

Statistical Signal Processing

Lecture 5

chapter 1: parameter estimation: deterministic parameters

- some optimality properties
- Maximum Likelihood estimation, examples
- Fischer Information Matrix
- Cramer-Rao lower bound on the MSE, example
- linear model
- asymptotic (large sample) properties
- recap: estimator properties and estimators
- simplified estimators: BLUE, (W)LS, method of moments

Asymptotic (Large Sample) Properties

- asymptotic: $n \to \infty$
- asymptotically unbiased: $\lim_{n\to\infty} b_n(\theta) = 0$, $\forall \theta \in \Theta$
- Example (mean and variance of Gaussian i.i.d. variables):

$$E[\widehat{\sigma^2}_{ML}|\mu,\sigma^2] = \frac{n-1}{n}\sigma^2$$

$$b_n = \frac{n-1}{n}\sigma^2 - \sigma^2 = -\frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

 $\widehat{\sigma^2}_{ML}$: biased but asymptotically unbiased

- consistency: convergence of (a series of random vectors:) $\widehat{\theta}_n \to \theta$
 - convergence in probability
 - mean square convergence
 - convergence with probability one
 - convergence in distribution

Consistency

the sequence of estimates $\widehat{\theta}(Y_n)$ is said to be

• *simply* or *weakly consistent* if

$$\lim_{n \to \infty} \Pr_{Y_n \mid \theta} \left\{ \|\widehat{\theta}(Y_n) - \theta\| < \epsilon \right\} = 1, \quad \forall \epsilon > 0, \ \forall \theta \in \Theta$$

• mean-square consistent if

$$\lim_{n \to \infty} \mathbf{MSE}_n = \lim_{n \to \infty} E_{Y_n|\theta} \|\widehat{\theta}(Y_n) - \theta\|^2 = 0, \ \forall \theta \in \Theta$$

• strongly consistent if

$$\Pr_{Y_{\infty}\mid\theta}\{\lim_{n\to\infty}\widehat{\theta}(Y_n)=\theta\}=1, \ \forall\theta\in\Theta$$

• Any of these 3 consistencies implies asymptotic unbiasedness. E.g. for mean-square:

$$\underbrace{E_{Y_n|\theta}||\widehat{\theta}(Y_n) - \theta||^2}_{\mathbf{MSE}} = ||\underbrace{E_{Y_n|\theta}\widehat{\theta}(Y_n) - \theta}_{\mathbf{bias}}||^2 + \underbrace{E_{Y_n|\theta}||\widehat{\theta}(Y_n) - E_{Y_n|\theta}\widehat{\theta}||^2}_{\mathbf{variance}} \to 0$$

$$\Rightarrow \lim_{n \to \infty} E_{Y_n|\theta}\widehat{\theta}(Y_n) = \theta$$

Consistency (2)

- Strong and mean-square consistency do not imply each other in general. Either implies weak consistency (e.g. use the Chebyshev inequality to show that meansquare consistency implies weak consistency), but not conversely. Except when Θ is bounded: then weak consistency implies mean-square consistency.
- example: i.i.d. $y_i \sim \mathcal{N}(\mu, \sigma^2)$, $\theta = \mu$, σ^2 known. $\widehat{\mu}_{ML} = \overline{y}$ $Var(\widehat{\mu}_{ML}) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$ mean-square consistent
- example: i.i.d. $y_i \sim U[\theta \frac{1}{2}, \theta + \frac{1}{2}], \ \widehat{\theta}_{ML} = \frac{y_{min} + y_{max}}{2}$ $\begin{cases} y_{min} \to \theta - \frac{1}{2} & \text{in probability} \\ y_{max} \to \theta + \frac{1}{2} & \text{in probability} \end{cases}$ weak consistency $\widehat{\theta}_{ML} \rightarrow \theta$ in probability

