

FINITE FIELDS, PERMUTATION POLYNOMIALS. COMPUTATIONAL ASPECTS WITH APPLICATIONS TO PUBLIC KEY CRYPTOGRAPHY

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Workshop on Industrial Mathematics

March 1, 2004

Private key versus Public Key

Private key versus Public Key

Private key versus Public Key

1 (1976) Diffie Hellmann Key exchange protocol

1

Classical General Examples of PKC

1 (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)

- 1 (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)
- 2 (1983) Massey Omura Cryptosystem

- 1 (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)
- 2 (1983) Massey Omura Cryptosystem Proc. 4th Benelux Symposium on Information Theory (1983)

- 1 (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)
- 2 (1983) Massey Omura Cryptosystem Proc. 4th Benelux Symposium on Information Theory (1983)
- 3 (1984) ElGamal Cryptosystem

- 1 (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)
- 2 (1983) Massey Omura Cryptosystem Proc. 4th Benelux Symposium on Information Theory (1983)
- 3 (1984) ElGamal Cryptosystem IEEE Trans. Information Theory IT-31 (1985)

- 1 (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)
- 2 (1983) Massey Omura Cryptosystem Proc. 4th Benelux Symposium on Information Theory (1983)
- 3 (1984) ElGamal Cryptosystem IEEE Trans. Information Theory IT-31 (1985)

6

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- 2
- 8
- 4
- 6

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret a,
- 8
- 4
- 6

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret $a, 0 \le a \le p-1$
- 8
- 4
- 6

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret $a, 0 \le a \le p-1$
- **3** Bob picks a secret $b, 0 \le b \le p-1$
- 4
- 6

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret $a, 0 \le a \le p-1$
- **3** Bob picks a secret b, $0 \le b \le p-1$
- 4 They compute and publish $g^a \mod p$ (Alice) and $g^b \mod p$ (Bob)
- 6

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret $a, 0 \le a \le p-1$
- **3** Bob picks a secret b, $0 \le b \le p-1$
- 4 They compute and publish $g^a \mod p$ (Alice) and $g^b \mod p$ (Bob)
- **5** The common secret key is $g^{ab} \mod p$

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret $a, 0 \le a \le p-1$
- **3** Bob picks a secret $b, 0 \le b \le p-1$
- **4** They compute and publish $g^a \mod p$ (Alice) and $g^b \mod p$ (Bob)
- **5** The common secret key is $g^{ab} \mod p$

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Alice picks a secret $a, 0 \le a \le p-1$
- **3** Bob picks a secret b, $0 \le b \le p-1$
- 4 They compute and publish $g^a \mod p$ (Alice) and $g^b \mod p$ (Bob)
- **5** The common secret key is $g^{ab} \mod p$

what is a generator of $\mathbb{Z}/p\mathbb{Z}$?

A generator (or primitive root) g of a prime number p is a number

B

B

B

A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$

B

B

B

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct,

B

B

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct, i.e., a permutation of 1 through p-1

B

B

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct, i.e., a permutation of 1 through p-1
- In other words: for all $b \in \mathbb{Z}/p\mathbb{Z}, b \neq 0$,

B

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct, i.e., a permutation of 1 through p-1
- In other words: for all $b \in \mathbb{Z}/p\mathbb{Z}, b \neq 0$, there exists an exponent $i \in \{0, 1, \dots, p-1\}$ such that $b = g^i \mod p$

B

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct, i.e., a permutation of 1 through p-1
- In other words: for all $b \in \mathbb{Z}/p\mathbb{Z}, b \neq 0$, there exists an exponent $i \in \{0, 1, \dots, p-1\}$ such that $b = g^i \mod p$
- Given $b \in \mathbb{Z}$, exponent i above is

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct, i.e., a permutation of 1 through p-1
- In other words: for all $b \in \mathbb{Z}/p\mathbb{Z}, b \neq 0$, there exists an exponent $i \in \{0, 1, \dots, p-1\}$ such that $b = g^i \mod p$
- Given $b \in \mathbb{Z}$, exponent i above is the discrete logarithm of b for base $g \mod p$

- A generator (or primitive root) g of a prime number p is a number whose powers mod p, generate $1, \ldots, p-1$
- So $g \mod p$, $g^2 \mod p$,..., $g^{p-1} \mod p$ are all distinct, i.e., a permutation of 1 through p-1
- In other words: for all $b \in \mathbb{Z}/p\mathbb{Z}, b \neq 0$, there exists an exponent $i \in \{0, 1, \dots, p-1\}$ such that $b = g^i \mod p$
- Given $b \in \mathbb{Z}$, exponent i above is the discrete logarithm of b for base $g \mod p$
- Computing discrete logs appears infeasible in general

B

B

Eve knows g^a , g^b but would like to compute g^{ab} ;

B

- **Eve** knows g^a , g^b but would like to compute g^{ab} ;
- **Eve** could compute a discrete logarithm to find a and then $(g^b)^a$

- **Eve** knows g^a , g^b but would like to compute g^{ab} ;
- **Eve** could compute a discrete logarithm to find a and then $(g^b)^a$
- for given α, g, p , **Eve** should solve:

- **Eve** knows g^a , g^b but would like to compute g^{ab} ;
- **Eve** could compute a discrete logarithm to find a and then $(g^b)^a$
- for given α, g, p , **Eve** should solve:

$$g^X \equiv \alpha \bmod p$$

1

Diffie-Hellmann key exchange 5/5

A "criptographically meaningful size" example:

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

g = 5

 $a = 230884090203989538822791747965302672267956566803890984719811170401834881423535241039556153839\\ 50300790706016512170324186640960442741350790022942149093292104570603304669117473786798985\\ 00024210343154844771162635809902530822$

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

- $a = 230884090203989538822791747965302672267956566803890984719811170401834881423535241039556153839\\ 50300790706016512170324186640960442741350790022942149093292104570603304669117473786798985\\ 00024210343154844771162635809902530822$
- $b = 202628627712040976052737350793757540205242681192017941068774728007392912193775762330719406560\\04093331116419046740605076855604279856790686813698840332610088778267557488150882421959663\\70518057438047030854128879946541952289$

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

- $a = 230884090203989538822791747965302672267956566803890984719811170401834881423535241039556153839\\ 50300790706016512170324186640960442741350790022942149093292104570603304669117473786798985\\ 00024210343154844771162635809902530822$
- $b = 202628627712040976052737350793757540205242681192017941068774728007392912193775762330719406560 \\ 04093331116419046740605076855604279856790686813698840332610088778267557488150882421959663 \\ 70518057438047030854128879946541952289$
- $5^a = 249451424107893262892484442575689156622349940771024747733612460962310329209496530481469732410 \\ 95957576012477323952872295620523253758143768040422343030840568653423985771858393578141665 \\ 18479146351026737882783508710913577680$

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

- $a = 230884090203989538822791747965302672267956566803890984719811170401834881423535241039556153839\\ 50300790706016512170324186640960442741350790022942149093292104570603304669117473786798985\\ 00024210343154844771162635809902530822$
- $b = 202628627712040976052737350793757540205242681192017941068774728007392912193775762330719406560\\04093331116419046740605076855604279856790686813698840332610088778267557488150882421959663\\70518057438047030854128879946541952289$
- $5^a = 249451424107893262892484442575689156622349940771024747733612460962310329209496530481469732410\\95957576012477323952872295620523253758143768040422343030840568653423985771858393578141665\\18479146351026737882783508710913577680$
- $5^b = 287293760357523957032946092556813694596882586743260552838382768832192594422702357607546631218\\ 64001485395789301444617793223201594706097398360331195161213836214741498824201098331045762\\ 16804562648795943563091024975401008295$

A "criptographically meaningful size" example:

