Open Watcom C Library Reference

Version 2.0

Notice of Copyright

Copyright © 2002-2025 the Open Watcom Contributors. Portions Copyright © 1984-2002 Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit https://github.com/open-watcom/open-watcom-v2.

Preface

This manual describes the Open Watcom C Library. It includes the Standard C Library (as defined in the ISO/ANSI C Standard) plus many additional library routines which make application development for personal computers much easier.

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing text annotated with tags. These tags label the structural elements of the document, such as chapters, sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating systems, interprets the tags to format the text into a form such as you see here. Writers can produce output for a variety of printers, including laser printers, using separately specified layout directives for such things as font selection, column width and height, number of columns, etc. The result is type-set quality copy containing integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

IBM is a registered trademark of International Business Machines Corp.

Intel is a registered trademark of Intel Corp.

Microsoft, MS, MS-DOS, Windows, Win32, Win32s, Windows NT and Windows 2000 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

Open Watcom C Library Reference
1 C Library Overview
1.1 Classes of Functions
1.1.1 Character Manipulation Functions
1.1.2 Wide Character Manipulation Functions
1.1.3 Multibyte Character Manipulation Functions
1.1.4 Memory Manipulation Functions
1.1.5 String Manipulation Functions
1.1.6 Wide String Manipulation Functions
1.1.7 Multibyte String Manipulation Functions
1.1.8 Conversion Functions
1.1.9 Memory Allocation Functions
1.1.10 Heap Functions
1.1.11 Math Functions
1.1.12 Searching Functions
1.1.13 Time Functions
1.1.14 Variable-length Argument Lists
1.1.15 Stream I/O Functions
1.1.16 Wide Character Stream I/O Functions
1.1.17 Process Primitive Functions
1.1.18 Process Environment
1.1.19 Directory Functions
1.1.20 Operating System I/O Functions
1.1.21 File Manipulation Functions
1.1.22 Console I/O Functions
1.1.23 Default Windowing Functions
1.1.24 BIOS Functions
1.1.25 DOS-Specific Functions
1.1.26 Intel 80x86 Architecture-Specific Functions
1.1.27 Intel Pentium Multimedia Extension Functions
1.1.28 Miscellaneous Functions2
1.1.29 DOS LFN aware Functions
1.2 Header Files
1.2.1 Header Files in /watcom/h
1.2.2 Header Files in /watcom/h/sys
1.3 Global Data
1.4 The TZ Environment Variable
1.5 The OS/2 TZ Environment Variable
2 Graphics Library
2.1 Graphics Functions
2.2 Graphics Adapters
2.3 Classes of Graphics Functions
2.3.1 Environment Functions 4
2.3.2 Coordinate System Functions
2.3.3 Attribute Functions
2.3.4 Drawing Functions 4
2.3.5 Text Functions 4
2.3.6 Graphics Text Functions
2.3.7 Image Manipulation Functions
2.3.8 Font Manipulation Functions

2.	3.9 Presentation Graphics Functions
	2.3.9.1 Display Functions
	2.3.9.2 Analyze Functions
	2.3.9.3 Utility Functions
2.4 G	raphics Header Files
3 DOS C	onsiderations
3.1 D	OS Devices
3.2 D	OS Directories
	OS File Names
	OS Files
	OS Commands
	OS Interrupts
	OS Processes
4 Library	Functions and Macros
. Liorary	abort
	abort_handler_s
	abs
	access, _access, _waccess
	acos
	acosh
	alloca
	_arc, _arc_w, _arc_wxy
	asctime Functions
	asctime_s, _wasctime_s
	asin
	asinh
	assert
	atan
	atan2
	atanh
	atexit
	atof, _wtof
	atoi, _wtoi
	atol, _wtol
	atoll, _wtoll
	_atouni
	basename
	bdos
	_beginthread, _beginthreadex
	Bessel Functions
	bcmp
	bcopy
	_bfreeseg
	_bgetcmd
	_bheapseg
	_bios_disk
	_bios_equiplist
	bios_keybrd
	_bios_memsize
	bios printer

_bios_serialcom
_bios_timeofday
_bprintf, _bwprintf
oreak Functions
ork
osearch
osearch_s
otowc
ozero
eabs
ealloc Functions
ebrt
eil
gets
chain_intr
chair_inti
chdrive
chmod, _chmod, _wchmod
chsize, chsize
_clear87
clearenv
clearerr
_clearscreen
clock
clock_getres
clock_gettime
clock_nanosleep
clock_settime
clone
close, _close
closedir, _wclosedir
cmdname
commit
control87
controlfp
copysign
cos
cosh
eprintf
printi
creat, _creat, _wcreat
escanf
etime Functions
ctime_s, _wctime_s
ewait, _cwait
lelay
_dieeetomsbin
lifftime
lirname
_disable
_displaycursor
liv

_dmsbintoieee	185
_dos_allocmem	187
_dos_close	189
_dos_commit	190
_dos_creat	191
_dos_creatnew	193
dosexterr	195
	197
dos freemem	200
dos_getdate	202
	203
· ·	205
	206
-	208
	210
- <i>-</i>	211
=	213
1	21. 214
- · · - · I	216
	$\frac{217}{216}$
	219
= " - =	221
	222
	224
	226
	228
- -	230
dup, _dup	231
dup2, _dup2	233
_dwDeleteOnClose	235
_dwSetAboutDlg	236
_dwSetAppTitle	237
_dwSetConTitle	238
	239
	241
	242
· — · · —	244
	 246
_	248
	249
	250
	251
1	251 252
	252 253
	255 257
	257
	258
	259
= 7= -	264
	266
1	267
avn)	260

expm1	26
expand Functions	27
abs	27
close	27
closeall	27
cvt, _fcvt, _wfcvt	27
dim	27
dopen, _fdopen, _wfdopen	27
eclearexcept	28
edisableexcept,fedisableexcept	28
eenableexcept,feenableexcept	28
egetenv	28
egetexceptflag	28
egetround	28
eholdexcept	28
eof	28
eraiseexcept	28
error	28
esetenv	29
esetexceptflag	29
esetround	29
etestexcept	29
eupdateenv	29
flush	29
fs	29
getc, fgetwc	29
getchar, _fgetchar, _fgetwchar	29
getpos	30
gets, fgetws	30
fieeetomsbin	30
_filelength, _filelengthi64, filelength	30
FILENAME_MAX	30
ïleno	30
_findclose	30
	31
findnext, _findnexti64, _wfindnext, _wfindnexti64	31
finite	31
_floodfill, _floodfill_w	31
loor	31
flushall, flushall	31
ma	32
max	32
min	32
mod	32
fmsbintoieee	32
nmatch	32
Open, _wfopen	32
open_s, _wfopen_s	3.
FP_OFF	33
FP_SEG	3.
Pclassify	33
fpreset	34

fprintf, fwprintf	341
fprintf_s, fwprintf_s	343
fputc, fputwc	345
fputchar, _fputchar, _fputwchar	. 346
fputs, fputws	348
fread	
free Functions	
_freect	
freopen, _wfreopen	
freopen_s, _wfreopen_s	
frexp	
fscanf, fwscanf	
fscanf_s, fwscanf_s	
fseek	
fsetpos	
1	
_fsopen, _wfsopen	
fstat, _fstat, _fstati64	
fsync	
ftell	
ftime	
_fullpath, _wfullpath	
fwide	
fwrite	38
gcvt, _gcvt, _wgcvt	. 38
_getactivepage	38.
_getarcinfo	38:
_getbkcolor	. 38′
getc, getwc	38
getch	39
getchar, getwchar	. 39
getche	39
_getcliprgn	
getcmd	
_getcolor	
getcwd, _wgetcwd	
_getdcwd, _wgetdcwd	
getdelim	40
_getdiskfree	
getdrive	
<u> </u>	
getegid	
getenv, _wgetenv	
getenv_s	
geteuid	
_getfillmask	
_getfontinfo	
getgid	
_getgtextextent	
_getgtextvector	
gethostbyaddr	41
gethostbyname	41
gethostent	420

_getimage, _getimage_w, _getimage_wxy	
getline	
getlinestyle	
_getmbcp	
getnetbyaddr	
getnetbyname	
getnetent	
getopt	
get_osfhandle	
-c – getpgrp	
getphyscoord	
getpid, _getpid	
getpixel, _getpixel_w	
getplotaction	
getppid	
getprotobyname	
getprotobynumber	
getprotoent	
getpwent	
getpwnam	
getpwuid	••••
gets, _getws	••••
gets_s	· • • •
getservbynamegetservbyname	
getservbyport	
getservent	
_gettextcolor	
_gettextcursor	
_gettextextent	
gettextposition	
gettextsettings	
gettextwindow	
gettid	
getuid	
getvideoconfig	
getviewcoord, _getviewcoord_w, _getviewcoord_wxy	
_getvisualpage	••••
getw	•••
_getwindowcoord	
gmtime Functions	
gmtime_s	
_grow_handles	
_grstatus	
_grtext, _grtext_w	
nalloc	
_harderr, _hardresume, _hardretn	••••
_hdopen	
_heapchk Functions	
heapenable	
heapgrow Functions	
heapmin Functions	
heapset Functions	

_heapshrink Functions	•••••
_heapwalk Functions	
nfree	
1ypot	
gnore_handler_s	
logb	
imagesize, _imagesize_w, _imagesize_wxy	
maxabs	
maxdiv	
np	
inpd	
npw	
nt386	
nt386x	
int86	
nt86x	
ntdos	
ntdosx	
ntr	
ntrf	
salnum, iswalnum	
salpha, iswalpha	
sascii,isascii, iswascii	
satty, _isatty	
sblank, iswblank	
scntrl, iswcntrl	
scsym,iscsym,iswcsym	
scsymf,iscsymf,iswcsymf	
sdigit, iswdigit	
sfinite	
sgraph, iswgraph	
sinf	
sleadbyte	
slower, iswlower	
_ismbbalnum	
_ismbbalpha	
_ismbbgraph	
ismbbkalnum	
	•••••
_ismbbkanaismbbkalaha	
_ismbbkalpha	
_ismbbkprint	
_ismbbkpunct	
_ismbblead	
_ismbbprint	
_ismbbpunct	
_ismbbtrail	
_ismbcalnum	
_ismbcalpha	
_ismbcentrl	
_ismbcdigit	
_ismbcdigitismbcgraph	

in the shorts	500
_ismbckata	590
_ismbel0	592
_ismbcl1	594
_ismbel2	596
_ismbclegal	598
_ismbclower	600
_ismbeprint	602
_ismbepunct	604
_ismbcspace	606
_ismbcsymbol	608
_ismbcupper	610
_ismbcxdigit	612
isnan	614
isnormal	615
isprint, iswprint	616
ispunct, iswpunct	618
isspace, iswspace	620
isupper, iswupper	622
iswctype	624
isxdigit, iswxdigit	626
itoa, _itoa, _itow	628
kbhit, _kbhit	630
labs	631
ldexp	632
ldiv	633
lfind	634
	636
gamma	
gamma_r	637
_lineto, _lineto_w	638
llabs	640
lldiv	641
localecony	642
localtime Functions	646
localtime_s	648
lock	650
locking, _locking	652
log	654
log10	655
log1p	656
log2	657
logb	658
longjmp	659
lrotl	661
	662
lsearch	663
lseek, _lseeki64	665
lltoa, _lltow	668
Itoa, _Itoa, _Itow	670
main, wmain, WinMain, wWinMain	672
_makepath, _wmakepath	676
malloc Functions	678 680
mainerr	nxII

max
_mbbtombc
_mbbtype
_mbccmp, _fmbccmp
_mbccpy, _fmbccpy
_mbcicmp, _fmbcicmp
_mbcjistojms
_mbcjmstojis
_mbclen, _fmbclen
_mbctolower
_mbctoupper
_mbctohira
_mbctokata
_mbctombb
mbgetcode, _fmbgetcode
mblen, _fmblen
_mbputchar, _fmbputchar
mbrlen, _fmbrlen
mbrtowc, _fmbrtowc
_mbsbtype, _fmbsbtype
_mbsdec, _fmbsdec, _strdec, _wcsdec
_mbsinc, _fmbsinc, _strinc, _wesinc
mbsinit, sisinit
_mbsnbcat, _fmbsnbcat
_mbsnbcmp, _fmbsnbcmp
_mbsnbcpy, _fmbsnbcpy
_mbsnbicmp, _fmbsnbicmp
_mbsnbset, _fmbsnbset
_mbsnbcnt, _fmbsnbcnt, _mbsnccnt, _fmbsnccnt, _strncnt, _wcsncnt
_mbsnextc, _fmbsnextc, _strnextc, _wcsnextc
_mbsninc, _fmbsninc, _strninc, _wesninc
mbsrtowcs, _fmbsrtowcs
mbsrtowcs_s, _fmbsrtowcs_s
_mbsspnp, _fmbsspnp, _strspnp, _wcsspnp
mbstowcs, _fmbstowcs
mbstowcs_s,_fmbstowcs_s
_mbterm, _fmbterm
mbtowc, _fmbtowc
_mbvtop, _fmbvtop
_memavl
memccpy, _fmemccpy
memchr, _fmemchr, wmemchr
memcmp, _fmemcmp, wmemcmp
memcpy, _fmemcpy
memcpy_s, wmemcpy_s
_memicmp, _fmemicmp
_memmax
memmove, _fmemmove, wmemmove
memmove_s, wmemmove_s
_m_empty
memset, _fmemset, wmemset
m from int

min
mkdir, _mkdir, _wmkdir
MK_FP
mkstemp
_mktemp, _wmktemp
mktime
mlock
mlockall
mmap
modf
movedata
_moveto, _moveto_w
 _m_packsswb
 _m_packuswb
_m_paddb
_m_paddd
_m_paddsb
_m_paddsw
_m_paddusb
_m_paddusw
_ _
<u>_</u>
_m_pand
_m_pandn82
_m_pcmpeqb
_m_pcmpeqd82
_m_pcmpeqw
_m_pcmpgtb
_m_pcmpgtd
_m_pcmpgtw
_m_pmaddwd
_m_pmulhw
_m_pmullw
_m_por
mprotect
_m_pslld
_m_pslldi
_m_psllq
_m_psllqi
silw
psllwi
r _m_psradi
r _m_psraw
 _m_psrawi
_m_psrld
_m_psrldi
_m_psrlq
_m_psrlq
_m_psrly
_m_psrlwi
•
_m_psubb

_m_psubd	858
_m_psubsb	859
_m_psubsw	86
_m_psubusb	862
_m_psubusw	864
_m_psubw	863
_m_punpckhbw	860
r _m_punpckhdq	
r _r _m_punpcklbw	
_m_punpckldq	
_m_punpcklwd	
_m_pxor	
_msize Functions	
msync	
_m_to_int	
munlock	
munlockall	
munmap	
nan	
nearbyint	
nextafter	
nl_langinfo	
nosound	
offsetof	
_onexit, onexit	
open, _open, _wopen	
opendir, _wopendir	90
_open_osfhandle	90
_os_handle	90
_outgtext	91
_outmem	
_ outp	
outpd	
outpw	
_outtext	
pclose	
_pclose	
perror, _wperror	
_pg_analyzechart, _pg_analyzechartms	
_pg_analyzeseatter _pg_analyzeseatterms	
_pg_analyzescatter, _pg_analyzescatterms	
_pg_chart, _pg_chartms	
_pg_chartpie	
_pg_chartscatter, _pg_chartscatterms	
_pg_defaultchart	
_pg_getchardef	
_pg_getpalette	
_pg_getstyleset	
_pg_hlabelchart	
_pg_initchart	
_pg_resetpalette	95

_pg_resetstyleset	955
_pg_setchardef	95
_pg_setpalette	959
_pg_setstyleset	962
_pg_vlabelchart	965
_pie, _pie_w, _pie_wxy	967
_pipe	970
_polygon, _polygon_w, _polygon_wxy	974
popen	976
_popen, _wpopen	978
pow	980
printf, wprintf	981
printf_s, wprintf_s	987
putc, putwc	989
putch	990
putchar, putwchar	991
puteny, _puteny, _wputeny	993
_putimage, _putimage_w	996
puts, _putws	998
_putw	999
qsort	1000
qsort_s	1002
raise	1004
rand	1006
read, _read, readv	1007
readdir, _wreaddir	1009
readlink	1013
realloc Functions	1015
_rectangle, _rectangle_w, _rectangle_wxy	1017
_registerfonts	1019
remainder	1020
_remapallpalette	1021
_ remappalette	1023
remove, _wremove	1025
rename, wrename	1026
rewind	1027
rewinddir, _wrewinddir	1028
rint	1030
rmdir, _rmdir, _wrmdir	1031
_rotl	1032
	1033
round	1034
sbrk	1035
scalbn	1037
scanf, wscanf	1038
scanf_s, wscanf_s	1044
sched_getparam	1046
sched_get_priority_max	1047
sched_get_priority_min	1048
sched_getscheduler	1049
sched_rr_get_interval	1050
schod satnerem	105

sched_setscheduler1	1052
sched_yield1	1053
_scrolltextwindow 1	1054
_searchenv, _wsearchenv 1	1056
segread1	1058
_selectpalette 1	1059
	1061
sem_getvalue1	1062
· ·	1063
	1064
sem_trywait1	1065
	1066
	1067
	1069
• •	1071
	1072
	1073
	1075
	1077
	1078
_	1079
· — · · —	1081
	1083
	1085
_ 0	1086
	1087
J 1	1089
_ •	1091
. —	1093
	1095
	1096
	1098
	1099
	1101
	1102
– 1	1 1 0 2 1 1 0 4
1	
	1105 1106
<u> </u>	1107
-	1109
-	1111
	1113
_ 1	1115
_ 1	1117
	1118
-	1120
	1122
-	1124
	1128
–	1129
_ 1	1130
setvisualnage 1	1131

_setwindow 1
signal
signbit
sin
sinh
sleep
_snprintf, _snwprintf 1
snprintf, snwprintf
snprintf_s, snwprintf_s
_sopen, _wsopen, sopen1
sound1
spawn Functions
_splitpath, _wsplitpath
_splitpath2, _wsplitpath2
sprintf, swprintf1
sprintf_s, swprintf_s
sqrt
srand
sscanf, swscanf
sscanf_s, swscanf_s
stackavail, _stackavail 1
stat, _stat, _stati64, _wstat, _wstati64, lstat
strcasecmp
streat, _fstreat, wescat, _mbscat, _fmbscat
streat_s, we seat_s
strehr, _fstrehr, weschr, _mbschr, _fmbschr
stremp, _fstremp, wesemp, _mbscmp, _fmbscmp
strempi, wesempi
strcoll, wescoll, _mbscoll1
strcpy, _fstrcpy, wcscpy, _mbscpy, _fmbscpy
strcpy_s, wcscpy_s
strcspn, _fstrcspn, wcscspn, _mbscspn, _fmbscspn
_strdate, _wstrdate
strdup, _strdup, _fstrdup, wcsdup, _wcsdup, _mbsdup, _fmbsdup 1
strerror, _wcserror
strerror_s, _wcserror_s
strerrorlen_s, _wcserrorlen_s
strftime, wcsftime, _wstrftime_ms
_stricmp, _fstricmp, _wesicmp, _mbsicmp, _fmbsicmp, stricmp 1
_stricoll, _wcsicoll, _mbsicoll
strlcat, wesleat
strlcpy, wcslcpy
strlen, _fstrlen, wcslen, _mbslen, _fmbslen
strnlen_s, wcsnlen_s
_strlwr, _fstrlwr, _wcslwr, _mbslwr, _fmbslwr, strlwr
strncasecmp
strncat, _fstrncat, wesneat, _mbsneat, _fmbsneat
stricat_s, wesneat_s
strncmp, _fstrncmp, wesnemp, _mbsnemp, _fmbsnemp
_strncoll, _wcsncoll, _mbsncoll
SUITEDY, ISUITEDY, WESTEDY, HIDSIEDY, HIDSIEDY 1

strncpy_s, wcsncpy_s
_strnicmp, _fstrnicmp, _wcsnicmp, _mbsnicmp, _fmbsnicmp, strnicmp
_strnicoll, _wcsnicoll, _mbsnicoll
_strnset, _fstrnset, _wcsnset, _mbsnset, _fmbsnset, strnset, wcsnset
strpbrk, _fstrpbrk, wcspbrk, _mbspbrk, _fmbspbrk
strrchr, _fstrrchr, wesrchr, _mbsrchr, _fmbsrchr
_strrev, _fstrrev, _wcsrev, _mbsrev, _fmbsrev, strrev
_strset, _fstrset, _wcsset, _mbsset, _fmbsset, strset
strspn, _fstrspn, wcsspn, _mbsspn, _fmbsspn
strspnp, _fstrspnp
strstr, _fstrstr, wcsstr, _mbsstr, _fmbsstr
_strtime, _wstrtime
strtod, westod
strtok, strtok_r, _fstrtok_r, wcstok, _mbstok, _mbstok_r, _fmbstok, _fmbstok_r
strtok_s, westok_s
strtol, westol
strtoll, westoll
strtoimax, westoimax
strtoul, westoul
strtoull, westoull
strtoumax, wcstoumax
_strupr, _fstrupr, _wcsupr, _mbsupr, _fmbsupr, strupr
strxfrm, wcsxfrm
swab
sysconf
sysinfo
system, _wsystem
tan
tanh
_tell, _telli64, tell
_tempnam, _wtempnam
tgamma
time
timer_create
timer_delete
timer_gettime
timer_settime
timer_getoverrun
tmpfile
tmpfile_s
tmpnam_s, _wtmpnam_s
tmpnam, _wtmpnam
tolower, _toupper_townper_
toupper, _toupper, towupper
towctrans
trunc
ttyname, ttyname_r
tzset
ulltoa, _ulltow
ultoa, _ultoa, _ultow
umask, _umask
ungetc. ungetwc

	ungetch	1322
	unlink, _unlink, _wunlink	1323
	unlock	1324
	_unregisterfonts	1326
	unsetenv, _wunsetenv	1327
	utime, _utime, _wutime	1328
	utoa, _utoa, _utow	1330
	va_arg	1332
	va_end	1334
	va_start	1336
	_vbprintf, _vbwprintf	1338
		1340
	vcprintf	
	vescanf	1342
	vfprintf, vfwprintf	1343
	vfprintf_s, vfwprintf_s	1345
	vfscanf, vfwscanf	1347
	vfscanf_s, vfwscanf_s	1349
	vprintf, vwprintf	1351
	vprintf_s, vwprintf_s	1353
	vscanf, vwscanf	1355
	vscanf_s, vwscanf_s	1357
	_vsnprintf, _vsnwprintf	1359
	vsnprintf, vsnwprintf	1361
	vsnprintf_s, vsnwprintf_s	1363
	vsprintf, vswprintf	1365
	vsprintf_s, vswprintf_s	1367
	vsscanf, vswscanf	1369
	vsscanf_s, vswscanf_s	1371
	wait	1373
	wertomb, _fwertomb	1376
	wertomb_s, _fwertomb_s	1379
	westombs, _fwestombs	1382
	wcsrtombs_s, _fwcsrtombs_s	1385
	westombs, _fwestombs	1389
	wcstombs_s, _fwcstombs_s	1391
	wctob	1394
	wctomb, _fwctomb	1396
	wctomb_s, _fwctomb_s	1398
	wetrans	1400
	wctype	1402
	_wrapon	1404
	write, _write, writev	1406
5 Re-entr	ant Functions	1409
Appendices		1411
	mentation-Defined Behavior of the C Library	1413
	IULL Macro	1413
	Piagnostic Printed by the assert Function	1413
A.3 C	Character Testing	1413

A.4 Domain Errors	1414
A.5 Underflow of Floating-Point Values	1414
A.6 The fmod Function	1414
A.7 The signal Function	1414
A.8 Default Signals	1415
A.9 The SIGILL Signal	1415
A.10 Terminating Newline Characters	1415
A.11 Space Characters	1415
A.12 Null Characters	1416
A.13 File Position in Append Mode	1416
A.14 Truncation of Text Files	1416
A.15 File Buffering	1416
A.16 Zero-Length Files	1416
A.17 File Names	1416
A.18 File Access Limits	1417
A.19 Deleting Open Files	1417
A.20 Renaming with a Name that Exists	1417
A.21 Printing Pointer Values	1417
A.22 Reading Pointer Values	1417
A.23 Reading Ranges	1418
A.24 File Position Errors	1418
A.25 Messages Generated by the perror Function	1418
A.26 Allocating Zero Memory	1418
A.27 The abort Function	1419
A.28 The atexit Function	1419
A.29 Environment Names	1419
A.30 The system Function	1419
A.31 The strerror Function	1419
A.32 The Time Zone	1420
A.33 The clock Function	1420

Open Watcom C Library Reference

1 C Library Overview

The C library provides much of the power usually associated with the C language. This chapter introduces the individual functions (and macros) that comprise the Open Watcom C library. The chapter *Library Functions and Macros* describes each function and macro in complete detail.

Library functions are called as if they had been defined within the program. When the program is linked, the code for these routines is incorporated into the program by the linker.

Strictly speaking, it is not necessary to declare most library functions since they return int values for the most part. It is preferred, however, to declare all functions by including the header files found in the synopsis section with each function. Not only does this declare the return value, but also the type expected for each of the arguments as well as the number of arguments. This enables the Open Watcom C and C++ compilers to check the arguments coded with each function call.

1.1 Classes of Functions

The functions in the Open Watcom C library can be organized into a number of classes:

Character Manipulation Functions

These functions deal with single characters.

Wide Character Manipulation Functions

These functions deal with wide characters.

Multibyte Character Manipulation Functions

These functions deal with multibyte characters.

Memory Manipulation Functions

These functions manipulate blocks of memory.

String Manipulation Functions

These functions manipulate strings of characters. A character string is an array of zero or more adjacent characters followed by a null character $(' \setminus 0')$ which marks the end of the string.

Wide String Manipulation Functions

These functions manipulate strings of wide characters. A wide character string is an array of zero or more adjacent wide characters followed by a null wide character ($L' \setminus 0'$) which marks the end of the wide string.

Multibyte String Manipulation Functions

These functions manipulate strings of multibyte characters. A multibyte character is either a single-byte or double-byte character. The Chinese, Japanese and Korean character sets are examples of character sets containing both single-byte and double-byte characters.

What determines whether a character is a single-byte or double-byte character is the value of the lead byte in the sequence. For example, in the Japanese DBCS (double-byte character set), double-byte characters are those in which the first byte falls in the range 0x81 - 0x9F or 0xE0 - 0xFC and the second byte falls in the range 0x40 - 0x7E or 0x80 - 0xFC. A string of multibyte characters must be scanned from the first byte (index 0) to the last byte (index n) in sequence in order to determine if a particular byte is part of a double-byte character. For example, suppose that a multibyte character string contains the following byte values.

```
0x31 \ 0x40 \ 0x41 \ 0x81 \ 0x41 \ // "1@A.." where .. is a DB char
```

Among other characters, it contains the letter "A" (the first 0x41) and a double-byte character (0x81 0x41). The second 0x41 is not the letter "A" and that could only be determined by scanning from left to right starting with the first byte (0x31).

Conversion Functions

These functions convert values from one representation to another. Numeric values, for example, can be converted to strings.

Memory Allocation Functions

These functions are concerned with allocating and deallocating memory.

Heap Functions

These functions provide the ability to shrink and grow the heap, as well as, find heap related problems.

Math Functions

The mathematical functions perform mathematical computations such as the common trigonometric calculations. These functions operate on double values, also known as floating-point values.

Searching Functions

These functions provide searching and sorting capabilities.

Time Functions

These functions provide facilities to obtain and manipulate times and dates.

Variable-length Argument Lists

These functions provide the capability to process a variable number of arguments to a function.

Stream I/O Functions

These functions provide the "standard" functions to read and write files. Data can be transmitted as characters, strings, blocks of memory or under format control.

Wide Character Stream I/O Functions

These functions provide the "standard" functions to read and write files of wide characters. Data can be transmitted as wide characters, wide character strings, blocks of memory or under format control.

Process Primitive Functions

These functions deal with process creation, execution and termination, signal handling, and timer operations.

4 Classes of Functions

Process Environment

These functions deal with process identification, user identification, process groups, system identification, system time and process time, environment variables, terminal identification, and configurable system variables.

Directory Functions

These functions provide directory services.

Operating System I/O Functions

These "non-standard" file operations are more primitive than the "standard" functions in that they are directly interfaced to the operating system. They are included to provide compatibility with other C implementations and to provide the capability to directly use operating-system file operations.

File Manipulation Functions

These functions operate directly on files, providing facilities such as deletion of files.

Console I/O Functions

These functions provide the capability to directly read and write characters from the console.

Default Windowing Functions

These functions provide the capability to manipulate various dialog boxes in Open Watcom's default windowing system.

BIOS Functions

This set of functions allows access to services provided by the BIOS.

DOS-Specific Functions

This set of functions allows access to DOS-specific functions.

Intel 80x86 Architecture-Specific Functions

This set of functions allows access to Intel 80x86 processor-related functions.

Intel Pentium Multimedia Extension Functions

This set of functions allows access to Intel Architecture Multimedia Extensions (MMX).

Miscellaneous Functions

This collection consists of the remaining functions.

DOS LFN aware Functions

These functions are DOS LFN capable.

The following subsections describe these function classes in more detail. Each function in the class is noted with a brief description of its purpose. The chapter *Library Functions and Macros* provides a complete description of each function and macro.

1.1.1 Character Manipulation Functions

These functions operate upon single characters of type char. The functions test characters in various ways and convert them between upper and lowercase. The following functions are defined:

isalnum

test for letter or digit

Open Watcom C Library Reference

isalpha test for letter

isasciitest for ASCII characterisblanktest for blank characteriscntrltest for control character

__iscsym test for letter, underscore or digit test for letter or underscore

isdigit test for digit

isgraph test for printable character, except space

islower test for letter in lowercase

isprint test for printable character, including space

ispuncttest for punctuation charactersisspacetest for "white space" charactersisuppertest for letter in uppercaseisxdigittest for hexadecimal digittolowerconvert character to lowercasetoupperconvert character to uppercase

1.1.2 Wide Character Manipulation Functions

These functions operate upon wide characters of type wchar_t. The functions test wide characters in various ways and convert them between upper and lowercase. The following functions are defined:

iswalnum test for letter or digit

iswalpha test for letter

iswasciitest for ASCII characteriswblanktest for blank characteriswcntrltest for control character

__iswcsym test for letter, underscore or digit test for letter or underscore

iswdigit test for digit

iswgraph test for printable character, except space

iswlower test for letter in lowercase

iswprint test for printable character, including space

iswpuncttest for punctuation charactersiswspacetest for "white space" charactersiswuppertest for letter in uppercaseiswxdigittest for hexadecimal digit

wctype construct a property value for a given "property"

iswctype test a character for a specific property

towlowerconvert character to lowercasetowupperconvert character to uppercase

wctrans construct mapping value for a given "property" towctrans convert a character based on a specific property

1.1.3 Multibyte Character Manipulation Functions

These functions operate upon multibyte characters. The functions test wide characters in various ways and convert them between upper and lowercase. The following functions are defined:

_fmbccmp compare one multibyte character with another

_fmbccpy copy one multibyte character from one string to another

_fmbcicmp compare one multibyte character with another (case insensitive)

_fmbclen return number of bytes comprising multibyte character

_fmblen determine length of next multibyte character

_fmbgetcode get next single-byte or double-byte character from far string store single-byte or double-byte character into far string

_fmbrlen determine length of next multibyte character
_fmbrtowc convert far multibyte character to wide character
_fmbsbtype return type of byte in multibyte character string
_fmbtowc convert far multibyte character to wide character

_ismbbalnum test for isalnum or _ismbbkalnum _ismbbalpha test for isalpha or _ismbbkalpha _ismbbgraph test for isgraph or _ismbbkprint

ismbbkalnum test for non-ASCII text symbol other than punctuation

_ismbbkana test for single-byte Katakana character

_ismbbkalpha test for non-ASCII text symbol other than digits or punctuation test for non-ASCII text or non-ASCII punctuation symbol

_ismbbkpunct test for non-ASCII punctuation character test for valid first byte of multibyte character

_ismbbprint test for isprint or _ismbbkprint *_ismbbpunct* test for ispunct or _ismbbkpunct

_ismbbtrail test for valid second byte of multibyte character

_ismbcalnum test for _ismbcalpha or _ismbcdigit test for a multibyte alphabetic character _ismbccntrl test for a multibyte control character

_ismbcdigit test for a multibyte decimal-digit character '0' through '9' test for a printable multibyte character except space

_ismbchira test for a double-byte Hiragana character _ismbckata test for a double-byte Katakana character _ismbcl0 test for a double-byte non-Kanji character _ismbcl1 test for a JIS level 1 double-byte character _ismbcl2 test for a JIS level 2 double-byte character

_ismbclegal test for a valid multibyte character

_ismbclower test for a valid lowercase multibyte character

ismbcprint test for a printable multibyte character including space

_ismbcpunct test for any multibyte punctuation character *_ismbcspace* test for any multibyte space character

_ismbcsymbol test for valid multibyte symbol (punctuation and other special graphics)

_ismbcupper test for valid uppercase multibyte character
_ismbcxdigit test for any multibyte hexadecimal-digit character
_mbbtombc return double-byte equivalent to single-byte character

_mbbtype determine type of byte in multibyte character *_mbccmp* compare one multibyte character with another

_mbccpy copy one multibyte character from one string to another compare one multibyte character with another (case insensitive)

_mbcjistojms convert JIS code to shift-JIS code *_mbcjmstojis* convert shift-JIS code to JIS code

_mbclen return number of bytes comprising multibyte character

_mbctolower convert double-byte uppercase character to double-byte lowercase character convert double-byte lowercase character to double-byte uppercase character convert double-byte lowercase character to double-byte uppercase character

_mbctohira convert double-byte Katakana character to Hiragana character *_mbctokata* convert double-byte Hiragana character to Katakana character

_mbctombb return single-byte equivalent to double-byte character get next single-byte or double-byte character from string

mblen determine length of next multibyte character

_mbputchar store single-byte or double-byte character into string

Open Watcom C Library Reference

mbrlendetermine length of next multibyte charactermbrtowcconvert multibyte character to wide character_mbsbtypereturn type of byte in multibyte character string

mbsinit determine if mbstate_t object describes an initial conversion state

mbtowc convert multibyte character to wide character

1.1.4 Memory Manipulation Functions

These functions manipulate blocks of memory. In each case, the address of the memory block and its size is passed to the function. The functions that begin with "_f" accept far pointers as their arguments allowing manipulation of any memory location regardless of which memory model your program has been compiled for. The following functions are defined:

_fmemccpy copy far memory block up to a certain character search far memory block for a character value compare any two memory blocks (near or far) copy far memory block, overlap not allowed compare far memory, case insensitive copy far memory block, overlap allowed

_fmemset set any memory block (near of far) to a character memccpy copy memory block up to a certain character memchr search memory block for a character value

memcmp compare memory blocks

memcpycopy memory block, overlap not allowed_memicmpcompare memory, case insensitivememmovecopy memory block, overlap allowedmemsetset memory block to a character

movedata copy memory block, with segment information

swab swap bytes of a memory block

wmemchr search memory block for a wide character value

wmemcmp compare memory blocks

wmemcpycopy memory block, overlap not allowedwmemmovecopy memory block, overlap allowedwmemsetset memory block to a wide character

See the section "String Manipulation Functions" for descriptions of functions that manipulate strings of data. See the section "Wide String Manipulation Functions" for descriptions of functions that manipulate wide strings of data.

1.1.5 String Manipulation Functions

A *string* is an array of characters (with type char) that is terminated with an extra null character ('\0'). Functions are passed only the address of the string since the size can be determined by searching for the terminating null character. The functions that begin with "_f" accept far pointers as their arguments allowing manipulation of any memory location regardless of which memory model your program has been compiled for. The following functions are defined:

bcmp ** deprecated ** compare two byte strings bcopy ** deprecated ** copy a byte string

_bprintf formatted transmission to fixed-length string

bzero ** deprecated ** zero a byte string

_fstrcat concatenate two far strings

_fstrchr locate character in far string *_fstrcmp* compare two far strings

_fstrcpy copy far string

_fstrcspn get number of string characters not from a set of characters

_fstricmp compare two far strings with case insensitivity

_fstrlen length of a far string

_fstrlwr convert far string to lowercase

_fstrncat concatenate two far strings, up to a maximum length compare two far strings up to maximum length copy a far string, up to a maximum length

_fstrnicmp compare two far strings with case insensitivity up to a maximum length

_fstrnset fill far string with character to a maximum length
_fstrpbrk locate occurrence of a string within a second string
_fstrrchr locate last occurrence of character from a character set

_fstrrev reverse a far string in place _fstrset fill far string with a character

_fstrspn find number of characters at start of string which are also in a second string

_fstrstr find first occurrence of string in second string

_fstrtok get next token from a far string
_fstrupr convert far string to uppercase
sprintf formatted transmission to string
sscanf scan from string under format control

strcatconcatenate stringstrchrlocate character in stringstrcmpcompare two strings

** deprecated ** compare two strings with case insensitivity

** deprecated ** compare two strings with case insensitivity

compare two strings using "locale" collating sequence

strcpy copy a string

strcspn get number of string characters not from a set of characters

_strdec returns pointer to the previous character in string

strdupallocate and duplicate a stringstrerrorget error message as string

_stricmp compare two strings with case insensitivity
_strinc return pointer to next character in string
strlcat concatenate string into a bounded buffer
strlcpy copy string into a bounded buffer

strlen string length

_strlwr convert string to lowercase

strncatconcatenate two strings, up to a maximum lengthstrncmpcompare two strings up to maximum length_strncntcount the number of characters in the first "n" bytes

strncpy copy a string, up to a maximum length

_strnextc return integer value of the next character in string

strnicmp compare two strings with case insensitivity up to a maximum length

_strninc increment character pointer by "n" characters
_strnset fill string with character to a maximum length
strpbrk locate occurrence of a string within a second string
strrchr locate last occurrence of character from a character set

_strrev reverse a string in place _strset fill string with a character

strspn find number of characters at start of string which are also in a second string

_strspnp return pointer to first character of string not in set *strstr* find first occurrence of string in second string

strtok get next token from string

Open Watcom C Library Reference

_strupr convert string to uppercase

strxfrmtransform string to locale's collating sequence_vbprintfsame as "_bprintf" but with variable argumentsvsscanfsame as "sscanf" but with variable arguments

For related functions see the sections *Conversion Functions* (conversions to and from strings), *Time Functions* (formatting of dates and times), and *Memory Manipulation Functions* (operate on arrays without terminating null character).

1.1.6 Wide String Manipulation Functions

A wide string is an array of wide characters (with type wchar_t) that is terminated with an extra null wide character (L'\0'). Functions are passed only the address of the string since the size can be determined by searching for the terminating null character. The functions that begin with "_f" accept far pointers as their arguments allowing manipulation of any memory location regardless of which memory model your program has been compiled for. The following functions are defined:

_bwprintf formatted wide character transmission to fixed-length wesing

swprintf formatted wide character transmission to string
 swscanf scan from wide character string under format control
 _vbwprintf same as "_bwprintf" but with variable arguments
 vswscanf same as "swscanf" but with variable arguments

wcscatconcatenate stringwcschrlocate character in stringwcscmpcompare two strings

wcscmpi ** deprecated ** compare two strings with case insensitivity wcscoll compare two strings using "locale" collating sequence

wcscpy copy a string

wescspn get number of string characters not from a set of characters

_wcsdec returns pointer to the previous character in string

wcsdup allocate and duplicate a string get error message as string

_wcsicmp compare two strings with case insensitivity _wcsinc return pointer to next character in string wcslcat concatenate string into a bounded buffer wcslcpy copy string into a bounded buffer

wcslen string length

_wcslwr convert string to lowercase

wcsncatconcatenate two strings, up to a maximum lengthwcsncmpcompare two strings up to maximum length_wcsncntcount the number of characters in the first "n" bytes

wcsncpy copy a string, up to a maximum length

_wcsnextc return integer value of the next multi-byte character in string compare two strings with case insensitivity up to a maximum length

_wcsninc increment wide character pointer by "n" characters
_wcsnset fill string with character to a maximum length
wcspbrk locate occurrence of a string within a second string
wcsrchr locate last occurrence of character from a character set

_wcsrev reverse a string in place _wcsset fill string with a character

wcsspn find number of characters at start of string which are also in a second string

_wcsspnp return pointer to first character of string not in set wcsstr find first occurrence of string in second string wcstok get next token from string _wcsupr convert string to uppercase

wcsxfrm transform string to locale's collating sequence

For related functions see the sections *Conversion Functions* (conversions to and from strings), *Time Functions* (formatting of dates and times), and *Memory Manipulation Functions* (operate on arrays without terminating null character).

1.1.7 Multibyte String Manipulation Functions

A wide string is an array of wide characters (with type wchar_t) that is terminated with an extra null wide character (L'\0'). Functions are passed only the address of the wide string since the size can be determined by searching for the terminating null character. The functions that begin with "_f" accept far pointers as their arguments allowing manipulation of any memory location regardless of which memory model your program has been compiled for. The following functions are defined:

btowc return wide character version of single-byte character

_fmbscat concatenate two far strings
_fmbschr locate character in far string
_fmbscmp compare two far strings

_fmbscpy copy far string

_fmbscspn get number of string characters not from a set of characters
_fmbsdec returns far pointer to the previous character in far string

_fmbsdup allocate and duplicate a far string

_fmbsicmp compare two far strings with case insensitivity _fmbsinc return far pointer to next character in far string

_fmbslen length of a far string

_fmbslwr convert far string to lowercase

_fmbsnbcat append up to "n" bytes of string to another string

_fmbsnbcmp compare up to "n" bytes in two strings

_fmbsnbcnt count the number of characters in the first "n" bytes

_fmbsnbcpy copy up to "n" bytes of a string

_fmbsnbicmp compare up to "n" bytes in two strings with case insensitivity

_fmbsnbset fill string with up to "n" bytes

_fmbsncat concatenate two far strings, up to a maximum length count the number of characters in the first "n" bytes compare two far strings up to maximum length fmbsncpy copy a far string, up to a maximum length

_fmbsnextc return integer value of the next multi-byte character in far string compare two far strings with case insensitivity up to a maximum length

_fmbsninc increment wide character far pointer by "n" characters
_fmbsnset fill far string with character to a maximum length
_fmbspbrk locate occurrence of a string within a second string
_fmbsrchr locate last occurrence of character from a character set

_fmbsrev reverse a far string in place

_fmbsrtowcs convert multibyte character string to wide character string

_fmbsset fill far string with a character

_fmbsspn find number of characters at start of string which are also in a second string

fmbsspnp return far pointer to first character of far string not in set

_fmbsstr find first occurrence of string in second string

_fmbstok get next token from a far string

_fmbstowcs convert multibyte character string to wide character string

_fmbsupr convert far string to uppercase

Open Watcom C Library Reference

fmbterm determine if next multibyte character in string is null

_fmbvtop store multibyte character into far string

fwcrtomb convert wide character to multibyte character and store

_fwcsrtombs convert far wide character string to far multibyte character string convert far wide character string to far multibyte character string

_fwctomb convert wide character to multibyte character

_mbscat concatenate string
_mbschr locate character in string
_mbscmp compare two strings

_mbscoll compare two strings using "locale" collating sequence

_mbscpy copy a string

mbscspn get number of string characters not from a set of characters

_mbsdec returns pointer to the previous character in string

mbsdup allocate and duplicate a string

_mbsicmp compare two strings with case insensitivity _mbsinc return pointer to next character in string

mbsinit determine if mbstate_t object describes an initial conversion state

_mbslen string length

_mbslwr convert string to lowercase

_mbsnbcat append up to "n" bytes of string to another string

_mbsnbcmp compare up to "n" bytes in two strings

_mbsnbcnt count the number of characters in the first "n" bytes

_mbsnbcpy copy up to "n" bytes of a string

_mbsnbicmp compare up to "n" bytes in two strings with case insensitivity

_mbsnbset fill string with up to "n" bytes

_mbsncat concatenate two strings, up to a maximum length *_mbsnccnt* count the number of characters in the first "n" bytes

_mbsncmp compare two strings up to maximum length copy a string, up to a maximum length

_mbsnextc return integer value of the next multi-byte character in string compare two strings with case insensitivity up to a maximum length

_mbsninc increment wide character pointer by "n" characters
_mbsnset fill string with up to "n" multibyte characters
_mbspbrk locate occurrence of a string within a second string
_mbsrchr locate last occurrence of character from a character set

_mbsrev reverse a string in place

mbsrtowcs convert multibyte character string to wide character string

_mbsset fill string with a character

_mbsspn find number of characters at start of string which are also in a second string

_mbsspnp return pointer to first character of string not in set _mbsstr find first occurrence of string in second string

_mbstok get next token from string

mbstowcs convert multibyte character string to wide character string

_mbsupr convert string to uppercase

_mbterm determine if next multibyte character in string is null

_mbvtop store multibyte character into string

wcrtombconvert wide character to multibyte character and storewcsrtombsconvert wide character string to multibyte character stringwcstombsconvert wide character string to multibyte character stringwctobreturn single-byte character version of wide character

wctomb convert wide character to multibyte character

For related functions see the sections *Conversion Functions* (conversions to and from strings), *Time Functions* (formatting of dates and times), and *Memory Manipulation Functions* (operate on arrays without terminating null character).

1.1.8 Conversion Functions

These functions perform conversions between objects of various types and strings. The following functions are defined:

```
atof
                           string to "double"
atoi
                           string to "int"
atol
                           string to "long int"
atoll
                           string to "long long int"
                           "double" to E-format string
ecvt
                           "double" to F-format string
fcvt
                           "double" to string
gcvt
itoa
                           "int" to string
                           "long long int" to string
lltoa
                           "long int" to string
ltoa
strtod
                           string to "double"
                           string to "long int"
strtol
                           string to "long long int"
strtoll
                           string to "unsigned long int"
strtoul
strtoull
                           string to "unsigned long long int"
ulltoa
                           "unsigned long long int" to string
ultoa
                           "unsigned long int" to string
utoa
                           "unsigned int" to string
```

These functions perform conversions between objects of various types and wide character strings. The following functions are defined:

```
"int" to wide character string
_itow
_lltow
                          "long long int" to wide character string
_ltow
                          "long int" to wide character string
_ulltow
                          "unsigned long long int" to wide character string
_ultow
                          "unsigned long int" to wide character string
                          "unsigned int" to wide character string
_utow
wcstod
                         wide character string to "double"
                         wide character string to "long int"
westol
wcstoll
                         wide character string to "long long int"
wcstoul
                         wide character string to "unsigned long int"
                         wide character string to "unsigned long long int"
wcstoull
                         wide character string to "double"
wtof
                         wide character string to "int"
_wtoi
_wtol
                         wide character string to "long int"
_wtoll
                         wide character string to "long long int"
```

See also tolower, towlower, _mbctolower, toupper, towupper, _mbctoupper, _strlwr, _wcslwr, _mbslwr, _strupr, _wcsupr and _mbsupr which convert the cases of characters and strings.

1.1.9 Memory Allocation Functions

These functions allocate and de-allocate blocks of memory.

Unless you are running your program in 32-bit protect mode, where segments have a limit of 4 gigabytes, the default data segment has a maximum size of 64K bytes. It may be less in a machine with insufficient memory or when other programs in the computer already occupy some of the memory. The _nmalloc function allocates space within this area while the _fmalloc function allocates space outside the area (if it is available).

In a small data model, the malloc, calloc and realloc functions use the _nmalloc function to acquire memory; in a large data model, the _fmalloc function is used.

It is also possible to allocate memory from a based heap using _bmalloc. Based heaps are similar to far heaps in that they are located outside the normal data segment. Based pointers only store the offset portion of the full address, so they behave much like near pointers. The selector portion of the full address specifies which based heap a based pointer belongs to, and must be passed to the various based heap functions.

It is important to use the appropriate memory-deallocation function to free memory blocks. The _nfree function should be used to free space acquired by the _ncalloc, _nmalloc, or _nrealloc functions. The _ffree function should be used to free space acquired by the _fcalloc, _fmalloc, or _frealloc functions. The _bfree function should be used to free space acquired by the _bcalloc, _bmalloc, or _brealloc functions.

The free function will use the _nfree function when the small data memory model is used; it will use the _ffree function when the large data memory model is being used.

It should be noted that the _fmalloc and _nmalloc functions can both be used in either data memory model. The following functions are defined:

allocate auto storage from stack

_bcalloc allocate and zero memory from a based heap _bexpand expand a block of memory in a based heap _bfree free a block of memory in a based heap

_bfreeseg free a based heap _bheapseg allocate a based heap

_bmalloc allocate a memory block from a based heap

_bmsize return the size of a memory block

_brealloc re-allocate a memory block in a based heap

brkset allocation "break" positioncallocallocate and zero memory_expandexpand a block of memory

_fcalloc allocate and zero a memory block (outside default data segment)
_fexpand expand a block of memory (outside default data segment)

_ffree free a block allocated using "_fmalloc"

_fmalloc allocate a memory block (outside default data segment)

_fmsize return the size of a memory block

_frealloc re-allocate a memory block (outside default data segment)
free free a block allocated using "malloc", "calloc" or "realloc"

_freect return number of objects that can be allocated

halloc allocate huge array
hfree free huge array

malloc allocate a memory block (using current memory model)

_memavl return amount of available memory
_memmax return largest block of memory available
_msize return the size of a memory block

_ncalloc allocate and zero a memory block (inside default data segment)
_nexpand expand a block of memory (inside default data segment)

_nfree free a block allocated using "_nmalloc"

_nmalloc allocate a memory block (inside default data segment)

_nmsize return the size of a memory block

_nrealloc re-allocate a memory block (inside default data segment)

realloc re-allocate a block of memory sbrk set allocation "break" position

stackavail determine available amount of stack space

1.1.10 Heap Functions

These functions provide the ability to shrink and grow the heap, as well as, find heap related problems. The following functions are defined:

_heapchk perform consistency check on the heap
_bheapchk perform consistency check on a based heap
_fheapchk perform consistency check on the far heap
_nheapchk perform consistency check on the near heap

_heapgrow grow the heap _fheapgrow grow the far heap

_nheapgrow grow the near heap up to its limit of 64K _heapmin shrink the heap as small as possible _bheapmin shrink a based heap as small as possible _fheapmin shrink the far heap as small as possible shrink the near heap as small as possible _nheapmin _heapset fill unallocated sections of heap with pattern _bheapset fill unallocated sections of based heap with pattern _fheapset fill unallocated sections of far heap with pattern _nheapset fill unallocated sections of near heap with pattern

_heapshrink shrink the heap as small as possible _fheapshrink shrink the far heap as small as possible _bheapshrink shrink a based heap as small as possible nheapshrink shrink the near heap as small as possible _heapwalk walk through each entry in the heap _bheapwalk walk through each entry in a based heap _fheapwalk walk through each entry in the far heap _nheapwalk walk through each entry in the near heap

1.1.11 Math Functions

These functions operate with objects of type double, also known as floating-point numbers. The Intel 8087 processor (and its successor chips) is commonly used to implement floating-point operations on personal computers. Functions ending in "87" pertain to this specific hardware and should be isolated in programs when portability is a consideration. The following functions are defined:

absolute value of an object of type "int"

acos arccosine

acosh inverse hyperbolic cosine

asin arcsine

asinhinverse hyperbolic sineatanarctangent of one argumentatan2arctangent of two argumentsatanhinverse hyperbolic tangent

Bessel Functions bessel functions j0, j1, jn, y0, y1, and yn

cabs absolute value of complex number

cbrt cubed root of a number ceil ceiling function

_clear87 clears floating-point status

_control87 sets new floating-point control word copysign copies the sign of one number to another

cos cosine

cosh hyperbolic cosine

div compute quotient, remainder from division of an "int" object

erf computes the error function

erfc computes the complementary error function

exp exponential function *exp2* two raised to a value

expm1 exponential of a number minus one

fabs absolute value of "double"

fdim positive difference of two numbers

_finite determines whether floating-point value is valid

floor floor function fma fused multiply-add

fmaxreturns larger of two numbersfminreturns smaller of two numbers

fmod modulus function

_fpreset initializes for floating-point operations

frexpfractional exponenthypotcompute hypotenuse

ilogb retrieve the exponent of a "double"

imaxabs get quotient, remainder from division of object of maximum-size integer type

imaxdiv absolute value of an object of maximum-size integer type

j0return Bessel functions of the first kind (described under Bessel)j1return Bessel functions of the first kind (described under Bessel)jnreturn Bessel functions of the first kind (described under Bessel)

labs absolute value of an object of type "long int"

ldexp multiply by a power of two

ldivget quotient, remainder from division of object of type "long int"lgammanatural logarithm of the absolute value of the Gamma function

lgamma_r natural logarithm of the absolute value of the Gamma function (thread-safe)

log natural logarithm log10 logarithm, base 10

log1p natural logarithm of one plus the argument

log2 logarithm, base 2

logbretrieve the exponent of a "double"matherrhandles error from math functionsmaxreturn maximum of two argumentsminreturn minimum of two argumentsmodfget integral, fractional parts of "double"

nearbyint returns nearest integer based on rounding mode

nextafter returns next machine-representable floating point value

pow raise to power rand random integer

remainder retrieves the remainder of a division operation rint returns nearest integer based on rounding mode

rounds to the nearest integer

scalbn compute a "double" times two raised to a power

_set_matherr specify a math error handler

sin sine

sinhhyperbolic sinesqrtsquare root

srand set starting point for generation of random numbers using "rand" function

_status87 gets floating-point status

tan tangent

tanh hyperbolic tangent

tgamma compute the Gamma function trunc truncate a floating point value

y0 return Bessel functions of the second kind (described under Bessel)
y1 return Bessel functions of the second kind (described under Bessel)
yn return Bessel functions of the second kind (described under Bessel)

1.1.12 Searching Functions

These functions provide searching and sorting capabilities. The following functions are defined:

bsearch find a data item in an array using binary search lfind find a data item in an array using linear search lsearch linear search array, add item if not found

qsort sort an array

1.1.13 Time Functions

These functions are concerned with dates and times. The following functions are defined:

asctimemakes time string from time structure_asctimemakes time string from time structure_wasctimemakes time string from time structure_wasctimemakes time string from time structure

 clock
 gets time since program start

 ctime
 gets calendar time string

 _ctime
 gets calendar time string

 _wctime
 gets calendar time string

 _wctime
 gets calendar time string

difftimecalculate difference between two timesftimereturns the current time in a "timeb" structure

gmtime convert calendar time to Coordinated Universal Time (UTC)
_gmtime convert calendar time to Coordinated Universal Time (UTC)

localtimeconvert calendar time to local time_localtimeconvert calendar time to local timemktimemake calendar time from local time

_strdate return date in buffer strftime format date and time wcsftime format date and time

wstrftime ms format date and time _strtime return time in buffer wstrtime return time in buffer get current calendar time time

set global variables to reflect the local time zone tzset

return date in buffer _wstrdate

1.1.14 Variable-length Argument Lists

Variable-length argument lists are used when a function does not have a fixed number of arguments. These macros provide the capability to access these arguments. The following functions are defined:

va arg get next variable argument

complete access of variable arguments va_end start access of variable arguments va start

1.1.15 Stream I/O Functions

A stream is the name given to a file or device which has been opened for data transmission. When a stream is opened, a pointer to a FILE structure is returned. This pointer is used to reference the stream when other functions are subsequently invoked.

There are two modes by which data can be transmitted:

binary Data is transmitted unchanged.

text On input, carriage-return characters are removed before following linefeed characters. On

output, carriage-return characters are inserted before linefeed characters.

These modes are required since text files are stored with the two characters delimiting a line of text, while the C convention is for only the linefeed character to delimit a text line.

When a program begins execution, there are a number of streams already open for use:

stdin Standard Input: input from the console

stdout Standard Output: output to the console

stderr Standard Error: output to the console (used for error messages)

stdaux Standard Auxiliary: auxiliary port, available for use by a program (not available in some

Windows platforms)

stdprn Standard Printer: available for use by a program (not available in some Windows

platforms)

These standard streams may be re-directed by use of the freopen function.

See also the section *File Manipulation Functions* for other functions which operate upon files.

The functions referenced in the section *Operating System I/O Functions* may also be invoked (use the fileno function to obtain the file handle). Since the stream functions may buffer input and output, these functions should be used with caution to avoid unexpected results.

The following functions are defined:

clear end-of-file and error indicators for stream

fclose close stream

fcloseall close all open streams fdopen open stream, given handle

feoftest for end of fileferrortest for file errorfflushflush output buffer

fgetc get next character from file

_fgetchar equivalent to "fgetc" with the argument "stdin"

fgetpos get current file position

fgets get a string

_flushall flush output buffers for all streams

fopenopen a streamfprintfformat outputfputcwrite a character

_fputchar write a character to the "stdout" stream

fputs write a string

fread read a number of objects re-open re-opens a stream

fscanfscan input according to formatfseekset current file position, relativefsetposset current file position, absolute

_fsopen open a shared stream
ftell get current file position
fwrite write a number of objects

getc read character

getchar get next character from "stdin"

gets get string from "stdin"
_getw read int from stream file

perror write error message to "stderr" stream

printfformat output to "stdout"putcwrite character to fileputcharwrite character to "stdout"putswrite string to "stdout"_putwwrite int to stream filerewindposition to start of file

scan input from "stdin" under format control

setbufset buffersetvbufset buffering

tmpfile create temporary file

ungetc push character back on input stream

vfprintfsame as "fprintf" but with variable argumentsvfscanfsame as "fscanf" but with variable argumentsvprintfsame as "printf" but with variable argumentsvscanfsame as "scanf" but with variable arguments

See the section Directory Functions for functions which are related to directories.

1.1.16 Wide Character Stream I/O Functions

The previous section describes some general aspects of stream input/output. The following describes functions dealing with streams containing multibyte character sequences.

After a stream is associated with an external file, but before any operations are performed on it, the stream is without orientation. Once a wide character input/output function has been applied to a stream without orientation, the stream becomes *wide-oriented*. Similarly, once a byte input/output function has been applied to a stream without orientation, the stream becomes *byte-oriented*. Only a successful call to freopen can otherwise alter the orientation of a stream (it removes any orientation). You cannot mix byte input/output functions and wide character input/output functions on the same stream.

A file positioning function can cause the next wide character output function to overwrite a partial multibyte character. This can lead to the subsequent reading of a stream of multibyte characters containing an invalid character.

When multibyte characters are read from a stream, they are converted to wide characters. Similarly, when wide characters are written to a stream, they are converted to multibyte characters.

The following functions are defined:

fgetwc get next wide character from file

_fgetwchar equivalent to "fgetwc" with the argument "stdin"

fgetws get a wide character string

fprintf "C" and "S" extensions to the format specifier

fputwc write a wide character

_fputwchar write a character to the "stdout" stream

fputws write a wide character string

fscanf "C" and "S" extensions to the format specifier

fwprintf formatted wide character output

fwscanf scan wide character input according to format

getwc read wide character

getwchar get next wide character from "stdin"

_getws get wide character string from "stdin"

putwc write wide character to file write wide character to "stdout" putwchar _putws write wide character string to "stdout" ungetwc push wide character back on input stream vfwprintf same as "fwprintf" but with variable arguments vfwscanf same as "fwscanf" but with variable arguments vswprintf same as "swprintf" but with variable arguments vwprintf same as "wprintf" but with variable arguments same as "wscanf" but with variable arguments vwscanf

_wfdopen open stream, given handle using a wide character "mode"

_wfopen open a stream using wide character arguments
_wfreopen re-opens a stream using wide character arguments
_wfsopen open a shared stream using wide character arguments

_wperror write error message to "stderr" stream
wprintf format wide character output to "stdout"

wscanf scan wide character input from "stdin" under format control

See the section *Directory Functions* for functions which are related to directories.

1.1.17 Process Primitive Functions

These functions deal with process creation, execution and termination, signal handling, and timer operations.

When a new process is started, it may replace the existing process

- P_OVERLAY is specified with the spawn... functions
- the exec... routines are invoked

or the existing process may be suspended while the new process executes (control continues at the point following the place where the new process was started)

- P_WAIT is specified with the spawn... functions
- system is used

The following functions are defined:

abort immediate termination of process, return code 3

alarm send calling process SIGALRM signal after specified time

atexit register exit routine

_beginthread start a new thread of execution
cwait wait for a child process to terminate
_cwait wait for a child process to terminate
delay delay for number of milliseconds

_endthread
 execl
 end the current thread
 chain to program
 chain to program

execle chain to program, pass environment chain to program, pass environment

execlpchain to program_execlpchain to program

execlpe chain to program, pass environment _execlpe chain to program, pass environment

execv chain to program _execv chain to program

execve chain to program, pass environment *_execve* chain to program, pass environment

execvpchain to program_execvpchain to program

execvpe chain to program, pass environment *_execvpe* chain to program, pass environment

exitexit process, set return code_Exitexit process, set return code_exitexit process, set return code

fork create a new process

kill send a signal to specified process

_onexit register exit routine

pausesuspend calling process until signalraisesignal an exceptional condition

sigaction examine or specify action for specific signal

sigaddsetadd specified signal to setsigdelsetdelete specified signal from set

sigemptysetinitialize signal set to exclude certain signalssigfillsetinitialize signal set to include certain signalssigismembertest whether signal is a member of a setsignalset handling for exceptional condition

sigpending store set of pending signals

sigprocmask examine or change process's signal mask

sigsuspend replace process's signal mask and then suspend process

sleep delay for number of seconds

spawnlcreate process_spawnlcreate process

spawnle create process, set environment create process, set environment

spawnlp create process _spawnlp create process

spawnlpe create process, set environment _spawnlpe create process, set environment

spawnv create process _spawnv create process

spawnve create process, set environment *_spawnve* create process, set environment

spawnvp create process *_spawnvp* create process

spawnvpecreate process, set environment_spawnvpecreate process, set environmentsystemexecute system command

wait wait for any child process to terminate waitpid wait for a child process to terminate

_wexecl chain to program

_wexecle chain to program, pass environment

_wexeclp chain to program

_wexeclpe chain to program, pass environment

_wexecv chain to program

_wexecve chain to program, pass environment

_wexecvp chain to program

_wexecvpe chain to program, pass environment

_wspawnl create process

_wspawnle create process, set environment

_wspawnlp create process

_wspawnlpe create process, set environment

_wspawnv create process

_wspawnve create process, set environment

_wspawnvp create process

_wspawnvpe create process, set environment _wsystem execute system command

There are eight spawn... and exec... functions each. The "..." is one to three letters:

- "l" or "v" (one is required) to indicate the way the process parameters are passed
- "p" (optional) to indicate whether the **PATH** environment variable is searched to locate the program for the process

• "e" (optional) to indicate that the environment variables are being passed

1.1.18 Process Environment

These functions deal with process identification, process groups, system identification, system time, environment variables, and terminal identification. The following functions are defined:

_bgetcmd get command line

clearenv delete environment variables

confstrget configuration-defined string valuesctermidreturn name of controlling terminalcuseridgenerate login name of process owner

getcmd get command line

getegid get effective group ID of calling process

getenv get environment variable value

geteuid get effective user ID

getgidget real group ID of calling processgetgroupsget supplementary group IDsgetloginget user's login name

getlogin get user's login getnid get netword ID

getpgrpget process group ID of calling processgetpidget process ID of calling process_getpidget process ID of calling processgetppidget parent process ID of calling process

gettid get thread ID of current thread

getuid get real user ID

isatty determine if file descriptor associated with a terminal

putenv add, change or delete environment variable
_searchenv search for a file in list of directories
searchenv search for a file in list of directories

setegid set the effective group ID

setenv add, change or delete environment variable

seteuid set the effective user ID

setgidset real group ID, effective group IDsetpgidset process group ID for job control

setsid create a new session and set process group ID

set real user ID, effective user ID

sysconf determine value of configurable system limit or option

times return time-accounting information

ttyname return pointer to string containing pathname of terminal associated with file

descriptor argument

uname return operating system identification

unsetenvdelete environment variable_wgetenvget environment variable value

_wputenv add, change or delete environment variable

_wsearchenv search for a file in list of directories

_wsetenv add, change or delete environment variable

_wunsetenv delete environment variable

1.1.19 Directory Functions

These functions pertain to directory manipulation. The following functions are defined:

chdirchange current working directoryclosedirclose opened directory filegetcwdget current working directory_getdcwdget current directory on drivemkdirmake a new directory

mkdir make a new directory opendir open directory file

readdir read file name from directory rewinddir reset position of directory stream

rmdir remove a directory

_wchdir change current working directory wclosedir close opened directory file get current working directory get current working directory get current directory on drive

_wmkdir make a new directory open directory file

_wreaddir read file name from directory
_wrewinddir reset position of directory stream

_wrmdir remove a directory

1.1.20 Operating System I/O Functions

These functions operate at the operating-system level and are included for compatibility with other C implementations. It is recommended that the functions used in the section *File Manipulation Functions* be used for new programs, as these functions are defined portably and are part of the ISO/ANSI standard for the C language.

The functions in this section reference opened files and devices using a *file handle* which is returned when the file is opened. The file handle is passed to the other functions.

The following functions are defined:

_chsize change the size of a file

close close file

_commit commit changes to disk

create a file

dupduplicate file handle, get unused handle numberdup2duplicate file handle, supply new handle number

_eof test for end of file fentl control over an open file write queued file data to disk

_filelength get file size

fileno get file handle for stream file

fstat get file status

fsync write queued file and filesystem data to disk

hdopen get POSIX handle from OS handle

linkcreate new directory entrylocklock a section of a filelockinglock/unlock a section of a file

lseek set current file position

ltrunc truncate a file

mkfifo make a FIFO special file mknod make a filesystem entry point

mount a filesystem

open open a file

_os_handle get OS handle from POSIX handle

_pclose close a pipe pclose close a pipe

pipe create an inter-process channel

_popen open a pipe
popen open a pipe
read read a record

readlink read a symbolic link

read records placing them into a specified number of buffers

select synchronous I/O multiplexing

_setmode set file mode

_sopen open a file for shared access
symlink create a symbolic link
sync sync the filesystem
_tell get current file position
umask set file permission mask
umount unmount a filesystem

unlink delete a file

unlock unlock a section of a file

write write a record

writev write several records from a specified number of buffers

_wcreat create a file _wopen open a file _wpopen open a pipe

_wsopen open a file for shared access

_wunlink delete a file

1.1.21 File Manipulation Functions

These functions operate directly with files. The following functions are defined:

access test file or directory for mode of access

chmod change permissions for a file

chown change owner user ID and group ID of the specified file

fchmod change the permissions for the file associated with the specified file descriptor to

the specified mode

fchown change the user ID and group ID of the file associated with the specified file

descriptor to the specified numeric values

fpathconf determine value of configurable limit associated with a file or directory

lstat get file status

pathconf determine value of configurable limit associated with a file or directory

removedelete a filerenamerename a filestatget file status

tmpnamcreate name for temporary fileutimeset modification time for a file

_waccess test file or directory for mode of access

wchmod change permissions for a file

_wremove delete a file _wrename rename a file _wstat get file status

_wtmpnam create name for temporary file _wutime set modification time for a file

1.1.22 Console I/O Functions

These functions provide the capability to read and write data from the console. Data is read or written without any special initialization (devices are not opened or closed), since the functions operate at the hardware level.

The following functions are defined:

cgetsget a string from the consolecprintfprint formatted string to the console

cputs write a string to the console

cscanfscan formatted data from the consolegetchget character from console, no echogetcheget character from console, echo it

kbhit test if keystroke available putch write a character to the console

ungetch push back next character from console

1.1.23 Default Windowing Functions

These functions provide the capability to manipulate attributes of various windows created by Open Watcom's default windowing system for Microsoft Windows and IBM OS/2.

The following functions are defined:

_dwDeleteOnClose delete console window upon close _dwSetAboutDlg set about dialogue box title and contents _dwSetAppTitle set main window's application title

_dwSetConTitle set console window's title

_dwShutDown shut down default windowing system _dwYield yield control to other processes

1.1.24 BIOS Functions

This set of functions allows access to services provided by the BIOS. The following functions are defined:

_bios_disk provide disk access functions _bios_equiplist determine equipment list

_bios_keybrd provide low-level keyboard access

bios memsize determine amount of system board memory

_bios_printer provide access to printer services _bios_serialcom provide access to serial services _bios_timeofday get and set system clock

1.1.25 DOS-Specific Functions

These functions provide the capability to invoke DOS functions directly from a program. The following functions are defined:

bdos DOS call (short form)

dosexterrextract DOS error information_dos_allocmemallocate a block of memory

_dos_close close a file

_dos_findfirst find first file matching a specified pattern
_dos_findnext find the next file matching a specified pattern

_dos_freemem free a block of memory
_dos_getdate get current system date
_dos_getdiskfree get information about disk
_dos_getdrive get the current drive
_dos_getfileattr get file attributes

_dos_getftime get file's last modification time get the current system time get contents of interrupt vector

_dos_keep install a terminate-and-stay-resident program

_dos_open open a file

_dos_read read data from a file

_dos_setblock change the size of allocated block _dos_setdate change current system date _dos_setdrive change the current default drive _dos_setfileattr set the attributes of a file

_dos_setftime set a file's last modification time
_dos_settime set the current system time
_dos_setvect set an interrupt vector
_dos_write write data to a file
intdos cause DOS interrupt

intdosx cause DOS interrupt, with segment registers

_wdos_findclose close find file matching

_wdos_findfirst file matching a specified pattern
_wdos_findnext find the next file matching a specified pattern

1.1.26 Intel 80x86 Architecture-Specific Functions

These functions provide the capability to invoke Intel 80x86 processor-related functions directly from a program. Functions that apply to the Intel 8086 CPU apply to that family including the 80286, 80386, 80486 and Pentium processors. The following functions are defined:

_chain_intr chain to the previous interrupt handler

_disable disable interrupts enable enable interrupts

FP_OFF get offset part of far pointer
FP_SEG get segment part of far pointer
inp get one byte from hardware port

inpw get two bytes (one word) from hardware port *int386* cause 386/486/Pentium CPU interrupt

int386x cause 386/486/Pentium CPU interrupt, with segment registers

int86 cause 8086 CPU interrupt

int86x cause 8086 CPU interrupt, with segment registers cause 8086 CPU interrupt, with segment registers

intrf cause 8086 CPU interrupt, with segment registers and CPU flags

MK_FP make a far pointer from the segment and offset values

nosound turn off the speaker

outp write one byte to hardware port

outpw write two bytes (one word) to hardware port

segread read segment registers

sound turn on the speaker at specified frequency

1.1.27 Intel Pentium Multimedia Extension Functions

This set of functions allows access to Intel Architecture Multimedia Extensions (MMX). These functions are implemented as in-line intrinsic functions. The general format for most functions is:

```
mm_result = mm_function( mm_operand1, mm_operand2 );
```

These functions provide a simple model for use of Intel Multimedia Extension (MMX). More advanced use of MMX can be implemented in much the same way that these functions are implemented. See the <mmintrin.h> header file for examples. The following functions are defined:

_m_empty empty multimedia state

_m_from_int form 64-bit MM value from unsigned 32-bit integer value

_m_packssdw pack and saturate 32-bit double-words from two MM elements into signed 16-bit

words

_m_packsswb pack and saturate 16-bit words from two MM elements into signed bytes

_m_packuswb pack and saturate signed 16-bit words from two MM elements into unsigned bytes

_m_paddb add packed bytes

_m_padddadd packed 32-bit double-words_m_paddsbadd packed signed bytes with saturation_m_paddswadd packed signed 16-bit words with saturation_m_paddusbadd packed unsigned bytes with saturation_m_padduswadd packed unsigned 16-bit words with saturation

_m_paddw add packed 16-bit words

_m_pand AND 64 bits of two MM elements

_m_pandn invert the 64 bits in MM element, then AND 64 bits from second MM element

_m_pcmpeqb compare packed bytes for equality

_m_pcmpeqd compare packed 32-bit double-words for equality _m_pcmpeqw compare packed 16-bit words for equality

_m_pcmpgtb compare packed bytes for greater than relationship

_m_pcmpgtd compare packed 32-bit double-words for greater than relationship compare packed 16-bit words for greater than relationship multiply packed 16-bit words, then add 32-bit results pair-wise

_m_pmulhw multiply the packed 16-bit words of two MM elements, then store high-order 16

bits of results

_m_pmullw multiply the packed 16-bit words of two MM elements, then store low-order 16

bits of results

_m_por OR 64 bits of two MM elements

_m_pslld shift left each 32-bit double-word by amount specified in second MM element

_m_pslldi	shift left each 32-bit double-word by amount specified in constant value
 _m_psllq	shift left each 64-bit quad-word by amount specified in second MM element
_m_psllqi	shift left each 64-bit quad-word by amount specified in constant value
_m_psllw	shift left each 16-bit word by amount specified in second MM element
_m_psllwi	shift left each 16-bit word by amount specified in constant value
_m_psrad	shift right (with sign propagation) each 32-bit double-word by amount specified in
	second MM element
_m_psradi	shift right (with sign propagation) each 32-bit double-word by amount specified in constant value
_m_psraw	shift right (with sign propagation) each 16-bit word by amount specified in second MM element
_m_psrawi	shift right (with sign propagation) each 16-bit word by amount specified in constant value
_m_psrld	shift right (with zero fill) each 32-bit double-word by an amount specified in second MM element
_m_psrldi	shift right (with zero fill) each 32-bit double-word by an amount specified in
	constant value
_m_psrlq	shift right (with zero fill) each 64-bit quad-word by an amount specified in second MM element
_m_psrlqi	shift right (with zero fill) each 64-bit quad-word by an amount specified in
	constant value
_m_psrlw	shift right (with zero fill) each 16-bit word by an amount specified in second MM element
_m_psrlwi	shift right (with zero fill) each 16-bit word by an amount specified in constant value
_m_psubb	subtract packed bytes in MM element from second MM element
_m_psubd	subtract packed 32-bit dwords in MM element from second MM element
_m_psubsb	subtract packed signed bytes in MM element from second MM element with
psese	saturation
_m_psubsw	subtract packed signed 16-bit words in MM element from second MM element
	with saturation
_m_psubusb	subtract packed unsigned bytes in MM element from second MM element with saturation
_m_psubusw	subtract packed unsigned 16-bit words in MM element from second MM element with saturation
_m_psubw	subtract packed 16-bit words in MM element from second MM element
_m_punpckhbw	interleave bytes from the high halves of two MM elements
_m_punpckhdq	interleave 32-bit double-words from the high halves of two MM elements
_m_punpckhwd	interleave 16-bit words from the high halves of two MM elements
_m_punpcklbw	interleave bytes from the low halves of two MM elements
_m_punpckldq	interleave 32-bit double-words from the low halves of two MM elements
_m_punpcklwd	interleave 16-bit words from the low halves of two MM elements
_m_pxor	XOR 64 bits from two MM elements
_m_to_int	retrieve low-order 32 bits from MM value
- - -	

1.1.28 Miscellaneous Functions

The following functions are defined:

assert test an assertion and output a string upon failure

_fullpath return full path specification for file _getmbcp get current multibyte code page

getopt a command-line parser that can be used by applications that follow guidelines

outlined in the Single UNIX Specification

_harderr critical error handler _hardresume critical error handler resume

 localeconv
 obtain locale specific conversion information

 longjmp
 return and restore environment saved by "setjmp"

_lrotl rotate an "unsigned long" left
_lrotr rotate an "unsigned long" right
main the main program (user written)
offsetof get offset of field in structure
_rotl rotate an "unsigned int" left
rotr rotate an "unsigned int" right

setjmp save environment for use with "longjmp" function _makepath make a full filename from specified components

setlocale set locale category

_setmbcp set current multibyte code page

sigsetjmp save environment and process's signal mask for use with "siglongjmp" function siglongjmp return and restore environment and process's signal mask saved by "sigsetjmp"

_splitpath split a filename into its components _splitpath2 split a filename into its components _wfullpath return full path specification for file

_wmakepath make a full filename from specified components

_wsetlocale set locale category

_wsplitpath split a filename into its components _wsplitpath2 split a filename into its components

1.1.29 DOS LFN aware Functions

These functions deal with DOS Long File Name if an application is compiled with -D_WATCOM_LFN_ option and DOS LFN support is available on host system. The following functions are defined:

accesstest file or directory for mode of accesschdirchange current working directorychmodchange permissions for a file

_dos_findfirst find first file matching a specified pattern

_dos_getfileattr get file attributes _dos_open open a file

_dos_setfileattr set the attributes of a file

_findfirst find first file matching a specified pattern
_fullpath return full path specification for file

getcwd get current working directory get current directory on drive

lstat get file status mkdir make a new directory

openopen a fileopendiropen directory fileremovedelete a filerenamerename a filermdirremove a directory

_sopen open a file for shared access

stat get file status

tmpnam create name for temporary file

unlink delete a file

utime set modification time for a file

_waccess test file or directory for mode of access _wchdir change current working directory _wchmod change permissions for a file

_wcreat create a file

_wdos_findfirst find first file matching a specified pattern
_wfindfirst find first file matching a specified pattern
_wfullpath return full path specification for file

_wgetcwd get current working directory _wgetdcwd get current directory on drive

_wmkdir make a new directory

_wopen open a file
_wopendir open directory file
_wremove delete a file
_wrename rename a file
_wrmdir remove a directory

_wsopen open a file for shared access

_wstat get file status

_wtmpnam create name for temporary file

_wunlink delete a file

_wutime set modification time for a file

1.2 Header Files

The following header files are supplied with the C library. As has been previously noted, when a library function is referenced in a source file, the related header files (shown in the synopsis for that function) should be included into that source file. The header files provide the proper declarations for the functions and for the number and types of arguments used with them. Constant values used in conjunction with the functions are also declared. The files can be included multiple times and in any order.

1.2.1 Header Files in /watcom/h

The following header files are provided with the software. The header files that are located in the \WATCOM\H directory are described first.

assert.h This ISO C90 header file is required when an assert macro is used. These assertions

will be ignored when the identifier NDEBUG is defined.

bios.h This header file declares all BIOS related functions.

conio.h This header file declares console and Intel 80x86 port input/output functions.

ctype.h This ISO C90 header file declares functions that perform character classification and case

conversion operations. Similar functions for wide characters are declared in <wctype.h>.

direct.h This header file declares functions related to directories and the type DIR which describes

an entry in a directory.

dos.h This header file declares functions that interact with DOS and defines the following structures: _DOSERROR, dosdate_t, dostime_t, find_t, _wfind_t

env.h This POSIX header file declares environment string functions.

This ISO C90 header file provides the extern declaration for error variable errno and errno.h provides the symbolic names for error codes that can be placed in the error variable.

fcntl.h This POSIX header file defines the flags used by the open and _sopen functions. The function declarations for these functions are found in the <io.h> header file.

fenv.h This ISO C99 header file defines several types and declares several functions that give access to the floating point environment. These functions can be used to control status flags and control modes in the floating point processor.

float.h This ISO C90 header file declares constants related to floating-point numbers, declarations for low-level floating-point functions, and the declaration of the floating-point exception codes.

fnmatch.h This header file declares the pattern matching function fnmatch

graph.h This header file contains structure definitions and function declarations for the Open Watcom C Graphics library functions.

i86.h This header file is used with functions that interact with the Intel architecture. It defines the structs and unions used to handle the input and output registers for the Intel 80x86 and 80386/80486 interrupt interface routines. It includes prototypes for the interrupt functions, definitions for the FP_OFF, FP_SEG and MK_FP macros, and definitions for the following structures and unions:

> REGS describes the CPU registers for Intel 8086 family.

SREGS describes the segment registers for the Intel 8086 family.

REGPACK describes the CPU registers and segment registers for Intel 8086 family.

INTPACK describes the input parameter to an "interrupt" function.

inttypes.h This ISO C99 header file includes <stdint.h> and expands on it by definition macros for printing and scanning specific sized integer types. This header also declares several functions for manipulating maximum sized integers.

> Note that the format macros are not visible in C++ programs unless the macro ___STDC_FORMAT_MACROS is defined.

io.h This header file declares functions that perform input/output operations at the operating system level. These functions use file handles to reference files or devices. The function fstat is declared in the <sys/stat.h> header file.

limits.h This ISO C90 header file contains constant declarations for limits or boundary values for ranges of integers and characters.

locale.h This ISO C90 header file contains declarations for the categories (LC...) of locales which can be selected using the setlocale function which is also declared.

malloc.h This header file declares the memory allocation and deallocation functions.

math.h This ISO/ANSI header file declares the mathematical functions (which operate with floating-point numbers) and the structures:

exception describes the exception structure passed to the matherr function;

symbolic constants for the types of exceptions are included

complex declares a complex number

mmintrin.h This header file declares functions that interact with the Intel Architecture Multimedia Extensions. It defines the datatype used to store multimedia values:

_m64 describes the 64-bit multimedia data element. Note: the underlying implementation details of this datatype are subject to change. Other compilers may implement a similar datatype in a different manner.

It also contains prototypes for multimedia functions and pragmas for the in-line generation of code that operates on multimedia registers.

process.h This header file declares the spawn... functions, the exec... functions, and the system function. The file also contains declarations for the constants P_WAIT, P_NOWAITO, and P_OVERLAY.

search.h This header file declares the functions lfind and lsearch

stdint.h

setjmp.h This ISO C90 header file declares the set jmp and long jmp functions.

share.h This header file defines constants for shared access to files using the _sopen function.

signal.h This ISO C90 header file declares the signal and raise functions.

stdarg.h This ISO C90 header file defines the macros which handle variable argument lists.

This ISO C99 header file defines the macro bool and the macros true and false for use in C programs. If this header is included in a C++ program there is no effect. The C++ reserved words will not be redefined. However the definition of bool, true, and false used in a C program will be compatible with their C++ counterparts. In particular, a C function declared as taking a bool parameter and a structure containing a bool member can both be shared between C and C++ without error.

stddef.h This ISO C90 header file defines a few popular constants and types including NULL (null pointer), size_t (unsigned size of an object), and ptrdiff_t (difference between two pointers). It also contains a declaration for the offsetof macro.

This ISO C99 header file defines numerous type names for integers of various sizes. Such type names provide a reasonably portable way to refer to integers with a specific number of bits. This header file also defines macros that describe the minimum and maximum values for these types (similar to the macros in limits.h), and macros for writing integer constants with specific sized types.

Note that in C++ programs the limit macros are not visible unless the macro __STDC_LIMIT_MACROS is defined. Similarly the constant writing macros are not visible unless the macro __STDC_CONSTANT_MACROS is defined.

stdio.h This ISO C90 header file declares the standard input/output functions. Files, devices and

directories are referenced using pointers to objects of the type FILE.

stdlib.h This ISO C90 header file declares many standard functions excluding those declared in

other header files discussed in this section.

string.h This ISO C90 header file declares functions that manipulate strings or blocks of memory.

time.h This ISO/ANSI header file declares functions related to times and dates and defines the

structure struct tm.

varargs.h This UNIX System V header file provides an alternate way of handling variable argument

lists. The equivalent ISO/ANSI header file is <stdarg.h>.

wchar.h This ISO C99 header file defines several data types including wchar_t, size_t,

mbstate_t (an object that can hold conversion state information necessary to convert between multibyte characters and wide characters), wctype_t (a scalar type that can hold values which represent locale-specific character classification), and wint_t which is an integral type that can hold any wchar_t value as well as WEOF (a character that is not in the set of "wchar_t" characters and that is used to indicate *end-of-file* on an input stream). The functions that are declared in this header file are grouped as follows:

Wide character classification and case conversion.

• Input and output of wide characters, or multibyte characters, or both.

• Wide string numeric conversion.

• Wide string manipulation.

• Wide string data and time conversion.

• Conversion between multibyte and wide character sequences.

wetype.h This ISO C99 header file declares functions that perform characater classification and case

conversion operations on wide characters. Similar functions for ordinary characters are declared in <ctype.h>.

1.2.2 Header Files in /watcom/h/sys

The following header files are present in the sys subdirectory. Their presence in this directory indicates that they are system-dependent header files.

sys/locking.h This header file contains the manifest constants used by the locking function.

sys/stat.h This POSIX header file contains the declarations pertaining to file status, including

definitions for the fstat and stat functions and for the structure:

stat describes the information obtained for a directory, file or device

sys/timeb.h This header file describes the timeb structure used in conjunction with the ftime

function.

sys/types.h This POSIX header file contains declarations for the types used by system-level calls to

obtain file status or time information.

sys/utime.h This POSIX header file contains a declaration for the utime function and for the

structured type utimbuf used by it.

1.3 Global Data

Certain data items are used by the Open Watcom C/C++ run-time library and may be inspected (or changed in some cases) by a program. The defined items are:

_amblksiz Prototype in <stdlib.h>.

This unsigned int data item contains the increment by which the "break" pointer for memory allocation will be advanced when there is no freed block large enough to satisfy a request to allocate a block of memory. This value may be changed by a program at any

time.

__argc Prototype in <stdlib.h>.

This int item contains the number of arguments passed to main.

_argv Prototype in <stdlib.h>.

This char ** item contains a pointer to a vector containing the actual arguments passed

to main.

daylight Prototype in <time.h>.

This unsigned int has a value of one when daylight saving time is supported in this locale and zero otherwise. Whenever a time function is called, the tzset function is called to set the value of the variable. The value will be determined from the value of the

TZ environment variable.

_doserrno Prototype in <stdlib.h>.

This int item contains the actual error code returned when a DOS, Windows or OS/2

function fails.

environ Prototype in <stdlib.h>.

This char ** __near data item is a pointer to an array of character pointers to the

environment strings.

errno Prototype in <errno.h>.

This int item contains the number of the last error that was detected. The run-time library never resets error to 0. Symbolic names for these errors are found in the <erro.h>

header file. See the descriptions for the perror and strerror functions for

information about the text which describes these errors.

fltused_ The C compiler places a reference to the fltused_symbol into any module that uses a

floating-point library routine or library routine that requires floating-point support (e.g., the

use of a float or double as an argument to the printf function).

_fmode Prototype in <stdlib.h>.

This data item contains the default type of file (text or binary) translation for a file. It will

contain a value of either

O BINARY indicates that data is transmitted to and from streams unchanged.

O TEXT

indicates that carriage return characters are added before linefeed characters on output operations and are removed on input operations when they precede linefeed characters.

These values are defined in the <fcntl.h> header file. The value of _fmode may be changed by a program to change the default behavior of the open, fopen, creat and _sopen functions. The default setting of _fmode is O_TEXT, for text-mode translation. O_BINARY is the setting for binary mode. You can change the value of _fmode in either of two ways:

- You can include the object file BINMODE.OBJ when linking your application. This object file contains code to change the initial setting of _fmode to O_BINARY, causing all files except stdin, stdout, and stderr to be opened in binary mode.
- You can change the value of _fmode directly by setting it in your program.

__MaxThreads

There is a limit to the number of threads an application can create under 16-bit OS/2 and 32-bit NetWare. The default limit is 32. This limit can be adjusted by statically initializing the unsigned global variable __MaxThreads.

Under 32-bit OS/2, there is no limit to the number of threads an application can create. However, due to the way in which multiple threads are supported in the Open Watcom libraries, there is a small performance penalty once the number of threads exceeds the default limit of 32 (this number includes the initial thread). If you are creating more than 32 threads and wish to avoid this performance penalty, you can redefine the threshold value of 32. You can statically initialize the global variable ___MaxThreads.

By adding the following line to your multi-threaded application, the new threshold value will be set to 48.

```
unsigned ___MaxThreads = { 48 };
```

minreal

Prototype in <stdlib.h>.

This data item contains the minimum amount of real memory (below 640K) to reserve when running a 32-bit DOS extended application.

optarg

Prototype in <unistd.h>.

This char * variable contains a pointer to an option-argument parsed by the getopt function.

opterr

Prototype in <unistd.h>.

This int variable controls whether the getopt function will print error messages. The default value is non-zero and will cause the getopt function to print error messages on the console.

optind

Prototype in <unistd.h>.

This int variable holds the index of the argument array element currently processed by the getopt function.

optopt

Prototype in <unistd.h>.

This int variable contains the unrecognized option character in case the getopt function returns an error.

_osmajor

Prototype in <stdlib.h>.

This unsigned char variable contains the major number for the version of Operating System executing on the computer. By example, if current running DOS version is 3.20, then the value will be 3.

osminor

Prototype in <stdlib.h>.

This unsigned char variable contains the minor number for the version of Operating System executing on the computer. By example, if current running DOS version is 3.20, then the value will be 20.

osbuild

(Win32 only) Prototype in <stdlib.h>.

This unsigned short variable contains the operating system build number for the version of Windows executing on the computer.

_osver

(Win32 only) Prototype in <stdlib.h>.

This unsigned int variable contains the operating system build number for the version of Windows executing on the computer.

On Win32s or Windows 95/98 platforms, the high bit of the low-order 16-bit word is turned on. Windows 95/98 do not have build numbers.

Note that the Win32 GetVersionEx function is the preferred method for obtaining operating system version number information.

_osmode

(16-bit only) Prototype in <stdlib.h>.

This unsigned char variable contains either the value DOS_MODE which indicates the program is running in real address mode, or it contains the value OS2_MODE which indicates the program is running in protected address mode.

_psp

Prototype in <stdlib.h>.

This data item contains the segment value for the DOS Program Segment Prefix. Consult the technical documentation for your DOS system for the process information contained in the Program Segment Prefix.

_stacksize

On 16-bit 80x86 systems, this unsigned int value contains the size of the stack for a TINY memory model program. Changing the value of this item during the execution of a program will have no effect upon the program, since the value is used when the program starts execution. To change the size of the stack to be 8K bytes, a statement such as follows can be included with the program.

```
unsigned int _stacksize = { 8 * 1024 };
```

stdaux

Prototype in <stdio.h>.

This variable (with type FILE *) indicates the standard auxiliary port (not available in some Windows platforms).

stderr Prototype in <stdio.h>.

This variable (with type FILE *) indicates the standard error stream (set to the console by

default).

stdin Prototype in <stdio.h>.

This variable (with type FILE *) indicates the standard input stream (set to the console

by default).

stdout Prototype in <stdio.h>.

This variable (with type FILE *) indicates the standard output stream (set to the console

by default).

stdprn Prototype in <stdio.h>.

This variable (with type FILE *) indicates the standard printer. (not available in some

Windows platforms).

sys_errlist Prototype in <stdlib.h>.

This variable is an array of pointers to character strings for each error code defined in the

<errno.h> header file.

sys_nerr Prototype in <stdlib.h>.

This int variable contains the number of messages declared in sys_errlist.

_threadid Prototype in <stddef.h>.

This variable/function may be used to obtain the id of the current thread which is an int. In the 32-bit libraries, _threadid is a function that returns a pointer to an int. In the 16-bit libraries, _threadid is a far pointer to an int. Note that the value stored where _threadid points does not necessarily change when a thread context switch occurs (so do not make a copy of the pointer ... it may change). To obtain the current thread

do not make a copy of the pointer ... it may change). To obtain the current three identifier, simply code:

int tid = *_threadid;

timezone Prototype in <time.h>.

This long int contains the number of seconds of time that the local time zone is earlier than Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)). Whenever a time function is called, the tzset function is called to set the value

of the variable. The value will be determined from the value of the TZ environment

variable.

tzname Prototype in <time.h>.

This array of two pointers to character strings indicates the name of the standard abbreviation for the time zone and the name of the abbreviation for the time zone when daylight saving time is in effect. Whenever a time function is called, the tzset function is called to set the values in the array. These values will be determined from the value of

the TZ environment variable.

__wargc Prototype in <stdlib.h>.

This int item contains the number of arguments passed to wmain.

__wargv Prototype in <stdlib.h>.

This wchar_t ** item contains a pointer to a vector containing the actual arguments passed to wmain.

_wenviron

Prototype in <stdlib.h>.

This wchar_t ** __near data item is a pointer to an array of wide character pointers to the wide character equivalents of the environment strings.

__win_alloc_flags

Prototype in <stdlib.h>.

This unsigned long int variable contains the flags to be used when allocating memory in Windows.

__win_realloc_flags

Prototype in <stdlib.h>.

This unsigned long int variable contains the flags to be used when reallocating memory in Windows.

_winmajor

(Win32 only) Prototype in <stdlib.h>.

This unsigned int variable contains the operating system major version number for the version of Windows executing on the computer. For example, the major version number of the Daytona release of Windows NT is 3.

Note that the Win32 GetVersionEx function is the preferred method for obtaining operating system version number information.

_winminor

(Win32 only) Prototype in <stdlib.h>.

This unsigned int variable contains the operating system minor version number for the version of Windows executing on the computer. For example, the minor version number of the Daytona release of Windows NT is 5.

Note that the Win32 GetVersionEx function is the preferred method for obtaining operating system version number information.

winver

(Win32 only) Prototype in <stdlib.h>.

This unsigned int variable contains the operating system version number for the version of Windows executing on the computer. The low-order byte contains the minor version number (see also _winminor). The next byte contains the major version number (see also _winmajor). The high-order word contains no useful information.

Note that the Win32 GetVersionEx function is the preferred method for obtaining operating system version number information.

1.4 The TZ Environment Variable

The TZ environment variable is used to establish the local time zone. The value of the variable is used by various time functions to compute times relative to Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The time on the computer should be set to the local time. Use the DOS time command and the DOS date command if the time is not automatically maintained by the computer hardware.

The TZ environment variable can be set (before the program is executed) by using the DOS set command as follows:

```
SET TZ=PST8PDT
```

or (during the program execution) by using the setenv or putenv library functions:

```
setenv( "TZ", "PST8PDT", 1 );
putenv( "TZ=PST8PDT" );
```

The value of the variable can be obtained by using the getenv function:

```
char *tzvalue;
...
tzvalue = getenv( "TZ" );
```

The tzset function processes the TZ environment variable and sets the global variables daylight (indicates if daylight saving time is supported in the locale), timezone (contains the number of seconds of time difference between the local time zone and Coordinated Universal Time (UTC)), and tzname (a vector of two pointers to character strings containing the standard and daylight time-zone names).

The value of the TZ environment variable should be set as follows (spaces are for clarity only):

std offset dst offset, rule

On the OS/2 platform, an alternate format is also supported. Please refer to the following section for details.

The expanded format is as follows:

stdoffset[dst[offset][,start[/time],end[/time]]]

std, dst

three or more letters that are the designation for the standard (std) or summer (dst) time zone. Only std is required. If dst is omitted, then summer time does not apply in this locale. Upper- and lowercase letters are allowed. Any characters except for a leading colon (:), digits, comma (,), minus (-), plus (+), and ASCII NUL ($\$ 0) are allowed.

offset

indicates the value one must add to the local time to arrive at Coordinated Universal Time (UTC). The *offset* has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is required and may be a single digit. The offset following std is required. If no offset follows dst, summer time is assumed to be one hour ahead of standard time. One or more digits may be used; the value is always interpreted as a decimal number. The hour may be between 0 and 24, and the minutes (and seconds) - if present - between 0 and 59. If preceded by a "-", the time zone will be east of the Prime Meridian; otherwise it will be west (which may be indicated by an optional preceding "+").

rule

indicates when to change to and back from summer time. The *rule* has the form:

date/time,date/time

where the first *date* describes when the change from standard to summer time occurs and the second *date* describes when the change back happens. Each *time* field describes when, in current local time, the change to the other time is made.

The format of *date* may be one of the following:

Jn The Julian day n ($1 \le n \le 365$). Leap days are not counted. That is, in all years - including leap years - February 28 is day 59 and March 1 is day 60. It is impossible to explicitly refer to the occasional February 29.

n The zero-based Julian day $(0 \le n \le 365)$. Leap years are counted, and it is possible to refer to February 29.

Mm.n.d The d'th day $(0 \le d \le 6)$ of week n of month m of the year $(1 \le n \le 5, 1 \le m \le 12)$, where week 5 means "the last d day in month m" which may occur in the fourth or fifth week). Week 1 is the first week in which the d'th day occurs. Day zero is Sunday.

The *time* has the same format as *offset* except that no leading sign ("+" or "-") is allowed. The default, if *time* is omitted, is 02:00:00.

Whenever ctime, _ctime, localtime, _localtime or mktime is called, the time zone names contained in the external variable tzname will be set as if the tzset function had been called. The same is true if the %Z directive of strftime is used.

Some examples are:

TZ=EST5EDT Eastern Standard Time is 5 hours earlier than Coordinated Universal Time (UTC). Standard time and daylight saving time both apply to this locale. By default, Eastern Daylight Time (EDT) is one hour ahead of standard time (i.e., EDT4). Since it is not specified, daylight saving time starts on the first Sunday of April at 2:00 A.M. and ends on the last Sunday of October at 2:00 A.M. This is the default when the TZ variable is not set.

TZ=EST5EDT4,M4.1.0/02:00:00,M10.5.0/02:00:00

This is the full specification for the default when the TZ variable is not set. Eastern Standard Time is 5 hours earlier than Coordinated Universal Time (UTC). Standard time and daylight saving time both apply to this locale. Eastern Daylight Time (EDT) is one hour ahead of standard time. Daylight saving time starts on the first (1) Sunday (0) of April (4) at 2:00 A.M. and ends on the last (5) Sunday (0) of October (10) at 2:00 A.M.

TZ=PST8PDT Pacific Standard Time is 8 hours earlier than Coordinated Universal Time (UTC). Standard time and daylight saving time both apply to this locale. By default, Pacific Daylight Time is one hour ahead of standard time (i.e., PDT7). Since it is not specified, daylight saving time starts on the first Sunday of April at 2:00 A.M. and ends on the last Sunday of October at 2:00 A.M.

TZ=NST3:30NDT1:30

Newfoundland Standard Time is 3 and 1/2 hours earlier than Coordinated Universal Time (UTC). Standard time and daylight saving time both apply to this locale. Newfoundland Daylight Time is 1 and 1/2 hours earlier than Coordinated Universal Time (UTC).

TZ=Central Europe Time-2:00

Central European Time is 2 hours later than Coordinated Universal Time (UTC). Daylight saving time does not apply in this locale.

1.5 The OS/2 TZ Environment Variable

On the OS/2 platform, an alternate format of the TZ environment variable is supported, in addition to the standard format described in the preceding section. The value of the OS/2 TZ environment variable should be set as follows (spaces are for clarity only):

std offset dst, rule

This format will be used if after scanning the standard format there are additional fields or the format has not been identified as standard.

The standard format is identified if an offset follows dst; characters J, M, /, or : are found in rule; or some fields are empty.

The alternate expanded format is as follows (fields may not be empty):

stdoffsetdst,sm,sw,sd,st,em,ew,ed,et,shift

std, dst

three or more letters that are the designation for the standard (*std*) and summer (*dst*) time zone. Upper- and lowercase letters are allowed. Any characters except for a leading colon (:), digits, comma (,), minus (-), plus (+), and ASCII NUL (\0) are allowed.

offset

indicates the value one must add to the local time to arrive at Coordinated Universal Time (UTC). The *offset* has the form:

hh[:mm[:ss]]

The minutes (*mm*) and seconds (*ss*) are optional. The hour (*hh*) is required and may be a single digit. The value is always interpreted as a decimal number. The hour may be between 0 and 24, and the minutes (and seconds) - if present - between 0 and 59. If preceded by a "-", the time zone will be east of the *Prime Meridian*; otherwise it will be west (which may be indicated by an optional preceding "+").

rule

indicates when to change to and back from summer time and the time shift for summer time. The *rule* has the form:

sm,sw,sd,st,em,ew,ed,et,shift

where *sm*, *sw*, *sd*, *st* describe when the change from standard to summer time occurs and *em*, *ew*, *ed*, *et* describe when the change back happens.

sm and em specify the starting and ending month (1 - 12) of the summer time.

sw and ew specify the starting and ending week of the summer time. You can specify the last week of the month (-1), or week 1 to 4. Week 0 has a special meaning for the day field (sd or ed).

sd/ed Starting/ending day of dst,

0 - 6 (weekday Sun to Sat) if sw/ew is not zero,

1 - 31 (day of the month) if sw/ew is zero

st/et Starting/ending time (in seconds after midnight) of the summer time.

shift Amount of time change (in seconds).

An example of the default setting is:

TZ=EST5EDT,4,1,0,7200,10,-1,0,7200,3600

This is the full specification for the default when the TZ variable is not set. Eastern Standard Time is 5 hours earlier than Coordinated Universal Time (UTC). Standard time and daylight saving time both apply to this locale. Eastern Daylight Time (EDT) is one hour ahead of standard time. Daylight saving time starts on the first (1) Sunday (0) of April (4) at 2:00 A.M. and ends on the last (-1) Sunday (0) of October (10) at 2:00 A.M.

2 Graphics Library

The Open Watcom C Graphics Library consists of a large number of functions that provide graphical image support under DOS and QNX. This chapter provides an overview of this support. The following topics are discussed.

- Graphics Functions
- · Graphics Adapters
- Classes of Graphics Functions
 - 1. Environment Functions
 - 2. Coordinate System Functions
 - 3. Attribute Functions
 - 4. Drawing Functions
 - 5. Text Functions
 - 6. Graphics Text Functions
 - 7. Image Manipulation Functions
 - 8. Font Manipulation Functions
 - 9. Presentation Graphics Functions

Display Functions Analyze Functions Utility Functions

• Graphics Header Files

2.1 Graphics Functions

Graphics functions are used to display graphical images such as lines and circles upon the computer screen. Functions are also provided for displaying text along with the graphics output.

2.2 Graphics Adapters

Support is provided for both color and monochrome screens which are connected to the computer using any of the following graphics adapters:

- IBM Monochrome Display/Printer Adapter (MDPA)
- IBM Color Graphics Adapter (CGA)
- IBM Enhanced Graphics Adapter (EGA)
- IBM Multi-Color Graphics Array (MCGA)

- IBM Video Graphics Array (VGA)
- Hercules Monochrome Adapter
- SuperVGA adapters (SVGA) supplied by various manufacturers

2.3 Classes of Graphics Functions

The functions in the Open Watcom C Graphics Library can be organized into a number of classes:

Environment Functions

These functions deal with the hardware environment.

Coordinate System Functions

These functions deal with coordinate systems and mapping coordinates from one system to another.

Attribute Functions

These functions control the display of graphical images.

Drawing Functions

These functions display graphical images such as lines and ellipses.

Text Functions

These functions deal with displaying text in both graphics and text modes.

Graphics Text Functions

These functions deal with displaying graphics text.

Image Manipulation Functions

These functions store and retrieve screen images.

Font Manipulation Functions

These functions deal with displaying font based text.

Presentation Graphics Functions

These functions deal with displaying presentation graphics elements such as bar charts and pie charts.

The following subsections describe these function classes in more detail. Each function in the class is noted with a brief description of its purpose.

2.3.1 Environment Functions

These functions deal with the hardware environment. The _getvideoconfig function returns information about the current video mode and the hardware configuration. The _setvideomode function selects a new video mode.

Some video modes support multiple pages of screen memory. The visual page (the one displayed on the screen) may be different than the active page (the one to which objects are being written).

The following functions are defined:

_getactivepage get the number of the current active graphics page
_getvideoconfig get information about the graphics configuration
_getvisualpage get the number of the current visual graphics page

_grstatus get the status of the most recently called graphics library function *_setactivepage* set the active graphics page (the page to which graphics objects are

drawn

_settextrows set the number of rows of text displayed on the screen

_setvideomode select the video mode to be used

_setvideomoderows select the video mode and the number of text rows to be used _setvisualpage set the visual graphics page (the page displayed on the screen)

2.3.2 Coordinate System Functions

These functions deal with coordinate systems and mapping coordinates from one system to another. The Open Watcom C Graphics Library supports three coordinate systems:

- 1. Physical coordinates
- 2. View coordinates
- 3. Window coordinates

Physical coordinates match the physical dimensions of the screen. The physical origin, denoted (0,0), is located at the top left corner of the screen. A pixel to the right of the origin has a positive x-coordinate and a pixel below the origin will have a positive y-coordinate. The x- and y-coordinates will never be negative values.

The view coordinate system can be defined upon the physical coordinate system by moving the origin from the top left corner of the screen to any physical coordinate (see the _setvieworg function). In the view coordinate system, negative x- and y-coordinates are allowed. The scale of the view and physical coordinate systems is identical (both are in terms of pixels)

The window coordinate system is defined in terms of a range of user-specified values (see the _setwindow function). These values are scaled to map onto the physical coordinates of the screen. This allows for consistent pictures regardless of the resolution (number of pixels) of the screen.

The following functions are defined:

_getcliprgn get the boundary of the current clipping region *_getphyscoord* get the physical coordinates of a point in view coordinates

_getphyscoord get the physical coordinates of a point in view coordinates
_getviewcoord_w get the view coordinates of a point in physical coordinates
_getviewcoord_w get the view coordinates of a point in window coordinates
_getviewcoord_wxy get the view coordinates of a point in window coordinates
_getwindowcoord get the window coordinates of a point in view coordinates

_setcliprgn set the boundary of the clipping region

_setvieworg set the position to be used as the origin of the view coordinate system _setviewport set the boundary of the clipping region and the origin of the view

coordinate system

_setwindow define the boundary of the window coordinate system

2.3.3 Attribute Functions

These functions control the display of graphical images such as lines and circles. Lines and figures are drawn using the current color (see the _setcolor function), the current line style (see the _setlinestyle function), the current fill mask (see the _setfillmask function), and the current plotting action (see the _setplotaction function).

The following functions are defined:

_getarcinfo get the endpoints of the most recently drawn arc get the background color _getbkcolor _getcolor get the current color _getfillmask get the current fill mask _getlinestyle get the current line style _getplotaction get the current plotting action _remapallpalette assign colors for all pixel values _remappalette assign color for one pixel value _selectpalette select a palette _setbkcolor set the background color _setcolor set the current color _setfillmask set the current fill mask _setlinestyle set the current line style _setplotaction set the current plotting action

2.3.4 Drawing Functions

These functions display graphical images such as lines and ellipses. Functions exist to draw straight lines (see the _lineto function), rectangles (see the _rectangle function), polygons (see the _polygon function), ellipses (see the _ellipse function), elliptical arcs (see the _arc function) and pie-shaped wedges from ellipses (see the _pie function).

These figures are drawn using the attributes described in the previous section. The functions ending with _w or _wxy use the window coordinate system; the others use the view coordinate system.

The following functions are defined:

arc draw an arc draw an arc using window coordinates _arc_w _arc_wxy draw an arc using window coordinates _clearscreen clear the screen and fill with the background color _ellipse draw an ellipse draw an ellipse using window coordinates _ellipse_w ellipse wxy draw an ellipse using window coordinates fill an area of the screen with the current color _floodfill floodfill w fill an area of the screen in window coordinates with the current color get the coordinates of the current output position _getcurrentposition _getcurrentposition_w get the window coordinates of the current output position _getpixel get the color of the pixel at the specified position _getpixel_w get the color of the pixel at the specified position in window draw a line from the current position to a specified position

_lineto

lineto w draw a line from the current position to a specified position in window

coordinates

moveto set the current output position

_moveto_w set the current output position using window coordinates

_pie draw a wedge of a "pie"

_pie_w draw a wedge of a "pie" using window coordinates
_pie_wxy draw a wedge of a "pie" using window coordinates

_polygon draw a polygon

_polygon_w draw a polygon using window coordinates _polygon_wxy draw a polygon using window coordinates

_rectangle draw a rectangle

_rectangle_w draw a rectangle using window coordinates
_rectangle_wxy draw a rectangle using window coordinates
_setpixel set the color of the pixel at the specified position

_setpixel_w set the color of the pixel at the specified position in window coordinates

2.3.5 Text Functions

These functions deal with displaying text in both graphics and text modes. This type of text output can be displayed in only one size.

This text is displayed using the _outtext and _outmem functions. The output position for text follows the last text that was displayed or can be reset (see the _settextposition function). Text windows can be created (see the _settextwindow function) in which the text will scroll. Text is displayed with the current text color (see the _settextcolor function).

The following functions are defined:

_clearscreen clear the screen and fill with the background color

_displayeursor determine whether the cursor is to be displayed after a graphics function

completes execution

_getbkcolorget the background color_gettextcolorget the color used to display text_gettextcursorget the shape of the text cursor_gettextpositionget the current output position for text_gettextwindowget the boundary of the current text window_outmendisplay a text string of a specified length

_outtext display a text string

_scrolltextwindow scroll the contents of the text window

_setbkcolor set the background color set the color used to display text settextcursor set the shape of the text cursor settextposition set the output position for text

_settextwindow set the boundary of the region used to display text *_wrapon* permit or disallow wrap-around of text in a text window

2.3.6 Graphics Text Functions

These functions deal with displaying graphics text. Graphics text is displayed as a sequence of line segments, and can be drawn in different sizes (see the _setcharsize function), with different orientations (see the _settextorient function) and alignments (see the _settextalign function).

The functions ending with _w use the window coordinate system; the others use the view coordinate system.

The following functions are defined:

_gettextextent get the bounding rectangle for a graphics text string

_gettextsettings get information about the current settings used to display graphics text

_grtext display graphics text

_grtext_w display graphics text using window coordinates *_setcharsize* set the character size used to display graphics text

_setcharsize_w set the character size in window coordinates used to display graphics

text

_setcharspacing set the character spacing used to display graphics text

_setcharspacing_w set the character spacing in window coordinates used to display

graphics text

_settextalign set the alignment used to display graphics text
_settextorient set the orientation used to display graphics text
_settextpath set the path used to display graphics text

2.3.7 Image Manipulation Functions

These functions are used to transfer screen images. The _getimage function transfers a rectangular image from the screen into memory. The _putimage function transfers an image from memory back onto the screen. The functions ending with _w or _wxy use the window coordinate system; the others use the view coordinate system.

The following functions are defined:

_getimage store an image of an area of the screen into memory

_getimage_w store an image of an area of the screen in window coordinates into

memory

_getimage_wxy store an image of an area of the screen in window coordinates into

memory

_imagesize get the size of a screen area

_imagesize_w get the size of a screen area in window coordinates get the size of a screen area in window coordinates get the size of a screen area in window coordinates display an image from memory on the screen

_putimage_w display an image from memory on the screen using window coordinates

2.3.8 Font Manipulation Functions

These functions are for the display of fonts compatible with Microsoft Windows. Fonts are contained in files with an extension of .FON. Before font based text can be displayed, the fonts must be registered with the _registerfonts function, and a font must be selected with the _setfont function.

The following functions are defined:

_getfontinfo get information about the currently selected font

_getgtextextent get the length in pixels of a text string

_getgtextvector get the current value of the font text orientation vector

_outgtext display a string of text in the current font _registerfonts initialize the font graphics system

_setfont select a font from among the registered fonts

_setgtextvector set the font text orientation vector

_unregisterfonts frees memory allocated by the font graphics system

2.3.9 Presentation Graphics Functions

These functions provide a system for displaying and manipulating presentation graphics elements such as bar charts and pie charts. The presentation graphics functions can be further divided into three classes:

Display Functions

These functions are for the initialization of the presentation graphics system and the displaying of charts.

Analyze Functions

These functions calculate default values for chart elements without actually displaying the chart.

Utility Functions

These functions provide additional support to control the appearance of presentation graphics elements.

The following subsections describe these function classes in more detail. Each function in the class is noted with a brief description of its purpose.

2.3.9.1 Display Functions

These functions are for the initialization of the presentation graphics system and the displaying of charts. The _pg_initchart function initializes the system and should be the first presentation graphics function called. The single-series functions display a single set of data on a chart; the multi-series functions (those ending with ms) display several sets of data on the same chart.

The following functions are defined:

_pg_chart display a bar, column or line chart

_pg_chartms display a multi-series bar, column or line chart

_pg_chartpie display a pie chart *_pg_chartscatter* display a scatter chart

_pg_chartscatterms display a multi-series scatter chart

_pg_defaultchart initialize the chart environment for a specific chart type

pg initchart initialize the presentation graphics system

2.3.9.2 Analyze Functions

These functions calculate default values for chart elements without actually displaying the chart. The functions ending with ms analyze multi-series charts; the others analyze single-series charts.

The following functions are defined:

_pg_analyzechart analyze a bar, column or line chart

_pg_analyzechartms analyze a multi-series bar, column or line chart

_pg_analyzepie analyze a pie chart *_pg_analyzescatter* analyze a scatter chart

_pg_analyzescatterms analyze a multi-series scatter chart

2.3.9.3 Utility Functions

These functions provide additional support to control the appearance of presentation graphics elements.

The following functions are defined:

_pg_getchardef get bit-map definition for a specific character

_pg_getpalette get presentation graphics palette (colors, line styles, fill patterns and

plot characters)

_pg_getstyleset get presentation graphics style-set (line styles for window borders and

grid lines)

_pg_hlabelchart display text horizontally on a chart

_pg_resetpalette reset presentation graphics palette to default values *_pg_resetstyleset* reset presentation graphics style-set to default values

_pg_setchardef set bit-map definition for a specific character

_pg_setpalette set presentation graphics palette (colors, line styles, fill patterns and plot

characters)

_pg_setstyleset set presentation graphics style-set (line styles for window borders and

grid lines)

_pg_vlabelchart display text vertically on a chart

2.4 Graphics Header Files

All program modules which use the Graphics Library should include the header file graph.h. This file contains prototypes for all the functions in the library as well as the structures and constants used by them.

Modules using the presentation graphics functions should also include the header file pgchart.h.

3 DOS Considerations

For the most part, DOS (Disk Operating System) for your personal computer can be ignored, unless an application is highly dependent upon the hardware or uses specialized functions from the operating system. In this section, some of these aspects will be addressed. For a more detailed explanation, the technical documentation for the DOS that you are using should be consulted.

3.1 DOS Devices

Most of the hardware devices attached to your computer have names which are recognized by DOS. These names cannot be used as the names of files. Some examples are:

CON the console (screen)
AUX the serial (auxiliary) port

COM1 serial port 1COM2 serial port 2

PRN the printer on the parallel port
 LPT1 the printer on the first parallel port
 LPT2 the printer on the second parallel port
 LPT3 the printer on the third parallel port

NUL a non-existent device, which accepts (and discards) output

Disks (such as diskette drives and hard disks) are specified as single letters, starting with the letter A. A colon character (:) follows the letter for the drive. Either uppercase or lowercase letters can be used. Some examples are:

A: the first disk drive

a: the first disk drive

e: the fifth disk drive

3.2 DOS Directories

Each disk drive is conceptually divided into directories. Each directory is capable of containing files and/or other directories. The initial directory, called the *root directory*, is not named; all other directories are named and can be accessed with a *path* specification. A path is either absolute or relative to the current working directory. Some examples are:

b: the root directory of the second disk drive

\ the root directory of the current disk drive

\outer\middle\inner

directory inner which is contained within directory middle which is contained within directory outer which is contained within the root directory of the current disk drive.

Directory names are separated by backslash characters (\). The initial backslash character informs DOS that the path starts with the root directory. When the first character is not a backslash, the path starts with the current working directory on the indicated device.

The DOS CHDIR (CD) command can be used to change the current working directory for a device. Suppose that the following DOS commands were issued:

```
chdir a:\apps\payroll
chdir c:\mydir
```

Then, the following path specifications are:

Relative Path Absolute Path

a:xxx\ya:\apps\payroll\xxx\yc:zzzzzc:\mydir\zzzzz

When no drive is specified, DOS uses the current disk drive.

3.3 DOS File Names

The name of a file within a directory has the format filename.ext where the required filename portion is up to eight characters in length and the optional ext portion is up to three characters in length. A period character (.) separates the two names when the ext portion is present.

More than eight characters can be given in the filename. DOS truncates the name to eight characters when a longer filename is given. This may lead to erroneous results in some cases, since the files MYBIGDATAFILE and MYBIGDATES both refer to the file MYBIGDAT.

The characters used in file names may be letters, digits as well as some other characters documented in your DOS technical documentation. Most people restrict their file names to contain only letters and digits. Uppercase and lowercase letters are treated as being equivalent (file names are case insensitive). Thus, the files

```
MYDATA.NEW mydata.new MyData.New
```

all refer to the same file.

You cannot use a DOS device name (such as CON or PRN, for example) for a file name. See the section *DOS Devices* for a list of these reserved names.

A complete file designation has the following format:

```
drive:\path\filename.ext
```

where:

drive: is an optional disk drive specification. If omitted, the default drive is used. Some

examples are:

A: (first disk drive) c: (third disk drive)

path\ is the path specification for the directory containing the desired file. Some examples

are:

\mylib\
\apps\payroll\

filename.ext is the name of the file.

Suppose that the current working directories are as follows:

Drive Directory

A: \payroll
B: \ (root directory)
C: \source\c

and that the default disk drive is C:. Then, the following file designations will result in the indicated file references:

Designation Actual File

pgm.c C:\SOURCE\C\PGM.C C:\BASIC.DAT

paypgm\outsep.c C:\SOURCE\C\PAYPGM\OUTSEP.C

b:data B:\DATA

a:employee A:\PAYROLL\EMPLOYEE a:\deduct\yr1988 A:\DEDUCT\YR1988

3.4 DOS Files

DOS files are stored within directories on disk drives. Most software, including Open Watcom C/C++, treats files in two representations:

BINARY These files can contain arbitrary data. It is the responsibility of the software to recognize

records within the file if they exist.

TEXT These files contain lines of "printable" characters. Each line is delimited by a carriage

return character followed by a linefeed character.

Since the conceptual view of text files in the C and C++ languages is that lines are terminated by only linefeed characters, the Open Watcom C library will remove carriage returns on input and add them on output, provided the mode is set to be *text*. This mode is set upon opening the file or with the _setmode function.

3.5 DOS Commands

DOS commands are documented in the technical documentation for your DOS system. These may be invoked from a C or C++ program with the system function.

3.6 DOS Interrupts

DOS interrupts and 8086 interrupts are documented in the technical documentation for your DOS system. These may be generated from a C or C++ program by calling the bdos, intdos, intdosx, intr, intrf, int386, int386x, int86 and int86x functions.

3.7 DOS Processes

Currently, DOS has the capability to execute only one process at a time. Thus, when a process is initiated with the <code>spawn...</code> parameter <code>P_WAIT</code>, the new process will execute to completion before control returns to the initiating program. Otherwise, the new task replaces the initial task. Tasks can be started by using the <code>system</code>, <code>exec...</code> and <code>spawn...</code> functions.

4 Library Functions and Macros

Each of the functions or macros in the C Library is described in this chapter. Each description consists of a number of subsections:

Synopsis:

This subsection gives the header files that should be included within a source file that references the function or macro. It also shows an appropriate declaration for the function or for a function that could be substituted for a macro. This declaration is not included in your program; only the header file(s) should be included.

When a pointer argument is passed to a function and that function does not modify the item indicated by that pointer, the argument is shown with const before the argument. For example,

const char *string

indicates that the array pointed at by string is not changed.

Constraints: This subsection describes Runtime-constraints for Safer C Library functions.

Safer C: This subsection points to the Safer C version of the described "unsafe" function.

Description: This subsection is a description of the function or macro.

Returns: This subsection describes the return value (if any) for the function or macro.

Errors: This subsection describes the possible errno values.

ISO C

ISO C99

See Also: This optional subsection provides a list of related functions or macros.

Example: This optional subsection consists of one or more examples of the use of the function. The examples are often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the function or macro is commonly found. The following notation is used:

	9899:1989.
ISO C90	These functions or macros are defined by the ISO/ANSI C standard ISO/IEC 9899:1990.
ISO C95	These functions or macros are defined by the ISO/ANSI C standard ISO/IEC 9899:1990/AMD 1:1995.

These functions or macros are defined by the ISO/ANSI C standard ISO/IEC

These functions or macros are defined by the ISO/ANSI C standard ISO/IEC

9899:1999.

POSIX 1003.1 The functions or macros are not defined by the ISO C standard. These functions are

specified in the document IEEE Standard Portable Operating System Interface for

Computer Environments (IEEE Draft Standard 1003.1-1990).

POSIX 1003.2 These functions or macros are not defined by the ISO C standard. These functions are

specified in the document *Shell and Utility Application Interface for Computer Operating System Environments* (IEEE Computer Society Working Group 1003.2).

POSIX 1003.4 These functions or macros are not defined by the ISO C standard. These functions are

specified in the document Realtime Extensions for Computer Operating System

Environments (IEEE Computer Society Working Group 1003.4).

Intel These functions or macros are neither ISO C nor POSIX. It performs a function

related to the Intel x86 architecture. It may be found in other implementations of C for personal computers using Intel chips. Use these functions with caution, if

portability is a consideration.

BIOS These functions access a service of the BIOS found in IBM Personal Computers and

compatibles. These functions should not be used if portability is a consideration.

DOS These functions or macros are neither ISO C nor POSIX. They perform a function

related to DOS. They may be found in other implementations of C for personal computers with DOS. Use these functions with caution, if portability is a

consideration.

OS/2 These functions are specific to OS/2.

PC Graphics These functions are part of the PC graphics library.

Windows These functions are specific to Microsoft Windows.

WATCOM These functions or macros are neither ISO C nor POSIX. They may be found in other

implementations of the C language, but caution should be used if portability is a

consideration.

TR 24731 These functions are "safer" versions of normal C library functions. They perform

more checks on parameters and should be used in preference over their "unsafe"

version.

Systems: This subsection provides an indication of where the function or macro is supported. The following notation

is used:

All This function is available on all systems (we do not include RDOS, Linux, Netware or

DOS/PM in this category).

DOS This function is available on both 16-bit DOS and 32-bit extended DOS.

DOS/16 This function is available on 16-bit, real-mode DOS.

DOS/32 This function is available on 32-bit, protected-mode extended DOS.

DOS/PM This 16-bit DOS protected-mode function is supported under Phar Lap's

286|DOS-Extender "RUN286". The function is found in one of Open Watcom's

16-bit protected-mode DOS libraries (DOSPM*.LIB under the 16-bit OS2

subdirectory).

Linux This function is available on the Linux operating system for Intel 80386 and upwards

compatible systems.

MACRO This function is implemented as a macro (#define) on all systems.

Math This function is a math function. Math functions are available on all systems.

Netware This function is available on the 32-bit Novell Netware operating system.

OS/2 1.x This function is available on IBM OS/2 1.x, a 16-bit protected-mode system for Intel

80286 and upwards compatible systems.

When "(MT)" appears after OS/2, it refers to the CLIBMTL library which supports

multi-threaded applications.

When "(DL)" appears after OS/2, it refers to the CLIBDLL library which supports

creation of Dynamic Link Libraries.

When "(all)" appears after "OS/2 1", it means all versions of the OS/2 1.x libraries.

If a function is missing from the OS/2 library, it may be found in Open Watcom's

16-bit protected-mode DOS libraries (DOSPM*.LIB) for Phar Lap's

286 DOS-Extender (RUN286).

OS/2-32 This function is available on 32-bit IBM OS/2, a protected-mode system for Intel

80386 and upwards compatible systems.

RDOS This function is available on RDOS operating system.

QNX This function is available on QNX Software Systems' 16 or 32-bit operating systems.

QNX/16 This function is available on QNX Software Systems' 16-bit operating system.

QNX/32 This function is available on QNX Software Systems' 32-bit operating system.

Windows This function is available on 16-bit, protected-mode Windows 3.x.

Win386 This function is available on Microsoft Windows 3.x, using Open Watcom's

Windows Extender for 32-bit protected-mode applications running on Intel 386 or

upward compatible systems.

Win32 This function is available on 32-bit Microsoft Windows platforms (Windows 95,

Windows 98, Windows NT, Windows 2000, etc.). It may also be available for

Windows 3.x using Win32s support.

Open Watcom C Library Reference								
								

Synopsis: #include <stdlib.h>
 void abort(void);

Description: The abort function raises the signal SIGABRT. The default action for SIGABRT is to terminate

program execution, returning control to the process that started the calling program (usually the operating system). The status *unsuccessful termination* is returned to the invoking process by means of the function call raise (SIGABRT). The exit code returned to the invoking process is

EXIT_FAILURE which is defined in the <stdlib.h> header file.

Returns: The abort function does not return to its caller.

See Also: atexit, _bgetcmd, exec..., exit, _Exit, _exit, getcmd, getenv, main, putenv,

spawn..., system, _wsystem

Example: #include <stdlib.h>

```
void main()
{
   int major_error = 1;
   if( major_error )
       abort();
}
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

```
#define __STDC_WANT_LIB_EXT1__ 1
Synopsis:
            #include <stdlib.h>
            void abort_handler_s(
                     const char * restrict msg,
                     void * restrict ptr,
                     errno_t error );
           The abort_handler_s function may be passed as an argument to the
Description:
            set_constraint_handler_s function. It writes a message on the standard error stream in the
            following format:
                Runtime-constraint violation: <msg>
            The abort_handler_s function then calls the abort function.
Returns:
            The abort_handler_s function does not return to its caller.
See Also:
            ignore_handler_s, set_constraint_handler_s
            #define __STDC_WANT_LIB_EXT1__ 1
Example:
            #include <stdlib.h>
            #include <stdio.h>
            void main( void )
                constraint_handler_t old_handler;
                old_handler = set_constraint_handler_s( abort_handler_s );
                if( getenv_s( NULL, NULL, 0, NULL ) ) {
                     printf( "getenv_s failed\n" );
                set_constraint_handler_s( old_handler );
            }
            produces the following:
            Runtime-constraint violation: getenv_s, name == NULL.
            ABNORMAL TERMINATION
Classification: TR 24731
            All, Linux, RDOS, Netware
Systems:
```

```
Synopsis: #include <stdlib.h>
int abs(int j);
```

Description: The abs function returns the absolute value of its integer argument j.

Returns: The abs function returns the absolute value of its argument.

```
See Also: labs, llabs, imaxabs, fabs
```

produces the following:

5 0 5

Classification: ISO C90

Systems: All, Linux, RDOS, Netware

Synopsis:

```
#include <io.h>
int access( const char *path, int mode );
int _access( const char *path, int mode );
int _waccess( const wchar_t *path, int mode );
```

Description:

The access function determines if the file or directory specified by *path* exists and if it can be accessed with the file permission given by *mode*.

When the value of *mode* is zero, only the existence of the file is verified. The read and/or write permission for the file can be determined when *mode* is a combination of the bits:

Bit	Meaning
R_OK	test for read permission
W_OK	test for write permission
X_OK	test for execute permission
F_OK	test for existence of file

chmod, fstat, open, _sopen, stat

With DOS, all files have read permission; it is a good idea to test for read permission anyway, since a later version of DOS may support write-only files.

The _access function is identical to access. Use _access for ANSI naming conventions.

The _waccess function is a wide character version of access that operates with wide character strings.

Returns:

The access function returns zero if the file or directory exists and can be accessed with the specified mode. Otherwise, -1 is returned and errno is set to indicate the error.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant	Meaning
EACCES	Access denied because the file's permission does not allow the specified access.
ENOENT	Path or file not found.

Example:

See Also:

```
#include <stdio.h>
#include <stdlib.h>
#include <io.h>

void main( int argc, char *argv[] )
   {
    if( argc != 2 ) {
        fprintf( stderr, "Use: check <filename>\n" );
        exit( 1 );
    }
}
```

```
if( access( argv[1], F_OK ) == 0 ) {
                 printf( "%s exists\n", argv[1] );
               } else {
                 printf( "%s does not exist\n", argv[1] );
                 exit( EXIT_FAILURE );
               if( access( argv[1], R_OK ) == 0 ) {
                 printf( "%s is readable\n", argv[1] );
               if( access( argv[1], W_OK ) == 0 ) {
                 printf( "%s is writeable\n", argv[1] );
               if( access( argv[1], X_OK ) == 0 ) {
                 printf( "%s is executable\n", argv[1] );
               exit( EXIT_SUCCESS );
             }
Classification: POSIX 1003.1
           _access conforms to ANSI naming conventions
           _waccess is WATCOM
Systems:
           access - All, Linux, RDOS, Netware
           _access - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
           _waccess - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

Synopsis: #include <math.h>

double acos (double x);

Description: The acos function computes the principal value of the arccosine of x. A domain error occurs for

arguments not in the range [-1,1].

Returns: The acos function returns the arccosine in the range $[0,\pi]$. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: asin, atan, atan2, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
     {
        printf( "%f\n", acos(.5) );
     }
```

produces the following:

1.047197

Classification: ISO C

Synopsis: #include <math.h>

double acosh (double x);

Description: The acosh function computes the inverse hyperbolic cosine of x. A domain error occurs if the value of

x is less than 1.0.

Returns: The acosh function returns the inverse hyperbolic cosine value. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: asinh, atanh, cosh, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
    {
      printf( "%f\n", acosh( 1.5 ) );
}
```

produces the following:

0.962424

Classification: WATCOM

Synopsis: #include <malloc.h>
 void *alloca(size_t size);

Description: The alloca function allocates space for an object of *size* bytes from the stack. The allocated space is

automatically discarded when the current function exits. The alloca function should not be used in

an expression that is an argument to a function.

Returns: The alloca function returns a pointer to the start of the allocated memory. The return value is NULL

if there is insufficient stack space available.

See Also: calloc, malloc, stackavail

Example: #include <stdio.h>
#include <string.h>

}

#include <malloc.h>
FILE *open_err_file(char *);

{
 FILE *fp;

void main()

if(fp == NULL) {
 printf("Unable to open error file\n");
} else {
 fclose(fp);

fp = open_err_file("alloca");

FILE *open_err_file(char *name)
 {
 char *buffer;

/* allocate temp buffer for file name */
buffer = (char *) alloca(strlen(name) + 5);
if(buffer) {
 sprintf(buffer, "%s.err", name);
 return(fopen(buffer, "w"));

}
return((FILE *) NULL);
}

Classification: WATCOM

Systems: MACRO

Synopsis:

Description:

The _arc functions draw elliptical arcs. The _arc function uses the view coordinate system. The _arc_w and _arc_wxy functions use the window coordinate system.

The center of the arc is the center of the rectangle established by the points (x1,y1) and (x2,y2). The arc is a segment of the ellipse drawn within this bounding rectangle. The arc starts at the point on this ellipse that intersects the vector from the centre of the ellipse to the point (x3,y3). The arc ends at the point on this ellipse that intersects the vector from the centre of the ellipse to the point (x4,y4). The arc is drawn in a counter-clockwise direction with the current plot action using the current color and the current line style.

The following picture illustrates the way in which the bounding rectangle and the vectors specifying the start and end points are defined.

When the coordinates (x1, y1) and (x2, y2) establish a line or a point (this happens when one or more of the x-coordinates or y-coordinates are equal), nothing is drawn.

The current output position for graphics output is set to be the point at the end of the arc that was drawn.

Returns: The _arc functions return a non-zero value when the arc was successfully drawn; otherwise, zero is

returned.

 $\textbf{See Also:} \qquad \texttt{_ellipse}, \texttt{_pie}, \texttt{_rectangle}, \texttt{_getarcinfo}, \texttt{_setcolor}, \texttt{_setlinestyle},$

_setplotaction

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    _setvideomode( _VRES16COLOR );
    _arc( 120, 90, 520, 390, 500, 20, 450, 460 );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Systems: _arc - DOS _arc_w - DOS

_arc_wxy - DOS

		_arc Functions

Synopsis:

```
#include <time.h>
char * asctime( const struct tm *timeptr );
char *_asctime( const struct tm *timeptr, char *buf );
wchar_t *_wasctime( const struct tm *timeptr );
wchar_t *__wasctime( const struct tm *timeptr, wchar_t *buf );
struct tm {
  int tm_sec; /* seconds after the minute -- [0,61] */
  int tm_min; /* minutes after the hour -- [0,59] */
  int tm_hour; /* hours after midnight -- [0,23] */
int tm_mday; /* day of the month -- [1,31] */
int tm_mon; /* months since January -- [0,11] */
  int tm_isdst; /* Daylight Savings Time flag
};
```

Safer C:

The Safer C Library extension provides the asctime_s function which is a safer alternative to asctime. This newer asctime_s function is recommended to be used instead of the traditional "unsafe" asctime function.

Description:

The **asctime** functions convert the time information in the structure pointed to by *timeptr* into a string containing exactly 26 characters. This string has the form shown in the following example:

```
Sat Mar 21 15:58:27 1987\n\0
```

All fields have a constant width. The new-line character '\n' and the null character '\0' occupy the last two positions of the string.

The ISO C function asctime places the result string in a static buffer that is re-used each time asctime or ctime is called. The non-ISO C function _asctime places the result string in the buffer pointed to by buf.

The _wasctime and __wasctime functions are identical to their asctime and _asctime counterparts except that they deal with wide character strings.

Returns:

The **asctime** functions return a pointer to the character string result.

See Also:

asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime, gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset

Example:

```
#include <stdio.h>
#include <time.h>
void main()
 {
   struct tm time_of_day;
   time_t ltime;
   auto char buf[26];
```

```
time( &ltime );
                _localtime( &ltime, &time_of_day );
               printf( "Date and time is: %s\n",
                        _asctime( &time_of_day, buf ) );
              }
           produces the following:
           Date and time is: Sat Mar 21 15:58:27 1987
Classification: ISO C
           _asctime is WATCOM
           _wasctime is WATCOM
           __wasctime is WATCOM
Systems:
           asctime - All, Linux, RDOS, Netware
           _asctime - All, RDOS, Netware
           _wasctime - All, Linux
           __wasctime - All, Linux
```

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
errno_t asctime_s( char * s,
                               rsize_t maxsize,
                                const struct tm * timeptr);
errno_t _wasctime_s( wchar_t * s,
                                   rsize_t maxsize,
                                    const struct tm * timeptr);
struct tm {
  int tm_sec; /* seconds after the minute -- [0,61] */
int tm_min; /* minutes after the hour -- [0,59] */
int tm_hour; /* hours after midnight -- [0,23] */
int tm_mday; /* day of the month -- [1,31] */
int tm_mon; /* months since January -- [0,11] */
   int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday -- [0,6] */
int tm_yday; /* days since January 1 -- [0,365]*/
   int tm_isdst; /* Daylight Savings Time flag
};
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and asctime_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither s nor timeptr shall be a null pointer. maxsize shall not be less than 26 and shall not be greater than RSIZE_MAX. The broken-down time pointed to by timeptr shall be normalized. The calendar year represented by the broken-down time pointed to by timeptr shall not be less than calendar year 0 and shall not be greater than calendar year 9999. If there is a runtime-constraint violation, there is no attempt to convert the time, and s[0] is set to a null character if s is not a null pointer and maxsize is not zero and is not greater than RSIZE_MAX.

Description:

The asctime_s function converts the normalized broken-down time in the structure pointed to by timeptr into a 26 character (including the null character) string in the form

```
Sun Sep 16 01:03:52 1973\n\0
```

The fields making up this string are (in order):

1. The name of the day of the week represented by timeptr->tm_wday using the following three character weekday names:

```
Sun, Mon, Tue, Wed, Thu, Fri, and Sat.
```

- 2. The character space.
- The name of the month represented by timeptr->tm_mon using the following three character month names:

```
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec.
```

- 4. The character space.
- 5. The value of *timeptr->tm_mday* as if printed using the fprintf format "%2d".

- 6. The character space.
- 7. The value of timeptr->tm_hour as if printed using the fprintf format "%.2d".
- 8. The character colon.
- 9. The value of *timeptr->tm_min* as if printed using the fprintf format "%.2d".
- 10. The character colon.
- 11. The value of *timeptr->tm_sec* as if printed using the fprintf format "%.2d".
- 12. The character space.
- 13. The value of *timeptr->tm_year + 1900* as if printed using the fprintf format "%4d".
- 14. The character new line.
- 15. The null character.

The _wasctime_s function is a wide character version of asctime_s that operates with wide character strings.

Returns: The asctime_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also: asctime Functions, clock, ctime Functions, ctime_s, difftime, gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <time.h>

void main()
{
    struct tm time_of_day;
    time_t ltime;
    auto char buf[26];

    time( &ltime );
    _localtime( &ltime, &time_of_day );
    asctime_s( buf, sizeof( buf ), &time_of_day );
    printf( "Date and time is: %s\n", buf );
}
```

produces the following:

Date and time is: Mon Jan 30 11:32:45 2006

Classification: TR 24731

_wasctime_s is WATCOM

Systems: asctime_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware

_wasctime_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux

Synopsis: #include <math.h>

double asin(double x);

Description: The asin function computes the principal value of the arcsine of x. A domain error occurs for

arguments not in the range [-1,1].

Returns: The asin function returns the arcsine in the range $[-\pi/2,\pi/2]$. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: acos, atan, atan2, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
     {
        printf( "%f\n", asin(.5) );
     }
}
```

produces the following:

0.523599

Classification: ISO C

Description: The asinh function computes the inverse hyperbolic sine of x.

Returns: The asinh function returns the inverse hyperbolic sine value.

See Also: acosh, atanh, sinh, matherr

```
Example: #include <stdio.h>
#include <math.h>

void main()
{
    printf( "%f\n", asinh( 0.5 ) );
}
```

produces the following:

0.481212

Classification: WATCOM

Synopsis: #include <assert.h>
 void assert(int expression);

Description:

The assert macro prints a diagnostic message upon the stderr stream and terminates the program if expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, line linenumber

where *filename* is the name of the source file and *linenumber* is the line number of the assertion that failed in the source file. *Filename* and *linenumber* are the values of the preprocessing macros ___FILE__ and __LINE__ respectively. No action is taken if *expression* is true (non-zero).

