

Ville Kopio

Lauri Kurki

Mikael De Meulder

TOC

Binary Classifier

Target

 Classify the particle formations to Events and Non-events

Multiclass Classifier

Target

 Classify the different event to Non-events and the different particle formation events (Ia, Ib and II)

Binary Classifier

- Model selection:
 - Logistic Regression (LR)
 - Support Vector Classifier (SVC)
 - Random Forest Classifier (RFC)
 - Naive Bayes (NB)
- Comparison done with 10-fold cross-validation

Model	CV loss
LR	0.819
<u>svc</u>	0.884
RFC	0.879
NB	0.807

- Optimization of model parameters:
 - Kernel
 - Regularization parameter C
- Kernel = rbf, C = 2.2

Multiclass Classifier

Prosessing the std's out and doing the normalization

- Unsupervised learning methods
 - K-means
 - Hierarchical clustering
 - Supervised learning methods
 - Multiple different
 - In both learning types affect of feature selection was done by sklearns selectKBest function
 - Also the effect of different scaling methods was tested

Multiclass Classifier

Unsupervised

K-Means	Hierarchical	Scaling
0.61	0.57	Normal
2.57	0.59	MinMax
0.59	0.57	Standard
0.58	0.58	No scaling

Unsupervised

75/25 test/train split

/	LR	0.70
	Decision tree	0.64
	K-NN	0.67
	LDA	0.64
	NB	0.55
	SVC	0.70

Decided to use Logistic Regression

K-mean with optimized features: 0.59