Corrigé de la feuille d'exercices 26

1 Déterminant d'une matrice carrée

Exercice 1. 1.

$$\begin{vmatrix} 0 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & \frac{3}{2} \end{bmatrix}$$

On aboutit au déterminant d'une matrice triangulaire inférieure.

Ainsi,
$$\det(A) = 1 \times 2 \times \frac{3}{2} = 3$$
.
2. $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & C_2 \leftarrow C_2 - C_1 \\ 0 & C_3 \leftarrow C_3 - C_1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 3 \\ 1 & 2 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix} = 1$.

Exercice 2. 1. Déterminons les valeurs de x pour lesquels D(x) = 0, on utilise pour cela la propriété suivante : si un déterminant a deux colonnes égales alors ce déterminant est nul. Soit $x \in \mathbb{R}$.

$$x^{2} - 3 = 1 \iff x = \pm 2$$
$$-x^{2} + 6 = -3 \iff x = \pm 3$$

Si $x \in \{-2, 2\}$ alors les deux premières colonnes sont égales. Ainsi, D(x) = 0.

Si $x \in \{-3, 3\}$ alors :

$$D(x) = \begin{vmatrix} 1 & 6 & -1 \\ 2 & 2 & -2 \\ 3 & 3 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & 6 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{vmatrix}$$

en utilisant la linéarité par rapport à la dernière colonne. La première et dernière colonne sont alors égales donc

Ainsi, D(x) admet -3,-2,2,3 comme racine. Donner quatre racines évidentes de D.

2. Par la règle de Sarrus, on a :

$$D(x) = 2(-x^2 + 6) - 6(x^2 - 3) - 6 + 6 + 6 - 2(-x^2 + 6)(x^2 - 3)$$

Ainsi, D est une fonction polynomiale de degré 4.

3. D'après les questions précédentes, on en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}, \ D(x) = \lambda(x-2)(x+2)(x-2)$ 3)(x+3).

Or, d'après la question 2, le coefficient dominant est $-2 \times (-1) = 2$.

Ainsi, $\lambda = 2$.

On a donc:

$$\forall x \in \mathbb{R}, \ D(x) = 2(x-2)(x+2)(x-3)(x+3)$$

Exercice 3. On a:

$$A = \begin{pmatrix} 1 & 1 & \cdots & \cdots & \cdots & 1 \\ 1 & 2 & 2 & \cdots & \cdots & 2 \\ \vdots & 2 & 3 & 3 & \cdots & \cdots & 3 \\ \vdots & \vdots & 3 & 4 & 4 & \cdots & 4 \\ \vdots & \vdots & \vdots & 4 & \ddots & & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & 4 & \cdots & \cdots & n \end{pmatrix}$$

On effectue les opérations élémentaires $C_k \leftarrow C_k - C_{k-1}$ pour k allant de n à 2 dans cet ordre. Le déterminant est inchangé.

On obtient alors:

$$\det(A) = \begin{vmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \vdots & 1 & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & 1 & \cdots & 1 & 0 \\ 1 & \cdots & \cdots & \ddots & 1 \end{vmatrix} = 1$$

On s'est ramené au déterminant d'une matrice triangulaire inférieure.

Exercice 4. Notons Δ le déterminant à calculer.

On effectue les opérations élémentaires suivantes : $C_k \leftarrow C_k - L_{k+1}$ pour k allant de 1 à n-1. On a :

$$\Delta = \begin{vmatrix} a_1 - a_2 & a_2 - a_3 & a_3 - a_4 & \cdots & \cdots & a_n \\ 0 & a_1 - a_2 & a_2 - a_3 & \cdots & \cdots & \cdots & a_{n-1} \\ 0 & 0 & a_1 - a_2 & a_2 - a_3 & & & \vdots \\ \vdots & & 0 & a_1 - a_2 & \ddots & & \vdots \\ \vdots & & 0 & a_1 - a_2 & a_2 - a_3 & a_3 \\ \vdots & & & 0 & a_1 - a_2 & a_2 - a_3 & a_3 \\ \vdots & & & 0 & a_1 - a_2 & a_2 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & a_1 \end{vmatrix}$$

On s'est donc ramené au déterminant d'une matrice triangulaire supérieure. Ainsi,

$$\Delta = a_1(a_1 - a_2)^{n-1}$$

Exercice 5. Par la formule de Pascal, on a :

$$\forall i \in \llbracket 1,p \rrbracket, \ \forall j \in \llbracket 1,p \rrbracket, \ \binom{n+i-1}{j-2} + \binom{n+i-1}{j-1} = \binom{n+i}{j-1}.$$

On effectue $C_j \leftarrow C_j + C_{j-1}$ pour j allant de p à 2 dans cet ordre. On a alors :

$$\Delta_{n,p} = \begin{vmatrix} 1 & \binom{n+1}{1} & \dots & \binom{n+1}{p-1} \\ 1 & \binom{n+2}{1} & \dots & \binom{n+2}{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & \binom{n+p}{1} & \dots & \binom{n+p}{p-1} \end{vmatrix} = \Delta_{n+1,p}$$

Ainsi la suite $(\Delta_{n,p})_{n\in\mathbb{N}}$ est constante (à p fixé). On a donc : $\forall n\in\mathbb{N}, \ \Delta_{n,p}=\Delta_{0,p}$. Or,

$$\Delta_{0,p} = \begin{vmatrix} 1 & 0 & \dots & \dots & 0 \\ 1 & \binom{1}{1} & \ddots & & \vdots \\ \vdots & \binom{2}{1} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & \binom{p-1}{1} & \dots & \binom{p-1}{p-2} & \binom{p-1}{p-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & \dots & \dots & 0 \\ 1 & 1 & \ddots & \dots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & \binom{p-1}{1} & \dots & \binom{p-1}{p-2} & 1 \end{vmatrix} = 1$$

Ainsi : $\forall n \in \mathbb{N}, \ \forall p \geq 2, \ \Delta_{n,p} = 1.$

Exercice 6. 1.

$$\Delta_n(a) = \begin{bmatrix} a+n+1 & 1 & \dots & 1 & 1 \\ a+1+n & a & \dots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ a+n+1 & 1 & \dots & a & 1 \\ a+n+1 & 1 & \dots & 1 & a \end{bmatrix} = (a+n+1) \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & a & \dots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & \dots & a & 1 \\ 1 & 1 & \dots & 1 & a \end{bmatrix}$$

On effectue ensuite : $C_i \leftarrow C_i - C_1$ pour tout $i \in [\![2,n]\!]$. On obtient :

$$\Delta_n(a) = (a+n+1) \begin{vmatrix} 1 & 0 & \dots & 0 \\ 1 & a-1 & 0 & & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 1 & \vdots & 0 & a-1 & 0 \\ 1 & 0 & \cdots & 0 & a-1 \end{vmatrix}$$
$$= (a+n-1)(a-1)^{n-1}.$$

- 2. Notons $A_n(a)$ cette matrice.
 - $A_n(a)$ est inversible si et seulement si $\det(A_n(a)) \neq 0$.
 - Ainsi, $A_n(a)$ est inversible si et seulement si $\Delta_n(a) \neq 0$.
 - Donc $A_n(a)$ est inversible si et seulement si $a \neq 1$ et $a \neq 1 n$.

Exercice 7. Notons
$$A = \begin{pmatrix} \cos(a_1 + a_1) & \cos(a_1 + a_2) & \dots & \cos(a_1 + a_n) \\ \cos(a_2 + a_1) & \cos(a_2 + a_2) & \dots & \cos(a_2 + a_n) \\ \vdots & & \vdots & & \vdots \\ \cos(a_n + a_1) & \cos(a_n + a_2) & \dots & \cos(a_n + a_n) \end{pmatrix}.$$

Soit $j \in [1, n]$, on a:

$$C_{j} = \begin{pmatrix} \cos(a_{1} + a_{j}) \\ \vdots \\ \cos(a_{n} + a_{j}) \end{pmatrix} = \begin{pmatrix} \cos(a_{1})\cos(a_{j}) - \sin(a_{1})\sin(a_{j}) \\ \vdots \\ \cos(a_{n})\cos(a_{j}) - \sin(a_{n})\sin(a_{j}) \end{pmatrix} = \cos(a_{j}) \begin{pmatrix} \cos(a_{1}) \\ \vdots \\ \cos(a_{n}) \end{pmatrix} - \sin(a_{j}) \begin{pmatrix} \sin(a_{1}) \\ \vdots \\ \sin(a_{n}) \end{pmatrix}$$

Notons
$$C = \begin{pmatrix} \cos(a_1) \\ \vdots \\ \cos(a_n) \end{pmatrix}$$
 et $S = \begin{pmatrix} \cos(a_1) \\ \vdots \\ \sin(a_n) \end{pmatrix}$. On a alors : $\forall j \in [\![1, n]\!], C_j \in \text{Vect}(C, S)$.

Ainsi, on a Vect $(C_1,...,C_n) \subset \text{Vect}(C,S)$

Donc $\operatorname{rg}(C_1, ..., C_n) = \dim(\operatorname{Vect}(C_1, ..., C_n)) \le \dim(\operatorname{Vect}(C, S)) \le 2$. On a $\operatorname{rg}(A) = \operatorname{rg}(C_1, ..., C_n) \le 2$. Donc A n'est pas inversible. Ainsi, det(A) = 0.

Exercice 8. Soit $x \in \mathbb{R}$.

$$\det(A+xB) = \begin{vmatrix} a_{1,1} + xb_{1,1} & a_{1,2} + xb_{1,2} & \cdots & a_{1,n} + xb_{1,n} \\ a_{2,1} + xb_{2,1} & a_{2,2} + xb_{2,2} & \cdots & a_{2,n} + xb_{1,n} \\ \vdots & & & \vdots \\ a_{n,1} + xb_{n,1} & a_{n,2} + xb_{n,2} & \cdots & a_{n,n} + xb_{n,n} \end{vmatrix}$$

En développant suivant la première ligne et en itérant, on obtient que det(A+xB) est une somme de produit de n coefficients de A + xB. Ainsi, $x \mapsto \det(A + xB)$ est une fonction polynomiale de degré inférieur ou égal à n.

Notons $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \det(A + xB)$. f est continue sur \mathbb{R} et $f(0) = \det(A) \neq 0$. Ainsi, il existe $\epsilon > 0$ tel que: $\forall x \in [-\epsilon, \epsilon], \ f(x) \neq 0$ (du même signe que $\det(A)$). Ainsi, pour tout $x \in [-\epsilon, \epsilon]$, $\det(A+xB)\neq 0$. Finalement: $\forall x\in [-\epsilon,\epsilon], A+xB$ est inversible.

Exercice 9. Supposons n impair.

On a $\det({}^tA) = \det(A)$ d'une part et $\det({}^tA) = \det(-A) = (-1)^n \det(A)$ d'autre part car A est antisymétrique. Ainsi, $(-1)^n \det(A) = \det(A)$.

Or, n est impair donc l'équation devient : $-\det(A) = \det(A)$.

Ainsi, det(A) = 0. Donc A n'est pas inversible.

