INDEX

Note: Page numbers and ranges suffixed B, F, or T indicate that material relevant to the topic appears only in a Box, Figure or Table on that page. Where a text treatment on the same page is already indexed, non-text material is not so distinguished.

When acronyms or their expansions are used consistently, the preferred form in the text becomes the sole index entry; where both appear, acronyms are usually preferred.

A	presynaptic terminal neurotransmitter	Aδ fibers 257F, 258-259, 266, 267F
A-kinase (protein kinase A) 101-103, 106,	release 69–70, 75	adenylate cyclase
109-110, 308-309, 440-441	propagation speed 53–57	Ca ²⁺ activation 109, 110F, 425, 448
A1 (primary auditory cortex) 245, 250,	properties 52-57	in cAMP synthesis 101
279F, 550, 551F	signal intensity related to frequency	dopamine activation 444
AAV (adeno-associated viruses) 404–405F,	13–14, 21	G protein activation 106, 126
450B, 571, 583	active transport 30, 32, 36F, 37-38, 40	Gα activation 102, 209, 532
Aβ fibers 257F, 258–259, 266, 267F, 270F	energy for 37F	inhibition 102, 104
AB interneurons 334, 335F	active zones, presynaptic terminals	in ORN feedback 214
absence seizures 508B	CNS synapses 83	rutabaga encodings 442, 443F
ACC (anterior cingulate cortex) 452-453	neuroligin induction of 298-399	serotonin action through 440
accessory olfactory system	neurotransmitters at 84T	ADHD (attention deficit hyperactivity
discrimination of sex partners	organization 73, 79–80	disorder) 499
401–402	receptors apposing 92-93, 96	adipose tissues 357–358
infanticide and 406	synaptic vesicle docking at 75, 82, 83F	Adrian, Edgar 13
pair bonding and 408	voltage-gated Ca ²⁺ channels 75, 84T,	advanced sleep phase syndrome 367
role in female mice 402	104	afferents 15, 233, 237, 241-242, 254
vomeronasal organ (VNO) 221–222B,	activity-dependent changes	age
397, 401F, 406	epilepsy and 510B	and Alzheimer's disease 467
acetylcholine (ACh)	memory and 446	and language acquisition 19
cation channel opening at	activity-dependent regulation	and neural plasticity 5
neuromuscular junctions 88–90	local translation 504-505	agonists, and neurotransmitter receptor
as a neuromodulator 370B, 371	ORNs 310-312	types 92–93
as neurotransmitter at vertebrate neuromuscular junction 69–70	activity-dependent transcription 109, 432	agrin protein 297–299
as neurotransmitter in autonomic	activity-dependent wiring	AgRP (agouti-related protein) 358–362,
nervous systems 86, 353	Hebb's rule and 187–192, 195, 197,	370B, 597F
acetylcholine receptors (AChR)	321	AII amacrine cells 145
in chemogenetics 597–598	molecular determinants and 190-197	airway effects, sympathetic and
ligand-gated ion channel 90–91	neuromuscular connections 300-301	parasympathetic nervous
muscarinic 93, 99, 104	adaptation (in evolution)	system 353
nicotinic 92–93, 109F, 185	adaptive value of behaviors 603	AKAPs (A-kinase anchoring proteins) 102
structure 90-91F	and learning 434–437	allele frequencies
in synaptogenesis 297	and natural selection 519–520, 521F,	ApoE 474
acetylcholinesterase 81,84T	522	and genetic drift 519
Achilles tendon 329, 330F	rodent freezing response 450-451B	allelic exclusion 214
acquired behavior see learned behaviors	value of toxins 77B	allodynia 268
acquisition stage, memory 417	adaptation (in sensory systems)	allosteric agonists 492
F-actin (filamentous actin) 32–34, 36B,	auditory, in owls 461–462	a2δ-1 subunit 299
326–327, 328F	in bacteria 528–530B	α-synuclein, in Parkinson's disease
action potentials	olfactory 210, 228	480-483, 487
as all-or-none 52, 137	somatosensory 257–258, 267F, 270	ALS (amyotrophic lateral sclerosis) 479–480, 487
back propagating 113F	visual system 127, 129–130, 132	
digital signaling in 22–23	adaptor proteins	alternative splicing 379–380, 417
in early bilaterians 523	in chemotaxis 528B, 530B	Alzheimer's disease (AD) 467–476, 477B, 478, 480, 487
initial segment initiation 14	in RTK signaling 108B, 200, 305F	animal models 472–473
ionic basis 52	addictions 493–495	ApoE variants as risk factors 473–475
101110 04818 32	audictions 433-433	THOL Variants as How factors 4/3-4/3

early onset 470–472	brain lesions 596	APP (amyloid precursor protein)
familial (FAD) 470-473	fragile-X syndrome 505-506	in amyloid plaques 469–470
heritability 473	head-fixed experiments 595B, 605	ApoE contribution compared 474
late onset 470, 473-475	and human studies 560-561	effect of mutations 470–473
microglia dysfunction 474-475	inbred strains 604	γ-secretase inhibition and 476
possible treatment 475–476	invertebrate 558	App gene, in Down syndrome 470–472
sporadic 470, 473	neurological and psychiatric drug	appetite regulation 356–362
amacrine cells	development 476–477B, 497	appetitive and aversive signals 442, 443F,
AII amacrine cells 145	neuron size 557–558	444, 456, 459
asymmetric inhibition 142–143	with special faculties 560	Arc (activity-regulated cytoskeleton-
location in the eye 122	spongiform encephalopathies 478	associated protein) 109
starburst amacrine cells (SACs)	utility 557-561	archaerhodopsin 155–156B, 600
142-143, 144F	vertebrate 559–560	arcuate nucleus 354F, 358–360, 361F, 397F
types 140–141	for vision research 124B	area-X 391–392B
amiloride 236, 237F	see also model organisms	arm, robotic 349–350
amino acids	anions, membrane permeability 38	arm movements 346–348
radioactively labeled 31, 36B, 181, 183	anosmic mice 209, 310, 401	aromatase 394, 396, 399–400
-		arrestins 128
threonine phosphorylation 425 see also glutamate; glycine	antagonistic muscles 330	
	antagonists, AChR 90	ascending arousal system 369, 372
AMPA (2-amino-3-hydroxy-5- methylisoxazol-4-propanoic	antagonists, glutamate receptor 596	ASD (autism spectrum disorders) 299,
acid) receptors	antennal lobes 225–229, 231, 232F	499–501, 504–507, 607
CaMKII phosphorylation 426–427	Antennapedia mutants 545	association cortex 163
drugs of abuse 495	anterior cingulate cortex (ACC) 452–453	associative learning 422, 435
evolution 527	anterior pituitary 354F, 355, 396, 397F	associativity of LTP 422-423
Glr1 and 224F, 225	anterior-posterior axis 7, 173, 176-177,	astrocytes 7F, 8, 299
	192–194	asymmetric cell division 198, 281–283
glutamate activation 93–96, 189 mechanotransduction channels and	axon targeting 287, 307, 308F, 309	ataxia 340, 479, 509T
261	ephrin expression 283	ATP gated ion channels 91, 93T, 385, 386F,
recruitment in LTP expression	neural tube formation 278–279	599
423–425, 432	ORN axon patterning 310, 319	ATP hydrolysis
amphetamines 489, 494	see also coronal sections	muscle contraction 326, 327–328F
amphibian nerve regeneration 169	anterograde axonal transport 32, 34	powering myosin 36B
amphioxus 537, 540	anterograde tracing methods 158, 400,	attention, visual 158
amplification, auditory signal 243–244	461, 582–583, 585	attention deficit/hyperactivity disorder
amphilication, auditory signal 243–244 amygdala 6F, 7	anterolateral column pathway 267–268	(ADHD) 499
autonomic nervous system 354	antibodies	attractants, in axon guidance 174B
	immuno-EM staining 580	audition, and sexual behavior in insects
benzodiazepines and 493 divisions of 454	primary and secondary, in	378
	immunostaining 573	auditory cortex 19
fear conditioning 454–455	antidepressants 490–491	analyzing significant sounds 250–252
maze experiments 606	antidromic spikes 53	bat echolocation 252
medial amygdala 398, 399F, 400, 401F,	antiporters (exchangers) 37F, 81F	primary auditory cortex (A1) 245, 250,
454	antipsychotic drugs 488–490, 496	279F, 550, 551F
olfactory amygdala 220, 401	anxiety disorders 491–493, 495	auditory fear conditioning 454–455, 606,
in sensing pain 267	anxiety-like states 606–607	608
amyloid β protein (Aβ) 468F, 469-478	AP5 (2-amino-5-phosphonovaleric acid)	auditory maps
Aβ ₄₀ 470-471	423, 424F, 447, 495F	barn owl experiments 4-5, 246-247,
Aβ ₄₂ 470–472, 475–476	Aplysia	461
Aβ hypothesis 471–472, 475F	gill-withdrawal reflex 437–439, 440F,	mammals 249
causal links to AD 471	449, 558	auditory nerves 238F, 239, 241, 242–243F,
amyloid plaques	habituation and sensitization	254B
Alzheimer's disease 468–469, 472–474	437–439	frequency tuning 241, 243–244
contents 469–470	ionotropic receptors 533	auditory signals
anatomical techniques 575–586	mechanism of long- and short-term	amplification 243–244
androgen receptors 393–394, 396, 399,	memory 439-441	brainstem processing 245-246
479T	as a model organism 433B, 437–442,	auditory system 238-255
androgens, testosterone as 393	444, 449	see also sound
androstenone 213	short-term memory 439–441	autism spectrum disorders (ASD) 299,
animal behavior studies 603	synaptic tagging 433B	499–501, 504–507, 607
animal models	apolipoprotein E (ApoE) 473-475	auto-inhibitory transcriptional regulation
Alzheimer's disease 472-472	apoptosis see programmed cell death	362–364, 367

autocrine signals 107B	basal ganglia 6F, 7	bitter taste 233-237
autonomic nervous system	dysregulation in Parkinson's disease	blastocysts 485B, 563, 564F, 566B
control mechanisms 353–354	480, 481F, 484	blastulas 278
sympathetic and parasympathetic	global activation 345	blind spot 121F, 131F
branches 104, 351, 352F	motor programs 343-345	blood-brain barrier (BBB) 476-477B, 482,
autoradiography 31, 153F, 182F, 183, 280	basilar membranes 238-239, 241, 242F,	484
autosomal dominant mutations 497B	244	BMPs (bone morphogenetic proteins)
autosomal recessive mutations 379, 497B,	basket cells 12, 114, 115–116B, 281,	279
499	295–296	Bmp4 protein (bone morphogenetic
autosomes, ratio of X-chromosomes 379	basolateral amygdala 454, 456F	protein 4) 544
aversive and appetitive signals 442, 443F, 444, 456, 459	bats, echolocation 250–252, 527–528, 551 batteries 40–43, 45F, 46	BNST (bed nucleus of stria terminalis) 398, 400, 401F
avoidance behavior 230-231	BBB (blood-brain barrier) 476-477B, 482,	body plan, bilaterian 544–546
escape response 3-4, 27, 49	484	body position and movement see
AVPV (anteroventral periventricular	BDNF (brain-derived neurotrophic factor)	proprioception
nucleus) 397–398	109, 304, 305F, 392B	body weight maintenance 355
axon-axon competition 176	bee orchids 377	border cells 445–446B
axon-axon interactions 314-315	behavioral analyses 602–608	Boss (Bride of sevenless) mutant 199–200
axon-axon repulsion 310F axon degeneration, developmental 302	modeling brain disorders 606–608 behavioral conditioning, neural basis 455	bottom-up memory research 420 botulinum toxins 77B
axon diameter and propagation speed	Benzer, Seymour 363	brain, human
53–57	benzodiazepines 492–494, 510B, 607	computer comparison 21–23
axon guidance	β-adrenergic receptors	neocortex as proportion 548
molecular biology of 174–175B	cAMP activation 100–102	neuron and synapse numbers 316
single gradients inadequate 174–178	β2-adrenergic receptors	neurons, synapses and connections
axon guidance cues 174-175B, 179B	odorant receptor replacement 309	167, 316
axon guidance molecules 174, 175B,	β-pleated sheets 278, 469	topographic mapping 19–21
177–178, 195	biased random walk strategies 528B, 530B	brain, mammalian 6–7
axon mistargeting 177	bidirectional signaling 318	brain disorders see neurological and
axon pruning 301–302, 303F	bidirectional trans-synaptic	psychiatric disorders
axon targeting	communication 297-299	brain hemispheres, vertebrate 6–7, 18
ORN axons 307–309	bilaterians	brain lesions
RGC axons 167–180	central nervous systems 515, 522	amygdala and fear conditioning 454
axons 7 afferents and efferents 15	chemical synapses 526	hippocampus 417, 447, 452–453
diameter and myelination 53–57	cnidarian–bilaterian split 536, 538B, 546	human studies 18–19, 24 limitations 339
distinction from dendrites 290–292	common body plan 522, 544–545	monkey middle temporal area 161
evolution of myelination 524–525	distinguished from cnidarians 515	mouse arcuate nucleus 358-359
fast and slow axonal transport 32, 34	dorsoventral inversion 544, 554	neuron inactivation 596, 601
growth cones 10, 11F	eumetazoan ancestors 518B, 526	rat hypothalamus 356–357
information flow toward 11-13	opsins 525-537, 538B	sexual dimorphism and 398, 403
initial segment 14	protostomes and deuterostomes	sleep-wake cycle 369
local protein synthesis 31	515–516, 523, 544	subthalamic nucleus 484
RGC, nasal and temporal sides 146	voltage-gated ion channels 523–524	suprachiasmatic nucleus 366
self-avoidance 293–295	binary expression 284, 570, 572F, 580F	brain-machine interfaces 349
see also squid giant axon	binocular vision 153, 178, 180, 182, 184	brain regions
	see also monocular deprivation	forebrain, midbrain, and hindbrain 7
В	binomial distribution 72B	mammalian 6F, 7
BAC (bacterial artificial chromosome)	biological clocks 363, 365–366	neuronal activation 596
265F, 569	biomarkers, Alzheimer's disease 475F, 476	specialized functions 18-19
bacteriorhodopsin 535	bipolar cells	tracking information flows 582-584
'ball-and-chain' inactivation model 60–61	blue-ON bipolar cells 144	brain sections, Alzheimer's disease 467F
barbiturates 491–492	evolutionary origins 539 light response 137–138, 139F	brain slices
barn owls	location in the eye 13F, 122	CA1 neurons 429
auditory and visual mapping 4–5	midget bipolar cells 541	electrode-based recording methods 594B, 601–602
memory traces 459, 461-462	OFF-bipolar and ON-bipolar 138	hippocampus 420
as model organisms 560	bipolar disorder 490, 495–496, 497–498B,	LTP in 421
sound location in 246–249	507	patch-clamp recording in 93, 112,
barrel cortex 190-192B, 460B	bird song 391-392B, 553B	113F, 155, 560

