Package 'clrdag'

April 30, 2019

Type Package
Title Likelihood Ratio Tests of a Large Directed Acyclic Graph
Version 1.1.0
Date 2019-04-29
Author Chunlin Li
Maintainer Chunlin Li <1i000007@umn.edu>
Depends R (>= $3.6.0$)
Imports Rcpp (>= 1.0.1)
LinkingTo Rcpp, RcppArmadillo
Description The 'clrdag' package provides R functions for constrained maximum likelihood estimate and like lihood ratio test of a large directed acyclic graph. Documentation about 'clrdag' is provided by the vignette included in this package and via the paper by Li, Shen, and Pan (2019).
License GPL (>= 2)
<pre>URL https://github.umn.edu/li000007/clrdag</pre>
BugReports https://github.umn.edu/li000007/clrdag/issues
NeedsCompilation yes
R topics documented:
clrdag
Index

2 clrdag

clrdag	MLEdag		

Description

A function computes the MLE/LRT of a Gaussian directed acyclic graph with specified constraints.

Usage

Arguments

rguments				
Χ	An n by p data matrix, where n is the number of observations and p is the dimension.			
A, Lambda	Initial estimate. A is a p by p adjacency matrix, Lambda is a p by p dual matrix in acyclicity condition. A must be a DAG! If A is NULL (default), the initial estimate is provided automatically (Be careful!).			
D	A p by p matrix indicating hypothesized edges. For the entries equal to 1, no sparse penalty is imposed.			
tau	A positive real number. tau is the threshold parameter in TLP.			
mu	A positive real number. mu is the sparsity parameter.			
rho	A positive real number. rho is the ADMM dual parameter.			
tol_abs, tol_re	1			
	Positive real. The absolute and relative tolerance.			
dc_max_iter, ad	mm_max_iter			
	Positive integer. The maximum iteration number of DC and ADMM.			

Logical. If TRUE, the objective values are printed after each iteration.

Value

trace_obj

The function returns a LIST containing the following components.

X The input data matrix.

A The final estimate of adjacency matrix.

Lambda The final estimate of dual variables in the acyclicity condition.

mu The input sparsity parameter.

tau The input threshold parameter in TLP.

Author(s)

Chunlin Li

clrdag 3

References

Li, C., Shen, X., and Pan, W. (2019). Likelihood ratio tests of a large directed acyclic graph. Submitted.

Examples

```
## library(mvtnorm)
##
## Example 1: random graph
set.seed(2019)
p<-10
n<-1000
## random graph: randomly generate adjacency matrix A, A lower triangular
sparsity <- 2/p
A <- matrix(rbinom(p*p,1,sparsity)*sign(runif(p*p,min=-1,max=1)),p,p)
A[upper.tri(A, diag = TRUE)] <- 0
#Sigma <- solve(diag(p) - A)</pre>
#Sigma <- Sigma %*% t(Sigma)
\#X \leftarrow rmvnorm(n, mean=rep(0,p), sigma=Sigma, method="chol")
X \leftarrow matrix(rnorm(n*p), n, p) %*% t(solve(diag(p) - A))
out <- MLEdag(X=X,tau=0.3,mu=1,rho=1.2,trace_obj=FALSE) # compute the MLE
B <- out$A
B \leftarrow ifelse(abs(B)>0.3,1,0)
all(B == abs(A))
##
## Example 2: hub graph
set.seed(2019)
p<-10
n<-1000
## hub graph: randomly generate adjacency matrix A, A lower triangular
A \leftarrow matrix(0,p,p)
A[,1] <- sign(runif(p,min=-1,max=1))
A[1,1] <- 0
#Sigma <- solve(diag(p) - A)</pre>
#Sigma <- Sigma %*% t(Sigma)
#X <- rmvnorm(n,mean=rep(0,p), sigma=Sigma, method="chol")</pre>
X <- matrix(rnorm(n*p), n, p) %*% t(solve(diag(p) - A))</pre>
out <- MLEdag(X=X,tau=0.3,mu=1,rho=1.2,trace_obj=FALSE) # compute the MLE
B <- out$A
B <- ifelse(abs(B)>0.3,1,0)
all(B == abs(A))
```

Index

```
*Topic Directed acyclic graph
clrdag, 2
*Topic Likelihood ratio test
clrdag, 2
*Topic MLE
clrdag, 2
clrdag, 2

MLEdag (clrdag), 2
```