Monostable Multivibrator :

* when -ve pulse is applied at Vin => Cz discharges

Forcing Vx to drop.

This will force Dz to conduct

f forces Vc to drop.

When Ve reaches V, V, will

switch to L => Dz now will cutoff Vgf C, will start to discharge

through Rz (note that it's initial voelue is VD-due to diode Di).

The op-amp will switch V_A to L_+ of C_1 starts to

charge again tell it reaches VDI.

To determine the width of pulse To T is the same time the capacitor c, takes to discharge from + Voi to BL. or V = 1 during the discharge $= > V_{B} = V_{SRC} + (V_{inificit} - V_{SRC}) e , T = R_{3} C_{1}$ $= L_{-} + (V_{D_{1}} - L_{-}) e^{R_{3}C_{1}}$ af f=T => VB = BL_ $= 3 1 = 1 + (V_{01} - L_{-})e^{\frac{-7}{R_3}C_1}$ => $\beta L_{-}L_{-} = (V_{D_{1}} - L_{-}) e^{-\frac{1}{R_{3}}C_{1}}$ $= > e^{\frac{7}{R_3C_1}} = \frac{V_{D1} - L_{-}}{BL - L_{-}}$ $= > T_{R_3C_1} = \mathcal{L}_u\left(\frac{V_{D_1} - L_{-}}{B_1 - L_{-}}\right)$ $=> \overline{IT} = \operatorname{Rc}_{3} \operatorname{lu} \left(\frac{V_{01} - L_{-}}{B_{L} - L_{-}} \right)$ if 141>> Vo, : => T = R3C, lu (1-B)

$$= V_{D_{1}} = L_{+} + (BL_{-}L_{+}) e^{B_{3}C_{1}}$$

$$= V_{D_{1}} = L_{+} + (BL_{-}L$$

The given ct. shows a monostable multivibrator ct. given that in it's stable state, $V_0 = L_+$, $V_+ = 0$, f $V_B = -V_{Ref}$. The ct. can be Triggered by applying a +ve input pulse of height greater than V_{Ref} for normal operation, $R_1C_1 << RC$. Show the resulting waveforms of V_0 f V_4 . Also show that the pulse generated at the octput will have a width T given by:

$$T = RC \left\{ u \left(\frac{L_{+} - L_{-}}{V_{REF}} \right) \right\}$$

Voltage 2 $C = V_{final} + (V_{initial} - V_{initial}) e^{t}$ Trigger:

Voltage 2 $C = -L_{initial} + (V_{initial} - V_{initial}) e^{t}$ $V_{initial} + (V_{i$

=>
$$e^{tT_{K}} = \frac{L-L_{1}}{-V_{RE}f} = \frac{L_{1}-L_{-}}{V_{RE}f}$$

=> $T = 2 \left(ln \left(\frac{L_{1}-L_{-}}{V_{RE}f} \right) \right)$
=> $T = RC \left(ln \left(\frac{L_{+}-L_{-}}{V_{RE}f} \right) \right)$
L) in this case the time of the pulse can be adjusted by changing $V_{RE}f$.