Blok 1, 2020

Date: 2.09.2020

Test eksamen II

Ansvarlige: M. Bladt og S. Talebi

Opgave 1.

- (a) Betragt følgen $x_n = \alpha n^2 3^{-n}$ for $n \in \mathbb{N}$, hvor α er en konstant.
 - (i) Er følgen stabil? Forklar hvorfor.
 - (ii) Skriv en differenligning som har x_n som en generisk løsning.
- (b) Betragt differenligningen $5x_{n+2} 3x_{n+1} 2x_n = 0$.
 - (i) Find dens generiske løsning.
 - (ii) Find løsningen så at $x_0 = 1$ og $x_1 = -1$.
- (c) Antag at differentigningen i (b) er modificeret til $5x_{n+3} 3x_{n+1} 2x_n = 0$. Er denne differensligning stabil? Forklar hvorfor.

Opgave 2. For hver af nedenstående funktioner, foreslå en metode til udregning af y som undgår tab af præcision for små værdier af x

- (a) $y = \sqrt{e^x e^{-3x}}$ (Ignorer led som er $o(x^3)$.) (b) $y = \sqrt{1 + e^x} \sqrt{1 + e^{-2x}}$ (Ignorer led som er $o(x^3)$.) (c) $y = \sqrt{e^x e^{-x}} \sqrt{e^{2x} e^{-3x}}$ (Ignorer led som er $o(x^3)$.) (d) $y = \frac{1-x}{1+x} \frac{1}{2x+1}$ (Ignorer led som er $o(x^3)$.)
- (e) $y = \log(\sqrt{1+x^3} 1)$ (Ignorer led som er $o(x^4)$.)
- (f) $y = \log(e^x e^{-x}) \log(1 e^{-2x})$ (Ignorer led som er $o(x^3)$.)

Opgave 3. I denne opgave ønsker vi at beregne grundtallet for den naturlige logaritme, e, med 4 decimalers præcision. Problemet skal løses ved at opstille en ligning hvis løsning er e, og som derefter løses ved brug af Newton's metode. Der skal redegøres for detaljerne i udregningen såsom initialpunkt, iterationer, og begrundelse for stopkriteriet.

(Vink: brug at log(e) = 1 til at opstille en passende ligning)

Opgave 4. Vis, at man kan udregne den afledede f'(x) som

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h^2).$$

Bemærk, at for $h \downarrow 0$ bruges udelukkende punkter til højre for x. Denne formel kan bruges hvis der skal findes afledede i et randpunkt. (Vink: se på rækkeudviklingerne for f(x+2h)og f(x+h)

Opgave 5. Betragt punkterne (1,1), (2,0) og (3,0). Find det entydigt bestemte polynomium som interpolerer disse punkter på hhv. Lagrange form og Newon's form.

Opgave 6. Vi ønsker at udregne omkredsen *O* af en ellipse med radier 1 og 2, hvilket er givet ved formlen

$$O = 4 \int_0^{\pi/2} \sqrt{1 - \frac{3}{4} \sin^2(\theta)} d\theta.$$

- (a) Beregn *O* ved brug af Trapez formlen med $h = \pi/4$ og $h = \pi/8$.
- (b) Anvend Richardson ekstrapolation og angiv resultatet.
- (c) Estimer fejlen på O ved Trapezmetoden og $h = \pi/8$.

Vink: Det kan uden bevis anvendes, at hvis $f(\theta) = \sqrt{1 - \frac{3}{4}\sin^2(\theta)}$ så er f''(x) voksende i hele $[0, \pi/2]$ med f''(0) = -3/4 og $f''(\pi/2) = 1.5$. Desuden kan følgende værdier af f bruges: