PROGRAMMA DI ALGEBRA 2 PRIMA PARTE

Corso di Laurea in Matematica A.A. 2024-2025, primo semestre 6CFU Docente: Andrea Loi

- 1. Semigruppi, monoidi e gruppi. Semigruppi; esempi di semigruppi; legge di cancellazione in un semigruppo; elementi idempotenti in un semigruppo; in un semigruppo finito esiste almeno un elemento idempotente; monoidi (semigruppi con elemento neutro); esempi di monoidi; un elemento idempotente in un monoide dove vale la legge di cancellazione a sinistra (o a destra) è l'elementto neutro; un elemento idempotente in un semigruppo dove vale la legge di cancellazione è l'elemento neutro; definizione di elemento invertibile in un monoide; unicitá dell'inverso; definizione di gruppo: monoide dove tutti gli elementi sono invertibili; un semigruppo con elemento neutro a destra (risp. sinistra) e inverso a destra (risp. sinistra) è un gruppo; alcuni esempi di gruppi: gli esempi numerici; il cerchio unitario come gruppo; il gruppo lineare $GL_n(\mathbb{K})$ su un campo \mathbb{K} ; gli elementi invertibili U(M) di un monoide formano un gruppo; legge di cancellazione in un gruppo; un monoide finito dove vale la legge di cancellazione a destra (oppure a sinistra) è un gruppo; un semigruppo finito dove vale la legge di cancellazione è un gruppo; proprietà elementari dei gruppi: inverso del prodotto; proprietà delle potenze in un gruppo; confronto tra la notazione addittiva e moltiplicativa; elementi permutabili in un gruppo e commutatore tra due elementi; ordine di un elemento e le sue proprietà.
- 2. Due gruppi importanti. Il gruppo diedrale D_n , $n \geq 3$, delle isometrie del piano che fissano un poligono regolare di n-lati; esempi nel caso n=3 e n=4; le permutazioni come gruppo; prodotto di permutazioni finite; supporto di una permutazione; permutazioni disgiunte; due permutazioni disgiunte commutano; cicli; ordine, supporto e inverso di un ciclo; potenze di un ciclo; il teorema fondamentale delle permutazioni: ogni permutazione f non identica con supporto finito può scriversi in modo unico (a meno dell'ordine) come prodotto di cicli disgiunti $f = \sigma_1 \cdots \sigma_t$ e l'ordine di f è uguale al minimo comune multiplo della lunghezza dei cicli σ_j ; una permutazione ha ordine un primo p se e solo se si può scrivere come prodotto di cicli tutti di lunghezza p; definizione di N(f); segno di una permutazione $sgn(f) = (-1)^{N(f)}$; permutazioni di classe pari e dispari; ogni permutazione f si può scrivere come prodotto di N(f) trasposizioni; il sgn è una funzione moltiplicativa $sgn(f \circ g) = sgn(f)sgn(g)$; una permutazione è di classe pari se e solo se si può scrivere come prodotto di un numero pari di trasposizioni.
- 3. Sottogruppi e classi laterali. Sottogruppi: stabilità e inverso; esempi di sottogruppi; se un insieme finito A di un gruppo G è stabile allora A è un sottogruppo di G; il gruppo alterno A_n ; criterio per riconoscere un sottogruppo (un sottoinsieme non vuoto H di un gruppo G è un sottogruppo se e solo se $x^{-1}y \in H$ per ogni $x, y \in H$); l'intersezione di una famiglia qualsiasi di sottogruppi è un sottogruppo; sottogruppo < X > di un gruppo G generato da un sottoinsieme $X \subseteq G$; sottogruppo < x > generato da un elemento; gruppi ciclici; i sottogruppi di \mathbb{Z} sono tutti ciclici e della forma $m\mathbb{Z}, m \in \mathbb{N}$; se G è un gruppo G allora $H \cup K$ è un sottogruppo di G se solo se G0; siano G1; siano G2; sottogruppi di un gruppo G3 non può essere unione di due suoi sottogruppi propri; l'unione di una catena di sottogruppi è ancora un sottogruppo; sottogruppo G3; siano G4; siano G5; siano G6; siano G7; siano G8; siano G9; siano G10; siano G20; siano G20; siano G20; siano G20; siano G20; siano G20; siano