The assert macro is typically used during program development to identify program logic errors. The given *expression* should be chosen so that it is true when the program is functioning as intended. After the program has been debugged, the special "no debug" identifier NDEBUG can be used to remove assert calls from the program when it is re-compiled. If NDEBUG is defined (with any value) with a -d command line option or with a #define directive, the C preprocessor ignores all assert calls in the program source.

Returns: The assert macro does not return a value.

Example:

```
#include <stdio.h>
#include <assert.h>

void process_string( char *string )
{
    /* use assert to check argument */
    assert( string != NULL );
    assert( *string != '\0' );
    /* rest of code follows here */
}

void main()
{
    process_string( "hello" );
    process_string( "" );
}
```

Classification: ISO C

Systems: MACRO

Description: The atan function computes the principal value of the arctangent of x.

Returns: The atan function returns the arctangent in the range $(-\pi/2, \pi/2)$.

See Also: acos, asin, atan2

Example: #include <stdio.h>
#include <math.h>

void main()
{
 printf("%f\n", atan(.5));
}

produces the following:

0.463648

Classification: ISO C

Synopsis: #include <math.h>

double atan2 (double y, double x);

Description: The atan2 function computes the principal value of the arctangent of y/x, using the signs of both

arguments to determine the quadrant of the return value. A domain error occurs if both arguments are

zero.

Returns: The atan2 function returns the arctangent of y/x, in the range $(-\pi,\pi)$. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: acos, asin, atan, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
    {
      printf( "%f\n", atan2( .5, 1. ) );
}
```

produces the following:

0.463648

Classification: ISO C

Synopsis: #include <math.h>

double atanh (double x);

Description: The atanh function computes the inverse hyperbolic tangent of x. A domain error occurs if the value

of x is outside the range (-1,1).

Returns: The atanh function returns the inverse hyperbolic tangent value. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: acosh, asinh, matherr, tanh

Example: #include <stdio.h>
#include <math.h>

```
void main()
    {
      printf( "%f\n", atanh( 0.5 ) );
}
```

produces the following:

0.549306

Classification: WATCOM

```
Synopsis: #include <stdlib.h>
    int atexit( void (*func) (void) );
```

Description: The atexit function is passed the address of function *func* to be called when the program terminates

normally. Successive calls to atexit create a list of functions that will be executed on a "last-in, first-out" basis. No more than 32 functions can be registered with the atexit function.

The functions have no parameters and do not return values.

Returns: The atexit function returns zero if the registration succeeds, non-zero if it fails.

```
See Also: abort, _Exit, _exit, exit
```

```
Example:
```

```
#include <stdio.h>
#include <stdlib.h>
void main()
  {
    extern void func1(void), func2(void), func3(void);
    atexit( func1 );
    atexit (func2);
    atexit (func3);
    printf( "Do this first.\n" );
  }
void func1(void) { printf( "last.\n" ); }
void func2(void) { printf( "this " ); }
void func3(void) { printf( "Do " ); }
produces the following:
Do this first.
Do this last.
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Synopsis: #include <stdlib.h>

double atof(const char *ptr);
double _wtof(const wchar_t *ptr);

Description: The atof function converts the string pointed to by *ptr* to double representation. It is equivalent to

```
strtod( ptr, (char **)NULL )
```

The _wtof function is a wide character version of atof that operates with wide character strings. It is equivalent to

```
wcstod( ptr, (wchar_t **)NULL )
```

Returns:

The atof function returns the converted value. Zero is returned when the input string cannot be converted. In this case, errno is not set. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: sscanf, strtod

Example: #include <stdlib.h>

```
void main()
{
    double x;

    x = atof( "3.1415926" );
}
```

Classification: ISO C

_wtof is WATCOM

Systems: atof - Math _wtof - Math

```
int atoi( const char *ptr );
int _wtoi( const wchar_t *ptr );

Description: The atoi function converts the string pointed to by ptr to int representation.

The _wtoi function is a wide character version of atoi that operates with wide character strings.

Returns: The atoi function returns the converted value.

See Also: atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoimax, strtoimax, ultoa, ulltoa, utoa
Example: #include <stdlib.h>
```

x = atoi("-289");

Classification: ISO C

Synopsis:

_wtoi is WATCOM

void main()

int x;

Systems: atoi - All, Linux, RDOS, Netware _wtoi - All, Linux, RDOS

#include <stdlib.h>

```
Synopsis:
             #include <stdlib.h>
             long int atol( const char *ptr );
             long int _wtol( const wchar_t *ptr );
Description:
            The atol function converts the string pointed to by ptr to long int representation.
             The _wtol function is a wide character version of atol that operates with wide character strings.
Returns:
             The atol function returns the converted value.
See Also:
             atoi, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull,
             strtoimax, strtoumax, ultoa, ulltoa, utoa
Example:
             #include <stdlib.h>
             void main()
                  long int x;
                 x = atol("-289");
Classification: ISO C
             _wtol is WATCOM
Systems:
             atol - All, Linux, RDOS, Netware
             _wtol - All, Linux, RDOS
```

```
Synopsis:
             #include <stdlib.h>
             long long int atoll( const char *ptr );
             long long int _wtoll( const wchar_t *ptr );
Description:
            The atoll function converts the string pointed to by ptr to long long int representation.
            The _wtoll function is a wide character version of atoll that operates with wide character strings.
Returns:
             The atoll function returns the converted value.
See Also:
             atoi, atol, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull,
             strtoimax, strtoumax, ultoa, ulltoa, utoa
Example:
             #include <stdlib.h>
             void main()
                 long int x;
                 x = atoll("-289356768201");
Classification: ISO C
            _wtoll is WATCOM
Systems:
             atoll - All, Linux, RDOS, Netware
            _wtoll - All, Linux, RDOS
```

```
Synopsis: #include <stdlib.h>
    wchar_t *_atouni( wchar_t *wcs, const char *sbcs );
```

Description: The _atouni function converts the string pointed to by *sbcs* to a wide character string and places it in

the buffer pointed to by wcs.

The conversion ends at the first null character.

Returns: The _atouni function returns the first argument as a result.

See Also: atoi, atol, itoa, ltoa, strtod, strtol, strtoul, ultoa, utoa

Example: #include <stdlib.h>

void main()
{
 wchar_t wcs[12];
 _atouni(wcs, "Hello world");

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Description:

The basename function returns a pointer to the final component of a pathname pointed to by the *path* argument, deleting trailing path separators.

If the string pointed to by *path* consists entirely of path separators, a string consisting of single path separator is returned.

If path is a null pointer or points to an empty string, a pointer to the string "." is returned.

The basename function may modify the string pointed to by *path* and may return a pointer to static storage that may be overwritten by a subsequent call to basename

The basename function is not re-entrant or thread-safe.

Returns: The basename function returns a pointer to the final component of *path*.

See Also: dirname

Example:

```
#include <stdio.h>
#include <libgen.h>

int main( void )
{

   puts( basename( "/usr/lib" ) );
   puts( basename( "//usr//lib//" ) );
   puts( basename( "//" ) );
   puts( basename( "foo" ) );
   puts( basename( NULL ) );
   return( 0 );
}
```

produces the following:

lib lib / foo

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Synopsis: #include <dos.h>

int bdos(int dos_func, unsigned dx, unsigned char al);

Description:

The bdos function causes the computer's central processor (CPU) to be interrupted with an interrupt number hexadecimal 21 (0x21), which is a request to invoke a specific DOS function. Before the interrupt, the DX register is loaded from dx, the AH register is loaded with the DOS function number from dos_func and the AL register is loaded from al. The remaining registers are passed unchanged to DOS.

You should consult the technical documentation for the DOS operating system you are using to determine the expected register contents before and after the interrupt in question.

Returns: The bdos function returns the value of the AX register after the interrupt has completed.

See Also: int386, int386x, int86, int86x, intdos, intdosx, intr, intrf, segread

Example: #include <dos.h>

```
#define DISPLAY_OUTPUT 2

void main()
{
   int rc;

   rc = bdos( DISPLAY_OUTPUT, 'B', 0 );
   rc = bdos( DISPLAY_OUTPUT, 'D', 0 );
   rc = bdos( DISPLAY_OUTPUT, 'O', 0 );
   rc = bdos( DISPLAY_OUTPUT, 'S', 0 );
}
```

Classification: DOS

Systems: DOS, Windows, Win386, DOS/PM

Synopsis:

```
#include <process.h>
#if defined(__386__)
   define FAR
#else
   define FAR ___far
#endif
#if defined(__NT___)
unsigned long _beginthread(
        void (*start_address) (void *),
        unsigned stack_size,
        void
               *arglist);
unsigned long _beginthreadex(
        void *security,
        unsigned stack_size,
        unsigned (__stdcall *start_address) (void *),
        void *arglist,
        unsigned initflag,
        unsigned *thrdid );
#else
int FAR _beginthread(
        void (FAR *start_address) (void FAR *),
        void FAR *stack_bottom,
        unsigned stack_size,
        void FAR *arglist );
#endif
```

Description:

The _beginthread function is used to start a new thread of execution at the function identified by *start_address* with a single parameter identified by *arglist*.

For each operating environment under which _beginthread is supported, the _beginthread function uses the appropriate system call to begin a new thread of execution.

The new thread will use the memory identified by *stack_bottom* and *stack_size* for its stack.

Note for 16-bit applications: If the stack is not in DGROUP (i.e., the stack pointer does not point to an area in DGROUP) then you must compile your application with the "zu" option. For example, the pointer returned by malloc in a large data model may not be in DGROUP. The "zu" option relaxes the restriction that the SS register contains the base address of the default data segment, "DGROUP". Normally, all data items are placed into the group DGROUP and the SS register contains the base address of this group. In a thread, the SS register will likely not contain the base address of this group. When the "zu" option is selected, the SS register is volatile (assumed to point to another segment) and any global data references require loading a segment register such as DS with the base address of DGROUP.

Note for OS/2 32-bit applications: Memory for a stack need not be provided by the application. The *stack_bottom* may be NULL in which case the run-time system will provide a stack. You must specify a non-zero *stack_size* for this stack.

Note for Win32 applications: Memory for a stack is provided by the run-time system. The size of the stack is determined by *stack_size* and must not be zero.

The _beginthreadex function can be used to create a new thread, in a running or suspended state specified by *initflag*, with security attributes specified by *security*.

The initial state of the new thread (running or suspended) is specified by the *initflag* argument. If the CREATE_SUSPENDED flag (WINBASE.H) is specified, the thread is created in a suspended state, and will not run until the Win32 ResumeThread function is called with the thread handle as an argument. If this value is zero, the thread runs immediately after creation.

The security descriptor for the new thread is specified by the *security* argument. This is a pointer to a Win32 SECURITY_ATTRIBUTES structure (see Microsoft's *Win32 Programmer's Reference* for more information). For default behaviour, the security structure pointer can be NULL.

The thread identifier is returned in the location identified by the *thrdid* argument.

The thread ends when it exits from its main function or calls exit, _Exit, _exit, _endthread or _endthreadex.

The variable/function _threadid which is defined in <stddef.h> may be used by the executing thread to obtain its thread ID. In the 16-bit libraries, _threadid is a far pointer to an int. In the 32-bit libraries, it is a function that returns an int.

There is no limit to the number of threads an application can create under Win32 platforms.

There is a limit to the number of threads an application can create under 16-bit OS/2 and 32-bit NetWare. The default limit is 32. This limit can be adjusted by statically initializing the unsigned global variable __MaxThreads.

Under 32-bit OS/2, there is no limit to the number of threads an application can create. However, due to the way in which multiple threads are supported in the Open Watcom libraries, there is a small performance penalty once the number of threads exceeds the default limit of 32 (this number includes the initial thread). If you are creating more than 32 threads and wish to avoid this performance penalty, you can redefine the threshold value of 32. You can statically initialize the global variable __MaxThreads.

By adding the following line to your multi-threaded application, the new threshold value will be set to 48.

```
unsigned __MaxThreads = { 48 };
```

Returns:

Under Win32, the _beginthread function returns the thread handle for the new thread if successful; otherwise it returns -1 to indicate that the thread could not be started.

Under all other systems that support the _beginthread function (OS/2, Netware and QNX), it returns the thread ID for the new thread if successful; otherwise it returns -1 to indicate that the thread could not be started.

The _beginthreadex function returns the thread handle for the new thread if successful; otherwise it returns 0 to indicate that the thread could not be started.

When the thread could not be started, the value of errno could be set to EAGAIN if there are too many threads, or to EINVAL if the argument is invalid or the stack size is incorrect, or to ENOMEM if there is not enough available memory.

See Also: _endthread

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <malloc.h>
#include cess.h>
#include <dos.h>
#if defined(__386__)
  #define FAR
  #define STACK_SIZE
                       8192
#else
  #define FAR
                        __far
                       4096
  #define STACK_SIZE
#endif
static volatile int
                       WaitForThread;
void FAR child( void FAR *parm )
   char * FAR *argv = (char * FAR *) parm;
    int i;
    printf( "Child thread ID = %x\n", *_threadid );
    for( i = 0; argv[i]; i++ ) {
     printf( "argv[%d] = %s\n", i, argv[i] );
   WaitForThread = 0;
    _endthread();
```

```
void main()
 {
    char
                   *args[3];
#if defined(__NT___)
    unsigned long tid;
#else
    char
                   *stack;
    int
                    tid;
#endif
    args[0] = "child";
    args[1] = "parm";
    args[2] = NULL;
    WaitForThread = 1;
#if defined(__NT__)
    tid = _beginthread( child, STACK_SIZE, args );
    printf( "Thread handle = lx \n", tid );
#else
  #if defined(__386__)
    stack = (char *) malloc( STACK_SIZE );
    stack = (char *) _nmalloc( STACK_SIZE );
  #endif
    tid = _beginthread( child, stack, STACK_SIZE, args );
    printf( "Thread ID = %x\n", tid );
#endif
    while( WaitForThread ) {
        sleep( 0 );
  }
```

Classification: WATCOM

Systems: _beginthread - Win32, OS/2 1.x(MT), OS/2 1.x(DL), OS/2-32, Linux, RDOS, Netware _beginthreadex - Win32

Description: Functions j0, j1, and jn return Bessel Functions of the first kind.

Functions y0, y1, and yn return Bessel Functions of the second kind. The argument x must be positive. If x is negative, will be called to print a DOMAIN error message to stderr, set errno to EDOM, and return the value $-HUGE_VAL$. This error handling can be modified by using the matherr routine.

Returns: These functions return the result of the desired Bessel Function of x.

See Also: matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
    double x, y, z;

    x = j0(2.4);
    y = y1(1.58);
    z = jn(3, 2.4);
    printf("j0(2.4) = %f, y1(1.58) = %f\n", x, y);
    printf("jn(3,2.4) = %f\n", z);
}
```

Classification: WATCOM

Systems: j0 - Math

j1 - Math jn - Math y0 - Math y1 - Math yn - Math Synopsis: ** deprecated **

#include <strings.h>
int bcmp(const void *s1, const void *s2, size_t n);

Description:

The bcmp function compares the byte string pointed to by s1 to the string pointed to by s2. The number of bytes to compare is specified by n. Null characters may be included in the comparision.

Note that this function is similar to the ISO C memcmp function but just tests for equality (new code should use the ISO C function).

Returns: The bcmp function returns zero if the byte strings are identical; otherwise it returns 1.

See Also: bcopy, bzero, memcmp, strcmp

Example:

```
#include <stdio.h>
#include <strings.h>

void main()
{
   if( bcmp( "Hello there", "Hello world", 6 ) ) {
      printf( "Not equal\n" );
   } else {
      printf( "Equal\n" );
   }
}
```

produces the following:

Equal

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Description: The bcopy function copies the byte string pointed to by *src* (including any null characters) into the

array pointed to by dst. The number of bytes to copy is specified by n. Copying of overlapping objects

is guaranteed to work properly.

Note that this function is similar to the ISO C memmove function but the order of arguments is different (new code should use the ISO C function).

Returns: The bcopy function has no return value.

See Also: bcmp, bzero, memmove, strcpy

Example: #include <stdio.h>
#include <strings.h>

void main()
{
 auto char buffer[80];

 bcopy("Hello ", buffer, 6);
 bcopy("world", &buffer[6], 6);
 printf("%s\n", buffer);
}

produces the following:

Hello world

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

```
Synopsis:
            #include <malloc.h>
            int _bfreeseg( __segment seg );
Description:
           The _bfreeseg function frees a based-heap segment.
           The argument seg indicates the segment returned by an earlier call to _bheapseg.
Returns:
           The _bfreeseg function returns 0 if successful and -1 if an error occurred.
See Also:
           _bcalloc, _bexpand, _bfree, _bheapseg, _bmalloc, _brealloc
Example:
            #include <stdio.h>
            #include <stdlib.h>
            #include <malloc.h>
            struct list {
                struct list __based(__self) *next;
                                               value;
            };
           void main()
              {
                int
                             i;
                __segment
                           seg;
                struct list __based(seg) *head;
                struct list __based(seg) *p;
                /* allocate based heap */
                seg = \_bheapseg(1024);
                if( seg == _NULLSEG ) {
                  printf( "Unable to allocate based heap\n" );
                  exit(1);
                /* create a linked list in the based heap */
                head = 0;
                for (i = 1; i < 10; i++) {
                  p = _bmalloc( seg, sizeof( struct list ) );
                  if( p == _NULLOFF ) {
                    printf( "_bmalloc failed\n" );
                    break;
                  p->next = head;
                  p->value = i;
                  head = p;
                /* traverse the linked list, printing out values */
                for ( p = head; p != 0; p = p -> next ) {
                  printf( "Value = dn, p->value );
```

```
/* free all the elements of the linked list */
for(; p = head; ) {
  head = p->next;
  _bfree( seg, p );
}
/* free the based heap */
  _bfreeseg( seg );
}
```

Classification: WATCOM

Systems: DOS/16, Windows, OS/2 1.x(all)

Synopsis: #include cess.h> int _bgetcmd(char *cmd_line, int len);

Description: The _bget cmd function causes the command line information, with the program name removed, to be

copied to cmd_line. The argument len specifies the size of cmd_line. The information is terminated with a null character. This provides a method of obtaining the original parameters to a program unchanged (with the white space intact).

This information can also be obtained by examining the vector of program parameters passed to the main function in the program.

Returns: The number of bytes required to store the entire command line, excluding the terminating null character,

is returned.

See Also: abort, atexit, exec..., exit, _Exit, _exit, getcmd, getenv, main, putenv,

spawn..., system, _wsystem

Example: Suppose a program were invoked with the command line

```
myprog arg-1 ( my
                    stuff ) here
```

where that program contains

```
#include <stdio.h>
#include <stdlib.h>
#include cess.h>
void main( void )
   char *cmdline;
    int
         cmdlen;
    cmdlen = _bgetcmd( NULL, 0 ) + 1;
    cmdline = malloc( cmdlen );
    if( cmdline != NULL ) {
        cmdlen = _bgetcmd( cmdline, cmdlen );
       printf( "%s\n", cmdline );
```

produces the following:

```
arg-1 ( my
            stuff ) here
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

_bgetcmd			

Synopsis: #include <malloc.h> __segment _bheapseg(size_t size);

Description: The _bheapseg function allocates a based-heap segment of at least *size* bytes.

> The argument size indicates the initial size for the heap. The heap will automatically be enlarged as needed if there is not enough space available within the heap to satisfy an allocation request by _bcalloc, _bexpand, _bmalloc, or _brealloc.

The value returned by _bheapseg is the segment value or selector for the based heap. This value must be saved and used as an argument to other based heap functions to indicate which based heap to operate upon.

Each call to _bheapseg allocates a new based heap.

Returns:

The value returned by _bheapseg is the segment value or selector for the based heap. This value must be saved and used as an argument to other based heap functions to indicate which based heap to operate upon. A special value of _NULLSEG is returned if the segment could not be allocated.

See Also: _bfreeseg, _bcalloc, _bexpand, _bmalloc, _brealloc

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
struct list {
    struct list __based(__self) *next;
                                value;
};
void main()
  {
   int
                i;
   __segment seq;
    struct list __based(seg) *head;
    struct list __based(seg) *p;
    /* allocate based heap */
    seg = \_bheapseg(1024);
    if( seg == _NULLSEG ) {
     printf( "Unable to allocate based heap\n" );
      exit(1);
```

```
/* create a linked list in the based heap */
head = 0;
for(i = 1; i < 10; i++) {
  p = _bmalloc( seg, sizeof( struct list ) );
  if( p == \_NULLOFF ) {
    printf( "_bmalloc failed\n" );
    break;
  }
  p->next = head;
  p->value = i;
  head = p;
/* traverse the linked list, printing out values */
for( p = head; p != 0; p = p->next ) {
  printf( "Value = %d\n", p->value );
/* free all the elements of the linked list */
for( ; p = head; ) {
  head = p->next;
  _bfree( seg, p );
/* free the based heap */
_bfreeseg( seg );
```

Classification: WATCOM

Systems: DOS/16, Windows, OS/2 1.x(all)

Synopsis:

```
#include <bios.h>
unsigned short _bios_disk( unsigned service,
                        struct diskinfo_t *diskinfo );
                     /* disk parameters */
struct diskinfo_t {
   unsigned drive; /* drive number
                                          */
   unsigned head;
                     /* head number
                                          */
   unsigned track; /* track number
                                          */
   unsigned sector; /* sector number
                                          */
   unsigned nsectors; /* number of sectors */
   void __far *buffer; /* buffer address
};
```

Description:

The _bios_disk function uses INT 0x13 to provide access to the BIOS disk functions. Information for the desired service is passed the diskinfo_t structure pointed to by diskinfo. The value for service can be one of the following values:

Value	Meaning
_DISK_RESET	Forces the disk controller to do a reset on the disk. This request does not use the <i>diskinfo</i> argument.
_DISK_STATUS	Obtains the status of the last disk operation.
_DISK_READ	Reads the specified number of sectors from the disk. This request uses all of the information passed in the <i>diskinfo</i> structure.
_DISK_WRITE	Writes the specified amount of data to the disk. This request uses all of the information passed in the <i>diskinfo</i> structure.
_DISK_VERIFY	Checks the disk to be sure the specified sectors exist and can be read. A CRC (cyclic redundancy check) test is performed. This request uses all of the information passed in the <i>diskinfo</i> structure except for the <i>buffer</i> field.
_DISK_FORMAT	Formats the specified track on the disk. The <i>head</i> and <i>track</i> fields indicate the track to be formatted. Only one track can be formatted per call. The <i>buffer</i> field points to a set of sector markers, whose format depends on the type of disk drive. This service has no return value.

This function is not supported by DOS/4GW (you must use the Simulate Real-Mode Interrupt DPMI call).

Returns:

The _bios_disk function returns status information in the high-order byte when service is _DISK_STATUS, _DISK_READ, _DISK_WRITE, or _DISK_VERIFY. The possible values are:

Value	Meaning
0x00	Operation successful
0x01	Bad command
0x02	Address mark not found
0x03	Attempt to write to write-protected disk
0x04	Sector not found
0x05	Reset failed

```
0x06
                           Disk changed since last operation
             0x07
                           Drive parameter activity failed
             0x08
                          DMA overrun
             0x09
                           Attempt to DMA across 64K boundary
             0x0A
                           Bad sector detected
             0x0B
                           Bad track detected
             0x0C
                           Unsupported track
             0x10
                          Data read (CRC/ECC) error
             0x11
                          CRC/ECC corrected data error
             0x20
                          Controller failure
             0x40
                           Seek operation failed
                           Disk timed out or failed to respond
             0x80
             0xAA
                           Drive not ready
             0xBB
                           Undefined error occurred
             0xCC
                           Write fault occurred
             0xE0
                           Status error
             0xFF
                           Sense operation failed
Example:
             #include <stdio.h>
             #include <bios.h>
             void main()
               {
                  struct diskinfo_t di;
                  unsigned short status;
                  di.drive = di.head = di.track = di.sector = 0;
                  di.nsectors = 1;
                  di.buffer = NULL;
                  status = _bios_disk( _DISK_VERIFY, &di );
                  printf( "Status = 0x%4.4X\n", status );
                }
```

Classification: BIOS

Systems: DOS, Windows, Win386

Synopsis: #include <bios.h>

Bit

unsigned short _bios_equiplist(void);

Description: The $_$ bios $_$ equiplist function uses INT 0x11 to determine what hardware and peripherals are

installed on the machine.

Returns: The _bios_equiplist function returns a set of bits indicating what is currently installed on the

machine. Those bits are defined as follows:

Meaning

	<u> </u>
bit 0	Set to 1 if system boots from disk
bit 1	Set to 1 if a math coprocessor is installed
bits 2-3	Indicates motherboard RAM size
bits 4-5	Initial video mode
bits 6-7	Number of diskette drives
bit 8	Set to 1 if machine does not have DMA
bits 9-11	Number of serial ports
bit 12	Set to 1 if a game port is attached
bit 13	Set to 1 if a serial printer is attached
bits 14-15	Number of parallel printers installed
#include	<stdio.h></stdio.h>
#include	 <bios.h></bios.h>
void mair	n ()
{ unsiq	gned short equipment;
	<pre>pment = _bios_equiplist(); tf("Equipment flags = 0x%4.4X\n", equipment);</pre>

Classification: BIOS

Example:

Systems: DOS, Windows, Win386 **Synopsis:** #include <bios.h>

unsigned short _bios_keybrd(unsigned service);

Description: The _bios_keybrd function uses INT 0x16 to access the BIOS keyboard services. The possible

values for service are the following constants:

Constant Meaning _KEYBRD_READ Reads the next character from the keyboard. The function will wait until a character has been typed. Checks to see if a character has been typed. If there is one, then its value _KEYBRD_READY will be returned, but it is not removed from the input buffer. **_KEYBRD_SHIFTSTATUS** Returns the current state of special keys. _NKEYBRD_READ Reads the next character from an enhanced keyboard. The function will wait until a character has been typed. _NKEYBRD_READY Checks to see if a character has been typed on an enhanced keyboard. If

input buffer.

there is one, then its value will be returned, but it is not removed from the

_NKEYBRD_SHIFTSTATUS Returns the current state of special keys on an enhanced keyboard.

Returns: The return value depends on the *service* requested.

> The _KEYBRD_READ and _NKEYBRD_READ services return the character's ASCII value in the low-order byte and the character's keyboard scan code in the high-order byte.

The _KEYBRD_READY and _NKEYBRD_READY services return zero if there was no character available, otherwise it returns the same value returned by _KEYBRD_READ and _NKEYBRD_READ.

The shift status is returned in the low-order byte with one bit for each special key defined as follows:

	Bit	Meaning	
	bit 0 (0x01)	Right SHIFT key is pressed	
	bit 1 (0x02)	Left SHIFT key is pressed	
	bit 2 (0x04)	CTRL key is pressed	
	$bit \ 3 \ (0x08)$	ALT key is pressed	
	$bit\ 4\ (0x10)$	SCROLL LOCK is on	
	bit $5 (0x20)$	NUM LOCK is on	
	bit 6 (0x40)	CAPS LOCK is on	
	bit 7 (0x80)	Insert mode is set	
Example:	<pre>#include <stdio.h> #include <bios.h> void main() {</bios.h></stdio.h></pre>		
	unsigned short key_state		

```
key_state = _bios_keybrd( _KEYBRD_SHIFTSTATUS );
    if( key_state & 0x10 )
        printf( "SCROLL LOCK is on\n" );
    if( key_state & 0x20 )
        printf( "NUM LOCK is on\n" );
    if( key_state & 0x40 )
        printf( "CAPS LOCK is on\n" );
  }
produces the following:
```

NUM LOCK is on

Classification: BIOS

Systems: DOS, Windows, Win386 Synopsis: #include <bios.h>
 unsigned short _bios_memsize(void);

Description: The $_$ bios $_$ memsize function uses INT 0x12 to determine the total amount of memory available.

Returns: The _bios_memsize function returns the total amount of 1K blocks of memory installed (maximum

640).

The total amount of memory is: 640K

Classification: BIOS

Systems: DOS, Windows, Win386

Synopsis: #include <bios.h>

unsigned short _bios_printer(unsigned service, unsigned port, unsigned data);

Description:

The _bios_printer function uses INT 0x17 to perform printer output services to the printer specified by *port*. The values for service are:

Value Meaning

_PRINTER_WRITE Sends the low-order byte of *data* to the printer specified by *port*.

_PRINTER_INIT Initializes the printer specified by *port*.

_PRINTER_STATUS Get the status of the printer specified by port.

Returns: The _bios_printer function returns a printer status byte defined as follows:

Bit Meaning Printer timed out bit 0 (0x01)bits 1-2 Unused bit 3 (0x08) I/O error Printer selected bit 4 (0x10) bit 5 (0x20) Out of paper bit 6 (0x40) Printer acknowledge bit 7 (0x80) Printer not busy #include <stdio.h> #include <bios.h>

```
void main()
   unsigned short status;
   status = _bios_printer( _PRINTER_STATUS, 1, 0 );
   printf( "Printer status: 0x%2.2X\n", status );
```

Classification: BIOS

Example:

Systems: DOS, Windows, Win386 Synopsis: #include <bios.h>

Description: The _bios_serialcom function uses INT 0x14 to provide serial communications services to the

serial port specified by serial_port. 0 represents COM1, 1 represents COM2, etc. The values for

service are:

Value Meaning
 _COM_INIT Initializes the serial port to the parameters specified in data.
 _COM_SEND Transmits the low-order byte of data to the serial port.
 _COM_RECEIVE Reads an input character from the serial port.
 _COM_STATUS Returns the current status of the serial port.

The value passed in *data* for the _COM_INIT service can be built using the appropriate combination of the following values:

Value	Meaning
_COM_110	110 baud
_COM_150	150 baud
_COM_300	300 baud
_COM_600	600 baud
_COM_1200	1200 baud
_COM_2400	2400 baud
_COM_4800	4800 baud
_COM_9600	9600 baud
_COM_NOPARITY	No parity
_COM_EVENPARITY	Even parity
_COM_ODDPARITY	Odd parity
_COM_CHR7	7 data bits
_COM_CHR8	8 data bits
_COM_STOP1	1 stop bit
_COM_STOP2	2 stop bits

Returns:

The _bios_serialcom function returns a 16-bit value with the high-order byte containing status information defined as follows:

Bit	Meaning
bit 15 (0x8000)	Timed out
bit 14 (0x4000)	Transmit shift register empty
bit 13 (0x2000)	Transmit holding register empty

bit 12 (0x1000)	Break detected
bit 11 (0x0800)	Framing error
bit 10 (0x0400)	Parity error
bit 9 $(0x0200)$	Overrun error
bit 8 $(0x0100)$	Data ready

The low-order byte of the return value depends on the value of the *service* argument.

When service is _COM_SEND, bit 15 will be set if the data could not be sent. If bit 15 is clear, the return value equals the byte sent.

When service is _COM_RECEIVE, the byte read will be returned in the low-order byte if there was no error. If there was an error, at least one of the high-order status bits will be set.

When service is _COM_INIT or _COM_STATUS the low-order bits are defined as follows:

bit 0 (0x01)	Clear to send (CTS) changed
$bit \ 1 \ (0x02)$	Data set ready changed
$bit \ 2 \ (0x04)$	Trailing-edge ring detector
bit $3(0x08)$	Receive line signal detector changed
bit 4 (0x10)	Clear to send
bit $5(0x20)$	Data-set ready
bit 6 (0x40)	Ring indicator
bit 7 (0x80)	Receive-line signal detected
<pre>#include <std #include="" <bio<="" pre=""></std></pre>	
<pre>void main() { unsigned</pre>	short status;
	_bios_serialcom(_COM_STATUS, 1, 0); Serial status: 0x%2.2X\n", status);

Meaning

Classification: BIOS

Example:

Systems: DOS, Windows, Win386

}

Bit

Synopsis: #include <bios.h>

unsigned short _bios_timeofday(int service, long *timeval);

Description: The _bios_timeofday function uses INT 0x1A to get or set the current system clock value. The

values for service are:

Value Meaning

_TIME_GETCLOCK Places the current system clock value in the location pointed to by timeval. The

function returns zero if midnight has not passed since the last time the system

clock was read or set; otherwise, it returns 1.

_TIME_SETCLOCK Sets the system clock to the value in the location pointed to by timeval.

Returns: A value of -1 is returned if neither _TIME_GETCLOCK nor _TIME_SETCLOCK were specified;

otherwise 0 is returned.

Example: #include <stdio.h>

#include <bios.h>

void main()
 {
 long time_of_day;

_bios_timeofday(_TIME_GETCLOCK, &time_of_day);
printf("Ticks since midnight: %lu\n", time_of_day);
}

produces the following:

Ticks since midnight: 762717

Classification: BIOS

Systems: DOS, Windows, Win386

Synopsis:

```
#include <stdio.h>
int _bprintf( char *buf, size_t bufsize,
              const char *format, ...);
int _bwprintf( wchar_t *buf, size_t bufsize,
               const wchar_t *format, ...);
```

Description:

The _bprintf function is equivalent to the sprintf function, except that the argument bufsize specifies the size of the character array buf into which the generated output is placed. A null character is placed at the end of the generated character string. The format string is described under the description of the printf function.

The _bwprintf function is a wide character version of _bprintf. It accepts a wide character string argument for format and produces wide character output. The argument buf specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream.

Returns:

The _bprintf function returns the number of characters written into the array, not counting the terminating null character. The _bwprintf function returns the number of wide characters written into the array, not counting the terminating null character. An error can occur while converting a value for output. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
void main( int argc, char *argv[] )
{
    char file_name[9];
   char file_ext[4];
   _bprintf(file_name, 9, "%s", argv[1]);
   _bprintf( file_ext, 4, "%s", argv[2] );
   printf( "%s.%s\n", file_name, file_ext );
}
```

Classification: WATCOM

Systems:

```
_bprintf - All, Linux, RDOS, Netware
_bwprintf - All, Linux
```

#include <stdio.h>

```
Synopsis:
             #include <stdlib.h>
             void break_off( void );
             void break_on( void );
Description:
            The break_off function can be used with DOS to restrict break checking (Ctrl+C, Ctrl+Break) to
             screen output and keyboard input. The break_on function can be used with DOS to add break
             checking (Ctrl+C, Ctrl+Break) to other activities such as disk file input/output.
Returns:
             The break_off and break_on functions to not return anything.
See Also:
             signal
Example:
             #include <stdio.h>
             #include <stdlib.h>
             void main()
               {
                 long i;
                 FILE *tmpf;
                 tmpf = tmpfile();
                 if( tmpf != NULL ) {
                    printf( "Start\n" );
                    break_off();
                    for( i = 1; i < 100000; i++)
                      fprintf( tmpf, "%ld\n", i );
                    break_on();
                    printf( "Finish\n" );
Classification: DOS
Systems:
             break_off - DOS, Windows, Win386
             break_on - DOS, Windows, Win386
```

Synopsis: #include <stdlib.h>

int brk(void __near *addr);

Description: Change data segment size, the "break" value. The "break" value is the address of the first byte of

> unallocated memory. When a program starts execution, the break value is placed following the code and constant data for the program. As memory is allocated, this pointer will advance when there is no freed block large enough to satisfy an allocation request. The brk function can be used to set a new

"break" value for the program.

This value may be changed by a program at any time.

Returns: If the call to brk succeeds, "break" value is set to new value and 0 is returned. If the call to brk fails,

-1 is returned. When an error has occurred, errno contains a value indicating the type of error that has

been detected.

See Also: calloc Functions, _expand Functions, free Functions, halloc, hfree, malloc Functions,

_msize Functions, realloc Functions, sbrk

Example:

Classification: WATCOM

Systems: Linux **Synopsis:**

Safer C:

The Safer C Library extension provides the bsearch_s function which is a safer alternative to bsearch. This newer bsearch_s function is recommended to be used instead of the traditional "unsafe" bsearch function.

Description:

The bsearch function performs a binary search of a sorted array of *num* elements, which is pointed to by *base*, for an item which matches the object pointed to by *key*. Each element in the array is *width* bytes in size. The comparison function pointed to by *compar* is called with two arguments that point to elements in the array. The first argument *pkey* points to the same object pointed to by *key*. The second argument *pbase* points to a element in the array. The comparison function shall return an integer less than, equal to, or greater than zero if the *key* object is less than, equal to, or greater than the element in the array.

Returns:

The bsearch function returns a pointer to the matching member of the array, or NULL if a matching object could not be found. If there are multiple values in the array which are equal to the *key*, the return value is not necessarily the first occurrence of a matching value when the array is searched linearly.

See Also:

bsearch_s, lfind, lsearch, qsort, qsort_s

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static const char *keywords[] = {
        "auto",
        "break",
        "case",
        "char",
        /* . */
        /* . */
        "while"
  };
#define NUM_KW sizeof(keywords) / sizeof(char *)
int kw_compare( const void *p1, const void *p2 )
    const char *p1c = (const char *) p1;
    const char **p2c = (const char **) p2;
    return( strcmp( p1c, *p2c ) );
}
```

```
int keyword_lookup( const char *name )
    const char **key;
    key = (char const **) bsearch( name, keywords, NUM_KW,
                    sizeof( char * ), kw_compare );
    if ( key == NULL ) return (-1);
    return key - keywords;
}
void main()
    printf( "%d\n", keyword_lookup( "case" ) );
    printf( "%d\n", keyword_lookup( "crigger" ) );
printf( "%d\n", keyword_lookup( "auto" ) );
//******* Sample program output *******
//2
//-1
//0
produces the following:
2
-1
0
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Synopsis:

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and bsearch_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *nmemb* nor *size* shall be greater than RSIZE_MAX. If *nmemb* is not equal to zero, then none of *key*, *base*, or *compar* shall be a null pointer. If there is a runtime-constraint violation, the bsearch_s function does not search the array.

Description:

The bsearch_s function searches an array of *nmemb* objects, the initial element of which is pointed to by *base*, for an element that matches the object pointed to by *key*. The size of each element of the array is specified by *size*. The comparison function pointed to by *compar* is called with three arguments. The first two point to the key object and to an array element, in that order. The function shall return an integer less than, equal to, or greater than zero if the key object is considered, respectively, to be less than, to match, or to be greater than the array element. The array shall consist of: all the elements that compare less than, all the elements that compare equal to, and all the elements that compare greater than the key object, in that order. The third argument to the comparison function is the *context* argument passed to bsearch_s The sole use of context by bsearch_s is to pass it to the comparison function.

Returns:

The bsearch_s function returns a pointer to a matching element of the array, or a null pointer if no match is found or there is a runtime-constraint violation. If two elements compare as equal, which element is matched is unspecified.

See Also:

bsearch, lfind, lsearch, qsort, qsort_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char *keywords[] = {
    "auto",
    "break",
    "case",
    "char",
    /* . */
    /* . */
    /* . */
    "while"
};
static void * context = NULL;
#define NUM_KW sizeof(keywords) / sizeof(char *)
```

```
int kw_compare( const void *p1, const void *p2, void *context )
    const char *p1c = (const char *) p1;
    const char **p2c = (const char **) p2;
   return( strcmp( p1c, *p2c ) );
int keyword_lookup( const char *name )
    const char **key;
   key = (char const **) bsearch_s( name, keywords, NUM_KW,
                   sizeof( char * ), kw_compare, context );
    if ( key == NULL ) return (-1);
    return key - keywords;
}
int main()
   printf( "%d\n", keyword_lookup( "case" ) );
   printf( "%d\n", keyword_lookup( "crigger" ) );
   printf( "%d\n", keyword_lookup( "auto" ) );
    return 0;
//****** Sample program output *******
//2
//-1
//0
produces the following:
2
-1
```

Classification: TR 24731

Systems: All, Linux, RDOS, Netware Synopsis: #include <wchar.h>
 wint_t btowc(int c);

Description: The btowc function determines whether c is a valid single-byte character in the initial shift state.

Returns: The btowc function returns WEOF if c has the value EOF or if (unsigned char)c does not constitute a

valid single-byte character in the initial shift state. Otherwise, btowc returns the wide character

representation of that character.

See Also: _mbccmp, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira,

_mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, wcrtomb, wcrtomb_s, wcsrtombs_s, wcsrtombs_s, wcstombs_s, wcstombs_s, wctob, wctomb,

wctomb_s

Example: #include <stdio.h>

#include <wchar.h>

void main(void)
{
 printf("EOF is %sa valid single-byte character\n",
 btowc(EOF) == WEOF ? "not " : "");
}

produces the following:

EOF is not a valid single-byte character

Classification: ISO C

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis: ** deprecated ** #include <strings.h> void bzero(void *dst, size_t n);

Description: The bzero function fills the first *n* bytes of the object pointed to by *dst* with zero (null) bytes.

Note that this function is similar to the ISO C memset function (new code should use the ISO C

function).

Returns: The bzero function has no return value.

See Also: memcmp, memcpy, memset, _strset

Example: #include <strings.h> void main() char buffer[80]; bzero(buffer, 80);

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

```
#include <math.h>
double cabs( struct complex value );

struct _complex {
    double x; /* real part */
    double y; /* imaginary part */
};
```

Description: The cabs function computes the absolute value of the complex number *value* by a calculation which is

equivalent to

```
sqrt( (value.x*value.x) + (value.y*value.y) )
```

In certain cases, overflow errors may occur which will cause the matherr routine to be invoked.

Returns: The absolute value is returned.

Example: #include <stdio.h>
#include <math.h>

produces the following:

5.000000

Classification: WATCOM

Systems: Math

Synopsis:

```
#include <stdlib.h> For ISO C compatibility (calloc only)
#include <malloc.h> Required for other function prototypes
void *calloc( size_t n, size_t size );
void __based(void) *_bcalloc( __segment seg,
                              size_t n,
                              size_t size );
void __far *_fcalloc( size_t n, size_t size );
void __near *_ncalloc( size_t n, size_t size );
```

Description:

The **calloc** functions allocate space for an array of *n* objects, each of length *size* bytes. Each element is initialized to 0.

Each function allocates memory from a particular heap, as listed below:

Function	Неар
calloc	Depends on data model of the program
_bcalloc	Based heap specified by seg value
_fcalloc	Far heap (outside the default data segment)
ncalloc	Near heap (inside the default data segment)

In a small data memory model, the **calloc** function is equivalent to the _ncalloc function; in a large data memory model, the **calloc** function is equivalent to the _fcalloc function.

A block of memory allocated should be freed using the appropriate free function.

Returns:

The calloc functions return a pointer to the start of the allocated memory. The return value is NULL (_NULLOFF for _bcalloc) if there is insufficient memory available or if the value of the size argument is zero.

See Also:

_expand Functions, free Functions, halloc, hfree, malloc Functions, _msize Functions, realloc Functions, sbrk

Example:

```
void main()
  {
    char *buffer;
   buffer = (char *)calloc( 80, sizeof(char) );
  }
```

Classification: ISO C

_bcalloc is WATCOM _fcalloc is WATCOM _ncalloc is WATCOM

#include <stdlib.h>

Systems:

```
calloc - All, Linux, RDOS, Netware
_bcalloc - DOS/16, Windows, OS/2 1.x(all)
_fcalloc - DOS/16, Windows, OS/2 1.x(all)
```

_ncalloc - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT), OS/2-32, Linux, RDOS

Synopsis: #include <math.h>

double cbrt(double x);

Description: The cbrt function computes the cubed root of the argument x.

Returns: The cubed root of the value.

Example: #include <stdio.h> #include <math.h>

```
void main()
   printf( "%f\n", cbrt( 8.0 ) );
```

produces the following:

2.000000

Classification: ISO C99

Systems: Math

```
Synopsis:
             #include <math.h>
             double ceil( double x);
Description:
            The ceil function (ceiling function) computes the smallest integer not less than x.
Returns:
             The ceil function returns the smallest integer not less than x, expressed as a double.
See Also:
             floor
Example:
             #include <stdio.h>
             #include <math.h>
             void main()
               {
                 printf( "%f %f %f %f %f %f\n", ceil( -2.1 ), ceil( -2. ),
                      ceil( 0.0 ), ceil( 2. ), ceil( 2.1 ) );
             produces the following:
             -2.000000 -2.000000 0.000000 2.000000 3.000000
Classification: ISO C
```

Systems: Math

Synopsis: #include <conio.h> char *cgets(char *buf);

Description:

The cgets function gets a string of characters directly from the console and stores the string and its length in the array pointed to by buf. The first element of the array buf[0] must contain the maximum length in characters of the string to be read. The array must be big enough to hold the string, a terminating null character, and two additional bytes.

The cgets function reads characters until a carriage-return line-feed combination is read, or until the specified number of characters is read. The string is stored in the array starting at buf[2]. The carriage-return line-feed combination, if read, is replaced by a null character. The actual length of the string read is placed in buf[1].

Returns: The cgets function returns a pointer to the start of the string which is at buf[2].

See Also: fgets, getch, getche, gets

Example: #include <conio.h>

```
void main()
  {
    char buffer[82];
   buffer[0] = 80;
    cgets( buffer );
    cprintf( "%s\r\n", &buffer[2] );
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware **Synopsis:** #include <dos.h> void _chain_intr(void (__interrupt __far *func)()); **Description:** The _chain_intr function is used at the end of an interrupt routine to start executing another interrupt handler (usually the previous handler for that interrupt). When the interrupt handler designated by func receives control, the stack and registers appear as though the interrupt just occurred. **Returns:** The _chain_intr function does not return to its caller. See Also: _dos_getvect, _dos_keep, _dos_setvect **Example:** #include <stdio.h> #include <dos.h> volatile int clock_ticks; void (__interrupt __far *prev_int_1c)(); #define BLIP_COUNT (5*18) /* 5 seconds */ void __interrupt __far timer_rtn() { ++clock_ticks; _chain_intr(prev_int_1c); int delays = 0;int compile_a_line() if (delays > 15) return (0); delay(1000); /* delay for 1 second */ printf("Delayed for 1 second\n"); delays++; return(1); } void main() { $prev_int_1c = _dos_getvect(0x1c);$ _dos_setvect(0x1c, timer_rtn); while(compile_a_line()) { if(clock_ticks >= BLIP_COUNT) { putchar('.'); clock_ticks -= BLIP_COUNT; _dos_setvect(0x1c, prev_int_1c);

Classification: WATCOM

Systems: DOS, Windows

	_chain_intr

Synopsis:

```
#include <sys/types.h>
#include <direct.h>
int chdir( const char *path );
int _chdir( const char *path );
int _wchdir( const wchar_t *path );
```

Description:

The chdir function changes the current directory on the specified drive to the specified *path*. If no drive is specified in *path* then the current drive is assumed. The *path* can be either relative to the current directory on the specified drive or it can be an absolute path name.

Each drive under DOS, OS/2 or Windows has a current directory. The current working directory is the current directory of the current drive. If you wish to change the current drive, you must use the _dos_setdrive function.

The _chdir function is identical to chdir. Use _chdir for ANSI naming conventions.

The _wchdir function is a wide character version of chdir that operates with wide character strings.

Returns:

The chdir function returns zero if successful. Otherwise, -1 is returned, errno is set to indicate the error, and the current working directory remains unchanged.

Errors:

When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Constant Meaning

ENOENT

The specified *path* does not exist or *path* is an empty string.

See Also:

chmod, _dos_setdrive, getcwd, mkdir, rmdir, stat, umask

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <direct.h>

void main( int argc, char *argv[] )
{
   if( argc != 2 ) {
      fprintf( stderr, "Use: cd <directory>\n" );
      exit( 1 );
   }

   if( chdir( argv[1] ) == 0 ) {
      printf( "Directory changed to %s\n", argv[1] );
      exit( 0 );
   } else {
      perror( argv[1] );
      exit( 1 );
   }
}
```

Classification: POSIX 1003.1

_chdir conforms to ANSI naming conventions

_wchdir is WATCOM

Systems:

chdir - All, Linux, RDOS, Netware

_chdir - All, RDOS, Netware _wchdir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Synopsis: #include <direct.h>
 int _chdrive(int drive);

Description: The _chdrive function changes the current working drive to the one specified by *drive*. A value of 1

is drive A, 2 is drive B, 3 is drive C, etc.

Returns: The _chdrive function returns zero if drive is successfully changed. Otherwise, -1 is returned.

See Also: __dos_getdrive, _dos_setdrive, _getdrive

produces the following:

Changed the current drive to C

Classification: DOS

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS, DOS/PM

Synopsis: #include <sys/types.h>

#include <sys/stat.h>

#include <io.h>

int chmod(const char *path, mode_t permission); int _chmod(const char *path, mode_t permission); int _wchmod(const wchar_t *path, mode_t permission);

Description:

The chmod function changes the permissions for a file specified by path to be the settings in the mode given by permission. The access permissions for the file or directory are specified as a combination of bits (defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission	Meaning
S_IRWXU	Read, write, execute/search
S_IRUSR	Read permission
S_IWUSR	Write permission
S_IXUSR	Execute/search permission

The following bits define permissions for the group.

Permission	Meaning
S_IRWXG	Read, write, execute/search
S_IRGRP	Read permission
S_IWGRP	Write permission
S_IXGRP	Execute/search permission

The following bits define permissions for others.

Permission	Meaning
S_IRWXO	Read, write, execute/search
S_IROTH	Read permission
S_IWOTH	Write permission
S_IXOTH	Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission	Meaning
S_IREAD	is equivalent to S_IRUSR (read permission)
S_IWRITE	is equivalent to S_IWUSR (write permission)
S_IEXEC	is equivalent to S_IXUSR (execute/search permission)

Upon successful completion, the chmod function will mark for update the st_ctime field of the file.

The _chmod function is identical to chmod. Use _chmod for ANSI naming conventions.

The _wchmod function is a wide character version of chmod that operates with wide character strings.

Returns: The chmod returns zero if the new settings are successfully made; otherwise, -1 is returned and errno

is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EACCES Search permission is denied for a component of *path*.

ENOENT The specified *path* does not exist or *path* is an empty string.

See Also: fstat, open, _sopen, stat

```
Example:
```

```
/*
 * change the permissions of a list of files
 * to be read/write by the owner only
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
void main( int argc, char *argv[] )
    int i;
    int ecode = 0;
    for(i = 1; i < argc; i++) {
      if( chmod( argv[i], S_IRUSR | S_IWUSR ) == -1 ) {
        perror( argv[i] );
        ecode++;
      }
    exit( ecode );
  }
```

Classification: POSIX 1003.1

_chmod conforms to ANSI naming conventions

_wchmod is WATCOM

```
Systems:
```

```
chmod - All, Linux, RDOS, Netware
_chmod - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_wchmod - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

```
Synopsis:
           #include <io.h>
           int _chsize( int handle, long size );
           ** deprecated **
           int chsize (int handle, long size);
```

Description:

The _chsize function changes the size of the file associated with handle by extending or truncating the file to the length specified by size. If the file needs to be extended, the file is padded with NULL ('\0') characters.

The chsize function is deprecated, use _chsize instead.

Returns: The _chsize function returns zero if successful. A return value of -1 indicates an error, and errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

> Constant Meaning **EACCES** The specified file is locked against access. **EBADF** Invalid file handle. **ENOSPC** Not enough space left on the device to extend the file.

See Also: close, creat, open

{

}

```
Example:
           #include <stdio.h>
           #include <io.h>
           #include <fcntl.h>
           #include <sys/stat.h>
           void main()
```

```
int handle;
handle = open( "file", O_RDWR | O_CREAT,
            S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
if ( handle !=-1 ) {
  if( _chsize( handle, 32 * 1024L ) != 0 ) {
      printf( "Error extending file\n" );
  close( handle );
```

Classification: WATCOM

```
Systems:
           _chsize - All, Linux, RDOS, Netware
           chsize - All, Linux, RDOS, Netware
```

_chsize, chsize			

Synopsis: #include <float.h> unsigned int _clear87(void);

Description: The _clear87 function clears the floating-point status word which is used to record the status of

8087/80287/80387/80486 floating-point operations.

Returns: The _clear 87 function returns the old floating-point status. The description of this status is found in

the <float.h> header file.

See Also: _control87, _controlfp, _finite, _fpreset, _status87

Example: #include <stdio.h> #include <float.h>

```
void main()
  {
    unsigned int fp_status;
    fp_status = _clear87();
    printf( "80x87 status =" );
    if( fp_status & SW_INVALID )
        printf( " invalid" );
    if( fp_status & SW_DENORMAL )
        printf( " denormal" );
    if( fp_status & SW_ZERODIVIDE )
        printf( " zero_divide" );
    if( fp_status & SW_OVERFLOW )
        printf( " overflow" );
    if( fp_status & SW_UNDERFLOW )
        printf( " underflow" );
    if( fp_status & SW_INEXACT )
        printf( " inexact_result" );
    printf( "\n" );
```

Classification: Intel

Systems: Math Synopsis: #include <env.h>

int clearenv(void);

Description: The clearenv function clears the process environment area. No environment variables are defined

immediately after a call to the clearenv function. Note that this clears the PATH, COMSPEC, and TZ

environment variables which may then affect the operation of other library functions.

The clearenv function may manipulate the value of the pointer environ.

Returns: The clearenv function returns zero upon successful completion. Otherwise, it will return a non-zero

value and set errno to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ENOMEM Not enough memory to allocate a control structure.

See Also: exec..., _wexec..., getenv, getenv_s, putenv, _searchenv, setenv, unsetenv,

 $\verb|_wgetenv, _wputenv, _wsearchenv, _wsetenv, _wunsetenv, spawn..., _wspawn...,$

system, _wsystem

Example: The following example clears the entire environment area and sets up a new TZ environment variable.

```
#include <env.h>
void main()
{
   clearenv();
   setenv( "TZ", "EST5EDT", 0 );
}
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <stdio.h> void clearerr(FILE *fp);

The clearerr function clears the end-of-file and error indicators for the stream pointed to by fp. **Description:**

These indicators are cleared only when the file is opened or by an explicit call to the clearerr or

rewind functions.

Returns: The clearerr function returns no value.

See Also: feof, ferror, perror, strerror

Example: #include <stdio.h>

```
void main()
   FILE *fp;
    int c;
    c = 'J';
    fp = fopen( "file", "w" );
    if( fp != NULL ) {
      fputc( c, fp );
      if( ferror( fp ) ) { /* if error
        clearerr( fp ); /* clear the error */
        fputc( c, fp ); /* and retry it
      }
    }
  }
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware Synopsis: #include <graph.h>

void _FAR _clearscreen(short area);

Description: The _clearscreen function clears the indicated *area* and fills it with the background color. The

area argument must be one of the following values:

_GCLEARSCREEN area is entire screen

_GVIEWPORT area is current viewport or clip region

_GWINDOW area is current text window

Returns: The _clearscreen function does not return a value.

See Also: _setbkcolor, _setviewport, _setcliprgn, _settextwindow

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    _setvideomode( _VRES16COLOR );
    _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
    getch();
    _setviewport( 200, 200, 440, 280 );
    _clearscreen( _GVIEWPORT );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

Synopsis: #include <time.h> clock_t clock(void);

Description: The clock function returns the number of clock ticks of processor time used by program since the

program started executing. This can be converted to seconds by dividing by the value of the macro

CLOCKS_PER_SEC.

Note that under DOS and OS/2, the clock tick counter will reset to 0 for each subsequent 24 hour

interval that elapses.

void compute(void)

Returns: The clock function returns the number of clock ticks that have occurred since the program started

executing.

See Also: asctime Functions, asctime_s, ctime Functions, ctime_s, difftime, gmtime_s,

localtime, localtime_s, mktime, strftime, time, tzset

Example: #include <stdio.h> #include <math.h> #include <time.h>

> int i, j; double x; x = 0.0;for (i = 1; $i \le 100$; i++) for($j = 1; j \le 100; j++$) x += sqrt((double) i * j);printf("%16.7f\n", x); }

clock_t start_time, end_time; start_time = clock(); compute(); end_time = clock(); printf("Execution time was %lu seconds\n", (end_time - start_time) / CLOCKS_PER_SEC);

Classification: ISO C

All, Linux, RDOS, Netware **Systems:**

}

void main()

{

clock			

Synopsis: #include <time.h>

```
int clock_getres(clockid_t clockid, struct timespec *ts);
struct timespec {
   time_t tv_sec;
   long tv_nsec;
```

};

Description: The clock_getres function retrieves the minimum resolution of the clock specified by clockid in

the ts pointer.

Returns: If successful, the function will return zero. If the call fails, the return value is the negation of the

appropriate errno value as specified below. This implementation will also set errno appropriately

on failures.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of *clockid* is invalid.

See Also: clock_settime, clock_gettime, clock_nanosleep

Classification: POSIX 1003.1

Systems: Linux Synopsis: #include <time.h>

int clock_gettime(clockid_t clockid, struct timespec *ts);

struct timespec {
 time_t tv_sec;
 long tv_nsec;
};

Description: The clock_gettime function retrieves the time for the clock specified by *clockid* in the *ts* pointer.

Returns: If successful, the function will return zero. If the call fails, the return value is the negation of the

appropriate errno value as specified below. This implementation will also set errno appropriately

on failures.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of *clockid* is invalid.

See Also: clock_settime, clock_getres, clock_nanosleep

Classification: POSIX 1003.1

Systems: Linux

Synopsis:

```
#include <time.h>
int clock_nanosleep(clockid_t clockid, int flags,
                    const struct timespec *request,
                    struct timespec *remains);
struct timespec {
   time_t tv_sec;
   long tv_nsec;
};
```

Description:

The clock_nanosleep function causes the current thread to be suspended until the time period specified by request has elapsed according to the clock specified by clockid if the flags do not contain the value TIMER_ABSTIME.

If flags does contain TIMER_ABSTIME, the clock_nanosleep function causes the current thread to be suspended until the absolute time specified by request has been reached according to the clock specified by clockid if the flags.

If remains is not NULL, the structure will contain the amount of time remaining to be slept if clock_nanosleep is interrupted by a signal.

Returns:

If successful and uninterrupted, the function will return zero. If the call fails or is interrupted, the return value is the negation of the appropriate errno value as specified below. This implementation will also set errno appropriately on failures.

Errors:

When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Constant Meaning

EINTR The sleep was interrupted by a signal.

EINVAL The value of *clockid*, *request*, or *flags* is invalid.

ENOTSUP The specified clock does not support this function.

See Also:

clock_gettime, clock_getres, clock_settime

Classification: POSIX 1003.1

Systems:

Linux

Synopsis: #include <time.h>

```
int clock_settime(clockid_t clockid, const struct timespec *ts);
struct timespec {
    time_t tv_sec;
    long tv_nsec;
};
```

Description:

The clock_settime function sets the time for the clock specified by *clockid* to the time contained in the *ts* pointer. Depending on the value of *clockid*, the function may fail if the user has insufficient privileges.

Values of ts that specify significance beyond the clock's resolution will be truncated.

Returns:

If successful, the function will return zero. If the call fails, the return value is the negation of the appropriate errno value as specified below. This implementation will also set errno appropriately on failures.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of *clockid* is invalid, or the value of *ts* exceeds the range of this clock.

EPERM The user does not have sufficient privileges to modify the specified clock.

See Also: clock_gettime, clock_getres, clock_nanosleep

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <sched.h>

```
pid_t clone( int (*fn) (void *), void *child_stack,
              int flags, void *args, ...);
            /* pid_t *ppid, void *tls, pid_t *ctid */
```

Description:

The clone function creates a "clone" of the currently running process that shares the address space of the original, parent process, and starts execution within the clone process at the fn function. The child function is called with args as its argument, and, once complete, with will terminate with the return value of fn as its exit code. This function provides a wrapper around the Linux kernel's SYS_clone system call.

The child_stack argument points to a user-allocated memory block within the process's heap for use as the cloned process's new stack space. Because the stack will grow in the direction of descending address, the *child_stack* argument should refer to the highest address in the allocated memory.

The *flags* argument may be one of the following values:

Constant	Meaning
CLONE_VM	Virtual memory should be shared across processes
CLONE_FS	File system information should be shared across processes
CLONE_FILES	File handles should be shared across processes
CLONE_SIGHAND	Signal handlers and blocked signals should be shared across processes
CLONE_PTRACE	Allow tracing within the child process (if enabled in the parent)
CLONE_VFORK	The child can wake the parent via mm_release
CLONE_PARENT	The new child should share the same parent as the cloning process
CLONE_THREAD	The new process is to be considered a thread, and should be grouped in the same thread group as the parent
CLONE_NEWNS	The child process is provided a new mount namespace
CLONE_SYSVSEM	The child process shares all System V semaphores
CLONE_SETTLS	The thread-local storage, an optional argument, should be passed and set appropriately. The user must specify the <i>tls</i> argument if this flag is set.
CLONE_PARENT_SETTID	Store the thread ID of the parent in the <i>ptid</i> argument. The user must specify the optional <i>ptid</i> argument if this flag is set.
CLONE_CHILD_CLEARTID	Clear the thread ID stored in <i>ctid</i> argument. The user must specify the optional <i>ctid</i> argument if this flag is set.

CLONE_UNTRACED The parent process cannot force tracing on the child process

CLONE_CHILD_SETTID Store the thread ID of the child process in the *ctid* argument. The

user must specify the optional ctid argument if this flag is set.

CLONE_NEWUTS The child process has a new UTS namespace

CLONE_NEWIPC The child process has a new IPC namespace

CLONE_NEWUSER The child process has a new user namespace

CLONE_NEWPID The child process has a new PID namespace

CLONE_NEWNET The child process has a new network namespace

CLONE_IO The parent and child share io contexts

This function provides a low-level threading interface that is normally meant for designing higher level thread libraries.

Returns: If successful, the function will return the process ID of the child process. If the system call fails, the

return value will be -1, and errno will be set appropriately.

Classification: WATCOM

Systems: Linux

Synopsis: #include <io.h>

> int close(int handle); int _close(int handle);

Description:

The close function closes a file at the operating system level. The handle value is the file handle returned by a successful execution of one of the creat, dup, dup2, open or _sopen functions.

The _close function is identical to close. Use _close for ANSI naming conventions.

Returns:

The close function returns zero if successful. Otherwise, it returns -1 and errno is set to indicate the

error.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant

Meaning

EBADF

The *handle* argument is not a valid file handle.

See Also:

creat, dup, dup2, open, _sopen

Example:

```
#include <fcntl.h>
#include <io.h>
void main()
  {
    int handle;
    handle = open( "file", O_RDONLY );
    if ( handle !=-1 ) {
      /* process file */
      close( handle );
  }
```

Classification: POSIX 1003.1

_close conforms to ANSI naming conventions

Systems:

```
close - All, Linux, RDOS, Netware
_close - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

```
Synopsis: #include <direct.h>
    int closedir( DIR *dirp );
    int _wclosedir( WDIR *dirp );
```

Description: The closedir function closes the directory specified by *dirp* and frees the memory allocated by

opendir.

The _wclosedir function is identical to closedir except that it closes a directory of wide

character filenames opened by _wopendir.

Returns: The closedir function returns zero if successful, non-zero otherwise.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EBADF The argument *dirp* does not refer to an open directory stream.

See Also: _dos_find..., opendir, readdir, rewinddir, _wopendir, _wreaddir, _wrewinddir

Example: To get a list of files contained in the directory \watcom\h on your default disk:

```
#include <stdio.h>
#include <direct.h>
typedef struct {
   unsigned short twosecs : 5; /* seconds / 2 */
   unsigned short minutes : 6;
    unsigned short hours : 5;
} ftime_t;
typedef struct {
   unsigned short day : 5;
   unsigned short month : 4;
   unsigned short year : 7;
} fdate_t;
void main()
   DIR *dirp;
    struct dirent *direntp;
    ftime_t *f_time;
    fdate_t *f_date;
```

```
dirp = opendir( "\\watcom\\h" );
if( dirp != NULL ) {
  for(;;) {
    direntp = readdir( dirp );
    if( direntp == NULL ) break;
    f_time = (ftime_t *)&direntp->d_time;
    f_date = (fdate_t *)&direntp->d_date;
    printf( "%-12s %d/%2.2d/%2.2d "
            "%2.2d:%2.2d:%2.2d \n",
        direntp->d_name,
        f_date->year + 1980,
        f_date->month,
        f_date->day,
        f_time->hours,
        f_time->minutes,
        f_time->twosecs * 2 );
  closedir( dirp );
}
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: POSIX 1003.1

_wclosedir is WATCOM

Systems: closedir - All, Linux, RDOS, Netware _wclosedir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Description: The _cmdname function obtains a copy of the executing program's pathname and places it in *buffer*.

Returns: If the pathname of the executing program cannot be determined then NULL is returned; otherwise the

address of buffer is returned.

See Also: getcmd

Example: #include <stdio.h>
#include <process.h>

void main()
{
 char buffer[PATH_MAX];

 printf("%s\n", _cmdname(buffer));

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <io.h>

int _commit(int handle);

Description: The _commit function commits changes to the file specified by *handle* to disk immediately.

Returns: The _commit function returns -1 if the changes have been successfully committed. Otherwise, 0 is

returned and errno is set to indicate the error.

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

```
Synopsis:
            #include <float.h>
            unsigned int _control87( unsigned int newcw,
                                        unsigned int mask );
            The _control87 function updates the control word of the 8087/80287/80387/80486. If mask is zero,
Description:
            then the control word is not updated. If mask is non-zero, then the control word is updated with bits
            from newcw corresponding to every bit that is on in mask.
Returns:
            The _control87 function returns the new control word. The description of bits defined for the
            control word is found in the <float.h> header file.
See Also:
            _clear87, _controlfp, _finite, _fpreset, _status87
Example:
            #include <stdio.h>
            #include <float.h>
            char *status[2] = { "disabled", "enabled" };
            void main()
              {
                unsigned int fp_cw = 0;
                unsigned int fp_mask = 0;
                unsigned int bits;
                fp_cw = _control87( fp_cw,
                                       fp_mask );
                printf( "Interrupt Exception Masks\n" );
                bits = fp_cw & MCW_EM;
                printf( " Invalid Operation exception %s\n",
                          status[ (bits & EM_INVALID) == 0 ] );
                printf( " Denormalized exception %s\n",
                         status[ (bits & EM_DENORMAL) == 0 ] );
                printf( " Divide-By-Zero exception %s\n",
                         status[ (bits & EM_ZERODIVIDE) == 0 ] );
                printf( " Overflow exception %s\n",
                         status[ (bits & EM_OVERFLOW) == 0 ] );
                printf( " Underflow exception %s\n",
                         status[ (bits & EM_UNDERFLOW) == 0 ] );
                printf( " Precision exception %s\n",
                         status[ (bits & EM_PRECISION) == 0 ] );
                printf( "Infinity Control = " );
                bits = fp_cw & MCW_IC;
                                               printf( "affine\n" );
                if( bits == IC_AFFINE )
                if( bits == IC_PROJECTIVE ) printf( "projective\n" );
                printf( "Rounding Control = " );
                bits = fp_cw & MCW_RC;
                if( bits == RC_NEAR )
                                               printf( "near\n" );
                                            printf( "down\n" );
printf( "up\n" );
printf( "chop\n" );
                if( bits == RC_DOWN )
                if( bits == RC_UP )
                if( bits == RC_CHOP )
```

```
printf( "Precision Control = " );
bits = fp_cw & MCW_PC;
                                    printf( "24 bits\n" );
printf( "53 bits\n" );
if ( bits == PC_24 )
if ( bits == PC_53 )
if( bits == PC_64 )
                                    printf( "64 bits\n" );
```

Classification: Intel

Systems: All, Linux, RDOS, Netware

```
Synopsis:
            #include <float.h>
            unsigned int _controlfp( unsigned int newcw,
                                        unsigned int mask );
            The _controlfp function updates the control word of the 8087/80287/80387/80486. If mask is zero,
Description:
            then the control word is not updated. If mask is non-zero, then the control word is updated with bits
            from newcw corresponding to every bit that is on in mask.
Returns:
            The _controlfp function returns the new control word. The description of bits defined for the
            control word is found in the <float.h> header file.
See Also:
            _clear87, _control87, _finite, _fpreset, _status87
Example:
            #include <stdio.h>
            #include <float.h>
            char *status[2] = { "disabled", "enabled" };
            void main()
              {
                unsigned int fp_cw = 0;
                unsigned int fp_mask = 0;
                unsigned int bits;
                fp_cw = _controlfp( fp_cw,
                                       fp_mask );
                printf( "Interrupt Exception Masks\n" );
                bits = fp_cw & MCW_EM;
                printf( " Invalid Operation exception %s\n",
                          status[ (bits & EM_INVALID) == 0 ] );
                printf( " Denormalized exception %s\n",
                         status[ (bits & EM_DENORMAL) == 0 ] );
                printf( " Divide-By-Zero exception %s\n",
                         status[ (bits & EM_ZERODIVIDE) == 0 ] );
                printf( " Overflow exception %s\n",
                         status[ (bits & EM_OVERFLOW) == 0 ] );
                printf( " Underflow exception %s\n",
                         status[ (bits & EM_UNDERFLOW) == 0 ] );
                printf( " Precision exception %s\n",
                         status[ (bits & EM_PRECISION) == 0 ] );
                printf( "Infinity Control = " );
                bits = fp_cw & MCW_IC;
                                              printf( "affine\n" );
                if( bits == IC_AFFINE )
                if( bits == IC_PROJECTIVE ) printf( "projective\n" );
                printf( "Rounding Control = " );
                bits = fp_cw & MCW_RC;
                                              printf( "near\n" );
                if( bits == RC_NEAR )
                                           printf( "down\n" );
printf( "up\n" );
printf( "chop\n" );
                if( bits == RC_DOWN )
                if( bits == RC_UP )
                if( bits == RC_CHOP )
```

```
printf( "Precision Control = " );
bits = fp_cw & MCW_PC;
                                    printf( "24 bits\n" );
printf( "53 bits\n" );
if ( bits == PC_24 )
if ( bits == PC_53 )
if( bits == PC_64 )
                                    printf( "64 bits\n" );
```

Classification: Intel

Systems: All, Linux, RDOS, Netware **Synopsis:** #include <math.h>

double copysign (double x, double y);

Description: The copysign function returns a value whose absolute value is equal to the absolute value of the

argument x and whose sign matches argument y.

Returns: A value of the same magnitude as x and the same sign as y.

Example: #include <stdio.h>

```
#include <math.h>
void main()
  {
   printf( \$f\n, copysign( -2.0, 3.0 ) );
```

produces the following:

2.000000

Classification: ISO C99

Systems: Math

Synopsis: #include <math.h> double cos(double x);

Description: The \cos function computes the cosine of x (measured in radians). A large magnitude argument may

yield a result with little or no significance.

Returns: The cos function returns the cosine value.

See Also: acos, sin, tan

Example: #include <math.h>

```
void main()
    double value;
   value = \cos(3.1415278);
```

Classification: ISO C

Systems: Math Synopsis: #include <math.h>

double cosh(double x);

Description: The cosh function computes the hyperbolic cosine of x. A range error occurs if the magnitude of x is

too large.

Returns: The cosh function returns the hyperbolic cosine value. When the argument is outside the permissible

range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to ERANGE, and print a "RANGE error" diagnostic message using the stderr

stream.

See Also: sinh, tanh, matherr

Example: #include <stdio.h>
#include <math.h>

produces the following:

1.127626

Classification: ISO C

Systems: Math

```
Synopsis:
           #include <conio.h>
           int cprintf( const char *format, ... );
```

Description: The cprintf function writes output directly to the console under control of the argument format. The putch function is used to output characters to the console. The format string is described under the

description of the printf function.

Returns: The cprintf function returns the number of characters written.

See Also: _bprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example: #include <conio.h>

```
void main()
    char *weekday, *month;
    int day, year;
    weekday = "Saturday";
    month = "April";
    day = 18;
    year = 1987;
    cprintf( "%s, %s %d, %d\n",
          weekday, month, day, year );
  }
```

produces the following:

Saturday, April 18, 1987

Classification: WATCOM

Systems: All, Linux, RDOS, Netware Synopsis: #include <conio.h>
 int cputs(const char *buf);

Description: The cputs function writes the character string pointed to by *buf* directly to the console using the

putch function. Unlike the puts function, the carriage-return and line-feed characters are not

appended to the string. The terminating null character is not written.

Returns: The cputs function returns a non-zero value if an error occurs; otherwise, it returns zero. When an error

has occurred, errno contains a value indicating the type of error that has been detected.

See Also: fputs, putch, puts

Example: #include <conio.h>

```
void main()
{
    char buffer[82];

    buffer[0] = 80;
    cgets( buffer );
    cputs( &buffer[2] );
    putch( '\r' );
    putch( '\n' );
}
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <sys/types.h>

```
#include <sys/stat.h>
```

#include <io.h>

int creat(const char *path, mode_t mode); int _creat(const char *path, mode_t mode); int _wcreat(const wchar_t *path, mode_t mode);

Description: The creat function creates (and opens) a file at the operating system level. It is equivalent to:

```
open(path, O_WRONLY | O_CREAT | O_TRUNC, mode);
```

The _creat function is identical to creat. Use _creat for ANSI naming conventions.

The _wcreat function is identical to creat except that it accepts a wide character string argument.

The name of the file to be created is given by path. When the file exists (it must be writeable), it is truncated to contain no data and the preceding mode setting is unchanged.

When the file does not exist, it is created with access permissions given by the *mode* argument. The access permissions for the file or directory are specified as a combination of bits (defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission	Meaning				
S_IRWXU	Read, write, execute/search				
S_IRUSR	Read permission				
S_IWUSR	Write permission				
S IXUSR	Execute/search permission				

The following bits define permissions for the group.

Permission	Meaning				
S_IRWXG	Read, write, execute/search				
S_IRGRP	Read permission				
S_IWGRP	Write permission				
S IXGRP	Execute/search permission				

The following bits define permissions for others.

Permission	Meaning				
S_IRWXO	Read, write, execute/search				
S_IROTH	Read permission				
S_IWOTH	Write permission				
S_IXOTH	Execute/search permission				

The following bits define miscellaneous permissions used by other implementations.

Systems:

	Permission	Meaning
	S_IREAD S_IWRITE S_IEXEC	is equivalent to S_IRUSR (read permission) is equivalent to S_IWUSR (write permission) is equivalent to S_IXUSR (execute/search permission)
	All files are readabl intended for the file	e with DOS; however, it is a good idea to set S_IREAD when read permission is
Returns:		t returns a handle for the file. When an error occurs while opening the file, -1 is o is set to indicate the error.
Errors:	When an error has o	occurred, errno contains a value indicating the type of error that has been detected.
	Constant	Meaning
	EACCES	Access denied because <i>path</i> specifies a directory or a volume ID, or a read-only file.
	EMFILE	No more handles available (too many open files).
	ENOENT	The specified <i>path</i> does not exist or <i>path</i> is an empty string.
See Also:		dup, dup2, _eof, exec, fdopen, _filelength, fileno, fstat, isatty, lseek, open, read, _setmode, _sopen, stat, _tell, write,
Example:	<pre>#include <sys #include="" <io.1<="" <sys="" pre=""></sys></pre>	/stat.h>
	<pre>void main()</pre>	
	{ int handle	e;
		creat("file", S_IWRITE S_IREAD); e != -1) {
	/* proc	ess file */
	close() }	handle);
Classification	: POSIX 1003.1 _creat conforms to 2 _wcreat is WATCO	ANSI naming conventions
~ .		

_wcreat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

creat - All, Linux, RDOS, Netware _creat - All, Linux, RDOS, Netware

creat, _creat, _wcrea

Synopsis: #include <conio.h>
 int cscanf(const char *format, ...);

Description: The cscanf function scans input from the console under control of the argument format. Following

the format string is a list of addresses to receive values. The cscanf function uses the function getche to read characters from the console. The *format* string is described under the description of

the scanf function.

Returns: The cscanf function returns EOF when the scanning is terminated by reaching the end of the input

stream. Otherwise, the number of input arguments for which values were successfully scanned and

stored is returned. When a file input error occurs, the errno global variable may be set.

See Also: fscanf, scanf, scanf, vcscanf, vfscanf, vscanf, vscanf, fwscanf, wscanf,

swscanf, vfwscanf, vwscanf, vswscanf

Example: To scan a date in the form "Saturday April 18 1987":

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis:

```
#include <time.h>
char *ctime( const time_t *timer );
char *_ctime( const time_t *timer, char *buf );
wchar_t *_wctime( const time_t *timer );
wchar_t *__wctime( const time_t *timer, wchar_t *buf );
```

Safer C:

The Safer C Library extension provides the ctime_s function which is a safer alternative to ctime. This newer ctime_s function is recommended to be used instead of the traditional "unsafe" ctime function.

Description:

The **ctime** functions convert the calendar time pointed to by *timer* to local time in the form of a string. The **ctime** function is equivalent to

```
asctime( localtime( timer ) )
```

The **ctime** functions convert the time into a string containing exactly 26 characters. This string has the form shown in the following example:

```
Sat Mar 21 15:58:27 1987\n\0
```

All fields have a constant width. The new-line character '\n' and the null character '\0' occupy the last two positions of the string.

The ISO C function **ctime** places the result string in a static buffer that is re-used each time **ctime** or asctime is called. The non-ISO C function _ctime places the result string in the buffer pointed to by buf.

The _wctime function is a wide character version of ctime except that it produces a wide character

The __wctime function is a wide character version of _ctime except that it produces a wide character string.

Whenever the **ctime** functions are called, the tzset function is also called.

The calendar time is usually obtained by using the time function. That time is Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The time set on the computer with the DOS time command and the DOS date command reflects the local time. The environment variable TZ is used to establish the time zone to which this local time applies. See the section *The TZ Environment Variable* for a discussion of how to set the time zone.

Returns: The **ctime** functions return the pointer to the string containing the local time.

See Also: asctime Functions, asctime_s, clock, ctime_s, difftime, gmtime, gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset, ctime_s

Example: #include <stdio.h> #include <time.h>

```
void main()
               time_t time_of_day;
                auto char buf[26];
               time_of_day = time( NULL );
               printf( "It is now: %s", _ctime( &time_of_day, buf ) );
           produces the following:
           It is now: Fri Dec 25 15:58:42 1987
Classification: ISO C
           _ctime is WATCOM
           _wctime is WATCOM
           __wctime is WATCOM
Systems:
           ctime - All, Linux, RDOS, Netware
           _ctime - All, Linux, RDOS
           _wctime - All, Linux
           __wctime - All, Linux
```

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
errno_t ctime_s( char * s,
                 rsize_t maxsize,
                 const time_t * timer);
#include <wchar.h>
errno_t _wctime_s( wchar_t * s,
                   rsize_t maxsize,
                   const time_t * timer);
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and ctime_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither s nor timer shall be a null pointer. maxsize shall not be less than 26 and shall not be greater than RSIZE_MAX. If there is a runtime-constraint violation, s[0] is set to a null character if s is not a null pointer and *maxsize* is not equal zero and is not greater than *RSIZE_MAX*.

Description:

The ctime_s function converts the calendar time pointed to by timer to local time in the form of a string. It is equivalent to

```
asctime_s( s, maxsize, localtime_s( timer ) )
```

Recommended practice:

The strftime function allows more flexible formatting and supports locale-specific behavior. If you do not require the exact form of the result string produced by the ctime_s function, consider using the strftime function instead.

Returns:

The ctime_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

asctime Functions, asctime_s, clock, ctime Functions, difftime, gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <time.h>
void main()
    time_t time_of_day;
    auto char buf[26];
    time_of_day = time( NULL );
    ctime_s( buf, sizeof( buf ), &time_of_day );
    printf( "It is now: %s", buf );
produces the following:
```

It is now: Mon Jan 30 14:29:55 2006

Classification: TR 24731

_wctime_s is WATCOM

Systems: ctime_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,

RDOS, Netware

 $_{\text{wctime_s}}$ - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,

Linux

Synopsis: #include <process.h>

```
int cwait( int *status, int process_id, int action );
int _cwait( int *status, int process_id, int action );
```

Description:

The cwait function suspends the calling process until the specified process terminates.

If status is not NULL, it points to a word that will be filled in with the termination status word and return code of the terminated child process.

If the child process terminated normally, then the low order byte of the status word will be set to 0, and the high order byte will contain the low order byte of the return code that the child process passed to the DOSEXIT function. The DOSEXIT function is called whenever main returns, or exit, or _Exit or _exit are explicity called.

If the child process did not terminate normally, then the high order byte of the status word will be set to 0, and the low order byte will contain one of the following values:

Value Meaning

- Hard-error abort
- 2 Trap operation
- 3 SIGTERM signal not intercepted

Note:

This implementation of the status value follows the OS/2 model and differs from the Microsoft implementation. Under Microsoft, the return code is returned in the low order byte and it is not possible to determine whether a return code of 1, 2, or 3 imply that the process terminated normally. For portability to Microsoft compilers, you should ensure that the application that is waited on does not return one of these values. The following shows how to handle the status value in a portable manner.

```
cwait ( &status, process id, WAIT CHILD );
#if defined(__WATCOMC__)
switch( status & 0xff ) {
case 0:
   printf( "Normal termination exit code = %d\n", status >> 8 );
    break;
case 1:
    printf( "Hard-error abort\n" );
case 2:
    printf( "Trap operation\n" );
   break;
case 3:
    printf( "SIGTERM signal not intercepted\n" );
    break;
default:
   printf( "Bogus return status\n" );
#else if defined(_MSC_VER)
switch ( status & 0xff ) {
case 1:
   printf( "Possible Hard-error abort\n" );
   break;
case 2:
   printf( "Possible Trap operation\n" );
    break:
   printf( "Possible SIGTERM signal not intercepted\n" );
    break;
default:
    printf( "Normal termination exit code = %d\n", status );
#endif
```

The *process_id* argument specifies which process to wait for. Under Win32, any process can wait for any other process for which the process ID is known. Under OS/2, a process can wait for any of its child processes. For example, a process ID is returned by certain forms of the spawn... functions that is used to start a child process.

The *action* argument specifies when the parent process resumes execution. This argument is ignored in Win32, but is accepted for compatibility with OS/2 (although Microsoft handles the *status* value differently from OS/2!). The possible values are:

Walt_CHILD Wait until the specified child process has ended.
 WAIT_GRANDCHILD Wait until the specified child process and all of the child processes of that child process have ended.

Under Win32, there is no parent-child relationship.

Returns:

The cwait function returns the (child's) process ID if the (child) process terminated normally. Otherwise, cwait returns -1 and sets errno to one of the following values:

```
Constant
                          Meaning
            EINVAL
                          Invalid action code
            ECHILD
                          Invalid process ID, or the child does not exist.
            EINTR
                          The child process terminated abnormally.
See Also:
            exit, _Exit, _exit, spawn..., wait
Example:
            #include <stdio.h>
            #include cess.h>
            void main()
                        process_id;
                  int
                        status;
                  int
                 process_id = spawnl( P_NOWAIT, "child.exe",
                              "child", "parm", NULL );
                  cwait( &status, process_id, WAIT_CHILD );
Classification: WATCOM
Systems:
            cwait - Win32, OS/2 1.x(all), OS/2-32
            _cwait - Win32, OS/2 1.x(all), OS/2-32
```

Synopsis: #include <i86.h>

void delay(unsigned milliseconds);

Description: The delay function suspends execution by the specified number of *milliseconds*.

Returns: The delay function has no return value.

See Also: sleep

Example: #include <i86.h>

void main()
{
 sound(200);
 delay(500); /* delay for 1/2 second */
 nosound();

Classification: WATCOM

Systems: All, RDOS, Netware

```
Synopsis:
           #include <math.h>
           extern int _dieeetomsbin( double *src, double *dest );
```

Description: The _dieeetomsbin function loads the double pointed to by src in IEEE format and converts it to Microsoft binary format, storing the result into the double pointed to by dest.

> For _dieeetomsbin IEEE Nan's and Infinities will cause overflow. IEEE denormals will be converted if within range. Otherwise, they will be converted to 0 in the Microsoft binary format.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors became standard.

Returns: The _dieeetomsbin function returns 0 if the conversion was successful. Otherwise, it returns 1 if conversion would cause an overflow.

See Also: _dmsbintoieee, _fieeetomsbin, _fmsbintoieee

Example: #include <stdio.h> #include <math.h> void main()

{ float fieee, fmsb; double dieee, dmsb; fieee = 0.5; dieee = -2.0; /* Convert IEEE format to Microsoft binary format */ _fieeetomsbin(&fieee, &fmsb); _dieeetomsbin(&dieee, &dmsb); /* Convert Microsoft binary format back to IEEE format */ _fmsbintoieee(&fmsb, &fieee); _dmsbintoieee(&dmsb, &dieee); /* Display results */ printf("fieee = %f, dieee = %f\n", fieee, dieee);

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

_dieeetomsbin			

Synopsis: #include <time.h> double difftime(time_t time1, time_t time0);

Description: The difftime function calculates the difference between the two calendar times:

time1 - time0

Returns: The difftime function returns the difference between the two times in seconds as a double.

See Also: asctime Functions, asctime_s, clock, ctime Functions, ctime_s, gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset

Example: #include <stdio.h>

```
#include <time.h>
void compute( void );
void main()
 {
    time_t start_time, end_time;
    start_time = time( NULL );
    compute();
    end_time = time( NULL );
    printf( "Elapsed time: %f seconds\n",
        difftime( end_time, start_time ) );
  }
void compute( void )
    int i, j;
    for(i = 1; i \le 20; i++) {
      for( j = 1; j \le 20; j++ )
        printf( "%3d ", i * j );
      printf( "\n" );
```

Classification: ISO C

Systems: Math **Description:** The dirname function takes a pointer to a character string that contains a pathname, and returns a

pointer to a string that is a pathname of the parent directory of that file. Trailing path separators are not

considered as part of the path.

The dirname function may modify the string pointed to by *path* and may return a pointer to static storage that may be overwritten by a subsequent call to dirname

The dirname function is not re-entrant or thread-safe.

Returns: The dirname function returns a pointer to a string that is the parent directory of path. If path is a null

pointer or points to an empty string, a pointer to the string "." is returned.

See Also: basename

Example: #include <stdio.h>
#include <libgen.h>

```
int main( void )
{

   puts( dirname( "/usr/lib" ) );
   puts( dirname( "/usr/" ) );
   puts( dirname( "usr" ) );
   puts( dirname( "/" ) );
   puts( dirname( ".." ) );
   return( 0 );
}
```

produces the following:

/usr / . /

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Synopsis: #include <i86.h> void _disable(void);

Description: The _disable function causes interrupts to become disabled.

> The _disable function would be used in conjunction with the _enable function to make sure that a sequence of instructions are executed without any intervening interrupts occurring.

Returns: The _disable function returns no value.

See Also: _enable

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <i86.h>
struct list_entry {
   struct list_entry *next;
   int
                      data;
};
volatile struct list_entry *ListHead = NULL;
volatile struct list_entry *ListTail = NULL;
void insert( struct list_entry *new_entry )
  {
    /* insert new_entry at end of linked list */
   new_entry->next = NULL;
    _disable();
                     /* disable interrupts */
   if( ListTail == NULL ) {
      ListHead = new_entry;
    } else {
      ListTail->next = new_entry;
   ListTail = new_entry;
   _enable();
               /* enable interrupts now */
  }
void main()
  {
    struct list_entry *p;
    int i;
    for( i = 1; i <= 10; i++ ) {
      p = (struct list_entry *)
          malloc( sizeof( struct list_entry ) );
      if( p == NULL ) break;
     p->data = i;
      insert( p );
  }
```

Classification: Intel

Systems: All, Linux, RDOS, Netware

_disable			

Synopsis: #include <graph.h> short _FAR _displaycursor(short mode);

Description: The _displaycursor function is used to establish whether the text cursor is to be displayed when

graphics functions complete. On entry to a graphics function, the text cursor is turned off. When the function completes, the mode setting determines whether the cursor is turned back on. The mode

argument can have one of the following values:

_GCURSORON the cursor will be displayed

_GCURSOROFF the cursor will not be displayed

Returns: The _displaycursor function returns the previous setting for *mode*.

See Also: _gettextcursor, _settextcursor

Example: #include <stdio.h> #include <graph.h>

```
main()
    char buf[ 80 ];
    _setvideomode( _TEXTC80 );
    _settextposition(2, 1);
    _displaycursor( _GCURSORON );
    _outtext( "Cursor ON\n\nEnter your name >" );
    gets( buf );
   _displaycursor( _GCURSOROFF );
   _settextposition(6, 1);
   _outtext( "Cursor OFF\n\nEnter your name >" );
    gets (buf);
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

DOS **Systems:**

```
Synopsis:
            #include <stdlib.h>
            div_t div( int numer, int denom );
            typedef struct {
                 int quot; /* quotient */
                                 /* remainder */
                 int rem;
            } div_t;
Description:
            The div function calculates the quotient and remainder of the division of the numerator numer by the
            denominator denom.
Returns:
            The div function returns a structure of type div_t which contains the fields quot and rem.
See Also:
            ldiv, lldiv, imaxdiv
Example:
            #include <stdio.h>
            #include <stdlib.h>
            void print_time( int seconds )
                  div_t min_sec;
                  min_sec = div( seconds, 60 );
                  printf( "It took %d minutes and %d seconds\n",
                           min_sec.quot, min_sec.rem );
            }
            void main( void )
                 print_time( 130 );
            produces the following:
            It took 2 minutes and 10 seconds
Classification: ISO C90
Systems:
            All, Linux, RDOS, Netware
```

Synopsis: #include <math.h> extern int _dmsbintoieee(double *src, double *dest);

Description: The _dmsbintoieee function loads the double pointed to by src in Microsoft binary format and converts it to IEEE format, storing the result into the double pointed to by dest.

> The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors became standard.

Returns: The _dmsbintoieee function returns 0 if the conversion was successful. Otherwise, it returns 1 if conversion would cause an overflow.

See Also: _dieeetomsbin, _fieeetomsbin, _fmsbintoieee

Example: #include <stdio.h> #include <math.h> void main() float fieee, fmsb; double dieee, dmsb;

fieee = 0.5; dieee = -2.0; /* Convert IEEE format to Microsoft binary format */ _fieeetomsbin(&fieee, &fmsb); _dieeetomsbin(&dieee, &dmsb); /* Convert Microsoft binary format back to IEEE format */ _fmsbintoieee(&fmsb, &fieee); _dmsbintoieee(&dmsb, &dieee); /* Display results */ printf("fieee = %f, dieee = %f\n", fieee, dieee); }

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

_dmsbintoieee			

Synopsis:

```
#include <dos.h>
#if defined(__NT__) | \
  ( defined(\_OS2\_) && \
        (defined(__386__) | defined(__PPC__))))
unsigned _dos_allocmem( unsigned size,
                        void * *segment);
#else
unsigned _dos_allocmem( unsigned size,
                        unsigned *segment);
#endif
```

Description:

The _dos_allocmem function uses system call 0x48 to allocate size paragraphs directly from DOS. The size of a paragraph is 16 bytes. The allocated memory is always paragraph aligned. The segment descriptor for the allocated memory is returned in the word pointed to by segment. If the allocation request fails, the maximum number of paragraphs that can be allocated is returned in this word instead.

For 32-bit DOS applications, it is recommended that the corresponding DPMI services be used.

Returns:

The _dos_allocmem function returns zero if successful. Otherwise, it returns an OS error code and sets errno accordingly.

See Also: alloca, calloc, _dos_freemem, _dos_setblock, halloc, malloc

Example:

```
#include <stdio.h>
#include <dos.h>
void main( void )
#if defined(__NT__) | \
  ( defined(__OS2__) && \
        (defined(__386__) || defined(__PPC__)) )
    void *segment;
#else
    unsigned segment;
#endif
    /* Try to allocate 100 paragraphs, then free them */
    if( _dos_allocmem( 100, &segment ) != 0 ) {
        printf( "_dos_allocmem failed\n" );
        printf( "Only %u paragraphs available\n",
                 segment );
    } else {
        printf( "_dos_allocmem succeeded\n" );
        if( _dos_freemem( segment ) != 0 ) {
            printf( "_dos_freemem failed\n" );
        } else {
            printf( "_dos_freemem succeeded\n" );
    }
```

Classification: DOS

Systems: DOS, Win32, OS/2 1.x(all), OS/2-32, DOS/PM

_dos_allocmem			

Synopsis: #include <dos.h> unsigned _dos_close(int handle);

Description: The _dos_close function uses system call 0x3E to close the file indicated by *handle*. The value for handle is the one returned by a function call that created or last opened the file.

Returns: The _dos_close function returns zero if successful. Otherwise, it returns an OS error code and sets errno accordingly.

See Also: creat, _dos_creat, _dos_creatnew, _dos_open, dup, fclose, open

Example: #include <stdio.h> #include <dos.h> #include <fcntl.h> void main() int handle; /* Try to open "stdio.h" and then close it */ if(_dos_open("stdio.h", O_RDONLY, &handle) != 0){ printf("Unable to open file\n"); } else { printf("Open succeeded\n"); if(_dos_close(handle) != 0) { printf("Close failed\n"); printf("Close succeeded\n"); }

Classification: DOS

}

DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM **Systems:**

Synopsis: #include <dos.h>
unsigned _dos_commit(int handle);

Description: The _dos_commit function uses system call 0x68 to flush to disk the DOS buffers associated with the

file indicated by handle. It also forces an update on the corresponding disk directory and the file

allocation table.

Returns: The _dos_commit function returns zero if successful. Otherwise, it returns an OS error code and sets

errno accordingly.

See Also: __dos_close, _dos_creat, _dos_open, _dos_write, fflush

Example: #include <stdio.h>

#include <dos.h>
#include <fcntl.h>
void main()

int handle;
if(_dos_open("file", O_RDONLY, handle) != 0) {

} else {
 if(_dos_commit(handle) == 0) {
 printf("Commit succeeded.\n");
 }
 _dos_close(handle);
}

printf("Unable to open file\n");

produces the following:

Commit succeeded.

Classification: DOS

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM

```
Synopsis:
           #include <dos.h>
           unsigned _dos_creat( const char *path,
                                 unsigned attribute,
                                 int *handle );
```

Description:

The _dos_creat function uses system call 0x3C to create a new file named path, with the access attributes specified by attribute. The handle for the new file is returned in the word pointed to by handle. If the file already exists, the contents will be erased, and the attributes of the file will remain unchanged. The possible values for attribute are:

	Attribute	Meaning						
	_A_NORMAL	Indicates a normal file. File can be read or written without any restrictions.						
	_A_RDONLY	POONLY Indicates a read-only file. File cannot be opened for "write".						
	_A_HIDDEN	Indicates a hidden file. This file will not show up in a normal directory search.						
	_A_SYSTEM	Indicates a system file. This file will not show up in a normal directory search.						
Returns:	The _dos_cre	at function returns zero if successful. Otherwise, it returns an OS error code and sets gly.						
See Also:	· — —	creat, _dos_creatnew, _dos_open, _dos_close, open, fdopen, fopen, freopen, _fsopen, _grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen						
Example:	<pre>#include <stdio.h> #include <dos.h></dos.h></stdio.h></pre>							
	<pre>void main() { int han</pre>	dle;						
	print } else print	<pre>s_creat("file", _A_NORMAL, &handle) != 0){ f("Unable to create file\n"); { f("Create succeeded\n"); close(handle);</pre>						

Classification: DOS

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM

_dos_creat			

Synopsis: #include <dos.h>

unsigned _dos_creatnew(const char *path, unsigned attribute, int *handle);

Description:

The _dos_creatnew function uses system call 0x5B to create a new file named path, with the access attributes specified by attribute. The handle for the new file is returned in the word pointed to by handle. If the file already exists, the create will fail. The possible values for attribute are:

Attribute Meaning

A NORMAL Indicates a normal file. File can be read or written without any restrictions.

Indicates a read-only file. File cannot be opened for "write". _A_RDONLY

Indicates a hidden file. This file will not show up in a normal directory search. A HIDDEN

_A_SYSTEM Indicates a system file. This file will not show up in a normal directory search.

Returns:

The _dos_creatnew function returns zero if successful. Otherwise, it returns an OS error code and sets errno. Possible values and their interpretations:

Constant Meaning **EACCES** Access denied because the directory is full, or the file exists and cannot be overwritten. **EEXIST** File already exists **EMFILE** No more handles available (i.e., too many open files)

Path or file not found

See Also:

ENOENT

creat, _dos_creat, _dos_open, _dos_close, open, fdopen, fopen, freopen, _fsopen, _grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen

Example:

```
#include <stdio.h>
#include <dos.h>
void main()
    int handle1, handle2;
    if( _dos_creat( "file", _A_NORMAL, &handle1 ) ){
      printf( "Unable to create file\n" );
    } else {
      printf( "Create succeeded\n" );
      if( _dos_creatnew( "file", _A_NORMAL, &handle2 ) ){
        printf( "Unable to create new file\n" );
      _dos_close( handle1 );
    }
  }
```

Classification: DOS

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM

```
Synopsis:
          #include <dos.h>
          int dosexterr( struct DOSERROR *err_info );
          struct _DOSERROR {
              int exterror; /* contents of AX register */
              char errclass; /* contents of BH register */
              char action; /* contents of BL register */
                               /* contents of CH register */
                      locus;
          };
```

Description:

The dosexterr function extracts extended error information following a failed DOS function. This information is placed in the structure located by err_info. This function is only useful with DOS version 3.0 or later.

You should consult the technical documentation for the DOS system on your computer for an interpretation of the error information.

Returns:

The dosexterr function returns an unpredictable result when the preceding DOS call did not result in an error. Otherwise, dosexterr returns the number of the extended error.

See Also: perror

Example:

```
#include <stdio.h>
#include <dos.h>
#include <fcntl.h>
struct _DOSERROR dos_err;
void main()
  {
    int handle;
    /* Try to open "stdio.h" and then close it */
    if( _dos_open( "stdio.h", O_RDONLY, &handle ) != 0 ){
      dosexterr( &dos_err );
      printf( "Unable to open file\n" );
      printf( "exterror (AX) = %d\n", dos_err.exterror );
      printf( "errclass (BH) = %d\n", dos_err.errclass );
      printf( "action (BL) = %d\n", dos_err.action );
      printf( "locus
                        (CH) = dn'', dos_err.locus);
    } else {
      printf( "Open succeeded\n" );
      if( _dos_close( handle ) != 0 ) {
        printf( "Close failed\n" );
      } else {
        printf( "Close succeeded\n" );
    }
  }
```

produces the following:

dosexterr

```
Unable to open file exterror (AX) = 2 errclass (BH) = 8 action (BL) = 3 locus (CH) = 2
```

Classification: DOS

Systems: DOS, Windows, Win386, DOS/PM

```
Synopsis:
          #include <dos.h>
          unsigned _dos_findfirst( const char *path,
                                   unsigned attributes,
                                   struct find_t *buffer );
          unsigned _dos_findnext( struct find_t *buffer );
          unsigned _dos_findclose( struct find_t *buffer );
          struct find_t {
              char
                             reserved[21]; /* reserved for use by DOS
                             attrib; /* attribute byte for file
              char
                                                                         */
                                          /* time of last write to file */
              unsigned short wr_time;
                                          /* date of last write to file */
              unsigned short wr_date;
              unsigned long size;
                                          /* length of file in bytes
                                                                         */
          #if defined(__OS2__) | defined(__NT__)
                             name[256]; /* null-terminated filename
                                                                        */
          #else
                                          /* null-terminated filename
                             name[13];
                                                                        * /
              char
          #endif
          };
          unsigned _wdos_findfirst( const wchar_t *path,
                                    unsigned attributes,
                                    struct _wfind_t *buffer );
          unsigned _wdos_findnext( struct _wfind_t *buffer );
          unsigned _wdos_findclose( struct _wfind_t *buffer );
          struct _wfind_t {
              char
                             reserved[21]; /* reserved for use by DOS
                             attrib; /* attribute byte for file
              char
                                                                        */
                                         /* time of last write to file */
              unsigned short wr_time;
                                         /* date of last write to file */
              unsigned short wr_date;
              unsigned long size; /* length of file in bytes
                                                                        */
          #if defined(__OS2__) | defined(__NT__)
                            name[256]; /* null-terminated filename
                                                                        */
              wchar_t
          #else
                                                                        */
                           name[13]; /* null-terminated filename
              wchar_t
          #endif
          };
```

Description:

The _dos_findfirst function uses system call 0x4E to return information on the first file whose name and attributes match the path and attributes arguments. The information is returned in a find_t structure pointed to by buffer. The path argument may contain wildcard characters ('?' and '*'). The attributes argument may be any combination of the following constants:

Attribute	Meaning
_A_NORMAL	Indicates a normal file. File can be read or written without any restrictions.
_A_RDONLY	Indicates a read-only file. File cannot be opened for "write".
_A_HIDDEN	Indicates a hidden file. This file will not show up in a normal directory search.
_A_SYSTEM	Indicates a system file. This file will not show up in a normal directory search.
_A_VOLID	Indicates a volume-ID.

_A_SUBDIR Indicates a sub-directory.

_A_ARCH This is the archive flag. It is set whenever the file is modified, and is cleared by the MS-DOS BACKUP command and other backup utility programs.

The attributes argument is interpreted by DOS as follows:

- 1. If _A_NORMAL is specified, then normal files are included in the search.
- 2. If any of _A_HIDDEN, _A_SYSTEM, _A_SUBDIR are specified, then normal files and the specified type of files are included in the search.
- 3. If _A_VOLID is specified, then volume-ID's are also included in the search. Note: The _A_VOLID attribute is not supported on systems other than DOS (e.g. Win32, OS/2).
- 4. _A_RDONLY and _A_ARCH are ignored by this function.

The format of the wr_time field is described by the following structure (this structure is not defined in any Open Watcom header file).

```
typedef struct {
   unsigned short twosecs : 5;    /* seconds / 2    */
   unsigned short minutes : 6;    /* minutes (0,59) */
   unsigned short hours : 5;    /* hours (0,23)    */
} ftime_t;
```

The format of the wr_date field is described by the following structure (this structure is not defined in any Open Watcom header file).

```
typedef struct {
   unsigned short day : 5;     /* day (1,31) */
   unsigned short month : 4;     /* month (1,12) */
   unsigned short year : 7;     /* 0 is 1980 */
} fdate_t;
```

The _dos_findnext function uses system call 0x4F to return information on the next file whose name and attributes match the pattern supplied to the _dos_findfirst function.

On some systems (e.g. Win32, OS/2), you must call _dos_findclose to indicate that you are done matching files. This function deallocates any resources that were allocated by the _dos_findfirst function.

The _wdos_find... functions are similar to their counterparts but operate on wide character strings.

Returns: The _dos_find... functions return zero if successful. Otherwise, the _dos_findfirst and _dos_findnext functions return an OS error code and set errno accordingly.

See Also: opendir, readdir, closedir

Example: #include <stdio.h>
 #include <dos.h>

 void main()
{
 struct find_t fileinfo;
 unsigned rc; /* return code */

```
/* Display name and size of "*.c" files */
               rc = _dos_findfirst( "*.c", _A_NORMAL, &fileinfo );
               while( rc == 0 ) {
                   printf( "%14s %10ld\n", fileinfo.name,
                                            fileinfo.size );
                   rc = _dos_findnext( &fileinfo );
               #if defined(__OS2__)
               _dos_findclose( &fileinfo );
               #endif
Classification: DOS
           _dos_findclose - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
           DOS/PM
           _dos_findfirst - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
           DOS/PM
           _dos_findnext - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
          DOS/PM
          _wdos_findclose - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

_wdos_findfirst - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32 _wdos_findnext - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Systems:

```
Synopsis:
            #include <dos.h>
            #if defined(__NT__) | \
               ( defined(__OS2__) && \
                     (defined(__386__) | defined(__PPC__)))
            unsigned _dos_freemem( void *
                                               segment );
            #else
            unsigned _dos_freemem( unsigned segment );
            #endif
Description:
            The _dos_freemem function uses system call 0x49 to release memory that was previously allocated
            by _dos_allocmem. The value contained in segment is the one returned by a previous call to
            _dos_allocmem.
            For 32-bit DOS applications, it is recommended that the corresponding DPMI services be used.
Returns:
            The _dos_freemem function returns zero if successful. Otherwise, it returns an OS error code and
            sets errno accordingly.
See Also:
            _dos_allocmem, _dos_setblock, free, hfree
Example:
            #include <stdio.h>
            #include <dos.h>
            void main( void )
            #if defined(__NT__) | \
               ( defined(__OS2__) && \
                      (defined(__386__) | defined(__PPC__)) )
                 void *segment;
            #else
                 unsigned segment;
            #endif
                 /* Try to allocate 100 paragraphs, then free them */
                 if( _{dos\_allocmem(100, \&segment)} != 0 ) {
                     printf( "\_dos\_allocmem failed\n" );
                     printf( "Only %u paragraphs available\n",
                                segment );
                 } else {
                     printf( "_dos_allocmem succeeded\n" );
                     if( _dos_freemem( segment ) != 0 ) {
                          printf( "_dos_freemem failed\n" );
                          printf( "_dos_freemem succeeded\n" );
                 }
Classification: DOS
```

DOS, Win32, OS/2 1.x(all), OS/2-32, DOS/PM

Systems:

	_dos_freemem

```
Synopsis:
            #include <dos.h>
            void _dos_getdate( struct dosdate_t *date );
            struct dosdate_t {
                                           /* 1-31
                unsigned char day;
                                           /* 1-12
                                                                 */
                unsigned char month;
                unsigned short year; /* 1980-2099
                                                                 */
                unsigned char dayofweek; /* 0-6 (0=Sunday) */
            };
Description:
           The _dos_getdate function uses system call 0x2A to get the current system date. The date
            information is returned in a dosdate_t structure pointed to by date.
Returns:
           The _dos_getdate function has no return value.
See Also:
            _dos_gettime, _dos_setdate, _dos_settime, gmtime, localtime, mktime, time
Example:
            #include <stdio.h>
            #include <dos.h>
            void main()
              {
                struct dosdate_t date;
                struct dostime_t time;
                /* Get and display the current date and time */
                _dos_getdate( &date );
                _dos_gettime( &time );
                printf( "The date (MM-DD-YYYY) is: %d-%d-%d\n",
                                date.month, date.day, date.year );
                printf( "The time (HH:MM:SS) is: %.2d:\%.2d\n",
                                time.hour, time.minute, time.second );
              }
            produces the following:
            The date (MM-DD-YYYY) is: 12-25-1989
            The time (HH:MM:SS) is: 14:23:57
Classification: DOS
Systems:
           DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM
```

```
unsigned _dos_getdiskfree( unsigned drive,
                                        struct diskfree_t *diskspace );
            struct diskfree_t {
                 unsigned short total_clusters;
                 unsigned short avail_clusters;
                 unsigned short sectors_per_cluster;
                 unsigned short bytes_per_sector;
            };
Description:
            The _dos_getdiskfree function uses system call 0x36 to obtain useful information on the disk
            drive specified by drive. Specify 0 for the default drive, 1 for drive A, 2 for drive B, etc. The
            information about the drive is returned in the structure diskfree_t pointed to by diskspace.
Returns:
            The _dos_getdiskfree function returns zero if successful. Otherwise, it returns a non-zero value
            and sets errno to EINVAL indicating an invalid drive was specified.
See Also:
            _dos_getdrive, _dos_setdrive, _getdiskfree, _getdrive
Example:
            #include <stdio.h>
            #include <dos.h>
            void main()
              {
                 struct diskfree_t disk_data;
                 /* get information about drive 3 (the C drive) */
                 if( _dos_getdiskfree( 3, &disk_data ) == 0 ) {
                   printf( "total clusters: %u\n",
                                        disk_data.total_clusters );
                   printf( "available clusters: %u\n",
                                        disk_data.avail_clusters );
                   printf( "sectors/cluster: %u\n",
                                        disk_data.sectors_per_cluster );
                   printf( "bytes per sector: u\n",
                                        disk_data.bytes_per_sector );
                 } else {
                   printf( "Invalid drive specified\n" );
              }
            produces the following:
            total clusters: 16335
            available clusters: 510
            sectors/cluster: 4
            bytes per sector: 512
Classification: DOS
```

Synopsis:

Systems:

#include <dos.h>

_dos_getdiskfree			

```
Synopsis:
             #include <dos.h>
             void _dos_getdrive( unsigned *drive );
Description:
             The _dos_getdrive function uses system call 0x19 to get the current disk drive number. The
             current disk drive number is returned in the word pointed to by drive. A value of 1 is drive A, 2 is drive
             B, 3 is drive C, etc.
Returns:
             The _dos_getdrive function has no return value.
See Also:
             _dos_getdiskfree, _dos_setdrive, _getdiskfree, _getdrive
Example:
             #include <stdio.h>
             #include <dos.h>
             void main()
                {
                  unsigned drive;
                  _dos_getdrive( &drive );
                  printf( "The current drive is c\n",
                                 'A' + drive - 1 );
                }
             produces the following:
```

Systems:

DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM

The current drive is C

Returns:

Description: The _dos_getfileattr function uses system call 0x43 to get the current attributes of the file or directory that *path* points to. The possible attributes are:

Attribute Meaning $_A_NORMAL$ Indicates a normal file. File can be read or written without any restrictions. _A_RDONLY Indicates a read-only file. File cannot be opened for "write". Indicates a hidden file. This file will not show up in a normal directory search. _A_HIDDEN _A_SYSTEM Indicates a system file. This file will not show up in a normal directory search. _A_VOLID Indicates a volume-ID. _A_SUBDIR Indicates a sub-directory. This is the archive flag. It is set whenever the file is modified, and is cleared by the $_A_ARCH$ MS-DOS BACKUP command and other backup utility programs.

The _dos_getfileattr function returns zero if successful. Otherwise, it returns an OS error code and sets errno accordingly.

See Also: _dos_setfileattr **Example:** #include <stdio.h> #include <dos.h> print_attribute() { unsigned attribute; _dos_getfileattr("file", &attribute); printf("File attribute is %d\n", attribute); if(attribute & _A_RDONLY) { printf("This is a read-only file.\n"); } else { printf("This is not a read-only file.\n"); } void main()

handle;

{

int

```
if( _dos_creat( "file", _A_RDONLY, &handle ) != 0 ) {
  printf( "Error creating file\n" );
print_attribute();
_dos_setfileattr( "file", _A_NORMAL );
print_attribute();
_dos_close( handle );
```

Synopsis: #include <dos.h>

Description:

The _dos_getftime function uses system call 0x57 to get the date and time that the file associated with *handle* was last modified. The date consists of the year, month and day packed into 16 bits as follows:

Bits	Meaning
bits 0-4	Day (1-31)
bits 5-8	Month (1-12)
bits 9-15	Year (0-119 representing 1980-2099)

The time consists of the hour, minute and seconds/2 packed into 16 bits as follows:

Bits	Meaning
bits 0-4	Seconds/2 (0-29)
bits 5-10	Minutes (0-59)
bits 11-15	Hours (0-23)

gats a mma

The _dos_getftime function returns zero if successful. Otherwise, it returns an OS error code and sets errno accordingly.

```
See Also: __dos__setftime
```

```
Example:
```

Returns:

```
if( _dos_open( "file", O_RDONLY, &handle ) != 0 ) {
        printf( "Unable to open file\n" );
    } else {
        printf( "Open succeeded\n" );
        _dos_getftime( handle, &date, &time );
        printf( "The file was last modified on d/d/d",
                MONTH(date), DAY(date), YEAR(date));
        printf( " at %.2d:%.2d:%.2d\n",
                HOUR(time), MINUTE(time), SECOND(time));
        _dos_close( handle );
    }
}
produces the following:
Open succeeded
The file was last modified on 12/29/1989 at 14:32:46
```

```
Synopsis:
            #include <dos.h>
            void _dos_gettime( struct dostime_t *time );
            struct dostime_t {
                unsigned char hour;
                                           /* 0-23
                unsigned char minute; /* 0-59
                                                                     */
                unsigned char second; /* 0-59
                unsigned char hsecond; /* 1/100 second; 0-99 */
            };
Description:
           The _dos_gettime function uses system call 0x2C to get the current system time. The time
            information is returned in a dostime_t structure pointed to by time.
Returns:
           The _dos_gettime function has no return value.
See Also:
            _dos_getdate, _dos_setdate, _dos_settime, gmtime, localtime, mktime, time
Example:
            #include <stdio.h>
            #include <dos.h>
            void main()
              {
                struct dosdate_t date;
                struct dostime_t time;
                /* Get and display the current date and time */
                _dos_getdate( &date );
                _dos_gettime( &time );
                printf( "The date (MM-DD-YYYY) is: %d-%d-%d\n",
                    date.month, date.day, date.year);
                printf( "The time (HH:MM:SS) is: %.2d:\%.2d\n",
                    time.hour, time.minute, time.second );
              }
            produces the following:
            The date (MM-DD-YYYY) is: 12-25-1989
            The time (HH:MM:SS) is: 14:23:57
Classification: DOS
Systems:
           DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, DOS/PM
```

```
Synopsis:
            #include <dos.h>
            void (__interrupt __far *_dos_getvect(unsigned intnum))();
Description:
            The _dos_getvect function gets the current value of interrupt vector number intnum.
Returns:
            The _dos_getvect function returns a far pointer to the current interrupt handler for interrupt number
            intnum.
See Also:
            _chain_intr, _dos_keep, _dos_setvect
Example:
            #include <stdio.h>
            #include <dos.h>
            volatile int clock_ticks;
            void (__interrupt __far *prev_int_1c)();
#define BLIP_COUNT (5*18) /* 5 seconds */
            void __interrupt __far timer_rtn()
                 ++clock_ticks;
                 _chain_intr( prev_int_1c );
            int delays = 0;
            int compile_a_line()
                 if( delays > 15 ) return( 0 );
                 delay( 1000 ); /* delay for 1 second */
                 printf( "Delayed for 1 second\n" );
                delays++;
                 return(1);
              }
            void main()
              {
                 prev_int_1c = _dos_getvect( 0x1c );
                 _dos_setvect( 0x1c, timer_rtn );
                 while( compile_a_line() ) {
                     if( clock_ticks >= BLIP_COUNT ) {
                          putchar( '.' );
                          clock_ticks -= BLIP_COUNT;
                 _dos_setvect( 0x1c, prev_int_1c );
```

Classification: WATCOM

Systems: DOS, Windows, DOS/PM

_dos_getvect				

Synopsis: #include <dos.h> void _dos_keep(unsigned retcode, unsigned memsize);

Description: The _dos_keep function is used to install terminate-and-stay-resident programs ("TSR's") in

memory. The amount of memory kept for the program is memsize paragraphs (a paragraph is 16 bytes) from the Program Segment Prefix which is stored in the variable _psp. The value of retcode is

returned to the parent process.

Returns: The _dos_keep function does not return to its caller.

See Also: _chain_intr, _dos_getvect, _dos_setvect

Example: #include <dos.h>

```
void permanent()
    /* . */
    /* . */
void transient()
void main()
    /* initialize our TSR */
    transient();
    /*
        now terminate and keep resident
        the non-transient portion
        Note: following calculation only works in .COM files
    _{dos_{keep}(0, (FP_{OFF(transient) + 15)} >> 4);
```

Classification: DOS

Systems: DOS Synopsis: #include <dos.h>

#include <fcntl.h>
#include <share.h>

Description:

The _dos_open function uses system call 0x3D to open the file specified by *path*, which must be an existing file. The *mode* argument specifies the file's access, sharing and inheritance permissions. The access mode must be one of:

Mode	Meaning
O_RDONLY	Read only
O_{WRONLY}	Write only
O_RDWR	Both read and write

The sharing permissions, if specified, must be one of:

Permission	Meaning		
SH_COMPAT	Set compatibility mode.		
SH_DENYRW	Prevent read or write access to the file.		
SH_DENYWR	Prevent write access of the file.		
SH_DENYRD	Prevent read access to the file.		
SH_DENYNO	Permit both read and write access to the file.		

The inheritance permission, if specified, is:

Permission Meaning

O_NOINHERIT File is not inherited by a child process

Returns:

See Also:

The _dos_open function returns zero if successful. Otherwise, it returns an MS-DOS error code and sets error to one of the following values:

Constant	Meaning
EACCES	Access denied because <i>path</i> specifies a directory or a volume ID, or opening a read-only file for write access
EINVAL	A sharing mode was specified when file sharing is not installed, or access-mode value is invalid
EMFILE	No more handles available, (too many open files)
ENOENT	Path or file not found
	os_creat, _dos_creatnew, _dos_read, _dos_write, fdopen, fopen, en, _grow_handles, _hdopen, open, _open_osfhandle, _popen,

_sopen

```
Example:
           #include <stdio.h>
           #include <dos.h>
           #include <fcntl.h>
           #include <share.h>
           void main()
             {
               int handle;
               if( _{dos\_open}( "file", O_{RDONLY}, &handle ) != 0 ) {
                   printf( "Unable to open file\n" );
               } else {
                   printf( "Open succeeded\n" );
                   _dos_close( handle );
```

Description: The _dos_read function uses system call 0x3F to read *count* bytes of data from the file specified by *handle* into the buffer pointed to by *buffer*. The number of bytes successfully read will be stored in the

unsigned integer pointed to by bytes.

Returns: The _dos_read function returns zero if successful. Otherwise, it returns an OS error code and sets

errno accordingly.

See Also: __dos_close, _dos_open, _dos_write

Example: #include <stdio.h>
#include <dos.h>
#include <fcntl.h>

```
void main()
{
   unsigned len_read;
   int      handle;
   auto char buffer[80];

   if( _dos_open( "file", O_RDONLY, &handle ) != 0 ) {
      printf( "Unable to open file\n" );
   } else {
      printf( "Open succeeded\n" );
      _dos_read( handle, buffer, 80, &len_read );
      _dos_close( handle );
   }
}
```

Classification: DOS

```
Synopsis:
           #include <dos.h>
           unsigned _dos_setblock( unsigned size,
                                     unsigned segment,
                                     unsigned *maxsize );
```

Description: The _dos_setblock function uses system call 0x4A to change the size of segment, which was previously allocated by _dos_allocmem, to size paragraphs. If the request fails, the maximum number of paragraphs that this memory block can be changed to is returned in the word pointed to by maxsize.

For 32-bit DOS applications, it is recommended that the corresponding DPMI services be used.

Returns: The _dos_setblock function returns zero if successful. Otherwise, it returns an OS error code and sets errno to ENOMEM indicating a bad segment value, insufficient memory or corrupted memory.

See Also: _dos_allocmem, _dos_freemem, realloc

#if defined(__DOS___)

} else {

Example: #include <stdio.h> #include <dos.h> void main(void) #if defined(__NT__) | \ (defined(__OS2__) && \ (defined(__386__) | defined(__PPC__)))) void *segment; #else unsigned segment; #endif /* Try to allocate 100 paragraphs, then free them */ if $(_dos_allocmem(100, \&segment) != 0) {$ printf("_dos_allocmem failed\n"); printf("Only %u paragraphs available\n", segment); } else { printf("_dos_allocmem succeeded\n");

{ unsigned maxsize = 0;

#endif

printf("_dos_setblock succeeded\n");

/* Try to increase it to 200 paragraphs */

if(_dos_setblock(200, segment, &maxsize) != 0) { printf("_dos_setblock failed: max=%u, err=%s\n", maxsize, strerror(errno));

```
if( _dos_freemem( segment ) != 0 ) {
        printf( "_dos_freemem failed\n" );
} else {
        printf( "_dos_freemem succeeded\n" );
}
}
```

Systems: DOS, DOS/PM

```
Synopsis:
           #include <dos.h>
           unsigned _dos_setdate( struct dosdate_t *date );
           struct dosdate_t {
                                               /* 1-31
                                                                  */
                unsigned char
                                 day;
                                                                  */
                unsigned char month;
                                              /* 1-12
                                              /* 1980-2099
                                                                  */
                unsigned short year;
                unsigned char dayofweek;
                                              /* 0-6 (0=Sunday) */
           };
Description:
           The _dos_setdate function uses system call 0x2B to set the current system date. The date
           information is passed in a dosdate_t structure pointed to by date.
Returns:
           The _dos_setdate function returns zero if successful. Otherwise, it returns an OS error code and
           sets errno accordingly.
See Also:
           _dos_getdate, _dos_gettime, _dos_settime, gmtime, localtime, mktime, time
Example:
           #include <stdio.h>
           #include <dos.h>
           void main()
              {
                struct dosdate_t date;
                struct dostime_t time;
                /* Get and display the current date and time */
                dos getdate ( &date );
                _dos_gettime( &time );
                printf( "The date (MM-DD-YYYY) is: %d-%d-%d\n",
                    date.month, date.day, date.year);
                printf( "The time (HH:MM:SS) is: %.2d:\%.2d:\%.2d\n",
                    time.hour, time.minute, time.second );
                /* Change it to the turn of the century */
                date.year = 1999;
                date.month = 12;
                date.day = 31;
                time.hour = 23;
                time.minute = 59;
                _dos_setdate( &date );
                _dos_settime( &time );
                printf( "New date (MM-DD-YYYY) is: %d-%d-%d\n",
                    date.month, date.day, date.year );
                printf( "New time (HH:MM:SS) is: %.2d:%.2d:%.2d\n",
                    time.hour, time.minute, time.second );
              }
           produces the following:
           The date (MM-DD-YYYY) is: 12-25-1989
           The time (HH:MM:SS) is: 14:23:15
           New date (MM-DD-YYYY) is: 12-31-1999
           New time (HH:MM:SS) is: 23:59:16
```

_dos_setdate

Classification: DOS

Synopsis: #include <dos.h>

void _dos_setdrive(unsigned drive, unsigned *total);

Description: The _dos_setdrive function uses system call 0x0E to set the current default disk drive to be the

drive specified by drive, where 1 = drive A, 2 = drive B, etc. The total number of disk drives is returned in the word pointed to by total. For DOS versions 3.0 or later, the minimum number of drives returned

is 5.

Returns: The _dos_setdrive function has no return value. If an invalid drive number is specified, the

function fails with no error indication. You must use the _dos_getdrive function to check that the

desired drive has been set.

See Also: _dos_getdiskfree, _dos_getdrive, _getdiskfree, _getdrive

Example: #include <stdio.h> #include <dos.h>

```
void main()
  {
    unsigned drive1, drive2, total;
   _dos_getdrive( &drive1 );
   printf( "Current drive is %c\n", 'A' + drive1 - 1 );
    /* try to change to drive C */
   _dos_setdrive(3, &total);
   _dos_getdrive( &drive2 );
   printf( "Current drive is %c\n", 'A' + drive2 - 1 );
    /* go back to original drive */
   _dos_setdrive( drive1, &total );
   _dos_getdrive( &drivel );
   printf( "Current drive is %c\n", 'A' + drive1 - 1 );
   printf( "Total number of drives is %u\n", total );
```

produces the following:

Current drive is D Current drive is C Total number of drives is 6

Classification: DOS

Returns:

Description: The _dos_setfileattr function uses system call 0x43 to set the attributes of the file or directory that *path* points to. The possible attributes are:

Attribute Meaning $_A_NORMAL$ Indicates a normal file. File can be read or written without any restrictions. _A_RDONLY Indicates a read-only file. File cannot be opened for "write". Indicates a hidden file. This file will not show up in a normal directory search. _A_HIDDEN _A_SYSTEM Indicates a system file. This file will not show up in a normal directory search. _A_VOLID Indicates a volume-ID. _A_SUBDIR Indicates a sub-directory. This is the archive flag. It is set whenever the file is modified, and is cleared by the $_A_ARCH$ MS-DOS BACKUP command and other backup utility programs.

The _dos_setfileattr function returns zero if successful. Otherwise, it returns an OS error code and sets errno accordingly.

See Also: __dos_getfileattr

Example: #include <stdio.h>
#include <dos.h>

print_attribute()
{

unsigned attribute;

```
_dos_getfileattr( "file", &attribute );
printf( "File attribute is %x\n", attribute );
if( attribute & _A_RDONLY ) {
    printf( "This is a read-only file\n" );
} else {
    printf( "This is not a read-only file\n" );
}

void main()
{
    int handle;
```

```
if( _dos_creat( "file", _A_RDONLY, &handle ) != 0 ){
  printf( "Error creating file\n" );
print_attribute();
_dos_setfileattr( "file", _A_NORMAL );
print_attribute();
_dos_close( handle );
```

Synopsis: #include <dos.h>

Description:

The _dos_setftime function uses system call 0x57 to set the date and time that the file associated with *handle* was last modified. The date consists of the year, month and day packed into 16 bits as follows:

Bits	Meaning
bits 0-4	Day (1-31)
bits 5-8	Month (1-12)
bits 9-15	Year (0-119 representing 1980-2099)

The time consists of the hour, minute and seconds/2 packed into 16 bits as follows:

Bits	Meaning
bits 0-4	Seconds/2 (0-29)
bits 5-10	Minutes (0-59)
bits 11-15	Hours (0-23)

Returns: Th

The _dos_setftime function returns zero if successful. Otherwise, it returns an OS error code and sets errno accordingly.

```
See Also: _dos_getftime
```

```
Example:
```

```
#include <stdio.h>
#include <dos.h>
#include <fcntl.h>
                  (((t \& 0xFE00) >> 9) + 1980)
#define YEAR(t)
#define MONTH(t) ((t & 0x01E0) >> 5)
#define DAY(t)
                  (t \& 0x001F)
#define HOUR(t)
                  ((t \& 0xF800) >> 11)
\#define MINUTE(t) ((t & 0x07E0) >> 5)
\#define SECOND(t) ((t \& 0x001F) << 1)
void main( void )
{
    int handle;
    unsigned short date, time;
```

```
if( _dos_open( "file", O_RDWR, &handle ) != 0 ) {
        printf( "Unable to open file\n" );
    } else {
      printf( "Open succeeded\n" );
        _dos_getftime( handle, &date, &time );
        printf( "The file was last modified on %d/%d/%d",
                MONTH(date), DAY(date), YEAR(date));
        printf( " at %.2d:%.2d:%.2d\n",
                HOUR(time), MINUTE(time), SECOND(time) );
        /* set the time to 12 noon */
        time = (12 << 11) + (0 << 5) + 0;
        _dos_setftime( handle, date, time );
        _dos_getftime( handle, &date, &time );
        printf( "The file was last modified on %d/%d/%d",
                MONTH(date), DAY(date), YEAR(date));
        printf( " at %.2d:%.2d:%.2d\n",
                HOUR(time), MINUTE(time), SECOND(time) );
        _dos_close( handle );
    }
}
produces the following:
Open succeeded
The file was last modified on 12/29/1989 at 14:32:46
The file was last modified on 12/29/1989 at 12:00:00
```

```
Synopsis:
            #include <dos.h>
            unsigned _dos_settime( struct dostime_t *time );
            struct dostime_t {
                                         /* 0-23
                unsigned char hour;
                                                                   */
                unsigned char minute; /* 0-59
                                                                   */
                                                                   */
                unsigned char second; /* 0-59
                unsigned char hsecond; /* 1/100 second; 0-99 */
            };
Description:
           The _dos_settime function uses system call 0x2D to set the current system time. The time
            information is passed in a dostime_t structure pointed to by time.
Returns:
           The _dos_settime function returns zero if successful. Otherwise, it returns a non-zero value and
            sets errno to EINVAL indicating that an invalid time was given.
See Also:
            _dos_getdate, _dos_setdate, _dos_gettime, gmtime, localtime, mktime, time
Example:
            #include <stdio.h>
            #include <dos.h>
            void main()
              {
                struct dosdate_t date;
                struct dostime t time;
                /* Get and display the current date and time */
                _dos_getdate( &date );
                _dos_gettime( &time );
                printf( "The date (MM-DD-YYYY) is: %d-%d-%d\n",
                     date.month, date.day, date.year );
                printf( "The time (HH:MM:SS) is: %.2d:%.2d:%.2d\n",
                    time.hour, time.minute, time.second );
                /* Change it to the turn of the century */
                date.year = 1999;
                date.month = 12;
                date.day = 31;
                time.hour = 23;
                time.minute = 59;
                _dos_setdate( &date );
                _dos_settime( &time );
                printf( "New date (MM-DD-YYYY) is: %d-%d-%d\n",
                               date.month, date.day, date.year );
                printf( "New time (HH:MM:SS) is: %.2d:%.2d:%.2d\n",
                               time.hour, time.minute, time.second );
              }
            produces the following:
           The date (MM-DD-YYYY) is: 12-25-1989
            The time (HH:MM:SS) is: 14:23:15
            New date (MM-DD-YYYY) is: 12-31-1999
            New time (HH:MM:SS) is: 23:59:16
```

```
Synopsis:
            #include <dos.h>
            void _dos_setvect( unsigned intnum,
                                  void (__interrupt __far *handler)() );
Description:
            The _dos_setvect function sets interrupt vector number intnum to point to the interrupt handling
            function pointed to by handler.
Returns:
            The _dos_setvect function does not return a value.
See Also:
            _chain_intr, _dos_getvect, _dos_keep
Example:
            #include <stdio.h>
            #include <dos.h>
            volatile int clock_ticks;
            void (__interrupt __far *prev_int_1c)();
#define BLIP_COUNT (5*18) /* 5 seconds */
            void __interrupt __far timer_rtn()
              {
                 ++clock_ticks;
                 _chain_intr( prev_int_1c );
            int compile_a_line()
              {
                 static int delays = 0;
                 if ( delays > 15 ) return ( 0 );
                 delay( 1000 ); /* delay for 1 second */
                printf( "Delayed for 1 second\n" );
                 delays++;
                 return(1);
              }
            void main()
              {
                prev_int_1c = _dos_getvect( 0x1c );
                 _dos_setvect( 0x1c, timer_rtn );
                 while( compile_a_line() ) {
                     if( clock_ticks >= BLIP_COUNT ) {
                          putchar( '.' );
                          clock_ticks -= BLIP_COUNT;
                 _dos_setvect( 0x1c, prev_int_1c );
Classification: WATCOM
```

Systems: DOS, Windows, DOS/PM

		_dos_setvect

Description: The _dos_write function uses system call 0x40 to write *count* bytes of data from the buffer pointed to by *buffer* to the file specified by *handle*. The number of bytes successfully written will be stored in

the unsigned integer pointed to by bytes.

Returns: The _dos_write function returns zero if successful. Otherwise, it returns an OS error code and sets

errno accordingly.

See Also: _dos_close, _dos_open, _dos_read

Example: #include <stdio.h>
#include <dos.h>

void main()

#include <fcntl.h>
char buffer[] = "This is a test for _dos_write.";

Classification: DOS

}

```
Synopsis:
           #include <io.h>
           int dup( int handle );
           int _dup( int handle );
```

Description:

The dup function duplicates the file handle given by the argument handle. The new file handle refers to the same open file handle as the original file handle, and shares any locks. The new file handle is identical to the original in that it references the same file or device, it has the same open mode (read and/or write) and it will have file position identical to the original. Changing the position with one handle will result in a changed position in the other.

The _dup function is identical to dup. Use _dup for ANSI naming conventions.

Returns:

If successful, the new file handle is returned to be used with the other functions which operate on the file. Otherwise, -1 is returned and errno is set to indicate the error.

Errors:

When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Constant Meaning

EBADF The argument *handle* is not a valid open file handle.

EMFILE The number of file handles would exceed {OPEN_MAX}.

See Also:

_chsize, close, creat, dup2, _eof, exec..., fdopen, _filelength, fileno, fstat, _grow_handles, isatty, lseek, open, read, _setmode, _sopen, stat, _tell, write, umask

Example:

```
#include <fcntl.h>
#include <io.h>
void main( void )
    int handle, dup_handle;
    handle = open( "file",
                O_WRONLY | O_CREAT | O_TRUNC | O_TEXT,
                S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
    if (handle !=-1) {
        dup_handle = dup( handle );
        if ( dup_handle != -1 ) {
            /* process file */
            close( dup_handle );
        close( handle );
    }
```

Classification: POSIX 1003.1

}

_dup conforms to ANSI naming conventions

Systems: dup - All, Linux, RDOS, Netware _dup - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

dup, _dup			

Synopsis: #include <io.h>

> int dup2 (int handle, int handle2); int _dup2(int handle, int handle2);

Description:

The dup2 function duplicates the file handle given by the argument handle. The new file handle is identical to the original in that it references the same file or device, it has the same open mode (read and/or write) and it will have identical file position to the original (changing the position with one handle will result in a changed position in the other).

The number of the new handle is *handle2*. If a file already is opened with this handle, the file is closed before the duplication is attempted.

The _dup2 function is identical to dup2. Use _dup2 for ANSI naming conventions.

Returns:

The dup2 function returns zero if successful. Otherwise, -1 is returned and errno is set to indicate the error.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning **EBADF** The argument *handle* is not a valid open file handle or *handle2* is out of range. **EMFILE** The number of file handles would exceed {OPEN_MAX}, or no file handles above *handle2* are available.

See Also:

_chsize, close, creat, dup, _eof, exec..., fdopen, _filelength, fileno, fstat, _grow_handles, isatty, lseek, open, read, _setmode, _sopen, stat, _tell, write, umask

Example:

```
#include <fcntl.h>
#include <io.h>
void main()
    int handle, dup_handle;
    handle = open( "file",
                O_WRONLY | O_CREAT | O_TRUNC | O_TEXT,
                S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
    if (handle !=-1) {
      dup handle = 4;
      if ( dup2 ( handle, dup_handle ) != -1 ) {
        /* process file */
        close( dup_handle );
      close( handle );
  }
```

Classification: POSIX 1003.1

_dup2 conforms to ANSI naming conventions

Systems:

dup2 - All, Linux, RDOS, Netware
_dup2 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis: #include <wdefwin.h>
 int _dwDeleteOnClose(int handle);

Description: The _dwDeleteOnClose function tells the console window that it should close itself when the

corresponding file is closed. The argument *handle* is the handle associated with the opened console.

The _dwDeleteOnClose function is one of the support functions that can be called from an application using Open Watcom's default windowing support.

Returns: The _dwDeleteOnClose function returns 1 if it was successful and 0 if not.

See Also: __dwSetAboutDlg, _dwSetAppTitle, _dwSetConTitle, _dwShutDown, _dwYield

Example: #include <wdefwin.h>
#include <stdio.h>

```
void main()
  {
    FILE *sec;
    _dwSetAboutDlg( "Hello World About Dialog",
                      "About Hello World\n"
                      "Copyright 1994 by WATCOM\n" );
    _dwSetAppTitle( "Hello World Application Title" );
    _dwSetConTitle( 0, "Hello World Console Title" );
    printf( "Hello World\n" );
    sec = fopen("CON", "r+");
    _dwSetConTitle( fileno( sec ),
                      "Hello World Second Console Title" );
    _dwDeleteOnClose( fileno( sec ) );
    fprintf( sec, "Hello to second console\n" ); fprintf( sec, "Press Enter to close this console\n" );
    fflush( sec );
    fgetc( sec );
    fclose( sec );
```

Classification: WATCOM

Systems: Windows, Win386, Win32, OS/2-32

Synopsis: #include <wdefwin.h>
 int _dwSetAboutDlg(const char *title, const char *text);

Description: The _dwSetAboutDlg function sets the "About" dialog box of the default windowing system. The

argument *title* points to the string that will replace the current title. If *title* is NULL then the title will not be replaced. The argument *text* points to a string which will be placed in the "About" box. To get multiple lines, embed a new line after each logical line in the string. If *text* is NULL, then the current

text in the "About" box will not be replaced.

The _dwSetAboutDlg function is one of the support functions that can be called from an application using Open Watcom's default windowing support.

Returns: The _dwSetAboutDlg function returns 1 if it was successful and 0 if not.

See Also: __dwDeleteOnClose, _dwSetAppTitle, _dwSetConTitle, _dwShutDown, _dwYield

Example: #include <wdefwin.h>
#include <stdio.h>

```
void main()
  {
   FILE *sec;
    _dwSetAboutDlg( "Hello World About Dialog",
                    "About Hello World\n"
                    "Copyright 1994 by WATCOM\n" );
   _dwSetAppTitle( "Hello World Application Title" );
   _dwSetConTitle( 0, "Hello World Console Title" );
   printf( "Hello World\n" );
   sec = fopen("CON", "r+");
   _dwSetConTitle( fileno( sec ),
                    "Hello World Second Console Title" );
    _dwDeleteOnClose( fileno( sec ) );
    fprintf( sec, "Hello to second console\n");
    fprintf( sec, "Press Enter to close this console\n" );
    fflush ( sec );
    fgetc( sec );
    fclose( sec );
```

Classification: WATCOM

Systems: Windows, Win386, Win32, OS/2-32

Synopsis: #include <wdefwin.h> int _dwSetAppTitle(const char *title);

Description: The _dwSetAppTitle function sets the main window's title. The argument *title* points to the string

that will replace the current title.

The _dwSetAppTitle function is one of the support functions that can be called from an application using Open Watcom's default windowing support.

Returns: The _dwSetAppTitle function returns 1 if it was successful and 0 if not.

See Also: _dwDeleteOnClose, _dwSetAboutDlg, _dwSetConTitle, _dwShutDown, _dwYield

Example: #include <wdefwin.h> #include <stdio.h>

```
void main()
  {
    FILE *sec;
    _dwSetAboutDlg( "Hello World About Dialog",
                      "About Hello World\n"
                      "Copyright 1994 by WATCOM\n" );
    _dwSetAppTitle( "Hello World Application Title" );
    _dwSetConTitle( 0, "Hello World Console Title" );
    printf( "Hello World\n" );
    sec = fopen("CON", "r+");
    _dwSetConTitle( fileno( sec ),
                      "Hello World Second Console Title" );
    _dwDeleteOnClose( fileno( sec ) );
    fprintf( sec, "Hello to second console\n" ); fprintf( sec, "Press Enter to close this console\n" );
    fflush( sec );
    fgetc( sec );
    fclose( sec );
```

Classification: WATCOM

Systems: Windows, Win386, Win32, OS/2-32

Library Functions and Macros 237

Synopsis: #include <wdefwin.h>
 int _dwSetConTitle(int handle, const char *title);

Description: The _dwSetConTitle function sets the console window's title which corresponds to the handle

passed to it. The argument *handle* is the handle associated with the opened console. The argument *title*

points to the string that will replace the current title.

