Departamento de Matemática Aplicada

IMECC - UNICAMP

Exame de Admissão 2009

Programa de Pós-Graduação em Matemática Aplicada

~	_	
Cládian	4.	<i>Identificação:</i>
\cup $\alpha\alpha\alpha\alpha\alpha$	ae	Taeniillcacao*
Coargo	αc	i acroof ocação.

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Questão 5	
Questão 6	
Questão 7	
Questão 8	
Questão 9	
Questão 10	
$T \ o \ t \ a \ l$	

Inicialmente, faça uma leitura com muita atenção do enunciado de todas as questões. Apresente a resolução de somente oito questões, entre as cinco questões de Álgebra Linear e as cinco questões de Cálculo Avançado. Todas as questões têm a mesma pontuação. A prova tem duração de quatro horas.

Boa Prova!

Álgebra Linear

Questão 1. Sejam $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, $b \in \mathbb{R}^m$, e $\overline{x} \in \mathbb{R}^n$ uma solução do sistema linear Ax = b, isto é, $A\overline{x} = b$.

- (a) Mostre que qualquer outra solução \widehat{x} do sistema linear Ax = b pode ser escrita como $\widehat{x} = \overline{x} + \widetilde{x}$, com \widetilde{x} solução do sistema linear homogêneo Ax = 0.
- (b) Mostre que qualquer elemento $\hat{x} = \overline{x} + \widetilde{x}$, com \widetilde{x} solução do sistema linear homogêneo Ax = 0, é também uma solução do sistema linear Ax = b.
- (c) Mostre que o sistema linear Ax = b possui uma única solução se, e somente se, o sistema linear homogêneo Ax = 0 possui somente a solução trivial.
- (d) Considerando m=5 e n=3, exiba um sistema linear Ax=b que possui infinitas soluções. Justifique sua escolha.

$\mathbf{Quest\~{ao}}$ 2. Sejam V um espaço vetorial real e

$$\gamma = \{v_1, v_2, v_3\}$$

uma base ordenada de V.

- (a) Mostre que $\beta = \{ v_1 + v_3, v_2 + v_3, v_1 + v_2 \}$ é uma base de V.
- (b) Determine a matriz, $[I]_{\gamma}^{\beta}$, de mudança da base ordenada β para a base ordenada γ .
- (c) Se o elemento $v \in V$ tem matriz de coordenadas $[v]_{\gamma}$ dada por:

$$[v]_{\gamma} = \begin{bmatrix} 5\\2\\1 \end{bmatrix} ,$$

determine a matriz de coordenadas do elemento v em relação à base ordenada β .

(d) Determine a matriz, $[I]^{\gamma}_{\beta}$, de mudança da base ordenada γ para a base ordenada β .

Questão 3. Considere o operador linear $T: \mathcal{P}_3(I\!\! R) \longrightarrow \mathcal{P}_3(I\!\! R)$ dado por:

$$T(p(x)) = p''(x) + xp'(x) - p(x)$$
 ; $x \in \mathbb{R}$.

- (a) Determine a matriz do operador linear T, $[T]^{\beta}_{\beta}$, onde β é a base canônica de $\mathcal{P}_{3}(\mathbb{R})$, isto é, $\beta = \{1, x, x^{2}, x^{3}\}$.
- (b) O operador linear T é injetor? Justifique sua resposta.
- (c) Determine os autovalores e os autovetores do operador linear T.
- (d) Diga qual é a multiplicidade algébrica e a multiplicidade geométrica de cada um dos autovalores do operador T. Justifique sua resposta.
- (e) O operador linear T é diagonalizável? Justifique sua resposta.

Questão 4. Considere o espaço vetorial real \mathbb{R}^n munido do produto interno usual, que denotamos por $\langle \cdot, \cdot \rangle$, e o elemento $u \in \mathbb{R}^n$ não—nulo. Definimos as aplicações P e Q de \mathbb{R}^n em \mathbb{R}^n da seguinte forma:

$$P(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$$
 e $Q(v) = v - 2P(v)$

para todo $v \in \mathbb{R}^n$.

- (a) Mostre que P e Q são operadores lineares sobre \mathbb{R}^n .
- (b) Mostre que P(w) = w, com $w = \alpha u$ para todo $\alpha \in \mathbb{R}$.
- (c) Mostre que $P(w) = 0_{\mathbb{R}^n}$ para $\langle u, w \rangle = 0$.
- (d) Mostre que Q(w) = -w, com $w = \alpha u$ para todo $\alpha \in \mathbb{R}$.
- (e) Mostre que Q(w) = w para $\langle u, w \rangle = 0$.
- (f) Dê uma interpretação geométrica para os operadores lineares $P \in Q$.

