Notatki do Analizy I R Na podstawie wykładu głoszonego przez prof. Sołtana w 2023 r.

red. Filip Baciak

November 2023

# 1 Wstęp

# 1.1 Relacje

# Definicja 1.1. Relacja

Relacją R ze zbioru A do zbioru B nazywamy podzbiór iloczynu kartezjańskiego tych dwu zbiorów:

$$R \subseteq A \times B. \tag{1}$$

Jeśli (x, y) ∈ R to piszemy xRy.

# Przykłady relacji:

• Relacja równości  $R \subseteq A \times A$ , zdefioniowana:

$$R = \{(a, a) | a \in A\}. \tag{2}$$

• Na zbiorze  $\mathbb{N}$  mamy relację wewnętrzną (tj. będącą podzbiorem  $\mathbb{N}^2$ ):

$$R = \{(n, m) | n \le m\}. \tag{3}$$

# Definicja 1.2. Relacja równoważności

Relacją równoważności nazywamy relację  $R \subseteq A \times A$ , spełniającą następujące aksjomaty:

1. Zwrotność:

$$\forall_{x \in A} : xRx. \tag{4}$$

2. Symetryczność:

$$\forall_{x,v \in A} : xRy \implies yRx. \tag{5}$$

3. Przechodniość:

$$\forall_{x,y,z \in A} : xRy \land yRz \implies xRz. \tag{6}$$

Przykładem relacji równoważności jest relacja  $R_f$  zadana przez funkcję  $f: A \to B$ :

$$xR_f y \iff f(x) = f(y).$$
 (7)

# Definicja 1.3. Częściowy porządek

Częściowym porządkiem na zbiorze A nazywamy relację  $R \subseteq A^2$  (którą oznaczamy  $\leq$  i piszemy  $x \leq y$  zamiast xRy), jeśli ma następujące cechy:

1. Zwrotność:

$$\forall_{x \in A} : x \leqslant x. \tag{8}$$

2. Antysymetryczność:

$$\forall_{x,y \in A} : x \leqslant y \land y \leqslant x \implies x = y. \tag{9}$$

3. Przechodniość:

$$\forall_{x,v,z \in A} : xRy \land yRz \implies xRz. \tag{10}$$

Zbiór parę  $(A, \leq)$  nazywamy zbiorem częsciowo uporządkowanym.

Na przykład relacja wewnętrzna na zbiorze  $\mathbb{N}^2$  zdefiniowana następująco:

$$(a,b) \leq (a',b') \iff a \leq a' \land b \leq b'$$

zadaje częsciowy porządek nad  $\mathbb{N}^2$ .

# Definicja 1.4. Porządek liniowy

Porządek częściowy ≤ nad *A* nazywamy **liniowym**, jeśli:

$$\forall_{x,v \in A}: \quad x \leqslant y \lor x \leqslant y. \tag{11}$$

Zbiór z określonym porządkiem liniowym nazywamy **uporządkowanym liniowo**. Jeśli  $x \le y \land x \ne y$  to piszemy x < y.

Zauważmy, że porządek częściowy - jak sama nazwa wskazuje - niekoniecznie określa relację większości między każdymi dwoma elementami zbioru na którym jest określony. Tę własność ma dopiero porządek liniowy.

# Definicja 1.5. Ograniczenia

Podzbiór  $X\subseteq A$  zbioru uporządkowanego liniowo  $(A,\leqslant)$  nazywamy **ograniczonym z góry**, jeśli:

$$\exists_{u \in A} \forall_{x \in X} : x \leqslant B. \tag{12}$$

Podobnie definiujemy **ograniczenie z dołu**:

$$\exists_{l \in A} \forall_{x \in X} : l \le x. \tag{13}$$

Elementy u i l nazywamy odpowiednio **ograniczeniem górnym** i **ograniczeniem dolnym**.

### Definicja 1.6. Kresy górne i dolne

**Kresem górnym** podzbioru  $X \subseteq A$  uporządkowanego  $(A, \leq)$  nazwiemy najmniejsze jego ograniczenie górne, to znaczy taką liczbę  $b \in A$ , że:

- *b* jest ograniczeniem górnym *X*,
- jeśli l jest ograniczeniem górnym X, to  $b \le l$ .

Podobnie - jako największe ograniczenie dolne - definiujemy **kres dolny**. Kres górny zbioru *X* oznaczamy sup *X*, a kres dolny inf *X* 

Zauważmy, że w ogólności zbiór nie musi mieć kresu górnego lub dolnego, a jeśli go ma to kres nie musi być elementem tegoż zbioru.

# 1.2 Liczby rzeczywiste

### Definicja 1.7. R

**Liczbami rzeczywistymi** nazywamy zbiór  $\mathbb{R}$  z określonymi działaniami dodawania + i mnożenia ·, wyróżnionymi, różnymi elementami 0 i 1 i określoną relacją porządku liniowego  $\leqslant$  - w skrócie ( $\mathbb{R}$ , +, ·, 0, 1,  $\leqslant$ ) - taki że:

- 1. R jest ciałem, tzn. spełnia:
  - (a) Zamkniętość dodawania i mnożenia:

$$\forall_{a,b\in\mathbb{R}}: a+b\in R \land a\cdot b\in\mathbb{R}; \tag{14}$$

(b) 0 jest elementem neutralnym dodawania:

$$\forall_{a \in \mathbb{R}} : a + 0 = a; \tag{15}$$

(c) Istnieją elementy odwrotne względem dodwania:

$$\forall_{a \in \mathbb{R}} \exists_{-a \in \mathbb{R}} : a + (-a) = 0; \tag{16}$$

(d) Dodawanie jest łączne:

$$\forall_{a,b,c \in \mathbb{R}} : (a+b) + c = a + (b+c);$$
 (17)

(e) Dodawanie jest przemienne:

$$\forall_{a,b \in \mathbb{R}} : a + b = b + a; \tag{18}$$

(f) 1 jest elementem neutralnym mnożenia:

$$\forall_{a \in \mathbb{R}} : a \cdot 1 = a; \tag{19}$$

(g) Mnożenie jest łączne:

$$\forall_{a.b.c \in \mathbb{R}} : (a \cdot b) \cdot c = a \cdot (b \cdot c); \tag{20}$$

(h) Mnożenie jest przemienne:

$$\forall_{a,b \in \mathbb{R}} : a \cdot b = b \cdot a; \tag{21}$$

(i) Istnieją elementy przeciwne względem mnożenia (z wyjątkiem 0):

$$\forall_{a \in \mathbb{R} \setminus \{0\}} \exists_{a^{-1} \in R} : a \cdot a^{-1} = 1; \tag{22}$$

(j) Dodawanie jest rozdzielne względem mnożenia:

$$\forall_{a,b,c \in \mathbb{R}} : a \cdot (b+c) = a \cdot b + a \cdot c. \tag{23}$$

- 2. Porządek liniowy ≤ spełnia:
  - (a) Możliwość dodawania "stronami":

$$\forall_{a,b,t \in R} : a \leqslant b \implies a + t \leqslant b + t; \tag{24}$$

(b) Mnożenie dodatnich zachowuje dodatniość

$$\forall_{a,b \in R} : 0 < a \land 0 < b \implies 0 < a \cdot b. \tag{25}$$

3. R jest zwarty, tj. każdy niepusty zbiór ograniczony z góry ma kres górny w R.

Można podać konstrukcję ciała o podanych własnościach (np. kontrukcja Dedekina, kontrukcja Rie-

manna) i dowieść, że z dokładnością do izomorfizmu istnieje tylko jedno takie ciało.

### Twierdzenie 1.1. Własność Archimedesa

$$\forall_{x>0,y\in\mathbb{R}}\exists_{n\in\mathbb{N}}:nx>y. \tag{26}$$

### Dowód.

Twiedzenia dowiedziemy nie wprost:

Niech  $X = nx | n \in \mathbb{N}$  i załóżmy, że X jest ograniczony z góry przez y. Zatem posiada supremum:  $\alpha = \sup X$ . Wiemy, że  $\alpha - x < \alpha$ , więc nie może to być ograniczenie górne. Zatem:

$$\exists_{n_0 \in \mathbb{N}} : n_0 x > \alpha - x.$$

Ale wtedy:

$$X \ni (n_0 + 1)x > \alpha = \sup X$$
.

Sprzeczność! Istotnie więc, zbiór  $nx|n\in\mathbb{N}$  nie może być ograniczony przez żadną liczbę, co dowodzi tezy.

# Twierdzenie 1.2. Gęstość Q w R

$$\forall_{x,y \in \mathbb{R}, x < y} \exists_{r \in \mathbb{Q}} : x < r < y. \tag{27}$$

### Dowód.

Skoro y-x>0, to  $\exists n\in\mathbb{N}: n(y-x)>1$ . Ponadto, skoro 1>0, to  $\exists_{m_1,m_2\in\mathbb{N}}: m_1>nx \land m_2>-nx$ . Zatem  $-m_2< nx < m_1$ , tzn. nx leży pomiędzy dwiema liczami całkowitymi. Istnieje więc takie  $m\in\mathbb{Z}$ , takie że:

$$m - 1 \le nx < m$$
.

Stąd już prosto:

$$nx < m \le nx + 1 < ny$$
,

$$x < \frac{m}{n} < y$$
.

Na koniec krótka notka - zbiór  $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ , to jest liczby rzeczywiste z dołączonymi symbolami (nie liczbami!) plus i minus nieskończoności, nazywami **rozszerzonymi liczbami rzeczywistymi**.

# 2 Ciagi rzeczywiste

# 2.1 Pojęcie ciągu i ogólne rezulataty

# Definicja 2.1. Ciąg

Ciagiem elementów z zbioru X nazywamy funkcję:

$$a: \mathbb{N} \to X$$
 (28)

i zamiast a(n) piszemy  $a_n$ . Cały ciąg oznaczamy  $(a_n)_{n\in\mathbb{N}}$ . My w szczególności zajmować się będziemy ciągami rzeczywistymi i zespolonymi.

W sekcji tej, o ile nie powiedziano inaczej, zakładamy, że wszystkie ciągi są rzeczywiste.

# Definicja 2.2. ZBIEŻNOŚĆ CIĄGU

Ciąg rzeczywisty  $(a_n)_{n\in\mathbb{N}}$  nazywamy zbieżnym do granicy g, jeśli:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon} \in \mathbb{N}} \forall_{n \geqslant N} : |a_n - g| \leqslant \varepsilon. \tag{29}$$

Piszemy wtedy:  $\lim_{n\to\infty} a_n = g \text{ lub } a_n \xrightarrow{n\to\infty} g$ .

Ciąg  $(a_n)_{n\in\mathbb{N}}$  nazywamy **ograniczonym**, jeśli:

$$\exists_C \forall_{n \in \mathbb{N}} : |a_n| \leqslant C. \tag{30}$$

# Obserwacja 1. Obserwacja

Każdy ciąg zbieżny jest ograniczony.

# Twierdzenie 2.1. Arytmetyka granic

Niech  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  będą ciągami rzeczywistymi, takimi, że  $\lim_{n\to\infty}a_n=a$  i  $\lim_{n\to\infty}b_n=b$ . Wtedy:

1.

$$\lim_{n \to \infty} a + b_n = a + b \tag{31}$$

2.

$$\lim_{n \to \infty} a \cdot b_n = a \cdot b \tag{32}$$

3.

$$\lim_{n \to \infty} |a|_n = |a| \tag{33}$$

4. Jeśli  $b_n \neq 0$  DDD n (dla dostatecznie dużych n) i  $b \neq 0$ :

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \tag{34}$$

### Dowód.

W dowodach wszystkich tych twierdzeń chcemy dla dowolnego  $\varepsilon$  skonstruować takie N, że dla wszystkich  $n \ge N$  różnica między wyrazami ciągu po lewej a granicą po prawej stronie jest mniejsza od  $\varepsilon$ . Pamiętamy tutaj, że:

$$\forall_{\varepsilon>0} \exists_{M_{\varepsilon} \in \mathbb{N}} \forall n \geqslant M_{\varepsilon} : |a_n - a| \leqslant \varepsilon, \tag{35}$$

$$\forall_{\varepsilon>0} \exists_{K_{\varepsilon} \in \mathbb{N}} \forall n \geqslant K_{\varepsilon} : |b_n - b| \leqslant \varepsilon, \tag{36}$$

1. Mamy:

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b|,$$
 (37)

więc dla  $n \ge N = \max\{M_{\frac{\varepsilon}{2}}, K_{\frac{\varepsilon}{2}}\}:$ 

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
 (38)

2.

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| \le |a_n| |b_n - b| + |b| |a_n - a|.$$
(39)

Ale  $(a_n)_{n\in\mathbb{N}}$  jest ograniczony, więc  $a_n \leq C$  i mamy:

$$|a_n b_n - ab| \le |a_n||b_n - b| + b|a_n - a| \le (|C| + 1)|b_n - b| + (|b| + 1)|a_n - a|. \tag{40}$$

Zatem dla  $n \ge \max\{M_{\frac{\varepsilon}{2|b+1|}}, K_{\frac{\varepsilon}{2(|C|+1)}}\}$ :

$$|a_n b_n - ab| \le (|C| + 1) \frac{\varepsilon}{2(|C| + 1)} + (|b| + 1) \frac{\varepsilon}{2|b + 1|} = \varepsilon. \tag{41}$$

Dodaliśmy tutaj 1 do |C| i |b|, żeby uniknąć ewentualnego dzielenia przez 0.

3. Jeśli a > 0, to ciąg od pewnego miejsca musi być dodatni:  $|a_n| = a_n$  dla  $n > M_{|a|}$ , więc dla  $n > N = \max\{M_{|x|}, M_{\varepsilon}\}$ :

$$||a_n| - |a|| = |a_n - a| < \varepsilon.$$

Podobnie, jeśli a < 0, to ciąg od pewnego miejsca jest ujemny i  $|a_n| = -a_n$  dla  $n > M_{|a|}$ , więc dla  $n > N = \max\{M_{|x|}, M_{\varepsilon}\}$ :

$$||a_n| - a| = |-a_n - |a|| = |a_n - a| < \varepsilon.$$

Dla a = 0, mamy prosto:

$$|a_n| < \varepsilon \implies ||a_n|| < \varepsilon$$
.

4. Zakładamy, że  $b_n \neq 0$  DDD n, więc istnieje takie  $K_0$ , że dla  $n \geqslant K_0$   $b_n \neq 0$ . Wtedy:

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{a_n b - ab_n}{b_n b}\right| = \left|\frac{a_n b - ab + ab - ab_n}{b_n b}\right| = \left|\frac{b(a_n - a) + a(b - b_n)}{b_n b}\right| \tag{42}$$

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \left|\frac{a_n - a}{b_n}\right| + \left|\frac{a}{b_n b}\right| \left|b_n - b\right| \le \left|\frac{a_n - a}{b_n}\right| + \left(\left|\frac{a}{b_n b}\right| + 1\right) \left|b_n - b\right| \tag{43}$$

Zauważmy, że dla  $n \ge K_{\lfloor \frac{b}{2} \rfloor}$  mamy  $|b_n - b| \le \lfloor \frac{b}{2} \rfloor$ , więc  $\frac{1}{2} |b| \le |b_n|$ , przez co:

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \left|\frac{a_n - a}{b_n}\right| + \left(\left|\frac{a}{b_n b}\right| + 1\right)\left|b_n - b\right| \le \left|\frac{2}{b}\right|\left|a_n - a\right| + \left(\left|\frac{2a}{b}\right| + 1\right)\left|b_n - b\right| \tag{44}$$

Ostatecznie dla  $n > \max\{K_0, K_{\lfloor \frac{b}{2} \rfloor}, K_{\frac{\varepsilon}{2(\lfloor \frac{2a}{h} \rfloor + 1)}}, M_{\frac{\varepsilon}{4 \lfloor b \rfloor}}\}$ :

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \left|\frac{2}{b} \left|\frac{\varepsilon}{4|b|} + \left(\left|\frac{2a}{b}\right| + 1\right) \frac{\varepsilon}{2\left(\left|\frac{2a}{b}\right| + 1\right)} = \varepsilon.$$
 (45)

Powiemy teraz o mocnym twierdzeniu, pozwalającym stwierdzić, czy ciąg ma granicę, bez jej wyznaczania.

### Twierdzenie 2.2. Twierdzenie o ciągu monotonicznym i ograniczonym

Każdzy ciąg monotoniczny i ograniczony jest zbieżny.

- Jeśli ciąg jest niemalejący, to jest on zbieżny do supremum zbioru wyrazów ciągu.
- Jeśli ciąg jest nierosnący, to jest on zbieżny do infimum zbioru wyrazów ciągu.

Uwaga - dla ciągu  $(a_n)_{n\in\mathbb{N}}$  supremum jego wyrazów - tj.  $\sup\{a_n\,|\,n\in\mathbb{N}\}$  - oznaczamy  $\sup_{n\in\mathbb{N}}a_n$ . Analogicznie piszemy  $\inf_{n\in\mathbb{N}}a_n$  dla infimum jego wyrazów.

### Dowód.

Załóżmy, że  $(a_n)_{n\in\mathbb{N}}$  jest niemalejący. Zbiór  $\{a_n|n\in\mathbb{N}\}$  jest ograniczony, zatem posiada supremum. Oznaczmy je g. Zatem dla każdego  $\varepsilon>0$  liczba  $g-\varepsilon$  nie jest ograniczeniem górnym:

$$\exists_m : g - \varepsilon \leqslant a_m \leqslant g. \tag{46}$$

Ale wtedy, z racji monotoniczności  $(a_n)_{n\in\mathbb{N}}$ :

$$\forall_{n \geqslant m} : g - \varepsilon \leqslant a_m \leqslant a_n \leqslant g \leqslant g + \varepsilon. \tag{47}$$

Czyli:

$$\forall_{n \ge m} : |a_n - g| \le \varepsilon,\tag{48}$$

co chcieliśmy pokazać. Dla  $(a_n)_{n\in\mathbb{N}}$  nierosnącego dowód jest zupełnie analogiczny (można też rozważać zbieżność niemalejącego ciągu  $(-a_n)_{n\in\mathbb{N}}$ ).

### Twierdzenie 2.3. Twiedzenie o trzech ciągach

Niech  $(a_n)_{n\in\mathbb{N}}$  i  $(c_n)_{n\in\mathbb{N}}$  będą dwoma ciągami zbieżnymi do wspólnej granicy g. Wtedy, jeśli dla ciągu  $(b_n)_{n\in\mathbb{N}}$  istnieje takie N, że:

$$\forall_{n \geqslant N} : a_n \leqslant b_n \leqslant c_n, \tag{49}$$

to  $\lim_{n\to\infty}b_n=g$ .

