13. tjedan nastave

18. lipnja 2016.

Napomene u vezi gradiva

- Teoremi čije dokaze ne radimo naznačeni su u prezentaciji
- Ne radimo poglavlje 13.5. Eulerova jednadžba.
- Ne radimo potpoglavlja poglavlja 13.6. pod nazivom: Singularne točke, Besselova diferencijalna jednadžba

Operatorska jednadžba

Linearna diferencijalna jednadžba *n*-tog reda.

$$y^{(n)} + A_{n-1}(x)y^{(n-1)} + \dots + A_1(x)y' + A_0(x)y = f(x)$$

Gornju jednadžbu shvaćat ćemo kao operatorsku jednadžbu.

$$L(y) = f$$

gdje je L diferencijalni operator

$$L = \frac{d^n}{dx^n} + A_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + A_1(x)\frac{d}{dx} + A_0(x)$$

f zadana funkcija, a y rješenje diferencijalne jednadžbe koje tražimo.

Vektorski prostori bit će prostori neprekinuto diferencijabilnih funkcija. Skup svih rješenja biti će potprostor u tim prostorima.

3 / 35

Vektorski potprostor

C[a,b] -prostor svih neprekinutih funkcija na intervalu [a,b] je vektorski prostor uz sljedeće operacije

$$(f+g)(x) := f(x) + g(x)$$
$$(\lambda f)(x) := \lambda f(x)$$

Definicija. Vektorski potprostor

X vektorski prostor, $W \subset X$ je potprostor vektorskog prostora X ako vrijedi

•
$$f_1, f_2 \in W$$
, $\alpha_1, \alpha_2 \in \mathbb{R} \Longrightarrow \alpha_1 f_1 + \alpha_2 f_2 \in W$

ili ekvivalentno

•
$$f, g \in W \Rightarrow f + g \in W$$

•
$$f \in W, \alpha \in \mathbb{R} \Rightarrow \alpha f \in W$$

Linearna nezavisnost vektora

Definicija. Linearna nezavisnost vektora.

Vektori y_1, \ldots, y_n su linearno nezavisni ako jednakost

$$\alpha_1 y_1 + \dots + \alpha_n y_n = 0$$

povlači

$$\alpha_1 = \ldots = \alpha_n = 0.$$

Vektori su linearno nezavisni ako nisu linearno zavisni.

Primjeri...

Baza vektorskog prostora

Baza vektorskog prostora

Vektori $y_1, \dots y_n$ čine bazu vektorskog prostora X ako

- su linearno nezavisni
- razapinju prostor X tj. svaki se vektor $y \in X$ može zapisati u obliku linearne kombinacije

$$y = \alpha_1 y_1 + \alpha_2 y_2 + \dots \alpha_n y_n.$$

Broj n naziva se dimenzija prostora.

Wronskijana

Definicija (Wronskijana)

Neka su $y_1, \dots, y_n \in C^{(n-1)}[a,b]$. Determinanta Wronskoga (Wronskijana) definira se s

$$W(y_1,...,y_n) := \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & & \dots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

Teorem 1 (Kriterij za linearnu nezavisnost funkcija)

Ako Wronskijana nije identički jednaka nuli, tada su funkcije y_1, \ldots, y_n linearno nezavisne.

Dokaz. Predavanja.

Ekvivalentna tvrdnja:

Ako su funkcije y_1, \dots, y_n linearno zavisne onda je Wronskijana identički jednaka nuli $W(y_1, \dots, y_n) \equiv 0$

Linearni operatori

Definicija.(Linearni operator)

Linearni operator je preslikavanje $A: X \to Y$ za koje vrijedi

- $A(x_1 + x_2) = A(x_1) + A(x_2)$, $\forall x_1, x_2 \in X$ (aditivnost)
- $A(\alpha x) = \alpha A(x), \forall \alpha \in \mathbb{R}, \forall x \in X \text{ (homogenost)}$

ili ekvivalentno

• $A(\alpha_1 x + \alpha_2 x) = \alpha_1 A(x_1) + \alpha_2 A(x_2), \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}, \ \forall x_1, x_2 \in X$ (linearnost)

Primjer Operator $\frac{d}{dx}: C^1[a,b] \to C[a,b]$ je linearan.