1. On effectue $L_1 \rightarrow -2L_3$. On a alors : Exercice 10.

$$\begin{vmatrix} 2 & 1 & 1 \\ 0 & 5 & -2 \\ 1 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 0 & 7 & -7 \\ 0 & 5 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$

En développant suivant la 1 ère colonne, on obtient :

$$\begin{vmatrix} 2 & 1 & 1 \\ 0 & 5 & -2 \\ 1 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 7 & -7 \\ 5 & -2 \end{vmatrix} = -14 + 35 = 21$$

2. En développant suivant le première ligne, on obtient :

$$\begin{vmatrix} 5 & 0 & -2 \\ 1 & 2 & 1 \\ -3 & 1 & 4 \end{vmatrix} = 5 \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ -3 & 1 \end{vmatrix} = 5(8-1) - 2(1+6) = 35 - 14 = 21$$

1. En développant suivant la première ligne, on obtient : Exercice 11.

$$\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix} = -a \begin{vmatrix} a & c \\ b & 0 \end{vmatrix} + b \begin{vmatrix} a & 0 \\ b & c \end{vmatrix} = abc + abc = 2abc$$

3

2. On commence par effectuer les opérations élémentaires $C_2 \leftarrow C_2 - C_1$ et $C_3 \leftarrow C_3 - C_1$. On a alors :

$$\begin{vmatrix} 1 & 1 & 1 \\ a+b & b+c & a+c \\ ab & bc & ca \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a+b & c-a & c-b \\ ab & b(c-a) & a(c-b) \end{vmatrix}$$

On développe ensuite suivant la première ligne.

On obtient:

$$\begin{vmatrix} 1 & 1 & 1 \\ a+b & b+c & a+c \\ ab & bc & ca \end{vmatrix} = 1 \times \begin{vmatrix} c-a & c-b \\ b(c-a) & a(c-b) \end{vmatrix} = (c-a)a(c-b) - b(c-a)(c-b) = (c-a)(c-b)(a-b)$$

Exercice 12. Soit $\lambda \in \mathbb{C}$.

 $M(\lambda)$ est inversible si et seulement si $\det(M(\lambda)) \neq 0$

Commençons donc par calculer $\det(M(\lambda))$.

$$\det(M(\lambda)) = \begin{vmatrix} 3-\lambda & -1 & 1\\ 7 & -5-\lambda & 1\\ 6 & -6 & 2-\lambda \end{vmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 3-\lambda\\ 1 & -5-\lambda & 7\\ 2-\lambda & -6 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0\\ 1 & -4-\lambda & \lambda+4\\ 2-\lambda & -4-\lambda & 6+(2-\lambda)(\lambda-3) \end{bmatrix}$$

$$= (4+\lambda) \begin{vmatrix} 1 & 0 & 0\\ 1 & 1 & \lambda+4\\ 2-\lambda & 1 & -\lambda^2+5\lambda \end{vmatrix} \quad \text{par linéarité par rapport à la deuxième colonne}$$

En développant suivant la 1ère ligne, on obtient :

$$\det(M(\lambda)) = (4+\lambda) \times \begin{vmatrix} 1 & \lambda+4 \\ 1 & -\lambda^2+5\lambda \end{vmatrix} = (4+\lambda)(-\lambda^2+5\lambda-(\lambda+4)) = (4+\lambda)(-\lambda^2+4\lambda-4) = -(4+\lambda)(\lambda-2)^2$$

Ainsi, $M(\lambda)$ est inversible si et seulement si $\lambda \notin \{-4, 2\}$.

Exercice 13. En développant suivant la première ligne, on obtient :

$$D_{n} = (a+b)D_{n-1} - a \begin{vmatrix} b & a & 0 & \cdots & \cdots & 0 \\ 0 & a+b & a & 0 & \cdots & 0 \\ 0 & b & a+b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & b & a+b & a \\ 0 & \cdots & \cdots & 0 & b & a+b \end{vmatrix}$$

Puis, en développant suivant la première colonne, on obtient :

$$D_n = (a+b)D_{n-1} - abD_{n-2}$$

• Si
$$a=0$$
, $D_n=\begin{vmatrix}b&0&\cdots&\cdots&0\\b&\ddots&\ddots&\ddots&\vdots\\0&\ddots&\ddots&\ddots&\vdots\\0&\cdots&b&b\end{vmatrix}=b^n$ (déterminant d'une matrice triangulaire).
• Si $b=0$, $D_n=\begin{vmatrix}a&a&0&\cdots&0\\0&\ddots&\ddots&\ddots&\vdots\\\vdots&\ddots&\ddots&\ddots&0\\0&\cdots&0&a\end{vmatrix}=a^n$ (déterminant d'une matrice triangulaire).

• Supposons $a \neq 0$ et $b \neq 0$. Comme $ab \neq 0$, $(\Delta_n)_{n \geq 2}$ est une suite récurrente linéaire d'ordre 2. Son équation caractéristique associée est : $r^-(a+b)r + ab = 0$. Les solutions de cette équation sont : a et b.

On sait également $D_1 = a + b$ et $D_2 = \begin{vmatrix} a+b & a \\ b & a+b \end{vmatrix} = (a+b)^2 - ab = a^2 + b^2 + ab$

• Si a = b. Alors, il existe $\lambda, \mu \in \mathbb{K}$ tel que : $\forall n \in \mathbb{N}^*, D_n = (\lambda n + \mu)a^n$. En particulier, on a :

$$\begin{cases} D_1 = (\lambda + \mu)a = 2a \\ D_2 = (2\lambda + \mu)a^2 = a^2 + b^2 + ab = 3a^2 \end{cases}$$

Or,

$$\begin{cases} a(\lambda + \mu) = 2a \\ a^2(2\lambda + \mu) = 3a^2 \end{cases}$$

$$\iff \begin{cases} \lambda + \mu = 2 \\ 2\lambda + \mu = 3 \end{cases} \quad \text{car } a \neq 0$$

$$\iff \begin{cases} \lambda + \mu = 2 \\ \lambda = 1 \end{cases}$$

$$\iff \begin{cases} \mu = 1 \\ \lambda = 1 \end{cases}$$

On obtient ainsi:

$$\forall n \in \mathbb{N}^*, \ D_n = (n+1)a^n$$

• Si $a \neq b$. Alors, il existe λ , $\mu \in \mathbb{K}$ tel que : $\forall n \in \mathbb{N}^*$, $D_n = \lambda a^n + \mu b^n$. Or,

$$\begin{cases} a\lambda + b\mu = a + b \\ a^2\lambda + b^2\mu = a^2 + b^2 + ab \end{cases}$$

$$\iff \begin{cases} a\lambda + b\mu = a + b \\ b(b - a)\mu = a^2 + b^2 + ab - a(a + b) = b^2 \end{cases}$$

$$\iff \begin{cases} a\lambda + b\mu = a + b \\ \mu = \frac{b}{b - a} & \text{car } b \neq 0 \text{ et } a \neq b \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{-a}{b - a} & \text{car } a \neq 0 \\ \mu = \frac{b}{b - a} & \text{car } a \neq 0 \end{cases}$$