# Dowód.

Dowód jest bardzo krótki. Dla dowolnego  $\varepsilon$  bierzemy takie  $M_{\varepsilon}$ , że  $\forall_{n\geqslant M_{\varepsilon}}:|a_n-g|\leqslant \varepsilon$  i takie  $K_{\varepsilon}$ , że:  $\forall_{n\geqslant K_{\varepsilon}}:|c_n-g|\leqslant \varepsilon$ . Wtedy dla  $n\geqslant \max\{N,M_{\varepsilon},K_{\varepsilon}\}$ :

$$g - \varepsilon \leqslant a_n \leqslant b_n \leqslant c_n \leqslant g - \varepsilon, \tag{50}$$

wiec  $|b_n - g| \le \varepsilon$ .

# Definicja 2.3. Rozbieżność do $\pm \infty$

Powiemy, że ciąg  $(a_n)_{n\in\mathbb{N}}$  jest rozbieżny do  $+\infty$ , jeśli:

$$\forall_C \exists_{N_C \in \mathbb{N}} \forall_{n \geqslant N_C} : a_n \geqslant C. \tag{51}$$

Analogicznie, powiemy, że ciąg  $(a_n)_{n\in\mathbb{N}}$  jest rozbieżny do  $-\infty$ , jeśli:

$$\forall_C \exists_{N_C \in \mathbb{N}} \forall_{n \geqslant N_C} : a_n \leqslant C. \tag{52}$$

Mówimy też o "zbieżności"do  $\pm \infty$ , tj. zbieżności w zbiorze  $\overline{\mathbb{R}}$ 

# Obserwacja 2.

Ciąg monotoniczny, nieograniczony jest rozbieżny do ±∞.

# Definicja 2.4. Podciąg

Podciągiem ciagu  $(a_n)_{n\in\mathbb{N}}$  nazywamy ciąg  $(a_{n_k})_{k\in\mathbb{N}}$ , gdzie  $n\ni k\mapsto n_k\in\mathbb{N}$  jest funkcją ściśle rosnącą.

# Obserwacja 3.

Jeśli  $a_n \to g$ , to każdy podciąg  $a_{n_k} \to g$ 

# 2.2 lim sup i lim inf

Załóżmy, że mamy dany ciąg liczb rzeczywistych  $(a_n)_{n\in\mathbb{N}}$ . Zdefiniujmy wtedy następujące dwa ciągi:  $(\alpha_n)_{n\in\mathbb{N}}$  oraz  $(\beta_n)_{n\in\mathbb{N}}$ , takie że:

$$\alpha_n = \inf\{a_k \mid k \geqslant n\} \tag{53}$$

$$\beta_n = \sup\{a_k \mid k \geqslant n\} \tag{54}$$

Wtedy,  $(\alpha_n)_{n\in\mathbb{N}}$  jest ciągiem niemalejącym, co wynika z faktu, że:

$$\inf\{a_k \mid k \ge n+1\} \subseteq \inf\{a_k \mid k \ge n\}$$

Podobnież,  $(\beta_n)_{n\in\mathbb{N}}$  jest ciągiem nierosnącym. Z tego wynika więc, że są to ciągi zbieżne w  $\overline{\mathbb{R}}$ . Mamy więc:

$$\lim_{n \to \infty} \alpha_n = \sup \alpha_n,\tag{55}$$

gdyż  $(\alpha_n)_{n\in\mathbb{N}}$  to ciąg nierosnący oraz podobnie:

$$\lim_{n \to \infty} \beta = \inf \beta. \tag{56}$$

# Definicja 2.5. Granice górne i dolne ciągu

Wielkość:

$$\lim_{n \to \infty} \inf\{a_k \mid k \ge n\} = \lim_{n \to \infty} \alpha_n = \sup \alpha_n \tag{57}$$

nazywamy **granicą dolną** ciągu  $(a_n)_{n\in\mathbb{N}}$  i oznaczamy  $\liminf_{n\to\infty}a_n$ . Podobnie, wielkość:

$$\lim_{n \to \infty} \sup\{a_k \mid k \ge n\} = \lim_{n \to \infty} \beta_n = \inf \beta_n$$
 (58)

nazywamy **granicą górną** ciągu i oznaczamy  $\limsup a_n$ .

# Twierdzenie 2.4. Bolzano-Weierestrassa I

Niech L będzie zbiorem punktów skupienia zbioru  $\{a_n | n \in \mathbb{N}\}$ , tzn. takich liczb, dla których istnieje podciąg ciągu  $((a_n)_{n \in \mathbb{N}}$  zbieżny do tej liczby:

$$L = \{ x \in \overline{\mathbb{R}} \mid \exists_{\text{podciag}(a_{n_k})_{k \in \mathbb{N}}} : \lim_{k \to \infty} a_{n_k} = x \}.$$
 (59)

Wtedy:

1.

$$L \neq \emptyset$$
 (60)

2.

$$\liminf a_n \in L \quad \wedge \quad \limsup a_n \in L \tag{61}$$

3.

$$\lim \inf a_n = \inf L \quad \wedge \quad \lim \sup a_n = \sup L \tag{62}$$

# Dowód.

TODO

Nietrudnym wnioskiem z tego twierdzenia jest następujące:

### Twierdzenie 2.5. Kryterium zbieżności

Ciąg  $(a_n)_{n\in\mathbb{N}}$  jest zbieżny do  $a\in\overline{\mathbb{R}}$  wtedy i tylko wtedy, gdy:

$$\lim \inf a_n = \lim \sup a_n.$$
(63)

### Dowód.

 $\implies$  Jeśli  $\lim_{n\to\infty}a_n=a$ , to także każdy podciąg  $(a_n)_{n\in\mathbb{N}}$  dąży do a, więc  $L=\{a\}$ . Ale  $\liminf a_n\in L$  i  $\limsup a_n\in L$ , więc:

$$\liminf a_n = a = \limsup a_n.$$
(64)

← Oczywiście zachodzi nierówność:

$$\alpha_n \leqslant a_n \leqslant \beta_n. \tag{65}$$

Skoro mamy:

$$\lim_{n \to \infty} \alpha_n = \liminf_{n \to \infty} a_n = \lim_{n \to \infty} \beta_n, \tag{66}$$

więc z twierdzenia o trzech ciągach mamy:

$$\lim_{n \to \infty} a_n = \liminf_{n \to \infty} a_n. \tag{67}$$

# Twierdzenie 2.6. Warunek Cauchy'ego

Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem rzeczywistym. Wtedy następujące warunki są rónoważne:

1.

$$\lim_{n \to \infty} a_n = a \in \mathbb{R} \tag{68}$$

2.

$$\forall_{\varepsilon>0} \exists_{M_{\varepsilon}} \forall_{n,m \geqslant M_{\varepsilon}} |a_n - a_m| \leqslant \varepsilon. \tag{69}$$

Jeśli ciąg spełnia ten warunek, mówimy, że spełnia warunek Cauchy'ego.

Sprawdzając warunek Cauchy'ego, możemy dowodzić zbieżności ciągu do granicy rzeczywistej bez wyznaczania tej granicy.

### Dowód.

1.  $\Longrightarrow$  2. Skoro  $(a_n)_{n\in\mathbb{N}}$  zbieżny do  $a\in R$ , to dla dowolnego  $\varepsilon>0$  istnieje takie  $N_{\frac{\varepsilon}{2}}$ , że:

$$\forall_{n,m \geqslant N_{\frac{\varepsilon}{2}}} : |a_n - a| \leqslant \frac{\varepsilon}{2} \wedge |a_m - a| \leqslant \frac{\varepsilon}{2}, \tag{70}$$

ale wtedy:

$$|a_n - a_m| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \tag{71}$$

2.  $\Longrightarrow$  1. Zauważmy, że  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem ograniczonym. Istotnie, weźmy  $\varepsilon=1$ :

$$\exists_{M_1} \forall_{n \geqslant M_1} : |a_n - a_{M_1}| \leqslant 1, \tag{72}$$

więc:

$$\min\{a_{M_1} - 1; a_k \mid k < M_1\} \le a_n \le \max\{a_{M_1} + 1; a_k \mid k < M_1\}. \tag{73}$$

Weźmy teraz dowolny  $\varepsilon > 0$ . Z ograniczoności  $(a_n)_{n \in \mathbb{N}}$  wynika:  $\alpha = \liminf a_n \in \mathbb{R}$  i  $\beta = \limsup a_n \in \mathbb{R}$ . Oznacza to, że:

$$\forall_{\varepsilon>0} \exists_{A_{\varepsilon}} \forall_{n \geqslant A_{\varepsilon}} : |\alpha_n - \alpha| \leqslant \varepsilon, \tag{74}$$

$$\forall_{\varepsilon > 0} \exists_{B_{\varepsilon}} \forall_{n \geqslant B_{\varepsilon}} : |\beta_n - \beta| \leqslant \varepsilon, \tag{75}$$

Zauważmy, że:

$$|\alpha - \beta| \le |\alpha - \alpha_n| + |\beta - \beta_n| + |\alpha_n - \beta_N|. \tag{76}$$

Dwa pierwsze czynniki po prawej potrafimy ograniczyć, zbadajmy więc ostatni wyraz:

$$|\alpha_{n} - \beta_{N}| \leq |\alpha_{n} - a_{n}| + |\beta_{n} - a_{n}| = \inf\{a_{n}, a_{n+1}, ...\} - a_{n}| + |\sup\{a_{n}, a_{n+1}, ...\} - a_{n}|$$

$$= \inf\{|a_{m} - a_{n}| \mid m \geq n\} + \sup\{|a_{m} - a_{n}| \mid m \geq n\}.$$
(77)

Możemy teraz skorzystać z warunku Cauchy'ego i znaleźć takie  $M_{\frac{\varepsilon}{6}}$ , że:

$$\forall_{m \geqslant n \geqslant M_{\frac{\varepsilon}{6}}} : |a_m - a_n| \leqslant \frac{\varepsilon}{6}. \tag{78}$$

Zatem dla  $n \ge M_{\frac{\varepsilon}{6}}$ :

$$\inf\{|a_m - a_n| \mid m \ge n\} \le \frac{\varepsilon}{6} \tag{79}$$

$$\sup\{|a_m - a_n| \mid m \ge n\} \le \frac{\varepsilon}{6} \tag{80}$$

Ostecznie otrzymujemy dla  $n \ge \max\{A_{\frac{\varepsilon}{4}}, B_{\frac{\varepsilon}{4}}, M_{\frac{\varepsilon}{6}}\}$ :

$$|\alpha - \beta| \le |\alpha - \alpha_n| + |\beta - \beta_n| + |\alpha_n - a_n| + |\beta_n - a_n| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \varepsilon.$$
 (81)

Pokazaliśmy, że różnica  $|\liminf a_n - \limsup a_n|$  jest mniejsza od dowolnej liczby dodatniej, zatem musi być równa 0. Oznacza to, że  $\liminf a_n = \limsup a_n \in \mathbb{R}$ , a więc - co udowodniliśmy już wcześniej - ciąg jest zbieżny do rzeczywiśtej granicy.

# 3 Szeregi liczbowe

# Definicja 3.1. Szereg liczbowy

Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb zespolonych  $(a_n\in\mathbb{C})$ . **Szeregiem** o wyrazach  $(a_n)_{n\in\mathbb{N}}$  nazwiemy napis:

$$\sum_{n=1}^{\infty} a_n. \tag{82}$$

N-tą sumą częściową szeregu  $\sum_{n=1}^{\infty} a_n$  nazwiemy sumę:

$$S_N = \sum_{n=1}^{N} a_n. (83)$$

Powiemy, że szereg  $\sum_{n=1}^{\infty} a_n$  jest **zbieżny** do S, jeśli:

$$\lim_{N \to \infty} S_N = S \in \mathbb{C}. \tag{84}$$

Napiszemy wtedy, że  $\sum_{n=1}^{\infty} a_n = S$ , a liczbę S nazwiemy sumą szeregu. Jeśli  $S_N$  nie ma granicy, to szereg nazwiemy **rozbieżnym**.

**Przykład 1.** Jeśli  $a_n = (-1)^n$ , to szereg  $\sum_{n=1}^{\infty} a_n$  jest rozbieżny.

**Przykład 2.** Jeśli  $a_n = q^{n-1}$ , dla |q| < 1, to  $S_N = \frac{1-q^n}{1-q}$  i  $\sum_{n=1}^{\infty} q_n^{n-1} = \frac{1}{1-q}$ .

# Twierdzenie 3.1.

Szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny wtedy i tylko wtedy, gdy:

$$\forall_{\varepsilon} \exists_{N_{\varepsilon}} \forall_{N \geqslant M \geqslant N_{\varepsilon}} | \sum_{n=M+1}^{N} a_{n} | \leqslant \varepsilon.$$
 (85)

### Dowód.

Twierdzenie wynika prosto z zastosowania warunku Cauchy'ego do ciągu  $S_N$ . Bowiem  $S_N$  jest zbieżny wtedy i tylko wtedy, gdy:

$$\forall_{\varepsilon} \exists_{N_{\varepsilon}} \forall_{N \geqslant M \geqslant N_{\varepsilon}} |S_N - S_m| \leqslant \varepsilon, \tag{86}$$

co po rozpisaniu  $S_N$  i  $S_M$  jest równoważne twierdzeniu.

$$\sum_{n=M+1}^{N} a_n$$
 nazywa się czasami **ogonem szeregu**.

# Obserwacja 4. Warunek konieczny zbieżności

Warunkiem koniecznym zbieżności szeregu  $\sum_{n=1}^{\infty} a_n$  jest, aby  $\lim_{n\to\infty} a_n = 0$ .

Istotnie, wystarczy podstawić M=N-1 w twierdzeniu 3, żeby otrzymać definicję zbieżności  $a_n$  do 0.

Warto pamiętać, że nie jest to warunek wystarczający - kontrprzykładem jest np. rozbieżny szereg  $\sum_{n=1}^{\infty} \frac{1}{n}$ . Wtedy

$$S_{2^k} = 1 + \sum_{l=1}^k \sum_{i=2^{l-1}+1}^{2^l} \frac{1}{j} \ge 1 + \sum_{l=1}^k \frac{2^{l-1}}{2^l} = 1 + \frac{1}{2}k \to \infty.$$
 (87)

Zatem i  $S_N \to \infty$ , bo jest to ciąg monotoniczny.

# 3.1 Szeregi o wyrazach dodatnich

W tej sekcji zajmiemy się jedynie szeregami o wyrazach dodatnich, to jest takimi, dla których  $\mathbb{R} \ni a_n \geqslant 0$ .

### Obserwacja 5.

Dla szeregów o wyrazach dodatnich, ciąg sum częściowych jest niemalejącym ciągiem rzeczywistym. Oznacza to, że szereg jest zbieżny wtedy i tylko wtedy, gdy ciąg sum częściowych jest ograniczony. W przeciwnym wypadku  $\lim_{N\to\infty}S_N=+\infty$  i wtedy mówimy, że  $\sum_{n=1}^\infty a_n$  jest rozbieżny do  $+\infty$ .

### Twierdzenie 3.2. Kryterium porównawcze

Niech  $\sum_{n=1}^{\infty} a_n$  ,  $\sum_{n=1}^{\infty} b_n$  będą szeregami o wyrazach dodatnich. Wtedy:

1. Jeśli  $\exists_{C>0}$  :  $a_n \leq Cb_n$  DDDn, to:

$$\sum_{n=1}^{\infty} b_n < \infty \implies \sum_{n=1}^{\infty} a_n < \infty.$$
 (88)

2. Jeśli  $\exists_{C>0}$  :  $a_n \ge Cb_n$  DDDn, to:

$$\sum_{n=1}^{\infty} b_n = +\infty \implies \sum_{n=1}^{\infty} a_n = +\infty.$$
 (89)

### Dowód.

Niech  $N_0$  będzie oznaczał indeks, od którego podane nierówności zachodzą.

1. Dla  $N > N_0$  mamy:

$$S_N^{(a)} = S_{N_0}^{(a)} + \sum_{n=N_0+1}^N a_n \leqslant S_{N_0}^{(a)} + \sum_{n=N_0+1}^N Cb_n = S_{N_0}^{(a)} - CS_{N_0}^{(b)} + CS_N^{(b)} \leqslant S_{N_0}^{(a)} - CS_{N_0}^{(b)} + C\sum_{n=1}^\infty b_n < \infty.$$

Zatem skoro  $S_N^{(a)}$  jest ograniczony, to (por. Obs. 3.1) jest i zbieżny.

2. Podobnie jak poprzednio, dla  $N > N_0$  mamy:

$$S_N^{(a)} = S_{N_0}^{(a)} + \sum_{n=N_0+1}^{N} a_n \geqslant S_{N_0}^{(a)} + \sum_{n=N_0+1}^{N} Cb_n = S_{N_0}^{(a)} - CS_{N_0}^{(b)} + CS_N^{(b)} \xrightarrow{N \to \infty} \infty,$$

więc i  $S_N^{(a)}$ jest rozbieżny do nieskończoności.

### Twierdzenie 3.3. Kryterium porównawcze (wersja graniczna)

Niech  $\sum_{n=1}^{\infty} a_n$ ,  $\sum_{n=1}^{\infty} b_n$  będą szeregami o wyrazach dodatnich i niech  $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ . Wtedy:

1. Jeśli  $L < \infty$ , to:

$$\sum_{n=1}^{\infty} b_n < \infty \implies \sum_{n=1}^{\infty} a_n < \infty. \tag{90}$$

2. Jeśli L > 0, to:

$$\sum_{n=1}^{\infty} b_n = +\infty \implies \sum_{n=1}^{\infty} a_n = +\infty.$$
 (91)

# Dowód.

- 1. Jeśli  $L < \infty$ , to  $a_n \le (L + L) * b_n$  dla dostatecznie dużyn n i stosujemy Tw. 3.1.1.
- 2. Jeśli L>0, to  $a_n \leq \frac{1}{2}Lb_n$  DDDn (ew.  $a_n \leq 2b_n$ , jeśli  $L=\infty$ ) i stosujemy Tw. 3.1.2.

# Twierdzenie 3.4. Kryterium D'Alemberta

Niech  $\forall_n a_n > 0$  i niech  $d_n = \frac{a_{n+1}}{a_n}$ . Wtedy:

1.

$$\limsup d_n < 1 \implies \sum_{n=1}^{\infty} a_n < \infty \tag{92}$$

2.

$$(\liminf d_n > 1 \vee \exists_k \forall_{n \ge k} : d_n \ge 1) \implies \sum_{n=1}^{\infty} a_n = \infty.$$
 (93)

Ponadto, jeśli zachodzi poprzecznik implikacji, to  $a_n \not\to 0$ .

