

The STEREO/WAVES antenna calibration

Final Results

Oswald, T.H. (1), W. Macher (1), H.O. Rucker (1), and the SWAVES team

(1) Space Research Institute Graz/Austrian Academy of Sciences

thomas.oswald@oeaw.ac.at

The STEREO mission

- Two spacecraft, one ahead and one behind earth, slowly drifting apart at a rate of 22 degrees by year
- To extend our knowledge about the physics of the solar system
- Research on space weather, CMEs and sun-earth-connection (SEC)
- For the first time stereoscopic methods are used which include remote and insitu measurements of the same events

The STEREO mission

SWAVES

- Measures electric fields
- Frequency quasi-static-16MHz+2 fixed frequencies at 30.025 and 32.025MHz
- Measures electron density and temperature with quasi thermal noise analysis
- 3 orthogonal monopole-stacer-antennas, directed away from the sun, 6m length
- "Direction Finding" (DF) mode provides all auto- and cross correlation parameters
- 2 spacecraft render it possible to pinpoint the source of the EM radiation via triangulation
- The equipment on the 2 s/c will track those radio sources from less than 2 R_s to 1AU and beyond

SWAVES antennas

- The Goal: Correct data interpretation
- Influence of the spacecraft body
- Effective length vectors and impedance- or capacitance matrices
- These quantities were determined and analyzed numerically and experimentally

STATUS QUO

- We finished the ASAP project for the determination of the reception properties of the WAVES antennas on-board the two STEREO spacecraft.
- The numerical and experimental procedures are completed
- The interpretation of the results and the publication is not yet complete
- The capacitances have to be determined numerically

Methods to determine the effective length vector

- (1) Numerical electromagnetic code
- (2) Rheometry
- (3) The anechoic chamber
- (4) In-flight Calibration

The experimental method: Rheometry

- A gold-plated model of the spacecraft is submerged into a water tank
- A low-frequency electric field is applied
- The response (induced voltage) of the antennas is measured as a function of spacecraft orientation
- The effective length vectors and the antenna impedances can be computed from the data
- Rheometry is only applicable to the quasi-static limit

Rheometry

Rheometry

Our model

The coordinate system

Antenna	<i>h</i> ^m [m]	ζ ^m [deg]	ξ ^m [deg]
E_{x}	6.00	125.3	-120.0
E_{y}	6.00	125.3	120.0
E_{z}	6.00	125.3	0.0

The coordinate system

Antenna	<i>h</i> ^m [m]	·	[deg]	ξ ^m [deg]
E_{x}	6.00		125.3	-120.0
E_{y}	6.00		125.3	120.0
E_z	6.00		125.3	0.0

The coordinate system

Antenna	<i>h</i> ^m [m]	ζ ^m [deg]	ξn	deg	
E_{x}	6.00	125.3		120.0	
E_{y}	6.00	125.3		120.0	
E_{z}	6.00	125.3		0.0	

Rheometry results

HGA	Antenna		STEREO A			STEREO B	
orientatio n		h° [m]	ζ° [deg]	ξ° [deg]	h° [m]	ζ° [deg]	ξ° [deg]
	E _x	2.89	126.5	-140.2	2.93	126.2	-140.8
-90 deg	Ey	3.83	118.9	127.8	3.86	118.8	127.7
	Ez	2.37	132.2	21.1	2.36	132.4	20.0
	$\mathbf{E}_{\mathbf{x}}$	2.89	126.2	-140.7	2.92	126.0	-141.2
0 deg	$\mathbf{E}_{\mathbf{y}}$	3.84	118.7	127.9	3.87	118.8	127.6
	\mathbf{E}_{z}	2.36	132.2	21.6	2.36	132.8	20.6
+90 deg	E_{x}	2.85	126.2	-140.8	2.89	125.8	-141.3
	Ey	3.84	118.6	128.1	3.86	118.6	127.2
	Ez	2.36	131.7	21.6	2.36	132.5	20.8

Antenna	<i>h</i> ^m [m]	ζ ^m [deg]	ξ ^m [deg]
E_{x}	6.00	125.3	-120.0
E_{y}	6.00	125.3	120.0
E_{z}	6.00	125.3	0.0