 $p = 370273307460967425842481081357528298315386585184169353328410050632472746552261503118421027658\\ 721711241508544733578984012456938357678209461867245573821426204444288523552318347549870943602\\ 1902398769259658537444365842890327$

- $a = 230884090203989538822791747965302672267956566803890984719811170401834881423535241039556153839\\ 50300790706016512170324186640960442741350790022942149093292104570603304669117473786798985\\ 00024210343154844771162635809902530822$
- $b = 202628627712040976052737350793757540205242681192017941068774728007392912193775762330719406560 \\ 04093331116419046740605076855604279856790686813698840332610088778267557488150882421959663 \\ 70518057438047030854128879946541952289$
- $5^a = 249451424107893262892484442575689156622349940771024747733612460962310329209496530481469732410\\95957576012477323952872295620523253758143768040422343030840568653423985771858393578141665\\18479146351026737882783508710913577680$
- $5^b = 287293760357523957032946092556813694596882586743260552838382768832192594422702357607546631218\\ 64001485395789301444617793223201594706097398360331195161213836214741498824201098331045762\\ 16804562648795943563091024975401008295$
- $5^{ab} = 36674172125349300306071275329964633749875664216293811088694156172838197865927916343627669411 \\ 4396823489217444401038685650925971812733853762885262933444987558589066268362684366645128712 \\ 2395082920958736911545732951584464496$

Some classical algorithms:

Ø¥.

Some classical algorithms:

S)

Some classical algorithms:

Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).

- Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).
- ∀ Pohlig-Hellmann Algorithm

- Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).

- Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).

- Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).
- Pohlig−Hellmann Algorithm
 IEEE Trans. Information Theory IT-24 (1978).
- Sieving algorithms

- Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).

- Sieving algorithms
 La Macchia & Odlyzko, Designs Codes and Cryptography 1 (1991)

Some classical algorithms:

- Shanks baby-step, giant step
 Proc. 2nd Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).

- Sieving algorithms
 La Macchia & Odlyzko, Designs Codes and Cryptography 1 (1991)

NOTE: The last two are "very special" for $\mathbb{Z}/p\mathbb{Z}$


```
p = \lfloor 10^{89}\pi \rfloor + 156137
= 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619
g = 2,
```



```
p = \lfloor 10^{89}\pi \rfloor + 156137
= 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619
g = 2,
y = \lfloor 10^{89}e \rfloor
= 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217
```



```
\begin{array}{lll} p & = & \lfloor 10^{89}\pi \rfloor + 156137 \\ & = & 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619 \\ & g = 2, \\ \\ y & = & \lfloor 10^{89}e \rfloor \\ & = & 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 \\ \end{array}
```

$$2^X \equiv y \bmod p$$

A. Joux et R. Lercier, 1998.

```
\begin{array}{lll} p & = & \lfloor 10^{89}\pi \rfloor + 156137 \\ & = & 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619, \\ & g = 2, \\ \\ y & = & \lfloor 10^{89}e \rfloor \\ & = & 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 \end{array}
```

$$2^X \equiv y \bmod p$$

 $y = g^{1767138072114216962732048234071620272302057952449914157493844716677918658538374188101093},$

A. Joux et R. Lercier, 1998.

```
p = \lfloor 10^{89}\pi \rfloor + 156137
= 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619
g = 2,
y = \lfloor 10^{89}e \rfloor
= 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217
```

$$2^X \equiv y \bmod p$$

 $y = g^{1767138072114216962732048234071620272302057952449914157493844716677918658538374188101093},$ $y + 1 = g^{31160419870582697488207880919786823820449120001421617617058468654271221802926927230033421}.$

A. Joux et R. Lercier, 1998.

```
\begin{array}{lll} p & = & \lfloor 10^{89}\pi \rfloor + 156137 \\ & = & 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619 \\ & g = 2, \\ \\ y & = & \lfloor 10^{89}e \rfloor \\ & = & 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 \\ \end{array}
```

$$2^X \equiv y \bmod p$$

 $y = g^{1767138072114216962732048234071620272302057952449914157493844716677918658538374188101093},$ $y + 1 = g^{31160419870582697488207880919786823820449120001421617617058468654271221802926927230033421},$ $y + 2 = g^{308988329335044525333827764914501407237168034577534227927033783999866774252739278678837301},$

A. Joux et R. Lercier, 1998.

```
p = \lfloor 10^{89}\pi \rfloor + 156137
= 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619
g = 2,
y = \lfloor 10^{89}e \rfloor
= 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217
```

$$2^X \equiv y \bmod p$$

 $y = g^{1767138072114216962732048234071620272302057952449914157493844716677918658538374188101093},$ $y + 1 = g^{31160419870582697488207880919786823820449120001421617617058468654271221802926927230033421},$ $y + 2 = g^{308988329335044525333827764914501407237168034577534227927033783999866774252739278678837301},$ $y + 3 = g^{65806888002788380103712986883663253187183505405451188935055113209887949364255134815297846},$

A. Joux et R. Lercier, 1998.

```
p = \lfloor 10^{89}\pi \rfloor + 156137
= 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619,
g = 2,
y = \lfloor 10^{89}e \rfloor
= 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217
```

$$2^X \equiv y \bmod p$$

 $\begin{aligned} y &= g^{1767138072114216962732048234071620272302057952449914157493844716677918658538374188101093}, \\ y &+ 1 &= g^{31160419870582697488207880919786823820449120001421617617058468654271221802926927230033421}, \\ y &+ 2 &= g^{308988329335044525333827764914501407237168034577534227927033783999866774252739278678837301}, \\ y &+ 3 &= g^{65806888002788380103712986883663253187183505405451188935055113209887949364255134815297846}, \\ y &+ 4 &= g^{40696010882128699199753165934604918894868490454360617887844587935353795462185105078977093} \end{aligned}$

A. Joux et R. Lercier, 1998.

```
\begin{array}{lll} p & = & \lfloor 10^{89}\pi \rfloor + 156137 \\ & = & 314159265358979323846264338327950288419716939937510582097494459230781640628620899862959619, \\ g & = & 2, \\ y & = & \lfloor 10^{89}e \rfloor \\ & = & 271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 \end{array}
```

$$2^X \equiv y \bmod p$$

 $y = g^{1767138072114216962732048234071620272302057952449914157493844716677918658538374188101093},$ $y + 1 = g^{31160419870582697488207880919786823820449120001421617617058468654271221802926927230033421},$ $y + 2 = g^{308988329335044525333827764914501407237168034577534227927033783999866774252739278678837301},$ $y + 3 = g^{65806888002788380103712986883663253187183505405451188935055113209887949364255134815297846},$ $y + 4 = g^{40696010882128699199753165934604918894868490454360617887844587935353795462185105078977093}$

It took 4.5 months... on a Pentium PRO 180 MHz

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

1

2

3

Università Roma Tre

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

① 1999 $p \cong 10^{100}$

2

3

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server

2

3

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{
m months};$

2

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

- ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
- ② $2001 p \cong 10^{110}$

- A. Joux et R. Lercier (CNRS / Ecole Polytechnique)
 - ① 1999 $p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server -8.5 months;
 - 2 $2001~p \cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400

- A. Joux et R. Lercier (CNRS / Ecole Polytechnique)
 - ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
 - 2 2001 $p\cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 20 days;

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

- ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
- 2 $2001~p \cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 $20~{\rm days};$
- 3 2001 $p \cong 10^{120}$;

- A. Joux et R. Lercier (CNRS / Ecole Polytechnique)
 - ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
 - 2 $2001~p \cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 $20~\mathrm{days};$
 - 3 2001 $p \cong 10^{120}$; (Current Record!)

