Abstract #5584: Tumor-associated immune cells and progression free survival in advanced endometrial cancer, results from the PHAEDRA Trial (ANZGOG 1601)

ANZ GQG matel pathology

Deborah Smith, Kristy P Robledo, Sonia Yip, Michelle M. Cummins, Peey-Sei Kok, Yeh Chen Lee, Michael Friedlander, Sally Baron-Hay, Catherine Shannon, Jermaine Coward, Philip Beale, Geraldine Goss, Tarek Meniawy, Janine Lombard, Amanda B. Spurdle, John Andrews, Martin R Stockler, Linda Mileshkin and Yoland Antill

Background:

- Some women with advanced endometrial carcinoma (AEC) have good response to immune checkpoint inhibitors.
- Biomarkers needed to identify those likely to respond.

Methods:

- Participants with AEC treated with durvalumab from the PHAEDRA trial¹ [n=71; 36 dMMR and 35 pMMR).
- H&E and Ventana PD-L1(SP263) immunohistochemical (IHC) stained tumor sections assessed for:
 - 1. TCP: PD-L1 staining of tumor cells
 - 2. ICP: Tumor-associated immune cells (H&E)
 - **3. IC:** PD-L1 staining of immune cells according to Ventana interpretation guide².
- Area under the ROC curve, sensitivity and specificity used to determine optimal cutpoints.
- Individual optimal cutpoints compared to the Ventana PD-L1 (SP263) urothelial carcinoma (UC) algorithm and a new algorithm derived from optimal cutpoints

Results:

- ICP≥10%
 - highest sensitivity (53%) and specificity (82%) of the individual cutpoints.
 - best predictor of tumor response and progression free survival.
- ➤ ICP≥10% not significant after accounting for MMR status (HR 0.59, 95% CI 0.28-1.23, p=0.16).
- ➤ UC algorithm best predictor of overall survival (p=0.02) but also not significant after adjusting for MMR status (HR: 0.53, 95% CI: 0.25-1.12, p=0.10).
- Optimal cutpoint algorithm identified patients that wouldn't respond (NPV 92%).

Presence of tumorassociated immune cells predicts response to durvalumab better than PD-L1 status in advanced endometrial carcinoma.

Direction for further research:

- Validation of ICP≥10 and optimal cutpoint algorithm needed.
- Determine if MMR status and ICP≥10 are independent predictors of response.

Contact email : deborah.smith@mater.org.au

Funding support from AstraZeneca and Australia New Zealand Gynaecological Oncology Group (ANZGOG)

TOTAL PROPERTY		Responses below cutpoint	Responses above cutpoint	Positive predictive value (95% CI)	Negative predictive value (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Tay of Lond	Optimal single cutpoints: TCP ≥ 1%	8/40 (20%)	9/27 (33%)	33% (17%, 54%)	80% (64%, 91%)	53% (28%, 77%)	64% (49%, 77%)
8	ICP ≥ 10%	8/49 (16%)	9/18 (50%)	50% (26%, 74%)	84% (70%, 93%)	53% (28%, 77%)	82% (69%, 91%)
M	IC ≥ 35%	12/51 (24%)	5/16 (31%)	31% (11%, 59%)	76% (63%, 87%)	29% (10%, 56%)	78% (64%, 88%)
	Optimal cutpoint algorithm: TCP≥1 OR ICP≥10 OR IC≥35	2/26 (8%)	15/41 (37%)	37% (22%, 53%)	92% (75%, 99%)	88% (64%, 99%)	48% (34%, 63%)
	Urothelial carcinoma algorithm TCP>=25% OR ICP>1& IC>=25 OR ICP=1 & IC=100	6/40 (15%)	11/27 (41%)	41% (22%, 61%)	85% (70%, 94%)	65% (38%, 86%)	68% (53%, 80%)

Kaplan-Meier curve - Progression free survival for TCP (A), ICP (B), IC (C) and the urothelial algorithm.

1. Antill et al. Clinical Activity of Durvalumab for Patients with Advanced Mismatch Repair-Deficient and -Proficient Endometrial Cancer A Nonrandomized F Clinical Trial. Journal for ImmunoTherapy of Cancer – In press.

2. https://diagnostics.roche.com/content/dam/diagnostics/us/en/products/v/ventana-pd-l1-sp263-assay/PD-L1-SP263-Bladder-Cancer-Sell-Sheet.pdf