Rheometry results

open feeds

loaded feeds

HGA	Antenna		STEREO A		STEREO B		
orientatio n		h° [m]	ζº [deg]	ξ° [deg]	<i>h</i> ° [m]	ζº [deg]	ξ° [deg]
	Ex	2.89	126.5	-140.2	2.93	126.2	-140.8
-90 deg	E _y	3.83	118.9	127.8	3.86	118.8	127.7
	Ez	2.37	132.2	21.1	2.36	132.4	20.0
	Ex	2.89	126.2	-140.7	2.92	126.0	-141.2
0 deg	$\mathbf{E}_{\mathbf{y}}$	3.84	118.7	127.9	3.87	118.8	127.6
	\mathbf{E}_{z}	2.36	132.2	21.6	2.36	132.8	20.6
	E_{x}	2.85	126.2	-140.8	2.89	125.8	-141.3
+90 deg	E _y	3.84	118.6	128.1	3.86	118.6	127.2
	Ez	2.36	131.7	21.6	2.36	132.5	20.8
		h [m]	ζ [deg]	ξ [deg]	h [m]	ζ [deg]	ξ [deg]
	E_{x}	1.17	121.0	-134.5	1.17	120.8	-135.0
-90 deg	Ey	1.46	114.9	126.6	1.46	114.8	126.4
	Ez	0.99	124.6	15.5	0.98	124.6	14.4
	$\mathbf{E}_{\mathbf{x}}$	1.16	120.8	-134.9	1.18	120.6	-135.4
0 deg	$\mathbf{E}_{\mathbf{y}}$	1.46	114.7	126.7	1.47	114.8	126.3
	Ez	0.99	124.6	15.9	0.98	125.0	14.9
	E _x	1.15	120.8	-135.0	1.16	120.5	-135.5
+90 deg	E _y	1.45	114.7	127.0	1.47	114.7	126.0
	Ez	0.98	124.3	15.9	0.98	124.9	15.0

The numerical method

The numerical method

The numerical method

- The spacecraft is modeled as a grid of wires or patches
- Then the currents along these wires/patches are computed
- This calculation is done with ASAP (wires) and CONCEPT II (wires and patches)
- On base of the current distribution, all other antenna properties (effective length vectors, impedances) can be calculated with MATLAB routines

Computation of the current distribution

- The equation governing the current distribution is the electric field integral equation (EFIE. CONCEPT), or the reaction integral equation (RIE, ASAP)
- For patches, the magnetic field integral equation (MFIE, CONCEPT) is used
- The antenna is excited at the feed
- Due to reciprocity, the receiving antenna results in the same current distribution as the transmitting

Computation of the antenna properties

- Calculations were performed for open feeds and base capacitances of 95pF
- A correction for the real antenna diameters has to be applied on the ASAP results. CONCEPT can deal with real antenna diameters.

The quasi-static limit (ASAP)

HGA	Antenna	STEREO A				STEREO B	
orientatio n		hº [m]	ζ [deg]	ξº [deg]	h° [m]	ζº [deg]	ξ ^ο [deg]
	E_x	3.03	126.3	-141.1	3.03	126.4	-141.1
-90 deg	E _y	3.81	119.3	129.2	3.82	119.4	129.2
	E_z	2.32	133.8	20.8	2.32	133.9	20.8
	E_x	3.03	126.0	-141.6	3.03	126.1	-141.6
0 deg	E _y	3.82	119.1	129.3	3.83	119.2	129.3
	E_z	2.30	133.7	21.4	2.31	133.8	21.4
	$\mathbf{E}_{\mathbf{x}}$	2.98	126.0	-141.6	2.99	126.0	-141.6
+90 deg	E _y	3.81	118.9	129.0	3.81	119.0	129.0
	E_z	2.31	133.1	21.4	2.31	133.2	21.4
		h [m]	ζ [deg]	ζ [deg]	h [m]	ζ [deg]	ζ [deg]
	$\mathbf{E}_{\mathbf{x}}$	1.19	120.5	-134.9	1.19	120.6	-134.9
-90 deg	Ey	1.43	114.8	127.4	1.43	114.9	127.4
	E_z	0.96	125.0	14.9	0.97	125.1	15.0
	$\mathbf{E}_{\mathbf{x}}$	1.19	120.3	-135.3	1.19	120.4	-135.3
0 deg	Ey	1.43	114.7	127.5	1.43	114.8	127.5
	E_z	0.96	124.9	15.4	0.96	125.0	15.4
	E_{x}	1.17	120.3	-135.4	1.18	120.4	-135.4
+90 deg	E _y	1.43	114.5	127.3	1.43	114.6	127.3
	E_z	0.96	124.6	15.4	0.96	124.7	15.4

The quasi-static limit (CONCEPT)

HGA	Antenna		STEREO A		STEREO B			
orientatio n		h° [m]	ζº [deg]	ξ ⁰ [deg]	h° [m]	ζ ^o [deg]	ξ° [deg]	
	Ex	3.07	125.9	-141.1	3.07	126.0	-141.1	
-90 deg	E _y	3.87	118.9	129.2	3.87	119.0	129.2	
	E_z	2.35	133.6	20.9	2.35	133.7	20.9	
	E_x	3.07	125.6	-141.6	3.07	125.7	-141.6	
0 deg	E _y	3.88	118.6	129.2	3.88	118.7	129.2	
	E_z	2.34	133.5	21.5	2.34	133.6	21.5	
	E _x	3.02	125.5	-141.7	3.02	125.6	-141.7	
+90 deg	E _y	3.86	118.4	128.9	3.87	118.5	128.9	
	E_z	2.34	132.9	21.5	2.34	133.0	21.5	
		h [m]	ζ [deg]	ζ [deg]	h [m]	ζ [deg]	ξ [deg]	
	E_{x}	1.17	119.5	-134.4	1.17	119.6	-134.4	
-90 deg	E _y	1.42	114.1	127.3	1.42	114.2	127.3	
	E_z	0.96	123.9	14.5	0.96	124.0	14.5	
	E_{x}	1.17	119.3	-134.8	1.17	119.4	-134.8	
0 deg	E _y	1.42	113.9	127.3	1.42	114.0	127.3	
	E_z	0.96	123.9	15.0	0.96	124.0	15.0	
	E_{x}	1.16	119.3	-134.9	1.16	119.4	-134.9	
+90 deg	E _y	1.42	113.8	127.1	1.42	113.9	127.1	
	E_z	0.96	123.5	15.0	0.96	123.6	15.0	

