аналогично, $d(u,v)\leqslant d(u,w)+1$
 - \Rightarrow $\delta \leqslant 1$; осталось показать, что $\delta \neq 0 \Longrightarrow$

Критерий двудольности (окончание доказательства)

- Условие $\delta \neq 0$ докажем от противного:
 - пусть $\delta = 0$, d(u, v) = d(u, w) = k
 - ullet рассмотрим кратчайший (u,v)-путь и кратчайший (u,w)-путь
 - первые вершины этих путей совпадают, а последние различаются
 - ⇒ в G имеется такой подграф:

• этот подграф содержит цикл

$$v_i \rightarrow v_{i+1} \dots \rightarrow v_k = v \rightarrow w = v'_k \rightarrow \dots \rightarrow v'_{i+1} \rightarrow v_i$$

нечетной длины $2(k-i)+1 \Rightarrow$ противоречие с условием теоремы

- ullet итак, $\delta=1$, т.е. среди чисел d(u,v), d(u,w) одно четное и одно нечетное
- Положим

$$X = \{v \in V \mid d(u,v) - \text{нечетное}\}, \quad Y = \{v \in V \mid d(u,v) - \text{четное}\}$$

- $X \cap Y = \emptyset$, $X \cup Y = V$, $X, Y \neq \emptyset$
- $\Rightarrow \{X,Y\}$ разбиение V
- расстояния от u до любых двух смежных вершин графа G имеют разную четность
- \Rightarrow одна из этих вершин лежит в X, а другая в Y
- ⇒ граф G по определению двудольный