The _dwSetConTitle function is one of the support functions that can be called from an application using Open Watcom's default windowing support.

Returns: The _dwSetConTitle function returns 1 if it was successful and 0 if not.

See Also: __dwDeleteOnClose, _dwSetAboutDlg, _dwSetAppTitle, _dwShutDown, _dwYield

Example: #include <wdefwin.h>

```
#include <stdio.h>
void main()
  {
   FILE *sec;
   _dwSetAboutDlg( "Hello World About Dialog",
                    "About Hello World\n"
                    "Copyright 1994 by WATCOM\n" );
    _dwSetAppTitle( "Hello World Application Title" );
   _dwSetConTitle( 0, "Hello World Console Title" );
   printf( "Hello World\n" );
   sec = fopen("CON", "r+");
   _dwSetConTitle( fileno( sec ),
                    "Hello World Second Console Title" );
   _dwDeleteOnClose( fileno( sec ) );
    fprintf( sec, "Hello to second console\n");
    fprintf( sec, "Press Enter to close this console\n" );
    fflush( sec );
    fgetc( sec );
    fclose( sec );
```

Classification: WATCOM

Systems: Windows, Win386, Win32, OS/2-32

```
Synopsis:
           #include <wdefwin.h>
           int _dwShutDown( void );
```

Description: The _dwShutDown function shuts down the default windowing I/O system. The application will

continue to execute but no windows will be available for output. Care should be exercised when using

this function since any subsequent output may cause unpredictable results.

When the application terminates, it will not be necessary to manually close the main window.

The _dwShutDown function is one of the support functions that can be called from an application using Open Watcom's default windowing support.

Returns: The _dwShutDown function returns 1 if it was successful and 0 if not.

See Also: _dwDeleteOnClose, _dwSetAboutDlg, _dwSetAppTitle, _dwSetConTitle, _dwYield

```
Example:
           #include <wdefwin.h>
           #include <stdio.h>
           void main()
```

{

```
FILE *sec;
_dwSetAboutDlg( "Hello World About Dialog",
                "About Hello World\n"
                "Copyright 1994 by WATCOM\n" );
_dwSetAppTitle( "Hello World Application Title" );
_dwSetConTitle( 0, "Hello World Console Title" );
printf( "Hello World\n" );
sec = fopen("CON", "r+");
_dwSetConTitle( fileno( sec ),
                "Hello World Second Console Title" );
_dwDeleteOnClose( fileno( sec ) );
fprintf( sec, "Hello to second console\n" );
fprintf( sec, "Press Enter to close this console\n" );
fflush( sec );
fgetc( sec );
fclose( sec );
_dwShutDown();
  do more computing that does not involve
  console input/output
```

Classification: WATCOM

Systems: Windows, Win386, Win32, OS/2-32

_dwShutDown			

Synopsis: #include <wdefwin.h> int _dwYield(void);

Description: The _dwYield function yields control back to the operating system, thereby giving other processes a

chance to run.

The _dwYield function is one of the support functions that can be called from an application using Open Watcom's default windowing support.

Returns: The _dwYield function returns 1 if it was successful and 0 if not.

See Also: _dwDeleteOnClose, _dwSetAboutDlg, _dwSetAppTitle, _dwSetConTitle, _dwShutDown

Example: #include <wdefwin.h> #include <stdio.h>

```
void main()
  {
    int i;
    for(i = 0; i < 1000; i++) {
      /* give other processes a chance to run */
      _dwYield();
      /* do CPU-intensive calculation */
      /*
         . */
```

Classification: WATCOM

Systems: Windows, Win386, Win32, OS/2-32

Synopsis:

Description:

The ecvt function converts the floating-point number *value* into a character string. The parameter *ndigits* specifies the number of significant digits desired. The converted number will be rounded to *ndigits* of precision.

The character string will contain only digits and is terminated by a null character. The integer pointed to by *dec* will be filled in with a value indicating the position of the decimal point relative to the start of the string of digits. A zero or negative value indicates that the decimal point lies to the left of the first digit. The integer pointed to by *sign* will contain 0 if the number is positive, and non-zero if the number is negative.

The _ecvt function is identical to ecvt. Use _ecvt for ANSI naming conventions.

The _wecvt function is a wide character version of ecvt except that it produces a wide character string.

Returns:

The ecvt function returns a pointer to a static buffer containing the converted string of digits. Note: ecvt and fcvt both use the same static buffer.

See Also:

fcvt, gcvt, printf

Example:

```
#include <stdio.h>
#include <stdlib.h>

void main()
{
    char *str;
    int dec, sign;

    str = ecvt( 123.456789, 6, &dec, &sign );
    printf( "str=%s, dec=%d, sign=%d\n", str,dec,sign );
}
```

produces the following:

str=123457, dec=3, sign=0

Classification: WATCOM

_ecvt conforms to ANSI naming conventions

Systems: ecvt - Math

_ecvt - Math _wecvt - Math

Synopsis:

Description:

The _ellipse functions draw ellipses. The _ellipse function uses the view coordinate system. The _ellipse_w and _ellipse_wxy functions use the window coordinate system.

The center of the ellipse is the center of the rectangle established by the points (x1, y1) and (x2, y2).

The argument *fill* determines whether the ellipse is filled in or has only its outline drawn. The argument can have one of two values:

GFILLINTERIOR

fill the interior by writing pixels with the current plot action using the current color and the current fill mask

_GBORDER

leave the interior unchanged; draw the outline of the figure with the current plot action using the current color and line style

When the coordinates (x1, y1) and (x2, y2) establish a line or a point (this happens when one or more of the x-coordinates or y-coordinates are equal), nothing is drawn.

Returns:

The _ellipse functions return a non-zero value when the ellipse was successfully drawn; otherwise, zero is returned.

See Also:

_arc,_rectangle,_setcolor,_setfillmask,_setlinestyle,_setplotaction

Example:

```
#include <conio.h>
#include <graph.h>

main()
{
    _setvideomode( _VRES16COLOR );
    _ellipse( _GBORDER, 120, 90, 520, 390 );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Systems:

_ellipse - DOS _ellipse_w - DOS _ellipse_wxy - DOS

Synopsis: #include <i86.h>
 void _enable(void);

Description: The _enable function causes interrupts to become enabled.

The _enable function would be used in conjunction with the _disable function to make sure that a sequence of instructions are executed without any intervening interrupts occurring.

Returns: The _enable function returns no value.

See Also: _disable

Example: #include <stdio.h>

```
#include <stdlib.h>
#include <i86.h>
struct list_entry {
   struct list_entry *next;
   int
                      data;
};
struct list_entry *ListHead = NULL;
struct list_entry *ListTail = NULL;
void insert( struct list_entry *new_entry )
  {
    /* insert new_entry at end of linked list */
   new_entry->next = NULL;
                     /* disable interrupts */
    _disable();
   if( ListTail == NULL ) {
      ListHead = new_entry;
    } else {
      ListTail->next = new_entry;
   ListTail = new_entry;
   _enable(); /* enable interrupts now */
  }
void main()
  {
   struct list_entry *p;
   int i;
    for( i = 1; i <= 10; i++ ) {
      p = (struct list_entry *)
          malloc( sizeof( struct list_entry ) );
      if( p == NULL ) break;
     p->data = i;
      insert( p );
  }
```

Classification: Intel

Systems: All, Linux, RDOS, Netware

			_enable

endhostent

Synopsis: #include <netdb.h>

void endhostent(void);

Description: The endhostent function closes the network host database at /etc/hosts. If the network host database

is not open, this call results in no actions.

See Also: gethostent, sethostent

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <netdb.h>

void endnetent(void);

Description: The endnetent function closes the network database.

This function is not thread-safe. Other calls to this function or to other functions accessing the

hostname database may affect the return value from this function.

See Also: getnetent, setnetent, getnetbyname, getnetbyaddr

Classification: POSIX 1003.1

Systems: Linux

endprotoent

Synopsis: #include <netdb.h>

void endprotoent(void);

Description: The endprotoent function explicitly closes the protocol database.

This function is not thread-safe. Other calls to this function or to other functions accessing the protocol

database may affect the return value from this function.

See Also: getprotoent, setprotoent, getprotobyname, getprotobynumber

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <pwd.h> void endpwent(void);

Description: The endpwent function closes the system's password database after calls to getpwent are complete.

See Also: setpwent, getpwent, getpwnam, getpwuid

Example: The following program will print out each user and their user ID in the system's password database

```
#include <stdio.h>
#include <pwd.h>
void main()
    struct passwd *pw;
    setpwent();
    while((pw = getpwent()) != NULL) {
        printf("User id %d is %s\n", (int)pw->pw_uid, pw->pw_name);
    endpwent();
  }
```

Classification: POSIX 1003.1

Systems: Linux

endservent

Synopsis: #include <netdb.h>

void endservent(void);

Description: The endservent function closes the service database.

This function is not thread-safe. Other calls to this function or to other functions accessing the

hostname database may affect the return value from this function.

See Also: getservent, setservent, getservbyname, getservbyport

Classification: POSIX 1003.1

Systems: Linux

```
Synopsis:
           #include <process.h>
           void _endthread(void);
           void _endthreadex( unsigned retval );
```

Description: The _endthread function is used to terminate a thread created by _beginthread. For each operating environment under which _endthread is supported, the _endthread function uses the

appropriate system call to end the current thread of execution.

The _endthreadex function is used to terminate a thread created by _beginthreadex. The thread exit code *retval* must be specified.

Returns: The _endthread function does not return any value.

See Also: _beginthread

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <malloc.h>
#include cess.h>
#include <dos.h>
#if defined(__386__)
  #define FAR
  #define STACK_SIZE
                        8192
  #define FAR
                          _far
  #define STACK_SIZE
                        4096
#endif
static volatile int
                        WaitForThread;
void FAR child( void FAR *parm )
    char * FAR *argv = (char * FAR *) parm;
    int i;
    printf( "Child thread ID = %x\n", *_threadid );
    for( i = 0; argv[i]; i++) {
      printf( "argv[%d] = %s\n", i, argv[i] );
    WaitForThread = 0;
    _endthread();
  }
```

```
void main()
 {
    char
                   *args[3];
#if defined(__NT___)
    unsigned long tid;
#else
    char
                   *stack;
    int
                   tid;
#endif
    args[0] = "child";
    args[1] = "parm";
    args[2] = NULL;
    WaitForThread = 1;
#if defined(__NT___)
    tid = _beginthread( child, STACK_SIZE, args );
    printf( "Thread handle = lx \n", tid );
#else
  #if defined(__386__)
    stack = (char *) malloc( STACK_SIZE );
    stack = (char *) _nmalloc( STACK_SIZE );
  #endif
    tid = _beginthread( child, stack, STACK_SIZE, args );
    printf( "Thread ID = %x\n", tid );
#endif
    while( WaitForThread ) {
        sleep(0);
  }
```

Classification: WATCOM

```
Systems: __endthread - Win32, OS/2 1.x(MT), OS/2 1.x(DL), OS/2-32, Linux, RDOS, Netware __endthreadex - Win32
```

Synopsis: #include <io.h> int _eof(int handle); ** deprecated ** int eof(int handle);

Description:

The _eof function determines, at the operating system level, if the end of the file has been reached for the file whose file handle is given by handle. Because the current file position is set following an input operation, the _eof function may be called to detect the end of the file before an input operation beyond the end of the file is attempted.

The eof function is deprecated, use _eof instead.

Returns:

The _eof function returns 1 if the current file position is at the end of the file, 0 if the current file position is not at the end. A return value of -1 indicates an error, and in this case errno is set to indicate the error.

Errors:

When an error has occurred, erroc contains a value indicating the type of error that has been detected.

EBADF The *handle* argument is not a valid file handle.

See Also: read

Example:

```
#include <stdio.h>
#include <fcntl.h>
#include <io.h>
void main( void )
    int handle, len;
    char buffer[100];
    handle = open( "file", O_RDONLY );
    if (handle !=-1) {
        while( ! _eof( handle ) ) {
            len = read( handle, buffer, sizeof(buffer) - 1 );
            buffer[ len ] = ' \setminus 0';
            printf( "%s", buffer );
        close( handle );
    }
}
```

Classification: WATCOM

Systems:

```
_eof - All, Linux, RDOS, Netware
eof - All, Linux, RDOS, Netware
```

_eof, eof			

Synopsis: #include <math.h>

double erf (double x);

Description: The erf function computes the value of the error function, also known as the Gauss error function, for

the argument x.

Returns: For non-infinite values of x the function returns the value of the error function. For positive infinity or

negative infinity the function returns positive or negative one respectively. For not-a-number the

function returns NAN.

See Also: erfc

Example: #include <stdio.h>

#include <math.h>

```
void main()
    printf( "%f\n", erf( 0.0 ) );
```

produces the following:

0.000000

Classification: ISO C99

Systems: Math Synopsis: #include <math.h>

double erfc(double x);

Description: The erfc function computes the value of the complementary error function, also known as the Gauss

error function, for the argument x.

Returns: For non-infinite values of x the function returns the value of the error function. For positive infinity or

negative infinity the function returns negative or positive one respectively. For not-a-number the

function returns NAN.

See Also: erf

Example: #include <stdio.h>

#include <math.h>

void main()
{

printf("%f\n", erfc(0.0));

produces the following:

0.000000

Classification: WATCOM

Systems: Math

Synopsis:

```
#include cess.h>
int execl( path, arg0, arg1..., argn, NULL);
int execle( path, arg0, arg1..., argn, NULL, envp );
int execlp( file, arg0, arg1..., argn, NULL);
int execlpe( file, arg0, arg1..., argn, NULL, envp );
int execv( path, argv);
int execve( path, argv, envp);
int execvp( file, argv);
int execvpe( file, argv, envp );
int _execl( path, arg0, arg1..., argn, NULL);
int _execle( path, arg0, arg1..., argn, NULL, envp);
int _execlp( file, arg0, arg1..., argn, NULL );
int _execlpe( file, arg0, arg1..., argn, NULL, envp );
int _execv( path, argv);
int _execve( path, argv, envp);
int _execvp( file, argv );
int _execvpe( file, argv, envp );
 const char *path;
                              /* file name incl. path */
 const char *file;
                              /* file name
 const char *arg0, ..., *argn; /* arguments
 int _wexecl( path, arg0, arg1..., argn, NULL);
int _wexecle( path, arg0, arg1..., argn, NULL, envp);
int _wexeclp( file, arg0, arg1..., argn, NULL);
int _wexeclpe( file, arg0, arg1..., argn, NULL, envp );
int _wexecv( path, argv);
int _wexecve( path, argv, envp );
int _wexecvp( file, argv );
int _wexecvpe( file, argv, envp );
                                 /* file name incl. path */
 const wchar t *path;
                                /* file name
 const wchar_t *file;
 const wchar_t *arg0, ..., *argn;/* arguments
                                                         */
 const wchar_t *const argv[];  /* array of arguments
                                                         */
                                /* environment strings */
 const wchar_t *const envp[];
```

Description:

The **exec...** functions load and execute a new child process, named by *path* or *file*. If the child process is successfully loaded, it replaces the current process in memory. No return is made to the original program.

The program is located by using the following logic in sequence:

- An attempt is made to locate the program in the current working directory if no directory specification precedes the program name; otherwise, an attempt is made in the specified directory.
- If no file extension is given, an attempt is made to find the program name, in the directory indicated in the first point, with . COM concatenated to the end of the program name.
- If no file extension is given, an attempt is made to find the program name, in the directory indicated in the first point, with .EXE concatenated to the end of the program name.
- When no directory specification is given as part of the program name, the execlp, execlpe, execvp, and execvpe functions will repeat the preceding three steps for each of the directories specified by the PATH environment variable. The command

```
path c:\myapps;d:\lib\applns
```

indicates that the two directories

```
c:\myapps
d:\lib\applns
```

are to be searched. The DOS PATH command (without any directory specification) will cause the current path definition to be displayed.

An error is detected when the program cannot be found.

Arguments are passed to the child process by supplying one or more pointers to character strings as arguments in the **exec...** call. These character strings are concatenated with spaces inserted to separate the arguments to form one argument string for the child process. The length of this concatenated string must not exceed 128 bytes for DOS systems.

The arguments may be passed as a list of arguments (execl, execle, execlp, and execlpe) or as a vector of pointers (execv, execve, execvp, and execvpe). At least one argument, $arg\theta$ or argv[0], must be passed to the child process. By convention, this first argument is a pointer to the name of the program.

If the arguments are passed as a list, there must be a NULL pointer to mark the end of the argument list. Similarly, if a pointer to an argument vector is passed, the argument vector must be terminated by a NULL pointer.

The environment for the invoked program is inherited from the parent process when you use the execl, execlp, execv, and execvp functions. The execle, execlpe, execve, and execvpe functions allow a different environment to be passed to the child process through the *envp* argument. The argument *envp* is a pointer to an array of character pointers, each of which points to a string defining an environment variable. The array is terminated with a NULL pointer. Each pointer locates a character string of the form

```
variable=value
```

that is used to define an environment variable. If the value of *envp* is NULL, then the child process inherits the environment of the parent process.

The environment is the collection of environment variables whose values have been defined with the DOS SET command or by the successful execution of the putenv function. A program may read these values with the getenv function.

The execupe and execlpe functions are extensions to POSIX 1003.1.

The _wexec... functions are similar to their counterparts but operate on wide character strings.

Returns: When the invoked program is successfully initiated, no return occurs. When an error is detected while invoking the indicated program, exec... returns -1 and error is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

	Constant	Meaning				
	E2BIG	The argument list exceeds 128 bytes, or the space required for the environment information exceeds 32K.				
	EACCES	The specified file has a locking or sharing violation.				
	EMFILE	Too many files open				
	ENOENT	Path or file not found				
	ENOMEM	Not enough memory is available to execute the child process.				
See Also:	abort, atexit, e	exit, _Exit, _exit, getcmd, getenv, main, putenv, spawn, system				
Example:	#include <stdo< th=""><th></th></stdo<>					
	execl("myprog" myprog	g", og", "ARG1", "ARG2", NULL);				
	The preceding invok	tes "myprog" as if				
	myprog ARG1 ARG2 had been entered as a command to DOS. The program will be found if one of					
	myprog. myprog.com myprog.exe					
	is found in the curre	nt working directory.				
	#include <stdo< th=""><th></th></stdo<>					
	char *env_list	<pre>[] = { "SOURCE=MYDATA", "TARGET=OUTPUT", "lines=65", NULL };</pre>				
		og", og", "ARG1", "ARG2", NULL, list);				
	The preceding invok	tes "myprog" as if				
	myprog AR	G1 ARG2				
	had been entered as	a command to DOS. The program will be found if one of				
	myprog. myprog.com myprog.exe					

is found in the current working directory. The DOS environment for the invoked program will consist of the three environment variables SOURCE, TARGET and lines.

```
#include <stddef.h>
            #include <process.h>
            char *arg_list[] = { "myprog", "ARG1", "ARG2", NULL };
            execv( "myprog", arg_list );
            The preceding invokes "myprog" as if
                myprog ARG1 ARG2
            had been entered as a command to DOS. The program will be found if one of
                myprog.
                myprog.com
                myprog.exe
            is found in the current working directory.
Classification: POSIX 1003.1 with extensions
            execle is WATCOM
            execlp is WATCOM
            execlpe is WATCOM
            execv is WATCOM
            execve is WATCOM
            execvp is WATCOM
            execvpe is WATCOM
            _execl is WATCOM
            execle is WATCOM
            _execlp is WATCOM
            _execlpe is WATCOM
            _execv is WATCOM
            _execve is WATCOM
            _execvp is WATCOM
            _execvpe is WATCOM
            wexecl is WATCOM
            _wexecle is WATCOM
            _wexeclp is WATCOM
            _wexeclpe is WATCOM
            _wexecv is WATCOM
            _wexecve is WATCOM
            _wexecvp is WATCOM
            _wexecvpe is WATCOM
            execl - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
            execle - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
            execlp - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
            execlpe - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
            execv - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
```

execve - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS execvp - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS execvpe - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS

Systems:

```
_execl - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_execle - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_execlp - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_{\rm execlpe} - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_execv - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_execve - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_execvp - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_execvpe - DOS/16, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_wexecl - DOS/16, Win32, OS/2 1.x(all), OS/2-32
_wexecle - DOS/16, Win32, OS/2 1.x(all), OS/2-32
_wexeclp - DOS/16, Win32, OS/2 1.x(all), OS/2-32
_wexeclpe - DOS/16, Win32, OS/2 1.x(all), OS/2-32
_{\text{wexecv}} - \text{DOS}/16, Win32, OS/2 1.x(all), OS/2-32
\_wexecve - DOS/16, Win32, OS/2 1.x(all), OS/2-32
_wexecvp - DOS/16, Win32, OS/2 1.x(all), OS/2-32
_wexecvpe - DOS/16, Win32, OS/2 1.x(all), OS/2-32
```

```
Synopsis: #include <stdlib.h>
    void _Exit( int status );
    void _exit( int status );
```

Description: The _Exit function causes normal program termination to occur.

- 1. The functions registered by the atexit or _onexit functions are not called.
- 2. Any unopened files are not closed and any buffered output is not flushed to the associated files or devices.
- 3. Any files created by tmpfile are not removed.
- 4. The return *status* is made available to the parent process. Only the low order byte of *status* is available on DOS systems. The *status* value is typically set to 0 to indicate successful termination and set to some other value to indicate an error.

The _exit is functionaly equivalent to _Exit.

Returns: The _Exit function does not return to its caller.

See Also: abort, atexit, _bgetcmd, exec..., exit, _exit, getcmd, getenv, main, putenv, spawn..., system, _wsystem

Example:

```
#include <stdio.h>
#include <stdlib.h>

void main( int argc, char *argv[] )
{
    FILE *fp;

    if( argc <= 1 ) {
        fprintf( stderr, "Missing argument\n" );
        exit( EXIT_FAILURE );
    }

    fp = fopen( argv[1], "r" );
    if( fp == NULL ) {
        fprintf( stderr, "Unable to open '%s'\n", argv[1] );
        _Exit( EXIT_FAILURE );
    }
    fclose( fp );
    _Exit( EXIT_SUCCESS );
}</pre>
```

Classification: ISO C99

_exit is POSIX 1003.1

Systems: _Exit - All, Linux, RDOS, Netware _exit - All, Linux, RDOS, Netware

		_Exit, _exit

Synopsis: #include <stdlib.h>
 void exit(int status);

Description: The exit function causes normal program termination to occur.

First, all functions registered by the atexit function are called in the reverse order of their registration. Next, all open files are flushed and closed, and all files created by the tmpfile function are removed. Finally, the return *status* is made available to the parent process. Only the low order byte of *status* is available on DOS systems. The *status* value is typically set to 0 to indicate successful termination and set to some other value to indicate an error.

Returns: The exit function does not return to its caller.

See Also: abort, atexit, _Exit, _exit

Example: #include <stdio.h>
#include <stdlib.h>

void main(int argc, char *argv[])
{
 FILE *fp;

 if(argc <= 1) {
 fprintf(stderr, "Missing argument\n");
 exit(EXIT_FAILURE);
}

 fp = fopen(argv[1], "r");
 if(fp == NULL) {
 fprintf(stderr, "Unable to open '%s'\n", argv[1]);
 exit(EXIT_FAILURE);
 }
 fclose(fp);
 exit(EXIT_SUCCESS);
}</pre>

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Synopsis: #include <math.h>

double exp(double x);

Description: The exp function computes the exponential function of x. A range error occurs if the magnitude of x is

too large.

Returns: The exp function returns the exponential value. When the argument is outside the permissible range,

> the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to ERANGE, and print a "RANGE error" diagnostic message using the stderr

stream.

See Also: log, matherr

Example: #include <stdio.h> #include <math.h>

```
void main()
  {
   printf( \$f\n, exp(.5));
```

produces the following:

1.648721

Classification: ISO C

Math **Systems:**

```
Synopsis: #include <math.h>
double exp2( double x );
```

Description: The exp2 function computes 2.0 raised to the value x. calculation.

Returns: The function returns two to the power x.

See Also: exp, pow

Example: #include <stdio.h>
 #include <math.h>

 void main()
 {
 printf("%f\n", exp2(2.0));
 }

produces the following:

4.000000

Classification: ISO C99

Systems: Math

Synopsis: #include <math.h> double expm1(double x);

Description: The expm1 function computes the value of the exponential of x minus 1. This routine provides far

better accuracy for cases where the exponential of the argument x is significantly less than 1.0.

Returns: The function returns a the exponential of x minus 1 without loss of accuracy due to subtractive

cancelation.

See Also: exp

Example: #include <stdio.h> #include <math.h>

> void main() { printf($\$f\n$ ", expm1(-1.0E-3));

produces the following:

-0.000995

Classification: ISO C99

Systems: Math

Synopsis:

```
#include <malloc.h>
void *_expand( void *mem_blk, size_t size );
void __based(void) *_bexpand( __segment seg,
                             void __based(void) *mem_blk,
                             size_t size );
void __far *_fexpand(void __far *mem_blk,size_t size);
void __near *_nexpand(void __near *mem_blk,size_t size);
```

Description:

The _expand functions change the size of the previously allocated block pointed to by mem blk by attempting to expand or contract the memory block without moving its location in the heap. The argument size specifies the new desired size for the memory block. The contents of the memory block are unchanged up to the shorter of the new and old sizes.

Each function expands the memory from a particular heap, as listed below:

Function Heap Expanded Depends on data model of the program expand _bexpand Based heap specified by seg value _fexpand Far heap (outside the default data segment) _nexpand Near heap (inside the default data segment)

In a small data memory model, the _expand function is equivalent to the _nexpand function; in a large data memory model, the _expand function is equivalent to the _fexpand function.

Returns:

The _expand functions return the value mem_blk if it was successful in changing the size of the block. The return value is NULL (_NULLOFF for _bexpand) if the memory block could not be expanded to the desired size. It will be expanded as much as possible in this case.

The appropriate _msize function can be used to determine the new size of the expanded block.

See Also:

calloc Functions, free Functions, halloc, hfree, malloc Functions, _msize Functions, realloc Functions, sbrk

Example:

```
#include <stdio.h>
#include <malloc.h>
void main()
  {
    char *buf;
    char __far *buf2;
```

```
buf = (char *) malloc(80);
               printf( "Size of buffer is %u\n", _msize(buf) );
               if( _expand( buf, 100 ) == NULL ) {
                   printf( "Unable to expand buffer\n" );
               printf( "New size of buffer is %u\n", _msize(buf) );
               buf2 = (char _far *) _fmalloc(2000);
               printf( "Size of far buffer is %u\n", _fmsize(buf2) );
               if( _{fexpand}( buf2, 8000 ) == NULL ) {
                   printf( "Unable to expand far buffer\n" );
               printf( "New size of far buffer is %u\n",
                        _fmsize(buf2) );
             }
           produces the following:
           Size of buffer is 80
           Unable to expand buffer
           New size of buffer is 80
           Size of far buffer is 2000
           New size of far buffer is 8000
Classification: WATCOM
Systems:
          _expand - All, Linux, RDOS
          _bexpand - DOS/16, Windows, OS/2 1.x(all)
          _fexpand - DOS/16, Windows, OS/2 1.x(all)
          _nexpand - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
           OS/2-32, Linux, RDOS
```

Systems:

Math

```
Synopsis:
             #include <math.h>
             double fabs ( double x );
Description:
             The fabs function computes the absolute value of the argument x.
Returns:
             The fabs function returns the absolute value of x.
See Also:
             abs, labs, imaxabs
Example:
             #include <stdio.h>
             #include <math.h>
             void main()
                  printf( "%f %f\n", fabs(.5), fabs(-.5) );
             produces the following:
             0.500000 0.500000
Classification: ISO C
```

Synopsis: #include <stdio.h> int fclose(FILE *fp);

Description: The fclose function closes the file fp. If there was any unwritten buffered data for the file, it is

written out before the file is closed. Any unread buffered data is discarded. If the associated buffer was

automatically allocated, it is deallocated.

Returns: The fclose function returns zero if the file was successfully closed, or non-zero if any errors were

detected. When an error has occurred, errno contains a value indicating the type of error that has

been detected.

See Also: fcloseall, fdopen, fopen, freopen, _fsopen

Example: #include <stdio.h>

```
void main()
   FILE *fp;
    fp = fopen("stdio.h", "r");
    if( fp != NULL ) {
        fclose( fp );
```

Classification: ISO C

Synopsis: #include <stdio.h>
 int fcloseall(void);

Description: The fcloseall function closes all open stream files, except stdin, stdout, stderr, stdaux,

and ${\tt stdprn}$. This includes streams created (and not yet closed) by ${\tt fdopen}$, ${\tt fopen}$ and ${\tt freopen}$.

The stdaux and stdprn files are not available for some Windows platforms.

Returns: The fcloseall function returns the number of streams that were closed if no errors were

encountered. When an error occurs, EOF is returned.

See Also: fclose, fdopen, fopen, freopen, _fsopen

Example: #include <stdio.h>

Classification: WATCOM

Synopsis:

```
#include <stdlib.h>
char *fcvt( double value,
            int ndigits,
            int *dec,
            int *sign );
char *_fcvt( double value,
             int ndigits,
             int *dec,
             int *sign );
wchar_t *_wfcvt( double value,
                  int ndigits,
                  int *dec.
                  int *sign );
```

Description:

The fort function converts the floating-point number value into a character string. The parameter ndigits specifies the number of digits desired after the decimal point. The converted number will be rounded to this position.

The character string will contain only digits and is terminated by a null character. The integer pointed to by dec will be filled in with a value indicating the position of the decimal point relative to the start of the string of digits. A zero or negative value indicates that the decimal point lies to the left of the first digit. The integer pointed to by sign will contain 0 if the number is positive, and non-zero if the number is negative.

The _fcvt function is identical to fcvt. Use _fcvt for ANSI naming conventions.

The _wfcvt function is a wide character version of fcvt except that it produces a wide character string.

Returns:

The fevt function returns a pointer to a static buffer containing the converted string of digits. Note: ecvt and fcvt both use the same static buffer.

See Also:

ecvt, gcvt, printf

#include <stdio.h>

Example:

```
#include <stdlib.h>
void main()
  {
     char *str;
    int dec, sign;
     str = fcvt(-123.456789, 5, &dec, &sign);
    printf( "str=%s, dec=%d, sign=%d\n", str,dec,sign );
  }
```

produces the following:

```
str=12345679, dec=3, sign=-1
```

Classification: WATCOM

_fcvt conforms to ANSI naming conventions

Systems: fcvt - Math _fcvt - Math _wfcvt - Math

```
Synopsis:
           #include <math.h>
           double fdim( double x, double y);
```

Description: The fdim function computes the positive difference of x and y.

```
fmax(x - y, 0.0);
```

Returns: The routine will either return x - y or 0.0, whichever is greater.

See Also: fmax, fmin

Example: #include <stdio.h> #include <math.h> void main() { printf("% $f\n$ ", fdim(3.0, 2.0));

produces the following:

1.000000

Classification: ISO C99

Systems: Math

```
Synopsis: #include <stdio.h>
    FILE *fdopen( int handle, const char *mode );
    FILE *_fdopen( int handle, const char *mode );
    FILE *_wfdopen( int handle, const wchar_t *mode );
```

Description:

The fdopen function associates a stream with the file handle handle which represents an opened file or device. The handle was returned by one of creat, dup, dup2, open, or _sopen. The open mode mode must match the mode with which the file or device was originally opened.

The argument *mode* is described in the description of the fopen function.

The _fdopen function is identical to fdopen. Use _fdopen for ANSI naming conventions.

The _wfdopen function is identical to fdopen except that it accepts a wide character string for the second argument.

Returns:

The fdopen function returns a pointer to the object controlling the stream. This pointer must be passed as a parameter to subsequent functions for performing operations on the file. If the open operation fails, fdopen returns a NULL pointer. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: creat, _dos_open, dup, dup2, fopen, freopen, _fsopen, _grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen

Example:

```
#include <stdio.h>
#include <fcntl.h>
#include <io.h>
void main()
  {
    int handle;
    FILE *fp;
    handle = open( "file", O_RDONLY | O_TEXT );
    if (handle !=-1) {
      fp = fdopen( handle, "r" );
      if( fp != NULL ) {
        /*
            process the stream
        */
        fclose(fp);
      } else {
        close( handle );
  }
```

Classification: POSIX 1003.1

_fdopen conforms to ANSI naming conventions _wfdopen is WATCOM

Systems:

```
fdopen - All, Linux, RDOS, Netware
_fdopen - All, Linux, RDOS, Netware
_wfdopen - All, Linux
```

	fdopen,	_fdopen, _wfdopen

Synopsis: #include <fenv.h>

int feclearexcept(int excepts);

Description: The feclear except function attempts to clear the floating-point exceptions specified by the *excepts*

argument.

For valid exception values see fegetexceptflag.

Returns: The feclear except function returns zero if the *excepts* argument is zero or if all the specified

exceptions were successfully cleared. Otherwise, it returns a nonzero value.

See Also: fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept

Example: #include <fenv.h>

```
void main( void )
{
    feclearexcept( FE_OVERFLOW|FE_UNDERFLOW );
}
```

Classification: ISO C99

```
Synopsis:
             #include <fenv.h>
             void fedisableexcept( int excepts );
             void __fedisableexcept( int excepts );
            The fedisable except function disables the floating point exceptions specified by the excepts
Description:
             argument.
             For valid exception values see fegetexceptflag.
Returns:
             No value is returned.
See Also:
             feenableexcept
Example:
             #include <fenv.h>
             void main( void )
```

Classification: WATCOM

Systems: fedisableexcept - All, Linux, RDOS, Netware __fedisableexcept - All, Linux, RDOS, Netware

fedisableexcept(FE_DIVBYZERO);

Library Functions and Macros 281

```
Synopsis:
            #include <fenv.h>
            void feenableexcept( int excepts );
            void __feenableexcept( int excepts );
Description:
            The feenableexcept function enables the floating point exceptions specified by the excepts
            argument.
            For valid exception values see fegetexceptflag.
            No value is returned.
Returns:
See Also:
            fedisableexcept
Example:
            #include <fenv.h>
            void main( void )
                 feenableexcept(FE_DIVBYZERO);
Classification: WATCOM
Systems:
            feenableexcept - All, Linux, RDOS, Netware
            __feenableexcept - All, Linux, RDOS, Netware
```

Synopsis: #include <fenv.h> int fegetenv(fenv_t *envp);

Description: The fegetenv function attempts to store the current floating-point environment in the object pointed

to by envp argument.

Returns: The fegetenv function returns zero if the environment was successfully stored. Otherwise, it returns

a nonzero value.

See Also: feholdexcept, fesetenv, feupdateenv

Example: #include <stdio.h>

#include <fenv.h> void main(void) fenv_t env; fegetenv(&env);

Classification: ISO C99

Synopsis: #include <fenv.h>
 int fegetexceptflag(fexcept_t *flagp, int excepts);

Description: The fegetexceptflag function attempts to store a representation of the floating-point exceptions

specified by the *excepts* argument into the fexcept_t object pointed by the *flagp* argument.

Valid exception bit values are

FE_INVALID At least one of the arguments is a value for which the function is not defined.

FE_DENORMAL The result is not normalized.

FE_DIVBYZERO Division by zero.

FE_OVERFLOW The result is too large in magnitude to be represented as the return type.

FE_UNDERFLOW The result is too small in magnitude to be represented as the return type.

FE_INEXACT The result is not exact.

FE_ALL_EXCEPT Is the logical OR of all exceptions.

Returns: The fegetexceptflag function returns zero if the representation was successfully stored.

Otherwise, it returns a nonzero value.

See Also: feclear except, feraise except, feset except flag, fet est except

Example: #include <fenv.h>

```
void main( void )
{
    fexcept_t flags;
    fegetexceptflag( &flags, FE_DIVBYZERO );
}
```

Classification: ISO C99

Synopsis: #include <fenv.h> int fegetround(void);

Description: The fegetround function returns a value that indicates the rounding direction mode, as specified in

the current floating point environment.

Returns: The feget round function returns the value of the rounding direction macro representing the current

rounding direction or a negative value if there is no such rounding direction macro or the current

rounding direction is not determinable.

For valid rounding modes see fesetround.

See Also: fesetround

Example: #include <stdio.h> #include <fenv.h>

```
void main( void )
    int mode;
   mode = fegetround();
    if ( mode == FE_TONEAREST )
        printf( "Nearest\n" );
    else if ( mode == FE_DOWNWARD )
        printf( "Down\n" );
    else if ( mode == FE_TOWARDZERO )
        printf( "To Zero\n" );
    else if ( mode == FE_UPWARD )
        printf( "Up\n" );
```

Classification: ISO C99

All, Linux, RDOS, Netware **Systems:**

Synopsis: #include <fenv.h>
 int feholdexcept(fenv_t *envp);

Description: The feholdexcept function saves the current floating-point environment in the object pointed to by

envp argument, clears the floating-point status flags, and then installs a non-stop (continue on

floating-point exceptions) mode, if available, for all floating-point exceptions.

Returns: The feholdexcept function returns zero if and only if non-stop floating-point exception handling

was successfully installed.

See Also: fegetenv, fesetenv, feupdateenv

Example: #include <fenv.h>

void main(void)
{
 fenv_t env;
 feholdexcept(&env);

Classification: ISO C99

Synopsis: #include <stdio.h> int feof(FILE *fp);

Description:

The feof function tests the end-of-file indicator for the stream pointed to by fp. Because this indicator is set when an input operation attempts to read past the end of the file the feof function will detect the end of the file only after an attempt is made to read beyond the end of the file. Thus, if a file contains 10 lines, the feof will not detect end of file after the tenth line is read; it will detect end of file once the program attempts to read more data.

Returns: The feof function returns non-zero if the end-of-file indicator is set for *fp*.

See Also: clearerr, ferror, fopen, freopen, perror, read, strerror

Example: #include <stdio.h>

```
void process_record( char *buf )
    printf( "%s\n", buf );
void main()
  {
    FILE *fp;
    char buffer[100];
    fp = fopen( "file", "r" );
    fgets( buffer, sizeof( buffer ), fp );
    while( ! feof( fp ) ) {
      process_record( buffer );
      fgets( buffer, sizeof( buffer ), fp );
    fclose( fp );
```

Classification: ISO C

All, Linux, RDOS, Netware **Systems:**

Synopsis: #include <fenv.h>

int feraiseexcept(int excepts);

Description: The feraiseexcept function attempts to raise the floating-point exceptions specified by the *excepts*

argument.

For valid exception values see fegetexceptflag.

Returns: The feraiseexcept function returns zero if the *excepts* argument is zero or if all the specified

exceptions were successfully raised. Otherwise, it returns a nonzero value.

See Also: feclearexcept, fegetexceptflag, fetestexcept

Example: #include <fenv.h>

```
void main( void )
{
    feraiseexcept( FE_DIVBYZERO );
}
```

Classification: ISO C99

```
Synopsis:
           #include <stdio.h>
           int ferror( FILE *fp );
```

Description: The ferror function tests the error indicator for the stream pointed to by *fp*.

Returns: The ferror function returns non-zero if the error indicator is set for fp.

See Also: clearerr, feof, perror, strerror

```
Example:
           #include <stdio.h>
           void main()
               FILE *fp;
               int c;
               fp = fopen( "file", "r" );
               if( fp != NULL ) {
                 c = fgetc(fp);
                 if( ferror( fp ) ) {
                   printf( "Error reading file\n" );
               fclose( fp );
```

Classification: ISO C

All, Linux, RDOS, Netware **Systems:**

Synopsis: #include <fenv.h>

int fesetenv(const fenv_t *envp);

Description: The feseteny function attempts to establish the floating-point environment to environment

represented by the object pointed by *envp* argument. The *envp* argument shall point to an object set by a call to fegetenv or feholdexcept, or equal the FE_DFL_ENV macro. Note that fesetenv merely installs the state of the floating-point status flags represented through its argument, and does not

raise these floating-point exceptions.

Returns: The fesetenv function returns zero if the environment was successfully established. Otherwise, it

returns a nonzero value.

See Also: fegetenv, feholdexcept, feupdateenv

Example: #include <fenv.h>

```
void main( void )
{
    fenv_t env;
    fegetenv( &env );
    fesetenv( FE_DFL_ENV );
    fesetenv( &env );
}
```

Classification: ISO C99

Synopsis: #include <fenv.h>

int fesetexceptflag(const fexcept_t *flagp, int excepts);

Description:

The fesetexceptflag function attempts to set the exceptions indicated by excepts argument with the states stored in the object pointed by flagp argument. The value pointed by the flagp argument shall have been set by a previous call to fegetexceptflag whose second argument represented at least those floating-point exceptions represented by the excepts argument. This function does not raise floating-point exceptions, but only sets the state of the flags.

For valid exception values see fegetexceptflag.

Returns:

The fesetexceptflag function returns zero if the excepts argument is zero or if all the specified flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

See Also:

feclearexcept, fegetexceptflag, feraiseexcept, fetestexcept

Example:

```
#include <fenv.h>
void main( void )
    fexcept_t flags;
    fgetexceptflag( &flags, FE_DENORMAL | FE_INVALID );
    fsetexceptflag( &flags, FE_INVALID );
```

Classification: ISO C99

Synopsis: #include <fenv.h>

int fesetround (int mode);

Description: The feset round function sets the rounding direction mode, specified by *mode*, for the current

floating point environment.

The rounding direction mode can be one of the following values:

FE_TONEAREST Round to nearest integer, halfway rounding away from zero

FE_DOWNWARD Round downward to the next lowest integer

FE_TOWARDZERO Round to the nearest integer in the direction of zero

FE_UPWARD Round upward to the next highest integer

Returns: The feset round function returns a zero value if and only if the requested rounding direction was

established.

See Also: fegetround, nearbyint, rint

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
   fesetround(FE_DOWNWARD)
   printf( "%f\n", rint( 1.5 ) );
   fesetround(FE_UPWARD)
   printf( "%f\n", rint( 1.5 ) );
}
```

produces the following:

1.00000 2.00000

Classification: ISO C99

Synopsis: #include <fenv.h> int fetestexcept(int excepts);

Description: The fetestexcept function tests which of the specified floating-point exceptions flags are currently

set. The *excepts* argument specifies the floating-point exceptions to be queried.

For valid exception values see fegetexceptflag.

Returns: The fetestexcept function returns the value of the bitwise OR of the floating-point exception

macros corresponding to the currently set floating-point exceptions included in the excepts argument.

See Also: feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag

Example: #include <stdio.h>

```
#include <fenv.h>
void main( void )
    int excepts;
    feclearexcept(FE_DIVBYZERO);
    ...code that may cause a divide by zero exception
    excepts = fetestexcept( FE_DIVBYZERO );
    if ( excepts & FE_DIVBYZERO)
        printf( "Divide by zero occurred\n" );
```

Classification: ISO C99

All, Linux, RDOS, Netware **Systems:**

Synopsis: #include <fenv.h>

int feupdateenv(const fenv_t *envp);

Description: The feupdateenv function attempts to save the currently raised floating-point exceptions in its

automatic storage, installs the floating-point environment represented by the object pointed to by *envp* argument, and then raises the saved floating-point exceptions. The argument *envp* shall point to an object set by a call to feholdexcept or fegeteny, or equal a floating-point environment macro.

Returns: The feupdateenv function returns zero if all the actions were successfully carried out. Otherwise, it

returns a nonzero value.

See Also: fegetenv, feholdexcept, fesetenv

Example: #include <fenv.h>

```
void main( void )
{
    fenv_t env;
    fegetenv( &env );
    fesetenv( FE_DFL_ENV );
    feupdateenv( &env );
}
```

Classification: ISO C99

Synopsis: #include <stdio.h> int fflush(FILE *fp);

Description: If the file fp is open for output or update, the fflush function causes any unwritten data to be written to

the file. If the file fp is open for input or update, the fflush function undoes the effect of any

preceding ungetc operation on the stream. If the value of fp is NULL, then all files that are open will

be flushed.

Returns: The fflush function returns EOF if a write error occurs and zero otherwise. When an error has

occurred, errno contains a value indicating the type of error that has been detected.

See Also: fgetc, fgets, _flushall, fopen, getc, gets, setbuf, setvbuf, ungetc

Example: #include <stdio.h> #include <conio.h>

```
void main()
  {
    printf( "Press any key to continue..." );
    fflush ( stdout );
    getch();
```

Classification: ISO C

```
Synopsis:
              #include <strings.h>
              int ffs( int i );
Description:
             The ffs finds the first bit set, beginning with the least significant bit, in i. Bits are numbered starting
              at one (the least significant bit).
Returns:
             The ffs function returns the index of the first bit set. If i is 0, ffs returns zero.
See Also:
              _lrotl, _lrotr, _rotl, _rotr
Example:
              #include <stdio.h>
              #include <strings.h>
              int main( void )
                   printf( ^{\circ}d\n^{\circ}, ffs( 0 ) );
                   printf( %d\n'', ffs( 16 ) );
                   printf( \d^n, ffs( 127 ) );
                   printf( "%d\n", ffs( -16 ) );
                   return(0);
              produces the following:
              0
              5
              1
              5
Classification: POSIX 1003.1
Systems:
              All, Linux, RDOS, Netware
```

Synopsis:

```
#include <stdio.h>
int fgetc(FILE *fp);
#include <stdio.h>
#include <wchar.h>
wint_t fgetwc( FILE *fp );
```

#include <stdio.h>

Description:

The fgetc function gets the next character from the file designated by fp. The character is signed.

The fgetwc function is identical to fgetc except that it gets the next multibyte character (if present) from the input stream pointed to by fp and converts it to a wide character.

Returns:

The fgetc function returns the next character from the input stream pointed to by fp. If the stream is at end-of-file, the end-of-file indicator is set and fgetc returns EOF. If a read error occurs, the error indicator is set and fgetc returns EOF.

The fgetwc function returns the next wide character from the input stream pointed to by fp. If the stream is at end-of-file, the end-of-file indicator is set and fgetwc returns WEOF. If a read error occurs, the error indicator is set and fgetwo returns WEOF. If an encoding error occurs, errno is set to EILSEQ and fgetwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fgetchar, fgets, fopen, getc, getchar, gets, ungetc

Example:

```
void main()
   FILE *fp;
    int c;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      while ( (c = fgetc(fp)) != EOF)
        fputc( c, stdout );
      fclose(fp);
    }
  }
```

Classification: ISO C

Systems:

```
fgetc - All, Linux, RDOS, Netware
fgetwc - All, Linux
```

Synopsis:

```
#include <stdio.h>
int fgetchar( void );
int _fgetchar( void );
wint_t _fgetwchar( void );
```

Description:

The fgetchar function is equivalent to fgetc with the argument stdin.

The _fgetchar function is identical to fgetchar. Use _fgetchar for ANSI naming conventions.

The _fgetwchar function is identical to fgetchar except that it gets the next multibyte character (if present) from the input stream pointed to by stdin and converts it to a wide character.

Returns:

The fgetchar function returns the next character from the input stream pointed to by stdin. If the stream is at end-of-file, the end-of-file indicator is set and fgetchar returns EOF. If a read error occurs, the error indicator is set and fgetchar returns EOF.

The _fgetwchar function returns the next wide character from the input stream pointed to by stdin. If the stream is at end-of-file, the end-of-file indicator is set and _fgetwchar returns WEOF. If a read error occurs, the error indicator is set and _fgetwchar returns WEOF. If an encoding error occurs, error is set to EILSEQ and _fgetwchar returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fgetc, fgets, fopen, getc, getchar, gets, ungetc

#include <stdio.h>

Example:

```
void main()
{
   FILE *fp;
   int c;

   fp = freopen( "file", "r", stdin );
   if( fp != NULL ) {
     while( (c = fgetchar()) != EOF )
        fputchar(c);
     fclose( fp );
   }
}
```

Classification: WATCOM

_fgetchar conforms to ANSI naming conventions

Systems:

```
fgetchar - All, Linux, RDOS, Netware
_fgetchar - All, Linux, RDOS, Netware
_fgetwchar - All, Linux
```

fgetchar, _fgetchar, _fgetwchar

Synopsis: #include <stdio.h>
 int fgetpos(FILE *fp, fpos_t *pos);

Description: The fgetpos function stores the current position of the file fp in the object pointed to by pos. The

value stored is usable by the fsetpos function for repositioning the file to its position at the time of

the call to the fgetpos function.

Returns: The fgetpos function returns zero if successful, otherwise, the fgetpos function returns a non-zero

value. When an error has occurred, errno contains a value indicating the type of error that has been

detected.

See Also: fopen, fseek, fsetpos, ftell

Example: #include <stdio.h>

Classification: ISO C

Synopsis:

```
#include <stdio.h>
char *fgets( char *buf, int n, FILE *fp );
#include <stdio.h>
#include <wchar.h>
wchar_t *fgetws( wchar_t *buf, int n, FILE *fp );
```

Description:

The fgets function gets a string of characters from the file designated by fp and stores them in the array pointed to by buf. The fgets function stops reading characters when end-of-file is reached, or when a newline character is read, or when n-1 characters have been read, whichever comes first. The new-line character is not discarded. A null character is placed immediately after the last character read into the array.

The fgetws function is identical to fgets except that it gets a string of multibyte characters (if present) from the input stream pointed to by fp, converts them to wide characters, and stores them in the wide character array pointed to by buf. In this case, n specifies the number of wide characters, less one, to be read.

A common programming error is to assume the presence of a new-line character in every string that is read into the array. A new-line character will not be present when more than n-1 characters occur before the new-line. Also, a new-line character may not appear as the last character in a file, just before end-of-file.

The gets function is similar to fgets except that it operates with stdin, it has no size argument, and it replaces a newline character with the null character.

Returns:

The fgets function returns buf if successful. NULL is returned if end-of-file is encountered, or a read error occurs. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fgetc, fgetchar, fopen, getc, getchar, gets, ungetc

Example:

```
void main()
  {
    FILE *fp;
    char buffer[80];
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      while (fgets (buffer, 80, fp ) != NULL )
        fputs (buffer, stdout);
      fclose( fp );
  }
```

Classification: ISO C

Systems:

```
fgets - All, Linux, RDOS, Netware
fgetws - All, Linux
```

#include <stdio.h>

fgets, fgetws			

```
Synopsis:
           #include <math.h>
           extern int _fieeetomsbin( float *src, float *dest );
```

Description: The _fieeetomsbin function loads the float pointed to by src in IEEE format and converts it to Microsoft binary format, storing the result into the float pointed to by dest.

> For _fieeetomsbin IEEE Nan's and Infinities will cause overflow. IEEE denormals will be converted if within range. Otherwise, they will be converted to 0 in the Microsoft binary format.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors became standard.

Returns: The _fieeetomsbin function returns 0 if the conversion was successful. Otherwise, it returns 1 if conversion would cause an overflow.

See Also: _dieeetomsbin, _dmsbintoieee, _fmsbintoieee

Example: #include <stdio.h> #include <math.h> void main()

```
{
  float fieee, fmsb;
  double dieee, dmsb;
  fieee = 0.5;
 dieee = -2.0;
  /* Convert IEEE format to Microsoft binary format */
 _fieeetomsbin( &fieee, &fmsb );
 _dieeetomsbin( &dieee, &dmsb );
  /* Convert Microsoft binary format back to IEEE format */
 _fmsbintoieee( &fmsb, &fieee );
 _dmsbintoieee( &dmsb, &dieee );
  /* Display results */
 printf( "fieee = %f, dieee = %f\n", fieee, dieee );
```

produces the following:

```
fieee = 0.500000, dieee = -2.000000
```

Classification: WATCOM

Systems: All, Linux, Netware

_fieeetomsbin			

```
Synopsis:
             #include <io.h>
             long _filelength( int handle );
             __int64 _filelengthi64( int handle );
             ** deprecated **
             long filelength( int handle );
Description:
             The _filelength function returns, as a 32-bit long integer, the number of bytes in the opened file
             indicated by the file handle handle.
             The _filelengthi64 function returns, as a 64-bit integer, the number of bytes in the opened file indicated
             by the file handle handle.
             The filelength function is deprecated, use _filelength instead.
Returns:
             If an error occurs in _filelength (-1L) is returned.
             If an error occurs in _filelengthi64, (-1I64) is returned.
             When an error has occurred, errno contains a value indicating the type of error that has been detected.
             Otherwise, the number of bytes written to the file is returned.
See Also:
             fstat, lseek, _tell
Example:
             #include <sys/types.h>
             #include <fcntl.h>
             #include <stdio.h>
             #include <io.h>
             void main( void )
                  int handle;
                  /* open a file for input
                  handle = open( "file", O_RDONLY | O_TEXT );
                  if (handle !=-1) {
                       printf( "Size of file is %ld bytes\n",
                               _filelength( handle ) );
                       close( handle );
                  }
             }
             produces the following:
             Size of file is 461 bytes
Classification: WATCOM
```

_filelength - All, Linux, RDOS, Netware

filelength - All, Linux, RDOS, Netware

_filelengthi64 - All, Linux

Systems:

_filelength, _filelen	ngthi64, filelength		

Synopsis: #include <stdio.h>

#define FILENAME_MAX 123

Description: The FILENAME_MAX macro is the size of an array of char big enough to hold a string naming any file

that the implementation expects to open; If there is no practical file name length limit,

FILENAME_MAX is the recommended size of such an array. As file name string contents must meet

other system-specific constraints, some strings of length FILENAME_MAX may not work.

FILENAME_MAX typically sizes an array to hold a file name.

Returns: The FILENAME_MAX macro returns a positive integer value.

Example: #include <stdio.h> #include <string.h>

> int main(int argc, char *argv[]) if(argc) { char fname[FILENAME_MAX]; strcpy(fname, argv[0]); puts(fname); return(0);

Classification: ISO C

Systems: MACRO Synopsis: #include <stdio.h>
 int fileno(FILE *stream);

Description:

The fileno function returns the number of the file handle for the file designated by *stream*. This number can be used in POSIX input/output calls anywhere the value returned by open can be used. The following symbolic values in <io.h> define the file handles that are associated with the C language *stdin*, *stdout*, *stderr*, *stdaux*, and *stdprn* files when the application is started. The *stdaux* and *stdprn* files are not available for Win32.

Value	Meaning
STDIN_FILENO	Standard input file number, stdin (0)
STDOUT_FILENO	Standard output file number, stdout (1)
STDERR_FILENO	Standard error file number, stderr (2)
STDAUX_FILENO	Standard auxiliary file number, <i>stdaux</i> (3)
STDPRN_FILENO	Standard printer file number, stdprn (4)

Returns:

The fileno function returns the number of the file handle for the file designated by *stream*. If an error occurs, a value of -1 is returned and error is set to indicate the error.

See Also: open

```
Example: #include <stdio.h>
```

```
void main()
{
   FILE *stream;

   stream = fopen( "file", "r" );
   printf( "File number is %d\n", fileno( stream ) );
   fclose( stream );
}
```

produces the following:

File number is 7

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Synopsis: #include <io.h>

int _findclose(intptr_t handle);

Description: The _findclose function closes the directory of filenames established by a call to the _findfirst

function. The *handle* argument was returned by the _findfirst function.

Returns: If successful, _findclose returns 0; otherwise, _findclose and returns -1 and sets errno to one

of the following values:

Constant Meaning

ENOENT No matching files

See Also: _dos_find..., _findfirst, _findnext, closedir, opendir, readdir

Example: #include <stdio.h> #include <io.h>

```
void main()
  {
    struct _finddata_t fileinfo;
    intptr_t
                        handle;
    int
                        rc;
    /* Display name and size of "*.c" files */
   handle = _findfirst( "*.c", &fileinfo );
    rc = handle;
    while ( rc !=-1 ) {
      printf( "%14s %10ld\n", fileinfo.name,
                               fileinfo.size );
      rc = _findnext( handle, &fileinfo );
     _findclose( handle );
```

Classification: DOS

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis:

Description:

The _findfirst function returns information on the first file whose name matches the *filespec* argument. The *filespec* argument may contain wildcard characters ('?' and '*'). The information is returned in a _finddata_t structure pointed to by *fileinfo*.

The _findfirsti64 function returns information on the first file whose name matches the *filespec* argument. It differs from the _findfirst function in that it returns a 64-bit file size. The *filespec* argument may contain wildcard characters ('?' and '*'). The information is returned in a _finddatai64_t structure pointed to by *fileinfo*.

The _wfindfirst function is a wide character version of _findfirst that operates with wide character strings.

The wide character _wfindfirsti64 function is similar to the _findfirsti64 function but operates on wide character strings. It differs from the _wfindfirst function in that it returns a 64-bit file size.

```
struct _wfinddatai64_t {
    unsigned
                attrib;
                                  /* -1 for FAT file systems */
    time_t
                time_create;
    time_t
                time_access;
                                  /* -1 for FAT file systems */
    time_t
                time_write;
                                  /* 64-bit size info
                                                              */
    ___int64
                size;
    wchar_t
                name[_MAX_PATH];
};
```

Returns:

If successful, _findfirst returns a unique search handle identifying the file or group of files matching the filespec specification, which can be used in a subsequent call to _findnext or to _findclose. Otherwise, _findfirst returns -1 and sets errno to one of the following values:

Constant Meaning

#include <stdio.h>

ENOENT No matching files

EINVAL Invalid filename specification

See Also: _dos_find..., _findclose, _findnext, closedir, opendir, readdir

Example:

```
#include <io.h>
void main()
  {
    struct _finddata_t fileinfo;
                        handle;
    intptr_t
    int
                        rc;
    /* Display name and size of "*.c" files */
    handle = _findfirst( "*.c", &fileinfo );
    rc = handle;
    while ( rc !=-1 ) {
     printf( "%14s %10ld\n", fileinfo.name,
                               fileinfo.size );
      rc = _findnext( handle, &fileinfo );
    _findclose( handle );
```

Classification: DOS

Systems:

```
_findfirst - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
RDOS
_findfirsti64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
_wfindfirst - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
_wfindfirsti64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

_findfirst, _findfirsti64	4, _wfindfirst, _wfindfirsti64	

Synopsis:

```
#include <io.h>
int _findnext( intptr_t handle, struct _finddata_t *fileinfo );
int _findnexti64( intptr_t handle, struct _finddatai64_t *fileinfo );
int _wfindnext( intptr_t handle, struct _wfinddata_t *fileinfo );
int _wfindnexti64( intptr_t handle, struct _wfinddatai64_t *fileinfo
```

Description:

The _findnext function returns information on the next file whose name matches the *filespec* argument that was specified in a call to the _findfirst function. The handle argument was returned by the _findfirst function. The information is returned in a _finddata_t structure pointed to by fileinfo.

```
struct _finddata_t {
     unsigned attrib;
     time_t time_create;  /* -1 for FAT file systems */
time_t time_access;  /* -1 for FAT file systems */
time_t time_write;
_fsize_t size;
     char name[_MAX_PATH];
};
```

The _findnexti64 function returns information on the next file whose name matches the *filespec* argument that was specified in a call to the _findfirsti64 function. It differs from the _findnext function in that it returns a 64-bit file size. The handle argument was returned by the _findfirsti64 function. The information is returned in a _finddatai64_t structure pointed to by fileinfo.

```
struct _finddatai64_t {
     unsigned attrib;
     time_t time_create;  /* -1 for FAT file systems */
time_t time_access;  /* -1 for FAT file systems */
     time_t time_access;
time_t time_write;
__int64 size;
char name[_MAX_PATH
                                                  /* 64-bit size info
                                                                                            */
                       name[_MAX_PATH];
};
```

The _wfindnext function is a wide character version of _findnext that operates with wide character strings.

```
struct _wfinddata_t {
    unsigned attrib;
   time_t time_create;  /* -1 for FAT file systems */
time_t time_access;  /* -1 for FAT file systems */
   _fsize_t size;
    wchar_t
              name[_MAX_PATH];
};
```

The wide character _wfindnexti64 function is similar to the _findnexti64 function but operates on wide character strings. It differs from the _wfindnext function in that it returns a 64-bit file size.

```
struct _wfinddatai64_t {
   unsigned
               attrib;
                              /* -1 for FAT file systems */
   time_t
               time_create;
   time_t
               time_access;
                               /* -1 for FAT file systems */
   time_t
               time_write;
                                 /* 64-bit size info
                                                            */
    ___int64
               size;
   wchar_t
               name[_MAX_PATH];
};
```

If successful, _findnext returns 0; otherwise, _findnext and returns -1 and sets errno to one of

the following values:

Returns:

Constant Meaning

ENOENT No matching files

See Also: _dos_find..., _findclose, _findfirst, closedir, opendir, readdir

Example: #include <stdio.h>
#include <io.h>

Classification: DOS

Systems: __findnext - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS __findnexti64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

__wfindnext - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32 __wfindnexti64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

```
Synopsis:
           #include <float.h>
           int _finite( double x );
```

Description: The _finite function determines whether the double precision floating-point argument is a valid

number (i.e., not infinite and not a NAN).

Returns: The _finite function returns 0 if the number is not valid and non-zero otherwise.

See Also: _clear87, _control87, _controlfp, _fpreset, printf, _status87, isfinite,

fpclassify

Example: #include <stdio.h> #include <float.h>

```
void main()
 {
  printf( "%s\n", (_finite( 1.797693134862320e+308 ) )
     ? "Valid" : "Invalid" );
```

produces the following:

Valid Invalid

Classification: WATCOM

Systems: Math

Description: The _floodfill functions fill an area of the screen. The _floodfill function uses the view coordinate system. The _floodfill_w function uses the window coordinate system.

The filling starts at the point (x, y) and continues in all directions: when a pixel is filled, the neighbouring pixels (horizontally and vertically) are then considered for filling. Filling is done using the current color and fill mask. No filling will occur if the point (x, y) lies outside the clipping region.

short stop_color);

If the argument $stop_color$ is a valid pixel value, filling will occur in each direction until a pixel is encountered with a pixel value of $stop_color$. The filled area will be the area around (x,y), bordered by $stop_color$. No filling will occur if the point (x,y) has the pixel value $stop_color$.

If $stop_color$ has the value (-1), filling occurs until a pixel is encountered with a pixel value different from the pixel value of the starting point (x, y). No filling will occur if the pixel value of the point (x, y) is the current color.

Returns: The _floodfill functions return zero when no filling takes place; a non-zero value is returned to indicate that filling has occurred.

See Also: _setcliprgn, _setcolor, _setfillmask, _setplotaction

Example: #include <conio.h>
#include <graph.h>

```
main()
{
    _setvideomode( _VRES16COLOR );
    _setcolor( 1 );
    _ellipse( _GBORDER, 120, 90, 520, 390 );
    _setcolor( 2 );
    _floodfill( 320, 240, 1 );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: _floodfill - DOS _floodfill_w - DOS

		_ f I	oodfill Functions

```
Synopsis:
               #include <math.h>
               double floor( double x );
Description:
               The floor function computes the largest integer not greater than x.
Returns:
               The floor function computes the largest integer not greater than x, expressed as a double.
See Also:
               ceil, fmod
Example:
               #include <stdio.h>
                #include <math.h>
               void main()
                  {
                     printf( "%f\n", floor( -3.14 ) );
                     printf( "%f\n", floor( 3.14 ) );
printf( "%f\n", floor( 0. ) );
printf( "%f\n", floor( 3.14 ) );
printf( "%f\n", floor( 3. ) );
               produces the following:
               -4.000000
               -3.00000
               0.000000
               3.000000
               3.000000
Classification: ISO C
Systems:
               Math
```

```
Synopsis:
           #include <stdio.h>
           int _flushall( void );
           ** deprecated **
           int flushall( void );
```

Description:

The _flushall function clears all buffers associated with input streams and writes any buffers associated with output streams. A subsequent read operation on an input file causes new data to be read from the associated file or device.

Calling the _flushall function is equivalent to calling the fflush for all open stream files. The flushall function is deprecated, use _flushall instead.

Returns:

The _flushall function returns the number of open streams. When an output error occurs while writing to a file, the errno global variable will be set.

See Also: fopen, fflush

Example:

```
#include <stdio.h>
void main()
   printf( "The number of open files is %d\n",
            _flushall() );
  }
```

produces the following:

The number of open files is 4

Classification: WATCOM

Systems:

_flushall - All, Linux, RDOS, Netware flushall - All, Linux, RDOS, Netware

```
Synopsis: \#include <math.h> double fma( double x, double y, double z);
```

Description: The fma function performs a fused multiply-add operation. The resultant value is the product of x and y summed with z.

Returns: The x*y+z

produces the following:

7.00000

Classification: ISO C99

Systems: Math

```
Synopsis:
             #include <math.h>
             double fmax( double x, double y);
Description:
            The fmax function returns the larger of x and y.
Returns:
             The routine will return the larger of x or y.
See Also:
             fdim, fmin
Example:
             #include <stdio.h>
             #include <math.h>
             void main()
               {
                 printf( "%f\n", fmax( 3.0, 2.0 ) );
             produces the following:
             3.000000
```

Classification: ISO C99

Systems: Math

```
Synopsis:
             #include <math.h>
             double fmin( double x, double y);
Description:
             The fmin function returns the smaller of x and y.
Returns:
             The routine will return the smaller of x or y.
See Also:
             fdim, fmax
Example:
             #include <stdio.h>
             #include <math.h>
             void main()
                {
                  printf( "%f\n", fmin( 3.0, 2.0 ) );
             produces the following:
             2.000000
Classification: ISO C99
Systems:
```

Math

Synopsis: #include <math.h>

double fmod(double x, double y);

Description: The fmod function computes the floating-point remainder of x/y, even if the quotient x/y is not

representable.

Returns: The fmod function returns the value x - (i * y), for some integer i such that, if y is non-zero, the result

has the same sign as x and magnitude less than the magnitude of y. If the value of y is zero, then the

value returned is zero.

See Also: ceil, fabs, floor

Example: #include <stdio.h> #include <math.h>

```
void main()
  {
```

printf("% $f\n$ ", fmod(4.5, 2.0)); printf("%f\n", fmod(-4.5, 2.0)); printf($\$f\n$, fmod(4.5, -2.0)); printf("% $f\n$ ", fmod(-4.5, -2.0));

produces the following:

0.500000 -0.500000 0.500000 -0.500000

Classification: ISO C

Systems: Math Synopsis: #include <math.h>
 extern int _fmsbintoieee(float *src, float *dest);

Description: The _fmsbintoieee function loads the float pointed to by *src* in Microsoft binary format and

converts it to IEEE format, storing the result &into the float pointed to by dest.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors became standard

Returns: The _fmsbintoieee function returns 0 if the conversion was successful. Otherwise, it returns 1 if

conversion would cause an overflow.

See Also: __dieeetomsbin, __dmsbintoieee, __fieeetomsbin

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
   float fieee, fmsb;
   double dieee, dmsb;

   fieee = 0.5;
   dieee = -2.0;

   /* Convert IEEE format to Microsoft binary format */
   _fieeetomsbin( &fieee, &fmsb );
   _dieeetomsbin( &dieee, &dmsb );

   /* Convert Microsoft binary format back to IEEE format */
   _fmsbintoieee( &fmsb, &fieee );
   _dmsbintoieee( &dmsb, &dieee );

   /* Display results */
   printf( "fieee = %f, dieee = %f\n", fieee, dieee );
}
```

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

		_fmsbintoieee

Synopsis: #include <fnmatch.h>

Description:

The fnmatch function checks the string specified by the *s* argument to see if it matches the pattern specified by the *pattern* argument.

The *flag* argument is a bitwise inclusive OR of the bits described below. It modifies the interpretation of *pattern* and *s*.

Flag Meaning

FNM_PATHNAME If set, a path separator in s is explicitly matched by a slash in *pattern*. It isn't matched by either the asterisk or question mark special characters, or by a bracket expression.

FNM_PERIOD If set, a leading period in *s* matches a period in *pattern*, where the definition of "leading" depends on FNM_PATHNAME:

- If FNM_PATHNAME is set, a period is leading if it's the first character in s, or if it immediately follows a path separator.
- If FNM_PATHNAME isn't set, a period is leading only if it's the first character in s.

FNM_NOESCAPE If set, disables backslash escaping:

- If FNM_NOESCAPE isn't set in *flags*, a backslash character (\) in *pattern* followed by any other character matches that second character in *s*. In particular, \\ matches a backslash in *s*.
- If FNM_NOESCAPE is set, a backslash character is treated as an ordinary character.

FNM_IGNORECASE If set, the matching is case-insensitive.

FNM_CASEFOLD A synonym for FNM_IGNORECASE.

FNM_LEADING_DIR If set, the final path separator and any following characters in s are ignored during matching.

A pattern-matching special character that is quoted is a pattern that matches the special character itself. When not quoted, such special characters have special meaning in the specification of patterns. The pattern-matching special characters and the contexts in which they have their special meaning are as follows:

- ? a ? is a pattern that matches any printable or nonprintable character except <newline>.
- * the * matches any string, including the null string.

[br_exp] a pattern that matches a single character as per Regular Expression Bracket Expressions (1003.2 2.9.1.2) except that

- The exclamation point character (!) replaces the circumflex character (^) in its role as a nonmatching list in the regular expression notation.
- The backslash is used as an escape character within bracket expressions.

The ?, * and [characters aren't special when used inside a bracket expression.

The concatenation of patterns matching a single character is a valid pattern that matches the concatenation of the single characters matched by each of the concatenated patterns. For example, the pattern a [bc] matches the strings ab and ac.

The concatenation of one or more patterns matching a single character with one or more asterisks (*) is a valid pattern. In such patterns, each asterisk matches a string of zero or more characters, up to the first character that matches the character following the asterisk in the pattern. For example, the pattern a*d matches the strings ad, abd, and abcd, but not the string abc.

When asterisk is the first or last character in a pattern, it matches zero or more characters that precede or follow the characters matched by the remainded of the pattern. For example, the pattern a*d* matches the strings ad, abcd, abcdef, aaaad and adddd. The pattern *a*d matches the strings ad, abcd, efabcd, aaaad and adddd.

Returns:

The final character function returns zero when s matches the pattern specified by pattern. If there is no match, FNM_NOMATCH is returned. If an error occurs, fnmatch returns another non-zero value.

Example:

```
#include <stdio.h>
#include <fnmatch.h>
#include <stdlib.h>
#include <limits.h>
int main( int argc, char **argv )
    int
            buffer[PATH_MAX+1];
    char
    while( gets( buffer ) ) {
        for(i = 1; i < argc; i++) {
            if ( fnmatch ( argv[i], buffer, 0 ) == 0 ) {
                printf( "'%s' matches pattern '%s' \n",
                         buffer, argv[i] );
                break;
    return( EXIT_SUCCESS );
```

Classification: POSIX 1003.2

Systems: All, Linux, RDOS, Netware Synopsis: #include <stdio.h>

Safer C:

The Safer C Library extension provides the fopen_s function which is a safer alternative to fopen. This newer fopen_s function is recommended to be used instead of the traditional "unsafe" fopen function.

Description:

The fopen function opens the file whose name is the string pointed to by *filename*, and associates a stream with it. The argument *mode* points to a string beginning with one of the following sequences:

Mode	Meaning
''r''	open file for reading
''w''	create file for writing, or truncate to zero length
''a''	append: open file or create for writing at end-of-file
"r+"	open file for update (reading and/or writing)
"w+"	create file for update, or truncate to zero length
''a+''	append: open file or create for update, writing at end-of-file

In addition to the above characters, you can also include one of the following characters in *mode* to specify the translation mode for newline characters:

The letter "t" may be added to any of the above sequences in the second or later position to indicate that the file is (or must be) a text file. It also overrides the global translation mode flag if you link your program with BINMODE.OBJ. The global translation mode flag default is "text" unless you explicitly link your program with BINMODE.OBJ.

When neither "t" nor "b" is specified, the value of the global variable _fmode establishes whether the file is to treated as a binary or a text file. Unless this value is changed by the program or you have linked your program with BINMODE.OBJ, the default will be text mode.

b The letter "b" may be added to any of the above sequences in the second or later position to indicate that the file is (or must be) a binary file (an ISO C requirement for portability to systems that make a distinction between text and binary files).

You can also include one of the following characters to enable or disable the "commit" flag for the associated file.

c The letter "c" may be added to any of the above sequences in the second or later position to indicate that any output is committed by the operating system whenever a flush (fflush or _flushall) is done.

This option is not supported under Netware.

n

The letter "n" may be added to any of the above sequences in the second or later position to indicate that the operating system need not commit any output whenever a flush is done. It also overrides the global commit flag if you link your program with COMMODE.OBJ. The global commit flag default is "no-commit" unless you explicitly link your program with COMMODE.OBJ.

This option is not supported under Netware.

The "t", "c", and "n" mode options are extensions for fopen and _fdopen and should not be used where ISO C portability is desired.

Opening a file with read mode (r as the first character in the *mode* argument) fails if the file does not exist or it cannot be read. Opening a file with append mode (a as the first character in the mode argument) causes all subsequent writes to the file to be forced to the current end-of-file, regardless of previous calls to the fseek function. When a file is opened with update mode (+ as the second or later character of the *mode* argument), both input and output may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed. However, writing may not be followed by reading without an intervening call to the fflush function or to a file positioning function (fseek, fsetpos, rewind). Similarly, reading may not be followed by writing without an intervening call to a file positioning function, unless the read resulted in end-of-file.

The _wfopen function is a wide character version of fopen that operates with wide character strings.

Returns:

The fopen function returns a pointer to the object controlling the stream. This pointer must be passed as a parameter to subsequent functions for performing operations on the file. If the open operation fails, fopen returns NULL. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

_dos_open, fclose, fcloseall, fdopen, fopen_s, freopen, freopen_s, _fsopen, _grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen

Example:

```
#include <stdio.h>
void main()
    FILE *fp;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      /* rest of code goes here */
      fclose( fp );
```

Classification: ISO C ('t', 'c', 'n' are Open Watcom extensions) _wfopen is WATCOM

Systems:

fopen - All, Linux, RDOS, Netware _wfopen - All, Linux

fopen, _wfopen				

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t fopen_s( FILE * restrict * restrict streamptr,
                const char * restrict filename,
                const char * restrict mode);
errno_t _wfopen_s( FILE * restrict * restrict streamptr,
                   const wchar_t * restrict filename,
                   const wchar_t * restrict mode);
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and fopen_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

None of streamptr, filename, or mode shall be a null pointer. If there is a runtime-constraint violation, fopen_s does not attempt to open a file. Furthermore, if streamptr is not a null pointer, fopen_s sets *streamptr to the null pointer.

Description:

The fopen_s function opens the file whose name is the string pointed to by filename, and associates a stream with it. The *mode* string shall be as described for fopen, with the addition that modes starting with the character 'w' or 'a' may be preceded by the character 'u', see below:

Mode	Meaning
''uw''	truncate to zero length or create text file for writing, default permissions
''ua''	append; open or create text file for writing at end-of-file, default permissions
''uwb''	truncate to zero length or create binary file for writing, default permissions
''uab''	append; open or create binary file for writing at end-of-file, default permissions
"uw+"	truncate to zero length or create text file for update, default permissions
''ua+''	append; open or create text file for update, writing at end-of-file, default permissions

[&]quot;uw+b or uwb+" truncate to zero length or create binary file for update, default permissions

To the extent that the underlying system supports the concepts, files opened for writing shall be opened with exclusive (also known as non-shared) access. If the file is being created, and the first character of the mode string is not 'u', to the extent that the underlying system supports it, the file shall have a file permission that prevents other users on the system from accessing the file. If the file is being created and first character of the mode string is 'u', then by the time the file has been closed, it shall have the system default file access permissions. If the file was opened successfully, then the pointer to FILE pointed to by *streamptr* will be set to the pointer to the object controlling the opened file. Otherwise, the pointer to FILE pointed to by *streamptr* will be set to a null pointer.

In addition to the above characters, you can also include one of the following characters in mode to specify the translation mode for newline characters:

[&]quot;ua+b or uab+" append; open or create binary file for update, writing at end-of-file, default permissions

The letter "t" may be added to any of the above sequences in the second or later position to indicate that the file is (or must be) a text file. It also overrides the global translation mode flag if you link your program with BINMODE.OBJ. The global translation mode flag default is "text" unless you explicitly link your program with BINMODE.OBJ.

When neither "t" nor "b" is specified, the value of the global variable _fmode establishes whether the file is to treated as a binary or a text file. Unless this value is changed by the program or you have linked your program with BINMODE.OBJ, the default will be text mode.

b The letter "b" may be added to any of the above sequences in the second or later position to indicate that the file is (or must be) a binary file (an ISO C requirement for portability to systems that make a distinction between text and binary files).

You can also include one of the following characters to enable or disable the "commit" flag for the associated file.

c The letter "c" may be added to any of the above sequences in the second or later position to indicate that any output is committed by the operating system whenever a flush (fflush or _flushall) is done.

This option is not supported under Netware.

n The letter "n" may be added to any of the above sequences in the second or later position to indicate that the operating system need not commit any output whenever a flush is done. It also overrides the global commit flag if you link your program with COMMODE.OBJ. The global commit flag default is "no-commit" unless you explicitly link your program with COMMODE.OBJ.

This option is not supported under Netware.

The "t", "c", and "n" mode options are extensions for fopen_s and should not be used where ISO C portability is desired.

Opening a file with read mode (r as the first character in the *mode* argument) fails if the file does not exist or it cannot be read. Opening a file with append mode (a as the first character in the *mode* argument) causes all subsequent writes to the file to be forced to the current end-of-file, regardless of previous calls to the fseek function. When a file is opened with update mode (+ as the second or later character of the *mode* argument), both input and output may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed. However, writing may not be followed by reading without an intervening call to the fflush function or to a file positioning function (fseek, fsetpos, rewind). Similarly, reading may not be followed by writing without an intervening call to a file positioning function, unless the read resulted in end-of-file.

The _wfopen_s function is a wide character version of fopen_s that operates with wide character strings.

Returns: The fopen_s function returns zero if it opened the file. If it did not open the file or if there was a runtime-constraint violation, fopen_s returns a non-zero value.

See Also: __dos_open, fclose, fcloseall, fdopen, fopen, freopen_s, _fsopen, __grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen

```
#define __STDC_WANT_LIB_EXT1__ 1
Example:
           #include <stdio.h>
           void main()
               errno_t rc;
               FILE *fp;
               rc = fopen_s( &fp, "file", "r" );
               if( fp != NULL ) {
                /* rest of code goes here */
                 fclose( fp );
           }
Classification: TR 24731
           _wfopen_s is WATCOM
Systems:
           fopen_s - All, Linux, RDOS, Netware
           _wfopen_s - All, Linux
```

```
Synopsis:
            #include <i86.h>
            unsigned FP_OFF( void __far *far_ptr );
Description:
            The FP_OFF macro can be used to obtain the offset portion of the far pointer value given in far_ptr.
Returns:
            The macro returns an unsigned integer value which is the offset portion of the pointer value.
See Also:
            FP_SEG, MK_FP, segread
Example:
            #include <stdio.h>
            #include <i86.h>
            char ColourTable[256][3];
            void main()
              {
                union REGPACK r;
                int i;
                 /* read block of colour registers */
                r.h.ah = 0x10;
                r.h.al = 0x17;
            #if defined(___386_
                r.x.ebx = 0;
                r.x.ecx = 256;
                r.x.edx = FP_OFF( ColourTable );
                 r.w.ds = r.w.fs = r.w.gs = FP\_SEG( &r );
            #else
                r.w.bx = 0;
                r.w.cx = 256;
                r.w.dx = FP_OFF( ColourTable );
            #endif
                r.w.es = FP_SEG( ColourTable );
                intr( 0x10, &r );
                 for(i = 0; i < 256; i++) {
                   printf( "Colour index = %d "
                            "{ Red=%d, Green=%d, Blue=%d \n",
                            i,
                            ColourTable[i][0],
                            ColourTable[i][1],
                            ColourTable[i][2] );
Classification: Intel
```

334 Library Functions and Macros

MACRO

Systems:

		FP_OFF

```
Synopsis:
            #include <i86.h>
            unsigned FP_SEG( void __far *far_ptr );
Description:
            The FP_SEG macro can be used to obtain the segment portion of the far pointer value given in far_ptr.
Returns:
            The macro returns an unsigned integer value which is the segment portion of the pointer value.
See Also:
            FP_OFF, MK_FP, segread
Example:
            #include <stdio.h>
            #include <i86.h>
            char ColourTable[256][3];
            void main()
              {
                union REGPACK r;
                int i;
                 /* read block of colour registers */
                r.h.ah = 0x10;
                r.h.al = 0x17;
            #if defined(___386_
                r.x.ebx = 0;
                r.x.ecx = 256;
                r.x.edx = FP_OFF( ColourTable );
                 r.w.ds = r.w.fs = r.w.gs = FP\_SEG( &r );
            #else
                r.w.bx = 0;
                r.w.cx = 256;
                r.w.dx = FP_OFF( ColourTable );
            #endif
                r.w.es = FP_SEG( ColourTable );
                intr( 0x10, &r );
                 for(i = 0; i < 256; i++) {
                   printf( "Colour index = %d "
                            "{ Red=%d, Green=%d, Blue=%d \n",
                            i,
                            ColourTable[i][0],
                            ColourTable[i][1],
                            ColourTable[i][2] );
Classification: Intel
```

MACRO

Systems:

Synopsis: #include <math.h>
 int fpclassify(x);

Description: The fpclassify macro classifies its argument *x* as NaN, infinite, normal, subnormal, or zero. First,

an argument represented in a format wider than its semantic type is converted to its semantic type.

Then classification is based on the type of the argument.

The argument *x* must be an expression of real floating type.

The possible return values of fpclassify and their meanings are listed below.

 Constant
 Meaning

 FP_INFINITE
 positive or negative infinity

 FP_NAN
 NaN (not-a-number)

 FP_NORMAL
 normal number (neither zero, subnormal, NaN, nor infinity)

 FP_SUBNORMAL
 subnormal number

FP_ZERO positive or negative zero

Returns: The fpclassify macro returns the value of the number classification macro appropriate to the value

of its argument x.

See Also: isfinite, isinf, isnan, isnormal, signbit

Example: #include <math.h>
#include <stdio.h>

produces the following:

infinity is not a normal number

Classification: ISO C

Systems: MACRO

		fpclassify

```
Synopsis: #include <float.h>
    void _fpreset( void );
```

Description: The _fpreset function resets the floating-point unit to the default state that the math library requires

for correct function. After a floating-point exception, it may be necessary to call the _fpreset

function before any further floating-point operations are attempted.

In multi-threaded environments, _fpreset only affects the current thread.

Returns: No value is returned.

See Also: __clear87, _control87, _controlfp, _finite, _status87

Example:

```
#include <stdio.h>
#include <float.h>
char *status[2] = { "No", " " };
void main( void )
    unsigned int fp_status;
    fp_status = _status87();
    printf( "80x87 status\n" );
    printf( "%s invalid operation\n",
            status[ (fp_status & SW_INVALID) == 0 ] );
    printf( "%s denormalized operand\n",
            status[ (fp_status & SW_DENORMAL) == 0 ] );
    printf( "%s divide by zero\n",
            status[ (fp_status & SW_ZERODIVIDE) == 0 ] );
    printf( "%s overflow\n",
            status[ (fp_status & SW_OVERFLOW) == 0 ] );
    printf( "%s underflow\n",
            status[ (fp_status & SW_UNDERFLOW) == 0 ] );
    printf( "%s inexact result\n",
            status[ (fp_status & SW_INEXACT) == 0 ] );
    _fpreset();
```

Classification: Intel

Systems: All, Linux, RDOS, Netware

Synopsis: #include <stdio.h> int fprintf(FILE *fp, const char *format, ...); #include <stdio.h> #include <wchar.h> int fwprintf(FILE *fp, const wchar_t *format, ...);

Safer C: The Safer C Library extension provides the fprintf_s function which is a safer alternative to fprintf. This newer fprintf_s function is recommended to be used instead of the traditional "unsafe" fprintf function.

Description: The fprintf function writes output to the file pointed to by fp under control of the argument format. The *format* string is described under the description of the printf function.

> The fwprintf function is a wide character version of fprintf. It accepts a wide character string argument for format and produces wide character output.

The fprintf function returns the number of characters written, or a negative value if an output error **Returns:** occurred. The fwprintf function returns the number of wide characters written, or a negative value if an output error occurred. When an error has occurred, errno contains a value indicating the type of error that has been detected.

_bprintf, cprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, See Also: vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

```
Example:
           #include <stdio.h>
           char *weekday = { "Saturday" };
           char *month = { "April" };
           void main( void )
                fprintf( stdout, "%s, %s %d, %d\n",
                      weekday, month, 18, 1987);
           }
           produces the following:
           Saturday, April 18, 1987
```

Classification: ISO C

fwprintf is ISO C95

Systems: fprintf - All, Linux, RDOS, Netware fwprintf - All, Linux

fprintf, fwprintf			

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int fprintf_s( FILE * restrict stream,
        const char * restrict format, ...);
#include <wchar.h>
int fwprintf_s( FILE * restrict stream.
       const wchar_t * restrict format, ...);
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and fprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither stream nor format shall be a null pointer. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by format. Any argument to fprintf_s corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the fprintf_s function does not attempt to produce further output, and it is unspecified to what extent fprintf s produced output before discovering the runtime-constraint violation.

Description:

The fprintf_s function is equivalent to the fprintf function except for the explicit runtime-constraints listed above.

The fwprintf_s function is a wide character version of fprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The fprintf_s function returns the number of characters written, or a negative value if an output error or runtime-constraint violation occurred.

The fwprintf_s function returns the number of wide characters written, or a negative value if an output error or runtime-constraint violation occurred.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, bwprintf, fwprintf, swprintf, vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#define ___STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
char *weekday = { "Friday" };
char *month = { "August" };
void main( void )
    fprintf_s( stdout, "%s, %s %d, %d\n",
                weekday, month, 13, 2004);
}
produces the following:
```

Friday, August 13, 2004

Classification: TR 24731

fprintf_s, fwprintf_s

fprintf_s - All, Linux, RDOS, Netware
fwprintf_s - All, Linux **Systems:**

```
#include <stdio.h>
int fputc( int c, FILE *fp );
#include <stdio.h>
#include <wchar.h>
wint_t fputwc( wint_t c, FILE *fp );
```

Description:

The fputc function writes the character specified by the argument c to the output stream designated by

The fputwc function is identical to fputc except that it converts the wide character specified by c to a multibyte character and writes it to the output stream.

Returns:

The fputc function returns the character written or, if a write error occurs, the error indicator is set and fputc returns EOF.

The fputwc function returns the wide character written or, if a write error occurs, the error indicator is set and fputwc returns WEOF. If an encoding error occurs, errno is set to EILSEQ and fputwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fopen, fputchar, fputs, putc, putchar, puts, ferror

Example:

```
void main()
    FILE *fp;
    int c;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      while( (c = fgetc( fp )) != EOF )
        fputc( c, stdout );
      fclose( fp );
```

#include <stdio.h>

Classification: ISO C

Systems:

fputc - All, Linux, RDOS, Netware fputwc - All, Linux

```
#include <stdio.h>
int fputchar( int c );
int _fputchar( int c );
wint_t _fputwchar( wint_t c );
```

Description:

The fputchar function writes the character specified by the argument c to the output stream stdout. This function is identical to the putchar function.

The function is equivalent to:

#include <stdio.h>

```
fputc( c, stdout );
```

The _fputchar function is identical to fputchar. Use _fputchar for ANSI naming conventions.

The $_$ fputwchar function is identical to fputchar except that it converts the wide character specified by c to a multibyte character and writes it to the output stream.

Returns:

The fputchar function returns the character written or, if a write error occurs, the error indicator is set and fputchar returns EOF.

The _fputwchar function returns the wide character written or, if a write error occurs, the error indicator is set and _fputwchar returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fopen, fputc, fputs, putc, putchar, puts, ferror

Example:

```
void main()
{
   FILE *fp;
   int c;

   fp = fopen( "file", "r" );
   if( fp != NULL ) {
      c = fgetc( fp );
      while( c != EOF ) {
        _fputchar( c );
      c = fgetc( fp );
   }
   fclose( fp );
}
```

Classification: WATCOM

_fputchar conforms to ANSI naming conventions

Systems:

```
fputchar - All, Linux, RDOS, Netware
_fputchar - All, Linux, RDOS, Netware
_fputwchar - All, Linux
```

fputchar, _fputchar, _fputwchar

Synopsis: #include <stdio.h>
 int fputs(const char *buf, FILE *fp);
 #include <stdio.h>
 #include <wchar.h>
 int fputws(const wchar_t *buf, FILE *fp);

Description: The fputs function writes the character string pointed to by *buf* to the output stream designated by *fp*. The terminating null character is not written.

The fputws function is identical to fputs except that it converts the wide character string specified by *buf* to a multibyte character string and writes it to the output stream.

Returns: The fputs function returns EOF if an error occurs; otherwise, it returns a non-negative value (the number of characters written). The fputws function returns EOF if a write or encoding error occurs; otherwise, it returns a non-negative value (the number of characters written). When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: fopen, fputc, fputchar, putc, putchar, puts, ferror

void main()
{
 FILE *fp;
 char buffer[80];

 fp = fopen("file", "r");
 if(fp != NULL) {
 while(fgets(buffer, 80, fp) != NULL)
 fputs(buffer, stdout);
 fclose(fp);
 }
}

Classification: ISO C

Systems: fputs - All, Linux, RDOS, Netware fputws - All, Linux

```
#include <stdio.h>
size_t fread( void *buf,
              size_t elsize,
              size_t nelem,
              FILE *fp );
```

Description:

The fread function reads nelem elements of elsize bytes each from the file specified by fp into the buffer specified by buf.

Returns:

The fread function returns the number of complete elements successfully read. This value may be less than the requested number of elements.

The feof and ferror functions can be used to determine whether the end of the file was encountered or if an input/output error has occurred. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fopen, feof, ferror

Example:

The following example reads a simple student record containing binary data. The student record is described by the struct student_data declaration.

```
#include <stdio.h>
struct student_data {
                    student_id;
    int
    unsigned char marks[10];
};
size_t read_data( FILE *fp, struct student_data *p )
    return( fread( p, sizeof(*p), 1, fp ) );
  }
void main()
    FILE *fp;
    struct student_data std;
    int i;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      while( read_data( fp, &std ) != 0 ) {
        printf( "id=%d ", std.student_id );
        for( i = 0; i < 10; i++)
          printf( "%3d ", std.marks[ i ] );
        printf( "\n" );
      fclose( fp );
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

fread			

```
#include <stdlib.h> For ISO C compatibility (free only)
#include <malloc.h> Required for other function prototypes
void free( void *ptr );
void _bfree( __segment seg, void __based(void) *ptr );
void _ffree( void __far *ptr );
void __nfree( void __near *ptr );
```

Description:

When the value of the argument ptr is NULL, the free function does nothing; otherwise, the free function deallocates the memory block located by the argument ptr which points to a memory block previously allocated through a call to the appropriate version of calloc, malloc or realloc. After the call, the freed block is available for allocation.

Each function deallocates memory from a particular heap, as listed below:

Function	Неар
free	Depends on data model of the program
_bfree	Based heap specified by seg value
_ffree	Far heap (outside the default data segment)
_nfree	Near heap (inside the default data segment)

In a large data memory model, the free function is equivalent to the _ffree function; in a small data memory model, the free function is equivalent to the _nfree function.

Returns: The free functions return no value.

See Also: calloc Functions, _expand Functions, halloc, hfree, malloc Functions, _msize Functions,

realloc Functions, sbrk

Example:

```
#include <stdio.h>
#include <stdlib.h>
void main()
  {
    char *buffer;
   buffer = (char *)malloc( 80 );
    if( buffer == NULL ) {
      printf( "Unable to allocate memory\n" );
    } else {
      /* rest of code goes here */
      free( buffer ); /* deallocate buffer */
  }
```

Classification: ISO C

_bfree is WATCOM _ffree is WATCOM _nfree is WATCOM

Systems: free - All, Linux, RDOS, Netware

_bfree - DOS/16, Windows, OS/2 1.x(all) _ffree - DOS/16, Windows, OS/2 1.x(all)

_nfree - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),

OS/2-32, Linux, RDOS

Synopsis: #include <malloc.h> unsigned int _freect(size_t size);

Description:

The _freect function returns the number of times that _nmalloc (or malloc in small data models) can be called to allocate a item of size bytes. In the tiny, small and medium memory models, the default data segment is only extended as needed to satisfy requests for memory allocation. Therefore, you will need to call _nheapgrow in these memory models before calling _freect in order to get a meaningful result.

Returns: The _freect function returns the number of calls as an unsigned integer.

See Also: calloc, _heapgrow Functions, malloc Functions, _memavl, _memmax

Example:

```
#include <stdio.h>
#include <malloc.h>
void main()
  {
    int i;
    printf( "Can allocate %u longs before _nheapgrow\n",
            _freect( sizeof(long) ) );
    _nheapgrow();
    printf( "Can allocate %u longs after _nheapgrow\n",
            _freect( sizeof(long) ) );
    for( i = 1; i < 1000; i++ ) {
      _nmalloc( sizeof(long) );
    printf( "After allocating 1000 longs:\n" );
    printf( "Can still allocate %u longs\n",
            _freect( sizeof(long) ) );
  }
```

produces the following:

Can allocate 0 longs before _nheapgrow Can allocate 10447 longs after _nheapgrow After allocating 1000 longs: Can still allocate 9447 longs

Classification: WATCOM

Systems: All, Linux, RDOS Safer C: The Safer C Library extension provides the freopen_s function which is a safer alternative to freopen. This newer freopen_s function is recommended to be used instead of the traditional "unsafe" freopen function.

Description: The stream located by the fp pointer is closed. The freopen function opens the file whose name is the string pointed to by *filename*, and associates a stream with it. The stream information is placed in the structure located by the *fp* pointer.

The argument *mode* is described in the description of the fopen function.

The _wfreopen function is a wide character version of freopen that operates with wide character strings.

Returns: The freopen function returns a pointer to the object controlling the stream. This pointer must be passed as a parameter to subsequent functions for performing operations on the file. If the open operation fails, freopen returns NULL. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: __dos_open, fclose, fcloseall, fdopen, fopen, fopen_s, freopen_s, _fsopen, __grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen

texample: #include <stdio.h>

void main()
{
 FILE *fp;
 int c;

 fp = freopen("file", "r", stdin);
 if(fp != NULL) {
 while((c = fgetchar()) != EOF)
 fputchar(c);
 fclose(fp);
 }
}

Classification: ISO C

_wfreopen is WATCOM

Systems: freopen - All, Linux, RDOS, Netware
_wfreopen - All, Linux

_wfreopen

```
#include <stdio.h>
#define __STDC_WANT_LIB_EXT1__ 1
errno_t freopen_s(FILE * restrict * restrict newstreamptr,
                    const char * filename,
                    const char * restrict mode,
                    FILE * restrict stream );
errno_t _wfreopen_s( FILE * restrict * restrict newstreamptr,
                     const wchar_t * restrict filename,
                     const wchar_t * restrict mode,
                     FILE * restrict stream );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and freopen_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> None of *newstreamptr*, *mode*, and *stream* shall be a null pointer. If there is a runtime-constraint violation, freopen_s neither attempts to close any file associated with stream nor attempts to open a file. Furthermore, if newstreamptr is not a null pointer, freopen_s sets *newstreamptr to the null pointer.

Description:

The freopen_s function opens the file whose name is the string pointed to by *filename* and associates the stream pointed to by *stream* with it. The *mode* argument has the same meaning as in the fopen_s function (including the mode's effect on exclusive access and file permissions). If filename is a null pointer, the freopen_s function attempts to change the mode of the stream to that specified by mode, as if the name of the file currently associated with the stream had been used. It is implementation-defined which changes of mode are permitted (if any), and under what circumstances. The freopen_s function first attempts to close any file that is associated with *stream*. Failure to close the file is ignored. The error and end-of-file indicators for the stream are cleared. If the file was opened successfully, then the pointer to FILE pointed to by newstreamptr will be set to the value of stream. Otherwise, the pointer to FILE pointed to by newstreamptr will be set to a null pointer.

The _wfreopen_s function is a wide character version of freopen_s that operates with wide character strings.

Returns:

The freopen_s function returns zero if it opened the file. If it did not open the file or there was a runtime-constraint violation, freopen_s returns a non-zero value.

See Also:

_dos_open, fclose, fcloseall, fdopen, fopen, fopen_s, freopen, _fsopen, _grow_handles, _hdopen, open, _open_osfhandle, _popen, _sopen

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
void main()
    errno_t rc;
   FILE *fp;
    int
            c;
```

```
rc = freopen_s( &fp, "file", "r", stdin );
               if( rc == 0 ) {
                 while( (c = fgetc( fp )) != EOF )
                    fputchar(c);
                 fclose( fp );
               }
           }
Classification: TR 24731
           _wfreopen_s is WATCOM
Systems:
           freopen_s - All, Linux, RDOS, Netware
           _wfreopen_s - All, Linux
```

Synopsis: #include <math.h>

double frexp(double value, int *exp);

Description: The frexp function breaks a floating-point number into a normalized fraction and an integral power of

2. It stores the integral power of 2 in the *int* object pointed to by *exp*.

Returns: The frexp function returns the value of x, such that x is a double with magnitude in the interval

[0.5,1) or zero, and value equals x times 2 raised to the power *exp. If value is zero, then both parts of

the result are zero.

See Also: ldexp, modf

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
  int expon;
  double value;

  value = frexp( 4.25, &expon );
  printf( "%f %d\n", value, expon );
  value = frexp( -4.25, &expon );
  printf( "%f %d\n", value, expon );
}
```

produces the following:

0.531250 3 -0.531250 3

Classification: ISO C

Systems: Math

Synopsis: #include <stdio.h>

int fscanf(FILE *fp, const char *format, ...); #include <stdio.h> #include <wchar.h> int fwscanf(FILE *fp, const wchar_t *format, ...);

Safer C:

The Safer C Library extension provides the fscanf_s function which is a safer alternative to fscanf. This newer fscanf_s function is recommended to be used instead of the traditional "unsafe" fscanf function.

Description:

The fscanf function scans input from the file designated by fp under control of the argument format. Following the format string is a list of addresses to receive values. The format string is described under the description of the scanf function.

The fwscanf function is identical to fscanf except that it accepts a wide character string argument for format.

Returns:

The fscanf function returns EOF if an input failure occurred before any conversion. Otherwise, the number of input arguments for which values were successfully scanned and stored is returned. When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf, fwscanf, wscanf, swscanf, vfwscanf, vwscanf, vswscanf

Example:

To scan a date in the form "Saturday April 18 1987":

```
#include <stdio.h>
void main( void )
    int day, year;
    char weekday[10], month[10];
    FILE *in_data;
    in data = fopen( "file", "r" );
    if( in_data != NULL ) {
        fscanf( in_data, "%s %s %d %d",
                weekday, month, &day, &year );
        printf( "Weekday=%s Month=%s Day=%d Year=%d\n",
                weekday, month, day, year );
        fclose( in_data );
    }
}
```

Classification: ISO C90

fwscanf is ISO C95

Systems:

fscanf - All, Linux, RDOS, Netware fwscanf - All, Linux

fscanf, fwscanf			

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int fscanf_s(FILE * restrict stream,
       const char * restrict format, ...);
#include <stdio.h>
#include <wchar.h>
int fwscanf_s(FILE * restrict stream,
      const wchar_t * restrict format, ...);
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and fscanf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither stream nor format shall be a null pointer. Any argument indirected through in order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the fscanf_s function does not attempt to perform further input, and it is unspecified to what extent fscanf_s performed input before discovering the runtime-constraint violation.

Description:

The fscanf_s function is equivalent to fscanf except that the c, s, and [conversion specifiers apply to a pair of arguments (unless assignment suppression is indicated by a *). The first of these arguments is the same as for fscanf. That argument is immediately followed in the argument list by the second argument, which has type size_t and gives the number of elements in the array pointed to by the first argument of the pair. If the first argument points to a scalar object, it is considered to be an array of one element.

A matching failure occurs if the number of elements in a receiving object is insufficient to hold the converted input (including any trailing null character).

The fwscanf_s function is identical to fscanf_s except that it accepts a wide character string argument for format.

Returns:

The fscanf_s function returns EOF if an input failure occurred before any conversion or if there was a runtime-constraint violation. Otherwise, the fscanf s function returns the number of input items successfully assigned, which can be fewer than provided for, or even zero.

When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf, fwscanf, wscanf, swscanf, vfwscanf, vwscanf, vswscanf

Example:

To scan a date in the form "Friday August 13 2004":

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
void main( void )
    int day, year;
    char weekday[10], month[10];
    FILE *in_data;
```

Synopsis: #include <stdio.h> int fseek (FILE *fp, long int offset, int where);

Description:

The fseek function changes the read/write position of the file specified by fp. This position defines the character that will be read or written on the next I/O operation on the file. The argument fp is a file pointer returned by fopen or freopen. The argument offset is the position to seek to relative to one of three positions specified by the argument where. Allowable values for where are:

Value Meaning

SEEK_SET The new file position is computed relative to the start of the file. The value of offset must not be negative.

SEEK_CUR The new file position is computed relative to the current file position. The value of *offset* may be positive, negative or zero.

SEEK_END The new file position is computed relative to the end of the file.

The fseek function clears the end-of-file indicator and undoes any effects of the ungetc function on the same file.

The ftell function can be used to obtain the current position in the file before changing it. The position can be restored by using the value returned by ftell in a subsequent call to fseek with the where parameter set to SEEK_SET.

Returns:

The fseek function returns zero if successful, non-zero otherwise. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fgetpos, fopen, fsetpos, ftell

Example:

The size of a file can be determined by the following example which saves and restores the current position of the file.

```
#include <stdio.h>
long int filesize(FILE *fp )
  {
    long int save_pos, size_of_file;
    save_pos = ftell( fp );
    fseek( fp, OL, SEEK_END );
    size_of_file = ftell( fp );
    fseek( fp, save_pos, SEEK_SET );
    return( size_of_file );
```

```
void main()
{
   FILE *fp;

   fp = fopen( "file", "r" );
   if( fp != NULL ) {
      printf( "File size=%ld\n", filesize( fp ) );
      fclose( fp );
   }
}
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Synopsis: #include <stdio.h> int fsetpos(FILE *fp, fpos_t *pos);

Description: The fsetpos function positions the file fp according to the value of the object pointed to by pos,

which shall be a value returned by an earlier call to the fgetpos function on the same file.

Returns: The fsetpos function returns zero if successful, otherwise, the fsetpos function returns a non-zero

value. When an error has occurred, errno contains a value indicating the type of error that has been

detected.

See Also: fgetpos, fopen, fseek, ftell

Example: #include <stdio.h>

```
void main()
  {
    FILE *fp;
    fpos_t position;
    auto char buffer[80];
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      fgetpos( fp, &position ); /* get position
      fgets( buffer, 80, fp ); /* read record
                                                     */
      fsetpos( fp, &position ); /* set position
                                                     */
      fgets( buffer, 80, fp ); /* read same record */
      fclose(fp);
    }
  }
```

Classification: ISO C

All, Linux, RDOS, Netware **Systems:**

Description:

The _fsopen function opens the file whose name is the string pointed to by *filename*, and associates a stream with it. The arguments *mode* and *share* control shared reading or writing. The argument *mode* points to a string beginning with one of the following sequences:

Mode	Meaning
''r''	open file for reading; use default file translation
''w''	create file for writing, or truncate to zero length; use default file translation
''a''	append: open text file or create for writing at end-of-file; use default file translation
''rb''	open binary file for reading
''rt''	open text file for reading
''wb''	create binary file for writing, or truncate to zero length
''wt''	create text file for writing, or truncate to zero length
''ab''	append; open binary file or create for writing at end-of-file
''at''	append; open text file or create for writing at end-of-file
''r+''	open file for update (reading and/or writing); use default file translation
''w+''	create file for update, or truncate to zero length; use default file translation
''a+''	append; open file or create for update, writing at end-of-file; use default file translation
"r+b", "rb+"	open binary file for update (reading and/or writing)
"r+t", "rt+"	open text file for update (reading and/or writing)
"w+b", "wb+	" create binary file for update, or truncate to zero length
"w+t", "wt+"	create text file for update, or truncate to zero length
''a+b'', ''ab+''	append; open binary file or create for update, writing at end-of-file
"a+t", "at+"	append; open text file or create for update, writing at end-of-file

When default file translation is specified, the value of the global variable _fmode establishes whether the file is to treated as a binary or a text file. Unless this value is changed by the program, the default will be text mode.

Opening a file with read mode ('r' as the first character in the *mode* argument) fails if the file does not exist or it cannot be read. Opening a file with append mode ('a' as the first character in the mode argument) causes all subsequent writes to the file to be forced to the current end-of-file, regardless of previous calls to the fseek function. When a file is opened with update mode ('+' as the second or third character of the *mode* argument), both input and output may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed. However, writing may not be followed by reading without an intervening call to the fflush function or to a file positioning function (fseek, fsetpos, rewind). Similarly, reading may not be followed by writing without an intervening call to a file positioning function, unless the read resulted in end-of-file.

The shared access for the file, share, is established by a combination of bits defined in the <share.h> header file. The following values may be set:

Value	Meaning
SH_COMPAT	Set compatibility mode.
SH_DENYRW	Prevent read or write access to the file.
SH_DENYWR	Prevent write access of the file.
SH_DENYRD	Prevent read access to the file.
SH_DENYNO	Permit both read and write access to the file.

You should consult the technical documentation for the DOS system that you are using for more detailed information about these sharing modes.

The _wfsopen function is a wide character version of _fsopen that operates with wide character strings.

Returns:

The _fsopen function returns a pointer to the object controlling the stream. This pointer must be passed as a parameter to subsequent functions for performing operations on the file. If the open operation fails, _fsopen returns NULL. When an error has occurred, errno contains a value indicating the type of error that has been detected.

```
See Also:
            _dos_open, fclose, fcloseall, fdopen, fopen, freopen, _grow_handles, _hdopen,
            open, _open_osfhandle, _popen, _sopen
```

Example:

```
#include <stdio.h>
#include <share.h>
void main()
  {
    FILE *fp;
      open a file and prevent others from writing to it
    fp = _fsopen( "report.dat", "w", SH_DENYWR );
    if ( fp != NULL ) {
      /* rest of code goes here */
      fclose(fp);
    }
  }
```

_fsopen, _wfsopen

Classification: WATCOM

Systems: _fsopen - All, Linux, RDOS, Netware

_wfsopen - All, Linux

Synopsis: #include <sys/types.h>

```
#include <sys/stat.h>
int fstat( int handle, struct stat *buf );
int _fstat( int handle, struct stat *buf );
int _fstati64( int handle, struct _stati64 *buf );
```

Description:

The fstat functions obtain information about an open file whose file handle is handle. This information is placed in the structure located at the address indicated by buf.

The file <sys/stat.h> contains definitions for the structure stat.

The structure _stati64 differs from stat in the following way:

Field	Type/Meaning	
st_dev	(dev_t) the disk drive the file resides on	
st_ino	(ino_t) this inode's number (not used for DOS)	
st_mode	(unsigned short) file mode	
st_nlink	(short) number of hard links	
st_uid	(unsigned long) user-id (always 'root' for DOS)	
st_gid	(short) group-id (always 'root' for DOS)	
st_rdev	(dev_t) this should be the device type but it is the same as st_dev for the time being	
st_size	(off_t) total file size	
st_atime	(time_t) this should be the file "last accessed" time if the file system supports it	
st_mtime	(time_t) the file "last modified" time	
st_ctime	(time_t) this should be the file "last status change" time if the file system supports it	
	The following fields are Netware only:	
st_btime	(time_t) the file "last archived" time	
st_attr	(unsigned long) the file's attributes	
st_archivedID	(unsigned long) the user/object ID that last archived file	
st_updatedID	(unsigned long) the user/object ID that last updated file	
st_inheritedRightsMask (unsigned short) the inherited rights mask		
st_originatingNameSpace (unsigned char) the originating name space		

st_size (__int64) total file size (as a 64-bit value)

At least the following macros are defined in the <sys/stat.h> header file.

Macro	Meaning
$S_{ISFIFO}(m)$	Test for FIFO.
S_ISCHR(m)	Test for character special file.
$S_{ISDIR}(m)$	Test for directory file.
S_ISBLK(m)	Test for block special file.
S_ISREG(m)	Test for regular file.

The value *m* supplied to the macros is the value of the st_mode field of a stat structure. The macro evaluates to a non-zero value if the test is true and zero if the test is false.

The following bits are encoded within the st_mode field of a stat structure.

Mask	Owner Permissions
S IRWXU	Read, write, search (if a directory), or execute (otherwise)
S_IRUSR	Read permission bit
S_IWUSR	Write permission bit
S_IXUSR	Search/execute permission bit
S_IREAD	== S_IRUSR (for Microsoft compatibility)
S_IWRITE	== S_IWUSR (for Microsoft compatibility)
S_IEXEC	== S_IXUSR (for Microsoft compatibility)

S_IRWXU is the bitwise inclusive OR of S_IRUSR, S_IWUSR, and S_IXUSR.

Mask	Group Permissions (same as owner's on DOS, OS/2 or Windows)
S_IRWXG	Read, write, search (if a directory), or execute (otherwise)
S_IRGRP	Read permission bit
S_IWGRP	Write permission bit
S_IXGRP	Search/execute permission bit

S_IRWXG is the bitwise inclusive OR of S_IRGRP, S_IWGRP, and S_IXGRP.

Mask	Other Permissions (same as owner's on DOS, OS/2 or Windows)
S_IRWXO	Read, write, search (if a directory), or execute (otherwise)
S_IROTH	Read permission bit
S_IWOTH	Write permission bit
S_IXOTH	Search/execute permission bit

S_IRWXO is the bitwise inclusive OR of S_IROTH, S_IWOTH, and S_IXOTH.

Mask	Meaning
S_ISUID	(Not supported by DOS, OS/2 or Windows) Set user ID on execution. The
	process's effective user ID shall be set to that of the owner of the file when the file
	is run as a program. On a regular file, this bit should be cleared on any write.
S_ISGID	(Not supported by DOS, OS/2 or Windows) Set group ID on execution. Set
	effective group ID on the process to the file's group when the file is run as a
	program. On a regular file, this bit should be cleared on any write.
	en e

The _fstat function is identical to fstat. Use _fstat for ANSI naming conventions.

The _fstati64 function differ from fstat in the type of structure that they are asked to fill in. The differences in the structures are described above.

Returns:

All forms of the fstat function return zero when the information is successfully obtained. Otherwise, -1 is returned.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EBADF The *handle* argument is not a valid file handle.

See Also: creat, dup, dup2, open, _sopen, stat

Example:

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <io.h>
void main()
    int handle, rc;
    struct stat buf;
    handle = open( "file", O_RDONLY );
    if (handle !=-1) {
        rc = fstat( handle, &buf );
        if ( rc !=-1 )
            printf( "File size = %d\n", buf.st_size );
        close( handle );
    }
}
```

Classification: POSIX 1003.1

_fstat conforms to ANSI naming conventions

_fstati64 is WATCOM

Systems:

```
fstat - All, Linux, RDOS, Netware
_fstat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fstati64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

fstat, _fstati, _fstati64					

Synopsis: #include <io.h> int fsync(int fd);

Description:

The fsync function writes to disk all the currently queued data for the open file specified by fd. All necessary file system information required to retrieve the data is also written to disk. The file access times are also updated.

The fsync function is used when you wish to ensure that both the file data and file system information required to recover the complete file have been written to the disk.

The fsync function does not return until the transfer is completed.

Returns:

The fsync function returns zero if successful. Otherwise, it returns -1 and errno is set to indicate the error. If the fsync function fails, outstanding i/o operations are not guaranteed to have been completed.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant	Meaning		
EBADF	The fd argument is not a valid file handle.		
EINVAL	Synchronized i/o is not supported for this file.		
EIO	A physical I/O error occurred (e.g., a bad block). The precise meaning is device dependent.		
ENOSYS	The fsync function is not supported.		

See Also: fstat, open, stat, write

Example:

```
Write a file and make sure it is on disk.
 */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <io.h>
char buf[512];
void main()
    int handle;
    int i;
    handle = creat( "file", S_IWRITE | S_IREAD );
    if ( handle == -1 ) {
      perror( "Error creating file" );
      exit( EXIT_FAILURE );
    }
```

```
for( i = 0; i < 255; ++i ) {
    memset( buf, i, sizeof( buf ) );
    if( write( handle, buf, sizeof(buf) ) != sizeof(buf) ) {
        perror( "Error writing file" );
        exit( EXIT_FAILURE );
    }
}

if( fsync( handle ) == -1 ) {
    perror( "Error sync'ing file" );
    exit( EXIT_FAILURE );
}

close( handle );
    exit( EXIT_SUCCESS );
}</pre>
```

Classification: POSIX 1003.4

Systems: All, Linux, RDOS, Netware

Synopsis: #include <stdio.h> long int ftell(FILE *fp);

Description: The ftell function returns the current read/write position of the file specified by fp. This position defines the character that will be read or written by the next I/O operation on the file. The value returned by ftell can be used in a subsequent call to fseek to set the file to the same position.

Returns: The ftell function returns the current read/write position of the file specified by fp. When an error is detected, -1L is returned. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: fgetpos, fopen, fsetpos, fseek

Example: #include <stdio.h> long int filesize(FILE *fp) long int save_pos, size_of_file; save_pos = ftell(fp); fseek(fp, OL, SEEK_END); size_of_file = ftell(fp); fseek(fp, save_pos, SEEK_SET); return(size_of_file); } void main() FILE *fp; fp = fopen("file", "r"); if(fp != NULL) { printf("File size=%ld\n", filesize(fp)); fclose(fp);

Classification: ISO C

Systems: All, Linux, RDOS, Netware

} }

```
Synopsis:
            #include <sys/timeb.h>
            int ftime( struct timeb *timeptr );
            struct timeb {
                                              /* time in seconds since Jan 1, 1970 UTC
                                  time;
                 time_t
                 unsigned short millitm;
                                              /* milliseconds
                                  timezone; /* difference in minutes from UTC
                 short
                                  dstflag; /* nonzero if in daylight savings time
                 short
            };
Description:
            The ftime function gets the current time and stores it in the structure pointed to by timeptr.
Returns:
            The ftime function fills in the fields of the structure pointed to by timeptr. The ftime function
            returns -1 if not successful, and no useful value otherwise.
See Also:
            asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime,
            gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset
Example:
            #include <stdio.h>
            #include <time.h>
            #include <sys/timeb.h>
            void main()
                 struct timeb timebuf;
                         *tod;
                 char
                 ftime ( &timebuf );
                 tod = ctime( &timebuf.time );
                 printf( "The time is %.19s.%hu %s",
                     tod, timebuf.millitm, &tod[20]);
               }
            produces the following:
            The time is Tue Dec 25 15:58:42.870 1990
Classification: WATCOM
Systems:
            All, Linux, RDOS
```

```
#include <stdlib.h>
char *_fullpath( char *buffer,
                 const char *path,
                 size_t size );
wchar_t *_wfullpath( wchar_t *buffer ,
                     const wchar_t *path,
                     size_t size );
```

Description:

The _fullpath function returns the full pathname of the file specification in path in the specified buffer buffer of length size.

The maximum size that might be required for buffer is _MAX_PATH. If the buffer provided is too small, NULL is returned and errno is set.

If buffer is NULL then a buffer of size _MAX_PATH is allocated using malloc. This buffer may be freed using the free function.

If path is NULL or points to a null string ("") then the current working directory is returned in buffer.

The _wfullpath function is a wide character version of _fullpath that operates with wide character strings.

Returns:

The _fullpath function returns a pointer to the full path specification if no error occurred. Otherwise, NULL is returned.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant	Meaning
ENOENT	The current working directory could not be obtained.
ENOMEM	The buffer could not be allocated.
ERANGE	The buffer passed was too small.

See Also:

_makepath, _splitpath

Example:

```
#include <stdio.h>
#include <stdlib.h>
void main( int argc, char *argv[] )
  {
    int i;
    char buff[ PATH_MAX ];
    for(i = 1; i < argc; ++i) {
     puts( argv[i] );
      if( _fullpath( buff, argv[i], PATH_MAX ) ) {
        puts( buff );
      } else {
        puts( "FAIL!" );
    }
  }
```

_fullpath, _wfullpath

Classification: WATCOM

Systems: _fullpath - All, Linux, RDOS, Netware

_wfullpath - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Synopsis: #include <stdio.h> #include <wchar.h> int fwide(FILE *fp, int mode);

Description: The fwide function determines the orientation of the stream pointed to by fp. If mode is greater than zero, the function first attempts to make the stream wide oriented. If mode is less than zero, the function first attempts to make the stream byte oriented. Otherwise, mode is zero and the fwide

function does not alter the orientation of the stream.

Returns: The fwide function returns a value greater than zero if, after the call, the stream has wide orientation, a value less than zero if the stream has byte orientation, or zero if the stream has no orientation.

See Also: fopen, freopen

Example: #include <stdio.h> #include <wchar.h>

```
void main( void )
    FILE
            *fp;
    int
            mode;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
        mode = fwide(fp, -33);
        printf( "orientation: %s\n",
            mode > 0 ? "wide" :
            mode < 0 ? "byte" : "none" );</pre>
```

produces the following:

orientation: byte

Classification: ISO C95

Systems: All, Linux, RDOS

Description: The fwrite function writes *nelem* elements of *elsize* bytes each to the file specified by *fp*.

Returns: The fwrite function returns the number of complete elements successfully written. This value will be less than the requested number of elements only if a write error occurs. When an error has occurred,

errno contains a value indicating the type of error that has been detected.

See Also: ferror, fopen

Example: #include <stdio.h>

```
struct student_data {
                  student_id;
   int
   unsigned char marks[10];
};
void main()
  {
   FILE *fp;
   struct student_data std;
   int i;
    fp = fopen( "file", "w" );
    if( fp != NULL ) {
      std.student_id = 1001;
      for( i = 0; i < 10; i++)
        std.marks[i] = (unsigned char) (85 + i);
      /* write student record with marks */
      i = fwrite( &std, sizeof(std), 1, fp );
      printf( "%d record written\n", i );
      fclose( fp );
  }
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

```
#include <stdlib.h>
char *gcvt( double value,
            int ndigits,
            char *buffer );
char *_gcvt( double value,
            int ndigits,
            char *buffer );
wchar_t *_wgcvt( double value,
                 int ndigits,
                 wchar_t *buffer );
```

Description:

The govt function converts the floating-point number value into a character string and stores the result in buffer. The parameter ndigits specifies the number of significant digits desired. The converted number will be rounded to this position.

If the exponent of the number is less than -4 or is greater than or equal to the number of significant digits wanted, then the number is converted into E-format, otherwise the number is formatted using F-format.

The _gcvt function is identical to gcvt. Use _gcvt for ANSI naming conventions.

The _wgcvt function is a wide character version of gcvt except that it produces a wide character string.

Returns: The govt function returns a pointer to the string of digits.

See Also: ecvt, fcvt, printf

Example:

```
#include <stdio.h>
#include <stdlib.h>
void main()
  {
   char buffer[80];
   printf( "%s\n", gcvt( -123.456789, 5, buffer ) );
   printf( "%s\n", gcvt( 123.456789E+12, 5, buffer ) );
```

produces the following:

```
-123.46
1.2346E+014
```

Classification: WATCOM

_gcvt conforms to ANSI naming conventions

Systems:

```
gcvt - Math
_gcvt - Math
_wgcvt - Math
```

gcvt, _gcvt, _wgcvt			

Synopsis: #include <graph.h> short _FAR _getactivepage(void);

Description: The _getactivepage function returns the number of the currently selected active graphics page.

> Only some combinations of video modes and hardware allow multiple pages of graphics to exist. When multiple pages are supported, the active page may differ from the visual page. The graphics information in the visual page determines what is displayed upon the screen. Animation may be accomplished by alternating the visual page. A graphics page can be constructed without affecting the screen by setting the active page to be different than the visual page.

The number of available video pages can be determined by using the _getvideoconfig function. The default video page is 0.

Returns: The _qetactivepage function returns the number of the currently selected active graphics page.

See Also: _setactivepage, _setvisualpage, _getvisualpage, _getvideoconfig

Example: #include <conio.h> #include <graph.h>

main() int old_apage; int old_vpage; _setvideomode(_HRES16COLOR); old_apage = _getactivepage(); old_vpage = _getvisualpage(); /* draw an ellipse on page 0 */ _setactivepage(0); _setvisualpage(0); _ellipse(_GFILLINTERIOR, 100, 50, 540, 150); /* draw a rectangle on page 1 */ _setactivepage(1); _rectangle(_GFILLINTERIOR, 100, 50, 540, 150); getch(); /* display page 1 */ _setvisualpage(1); getch(); _setactivepage(old_apage); _setvisualpage(old_vpage); _setvideomode(_DEFAULTMODE); }

Classification: PC Graphics

Systems: DOS

_getactivepage			

```
Synopsis:
           #include <graph.h>
           short _FAR _getarcinfo( struct xycoord _FAR *start_pt,
                                    struct xycoord _FAR *end_pt,
                                    struct xycoord _FAR *inside_pt );
```

Description: The _getarcinfo function returns information about the arc most recently drawn by the _arc or

_pie functions. The arguments *start_pt* and *end_pt* are set to contain the endpoints of the arc. The argument inside_pt will contain the coordinates of a point within the pie. The points are all specified in

the view coordinate system.

The endpoints of the arc can be used to connect other lines to the arc. The interior point can be used to fill the pie.

Returns: The _getarcinfo function returns a non-zero value when successful. If the previous arc or pie was not successfully drawn, zero is returned.

See Also: _arc,_pie

```
Example:
           #include <conio.h>
           #include <graph.h>
```

```
main()
{
    struct xycoord start_pt, end_pt, inside_pt;
   _setvideomode( _VRES16COLOR );
   _arc( 120, 90, 520, 390, 520, 90, 120, 390 );
   _getarcinfo( &start_pt, &end_pt, &inside_pt );
   _moveto( start_pt.xcoord, start_pt.ycoord );
   _lineto( end_pt.xcoord, end_pt.ycoord );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Systems: DOS

Synopsis: #include <graph.h> long _FAR _getbkcolor(void);

Description: The _getbkcolor function returns the current background color. In text modes, the background

color controls the area behind each individual character. In graphics modes, the background refers to

the entire screen. The default background color is 0.

Returns: The _getbkcolor function returns the current background color.

See Also: _setbkcolor, _remappalette

Example: #include <conio.h>

```
#include <graph.h>
long colors[ 16 ] = {
   _BLACK, _BLUE, _GREEN, _CYAN,
   _RED, _MAGENTA, _BROWN, _WHITE,
   _GRAY, _LIGHTBLUE, _LIGHTGREEN, _LIGHTCYAN,
   _LIGHTRED, _LIGHTMAGENTA, _YELLOW, _BRIGHTWHITE
};
main()
    long old_bk;
    int bk;
    _setvideomode( _VRES16COLOR );
    old_bk = _getbkcolor();
    for ( bk = 0; bk < 16; ++bk ) {
        _setbkcolor( colors[ bk ] );
        getch();
    _setbkcolor( old_bk );
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

```
#include <stdio.h>
int getc( FILE *fp );
#include <stdio.h>
#include <wchar.h>
wint_t getwc( FILE *fp );
```

Description:

The getc function gets the next character from the file designated by fp. The character is returned as an int value. The getc function is equivalent to fgetc, except that it may be implemented as a macro.

The getwc function is identical to getc except that it gets the next multibyte character (if present) from the input stream pointed to by fp and converts it to a wide character.

Returns:

The getc function returns the next character from the input stream pointed to by fp. If the stream is at end-of-file, the end-of-file indicator is set and getc returns EOF. If a read error occurs, the error indicator is set and getc returns EOF.

The getwc function returns the next wide character from the input stream pointed to by fp. If the stream is at end-of-file, the end-of-file indicator is set and getwc returns WEOF. If a read error occurs, the error indicator is set and getwc returns WEOF. If an encoding error occurs, errno is set to EILSEQ and getwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: fgetc, fgetchar, fgets, fopen, getchar, gets, ungetc

#include <stdio.h>

Example:

```
void main()
{
   FILE *fp;
   int c;

   fp = fopen( "file", "r" );
   if( fp != NULL ) {
     while( (c = getc( fp )) != EOF )
        putchar(c);
     fclose( fp );
   }
}
```

Classification: ISO C

Systems:

```
getc - All, Linux, RDOS, Netware
getwc - All, Linux
```

		getc, getwc

Synopsis: #include <conio.h>
int getch(void);

Description: The getch function obtains the next available keystroke from the console. Nothing is echoed on the

screen (the function getche will echo the keystroke, if possible). When no keystroke is available, the

function waits until a key is depressed.

The kbhit function can be used to determine if a keystroke is available.

Returns: A value of EOF is returned when an error is detected; otherwise the getch function returns the value

of the keystroke (or character).

When the keystroke represents an extended function key (for example, a function key, a cursor-movement key or the ALT key with a letter or a digit), zero is returned and the next call to

getch returns a value for the extended function.

See Also: getche, kbhit, putch, ungetch

Example: #include <stdio.h>

#include <conio.h>

void main()
{
 int c;

 printf("Press any key\n");
 c = getch();
 printf("You pressed %c(%d)\n", c, c);
}

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

390 Library Functions and Macros

```
#include <stdio.h>
int getchar( void );
#include <wchar.h>
wint_t getwchar( void );
```

Description:

The getchar function is equivalent to getc with the argument stdin.

The getwchar function is similar to getchar except that it is equivalent to getwc with the argument stdin.

Returns:

The getchar function returns the next character from the input stream pointed to by stdin. If the stream is at end-of-file, the end-of-file indicator is set and getchar returns EOF. If a read error occurs, the error indicator is set and getchar returns EOF.

The getwchar function returns the next wide character from the input stream pointed to by stdin. If the stream is at end-of-file, the end-of-file indicator is set and getwchar returns WEOF. If a read error occurs, the error indicator is set and getwchar returns WEOF. If an encoding error occurs, errno is set to EILSEQ and getwchar returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fgetc, fgetchar, fgets, fopen, getc, gets, ungetc

Example:

```
#include <stdio.h>
void main()
  {
   FILE *fp;
    int c;
    fp = freopen( "file", "r", stdin );
    while( (c = getchar()) != EOF )
      putchar(c);
    fclose(fp);
```

Classification: ISO C

Systems:

```
getchar - All, Linux, RDOS, Netware
getwchar - All, Linux
```

See Also:

Synopsis: #include <conio.h>
 int getche(void);

Description: The getche function obtains the next available keystroke from the console. The function will wait

until a keystroke is available. That character is echoed on the screen at the position of the cursor (use

getch when it is not desired to echo the keystroke).

The kbhit function can be used to determine if a keystroke is available.

Returns: A value of EOF is returned when an error is detected; otherwise, the getche function returns the value

of the keystroke (or character).

When the keystroke represents an extended function key (for example, a function key, a cursor-movement key or the ALT key with a letter or a digit), zero is returned and the next call to getche returns a value for the extended function.

getch, kbhit, putch, ungetch

Example: #include <stdio.h>
#include <conio.h>

void main()
{
 int c;
 printf("Bross any koy\n");

printf("Press any key\n");
c = getche();
printf("You pressed %c(%d)\n", c, c);

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

392 Library Functions and Macros

```
Synopsis:
           #include <graph.h>
           void _FAR _getcliprgn( short _FAR *x1, short _FAR *y1,
                                   short _FAR *x2, short _FAR *y2 );
```

Description: The _getcliprgn function returns the location of the current clipping region. A clipping region is defined with the _setcliprgn or _setviewport functions. By default, the clipping region is the

entire screen.

The current clipping region is a rectangular area of the screen to which graphics output is restricted. The top left corner of the clipping region is placed in the arguments (x1, y1). The bottom right corner of the clipping region is placed in (x2, y2).

Returns: The _getcliprgn function returns the location of the current clipping region.

See Also: _setcliprqn, _setviewport

```
Example:
           #include <conio.h>
           #include <graph.h>
           main()
               short x1, y1, x2, y2;
               _setvideomode( _VRES16COLOR );
               _getcliprgn( &x1, &y1, &x2, &y2 );
               _setcliprgn( 130, 100, 510, 380 );
               _ellipse( _GBORDER, 120, 90, 520, 390 );
               getch();
               _setcliprgn( x1, y1, x2, y2 );
               _setvideomode( _DEFAULTMODE );
           }
```

Classification: PC Graphics

DOS **Systems:**

Synopsis: #include process.h>
char *getcmd(char *cmd_line);

Description: The getemd function causes the command line information, with the program name removed, to be

copied to *cmd_line*. The information is terminated with a null character. This provides a method of

obtaining the original parameters to a program unchanged (with the white space intact).

This information can also be obtained by examining the vector of program parameters passed to the

main function in the program.

Returns: The address of the target *cmd_line* is returned.

See Also: abort, atexit, _bgetcmd, exec..., exit, _Exit, _exit, getenv, main, putenv,

spawn..., system, _wsystem

Example: Suppose a program were invoked with the command line

```
myprog arg-1 ( my stuff ) here
```

where that program contains

produces the following:

```
arg-1 ( my stuff ) here
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <graph.h> short _FAR _getcolor(void);

Description: The _getcolor function returns the pixel value for the current color. This is the color used for

displaying graphics output. The default color value is one less than the maximum number of colors in

the current video mode.

Returns: The _getcolor function returns the pixel value for the current color.

See Also: _setcolor

Example: #include <conio.h> #include <graph.h> main() int col, old_col; _setvideomode(_VRES16COLOR); old_col = _getcolor(); for(col = 0; col < 16; ++col) { _setcolor(col); _rectangle(_GFILLINTERIOR, 100, 100, 540, 380); getch(); _setcolor(old_col); _setvideomode(_DEFAULTMODE);

Classification: PC Graphics

}

Systems: DOS

```
Synopsis:
             #include <graph.h>
             struct xycoord _FAR _getcurrentposition( void );
             struct _wxycoord _FAR _getcurrentposition_w( void );
Description:
             The _getcurrentposition functions return the current output position for graphics. The
             _getcurrentposition function returns the point in view coordinates. The
             _getcurrentposition_w function returns the point in window coordinates.
             The current position defaults to the origin, (0,0), when a new video mode is selected. It is changed
             by successful calls to the _arc, _moveto and _lineto functions as well as the _setviewport
             function.
             Note that the output position for graphics output differs from that for text output. The output position
             for text output can be set by use of the _settextposition function.
Returns:
             The _getcurrentposition functions return the current output position for graphics.
See Also:
             _moveto, _settextposition
Example:
             #include <conio.h>
             #include <graph.h>
             main()
             {
                  struct xycoord old_pos;
                  _setvideomode( _VRES16COLOR );
                  old_pos = _getcurrentposition();
                  _moveto( 100, 100 );
                  _lineto( 540, 100 );
                  _lineto( 320, 380 );
```

_moveto(old_pos.xcoord, old_pos.ycoord);

Classification: PC Graphics

Systems: _getcurrentposition - DOS

qetch();

_getcurrentposition_w - DOS

_lineto(100, 100);

_setvideomode(_DEFAULTMODE);

```
#include <direct.h>
char *getcwd( char *buffer, size_t maxlen );
wchar_t *_wgetcwd( wchar_t *buffer, size_t maxlen );
```

Description:

The get cwd function returns the name of the current working directory. The buffer address is either NULL or is the location at which a string containing the name of the current working directory is placed. In the latter case, the value of maxlen is the length in characters (including the terminating null character) which can be be used to store this name. An error occurs if the length of the path (including the terminating null character) exceeds maxlen.

The maximum size that might be required for *buffer* is PATH_MAX + 1 bytes.

Extension: When buffer has a value of NULL, a string is allocated using malloc to contain the name of the current working directory. This string may be freed using the free function.

The _wgetcwd function is a wide character version of getcwd that operates with wide character strings. The *maxlen* is the length in wide characters (wchar_t).

Returns:

The get cwd function returns the address of the string containing the name of the current working directory, unless an error occurs, in which case NULL is returned.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant	Meaning
EINVAL	The argument <i>maxlen</i> is negative.
ENOMEM	Not enough memory to allocate a buffer.
ERANGE	The buffer is too small (specified by <i>maxlen</i>) to contain the name of the current working directory.

See Also:

chdir, chmod, _getdcwd, mkdir, rmdir

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <direct.h>
void main()
  {
    char *cwd;
    cwd = getcwd( NULL, 0 );
    if ( cwd != NULL ) {
      printf( "My working directory is %s\n", cwd );
      free ( cwd );
    }
  }
```

produces the following:

My working directory is C:\PROJECT\C

getcwd, _wgetcwd

Classification: POSIX 1003.1 with extensions

_wgetcwd is WATCOM

Systems: getcwd - All, Linux, RDOS, Netware

 $_$ wgetcwd - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

```
#include <direct.h>
char *_getdcwd( int drive, char *buffer, size_t maxlen );
wchar_t *_wgetdcwd( int drive, wchar_t *buffer, size_t maxlen );
```

Description:

The _getdcwd function gets the full path of the current working directory on the specified drive. The drive argument specifies the drive (0 = default drive, 1 = A, 2 = B, etc.). The buffer address is either NULL or is the location at which a string containing the name of the current working directory is placed. In the latter case, the value of *maxlen* is the length in characters (including the terminating null character) which can be be used to store this name. An error occurs if the length of the path (including the terminating null character) exceeds maxlen.

The maximum size that might be required for *buffer* is PATH_MAX + 1 bytes.

When buffer has a value of NULL, a string is allocated using malloc to contain the name of the current working directory. This string may be freed using the free function.

The _wgetdcwd function is a wide character version of _getdcwd that operates with wide character strings. The *maxlen* is the length in wide characters (wchar_t).

Returns:

The _getdcwd function returns the address of the string containing the name of the current working directory on the specified drive, unless an error occurs, in which case NULL is returned.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant	Meaning
ENODEV	The drive cannot be accessed.
ENOMEM	Not enough memory to allocate a buffer.
ERANGE	The buffer is too small (specified by <i>size</i>) to contain the name of the current working directory.

See Also:

chdir, chmod, getcwd, mkdir, rmdir

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <direct.h>
void main()
  {
    char *cwd;
    cwd = \_getdcwd(3, NULL, 0);
    if( cwd != NULL ) {
      printf( "The current directory on drive C is %s\n",
      free ( cwd );
    }
  }
```

produces the following:

The current directory on drive C is C:\PROJECT\C

Classification: WATCOM

_getdcwd - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS _wgetdcwd - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32 **Systems:**

Synopsis: #include <stdio.h> ssize_t getdelim(char **line, size_t *n, int delim, FILE *fp);

Description: The getdelim function reads in text from a stream fp up to and including a delimiter delim and returns the resulting text in a buffer pointed to by line when complete. The buffer pointed to by line should be of the size pointed to by n initially.

> The buffer pointed to by *line* can initially be null and *n* should reflect the size of *line* and be set to null. When getdelim is invoked, it will check if the buffer pointed to by *line* is allocated and large enough. If not, it will first call realloc to resize the buffer appropriately and adjust the value pointed to by nto reflect the new size of *line* after reallocation. If allocation fails, errno will be set to ENOMEM.

Returns: The function returns the number of characters read into the buffer or -1 on either error or if no further data is available.

Example: The following program would print out each line in a text file "test.txt".

