Inside the RNN: update equations

An RNN layer, at time step t

- ullet Takes input element ${f x}_{(t)}$
- Updates latent state $\mathbf{h}_{(t)}$
- ullet Optionally outputs $\mathbf{y}_{(t)}$

according to the equations

$$egin{array}{lll} \mathbf{h}_{(t)} &=& \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)} + \mathbf{b}_h) \ \mathbf{y}_{(t)} &=& \mathbf{W}_{hy}\mathbf{h}_{(t)} + \mathbf{b}_y \end{array}$$

where

- ϕ is an activation function (usually tanh)
- $oldsymbol{ ext{W}}$ are the weights of the RNN layer
 - lacksquare partitioned into $\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy}$
 - \mathbf{W}_{xh} : weights that update $\mathbf{h}_{(t)}$ based on $\mathbf{x}_{(t)}$
 - $lackbox{f W}_{hh}$: weights that update $f h_{(t)}$ based on $f h_{(t-1)}$
 - $lackbox{ } lackbox{ } lac$

Notes

- The RNN literature uses ϕ rather than $a_{(l)}$ to denote an activation function
- This is the update equation for a single example $\mathbf{x^{(i)}}$
- In practice, we can simultaneously update for multiple examples
 - ullet The $m^\prime < m$ examples in a minibatch, as examples are independent
- ullet So if we are counting weights/parameters: it is m^\prime times bigger

Let's try to understand these equations

$$\mathbf{h}_{(t)} = \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)} + \mathbf{b}_h)$$

 $\mathbf{h}_{(t)}$ is the latent state after time step t

- ullet It is a *vector* of length $||\mathbf{h}||$
- We drop the time subscript as the dimension on each step is the same

 $\mathbf{W}_{xh}\mathbf{x}_{(t)}$ must therefore also be a vector of length $||\mathbf{h}||$

- $||\mathbf{W}_{xh}||$ is a matrix of shape $(||\mathbf{h}|| \times ||\mathbf{x}||)$
- $m{\cdot}$ h_j , the j^{th} element of latent state $m{h}$ is the dot product of row j of $m{W}_{xh}$ and $m{x}$
- ullet So $\mathbf{W}_{xh}^{(j)}$ describes how input $\mathbf{x}_{(t)}$ influences new state $h_{(t),j}$

That is: there are separate weights for each j that describe the interaction of $\mathbf h$ and $\mathbf x$

Similarly, $\mathbf{W}_{hh}\mathbf{h}_{(t-1)}$ must be a *vector* of length $||\mathbf{h}||$

- $||\mathbf{W}_{hh}||$ is a matrix of shape $(||\mathbf{h}|| \times ||\mathbf{h}||)$ So $\mathbf{W}_{hh}^{(j)}$ describes how prior state $\mathbf{h}_{(t-1)}$ influences new state $h_{(t),j}$

 \mathbf{b}_h , the bias/threshold must also be a vector of length $||\mathbf{h}||$

- It adjusts the threshold of activtin fucntion ϕ
- As per our practice: we will usually fold ${f b}$ into the weight matrices ${f W}_{xh}, {f W}_{hh}$

Finally, activation ϕ maps a vector of length $||\mathbf{h}||$ to another vector of length $||\mathbf{h}||$

• The updated state

So updates latent state $\mathbf{h}_{(t)}$ is influenced

- ullet By the input ${f x}_{(t)}$
- ullet The prior latent state ${f h}_{(t-1)}$

The second equation

$$\mathbf{y}_{(t)} = \mathbf{W}_{hy}\mathbf{h}_{(t)} + \mathbf{b}_y$$

is just a "translation" of the latent state $\mathbf{h}_{(t)}$

- ullet To $\mathbf{y}_{(t)}$, the t^{th} element of the output sequence
- $||\mathbf{W}_{hy}||$ is a matrix of shape $(||\mathbf{y}|| \times ||\mathbf{h}||)$
 - ullet $||\mathbf{y}||$ is the length of each output element and is problem dependent
 - For example: a OHE

It is common to equate $\mathbf{y}_{(t)} = \mathbf{h}_{(t)}$

- No separate "output"
- Just the latent state
- Particularly when using stacked RNN layers
 - ullet $\mathbf{y}_{(t)}$ becomes the input to the next layer

Equation in pseudo-matrix form

You will often see a short-hand form of the equation.

Look at $\mathbf{h}_{(t)}$ as a function of two inputs $\mathbf{x}, \mathbf{h}_{(t-1)}$.

We can stack the two inputs into a single matrix.

Stack the two matrices $\mathbf{W}_{xh}, \mathbf{W}_{hh}$ into a single weight matrix

$$egin{aligned} \mathbf{h}_{(t)} &= \mathbf{W}\mathbf{I} + \mathbf{b} \ & ext{with} \ \mathbf{W} &= \left[egin{aligned} \mathbf{W}_{xh} & \mathbf{W}_{hh}
ight] \ \mathbf{I} &= \left[egin{aligned} \mathbf{x}_{(t)} \ \mathbf{h}_{(t-1)}
ight] \end{aligned}$$

Stacked RNN layers revisited

With the benefit of the RNN update equations, we can clarify how stack RNN layers works.

Let superscript [l] denote a stacked layer of RNN.

So the RNN update equation for the bottom layer 1 becomes

$$egin{array}{ll} \mathbf{h}_{(t)}^{[1]} &=& \phi(\mathbf{W}_{xh}\mathbf{x}_{(t)}+\mathbf{W}_{hh}\mathbf{h}_{(t-1)}^{[1]}+\mathbf{b}_h) \end{array}$$

The RNN update equation for leyer [l] becomes

$$egin{array}{ll} \mathbf{h}_{(t)}^{[l]} &=& \phi(\mathbf{W}_{xh}\mathbf{h}_{(t)}^{[l-1]} + \mathbf{W}_{hh}\mathbf{h}_{(t-1)}^{[l]} + \mathbf{b}_h) \end{array}$$

That is: the input to layer [l] is $\mathbf{h}_{(t)}^{[l-1]}$ rather than $\mathbf{x}_{(t)}$

Loss function

As usual, the objective of training is to find the weights ${f W}$ that minimize a loss function

$$\mathcal{L} = L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

which is the average of per example losses $\mathcal{L}^{(i)}$

$$\mathcal{L} = rac{1}{m} \sum_{i=1}^m \mathcal{L^{(i)}}$$

When the output is a sequence

- It's important to recognize that the *target* is a sequence too!
- So the per example loss has an added temporal dimension
- Loss per example per time step
- Comparing the *predicted* t^{th} output $\hat{y}_{(t)}^{(i)}$ to the t^{th} target $\mathbf{y}_{(t)}^{(i)}$

In the case that the API outputs sequences

•
$$\mathcal{L}^{(\mathbf{i})} = \sum_{t=1}^T \mathcal{L}^{(\mathbf{i})}_{(t)}$$

In the case that the API outputs a single value

$$ullet \, \mathcal{L}^{(\mathbf{i})} = \mathcal{L}_{(T)}$$


```
In [2]: print("Done")
```

Done