mean-square consistency can also be shown

Asymptotic Normality

- if $\widehat{\theta}_n$ consistent, then $\widetilde{\theta} \to 0$ in some sense
- introduce a magnifying glass: $d_n(\widehat{\theta}_n \theta)$ where $0 < d_{n-1} \le d_n \to \infty$
- convergence in distribution: weaker than the 3 forms of convergence of sequences of random vectors mentioned before
- if $d_n(\widehat{\theta}_n \theta) \stackrel{in \, dist}{\longrightarrow} \xi$, some random vector, then the distribution of ξ useful as a measure for the limiting behavior of $\widehat{\theta}_n$
- usually $d_n = \sqrt{n}$
- $\widehat{\theta}_n$ consistent asymptotically normal (CAN): if $\widehat{\theta}_n$ simply consistent and $d_n(\widehat{\theta}_n \theta) \stackrel{in \, dist}{\longrightarrow} \mathcal{N}(0, \Xi(\theta))$ CAN implies asympt. unbiased (which requires that bias $\longrightarrow 0$ faster than $\frac{1}{d_n}$), Ξ = asymptotic normalized covariance of $\widehat{\theta}_n$. We say that $\widehat{\theta}_n = \theta + \mathcal{O}_p(\frac{1}{d_n})$
- distinguish $\Xi(\theta)$ from $V(\theta) = \lim_{n \to \infty} d_n^2 C_{\widetilde{\theta}\widetilde{\theta}}(\theta)$ which may not even exist for a CAN estimate (if $\widehat{\theta}_n$ is simply but not mean-square consistent). $V(\theta)$ exists for a mean-square consistent $\widehat{\theta}_n$, but is not necessarily $= \Xi(\theta)$.
- Hence CAN can be used to formulate *interval estimators* on the basis of *point estimators*.

Asymptotic Optimality of ML

- asymptotic normalized information matrix : $J_0(\theta) = \lim_{n \to \infty} \frac{1}{d_n^2} J_n(\theta)$ if it exists $(J_0(\theta)) = \text{asymptotic average information per data sample } y_n \text{ if } d_n = \sqrt{n})$
- best asymptotically normal (BAN): CAN and $\Xi(\theta) = J_0^{-1}(\theta)$ also called asymptotically efficient
- under some regularity conditions (maximum of the likelihood function unique, y_i given θ i.i.d.,...) the ML estimate is strongly consistent and BAN with $d_n = \sqrt{n}$ (\Rightarrow another use of the CRB). In particular, the ML estimate is
 - asymptotically unbiased
 - asymptotically efficient (i.i.d.: $J_n = nJ_1 \implies J_0 = J_1$)
 - asymptotically normal
- example: i.i.d. $y_i \sim \mathcal{N}(\mu, \sigma^2)$, $\theta = \mu$, σ^2 known. $\widehat{\mu}_{ML} = \overline{y}$

$$\widehat{\mu}_{ML} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}) \longrightarrow \sqrt{n}(\widehat{\mu}_{ML} - \mu) \sim \mathcal{N}(0, \sigma^2), \ J_n = \frac{n}{\sigma^2} \Rightarrow J_0^{-1} = \sigma^2 = \Xi(\theta)$$

Recap: Properties of Estimators $\widehat{\theta}(Y)$

small sample (finite n):

- bias: $b_{\hat{\theta}}(\theta) = E_{Y|\theta} \widehat{\theta}(Y) \theta \quad (=0, \forall \theta \in \Theta : \text{unbiased})$
- error correlation: $R_{\tilde{\theta}\tilde{\theta}} = E_{Y|\theta} \left(\widehat{\theta}(Y) \theta \right) \left(\widehat{\theta}(Y) \theta \right)^T$

Cramer-Rao Bound : $\widehat{\theta}$ unbiased: $R_{\widetilde{\theta}\widetilde{\theta}} = C_{\widetilde{\theta}\widetilde{\theta}} = C_{\widehat{\theta}\widehat{\theta}}$

$$C_{\tilde{\theta}\tilde{\theta}} \geq J^{-1}(\theta) \ \ , \quad J(\theta) = -E_{Y|\theta} \frac{\partial}{\partial \theta} \left(\frac{\partial \ln f(Y|\theta)}{\partial \theta} \right)^T \quad \text{information matrix}$$

efficient: $C_{\widetilde{\theta}\widetilde{\theta}}=J^{-1}(\theta)\;,\;\forall \theta\in\Theta\quad\Rightarrow\quad\widehat{\theta}(Y)\;\text{is UMVUE}$ large sample $(n\to\infty)$:

- asymptotically unbiased: $\lim_{n\to\infty} b_{\widehat{\theta}}(\theta) = 0, \ \forall \theta \in \Theta$
- consistency (weak, in mean square, strong): \Rightarrow asymptotically unbiased
- *asymptotic normality*:

Recap: Estimation Techniques

- *Uniformly Minimum Variance Unbiased Estimator* (UMVUE): complicated (via "sufficient statistics")
- Maximum likelihood (ML): $\widehat{\theta}_{ML} = \arg \max_{\theta} f(Y|\theta)$ Qualities:

$$\Diamond$$
 if \exists efficient $\widehat{\theta} = \widehat{\theta}_{eff}$ and $\widehat{\theta}_{ML}$ is obtained from $\frac{\partial \ln f(Y|\theta)}{\partial \theta} = 0$
 $\Rightarrow \widehat{\theta}_{eff} = \widehat{\theta}_{ML} = \widehat{\theta}_{UMVUE}$
 $\Diamond \widehat{\theta}_{ML} = \text{BAN}$

Problems:

- \diamondsuit what if $f(Y|\theta)$ is unknown?
- \diamondsuit if $f(Y|\theta)$ is not concave (local maxima)
- simplified estimators:
 - \diamond Best Linear Unbiased Estimator (BLUE) \rightarrow linear model
 - ♦ *Method of Moments*
 - \Diamond Least-Squares (LS) \rightarrow linear model

Best Linear Unbiased Estimator (BLUE)

- deterministic analog of LMMSE in the Bayesian case
- linear: $\widehat{\theta}(Y) = FY \quad (F: m \times n)$
- unbiased: $E_{Y|\theta}\widehat{\theta} = F E(Y|\theta) = \theta$
- best = minimum variance: $\min C_{\tilde{\theta}\tilde{\theta}}$
- remarks:
 - BLUE inferior to UMVUE unless UMVUE is linear
 - generalizations: X = g(Y) : $\widehat{\theta}(Y) = FX = Fg(Y)$ (linear in X) e.g.: linear in Y inappropriate if $\theta \neq 0$ and $E(Y|\theta) = 0$

Example of X = g(Y)

- $y_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d., $\theta = \sigma^2, Y = \begin{vmatrix} y_1 \\ \vdots \\ y_n \end{vmatrix}$
- linear: $\widehat{\sigma^2} = FY \implies E_{Y|\sigma^2}\widehat{\sigma^2} = FE(Y|\sigma^2) = 0 \neq \sigma^2$ no linear unbiased estimator $\widehat{\sigma}^2$ exists
- however, let $x_i = y_i^2$, $X = \begin{bmatrix} y_1^2 \\ \vdots \\ y_r^2 \end{bmatrix}$
- $\bullet \widehat{\sigma^2} = FX \implies E_{Y|\sigma^2}\widehat{\sigma^2} = FE(X|\sigma^2) = \sigma^2 F \mathbf{1} = \sigma^2 \implies F \mathbf{1} = 1$
- for this problem: $\widehat{\sigma}_{UMVUE}^2 = \frac{1}{n} \mathbf{1}^T X = \widehat{\sigma}_{BLUE}^2$ $(F = \frac{1}{n} \mathbf{1}^T)$

BLUE Assumptions

- unbiased: $FE(Y|\theta) = \theta$, $\forall \theta \in \Theta$ unbiasedness and the requirement that a large class of linear unbiased estimators (many F satisfying $FE(Y|\theta) = \theta$) should exist naturally lead to:
- assumption 1: $E(Y|\theta) = H\theta$, $(H: n \times m)$ unbiasedness $\rightarrow FH = I_m \ (\Rightarrow n \ge m)$
- variance:

$$\begin{split} C_{\tilde{\theta}\tilde{\theta}} &= C_{\hat{\theta}\hat{\theta}} = E_{Y|\theta} \left(\widehat{\theta} - E_{Y|\theta} \widehat{\theta} \right) \left(\widehat{\theta} - E_{Y|\theta} \widehat{\theta} \right)^T \\ &= E_{Y|\theta} \left(F \, Y - F \, E \left(Y | \theta \right) \right) \left(F \, Y - F \, E \left(Y | \theta \right) \right)^T \\ &= F \, E_{Y|\theta} \left(Y - E \left(Y | \theta \right) \right) \left(Y - E \left(Y | \theta \right) \right)^T F^T = F \, C_{YY}(\theta) \, F^T \end{split}$$