sono permutabili) se e solo se $\langle H,K\rangle=HK;\ |HK|=\frac{|H||K|}{|H\cap K|};\ \text{se }H=m\mathbb{Z}\ \text{e }K=n\mathbb{Z}$ sono sottogruppi $(\mathbb{Z},+)$ allora $H+K=(m,n)\mathbb{Z}\ \text{e }H\cap K=[m,n]\mathbb{Z};$ classi laterali di un sottogruppo; sia G un gruppo e H un suo sottogruppo allora ogni classe laterale (sinistra o destra) di H in G ha la stessa cardinalità di H; sia G un gruppo e H un suo sottogruppo allora la cardinalità delle classi laterali sinistre di H in G coincide con la cardinalità delle classi laterali destre di H in G; [G:H] indice di H in G; teorema di Lagrange (sia G un gruppo finito e H un suo sottogruppo allora |G|=[G:H]|H|); sia G un gruppo finito e x un elemento di x0 allora x0 divide x0 e x1 in un gruppo finito x2 di ordine x3 primo gli unici sottogruppi sono quelli banali, x4 è ciclico e tutti gli elementi non nulli di x4 hanno ordine x5 e generano x6; dimostrazione del il piccolo teorema di Fermat usando la teoria dei gruppi: ordine del prodotto di due elementi: se due elementi di un gruppo commutano e hanno ordini coprimi allora l'ordine del loro prodotto é uguale al prodotto dei loro ordini.

- Sottogruppi normali e quozienti Definizione di sottogruppo normale di un gruppo G: N è un sottoguppo normale di $G(N \subseteq G)$ se le classi laterali sinistre e destre coincidono xN e Nx coincidono per ogni $x \in G$; criteri per la normalità di un sottogruppo:N sottogruppo di G è normale se e solo se il coniugato di ogni elemento di N appartiene a N; il coniugato di un sottogruppo $H^x = x^{-1}Hx$; condizione di normalità $(H \leq G$ se e solo se $H^x \leq H$ se e solo se $H^x = H$ per ogni $x \in G$); il gruppo alterno A_n è un sottogruppo normale di S_n ; un sottogruppo N di indice due in un gruppo G è normale (non è vero se l'indice è tre); gruppi semplici (gruppi che non hanno sottogruppi normali non banali); il centro Z(G) di un gruppo G; il centro di un gruppo G è un sottogruppo abeliano normale del gruppo G e ogni sottogruppo contenuto in Z(G) è normale in G; G è abeliano se e solo se Z(G) = G; se G è un gruppo semplice non abeliano allora $Z(G) = \{1\}$; non vale la proprietà transitiva per sottogruppi normali: se H è normale in $K \in K$ è normale in G non è detto che H sia normale in G; operazioni con i sottogruppi normali; l'intersezione di una famiglia di sottogruppi normali è un sottogruppo normale; l'unione di una catena di sottogruppi normali è normale: il sottogruppo generato da una famiglia qualsiasi di sottogruppi normali è un sottogruppo normale sia H un sottogruppo di G e K un sottogruppo normale di G allora HK = KH (e quindi HK è un sottogruppo di G) se anche H è normale allora HK è un sottogruppo normale di G; il gruppo lineare speciale $SL_n(\mathbb{K})$ (sottogruppo normale di $GL_n(\mathbb{K})$); il sottogruppo $T_n^+(\mathbb{K})$ delle matrici triangolari superiori invertibili (non è normale in $GL_n(\mathbb{K})$, per ogni $n \geq 2$ e per ogni campo \mathbb{K}); il gruppo $D_n(\mathbb{K})$ delle matrici diagonali (non è un sottogruppo normale di $GL_n(\mathbb{K})$ se $|\mathbb{K}| \geq 3$ e $n \geq 2$); le matrici scalari Z sono il centro di $GL_n(\mathbb{K})$; il gruppo ortogonale $O_n(\mathbb{K})$ è un sottogruppo (non normale) di $GL_n(\mathbb{K})$ per $n \geq 2$; le matrici simmetriche invertibili non sono un sottogruppo di $GL_n(\mathbb{K})$; il gruppo Q_8 dei quaternioni unitari e le sue proprietà; il gruppo quoziente di un gruppo G tramite un sottogruppo normale N; il gruppo degli interi modulo \mathbb{Z}_m come quoziente: $\mathbb{Z} = \mathbb{Z}/m\mathbb{Z}$; se N è un sottogruppo normale di un gruppo finito G allora |G| = |G/N||N|.
- 5. Omomorfismi e isomorfismi.; Omomorfismi di gruppi; principali proprietà degli omomorfismi (l'identità va nell'identità, l'inverso va nell'inverso e le potenze si preservano); la composizione di omomorfismi è un omomorfismo; isomorfismi di gruppi (omomorfismi invertibili); ogni gruppo ciclico finito di ordine n è isomorfo a \mathbb{Z}_n ; l'immagine di un gruppo ciclico tramite un omomorfismo è ancora ciclico; nucleo di un omomorfismo (sottogruppo normale del dominio); immagine di un omomorfismo (sottogruppo del codominio); un omomorfismo di gruppi è iniettivo se solo se il suo nucleo è banale;