```
#include <stdio.h>
int main( void )
    char *line = NULL;
    size_t n = 0;
   FILE *fp;
    fp = fopen("test.txt", "r");
    while (getdelim (&line, &n, ' \ n', fp) >= 0) {
        printf("> %s", line);
    fclose(fp);
    return(0);
```

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

```
Synopsis:
            #include <direct.h>
            unsigned _getdiskfree( unsigned drive,
                                        struct diskfree_t *diskspace );
            struct diskfree_t {
                 unsigned short total_clusters;
                 unsigned short avail_clusters;
                 unsigned short sectors_per_cluster;
                 unsigned short bytes_per_sector;
            };
Description:
            The _getdiskfree function uses system call 0x36 to obtain useful information on the disk drive
            specified by drive. Specify 0 for the default drive, 1 for drive A, 2 for drive B, etc. The information
            about the drive is returned in the structure diskfree_t pointed to by diskspace.
Returns:
            The _getdiskfree function returns zero if successful. Otherwise, it returns a non-zero value and
            sets errno to EINVAL indicating an invalid drive was specified.
See Also:
            _dos_getdiskfree, _dos_getdrive, _dos_setdrive, _getdrive
Example:
            #include <stdio.h>
            #include <direct.h>
            void main()
              {
                 struct diskfree_t disk_data;
                 /* get information about drive 3 (the C drive) */
                 if( _getdiskfree( 3, &disk_data ) == 0 ) {
                   printf( "total clusters: %u\n",
                                        disk_data.total_clusters );
                   printf( "available clusters: %u\n",
                                        disk_data.avail_clusters );
                   printf( "sectors/cluster: %u\n",
                                        disk_data.sectors_per_cluster );
                   printf( "bytes per sector: u\n",
                                        disk_data.bytes_per_sector );
                 } else {
                   printf( "Invalid drive specified\n" );
              }
            produces the following:
            total clusters: 16335
            available clusters: 510
            sectors/cluster: 4
            bytes per sector: 512
Classification: DOS
```

DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

402 Library Functions and Macros

Systems:

		_getdiskfree

Synopsis: #include <direct.h>
 int _getdrive(void);

 $\textbf{Description:} \quad \text{The $_$getdrive function returns the current (default) drive number.}$

Returns: A value of 1 is drive A, 2 is drive B, 3 is drive C, etc.

See Also: __dos_getdiskfree, _dos_getdrive, _dos_setdrive, _getdiskfree

The current drive is C

Classification: DOS

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

```
Synopsis:
           #include <unistd.h>
           gid_t getegid( void );
```

Description: The getegid function returns the efective group ID for the current process.

Returns: The efective group ID for the current process.

See Also: getgid, getuid, geteuid

```
Example:
            * Print the effective group ID of the process.
           #include <stdio.h>
           #include <unistd.h>
           int main( void )
                printf( "My effective group ID is %d\n", getegid() );
                return(0);
```

Classification: POSIX 1003.1

}

Systems: Linux

Safer C: The Safer C Library extension provides the getenv_s function which is a safer alternative to getenv. This newer getenv_s function is recommended to be used instead of the traditional "unsafe" getenv function.

Description: The getenv function searches the environment list for an entry matching the string pointed to by *name*. The matching is case-insensitive; all lowercase letters are treated as if they were in upper case.

Entries can be added to the environment list with the DOS set command or with the puterv or setenv functions. All entries in the environment list can be displayed by using the DOS set command with no arguments.

To assign a string to a variable and place it in the environment list:

```
C>SET INCLUDE=C:\WATCOM\H
```

To see what variables are in the environment list, and their current assignments:

```
C>SET
COMSPEC=C:\COMMAND.COM
PATH=C:\;C:\WATCOM
INCLUDE=C:\WATCOM\H
```

The _wgetenv function is a wide character version of getenv that operates with wide character strings.

Returns:

The getenv function returns a pointer to the string assigned to the environment variable if found, and NULL if no match was found. Note: the value returned should be duplicated if you intend to modify the contents of the string.

```
See Also: exec..., _wexec..., clearenv, getenv_s, putenv, _searchenv, setenv, unsetenv, _wgetenv, _wputenv, _wsearchenv, _wunsetenv, spawn..., system, _wsystem
```

Example:

Classification: ISO C

_wgetenv is WATCOM

Systems: getenv - All, Linux, RDOS, Netware _wgetenv - All, Linux

		getenv, _wgetenv

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and getenv_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

name shall not be a null pointer. *maxsize* shall neither be equal to zero nor be greater than RSIZE_MAX. If *maxsize* is not equal to zero, then *value* shall not be a null pointer.

If there is a runtime-constraint violation, the integer pointed to by *len* (if *len* is not null) is set to zero, and the environment list is not searched.

Description:

The getenv_s function searches the environment list for an entry matching the string pointed to by *name*.

If that entry is found, getenv_s performs the following actions. If *len* is not a null pointer, the length of the string associated with the matched entry is stored in the integer pointed to by *len*. If the length of the associated string is less than *maxsize*, then the associated string is copied to the array pointed to by *value*.

If that entry is not found, getenv_s performs the following actions. If *len* is not a null pointer, zero is stored in the integer pointed to by *len*. If *maxsize* is greater than zero, then *value[0]* is set to the null character.

The matching is case-insensitive; all lowercase letters are treated as if they were in upper case.

Entries can be added to the environment list with the DOS set command or with the puterv or setenv functions. All entries in the environment list can be displayed by using the DOS set command with no arguments.

To assign a string to a variable and place it in the environment list:

```
C>SET INCLUDE=C:\WATCOM\H
```

To see what variables are in the environment list, and their current assignments:

```
C>SET
COMSPEC=C:\COMMAND.COM
PATH=C:\;C:\WATCOM
INCLUDE=C:\WATCOM\H
```

Returns:

The getenv_s function returns zero if the environment string specified by *name* was found and successfully stored in the buffer pointed to by *value*. Otherwise, a non-zero value is returned.

See Also:

```
exec..., _wexec..., clearenv, getenv, putenv, _searchenv, setenv, unsetenv,
_wgetenv, _wputenv, _wsearchenv, _wsetenv, _wunsetenv, spawn...,
system, _wsystem
```

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
Example:
              #include <stdio.h>
              void main( void )
                   char
                            buffer[128];
                   size_t len;
                   if( getenv_s( &len, buffer, sizeof( buffer ), "INCLUDE" ) == 0 )
    printf( "INCLUDE=%s\n", buffer );
```

Classification: TR 24731

Systems: All, Linux, RDOS, Netware **Systems:**

Linux

```
Synopsis:
             #include <unistd.h>
             uid_t geteuid( void );
             The \ensuremath{\mbox{\tt geteuid}} function returns the efective user ID for the calling process.
Description:
Returns:
             The efective user ID for the calling process
See Also:
             getuid, getgid, getegid
Example:
              * Print the effective user ID of the process.
             #include <stdio.h>
             #include <unistd.h>
             int main( void )
                  printf( "My effective user ID is %d\n", geteuid() );
                  return(0);
Classification: POSIX 1003.1
```

Synopsis: #include <graph.h> unsigned char _FAR * _FAR _getfillmask(unsigned char _FAR *mask);

Description: The _getfillmask function copies the current fill mask into the area located by the argument mask. The fill mask is used by the _ellipse, _floodfill, _pie, _polygon and _rectangle

functions that fill an area of the screen.

The fill mask is an eight-byte array which is interpreted as a square pattern (8 by 8) of 64 bits. Each bit in the mask corresponds to a pixel. When a region is filled, each point in the region is mapped onto the fill mask. When a bit from the mask is one, the pixel value of the corresponding point is set using the current plotting action with the current color; when the bit is zero, the pixel value of that point is not affected.

When the fill mask is not set, a fill operation will set all points in the fill region to have a pixel value of the current color.

Returns: If no fill mask has been set, NULL is returned; otherwise, the _getfillmask function returns mask.

See Also: _floodfill, _setfillmask, _setplotaction

Example: #include <conio.h> #include <graph.h>

```
char old_mask[ 8 ];
char new_mask[ 8 ] = { 0x81, 0x42, 0x24, 0x18,
                       0x18, 0x24, 0x42, 0x81 };
main()
    _setvideomode( _VRES16COLOR );
   _getfillmask( old_mask );
   _setfillmask( new_mask );
   _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
   _setfillmask( old_mask );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

DOS **Systems:**

Synopsis: #include <graph.h>

short _FAR _getfontinfo(struct _fontinfo _FAR *info);

Description:

The _getfontinfo function returns information about the currently selected font. Fonts are selected with the _setfont function. The font information is returned in the _fontinfo structure indicated by the argument *info*. The structure contains the following fields:

type 1 for a vector font, 0 for a bit-mapped font

ascent distance from top of character to baseline in pixels

pixwidth character width in pixels (0 for a proportional font)

pixheight character height in pixels

avgwidth average character width in pixels

filename name of the file containing the current font

facename name of the current font

Returns: The _getfontinfo function returns zero if the font information is returned successfully; otherwise a

negative value is returned.

See Also: _registerfonts, _unregisterfonts, _setfont, _outgtext, _getgtextextent,

_setgtextvector, _getgtextvector

Example: #include <conio.h>
#include <graph.h>

Classification: PC Graphics

Systems: DOS

			_getfontinfo		

```
Synopsis:
            #include <unistd.h>
            gid_t getgid( void );
Description:
            The getgid function returns the group ID for the current process.
Returns:
            The group ID for the current process.
See Also:
            getuid, geteuid, getegid
Example:
              * Print the group ID of the process.
            #include <stdio.h>
            #include <unistd.h>
            int main( void )
                  printf( "I belong to group ID %d\n", getgid() );
                  return(0);
               }
Classification: POSIX 1003.1
```

Synopsis: #include <graph.h>

short _FAR _getgtextextent(char _FAR *text);

Description: The _qetqtextextent function returns the length in pixels of the argument text as it would be

displayed in the current font by the function _outgtext. Note that the text is not displayed on the

screen, only its length is determined.

Returns: The _getgtextextent function returns the length in pixels of a string.

See Also: _registerfonts, _unregisterfonts, _setfont, _getfontinfo, _outgtext,

_setgtextvector, _getgtextvector

Example: #include <conio.h>

```
#include <graph.h>
main()
    int width;
    struct _fontinfo info;
    _setvideomode( _VRES16COLOR );
    _getfontinfo( &info );
    _moveto( 100, 100 );
    _outgtext( "WATCOM Graphics" );
    width = _getgtextextent( "WATCOM Graphics" );
    _rectangle( _GBORDER, 100, 100,
                100 + width, 100 + info.pixheight);
    getch();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS **Description:**

Synopsis: #include <graph.h>
struct xycoord _FAR _getgtextvector(void);

The _getgtextvector function returns the current value of the text orientation vector. This is the

direction used when text is displayed by the _outgtext function.

Returns: The _getgtextvector function returns, as an xycoord structure, the current value of the text

orientation vector.

See Also: _registerfonts, _unregisterfonts, _setfont, _getfontinfo, _outgtext,

_getgtextextent, _setgtextvector

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    struct xycoord old_vec;

    _setvideomode( _VRES16COLOR );
    old_vec = _getgtextvector();
    _setgtextvector( 0, -1 );
    _moveto( 100, 100 );
    _outgtext( "WATCOM Graphics" );
    _setgtextvector( old_vec.xcoord, old_vec.ycoord );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

Synopsis: #include <netdb.h>

```
struct hostent *gethostbyaddr( const void *addr,
                                socklen_t len,
                                int type );
```

Description:

The gethostbyaddr function searches the system's network host database for a host matching the addr argument. The address should be specified in network byte order. The len argument specifies the length in bytes of the addr argument, and type specifies the address type. Accepted types, such as AF_INET or AF_INET6, are expected. The routine will query only the local network hosts database.

The structure returned is defined as:

```
struct hostent {
   char
           *h_name;
                         /* host official name
                                                              */
           **h_aliases; /* host alternate names, up to 16,
   char
                             terminated by a NULL pointer
           h_length; /* address length in bytes
   int.
           **h_addr_list; /* array of pointers to network
   char
                              addresses in network byte order,
                              terminated by a NULL pointer
};
```

The pointer returned by gethostbyaddr points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If a matching host is found, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

If the host is found, the h_name member will be the defintive name of the host, and h_aliases will contain a NULL-terminated list of aliases. The addresses are contained in the h_addr_list member as a NULL-terminated list, and this structure entry will never be NULL.

If no matching host is found or an error occurs, the return value will be NULL.

See Also: gethostent, gethostbyname

Classification: POSIX 1003.1

Synopsis: #include <netdb.h>

struct hostent *gethostbyname(const char *name);

Description:

The gethostbyname function determines the address or addresses of a host specified by the *name* argument. The routine will query the local database initially. If not found, the routine will perform a DNS query, returning all "A" records for the given host name.

The structure returned is defined as:

In the current Open Watcom implementation, this routine will only ever return IPv4 addresses, and all addresses will be of AF_INET address type.

The pointer returned by gethostbyname points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If a matching host is found, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

If the host is found, the h_name member will be a copy of the *name* argument. The addresses are contained in the h_addr_list member as a NULL-terminated list, and this structure entry will never be NULL.

If no matching host is found or an error occurs, the return value will be NULL.

See Also: ge

gethostent, gethostbyaddr

Example:

The following program will attempt to determine the address of a hostname passed as an argument.

```
#include <stdio.h>
#include <netdb.h>
#include <arpa/inet.h>
int main(int argc, char *argv[])
    int i;
    struct hostent *he;
    struct in_addr **addr_list;
    if (argc != 2) {
        fprintf(stderr,"usage: %s <hostname>\n", argv[0]);
        return 1;
    if ((he = gethostbyname(argv[1])) == NULL) { // get the host inf
        printf("Failed to find %s\n", argv[1]);
       return 2;
   printf("IP addresses for %s:\n", argv[1]);
    addr_list = (struct in_addr **)he->h_addr_list;
    for(i = 0; addr_list[i] != NULL; i++) {
       printf(" %s\n", inet_ntoa(*addr_list[i]));
    return 0;
```

Classification: POSIX 1003.1

Synopsis: #include <netdb.h>

struct hostent *gethostent(void);

Description:

The gethostent function reads, parses, and returns entries from the network host database at /etc/hosts. The first call will return the first entry, and subsequent calls return subsequent entries. A null pointer is returned if either an error is encountered or no further entries exist.

If a call to sethostent was not first made, the gethostent function will open the database if necessary initially. By default, this will always return the first entry in the database.

The structure returned is defined as:

In the current Open Watcom implementation, this routine will only ever return IPv4 addresses, and all addresses will be of AF_INET address type.

The pointer returned by gethostent points to a static location, and the user should free neither the pointer itself nor any of its consituent structure members.

This function is not thread-safe. Other calls to functions accessing the hostname database may affect the return value from this function.

Returns: A parsed host database entry, or NULL if no further entries exist or an error occurred.

See Also: sethostent, endhostent

Example: The following program will print out each user and their user ID in the system's password database

```
#include <stdio.h>
#include <netdb.h>
#include <arpa/inet.h>
int main(int argc, char *argv[])
  struct hostent *e;
    sethostent(1);
    e = gethostent();
    while(e != NULL) {
        char *ia = e->h_addr_list[0];
        printf("%s - %d.%d.%d.%d\n",
               e->h_name,
               ia[0],ia[1],ia[2],ia[3]
        );
        e = gethostent();
    }
    endhostent();
    return 0;
```

Classification: POSIX 1003.1

Description:

The _getimage functions store a copy of an area of the screen into the buffer indicated by the *image* argument. The _getimage function uses the view coordinate system. The _getimage_w and _getimage_wxy functions use the window coordinate system.

The screen image is the rectangular area defined by the points (x1,y1) and (x2,y2). The buffer *image* must be large enough to contain the image (the size of the image can be determined by using the _imagesize function). The image may be displayed upon the screen at some later time by using the _putimage functions.

Returns: The _getimage functions do not return a value.

See Also: _imagesize, _putimage

Example:

```
#include <conio.h>
#include <graph.h>
#include <malloc.h>
main()
    char *buf;
    int y;
    _setvideomode( _VRES16COLOR );
    _ellipse( _GFILLINTERIOR, 100, 100, 200, 200 );
    buf = (char*) malloc(
                  _imagesize( 100, 100, 201, 201 ) );
    if( buf != NULL ) {
        _getimage( 100, 100, 201, 201, buf );
        _putimage( 260, 200, buf, _GPSET );
        _putimage( 420, 100, buf, _GPSET );
        for (y = 100; y < 300;) {
            _putimage( 420, y, buf, _GXOR );
            y += 20;
            _putimage( 420, y, buf, _GXOR );
        free ( buf );
    getch();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: _getimage - DOS

_getimage_w - DOS _getimage_wxy - DOS

Synopsis: #include <stdio.h>
 ssize_t getline(char **line, size_t *n, FILE *fp);

Description: The getline function reads a single line of text from a stream fp and returns the resulting text,

including any new line characters, in a buffer pointed to by *line* when complete. The buffer pointed to

by line should be of the size pointed to by n initially.

The buffer pointed to by *line* can initially be null and *n* should reflect the size of *line* and be set to 0. When getline is invoked, it will check if the buffer pointed to by *line* is allocated and large enough. If not, it will first call realloc to resize the buffer appropriately and adjust the value pointed to by *n* to reflect the new size of *line* after reallocation. If allocation fails, errno will be set to ENOMEM.

Returns: The function returns the number of characters read into the buffer or -1 on either error or if no further

data is available.

Example: The following program would print out each line in a text file "test.txt"

```
#include <stdio.h>
int main( void )
{
    char *line = NULL;
    size_t n = 0;
    FILE *fp;

    fp = fopen("test.txt", "r");
    while(getline(&line, &n, fp) >= 0) {
        printf("> %s", line);
    }
    fclose(fp);
    return( 0 );
}
```

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Synopsis: #include <graph.h> unsigned short _FAR _getlinestyle(void);

Description: The _getlinestyle function returns the current line-style mask.

> The line-style mask determines the style by which lines and arcs are drawn. The mask is treated as an array of 16 bits. As a line is drawn, a pixel at a time, the bits in this array are cyclically tested. When a bit in the array is 1, the pixel value for the current point is set using the current color according to the current plotting action; otherwise, the pixel value for the point is left unchanged. A solid line would result from a value of 0xFFFF and a dashed line would result from a value of 0xF0F0

The default line style mask is 0xFFFF

Returns: The _getlinestyle function returns the current line-style mask.

See Also: _lineto, _pie, _rectangle, _polygon, _setlinestyle

Example: #include <conio.h> #include <graph.h>

getch();

#define DASHED 0xf0f0 main() unsigned old_style; _setvideomode(_VRES16COLOR); old_style = _getlinestyle(); _setlinestyle(DASHED); _rectangle(_GBORDER, 100, 100, 540, 380); _setlinestyle(old_style);

_setvideomode(_DEFAULTMODE);

Classification: PC Graphics

Systems: DOS Synopsis: #include <mbctype.h>
 int _getmbcp(void);

Description: The _getmbcp function returns the current multibyte code page number.

Returns: The _getmbcp function returns the current multibyte code page. A return value of zero indicates that

a single-byte character code page is in use.

See Also: _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha,

_ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint,

_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,

_mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h>

```
#include <mbctype.h>

void main()
{
    printf( "%d\n", _setmbcp( 932 ) );
    printf( "%d\n", _getmbcp() );
}
```

produces the following:

0 932

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis: #include <netdb.h>

struct netent *getnetbyaddr(in_addr_t net, int type);

Description:

The getnetbyaddr function searches the network database for a network with a matching address type, specified by type as AF_INET, AF_INET6, etc., and address matching the net argument. The function returns information about said network if a match is found. The routine will query the local database only.

The structure returned is defined as:

```
struct netent {
                         /* official network name */
   char
             *n_name;
           **n_aliases;
                         /* alias list
   char
                                              */
   int n_addrtype;
                         /* address type
   uint32_t n_net;
                          /* network number
};
```

The pointer returned by getnetbyaddr points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If a matching host is found, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The alias names of said network are contained in the n_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no matching host is found or an error occurs, the return value will be NULL.

See Also: getnetent, getnetbyname

Classification: POSIX 1003.1

Synopsis: #include <netdb.h>

struct netent *getnetbyname(const char *name);

Description:

The getnetbyname function searches the network database for a network *name* and returns information about said network if a match is found. The routine will query the local database only.

The structure returned is defined as:

The pointer returned by getnetbyname points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If a matching host is found, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The addresses are contained in the $n_{aliases}$ member as a NULL-terminated list, and this structure entry will never be NULL.

If no matching host is found or an error occurs, the return value will be NULL.

See Also: getnetent, getnetbyaddr

Classification: POSIX 1003.1

Synopsis: #include <netdb.h>

struct netent *getnetent(void);

Description:

The getnetent function retrieves the next entry in the network database. If not proceeded by an appropriate call to setnetent, the function will always return the first network in the database. The routine will query the local database only.

The structure returned is defined as:

```
struct netent {
      char *n_name; /* official network name */
char **n_aliases; /* alias list */
int n_addrtype; /* address type */
uint 32 t n_net: /* notwork number */
      uint32_t n_net;
                                                       /* network number
};
```

The pointer returned by getnetent points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If the database contains more entries, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The alias names of said network are contained in the n_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no additional network is found or an error occurs, the return value will be NULL.

See Also:

setnetent, endnetent, getnetbyname, getnetbyaddr

Classification: POSIX 1003.1

Synopsis:

Description:

The getopt function is a command-line parser that can be used by applications that follow Utility Syntax Guidelines 3, 4, 5, 6, 7, 9 and 10 in the Base Definitions volume of IEEE Std 1003.1-2001, Section 12.2, Utility Syntax Guidelines.

The parameters *argc* and *argv* are the argument count and argument array as passed to main. The argument *optstring* is a string of recognised option characters; if a character is followed by a colon, the option takes an argument. All option characters allowed by Utility Syntax Guideline 3 are allowed in *optstring*.

The global variable optind is the index of the next element of the argv[] vector to be processed. It is initialised to 1 by the system, and getopt updates it when it finishes with each element of argv[]. When an element of argv[] contains multiple option characters, getopt uses a static variable to determine which options have already been processed.

The getopt function returns the next option character (if one is found) from *argv* that matches a character in *optstring*, if there is one that matches. If the option takes an argument, getopt sets the variable optarg to point to the option-argument as follows:

If the option was the last character in the string pointed to by an element of argv, then optarg contains the next element of argv, and optind is incremented by 2. If the resulting value of optind is not less than argc, this indicates a missing option-argument, and getopt returns an error indication.

Otherwise, optarg points to the string following the option character in that element of *argv*, and optind is incremented by 1.

If, when getopt is called:

- argv[optind] is a null pointer
- *argv[optind] is not the character '-'
- argv[optind] points to the string "-"

getopt returns -1 without changing optind. If *argv[optind]* points to the string "--", getopt returns -1 after incrementing optind.

If getopt encounters an option character that is not contained in *optstring*, it returns the question-mark (?) character. If it detects a missing option-argument, it returns the colon character (:) if the first character of *optstring* was a colon, or a question-mark character (?) otherwise. In either case, getopt will set the global variable optopt to the option character that caused the error. If the application has not set the global variable opterr to 0 and the first character of *optstring* is not a colon, getopt also prints a diagnostic message to stderr.

The getopt function is not re-entrant and hence not thread-safe.

Returns: The getopt function returns the next option character specified on the command line.

> A colon (:) is returned if getopt detects a missing argument and the first character of optstring was a colon (:).

> A question mark (?) is returned if getopt encounters an option character not in optstring or detects a missing argument and the first character of *optstring* was not a colon (:).

Otherwise, getopt returns -1 when all command line options are parsed.

See Also: abort, atexit, _bgetcmd, exec..., exit, _Exit, _exit, getcmd, getenv, main, putenv, spawn..., system, _wsystem

Example:

```
#include <stdio.h>
#include <unistd.h>
int main( int argc, char **argv )
    int
            c;
    char
            *ifile;
    char
            *ofile;
    while ( (c = getopt ( argc, argv, ":abf:o:" )) !=-1 ) {
        switch(c) {
        case 'a':
            printf( "option a is set\n" );
            break;
        case 'b':
            printf( "option b is set\n" );
            break;
        case 'f':
            ifile = optarg;
            printf( "input filename is '%s'\n", ifile );
            break;
        case 'o':
            ofile = optarg;
            printf( "output filename is '%s'\n", ofile );
            break;
        case ':':
            printf( "-%c without filename\n", optopt );
            break;
        case '?':
            printf( "usage: %s -ab -f <filename> -o <filename>\n", ar
gv[0]);
            break;
        }
    }
    return(0);
}
produces the following:
option a is set
input filename is 'in'
output filename is 'out'
```

when the program is executed with the command

cprogram name> -afin -o out

Classification: POSIX 1003.1

Systems: All, Linux

Synopsis: #include <io.h> long _get_osfhandle(int posixhandle);

Description: The _get_osfhandle function returns the operating system's internal file handle that corresponds to the POSIX-level file handle specified by posixhandle.

> The value returned by _get_osfhandle can be used as an argument to the _open_osfhandle function which can be used to connect a second POSIX-level handle to an open file.

The example below demonstrates the use of these two functions. Note that the example shows how the dup2 function can be used to obtain almost identical functionality.

When the POSIX-level file handles associated with one OS file handle are closed, the first one closes successfully but the others return an error (since the first call close the file and released the OS file handle). So it is important to call close at the right time, i.e., after all I/O operations are completed to the file.

Returns: If successful, _qet_osfhandle returns an operating system file handle corresponding to posixhandle. Otherwise, it returns -1 and sets errno to EBADF, indicating an invalid file handle.

See Also: close, dup2, fdopen, _hdopen, open, _open_osfhandle, _os_handle

Example: #include <stdio.h> #include <stdlib.h> #include <io.h> #include <fcntl.h>

> void main() long os_handle; int fh1, fh2, rc; fh1 = open("file", O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP); if(fh1 == -1) { printf("Could not open output file\n"); exit(EXIT_FAILURE);

printf("First POSIX handle %d\n", fh1);

```
#if defined(USE_DUP2)
   fh2 = 6;
   if ( dup2 ( fh1, fh2 ) == -1 ) fh2 = -1;
#else
   os_handle = _get_osfhandle( fh1 );
   printf( "OS Handle %ld\n", os_handle );
    fh2 = _open_osfhandle( os_handle, O_WRONLY |
                                      O_BINARY );
#endif
    if(fh2 == -1) {
        printf( "Could not open with second handle\n" );
        exit( EXIT_FAILURE );
   printf( "Second POSIX handle %d\n", fh2 );
   rc = write(fh2, "trash\x0d\x0a", 7);
   printf( "Write file using second handle %d\n", rc );
   rc = close(fh2);
   printf( "Closing second handle %d\n", rc );
   rc = close( fh1 );
   printf( "Closing first handle %d\n", rc );
```

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, Netware

```
Synopsis:
           #include <unistd.h>
           gid_t getpgrp( void );
```

Description: The getpgrp function returns the process group ID for the current process.

Returns: The process group ID for the current process.

See Also: getuid, geteuid, getegid

```
Example:
            * Print the process group ID of the process.
           #include <stdio.h>
           #include <unistd.h>
           int main( void )
                printf( "I belong to group ID %d\n", getpgrp() );
                return(0);
```

Classification: POSIX 1003.1

}

Synopsis: #include <graph.h>
 struct xycoord _FAR _getphyscoord(short x, short y);

Description: The _getphyscoord function returns the physical coordinates of the position with view coordinates

(x,y) . View coordinates are defined by the $_$ setvieworg and $_$ setviewport functions.

Returns: The _getphyscoord function returns the physical coordinates, as an xycoord structure, of the

given point.

See Also: _getviewcoord, _setvieworg, _setviewport

Example: #include <conio.h>
#include <graph.h>

#include <stdlib.h>
main()
{

Classification: PC Graphics

Systems: DOS

```
Synopsis:
            #include <unistd.h>
            pid_t getpid( void );
            pid_t _getpid( void );
Description:
            The getpid function returns the process ID for the current process.
Returns:
            The process ID for the current process.
See Also:
            getppid, gettid
Example:
             * print out the ID of this process
            #include <stdio.h>
            #include <unistd.h>
            int main( void )
                 printf( "I'm process %d\n", getpid() );
                 return(0);
Classification: POSIX 1003.1
            _getpid is WATCOM
Systems:
            getpid - All, Linux, RDOS
            _getpid - All, Linux, RDOS
```

```
Synopsis:
            #include <graph.h>
            short _FAR _getpixel( short x, short y );
            short _FAR _getpixel_w( double x, double y );
Description:
            The \_getpixel functions return the pixel value for the point with coordinates (x,y). The
            _getpixel function uses the view coordinate system. The _getpixel_w function uses the window
            coordinate system.
Returns:
            The _getpixel functions return the pixel value for the given point when the point lies within the
            clipping region; otherwise, (-1) is returned.
See Also:
            _setpixel
Example:
            #include <conio.h>
            #include <graph.h>
            #include <stdlib.h>
            main()
                 int x, y;
                 unsigned i;
                 _setvideomode( _VRES16COLOR );
                 _rectangle( _GBORDER, 100, 100, 540, 380 );
                 for( i = 0; i \le 60000; ++i ) {
                      x = 101 + rand() % 439;
                      y = 101 + rand() % 279;
                      \_setcolor(\_getpixel(x, y) + 1);
                      _setpixel(x, y);
                 getch();
                 _setvideomode( _DEFAULTMODE );
Classification: PC Graphics
            _getpixel - DOS
Systems:
            _getpixel_w - DOS
```

Synopsis: #include <graph.h> short _FAR _getplotaction(void);

Description: The _getplotaction function returns the current plotting action.

> The drawing functions cause pixels to be set with a pixel value. By default, the value to be set is obtained by replacing the original pixel value with the supplied pixel value. Alternatively, the replaced value may be computed as a function of the original and the supplied pixel values.

The plotting action can have one of the following values:

_GPSET replace the original screen pixel value with the supplied pixel value

_GAND replace the original screen pixel value with the bitwise and of the original

pixel value and the supplied pixel value

_GOR replace the original screen pixel value with the bitwise or of the original pixel

value and the supplied pixel value

GXOR replace the original screen pixel value with the bitwise exclusive-or of the

> original pixel value and the supplied pixel value. Performing this operation twice will restore the original screen contents, providing an efficient method

to produce animated effects.

Returns: The _getplotaction function returns the current plotting action.

See Also: _setplotaction

Example: #include <conio.h> #include <qraph.h>

```
main()
    int old_act;
    _setvideomode( _VRES16COLOR );
    old_act = _getplotaction();
   _setplotaction( _GPSET );
   _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
    _setplotaction( _GXOR );
    _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
    getch();
    _setplotaction( old_act );
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS

_getplotaction			

```
Synopsis:
           #include <unistd.h>
           pid_t getppid(void);
```

Description: The getppid function allows the calling process to find out its parent ID.

Returns: The process parent's process ID.

See Also: getpid

Example:

```
* Print the parent's process ID.
#include <stdio.h>
#include <unistd.h>
int main( void )
   printf( "My parent is %d\n", getppid() );
   return(0);
```

Classification: POSIX 1003.1

getprotobyname

Synopsis: #include <netdb.h>

struct netent *getprotobyname(const char *name);

Description:

The getprotobyname function searches the protocol database for a protocol matching the specified *name*, considering both the official name and aliases. The routine will query the local database only.

The structure returned is defined as:

The pointer returned by getprotobyname points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the protocol database may affect the return value from this function.

Returns:

If a matching protocol database entry is found, the return value will point to a struct protoent as defined above.

The alias names of said protocol are contained in the p_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no protocol is found or an error occurs, the return value will be NULL.

See Also: getprotoent, setprotoent, endprotoent, getprotobynumber

Classification: POSIX 1003.1

Synopsis: #include <netdb.h>

struct netent *getprotobynumber(int protocol);

Description:

The getprotobynumber function searches the protocol database for a protocol matching the specified by the *protocol* argument. The routine will query the local database only.

The structure returned is defined as:

```
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol ***
struct protoent {
};
```

The pointer returned by getprotobynumber points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the protocol database may affect the return value from this function.

Returns:

See Also:

If a matching protocol database entry is found, the return value will point to a struct protoent as defined above.

The alias names of said protocol are contained in the p_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no protocol is found or an error occurs, the return value will be NULL.

getprotoent, setprotoent, endprotoent, getprotobyname

Classification: POSIX 1003.1

Synopsis: #include <netdb.h>

struct netent *getprotoent(void);

Description:

The getprotoent function retrieves the next entry in the protocol database. If not proceeded by an appropriate call to setprotoent, the function will always return the first protocol in the database. The routine will query the local database only.

The structure returned is defined as:

The pointer returned by getprotoent points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the protocol database may affect the return value from this function.

Returns:

If the database contains more entries, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The alias names of said protocol are contained in the p_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no protocol is found or an error occurs, the return value will be NULL.

See Also: setprotoent, endprotoent, getprotobyname, getprotobynumber

Classification: POSIX 1003.1

Synopsis: #include <pwd.h> struct passwd *getpwent(void);

Description:

The getpwent function reads, parses, and returns entries from the password database at /etc/passwd. The first call will return the first entry, and subsequent calls return subsequent entries. A null pointer is returned if either an error is encountered or no further entries exist.

The structure returned is defined as:

```
struct passwd {
  char *pw_name;
  char
  uid_t pw_uid;
                   /* user ID number
                                   */
                   /* group ID number
  gid_t pw_gid;
                   /* real name
                                   */
  char
        *pw_gecos;
                   /* home directory
        *pw_dir;
  char
        *pw_shell; /* initial program
  char
};
```

On most modern Linux implementations, the resulting password will simply be 'x' as passwords are not normally stored in the password database itself.

The pointer returned by getpwent points to a static location, and the user should free neither the pointer itself nor any of its consituent structure members.

This function is not thread-safe. Other calls to functions accessing the password database may affect the return value from this function.

Returns: A parsed password database entry, or NULL if no further entries exist or an error occurred.

See Also: setpwent, endpwent, getpwnam, getpwuid

Example: The following program will print out each user and their user ID in the system's password database

```
#include <stdio.h>
#include <pwd.h>
void main()
  {
    struct passwd *pw;
    setpwent();
    while((pw = getpwent()) != NULL) {
        printf("User id %d is %s\n", (int)pw->pw_uid, pw->pw_name);
    endpwent();
  }
```

Classification: POSIX 1003.1

getpwent			

Synopsis: #include <pwd.h> struct passwd *getpwnam(const char *name);

Description:

The getpwnam function locates and returns a parsed password database entry for the user with the specified username. If a matching entry is not found or an error occurs, a null pointer will be returned.

The structure returned is defined as:

```
struct passwd {
                        /* user's login name */
   char *pw_name;
          *pw_passwd;
                        /* user's password
   char
   uid_t pw_uid;
                        /* user ID number
                        /* group ID number
   gid_t pw_gid;
          *pw_gecos;
   char
                       /* real name
                                           */
   char
                       /* home directory
                                           */
          *pw_dir;
                       /* initial program
   char
          *pw_shell;
};
```

On most modern Linux implementations, the resulting password will simply be 'x' as passwords are not normally stored in the password database itself.

The pointer returned by getpwnam points to a static location, and the user should free neither the pointer itself nor any of its consituent structure members.

This function is not thread-safe. Other calls to functions accessing the password database may affect the return value from this function.

Returns: A matching parsed password database entry, or NULL if no match is found.

See Also: setpwent, endpwent, getpwuid, getpwent

Example: The following program will locate and print out the user ID corresponding to a user name 'root.'

```
#include <stdio.h>
#include <pwd.h>
void main()
 {
    struct passwd *pw;
    pw = getpwnam( "root" );
    if(pw) {
        printf("The user id for root is %d\n", (int)pw->pw_uid);
    } else {
        printf("User 'root' was not found.\n");
  }
```

Classification: POSIX 1003.1

Systems: Linux

getpwnam			

Synopsis: #include <pwd.h> struct passwd *getpwuid(uit_t uid);

Description:

The getpwuid function locates and returns a parsed password database entry for the user with the specified user ID. If a matching entry is not found or an error occurs, a null pointer will be returned.

The structure returned is defined as:

```
struct passwd {
                        /* user's login name */
   char *pw_name;
          *pw_passwd;
                         /* user's password
   char
   uid_t pw_uid;
                         /* user ID number
                         /* group ID number
   gid_t pw_gid;
          *pw_gecos; /* real name
*pw_dir; /* home direct
   char
                                              */
   char
                         /* home directory
                                              */
           *pw_dir;
          *pw_shell;
                         /* initial program
   char
};
```

On most modern Linux implementations, the resulting password will simply be 'x' as passwords are not normally stored in the password database itself.

The pointer returned by getpwuid points to a static location, and the user should free neither the pointer itself nor any of its consituent structure members.

This function is not thread-safe. Other calls to functions accessing the password database may affect the return value from this function.

Returns: A matching parsed password database entry, or NULL if no match is found.

See Also: setpwent, endpwent, getpwnam, getpwent

Example: The following program will locate and print out the user name corresponding to a user ID of 1000.

```
#include <stdio.h>
#include <pwd.h>
void main()
 {
    struct passwd *pw;
   pw = getpwuid((uid_t)1000);
   if(pw)
        printf("The corresponding username is '%s'\n", pw->pw_name);
    else
        printf("User id 1000 was not found.\n");
  }
```

Classification: POSIX 1003.1

Systems: Linux

getpwuid			

Synopsis:

```
#include <stdio.h>
char *gets( char *buf );
#include <stdio.h>
wchar_t *_getws( wchar_t *buf );
```

Description:

The gets function gets a string of characters from the file designated by stdin and stores them in the array pointed to by buf until end-of-file is encountered or a new-line character is read. Any new-line character is discarded, and a null character is placed immediately after the last character read into the

The _getws function is a wide character version of gets that operates with wide character strings. The _getws function gets a string of multibyte characters (if present) from the input stream pointed to by stdin, converts them to wide characters, and stores them in the wide character array pointed to by buf until end-of-file is encountered or a wide character new-line character is read.

It is recommended that fgets be used instead of gets because data beyond the array buf will be destroyed if a new-line character is not read from the input stream stdin before the end of the array buf is reached.

A common programming error is to assume the presence of a new-line character in every string that is read into the array. A new-line character may not appear as the last character in a file, just before end-of-file.

Returns:

The gets function returns buf if successful. NULL is returned if end-of-file is encountered, or if a read error occurs. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fgetc, fgetchar, fgets, fopen, getc, getchar, ungetc

Example:

```
void main()
  {
    char buffer[80];
    while( gets( buffer ) != NULL )
      puts( buffer );
```

Classification: ISO C

_getws is WATCOM

#include <stdio.h>

Systems:

```
gets - All, Linux, RDOS, Netware
_getws - All, Linux
```

gets, _getws				

#define __STDC_WANT_LIB_EXT1__ 1 **Synopsis:** #include <stdio.h> char *gets_s(char *s, rsize_t n);

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and gets_s will set s[0] to be the null character, and characters are read and discarded from stdin until a new-line character is read, or end-of-file or a read error occurs.

s shall not be a null pointer. n shall neither be equal to zero nor be greater than RSIZE_MAX. A new-line character, end-of-file, or read error shall occur within reading *n-1* characters from stdin.

Description:

The gets_s function gets a string of characters from the file designated by stdin and stores them in the array pointed to by s until end-of-file is encountered or a new-line character is read. Size of the array s is specified by the argument n, this information is used to protect buffer from overflow. If buffer s is about to be overflown, runtime-constraint is activated. Any new-line character is discarded, and a null character is placed immediately after the last character read into the array.

Returns:

The gets_s function returns s if successful. NULL is returned if there was a runtime-constraint violation, or if end-of-file is encountered and no caracters have been read into the array, or if a read error occurs.

See Also: fgetc, fgetchar, fgets, fopen, getc, getchar, gets, ungetc

Example: #define __STDC_WANT_LIB_EXT1__ 1

```
#include <stdio.h>
int main()
  {
    char buffer[80];
    while( gets_s( buffer, sizeof( buffer ) ) != NULL )
      puts(buffer);
  }
```

Classification: TR 24731

All, Linux, RDOS, Netware **Systems:**

Synopsis: #include <netdb.h>

struct servent *getservbyname(const char *name, const char *protocol
);

Description:

The getservbyname function searches the service database for a service with matching *name* and *protocol*, returning a pointer the a struct servent if found. The function will search for matching aliases as well. If *protocol* is NULL, the first encountered service matching the specified name will be returned regardless of protocol. The routine will query the local database only.

The structure returned is defined as:

The pointer returned by getservbyname points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If a match is found, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The alias names of said network are contained in the s_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no additional network is found or an error occurs, the return value will be NULL.

See Also: getservent, setservent, endservent, getservbyport

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <netdb.h>

```
struct servent *getservbyname( int port, const char *protocol );
```

Description:

The getservbyport function searches the service database for a service listening on port using protocol, returning a pointer the a struct servent if found. If protocol is NULL, the first encountered service matching the specified port number will be returned regardless of protocol. The routine will query the local database only.

The structure returned is defined as:

```
struct servent {
           *s_name;  /* official service name */
**s_aliases; /* alias list */
    char *s_name;
    char
                                                       */
    int
            s_port;
                            /* port number
                            /* protocol to use
    char
            *s_proto;
                                                       */
} ;
```

The pointer returned by getservbyport points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If a match is found, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The alias names of said network are contained in the s_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no additional network is found or an error occurs, the return value will be NULL.

See Also: getservent, setservent, endservent, getservbyname

Classification: POSIX 1003.1

Systems: Linux Synopsis: #include <netdb.h>

struct servent *getservent(void);

Description:

The getservent function retrieves the next entry in the service database. If not proceeded by an appropriate call to setservent, the function will always return the first service in the database. The routine will query the local database only.

The structure returned is defined as:

The pointer returned by getservent points to a private location, and the user should free neither the pointer itself nor any of its constituent structure members. Subsequent calls to this function may result in the values changing.

This function is not thread-safe. Other calls to this function or to other functions accessing the hostname database may affect the return value from this function.

Returns:

If the database contains more entries, the return value will be non-NULL. The returned pointer should not be freed by the calling routine.

The alias names of said network are contained in the s_aliases member as a NULL-terminated list, and this structure entry will never be NULL.

If no additional network is found or an error occurs, the return value will be NULL.

See Also: setservent, endservent, getservbyname, getservbyport

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <graph.h> short _FAR _gettextcolor(void);

Description: The _gettextcolor function returns the pixel value of the current text color. This is the color used

for displaying text with the _outtext and _outmem functions. The default text color value is set to

7 whenever a new video mode is selected.

Returns: The _gettextcolor function returns the pixel value of the current text color.

See Also: _settextcolor, _setcolor, _outtext, _outmem

Example: #include <conio.h>

```
#include <graph.h>
main()
    int old_col;
    long old_bk;
    _setvideomode( _TEXTC80 );
    old_col = _gettextcolor();
old_bk = _getbkcolor();
    _settextcolor(7);
    _setbkcolor( _BLUE );
    _outtext( " WATCOM \nGraphics");
    _settextcolor( old_col );
    _setbkcolor( old_bk );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS Synopsis: #include <graph.h>
 short _FAR _gettextcursor(void);

Description: The _gettextcursor function returns the current cursor attribute, or shape. The cursor shape is set

with the _settextcursor function. See the _settextcursor function for a description of the

value returned by the _gettextcursor function.

Returns: The _gettextcursor function returns the current cursor shape when successful; otherwise, (-1) is

returned.

See Also: _settextcursor, _displaycursor

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    int old_shape;

    old_shape = _gettextcursor();
    _settextcursor( 0x0007 );
    _outtext( "\nBlock cursor" );
    getch();
    _settextcursor( 0x0407 );
    _outtext( "\nHalf height cursor" );
    getch();
    _settextcursor( 0x2000 );
    _outtext( "\nNo cursor" );
    getch();
    _settextcursor( old_shape );
}
```

Classification: PC Graphics

Systems: DOS

```
Synopsis:
           #include <graph.h>
           void _FAR _gettextextent( short x, short y,
                                      char _FAR *text,
                                      struct xycoord _FAR *concat,
                                      struct xycoord _FAR *extent );
```

Description: The _gettextextent function simulates the effect of using the _grtext function to display the text string text at the position (x, y), using the current text settings. The concatenation point is returned in the argument concat. The text extent parallelogram is returned in the array extent.

> The concatenation point is the position to use to output text after the given string. The text extent parallelogram outlines the area where the text string would be displayed. The four points are returned in counter-clockwise order, starting at the upper-left corner.

Returns: The _gettextextent function does not return a value.

See Also: _grtext, _gettextsettings

Example: #include <conio.h> #include <graph.h>

```
main()
{
    struct xycoord concat;
    struct xycoord extent[ 4 ];
    _setvideomode( _VRES16COLOR );
   _grtext( 100, 100, "hot" );
   _gettextextent( 100, 100, "hot", &concat, extent);
   _polygon( _GBORDER, 4, extent );
   _grtext( concat.xcoord, concat.ycoord, "dog" );
    getch();
    _setvideomode( _DEFAULTMODE );
```

produces the following:

Classification: PC Graphics

Systems: DOS

Synopsis: #include <graph.h> struct rccoord _FAR _gettextposition(void);

Description: The _gettextposition function returns the current output position for text. This position is in

terms of characters, not pixels.

The current position defaults to the top left corner of the screen, (1,1), when a new video mode is selected. It is changed by successful calls to the _outtext, _outmem, _settextposition and _settextwindow functions.

Note that the output position for graphics output differs from that for text output. The output position for graphics output can be set by use of the _moveto function.

Returns: The _gettextposition function returns, as an rccoord structure, the current output position for

See Also: _outtext, _outmem, _settextposition, _settextwindow, _moveto

Example: #include <conio.h>

```
#include <graph.h>
main()
    struct rccoord old_pos;
    _setvideomode( _TEXTC80 );
    old_pos = _gettextposition();
   _settextposition(10, 40);
    _outtext( "WATCOM Graphics" );
    _settextposition( old_pos.row, old_pos.col );
    getch();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS **Description:** The _gettextsettings function returns information about the current text settings used when text is displayed by the _grtext function. The information is stored in the textsettings structure

indicated by the argument settings. The structure contains the following fields (all are short fields):

basevectorx x-component of the current base vector

basevectory y-component of the current base vector

path current text path

height current text height (in pixels)

width current text width (in pixels)

spacing current text spacing (in pixels)

horizalign horizontal component of the current text alignment

vertalign vertical component of the current text alignment

Returns: The _gettextsettings function returns information about the current graphics text settings.

See Also: _grtext, _setcharsize, _setcharspacing, _settextalign, _settextpath,

_settextorient

Example: #include <conio.h>
#include <graph.h>

```
main()
{
    struct textsettings ts;

    _setvideomode( _VRES16COLOR );
    _gettextsettings( &ts );
    _grtext( 100, 100, "WATCOM" );
    _setcharsize( 2 * ts.height, 2 * ts.width );
    _grtext( 100, 300, "Graphics" );
    _setcharsize( ts.height, ts.width );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

_gettextsettings	

Description: The _gettextwindow function returns the location of the current text window. A text window is defined with the _settextwindow function. By default, the text window is the entire screen.

The current text window is a rectangular area of the screen. Text display is restricted to be within this window. The top left corner of the text window is placed in the arguments (row1, col1). The bottom right corner of the text window is placed in (row2, col2).

Returns: The _gettextwindow function returns the location of the current text window.

See Also: _settextwindow, _outtext, _outmem, _settextposition, _scrolltextwindow

Example: #include <conio.h> #include <graph.h> #include <stdio.h> main() { int i; short r1, c1, r2, c2; char buf[80]; _setvideomode(_TEXTC80); _gettextwindow(&r1, &c1, &r2, &c2); _settextwindow(5, 20, 20, 40); for($i = 1; i \le 20; ++i$) { sprintf(buf, "Line %d\n", i); _outtext(buf); } getch(); _settextwindow(r1, c1, r2, c2); _setvideomode(_DEFAULTMODE);

Classification: PC Graphics

}

Systems: DOS

Synopsis: #include cess.h>

int gettid(void);

Description: The gettid function returns the thread id for the current thread on Linux systems. It provides a

wrapper around the appropriate kernel system call.

Returns: The gettid function returns the thread id for the current thread.

See Also: getpid

Classification: WATCOM

Systems: Linux **Systems:**

Linux

```
Synopsis:
            #include <unistd.h>
            uid_t getuid( void );
Description:
            The getuid function returns the user ID for the calling process.
Returns:
            The user ID for the calling process
See Also:
            geteuid, getgid, getegid
Example:
              * Print the user ID of this process.
            #include <stdio.h>
            #include <unistd.h>
            int main( void )
                 printf( "My userid is %d\n", getuid() );
                 return(0);
Classification: POSIX 1003.1
```

Synopsis: #include <graph.h>

Description:

The _getvideoconfig function returns information about the current video mode and the hardware configuration. The information is returned in the videoconfig structure indicated by the argument config. The structure contains the following fields (all are short fields):

number of pixels in x-axis numxpixels

numypixels number of pixels in y-axis

number of text columns numtextcols

number of text rows numtextrows

number of actual colors numcolors

bitsperpixel number of bits in a pixel value

numvideopages number of video pages

current video mode mode

adapter adapter type

monitor monitor type

number of kilobytes (1024 characters) of video memory memory

The adapter field will contain one of the following values:

_NODISPLAY no display adapter attached

_UNKNOWN unknown adapter/monitor type

Monochrome Display/Printer Adapter MDPA

_CGA Color Graphics Adapter

_HERCULES Hercules Monochrome Adapter

_MCGA Multi-Color Graphics Array

_EGA Enhanced Graphics Adapter

 $_{\mathbf{VGA}}$ Video Graphics Array

_SVGA SuperVGA Adapter

_getvideoconfig

The monitor field will contain one of the following values:

_MONO regular monochrome

_COLOR regular color

_ENHANCED enhanced color

_ANALOGMONO analog monochrome

_ANALOGCOLOR analog color

The amount of memory reported by _getvideoconfig will not always be correct for SuperVGA adapters. Since it is not always possible to determine the amount of memory, _getvideoconfig will always report 256K, the minimum amount.

Returns: The _getvideoconfig function returns information about the current video mode and the hardware

configuration.

See Also: _setvideomode, _setvideomoderows

```
Example:
           #include <conio.h>
           #include <graph.h>
           #include <stdio.h>
           #include <stdlib.h>
           main()
               int mode;
               struct videoconfig vc;
               char buf[ 80 ];
               _getvideoconfig( &vc );
/* select "best" video mode */
               switch( vc.adapter ) {
               case \_VGA:
               case _SVGA :
                   mode = _VRES16COLOR;
                   break;
               case _MCGA :
                   mode = _MRES256COLOR;
                   break;
               case _EGA :
                    if( vc.monitor == _MONO ) {
                        mode = _ERESNOCOLOR;
                    } else {
                        mode = _ERESCOLOR;
                    }
                    break;
               case _CGA :
                   mode = \_MRES4COLOR;
                    break;
               case _HERCULES :
                    mode = _HERCMONO;
                    break;
               default :
                    puts( "No graphics adapter" );
                    exit(1);
               if( _setvideomode( mode ) ) {
                    _getvideoconfig( &vc );
                    sprintf( buf, "%d x %d x %d\n", vc.numxpixels,
                                      vc.numypixels, vc.numcolors );
                    _outtext( buf );
                    getch();
                    _setvideomode( _DEFAULTMODE );
           }
```

Classification: PC Graphics

Systems: DOS

_getvideoconfig			

```
Synopsis:
           #include <graph.h>
           struct xycoord _FAR _getviewcoord( short x, short y );
           struct xycoord _FAR _getviewcoord_w( double x, double y );
           struct xycoord _FAR _getviewcoord_wxy(
                                struct _wxycoord _FAR *p );
```

Description:

The _getviewcoord functions translate a point from one coordinate system to viewport coordinates. The $_getviewcoord$ function translates the point (x, y) from physical coordinates. The _getviewcoord_w and _getviewcoord_wxy functions translate the point from the window coordinate system.

Viewport coordinates are defined by the _setvieworg and _setviewport functions. Window coordinates are defined by the _setwindow function.

Note: In previous versions of the software, the _getviewcoord function was called _getlogcoord.

Returns:

The _getviewcoord functions return the viewport coordinates, as an xycoord structure, of the given point.

See Also: _getphyscoord, _setvieworg, _setviewport, _setwindow

Example:

```
#include <conio.h>
#include <graph.h>
#include <stdlib.h>
main()
    struct xycoord pos1, pos2;
    _setvideomode( _VRES16COLOR );
    _setvieworg( rand() % 640, rand() % 480 );
    pos1 = _getviewcoord( 0, 0 );
   pos2 = \_getviewcoord(639, 479);
    _rectangle( _GBORDER, pos1.xcoord, pos1.ycoord,
                          pos2.xcoord, pos2.ycoord);
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems:

```
_getviewcoord - DOS
_getviewcoord_w - DOS
_getviewcoord_wxy - DOS
```

Synopsis: #include <graph.h> short _FAR _getvisualpage(void);

Description: The _getvisualpage function returns the number of the currently selected visual graphics page.

> Only some combinations of video modes and hardware allow multiple pages of graphics to exist. When multiple pages are supported, the active page may differ from the visual page. The graphics information in the visual page determines what is displayed upon the screen. Animation may be accomplished by alternating the visual page. A graphics page can be constructed without affecting the screen by setting the active page to be different than the visual page.

The number of available video pages can be determined by using the _getvideoconfig function. The default video page is 0.

Returns: The _qetvisualpage function returns the number of the currently selected visual graphics page.

See Also: _setvisualpage, _setactivepage, _getactivepage, _getvideoconfig

Example: #include <conio.h> #include <graph.h>

```
main()
    int old_apage;
    int old_vpage;
    _setvideomode( _HRES16COLOR );
    old_apage = _getactivepage();
    old_vpage = _getvisualpage();
    /* draw an ellipse on page 0 */
    _setactivepage(0);
    _setvisualpage(0);
    _ellipse( _GFILLINTERIOR, 100, 50, 540, 150 );
    /* draw a rectangle on page 1 */
    _setactivepage(1);
    _rectangle( _GFILLINTERIOR, 100, 50, 540, 150 );
    getch();
    /* display page 1 */
    _setvisualpage(1);
    getch();
    _setactivepage( old_apage );
    _setvisualpage( old_vpage );
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

_getvisualpage			

Synopsis: #include <stdio.h> int _getw(int binint, FILE *fp);

Description: The _getw function reads a binary value of type *int* from the current position of the stream fp and increments the associated file pointer to point to the next unread character in the input stream. _getw

does not assume any special alignment of items in the stream.

_qetw is provided primarily for compatibility with previous libraries. Portability problems may occur with _getw because the size of an *int* and the ordering of bytes within an *int* differ across systems.

Returns: The _getw function returns the integer value read or, if a read error or end-of-file occurs, the error indicator is set and _getw returns EOF. Since EOF is a legitimate value to read from fp, use ferror

to verify that an error has occurred.

See Also: ferror, fgetc, fgetchar, fgets, fopen, getc, getchar, gets, _putw, ungetc

Example: #include <stdio.h>

```
void main()
    FILE *fp;
    int c;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      while ( (c = \_getw(fp)) != EOF)
          _putw( c, stdout );
      fclose( fp );
  }
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware Synopsis: #include <graph.h>
struct _wxycoord _FAR _getwindowcoord(short x, short y);

Description: The _getwindowcoord function returns the window coordinates of the position with view

coordinates (x, y). Window coordinates are defined by the _setwindow function.

Returns: The _getwindowcoord function returns the window coordinates, as a _wxycoord structure, of the

given point.

See Also: _setwindow, _getviewcoord

Example: #include <conio.h>

Classification: PC Graphics

Systems: DOS

Synopsis:

```
#include <time.h>
struct tm * qmtime( const time_t *timer );
struct tm *_gmtime( const time_t *timer,
                      struct tm *tmbuf );
struct tm {
  int tm_sec; /* seconds after the minute -- [0,61] */
  int tm_min; /* minutes after the hour -- [0,59] */
  int tm_hour; /* hours after midnight -- [0,23] */
int tm mdav; /* day of the month -- [1,31] */
  int tm_mon; /* months since January -- [0,11] */
int tm_year; /* years since 1900 */
  int tm_wday; /* days since Sunday
                                                 -- [0,6] */
  int tm_yday; /* days since January 1 -- [0,365]*/
  int tm_isdst; /* Daylight Savings Time flag
};
```

Safer C:

The Safer C Library extension provides the gmtime_s function which is a safer alternative to gmtime. This newer gmtime_s function is recommended to be used instead of the traditional "unsafe" gmtime function.

Description:

The gmt ime functions convert the calendar time pointed to by timer into a broken-down time, expressed as Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time, or GMT).

The function _gmtime places the converted time in the tm structure pointed to by tmbuf, and the gmtime function places the converted time in a static structure that is re-used each time gmtime is called.

The time set on the computer with the DOS time command and the DOS date command reflects the local time. The environment variable TZ is used to establish the time zone to which this local time applies. See the section *The TZ Environment Variable* for a discussion of how to set the time zone.

Returns:

The gmt ime functions return a pointer to a structure containing the broken-down time.

See Also:

asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime_s, localtime, localtime_s, mktime, strftime, time, tzset

Example:

```
#include <stdio.h>
#include <time.h>
void main()
    time_t time_of_day;
    auto char buf[26];
    auto struct tm tmbuf;
    time_of_day = time( NULL );
    _gmtime( &time_of_day, &tmbuf );
    printf( "It is now: %.24s GMT\n",
            _asctime( &tmbuf, buf ) );
}
```

produces the following:

gmtime Functions

It is now: Fri Dec 25 15:58:27 1987 GMT

Classification: ISO C

_gmtime is WATCOM

Systems: gmtime - All, Linux, RDOS, Netware

_gmtime - All, Linux, RDOS

```
Synopsis:
              #define __STDC_WANT_LIB_EXT1__ 1
              #include <time.h>
              struct tm * gmtime_s( const time_t * restrict timer,
                                          struct tm * restrict result );
              struct tm {
                int tm_sec; /* seconds after the minute -- [0,61] */
                int tm_min; /* minutes after the hour -- [0,59] */
                int tm_hour; /* hours after midnight -- [0,23] */
int tm_mday; /* day of the month -- [1,31] */
int tm_mon; /* months since January -- [0,11] */
int tm_year; /* years since 1900 */
                int tm_wday; /* days since Sunday
                                                                       -- [0,6] */
                int tm_yday; /* days since Sunday -- [0,6] */
-- [0,365]*/
                int tm_isdst; /* Daylight Savings Time flag
              };
Constraints:
             If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
              will be invoked and gmtime_s will return a non-zero value to indicate an error, or the
              runtime-constraint handler aborts the program.
              Neither timer nor result shall be a null pointer. If there is a runtime-constraint violation, there is no
              attempt to convert the time.
Description:
             The gmtime_s function converts the calendar time pointed to by timer into a broken-down time,
              expressed as UTC. The broken-down time is stored in the structure pointed to by result.
Returns:
             The gmtime_s function returns result, or a null pointer if the specified time cannot be converted to
              UTC or there is a runtime-constraint violation.
See Also:
             asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, qmtime,
              localtime, localtime_s, mktime, strftime, time, tzset
Example:
              #define __STDC_WANT_LIB_EXT1__ 1
              #include <stdio.h>
              #include <time.h>
              void main()
                   time_t time_of_day;
                   auto char buf[26];
                   auto struct tm tmbuf;
                   time_of_day = time( NULL );
                   gmtime_s( &time_of_day, &tmbuf );
                   asctime_s( buf, sizeof( buf ), &tmbuf );
                   printf( "It is now: %.24s GMT\n", buf );
```

Classification: TR 24731

produces the following:

It is now: Thu Jan 31 15:12:27 2006 GMT

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware

Synopsis: #include <stdio.h> int _grow_handles(int new_count);

Description:

The _grow_handles function increases the number of POSIX level files that are allowed to be open at one time. The parameter new_count is the new requested number of files that are allowed to be opened. The return value is the number that is allowed to be opened after the call. This may be less than, equal to, or greater than the number requested. If the number is less than, an error has occurred and the errno variable should be consulted for the reason. If the number returned is greater than or equal to the number requested, the call was successful.

Note that even if _grow_handles returns successfully, you still might not be able to open the requested number of files due to some system limit (e.g. FILES= in the CONFIG.SYS file under DOS) or because some file handles are already in use (stdin, stdout, stderr, etc.).

The number of file handles that the run-time system can open by default is described by _NFILES in <stdio.h> but this can be changed by the application developer. To change the number of file handles available during execution, follow the steps outlined below.

- Let n represent the number of files to be opened concurrently. Ensure that the stdin, stdout, and stderr files are included in the count. Also include stdaux and stdprn files in the count for some versions of DOS. The *stdaux* and *stdprn* files are not available for Win32.
- For DOS-based systems, change the CONFIG. SYS file to include "FILES=n" where "n" is the number of file handles required by the application plus an additional 5 handles for the standard files. The number of standard files that are opened by DOS varies from 3 to 5 depending on the version of DOS that you are using.

If you are running a network such as Novell's NetWare, this will also affect the number of available file handles. In this case, you may have to increase the number specified in the "FILES=n" statement.

Add a call to _grow_handles in your application similar to that shown in the example below.

Returns:

The _grow_handles function returns the maximum number of file handles which the run-time system can accommodate. This number can exceed an operating system limit such as that imposed by the "FILES=" statement under DOS. This limit will be the determining factor in how many files can be open concurrently.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: _dos_open, fdopen, fileno, fopen, freopen, _fsopen, _hdopen, open, _open_osfhandle, _popen, _sopen, tmpfile

Example:

```
FILE *fp[ 50 ];
void main()
    int hndl_count;
    int i;
```

#include <stdio.h>

```
hndl_count = _NFILES;
if( hndl_count < 50 ) {
     hndl_count = _grow_handles( 50 );
}
for( i = 0; i < hndl_count; i++ ) {
    fp[ i ] = tmpfile();
    if( fp[ i ] == NULL ) break;
    printf( "File %d successfully opened\n", i );
}
printf( "%d files were successfully opened\n", i );
}</pre>
```

Classification: WATCOM

Systems: All, Linux

Synopsis: #include <graph.h> short _FAR _grstatus(void);

Description:

The _grstatus function returns the status of the most recently called graphics library function. The function can be called after any graphics function to determine if any errors or warnings occurred. The function returns 0 if the previous function was successful. Values less than 0 indicate an error occurred; values greater than 0 indicate a warning condition.

The following values can be returned:

Constant	Value	Explanation
_GROK	0	no error
_GRERROR	-1	graphics error
_GRMODENOTSUPPORTED	-2	video mode not supported
_GRNOTINPROPERMODE	-3	function n/a in this mode
_GRINVALIDPARAMETER	-4	invalid parameter(s)
_GRINSUFFICIENTMEMORY	-5	out of memory
_GRFONTFILENOTFOUND	-6	can't open font file
_GRINVALIDFONTFILE	-7	font file has invalid format
_GRNOOUTPUT	1	nothing was done
_GRCLIPPED	2	output clipped

Returns: The _grstatus function returns the status of the most recently called graphics library function.

Example:

```
#include <conio.h>
#include <graph.h>
#include <stdlib.h>
main()
    int x, y;
    _setvideomode( _VRES16COLOR );
    while( _grstatus() == _GROK ) {
        x = rand() % 700;
        y = rand() % 500;
        _{\text{setpixel(}} x, y);
    getch();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS

_grstatus			

Synopsis:

```
#include <graph.h>
short _FAR _grtext( short x, short y,
                    char _FAR *text );
short _FAR _grtext_w( double x, double y,
                      char _FAR *text );
```

Description:

The _grtext functions display a character string. The _grtext function uses the view coordinate system. The _grtext_w function uses the window coordinate system.

The character string text is displayed at the point (x, y). The string must be terminated by a null character ('\0'). The text is displayed in the current color using the current text settings.

The graphics library can display text in three different ways.

- The _outtext and _outmem functions can be used in any video mode. However, this variety of text can be displayed in only one size.
- The _grtext function displays text as a sequence of line segments, and can be drawn in different sizes, with different orientations and alignments.
- The _outgtext function displays text in the currently selected font. Both bit-mapped and vector fonts are supported; the size and type of text depends on the fonts that are available.

Returns:

The _grtext functions return a non-zero value when the text was successfully drawn; otherwise, zero is returned.

See Also:

_outtext, _outmem, _outgtext, _setcharsize, _settextalign, _settextpath, _settextorient, _setcharspacing

Example:

```
#include <conio.h>
#include <graph.h>
main()
    _setvideomode( _VRES16COLOR );
    _grtext( 200, 100, " WATCOM" );
    _grtext( 200, 200, "Graphics" );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

WATCOM
Graphics

Classification: PC Graphics

Systems: _grtext - DOS

_grtext_w - DOS

Synopsis: #include <malloc.h> void __huge *halloc(long int numb, size_t size);

Description: The halloc function allocates space for an array of *numb* objects of *size* bytes each and initializes

each object to 0. When the size of the array is greater than 64K bytes, then the size of an array element

must be a power of 2 since an object could straddle a segment boundary.

Returns: The halloc function returns a far pointer (of type void huge *) to the start of the allocated

> memory. The NULL value is returned if there is insufficient memory available. The NULL value is also returned if the size of the array is greater than 64K bytes and the size of an array element is not a power

calloc Functions, _expand Functions, free Functions, hfree, malloc Functions, _msize See Also:

Functions, realloc Functions, sbrk

Example: #include <stdio.h> #include <malloc.h>

```
void main()
  {
   long int __huge *big_buffer;
   big_buffer = (long int __huge *)
                  halloc( 1024L, sizeof(long) );
    if( big_buffer == NULL ) {
      printf( "Unable to allocate memory\n" );
    } else {
      /* rest of code goes here */
     hfree( big_buffer ); /* deallocate */
  }
```

Classification: WATCOM

Systems: DOS/16, Windows, OS/2 1.x(all)

```
Synopsis: #include <dos.h>
```

```
void _harderr( int (__far *handler)() );
void _hardresume( int action );
void _hardretn( int error );
```

Description:

The _harderr routine installs a critical error handler (for INT 0x24) to handle hardware errors. This critical error handler will call the user-defined function specified by *handler* when a critical error occurs (for example, attempting to open a file on a floppy disk when the drive door is open). The parameters to this function are as follows:

The low-order byte of *errcode* can be one of the following values:

Value	Meaning
0x00	Attempt to write to a write-protected disk
0x01	Unknown unit
0x02	Drive not ready
0x03	Unknown command
0x04	CRC error in data
0x05	Bad drive-request structure length
0x06	Seek error
0x07	Unknown media type
0x08	Sector not found
0x09	Printer out of paper
0x0A	Write fault
0x0B	Read fault
$\theta x \theta C$	General failure

The *devhdr* argument points to a device header control-block that contains information about the device on which the error occurred. Your error handler may inspect the information in this control-block but must not change it.

If the error occurred on a disk device, bit 15 of the *deverror* argument will be 0 and the *deverror* argument will indicate the following:

Bit	Meaning	
bit 15 bit 14	0 indicates	disk error
bit 13		"Ignore" response not allowed
bit 12	0 indicates	"Retry" response not allowed
bit 11	0 indicates	"Fail" response not allowed
bit 9,10	location of	error
	Value	Meaning
	00	MS-DOS
	01	File Allocation Table (FAT)

10 Directory Data area 11

bit 8 0 indicates read error, 1 indicates write error

The low-order byte of *deverror* indicates the drive where the error occurred; (0 = drive A, 1 = drive B,etc.).

The handler is very restricted in the type of system calls that it can perform. System calls 0x01 through 0x0C, and 0x59 are the only system calls allowed to be issued by the handler. Therefore, many of the standard C run-time functions such as stream I/O and low-level I/O cannot be used by the handler. Console I/O is allowed (e.g., cprintf, cputs).

The handler must indicate what action to take by returning one of the following values or calling _hardresume with one of the following values:

Value	Meaning
_HARDERR_IGNORE	Ignore the error
_HARDERR_RETRY	Retry the operation
_HARDERR_ABORT	Abort the program issuing INT 0x23
_HARDERR_FAIL	Fail the system call that is in progress (DOS 3.0 or higher)

Alternatively, the handler can return directly to the application program rather than returning to DOS by using the _hardretn function. The application program resumes at the point just after the failing I/O function request. The _hardretn function should be called only from within a user-defined hardware error-handler function.

The error argument of _hardretn should be a DOS error code. See The MS-DOS Encyclopedia or Programmer's PC Sourcebook, 2nd Edition, for more detailed information on DOS error codes that may be returned by a given DOS function call.

If the failing I/O function request is an INT 0x21 function greater than or equal to function 0x38, _hardretn will return to the application with the carry flag set and the AX register set to the _hardretn error argument. If the failing INT 0x21 function request is less than function 0x38 abd the function can return an error, the AL register will be set to 0xFF on return to the application. If the failing INT 0x21 function does not have a way of returning an error condition (which is true of certain INT 0x21 functions below 0x38), the error argument of _hardretn is not used, and no error code is returned to the application.

Returns: These functions do not return a value. The _hardresume and _hardretn functions do not return to the caller.

See Also: _chain_intr, _dos_getvect, _dos_setvect

Example:

```
#include <stdio.h>
           #include <conio.h>
           #include <dos.h>
           #if defined(__DOS__) && defined(__386__)
               #define FAR ___far
           #else
               #if defined(__386__)
                   #define FAR
                   #define FAR ___far
               #endif
           #endif
           int FAR critical_error_handler( unsigned deverr,
                                             unsigned errcode,
                                             unsigned FAR *devhdr )
             {
               cprintf( "Critical error: " );
               cprintf( "deverr=%4.4X errcode=%d\r\n",
                         deverr, errcode );
               cprintf( "devhdr = Fp\r\n", devhdr );
               return ( _HARDERR_IGNORE );
             }
           main()
               FILE *fp;
               _harderr( critical_error_handler );
               fp = fopen( "a:tmp.tmp", "r" );
               printf( "fp = p\n", fp );
           produces the following:
           Critical error: deverr=1A00 errcode=2
           devhdr = 0070:01b6
           fp = 0000
Classification: DOS
Systems:
           _harderr - DOS
           _hardresume - DOS
           _hardretn - DOS/16
```

Synopsis: #include <io.h> int _hdopen(int os_handle, int mode);

Description: The _hdopen function takes a previously opened operating system file handle specified by os_handle

and opened with access and sharing specified by *mode*, and creates a POSIX-style file handle.

Returns: The _hdopen function returns the new POSIX-style file handle if successful. Otherwise, it returns -1.

See Also: close, _dos_open, fdopen, fopen, freopen, _fsopen, _grow_handles, open,

_open_osfhandle, _os_handle, _popen, _sopen

```
Example:
           #include <stdio.h>
           #include <dos.h>
```

#include <fcntl.h> #include <io.h> #include <windows.h> void main() { HANDLE os_handle; DWORD desired_access, share_mode;

int handle;

os_handle = CreateFileA("file", GENERIC_WRITE, O, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if(os_handle == INVALID_HANDLE_VALUE) {

printf("Unable to open file\n"); } else { handle = _hdopen(os_handle, O_RDONLY); if (handle !=-1) { write(handle, "hello\n", 6); close(handle); } else { CloseHandle(os_handle); }

Classification: WATCOM

Systems: All, Linux, Netware

Synopsis: #i

```
#include <malloc.h>
int _heapchk( void );
int _bheapchk( __segment seg );
int _fheapchk( void );
int _nheapchk( void );
```

Description:

The _heapchk functions along with _heapset and _heapwalk are provided for debugging heap related problems in programs.

The _heapchk functions perform a consistency check on the unallocated memory space or "heap". The consistency check determines whether all the heap entries are valid. Each function checks a particular heap, as listed below:

Function	Heap Checked
_heapchk	Depends on data model of the program
_bheapchk	Based heap specified by seg value; _NULLSEG specifies all based heaps
_fheapchk	Far heap (outside the default data segment)
_nheapchk	Near heap (inside the default data segment)

In a small data memory model, the _heapchk function is equivalent to the _nheapchk function; in a large data memory model, the _heapchk function is equivalent to the _fheapchk function.

Returns:

Constant

All four functions return one of the following manifest constants which are defined in <malloc.h>.

Meaning

```
buffer = (char *)malloc( 80 );
               malloc( 1024 );
               free( buffer );
               switch( _heapchk() ) {
               case _HEAPOK:
                 printf( "OK - heap is good\n" );
                 break;
               case _HEAPEMPTY:
                 printf( "OK - heap is empty\n" );
               case _HEAPBADBEGIN:
                 printf( "ERROR - heap is damaged\n" );
                 break;
               case _HEAPBADNODE:
                 printf( "ERROR - bad node in heap\n" );
                 break;
             }
Classification: WATCOM
Systems:
           _heapchk - All, Linux, RDOS
           _bheapchk - DOS/16, Windows, OS/2 1.x(all)
           _fheapchk - DOS/16, Windows, OS/2 1.x(all)
           _nheapchk - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
           OS/2-32, Linux, RDOS
```

Synopsis: #include <malloc.h>
 int _heapenable(int enabled);

Description: The _heapenable function is used to control attempts by the heap allocation manager to request

more memory from the operating system's memory pool. If *enabled* is 0 then all further allocations which would normally go to the operating system for more memory will instead fail and return NULL. If *enabled* is 1 then requests for more memory from the operating system's memory pool are re-enabled.

This function can be used to impose a limit on the amount of system memory that is allocated by an application. For example, if an application wishes to allocate no more than 200K bytes of memory, it could allocate 200K and immediately free it. It can then call _heapenable to disable any further requests from the system memory pool. After this, the application can allocate memory from the 200K pool that it has already obtained.

Returns: The return value is the previous state of the system allocation flag.

See Also: _heapchk, _heapgrow, _heapmin, _heapset, _heapshrink, _heapwalk

Example: #include <stdio.h>
#include <malloc.h>

```
void main()
{
   char *p;

   p = malloc( 200*1024 );
   if( p != NULL ) free( p );
   _heapenable( 0 );
   /*
     allocate memory from a pool that
   has been capped at 200K
   */
```

Classification: WATCOM

Systems: All, Linux, RDOS

```
Synopsis:
           #include <malloc.h>
           void _heapgrow( void );
           void _nheapgrow( void );
```

void _fheapgrow(void);

Description:

The _nheapgrow function attempts to grow the near heap to the maximum size of 64K. You will want to do this in the small data models if you are using both malloc and _fmalloc or halloc. Once a call to _fmalloc or halloc has been made, you may not be able to allocate any memory with malloc unless space has been reserved for the near heap using either malloc, sbrk or _nheapgrow.

The _fheapgrow function doesn't do anything to the heap because the far heap will be extended automatically when needed. If the current far heap cannot be extended, then another far heap will be started.

In a small data memory model, the _heapgrow function is equivalent to the _nheapgrow function; in a large data memory model, the _heapgrow function is equivalent to the _fheapgrow function.

Returns: These functions do not return a value.

#include <stdio.h>

See Also: _heapchk,_heapenable,_heapmin,_heapset,_heapshrink,_heapwalk

Example:

```
#include <malloc.h>
void main()
  {
    char *p, *fmt_string;
    fmt_string = "Amount of memory available is %u\n";
   printf( fmt_string, _memavl() );
   _nheapgrow();
   printf( fmt_string, _memavl() );
   p = (char *) malloc(2000);
   printf( fmt_string, _memavl() );
```

produces the following:

```
Amount of memory available is 0
Amount of memory available is 62732
Amount of memory available is 60730
```

Classification: WATCOM

```
Systems:
```

```
_heapgrow - All, Linux, RDOS
_fheapgrow - DOS/16, Windows, OS/2 1.x(all)
_nheapgrow - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
OS/2-32, Linux, RDOS
```

row Functions		

Synopsis: #include <malloc.h>

```
int _heapmin( void );
int _bheapmin( __segment seg );
int _fheapmin( void );
int _nheapmin( void );
```

Description:

The _heapmin functions attempt to shrink the specified heap to its smallest possible size by returning all free entries at the end of the heap back to the system. This can be used to free up as much memory as possible before using the system function or one of the spawn... functions.

The various _heapmin functions shrink the following heaps:

Function	Heap Minimized
_heapmin	Depends on data model of the program
_bheapmin	Based heap specified by seg value; _NULLSEG specifies all based heaps
_fheapmin	Far heap (outside the default data segment)
_nheapmin	Near heap (inside the default data segment)

In a small data memory model, the _heapmin function is equivalent to the _nheapmin function; in a large data memory model, the _heapmin function is equivalent to the _fheapmin function.

Any function from _heapmin group is identical to the appropriate function from _heapshrink group.

These functions return zero if successful, and non-zero if some error occurred. **Returns:**

See Also: _heapchk, _heapenable, _heapgrow, _heapset, _heapshrink, _heapwalk

Example:

```
#include <stdlib.h>
#include <malloc.h>
void main()
    _heapmin();
    system( "chdir c:\\watcomc" );
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: WATCOM

Systems:

```
_heapmin - All, Linux, RDOS
_bheapmin - DOS/16, Windows, OS/2 1.x(all)
_fheapmin - DOS/16, Windows, OS/2 1.x(all)
_nheapmin - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
OS/2-32, Linux, RDOS
```


Synopsis: #include <malloc.h>

```
int _heapset( unsigned int fill_char );
int _bheapset( __segment seg, unsigned int fill_char );
int _fheapset( unsigned int fill_char );
int _nheapset( unsigned int fill_char );
```

Description:

The _heapset functions along with _heapchk and _heapwalk are provided for debugging heap related problems in programs.

The _heapset functions perform a consistency check on the unallocated memory space or "heap" just as _heapchk does, and sets the heap's free entries with the fill_char value.

Each function checks and sets a particular heap, as listed below:

Function	Heap Filled
_heapset	Depends on data model of the program
_bheapset	Based heap specified by seg value; _NULLSEG specifies all based heaps
_fheapset	Far heap (outside the default data segment)
_nheapset	Near heap (inside the default data segment)

In a small data memory model, the _heapset function is equivalent to the _nheapset function; in a large data memory model, the _heapset function is equivalent to the _fheapset function.

Returns:

The _heapset functions return one of the following manifest constants which are defined in <malloc.h>.

```
Constant
                  Meaning
```

HEAPOK The heap appears to be consistent.

_HEAPEMPTY The heap is empty.

_HEAPBADBEGIN The heap has been damaged.

_HEAPBADNODE The heap contains a bad node, or is damaged.

See Also:

```
_heapchk, _heapenable, _heapgrow, _heapmin, _heapshrink, _heapwalk
```

Example:

```
#include <malloc.h>
void main()
    int heap_status;
    char *buffer;
```

#include <stdio.h>

```
buffer = (char *)malloc( 80 );
               malloc( 1024 );
               free( buffer );
               heap\_status = \_heapset( 0xff );
               switch( heap_status ) {
               case _HEAPOK:
                 printf( "OK - heap is good\n" );
                 break;
               case _HEAPEMPTY:
                 printf( "OK - heap is empty\n" );
                 break;
               case _HEAPBADBEGIN:
                 printf( "ERROR - heap is damaged\n" );
               case _HEAPBADNODE:
                 printf( "ERROR - bad node in heap\n" );
                 break;
             }
Classification: WATCOM
Systems:
           _heapset - All, Linux, RDOS
           _bheapset - DOS/16, Windows, OS/2 1.x(all)
           _fheapset - DOS/16, Windows, OS/2 1.x(all)
           _nheapset - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
           OS/2-32, Linux, RDOS
```

Synopsis: #include <malloc.h>

```
int _heapshrink( void );
int _bheapshrink( __segment seg );
int _fheapshrink( void );
int _nheapshrink( void );
```

Description:

The _heapshrink functions attempt to shrink the heap to its smallest possible size by returning all free entries at the end of the heap back to the system. This can be used to free up as much memory as possible before using the system function or one of the spawn... functions.

The various _heapshrink functions shrink the following heaps:

Function	Heap Shrinked
_heapshrink	Depends on data model of the program
_bheapshrink	Based heap specified by seg value; _NULLSEG specifies all based heaps
_fheapshrink	Far heap (outside the default data segment)
_nheapshrink	Near heap (inside the default data segment)

In a small data memory model, the _heapshrink function is equivalent to the _nheapshrink function; in a large data memory model, the _heapshrink function is equivalent to the _fheapshrink function.

Any function from _heapshrink group is identical to the appropriate function from _heapmin group.

Returns: These functions return zero if successful, and non-zero if some error occurred.

See Also: _heapchk, _heapenable, _heapgrow, _heapmin, _heapset, _heapwalk

Example:

```
#include <stdlib.h>
#include <malloc.h>
void main()
  {
    _heapshrink();
    system( "chdir c:\\watcomc");
  }
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: WATCOM

```
Systems:
           _heapshrink - All, Linux, RDOS
```

```
_bheapshrink - DOS/16, Windows, OS/2 1.x(all)
_fheapshrink - DOS/16, Windows, OS/2 1.x(all)
_nheapshrink - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
OS/2-32, Linux, RDOS
```

Synopsis:

```
#include <malloc.h>
int _heapwalk( struct _heapinfo *entry );
int _bheapwalk( __segment seg, struct _heapinfo *entry );
int _fheapwalk( struct _heapinfo *entry );
int _nheapwalk( struct _heapinfo *entry );
struct _heapinfo {
    void __far *_pentry; /* heap pointer
                                                            */
    size_t _size; /* heap entry size */
int _useflag; /* heap entry 'in-use' flag */
};
#define _USEDENTRY
                         0
#define _FREEENTRY
                         1
```

Description:

The _heapwalk functions along with _heapchk and _heapset are provided for debugging heap related problems in programs.

The _heapwalk functions walk through the heap, one entry per call, updating the _heapinfo structure with information on the next heap entry. The structure is defined in <malloc.h>. You must initialize the *_pentry* field with NULL to start the walk through the heap.

Each function walks a particular heap, as listed below:

TT7 11 1

Function	Heap Walked			
_heapwalk	Depends on data model of the program			
_bheapwalk	Based heap specified by seg value; _NULLSEG specifies all based heaps			
_fheapwalk	Far heap (outside the default data segment)			
_nheapwalk	Near heap (inside the default data segment)			

In a small data memory model, the _heapwalk function is equivalent to the _nheapwalk function; in a large data memory model, the _heapwalk function is equivalent to the _fheapwalk function.

Returns:

These functions return one of the following manifest constants which are defined in <malloc.h>.

Constant	Meaning
_НЕАРОК	The heap is OK so far, and the $_heapinfo$ structure contains information about the next entry in the heap.
_HEAPEMPTY	The heap is empty.
_HEAPBADPTR	The _pentry field of the <i>entry</i> structure does not contain a valid pointer into the heap.
_HEAPBADBEGIN	The header information for the heap was not found or has been damaged.

_HEAPEND The end of the heap was reached successfully.

HEAPBADNODE The heap contains a bad node, or is damaged.

```
See Also:
           _heapchk, _heapenable, _heapgrow, _heapmin, _heapset, _heapshrink
Example:
           #include <stdio.h>
           #include <malloc.h>
           heap_dump()
             {
               struct _heapinfo h_info;
               int heap_status;
               h_info._pentry = NULL;
               for(;;) {
                 heap_status = _heapwalk( &h_info );
                 if( heap_status != _HEAPOK ) break;
                 printf( " %s block at %Fp of size %4.4X\n",
                    (h_info._useflag == _USEDENTRY ? "USED" : "FREE"),
                   h_info._pentry, h_info._size );
               switch( heap_status ) {
               case _HEAPEND:
                 printf( "OK - end of heap\n" );
               case _HEAPEMPTY:
                 printf( "OK - heap is empty\n" );
                 break;
               case _HEAPBADBEGIN:
                 printf( "ERROR - heap is damaged\n" );
               case _HEAPBADPTR:
                 printf( "ERROR - bad pointer to heap\n" );
                 break;
               case _HEAPBADNODE:
                 printf( "ERROR - bad node in heap\n" );
             }
           void main()
             {
               char *p;
               heap_dump(); p = (char *) malloc(80);
                              free(p);
               heap_dump();
               heap_dump();
           produces the following:
           On 16-bit 80x86 systems, the following output is produced:
           OK - heap is empty
             USED block at 23f8:0ab6 of size 0202
             USED block at 23f8:0cb8 of size 0052
             FREE block at 23f8:0d0a of size 1DA2
           OK - end of heap
             USED block at 23f8:0ab6 of size 0202
             FREE block at 23f8:0cb8 of size 1DF4
           OK - end of heap
```

On 32-bit 80386/486 systems, the following output is produced:

```
OK - heap is empty
 USED block at 0014:00002a7c of size 0204
 USED block at 0014:00002c80 of size 0054
 FREE block at 0014:00002cd4 of size 1D98
OK - end of heap
 USED block at 0014:00002a7c of size 0204
 FREE block at 0014:00002c80 of size 1DEC
OK - end of heap
```

Classification: WATCOM

```
Systems:
           _heapwalk - All, Linux, RDOS
```

_bheapwalk - DOS/16, Windows, OS/2 1.x(all) _fheapwalk - DOS/16, Windows, OS/2 1.x(all) _nheapwalk - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),

OS/2-32, Linux, RDOS

```
Synopsis: #include <malloc.h>
    void hfree( void __huge *ptr );
```

Description: The hfree function deallocates a memory block previously allocated by the halloc function. The

argument ptr points to a memory block to be deallocated. After the call, the freed block is available for

allocation.

Returns: The hfree function returns no value.

See Also: calloc Functions, _expand Functions, free Functions, halloc, malloc Functions, _msize

Functions, realloc Functions, sbrk

Example: #include <stdio.h>

Classification: WATCOM

Systems: DOS/16, Windows, OS/2 1.x(all)

Synopsis: #include <math.h>

double hypot (double x, double y);

Description:

The hypot function computes the length of the hypotenuse of a right triangle whose sides are x and y adjacent to that right angle. The calculation is equivalent to

```
sqrt(x*x + y*y)
```

The computation may cause an overflow, in which case the matherr function will be invoked.

Returns:

The value of the hypotenuse is returned. When an error has occurred, errno contains a value indicating the type of error that has been detected.

Example:

```
#include <stdio.h>
#include <math.h>
void main()
    printf( "%f\n", hypot( 3.0, 4.0 ) );
```

produces the following:

5.000000

Classification: WATCOM

Systems: Math

```
#define __STDC_WANT_LIB_EXT1__ 1
Synopsis:
            #include <stdlib.h>
            void ignore_handler_s(
                     const char * restrict msg,
                     void * restrict ptr,
                     errno_t error );
Description:
            A pointer to the ignore_handler_s function may be passed as an argument to the
            set_constraint_handler_s function. The ignore_handler_s function simply returns to
            its caller.
Returns:
            The ignore_handler_s function does not returns no value.
See Also:
            abort_handler_s, set_constraint_handler_s
Example:
            #define ___STDC_WANT_LIB_EXT1__ 1
            #include <stdlib.h>
            #include <stdio.h>
            void main( void )
                constraint_handler_t old_handler;
                old_handler =
                     set_constraint_handler_s( ignore_handler_s );
                if( getenv_s( NULL, NULL, 0, NULL ) ) {
                     printf( "getenv_s failed\n" );
                set_constraint_handler_s( old_handler );
            }
            produces the following:
            getenv_s failed
Classification: TR 24731
Systems:
            All, Linux, RDOS, Netware
```

Synopsis: #include <math.h> int ilogb(double x);

Description: The ilogb function returns the exponent portion of the argument x as an int.

Returns: If successful, the return value is the exponent of x. When the argument is zero, the function returns

FP_ILOGBO. When the argument is not-a-number, or NAN, the function returns FP_ILOGBNAN. For

positive or negative infinity, the function returns INT_MAX.

See Also: logb

Example: #include <stdio.h> #include <math.h>

```
void main()
  {
    printf( "%d\n", ilogb( 1024.0 ) );
```

produces the following:

10

Classification: ISO C99

Systems: Math

```
Synopsis:
            #include <graph.h>
            long _FAR _imagesize( short x1, short y1,
                                     short x2, short y2);
            long _FAR _imagesize_w( double x1, double y1,
                                        double x2, double y2);
            long _FAR _imagesize_wxy( struct _wxycoord _FAR *p1,
                                          struct _wxycoord _FAR *p2 );
Description:
            The _imagesize functions compute the number of bytes required to store a screen image. The
            _imagesize function uses the view coordinate system. The _imagesize_w and
            _imagesize_wxy functions use the window coordinate system.
            The screen image is the rectangular area defined by the points (x1, y1) and (x2, y2). The storage
            area used by the _getimage functions must be at least this large (in bytes).
Returns:
            The _imagesize functions return the size of a screen image.
See Also:
            _getimage,_putimage
Example:
            #include <conio.h>
            #include <graph.h>
            #include <malloc.h>
            main()
                char *buf;
                int y;
                _setvideomode( _VRES16COLOR );
                _ellipse( _GFILLINTERIOR, 100, 100, 200, 200 );
                buf = (char*) malloc(
                                 _imagesize( 100, 100, 201, 201 ) );
                 if ( buf != NULL ) {
                     _getimage( 100, 100, 201, 201, buf );
                     _putimage( 260, 200, buf, _GPSET );
                     _putimage( 420, 100, buf, _GPSET );
                     for (y = 100; y < 300;) {
                          _putimage( 420, y, buf, _GXOR );
                          y += 20;
                          _putimage( 420, y, buf, _GXOR );
                     free( buf );
                getch();
                _setvideomode( _DEFAULTMODE );
Classification: PC Graphics
Systems:
            _imagesize - DOS
            _imagesize_w - DOS
            _imagesize_wxy - DOS
```

		_imagesi.	ze Functions
·	 		-

```
Synopsis:
             #include <inttypes.h>
             intmax_t imaxabs( intmax_t j );
Description:
            The imaxabs function returns the absolute value of its maximum-size integer argument j.
Returns:
             The imaxabs function returns the absolute value of its argument.
See Also:
             labs, llabs, abs, fabs
             #include <stdio.h>
Example:
             #include <inttypes.h>
             void main( void )
                 intmax_t
                             x, y;
                 x = -5000000000000;
                 y = imaxabs(x);
                 printf( "imaxabs(%jd) = %jd\n", x, y );
             }
             produces the following:
             imaxabs(-500000000000) = 500000000000
Classification: ISO C99
Systems:
            All, Linux, RDOS, Netware
```

```
Synopsis:
            #include <stdlib.h>
            imaxdiv_t imaxdiv( intmax_t numer, intmax_t denom );
            typedef struct {
                 intmax_t quot; /* quotient */
                                      /* remainder */
                 intmax_t
                             rem;
            } imaxdiv_t;
Description:
            The imaxdiv function calculates the quotient and remainder of the division of the numerator numer by
            the denominator denom.
Returns:
            The imaxdiv function returns a structure of type imaxdiv_t that contains the fields quot and rem,
            which are both of type intmax_t.
See Also:
            div, ldiv, lldiv
Example:
            #include <stdio.h>
            #include <inttypes.h>
            void print_time( intmax_t ticks )
                 imaxdiv_t sec_ticks;
                 imaxdiv_t min_sec;
                 sec_ticks = imaxdiv( ticks, 1000000 );
                min_sec = imaxdiv(sec_ticks.quot, 60);
                printf( "It took %jd minutes and %jd seconds\n",
                         min_sec.quot, min_sec.rem );
            }
            void main( void )
                print_time( 9876543210 );
            produces the following:
            It took 164 minutes and 36 seconds
Classification: ISO C99
Systems:
            All, Linux, RDOS, Netware
```

Synopsis: #include <conio.h>

unsigned int inp(int port);

Description: The inp function reads one byte from the 80x86 hardware port whose number is given by *port*.

A hardware port is used to communicate with a device. One or two bytes can be read and/or written from each port, depending upon the hardware. Consult the technical documentation for your computer

to determine the port numbers for a device and the expected usage of each port for a device.

Returns: The value returned is the byte that was read.

See Also: inpd, inpw, outp, outpd, outpw

Example: #include <conio.h>

Classification: Intel

Systems: All, Linux, RDOS, Netware

Synopsis: #include <conio.h> unsigned long inpd(int port);

Description: The inpd function reads a double-word (four bytes) from the 80x86 hardware port whose number is

given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or written from each port, depending upon the hardware. Consult the technical documentation for your computer to determine the port numbers for a device and the expected usage of each port for a device.

Returns: The value returned is the double-word that was read.

See Also: inp, inpw, outp, outpd, outpw

Example: #include <conio.h> #define DEVICE 34

> void main() unsigned long transmitted; transmitted = inpd(DEVICE); }

Classification: Intel

Systems: DOS/32, Win386, Win32, OS/2-32, Linux, RDOS, Netware Synopsis: #include <conio.h>
unsigned int inpw(int port);

Description: The inpw function reads a word (two bytes) from the 80x86 hardware port whose number is given by

port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or written from each port, depending upon the hardware. Consult the technical documentation for your computer to determine the port numbers for a device and the expected usage of each port for a device.

Returns: The value returned is the word that was read.

See Also: inp, inpd, outp, outpd, outpw

Example: #include <conio.h> #define DEVICE 34

void main()
{
 unsigned int transmitted;

 transmitted = inpw(DEVICE);
}

Classification: Intel

Systems: All, Linux, RDOS, Netware

```
Synopsis:
           #include <i86.h>
           int int386( int inter_no,
                       const union REGS *in_regs,
                       union REGS *out_regs );
```

Description:

The int 386 function causes the computer's central processor (CPU) to be interrupted with an interrupt whose number is given by inter_no. This function is present in the 386 C libraries and may be executed on 80386/486 systems. Before the interrupt, the CPU registers are loaded from the structure located by in_regs. Following the interrupt, the structure located by out_regs is filled with the contents of the CPU registers. These structures may be located at the same location in memory.

You should consult the technical documentation for the computer that you are using to determine the expected register contents before and after the interrupt in question.

Returns: The int 386 function returns the value of the CPU EAX register after the interrupt.

See Also: bdos, int386x, int86, int86x, intdos, intdosx, intr, intrf, segread

Example:

```
* This example clears the screen on DOS
 */
#include <i86.h>
void main()
  {
    union REGS regs;
    regs.w.cx = 0;
    regs.w.dx = 0x1850;
    regs.h.bh = 7;
    regs.w.ax = 0x0600;
#if defined(__386__) && defined(__DOS__)
    int386( 0x10, &regs, &regs );
#else
    int86( 0x10, &regs, &regs);
#endif
```

Classification: Intel

Systems: DOS/32, Linux, RDOS, Netware **Synopsis:**

Description:

The int386x function causes the computer's central processor (CPU) to be interrupted with an interrupt whose number is given by <code>inter_no</code>. This function is present in the 32-bit C libraries and may be executed on Intel 386 compatible systems. Before the interrupt, the CPU registers are loaded from the structure located by <code>in_regs</code> and the DS, ES, FS and GS segment registers are loaded from the structure located by <code>seg_regs</code>. All of the segment registers must contain valid values. Failure to do so will cause a segment violation when running in protect mode. If you don't care about a particular segment register, then it can be set to 0 which will not cause a segment violation. The function <code>segread</code> can be used to initialize <code>seg_regs</code> to their current values.

Following the interrupt, the structure located by *out_regs* is filled with the contents of the CPU registers. The *in_regs* and *out_regs* structures may be located at the same location in memory. The original values of the DS, ES, FS and GS registers are restored. The structure *seg_regs* is updated with the values of the segment registers following the interrupt.

You should consult the technical documentation for the computer that you are using to determine the expected register contents before and after the interrupt in question.

Returns: The int 386x function returns the value of the CPU EAX register after the interrupt.

See Also: bdos, int386, int86, int86x, intdos, intdosx, intr, intrf, segread

Example:

```
#include <stdio.h>
#include <i86.h>
/* get current mouse interrupt handler address */
void main()
 {
   union REGS r;
    struct SREGS s;
    s.ds = s.es = s.fs = s.gs = FP\_SEG( &s );
#if defined(__PHARLAP___)
   r.w.ax = 0x2503; /* get real-mode vector */
                       /* interrupt vector 0x33 */
    r.h.cl = 0x33;
    int386( 0x21, &r, &r );
   printf( "mouse handler real-mode address="
            "%lx\n", r.x.ebx );
                     /* get protected-mode vector */
   r.w.ax = 0x2502;
   r.h.cl = 0x33;
                       /* interrupt vector 0x33 */
    int386x( 0x21, &r, &r, &s );
   printf( "mouse handler protected-mode address="
            "%x:%lx\n", s.es, r.x.ebx);
```

```
#else
     r.h.ah = 0x35;  /* get vector */
r.h.al = 0x33;  /* vector 0x33 */
int386x( 0x21, &r, &r, &s );
     printf( "mouse handler protected-mode address="
                  "%x:%lx\n", s.es, r.x.ebx );
#endif
   }
```

Classification: Intel

Systems: DOS/32, Linux, RDOS, Netware **Description:** The int86 function causes the computer's central processor (CPU) to be interrupted with an interrupt

whose number is given by *inter_no*. Before the interrupt, the CPU registers are loaded from the structure located by *in_regs*. Following the interrupt, the structure located by *out_regs* is filled with the contents of the CPU registers. These structures may be located at the same location in memory.

You should consult the technical documentation for the computer that you are using to determine the expected register contents before and after the interrupt in question.

Returns: The int86 function returns the value of the CPU AX register after the interrupt.

See Also: bdos, int386, int386x, int86x, intdos, intdosx, intr, intrf, segread

Example:

```
/*
 * This example clears the screen on DOS
 */
#include <i86.h>

void main()
 {
   union REGS regs;

   regs.w.cx = 0;
   regs.w.dx = 0x1850;
   regs.h.bh = 7;
   regs.w.ax = 0x0600;
#if defined(__386__) && defined(__DOS__)
   int386( 0x10, &regs, &regs );
#else
   int86( 0x10, &regs, &regs );
#endif
 }
```

Classification: Intel

Systems: DOS/16, Windows, Win386, DOS/PM

Synopsis:

```
#include <i86.h>
int int86x( int inter_no,
            const union REGS *in_regs,
            union REGS *out_regs,
            struct SREGS *seg_regs );
```

Description:

The int86x function causes the computer's central processor (CPU) to be interrupted with an interrupt whose number is given by inter_no. Before the interrupt, the CPU registers are loaded from the structure located by in_regs and the DS and ES segment registers are loaded from the structure located by seg_regs. All of the segment registers must contain valid values. Failure to do so will cause a segment violation when running in protect mode. If you don't care about a particular segment register, then it can be set to 0 which will not cause a segment violation. The function segread can be used to initialize seg_regs to their current values.

Following the interrupt, the structure located by out_regs is filled with the contents of the CPU registers. The in_regs and out_regs structures may be located at the same location in memory. The original values of the DS and ES registers are restored. The structure seg_regs is updated with the values of the segment registers following the interrupt.

You should consult the technical documentation for the computer that you are using to determine the expected register contents before and after the interrupt in question.

Returns: The function returns the value of the CPU AX register after the interrupt.

See Also: bdos, int386, int386x, int86, intdos, intdosx, intr, intrf, segread

Example:

```
#include <stdio.h>
#include <i86.h>
/* get current mouse interrupt handler address */
void main()
  {
   union REGS r;
    struct SREGS s;
    r.h.ah = 0x35; /* DOS get vector */
    r.h.al = 0x33; /* interrupt vector 0x33 */
   int86x( 0x21, &r, &r, &s);
   printf( "mouse handler address=%4.4x:%4.4x\n",
            s.es, r.w.bx );
  }
```

Classification: Intel

Systems: DOS/16, Windows, Win386, DOS/PM

int86x			

```
Synopsis:
           #include <dos.h>
           int intdos (const union REGS *in_regs,
                        union REGS *out_regs );
```

Description:

The intdos function causes the computer's central processor (CPU) to be interrupted with an interrupt number hexadecimal 21 (0x21), which is a request to invoke a specific DOS function. Before the interrupt, the CPU registers are loaded from the structure located by in_regs. The AH register contains a number indicating the function requested. Following the interrupt, the structure located by out_regs is filled with the contents of the CPU registers. These structures may be located at the same location in memory.

You should consult the technical documentation for the DOS operating system that you are using to determine the expected register contents before and after the interrupt in question.

Returns:

The function returns the value of the AX (EAX in 386 library) register after the interrupt has completed. The CARRY flag (when set, an error has occurred) is copied into the structure located by out_regs. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also: bdos, int386, int386x, int86, int86x, intdosx, intr, intrf, segread

Example: #include <dos.h>

```
#define DISPLAY_OUTPUT 2
void main()
  {
    union REGS in_regs, out_regs;
    int
                rc;
    in_regs.h.ah = DISPLAY_OUTPUT;
    in_regs.h.al = 0;
    in\_regs.w.dx = 'I';
    rc = intdos( &in_regs, &out_regs );
    in\_regs.w.dx = 'N';
    rc = intdos( &in_regs, &out_regs);
    in_regs.w.dx = 'T';
    rc = intdos( &in_regs, &out_regs );
    in_regs.w.dx = 'D';
    rc = intdos( &in_regs, &out_regs );
    in\_regs.w.dx = 'O';
    rc = intdos( &in_regs, &out_regs );
    in_regs.w.dx = 'S';
    rc = intdos( &in_regs, &out_regs );
  }
```

Classification: DOS

Systems: DOS, Windows, Win386, DOS/PM

intdos			

Synopsis:

```
#include <dos.h>
int intdosx( const union REGS *in_regs,
             union REGS *out_regs,
             struct SREGS *seg_regs );
```

Description:

The intdosx function causes the computer's central processor (CPU) to be interrupted with an interrupt number hexadecimal 21 (0x21), which is a request to invoke a specific DOS function. Before the interrupt, the CPU registers are loaded from the structure located by in_regs and the segment registers DS and ES are loaded from the structure located by seg_regs. The AH register contains a number indicating the function requested. All of the segment registers must contain valid values. Failure to do so will cause a segment violation when running in protect mode. If you don't care about a particular segment register, then it can be set to 0 which will not cause a segment violation. The function segread can be used to initialize seg_regs to their current values.

Following the interrupt, the structure located by out regs is filled with the contents of the CPU registers. The *in regs* and *out regs* structures may be located at the same location in memory. The original values for the DS and ES registers are restored. The structure seg_regs is updated with the values of the segment registers following the interrupt.

You should consult the technical documentation for the DOS operating system that you are using to determine the expected register contents before and after the interrupt in question.

Returns:

The intdosx function returns the value of the AX (EAX in 32-bit library) register after the interrupt has completed. The CARRY flag (when set, an error has occurred) is copied into the structure located by out_regs. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

bdos, int386, int386x, int86, int86x, intdos, intr, intrf, segread

Example:

```
#include <stdio.h>
#include <dos.h>
/* get current mouse interrupt handler address */
void main()
  {
    union REGS r;
    struct SREGS s;
#if defined(__386__)
    s.ds = s.es = s.fs = s.gs = FP\_SEG( &s );
#endif
    r.h.ah = 0x35; /* get vector */
    r.h.al = 0x33; /* vector 0x33 */
    intdosx( &r, &r, &s );
#if defined(__386__)
    printf( "mouse handler address=%4.4x:%lx\n",
            s.es, r.x.ebx);
#else
    printf( "mouse handler address=%4.4x:%4.4x\n",
            s.es, r.x.bx );
#endif
  }
```

intdosx

Classification: DOS

Systems: DOS, Windows, Win386, DOS/PM

Synopsis: #include <i86.h> void intr(int inter_no, union REGPACK *regs);

Description:

The intr functions cause the computer's central processor (CPU) to be interrupted with an interrupt whose number is given by inter_no. Before the interrupt, the CPU registers are loaded from the structure located by regs. Low 8-bit of the CPU flags are set to 0.

All of the segment registers must contain valid values. Failure to do so will cause a segment violation when running in protect mode. If you don't care about a particular segment register, then it can be set to 0 which will not cause a segment violation. Following the interrupt, the structure located by regs is filled with the contents of the CPU registers.

intr function is similar to the int86x function, except that only one structure is used for the register values and that the BP (EBP in 386 library) register is included in the set of registers that are passed and saved.

You should consult the technical documentation for the computer that you are using to determine the expected register contents before and after the interrupt in question.

Returns: The intr function do not return a value.

See Also: bdos, int386, int386x, int86, int86x, intdos, intdosx, intrf, segread

Example:

```
#include <stdio.h>
#include <string.h>
#include <i86.h>
void main() /* Print location of Break Key Vector */
   union REGPACK regs;
   memset( &regs, 0, sizeof(union REGPACK) );
   regs.w.ax = 0x3523;
   intr( 0x21, &regs );
   printf( "Break Key vector is "
#if defined(__386__)
            "%x:%lx\n", regs.w.es, regs.x.ebx);
#else
            "%x:%xn", regs.w.es, regs.x.bx);
#endif
  }
```

produces the following:

Break Key vector is eef:13c

Classification: Intel

Systems: DOS, Windows, Win386, Linux, RDOS, DOS/PM, Netware

intr			

```
Synopsis:
           #include <i86.h>
           void intrf( int inter_no, union REGPACK *regs );
```

Description:

The intrf functions cause the computer's central processor (CPU) to be interrupted with an interrupt whose number is given by *inter_no*. Before the interrupt, the CPU registers are loaded from the structure located by regs. Low 8-bit of the CPU flags is set to the flags member of the structure regs.

All of the segment registers must contain valid values. Failure to do so will cause a segment violation when running in protect mode. If you don't care about a particular segment register, then it can be set to 0 which will not cause a segment violation. Following the interrupt, the structure located by regs is filled with the contents of the CPU registers.

intrf function is similar to the int86x function. Exception is that only one structure is used for the register values and that the BP (EBP in 386 library) register is included in the set of registers that are passed and saved and the CPU flags are set to flags member of the structure regs

You should consult the technical documentation for the computer that you are using to determine the expected register contents before and after the interrupt in question.

Returns: The intrf function do not return a value.

See Also: bdos, int386, int386x, int86, int86x, intdos, intdosx, intr, segread

Example:

```
#include <stdio.h>
#include <string.h>
#include <i86.h>
void main() /* Print location of Break Key Vector */
   union REGPACK regs;
   memset( &regs, 0, sizeof(union REGPACK) );
   regs.w.ax = 0x3523;
   regs.w.flags = 0;
    intrf( 0x21, &regs );
   printf( "Break Key vector is "
#if defined(__386__)
            "%x:%lx\n", reqs.w.es, reqs.x.ebx);
#else
            "%x:%xn", regs.w.es, regs.x.bx);
#endif
```

produces the following:

Break Key vector is eef:13c

Classification: Intel

DOS, Windows, Win386, Linux, RDOS, DOS/PM, Netware **Systems:**

intrf			

Synopsis: #include <ctype.h> int isalnum(int c); #include <wctype.h>

int iswalnum(wint_t c);

Description:

The isalnum function tests if the argument c is an alphanumeric character ('a' to 'z', 'A' to 'Z', or '0' to '9'). An alphanumeric character is any character for which isalpha or isdigit is true.

The iswalnum function is a wide character version of isalnum that operates with wide character argument.

Returns:

The isalnum function returns zero if the argument is neither an alphabetic character (A-Z or a-z) nor a digit (0-9). Otherwise, a non-zero value is returned. The iswalnum function returns a non-zero value if either iswalpha or iswdigit is true for c.

See Also:

isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans

Example:

```
#include <stdio.h>
#include <ctype.h>
void main()
    if( isalnum( getchar() ) ) {
        printf( "is alpha-numeric\n" );
```

Classification: ISO C

iswalnum is ISO C95

Systems:

isalnum - All, Linux, RDOS, Netware iswalnum - All, Linux, RDOS, Netware **Synopsis:**

```
#include <ctype.h>
int isalpha( int c );
#include <wctype.h>
int iswalpha( wint_t c );
```

Description:

The isalpha function tests if the argument *c* is an alphabetic character ('a' to 'z' and 'A' to 'Z'). An alphabetic character is any character for which isupper or islower is true.

The iswalpha function is a wide character version of isalpha that operates with wide character argument.

Returns:

The isalpha function returns zero if the argument is not an alphabetic character (A-Z or a-z); otherwise, a non-zero value is returned. The iswalpha function returns a non-zero value only for wide characters for which iswupper or iswlower is true, or any wide character that is one of an implementation-defined set for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true.

See Also:

isalnum, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans

Example:

```
#include <stdio.h>
#include <ctype.h>

void main()
{
    if( isalpha( getchar() ) ) {
        printf( "is alphabetic\n" );
    }
}
```

Classification: ISO C

iswalpha is ISO C95

Systems:

isalpha - All, Linux, RDOS, Netware iswalpha - All, Linux, RDOS, Netware

```
Synopsis:
             #include <ctype.h>
             int isascii( int c );
             int __isascii( int c );
             #include <wctype.h>
             int iswascii( wint_t c );
Description:
            The isascii function tests for a character in the range from 0 to 127.
            The __isascii function is identical to isascii. Use __isascii for ANSI naming conventions.
            The iswascii function is a wide character version of isascii that operates with wide character
             argument.
Returns:
            The isascii function returns a non-zero value when the character is in the range 0 to 127; otherwise,
             zero is returned. The iswascii function returns a non-zero value when c is a wide character
             representation of an ASCII character.
See Also:
             isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
             ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum,
             iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint,
             iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype,
             wctrans, towctrans
Example:
             #include <stdio.h>
             #include <ctype.h>
             char chars[] = {
                  'A',
                  0x80,
                  'Z'
             };
             #define SIZE sizeof( chars ) / sizeof( char )
             void main()
             {
                 int
                       i;
                 for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %san ASCII character\n",
                                chars[i],
                                ( isascii( chars[i] ) ) ? "" : "not " );
```

produces the following:

Char A is an ASCII character Char is not an ASCII character Char Z is an ASCII character

Classification: WATCOM

__isascii conforms to ANSI naming conventions

Systems: isascii - All, Linux, RDOS, Netware

__isascii - All, Linux, RDOS, Netware iswascii - All, Linux, RDOS, Netware

Synopsis: #include <io.h>

int isatty(int handle); int _isatty(int handle);

Description:

The isatty function tests if the opened file or device referenced by the file handle handle is a character device (for example, a console, printer or port).

The _isatty function is identical to isatty. Use _isatty for ANSI naming conventions.

Returns:

The isatty function returns zero if the device or file is not a character device; otherwise, a non-zero value is returned. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: open

Example:

```
#include <stdio.h>
#include <io.h>
void main( void )
    printf( "stdin is a %stty\n",
            ( isatty( fileno( stdin ) ) )
            ? "" : "not " );
}
```

Classification: POSIX 1003.1

_isatty conforms to ANSI naming conventions

Systems:

```
isatty - All, Linux, RDOS, Netware
_isatty - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

Synopsis:

```
#include <ctype.h>
int isblank( int c );
#include <wctype.h>
int iswblank( wint_t c );
```

Description:

The isblank function tests for the following blank characters:

Constant	Character
, ,	space
'\t'	horizontal tab

The iswblank function is a wide character version of isblank that operates with wide character argument.

Returns:

The isblank function returns a non-zero character when the argument is one of the indicated blank characters. The iswblank function returns a non-zero value when the argument is a wide character that corresponds to a standard blank character or is one of an implementation-defined set of wide characters for which iswalnum is false. Otherwise, zero is returned.

See Also:

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans

Example:

```
#include <stdio.h>
#include <ctype.h>
char chars[] = {
    'A',
    0x09,
    , ,
    0x7d
};
#define SIZE sizeof( chars ) / sizeof( char )
void main()
    int
        i;
    for( i = 0; i < SIZE; i++ ) {
     printf( "Char %c is %sa blank character\n",
            chars[i],
            ( isblank( chars[i] ) ) ? "" : "not " );
}
```

produces the following:

Char A is not a blank character Char is a blank character Char is a blank character Char } is not a blank character

Classification: ISO C99

Systems: isblank - All, Linux, RDOS, Netware

iswblank - All, Linux, RDOS, Netware

```
Synopsis:
            #include <ctype.h>
            int iscntrl( int c );
            #include <wchar.h>
            int iswcntrl( wint_t c );
Description:
            The iscntrl function tests for any control character. A control character is any character whose
            value is from 0 through 31.
            The iswentrl function is a wide character version of isentrl that operates with wide character
            argument.
Returns:
            The iscntrl function returns a non-zero value when the argument is a control character. The
            iswentrl function returns a non-zero value when the argument is a control wide character.
            Otherwise, zero is returned.
See Also:
            isalnum, isalpha, isblank, isdigit, isgraph, islower, isprint, ispunct,
            isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha,
            iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
            iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
            towctrans
Example:
            #include <stdio.h>
            #include <ctype.h>
            char chars[] = {
                 'Α',
                 0x09,
                 'Z'
            };
            #define SIZE sizeof( chars ) / sizeof( char )
            void main()
             {
                 int
                 for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %sa Control character\n",
                                chars[i],
                                ( iscntrl( chars[i] ) ) ? "" : "not " );
                 }
            }
            produces the following:
            Char A is not a Control character
                      is a Control character
            Char Z is not a Control character
Classification: ISO C
            iswentrl is ISO C95
Systems:
            iscntrl - All, Linux, RDOS, Netware
            iswcntrl - All, Linux, RDOS, Netware
```

	iscntrl, iswcntrl

```
Synopsis:
             #include <ctype.h>
             int iscsym( int c );
             int __iscsym( int c );
             #include <wctype.h>
             int __iswcsym( wint_t c );
Description:
            The iscsym function tests for a letter, underscore or digit.
            The __iscsym function is identical to iscsym. Use __iscsym for ANSI naming conventions.
             The ___iswcsym function is a wide character version of iscsym that operates with wide character
             argument.
Returns:
             A non-zero value is returned when the character is a letter, underscore or digit; otherwise, zero is
             returned. The \__{iswcsym} function returns a non-zero value when c is a wide character representation
             of a letter, underscore or digit character.
See Also:
             isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
             ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum,
             iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint,
             iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype,
             wctrans, towctrans
Example:
             #include <stdio.h>
             #include <ctype.h>
             char chars[] = {
                 'A',
                 0x80,
                 '_',
                 191
                 ' + '
             };
             #define SIZE sizeof( chars ) / sizeof( char )
             void main()
             {
                 int
                        i;
                 for(i = 0; i < SIZE; i++) {
                      printf( "Char %c is %sa C symbol character\n",
                                chars[i],
                                ( __iscsym( chars[i] ) ) ? "" : "not " );
             produces the following:
             Char A is a C symbol character
             Char is not a C symbol character
             Char _ is a C symbol character
             Char 9 is a C symbol character
             Char + is not a C symbol character
```

Classification: WATCOM

__iscsym conforms to ANSI naming conventions

Systems: iscsym - All, Linux, RDOS, Netware

__iscsym - All, Linux, RDOS, Netware __iswcsym - All, Linux, RDOS, Netware #include <ctype.h>

Synopsis:

```
int iscsymf( int c );
             int __iscsymf( int c );
             #include <wctype.h>
             int __iswcsymf( wint_t c );
Description:
            The iscsymf function tests for a letter or underscore.
             The __iscsymf function is identical to iscsymf. Use __iscsymf for ANSI naming conventions.
             The __iswcsymf function is a wide character version of iscsymf that operates with wide character
             argument.
Returns:
             A non-zero value is returned when the character is a letter or underscore; otherwise, zero is returned.
             The ___iswcsymf function returns a non-zero value when c is a wide character representation of a
             letter or underscore character.
See Also:
             isalpha, isalnum, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
             isspace, isupper, isxdigit, tolower, toupper
             #include <stdio.h>
Example:
             #include <ctype.h>
             char chars[] = {
                  'A',
                 0x80,
                 '9',
                  ' +'
             };
             #define SIZE sizeof( chars ) / sizeof( char )
             void main()
                 int
                        i;
                 for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %sa csymf character\n",
                                chars[i],
                                ( __iscsymf( chars[i] ) ) ? "" : "not " );
                  }
             produces the following:
             Char A is a csymf character
             Char is not a csymf character
             Char _ is a csymf character
             Char 9 is not a csymf character
             Char + is not a csymf character
Classification: WATCOM
             __iscsymf conforms to ANSI naming conventions
```

iscsymf - All, Linux, RDOS, Netware
__iscsymf - All, Linux, RDOS, Netware
__iswcsymf - All, Linux, RDOS, Netware **Systems:**

```
Synopsis:
            #include <ctype.h>
            int isdigit (int c);
            #include <wctype.h>
            int iswdigit( wint_t c );
Description:
            The isdigit function tests for any decimal-digit character '0' through '9'.
            The iswdigit function is a wide character version of isdigit that operates with wide character
            argument.
Returns:
            The isdigit function returns a non-zero value when the argument is a decimal-digit character. The
            iswdigit function returns a non-zero value when the argument is a wide character corresponding to a
            decimal-digit character. Otherwise, zero is returned.
See Also:
            isalnum, isalpha, isblank, iscntrl, isgraph, islower, isprint, ispunct,
            isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha,
            iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
            iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
            towctrans
Example:
            #include <stdio.h>
            #include <ctype.h>
            char chars[] = {
                 'A',
                 '5',
                 151
            };
            #define SIZE sizeof( chars ) / sizeof( char )
            void main()
             {
                 int
                        i;
                 for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %sa digit character\n",
                                chars[i],
                                ( isdigit( chars[i] ) ) ? "" : "not " );
            produces the following:
            Char A is not a digit character
            Char 5 is a digit character
            Char $ is not a digit character
Classification: ISO C
            iswdigit is ISO C95
Systems:
            isdigit - All, Linux, RDOS, Netware
            iswdigit - All, Linux, RDOS, Netware
```

		isdigit, iswdigit

```
Synopsis: #include <math.h>
   int isfinite(x);
```

Description: The isfinite macro determines whether its argument *x* has a finite value (zero, subnormal, or

normal, and not infinite or NaN). First, an argument represented in a format wider than its semantic type is converted to its semantic type. Then determination is based on the type of the argument.

The argument *x* must be an expression of real floating type.

Returns: The isfinite macro returns a nonzero value if and only if its argument has a finite value.

See Also: fpclassify, isinf, isnan, isnormal, signbit, _finite

Example: #include <math.h>

produces the following:

zero is a finite number

Classification: ISO C

Systems: MACRO

```
Synopsis:
           #include <ctype.h>
           int isgraph (int c);
           #include <wctype.h>
```

int iswgraph(wint_t c);

Description:

The isgraph function tests for any printable character except space (''). The isprint function is similar, except that the space character is also included in the character set being tested.

The iswgraph function is a wide character version of isgraph that operates with wide character argument.

Returns:

The isgraph function returns non-zero when the argument is a printable character (except a space). The iswgraph function returns a non-zero value when the argument is a printable wide character (except a wide character space). Otherwise, zero is returned.

See Also:

isalnum, isalpha, isblank, iscntrl, isdigit, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans

Example:

```
#include <stdio.h>
#include <ctype.h>
char chars[] = {
    'Α',
    0x09,
    , ,
    0x7d
};
#define SIZE sizeof( chars ) / sizeof( char )
void main()
{
    int
          i;
    for( i = 0; i < SIZE; i++ ) {
        printf( "Char %c is %sa printable character\n",
                 chars[i],
                 ( isgraph( chars[i] ) ) ? "" : "not " );
    }
}
produces the following:
Char A is a printable character
```

is not a printable character

Char is not a printable character Char } is a printable character

Classification: ISO C

iswgraph is ISO C95

Char

isgraph, iswgraph

isgraph - All, Linux, RDOS, Netware iswgraph - All, Linux, RDOS, Netware **Systems:**

```
Synopsis:
           #include <math.h>
           int isinf(x);
```

Description: The isinf macro determines whether its argument value is an infinity (positive or negative). First, an

argument represented in a format wider than its semantic type is converted to its semantic type. Then

determination is based on the type of the argument.

The argument *x* must be an expression of real floating type.

Returns: The isinf macro returns a nonzero value if and only if its argument has an infinite value.

See Also: fpclassify, isfinite, isnan, isnormal, signbit

Example: #include <math.h> #include <stdio.h>

```
void main( void )
   printf( "zero %s an infinite number\n",
        isinf(0.0) ? "is" : "is not" );
```

produces the following:

zero is not an infinite number

Classification: ISO C

Systems: MACRO

```
Synopsis:
            #include <ctype.h>
            int isleadbyte (int ch);
Description:
           The isleadbyte function tests if the argument ch is a valid first byte of a multibyte character in the
            current code page.
            For example, in code page 932, a valid lead byte is any byte in the range 0x81 through 0x9F or 0xE0
            through 0xFC.
Returns:
            The isleadbyte function returns a non-zero value when the argument is a valid lead byte.
            Otherwise, zero is returned.
See Also:
            isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
            ispunct, isspace, isupper, isxdigit, tolower, toupper, iswalnum, iswalpha,
            iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
            iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
            towctrans
Example:
            #include <stdio.h>
            #include <ctype.h>
            #include <mbctype.h>
            const unsigned char chars[] = {
                , ,
                ′.′,
                111,
                'A',
                0x81,0x40, /* double-byte space */
                0x82,0x60, /* double-byte A */
                0x82,0xA6, /* double-byte Hiragana */
                0x83,0x42, /* double-byte Katakana */
                0xA1, /* single-byte Katakana punctuation */
                0xE0,0xA1, /* double-byte Kanji */
                0x00
            };
            #define SIZE sizeof( chars ) / sizeof( char )
            void main()
              {
                int
                      i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                  printf( "%2.2x is %sa valid lead byte\n",
                         chars[i],
                         ( isleadbyte( chars[i] ) ) ? "" : "not " );
              }
```

produces the following:

```
20 is not a valid lead byte
2e is not a valid lead byte
31 is not a valid lead byte
41 is not a valid lead byte
81 is a valid lead byte
40 is not a valid lead byte
82 is a valid lead byte
60 is not a valid lead byte
82 is a valid lead byte
a6 is not a valid lead byte
83 is a valid lead byte
42 is not a valid lead byte
al is not a valid lead byte
a6 is not a valid lead byte
df is not a valid lead byte
e0 is a valid lead byte
al is not a valid lead byte
00 is not a valid lead byte
```

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

```
Synopsis:
             #include <ctype.h>
             int islower( int c );
             #include <wctype.h>
             int iswlower( wint_t c );
Description:
            The islower function tests for any lowercase letter 'a' through 'z'.
            The iswlower function is a wide character version of islower that operates with wide character
             argument.
Returns:
             The islower function returns a non-zero value when argument is a lowercase letter. The iswlower
             function returns a non-zero value when the argument is a wide character that corresponds to a lowercase
             letter, or if it is one of an implementation-defined set of wide characters for which none of iswcntrl,
             iswdigit, iswpunct, or iswspace is true. Otherwise, zero is returned.
See Also:
             isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, isprint, ispunct,
             isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha,
             iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
             iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
             towctrans
Example:
             #include <stdio.h>
             #include <ctype.h>
             char chars[] = {
                 'Α',
                 ′a′,
                 'z',
                 'Z'
             };
             #define SIZE sizeof( chars ) / sizeof( char )
             void main()
             {
                 int
                        i;
                  for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %sa lowercase character\n",
                                chars[i],
                                ( islower( chars[i] ) ) ? "" : "not " );
                  }
             }
             produces the following:
            Char A is not a lowercase character
             Char a is a lowercase character
             Char z is a lowercase character
            Char Z is not a lowercase character
```

Classification: ISO C

iswlower is ISO C95

islower - All, Linux, RDOS, Netware iswlower - All, Linux, RDOS, Netware **Systems:**

```
Synopsis:
            #include <mbctype.h>
            int _ismbbalnum( unsigned int ch );
Description:
            The _ismbbalnum function tests if the argument ch satisfies the condition that one of isalnum or
            _ismbbkalnum is true.
            Note: The argument ch must represent a single-byte value (i.e., 0 \le ch \le 255). Incorrect results
            occur if the argument is a double-byte character.
Returns:
            The _ismbbalnum function returns a non-zero value if the argument satisfies the condition; otherwise
            a zero value is returned.
See Also:
            _getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalpha,
            _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint,
            _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,
            _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            unsigned int chars[] = {
                 , ,
                 '1',
                 'A',
                 0x8140, /* double-byte space */
                 0x8260, /* double-byte A */
                 0x82A6, /* double-byte Hiragana */
                 0x8342, /* double-byte Katakana */
                 0xA1, /* single-byte Katakana punctuation */
                        /* single-byte Katakana alphabetic */
                        /* single-byte Katakana alphabetic */
                 0xE0A1 /* double-byte Kanji */
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
                 int
                       i;
                _setmbcp( 932 );
                 for( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa single-byte alphanumeric\n"
                            " or Katakana non-punctuation character\n",
                          chars[i],
                          ( _ismbbalnum( chars[i] ) ) ? "" : "not " );
              }
            produces the following:
```

0x0020 is not a single-byte alphanumeric or Katakana non-punctuation character 0x002e is not a single-byte alphanumeric or Katakana non-punctuation character 0x0031 is a single-byte alphanumeric or Katakana non-punctuation character 0x0041 is a single-byte alphanumeric or Katakana non-punctuation character 0x8140 is not a single-byte alphanumeric or Katakana non-punctuation character 0x8260 is not a single-byte alphanumeric or Katakana non-punctuation character 0x82a6 is a single-byte alphanumeric or Katakana non-punctuation character 0x8342 is a single-byte alphanumeric or Katakana non-punctuation character 0x00a1 is not a single-byte alphanumeric or Katakana non-punctuation character 0x00a6 is a single-byte alphanumeric or Katakana non-punctuation character 0x00df is a single-byte alphanumeric or Katakana non-punctuation character 0xe0a1 is not a single-byte alphanumeric or Katakana non-punctuation character

Classification: WATCOM

```
Synopsis: #include <mbctype.h>
int _ismbbalpha( unsigned int ch );

Descriptions The include for time to the first transfer of the content of
```

Description: The _ismbbalpha function tests if the argument *ch* satisfies the condition that one of isalpha or _ismbbkalpha is true.

For example, in code page 932, _ismbbalpha tests if the argument *ch* is a single-byte alphabetic character ("a" to "z" or "A" to "Z") or single-byte Katakana non-punctuation character.

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character.

Returns: The _ismbbalpha function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also:

_getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum,
_ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint,
_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,
_mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

0x8140, /* double-byte space */

0x8260, /* double-byte A */
0x82A6, /* double-byte Hiragana */
0x8342, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0A1 /* double-byte Kanji */
};

#define SIZE sizeof(chars) / sizeof(unsigned int)

produces the following:

'A',

{

0x0020 is not a single-byte alphabetic or Katakana alphabetic character 0x002e is not a single-byte alphabetic or Katakana alphabetic character 0x0031 is not a single-byte alphabetic or Katakana alphabetic character 0x0041 is a single-byte alphabetic or Katakana alphabetic character 0x8140 is not a single-byte alphabetic or Katakana alphabetic character 0x8260 is not a single-byte alphabetic or Katakana alphabetic character 0x82a6 is a single-byte alphabetic or Katakana alphabetic character 0x8342 is a single-byte alphabetic or Katakana alphabetic character 0x00a1 is not a single-byte alphabetic or Katakana alphabetic character 0x00a6 is a single-byte alphabetic or Katakana alphabetic character 0x00df is a single-byte alphabetic or Katakana alphabetic character 0xe0a1 is not a single-byte alphabetic or Katakana alphabetic character

Classification: WATCOM

Example:

```
Synopsis: #include <mbctype.h>
    int _ismbbgraph( unsigned int ch );
```

Description: The _ismbbgraph function tests if the argument *ch* satisfies the condition that one of isgraph or _ismbbkprint is true.

For example, in code page 932, _ismbbgraph tests if the argument *ch* is a single-byte printable character excluding space (" ") or single-byte Katakana character.

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbgraph function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also: _getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

produces the following:

void main()

int

i;

{

```
0x0020 is not a single-byte printable non-space character
0x002e is a single-byte printable non-space character
0x0031 is a single-byte printable non-space character
0x0041 is a single-byte printable non-space character
0x8140 is a single-byte printable non-space character
0x8260 is a single-byte printable non-space character
0x82a6 is a single-byte printable non-space character
0x8342 is a single-byte printable non-space character
0x00al is a single-byte printable non-space character
0x00a6 is a single-byte printable non-space character
0x00df is a single-byte printable non-space character
0xe0a1 is a single-byte printable non-space character
```

Synopsis: #include <mbctype.h>
 int _ismbbkalnum(unsigned int ch);

Description: The _ismbbkalnum function tests if the argument *ch* is a non-ASCII text symbol other than punctuation.

For example, in code page 932, _ismbbkalnum tests for a single-byte Katakana character (excluding the Katakana punctuation characters). Note that there are no Katakana digit characters. A single-byte Katakana non-punctuation character is any character for which the following expression is true:

```
0xA6 \le ch \le 0xDF
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbkalnum function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also:

_getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum,
_ismbbalpha, _ismbbgraph, _ismbbkalpha, _ismbbkana, _ismbbkprint,
_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,
_mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h> #include <mbctype.h> unsigned int chars[] = { í,, '.', 11', 'A', 0x8140, /* double-byte space */ 0x8260, /* double-byte A */ 0x82A6, /* double-byte Hiragana */ 0x8342, /* double-byte Katakana */ /* single-byte Katakana punctuation */ 0xA1, /* single-byte Katakana alphabetic */ 0xA6, /* single-byte Katakana alphabetic */ 0xE0A1 /* double-byte Kanji */ }; #define SIZE sizeof(chars) / sizeof(unsigned int)

```
0x0020 is not a single-byte Katakana non-punctuation character
0x002e is not a single-byte Katakana non-punctuation character
0x0031 is not a single-byte Katakana non-punctuation character
0x0041 is not a single-byte Katakana non-punctuation character
0x8140 is not a single-byte Katakana non-punctuation character
0x8260 is not a single-byte Katakana non-punctuation character
0x82a6 is a single-byte Katakana non-punctuation character
0x8342 is not a single-byte Katakana non-punctuation character
0x00al is not a single-byte Katakana non-punctuation character
0x00a6 is a single-byte Katakana non-punctuation character
0x00df is a single-byte Katakana non-punctuation character
0xe0a1 is not a single-byte Katakana non-punctuation character
```

Classification: WATCOM

```
Synopsis: #include <mbctype.h>
   int _ismbbkana( unsigned int ch );
```

Description: The _ismbbkana function tests if the argument *ch* is a single-byte Katakana character. A single-byte Katakana character is any character for which the following expression is true:

```
0xA1 \le ch \le 0xDF
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _i smbbkana function returns non-zero if the argument is a single-byte Katakana character; otherwise, a zero value is returned.

See Also:

_getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum,
_ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkprint,
_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,
_mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

#include <stdio.h> **Example:** #include <mbctype.h> unsigned int chars[] = { ĩ,, ′.′, '1', 'A', 0x8140, /* double-byte space */ 0x8260, /* double-byte A */ 0x82A6, /* double-byte Hiragana */ 0x8342, /* double-byte Katakana */ 0xA1, /* single-byte Katakana punctuation */ /* single-byte Katakana alphabetic */ 0xA6, /* single-byte Katakana alphabetic */ 0xDF, 0xE0A1 /* double-byte Kanji */ }; #define SIZE sizeof(chars) / sizeof(unsigned int) void main() { int i;

produces the following:

_setmbcp(932);

for(i = 0; i < SIZE; i++) {

chars[i],

(_ismbbkana(chars[i])) ? "" : "not ");

}

```
0 \times 0020 is not a single-byte Katakana character
0x002e is not a single-byte Katakana character
0x0031 is not a single-byte Katakana character
0x0041 is not a single-byte Katakana character
0x8140 is not a single-byte Katakana character
0x8260 is not a single-byte Katakana character
0x82a6 is a single-byte Katakana character
0x8342 is not a single-byte Katakana character
0x00a1 is a single-byte Katakana character
0x00a6 is a single-byte Katakana character
0x00df is a single-byte Katakana character
0xe0a1 is a single-byte Katakana character
```

Example:

Synopsis: #include <mbctype.h>
 int _ismbbkalpha(unsigned int ch);

Description: The _ismbbkalpha function tests if the argument *ch* is a non-ASCII text symbol other than digits or punctuation.

For example, in code page 932, _ismbbkalpha tests for a single-byte Katakana character (excluding the Katakana punctuation characters). Note that there are no Katakana digit characters. A single-byte Katakana non-punctuation character is any character for which the following expression is true:

```
0xA6 \le ch \le 0xDF
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbkalpha function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also:

_getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum,
_ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkana, _ismbbkprint,
_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,
_mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

#include <stdio.h> #include <mbctype.h> unsigned int chars[] = { í,, '.', 11', 'A', 0x8140, /* double-byte space */ 0x8260, /* double-byte A */ 0x82A6, /* double-byte Hiragana */ 0x8342, /* double-byte Katakana */ /* single-byte Katakana punctuation */ 0xA1, /* single-byte Katakana alphabetic */ 0xA6, /* single-byte Katakana alphabetic */ 0xE0A1 /* double-byte Kanji */ }; #define SIZE sizeof(chars) / sizeof(unsigned int) void main() { int i; _setmbcp(932); for(i = 0; i < SIZE; i++) { printf("%#6.4x is %sa single-byte "

"Katakana alphabetic character\n",

(_ismbbkalpha(chars[i])) ? "" : "not ");

}

chars[i],

```
0x0020 is not a single-byte Katakana alphabetic character
0x002e is not a single-byte Katakana alphabetic character
0x0031 is not a single-byte Katakana alphabetic character
0x0041 is not a single-byte Katakana alphabetic character
0x8140 is not a single-byte Katakana alphabetic character
0x8260 is not a single-byte Katakana alphabetic character
0x82a6 is a single-byte Katakana alphabetic character
0x8342 is not a single-byte Katakana alphabetic character
0x00a1 is not a single-byte Katakana alphabetic character
0x00a6 is a single-byte Katakana alphabetic character
0x00df is a single-byte Katakana alphabetic character
0xe0a1 is not a single-byte Katakana alphabetic character
```

Classification: WATCOM

Synopsis: #include <mbctype.h>
 int _ismbbkprint(unsigned int ch);

Description: The _ismbbkprint function tests if the argument *ch* is a non-ASCII text or non-ASCII punctuation symbol.

For example, in code page 932, _ismbbkprint tests if the argument *ch* is a single-byte Katakana character. A single-byte Katakana character is any character for which the following expression is true:

```
0xA1 \le ch \le 0xDF
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbkprint function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also:

_getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum,
_ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana,
_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,
_mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h> #include <mbctype.h> unsigned int chars[] = { , , 11', 'A', 0x8140, /* double-byte space */ 0x8260, /* double-byte A */ 0x82A6, /* double-byte Hiragana */ 0x8342, /* double-byte Katakana */ 0xA1, /* single-byte Katakana punctuation */ /* single-byte Katakana alphabetic */ 0xA6, /* single-byte Katakana alphabetic */ 0xE0A1 /* double-byte Kanji */ };

}

```
0x0020 is not a single-byte Katakana printable character
0x002e is not a single-byte Katakana printable character
0x0031 is not a single-byte Katakana printable character
0x0041 is not a single-byte Katakana printable character
0x8140 is not a single-byte Katakana printable character
0x8260 is not a single-byte Katakana printable character
0x82a6 is a single-byte Katakana printable character
0x8342 is not a single-byte Katakana printable character
0x00a1 is a single-byte Katakana printable character
0x00a6 is a single-byte Katakana printable character
0x00df is a single-byte Katakana printable character
0xe0a1 is a single-byte Katakana printable character
```

Classification: WATCOM

Synopsis: #include <mbctype.h>
 int _ismbbkpunct(unsigned int ch);

Description: The _i smbbkpunct function tests if the argument *ch* is a non-ASCII punctuation character.

For example, in code page 932, _ismbbkpunct tests if the argument *ch* is a single-byte Katakana punctuation character. A single-byte Katakana punctuation character is any character for which the following expression is true:

```
0xA1 \le ch \le 0xA5
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbkpunct function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also: _getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

```
0x0020 is not a single-byte Katakana punctuation character
0x002e is not a single-byte Katakana punctuation character
0x0031 is not a single-byte Katakana punctuation character
0x0041 is not a single-byte Katakana punctuation character
0x8140 is not a single-byte Katakana punctuation character
0x8260 is not a single-byte Katakana punctuation character
0x82a6 is not a single-byte Katakana punctuation character
0x8342 is not a single-byte Katakana punctuation character
0x00a1 is a single-byte Katakana punctuation character
0x00a6 is not a single-byte Katakana punctuation character
0x00df is not a single-byte Katakana punctuation character
OxeOal is a single-byte Katakana punctuation character
```

Classification: WATCOM

#include <mbctype.h>

Synopsis:

```
int _ismbblead( unsigned int ch );
Description:
            The _ismbblead function tests if the argument ch is a valid first byte of a multibyte character.
            For example, in code page 932, valid ranges are 0x81 through 0x9F and 0xE0 through 0xFC.
            Note: The argument ch must represent a single-byte value (i.e., 0 \le ch \le 255). Incorrect results
            occur if the argument is a double-byte character.
Returns:
            _ismbblead returns a non-zero value if the argument is valid as the first byte of a multibyte
            character; otherwise zero is returned.
See Also:
            _getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum,
            _ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana,
            _ismbbkprint,_ismbbkpunct,_ismbbprint,_ismbbpunct,_ismbbtrail,
            _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype,
            _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            unsigned int chars[] = {
                 í,,
                 ′.′,
                 11',
                 'A',
                 0x8140, /* double-byte space */
                 0x8260, /* double-byte A */
                 0x82A6, /* double-byte Hiragana */
                 0x8342, /* double-byte Katakana */
                          /* single-byte Katakana punctuation */
                 0xA1,
                 0xA6,
                          /* single-byte Katakana alphabetic */
                          /* single-byte Katakana alphabetic */
                 0xDF,
                 0xE0A1 /* double-byte Kanji */
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
               {
                 int
                        i;
                 _setmbcp( 932 );
                 for( i = 0; i < SIZE; i++ ) {
                   printf( \%#6.4x does %shave a valid first byte\n",
                          chars[i],
                           ( _ismbblead( chars[i]>>8 ) ) ? "" : "not " );
               }
            produces the following:
```

```
0x0020 does not have a valid first byte
0x002e does not have a valid first byte
0x0031 does not have a valid first byte
0x0041 does not have a valid first byte
0x8140 does have a valid first byte
0x8260 does have a valid first byte
0x82a6 does have a valid first byte
0x8342 does have a valid first byte
0x00a1 does not have a valid first byte
0x00a6 does not have a valid first byte
0x00df does not have a valid first byte
0xe0a1 does have a valid first byte
```

Example:

Synopsis: #include <mbctype.h>
 int _ismbbprint(unsigned int ch);

Description: The _ismbbprint function tests if the argument *ch* is a single-byte printable character including space (" ").

For example, in code page 932, _ismbbprint tests if the argument *ch* is a single-byte printable character including space (" ") or a single-byte Katakana character. These are any characters for which the following expression is true:

```
isprint(ch) | _ismbbkprint(ch)
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbprint function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also: __getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, __ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, __ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbpunct, _ismbbtrail, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

```
#include <stdio.h>
#include <mbctype.h>
unsigned int chars[] = {
    0x0D,
    ′.′,
    11',
    'A',
    0x8140, /* double-byte space */
    0x8260, /* double-byte A */
    0x82A6, /* double-byte Hiragana */
    0x8342, /* double-byte Katakana */
           /* single-byte Katakana punctuation */
    0xA1,
           /* single-byte Katakana alphabetic */
    0xA6,
           /* single-byte Katakana alphabetic */
    0xE0A1 /* double-byte Kanji */
} ;
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
          i;
    int
    _setmbcp( 932 );
```

for(i = 0; i < SIZE; i++) {

chars[i],

(_ismbbprint(chars[i])) ? "" : "not ");

}

```
0x000d is not a single-byte printable character
0x002e is a single-byte printable character
0x0031 is a single-byte printable character
0x0041 is a single-byte printable character
0x8140 is a single-byte printable character
0x8260 is a single-byte printable character
0x82a6 is a single-byte printable character
0x8342 is a single-byte printable character
0x00a1 is a single-byte printable character
0x00a6 is a single-byte printable character
0 \times 00 \text{df} is a single-byte printable character
0xe0a1 is a single-byte printable character
```

Classification: WATCOM

```
Synopsis: #include <mbctype.h>
   int _ismbbpunct( unsigned int ch );
```

Description: The $_i$ smbbpunct function tests if the argument ch is a single-byte punctuation character.

