WIDE BINARIES DISTRIBUTIONS

Alejandro Aguayo-Ortiz August 19, 2023

1 Wide binaries - Distributions

1.1 Parameters

• Eccentricity:

 $e := \text{Thermal distribution} \rightarrow p_e(e) = 2Ke|_0^1$

Figure 1.1: Eccentricity, normalized thermal distribution - 100,000 samples.

• Eccentricity squared:

Figure 1.2: Eccentricity squared, normalized uniform distribution - 100,000 samples. This parameter is not relevant, since we already have the eccentricity. Nevertheless, it was computed using the e-thermal distribution, in order to prove that we obtain a uniform distribution for the squared, as predicted.

• Initial phase angle:

Figure 1.3: Initial phase angle, normalized uniform distribution - 100,000 samples.

• Phase angle:

$$phi := \text{Phase angle distribution} \rightarrow p_{\phi}(\phi|e) = \frac{(1-e^2)(3/2)}{2\pi(1+e\cos\phi)}\Big|_0^{2\pi}$$

Figure 1.4: Phase angle, already normalized distribution - 100,000 samples

• Orbit semi-major axis:

$$a := \text{Power law distribution} \rightarrow p_a(a) = \left. \frac{K}{a} \right|_{200UA}^{0.6pc}$$

Figure 1.5: Orbit semi-major axis, normalized power-law distribution - 100,000 samples.

• Orbit angle:

$$i := \text{Orbit angle distribution} \rightarrow p_i(i) = \mathcal{U} \{0, \pi\}$$

Figure 1.6: Orbit angle, normalized uniform distribution - 100,000 samples

• Angle between \vec{v} and \vec{r} :

$$\alpha := \widehat{\vec{vr}} \text{ distribution} \to \alpha(\phi, e) = \sin^{-1} \left(\frac{1 + e \cos \phi}{\sqrt{1 + e^2 + 2e \cos \phi}} \right)$$

Figure 1.7: $\hat{\vec{vr}}$ angle distribution - 100,00 samples.

1.2 Projected distance r_{2D}

$$r_{2D}(a, \phi, \phi_0, i) = \frac{a(1 - e^2)}{1 + e\cos\phi} \sqrt{1 - \sin^2 i\cos^2(\phi - \phi_0)}$$

Figure 1.8: Estimated distribution for the projected distance - 100,000 samples.

1.3 Projected velocity v_{2D}

$$v_{2D}(\phi, \phi_0, i) = \sqrt{\frac{GM(1 + e^2 + 2e\cos\phi)}{a(1 - e^2)}} \sqrt{1 - \sin^2 i \cos^2(\alpha + \phi - \phi_0)}$$

Figure 1.9: Estimated distribution for the projected velocity - 100,000 samples.

The stellar mass follows a uniform distribution $p_M(M) = \mathcal{U}\{0.5, 1.5\} M_{\odot}$:

Figure 1.10: Stellar mass, normalized uniform distribution - 100,000 samples.