More Notes on Derivatives

Thomas Cohn

9/26/18

Refresher from Monday: Given $A^{\text{open}} \subset V$ normed vector space, with W normed vector space, and f: $A \to W$.

f is $C^1 \leftrightarrow f$ is continuously differentiable

 $\leftrightarrow f$ is differentiable at each $\vec{a} \in A$ and $Df : A \to B(V, W), \vec{a} \mapsto Df(\vec{a}).$

 $C^1(A, W)$ is the set of all $C^1 f: A \to W$.

Special Case: $V = \mathbb{R}^m$, $W = \mathbb{R}^n$, so we have $B(V, W) \leftrightarrow \text{Mat}(n, m)$.

Then the (j,k) entry of $Df(\vec{a})$ is $D_k f_j(\vec{a}) = f'_j(\vec{a}; \vec{e_k})$

f is C^1 iff it is differentiable at each $\vec{a} \in A$ and each $D_k f_j : A \to \mathbb{R}$ is continuous.

Thm: Given $f: A^{\text{osso}\mathbb{R}^n} \to \mathbb{R}^n$, and all $D_k f_j$ exist and are continuous on A, then $f \in C^1(A, \mathbb{R}^n)$. Proof: It is enough to show that f is differentiable at each $\vec{a} \in A$. From last wednesday, it is enough to show that each component is differentiable.

Some board work for m=2:

Fix $\vec{a} = (a_1, a_2) \in A$, and consider small $\vec{h} = (h_1, h_2)$. $\cdot \quad (a_1 + h_1, a_2 + h_2)$ $\uparrow \quad \vec{q}$

$$(a_1+h_1,a_2+1)$$

$$\begin{array}{ccc} \cdot & \rightarrow & \\ (a_1, a_2) & \vec{p} & (a_1 + h_1, a_2) \end{array}$$

 $f(a_1 + h_1, a_2) - f(a_1, a_2) = D_1 f(\vec{p}) h_1$ for some \vec{p} by MVT.

 $f(a_1 + h_1, a_2 + h_2) - f(a_1 + h_1, a_2) = D_2 f(\vec{q}) h_2$ for some \vec{q} by MVT.

If $D_f(\vec{a})$ exists, it must be $\begin{pmatrix} D_1 f(\vec{a}) & D_2 f(\vec{a}) \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} f(\vec{a} + \vec{h}) - f(\vec{a}) = D_1 f(\vec{p}) h_1 + D_2 f(\vec{q}) h_2$.

Goal: (*) $\frac{f(\vec{a} + \vec{h}) - f(\vec{a}) - (D_1 f(\vec{a}) h_1 + D_2 f(\vec{a}) h_2)}{\left| |\vec{h}| \right|} \to 0 \text{ as } \vec{h} \to \vec{0}.$ Well, this is $= (D_1 f(\vec{p}) - D_1 f(\vec{a})) \frac{h_1}{||\vec{h}||} + (D_2 f(\vec{q}) - D_2 f(\vec{a})) \frac{h_2}{||\vec{h}||}.$

As $\vec{h} \to \vec{0}$, $\frac{h_1}{||\vec{h}||}$ is bounded, since $\left|\frac{h_1}{||\vec{h}||}\right| \le 1$. The same applies for $\frac{h_2}{||\vec{h}||}$.

As $\vec{h} \rightarrow \vec{0}$, \vec{p} , $\vec{q} \rightarrow \vec{a}$. So $D_1 f(\vec{p}) \rightarrow D_1 f(\vec{a})$ and $D_2 f(\vec{q}) \rightarrow D_2 f(\vec{a})$. So $D_1 f(\vec{p}) - D_1 f(\vec{a}) \rightarrow 0$ and $D_2 f(\vec{q}) - D_2 f(\vec{a}) \rightarrow 0.$

Therefore, $(D_1 f(\vec{p}) - D_1 f(\vec{a})) \frac{h_1}{||\vec{h}||} + (D_2 f(\vec{q}) - D_2 f(\vec{a})) \frac{h_2}{||\vec{h}||} \to 0.$

Ex: Generalize the above proof (Munkres 6.2).

Thm: If $A \subset V$ is open $(V \text{ is a normed vector space}), <math>f: A \to W$ (another normed vector space), and $D_f(\vec{a}; \vec{u})$ exist and are continuous for $(\vec{a}, \vec{u}) \in A \times V$, then f is differentiable, and $f \in C^1(A, W)$.

 $f \in C^1(A^{\text{osso}V}, W)$ leads to $D_f : A \to B(V, W)$ continuous. It might be differentiable. If so, have $D^2 f = D(Df) : A \to B(V, B(V, W))$.

 $f \in C^2(A, W) \leftrightarrow Df \in C^1(A, B(V, W)) \leftrightarrow Df$ is differentiable at each \vec{a} and D^2f is continuous. $\leftarrow V = \mathbb{R}^m, W = \mathbb{R}^m$, and f' is C^1 and each $D_\ell D_k f_j$ exists and is continuous on A.

 $C^r(A, W)$ follows similarly. $C^r(A) = C^r(A, W)$.

Thm: If
$$f \in C^2(A^{\text{osso}\mathbb{R}^2}, \mathbb{R})$$
, then $D_2D_1f(a, b) = \lim_{(h, k) \to (0, 0)} \frac{f(a + h, b + k) - f(a + h, b) - f(a, b + k) + f(a, b)}{hk}$

Proof: Let $\varphi(s) = f(s, b + k) - f(s, b)$. It's differentiable by the chain rule. $\varphi'(s) = D_1 f(s, b + k) - D_1 f(s, b)$.

So the numerator is $\varphi(a+h) - \varphi(a) = \varphi'(s_0)h$ for some s_0 by the MVT.

So this is equal to $(D_1f(s_0, b+k) - D_1f(s_0, b))h$.

Applying the MVT again gives us $(D_2D_1f(s_0,t_0)kh$ for some s_0,t_0 .

So
$$\lim_{(h,k)\to(0,0)} \frac{D_2 D_1 f(s_0,t_0) h k}{kh} = D_2 D_1 f(a,b). \square$$

Cor: f as above $\to D_2D_1f = D_1D_2f$ (Clairaut's Theorem). Note that the existence of D^2f is not enough for this result. See Munkres §6 #10.

Notation: For differentiable $f: A^{\text{osso}V} \to W, \vec{u} \in V, \text{ set } \begin{array}{c} D_{\vec{u}}f: A \to W \\ \vec{a} \mapsto f'(\vec{a}; \vec{u}) = Df(\vec{a})(\vec{u}) \end{array}$.

If $f \in C^2(A, \mathbb{R})$, then $D_{\vec{u_1}} D_{\vec{u_2}} f = D_{\vec{u_2}} D_{\vec{u_1}} f$.

Proof 1: Apply chain rule twice to $(x_1, x_2) \mapsto f(\vec{a} + x_1 \vec{u_1} + x_2 \vec{u_2})$.

Proof 2: Study
$$\lim_{(h,k)\to(0,0} \frac{f(\vec{a}+h\vec{u_1}+k\vec{u_2})-f(\vec{a}+h\vec{u_1})-f(\vec{a}+k\vec{u_2})+f(\vec{a})}{hk}$$
.

Spoiler! It equals both $D_{\vec{u_1}}D_{\vec{u_2}}f$ and $D_{\vec{u_2}}D_{\vec{u_1}}f$.

Cor: This also works for $f \in C^2(A, \mathbb{R}^m)$.