Diferencijalni operatori

- $D^r = \frac{d^r f}{dx^r}$
- Ako je *P* polinom,

$$P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} \dots + a_1\lambda + a_0$$

možemo definirati linearan operator

$$P(D) := D^{n} + a_{n-1}D^{n-1} + \ldots + a_{1}D + a_{0}$$

P(D) je linearni operator sa $C^{(n)}[a,b]$ u C[a,b] koji se zove linearni diferencijalni operator reda n

Diferencijalni operatori

Prisjetimo se...

Ako s L označimo diferencijalni operator

$$L = \frac{d^n}{dx^n} + a_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + a_1(x)\frac{d}{dx} + a_0(x)$$

tada diferencijalnu jednadžbu

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$

možemo zapisati u obliku

$$(Ly)(x) = 0.$$

Operatorska jednadžba

Operatorska jednadžba ...

Neka vrijedi:

- Y i Z su vektorski prostori
- $L: Y \rightarrow Z$ je linearan operator
- $f \in Z$ je zadano.

Tada uvodimo sljedeće pojmove:

- Ly = f je operatorska jednadžba
- Ly = 0 je homogena operatorska jednadžba
- Neka je $y_p \in Y$ neki vektor za koji je $Ly_p = f$. Vektor y_p je partikularno rješenje operatorske jednadžbe.

Napomena

Ako je y_h bilo koje rješenje homogene jednadžbe tada je $y_h + y_p$ rješenje operatorske jednadžbe!

Rješenje operatorske jednadžbe

Teorem 2

Svako se rješenje operatorske jednadžbe Ly = f može zapisati u obliku

$$y = y_h + y_p,$$

gdje je y_h rješenje homogene jednadžbe, a y_p partikularno rješenje.

12 / 35

LDJ višeg reda

Homogena diferencijalna jednadžba *n*-tog reda ima oblik

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$

dok je nehomogena oblika

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = f(x)$$

Ako je

$$L = \frac{d^n}{dx^n} + a_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + a_1(x)\frac{d}{dx} + a_0(x)$$

homogenu jednadžbu mozemo zapisati u obliku

$$(Ly)(x) = 0$$

a nehomogenu u obliku

$$(Ly)(x) = f(x)$$

LDJ n-tog reda

Napomena

Ako su funkcije $a_0(x), \dots a_{n-1}(x)$ neprekinute na nekom intervalu $\langle a, b \rangle$ tada Cauchyev problem za LDJ n-tog reda ima jedinstveno rješenje.

Homogena LDJ n-tog reda

Teorem 3.

Prostor rješenja homogene LDJ n-tog reda je n-dimenzionalan vektorski potprostor prostora $C^{(n)}[a,b]$

Dokaz. Ne radimo

Napomena

Budući da su rješenja homogene LDJ *n*-tog reda elementi *n*-dimenzionalnog vektorskog prostora svako se rješenje može zapisati kao linearna kombinacija vektora iz baze toga prostora, odnosno baze rješenja.

Homogena LDJ *n*-tog reda. Baza rješenja.

Definicija. Baza rješenja

Skup $\{y_1, \ldots, y_n\}$ linearno nezavisnih rješenja homogene linearne diferencijalne jednadžbe n-tog reda naziva se BAZA RJEŠENJA ili temeljni sustav rješenja

Napomena

Ako je dan skup $\{y_1, ..., y_n\}$ od n linearno nezavisnih rješenja homogene LDJ n-tog reda, onda opće rješenje te jednadžbe možemo zapisati u obliku

$$y = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n$$

gdje su C_1, \ldots, C_n realne konstante.

Homogena LDJ *n*-tog reda. Obrat Teorema 1

Kako možemo identificirati da su rješenja homogene LDJ *n*-tog reda linearno nezavisna ili zavisna? Odgovor na to daje nam sljedeći teorem.

Teorem 4

Rješenja y_1, \ldots, y_n homogene LDJ n-tog reda su linearno nezavisna \iff vrijedi:

$$W(y_1,...,y_n) = \begin{vmatrix} y_1 & y_2 & ... & y_n \\ y'_1 & y'_2 & ... & y'_n \\ \vdots & & ... & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & ... & y_n^{(n-1)} \end{vmatrix} \not\equiv 0$$

Dokaz. Predavanja.