see also songbirds

brainbow labeling 9B, 10F, 584

see also whisker barrels

brainstem	cadherins (Ca ²⁺ -dependent cell adhesion	light-triggered cAMP decline and
auditory signal processing 245–246	proteins)	closure 126-127
midbrain, pons, and medulla 7	cadherin-23 (CDH23) 240	cations, membrane permeability 38, 43
motor control nuclei 338-340	in cell adhesion 79, 84T, 96F, 174B, 549	cats, taste receptors 234
branching mechanisms 293–295	homophilic binding 80F	caudate-putamen see striatum
Brenner, Sydney 558	N-cadherin 201	CCK (cholecystokinin) 361, 370B
Broca's area 18F, 19, 552B	origins 526	cDNA (complementary DNA) see gene
Brodmann's map 270	protocadherin-15 (PCDH15) 240	cloning
Bruchpilot protein 80, 84T	protocadherins 240, 294	cell adhesion molecules
bulbocavernosus, nucleus 399	caged ATP 386F, 599	in axon guidance 174B
α-bungarotoxin 77B	caged Ca ²⁺ 75	cadherins as 79, 84T, 96F, 174B, 549
butterflies 521, 528	caged glutamate 601, 602F	lamina-specific targeting 195
	caged neurotransmitters 601	cell assemblies, place cells 444B
C	Cajal see Ramón y Cajal	cell-attached patches 58, 104
C. elegans (Caenorhabditis)	calmodulin (CaM) 103, 109, 110F, 130,	cell-attached recording 590B
chemotaxis 529–530B, 532	210, 592	cell autonomous actions 200-201
connectome 559F, 584	see also CaMKII	cell autonomous genes/transcription
DA9 motor neuron 296	Cambrian period 516	factors 200–201, 313, 367, 377,
ion channels 524	Cameleon protein 592	393, 568
ionotropic receptors 533	CaMKII (calcium/calmodulin dependent	cell-cell interactions
mechanotransduction 259, 260B	protein kinase II) 30F, 31, 96,	cell fates 281–283
as a model animal 558	103, 109	Drosophila photoreceptors 198-201
nematocin in sexual behavior	phosphorylation and LTP 425-427,	ORN axon targeting 311
409-410B	447F, 448, 455	cell death see programmed cell death
neuronal polarity 33	cAMP (cyclic AMP)	cell divisions
neurotransmitters 85	and closure of cation channels 126–127	asymmetric cell division 198, 281–283
Odr10 mutants 223, 225	conserved role in memory 444	in cortical neurogenesis 548
olfactory system 223–225	and odorant receptors 209	cell fates
Parl and Par4 polarity regulators	second messenger of β-adrenergic	Drosophila visual system development
291-292	receptors 100–102	197-203
Unc6 and Unc40 174-175B	semaphorin/neuropilin signaling 309	in neuronal development 281-283
C fibers 257F, 258–259, 266, 267F	signaling in <i>Aplysia</i> memory 439–441	cell junctions and synapses 526
Ca ²⁺	signaling in mouse memory 448	cell lineages 198
and guanylyl cyclase 128–129	cAMP agonists 185F, 186	cell polarity pathways 290–292
neurotransmitter release at	cAMP-dependent protein kinase (PKA)	cell-replacement therapy 483–485, 485B
presynaptic terminals 74–75	101–103, 106, 109–110, 308–309,	cell-surface proteins
olfactory recovery and adaptation 210	440-441	scrapie and variant PrP 478
	canaries 392B	in signal transduction 107-108B
synaptotagmin sensors 78–79 visual recovery and adaptation	cannabinoid receptors 430-431	cell-surface receptors, in signal
128–129, 132	canonical microcircuit 155B	transduction 107-108B
Ca ²⁺ imaging experiments	capacitance (C) 41	cell theory 8
C. elegans odorant response 224–225	capacitors, defined 41	cell types
chemosensation in flies 383–384	capping, RNA 28	anterograde tracing 583
Fru ^M taste receptor neurons 383–384	Capricious protein (Caps) 202, 313F, 314,	diversification in evolution 538–539,
motor control 345	316, 320	548-549
nociception 262, 263F	capsaicin 263F, 264-265, 282	gene expression profiling 574
ORNs 214	cardiac muscle control 351	Golgi staining limitation 578
piriform cortex 219	Cas9 (CRISPR-associated protein 9)	identifying sites of gene action 568
presynaptic terminals 79	see CRISPR	neural circuit dissection 572
retinal waves 184–185, 187F	caspase-3 404F, 405	CEl _{ON} and CEl _{OFF} cells 456B
taste receptor cells 237	castrated males 221-222B, 393-395, 398F,	center-surround receptive fields 136–137,
two-photon Ca ²⁺ imaging 142, 152F,	402F	138–140, 144, 149
153, 219, 593	catarrhines 133, 540, 542	central amygdala 454-455, 456B
Ca ²⁺ indicators 591, 592F	catecholamines 483	central dogma 28-30
CA1 pyramidal neurons 419, 423F, 426,	catenins	central nervous system 6-8
429–431, 448–449	β-catenin 549, 550F	central pattern generators (CPGs)
CA3 pyramidal neurons 419–420, 444B,	δ-catenin 525F	332–339, 386
450B	cation channels	cerebellum 7
cable (passive electrical) properties	ACh opening of, at neuromuscular	in memory 427, 431
44-47	junctions 88–90	in movement control 340-343

cerebral cortex 6F, 7	chromatic aberration 134	description and role 238
cell fates 285	chromatin structure regulation 501	signal amplification 243, 246
fissures and lobes 19	chromophores, retinal as 124	tonotopic maps 240-243, 245
information processing 159	chromosome abnormalities, sex	vestibular system compared 252,
inhibitory neurons 116B	chromosomes 393	253B
schizophrenia 490	ciliary photoreceptors 535-537, 547	see also hair cells
see also cortical neurons; neocortex;	circadian pacemaker neurons 366	cochlear nuclei 241, 245–249, 250F
visual cortex	circadian rhythms 362-374, 528, 537, 563	coding spaces 228-229
CGEs (caudal ganglionic eminences) 281	circuit motifs see neural circuits	cognitive learning 436
cGMP (cyclic GMP) 101	cis-regulatory elements 520-521, 541	cognitive maps 444B
CGRP (calcitonin gene-related peptide)	CJD (Creutzfeldt-Jakob disease) 477-478	coincidence detectors 189
268	Cl ⁻ ion channels 63–64B, 96–98	interaural time difference and 247
chained reflex hypothesis 333	clades and cladistic analysis 517-519	NMDA receptors as 94, 189, 423
chandelier cells 114, 281, 295	CLARITY-based tissue clearing 577F	in nucleus laminaris 247-248
channelopathies 508–509B	classical conditioning	collaterals 17B
channelrhodopsins 359, 535	as a form of learning 434	color blindness 135, 543
channelrhodopsin-2 see ChR2	inbred animals 604	color-opponency theory 133, 143-145
channels in membrane transport 36	clathrin-mediated endocytosis 82–83	color-opponent RGCs 143, 145
see also ion channels	climbing fibers 341-342, 451	color vision
characteristic frequency 241	clinical trials	comparing cone signals for 143-145
Charcot-Marie-Tooth (CMT) disease 56B, 57	cell-replacement therapy 484	cone cells and 130–131, 132–135
CheA histidine kinase 528–530B	deep brain stimulation 484	evolution of trichromacy 135, 519,
CheB protein 529–530B	γ-secretase inhibitors 476	540-542
chemical gradients 37	neural prosthetics 350	molecular basis 134-135, 542-543
chemical indicators 591–593, 594T	rational drug discovery 477B, 486B	columns
chemical sensation, TRP channels	Clock gene 363, 372, 563	ocular dominance columns 181-184,
262–264	clonal analysis 199	188-189, 190-191B
chemical synapses 10, 526	cloning	visual cortex cells 151-154
chemoaffinity hypothesis 169-171	of ion channels 59–61, 127	comb jellies (ctenophores) 517B, 522,
chemogenetic approaches 596-598	of opsin genes 134–135	526–527
chemosensory cues 378, 384	positional cloning 60, 358, 372, 562	combinatorial action/activation
chemosensory neurons 533	closed-loop experimental design 605,	guidance receptors 286-288
chemosensory receptors, GPCRs as	606F	in odorant recognition 210, 211F
530-532	closed-loop feedback 349–351	combinatorial recognition, signaling
chemotaxis 528-530B	Clostridium botulinum 77B	molecules 319
CheR protein 529–530B	Clostridium tetani 77B, 596	Comm (Commissureless) mutants
CheW adaptor protein 528-529B	CMT (Charcot-Marie-Tooth) disease 56B, 57	287–288 commissural neurons 174–175B
CheY response regulator 528–529B	Cnemidophorus uniparens 403B	
chick tectum 171, 177	CNG channels see cyclic nucleotide-gated	compact myelin 54, 56B
chicks, escape response 3-4	CNGA2 channel 401	comparative genomics 574–575
chimeras 563	cnidarians	competitive binding assays 489
chimpanzees 521, 552–553B	derived from eumetazoans 517B, 526	competitive synapse elimination 300–301
Chlamydomonas reinhardtii 535, 599	distinguished from bilaterians 515	complementary DNA see gene cloning
cholera toxin 583	nervous systems 522, 526	complex cells, primary visual cortex 150, 151F
choline 50, 57	opsins 535–536	computers and the human brain 21-23,
chordates 516	sea anemones 520	167
Chordin protein 544	cnidarian-bilaterian split 536, 538B, 546	conditional knockout mice 564, 565F
ChR2 (channelrhodopsin-2)	CNO (clozapine- <i>N</i> -oxide) 597–598	conditioned stimuli (CS) 434-436,
Esr1-expressing VMH neurons 405	CNS (central nervous system) 6-8	441–444, 454–455, 456B,
expressed in fly ORNs 230F, 231	CNVs (copy number variations) 498B,	459-460B
expressed in mammalian neurons 535	500	conductance
expressed in mouse piriform neurons	CO ₂ avoidance 230-231	changes and action potentials 50-52
459–460B	co-culture systems 298F, 299, 439–440	circuit model of neurons 41, 43-44,
expressed in mouse SPNs 344, 345F	co-expression of taste receptors 235	45F, 47–48
expressing in mouse RGCs 186	co-receptors 175B, 177F, 234, 235-236F,	single channel conductance, γ 59,
mouse hypocretin neurons 372F	297, 533	64B, 240
as an optogenetic effector 155-156B,	cocaine 489, 493–495	conductors, defined 41
360F, 407F, 450–451B, 588,	cochlea	cone cells
599-602	basilar membranes 238-239, 241,	in color vision 132–135, 540
usefulness 163	242F, 244	detection of light signals 121–135

double transgenic mice 337

function of rods and 122	expression in transgenic mice	483-484
and high-acuity vision 130–131	155–156B, 265F, 340, 404–405,	deep cerebellar nuclei 340-342
human types 133–134	565F, 583	delay lines 247F, 248
sensitivity and response speed	source 564	Delta ligand 282, 283F, 315
131-132	CREB (CRE binding protein) transcription factor 110, 308–309, 442	demyelinating diseases 56B, 57
sensitivity comparison in color vision 143–145	CreER recombinase 503, 564, 570	dendrites 7 distinction from axons 290–292
confocal microscopy 576–577, 581, 584F, 593, 594T	CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9	information flow from 11–13 as integrative devices 110–113
conformational changes, protein induced 477–478	system 565–566B critical period, monocular deprivation	mRNA targeting to 30–31 secondary dendrites 218, 219F
connection specificity, ORNs and PNs 315–316	180-182, 462 crustaceans	self-avoidance 293-295
connectomes 223, 301, 558, 559F, 584	GABA neurotransmitter 85	dendrite morphogenesis 292–293
connexin proteins 115B, 526	stomatogastric ganglion (STG)	dendrite projection 389–390
ω-conotoxin 77B	334–336, 368, 437, 558	dendrite targeting 313
consolidation stage, memory 417	cryptochrome (CRY) proteins 363–365	dendritic integration 428–429
contextual fear conditioning 450-451B, 452-455	ctenophores (comb jellies) 517B, 522, 526-527	dendritic protein synthesis 30F, 31 dendritic spikes 112
continuous neural maps 305–307, 318	CTPNs (corticothalamic projection	dendritic spines 7, 14, 33, 113, 400
contralateral projections 146, 148, 178, 180, 187	neurons) 285, 286F cued fear conditioning 454	monocular deprivation experiments 462
	curare 77B	spine boutons 432F
contrast analysis, center-surround receptive fields 136–137	current-voltage relationship 88F, 89, 91,	dendritic tiling 141
control experiments 608	94	dendritic trees 28
convergent evolution 225, 294, 517B, 525, 534, 554–555	cVA (11 <i>-cis-</i> vaccenyl acetate) 382–383, 386, 389	dendrodendritic synapses 218 dense-core vesicles 87
cooperativity of LTP 422-423	cyclic AMP see cAMP	dentate gyrus 419–421, 423F, 429,
coronal sections 6F, 7, 481–482F, 485F, 573F, 575, 583F	cyclic nucleotide-gated (CNG) channels in chemosensory neurons 532	450-451B depolarization 38, 45, 47-55, 58-61,
corpus callosum 285, 286F	CNGA2 channel 401	63-65B
correlated neuronal activity 182, 184–189, 192F, 193–194, 198	neuronal activation 598-599 olfactory receptor neurons 208-209,	action potential production and 47–48, 49–50
cortical amygdala 219F, 220	212, 310, 401	bipolar cells 137-138
cortical area specialization 550-552	origins and functions 64–65B	depressing synapses 83-85
cortical neurons	in rod cells 127	depressive illness 490, 495
cortical GABAergic neurons 155B,	cycloheximide 235	dermatome maps 256F
281, 295	cytoarchitectonics 576	Descartes, Rene 415, 463
excitatory and inhibitory 280–281 glutamatergic neurons 281	cytoskeleton in intracellular trafficking 32–34	detection thresholds 213F, 244, 269–270, 271F
memory formation from artificial		deuterostomes 516, 523, 544
activation 459–460B	D	developmental events 278-279
cortical thinning 490	DA9 motor neuron 296	developmental regulators 544-546
cotransporters (coupled transporters)	DAG (diacylglycerol) 103, 636	DHPG (dihydroxyphenylglycine) 505F
37–39	dark adaptation 122, 129-130	differentiation, cellular, and evolution
courtship behavior	dark rearing 182, 184	515
Drosophila 378-379, 384-385	Darwin, Charles	differentiation, neuronal, wiring problem
songbirds 390, 391-392B, 399	concept of evolution 514-515	277
unisexual lizards 403B	evolution of the eye 537-538B	digital and analog signaling 22–23
courtship conditioning 390	natural selection and 514F, 519-522	dihydrotestosterone (DHT) 394, 399
CPGs (central pattern generators)	DAT (plasma membrane dopamine	directed change, mutations 566B
332–339, 386	transporter) 494	direction sensitivity in RGCs 142-143
CPNs (callosal projection neurons) 285,	Db (Diabetic) mouse gene 357-358	discrete neural maps 305-307, 318
286F	Dbx1 transcription factor 337	disease see neurological and psychiatric
CRACM (ChR2-assisted circuit mapping) 602	DCC (deleted in colon cancer) protein 175B, 289, 318	disorders disinhibition 17B, 140
Cre/loxP system 187F, 265, 564, 565F, 568,	<i>de novo</i> mutations 495–496, 497–498B,	diversification
570	501, 508B	cell fates 281-283
Cre recombinase	decision making 162	cell types in evolution 538-539,
conditional knockout mice 423, 563	declarative memory/explicit memory 416,	548-549
CreER recombinase 503, 564, 570	451-453	genes 519 524

