Jaime Fabián Nieto Castellanos

September 2, 2021

High precision results

The following results were obtained through several simulations on lattices of size 6×64 , 7×64 , 8×64 , 9×64 , 10×64 , 11×64 and 12×64 with the parameters shown in Table 1

Ntime	64
Ntherm	1000
Nmeasure	10000
Trajectory Steps	10
Nsteps	20
β	2

Table 1: All the simulations were performed with this parameters.

Variance stands for the var option in the mass coll program and Chi squared for the χ^2 option. $g = \frac{1}{\sqrt{\beta}}$. The residual pion mass is extrapolated with two different methods. In the plots of m_{π} vs. $(g \, m_{pcac}^2)^{1/3}$ we fit a function of the form

$$y = \sqrt{a + bx^3}. (1)$$

(a) Fermion mass using PCAC relation.

(c) Autocorrelation of $\langle \overline{\psi}\psi \rangle$

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

(d) Autocorrelation of the topological charge

Figure 1: Number of configurations vs. topological charge on a 6×64 lattice.

(a) Fermion mass using PCAC relation.

 L_t =64, L=7, β =2, Plateau points=14

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

Autocorrelation of topological charge, L_t =64, L=7, β =2

+ Least squares fit (τ_{exp})

Cumulative method (τ_{int})

X Jackknife 20 blocks (τ_{int})

4

2

0.22
0.23
0.24
0.25
0.26
0.27
0.28

(d) Autocorrelation of the topological charge

Figure 2: Number of configurations vs. topological charge on a 7×64 lattice.

(a) Fermion mass using PCAC relation.

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

(d) Autocorrelation of the topological charge

Figure 3: Number of configurations vs. topological charge on a 8×64 lattice.

(a) Fermion mass using PCAC relation.

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

(d) Autocorrelation of the topological charge

Figure 4: Number of configurations vs. topological charge on a 9×64 lattice.

(a) Fermion mass using PCAC relation.

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

(d) Autocorrelation of the topological charge

Figure 5: Number of configurations vs. topological charge on a 10×64 lattice.

(a) Fermion mass using PCAC relation.

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

(d) Autocorrelation of the topological charge

Figure 6: Number of configurations vs. topological charge on a 11×64 lattice.

(a) Fermion mass using PCAC relation.

 L_t =64, L=12, β =2, Plateau points=14

(b) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered.

(d) Autocorrelation of the topological charge

Figure 7: Number of configurations vs. topological charge on a 12×64 lattice.

F_{π} extrapolation

Figure 8: m_{π}^R vs. L. We fitted a function of the form y=a/x. For variance $F_{\pi}=0.392(2)$, while for chi squared $F_{\pi}=0.393(3)$.

Figure 9: m_{π}^R vs. 1/L. We fitted a function of the form y=a/x. For variance $F_{\pi}=0.392(2)$, while for chi squared $F_{\pi}=0.393(3)$.

Comparison with the low statistics results

(a) Results with low statistics $\sim 10^3$ measurements.

(b) Results with high statistics $\sim 10^4$ measurements.