Experimental Results

HGA	Antenna		STEREO A		STEREO B			
orientatio n		<i>h</i> ° [m]	ζº [deg]	ξ° [deg]	<i>h</i> ° [m]	ζº [deg]	ξ° [deg]	
	Ex	2.89	126.5	-140.2	2.93	126.2	-140.8	
-90 deg	E _y	3.83	118.9	127.8	3.86	118.8	127.7	
	Ez	2.37	132.2	21.1	2.36	132.4	20.0	
	E_{x}	2.89	126.2	-140.7	2.92	126.0	-141.2	
0 deg	E_y	3.84	118.7	127.9	3.87	118.8	127.6	
	Ez	2.36	132.2	21.6	2.36	132.8	20.6	
	E_{x}	2.85	126.2	-140.8	2.89	125.8	-141.3	
+90 deg	E_y	3.84	118.6	128.1	3.86	118.6	127.2	
	Ez	2.36	131.7	21.6	2.36	132.5	20.8	
		h [m]	ζ [deg]	ξ [deg]	h [m]	ζ [deg]	ξ [deg]	
	E _x	1.17	121.0	-134.5	1.17	120.8	-135.0	
-90 deg	E _y	1.46	114.9	126.6	1.46	114.8	126.4	
	Ez	0.99	124.6	15.5	0.98	124.6	14.4	
	E_{x}	1.16	120.8	-134.9	1.18	120.6	-135.4	
0 deg	E _y	1.46	114.7	126.7	1.47	114.8	126.3	
	Ez	0.99	124.6	15.9	0.98	125.0	14.9	
	E _x	1.15	120.8	-135.0	1.16	120.5	-135.5	
+90 deg	E _y	1.45	114.7	127.0	1.47	114.7	126.0	
	Ez	0.98	124.3	15.9	0.98	124.9	15.0	

The Effect of changing the model 1

Component	Antenna	δh° [m]	$δ$ ζ $^{\circ}$ [deg]	$δ$ ξ $^{\circ}$ [deg]	Illustration
	E_{x}	0.01	0.1	0.2	
1. Battery	Ey	0.00	0.0	0.2	
	E_{z}	0.00	0.1	0.0	
• =====================================	E_{x}	0.00	0.0	0.1	
2. SECCHI (HI)	E _y	0.00	0.0	0.1	
()	E_z	0.00	0.1	0.0	
3. Beveling	E_{x}	0.01	0.0	0.2	
of hull	E_y	0.02	0.0	0.0	
edges	Ez	0.01	0.0	0.3	
4. Change	E_{x}	0.08	1.3	6.6	
of antenna	Ey	0.02	0.2	0.1	
connections	E_{z}	0.13	3.8	0.1	
5. Change of feed	E _x	0.11	0.0	0.1	
	E_{x}	0.12	0.1	0.1	→
positions	Ez	0.09	0.1	0.3	

The Effect of changing the model 2

Component	Antenna	δh° [m]	$δ$ ζ $^{\circ}$ [deg]	$δ$ ξ $^{\circ}$ [deg]	Illustration
	E_{x}	0.00	0.0	0.0	
6. Redesign of feed area	E_y	0.01	0.1	0.0	→
011000 01100	E_{z}	0.00	0.0	0.0	
5 D 1 :	E_{x}	0.03	0.2	0.5	
7. Redesign of HGA	E_y	0.03	0.1	0.4	
0111011	E_{z}	0.01	0.8	0.9	
	E_{x}	0.05	0.6	0.2	
8. Redesign of boom	E_y	0.03	0.6	0.3	
or coom	E_{z}	0.02	1.2	0.3	
9. Change	E_{x}	0.10	3.1	0.9	
of boom length by	E_y	0.07	2.8	0.3	
1 m	Ez	0.16	3.0	1.1	boom length 5m 🗡 6m

Variation due to the HGA orientation

Relative offset from the quasi-static case

average

maximum

The self-impedances(open)

The self-impedances(loaded)

Relative Gain Patterns

Summary

The following parameters have been determined and investigated:

- Open port transfer matrices
- Antenna capacitances
- Transfer matrices of the loaded antennas
- The change of the results due to variation of the spacecraft structure
- The effect of the orientation of the HGA
- An estimation of the upper frequency limit below which the quasi-static result can be used
- A new technique of correcting for inexact modeling of the antenna radii.
- An estimation of the surface impedance of the rheometry model
- The reception patterns at the FFR frequencies