deep brain stimulation (DBS) 480, 481F,

dizygotic twins 2

DNA	driver transgenes 570	Semal A (semaphorin 1A) 313, 314F,
documenting evolution 513	driving forces, ions 40	315, 317T, 318-320
location of genes 28	Drosophila (D. melanogaster)	Sema2A 313-314, 320
nucleotide substitutions 553B	axon pruning 302	Sema2B 313-315, 317T, 319
DNA microarrays 573-574, 598B	embryonic development 544	Sema3A 289-290, 309, 310F, 317T, 318,
DNA recombination 498, 519-520, 568,	Eyeless transcription factor 546-547	320
570	giant fibers 524	Senseless transcription factor 202
DNA shuffling 520	homologous recombination 565	Sidekicks protein 195
Dobzhansky, Theodosius 1, 514	mating behavior 378–390, 603	teneurins 315–316, 496
domains of life 515	mechanotransduction 259, 260B	transient receptor potential protein
dominant and recessive phenotypes 562F	as a model animal 558	65B, 598
dopamine	neuromuscular synapse 80F	drug addiction 493-495
as a neuromodulator 86, 370–371B,		drug development, neurological and
483	neuronal polarity 33 neurotransmitters 85	psychiatric disorders 476–477B
in reward-based learning 456-459		drug therapies
in schizophrenia 488–490	olfactory conditioning 441–444	antidepressant drugs 490–491
dopamine D ₂ receptors 343F, 345F, 489,	olfactory system 225–232	antipsychotic drugs 488–490, 496
496	ORNs (olfactory receptor neurons)	<i>Dscam</i> gene 316–317
dopamine neurons	105, 225–231	Dscam proteins 195, 293-295, 316-317
in addiction 493–495	pheromones 231	DSE (depolarization-induced suppression
in <i>Drosophila</i> learning 443-444	photoreceptor cell fates 198–201	of excitation) 431
heterogeneity 459	projection neuron targeting 312–313	DSGCs (direction-selective retinal
in motor control 343F, 344–345	sexual behavior 378–390, 603	ganglion cells) 142–143, 144F
as a neuromodulator 86, 369F,	sleep state 367	DSI (depolarization-induced suppression
370-371B	taste receptor cells 383–384	of inhibition) 430–431
operant conditioning 442	visual system development 197–203	dsRNAs (double-stranded RNAs) 567
in Parkinson's disease 480, 482, 484	see also Drosophila genes and	DTI (diffusion tensor imaging) 582
in reward signaling 361-362, 456-459	mutants; Drosophila proteins	dTRPA1 channels 382, 384
tonic and phasic firing modes 457	Drosophila genes and mutants	dunce mutants, Drosophila 441F, 442
transplantation 481	Antennapedia mutants 545	dye-coupling 115B
Doppler effect 251–252	<i>Dfmr1</i> mutants 505	dynamic polarization, theory of 12
dorsal column pathway 266	Doublesex (Dsx) gene 379F, 380,	dynamic range, visual system 129
dorsal cortex 547	386-390	dynamical states, motor cortex 348
dorsal fate 544	Dscam gene 316–317	dynamin proteins 83, 84T, 581F
	dunce mutants 441F, 442	dynein proteins 33F, 34, 36B
dorsal root ganglia (DRG)	Fruitless (Fru) gene 379-381, 384-388,	dynem proteins 331, 34, 30D
appearance 12	390	Е
classification 259	<i>Hox</i> gene cluster 545–547	
expressing Mrgpr receptors 264	Nompc mutants 260B	E–I (excitatory–inhibitory) balance 507, 508–510B
expressing Piezo2 261	Numb mutants 282–283	
expressing TRP channels 262–264	Period gene 363-365, 367, 379, 563	eardrum 238, 241
peripheral targets and 303	Pink1 and Parkin genes 482	eating, regulation 356–362
proprioceptive somatosensory	rutabaga mutants 441F, 442, 443F,	echolocation in bats 250–252, 527–528,
neurons 332	444	551
somatosensory neuron location 256,	Sevenless and Boss mutants 199-200	ectoderm layer 278
257F	Shaker mutant 60–61, 63	ectopic connections 314, 316
spinal cord termination 266, 332	<i>Shibire</i> ^{ts} mutant 82–83, 84T, 230, 381,	ectopic development 546, 547F
visceral sensory neurons 353	386	ectopic expression 202F, 244, 260B
dorsal stream, exiting V1 158	Slit, Robo, and Comm mutants	edges, V1 response 149–150, 160
dorsal-ventral axis 7, 175B, 194, 278, 310	287–288	EEG see electroencephalography
see also horizontal sections	Timeless gene 363, 365	efferents 15, 243
dorsoventral inversion 544, 554	Ultrabithorax mutants 545	Egr1 gene (early growth response-1) 109,
double knockout experiments 173, 193,	Drosophila proteins	221B, 452
448	absence of ATP-gated channels 599	electric eels 59, 60F
Doublesex (Dsx) gene 379F, 380, 386–390		electric shocks, involvement of dopamine
Down syndrome 471, 499	Capricious protein 202, 314	neurons 444
doxycycline 450–451B, 570	Dpp and Sog proteins 544	electrical circuit models
Dpp protein (decapentaplegic) 544	Dscam proteins 195, 293–295, 316–317	excitatory and inhibitory input 97,
Dravet syndrome 508B	dTRPA1 channels 382, 384	98F
DREADD (designer receptors exclusively	Eyeless transcription factor 546-547	glial plasma membranes 43–44
activated by a designer drug) 597	Frazzled receptor 202	neuronal plasma membranes 40-44,
DRG see dorsal root ganglia	odorant receptors 227F, 229F, 533	46

Emx2 transcription factor 279

nonselective cation channel opening 89F	ENaC (epithelial Na+ channel) 236, 237F, 260B	equilibrium potentials 39, 49, 97, 98F Erk kinase 108–109B
with resistors or capacitors 40F	end-plate currents 88-89, 93	escape response 3–4, 27, 49
electrical gradients 37	end-plate potentials (EPPs) 70-71, 72B,	estradiol 393–398, 400, 402–404, 564
electrical self-stimulation 456–457	74, 88–89, 91, 93	estrogens 393–397, 400, 403B, 564
electrical stimulation experiments	miniature (mEPPs) 71-72, 81	estrogen receptors
598-599	endocannabinoids 430–431	CreER recombinase 503, 564, 570
electrical synapses 11, 115–116B, 526,	endocrine and exocrine systems 351	Esr1 405
559F, 586, 601	endocytosis 29, 32	estradiol and 394, 396–397
electrochemical gradient 37	clathrin-mediated 82–83	ethanol 494–495
electroencephalography (EEG)	synaptic vesicle recycling 81–83	eukaryotes
in epilepsy 508–510B	endoderm layer 278	chemosensory receptors as GPCRs
as field potential recording 588	endoplasmic reticulum (ER) 28	530-532
in sleep 367–368	endosomes 29	origins 515
electromotility 244, 245F	Engrailed2 gene 177, 283	eumetazoans 517B, 526-527, 535
electron microscopy	engrams (memory traces) 449, 450–451B,	evolution
confirmation of the neuron doctrine	459–463, 595B	by altered gene expression 520–521
10	enteric nervous system 351	convergent evolution 225, 294, 517B,
immuno-EM 580-581	entorhinal cortex 21, 419, 428-430	525, 534, 554-555
micrographs of synapses 73F	spatial representation 444–446B	general concepts and approaches
resolution 579–580	entrainment 363, 365-366, 528, 537	514–522, 554–555
serial electron microscopic	environment	of language 552–553B
reconstructions 142, 223, 431, 558, 559F, 585F	affecting heritability 3	of nervous system development
stereocilia 239	fitness as contingent on 519	543-553
transmission and scanning EM 580	nature <i>vs</i> nurture debate 1-5	of neuronal communication 522–527
Electrophorus electricus 59, 60F	enzyme-coupled receptors 108B	parallel evolution 535–537
electrophysiological recordings	Eph receptors 172, 174, 176F, 180	of sensory systems 527–543
Aplysia 437	ephexins 180B	of trichromacy 135
auditory nerve fibers 241, 254B	ephrins	exchangers (antiporters) 37, 64
in C. elegans 224	action with retinal waves 192-194	excised patches 590B
cerebellum 342–343	motor neuron connectivity 284-285	excitable cells 38, 52, 63–64B
of cortical GABAergic neurons 155B	ephrin-Eph receptor systems	excitation-contraction coupling 327, 328F
crustacean STGs 334	bidirectional signaling 177	excitatory neurons 15, 17B
Drosophila PNs 231, 389	motor neuron development 285	excitatory neurotransmitters, glutamate
dye injection combined with 578	origins 526	as 85
human patients 560–561	ephrin gradients 172-177, 180, 193-194	excitotoxicity 510B
intracellular and extracellular	epibatidine 185–187	exocrine and endocrine systems 351
methods 587-591	epigenetic modifications 3, 110	exocytosis
large invertebrate neurons 557-558	epilepsy	after intracellular vesicle trafficking 29
monkey motor cortex 346	benzodiazepine treatment 510B	neurotransmitter exocytosis 75, 526
motion perception in monkeys 158,	E-l balance and 507, 508-510B	exon shuffling 520
161	EEG use 509F, 588	exons, joining after RNA splicing 28
optical methods compared 594T,	electrophysiological experiments on	experience
602F	patients 24, 560	facilitating adult learning 459-463
piriform cortex 219	involvement of GABA _A receptors 97,	innate behavior modification 390
POMC neurons in hypothalamic slices	493, 510B	neural system wiring and 320–321
359	ion channel mutations 65B	visual system wiring and 180–197
SCN neurons 366	surgical treatment 19–20, 415F	see also activity-dependent wiring
touch sensory fibers 269	treatment with channel blockers 77,	explicit memory 416, 451–453
using suction electrodes 123, 130F, 133	510B	expression cloning 262, 263F
see also extracellular; intracellular	epinephrine	extensor muscles 330
electroporation 460B, 571, 590B	β-adrenergic receptors 101	extinction (in conditioning) 436, 454, 455F
ELKS protein 80, 84T	production 353	extinction (in evolution) 514F, 547, 553
embryonic development	EPP (end-plate potentials) 70–71, 72B, 74,	extracellular recordings
developmental events 278–279	88-89, 91, 93	barn owl nucleus laminaris 248
multiple use of the same molecule 318–319, 546	EPSC (excitatory postsynaptic current) 93,	comparison with intracellular 589,
sex differentiation 393, 395	97, 111 EDSD (excitatory postsymantic potential)	594B
embryonic stem cells (ES cells) 485, 486B,	EPSP (excitatory postsynaptic potential) 93, 94F, 97, 98F, 111-113, 342F,	crustacean STG neurons 335F
563, 565	602	demonstrating LTP 421, 426F

fEPSP (field EPSP) 421, 426F, 449F

Drosophila ORNs 227-228F

loose-patch recording 590B	field potentials	fragile-X syndrome (FXS) 504–506
monkey motor neurons 344, 347F	fEPSP 421, 426F, 449F	Frazzled receptor 202
multi-electrode arrays 156B, 184	recordings 587F, 588	frequencies, fundamental and harmonics
suitability for live animals 594–595B	filopodia 178, 179B	251
zebrafish motor neurons 606F	fine structure studies 579–582	frequency tuning 241, 243-244
see also single-unit extracellular	finger movements 347F	FRET (fluorescence resonance energy
recording	firing patterns	transfer) 591
extrasynaptic receptors 92	event-triggered memory recall 418	frogs, three-eyed 182-183, 189
exuberant connections 168, 184, 300, 302	single-cell recording 136–137, 587–589	frontal lobe 18
eye-specific segregation 183–189	firing rates	FRT (FLP recognition target) sites 564,
Eyeless transcription factor 546–547	PN and ORN 228	565F
eyelid suturing 181–182, 184, 195	somatosensory system studies 256	FLP/FRT system 564, 568, 572F, 580F
eyes	fitness 519, 521–522	Fru ^{GAL4} transgene 381, 382–383F, 386–387
development 546–547		fruit flies see Drosophila
_	5-HT (5-hydroxytryptamine) see serotonin	Fruitless (Fru) gene 379-381, 386-388,
evolution 537–538B, 546–547	fixation and allele frequency 519	390, 572
structure of the human eye 121F	fixed action patterns 4	male-specific Fru ^M 379–390, 404
D.	flavor, distinction from taste 233	fruits and color vision 542
F	flexor muscles 330	Fru ^M neurons
F-actin (filamentous actin) 32–34, 36B,	floor plate 175B, 283, 284F, 288-290	female equivalent 386
326–327, 328F	floxed alleles 564, 565F	male courtship behavior 381-382
face recognition	FLP/FRT system 564, 568, 572F, 580F	P1 clusters 384-389
primate temporal cortex 159-160	FLP recombinases 564, 565F, 568, 572F,	sensory cues 382-385
prosopagnosia 451	580F	ventral nerve cord 385-386
facilitating synapses 83-85	fluorescence endoscopy 593	FSH (follicle-stimulating hormone) 99F,
FAD (familial Alzheimer's disease)	fluorescence microscopy	355T, 396, 397F
470–473	confocal microscopy 576-577, 581,	FTDP (frontotemporal dementia with
fast-spiking inhibitory neurons 53, 115	584F, 593, 594T	parkinsonism) 473
fear responses	light-sheet fluorescence microscopy	functional selection, axon targeting
auditory fear conditioning 454–455,	577	168-169
606, 608	super resolution 79–80, 580–582	fura-2 indicator 591
in behavioral assays 606	fluoxetine (Prozac) 490F, 491, 495F	FUS (fused in sarcoma) protein 480
circuit diagram 455F, 456	<i>Fmr1</i> gene 504–505, 506F	fusiform face area 159
contextual fear conditioning	fMRI (functional magnetic resonance	
450–451B, 452–455	imaging)	G
feedback inhibition 17B	emotional responses 455	G protein cascades
appetite 356, 358F	face recognition areas 159, 160F	following ORN binding 209F
circadian rhythms 362–364	language use 552B	triggered by metabotropic
feedback regulation, GnRH 396–397	memory formation and recall	neurotransmitter receptors
feedforward excitation/inhibition 17B	452–453	99–100, 138
feedforward model, LGN to visual cortex	monitoring diseases 561	in visual transduction 125-126, 127F
155	non-invasiveness 19, 593	in yeast mating 531F
FEF (frontal eye fields) 157F, 158	resolution 593	$G\alpha$, $G\beta$, and $G\gamma$ subunits 99, 102–104
females	FMRP protein (fragile-X mental	$G\alpha$ subunits
accessory olfactory system 402	retardation protein) 504–506	G _a variants 103
expression of male-specific Fru ^M	focal seizures 508B	G_s^1 and G_i variants 102
380–382	foraging, honeybees 603, 604F	GTPase activity 99
ovariectomized 394, 400, 403, 404F,	forebrain 7, 279	GABA (γ-amino butyric acid) 85, 86F,
408	forward genetics	97-98
receptivity and Fru ^M -equivalent	random mutagenesis in 562-563	GABA-gated ion channels 91
neurons 386	and reverse genetics 561-565	GABA receptors, ionotropic 96-98
fEPSP (field excitatory postsynaptic	forward signaling, ephrin-EphA 177	GABA _A receptors
potential) 421, 426F, 449F	Fos gene	benzodiazepines and 492–493
fertilization and development 278	expression induced by ionotropic	epilepsy 508B
fetal tissue, cell-replacement therapy 481,	AChR activation 109	fast inhibitory action 97
484-485	and long-term memory 452	muscimol and 77B, 596
Fezf2 transcription factor 285	fovea	picrotoxin and 77B
FGF (fibroblast growth factor) family	cone concentration in 122, 130–131,	GABA _B receptors 98, 105, 492
Engrailed2 expression 177-178	134F	GABAergic inhibition
as morphogens 279, 283	equivalent in moles 551	and brain disorders 491–494, 502,
fiber optics 600-601	midget bipolar cells 541	509B
fibroblasts, iPS cells from 485–486B	FoxP2 transcription factor 552-553B	control of olfactory processing 218

cortical pyramidal neuron 114F	gene expression	gill-withdrawal reflex, Aplysia 437–439,
of ICC neurons after prism-wearing	circadian variations 364, 373	440F, 449, 558
461	control in transgenic animals 569–571	GlRKs (G-protein-coupled inward-
leptin effects 359	epigenetic modification 110	rectifier K ⁺ channels) 104–105
local interneurons (LNs) as 228	evolution by altered patterns 520-521	glia 7–8
SACs and 142-143	general regulation by MeCP2 501	astrocytes as 299
GABAergic neurons, <i>Mecp2</i> deletion 502	induced by postsynaptic	electrical circuit model 43–44
GADs (glutamic acid decarboxylases) 85, 502	depolarization 106–110 profiling 309, 574	microglia dysfunction and AD 474–475
gain control functions 156B, 218, 254B,	revealing expression patterns 572–574	Müller glia 128
342-343	sex-specific 379	oligodendrocytes, Schwann cells,
gain-of-function effects	synapse formation 431, 432–433B	astrocytes, and microglia 8
in development 546	gene knockout technique 563	optic chiasm 180
from mutant alleles 497B	see also knockout mice	permeability 39, 43
protein misfolding 487	gene mosaics 191B, 201–202F, 501,	globus pallidus external segment (GPe)
gain-of-function experiments	568–569, 579	343F, 344, 480, 481F
AgRP neurons in eating 359–360	gene regulation, activity-dependent	globus pallidus internal segment (GPi)
Capricious protein 202	transcription 109	343F, 344, 480, 481F, 484
defined 24	gene silencing 567	glomerular maps 306
Drosophila ORNs 231	gene therapy 543, 571	glomerular targeting, ORNs 214-220,
Fru ^M neurons in courtship 381–382	generalized seizures 508B	306–312, 320, 382, 532–534
neuronal activation as 156B	genes	glomeruli 534
ocular dominance columns 182	cell autonomous and nonautonomous	accessory olfactory bulb 221B
ORN to PN connections 315-316	200, 568	Capricious protein and 316, 320
Robo proteins 288	in the central dogma 28	DA1 glomeruli 315F, 382, 383F
VMH role in rodent sexual behavior 402–404	deleting with homologous recombination 563	olfactory system in fly and mouse 225, 226F, 227, 228–229F, 231–232, 581F
see also perturbation experiments	Drd2 locus 496	ORN axon termination 208, 214
gain-of-function mutations, Timothy	Drosophila sexual behavior 378-390	VL2a glomeruli 382–383
syndrome 506	for odorant receptors 210–213	Glr1 receptors 224F, 225
gain of traits 517	protein variants from 316–318	GluN2B subunit 95, 191–192, 448
GAL4/UAS binary system 227F, 230F, 570,	psychiatric disorders 495–497	glutamate (glutamic acid)
572F, 580F	genetic and molecular techniques	drugs of abuse and 494
galanin 406, 407F, 409	561-575	as a neurotransmitter 85, 86F
Gα _{olf} subunits 209	CRISPR-Cas9 system 565-566B	glutamate-gated ion channels 91
see also G _{olf} proteins	genetic drift 519, 521, 553B	glutamate receptors
Galton, Francis 1	genetic susceptibility loci 474	AMPA and NMDA 93-95
Galvani, Luigi 13	genetically encoded Ca ²⁺ indicators	bipolar cells 137–138
ganglia 7	591–592	GluN1 and GluN2 subunits 95
retinal ganglia 13F, 22	genetically encoded effectors 598, 601	metabotropic (mGluRs) 505-506
gap junctions 11, 14, 56B, 115B, 335, 526	genital ridges 393	glutamatergic neurons
GAPs (GTPase activating proteins) 101B,	genomes	cortical glutamatergic neurons 281
106, 179–180B, 499	duplication 540, 545	glutamatergic excitatory neurons 93,
RGS9 as 128, 132	maximizing wiring specifications	122F, 138, 215, 279, 340, 494
gastrula germ layers 278	316–321	glutamic acid decarboxylases 85, 502
gastrulation 278	Neanderthals and Denisovans 553B	glutamine, polyQ repeats 479
GCaMP 224, 592	protein-coding genes 520	glycine, as an inhibitory neurotransmitter
GCAP (guanylate cyclase activating protein) 128, 130	genome sequencing 574–575 genome-wide association studies (GWAS)	85, 86F, 97 glycine-gated ion channels 91
GEFs (guanine nucleotide exchange	496, 498B, 500, 520	glycine receptors
factors) 101B, 179–180B, 200,	Geoffroy Saint-Hilaire, Étienne 544	chemogenetic silencing 597F, 598
499	GFP (green fluorescent protein)	ionotropic 92F, 93T, 96–98
gel electrophoresis, mRNAs 573		voltage-clamped 589F
gene cloning ion channel structure-function	expressed by transgenic mice 344, 462F	
relationships 59-61, 127	GCaMP derived from 592	glypicans 299
opsin genes 134–135	introduction into viral genomes 586	GnRH (gonadotropin-releasing hormone) 355T, 396–398, 400, 401F
positional cloning 60, 358, 372, 562	source and utility 578–579	G _{olf} proteins 308
gene duplication	GHK (Goldman-Hodgkin-Katz) equation	$see also Ga_{olf}$ subunits
and ion channels 524	40, 44	Golgi, Camillo 8–10
and natural selection 519–520	ghrelin 361	Golgi cells 341
and trichromacy 540–542	G _i (inhibitory G protein) 102	Golgi outposts 292–293
	-1 () Protein, 102	O