- A. Joux et R. Lercier (CNRS / Ecole Polytechnique)
 - ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
 - 2 $2001~p \cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 $20~\mathrm{days};$
 - ③ 2001 $p \cong 10^{120}$; (Current Record!) 2.5 months

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

- ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
- 2 $2001~p \cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 $20~{\rm days};$
- 3 2001 $p \cong 10^{120}$; (Current Record!) 2.5 months

$$p = \lfloor 10^{119}\pi \rfloor + 207819, g = 2$$

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

- ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{\rm months};$
- 2 $2001~p \cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 $20~{\rm days};$
- 3 2001 $p \cong 10^{120}$; (Current Record!) 2.5 months

$$p = \lfloor 10^{119}\pi \rfloor + 207819, g = 2$$

 $y = \lfloor 10^{119} \rfloor$

A. Joux et R. Lercier (CNRS / Ecole Polytechnique)

- ① $1999~p\cong 10^{100}$ 500MHz quadri-processors Dec Alpha Server $-8.5~{
 m months};$
- 2 $2001~p\cong 10^{110}$ 525MHz quadri-processors Digital Alpha Server 8400 $20~{\rm days};$
- 3 2001 $p \cong 10^{120}$; (Current Record!) 2.5 months

$$p = \lfloor 10^{119}\pi \rfloor + 207819, g = 2$$

$$y = \lfloor 10^{119} \rfloor$$

 $262112280685811387636008622038191827370390768520656974243035 \\ y = g 380382193478767436018681449804940840373741641452864730765082 \; ,$

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- 2

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$,

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

- **1** Alice and Bob agree on a prime p and a <u>generator</u> g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

ENCRYPTION: (Alice)

Università Roma Tre

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

- 1
- 2
- (3)

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

- **1** Alice picks a secret k,
- 2
- (3

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a <u>generator</u> g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

- **1** Alice picks a secret k, $0 < k \le p-1$
- 2
- (3

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a generator g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

- **1** Alice picks a secret k, $0 < k \le p 1$
- 2 She computes $\alpha = g^k \mod p$ and $\gamma = x \cdot \beta^a \mod p$
- 3

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a <u>generator</u> g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

- **1** Alice picks a secret k, $0 < k \le p-1$
- 2 She computes $\alpha = g^k \mod p$ and $\gamma = x \cdot \beta^a \mod p$
- 3 The encrypted message is

Alice wants to sent a message $x \in \mathbb{Z}/p\mathbb{Z}$ to Bob

SETUP:

- **1** Alice and Bob agree on a prime p and a <u>generator</u> g in $\mathbb{Z}/p\mathbb{Z}$
- **2** Bob picks a secret b, $0 < b \le p 1$, he computes $\beta = g^b \mod p$ and publishes β

- ① Alice picks a secret k, $0 < k \le p-1$
- 2 She computes $\alpha = g^k \mod p$ and $\gamma = x \cdot \beta^a \mod p$
- 3 The encrypted message is

$$E(x) = (\alpha, \gamma) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$$

DECRYPTION: (Bob)

DECRYPTION: (Bob)

DECRYPTION: (Bob)

① Bob computes

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

2 It works because

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

2 It works because

$$D(E(x)) = D(\alpha, \gamma) = x \cdot g^{bk} \cdot g^{k(p-1-b)} = x$$

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

2 It works because

$$D(E(x)) = D(\alpha, \gamma) = x \cdot g^{bk} \cdot g^{k(p-1-b)} = x$$

since $g^{k(p-1)} \mod p = 1$ by

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

2 It works because

$$D(E(x)) = D(\alpha, \gamma) = x \cdot g^{bk} \cdot g^{k(p-1-b)} = x$$

since $g^{k(p-1)} \mod p = 1$ by

Fermat Little Theorem If p is prime, $p \nmid a \in \mathbb{N}$

$$a^{p-1} \equiv 1 \bmod p$$

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

2 It works because

$$D(E(x)) = D(\alpha, \gamma) = x \cdot g^{bk} \cdot g^{k(p-1-b)} = x$$

since $g^{k(p-1)} \mod p = 1$ by

Fermat Little Theorem If p is prime, $p \nmid a \in \mathbb{N}$

$$a^{p-1} \equiv 1 \bmod p$$

Eve can decrypt the message if he can compute the discrete logarithm X,

DECRYPTION: (Bob)

① Bob computes

$$D(\alpha, \gamma) = \gamma \cdot \alpha^{p-1-b} \bmod p$$

2 It works because

$$D(E(x)) = D(\alpha, \gamma) = x \cdot g^{bk} \cdot g^{k(p-1-b)} = x$$

since $g^{k(p-1)} \mod p = 1$ by

Fermat Little Theorem If p is prime, $p \nmid a \in \mathbb{N}$

$$a^{p-1} \equiv 1 \bmod p$$

Eve can decrypt the message if he can compute the discrete logarithm X,

$$\beta = g^X \bmod p$$

Dhahran, March 1, 2004

Massey Omura 1/2

Alice

Alice

1

2

3

4

5

Alice

- **1** Alice and Bob each picks a secret key $k_A, k_B \in \{1, ..., p-1\}$
- 2
- 3
- 4
- **5**

Alice

- **1** Alice and Bob each picks a secret key $k_A, k_B \in \{1, \dots, p-1\}$
- 2 They compute $l_A, l_B \in \{1, \ldots, p-1\}$ such that
- 3
- 4
- **5**

Alice

- ① Alice and Bob each picks a secret key $k_A, k_B \in \{1, \ldots, p-1\}$
- 2 They compute $l_A, l_B \in \{1, \ldots, p-1\}$ such that
- 3 $k_A l_A = 1 \pmod{p-1}$ and $k_B l_B = 1 \pmod{p-1}$
- 4
- **5**

Alice

- **1** Alice and Bob each picks a secret key $k_A, k_B \in \{1, ..., p-1\}$
- 2 They compute $l_A, l_B \in \{1, \ldots, p-1\}$ such that
- 3 $k_A l_A = 1 \pmod{p-1}$ and $k_B l_B = 1 \pmod{p-1}$
- **4** Alice key is (k_A, l_A) $(k_A$ to lock and l_A to unlock)
- **5**

Alice

- ① Alice and Bob each picks a secret key $k_A, k_B \in \{1, \ldots, p-1\}$
- 2 They compute $l_A, l_B \in \{1, \ldots, p-1\}$ such that
- 3 $k_A l_A = 1 \pmod{p-1}$ and $k_B l_B = 1 \pmod{p-1}$
- **4** Alice key is (k_A, l_A) $(k_A \text{ to lock and } l_A \text{ to unlock})$
- **5** Bob key is (k_B, l_B) $(k_B \text{ to lock and } l_B \text{ to unlock})$

Alice (k_A, l_A)

Bob (k_B, l_B)

Alice (k_A, l_A)

Bob (k_B, l_B)

- 1
- 2
- 3
- 4

Alice (k_A, l_A)

Bob (k_B, l_B)

- ① To send the message P, Alice computes and sends $M = P^{k_A} \mod p$
- 2
- 3
- 4

Alice (k_A, l_A)

Bob (k_B, l_B)

- ① To send the message P, Alice computes and sends $M = P^{k_A} \mod p$
- **2 Bob** computes and sends back $N = M^{k_B} \mod p$
- 3
- 4

Alice (k_A, l_A)

Bob (k_B, l_B)

- ① To send the message P, **Alice** computes and sends $M = P^{k_A} \mod p$
- **2 Bob** computes and sends back $N = M^{k_B} \mod p$
- 3 Alice computes $L = N^{l_A} \pmod{p}$ and sends it back to **Bob**
- 4

Alice (k_A, l_A)

Bob (k_B, l_B)