Homogena LDJ *n*-tog reda. Teorem 5

Teorem 5

Neka su y_1, y_2, \dots, y_n rješenja homogene LDJ n-tog reda za koja vrijedi

$$W(y_1, y_2, \dots, y_n)(x_0) = 0$$

za neki $x_0 \in \langle a, b \rangle$. Tada su funkcije y_1, y_2, \dots, y_n linearno zavisne.

Dokaz. Predavanja.

Uočimo da bi onda iz Teorema 1 sljedila tvrdnja

Napomena

Neka su y_1, y_2, \dots, y_n rješenja homogene LDJ n-tog reda. Tada vrijedi:

Ako je $W(y_1, y_2, ..., y_n)(x_0) = 0$ za neki $x_0 \in \langle a, b \rangle$ onda je

$$W(y_1, y_2, \dots, y_n) \equiv 0$$
 (odnosno $W(y_1, y_2, \dots, y_n)(x) = 0 \quad \forall x \in \langle a, b \rangle$)

DZ! Napisati ekvivalentnu tvrdnju tvrdnji koja stoji u napomeni koristeći obrat po kontrapoziciji.

18 / 35

Opće rješenje nehomogene LDJ n-tog reda

Nehomogena LDJ n-tog reda

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y'(x) + a_0(x)y(x) = f(x)$$

Prisjetimo se, operatorska jednadžba je:

$$Ly = f$$

Zato je opće rješenje (Teorem 2)

$$y = y_H + y_p$$

gdje je

 y_H =rješenje homogene y_p =partikularno rješenje

Nadalje, ako je y_1, \ldots, y_n baza rješenja homogene jednadžbe, tada je rješenje homogene jednadžbe dano s

$$y_H = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$$

13. tjedan nastave 18. lipnja 2016. 19 / 35

Metoda varijacije konstanti (pronalaženje partikularnog rješenja $Ly_p = f$)

Pretpostavljamo da je rješenje oblika

$$y(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + \dots + C_n(x)y_n(x)$$

$$y' = \sum_{i=1}^n C_i'(x)y_i(x) + \sum_{i=1}^n C_i(x)y_i'(x) \quad \text{uvjet} \quad \sum_{i=1}^n C_i'(x)y_i(x) = 0$$

$$y'' = \sum_{i=1}^n C_i'(x)y_i'(x) + \sum_{i=1}^n C_i(x)y_i''(x) \quad \text{uvjet} \quad \sum_{i=1}^n C_i'(x)y_i'(x) = 0$$

$$\vdots$$

$$y^{(n-1)} = \sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x) + \sum_{i=1}^{n} C_i(x) y_i^{(n-1)}(x) \quad \text{uvjet} \quad \sum_{i=1}^{n} C_i'(x) y_i^{(n-2)}(x) = 0$$

$$y^{(n)} = \sum_{i=1}^{n} C_i'(x) y_i^{(n-1)}(x) + \sum_{i=1}^{n} C_i(x) y_i^{(n)}(x) \quad \text{uvjet} \quad \sum_{i=1}^{n} C_i'(x) y_i^{(n-1)}(x) = f(x)$$

20 / 35

Metoda varijacije konstanti (pronalaženje partikularnog rješenja $Ly_p = f$)

Ako su ispunjeni ovi uvjeti, tada je

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y =$$

$$\sum_{i=1}^n C_i y_i^{(n)} + f + a_{n-1} \sum_{i=1}^n C_i y_i^{(n-1)} + \dots + a_0 \sum_{i=1}^n C_i y_i$$

$$= \sum_{i=1}^n C_i (y_i^{(n)} + a_{n-1}y_i^{(n-1)} + \dots + a_1y_i' + a_0y_i) + f = f$$

Dakle y je rješenje jednadžbe ako su zadovoljeni uvjeti

21/35

tjedan nastave 18. lipnja 2016.