#### Dowód.

1. Skoro lim sup  $d_n < 1$ , to  $d_n$  musi być ograniczony. Niech  $\lambda$  będzie taką liczbą, że  $1 > \lambda >$  lim sup  $d_n$ . Zauważmy, że może istnieć tylko skończona liczba wyrazów  $d_n$  większych lub równych  $\lambda$ , gdyż inaczej wybralibyśmy z nich podciąg zbieżny do granicy  $\geq \lambda$ , co przeczy założeniu, że  $\lambda <$  lim sup  $d_n$ . Zatem:

$$\exists_N \forall_{n \geq N} : d_n < \lambda.$$

Czyli:

$$\exists_N \forall_{n \ge N} : a_{n+1} < \lambda a_n$$
.

Stąd, dla n > N:  $a_n < \frac{a_N}{\lambda^N} \lambda^n$ . Tak więc na mocy kryterium porównawczego ze zbieżnym szeregiem  $\sum_{n=1}^{\infty} \lambda^n \ (\lambda < 1)$  szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny.

2. Jeśli liminf  $d_n>1$ , to (używając podobnego rozumowania, jak poprzednio) istnieje  $\rho>1$  t.ż.  $d_n>\rho$ . Skoro tak, to DDDn:  $a_{n+1}>\rho a_n>a_n$  i  $a_n$ , jako rosnący ciąg o wyrazach dodatnich, nie może dążyć do 0. Podobnie, jeśli DDDn mamy  $d_n\geqslant 1$ , to  $a_{n+1}\geqslant a_n$  i znowuż  $a_n$  nie może dążyć do 0.

### Uwagi.

1. Może być tak, że  $d_n \ge 1$  dla nieskończenie wielu n, a szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny. Przykład:

$$a_n = \begin{cases} \frac{1}{(\frac{n}{2})^2}, & \text{gdy } n = 2k\\ \frac{1}{(\frac{n-1}{2})^2}, & \text{gdy } n = 2k+1 \end{cases}$$

2. Może być tak, że szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny, ale  $\limsup d_n > 1$ .

Następne kryterium jest rozszerzeniem kryterium D'Alemberta:

# Twierdzenie 3.5. Kryterium Cauchy'ego

**TODO** 

### Twierdzenie 3.6.

Załóżmy, że  $\sum_{n=1}^{\infty} a_n$  jest szeregiem o wyrazach dodatnich ( $a_n > 0$ ). Wtedy:

$$\sum_{n=1}^{\infty} a_n = \sup_{\substack{F \subset \mathbb{N} \\ |F| < +\infty}} \sum_{n \in F} a_n. \tag{94}$$

### Dowód.

Oczywiście, skoro  $S_N$  jest rosnący, to  $\sum_{n=1}^\infty a_n = \lim_{N \to \infty} S_N = \sup_{N \in \mathbb{N}} S_N$ . Łatwo widać też, że  $\sup_{N \in \mathbb{N}} S_N \leqslant \sup_{\substack{F \subset \mathbb{N} \\ |F| < +\infty}} \sum_{n \in F} a_n$  (ponieważ  $S_N$  to suma tego samego typu, co po prawej stronie z  $F = \{1,...,N\}$ ). Dodatkowo, dla każdego skończonego  $F \subseteq \mathbb{N}$ , istnieje takie N, że  $\forall_{n \in F} x \leqslant N$ , zatem  $\sum_{n \in F} a_n \leqslant S_N$ . Ostatecznie mamy  $\sup_{\substack{F \subset \mathbb{N} \\ |F| < +\infty}} \sum_{n \in F} a_n \leqslant \sup_{N \in \mathbb{N}} S_N$ , stąd te dwie wielkości są sobie równe i mamy tezę.

Wynikają z tego następujące wnioski:

### Twierdzenie 3.7.

1.

$$\sum_{n=1}^{\infty} a_n < +\infty \quad \iff \quad \exists_{C>0} \forall_{F \subset \mathbb{N}, |F| < +\infty} \sum_{n \in F} a_n \leq C$$

(Zbiór wszystkich sum elementów o indeksach pochodzących ze SKOŃCZONEGO podzbioru IN jest ograniczony)

2. Jeśli  $\sigma : \mathbb{N} \to \mathbb{N}$  jest bijekcją (permutacją indeksów), to:

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n.$$

Oznacza to, że zmiana kolejności sumowania nie wpływa na wynik.

3. Jeśli:

$$\mathbb{N} = \bigsqcup_{i=1}^{\infty} A_i \quad \text{(jest to suma rozłączna, tj. } A_i \cap A_j = \emptyset \text{ dla } i \neq j\text{)}$$

i:

$$S_i = \sum_{n \in A_i} a_n,$$

to:

$$\sum_{i=0}^{\infty} S_i = \sum_{n=1}^{\infty} a_n.$$

Jest to grupowania (łączności i przemienności) dla szeregu.

### Dowód.

- 1. Ograniczoność sum po prawej jest oczywiście równoważne istnieniu skończonego ich supremum, co równe jest sumie po lewej.
- 2.  $\sigma$  zachowuje klasę skończonych podzbiorów i wyznacza bijekcję:

$$\sigma: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$$

$$\sigma(F) = {\sigma(n) | n \in F},$$

która zachowuje moc zbioru F i przeprowadza zbiory skończone na skończone. Zatem:

$$\left\{\sum_{n\in F}a_n\,\middle|\, F\subset\mathbb{N},\, |F|<\infty\right\}=\left\{\sum_{n\in\sigma(F)}a_n\,\middle|\, F\subset\mathbb{N},\, |F|<\infty\right\},$$

więc:

$$\sum_{n=1}^{\infty} a_n = \sup \left\{ \sum_{n \in F} a_n \, \middle| \, F \in 2^{\mathbb{N}} \right\} = \sup \left\{ \sum_{n \in \sigma(F)} a_n \, \middle| \, F \subset \mathbb{N}, \, |F| < \infty \right\} = \sum_{n=1}^{\infty} a_{\sigma(n)}$$

3. **a)** Jeśli  $\exists_i : S_i = \infty$ , to:

$$\sum_{i=1}^{\infty} S_i = \infty$$

i:

$$\sum_{n=1}^{\infty} a_n \geqslant \sum_{n \in A_i} a_n = \infty.$$

Stąd:

$$\sum_{i=1}^{\infty} S_i = \infty = \sum_{n=1}^{\infty} a_n$$

**b)** Niech  $\forall_i : S_i < \infty$ . Ustalmy  $\varepsilon > 0$  i weźmy dowolny:

$$K \subset \mathbb{N}$$
,  $|K| < \infty$ .

Przypomnijmy:

$$\sum_{i=1}^{\infty} S_i = \sup_{\substack{K \subset \mathbb{N}, \\ |K| < \infty}} \sum_{j \in K} S_j.$$

Niech  $K = \{i_1, i_2, ..., i_l\}$  i wybierzmy:

$$C_1 \subseteq A_{i_1}, C_2 \subseteq A_{i_2}, ..., C_l \subseteq A_{i_l},$$

takie, że:

$$\forall_j: \sum_{n \in C_i} a_n \geqslant S_{i_j} - \frac{\varepsilon}{l},$$

co jest możliwe, gdyż  $S_{i_j}$  jest supremum sum po skończonych podzbiorach. Jeśli  $A_{i_j}$  jest skończony, możemy przyjąć  $C_j=A_{i_j}$ .

Wtedy:

$$\sum_{i \in K} S_i = S_{i_1} + S_{i_2} + \ldots + S_{i_l} \leqslant \left(\sum_{n \in C_1} a_n + \frac{\varepsilon}{l}\right) + \left(\sum_{n \in C_l} a_n + \frac{\varepsilon}{l}\right) + \ldots \left(\sum_{n \in C_l} a_n + \frac{\varepsilon}{l}\right) = \varepsilon + \sum_{n \in \bigcup_{i=1}^l C_i} a_n.$$

NB:  $\bigcup_{j=1}^{l} C_j$  jest zbiorem skończonym, więc:

$$\sum_{i \in K} S_i \leqslant \varepsilon + \sup_{\substack{F \subset \mathbb{IN} \\ |F| < +\infty}} \sum_{n \in F} a_n = \varepsilon + \sum_{n=1}^{\infty} a_n.$$

Rozumowanie to przeprowadziliśmy dla dowolnego K i  $\varepsilon$ , więc:

$$\sum_{i=1}^{\infty} S_i = \sup_{\substack{K \subset \mathbb{N} \\ |K| < \infty}} \sum_{i \in K} S_i \leqslant \sum_{n=1}^{\infty} a_n.$$

W drugą stronę, weźmy  $F \subset \mathbb{N}$ ,  $|F| < \infty$  i niech:

$$K = \{i \in \mathbb{N} \mid A_i \cap F \neq \emptyset\}.$$

wtedy  $|K| < \infty$ , bo F jest skończony, a  $A_i$  są rozłączne. Wtedy mamy:

$$\sum_{n \in F} a_n = \sum_{i \in K} \sum_{n \in A_i \cap F} a_n \leqslant \sum_{i \in K} \sum_{n \in A_i} a_n = \sum_{i \in K} S_i.$$

Z tego:

$$\sum_{n \in F} a_n \leqslant \sum_{i \in K} S_i \leqslant \sup_{\substack{K \subset \mathbb{N} \\ |K| < \infty}} \sum_{i \in K} S_i = \sum_{i=1}^{\infty} S_i,$$

co zachodzi dla dowolnego F skończonego. Zatem:

$$\sup_{\substack{F\subset\mathbb{IN}\\|F|<\infty}}\sum_{n\in F}a_n=\sum_{n=1}^\infty a_n\leqslant \sum_{i=1}^\infty S_i.$$

Porównując dwie otrzymane nierówności, otrzymujemy tezę.

# 3.2 Szeregi o wyrazach dowolnych

W tej podsekcji rozważamy szeregi o dowolnych wyrazach zespolonych:

$$\sum_{n=1}^{\infty} z_n, \quad z_n \in \mathbb{C}.$$

# Twierdzenie 3.8. Kryterium zbieżności bezwzględnej

Jeśli następujący szereg jest zbieżny:

$$\sum_{n=1}^{\infty} |z_n| < +\infty$$

to i:

$$\sum_{n=1}^{\infty} z_n$$

jest zbieżny.

# Dowód.

Korzystamy z warunku Cauchy'ego dla szeregu modułów:

$$\forall_{\varepsilon} \exists_{N_{\varepsilon}} \forall_{n > m \geqslant N_{\varepsilon}} : |\sum_{k=m+1}^{n} |z_{k}|| \leq \varepsilon,$$

ale:

$$|\sum_{k=m+1}^{n} z_k| \le |\sum_{k=m+1}^{n} |z_k||,$$

więc:

$$\forall_{\varepsilon} \exists_{M_{\varepsilon} = N_{\varepsilon}} \forall_{n > m \geqslant M_{\varepsilon}} : |\sum_{k=m+1}^{n} z_{k}| \leqslant \varepsilon.$$

To dowodzi, że warunek Cauchy'ego zachodzi dla  $\sum_{n=1}^{\infty} z_n$ , zatem jest to szereg zbieżny.

# Definicja 3.2. Zbieżność bezwzględna

- Szereg  $\sum_{n=1}^{\infty} z_n$  nazywamy zbieżnym bezwzględnie, jeśli szereg  $\sum_{n=1}^{\infty} |z_n|$  jest zbieżny.
- Jeśli szereg  $\sum_{n=1}^{\infty} z_n$  jest zbieżny, ale  $\sum_{n=1}^{\infty} |z_n|$  już nie, to szereg nazywamy zbieżnym warunkowo.

Dla szeregów o wyrazach dowolnych obowiązują inne kryteria zbieżności niż dla szeregów o wyrazach dodatnich. Jednym z nich, jest:

### Twierdzenie 3.9. Kryterium Dirichleta

Załóżmy, że:

• Mamy ciagi:

$$(a_n)_{n\in\mathbb{N}}, \quad a_n\in\mathbb{C}$$
 $(b_n)_{n\in\mathbb{N}}, \quad b_n\in\mathbb{R}, \quad b_n\geqslant 0$ 

- $b_n$  zbiega monotonicznie do 0.
- Ciąg sum częściowych wyrazów  $(a_n)$  jest ograniczony:

$$\exists_{C \in \mathbb{R}} \forall_{N \in \mathbb{N}} : \left| \sum_{n=1}^{N} a_n \right| \leq C.$$

Wtedy szereg  $\sum_{n=1}^{\infty} a_n b_n$  jest zbieżny.

**Uwaga!** W kryterium tym wystarczy, żeby  $b_n$  był nierosnący (i.e. nie trzeba, by był on ściśle malejący).

Przykład - szeregi naprzemienne. Weźmy szereg postaci:

$$\sum_{n=1}^{\infty} (-1)^n b_n,$$

gdzie  $b_n \searrow 0$  (dąży monotonicznie z góry do 0). Szereg taki nazywamy szeregiem naprzemiennym. Z kryterium Dirichleta wynika, że każdy szereg takiej postaci jest zbieżny (co nazywa się czasem kryterium Leibnitza). W szczególności:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln 2.$$

# Dowód kryterium Dirichleta.

Niech  $\sum_{n=1}^N a_n = z_N$ . Zauważmy, że  $(z_N)$  jest ciągiem ograniczonym. Zapiszmy sumy częściowe docelowego szerego:

$$\sum_{n=1}^{N} a_n b_n = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = z_1 b_1 + (z_2 - z_1) b_2 + \dots + (z_N - z_{N-1}) b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_$$

$$=z_1(b_1-b_2)+z_2(b_2-b_3)+\ldots+z_{N-1}(b_{N-1}-b_N)+z_Nb_N.$$

Zauważmy, że wyraz  $z_N b_N$  jest zbieżny do 0 (jako iloczyn czynnika ograniczonego i czynnika dążącego do 0). Zajmijmy się więc otrzymaną sumą. Zauważmy, że zachodzi:

$$\sum_{n=1}^{\infty} |z_n(b_n - b_{n+1})| = \sum_{n=1}^{\infty} |z_n| |(b_n - b_{n+1})| \le C \sum_{n=1}^{\infty} |(b_n - b_{n+1})| = C \lim_{N \to \infty} (b_1 - b_{N+1}) = Cb_1 < +\infty$$

Zatem szereg  $\sum_{n=1}^{\infty} z_n(b_n-b_{n+1})$  jest zbieżny bezwzględnie, a więc i zbieżny. Z tego i z równości:

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} z_n (b_n - b_{n+1}) + \lim_{n \to \infty} z_n b_n,$$

Wynika, że szereg 
$$\sum_{n=1}^{\infty} a_n b_n$$
 musi być zbieżny.

Kolejnym kryterium zbieżności dla szeregów o wyrazach dowolnych jest prosto wynikające z kryterium Dirichleta tzw.:

# Twierdzenie 3.10. Kryterium Abela

Jeśli:

• mamy ciągi:

$$(a_n)_{n\in\mathbb{N}}, \quad a_n\in\mathbb{C}$$

$$(b_n)_{n\in\mathbb{N}}, \quad b_n\in\mathbb{R}$$

•  $b_n$  jest monotoniczny i ograniczony,

• 
$$\sum_{n=1}^{\infty} a_n$$
 jest zbieżny.

Wtedy szereg  $\sum_{n=1}^{\infty} a_n b_n$  jest zbieżny.

### Dowód.

Oczywiście  $b = \lim_{n \to \infty} b_n$  istnieje. Wtedy:

$$\sum_{n=1}^{N} a_n b_n = \sum_{n=1}^{N} a_n (b_n - b) + b \sum_{n=1}^{N} a_n.$$

Szereg  $b\sum_{n=1}^{\infty}a_n$  jest oczywiście zbieżny na mocy założenia. Za to  $\sum_{n=1}^{\infty}a_n(b_n-b)$  jest zbieżne na mocy kryterium Dirichleta, zauważmy bowiem, że:

$$\sum_{n=1}^{N} a_n (b_n - b) = \text{sign}(b_n - b) \sum_{n=1}^{N} a_n |b_n - b|,$$

ale  $|b_n - b| \searrow 0$  na mocy założenia, a sumy częściowe  $|\sum_{n=1}^N a_n|$  muszą być ograniczone, gdyż są zbieżne. Warunki kryterium Dirichleta są więc spełnione. Ostatecznie:

$$\sum_{n=1}^{\infty} a_n b_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n b_n = \sum_{n=1}^{\infty} a_n (b_n - b) + b \sum_{n=1}^{\infty} a_n.$$

Wszystkie składniki po prawej są zbieżne, zatem szereg  $\sum_{n=1}^{\infty} a_n b_n$  także musi być zbieżny.

**Grupowanie składników** Zajmijmy się teraz kwestią grupowania składników w szeregach o wyrazach dowolnych i kiedy taka operacja nie zmienia wartości szeregu. Prowadźmy jednak trochę

notacji.

# Definicja 3.3. Rozbicie na wyrazy dodatnie

Dla szeregu $\displaystyle{\sum_{n=1}^{\infty}} z_n$  definiujemy następujące ciągi:

•

$$a_n = \operatorname{Re}(z_n)$$

•

$$b_n = \operatorname{Im}(z_n)$$

•

$$a_n^+ = \max\{0, a_n\}$$

•

$$a_n^- = -\min\{0, a_n\}$$

•

$$b_n^+ = \max\{0, b_n\}$$

•

$$b_n^- = -\min\{0, b_n\}$$

Jasnym jest, że:

$$z_n = a_n^+ - a_n^- + ib_n^+ - ib_n^-$$

oraz:

$$0 \le a_n^+, a_n^-, b_n^+, b_n^- \le |z_n|.$$

Z ostatniej nierówności wynika (kryterium porównawcze), że jeśli szereg  $\sum_{n=1}^{\infty} |z_n|$  jest zbieżny, to i sze-

regi  $\sum_{n=1}^{\infty} a_n^{\pm}$ ,  $\sum_{n=1}^{\infty} b_n^{\pm}$  muszą być zbieżne. Wtedy:

$$\sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- + i \sum_{n=1}^{\infty} b_n^+ - i \sum_{n=1}^{\infty} b_n^-,$$

jako że:

$$\sum_{n=1}^{N} z_n = \sum_{n=1}^{N} a_n^+ - \sum_{n=1}^{N} a_n^- + i \sum_{n=1}^{N} b_n^+ - i \sum_{n=1}^{N} b_n^-,$$

Z tego wynika następujący wniosek:

# Twierdzenie 3.11. Grupowanie szeregów zbieżnych bezwzględnie

Niech szereg  $\sum_{n=1}^{\infty} z_n$  będzie zbieżny bezwzględnie. Wtedy:

1. Jeśli  $\sigma : \mathbb{N} \to \mathbb{N}$  jest bijekcją (permutacją indeksów), to:

$$\sum_{n=1}^{\infty} z_{\sigma(n)} = \sum_{n=1}^{\infty} z_n.$$

Oznacza to, że zmiana kolejności sumowania nie wpływa na wynik.