- ① To send the message P, **Alice** computes and sends $M = P^{k_A} \mod p$
- **2 Bob** computes and sends back $N = M^{k_B} \mod p$
- 3 Alice computes $L = N^{l_A} \pmod{p}$ and sends it back to **Bob**
- **4 Bob** decrypt the message computing $P = L^{l_B} \pmod{p}$

Alice (k_A, l_A)

Bob (k_B, l_B)

- ① To send the message P, **Alice** computes and sends $M = P^{k_A} \mod p$
- **2 Bob** computes and sends back $N = M^{k_B} \mod p$
- 3 Alice computes $L = N^{l_A} \pmod{p}$ and sends it back to **Bob**
- **4 Bob** decrypt the message computing $P = L^{l_B} \pmod{p}$

It works: $P = L^{l_B} = N^{l_A l_B} = M^{k_B l_A l_B} = P^{k_A k_B l_A l_B}$ by Fermat Little Theorem

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

- 1
- 2
- 3

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

- ① Elliptic curves modulo p
- 2
- 3

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

- ① Elliptic curves modulo p
- 2 Multiplicative groups of Finite Fields
- 3

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

- ① Elliptic curves modulo p
- 2 Multiplicative groups of Finite Fields
- 3 Dickson Polynomials over finite fields

We can substitute $\mathbb{Z}/p\mathbb{Z}$ with a set G where it is possible to compute powers P^a and there is a generator (there is $g \in G$ such that for each $\alpha \in G$, $\alpha = g^i$ for a suitable i); cyclic groups

- ① Elliptic curves modulo p
- 2 Multiplicative groups of Finite Fields
- 3 Dickson Polynomials over finite fields

$ig({ m Finite} \,\, { m Fields} ig)$

B

B

B

B

B

B

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

B

B

B

B

B

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

B

B

B

B

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

B

B

B

B

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

 $\mathbb{F}_p[x]/(f)$ is a field

B

B

B

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

 $\mathbb{F}_p[x]/(f)$ is a field

$$(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1g_2 \mod f)$$

B

B

B

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

 $\mathbb{F}_p[x]/(f)$ is a field

$$(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1g_2 \mod f)$$

 $\mathbb{F}_p[x]/(f)$ does not depend on f

B

B

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

- $\mathbb{F}_p[x]/(f)$ is a field $(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1g_2 \mod f)$
- $\mathbb{F}_p[x]/(f)$ does not depend on f(i.e. if $h \in \mathbb{F}_p[x]$ irreducible, $\partial f = \partial h \implies \mathbb{F}_p[x]/(f) \cong \mathbb{F}_p[x]/(h)$)
- B
- B
- B

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

 $\mathbb{F}_p[x]/(f)$ is a field $(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1g_2 \mod f)$

 $\mathbb{F}_p[x]/(f)$ does not depend on f(i.e. if $h \in \mathbb{F}_p[x]$ irreducible, $\partial f = \partial h \implies \mathbb{F}_p[x]/(f) \cong \mathbb{F}_p[x]/(h)$)

 $\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f)$

B

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

- $\mathbb{F}_p[x]/(f)$ is a field $(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1 g_2 \mod f)$
- $\mathbb{F}_p[x]/(f)$ does not depend on f(i.e. if $h \in \mathbb{F}_p[x]$ irreducible, $\partial f = \partial h \implies \mathbb{F}_p[x]/(f) \cong \mathbb{F}_p[x]/(h)$)
- any choice of f with $m = \partial f$ is the same
- B
- B

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

- $\mathbb{F}_p[x]/(f)$ is a field $(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1 g_2 \mod f)$
- $\mathbb{F}_p[x]/(f)$ does not depend on f(i.e. if $h \in \mathbb{F}_p[x]$ irreducible, $\partial f = \partial h \implies \mathbb{F}_p[x]/(f) \cong \mathbb{F}_p[x]/(h)$)
- $\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f)$ any choice of f with $m = \partial f$ is the same
- $|\mathbb{F}_{p^m}| = p^m$

Let
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$$

(field if p prime)

Given $f \in \mathbb{F}_p[x]$ irreducible $(m = \partial(f))$

$$\mathbb{F}_p[x]/(f) = \{a_0 + a_1t + \dots + a_{m-1}t^{m-1} \mid a_i \in \mathbb{F}_p\}$$

- $\mathbb{F}_p[x]/(f)$ is a field $(g_1 \star g_2 \in \mathbb{F}_p[x]/(f) \text{ is } g_1g_2 \mod f)$
- $\mathbb{F}_p[x]/(f)$ does not depend on f(i.e. if $h \in \mathbb{F}_p[x]$ irreducible, $\partial f = \partial h \implies \mathbb{F}_p[x]/(f) \cong \mathbb{F}_p[x]/(h)$)
- $\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f)$ any choice of f with $m = \partial f$ is the same
- $|\mathbb{F}_{p^m}| = p^m$
- $\mathbb{F}_{p^m}^* = \mathbb{F}_{p^m} \setminus \{0\}$ is a cyclic group under multiplication

Set
$$q = p^m$$

$oxed{\mathbf{Producing}\;\mathbb{F}_q}$

Set $q = p^m$

B

B

B

B

$\overline{ ext{Producing}} \,\, \mathbb{F}_q \Big]$

Set $q = p^m$

Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$

B

B

B

$igl[\mathbf{Producing} \,\, \mathbb{F}_q igr]$

Set
$$q = p^m$$

Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$

$igl[\mathbf{Producing} \,\, \mathbb{F}_q igr]$

Set
$$q = p^m$$

Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$

$$\sum_{d|m} d|I_d(q)| = q^m$$

B

B

$egin{aligned} \mathbf{Producing} \,\, \mathbb{F}_q \end{aligned}$

Set
$$q = p^m$$

Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$

$$\sum_{d|m} d|I_d(q)| = q^m$$

 $|I_m(q)| = \frac{q^m - q}{m}$

(if m is prime)

$$|I_m(q)| \sim \frac{q^m}{m}$$

B

$egin{aligned} \mathbf{Producing} \,\, \mathbb{F}_q \end{aligned}$

Set
$$q = p^m$$

Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$

$$\sum_{d|m} d|I_d(q)| = q^m$$

$$|I_m(q)| = \frac{q^m - q}{m}$$
 (if m is prime) $|I_m(q)| \sim \frac{q^m}{m}$

Some fields of cryptographic size:

$egin{aligned} \mathbf{Producing} \,\, \mathbb{F}_q \end{aligned}$

Set
$$q = p^m$$

- Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible, } \partial f = m \})$
- $\sum_{d|m} d|I_d(q)| = q^m$
- $|I_m(q)| = \frac{q^m q}{m}$ (if m is prime) $|I_m(q)| \sim \frac{q^m}{m}$
- Some fields of cryptographic size:

$$\mathbb{F}_{2^{503}} = \mathbb{F}_2[x]/(x^{503} + x^3 + 1), \mathbb{F}_{5323^{20}} = \mathbb{F}_{5323}[x]/(f)$$

Set
$$q = p^m$$

- Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$
- $\sum_{d|m} d|I_d(q)| = q^m$
- $|I_m(q)| = \frac{q^m q}{m}$ (if m is prime) $|I_m(q)| \sim \frac{q^m}{m}$
- Some fields of cryptographic size:

$$\mathbb{F}_{2^{503}} = \mathbb{F}_{2}[x]/(x^{503} + x^{3} + 1), \mathbb{F}_{53^{23}20} = \mathbb{F}_{53^{23}}[x]/(f)$$

$$f = x^{20} + 145^{1}x^{18} + 520^{2}x^{17} + 75^{2}x^{16} + 3778^{15} + 4598^{14} + 2563^{13} + 5275^{12} + 4260^{11} + 4260^$$