Metoda varijacije konstanti(pronalaženje partikularnog rješenja $Ly_p = f$)

$$C'_{1}(x)y_{1}(x) + \dots + C'_{n}(x)y_{n}(x) = 0$$

$$C'_{1}(x)y'_{1}(x) + \dots + C'_{n}(x)y'_{n}(x) = 0$$

$$\vdots$$

$$C'_{1}(x)y_{1}^{(n-2)}(x) + \dots + C'_{n}(x)y_{n}^{(n-2)}(x) = 0$$

$$C'_{1}(x)y_{1}^{(n-1)}(x) + \dots + C'_{n}(x)y_{n}^{(n-1)}(x) = f(x)$$

Rješavanjem ovog sustava dobivamo tražene $C_1(x), C_2(x), \dots, C_n(x)$.

Napomena

Sustav uvijek ima rješenje. Determinanta sustava je Wronskijana! Budući da y_1, \ldots, y_n čine bazu homogene LDJ n-tog reda to je $W(y_1, \ldots, y_n) \not\equiv 0$.

Neka su $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$. Homogena LDJ *n*-tog reda s konstantnim koeficijentima je

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = 0$$

Nehomogena LDJ *n*-tog reda s konstantnim koeficijentima je

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = f$$

Karakteristični polinom ove jednadžbe je

$$P(r) = r^{n} + a_{n-1}r^{n-1} + \dots + a_0$$

Jednadžbu možemo zapisati u operatorskom obliku

$$Ly = f$$

gdje je

$$L = P(\frac{d}{dx}) = \frac{d^n}{dx^n} + a_{n-1}\frac{d^{n-1}}{dx^{n-1}} + \dots + a_1\frac{d}{dx} + a_0$$

Opće rješenje homogene jednadžbe je oblika

$$y = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n$$

gdje su y_1, \ldots, y_n linearno nezavisne funkcije.

Zanima nas kako odrediti bazu rješenja!

Neka je $y = e^{rx}$. Uočimo:

$$L(e^{rx}) = r^n e^{rx} + \ldots + a_1 r e^{rx} + a_0 e^{rx} = e^{rx} P(r)$$

Dakle vrijedi

$$L(e^{rx}) = 0 \iff P(r) = 0$$

P(r) je polinom n-tog stupnja, ima n nultočaka!

Teorem 6

Ako karakteristični polinom ima višestruke nultočke i vrijedi

$$r_1 = r_2 = ... = r_k$$
, onda je

$$L(x^{j}e^{r_1x}) = 0$$
, za $j = 0, 1, ..., k-1$.

Dokaz. Ne radimo.

Uočimo da gornji teorem kaže da su

$$y_0 = e^{r_1 x}, y_1 = x e^{r_1 x}, \dots, y_{k-1} = x^{k-1} e^{r_1 x}$$

rješenja homogene jednadžbe. Može se pokazati da su ovo linearno nezavisne funkcije!

Uočimo

- Ako karakteristični polinom ima kompleksne nultočke r_i onda su $e^{r_i x}$ kompleksna rješenja homogene jednadžbe.
- Teorem 6 u tom slučaju vrijedi i za višestruke kompleksne nultočke!
- Želimo realna rješenja, odnosno realnu bazu rješenja. Ove kompleksne funkcije zamijenit ćemo realnima. To možemo načiniti na sljedeći način.

Teorem 7

Ako je kompleksna funkcija y rješenje jednadžbe Ly = 0 s realnim koeficijentima, tada su Rey i Imy realna rješenja te jednadžbe.

Dokaz. Predavanja.

Kompleksne nultočke karakterističnog polinoma

- Neka je $r = \alpha + i\beta$ kompleksni korijen karakterističnog polinoma višestukosti k.
- Tada je i $\bar{r} = \alpha i\beta$ korijen višestrukosti k.
- Par rješenja $x^s e^{(\alpha+i\beta)x}$ i $x^s e^{(\alpha-i\beta)x}$ možemo zamijeniti s realnim funkcijama

$$x^{s}e^{\alpha x}\cos(\beta x)$$
 i $x^{s}e^{\alpha x}\sin(\beta x)$

i one su linearno nezavisne.

13. tjedan nastave

Postupak rješavanja homogene LDJ s konstantnim koeficijentima

Homogenu linearnu diferencijalnu jednadžbu n-tog reda s konstantnim koeficijentima

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = 0$$

rješavamo sljedećim postupkom:

Odredimo nultočke karakterističnog polinoma

$$P(r) = (r - r_1)^{n_1} \dots (r - r_k)^{n_k}$$

i njihove višestrukosti.