2. Jeśli:

$$\mathbb{N} = \bigsqcup_{j=1}^{\infty} A_j$$

i:

$$S_j = \sum_{n \in A_j} z_n,$$

to  $\sum_{j=1}^{\infty} S_j$  jest zbieżny bezwzględnie i:

$$\sum_{j=0}^{\infty} S_j = \sum_{n=1}^{\infty} z_n.$$

Są to prawa grupowania dla szeregów o wyrazach dowolnych, analogiczne do tych, które zachodzą dla szeregów o wyrazach dodatnich.

### Dowód.

1. Mamy następujące równości:

$$\begin{split} \sum_{n=1}^{\infty} z_{\sigma(n)} &= \sum_{n=1}^{\infty} a_{\sigma(n)}^{+} - \sum_{n=1}^{\infty} a_{\sigma(n)}^{-} + i \sum_{n=1}^{\infty} b_{\sigma(n)}^{+} - i \sum_{n=1}^{\infty} b_{\sigma(n)}^{-} = \\ &= \sum_{n=1}^{\infty} a_{n}^{+} - \sum_{n=1}^{\infty} a_{n}^{-} + i \sum_{n=1}^{\infty} b_{n}^{+} - i \sum_{n=1}^{\infty} b_{n}^{-} = \sum_{n=1}^{\infty} z_{n} \end{split}$$

W 2 równości korzystamy z analogicznego prawa dla zbieżnych szeregów dodatnich.

Oczywiście, jako że  $\sum_{n=1}^{\infty} z_n$  jest zbieżny bezwzględnie, to mamy:

$$\sum_{n=1}^{\infty} |z_n| = \sum_{n=1}^{\infty} |z_{\sigma(n)}|,$$

więc permutacja szeregu zbieżnego bezwzględnie jest także zbieżna bezwzględnie.

2. Mamy:

$$\sum_{j=1}^{\infty} |S_j| = \sum_j^{\infty} \bigg| \sum_{n \in A_j} z_n \bigg| \leq \sum_{j=1}^{\infty} \sum_{n \in A_j} |z_n| = \sum_{n=1}^{\infty} |z_n| < +\infty.$$

Widzimy więc, że  $\sum_{j=1}^{\infty} S_j$  jest także zbieżny bezwzględnie. Jako że  $\sum_{n=1}^{\infty} z_n$  jest zbieżny bez-

względnie, więc tym bardziej jego podszeregi muszą być zbieżne bezwzględnie. Możemy więc zapisać:

$$\begin{split} \sum_{j=1}^{N} S_{j} &= \sum_{j}^{N} \sum_{n \in A_{j}} z_{n} = \sum_{j=1}^{N} \left( \sum_{n \in A_{j}} a_{n}^{+} - \sum_{n \in A_{j}} a_{n}^{-} + i \sum_{n \in A_{j}} b_{n}^{+} - i \sum_{n \in A_{j}} b_{n}^{-} \right) = \\ \sum_{j=1}^{N} \sum_{n \in A_{j}} a_{n}^{+} - \sum_{j=1}^{N} \sum_{n \in A_{j}} a_{n}^{-} + i \sum_{j=1}^{N} \sum_{n \in A_{j}} b_{n}^{+} - i \sum_{j=1}^{N} \sum_{n \in A_{j}} b_{n}^{-}. \end{split}$$

Każdy z szeregów po prawej stronie jest szeregiem zbieżnym o wyrazach dodatnich. Biorąc granicę  $N\to\infty$  otrzymamy więc:

$$\sum_{j=1}^{\infty} S_j = \sum_{j=1}^{\infty} \sum_{n \in A_j} a_n^+ - \sum_{j=1}^{\infty} \sum_{n \in A_j} a_n^- + i \sum_{j=1}^{\infty} \sum_{n \in A_j} b_n^+ - i \sum_{j=1}^{\infty} \sum_{n \in A_j} b_n^- = \sum_{n=1}^{\infty} z_n,$$

co wynika z odpowiednich twierdzeń dla szeregów dodatnich.

# 4 Przestrzenie metryczne

# 4.1 Podstawowe definicje. Otwartość i domkniętość

Zmienimy teraz temat, odchodząc od analizy zbieżności w liczbach zespolonych i rozpoczniemy rozważania o temacie znacznie bardziej ogólnym, mianowicie o przestrzeniach z metrykami, będących uogólnieniem znanego pojęcia odległości w  $\mathbb{C}$ .

# Definicja 4.1. Metryka

Ustalmy X będące dowolnym niepustym zbiorem. Funkcję:

$$d: X \times X \rightarrow [0; +\infty[$$

nazywamy metryką, jeśli spełnia następujące aksjomaty:

1.

$$\forall_{x,v \in X} : d(x,y) = d(y,x),$$

2.

$$\forall_{x,v \in X} : d(x,y) = 0 \iff x = y,$$

3.

$$\forall_{x,y,z\in X}: d(x,z) \leq d(x,y) + d(y,z).$$

O metryce myśleć można, jako o funkcji zwracającej "odległość" między dwoma elementami w zbiorze *X*. Podane aksjomaty zapewniają, że nasza metryka spełniać będzie "zdroworozsądkowe" własności odległości. **1.** nakłada warunek symetryczności na metrykę - odległość z *x* do *y* musi być równa odległości z *y* do *x*. **2.** normalizuje metrykę, mówiąc, że punkt jest odległy o 0 od samego siebie i **tylko** od samego siebie. **3.** to tak zwana **nierówność trójkąta** - dodając na drodze między dwoma punktami trzeci punkt nie można odległości skrócić.

# Definicja 4.2. Przestrzeń metryczna

Parę (X,d) - gdzie X to niepusty zbiór, a  $d: X \times X \to [0;+\infty[$  to metryka - nazywamy **przestrzenią metryczną**.

**Przykłady** Pokażemy parę przykładów przestrzeni metrycznych, aby dać pojęcie, jak mogą one wyglądać.

- $X = \mathbb{R} \ d(x,y) = |x-y|$  jest to odległość między dwiema liczbami rzeczywistymi, z której korzystaliśmy np. przy definicji granicy ciągu.
- $X = \mathbb{R}^{\nu}$ , gdzie  $\nu \in \mathbb{N}$  jest wymiarem przestrzeni,

$$d_p(x,y) = \left(\sum_{n=1}^{\nu} |x_n - y_n|^p\right)^{\frac{1}{p}}.$$

Podstawiając za p różne wartości możemy otrzymać wiele alternatywnych metryk. Np. dla p=1 otrzymujemy tzw. **metrykę Manhattanu**:

$$d_1(x,y) = \sum_{n=1}^{\nu} |x_n - y_n|.$$

Nazwa pochodzi od tego, że jest to odległość jaką trzeba pokonać między dwoma punktami, mogąc przemieszczać się tylko równolegle do osi współrzędnych - tak jak na Manhattanie, gdzie ulice są do się prostopadłe.

Dla p = 2 otrzymujemy znaną **odległość Euklidesową**:

$$d_2(x,y) = \sqrt{\sum_{n=1}^{\nu} (x_n - y_n)^2}.$$

•  $X = \mathbb{R}^{\nu}$ ,

$$d_{\infty}(x,y) = \max_{1 \le n \le y} |x_n - y_n|.$$

Jest to tak zwana **metryka maximum**. Indeks  $\infty$  wziął się z faktu, że o  $d_\infty$  myśleć można o jako o granicy  $d_p$  dla  $p\to\infty$ , mamy bowiem:

$$\lim_{p\to\infty} \left(\sum_{n=1}^{\nu} a_n^p\right)^{\frac{1}{p}} = \max_{1\leqslant n\leqslant \nu} a_n.$$

• Dla dowolnego zbioru *X* definiujemy **metrykę dyskretną**:

$$d(x,y) = \delta_{x,y} = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$
 (95)

• Niech *X* będzie zbiorem funkcji klasy *C*<sup>0</sup> (tj, funkcji ciągłych) z [0;1] na C. Wtedy za odległość między dwiema funkcjami przyjąć możemy:

$$d(f,g) = \sup_{x \in [0;1]} |f(x) - g(x)|. \tag{96}$$

• Dla X takiego samego jak w poprzednim punkcie można określić także:

$$d_p(f,g) = \left(\int_0^1 |f(x) - g(x)|^p\right)^{\frac{1}{p}}. (97)$$

# Definicja 4.3. Zbieżność w przestrzeni metrycznej

Niech (X,d) będzie przestrzenią metryczną i niech  $(x_n)_{n\in\mathbb{N}}$  będzie ciągiem elementów z X. Powiemy, że  $(x_n)_{n\in\mathbb{N}}$  jest zbieżny do  $g\in X$ , jeśli:

$$\forall_{\varepsilon > 0} \exists_{N_n \in \mathbb{N}} \forall_{n \ge N_n} : d(x_n, g) < \varepsilon, \tag{98}$$

co możemy alternatywnie zapisać, jako:

$$\lim_{n \to \infty} d(x_n, g) = 0. \tag{99}$$

Oczywiście jeśli  $x_n \to g$  i  $x_n \to g'$ , to g = g' - co wynika z faktu, że jedynym elementem odległym o 0 od g jest g. Ponadto jeśli  $x_n \to g$  to każdy podciąg  $(x_{n_k})_{k \in \mathbb{N}}$  także dąży do g:  $x_{n_k} \xrightarrow{k \to \infty} g$ .

# Definicja 4.4. Równoważność metryk

Niech d i  $\delta$  będą metrykami na X. Powiemy, że d i  $\delta$  są równoważne, jeśli:

$$\exists_{C_1,C_2 \in \mathbb{R}} : \forall_{x,y \in X} : C_1 d(x,y) \leqslant \delta(x,y) \leqslant C_2 d(x,y). \tag{100}$$

Łatwo widać, że jest to relacja symetryczna, przechodnia i zwrotna.

**Przykład** Metryk  $d_p$  i  $d_\infty$  na  $\mathbb{R}^{\nu}$  są równoważne, albowiem:

$$d_o o(x, y) = \max_i |x_i - y_i| \le d_p(x, y) = \left(\sum_{n=1}^{\nu} |x_n - y_n|^p\right)^{\frac{1}{p}}.$$
 (101)

Ponadto:

$$d_p(x,y)^p \leqslant \nu d_{\infty}(x,y)^p \implies d_p(x,y) \leqslant \nu^{\frac{1}{p}} d_{\infty}(x,y) \tag{102}$$

Wystarczy więc wziąć  $C_1 = 1$  i  $C_2 = v^{\frac{1}{p}}$ .

# Obserwacja 6.

Jeśli d i  $\delta$  są równoważne, to  $x_n \to g$  w  $(X, d) \iff x_n \to g$  w  $(X, \delta)$ .

### Definicja 4.5. Warunek Cauchy'ego

Powiemy, że ciąg  $(x_n)_{n\in\mathbb{N}}$  spełnia warunek Cauchy'ego (i.e. że jest ciągiem Cauchy'ego), jeśli:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon} \in \mathbb{N}} \forall (m, n \geqslant N_{\varepsilon}) : d(x_m, x_n) \leqslant \varepsilon. \tag{103}$$

# Definicja 4.6. Przestrzeń zupełna

Powiemy, że przestrzeń (X, d) jest **zupełna** jeśli każdy ciąg Cauchy'ego w tej przestrzeni jest zbieżny.

Zauważmy, że () $\mathbb{R}$ ,  $d_2$ ) (czyli liczby rzeczywiste ze standardową metryką Euklidesową) to przestrzeń zupełna, co udowodniliśmy. ( $\mathbb{Q}$ ,  $d_2$ ) nie jest przestrzenią zupełną (gdyż np. ciąg kolejnych przybliżeń dziesiętnych $\sqrt{2}$  spełnia warunek Cauchy'ego, jednak nie ma w  $\mathbb{Q}$  granicy).

# Definicja 4.7. Kule

Niech (X,d) - p-ń metryczna. Wtedy **kulą (otwartą)** o środku  $x_0 \in X$  i promieniu  $r \in \mathbb{R}_+$  nazwiemy zbiór:

$$Ball(x_0, r) = \{x \in X \mid d(x, x_0) < r\}. \tag{104}$$

# Definicja 4.8. Punkty wewnętrzne

Niech (X, d) - p-ń metryczna,  $A \subseteq X$  i  $a \in A$ . Powiemy, że a jest **punktem wewnętrznym** A, jeśli:

$$\exists_{r>0} : \text{Ball}(a, r) \subseteq A. \tag{105}$$

Widzimy więc, że jeśli *a* jest punktem wewnętrznym *A*, to znajduje się w *A* razem z pewną kulą wokół siebie - można potocznie sobie więc wyobrazić, że *a* nie może być na "brzegu" *A*.

# Definicja 4.9. Zbiór otwarty

Powiemy, że A jest **otwarty** (w ustalonej p-ń metrycznej (X,d)), jeśli każdy jego punkt jest punktem wewnętrznym:

$$\forall_{a \in A} \exists_{r > 0} : \text{Ball}(a, r) \subseteq A. \tag{106}$$

Dla ustalonej przestrzenii metrycznej zdefiniujemy  $\mathcal{T}$  jako rodzinę wszystkich zbiorów otwartych w tej przestrzenii. Wprowadzimy też zapis:

$$U \subseteq X$$
, (107)

jeśli U jest otwartym podzbiorem X (i.e. jeśli  $U \in \mathcal{T}$ ).

### Twierdzenie 4.1. Właności $\mathcal T$

- 1.  $\emptyset \in \mathcal{T}$  oraz  $X \in \mathcal{T}$ .
- 2.  $U, V \in \mathcal{T} \implies U \cap V \in \mathcal{T}$ . Inaczej mówiąc (rozszerzywszy łątwo twierdzenie za pomocą indukcji), skończony iloczyn zbiorów otwartych jest otwarty.
- 3.  $\{U_i\}_{i\in I}$  rodzina zbiorów otwartych. Wtedy

$$\bigcup_{i \in I} U_i \in \mathcal{T}. \tag{108}$$

Zauważmy, że nie zakładamy, że jest to skończona (ani nawet przeliczalna) rodzina.

#### Dowód.

1. Prawdziwym jest zdanie, że dla każego elementu należącego do ∅ jest on punktem wewnętrzym. Ponadto:

$$\forall_{x \in X, r > 0} \operatorname{Ball}(x, r) \subseteq X, \tag{109}$$

co wynika za samej definicji Ball.

2. Skoro U, V są otwarte, to dla każdego  $x \in U \cap V$  istnieją  $r_1$  i  $r_2$  takie, że:

$$Ball(x, r_1) \in U$$
,  $Ball(x, r_2) \in V$ .

Wtedy jednak:

Ball
$$(x, \min\{r_1, r_2\}) \in U$$
, Ball $(x, \min\{r_1, r_2\}) \in V$ .

Wystarczy więc wziąć  $r = \min\{r_1, r_2\}$ 

3. Dla każdego  $x \in \bigcup_{i \in I} U_i$  mamy  $i \in I$  takie, że  $x \in U_i$ . Wtedy jednak istnieje takie r, że Ball $(x, r) \in U_i$ , przeto Ball $(x, r) \in \bigcup_{i \in I} U_i$ .

### Twierdzenie 4.2.

Kula otwarta jest otwarta.

# Dowód.

Istotnie, jeśli niech  $y \in \text{Ball}(x, r)$ . Wtedy d(x, y) < r. Zauważmy, że  $\text{Ball}(y, r - d(x, y)) \subseteq \text{Ball}(x, r)$ , bowiem jeśli  $z \in \text{Ball}(y, r - d(x, y))$ , to d(z, y) < r - d(x, y), zatem:

$$d(z,x) < d(z,y) + d(y,z) < r,$$

czyli  $z \in Ball(x, r)$ .

# Definicja 4.10. Punkt skupienia

Niech (X, d) - p-ń metryczna i  $A \subseteq X$ , wtedy punkt  $x \in X$  nazwiemy **punktem skupienia** A, jeśli:

$$\forall_{r>0} : \text{Ball}(x, r) \cap A \neq \emptyset. \tag{110}$$

# Definicja 4.11. Zbiór domknięty

Zbiór A nazwiemy **domkniętym** jeśli zawiera wszystkie swoje punkty skupienia. To znaczy:

$$\forall_{x \in X} [\forall_{r > 0} : Ball(x, r) \cap A \neq \emptyset \implies x \in A]. \tag{111}$$

Podobnie jak  $\mathcal T$ , zdefiniujemy  $\mathcal F$  jako rodzinę wszystkich zbiorów domkniętych w danej przestrzenii. Będziemy również pisać:

$$U \subseteq X, \tag{112}$$

jeśli *U* jest domkniętym podzbiorem *X*.

### Definicja 4.12. Kula domknięta

**Kulą domkniętą** o środku  $x_0 \in X$  i promieniu  $r \in \mathbb{R}_+$  nazwiemy zbiór:

$$\overline{\text{Ball}}(x,r) = \{ x \in X \mid d(x,x_0) \leqslant r \}. \tag{113}$$

### Twierdzenie 4.3.

Kula domknięta jest domknięta.

### Dowód.

Niech  $y \notin \overline{\text{Ball}}(x, r)$ . Wtedy d(y, x) > r. Weźmy R = d(y, x) - r > 0. Wtedy  $\text{Ball}(y, R) \cap \overline{\text{Ball}}(x, r) = \emptyset$ . Albowiem, jeśli  $z \in \text{Ball}(y, R)$ , to d(z, y) < d(y, x) - r, zatem  $d(x, z) \ge d(x, y) - d(z, y) > r$ , czyli  $z \notin \overline{\text{Ball}}(x, r)$ .

# Twierdzenie 4.4. Dopełnienie zbioru otwartego jest domknięte

Niech  $A \subseteq X$ . A jest otwarty wtedy i tylko wtedy, gdy  $X \setminus A$  jest domknięty.

### Dowód.

Mamy następujący ciąg równoważności:

$$(X \setminus A)$$
 - domknięty  $\iff$  (114)

$$\forall_{y \notin (X \setminus A)} \exists_{r > 0} : \text{Ball}(y, r) \cap (X \setminus A) = \emptyset \iff (115)$$

$$\forall_{v \in A} \exists_{r > 0} : Ball(y, r) \subseteq X \setminus (X \setminus A) = A \iff (116)$$

$$A$$
 - otwarty (117)

Zauważmy, że istnieją zbiory jednocześnie domknięte i otwarte. Na przykład w każdej przestrzenii metrycznej są to  $\emptyset$  oraz cała przestrzeń. W  $\mathbb R$  są to jedynie takie zbiory. Za to w przestrzenii dyskretnej, wszystkie zbiory mają te własność.

