លំខាង់នី៩

គេមានអនុគមន៍ f មួយកំណត់ដោយ $y=f(x)=rac{x^2-4x+3}{x^2-3x+2}$ មានក្រាបតំណាង(C)។

- **ក**. ចូររកដែនកំណត់នៃអនុគមន៍f។
- ${f 2}.$ គណនា $\lim_{{
 m x} o 2} {
 m f}({
 m x}); \; \lim_{{
 m x} o \pm \infty} {
 m f}({
 m x})$ ។ រួចទាញរកសមីការអាស៊ីមតូតទាំងអស់ដែលមាន។
- **គ**. សិក្សាអថិរភាព និងសង់តារាងអថិរភាពនៃអនុគមន៍f។
- $\mathfrak{W}.$ ចូរសង់ក្រាប(C) ក្នុងតម្រុយ $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ ។

ដំណោះស្រួយ

ក. រកដែនកំណត់នៃអនុគមន៍f

យើងមាន
$$y = f(x) = \frac{x^2 - 4x + 3}{x^2 - 3x + 2} = \frac{(x - 1)(x - 3)}{(x - 1)(x - 2)} = \frac{x - 3}{x - 2}$$

f(x) មានន័យលុះត្រាតែ $x-2 \neq 0 \Leftrightarrow x \neq 2$

ដូចនេះ
$$oxed{\mathrm{D_f} = \mathbb{R} - \{2\}}$$

ខ. គណនា $\lim_{x\to 2} f(x)$; $\lim_{x\to \pm \infty} f(x)$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} = \pm \infty$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 - \frac{4}{x} + \frac{3}{x^2}\right)}{x^2 \left(1 - \frac{3}{x} + \frac{2}{x^2}\right)} = 1$$

ទាញរកសមីការអាស៊ីមតូតទាំងអស់ដែលមាន

ដោយ
$$\lim_{x\to 2} f(x) = \pm \infty$$

ដូចនេះ បន្ទាត់
$$\mathbf{x}=2$$
 ជាអាស៊ីមតូតឈរនៃក្រាប (\mathbf{C})

ដោយ
$$\lim_{x \to \pm \infty} f(x) = 1$$
 ដូចនេះ បន្ទាត់ $y = 1$ ជាអាស៊ីមតូតដេកនៃក្រាប (C)

ត. សិក្សាអថិរភាព និងសង់តារាងអថិរភាពនៃអនុគមន៍f ដេរីវេ

$$\begin{split} f'(x) &= \left(\frac{x-3}{x-2}\right)' = \frac{(x-3)'(x-2)-(x-2)'(x-3)}{(x-2)^2} \\ &= \frac{1}{(x-2)^2} > 0 \quad \forall x \in D_f \end{split}$$

តារាងសញ្ញា f'(x)

X	$-\infty$		2		+∞
f'(x)		+		+	

• f'(x)>0 ពេល $x\in (-\infty,2)\cup (2,+\infty)$ \Rightarrow អនុគមន៍ f កើន ពេល $x\in (-\infty,2)\cup (2,+\infty)$

តារាងអថេរភាពនៃ f

X	-∞ 2	2 +∞
f'(x)	+	+
f(x)	+∞ 1	1

 ${\mathfrak W}$. សង់ក្រាប $({
m C})$ ក្នុងតម្រុយ $\left({
m O},\overrightarrow{i},\overrightarrow{j}
ight)$

$$(C) \cap (x'ox) \Leftrightarrow y = 0 \Leftrightarrow x-3 = 0$$

 $\Rightarrow x = 3$

(C)
$$\cap$$
 (y'oy) \Leftrightarrow x = 0 \Rightarrow y = $\frac{0^2 - 4(0) + 3}{0^2 - 3(0) + 2} = \frac{3}{2}$

