FACTORISATION AND ALGEBRAIC FRACTION

EXPANSION

Expansion of Two Algebraic Expressions

Expansion of two algebraic expressions is the product of 2 algebraic expressions to form a single algebraic expression.

Example 1

Given $5x(x + 2) = 5x^2 + 10x$, state the expression of 5x(x + 2).

Solution:

Performing the expression of 2 algebraic expression

 Expansion of two algebraic expansion can take place by multiplying each term in the 1st expression with every term in the second expression. 2. Generally,

a) a
$$(a+b) = a^2 + ab$$

Each term in the bracket is multiplying by

b)
$$(a + b) (c + d) = ac + ad + bc + bd$$

Each term in the 1st bracket is multiplied by each term in the 2nd bracket respectively

Example 2

Expand:

- a) p(2p + 5)
- b) (m-1)(m+5)
- c) $(x-8)^2$

a)
$$p(2p+5) = (p)(2p) + (p)(5)$$

= $2p^2 + 5parning Program$

b)
$$(m-1)(m+5) = (m)(m) + 5(m) - m - 5$$

= $m^2 + 5 m - m - 5$
= $m^2 + 4m - 5$

c)
$$(x-8)^2 = (x-8)(x-8)$$

= $x^2 - 16x + 64$

Simplifying Algebraic Expressions

The following flowchart shows the steps to simplifying an algebraic expansion.

Example 3

Simplify each of the following:

a.
$$(y + 2x) (5y - x) - 4x (x - 7y)$$

b.
$$3(2x-5)-4(x-3)$$

Learning Program

a.
$$(y + 2x) (5y - x) - 4x (x - 7y)$$

$$= 5y^{2} - xy + 10xy - 2x^{2} - 4x^{2} + 28xy$$

$$= 5y^{2} - xy + 10xy + 28xy - 2x^{2} - 4x^{2}$$
Group the like term

b.3
$$(2x-5) - 4(x-3)$$

= $6x - 15 - 4x + 12$
= $6x - 4x + 12 - 15$
= $2x - 3$ Group the like term

(c)
$$20m + 19 - (2m + 5)^2$$

= $20m + 19 - (4m^2 + 25 + 20m)$
= $20m + 19 - 4m^2 - 25 - 20m$
= $20m - 20m + 19 - 25 - 4m^2$ Group the like term

<u>Problems involving expansion of Two Algebraic Expression</u> Example 4

Jane took part in a walkathon. She started her walk at a speed of (x + 5) km/h for x hours. Then she walked at a speed of (2x - 3) km/h for (x - 1) hours until she crossed the finish line. What is the distance of the walkathon?

Solution:

From question: Jane walked at speed of (x + 5) km/h for x hours. Then she walked at a speed of (2x - 3) km/h for (x - 1) hours.

Distance of walkathon = ?

Distance

- = distance that Jane walked at speed of (x+5) km/h for x hours + distance that she walked at a speed of (2x 3)km/h for (x 1) hours until the end of walkathon
- = x (x +5) km + (x 1) (2x 3) km
- $= x^2 + 5x + 2x^2 3x 2x + 3$
- $= x^2 + 2x^2 3x 2x + 5x + 3$
- $= (3x^2 + 3) \text{ km}$

Example 5

Meng wants to place a rectangular carpet in the middle of her room as shown in the diagram above. Calculate the area, in m² of the carpet.

Solution:

The length of the carpet = (2x - 6) m

The width of the carpet = (p - 2) m

The area of the carpet = (2x - 6) (p - 2) = 2px - 4x - 6p + 12

2.2 Factorisation

- 1. Factorisation is a process to find factor of an algebraic expression.
- 2. Factorisation is the reverse of expansion.

Factorisation

Expansion

- 3. Highest common factor (HCF) can be used to factorise an algebraic expression with two terms
 - a. Identify the HCF of two terms
 - b. Divide the two terms with the HCF
 - c. Multiply the HCF with the quotient.

Example 6

Given $(k-3)(k+3) = k^2 - 9$, state the factorization of $k^2 - 9$. Hence, list the factors of $k^2 - 9$.

Solution:

Factorization =
$$(k-3) (k+3)$$

 $k^2-9 = (k-3) (k+3)$
= $1 \times (k-3) \times (k+3)$
Hence, factors of k^2-9 is 1, $(k-3)$ and $(k+3)$ Program

Example 7

Factorise 18ab – 27bc.

$$18ab - 27 bc$$

= $9b \times 2a - 9b \times 3c$
= $9b (2a - 3c)$

$$HCF = 3 \times 3 \times b = 9b$$

4. Factorization of algebraic expression can also be presented in the following forms:

a.
$$a^2 + b^2 + 2ab = (a + b)^2$$

b. $a^2 - b^2 = (a+b)(a-b)$

Example 8

Factorise x² – 16

Solution:

$$x^2 - 16 = x^2 - 4^2 = (x - 4)(x + 4)$$

5. Cross multiplication can be used to factorise the algebraic expression with three terms.

Example 9

Factorise $x^2 - 11x + 18$

Solution:

Cross multiplication method:

therefore, $x^2 - 11x + 18 = (x - 2)(x - 9)$

Problem Involving Factorisation:

Example 10

Stella bought a rectangular carpet with the width of 2x m. The area of the carpet is $(8x^2+18x)$ m². What is the length of the carpet in terms of x?