### Twierdzenie 4.5.

Zbiór A jest otwarty wtedy i tylko wtedy, gdy A jest sumą kul.

### Dowód.

⇒ Możemy wybrać sumę rodziny generowanej w tej sposób, że każdemu elementowi przypisujemy kulę mu odpowiadającą, która należy do *A*:

$$\forall_{v \in A} \exists_{r(v) > 0} : \text{Ball}(y, r(y)) \subseteq A. \tag{118}$$

Zatem:

$$A = \bigcup_{y \in A} \{y\} \subseteq \bigcup_{y \in A} \text{Ball}(y, r(y))$$
 (119)

oraz:

$$\bigcup_{y \in A} \text{Ball}(y, r(y)) \subseteq A, \tag{120}$$

więc:

$$A = \bigcup_{y \in A} \text{Ball}(y, r(y)) \tag{121}$$

← W drugą stronę sprawa jest jasna - suma każdej rodziny kul (i.e. zbiorów otwarty) bedzie otwarta.

### Obserwacja 7. na temat $\mathcal{F}$

- 1.  $\emptyset$ ,  $X \in \mathcal{F}$ .
- 2.  $\mathcal{F} = \{X \setminus A \mid A \in \mathcal{T}\}.$
- 3.  $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$ . Inaczej mówiąc skończony iloczyn zbiorów domkniętych jest domknięty.
- 4.  $\{V_i\}_{i\in I}$  rodzina zbiorów domkniętych. Wtedy

$$\bigcap_{i \in I} V_i \in \mathcal{T}. \tag{122}$$

Fakty te są oczywistą konsekwencją własności  $\mathcal{T}$  i prawa, które mówi, że dopełnienie zbioru otwartego jest domknięte.

Spójrzmy jeszcze na przykład, pokazujący, że w 3. właność ta zachodzi tylko dla sum skończonych:

$$]0,1[=\bigcup_{i=1}^{\infty}[\frac{1}{n},1-\frac{1}{n}].$$

# Definicja 4.13. Wnętrze i domknięcie

Niech  $B \subseteq X$ .

**Wnętrznem** zbioru B, oznaczanym  $B^{\circ}$ , nazywamy zbiór wszyskich punktów wewnętrznych B.

**Domknięciem** zbioru B, oznaczanym  $\overline{B}$ , nazywamy zbiór punktów skupienia B. Innymi słowy:

$$x \in B \deg \iff \exists_r : Ball(x, r) \subseteq B.$$
 (123)

$$x \in \overline{B} \iff \forall_r : \text{Ball}(x, r) \cap B \neq \emptyset.$$
 (124)

# Obserwacja 8.

$$B^{\circ} \subseteq B \subseteq \overline{B} \tag{125}$$

# Obserwacja 9.

- B otwarty  $\iff B^{\circ} = B$ .
- B domkniety  $\iff \overline{B} = B$ .

### Twierdzenie 4.6.

$$X \setminus \overline{B} = (X \setminus B)^{\circ} \tag{126}$$

lub

$$\overline{B} = X \setminus (X \setminus B)^{\circ}. \tag{127}$$

# Dowód.

 $x \in X \setminus \overline{B} \iff x$  nie jest punktem skupienia  $B \iff \exists_r \operatorname{Ball}(x, r) \cap B = \emptyset \iff \exists_r \operatorname{Ball}(x, r) \cap B \subseteq X \setminus B \iff x \in (X \setminus B)^{\circ}.$ 

Powiemy teraz o bardzo ważnym twierdzeniu pozwalającym utożsamić punkty skupienia z granicami ciągów ze zbioru.

### Twierdzenie 4.7.

Niech  $B \subseteq X$ . Wtedy domknięcie B to zbiór granic ciągów z B, tj.:

$$\overline{B} = \{ \lim_{n \to \infty} x_n \, \middle| \, (x_n)_{n \in \mathbb{N}} \land \forall_n x_n \in B \}.$$
(128)

### Dowód.

⊇ Dla każdego  $x \in \overline{B}$  zdefiniujmy ciąg  $(x_n)_{n \in \mathbb{N}}$  następująco - niech  $x_n$  to dowolny element należący do Ball $(x, \frac{1}{n}) \cap B$  (jest to zbiór zawsze niepusty na mocy tego, że x jest punktem skupienia B). Oczywiście  $x_n \to x$ , gdyż  $d(x_n, x) < \frac{1}{n} \to 0$ .

 $\subseteq$  Odwrotnie, jeśli  $x_n \rightarrow x$  i  $\forall_n : x_n \in B$ , to:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geq N_{\varepsilon}} : B \ni x_n \in \text{Ball}(x, \varepsilon) \implies \forall \varepsilon > 0 \text{Ball}(x, \varepsilon) \cap B \neq \emptyset, \tag{129}$$

skad mamy  $x \in \overline{B}$ .

# Definicja 4.14. Ograniczoność

Powiemy, że  $B \subseteq X$  jest **ograniczony**, jeśli:

$$\exists_{x \in X, r > 0} : B \subseteq Ball(x, r). \tag{130}$$

### Definicja 4.15. Gęstość

Powiemy, że  $A \subseteq X$  jest **gęsty** w  $B \subseteq X$ , jeśli:

$$B \subseteq \overline{A}. \tag{131}$$

Uwaga! Mówiąc po prostu, że zbiór jest gęsty, mamy na myśli, że jest gęsty w X.

### Przykład $\mathbb{Q}$ jest gęsty w $\mathbb{R}$ .

### Definicja 4.16. Otoczenie

 $A \subseteq X$  jest otoczeniem punktu  $x \in X$ , jeśli:

$$\exists_{U \subseteq X} : x \in U \subseteq A. \tag{132}$$

Waruneke ten jest równoważny temu, żę  $x \in A^{\circ}$ .

Dla danego punktu rodzinę wszyskich jego otoczeń oznaczać będziemy  $\mathcal{N}(x)$ :

$$\mathcal{N}(x) = \{ A \in \mathcal{P}(X) = 2^X \mid x \in A^{\circ} \}. \tag{133}$$

# Twierdzenie 4.8.

Niech  $(x_n)_{n\in\mathbb{N}}$  będzie ciągiem elementów X. Wtedy:

$$\lim_{n \to \infty} x_n = x \iff \forall_{A \in \mathcal{N}(x)} \exists_{N_A \in \mathbb{N}} \forall_{n \geqslant N_A} : x_n \in A.$$
 (134)

### Dowód.

 $\longleftarrow$  Weźmy  $A_ε$ Ball(x, ε). Wtedy:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geq N_{\varepsilon}} : x_n \in \text{Ball}(x, \varepsilon) \implies d(x_n, x) < \varepsilon. \tag{135}$$

*implies*  $x_n$  zbiega do x, zatem:

$$\forall_{\varepsilon>0}\exists_{N_c}\forall_{n\geqslant N_c}:d(x_n,x)<\varepsilon.$$

Mamy też:

$$A \in \mathcal{N}(x) \Longrightarrow \exists_{\varepsilon} : \text{Ball}(x, \varepsilon) \subseteq A.$$

Wystarczy więc wziąć  $N_A = N_{\varepsilon}$ . Wtedy będzie:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geqslant N_{\varepsilon}} : (d(x_n, x) < \varepsilon \land \text{Ball}(x, \varepsilon) \subseteq A) \implies x_n \in A. \tag{136}$$

Twierdzenie to mówi nie mniej, nie więcej niż to, że jeśli ciąg zbiega do jakiegoś punktu, to w każdym otoczeniu tego punktu znajdą się prawie wszystkie wyrazy tego ciągu.

### Twierdzenie 4.9.

Niech (X, d) - p-ń. metryczna, niech  $Y \subseteq X$  i niech  $d_y = d|_{Y \times Y}$  będzie obcięciem d do Y. Wtedy:

- 1.  $A \subseteq Y$  jest otwarty w  $(Y, d_y) \iff \exists_{\substack{U \subseteq X \\ \text{otw.}}} : A = Y \cap U$ .
- 2.  $A \subseteq Y$  jest domknięty w  $(Y, d_y) \iff \exists_{F \subseteq X} : A = Y \cap F$ .

Twierdzenie to daje nam pojęcie o tym, jak wyglądają zbiory otwarte i domknięte w jakimś zawężeniu metryki - mianowicie są to zawężenia odpowiednich zbiorów otwartych i domkniętych.

### Dowód.

Zaczniemy od dowodu 2.

 $\implies$  Niech A domknięty w Y i niech F będzie domknięciem A w X (więc F musi być domknięty w X). Wtedy:

$$F = \{ \lim_{n \to \infty} a_n \in X \mid a_n \in A \},$$

za to:

$$A = \{ \lim_{n \to \infty} a_n \in Y \mid a_n \in A \},$$

gdyż A jest domknięty w Y. Widzimy z tych definicji łatwo, że  $A = F \cap Y$ .

- $\longleftarrow$  W drugą stronę, niech  $A = Y \cap F$  i F będzie domknięty w X. Niech  $(a_n)_{n \in \mathbb{N}}$  będzie ciągiem w A (więc i w F), zbiegającym do g. Wtedy  $g \in F$ . Zatem jeśli  $g \in Y$ , to  $g \in A$ , z konstrukcji A. Pokazaliśmy więc, że każdy ciąg z A zbieżny w Y ma granicę w samym A, zatem A jest domknięty.
- 2.  $\implies$  1. Pokażemy teraz, jak z 2. wynika 1. Mamy bowiem ciąg następujących równoważności:
- $A\subseteq Y$  jest otwarty w  $Y\iff Y\backslash A$  jest domknięty w  $Y\iff \exists_{F\subseteq X}:Y\backslash A=Y\cap F\iff \exists_{F\subseteq X}:A=Y\cap (X\backslash F)\iff \exists_{U\subseteq X}:A=Y\cap U.$

Przedostatnia równoważność, wynika z faktu, że jeśli  $Y \setminus A = Y \cap F$ , to  $A = Y \setminus (Y \cap F) = Y \setminus F = Y \cap (X \setminus F)$  (pamiętamy, że  $Y \subseteq X$ ). Ostatnia równoważność jest konsekwencją tego, że dopełnienie zbioru domkniętego jest otwarte (Tw. 4.1).

# 4.2 Przekształcenia ciągłe

Zaczniemy rozważać teraz przekształcenia (i.e. funkcje) pomiędzy przestrzeniami metrycznymi i wyróżnimy wśród nich szczgólnie ważną klasę funkcji ciągłych.

# Twierdzenie 4.10. Warunki ciągłośći

Niech (X,d) i  $(Y,\delta)$  będą przestrzeniami metrycznymi, a  $\Phi: X \to Y$  przekształceniem między nimi. Ustalmy też  $x_0 \in X$ . Wtedy następujące warunki są równoważne:

1.

$$\forall_{\varepsilon>0} \exists_{\lambda_{\varepsilon}>0} \forall_{x \in X} : d(x, x_0) < \lambda_{\varepsilon} \implies \delta(\Phi(x), \Phi(x_0)) < \varepsilon. \tag{137}$$

2.

$$\forall_{U \in \mathcal{N}(\Phi(x_0))} \exists_{V \in \mathcal{N}(x_0)} : \Phi(V) \subseteq U. \tag{138}$$

3.

$$\forall_{U \in \mathcal{N}(\Phi(x_0))} : \Phi^{-1}(U) \in \mathcal{N}(x_0). \tag{139}$$

(Przypominamy, że  $\Phi^{-1}(U)$  to w przeciwobraz U).

4. Jeśli  $x_n \to x_0$  w (X, d), to  $\Phi(x_n) \to \Phi(x_0)$  w  $(Y, \delta)$ .

# Dowód.

1.  $\Longrightarrow$  2. Dla dowolnego  $U \in \mathcal{N}(\Phi(x_0))$  istnieje  $\varepsilon > 0$ :

Ball(
$$\Phi(x_0)$$
,  $\varepsilon$ )  $\subseteq U$ .

Z 1. weźmy więc  $\lambda_{\varepsilon}$  spełniające podaną implikację i  $V = \text{Ball}(x_0, \lambda_{\varepsilon})$ . Wtedy:

$$\Phi(x \in V) \in \text{Ball}(\Phi(x_0), \varepsilon)$$
,

zatem:

$$\Phi(V) \subseteq \text{Ball}(\Phi(x_0), \varepsilon) \subseteq U$$
.

2.  $\Longrightarrow$  3. Weźmy dowolne  $U \in \mathcal{N}(\Phi(x_0))$ . Wtedy:

$$\exists_{V \in \mathcal{N}(x_0)} : \Phi(V) \subseteq U$$

i.e.  $V \subseteq \Phi^{-1}(U)$ . Ale skoro  $V \in \mathcal{N}(x_0)$ , to tym bardziej  $\Phi^{-1}(U) \in \mathcal{N}(x_0)$ , jako rozszerzenie V. 3.  $\Longrightarrow$  4. Weźmy ciąg  $(x_n)_{n \in \mathbb{N}}$  zbieżny do  $x_0$ . Niech  $U \in \mathcal{N}(\Phi(x_0))$ , skąd  $\Phi^{-1}(U) \in \mathcal{N}(x_0)$ . Zatem:

$$\exists_{N_U} \forall_{n \geqslant N_U} : x_n \in \Phi^{-1}(U),$$

z twierdzenia udowodnionego wcześniej. Ergo:

$$\forall_{U \in \mathcal{N}(\Phi(x_0))} \exists_{N_U} \forall_{n \geqslant N_U} : \Phi(x_n) \in U.$$

Zatem, z tego samego twierdzenia:

$$\Phi(x_n) \to \Phi(x_0)$$
.

 $4. \implies 1.$  Dowodzimy nie wprost, że  $\neg 1. \implies \neg 4.$  Zaprzeczeniem 1. jest:

$$\exists_{\varepsilon>0} \forall_{\lambda} \exists_{x_1 \in X} : d(x_{\lambda}, x_0) < \lambda \land \delta(\Phi(x_{\lambda}, x_0)) \geqslant \varepsilon.$$

Weźmy  $\lambda_n = \frac{1}{n}$  i na tej podstawie skonstruujmy ciąg  $x_n$  odpowiadjących  $x_\lambda$  w powyższym stwierdzeniu dla odpowiednich  $\lambda$ . Wtedy musi być, że  $x_n \to x_0$ , gdyż  $d(x_n, x_0) < \frac{1}{n}$ , ale  $\Phi(x_n) \nrightarrow \Phi(x_0)$ , gdyż  $\delta(\Phi(x_n), \Phi(x_0)) \ge \varepsilon \forall_n$ . Zatem zachodzi  $\neg 4$ ..

# Definicja 4.17. Odwzorowanie ciągłe

Odwzorowanie spełniające warunki 1. - 4. Twierdzenia 4.2 dla punktu  $x_0 \in X$  nazywamy ciągłym w  $x_0$  (w p-ń. (X, d)). Jeśli odwzorowanie jest ciągłe w każdym punkcie przestrzenii, nazywamy je po prostu ciągłym.

Czasami, mając na myśli warunek 1., mówimy o tzw. zbieżności według Cauchy'ego, zaś o warunku 4. mówimy, jako zbieżności według Heinego.

# Twierdzenie 4.11. Złożenie odwzorowań ciągłych jest ciągłe

Jeśli  $\Phi: X \to Y$  jest ciągłe w  $x_0 \in X$  i  $\Psi: Y \to Z$  jest ciągłe w  $\Phi(x_0)$ , to  $\Psi \circ \Phi: X \to Z$  jest ciągłe w  $X_0$ .

### Dowód.

Korzystając np. z 4. warunku ciągłości, weźmy ciąg  $x_n \to x_0$ , wtedy  $\Phi(x_n) \to \Phi(x_0)$  z ciągłości  $\Phi$ . Ponadto  $\Psi(\Phi(x_n)) \to \Psi(\Phi(x_0))$  z ciągłości  $\Psi$ . Widzimy, więc prosto, że  $\Psi \circ \Phi$  musi być ciągłe.

# Twierdzenie 4.12. Ciągłość na całej dziedzinie

 $\Phi: X \to Y$  jest ciągłe na całym X wtedy i tylko wtedy, gdy:

$$\forall_{\substack{U \subseteq Y \\ \text{otw.}}} : \Phi^{-1}(U) \subseteq X. \tag{140}$$

Inaczej mówiąc, przekształcenie jest ciągłe na całej dziedzinie wtedy i tylko wtedy, gdy przeciwobrazy zbiorów otwartych są otwarte.

### Dowód.

 $\Longrightarrow$  Niech  $U \subseteq Y$  i  $x \in \Phi^{-1}(U)$ . Zatem  $\Phi(x) \in U$ . Skoro U jest otwarty, to musi być otoczeniem  $\Phi(x)$ , i.e.  $U \in \mathcal{N}(\Phi(x))$ , zatem (warunek 3.):

$$\Phi^{-1}(U) \in \mathcal{N}(x) \quad \forall_{x \in \Phi^{-1}(U)},$$

czyli  $\Phi^{-1}(U)$  jest otwarty.

← Udowadniamy warunek 2.:

$$\forall_{U\subseteq Y}:\Phi^{-1}(U)\subseteq X.$$

Weźmy  $x \in X$  i  $U \in \mathcal{N}(\Phi(x))$ . Wtedy:

$$\exists_{\tilde{U}\subseteq X}: \Phi(x)\in \tilde{U}\subseteq U,$$

więc  $V = \Phi^{-1}(\tilde{U})$  - otwarty. Pondato  $x \in V$ . Zatem  $V \in \mathcal{N}(x)$ , oraz  $\Phi(V) \subseteq \tilde{U} \subseteq U$ , więc 2. zachodzi.

# Definicja 4.18. Ciągłość jednostajna

 $\Phi: X \to Y$  nazwiemy **jednostajnie ciągłym**, jeśli:

$$\forall_{\varepsilon > 0} \exists_{\lambda_{\varepsilon}} : \forall_{x, x' \in X} : d(x, x') \leq \lambda_{\varepsilon} \implies \delta(\Phi(x), \Phi(x')) \leq \varepsilon. \tag{141}$$

Ważną częścią tejże definicji jest to, że wybór  $\lambda$  zależy jedynie od  $\varepsilon$ , nie zaś od samych punktów x,x'.

### Obserwacja 10.

Każda funkcja jednostajnie ciągła, jest ciągła.