For example, in code page 932, _ismbbpunct tests if the argument *ch* is a single-byte punctuation character or a single-byte Katakana punctuation character. These are any characters for which the following expression is true:

```
ispunct(ch) | _ismbbkpunct(ch)
```

Note: The argument ch must represent a single-byte value (i.e., $0 \le ch \le 255$). Incorrect results occur if the argument is a double-byte character. This is shown by the example below.

Returns: The _ismbbpunct function returns a non-zero value if the argument satisfies the condition; otherwise a zero value is returned.

See Also: __getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbtrail, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h> #include <mbctype.h> unsigned int chars[] = { 11', 'A', 0x8140, /* double-byte space */ 0x8260, /* double-byte A */ 0x82A6, /* double-byte Hiragana */ 0x8342, /* double-byte Katakana */ /* single-byte Katakana punctuation */ /* single-byte Katakana alphabetic */ 0xA6, /* single-byte Katakana alphabetic */ 0xE0A1 /* double-byte Kanji */ };

}

```
0 \times 0020 is not a single-byte punctuation character
0x002e is a single-byte punctuation character
0x0031 is not a single-byte punctuation character
0x0041 is not a single-byte punctuation character
0x8140 is a single-byte punctuation character
0x8260 is a single-byte punctuation character
0x82a6 is not a single-byte punctuation character
0x8342 is not a single-byte punctuation character
0 \times 00al is a single-byte punctuation character
0x00a6 is not a single-byte punctuation character
0x00df is not a single-byte punctuation character
0xe0a1 is a single-byte punctuation character
```

Classification: WATCOM

```
Synopsis: #include <mbstring.h>
   int _ismbbtrail( unsigned int ch );
```

Description: The _ismbbtrail function tests if *ch* is a valid second byte of a multibyte character.

For example, in code page 932, valid ranges are 0x40 through 0x7E and 0x80 through 0xFC.

Note: Only the least significant (trailing) byte of the argument *ch* is tested. If the argument is a double-byte character, the leading byte is ignored and may be invalid. This is shown by the example below.

Returns: _ismbbtrail returns a non-zero value if the argument is valid as the second byte of a multibyte character; otherwise zero is returned.

See Also: __getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h> #include <mbctype.h> unsigned int chars[] = { · ', 11, 'A', 0x8140, /* double-byte space */ 0x8260, /* double-byte A */ 0x82A6, /* double-byte Hiragana */ 0x8342, /* double-byte Katakana */ 0xA1, /* single-byte Katakana punctuation */ 0xA6. /* single-byte Katakana alphabetic */ /* single-byte Katakana alphabetic */ 0xDF, 0xE0A1 /* double-byte Kanji */

produces the following:

}

};

```
0x0020 does not have a valid second byte
0x002e does not have a valid second byte
0x0031 does not have a valid second byte
0x0041 does have a valid second byte
0x8140 does have a valid second byte
0x8260 does have a valid second byte
0x82a6 does have a valid second byte
0x8342 does have a valid second byte
0x00al does have a valid second byte
0x00a6 does have a valid second byte
0x00df does have a valid second byte
0xe0a1 does have a valid second byte
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcalnum( unsigned int ch );
Description:
            The _ismbcalnum function tests if the multibyte character argument ch is an alphanumeric character.
            For example, in code page 932, 'A' through 'Z', 'a' through 'z', or '0' through '9' and its
            corresponding double-byte versions are alphanumeric (among others). An alphanumeric character is
            any character for which _ismbcalpha or _ismbcdigit is true.
Returns:
            The _ismbcalnum function returns zero if the argument is not an alphanumeric character; otherwise,
            a non-zero value is returned.
See Also:
            _getmbcp, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph, _ismbchira,
            _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower,
            _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                 ′.′,
                 '1',
                 'A',
                 0x8143, /* double-byte , */
                 0x8254, /* double-byte 5 */
                 0x8260, /* double-byte A */
                 0x8279, /* double-byte Z */
                 0x8281, /* double-byte a */
                 0x829A, /* double-byte z */
                 0x829F, /* double-byte Hiragana */
                 0x8340, /* double-byte Katakana */
                 0x837F, /* illegal double-byte character */
                 0x889E, /* double-byte L0 character */
                 0x889F, /* double-byte L1 character */
                 0x989F, /* double-byte L2 character */
                        /* single-byte Katakana */
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                 int
                       i;
                 _setmbcp( 932 );
                 for( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa valid "
                          "multibyte alphanumeric character\n",
                          chars[i],
                          ( _ismbcalnum( chars[i] ) ) ? "" : "not " );
               }
            produces the following:
```

```
0x002e is not a valid multibyte alphanumeric character
0x0031 is a valid multibyte alphanumeric character
0x0041 is a valid multibyte alphanumeric character
0x8143 is not a valid multibyte alphanumeric character
0x8254 is a valid multibyte alphanumeric character
0x8260 is a valid multibyte alphanumeric character
0x8279 is a valid multibyte alphanumeric character
0x8281 is a valid multibyte alphanumeric character
0x829a is a valid multibyte alphanumeric character
0x829f is a valid multibyte alphanumeric character
0x8340 is a valid multibyte alphanumeric character
0x837f is not a valid multibyte alphanumeric character
0x889e is not a valid multibyte alphanumeric character
0x889f is a valid multibyte alphanumeric character
0x989f is a valid multibyte alphanumeric character
0x00a6 is a valid multibyte alphanumeric character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcalpha( unsigned int ch );
Description:
            The _ismbcalpha function tests if the multibyte character argument ch is an alphabetic character.
            For example, in code page 932, 'A' through 'Z' or 'a' through 'z' and its corresponding double-byte
            versions and the Katakana letters (0xA6 through 0xDF) are alphabetic.
Returns:
            The _ismbcalpha function returns zero if the argument is not an alphabetic character; otherwise, a
            non-zero value is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbccntrl, _ismbcdigit, _ismbcgraph, _ismbchira,
            _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower,
            _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                 ·.',
                 11,
                 'A',
                 0x8143, /* double-byte , */
                 0x8254, /* double-byte 5 */
                 0x8260, /* double-byte A */
                 0x8279, /* double-byte Z */
                 0x8281, /* double-byte a */
                 0x829A, /* double-byte z */
                 0x829F, /* double-byte Hiragana */
                 0x8340, /* double-byte Katakana */
                 0x837F, /* illegal double-byte character */
                 0x889E, /* double-byte L0 character */
                 0x889F, /* double-byte L1 character */
                 0x989F, /* double-byte L2 character */
                         /* single-byte Katakana */
                 0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                 int
                       i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa valid "
                          "multibyte alphabetic character\n",
                          chars[i],
                          ( _ismbcalpha( chars[i] ) ) ? "" : "not " );
              }
```

```
0x002e is not a valid multibyte alphabetic character
0x0031 is not a valid multibyte alphabetic character
0x0041 is a valid multibyte alphabetic character
0x8143 is not a valid multibyte alphabetic character
0x8254 is not a valid multibyte alphabetic character
0x8260 is a valid multibyte alphabetic character
0x8279 is a valid multibyte alphabetic character
0x8281 is a valid multibyte alphabetic character
0x829a is a valid multibyte alphabetic character
0x829f is a valid multibyte alphabetic character
0x8340 is a valid multibyte alphabetic character
0x837f is not a valid multibyte alphabetic character
0x889e is not a valid multibyte alphabetic character
0x889f is a valid multibyte alphabetic character
0x989f is a valid multibyte alphabetic character
0x00a6 is a valid multibyte alphabetic character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbccntrl( unsigned int ch );
Description:
            The _ismbccntrl function tests for any multibyte control character.
Returns:
            The _ismbcontrl function returns a non-zero value when the argument is a member of this set of
            characters; otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbcdigit, _ismbcgraph, _ismbchira,
            _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower,
            _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                0x0D,
                ' . ' ,
                11',
                'A',
                0x8140, /* double-byte space */
                0x8143, /* double-byte , */
                0x8254, /* double-byte 5 */
                0x8260, /* double-byte A */
                0x8279, /* double-byte Z */
                0x8281, /* double-byte a */
                0x829A, /* double-byte z */
                0x989F, /* double-byte L2 character */
                0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                int
                       i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                  printf( "%#6.4x is %sa valid "
                          "multibyte control character\n",
                         chars[i],
                          ( _ismbccntrl( chars[i] ) ) ? "" : "not " );
              }
            produces the following:
```

```
0x000d is a valid multibyte control character
0x002e is not a valid multibyte control character
0x0020 is not a valid multibyte control character
0x0031 is not a valid multibyte control character
0x0041 is not a valid multibyte control character
0x8140 is a valid multibyte control character
0x8143 is a valid multibyte control character
0x8254 is not a valid multibyte control character
0x8260 is not a valid multibyte control character
0x8279 is not a valid multibyte control character
0x8281 is not a valid multibyte control character
0x829a is not a valid multibyte control character
0x989f is not a valid multibyte control character
0x00a6 is not a valid multibyte control character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcdigit( unsigned int ch );
Description:
           The _ismbcdigit function tests for any multibyte decimal-digit character '0' through '9'. In code
            page 932, this includes the corresponding double-byte versions of these characters.
Returns:
            The _ismbcdigit function returns a non-zero value when the argument is a decimal-digit character.
            Otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcgraph, _ismbchira,
            _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower,
            _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
            #include <stdio.h>
Example:
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                ′.′,
                '1',
                'A',
                0x8143, /* double-byte , */
                0x8183, /* double-byte < */
                0x8254, /* double-byte 5 */
                0x8277, /* double-byte X */
                0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                int
                       i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                  printf( "%#6.4x is %sa valid "
                         "multibyte digit character\n",
                         chars[i],
                          ( _ismbcdigit( chars[i] ) ) ? "" : "not " );
              }
            produces the following:
            0x002e is not a valid multibyte digit character
            0x0031 is a valid multibyte digit character
            0x0041 is not a valid multibyte digit character
            0x8143 is not a valid multibyte digit character
            0x8183 is not a valid multibyte digit character
            0x8254 is a valid multibyte digit character
            0x8277 is not a valid multibyte digit character
            0x00a6 is not a valid multibyte digit character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcgraph( unsigned int ch );
Description:
            The _ismbcgraph function tests for any printable multibyte character except space (''). The
            _ismbcprint function is similar, except that the space character is also included in the character set
            being tested.
Returns:
            The _ismbcgraph function returns a non-zero value when the argument is a member of this set of
            characters; otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbchira,
            _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower,
            _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                 · · · ,
                 11,
                 'A',
                 0x8140, /* double-byte space */
                 0x8143, /* double-byte , */
                 0x8254, /* double-byte 5 */
                 0x8260, /* double-byte A */
                 0x8279, /* double-byte Z */
                 0x8281, /* double-byte a */
                 0x829A, /* double-byte z */
                 0x989F, /* double-byte L2 character */
                 0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                 int
                       i;
                 _setmbcp( 932 );
                 for ( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa valid "
                          "multibyte graph character\n",
                          chars[i],
                          ( _ismbcgraph( chars[i] ) ) ? "" : "not " );
            produces the following:
```

```
0x002e is a valid multibyte graph character
0x0020 is not a valid multibyte graph character
0x0031 is a valid multibyte graph character
0x0041 is a valid multibyte graph character
0x8140 is not a valid multibyte graph character
0x8143 is a valid multibyte graph character
0x8254 is a valid multibyte graph character
0x8260 is a valid multibyte graph character
0x8279 is a valid multibyte graph character
0x8281 is a valid multibyte graph character
0x829a is a valid multibyte graph character
0x989f is a valid multibyte graph character
0x00a6 is a valid multibyte graph character
```

Synopsis: #include <mbstring.h>
 int _ismbchira(unsigned int ch);

Description: The _ismbchira function tests for a double-byte Hiragana character. A double-byte Hiragana character is any character for which the following expression is true:

```
0x829F \le ch \le 0x82F1
```

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese character set. Hiragana and Katakana are two types of phonetic character sets of the Japanese character set. The Hiragana code set includes 83 characters and the Katakana code set includes 86 characters.

Returns: The _ismbchira function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

_getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
_ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower,
_ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
_ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

```
unsigned int chars[] = {
    'A',
    0x8140, /* double-byte space */
    0x8143, /* double-byte , */
    0x8260, /* double-byte A */
    0x829F, /* double-byte Hiragana */
    0x8340, /* double-byte Katakana */
    0x837F, /* illegal double-byte character */
    0x989F, /* double-byte L2 character */
          /* single-byte Katakana */
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
    int
          i;
    _setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
      printf( "%#6.4x is %sa valid "
            "Hiragana character\n",
            chars[i],
            ( _ismbchira( chars[i] ) ) ? "" : "not " );
  }
```

produces the following:

```
0x0041 is not a valid Hiragana character
0x8140 is not a valid Hiragana character
0x8143 is not a valid Hiragana character
0x8260 is not a valid Hiragana character
0x829f is a valid Hiragana character
0x8340 is not a valid Hiragana character
0x837f is not a valid Hiragana character
0x989f is not a valid Hiragana character
0x00a6 is not a valid Hiragana character
```

Synopsis: #include <mbstring.h>
 int _ismbckata(unsigned int ch);

Description: The _ismbckata function tests for a double-byte Katakana character. A double-byte Katakana character is any character for which the following expression is true:

```
0x8340 \le ch \le 0x8396 && ch != 0x837F
```

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese character set. Hiragana and Katakana are two types of phonetic character sets of the Japanese character set. The Hiragana code set includes 83 characters and the Katakana code set includes 86 characters.

Returns: The _ismbckata function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also: __getmbcp, __ismbcalnum, __ismbcalpha, __ismbccntrl, __ismbcdigit, __ismbcgraph, __ismbchira, __ismbcl0, __ismbcl1, __ismbcl2, __ismbclegal, __ismbclower, __ismbcprint, __ismbcpunct, __ismbcspace, __ismbcsymbol, __ismbcupper, __ismbcxdigit, __mbbtype, __mbsbtype, __setmbcp

#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

unsigned int chars[] = {
 'A',
 0x8140, /* double-byte space */
 0x8143, /* double-byte , */
 0x8260, /* double-byte A */

{

}

int

i;

};
#define SIZE sizeof(chars) / sizeof(unsigned int)
void main()

0x829F, /* double-byte Hiragana */
0x8340, /* double-byte Katakana */

produces the following:

```
0x0041 is not a valid Katakana character
0x8140 is not a valid Katakana character
0x8143 is not a valid Katakana character
0x8260 is not a valid Katakana character
0x829f is not a valid Katakana character
0x8340 is a valid Katakana character
0x837f is not a valid Katakana character
0x989f is not a valid Katakana character
0x00a6 is not a valid Katakana character
```

Synopsis: #include <mbstring.h>
 int _ismbcl0(unsigned int ch);

Description:

The _ismbcl0 function tests if the argument *ch* is in the set of double-byte characters that include Hiragana, Katakana, punctuation symbols, graphical symbols, Roman and Cyrillic alphabets, etc. Double-byte Kanji characters are not in this set. These are any characters for which the following expression is true:

```
0x8140 \le ch \le 0x889E && ch != 0x837F
```

The _ismbcl0 function tests if the argument is a valid double-byte character (i.e., it checks that the lower byte is not in the ranges 0x00 - 0x3F, 0x7F, or 0xFD - 0xFF).

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese character set. Hiragana and Katakana are two types of phonetic character sets of the Japanese character set. The Hiragana code set includes 83 characters and the Katakana code set includes 86 characters.

Returns:

The _ismbcl0 function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

```
_getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph, _ismbchira, _ismbckata, _ismbcll, _ismbcl2, _ismbclegal, _ismbclower, _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper, _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
```

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned int chars[] = {
    'A',
    0x8140, /* double-byte space */
    0x8143, /* double-byte , */
    0x8260, /* double-byte A */
    0x829F, /* double-byte Hiragana */
    0x8340, /* double-byte Katakana */
    0x837F, /* illegal double-byte character */
    0x889E, /* double-byte L0 character */
    0x889F, /* double-byte L1 character */
    0x989F, /* double-byte L2 character */
            /* single-byte Katakana */
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
    int
          i;
```

```
_setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
      printf( "%#6.4x is %sa valid "
            "JIS LO character\n",
            chars[i],
            ( _ismbcl0( chars[i] ) ) ? "" : "not " );
  }
produces the following:
0x0041 is not a valid JIS LO character
0x8140 is a valid JIS LO character
0x8143 is a valid JIS LO character
0x8260 is a valid JIS LO character
0x829f is a valid JIS LO character
0x8340 is a valid JIS LO character
0x837f is not a valid JIS LO character
0x889e is a valid JIS LO character
0x889f is not a valid JIS LO character
0x989f is not a valid JIS LO character
0x00a6 is not a valid JIS LO character
```

Synopsis: #include <mbstring.h>
 int _ismbcl1(unsigned int ch);

Description:

The $_ismbcl1$ function tests if the argument ch is a JIS (Japan Industrial Standard) level 1 double-byte character code. These are any valid double-byte characters for which the following expression is true:

```
0x889F \le ch \le 0x9872
```

The _ismbc11 function tests if the argument is a valid double-byte character (i.e., it checks that the lower byte is not in the ranges 0x00 - 0x3F, 0x7F, or 0xFD - 0xFF).

Note: JIS establishes two levels of the Kanji double-byte character set. One is called double-byte Kanji code set level 1 and the other is called double-byte Kanji code set level 2. Usually Japanese personal computers have font ROM/RAM support for both levels.

Valid double-byte characters are those in which the first byte falls in the range 0x81 - 0x9F or 0xE0 - 0xFC and whose second byte falls in the range 0x40 - 0x7E or 0x80 - 0xFC.

Returns:

The _ismbcll function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

_getmbcp,_ismbcalnum,_ismbcalpha,_ismbccntrl,_ismbcdigit,_ismbcgraph, _ismbchira,_ismbckata,_ismbcl0,_ismbcl2,_ismbclegal,_ismbclower, _ismbcprint,_ismbcpunct,_ismbcspace,_ismbcsymbol,_ismbcupper, _ismbcxdigit,_mbbtype,_mbsbtype,_setmbcp

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned int chars[] = {
    'A',
    0x8140, /* double-byte space */
    0x8143, /* double-byte , */
    0x8260, /* double-byte A */
    0x829F, /* double-byte Hiragana */
    0x8340, /* double-byte Katakana */
    0x837F, /* illegal double-byte character */
    0x889E, /* double-byte L0 character */
    0x889F, /* double-byte L1 character */
    0x989F, /* double-byte L2 character */
            /* single-byte Katakana */
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
    int
          i;
```

```
_setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
      printf( "%#6.4x is %sa valid "
            "JIS L1 character\n",
            chars[i],
            ( _ismbcl1( chars[i] ) ) ? "" : "not " );
  }
produces the following:
0x0041 is not a valid JIS L1 character
0x8140 is not a valid JIS L1 character
0x8143 is not a valid JIS L1 character
0x8260 is not a valid JIS L1 character
0x829f is not a valid JIS L1 character
0x8340 is not a valid JIS L1 character
0x837f is not a valid JIS L1 character
0x889e is not a valid JIS L1 character
0x889f is a valid JIS L1 character
0x989f is not a valid JIS L1 character
0x00a6 is not a valid JIS L1 character
```

Synopsis: #include <mbstring.h>
 int _ismbcl2(unsigned int ch);

Description:

The $_ismbcl2$ function tests if the argument ch is a JIS (Japan Industrial Standard) level 2 double-byte character code. These are any valid double-byte characters for which the following expression is true:

```
0x989F \le ch \le 0xEA9E
```

The _ismbc12 function tests if the argument is a valid double-byte character (i.e., it checks that the lower byte is not in the ranges 0x00 - 0x3F, 0x7F, or 0xFD - 0xFF).

Note: JIS establishes two levels of the Kanji double-byte character set. One is called double-byte Kanji code set level 1 and the other is called double-byte Kanji code set level 2. Usually Japanese personal computers have font ROM/RAM support for both levels.

Valid double-byte characters are those in which the first byte falls in the range 0x81 - 0x9F or 0xE0 - 0xFC and whose second byte falls in the range 0x40 - 0x7E or 0x80 - 0xFC.

Returns:

The _ismbcl2 function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

_getmbcp,_ismbcalnum,_ismbcalpha,_ismbccntrl,_ismbcdigit,_ismbcgraph, _ismbchira,_ismbckata,_ismbcl0,_ismbcl1,_ismbclegal,_ismbclower, _ismbcprint,_ismbcpunct,_ismbcspace,_ismbcsymbol,_ismbcupper, _ismbcxdigit,_mbbtype,_mbsbtype,_setmbcp

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned int chars[] = {
    'A',
    0x8140, /* double-byte space */
    0x8143, /* double-byte , */
    0x8260, /* double-byte A */
    0x829F, /* double-byte Hiragana */
    0x8340, /* double-byte Katakana */
    0x837F, /* illegal double-byte character */
    0x889E, /* double-byte L0 character */
    0x889F, /* double-byte L1 character */
    0x989F, /* double-byte L2 character */
    0xEA9E, /* double-byte L2 character */
          /* single-byte Katakana */
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
    int
          i;
```

```
_setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
      printf( "%#6.4x is %sa valid "
            "JIS L2 character\n",
            chars[i],
            ( _ismbcl2( chars[i] ) ) ? "" : "not " );
    }
  }
produces the following:
0x0041 is not a valid JIS L2 character
0x8140 is not a valid JIS L2 character
0x8143 is not a valid JIS L2 character
0x8260 is not a valid JIS L2 character
0x829f is not a valid JIS L2 character
0x8340 is not a valid JIS L2 character
0x837f is not a valid JIS L2 character
0x889e is not a valid JIS L2 character
0x889f is not a valid JIS L2 character
0x989f is a valid JIS L2 character
Oxea9e is a valid JIS L2 character
0x00a6 is not a valid JIS L2 character
```

```
Synopsis: #include <mbstring.h>
    int _ismbclegal( unsigned int dbch );
```

Description:

The _ismbclegal function tests for a valid multibyte character. Multibyte characters include both single-byte and double-byte characters. For example, in code page 932, a legal double-byte character is one in which the first byte is within the ranges 0x81 - 0x9F or 0xE0 - 0xFC, while the second byte is within the ranges 0x40 - 0x7E or 0x80 - 0xFC. This is summarized in the following diagram.

Returns: The _ismbclegal function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

_getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
_ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclower,
_ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
_ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h>
 #include <mbctype.h>
 #include <mbstring.h>

```
unsigned int chars[] = {
    'A',
    0x8131, /* illegal double-byte character */
    0x8140, /* double-byte space */
    0x8143, /* double-byte , */
    0x8260, /* double-byte A */
    0x829F, /* double-byte Hiragana */
    0x8340, /* double-byte Katakana */
    0x837F, /* illegal double-byte character */
    0x889E, /* double-byte L0 character */
    0x889F, /* double-byte L1 character */
    0x989F, /* double-byte L2 character */
    0xEA9E, /* double-byte L2 character */
          /* single-byte Katakana */
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
    int.
          i;
    _setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
     printf( "%#6.4x is %sa legal "
            "double-byte character\n",
            chars[i],
            ( _ismbclegal( chars[i] ) ) ? "" : "not " );
    }
  }
```

produces the following:

```
0x0041 is not a legal double-byte character
0x8131 is not a legal double-byte character
0x8140 is a legal double-byte character
0x8143 is a legal double-byte character
0x8260 is a legal double-byte character
0x829f is a legal double-byte character
0x8340 is a legal double-byte character
0x837f is not a legal double-byte character
0x889e is a legal double-byte character
0x889f is a legal double-byte character
0x989f is a legal double-byte character
Oxea9e is a legal double-byte character
0x00a6 is not a legal double-byte character
```

Classification: WATCOM

```
Synopsis: #include <mbstring.h>
    int _ismbclower( unsigned int ch );
```

Description: The _ismbclower function tests for a valid lowercase multibyte character. Multibyte characters include both single-byte and double-byte characters. For example, in code page 932, a lowercase

double-byte character is one for which the following expression is true:

```
0x8281 \le c \le 0x829A
```

Returns: The _ismbclower function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

_getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
_ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,
_ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
_ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp

```
Example:
           #include <stdio.h>
           #include <mbctype.h>
           #include <mbstring.h>
           unsigned int chars[] = {
               11',
               'A',
               ′a′,
               0x8140, /* double-byte space */
               0x8143, /* double-byte , */
               0x8254, /* double-byte 5 */
               0x8260, /* double-byte A */
               0x8279, /* double-byte Z */
               0x8281, /* double-byte a */
               0x829A, /* double-byte z */
               0x989F, /* double-byte L2 character */
               0xA6
           };
           #define SIZE sizeof( chars ) / sizeof( unsigned int )
           void main()
             {
               int
                     i;
               _setmbcp( 932 );
```

"multibyte lowercase character\n",

(_ismbclower(chars[i])) ? "" : "not ");

for(i = 0; i < SIZE; i++) {
 printf("%#6.4x is %sa valid "</pre>

chars[i],

produces the following:

}

```
0x0031 is not a valid multibyte lowercase character
0 \times 0041 is not a valid multibyte lowercase character
0x0061 is a valid multibyte lowercase character
0x8140 is not a valid multibyte lowercase character
0x8143 is not a valid multibyte lowercase character
0x8254 is not a valid multibyte lowercase character
0x8260 is not a valid multibyte lowercase character
0x8279 is not a valid multibyte lowercase character
0x8281 is a valid multibyte lowercase character
0x829a is a valid multibyte lowercase character
0x989f is not a valid multibyte lowercase character
0x00a6 is not a valid multibyte lowercase character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcprint( unsigned int ch );
Description:
            The _ismbcprint function tests for any printable multibyte character including space (''). The
            _ismbcgraph function is similar, except that the space character is not included in the character set
            being tested.
Returns:
            The _ismbcprint function returns a non-zero value when the argument is a member of this set of
            characters; otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
            _ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,
            _ismbclower, _ismbcpunct, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                 · · · ,
                 11,
                 'A',
                 0x8140, /* double-byte space */
                 0x8143, /* double-byte , */
                 0x8254, /* double-byte 5 */
                 0x8260, /* double-byte A */
                 0x8279, /* double-byte Z */
                 0x8281, /* double-byte a */
                 0x829A, /* double-byte z */
                 0x989F, /* double-byte L2 character */
                 0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                 int
                       i;
                 _setmbcp( 932 );
                 for ( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa valid "
                          "multibyte print character\n",
                          chars[i],
                          ( _ismbcprint( chars[i] ) ) ? "" : "not " );
            produces the following:
```

```
0x002e is a valid multibyte print character
0 \times 0020 is a valid multibyte print character
0x0031 is a valid multibyte print character
0x0041 is a valid multibyte print character
0x8140 is a valid multibyte print character
0x8143 is a valid multibyte print character
0x8254 is a valid multibyte print character
0x8260 is a valid multibyte print character
0x8279 is a valid multibyte print character
0x8281 is a valid multibyte print character
0x829a is a valid multibyte print character
0 \times 989 f is a valid multibyte print character
0x00a6 is a valid multibyte print character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcpunct( unsigned int ch );
Description:
           The _ismbcpunct function tests for any multibyte punctuation character.
Returns:
            The _ismbcpunct function returns a non-zero value when the argument is a member of this set of
            characters; otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
            _ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,
            _ismbclower, _ismbcprint, _ismbcspace, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                '.',
                '1',
                'A',
                0x8140, /* double-byte space */
                0x8143, /* double-byte , */
                0x8254, /* double-byte 5 */
                0x8260, /* double-byte A */
                0x8279, /* double-byte Z */
                0x8281, /* double-byte a */
                0x829A, /* double-byte z */
                0x989F, /* double-byte L2 character */
                       /* single-byte Katakana punctuation */
                0xA6
                         /* single-byte Katakana alphabetic */
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                int
                       i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                  printf( "%#6.4x is %sa valid "
                         "multibyte punctuation character\n",
                         chars[i],
                         ( _ismbcpunct( chars[i] ) ) ? "" : "not " );
              }
            produces the following:
```

```
0x002e is a valid multibyte punctuation character
0x0020 is not a valid multibyte punctuation character
0x0031 is not a valid multibyte punctuation character
0x0041 is not a valid multibyte punctuation character
0x8140 is not a valid multibyte punctuation character
0x8143 is a valid multibyte punctuation character
0x8254 is not a valid multibyte punctuation character
0x8260 is not a valid multibyte punctuation character
0x8279 is not a valid multibyte punctuation character
0x8281 is not a valid multibyte punctuation character
0x829a is not a valid multibyte punctuation character
0x989f is not a valid multibyte punctuation character
0x00a1 is a valid multibyte punctuation character
0x00a6 is not a valid multibyte punctuation character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcspace( unsigned int ch );
Description:
            The _ismbcspace function tests for any multibyte space character. Multibyte characters include
            both single-byte and double-byte characters. For example, in code page 932, the double-byte space
            character is 0x8140.
Returns:
            The _ismbcspace function returns a non-zero value when the argument is a member of this set of
            characters; otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
            _ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,
            _ismbclower, _ismbcprint, _ismbcpunct, _ismbcsymbol, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                 0x09,
                 '·',
                 '1',
                 'A',
                 0x8140, /* double-byte space */
                 0x8143, /* double-byte , */
                 0x8254, /* double-byte 5 */
                 0x8260, /* double-byte A */
                 0x8279, /* double-byte Z */
                 0x8281, /* double-byte a */
                 0x829A, /* double-byte z */
                 0x989F, /* double-byte L2 character */
                 0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                 int
                       i;
                 _setmbcp( 932 );
                 for( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa valid "
                          "multibyte space character\n",
                          chars[i],
                          ( _ismbcspace( chars[i] ) ) ? "" : "not " );
              }
            produces the following:
```

```
0x0009 is a valid multibyte space character
0x002e is not a valid multibyte space character
0x0020 is a valid multibyte space character
0x0031 is not a valid multibyte space character
0x0041 is not a valid multibyte space character
0x8140 is a valid multibyte space character
0x8143 is not a valid multibyte space character
0x8254 is not a valid multibyte space character
0x8260 is not a valid multibyte space character
0x8279 is not a valid multibyte space character
0x8281 is not a valid multibyte space character
0x829a is not a valid multibyte space character
0x989f is not a valid multibyte space character
0x00a6 is not a valid multibyte space character
```

```
Synopsis:
            #include <mbstring.h>
            int _ismbcsymbol( unsigned int ch );
Description:
            The _ismbcsymbol function tests for a valid multibyte symbol character (punctuation and other
            special graphical symbols). For example, in code page 932, _ismbcsymbol tests for a double-byte
            Kigou character and returns true if and only if
                0x8141 \le ch \le 0x81AC && ch != 0x817F
Returns:
            The _ismbcsymbol function returns a non-zero value when the argument is a member of this set of
            characters; otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
            _ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,
            _ismbclower, _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcupper,
            _ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                ,·,,
                 '1',
                 'A',
                 0x8140, /* double-byte space */
                 0x8143, /* double-byte , */
                 0x8254, /* double-byte 5 */
                 0x8260, /* double-byte A */
                 0x8279, /* double-byte Z */
                 0x8281, /* double-byte a */
                 0x829A, /* double-byte z */
                 0x989F, /* double-byte L2 character */
                 0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
                 int
                       i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                   printf( "%#6.4x is %sa valid "
                          "multibyte symbol character\n",
                          chars[i],
                          ( _ismbcsymbol( chars[i] ) ) ? "" : "not " );
              }
```

produces the following:

```
0x002e is not a valid multibyte symbol character
0x0020 is not a valid multibyte symbol character
0x0031 is not a valid multibyte symbol character
0x0041 is not a valid multibyte symbol character
0x8140 is not a valid multibyte symbol character
0x8143 is a valid multibyte symbol character
0x8254 is not a valid multibyte symbol character
0x8260 is not a valid multibyte symbol character
0x8279 is not a valid multibyte symbol character
0x8281 is not a valid multibyte symbol character
0x829a is not a valid multibyte symbol character
0x989f is not a valid multibyte symbol character
0x00a6 is not a valid multibyte symbol character
```

```
Synopsis: #include <mbstring.h>
    int _ismbcupper( unsigned int ch );
```

Description: The _ismbcupper function tests for a valid uppercase multibyte character. Multibyte characters include both single-byte and double-byte characters. For example, in code page 932, an uppercase

double-byte character is one for which the following expression is true:

```
0x8260 \le c \le 0x8279
```

Returns: The _ismbcupper function returns a non-zero value when the argument is a member of this set of characters; otherwise, zero is returned.

See Also:

_getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
_ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,
_ismbclower, _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol,
_ismbcxdigit, _mbbtype, _mbsbtype, _setmbcp

```
Example:
           #include <stdio.h>
           #include <mbctype.h>
           #include <mbstring.h>
           unsigned int chars[] = {
               11',
               'A',
               ′a′,
               0x8140, /* double-byte space */
               0x8143, /* double-byte , */
               0x8254, /* double-byte 5 */
               0x8260, /* double-byte A */
               0x8279, /* double-byte Z */
               0x8281, /* double-byte a */
               0x829A, /* double-byte z */
               0x989F, /* double-byte L2 character */
               0xA6
           };
           #define SIZE sizeof( chars ) / sizeof( unsigned int )
           void main()
             {
               int
                     i;
               _setmbcp( 932 );
```

"multibyte uppercase character\n",

(_ismbcupper(chars[i])) ? "" : "not ");

for(i = 0; i < SIZE; i++) {
 printf("%#6.4x is %sa valid "</pre>

chars[i],

produces the following:

}

```
0x0031 is not a valid multibyte uppercase character
0 \times 0041 is a valid multibyte uppercase character
0x0061 is not a valid multibyte uppercase character
0x8140 is not a valid multibyte uppercase character
0x8143 is not a valid multibyte uppercase character
0x8254 is not a valid multibyte uppercase character
0x8260 is a valid multibyte uppercase character
0x8279 is a valid multibyte uppercase character
0x8281 is not a valid multibyte uppercase character
0x829a is not a valid multibyte uppercase character
0x989f is not a valid multibyte uppercase character
0x00a6 is not a valid multibyte uppercase character
```

DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS **Systems:**

```
Synopsis:
            #include <mbstring.h>
            int _ismbcxdigit( unsigned int ch );
Description:
           The _ismbcxdigit function tests for any multibyte hexadecimal-digit character '0' through '9' or
            'A' through 'F'. In code page 932, this includes the corresponding double-byte versions of these
            characters.
Returns:
            The _ismbcxdigit function returns a non-zero value when the argument is a hexadecimal-digit
            character. Otherwise, zero is returned.
See Also:
            _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,
            _ismbchira,_ismbckata,_ismbcl0,_ismbcl1,_ismbcl2,_ismbclegal,
            _ismbclower, _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol,
            _ismbcupper, _mbbtype, _mbsbtype, _setmbcp
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned int chars[] = {
                ·.',
                '1',
                'A',
                0x8143, /* double-byte "," */
                0x8183, /* double-byte "<" */
                0x8254, /* double-byte "5" */
                0x8265, /* double-byte "F" */
                0xA6
            };
            #define SIZE sizeof( chars ) / sizeof( unsigned int )
            void main()
              {
                int
                       i;
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                  printf( "%#6.4x is %sa valid "
                         "multibyte hexadecimal digit character\n",
                         ( _ismbcxdigit( chars[i] ) ) ? "" : "not " );
              }
            produces the following:
            0x002e is not a valid multibyte hexadecimal digit character
            0x0031 is a valid multibyte hexadecimal digit character
            0x0041 is a valid multibyte hexadecimal digit character
            0x8143 is not a valid multibyte hexadecimal digit character
            0x8183 is not a valid multibyte hexadecimal digit character
            0x8254 is a valid multibyte hexadecimal digit character
            0x8265 is a valid multibyte hexadecimal digit character
            0x00a6 is not a valid multibyte hexadecimal digit character
```

DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS **Systems:**

Synopsis: #include <math.h>
 int isnan(x);

Description: The isnan macro determines whether its argument *x* is a NaN. First, an argument represented in a

format wider than its semantic type is converted to its semantic type. Then determination is based on

the type of the argument.

The argument *x* must be an expression of real floating type.

Returns: The isnan macro returns a nonzero value if and only if its argument has a NaN value.

See Also: fpclassify, isfinite, isinf, isnormal, signbit

Example: #include <math.h>

```
#include <stdio.h>
void main( void )
{
    printf( "NAN %s a NaN\n",
        isnan( NAN ) ? "is" : "is not" );
}
```

produces the following:

NAN is a NaN

Classification: ISO C

Systems: MACRO

Synopsis: #include <math.h> int isnormal(x);

Description: The isnormal macro determines whether its argument value is normal (neither zero, subnormal,

infinite, nor NaN). First, an argument represented in a format wider than its semantic type is converted

to its semantic type. Then determination is based on the type of the argument.

The argument *x* must be an expression of real floating type.

Returns: The isnormal macro returns a nonzero value if and only if its argument has a normal value.

See Also: fpclassify, isfinite, isinf, isnan, signbit

Example: #include <math.h>

#include <stdio.h> void main(void) printf("zero %s a normal number \n ", isnormal(0.0)? "is": "is not");

produces the following:

zero is not a normal number

Classification: ISO C

Systems: MACRO

```
Synopsis:
             #include <ctype.h>
             int isprint (int c);
             #include <wctype.h>
             int iswprint( wint_t c );
Description:
            The isprint function tests for any printable character including space (''). The isgraph function
            is similar, except that the space character is excluded from the character set being tested.
             The iswprint function is a wide character version of isprint that operates with wide character
             argument.
Returns:
            The isprint function returns a non-zero value when the argument is a printable character. The
             iswprint function returns a non-zero value when the argument is a printable wide character.
             Otherwise, zero is returned.
See Also:
             isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, ispunct,
             isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha,
             iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
             iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
             towctrans
Example:
             #include <stdio.h>
             #include <ctype.h>
             char chars[] = {
                 'Α',
                 0x09,
                 , ,
                 0x7d
             };
             #define SIZE sizeof( chars ) / sizeof( char )
             void main()
             {
                 int
                        i;
                  for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %sa printable character\n",
                                chars[i],
                                ( isprint( chars[i] ) ) ? "" : "not " );
                  }
             produces the following:
            Char A is a printable character
                      is not a printable character
             Char is a printable character
            Char } is a printable character
```

Classification: ISO C

iswprint is ISO C95

Systems: isprint - All, Linux, RDOS, Netware iswprint - All, Linux, RDOS, Netware

```
Synopsis:
            #include <ctype.h>
            int ispunct( int c );
            #include <wctype.h>
            int iswpunct( wint_t c );
Description:
            The ispunct function tests for any punctuation character such as a comma (,) or a period (.).
            The iswpunct function is a wide character version of ispunct that operates with wide character
            argument.
Returns:
            The ispunct function returns a non-zero value when the argument is a punctuation character. The
            iswpunct function returns a non-zero value when the argument is a printable wide character that is
            neither the space wide character nor a wide character for which iswalnum is true. Otherwise, zero is
            returned.
See Also:
            isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
            isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha,
            iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
            iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
            towctrans
Example:
            #include <stdio.h>
            #include <ctype.h>
            char chars[] = {
                 'A',
                 '!',
            };
            #define SIZE sizeof( chars ) / sizeof( char )
            void main()
             {
                 int.
                        i;
                 for( i = 0; i < SIZE; i++ ) {
                      printf( "Char %c is %sa punctuation character\n",
                                chars[i],
                                ( ispunct( chars[i] ) ) ? "" : "not " );
            produces the following:
            Char A is not a punctuation character
            Char! is a punctuation character
            Char . is a punctuation character
            Char , is a punctuation character
            Char: is a punctuation character
```

Char ; is a punctuation character

Classification: ISO C

iswpunct is ISO C95

Systems:

ispunct - All, Linux, RDOS, Netware
iswpunct - All, Linux, RDOS, Netware

Synopsis: #include <ctype.h> int isspace(int c); #include <wctype.h> int iswspace(wint_t c);

Description: The isspace function tests for the following white-space characters:

Constant	Character	
,,	space	
'\f'	form feed	
'\n'	new-line or linefeed	
'\r'	carriage return	
'\t'	horizontal tab	
'\v'	vertical tab	

The iswspace function is a wide character version of isspace that operates with wide character argument.

Returns:

The isspace function returns a non-zero character when the argument is one of the indicated white-space characters. The iswspace function returns a non-zero value when the argument is a wide character that corresponds to a standard white-space character or is one of an implementation-defined set of wide characters for which iswalnum is false. Otherwise, zero is returned.

See Also:

isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans

Example:

```
#include <stdio.h>
#include <ctype.h>
char chars[] = {
    'A',
    0x09,
    , ,
    0x7d
};
#define SIZE sizeof( chars ) / sizeof( char )
void main()
{
    int i;
    for( i = 0; i < SIZE; i++ ) {
       printf( "Char %c is %sa space character\n",
                chars[i],
                ( isspace( chars[i] ) ) ? "" : "not " );
```

produces the following:

Char A is not a space character Char is a space character
Char is a space character
Char } is not a space character

Classification: ISO C

iswspace is ISO C95

Systems: isspace - All, Linux, RDOS, Netware

iswspace - All, Linux, RDOS, Netware

```
Synopsis:
             #include <ctype.h>
             int isupper( int c );
             #include <wctype.h>
             int iswupper( wint_t c );
Description:
             The isupper function tests for any uppercase letter 'A' through 'Z'.
             The iswupper function is a wide character version of isupper that operates with wide character
             argument.
Returns:
             The isupper function returns a non-zero value when the argument is an uppercase letter. The
             iswupper function returns a non-zero value when the argument is a wide character that corresponds
             to an uppercase letter, or if it is one of an implementation-defined set of wide characters for which none
             of iswcntrl, iswdigit, iswpunct, or iswspace is true. Otherwise, zero is returned.
See Also:
             isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
             ispunct, isspace, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha,
             iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
             iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
             towctrans
```

Example:

```
#include <stdio.h>
#include <ctype.h>
char chars[] = {
    'A',
    ′a′,
    ′z′,
    'Z'
};
#define SIZE sizeof( chars ) / sizeof( char )
void main()
{
    int
          i;
    for( i = 0; i < SIZE; i++ ) {
        printf( "Char %c is %san uppercase character\n",
                 chars[i],
                 ( isupper( chars[i] ) ) ? "" : "not " );
    }
produces the following:
Char A is an uppercase character
Char a is not an uppercase character
Char z is not an uppercase character
Char Z is an uppercase character
```

Classification: ISO C

iswupper is ISO C95

Systems: isupper - All, Linux, RDOS, Netware
iswupper - All, Linux, RDOS, Netware

Synopsis: #include <wctype.h>

int iswctype(wint_t wc, wctype_t desc);

Description: The iswctype fund

The iswetype function determines whether the wide character we has the property described by desc. Valid values of desc are defined by the use of the wetype function.

The twelve expressions listed below have a truth-value equivalent to a call to the wide character testing function shown.

Expression	Equivalent
<pre>iswctype(wc, wctype("alnum"))</pre>	iswalnum(wc)
iswctype(wc, wctype("alpha"))	iswalpha(wc)
iswctype(wc, wctype("blank"))	iswblank(wc)
iswctype(wc, wctype("cntrl"))	iswcntrl(wc)
<pre>iswctype(wc, wctype("digit"))</pre>	iswdigit(wc)
iswctype(wc, wctype("graph"))	iswgraph(wc)
iswctype(wc, wctype("lower"))	iswlower(wc)
<pre>iswctype(wc, wctype("print"))</pre>	iswprint(wc)
iswctype(wc, wctype("punct"))	iswpunct(wc)
iswctype(wc, wctype("space"))	iswspace(wc)
iswctype(wc, wctype("upper"))	iswupper(wc)
iswctype(wc, wctype("xdigit"))	iswxdigit(wc)

Returns: The iswctype function returns non-zero (true) if and only if the value of the wide character wc has

the property described by desc.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,

ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum,

iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint,

iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, wctype, wctrans,

towctrans

Example:

```
#include <stdio.h>
#include <wctype.h>
char *types[] = {
    "alnum",
    "alpha",
    "blank",
    "cntrl",
    "digit",
    "graph",
    "lower",
    "print",
    "punct",
    "space",
    "upper",
    "xdigit"
};
void main( void )
    int
            i;
    wint_t wc = 'A';
    for( i = 0; i < 12; i++ )
        if( iswctype( wc, wctype( types[i] ) ) )
            printf( "%s\n", types[i] );
}
produces the following:
alnum
alpha
graph
print
upper
xdigit
```

Classification: ISO C95

All, Linux, RDOS

Systems:

Library Functions and Macros 625

```
Synopsis:
             #include <ctype.h>
             int isxdigit( int c );
             #include <wchar.h>
             int iswxdigit( wint_t c );
Description:
            The isxdigit function tests for any hexadecimal-digit character. These characters are the digits ('0'
             through '9') and the letters ('a' through 'f') and ('A' through 'F').
             The iswxdigit function is a wide character version of isxdigit that operates with wide character
             argument.
Returns:
            The isxdigit function returns a non-zero value when the argument is a hexadecimal-digit character.
             The iswxdigit function returns a non-zero value when the argument is a wide character that
             corresponds to a hexadecimal-digit character. Otherwise, zero is returned.
See Also:
             isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
             ispunct, isspace, isupper, tolower, toupper, isleadbyte, iswalnum, iswalpha,
             iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
             iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans,
             towctrans
Example:
             #include <stdio.h>
             #include <ctype.h>
             char chars[] = {
                 'Α',
                 '5',
                 '$'
             };
              .exmp break
             #define SIZE sizeof( chars ) / sizeof( char )
             void main()
               {
                 int
                        i;
                 for( i = 0; i < SIZE; i++ ) {
                    printf( "Char %c is %sa hexadecimal digit"
                           " character\n", chars[i],
                            ( isxdigit( chars[i] ) ) ? "" : "not " );
               }
             produces the following:
             Char A is a hexadecimal digit character
             Char 5 is a hexadecimal digit character
             Char $ is not a hexadecimal digit character
Classification: ISO C
            iswxdigit is ISO C95
Systems:
             isxdigit - All, Linux, RDOS, Netware
```

iswxdigit - All, Linux, RDOS, Netware

	isxdigit, iswxdigit

Synopsis:

Description:

The itoa function converts the binary integer *value* into the equivalent string in base *radix* notation storing the result in the character array pointed to by *buffer*. A null character is appended to the result. The size of *buffer* must be at least (8 * sizeof(int) + 1) bytes when converting values in base 2. That makes the size 17 bytes on 16-bit machines, and 33 bytes on 32-bit machines. The value of *radix* must satisfy the condition:

```
2 <= radix <= 36
```

If radix is 10 and value is negative, then a minus sign is prepended to the result.

The _itoa function is identical to itoa. Use _itoa for ANSI naming conventions.

The _itow function is a wide character version of itoa except that it produces a wide character string.

Returns: The itoa function returns the pointer to the result.

See Also:

atoi, atol, atoll, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example:

produces the following:

```
2 11000111011101
4 3013131
6 135033
8 30735
10 12765
12 7479
14 491b
16 31dd
```

Classification: WATCOM

_itoa conforms to ANSI naming conventions

Systems: itoa - All, Linux, RDOS, Netware

_itoa - All, Linux, RDOS, Netware _itow - All, Linux, RDOS

```
Synopsis: #include <conio.h>
    int kbhit( void );
    int _kbhit( void );
```

Description: The kbhit function tests whether or not a keystroke is currently available. When one is available, the function getch or getche may be used to obtain the keystroke in question.

With a stand-alone program, the kbhit function may be called continuously until a keystroke is available.

The _kbhit function is identical to kbhit. Use _kbhit for ANSI naming conventions.

Returns: The kbhit function returns zero when no keystroke is available; otherwise, a non-zero value is returned.

See Also: getch, getche, putch, ungetch

Classification: WATCOM

_kbhit conforms to ANSI naming conventions

Systems: kbhit - All, Linux, RDOS, Netware _kbhit - All, RDOS, Netware

```
Synopsis:
             #include <stdlib.h>
             long int labs( long int j );
Description:
            The labs function returns the absolute value of its long-integer argument j.
Returns:
             The labs function returns the absolute value of its argument.
See Also:
             abs, llabs, imaxabs, fabs
Example:
             #include <stdio.h>
             #include <stdlib.h>
             void main( void )
                  long x, y;
                 x = -50000L;
                 y = labs(x);
                 printf( "labs(%ld) = %ld\n", x, y );
             }
             produces the following:
             labs(-50000) = 50000
Classification: ISO C90
```

All, Linux, RDOS, Netware

Systems:

Systems:

Math

Synopsis: #include <math.h> double ldexp(double x, int exp); **Description:** The ldexp function multiplies a floating-point number by an integral power of 2. A range error may occur. **Returns:** The ldexp function returns the value of x times 2 raised to the power exp. See Also: frexp, modf **Example:** #include <stdio.h> #include <math.h> void main() double value; value = 1dexp(4.7072345, 5);printf("%f\n", value); produces the following: 150.631504 Classification: ISO C

```
Synopsis:
            #include <stdlib.h>
            ldiv_t ldiv( long int numer, long int denom );
            typedef struct {
                                      /* quotient */
                 long int quot;
                                       /* remainder */
                 long int rem;
            } ldiv_t;
Description:
            The ldiv function calculates the quotient and remainder of the division of the numerator numer by the
            denominator denom.
Returns:
            The ldiv function returns a structure of type ldiv_t that contains the fields quot and rem, which
            are both of type long int.
See Also:
            div, lldiv, imaxdiv
Example:
            #include <stdio.h>
            #include <stdlib.h>
            void print_time( long int ticks )
                 ldiv_t sec_ticks;
                 ldiv_t min_sec;
                 sec_ticks = ldiv( ticks, 100L );
                min_sec = ldiv( sec_ticks.quot, 60L );
                 printf( "It took %ld minutes and %ld seconds\n",
                          min_sec.quot, min_sec.rem );
            }
            void main( void )
                 print_time( 86712L );
            produces the following:
            It took 14 minutes and 27 seconds
Classification: ISO C90
```

Systems: All, Linux, RDOS, Netware

Description:

The lfind function performs a linear search for the value *key* in the array of *num* elements pointed to by *base*. Each element of the array is *width* bytes in size. The argument *compare* is a pointer to a user-supplied routine that will be called by lfind to determine the relationship of an array element with the *key*. One of the arguments to the *compare* function will be an array element, and the other will be *key*.

The *compare* function should return 0 if *element1* is identical to *element2* and non-zero if the elements are not identical.

Returns:

The lfind function returns a pointer to the array element in *base* that matches *key* if it is found, otherwise NULL is returned indicating that the *key* was not found.

See Also: bsearch, lsearch

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <search.h>
static const char *keywords[] = {
        "auto",
        "break",
        "case",
        "char",
        /* . */
        /* . */
        /* . */
        "while"
};
void main( int argc, const char *argv[] )
  {
    unsigned num = 5;
    extern int compare( const void *, const void *);
    if( argc <= 1 ) exit( EXIT_FAILURE );</pre>
    if( lfind( &argv[1], keywords, &num, sizeof(char **),
                     compare ) == NULL ) {
      printf( "'%s' is not a C keyword\n", argv[1] );
      exit ( EXIT_FAILURE );
    } else {
      printf( "'%s' is a C keyword\n", argv[1] );
      exit ( EXIT_SUCCESS );
  }
```

```
int compare( const void *op1, const void *op2 )
    const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;
     return( strcmp( *p1, *p2 ) );
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware Synopsis: #include <math.h>

double lgamma (double x);

Description: The 1 gamma function returns the natural logarithm of the absolute value of the Gamma function of x.

is called will be located in signgam. This function is not thread-safe if the user is interested in the sign

of Gamma, and lgamma_r should be used instead in multithreaded applications.

Returns: If successful, the return value is the natural logarithm of the absolute value of the Gamma function

computed for x. returns NAN. For arguments of the values positive or negative infinity, the function

returns positive or negative infinity respectively.

See Also: lgamma_r, tgamma

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
   printf( "%f\n", lgamma( 2.0 ) );
   printf( "%d\n", signgam );
}
```

produces the following:

```
0.00000
```

Classification: ISO C99

Systems: Math

Synopsis: #include <math.h>

double lgamma_r(double x, int *y);

Description: The lgamma_r function returns the natural logarithm of the absolute value of the Gamma function of

x. in the location pointed to by y.

Returns: If successful, the return value is the natural logarithm of the absolute value of the Gamma function

computed for x. returns NAN. For arguments of the values positive or negative infinity, the function

returns positive or negative infinity respectively.

See Also: lgamma, tgamma

Example: #include <stdio.h> #include <math.h>

```
void main()
  {
    int i;
    printf( "%f\n", lgamma_r( 2.0, &i ) );
    printf( "%d\n", i );
```

produces the following:

0.00000

Classification: WATCOM

Systems: Math Synopsis: #include <graph.h>
 short _FAR _lineto(short x, short y);

short _FAR _lineto_w(double x, double y);

Description: The _lineto functions draw straight lines. The _lineto function uses the view coordinate system. The _lineto_w function uses the window coordinate system.

The line is drawn from the current position to the point at the coordinates (x,y). The point (x,y) becomes the new current position. The line is drawn with the current plotting action using the current line style and the current color.

Returns: The _lineto functions return a non-zero value when the line was successfully drawn; otherwise, zero is returned.

See Also: _moveto, _setcolor, _setlinestyle, _setplotaction

#include <conio.h>
#include <graph.h>

main()
{
 __setvideomode(_VRES16COLOR);
 __moveto(100, 100);
 __lineto(540, 100);
 __lineto(320, 380);
 __lineto(100, 100);
 getch();
 __setvideomode(_DEFAULTMODE);
}

produces the following:

Classification: PC Graphics

_lineto - DOS _lineto_w - DOS **Systems:**

Systems:

```
Synopsis:
             #include <stdlib.h>
             long long int llabs( long long int j );
Description:
            The llabs function returns the absolute value of its long long integer argument j.
Returns:
             The llabs function returns the absolute value of its argument.
See Also:
             labs, abs, imaxabs, fabs
Example:
             #include <stdio.h>
             #include <stdlib.h>
             void main( void )
                 long long x, y;
                 x = -50000000000;
                 y = llabs(x);
                 printf( "llabs(%lld) = %lld\n", x, y );
             }
             produces the following:
             11abs(-5000000000) = 5000000000
Classification: ISO C99
```

All, Linux, RDOS, Netware

```
Synopsis:
            #include <stdlib.h>
            lldiv_t lldiv( long long int numer,
                             long long int denom );
            typedef struct {
                 long long int quot; /* quotient */
                 long long int rem; /* remainder */
            } lldiv_t;
Description:
            The lldiv function calculates the quotient and remainder of the division of the numerator numer by the
            denominator denom.
Returns:
            The lldiv function returns a structure of type lldiv_t that contains the fields quot and rem,
            which are both of type long long int.
See Also:
            ldiv, div, imaxdiv
Example:
            #include <stdio.h>
            #include <stdlib.h>
            void print_time( long long int ticks )
                 lldiv_t sec_ticks;
                 lldiv_t min_sec;
                 sec_ticks = lldiv( ticks, 100 );
                min_sec = lldiv( sec_ticks.quot, 60 );
                 printf( "It took %lld minutes and %lld seconds\n",
                          min_sec.quot, min_sec.rem );
            }
            void main( void )
                 print_time( 73495132 );
            produces the following:
            It took 12249 minutes and 11 seconds
Classification: ISO C99
            All, Linux, RDOS, Netware
Systems:
```

Synopsis: #include <locale.h>

struct lconv *localeconv(void);

Description: The localeconv function sets the components of an object of type struct lconv with values

appropriate for the formatting of numeric quantities according to the current locale. The components of

the struct lconv and their meanings are as follows:

Component Meaning

char *decimal_point The decimal-point character used to format non-monetary quantities.

*char *thousands_sep* The character used to separate groups of digits to the left of the decimal-point character in formatted non-monetary quantities.

char *grouping A string whose elements indicate the size of each group of digits in formatted

non-monetary quantities.

char *int_curr_symbol The international currency symbol applicable to the current locale. The first

three characters contain the alphabetic international currency symbol in accordance with those specified in *ISO 4217 Codes for the Representation of Currency and Funds*. The fourth character (immediately preceding the null character) is the character used to separate the international currency symbol from

the monetary quantity.

char **currency_symbol* The local currency symbol applicable to the current locale.

char *mon_decimal_point The decimal-point character used to format monetary quantities.

char *mon_thousands_sep The character used to separate groups of digits to the left of the decimal-point character in formatted monetary quantities.

*char *mon_grouping* A string whose elements indicate the size of each group of digits in formatted monetary quantities.

*char *positive_sign* The string used to indicate a nonnegative-valued monetary quantity.

*char *negative_sign* The string used to indicate a negative-valued monetary quantity.

char int_frac_digits The number of fractional digits (those to the right of the decimal-point) to be

displayed in an internationally formatted monetary quantity.

char frac_digits The number of fractional digits (those to the right of the decimal-point) to be

displayed in a formatted monetary quantity.

char p_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or follows the

value for a nonnegative formatted monetary quantity.

char p_sep_by_space Set to 1 or 0 if the currency_symbol respectively is or is not separated by a

space from the value for a nonnegative formatted monetary quantity.

char n_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or follows the

value for a negative formatted monetary quantity.

char n_sep_by_space Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space from the value for a negative formatted monetary quantity.

char p_sign_posn The position of the positive_sign for a nonnegative formatted monetary

quantity.

The position of the positive_sign for a negative formatted monetary char n_sign_posn

quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

Value Meaning CHAR MAX No further grouping is to be performed. The previous element is to be repeatedly used for the remainder of the digits. other The value is the number of digits that comprise the current group. The next element is examined to determine the size of the next group of digits to the left of the current group.

The value of p_sign_posn and n_sign_posn is interpreted as follows:

Value	Meaning
0	Parentheses surround the quantity and currency_symbol.
1	The sign string precedes the quantity and currency_symbol.
2	The sign string follows the quantity and currency_symbol.
3	The sign string immediately precedes the quantity and currency_symbol.
4	The sign string immediately follows the quantity and currency_symbol.

Returns: The localeconv function returns a pointer to the filled-in object.

See Also: setlocale

Example:

```
#include <stdio.h>
#include <locale.h>
void main()
  {
    struct lconv *lc;
    lc = localeconv();
    printf( "*decimal_point (%s)\n",
        lc->decimal_point );
    printf( "*thousands_sep (%s)\n",
        lc->thousands_sep );
```

```
printf( "*int_curr_symbol (%s)\n",
    lc->int_curr_symbol );
printf( "*currency_symbol (%s)\n",
    lc->currency_symbol );
printf( "*mon_decimal_point (%s)\n",
    lc->mon_decimal_point );
printf( "*mon_thousands_sep (%s)\n",
    lc->mon_thousands_sep );
printf( "*mon_grouping (%s)\n",
    lc->mon_grouping );
printf( "*grouping (%s)\n",
    lc->grouping );
printf( "*positive_sign (%s)\n",
    lc->positive_sign );
printf( "*negative_sign (%s)\n",
    lc->negative_sign );
printf( "int_frac_digits (%d)\n",
    lc->int_frac_digits );
printf( "frac_digits (%d)\n",
    lc->frac_digits );
printf( "p_cs_precedes (%d) \n",
    lc->p_cs_precedes );
printf( "p_sep_by_space (%d) n",
    lc->p_sep_by_space );
printf( "n_cs_precedes (%d)\n",
    lc->n_cs_precedes );
printf( "n_sep_by_space (%d)\n",
    lc->n_sep_by_space );
printf( "p_sign_posn (%d) \n",
    lc->p_sign_posn );
printf( "n_sign_posn (%d)\n",
    lc->n_sign_posn );
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

localeconv

Synopsis:

Safer C:

The Safer C Library extension provides the localtime_s function which is a safer alternative to localtime. This newer localtime_s function is recommended to be used instead of the traditional "unsafe" localtime function.

Description:

The localtime functions convert the calendar time pointed to by *timer* into a structure of type tm, of time information, expressed as local time. Whenever localtime is called, the tzset function is also called.

The calendar time is usually obtained by using the time function. That time is Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The _localtime function places the converted time in the tm structure pointed to by *tmbuf*, and the localtime function places the converted time in a static structure that is re-used each time localtime is called.

The time set on the computer with the DOS time command and the DOS date command reflects the local time. The environment variable TZ is used to establish the time zone to which this local time applies. See the section *The TZ Environment Variable* for a discussion of how to set the time zone.

Returns:

The localtime functions return a pointer to a tm structure containing the time information.

See Also:

asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime, gmtime_s, localtime_s, mktime, strftime, time, tzset

Example:

```
#include <stdio.h>
#include <time.h>

void main()
{
    time_t time_of_day;
    auto char buf[26];
    auto struct tm tmbuf;

    time_of_day = time( NULL );
    _localtime( &time_of_day, &tmbuf );
    printf( "It is now: %s", _asctime( &tmbuf, buf ) );
}
```

produces the following:

It is now: Sat Mar 21 15:58:27 1987

Classification: ISO C

_localtime is WATCOM

Systems: localtime - All, Linux, RDOS, Netware

_localtime - All, Linux, RDOS

```
#define __STDC_WANT_LIB_EXT1__ 1
Synopsis:
              #include <time.h>
              struct tm * localtime_s( const time_t * restrict timer,
                                                struct tm * restrict result);
              struct tm {
                 int tm_sec; /* seconds after the minute -- [0,61] */
                 int tm_min; /* minutes after the hour -- [0,59] */
                 int tm_hour; /* hours after midnight -- [0,23] */
int tm_mday; /* day of the month -- [1,31] */
int tm_mon; /* months since January -- [0,11] */
int tm_year; /* years since 1900 */
                 int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday -- [0,6] */
int tm_yday; /* days since January 1 -- [0,365]*/
                 int tm_isdst; /* Daylight Savings Time flag
Constraints:
              If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
              will be invoked and localtime_s will return a non-zero value to indicate an error, or the
              runtime-constraint handler aborts the program.
              Neither timer nor result shall be a null pointer. If there is a runtime-constraint violation, there is no
              attempt to convert the time.
Description:
              The localtime_s function converts the calendar time pointed to by timer into a broken-down time,
              expressed as local time. The broken-down time is stored in the structure pointed to by result.
Returns:
              The localtime_s function returns result, or a null pointer if the specified time cannot be converted
              to local time or there is a runtime-constraint violation.
See Also:
              asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime,
              gmtime_s, localtime, mktime, strftime, time, tzset
Example:
               #define __STDC_WANT_LIB_EXT1__ 1
              #include <stdio.h>
              #include <time.h>
              void main()
                    time_t time_of_day;
                    auto char buf[26];
                    auto struct tm tmbuf;
                    time_of_day = time( NULL );
                    localtime_s( &time_of_day, &tmbuf );
                    asctime_s( buf, sizeof( buf ), &tmbuf );
                    printf( "It is now: %s", buf );
              produces the following:
              It is now: Mon Jan 30 15:28:33 2006
```

Classification: TR 24731

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware **Description:**

The lock function locks *nbytes* amount of data in the file designated by *handle* starting at byte *offset* in the file. This prevents other processes from reading or writing into the locked region until an unlock has been done for this locked region of the file.

Multiple regions of a file can be locked, but no overlapping regions are allowed. You cannot unlock multiple regions in the same call, even if the regions are contiguous. All locked regions of a file should be unlocked before closing a file or exiting the program.

With DOS, locking is supported by version 3.0 or later. Note that SHARE.COM or SHARE.EXE must be installed.

Returns:

The lock function returns zero if successful, and -1 when an error occurs. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also: locking, open, _sopen, unlock

Example:

```
#include <stdio.h>
#include <fcntl.h>
#include <io.h>
void main()
  {
    int handle;
    char buffer[20];
    handle = open( "file", O_RDWR | O_TEXT );
    if ( handle !=-1 ) {
      if( lock( handle, OL, 20L ) ) {
        printf( "Lock failed\n" );
        read( handle, buffer, 20 );
        /* update the buffer here */
        lseek( handle, OL, SEEK_SET );
        write( handle, buffer, 20 );
        unlock( handle, OL, 20L);
      close( handle );
  }
```

Classification: WATCOM

Systems: All, RDOS, Netware

	lock

Synopsis: #include <sys/locking.h>

int locking(int handle, int mode, long nbyte);
int _locking(int handle, int mode, long nbyte);

Description:

The locking function locks or unlocks *nbyte* bytes of the file specified by *handle*. Locking a region of a file prevents other processes from reading or writing the locked region until the region has been unlocked. The locking and unlocking takes place at the current file position. The argument *mode* specifies the action to be performed. The possible values for mode are:

Mode Meaning

_LK_LOCK, **LK_LOCK** Locks the specified region. The function will retry to lock the region after 1 second intervals until successful or until 10 attempts have been made.

_LK_RLCK, LK_RLCK Same action as _LK_LOCK.

_LK_NBLCK, LK_NBLCK Non-blocking lock: makes only 1 attempt to lock the specified region.

_LK_NBRLCK, LK_NBRLCK Same action as _LK_NBLCK.

_LK_UNLCK, **LK_UNLCK** Unlocks the specified region. The region must have been previously locked.

Multiple regions of a file can be locked, but no overlapping regions are allowed. You cannot unlock multiple regions in the same call, even if the regions are contiguous. All locked regions of a file should be unlocked before closing a file or exiting the program.

With DOS, locking is supported by version 3.0 or later. Note that SHARE.COM or SHARE.EXE must be installed.

The _locking function is identical to locking. Use _locking for ANSI naming conventions.

Returns: The locking function returns zero if successful. Otherwise, it returns -1 and errno is set to indicate

the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EACCES Indicates a locking violation (file already locked or unlocked).

EBADF Indicates an invalid file handle.

EDEADLOCK Indicates a locking violation. This error is returned when *mode* is LK_LOCK or

 ${\tt LK_RLCK}$ and the file cannot be locked after 10 attempts.

EINVAL Indicates that an invalid argument was given to the function.

See Also: creat, _dos_creat, _dos_open, lock, open, _sopen, unlock

```
Example:
           #include <stdio.h>
           #include <sys/locking.h>
           #include <share.h>
           #include <fcntl.h>
           #include <io.h>
           void main()
             {
               int handle;
               unsigned nbytes;
               unsigned long offset;
               auto char buffer[512];
               nbytes = 512;
               offset = 1024;
               handle = _sopen( "db.fil", O_RDWR, SH_DENYNO );
               if (handle !=-1) {
                 lseek( handle, offset, SEEK_SET );
                 locking( handle, LK_LOCK, nbytes );
                 read( handle, buffer, nbytes );
                 /* update data in the buffer */
                 lseek( handle, offset, SEEK_SET );
                 write( handle, buffer, nbytes );
                 lseek( handle, offset, SEEK_SET );
                 locking( handle, LK_UNLCK, nbytes );
                 close( handle );
             }
Classification: WATCOM
           _locking conforms to ANSI naming conventions
Systems:
           locking - All, Linux, RDOS
           _locking - All, Linux, RDOS
```

Synopsis: #include <math.h>

double log(double x);

Description: The \log function computes the natural logarithm (base e) of x. A domain error occurs if the argument

is negative. A range error occurs if the argument is zero.

Returns: The log function returns the natural logarithm of the argument. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: exp, log10, log2, pow, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
    {
      printf( "%f\n", log(.5) );
    }
```

produces the following:

-0.693147

Classification: ISO C

Systems: Math

Synopsis: #include <math.h>

double log10 (double x);

Description: The log10 function computes the logarithm (base 10) of x. A domain error occurs if the argument is

negative. A range error occurs if the argument is zero.

Returns: The log10 function returns the logarithm (base 10) of the argument. When the argument is outside the

> permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: exp, log, log2, pow, matherr

Example: #include <stdio.h> #include <math.h>

```
void main()
  {
    printf( "%f\n", log10(.5) );
```

produces the following:

-0.301030

Classification: ISO C

Systems: Math Synopsis: #include <math.h>

double log1p(double x);

Description: The log1p function computes the natural logarithm of one plus x. x this function provides far better

accuracy than using the log function directly.

Returns: If successful, the return value is the logarithm of one plus x. infinity. If the value of x is less than -1.0,

the function returns NAN.

See Also: log

Example: #include <stdio.h>
#include <math.h>

void main()
 {
 printf("%f\n", log1p(0.02));
}

produces the following:

0.019803

Classification: ISO C99

Systems: Math

Synopsis: #include <math.h>

double log2(double x);

Description: The log2 function computes the logarithm (base 2) of x. A domain error occurs if the argument is

negative. A range error occurs if the argument is zero.

Returns: The log2 function returns the logarithm (base 2) of the argument. When the argument is outside the

> permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: exp, log, log10, pow, matherr

Example: #include <stdio.h> #include <math.h>

```
void main()
  {
    printf( "%f\n", log2(.25) );
```

produces the following:

-2.000000

Classification: WATCOM

Systems: Math **Description:** The logb function returns the exponent portion of the argument x as a double.

Returns: If successful, the return value is the exponent of x. infinity.

See Also: ilogb

Example: #include <stdio.h>
#include <math.h>

void main()
{
 printf("%f\n", logb(1024.0));
}

produces the following:

10.0000

Classification: ISO C99

Systems: Math

Synopsis: #include <setjmp.h> void longjmp(jmp_buf env, int return_value);

Description: The long jmp function restores the environment saved by the most recent call to the set jmp function with the corresponding jmp_buf argument.

> It is generally a bad idea to use long jmp to jump out of an interrupt function or a signal handler (unless the signal was generated by the raise function).

Returns: The longjmp function does not return to its caller. After the longjmp function restores the environment, program execution continues as if the corresponding call to set jmp had just returned the value specified by return_value. If the value of return_value is 0, the value returned is 1.

See Also: setjmp

Example: #include <stdio.h> #include <setjmp.h>

```
jmp_buf env;
rtn()
  {
   printf( "about to longjmp\n" );
   longjmp( env, 14 );
  }
void main()
  {
    int ret_val = 293;
   if(0 == (ret_val = setjmp(env)))
     printf( "after setjmp %d\n", ret_val );
     rtn();
     printf( "back from rtn %d\n", ret_val );
    } else {
     printf( "back from longjmp %d\n", ret_val );
  }
```

produces the following:

after setjmp 0 about to longjmp back from longjmp 14

Classification: ISO C

Systems: All, Linux, RDOS, Netware

longjmp			

```
Synopsis:
             #include <stdlib.h>
             unsigned long _lrotl( unsigned long value,
                                       unsigned int shift );
Description:
            The _lrot1 function rotates the unsigned long integer, determined by value, to the left by the number
             of bits specified in shift.
Returns:
            The rotated value is returned.
See Also:
             _lrotr, _rotl, _rotr
Example:
             #include <stdio.h>
             #include <stdlib.h>
             unsigned long mask = 0x12345678;
             void main()
               {
                 mask = lrotl(mask, 4);
                 printf( %081X\n, mask );
             produces the following:
             23456781
Classification: WATCOM
Systems:
             All, Linux, RDOS, Netware
```

```
Synopsis:
             #include <stdlib.h>
             unsigned long _lrotr( unsigned long value,
                                       unsigned int shift );
Description:
            The _lrotr function rotates the unsigned long integer, determined by value, to the right by the
             number of bits specified in shift.
Returns:
            The rotated value is returned.
See Also:
             _lrotl, _rotl, _rotr
Example:
             #include <stdio.h>
             #include <stdlib.h>
             unsigned long mask = 0x12345678;
             void main()
               {
                 mask = lrotr(mask, 4);
                 printf( %081X\n, mask );
             produces the following:
             81234567
Classification: WATCOM
Systems:
             All, Linux, RDOS, Netware
```

```
#include <search.h>
void *lsearch( const void *key, /* object to search for */
              void *base, /* base of search data
                             /* number of elements
              unsigned *num,
                                                       */
                              /* width of each element*/
              unsigned width,
              int (*compare) ( const void *element1,
                              const void *element2 ) );
```

Description:

The lsearch function performs a linear search for the value key in the array of num elements pointed to by base. Each element of the array is width bytes in size. The argument compare is a pointer to a user-supplied routine that will be called by Isearch to determine the relationship of an array element with the key. One of the arguments to the compare function will be an array element, and the other will

The compare function should return 0 if element1 is identical to element2 and non-zero if the elements are not identical.

Returns:

If the key value is not found in the array, then it is added to the end of the array and the number of elements is incremented. The 1search function returns a pointer to the array element in base that matches key if it is found, or the newly added key if it was not found.

See Also: bsearch, lfind

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <search.h>
void main( int argc, const char *argv[] )
  {
    int i;
   unsigned num = 0;
   char **array = (char **) calloc( argc, sizeof(char **) );
   extern int compare ( const void *, const void * );
    for(i = 1; i < argc; ++i) {
      lsearch( &argv[i], array, &num, sizeof(char **),
                  compare );
    for(i = 0; i < num; ++i) {
      printf( "%s\n", array[i] );
  }
int compare( const void *op1, const void *op2 )
  {
    const char **p1 = (const char **) op1;
    const char **p2 = (const char **) op2;
    return( strcmp( *p1, *p2 ) );
/* With input: one two one three four */
```

produces the following:

Isearch

one two three four

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

```
#include <stdio.h>
#include <io.h>
off_t lseek( int handle, off_t offset, int origin );
off_t _lseek( int handle, off_t offset, int origin );
__int64 _lseeki64( int handle, __int64 offset, int origin );
```

Description:

The lseek function sets the current file position at the operating system level. The file is referenced using the file handle handle returned by a successful execution of one of the creat, dup, dup2, open or _sopen functions. The value of offset is used as a relative offset from a file position determined by the value of the argument origin.

The new file position is determined in a manner dependent upon the value of *origin* which may have one of three possible values (defined in the <stdio.h> header file):

Origin	Definition
SEEK_SET	The new file position is computed relative to the start of the file. The value of <i>offset</i> must not be negative.
SEEK_CUR	The new file position is computed relative to the current file position. The value of <i>offset</i> may be positive, negative or zero.
SEEK_END	The new file position is computed relative to the end of the file.

An error will occur if the requested file position is before the start of the file.

The requested file position may be beyond the end of the file. On POSIX-conforming systems, if data is later written at this point, subsequent reads of data in the gap will return bytes whose value is equal to zero until data is actually written in the gap. On systems such DOS and OS/2 that are not POSIX-conforming, data that are read in the gap have arbitrary values.

Some versions of MS-DOS allow seeking to a negative offset, but it is not recommended since it is not supported by other platforms and may not be supported in future versions of MS-DOS.

The lseek function does not, in itself, extend the size of a file (see the _chsize function).

The _lseek function is identical to lseek. Use _lseek for ANSI naming conventions.

The _lseeki64 function is identical to lseek except that it accepts a 64-bit value for the offset argument.

The lseek function can be used to obtain the current file position (the _tell function is implemented in terms of Iseek). This value can then be used with the lseek function to reset the file position to that point in the file:

```
off_t file_posn;
int handle;

/* get current file position */
file_posn = lseek( handle, OL, SEEK_CUR);
   /* or */
file_posn = _tell( handle );

/* return to previous file position */
file_posn = lseek( handle, file_posn, SEEK_SET);
```

If all records in the file are the same size, the position of the n'th record can be calculated and read, as illustrated in the example included below. The function in this example assumes records are numbered starting with zero and that rec_size contains the size of a record in the file (including the record-separator character). (including the carriage-return character in text files).

Returns:

If successful, the current file position is returned in a system-dependent manner. A value of 0 indicates the start of the file.

If an error occurs in lseek (-1L) is returned.

If an error occurs in _lseeki64, (-1I64) is returned.

Meaning

invalid.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Errors:

Constant

When an error has occurred, errno contains a value indicating the type of error that has been detected.

```
EBADF The handle argument is not a valid file handle.EINVAL The origin argument is not a proper value, or the resulting file offset would be
```

See Also:

_chsize, close, creat, dup, dup2, _eof, exec..., fdopen, _filelength, fileno, fstat, _grow_handles, isatty, open, read, _setmode, _sopen, stat, _tell, write, umask

Example:

```
void main( void )
               int handle;
               int size_read;
               char buffer[80];
               /* open a file for input */
               handle = open( "file", O_RDONLY | O_TEXT );
               if (handle !=-1) {
                    /* read a piece of the text */
                    size_read = read_record( handle, 1, 80, buffer );
                    /* test for error */
                    if ( size\_read == -1 ) {
                        printf( "Error reading file\n" );
                    } else {
                        printf( %.80s\n, buffer );
                    /* close the file */
                    close( handle );
           }
Classification: POSIX 1003.1
           _lseek conforms to ANSI naming conventions
           _lseeki64 is WATCOM
Systems:
           lseek - All, Linux, RDOS, Netware
           _lseek - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
           _lseeki64 - All, Linux
```

Description:

The lltoa function converts the binary integer *value* into the equivalent string in base *radix* notation storing the result in the character array pointed to by *buffer*. A null character is appended to the result. The size of *buffer* must be at least 65 bytes when converting values in base 2. The value of *radix* must satisfy the condition:

```
2 <= radix <= 36
```

If radix is 10 and value is negative, then a minus sign is prepended to the result.

The _lltoa function is identical to lltoa. Use _lltoa for ANSI naming conventions.

The _lltow function is a wide character version of lltoa except that it produces a wide character string.

Returns: The lltoa function returns a pointer to the result.

See Also: atoi, atol, atoll, itoa, ltoa, sscanf, strtol, strtoll, strtoul, strtoull,

strtoimax, strtoumax, ultoa, ulltoa, utoa

Example:

produces the following:

```
2 \ 1001001100011101101101001001101
```

4 1021203231221031

6 322243004113

8 11143555115

10 1234098765

12 2a5369639

14 b9c8863b

16 498eda4d

Classification: WATCOM

_lltoa conforms to ANSI naming conventions

Systems: lltoa - All, Linux, RDOS, Netware

_lltoa - All, Linux, RDOS, Netware _lltow - All, Linux, RDOS

Description:

The ltoa function converts the binary integer *value* into the equivalent string in base *radix* notation storing the result in the character array pointed to by *buffer*. A null character is appended to the result. The size of *buffer* must be at least 33 bytes when converting values in base 2. The value of *radix* must satisfy the condition:

```
2 <= radix <= 36
```

If radix is 10 and value is negative, then a minus sign is prepended to the result.

The _ltoa function is identical to ltoa. Use _ltoa for ANSI naming conventions.

The _ltow function is a wide character version of ltoa except that it produces a wide character string.

Returns: The ltoa function returns a pointer to the result.

See Also: atoi, atol, atoll, itoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull,

strtoimax, strtoumax, ultoa, ulltoa, utoa

Example:

produces the following:

2 11000111011101

4 3013131

6 135033

8 30735

10 12765

12 7479

14 491b

16 31dd

Classification: WATCOM

_ltoa conforms to ANSI naming conventions

Systems: ltoa - All, Linux, RDOS, Netware

_ltoa - All, Linux, RDOS, Netware _ltow - All, Linux, RDOS

Synopsis: int main(void);

Description:

main is a user-supplied function where program execution begins. The command line to the program is broken into a sequence of tokens separated by blanks and are passed to main as an array of pointers to character strings in the parameter argv. The number of arguments found is passed in the parameter argc. The first element of argv will be a pointer to a character string containing the program name. The last element of the array pointed to by argv will be a NULL pointer (i.e. argv[argc] will be NULL). Arguments that contain blanks can be passed to main by enclosing them within double quote characters (which are removed from that element in the argv vector. A literal double quote character can be passed by preceding it with a backslash. A literal backslash followed by an enclosing double quote character can be passed as a pair of backslash characters and a double quote character.

Example:

```
echo "he\"l\lo world\\"
passes the single argument he"No world\
```

The command line arguments can also be obtained in its original format by using the getend function.

Alternatively, the main function can be declared to return void (i.e., no return value). In this case, you will not be able to return an exit code from main using a return statement but must use the exit function to do so.

The wmain function is a user-defined wide character version of main that operates with wide character strings. If this function is present in the application, then it will be called by the run-time system startup code (and the main function, if present, will not be called).

As with main the wmain function can be declared to return void and the same considerations will apply.

The WinMain function is called by the system as the initial entry point for a Windows-based application. The wWinMain function is a wide character version of WinMain.

Parameters	Meaning					
hInstance	Identifies the current instance of the application.					
hPrevInstance	Identifies the previous instance of the application. For an application written for Win32, this parameter is always NULL.					
lpszCmdLine	Points to a null-terminated string specifying the command line for the application.					
nCmdShow	Specifies how the window is to be shown. This parameter can be one of the following values:					

Value	Meaning
SW_HIDE	Hides the window and activates another window.
SW_MINIMIZE	Minimizes the specified window and activates the top-level window in the system's list.
SW_RESTORE	Activates and displays a window. If the window is minimized or maximized, Windows restores it to its original size and position (same as SW_SHOWNORMAL).
SW_SHOW	Activates a window and displays it in its current size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a maximized window.

SW_SHOWMINIMIZED Activates a window and displays it as an icon.

SW_SHOWMINNOACTIVE Displays a window as an icon. The active window remains active.

Displays a window in its current state. The active window remains SW_SHOWNA active.

SW_SHOWNOACTIVATE Displays a window in its most recent size and position. The active window remains active.

SW_SHOWNORMAL Activates and displays a window. If the window is minimized or maximized, Windows restores it to its original size and position (same as SW_RESTORE).

The WinMain function initializes an application, and then performs a message retrieval-and-dispatch loop that is the top-level control structure for the remainder of the application's execution. The loop terminates when a WM_QUIT message is received. At that point, WinMain exits the application, returning the value passed in the WM_QUIT message's wParam parameter. If WM_QUIT was received as a result of calling PostQuitMessage, the value of wParam is the value of the PostQuitMessage function's nExitCode parameter.

Returns: The main and wmain functions return an exit code to the calling program (usually the operating system).

If the WinMain function terminates before entering the message loop, it should return 0. Otherwise, it should terminate when it receives a WM_QUIT message and return the exit value contained in that message's wParam parameter.

See Also: abort, atexit, _bgetcmd, exec..., exit, _Exit, _exit, getcmd, getenv, putenv, spawn..., system, _wsystem

Example:

```
#include <stdio.h>
           int main( int argc, char *argv[] )
               int i;
               for(i = 0; i < argc; ++i) {
                   printf( "argv[%d] = %s\n", i, argv[i] );
               return(0);
           #ifdef _WIDE_
           int wmain( int wargc, wchar_t *wargv[] )
           {
               for(i = 0; i < wargc; ++i) {
                   wprintf( L"wargv[%d] = %s\n", i, wargv[i] );
               return(0);
           #endif
           produces the following:
           argv[0] = C:\WATCOM\DEMO\MYPGM.EXE
           argv[1] = hhhhh
           argv[2] = another arg
           when the program mypgm is executed with the command
           mypgm hhhhh "another arg"
           A sample Windows main program is shown below.
           int PASCAL WinMain ( HINSTANCE this_inst, HINSTANCE prev_inst,
                                LPSTR cmdline, int cmdshow)
           {
               MSG
                            msq;
               if( !prev_inst ) {
                    if( !FirstInstance( this_inst ) ) return( 0 );
               if( !AnyInstance( this_inst, cmdshow ) ) return( 0 );
                 GetMessage returns FALSE when WM_QUIT is received
               while( GetMessage( &msg, NULL, NULL, NULL ) ) {
                   TranslateMessage( &msg );
                   DispatchMessage( &msg );
               return( msg.wParam );
           }
Classification: ISO C
           wmain is WATCOM
           WinMain is WATCOM
           wWinMain is WATCOM
```

Systems: main - All, Netware

wmain - Win32, OS/2-32

WinMain - Windows, Win386, Win32

wWinMain - Win32

Synopsis: #incl

Description:

The _makepath function constructs a full pathname from the components consisting of a drive letter, directory path, file name and file name extension. The full pathname is placed in the buffer pointed to by the argument *path*.

The _wmakepath function is a wide character version of _makepath that operates with wide character strings.

The maximum size required for each buffer is specified by the manifest constants _MAX_PATH, _MAX_DRIVE, _MAX_DIR, _MAX_FNAME, and _MAX_EXT which are defined in <stdlib.h>.

drive

The *drive* argument points to a buffer containing the drive letter (A, B, C, etc.) followed by an optional colon. The _makepath function will automatically insert a colon in the full pathname if it is missing. If *drive* is a NULL pointer or points to an empty string, no drive letter or colon will be placed in the full pathname.

dir

The *dir* argument points to a buffer containing just the pathname. Either forward slashes (/) or backslashes (\) may be used. The trailing slash is optional. The _makepath function will automatically insert a trailing slash in the full pathname if it is missing. If *dir* is a NULL pointer or points to an empty string, no slash will be placed in the full pathname.

fname

The *fname* argument points to a buffer containing the base name of the file without any extension (suffix).

ext

The *ext* argument points to a buffer containing the filename extension or suffix. A leading period (.) is optional. The _makepath routine will automatically insert a period in the full pathname if it is missing. If *ext* is a NULL pointer or points to an empty string, no period will be placed in the full pathname.

Returns: The _makepath function returns no value.

_fullpath, _splitpath

Example:

See Also:

```
#include <stdio.h>
#include <stdlib.h>
void main()
  {
    char full_path[ _MAX_PATH ];
    char drive[ _MAX_DRIVE ];
    char dir[ _MAX_DIR ];
    char fname[ _MAX_FNAME ];
    char ext[ _MAX_EXT ];
    _makepath(full_path,"c","watcomc\\h\\","stdio","h");
    printf( "Full path is: %s\n\n", full_path );
   _splitpath( full_path, drive, dir, fname, ext );
   printf( "Components after \_splitpath\\n" );
   printf( "drive: %s\n", drive );
   printf( "dir: %s\n", dir );
   printf( "fname: %s\n", fname );
   printf( "ext: %s\n", ext );
produces the following:
Full path is: c:watcomc\h\stdio.h
Components after _splitpath
drive: c:
dir: watcomc\h\
fname: stdio
ext: .h
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: WATCOM

```
Systems:
           _makepath - All, Linux, RDOS, Netware
           _wmakepath - All, Linux
```

Synopsis: #include <stdlib.h> For ISO C compatibility (malloc only) #include <malloc.h> Required for other function prototypes void *malloc(size_t size); void __based(void) *_bmalloc(__segment seg, size_t size); void __far *_fmalloc(size_t size); void __near *_nmalloc(size_t size);

Description: The malloc functions allocate space for an object of *size* bytes. Nothing is allocated when the *size* argument has a value of zero.

Each function allocates memory from a particular heap, as listed below:

Function Heap
 malloc Depends on data model of the program
 _bmalloc Based heap specified by seg value
 _fmalloc Far heap (outside the default data segment)
 _nmalloc Near heap (inside the default data segment)

In a small data memory model, the malloc function is equivalent to the _nmalloc function; in a large data memory model, the malloc function is equivalent to the _fmalloc function.

Returns:

The malloc functions return a pointer to the start of the allocated memory. The malloc, _fmalloc and _nmalloc functions return NULL if there is insufficient memory available or if the requested size is zero. The _bmalloc function returns _NULLOFF if there is insufficient memory available or if the requested size is zero.

See Also:

calloc Functions, _expand Functions, free Functions, halloc, hfree, _msize Functions, realloc Functions, sbrk

```
Example:
```

```
void main()
{
   char *buffer;

  buffer = (char *)malloc( 80 );
  if( buffer != NULL ) {

    /* body of program */

    free( buffer );
  }
}
```

Classification: ISO C

_bmalloc is WATCOM _fmalloc is WATCOM _nmalloc is WATCOM

#include <stdlib.h>

Systems: mal

malloc - All, Linux, RDOS, Netware

```
_bmalloc - DOS/16, Windows, OS/2 1.x(all)
_fmalloc - DOS/16, Windows, OS/2 1.x(all)
_nmalloc - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
OS/2-32, Linux, RDOS
```

Synopsis: #include <math.h>

int matherr(struct _exception *err_info);

Description:

The matherr function is invoked each time an error is detected by functions in the math library. The default matherr function supplied in the library returns zero which causes an error message to be displayed upon stderr and error to be set with an appropriate error value. An alternative version of this function can be provided, instead of the library version, in order that the error handling for mathematical errors can be handled by an application.

A program may contain a user-written version of matherr to take any appropriate action when an error is detected. When zero is returned, an error message will be printed upon stderr and error will be set as was the case with the default function. When a non-zero value is returned, no message is printed and error is not changed. The value err_info->retval is used as the return value for the function in which the error was detected.

The matherr function is passed a pointer to a structure of type struct _exception which contains information about the error that has been detected:

The type field will contain one of the following values:

Value	Meaning
DOMAIN	A domain error has occurred, such as sqrt (-1e0) .
SING	A singularity will result, such as pow ($0e0, -2$).
OVERFLOW	An overflow will result, such as pow(10e0, 100).
UNDERFLOW	An underflow will result, such as pow (10e0, -100).
TLOSS	Total loss of significance will result, such as $\exp(1000)$.
PLOSS	Partial loss of significance will result, such as sin (10e70).

The name field points to a string containing the name of the function which detected the error. The fields arg1 and arg2 (if required) give the values which caused the error. The field retval contains the value which will be returned by the function. This value may be changed by a user-supplied version of the matherr function.

Returns:

The matherr function returns zero when an error message is to be printed and a non-zero value otherwise.

```
Example:
           #include <stdio.h>
           #include <stdlib.h>
           #include <string.h>
           #include <math.h>
           /* Demonstrate error routine in which negative */
           /* arguments to "sqrt" are treated as positive */
           void main()
               printf( ^{\ensuremath{\text{e}}\n}, sqrt( -5e0 ) );
               exit( 0 );
           int matherr( struct _exception *err )
               if( strcmp( err->name, "sqrt" ) == 0 ) {
                 if( err->type == DOMAIN ) {
                   err->retval = sqrt( -(err->arg1) );
                   return(1);
                 } else
                   return(0);
               } else
                 return(0);
```

Classification: WATCOM

Systems: Math

```
Synopsis: \#include <stdlib.h> \#define \max(a,b) (((a) > (b)) ? (a) : (b))
```

Description: The max macro will evaluate to be the greater of two values. It is implemented as follows.

```
#define max(a,b) (((a) > (b)) ? (a) : (b))
```

Returns: The max macro will evaluate to the larger of the two values passed.

See Also: min

```
Example: #include <stdio.h>
#include <stdlib.h>

void main()
{
    int a;

    /*
        * The following line will set the variable "a" to 10
        * since 10 is greater than 1.
        */
        a = max(1, 10);
        printf( "The value is: %d\n", a);
}
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <mbstring.h> unsigned int _mbbtombc(unsigned int ch);

Description: The _mbbt ombc function returns the double-byte character equivalent to the single-byte character ch.

The single-byte character must be in the range 0x20 through 0x7E or 0xA1 through 0xDF.

Note: This function was called hantozen in earlier versions.

Returns: The _mbbt ombc function returns ch if there is no equivalent double-byte character; otherwise

_mbbtombc returns a double-byte character.

See Also: _getmbcp, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha,

> _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h>

```
#include <mbctype.h>
#include <mbstring.h>
char alphabet[] = {
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
};
void main()
  {
    int
                    i;
   unsigned short c;
   _setmbcp( 932 );
    for(i = 0; i < sizeof(alphabet) - 1; i++) {
      c = _mbbtombc( alphabet[ i ] );
     printf( "%c%c", c>>8, c );
   printf( "\n" );
```

produces the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Classification: WATCOM

DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS **Systems:**

Synopsis: #include <mbstring.h>

#include <mbctype.h> (for manifest constants)
int _mbbtype(unsigned char ch, int type);

Description: The _mbbtype function determines the type of a byte in a multibyte character. If the value of *type* is

any value except 1, _mbbtype tests for a valid single-byte or lead byte of a multibyte character. If the

value of *type* is 1, _mbbtype tests for a valid trail byte of a multibyte character.

Note: A similar function was called chkctype in earlier versions.

Returns: If the value of *type* is not 1, the _mbbtype function returns one of the following values:

_MBC_SINGLE the character is a valid single-byte character (e.g., 0x20 - 0x7E, 0xA1 - 0xDF

in code page 932)

_MBC_LEAD the character is valid lead byte character (e.g., 0x81 - 0x9F, 0xE0 - 0xFC in

code page 932)

_MBC_ILLEGAL the character is an illegal character (e.g., any value except 0x20 - 0x7E, 0xA1

- 0xDF, 0x81 - 0x9F, 0xE0 - 0xFC in code page 932)

If the value of *type* is 1, the _mbbtype function returns one of the following values:

_MBC_TRAIL the character is a valid trailing byte character (e.g., 0x40 - 0x7E, 0x80 - 0xFC

in code page 932)

_MBC_ILLEGAL the character is an illegal character (e.g., any character except a valid trailing

byte character)

See Also: _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,

_ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal, _ismbclower, _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol,

_ismbcupper, _ismbcxdigit, _mbsbtype, _setmbcp

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const char *types[4] = {
    "ILLEGAL",
    "SINGLE",
    "LEAD",
    "TRAIL"
};
const unsigned char chars[] = {
    ' . ' ,
    111,
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
               /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xDF,
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
#define SIZE sizeof( chars ) / sizeof( unsigned char )
void main()
 {
    int
            i, j, k;
    _setmbcp( 932 );
    k = 0;
    for( i = 0; i < SIZE; i++ ) {
      j = _mbbtype( chars[i], k );
      printf( "%s\n", types[ 1 + j ] );
      if(j == \_MBC\_LEAD)
        k = 1;
      else
        k = 0;
  }
```

produces the following:

SINGLE SINGLE SINGLE SINGLE LEAD TRAIL LEAD TRAIL LEAD TRAIL LEAD TRAIL SINGLE SINGLE SINGLE LEAD TRAIL ILLEGAL

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

```
Synopsis:
           #include <mbstring.h>
           int _mbccmp( const unsigned char *s1,
                        const unsigned char *s2 );
           int _fmbccmp( const unsigned char __far *s1,
                         const unsigned char __far *s2 );
```

Description: The _mbccmp function compares one multibyte character from s1 to one multibyte character from s2.

> The _fmbccmp function is a data model independent form of the _mbccmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The _mbccmp and _fmbccmp functions return the following values.

Value	Meaning
< 0	multibyte character at $s1$ less than multibyte character at $s2$
0	multibyte character at s1 identical to multibyte character at s2
> 0	multibyte character at s1 greater than multibyte character at s2

See Also:

_mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs, wcstomb, wctomb_s

Example:

```
#include <mbctype.h>
#include <mbstring.h>
unsigned char mb1[2] = {
    0x81, 0x43
};
unsigned char mb2[2] = {
    0x81, 0x42
};
void main()
  {
    int
            i;
    _setmbcp( 932 );
    i = \underline{mbccmp(mb1, mb2)};
    if(i < 0)
        printf( "Less than\n" );
    else if ( i == 0 )
        printf( "Equal to\n" );
    else
        printf( "Greater than\n" );
  }
```

produces the following:

#include <stdio.h>

_mbccmp, _fmbccmp

Greater than

Classification: ISO C

_fmbccmp is WATCOM

Systems: _mbccmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbccmp - DOS, Windows, OS/2 1.x(all)

```
void _mbccpy( unsigned char *dest,
                            const unsigned char *ch );
            void _fmbccpy( unsigned char __far *dest,
                             const unsigned char __far *ch );
Description:
            The _mbccpy function copies one multibyte character from ch to dest.
            The _fmbccpy function is a data model independent form of the _mbccpy function that accepts far
            pointer arguments. It is most useful in mixed memory model applications.
Returns:
            The _mbccpy function does not return a value.
See Also:
            _mbccmp, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira,
            _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc,
            mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb,
            wcrtomb_s, wcsrtombs_s, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb,
            wctomb_s
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            unsigned char mb1[2] = {
                 0x00, 0x00
            };
            unsigned char mb2[4] = {
                 0x81, 0x42, 0x81, 0x41
            } ;
            void main()
              {
                 _setmbcp( 932 );
                printf( \%#6.4x\n", mb1[0] << 8 | mb1[1] );
                 _mbccpy( mb1, mb2 );
                printf( "%#6.4x\n", mb1[0] << 8 | mb1[1] );</pre>
              }
            produces the following:
              0000
            0x8142
Classification: WATCOM
            _mbccpy - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,
Systems:
            _fmbccpy - DOS, Windows, OS/2 1.x(all)
```

#include <mbstring.h>

_mbccpy, _fmbccpy						

```
#include <mbstring.h>
int _mbcicmp( const unsigned char *s1,
              const unsigned char *s2 );
int _fmbcicmp( const unsigned char __far *s1,
               const unsigned char __far *s2 );
```

Description:

The function compares one multibyte character from s1 to one multibyte character from s2 using a case-insensitive comparison. Uppercase character from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The _fmbcicmp function is a data model independent form of the _mbcicmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The function returns the following values.

Value	Meaning
< 0	multibyte character at $s1$ less than multibyte character at $s2$
0	multibyte character at $s1$ identical to multibyte character at $s2$
> 0	multibyte character at $s1$ greater than multibyte character at $s2$

See Also:

_mbccmp, _mbccpy, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs_s, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned char mb1[2] = {
    0x41, 0x42
};
unsigned char mb2[2] = {
    0x61, 0x43
};
void main()
  {
    int
            i;
    _setmbcp( 932 );
    i = \underline{mbcicmp(mb1, mb2)};
    if(i < 0)
        printf( "Less than\n" );
    else if( i == 0 )
        printf( "Equal to\n" );
    else
        printf( "Greater than\n" );
  }
```

_mbcicmp, _fmbcicmp

produces the following:

Equal to

Classification: WATCOM

Systems: _mbcicmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbcicmp - DOS, Windows, OS/2 1.x(all)

Synopsis: #include <mbstring.h> unsigned int _mbcjistojms(unsigned int ch);

Description:

The _mbcjistojms converts a JIS character set code to a shift-JIS character set code. If the argument is out of range, _mbcjistojms returns 0. Valid JIS double-byte characters are those in which the first and second byte fall in the range 0x21 through 0x7E. This is summarized in the following diagram.

```
[ 1st byte ] [ 2nd byte ]
0x21-0x7E
               0x21-0x7E
```

Note: The JIS character set code is a double-byte character set defined by JIS, the Japan Industrial Standard Institutes. Shift-JIS is another double-byte character set. It is defined by Microsoft for personal computers and is based on the JIS code. The first byte and the second byte of JIS codes can have values less than 0x80. Microsoft has designed shift-JIS code so that it can be mixed in strings with single-byte alphanumeric codes. Thus the double-byte shift-JIS codes are greater than or equal to 0x8140.

Note: This function was called jistojms in earlier versions.

Returns: The _mbcjistojms function returns zero if the argument is not in the range; otherwise, the

corresponding shift-JIS code is returned.

See Also: _getmbcp, _mbbtombc, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
void main()
  {
    unsigned short c;
    _setmbcp( 932 );
    c = \_mbcjistojms(0x2152);
    printf( \%#6.4x\n", c );
```

produces the following:

0x8171

Classification: WATCOM

Systems: All, Linux, RDOS

_mbcjistojms			

Synopsis: #include <mbstring.h>

unsigned int _mbcjmstojis(unsigned int ch);

Description: The _mbcjmstojis converts a shift-JIS character set code to a JIS character set code. If the argument is out of range, _mbcjmstojis returns 0. Valid shift-JIS double-byte characters are those in which the first byte falls in the range 0x81 through 0x9F or 0xE0 through 0xFC and whose second byte falls in the range 0x40 through 0x7E or 0x80 through 0xFC. This is summarized in the following

diagram.

```
[ 1st byte ] [ 2nd byte ]
0x81 - 0x9F
                0x40-0xFC
                except 0x7F
    or
0xE0-0xFC
```

Note: The JIS character set code is a double-byte character set defined by JIS, the Japan Industrial Standard Institutes. Shift-JIS is another double-byte character set. It is defined by Microsoft for personal computers and is based on the JIS code. The first byte and the second byte of JIS codes can have values less than 0x80. Microsoft has designed shift-JIS code so that it can be mixed in strings with single-byte alphanumeric codes. Thus the double-byte shift-JIS codes are greater than or equal to 0x8140.

Note: This function was called jmstojis in earlier versions.

Returns: The _mbc jmstojis function returns zero if the argument is not in the range; otherwise, the

corresponding shift-JIS code is returned.

See Also: _getmbcp, _mbbtombc, _mbcjistojms, _mbctombb, _ismbbalnum, _ismbbalpha,

_ismbbqraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint,

_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,

_mbcjistojms, _mbctombb, _mbbtype, _mbsbtype, _setmbcp

Example: #include <stdio.h>

#include <mbctype.h> #include <mbstring.h>

void main() { unsigned short c; _setmbcp(932); $c = _mbcjmstojis(0x8171);$ printf("%#6.4x\n", c); }

produces the following:

0x2152

Classification: WATCOM

Systems: All, Linux, RDOS

_mbcjmstojis			
			_

```
Synopsis:
            #include <mbstring.h>
```

```
size_t _mbclen( const unsigned char *ch );
size_t _fmbclen( const unsigned char __far *ch );
```

Description:

The _mbclen function determines the number of bytes comprising the multibyte character pointed to by ch.

The _fmbclen function is a data model independent form of the _mbclen function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

If ch is a NULL pointer, the _mbclen function returns zero if multibyte character encodings do not have state-dependent encoding, and non-zero otherwise. If ch is not a NULL pointer, the _mbclen function returns:

Value Meaning if ch points to the null character if ch points to a single-byte character 2 if *ch* points to a double-byte character

-1 if ch does not point to a valid multibyte character

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs_s, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb s

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned char chars[] = {
   ' . ' ,
   11',
   'A',
   0x81,0x40, /* double-byte space */
   0x82,0x60, /* double-byte A */
   0x82,0xA6, /* double-byte Hiragana */
   0x83,0x42, /* double-byte Katakana */
             /* single-byte Katakana punctuation */
   0xA1,
             /* single-byte Katakana alphabetic */
   0xA6,
   /* null character */
   0x00
};
```

```
void main()
             {
                       i, j;
               int
               _setmbcp( 932 );
               for(i = 0; i < sizeof(chars); i += j) {
                   j = _mbclen( &chars[i] );
                   printf( "%d bytes in character\n", j );
             }
           produces the following:
           1 bytes in character
           1 bytes in character
           1 bytes in character
           1 bytes in character
           2 bytes in character
           2 bytes in character
           2 bytes in character
           2 bytes in character
           1 bytes in character
           1 bytes in character
           1 bytes in character
           2 bytes in character
           1 bytes in character
Classification: WATCOM
Systems:
           _mbclen - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,
           _fmbclen - DOS, Windows, OS/2 1.x(all)
```

Synopsis: #include <mbstring.h> unsigned int _mbctolower(unsigned int c);

Description: The _mbctolower function converts an uppercase multibyte character to an equivalent lowercase multibyte character.

> For example, in code page 932, this includes the single-byte uppercase letters A-Z and the double-byte uppercase characters such that:

```
0x8260 \le c \le 0x8279
```

0x8264

};

}

Note: This function was called jtolower in earlier versions.

Returns: The _mbctolower function returns the argument value if the argument is not a double-byte uppercase character; otherwise, the equivalent lowercase character is returned.

See Also: _mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example: #include <stdio.h> #include <mbctype.h> #include <mbstring.h> unsigned int chars[] = { /* single-byte A */ 'Α', /* single-byte B */ 'B', ′C′, /* single-byte C */ /* single-byte D */ 'D', /* single-byte E */ Έ', /* double-byte A */ 0x8260, 0x8261, /* double-byte B */ 0x8262, /* double-byte C */ /* double-byte D */ 0x8263,

> #define SIZE sizeof(chars) / sizeof(unsigned int) void main() { int i; unsigned int c; _setmbcp(932); for(i = 0; i < SIZE; i++) { c = _mbctolower(chars[i]); if(c > 0xff)printf("%c%c", c>>8, c); else printf("%c", c); printf("\n");

/* double-byte E */

_mbctolower

produces the following:

abcde a b c d e

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis: #include <mbstring.h> unsigned int _mbctoupper(unsigned int c);

Description: The _mbctoupper function converts a lowercase multibyte character to an equivalent uppercase multibyte character.

> For example, in code page 932, this includes the single-byte lowercase letters a-z and the double-byte lowercase characters such that:

```
0x8281 \le c \le 0x829A
```

Note: This function was called jtoupper in earlier versions.

Returns: The _mbctoupper function returns the argument value if the argument is not a double-byte lowercase character; otherwise, the equivalent uppercase character is returned.

See Also: _mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example: #include <stdio.h> #include <mbctype.h> #include <mbstring.h> unsigned int chars[] = { /* single-byte a */ 'a', /* single-byte b */ 'b', 'c', /* single-byte c */ /* single-byte d */ 'd', /* single-byte e */ 'e', /* double-byte a */ 0x8281, 0x8282, /* double-byte b */ 0x8283, /* double-byte c */ /* double-byte d */ 0x8284,

#define SIZE sizeof(chars) / sizeof(unsigned int)

/* double-byte e */

```
void main()
 {
    int
          i;
    unsigned int c;
    _setmbcp( 932 );
    for(i = 0; i < SIZE; i++) {
      c = _mbctoupper( chars[ i ] );
      if(c > 0xff)
        printf( "%c%c", c>>8, c );
      else
        printf( "%c", c );
   printf( "\n" );
  }
```

0x8285

};

_mbctoupper

produces the following:

ABCDE A B C D E

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis: #include <mbstring.h> unsigned int _mbctohira(unsigned int ch);

Description: The _mbctohira converts a double-byte Katakana character to a Hiragana character. A double-byte

Katakana character is any character for which the following expression is true:

```
0x8340 \le ch \le 0x8396 && ch != 0x837F
```

Any Katakana character whose value is less than 0x8393 is converted to Hiragana (there are 3 extra Katakana characters that have no equivalent).

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese character set. Hiragana and Katakana are two types of phonetic character sets of the Japanese character set. The Hiragana code set includes 83 characters and the Katakana code set includes 86 characters.

Note: This function was called jtohira in earlier versions.

Returns: The _mbctohira function returns the argument value if the argument is not a double-byte Katakana character; otherwise, the equivalent Hiragana character is returned.

See Also: _mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example: #include <stdio.h>

```
#include <mbctype.h>
#include <mbstring.h>
unsigned int chars[] = {
    0x8340,
    0x8364,
    0x8396
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
    int
          i;
    _setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
      printf( \%#6.4x - \%#6.4x\n",
              chars[ i ],
              _mbctohira( chars[ i ] ) );
    }
  }
```

produces the following:

_mbctohira

0x8340 - 0x829f 0x8364 - 0x82c3 0x8396 - 0x8396

Classification: WATCOM

Systems: All, Linux, RDOS

Synopsis: #include <mbstring.h> unsigned int _mbctokata(unsigned int ch);

Description:

The _mbctokata converts a double-byte Hiragana character to a Katakana character. A double-byte Hiragana character is any character for which the following expression is true:

```
0x829F \le c \le 0x82F1
```

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese character set. Hiragana and Katakana are two types of phonetic character sets of the Japanese character set. The Hiragana code set includes 83 characters and the Katakana code set includes 86 characters.

Note: This function was called jtokata in earlier versions.

Returns:

The _mbctokata function returns the argument value if the argument is not a double-byte Hiragana character; otherwise, the equivalent Katakana character is returned.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned int chars[] = {
    0x829F,
    0x82B0,
    0x82F1
};
#define SIZE sizeof( chars ) / sizeof( unsigned int )
void main()
  {
    int
          i;
    _setmbcp( 932 );
    for ( i = 0; i < SIZE; i++ ) {
      printf( \%#6.4x - \%#6.4x\n",
              chars[i],
              _mbctokata( chars[ i ] ) );
  }
```

produces the following:

0x829f - 0x83400x82b0 - 0x83510x82f1 - 0x8393

Classification: WATCOM

_mbctokata

Systems: All, Linux, RDOS

Synopsis: #include <mbstring.h> unsigned int _mbctombb(unsigned int ch);

Description: The _mbct ombb function returns the single-byte character equivalent to the double-byte character ch.

The single-byte character will be in the range 0x20 through 0x7E or 0xA1 through 0xDF.

Note: This function was called zentohan in earlier versions.

Returns: The _mbct ombb function returns ch if there is no equivalent single-byte character; otherwise

_mbctombb returns a single-byte character.

See Also: _getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _ismbbalnum, _ismbbalpha,

_ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint,

_ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc,

_mbcjistojms, _mbcjmstojis, _mbbtype, _mbsbtype, _setmbcp

```
Example:
           #include <stdio.h>
           #include <mbctype.h>
           #include <mbstring.h>
           #define ZEN(x) 130*256+(x-1+32)
           unsigned int alphabet[26] = {
                ZEN('A'), ZEN('B'), ZEN('C'), ZEN('D'), ZEN('E'),
                ZEN('F'), ZEN('G'), ZEN('H'), ZEN('I'), ZEN('J'),
                ZEN('K'), ZEN('L'), ZEN('M'), ZEN('N'), ZEN('O'),
                ZEN('P'), ZEN('Q'), ZEN('R'), ZEN('S'), ZEN('T'),
                ZEN('U'), ZEN('V'), ZEN('W'), ZEN('X'), ZEN('Y'),
                ZEN ('Z')
           };
           #define SIZE sizeof( alphabet ) / sizeof( unsigned int )
           void main()
             {
                int
                                 i;
               unsigned int
                _setmbcp( 932 );
                for( i = 0; i < SIZE; i++ ) {
                  c = _mbctombb( alphabet[ i ] );
                  printf( "%c", c );
               printf( "\n" );
             }
```

produces the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_mbctombb				

```
Synopsis:
           #include <mbstring.h>
           unsigned char *_mbgetcode( unsigned char *mbstr,
                                       unsigned int *dbchp );
           unsigned char __far *_fmbgetcode( unsigned char __far *mbstr,
                                              unsigned int __far *dbchp );
```

Description:

The _mbgetcode function places the next single-byte or double-byte character from the start of the Kanji string specified by *mbstr* in the wide character pointed to by *dbchp*. If the second-half of a double-byte character is NULL, then the returned wide character is NULL.

The _fmbgetcode function is a data model independent form of the _mbgetcode function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The _mbget code function returns a pointer to the next character to be obtained from the string. If *mbstr* points at a null character then *mbstr* is returned.

See Also: _mbsnccnt, _mbputchar

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
unsigned char set[] = {
    "ab\x81\x41\x81\x42\cd\x81"
};
void main()
 {
    unsigned int c;
    unsigned char *str;
    _setmbcp( 932 );
    str = set;
    for(; *str != '\0'; ) {
        str = _mbgetcode( str, &c );
        printf( "Character code 0x%2.2x\n", c );
  }
```

produces the following:

```
Character code 0x61
Character code 0x62
Character code 0x8141
Character code 0x8142
Character code 0x63
Character code 0x64
Character code 0x00
```

Classification: WATCOM

```
Systems:
           _mbgetcode - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
           _fmbgetcode - DOS, Windows, OS/2 1.x(all)
```

_mbgetcode, _fmbgetcode					
					_

Synopsis: #include <stdlib.h>

#include <mbstring.h> int mblen(const char *s, size_t n); int _fmblen(const char __far *s, size_t n);

Description:

The mblen function determines the number of bytes comprising the multibyte character pointed to by s. At most n bytes of the array pointed to by s will be examined.

The _fmblen function is a data model independent form of the mblen function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

If s is a NULL pointer, the mblen function returns zero if multibyte character encodings are not state dependent, and non-zero otherwise. If s is not a NULL pointer, the mblen function returns:

Value Meaning

0 if s points to the null character

the number of bytes that comprise the multibyte character (if the next n or fewer bytes form a len valid multibyte character)

-1 if the next n bytes do not form a valid multibyte character

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

```
#include <stdio.h>
#include <mbstring.h>
const char chars[] = {
    ' . ' ,
    111,
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
               /* single-byte Katakana alphabetic */
    0xA6,
               /* single-byte Katakana alphabetic */
    0xDF,
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
void main()
  {
    int
                i, j, k;
    _setmbcp( 932 );
    printf( "Character encodings are %sstate dependent\n",
            ( mblen( NULL, MB_CUR_MAX ) ) ? "" : "not " );
    j = 1;
    for( i = 0; j > 0; i += j ) {
      j = mblen( &chars[i], MB_CUR_MAX );
      printf( "%d bytes in character ", j );
      if(j == 0) {
        k = 0;
      } else if ( j == 1 ) {
        k = chars[i];
      } else if( j == 2 ) {
        k = chars[i] << 8 | chars[i+1];
      printf( "(%#6.4x)\n", k );
    }
  }
produces the following:
Character encodings are not state dependent
1 bytes in character (0x0020)
1 bytes in character (0x002e)
1 bytes in character (0x0031)
1 bytes in character (0x0041)
2 bytes in character (0x8140)
2 bytes in character (0x8260)
2 bytes in character (0x82a6)
2 bytes in character (0x8342)
1 bytes in character (0x00a1)
1 bytes in character (0x00a6)
1 bytes in character (0x00df)
2 bytes in character (0xe0a1)
0 bytes in character ( 0000)
```

Classification: ISO C

_fmblen is WATCOM

Systems: mblen - All, Linux, RDOS, Netware

_fmblen - DOS, Windows, OS/2 1.x(all)

```
Synopsis:
            #include <mbstring.h>
            unsigned char *_mbputchar( unsigned char *mbstr,
                                            unsigned int dbch );
            unsigned char __far *_fmbputchar( unsigned char __far *mbstr,
                                                    unsigned int dbch );
Description:
            The _mbput char function places the next single-byte or double-byte character specified by dbch at
            the start of the buffer specified by mbstr.
            The _fmbputchar function is a data model independent form of the _mbputchar function. It
            accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model
            applications.
Returns:
            The _mbput char function returns a pointer to the next location in which to store a character.
See Also:
            _mbsnccnt, _mbgetcode
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            void main()
               {
                 unsigned int c;
                 unsigned char *str1;
                 unsigned char *str2;
                 unsigned char buf[30];
                 _setmbcp( 932 );
                 str1 = "ab\x82\x62\x82\x63\ef\x81\x66";
                 str2 = buf;
                 for(; *str1 != '\0'; ) {
                      str1 = _mbgetcode( str1, &c );
                      str2 = _mbputchar( str2, '<' );</pre>
                      str2 = \_mbputchar(str2, c);
                      str2 = _mbputchar( str2, '>' );
                 *str2 = '\0';
                 printf( "%s\n", buf );
            produces the following:
            <a><b>< C>< D><e><f>< G>
Classification: WATCOM
Systems:
            _mbputchar - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
            _fmbputchar - DOS, Windows, OS/2 1.x(all)
```

_mbputchar, _fmbputchar

Synopsis:

```
#include <wchar.h>
size_t mbrlen( const char *s, size_t n, mbstate_t *ps );
size_t _fmbrlen( const char __far *s, size_t n, mbstate_t __far *ps );
;
```

Description:

The mbrlen function determines the number of bytes comprising the multibyte character pointed to by s. The mbrlen function is equivalent to the following call:

```
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal)
```

where &internal is the address of the internal mbstate_t object for the mbrlen function.

The _fmbrlen function is a data model independent form of the mbrlen function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The restartable multibyte/wide character conversion functions differ from the corresponding internal-state multibyte character functions (mblen, mbtowc, and wctomb) in that they have an extra argument, ps, of type pointer to mbstate_t that points to an object that can completely describe the current conversion state of the associated multibyte character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object instead. You are guaranteed that no other function in the library calls these functions with a null pointer for ps, thereby ensuring the stability of the state.

Also unlike their corresponding functions, the return value does not represent whether the encoding is state-dependent.

If the encoding is state-dependent, on entry each function takes the described conversion state (either internal or pointed to by ps) as current. The conversion state described by the pointed-to object is altered as needed to track the shift state of the associated multibyte character sequence. For encodings without state dependency, the pointer to the mbstate_t argument is ignored.

Returns:

The mbrlen function returns a value between 0 and n, inclusive, (size_t) -2 or (size_t) -1. The mbrlen function returns the first of the following that applies:

Value	Meaning
0	if the next n or fewer bytes form the multibyte character that corresponds to the null wide character.
>0	if the next n or fewer bytes form a valid multibyte character; the value returned is the number of bytes that constitute that multibyte character.
(size_t)-2	if the next n bytes form an incomplete (but potentially valid) multibyte character, and all n bytes have been processed; it is unspecified whether this can occur when the value of n is less than that of the MB_CUR_MAX macro.
(size_t)-1	if an encoding error occurs (when the next n or fewer bytes do not form a complete and valid multibyte character); the mbrlen function stores the value of the macro EILSEQ in errno and returns (size_t)-1; but the conversion state is unspecified.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs_s, mbstowcs_s, mbstowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const char chars[] = {
    · · ,
    ′.′,
    111,
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
    0xA1,
               /* single-byte Katakana punctuation */
               /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xE0,0xA1, /* double-byte Kanji */
};
void main()
  {
                i, j, k;
    int
    _setmbcp( 932 );
    j = 1;
    for(i = 0; j > 0; i += j) {
      j = mbrlen( &chars[i], MB_CUR_MAX, NULL );
      printf( "%d bytes in character ", j );
      if( errno == EILSEQ ) {
        printf( " - illegal multibyte character\n" );
      } else {
        if(j == 0) {
          k = 0;
        } else if ( j == 1 ) {
          k = chars[i];
        } else if( j == 2 ) {
          k = chars[i] << 8 | chars[i+1];
        printf( "(%#6.4x)\n", k );
      }
    }
  }
```

produces the following:

Systems:

```
1 bytes in character (0x0020)
           1 bytes in character (0x002e)
           1 bytes in character (0x0031)
           1 bytes in character (0x0041)
           2 bytes in character (0x8140)
           2 bytes in character (0x8260)
           2 bytes in character (0x82a6)
           2 bytes in character (0x8342)
           1 bytes in character (0x00a1)
           1 bytes in character (0x00a6)
           1 bytes in character (0x00df)
           2 bytes in character (0xe0a1)
           0 bytes in character ( 0000)
Classification: ISO C95
           _fmbrlen is WATCOM
           mbrlen - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,
           _fmbrlen - DOS, Windows, OS/2 1.x(all)
```

Synopsis:

```
#include <wchar.h>
size_t mbrtowc( wchar_t *pwc, const char *s,
             size_t n, mbstate_t *ps );
size_t _fmbrtowc( wchar_t __far *pwc, const char __far *s,
               size_t n, mbstate_t __far *ps );
```

Description:

If s is not a null pointer, the mbrtowc function determines the number of bytes that are contained in the multibyte character (plus any leading shift sequences) pointed to by s, produces the value of the corresponding wide character and then, if pwc is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide character is the null wide character, the resulting state described will be the initial conversion state.

If s is a null pointer, the mbrtowc function is equivalent to call

```
mbrtowc(NULL, "", 1, ps)
```

In this case, the values of the parameters pwc and n are ignored. Function determines the number of bytes necessary to enter the initial shift state (zero if encodings are not state-dependent or if the initial conversion state is described).

The _fmbrtowc function is a data model independent form of the mbrtowc function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The restartable multibyte/wide character conversion functions differ from the corresponding internal-state multibyte character functions (mblen, mbtowc, and wctomb) in that they have an extra argument, ps, of type pointer to mbstate_t that points to an object that can completely describe the current conversion state of the associated multibyte character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object instead. You are guaranteed that no other function in the library calls these functions with a null pointer for ps, thereby ensuring the stability of the state.

Also unlike their corresponding functions, the return value does not represent whether the encoding is state-dependent.

If the encoding is state-dependent, on entry each function takes the described conversion state (either internal or pointed to by ps) as current. The conversion state described by the pointed-to object is altered as needed to track the shift state of the associated multibyte character sequence. For encodings without state dependency, the pointer to the mbstate_t argument is ignored.

Returns:

Value

Meaning

The mbrtowc function returns a value between 0 and n, inclusive, (size_t) -2 or (size_t) -1. The mbrtowc function returns the first of the following that applies:

0	if the next n or fewer bytes form the multibyte character that corresponds to the null wide character.
>0	if the next n or fewer bytes form a valid multibyte character; the value returned is the number of bytes that constitute that multibyte character.
(size_t)-2	if the next n bytes form an incomplete (but potentially valid) multibyte character, and all n bytes have been processed; it is unspecified whether this can occur when the value of n is less than that of the MB_CUR_MAX macro.

 $(size\ t)-1$

if an encoding error occurs (when the next *n* or fewer bytes do not form a complete and valid multibyte character); the mbrtowc function stores the value of the macro EILSEQ in errno and returns (size_t) -1; but the conversion state is unspecified.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowcs, mbsrtowcs, mbsrtowcs, mbstowcs, mbstowcs, mbstowcs, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

```
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const char chars[] = {
   ′′,
   ′.′,
   '1',
   'A',
   0x81,0x40, /* double-byte space */
   0x82,0x60, /* double-byte A */
   0x82,0xA6, /* double-byte Hiragana */
   0x83,0x42, /* double-byte Katakana */
             /* single-byte Katakana punctuation */
   0xA1,
            /* single-byte Katakana alphabetic */
   0xA6,
   0x00
};
```

```
void main()
            {
               int
                           i, j, k;
               wchar_t
                           pwc;
               _setmbcp( 932 );
               i = mbrtowc( NULL, NULL, MB_CUR_MAX, NULL );
               printf( "Number of bytes to enter "
                       "initial shift state = %d\n", i );
               j = 1;
               for(i = 0; j > 0; i += j) {
                 j = mbrtowc( &pwc, &chars[i], MB_CUR_MAX, NULL );
                 printf( "%d bytes in character ", j );
                 if( errno == EILSEQ ) {
                   printf( " - illegal multibyte character\n" );
                 } else {
                   if(j == 0) {
                     k = 0;
                   } else if ( j == 1 ) {
                     k = chars[i];
                   \} else if( j == 2 ) {
                     printf( "(\%#6.4x->\%#6.4x)\n", k, pwc );
               }
             }
          produces the following:
          Number of bytes to enter initial shift state = 0
           1 bytes in character (0x0020->0x0020)
          1 bytes in character (0x002e->0x002e)
          1 bytes in character (0x0031->0x0031)
           1 bytes in character (0x0041->0x0041)
           2 bytes in character (0x8140->0x3000)
           2 bytes in character (0x8260->0xff21)
           2 bytes in character (0x82a6->0x3048)
           2 bytes in character (0x8342->0x30a3)
          1 bytes in character (0x00a1->0xff61)
           1 bytes in character (0x00a6->0xff66)
           1 bytes in character (0x00df -> 0xff9f)
           2 bytes in character (0xe0a1->0x720d)
           0 bytes in character ( 0000-> 0000)
Classification: ISO C95
           fmbrtowc is WATCOM
Systems:
          mbrtowc - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,
          _fmbrtowc - DOS, Windows, OS/2 1.x(all)
```

mbrtowc, _fmbrtowc		

Synopsis: #include <mbstring.h>

#include <mbctype.h> (for manifest constants)

int _mbsbtype(const unsigned char *mbstr, int count);

int _fmbsbtype(const unsigned char __far *mbstr, int count);

Description:

The _mbsbtype function determines the type of a byte in a multibyte character string. The function examines only the byte at offset *count* in *mbstr*, ignoring invalid characters before the specified byte.

Note: A similar function was called in earlier versions.

The _fmbsbtype function is a data model independent form of the _mbsbtype function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The _mbsbtype function returns one of the following values:

> _MBC_SINGLE the character is a valid single-byte character (e.g., 0x20 - 0x7E, 0xA1 - 0xDF

> > in code page 932)

_MBC_LEAD the character is a valid lead byte character (e.g., 0x81 - 0x9F, 0xE0 - 0xFC in

code page 932)

_MBC_TRAIL the character is a valid trailing byte character (e.g., 0x40 - 0x7E, 0x80 - 0xFC

in code page 932)

the character is an illegal character (e.g., any value except 0x20 - 0x7E, 0xA1 _MBC_ILLEGAL

- 0xDF, 0x81 - 0x9F, 0xE0 - 0xFC in code page 932)

See Also: _getmbcp, _ismbcalnum, _ismbcalpha, _ismbccntrl, _ismbcdigit, _ismbcgraph,

_ismbchira, _ismbckata, _ismbcl0, _ismbcl1, _ismbcl2, _ismbclegal,

_ismbclower, _ismbcprint, _ismbcpunct, _ismbcspace, _ismbcsymbol,

_ismbcupper, _ismbcxdigit, _mbbtype, _setmbcp

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const char *types[4] = {
    "ILLEGAL",
    "SINGLE",
    "LEAD",
    "TRAIL"
} ;
const unsigned char chars[] = {
    '.',
    111,
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
               /* single-byte Katakana alphabetic */
              /* single-byte Katakana alphabetic */
    0xDF,
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
#define SIZE sizeof( chars ) / sizeof( unsigned char )
void main()
 {
    int
            i;
    _setmbcp( 932 );
    for( i = 0; i < SIZE; i++ )
      printf( "%s\n", types[ 1+_mbsbtype( chars, i ) ] );
  }
produces the following:
SINGLE
SINGLE
SINGLE
SINGLE
LEAD
TRAIL
LEAD
TRAIL
LEAD
TRAIL
LEAD
TRAIL
SINGLE
SINGLE
SINGLE
LEAD
TRAIL
ILLEGAL
```

Classification: WATCOM

_mbsbtype - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS **Systems:**

_fmbsbtype - DOS, Windows, OS/2 1.x(all)

Synopsis:

Description:

The _mbsdec function returns a pointer to the previous multi-byte character in the multi-byte character string pointed to by *start* which must precede *current*. The current multi-byte character in the string is pointed to by *current*. You must ensure that *current* does not point into the middle of a multi-byte or wide character.

The _fmbsdec function is a data model independent form of the _mbsdec function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text macro _tcsdec.

The _tcsdec macro maps to _mbsdec if _MBCS has been defined, or to the _wcsdec macro if _UNICODE has been defined, otherwise it maps to _strdec macro.

_strdec and _wcsdec are single-byte character string and wide character string versions of mbsdec.

The _strdec and _wcsdec macros are provided only for this mapping and should not be used otherwise.

These functions return a pointer to the previous character (multi-byte, wide, or single-byte).

_mbsinc, _mbsninc

See Also: Example:

Returns:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char chars[] = {
    '.',
   11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
              /* single-byte Katakana punctuation */
    0xA1,
             /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xDF,
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
#define SIZE sizeof( chars ) / sizeof( unsigned char )
```

```
void main()
             {
                                    j, k;
               int
               const unsigned char *prev;
               _setmbcp( 932 );
               prev = &chars[ SIZE - 1 ];
               do {
                 prev = _mbsdec( chars, prev );
                 j = mblen( prev, MB_CUR_MAX );
                 if(j == 0) {
                   k = 0;
                 } else if ( j == 1 ) {
                   k = *prev;
                 } else if( j == 2 ) {
                   k = *(prev) << 8 | *(prev+1);
                 printf( "Previous character %#6.4x\n", k );
               } while( prev != chars );
           produces the following:
           Previous character 0xe0a1
           Previous character 0x00df
           Previous character 0x00a6
           Previous character 0x00a1
           Previous character 0x8342
           Previous character 0x82a6
           Previous character 0x8260
           Previous character 0x8140
           Previous character 0x0041
           Previous character 0x0031
           Previous character 0x002e
           Previous character 0x0020
Classification: WATCOM
           _mbsdec - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
Systems:
          _fmbsdec - DOS, Windows, OS/2 1.x(all)
           _strdec - MACRO
           _wcsdec - MACRO
```

Synopsis: #include <mbstring.h>

```
unsigned char *_mbsinc( const unsigned char *current );
unsigned char __far *_fmbsinc( const unsigned char __far *current );
#include <tchar.h>
char *_strinc( const char *current );
wchar_t *_wcsinc( const wchar_t *current );
```

Description:

The _mbsinc function returns a pointer to the next multi-byte character in the string pointed to by *current*. You must ensure that *current* does not point into the middle of a multi-byte or wide character.

The _fmbsinc function is a data model independent form of the _mbsinc function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text macro _tcsinc.

The _tcsinc macro maps to _mbsinc if _MBCS has been defined, or to the _wcsinc macro if _UNICODE has been defined, otherwise it maps to _strinc macro.

_strinc and _wcsinc are single-byte character string and wide character string versions of _mbsinc.

The _strinc and _wcsinc macros are provided only for this mapping and should not be used otherwise.

Returns: These functions return a pointer to the next character (multi-byte, wide, or single-byte).

See Also: _mbsdec, _mbsninc

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char chars[] = {
    ′.′,
    11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
    0xA1,
               /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xDF,
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
#define SIZE sizeof( chars ) / sizeof( unsigned char )
void main()
 {
    int
                         j, k;
    const unsigned char *next;
    _setmbcp( 932 );
    next = chars;
    do {
      next = _mbsinc( next );
      j = mblen( next, MB_CUR_MAX );
      if(j == 0) {
        k = 0;
      } else if ( j == 1 ) {
        k = *next;
      } else if( j == 2 ) {
        k = *(next) << 8 | *(next+1);
      printf( "Next character %#6.4x\n", k );
    } while( next != &chars[ SIZE - 1 ] );
  }
produces the following:
Next character 0x002e
Next character 0x0031
Next character 0x0041
Next character 0x8140
Next character 0x8260
Next character 0x82a6
Next character 0x8342
Next character 0x00a1
Next character 0x00a6
Next character 0x00df
Next character 0xe0a1
Next character 0000
```

Classification: WATCOM

Systems: _mbsinc - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,

RDOS

_fmbsinc - DOS, Windows, OS/2 1.x(all)

_strinc - MACRO _wcsinc - MACRO **Synopsis:** #include <wchar.h>

int mbsinit(const mbstate_t *ps);

** deprecated **

int sisinit(const mbstate_t *ps);

Description: If ps is not a null pointer, the mbsinit function determines whether the pointed-to mbstate_t

object describes an initial conversion state.

The sisinit function is deprecated, use mbsinit instead.

Returns: The mbsinit function returns nonzero if ps is a null pointer or if the pointed-to object describes an

initial conversion state; otherwise, it returns zero.

See Also: _mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira,

> _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, $\verb|mbsrtowcs|, \verb|mbsrtowcs|, \verb|mbstowcs|, m$ wcrtomb_s, wcsrtombs_s, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb,

wctomb_s

```
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const char chars[] = {
   ′′,
   ·.·,
    11,
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
    0xA1,
    0xA6,
              /* single-byte Katakana alphabetic */
    0xDF,
              /* single-byte Katakana alphabetic */
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
void main( void )
    int
               i, j, k;
    wchar_t
               pwc;
    mbstate_t pstate = { 0 };
    _setmbcp( 932 );
    j = 1;
    for(i = 0; j > 0; i += j) {
      printf( "We are %sin an initial conversion state\n",
              mbsinit( &pstate ) ? "not " : "" );
      j = mbrtowc( &pwc, &chars[i], MB_CUR_MAX, &pstate );
      printf( "%d bytes in character ", j );
      if( errno == EILSEQ ) {
        printf( " - illegal multibyte character\n" );
      } else {
        if(j == 0) {
          k = 0;
        } else if ( j == 1 ) {
          k = chars[i];
        \} else if( j == 2 ) {
          k = chars[i] << 8 | chars[i+1];
        printf( "(\%#6.4x->\%#6.4x)\n", k, pwc );
      }
    }
}
```

produces the following:

We are in an initial conversion state 1 bytes in character (0x0020->0x0020)We are in an initial conversion state 1 bytes in character (0x002e->0x002e)We are in an initial conversion state 1 bytes in character (0x0031->0x0031)We are in an initial conversion state 1 bytes in character (0x0041->0x0041)We are in an initial conversion state 2 bytes in character (0x8140->0x3000)We are in an initial conversion state 2 bytes in character (0x8260->0xff21) We are in an initial conversion state 2 bytes in character (0x82a6->0x3048)We are in an initial conversion state 2 bytes in character (0x8342->0x30a3)We are in an initial conversion state 1 bytes in character (0x00a1->0xff61)We are in an initial conversion state 1 bytes in character (0x00a6->0xff66) We are in an initial conversion state 1 bytes in character (0x00df -> 0xff9f)We are in an initial conversion state 2 bytes in character (0xe0a1->0x720d) We are in an initial conversion state 0 bytes in character (0000-> 0000)

Classification: ISO C95

sisinit is WATCOM

Systems: mbsinit - All, Linux, RDOS, Netware

sisinit - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Description:

The _mbsnbcat function appends not more than n bytes of the string pointed to by src to the end of the string pointed to by dst. If the byte immediately preceding the null character in dst is a lead byte, the initial byte of src overwrites this lead byte. Otherwise, the initial byte of src overwrites the terminating null character at the end of dst. If the last byte to be copied from src is a lead byte, the lead byte is not copied and a null character replaces it in dst. In any case, a terminating null character is always appended to the result.

size_t n);

The _fmbsnbcat function is a data model independent form of the _mbsnbcat function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns: The _mbsnbcat function returns the value of *dst*.

#include <stdio.h>

See Also: _mbsnbcmp, _mbsnbcpy, _mbsnbicmp, _mbsnbset, _mbsnccnt, strncat, strcat

```
#include <string.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char str1[] = {
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
};
const unsigned char str2[] = {
    0x81,0x40, /* double-byte space */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
    0x00
};
void main()
  {
    unsigned char big_string[10];
                    i;
    int
    _setmbcp( 932 );
    memset( (char *) big_string, 0xee, 10 );
    big\_string[9] = 0x00;
    printf( "Length of string = %d\n",
            strlen( (char *) big_string ) );
    for( i = 0; i < 10; i++)
       printf( "%2.2x ", big_string[i] );
    printf( "\n" );
```

```
_mbsnset( big_string, 0x8145, 5 );
               for( i = 0; i < 10; i++)
                   printf( "%2.2x ", big_string[i] );
               printf( "\n" );
               big\_string[0] = 0x00;
               _mbsnbcat(big_string, str1, 3);
               for( i = 0; i < 10; i++)
                   printf( "%2.2x ", big_string[i] );
               printf( "\n" );
               big_string[2] = 0x84;
               big\_string[3] = 0x00;
               for( i = 0; i < 10; i++)
                   printf( "%2.2x ", big_string[i] );
               printf( "\n" );
               _mbsnbcat( big_string, str2, 5 );
               for( i = 0; i < 10; i++)
                   printf( "%2.2x ", big_string[i] );
               printf( "\n" );
             }
           produces the following:
           Length of string = 9
           ee ee ee ee ee ee ee 00
           81 45 81 45 81 45 81 45 20 00
           81 40 00 00 81 45 81 45 20 00
           81 40 84 00 81 45 81 45 20 00
           81 40 81 40 82 a6 00 00 20 00
Classification: WATCOM
Systems:
           _mbsnbcat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
           _fmbsnbcat - DOS, Windows, OS/2 1.x(all)
```

```
Synopsis:
             #include <mbstring.h>
             int _mbsnbcmp( const unsigned char *s1,
                               const unsigned char *s2,
                               size_t n );
             int _fmbsnbcmp( const unsigned char __far *s1,
                                const unsigned char __far *s2,
                                size_t n );
Description:
             The _mbsnbcmp lexicographically compares not more than n bytes from the string pointed to by sI to
             the string pointed to by s2.
             The _fmbsnbcmp function is a data model independent form of the _mbsnbcmp function that accepts
             far pointer arguments. It is most useful in mixed memory model applications.
Returns:
             The _mbsnbcmp function returns an integer less than, equal to, or greater than zero, indicating that the
             string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2. _mbsnbcmp is
             similar to _mbsncmp, except that _mbsnbcmp compares strings by length in bytes rather than by
             length in characters.
See Also:
             _mbsnbcat, _mbsnbicmp, strncmp, _strnicmp
Example:
             #include <stdio.h>
             #include <mbctype.h>
             #include <mbstring.h>
             const unsigned char str1[] = {
                  0x81,0x40, /* double-byte space */
                  0x82,0x60, /* double-byte A */
                  0x00
             };
             const unsigned char str2[] = {
                  0x81,0x40, /* double-byte space */
                  0x82,0xA6, /* double-byte Hiragana */
                  0x83,0x42, /* double-byte Katakana */
                  0x00
             } ;
             void main()
               {
                  _setmbcp( 932 );
                  printf( "%d\n", _mbsnbcmp( str1, str2, 3 ) );
             produces the following:
             0
Classification: WATCOM
```

_mbsnbcmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbsnbcmp - DOS, Windows, OS/2 1.x(all)

Systems:

	_mbsnbcmp,	_fmbsnbcmp
 	 	_

Synopsis: #include <mbstring.h>

Description: The _mbsnbcpy function copies no more than n bytes from the string pointed to by src into the array pointed to by dst. Copying of overlapping objects is not guaranteed to work properly.

If the string pointed to by src is shorter than n bytes, null characters are appended to the copy in the array pointed to by dst, until n bytes in all have been written. If the string pointed to by src is longer than n characters, then the result will not be terminated by a null character.

The _fmbsnbcpy function is a data model independent form of the _mbsnbcpy function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns: The _mbsnbcpy function returns the value of *dst*.

See Also: strcpy, strdup

Example:

```
#include <stdio.h>
           #include <mbctype.h>
           #include <mbstring.h>
           const unsigned char chars[] = {
               ′.′,
               11',
               'A',
               0x81,0x40, /* double-byte space */
               0x82,0x60, /* double-byte A */
               0x82,0xA6, /* double-byte Hiragana */
               0x83,0x42, /* double-byte Katakana */
                          /* single-byte Katakana punctuation */
               0xA1,
                          /* single-byte Katakana alphabetic */
               0xA6,
                         /* single-byte Katakana alphabetic */
               0xDF,
               0xE0,0xA1, /* double-byte Kanji */
               0x00
           };
           void main()
               unsigned char chars2[20];
               int
                               i;
               _setmbcp( 932 );
               _mbsnset( chars2, 0xFF, 20 );
               _mbsnbcpy( chars2, chars, 11 );
               for( i = 0; i < 20; i++)
                   printf( "%2.2x ", chars2[i] );
               printf( "\n" );
               _mbsnbcpy(chars2, chars, 20);
               for(i = 0; i < 20; i++)
                   printf( "%2.2x ", chars2[i] );
               printf( "\n" );
             }
           produces the following:
           20 2e 31 41 81 40 82 60 82 a6 83 ff ff ff ff ff ff ff ff
           20 2e 31 41 81 40 82 60 82 a6 83 42 a1 a6 df e0 a1 00 00 00
Classification: WATCOM
           _mbsnbcpy - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
Systems:
           _fmbsnbcpy - DOS, Windows, OS/2 1.x(all)
```

The _fmbsnbicmp function is a data model independent form of the _mbsnbicmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2. _mbsnbicmp is similar to _mbsnicmp, except that _mbsnbicmp compares strings by length in bytes rather than by length in characters.

See Also: _mbsnbcat, _mbsnbcmp, strncmp, _strnicmp

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char str1[] = {
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0x79, /* double-byte Z */
};
const unsigned char str2[] = {
    0x81,0x40, /* double-byte space */
    0x82,0x81, /* double-byte a */
    0x82,0x9a, /* double-byte z */
    0x00
};
void main()
  {
    _setmbcp( 932 );
    printf( "%d\n", _mbsnbicmp( str1, str2, 5 ) );
produces the following:
0
```

Classification: WATCOM

```
Systems: _mbsnbicmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS _fmbsnbicmp - DOS, Windows, OS/2 1.x(all)
```

_mbsnbicmp, _fmbsnbicmp

```
Synopsis:
             #include <mbstring.h>
             unsigned char *_mbsnbset( unsigned char *s,
                                              unsigned int fill,
                                              size_t count );
             unsigned char __far *_fmbsnbset( unsigned char __far *s,
                                                      unsigned int fill,
                                                       size_t count );
Description:
             The _mbsnbset function fills the string s with the value of the argument fill. When the value of len is
             greater than the length of the string, the entire string is filled. Otherwise, that number of characters at
             the start of the string are set to the fill character.
             _mbsnbset is similar to _mbsnset, except that it fills in count bytes rather than count characters. If
             the number of bytes to be filled is odd and fill is a double-byte character, the partial byte at the end is
             filled with an ASCII space character.
             The _fmbsnbset function is a data model independent form of the _mbsnbset function. It accepts
             far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.
Returns:
             The address of the original string s is returned.
See Also:
             _strnset, _strset
Example:
             #include <stdio.h>
             #include <string.h>
             #include <mbctype.h>
             #include <mbstring.h>
             void main()
                {
                  unsigned char big_string[10];
                  int
                                      i;
                  _setmbcp( 932 );
                  memset( (char *) big_string, 0xee, 10 );
                  big\_string[9] = 0x00;
                  for( i = 0; i < 10; i++ )
                       printf( "%2.2x ", big_string[i] );
                  printf( "\n" );
                  _mbsnbset(big_string, 0x8145, 5);
                  for( i = 0; i < 10; i++)
                       printf( "%2.2x ", big_string[i] );
                  printf( "\n" );
                }
             produces the following:
             ee ee ee ee ee ee ee 00
             81 45 81 45 20 ee ee ee ee 00
```

Classification: WATCOM

Systems: _mbsnbset - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS _fmbsnbset - DOS, Windows, OS/2 1.x(all)

	_mbsnbset, _fmbsnbset

```
Synopsis: #include <mbstring.h>
    size_t _mbsnbcnt( const unsigned char *string, size_t n );
    size_t _mbsnccnt( const unsigned char *string, size_t n );
    size_t _fmbsnbcnt( const unsigned char __far *string, size_t n );
    size_t _fmbsnccnt( const unsigned char __far *string, size_t n );
    #include <tchar.h>
    size_t _strncnt( const char *string, size_t n );
    size_t _wcsncnt( const wchar_t *string, size_t n ) {
```

Description: The $_$ mbsnbcnt function counts the number of bytes in the first n multibyte characters of the string

string.