On obtient ainsi:

$$\forall n \in \mathbb{N}^*, \ D_n = \frac{b^{n+1} - a^{n+1}}{b - a}$$

Exercice 14. Pour tout $n \geq 2$, on note :

$$\mathcal{P}(n): \forall a_1, ..., a_n \in \mathbb{K}, \ V(a_1, ..., a_n) = \prod_{1 \le i < j \le n} (a_j - a_i).$$

Montrons par récurrence que pour tout $n \geq 2$, $\mathcal{P}(n)$ est vraie.

- pour n = 2: soient $a_1, a_2 \in \mathbb{K}$, $V(a_1, a_2) = \begin{vmatrix} 1 & a_1 \\ 1 & a_2 \end{vmatrix} = a_2 a_1$. Or, $\prod_{\substack{1 \le i < j \le 2 \\ \text{Ainsi}, \ \mathcal{P}(2) \text{ est vraie.}}} (a_j - a_i) = a_2 - a_1$.
- Soit $n \geq 2$. Supposons que $\mathcal{P}(n)$ est vraie. Soient $a_1, ..., a_{n+1} \in \mathbb{K}$.

$$V(a_1, ... a_{n+1}) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^n \\ 1 & a_2 & a_2^2 & \dots & a_2^n \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_{n+1} & a_{n+1}^2 & \dots & a_{n+1}^n \end{vmatrix}$$

Pour tout k allant de n+1 à 2 et dans cet ordre, on effectue $C_k \leftarrow C_k - a_1 C_{k-1}$. Le déterminant est inchangé. Ainsi :

$$V(a_1,..a_{n+1}) = \begin{vmatrix} 1 & 0 & \cdots & \cdots & 0\\ 1 & a_2 - a_1 & a_2(a_2 - a_1) & \cdots & a_2^{n-1}(a_2 - a_1)\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & a_{n+1} - a_1 & a_{n+1}(a_{n+1} - a_1) & \cdots & a_{n+1}^{n-1}(a_{n+1} - a_1) \end{vmatrix}$$

En développant suivant la première ligne, on obtient :

$$V(a_1, ... a_{n+1}) = \begin{vmatrix} a_2 - a_1 & a_2(a_2 - a_1) & \dots & a_2^{n-1}(a_2 - a_1) \\ \vdots & \vdots & \dots & \vdots \\ a_{n+1} - a_1 & a_{n+1}(a_{n+1} - a_1) & \dots & a_{n+1}^{n-1}(a_{n+1} - a_1) \end{vmatrix}$$

Par linéarité du déterminant par rapport à chacun des lignes, on obtient

$$V(a_1, ... a_{n+1}) = \prod_{j=2}^{n+1} (a_j - a_1) \times \begin{vmatrix} 1 & a_2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \dots & \vdots \\ 1 & a_{n+1} & \dots & a_{n+1}^{n-1} \end{vmatrix}$$

$$= \prod_{j=2}^{n+1} (a_j - a_1) V(a_2, ..., a_{n+1})$$

$$= \prod_{j=2}^{n+1} (a_j - a_1) \prod_{2 \le i < j \le n+1} (a_j - a_i) \quad \text{par hypothèse de récurrence}$$

$$= \prod_{1 \le i < j \le n+1} (a_j - a_i)$$

Ainsi, $\mathcal{P}(n+1)$ est vraie.

• On a donc prouvé par récurrence que pour tout $n \geq 2$, $\mathcal{P}(n)$ est vraie.

Exercice 15.

Soit $n \geq 2$. En développant suivant la première ligne, on obtient :

$$\Delta_{n+1} = \Delta_n - (-1)\Delta_n = 2\Delta_n$$

Ainsi, $(\Delta_n)_{n\geq 2}$ est une suite géométrique de raison 2 et de premier terme $\Delta_2 = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 1 + 1 = 2$. On obtient alors : $\forall n \geq 2, \ \Delta_n = \Delta_2 2^{n-2} = 2^{n-1}$.

Exercice 16. Soient $a, b \in \mathbb{R}$. Montrons par récurrence sur $n \in \mathbb{N}^*$ la proposition $\mathcal{P}(n)$: $\det(M_n) = (a^2 - b^2)^n$. Initialisation: Soit n = 1. On a $M_1 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$. On a donc: $\det(M_1) = a^2 - b^2$. Ainsi, $\mathcal{P}(1)$ est vraie. Hérédité:

Soit $n \in \mathbb{N}^*$.

En développant suivant la première colonne, on a :

$$\det(M_n) = a \begin{vmatrix} a & 0 & \cdots & \cdots & 0 & b & 0 \\ 0 & \ddots & & & ddots & ddots & \vdots \\ \vdots & & a & b & & & \vdots \\ \vdots & & b & a & & & \vdots \\ 0 & ddots & & & \ddots & & \vdots \\ b & ddots & \cdots & \cdots & 0 & a & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & a & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & a & 0 \end{vmatrix}$$

En développant les deux déterminants suivant leur dernière colonne, on obtient :

$$\det(M_n) = a^2(-1)^{2(2n+1)} \det(M_{n-1}) - b^2(-1)^{2n+1+1} \det(M_{n-1}) = (a^2 - b^2) \det(M_{n-1})$$

Ainsi, la suite $(\det(M_n))_{n\in\mathbb{N}^*}$ est géométrique de raison a^2-b^2 .