omomorfismo canonico $\pi: G \to G/N$ (ogni sottogruppo normale è il nucleo di un omomorfismo); il primo teorema di isomorfismo (sia $\varphi:G\to H$ un omomorfismo di gruppi e $\pi:G\to G/\ker\varphi$ l'omomorfismo canonico allora esiste un unico omomorfismo iniettivo $\tilde{\varphi}: G/\ker \varphi \to H$ tale che $\tilde{\varphi} \circ \pi = \varphi$ che risulta essere un isomorfismo se e solo se φ è suriettivo); sia $\varphi: G \to H$ un omomorfismo di gruppi allora $G/\ker \varphi \cong Im(\varphi)$; sia $\varphi:G\to H$ un omomorfismo suriettivo di gruppi allora $H\cong G/\ker\varphi$; sia $\varphi:G\to H$ un omomorfismo suriettivo di gruppi se G è finito allora $|\ker \varphi|$ e |H| dividono |G|; $\operatorname{GL}_n(\mathbb{K})/SL_n(\mathbb{K}) \cong \mathbb{K}^*$, per ogni $n \geq 1$, e $S_n/A_n \cong \mathbb{Z}_2$, per ogni $n \geq 2$; $\mathbb{C}^*/S^1 \cong \mathbb{R}^+$; sia $\varphi:G\to H$ un omomorfismo di gruppi allora (a) per ogni $K\leq G$ risulta $\varphi(K)\leq H$ e se $K \leq G$ allora $\varphi(K) \leq \varphi(G)$, (b) per ogni $L \leq H$ risulta $\ker \varphi \leq \varphi^{-1}(L) \leq G$ e inoltre $L \leq H$ allora $\varphi^{-1}(L) \leq G$, (c) per ogni $K \leq G$ si ha $\varphi^{-1}(\varphi(K)) = K \ker \varphi$, (d) $\varphi(\varphi^{-1}(L)) = L \cap \varphi(G)$ per ogni $L \leq H$; esiste una corrispondenza biunivoca tra l'insieme dei sottogruppi (normali) di G contenenti ker φ e l'insieme dei sottogruppi (normali) di H contenuti in $\varphi(G)$; sottogruppi di \mathbb{Z}_m ($L \leq \mathbb{Z}_m$ se e solo se $L = \frac{n\mathbb{Z}}{m\mathbb{Z}}$ tale che n|m; il gruppo degli automorfismi Aut(G) di un gruppo G; il gruppo Inn(G)degli automorfismi interni; $\operatorname{Inn}(G) \leq \operatorname{Aut}(G) \in G/Z(G) \cong \operatorname{Inn}(G)$; il teorema di Cayley (ogni gruppo è isomorfo ad un sottogruppo di un gruppo di permutazioni); ogni gruppo finito di cardinalità n è isomorfo ad un sottogruppo del gruppo lineare $GL_n(\mathbb{K})$ per un qualsiasi campo K.