### Definicja 4.19. Przekształcenie Lipschitzowskie

Przekształcenie  $\Phi: X \to Y$  nazwiemy **Lipschitzowskim** (i.e. spełniającym **warunek Lipschitza**), jeśli:

$$\exists_{L>0} \forall_{x,x'\in X} : \delta(\Phi(x), \Phi(x')) \leqslant L \cdot d(x,x'). \tag{142}$$

Warunek ten mówi, że odległość między wartościami funkcji jest zawsze ograniczona przez odległość między jej argumentami (z pewną proporcjonalnością).

# Obserwacja 11.

Funkcje Lipschitzowskie są ciągłe jednostajnie.

Istotnie - wystarczy ustalić:  $\lambda_{\varepsilon} = \frac{\varepsilon}{L}$ .

### 4.3 Zwartość

Powiemy teraz o bardzo ważnym pojęciu charakteryzującym zbiory w przestrzenii metrycznej - to jest o zwartości.

# Definicja 4.20. Pokrycie

Ustalmy (X,d) - p-ń. metryczną. **Pokryciem** zbioru K nazwiemy rodzinę zbiorów  $U=\{U\}_{i\in I}$ ,  $U_i\subseteq X$ , taką że:

$$K \subseteq \bigcup_{i \in I} U_i. \tag{143}$$

Pokrycie jest otwarte, jeśli wszystkie  $U_i$  są otwarte. Pokrycie  $V = \{V_i\}_{i \in I'}$  nazwiemy podpokryciem U, jeśli  $V \subseteq U$ .

**Przykład** Dla  $X = \mathbb{R}$ , K = [0, 1], pokryciem K jest rodzina:

$$U_{nn\in\mathbb{N}}: U_n = [0, 1 + \frac{1}{n}].$$

Nie jest to pokrycie otwarte.

# Definicja 4.21. Zwartość (pokryciowa)

Zbiór  $K \subseteq X$  nazwiemy **ZWARTYM**, jeśli z każdego pokrycia otwartego tegoż zbioru, można wybrać podpokrycie skończone (tj. mające skończonę liczbę elementów). Jeśli K jest zwartym podzbiorem X, to zapiszemy  $K \subseteq \subseteq X$ .

# Twierdzenie 4.13. Własności zbiorów zwartych

- 1. Każdy zbiór zwarty jest ograniczony.
- 2. Każdy zbiór zwarty jest domknięty.

#### Dowód.

Niech  $K \subseteq \subseteq X$ .

1. Weźmy dowolny  $x \in X$ . Wtedy  $\{Ball(x, n)\}_{n \in \mathbb{N}}$  niewątpliwie jest pokryciem otwartym K. Skoro tak, to można zeń wybrać skończone podpokrycie. Zatem istnieje  $N \in \mathbb{N}$ , będące największym z indeksów z tegoś podpokrycia, takie że:

$$K \subseteq Ball(x, N)$$
,

jako że kolejne z tych kul zawierają w sobie poprzednie. Widzimy więc, że K jest ograniczony.

2. Dowód nie wprost. Przypuśćmy, że  $\exists y$  będący punktem skupienia K, t.ż.  $y \notin K$ . Weźmy rodzinę zbiorów  $\{X \setminus \overline{\text{Ball}}(y, \frac{1}{n})\}_{n \in \mathbb{N}}$ . Niewątpliwie jest to pokrycie otwarte, gdyż wszystkie z tych zbiorów są otwarte i sumują się one do  $X \setminus \{y\}$ . Wybierzmy z niego więc skończone podpokrycie i niech N będzie największym z indeksów w tym podpokryciu. Zauważmy, że wtedy sumujw się ono do  $X \setminus \overline{\text{Ball}}(y, \frac{1}{N})$ , jako że kolejne z tych zbiorów zawierają w sobie poprzednie. Mamy więc, że  $K \subseteq X \setminus \overline{\text{Ball}}(y, \frac{1}{N})$ . Wtedy jednak  $\text{Ball}(y, \frac{1}{N}) \cap K \subseteq \overline{\text{Ball}}(y, \frac{1}{N}) \cap K = \emptyset$ , co przeczy temu, że y jest punktem skupienia K. Sprzeczność! Zatem K rzeczywiście musi być domknięty.

### Definicja 4.22. Zwartość ciągowa

Powiemy, że podzbiór  $K \subseteq X$  jest **ciągowo zwarty**, jeśli każdy ciąg  $(x_n)_{n \in \mathbb{N}}$  zawarty w K  $(x_n \in K)$  zawiera podciąg zbieżny do granicy w K:

$$\forall_{(x_n)_{n\in\mathbb{N}}, x_n\in K} \exists_{k\mapsto n_k} : x_{n_k} \to g \in K. \tag{144}$$

### Twierdzenie 4.14.

Zbiór K ciągowo zwarty jest także domknięty.

#### Dowód.

Istotnie, jeśli ciąg  $(x_n)_{n\in\mathbb{N}}$  elementów z K jest zbieżny, to każdy jego podciąg jest zbieżny do tej samej granicy. Ale skoro K jest ciągowo zwarty, to  $(x_n)_{n\in\mathbb{N}}$  ma podciąg zbieżny do elementu z K, który będzie wspólną granicą wszystkich podciągów. Zatem i granica  $(x_n)_{n\in\mathbb{N}}$  musi leżeć w K.

### Definicja 4.23. $\varepsilon$ - sieć

Niech  $K \subseteq X$  i  $\varepsilon > 0$ . Wtedy  $S \subseteq X$  nazwiemy  $\varepsilon$  - siecią dla K jeśli:

$$\forall_{z \in K} \exists_{s \in S} : z \in Ball(s, \varepsilon). \tag{145}$$

S jest  $\varepsilon$  - siecią **w** jeśli jest  $\varepsilon$  - siecią dla K i  $S \subseteq K$ .

### Twierdzenie 4.15.

Jeśli K jest ciągowo zwarty, to dla każdego  $\varepsilon > 0$  istnieje skończona  $\varepsilon$  - sieć w K.

### Dowód.

**Dowód nie wprost.** Przypuśćmy, że istnieje  $\varepsilon>0$ , t.ż. w K nie ma skończonej  $\varepsilon$  - sieci. Skonstruujmy wtedy następująco ciąg  $(x_n)_{n\in\mathbb{N}}$  i rodzinę zbiorów  $(U_n)_{n\in\mathbb{N}}$ : Niech  $x_1\in K$  będzie dowolne i  $U_1=\operatorname{Ball}(x_1,\varepsilon)$ . Oczywiście  $U_1$  nie pokrywa K (z założenia):  $K\backslash U_1\neq\emptyset$ . Za  $x_2$  bierzemy więc dowolny element w  $K\backslash U_1$ , a  $U_2=U_1\cup\operatorname{Ball}(x_2,\varepsilon)$ . Ogólnie  $x_n\in K\backslash U_{n-1}$  i $U_n=U_{n-1}\cup\operatorname{Ball}(x_n,\varepsilon)$ . Oczywiście  $K\backslash U_{n-1}\neq\emptyset$ , gdyż gdyby było inaczej, to z konstrukcji mielibyśmy wbrew założeniu skończoną  $\varepsilon$  - sieć pokrywającą K. Otrzymaliśmy ciąg  $(x_n)_{n\in\mathbb{N}}$ , który jednak nie może mieć podciągu zbieżnego, gdyż nie spełnia warunku Cauchy'ego - z konstrukcji jasno widać, że  $\forall_{i< j}: d(x_i,x_j)\geqslant \varepsilon$ , jako że  $x_j\in K\backslash U_{j-1}\subseteq K\backslash U_i$ . Przeczy to założeniu, że K jest ciągowo zwarty.

### Twierdzenie 4.16.

Jeśli K jest ciągowo zwarty, to istnieje przeliczalny  $D \subseteq K$ , t.ż.  $\overline{D} = K$  i.e. D jest gęsty w K.

### Dowód.

Weźmy

$$D=\bigcup_{n=1}^{\infty}S_{\frac{1}{n}}\subseteq K,$$

gdzie jako  $S_{\varepsilon}$  oznaczyliśmy skończoną  $\varepsilon$  - sieć w K, która na mocy Tw. 4.3 istnieje. Jasno widać, że D jest przeliczalny. Wtedy  $\overline{D}\subseteq K$ , gdyż dla każdego  $y\in K$  tworzymy ciąg  $(x_n)_{n\in\mathbb{N}}$  elementów, takich że  $x_n\in S_{\frac{1}{n}}$  i  $y\in \operatorname{Ball}(x_n,\frac{1}{n})$ , co zawsze możemy zrobić, bo  $S_{\frac{1}{n}}$  są  $\varepsilon$  - sieciami w K. Wtedy  $d(x_n,y)<\frac{1}{n}\to 0$ , więc  $x_n\to y$ , czyli  $y\in \overline{D}$ . Odwrotnie mamy  $\overline{D}\supseteq K$ , bo  $D\subseteq K \implies \overline{D}\subseteq \overline{K}$  (domknięcie jest monotoniczne, a K jest domknięty por. Tw. 4.3). Z tych dwu inkluzji mamy tezę.

### Twierdzenie 4.17.

Jeśl K jest ciągowo zwarty, do każde jego pokrycie otwarte ma przeliczalne podpokrycie.

#### Dowód.

Niech U - pokrycie otwarte K. Dla dowolnego  $y \in K$  zdefiniujmy:

$$n_y = \min\{n \in \mathbb{N} \mid \exists_{U_y \in U} : \text{Ball}(y, \frac{1}{n}) \subseteq U_y\}.$$

Taka liczba będzie bez wątpienia istniała, gdyż U pokrywa K i składa się z samych zbiorów otwartych. Niech  $U_y$  będzie zbiorem spełniającym powyższy warunek dla  $y \in K$ . Niech  $V = \{U_y | y \in D\}$ , gdzie D to przeliczalny podzbiór gęsty w K (istnieje on na mocy Tw. 4.3). Jasne, że  $V \subseteq U$  i że V jest przeliczalny. Pokażemy, że jest to podpokrycie.

Niech  $x \in K$ . Wiemy, że  $\exists_{U_x \in U, N \in \mathbb{N}}$ : Ball $(x, \frac{1}{N}) \subseteq U_x$ . Ponadto, jako że D jest gęsty w K, to  $\exists_{v \in D} : d(y, x) < \frac{1}{2N}$ . Wtedy:

$$x \in \text{Ball}(y, \frac{1}{2N}) \implies \text{Ball}(y, \frac{1}{2N}) \subseteq \text{Ball}(x, \frac{1}{N}) \subseteq U_x \in U.$$

Więc  $2N \ge n_v$  z konstrukcji  $n_v$ . Zatem:

$$x \in \text{Ball}(y, \frac{1}{2N}) \subseteq \text{Ball}(y, \frac{1}{n_v}) \subseteq U_y \in V.$$

Czyli V pokrywa K.

Jesteśmy już gotowi, żeby udowodnić najważniejsze twierdzenie w tej sekcji.

### Twierdzenie 4.18. Zwartość ciągowa = zwartość pokryciowa

Zbiór K jest ciagowo zwarty wtedy i tylko wtedy gdy jest zwarty (pokryciowo).

### Dowód.

 $\implies$  Niech  $K \subseteq X$ ,  $(x_n)_{n \in \mathbb{N}}$  będzie ciągiem elementów z K i niech  $Z = \{x_n | n \in \mathbb{N}\}$ . Pokażemy, że zachodzi jedna z dwu możliwości:

1

$$\exists_{y \in K} : \forall_{U \in \mathcal{N}(y), U \subseteq X} : |Z \cap U| = \infty.$$

2. Z jest skończony.

Mianowicie, niech  $\neg 1$ ., i.e.:

$$\forall_{y \in K}: \exists_{U_y \in \mathcal{N}(y), \, U_y \subseteq X}: |Z \cap U_y| < \infty.$$

Oczywiście  $\{U_y\}_{y\in K}$  jest pokryciem otwartym K (gdyż każdy y zawiera się np. w odpowiadającym mu  $U_v$ ). Wybierzmy więc zeń skończone podpokrycie, tak, żeby:

$$K \subseteq U_{v_1} \cup U_{v_2} \cup ... \cup U_{v_N}$$
.

Mamy jednak  $Z \subseteq K$ , zatem:

$$Z = K \cap Z = (U_{v_1} \cap Z) \cup (U_{v_2} \cap Z) \cup ... \cup (U_{v_N} \cap Z).$$
 (146)

Każdy z elementów tej sumy jest skończony, na mocy założenia, zatem Z także jest skończony, jako skończona suma skończonych. Widzimy więc, że zachodzi 1. lub 2.:

1. Jeśli zachodzi pierwszy warunek, to skoro:

$$\exists_{y \in K} : \forall_{U \in \mathcal{N}(y), U \subseteq X} : |Z \cap U| = \infty,$$

to konstruujemy  $k\mapsto n_k$ , tak aby  $\forall_k:n_{k+1}>n_k$  i  $x_{n_k}\in \operatorname{Ball}(y,\frac{1}{k})$ . Jest to możliwe, bo każde otwarte otoczenie y zawiera nieskończenie wiele elementów ciągu  $x_n$ , w szczególności zawiera element o indeksie większym od dowolnej liczby. Oczywiście z podanej konstrukcji mamy  $x_{n_k}\to y\in K$ .

2. Jeśli Z jest skończony, to z zasady szuflatkowej istnieje wartość  $x \in Z \subseteq K$ , która zostanie odwiedzona nieskończenie wiele razy przez wyrazy ciągu  $x_n$  - można więc wziąć podciąg stały równy x i oczywiście do tej liczby zbieżny.

Widzimy więc, że w obu przypadkach potrafimy skonstruować podciąg zbieżny w K, zatem K istotnie jest ciągowo zwarty.

← Dowód przeprowadzimy nie wprost. Niech K będzie ciągowo zwartym, U pewnym jego pokryciem otwartym, a  $V = V_{ii \in \mathbb{N}}$  jego przeliczalnym podpokryciem, które na mocy Tw. 4.3 istnieje. Przypuśćmy, że żadna skończona podrodzina V nie jest pokryciem K. Wtedy dla  $n \in \mathbb{N}$  wybieramy  $x_n \in K \setminus (\bigcup_{i=1}^n V_i)$ . Oczywiście zbiór z którego wybieramy  $x_n$  będzie niepusty na mocy założenia, że żadna skończona podrodzina V nie pokrywa K. Otrzymujemy ciąg  $(x_n)_{n \in \mathbb{N}}$  elementów z K, więc ma on podciąg zbieżny do  $y \in K$ . Ale  $\exists_N : y \in V_N$ . Skoro jednak  $V_N$  jest otwarty (gdyż wyjściowe pokrycie U było otwarte), to prawie wszystkie wyrazy podciągu  $(x_n)_{n \in \mathbb{N}}$  zbieżnego do y powinny leżeć w  $V_N$ . Jednakże tylko skończona liczba wyrazów  $x_n$  leży w  $V_N$ , gdyż dla  $n \ge N$ :  $x_n \in K \setminus V_N$ . Sprzeczność! Musi więc istnieć skończone podpokrycie V, zatem K jest zwarty pokryciowo.

### Obserwacja 12.

Domknięty podzbiór zbioru zwartego jest zwarty.

Istotnie  $K \subseteq\subseteq X \land C \subseteq K \land C = \overline{C} \implies C \subseteq\subseteq X$ .

### Twierdzenie 4.19. Bolzano-Weierestrassa II

Każdy ograniczony i domknięty podzbiór R jest zwarty.

### Dowód.

Wynika on prosto z równoważności zwartości ciągowej i pokryciowej. Jeśli jakiś podzbiór  $\mathbb R$  jest ograniczony, to zawiera podciąg zbieżny (Twierdzenie 2.2), a skoro jest domknięty, to ów podciąg zbieżny ma granicę w tymże zbiorze. Zatem podzbiór ten jest ciągowo zwarty, czyli zwarty.

# Definicja 4.24. Metryka na iloczynie kartezjańskim

Rozważmy dwie p-ń metryczne  $(X,d_1)$  i  $(Y,d_2)$ . Można wtedy wprowadzić na ich iloczynie kartezjańskim nową metrykę D, tworząc p-ń.  $(X\times Y,D)$ . Standardowo robi się to w ramach jednej z równoważnych metryk  $d_p$   $(p\in[1,\infty])$  - tak, że  $D((x_1,y_1),(x_2,y_2))=d_p(d_1(x_1,x_2),d_2(y_1,y_2))$ . Wszystkie te metryki zadają tę samą topologię. Metrykę na iloczynie kartezjańskim większej liczby zbiorów definiuje się indukcyjnie.

### Obserwacja 13.

$$(x_n, y_n) \xrightarrow{D} (x, y) \iff x_n \to x \land y_n \to y.$$
 (147)

Widzimy, że zbieżność na iloczynie kartezjańskim jest "po współrzędnych".

### Twierdzenie 4.20.

Iloczyn kartezjańskich dwu zbiorów zwartych jest zwarty.

### Dowód.

TODO

### Obserwacja 14.

Niech  $K \subseteq \subseteq \mathbb{R}$ . Wtedy K zawiera swoje kresy.

Rzeczywiście, skoro K jest zwarty, to i ograniczony:  $\inf K \in \mathbb{R}$  i  $\sup K \in \mathbb{R}$ . Ponadto  $\inf K$  i  $\sup K$  są granicami ciągów z K, więc do K należą, skoro K jest domknięty.

### Twierdzenie 4.21.

Niech (X,d) to p-ń. metryczna zupełna. Niech  $K\subseteq X$ . Wtedy, zbiór K jest zwarty jeżeli  $\forall_{\varepsilon>0}$  można go pokryć skończoną  $\varepsilon$  - siecią.

### Dowód.

**TODO** 

# Twierdzenie 4.22. Obraz zbioru zwartego jest zwarty

Niech (X,d),  $(Y,\delta)$  będą p-ń. metrycznymi, a  $\phi:X\to Y$  będzie odwzorowaniem ciągłym. Ponadto niech  $K\subseteq\subseteq X$ . Wtedy zbiór  $\phi(K)$  jest zwarty.

