w2_assessment

August 29, 2021

1 Week 2 Python Assessment

This Jupyter Notebook is auxiliary to the following assessment in this week. To complete this assessment, you will complete the 7 questions outlined in this document and use the output from your python cells as answers.

Your goal of this assignment is to construct regression and logistics models and interpret model paramters.

Run the following cell to initialize your environment and begin the assessment.

```
In [2]: #### RUN THIS
    import warnings
    warnings.filterwarnings('ignore')
    import numpy as np
    import statsmodels.api as sm
    import pandas as pd
    from sklearn.datasets import load_boston
    boston_dataset = load_boston()
    boston = pd.DataFrame(data=boston_dataset.data, columns=boston_dataset.feature_names)
    boston["MEDV"] = boston_dataset.target
    url = "nhanes_2015_2016.csv"
    NHANES = pd.read_csv(url)
    vars = ["BPXSY1", "RIDAGEYR", "RIAGENDR", "RIDRETH1", "DMDEDUC2", "BMXBMI", "SMQ020"]
    NHANES = NHANES[vars].dropna()
    NHANES["smq"] = NHANES.SMQ020.replace({2: 0, 7: np.nan, 9: np.nan})
    NHANES["RIAGENDRx"] = NHANES.RIAGENDR.replace({1: "Male", 2: "Female"})
    NHANES["DMDEDUC2x"] = NHANES.DMDEDUC2.replace({1: "lt9", 2: "x9_11", 3: "HS", 4: "Some
    np.random.seed(123)
```

Now that your notebook is ready, begin answering the questions below.

1.0.1 Questions 1-3

The first three questions will be utilizing the Boston housing dataset seen in week 1. Here is the description for each column:

- **CRIM:** Per capita crime rate by town
- **ZN:** Proportion of residential land zoned for lots over 25,000 sq. ft
- INDUS: Proportion of non-retail business acres per town
- **CHAS:** Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX: Nitric oxide concentration (parts per 10 million)
- RM: Average number of rooms per dwelling
- AGE: Proportion of owner-occupied units built prior to 1940
- DIS: Weighted distances to five Boston employment centers
- RAD: Index of accessibility to radial highways
- **TAX:** Full-value property tax rate per \$10,000
- PTRATIO: Pupil-teacher ratio by town
- **B:** 1000(*Bk*0.63)², where Bk is the proportion of [people of African American descent] by town
- LSTAT: Percentage of lower status of the population
- MEDV: Median value of owner-occupied homes in \$1000s

Uncomment and run the following code to generate a simple linear regression and output the model summary:

```
In [3]: model = sm.OLS.from_formula("MEDV ~ RM + CRIM", data=boston)
result = model.fit()
result.summary()
```

Out[3]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.541
Model:	OLS	Adj. R-squared:	0.539
Method:	Least Squares	F-statistic:	295.9
Date:	Tue, 30 Mar 2021	Prob (F-statistic):	1.15e-85
Time:	16:59:37	Log-Likelihood:	-1643.5
No. Observations:	506	AIC:	3293.
Df Residuals:	503	BIC:	3306.
Df Model:	2		
Covariance Type:	nonrobust		

========	========	========	=========	========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-29.3017	2.592	-11.303	0.000	-34.395	-24.208
RM	8.3975	0.406	20.706	0.000	7.601	9.194
CRIM	-0.2618	0.033	-7.899	0.000	-0.327	-0.197
Omnibus:		170.	471 Durbii	n-Watson:		0.805

Kurtosis:	9.479	Cond. No.	92.2
Skew:	1.331	Prob(JB):	2.34e-225
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1034.461

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly speci:

Utilizing the above output, answer the following three questions:

Question 1 (You'll answer this question within the quiz that follows this notebook) What is the value of the coefficient for predictor **RM**?

Question 2 (You'll answer this question within the quiz that follows this notebook) Are the predictors for this model statistically significant, yes or no? (Hint: What are their p-values?) Run the following code for question 3:

```
In [4]: ## For Question 3
model = sm.OLS.from_formula("MEDV ~ RM + CRIM + LSTAT", data=boston)
result = model.fit()
result.summary()
```

Out[4]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	=======================================		
Dep. Variable:	MEDV	R-squared:	0.646
Model:	OLS	Adj. R-squared:	0.644
Method:	Least Squares	F-statistic:	304.9
Date:	Tue, 30 Mar 2021	Prob (F-statistic):	1.19e-112
Time:	17:00:55	Log-Likelihood:	-1577.8
No. Observations:	506	AIC:	3164.
Df Residuals:	502	BIC:	3180.
Df Model:	3		
Covariance Type:	nonrobust		
	=======================================		

	-jpo.	110111 01				
	coef	std err	t	P> t	[0.025	0.975]
Intercept RM CRIM	-2.4978 5.2092 -0.1011	3.165 0.442 0.032	-0.789 11.785 -3.162	0.430 0.000 0.002	-8.717 4.341 -0.164	3.721 6.078 -0.038
LSTAT	-0.5804	0.048	-12.201 	0.002	-0.674 =======	-0.487
Omnibus: Prob(Omnibu Skew:	ıs):			n-Watson: e-Bera (JB): JB):		0.822 623.248 4.61e-136

7.492 Cond. No.

216.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specimum

Question 3 (You'll answer this question within the quiz that follows this notebook) What happened to our R-Squared value when we added the third predictor **LSTAT** to our initial model?

Question 4 (You'll answer this question within the quiz that follows this notebook) What type of model should we use when our target outcome, or dependent variable is continuous?

1.0.2 **Questions 5-6**

The next two questions will involve the NHANES dataset.

Uncomment and run the following code to generate a logistics regression and output the model summary:

```
In [5]: model = sm.GLM.from_formula("smq ~ RIAGENDRx + RIDAGEYR + DMDEDUC2x", family=sm.familion
result = model.fit()
result.summary()
```

Out[5]: <class 'statsmodels.iolib.summary.Summary'>

Generalized Linear Model Regression Results

===========			=========
Dep. Variable:	smq	No. Observations:	5093
Model:	GLM	Df Residuals:	5086
Model Family:	Binomial	Df Model:	6
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-3201.2
Date:	Tue, 30 Mar 2021	Deviance:	6402.4
Time:	17:01:23	Pearson chi2:	5.10e+03
No. Iterations:	4	Covariance Type:	nonrobust

	coef	std err	z	P> z	[0.025
Intercept	-2.3060	0.114	-20.174	0.000	-2.530
RIAGENDRx[T.Male]	0.9096	0.060	15.118	0.000	0.792
DMDEDUC2x[T.HS]	0.9434	0.090	10.521	0.000	0.768
DMDEDUC2x[T.SomeCollege]	0.8322	0.084	9.865	0.000	0.667
DMDEDUC2x[T.1t9]	0.2662	0.109	2.438	0.015	0.052
DMDEDUC2x[T.x9_11]	1.0986	0.107	10.296	0.000	0.889
RIDAGEYR	0.0183	0.002	10.582	0.000	0.015

11 11 11

Question 5 (You'll answer this question within the quiz that follows this notebook) Which of our predictors has the largest coefficient?

Question 6 (You'll answer this question within the quiz that follows this notebook) Which values for DMDEDUC2x and RIAGENDRx are represented in our intercept, or what is our reference level?

Question 7 (You'll answer this question within the quiz that follows this notebook) What model should we use when our target outcome, or dependent variable is binary, or only has two outputs, 0 and 1.