- 6. Prodotto diretto di gruppi. Prodotto diretto di un numero finito di gruppi; proprietà commutativa e associativa del prodotto diretto; l'ordine di un elemento z = (x,y) del prodotto diretto $H \times K$ è finito se solo se sono finiti gli ordini di $x \in H$ e $y \in K$ e in tal caso l'ordine di z è il minimo comune multiplo degli ordini di $x \in y$; sia $G = H \times K$ allora esistono due sottogruppi normali \tilde{H} e \tilde{K} isomorfi a H e K tali che $\tilde{H} \cap \tilde{K} = \{1\}$ e $G = \tilde{H}\tilde{K}$; sia G un gruppo e H e K due sottogruppi normali di G tali che $H \cap K = \{1\}$ e G = HK allora $G \cong H \times K$; sia G un gruppo abeliano e H e K due sottogruppi di G tali che $H \cap K = \{1\}$ e G = H + K allora $G \cong H \times K$; sia G un gruppo finito e G e G due sottogruppi normali di G tali che G e G e G e G e G e G e G e G e G e G e G e G e G e G e G e G e abeliano; se G ha ordine 4 allora è isomorfo a G e G e G e G e G e G e G e elementi di ordine 2 e 3 allora G e G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e elementi è isomorfo a G e oppure a G e G e G e G e G e elementi è isomorfo a G e G e G e G e G e G e elementi è isomorfo a G e G e G e G e G e G e elementi è isomorfo a G e G e G e G e G e G e G e elementi è isomorfo a G e G e G e G e G e G e G e elementi è isomorfo a G e G
- 7. Gruppi abeliani finiti. classificazione dei gruppi ciclici: un gruppo ciclico finito è isomorfo a \mathbb{Z}_m mentre un gruppo ciclico infinito è isomorfo a \mathbb{Z} ; generatori di un gruppo ciclico: un gruppo ciclico finito ha $\phi(m)$ generatori dove $\phi(m)$ è la funzione di Eulero mentre un gruppo ciclico infinito ha due generatori; un sottogruppo di un gruppo ciclico è ciclico; il quoziente di un gruppo ciclico è ciclico; se C è un gruppo ciclico finito allora per ogni divisore d di |C| esiste un unico sottogruppo di C di ordine d; esiste una corrispondenza biunivoca tra i divisori positivi della cardinalità di un gruppo ciclico finito e i suoi sottogruppi; se K è ciclico e normale in G e H è un sottogruppo di K allora H è normale in G; se tutti i sottogruppi di un gruppo G sono solo quelli banali, allora G è ciclico di ordine p; il prodotto diretto $C_1 \times C_2$ di due gruppi ciclici (non banali) è ciclico se e solo C_1 e C_2 hanno cardinalità finite prime fra loro (quindi $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ se e solo se ((m,n)=1); il gruppo degli automorfismi di un gruppo ciclico: Aut $(C) \cong \mathbb{Z}_2$ se C ha infiniti elementi e Aut $(C) \cong U(\mathbb{Z}_m)$ se |C|=m; il Lemma di Gauss: se p è un primo dispari allora \mathbb{Z}_{p^m} è ciclico per ogni $m \geq 1$ (dimostrazione

solo nel caso m=1); il Teorema di Gauss: il gruppo degli automorfismi di un gruppo ciclico finito C è ciclico se e solo se $|C|=1,2,4,p^m,2p^m$ con p primo dispari; sia G un gruppo abeliano, H un sottogruppo di G e $a\in G$ siano m e n interi primi tra loro tali che $ma\in H$ e $na\in K$ allora $a\in H$; lemma di Cauchy nel caso abeliano): sia p un numero primo e G un gruppo abeliano finito tale che p divide |G| allora G ha elementi di ordine p; sia G un gruppo abeliano finito e m un intero positivo tale che mx=0 per ogni $x\in G$ allora |G| divide qualche potenza di m; siano m e n due interi positivi primi tra loro e G un gruppo abeliano di ordine mn allora: (a) $H=\{x\in G\mid mx=0\}$ è un sottogruppo di G di ordine m; (b) $K=\{x\in G\mid nx=0\}$ è un sottogruppo di G di ordine m; (c) $G\cong H\times K$; lemma di scomposizione primaria; sia p un numero primo e G un gruppo abeliano di ordine p^n allora G è isomorfo ad un prodotto diretto di gruppi ciclici; teorema di Frobenius—Stickelberger (ogni gruppo abeliano finito è isomorfo al prodotto di gruppi ciclici).

Testo di riferimento

D. Dikranjan, M. L. Lucido, Aritmetica e Algebra, Liguori Editore 2007.

Altri testi consigliati

C.C. Pinter, A book of abstract algebra, Dover Publications Inc.

I.N. Herstein, Algebra, Editori Riuniti.

M. Artin, Algebra, Bollati Boringhieri.