### Dowód.

Niech  $U=\{U_i\}_{i\in I}$  - rodzina zbiorów otwartych pokrywająca  $\phi(K)$ :  $\phi(K)\subseteq\bigcup_{i\in I}U_i$ . Skonstruujmy rodzinę  $V=\{V_i=\phi^{-1}(U_i)\}$ . Skoro  $\phi$  jest ciągłe, to V jest rodziną otwartą. Podnadto z włąsciwości przeciwobrazów:  $K\subseteq\bigcup_{i\in I}V_i$ . Zatem V jest pokryciem otwartym. Możemy więc zeń wybraż skończone podpokrycie otwarte:

$$K \subseteq V_{i_1} \cup ... \cup V_{i_n} = \phi^{-1}(U_{i_1}) \cup ... \cup \phi^{-1}(U_{i_n}).$$

Wtedy:

$$\phi(K) \subseteq \phi(\phi^{-1}(U_{i_1}) \cup ... \cup \phi^{-1}(U_{i_n})) = \phi(\phi^{-1}(U_{i_1})) \cup ... \cup \phi(\phi^{-1}(U_{i_n})) \subseteq U_{i_1} \cup ... \cup U_{i_n}.$$

Zatem dla każdego pokrycia  $\phi(K)$  wybraliśmy zeń skończone podpokrycie - zatem  $\phi(K)$  jest zwarty.

# Obserwacja 15. Odwzorowanie ciągłe na zbiorze zwartym osiąga swoje kresy

Niech (X,d) - p-ń. metryczna i niech  $f:X\to\mathbb{R}$  będzie ciągłą funkcją oraz niech  $K\subseteq\subseteq X$ . Wtedy:

$$\sup_{x \in K} f = \sup f(K) \in f(K) \tag{148}$$

oraz

$$\inf_{x \in K} f = \inf f(K) \in f(K). \tag{149}$$

Wynika to od razu z Twierdzenia 4.22 oraz Obserwacji 4.3.

# Twierdzenie 4.23. Heinego - Borela

Podzbiór  $K \subseteq \mathbb{R}^n$  jest zwarty wtedy i tylko wtedy, gdy jest domknięty i ograniczony.

### Dowód.

 $\implies$  Por. Tw. 4.3.

← Skoro K jest ograniczony, to istnieje kostka postaci:

$$C = [a_1, b_1] \times ... \times [a_n, b_n], \tag{150}$$

t.ż  $K \subseteq C$ . Ponadto, C musi być zwarta, jako iloczyn kartezjański dwu zbiorów zwartych (por. Tw. 4.3). Zauważyliśmy jednak, żę domknięty podzbiór zbioru zwartego jest zwarty, zatem i K jest zwarty (Obs. 4.3).

### Twierdzenie 4.24. Lemat Lebesgue'a

Niech (X,d) - p-ń. metryczna,  $K\subseteq\subseteq X$  (K jest zwartym podzbiorem X). Niech U będzie pokryciem otwartym K. Wówczas:

$$\exists_{\lambda>0} \forall_{x \in K} \exists_{U_x \in U} : \text{Ball}(x, \lambda) \subseteq U_x. \tag{151}$$

**Uwaga!** Liczbę  $\lambda$  podaną w twierdzeniu nazywa się **liczbą Lebesgue'a**.

### Dowód.

Skoro K - zwarty, to wybierzmy z U skończone podpokrycie:  $\{U_i\}_{1 \le i \le N}$ .

- Jeżeli  $\exists_{i \leq N} : X = U_i$ , to sytuacja nie przedstawia żadnego problemu za  $\lambda$  bierzemy dowolną liczbę, zaś za  $U_x = X$ . Teza jest trywialnie spełniona.
- Jeżeli  $\forall_{i \leq N} : X \nsubseteq U_i$ , to definiujemy rodzinę  $F_i = X \setminus U_i$  oraz funkcję:

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} d(x, F_i),$$

gdzie

$$d(x, F_i) = \inf_{v \in F_i} \{d(x, v)\}$$

jest dobrze określoną funkcją dla niepustego  $F_i$ . Oczywiście f jest ciągła, bo mamy:

$$\left| f(x) - f(x_0) \right| = \frac{1}{N} \left| \sum_{i=1}^{N} d(x, F_i) - d(x_0, F_i) \right| \le \frac{1}{N} \sum_{i=1}^{N} \left| \inf_{v \in F_i} \{ d(x, v) \} - \inf_{v \in F_i} \{ d(x_0, v) \} \right|.$$

Zauważmy, że skoro:

$$d(x,v) \le d(x_0,v) + d(x,x_0)$$

oraz:

$$d(x_0, v) \le d(x, v) + d(x, x_0),$$

to:

$$\inf_{v \in F_i} \{ d(x, v) \} \le \inf_{v \in F_i} \{ d(x_0, v) \} + d(x, x_0)$$

i:

$$\inf_{v \in F_i} \{ d(x_0, v) \} \le \inf_{v \in F_i} \{ d(x, v) \} + d(x, x_0),$$

zatem:

$$|\inf_{v \in F_i} \{d(x, v)\} - \inf_{v \in F_i} \{d(x_0, v)\}| \le d(x, x_0).$$

Widzimy, więc że

$$|f(x) - f(x_0)| \le d(x, x_0),$$

czyli f musi być ciągła.

Skoro f jest ciągła na zbiorze zwartym K i  $\forall_{x \in K}: f(x) > 0$  (bo inaczej – gdyby f(x) = 0, to x nie nalezałby do żadego pokrycia  $U_i$ ), to  $\exists_{x_0}: f(x_0) = \inf f(x) > 0$ . Funkcja ciągła na zbiorze zwartym osiąga swoje kresy. Weźmy  $\lambda = \inf f(x) > 0$ . Skoro mamy  $\forall_{x \in K}: f(x) \geqslant \lambda$ , a f(x) jest średnią odległością x od  $F_i$ , to w szczególności istnieje takie  $F_j$ , że  $\lambda \leqslant d(x, F_j) = \inf_{v \notin U_i} d(x, v) \Longrightarrow \forall_{v \notin U_j}: d(x, v) \geqslant \lambda$ . Zatem dla tego  $U_j$ :

Ball
$$(x, \lambda) \subseteq U_i$$
.

Znaleźliśmy więc szukaną  $\lambda$  i szukane  $U_x = U_i$ . Dowód został zakończony.

# 4.4 Spójność

# Definicja 4.25. Spójność

Powiemy, że zbiór Z w pewnej metryce jest **niespójny**, jeśli:

$$\exists_{Z_1, Z_2 \neq \emptyset} : Z_1 \cup Z_2 = Z \quad \land \quad Z_1 \cap \overline{Z_2} = \emptyset. \tag{152}$$

W przeciwnym razie, zbiór nazwiemy spójnym. Dla zbiorów spójnych, mamy:

$$Z_1, Z_2 \neq \emptyset \wedge Z_1 \cup Z_2 = Z \implies Z_1 \cap \overline{Z_2} \neq \emptyset \vee \overline{Z_1} \cap Z_2.$$

### Obserwacja 16.

Podzbiór R jest spójny wtedy i tylko wtedy, gdy jest przedziałem.

# Twierdzenie 4.25. Obraz zbioru spójnego jest spójny

Jeśli Z jest zbiorem spójnym, a  $\Phi: X \to Y$  odzworowaniem ciągłym, to  $\Phi(Z)$  jest spójny.

### Dowód.

Dowód nie wprost. Załóżmy, że  $\Phi(Z)$  jest niespójny, tj. istnieją takie niepuste  $W_1, W_2 \subseteq Y$ , że  $W_1 \cap \overline{W_2} = \emptyset$  i  $W_1 \cup W_2 = \Phi(Z)$ . Niech  $Z_1 = \Phi^{-1}(W_1) \cap Z$  i  $Z_2 = \Phi^{-1}(W_1) \cap Z$ . Mamy:

$$Z \subseteq \Phi^{-1}(\Phi(Z)) = \Phi(W_1) \cup \Phi(W_2).$$

Zatem  $Z=Z_1\cup Z_2$ . Skoro Z jest spójny, to  $\overline{Z_1}\cap Z_2\neq\emptyset$  lub  $Z_1\cap\overline{Z_2}\neq\emptyset$ . Bez straty ogólności, załóżmy ten pierwszy przypadek. Wtedy istnieje  $(\underline{x_n})_{n\in\mathbb{N}}$ , t.ż.  $x_n\in Z_1$  i  $x_n\to x\in Z_2$ . Ale wtedy – z ciągłości  $\Phi-W_1\ni\Phi(x_n)\to\Phi(x)\in W_2$ , zatem  $\overline{W_1}\cap W_2\neq\emptyset$ , wbrew założeniu. Powstała sprzeczność dowodzi tezy.

# Obserwacja 17. Łukowa spójność

Zbiór spójny łukowo jest spójny.

# 5 Rachunek różniczkowy

# Definicja 5.1. Różniczkowalność

Niech  $f:I\to\mathbb{R}$ , gdzie I jest przedziałem w  $\mathbb{R}$  (otwartym lub domkniętym). Powiemy, że f jest różniczkowalna w punkcie  $x_0\in I$ , jeśli istnieje granica:

$$\lim_{I \ni x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (153)

W szczególności, jeśli I = [a, b], to f jest różniczkowalna w a, jeśli istnieje granica:

$$\lim_{I\ni x\to a^+} \frac{f(x)-f(a)}{x-a}.$$
 (154)

Wartość tychże granic nazywamy pochodną funkcji f w punkcie  $x_0$  i oznaczamy  $f'(x_0)$ .

# Definicja 5.2. Pochodna

Jeśli w każdym punkcie funkcji f istnieje skończona pochodna, to funkcje  $f': I \to \mathbb{R}$ ,  $f': x \mapsto f'(x)$  nazywamy **pochodną** funkcji f. Mówimy wtedy o f, że jest **różniczkowalna**.

### Twierdzenie 5.1.

Niech  $x \in I$  deg. Wtedy:

$$\exists_{f'(x_0)} \iff \exists_y : \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - yh}{h} = 0.$$
 (155)

Wtedy oczywiście y = f'(x).

### Dowód.

$$\implies \quad \text{Jeśli } \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0), \text{ to } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) \text{ i:}$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - hf'(x_0)}{h} = 0.$$

<= Jeśli:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - hy}{h} = 0,$$

to:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{h} = y = f'(x_0).$$

### Twierdzenie 5.2. Funkcja różniczkowalna jest ciągła

Jeśli funkcja f jest różniczkowalna w pewnym punkcie  $x_0$ , to jest w tym punkcie ciągła.

### Dowód.

Skoro  $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$ , to  $\lim_{x\to x_0} f(x)-f(x_0) = \lim_{x\to x_0} f'(x_0)(x-x_0)0$ , zatem funkcja jest ciągła.

# Obserwacja 18. Podstawowe własności pochodnych

Niech  $f,g:I\to\mathbb{R}$  będą funkcjami różniczkowalnymi. Wtedy:

• (f+g)' istnieje i:

$$(f+g)' = f'+g'.$$
 (156)

• Jeśli  $a \in R$ , to (af)' istnieje i:

$$(af)' = af'. (157)$$

• (*f g*)' istnieje i:

$$(fg)' = f' \cdot g + f \cdot g'. \tag{158}$$

Jest to tzw. wzór Leibnitza.

• Jeśli  $g(x) \neq 0$  i  $g'(x) \neq 0$  dla wszyskich  $x \in I$ , to  $(\frac{f}{g})'$  istnieje i:

$$(\frac{f}{g})' = \frac{f'g - fg'}{(g)^2}. (159)$$

Dowód jest bardzo prosty i pozostawiamy go jako ćwiczenie. Nieco ciekawsze (i dużo ważniejsze) jest następujące:

### Twierdzenie 5.3. Pochodna funkcji złożonej

Niech  $g: I_1 \to I_2$ ,  $f: I_2 \to \mathbb{R}$  będą funkcjami różniczkowalnymi odpowiednio w punktach  $x_0 \in I_1$  deg i  $g(x_0) \in I_2$  deg. Wtedy  $f \circ g$  także jest różniczkowalna i w  $x_0$ :

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0). \tag{160}$$

Reguła ta nazywa się czasem regułą łańuchową.

### Dowód.

Niech  $r(h) = g(x_0 + h) - g(x_0) - g'(x_0)h$ . Wtedy (por. Tw. 5.1):

$$\lim_{h \to 0} \frac{r(h)}{h} = 0. \tag{161}$$

Niech  $y_0 = g(x_0)$  i  $R(k) = f(y_0 + h) - f(y_0) - f'(y_0)h$ . Znowuż:

$$\lim_{k \to 0} \frac{R(k)}{k} = 0. \tag{162}$$

Wtedy:

$$f(g(x_0+h)) - f(g(x_0)) = f(g(x_0) + g'(x_0)h + r(h)) - f(g(x_0)) = f(g(x_0) + k(h)) - f(g(x_0)), \quad (163)$$

gdzie oznaczyliśmy  $k(h)=g'(x_0)h+r(h)$ . Oczywiście  $\lim_{h\to 0}k(h)=0$ . Licząc dalej:

$$f(g(x_0+h)) - f(g(x_0)) = f(g(x_0) + k(h)) - f(g(x_0)) = R(k(h)) + f'(y_0)k(h). \tag{164}$$

Zatem:

$$\lim_{h \to 0} \frac{f(g(x_0 + h)) - f(g(x_0))}{h} = f'(y_0) \lim_{h \to 0} \frac{k(h)}{h} + \lim_{h \to 0} \frac{R(k(h))}{h}.$$

Zauważmy, że:

$$\lim_{h \to 0} \frac{k(h)}{h} = \lim_{h \to 0} \frac{g'(x_0)h + r(h)}{h} = g'(x_0).$$

Stąd mamy:

$$\lim_{h \to 0} \frac{R(k(h))}{h} = \lim_{h \to 0} \frac{R(k(h))}{k(h)} \frac{k(h)}{h} = 0.$$

Ostatecznie więc:

$$\lim_{h \ to0} \frac{f(g(x_0+h)) - f(g(x_0))}{h} = f'(y_0)g'(x_0).$$

# Definicja 5.3. Inna definicja pochodnej

Niech  $f: \mathbb{R}^n \to \mathbb{R}^m$ . Niech  $\vec{x_0} \in \mathbb{R}^n$ . Jeśli istnieje taka macierz  $A \in M(\mathbb{R})_{m \times n}$ , że:

$$\lim_{\|\vec{h}\| \to 0} \frac{f(\vec{x_0} + \vec{h}) - f(\vec{x_0}) - A\vec{h}}{\|\vec{h}\|} = 0,$$
(165)

dla  $\vec{h} \in \mathbb{R}^n$ , to macierz A nazwiemy pochodną f w punkcie  $\vec{x_0}$ . Łatwo widać, że A jest wyznaczone jednoznacznie.

Zajmiemy się teraz związkiem pochodnej z własnościami funkcji rzeczywistych.

### Definicja 5.4. Ekstrema

Niech (X, d) - p-ń. metryczna oraz  $f: X \to \mathbb{R}$ . Wtedy  $x_0 \in X$  nazwiemy:

• Lokalnym minimum, jeśli:

$$\exists_{U \in \mathcal{N}(x_0)} \forall_{x \in U} : f(x) \geqslant f(x_0). \tag{166}$$

• Lokalnym minimum ścisłym, jeśli:

$$\exists_{U \in \mathcal{N}(x_0)} \forall_{x \in U} : f(x) > f(x_0). \tag{167}$$

• Lokalnym maksimum, jeśli:

$$\exists_{IJ\in\mathcal{N}(x_0)} \forall_{x\in IJ} : f(x) \le f(x_0). \tag{168}$$

• Lokalnym maksimum ścisłym, jeśli:

$$\exists_{U \in \mathcal{N}(x_0)} \forall_{x \in U} : f(x) < f(x_0). \tag{169}$$

Wpólna nazwa, na którąś z tych sytuacji, to wystąpienie lokalnego **ekstremum** (ściłego ekstremum).

# Twierdzenie 5.4. Warunek konieczny istnienia ekstremum

Jeśli f : [a,b] →  $\mathbb{R}$  jest w punkcie  $x_0$  różniczkowalna i  $x_0$  jest ekstremum f, to:

$$f'(x_0) = 0. (170)$$

### Dowód.

Założmy, że f ma w  $x_0$  minimum. Wtedy oczywiście:

$$f(x) - f(x_0) \geqslant 0.$$

Zatem:

$$\frac{f(x)-f(x_0)}{x-x_0}\geqslant 0,$$

dla  $x > x_0$ , więc:

$$\frac{f(x)-f(x_0)}{x-x_0} \xrightarrow{x\to x_0^+} f'(x_0) \ge 0.$$

Jednakże:

$$\frac{f(x)-f(x_0)}{x-x_0} \le 0,$$

dla  $x < x_0$  i:

$$\frac{f(x)-f(x_0)}{x-x_0}\xrightarrow{x\to x_0^-} f'(x_0) \leq 0.$$

Jedyną możliwością połączenia tych nierówności jest  $f'(x_0) = 0$ . Dla maksimum w  $x_0$  dowód zupełnie analogiczny.

Twierdzenie to pomoże nam udowodnić kilka zasadniczych twierdzeń związanych z pochodnymi. Zaczniemy od:

### Twierdzenie 5.5. Rolle'a

Jeśli  $f:[a,b] \to \mathbb{R}$  jest ciągła i różniczkowalna na ]a,b[ oraz f(a)=f(b), to:

$$\exists_{\xi \in ]a.b[} : f'(\xi) = 0.$$

### Dowód.

f jest ciągła na zwartej dziedzinie [a,b], także osiąga swoje kresy. Jeśli sup  $f=\inf f=f(a)=f(b)$ , to f jest funkcją stałą: f:=f(a) i jej pochodna we wszystkich punktach pomiędzy a i b jest równa 0. W przeciwnym wypadku, (i.e. sup  $f\neq f(a)$  lub inf  $f\neq f(a)$ ) istnieje  $\xi\in ]a,b[$  osiągające ów kres różny od wartości w a. Oczywiście  $\xi$  będzie ektremum, zatem z poprzedniego twierdzenia  $f'(\xi)=0$ .

Uogólnieniami tych twierdzeń są następujące dwa rezultaty:

# Twierdzenie 5.6. Cauchy'ego

Niech  $f,g:[a,b] \to \mathbb{R}$  - ciągłe i różniczkowalne na ]a,b[, wtedy:

$$\exists_{\xi \in [a,b[} : g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a)). \tag{171}$$

### Dowód.

Konstruujemy funkcję:

$$h(x) = g(x)(f(b) - f(a)) - f(x)(g(b) - g(a)).$$

Łatwo widzieć, że:

$$h(a) = h(b) = g(a)f(b) - f(b)g(a).$$

Ponadto h powstaje z operacji arytmetycznych na f, g więc również jest ciągła i różniczkowalna na a, b. Spełnia więc wszystkie założenia Tw. Rolle'a:

$$\exists_{\xi\in ]a,b[}:h'(\xi)=0$$

Ale:

$$h'(\xi) = g'(\xi)(f(b) - f(a)) - f'(\xi)(g(b) - g(a)).$$

Stąd prosto otrzymujemy tezę.

