

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB201T- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

UNIT - I Partial Differential Equations Tutorial Sheet - 1

		i utoriai Sneet - 1	
	Sl. No. Questions		Answer
Part - A			
1	Form the PDE $\sqrt{1}$	$p^2+q^2+1=z^2$	
2	Find the different having their centr	$(p^2 + q^2 + 1)x^2 = c^2p^2$	
3	Eliminate the arbitrary function 'f' from $z = f\left(\frac{xy}{z}\right)$		px-qy=0
4	Eliminate the arbitrary function 'f' from $z = f(x^2 + y^2 + z^2)$		py - qx = 0
5	Solve the equation $pq + p + q = 0$		$z = ax - \frac{a}{a+1}y + c$
6	Solve the equation $p^2 + q^2 = m^2$		$z = ax + \sqrt{m^2 - a^2} y + c$
Part - B			
7	Form the PDE by eliminating 'f' from $f(x^2 + y^2 + z^2, ax + by + cz) = 0$		(cy - bz)p + (az - cx)q = b - ay
8	Form the PDE by eliminating 'f' and 'g' from $z = xf(\frac{y}{x}) + yg(x)$		$xys + y^2t = px + qy - z$
9	If $z = f(x^2 + y)$	$+g(x^2-y)$, show that $r-\frac{p}{x}-4x^2t=0$	
10		by eliminating 'f' and 'g' from $z = f(2x + y) + g(3x - y)$	r+s-6t=0
11	Form the PDE by $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	veliminating arbitrary constants 'a', 'b' and 'c' from	$xzr + xp^2 = zp$