古典統計力学模型と数値計算

Classical Statistical Models and Numerical Simulation

理学研究科 物理学専攻 大久保 毅

Department of Physics, Tsuyoshi Okubo

Background of lecturer

大久保 毅(OKUBO Tsuyoshi)

Projecto Lecturer, Department of Physics, Sci. Bldg. #1 940

Research:

Statistical Physics, Condensed matter physics, Magnetism, (Computational Physics)

- Random packing of disks
- Mean-filed analysis of hierarchical society
- Ordering of (classical) frustrated spin system
 - Z₂-vortex, skyrmion, multiple-Q states, ...
- Deconfined quantum criticality
- Tensor network methods
- •

Outline

- Many-body problems: Quantum or Classical?
 - When we can use classical "models"?
 - Target of general calculations and this lecture
- Examples of classical statistical models
- Computational science for (classical) statistical models
 - Statistical ensembles
 - Numerical calculation for ensemble average
 - Time average and relaxation time

Many-body problems: Quantum or Classical?

Two types of classical many-body problems

1. Approximation of quantum problems

Nature: Elementary particles obey quantum mechanics.

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \mathcal{H} |\Psi\rangle$$

Classical mechanics is an approximation

2. Pure classical problems

Classical problems not necessary based on quantum mechanics

- Percolation, covering, packing, ...
- Stochastic process, "dynamical" system, ...
- Critical phenomena

•

Classical problems as an approximation: molecules

Interaction of molecules:

- Coulomb interactions of charges
- Van der Waals force
- •

For aciculate treatment, we need to consider quantum mechanics

However, we can approximate the system as a set of "classical" point particles

- Lennard-Jones potential for nobel gas
- Effective potential for water
- •

Classical problems as an approximation: magnetism

Electron Spin: "Quantum" degree of freedom

For aciculate treatment, the spin quantum number S is important

However, we can approximate the system by taking the limit of S→∞. "classical" spin model

- Classical Heisenberg model
- Anisotropy: Ising model, XY model
- •

Classical problems as an approximation

When a classical approximation becomes accurate?

- High temperature
 - We safely neglect quantum nature compared with thermal fluctuation
- Low density
 - The interaction between particles are small (rare)
- Classical order (magnetism)
 - If the ground state is classical magnetic long range order typically, classical approximation is not so bad

Pure classical problems: Critical phenomena

Critical phenomena:

At the critical point, characteristic length diverges

Scale invariance

Several quantities show power-low behaviors

exponent = critical exponent

Correlation length:

$$\xi \sim |T - T_c|^{-\nu}$$

Specific heat:

$$C \sim |T - T_c|^{-\alpha}$$

Susceptibility:

$$\chi \sim |T - T_c|^{-\gamma}$$

Universality

Critical exponents depends only on "symmetry" and "spacial dimensions"

A lot of critical phenomena are exactly understood from classical models

Pure classical problems: other examples

- Percolation problem
 - Physics of Bingo game
- Sphere packing
 - What is the most dense packing in a box?
 - Packing structure of poly-disperse systems?
- Stochastic process
 - Dynamics of financial trades
 - Dynamics of population, society, ...

Target of studies: Static or Dynamics

Static properties:

Physical properties independent on time

(free) energy, specific heat, (static) susceptibilities, ...

Dynamical properties:

Related to a response to external forces

Time-dependent susceptibilities, Time-Correlations,

By computational science, both types of quantities can be calculated, although the method could depend on the type.

(Typically, dynamical properties are more difficult to be obtained)

Target of studies: Equilibrium or Non-Equilibrium

Equilibrium system:

Systems are described by thermodynamics

Non-Equilibrium system:

Systems are not described by thermodynamics

Steady state:

Its physical quantities are independent of time

Non-steady state:

Its physical quantities are depends on time

Typically, treatment of non-steady state is very difficult.

Target of this lecture

Steady state of classical system (not necessarily in equilibrium)

Physical quantities are calculated through steady state distribution $P(\Gamma)$

$$O = \langle \hat{O} \rangle = \operatorname{Tr}_{\Gamma} \left(\hat{O}(\Gamma) P(\Gamma) \right)$$

$$C(\tau) = \langle \hat{A}(t=0) \hat{B}(t=\tau) \rangle = \operatorname{Tr}_{\Gamma} \left(\hat{A}(\Gamma) \hat{B}(\Gamma(\tau)) P(\Gamma) \right)$$

 $\Gamma = \{S_i\}, \{q_i, p_i\}, \cdots$:state in the phase space

- ・ 第3回:古典統計力学模型と計算科学
- ・ 第4回:古典モンテカルロ法とその応用
- ・ 第5回:分子動力学法とその応用
- ・ 第6回:拡張アンサンブル法によるモンテカルロ計算

Statistical mechanical models:

Models considered in this lecture:

- Classical Spin systems
 - Ising, XY, Heisenberg, ...
 - Frustration, DM interactions, Anisotropy, ...
- Particle systems
 - Molecules, hard spheres,...