Golgi staining method 8–10, 23, 179B,	GWAS (genome-wide association studies)	hippocampal granule cells 10B
400F, 506F, 578	496, 498B, 500, 520	hippocampal neurons
gonads, GnRH and 396–397	gynandromorphs 385	distinction between axons and
GPCRs (G-protein-coupled receptors) 99–100	gyrencephalic neocortices 518, 549	dendrites 290–291
	gyri 518–519, 549, 550F	estrous cycle 400
β2–adrenergic receptor example 100–102	н	histamine as a neuromodulator 86, 370–371B
chemosensory receptors as 530–532	H. M. (Henry Molaison) 415–417, 450B,	histological analysis 575–578
Mrgprs as 264	451	histological sections 7
odorant receptors as 208, 211–212	habituation	Hodgkin, Alan 50–52, 57–58
opioid receptors as 269	in <i>Aplysia</i> 437–439	GHK equation 40, 44
rhodopsin as 124–125 taste receptors as 233–235	as a form of learning 434 hagfish 539	homeobox/homeotic transformation/ <i>Hox</i> 545–547
GPCR signaling, amplification and	hair cells 238–246	
termination 106	inner hair cells 239F, 241–245	homeodomains 283, 284F, 289–290 homeostasis
GPe (globus pallidus external segment)	outer hair cells 241–245	
343F, 344, 480, 481F	stereocilia of 239–240, 242F, 244,	and body weight 355
GPER (G-protein-coupled estrogen	253-254B	and the hypothalamus 354–355
receptor) 394	halorhodopsin 155-156B, 453, 535, 600	homologous recombination 307F, 486B,
GPi (globus pallidus internal segment)	harmonics, bat calls 251	563-565, 566B, 568F
343F, 344, 480, 481F, 484	HCN channels (hyperpolarization-	homophilic binding
GPl (glycosylphosphatidylinositol) lipid	activated cyclic nucleotide-	cadherins 79, 80F
anchors 172, 174B	gated) 63-65B	combinatorial recognition and 319
GPR54 (Kiss1R) receptor 597	head, orientation sensing 253–255B	ORNs and PNs 315-316
G _q protein 103	head direction cells 445–446B	self-avoidance 293–295
graded determinants 313–314	head-fixed experiments 595B, 605	homunculi, motor and sensory 20-21,
graded potentials (local potentials) 14-15,	hearing see auditory system	346, 351
23, 48, 137	heartbeat effects 353	honeybees
'grandchildren' and fitness 522	Hebbian synapses 423	tail-wagging dance 603, 604F
granule cells	Hebb's rule 187–190, 191–192B, 341	working memory 436
in the cerebellum 341, 343	behavioral conditioning 455	horizontal cells
hippocampal, depiction 10	memory and 420, 423, 428, 433B	disinhibition 140
hippocampal dentate gyrus 419–421,	Hecht, Selig 122, 132	lateral inhibition 138–140
423F, 450–451B	hedonic values 224	location in the eye 122
olfactory bulb 217F, 218	Helmholtz, Hermann von 538B	horizontal gene transfer 523
protein synthesis in 30F	Hering, Ewald 133, 143–144	horizontal sections 6F, 7, 551F, 575
grasshopper embryos 174, 286, 287F	•	hormone secretion, and the hypothalamus
gray matter 8, 15F, 266, 575	heritability 2–3 Alzheimer's disease 473	354–355
grid cells 306, 444–446B, 594B		horseradish peroxidase 583
growth cones 10, 11F, 33, 177–178	psychiatric disorders 495–497	horses, trotting 325, 332
guidance cues and 179–180B, 201	Hermann grid 140	Hox gene cluster (homeobox) 545-547
growth cone splitting 293	herpes simplex virus (HSV) 571, 585	HSV (herpes simplex virus) 571, 585
GRPR (gastrin-releasing peptide receptor)	heterophilic binding, neurexin 79	HTMRs (high-threshold
265–266	high-acuity vision	mechanoreceptors) 258F, 259
G _s (stimulatory G protein) 102, 309	cone cells and 130–131	Hubel, David 148, 150, 152–153, 180–182
G _s /cAMP signaling 308-309	green-red opponent system 145-146	human brain
GTPase activity	high-frequency stimulation	computer comparison 21–23
Ga subunits 99	DSI and 430-431	neocortex as proportion 548
GTPase cycle 101B	LTP and 421–422, 425F, 426–427,	neuron and synapse numbers 316
Rab, Ras, and Rho families 101	432-433B, 439	neurons, synapses and connections
guanylate cyclase 125–126, 128, 130F	Parkinson's disease 484	167, 316
guidance cues	high-throughput screening 476B 486,	topographic mapping 19–21
axon switch responses 288–290	567	human dermatome 256F
	high-throughput sequencing 31, 562	
growth cones 179–180B, 201	hindbrain 7, 279	human eye, capabilities 513
guidance molecules	hippocampus 6F, 7	human genome
axon targeting by 307–309	circuit organization 419	accessory olfactory system absent
transcriptional regulation 283–285	explicit memory acquisition 417,	222B
guidance receptors, combinatorial action	420	GPCR encoding 99F
286–288	LTP and spatial memory 447-448	information content 167
guide RNAs 566B	maze experiments 606-607	ion channel encoding 63B, 65B
gustatory maps 237	memory systems outside 451-463	ionotropic and metabotropic receptor
gustatory nerves 233	spatial representation 444–446B	encoding 93T

indirect pathway, striatum 344

neurobiological potential of sequencing 561	induced pluripotent (iPS) cells 485–486B, 566B	intracellular fibrils, abnormal <i>see</i> neurofibrillary tangles
odorant receptors 212	induction (cell-cell interactions) 198	intracellular recordings
Human Genome Project 3, 574	infanticide 406	Aplysia motor neuron 438F
human hearing, frequencies 240	inferior colliculus 245-246, 248-250	barn owl ITDs 247F, 248, 249F
humans	inferior colliculus - central nucleus (ICC)	capabilities 589-591
auditory cortex 252	461-462	coupled with dye injection 578
scope for studies on 560–561	inferior colliculus - external nucleus (ICX)	crustacean STG patterns 334
Huntington's disease (HD) 343, 479, 487,	245, 246–247F, 248–250, 461	Drosophila muscle 599F
496	inferior olive nucleus 302F, 339F, 341, 605	extracellular compared 587, 589, 591,
Huxley, Andrew 50–52, 57–58	information flows	594B
HVC (high vocal center) area 391-392B	central dogma 28	gecko rod cells 129F
hydrocarbons, Drosophila mating 383	direction of 12–13, 16F, 17B, 110F,	hair cells 243F
hyperpolarization	582–584	hippocampal CA1 neurons 430
bipolar cells 137-138	in the neocortex 154–155 sign of signals 138	IPSC and IPSP discovery 96
C. elegans olfactory neurons 225	information processing, visual cortex	mammalian visual cortex 154
halorhodopsin 535	146-163	neuromuscular junctions 69–70, 74
ion channel types 63-65B	infrared sensitivity 527-528	principle of 38
membrane potentials 38, 48	inheritance see heritability; nature versus	squid giant axon 558
rhabdomeric photoreceptors 536 rod cells 123–124, 127, 129	nurture	see also whole-cell patch
hyperpolarizing currents 596	inhibitory neurons	intracellular vesicle trafficking 28–30, 32–34
hypocretin (orexin) 361, 369, 370B, 372	electrical synapses 116B	intracranial recording 510B
hypogonadotropic hypogonadism (HH)	interneurons 15	intrinsic properties 334–336
397	in neural circuits 17B	intrinsic signal imaging 152, 183, 194, 216,
hypothalamus 6F, 7	inhibitory neurotransmitters, GABA as 85	462, 593
autonomic and neuroendocrine	initial segment, axon 14	intron removal by RNA splicing 28
regulation 326	innate behaviors 3–4	invertebrates
autonomic nervous system 354-355	modification by experience 390	as animal models 557-558
control of eating 356–357	odor representation 231–232	body plan compared with vertebrates
dimorphic neural pathways 400	tending to be hard-wired 321	544-546
oxytocin and vasopressin 407–408	innate song 391B	direction of information flow 13
parental behavior regulation 405-406	innexin proteins 115B, 526	evolution of myelination 524–525
suprachiasmatic nucleus (SCN)	input competition and spatial segregation 182–183	photoreceptors in vertebrates and 124
146–147, 146F, 147B, 366–367, 398F	input specificity of LTP 422, 426F,	inward-rectifier AMPA receptors 95, 104
tuberomammillary nucleus (TMN)	432–433B, 434	inward-rectifier K+ channels 63-64B, 104,
369	insects	311, 523F, 596–597 ion channels
	honeybees 436, 603, 604F	ATP gated channels 91, 93T, 385, 386F,
I	olfaction using ligand-gated ion	599
<i>I-V</i> curves 88F, 89, 91, 94	channels 532-534	channelopathies 508-509B
identical (monozygotic) twins 1-2, 213	see also Drosophila	CNG channels (cyclic nucleotide
identified neurons, dye injection 286–287	instinct see innate behaviors	gated) 64–65B, 127
IEGs (immediate early genes) 109–110,	instrumental conditioning <i>see</i> operant conditioning	DNA shuffling 520
221B, 404, 450B, 452, 595B	insular cortex 233, 237, 267, 353–354,	evolution 523–524
Ig CAMs (immunoglobulin superfamily cell adhesion molecules) 174B	583F	functional diversity 63–65B
ILDs (interaural level differences)	insulators, lipid bilayer 41	gene cloning 59–61
248–249, 250F	insulin 361-362	GIRKs 104-105
imipramine 490–491	integrase recognition sequences 570	HCN channels 63–65B
immediate early genes (IEGs) 109-110,	intermediate progenitors 280F, 281	mechanically gated 239–240
221B, 404, 450B, 452, 595B	intermediate targets 288, 289F	in neuronal membrane transport 36
immuno-EM 580-581	interneurons	patch clamp recording 57-59
immunostaining 54F, 233F, 480F, 482F,	AB interneurons 334, 335F	phylogenetic tree 64B sequential evolution 523–524
573, 575–576, 583	fast-spiking 53	sour and salty tastes 236
implicit memory 416–417	GABAergic inhibition 228	transporters distinguished from 36
<i>in situ</i> hybridization 30, 172F, 214–215, 221B, 235F, 573, 576, 583	local interneurons (LNs) 225, 226F, 228, 582	X-ray crystallography 62–65
in vitro mutagenesis 612–62	interoception 255, 354	see also TRP channels
inactivation of Na ⁺ conductance 51–53	interoception 255, 554	ionotropic receptors
inclusion bodies 479–480, 481	386, 572	Drosophila odorant receptors 533

interstitial branching 293

ionotropic GABA receptors 96-98

ionotropic glutamate receptors 138,	knockdown	'laws of effect' 435, 456
189	of FoxP2 553B	layer-specific targeting 197–198F, 201–203
ionotropic glycine receptors 97	of Fru ^M 384, 385F	LBDs (ligand-binding domains) 95F,
ionotropic neurotransmitter receptors	of oligophrenin 499	597–599
91–93, 94–95F, 96–98	of Piezo1 261F	LCR (locus control region) 541
iontophoresis 70, 74, 90	of Sidekicks and Dscams 195	learned behaviors/learning
IP ₃ (inositol 1,4,5-triphosphate) and IP ₃ receptors 103	technique outlined 567, 569, 571	activity dependent wiring 321
IPL (inner plexiform layer) 122F, 131F,	see also RNAi	facilitated by early experiences
143F. 196F	knockout mice	459–463
ipRGCs (intrinsically photosensitive	aromatase/androgen receptor	forms of learning 434–437
RGCs) 147, 366, 537, 583	knockout males 396	location of 451-463
iproniazid 490	β2 nAChR knockout 192–193	and memory acquisition 415-420
IPSC (inhibitory postsynaptic current) 97	CNG channel knockouts 209, 401	odor representation 231–232
ipsilateral projections 146, 148, 178, 180	conditional knockout experiments 564, 565F	reward-based learning 456-459
IPSP (inhibitory postsynaptic potential)	double knockout experiments 173,	and synaptic plasticity 434–451
97, 98F, 113	448	see also memory
IQs (intelligence quotients) 2	ephrin-A2/A5 double knockout 193	leeches, medicinal 410B
Islet2 promoter 176–177	ephrin knockouts 173	length constant (λ) 46–48, 54
itch (pruriception) 255, 257T, 265-266	Fmr1 knockouts 505	leptin 357–359, 360F, 361–362, 397
ITD (interaural time difference) 246, 247F,	GCAP knockout 130	Lewy bodies 481, 482F
248-249, 250F, 461	Kiss I knockout 397	LGEs (lateral ganglionic eminences) 281
ITDP (input-timing-dependent plasticity)	Mecp2 knockout 502–503	LGN (lateral geniculate nucleus)
429	Na _v 1.1 knockout 508B	eye-specific layers 183–184
	neuroligin knockouts 298	information processing 157
J	NMDA GluN1 subunit 191-192B	input to visual cortex 153–155
Jeffress model 247-248	oligophrenin knockouts 499	receptive fields of 148-151
jellyfish 121, 515, 517B, 536, 546, 578	Pcdhg knockout 294–295	topographical representations in
	Prp knockout 478	146-148
K	synaptotagmin disruption 78	LH (luteinizing-hormone) 355T, 396, 397F
K+ (potassium) concentrations,	<i>Trpc2</i> knockout 221–222B, 401–402,	LHRH (luteinizing-hormone-releasing hormone) see GnRH
intracellular and extracellular	406	licking as sexual behavior in insects 378
39	Trpv1 and Trpm8 knockout 262-263	lidocaine 452, 453F
K ⁺ conductance, voltage clamp technique	TSPs, glypicans, α2δ1 knockouts 299	ligands
50-51	Kuffler, Steve 136–137, 140, 148	_
K ⁺ ion channel diversity 63B	kuru 477–478	action as receptors or 318–319, 546 in signal transduction 107B
K ⁺ -Cl ⁻ cotransporter 39		
kainate (kainic acid) 94	L	ligand-gated ion channels
KcsA channel 62–63	L-cones 133-134, 135F, 144-145	acetylcholine receptor (AChR) 90–91 insect olfaction 532–534
KIF1a 33F, 34	L-dopa 483–484	
kinesins 33F, 34, 35–36B, 56B	lamellipodia 178, 179B, 290	ligand-receptor pairs
Kirrel2/3 311, 314	lamina, <i>Drosophila</i> visual system 197	in axon guidance 174–175B
'kiss and run' mechanism 82	lamina-specific targeting 195–196	ephrins and Eph receptors 174
Kiss1R receptor 397	landmark-based strategies 444–445B	light entrainment 363, 365–366
knee-jerk reflex 15–16, 17B	language	light levels, visual system adaptation 122, 129–130
knock-in procedures	brain lesions and 19	light microscopy, limitations 10, 579
AgRP neurons 359	evolution 552-553B	light sensing apparatus, evolution
aromatase gene 399–400	Lar protein 201	534–535, 538B, 546–547
calmodulin-binding 210	laser-capture microdissection 574	see also eyes; vision
Cre recombinase 404	laser-scanning confocal microscopes 593	light-sheet fluorescence microscopy 577
EphA receptors 176–177	laser-scanning two-photon imaging 142,	LIM domain 284, 285F
GAL4 transcription factor 381, 387	593	lines and edges, V1 response 149–150,
H101R mice 492	Lashley, Karl 415, 450B	160
human FoxP2 in mice 553B	lateral geniculate nucleus see LGN	LIP (lateral intraparietal) area 157F,
odorant receptors 216, 307-308	lateral horns 226F, 231–232, 383	162–163
opsin genes 147F, 542–543	lateral inhibition 17B	lissencephalic neocortices 518, 549
outline of the procedure 563-564	from horizontal cells 138-140	lizards, unisexual 403B
prestin modification 244, 245F	Notch-Delta signaling 282-283, 315	LKB1 kinase 281
with synaptotagmin-1 78	olfactory bulb 217–218	LMAN (lateral magnocellular nucleus
transcriptional stop cassette 503	lateral superior olivary nucleus (LSO) 249,	of the anterior nidopallium)
transgene insertion 570	250F	391-392B