Set
$$q = p^m$$

Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$

$$\sum_{d|m} d|I_d(q)| = q^m$$

$$|I_m(q)| = \frac{q^m - q}{m}$$
 (if m is prime) $|I_m(q)| \sim \frac{q^m}{m}$

Some fields of cryptographic size:

$$\mathbb{F}_{2^{503}} = \mathbb{F}_{2}[x]/(x^{503} + x^{3} + 1), \mathbb{F}_{53^{23}20} = \mathbb{F}_{53^{23}}[x]/(f)$$

$$f = x^{20} + 1451x^{18} + 5202x^{17} + 752x^{16} + 3778x^{15} + 4598x^{14} + 2563x^{13} + 5275x^{12} + 4260x^{11} + 862x^{10} + 4659x^{9} + 3484x^{8} + 1510x^{7} + 4556x^{6} + 2317x^{5} + 2171x^{4} + 3100x^{3} + 4100x^{2} + 682x + 5110$$

Set
$$q = p^m$$

- Produce $\mathbb{F}_q \iff \text{find } f \in I_m(q)$ $(I_m(q) = \{ f \in \mathbb{F}_p[x], f \text{ irreducible}, \partial f = m \})$
- $\sum_{d|m} d|I_d(q)| = q^m$
- $|I_m(q)| = \frac{q^m q}{m}$ (if m is prime) $|I_m(q)| \sim \frac{q^m}{m}$
- Some fields of cryptographic size:

$$\mathbb{F}_{2503} = \mathbb{F}_{2}[x]/(x^{503} + x^{3} + 1), \mathbb{F}_{532320} = \mathbb{F}_{5323}[x]/(f)$$

$$f = x^{20} + 1451x^{18} + 5202x^{17} + 752x^{16} + 3778x^{15} + 4598x^{14} + 2563x^{13} + 5275x^{12} + 4260x^{11} + 862x^{10} + 4659x^{9} + 3484x^{8} + 1510x^{7} + 4556x^{6} + 2317x^{5} + 2171x^{4} + 3100x^{3} + 4100x^{2} + 682x + 5110$$

ightharpoonup Good to find <math>f sparse

 $\boxed{\textbf{Interpolation on } \mathbb{F}_q}$

$\boxed{ \text{Interpolation on } \mathbb{F}_q }$

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

$\begin{bmatrix} \textbf{Interpolation on } \mathbb{F}_q \end{bmatrix}$

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

h can always be interpolated with a polynomial in $\mathbb{F}_q[x]$!

$\begin{bmatrix} \textbf{Interpolation on } \mathbb{F}_q \end{bmatrix}$

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

h can always be interpolated with a polynomial in $\mathbb{F}_q[x]$!

LAGRANGE INTERPOLATION

$\boxed{ \textbf{Interpolation on } \mathbb{F}_q }$

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

h can always be interpolated with a polynomial in $\mathbb{F}_q[x]$!

LAGRANGE INTERPOLATION

$$f_h(x) = \sum_{c \in \mathbb{F}_q} h(c) \prod_{\substack{d \in \mathbb{F}_q \\ d \neq c}} \frac{x - d}{c - d} \in \mathbb{F}_q[x]$$

Dhahran, March 1, 2004

Interpolation on \mathbb{F}_q

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

h can always be interpolated with a polynomial in $\mathbb{F}_q[x]$!

LAGRANGE INTERPOLATION

$$f_h(x) = \sum_{c \in \mathbb{F}_q} h(c) \prod_{\substack{d \in \mathbb{F}_q \\ d \neq c}} \frac{x - d}{c - d} \in \mathbb{F}_q[x]$$

FINITE FIELDS INTERPOLATION

Dhahran, March 1, 2004

$[\textbf{Interpolation on } \mathbb{F}_q]$

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

h can always be interpolated with a polynomial in $\mathbb{F}_q[x]$!

LAGRANGE INTERPOLATION

$$f_h(x) = \sum_{c \in \mathbb{F}_q} h(c) \prod_{\substack{d \in \mathbb{F}_q \\ d \neq c}} \frac{x - d}{c - d} \in \mathbb{F}_q[x]$$

FINITE FIELDS INTERPOLATION

$$f_h(x) = \sum_{c \in \mathbb{F}_q} h(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

Interpolation on \mathbb{F}_q

Given $h: \mathbb{F}_q \to \mathbb{F}_q$ a function.

h can always be interpolated with a polynomial in $\mathbb{F}_q[x]$!

□ LAGRANGE INTERPOLATION

$$f_h(x) = \sum_{c \in \mathbb{F}_q} h(c) \prod_{\substack{d \in \mathbb{F}_q \\ d \neq c}} \frac{x - d}{c - d} \in \mathbb{F}_q[x]$$

FINITE FIELDS INTERPOLATION

$$f_h(x) = \sum_{c \in \mathbb{F}_q} h(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x]$$
$$d^{q - 1} = \begin{cases} 1 & d \neq 0 \\ 0 & d = 0 \end{cases}$$

 $\boxed{ \text{More on interpolation in } \mathbb{F}_q }$

$oxed{ ext{More on interpolation in }\mathbb{F}_q}$

If $f_1, f_2 \in \mathbb{F}_q[x]$ with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$,

If
$$f_1, f_2 \in \mathbb{F}_q[x]$$
 with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$,
$$\Rightarrow x^q - x \mid f_1(x) - f_2(x)$$

$\boxed{ \text{More on interpolation in } \mathbb{F}_q }$

If $f_1, f_2 \in \mathbb{F}_q[x]$ with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$, $\Rightarrow x^q - x \mid f_1(x) - f_2(x)$

The interpolant polynomial is unique mod $x^q - x$

If $f_1, f_2 \in \mathbb{F}_q[x]$ with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$, $\Rightarrow x^q - x \mid f_1(x) - f_2(x)$

The interpolant polynomial is unique mod $x^q - x$

 \Rightarrow unique with degree $\leq q - 1$

- If $f_1, f_2 \in \mathbb{F}_q[x]$ with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$, $\Rightarrow x^q x \mid f_1(x) f_2(x)$
- The interpolant polynomial is unique mod $x^q x$

 \Rightarrow unique with degree $\leq q - 1$

 $If c_h = \#\{c \in \mathbb{F}_q \mid h(c) \neq c\},$

- If $f_1, f_2 \in \mathbb{F}_q[x]$ with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$, $\Rightarrow x^q x \mid f_1(x) f_2(x)$
- The interpolant polynomial is unique mod $x^q x$

 \Rightarrow unique with degree $\leq q - 1$

If
$$c_h = \#\{c \in \mathbb{F}_q \mid h(c) \neq c\},\$$

$$\boxed{q - c_h \leq \partial f_h \leq q - 2}$$

If
$$f_1, f_2 \in \mathbb{F}_q[x]$$
 with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$,
$$\Rightarrow x^q - x \mid f_1(x) - f_2(x)$$

The interpolant polynomial is unique mod $x^q - x$

$$\Rightarrow$$
 unique with degree $\leq q - 1$

If
$$c_h = \#\{c \in \mathbb{F}_q \mid h(c) \neq c\},\$$

$$q - c_h \leq \partial f_h \leq q - 2$$

Problem. Find functions with sparse interpolation polynomial

${f More~on~interpolation~in}~{\Bbb F}_q$

If
$$f_1, f_2 \in \mathbb{F}_q[x]$$
 with $f_1(c) = f_2(c) \forall c \in \mathbb{F}_q$,
$$\Rightarrow x^q - x \mid f_1(x) - f_2(x)$$

The interpolant polynomial is unique mod $x^q - x$

$$\Rightarrow$$
 unique with degree $\leq q - 1$

If
$$c_h = \#\{c \in \mathbb{F}_q \mid h(c) \neq c\},\$$

$$q - c_h \leq \partial f_h \leq q - 2$$

Problem. Find functions with sparse interpolation polynomial

Better if they are \leadsto Permutation polynomials

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if "f (as a funtion) is a permutation"

