Rank-65863 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65863

General information

Number of lines	3
Number of points	9
Number of singular points	1
Number of Eckardt points	0
Number of double points	2
Number of single points	5
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$2^2, 1^5, 0^2$

Singular Points

The surface has 1 singular points:

0:
$$P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_5$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_7$$

Rank of lines: (0, 30, 33)

Rank of points on Klein quadric: (0, 5, 7)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 2 Double points:

The double points on the surface are:

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_1$$

 $P_3 = (0, 0, 0, 1) = \ell_1 \cap \ell_2$

Single Points

The surface has 5 single points:

The single points on the surface are:

 $0: P_0 = (1,0,0,0)$ lies on line ℓ_0

1: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

2: $P_7 = (0, 1, 1, 0)$ lies on line ℓ_2

 $3: P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

4 : $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line:

The points on the surface but not on lines are:

 $0: P_4 = (1, 1, 1, 1)$ $1: P_{13} = (1, 0, 1, 1)$

Line Intersection Graph

$$\begin{array}{c|c}
0 & 1 & 2 \\
\hline
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 1 & 0
\end{array}$$

Neighbor sets in the line intersection graph: Line 0 intersects

Line	ℓ_1
in point	P_1

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2
in point	P_1	P_3

 ${\bf Line~2~intersects}$

Line	ℓ_1
in point	P_3

 $8: P_{14} = (0, 1, 1, 1)$

The surface has 9 points: $\frac{1}{2}$

The points on the surface are:

 $0: P_0 = (1,0,0,0)$ $1: P_1 = (0,1,0,0)$ $2: P_3 = (0,0,0,1)$ $3: P_4 = (1,1,1,1)$

 $4: P_5 = (1, 1, 0, 0)$ $5: P_7 = (0, 1, 1, 0)$ $6: P_{10} = (0, 1, 0, 1)$ $7: P_{13} = (1, 0, 1, 1)$