Comme $\det(M_1) = \begin{vmatrix} a & b \\ b & a \end{vmatrix} = a^2 - b^2.$

On a: $\forall n \in \mathbb{N}^*$, $\det(M_n) = (a^2 - b^2)^{n-1} \det(M_1)$. Donc: $\forall n \in \mathbb{N}^*$, $\det(M_n) = (a^2 - b^2)^{n-1} \times (a^2 - b^2)$. Ainsi: $\forall n \in \mathbb{N}^*$, $\det(M_n) = (a^2 - b^2)^n$.

Exercice 17. On a:

$$A = \begin{pmatrix} 0 & 1 & 2 & \cdots & m-2 & n-1 \\ 1 & 0 & \ddots & \ddots & \ddots & n-3 & n-2 \\ 2 & 1 & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & 2 & \ddots & \ddots & 1 & 2 & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & 1 & 2 \\ n-2 & n-3 & \vdots & \ddots & 1 & 0 & 1 \\ n-1 & n-2 & \cdots & \cdots & 2 & 1 & 0 \end{pmatrix}$$

On effectue les opérations élémentaires $C_k \leftarrow C_k - C_{k-1}$ pour k allant de n à 2 ans cet ordre. On obtient alors:

$$\det(A) = \begin{vmatrix} 0 & 1 & \cdots & \cdots & \cdots & 1 \\ 1 & -1 & \ddots & & & 1 \\ 2 & -1 & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \ddots & \vdots \\ n-2 & \vdots & & & \ddots & \ddots & \ddots & \vdots \\ n-1 & -1 & \cdots & \cdots & \cdots & -1 & -1 \end{vmatrix}$$

On effectue ensuite les opérations élémentaires : $L_i \leftarrow L_i + L_n$ pour tout $i \in [1, n-1]$. On obtient :

$$\det(A) = \begin{vmatrix} n-1 & 0 & \cdots & \cdots & \cdots & 0 \\ n & -2 & 0 & \cdots & \cdots & \cdots & 0 \\ n+1 & -2 & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 2n-3 & -2 & \cdots & \cdots & -2 & -2 & 0 \\ n-1 & -1 & \cdots & \cdots & \cdots & -1 & -1 \end{vmatrix}$$

Ainsi:

$$\det(A) = (n-1)(-2)^{n-2} \times (-1)$$

car la matrice est triangulaire.

Ainsi, $det(A) = -(n-1)(-2)^{n-2}$.

Exercice 18 (Déterminant de Van der Monde).

$$V(a_1, ..., a_{n-1}, x) = \sum_{k=1}^{n} x^{k-1} \begin{vmatrix} 1 & a_1 & \cdots & a_1^{k-2} & a_1^k & \cdots & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{k-2} & a_2^k & \cdots & \cdots & a_2^{n-1} \\ 1 & \vdots & \cdots & \vdots & \vdots & \cdots & \ddots & \vdots \\ 1 & a_{n-1} & \cdots & a_{n-1}^{k-2} & a_{n-1}^k & \cdots & \cdots & a_{n-1}^{n-1} \end{vmatrix}$$

$$\text{Or}: \forall k \in [\![1,n]\!], \begin{vmatrix} 1 & a_1 & \cdots & a_1^{k-2} & a_1^k & \cdots & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{k-2} & a_2^k & \cdots & \cdots & a_2^{n-1} \\ 1 & \vdots & \cdots & \vdots & \vdots & \cdots & \cdots & \vdots \\ 1 & a_{n-1} & \cdots & a_{n-1}^{k-2} & a_{n-1}^k & \cdots & \cdots & a_{n-1}^{n-1} \end{vmatrix} \in \mathbb{R}.$$
Airsi $P: x \mapsto V(a_1, a_1, a_2, \dots, x)$ est upo forestion polynomials et on a

Ainsi, $P: x \mapsto V(a_1, ..., a_{n-1}, x)$ est une fonction polynomiale et on a $\deg(P) \le n-1$.

2. D'après la question précédente, P est un polynôme de degré inférieur ou égale à n-1. De plus, P admet $a_1, ..., a_{n-1}$ pour racines.

En effet, pour tout $i \in [1, n-1]$, $V(a_1, ..., a_{n-1}, a_i)$ a deux lignes égales donc le déterminant est nul.

Or, les a_i pour $i \in [1, n-1]$ sont deux à deux distincts. Donc il existe $\lambda \in \mathbb{K}$ tel que :

$$P = \lambda \prod_{i=1}^{n-1} (X - a_i).$$

Or, d'après l'expression de $V(a_1,...,a_{n-1},x)$ sous forme de somme, on a $\lambda = V(a_1,...a_{n-1})$ (coefficient devant X^{n-1}).

Donc :

$$P = V(a_1, ..., a_{n-1}) \prod_{i=1}^{n-1} (X - a_i).$$

3. D'après la question précédente, on a : $\forall n \in \mathbb{N}, \ V(a_1, ..., a_{n-1}, a_n) = V(a_1, ..., a_{n-1}) \prod_{i=1}^{n-1} (a_n - a_i).$

Montrons maintenant par récurrence que : $V(a_1,...,a_n) = \prod_{1 \leq i < j \leq n} (a_j - a_i)$.

- Pour n=2, $V(a_1,a_2)=\begin{vmatrix} 1 & a_1 \\ 1 & a_2 \end{vmatrix}=a_2-a_1$ donc le résultat est vraie.
- Soit $n \ge 2$, supposons que $V(a_1,...,a_n) = \prod_{1 \le i < j \le n} (a_j a_i)$. En utilisant la formule de récurrence, on a :

 $V(a_1,...,a_{n+1}) = V(a_1,...,a_n) \prod_{i=1}^{n} (a_{n+1} - a_i)$

$$= \prod_{1 \le i < j \le n} (a_j - a_i) \prod_{i=1}^n (a_{n+1} - a_i)$$

$$= \prod_{1 \le i < j \le n+1} (a_j - a_i)$$

Ainsi, la propriété est vraie en n+1.