The $_$ mbsnccnt function counts the number of multibyte characters in the first n bytes of the string string. If _mbsnccnt finds a null byte as the second byte of a double-byte character, the first (lead) byte is not included in the count.

Note: _mbsnbcnt function was called mtob and _mbsnccnt function was called btom in earlier versions.

The _fmbsnbcnt function is a data model independent form of the _mbsnbcnt function that accepts far pointer arguments.

The _fmbsnccnt function is a data model independent form of the _fmbsnccnt function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The _fmbsnbcnt function is a data model independent form of the _mbsnbcnt function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The _fmbsnccnt function is a data model independent form of the _mbsnccnt function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text macros _tcsnbcnt and _tcsnccnt.

The _tcsnbcnt macro maps to _mbsnbcnt if _MBCS has been defined, or to the _wcsncnt macro if _UNICODE has been defined, otherwise it maps to _strncnt macro.

The _tcsnccnt macro maps to _mbsnccnt if _MBCS has been defined, or to the _wcsncnt macro if _UNICODE has been defined, otherwise it maps to _strncnt macro.

The _strncnt and _wcsncnt macros are provided only for this mapping and should not be used otherwise.

Returns:

The $_$ mbsnbcnt functions return the number of bytes in the string from the beginning of the string up to the specified number of characters n.

The _mbsnccnt functions return the number of characters in the string from the beginning of the string up to the specified number of bytes n or until a null character is encountered. The null character is not included in the count. If the character preceding the null character was a lead byte, the lead byte is not included in the count.

See Also: _mbsnbcat

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char chars[] = {
    11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
              /* single-byte Katakana punctuation */
    0xA1,
              /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
void main()
  {
    _setmbcp( 932 );
    printf( "%d bytes found\n",
            _mbsnbcnt( chars, 10 ) );
    printf( "%d characters found\n",
            _mbsnccnt( chars, 10 ) );
  }
```

produces the following:

14 bytes found 7 characters found

Classification: WATCOM

```
_mbsnbcnt - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
Systems:
          _fmbsnbcnt - DOS, Windows, OS/2 1.x(all)
          _mbsnccnt - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
          _fmbsnccnt - DOS, Windows, OS/2 1.x(all)
          _strncnt - MACRO
          _wcsncnt - MACRO
```

```
#include <mbstring.h>
unsigned int _mbsnextc( const unsigned char *s );
unsigned int _fmbsnextc( const unsigned char __far *s );
#include <tchar.h>
unsigned int _strnextc( const char *s );
unsigned int _wcsnextc( const wchar_t *s ) {
```

Description:

The _mbsnextc function returns the integer value of the next multi-byte character in s, without advancing the string pointer. _mbsnextc recognizes multi-byte character sequences according to the multi-byte character code page currently in use.

The _fmbsnextc function is a data model independent form of the _mbsnextc function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text macro _tcsnextc.

The _tcsnextc macro maps to _mbsnextc if _MBCS has been defined, or to the _wcsnextc macro if _UNICODE has been defined, otherwise it maps to _strnextc macro.

_strnextc and _wcsnextc are single-byte character string and wide character string versions of _mbsnextc.

The _strnextc and _wcsnextc macros are provided only for this mapping and should not be used otherwise.

Returns:

These functions return the integer value of the next character (multi-byte, wide, or single-byte) pointed to by s.

See Also: _mbsdec, _mbsinc, _mbsninc

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char chars[] = {
   , ,
    11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
              /* single-byte Katakana punctuation */
    0xA1,
              /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
void main()
  {
   _setmbcp( 932 );
   printf( "%\#6.4x\n", _mbsnextc( &chars[2] ) );
   printf( "%#6.4x\n", _mbsnextc( &chars[4] ) );
   printf( \% 6.4x\n", _mbsnextc( &chars[12] ) );
  }
```

produces the following:

0x0031 0x8140 0x00a1

Classification: WATCOM

```
Systems:
          _mbsnextc - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
          _fmbsnextc - DOS, Windows, OS/2 1.x(all)
```

_strnextc - MACRO _wcsnextc - MACRO

```
#include <mbstring.h>
unsigned char *_mbsninc( const unsigned char *s, size_t count );
unsigned char __far *_fmbsninc( const unsigned char __far *s,
                                size_t count );
#include <tchar.h>
char *_strninc( const char *s, size_t count );
wchar_t *_wcsninc( const wchar_t *s, size_t count );
```

Description:

The _mbsninc function increments s by count of multi-byte characters. _mbsninc recognizes multi-byte character sequences according to the multi-byte character code page currently in use.

The _fmbsninc function is a data model independent form of the _mbsninc function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text macro _tcsninc.

The _tcsninc macro maps to _mbsninc if _MBCS has been defined, or to the _wcsninc macro if _UNICODE has been defined, otherwise it maps to _strninc macro.

_strning and _wcsning are single-byte character string and wide character string versions of _mbsninc.

The _strninc and _wcsninc macros are provided only for this mapping and should not be used otherwise.

Returns:

These functions return a pointer to s after it has been incremented by *count* of characters (multi-byte, wide, or single-byte) or NULL if s was NULL. If count exceeds the number of characters remaining in the string, the result is undefined.

See Also: _mbsdec, _mbsinc

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char chars[] = {
    ′.′,
    11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
    0xA1,
               /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xDF,
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
#define SIZE sizeof( chars ) / sizeof( unsigned char )
void main()
 {
    int
                         j, k;
    const unsigned char *next;
    _setmbcp( 932 );
    next = chars;
    do {
      next = _mbsninc( next, 1 );
      j = mblen( next, MB_CUR_MAX );
      if(j == 0) {
        k = 0;
      } else if ( j == 1 ) {
        k = *next;
      } else if( j == 2 ) {
        k = *(next) << 8 | *(next+1);
      printf( "Next character %#6.4x\n", k );
    } while( next != &chars[ SIZE - 1 ] );
  }
produces the following:
Next character 0x002e
Next character 0x0031
Next character 0x0041
Next character 0x8140
Next character 0x8260
Next character 0x82a6
Next character 0x8342
Next character 0x00a1
Next character 0x00a6
Next character 0x00df
Next character 0xe0a1
Next character 0000
```

_mbsninc, _fmbsninc, _strninc, _wcsninc

Classification: WATCOM

```
Systems: _mbsninc - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

_fmbsninc - DOS, Windows, OS/2 1.x(all)

_strninc - MACRO _wcsninc - MACRO

```
#include <wchar.h>
size_t mbsrtowcs( wchar_t *dst,
               const char **src,
               size_t len, mbstate_t *ps );
#include <mbstring.h>
size_t _fmbsrtowcs( wchar_t __far *dst,
         const char __far * __far *src,
         size_t len, mbstate_t __far *ps );
```

Safer C:

The Safer C Library extension provides the mbsrtowcs_s function which is a safer alternative to mbsrtowcs. This newer mbsrtowcs_s function is recommended to be used instead of the traditional "unsafe" mbsrtowcs function.

Description:

The mbsrtowcs function converts a sequence of multibyte characters that begins in the shift state described by ps from the array indirectly pointed to by src into a sequence of corresponding wide characters, which, if dst is not a null pointer, are then stored into the array pointed to by dst. Conversion continues up to and including a terminating null character, but the terminating null wide character will not be stored. Conversion will stop earlier in two cases: when a sequence of bytes is reached that does not form a valid multibyte character, or (if dst is not a null pointer) when len codes have been stored into the array pointed to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src will be assigned either a null pointer (if conversion stopped due to reaching a terminating null character) or the address just past the last multibyte character converted. If conversion stopped due to reaching a terminating null character and if dst is not a null pointer, the resulting state described will be the initial conversion state.

The _fmbsrtowcs function is a data model independent form of the mbsrtowcs function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The restartable multibyte/wide string conversion functions differ from the corresponding internal-state multibyte string functions (mbstowcs and wcstombs) in that they have an extra argument, ps, of type pointer to mbstate_t that points to an object that can completely describe the current conversion state of the associated multibyte character sequence. If ps is a null pointer, each function uses its own internal mbstate t object instead. You are guaranteed that no other function in the library calls these functions with a null pointer for ps, thereby ensuring the stability of the state.

Also unlike their corresponding functions, the conversion source argument, src, has a pointer-to-pointer type. When the function is storing conversion results (that is, when dst is not a null pointer), the pointer object pointed to by this argument will be updated to reflect the amount of the source processed by that invocation.

If the encoding is state-dependent, on entry each function takes the described conversion state (either internal or pointed to by ps) as current and then, if the destination pointer, dst, is not a null pointer, the conversion state described by the pointed-to object is altered as needed to track the shift state of the associated multibyte character sequence. For encodings without state dependency, the pointer to the mbstate_t argument is ignored.

Returns:

If the input string does not begin with a valid multibyte character, an encoding error occurs: the mbsrtowcs function stores the value of the macro EILSEQ in errno and returns (size_t)-1; but the conversion state is unspecified. Otherwise, it returns the number of multibyte characters successfully converted, which is the same as the number of array elements modified when dst is not a null pointer.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs_s, mbstowcs_s, mbstowcs_s, mbstowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const char chars[] = {
   · ·,
   '.',
    11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
              /* single-byte Katakana punctuation */
    0xA1,
              /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
void main()
   int
               i;
               elements;
   size_t
   const char *src;
               wc[50];
   wchar_t
   mbstate_t pstate;
   _setmbcp( 932 );
   src = chars;
   elements = mbsrtowcs( wc, &src, 50, &pstate );
   if( errno == EILSEQ ) {
        printf( "Error in multibyte character string\n" );
        for(i = 0; i < elements; i++) {
            printf( \%#6.4x\n", wc[i] );
    }
}
```

produces the following:

```
0x0020
0x002e
0x0031
0x0041
0x3000
0xff21
0x3048
0x30a3
0xff61
0xff66
0xff9f
0x720d
```

Classification: ISO C95

_fmbsrtowcs is WATCOM

Systems: mbsrtowcs - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,

Linux, RDOS

_fmbsrtowcs - DOS, Windows, OS/2 1.x(all)

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t mbsrtowcs_s( size_t * restrict retval,
                     wchar_t * restrict dst, rsize_t dstmax,
                     const char ** restrict src, rsize_t len,
                     mbstate_t * restrict ps);
errno_t _fmbsrtowcs_s( size_t __far * restrict retval,
                       wchar_t __far * restrict dst, rsize_t dstmax,
                       const char __far * __far * restrict src, rsize
_t len,
                       mbstate_t __far * restrict ps);
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and mbsrtowcs_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> None of retval, src, *src, or ps shall be null pointers. If dst is not a null pointer, then neither len nor dstmax shall be greater than RSIZE_MAX. If dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a null pointer and len is not less than dstmax, then a null character shall occur within the first dstmax multibyte characters of the array pointed to by *src.

> If there is a runtime-constraint violation, then mbsrtowcs_s does the following. If retval is not a null pointer, then the mbsrtowcs_s sets *retval to (size_t) -1. If dst is not a null pointer and dstmax is greater than zero and less than RSIZE_MAX, then mbsrtowcs_s sets dst[0] to the null wide character.

Description:

The mbsrtowcs_s function converts a sequence of multibyte characters that begins in the conversion state described by the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide characters. If dst is not a null pointer, the converted characters are stored into the array pointed to by dst. Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multibyte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed to by dst. If dst is not a null pointer and no null wide character was stored into the array pointed to by dst, then dst[len] is set to the null wide character. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion stopped due to reaching a terminating null character) or the address just past the last multibyte character converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null pointer, the resulting state described is the initial conversion state.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a sequence of bytes that do not form a valid multibyte character, an encoding error occurs: the mbsrtowcs_s function stores the value (size_t) -1 into *retval and the conversion state is unspecified. Otherwise, the mbsrtowcs_s function stores into *retval the number of multibyte characters successfully converted, not including the terminating null character (if any).

All elements following the terminating null wide character (if any) written by mbsrtowcs_s in the array of dstmax wide characters pointed to by dst take unspecified values when mbsrtowcs_s returns.

If copying takes place between objects that overlap, the objects take on unspecified values.

The _fmbsrtowcs_s function is a data model independent form of the mbsrtowcs_s function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The mbsrtowcs_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const char chars[] = {
    ' ',
   '.',
    11',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x60, /* double-byte A */
    0x82,0xA6, /* double-byte Hiragana */
    0x83,0x42, /* double-byte Katakana */
               /* single-byte Katakana punctuation */
    0xA1,
              /* single-byte Katakana alphabetic */
    0xA6,
              /* single-byte Katakana alphabetic */
    0xE0,0xA1, /* double-byte Kanji */
    0x00
};
int main()
{
    int
                i;
    size_t
                retval;
   const char *src;
   wchar_t
               wc[50];
   mbstate_t
               pstate;
   errno_t
                rc;
   _setmbcp( 932 );
    src = chars;
    rc = mbsrtowcs( &retval, wc, 50, &src, sizeof(chars), &pstate );
    if( rc != 0 ) {
        printf( "Error in multibyte character string\n" );
    } else {
        for( i = 0; i < retval; i++ ) {
            printf( "%#6.4x\n", wc[i] );
    return(0);
}
```

Classification: TR 24731

_fmbsrtowcs_s is WATCOM

Systems: mbsrtowcs_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,

Linux, RDOS

_fmbsrtowcs_s - DOS, Windows, OS/2 1.x(all)

Synopsis: #include <mbstring.h>

```
unsigned char *_mbsspnp( const unsigned char *s,
                         const unsigned char *charset );
unsigned char __far *_fmbsspnp(
                   const unsigned char ___far *s,
                    const unsigned char __far *charset );
#include <tchar.h>
char *_strspnp( const char *s,
                const char *charset );
wchar_t *_wcsspnp( const wchar_t *s,
                   const wchar_t *charset );
```

Description:

The _mbsspnp function returns a pointer to the first multi-byte character in s that does not belong to the set of multi-byte characters in charset. The terminating null character is not considered to be part of charset.

The _fmbsspnp function is a data model independent form of the _mbsspnp function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text macro _tcsspnp.

The _tcsspnp macro maps to _mbsspnp if _MBCS has been defined, or to the _wcsspnp macro if _UNICODE has been defined, otherwise it maps to _strspnp macro.

_strspnp and _wcsspnp are single-byte character string and wide character string versions of _mbsspnp.

The _strspnp and _wcsspnp macros are provided only for this mapping and should not be used otherwise.

Returns:

These functions return NULL if s consists entirely of characters (multi-byte, wide, or single-byte) from charset (multi-byte, wide, or single-byte).

See Also:

strspnp, strcspn, strspn

#include <stdio.h>

Example:

```
#include <string.h>
void main()
  {
   printf( "%s\n", strspnp( "out to lunch", "aeiou" ) );
   printf( "%s\n", strspnp( "out to lunch", "xyz" ) );
```

produces the following:

t to lunch out to lunch

Classification: WATCOM

```
Systems:
```

```
_mbsspnp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsspnp - DOS, Windows, OS/2 1.x(all)
_strspnp - All, Linux, RDOS, Netware
_wcsspnp - All, Linux
```

_mbsspnp, _fmbsspnp, _strspnp, _wcsspnp							

```
Synopsis:
           #include <stdlib.h>
           size_t mbstowcs( wchar_t *pwcs, const char *s, size_t n );
           #include <mbstring.h>
           size_t _fmbstowcs( const wchar_t __far *pwcs,
                               char __far *s,
                               size_t n );
```

Safer C: The Safer C Library extension provides the mbstowcs_s function which is a safer alternative to mbstowcs. This newer mbstowcs_s function is recommended to be used instead of the traditional "unsafe" mbstowcs function.

Description: The mbstowes function converts a sequence of multibyte characters pointed to by s into their corresponding wide character codes and stores not more than n codes into the array pointed to by pwcs. The mbstowcs function does not convert any multibyte characters beyond the null character. At most *n* elements of the array pointed to by *pwcs* will be modified.

> The _fmbstowcs function is a data model independent form of the mbstowcs function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: If an invalid multibyte character is encountered, the mbstowcs function returns (size_t)-1. Otherwise, the mbstowcs function returns the number of array elements modified, not including the terminating zero code if present.

See Also: mbstowcs_s, mblen, mbtowc, wctomb, wctomb_s, wcstombs, wcstombs_s

```
Example:
           #include <stdio.h>
           #include <stdlib.h>
           void main()
             {
               char *wc = "string";
               wchar_t wbuffer[50];
                        i, len;
               len = mbstowcs( wbuffer, wc, 50 );
                if ( len !=-1 ) {
                  wbuffer[len] = ' \setminus 0';
                  printf( "%s(%d)\n", wc, len );
                  for( i = 0; i < len; i++ )
                    printf( "/%4.4x", wbuffer[i] );
                  printf( "\n" );
```

produces the following:

}

```
string(6)
/0073/0074/0072/0069/006e/0067
```

Classification: ISO C95

fmbstowcs is WATCOM

Systems: mbstowcs - All, Linux, RDOS, Netware _fmbstowcs - DOS, Windows, OS/2 1.x(all)

mbstowcs, _fmbstowcs			

```
#define __STDC_WANT_LIB_EXT1__
#include <stdlib.h>
errno_t mbstowcs_s( size_t * restrict retval,
                   wchar_t * restrict dst,
                    rsize_t dstmax,
                    const char * restrict src, rsize_t len);
errno_t _fmbstowcs_s( size_t __far * restrict retval,
                    wchar_t __far * restrict dst,
                    rsize_t dstmax,
                    const char __far * restrict src, rsize_t len);
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and mbstowcs_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither retval nor src shall be a null pointer. If dst is not a null pointer, then neither len nor dstmax shall be greater than RSIZE MAX. If dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a null pointer and len is not less than dstmax, then a null character shall occur within the first dstmax multibyte characters of the array pointed to by src.

> If there is a runtime-constraint violation, then mbstowcs_s does the following. If retval is not a null pointer, then the mbstowcs_s sets *retval to (size_t) -1. If dst is not a null pointer and dstmax is greater than zero and less than RSIZE_MAX, then mbstowcs_s sets dst[0] to the null wide character.

Description:

The mbstowcs_s function converts a sequence of multibyte characters that begins in the initial shift state from the array pointed to by src into a sequence of corresponding wide characters. If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored. Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multibyte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed to by dst. If dst is not a null pointer and no null wide character was stored into the array pointed to by dst, then dst[len] is set to the null wide character. Each conversion takes place as if by a call to the mbrtowc function.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a sequence of bytes that do not form a valid multibyte character, an encoding error occurs: the mbstowcs_s function stores the value (size_t)-1 into *retval. Otherwise, the mbstowcs_s function stores into *retval the number of multibyte characters successfully converted, not including the terminating null character (if any).

All elements following the terminating null wide character (if any) written by mbstowcs_s in the array of dstmax wide characters pointed to by dst take unspecified values when mbstowcs_s returns.

If copying takes place between objects that overlap, the objects take on unspecified values.

The _fmbstowcs_s function is a data model independent form of the mbstowcs_s function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The mbstowcs_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

```
See Also:
           mbstowcs, mblen, mbtowc, wctomb, wctomb_s, wcstombs_s
Example:
           #define __STDC_WANT_LIB_EXT1__ 1
           #include <stdio.h>
           #include <stdlib.h>
           int main()
               char
                     *wc = "string";
               wchar_t wbuffer[50];
               int i;
               errno_t rc;
               size_t retval;
               rc = mbstowcs_s( &retval, wbuffer, 50, wc, 10);
               if(rc == 0)  {
                 wbuffer[retval] = L' \setminus 0';
                 printf( %s(%d) n, wc, retval );
                 for( i = 0; i < retval; i++ )</pre>
                   printf( "/%4.4x", wbuffer[i] );
                 printf( "\n" );
               return(0);
           }
           produces the following:
           string(6)
           /0073/0074/0072/0069/006e/0067
Classification: TR 24731
           _fmbstowcs_s is WATCOM
Systems:
           mbstowcs_s - All, Linux, RDOS, Netware
           _fmbstowcs_s - DOS, Windows, OS/2 1.x(all)
```

```
Synopsis:
           #include <mbstring.h>
           int _mbterm( const unsigned char *ch );
           int _fmbterm( const unsigned char __far *ch );
```

The _mbterm function determines if the next multibyte character in the string pointed to by ch is a null **Description:** character or a valid lead byte followed by a null character.

> The _fmbterm function is a data model independent form of the _mbterm function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The _mbterm function returns 1 if the multibyte character pointed to by ch is a null character. The _mbterm function returns 2 if the multibyte character pointed to by ch is a valid lead byte character followed by a null character. Otherwise, the _mbterm function returns 0.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>
const unsigned char chars[] = {
    ' ',
    '1',
    'A',
    0x81,0x40, /* double-byte space */
    0x82,0x00 /* invalid double-byte */
};
#define SIZE sizeof( chars ) / sizeof( unsigned char )
void main()
    int
            i;
    _setmbcp( 932 );
    for( i = 0; i < SIZE; i++ ) {
        printf( "0x%2.2x %d\n", chars[i],
                _mbterm( &chars[i] ) );
```

produces the following:

_mbterm, _fmbterm

```
0x20 0
0x2e 0
0x31 0
0x41 0
0x81 0
0x40 0
0x82 2
0x00 1
```

Classification: WATCOM

Systems: _mbterm - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS _fmbterm - DOS, Windows, OS/2 1.x(all)

```
#include <stdlib.h>
int mbtowc( wchar_t *pwc, const char *s, size_t n );
#include <mbstring.h>
int _fmbtowc( wchar_t __far *pwc,
              const char __far *s,
              size_t n );
```

Description:

The mbtowc function converts a single multibyte character pointed to by s into the wide character code that corresponds to that multibyte character. The code for the null character is zero. If the multibyte character is valid and pwc is not a NULL pointer, the code is stored in the object pointed to by pwc. At most n bytes of the array pointed to by s will be examined.

The mbtowc function does not examine more than MB_CUR_MAX bytes.

The _fmbtowc function is a data model independent form of the mbtowc function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

If s is a NULL pointer, the mbtowc function returns zero if multibyte character encodings are not state dependent, and non-zero otherwise. If s is not a NULL pointer, the mbtowc function returns:

Value Meaning

if s points to the null character

len the number of bytes that comprise the multibyte character (if the next n or fewer bytes form a valid multibyte character)

-1 if the next n bytes do not form a valid multibyte character

See Also: mblen, wctomb, mbstowcs, wcstombs

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <mbctype.h>
void main()
  {
          *wc = "string";
    char
    wchar_t wbuffer[10];
    int
            i, len;
    _setmbcp( 932 );
    printf( "Character encodings are %sstate dependent\n",
             ( mbtowc( wbuffer, NULL, 0 ) )
            ? "" : "not " );
    len = mbtowc( wbuffer, wc, MB CUR MAX );
    wbuffer[len] = ' \setminus 0';
    printf( "%s(%d)\n", wc, len );
    for( i = 0; i < len; i++ )
        printf( "/%4.4x", wbuffer[i] );
    printf( "\n" );
```

produces the following:

Character encodings are not state dependent $\operatorname{string}(1)$

/0073

Classification: ISO C

_fmbtowc is WATCOM

Systems: mbtowc - All, Linux, RDOS, Netware

_fmbtowc - DOS, Windows, OS/2 1.x(all)

```
Synopsis:
            #include <mbstring.h>
            unsigned char *_mbvtop( unsigned int ch,
                                        unsigned char *addr );
            unsigned char __far *_fmbvtop( unsigned int ch,
                                        unsigned char __far *addr );
Description:
            The _mbvtop function stores the multibyte character ch into the string pointed to by addr.
            The _fmbvtop function is a data model independent form of the _mbvtop function. It accepts far
            pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.
Returns:
            The _mbvtop function returns the value of the argument addr.
See Also:
            _mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira,
            _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc,
            mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb,
            wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctob, wctomb,
            wctomb_s
Example:
            #include <stdio.h>
            #include <mbctype.h>
            #include <mbstring.h>
            void main()
                 unsigned char string[10];
                 unsigned char *p;
                 int
                                 i;
                 _setmbcp( 932 );
                 p = string;
                _mbvtop('.', p);
                p++;
                 _mbvtop('1', p);
                p++;
                 _mbvtop('A', p);
                 p++;
                 _mbvtop( 0x8140, p );
                 p += 2;
                 _mbvtop( 0x8260, p );
                 p += 2;
                 _mbvtop( 0x82A6, p );
                 p += 2;
                 _mbvtop( '\0', p );
                 for( i = 0; i < 10; i++ )
                   printf( "%2.2x ", string[i] );
                 printf( "\n" );
            produces the following:
            2e 31 41 81 40 82 60 82 a6 00
```

_mbvtop, _fmbvtop

Classification: WATCOM

Systems: _mbvtop - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbvtop - DOS, Windows, OS/2 1.x(all)

Synopsis: #include <malloc.h> size_t _memavl(void);

Description: The _memavl function returns the number of bytes of memory available for dynamic memory

> allocation in the near heap (the default data segment). In the tiny, small and medium memory models, the default data segment is only extended as needed to satisfy requests for memory allocation.

> Therefore, you will need to call _nheapgrow in these memory models before calling _memavl in

order to get a meaningful result.

The number returned by _memavl may not represent a single contiguous block of memory. Use the _memmax function to find the largest contiguous block of memory that can be allocated.

Returns: The _memav1 function returns the number of bytes of memory available for dynamic memory

allocation in the near heap (the default data segment).

See Also: calloc Functions, _freect, _memmax, _heapgrow Functions, malloc Functions, realloc

Functions

Example: #include <stdio.h>

```
#include <malloc.h>
void main()
  {
    char *p;
   char *fmt = "Memory available = %u\n";
   printf( fmt, _memavl() );
   _nheapgrow();
   printf( fmt, _memavl() );
   p = (char *) malloc(2000);
   printf( fmt, _memavl() );
```

produces the following:

```
Memory available = 0
Memory available = 62732
Memory available = 60730
```

Classification: WATCOM

Systems: All, Linux, RDOS #include <string.h>

Synopsis:

```
void *memccpy( void *dest, const void *src,
                               int c, size_t cnt );
             void __far *_fmemccpy( void __far *dest,
                                         const void __far *src,
                                         int c, size_t cnt );
             void *_memccpy( void *dest, const void *src,
                               int c, size_t cnt );
Description:
             The memccpy function copies bytes from src to dest up to and including the first occurrence of the
             character c or until cnt bytes have been copied, whichever comes first.
             The _fmemccpy function is a data model independent form of the memccpy function. It accepts far
             pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.
Returns:
             The memccpy function returns a pointer to the byte in dest following the character c if one is found and
             copied, otherwise it returns NULL.
See Also:
             memcpy, memmove, memset
Example:
             #include <stdio.h>
             #include <string.h>
             char *msg = "This is the string: not copied";
             void main()
               {
                  auto char buffer[80];
                 memset( buffer, ' \setminus 0', 80 );
                 memccpy( buffer, msg, ':', 80 );
                  printf( "%s\n", buffer );
               }
             produces the following:
             This is the string:
Classification: WATCOM
Systems:
             memccpy - All, Linux, RDOS, Netware
             _fmemccpy - All, Linux, RDOS
             _memccpy - All, Linux, RDOS, Netware
```

```
Synopsis:
           #include <string.h>
           void *memchr( const void *buf, int ch, size_t length );
           void __far *_fmemchr( const void __far *buf,
                                  int ch,
                                  size_t length );
           #include <wchar.h>
           wchar_t *wmemchr( const wchar_t *buf, wchar_t ch, size_t length );
```

Description: The memchr function locates the first occurrence of ch (converted to an unsigned char) in the first length characters of the object pointed to by buf.

> The _fmemchr function is a data model independent form of the memchr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wmemchr function is a wide character version of memchr that operates with wide character strings. The argument *length* is interpreted to mean the number of wide characters.

Returns: The memchr function returns a pointer to the located character, or NULL if the character does not occur in the object.

See Also: memcmp, memcpy, _memicmp, memset

Example:

```
#include <stdio.h>
#include <string.h>
void main( void )
    char buffer[80];
    char *where;
    strcpy( buffer, "video x-rays" );
    where = (char *) memchr(buffer, 'x', 6);
    if ( where == NULL )
        printf( "'x' not found\n" );
    else
        printf( "%s\n", where );
    where = (char *)memchr( buffer, 'r', 9 );
    if( where == NULL )
        printf( "'r' not found\n" );
        printf( "%s\n", where );
}
```

Classification: ISO C

fmemchr is WATCOM wmemchr is ISO C95

Systems:

```
memchr - All, Linux, RDOS, Netware
_fmemchr - All, Linux, RDOS
wmemchr - All, Linux
```


Synopsis:

```
#include <string.h>
int memcmp (const void *s1,
            const void *s2,
            size_t length );
int _fmemcmp( const void __far *s1,
              const void __far *s2,
              size_t length );
#include <wchar.h>
int wmemcmp ( const wchar_t *s1,
             const wchar_t *s2,
             size_t length );
```

Description:

The memcmp function compares the first length characters of the object pointed to by s1 to the object pointed to by s2.

The _fmemcmp function is a data model independent form of the memcmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The wmemcmp function is a wide character version of memcmp that operates with wide character strings. The argument *length* is interpreted to mean the number of wide characters.

Returns:

The memcmp function returns an integer less than, equal to, or greater than zero, indicating that the object pointed to by s1 is less than, equal to, or greater than the object pointed to by s2.

See Also:

memchr, memcpy, _memicmp, memset

Example:

```
#include <stdio.h>
#include <string.h>
void main( void )
    auto char buffer[80];
    strcpy( buffer, "world" );
    if ( memcmp( buffer, "Hello ", 6 ) < 0 ) {
        printf( "Less than\n" );
}
```

Classification: ISO C

_fmemcmp is WATCOM wmemcmp is ISO C95

Systems:

```
memcmp - All, Linux, RDOS, Netware
_fmemcmp - All, Linux, RDOS
wmemcmp - All, Linux
```

```
Synopsis:
           #include <string.h>
           void *memcpy( void *dst,
                          const void *src,
                          size_t length );
           void __far *_fmemcpy( void __far *dst,
                                  const void __far *src,
                                  size_t length );
           #include <wchar.h>
           wchar_t *wmemcpy( wchar_t *dst,
                              const wchar_t *src,
```

Safer C: The Safer C Library extension provides the memcpy_s function which is a safer alternative to memcpy. This newer memcpy_s function is recommended to be used instead of the traditional "unsafe" memcpy function.

size_t length);

Description: The memory function copies *length* characters from the buffer pointed to by *src* into the buffer pointed to by dst. Copying of overlapping objects is not guaranteed to work properly. See the memmove function if you wish to copy objects that overlap.

> The _fmemcpy function is a data model independent form of the memcpy function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wmemcpy function is a wide character version of memcpy that operates with wide character strings. The argument *length* is interpreted to mean the number of wide characters.

Returns: The original value of *dst* is returned.

See Also: memchr, memcmp, _memicmp, memmove, memset, memcpy_s, memmove_s

```
Example:
           #include <stdio.h>
           #include <string.h>
           void main( void )
               auto char buffer[80];
```

memcpy(buffer, "Hello", 5); buffer[5] = $' \setminus 0'$; printf("%s\n", buffer);

Classification: ISO C

_fmemcpy is WATCOM wmemcpy is ISO C95

memcpy - All, Linux, RDOS, Netware **Systems:** _fmemcpy - All, Linux, RDOS wmemcpy - All, Linux

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memcpy_s( void * restrict s1,
                  rsize_t s1max,
                  const void * restrict s2,
                  rsize_t n );
#include <wchar.h>
errno_t wmemcpy_s( wchar_t * restrict s1,
                   rsize_t s1max,
                   const wchar_t * restrict s2,
                   size_t n );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and memcpy_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE MAX. n shall not be greater than s1max. Copying shall not take place between objects that overlap.

If there is a runtime-constraint violation, the memopy_s function stores zeros in the first sImax characters of the object pointed to by sI if sI is not a null pointer and sImax is not greater than RSIZE MAX.

Description:

The memcpy_s function copies n characters from the buffer pointed to by s2 into the buffer pointed to by s1. Copying between overlapping objects is not allowed. See the memmove_s function if you wish to copy objects that overlap.

The wmemcpy_s function is a wide character version of memcpy_s that operates with wide character strings. The arguments sImax and n are interpreted to mean the number of wide characters.

Returns:

The memcpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

memcpy, memchr, memcmp, memcpy, _memicmp, memmove, memset, memmove_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <string.h>
void main( void )
    char buffer[80];
    memcpy_s( buffer, sizeof( buffer ), "Hello", 5 );
    buffer[5] = ' \setminus 0';
    printf( "%s\n", buffer );
}
```

Classification: TR 24731

Systems:

memcpy_s - All, Linux, RDOS, Netware wmemcpy_s - All, Linux

memcpy_s, wmemcpy_s		

Synopsis:

```
#include <string.h>
int _memicmp( const void *s1,
              const void *s2,
              size_t length );
int _fmemicmp( const void __far *s1,
               const void __far *s2,
               size_t length );
** deprecated **
int memicmp( const void *s1,
             const void *s2,
             size_t length );
```

Description:

The function compares, without case sensitivity (upper- and lowercase characters are equivalent), the first *length* characters of the object pointed to by s1 to the object pointed to by s2. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The _fmemicmp function is a data model independent form of the _memicmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The memicmp function is deprecated, use _memicmp instead.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the object pointed to by s1 is less than, equal to, or greater than the object pointed to by s2.

See Also:

memchr, memcmp, memcpy, memset

Example:

```
#include <stdio.h>
#include <string.h>
void main()
  {
    char buffer[80];
    if( _memicmp( buffer, "Hello", 5 ) < 0 ) {</pre>
      printf( "Less than\n" );
  }
```

Classification: WATCOM

Systems:

```
_{\rm memicmp} - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
Linux, RDOS
_fmemicmp - All, Linux, RDOS
memicmp - All, Linux, RDOS, Netware
```


Synopsis: #include <malloc.h> size_t _memmax(void);

Description: The _memmax function returns the size of the largest contiguous block of memory available for

dynamic memory allocation in the near heap (the default data segment). In the tiny, small and medium memory models, the default data segment is only extended as needed to satisfy requests for memory allocation. Therefore, you will need to call _nheapgrow in these memory models before calling

_memmax in order to get a meaningful result.

Returns: The _memmax function returns the size of the largest contiguous block of memory available for

dynamic memory allocation in the near heap. If 0 is returned, then there is no more memory available

in the near heap.

See Also: calloc, _freect, _memavl, _heapgrow, malloc

Example: #include <stdio.h> #include <malloc.h>

```
void main()
 {
   char *p;
   size_t size;
   _nheapgrow();
   size = \_memmax();
   printf( "Maximum memory available is u\n", size );
   p = (char *) _nmalloc( size );
   size = \_memmax();
   printf( "Maximum memory available is %u\n", size );
 }
```

produces the following:

Maximum memory available is 0 Maximum memory available is 62700 Maximum memory available is 0

Classification: WATCOM

Systems: All, Linux, RDOS

Safer C: The Safer C Library extension provides the memmove_s function which is a safer alternative to memmove. This newer memmove_s function is recommended to be used instead of the traditional "unsafe" memmove function.

Description: The memmove function copies *length* characters from the buffer pointed to by *src* to the buffer pointed to by *dst*. Copying of overlapping objects will take place properly. See the memopy function to copy objects that do not overlap.

The _fmemmove function is a data model independent form of the memmove function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wmemmove function is a wide character version of memmove that operates with wide character strings. The argument *length* is interpreted to mean the number of wide characters.

Returns: The memmove function returns *dst*.

See Also: memchr, memcmp, memcpy, _memicmp, memset, memmove_s, memcpy_s

```
texample: #include <string.h>

void main( void )
{
    char buffer[80];

    memmove( buffer + 1, buffer, 79 );
    buffer[0] = '*';
}
```

Classification: ISO C

_fmemmove is WATCOM wmemmove is ISO C95

Systems: memmove - All, Linux, RDOS, Netware
_fmemmove - All, Linux, RDOS
wmemmove - All, Linux

memmove, _fmemmove, wmemmove

Synopsis:

```
#define ___STDC_WANT_LIB_EXT1__
#include <string.h>
errno_t memmove_s( void * restrict s1,
                   rsize_t s1max,
                   const void * restrict s2,
                   rsize_t n );
#include <wchar.h>
errno_t wmemmove_s( wchar_t * restrict s1,
                    rsize_t s1max,
                    const wchar_t * restrict s2,
                    size_t n );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and memmove_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE MAX. n shall not be greater than s1max.

If there is a runtime-constraint violation, the memmove_s function stores zeros in the first sImax characters of the object pointed to by sI if sI is not a null pointer and sImax is not greater than RSIZE MAX.

Description:

The memmove_s function copies n characters from the buffer pointed to by s2 into the buffer pointed to by sI. This copying takes place as if the n characters from the buffer pointed to by s2 are first copied into a temporary array of n characters that does not overlap the objects pointed to by s1 or s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

See the *memcpy_s* function if you wish to copy objects that do not overlap.

The wmemmove_s function is a wide character version of memmove_s that operates with wide character strings. The arguments sImax and n are interpreted to mean the number of wide characters.

Returns:

The memmove_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

memchr, memcmp, memcpy, _memicmp, memmove, memset, memcpy_s

Example:

```
#define STDC WANT LIB EXT1 1
#include <string.h>
void main( void )
    char buffer[80] = "0123456789";
   memmove_s( buffer + 1, sizeof( buffer ), buffer, 79 );
    buffer[0] = '*';
    printf( buffer );
}
```

produces the following:

*0123456789

Classification: TR 24731

memmove_s - All, Linux, RDOS, Netware
wmemmove_s - All **Systems:**

Synopsis: #include <mmintrin.h>
 void _m_empty(void);

Description: The _m_empty function empties the multimedia state. The values in the Multimedia Tag Word (TW) are set to empty (i.e., all ones). This will indicate that no Multimedia registers are in use.

This function is useful for applications that mix floating-point (FP) instructions with multimedia instructions. Intel maps the multimedia registers onto the floating-point registers. For this reason, you are discouraged from intermixing MM code and FP code. The recommended way to write an application with FP instructions and MM instructions is:

- Split the FP code and MM code into two separate instruction streams such that each stream contains only instructions of one type.
- Do not rely on the contents of FP/MM registers across transitions from one stream to the other.
- Leave the MM state empty at the end of an MM stream using the _m_empty function.
- Similarly, leave the FP stack empty at the end of an FP stream.

Returns: The _m_empty function does not return a value.

See Also: _m_from_int, _m_to_int, _m_packsswb, _m_paddb, _m_pand, _m_pcmpeqb, _m_pmaddwd, _m_psllw, _m_psraw, _m_psrlw, _m_psubb, _m_punpckhbw

Example:

```
sequence of code that uses floating-point
```

Classification: Intel

Systems: MACRO

Returns: The memset function returns the pointer *dst*.

See Also: memchr, memcmp, memcpy, _memicmp, memmove

```
Example: #include <string.h>

void main( void )
{
    char buffer[80];

    memset( buffer, '=', 80 );
}
```

Classification: ISO C

_fmemset is WATCOM wmemset is ISO C95

Systems:

```
memset - All, Linux, RDOS, Netware
_fmemset - All, Linux, RDOS
wmemset - All, Linux
```

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_from_int(int i);
```

Description: The _m_from_int function forms a 64-bit MM value from an unsigned 32-bit integer value.

Returns: The 64-bit result of loading MM0 with an unsigned 32-bit integer value is returned.

See Also: _m_empty, _m_to_int, _m_packsswb, _m_paddb, _m_pand, _m_empty, _m_pcmpeqb, _m_pmaddwd, _m_psllw, _m_psraw, _m_psrlw, _m_empty, _m_psubb, _m_punpckhbw

Example: #include <stdio.h> #include <mmintrin.h> ___m64 a; int k = 0xF1F2F3F4;void main() { $a = _mfrom_int(k);$ printf("int=%8.81x m=%8.81x%8.81x\n", k, a._32[1], a._32[0]); } produces the following:

int=f1f2f3f4 m=0000000f1f2f3f4

Classification: Intel

Systems: MACRO

```
Synopsis: #include <stdlib.h>
#define min(a,b) (((a) < (b)) ? (a) : (b))</pre>
```

Description: The min macro will evaluate to be the lesser of two values. It is implemented as follows.

```
\#define min(a,b) (((a) < (b)) ? (a) : (b))
```

Returns: The min macro will evaluate to the smaller of the two values passed.

See Also: max

```
Example: #include <stdio.h>
#include <stdib.h>

void main()
{
    int a;

    /*
        * The following line will set the variable "a" to 1
        * since 10 is greater than 1.
        */
        a = min(1, 10);
        printf( "The value is: %d\n", a);
}
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <sys/types.h>

> #include <direct.h> int mkdir(const char *path); int _mkdir(const char *path); int _wmkdir(const wchar_t *path);

Description:

The mkdir function creates a new subdirectory with name path. The path can be either relative to the current working directory or it can be an absolute path name.

The _mkdir function is identical to mkdir. Use _mkdir for ANSI naming conventions.

The _wmkdir function is a wide character version of mkdir that operates with wide character strings.

Returns: The mkdir function returns zero if successful, and a non-zero value otherwise.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

> Constant Meaning **EACCES** Search permission is denied for a component of path or write permission is denied on the parent directory of the directory to be created. **EEXIST** The named file exists.

ENOENT The specified *path* does not exist or *path* is an empty string.

See Also: chdir, chmod, getcwd, rmdir, stat, umask

Example: To make a new directory called \watcom on drive C:

```
#include <sys/types.h>
#include <direct.h>
void main( void )
    mkdir( "c:\\watcom" );
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: POSIX 1003.1

_mkdir conforms to ANSI naming conventions _wmkdir is WATCOM

Systems:

```
mkdir - All, Linux, RDOS, Netware
_mkdir - All, Linux, RDOS, Netware
_wmkdir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

mkdir, _mkdir,	_wmkdir			

```
Synopsis:
           #include <i86.h>
           void __far *MK_FP( unsigned int segment,
                               unsigned int offset );
```

Description: The MK_FP macro can be used to obtain the far pointer value given by the segment segment value and the *offset* offset value. These values may be obtained by using the FP_SEG and FP_OFF macros.

Returns: The macro returns a far pointer.

See Also: FP_OFF, FP_SEG, segread

Example: #include <i86.h> #include <stdio.h> void main() { unsigned short __far *bios_prtr_port_1; bios_prtr_port_1 = (unsigned short ___far *) MK_FP(0x40, 0x8); printf("Port address is %x\n", *bios_prtr_port_1);

Classification: Intel

Systems: MACRO

```
Synopsis: #include <stdlib.h>
    int mkstemp( char *template );
```

Description:

The mkstemp function creates a file with unique name by modifying the *template* argument, and returns its file handle open for reading and writing in binary mode. The use of mkstemp prevents any possible race condition between testing whether the file exists and opening it for use.

The string *template* has the form baseXXXXXX where base is the fixed part of the generated filename and XXXXXX is the variable part of the generated filename. Each of the 6 X's is a placeholder for a character supplied by mkstemp. Each placeholder character in *template* must be an uppercase "X". mkstemp preserves base and replaces the first of the 6 trailing X's with a unique sequence of alphanumeric characters. The string *template* therefore must be writable.

mkstemp checks to see if a file with the generated name already exists and if so selects another name, until it finds a file that doesn't exist. If it is unsuccessful at finding a name for a file that does not already exist or is unable to create a file, mkstemp returns -1.

Returns:

The mkstemp function returns a file handle. When an error occurs while creating the file, -1 is returned.

See Also: fopen, freopen, _mktemp, _tempnam, tmpfile, tmpnam

Example:

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
                    "_txxxxxx"
#define TEMPLATE
#define MAX_TEMPS
void main( void )
{
            name[sizeof( TEMPLATE )];
    char
    int
            i;
    int
            handles[MAX_TEMPS];
    for( i = 0; i < MAX_TEMPS; i++ ) {
        strcpy( name, TEMPLATE );
        handles[i] = mkstemp( name );
        if (handles[i] == -1) {
            printf( "Failed to create temporary file\n" );
        } else {
            printf( "Created temporary file '%s'\n", name );
    for( i = 0; i < MAX_TEMPS; i++ ) {</pre>
        if ( handles[i] !=-1 ) {
            close( handles[i] );
        }
    }
```

Classification: POSIX 1003.1

Systems: All, Linux, Netware Synopsis: #include <io.h>

```
char *_mktemp( char *template );
#include <wchar.h>
wchar_t *_wmktemp( wchar_t *template );
```

Description:

The _mktemp function creates a unique filename by modifying the *template* argument. _mktemp automatically handles multi-byte character string arguments as appropriate, recognizing multi-byte character sequences according to the multibyte code page currently in use by the run-time system.

The _wmktemp function is a wide character version of _mktemp that operates with wide character strings.

The string *template* has the form baseXXXXXX where base is the fixed part of the generated filename and XXXXXX is the variable part of the generated filename. Each of the 6 X's is a placeholder for a character supplied by _mktemp. Each placeholder character in *template* must be an uppercase "X". _mktemp preserves base and replaces the first of the 6 trailing X's with a lowercase alphabetic character (a-z). _mktemp replaces the following 5 trailing X's with a five-digit value; this value is a unique number identifying the calling process or thread.

_mktemp checks to see if a file with the generated name already exists and if so selects another letter, in succession, from "a" to "z" until it finds a file that doesn't exist. If it is unsuccessful at finding a name for a file that does not already exist, _mktemp returns NULL. At most, 26 unique file names can be returned to the calling process or thread.

Returns:

The _mktemp function returns a pointer to the modified *template*. The _mktemp function returns NULL if *template* is badly formed or no more unique names can be created from the given template.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fopen, freopen, mkstemp, _tempnam, tmpfile, tmpnam

Example:

```
#include <stdio.h>
#include <string.h>
#include <io.h>
#define TMPLTE "_tXXXXXX"
void main()
   char name[sizeof(TMPLTE)];
    char *mknm;
    int i;
   FILE *fp;
    for(i = 0; i < 30; i++) {
      strcpy( name, TMPLTE );
      mknm = _mktemp( name );
      if( mknm == NULL )
        printf( "Name is badly formed\n" );
      else {
       printf( "Name is %s\n", mknm );
        fp = fopen( mknm, "w" );
        if( fp != NULL ) {
          fprintf( fp, "Name is %s\n", mknm );
          fclose( fp );
      }
    }
  }
```

Classification: WATCOM

```
Systems:
           _mktemp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
          _wmktemp - Win32
```

Synopsis: #include <time.h> time_t mktime(struct tm *timeptr);

Description:

The mktime function converts the local time information in the structure pointed to by *timeptr* into a calendar time (Coordinated Universal Time) with the same encoding used by the time function. The original values of the fields tm_sec, tm_min, tm_hour, tm_mday, and tm_mon are not restricted to ranges described for struct tm. If these fields are not in their proper ranges, they are adjusted so that they are in the proper ranges. Values for the fields tm_wday and tm_yday are computed after all the other fields have been adjusted.

If the original value of tm_isdst is negative, this field is computed also. Otherwise, a value of 0 is treated as "daylight savings time is not in effect" and a positive value is treated as "daylight savings time is in effect".

Whenever mktime is called, the tzset function is also called.

Returns: The mktime function returns the converted calendar time.

See Also: asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime, gmtime_s, localtime, localtime_s, strftime, time, tzset

Example:

```
#include <stdio.h>
#include <time.h>

static const char *week_day[] = {
    "Sunday", "Monday", "Tuesday", "Wednesday",
    "Thursday", "Friday", "Saturday"
};

void main()
    {
    struct tm new_year;
```

```
new_year.tm_year = 2001 - 1900;
    new_year.tm_mon = 0;
new_year.tm_mday = 1;
new_year.tm_hour = 0;
    new_year.tm_min = 0;
    new_year.tm_sec = 0;
    new_year.tm_isdst = 0;
    mktime( &new_year );
    printf( "The 21st century began on a %s\n",
               week_day[ new_year.tm_wday ] );
  }
produces the following:
The 21st century began on a Monday
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

mlock

Synopsis: #include <sys/mman.h>

int mlock(void *address, size_t len)

Description: The mlock function causes memory located at *address* measuring *len* bytes to be held in physical

memory until unlocked or the process terminates.

Returns: If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The argument address is not a multiple of the page size or the len is zero or causes an

overflow

ENOMEM The arguments do not correspond to a region of the process's address space or the requested

lock region exceeds an allowable limit

EAGAIN Some portion of the memory could not be locked

EPERM The calling process lacks the approriate permissions

See Also: mlockall, munlock, munlockall

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <sys/mman.h>

int mlockall(int flags)

Description: The mlockall function causes all memory in the current process's address space to reside in physical

memory until unlocked. The *flags* argument may be one or a combination of the following:

MCL_CURRENT Lock all pages currently mapped for the process

MCL_FUTURE Lock all pages that may be mapped in the future for this process

If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set **Returns:**

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The argument flags is zero or invalid

ENOMEM The amount of memory requested for locking exceeds an allowable limit

EAGAIN Some portion of the memory could not be locked

EPERM The calling process lacks the approriate permissions

See Also: mlock, munlock, munlockall

Classification: POSIX 1003.1

Systems: Linux Synopsis: #include <sys/mman.h>

void *mmap(void *address, size_t len, int prot, int flags, int fd, of

f_t offset)

Description: The mmap function creates a mapping of a file specified by fd and the process address space, allowing

the file to be accessed via the returned pointer.

The argument *address* provides the kernel a "suggestion" as to where to locate the pointer returned by this function. The argmuent *address* is normally set to NULL, however.

The argument *len* specifies the number of bytes of the file to map.

The prot argument specifies allowed access, being one of:

PROT_READ Data can be read

PROT_WRITE Data can be written

PROT_EXEC Data can be executed

PROT_NONE No access allowed

The *flags* argument specifies flags related to memory mapping, and may be one or a combination of the following:

MAP_ANONYMOUS Don't use an actual file, ignoring fd entirely

MAP_FIXED Use address exactly

MAP LOCKED Lock the memory contents

MAP_NORESERVE Memory for the file is not reserved in swap

MAP_POPULATE Populate (prefault) page tables

MAP_PRIVATE Changes to the file are private

MAP_SHARED Share changes to the file

An additional flag, MAP_ANON, is an alias for MAP_ANONYMOUS.

The argument fd is a file descriptor for mapping. It is ignored if MAP_ANONYMOUS is specified.

The *offset* argument specifies the offset within the file or device to be mapped, in bytes, at which mapping will start.

Returns: If successful, the function will return a pointer to mapped file. Upon failure, the function will return

MAP_FAILED, and errno will be set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of address could not be read or the len is zero, or value of any argument was invalid

ENOMEM Memory could not be allocated

EOVERFLOW An overflow occurred due to the *len* value

EPERM The memory could not be locked when requested

EACCES Access was denied for the specified fd file descriptor

ENODEV Memory mapping is unavailable for the requested device

See Also: munmap

Classification: POSIX 1003.1

Systems: Linux

Systems:

Math

```
Synopsis:
             #include <math.h>
             double modf( double value, double *iptr );
Description:
            The modf function breaks the argument value into integral and fractional parts, each of which has the
            same sign as the argument. It stores the integral part as a double in the object pointed to by iptr.
Returns:
            The modf function returns the signed fractional part of value.
See Also:
             frexp, ldexp
Example:
             #include <stdio.h>
             #include <math.h>
            void main()
                 double integral_value, fractional_part;
                 fractional_part = modf( 4.5, &integral_value );
                 printf( "%f %f\n", fractional_part, integral_value );
                 fractional_part = modf( -4.5, &integral_value );
                 printf( "%f %f\n", fractional_part, integral_value );
               }
            produces the following:
            0.500000 4.000000
             -0.500000 -4.000000
Classification: ISO C
```

Synopsis: #include <string.h>

```
void movedata (unsigned int src_segment,
               unsigned int src_offset,
               unsigned int tgt_segment,
               unsigned int tgt_offset,
               size_t length );
```

Description: The movedata function copies length bytes from the far pointer calculated as

```
(src_segment:src_offset) to a target location determined as a far pointer
(tgt_segment:tgt_offset).
```

Overlapping data may not be correctly copied. When the source and target areas may overlap, copy the areas one character at a time.

The function is useful to move data when the near address(es) of the source and/or target areas are not known.

Returns: No value is returned.

See Also: FP_SEG, FP_OFF, memcpy, segread

Example:

```
#include <stdio.h>
#include <string.h>
#include <dos.h>
void main()
  {
    char buffer[14] = {
        '*', 0x17, 'H', 0x17, 'e', 0x17, 'l', 0x17,
        'l', 0x17, 'o', 0x17, '*', 0x17 };
   movedata( FP_SEG( buffer ),
              FP_OFF( buffer ),
              0xB800,
              0x0720,
              14);
  }
```

Classification: WATCOM

All, Linux, RDOS, Netware **Systems:**

```
Synopsis: #include <graph.h>
    struct xycoord _FAR _moveto( short x, short y );

struct _wxycoord _FAR _moveto_w( double x, double y );
```

Description: The _moveto functions set the current output position for graphics. The _moveto function uses the view coordinate system. The _moveto_w function uses the window coordinate system.

The current output position is set to be the point at the coordinates (x, y). Nothing is drawn by the function. The _lineto function uses the current output position as the starting point when a line is drawn.

Note that the output position for graphics output differs from that for text output. The output position for text output can be set by use of the _settextposition function.

Returns: The _moveto functions return the previous value of the output position for graphics.

See Also: __getcurrentposition, _lineto, _settextposition

```
Example: #include <conio.h>
#include <graph.h>

main()
{
    __setvideomode( _VRES16COLOR );
    __moveto( 100, 100 );
    __lineto( 540, 100 );
    __lineto( 320, 380 );
    __lineto( 100, 100 );
    getch();
    __setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: _moveto - DOS _moveto_w - DOS

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_packssdw(__m64 *m1, __m64 *m2);
```

Description:

Convert signed packed double-words into signed packed words by packing (with signed saturation) the low-order words of the signed double-word elements from m1 and m2 into the respective signed words of the result. If the signed values in the word elements of m1 and m2 are smaller than 0x8000, the result elements are clamped to 0x8000. If the signed values in the word elements of m1 and m2 are larger than 0x7fff, the result elements are clamped to 0x7fff.

Returns: The result of packing, with signed saturation, 32-bit signed double-words into 16-bit signed words is returned.

See Also: _m_empty, _m_packsswb, _m_packuswb

#include <stdio.h>

Example:

```
#include <mmintrin.h>
#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                 "%2.2x %2.2x %2.2x %2.2x"
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
#define AS_DWORDS "%8.81x %8.81x"
__m64
        a;
___m64
      b = \{ 0x0000567800001234 \};
      c = { 0xfffffffe00010101 };
__m64
void main()
  {
    a = _m_packssdw(b, c);
    printf( "m2="AS_DWORDS" "
            "m1="AS_DWORDS"\n"
            "mm="AS_WORDS"\n",
        c._32[1], c._32[0],
        b._32[1], b._32[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m2=ffffffe 00010101 m1=00005678 00001234
mm=fffe 7fff 5678 1234
```

_m_packssdw

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_packsswb(__m64 *m1, __m64 *m2);
```

Description:

Convert signed packed words into signed packed bytes by packing (with signed saturation) the low-order bytes of the signed word elements from m1 and m2 into the respective signed bytes of the result. If the signed values in the word elements of m1 and m2 are smaller than 0x80, the result elements are clamped to 0x80. If the signed values in the word elements of m1 and m2 are larger than 0x7f, the result elements are clamped to 0x7f.

Returns: The result of packing, with signed saturation, 16-bit signed words into 8-bit signed bytes is returned.

See Also: _m_empty, _m_packssdw, _m_packuswb

Example:

```
#include <stdio.h>
#include <mmintrin.h>
#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                  "%2.2x %2.2x %2.2x %2.2x"
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
#define AS_DWORDS "%8.81x %8.81x"
m64
___m64
        b = \{ 0x0004000300020001 \};
__m64
        c = \{ 0xff7fff800080007f \};
void main()
  {
    a = _m_packsswb(b, c);
    printf( "m2="AS_WORDS" "
             m1=\text{AS}_WORDS'' \n''
             "mm="AS_BYTES"\n",
        c._16[3], c._16[2], c._16[1], c._16[0],
        b._16[3], b._16[2], b._16[1], b._16[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
        a._8[3], a._8[2], a._8[1], a._8[0]);
  }
```

produces the following:

_m_packsswb

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_packuswb(__m64 *m1, __m64 *m2);
```

Description: Convert signed packed words into unsigned packed bytes by packing (with unsigned saturation) the low-order bytes of the signed word elements from m1 and m2 into the respective unsigned bytes of the result. If the signed values in the word elements of m1 and m2 are too large to be represented in an unsigned byte, the result elements are clamped to 0xff.

Returns: The result of packing, with unsigned saturation, 16-bit signed words into 8-bit unsigned bytes is returned.

See Also: _m_empty, _m_packssdw, _m_packsswb

Example: #include <stdio.h>

```
#include <mmintrin.h>
#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                  "%2.2x %2.2x %2.2x %2.2x"
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
#define AS_DWORDS "%8.81x %8.81x"
__m64
___m64
        b = \{ 0x0004000300020001 \};
        c = \{ 0xff7fff800080007f \};
__m64
void main()
  {
    a = _m_packuswb(b, c);
    printf( "m2="AS_WORDS" "
             m1=\text{AS}_WORDS'' \n''
             "mm="AS_BYTES"\n",
        c._16[3], c._16[2], c._16[1], c._16[0],
        b._16[3], b._16[2], b._16[1], b._16[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
        a._8[3], a._8[2], a._8[1], a._8[0]);
  }
```

produces the following:

_m_packuswb

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_paddb(__m64 *m1, __m64 *m2);
```

Description: The signed or unsigned 8-bit bytes of m2 are added to the respective signed or unsigned 8-bit bytes of m1 and the result is stored in memory. If any result element does not fit into 8 bits (overflow), the

lower 8 bits of the result elements are stored (i.e., truncation takes place).

Returns: The result of adding the packed bytes of two 64-bit multimedia values is returned.

See Also: _m_empty, _m_paddd, _m_paddsb, _m_paddsw, _m_paddusb, _m_paddusw, _m_paddw

Example: #include <stdio.h> #include <mmintrin.h>

```
#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                 "%2.2x %2.2x %2.2x %2.2x"
m64
        a;
       b = \{ 0x0123456789abcdef \};
 m64
m64
        c = \{ 0xfedcba9876543210 \};
void main()
  {
    a = _m_paddb(b, c);
    printf( "m1="AS_BYTES"\n"
            "m2="AS_BYTES"\n"
            "mm="AS_BYTES"\n",
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
```

a._8[3], a._8[2], a._8[1], a._8[0]);

produces the following:

}

```
m1=01 23 45 67 89 ab cd ef
m2=fe dc ba 98 76 54 32 10
mm=ff ff ff ff ff ff ff
```

Classification: Intel

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_paddd(__m64 *m1, __m64 *m2);
Description:
             The signed or unsigned 32-bit double-words of m2 are added to the respective signed or unsigned 32-bit
             double-words of m1 and the result is stored in memory. If any result element does not fit into 32 bits
             (overflow), the lower 32-bits of the result elements are stored (i.e., truncation takes place).
Returns:
             The result of adding the packed double-words of two 64-bit multimedia values is returned.
See Also:
             _m_empty, _m_paddb, _m_paddsb, _m_paddsw, _m_paddusb, _m_paddusw, _m_paddw
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_DWORDS "%8.81x %8.81x"
              m64
              m64
                      b = \{ 0x0123456789abcdef \};
                      c = \{ 0xfedcba9876543210 \};
              m64
             void main()
               {
                  a = _m_paddd(b, c);
                 printf( "m1="AS_DWORDS"\n"
                            "m2="AS_DWORDS"\n"
                            "mm="AS_DWORDS"\n",
                       b._32[1], b._32[0],
                       c._32[1], c._32[0],
                       a._32[1], a._32[0]);
               }
             produces the following:
             m1=01234567 89abcdef
             m2=fedcba98 76543210
             mm=ffffffff ffffffff
Classification: Intel
```

MACRO

Systems:

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_paddsb(__m64 *m1, __m64 *m2);
```

Description: The signed 8-bit bytes of m2 are added to the respective signed 8-bit bytes of m1 and the result is stored

in memory. Saturation occurs when a result exceeds the range of a signed byte. In the case where a result is a byte larger than 0x7f (overflow), it is clamped to 0x7f. In the case where a result is a byte

smaller than 0x80 (underflow), it is clamped to 0x80.

Returns: The result of adding the packed signed bytes, with saturation, of two 64-bit multimedia values is

returned.

See Also: _m_empty,_m_paddb,_m_paddd,_m_paddsw,_m_paddusb,_m_paddusw,_m_paddw

Example: #include <stdio.h> #include <mmintrin.h>

```
"%2.2x %2.2x %2.2x %2.2x"
m64
        a;
___m64
        b = \{ 0x8aacceef02244668 \};
___m64
        c = \{ 0x76543211fedcba98 \};
void main()
  {
    a = _m_paddsb(b, c);
    printf( "m1="AS_BYTES"\n"
            m2="AS_BYTES"\n"
            "mm="AS_BYTES"\n",
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
```

a._8[3], a._8[2], a._8[1], a._8[0]);

#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \

produces the following:

}

```
m1=8a ac ce ef 02 24 46 68
m2=76 54 32 11 fe dc ba 98
mm=00 00 00 00 00 00 00 00
```

Classification: Intel

_m_paddsb			

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_paddsw(__m64 *m1, __m64 *m2);
```

Description: The signed 16-bit words of m2 are added to the respective signed 16-bit words of m1 and the result is

stored in memory. Saturation occurs when a result exceeds the range of a signed word. In the case where a result is a word larger than 0x7fff (overflow), it is clamped to 0x7fff. In the case where a result

is a word smaller than 0x8000 (underflow), it is clamped to 0x8000.

Returns: The result of adding the packed signed words, with saturation, of two 64-bit multimedia values is

returned.

___m64

See Also: _m_empty,_m_paddb,_m_paddd,_m_paddsb,_m_paddusb,_m_paddusw,_m_paddw

Example: #include <stdio.h> #include <mmintrin.h>

a;

```
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
```

```
___m64
       b = \{ 0x8aacceef02244668 \};
       c = \{ 0x76543211fedcba98 \};
m64
void main()
    a = _m_paddsw(b, c);
    printf( "m1="AS_WORDS"\n"
            "m2="AS_WORDS"\n"
            "mm="AS_WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        c._16[3], c._16[2], c._16[1], c._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=8aac ceef 0224 4668
m2=7654 3211 fedc ba98
mm=0100 0100 0100 0100
```

Classification: Intel

```
Synopsis:
            #include <mmintrin.h>
            __m64 _m_paddusb(__m64 *m1, __m64 *m2);
Description:
            The unsigned 8-bit bytes of m2 are added to the respective unsigned 8-bit bytes of m1 and the result is
            stored in memory. Saturation occurs when a result exceeds the range of an unsigned byte. In the case
            where a result is a byte larger than 0xff (overflow), it is clamped to 0xff.
Returns:
            The result of adding the packed unsigned bytes, with saturation, of two 64-bit multimedia values is
            returned.
See Also:
            _m_empty,_m_paddb,_m_paddd,_m_paddsb,_m_paddsw,_m_paddusw,_m_paddw
Example:
            #include <stdio.h>
            #include <mmintrin.h>
            #define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                                "%2.2x %2.2x %2.2x %2.2x"
             __m64
                      a;
                     b = \{ 0x8aacceef02244668 \};
            ___m64
            ___m64
                     c = \{ 0x76543211fedcba98 \};
            void main()
               {
                 a = _m_paddusb(b, c);
                 printf( "m1="AS_BYTES"\n"
                           m2=AS_BYTES'n
                           "mm="AS_BYTES"\n",
                      b._8[7], b._8[6], b._8[5], b._8[4],
                      b._8[3], b._8[2], b._8[1], b._8[0],
                      c._8[7], c._8[6], c._8[5], c._8[4],
                      c._8[3], c._8[2], c._8[1], c._8[0],
                      a._8[7], a._8[6], a._8[5], a._8[4],
                      a._8[3], a._8[2], a._8[1], a._8[0]);
               }
            produces the following:
            m1=8a ac ce ef 02 24 46 68
            m2=76 54 32 11 fe dc ba 98
            mm=ff ff ff ff ff ff ff
```

Classification: Intel

		_m_paddusb

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_paddusw(__m64 *m1, __m64 *m2);
Description:
            The unsigned 16-bit words of m2 are added to the respective unsigned 16-bit words of m1 and the result
             is stored in memory. Saturation occurs when a result exceeds the range of an unsigned word. In the
            case where a result is a word larger than 0xffff (overflow), it is clamped to 0xffff.
Returns:
            The result of adding the packed unsigned words, with saturation, of two 64-bit multimedia values is
             returned.
See Also:
             _m_empty,_m_paddb,_m_paddd,_m_paddsb,_m_paddsw,_m_paddusb,_m_paddw
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
              _m64
                      a;
             ___m64
                      b = \{ 0x8aacceef02244668 \};
                      c = \{ 0x76543211fedcba98 \};
             ___m64
             void main()
                 a = _m_paddusw(b, c);
                 printf( "m1="AS_WORDS"\n"
                           "m2="AS_WORDS"\n"
                           "mm="AS_WORDS"\n",
                      b._16[3], b._16[2], b._16[1], b._16[0],
                      c._16[3], c._16[2], c._16[1], c._16[0],
                      a._16[3], a._16[2], a._16[1], a._16[0]);
               }
             produces the following:
            m1=8aac ceef 0224 4668
            m2=7654 3211 fedc ba98
            mm=ffff ffff ffff ffff
Classification: Intel
Systems:
            MACRO
```

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_paddw(__m64 *m1, __m64 *m2);
```

Description: The signed or unsigned 16-bit words of m2 are added to the respective signed or unsigned 16-bit words of m1 and the result is stored in memory. If any result element does not fit into 16 bits (overflow), the

lower 16 bits of the result elements are stored (i.e., truncation takes place).

Returns: The result of adding the packed words of two 64-bit multimedia values is returned.

See Also: _m_empty, _m_paddb, _m_paddd, _m_paddsb, _m_paddsw, _m_paddusb, _m_paddusw

Example: #include <stdio.h> #include <mmintrin.h>

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

```
m64
m64
       b = \{ 0x0123456789abcdef \};
       c = \{ 0xfedcba9876543210 \};
 m64
void main()
  {
    a = _m_paddw(b, c);
   printf( "m1="AS_WORDS"\n"
            "m2="AS_WORDS"\n"
            "mm="AS_WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        c._16[3], c._16[2], c._16[1], c._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=0123 4567 89ab cdef
m2=fedc ba98 7654 3210
mm=ffff ffff ffff
```

Classification: Intel

```
Synopsis:
            #include <mmintrin.h>
            __m64 _m_pand(__m64 *m1, __m64 *m2);
Description:
            A bit-wise logical AND is performed between 64-bit multimedia operands m1 and m2 and the result is
            stored in memory.
Returns:
            The bit-wise logical AND of two 64-bit values is returned.
See Also:
            _m_empty, _m_pandn, _m_por, _m_pxor
Example:
            #include <stdio.h>
            #include <mmintrin.h>
            #define AS_QWORD "%16.16Lx"
            ___m64
                     a;
            ___m64
                    b = \{ 0x0123456789abcdef \};
            _{m64} c = { 0xfedcba9876543210 };
            void main()
               {
                 a = _m_pand(b, c);
                 printf( "m1="AS_QWORD"\n"
                           m2=AS_QWORD'' n
                           "mm="AS_QWORD"\n",
                          b, c, a);
               }
            produces the following:
            m1=0123456789abcdef
            m2=fedcba9876543210
            mm = 000000000000000000
Classification: Intel
            MACRO
Systems:
```

Synopsis: #include <mmintrin.h> __m64 _m_pandn(__m64 *m1, __m64 *m2); **Description:** A bit-wise logical AND is performed on the logical inversion of 64-bit multimedia operand m1 and 64-bit multimedia operand m2 and the result is stored in memory. **Returns:** The bit-wise logical AND of an inverted 64-bit value and a non-inverted value is returned. See Also: _m_empty, _m_pand, _m_por, _m_pxor **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_QWORD "%16.16Lx" ___m64 a; ___m64 $b = \{ 0x0123456789abcdef \};$ $_{m64}$ c = { 0xfedcba9876543210 }; void main() { $a = _m_pandn(b, c);$ printf("m1="AS_QWORD"\n" $m2=AS_QWORD'' n$ "mm="AS_QWORD"\n", b, c, a); }

m1=0123456789abcdef m2=fedcba9876543210

produces the following:

mm=fedcba9876543210

Classification: Intel

```
Synopsis:
            #include <mmintrin.h>
            __m64 _m_pcmpeqb(__m64 *m1, __m64 *m2);
Description:
            If the respective bytes of m1 are equal to the respective bytes of m2, the respective bytes of the result
            are set to all ones, otherwise they are set to all zeros.
Returns:
            The result of comparing the packed bytes of two 64-bit multimedia values is returned as a sequence of
            bytes (0xff for equal, 0x00 for not equal).
See Also:
            _m_empty,_m_pcmpeqd,_m_pcmpeqw,_m_pcmpgtb,_m_pcmpgtd,_m_pcmpgtw
Example:
            #include <stdio.h>
            #include <mmintrin.h>
            #define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                                "%2.2x %2.2x %2.2x %2.2x"
             m64
                     a;
                   b = \{ 0x0004000300020001 \};
             m64
             _{m64} c = { 0xff7fff800080007f };
            void main()
               {
                 a = _m_pcmpeqb(b, c);
                 printf( "m1="AS_BYTES"\n"
                          "m2="AS_BYTES"\n"
                          "mm="AS_BYTES"\n",
                     b._8[7], b._8[6], b._8[5], b._8[4],
                     b._8[3], b._8[2], b._8[1], b._8[0],
                     c._8[7], c._8[6], c._8[5], c._8[4],
                     c._8[3], c._8[2], c._8[1], c._8[0],
                     a._8[7], a._8[6], a._8[5], a._8[4],
                     a._8[3], a._8[2], a._8[1], a._8[0]);
               }
            produces the following:
            m1=00 04 00 03 00 02 00 01
            m2=ff 7f ff 80 00 80 00 7f
            mm=00\ 00\ 00\ 00\ ff\ 00\ ff\ 00
Classification: Intel
Systems:
            MACRO
```

Synopsis: #include <mmintrin.h> __m64 _m_pcmpeqd(__m64 *m1, __m64 *m2);

Description: If the respective double-words of m1 are equal to the respective double-words of m2, the respective

double-words of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the 32-bit packed double-words of two 64-bit multimedia values is returned as

a sequence of double-words (0xffffffff for equal, 0x00000000 for not equal).

See Also: _m_empty, _m_pcmpeqb, _m_pcmpeqw, _m_pcmpgtb, _m_pcmpgtd, _m_pcmpgtw

Example: #include <stdio.h> #include <mmintrin.h>

#define AS_DWORDS "%8.81x %8.81x"

```
m64
      b = \{ 0x0004000300020001 \};
m64
 m64
      c = \{ 0x000400030002007f \};
void main()
  {
    a = _m_pcmpeqd(b, c);
   printf( "m1="AS_DWORDS"\n"
            "m2="AS_DWORDS"\n"
            "mm="AS_DWORDS"\n",
        b._32[1], b._32[0],
        c._32[1], c._32[0],
        a._32[1], a._32[0]);
  }
```

produces the following:

m1=00040003 00020001 m2=00040003 0002007f mm=fffffff 00000000

Classification: Intel

Systems:

Synopsis: #include <mmintrin.h> __m64 _m_pcmpeqw(__m64 *m1, __m64 *m2); **Description:** If the respective words of m1 are equal to the respective words of m2, the respective words of the result are set to all ones, otherwise they are set to all zeros. **Returns:** The result of comparing the packed words of two 64-bit multimedia values is returned as a sequence of words (0xffff for equal, 0x0000 for not equal). See Also: _m_empty, _m_pcmpeqb, _m_pcmpeqd, _m_pcmpgtb, _m_pcmpgtd, _m_pcmpgtw **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_WORDS "%4.4x %4.4x %4.4x %4.4x" m64 m64 $b = \{ 0x0004000300020001 \};$ m64 c = { 0x0004ff8000800001 }; void main() { $a = _m_pcmpeqw(b, c);$ printf("m1="AS_WORDS" $\n"$ "m2="AS_WORDS"\n" "mm="AS_WORDS"\n", b._16[3], b._16[2], b._16[1], b._16[0], c._16[3], c._16[2], c._16[1], c._16[0], a._16[3], a._16[2], a._16[1], a._16[0]); } produces the following: m1=0004 0003 0002 0001 m2=0004 ff80 0080 0001 mm=ffff 0000 0000 ffff Classification: Intel

MACRO

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_pcmpgtb(__m64 *m1, __m64 *m2);
```

Description: If the respective signed bytes of m1 are greater than the respective signed bytes of m2, the respective

bytes of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the packed signed bytes of two 64-bit multimedia values is returned as a

sequence of bytes (0xff for greater than, 0x00 for not greater than).

See Also: _m_empty, _m_pcmpeqb, _m_pcmpeqd, _m_pcmpeqw, _m_pcmpgtd, _m_pcmpgtw

Example: #include <stdio.h> #include <mmintrin.h>

```
#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                 "%2.2x %2.2x %2.2x %2.2x"
m64
```

```
a;
       b = \{ 0x0004000300020001 \};
m64
m64
       c = \{ 0xff7fff800080007f \};
void main()
  {
   a = _m_pcmpgtb(b, c);
   printf( "m1="AS_BYTES"\n"
            m2="AS_BYTES"\n"
            "mm="AS_BYTES"\n",
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
        a._8[3], a._8[2], a._8[1], a._8[0]);
```

produces the following:

}

```
m1=00 04 00 03 00 02 00 01
m2=ff 7f ff 80 00 80 00 7f
mm=ff 00 ff ff 00 ff 00 00
```

Classification: Intel

Synopsis: #include <mmintrin.h> __m64 _m_pcmpgtd(__m64 *m1, __m64 *m2); **Description:** If the respective signed double-words of m1 are greater than the respective signed double-words of m2, the respective double-words of the result are set to all ones, otherwise they are set to all zeros. **Returns:** The result of comparing the 32-bit packed signed double-words of two 64-bit multimedia values is returned as a sequence of double-words (0xffffffff for greater than, 0x00000000 for not greater than). See Also: $\verb| _m_empty, _m_pcmpeqb, _m_pcmpeqd, _m_pcmpeqw, _m_pcmpgtb, _m_pcmpgtw|$ **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_DWORDS "%8.81x %8.81x" m64 m64 $b = \{ 0x0004000400020001 \};$ $c = \{ 0x000400030080007f \};$ m64 void main() { $a = _m_pcmpqtd(b, c);$ printf("m1="AS_DWORDS" $\n"$ "m2="AS_DWORDS"\n" "mm="AS_DWORDS"\n", b._32[1], b._32[0], $c._32[1], c._32[0],$ a._32[1], a._32[0]); } produces the following: m1 = 00040004 00020001m2=00040003 0080007f mm=fffffff 00000000 Classification: Intel **MACRO Systems:**

Synopsis: #include <mmintrin.h> __m64 _m_pcmpgtw(__m64 *m1, __m64 *m2);

Description: If the respective signed words of m1 are greater than the respective signed words of m2, the respective

words of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the 16-bit packed signed words of two 64-bit multimedia values is returned as a

sequence of words (0xffff for greater than, 0x0000 for not greater than).

See Also: _m_empty, _m_pcmpeqb, _m_pcmpeqd, _m_pcmpeqw, _m_pcmpgtb, _m_pcmpgtd

Example: #include <stdio.h> #include <mmintrin.h>

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

```
m64
      b = \{ 0x0005000300020001 \};
m64
      c = \{ 0x0004ff8000800001 \};
 m64
void main()
  {
    a = _m_pcmpqtw(b, c);
   printf( "m1="AS_WORDS"\n"
            "m2="AS_WORDS"\n"
            "mm="AS_WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        c._16[3], c._16[2], c._16[1], c._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=0005 0003 0002 0001
m2=0004 ff80 0080 0001
mm=ffff ffff 0000 0000
```

Classification: Intel

Description: The signed 16-bit words of m1 are multiplied with the respective signed 16-bit words of m2. The 32-bit intermediate results are summed by pairs producing two 32-bit integers.

In cases which overflow, the results are truncated. These two integers are packed into their respective elements of the result.

Returns: The result of multiplying the packed signed 16-bit words of two 64-bit multimedia values and adding the 32-bit results pairwise is returned as packed double-words.

```
See Also: _m_empty, _m_pmulhw, _m_pmullw

Example: #include <stdio.h>
#include <mmintrin.h>

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
#define AS_DWORDS "%8.81x %8.81x"
```

produces the following:

```
m1=0000 0060 0012 3456
m2=0000 0002 0001 0020
mm=000000c0 00068ad2
```

Classification: Intel

		_m_pmaddwd

Synopsis: #include <mmintrin.h> __m64 _m_pmulhw(__m64 *m1, __m64 *m2); **Description:** The signed 16-bit words of m1 are multiplied with the respective signed 16-bit words of m2. The high-order 16-bits of each result are placed in the respective elements of the result. **Returns:** The packed 16-bit words in m1 are multiplied with the packed 16-bit words in m2 and the high-order 16-bits of the results are returned. See Also: _m_empty, _m_pmaddwd, _m_pmullw **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_WORDS "%4.4x %4.4x %4.4x %4.4x" m64 m64 $b = \{ 0x4000006000123456 \};$ $c = \{ 0x0008000210000020 \};$ m64 void main() { $a = _m_pmulhw(b, c);$ printf("m1="AS_WORDS" $\n"$ "m2="AS_WORDS"\n" "mm="AS_WORDS"\n", b._16[3], b._16[2], b._16[1], b._16[0], c._16[3], c._16[2], c._16[1], c._16[0], a._16[3], a._16[2], a._16[1], a._16[0]); } produces the following: m1=4000 0060 0012 3456 m2=0008 0002 1000 0020 mm=0002 0000 0001 0006 Classification: Intel

MACRO

Systems:

Synopsis: #include <mmintrin.h> __m64 _m_pmullw(__m64 *m1, __m64 *m2);

Description: The signed or unsigned 16-bit words of m1 are multiplied with the respective signed or unsigned 16-bit words of m2. The low-order 16-bits of each result are placed in the respective elements of the result.

Returns: The packed 16-bit words in m1 are multiplied with the packed 16-bit words in m2 and the low-order 16-bits of the results are returned.

See Also: _m_empty, _m_pmaddwd, _m_pmulhw

Example: #include <stdio.h> #include <mmintrin.h>

```
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
```

```
m64
       b = \{ 0x4000006000123456 \};
m64
       c = \{ 0x0008000210000020 \};
 m64
void main()
  {
    a = _m_pmullw(b, c);
   printf( "m1="AS_WORDS"\n"
            "m2="AS_WORDS"\n"
            "mm="AS_WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        c._16[3], c._16[2], c._16[1], c._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=4000 0060 0012 3456
m2=0008 0002 1000 0020
mm=0000 00c0 2000 8ac0
```

Classification: Intel

```
Synopsis:
            #include <mmintrin.h>
            __m64 _m_por(__m64 *m1, __m64 *m2);
Description:
            A bit-wise logical OR is performed between 64-bit multimedia operands m1 and m2 and the result is
            stored in memory.
Returns:
            The bit-wise logical OR of two 64-bit values is returned.
See Also:
            _m_empty, _m_pand, _m_pandn, _m_pxor
Example:
            #include <stdio.h>
            #include <mmintrin.h>
            #define AS_QWORD "%16.16Lx"
            ___m64
                     a;
            ___m64
                    b = \{ 0x0123456789abcdef \};
            _{m64} c = { 0xfedcba9876543210 };
            void main()
               {
                 a = _m_por(b, c);
                 printf( "m1="AS_QWORD"\n"
                           "m2="AS_QWORD"\n"
                           "mm="AS_QWORD"\n",
                          b, c, a);
               }
            produces the following:
            m1=0123456789abcdef
            m2=fedcba9876543210
            mm=fffffffffffffff
Classification: Intel
Systems:
            MACRO
```

Synopsis: #include <sys/mman.h>

int mprotect(void *address, size_t len, int flags)

Description: The mprotect function writes changes the protections for the pages encompassing the memory

mapping at address and measuring len bytes based on the flags argument as specified.

The *flags* argument may be one or a combination of the following:

Constant Meaning

PROT_NONE No protections

PROT READ Read only

PROT_WRITE Write only

PROT_EXEC Allow execution

The flags may be either exclusively PROT_NONE or a combination of one or more of the remaining

three values.

Returns: If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EACCES The value of *flags* violates a the permissions that a process has to the mapped data.

EAGAIN Write access was requested when the memory was originally mapped with the

MAP_PRIVATE flag and the system lacks the resources to create a private page.

EINVAL The argument address is not a multiple of the page size or the flags argument is invalid

ENOMEM The arguments do not correspond to a region of the process's address space or exceed the

process's address space

ENOTSUP The specified combination of *flags* is not supported on the underlying system

See Also: mmap

Classification: POSIX 1003.1

Systems: Linux

orotect			
	 	 	 =

Synopsis: #include <mmintrin.h> __m64 _m_pslld(__m64 *m, __m64 *count); **Description:** The 32-bit double-words in m are each independently shifted to the left by the scalar shift count in count. The low-order bits of each element are filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 31 yield all zeros. **Returns:** Shift left each 32-bit double-word in m by an amount specified in *count* while shifting in zeros. See Also: _m_empty, _m_pslldi, _m_psllq, _m_psllqi, _m_psllw, _m_psllwi **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_DWORDS "%8.81x %8.81x" #define AS_QWORD "%16.16Lx" m64 a; m64 $b = \{ 0x3f04800300020001 \};$ $c = \{ 0x0000000000000000002 \};$ m64 void main() { $a = _m_pslld(b, c);$ printf("m1="AS_DWORDS"\n" $m2=MS_QWORD'' n'$ "mm="AS_DWORDS"\n", b._32[1], b._32[0], a._32[1], a._32[0]); } produces the following: m1=3f048003 00020001 mm=fc12000c 00080004

Classification: Intel

Synopsis: #include <mmintrin.h> __m64 _m_pslldi(__m64 *m, int count); **Description:** The 32-bit double-words in m are each independently shifted to the left by the scalar shift count in count. The low-order bits of each element are filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 31 yield all zeros. **Returns:** Shift left each 32-bit double-word in m by an amount specified in count while shifting in zeros. See Also: _m_empty, _m_pslld, _m_psllq, _m_psllqi, _m_psllwi **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_DWORDS "%8.81x %8.81x" m64 $b = \{ 0x3f04800300020001 \};$ m64 void main() $a = _m_pslldi(b, 2);$ printf("m ="AS_DWORDS"\n" "mm="AS_DWORDS"\n", b._32[1], b._32[0], a._32[1], a._32[0]); } produces the following: m = 3f048003 00020001mm=fc12000c 00080004 Classification: Intel

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_psllq(__m64 *m, __m64 *count);
             The 64-bit quad-word in m is shifted to the left by the scalar shift count in count. The low-order bits are
Description:
             filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 63 yield all zeros.
Returns:
             Shift left the 64-bit quad-word in m by an amount specified in count while shifting in zeros.
See Also:
             _m_empty, _m_pslld, _m_pslldi, _m_psllqi, _m_psllw, _m_psllwi
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_QWORD "%16.16Lx"
             ___m64
                      a;
             ___m64
                      b = \{ 0x3f04800300020001 \};
             \underline{\phantom{a}}m64 c = { 0x00000000000000000002 };
             void main()
               {
                  a = _m_psllq(b, c);
                  printf( "m1="AS_QWORD"\n"
                            "m2="AS_QWORD"\n"
                            "mm="AS_QWORD"\n",
                            b, c, a);
               }
             produces the following:
             m1=3f04800300020001
             mm=fc12000c00080004
Classification: Intel
             MACRO
Systems:
```

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_psllqi(__m64 *m, int count);
Description:
             The 64-bit quad-word in m is shifted to the left by the scalar shift count in count. The low-order bits are
             filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 63 yield all zeros.
Returns:
             Shift left the 64-bit quad-word in m by an amount specified in count while shifting in zeros.
See Also:
             _m_empty, _m_pslld, _m_pslldi, _m_psllq, _m_psllw, _m_psllwi
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_QWORD "%16.16Lx"
             ___m64
                       a;
             ___m64
                     b = \{ 0x3f04800300020001 \};
             void main()
                {
                  a = _m_psllqi(b, 2);
                  printf( "m ="AS_QWORD"\n"
                            "mm="AS_QWORD"\n",
                            b, a);
                }
             produces the following:
             m = 3f04800300020001
             mm=fc12000c00080004
Classification: Intel
Systems:
             MACRO
```

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psllw(__m64 *m, __m64 *count);
```

Description: The 16-bit words in m are each independently shifted to the left by the scalar shift count in *count*. The low-order bits of each element are filled with zeros. The shift count is interpreted as unsigned. Shift

counts greater than 15 yield all zeros.

Returns: Shift left each 16-bit word in m by an amount specified in *count* while shifting in zeros.

```
See Also:
            _m_empty, _m_pslld, _m_pslldi, _m_psllq, _m_psllqi, _m_psllwi
```

```
Example:
           #include <stdio.h>
           #include <mmintrin.h>
           #define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
```

```
#define AS_QWORD "%16.16Lx"
m64
      a;
m64
      b = \{ 0x3f04800300020001 \};
void main()
 {
   a = _m_psllw(b, c);
   printf( "m1="AS_WORDS"\n"
          "m2="AS_QWORD"\n"
          "mm="AS_WORDS"\n",
       b._16[3], b._16[2], b._16[1], b._16[0],
       a._16[3], a._16[2], a._16[1], a._16[0]);
 }
```

produces the following:

```
m1=3f04 8003 0002 0001
mm=fc10 000c 0008 0004
```

Classification: Intel

Synopsis: #include <mmintrin.h> __m64 _m_psllwi(__m64 *m, int count); **Description:** The 16-bit words in m are each independently shifted to the left by the scalar shift count in count. The low-order bits of each element are filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 15 yield all zeros. **Returns:** Shift left each 16-bit word in *m* by an amount specified in *count* while shifting in zeros. See Also: _m_empty, _m_pslld, _m_pslldi, _m_psllq, _m_psllqi, _m_psllw **Example:** #include <stdio.h> #include <mmintrin.h> #define AS_WORDS "%4.4x %4.4x %4.4x %4.4x" m64 $b = \{ 0x3f04800300020001 \};$ m64 void main() {

"mm="AS_WORDS"\n",

b._16[3], b._16[2], b._16[1], b._16[0], a._16[3], a._16[2], a._16[1], a._16[0]);

produces the following:

}

a = _m_psllwi(b, 2);
printf("m ="AS_WORDS"\n"

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psrad(__m64 *m, __m64 *count);
```

Description: The 32-bit signed double-words in m are each independently shifted to the right by the scalar shift count

in count. The high-order bits of each element are filled with the initial value of the sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater than 31 yield all ones or zeros

depending on the initial value of the sign bit.

Returns: Shift right each 32-bit double-word in m by an amount specified in *count* while shifting in sign bits.

```
See Also:
            _m_empty, _m_psradi, _m_psraw, _m_psrawi
```

```
Example:
           #include <stdio.h>
           #include <mmintrin.h>
```

```
#define AS_DWORDS "%8.81x %8.81x"
#define AS_QWORD "%16.16Lx"
___m64
        a;
m64
        b = \{ 0x3f04800300020001 \};
      c = \{ 0x000000000000000002 \};
___m64
void main()
  {
    a = _m_psrad(b, c);
    printf( "m1="AS_DWORDS"\n"
            "m2="AS_QWORD"\n"
            "mm="AS DWORDS"\n",
        b._32[1], b._32[0],
        a._32[1], a._32[0]);
  }
```

produces the following:

```
m1=3f048003 00020001
m2 = 00000000000000000
mm=0fc12000 00008000
```

Classification: Intel

Synopsis: #include <mmintrin.h>
 __m64 _m_psradi(__m64 *m, int count);

Description: The 32-bit signed double-words in m are each independently shifted to the right by the scalar shift count

in *count*. The high-order bits of each element are filled with the initial value of the sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater than 31 yield all ones or zeros

depending on the initial value of the sign bit.

Returns: Shift right each 32-bit double-word in *m* by an amount specified in *count* while shifting in sign bits.

See Also: _m_empty, _m_psrad, _m_psraw, _m_psrawi

Example: #include <stdio.h>
#include <mmintrin.h>

#define AS_DWORDS "%8.81x %8.81x"

produces the following:

}

m =3f048003 00020001 mm=0fc12000 00008000

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psraw(__m64 *m, __m64 *count);
```

Description: The 16-bit signed words in m are each independently shifted to the right by the scalar shift count in count. The high-order bits of each element are filled with the initial value of the sign bit of each

element. The shift count is interpreted as unsigned. Shift counts greater than 15 yield all ones or zeros

depending on the initial value of the sign bit.

Returns: Shift right each 16-bit word in m by an amount specified in *count* while shifting in sign bits.

See Also: _m_empty, _m_psrad, _m_psradi, _m_psrawi

```
Example:
           #include <stdio.h>
           #include <mmintrin.h>
```

```
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
#define AS_QWORD "%16.16Lx"
___m64
        a;
m64
        b = \{ 0x3f04800300040001 \};
      c = \{ 0x000000000000000002 \};
___m64
void main()
  {
    a = _m_psraw(b, c);
    printf( "m1="AS_WORDS"\n"
            "m2="AS_QWORD"\n"
            "mm="AS WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=3f04 8003 0004 0001
m2 = 00000000000000000
mm=0fc1 e000 0001 0000
```

Classification: Intel

Synopsis: #include <mmintrin.h>
 __m64 _m_psrawi(__m64 *m, int count);

Description: The 16-bit signed words in m are each independently shifted to the right by the scalar shift count in

count. The high-order bits of each element are filled with the initial value of the sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater than 15 yield all ones or zeros

depending on the initial value of the sign bit.

Returns: Shift right each 16-bit word in *m* by an amount specified in *count* while shifting in sign bits.

See Also: _m_empty, _m_psrad, _m_psradi, _m_psraw

Example: #include <stdio.h>
#include <mmintrin.h>

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

a._16[3], a._16[2], a._16[1], a._16[0]);

produces the following:

}

m = 3f04 8003 0004 0001mm = 0fc1 e000 0001 0000

Classification: Intel

```
Synopsis:
            #include <mmintrin.h>
            __m64 _m_psrld(__m64 *m, __m64 *count);
Description:
            The 32-bit double-words in m are each independently shifted to the right by the scalar shift count in
            count. The high-order bits of each element are filled with zeros. The shift count is interpreted as
            unsigned. Shift counts greater than 31 yield all zeros.
Returns:
            Shift right each 32-bit double-word in m by an amount specified in count while shifting in zeros.
See Also:
            _m_empty, _m_psrldi, _m_psrlq, _m_psrlqi, _m_psrlw, _m_psrlwi
Example:
            #include <stdio.h>
            #include <mmintrin.h>
            #define AS_DWORDS "%8.81x %8.81x"
            #define AS_QWORD "%16.16Lx"
            m64
                     a;
            m64 b = { 0x3f04800300020001 };
             void main()
              {
                a = _m_psrld(b, c);
                printf( "m1="AS_DWORDS"\n"
                          m2=MS_QWORD'' n'
                          "mm="AS_DWORDS"\n",
                     b._32[1], b._32[0],
                     a._32[1], a._32[0]);
              }
            produces the following:
            m1=3f048003 00020001
            mm=0fc12000 00008000
```

Classification: Intel

MACRO

Systems:

Library Functions and Macros 851

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_psrldi(__m64 *m, int count);
Description:
             The 32-bit double-words in m are each independently shifted to the right by the scalar shift count in
             count. The high-order bits of each element are filled with zeros. The shift count is interpreted as
             unsigned. Shift counts greater than 31 yield all zeros.
Returns:
             Shift right each 32-bit double-word in m by an amount specified in count while shifting in zeros.
See Also:
             _m_empty, _m_psrld, _m_psrlq, _m_psrlqi, _m_psrlw, _m_psrlwi
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_DWORDS "%8.81x %8.81x"
             m64
                       b = \{ 0x3f04800300020001 \};
             m64
             void main()
                {
                  a = _m_psrldi(b, 2);
                  printf( "m ="AS_DWORDS"\n"
                            "mm="AS_DWORDS"\n",
                       b._32[1], b._32[0],
                       a._32[1], a._32[0]);
                }
             produces the following:
             m = 3f048003 00020001
             mm=0fc12000 00008000
Classification: Intel
```

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_psrlq(__m64 *m, __m64 *count);
Description:
             The 64-bit quad-word in m is shifted to the right by the scalar shift count in count. The high-order bits
             are filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 63 yield all
             zeros.
Returns:
             Shift right the 64-bit quad-word in m by an amount specified in count while shifting in zeros.
See Also:
             _m_empty, _m_psrld, _m_psrldi, _m_psrlqi, _m_psrlw, _m_psrlwi
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_QWORD "%16.16Lx"
              __m64
                      b = \{ 0x3f04800300020001 \};
             m64
              _m64
                      c = \{ 0x00000000000000002 \};
             void main()
               {
                  a = _m_psrlq(b, c);
                  printf( "m1="AS_QWORD"\n"
                            m2=AS_QWORD''n
                            "mm="AS_QWORD"\n",
                            b, c, a);
               }
             produces the following:
             m1=3f04800300020001
             m2 = 00000000000000000
             mm=0fc12000c0008000
Classification: Intel
```

Systems:

MACRO

Library Functions and Macros 853

```
Synopsis:
             #include <mmintrin.h>
             __m64 _m_psrlqi(__m64 *m, int count);
Description:
             The 64-bit quad-word in m is shifted to the right by the scalar shift count in count. The high-order bits
             are filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 63 yield all
             zeros.
Returns:
             Shift right the 64-bit quad-word in m by an amount specified in count while shifting in zeros.
See Also:
             _m_empty, _m_psrld, _m_psrldi, _m_psrlq, _m_psrlw, _m_psrlwi
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_QWORD "%16.16Lx"
             m64
                       b = \{ 0x3f04800300020001 \};
             m64
             void main()
                {
                  a = _m_psrlqi(b, 2);
                  printf( "m ="AS_QWORD"\n"
                            "mm="AS_QWORD"\n",
                            b, a);
                }
             produces the following:
             m = 3f04800300020001
             mm=0fc12000c0008000
Classification: Intel
Systems:
             MACRO
```

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psrlw(__m64 *m, __m64 *count);
```

Description: The 16-bit words in m are each independently shifted to the right by the scalar shift count in *count*. The high-order bits of each element are filled with zeros. The shift count is interpreted as unsigned. Shift

counts greater than 15 yield all zeros.

Returns: Shift right each 16-bit word in m by an amount specified in *count* while shifting in zeros.

See Also: _m_empty, _m_psrld, _m_psrldi, _m_psrlq, _m_psrlqi, _m_psrlwi

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

```
Example:
           #include <stdio.h>
           #include <mmintrin.h>
```

```
#define AS_QWORD "%16.16Lx"
m64
      a;
m64
     b = \{ 0x3f04800300040001 \};
void main()
 {
   a = _mpsrlw(b, c);
   printf( "m1="AS_WORDS"\n"
          "m2="AS_QWORD"\n"
          "mm="AS_WORDS"\n",
      b._16[3], b._16[2], b._16[1], b._16[0],
      a._16[3], a._16[2], a._16[1], a._16[0]);
 }
```

produces the following:

```
m1=3f04 8003 0004 0001
mm=0fc1 2000 0001 0000
```

Classification: Intel

```
Synopsis:
             #include <mmintrin.h>
              __m64 _m_psrlwi(__m64 *m, int count);
Description:
             The 16-bit words in m are each independently shifted to the right by the scalar shift count in count. The
             high-order bits of each element are filled with zeros. The shift count is interpreted as unsigned. Shift
             counts greater than 15 yield all zeros.
Returns:
             Shift right each 16-bit word in m by an amount specified in count while shifting in zeros.
See Also:
             _m_empty, _m_psrld, _m_psrldi, _m_psrlq, _m_psrlqi, _m_psrlw
Example:
             #include <stdio.h>
             #include <mmintrin.h>
             #define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
              m64
                       b = \{ 0x3f04800300040001 \};
              m64
             void main()
                {
                  a = _m_psrlwi(b, 2);
```

produces the following:

}

printf("m ="AS_WORDS"\n"

"mm="AS_WORDS"\n",

b._16[3], b._16[2], b._16[1], b._16[0], a._16[3], a._16[2], a._16[1], a._16[0]);

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psubb(__m64 *m1, __m64 *m2);
```

Description: The signed or unsigned 8-bit bytes of m2 are subtracted from the respective signed or unsigned 8-bit bytes of m1 and the result is stored in memory. If any result element does not fit into 8 bits (underflow

or overflow), the lower 8 bits of the result elements are stored (i.e., truncation takes place).

Returns: The result of subtracting the packed bytes of one 64-bit multimedia value from another is returned.

See Also: _m_empty, _m_psubd, _m_psubsb, _m_psubsw, _m_psubusb, _m_psubusw, _m_psubw

Example: #include <stdio.h> #include <mmintrin.h>

```
#define AS_BYTES "%2.2x %2.2x %2.2x %2.2x " \
                 "%2.2x %2.2x %2.2x %2.2x"
m64
        a;
       b = \{ 0x0123456789abcdef \};
 m64
 m64
        c = \{ 0xfedcba9876543210 \};
void main()
  {
    a = _m_psubb(b, c);
    printf( "m1="AS_BYTES"\n"
            "m2="AS_BYTES"\n"
            "mm="AS_BYTES"\n",
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
```

a._8[7], a._8[6], a._8[5], a._8[4], a._8[3], a._8[2], a._8[1], a._8[0]);

produces the following:

}

```
m1=01 23 45 67 89 ab cd ef
m2=fe dc ba 98 76 54 32 10
mm=03 47 8b cf 13 57 9b df
```

Classification: Intel

Synopsis:

```
__m64 _m_psubd(__m64 *m1, __m64 *m2);

Description: The signed or unsigned 32-bit double-words of m2 are subtracted from the respective signed or unsigned 32-bit double-words of m1 and the result is stored in memory. If any result element does not fit into 32 bits (underflow or overflow), the lower 32-bits of the result elements are stored (i.e., truncation takes place).

Returns: The result of subtracting one set of packed double-words from a second set of packed double-words is returned.

See Also: _m_empty, _m_psubb, _m_psubsb, _m_psubsw, _m_psubusb, _m_psubusw, _m_psubw

Example: #include <stdio.h>
#include <mmintrin.h>
```

#define AS_DWORDS "%8.81x %8.81x" ___m64 a; __m64 $b = \{ 0x0123456789abcdef \};$ $c = \{ 0xfedcba9876543210 \};$ ___m64 void main() $a = _m_psubd(b, c);$ printf("m1="AS_DWORDS"\n" "m2="AS_DWORDS"\n" "mm="AS_DWORDS"\n", b._32[1], b._32[0], c._32[1], c._32[0], a._32[1], a._32[0]); }

produces the following:

m1=01234567 89abcdef m2=fedcba98 76543210 mm=02468acf 13579bdf

#include <mmintrin.h>

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psubsb(__m64 *m1, __m64 *m2);
```

Description: The signed 8-bit bytes of m2 are subtracted from the respective signed 8-bit bytes of m1 and the result is stored in memory. Saturation occurs when a result exceeds the range of a signed byte. In the case where a result is a byte larger than 0x7f (overflow), it is clamped to 0x7f. In the case where a result is a

byte smaller than 0x80 (underflow), it is clamped to 0x80.

Returns: The result of subtracting the packed signed bytes, with saturation, of one 64-bit multimedia value from

a second multimedia value is returned.

See Also: _m_empty,_m_psubb,_m_psubd,_m_psubsw,_m_psubusb,_m_psubusw,_m_psubw

Example: #include <stdio.h> #include <mmintrin.h>

```
#define AS BYTES "%2.2x %2.2x %2.2x %2.2x " \
                 "%2.2x %2.2x %2.2x %2.2x"
m64
        a;
m64
        b = \{ 0x8aacceef02244668 \};
___m64
        c = \{ 0x76543211fedcba98 \};
void main()
  {
    a = _m_psubsb(b, c);
    printf( "m1="AS_BYTES"\n"
            m2="AS_BYTES"\n"
            "mm="AS_BYTES"\n",
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
        a._8[3], a._8[2], a._8[1], a._8[0]);
  }
```

produces the following:

```
m1=8a ac ce ef 02 24 46 68
m2=76 54 32 11 fe dc ba 98
mm=80 80 9c de 04 48 7f 7f
```

Classification: Intel

_m_psubsb			

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psubsw(__m64 *m1, __m64 *m2);
```

Description:

The signed 16-bit words of m2 are subtracted from the respective signed 16-bit words of m1 and the result is stored in memory. Saturation occurs when a result exceeds the range of a signed word. In the case where a result is a word larger than 0x7fff (overflow), it is clamped to 0x7fff. In the case where a result is a word smaller than 0x8000 (underflow), it is clamped to 0x8000.

Returns:

The result of subtracting the packed signed words, with saturation, of one 64-bit multimedia value from a second multimedia value is returned.

See Also: _m_empty,_m_psubb,_m_psubd,_m_psubsb,_m_psubusb,_m_psubusw,_m_psubw

```
Example:
```

```
#include <stdio.h>
#include <mmintrin.h>
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
___m64
        a;
___m64
       b = \{ 0x8aacceef02244668 \};
       c = \{ 0x76543211fedcba98 \};
m64
void main()
    a = _m_psubsw(b, c);
    printf( "m1="AS_WORDS"\n"
            "m2="AS_WORDS"\n"
            "mm="AS_WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        c._16[3], c._16[2], c._16[1], c._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=8aac ceef 0224 4668
m2=7654 3211 fedc ba98
mm=8000 9cde 0348 7fff
```

Classification: Intel

Systems:

MACRO

Description: The unsigned 8-bit bytes of m2 are subtracted from the respective unsigned 8-bit bytes of m1 and the

result is stored in memory. Saturation occurs when a result is less than zero. If a result is less than zero,

it is clamped to 0xff.

Returns: The result of subtracting the packed unsigned bytes, with saturation, of one 64-bit multimedia value

from a second multimedia value is returned.

See Also: _m_empty, _m_psubb, _m_psubd, _m_psubsb, _m_psubsw, _m_psubusw, _m_psubw

Example: #include <stdio.h>
#include <mmintrin.h>

```
___m64
        a;
        b = \{ 0x8aacceef02244668 \};
___m64
___m64
        c = \{ 0x76543211fedcba98 \};
void main()
  {
    a = _m_psubusb(b, c);
    printf( "m1="AS_BYTES"\n"
            m2=AS_BYTES'n
            "mm="AS BYTES"\n",
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
```

a._8[3], a._8[2], a._8[1], a._8[0]);

produces the following:

}

```
m1=8a ac ce ef 02 24 46 68 m2=76 54 32 11 fe dc ba 98 mm=14 58 9c de 00 00 00 00
```

Classification: Intel

		_m_psubusb

Synopsis:

```
__m64 _m_psubusw(__m64 *m1, __m64 *m2);

Description: The unsigned 16-bit words of m2 are subtracted from the respective unsigned 16-bit words of m1 and the result is stored in memory. Saturation occurs when a result is less than zero. If a result is less than zero, it is clamped to 0xffff.

Returns: The result of subtracting the packed unsigned words, with saturation, of one 64-bit multimedia value
```

Returns: The result of subtracting the packed unsigned words, with saturation, of one 64-bit multimedia value from a second multimedia value is returned.

See Also: _m_empty, _m_psubb, _m_psubd, _m_psubsb, _m_psubsw, _m_psubusb, _m_psubw

Example: #include <stdio.h>
#include <mmintrin.h>
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

#include <mmintrin.h>

produces the following:

m1=8aac ceef 0224 4668 m2=7654 3211 fedc ba98 mm=1458 9cde 0000 0000

Classification: Intel

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_psubw(__m64 *m1, __m64 *m2);
```

Description: The signed or unsigned 16-bit words of m2 are subtracted from the respective signed or unsigned 16-bit words of m1 and the result is stored in memory. If any result element does not fit into 16 bits

(underflow or overflow), the lower 16 bits of the result elements are stored (i.e., truncation takes place).

Returns: The result of subtracting the packed words of two 64-bit multimedia values is returned.

See Also: _m_empty, _m_psubb, _m_psubd, _m_psubsb, _m_psubsw, _m_psubusb, _m_psubusw

Example: #include <stdio.h> #include <mmintrin.h>

```
#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"
```

```
m64
m64
        b = \{ 0x0123456789abcdef \};
        c = \{ 0xfedcba9876543210 \};
 m64
void main()
  {
    a = _m_psubw(b, c);
    printf( "m1="AS_WORDS"\n"
            "m2="AS_WORDS"\n"
            "mm="AS_WORDS"\n",
        b._16[3], b._16[2], b._16[1], b._16[0],
        c._16[3], c._16[2], c._16[1], c._16[0],
        a._16[3], a._16[2], a._16[1], a._16[0]);
  }
```

produces the following:

```
m1=0123 4567 89ab cdef
m2=fedc ba98 7654 3210
mm=0247 8acf 1357 9bdf
```

Classification: Intel

MACRO Systems:

Description: The

The _m_punpckhbw function performs an interleaved unpack of the high-order data elements of m1 and m2. It ignores the low-order bytes. When unpacking from a memory operand, the full 64-bit operand is accessed from memory but only the high-order 32 bits are utilized. By choosing m1 or m2 to be zero, an unpacking of byte elements into word elements is performed.

Returns: The result of the interleaved unpacking of the high-order bytes of two multimedia values is returned.

See Also: _m_empty, _m_punpckhdq, _m_punpckhwd, _m_punpcklbw, _m_punpckldq, _m_punpcklwd

Example:

```
#include <stdio.h>
#include <mmintrin.h>
#define AS BYTES "%2.2x %2.2x %2.2x %2.2x " \
                 "%2.2x %2.2x %2.2x %2.2x"
m64
       a;
      b = \{ 0x0004000300020001 \};
m64
      c = \{ 0xff7fff800080007f \};
void main()
  {
    a = _m_punpckhbw(b, c);
   printf( "m2="AS_BYTES" "
            "m1="AS_BYTES"\n"
            "mm="AS_BYTES"\n",
        c._8[7], c._8[6], c._8[5], c._8[4],
        c._8[3], c._8[2], c._8[1], c._8[0],
        b._8[7], b._8[6], b._8[5], b._8[4],
        b._8[3], b._8[2], b._8[1], b._8[0],
        a._8[7], a._8[6], a._8[5], a._8[4],
        a._8[3], a._8[2], a._8[1], a._8[0]);
  }
```

produces the following:

```
m2=ff 7f ff 80 00 80 00 7f m1=00 04 00 03 00 02 00 01 mm=ff 00 7f 04 ff 00 80 03
```

m	pun	pckh	bw
---	-----	------	----

Classification: Intel

Description: The $_{m}$ -punpckhdq function performs an interleaved unpack of the high-order data elements of m1 and m2. It ignores the low-order double-words. When unpacking from a memory operand, the full

64-bit operand is accessed from memory but only the high-order 32 bits are utilized.

Returns: The result of the interleaved unpacking of the high-order double-words of two multimedia values is

returned.

See Also: _m_empty, _m_punpckhbw, _m_punpckhwd, _m_punpcklbw, _m_punpckldq,

_m_punpcklwd

Example: #include <stdio.h>
#include <mmintrin.h>

#define AS_DWORDS "%8.81x %8.81x"

produces the following:

m2=ff7fff80 0080007f m1=00040003 00020001 mm=ff7fff80 00040003

Classification: Intel

_m_punpckhdq	

Description: The $_$ m $_$ punpckhwd function performs an interleaved unpack of the high-order data elements of m1

and m2. It ignores the low-order words. When unpacking from a memory operand, the full 64-bit operand is accessed from memory but only the high-order 32 bits are utilized. By choosing m1 or m2 to

be zero, an unpacking of word elements into double-word elements is performed.

Returns: The result of the interleaved unpacking of the high-order words of two multimedia values is returned.

See Also: _m_empty, _m_punpckhbw, _m_punpckhdq, _m_punpcklbw, _m_punpckldq, _m_punpcklwd

Example: #include <stdio.h>
#include <mmintrin.h>

m64

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

produces the following:

m2=ff7f ff80 0080 007f m1=0004 0003 0002 0001 mm=ff7f 0004 ff80 0003

Classification: Intel

		_m_punpckhwd

```
Synopsis:
           #include <mmintrin.h>
           __m64 _m_punpcklbw(__m64 *m1, __m64 *m2);
```

Description: The _m_punpcklbw function performs an interleaved unpack of the low-order data elements of m1 and m2. It ignores the high-order bytes. When unpacking from a memory operand, 32 bits are accessed and all are utilized by the instruction. By choosing m1 or m2 to be zero, an unpacking of byte elements into word elements is performed.

result

Returns: The result of the interleaved unpacking of the low-order bytes of two multimedia values is returned.

See Also: _m_empty,_m_punpckhbw,_m_punpckhdq,_m_punpckhwd,_m_punpckldq, _m_punpcklwd

Example: #include <stdio.h> #include <mmintrin.h> #define AS BYTES "%2.2x %2.2x %2.2x %2.2x " \ "%2.2x %2.2x %2.2x %2.2x" m64 a; $b = \{ 0x000200013478bcf0 \};$ m64

> $c = \{ 0x0080007f12569ade \};$ void main() { $a = _m_punpcklbw(b, c);$ printf("m2="AS_BYTES" " "m1="AS_BYTES"\n" "mm="AS_BYTES"\n", c._8[7], c._8[6], c._8[5], c._8[4], c._8[3], c._8[2], c._8[1], c._8[0], b._8[7], b._8[6], b._8[5], b._8[4], b._8[3], b._8[2], b._8[1], b._8[0], a._8[7], a._8[6], a._8[5], a._8[4], a._8[3], a._8[2], a._8[1], a._8[0]); }

produces the following:

```
m2=00 80 00 7f 12 56 9a de m1=00 02 00 01 34 78 bc f0
mm=12 34 56 78 9a bc de f0
```

m	טט	ın	p	cl	kl	b	W
------------------	----	----	---	----	----	---	---

Classification: Intel

Description: The $_{m_punpckldq}$ function performs an interleaved unpack of the low-order data elements of m1 and m2. It ignores the high-order double-words. When unpacking from a memory operand, 32 bits are

accessed and all are utilized by the instruction.

Returns: The result of the interleaved unpacking of the low-order double-words of two multimedia values is

returned.

See Also: _m_empty, _m_punpckhbw, _m_punpckhdq, _m_punpckhwd, _m_punpcklbw,

_m_punpcklwd

Example: #include <stdio.h>
#include <mmintrin.h>

#define AS_DWORDS "%8.81x %8.81x"

produces the following:

m2=ff7fff80 0080007f m1=00040003 00020001 mm=0080007f 00020001

Classification: Intel

		_m_punpckldq

Description: The _m_punpcklwd function performs an interleaved unpack of the low-order data elements of *m1*

and m2. It ignores the high-order words. When unpacking from a memory operand, 32 bits are accessed and all are utilized by the instruction. By choosing m1 or m2 to be zero, an unpacking of word

elements into double-word elements is performed.

Returns: The result of the interleaved unpacking of the low-order words of two multimedia values is returned.

See Also: _m_empty, _m_punpckhbw, _m_punpckhdq, _m_punpckhwd, _m_punpcklbw,

_m_punpckldq

Example: #include <stdio.h>
#include <mmintrin.h>

m64

#define AS_WORDS "%4.4x %4.4x %4.4x %4.4x"

produces the following:

m2=ff7f ff80 0080 007f m1=0004 0003 0002 0001 mm=0080 0002 007f 0001

Classification: Intel

_m_punpcklw	

```
Synopsis:
            #include <mmintrin.h>
            __m64 _m_pxor(__m64 *m1, __m64 *m2);
Description:
            A bit-wise logical XOR is performed between 64-bit multimedia operands m1 and m2 and the result is
            stored in memory.
Returns:
            The bit-wise logical exclusive OR of two 64-bit values is returned.
See Also:
            _m_empty, _m_pand, _m_pandn, _m_por
Example:
            #include <stdio.h>
            #include <mmintrin.h>
            #define AS_QWORD "%16.16Lx"
            ___m64
                     a;
            ___m64
                    b = \{ 0x0123456789abcdef \};
            _{m64} c = { 0xfedcba9876543210 };
            void main()
               {
                 a = _m_pxor(b, c);
                 printf( "m1="AS_QWORD"\n"
                           m2=MS_QWORD'' n
                           "mm="AS_QWORD"\n",
                          b, c, a);
               }
            produces the following:
            m1=0123456789abcdef
            m2=fedcba9876543210
            mm=fffffffffffffff
Classification: Intel
Systems:
            MACRO
```

```
Synopsis:
           #include <malloc.h>
           size_t _msize( void *buffer );
           size_t _bmsize( __segment seg, void __based(void) *buffer );
           size_t _fmsize( void __far *buffer );
```

The _msize functions return the size of the memory block pointed to by buffer that was allocated by a **Description:** call to the appropriate version of the calloc, malloc, or realloc functions.

> You must use the correct _msize function as listed below depending on which heap the memory block belongs to.

Function Heap msize Depends on data model of the program Based heap specified by seg value bmsize _fmsize Far heap (outside the default data segment) Near heap (inside the default data segment) nmsize

size_t _nmsize(void __near *buffer);

In small data models (small and medium memory models), _msize maps to _nmsize. In large data models (compact, large and huge memory models), _msize maps to _fmsize.

Returns: The _msize functions return the size of the memory block pointed to by *buffer*.

See Also: calloc Functions, _expand Functions, free Functions, halloc, hfree, malloc Functions, realloc Functions, sbrk

```
Example:
           #include <stdio.h>
           #include <malloc.h>
           void main()
             {
                void *buffer;
```

buffer = malloc(999);printf("Size of block is %u bytes\n", _msize(buffer)); }

produces the following:

Size of block is 1000 bytes

Classification: WATCOM

```
Systems:
           _msize - All, Linux, RDOS, Netware
           _bmsize - DOS/16, Windows, OS/2 1.x(all)
          _fmsize - DOS/16, Windows, OS/2 1.x(all)
           _nmsize - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
           OS/2-32, Linux, RDOS
```

Synopsis: #include <sys/mman.h>

int msync(void *address, size_t len, int flags)

Description: The msync function writes all modified data to permanent storage corresponding to the memory

mapping at address measuring len bytes.

The *flags* argument may be one or a combination of the following:

Constant Meaning

MS_ASYNC Perform asynchronous writes

MS_SYNC Perform synchronous writes

MS_INVALIDATE Invalidate any cached data

The flags MS_ASYNC and MS_SYNC may not be combined.

Returns: If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The argument address is not a multiple of the page size or the flags argument is invalid

ENOMEM The arguments do not correspond to a region of the process's address space or exceed the

process's address space

EBUSY A portion of or all of the address space specified is currently locked

See Also: mlock, mlockall, mmap, munlock, munlockall, munmap

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <mmintrin.h> _m_to_int(__m64 *__m); **Description:** The _m_to_int function returns the low-order 32 bits of a multimedia value. **Returns:** The low-order 32 bits of a multimedia value are fetched and returned as the result. See Also: _m_empty, _m_from_int, _m_packsswb, _m_paddb, _m_pand, _m_empty, _m_pcmpeqb, _m_pmaddwd, _m_psllw, _m_psraw, _m_psrlw, _m_empty, _m_psubb, _m_punpckhbw **Example:** #include <stdio.h> #include <mmintrin.h> ___m64 $b = \{ 0x0123456789abcdef \};$ int j; void main() $j = _m_to_int(b);$ printf("m=%16.16Lx int=%8.8lx\n", b, j); } produces the following:

m=0123456789abcdef int=89abcdef

Classification: Intel

Systems: MACRO **Synopsis:** #include <sys/mman.h>

int munlock(void *address, size_t len)

Description: The munlock function causes memory located at address measuring len bytes to be released regardless

of the number of prior calls to lock the referenced memory.

Returns: If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The argument address is not a multiple of the page size or the len is zero or causes an

overflow

ENOMEM The arguments do not correspond to a region of the process's address space

See Also: mlock, mlockall, munlockall

Classification: POSIX 1003.1

Systems: Linux

munlockall

Synopsis: #include <sys/mman.h>

int munlockall()

Description: The munlockall function unlocks all memory for a process. If, in the preceding call to mlockall

function, the flag MCL_FUTURE was specified, all future pages mapped for the process will also not be

locked unless another call to mlockall specifies such behavior.

Returns: If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set

appropriately.

See Also: mlock, mlockall, munlock

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <sys/mman.h>

int munmap(void *address, size_t len)

Description: The munmap function removes any mapping at the address address measuring len bytes from the

process address space.

Returns: If successful, the function will return 0. Upon failure, the function will return -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL Either one or both of the arguments was invalid.

See Also: mmap

Classification: POSIX 1003.1

Systems: Linux

```
Synopsis: #include <math.h>
    float nanf( const char *s );
    double nan( const char *s );
    long double nanl( const char *s );
```

Description: The nan function returns not-a-number, or NAN. The argument *s* is ignored.

Returns: The proper not-a-number value.

```
Example: #include <stdio.h>
#include <math.h>

void main()
{
    printf( "%f\n", nan("") );
}
```

produces the following:

nan

Classification: ISO C99

Systems: Math

Synopsis: #include <math.h> double nearbyint (double x);

Description: The nearbyint function rounds the argument *x* to a nearby integer without the possibility of

throwing an exception. The direction of the rounding is determined by the current value of

fegetround.

Returns: The rounded value of x.

See Also: fegetround, fesetround, rint, round, trunc

Example: #include <stdio.h> #include <math.h>

> void main() { fesetround(FE_TONEAREST); printf($\$f\n$, nearbyint(1.2));

produces the following:

1.000000

Classification: ISO C99

Systems: Math Synopsis: #include <math.h>

double nextafter(double x, double y);

Description: The nextafter function returns the next machine floating point number of x in the direction towards

y.

Returns: The next representable floating point value after or before *x* in the direction of *y*.

Example: #include <stdio.h>

```
#include <math.h>

void main()
    {
      printf( "%f\n", nextafter( 8.0, 9.0 ) );
    }
```

produces the following:

8.000000

Classification: ISO C99

Systems: Math

Synopsis: #include <langinfo.h>

char *nl_langinfo(int item);

Description: The nl_langinfo function retrieves language information, purportedly based on the current locale.

The item argument specifies which language element to retrieve, and may be one of the following:

Member	Meaning
CODESET	The character encoding supported by this locale
D_T_FMT	The date and time format string
D_FMT	The date format string
T_FMT	The 24-hour time format string
T_FMT_AMPM	The 12-hour time format string
AM_STR	The string representing ante-meridiem time
PM_STR	The string representing post-meridiem time
DAY_1	The name of the first day of the week
DAY_2	The name of the second day of the week
DAY_3	The name of the third day of the week
DAY_4	The name of the fourth day of the week

DAY_5	The name of the fifth day of the week
DAY_6	The name of the sixth day of the week
DAY_7	The name of the seventh day of the week
ABDAY_1	The abbreviated name of the first day of the week
ABDAY_2	The abbreviated name of the second day of the week
ABDAY_3	The abbreviated name of the third day of the week
ABDAY_4	The abbreviated name of the fourth day of the week
ABDAY_5	The abbreviated name of the fifth day of the week
ABDAY_6	The abbreviated name of the sixth day of the week
ABDAY_7	The abbreviated name of the seventh day of the week
MON_1	The name of the first month of the year
MON_2	The name of the second month of the year

MON_3	The name of the third month of the year
MON_4	The name of the fourth month of the year
MON_5	The name of the fifth month of the year
MON_6	The name of the sixth month of the year
MON_7	The name of the seventh month of the year
MON_8	The name of the eighth month of the year
MON_9	The name of the ninth month of the year
MON_10	The name of the tenth month of the year
MON_11	The name of the eleventh month of the year
MON_12	The name of the twelfth month of the year
ABMON_1	The abbreviated name of the first month of the year
ABMON_2	The abbreviated name of the second month of the year
ABMON_3	The name of the third month of the year

ABMON_4	The abbreviated name of the fourth month of the year
ABMON_5	The abbreviated name of the fifth month of the year
ABMON_6	The abbreviated name of the sixth month of the year
ABMON_7	The abbreviated name of the seventh month of the year
ABMON_8	The abbreviated name of the eighth month of the year
ABMON_9	The abbreviated name of the ninth month of the year
ABMON_10	The abbreviated name of the tenth month of the year
ABMON_11	The abbreviated name of the eleventh month of the year
ABMON_12	The abbreviated name of the twelfth month of the year
RADIXCHAR	The radix character
THOUSEP	The separator for thousands
YESEXPR	The string for indicating

affirmative responses

NOEXPR The string for

indicating negative responses

In the default locale (C), some values may be U.S.A.-centric, specifically the RADIXCHAR and

THOUSEP. Additionally, names are in English presently.

Returns: The function returns a pointer to a statically allocated string that must not be freed. If *item* is either

unsupported or unknown, an empty string will be returned.

Classification: POSIX 1003.1

Systems: Linux

```
Synopsis: #include <i86.h>
     void nosound( void );
```

Description: The nosound function turns off the PC's speaker.

Returns: The nosound function has no return value.

See Also: delay, sound

Example: #include <i86.h>

void main()
{
 sound(200);
 delay(500); /* delay for 1/2 second */
 nosound();

Classification: Intel

Systems: DOS, Windows, Win386

Synopsis: #include <stddef.h>

size_t offsetof(composite, name);

Description: The offsetof macro returns the offset of the element *name* within the struct or union *composite*.

This provides a portable method to determine the offset.

Returns: The offset of function returns the offset of name.

```
Example:
           #include <stdio.h>
```

```
#include <stddef.h>
struct new_def
{ char *first;
   char second[10];
   int third;
};
void main()
    printf( "first:%d second:%d third:%d\n",
        offsetof( struct new_def, first ),
        offsetof( struct new_def, second ),
        offsetof( struct new_def, third ) );
  }
```

produces the following:

In a small data model, the following would result:

first:0 second:2 third:12

In a large data model, the following would result:

first:0 second:4 third:14

Classification: ISO C

Systems: MACRO

```
Synopsis:
             ** deprecated **
             #include <stdlib.h>
             onexit_t _onexit( _onexit_t func );
             onexit_t onexit( onexit_t func );
Description:
             The _onexit function is passed the address of function func to be called when the program terminates
             normally. Successive calls to _onexit create a list of functions that will be executed on a "last-in,
             first-out" basis. No more than 32 functions can be registered with the <code>_onexit</code> function.
             The functions have no parameters and do not return values.
             NOTE: The _onexit function is not an ISO C function. The ISO C standard function atexit does
             the same thing.
             The _onexit function is deprecated, use atexit instead. The onexit function is deprecated, use
             atexit instead.
Returns:
             The _onexit function returns func if the registration succeeds, NULL if it fails.
See Also:
             abort, atexit, exit, _Exit, _exit
Example:
             #include <stdio.h>
             #include <stdlib.h>
             void main()
                {
                  extern void func1(void), func2(void), func3(void);
                  _onexit( func1 );
                  _onexit(func2);
                  _onexit(func3);
                  printf( "Do this first.\n" );
                }
             void func1(void) { printf( "last.\n" ); }
             void func2(void) { printf( "this " ); }
             void func3(void) { printf( "Do " ); }
             produces the following:
             Do this first.
             Do this last.
```

_onexit - All, Linux, RDOS, Netware

onexit - All, Linux, RDOS, Netware

Classification: WATCOM

Systems:

		_onexit, onexit

Synopsis: #include <sys/types.h>

```
#include <sys/stat.h>
#include <fcntl.h>
int open( const char *path, int access, ...);
int _open( const char *path, int access, ...);
int _wopen( const wchar_t *path, int access, ...);
```

Description:

The open function opens a file at the operating system level. The name of the file to be opened is given by *path*. The file will be accessed according to the access mode specified by *access*. The optional argument is the file permissions to be used when the O_CREAT flag is on in the *access* mode.

The _open function is identical to open. Use _open for ANSI naming conventions.

The _wopen function is identical to open except that it accepts a wide character string argument for path.

The access mode is established by a combination of the bits defined in the <fcntl.h> header file. The following bits may be set:

Mode	Meaning
O_RDONLY	permit the file to be only read.
O_WRONLY	permit the file to be only written.
O_RDWR	permit the file to be both read and written.
O_APPEND	causes each record that is written to be written at the end of the file.
O_CREAT	has no effect when the file indicated by <i>filename</i> already exists; otherwise, the file is created;
O_TRUNC	causes the file to be truncated to contain no data when the file exists; has no effect when the file does not exist.
O_BINARY	causes the file to be opened in binary mode which means that data will be transmitted to and from the file unchanged.
O_TEXT	causes the file to be opened in text mode which means that carriage-return characters are written before any linefeed character that is written and causes carriage-return characters to be removed when encountered during reads.
O_NOINHERIT	indicates that this file is not to be inherited by a child process.
O_EXCL	indicates that this file is to be opened for exclusive access. If the file exists and O_CREAT was also specified then the open will fail (i.e., use O_EXCL to ensure that the file does not already exist).

When neither O_TEXT nor O_BINARY are specified, the default value in the global variable _fmode is used to set the file translation mode. When the program begins execution, this variable has a value of O_TEXT.

O_CREAT must be specified when the file does not exist and it is to be written.

When the file is to be created (O_CREAT is specified), an additional argument must be passed which contains the file permissions to be used for the new file. The access permissions for the file or directory are specified as a combination of bits (defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission	Meaning
S_IRWXU	Read, write, execute/search
S_IRUSR	Read permission
S_IWUSR	Write permission
S_IXUSR	Execute/search permission

The following bits define permissions for the group.

Permission	Meaning
S_IRWXG	Read, write, execute/search
S_IRGRP	Read permission
S_IWGRP	Write permission
S_IXGRP	Execute/search permission

The following bits define permissions for others.

Permission	Meaning
S_IRWXO	Read, write, execute/search
S_IROTH	Read permission
S_IWOTH	Write permission
S_IXOTH	Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission	Meaning
S_IREAD	is equivalent to S_IRUSR (read permission)
S_IWRITE	is equivalent to S_IWUSR (write permission)
S_IEXEC	is equivalent to S_IXUSR (execute/search permission)

All files are readable with DOS; however, it is a good idea to set S_IREAD when read permission is intended for the file.

The open function applies the current file permission mask to the specified permissions (see the umask function).

Returns: If successful, open returns a handle for the file. When an error occurs while opening the file, -1 is returned.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

```
Constant
                            Meaning
            EACCES
                            Access denied because path specifies a directory or a volume ID, or attempting to
                            open a read-only file for writing
                            No more handles available (too many open files)
            EMFILE
            ENOENT
                            Path or file not found
See Also:
            _chsize, close, creat, dup, dup2, _eof, exec..., fdopen, _filelength, fileno,
            fstat, _grow_handles, isatty, lseek, read, _setmode, _sopen, stat, _tell, write,
            umask
Example:
            #include <sys/stat.h>
            #include <sys/types.h>
            #include <fcntl.h>
            void main()
              {
                int handle;
                /* open a file for output
                /* replace existing file if it exists
                                                                 */
                handle = open( "file",
                              O_WRONLY | O_CREAT | O_TRUNC,
                              S_IRUSR | S_IWUSR | S_IRGRP |
                                                               S_IWGRP );
                /* read a file which is assumed to exist
                                                                 */
                handle = open( "file", O_RDONLY );
                /* append to the end of an existing file
                /* write a new file if file does not exist */
                handle = open( "file",
                              O_WRONLY O_CREAT O_APPEND,
                              S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
              }
Classification: POSIX 1003.1
            _open conforms to ANSI naming conventions
            _wopen is WATCOM
Systems:
            open - All, Linux, RDOS, Netware
            _open - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
           _wopen - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux
```

		open, _open,	_wopen

```
Synopsis: #include <direct.h>
    DIR *opendir( const char *dirname );
    WDIR *_wopendir( const wchar_t *dirname );
```

Description:

The opendir function is used in conjunction with the functions readdir and closedir to obtain the list of file names contained in the directory specified by *dirname*. The path indicated by *dirname* can be either relative to the current working directory or it can be an absolute path name. As an extension to POSIX, the last part of *dirname* can contain the characters '?' and '*' for matching multiple files within a directory.

The file <direct.h> contains definitions for the structure dirent.

The file attribute field d_attr field is a set of bits representing the following attributes.

If the _A_RDONLY bit is off, then the file is read/write.

The format of the d_time field is described by the following structure (this structure is not defined in any Open Watcom header file).

```
typedef struct {
   unsigned short twosecs : 5;    /* seconds / 2  */
   unsigned short minutes : 6;    /* minutes (0,59) */
   unsigned short hours : 5;    /* hours (0,23)  */
} ftime_t;
```

The format of the d_date field is described by the following structure (this structure is not defined in any Open Watcom header file).

```
typedef struct {
   unsigned short day : 5;
                                /* day (1,31)
   unsigned short month : 4;
                                /* month (1,12) */
   unsigned short year : 7;
                                 /* 0 is 1980
} fdate_t;
```

See the sample program below for an example of the use of these structures.

More than one directory can be read at the same time using the opendir, readdir, and closedir functions.

The _wopendir function is identical to opendir except that it accepts a wide character string argument and returns a pointer to a _wdirent structure that can be used with the _wreaddir and _wclosedir functions.

The file <direct.h> contains definitions for the structure _wdirent.

```
struct _wdirent {
                  d_dta[21];
                                     /* disk transfer area
   char
                  d_attr;
d_time;
                                     /* file's attribute
   char
   unsigned short d_time;
                                     /* file's time
   unsigned short d_date;
long d_size;
                                     /* file's date
   long
wchar_t
                                     /* file's size
                  d_size;
                  d_name[NAME_MAX+1]; /* file's name
   unsigned short d_ino;
                                    /* serial number(not used)
                                     /* flag for 1st time
   char
                  d_first;
};
```

Returns:

The opendir function, if successful, returns a pointer to a structure required for subsequent calls to readdir to retrieve the file names matching the pattern specified by dirname. The opendir function returns NULL if dirname is not a valid pathname, or if there are no files matching dirname.

Errors:

When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Constant	Meaning
EACCES	Search permission is denied for a component of <i>dirname</i> or read permission is denied for <i>dirname</i> .
ENOENT	The named directory does not exist.
closedir, _dos_	_find, readdir, rewinddir, _wopendir, _wreaddir,

Example:

See Also:

_wrewinddir

To get a list of files contained in the directory \watcom\h on your default disk:

```
#include <stdio.h>
#include <direct.h>
typedef struct {
                                  /* seconds / 2 */
   unsigned short twosecs : 5;
   unsigned short minutes : 6;
   unsigned short hours : 5;
} ftime_t;
typedef struct {
   unsigned short day
   unsigned short month : 4;
    unsigned short year : 7;
} fdate_t;
void main()
 {
   DIR *dirp;
    struct dirent *direntp;
    ftime_t *f_time;
    fdate_t *f_date;
    dirp = opendir( "\\watcom\\h" );
    if( dirp != NULL ) {
      for(;;) {
        direntp = readdir( dirp );
        if( direntp == NULL ) break;
        f_time = (ftime_t *)&direntp->d_time;
        f_date = (fdate_t *)&direntp->d_date;
        printf( "%-12s %d/%2.2d/%2.2d "
                "%2.2d:%2.2d:%2.2d \n",
            direntp->d_name,
            f_date->year + 1980,
            f_date->month,
            f_date->day,
            f_time->hours,
            f_time->minutes,
            f_time->twosecs * 2 );
      closedir( dirp );
  }
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

```
Classification: POSIX 1003.1
```

_wopendir is WATCOM

```
Systems: opendir - All, Linux, RDOS, Netware
_wopendir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

		opendir, _wopendir

Synopsis: #include <io.h>

int _open_osfhandle(long osfhandle, int access);

Description: The _open_osfhandle function allocates a POSIX-level file handle and sets it to point to the

operating system's internal file handle specified by *osfhandle*. The value returned by _get_osfhandle can be used as an argument to the _open_osfhandle function.

