Homework (7)

1. Judge which of the following functions are strongly convex or concave and find their moduli.

- (a) $f(x) = e^x 1$ on \mathbb{R} .
- (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
- (c) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
- (d) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
- (e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
- (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 < \alpha < 1$ on \mathbb{R}^2_{++} .

Homework (7)

2. Suppose $p < 1, p \neq 0$. Show that the function

$$f(\mathbf{x}) = \left(\sum_{i=1}^{n} \mathbf{x}_{i}^{p}\right)^{1/p}$$

with dom $f = \mathbb{R}^n_{++}$ is concave.

- 3. Prove that
 - (a) $f(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^{-1})$ is convex on $\operatorname{dom} f = \mathbb{S}_{++}^n$.
 - (b) $f(\mathbf{X}) = (\det \mathbf{X})^{1/n}$ is convex on $\operatorname{dom} f = \mathbb{S}_{++}^n$.
- 4. Suppose $f : \mathbf{b}^n \to \mathbb{R}$ is convex with $\operatorname{\mathbf{dom}} f = \mathbb{R}^n$, and bounded above on \mathbb{R}^n . Show that f is constant.

Homework (7)

- 5. When is the epigraph of a function
 - a halfspace?
 - a convex cone?
 - a polyhedron?
- 6. Does the Bregman distance satisfy the triangular inequality?
- 7. Prove the identity:

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{z} \rangle = B_f(\mathbf{z}, \mathbf{x}) + B_f(\mathbf{x}, \mathbf{y}) - B_f(\mathbf{z}, \mathbf{y}).$$

- 8. Prove that $B_f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} but not necessarily in \mathbf{y} .
- 9. Compute the subgradients of $f(\mathbf{x}) = \frac{1}{2}x_1^2 + |x_2|, \|\mathbf{x}\|_2, \|\mathbf{x}\|_{\infty}$.