• On a donc prouvé que : $\forall n \geq 2, V(a_1, ...a_n) = \prod_{1 \leq i < j \leq n} (a_j - a_i).$

Exercice 19. 1. Pour tout $k \in [0, n-1]$, on pose $a_k = \omega^k$.

En utilisant les notations de l'exercice 14, on remarque que $\det(U) = V(a_0, ..., a_{n-1})$. Ainsi, par la formule du déterminant de Vandermonde, on a :

$$\det(U) = \prod_{0 \le k \le p \le n-1} (x_p - x_k) = \prod_{0 \le k \le p \le n-1} (\omega^p - \omega^k).$$

Soient $k, p \in [0, n-1]$, on a:

$$e^{\frac{2ik\pi}{n}} = e^{\frac{2ip\pi}{n}} \iff \frac{2k\pi}{n} \equiv \frac{2p\pi}{n} [2\pi]$$

$$\iff k \equiv p[n]$$

$$\iff k = p \quad \operatorname{car} k, p \in [0, n-1]$$

Ainsi, les ω^k pour $k \in [0, n-1]$ sont deux à deux distincts donc $\det(U) \neq 0$. Ainsi, U est inversible.

2. On a:

$$\begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_n & a_1 & a_2 & \dots & a_{n-1} \\ & \ddots & \ddots & & & \\ a_2 & a_3 & \dots & a_n & a_1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 1 & \omega & \dots & \dots & \omega^{n-1} \\ 1 & \omega^2 & \dots & \dots & \omega^{2(n-1)} \\ \vdots & \vdots & & & \vdots \\ 1 & \omega^{n-1} & \dots & \dots & (\omega^{n-1})^{n-1} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^n a_k & \sum_{k=1}^n a_k \omega^{k-1} & \dots & \sum_{k=1}^n a_k (\omega^{n-1})^{k-1} \\ \sum_{k=1}^n a_k & \sum_{k=1}^n a_k \omega^k & \dots & \sum_{k=1}^n a_k (\omega^{n-1})^k \\ \vdots & \vdots & & \vdots & \dots & \vdots \\ \sum_{k=1}^n a_k & \sum_{k=1}^n a_k \omega^{k+n-2} & \dots & \sum_{k=1}^n a_k (\omega^{n-1})^{k+n-2} \end{pmatrix}$$

Pour tout $p \in [1, n]$, on note $[MU]_p$ la p-ème colonne de MU et U_p la p-ème colonne de U. On a :

$$[MU]_p = \begin{pmatrix} \sum_{k=1}^n a_k (\omega^{p-1})^{k-1} \\ \vdots \\ \sum_{k=1}^n a_k (\omega^{p-1})^{k+n-2} \end{pmatrix}$$

Pour tout $p \in [1, n]$, on pose : $\alpha_p = \sum_{k=1}^n a_k (\omega^{p-1})^{k-1}$.

Ainsi:

$$[MU]_p = \begin{pmatrix} \alpha_p \\ \omega \alpha_p \\ \vdots \\ \omega^{k-1} \alpha_p \end{pmatrix} = \alpha_p U_p$$

On a donc :

$$\det(MU) = \det(\alpha_1 U_1 | \cdots | \alpha_n U_n)$$

Par linéarité du déterminant par rapport à chacune des colonnes, on a :

$$\det(MU) = \prod_{k=1}^{n} \alpha_k \det(U_1|\cdots|U_n) = \prod_{k=1}^{n} \alpha_k \det(U).$$

3. On a $\det(MU) = \prod_{p=1}^{n} \alpha_p \det(U)$ et $\det(MU) = \det(M) \det(U)$.

Donc $det(M) det(U) = \prod_{p=1}^{n} \alpha_p det(U)$.

Or, $det(U) \neq 0$ donc:

$$\det(M) = \prod_{p=1}^{n} \alpha_k$$

$$= \prod_{p=1}^{n} \left(a_1 + \omega^{p-1} a_2 + \dots + a_n \omega^{(p-1)(n-1)} \right)$$

$$= \prod_{k=0}^{n-1} \left(a_1 + \omega^k a_2 + \dots + a_n \omega^{k(n-1)} \right)$$

2 Déterminant d'une famille de vecteurs

Exercice 20. Notons $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$.

$$\det_{\mathcal{B}}(P_1, P_2, P_3) = \begin{vmatrix} 1 & 3 & -1 \\ 1 & -1 & 2 \\ -1 & 5 & 3 \end{vmatrix}$$

$$= \begin{cases} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 + L_1 \end{vmatrix} \begin{vmatrix} 1 & 3 & -1 \\ 0 & -4 & 3 \\ 0 & 8 & 2 \end{vmatrix}$$

En développant suivant la première colonne, on obtient :

$$\det_{\mathcal{B}}(P_1, P_2, P_3) = \begin{vmatrix} -4 & 3 \\ 8 & 2 \end{vmatrix} = -8 - 8 \times 3 = -32 \neq 0$$

Ainsi, (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$.

Exercice 21. Notons $\mathcal{B}_c = ((1,0,0),(0,1,0),(0,0,1))$ la base canonique de \mathbb{C}^3 en tant que \mathbb{C} espace vectoriel.

$$\det_{\mathcal{B}_c}(e_1, e_2, e_3) = \begin{vmatrix} 1+i & i & -2+i \\ 1 & -1 & 0 \\ i & 1-i & -i \end{vmatrix}$$

En développant suivant le 2ème ligne, on a :

$$\det_{\mathcal{B}_c}(e_1, e_2, e_3) = -\begin{vmatrix} i & -2+i \\ 1-i & -i \end{vmatrix} - \begin{vmatrix} 1+i & -2+i \\ i & -i \end{vmatrix}
= -(1-(1-i)(-2+i)) - (-i(1+i)-i(-2+i))
= -(1+2-3i-1)-i(1-2i)
= -(2-3i)-(i+2)
= 2i-4 \neq 0$$

Ainsi, (e_1, e_2, e_3) forme une base de \mathbb{C}^3 .