• assumption 2: $C_{YY}(\theta) = c(\theta) C$ $c(\theta) \ (> 0, \forall \theta)$ is a scalar function of $\theta, C > 0$ is constant w.r.t. θ

BLUE Optimization Problem

- $\bullet \min_{\widehat{\theta}: E_{Y|\theta}\widehat{\theta}(Y) = \theta} C_{\widetilde{\theta}\widetilde{\theta}} \quad \to \quad \min_{F: FH = I} F C F^T$
- introduce matrix square root $B(n \times n)$ of $C = C^T > 0$ $(n \times n)$: $C = BB^T$ notation: $B = C^{1/2}$, $C^{T/2} = (C^{1/2})^T$, $C = C^{1/2}C^{T/2}$, $C^{-1} = C^{-T/2}C^{-1/2}$
- Consider a vector space of $m \times n$ matrices with matrix inner product $\langle X_1, X_2 \rangle = X_1 X_2^T$. Take $X_1 = H^T C^{-T/2}$, $X_2 = F C^{1/2}$. With FH = I:

$$\left\langle \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \right\rangle = \begin{bmatrix} H^T C^{-T/2} \\ F C^{1/2} \end{bmatrix} \begin{bmatrix} H^T C^{-T/2} \\ F C^{1/2} \end{bmatrix}^T = \begin{bmatrix} H^T C^{-1} H & I \\ I & F C F^T \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \ge 0$$

- From the Schur Complements Lemma, $R_{22} \geq R_{21}R_{11}^{-1}R_{12}$ with equality iff $X_2 = R_{21}R_{11}^{-1}X_1$.
- Hence $\min_{F:FH=I} FCF^T = (H^TC^{-1}H)^{-1}$ for $F = (H^TC^{-1}H)^{-1}H^TC^{-1}$.
- Or $\widehat{\theta}_{BLUE} = (H^T C^{-1} H)^{-1} H^T C^{-1} Y = (H^T C_{YY}^{-1} H)^{-1} H^T C_{YY}^{-1} Y$ with $C_{\widetilde{\theta}\widetilde{\theta}} = F C_{YY} F^T = c(\theta) F C F^T = c(\theta) (H^T C^{-1} H)^{-1} = (H^T C_{YY}^{-1} H)^{-1}$

BLUE: Example Cont'd and Recap

Example Cont'd:

- $y_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d., $\theta = \sigma^2$, $x_i = y_i^2$, $\widehat{\sigma^2} = FX$
- BLUE assumptions OK: $E(X|\sigma^2) = \mathbf{1} \sigma^2 = H \theta$, $C_{XX} = 2\sigma^4 I = c(\theta) C$

$$\bullet \widehat{\sigma^2}_{BLUE} = \left(H^T C^{-1} H\right)^{-1} H^T C^{-1} X = \frac{1}{n} \mathbf{1}^T X$$

$$C_{\widehat{\sigma^2 \sigma^2}}(\sigma^2) = \left(H^T C_{XX}^{-1} H\right)^{-1} = \frac{2\sigma^4}{n}$$

• note: this example is not a linear model!

Recap: BLUE assumptions:

$$\bullet \begin{cases} (1) \ E(Y|\theta) = H \theta \\ (2) \ C_{YY}(\theta) = c(\theta) C \end{cases}$$

Only need to know the first two moments of $f(Y|\theta)$ which need to satisfy these assumptions. The higher-order moments of $f(Y|\theta)$: don't need to know, can be arbitrary functions of θ . So the problem should more or less look like a linear model problem, up to the second-order moments.