• Svakoj nultočki r_i višestrukosti n_i odgovara n_i linearno nezavisnih rješenja i to:

$$e^{r_ix}, xe^{r_ix}, \dots x^{n_i-1}e^{r_ix}$$

• Svakom paru kompleksno konjugiranih nultočaka $r_i = \alpha + i\beta$ i $r_{i+1} = \alpha - i\beta$ višestrukosti n_i odgovara $2n_i$ linearno nezavisnih rješenja odnosno:

$$e^{\alpha x}\cos\beta x, xe^{\alpha x}\cos\beta x, \dots, x^{n_i-1}e^{\alpha x}\cos\beta x$$

$$e^{\alpha x}\sin\beta x, xe^{\alpha x}\sin\beta x, \dots, x^{n_i-1}e^{\alpha x}\sin\beta x$$

Opće rješenje homogene jednadžbe je linearna kombinacija svih $n = n_1 + n_2 + \dots + n_k$ rješenja,

28 / 35

Postupak određivanja partikularnog rješenja

Partikularno rješenje linearne diferencijalne jednadžbe *n*-tog reda s konstantnim koeficijentima

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = f$$

tražimo sljedećim postupkom:

Ako je desna strana oblika

$$f(x) = e^{\alpha x} \left(Q_1(x) \cos(\beta x) + Q_2(x) \sin(\beta x) \right)$$

gdje su $Q_1(x)$ i $Q_2(x)$ polinomi stupnja $\leq p$ tada jednadžba ima partikularno rješenje oblika:

$$y_p = x^m e^{\alpha x} [R_1(x)\cos(\beta x) + R_2(x)\sin(\beta x)]$$

gdje je

- m=višestrukost broja $\alpha + i\beta$ kao nultočke karakterističnog polinoma. (ako $\alpha + i\beta$ nije nultočka onda je m = 0.)
- $R_1(x)$ i $R_2(x)$ su polinomi stupnja p čije koeficijente određujemo uvrštavanjem y_p u jednadžbu.

◆□▶◆□▶◆■▶◆■▶ ■ 900

Postupak određivanja partikularnog rješenja

Ako je desna strana

$$f(x) = f_1(x) + f_2(x) + \dots + f_k(x)$$

i y_{p_i} su partikularna rješenja jednadžbe $Ly = f_i$ onda je

$$y = y_{p_1} + y_{p_2} + \dots y_{p_k}$$

partikularno rješenje jednadžbe Ly = f.

• Ako f nije gore navedenog oblika, y_p određujemo metodom varijacije konstanti

Rješavanje diferencijalnih jednadžbi pomoću redova

Red potencija oko točke $x_0 \in \mathbb{R}$ je

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n, \ a_n \in \mathbb{R}$$

Za takav red kažemo da konvergira u x_1 ako red brojeva

$$\sum a_n(x_1-x_0)^n$$

konvergira.

Područje konvergencije reda je interval oblika

$$\langle x_0 - R, x_0 + R \rangle$$

za neki $0 \le R \le \infty$. Ako je R = 0 tada red konvergira samo u x_0 .

Rješavanje diferencijalnih jednadžbi pomoću redova

Red potencija koji konvergira na nekom intervalu, na tom intervalu definira funkciju

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Takva funkcja ima derivacije i vrijedi

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$$

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2}$$

Rješavanje diferencijalnih jednadžbi pomoću redova

Analitička funkcija

Za funkciju kažemo da je analitička u točki x_0 ako ju možemo prikazati pomoću reda potencija

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

koji konvergira na nekom otvorenom intervalu koji sadrži točku x_0 .

Linearnu diferencijalnu jednadžbu drugog reda:

$$p(x)y'' + q(x)y + r(x)y = 0$$

rješavat ćemo tako da ćemo rješenje tražiti u obliku

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Uvrstimo u jednadžbu, te koeficijente a_n izvodimo iz rekurzije.

Teorem

Zašto to možemo napraviti?

Teorem

Ako su p, q i r analitičke funkcije u okolini točke x_0 i $p(x_0) \neq 0$ onda je rješnje homogene LDJ drugog reda

$$p(x)y'' + q(x)y + r(x)y = 0$$

analitička funkcija oko točke x_0

Literatura

N.Elezović: Diferencijalne jednadžbe, Zagreb, svibanj 2016.