lobula complex 197, 198F	Mach bands 140	mechanotransduction 239-240, 243-244,
local field potentials 588, 594B	macular degeneration 131	253–254B, 259–262
local neurons/interneurons 225, 226F, 228, 582	MADM (mosaic analysis with double markers) 579	see also Piezo channels MeCP2 protein (methyl-CpG-binding
local protein synthesis 30, 31, 34	magnetic resonance	protein 2) 500–503, 506–507
locomotion rhythmic muscle contraction 332–334	DTI (diffusion tensor imaging) 582 see also fMRI	medial amygdala 398, 399F, 400, 401F, 454 medial geniculate nucleus (MGN) 245, 246F, 250, 550, 551F
using multiple CPGs 336–338	magnetoception 528	medial-lateral axis 7
locus coeruleus 369, 370–371B, 573F	males, castrated 221–222B, 393–395, 398F,	see also sagittal sections
Loligo see squid	402F	medial premotor cortex (MPc) 271
long-range axon guidance cues 174B	mammals	medial superior olivary nuclei (MSO) 247
long-term depression (LTD) 342, 426–428, 505	accessory olfactory system 221–222B auditory system 238F, 249	249, 250F
long-term memory 417, 432B, 439–442, 451–453	neocortical expansion 547–548 odorant receptor genes 210–212, 213F	medial temporal lobes 415F, 416–417, 451
Aplysia 439–441	regulation of sexual behavior 390–410	see also hippocampus
loose patch recording 590B	sleep electroencephalogram patterns	median bundle neurons 384-385
lordosis 390, 394-395, 402-405	367–368	medicines, potential of toxins 77B
loss-of-function effects	taste modalities in 232-238	medulla
in development 546-547	Manduca sexta 558F	in <i>Drosophila</i> 197, 198F, 201, 202F, 585
in neurological disorders 487, 497B	MAP kinase cascade 109B	in vertebrates 6F, 7, 266–267
loss-of-function experiments 24, 182, 185,	MAP2 (microtubule-associated	Meissner corpuscles 257T, 258, 261
380-382, 403-404	protein 2) 31	melanopsin 99F, 147, 537
loss-of-function mutations 393, 561, 563	mapping	membrane conductance 102-104
loss of traits 517	auditory maps 240–243, 246–247, 249,	membrane permeability 38, 43–44
Lou Gehrig's disease see ALS	461	membrane potentials
low-stringency hybridization 134	dermatome maps 256F	changes in response to stimulation
lower envelope principle 270	neuronal projections 582-584	45–47
loxP sites 404F, 503F, 563, 565F, 566B, 570	olfactory maps 305-307, 318	depolarization thresholds 48
Cre/loxP system 187F, 265, 564, 565F,	synaptic connections 584–586,	of excitable cells 38,86
568, 570	601–602	recording 586
floxed alleles 564, 565F	topographic maps 19–21, 270	resting potentials 38–40, 43F, 44–45, 46F, 49, 51F, 52, 63–64B
LRP4 receptor complex 297 LSO (lateral superior olivary nucleus) 249,	visual maps 4–5, 20, 461 MARCM (mosaic analysis with a	membrane transport
250F	repressible cell marker) 312,	active and passive transport 37
LTD (long-term depression) 342, 426–428,	313F, 384F, 579, 580F, 584F	by channels and transporters 36
505	Martinotti cells 114, 116B, 281, 295	in neurons 34–38
LTMRs (low-threshold mechanoreceptors) 257F, 258–259, 261, 262F, 266–267	massively parallel processing 22, 573-574 mating	membranes, electrical circuit model 40-43
LTP (long-term potentiation) 421–426	and parental behavior 405–406	memory
associated structural changes	photostimulation-induced 405	acquisition and learning 415–420
431-434	mating factors 530–531	from artificial activation 459–460B
auditory fear conditioning 455	3	as explicit or implicit 416
CaMKII and 425-426	maximum parsimony 402, 518, 523F, 546	Hebb's rule and 187
expression and the AMPA receptor	maze experiments elevated plus-maze 493F, 607	insights from amnesic patients
423-425, 432	Morris water maze 447–449, 472, 499,	415-416
high-frequency stimulation and 421,	500F, 605–606	and its acquisition 415-420
427	radial arm maze 606	molecular, in CaMKII 425–426
hippocampal LTP and spatial memory 447-448	MC4R (melanocortin-4 receptor) 359-360	as retention of learned information 415
induction and the NMDA receptor 423	MDMA (3,4-methylenedioxy- <i>N</i> -methylamphetamine, ecstasy)	storage location in the brain 451-463
late LTP 432-433B	494	synaptic weight matrices 417–420,
properties of hippocampal LTP	MdV (medullary reticular formation	422, 426, 436, 449
421-422	ventral part) 339–340, 344	temporal phases 417
saturation 449	mechanically gated ion channels	top-down and bottom-up research
and spatial memory 447–448	239–240	420
STDP and 428	mechanosensory neurons	memory traces (engrams) 449, 450-451B,
lysosomes 30	low-threshold mechanoreceptors	459–463, 595B
	(LTMRs) 257F, 258–259, 261,	Mendelian inheritance
M	262F, 266–267	Alzheimer's disease 470, 473
M-cones 133, 135F	somatosensory system 258	delayed discovery 515
M pathway, visual system 157	star-nosed moles 527, 528F, 551	psychiatric disorders 496, 497B

mEPP (miniature end-plate potentials)	MNTB (medial nucleus of the trapezoid	motor neurons 12
71–72, 81	body) 249, 250F	inputs 330–332
Merkel cells 257F, 257T, 258–262	model organisms	movement control 326
mesencephalic cats 333F, 334, 337-338	Aplysia 433B, 437–442, 444, 449	mutual inhibition 335, 337
mesoderm layer 278	evolutionary rationale 513	specific transcription factors 284
messenger RNAs (mRNAs)	generation times 558	motor neuron diseases 479
generation 28	odor sensing 222–232	motor pools 300, 320, 329, 331, 333, 337F,
isolation 573	S. cerevisiae 530	546
targeting to dendrites 30–31	see also animal models; C. elegans;	motor programs, basal ganglia and
metabotropic GABA _B receptors 98	Drosophila; mouse	343-345
metabotropic glutamate receptors 138	modulatory neurons 17B	motor properties, outer hair cells 243-244
metabotropic neurotransmitter receptors	modulatory neurotransmitters	motor proteins 33–34, 35–36B
91-93	(neuromodulators) 86	kinesins and dyneins 34
action on presynaptic terminals	MOL (muscle of Lawrence) 388, 399	myosin 326
104-106	Molaison, Henry (H. M.) 415-417, 450B,	motor system control 326–351
as extrasynaptic 92	451	motor units 301F, 329–330, 338
as GPCRs 532	molecular biology	Mountcastle, Vernon 269–270
triggering G protein cascades 99-100	of axon guidance 174–175B	mounting behavior 390
methodological principles 23-24	central dogma of 28	see also lordosis
methylation in X-inactivation 501	and evolution 515	mouse
Mg ²⁺ and NMDA receptors 94, 189	for studying ion channels 59–61	Alzheimer's disease models 472–473
MGEs (medial ganglionic eminences)	molecular determinants and activity	'brainbow' mice 584
281	dependent mechanisms 190-197	<i>Clock</i> gene 363, 372, 563
mGluRs (metabotropic glutamate	molecular genetics studies 492, 552B, 562	<i>Ob/Db</i> mutants 357–358
receptors) 505–506	monkeys, New World 135, 540–543	olfactory system 226
MGN (medial geniculate nucleus) 245, 246F, 250, 550, 551F	monkeys, Old World 133, 135, 519,	Per1 and Per2 genes 363, 366
	540-541, 560	pup retrieval 390, 406–407F
microcircuits 7F, 8, 155–156B, 456B	monoamines	recordings on awake mice 595B
microfilaments (F-actin) 32–34, 36B, 326–327, 328F	in mood disorders 490-491	sex partner discrimination 401–402
microglia 7F, 8, 474–475	as neurotransmitters 86, 488	<i>Trembler</i> mice 56–57B
microneurography experiments 270	monoamine oxidase	trichromacy 542–543
microRNAs 520, 567	iproniazid inhibition 490	see also knockout mice; transgenic
microscopy 578–582	MPTP 482	mice
see also electron microscopy; light	neurotransmitter oxidation 488-489	movement
microscopy	monocular deprivation 180–182, 462	brain stem in control 338–340
microstimulation, electrical 159, 160–163,	monogamy (pair bonding) 407–409	cerebellum in control 340–343
346	monozygotic (identical) twins 1-2, 213	control 326F, 346–348
microtubules 32-34, 35-36B	mood disorders 490-491	sensing by the vestibular system
local secretory machinery 292–293	morphine 269	253-255B
see also F-actin	morphogens 279, 283, 284F, 289, 296	voluntary movement 344, 346–348
midbrain 6F, 7, 297	Morris water maze 447-449, 472, 499,	see also locomotion
midget bipolar cells 541	500F, 605-606	MPEP (2-methyl-6-(phenylethynyl)
midget ganglion cells 144–145, 157	mosaic analysis 199, 201, 312, 579	pyridine) 506F
midline crossing 175B, 178–180, 286–290	mosaic analysis with a repressible cell	MPOA (medial preoptic area) 369, 398, 400, 401F, 406, 407F, 409
miniature end-plate potentials (mEPP)	marker (MARCM) 312, 313F,	
71-72,81	384F, 579, 580F, 584F	MPTP (1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine) 482, 484
mirror drawing task 416–417	mosaic analysis with double markers	Mrgpr (Mas-related G protein-coupled
mitochondrial dysfunction in Parkinson's	(MADM) 579	receptors) 264–265
disease 482-483	mossy fibers 341-342, 419, 421, 423, 430	α-MSH (α-melanocyte-stimulating
mitotic recombination 568, 579	motion perception	hormone) 359–360, 370B
mitral cells	in <i>Drosophila</i> eye 197	MT (middle temporal visual area) 157F,
accessory olfactory system 221B,	MT neurons 160–162	160–162
400–401, 402F	motivation-based learning 459	mTOR (mammalian target of rapamycin)
in fly and mouse 225, 226F, 232	motor control nuclei 338-340	506
olfactory amygdala and 454	motor cortex	Müller glia 128
in olfactory bulb circuits 217–220	control of voluntary movement	multi-electrode arrays 346, 588
representative olfactory bulb neurons	346–348	multicellular organisms, first appearance
214–215	as a dynamical system 348	515
whether prespecified 316	neuronal ensembles 350	multiple sclerosis (MS) 56B, 57

prostheses control by 349-351

motor homunculi 20-21, 346, 351

MLR (mesencephalic locomotor region) 338-339, 344

multipolar (or bipolar) neurons 12

MUPs (major urinary proteins) 221-222B

muscarinia acotylcholina recentors 02	control of eating 256, 257	neuregulin-1 protein type III (NRG1-III)
muscarinic acetylcholine receptors 93, 99, 104	control of eating 356–357 olfactory recovery and adaptation	55–56B
muscimol 77B, 596	210	neurexin proteins
muscle contraction	nematocin 409–410B	ASD association 506
antagonistic muscles 330	nematodes see C. elegans	heterophilic binding 79
mechanisms 326–328	neocortex	molecular diversity 318
rhythmic contraction 332-334	expansion in mammals 547-548	origins 526
muscle fibers 329	gyri and sulci 518–519, 549, 550F	schizophrenia and bipolar disorder
muscle spindles 15	information flows 154–155	496
mushroom bodies, Drosophila 226F	long-term explicit memory storage	trans-synaptic signaling 298–299, 317T, 318
axon pruning 302, 303F	451-453	neuroblasts 312
courtship behavior 390	microcircuits 155–156B	neurodegenerative disorders 467–487
olfactory conditioning 231–232, 442–444	neurogenesis and size 548–550 plasticity 550–552	Alzheimer's disease 467–476
MuSK (muscle-specific receptor tyrosine	sensory-specific areas 452	Huntington's disease 343, 479, 487,
kinase) 297–298	Nernst equation 39, 49, 97	496
mutagenesis studies 612-62	nerve growth factor (NGF) 303,	Parkinson's disease 343, 480-485,
mutations	304-305F	486B, 496, 598
CRISPR and directed change	nerve impulses 13	prion and protein misfolding diseases 477–480, 487
565-566B	nerve net (reticular) theory 8, 9B, 10-11,	neurodevelopmental disorders
early onset AD 470–472	23	ASD (autism spectrum disorders)
sex-linked 497B, 499	nervous systems	499–501, 504–507
as undirected 519	CNS (central nervous system) 6-8	fragile-X syndrome 504-506
mutation rate and molecular clocks 515	computer analogy 21–23	intellectual disabilities 499
mutual inhibition	development, and wiring specificity 278–305	Rett syndrome 500-503, 506-507,
motor neurons 335, 337	effects of natural selection 521–522	508B
sleep regulation 371	evolution of development 543–553	Smith-Magenis Syndrome 498B
myelin sheaths 8	first emergence 517B	synaptic dysfunction 506–507
myelination	histological sections 7	neuroethology 4, 603, 605
and action potential propagation speed 53–57	neurons and glia 7	neurofascin 296
compact myelin 54, 56B	organization 6-23	neurofibrillary tangles 468–469, 472–473,
evolution 524–525	PNS (peripheral nervous system) 6-7	475F
myofibrils in muscle contraction 326,	principles governing evolution	neurofibromatosis 506
327F	554-555	neurofilaments 32
myosin proteins 33F, 34, 36B, 326-327,	sequential decisions 319-320	neurogenesis cortical 548
328F	wiring problem 277	and migration 280–282
	netrins 174–175B, 201–202, 288–290, 291T,	as progressive 302
N	318	neurogenic inflammation 268
Na ⁺ conductance, voltage clamp	neural axis (neuraxis) 7	neuroligins 79, 80F, 84T, 96
technique 50–51	neural circuits 15–17	ASD association 506
Na ⁺ influx in action potential production	common motifs 17B	origins 526
49–50	neuronal inactivation 596–598	trans-synaptic signaling 298–299
Na ⁺ permeability and depolarization 50	specification from limited number of	neurological and psychiatric disorders
Na ⁺ -K ⁺ ATPase pumps 38, 39F, 40, 55 narcolepsy 371–372, 563	genes 316-321	Alzheimer's disease 467–476
naris closure 310–311	neural crest 278	complementing basic research
nasal side, RGCs axons 146, 170	neural maps 5, 21	507–508
natural selection	continuous, discrete and mixed 305–307, 318	demyelinating diseases 56B, 57
Darwin's depiction 514F	olfactory circuits 305-316	groupings 467
genetic substrates 519–520	neural network oscillation 334	human genetics and 497–498B
individuals as targets 521	neural plasticity 5	kinesins and 36B
nervous system effects 521–522	neural plates 278	modeling in behavioral assays
nature <i>versus</i> nurture debate 1–5, 167	neural progenitors 278–279, 280F, 281,	606-608
navigation 444-446B, 447	283-284, 305	neurodegenerative disorders 343, 467–487
Morris water maze 447–449, 472, 499,	see also neuroblasts	neurodevelopmental disorders 299,
500F, 605–606	neural prosthetic devices 349–351	490, 497, 498-510
spatial representation and 446-448	neural tube	Parkinson's disease 343, 480-485,
Neanderthals and Denisovans 553B	defining the neuraxis 7	486B, 496, 598
negative feedback circadian rhythms 363–364	in development 278–280 patterning 278–279	prion and protein misfolding diseases 477–480, 487
on outling tillio 505 504	patterning 210-210	11. 100, 101