BLUE: Linear Model

- $Y = H \theta + V$, EV = 0, $EVV^T = C_{VV}$ (EV and C_{VV} independent of θ , only first two moments of V specified)
- BLUE assumptions satisfied:

$$\begin{cases} E(Y|\theta) = H \theta \\ C_{YY}(\theta) = E_{Y|\theta} (Y - E(Y|\theta)) (Y - E(Y|\theta))^T = E_V V V^T = C_{VV} = C (c(\theta) = 1) \end{cases}$$

- $\widehat{\theta}_{BLUE} = \left(H^T C_{VV}^{-1} H\right)^{-1} H^T C_{VV}^{-1} Y$ with $C_{\widetilde{\theta}\widetilde{\theta}} = \left(H^T C_{VV}^{-1} H\right)^{-1}$
- If $V \sim \mathcal{N}(0, C_{VV})$ then $\widehat{\theta}_{BLUE} = \widehat{\theta}_{ML} = \text{efficient} \implies = \widehat{\theta}_{UMVUE}$

Method of Moments

Principle:

- m unknown parameters $\theta = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix}$
- $f(Y|\theta)$ depends on $\theta \Rightarrow$ its moments also
- $\bullet \text{ take } m \text{ moments } \mu = g(\theta) = \begin{bmatrix} g_1(\theta) \\ \vdots \\ g_m(\theta) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_m \end{bmatrix}$

such that g(.) is invertible, i.e. $\theta = g^{-1}(\mu)$: can determine θ from μ .

- estimate the moments: $\hat{\mu}$ (e.g. sample moments)
- method of moments: $\widehat{\theta}_{MM} = g^{-1}(\widehat{\mu})$

Method of Moments: Example 1

• $y_i, i = 1, \ldots, n$ i.i.d., $f(y|\theta)$ mixture distribution, θ mixture parameter

$$f(y|\theta) = (1-\theta)\phi_1(y) + \theta\phi_2(y)$$
, $\phi_k(y) = \frac{1}{\sqrt{2\pi\sigma_k^2}}e^{-\frac{y^2}{2\sigma_k^2}}, k = 1, 2$

$$\bullet \ \mu = E\left(y^2|\theta\right) = (1-\theta) \ \sigma_1^2 + \theta \ \sigma_2^2 = g(\theta) \ \Rightarrow \ \theta = g^{-1}(\mu) = \frac{\mu - \sigma_1^2}{\sigma_2^2 - \sigma_1^2}$$

$$\bullet \ \widehat{\theta}_{MM} = g^{-1}(\widehat{\mu}) = \frac{\widehat{\mu} - \sigma_1^2}{\sigma_2^2 - \sigma_1^2} \ , \quad \widehat{\mu} = \frac{1}{n} \sum_{i=1}^n y_i^2 \quad \text{sample mean squared value}$$

• bias:
$$E\widehat{\theta} = \frac{1}{\sigma_2^2 - \sigma_1^2} E\widehat{\mu} - \frac{\sigma_1^2}{\sigma_2^2 - \sigma_1^2} = \frac{1}{\sigma_2^2 - \sigma_1^2} \mu - \frac{\sigma_1^2}{\sigma_2^2 - \sigma_1^2} = \theta$$
: unbiased

Method of Moments: Example 1 (cont'd)

$$\begin{split} Var\left(\widehat{\theta}\right) &= Var\left(\frac{1}{\sigma_{2}^{2} - \sigma_{1}^{2}}\widehat{\mu} - \frac{\sigma_{1}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}}\right) = \frac{1}{\left(\sigma_{2}^{2} - \sigma_{1}^{2}\right)^{2}}Var\left(\widehat{\mu}\right) = \frac{1}{\left(\sigma_{2}^{2} - \sigma_{1}^{2}\right)^{2}}Var\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}^{2}\right) \\ &= \frac{1}{\left(\sigma_{2}^{2} - \sigma_{1}^{2}\right)^{2}}\sum_{i=1}^{n}Var\left(\frac{1}{n}y_{i}^{2}\right) = \frac{1}{\left(\sigma_{2}^{2} - \sigma_{1}^{2}\right)^{2}}\sum_{i=1}^{n}\frac{1}{n^{2}}Var\left(y_{i}^{2}\right) = \frac{1}{\left(\sigma_{2}^{2} - \sigma_{1}^{2}\right)^{2}}\frac{1}{n}Var\left(y^{2}\right) \end{split}$$