# Twierdzenie 5.7. Lagrange'a

Niech  $f:[a,b] \to \mathbb{R}$  - ciągła i różniczkowalne na [a,b[, wtedy:

$$\exists_{\xi \in ]a,b[} : f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$
 (172)

# Dowód.

Bierzemy g = x w Tw. Cauchy'ego. Oczywiście g spełnia wszystkie założenia. Stąd:

$$\exists_{\xi \in [a,b]} : f(b) - f(a) = f'(\xi)(b - a). \tag{173}$$

Wystarczy podzielić teraz przez (b - a).

# 6 Rachunek całkowy

### 6.1 Całka Riemanna

W toku tego podrozdziału zajmować się będziemy jedynie funkcjami ograniczonymi na zwartych przedziałach - gdyż dla takich właśnie definiuje się całkę Riemanna.

# Definicja 6.1. Podział przedziału

**Podziałem** przedziału [a,b] o długości n nazywamy ciąg skończony  $\pi=(t_0,...,t_n)$ , t.ż.  $a=t_0 < t_1 < ... < t_n = b$ . Powiemy też, że  $\pi'=(t_0,...,t_n)$  jest drobniejszy niż  $\pi=(s_0,...,s_m)$  ( $\pi' \leq \pi$ ) jeśli  $\{t_0,...,t_n\} \subseteq \{s_0,...,s_m\}$ .

# Definicja 6.2. Suma górna i dolna

Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją ograniczoną. Wtedy definiujemy dla niej i pewnego podziału  $\pi$  przedziału [a,b]:

• Sume dolna:

$$\underline{S}(f,\pi) = \sum_{i=1}^{n} (t_i - t_{i-1}) \inf_{[t_i, t_{i-1}]} f$$
(174)

oraz Sumę górną:

$$\overline{S}(f,\pi) = \sum_{i=1}^{n} (t_i - t_{i-1}) \sup_{[t_i, t_{i-1}]} f$$
(175)

### Twierdzenie 6.1.

Ustalmy przedział [a, b].

1. Jeśli  $\pi_1 \leq \pi_2$  to:

$$\overline{S}(f, \pi_1) \leqslant \overline{S}(f, \pi_2) \tag{176}$$

oraz:

$$S(f, \pi_1) \geqslant S(f, \pi_2). \tag{177}$$

- 2. Dla każdych dwu podziałów  $\pi_1, \pi_2$  istnieje podział  $\pi'$  t.ż.  $\pi' \leq \pi_1, \pi_2$ .
- 3. Dla każdych dwu podziałów  $\pi_1$ ,  $\pi_2$ :

$$(b-a)\inf_{[a,b]} f \leq \underline{S}(f,\pi_1) \leq \overline{S}(f,\pi_2) \leq (b-a)\sup[b,a]f.$$
(178)

### Dowód.

• Jest to prosta konsekwencja faktu, że jeśli  $c \in [a, b]$  to:

$$(c-a)\sup_{[a,c]} f + (b-c)\sup_{[c,b]} f \leq (b-a)\sup_{[a,b]} f$$

i analogicznej własności dla inf.

• Za  $\pi'$  wystarczy wziąć sumę teoriomnogościową punktów z  $\pi_1$  i  $\pi_2$ .

• Stosujemy punkt 1. do  $\pi'$  drobniejszego od obu podziałów.

# Definicja 6.3. Całka dolna i górna

Całką dolną funkcji ograniczonej f na przedziale [a, b] nazywamy liczbę:

$$\int_{a}^{b} f = \sup_{\pi \le [a,b]} \underline{S}(f,\pi),\tag{179}$$

to jest supremum sum dolnych po wszyskich podziałach [a,b]. Analogicznie definiujemy całkę górną:

$$\int_{a}^{\overline{b}} f = \inf_{\pi \le [a,b]} \underline{S}(f,\pi). \tag{180}$$

# Definicja 6.4. Całkowalność w sensie Riemanna

Powiemy, że funkcja ograniczona f na przedziale [a,b] jest **całkowalna w sensie Riemanna**, jeśli jej całka dolna jest równa całce górnej. Ich wspólną wartość nazwiemy po prostu całką z f po przedziale [a,b]:

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \int_{a}^{b} f = \int_{a}^{\bar{b}} f.$$
 (181)

# Twierdzenie 6.2. Kryterium całkowalności

 $f:[a,b] \to \mathbb{R}$  jest całkowalna wtedy i tylko wtedy, gdy:

$$\forall_{\varepsilon>0} \exists_{\pi \leq [a,b]} : \overline{S}(f,\pi) - \underline{S}(f,\pi) \leqslant \varepsilon. \tag{182}$$

# Dowód.

← Jeśli spełniony jest warunek:

$$\forall_{\varepsilon>0} \exists_{\pi \leq [a,b]} : \overline{S}(f,\pi) - \underline{S}(f,\pi) \leq \varepsilon,$$

to skoro:

$$\underline{S}(f,\pi) \leqslant \int_a^b f \leqslant \int_a^{\overline{b}} f \leqslant Sg(f,\pi),$$

gdyż skoro: dla każdych  $\pi_1$ ,  $\pi_2$ :

$$\underline{S}(f, \pi_1) \leqslant S(f, \pi_2),$$

to na pewno:

$$\int_{a}^{b} f = \sup_{\pi_{1}} \underline{S}(f, \pi_{1}) \leq \inf_{\pi_{1}} S(f, \pi_{2}) = \int_{a}^{\bar{b}} f.$$
(183)

Dostajemy, więc:

$$\int_a^b f - \int_a^b f \leq Sg(f,\pi) - Sd(f,\pi) \leq \varepsilon \forall_{\varepsilon > 0}.$$

Jasne, że zachodzić to może tylko wtedy, gdy całka dolna jest równa całce górnej - f jest więc całkowalna.

 $\implies$  Mamy:  $\int_a^b f = \int_a^b f$ . Z deficji supremum i infimum wynika, że:

$$\exists_{\pi_1} : \overline{S}(f, \pi_1) - \int_a^{\overline{b}} f \leqslant \frac{1}{2} \varepsilon$$

oraz:

$$\exists_{\pi_2}: \int_a^b f - \underline{S}(f, \pi_2) \leqslant \frac{1}{2}\varepsilon.$$

Niech  $\pi \leq \pi_1, \pi_2$ . Dla tego podziału zachodzić będą oczywiście obie z tych nierówności  $(\overline{S}(f,\pi) \leqslant \overline{S}(f,\pi_1)$  i  $\underline{S}(f,\pi) \geqslant \underline{S}(f,\pi_2)$ ). Zatem, dodawszy je:

$$\overline{S}(f,\pi) - \int_a^b f + \int_a^b f - \underline{S}(f,\pi) = \overline{S}(f,\pi) - \underline{S}(f,\pi) \leqslant \varepsilon.$$

# Twierdzenie 6.3. Złożenie funkcji ciągłej z funkcją całkowalną jest całkowalne

Niech  $F : [a, b] \to \mathbb{R}$  będzie funkcją całkowalną (więc i ograniczoną). Niech  $F : \overline{f([a, b])} \to \mathbb{R}$  jest ciągła (dziedzina F to domknięcie obrazu f). Wtedy  $F \circ f : [a, b] \to \mathbb{R}$  jest całkowalna.

### Dowód.

Zbiór X = f([a,b]) jest domknięty i ograniczony w  $\mathbb{R}$ , więc jest zwarty. Zatem F, jako ciągła na zbiorze zwartym, jest jednostajnie ciągła:

$$\forall_{\varepsilon} \exists_{\delta_{\varepsilon} > 0} |s - t| \leqslant \varepsilon \implies |F(s) - F(t)| \leqslant \frac{\varepsilon}{b - a + 2\sup_{x} |F|} = \varepsilon'.$$

Wyrażenie po prawej ma sens, gdyż F jest ograniczona. Przyjmijmy w tym warunku, że  $\delta_{\varepsilon}$  <  $\varepsilon'$ , co zawsze możemy zrobić. Ponadto, skoro f - całkowalna, to:

$$\exists_{\pi} : \overline{S}(f,\pi) - \underline{S}(f,\pi) \leq \delta_{\varepsilon}^{2}.$$

Niech  $\pi=(t_0,...,t_n)$ . Ponadto niech  $\sup_{[t_{i-1},t_i]}f=M_i$ ,  $\inf_{[t_{i-1},t_i]}f=m_i$ ,  $\sup_{[t_{i-1},t_i]}F\circ f=M_i'$ ,  $\inf_{[t_{i-1},t_i]}F\circ f=m_i'$ . Z właności f i F wiemy, że są to wszystko liczby rzeczywiste. Zatem:

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) = \sum_{i=1}^{n} (M_i - m_i)(t_i - t_{i-1}).$$

Rozbijmy indeksy  $\{1,...,n\} = A \sqcup B$ , gdzie  $A = \{i \mid M_i - m_i \le \delta_{\varepsilon}\}$ ,  $B = \{i \mid M_i - m_i > \delta_{\varepsilon}\}$ . Zatem:

$$\overline{S}(F \circ f, \pi) - \underline{S}(F \circ f, \pi) = \sum_{i \in A} (M'_i - m'_i)(t_i - t_{i-1}) + \sum_{i \in B} (M'_i - m'_i)(t_i - t_{i-1})$$

Jeśli  $i \in A$  i  $x, y \in [t_{i-1}, t_i]$ , to  $m_i \le f(x), f(y) \le M_i$ , więc  $|f(x) - f(y)| \le M_i - m_i \le \delta_{\varepsilon}$ . Zatem z jednostajnej ciągłości  $F: |F(f(x)) - F(f(y))| \le \varepsilon'$ . W szczególności więc  $|M_i' - m_i'| \le \varepsilon$ , gdyż przy

przejściu do supremum i infimum nierówność się zachowuje. Tak więc:

$$\sum_{i \in A} (M'_i - m'_i)(t_i - t_{i-1}) \leqslant \sum_{i \in A} \varepsilon'(t_i - t_{i-1}) \leqslant \varepsilon'(b - a).$$

Co do drugiej sumy, mamy:

$$\delta_{\varepsilon} \sum_{i \in B} (t_i - t_{i-1}) < \sum_{i \in B} (M_i - m_i)(t_i - t_{i-1}) \le \sum_{i=1}^n (M_i - m_i)(t_i - t_{i-1}) = \overline{S}(f, \pi) - \underline{S}(f, \pi) \le \delta_{\varepsilon}^2.$$

Stąd:

$$\sum_{i \in B} (t_i - t_{i-1}) < \delta_{\varepsilon} \leqslant \varepsilon'$$

Zatem:

$$\sum_{i \in B} (M_i' - m_i')(t_i - t_{i-1}) \leq (\sup_X F - \inf_X F) \sum_{i \in B} (t_i - t_{i-1}) \leq 2 \sup_X |F| \varepsilon' < \infty,$$

bo *F* jest ograniczona. Ostatecznie:

$$\overline{S}(F\circ f,\pi) - \underline{S}(F\circ f,\pi) = \sum_{i\in A} (M_i' - m_i')(t_i - t_{i-1}) + \sum_{i\in B} (M_i' - m_i')(t_i - t_{i-1}) \leqslant \varepsilon'(b-a+2\sup_X |F|) = \varepsilon.$$

Konstrukcje przeprowadziliśmy dla dowolnego  $\varepsilon$ , zatem  $F \circ f$  spełnia kryterium całkowalności, więc jest całkowalna.

**Przykład** Zbadajmy funckję id :  $[a,b] \to \mathbb{R}$ , t.ż. id(x) = x. Jest to funkcja całkowalna na dowolnym przedziałe. Rzeczywiście, niech  $\pi = (a + \frac{1}{n}(b-a)|0 \le i \le n)$ . Wtedy  $\sup_{[t_i,t_{i-1}]} \mathrm{id} = (b-a)\frac{i}{n} + a$  i  $\inf_{[t_i,t_{i-1}]} \mathrm{id} = (b-a)\frac{i}{n} + a$ . Zatem:

$$\overline{S}(\mathrm{id},\pi) - \underline{S}(\mathrm{id},\pi) = \sum_{i=1}^{n} \left(\frac{b-a}{n}\right)^2 = \frac{(b-a)^2}{n}.$$
(184)

Wielkość tę można uczynić dowolnie małą dla dużych *n*, więc id spełnia kryterium całkowalności.

# Obserwacja 19. Funkcje ciągłe są całkowalne

Niech  $f:[a,b]\to\mathbb{R}$ . Wtedy f jest całkowalna jako złożenie funkcji ciągłej z funkcją całkowalną:  $f=f\circ \mathrm{id}$ .

### Twierdzenie 6.4. Liniowość całki

Niech  $f,g:[a,b]\to\mathbb{R}$  - całkowalne i  $\alpha,\beta\in\mathbb{R}$ . Wtedy  $\alpha f+\beta g:[a,b]\to\mathbb{R}$  jest całkowalna i:

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g. \tag{185}$$

Inaczej mówiąc - przestrzeń funkcji całkowalnych na [a,b] jest przestrzenią liniową, a wzięcie całki jest na tej przestrzenii formą liniową.

### Dowód.

**Jednorodność** Niech  $\alpha \in \mathbb{R}$  i f - całkowalna. Wtedy, gdy  $\alpha > 0$ :

$$\overline{S}(\alpha f, \pi) = \alpha \overline{S}(f, \pi)$$

oraz:

$$S(\alpha f, \pi) = \alpha S(f, \pi)$$

z jednorodności sup i inf dla skalarów dodatnich. Zatem, z całkowalności f:

$$\exists_{\pi} : \overline{S}(f,\pi) - \underline{S}(f,\pi) \leqslant \frac{\varepsilon}{\alpha} \implies \exists_{\pi} : \overline{S}(\alpha f,\pi) - \underline{S}(\alpha f,\pi) \leqslant \varepsilon, \tag{186}$$

czyli spełniony jest warunek całkowalności dla  $\alpha f$ .

Gdy  $\alpha = 0$ , to  $\alpha f := 0$ , a funckcja zerowa jest trywialnie całkowalna.

Gdy  $\alpha$  < 0 mamy:

$$\overline{S}(\alpha f, \pi) = \alpha \underline{S}(f, \pi)$$

oraz:

$$\underline{S}(\alpha f, \pi) = \alpha \overline{S}(f, \pi),$$

z tego, że  $\sup -f = -\inf f$  i vice versa. Dalej dowód przeprowadza się analogicznie.

**Addytywność** Z całkowalności f, g wynika, że dla dowolnego  $\varepsilon$ :

$$\exists_{\pi_1}: \overline{S}(f,\pi_1) - \underline{S}(f,\pi_1) \leqslant \frac{1}{2}\varepsilon$$

i podobnie:

$$\exists_{\pi_2} : \overline{S}(g, \pi_2) - \underline{S}(g, \pi_2) \leq \frac{1}{2}\varepsilon$$

Weźmy  $\pi = (t_0,...,t_n) \le \pi_1,\pi_2$ . Wtedy powyższe nierówności tym bardziej są spełnione dla podziału  $\pi$ :

$$\overline{S}(f,\pi) - S(f,\pi) + \overline{S}(g,\pi) - S(g,\pi) \leq \varepsilon.$$

Mamy też:

$$\overline{S}(f+g,\pi) = \sum_{i=1}^{n} \sup_{[t_{i},t_{i-1}]} (f+g) \leqslant \sum_{i=1}^{n} \sup_{[t_{i},t_{i-1}]} f + \sup_{[t_{i},t_{i-1}]} g = \overline{S}(f,\pi) + \overline{S}(g,\pi).$$

Identycznie:

$$\underline{S}(f+g,\pi) \geqslant \underline{S}(f,\pi) + \underline{S}(g,\pi).$$

Zatem:

$$\overline{S}(f+g,\pi) - \underline{S}(f+g,\pi) \leq \overline{S}(f,\pi) - \underline{S}(f,\pi) + \overline{S}(g,\pi) - \underline{S}(g,\pi) \leq \varepsilon.$$
 (187)

Widzimy więc, żę f + g spełnia kryterium całkowalności, więc jest całkowalna.

Z tego wynika, że  $\sup_{\pi} \underline{S}(f+g,\pi) = \inf_{\pi} \overline{S}(f+g,\pi) = \int_{a}^{b} (f+g)$ . Z całkowalności f,g wynika też, że dla dowolnego  $\varepsilon$ :

$$\exists_{\pi}: \overline{S}(f,\pi) \leqslant \int_{a}^{b} f + \frac{1}{2}\varepsilon \wedge \overline{S}(g,\pi) \leqslant \int_{a}^{b} g + \frac{1}{2}\varepsilon.$$

Tutaj podobnie wybieramy osobno podziały dla f i g a następnie znajdujemy podział drobniejszy od ich obu. Wtedy:

$$\int_a^b f + g \leq \overline{S}(f+g,\pi) \leq \overline{S}(f,\pi) + \overline{S}(g,\pi) \leq \int_a^b f + \int_a^b g + \varepsilon.$$

Skoro nierówność ta zachodzi dla wszystkich  $\varepsilon > 0$ , to musi też być:

$$\int_{a}^{b} f + g \leqslant \int_{a}^{b} f + \int_{a}^{b} g.$$

Zastosujmy teraz powyższą nierówność do pary (-f, -g) i skorzystajmy z jednorodności całki:

$$-\int_{a}^{b} f + g = \int_{a}^{b} -f - g \le \int_{a}^{b} -f + \int_{a}^{b} -g = -(\int_{a}^{b} f + \int_{a}^{b} g).$$
 (188)

Łącząc otrzymae nierówności, mamy:

$$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$$

# Koniec

# Spis treści

| 1 | Wstęp                                             | 2  |
|---|---------------------------------------------------|----|
|   | 1.1 Relacje                                       | 2  |
|   | 1.1 Relacje                                       | 3  |
| 2 | Ciagi rzeczywiste                                 | 6  |
|   | 2.1 Pojęcie ciągu i ogólne rezulataty             | 6  |
|   | 2.1 Pojęcie ciągu i ogólne rezulataty             | 9  |
| 3 | Szeregi liczbowe                                  | 13 |
|   | 3.1 Szeregi o wyrazach dodatnich                  | 14 |
|   | 3.2 Szeregi o wyrazach dowolnych                  | 19 |
| 4 | Przestrzenie metryczne                            | 26 |
|   | 4.1 Podstawowe definicje. Otwartość i domkniętość | 26 |
|   | 4.2 Przekształcenia ciągłe                        | 35 |
|   | 4.3 Zwartość                                      | 37 |
|   | 4.4 Spójność                                      | 45 |
| 5 | Rachunek różniczkowy                              | 47 |
| 6 | Rachunek całkowy                                  | 52 |
|   | 6.1 Całka Riemanna                                | 52 |