null directions, DSGCs 142-143

psychiatric disorders 487–498	neuropeptides 87, 110, 353	night vision and rod cells 122, 163
rational drug development 476–477	α-MSH as 359	Nissl staining 148F, 154F, 190F, 192B,
neuromodulators (modulatory	conserved 409B	575–576, 583
neurotransmitters) 86	ghrelin and CCK 361	NMDA (N-methyl-D-aspartate) receptors
neuromodulatory systems 370–371B	from POMC cleavage 359	AMPA receptors and 424-425
neuromuscular connections activity-dependent wiring 300–301	regulating mammalian sleep-wake cycle 369–372	as coincidence detectors 117, 189–190, 423
requiring less specificity 320	regulation of parental behavior	drug effects 495
synapse elimination 300–301	407-409	in epilepsy 510
neuromuscular junctions	role in sexual behavior 409–410B	evolution 527
ACh opening of cation channels 88–90	neuropil layer 197, 198F	extracellular Ca ²⁺ and 109, 110F
Drosophila 80F	neuropilin-1 (Nrp1) proteins 308F, 309,	locomotor effects 338
trans-synaptic communication 297	310F, 318, 320	in LTP/LTD induction 423, 437,
vertebrates 69-70	neurotransmitters	447–448
neuron doctrine 8, 10–11	action on postsynaptic neurons 87–110	reaction to glutamate 93–96, 424, 510 rodent whisker-barrel system
neuron numbers	at chemical synapses 10, 14–15	190–192B
in <i>Aplysia</i> 437	clearance and recycling 81F	role in the hippocampus 447–448
in model animals 558	clearance from synaptic cleft 80–81	in schizophrenia 490
sexual dimorphism 386–388	as excitatory, inhibitory, or	nociception (pain)
neuron wiring, sexual dimorphism	modulatory 85–86	chemical irritant induced 262, 263F
388–390	exocytosis 75	parallel pathways with touch 266-268
neuronal activation experiments 598–599 neuronal activity	molecules, locations, and functions	peripheral and central modulation
neuronal activity	84T, 85–87	268–269
optical imaging 591–594	monoamine 86, 488	in the somatosensory system 255,
recording and manipulating 586-602	in neuronal information transmission 13–15	257T, 259, 262, 266
sensory perception and 269–271		strong mechanical stimuli-induced
visual system wiring and 180–197	regulating mammalian sleep-wake cycle 369–372	258F, 259, 260B
neuronal communication	at vertebrate neuromuscular junction	temperature-induced 262, 263F TRP channels 262–264, 527
evolution 522–527	69–70	nocturnal animals 373
toxins and 77B	neurotransmitters, caged see caged	nodes of Ranvier 54–55, 56B
neuronal polarity 32–34	neurotransmitters, neuromodulatory 86	non-declarative (implicit) memory
neuronal processes 7	neurotransmitter-gated ion channels	416–417
neuronal projections, mapping 582–584	63-65B	non-spiking neurons 14, 23
neurons	neurotransmitter receptors	non-syndromic intellectual disabilities
active electrical properties 47-48	agonists 92-93	499
cell biology and electrical properties	as ionotropic or metabotropic 91–93	non-synonymous substitutions 553B
28-49	subfamilies 91	nonautonomous genes 200, 568
cultured, from model	neurotransmitter release	nonhomologous end joining 566B
organisms 559–560, 594	in discrete packets 70–72 and metabotropic receptors 104–106	nonselective cation channels 88–90, 127
digital and analog signaling 22–23	origins of release mechanisms	Noonan syndrome 506
direction of information flow 11–13, 14F	526–527	norepinephrine (noradrenaline)
fine structure studies 579–582	probability 71, 72B, 83-85	and GPCRs 99–100, 102F
mechanism of information transmission 13–15	regulation by retrograde messengers 429–431	as a neuromodulator 86, 87T, 104, 370B, 371
membrane transport in 34–38	by synaptic vesicle fusion 72–73	sympathetic nervous system 351F, 353
neurotransmitter action on	neurotransmitter reuptake 81, 491, 494	northern blotting 573
postsynaptic neurons 87–110	neurotransmitter transporters 81	Notch receptor 282, 283F, 315, 476 NREM sleep 368–369, 372
passive electrical properties 44-47	neurotrophic hypothesis 303–304	NRG1-III (neuregulin-1 type III) 55–56B
pre- and postganglionic 353	neurotrophins 108B, 302–305	NT3 (neurotrophin-3) 304, 305F
as projection or local neurons 582	neurulation 278	NTS (nucleus of the solitary tract) 233,
propagation of electrical signals 28	New World monkeys 135, 540-543	353, 360
simplified model 111F, 112	next generation sequencing methods 573	nucleases 565-566B
sizes 28, 557–558	NFYC transcription repressor 202	nucleotide substitutions, synonymous and
from stem cells 485, 486B	niche-specific senses 527–528	non-synonymous 553B
types of 11-12, 280-281, 487,	nicotinic acetylcholine receptors (nAChR)	nucleus accumbens 344, 408, 409F,
538-539	epibatidine blocking 185	457-459, 493-495
visualization by Golgi staining 8–10	inducing Fos transcription 109F	nucleus laminaris (NL) 247–249, 461

muscarinic distinguished 92-93

visualizing individually 578–579

Numb protein 282–283	connection to glomeruli 215–216	ORNs (olfactory receptor neurons)
nurture, nature <i>versus</i> 1-5 barn owl example 4-5	distribution 214–215 expressing single odorant receptors	axon–axon interactions 314–315 axon targeting in mice 307–310
0	214	GABA receptors and 105–106
0	olfactory system	in insects 532–533
Ob (Obese) mouse gene 357–358	C. elegans 223-225	numbers in fly and mouse 320
obesity 357–359, 362	Drosophila 225-232	sexual dimorphism 382
object-selective neurons 159F	neural map formation 305–316, 318	otolith organs 253–254B
occipital lobe 18	possible organizational modes 215B	outer segment, rod cells 123
OCD (obsessive-compulsive disorder) 491	see also accessory olfactory system	outgroups 518
octopamine 86	oligodendrocytes 7F, 8, 54, 55–56B	ovariectomized females 394, 400, 403,
ocular dominance 153, 181, 183, 196	oligophrenin 499, 500F	404F, 408
ocular dominance columns 181-184,	ommatidia 197–201	owls see barn owls
188–189, 190–191B	ON bipolar cells 138, 139F, 140, 143–145,	oxytocin
odds ratios 498B	146F	regulation of parental behavior
odor representation, stereotyped and stochastic 231–232	open field tests 493F, 606–607 open probability, ion channels 59, 91,	407–409 role in sexual behavior 409–410B
odor sensing	102–103	
behaviorally significant odors 230–231	operant conditioning 435–436, 443F, 444, 456	P P1 neurons 384-389
model organisms 222-232	dopamine neurons 442	P pathway, visual system 157
odorants	inbred animals 604	pacemaker cells 334, 366, 368
channel opening in olfactory receptor	opioids 269	Pacinian corpuscles 257T, 258, 269
neurons 208–209	opioid receptors 269	pain see nociception
recognition by combinatorial	opsins	pair bonding, neuropeptide regulation
activation 210, 211F	constituent of rhodopsin 124	407–409
structural formulae 211F	evolution of light-sensing 534–536	paired recordings 601
withdrawal 224–225	evolution of trichromacy 540–542	PALM (photoactivated localization
odorant receptors	introduction of extra opsins 542–543	microscopy) 580
axon targeting in mice 307–309	melanopsin 99F, 147	PAM sequences (protospacer-associated
C. elegans 223	phylogeny of vertebrate opsins 540F	motif) 566B
combinatorial coding 230-231	see also rhodopsins	pandas, taste receptors 234
Drosophila 227F, 229F, 533	optic chiasm 146, 167, 178, 180	parabiosis experiments 356–357
genes for 210–213	optic disc 131F	parabrachial nucleus (PBN) 267, 353, 360,
as GPCRs 99F, 208, 211-212	optic lobe 197, 198F	361F, 455
multiplicity 207	optic nerve	paracrine signals 107B
odorant binding 208–209	function 122	parallel fibers 340-342, 427, 451
in olfaction 208-212	regeneration experiments 168-169	parallel organization
relation to ORNs 214-217, 225-226	optic tract 146	somatosensory system 257F
OFF bipolar cells 138, 139F, 140, 142, 144,	optical imaging, neuronal activity	touch and pain signals 266-268
145F	591–593, 594B	parallel processing
Ohm's law 40-43, 45F, 46	optogenetic stimulation 406, 450F, 588	by bipolar cells 138
Old World monkeys 133, 135, 519,	optogenetics	by diverse retinal cell types 140–141
540-541, 560	AgRP and eating 350, 360	massively parallel processing 22
olfaction, in insects 532-534	anxiolytic drug actions 493	visual system 157–159
olfactory bulb	hypocretin and wakefulness 372	parasympathetic nervous system 104,
glomeruli of 214–216	memory and 450–451B, 453, 459B	351-353
lateral inhibition in 217–218	mouse parenting and aggression 404F,	parental behavior
ORN links to 208	405	activation and regulation 405–406
olfactory centers, higher 231-232	movement regulation in mice 344,	neuropeptide regulation 407–409
olfactory cilia 208	345F	parietal lobe 18
olfactory conditioning in Drosophila	neocortical circuitry 156B	Parkin gene 482–483
441-444	precision of 599–601	Parkinson's disease
olfactory cortex 215, 217–220, 221B, 231	PSEM inhibition 597F, 598	basal ganglia in 343
olfactory epithelium 208, 209F, 212, 214F,	RGC axon segregation 186	dopamine neurons and 480
215-216, 219F, 221B	orexin (hypocretin) 361, 369, 370B, 372	genetics and 496
olfactory processing channels 217,	organ of Corti 238, 240-241, 242F	mitochondrial dysfunction 482-483
230–231	organization–activation model 395	schizophrenia compared 488-489
olfactory receptor neurons (ORNs)	oRGs (outer radial glia) 548-549	α-synuclein in 480–483, 487
channel opening by odorants 208–209	orientation of the head 253-255B	treatment 483-485, 486B, 598
combinatorial activation 210	orientation selectivity 153	parthenogenesis 403B

passive electrical properties 44–47	ciliary and rhabdomeric 535-537, 547	Poisson distributions 71, 72B, 123F, 124
passive treetrical properties 44-47 passive transport 36F, 37	diversification 539	polyadenylation 28
patch clamp recording	located in the retina 122	polymerase chain reaction (PCR) 212, 574
action potential back-propagation 112	parallel evolution 535–537	polymodal neurons 259, 264
cGMP effects 126, 127F	sensitivity and response speed	polymorphism, odorant receptor genes
ion channels 57–59, 61F	131-132	213
norepinephrine effects 104	in vertebrates and invertebrates 124	polyQ repeats
STDP discovery 438	see also cone cells; light sensing; rods	in Huntington's disease 479
utility 590B	photostimulation	in other diseases 479T
in vitro mammalian preparations 560	dopamine neurons 442–444	POMC neurons (pro-opiomelanocortin)
see also whole-cell patch recording	piriform cortical neurons 459–460B	358–361
patch pipettes 58, 78, 104, 105F, 261F	see also optogenetics	pons 6F, 7
path-integration strategies 444–445B	phototagging 588–589	population vectors 348
patterning	phototaxis 534–535, 539	pore loop, ion channels 60, 62–63, 64B
cortical areas 550	phototransduction 125–126, 127F	positional cloning 60, 358, 372, 562
nervous system development	phrenology 18	positive feedback loops 50
278–279, 544–546	phylogenetics, of ion channels 64B	positive selection 521, 552–553B
ORN axons 310	phylogenetics, of vertebrate opsins 540F	post-mitotic neurons 277F, 278, 280–281,
Pavlov, Ivan 434, 435F	phylogenetic trees 515–516, 517	502, 548, 580F
Pavlovian (classical) conditioning 434,	physiological regulation (sympathetic and	posterior pituitary 354F, 355, 408
604	parasympathetic) 351–353	postganglionic neurons 353
Pax6 transcription factor 279, 283-284,	PI-PLC (phosphatidylinositol-specific	postsynaptic densities
546–547	phospholipase C) 172	alignment with presynaptic terminals
Pcdha, Pcdhb, and Pcdhg genes 294	picrotoxin 77B	84T
PD motor neurons 334–335	Piezo channels	Arc in 109
PDG (phenyl-β-D-glucopyranoside)	Piezo1 259-261	CaMKII in 103, 109
236–237	Piezo2 259-262	in chemical synapses 73
PDZ domains 96	unique class of ion channel 65B	neurotransmitter receptors 11, 80, 92
penetrance, mutations 498B, 500	pigment bleaching 132–133	organized by scaffolding proteins
penguins 3	pigment cells 128	95–96
penis, bulbocavernosus muscle 399	Pink1 gene 482-483	protein evolution 527
Per1 and Per2 genes 363, 366	pinwheel structures 152–153, 550, 551F	PSD-95 protein 96, 527
PER/TIM complex 365	PIP2 (phosphatidyl 4,5-bisphosphate) 103	postsynaptic depolarization, inducing
perforant path, defined 419	piriform cortex 219-220, 232, 459-460B,	gene expression 106–110
perforated patch procedure 590B	548, 578	postsynaptic neurons
periaqueductal gray 267	pituitary 354F, 355, 396, 397F, 408	retrograde messengers 429-431
periglomerular cells 217F, 218	PKA (protein kinase A) 101–103, 106,	signal integration 110–113
Period gene 363-365, 367, 379, 563	109–110, 308–309, 440–441	synapse positions 113–116
personalized medicine 574-575	PKC (protein kinase C) 103, 427	postsynaptic specialization see
perturbation experiments 24, 182, 185,	place cells/place fields 444-446B	postsynaptic densities
408, 586	placebo effect 269	potassium ions see K ⁺
fear conditioning 454, 608	plasma membranes	Potocki-Lupski syndrome 498B
PET (positron emission tomography) 476,	electrical circuit model 40-43	POU3F2 transcription factor 553B
490	neurotransmitter transporters 81	power stroke, muscle contraction 326, 328F
pharmacodynamics 476B	plastic changes and memory 420, 428	precedence effects 246
pharmacokinetics 476–477	see also synaptic plasticity	-
phase locking 242, 243F, 248–249	Platynereis 537	predator cues 221–222B, 238
phasic firing mode, dopamine neurons 457-458	PLC (phospholipase C) 103, 536 phosphatidylinositol-specific (PI-PLC)	predetermination, wiring of RGC axons 168–169, 170
phenotypes, as targets of natural selection	172	preferred directions, DSGCs 142
521	pleiotropic effects 549, 553B	prefrontal cortex
pheromones	plexins 195	frontal eye fields (FEF) 157F, 158
budding yeast 531	pluripotent cells 485–486B	maze experiments 607
cVA (11 <i>-cis</i> -vaccenyl acetate) 382–383, 386, 389	PMATs (plasma membrane monoamine transporters) 488, 491	role in working memory 417 schizophrenia 490
Drosophila 231, 232F, 378	Pmp22 gene 56B	preganglionic neurons 353
mammalian 221–222B	PNS (peripheral nervous system) 6-7	premotor cortex 270-271, 346
phosphodiesterase (PDE) 106, 125, 126F, 442, 536	PNs (projection neurons) 15, 225–232, 266, 312–314	premotor neurons 331–332, 336, 337F, 339–340, 342
photoreceptors	p75NTR receptor 304, 305F	premutations 504
bipolar cells and 539	point-to-point 168F, 169–170	prenatal retinal activity see retinal waves