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if "f (as a funtion) is a permutation" (i.e. $\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$)

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if

"f (as a funtion) is a permutation"

(i.e.
$$\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$$
)

If
$$f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x] \Longrightarrow$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if

"f (as a funtion) is a permutation"

(i.e.
$$\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$$
)

If
$$f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x] \Longrightarrow$$

$$f \in \mathbb{F}_q[x] \text{ is PP} \iff \exists \sigma \in \mathcal{S}(\mathbb{F}_q), f \equiv f_\sigma \mod x^q - x$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if "f (as a funtion) is a permutation" (i.e. $\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$)

If
$$f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x] \Longrightarrow$$

$$f \in \mathbb{F}_q[x] \text{ is PP} \iff \exists \sigma \in \mathcal{S}(\mathbb{F}_q), f \equiv f_{\sigma} \mod x^q - x$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if "f (as a funtion) is a permutation"

(i.e.
$$\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$$
)

If
$$f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x] \implies$$

$$f \in \mathbb{F}_q[x] \text{ is PP} \iff \exists \sigma \in \mathcal{S}(\mathbb{F}_q), f \equiv f_{\sigma} \mod x^q - x$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if "f (as a funtion) is a permutation"

(i.e.
$$\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$$
)

If $f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x] \Longrightarrow$ $f \in \mathbb{F}_q[x] \text{ is PP} \iff \exists \sigma \in \mathcal{S}(\mathbb{F}_q), f \equiv f_{\sigma} \mod x^q - x$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma(1:1) \}$$

permutations of \mathbb{F}_q

 $f \in \mathbb{F}_q[x]$ is called permutation polynomial (PP) if "f (as a funtion) is a permutation"

(i.e.
$$\exists \sigma \in \mathcal{S}(\mathbb{F}_q), \sigma(c) = f(c) \ \forall c \in \mathbb{F}_q$$
)

If $f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x] \Longrightarrow$ $f \in \mathbb{F}_q[x] \text{ is PP} \iff \exists \sigma \in \mathcal{S}(\mathbb{F}_q), f \equiv f_{\sigma} \mod x^q - x$

- $ax + b, a, b \in \mathbb{F}_q, a \neq 0$

-54

if f, g are PP

 \bigcirc Composition. $f \circ g$ is PP

$$x^{(q+m-1)/m} + ax$$
 is a PP

if f, g are PP

if
$$m|q-1$$

 \bigcirc Composition. $f \circ g$ is PP

if
$$f, g$$
 are PP

$$x^{(q+m-1)/m} + ax$$
 is a PP

if
$$m|q-1$$

Linearized Polynomials Let $q=p^m,$

 \bigcirc Composition. $f \circ g$ is PP

if f, g are PP

$$x^{(q+m-1)/m} + ax$$
 is a PP

if
$$m|q-1$$

Linearized Polynomials Let $q=p^m,$

$$L(x) = \sum_{s=0}^{r-1} \alpha_s x^{q^s} \qquad (\alpha_s \in \mathbb{F}_{p^m})$$

 \bigcirc Composition. $f \circ g$ is PP

if f, g are PP

$$x^{(q+m-1)/m} + ax$$
 is a PP

if
$$m|q-1$$

Linearized Polynomials Let $q=p^m,$

$$L(x) = \sum_{s=0}^{r-1} \alpha_s x^{q^s}$$
 $(\alpha_s \in \mathbb{F}_{p^m})$

>>>

 \bigcirc Composition. $f \circ g$ is PP

if f, g are PP

$$x^{(q+m-1)/m} + ax$$
 is a PP

if m|q-1

Linearized Polynomials Let $q = p^m$,

$$L(x) = \sum_{s=0}^{r-1} \alpha_s x^{q^s} \qquad (\alpha_s \in \mathbb{F}_{p^m})$$

$$L(c_1 + c_2) = L(c_1) + L(c_2)$$

 \bigcirc Composition. $f \circ g$ is PP

if f, g are PP

$$x^{(q+m-1)/m} + ax$$
 is a PP

if m|q-1

Linearized Polynomials Let $q = p^m$,

$$L(x) = \sum_{s=0}^{r-1} \alpha_s x^{q^s} \qquad (\alpha_s \in \mathbb{F}_{p^m})$$

$$L(c_1 + c_2) = L(c_1) + L(c_2)$$

$$L \in \mathrm{GL}_m(\mathbb{F}_p) \subset \mathcal{S}(\mathbb{F}_{p^m}) \iff \det(\alpha_{i-j}^{q^j}) \neq 0$$

 \bigcirc Composition. $f \circ g$ is PP

if f, g are PP

 $x^{(q+m-1)/m} + ax$ is a PP

if m|q-1

Linearized Polynomials Let $q = p^m$,

$$L(x) = \sum_{s=0}^{r-1} \alpha_s x^{q^s} \qquad (\alpha_s \in \mathbb{F}_{p^m})$$

- $L(c_1 + c_2) = L(c_1) + L(c_2)$
- $L \in \mathrm{GL}_m(\mathbb{F}_p) \subset \mathcal{S}(\mathbb{F}_{p^m}) \iff \det(\alpha_{i-j}^{q^j}) \neq 0$ $\iff L(x) = 0 \text{ has 1 solution}$

$$D_k(x,a) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{k}{k-j} {\binom{k-j}{j}} (-a)^j x^{k-2j}$$

$$D_k(x,a) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{k}{k-j} {\binom{k-j}{j}} (-a)^j x^{k-2j}$$

$$D_k(x,a) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{k}{k-j} {\binom{k-j}{j}} (-a)^j x^{k-2j}$$

- \implies if $a \neq 0$, $D_k(x, a)$ is a PP \iff $(k, q^2 1) = 1$
- **>>**
- **>>**

$$D_k(x,a) = \sum_{j=0}^{\lfloor k/2 \rfloor} \frac{k}{k-j} {\binom{k-j}{j}} (-a)^j x^{k-2j}$$

- \implies if $a \neq 0$, $D_k(x, a)$ is a PP \iff $(k, q^2 1) = 1$
- $D_k(x,0) = x^k \text{ is a PP} \iff (k,q-1) = 1$

$$D_k(x,a) = \sum_{j=0}^{[k/2]} \frac{k}{k-j} {k-j \choose j} (-a)^j x^{k-2j}$$

- \implies if $a \neq 0$, $D_k(x, a)$ is a PP \iff $(k, q^2 1) = 1$
- $D_k(x,0) = x^k \text{ is a PP} \iff (k,q-1) = 1$
- Note: if $(mn, q^2 1) = 1$,

$$D_k(x,a) = \sum_{j=0}^{[k/2]} \frac{k}{k-j} {k-j \choose j} (-a)^j x^{k-2j}$$

- \rightarrow if $a \neq 0$, $D_k(x, a)$ is a PP \iff $(k, q^2 1) = 1$
- $D_k(x,0) = x^k \text{ is a PP} \iff (k,q-1) = 1$
- Note: if $(mn, q^2 1) = 1$,

$$D_m(D_n(x,\pm 1),\pm 1) = D_{mn}(x,\pm 1)$$

1

2

3

4

- ① Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- 2
- 3
- 4

- ① Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- ② Alice picks a secret $a \in [0, q^2 1]$, Bob picks a secret $b \in [0, q^2 1]$
- 3
- 4

- ① Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- ② Alice picks a secret $a \in [0, q^2 1]$, Bob picks a secret $b \in [0, q^2 1]$
- 3 They compute and publish $D_a(\gamma, 1)$ (Alice) and $D_b(\gamma, 1)$ (Bob)
- 4

- ① Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- ② Alice picks a secret $a \in [0, q^2 1]$, Bob picks a secret $b \in [0, q^2 1]$
- 3 They compute and publish $D_a(\gamma, 1)$ (Alice) and $D_b(\gamma, 1)$ (Bob)
- 4 The common secret key is

- ① Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- ② Alice picks a secret $a \in [0, q^2 1]$, Bob picks a secret $b \in [0, q^2 1]$
- 3 They compute and publish $D_a(\gamma, 1)$ (Alice) and $D_b(\gamma, 1)$ (Bob)
- 4 The common secret key is

$$D_{ab}(\gamma, 1) = D_a(D_b(\gamma, 1, 1)) = D_b(D_a(\gamma, 1, 1))$$

- **1** Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- ② Alice picks a secret $a \in [0, q^2 1]$, Bob picks a secret $b \in [0, q^2 1]$
- 3 They compute and publish $D_a(\gamma, 1)$ (Alice) and $D_b(\gamma, 1)$ (Bob)
- 4 The common secret key is

$$(D_{ab}(\gamma, 1) = D_a(D_b(\gamma, 1, 1)) = D_b(D_a(\gamma, 1, 1))$$

NOTE. There is a fast algorithm to compute the value of a Dickson polynomial at an element of \mathbb{F}_q

- ① Alice and Bob agree on a finite field \mathbb{F}_q , and a generator $\gamma \in \mathbb{F}_q$
- ② Alice picks a secret $a \in [0, q^2 1]$, Bob picks a secret $b \in [0, q^2 1]$
- 3 They compute and publish $D_a(\gamma, 1)$ (Alice) and $D_b(\gamma, 1)$ (Bob)
- 4 The common secret key is

$$D_{ab}(\gamma, 1) = D_a(D_b(\gamma, 1, 1)) = D_b(D_a(\gamma, 1, 1))$$

NOTE. There is a fast algorithm to compute the value of a Dickson polynomial at an element of \mathbb{F}_q

Problem. Find new classes of PP

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

B

B

B

B

B

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$(\partial f_{\sigma} \le q - 2)$$

B

B

B

B

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$(\partial f_{\sigma} \le q - 2)$$

$$N_1(q) = q(q-1)$$

B

B

B

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$\sum_{d < q-2} N_d(q) = q!$$

$$(\partial f_{\sigma} \le q - 2)$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

(Hermite criterion)

B

B

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

 $N_d(q)$ is known for d < 6

B

$$(\partial f_{\sigma} \le q - 2)$$

(Hermite criterion)

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$(\partial f_{\sigma} \le q - 2)$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

(Hermite criterion)

- $N_d(q)$ is known for d < 6
- Almost all permutation polynomials have degree q-2

$$N_d(q) = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d \}$$

Problem. Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$(\partial f_{\sigma} \le q - 2)$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

(Hermite criterion)

- $N_d(q)$ is known for d < 6
- Almost all permutation polynomials have degree q-2

(S. Konyagin, FP – 2002)
$$M_q = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial f_\sigma < q - 2 \}$$
$$|\# M_q - (q-1)!| \leq \sqrt{2e/\pi} q^{q/2}$$

A recent result

A recent result

$$\mathcal{N}_d = \# \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \}$$

A recent result

$$\mathcal{N}_d = \# \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \}$$

Theorem S. Konyagin, FP - 2003

Let $\alpha = (e-2)/3e = 0.08808 \cdots$ and $d < \alpha q$. Then

$$\left| \mathcal{N}_d - \frac{q!}{q^d} \right| \le 2^d dq^{2+q-d} \begin{pmatrix} q \\ d \end{pmatrix} \left(\frac{2d}{q-d} \right)^{(q-d)/2}.$$

It follows that

$$\mathcal{N}_d \sim rac{q!}{q^d}$$

if $d \leq \alpha q$ and $\alpha < 0.03983$

Other ways of counting

If
$$\sigma \in \mathcal{S}(\mathbb{F}_q)$$
,

$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

$$\sigma \neq id \Longrightarrow q - c_{\sigma} \leq \partial f_{\sigma} \leq q - 2$$

(since $f_{\sigma}(x) - x$ has at least $q - c_{\sigma}$ roots)

Consequences.

- \cong 2-cycles have degree q-2
- 3-cycles have degree q-2 or q-3
- k-cycles have degree in [q-k, q-2]

(Wells)
$$\#\{\sigma \in 3\text{-cyle}, \ \partial(f_{\sigma}) = q - 3\} = \begin{cases} \frac{2}{3}q(q - 1) & q \equiv 1 \mod 3\\ 0 & q \equiv 0 \mod 3\\ \frac{1}{3}q(q - 1) & q \equiv 0 \mod 3 \end{cases}$$

More enumeration functions

- $\sigma_1, \sigma_2 \text{ conjugated} \Rightarrow c_{\sigma_1} = c_{\sigma_2}$
- \mathcal{C} conjugation class of permutations
- $c_{\mathcal{C}} = \#\{ \text{ elements } \in \mathbb{F}_q \text{ moved by any } \sigma \in \mathcal{C} \}$ (i.e. $c_{\mathcal{C}} = c_{\sigma} \text{ for any } \sigma \in \mathcal{C} \quad q c_{\mathcal{C}} \leq f_{\sigma})$
- $\mathcal{C} = [k] = k \text{cycles} \implies c_{[k]} = k$
- Natural enumeration functions:
 - \mathbf{X} $m_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} = q c_{\mathcal{C}}\}\$
 - $M_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} < q 2\}$

(minimal degree)

(non-maximal degree)

Permutation Classes with non maximal degree

Let $C = (m_1, ..., m_t)$ be the class of permutations with m_1 1-cycles, ..., m_t t-cycles. The number c_C of elements in \mathbb{F}_q moved by any element of C is

$$c_{\mathcal{C}} = 2m_2 + 3m_3 + \dots + tm_t$$

$$M_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} < q - 2\}$$

THEOREM 1 (C. Malvenuto, FP - 2002). $\exists N = N_{\mathcal{C}} \in \mathbb{N}, f_1, \dots, f_N \in \mathbb{Z}[x],$ $f_i \text{ monic}, \partial f_i = c_{\mathcal{C}} - 3 \text{ such that if } q \equiv a \text{ mod } N, \text{ then}$

$$M_{\mathcal{C}}(q) = \frac{q(q-1)}{m_2! 2^{m_2} \cdots m_t! t^{m_t}} f_a(q)$$

k-cycles with minimal degree

$$m_{[k]}(q) = \#\{\sigma \text{ k-cycle}, \partial f_{\sigma} = q - k\}$$

THEOREM 2 (C. Malvenuto, FP - 2003).