Models related to the methods presented in this lecture:

- Agent models of socio-physics
- Lattice models representing (non-equilibrium) steady state
 - ASEP, lattice gas, ...
- Langevin dynamics (Stochastic differential equation)
 - Brownian motion, econophysics, ...

Classical spin system: spin model on lattice

Spin systems:

Spin degree of freedoms defined on a lattice and interact each other

simple cubic, FCC lattice, BCC lattice, ...

Classical spin degree of freedom

1. $S \to \infty$ limit of quantum spin

Classical spin:

2. simple degree of freedom reflecting symmetry

1. Heisenberg spin $S_i = (S_i^x, S_i^y, S_i^z)$

Three component unit vector: $(S_i^x)^2 + (S_i^y)^2 + (S_i^z)^2 = 1$

A lot of magnetism can be understand through classical Heisenberg spin

- 2. Ising spin $S_i = \pm 1 = \uparrow, \downarrow$
 - Strong easy axis anisotropy
 - Representing underlying Z₂ symmetry
- 3. XY spin $S_i = (S_i^x, S_i^y)$ Two component unit vector: $(S_i^x)^2 + (S_i^y)^2 = 1$
 - Strong easy plane anisotropy
 - Representing underlying U(1) symmetry

Classical spin model: interactions

Heisenberg spin $S_i = (S_i^x, S_i^y, S_i^z)$

Heisenberg interaction:

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} S_i \cdot S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i \cdot S_j$$

Single ion anisotropy

$$D\sum_{i} (S_{i}^{z})^{2} + E\sum_{i} \left[(S_{i}^{x})^{2} - (S_{i}^{y})^{2} \right]$$

 $D \rightarrow +\infty$: XY spins

 $D \rightarrow -\infty$: Ising spins

Dzyaloshinskii-Moriya interaction

$$\sum_{\langle i,j\rangle} \vec{D} \cdot (S_i \times S_j)$$

A lot of "novel" magnetism appears even in classical spin system

Topological Z₂ vortex

Classical antiferromagnetic Heisenberg model on triangular lattice

local 120° structure has SO(3) symmetry

Topological excitation "Z₂ vortex"

It is characterize by Z₂ value "exist" or "not-exist"

120° structure

Possible phase transition with respect to binding-unbinding of Z₂ vortex

H. Kawamura and S. Miyashita (1984)

My search project using Monte Carlo simulation using K-computer

Magnetic skyrmion

Classical antiferromagnetic Heisenberg model on triangular lattice under magnetic fields

By considering J_1 and J_2 (or J_3) interaction (effective model for NiGa₂S₄)

Novel multiple-q states are stabilized

One of them is identical with "magnetic skyrmion"

This has been also investigated by Monte Calro simulation

Magnetic skyemion

Particle system:

Particle systems:

Particles moving in continuous space by interacting each other

Typically, their degree of freedoms are "positions" and "momentum"

Two components in Hamiltonian

Interacting potential: $V(r_i - r_j)$

Kinetic Energy: $\frac{p_i^2}{2m_i}$

Variety of models: variety of interacting potentials

Hard sphere

$$V(\mathbf{r}_i - \mathbf{r}_j) = \begin{cases} 0 & (r > r_c) \\ \infty & (r \le r_c) \end{cases} \quad r = |\mathbf{r}_i - \mathbf{r}_j| \qquad V(r) \quad \uparrow \quad \infty$$

The first application of molecular dynamics

Alder and Wainwright, J. Chem. Phys. 27, 1208 (1957);31, 459 (1959)

Event driven molecular dynamics simulation

Fluid

Phase transition
(Alder transition)

Crystal

32 particle system

Lennard-Jones potential

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Model potential for nobel gas (Ar, ...)

Recent simulation: H. Watanabe et al, J. Chem. Phys. **136**, 204102 (2012). (~1,000,000 particles)

Gas-Liquid coexistence

Complex systems

Eg. Poliovirus capsid in electrolyte solution

Y. Ando et al, J. Chem. Phys. 141, 165101(2014).

Long-range coulomb interaction

Poliovirus capsid

Dynamics of water molecules

Computational science for (classical) statistical models

Statistical mechanics: Ensemble

Statistical mechanics:

Connect microscopic models to macroscopic observable

Example: Ising model

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j - h \sum_i S_i$$

$$(S_i = \pm 1 = \uparrow, \downarrow)$$

Canonical ensemble (NVT-ensemble):

$$P(\Gamma; T) = \frac{1}{Z} \exp\left(-\frac{1}{k_B T} \mathcal{H}(\Gamma)\right)$$

Magnetization at T:

$$M(T) = \left\langle \sum_{i} S_{i} \right\rangle_{T}$$
$$= \sum_{\Gamma} \sum_{i} S_{i} P(\Gamma; T)$$

