- 4.2 (a) Calculate the fraction of atom sites that are vacant for copper (Cu) at its melting temperature of 1084°C (1357 K). Assume an energy for vacancy formation of 0.90 eV/atom.
 - (b) Repeat this calculation at room temperature (298 K).
 - (c) What is ratio of $N_v/N(1357 \text{ K})$ and $N_v/N(298 \text{ K})$?

Solution

(a) In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation 4.1. As stated in the problem, $Q_v = 0.90$ eV/atom. Thus,

$$\frac{N_v}{N} = \exp\left(-\frac{Q_v}{kT}\right) = \exp\left[-\frac{0.90 \text{ eV/atom}}{(8.62 \times 10^{-5} \text{ eV/atom-K})(1357 \text{ K})}\right]$$

$$= 4.56 \times 10^{-4} = N_{\downarrow}/N(1357 \text{ K})$$

(b) We repeat this computation at room temperature (298 K), as follows:

$$\frac{N_v}{N} = \exp\left(-\frac{Q_v}{kT}\right) = \exp\left[-\frac{0.90 \text{ eV/atom}}{(8.62 \times 10^{-5} \text{ eV/atom-K})(298 \text{ K})}\right]$$

$$=6.08 \times 10^{-16} = N_v/N(298 \text{ K})$$

(c) And, finally the ratio of $N_V/N(1357 \text{ K})$ and $N_V/N(298 \text{ K})$ is equal to the following:

$$\frac{N_v/N(1357 \text{ K})}{N_v/N(298 \text{ K})} = \frac{4.56 \times 10^{-4}}{6.08 \times 10^{-16}} = 7.5 \times 10^{11}$$

4.4 Atomic radius, crystal structure, electronegativity, and the most common valence are given in the following table for several elements; for those that are nonmetals, only atomic radii are indicated.

Element	Atomic Radius (nm)	Crystal Structure	Electronegativity	Valence
Ni	0.1246	FCC	1.8	+2
C	0.071			
H	0.046			
0	0.060			
Ag	0.1445	FCC	1.9	+1
Al	0.1431	FCC	1.5	+3
Co	0.1253	HCP	1.8	+2
Cr	0.1249	BCC	1.6	+3
Fe	0.1241	BCC	1.8	+2
Pt	0.1387	FCC	2.2	+2
Zn	0.1332	HCP	1.6	+2

Which of these elements would you expect to form the following with nickel:

- (a) a substitutional solid solution having complete solubility
- (b) a substitutional solid solution of incomplete solubility
- (c) an interstitial solid solution

Solution

For complete substitutional solubility the four Hume-Rothery rules must be satisfied: (1) the difference in atomic radii between Ni and the other element ($\Delta R\%$) must be less than $\pm 15\%$; (2) the crystal structures must be the same; (3) the electronegativities must be similar; and (4) the valences should be the same.

Element	$\Delta R\%$	Crystal Structure	ΔElectro- negativity	Valence
Ni		FCC		2+
C	-43			
H	-63			
0	-52			
Ag	+16	FCC	+0.1	1+
Al	+15	FCC	-0.3	3+
Co	+0.6	HCP	0	2+
Cr	+0.2	BCC	-0.2	3+
Fe	-0.4	BCC	0	2+
Pt	+11	FCC	+0.4	2+
Zn	+7	HCP	-0.2	2+

- (a) Pt is the only element that meets all of the criteria and thus forms a substitutional solid solution having complete solubility. At elevated temperatures Co and Fe experience allotropic transformations to the FCC crystal structure, and thus display complete solid solubility at these temperatures.
- (b) Ag, Al, Co, Cr, Fe, and Zn form substitutional solid solutions of incomplete solubility. All these metals have either BCC or HCP crystal structures, and/or the difference between their atomic radii and that for Ni are greater than ±15%, and/or have a valence different than 2+.
- (c) C, H, and O form interstitial solid solutions. These elements have atomic radii that are significantly smaller than the atomic radius of Ni.

- 5.2 (a) Compare interstitial and vacancy atomic mechanisms for diffusion.
- (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion.

Answer

- (a) With vacancy diffusion, atomic motion is from one lattice site to an adjacent vacancy. Self-diffusion and the diffusion of substitutional impurities proceed via this mechanism. On the other hand, atomic motion is from interstitial site to adjacent interstitial site for the interstitial diffusion mechanism.
- (b) Interstitial diffusion is normally more rapid than vacancy diffusion because: (1) interstitial atoms, being smaller, are more mobile; and (2) the probability of an empty adjacent interstitial site is greater than for a vacancy adjacent to a host (or substitutional impurity) atom.

5.16 The diffusion coefficients for carbon in nickel are given at two temperatures are as follows:

T (°C)	D (m²/s)
600	5.5 × 10 ⁻¹⁴
700	3.9×10^{-13}

- (a) Determine the values of Do and Qd.
- (b) What is the magnitude of D at 850°C?

Solution

(a) Using Equation 5.9a, we set up two simultaneous equations with Q_d and D_0 as unknowns as follows:

$$\ln D_1 = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T_1} \right)$$

$$\ln D_2 = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T_2} \right)$$

Solving for Q_d in terms of temperatures T_1 and T_2 (873 K [600°C] and 973 K [700°C]) and D_1 and D_2 (5.5 × 10⁻¹⁴ and 3.9 × 10⁻¹³ m²/s), we get

$$Q_d = -R \ \frac{\ln D_1 - \ln D_2}{\frac{1}{T_1} - \frac{1}{T_2}}$$

$$= - \frac{(8.31 \text{ J/mol-K}) \left[\ln \left(5.5 \times 10^{-14} \right) - \ln \left(3.9 \times 10^{-13} \right) \right]}{\frac{1}{873 \text{ K}} - \frac{1}{973 \text{ K}}}$$

Now, solving for D_0 from a rearranged form of Equation 5.8 (and using the 600°C value of D)

$$D_0 = D_1 \exp\left(\frac{Q_d}{RT_1}\right)$$

=
$$(5.5 \times 10^{-14} \text{ m}^2/\text{s}) \exp \left[\frac{138,300 \text{ J/mol}}{(8.31 \text{ J/mol-K})(873 \text{ K})}\right]$$

$$= 1.05 \times 10^{-5} \text{ m}^2/\text{s}$$

(b) Using these values of D_0 and Q_d , D at 1123 K (850°C) is just

$$D = (1.05 \times 10^{-5} \text{ m}^2/\text{s}) \exp \left[-\frac{138,300 \text{ J/mol}}{(8.31 \text{ J/mol-K})(1123 \text{ K})} \right]$$
$$= 3.8 \times 10^{-12} \text{ m}^2/\text{s}$$