 $ightharpoonup ext{If } q \equiv 1 \bmod k \implies$

$$m_{[k]}(q) \ge \frac{\varphi(k)}{k}q(q-1).$$

• If $q = p^f$, $p \ge 2 \cdot 3^{[k/3]-1}$ \implies

$$m_{[k]}(q) \le \frac{(k-1)!}{k} q(q-1).$$

Consequences of Theorem 1

$$\frac{M_{\mathcal{C}}(q)}{\#\mathcal{C}} = \frac{1}{q} + O\left(\frac{1}{q^2}\right)$$

 \boxtimes If \mathcal{C} is fixed,

$$\operatorname{Prob}(\partial f_{\sigma} < q - 2 \mid \sigma \in \mathcal{C}) \sim \frac{1}{q}$$

 \boxtimes If $q=2^r$, \mathcal{C}_r is the conjugation class of r transposition,

$$M_{\mathcal{C}_r}(q) = \frac{q!}{r!2^r(q-2r+1)!} - \frac{q-2(r-1)(2r-1)}{2r} M_{\mathcal{C}_{r-1}}(q)$$

 \square One can compute $M_{\mathcal{C}}(q)$ for $c_{\mathcal{C}} \leq 6$

Table 1. $\#c_{\mathcal{C}} \leq 6$, (q odd)

$$M_{[4]}(q) = \frac{1}{4}q(q-1)(q-5-2\eta(-1)-4\eta(-3))$$

$$M_{[2\ 2]}(q) = \frac{1}{8}q(q-1)(q-4)\left\{1+\eta(-1)\right\}$$

$$M_{[5]}(q) = \frac{1}{5}q(q-1)\left(q^2 - (9-\eta(5)-5\eta(-1)+5\eta(-9))q + \frac{1}{5}q(q-1)\left(q^2 - (9-\eta(5)-5\eta(-1)+5\eta(-1))+\frac{1}{5}\eta(-1)\right)q + \frac{1}{5}q(q-1)q + \frac{1$$

$$M_{[2\ 3]}(q) = \frac{1}{6}q(q-1)\left(q^2 - (9+\eta(-3)+3\eta(-1))q + (24+6\eta(-3)+18\eta(-1)+6\eta(-7))\right) + \eta(-1)(1-\eta(9))q(q-5).$$

Table 2. $\#c_{\mathcal{C}} \leq 6$, (q even)

$$M_{[4]}(2^n) = \frac{1}{4}2^n(2^n-1)(2^n-4)(1+(-1)^n)$$

$$M_{[2\ 2]}(2^n) = \frac{1}{8}2^n(2^n-1)(2^n-2)$$

$$M_{[5]}(2^n) = \frac{1}{5}2^n(2^n-1)(2^n-3-(-1)^n)(2^n-6-3(-1)^n)$$

$$M_{[2\ 3]}(2^n) = \frac{1}{6}2^n(2^n-1)(2^n-3-(-1)^n)(2^n-6).$$

Table 3. $\#c_{\mathcal{C}} = 6$, $(q \text{ odd}, 3 \nmid q)$

$$M_{[6]}(q) = \frac{q(q-1)}{6} \{q^3 - 14 q^2 + [68 - 6 \eta(5) - 6 \eta(50)]q - [154 + 66 \eta(-3) + 93 \eta(-1) + 12 \eta(-2) + 54 \eta(-7)]\}$$

$$M_{[4 \ 2]}(q) = \frac{q(q-1)}{8} (q^3 - [14 - \eta(2)]q^2 + [71 + 12 \eta(-1) + \eta(-2) + 4 \eta(-3) - 8 \eta(50)]q$$

$$-[148 + 100 \eta(-1) + 24 \eta(-2) + 44 \eta(-3) + 40 \eta(-7)])$$

$$M_{[3 \ 3]}(q) = \frac{q(q-1)}{18} (q^3 - 13 q^2 + [62 + 9 \eta(-1) + 4 \eta(-3)]q$$

$$-[150 + 99 \eta(-1) + 42 \eta(-3) + 72 \eta(-7)])$$

$$M_{[2 \ 2 \ 2]}(q) = \frac{q(q-1)}{48} (q^3 - [14 + 3 \eta(-1)]q^2 + [70 + 36 \eta(-1) + 6 \eta(-2)]q$$

$$-[136 + 120 \eta(-1) + 48 \eta(-2) + 8 \eta(-3)])$$

Table 4. $\#c_{\mathcal{C}} = 6$

$$M_{[6]}(3^n) = \frac{3^n (3^n - 1)}{6} \{3^{3n} - [14 + 2(-1)^n] 3^{2n} + [71 + 39(-1)^n] 3^n - [162 + 147(-1)^n] \}$$

$$M_{[4\ 2]}(3^n) = \frac{3^n(3^n-1)}{8} \{3^{3n} - [14+3(-1)^n]3^{2n} + [72+40(-1)^n]3^n - [164+140(-1)^n]\}$$

$$M_{[3\ 3]}(3^n) = \frac{3^n(3^n-1)}{18} \{ (1+(-1)^n) 3^{3n} - [14+15(-1)^n] 3^{2n} + [71+81(-1)^n] 3^n - [150+171(-1)^n] \}$$

$$M_{[2\ 2\ 2]}(3^n) = \frac{3^n(3^n-1)}{48} \{3^{3n} - [14+3(-1)^n]3^{2n} + [76+36(-1)^n]3^n - [168+120(-1)^n]\}$$

Table 5. $\#c_{\mathcal{C}} = 6$

$$M_{[6]}(2^n) = \frac{2^n (2^n - 1)}{6} \quad \{ (2^n - 3 - (-1)^n)(2^{2n} - (11 - (-1)^n)2^n + (41 + 7(-1)^n)) \}$$

$$M_{[4\ 2]}(2^n) = \frac{2^n(2^n-1)}{8} \left\{ (2^n-3-(-1)^n)(2^{2n}-11\cdot 2^n+37+(-1)^n) \right\}$$

$$M_{[3\ 3]}(2^n) = \frac{2^n(2^n-1)}{18} \{(2^n-3-(-1)^n)(2^{2n}-(10-(-1)^n)2^n+45-3(-1)^n))\}$$

$$M_{[2\ 2\ 2]}(2^n) = \frac{2^n(2^n-1)}{48} \{(2^n-2)(2^n-4)(2^n-8)\}$$

Sketch of the Proof of Theorem 2. (1/3)

STEP 1. Translate the problem into one on counting points of an algebraic varieties

$$m_k(q) = \frac{q(q-1)}{k} n_k(q)$$

where $n_k(q) = \{ \sigma \in [k] \mid \partial f_{\sigma} = q - k, \sigma(0) = 1 \}.$

Need to show $|n_k(q)| \leq (k-1)!$. Now

$$f_{\sigma}(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) = A_1 x^{q-2} + A_2 x^{q-3} + \dots + A_{q-1}.$$

with
$$A_j = \sum_{c \in \mathbb{F}_q} \sigma(c) c^j = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(c^j - c^{j-1} \right) = \sum_{\substack{c \in \mathbb{F}_q \\ \sigma(c) \neq c}} (\sigma(c) - c) c^j$$
.

Sketch of the Proof of Theorem 2. (2/3)

If
$$\sigma = (0, 1, x_1, x_2, \dots, x_{k-2}) \in \mathcal{S}(\mathbb{F}_q),$$

$$A_j(\sigma) = (1 - x_1) + (x_1 - x_2)x_1^j + \dots + (x_{k-2} - x_{k-2})x_{k-3}^j + x_{k-2}^{j+1}.$$

Def. (Affine k-th Silvia set)

$$n_k(q) = \#\{\underline{x} = (x_1, \dots, x_{k-2}) \in \mathbb{F}_q^{k-2} \mid \underline{x} \in \mathcal{A}_k(\mathbb{F}_q), x_i \neq x_j\} \le \#\mathcal{A}_k(\mathbb{F}_q)$$

$$\dim_{\overline{\mathbb{F}}_q} \mathcal{A}_k = 0 \quad \overset{\text{Bezout Thm.}}{\Rightarrow} \quad \# \mathcal{A}(\mathbb{F}_q) \leq (k-1)!$$

Sketch of the Proof of Theorem 2. (3/3)

STEP 2.

Theorem. If **K** is an algebrically closed field,

$$\operatorname{char}(\mathbf{K}) = \begin{cases} 0 & \text{or} \\ > 2 \cdot 3^{[k/3]-1}. \end{cases}$$

Then

$$\dim_{\mathbf{K}} \mathcal{A}_k = 0.$$

NOTE.

- \bigtriangleup Proof is based on finding projective hyperplanes disjoint from \mathcal{A}_k
- There are examples of small values of q with $\dim_{\mathbf{K}} A_k > 0$