Exercice 22. Notons \mathcal{B} la base canonique de \mathbb{R}^3 .

Comme u_1 et u_2 ne sont pas colinéaires,
la famille (u_1,u_2) est libre.

Soit $u = (x, y, z) \in \mathbb{R}^3$. On a :

$$u \in \mathcal{P} \iff u \in \operatorname{Vect}(u_1, u_2)$$

$$\iff (u_1, u_2, u_3) \text{ n'est pas libre}$$

$$\iff (u_1, u_2, u) \text{ n'est pas une base de } \mathbb{R}^3$$

$$\iff \det_{\mathcal{B}}(u_1, u_2, u_3) = 0$$

$$\iff \begin{vmatrix} 1 & 1 & x \\ 2 & 1 & y \\ 3 & 1 & z \end{vmatrix} = 0$$

$$\iff \begin{vmatrix} 1 & 1 & x \\ 0 & -1 & y - 2x \\ 0 & -2 & z - 3x \end{vmatrix} = 0 \quad L_2 \leftarrow L_2 - 2L_1$$

$$L_3 \leftarrow L_3 - 3L_1$$

$$\iff \begin{vmatrix} 1 & 1 & x \\ 0 & 1 & -y + 2x \\ 0 & -2 & z - 3x \end{vmatrix} = 0 \quad L_2 \leftarrow -L_2$$

$$\iff \begin{vmatrix} 1 & 1 & x \\ 0 & 1 & -y + 2x \\ 0 & 0 & z - 2y + x \end{vmatrix} = 0 \quad L_3 \leftarrow L_3 + 2L_2$$

$$\iff z - 2y + x = 0$$

Exercice 23. D'après le binôme de Newton, on a :

$$\forall j \in [0, n], \ (X - z_j)^n = \sum_{i=0}^n \binom{n}{i} (-z_j)^{n-i} X^i = \sum_{i=1}^{n+1} \binom{n}{i-1} (-z_j)^{n-i+1} X^{i-1}$$

Notons $\mathcal{B} = (1, X, ..., X^n)$ la base canonique de $\mathbb{C}_n[X]$ et pour tout $j \in [0, n], P_j = (X - z_j)^n$. On a :

$$\det_{\mathcal{B}}(P_0, \dots, P_n) = \begin{vmatrix} \binom{n}{0}(-z_0)^n & \binom{n}{0}(-z_1)^n & \dots & \binom{n}{0}(-z_n)^n \\ \binom{n}{1}(-z_0)^{n-1} & \binom{n}{1}(-z_1)^{n-1} & \dots & \binom{n}{1}(-z_n)^{n-1} \\ \vdots & \vdots & & \vdots \\ \binom{n}{n} & \binom{n}{n} & \dots & \binom{n}{n} \end{vmatrix} \\
= \binom{n}{0}\binom{n}{1} \cdots \binom{n}{n} \begin{vmatrix} (-z_0)^n & (-z_1)^n & \dots & (-z_n)^n \\ (-z_0)^{n-1} & (-z_1)^{n-1} & \dots & (-z_n)^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{vmatrix}$$

en utilisant la linéarité par rapport à chacune des lignes.

On reconnait à l'ordre des facteurs près des lignes, un déterminant de Vandermonde.

On sait alors que:

$$\begin{vmatrix} (-z_0)^n & (-z_1)^n & \cdots & (-z_n)^n \\ (-z_0)^{n-1} & (-z_1)^{n-1} & \cdots & (-z_n)^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} \neq 0$$

car les z_i sont deux à deux distincts.

Ainsi, $\det_{\mathcal{B}}(P_0, ..., P_n) \neq 0$.

La famille $(P_0, ..., P_n)$ forme donc une base de $\mathbb{C}_n[X]$.

3 Déterminant d'un endomorphisme

Exercice 24. Soit $f \in \mathcal{L}(E)$ vérifiant $f^3 + 2f = 0$.

On a $f^3 = -2f$. Ainsi, $\det(f^3) = \det(-2f)$. Donc $(\det(f))^3 = (-2)^n \det(f)$.

Notons $x = \det(f)$.

L'équation devient : $x^3 - (-2)^n x = 0$ donc $x(x^2 - (-2)^n) = 0$.

- Si n est pair. L'équation devient : $x(x^2-2^n)=0$. Ainsi, x=0 ou $x=2^{n/2}$ ou $x=-2^{n/2}$. Ainsi, $\det(f)\in\{0,-2^{n/2},2^{n/2}$.
- Si n est impair. L'équation devient $x(x^2 + 2^n) = 0$.
 - Si $\mathbb{K} = \mathbb{R}$, alors $x^2 + 2^n \neq 0$ donc x = 0. Ainsi, $\det(f) = 0$.
 - Si $\mathbb{K} = \mathbb{C}$, alors x = 0 ou $x = i2^{n/2}$ ou $x = -i2^{n/2}$. Ainsi, $\det(f) \in \{0, -i2^{n/2}, i2^{n/2}\}$

Exercice 25. On a $f^2 = -id_E$ donc $\det(f)^2 = \det(-id_E) = (-1)^n$.

Ainsi, $\det(f)^2 = (-1)^n$.

Comme det $f \in \mathbb{R}$, on a det $(f)^2 \geq 0$.

Ainsi, $(-1)^n \ge 0$ donc $(-1)^n = 1$ et n n est pair.

Exercice 26.

1. Notons \mathcal{C} la base canonique de \mathbb{R}^4 . Calculons $\det_{\mathcal{C}}(\mathcal{B})$:

$$\begin{aligned} \det(\mathcal{B}) &= \begin{vmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix} \\ &= \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} & \text{en développant suivant la 1-ère ligne} \\ &= 1 \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} & \text{en développant le 1er déterminant par rapport à la 1ere ligne} \\ &= 2 \neq 0 \end{aligned}$$

Donc \mathcal{B} est une base de \mathbb{R}^4 .