Statistical mechanics: important ensembles

Micro Canonical ensemble (NVE-ensemble):

$$P(\Gamma; E) \propto \sum_{\Gamma} \delta(E - \mathcal{H}(\Gamma))$$

E: energy

NPT-ensemble:

$$P(\Gamma; P, T) \propto \int dV e^{-\beta PV} \sum_{\Gamma(V)} e^{-\beta \mathcal{H}(\Gamma)}$$

P: pressure $\beta = \frac{1}{k_B T}$

Grand Canonical ensemble (µVT-ensemble):

$$P(\Gamma;\mu,T) \propto \sum_N rac{1}{N!} e^{eta \mu N} \sum_{\Gamma(N)} e^{-eta \mathcal{H}(\Gamma)}$$
 μ : chemical potential

General ensemble:

- Not necessarily related to thermal equilibrium
- But, it may represent a steady state of physical system
 - Non-equilibrium steady state

Computational science for statistical models

Purpose of computational science for statistical models

Calculate ensemble averages numerically

Two types of approaches

- Evaluate ensemble average as a "time average" based on a special dynamics
 - Monte Calro (MC), Molecular Dynamics (MD)
 - Target of this lecture
- Calculate partition function directly
 - Transfer matrix method, Tensor network method
 - ・ It will be treated slightly in "計算科学における情報圧縮"

Time average for ensemble average

States depending on time

$$\Gamma(t) = \{q_i(t), p_i(t)\}, \{S_i(t)\}, \cdots$$

$$\langle \hat{O} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T \hat{O}(\Gamma(t)) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \hat{O}(\Gamma(t))$$

Molecular dynamics:

Dynamics of Γ obeys a differential equation (Newton equation)

$$\frac{d}{dt} \begin{bmatrix} q_i \\ p_i \end{bmatrix} = \begin{bmatrix} \partial \mathcal{H}/\partial p_i \\ -\partial \mathcal{H}/\partial q_i \end{bmatrix}$$

Monte Carlo:

 $ho_t(\Gamma)$:probability distribution

Dynamics of Γ obeys a master equation

 $W_{\Gamma \to \Gamma'}$:transition probability

$$\rho_{t+1}(\Gamma) - \rho_t(\Gamma) = \sum_{\Gamma'} W_{\Gamma' \to \Gamma} \rho_t(\Gamma') - \sum_{\Gamma'} W_{\Gamma \to \Gamma'} \rho_t(\Gamma)$$

Time Correlation and relaxation time

Time correlation function

$$C_{AB}(t) \equiv \langle \hat{A}(0)\hat{B}(t)\rangle - \langle \hat{A}\rangle\langle \hat{B}\rangle$$

Auto correlation function

$$C_{AA}(t) \equiv \langle \hat{A}(0)\hat{A}(t)\rangle - \langle \hat{A}\rangle^2$$

Typical asymptotic behavior

$$C_{AA}(t) \sim e^{-t/\tau_A}$$
 exponential decay

Relaxation time: T_A

Relaxation time determines efficiency of sampling

smaller τ higer efficiency

lager τ lower efficiency

Error estimation

Error due to finite number of sampling

$$\bar{A} \equiv \frac{1}{T} \sum_{t=1}^{T} \hat{A}(\Gamma(t))$$

Standard error: $\epsilon^2 = \langle \bar{A}^2 \rangle - \langle \bar{A} \rangle^2$

$$\epsilon^{2} = \left\langle \frac{1}{T^{2}} \sum_{t_{1}=1}^{T} \sum_{t_{2}=1}^{T} A_{t_{1}} A_{t_{2}} \right\rangle - \left\langle \frac{1}{T} \sum_{t=1}^{T} A_{t} \right\rangle^{2}$$

$$= \frac{1}{T^{2}} \sum_{t_{1}=1}^{T} \sum_{t_{2}=1}^{T} C_{AA}(|t_{2} - t_{1}|) \bullet C_{AA} \sim C_{AA}(0)e^{-t/\tau}$$

$$\sum_{T \to \infty}^{\infty} \frac{2\tau}{T} C_{AA}(0) \bullet \epsilon \propto \sqrt{\frac{\tau}{T}}$$

In order to reduce the error, we want to reduce τ

Phenomena with large relaxation time

- Critical phenomena
 - $\tau \sim (T-T_c)^{-\nu z}$ with standard algorithm (critical slowing down)
 - z can be significantly reduced by using "global update"
- Glass transition (structural glass, spin glass), protein folding, first order phase transition
 - $\tau \sim \exp(-a/T)$ or $\exp(-a/(T-T_c))$
 - exponential can be reduce to polynomial by using extended ensemble methods

Answer to question:

Compiler dependence:

If you use "default" setting, compilers may not use extended instructions

(like SIMD, fused multiply-add, ...)

gcc could be much slower than icc.

However, there are several options telling the compilers which extended instructions we can use.

```
gcc: -march=architecture-type, cpu-type
-mtune=cpu-type

cpu-type=core2, core-avx2, ...

if you use -march=native, it is optimized for "local computer".

icc, ifort: -xcode

code=core-avx2, sse4.2, ...
```

if you use -xHost, it is optimized for "local computer".