presenilin-1 and -2 471-474, 487	protein induced conformational changes	RA (robust nucleus of the arcopallium)
prestin 244, 245F	477–478	391–392B
presynaptic facilitation 105–106	protein misfolding and neurodegenerative	Rab, Ras, and Rho GTPase families 101
	disease 479–480, 487	rabies virus 339, 585, 586F
presynaptic inhibition 105–106, 217F, 228	protein phosphatases 106	radial arm maze 606
presynaptic terminals	protein synthesis	radial glia 280F, 281, 548–550
Ca ²⁺ entry and 74–75	local protein synthesis 30, 31, 34	radioactively labeled amino acids
•	long-term memory 440	axonal protein transport 31, 36B
metabotropic neurotransmitter receptors and 104–106	translation as 28–30	three-eyed frogs 183
molecular organization 80F	proteinopathies 477	visual deprivation effects 181, 183
in neurons 7	protocadherins 294–295	radioactively labeled thymidine 280
neurotransmitter release 69–87	protocadherin-15 (PCDH15) 240	Rail gene (retinoic acid induced 1) 498B
see also active zones	protostomes 515, 523, 533, 544	- · · · · · · · · · · · · · · · · · · ·
	Prozac (fluoxetine) 490F, 491, 495F	Ramón y Cajal, Santiago 8-10
pretectum 146	pruriception (itching) 255, 257T,	and Golgi staining 179B, 578
primary auditory cortex (A1) 245, 250,	265-266	neuron doctrine 8-10
279F, 550, 551F	pruritogens 264, 265F	theory of dynamic polarization 12–13
primary cilium 535, 536F	PSD-95 (postsynaptic density protein-95	
primary motor cortex (M1) 15, 20F, 271, 346	kDa) 96	random mutagenesis, forward genetics 562–563
	PSEM (pharmacologically selective	raphe nuclei 369, 370–371B
primary somatosensory cortex 15, 20F primary visual cortex (V1)	effector molecule) 339F, 340,	Ras/MAP kinase system 109, 110F,
• •	597F, 598-599	199–200, 304, 506
information flows 154F, 155–156B, 157F, 158	pseudogenes 212, 213F, 222B, 234, 519	rat, cerebral cortex inhibitory neurons
	pseudotyping 571T, 586	116B
motion perception by MT area 160	pseudounipolar neurons 12	rattlesnakes 527–528
ocular dominance columns 182–184	PSTH (peri-stimulus time histogram) 228,	readily releasable pool, synaptic vesicles
representation of retinal information 146F, 147–151	249F	82
	psychiatric disorders 487–498	receptive fields
response to lines and edges 149–150, 160	genetic contribution 495–497	acquisition by visual cortex neurons
simple and complex cells of 149–150	synaptic dysfunction 506–507	150–151
ventral and dorsal streams 158	psychometric functions 123	center-surround receptive fields
vertical organization 151–154	psychophysical studies 122–123, 124B	136–137, 138–140
primates	psychosis, in schizophrenia 488–490	LGN 148-149, 180-181
face recognition 159–160	psychostimulants 489, 494	in motion perception 161
ocular dominance 153	PTB (phosphotyrosine binding) domains	V1 simple and complex cells 150-151F
trichromats among 133, 540–542	108B	receptors and ligands, molecules acting as
•	PTC (phenylthiocarbamide) 234–235	318–319, 546
see also monkeys	puberty 396–398	receptor potentials 14
principal component analysis 229	puffer fish 57, 58F, 70, 77B	receptor tyrosine kinases
prion diseases 477–478	pumps 37–38, 39F, 40, 55	Eph receptors as 172
prion hypothesis 478	pup retrieval, by mice 390, 406–407F	Sevenless protein as 200
prism-reared owls 4–5, 461	Purkinje cells 12, 28, 340, 427, 431, 451	signal transduction 107–109B
procedural memory (implicit memory)	PVH (paraventricular hypothalamic	recording electrodes 45
416-417	nucleus) 360, 361F, 366	recording techniques, from in vitro to
progesterone 393–395, 403B, 404	pyloric rhythm 334–335, 336F	awake animals 594–595
programmed cell death	pyramidal neurons 11–12, 112–114, 116B	recovery mechanism, visual system
in nervous system development	CA1 pyramidal neurons 419, 423F,	127–128
302–303, 549	426, 429–431, 448–449	recurrent (cross) inhibition 17B
sexual dimorphism in 386–388, 398–400, 405	CA3 pyramidal neurons 419–420, 444B, 450B	reflex arcs 332
projection neurons (PNs) 15, 225–232,	silencing experiments 156B	refractory period, following action
266, 312–314	shelicing experiments 130b	potentials 52–53
prokaryotes, origins 515	Q	reinforcement-based learning 458F, 459
proprioception 255, 257T, 258, 266, 332	quantal hypothesis 71	release probability, neurotransmitters 71,
prosopagnosia 451	quantal hypothesis 71 quantal yield 73, 83	72B, 83–85
Prospero transcription factor 202	- · · · · ·	releasers, fixed action patterns 4
prostaglandins 268–269	Quinn, William 557	REM sleep 368–369, 371–373
prostagrandins 200–209 prostheses, motor cortex control 349–351	R	Remak Schwann cells/Remak bundles
proteases, within membrane 469	R-C circuits (with resistors and capacitors)	55-56B
protein-coding genes 520	41–43, 45F, 46–47	remote memory 452–453
protein-coding genes 520 protein gradients, specifying connections	parallel <i>R-C</i> 42B, 43, 45F, 46	repellents, in axon guidance 174B
318	serial <i>R-C</i> 42B, 43	repulsive interactions, ORN axons 309–310
~~~	,	000 010

reserpine 488-489	color-opponent RGCs 143	rtTA (reverse tTA) 570
reserve pool, synaptic vesicles 82	contrast analysis by 136–137	Ruffini endings 257T, 258
resistance 40-41, 42F, 43, 45F, 46-47, 54,	direction sensitivity 142–143, 144F	rutabaga mutants, Drosophila 441F, 442,
56B, 58	in information processing 13F, 22	443F, 444
resistors 40-43, 45F, 54, 56B	intrinsically photosensitive (ipRGCs)	ryanodine receptors 109, 110F
resolution, microscopy 579-580	147, 366, 537, 583	
responder transgenes 570	location in the eye 122	S
resting potentials ( $V_{\rm m}$ ) 38–40, 43F, 44–45,	midline crossing 180F	S. cerevisiae (Saccharomyces) 530
46F, 49, 51F, 52, 63–64B	ratio to photoreceptors 136	S-cones 133-134, 144-145
reticular theory 8, 9B, 10-11, 23	role of astrocytes 299	Sac mutant mouse 233-234
retina	small bistratified RGCs 140, 144,	SAC (starburst amacrine cell) 142–143,
cell and circuit multiple uses 145-146	145–146F	144F
cell types in parallel processing	RGS9 (regulator of G protein signaling)	
140-141	128, 132	saccades 160, 162, 605
evolution of retinal neurons 538-539	rhabdomeric photoreceptors 535-537, 547	sagittal sections 6F, 7, 278F, 343F, 575
location of photoreceptors 122, 131F,	rhinal sulcus 548	salmon, homing behavior 207–208
134F	Rho GTPase signaling 101B, 179, 499,	saltatory conduction 55, 56B
olfactory bulb comparison 217F, 218	500F, 507, 531	salty taste 233–234, 236–237, 260B
RGC axon targeting 169–171, 173	rhodopsin kinase 128, 131–132	sarcomeres 326–327
signal analysis in 135–146	rhodopsins	sarcoplasmic reticulum 327, 328F
topographic representation in V1	-	Satb2 transcription factor 285, 286F, 496
149F	archaerhodopsin 155–156B, 600	savings phenomenon 463
retinal	bacteriorhodopsin 535	scaffolding proteins 95–96
constituent of rhodopsin 124	Drosophila 200, 202	scanning electron microscopy 580,
	as a GPCR 124-125	584-585
evolution of light-sensing 534–535	halorhodopsin 155–156B, 453, 535,	Schaffer collaterals 419, 421-422, 428-429,
isomers in model organisms 600	600	432B, 449
retinal densitometry 133	sensory rhodopsins 534–535	schizophrenia
retinal eccentricity 130-131	spectral sensitivity 132–133	Mecp2 mutations 501, 507
retinal ganglion cells see RGCs	X-ray crystallography 125	neurexin/neuroligin mutations 299,
retinal neurons, serial microscopy 585	see also channelrhodopsins; ChR2	507
retinal waves	rhythmic output, central pattern	positive and negative symptoms
action of ephrins and 193–194	generators 332–336	488–490
effects of blocking 195, 197F	RIM (Rab3-interacting molecule) 79, 80F,	twin studies 3, 495
and Hebb's rule 187–189	84T	Schwann cells 8, 54, 55–57B, 73F
before the onset of vision 184-187	RIM-BP (RIM binding protein) 79–80, 84T	
retinocollicular maps 192-193	RNA	sciatic nerve, <i>Trembler</i> mice 56–57B
retinotectal mapping 170-172, 173F, 307,	binding by FMRP 504-505	scientific methodology
559	microRNAs 520, 567	observation and measurement 23–24
retinotopic maps 167, 168F, 176, 188,	Nissl staining 575	perturbation experiments 24, 182, 185,
193–194, 318	noncoding 521, 567	408, 586
retinotopy 147-148, 149F, 151-152	RNA editing 95	SCPNs (subcerebral projection neurons)
retrieval stage, memory 417	RNA-seq 259, 573–574	285, 286F, 301-302
retrograde axonal transport 32	RNA splicing 28	scrapie 477–478
retrograde flow 179B	RNAi (RNA interference) 195, 259, 384,	second-generation descendants 522
retrograde memory deficits 451	390, 499, 553B, 567	second messengers
retrograde messengers 429-431	see also knockdown	cAMP as 100, 117
retrograde tracing methods 158, 331, 400,	Robo axon guidance receptor 389	DAG and IP ₃ as 103
583, 585	Robo (Roundabout) mutants 287–289	defined 92
transsynaptic tracing 220		passing electrical synapses 115B
Rett syndrome 500–503, 506–507, 508B	rodents	secondary dendrites 218, 219F
reversal potentials 88F, 89, 93, 97, 98F,	behavioral assays and human brain disorders 606–608	secondary visual cortex (V2) 158
127, 260		secretases
	as model organisms 560	
reverse genetics 561, 563–565	see also mouse; rat	α-secretase 469
reverse signaling, ephrin-EphA 177	rods	β-secretase 469-471
reward-based learning 456-459	detection of light signals 121–135	γ-secretase 469F, 470–471, 475–476
reward prediction errors 457, 458F, 459	function of cones and 122	secreted proteins 28
RGCs (retinal ganglion cells)	single photon sensitivity 122–124	secretory process, neurotransmitter
axon–axon competition 176	rostral-caudal axis 7	release 526–527
axons, nasal and temporal sides 146	rotarod assay 340, 606	seizures 508–510B
axons, targeting 167–180	RTKs (receptor tyrosine kinases) as	selective sweeps 553B
cell types by anterograde tracing 583	enzyme-coupled receptors 108B	selectivity filters 62-63

self-avoidance	sex-linked mutations 497B	usefulness of 587–589
gene variants in 316–317	sex partner discrimination, in mice	visual cortical layers 154
by homophilic repulsion 293-295	401-402	siRNAs (short interfering RNAs) 567
self-stimulation, electrical 456–457	sex peptides 386-387	site-directed recombinases 568
semaphorins 174, 195, 313–314, 320	sex-specific splicing 379–380, 387	size principle 301, 329-330
Sema1A (semaphorin 1A) 313, 314F, 315, 317T, 318-320	sexual activity, maintenance 396–398 sexual behavior	skeletal muscle acetylcholine receptor 90-91
Sema2A 313-314, 320	Drosophila 378-390	sleep
Sema2B 313-315, 317T, 319	multiple behaviors 402–405	electroencephalogram patterns
Sema3A 289–290, 309, 310F, 317T, 318, 320	photostimulation-induced mating 405	367–368 function of 372–374
Sema6A 195, 196F	regulation in mammals 390-410	in mammals 367–372
semaphorin/neuropilin 310	role of oxytocin and vasopressin	promotion and maintenance of
semicircular canals 253–255B	409-410B	wakefulness 369, 372–373
Senseless transcription factor 202	see also courtship	regulation 367–372
sensitive period, sex hormones 395	sexual dimorphism	sleep deprivation 367–368, 373–374
sensitization	accessory olfactory system 400-402	Slit mutants 287, 288F, 289–290, 317T
in <i>Aplysia</i> 437–439	Drosophila ORNs 382	SM (Sec1/Munc18-like proteins) proteins
as a form of learning 434	neuron numbers 386-388, 398-399,	75–77
sensory and sensorimotor stages, bird song 391B	402 neuron wiring 388–390, 399–400,	small bistratified RGCs 140, 144, 145–146F
sensory homunculi 20	402	smell, sense of 207–222
sensory neurons	origins, and sex chromosomes 377,	see also odor; olfaction
Fru ^M and mating 382–284	390	Smith-Magenis syndrome 498B
knee-jerk reflex 12, 15–16	programmed cell death 386–388	smooth muscle, autonomic control 351
mechanotransduction in 262F	sexual maturation 396–398	SNAP-25 76, 77F, 82, 84T
sensory rhodopsins 534–535	sexual reproduction, S. cerevisiae 530	SNARE (soluble NSF-attachment protein
sensory systems	SH2 (src homology 2) domains 108B	receptor) proteins
central integration in itch and pain	Shaker mutant 60-61, 63	cleavage by toxins 77B
264–266 evolution 527–543	Shh (Sonic Hedgehog) morphogen 283, 284F, 289–290	mediating synaptic vesicle fusion 75–77
niche-specific senses 527-528	Shibirets mutation 82-83, 84T, 230, 381,	synaptobrevin 76, 78, 82, 84T, 596
visual system as an example 121	386, 596	t-SNAREs 76, 84T, 526
serial electron microscopy (EM) 142, 223,	shmoos 530-531	v-SNAREs 76, 78, 84T, 526
431, 558, 559F, 584–585	short-range axon guidance cues 174B	SNPs (single nucleotide polymorphisms)
serial processing 22	short-term memory 417, 432B, 439-442	498B, 521
serine/threonine kinases	<i>Aplysia</i> 439–441	social interactions 409, 607–608
CaMKII as 103	sickle-cell anemia 519	SOD1 (superoxide dismutase 1) 480, 487
Erk as 108B	Sidekicks protein 195, 316	sodium ions see Na ⁺
PKA as 101	sign inversion 138	Sog protein (short gastrulation) 544
PKC as 103	signal amplification	solutes
serotonin	in chemotaxis 529B	defined 36
as a neuromodulator 86, 370B, 371 sensitization in <i>Aplysia</i> 439–440	and termination, GPCR signaling 106	electrochemical gradient 37 neuronal membrane transport 34–38
SSRIs 491, 493	signal propagation 44	soma (nerve cell body) 7, 14
serotonin-gated ion channels 91	signal transduction and RTK signaling	somatosensory cortex 155F, 270
Sevenless mutant 199–200	107-109B	somatosensory system 12, 255–271
sex chromosomes	silent synapses 424–425	neuron types 257–259
chromosome abnormalities 393	simple cells, primary visual cortex 149–150	parallel organization 257F
and sexual dimorphism 377, 390		see also trigeminal chemosensory
Y chromosome 379, 393, 497B	single channel conductance, γ 59, 64B, 240	system
see also X chromosomes	single-unit extracellular recording	somatostatin 110
sex determination, Fru gene hierarchy 379–380	accessory olfactory system 402F	somatotopic maps 346 songbirds
sex hormones	dopamine neurons 458F	bird song 391–392B, 553B
neuronal connections 399-400	hippocampal place cells 444B	courtship behavior 390, 391–392B,
neuronal numbers 398–399	LGN neurons 148–149, 152	399
organization-activation model 395	owl ICX neuron 249F	as model organisms 560
testosterone and estradiol as	RGCs 136, 142	SOPs (sensory organ precursors) 282–283
393-394	somatosensory cortex 270, 271F	Sos complexes 108B
unisexual lizards 403B	temporal cortex 159, 160F	sound, especially significant 250–252

sound frequencies, tonotopic maps	stem cell research 485, 486B	Sxl (sex-lethal) protein 379–380
240–243	stepwise connections 319–320	sympathetic nervous system
sound location	stereocilia 239–240, 242F, 244, 253–254B	norepinephrine and 102
in mammals 249, 250F	stereotactic injection 571	parasympathetic and 104, 351–353
in owls 246–249	stereotyped axon pruning 301–302, 303F	symporters 37, 81F
sour taste 233–234, 236	stereotyped decisions 283	synapses
Southern blotting 573	stereotyped odor representation 231-232	chemical and electrical synapses
space constant (length constant) 46–48,	stereotypic behaviors 4, 377-378	10–11, 14
54	stereotypic positioning 216	electron micrograph 73F, 83F
spatial integration, excitatory inputs 111, 112F	STG (stomatogastric ganglion) 334–336, 368, 437, 558	elimination in neuromuscular connections 300–301