The access mode is established by a combination of the bits defined in the <fcntl.h> header file. The following bits may be set:

Mode	Meaning
O_RDONLY	permit the file to be only read.
O_WRONLY	permit the file to be only written.
O_RDWR	permit the file to be both read and written.
O_APPEND	causes each record that is written to be written at the end of the file.
O_CREAT	has no effect when the file indicated by <i>filename</i> already exists; otherwise, the file is created;
O_TRUNC	causes the file to be truncated to contain no data when the file exists; has no effect when the file does not exist.
O_BINARY	causes the file to be opened in binary mode which means that data will be transmitted to and from the file unchanged.
O_TEXT	causes the file to be opened in text mode which means that carriage-return characters are written before any linefeed character that is written and causes carriage-return characters to be removed when encountered during reads.
O_NOINHERIT	indicates that this file is not to be inherited by a child process.
O_EXCL	indicates that this file is to be opened for exclusive access. If the file exists and O_CREAT was also specified then the open will fail (i.e., use O_EXCL to ensure that the file does not already exist).

When neither O_TEXT nor O_BINARY are specified, the default value in the global variable _fmode is used to set the file translation mode. When the program begins execution, this variable has a value of O_TEXT.

O_CREAT must be specified when the file does not exist and it is to be written.

When two or more manifest constants are used to form the *flags* argument, the constants are combined with the bitwise-OR operator (|).

The example below demonstrates the use of the _get_osfhandle and _open_osfhandle functions. Note that the example shows how the dup2 function can be used to obtain almost identical functionality.

When the POSIX-level file handles associated with one OS file handle are closed, the first one closes successfully but the others return an error (since the first call close the file and released the OS file handle). So it is important to call close at the right time, i.e., after all I/O operations are completed to the file.

Returns: If successful, _open_osfhandle returns a POSIX-style file handle. Otherwise, it returns -1.

See Also: close, _dos_open, dup2, fdopen, fopen, freopen, _fsopen, _get_osfhandle, _grow_handles, _hdopen, open, _os_handle, _popen, _sopen

#include <stdio.h> **Example:** #include <stdlib.h> #include <io.h>

#else

```
#include <fcntl.h>
void main()
    long os_handle;
    int fh1, fh2, rc;
    fh1 = open( "file",
                O_WRONLY | O_CREAT | O_TRUNC | O_BINARY,
                S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
    if(fh1 == -1) {
        printf( "Could not open output file\n" );
        exit( EXIT_FAILURE );
   printf( "First POSIX handle %d\n", fh1 );
#if defined(USE_DUP2)
    fh2 = 6;
```

```
os_handle = _get_osfhandle( fh1 );
   printf( "OS Handle %ld\n", os_handle );
    fh2 = _open_osfhandle( os_handle, O_WRONLY |
                                      O_BINARY );
#endif
    if(fh2 == -1) {
        printf( "Could not open with second handle\n" );
        exit( EXIT_FAILURE );
```

if (dup2(fh1, fh2) == -1) fh2 = -1;

printf("Second POSIX handle %d\n", fh2); $rc = write(fh2, "trash\x0d\x0a", 7);$ printf("Write file using second handle %d\n", rc);

rc = close(fh2);printf("Closing second handle %d\n", rc); rc = close(fh1); printf("Closing first handle %d\n", rc);

Classification: WATCOM

_open_osfhandle

Systems: All, Linux, Netware

Synopsis: #include <io.h> int _os_handle(int handle);

Description: The _os_handle function takes a POSIX-style file handle specified by handle. It returns the

corresponding operating system level handle.

Returns: The _os_handle function returns the operating system handle that corresponds to the specified

POSIX-style file handle.

See Also: close, fdopen, _get_osfhandle, _hdopen, open, _open_osfhandle

Example: #include <stdio.h> #include <io.h> void main() { int handle;

FILE *fp; fp = fopen("file", "r"); if(fp != NULL) { handle = _os_handle(fileno(fp)); fclose(fp);

Classification: WATCOM

}

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, Netware

```
Synopsis: #include <graph.h>
    void _FAR _outgtext( char _FAR *text );
```

Description: The _outgtext function displays the character string indicated by the argument *text*. The string must be terminated by a null character ('\0').

The string is displayed starting at the current position (see the _moveto function) in the current color and in the currently selected font (see the _setfont function). The current position is updated to follow the displayed text.

When no font has been previously selected with _setfont, a default font will be used. The default font is an 8-by-8 bit-mapped font.

The graphics library can display text in three different ways.

- 1. The _outtext and _outmem functions can be used in any video mode. However, this variety of text can be displayed in only one size.
- 2. The _grtext function displays text as a sequence of line segments, and can be drawn in different sizes, with different orientations and alignments.
- 3. The _outgtext function displays text in the currently selected font. Both bit-mapped and vector fonts are supported; the size and type of text depends on the fonts that are available.

Returns: The _outgtext function does not return a value.

```
See Also: __registerfonts, _unregisterfonts, _setfont, _getfontinfo, _getgtextextent, __setgtextvector, _getgtextvector, _outtext, _outmem, _grtext
```

Example:

```
#include <conio.h>
#include <stdio.h>
#include <graph.h>
main()
    int i, n;
    char buf[ 10 ];
    setvideomode ( VRES16COLOR );
    n = _registerfonts( "*.fon" );
    for(i = 0; i < n; ++i) {
        sprintf( buf, "n%d", i );
        _setfont(buf);
        _moveto( 100, 100 );
        _outgtext( "WATCOM Graphics" );
        getch();
        _clearscreen( _GCLEARSCREEN );
    _unregisterfonts();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

		_outgtext

Systems: DOS Synopsis: #include <graph.h>
 void _FAR _outmem(char _FAR *text, short length);

Description:

The _outmem function displays the character string indicated by the argument *text*. The argument *length* specifies the number of characters to be displayed. Unlike the _outtext function, _outmem will display the graphical representation of characters such as ASCII 10 and 0, instead of interpreting them as control characters.

The text is displayed using the current text color (see the _settextcolor function), starting at the current text position (see the _settextposition function). The text position is updated to follow the end of the displayed text.

The graphics library can display text in three different ways.

- 1. The _outtext and _outmem functions can be used in any video mode. However, this variety of text can be displayed in only one size.
- 2. The _grtext function displays text as a sequence of line segments, and can be drawn in different sizes, with different orientations and alignments.
- 3. The _outgtext function displays text in the currently selected font. Both bit-mapped and vector fonts are supported; the size and type of text depends on the fonts that are available.

Returns: The _outmem function does not return a value.

See Also: __settextcolor, _settextposition, _settextwindow, _grtext, _outtext, _outgtext

Example:

Classification: PC Graphics

Systems: DOS

		_outmem

Synopsis: #include <conio.h>

unsigned int outp(int port, int value);

Description: The outp function writes one byte, determined by *value*, to the 80x86 hardware port whose number is

given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or written from each port, depending upon the hardware. Consult the technical documentation for your computer

to determine the port numbers for a device and the expected usage of each port for a device.

Returns: The value transmitted is returned.

See Also: inp, inpd, inpw, outpd, outpw

Example: #include <conio.h>

```
void main()
{
    /* turn off speaker */
    outp( 0x61, inp( 0x61 ) & 0xFC );
}
```

Classification: Intel

Systems: All, Linux, RDOS, Netware

Synopsis: #include <conio.h>

unsigned long outpd(int port,

unsigned long value);

Description:

The outpd function writes a double-word (four bytes), determined by value, to the 80x86 hardware port whose number is given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or written from each port, depending upon the hardware. Consult the technical documentation for your computer to determine the port numbers for a device and the expected usage of each port for a device.

Returns: The value transmitted is returned.

See Also: inp, inpd, inpw, outp, outpw

Example: #include <conio.h>

#define DEVICE 34 void main() { outpd(DEVICE, 0x12345678);

Classification: Intel

Systems: DOS/32, Win386, Win32, OS/2-32, Linux, RDOS, Netware **Synopsis:** #include <conio.h> unsigned int outpw(int port,

unsigned int value);

Description: The outpw function writes a word (two bytes), determined by value, to the 80x86 hardware port whose

number is given by *port*.

A hardware port is used to communicate with a device. One or two bytes can be read and/or written from each port, depending upon the hardware. Consult the technical documentation for your computer

to determine the port numbers for a device and the expected usage of each port for a device.

Returns: The value transmitted is returned.

See Also: inp, inpd, inpw, outp, outpd

Example: #include <conio.h>

#define DEVICE 34 void main() { outpw(DEVICE, 0x1234);

Classification: Intel

Systems: All, Linux, RDOS, Netware

```
Synopsis:
           #include <graph.h>
           void _FAR _outtext( char _FAR *text );
```

Description:

The _outtext function displays the character string indicated by the argument text. The string must be terminated by a null character ('\0'). When a line-feed character ('\n') is encountered in the string, the characters following will be displayed on the next row of the screen.

The text is displayed using the current text color (see the _settextcolor function), starting at the current text position (see the _settextposition function). The text position is updated to follow the end of the displayed text.

The graphics library can display text in three different ways.

- 1. The _outtext and _outmem functions can be used in any video mode. However, this variety of text can be displayed in only one size.
- The _grtext function displays text as a sequence of line segments, and can be drawn in different sizes, with different orientations and alignments.
- The _outgtext function displays text in the currently selected font. Both bit-mapped and vector fonts are supported; the size and type of text depends on the fonts that are available.

Returns: The _outtext function does not return a value.

```
See Also:
            _settextcolor, _settextposition, _settextwindow, _grtext, _outmem,
            _outgtext
```

Example:

```
#include <conio.h>
#include <graph.h>
main()
    _setvideomode( _TEXTC80 );
   _settextposition(10, 30);
    _outtext( "WATCOM Graphics" );
    getch();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS

pclose

Synopsis: #include <stdio.h>

int pclose(FILE *fp);

Description: The pclose function closes the pipe associated with fp and waits for the subprocess created by popen

to terminate.

Returns: The pclose function returns the termination status of the command language interpreter. If an error

occured, pclose returns (-1) with errno set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINTR The pclose function was interrupted by a signal while waiting for the child

process to terminate.

ECHILD The pclose function was unable to obtain the termination status of the child

rocess.

See Also: perror, popen

Example: See example provided with popen.

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <stdio.h>

int _pclose(FILE *fp);

Description: The _pclose function closes the pipe associated with fp and waits for the subprocess created by

_popen to terminate.

Returns: The _pclose function returns the termination status of the command language interpreter. If an error

occured, _pclose returns (-1) with errno set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

> Constant Meaning

EINTR The _pclose function was interrupted by a signal while waiting for the child

process to terminate.

ECHILD The _pclose function was unable to obtain the termination status of the child

See Also: perror, _pipe, _popen

Example: See example provided with _popen.

Classification: WATCOM

Systems: Win32, OS/2 1.x(all), OS/2-32, Linux Synopsis: #include <stdio.h>

void perror(const char *prefix);
void _wperror(const wchar_t *prefix);

Description:

The perror function prints, on the file designated by stderr, the error message corresponding to the error number contained in error. The perror function writes first the string pointed to by *prefix* to stderr. This is followed by a colon (":"), a space, the string returned by strerror (error), and a newline character.

The _wperror function is a wide character version of perror that operates with wide character strings.

Returns:

The perror function returns no value. Because perror uses the fprintf function, errno can be set when an error is detected during the execution of that function.

See Also: clearerr, feof, ferror, strerror

Example:

```
#include <stdio.h>

void main()
{
   FILE *fp;

   fp = fopen( "data.fil", "r" );
   if( fp == NULL ) {
      perror( "Unable to open file" );
   }
}
```

Classification: ISO C

_wperror is WATCOM

Systems:

```
perror - All, Linux, RDOS, Netware
_wperror - All, Linux
```

Synopsis: #include <pqchart.h>

```
short _FAR _pg_analyzechart( chartenv _FAR *env,
                              char _FAR * _FAR *cat,
                              float _FAR *values, short n );
short _FAR _pg_analyzechartms( chartenv _FAR *env,
                                char _FAR * _FAR *cat,
                                float _FAR *values,
                                short nseries,
                                short n, short dim,
                                char _FAR * _FAR *labels );
```

Description:

The _pg_analyzechart functions analyze either a single-series or a multi-series bar, column or line chart. These functions calculate default values for chart elements without actually displaying the chart.

The _pg_analyzechart function analyzes a single-series bar, column or line chart. The chart environment structure env is filled with default values based on the type of chart and the values of the cat and values arguments. The arguments are the same as for the _pg_chart function.

The _pg_analyzechartms function analyzes a multi-series bar, column or line chart. The chart environment structure env is filled with default values based on the type of chart and the values of the cat, values and labels arguments. The arguments are the same as for the _pg_chartms function.

Returns: The _pg_analyzechart functions return zero if successful; otherwise, a non-zero value is returned.

See Also:

```
_pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,
_pg_chartscatter, _pg_analyzepie, _pg_analyzescatter
```

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           };
           main()
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_COLUMNCHART, _PG_PLAINBARS );
               strcpy( env.maintitle.title, "Column Chart" );
               _pg_analyzechart( &env,
                                  categories, values, NUM_VALUES );
               /* use manual scaling */
               env.yaxis.autoscale = 0;
               env.yaxis.scalemin = 0.0;
               env.yaxis.scalemax = 100.0;
               env.yaxis.ticinterval = 25.0;
               _pg_chart( &env, categories, values, NUM_VALUES );
               getch();
               _setvideomode( _DEFAULTMODE );
Classification: PC Graphics
Systems:
           _pg_analyzechart - DOS
           _pg_analyzechartms - DOS
```

Synopsis: #include <pqchart.h>

```
short _FAR _pg_analyzepie( chartenv _FAR *env,
                           char _FAR * _FAR *cat,
                           float _FAR *values,
                           short _FAR *explode, short n );
```

Description: The _pg_analyzepie function analyzes a pie chart. This function calculates default values for chart

elements without actually displaying the chart.

The chart environment structure env is filled with default values based on the values of the cat, values and *explode* arguments. The arguments are the same as for the <code>_pg_chartpie</code> function.

Returns: The _pg_analyzepie function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,

_pg_chartscatter, _pg_analyzechart, _pg_analyzescatter

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           short explode[ NUM_VALUES ] = {
               1, 0, 0, 0
           main()
           {
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_PIECHART, _PG_NOPERCENT );
               strcpy( env.maintitle.title, "Pie Chart" );
               env.legend.place = _PG_BOTTOM;
               _pg_analyzepie( &env, categories,
                                values, explode, NUM_VALUES );
               /* make legend window same width as data window */
               env.legend.autosize = 0;
               env.legend.legendwindow.x1 = env.datawindow.x1;
               env.legend.legendwindow.x2 = env.datawindow.x2;
               _pg_chartpie( &env, categories,
                             values, explode, NUM_VALUES );
               getch();
               _setvideomode( _DEFAULTMODE );
```

Systems: DOS

		_pg_an	alyzepie

Synopsis: #include <pgchart.h>

Description:

The _pg_analyzescatter functions analyze either a single-series or a multi-series scatter chart. These functions calculate default values for chart elements without actually displaying the chart.

The $_pg_analyzescatter$ function analyzes a single-series scatter chart. The chart environment structure env is filled with default values based on the values of the x and y arguments. The arguments are the same as for the $_pg_chartscatter$ function.

The _pg_analyzescatterms function analyzes a multi-series scatter chart. The chart environment structure *env* is filled with default values based on the values of the *x*, *y* and *labels* arguments. The arguments are the same as for the _pg_chartscatterms function.

Returns:

The _pg_analyzescatter functions return zero if successful; otherwise, a non-zero value is returned.

See Also:

_pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie, _pg_chartscatter, _pg_analyzechart, _pg_analyzepie

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           #define NUM_SERIES 2
           char _FAR *labels[ NUM_SERIES ] = {
               "Jan", "Feb"
           };
           float x[ NUM_SERIES ][ NUM_VALUES ] = {
               5, 15, 30, 40, 10, 20, 30, 45
           };
           float y[ NUM_SERIES ][ NUM_VALUES ] = {
               10, 15, 30, 45, 40, 30, 15, 5
           };
           main()
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_SCATTERCHART, _PG_POINTANDLINE );
               strcpy( env.maintitle.title, "Scatter Chart" );
               _pg_analyzescatterms( &env, x, y, NUM_SERIES,
                                      NUM_VALUES, NUM_VALUES, labels );
               /* display x-axis labels with 2 decimal places */
               env.xaxis.autoscale = 0;
               env.xaxis.ticdecimals = 2;
               _pg_chartscatterms( &env, x, y, NUM_SERIES,
                                    NUM_VALUES, NUM_VALUES, labels );
               getch();
               _setvideomode( _DEFAULTMODE );
Classification: PC Graphics
Systems:
           _pg_analyzescatter - DOS
           _pg_analyzescatterms - DOS
```


Synopsis:

```
#include <pqchart.h>
short _FAR _pg_chart( chartenv _FAR *env,
                      char _FAR * _FAR *cat,
                      float _FAR *values, short n );
short _FAR _pg_chartms( chartenv _FAR *env,
                        char _FAR * _FAR *cat,
                        float _FAR *values, short nseries,
                        short n, short dim,
                        char _FAR * _FAR *labels );
```

Description:

The _pg_chart functions display either a single-series or a multi-series bar, column or line chart. The type of chart displayed and other chart options are contained in the *env* argument. The argument cat is an array of strings. These strings describe the categories against which the data in the values array is charted.

The _pq_chart function displays a bar, column or line chart from the single series of data contained in the *values* array. The argument *n* specifies the number of values to chart.

The _pq_chartms function displays a multi-series bar, column or line chart. The argument nseries specifies the number of series of data to chart. The argument values is assumed to be a two-dimensional array defined as follows:

```
float values[ nseries ][ dim ];
```

The number of values used from each series is given by the argument n, where n is less than or equal to dim. The argument labels is an array of strings. These strings describe each of the series and are used in the chart legend.

Returns:

The _pg_chart functions return zero if successful; otherwise, a non-zero value is returned.

See Also:

```
_pg_defaultchart, _pg_initchart, _pg_chartpie, _pg_chartscatter,
_pg_analyzechart, _pg_analyzepie, _pg_analyzescatter
```

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
               #define _FAR
                              __far
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           };
           main()
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_COLUMNCHART, _PG_PLAINBARS );
               strcpy( env.maintitle.title, "Column Chart" );
               _pg_chart( &env, categories, values, NUM_VALUES );
               getch();
               _setvideomode( _DEFAULTMODE );
           }
```

produces the following:

_pg_chart - DOS **Systems:**

_pg_chartms - DOS

Synopsis: #include <pgchart.h>

Description: The _pg_chartpie function displays a pie chart. The chart is displayed using the options specified in the *env* argument.

The pie chart is created from the data contained in the values array. The argument n specifies the number of values to chart.

The argument *cat* is an array of strings. These strings describe each of the pie slices and are used in the chart legend. The argument *explode* is an array of values corresponding to each of the pie slices. For each non-zero element in the array, the corresponding pie slice is drawn "exploded", or slightly offset from the rest of the pie.

Returns: The _pg_chartpie function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartscatter, _pg_analyzechart, _pg_analyzepie, _pg_analyzescatter

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           short explode[ NUM_VALUES ] = {
               1, 0, 0, 0
           main()
           {
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_PIECHART, _PG_NOPERCENT );
               strcpy( env.maintitle.title, "Pie Chart" );
               _pg_chartpie( &env, categories,
                             values, explode, NUM_VALUES );
               qetch();
               _setvideomode( _DEFAULTMODE );
           }
```

produces the following:

Systems: DOS

Synopsis: #include <pqchart.h>

```
short _FAR _pg_chartscatter( chartenv _FAR *env,
                              float _FAR *x,
                              float _FAR *y, short n );
short _FAR _pg_chartscatterms( chartenv _FAR *env,
                                float _FAR *x,
                                float _FAR *y,
                                short nseries,
                                short n, short dim,
                                char _FAR * _FAR *labels );
```

Description:

The _pg_chartscatter functions display either a single-series or a multi-series scatter chart. The chart is displayed using the options specified in the env argument.

The _pg_chartscatter function displays a scatter chart from the single series of data contained in the arrays x and y. The argument n specifies the number of values to chart.

The _pg_chartscatterms function displays a multi-series scatter chart. The argument nseries specifies the number of series of data to chart. The arguments x and y are assumed to be two-dimensional arrays defined as follows:

```
float x[ nseries ][ dim ];
```

The number of values used from each series is given by the argument n, where n is less than or equal to dim. The argument labels is an array of strings. These strings describe each of the series and are used in the chart legend.

Returns: The _pq_chartscatter functions return zero if successful; otherwise, a non-zero value is returned.

See Also:

```
_pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,
_pg_analyzechart, _pg_analyzepie, _pg_analyzescatter
```

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           #define NUM_SERIES 2
           char _FAR *labels[ NUM_SERIES ] = {
               "Jan", "Feb"
           };
           float x[ NUM_SERIES ][ NUM_VALUES ] = {
               5, 15, 30, 40, 10, 20, 30, 45
           };
           float y[ NUM_SERIES ][ NUM_VALUES ] = {
               10, 15, 30, 45, 40, 30, 15, 5
           };
          main()
           {
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_SCATTERCHART, _PG_POINTANDLINE );
               strcpy( env.maintitle.title, "Scatter Chart" );
               _pg_chartscatterms( &env, x, y, NUM_SERIES,
                                    NUM_VALUES, NUM_VALUES, labels );
               getch();
               _setvideomode( _DEFAULTMODE );
           }
```

produces the following:

Systems: _pg_chartscatter - DOS

_pg_chartscatterms - DOS

Synopsis: #include <pgchart.h>

short _FAR _pg_defaultchart(chartenv _FAR *env,

short type, short style);

Description: The _pg_default chart function initializes the chart structure *env* to contain default values before a

chart is drawn. All values in the chart structure are initialized, including blanking of all titles. The chart type in the structure is initialized to the value *type*, and the chart style is initialized to *style*.

The argument type can have one of the following values:

_PG_BARCHART Bar chart (horizontal bars)

_PG_COLUMNCHART Column chart (vertical bars)

_PG_LINECHART Line chart

_PG_SCATTERCHART Scatter chart

_PG_PIECHART Pie chart

Each type of chart can be drawn in one of two styles. For each chart type the argument *style* can have one of the following values:

Type	Style 1	Style 2
Bar	_PG_PLAINBARS	_PG_STACKEDBARS
Column	_PG_PLAINBARS	_PG_STACKEDBARS
Line	_PG_POINTANDLINE	_PG_POINTONLY
Scatter	_PG_POINTANDLINE	_PG_POINTONLY
Pie	PG PERCENT	PG NOPERCENT

For single-series bar and column charts, the chart style is ignored. The "plain" (clustered) and "stacked" styles only apply when there is more than one series of data. The "percent" style for pie charts causes percentages to be displayed beside each of the pie slices.

Returns: The _pg_defaultchart function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_initchart, _pg_chart, _pg_chartpie, _pg_chartscatter

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
               #define _FAR
                              __far
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           };
           main()
               chartenv env;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_COLUMNCHART, _PG_PLAINBARS );
               strcpy( env.maintitle.title, "Column Chart" );
               _pg_chart( &env, categories, values, NUM_VALUES );
               getch();
               _setvideomode( _DEFAULTMODE );
           }
```

Systems: DOS

```
Synopsis:
            #include <pqchart.h>
            short _FAR _pg_getchardef( short ch,
                                           unsigned char _FAR *def );
Description:
            The _pg_getchardef function retrieves the current bit-map definition for the character ch. The
            bit-map is placed in the array def. The current font must be an 8-by-8 bit-mapped font.
Returns:
            The _pg_getchardef function returns zero if successful; otherwise, a non-zero value is returned.
See Also:
            _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,
            _pg_chartscatter, _pg_setchardef
Example:
            #include <graph.h>
            #include <pgchart.h>
            #include <string.h>
            #include <conio.h>
            #define NUM_VALUES 4
            float x[ NUM_VALUES ] = {
                 5, 25, 45, 65
            };
            float y[ NUM_VALUES ] = {
                 5, 45, 25, 65
            };
            char diamond[ 8 ] = {
                 0x10, 0x28, 0x44, 0x82, 0x44, 0x28, 0x10, 0x00
            } ;
            main()
            {
                 chartenv env;
                char old_def[ 8 ];
                _setvideomode( _VRES16COLOR );
                _pg_initchart();
                _pg_defaultchart( &env,
                                     _PG_SCATTERCHART, _PG_POINTANDLINE );
                strcpy( env.maintitle.title, "Scatter Chart" );
                 /* change asterisk character to diamond */
                _{\rm pg\_getchardef(\ '*',\ old\_def\ );}
                _pg_setchardef( '*', diamond );
                _pg_chartscatter( &env, x, y, NUM_VALUES );
                _pg_setchardef( '*', old_def );
                getch();
                _setvideomode( _DEFAULTMODE );
            }
Classification: PC Graphics
```

940 Library Functions and Macros

DOS

Systems:

_pg	_getchardef

_pg_getpalette

Synopsis: #include <pgchart.h>

short _FAR _pg_getpalette(paletteentry _FAR *pal);

Description: The _pg_getpalette function retrieves the internal palette of the presentation graphics system.

The palette controls the colors, line styles, fill patterns and plot characters used to display each series of

data in a chart.

The argument pal is an array of palette structures that will contain the palette. Each element of the

palette is a structure containing the following fields:

color used to display series

style line style used for line and scatter charts

fill pattern used to fill interior of bar and pie sections

plotchar character plotted on line and scatter charts

Returns: The _pg_getpalette function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,

_pg_chartscatter, _pg_setpalette, _pg_resetpalette

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           };
           char bricks[ 8 ] = {
               0xff, 0x80, 0x80, 0x80, 0xff, 0x08, 0x08, 0x08
           main()
               chartenv env;
               palettetype pal;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_COLUMNCHART, _PG_PLAINBARS );
               strcpy( env.maintitle.title, "Column Chart" );
               /* get default palette and change 1st entry */
               _pg_getpalette( &pal );
               pal[ 1 ].color = 12;
               memcpy( pal[ 1 ].fill, bricks, 8 );
               /* use new palette */
               _pg_setpalette( &pal );
               _pg_chart( &env, categories, values, NUM_VALUES );
               /* reset palette to default */
               _pg_resetpalette();
               getch();
               _setvideomode( _DEFAULTMODE );
```

Systems: DOS

_pg_getpalette				

Synopsis: #include <pgchart.h>

void _FAR _pg_getstyleset(unsigned short _FAR *style);

Description: The _pg_getstyleset function retrieves the internal style-set of the presentation graphics system.

The style-set is a set of line styles used for drawing window borders and grid-lines. The argument style

is an array that will contain the style-set.

Returns: The _pg_getstyleset function does not return a value.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,

_pg_chartscatter, _pg_setstyleset, _pg_resetstyleset

Example:

```
#include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>
#if defined ( ___386___ )
    #define _FAR
#else
    #define _FAR
                    __far
#endif
#define NUM_VALUES 4
char _FAR *categories[ NUM_VALUES ] = {
    "Jan", "Feb", "Mar", "Apr"
};
float values[ NUM_VALUES ] = {
    20, 45, 30, 25
main()
    chartenv env;
    styleset style;
    _setvideomode( _VRES16COLOR );
    _pg_initchart();
    _pg_defaultchart( &env,
                      _PG_COLUMNCHART, _PG_PLAINBARS );
    strcpy( env.maintitle.title, "Column Chart" );
    /* turn on yaxis grid, and use style 2 */
    env.yaxis.grid = 1;
    env.yaxis.gridstyle = 2;
    /* get default style-set and change entry 2 */
    _pg_getstyleset( &style );
    style[2] = 0x8888;
    /* use new style-set */
    _pg_setstyleset( &style );
    _pg_chart( &env, categories, values, NUM_VALUES );
    /* reset style-set to default */
    _pg_resetstyleset();
    getch();
    _setvideomode( _DEFAULTMODE );
```

Systems: DOS

		_pg_getstyleset

#include <pqchart.h>

Synopsis:

```
short _FAR _pg_hlabelchart( chartenv _FAR *env,
                                             short x, short y,
                                             short color,
                                             char _FAR *label );
Description:
            The _pg_hlabelchart function displays the text string label on the chart described by the env chart
            structure. The string is displayed horizontally starting at the point (x, y), relative to the upper left
            corner of the chart. The color specifies the palette color used to display the string.
Returns:
            The _pg_hlabelchart function returns zero if successful; otherwise, a non-zero value is returned.
See Also:
            _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,
            _pg_chartscatter, _pg_vlabelchart
Example:
            #include <graph.h>
            #include <pgchart.h>
            #include <string.h>
            #include <conio.h>
            #if defined ( ___386___ )
                 #define _FAR
            #else
                 #define _FAR ___far
            #endif
            #define NUM_VALUES 4
            char _FAR *categories[ NUM_VALUES ] = {
                 "Jan", "Feb", "Mar", "Apr"
            };
            float values[ NUM_VALUES ] = {
                 20, 45, 30, 25
            };
            main()
            {
                 chartenv env;
                _setvideomode( _VRES16COLOR );
                _pg_initchart();
                 _pg_defaultchart( &env,
                                      _PG_COLUMNCHART, _PG_PLAINBARS );
                 strcpy( env.maintitle.title, "Column Chart" );
                 _pg_chart( &env, categories, values, NUM_VALUES );
                 _pg_hlabelchart( &env, 64, 32, 1, "Horizontal label" );
                 _pg_vlabelchart( &env, 48, 32, 1, "Vertical label" );
                 getch();
                 _setvideomode( _DEFAULTMODE );
            }
Classification: PC Graphics
```

DOS

Systems:

		_pg_hlabelchart

Synopsis: #include <pgchart.h>
 short _FAR _pg_initchart(void);

Description: The _pg_initchart function initializes the presentation graphics system. This includes initializing the internal palette and style-set used when drawing charts. This function must be called before any of the other presentation graphics functions.

The initialization of the presentation graphics system requires that a valid graphics mode has been selected. For this reason the _setvideomode function must be called before _pg_initchart is called. If a font has been selected (with the _setfont function), that font will be used when text is displayed in a chart. Font selection should also be done before initializing the presentation graphics system.

Returns: The _pg_initchart function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_chart, _pg_chartpie, _pg_chartscatter, _setvideomode, _setfont, _registerfonts

Example:

```
#include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>
#if defined ( ___386___ )
    #define _FAR
#else
    #define _FAR
                  __far
#endif
#define NUM_VALUES 4
char _FAR *categories[ NUM_VALUES ] = {
    "Jan", "Feb", "Mar", "Apr"
};
float values[ NUM_VALUES ] = {
    20, 45, 30, 25
};
main()
    chartenv env;
    _setvideomode( _VRES16COLOR );
    _pg_initchart();
    _pg_defaultchart( &env,
                       _PG_COLUMNCHART, _PG_PLAINBARS );
    strcpy( env.maintitle.title, "Column Chart" );
    _pg_chart( &env, categories, values, NUM_VALUES );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

	_pg_initchart

Systems:

DOS

_pg_resetpalette

Synopsis: #include <pgchart.h>

short _FAR _pg_resetpalette(void);

Description: The _pg_resetpalette function resets the internal palette of the presentation graphics system to

default values. The palette controls the colors, line styles, fill patterns and plot characters used to display each series of data in a chart. The default palette chosen is dependent on the current video

mode.

Returns: The _pg_resetpalette function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,

_pg_chartscatter, _pg_getpalette, _pg_setpalette

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           };
           char bricks[ 8 ] = {
               0xff, 0x80, 0x80, 0x80, 0xff, 0x08, 0x08, 0x08
           main()
               chartenv env;
               palettetype pal;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_COLUMNCHART, _PG_PLAINBARS );
               strcpy( env.maintitle.title, "Column Chart" );
               /* get default palette and change 1st entry */
               _pg_getpalette( &pal );
               pal[ 1 ].color = 12;
               memcpy( pal[ 1 ].fill, bricks, 8 );
               /* use new palette */
               _pg_setpalette( &pal );
               _pg_chart( &env, categories, values, NUM_VALUES );
               /* reset palette to default */
               _pg_resetpalette();
               getch();
               _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS

_pg_resetpalette			

```
Synopsis:
            #include <pqchart.h>
            void _FAR _pg_resetstyleset( void );
Description:
           The _pg_resetstyleset function resets the internal style-set of the presentation graphics system
            to default values. The style-set is a set of line styles used for drawing window borders and grid-lines.
Returns:
           The _pg_resetstyleset function does not return a value.
See Also:
           _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,
           _pg_chartscatter, _pg_getstyleset, _pg_setstyleset
Example:
            #include <graph.h>
            #include <pgchart.h>
            #include <string.h>
            #include <conio.h>
            #if defined ( ___386___ )
                #define _FAR
            #else
                #define _FAR
                                ___far
            #endif
            #define NUM_VALUES 4
            char _FAR *categories[ NUM_VALUES ] = {
                "Jan", "Feb", "Mar", "Apr"
            };
            float values[ NUM_VALUES ] = {
                20, 45, 30, 25
            };
           main()
                chartenv env;
                styleset style;
                _setvideomode( _VRES16COLOR );
                _pg_initchart();
                _pg_defaultchart( &env,
                                    _PG_COLUMNCHART, _PG_PLAINBARS );
                strcpy( env.maintitle.title, "Column Chart" );
                /* turn on yaxis grid, and use style 2 */
                env.yaxis.grid = 1;
                env.yaxis.gridstyle = 2;
                /* get default style-set and change entry 2 */
                _pg_getstyleset( &style );
                style[2] = 0x8888;
                /* use new style-set */
                _pg_setstyleset( &style );
                _pg_chart( &env, categories, values, NUM_VALUES );
                /* reset style-set to default */
                _pg_resetstyleset();
                getch();
                _setvideomode( _DEFAULTMODE );
            }
```

_pg_resetstyleset

Classification: PC Graphics

Systems: DOS

```
Synopsis:
            #include <pqchart.h>
            short _FAR _pg_setchardef( short ch,
                                            unsigned char _FAR *def );
            The _pg_setchardef function sets the current bit-map definition for the character ch. The bit-map
Description:
            is contained in the array def. The current font must be an 8-by-8 bit-mapped font.
Returns:
            The _pg_setchardef function returns zero if successful; otherwise, a non-zero value is returned.
See Also:
            _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,
            _pg_chartscatter, _pg_getchardef
Example:
            #include <graph.h>
            #include <pgchart.h>
            #include <string.h>
            #include <conio.h>
            #define NUM_VALUES 4
            float x[ NUM_VALUES ] = {
                 5, 25, 45, 65
            };
            float y[ NUM_VALUES ] = {
                 5, 45, 25, 65
            };
            char diamond[ 8 ] = {
                 0x10, 0x28, 0x44, 0x82, 0x44, 0x28, 0x10, 0x00
            } ;
            main()
            {
                 chartenv env;
                 char old_def[ 8 ];
                 _setvideomode( _VRES16COLOR );
                 _pg_initchart();
                 _pg_defaultchart( &env,
                                      _PG_SCATTERCHART, _PG_POINTANDLINE );
                 strcpy( env.maintitle.title, "Scatter Chart" );
                 /* change asterisk character to diamond */
                _pg_getchardef( '*', old_def );
_pg_setchardef( '*', diamond );
                _pg_chartscatter( &env, x, y, NUM_VALUES );
                 _pg_setchardef( '*', old_def );
                 getch();
                 _setvideomode( _DEFAULTMODE );
            }
```

Systems: DOS

Classification: PC Graphics

_pg_setchardef				

Synopsis: #include <pqchart.h>

short _FAR _pg_setpalette(paletteentry _FAR *pal);

Description: The _pg_setpalette function sets the internal palette of the presentation graphics system. The

palette controls the colors, line styles, fill patterns and plot characters used to display each series of data

in a chart.

The argument pal is an array of palette structures containing the new palette. Each element of the

palette is a structure containing the following fields:

color color used to display series

style line style used for line and scatter charts

fill fill pattern used to fill interior of bar and pie sections

plotchar character plotted on line and scatter charts

Returns: The _pg_setpalette function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,

_pg_chartscatter, _pg_getpalette, _pg_resetpalette

```
Example:
           #include <graph.h>
           #include <pgchart.h>
           #include <string.h>
           #include <conio.h>
           #if defined ( ___386___ )
               #define _FAR
           #else
                              __far
               #define _FAR
           #endif
           #define NUM_VALUES 4
           char _FAR *categories[ NUM_VALUES ] = {
               "Jan", "Feb", "Mar", "Apr"
           };
           float values[ NUM_VALUES ] = {
               20, 45, 30, 25
           };
           char bricks[ 8 ] = {
               0xff, 0x80, 0x80, 0x80, 0xff, 0x08, 0x08, 0x08
           main()
           {
               chartenv env;
               palettetype pal;
               _setvideomode( _VRES16COLOR );
               _pg_initchart();
               _pg_defaultchart( &env,
                                  _PG_COLUMNCHART, _PG_PLAINBARS );
               strcpy( env.maintitle.title, "Column Chart" );
               /* get default palette and change 1st entry */
               _pg_getpalette( &pal );
               pal[ 1 ].color = 12;
               memcpy( pal[ 1 ].fill, bricks, 8 );
               /* use new palette */
               _pg_setpalette( &pal );
               _pg_chart( &env, categories, values, NUM_VALUES );
               /* reset palette to default */
               _pg_resetpalette();
               getch();
               _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS

		_pg_setpalette

_pg_setstyleset

Synopsis: #include <pgchart.h>

void _FAR _pg_setstyleset(unsigned short _FAR *style);

Description: The _pg_setstyleset function retrieves the internal style-set of the presentation graphics system.

The style-set is a set of line styles used for drawing window borders and grid-lines. The argument style

is an array containing the new style-set.

Returns: The _pg_setstyleset function does not return a value.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie,

_pg_chartscatter, _pg_getstyleset, _pg_resetstyleset

Example:

```
#include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>
#if defined ( ___386___ )
    #define _FAR
#else
    #define _FAR
                    __far
#endif
#define NUM_VALUES 4
char _FAR *categories[ NUM_VALUES ] = {
    "Jan", "Feb", "Mar", "Apr"
};
float values[ NUM_VALUES ] = {
    20, 45, 30, 25
main()
    chartenv env;
    styleset style;
    _setvideomode( _VRES16COLOR );
    _pg_initchart();
    _pg_defaultchart( &env,
                      _PG_COLUMNCHART, _PG_PLAINBARS );
    strcpy( env.maintitle.title, "Column Chart" );
    /* turn on yaxis grid, and use style 2 */
    env.yaxis.grid = 1;
    env.yaxis.gridstyle = 2;
    /* get default style-set and change entry 2 */
    _pg_getstyleset( &style );
    style[2] = 0x8888;
    /* use new style-set */
    _pg_setstyleset( &style );
    _pg_chart( &env, categories, values, NUM_VALUES );
    /* reset style-set to default */
    _pg_resetstyleset();
    getch();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Systems: DOS

_pg_setstyleset			

```
Synopsis:
           #include <pqchart.h>
           short _FAR _pg_vlabelchart( chartenv _FAR *env,
                                         short x, short y,
                                         short color,
                                         char _FAR *label );
```

Description: The _pg_vlabelchart function displays the text string label on the chart described by the env chart structure. The string is displayed vertically starting at the point (x, y), relative to the upper left corner of the chart. The *color* specifies the palette color used to display the string.

Returns: The _pg_vlabelchart function returns zero if successful; otherwise, a non-zero value is returned.

See Also: _pg_defaultchart, _pg_initchart, _pg_chart, _pg_chartpie, _pg_chartscatter, _pg_hlabelchart

#include <graph.h>

Example:

```
#include <pgchart.h>
#include <string.h>
#include <conio.h>
#if defined ( __386__ )
    #define _FAR
#else
                   __far
    #define _FAR
#endif
#define NUM_VALUES 4
char _FAR *categories[ NUM_VALUES ] = {
    "Jan", "Feb", "Mar", "Apr"
};
float values[ NUM_VALUES ] = {
    20, 45, 30, 25
};
main()
    chartenv env;
   _setvideomode( _VRES16COLOR );
   _pg_initchart();
   _pg_defaultchart( &env,
                       _PG_COLUMNCHART, _PG_PLAINBARS );
    strcpy( env.maintitle.title, "Column Chart" );
    _pg_chart( &env, categories, values, NUM_VALUES );
    _pg_hlabelchart( &env, 64, 32, 1, "Horizontal label" );
    _pg_vlabelchart(&env, 48, 32, 1, "Vertical label");
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

_pg_vlabelchart			

Synopsis:

```
#include <graph.h>
short _FAR _pie( short fill, short x1, short y1,
                              short x2, short y2,
                              short x3, short y3,
                              short x4, short y4);
short _FAR _pie_w( short fill, double x1, double y1,
                                double x2, double y2,
                                double x3, double y3,
                                double x4, double y4);
short _FAR _pie_wxy( short fill,
                     struct _wxycoord _FAR *p1,
                     struct _wxycoord _FAR *p2,
                     struct _wxycoord _FAR *p3,
                     struct _wxycoord _FAR *p4 );
```

Description:

The _pie functions draw pie-shaped wedges. The _pie function uses the view coordinate system. The _pie_w and _pie_wxy functions use the window coordinate system.

The pie wedges are drawn by drawing an elliptical arc (in the way described for the _arc functions) and then joining the center of the rectangle that contains the ellipse to the two endpoints of the arc.

The elliptical arc is drawn with its center at the center of the rectangle established by the points (x_1, y_1) and (x_2, y_2) . The arc is a segment of the ellipse drawn within this bounding rectangle. The arc starts at the point on this ellipse that intersects the vector from the centre of the ellipse to the point (x3, y3). The arc ends at the point on this ellipse that intersects the vector from the centre of the ellipse to the point (x4, y4). The arc is drawn in a counter-clockwise direction with the current plot action using the current color and the current line style.

The following picture illustrates the way in which the bounding rectangle and the vectors specifying the start and end points are defined.

When the coordinates (x1,y1) and (x2,y2) establish a line or a point (this happens when one or more of the x-coordinates or y-coordinates are equal), nothing is drawn.

The argument fill determines whether the figure is filled in or has only its outline drawn. The argument can have one of two values:

GFILLINTERIOR fill the interior by writing pixels with the current plot action using the current

color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with the current

plot action using the current color and line style

Returns: The _pie functions return a non-zero value when the figure was successfully drawn; otherwise, zero is

returned.

See Also: _arc, _ellipse, _setcolor, _setfillmask, _setlinestyle, _setplotaction

Example: #include <conio.h>

```
#include <graph.h>
main()
    _setvideomode( _VRES16COLOR );
   _pie( _GBORDER, 120, 90, 520, 390,
                    140, 20, 190, 460);
    getch();
    _setvideomode( _DEFAULTMODE );
```

produces the following:

Classification: PC Graphics

_pie - DOS **Systems:**

_pie_w - DOS _pie_wxy - DOS Synopsis: #include <io.h>

int _pipe(int *phandles, unsigned psize, int textmode);

Description:

The _pipe function creates a pipe (an unnamed FIFO) and places a file descriptor for the read end of the pipe in *phandles[0]* and a file descriptor for the write end of the pipe in *phandles[1]*. Their integer values are the two lowest available at the time of the _pipe function call. The O_NONBLOCK flag is cleared for both file descriptors. (The call can be used to set the O_NONBLOCK flag.)

Data can be written to file descriptor *phandles[1]* and read from file descriptor *phandles[0]*. A read on file descriptor *phandles[0]* returns the data written to *phandles[1]* on a first-in-first-out (FIFO) basis.

This function is typically used to connect together standard utilities to act as filters, passing the write end of the pipe to the data producing process as its STDOUT_FILENO and the read end of the pipe to the data consuming process as its STDIN_FILENO. (either via the traditional fork/dup2/exec or the more efficient spawn calls).

If successful, _pipe marks for update the *st_ftime*, *st_ctime*, *st_atime* and *st_mtime* fields of the pipe for updating.

Returns:

The _pipe function returns zero on success. Otherwise, (-1) is returned and errno is set to indicate the error.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected. If any of the following conditions occur, the _pipe function shall return (-1) and set errno to the corresponding value:

	Constant	Meaning	
	EMFILE	The calling process does not have at least 2 unused file descriptors available.	
	ENFILE	The number of simultaneously open files in the system would exceed the configured limit.	
	ENOSPC	There is insufficient space available to allocate the pipe buffer.	
	EROFS	The pipe pathname space is a read-only filesystem.	
See Also:	open, _pclose, perror, _popen, read, write		

Example:

```
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <fcntl.h>
#include <io.h>
#include <process.h>

static int handles[2] = { 0, 0 };
static int pid;
```

```
create_pipe()
    if( _pipe( (int *)&handles, 2048, _O_BINARY ) == -1 ) {
        perror( "create_pipe" );
        exit( EXIT_FAILURE );
}
create_child( char *name )
    char buff[10];
    itoa( handles[0], buff, 10 );
    pid = spawnl( P_NOWAIT, name,
                   "_pipe", buff, NULL );
    close( handles[0] );
    if(pid == -1) {
        perror( "create_child" );
        close( handles[1] );
        exit( EXIT_FAILURE );
}
fill_pipe()
    int i;
    int rc;
    for( i = 1; i <= 10; i++ ) {
        printf( "Child, what is 5 times %d\n", i );
        rc = write( handles[1], &i, sizeof( int ) );
        if( rc < sizeof( int ) ) {</pre>
            perror( "fill_pipe" );
            close( handles[1] );
            exit( EXIT_FAILURE );
        }
    /* indicate that we are done */
    i = -1;
    write( handles[1], &i, sizeof( int ) );
    close( handles[1] );
}
```

```
empty_pipe( int in_pipe )
    int i;
    int amt;
    for(;;) {
        amt = read( in_pipe, &i, sizeof( int ) );
        if (amt != sizeof(int) || i == -1)
        printf( "Parent, 5 times %d is %d\n", i, 5*i );
    if ( amt == -1 ) {
        perror( "empty_pipe" );
        exit( EXIT_FAILURE );
    close( in_pipe );
}
void main( int argc, char *argv[] )
    if( argc <= 1 ) {
        /* we are the spawning process */
        create_pipe();
        create_child( argv[0] );
        fill_pipe();
    } else {
        /* we are the spawned process */
        empty_pipe( atoi( argv[1] ) );
    exit( EXIT_SUCCESS );
}
produces the following:
Child, what is 5 times 1
Child, what is 5 times 2
Parent, 5 times 1 is 5
Parent, 5 times 2 is 10
Child, what is 5 times 3
Child, what is 5 times 4
Parent, 5 times 3 is 15
Parent, 5 times 4 is 20
Child, what is 5 times 5
Child, what is 5 times 6
Parent, 5 times 5 is 25
Parent, 5 times 6 is 30
Child, what is 5 times 7
Child, what is 5 times 8
Parent, 5 times 7 is 35
Parent, 5 times 8 is 40
Child, what is 5 times 9
Child, what is 5 times 10
Parent, 5 times 9 is 45
Parent, 5 times 10 is 50
```

Classification: WATCOM

Systems: Win32, OS/2 1.x(all), OS/2-32

			_pipe

Description:

The _polygon functions draw polygons. The _polygon function uses the view coordinate system. The _polygon_w and _polygon_wxy functions use the window coordinate system.

struct _wxycoord _FAR *points);

The polygon is defined as containing *numpts* points whose coordinates are given in the array *points*.

The argument *fill* determines whether the polygon is filled in or has only its outline drawn. The argument can have one of two values:

_GFILLINTERIOR fill the interior by writing pixels with the current plot action using the current color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with the current plot action using the current color and line style

Returns: The _polygon functions return a non-zero value when the polygon was successfully drawn; otherwise, zero is returned.

See Also: _setcolor, _setfillmask, _setlinestyle, _setplotaction

Example: #include <conio.h>
#include <graph.h>

```
struct xycoord points[ 5 ] = {
    319, 140, 224, 209, 261, 320,
    378, 320, 415, 209
};

main()
{
    _setvideomode( _VRES16COLOR );
    _polygon( _GBORDER, 5, points );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Systems:

_polygon - DOS _polygon_w - DOS _polygon_wxy - DOS Synopsis: #include <stdio.h>

FILE *popen(const char *command, const char *mode);

Description:

The popen function executes the command specified by *command* and creates a pipe between the calling process and the executed command.

Depending on the *mode* argument, the stream pointer returned may be used to read from or write to the pipe.

The executed command has an environment the same as its parents. The command will be started as follows:

```
execl("/bin/sh", "sh", "-c", command, (char *) NULL);
```

The *mode* argument to popen is a string that specifies an I/O mode for the pipe.

Mode	Meaning
'' <u>r</u> ''	The calling process will read from the standard output of the child process using the stream pointer returned by popen
''w''	The calling process will write to the standard input of the child process using the stream pointer returned by popen

A stream opened by popen should be closed by the pclose function.

Returns:

The popen function returns a non-NULL stream pointer upon successful completion. If popen is unable to create either the pipe or the subprocess, a NULL stream pointer is returned and errno is set appropriately.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The mode argument is invalid.

popen may also set errno values as described by the,, and exec1 functions.

See Also: pclose, exec...

Example:

```
* Executes the 'ls' command and prints all
 * its output preceded by an arrow.
#include <stdio.h>
int main()
   FILE *fp;
    char readbuf[256];
    fp = popen("ls", "r");
    if(fp == NULL) {
        printf("Failed to open pipe\n");
        exit(1);
   while(fgets(readbuf, 256, fp))
        printf("-> %s", readbuf);
   pclose(fp);
   return 0;
```

Classification: POSIX 1003.1

Systems: Linux Synopsis: #include <stdio.h>

FILE *_popen(const char *command, const char *mode);
FILE *_wpopen(const wchar_t *command, const wchar_t *mode);

Description:

The _popen function executes the command specified by *command* and creates a pipe between the calling process and the executed command.

Depending on the *mode* argument, the stream pointer returned may be used to read from or write to the pipe.

The executed command has an environment the same as its parents. The command will be started as follows: spawnl(<shell_path>, <shell>, "-c", command, (char *)NULL);

where <shell_path> is an unspecified path for the shell utility and <shell> is one of "command.com" (DOS, Windows 95) or "cmd.exe" (Windows NT/2000, OS/2).

The *mode* argument to _popen is a string that specifies an I/O mode for the pipe.

Mode	Meaning
''r''	The calling process will read from the standard output of the child process using the stream pointer returned by _popen
''w''	The calling process will write to the standard input of the child process using the stream pointer returned by popen

The letter "t" may be added to any of the above modes to indicate that the file is (or must be) a text file (i.e., CR/LF pairs are converted to newline characters).

The letter "b" may be added to any of the above modes to indicate that the file is (or must be) a binary file (an ISO C requirement for portability to systems that make a distinction between text and binary files).

When default file translation is specified (i.e., no "t" or "b" is specified), the value of the global variable _fmode establishes whether the file is to treated as a binary or a text file. Unless this value is changed by the program, the default will be text mode.

A stream opened by _popen should be closed by the _pclose function.

Returns:

The _popen function returns a non-NULL stream pointer upon successful completion. If _popen is unable to create either the pipe or the subprocess, a NULL stream pointer is returned and errno is set appropriately.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The mode argument is invalid.

_popen may also set errno values as described by the _pipe and spawnl functions.

See Also: _grow_handles, _pclose, perror, _pipe

```
Example:
            * Executes a given program, converting all
            * output to upper case.
            */
           #include <stdio.h>
           #include <stdlib.h>
           #include <string.h>
           #include <ctype.h>
           char
                 buffer[256];
           void main( int argc, char **argv )
             {
               int i;
               int c;
               FILE *f;
               for( i = 1; i < argc; i++ ) {
                 strcat( buffer, argv[i] );
                 strcat( buffer, " " );
               if( ( f = popen(buffer, "r")) == NULL) {
                 perror( "_popen" );
                 exit(1);
               while ( ( c = getc(f) ) != EOF ) {
                 if( islower( c ) )
                     c = toupper( c );
                 putchar( c );
               _pclose( f );
Classification: WATCOM
Systems:
           _popen - Win32, OS/2 1.x(all), OS/2-32, Linux
           _wpopen - Win32, OS/2 1.x(all), OS/2-32
```

Synopsis: #include <math.h>

double pow(double x, double y);

Description: The pow function computes x raised to the power y. A domain error occurs if x is zero and y is less than

or equal to 0, or if x is negative and y is not an integer. A range error may occur.

Returns: The pow function returns the value of x raised to the power y. When the argument is outside the

permissible range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using

the stderr stream.

See Also: exp, log, sqrt

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
    printf( "%f\n", pow( 1.5, 2.5 ) );
}
```

produces the following:

2.755676

Classification: ISO C

Systems: Math

```
Synopsis:
           #include <stdio.h>
           int printf( const char *format, ...);
           #include <wchar.h>
           int wprintf( const wchar_t *format, ... );
```

Safer C: The Safer C Library extension provides the printf_s function which is a safer alternative to printf. This newer printf_s function is recommended to be used instead of the traditional "unsafe" printf function.

The printf function writes output to the file designated by stdout under control of the argument **Description:** *format*. The *format* string is described below.

> The wprintf function is a wide character version of printf. It accepts a wide character string argument for format and produces wide character output.

Returns: The printf function returns the number of characters written, or a negative value if an output error occurred.

> The wprintf function returns the number of wide characters written, or a negative value if an output error occurred. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: _bprintf, cprintf, fprintf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

```
Example:
           #include <stdio.h>
           void main( void )
           {
               char *weekday, *month;
               weekday = "Saturday";
               month = "April";
               printf( "%s, %s %d, %d\n",
                      weekday, month, 18, 1987);
               printf( "f1 = \$8.4f f2 = \$10.2E x = \$\#08x i = \$d\n",
                        23.45,
                                    3141.5926, 0x1db,
           }
           produces the following:
           Saturday, April 18, 1987
```

f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

Format Control String: The format control string consists of *ordinary characters*, that are written exactly as they occur in the format string, and *conversion specifiers*, that cause argument values to be written as they are encountered during the processing of the format string. An ordinary character in the format string is any character, other than a percent character (%), that is not part of a conversion specifier. A conversion specifier is a sequence of characters in the format string that begins with a percent character (%) and is followed, in sequence, by the following:

- zero or more format control flags that can modify the final effect of the format directive;
- an optional decimal integer, or an asterisk character ('*'), that specifies a *minimum field width* to be reserved for the formatted item;
- an optional *precision* specification in the form of a period character (.), followed by an optional decimal integer or an asterisk character (*);
- an optional *type length* specification: one of "hh", "h", "l", "l", "j", "z", "t", "L", "I64", "w", "N" or "W" and
- a character that specifies the type of conversion to be performed: one of the characters "bcCdeEfFgGinopsSuxX".

The valid format control flags are:

- "-" the formatted item is left-justified within the field; normally, items are right-justified
- "+" a signed, positive object will always start with a plus character (+); normally, only negative items begin with a sign
- "" a signed, positive object will always start with a space character; if both "+" and " " are specified, "+" overrides " "
- "#" an alternate conversion form is used:
 - for "b" (unsigned binary) and "o" (unsigned octal) conversions, the precision is incremented, if necessary, so that the first digit is "0".
 - for "x" or "X" (unsigned hexadecimal) conversions, a non-zero value is prepended with "0x" or "0X" respectively.
 - for "e", "E", "f", "F", "g" or "G" (any floating-point) conversions, the result always contains a decimal-point character, even if no digits follow it; normally, a decimal-point character appears in the result only if there is a digit to follow it.
 - in addition to the preceding, for "g" or "G" conversions, trailing zeros are not removed from the result.

If no field width is specified, or if the value that is given is less than the number of characters in the converted value (subject to any precision value), a field of sufficient width to contain the converted value is used. If the converted value has fewer characters than are specified by the field width, the value is padded on the left (or right, subject to the left-justification flag) with spaces or zero characters ("0"). If the field width begins with "0" and no precision is specified, the value is padded with zeros; otherwise the value is padded with spaces. If the field width is "*", a value of type int from the argument list is used (before a precision argument or a conversion argument) as the minimum field width. A negative field width value is interpreted as a left-justification flag, followed by a positive field width.

As with the field width specifier, a precision specifier of "*" causes a value of type int from the argument list to be used as the precision specifier. If no precision value is given, a precision of 0 is used. The precision value affects the following conversions:

- For "b", "d", "i", "o", "u", "x" and "X" (integer) conversions, the precision specifies the minimum number of digits to appear.
- For "e", "E", "f" and "F" (fixed-precision, floating-point) conversions, the precision specifies the number of digits to appear after the decimal-point character.
- For "g" and "G" (variable-precision, floating-point) conversions, the precision specifies the maximum number of significant digits to appear.
- For "s" or "S" (string) conversions, the precision specifies the maximum number of characters to appear.

A type length specifier affects the conversion as follows:

- "hh" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) format conversion to treat the argument as a signed char or unsigned char argument. Note that, although the argument may have been promoted to an int as part of the function call, the value is converted to the smaller type before it is formatted.
- "hh" causes an "n" (converted length assignment) operation to assign the converted length to an object of type signed char.
- "h" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) format conversion to treat the argument as a short int or unsigned short int argument. Note that, although the argument may have been promoted to an int as part of the function call, the value is converted to the smaller type before it is formatted.
- "h" causes an "f" format conversion to interpret a long argument as a fixed-point number consisting of a 16-bit signed integer part and a 16-bit unsigned fractional part. The integer part is in the high 16 bits and the fractional part is in the low 16 bits.

```
struct fixpt {
   unsigned short fraction; /* Intel architecture! */
     signed short integral;
};
struct fixpt foo1 =
  { 0x8000, 1234 }; /* represents 1234.5 */
struct fixpt foo2 =
  { 0x8000, -1 }; /* represents -0.5 (-1+.5) */
```

The value is formatted with the same rules as for floating-point values. This is a Open Watcom extension.

- "h" causes an "n" (converted length assignment) operation to assign the converted length to an object of type short int.
- "h" causes an "s" operation to treat the argument string as an ASCII character string composed of 8-bit characters.

For printf and related byte input/output functions, this specifier is redundant. For wprintf and related wide character input/output functions, this specifier is required if the argument string is to be treated as an 8-bit ASCII character string; otherwise it will be treated as a wide character string.

```
printf( "%s%d", "Num=", 12345 );
wprintf( L"%hs%d", "Num=", 12345 );
```

- "l" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process a long int or unsigned long int argument.
- "l" causes an "n" (converted length assignment) operation to assign the converted length to an object of type long int.
- "l" or "w" cause an "s" operation to treat the argument string as a wide character string (a string composed of characters of type wchar_t).

For printf and related byte input/output functions, this specifier is required if the argument string is to be treated as a wide character string; otherwise it will be treated as an 8-bit ASCII character string. For wprintf and related wide character input/output functions, this specifier is redundant.

```
printf( "%ls%d", L"Num=", 12345 );
wprintf( L"%s%d", L"Num=", 12345 );
```

- "Il" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process a long long or unsigned long long argument (e.g., %lld).
- "ll" causes an "n" (converted length assignment) operation to assign the converted length to an object of type long long int.
- "j" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process an intmax_t or uintmax_t argument.
- "j" causes an "n" (converted length assignment) operation to assign the converted length to an object of type $intmax_t$.
- "z" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process a size_t or the corresponding signed integer type argument.
- "z" causes an "n" (converted length assignment) operation to assign the converted length to an object of signed integer type corresponding to size_t.
- "t" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process a ptrdiff_t or the corresponding unsigned integer type argument.
- "t" causes an "n" (converted length assignment) operation to assign the converted length to an object of type ptrdiff_t.
- "I64" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process an __int64 or unsigned __int64 argument (e.g., %I64d).
- "L" causes an "e", "E", "f", "F", "g", "G" (double) conversion to process a long double argument.
- "W" causes the pointer associated with "n", "p", "s" conversions to be treated as a far pointer.
- "N" causes the pointer associated with "n", "p", "s" conversions to be treated as a near pointer.

The valid conversion type specifiers are:

- An argument of type int is converted to an unsigned binary notation and written to the output stream. The default precision is 1, but if more digits are required, leading zeros are added.
- An argument of type int is converted to a value of type char and the corresponding ASCII character code is written to the output stream.
- An argument of type wchar_t is converted to a multibyte character and written to the output stream.
- d, i An argument of type int is converted to a signed decimal notation and written to the output stream. The default precision is 1, but if more digits are required, leading zeros are added.
- e, E An argument of type double is converted to a decimal notation in the form [-] d.ddde [+|-] ddd similar to FORTRAN exponential (E) notation. The leading sign appears (subject to the format control flags) only if the argument is negative. If the argument is non-zero, the digit before the decimal-point character is non-zero. The precision is used as the number of digits following the decimal-point character. If the precision is not specified, a default precision of six is used. If the precision is 0, the decimal-point character is suppressed. The value is rounded to the appropriate number of digits. For "E" conversions, the exponent begins with the character "E" rather than "e". The exponent sign and a three-digit number (that indicates the power of ten by which the decimal fraction is multiplied) are always produced.
- f, F An argument of type double is converted to a decimal notation in the form [-] ddd.ddd similar to FORTRAN fixed-point (F) notation. The leading sign appears (subject to the format control flags) only if the argument is negative. The precision is used as the number of digits following the decimal-point character. If the precision is not specified, a default precision of six is used. If the precision is 0, the decimal-point character is suppressed, otherwise, at least one digit is produced before the decimal-point character. The value is rounded to the appropriate number of digits.
- g, G An argument of type double is converted using either the "f" or "e" (or "F" or "E", for a "G" conversion) style of conversion depending on the value of the argument. In either case, the precision specifies the number of significant digits that are contained in the result. "e" style conversion is used only if the exponent from such a conversion would be less than -4 or greater than the precision. Trailing zeros are removed from the result and a decimal-point character only appears if it is followed by a digit.
- The number of characters that have been written to the output stream is assigned to the integer n pointed to by the argument. No output is produced.
- An argument of type int is converted to an unsigned octal notation and written to the output stream. The default precision is 1, but if more digits are required, leading zeros are added.
- p, P An argument of type void * is converted to a value of type int and the value is formatted as for a hexadecimal ("x") conversion.
- Characters from the string specified by an argument of type char * or wchar_t *, up to, but not including the terminating null character ('\0'), are written to the output stream. If a precision is specified, no more than that many characters (bytes) are written (e.g., %.7s)
 - For printf this specifier refers to an ASCII character string unless the "1" or "w" modifiers are used to indicate a wide character string.

For wprintf, this specifier refers to a wide character string unless the "h" modifier is used to indicate an ASCII character string. *.

- S Characters from the string specified by an argument of type wchar_t *, up to, but not including the terminating null wide character (L'\0'), are converted to multibyte characters and written to the output stream. If a precision is specified, no more than that many characters (bytes) are written (e.g., %.7S)
- u An argument of type int is converted to an unsigned decimal notation and written to the output stream. The default precision is 1, but if more digits are required, leading zeros are added.
- x, X An argument of type int is converted to an unsigned hexadecimal notation and written to the output stream. The default precision is 1, but if more digits are required, leading zeros are added. Hexadecimal notation uses the digits "0" through "9" and the characters "a" through "f" or "A" through "F" for "x" or "X" conversions respectively, as the hexadecimal digits. Subject to the alternate-form control flag, "0x" or "0X" is prepended to the output.

Any other conversion type specifier character, including another percent character (%), is written to the output stream with no special interpretation.

The arguments must correspond with the conversion type specifiers, left to right in the string; otherwise, indeterminate results will occur.

If the value corresponding to a floating-point specifier is infinity, or not a number (NaN), then the output will be "inf" or "-inf" for infinity, and "nan" or "-nan" for NaN's. If the conversion specifier is an uppercase character (ie. "E", "F", or "G"), the output will be uppercase as well ("INF", "NAN"), otherwise the output will be lowercase as noted above.

The pointer size specification ("N" or "W") is only effective on platforms that use a segmented memory model, although it is always recognized.

For example, a specifier of the form "%8.*f" will define a field to be at least 8 characters wide, and will get the next argument for the precision to be used in the conversion.

Classification: ISO C (except for N, W pointer size modifiers and b, I64 specifiers)

wprintf is ISO C95

Systems: printf - All, Linux, RDOS, Netware

wprintf - All, Linux

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int printf_s( const char * restrict format, ... );
#include <wchar.h>
int wprintf_s( const wchar_t * restrict format, ... );
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and printf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

The format argument shall not be a null pointer. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by format. Any argument to printf_s corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the printf_s function does not attempt to produce further output, and it is unspecified to what extent printf_s produced output before discovering the runtime-constraint violation.

Description:

The printf_s function is equivalent to the printf function except for the explicit runtime-constraints listed above.

The wprintf_s function is a wide character version of printf_s. It accepts a wide character string argument for format and produces wide character output.

Returns:

The printf_s function returns the number of characters written, or a negative value if an output error or runtime-constraint violation occurred.

The wprintf_s function returns the number of wide characters written, or a negative value if an output error or runtime-constraint violation occurred.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
void main( void )
    char *weekday, *month;
    weekday = "Saturday";
    month = "April";
    printf_s( "%s, %s %d, %d\n",
              weekday, month, 18, 1987);
    printf_s( "f1 = \$8.4f f2 = \$10.2E x = \$\#08x i = \$d\n",
              23.45, 3141.5926, 0x1db, -1);
}
produces the following:
```

f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

Saturday, April 18, 1987

printf_s, wprintf_s

Classification: TR 24731

Systems: printf_s - All, Linux, RDOS, Netware

wprintf_s - All, Linux

```
#include <stdio.h>
int putc( int c, FILE *fp );
#include <stdio.h>
#include <wchar.h>
wint_t putwc( wint_t c, FILE *fp );
```

Description:

The putc function is equivalent to fputc, except it may be implemented as a macro. The putc function writes the character specified by the argument c to the output stream designated by fp.

The putwc function is identical to putc except that it converts the wide character specified by c to a multibyte character and writes it to the output stream.

Returns:

The putc function returns the character written or, if a write error occurs, the error indicator is set and putc returns EOF.

The putwc function returns the wide character written or, if a write error occurs, the error indicator is set and putwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fopen, fputc, fputchar, fputs, putchar, puts, ferror

Example:

```
void main()
    FILE *fp;
    int c;
    fp = fopen( "file", "r" );
    if( fp != NULL ) {
      while ( (c = fgetc(fp)) != EOF)
          putc( c, stdout );
      fclose( fp );
    }
  }
```

#include <stdio.h>

Classification: ISO C

Systems:

putc - All, Linux, RDOS, Netware putwc - All, Linux

Synopsis: #include <conio.h>
 int putch(int c);

Description: The putch function writes the character specified by the argument c to the console.

Returns: The putch function returns the character written.

See Also: getch, getche, kbhit, ungetch

#include <conio.h>
#include <stdio.h>

void main()
{
 FILE *fp;
 int c;

 fp = fopen("file", "r");
 if (fp != NULL) {
 while((c = fgetc(fp)) != EOF)
 putch(c);
 }
 fclose(fp);
}

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

```
#include <stdio.h>
int putchar( int c );
#include <wchar.h>
wint_t putwchar( wint_t c );
```

Description:

The putchar function writes the character specified by the argument c to the output stream stdout.

The function is equivalent to

```
fputc( c, stdout );
```

The putwchar function is identical to putchar except that it converts the wide character specified by c to a multibyte character and writes it to the output stream.

Returns:

The putchar function returns the character written or, if a write error occurs, the error indicator is set and putchar returns EOF.

The putwchar function returns the wide character written or, if a write error occurs, the error indicator is set and putwchar returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

fopen, fputc, fputchar, fputs, putc, puts, ferror

Example:

```
#include <stdio.h>
```

```
void main()
   FILE *fp;
   int c;
    fp = fopen( "file", "r" );
    c = fgetc(fp);
   while ( c != EOF ) {
        putchar( c );
        c = fgetc(fp);
    fclose( fp );
```

Classification: ISO C

putwchar is ISO C95

Systems:

```
putchar - All, Linux, Netware
putwchar - All, Linux
```


```
#include <stdlib.h>
int putenv( const char *env_name );
int _putenv( const char *env_name );
int _wputenv( const wchar_t *env_name );
```

Description:

The environment list consists of a number of environment names, each of which has a value associated with it. Entries can be added to the environment list with the DOS set command or with the putenv function. All entries in the environment list can be displayed by using the DOS set command with no arguments. A program can obtain the value for an environment variable by using the getenv function.

When the value of env name has the format

```
env_name=value
```

an environment name and its value is added to the environment list. When the value of env_name has the format

```
env_name=
```

the environment name and value is removed from the environment list.

The matching is case-insensitive; all lowercase letters are treated as if they were in upper case.

The space into which environment names and their values are placed is limited. Consequently, the puteny function can fail when there is insufficient space remaining to store an additional value.

The _putenv function is identical to putenv. Use _putenv for ANSI naming conventions.

The _wputenv function is a wide character version of putenv the env_name argument to _wputenv is a wide character string.

putenv and _wputenv affect only the environment that is local to the current process; you cannot use them to modify the command-level environment. That is, these functions operate only on data structures accessible to the run-time library and not on the environment "segment" created for a process by the operating system. When the current process terminates, the environment reverts to the level of the calling process (in most cases, the operating-system level). However, the modified environment can be passed to any new processes created by _spawn, _exec, or system, and these new processes get any new items added by putenv and _wputenv.

With regard to environment entries, observe the following cautions:

- Do not change an environment entry directly; instead, use putenv or _wputenv to change it. To modify the return value of putenv or _wputenv without affecting the environment table, use strdup or strcpy to make a copy of the string.
- If the argument *env name* is not a literal string, you should duplicate the string, since puteny does not copy the value; for example,

```
putenv( strdup( buffer ) );
```

• Never free a pointer to an environment entry, because the environment variable will then point to freed space. A similar problem can occur if you pass putenv or _wputenv a pointer to a local variable, then exit the function in which the variable is declared.

putenv use the global variable _environ to access the _wputenv use _wenviron. putenv and _wputenv may change the value of _environ and _wenviron, thus putenv and _wputenv to global variables, see _environ, _wenviron.

To assign a string to a variable and place it in the environment list:

```
C>SET INCLUDE=C:\WATCOM\H
```

To see what variables are in the environment list, and their current assignments:

```
C>SET
COMSPEC=C:\COMMAND.COM
PATH=C:\;C:\WATCOM
INCLUDE=C:\WATCOM\H
```

Returns: The putenv function returns zero when it is successfully executed and returns -1 when it fails.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

ENOMEM Not enough memory to allocate a new environment string.

See Also: exec..., _wexec..., clearenv, getenv, getenv_s, _searchenv, setenv, unsetenv, _wgetenv, _wputenv, _wsearchenv, _wsetenv, _wunsetenv, spawn..., system, _wsystem

Example: The following gets the string currently assigned to INCLUDE and displays it, assigns a new value to it, gets and displays it, and then removes the environment name and value.

```
#include <stdio.h>
#include <stdlib.h>

void main()
{
   char *path;
   path = getenv( "INCLUDE" );
   if( path != NULL )
        printf( "INCLUDE=%s\n", path );
   if( putenv( "INCLUDE=mylib;yourlib" ) != 0 )
        printf( "putenv failed" );
   path = getenv( "INCLUDE" );
   if( path != NULL )
        printf( "INCLUDE=%s\n", path );
   if( putenv( "INCLUDE=" ) != 0 )
        printf( "putenv failed" );
}
```

produces the following:

```
INCLUDE=C:\WATCOM\H
INCLUDE=mylib;yourlib
```

Classification: POSIX 1003.1

```
_putenv conforms to ANSI naming conventions wputenv is WATCOM
```

Systems:

putenv - All, Linux, RDOS
_putenv - All, Linux, RDOS
_wputenv - All, Linux

Synopsis: #include <graph.h>

Description:

The _putimage functions display the screen image indicated by the argument *image*. The _putimage function uses the view coordinate system. The _putimage_w function uses the window coordinate system.

The image is displayed upon the screen with its top left corner located at the point with coordinates (x, y). The image was previously saved using the _getimage functions. The image is displayed in a rectangle whose size is the size of the rectangular image saved by the _getimage functions.

The image can be displayed in a number of ways, depending upon the value of the *mode* argument. This argument can have the following values:

_GPSET replace the rectangle on the screen by the saved image

_GPRESET replace the rectangle on the screen with the pixel values of the saved image

inverted; this produces a negative image

_GAND produce a new image on the screen by ANDing together the pixel values

from the screen with those from the saved image

_GOR produce a new image on the screen by ORing together the pixel values from

the screen with those from the saved image

_GXOR produce a new image on the screen by exclusive ORing together the pixel

values from the screen with those from the saved image; the original screen is restored by two successive calls to the _putimage function with this value,

providing an efficient method to produce animated effects

Returns: The _putimage functions do not return a value.

See Also: _getimage, _imagesize

```
Example:
           #include <conio.h>
           #include <graph.h>
           #include <malloc.h>
           main()
               char *buf;
               int y;
               _setvideomode( _VRES16COLOR );
               _ellipse( _GFILLINTERIOR, 100, 100, 200, 200 );
               buf = (char*) malloc(
                              _imagesize( 100, 100, 201, 201 ) );
               if( buf != NULL ) {
                    _getimage( 100, 100, 201, 201, buf );
                   _putimage( 260, 200, buf, _GPSET );
                    _putimage( 420, 100, buf, _GPSET );
                    for (y = 100; y < 300;)
                        _putimage( 420, y, buf, _GXOR );
                        y += 20;
                        _{\rm putimage( 420, y, buf, _{\rm GXOR} );
                    free ( buf );
               getch();
               _setvideomode( _DEFAULTMODE );
Classification: PC Graphics
Systems:
           _putimage - DOS
           _putimage_w - DOS
```

Synopsis: #

```
#include <stdio.h>
int puts( const char *buf );
#include <stdio.h>
int _putws( const wchar_t *bufs );
```

Description:

The puts function writes the character string pointed to by *buf* to the output stream designated by stdout, and appends a new-line character to the output. The terminating null character is not written.

The _putws function is identical to puts except that it converts the wide character string specified by *buf* to a multibyte character string and writes it to the output stream.

Returns:

The puts function returns EOF if an error occurs; otherwise, it returns a non-negative value (the number of characters written including the new-line character). The _putws function returns EOF if a write or encoding error occurs; otherwise, it returns a non-negative value (the number of characters written including the new-line character). When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also: fopen, fputc, fputchar, fputs, putc, putchar, ferror

Example:

```
void main()
{
   FILE *fp;
   char buffer[80];

   fp = freopen( "file", "r", stdin );
   while( gets( buffer ) != NULL ) {
      puts( buffer );
   }
   fclose( fp );
}
```

Classification: ISO C

_putws is WATCOM

#include <stdio.h>

Systems:

```
puts - All, Linux, RDOS, Netware
_putws - All, Linux
```

Synopsis: #include <stdio.h> int _putw(int binint, FILE *fp);

Description: The _putw function writes a binary value of type *int* to the current position of the stream *fp*. _putw does not affect the alignment of items in the stream, nor does it assume any special alignment.

> _putw is provided primarily for compatibility with previous libraries. Portability problems may occur with _putw because the size of an int and the ordering of bytes within an int differ across systems.

Returns: The _putw function returns the value written or, if a write error occurs, the error indicator is set and _putw returns EOF. Since EOF is a legitimate value to write to fp, use ferror to verify that an error has occurred.

See Also: ferror, fopen, fputc, fputchar, fputs, putc, putchar, puts

Example: #include <stdio.h> void main() { FILE *fp; int c; fp = fopen("file", "r"); if(fp != NULL) { while ($(c = _getw(fp)) != EOF)$ _putw(c, stdout); fclose(fp); } }

Classification: WATCOM

Systems: All, Linux, RDOS, Netware Safer C: The Safer C Library extension provides the qsort_s function which is a safer alternative to qsort. This newer qsort_s function is recommended to be used instead of the traditional "unsafe" qsort function.

Description: The qsort function sorts an array of *num* elements, which is pointed to by *base*, using a modified version of Sedgewick's Quicksort algorithm. Each element in the array is *width* bytes in size. The comparison function pointed to by *compar* is called with two arguments that point to elements in the array. The comparison function shall return an integer less than, equal to, or greater than zero if the first argument is less than, equal to, or greater than the second argument.

The version of the Quicksort algorithm that is employed was proposed by Jon Louis Bentley and M. Douglas McIlroy in the article "Engineering a sort function" published in *Software -- Practice and Experience*, 23(11):1249-1265, November 1993.

Returns: The qsort function returns no value.

See Also: qsort_s, bsearch, bsearch_s

Example: #include <stdio.h>
#include <stdlib.h>

#include <stdlib.n>
#include <string.h>
char *CharVect[] = { "last", "middle", "first" };

int compare(const void *op1, const void *op2)
{
 const char **p1 = (const char **) op1;
 const char **p2 = (const char **) op2;
 return(strcmp(*p1, *p2));
}

void main()
{
 qsort(CharVect, sizeof(CharVect)/sizeof(char *),

CharVect[0], CharVect[1], CharVect[2]);

sizeof(char *), compare);

produces the following:

printf("%s %s %s\n",

first last middle

Classification: ISO C

Systems: All, Linux, RDOS, Netware

		qsort

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and qsort_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *nmemb* nor *size* shall be greater than RSIZE_MAX. If *nmemb* is not equal to zero, then neither *base* nor *compar* shall be a null pointer. If there is a runtime-constraint violation, the qsort_s function does not sort the array.

Description:

The qsort_s function sorts an array of *nmemb* objects, the initial element of which is pointed to by *base*. The size of each object is specified by *size*. The contents of the array are sorted into ascending order according to a comparison function pointed to by *compar*, which is called with three arguments. The first two point to the objects being compared. The function shall return an integer less than, equal to, or greater than zero if the first argument is considered to be respectively less than, equal to, or greater than the second. The third argument to the comparison function is the *context* argument passed to qsort_s The sole use of *context* by qsort_s is to pass it to the comparison function. If two elements compare as equal, their relative order in the resulting sorted array is unspecified.

Returns:

The qsort_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

qsort, bsearch, bsearch_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
char *CharVect[] = { "last", "middle", "first" };
int compare( const void *op1, const void *op2, void *context )
    const char **p1 = (const char **) op1;
   const char **p2 = (const char **) op2;
   return( strcmp( *p1, *p2 ) );
}
void main()
   void * context = NULL;
    qsort_s( CharVect, sizeof(CharVect)/sizeof(char *),
          sizeof(char *), compare, context );
    printf( "%s %s %s\n",
            CharVect[0], CharVect[1], CharVect[2] );
}
```

produces the following:

first last middle

Classification: TR 24731

Systems: All, Linux, RDOS, Netware

Synopsis: #include <signal.h>
 int raise(int condition);

Description: The raise function signals the exceptional condition indicated by the *condition* argument. The

possible conditions are defined in the <signal.h> header file and are documented with the signal function. The signal function can be used to specify the action which is to take place when such a

condition occurs.

Returns: The raise function returns zero when the condition is successfully raised and a non-zero value

otherwise. There may be no return of control following the function call if the action for that condition

is to terminate the program or to transfer control using the longjmp function.

See Also: signal

Example:

```
* This program waits until a SIGINT signal
 * is received.
 */
#include <stdio.h>
#include <signal.h>
sig_atomic_t signal_count;
sig_atomic_t signal_number;
static void alarm_handler( int signum )
    ++signal_count;
    signal_number = signum;
void main()
    unsigned long i;
    signal_count = 0;
    signal_number = 0;
    signal( SIGINT, alarm_handler );
    printf("Signal will be auto-raised on iteration "
           "10000 or hit CTRL-C.\n");
    printf("Iteration:
                            ");
    for(i = 0; i < 100000; ++i)
     printf("\b\b\b\b\**d", 5, i);
      if ( i == 10000 ) raise (SIGINT);
      if( signal_count > 0 ) break;
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Synopsis: #include <stdlib.h>
int rand(void);

Description: The rand function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX

(32767). The sequence can be started at different values by calling the srand function.

Returns: The rand function returns a pseudo-random integer.

See Also: srand

int i;

for(i=1; i < 10; ++i) {
 printf("%d\n", rand());
}</pre>

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Description:

The read function reads data at the operating system level. The number of bytes transmitted is given by *len* and the data is transmitted starting at the address specified by *buffer*.

The readv function performs the same action as read, but places the data into the iovent buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovent-1].

The *handle* value is returned by the open function. The access mode must have included either O_RDONLY or O_RDWR when the open function was invoked. The data is read starting at the current file position for the file in question. This file position can be determined with the _tell function and can be set with the lseek function.

When O_BINARY is included in the access mode, the data is transmitted unchanged. When O_TEXT is included in the access mode, the data is transmitted with the extra carriage return character removed before each linefeed character encountered in the original data.

The _read function is identical to read. Use _read for ANSI naming conventions.

Returns:

The read function returns the number of bytes of data transmitted from the file to the buffer (this does not include any carriage-return characters that were removed during the transmission). Normally, this is the number given by the *len* argument. When the end of the file is encountered before the read completes, the return value will be less than the number of bytes requested.

A value of -1 is returned when an input/output error is detected. When an error has occurred, error contains a value indicating the type of error that has been detected.

See Also:

close, creat, fread, open, write

Example:

```
Synopsis: #include <direct.h>
    struct dirent *readdir( DIR *dirp );
    struct _wdirent *_wreaddir( WDIR *dirp );
```

Description:

The readdir function obtains information about the next matching file name from the argument *dirp*. The argument *dirp* is the value returned from the opendir function. The readdir function can be called repeatedly to obtain the list of file names contained in the directory specified by the pathname given to opendir. The function closedir must be called to close the directory and free the memory allocated by opendir.

The file <direct.h> contains definitions for the structure dirent.

The file attribute field d_attr field is a set of bits representing the following attributes.

If the _A_RDONLY bit is off, then the file is read/write.

The format of the d_time field is described by the following structure (this structure is not defined in any Open Watcom header file).

```
typedef struct {
   unsigned short twosecs : 5;    /* seconds / 2  */
   unsigned short minutes : 6;    /* minutes (0,59) */
   unsigned short hours : 5;    /* hours (0,23)  */
} ftime_t;
```

The format of the d_date field is described by the following structure (this structure is not defined in any Open Watcom header file).

```
typedef struct {
   unsigned short day : 5;    /* day (1,31) */
   unsigned short month : 4;    /* month (1,12) */
   unsigned short year : 7;    /* 0 is 1980 */
} fdate_t;
```

See the sample program below for an example of the use of these structures.

The _wreaddir function is identical to readdir except that it reads a directory of wide character filenames.

The file <direct.h> contains definitions for the structure _wdirent.

```
struct _wdirent {
   char
                 d_dta[21];
                                   /* disk transfer area
                 d_attr;
                                   /* file's attribute
   char
                                   /* file's time
   unsigned short d_time;
   unsigned short d_date;
                                   /* file's date
                 d_size;
                                   /* file's size
   long wchar_t
                 d_name[NAME_MAX+1]; /* file's name
   unsigned short d_ino;
                                   /* serial number(not used)
                                   /* flag for 1st time
   char
                 d_first;
};
```

Returns:

When successful, readdir returns a pointer to an object of type *struct dirent*. When an error occurs, readdir returns the value NULL and errno is set to indicate the error. When the end of the directory is encountered, readdir returns the value NULL and errno is unchanged.

When successful, _wreaddir returns a pointer to an object of type *struct _wdirent*. When an error occurs, _wreaddir returns the value NULL and errno is set to indicate the error. When the end of the directory is encountered, _wreaddir returns the value NULL and errno is unchanged.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

EBADF The argument *dirp* does not refer to an open directory stream.

See Also:

```
closedir, _dos_find..., opendir, rewinddir, _wopendir, _wreaddir,
_wrewinddir
```

Example:

To get a list of files contained in the directory \watcom\h on your default disk:

```
#include <stdio.h>
#include <direct.h>
typedef struct {
                                  /* seconds / 2 */
   unsigned short twosecs : 5;
   unsigned short minutes : 6;
    unsigned short hours : 5;
} ftime_t;
typedef struct {
   unsigned short day
   unsigned short month : 4;
                         : 7;
    unsigned short year
} fdate_t;
void main()
 {
   DIR *dirp;
    struct dirent *direntp;
    ftime_t *f_time;
    fdate_t *f_date;
    dirp = opendir( "\\watcom\\h" );
    if( dirp != NULL ) {
      for(;;) {
        direntp = readdir( dirp );
        if( direntp == NULL ) break;
        f_time = (ftime_t *)&direntp->d_time;
        f_date = (fdate_t *)&direntp->d_date;
        printf( "%-12s %d/%2.2d/%2.2d "
                "%2.2d:%2.2d:%2.2d \n",
            direntp->d_name,
            f_date->year + 1980,
            f_date->month,
            f_date->day,
            f_time->hours,
            f_time->minutes,
            f_time->twosecs * 2 );
      closedir( dirp );
  }
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

```
Classification: POSIX 1003.1
_wreaddir is WATCOM
```

```
Systems: readdir - All, Linux, RDOS, Netware
_wreaddir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

readdir, _wreaddir			

Synopsis: #include <unistd.h>

Description: The readlink function places the contents of the symbolic link named by path into the buffer pointed

to by *buf*, which has a size of *bufsiz*. The contents of the returned symbolic link don't include a NULL terminator. Its length must be determined from the stat structure returned by the 1stat function, or

by the return value of the readlink call.

If readlink is successful, up to bufsiz bytes from the contents of the symbolic link are placed in buf.

Returns: On success, the number of bytes placed in the buffer *buf*. Otherwise, -1 is returned, and errno is set to

indicate the error.

Constant

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

EACCES Search permission is denied for a component of the path prefix.

EINVAL The named file isn't a symbolic link.

ELOOP A loop exists in the symbolic links encountered during resolution of the path argument, and more than SYMLOOP_MAX symbolic links were encountered.

ENAMETOOLONG A component of the path exceeded NAME_MAX characters, or the entire

pathname exceeded PATH_MAX characters.

ENOENT The named file doesn't exist.

Meaning

ENOSYS Links aren't supported by the resource manager associated with path.

ENOTDIR A component of the path prefix named by path isn't a directory.

See Also: read, close, creat, fread, open, write

Example: #include <limits.h>

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

```
char buf[PATH_MAX + 1];
int main( int argc, char **argv )
{
   int n;
   int len;
   int ecode = 0;

   for( n = 1; n < argc; ++n ) {
     if( (len = readlink( argv[n], buf, PATH_MAX )) == -1 ) {
        perror( argv[n] );
        ecode++;
     } else {
        buf[len] = '\0';
        printf( "%s -> %s\n", argv[n], buf );
     }
   }
   return( ecode );
}
```

Classification: POSIX 1003.1

Systems: Linux

Description:

When the value of the *old_blk* argument is NULL, a new block of memory of *size* bytes is allocated.

If the value of size is zero, the corresponding free function is called to release the memory pointed to by old_blk .

Otherwise, the realloc function re-allocates space for an object of size bytes by either:

- shrinking the allocated size of the allocated memory block *old_blk* when *size* is sufficiently smaller than the size of *old_blk*.
- extending the allocated size of the allocated memory block *old_blk* if there is a large enough block of unallocated memory immediately following *old_blk*.
- allocating a new block and copying the contents of *old_blk* to the new block.

Because it is possible that a new block will be allocated, any pointers into the old memory should not be maintained. These pointers will point to freed memory, with possible disastrous results, when a new block is allocated.

The function returns NULL when the memory pointed to by *old_blk* cannot be re-allocated. In this case, the memory pointed to by *old_blk* is not freed so care should be exercised to maintain a pointer to the old memory block.

```
buffer = (char *) realloc( buffer, 100 );
```

In the above example, buffer will be set to NULL if the function fails and will no longer point to the old memory block. If buffer was your only pointer to the memory block then you will have lost access to this memory.

Each function reallocates memory from a particular heap, as listed below:

Function	Неар
realloc	Depends on data model of the program
_brealloc	Based heap specified by seg value
_frealloc	Far heap (outside the default data segment)
_nrealloc	Near heap (inside the default data segment)

In a small data memory model, the realloc function is equivalent to the _nrealloc function; in a large data memory model, the realloc function is equivalent to the _frealloc function.

```
The realloc functions return a pointer to the start of the re-allocated memory. The return value is
Returns:
            NULL if there is insufficient memory available or if the value of the size argument is zero. The
            _brealloc function returns _NULLOFF if there is insufficient memory available or if the requested
            size is zero.
See Also:
            calloc Functions, _expand Functions, free Functions, halloc, hfree, malloc Functions,
            _msize Functions, sbrk
Example:
            #include <stdlib.h>
            #include <malloc.h>
            void main()
                 char *buffer;
                 char *new_buffer;
                 buffer = (char *) malloc(80);
                 new_buffer = (char *) realloc( buffer, 100 );
                 if( new_buffer == NULL ) {
                    /* not able to allocate larger buffer */
                 } else {
                   buffer = new_buffer;
               }
Classification: ISO C
            brealloc is WATCOM
            _frealloc is WATCOM
            _nrealloc is WATCOM
Systems:
            realloc - All, Linux, RDOS, Netware
            _brealloc - DOS/16, Windows, OS/2 1.x(all)
            _frealloc - DOS/16, Windows, OS/2 1.x(all)
            _nrealloc - DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT),
```

OS/2-32, Linux, RDOS

Description:

The _rectangle functions draw rectangles. The _rectangle function uses the view coordinate system. The _rectangle_w and _rectangle_wxy functions use the window coordinate system.

The rectangle is defined with opposite corners established by the points (x1,y1) and (x2,y2).

The argument *fill* determines whether the rectangle is filled in or has only its outline drawn. The argument can have one of two values:

_GFILLINTERIOR

fill the interior by writing pixels with the current plot action using the current

color and the current fill mask

GBORDER

leave the interior unchanged; draw the outline of the figure with the current plot action using the current color and line style

The _rectangle functions return a non-zero value when the rectangle was successfully drawn; otherwise, zero is returned.

See Also:

Returns:

_setcolor, _setfillmask, _setlinestyle, _setplotaction

Example:

```
#include <conio.h>
#include <graph.h>

main()
{
    _setvideomode( _VRES16COLOR );
    _rectangle( _GBORDER, 100, 100, 540, 380 );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Systems: _rectangle - DOS

_rectangle_w - DOS _rectangle_wxy - DOS **Synopsis:** #include <graph.h> short _FAR _registerfonts(char _FAR *path);

Description: The _registerfonts function initializes the font graphics system. Fonts must be registered, and a font selected, before text can be displayed with the _outgtext function.

> The argument path specifies the location of the font files. This argument is a file specification, and can contain drive and directory components and may contain wildcard characters. The _registerfonts function opens each of the font files specified and reads the font information. Memory is allocated to store the characteristics of the font. These font characteristics are used by the _setfont function when selecting a font.

Returns: The _registerfonts function returns the number of fonts that were registered if the function is successful; otherwise, a negative number is returned.

See Also: _unregisterfonts, _setfont, _getfontinfo, _outgtext, _getgtextextent, _setgtextvector, _getgtextvector

Example: #include <conio.h> #include <stdio.h> #include <graph.h>

> main() int i, n; char buf[10]; _setvideomode(_VRES16COLOR); n = _registerfonts("*.fon"); for(i = 0; i < n; ++i) { sprintf(buf, "n%d", i); _setfont(buf); _moveto(100, 100); _outgtext("WATCOM Graphics"); getch(); _clearscreen(_GCLEARSCREEN); _unregisterfonts(); _setvideomode(_DEFAULTMODE);

Classification: PC Graphics

}

Systems: DOS **Systems:**

Math

```
Synopsis:
             #include <math.h>
             double remainder ( double x, double y );
Description:
            The remainder function computes remainder of the division of x by y.
Returns:
             The remainder of the division of x by y.
Example:
             #include <stdio.h>
             #include <math.h>
             void main()
                 printf( "%f\n", remainder( 7.0, 2.0 ) );
               }
             produces the following:
             1.00000
Classification: ISO C99
```

Synopsis: #include <graph.h>
 short _FAR _remapallpalette(long _FAR *colors);

Description:

The _remapallpalette function sets (or remaps) all of the colors in the palette. The color values in the palette are replaced by the array of color values given by the argument *colors*. This function is supported in all video modes, but only works with EGA, MCGA and VGA adapters.

The array *colors* must contain at least as many elements as there are supported colors. The newly mapped palette will cause the complete screen to change color wherever there is a pixel value of a changed color in the palette.

The representation of colors depends upon the hardware being used. The number of colors in the palette can be determined by using the _getvideoconfig function.

Returns:

The _remapallpalette function returns (-1) if the palette is remapped successfully and zero otherwise.

See Also: _remappalette, _getvideoconfig

Example:

```
#include <conio.h>
#include <graph.h>
long colors[ 16 ] = {
   _BRIGHTWHITE, _YELLOW, _LIGHTMAGENTA, _LIGHTRED,
   _LIGHTCYAN, _LIGHTGREEN, _LIGHTBLUE, _GRAY, _WHITE,
   _BROWN, _MAGENTA, _RED, _CYAN, _GREEN, _BLUE, _BLACK,
};
main()
    int x, y;
    _setvideomode( _VRES16COLOR );
    for ( y = 0; y < 4; ++y ) {
        for ( x = 0; x < 4; ++x ) {
            \_setcolor( x + 4 * y );
            _rectangle( _GFILLINTERIOR,
                    x * 160, y * 120,
                     (x + 1) * 160, (y + 1) * 120);
        }
    }
    getch();
    _remapallpalette( colors );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

Synopsis: #include <graph.h>
long _FAR _remappalette(short pixval, long color);

Description: The _remappalette function sets (or remaps) the palette color *pixval* to be the color *color*. This function is supported in all video modes, but only works with EGA, MCGA and VGA adapters.

The argument *pixval* is an index in the color palette of the current video mode. The argument *color* specifies the actual color displayed on the screen by pixels with pixel value *pixval*. Color values are selected by specifying the red, green and blue intensities that make up the color. Each intensity can be in the range from 0 to 63, resulting in 262144 possible different colors. A given color value can be conveniently specified as a value of type long. The color value is of the form 0x00bbggrr, where bb is the blue intensity, gg is the green intensity and rr is the red intensity of the selected color. The file graph.h defines constants containing the color intensities of each of the 16 default colors.

The _remappalette function takes effect immediately. All pixels on the complete screen which have a pixel value equal to the value of *pixval* will now have the color indicated by the argument *color*.

Returns: The _remappalette function returns the previous color for the pixel value if the palette is remapped successfully; otherwise, (-1) is returned.

See Also: _remapallpalette, _setvideomode

Example: #include <conio.h> #include <graph.h> long colors[16] = { _BLACK, _BLUE, _GREEN, _CYAN, _RED, _MAGENTA, _BROWN, _WHITE, _GRAY, _LIGHTBLUE, _LIGHTGREEN, _LIGHTCYAN, _LIGHTRED, _LIGHTMAGENTA, _YELLOW, _BRIGHTWHITE }; main() int col; _setvideomode(_VRES16COLOR); for(col = 0; col < 16; ++col) _remappalette(0, colors[col]); getch(); _setvideomode(_DEFAULTMODE);

Classification: PC Graphics

Systems: DOS

mappalette			

Synopsis: #include <stdio.h>

int remove(const char *filename);
int _wremove(const wchar_t *filename);

Description: The remove function deletes the file whose name is the string pointed to by *filename*.

The _wremove function is a wide character version of remove that operates with wide character strings.

Returns:

The remove function returns zero if the operation succeeds, non-zero if it fails. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Example: #include <stdio.h>

```
void main()
    {
      remove( "vm.tmp" );
}
```

Classification: ISO C

_wremove is WATCOM

Systems: remove - All, Linux, RDOS, Netware

_wremove - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32 $\,$

Synopsis: #include <stdio.h>

```
int rename( const char *old, const char *new );
int _wrename( const wchar_t *old, const wchar_t *new );
```

Description:

The rename function causes the file whose name is indicated by the string *old* to be renamed to the name given by the string *new*.

The _wrename function is a wide character version of rename that operates with wide character strings.

Returns:

The rename function returns zero if the operation succeeds, a non-zero value if it fails. When an error has occurred, errno contains a value indicating the type of error that has been detected.

Example: #include <stdio.h>

```
void main()
{
    rename( "old.dat", "new.dat" );
}
```

Classification: ISO C

_wrename is WATCOM

Systems: rename - All, Linux, RDOS, Netware

 $_$ wrename - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Synopsis: #include <stdio.h>
 void rewind(FILE *fp);

Description: The rewind function sets the file position indicator for the stream indicated to by fp to the beginning

of the file. It is equivalent to

```
fseek( fp, OL, SEEK_SET );
```

except that the error indicator for the stream is cleared.

Returns: The rewind function returns no value.

See Also: fopen, clearerr

Example: #include <stdio.h>

```
static assemble_pass( int passno )
{
    printf( "Pass %d\n", passno );
}

void main()
{
    FILE *fp;

    if( (fp = fopen( "program.asm", "r")) != NULL ) {
        assemble_pass( 1 );
        rewind( fp );
        assemble_pass( 2 );
        fclose( fp );
    }
}
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

```
Synopsis: #include <sys/types.h>
#include <direct.h>
void rewinddir( DIR *dirp );
void _wrewinddir( WDIR *dirp );
```

Description: The rewinddir function resets the position of the directory stream to which *dirp* refers to the beginning of the directory. It also causes the directory stream to refer to the current state of the corresponding directory, as a call to opendir would have done.

The _wrewinddir function is identical to rewinddir except that it rewinds a directory of wide character filenames opened by _wopendir.

Returns: The rewinddir function does not return a value.

See Also: closedir, _dos_find..., opendir, readdir, _wopendir, _wreaddir, _wrewinddir

Example: The following example lists all the files in a directory, creates a new file, and then relists the directory.

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <direct.h>
void main()
    DIR *dirp;
    struct dirent *direntp;
    int handle;
    dirp = opendir( "\\watcom\\h\\*.*" );
    if ( dirp != NULL ) {
        printf( "Old directory listing\n" );
        for(;;) {
            direntp = readdir( dirp );
            if( direntp == NULL )
                break;
            printf( "%s\n", direntp->d_name );
        }
        handle = creat( "\\watcom\\h\\file.new",
                      S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
        close( handle );
        rewinddir( dirp );
        printf( "New directory listing\n" );
        for(;;) {
            direntp = readdir( dirp );
            if( direntp == NULL )
                break;
            printf( "%s\n", direntp->d_name );
        closedir( dirp );
    }
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: POSIX 1003.1

_wrewinddir is WATCOM

Systems: rewinddir - All, Linux, RDOS

_wrewinddir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Description: The rint function rounds the argument *x* to a nearby integer. The direction of the rounding is

determined by the current value of fegetround. floating point error if an overflow occurs due to the

current rounding mode.

Returns: The rounded value of x.

See Also: fegetround, fesetround, nearbyint, round, trunc

Example: #include <stdio.h>
#include <math.h>

```
void main()
{
   fesetround(FE_TONEAREST);
   printf( "%f\n", rint( 1.2 ) );
}
```

produces the following:

1.000000

Classification: ISO C99

Systems: Math

Synopsis: #include <sys/types.h>

#include <direct.h>
int rmdir(const char *path);
int _rmdir(const char *path);
int _wrmdir(const wchar_t *path);

Description:

The rmdir function removes (deletes) the specified directory. The directory must not contain any files or directories. The *path* can be either relative to the current working directory or it can be an absolute path name.

The _rmdir function is identical to rmdir. Use _rmdir for ANSI naming conventions.

The _wrmdir function is a wide character version of rmdir that operates with wide character strings.

Returns: The rmdir function returns zero if successful and -1 otherwise.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: chdir, chmod, getcwd, mkdir, stat, umask

Example: To remove the directory called \watcom on drive C:

```
#include <sys/types.h>
#include <direct.h>

void main( void )
{
    rmdir( "c:\\watcom" );
}
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: POSIX 1003.1

_rmdir conforms to ANSI naming conventions

_wrmdir is WATCOM

Systems: rmdir - All, Linux, RDOS, Netware

_rmdir - All, Linux, RDOS, Netware

_wrmdir - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Description: The _rot1 function rotates the unsigned integer, determined by *value*, to the left by the number of bits

specified in *shift*. If you port an application using _rotl between a 16-bit and a 32-bit environment,

you will get different results because of the difference in the size of integers.

Returns: The rotated value is returned.

See Also: _lrotl, _lrotr, _rotr

Example: #include <stdio.h>
#include <stdlib.h>

unsigned int mask = 0x0F00;

void main()
{
 mask = _rotl(mask, 4);
 printf("%04X\n", mask);
}

produces the following:

F000

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Description: The _rotr function rotates the unsigned integer, determined by *value*, to the right by the number of bits specified in *shift*. If you port an application using _rotr between a 16-bit and a 32-bit

environment, you will get different results because of the difference in the size of integers.

Returns: The rotated value is returned.

See Also: _lrotl, _lrotr, _rotl

Example: #include <stdio.h>
#include <stdlib.h>

unsigned int mask = 0x1230;

void main()
{
 mask = _rotr(mask, 4);
 printf("%04X\n", mask);
}

produces the following:

0123

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Description: The round function rounds the argument *x* to the nearest integer. Values halfway between integers

always rounded away from zero.

Returns: The rounded value of x.

See Also: nearbyint, rint, trunc

Example: #include <stdio.h>
#include <math.h>

void main()
 {
 printf("%f\n", round(1.5));
 }

produces the following:

2.000000

Classification: ISO C99

Systems: Math

Synopsis: #include <stdlib.h>
 void __near *sbrk(int increment);

Description:

Change data segment size, the "break" value. Under 16-bit DOS, Phar Lap's 386|DOS-Extender and Linux, the data segment is grown contiguously. Under other systems, heap allocation is discontiguous. The "break" value is the address of the first byte of unallocated memory. When a program starts execution, the break value is placed following the code and constant data for the program. As memory is allocated, this pointer will advance when there is no freed block large enough to satisfy an allocation request. The sbrk function can be used to set a new "break" value for the program by adding the value of *increment* to the current break value. This increment may be positive or negative.

Under other systems, heap allocation is discontiguous. The sbrk function can only be used to allocate additional discontiguous blocks of memory. The value of *increment* is used to determine the minimum size of the block to be allocated and may not be zero or negative. The actual size of the block that is allocated is rounded up to a multiple of 4K.

The variable _amblksiz defined in <stdlib.h> contains the default increment by which the "break" pointer for memory allocation will be advanced when there is no freed block large enough to satisfy a request to allocate a block of memory. This value may be changed by a program at any time.

Under 16-bit DOS, a new process started with one of the spawn... or exec... functions is loaded following the break value. Consequently, decreasing the break value leaves more space available to the new process. Similarly, for a resident program (a program which remains in memory while another program executes), increasing the break value will leave more space available to be allocated by the resident program after other programs are loaded.

Returns:

If the call to sbrk succeeds, a pointer to the start of the new block of memory is returned. Under 16-bit DOS, this corresponds to the old break value. If the call to sbrk fails, -1 is returned. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also:

calloc Functions, _expand Functions, free Functions, halloc, hfree, malloc Functions,
_msize Functions, realloc Functions

Example:

```
#include <stdio.h>
#include <stdlib.h>

#if defined(M_I86)
#define alloc( x, y ) sbrk( x ); y = sbrk( 0 );
#else
#define alloc( x, y ) y = sbrk( x );
#endif

void main()
{
    void *brkval;
```

```
#if defined(M_I86)
   alloc( 0x0000, brkval );
    /* calling printf will cause an allocation */
   printf( "Original break value %p\n", brkval );
   printf( "Current amblksiz value x\n", _amblksiz );
   alloc( 0x0000, brkval );
   printf( "New break value after printf \t\t%p\n", brkval );
#endif
   alloc( 0x3100, brkval );
   printf( "New break value after sbrk( 0x3100 ) tpn",
            brkval );
   alloc( 0x0200, brkval );
   printf( "New break value after sbrk( 0x0200 ) tpn',
            brkval );
#if defined(M_I86)
    alloc( -0x0100, brkval );
   printf( "New break value after sbrk( -0x0100 ) \t^{p}n",
            brkval );
#endif
```

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x, OS/2 1.x(MT), OS/2-32, Linux, RDOS

Description: The scalbn function computes $x * (2^{**} y)$ via exponent manipulation.

```
fmax(x - y, 0.0);
```

Returns: The value of x times two raised to y.

```
Example: #include <stdio.h>
    #include <math.h>

    void main()
    {
        printf( "%f\n", scalbn( 1.0, 3.0 ) );
}
```

produces the following:

8.000000

Classification: ISO C99

Systems: Math

Synopsis:

```
#include <stdio.h>
int scanf( const char *format, ... );
#include <wchar.h>
int wscanf( const wchar_t *format, ... );
```

Safer C:

The Safer C Library extension provides the scanf_s function which is a safer alternative to scanf. This newer scanf_s function is recommended to be used instead of the traditional "unsafe" scanf function.

Description:

The scanf function scans input from the file designated by stdin under control of the argument *format*. The *format* string is described below. Following the format string is the list of addresses of items to receive values.

The wscanf function is identical to scanf except that it accepts a wide character string argument for *format*.

Returns:

The scanf function returns EOF if an input failure occured before any conversion. Otherwise, the number of input arguments for which values were successfully scanned and stored is returned.

See Also:

cscanf, fscanf, sscanf, vcscanf, vfscanf, vscanf, vscanf, fwscanf, wscanf, swscanf, vfwscanf, vswscanf

Example:

To scan a date in the form "Saturday April 18 1987":

```
#include <stdio.h>
void main( void )
{
   int day, year;
   char weekday[10], month[10];
   scanf( "%s %s %d %d", weekday, month, &day, &year );
}
```

Format Control String: The format control string consists of zero or more *format directives* that specify acceptable input file data. Subsequent arguments are pointers to various types of objects that are assigned values as the format string is processed.

A format directive can be a sequence of one or more white-space characters, an *ordinary character*, or a *conversion specifier*. An ordinary character in the format string is any character, other than a white-space character or the percent character (%), that is not part of a conversion specifier. A conversion specifier is a sequence of characters in the format string that begins with a percent character (%) and is followed, in sequence, by the following:

- an optional assignment suppression indicator: the asterisk character (*);
- an optional decimal integer that specifies the *maximum field width* to be scanned for the conversion;
- an optional *pointer-type* specification: one of "N" or "W";
- an optional type length specification: one of "hh", "h", "l", "l", "j", "z", "t", "L" or "I64";

• a character that specifies the type of conversion to be performed: one of the characters "cCdeEfFgGinopsSuxX[".

As each format directive in the format string is processed, the directive may successfully complete, fail because of a lack of input data, or fail because of a matching error as defined by the particular directive. If end-of-file is encountered on the input data before any characters that match the current directive have been processed (other than leading white-space where permitted), the directive fails for lack of data. If end-of-file occurs after a matching character has been processed, the directive is completed (unless a matching error occurs), and the function returns without processing the next directive. If a directive fails because of an input character mismatch, the character is left unread in the input stream. Trailing white-space characters, including new-line characters, are not read unless matched by a directive. When a format directive fails, or the end of the format string is encountered, the scanning is completed and the function returns.

When one or more white-space characters (space " ", horizontal tab "\t", vertical tab "\v", form feed "\f", carriage return "\r", new line or linefeed "\n") occur in the format string, input data up to the first non-white-space character is read, or until no more data remains. If no white-space characters are found in the input data, the scanning is complete and the function returns.

An ordinary character in the format string is expected to match the same character in the input stream.

A conversion specifier in the format string is processed as follows:

- for conversion types other than "[", "c", "C" and "n", leading white-space characters are skipped
- for conversion types other than "n", all input characters, up to any specified maximum field length, that can be matched by the conversion type are read and converted to the appropriate type of value; the character immediately following the last character to be matched is left unread; if no characters are matched, the format directive fails
- unless the assignment suppression indicator ("*") was specified, the result of the conversion is assigned to the object pointed to by the next unused argument (if assignment suppression was specified, no argument is skipped); the arguments must correspond in number, type and order to the conversion specifiers in the format string

A pointer-type specification is used to indicate the type of pointer used to locate the next argument to be scanned:

W pointer is a far pointer

N pointer is a near pointer

The pointer-type specification is only effective on platforms that use a segmented memory model, although it is always recognized.

The pointer type defaults to that used for data in the memory model for which the program has been compiled.

A type length specifier affects the conversion as follows:

• "hh" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type signed char or unsigned char.

- "hh" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of type signed char.
- "h" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type short int or unsigned short int.
- "h" causes an "f" conversion to assign a fixed-point number to an object of type long consisting of a 16-bit signed integer part and a 16-bit unsigned fractional part. The integer part is in the high 16 bits and the fractional part is in the low 16 bits.

```
struct fixpt {
    unsigned short fraction; /* Intel architecture! */
        signed short integral;
};

struct fixpt foo1 =
    { 0x8000, 1234 }; /* represents 1234.5 */
struct fixpt foo2 =
    { 0x8000, -1 }; /* represents -0.5 (-1+.5) */
```

- "h" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of type short int. *.
- "h" causes an "s" operation to convert the input string to an ASCII character string. For scanf this specifier is redundant. For wscanf, this specifier is required if the wide character input string is to be converted to an ASCII character string; otherwise it will not be converted. *.
- "l" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type long int or unsigned long int.
- "l" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of type long int.
- "l" causes an "e", "f" or "g" (floating-point) conversion to assign the converted value to an object of type double.
- "I" or "w" cause an "s" operation to convert the input string to a wide character string. For scanf this specifier is required if the input ASCII string is to be converted to a wide character string; otherwise it will not be converted. *.
- "ll" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type long long or unsigned long long (e.g., %lld).
- "ll" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of type long long int.
- "j" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type intmax_t or uintmax_t.
- "j" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of type intmax_t.
- "z" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type size_t or the corresponding signed integer type.

- "z" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of signed integer type corresponding to size_t.
- "t" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type ptrdiff_t or the corresponding unsigned integer type.
- "t" causes an "n" (read length assignment) operation to assign the number of characters that have been read to an object of type ptrdiff_t.
- "I64" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value to an object of type __int64 or unsigned __int64 (e.g., %I64d).
- "L" causes an "e", "f" or "g" (floating-point) conversion to assign the converted value to an object of type long double.

The valid conversion type specifiers are:

- c Any sequence of characters in the input stream of the length specified by the field width, or a single character if no field width is specified, is matched. The argument is assumed to point to the first element of a character array of sufficient size to contain the sequence, without a terminating null character ('\0'). For a single character assignment, a pointer to a single object of type char is sufficient.
- A sequence of multibyte characters in the input stream is matched. Each multibyte character is converted to a wide character of type wchar_t. The number of wide characters matched is specified by the field width (1 if no field width is specified). The argument is assumed to point to the first element of an array of wchar_t of sufficient size to contain the sequence. No terminating null wide character (L'\0') is added. For a single wide character assignment, a pointer to a single object of type wchar_t is sufficient.
- d A decimal integer, consisting of an optional sign, followed by one or more decimal digits, is matched. The argument is assumed to point to an object of type int.
- e, f, g A floating-point number, consisting of an optional sign ("+" or "-"), followed by one or more decimal digits, optionally containing a decimal-point character, followed by an optional exponent of the form "e" or "E", an optional sign and one or more decimal digits, is matched. The exponent, if present, specifies the power of ten by which the decimal fraction is multiplied. The argument is assumed to point to an object of type float.
- i An optional sign, followed by an octal, decimal or hexadecimal constant is matched. An octal constant consists of "0" and zero or more octal digits. A decimal constant consists of a non-zero decimal digit and zero or more decimal digits. A hexadecimal constant consists of the characters "0x" or "0X" followed by one or more (upper- or lowercase) hexadecimal digits. The argument is assumed to point to an object of type int.
- No input data is processed. Instead, the number of characters that have already been read is assigned to the object of type unsigned int that is pointed to by the argument. The number of items that have been scanned and assigned (the return value) is not affected by the "n" conversion type specifier.
- An octal integer, consisting of an optional sign, followed by one or more (zero or non-zero) octal digits, is matched. The argument is assumed to point to an object of type int.

- A hexadecimal integer, as described for "x" conversions below, is matched. The converted value is further converted to a value of type void* and then assigned to the object pointed to by the argument.
- s A sequence of non-white-space characters is matched. The argument is assumed to point to the first element of a character array of sufficient size to contain the sequence and a terminating null character, which is added by the conversion operation.
- A sequence of multibyte characters is matched. None of the multibyte characters in the sequence may be single-byte white-space characters. Each multibyte character is converted to a wide character. The argument is assumed to point to the first element of an array of wchar_t of sufficient size to contain the sequence and a terminating null wide character, which is added by the conversion operation.
- u An unsigned decimal integer, consisting of one or more decimal digits, is matched. The argument is assumed to point to an object of type unsigned int.
- A hexadecimal integer, consisting of an optional sign, followed by an optional prefix "0x" or "0X", followed by one or more (upper- or lowercase) hexadecimal digits, is matched. The argument is assumed to point to an object of type int.
- [c1c2...] The longest, non-empty sequence of characters, consisting of any of the characters c1, c2, ... called the *scanset*, in any order, is matched. c1 cannot be the caret character ('^'). If c1 is "]", that character is considered to be part of the scanset and a second "]" is required to end the format directive. The argument is assumed to point to the first element of a character array of sufficient size to contain the sequence and a terminating null character, which is added by the conversion operation.
- [^c1c2...] The longest, non-empty sequence of characters, consisting of any characters other than the characters between the "^" and "]", is matched. As with the preceding conversion, if c1 is "]", it is considered to be part of the scanset and a second "]" ends the format directive. The argument is assumed to point to the first element of a character array of sufficient size to contain the sequence and a terminating null character, which is added by the conversion operation.

For example, the specification $% [^n]$ will match an entire input line up to but not including the newline character.

A conversion type specifier of "%" is treated as a single ordinary character that matches a single "%" character in the input data. A conversion type specifier other than those listed above causes scanning to terminate and the function to return.

Conversion type specifiers "E", "F", "G", "X" have meaning identical to their lowercase equivalents.

The line

```
scanf( "%s%*f%3hx%d", name, &hexnum, &decnum )
with input
some_string 34.555e-3 abc1234
```

will copy "some_string" into the array name, skip 34.555e-3, assign 0xabc to hexnum and 1234 to decnum. The return value will be 3.

```
The program
            #include <stdio.h>
            void main( void )
                 char string1[80], string2[80];
                 scanf( "%[abcdefghijklmnopqrstuvwxyz"
                         "ABCDEFGHIJKLMNOPQRSTUVWZ ]%*2s%[^\n]",
                         string1, string2);
                 printf( %s\n%s\n, string1, string2 );
            }
            with input
            They may look alike, but they don't perform alike.
            will assign
            "They may look alike"
            to string1, skip the comma (the "%*2s" will match only the comma; the following blank terminates
            that field), and assign
            " but they don't perform alike."
            to string2.
Classification: ISO C90
            wscanf is ISO C95
            The N, W pointer size modifiers and the I64 modifier are extensions to ISO C.
            scanf - All, Linux, RDOS, Netware
```

Systems:

wscanf - All, Linux

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int scanf_s( const char * restrict format, ... );
#include <wchar.h>
int wscanf_s( const wchar_t * restrict format, ... );
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and scanf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

The *format* argument shall not be a null pointer. Any argument indirected through in order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the <code>scanf_s</code> function does not attempt to perform further input, and it is unspecified to what extent <code>scanf_s</code> performed input before discovering the runtime-constraint violation.

Description:

The scanf_s function is equivalent to fscanf_s with the argument *stdin* interposed before the arguments to scanf_s

The wscanf_s function is identical to scanf_s except that it accepts a wide character string argument for *format*.

Returns:

The scanf_s function returns EOF if an input failure occurred before any conversion or if there was a runtime-constraint violation. Otherwise, the scanf_s function returns the number of input items successfully assigned, which can be fewer than provided for, or even zero.

When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf, fwscanf, wscanf, swscanf, vfwscanf, vswscanf

Example:

To scan a date in the form "Friday August 13 2004":

Classification: TR 24731

Systems:

scanf_s - All, Linux, RDOS, Netware
wscanf_s - All, Linux

scanf_s, wscanf_s

sched_getparam

Synopsis: #include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *sp);

struct sched_param {
 int sched_priority;

} ;

Description: The sched_getparam function retrieves scheduling parameters for the process specified by *pid* and

returns the parameters in the memory pointed to by the sp argument.

If pid is zero, the scheduling parameters for the calling process will be returned in the sp argument.

Returns: If successful, the function will return zero. If the call fails, the return value is -1 and errno is

appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ESRCH The process ID *pid* is invalid or could not be found

EPERM The calling process does not have permission to access the parameters

EFAULT The memory at *sp* could not be written successfully

See Also: sched_setparam

Classification: POSIX 1003.1

int sched_get_priority_max(pid_t pid, int policy);

Description: The sched_get_priority_max function returns the maximum priority for the scheduling policy

specified by the *policy* argument.

Returns: If successful, the function will return the maximum priority allowed for the given scheduling policy. If

the call fails, the return value is -1 and errno is appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of *policy* does not represent a valid scheduling policy

See Also: sched_get_priority_min

Classification: POSIX 1003.1

sched_get_priority_min

Synopsis: #include <sched.h>

int sched_get_priority_min(pid_t pid, int policy);

Description: The sched_get_priority_min function returns the minimum priority for the scheduling policy

specified by the *policy* argument.

Returns: If successful, the function will return the minimum priority allowed for the given scheduling policy. If

the call fails, the return value is -1 and errno is appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of policy does not represent a valid scheduling policy

See Also: sched_get_priority_max

Classification: POSIX 1003.1

int sched_getscheduler(pid_t pid);

Description: The sched_getscheduler function retrieves scheduling policy for the process specified by the pid

argument.

If *pid* is zero, the policy for the calling process will be returned.

Returns: If successful, the function will return the kernel's scheduling policy for the specified process. If the call

fails, the return value is -1 and errno is appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ESRCH The process ID pid could not be found

EINVAL The process ID *pid* is invalid

See Also: sched_setscheduler

Classification: POSIX 1003.1

#include <time.h>
int sched_rr_get_interval(pid_t pid, struct timespec *ts);
struct timespec {
 time_t tv_sec;

} **;**

Description: The sched_rr_get_interval function retrieves the execution time limit for the process specified

by the *pid* argument. The memory pointed to by *ts* will be populated with this time limit if the call is

successful.

long tv_nsec;

If *pid* is zero, the execution time limit for the calling process will be returned in the *ts* argument.

Returns: If successful, the function will return zero. If the call fails, the return value is -1 and errno is

appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ESRCH The process ID *pid* is invalid or could not be found

EPERM The calling process does not have permission to access the parameters

EFAULT The memory at sp could not be written successfully

Classification: POSIX 1003.1

int sched_setparam(pid_t pid, const struct sched_param *sp);

struct sched_param {
 int sched_priority;
};

Description:

The sched_setparam function sets the scheduling parameters for the process specified by the pid

argument.

If pid is zero, the scheduling parameters for the calling process will be set.

Returns: If successful, the function will return zero. If the call fails, the return value is -1 and errno is

appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ESRCH The process ID *pid* is invalid or could not be found

EINVAL The value of *pid* or *sp* is invalid

EFAULT The memory at sp could not be read

See Also: sched_getparam

Classification: POSIX 1003.1

int sched_setscheduler(pid_t pid, int policy,
 const struct sched_param *sp);
struct sched_param {
 int sched_priority;

};

Description: The sched_setscheduler function sets the scheduling policy and parameters for the process

specified by the pid argument.

If *pid* is zero, the policy and parameters for the calling process will be set.

Returns: If successful, the function will return the kernel's former scheduling policy for the specified process. If

the call fails, the return value is -1 and errno is appropriately set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ESRCH The process ID pid could not be found

EINVAL The process ID pid, policy value policy, or the pointer sp is invalid

EFAULT The memory at *sp* could not be read

See Also: sched_getscheduler, sched_setparam, sched_getparam

Classification: POSIX 1003.1

Synopsis: #include <sched.h>
int sched_yield();

Description: The sched_yield function causes the calling thread to yield the processor to other threads until the

kernel assigns it to be the current thread once again.

Returns: If successful, the function will return zero. If the call fails, the return value is -1.

Classification: POSIX 1003.1

Synopsis: #include <graph.h>
 void _FAR _scrolltextwindow(short rows);

Description: The _scrolltextwindow function scrolls the lines in the current text window. A text window is defined with the _settextwindow function. By default, the text window is the entire screen.

The argument roug specifies the number of roug to sorall. A positive valve means to sorall the tout

The argument *rows* specifies the number of rows to scroll. A positive value means to scroll the text window up or towards the top of the screen. A negative value means to scroll the text window down or towards the bottom of the screen. Specifying a number of rows greater than the height of the text window is equivalent to clearing the text window with the _clearscreen function.

Two constants are defined that can be used with the _scrolltextwindow function:

_GSCROLLUP the contents of the text window are scrolled up (towards the top of the

screen) by one row

_GSCROLLDOWN the contents of the text window are scrolled down (towards the bottom of the

screen) by one row

Returns: The _scrolltextwindow function does not return a value.

See Also: _settextwindow, _clearscreen, _outtext, _outmem, _settextposition

Example: #include <conio.h>
 #include <graph.h>
#include <stdio.h>

main()
{
 int i;
 char buf[80];

 _setvideomode(_TEXTC80);
 _settextwindow(5, 20, 20, 40);
 for(i = 1; i <= 10; ++i) {
 sprintf(buf, "Line %d\n", i);
 _outtext(buf);
}</pre>

getch();
_scrolltextwindow(_GSCROLLUP);
getch();
_setvideomode(_DEFAULTMODE);

_scrolltextwindow(_GSCROLLDOWN);

Classification: PC Graphics

Systems: DOS

_scrolltextwindow

Synopsis:

Description:

The _searchenv function searches for the file specified by *name* in the list of directories assigned to the environment variable specified by *env_var*. Common values for *env_var* are PATH, LIB and INCLUDE.

The current directory is searched first to find the specified file. If the file is not found in the current directory, each of the directories specified by the environment variable is searched.

The full pathname is placed in the buffer pointed to by the argument *pathname*. If the specified file cannot be found, then *pathname* will contain an empty string. The *pathname* buffer should be at least _MAX_PATH characters long to accommodate the full length of the constructed path name. Otherwise, _searchenv might overrun the pathname buffer and cause unexpected behavior.

The _wsearchenv function is a wide character version of _searchenv that operates with wide character strings.

Returns: The _searchenv function returns no value.

#include <stdio.h>

See Also:

exec..., _wexec..., clearenv, getenv, getenv_s, putenv, setenv, unsetenv,
_wgetenv, _wputenv, _wsearchenv, _wsetenv, _wunsetenv, spawn..., system, _wsystem

Example:

```
#include <stdlib.h>
void display_help(FILE *fp )
  {
    printf( "display_help T.B.I.\n" );
  }
void main()
  {
    FILE *help_file;
    char full_path[ _MAX_PATH ];
    _searchenv( "watcomc.hlp", "PATH", full_path );
    if( full_path[0] == '\0' ) {
      printf( "Unable to find help file\n" );
      help_file = fopen(full_path, "r");
      display_help( help_file );
      fclose( help_file );
  }
```

Classification: WATCOM

Systems:

_searchenv - All, Linux, RDOS _wsearchenv - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Description: The segread function places the values of the segment registers into the structure located by

seg_regs.

Returns: No value is returned.

See Also: FP_OFF, FP_SEG, MK_FP

Example: #include <stdio.h> #include <i86.h>

void main()
{
 struct SREGS sregs;

 segread(&sregs);
 printf("Current value of CS is %04X\n", sregs.cs);
}

Classification: WATCOM

Systems: All, RDOS, Netware

Synopsis: #include <graph.h>
 short _FAR _selectpalette(short palnum);

Description:

The _selectpalette function selects the palette indicated by the argument *palnum* from the color palettes available. This function is only supported by the video modes _MRES4COLOR and _MRESNOCOLOR.

Mode _MRES4COLOR supports four palettes of four colors. In each palette, color 0, the background color, can be any of the 16 possible colors. The color values associated with the other three pixel values, (1, 2 and 3), are determined by the selected palette.

The following table outlines the available color palettes:

Palette		Pixel Values	
Number	1	2	3
0	green	red	brown
1	cyan	magenta	white
2	light green	light red	yellow
3	light cyan	light magenta	bright white

Returns: The _selectpalette function returns the number of the previously selected palette.

See Also: _setvideomode, _getvideoconfig

Example:

Classification: PC Graphics

Synopsis: #include <semaphore.h>

int sem_destroy(sem_t *semaphore);

Description: The sem_destroy function destroys a semaphore pointed to by the *semaphore* argument.

Returns: If successful, the function will return zero. If the call fails, the function returns -1 and errno is set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EBUSY The semaphore is currently unavailable.

See Also: sem_init, sem_getvalue, sem_post, sem_trywait, sem_wait

Classification: POSIX 1003.1

sem_getvalue

Synopsis: #include <semaphore.h>

int sem_getvalue(sem_t *semaphore, int *dest);

Description: The sem_getvalue function returns the current value of *semaphore* in the memory pointed to by the

dest pointer.

Returns: If successful, the function will return zero. If the call fails, the function returns -1 and errno is set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The pointer *value* is NULL

See Also: sem_destroy, sem_init, sem_post, sem_trywait, sem_wait

Classification: POSIX 1003.1

Synopsis: #include <semaphore.h>

int sem_init(sem_t *semaphore, int flags, int value);

Description: The sem_init function initializes a semaphore pointed to by *semaphore* using *value* as its initial

value. On Open Watcom, the *flags* argument must be zero as this runtime does not currently support

sharing semaphores across processes.

Returns: If successful, the function will return zero. If the call fails, the function returns -1 and errno is set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of the value argument exceeds SEM_VALUE_MAX

ENOSYS The value of flags was non-zero or semaphores are not supported on this CPU.

See Also: sem_destroy, sem_getvalue, sem_post, sem_trywait, sem_wait

Classification: POSIX 1003.1

sem_post

Synopsis: #include <semaphore.h>

int sem_post(sem_t *semaphore);

Description: The sem_post function unlocks a semaphore pointed to by the *semaphore* argument. Unlocking

releases the semaphore and signals any waiting threads appropriately.

Returns: If successful, the function will return zero. If the call fails, the function returns -1 and errno is set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The pointer *semaphore* is NULL

See Also: sem_destroy, sem_init, sem_trywait, sem_wait

Classification: POSIX 1003.1

Synopsis: #include <semaphore.h>

int sem_trywait(sem_t *semaphore);

Description: The sem_trywait function attempts to lock a semaphore pointed to by the semaphore argument, and

returns immediately regardless of success.

Returns: If the semaphore was successfully locked, the function will return zero. If the call fails or the

semaphore could not be locked, the function returns -1 and errno is set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The pointer *semaphore* is NULL

EAGAIN The semaphore is currently locked.

See Also: sem_destroy, sem_getvalue, sem_init, sem_post, sem_wait

Classification: POSIX 1003.1

sem wait

Synopsis: #include <semaphore.h>

int sem_wait(sem_t *semaphore);

Description: The sem_wait function attempts to lock a semaphore pointed to by the *semaphore* argument, and

blocks until the semaphore is successfully locked.

Returns: If the semaphore was successfully locked, the function will return zero. If the call fails or the

semaphore could not be locked, the function returns -1 and errno is set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The pointer *semaphore* is NULL

See Also: sem_destroy, sem_getvalue, sem_init, sem_post, sem_trywait

Classification: POSIX 1003.1

Synopsis: #define __

Description:

The set_constraint_handler_s function sets the runtime-constraint handler to be *handler*. The runtime-constraint handler is the function called when a library function detect a runtime-constraint violation. Only the most recent handler registered with set_constraint_handler_s is called when a runtime-constraint violation occurs.

When the handler is called, it is passed the following arguments:

- 1. A pointer to a character string describing the runtime-constraint violation.
- 2. A null pointer or a pointer to an implementation defined object. This implementation passes a null pointer.
- 3. If the function calling the handler has a return type declared as errno_t, the return value of the function is passed. Otherwise, a positive value of type errno_t is passed.

If no calls to the set_constraint_handler_s function have been made, a default constraint handler is used. This handler will display an error message and abort the program.

If the *handler* argument to set_constraint_handler_s is a null pointer, the default handler becomes the current constraint handler.

The set_constraint_handler_s function returns a pointer to the previously registered handler.

See Also: abort_handler_s, ignore_handler_s

Example:

Returns:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
#include <stdio.h>

void my_handler( const char *msg, void *ptr, errno_t error )
{
    fprintf( stderr, "rt-constraint violation caught :" );
    fprintf( stderr, msg );
    fprintf( stderr, "\n" );
}

void main( void )
{
    constraint_handler_t old_handler;

    old_handler = set_constraint_handler_s( my_handler );
    if( getenv_s( NULL, NULL, 0, NULL ) ) {
        printf( "getenv_s failed\n" );
    }
    set_constraint_handler_s( old_handler );
}
```

produces the following:

set_constraint_handler_s

rt-constraint violation caught: getenv_s, name == NULL.
getenv_s failed

Classification: TR 24731

Systems: All, Linux, RDOS, Netware

Synopsis: #include <graph.h>
 short _FAR _setactivepage(short pagenum);

Description: The _setactivepage function selects the page (in memory) to which graphics output is written. The page to be selected is given by the *pagenum* argument.

Only some combinations of video modes and hardware allow multiple pages of graphics to exist. When multiple pages are supported, the active page may differ from the visual page. The graphics information in the visual page determines what is displayed upon the screen. Animation may be accomplished by alternating the visual page. A graphics page can be constructed without affecting the screen by setting the active page to be different than the visual page.

The number of available video pages can be determined by using the _getvideoconfig function. The default video page is 0.

Returns: The _setactivepage function returns the number of the previous page when the active page is set successfully; otherwise, a negative number is returned.

See Also: _getactivepage, _setvisualpage, _getvisualpage, _getvideoconfig

Example: #include <conio.h>
#include <graph.h>

main() int old_apage; int old_vpage; _setvideomode(_HRES16COLOR); old_apage = _getactivepage(); old_vpage = _getvisualpage(); /* draw an ellipse on page 0 */ _setactivepage(0); _setvisualpage(0); _ellipse(_GFILLINTERIOR, 100, 50, 540, 150); /* draw a rectangle on page 1 */ _setactivepage(1); _rectangle(_GFILLINTERIOR, 100, 50, 540, 150); getch(); /* display page 1 */ _setvisualpage(1); getch(); _setactivepage(old_apage); _setvisualpage(old_vpage); _setvideomode(_DEFAULTMODE); }

Classification: PC Graphics

_setactivepage			

Synopsis: #include <graph.h>
long _FAR _setbkcolor(long color);

Description: The _setbkcolor function sets the current background color to be that of the *color* argument. In

text modes, the background color controls the area behind each individual character. In graphics modes, the background refers to the entire screen. The default background color is 0.

When the current video mode is a graphics mode, any pixels with a zero pixel value will change to the color of the *color* argument. When the current video mode is a text mode, nothing will immediately change; only subsequent output is affected.

Returns: The _setbkcolor function returns the previous background color.

See Also: _getbkcolor

Example: #include <conio.h>
#include <graph.h>

```
long colors[ 16 ] = {
  _BLACK, _BLUE, _GREEN, _CYAN,
  _RED, _MAGENTA, _BROWN, _WHITE,
   _GRAY, _LIGHTBLUE, _LIGHTGREEN, _LIGHTCYAN,
   _LIGHTRED, _LIGHTMAGENTA, _YELLOW, _BRIGHTWHITE
};
main()
    long old_bk;
    int bk;
    _setvideomode( _VRES16COLOR );
    old_bk = _getbkcolor();
    for ( bk = 0; bk < 16; ++bk ) {
        _setbkcolor( colors[ bk ] );
        getch();
    _setbkcolor( old_bk );
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Synopsis: #include <stdio.h>
 void setbuf(FILE *fp, char *buffer);

Description: The setbuf function can be used to associate a buffer with the file designated by fp. If this function is

used, it must be called after the file has been opened and before it has been read or written. If the argument *buffer* is NULL, then all input/output for the file *fp* will be completely unbuffered. If the argument *buffer* is not NULL, then it must point to an array that is at least BUFSIZ characters in

length, and all input/output will be fully buffered.

Returns: The setbuf function returns no value.

See Also: fopen, setvbuf

Example: #include <stdio.h>
#include <stdlib.h>

```
void main()
{
    char *buffer;
    FILE *fp;

    fp = fopen( "file", "r" );
    buffer = (char *) malloc( BUFSIZ );
    setbuf( fp, buffer );
    /* . */
    /* . */
    /* . */
    fclose( fp );
}
```

Classification: ISO C

Systems: DOS/16, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware

```
Synopsis: #include <graph.h>
    void _FAR _setcharsize( short height, short width );

void _FAR _setcharsize_w( double height, double width );
```

Description:

The _setcharsize functions set the character height and width to the values specified by the arguments *height* and *width*. For the _setcharsize function, the arguments *height* and *width* represent a number of pixels. For the _setcharsize_w function, the arguments *height* and *width* represent lengths along the y-axis and x-axis in the window coordinate system.

These sizes are used when displaying text with the _grtext function. The default character sizes are dependent on the graphics mode selected, and can be determined by the _gettextsettings function.

Returns: The _setcharsize functions do not return a value.

See Also: _grtext, _gettextsettings

Example: #i

```
#include <conio.h>
#include <graph.h>

main()
{
    struct textsettings ts;

    _setvideomode( _VRES16COLOR );
    _gettextsettings( &ts );
    _grtext( 100, 100, "WATCOM" );
    _setcharsize( 2 * ts.height, 2 * ts.width );
    _grtext( 100, 300, "Graphics" );
    _setcharsize( ts.height, ts.width );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

WATCOM

Graphics

Classification: PC Graphics

Systems: _setcharsize - DOS

_setcharsize_w - DOS

```
Synopsis: #include <graph.h>
    void _FAR _setcharspacing( short space );

void _FAR _setcharspacing_w( double space );
```

Description:

The _setcharspacing functions set the current character spacing to have the value of the argument *space*. For the _setcharspacing function, *space* represents a number of pixels. For the _setcharspacing_w function, *space* represents a length along the x-axis in the window coordinate system.

The character spacing specifies the additional space to leave between characters when a text string is displayed with the _grtext function. A negative value can be specified to cause the characters to be drawn closer together. The default value of the character spacing is 0.

Returns: The _setcharspacing functions do not return a value.

See Also: _grtext, _gettextsettings

Example:

```
#include <conio.h>
#include <graph.h>

main()
{
    _setvideomode( _VRES16COLOR );
    _grtext( 100, 100, "WATCOM" );
    _setcharspacing( 20 );
    _grtext( 100, 300, "Graphics" );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

```
WATCOM
Graphics
```

Classification: PC Graphics

Systems:

_setcharspacing - DOS _setcharspacing_w - DOS

Description: The _setcliprgn function restricts the display of graphics output to the clipping region. This region is a rectangle whose opposite corners are established by the physical points (x1, y1) and (x2, y2).

The _setcliprgn function does not affect text output using the _outtext and _outmem functions. To control the location of text output, see the _settextwindow function.

Returns: The _setcliprgn function does not return a value.

See Also: _settextwindow, _setvieworg, _setviewport

Example: #include <conio.h>
#include <graph.h>

```
main()
{
    short x1, y1, x2, y2;

    _setvideomode( _VRES16COLOR );
    _getcliprgn( &x1, &y1, &x2, &y2 );
    _setcliprgn( 130, 100, 510, 380 );
    _ellipse( _GBORDER, 120, 90, 520, 390 );
    getch();
    _setcliprgn( x1, y1, x2, y2 );
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Synopsis: #include <graph.h>
 short _FAR _setcolor(short pixval);

Description: The _setcolor function sets the pixel value for the current color to be that indicated by the *pixval*

argument. The current color is only used by the functions that produce graphics output; text output with _outtext uses the current text color (see the _settextcolor function). The default color value is

one less than the maximum number of colors in the current video mode.

Returns: The _setcolor function returns the previous value of the current color.