2. •
$$A \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \operatorname{donc} f(u_1) = u_1.$$

•
$$A \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 4 \\ 4 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \text{ donc } f(u_2) = 2u_2.$$

•
$$A \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 6 \\ 6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \text{ donc } f(u_3) = u_3.$$

•
$$A \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -8 \\ 0 \\ 0 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \operatorname{donc} f(u_4) = u_4.$$

D'où

$$B = \operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

3. • B est diagonale donc $det(B) = 1 \times 2 \times 3 \times 4 = 24$.

• $\det(f) = \det(\max_{\mathcal{B}}(f) = \det(B) \operatorname{donc} \det(f) = 24.$

• $\det(A) = \det(\operatorname{mat}_{\mathcal{C}}(f) = \det(f) \operatorname{donc} \det(A) = 24.$

Exercice 27. • Montrons que ϕ est linéaire :

Soient $P_1, P_2 \in \mathbb{R}_2[X]$, soient $\lambda, \mu \in \mathbb{R}$. Soit $x \in \mathbb{R}$.

$$\begin{split} \phi(\lambda P_1 + \mu P_2)(x) &= \int_x^{x+1} (\lambda P_1 + \mu P_2)(t) dt \\ &= \lambda \int_x^{x+1} P_1(t) dt + \mu \int_x^{x+1} P_2(t) dt \quad \text{ par linéarité de l'intégrale} \\ &= \lambda \phi(P_1)(x) + \mu \phi(P_2)(x) \\ &= (\lambda \phi(P_1) + \mu \phi(P_2))(x) \end{split}$$

Ainsi, $\phi(\lambda P_1 + \mu P_2) = \lambda \phi(P_1) + \mu \phi(P_2)$ donc ϕ est linéaire.

• Montrons que ϕ est à valeurs dans $\mathbb{R}_2[X]$: Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$. Soit $x \in \mathbb{R}$. Notons $Q(x) = \int_x^{x+1} (at^2 + bt + c)dt$. On a:

$$Q(x) = a\left(\frac{(x+1)^3 - x^3}{3}\right) + b\left(\frac{(x+1)^2 - x^2}{2}\right) + c$$
$$= a\left(\frac{3x^2 + 3x + 1}{3}\right) + b\left(\frac{2x+1}{2}\right) + c$$

Ainsi, $\deg(Q) \leq 2$ donc $\phi(P) = Q \in \mathbb{R}_2[X]$. Finalement, ϕ est un endomorphisme de $\mathbb{R}_2[X]$.

• Soit $x \in \mathbb{R}$.

• On a :
$$\int_{x}^{x+1} 1 dt = 1 \text{ donc } \phi(1) = 1.$$

• On a:
$$\int_{x}^{x+1} t dt = \frac{(x+1)^2}{2} - \frac{x^2}{2} = \frac{2x+1}{2} = x + \frac{1}{2}$$
 donc $\phi(X) = X + \frac{1}{2}$.

• On a:
$$\int_{x}^{x+1} t^2 dt = \frac{(x+1)^3}{3} - \frac{x^3}{3} = \frac{3x^2 + 3x + 1}{3} = x^2 + x + \frac{1}{3} \operatorname{donc} \phi(X^2) = X^2 + X + \frac{1}{3}.$$

Notons \mathcal{B}_c la base canonique de $\mathbb{R}_2[X]$. On obtient ainsi :

$$\mathrm{mat}_{\mathcal{B}_c}(\phi) = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\operatorname{mat}_{\mathcal{B}_c}(\phi)$ est diagonale donc $\operatorname{det}(\phi) = \operatorname{det}(\operatorname{mat}_{\mathcal{B}_c}(\phi)) = 1$.

Exercice 28. Soient $M_1, M_2 \in \mathcal{M}_2(\mathbb{K})$, soient $\lambda, \mu \in \mathbb{K}$.

 $u_A(\lambda M_1 + \mu M_2) = A(\lambda M_1 + \mu M_2) = \lambda A M_1 + \mu A M_2 = \lambda u_A(M_1) + \mu u_A(M_2).$

Ainsi, u_A est une application linéaire de $\mathcal{M}_2(\mathbb{K})$ dans $\mathcal{M}_2(\mathbb{K})$ donc est un endomorphisme de $\mathcal{M}_2(\mathbb{K})$.

Notons $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ la base canonique de $\mathcal{M}_2(\mathbb{K})$ et $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$.

On a:

•
$$u_A(E_{1,1}) = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} = aE_{1,1} + cE_{2,1}$$

•
$$u_A(E_{1,2}) = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix} = aE_{1,2} + cE_{2,2}$$

•
$$u_A(E_{2,1}) = \begin{pmatrix} b & 0 \\ d & 0 \end{pmatrix} = bE_{1,1} + dE_{2,1}$$

•
$$u_A(E_{2,2}) = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} = bE_{1,2} + dE_{2,2}$$

On obtient alors :

$$mat_{\mathcal{B}}(u_A) = \begin{pmatrix} a & 0 & b & 0\\ 0 & a & 0 & b\\ c & 0 & d & 0\\ 0 & c & 0 & d \end{pmatrix}$$

Ainsi,

$$\det(u_A) = \begin{vmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{vmatrix}$$

$$= a \begin{vmatrix} a & 0 & b \\ 0 & d & 0 \\ c & 0 & d \end{vmatrix} + b \begin{vmatrix} 0 & a & b \\ c & 0 & 0 \\ 0 & c & d \end{vmatrix} \quad \text{par développement suivant la 1ère ligne}$$

$$= a \begin{bmatrix} a \begin{vmatrix} d & 0 \\ 0 & d \end{vmatrix} + b \begin{vmatrix} 0 & d \\ c & 0 \end{bmatrix} - bc \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \text{par développement suivant la 1ère ligne pour le 1er déterminant}$$

$$= a^2 d^2 - abdc - bc(ad - bc)$$

$$= (ad)^2 - 2adbc + (bc)^2$$

$$= (ad - bc)^2$$

$$= (\det(A))^2$$