spatial mapping, olfactory bulb 216, 219F	sticklebacks 521	as facilitating or depressing 83–85
spatial representation	stimulating electrodes 45, 48	mapping 586
hippocampal LTP and 447–448	stimuli	size of, in squid 558
memory and 446–448	conditioned (CS) 434-436, 441-444,	see also chemical; electrical synapses
in rodents 444-445B, 446-447, 605	454-455, 456B, 459-460B	synaptic cleft
see also Morris water maze	sub-threshold and supra-threshold	clearance of neurotransmitters 80–81
spatiotemporal gene expression patterns 569–571	48	discovery 10–11
species discrimination 384	unconditioned (US) 434–436,	synaptic connections
-	441-444, 454-455, 456B, 459B	mapping in neural circuitry 584–586,
spectral sensitivity	stochastic odor representation 231-232	601-602
cones 132–133, 143–145	stomatogastric ganglion (STG),	memory and strength of 417–420
Drosophila 200	crustaceans 334–336, 368, 437,	numbers possible 419
enhancing with extra opsins 542–543	558	revealed by paired recordings 601
speech disorders 552B	storage stage, memory 417	synaptic dysfunction in disease 506–507
Sperry, Roger 168–170, 174, 180	STORM (stochastic optical reconstruction	synaptic efficacy
spikes see action potentials	microscopy) 580-581	Apysia 439
spinal cord	Streptococcus pyogenes 566B	long-term depression 426–428
cell fates 283	stress odors 230	long-term potentiation 421
commissural neurons 174–175B	striate cortex see primary visual cortex	regulation 83
organization of motor columns and	striatum 281, 343–345, 370–371B, 457	see also LTP
motor pools 331	sub-threshold stimuli 48	
rhythmic output 333–334	substance P 268	synaptic failure 71
structure 6F, 7	substantia nigra	synaptic plasticity
Spineless transcription factor 200–201	dopamine neurons in Parkinson's	achievement 420–434
spinocerebellar ataxia 479	disease 480	in the cerebellum 342
spinocervical tract pathway 267-268	pars compacta (SNc) 343F, 344, 371B,	glutamate receptors and 94-95, 109
spiny projection neurons (SPNs) 343F,	457-458, 480-481, 482F	in learning and memory 420, 434–451
344–345, 458–459, 480, 481F,	pars reticulata (SNr) 343F, 344–345,	local translation and 504–505
495-496	480	role of dendritic integration 428–429
spiral ganglion neurons 238F, 239–242, 243F, 245, 256F	subthalamic nucleus (STN) 343F, 344,	short- and long-term 83
	481F, 484	structural changes 431-434
spongiform encephalopathies 478	subventricular zone 548, 549F	see also LTP
spontaneous neuronal activity, retina 184–187, 193, 196	suction electrodes 123, 130F, 133	synaptic potentials 14
squid giant axon	sulci 518–519, 549, 550F	synaptic protein origins 525-526
discovery of kinesins 35–36B	super resolution fluorescence microscopy	synaptic pruning 490
electron micrograph 49F	79–80, 580–582	synaptic tagging 432–433B
Hodgkin-Huxley experiments 50–52	superior colliculus	synaptic transmission
patch clamp recording 57–58	control of eye movement  146, 154, 157, 162	neurotransmitter release 69-70
propagation speed 47, 54, 524	tectum, as non-mammalian	process 15
role of Ca ²⁺ channels 74–75F, 558	equivalent 168F, 169–170, 173	regulating 83–85
Sry gene (sex determining region Y) 393	superior olivary nuclei 245–247, 249, 250F	synaptic vesicle recycling 81–83
SSRls (selective serotonin reuptake	lateral superior olivary nucleus (LSO)	synaptic vesicles
inhibitors) 491, 493	249, 250F	electron microscopy of 11
star-nosed moles 527, 528F, 551	medial superior olivary nuclei (MSO)	molecular anatomy 76F
starter cells 585–586	247, 249, 250F	recycling by endocytosis 81–83
STDP (spike-timing-dependent plasticity)	supra-threshold stimuli 48	reserve, and readily releasable pools
428	suprachiasmatic nucleus (SCN) 146F,	82
STED (stimulated emission depletion	147B, 366–367, 398F	synaptic vesicle fusion
microscopy) 581	Swedish mutation, in App 471, 472–473F	mediated by SNARE and SM proteins
stellate cells 190–192B, 341	sweet taste 233-237	75-77

neurotransmitter release 72–73, 526	temporal resolution, cones 131	and induced pluripotency 486B
synaptotagmins as Ca ²⁺ sensors 78–79	temporal RGC axons 146, 170–172	POU3F2 553B
synaptic weight matrices 417–420, 422, 426, 436–437, 449	teneurins 315–316, 496	Sry encoding 393
synaptobrevin/VAMP 76, 78, 82, 84T, 596	tennis return example 22–23	transcription process 28 transcription units 28
synaptogenesis	territory, marking and defense 389–390, 391B, 396, 401, 405, 408	transcriptional regulation
bidirectional communication	testes development and <i>Sry</i> gene 393	
297–299	testosterone	auto-inhibitory 362–364, 367 guidance molecules 283–285
subcellular site selection 295–297	dihydro- (DHT) 394, 399	transcytosis 30
synaptotagmins 78-79, 80F, 563	effects of female exposure 395–396	transducin 125–128
synchronized firing 186	estrogen receptors 396	transduction cascade, visual system
synchrony, menstrual 222B	and male differentiation 393	125–126
syndromic disorders 499	tetanus toxin 77B, 596	transgenic animals
synonymous substitutions 553B	tetracycline response elements (TRE)	control of gene expression 569–571
syntaxin 76, 77F, 82	450–451B, 570	driver and responder transgenes 570
$\alpha$ -synuclein, in Parkinson's disease	tetrodes 587	Drosophila TrpA1 channel 598
480–483, 487	thalamocortical axons (TCAs) 182,	expressing molecular tools 569
_	190-192B	transgenic nematodes 223
T	thalamus	viral transduction 571
t-SNAREs 76, 84T	LGN axons from 154	transgenic mice
SNAP-25 76, 77F, 82, 84T	location 6F, 7	<i>App</i> mutants 472–473
syntaxin 76, 77F, 82	multisensory integration 149	ChR2 expressing 186, 187F
tamoxifen 503F, 564	thermosensation 255, 257T, 259, 266	Cre lines 155–156B, 265F
target cells, neurotrophin release 302–305	TRP channels 262–264, 596	double transgenic mice 337, 473
TARPs (transmembrane AMPA receptor regulatory proteins) 96	third eye experiments 182–183, 189	enhanced spectral discrimination 145
tastants 232–237	threonine phosphorylation 425	Fos-tTA mutants 450B
taste buds 233	threshold depolarization 48	GluN2B mutants 448
taste modalities	thrombospondins (TSPs) 299	hT2R16 mutants 236-237
in mammals 232–238	time constants ( $\tau$ ) 41–43, 46–47, 54	labeled LTMR projections 267F
representation 236–237	time difference, interaural (ITD) 246,	presinilin mutants 472
taste perception and receptor activation	247F, 248–249, 250F	RGC labeling 186, 187F, 195
236-238	Timeless gene 363, 365	Sac mutant 233-234
taste pores 233	Timothy syndrome 506	translation, as protein synthesis 28, 30
taste receptor cells 233-237, 383-384,	tip links 239–240	transmembrane proteins, synthesis 28
389F	tissue clearing, CLARITY-based 577F tonic-clonic seizures 508B	transmission electron microscopy 580
taste system 232-238	tonic firing mode, dopamine neurons 457	transporters, in membrane transport
distinction from flavor 233	tonic inhibitory output 344	36–37
Tau mutant 366	tonotopic maps 240–243	see also pumps
tau protein 216, 468F, 469, 472–473, 475F	top-down memory research 420, 434	transsynaptic tracing 220
tauopathies 469, 473	topographic mapping 20, 270	TRE (tetracycline response elements)
Tbr1 transcription factor 285	see also retinotopic maps	450-451B, 570
TDP-43 protein 480, 487	touch perception 255, 257T, 258–259, 262	TREM2 (triggering receptor expressed on myeloid cells 2) gene 475
TEA (tetraethylammonium) 58	and neuronal activity 269–271	Trembler mice 56–57B
tectorial membrane 238F, 239, 242F	parallel pathways with pain 266–268	trichromacy
tectum	toxins	artificial introduction 542–543
regenerated RGC axons 169-171	cholera toxin 583	evolution 135, 519, 540–542
as superior colliculus equivalent 168F, 169–170	medical potential 77B	in humans 133, 135
temporal RGC repulsion 171–172	tetanus toxin 77B, 596	trigeminal chemosensory system 232,
telencephalon 279–281, 547	T1R family, GPCRs 233-234	237, 238F, 259, 533
temperature see thermosensation	T2R family, GPCRs 234-235	trigeminal ganglia 256, 263F
temperature-activated TRP channels 263,	Tra (Transformer) mRNA 379-380	trimeric GTP-binding protein see G protein
598	trans-synaptic tracing 220F, 340, 441, 585,	Trk receptors 108B, 304, 305F
temperature-sensitive mutants (Shibirets)	602	TRP channels
82–83, 84T, 230, 381, 386	transcription factors	as cation non-selective 63-65B
temporal cortex, face recognition 159-160	and cell fates 283–284	in chemosensory neurons 532
temporal integration	controling eye development 546–547	contribution of various sensations
electrical signals 46	CREB (CRE binding protein) 110	262–264
of excitatory inputs 111, 112F	Erk activation 108-109B	dTRPA1 channels 382, 384, 598
temporal lobe 18	FoxP2 and language 552-553B	identification 563

Nompc encoded 260B	vasopressin	receptive field acquisition by neurons
rhabdomeric photoreceptors 536 TRP4 260B	regulation of parental behavior 407–409	150-151 visual to auditory rewiring experiment
TRPA1 channels 263–264, 268F, 527	role in sexual behavior 409–410B	550-552
TRPC2 channels 221–222B, 264, 401	VE-DlC (video-enhanced differential	see also primary visual cortex
TRPM8 channels 262–264	interference contrast)	visual illusions 133F, 140
TRPV1 channels 262–265, 268F	microscopy 35-36B	visual maps 4-5, 20, 461
Tsc1 and Tsc2 (tuberous sclerosis 1 and 2)	ventral fate 544	visual system
complex 506	ventral horn 266	adaptation to light levels 129–130
tTA (tetracycline-repressible	ventral nerve cord 286-287, 288F,	cone cells 130-135
transcriptional activator)	385–386	development in Drosophila 197–203
450–451B, 570	ventral pallidum 408, 409F	P and M pathways 157
TTX (tetrodotoxin) 57, 58F, 59, 70,	ventral root 329-330F, 332-333, 338F	parallel processing 157–159
183-184	ventral stream, exiting V1 158	recovery mechanism 127-128
tuberomammillary nucleus (TMN) 369	ventral tegmental area see VTA	retinal signal analysis 135–146
tuberous sclerosis 506	ventricles 278, 280-281	rod cells 122-130
tufted cells 214, 218, 219F, 225, 316	ventricular zone 280	transduction cascade 125-126
twin studies	vertebrates	wiring 167-168, 180-197, 277
Alzheimer's disease 473	animal models among 559-561	see also photoreceptors
identical (monozygotic) twins 1-2,	body plan compared with	VL2a glomeruli 382–383
213	invertebrates 544–546	VLPO (ventrolateral preoptic area) 369
schizophrenia 3,495	chordate ancestors 516	VMATs (vesicular monoamine
two-photon Ca ²⁺ imaging 142, 152F, 153,	direction of information flow 11-13	transporters) 488–489
219, 593	evolution of myelination 524-525	VMH (ventromedial hypothalamic
two-photon microscopic imaging 431F,	ionotropic receptor families 91, 92F	nucleus) 400, 401F, 402–405
462, 579, 594–595B, 606F	neuromuscular junctions 69–70	voles, prairie and meadow 407-409
laser-scanning 142, 593	neurotransmitters in 87T	voltage clamp technique 50–51, 58, 74F,
type III neuregulin-1 (NRG1-III) 55–56B	photoreceptors in invertebrates and	88F
tyrosine hydroxylase 196F, 482F, 483, 485	124	voltage-gated ion channels
***	phylogenetics of opsin genes 540F	activation mechanisms 61F
U	vesicular neurotransmitter transporters	different distributions and densities
UAS (upstream activating sequence) see	81, 488	113
GAL4/UAS	vestibular ganglion neurons 253–255B	primary structure 60F role 52
ubiquitin-proteasome system 302, 482	vestibular nerve 253-254B	voltage-gated Ca ²⁺ channels
Ultrabithorax mutants 545	vestibular nuclei 254-255B	in early bilaterians 523–524
ultrasonics see bats	vestibular system 252, 253-255B	endocannabinoids and 430F, 431
umami taste 233–237	vestibulo-ocular reflex (VOR) 254-255B,	functions 64-65B
Unc6 protein 174-175B	342-343	
Unc40 protein 174–175B, 317T, 318	vinegar flies see Drosophila	memory mechanisms 440 norepinephrine action on 104–105
unconditioned stimuli (US) 434–436, 441–444, 454–455, 456B, 459B	viral transduction	1 1
	engrams 450	and schizophrenia 496
unidirectionality action potential propagation 52–53,	gene silencing 567	Timothy syndrome 506 voltage-gated K+ channels
60, 66	horizontal gene transfer 523	evolution 523
chemical synapses 117	human opsin genes 543	pore loop structure 62–65
DAT transport 494	transgene manipulation 600–601	TEA blocking 58
unipolar neurons 13	transgenic animals 155, 571	voltage-gated Na ⁺ channels
uniporters 38	virtual reality feedback 595B, 605	channelopathies 508–509B
amp strong go	viruses, neurotropic 585	from electric eels 59
v	visceral motor neurons 353	evolution 524
V-ATPases 81–82, 84T	visceral motor system see autonomic	plasticity in learning 420
V0 interneurons 337, 338F	nervous system	TTX blocking 57
v-SNAREs 76, 78, 84T	visceral sensory neurons 353	voltage-sensitive dyes 591
synaptobrevin 76, 78, 82, 84T, 596	vision research, animal models 124B	volume transmission 86
vagus nerve 103, 353	visual cortex	voluntary movement 344, 346–348
VAMP (vesicle-associated membrane	cells as vertically organized 151-154	vomeronasal organ (VNO) 221-222B, 397
protein, synaptobrevin) 76, 78,	functional architecture 152	401F, 406
82, 84T, 596	information processing 146-163	VOR (vestibulo-ocular reflex) 254-255B,
van Gogh, Vincent 490	monocular deprivation effects	342–343
V1aR vasopressin receptor 408, 409F	180-182, 462	VTA (ventral tegmental area)
variation, in evolution 515, 521	Nissl staining 576F	actions of leptin and insulin 361-362

whole-cell patch recording 605

in brain slices 93, 94F, 115B, 424, 429, 601–602

addictive drugs and 493–495	dye fill 589	non-syndromic intellectual disabilities
dopamine release after mating 408	on ipRGCs 147B	499
dopamine release after self- stimulation 456–457	mechanotransduction channels 260B, 261–262F	random inactivation 497B, 501, 541–542
and neuromodulation 371B	of neocortical layers 155B	ratio to autosomes 379
nucleus accumbens projections	of POMC neurons 359F	X-ray crystallography
458-459	principles of 78	ion channels 62–65
phototagging 588-589	of SAC and DSGC 142	rhodopsin 125
striatum and 343F, 344-345	usefulness 142, 589-591, 595B	SNARE proteins 76, 77F
	of VTA neurons 495	Xenopus
W	zebrafish larvae 605	oocytes 90, 262, 263F, 533F, 535, 598F
wakefulness 369, 372–373	whole-genome sequencing 474, 498B,	retinotectal synapses 438F
Wallerian degeneration 302, 303F	500, 520, 562, 575	
water diffusion 582	whole-mount preparations 576–578	Y
water maze, Morris 447–449, 472, 499, 500F, 605–606	Wiesel, Torsten 148–150, 152–153, 180–182	Y chromosomes 379, 393, 497B yeast, budding 530
wavelength	wiring specificity 197-203, 278-305, 306F,	Young, Thomas 133
and color vision 132	307, 496	
maximum sensitivity of rods 122	fly olfactory system 312–314, 316	Z
Weber's Law (Weber-Fechner relation) 129-130, 329	Wnt family proteins DA9 neuron and 296	zebra finches 391–392B, 553B zebrafish ( <i>Danio rerio</i> ) giant fibers 524 larvae 27, 338, 559, 605, 606F as a model organism 559
Wernicke's area 18F, 19, 252	as morphogens 279, 289, 290F, 296 multiple uses 317T, 319	
western blotting 573		
whisker barrels 190-192B, 551, 576	Wnt-Frizzled interaction 289, 290F	
white matter 8, 55B, 575, 582 see also glia	working memory 417, 436	sleep state 367
whole-cell patch recording 605	X	zygotes, cleavage and development 278

X chromosomes

and color blindness 135