

Plotting directly using pandas

Daniel Chen Instructor

Plotting in Python

- Quickly show data patterns
- Plotting methods in Python:
 - Pandas
 - Seaborn
 - Matplotlib

Pandas plot method

- plot() method
- Works on the pandas DataFrame and Series objects
- Pass plot the kind argument
- kind of plots:
 - 'line': line plot (default)
 - 'bar' : vertical bar plot
 - 'barh' : horizontal bar plot

- 'hist': histogram
- 'box' : boxplot
- 'kde' : Kernel Density

 Estimation plot
- 'density': same as 'kde'
- 'area' : area plot
- 'pie' : pie plot
- 'scatter' : scatter plot
- 'hexbin' : hexbin plot

Univariate: Histogram

```
In [4]: import matplotlib.pyplot as plt
In [5]: iris['sepal_length'].plot(kind='hist')
    ...: plt.show()
    ...:
```


Univariate: Bar plot

```
In [6]: cts = iris['species'].value_counts()
    ...: cts.plot(kind='bar')
    ...: plt.show()
    ...:
```


Bivariate: Scatter plot

```
In [8]: iris.plot(kind='scatter', x='Sepal.Length', y='Sepal.Width')
...: plt.show()
```


Bivariate: Boxplots

```
In [7]: iris.plot(kind='box')
...: plt.show()
...:
```


Bivariate: Boxplots

```
In [10]: iris.boxplot(by='Species', column='Sepal.Length')
...: plt.show()
...:
```


Let's practice!

Seaborn

Daniel Chen Instructor

Seaborn

- barplots: barplot
- histograms: displot
- boxplot: boxplot
- scatter plot:regplot
- Seaborn benefits
 - colored points by data
 - facet plots by data

Seaborn histograms

Seaborn count plot

```
In [12]: sns.countplot('species', data=iris)
    ...: plt.show()
```


Seaborn boxplots

```
In [14]: sns.boxplot(x='species', y='sepal_length', data=iris)
    ...: plt.show()
    ...:
```


Seaborn scatterplots

```
In [15]: sns.regplot(x='sepal_length', y='sepal_width', data=iris)
    ...: plt.show()
    ...:
```


Seaborn scatterplots w/out regression line

Seaborn Facets

Seaborn FacetGrid

```
In [21]: g = sns.FacetGrid(iris, col="species")
    ...: g = g.map(plt.hist, "sepal_length")
    ...: plt.show()
```


Let's practice!

Matplotlib

Daniel Chen Instructor

Matplotlib plots

```
In [12]: import matplotlib.pyplot as plt
    ...: plt.hist(iris['sepal_length'])
    ...: plt.show()
```


Matplotlib scatter

```
In [13]: plt.scatter(iris['sepal_length'], iris['sepal_width'])
    ...: plt.show()
```


Polishing up the figure

```
In [7]: fig, ax = plt.subplots()
    ...: ax.scatter(iris['sepal_length'], iris['sepal_width'])
    ...: ax.set_title('Sepal Length')
    ...: ax.set_xlabel('Sepal Length')
    ...: ax.set_ylabel('Sepal Width')
    ...: plt.show()
```


Rotating axis ticks

```
In [6]: fig, ax = plt.subplots()
    ...: ax.scatter(iris['sepal_length'], iris['sepal_width'])
    ...: ax.set_title('Sepal Length')
    ...: ax.set_xlabel('Sepal Length')
    ...: ax.set_ylabel('Sepal Width')
    ...: plt.xticks(rotation=45) # rotate the x-axis ticks
    ...: plt.show()
```


Parts of a matplotlib figure

Parts of a matplotlib figure 2

Figures and axes

```
In [11]: fig, ax = plt.subplots()
    ...: ax.scatter(iris['sepal_length'], iris['sepal_width'])
    ...: plt.show()
```


Multiple Axes'

```
In [9]: fig, (ax1, ax2) = plt.subplots(1, 2)
...: ax1.scatter(iris['sepal_length'], iris['sepal_width'])
...: ax2.hist(iris['sepal_length'])
...: plt.show()
```


Remember

Clearing the Figure

Let's practice!