Questão 5. Determine explicitamente a expressão do operador linear T sobre \mathbb{R}^4 , diagonalizável, que satisfaz simultaneamente as seguintes condições:

1.
$$Ker(T) = \{ (x, y, z, t) \in \mathbb{R}^4 / x - y - z + t = 0 \text{ e } z - t = 0 \}.$$

- 2. Im(T) = [(1,0,0,0), (0,1,1,0)].
- 3. $\lambda = 2$ é um autovalor de T com multiplicidade algébrica igual a 2.

Determine uma base γ para o espaço vetorial \mathbb{R}^4 de modo que a matriz o operador linear T, $[T]^{\gamma}_{\gamma}$, seja uma matriz diagonal.

Cálculo Avançado

Questão 6. Considere a função $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ cuja regra funcional é dada por:

$$F(x,y) = x^2 + 2xy^2 - 4x + y^2.$$

- (a) Determine os pontos críticos da função F, fazendo a classificação.
- (b) Determine a equação da reta normal e a equação do plano tangente à superfície contida em \mathbb{R}^3 , dada pela equação F(x,y)-z=0 no ponto P=(1,2,9).
- (c) Determine os pontos de máximo e de mínimo da função F sobre o subconjunto $S \subset \mathbb{R}^2$ dado por:

$$S = \{ (x, y) \in \mathbb{R}^2 / y^2 - x = 0 \text{ para } x \in [0, 1] \},$$

apresentando graficamente suas localizações no plano numérico \mathbb{R}^2 , juntamente com o gráfico do subconjunto S.

(d) Dado um ponto genérico $(x,y) \in \mathbb{R}^2$, determine a direção $\vec{\eta}$ para a qual a função F tem a maior taxa de variação nesse ponto, em seguida, calcule o valor dessa taxa no ponto $(-1,1) \in \mathbb{R}^2$.

Questão 7. Considere o seguinte Problema de Valor Inicial

$$\begin{cases} \frac{dx(t)}{dt} = \theta x(t)(\sigma - x(t))(\mu - x(t))^2 \\ x(0) = x_0 \end{cases}$$

com os parâmetros θ , σ e μ estritamente positivos e o estado inicial x_0 não-negativo.

(a) Esboce o gráfico da função

$$F(x) = \theta x(\sigma - x)(\mu - x)^2,$$

para todo $x \ge 0$, e em seguida determine as soluções estacionárias (soluções de equilíbrio), classificando—as quanto à estabilidade.

(b) Esboce o gráfico da solução do Problema de Valor Inicial, considerando

(1)
$$\theta = 0.25$$
 , $\sigma = 1.0$, $\mu = 3.0$ e $x(0) = 2.0$

е

(2)
$$\theta = 0.25$$
 , $\sigma = 1.0$, $\mu = 3.0$ e $x(0) = 4.0$

no mesmo sistema de eixos coordenados.

Questão 8. Considere a sequência numérica $\{a_n\}_{n=1}^{\infty}$ definida por:

$$a_1 = 1$$
 e $a_{n+1} = a_n \left(2 - \frac{a_n}{2}\right)$ para $n = 1, 2, 3, \cdots$.

- (a) Mostre que $1 \le a_n \le 2$ para todo $n \in \mathbb{N}$.
- (b) Mostre que $a_{n+1} \ge a_n$.
- (c) Mostre que a seqüência numérica $\{a_n\}_{n=1}^{\infty}$ converge para o ponto $\overline{a}=2$.

Questão 9. Considere um domínio $\Omega \subset \mathbb{R}^2$. Determine a área da região $R \subset \Omega$ limitada pela curva Γ definida pela seguinte equação:

$$\frac{x^2}{4} + \frac{y^2}{9} = 1,$$

através do Teorema de Green

$$\oint_{\Gamma} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy,$$

onde as funções P e Q são contínuas em Ω , possuindo também derivadas parciais primeiras contínuas.

Questão 10. Considere a Equação Diferencial Ordinária de Segunda Ordem Não-Linear

$$-u''(x) = \exp(\lambda^2 u(x)) \quad \text{para} \quad x \in (0,1),$$
 (1)

com $\lambda \in \mathbb{R}$ não-nulo, sujeita a condição de contorno

$$u(0) = 0$$
 e $u(1) = 0$. (2)

- (a) Mostre que a solução u^* do Problema de Valor de Contorno (1)–(2) possui um único ponto crítico em [0,1]. Classifique esse ponto crítico.
- (b) Tomando o polinômio de Taylor de Primeira Ordem da função

$$F(u) = \exp(\lambda^2 u)$$

em torno ponto u=0, que vamos denotar por P(u), determine a solução do Problema de Valor de Contorno

$$\begin{cases}
-U''(x) &= P(U(x)) & \text{para} & x \in (0,1) \\
U(0) &= 0 & e & U(1) &= 0
\end{cases}$$

que é uma aproximação para a solução u^* do PVC (1)–(2).