$$f(y|\theta) = (1-\theta)\phi_1(y) + \theta\phi_2(y)$$
• $Var(y^2) = Ey^4 - (Ey^2)^2$,
$$Ey^2 = (1-\theta)\sigma_1^2 + \theta\sigma_2^2$$

$$Ey^4 = (1-\theta)3\sigma_1^4 + \theta 3\sigma_2^4$$

MM Example 2: Sinusoid in White Noise

• $y_k = s_k + v_k = A \cos(\omega k + \phi) + v_k$, k = 1, ..., n

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, S = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}, V = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \theta = \begin{bmatrix} A \\ \omega \\ \sigma_v^2 \end{bmatrix}, \Theta : A > 0, \omega \in [0, \pi], \sigma_v^2 > 0$$

- distributions: $\phi \sim \mathcal{U}[0, 2\pi]$ independent of θ, V ; EV = 0, $EVV^T = \sigma_n^2 I_n$ randomness: $f(Y,\phi|\theta) = f(\phi|\theta) f(Y|\theta,\phi) = f(\phi) f_{\mathbf{V}|\sigma_v^2}(Y - S(A,\omega,\phi)|\sigma_v^2)$ in what follows: only first and second moments of V needed
- mean: $E_{Y,\phi|\theta} y_k = AE\cos(\omega k + \phi) + Ev_k = 0$ covariance sequence:

$$r_{yy}(i) = Ey_k y_{k+i} = A^2 E \cos(\omega k + \phi) \cos(\omega k + \phi + \omega i)$$

$$+ AE \cos(\omega k + \phi) Ev_{k+i} + AE \cos(\omega k + \phi + \omega i) Ev_k + Ev_k v_{k+i}$$

$$= \frac{A^2}{2} E \cos(2\omega k + 2\phi + \omega i) + \frac{A^2}{2} E \cos(\omega i) + \sigma_v^2 \delta_{i0}$$

$$= \frac{A^2}{2} \cos(\omega i) + \sigma_v^2 \delta_{i0}$$

MM Example 2: Sinusoid in White Noise (2)

• moments:
$$\mu = \begin{bmatrix} r_{yy}(0) \\ r_{yy}(1) \\ r_{yy}(2) \end{bmatrix} = \begin{bmatrix} \frac{A^2}{2} + \sigma_v^2 \\ \frac{A^2}{2} \cos(\omega) \\ \frac{A^2}{2} \cos(2\omega) \end{bmatrix} = g(\theta)$$

$$\omega = \begin{cases}
\arccos\left(\frac{r_{yy}(2) + \sqrt{r_{yy}^{2}(2) + 8r_{yy}^{2}(1)}}{4r_{yy}(1)}\right), r_{yy}(1) \neq 0 \\
\frac{\pi}{2}, r_{yy}(1) = 0
\end{cases}$$

$$A = \begin{cases}
\sqrt{\frac{2r_{yy}(1)}{\cos(\omega)}}, r_{yy}(1) \neq 0 \\
\sqrt{-2r_{yy}(2)}, r_{yy}(1) = 0
\end{cases}$$

$$\sigma_{v}^{2} = r_{yy}(0) - \frac{A^{2}}{2}$$

• sample moments $\widehat{\mu}$: $\widehat{r}_{yy}(i) = \frac{1}{n} \sum_{k=1}^{n-i} y_k y_{k+i}$, i = 0, 1, 2

Method of Moments: Properties

- $\hat{\mu}$ easy to compute, $\hat{\theta}_{MM}=g^{-1}(\hat{\mu})$ straightforward if μ chosen well, hence $\hat{\theta}_{MM}$ easy to determine and easy to implement
- no optimality properties but usually consistent (since $\hat{\mu}$ consistent)
- if performance of $\widehat{\theta}_{MM}$ not satisfactory, can use $\widehat{\theta}_{MM}$ as initialization in an iterative optimization procedure that finds $\widehat{\theta}_{ML}$