Solution:

From the question, width = 2x m, area = $(8x^2 + 18x)$ m². Length of the carpet is ?

Area

=
$$(8x^2 + 18x)$$
 m².
= $2x(4x+9)$ Given width = $2x$ m² Program

So, length of carpet = (4x + 9) m.

Example 11

In an examination hall, the position of candidates is arranged so that each row consist of (n + 4) candidates. If there are $(n^2 + 19n + 60)$ candidates, how many rows are there in the hall?

Solution:

Total number of candidates = (number of rows) × (number of candidates in each rows)

$$n^2 + 19n + 60 = (?) \times (n + 4)$$

$$n^2 + 19n + 60 = (n + 4)(n + 15)$$

Therefore, the number of row is n + 15.

2.3 Algebraic Expression and Laws of Basic Arithmetic Operation Addition and Subtracting algebraic expression

- 1. Algebraic function is a fraction where the numerator or denominator or both consist of algebraic expression
- 2. The steps used to simplify algebraic function are:
 - a. expanding the algebraic expression
 - b. arrange and group the like term
 - c. simplify it by using adding or subtracting the like terms
 - d. if needed, factorise algebraic function

Example 12

Simplify each of the following

a.
$$(p-6)(2q+5)-4q(p-3)$$

b.
$$\frac{3n+12}{6n} + \frac{5n^2-10n}{n^2-3n+2}$$

c.
$$2(y^2 - y + 1) + 5y - 2$$

a.
$$(p-6)(2q+5) - 4q (p-3)$$
 Expand
= $2pq + 5p - 12q - 30 - 4pq + 12q$
= $2pq - 4pq + 5p - 12q + 12q - 30$ Group the like term
= $-2pq + 5p - 30$

b.
$$\frac{3n+12}{6n} + \frac{5n^2-10n}{n^2-3n+2}$$

$$= \frac{3(n+4)}{26n} + \frac{5n(n-2)}{(n-1)(n-2)}$$

$$= \frac{(n+4)}{2n} + \frac{5n}{(n-1)}$$
Equate the denominator
$$= \frac{(n+4)(n-1)}{2n(n-1)} + \frac{5n(2n)}{(2n)(n-1)}$$
Add the numerator
$$= \frac{n^2+3n-4+10n^2}{2n(n-1)}$$

$$= \frac{11n^2+3n-4}{2n(n-1)}$$
Expand

c.
$$2(y^2 - y + 1) + 5y - 2$$

 $= 2y^2 - 2y + 2 + 5y - 2$
 $= 2y^2 - 2y + 5y - 2 + 2$
 $= 2y^2 + 3y$
 $= y (2y + 3)$

Multiplying and Dividing Algebraic expression

Example 13

Simplify each of the following:

a.
$$(3 + 2x)(3 - 2x) \times 5y(y + 7)$$

b.
$$8(a-5) \times \frac{1}{4} (2a-7)$$

c. $\frac{4m-8}{3m+3n} \div \frac{4}{5m+5n}$

C.
$$\frac{4m-8}{3m+3n} \div \frac{4}{5m+5n}$$

a.
$$(3 + 2x)(3 - 2x) \times 5y(y + 7)$$

= $(9 - 4x^2)(5y^2 + 35y)$
= $45y^2 + 315y - 20x^2y^2 - 140x^2y$

b.
$$8(a-5) \times \frac{1}{4} (2a-7)$$

= $(8a-40)(\frac{1}{2}a-\frac{7}{4})$
= $8a(\frac{1}{2}a-\frac{7}{4})-40(\frac{1}{2}a-\frac{7}{4})$
= $4a^2-14a-20a+70$
= $4a^2-34a+70$

C.
$$\frac{4m-8}{3m+3n} \div \frac{4}{5m+5n}$$

$$= \frac{4m-8}{3m+3n} \times \frac{5m+5n}{4}$$

$$= \frac{4(m-2)}{3(m+n)} \times \frac{5(m+n)}{4}$$

$$= \frac{(m-2)}{3} \times 5$$

$$= \frac{5(m-2)}{3}$$

<u>Performing combined operations of algebraic expression</u> Example 14

Simplify
$$(2y^2 - 6y) \div (y^2 - 9) - (2 - y)$$

Solution:

$$(2y^{2} - 6y) \div (y^{2} - 9) - (2 - y)$$

$$= \frac{2y^{2} - 6y}{y^{2} - 9} - (2 - y)$$

$$= \frac{2y(y - 3)}{(y - 3)(y + 3)} - (2 - y)$$

$$= \frac{2y}{(y + 3)} - \frac{(2 - y)(y + 3)}{(y + 3)}$$

$$= \frac{2y - (2 - y)(y + 3)}{(y + 3)}$$

$$= \frac{2y - 2y - 6 + y^{2} + 3y}{(y + 3)}$$

$$= \frac{-6 + y^{2} + 3y}{(y + 3)}$$

Learning Program