See Also: _getcolor, _settextcolor

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    int col, old_col;

    _setvideomode( _VRES16COLOR );
    old_col = _getcolor();
    for( col = 0; col < 16; ++col ) {
        _setcolor( col );
        _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
        getch();
    }
    _setcolor( old_col );
    _setvideomode( _DEFAULTMODE );
}</pre>
```

Classification: PC Graphics

Synopsis:

Description:

The environment list consists of a number of environment names, each of which has a value associated with it. Entries can be added to the environment list with the DOS set command or with the setenv function. All entries in the environment list can be displayed by using the DOS set command with no arguments. A program can obtain the value for an environment variable by using the getenv function.

The setenv function searches the environment list for an entry of the form name=value. If no such string is present, setenv adds an entry of the form name=newvalue to the environment list. Otherwise, if the *overwrite* argument is non-zero, setenv either will change the existing value to newvalue or will delete the string name=value and add the string name=newvalue.

If the *newvalue* pointer is NULL, all strings of the form *name=value* in the environment list will be deleted.

The value of the pointer environ may change across a call to the setenv function.

The setenv function will make copies of the strings associated with name and newvalue.

The matching is case-insensitive; all lowercase letters are treated as if they were in upper case.

Entries can also be added to the environment list with the DOS set command or with the puterv or setenv functions. All entries in the environment list can be obtained by using the getenv function.

To assign a string to a variable and place it in the environment list:

```
C>SET INCLUDE=C:\WATCOM\H
```

To see what variables are in the environment list, and their current assignments:

```
C>SET
COMSPEC=C:\COMMAND.COM
PATH=C:\;C:\WATCOM
INCLUDE=C:\WATCOM\H
C>
```

The _setenv function is identical to setenv. Use _setenv for ANSI naming conventions.

The _wsetenv function is a wide character version of setenv that operates with wide character strings.

Returns:

The setenv function returns zero upon successful completion. Otherwise, it will return a non-zero value and set errno to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

ENOMEM Not enough memory to allocate a new environment string.

See Also: exec..., _wexec..., clearenv, getenv, getenv_s, putenv, _searchenv, unsetenv, _wgetenv, _wputenv, _wsearchenv, _wsetenv, _wunsetenv, spawn..., system, _wsystem

Example: The following will change the string assigned to INCLUDE and then display the new string.

```
#include <stdio.h>
#include <stdlib.h>

void main()
{
   char *path;

   if( setenv( "INCLUDE", "D:\\WATCOM\\H", 1 ) == 0 )
       if( (path = getenv( "INCLUDE" )) != NULL )
            printf( "INCLUDE=%s\n", path );
}
```

Classification: WATCOM

_setenv conforms to ANSI naming conventions

Systems: seteny - All, Linux, RDOS

_setenv - All, Linux, RDOS _wsetenv - All, Linux

```
Synopsis: #include <graph.h>
    void _FAR _setfillmask( char _FAR *mask );
```

Description: The _setfillmask function sets the current fill mask to the value of the argument *mask*. When the value of the *mask* argument is NULL, there will be no fill mask set.

The fill mask is an eight-byte array which is interpreted as a square pattern (8 by 8) of 64 bits. Each bit in the mask corresponds to a pixel. When a region is filled, each point in the region is mapped onto the fill mask. When a bit from the mask is one, the pixel value of the corresponding point is set using the current plotting action with the current color; when the bit is zero, the pixel value of that point is not affected.

When the fill mask is not set, a fill operation will set all points in the fill region to have a pixel value of the current color. By default, no fill mask is set.

Returns: The _setfillmask function does not return a value.

See Also: _getfillmask,_ellipse,_floodfill,_rectangle,_polygon,_pie,_setcolor, _setplotaction

Example: #include <conio.h>
#include <graph.h>

produces the following:

Classification: PC Graphics

Synopsis: #include <graph.h>

short _FAR _setfont(char _FAR *opt);

Description:

The _setfont function selects a font from the list of registered fonts (see the _registerfonts function). The font selected becomes the current font and is used whenever text is displayed with the _outgtext function. The function will fail if no fonts have been registered, or if a font cannot be found that matches the given characteristics.

The argument *opt* is a string of characters specifying the characteristics of the desired font. These characteristics determine which font is selected. The options may be separated by blanks and are not case-sensitive. Any number of options may be specified and in any order. The available options are:

hX character height X (in pixels)

wX character width X (in pixels)

f choose a fixed-width font

p choose a proportional-width font

r choose a raster (bit-mapped) font

v choose a vector font

b choose the font that best matches the options

nX choose font number X (the number of fonts is returned by the

_registerfonts function)

t'facename' choose a font with specified facename

The facename option is specified as a "t" followed by a facename enclosed in single quotes. The available facenames are:

Courier fixed-width raster font with serifs

Helv proportional-width raster font without serifs

Tms Rmn proportional-width raster font with serifs

Script proportional-width vector font that appears similar to hand-writing

Modern proportional-width vector font without serifs

Roman proportional-width vector font with serifs

When "nX" is specified to select a particular font, the other options are ignored.

If the best fit option ("b") is specified, _setfont will always be able to select a font. The font chosen will be the one that best matches the options specified. The following precedence is given to the options when selecting a font:

1. Pixel height (higher precedence is given to heights less than the specified height)

- 2. Facename
- 3. Pixel width
- 4. Font type (fixed or proportional)

When a pixel height or width does not match exactly and a vector font has been selected, the font will be stretched appropriately to match the given size.

Returns: The _setfont function returns zero if successful; otherwise, (-1) is returned.

See Also: __registerfonts, _unregisterfonts, _getfontinfo, _outgtext, __getgtextextent, _setgtextvector, _getgtextvector

Example: #include <conio.h>

```
#include <stdio.h>
#include <graph.h>
main()
    int i, n;
    char buf[ 10 ];
    _setvideomode( _VRES16COLOR );
    n = _registerfonts( "*.fon" );
    for( i = 0; i < n; ++i ) {
        sprintf( buf, "n%d", i );
        _setfont( buf );
        _moveto( 100, 100 );
        _outgtext( "WATCOM Graphics" );
        getch();
        _clearscreen( _GCLEARSCREEN );
    _unregisterfonts();
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

Synopsis: #include <graph.h>
 struct xycoord _FAR _setgtextvector(short x, short y);

Description: The _setgtextvector function sets the orientation for text output used by the _outgtext

function to the vector specified by the arguments (x, y). Each of the arguments can have a value of -1, 0 or 1, allowing for text to be displayed at any multiple of a 45-degree angle. The default text

orientation, for normal left-to-right text, is the vector (1,0).

Returns: The _setgtextvector function returns, as an xycoord structure, the previous value of the text

orientation vector.

 $\textbf{See Also:} \qquad \texttt{_registerfonts}, \texttt{_unregisterfonts}, \texttt{_setfont}, \texttt{_getfontinfo}, \texttt{_outgtext},$

_getgtextextent, _getgtextvector

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    struct xycoord old_vec;

    _setvideomode( _VRES16COLOR );
    old_vec = _getgtextvector();
    _setgtextvector( 0, -1 );
    _moveto( 100, 100 );
    _outgtext( "WATCOM Graphics" );
    _setgtextvector( old_vec.xcoord, old_vec.ycoord );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

sethostent

Synopsis: #include <netdb.h>

void sethostent(int stayopen);

Description: The sethostent function opens the network host database at /etc/hosts and sets the position for

reading to the first entry. If the network host database is already open, the position is reset to the first entry. The *stayopen* argument, if non-zero, will cause the database to remain open after subsequent

calls to the gethostent function.

See Also: gethostent, endhostent

Classification: POSIX 1003.1

Synopsis: #include <setjmp.h>
 int setjmp(jmp_buf env);

Description: The set jmp function saves its calling environment in its jmp_buf argument, for subsequent use by the longjmp function.

In some cases, error handling can be implemented by using setjmp to record the point to which a return will occur following an error. When an error is detected in a called function, that function uses longjmp to jump back to the recorded position. The original function which called setjmp must still be active (it cannot have returned to the function which called it).

Special care must be exercised to ensure that any side effects that are left undone (allocated memory, opened files, etc.) are satisfactorily handled.

Returns:

The setjmp function returns zero when it is initially called. The return value will be non-zero if the return is the result of a call to the longjmp function. An if statement is often used to handle these two returns. When the return value is zero, the initial call to setjmp has been made; when the return value is non-zero, a return from a longjmp has just occurred.

See Also: longjmp

Example:

```
#include <stdio.h>
#include <setjmp.h>
jmp_buf env;
rtn()
  {
    printf( "about to longjmp\n" );
    longjmp( env, 14 );
  }
void main()
  {
    int ret_val = 293;
    if( 0 == ( ret_val = setjmp( env ) ) ) {
      printf( "after setjmp %d\n", ret_val );
      rtn();
      printf( "back from rtn %d\n", ret_val );
      printf( "back from longjmp %d\n", ret_val );
  }
```

produces the following:

after setjmp 0 about to longjmp back from longjmp 14

Classification: ISO C

Systems: MACRO

setjmp			

Synopsis: #include <graph.h>
 void _FAR _setlinestyle(unsigned short style);

Description: The _setlinestyle function sets the current line-style mask to the value of the *style* argument.

The line-style mask determines the style by which lines and arcs are drawn. The mask is treated as an array of 16 bits. As a line is drawn, a pixel at a time, the bits in this array are cyclically tested. When a bit in the array is 1, the pixel value for the current point is set using the current color according to the current plotting action; otherwise, the pixel value for the point is left unchanged. A solid line would result from a value of 0xF0F0

The default line style mask is 0xFFFF

Returns: The _setlinestyle function does not return a value.

See Also: _getlinestyle, _lineto, _rectangle, _polygon, _setplotaction

Example: #include <conio.h>
#include <graph.h>

```
#define DASHED 0xf0f0
main()
{
    unsigned old_style;

    _setvideomode( _VRES16COLOR );
    old_style = _getlinestyle();
    _setlinestyle( DASHED );
    _rectangle( _GBORDER, 100, 100, 540, 380 );
    _setlinestyle( old_style );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Synopsis: #include <locale.h>

```
char *setlocale( int category, const char *locale );
wchar_t *_wsetlocale( int category, const wchar_t *locale);
```

Description:

The setlocale function selects a portion of a program's *locale* according to the category given by *category* and the locale specified by *locale*. A *locale* affects the collating sequence (the order in which characters compare with one another), the way in which certain character-handling functions operate, the decimal-point character that is used in formatted input/output and string conversion, and the format and names used in the time string produced by the strftime function.

Potentially, there may be many such environments. Open Watcom C/C++ supports only the "C" locale and so invoking this function will have no effect upon the behavior of a program at present. Specifying the "POSIX" locale is supported for POSIX compatibility and equivalent to specifying the "C" locale.

The possible values for the argument *category* are as follows:

Category	Meaning
LC_ALL	select entire environment
LC_COLLATE	select collating sequence
LC_CTYPE	select the character-handling
LC_MONETARY	select monetary formatting information
LC_NUMERIC	select the numeric-format environment
LC_TIME	select the time-related environment

At the start of a program, the equivalent of the following statement is executed.

```
setlocale( LC_ALL, "C" );
```

The _wsetlocale function is a wide character version of setlocale that operates with wide character strings.

Returns:

If the selection is successful, a string is returned to indicate the locale that was in effect before the function was invoked; otherwise, a NULL pointer is returned.

See Also: strcoll, strftime, strxfrm

Example:

```
#include <stdio.h>
#include <string.h>
#include <locale.h>

char src[] = { "A sample STRING" };
char dst[20];

void main()
    {
        char *prev_locale;
        size_t len;
```

```
/* set native locale */
    prev_locale = setlocale( LC_ALL, "" );
    printf( "%s\n", prev_locale );
    len = strxfrm( dst, src, 20 );
    printf( "%s (%u)\n", dst, len );
}

produces the following:

C
A sample STRING (15)

Classification: ISO C
    _wsetlocale is WATCOM

Systems: setlocale - All, Linux, RDOS, Netware
    _wsetlocale - All, Linux
```

Synopsis: #include <math.h>
 void _set_matherr(int (*rtn)(struct _exception *err_info))

Description:

The default matherr function supplied in the library can be replaced so that the application can handle mathematical errors. To do this, the _set_matherr function must be called with the address of the new mathematical error handling routine.

Note: Under some systems, the default math error handler can be replaced by providing a user-written function of the same name, matherr, and using linking strategies to replace the default handler.

A program may contain a user-written version of matherr to take any appropriate action when an error is detected. When zero is returned by the user-written routine, an error message will be printed upon stderr and errno will be set as was the case with the default function. When a non-zero value is returned, no message is printed and errno is not changed. The value err_info->retval is used as the return value for the function in which the error was detected.

When called, the user-written math error handler is passed a pointer to a structure of type struct _exception which contains information about the error that has been detected:

The type field will contain one of the following values:

Value	Meaning
DOMAIN	A domain error has occurred, such as sqrt (-1e0) .
SING	A singularity will result, such as pow ($0e0, -2$).
OVERFLOW	An overflow will result, such as pow (10e0, 100).
UNDERFLOW	An underflow will result, such as pow (10e0, -100).
TLOSS	Total loss of significance will result, such as $\exp(1000)$.
PLOSS	Partial loss of significance will result, such as sin (10e70).

The name field points to a string containing the name of the function which detected the error. The fields arg1 and arg2 (if required) give the values which caused the error. The field retval contains the value which will be returned by the function. This value may be changed by a user-supplied version of the _set_matherr function.

Returns: The _set_matherr function returns no value.

```
Example:
           #include <stdio.h>
           #include <string.h>
           #include <math.h>
           /* Demonstrate error routine in which negative */
           /* arguments to "sqrt" are treated as positive */
           int my_matherr( struct _exception *err )
               if( strcmp( err->name, "sqrt" ) == 0 ) {
                    if( err->type == DOMAIN ) {
                        err->retval = sqrt( -(err->arg1) );
                        return(1);
                    } else
                        return(0);
               } else
                   return(0);
           }
           void main( void )
               _set_matherr( &my_matherr);
               printf( ^{\ensuremath{\text{e}}\n}, sqrt( -5e0 ) );
               exit( 0 );
           }
```

Classification: WATCOM

Systems: Math

Synopsis: #include <mbctype.h>
 int _setmbcp(int codepage);

Description: The _setmbcp function sets the current code page number.

Returns: The _setmbcp function returns zero if the code page is set successfully. If an invalid code page value is supplied for *codepage*, the function returns -1 and the code page setting is unchanged.

See Also:

_getmbcp, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _ismbbalnum, _ismbbalpha, _ismbbgraph, _ismbbkalnum, _ismbbkalpha, _ismbbkana, _ismbbkprint, _ismbbkpunct, _ismbblead, _ismbbprint, _ismbbpunct, _ismbbtrail, _mbbtombc, _mbcjistojms, _mbcjmstojis, _mbctombb, _mbbtype, _mbsbtype

Example: #include <stdio.h>

```
#include <mbctype.h>

void main()
{
    printf( "%d\n", _setmbcp( 932 ) );
    printf( "%d\n", _getmbcp() );
}
```

produces the following:

0 932

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS

Synopsis:

```
#include <io.h>
#include <fcntl.h>
int _setmode( int handle, int mode );

** deprecated **
int setmode( int handle, int mode );
```

Description:

The _setmode function sets, at the operating system level, the translation mode to be the value of *mode* for the file whose file handle is given by *handle*. The mode, defined in the <fcntl.h> header file, can be one of:

Mode Meaning

 O_{TEXT}

On input, a carriage-return character that immediately precedes a linefeed character is removed from the data that is read. On output, a carriage-return character is inserted before each linefeed character.

O_BINARY Data is read or written unchanged.

The setmode function is deprecated, use _setmode instead.

Returns:

If successful, the _setmode function returns the previous mode that was set for the file; otherwise, -1 is returned. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

_chsize, close, creat, dup, dup2, _eof, exec..., fdopen, _filelength, fileno, fstat, _grow_handles, isatty, lseek, open, read, _sopen, stat, _tell, write, umask

Example:

Classification: WATCOM

Systems:

_setmode - All, Linux, RDOS, Netware setmode - All, Linux, RDOS, Netware

	_setmode	e, setmo

setnetent

Synopsis: #include <netdb.h>

void setnetent(int stayopen);

Description: The setnetent function opens or rewinds the network database for subsequent access by the

getnetent function. If stayopen is non-zero, the network database will remain open between calls to

the getnetent function. The database can be closed when endnetent is called.

This function is not thread-safe. Other calls to this function or to other functions accessing the

hostname database may affect the return value from this function.

See Also: getnetent, endnetent, getnetbyname, getnetbyaddr

Classification: POSIX 1003.1

Synopsis: #include <new.h>

PFV set_new_handler(PFV pNewHandler);
PFU _set_new_handler(PFU pNewHandler);

Description:

The set_new_handler functions are used to transfer control to a user-defined error handler if the operator fails to allocate memory. The argument *pNewHandler* is the name of a function of type PFV or PFU.

Type	Description
PFV	Pointer to a function that returns void (i.e., returns nothing) and takes an argument of type void (i.e., takes no argument).
PFU	Pointer to a function that returns int and takes an argument of type unsigned which is the amount of space to be allocated.

In a multi-threaded environment, handlers are maintained separately for each process and thread. Each new process lacks installed handlers. Each new thread gets a copy of its parent thread's new handlers. Thus, each process and thread is in charge of its own free-store error handling.

Returns:

The set_new_handler functions return a pointer to the previous error handler so that the previous error handler can be reinstated at a later time.

The error handler specified as the argument to _set_new_handler returns zero indicating that further attempts to allocate memory should be halted or non-zero to indicate that an allocation request should be re-attempted.

See Also: _bfreeseg, _bheapseg, calloc, free, malloc, realloc

Example:

```
#include <stdio.h>
#include <new.h>

#if defined(__386__)
const size_t MemBlock = 8192;
#else
const size_t MemBlock = 2048;
#endif

/*
    Pre-allocate a memory block for demonstration
    purposes. The out-of-memory handler will return
    it to the system so that "new" can use it.
*/
long *failsafe = new long[MemBlock];
```

```
/*
               Declare a customized function to handle memory
               allocation failure.
           int out_of_memory_handler( unsigned size )
               printf( "Allocation failed, " );
               printf( "%u bytes not available.\n", size );
               /* Release pre-allocated memory if we can */
               if( failsafe == NULL ) {
                 printf( "Halting allocation.\n" );
                 /* Tell new to stop allocation attempts */
                 return(0);
               } else {
                 delete failsafe;
                 failsafe = NULL;
                 printf( "Retrying allocation.\n" );
                 /* Tell new to retry allocation attempt */
                 return(1);
             }
           void main( void )
             {
               int i;
               /* Register existence of a new memory handler */
               _set_new_handler( out_of_memory_handler );
               long *pmemdump = new long[MemBlock];
               for( i=1 ; pmemdump != NULL; i++ ) {
                 pmemdump = new long[MemBlock];
                 if( pmemdump != NULL )
                   printf( "Another block allocated %d\n", i );
             }
Classification: WATCOM
           set_new_handler - All, Netware
```

_set_new_handler - All, Netware

Systems:

```
Synopsis: #include <graph.h>
    short _FAR _setpixel( short x, short y );

short _FAR _setpixel_w( double x, double y );
```

Description: The _setpixel function sets the pixel value of the point (x,y) using the current plotting action with the current color. The _setpixel function uses the view coordinate system. The _setpixel_w function uses the window coordinate system.

A pixel value is associated with each point. The values range from 0 to the number of colors (less one) that can be represented in the palette for the current video mode. The color displayed at the point is the color in the palette corresponding to the pixel number. For example, a pixel value of 3 causes the fourth color in the palette to be displayed at the point in question.

Returns: The _setpixel functions return the previous value of the indicated pixel if the pixel value can be set; otherwise, (-1) is returned.

See Also: _getpixel, _setcolor, _setplotaction

Example: #include <conio.h>
#include <graph.h>
#include <stdlib.h>

main()

```
int x, y;
unsigned i;

_setvideomode( _VRES16COLOR );
_rectangle( _GBORDER, 100, 100, 540, 380 );
for( i = 0; i <= 60000; ++i ) {
    x = 101 + rand() % 439;
    y = 101 + rand() % 279;
    _setcolor( _getpixel( x, y ) + 1 );
    _setpixel( x, y );
}
getch();
_setvideomode( _DEFAULTMODE );</pre>
```

Classification: PC Graphics

Systems: _setpixel - DOS _setpixel_w - DOS

Synopsis: #include <graph.h>

short _FAR _setplotaction(short action);

Description: The _setplotaction function sets the current plotting action to the value of the *action* argument.

The drawing functions cause pixels to be set with a pixel value. By default, the value to be set is obtained by replacing the original pixel value with the supplied pixel value. Alternatively, the replaced value may be computed as a function of the original and the supplied pixel values.

The plotting action can have one of the following values:

_GPSET replace the original screen pixel value with the supplied pixel value

_GAND replace the original screen pixel value with the *bitwise and* of the original

pixel value and the supplied pixel value

_GOR replace the original screen pixel value with the *bitwise or* of the original pixel

value and the supplied pixel value

_GXOR replace the original screen pixel value with the *bitwise exclusive-or* of the

original pixel value and the supplied pixel value. Performing this operation twice will restore the original screen contents, providing an efficient method

to produce animated effects.

Returns: The previous value of the plotting action is returned.

See Also: _getplotaction

Example: #include <conio.h>
#include <graph.h>

```
main()
{
    int old_act;

    _setvideomode( _VRES16COLOR );
    old_act = _getplotaction();
    _setplotaction( _GPSET );
    _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
    getch();
    _setplotaction( _GXOR );
    _rectangle( _GFILLINTERIOR, 100, 100, 540, 380 );
    getch();
    _setplotaction( old_act );
    _setplotaction( old_act );
    _setvideomode( _DEFAULTMODE );
```

Classification: PC Graphics

_setplotac		

setprotoent

Synopsis: #include <netdb.h>

void setprotoent(int stayopen);

Description: The setprotoent function opens or rewinds the protocol database to allow reading starting at the

first entry. If stayopen is non-zero, the database will remain open between subsequent calls to

getprotoent until the endprotoent function is called.

This function is not thread-safe. Other calls to this function or to other functions accessing the protocol

database may affect the return value from this function.

See Also: getprotoent, endprotoent, getprotobyname, getprotobynumber

Classification: POSIX 1003.1

Synopsis: #include <pwd.h>
 void setpwent(void);

Description: The setpwent function returns pointer for iterating over the system's password database to the first

entry. It is normally called prior to using any of the POSIX functions that access the password database

to ensure starting at the first entry.

See Also: getpwent, endpwent, getpwnam, getpwuid

Example: The following program will print out each user and their user ID in the system's password database

```
#include <stdio.h>
#include <pwd.h>

void main()
{
    struct passwd *pw;
    setpwent();

    while((pw = getpwent()) != NULL) {
        printf("User id %d is %s\n", (int)pw->pw_uid, pw->pw_name);
    }

    endpwent();
}
```

Classification: POSIX 1003.1

setservent

Synopsis: #include <netdb.h>

void setservent(int stayopen);

Description: The setservent function opens or rewinds the service database. If *stayopen* is non-zero, the

database will be kept open between calls to getservent until endservent is called to close the

database.

This function is not thread-safe. Other calls to this function or to other functions accessing the

hostname database may affect the return value from this function.

See Also: getservent, endservent, getservbyname, getservbyport

Classification: POSIX 1003.1

```
Synopsis: #include <graph.h>
    void _FAR _settextalign( short horiz, short vert );
```

Description:

The _settextalign function sets the current text alignment to the values specified by the arguments *horiz* and *vert*. When text is displayed with the _grtext function, it is aligned (justified) horizontally and vertically about the given point according to the current text alignment settings.

The horizontal component of the alignment can have one of the following values:

_NORMAL	use the default horizontal alignment for the current setting of the text path
_LEFT	the text string is left justified at the given point
_CENTER	the text string is centred horizontally about the given point
_RIGHT	the text string is right justified at the given point

The vertical component of the alignment can have one of the following values:

_NORMAL	use the default vertical alignment for the current setting of the text path
_TOP	the top of the text string is aligned at the given point
_CAP	the cap line of the text string is aligned at the given point
_HALF	the text string is centred vertically about the given point
_BASE	the base line of the text string is aligned at the given point
_BOTTOM	the bottom of the text string is aligned at the given point

The default is to use _LEFT alignment for the horizontal component unless the text path is _PATH_LEFT, in which case _RIGHT alignment is used. The default value for the vertical component is _TOP unless the text path is _PATH_UP, in which case _BOTTOM alignment is used.

Returns: The _settextalign function does not return a value.

```
See Also: _grtext, _gettextsettings
```

Example:

```
#include <conio.h>
#include <graph.h>

main()
{
    _setvideomode( _VRES16COLOR );
    _grtext( 200, 100, "WATCOM" );
    _setpixel( 200, 100 );
    _settextalign( _CENTER, _HALF );
    _grtext( 200, 200, "Graphics" );
    _setpixel( 200, 200 );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:		

WATCOM

Graphics

Classification: PC Graphics

Synopsis: #include <graph.h>
 short _FAR _settextcolor(short pixval);

Description:

The _settextcolor function sets the current text color to be the color indicated by the pixel value of the *pixval* argument. This is the color value used for displaying text with the _outtext and _outmem functions. Use the _setcolor function to change the color of graphics output. The default text color value is set to 7 whenever a new video mode is selected.

The pixel value *pixval* is a number in the range 0-31. Colors in the range 0-15 are displayed normally. In text modes, blinking colors are specified by adding 16 to the normal color values. The following table specifies the default colors in color text modes.

Pixel value	Color	Pixel value	Color
0	Black	8	Gray
1	Blue	9	Light Blue
2	Green	10	Light Green
3	Cyan	11	Light Cyan
4	Red	12	Light Red
5	Magenta	13	Light Magenta
6	Brown	14	Yellow
7	White	15	Bright White

Returns: The _settextcolor function returns the pixel value of the previous text color.

See Also: _gettextcolor, _outtext, _outmem, _setcolor

Example:

```
#include <conio.h>
#include <graph.h>

main()
{
    int old_col;
    long old_bk;

    _setvideomode( _TEXTC80 );
    old_col = _gettextcolor();
    old_bk = _getbkcolor();
    _settextcolor( 7 );
    _setbkcolor( _BLUE );
    _outtext( " WATCOM \nGraphics" );
    _settextcolor( old_col );
    _setbkcolor( old_bk );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

_settextcolor			

Synopsis: #include <graph.h>
 short _FAR _settextcursor(short cursor);

Description: The _settextcursor function sets the attribute, or shape, of the cursor in text modes. The

argument *cursor* specifies the new cursor shape. The cursor shape is selected by specifying the top and bottom rows in the character matrix. The high byte of *cursor* specifies the top row of the cursor; the low byte specifies the bottom row.

Some typical values for *cursor* are:

Cursor	Shape
0x0607 0x0007	normal underline cursor full block cursor
0x0407	half-height block cursor
0x2000	no cursor

Returns: The _settextcursor function returns the previous cursor shape when the shape is set successfully;

otherwise, (-1) is returned.

See Also: _gettextcursor, _displaycursor

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    int old_shape;

    old_shape = _gettextcursor();
    _settextcursor( 0x0007 );
    _outtext( "\nBlock cursor" );
    getch();
    _settextcursor( 0x0407 );
    _outtext( "\nHalf height cursor" );
    getch();
    _settextcursor( 0x2000 );
    _outtext( "\nNo cursor" );
    getch();
    _settextcursor( old_shape );
}
```

Classification: PC Graphics

_settextcursor			

Synopsis: #include <graph.h>

void _FAR _settextorient(short vecx, short vecy);

Description: The _settextorient function sets the current text orientation to the vector specified by the

arguments (vecx, vecy). The text orientation specifies the direction of the base-line vector when a text string is displayed with the _grtext function. The default text orientation, for normal

left-to-right text, is the vector (1,0).

Returns: The _settextorient function does not return a value.

See Also: _grtext, _gettextsettings

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    _setvideomode( _VRES16COLOR );
    _grtext( 200, 100, "WATCOM" );
    _settextorient( 1, 1 );
    _grtext( 200, 200, "Graphics" );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

_settextorient	

```
Synopsis: #include <graph.h>
    void _FAR _settextpath( short path );
```

Description: T

The _settextpath function sets the current text path to have the value of the *path* argument. The text path specifies the writing direction of the text displayed by the _grtext function. The argument can have one of the following values:

_PATH_RIGHT subsequent characters are drawn to the right of the previous character
_PATH_LEFT subsequent characters are drawn to the left of the previous character
_PATH_UP subsequent characters are drawn above the previous character
_PATH_DOWN subsequent characters are drawn below the previous character

The default value of the text path is _PATH_RIGHT.

Returns: The _settextpath function does not return a value.

See Also: _grtext, _gettextsettings

Example:

```
#include <conio.h>
#include <graph.h>

main()
{
    _setvideomode( _VRES16COLOR );
    _grtext( 200, 100, "WATCOM" );
    _settextpath( _PATH_DOWN );
    _grtext( 200, 200, "Graphics" );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

produces the following:

Classification: PC Graphics

Description: The _settextposition function sets the current output position for text to be (row, col) where this position is in terms of characters, not pixels.

The text position is relative to the current text window. It defaults to the top left corner of the screen, (1,1), when a new video mode is selected, or when a new text window is set. The position is updated as text is drawn with the _outtext and _outmem functions.

Note that the output position for graphics output differs from that for text output. The output position for graphics output can be set by use of the _moveto function.

Also note that output to the standard output file, stdout, is line buffered by default. It may be necessary to flush the output stream using fflush (stdout) after a printf call if your output does not contain a newline character. Mixing of calls to _outtext and printf may cause overlapped text since _outtext uses the output position that was set by _settextposition.

Returns: The _settextposition function returns, as an recoord structure, the previous output position for text.

See Also: _gettextposition, _outtext, _outmem, _settextwindow, _moveto

Example: #include <conio.h>
#include <graph.h>

main()
{
 struct rccoord old_pos;

 __setvideomode(_TEXTC80);
 old_pos = _gettextposition();
 __settextposition(10, 40);
 __outtext("WATCOM Graphics");
 __settextposition(old_pos.row, old_pos.col);
 getch();
 __setvideomode(_DEFAULTMODE);
}

Classification: PC Graphics

Synopsis: #include <graph.h>
short _FAR _settextrows(short rows);

Description: The _settextrows function selects the number of rows of text displayed on the screen. The number of rows is specified by the argument *rows*. Computers equipped with EGA, MCGA and VGA adapters

can support different numbers of text rows. The number of rows that can be selected depends on the

current video mode and the type of monitor attached.

If the argument *rows* has the value *MAXTEXTROWS*, the maximum number of text rows will be selected for the current video mode and hardware configuration. In text modes the maximum number of rows is 43 for EGA adapters, and 50 for MCGA and VGA adapters. Some graphics modes will support 43 rows for EGA adapters and 60 rows for MCGA and VGA adapters.

Returns: The _settextrows function returns the number of screen rows when the number of rows is set

successfully; otherwise, zero is returned.

See Also: _getvideoconfig, _setvideomode, _setvideomoderows

Example: #include <conio.h>
#include <graph.h>

#include <graph.h>
#include <stdio.h>

int valid_rows[] = {
 14, 25, 28, 30,
 34, 43, 50, 60
};

main()
{
 int i, j, rows;
 char buf[80];

for(i = 0; i < 8; ++i) {
 rows = valid_rows[i];
 if(_settextrows(rows) == rows) {
 for(j = 1; j <= rows; ++j) {
 sprintf(buf, "Line %d", j);
 _settextposition(j, 1);
 _outtext(buf);</pre>

getch();
}
}
_setvideomode(_DEFAULTMODE);

Classification: PC Graphics

		_settextrows
 	 	_

Synopsis: #include <graph.h>

Description:

The _settextwindow function sets the text window to be the rectangle with a top left corner at (row1, col1) and a bottom right corner at (row2, col2). These coordinates are in terms of characters not pixels.

The initial text output position is (1,1). Subsequent text positions are reported (by the _gettextposition function) and set (by the _outtext, _outmem and _settextposition functions) relative to this rectangle.

Text is displayed from the current output position for text proceeding along the current row and then downwards. When the window is full, the lines scroll upwards one line and then text is displayed on the last line of the window.

Returns: The _settextwindow function does not return a value.

See Also: __gettextposition, _outtext, _outmem, _settextposition

Example:

```
#include <conio.h>
#include <graph.h>
#include <stdio.h>
main()
    int i;
    short r1, c1, r2, c2;
    char buf[ 80 ];
    _setvideomode( _TEXTC80 );
    _gettextwindow( &r1, &c1, &r2, &c2 );
    _settextwindow( 5, 20, 20, 40 );
    for( i = 1; i <= 20; ++i ) {
        sprintf( buf, "Line %d\n", i );
        _outtext( buf );
    qetch();
    _settextwindow( r1, c1, r2, c2 );
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

_settextwindow

Synopsis:

Description:

The setvbuf function can be used to associate a buffer with the file designated by fp. If this function is used, it must be called after the file has been opened and before it has been read or written. The argument *mode* determines how the file fp will be buffered, as follows:

Mode Meaning
 _IOFBF causes input/output to be fully buffered.
 _IOLBF causes output to be line buffered (the buffer will be flushed when a new-line character is written, when the buffer is full, or when input is requested on a line buffered or unbuffered stream).

 _IONBF causes input/output to be completely unbuffered.

If the argument *buf* is not NULL, the array to which it points will be used instead of an automatically allocated buffer. The argument *size* specifies the size of the array.

Returns:

The setvbuf function returns zero on success, or a non-zero value if an invalid value is given for *mode* or *size*.

See Also: fopen, setbuf

Example:

```
#include <stdio.h>
#include <stdlib.h>

void main()
{
   char *buf;
   FILE *fp;

   fp = fopen( "file", "r" );
   buf = (char *) malloc( 1024 );
   setvbuf( fp, buf, _IOFBF, 1024 );
}
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

		setvbut

Synopsis: #include <graph.h>

short _FAR _setvideomode(short mode);

Description: The _setvideomode function sets the video mode according to the value of the *mode* argument. The

value of *mode* can be one of the following:

Mode	Туре	S	ize	Э	Colors	Adapter
_MAXRESMODE _MAXCOLORMODE	(grap	hics n	noc	de w	ith most	nest resolution)
_DEFAULTMODE						ginal mode)
_TEXTBW40	М, Т			25	16	MDPA, HGC, VGA, SVGA
_TEXTC40	C,T	40	Х	25	16	CGA, EGA, MCGA, VGA, SVGA
_TEXTBW80	М, Т	80	Х	25	16	MDPA, HGC, VGA, SVGA
_TEXTC80	C,T	80	Х	25	16	CGA, EGA, MCGA, VGA, SVGA
_MRES4COLOR	C,G	320	Х	200	4	CGA, EGA, MCGA, VGA, SVGA
_MRESNOCOLOR	C,G	320	Х	200	4	CGA, EGA, MCGA, VGA, SVGA
_HRESBW	C,G	640	Х	200	2	CGA, EGA, MCGA, VGA, SVGA
_TEXTMONO	M, T	80	Х	25	16	MDPA, HGC, VGA, SVGA
_HERCMONO	M,G	720	Х	350	2	HGC
_MRES16COLOR	C,G	320	Х	200	16	EGA, VGA, SVGA
_HRES16COLOR	C,G	640	Х	200	16	EGA, VGA, SVGA
_ERESNOCOLOR	M,G	640	Х	350	4	EGA, VGA, SVGA
_ERESCOLOR	C,G	640	Х	350	4/16	EGA, VGA, SVGA
_VRES2COLOR	C,G	640	Х	480	2	MCGA, VGA, SVGA
_VRES16COLOR	C,G	640	Х	480	16	VGA, SVGA
_MRES256COLOR	C,G	320	Х	200	256	MCGA, VGA, SVGA
_URES256COLOR	C,G	640	Х	400	256	SVGA
_VRES256COLOR	C,G	640	Х	480	256	SVGA
_SVRES16COLOR	C,G	800	Х	600	16	SVGA
_SVRES256COLOR	C,G	800	Х	600	256	SVGA
_XRES16COLOR	C,G	1024	х	768	16	SVGA
_XRES256COLOR	C,G	1024	Х	768	256	SVGA

In the preceding table, the Type column contains the following letters:

M indicates monochrome; multiple colors are shades of grey

C indicates color

G indicates graphics mode; size is in pixels

T indicates text mode; size is in columns and rows of characters

The Adapter column contains the following codes:

MDPA IBM Monochrome Display/Printer Adapter

CGA IBM Color Graphics Adapter

EGA IBM Enhanced Graphics Adapter

VGA IBM Video Graphics Array

MCGA IBM Multi-Color Graphics Array

HGC Hercules Graphics Adapter

SVGA SuperVGA adapters

The modes _MAXRESMODE and _MAXCOLORMODE will select from among the video modes supported by the current graphics adapter the one that has the highest resolution or the greatest number of colors. The video mode will be selected from the standard modes, not including the SuperVGA modes.

Selecting a new video mode resets the current output positions for graphics and text to be the top left corner of the screen. The background color is reset to black and the default color value is set to be one less than the number of colors in the selected mode.

Returns:

The _setvideomode function returns the number of text rows when the new mode is successfully selected; otherwise, zero is returned.

See Also:

_getvideoconfig, _settextrows, _setvideomoderows

```
Example:
           #include <conio.h>
           #include <graph.h>
           #include <stdio.h>
           #include <stdlib.h>
           main()
           {
               int mode;
               struct videoconfig vc;
               char buf[ 80 ];
               _getvideoconfig( &vc );
/* select "best" video mode */
               switch( vc.adapter ) {
               case \_VGA:
               case _SVGA :
                   mode = _VRES16COLOR;
                   break;
               case _MCGA :
                   mode = _MRES256COLOR;
                   break;
               case _EGA :
                    if( vc.monitor == _MONO ) {
                        mode = _ERESNOCOLOR;
                    } else {
                        mode = _ERESCOLOR;
                    }
                    break;
               case _CGA :
                   mode = \_MRES4COLOR;
                   break;
               case _HERCULES :
                    mode = _HERCMONO;
                    break;
               default :
                    puts( "No graphics adapter" );
                    exit(1);
               if( _setvideomode( mode ) ) {
                    _getvideoconfig( &vc );
                    sprintf(buf, "%d x %d x %d\n", vc.numxpixels,
                                      vc.numypixels, vc.numcolors );
                    _outtext( buf );
                    getch();
                    _setvideomode( _DEFAULTMODE );
           }
```

Classification: PC Graphics

	a akadala sa sa sa
	_setvideomo

Synopsis: #include <graph.h>

short _FAR _setvideomoderows(short mode, short rows);

Description: The _setvideomoderows function selects a video mode and the number of rows of text displayed

on the screen. The video mode is specified by the argument mode and is selected with the

_setvideomode function. The number of rows is specified by the argument *rows* and is selected

with the _settextrows function.

Computers equipped with EGA, MCGA and VGA adapters can support different numbers of text rows. The number of rows that can be selected depends on the video mode and the type of monitor attached.

Returns: The _setvideomoderows function returns the number of screen rows when the mode and number

of rows are set successfully; otherwise, zero is returned.

See Also: _getvideoconfig, _setvideomode, _settextrows

Example: #include <conio.h>
#include <graph.h>

#include <stdio.h>

main()
{
 int rows;
 char buf[80];

rows = _setvideomoderows(_TEXTC80, _MAXTEXTROWS);
if(rows != 0) {
 sprintf(buf, "Number of rows is %d\n", rows);
 _outtext(buf);

getch();
 _setvideomode(_DEFAULTMODE);
}

Classification: PC Graphics

}

Synopsis: #include <graph.h>
struct xycoord _FAR _setvieworg(short x, short y);

 $\textbf{Description:} \quad \text{The _setvieworg function sets the origin of the view coordinate system, (0,0), to be located at}$

the physical point (x, y). This causes subsequently drawn images to be translated by the amount

(x, y).

Note: In previous versions of the software, the _setvieworg function was called _setlogorg.

Returns: The _setvieworg function returns, as an xycoord structure, the physical coordinates of the

previous origin.

See Also: _getviewcoord, _getphyscoord, _setcliprgn, _setviewport

Example: #include <conio.h>

```
#include <graph.h>
main()
{
    _setvideomode( _VRES16COLOR );
    _setvieworg( 320, 240 );
    _ellipse( _GBORDER, -200, -150, 200, 150 );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Description: The _setviewport function restricts the display of graphics output to the clipping region and then

sets the origin of the view coordinate system to be the top left corner of the region. This region is a rectangle whose opposite corners are established by the physical points (x1, y1) and (x2, y2).

The _setviewport function does not affect text output using the _outtext and _outmem functions. To control the location of text output, see the _settextwindow function.

Returns: The _setviewport function does not return a value.

See Also: _setcliprgn, _setvieworg, _settextwindow, _setwindow

Example: #include <conio.h>

```
#include <graph.h>
#define XSIZE 380
#define YSIZE 280

main()
{
    _setvideomode( _VRES16COLOR );
    _setviewport( 130, 100, 130 + XSIZE, 100 + YSIZE );
    _ellipse( _GBORDER, 0, 0, XSIZE, YSIZE );
    getch();
    _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Synopsis: #include <graph.h>
 short _FAR _setvisualpage(short pagenum);

Description: The _setvisualpage function selects the page (in memory) from which graphics output is displayed. The page to be selected is given by the *pagenum* argument.

Only some combinations of video modes and hardware allow multiple pages of graphics to exist. When multiple pages are supported, the active page may differ from the visual page. The graphics information in the visual page determines what is displayed upon the screen. Animation may be accomplished by alternating the visual page. A graphics page can be constructed without affecting the screen by setting the active page to be different than the visual page.

The number of available video pages can be determined by using the _getvideoconfig function. The default video page is 0.

Returns: The _setvisualpage function returns the number of the previous page when the visual page is set successfully; otherwise, a negative number is returned.

See Also: _getvisualpage, _setactivepage, _getactivepage, _getvideoconfig

Example: #include <conio.h>
#include <graph.h>

```
main()
    int old_apage;
    int old_vpage;
    _setvideomode( _HRES16COLOR );
    old_apage = _getactivepage();
    old_vpage = _getvisualpage();
    /* draw an ellipse on page 0 */
   _setactivepage(0);
   _setvisualpage(0);
    _ellipse( _GFILLINTERIOR, 100, 50, 540, 150 );
    /* draw a rectangle on page 1 */
    _setactivepage(1);
    _rectangle( _GFILLINTERIOR, 100, 50, 540, 150 );
    getch();
    /* display page 1 */
    _setvisualpage(1);
    getch();
    _setactivepage( old_apage );
   _setvisualpage( old_vpage );
   _setvideomode( _DEFAULTMODE );
}
```

Classification: PC Graphics

Systems: DOS

_setvisualpage			

Description:

The _setwindow function defines a window for the window coordinate system. Window coordinates are specified as a user-defined range of values. This allows for consistent pictures regardless of the video mode.

The window is defined as the region with opposite corners established by the points (x1, y1) and (x2, y2). The argument *invert* specifies the direction of the y-axis. If the value is non-zero, the y values increase from the bottom of the screen to the top, otherwise, the y values increase as you move down the screen.

The window defined by the _setwindow function is displayed in the current viewport. A viewport is defined by the _setviewport function.

By default, the window coordinate system is defined with the point (0.0, 0.0) located at the lower left corner of the screen, and the point (1.0, 1.0) at the upper right corner.

Returns:

The _setwindow function returns a non-zero value when the window is set successfully; otherwise, zero is returned.

See Also: _setviewport

Example:

```
#include <conio.h>
#include <graph.h>
main()
    _setvideomode( _MAXRESMODE );
    draw_house( "Default window" );
    \_setwindow( 1, -0.5, -0.5, 1.5, 1.5 );
    draw_house( "Larger window" );
    _setwindow( 1, 0.0, 0.0, 0.5, 1.0 );
    draw_house( "Left side" );
    _setvideomode( _DEFAULTMODE );
}
draw_house( char *msq )
    _clearscreen( _GCLEARSCREEN );
    _outtext( msg );
    _rectangle_w( _GBORDER, 0.2, 0.1, 0.8, 0.6 );
    _moveto_w( 0.1, 0.5 );
    _{\text{lineto_w( 0.5, 0.9);}}
    _{\text{lineto}_{\text{w}}(0.9,0.5)};
    _arc_w( 0.4, 0.5, 0.6, 0.3, 0.6, 0.4, 0.4, 0.4);
    _rectangle_w( _GBORDER, 0.4, 0.1, 0.6, 0.4 );
    qetch();
```

Classification: PC Graphics

_setwindo)W					
Systems:	DOS					

Synopsis: #include <signal.h>

void (*signal(int sig, void (*func)(int))) (int);

Description:

The signal function is used to specify an action to take place when certain conditions are detected while a program executes. These conditions are defined to be:

Condition	Meaning
SIGABRT	abnormal termination, such as caused by the abort function
SIGBREAK	an interactive attention (Ctrl+Break on keyboard) is signalled
SIGFPE	an erroneous floating-point operation occurs (such as division by zero, overflow and underflow)
SIGILL	illegal instruction encountered
SIGINT	an interactive attention (Ctrl+C on keyboard) is signalled
SIGSEGV	an illegal memory reference is detected
SIGTERM	a termination request is sent to the program
SIGUSR1	OS/2 process flag A via DosFlagProcess
SIGUSR2	OS/2 process flag B via DosFlagProcess
SIGUSR3	OS/2 process flag C via DosFlagProcess

An action can be specified for each of the conditions, depending upon the value of the func argument:

function

When *func* is a function name, that function will be called equivalently to the following code sequence.

```
/* "sig_no" is condition being signalled */
signal( sig_no, SIG_DFL );
(*func)( sig_no );
```

The func function may terminate the program by calling the exit or abort functions or call the longjmp function. Because the next signal will be handled with default handling, the program must again call signal if it is desired to handle the next condition of the type that has been signalled.

After returning from the signal-catching function, the receiving process will resume execution at the point at which it was interrupted.

The signal catching function is described as follows:

```
void func( int sig_no )
{
    /* body of function */
}
```

Since signal-catching functions are invoked asynchronously with process execution, the type sig_atomic_t may be used to define variables on which an atomic operation (e.g., incrementation, decrementation) may be performed.

SIG_DFL This value causes the default action for the condition to occur.

SIG_IGN This value causes the indicated condition to be ignored.

When a condition is detected, it may be handled by a program, it may be ignored, or it may be handled by the usual default action (often causing an error message to be printed upon the stderr stream followed by program termination).

When the program begins execution, the equivalent of

```
signal( SIGABRT, SIG_DFL );
signal( SIGFPE, SIG_DFL );
signal( SIGILL, SIG_DFL );
signal( SIGINT, SIG_DFL );
signal( SIGSEGV, SIG_DFL );
signal( SIGTERM, SIG_DFL );
signal( SIGBREAK, SIG_DFL );
signal( SIGUSR1, SIG_IGN );
signal( SIGUSR2, SIG_IGN );
signal( SIGUSR3, SIG_IGN );
```

is executed.

The SIGINT signal is generated by pressing the Ctrl+C or Ctrl+Break key combination on the keyboard. Under DOS, if "BREAK=ON", a signal will be delivered at the next DOS call; otherwise, if "BREAK=OFF", a signal will be delivered only at the next standard input/output DOS call. The BREAK setting is configured in the CONFIG.SYS file.

Under OS/2, the SIGBREAK signal can only be received if Ctrl+Break is pressed and the keyboard is in binary (raw) mode. In ASCII (cooked) mode, which is the default, both Ctrl+C and Ctrl+Break combinations will raise the SIGINT signal.

A condition can be generated by a program using the raise function.

Returns:

A return value of SIG_ERR indicates that the request could not be handled, and errno is set to the value EINVAL.

Otherwise, the previous value of *func* for the indicated condition is returned.

See Also:

```
break..., raise
```

Example:

```
#include <stdio.h>
#include <signal.h>
#include <i86.h>
/* SIGINT Test */
sig_atomic_t signal_count;
sig_atomic_t signal_number;
```

```
void MyIntHandler( int signo )
    signal_count++;
    signal_number = signo;
}
void MyBreakHandler( int signo )
    signal_count++;
    signal_number = signo;
}
int main ( void )
    int i;
    signal_count = 0;
    signal_number = 0;
    signal( SIGINT, MyIntHandler );
    signal( SIGBREAK, MyBreakHandler );
    printf( "Press Ctrl+C or Ctrl+Break\n" );
    for(i = 0; i < 50; i++) {
        printf( "Iteration # %d\n", i );
        delay( 500 ); /* sleep for 1/2 second */
        if( signal_count > 0 ) break;
    printf( "SIGINT count %d number %d\n",
                    signal_count, signal_number );
    signal\_count = 0;
    signal_number = 0;
    signal( SIGINT, SIG_DFL );
                                    /* Default action */
    signal( SIGBREAK, SIG_DFL );
                                    /* Default action */
    printf( "Default signal handling\n" );
    for(i = 0; i < 50; i++) {
        printf( "Iteration # %d\n", i );
        delay( 500 ); /* sleep for 1/2 second */
        if( signal_count > 0 ) break; /* Won't happen */
    return( signal_count );
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

Synopsis: #include <math.h>
 int signbit(x);

Description: The signbit macro determines whether the sign of its argument value is negative.

The argument x must be an expression of real floating type.

Returns: The signbit macro returns a nonzero value if and only if the sign of its argument has value is

negative.

See Also: fpclassify, isfinite, isinf, isnan, isnormal

Example: #include <math.h>
#include <stdio.h>

produces the following:

-4.5 is negative

Classification: ISO C

Systems: MACRO

Description: The \sin function computes the sine of x (measured in radians). A large magnitude argument may yield

a result with little or no significance.

Returns: The sin function returns the sine value.

See Also: acos, asin, atan, atan2, cos, tan

Example: #include <stdio.h>
#include <math.h>

void main()
 {
 printf("%f\n", sin(.5));
 }
}

produces the following:

0.479426

Classification: ISO C

Systems: Math

Library Functions and Macros 1139

Synopsis: #include <math.h>

double sinh(double x);

Description: The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude of x is too

large.

Returns: The sinh function returns the hyperbolic sine value. When the argument is outside the permissible

range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to ERANGE, and print a "RANGE error" diagnostic message using the stderr

stream.

See Also: cosh, tanh, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
     {
      printf( "%f\n", sinh(.5) );
    }
```

produces the following:

0.521095

Classification: ISO C

Systems: Math

```
Synopsis:
            #include <dos.h>
            unsigned sleep (unsigned seconds);
Description:
            The sleep function suspends execution by the specified number of seconds.
Returns:
            The sleep function always returns zero.
See Also:
            delay, timer_create, timer_gettime, timer_settime
Example:
             \star The following program sleeps for the
             * number of seconds specified in argv[1].
            #include <stdlib.h>
            #include <dos.h>
            void main( int argc, char *argv[] )
                unsigned seconds;
                seconds = (unsigned) strtol( argv[1], NULL, 0 );
                sleep( seconds );
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Description:

The _snprintf function is equivalent to the fprintf function, except that the argument *buf* specifies a character array into which the generated output is placed, rather than to a file. The maximum number of characters to store is specified by *count*. A null character is placed at the end of the generated character string if fewer than *count* characters were stored. The *format* string is described under the description of the printf function.

The _snwprintf function is a wide character version of _snprintf. It accepts a wide character string argument for *format* and produces wide character output. The argument *buf* specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream. The maximum number of wide characters to store is specified by *count*. A null wide character is placed at the end of the generated wide character string if fewer than *count* wide characters were stored.

Returns:

The _snprintf function returns the number of characters written into the array, not counting the terminating null character, or a negative value if more than *count* characters were requested to be generated. An error can occur while converting a value for output. The _snwprintf function returns the number of wide characters written into the array, not counting the terminating null wide character, or a negative value if more than *count* wide characters were requested to be generated. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
/* Create temporary file names using a counter */
char namebuf[13];
int TempCount = 0;

char *make_temp_name()
    {
        _snprintf( namebuf, 13, "ZZ%.6o.TMP", TempCount++ );
        return( namebuf );
    }

void main()
    {
        FILE *tf1, *tf2;
```

#include <stdio.h>

```
tf1 = fopen( make_temp_name(), "w" );
tf2 = fopen( make_temp_name(), "w" );
fputs( "temp file 1", tf1 );
fputs( "temp file 2", tf2 );
fclose( tf1 );
fclose( tf2 );
}
```

Classification: WATCOM

Systems: _snprintf - All, Linux, RDOS, Netware

_snwprintf - All, Linux

Safer C:

The Safer C Library extension provides the snprintf_s function which is a safer alternative to snprintf. This newer snprintf_s function is recommended to be used instead of the traditional "unsafe" snprintf function.

Description:

The snprintf function is equivalent to the fprintf function, except that the argument *buf* specifies a character array into which the generated output is placed, rather than to a file. A null character is placed at the end of the generated character string. The maximum number of characters to store, including a terminating null character, is specified by *count*. The *format* string is described under the description of the printf function.

The snwprintf function is a wide character version of snprintf. It accepts a wide character string argument for *format* and produces wide character output. The argument *buf* specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream. The maximum number of wide characters to store, including a terminating null wide character, is specified by *count*.

Returns:

The snprintf function returns the number of characters that would have been written had *count* been sufficiently large, not counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than *count*. The snwprintf function returns the number of wide characters that would have been written had *count* been sufficiently large, not counting the terminating null wide character, or a negative value if an encoding error occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than *count*. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#include <stdio.h>
#include <stdio.h>

/* Format output into a buffer after determining its size */

void main( void )
{
    int    bufsize;
    char    *buffer;

    bufsize = snprintf( NULL, 0, "%3d %P", 42, 42 );
    buffer = malloc( bufsize + 1 );
    snprintf( buffer, bufsize + 1, "%3d %P", 42, 42 );
    free( buffer );
}
```

Classification: ISO C

snwprintf is WATCOM

snprintf - All, Linux, RDOS, Netware snwprintf - All, Linux **Systems:**

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and snprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *s* nor *format* shall be a null pointer. The *n* argument shall neither equal zero nor be greater than RSIZE_MAX. The number of characters (including the trailing null) required for the result to be written to the array pointed to by *s* shall not be greater than *n*. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by *format*. Any argument to snprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and less than RSIZE_MAX, then the snprintf_s function sets s[0] to the null character.

Description:

The snprintf_s function is equivalent to the snprintf function except for the explicit runtime-constraints listed above.

The $snprintf_s$ function, unlike $sprintf_s$, will truncate the result to fit within the array pointed to by s.

The snwprintf_s function is a wide character version of snprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The $snprintf_s$ function returns the number of characters that would have been written had n been sufficiently large, not counting the terminating null character, or a negative value if a runtime-constraint violation occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than n.

The snwprintf_s function returns the number of wide characters that would have been written had n been sufficiently large, not counting the terminating wide null character, or a negative value if a runtime-constraint violation occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than n.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
           #include <stdio.h>
           #include <stdlib.h>
           /* Format output into a buffer after determining its size */
           void main( void )
               int
                      bufsize;
               char
                      *buffer;
               bufsize = snprintf( NULL, 0, "%3d %P", 42, 42 ) + 1;
               buffer = malloc( bufsize );
               snprintf_s( buffer, bufsize, "%3d %P", 42, 42 );
               free( buffer );
           }
Classification: TR 24731
Systems:
           snprintf_s - All, Linux, RDOS, Netware
           snwprintf_s - All, Linux
```

Description:

The _sopen function opens a file at the operating system level for shared access. The name of the file to be opened is given by *filename*. The file will be accessed according to the access mode specified by *access*. When the file is to be created, the optional argument must be given which establishes the future access permissions for the file. Additionally, the sharing mode of the file is given by the *share* argument. The optional argument is the file permissions to be used when O_CREAT flag is on in the *access* mode.

The _sopen function is identical to _sopen. Use _sopen for ANSI naming conventions.

The _wsopen function is identical to _sopen except that it accepts a wide character string argument.

The access mode is established by a combination of the bits defined in the <fcntl.h> header file. The following bits may be set:

Mode	Meaning
O_RDONLY	permit the file to be only read.
O_WRONLY	permit the file to be only written.
O_RDWR	permit the file to be both read and written.
O_APPEND	causes each record that is written to be written at the end of the file.
O_CREAT	has no effect when the file indicated by <i>filename</i> already exists; otherwise, the file is created;
O_TRUNC	causes the file to be truncated to contain no data when the file exists; has no effect when the file does not exist.
O_BINARY	causes the file to be opened in binary mode which means that data will be transmitted to and from the file unchanged.
O_TEXT	causes the file to be opened in text mode which means that carriage-return characters are written before any linefeed character that is written and causes carriage-return characters to be removed when encountered during reads.
O_NOINHERIT	indicates that this file is not to be inherited by a child process.

O_EXCL indicates that this file is to be opened for exclusive access. If the file exists and O_CREAT was also specified then the open will fail (i.e., use O_EXCL to

ensure that the file does not already exist).

When neither O_TEXT nor O_BINARY are specified, the default value in the global variable _fmode is used to set the file translation mode. When the program begins execution, this variable has a value of O_TEXT.

O_CREAT must be specified when the file does not exist and it is to be written.

When the file is to be created (O_CREAT is specified), an additional argument must be passed which contains the file permissions to be used for the new file. The access permissions for the file or directory are specified as a combination of bits (defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission	Meaning
S_IRWXU	Read, write, execute/search
S_IRUSR	Read permission
S_IWUSR	Write permission
S_IXUSR	Execute/search permission

The following bits define permissions for the group.

Permission	Meaning
S_IRWXG	Read, write, execute/search
S_IRGRP	Read permission
S_IWGRP	Write permission
S_IXGRP	Execute/search permission

The following bits define permissions for others.

Permission	Meaning
S_IRWXO	Read, write, execute/search
S_IROTH	Read permission
S_IWOTH	Write permission
S_IXOTH	Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission	Meaning
S_IREAD	is equivalent to S_IRUSR (read permission)
S_IWRITE	is equivalent to S_IWUSR (write permission)
S_IEXEC	is equivalent to S_IXUSR (execute/search permission)

All files are readable with DOS; however, it is a good idea to set S_IREAD when read permission is intended for the file.

The _sopen function applies the current file permission mask to the specified permissions (see the umask function).

The shared access for the file, *share*, is established by a combination of bits defined in the <share.h> header file. The following values may be set:

Value	Meaning
SH_COMPAT	Set compatibility mode.
SH_DENYRW	Prevent read or write access to the file.
SH_DENYWR	Prevent write access of the file.
SH_DENYRD	Prevent read access to the file.
SH_DENYNO	Permit both read and write access to the file.

You should consult the technical documentation for the DOS system that you are using for more detailed information about these sharing modes.

The sopen function is deprecated, use _sopen instead.

Returns:

If successful, _sopen returns a handle for the file. When an error occurs while opening the file, -1 is returned. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

```
Constant
                              Meaning
             EACCES
                              Access denied because path specifies a directory or a volume ID, or sharing mode
                              denied due to a conflicting open.
             EMFILE
                              No more handles available (too many open files)
             ENOENT
                              Path or file not found
See Also:
             _chsize, close, creat, dup, dup2, _eof, exec..., fdopen, _filelength, fileno,
             fstat, _grow_handles, isatty, lseek, open, read, _setmode, stat, _tell, write,
             umask
Example:
             #include <sys/stat.h>
             #include <sys/types.h>
             #include <fcntl.h>
             #include <share.h>
             void main( void )
                  int handle;
```

```
/* open a file for output
               /* replace existing file if it exists
               handle = _sopen( "file",
                           O_WRONLY | O_CREAT | O_TRUNC,
                           SH_DENYWR,
                           S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
               /* read a file which is assumed to exist */
              handle = _sopen( "file", O_RDONLY, SH_DENYWR );
               /* append to the end of an existing file */
               /* write a new file if file does not exist */
               handle = _sopen( "file",
                           O_WRONLY | O_CREAT | O_APPEND,
                           SH_DENYWR,
                           S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
           }
Classification: WATCOM
Systems:
          _sopen - All, Linux, RDOS, Netware
          _wsopen - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux
          sopen - All, Linux, RDOS, Netware
```

```
Synopsis:
           #include <i86.h>
           void sound (unsigned frequency);
Description:
           The sound function turns on the PC's speaker at the specified frequency. The frequency is in Hertz
           (cycles per second). The speaker can be turned off by calling the nosound function after an
           appropriate amount of time.
Returns:
           The sound function has no return value.
See Also:
           delay, nosound
Example:
           #include <i86.h>
           /*
                The numbers in this table are the timer divisors
               necessary to produce the pitch indicated in the
                lowest octave that is supported by the "sound"
                function.
               To raise the pitch by N octaves, simply divide the
               number in the table by 2**N since a pitch which is
               an octave above another has double the frequency of
                the original pitch.
               The frequency obtained by these numbers is given by
                1193180 / X where X is the number obtained in the
                table.
           unsigned short Notes[] = {
                    19327 , /* C b
                    18242 ,
                                   /* C
                                                       */
                                   /* C #
                    17218 ,
                                             (Db)
                                   /* D
                    16252 ,
                    15340 ,
                                    /* D #
                                             (Eb)
                                   /* E
/* F
                    14479 ,
                                             (Fb)
                    13666 ,
                                             (E#)
                    12899 ,
                                   /* F #
                                                       */
                                             (Gb)
                    12175 ,
                                   /* G
                                                       */
                    11492 ,
                                  /* G #
                                              (Ab)
                    10847 ,
                                   /* A
                                                       */
                    10238 ,
                                  /* A #
                                              (Bb)
                                                       */
                                   /* B
                    9664 ,
                                              ( C b )
                                                       */
                    9121 ,
                                   /* B #
           };
```

Classification: Intel

Systems: DOS, Windows, Win386

Synopsis: #include cess.h> int spawnl(mode, path, arg0, arg1..., argn, NULL); int spawnle(mode, path, arg0, arg1..., argn, NULL, envp); int spawnlp(mode, file, arg0, arg1..., argn, NULL); int spawnlpe (mode, file, arg0, arg1..., argn, NULL, envp); int spawnv(mode, path, argv); int spawnve (mode, path, argv, envp); int spawnvp(mode, file, argv); int spawnvpe (mode, file, argv, envp); int _spawnl(mode, path, arg0, arg1..., argn, NULL); int _spawnle(mode, path, arg0, arg1..., argn, NULL, envp); int _spawnlp(mode, file, arg0, arg1..., argn, NULL); int _spawnlpe(mode, file, arg0, arg1..., argn, NULL, envp); int _spawnv(mode, path, argv); int _spawnve(mode, path, argv, envp); int _spawnvp(mode, file, argv); int _spawnvpe(mode, file, argv, envp); int mode; /* mode for parent /* file name incl. path */ const char *path; /* file name const char *file; const char *arg0, ..., *argn; /* arguments int _wspawnl(mode, path, arg0, arg1..., argn, NULL); int _wspawnle(mode, path, arg0, arg1..., argn, NULL, envp); int _wspawnlp(mode, file, arg0, arg1..., argn, NULL); int _wspawnlpe(mode, file, arg0, arg1..., argn, NULL, envp); int _wspawnv(mode, path, argv); int _wspawnve(mode, path, argv, envp); int _wspawnvp(mode, file, argv); int _wspawnvpe(mode, file, argv, envp); int mode; /* mode for parent const wchar_t *path; /* file name incl. path */ /* file name const wchar_t *file; const wchar_t *arg0, ..., *argn; /* arguments */ */ const wchar_t *const envp[]; /* environment strings */

Description:

The **spawn...** functions create and execute a new child process, named by *pgm*. The value of *mode* determines how the program is loaded and how the invoking program will behave after the invoked program is initiated:

Mode	Meaning
P_WAIT	The invoked program is loaded into available memory, is executed, and then the original program resumes execution. This option is supported under DOS, OS/2, Win32 and QNX.
P_NOWAIT	Causes the current program to execute concurrently with the new child process. This option is supported under OS/2, Win32 and QNX.
P_NOWAITO	Causes the current program to execute concurrently with the new child process. This option is supported under OS/2, Win32 and QNX. The wait and cwait functions cannot be used to obtain the exit code.

P_OVERLAY The invoked program replaces the original program in memory and is

executed. No return is made to the original program. This option is supported under DOS (16-bit only), OS/2, Win32, and QNX. This is equivalent to

calling the appropriate exec... function.

P_DETACH Launches the child process in the background without access to the keyboard

or console. This option is supported under only Windows NT.

The program is located by using the following logic in sequence:

 An attempt is made to locate the program in the current working directory if no directory specification precedes the program name; otherwise, an attempt is made in the specified directory.

- 2. If no file extension is given, an attempt is made to find the program name, in the directory indicated in the first point, with .COM concatenated to the end of the program name.
- 3. If no file extension is given, an attempt is made to find the program name, in the directory indicated in the first point, with .EXE concatenated to the end of the program name.
- 4. When no directory specification is given as part of the program name, the spawnlp, spawnlpe, spawnvp, and spawnvpe functions will repeat the preceding three steps for each of the directories specified by the PATH environment variable. The command

```
path c:\myapps;d:\lib\applns
```

indicates that the two directories

```
c:\myapps
d:\lib\applns
```

are to be searched. The DOS PATH command (without any directory specification) will cause the current path definition to be displayed.

An error is detected when the program cannot be found.

Arguments are passed to the child process by supplying one or more pointers to character strings as arguments in the **spawn...** call. These character strings are concatenated with spaces inserted to separate the arguments to form one argument string for the child process. The length of this concatenated string must not exceed 128 bytes for DOS systems.

The arguments may be passed as a list of arguments (spawnl, spawnle, spawnlp and spawnlpe) or as a vector of pointers (spawnv, spawnve, spawnvp, and spawnvpe). At least one argument, arg0 or argv[0], must be passed to the child process. By convention, this first argument is a pointer to the name of the program.

If the arguments are passed as a list, there must be a NULL pointer to mark the end of the argument list. Similarly, if a pointer to an argument vector is passed, the argument vector must be terminated by a NULL pointer.

The environment for the invoked program is inherited from the parent process when you use the spawnl, spawnlp, spawnv and spawnvp functions. The spawnle, spawnlpe, spawnve and spawnvpe functions allow a different environment to be passed to the child process through the *envp* argument. The argument *envp* is a pointer to an array of character pointers, each of which points to a

string defining an environment variable. The array is terminated with a NULL pointer. Each pointer locates a character string of the form

```
variable=value
```

that is used to define an environment variable. If the value of *envp* is NULL, then the child process inherits the environment of the parent process.

The environment is the collection of environment variables whose values that have been defined with the DOS SET command or by the successful execution of the putenv function. A program may read these values with the getenv function.

The following example invokes "myprog" as if myprog ARG1 ARG2 had been entered as a command to DOS.

The program will be found if one of "myprog.", "myprog.com", or "myprog.exe" is found in the current working directory.

The following example includes a new environment for "myprog".

The environment for the invoked program will consist of the three environment variables SOURCE, TARGET and lines.

The following example is another variation on the first example.

```
char *arg_list[] = { "myprog", "ARG1", "ARG2", NULL };
spawnv( P_WAIT, "myprog", arg_list );
```

The _wspawn... functions are similar to their counterparts but operate on wide character strings.

Returns: When the value of *mode* is:

Mode	Meaning
P_WAIT	then the return value from spawn is the exit status of the child process.
P_NOWAIT	then the return value from spawn is the process ID (or process handle under Win32) of the child process. To obtain the exit code for a process spawned with P_NOWAIT, you must call the wait (under OS/2 or QNX) or cwait (under OS/2 or Win32) function specifying the process ID/handle. If the child process terminated normally, then the low order byte of the returned status

word will be set to 0, and the high order byte will contain the low order byte of the return code that the child process passed to the DOSEXIT function.

P_NOWAITO then the return value from **spawn...** is the process ID of the child process. The

exit code cannot be obtained for a process spawned with P_NOWAITO.

P_DETACH then the return value from **spawn...** is zero (0) if successful.

When an error is detected while invoking the indicated program, spawn... returns -1 and errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant	Meaning
E2BIG	The argument list exceeds 128 bytes, or the space required for the environment information exceeds 32K.
EINVAL	The <i>mode</i> argument is invalid.
ENOENT	Path or file not found
ENOMEM	Not enough memory is available to execute the child process.

See Also: abort, atexit, cwait, exec..., exit, _exit, _exit, getcmd, getenv, main, putenv,

Example:

system, wait

```
#include <stdio.h>
#include <stdlib.h>
#include cess.h>
#include <errno.h>
#include <string.h>
void main()
   int
          process_id;
#if defined(__OS2__) | defined(__NT__)
          status, rc;
   int
#endif
   process_id = spawnl( P_NOWAIT, "child.exe",
                         "child", "5", NULL );
    if( process_id == -1 ) {
       printf( "spawn failed - %s\n", strerror( errno ) );
       exit( EXIT_FAILURE );
   printf( "Process id = %d\n", process_id );
```

```
rc = cwait( &status, process_id, WAIT_CHILD );
               if(rc == -1) {
                   printf( "wait failed - %s\n", strerror( errno ) );
               } else {
                   printf( "wait succeeded - %x\n", status );
                   switch( status & 0xff ) {
                   case 0:
                       printf( "Normal termination exit code = %d\n",
                                status >> 8 );
                       break;
                   case 1:
                       printf( "Hard-error abort\n" );
                       break;
                   case 2:
                       printf( "Trap operation\n" );
                       break;
                   case 3:
                       printf( "SIGTERM signal not intercepted\n" );
                   default:
                       printf( "Bogus return status\n" );
           #endif
               printf( "spawn completed\n" );
           /*
           [child.c]
           #include <stdio.h>
           #include <stdlib.h>
           #include <dos.h>
           void main( int argc, char *argv[] )
           {
               int delay;
               if( argc <= 1 )
                   exit( EXIT_FAILURE );
               delay = atoi( argv[1] );
               printf( "I am a child going to sleep "
                       "for %d seconds\n", delay );
               sleep( delay );
               printf( "I am a child awakening\n" );
               exit( 123 );
           }
*/
Classification: WATCOM
Systems:
           spawnl - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
           spawnle - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
           spawnlp - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware
           spawnlpe - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
           spawnv - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
           spawnve - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
```

#if defined(__OS2__) | defined(__NT__)

```
spawnvp - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware
spawnvpe - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_spawnl - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
\_spawnle - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_spawnlp - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware
_spawnlpe - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_spawnv - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_spawnve - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_spawnvp - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS, Netware
_spawnvpe - DOS, Win32, OS/2 1.x(all), OS/2-32, Linux, RDOS
_wspawnl - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnle - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnlp - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnlpe - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnv - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnve - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnvp - DOS, Win32, OS/2 1.x(all), OS/2-32
_wspawnvpe - DOS, Win32, OS/2 1.x(all), OS/2-32
```

Synopsis: #include <stdlib.h>

Description:

The _splitpath function splits up a full pathname into four components consisting of a drive letter, directory path, file name and file name extension. The argument *path* points to a buffer containing the full pathname to be split up.

The _wsplitpath function is a wide character version of _splitpath that operates with wide character strings.

The maximum size required for each buffer is specified by the manifest constants _MAX_PATH, _MAX_DRIVE (or _MAX_VOLUME for Netware applications), _MAX_DIR, _MAX_FNAME, and _MAX_EXT which are defined in <stdlib.h>.

drive

The *drive* argument points to a buffer that will be filled in with the drive letter (e.g., A, B, C, etc.) followed by a colon if a drive is specified in the full pathname (filled in by _splitpath).

For Netware applications, the *drive* argument points to a buffer that will be filled in with the volume identifier (e.g., \\NAME_SPACE) if a volume is specified in the full pathname (filled in by _splitpath).

dir

The *dir* argument points to a buffer that will be filled in with the pathname including the trailing slash. Either forward slashes (/) or backslashes (\) may be used.

fname

The *fname* argument points to a buffer that will be filled in with the base name of the file without any extension (suffix) if a file name is specified in the full pathname (filled in by _splitpath).

ext

The *ext* argument points to a buffer that will be filled in with the filename extension (suffix) including the leading period if an extension is specified in the full pathname (filled in by _splitpath).

The arguments *drive*, *dir*, *fname* and *ext* will not be filled in if they are NULL pointers.

For each component of the full pathname that is not present, its corresponding buffer will be set to an empty string.

Returns: The _splitpath function returns no value.

See Also: _fullpath, _makepath, _splitpath2

```
Example:
           #include <stdio.h>
           #include <stdlib.h>
           void main()
             {
               char full_path[ _MAX_PATH ];
               char drive[ _MAX_DRIVE ];
               char dir[ _MAX_DIR ];
               char fname[ _MAX_FNAME ];
               char ext[ _MAX_EXT ];
               _makepath(full_path, "c", "watcomc\\h\\", "stdio", "h");
               printf( "Full path is: %s\n\n", full_path );
               _splitpath( full_path, drive, dir, fname, ext );
               printf( "Components after _splitpath\n" );
               printf( "drive: %s\n", drive );
               printf( "dir: %s\n", dir );
               printf( "fname: %s\n", fname );
               printf( "ext: %s\n", ext );
           produces the following:
           Full path is: c:watcomc\h\stdio.h
           Components after _splitpath
           drive: c:
           dir: watcomc\h\
           fname: stdio
           ext: .h
```

Note the use of two adjacent backslash characters (\) within character-string constants to signify a single backslash.

Classification: WATCOM

```
Systems: _splitpath - All, Linux, RDOS, Netware _wsplitpath - All, Linux
```

Synopsis: #include <stdlib.h>

Description:

The _splitpath2 function splits up a full pathname into four components consisting of a drive letter, directory path, file name and file name extension.

inp The argument *inp* points to a buffer containing the full pathname to be split up.

outp The argument outp points to a buffer that will contain all the components of the path, each separated by a null character. The maximum size required for this buffer is specified

by the manifest constant _MAX_PATH2 which is defined in <stdlib.h>.

drive The drive argument is the location that is to contain the pointer to the drive letter (e.g., A,

B, C, etc.) followed by a colon if a drive is specified in the full pathname (filled in by

_splitpath2).

For Netware applications, the *drive* argument points to a buffer that will be filled in with

the volume identifier (e.g., \\NAME_SPACE) if a volume is specified in the full

pathname (filled in by _splitpath2).

dir The dir argument is the location that is to contain the pointer to the directory path

including the trailing slash if a directory path is specified in the full pathname (filled in by

_splitpath2). Either forward slashes (/) or backslashes (\) may be used.

fname The fname argument is the location that is to contain the pointer to the base name of the

file without any extension (suffix) if a file name is specified in the full pathname (filled in

by _splitpath2).

ext The ext argument is the location that is to contain the pointer to the filename extension

(suffix) including the leading period if an extension is specified in the full pathname

(filled in by _splitpath2).

The arguments *drive*, *dir*, *fname* and *ext* will not be filled in if they are NULL pointers.

For each component of the full pathname that is not present, its corresponding pointer will be set to point at a NULL string ('\0').

This function reduces the amount of memory space required when compared to the function.

The _wsplitpath2 function is a wide character version of _splitpath2 that operates with wide character strings.

```
Returns:
           The _splitpath2 function returns no value.
See Also:
            _fullpath, _makepath, _splitpath
Example:
            #include <stdio.h>
            #include <stdlib.h>
            void main()
              {
                char full_path[ _MAX_PATH ];
                char tmp_path[ _MAX_PATH2 ];
                char *drive;
                char *dir;
                char *fname;
                char *ext;
                _makepath(full_path, "c", "watcomc\\h", "stdio", "h");
                printf( "Full path is: %s\n\n", full_path );
                _splitpath2( full_path, tmp_path,
                              &drive, &dir, &fname, &ext);
                printf( "Components after _splitpath2\n" );
                printf( "drive: %s\n", drive );
                printf( "dir: %s\n", dir );
                printf( "fname: %s\n", fname );
                printf( "ext: %s\n", ext );
            produces the following:
           Full path is: c:watcomc\h\stdio.h
           Components after _splitpath2
            drive: c:
           dir: watcomc\h\
            fname: stdio
           Note the use of two adjacent backslash characters (\) within character-string constants to signify a single
           backslash.
Classification: WATCOM
Systems:
           _splitpath2 - All, Linux, RDOS, Netware
           _wsplitpath2 - All, Linux
```

Safer C:

The Safer C Library extension provides the sprintf_s function which is a safer alternative to sprintf. This newer sprintf_s function is recommended to be used instead of the traditional "unsafe" sprintf function.

Description:

The sprintf function is equivalent to the fprintf function, except that the argument *buf* specifies a character array into which the generated output is placed, rather than to a file. A null character is placed at the end of the generated character string. The *format* string is described under the description of the printf function.

The swprintf function is a wide character version of sprintf. It accepts a wide character string argument for *format* and produces wide character output. The argument buf specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream. The maximum number of wide characters to write, including a terminating null wide character, is specified by n.

Returns:

The sprintf function returns the number of characters written into the array, not counting the terminating null character. An error can occur while converting a value for output. The swprintf function returns the number of wide characters written into the array, not counting the terminating null wide character, or a negative value if n or more wide characters were requested to be generated. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also:

_bprintf, cprintf, fprintf, printf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf, vswprintf

Example:

```
/* Create temporary file names using a counter */
char namebuf[13];
int TempCount = 0;

char *make_temp_name( void )
{
    sprintf( namebuf, "zz%.6o.tmp", TempCount++ );
    return( namebuf );
}

void main( void )
{
    FILE *tf1, *tf2;
```

#include <stdio.h>

```
tf1 = fopen( make_temp_name(), "w" );
    tf2 = fopen( make_temp_name(), "w" );
    fputs( "temp file 1", tf1 );
    fputs( "temp file 2", tf2 );
    fclose( tf1 );
    fclose( tf2 );
}

Classification: ISO C
    swprintf is ISO C95

Systems:    sprintf - All, Linux, RDOS, Netware
    swprintf - All, Linux
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and sprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *s* nor *format* shall be a null pointer. The *n* argument shall neither equal zero nor be greater than RSIZE_MAX. The number of characters (including the trailing null) required for the result to be written to the array pointed to by *s* shall not be greater than *n*. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by *format*. Any argument to sprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and less than RSIZE_MAX, then the sprintf_s function sets s[0] to the null character.

Description:

The sprintf_s function is equivalent to the sprintf function except for the explicit runtime-constraints listed above.

The sprintf_s function, unlike snprintf_s, treats a result too big for the array pointed to by *s* as a runtime-constraint violation.

The swprintf_s function is a wide character version of sprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

If no runtime-constraint violation occurred, the <code>sprintf_s</code> function returns the number of characters written in the array, not counting the terminating null character. If an encoding error occurred, <code>sprintf_s</code> returns a negative value. If any other runtime-constraint violation occurred, <code>sprintf_s</code> returns zero.

If no runtime-constraint violation occurred, the swprintf_s function returns the number of wide characters written in the array, not counting the terminating null wide character. If an encoding error occurred or if *n* or more wide characters are requested to be written, swprintf_s returns a negative value. If any other runtime-constraint violation occurred, swprintf_s returns zero.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

/* Create temporary file names using a counter */
char namebuf[13];
int TempCount = 0;
```

```
char *make_temp_name( void )
                sprintf_s( namebuf, sizeof( namebuf ),
                             "zz%.6o.tmp", TempCount++);
                return( namebuf );
            }
            void main( void )
                FILE *tf1, *tf2;
                tf1 = fopen( make_temp_name(), "w" );
                tf2 = fopen( make_temp_name(), "w" );
                fputs( "temp file 1", tf1 );
fputs( "temp file 2", tf2 );
                fclose( tf1 );
                fclose( tf2 );
Classification: TR 24731
Systems:
            sprintf_s - All, Linux, RDOS, Netware
            swprintf_s - All, Linux
```

Synopsis: #include <math.h>

double sqrt(double x);

Description: The sqrt function computes the non-negative square root of x. A domain error occurs if the argument

is negative.

Returns: The sqrt function returns the value of the square root. When the argument is outside the permissible

range, the matherr function is called. Unless the default matherr function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error" diagnostic message using the stderr

stream.

See Also: exp, log, pow, matherr

Example: #include <stdio.h>
#include <math.h>

```
void main()
     {
      printf( "%f\n", sqrt(.5) );
    }
```

produces the following:

0.707107

Classification: ISO C

Systems: Math

Synopsis: #include <stdlib.h>
 void srand(unsigned int seed);

Description: The srand function uses the argument *seed* to start a new sequence of pseudo-random integers to be

returned by subsequent calls to rand. A particular sequence of pseudo-random integers can be repeated by calling srand with the same *seed* value. The default sequence of pseudo-random integers

is selected with a seed value of 1.

Returns: The srand function returns no value.

See Also: rand

Example: #include <stdio.h>
#include <stdlib.h>

```
void main()
{
   int i;

   srand( 982 );
   for( i = 1; i < 10; ++i ) {
      printf( "%d\n", rand() );
   }

   srand( 982 );   /* start sequence over again */
   for( i = 1; i < 10; ++i ) {
      printf( "%d\n", rand() );
   }
}</pre>
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

```
Synopsis:
             #include <stdio.h>
             int sscanf (const char *in_string,
                            const char *format, ...);
             #include <wchar.h>
             int swscanf (const wchar_t *in_string,
                              const wchar_t *format, ...);
Safer C:
             The Safer C Library extension provides the sscanf_s function which is a safer alternative to
             sscanf. This newer sscanf_s function is recommended to be used instead of the traditional
             "unsafe" sscanf function.
Description:
             The sscanf function scans input from the character string in_string under control of the argument
             format. Following the format string is the list of addresses of items to receive values.
             The format string is described under the description of the scanf function.
             The swscanf function is identical to sscanf except that it accepts a wide character string argument
             for format and the input string in_string consists of wide characters.
Returns:
             The sscanf function returns EOF if the end of the input string was reached before any input
             conversion. Otherwise, the number of input arguments for which values were successfully scanned and
             stored is returned.
See Also:
             cscanf, fscanf, scanf, vcscanf, vfscanf, vsscanf, fwscanf, wscanf, wscanf,
             swscanf, vfwscanf, vwscanf, vswscanf
Example:
             #include <stdio.h>
             /* Scan a date in the form "Saturday April 18 1987" */
             void main( void )
                   int day, year;
                  char weekday[10], month[10];
                  sscanf ( "Friday August 0014 1987",
                             "%s %s %d %d",
                              weekday, month, &day, &year );
                  printf( "%s %s %d %d\n",
                              weekday, month, day, year );
             }
             produces the following:
             Friday August 14 1987
Classification: ISO C90
             swscanf is ISO C95
             sscanf - All, Linux, RDOS, Netware
Systems:
```

swscanf - All, Linux

		sscanf, swscanf

Synopsis:

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and sscanf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *s* not *format* shall be a null pointer. Any argument indirected through in order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the <code>sscanf_s</code> function does not attempt to perform further input, and it is unspecified to what extent <code>sscanf_s</code> performed input before discovering the runtime-constraint violation.

Description:

The sscanf_s function is equivalent to fscanf_s, except that input is obtained from a string (specified by the argument s) rather than from a stream. Reaching the end of the string is equivalent to encountering end-of-file for the fscanf_s function. If copying takes place between objects that overlap, the objects take on unspecified values.

The swscanf_s function is identical to sscanf_s except that it accepts wide character string arguments for *s* and *format*.

Returns:

The sscanf_s function returns EOF if an input failure occurred before any conversion or if there was a runtime-constraint violation. Otherwise, the sscanf_s function returns the number of input items successfully assigned, which can be fewer than provided for, or even zero.

See Also:

 $\verb|cscanf|, \verb|fscanf|, \verb|scanf|, \verb|vscanf|, \|vscanf|, \|vscanf|,$

Example:

Friday August 13 2004

Classification: TR 24731

Systems: sscanf_s - All, Linux, RDOS, Netware

swscanf_s - All, Linux

Description: The stackavail function returns the number of bytes currently available in the stack. This value is usually used to determine an appropriate amount to allocate using alloca.

The _stackavail function is identical to stackavail. Use _stackavail for ANSI naming conventions.

Returns: The stackavail function returns the number of bytes currently available in the stack.

See Also: alloca, calloc Functions, malloc Functions

```
Example: #
```

```
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <fcntl.h>
#include <io.h>
long char_count(FILE *fp )
     char
            *buffer;
     size_t bufsiz;
     long
            count;
     /* allocate half of stack for temp buffer */
     bufsiz = stackavail() >> 1;
     buffer = (char *) alloca( bufsiz );
     setvbuf( fp, buffer, _IOFBF, bufsiz );
     count = 0L;
     while (fgetc (fp ) != EOF ) ++count;
     fclose(fp);
     return ( count );
}
void main( void )
   FILE
            *fp;
    fp = fopen( "file", "rb" );
    if( fp != NULL ) {
        _setmode( fileno( fp ), O_BINARY );
        printf( "File contains %lu characters\n",
                char_count(fp));
        fclose( fp );
    }
}
```

Classification: WATCOM

_stackavail conforms to ANSI naming conventions

Systems: stackavail - All, Linux, RDOS, Netware _stackavail - All, Linux, RDOS, Netware

	stac	kavail, _stackavail

```
Synopsis: #include <sys/stat.h>
    int stat( const char *path, struct stat *buf );
    int _stat( const char *path, struct _stat *buf );
    int _stati64( const char *path, struct _stati64 *buf );
    int _wstat( const wchar_t *path, struct _stat *buf );
    int _wstati64( const wchar_t *path, struct _stati64 *buf );
```

Description:

The stat functions obtain information about the file or directory referenced in *path*. This information is placed in the structure located at the address indicated by *buf*.

The file <sys/stat.h> contains definitions for the structure stat.

The structure _stati64 differs from stat in the following way:

int lstat(const char *path, struct stat *buf);

Field	Type/Meaning	
st_dev	(dev_t) the disk drive the file resides on	
st_ino	(ino_t) this inode's number (not used for DOS)	
st_mode	(unsigned short) file mode	
st_nlink	(short) number of hard links	
st_uid	(unsigned long) user-id (always 'root' for DOS)	
st_gid	(short) group-id (always 'root' for DOS)	
st_rdev	(dev_t) this should be the device type but it is the same as st_dev for the time being	
st_size	(off_t) total file size	
st_atime	(time_t) this should be the file "last accessed" time if the file system supports it	
st_mtime	(time_t) the file "last modified" time	
st_ctime	(time_t) this should be the file "last status change" time if the file system supports it	
	The following fields are Netware only:	
st_btime	(time_t) the file "last archived" time	
st_attr	(unsigned long) the file's attributes	
st_archivedID	(unsigned long) the user/object ID that last archived file	
st_updatedID	(unsigned long) the user/object ID that last updated file	
st_inheritedRightsMask (unsigned short) the inherited rights mask		
st_originatingNameSpace (unsigned char) the originating name space		

st_size (__int64) total file size (as a 64-bit value)

At least the following macros are defined in the <sys/stat.h> header file.

Macro	Meaning
S_ISFIFO(m)	Test for FIFO.
S_ISCHR(m)	Test for character special file.
S_ISDIR(m)	Test for directory file.
S_ISBLK(m)	Test for block special file.
S ISREG(m)	Test for regular file.

The value *m* supplied to the macros is the value of the st_mode field of a stat structure. The macro evaluates to a non-zero value if the test is true and zero if the test is false.

The following bits are encoded within the st_mode field of a stat structure.

Mask	Owner Permissions
S_IRWXU	Read, write, search (if a directory), or execute (otherwise)
S_IRUSR	Read permission bit
S_IWUSR	Write permission bit
S_IXUSR	Search/execute permission bit
S_IREAD	== S_IRUSR (for Microsoft compatibility)
S_IWRITE	== S_IWUSR (for Microsoft compatibility)
S_IEXEC	== S_IXUSR (for Microsoft compatibility)

S_IRWXU is the bitwise inclusive OR of S_IRUSR, S_IWUSR, and S_IXUSR.

Mask	Group Permissions (same as owner's on DOS, OS/2 or Windows)
S_IRWXG	Read, write, search (if a directory), or execute (otherwise)
S_IRGRP	Read permission bit
S_IWGRP	Write permission bit
S_IXGRP	Search/execute permission bit

 S_{IRWXG} is the bitwise inclusive OR of S_{IRGRP} , S_{IWGRP} , and S_{IXGRP} .

Mask	Other Permissions (same as owner's on DOS, OS/2 or Windows)
S_IRWXO	Read, write, search (if a directory), or execute (otherwise)
S_IROTH	Read permission bit
S_IWOTH	Write permission bit
S_IXOTH	Search/execute permission bit

S_IRWXO is the bitwise inclusive OR of S_IROTH, S_IWOTH, and S_IXOTH.

Mask	Meaning
S_ISUID	(Not supported by DOS, OS/2 or Windows) Set user ID on execution. The
	process's effective user ID shall be set to that of the owner of the file when the file
	is run as a program. On a regular file, this bit should be cleared on any write.
S_ISGID	(Not supported by DOS, OS/2 or Windows) Set group ID on execution. Set
	effective group ID on the process to the file's group when the file is run as a
	program. On a regular file, this bit should be cleared on any write.

The _stat function is identical to stat. Use _stat for ANSI naming conventions.

The _stati64, _wstat, and _wstati64 functions differ from stat in the type of structure that they are asked to fill in. The _wstat and _wstati64 functions deal with wide character strings. The differences in the structures are described above. The lstat function is identical to stat on non-UNIX platforms.

Returns:

All forms of the stat function return zero when the information is successfully obtained. Otherwise, -1 is returned.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

EACCES Search permission is denied for a component of *path*.

See Also: fstat

Example:

```
#include <stdio.h>
#include <sys/stat.h>

void main()
{
    struct stat buf;

    if( stat( "file", &buf ) != -1 ) {
        printf( "File size = %d\n", buf.st_size );
    }
}
```

Classification: POSIX 1003.1

_stat conforms to ANSI naming conventions _stati64 is WATCOM _wstat is WATCOM _wstati64 is WATCOM lstat is POSIX

Systems:

```
stat - All, Linux, RDOS, Netware
_stat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_stati64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
_wstat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
_wstati64 - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
lstat - All, Linux, RDOS, Netware
```

stat, _stat, _stati64, _wstat, _wstati64, lstat

Synopsis: #include <float.h>
unsigned int _status87(void);

Description: The _status87 function returns the floating-point status word which is used to record the status of

8087/80287/80387/80486 floating-point operations.

Returns: The _status87 function returns the floating-point status word which is used to record the status of

8087/80287/80387/80486 floating-point operations. The description of this status is found in the

<float.h> header file.

See Also: __clear87, _control87, _controlfp, _finite, _fpreset

Example: #include <stdio.h>
#include <float.h>

Classification: Intel

Systems: Math

Synopsis: #include <strings.h>
 int strcasecmp(const char *s1, const char *s2);

Description: The function compares, without case sensitivity, the string pointed to by s1 to the string pointed to by

s2. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the

comparison.

The strcasecmp function is identical to the _stricmp function.

Returns: The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed

to by sI is, ignoring case, less than, equal to, or greater than the string pointed to by s2.

See Also: strcmp, _stricmp, strncmp, _strnicmp, strncasecmp

Example: #include <stdio.h>

```
#include <strings.h>
int main( void )
{
    printf( "%d\n", strcasecmp( "AbCDEF", "abcdef" ) );
    printf( "%d\n", strcasecmp( "abcdef", "ABC" ) );
    printf( "%d\n", strcasecmp( "abc", "ABCdef" ) );
    printf( "%d\n", strcasecmp( "Abcdef", "mnopqr" ) );
    printf( "%d\n", strcasecmp( "Mnopqr", "abcdef" ) );
    return( 0 );
}
```

produces the following:

0 100 -100 -12 12

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Synopsis: #include <string.h> char *strcat(char *dst, const char *src); char __far *_fstrcat(char __far *dst, const char __far *src); #include <wchar.h> wchar_t *wcscat(wchar_t *dst, const wchar_t *src); #include <mbstring.h> unsigned char *_mbscat(unsigned char *dst, const unsigned char *src); unsigned char __far *_fmbscat(unsigned char __far *dst, const unsigned char __far *src); Safer C: The Safer C Library extension provides the strcat_s function which is a safer alternative to strcat. This newer strcat_s function is recommended to be used instead of the traditional "unsafe" strcat function. **Description:** The streat function appends a copy of the string pointed to by src (including the terminating null character) to the end of the string pointed to by dst. The first character of src overwrites the null character at the end of dst. The _fstrcat function is a data model independent form of the strcat function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications. The woscat function is a wide character version of streat that operates with wide character strings. The _mbscat function is a multi-byte character version of strcat that operates with multi-byte character strings. The _fmbscat function is a data model independent form of the _mbscat function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications. **Returns:** The value of *dst* is returned. See Also: strncat, strcat_s, strncat_s **Example:** #include <stdio.h> #include <string.h> void main() char buffer[80]; strcpy(buffer, "Hello "); strcat(buffer, "world"); printf("%s\n", buffer); } produces the following: Hello world

_fstrcat is WATCOM _mbscat is WATCOM

Classification: ISO C

_fmbscat is WATCOM

Systems: strcat - All, Linux, RDOS, Netware

_fstrcat - All, Linux, RDOS

wcscat - All, Linux

_mbscat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbscat - DOS, Windows, OS/2 1.x(all)

Synopsis:

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and strcat_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Let m denote the value $s1max - strnlen_s(s1, s1max)$ upon entry to $strcat_s$. Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than $RSIZE_MAX$. s1max shall not equal zero. m shall not equal zero. m shall be greater than $strnlen_s(s2, m)$. Copying shall not take place between objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than zero and not greater than RSIZE_MAX, then strcat_s sets s1[0] to the null character.

Description:

The strcat_s function appends a copy of the string pointed to by s2 (including the terminating null character) to the end of the string pointed to by s1. The initial character from s2 overwrites the null character at the end of s1. All elements following the terminating null character (if any) written by strcat_s in the array of s1max characters pointed to by s1 take unspecified values when strcat_s returns.

The wcscat_s function is a wide character version of strcat_s that operates with wide character strings.

Returns:

The strcat_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

strcat, strncat, strncat_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <string.h>

void main( void )
{
    char buffer[80];

    strcpy_s( buffer, sizeof( buffer ), "Hello " );
    strcat_s( buffer, sizeof( buffer ), "world" );
    printf( "%s\n", buffer );
}
```

produces the following:

Hello world

Classification: TR 24731

strcat_s - All, Linux, RDOS, Netware
wcscat_s - All, Linux **Systems:**

Description:

The strchr function locates the first occurrence of c (converted to a char) in the string pointed to by s. The terminating null character is considered to be part of the string.

The _fstrchr function is a data model independent form of the strchr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcschr function is a wide character version of strchr that operates with wide character strings.

The _mbschr function is a multi-byte character version of strchr that operates with multi-byte character strings.

The _fmbschr function is a data model independent form of the _mbschr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The strchr function returns a pointer to the located character, or NULL if the character does not occur in the string.

See Also:

memchr, strcspn, strrchr, strspn, strstr, strtok

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
    char buffer[80];
    char *where;

    strcpy( buffer, "video x-rays");
    where = strchr( buffer, 'x');
    if( where == NULL ) {
        printf( "'x' not found\n");
    }
}
```

Classification: ISO C

_fstrchr is WATCOM _mbschr is WATCOM _fmbschr is WATCOM

Systems:

strchr - All, Linux, RDOS, Netware
_fstrchr - All, Linux, RDOS
wcschr - All, Linux

_mbschr - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbschr - DOS, Windows, OS/2 1.x(all)

Description: The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

The _fstrcmp function is a data model independent form of the strcmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcscmp function is a wide character version of strcmp that operates with wide character strings.

The _mbscmp function is a multi-byte character version of strcmp that operates with multi-byte character strings.

The _fmbscmp function is a data model independent form of the _mbscmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The strcmp function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2.

See Also: __stricmp, strncmp, _strnicmp, strcasecmp, strncasecmp

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
    printf( "%d\n", strcmp( "abcdef", "abcdef" ) );
    printf( "%d\n", strcmp( "abcdef", "abc" ) );
    printf( "%d\n", strcmp( "abcdef", "abcdef" ) );
    printf( "%d\n", strcmp( "abcdef", "mnopqr" ) );
    printf( "%d\n", strcmp( "abcdef", "mnopqr" ) );
    printf( "%d\n", strcmp( "mnopqr", "abcdef" ) );
}
```

produces the following:

```
0
1
-1
-1
```

Classification: ISO C

```
_fstrcmp is WATCOM
_mbscmp is WATCOM
_fmbscmp is WATCOM
```

```
Systems: strcmp - All, Linux, RDOS, Netware
```

_fstrcmp - All, Linux, RDOS

wcscmp - All, Linux

_mbscmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbscmp - DOS, Windows, OS/2 1.x(all)

Description:

The function compares, without case sensitivity, the string pointed to by s1 to the string pointed to by s2. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The wcscmpi function is a wide character version of strcmpi that operates with wide character strings.

The strcmpi function is deprecated, use _stricmp instead. The wcscmpi function is deprecated, use _wcsicmp instead.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2.

See Also: strcmp, _stricmp, strncmp, _strnicmp, strcasecmp, strncasecmp

Example:

```
#include <string.h>

void main()
{
    printf( "%d\n", _strcmpi( "AbCDEF", "abcdef" ) );
    printf( "%d\n", _strcmpi( "abcdef", "ABC" ) );
    printf( "%d\n", _strcmpi( "abc", "ABCdef" ) );
    printf( "%d\n", _strcmpi( "Abcdef", "mnopqr" ) );
    printf( "%d\n", _strcmpi( "Mnopqr", "abcdef" ) );
}
```

produces the following:

#include <stdio.h>

0 100 -100 -12 12

Classification: WATCOM

Systems:

```
strcmpi - All, Linux, RDOS, Netware wcscmpi - All, Linux
```

Synopsis: #include <string.h>

int strcoll(const char *s1, const char *s2);
#include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);
#include <mbstring.h>
int _mbscoll(const unsigned char *s1, const unsigned char *s2);

Description:

The strcoll function compares the string pointed to by sI to the string pointed to by s2. The comparison uses the collating sequence selected by the setlocale function. The function will be equivalent to the strcmp function when the collating sequence is selected from the "C" locale.

The wcscoll function is a wide character version of strcoll that operates with wide character strings.

The _mbscoll function is a multi-byte character version of strcoll that operates with multi-byte character strings.

Returns:

The strcoll function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2, according to the collating sequence selected.

See Also: setlocale, strcmp, strncmp

Example:

```
#include <stdio.h>
#include <string.h>

char buffer[80] = "world";

void main()
    {
      if( strcoll( buffer, "Hello" ) < 0 ) {
          printf( "Less than\n" );
      }
    }
}</pre>
```

Classification: ISO C

mbscoll is WATCOM

Systems:

```
strcoll - All, Linux, RDOS, Netware
wcscoll - All, Linux
_mbscoll - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

Safer C:

The Safer C Library extension provides the strcpy_s function which is a safer alternative to strcpy. This newer strcpy_s function is recommended to be used instead of the traditional "unsafe" strcpy function.

Description:

The strcpy function copies the string pointed to by *src* (including the terminating null character) into the array pointed to by *dst*. Copying of overlapping objects is not guaranteed to work properly. See the description for the memmove function to copy objects that overlap.

The _fstrcpy function is a data model independent form of the strcpy function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wesepy function is a wide character version of strepy that operates with wide character strings.

The _mbscpy function is a multi-byte character version of strcpy that operates with multi-byte character strings.

The _fmbscpy function is a data model independent form of the _mbscpy function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The value of *dst* is returned.

See Also: strdup, strncpy, strcpy_s, strncpy_s

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
    auto char buffer[80];
    strcpy( buffer, "Hello " );
    strcat( buffer, "world" );
    printf( "%s\n", buffer );
}

produces the following:
```

Classification: ISO C

_fstrcpy is WATCOM _mbscpy is WATCOM

Hello world

_fmbscpy is WATCOM

Systems: strcpy - All, Linux, RDOS, Netware

_fstrcpy - All, Linux, RDOS

wcscpy - All, Linux

_mbscpy - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbscpy - DOS, Windows, OS/2 1.x(all)

Synopsis:

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and strcpy_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX. s1max shall not equal zero. s1max shall be greater than $strnlen_s(s2, s1max)$. Copying shall not take place between objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than zero and not greater than RSIZE_MAX, then strcpy_s sets s1[0] to the null character.

Description:

The strcpy_s function copies the string pointed to by s2 (including the terminating null character) into the array pointed to by s1. All elements following the terminating null character (if any) written by strcpy_s in the array of s1max characters pointed to by s1 take unspecified values when strcpy_s returns.

The wcscpy_s function is a wide character version of strcpy_s that operates with wide character strings.

Returns:

The strcpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

strcpy, strdup, strncpy, strncpy_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <string.h>

void main( void )
{
    auto char buffer[80];

    strcpy_s( buffer, sizeof( buffer ), "Hello " );
    strcat_s( buffer, sizeof( buffer ), "world" );
    printf( "%s\n", buffer );
}
```

produces the following:

Hello world

Classification: TR 24731

Systems: strcpy_s - All, Linux, RDOS, Netware

wcscpy_s - All, Linux

Synopsis: #includ

Description:

The strcspn function computes the length, in bytes, of the initial segment of the string pointed to by *s* which consists entirely of characters *not* from the string pointed to by *charset*. The terminating null character is not considered part of *s*.

The _fstrcspn function is a data model independent form of the strcspn function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcscspn function is a wide character version of strcspn that operates with wide character strings.

The _mbscspn function is a multi-byte character version of strcspn that operates with multi-byte character strings.

The _fmbscspn function is a data model independent form of the _mbscspn function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The length, in bytes, of the initial segment is returned.

See Also: strspn

Example:

```
#include <string.h>

void main()
{
    printf( "%d\n", strcspn( "abcbcadef", "cba" ) );
    printf( "%d\n", strcspn( "xxxbcadef", "cba" ) );
    printf( "%d\n", strcspn( "123456789", "cba" ) );
}
```

produces the following:

#include <stdio.h>

0 3 9

Classification: ISO C

_fstrcspn is WATCOM _mbscspn is WATCOM _fmbscspn is WATCOM

```
Systems: strcspn - All, Linux, RDOS, Netware
```

_fstrcspn - All, Linux, RDOS

wcscspn - All, Linux

_mbscspn - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbscspn - DOS, Windows, OS/2 1.x(all)

```
Synopsis:
              #include <time.h>
             char *_strdate( char *datestr )
             wchar_t _wstrdate( wchar_t *datestr );
Description:
             The _strdate function copies the current date to the buffer pointed to by datestr. The date is
              formatted as "MM/DD/YY" where "MM" is two digits representing the month, where "DD" is two
             digits representing the day, and where "YY" is two digits representing the year. The buffer must be at
             least 9 bytes long.
             The _wstrdate function is a wide character version of _strdate that operates with wide character
              strings.
Returns:
             The _strdate function returns a pointer to the resulting text string datestr.
See Also:
              asctime Functions, ctime Functions, gmtime, localtime, mktime, _strtime, time,
              tzset
Example:
              #include <stdio.h>
              #include <time.h>
              void main()
                {
                   char datebuff[9];
                  printf( "%s\n", _strdate( datebuff ) );
```

Classification: WATCOM

Systems: _strdate - All, Linux, RDOS _wstrdate - All, Linux

Synopsis:

```
#include <string.h>
char *strdup( const char *src );
char *_strdup( const char *src );
char __far *_fstrdup( const char __far *src );
#include <wchar.h>
wchar_t *wcsdup( const wchar_t *src );
wchar_t *_wcsdup( const wchar_t *src );
#include <mbstring.h>
unsigned char *_mbsdup( unsigned char *src );
unsigned char __far *_fmbsdup( unsigned char __far *src );
```

Description:

The strdup function creates a duplicate copy of the string pointed to by *src* and returns a pointer to the new copy. For strdup the memory for the new string is obtained by using the malloc function and can be freed using the free function. For _fstrdup, the memory for the new string is obtained by using the _fmalloc function and can be freed using the _ffree function.

The _strdup function is identical to strdup. Use _strdup for ANSI naming conventions.

The _fstrdup function is a data model independent form of the strdup function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcsdup function is a wide character version of strdup that operates with wide character strings.

The _wcsdup function is a wide character version of strdup that operates with wide character strings.

The _mbsdup function is a multi-byte character version of strdup that operates with multi-byte character strings.

The _fmbsdup function is a data model independent form of the _mbsdup function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The strdup function returns the pointer to the new copy of the string if successful, otherwise it returns NULL.

See Also:

free, malloc, strcpy, strncpy

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
   char *dup;

   dup = strdup( "Make a copy" );
   printf( "%s\n", dup );
}
```

Classification: WATCOM

_strdup conforms to ANSI naming conventions

Systems:

```
strdup - All, Linux, RDOS, Netware
_strdup - All, Linux, RDOS, Netware
_fstrdup - All, Linux, RDOS
```

```
wcsdup - All, Linux, RDOS
_wcsdup - All, Linux, RDOS
_mbsdup - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsdup - DOS, Windows, OS/2 1.x(all)
```

Safer C: The Safer C Library extension provides the strerror_s function which is a safer alternative to strerror. This newer strerror_s function is recommended to be used instead of the traditional "unsafe" strerror function.

Description: The strerror function maps the error number contained in *errnum* to an error message.

The _wcserror function is a wide character version of strerror except that it produces a wide character string.

Returns: The strerror function returns a pointer to the error message. The array containing the error string should not be modified by the program. This array may be overwritten by a subsequent call to the strerror function.

See Also: clearerr, feof, ferror, perror, strerror_s, strerrorlen_s

Classification: ISO C

_wcserror is WATCOM

Systems: strerror - All, Linux, RDOS, Netware
_wcserror - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
Linux

Synopsis:

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and strerror_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

s shall not be a null pointer. maxsize shall not be greater than RSIZE_MAX. maxsize shall not equal zero.

If there is a runtime-constraint violation, then the array (if any) pointed to by s is not modified.

Description:

The strerror_s function maps the number in *errnum* to a locale-specific message string. Typically, the values for *errnum* come from errno, but strerror_s shall map any value of type int to a message. If the length of the desired string is less than *maxsize*, then the string is copied to the array pointed to by s. Otherwise, if *maxsize* is greater than zero, then *maxsize-1* characters are copied from the string to the array pointed to by s and then s[maxsize-1] is set to the null character. Then, if maxsize is greater than 3, then s[maxsize-2], s[maxsize-3], and s[maxsize-4] are set to the character period (.).

The _wcserror_s function is a wide character version of strerror_s that operates with wide character strings.

Returns:

The strerror_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

clearerr, feof, ferror, perror, strerror, strerrorlen_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <string.h>
#include <errno.h>

void main( void )
{
    FILE *fp;
    char emsg[ 100 ];

    fp = fopen( "file.nam", "r" );
    if( fp == NULL ) {
        strerror_s( emsg, sizeof( emsg ), errno );
        printf( "Unable to open file: %s\n", emsg );
    }
}
```

Classification: TR 24731

Systems: strerror_s - All, Linux, RDOS, Netware

_wcserror_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux

```
#define __STDC_WANT_LIB_EXT1__ 1
Synopsis:
            #include <string.h>
            size_t strerrorlen_s( errno_t errnum );
            #include <wchar.h>
            size_t _wcserrorlen_s( errno errnum );
Constraints:
           None.
Description:
            The strerrorlen_s function calculates the length of the (untruncated) locale-specific message
            string that the strerror_s function maps to errnum.
            The _wcserrorlen_s function is a wide character version of strerrorlen_s that operates with
            wide character strings.
Returns:
            The strerrorlen_s function returns the number of characters (not including the null character) in
            the full message string.
See Also:
            strerror, strerror_s
Example:
            #define __STDC_WANT_LIB_EXT1__ 1
            #include <stdio.h>
            #include <string.h>
            #include <errno.h>
            void main( void )
                 FILE
                          *fp;
                          emsg[ 100 ];
                 char
                 size_t emsglen;
                 fp = fopen( "file.nam", "r" );
                 if( fp == NULL ) {
                     emsglen = strerrorlen_s( errno );
                     printf( "Length of errormessage: %d\n", emsglen );
                     strerror_s( emsg, sizeof( emsg ), errno );
                     printf( "Unable to open file: %s\n", emsg );
                 }
            }
Classification: TR 24731
Systems:
            strerrorlen_s - All, Linux, RDOS, Netware
            _wcserrorlen_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
            Linux
```

```
#include <time.h>
size_t strftime( char *s,
                     size_t maxsize,
                     const char *format,
                     const struct tm *timeptr );
#include <wchar.h>
size_t wcsftime( wchar_t *s,
                     size_t maxsize,
                     const wchar_t *format,
                     const struct tm *timeptr );
#include <time.h>
size_t _wstrftime_ms( wchar_t *s,
                            size_t maxsize,
                            const char *format,
                            const struct tm *timeptr );
struct tm {
  int tm_sec; /* seconds after the minute -- [0,61] */
  int tm_min; /* minutes after the hour -- [0,59] */
  int tm_hour; /* hours after midnight -- [0,23] */
int tm_mday; /* day of the month -- [1,31] */
int tm_mon; /* months since January -- [0,11] */
int tm_year; /* years since 1900 */
  int tm_wday; /* days since Sunday -- [0,6] */
int tm_yday; /* days since January 1 -- [0,365]*/
  int tm_isdst; /* Daylight Savings Time flag
```

Description:

The strftime function formats the time in the argument *timeptr* into the array pointed to by the argument *s* according to the *format* argument.

The wcsftime function is a wide character version of strftime that operates with wide character strings.

The _wstrftime_ms function is identical to wcsftime except that the *format* is not a wide character string.

The *format* string consists of zero or more directives and ordinary characters. A directive consists of a '%' character followed by a character that determines the substitution that is to take place. All ordinary characters are copied unchanged into the array. No more than *maxsize* characters are placed in the array. The format directives %D, %h, %n, %r, %t, and %T are from POSIX.

Directive	Meaning
%a	locale's abbreviated weekday name
%A	locale's full weekday name
%b	locale's abbreviated month name
%B	locale's full month name
%c	locale's appropriate date and time representation

%C	is replaced by the year devided by 100 and truncated to an integer (0-99)
%d	day of the month as a decimal number (1-31)
% D	date in the format mm/dd/yy (POSIX)
%e	day of the month as a decimal number (1-31), a single digit is preceded by a blank
% F	is equivalent to '%Y-%m-%d' (the ISO 8601 date format)
%g	is replaced by the last 2 digits of the week-based year as a decimal number (0-99)
%G	is replaced by the week-based year as a decimal number (e.g. 2006)
%h	locale's abbreviated month name (POSIX)
%Н	hour (24-hour clock) as a decimal number (0-23)
%I	hour (12-hour clock) as a decimal number (1-12)
%j	day of the year as a decimal number (1-366)
%m	month as a decimal number (1-12)
%M	minute as a decimal number (0-59)
%n	newline character (POSIX)
%p	locale's equivalent of either AM or PM
%r	12-hour clock time (1-12) using the AM/PM notation in the format HH:MM:SS (AM PM) (POSIX)
%S	second as a decimal number (0-59)
%t	tab character (POSIX)
%T	24-hour clock time in the format HH:MM:SS (POSIX)
%u	is replaced by the ISO 8601 weekday as a decimal number (1-7), where Monday is 1
% U	week number of the year as a decimal number (0-52) where Sunday is the first day of the week
%V	is replaced by the ISO 8601 week number as a decimal number (1-53)
%w	weekday as a decimal number (0-6) where 0 is Sunday
%W	week number of the year as a decimal number (0-52) where Monday is the first day of the week
%x	locale's appropriate date representation

%X	locale's appropriate time representation
%y	year without century as a decimal number (0-99)
%Y	year with century as a decimal number
%z	offset from UTC in the ISO 8601 format '-0430' (meaning 4 hours 30 minutes behind UTC, west of Greenwich), or by no characters, if no timezone is determinable
% Z	timezone name, or by no characters if no timezone exists
%%	character %

When the %Z or %z directive is specified, the tzset function is called.

% g, %G, %V give values according to the ISO 8601 week-based year. In this system, weeks begin on a monday and week 1 of the year is the week that includes January 4th, which is also the week that includes the first Thursday of the year, and is also the first week that contains at least four days in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year; thus, for Saturday 2nd January 1999, %G is replaced by 1998 and %V is replaced by 53. If december 29th, 30th, or 31st is a Monday, it and any following days are part of week 1 of the following year. Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V is replaced by 01.

The format modifiers E and O are ignored. (eg. %EY is the same as %Y)

Returns:

If the number of characters to be placed into the array is less than *maxsize*, the strftime function returns the number of characters placed into the array pointed to by *s* not including the terminating null character. Otherwise, zero is returned. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

setlocale, asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime, gmtime_s, localtime, localtime_s, mktime, time, tzset

Example:

produces the following:

Today is Friday December 25, 1987

Classification: ISO C, POSIX

wcsftime is ISO C95

strftime, wcsftime, _wstrftime_ms

_wstrftime_ms is WATCOM

Systems: strftime - All, Linux, RDOS, Netware

wcsftime - All, Linux
_wstrftime_ms - All, Linux

Description:

The function compares, without case sensitivity, the string pointed to by s1 to the string pointed to by s2. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The _fstricmp function is a data model independent form of the _stricmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The _wcsicmp function is a wide character version of _stricmp that operates with wide character strings.

The _mbsicmp function is a multi-byte character version of _stricmp that operates with multi-byte character strings.

The _fmbsicmp function is a data model independent form of the _mbsicmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The stricmp function is deprecated, use _stricmp instead.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by sI is less than, equal to, or greater than the string pointed to by s2.

See Also:

strcmp, strncmp, _strnicmp, strcasecmp, strncasecmp

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
    printf( "%d\n", _stricmp( "AbCDEF", "abcdef" ) );
    printf( "%d\n", _stricmp( "abcdef", "ABC" ) );
    printf( "%d\n", _stricmp( "abc", "ABCdef" ) );
    printf( "%d\n", _stricmp( "Abcdef", "mnopqr" ) );
    printf( "%d\n", _stricmp( "Mnopqr", "abcdef" ) );
}
```

produces the following:

_stricmp, _fstricmp, _wcsicmp, _mbsicmp, _fmbsicmp, stricmp

```
0
100
-100
-12
12
```

Classification: WATCOM

```
Systems:

_stricmp - All, Linux, RDOS, Netware
_fstricmp - All, Linux, RDOS
_wcsicmp - All, Linux
_mbsicmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsicmp - DOS, Windows, OS/2 1.x(all)
stricmp - All, Linux, RDOS, Netware
```

```
#include <string.h>
int _stricoll( const char *s1, const char *s2 );
#include <wchar.h>
int _wcsicoll( const wchar_t *s1, const wchar_t *s2 );
#include <mbstring.h>
int _mbsicoll( const unsigned char *s1, const unsigned char *s2 );
```

Description:

The function performs a comparison without case sensitivity of the string pointed to by s1 to the string pointed to by s2. The comparison uses the current code page which can be selected by the _setmbcp function. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The _wcsicoll function is a wide character version of _stricoll that operates with wide character strings.

The _mbsicoll function is a multi-byte character version of _stricoll that operates with multi-byte character strings.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2, according to the collating sequence selected.

See Also: _setmbcp, strcoll, _stricmp, strncmp, _strncoll, _strnicmp, _strnicoll

Example:

```
#include <stdio.h>
#include <string.h>

char buffer[80] = "world";

void main()
{
   int test;

   test = _stricoll( buffer, "world2" );
   if( test < 0 ) {
      printf( "Less than\n" );
   } else if( test == 0 ) {
      printf( "Equal\n" );
   } else {
      printf( "Greater than\n" );
   }
}</pre>
```

Classification: WATCOM

```
Systems:
```

```
_stricoll - All, Linux, RDOS, Netware
_wcsicoll - All, Linux
_mbsicoll - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

_stricoll, _wcsicoll, _mbsicoll					

Description:

The strlcat function appends characters of the string pointed to by *src* to the end of the string in a buffer pointed to by *dst* that can hold up to *n* characters. The first character of *src* overwrites the null character at the end of *dst*. A terminating null character is always appended to the result, unless *n* characters of *dst* are scanned and no null character is found.

The wcslcat function is a wide character version of strlcat that operates with wide character strings.

Returns:

The strlcat function returns the total length of string it tried to create, that is the number of characters in both *src* and *dst* strings, not counting the terminating null characters. If *n* characters of *dst* were scanned without finding a null character, *n* is returned.

See Also: strlcpy, strncat, strcat

Example:

```
#include <stdio.h>
#include <string.h>

char buffer[80];

void main( void )
{
    strcpy( buffer, "Hello " );
    strlcat( buffer, "world", 12 );
    printf( "%s\n", buffer );
    strlcat( buffer, "**********, 16 );
    printf( "%s\n", buffer );
}
```

produces the following:

```
Hello world
Hello world****
```

Classification: WATCOM

Systems: strlcat - All, Linux, RDOS, Netware wcslcat - All, Linux

Description: The strlcpy function copies no more than *n* characters from the string pointed to by *src* into the array

pointed to by *dst*. Copying of overlapping objects is not guaranteed to work properly. See the memmove function if you wish to copy objects that overlap.

If the string pointed to by src is longer than n characters, then only n - 1 characters will be copied and the result will be null terminated.

The wcslcpy function is a wide character version of strlcpy that operates with wide character strings.

Returns: The strlcpy function returns the number of characters in the *src* string, not including the terminating null character.

See Also: strlcat, strncpy, strcpy

Example: #include <stdio.h>

produces the following:

15:'Buffer ov'

Classification: WATCOM

Systems: strlcpy - All, Linux, RDOS, Netware

wcslcpy - All, Linux

```
Synopsis: #include <string.h>
    size_t strlen( const char *s );
    size_t _fstrlen( const char __far *s );
    #include <wchar.h>
    size_t wcslen( const wchar_t *s );
    #include <mbstring.h>
    size_t _mbslen( const unsigned char *s );
    size_t _fmbslen( const unsigned char __far *s );
```

Safer C: The Safer C Library extension provides the strnlen_s function which is a safer alternative to strlen. This newer strnlen_s function is recommended to be used instead of the traditional "unsafe" strlen function.

Description: The strlen function computes the length of the string pointed to by *s*.

The _fstrlen function is a data model independent form of the strlen function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The weslen function is a wide character version of strlen that operates with wide character strings.

The _mbslen function is a multi-byte character version of strlen that operates with multi-byte character strings.

The _fmbslen function is a data model independent form of the _mbslen function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The strlen function returns the number of characters that precede the terminating null character.

```
See Also: strnlen_s
```

Example: #include <stdio.h>

```
#include <string.h>
void main()
{
    printf( "%d\n", strlen( "Howdy" ) );
    printf( "%d\n", strlen( "Hello world\n" ) );
    printf( "%d\n", strlen( "" ) );
}
```

produces the following:

5 12 0

Classification: ISO C

_fstrlen is WATCOM _mbslen is WATCOM _fmbslen is WATCOM

Systems: strlen - All, Linux, RDOS, Netware

_fstrlen - All, Linux, RDOS

wcslen - All, Linux

_mbslen - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbslen - DOS, Windows, OS/2 1.x(all)

Constraints: None.

Description: The strnlen_s function calculates the length of the string pointed to by s.

The wcsnlen_s function is a wide character version of strnlen_s that operates with wide character strings.

Returns: If s is a null pointer, then the strnlen_s function returns zero. Otherwise, the strnlen_s function

returns the number of characters that precede the terminating null character. If there is no null character in the first *maxsize* characters of *s* then strnlen_s returns *maxsize*. At most the first *maxsize*

characters of s shall be accessed by strnlen_s

See Also: strlen

Example: #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

```
#include <string.h>
void main( void )
{
    char    buffer[ 30 ] = "Hello world.";
    size_t len;
    len = strnlen_s( buffer, sizeof( buffer ) );
```

printf("Length of text: %d\n", emsglen);
printf("Text: %s\n", buffer);
}

Classification: TR 24731

Systems: strnlen_s - All, RDOS, Netware

wcsnlen_s - All, Linux

char *strlwr(char *s1);

Synopsis: #include <string.h> char *_strlwr(char *s1); char __far *_fstrlwr(char __far *s1); #include <wchar.h> wchar_t *_wcslwr(wchar_t *s1); #include <mbstring.h> unsigned char *_mbslwr(unsigned char *s1); unsigned char __far *_fmbslwr(unsigned char __far *s1); ** deprecated **

Description:

The _strlwr function replaces the string *s1* with lowercase characters by invoking the tolower function for each character in the string.

The _fstrlwr function is a data model independent form of the _strlwr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The _wcslwr function is a wide character version of _strlwr that operates with wide character strings.

The _mbslwr function is a multi-byte character version of _strlwr that operates with multi-byte character strings.

The _fmbslwr function is a data model independent form of the _mbslwr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The strlwr function is deprecated, use _strlwr instead.

Returns: The address of the original string *s1* is returned.

```
See Also: _strupr
```

Example:

```
#include <stdio.h>
#include <string.h>

char source[] = { "A mixed-case STRING" };

void main()
    {
        printf( "%s\n", source );
        printf( "%s\n", _strlwr( source ) );
        printf( "%s\n", source );
    }
}
```

produces the following:

```
A mixed-case STRING
a mixed-case string
a mixed-case string
```

Classification: WATCOM

Systems: _strlwr - All, Linux, RDOS, Netware

```
_fstrlwr - All, Linux, RDOS
_wcslwr - All, Linux
_mbslwr - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbslwr - DOS, Windows, OS/2 1.x(all)
strlwr - All, Linux, RDOS, Netware
```

Description: The function compares, without case sensitivity, the string pointed to by s1 to the string pointed to by

s2, for at most len characters. All uppercase characters from s1 and s2 are mapped to lowercase for the

purposes of doing the comparison.

The strncasecmp function is identical to the _strnicmp function.

Returns: The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed

to by s1 is, ignoring case, less than, equal to, or greater than the string pointed to by s2.

See Also: strcmp, _stricmp, strncmp, _strnicmp, strcasecmp

#include <stdio.h>
#include <strings.h>

int main(void)
{

printf("%d\n", strncasecmp("abcdef", "ABCXXX", 10));
printf("%d\n", strncasecmp("abcdef", "ABCXXX", 6));
printf("%d\n", strncasecmp("abcdef", "ABCXXX", 3));
printf("%d\n", strncasecmp("abcdef", "ABCXXX", 0));
return(0);
}

produces the following:

-20 -20 0 0

Classification: POSIX 1003.1

Systems: All, RDOS, Netware

```
#include <string.h>
char *strncat( char *dst, const char *src, size_t n );
char __far *_fstrncat( char __far *dst,
                const char __far *src,
                       size_t n );
#include <wchar.h>
wchar_t *wcsncat( wchar_t *dst,
            const wchar_t *src,
                  size_t n );
#include <mbstring.h>
unsigned char *_mbsncat( unsigned char *dst,
                   const unsigned char *src,
                         size_t n );
unsigned char __far *_fmbsncat( unsigned char __far *dst,
                          const unsigned char __far *src,
                                 size_t n );
```

Safer C:

The Safer C Library extension provides the strncat_s function which is a safer alternative to strncat. This newer strncat_s function is recommended to be used instead of the traditional "unsafe" strncat function.

Description:

The strncat function appends not more than n characters of the string pointed to by src to the end of the string pointed to by dst. The first character of src overwrites the null character at the end of dst. A terminating null character is always appended to the result.

The _fstrncat function is a data model independent form of the strncat function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcsncat function is a wide character version of strncat that operates with wide character strings.

The _mbsncat function is a multi-byte character version of strncat that operates with multi-byte character strings.

The _fmbsncat function is a data model independent form of the _mbsncat function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns: The strncat function returns the value of *dst*.

See Also: strcat, strlcat, strncat_s, strcat_s

```
#include <stdio.h>
#include <string.h>

char buffer[80];

void main( void )
{
    strcpy( buffer, "Hello " );
    strncat( buffer, "world", 8 );
    printf( "%s\n", buffer );
    strncat( buffer, "**********, 4 );
    printf( "%s\n", buffer );
}
```

```
produces the following:
```

Hello world
Hello world****

Classification: ISO C

_fstrncat is WATCOM _mbsncat is WATCOM _fmbsncat is WATCOM

Systems:

strncat - All, Linux, RDOS, Netware

_fstrncat - All, Linux, RDOS

wcsncat - All, Linux

_mbsncat - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbsncat - DOS, Windows, OS/2 1.x(all)

```
#define __STDC_WANT_LIB_EXT1__
#include <string.h>
errno_t strncat_s( char * restrict s1,
                   rsize_t s1max,
                   const char * restrict s2,
                   rsize_t n )
#include <wchar.h>
errno_t wcsncat_s( wchar_t * restrict s1,
                   rsize_t s1max,
                   const wchar_t * restrict s2,
                   rsize_t n )
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and strncat_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Let m denote the value sImax - strnlen s(s1, sImax) upon entry to strncat s

Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE MAX. sImax shall not equal zero. m shall not equal zero. If n is not less than m, then m shall be greater than *strnlen_s*(*s*2, *m*). Copying shall not take place between objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than zero and not greater than RSIZE_MAX, then strncat_s sets s1[0] to the null character.

Description:

The strncat_s function appends not more than *n* successive characters (characters that follow a null character are not copied) from the array pointed to by s2 to the end of the string pointed to by s1. The initial character from s2 overwrites the null character at the end of s1. If no null character was copied from s2,then s1[s1max-m+n] is set to a null character. All elements following the terminating null character (if any) written by strncat_s in the array of sImax characters pointed to by sI take unspecified values when strncat_s returns.

The wcsncat_s function is a wide character version of strncat_s that operates with wide character strings.

Returns:

The strncat_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also: **Example:**

#define __STDC_WANT_LIB_EXT1__ 1 #include <stdio.h>

strncat, strcat, strlcat, strcat_s

```
#include <string.h>
char buffer[80];
void main( void )
    strcpy( buffer, "Hello " );
    strncat_s( buffer, sizeof( buffer ), "world", 8 );
   printf( %s\n'', buffer );
    strncat( buffer, "*********, 4 );
   printf( %s\n, buffer );
}
```

strncat_s, wcsncat_s

produces the following:

Hello world
Hello world****

Classification: TR 24731

Systems: strncat_s - All, Linux, RDOS, Netware

wcsncat_s - All, Linux

```
#include <string.h>
int strncmp( const char *s1,
             const char *s2,
             size_t n );
int _fstrncmp( const char __far *s1,
               const char __far *s2,
               size_t n );
#include <wchar.h>
int wcsncmp( const wchar_t *s1,
             const wchar_t *s2,
             size_t n );
#include <mbstring.h>
int _mbsncmp( const unsigned char *s1,
              const unsigned char *s2,
              size_t n );
int _fmbsncmp( const unsigned char __far *s1,
               const unsigned char __far *s2,
               size_t n );
```

Description:

The strncmp compares not more than n characters from the string pointed to by s1 to the string pointed to by s2.

The _fstrncmp function is a data model independent form of the strncmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcsncmp function is a wide character version of strncmp that operates with wide character strings.

The _mbsncmp function is a multi-byte character version of strncmp that operates with multi-byte character strings.

The _fmbsncmp function is a data model independent form of the _mbsncmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The strncmp function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2.

See Also:

strcmp, _stricmp, _strnicmp, strcasecmp, strncasecmp

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
    printf( "%d\n", strncmp( "abcdef", "abcDEF", 10 ) );
    printf( "%d\n", strncmp( "abcdef", "abcDEF", 6 ) );
    printf( "%d\n", strncmp( "abcdef", "abcDEF", 3 ) );
    printf( "%d\n", strncmp( "abcdef", "abcDEF", 0 ) );
}
```

produces the following:

strncmp, _fstrncmp, wcsncmp, _mbsncmp, _fmbsncmp

```
1
1
0
0
0
Classification: ISO C
_fstrncmp is WATCOM
_mbsncmp is WATCOM
_fmbsncmp is WATCOM

fmbsncmp is WATCOM

Systems: strncmp - All, Linux, RDOS, Netware
_fstrncmp - All, Linux, RDOS
wcsncmp - All, Linux, RDOS
wcsncmp - All, Linux
_mbsncmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsncmp - DOS, Windows, OS/2 1.x(all)
```


#include <stdio.h>

Description:

These functions compare the first *count* characters of the string pointed to by s1 to the string pointed to by s2. The comparison uses the current code page which can be selected by the _setmbcp function.

The _wcsncoll function is a wide character version of _strncoll that operates with wide character strings.

The _mbsncoll function is a multi-byte character version of _strncoll that operates with multi-byte character strings.

Returns:

These functions return an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2, according to the collating sequence selected.

See Also: _setmbcp, strcoll, _stricmp, _stricoll, strncmp, _strnicmp, _strnicoll

size_t count);

Example:

```
#include <string.h>
char buffer[80] = "world";

void main()
{
   int test;

   test = _strncoll( buffer, "world2", 5 );
   if( test < 0 ) {
      printf( "Less than\n" );
   } else if( test == 0 ) {
      printf( "Equal\n" );
   } else {
      printf( "Greater than\n" );
   }
}</pre>
```

Classification: WATCOM

```
Systems: _strncoll - All, Linux, RDOS, Netware _wcsncoll - All, Linux _mbsncoll - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

_strncoll, _wcsncoll, _mbsncoll						

```
#include <string.h>
char *strncpy( char *dst,
               const char *src,
               size_t n );
char __far *_fstrncpy( char __far *dst,
                       const char __far *src,
                       size_t n );
#include <wchar.h>
wchar_t *wcsncpy( wchar_t *dst,
                  const wchar_t *src,
                  size_t n );
#include <mbstring.h>
unsigned char *_mbsncpy( unsigned char *dst,
                   const unsigned char *src,
                         size_t n );
unsigned char __far *_fmbsncpy( unsigned char __far *dst,
                          const unsigned char __far *src,
                                 size_t n );
```

Safer C:

The Safer C Library extension provides the strncpy_s function which is a safer alternative to strncpy. This newer strncpy_s function is recommended to be used instead of the traditional "unsafe" strncpy function.

Description:

The strncpy function copies no more than n characters from the string pointed to by src into the array pointed to by dst. Copying of overlapping objects is not guaranteed to work properly. See the memmove function if you wish to copy objects that overlap.

If the string pointed to by src is shorter than n characters, null characters are appended to the copy in the array pointed to by dst, until n characters in all have been written. If the string pointed to by src is longer than n characters, then the result will not be terminated by a null character.

The _fstrncpy function is a data model independent form of the strncpy function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcsncpy function is a wide character version of strncpy that operates with wide character strings.

The _mbsncpy function is a multi-byte character version of strncpy that operates with multi-byte character strings.

The _fmbsncpy function is a data model independent form of the _mbsncpy function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The strncpy function returns the value of *dst*.

See Also:

strlcpy, strcpy, strdup, strncpy_s, strcpy_s

```
#include <stdio.h>
#include <string.h>

void main( void )
{
    char buffer[15];
```

```
printf( "%s\n", strncpy( buffer, "abcdefg", 10 ) );
                 printf( "%s\n", strncpy( buffer, "1234567", 6 ) );
                 printf( "%s\n", strncpy( buffer, "abcdefg", 3 ) );
printf( "%s\n", strncpy( buffer, "******", 0 ) );
            produces the following:
            abcdefq
            123456g
            abc456g
            abc456g
Classification: ISO C
            _fstrncpy is WATCOM
            _mbsncpy is WATCOM
            _fmbsncpy is WATCOM
            strncpy - All, Linux, RDOS, Netware
Systems:
            _fstrncpy - All, Linux, RDOS
            wcsncpy - All, Linux
            _mbsncpy - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
            _fmbsncpy - DOS, Windows, OS/2 1.x(all)
```

```
#define __STDC_WANT_LIB_EXT1__
#include <string.h>
errno_t strncpy_s( char * restrict s1,
                   rsize_t s1max,
                   const char * restrict s2,
                   rsize_t n );
#include <wchar.h>
errno_t wcsncpy_s( wchar_t * restrict s1,
                   rsize_t s1max,
                   const wchar_t * restrict s2,
                   rsize_t n );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and strncpy_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX. s1max shall not equal zero. If n is not less than s1max, then s1max shall be greater than strnlen_s(s2, s1max).

Copying shall not take place between objects that overlap.

If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than zero and not greater than RSIZE_MAX, then strncpy_s sets s1[0] to the null character.

Description:

The strncpy_s function copies not more than n successive characters (characters that follow a null character are not copied) from the array pointed to by s2 to the array pointed to by s1. If no null character was copied from s2, then s1/n is set to a null character.

All elements following the terminating null character (if any) written by strncpy_s in the array of slmax characters pointed to by sl take unspecified values when strncpy_s returns.

The wcsncpy_s function is a wide character version of strncpy_s that operates with wide character strings.

Returns:

The strncpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

strncpy, strlcpy, strcpy, strdup, strcpy_s

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <string.h>
void main( void )
    char buffer[15];
```

```
strncpy_s( buffer, sizeof( buffer ), "abcdefg", 10 );
               printf( "%s\n", buffer );
               strncpy_s( buffer, sizeof( buffer ), "1234567", 6 );
               printf( %s\n, buffer );
               strncpy_s( buffer, sizeof( buffer ), "abcdefg", 3 );
               printf( "%s\n", buffer );
               strncpy_s( buffer, sizeof( buffer ), "******", 0 );
               printf( "%s\n", buffer );
           }
           produces the following:
           abcdefg
           123456
           abc
           (nothing)
Classification: TR 24731
Systems:
           strncpy_s - All, Linux, RDOS, Netware
           wcsncpy_s - All, Linux
```

```
#include <string.h>
int _strnicmp( const char *s1,
               const char *s2,
               size_t len );
int _fstrnicmp( const char __far *s1,
                const char __far *s2,
                size_t len );
#include <wchar.h>
int _wcsnicmp( const wchar_t *s1,
               const wchar_t *s2,
               size_t len );
#include <mbstring.h>
int _mbsnicmp( const unsigned char *s1,
               const unsigned char *s2,
               size_t n );
int _fmbsnicmp( const unsigned char __far *s1,
                const unsigned char __far *s2,
                size_t n );
** deprecated **
int strnicmp( const char *s1,
              const char *s2,
              size_t len );
```

Description:

The function compares, without case sensitivity, the string pointed to by s1 to the string pointed to by s2, for at most *len* characters. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The _fstrnicmp function is a data model independent form of the _strnicmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The _wcsnicmp function is a wide character version of _strnicmp that operates with wide character strings.

The _mbsnicmp function is a multi-byte character version of _strnicmp that operates with multi-byte character strings.

The _fmbsnicmp function is a data model independent form of the _mbsnicmp function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The strnicmp function is deprecated, use _strnicmp instead.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2.

See Also:

strcmp, _stricmp, strncmp, strcasecmp, strncasecmp

```
#include <stdio.h>
              #include <string.h>
              void main()
                 {
                   printf( "%d\n", _strnicmp( "abcdef", "ABCXXX", 10 ) );
printf( "%d\n", _strnicmp( "abcdef", "ABCXXX", 6 ) );
printf( "%d\n", _strnicmp( "abcdef", "ABCXXX", 3 ) );
                    printf( "%d\n", _strnicmp( "abcdef", "ABCXXX", 0 ) );
              produces the following:
              -20
              -20
              0
              0
Classification: WATCOM
Systems:
              _strnicmp - All, Linux, RDOS, Netware
              _fstrnicmp - All, Linux, RDOS
_wcsnicmp - All, Linux
              _mbsnicmp - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
              _fmbsnicmp - DOS, Windows, OS/2 1.x(all)
              strnicmp - All, Linux, RDOS, Netware
```

Description:

The function performs a comparison without case sensitivity of the first *count* characters of the string pointed to by s1 to the string pointed to by s2. The comparison uses the current code page which can be selected by the _setmbop function. All uppercase characters from s1 and s2 are mapped to lowercase for the purposes of doing the comparison.

The _wcsnicoll function is a wide character version of _strnicoll that operates with wide character strings.

The _mbsnicoll function is a multi-byte character version of _strnicoll that operates with multi-byte character strings.

Returns:

The function returns an integer less than, equal to, or greater than zero, indicating that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2, according to the collating sequence selected.

See Also: _setmbcp, strcoll, _stricmp, _stricoll, strncmp, _strncoll, _strnicmp

Example:

#include <stdio.h>

```
#include <string.h>
char buffer[80] = "world";

void main()
{
  int test;

  test = _strnicoll( buffer, "World2", 5 );
  if( test < 0 ) {
     printf( "Less than\n" );
  } else if( test == 0 ) {
     printf( "Equal\n" );
  } else {
     printf( "Greater than\n" );
  }
}</pre>
```

Classification: WATCOM

```
Systems:
```

```
_strnicoll - All, Linux, RDOS, Netware
_wcsnicoll - All, Linux
_mbsnicoll - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
RDOS
```

_strnicoll, _wcsnicoll, _mbsnicoll							

```
#include <string.h>
char *_strnset( char *s, int fill, size_t count );
char __far *_fstrnset( char __far *s,
                       int fill,
                       size_t count );
#include <wchar.h>
wchar_t *_wcsnset( wchar_t *s, int fill, size_t count );
#include <mbstring.h>
unsigned char *_mbsnset( unsigned char *s,
                         unsigned int fill,
                         size_t count );
unsigned char __far *_fmbsnset( unsigned char __far *s,
                                unsigned int fill,
                                size_t count );
** deprecated **
char *strnset( char *s, int fill, size_t count );
wchar_t *wcsnset( wchar_t *s, int fill, size_t count );
```

Description:

The _strnset function fills the string s with the value of the argument fill, converted to be a character value. When the value of count is greater than the length of the string, the entire string is filled. Otherwise, that number of characters at the start of the string are set to the fill character.

The _fstrnset function is a data model independent form of the _strnset function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The _wcsnset function is a wide character version of _strnset that operates with wide character strings. For _wcsnset, the value of *count* is the number of wide characters to fill. This is half the number of bytes.

The _mbsnset function is a multi-byte character version of _strnset that operates with multi-byte character strings.

The _fmbsnset function is a data model independent form of the _mbsnset function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

For _mbsnset, the value of *count* is the number of multibyte characters to fill. If the number of bytes to be filled is odd and *fill* is a double-byte character, the partial byte at the end is filled with an ASCII space character.

The strnset function is deprecated, use _strnset instead.

Returns: The address of the original string *s* is returned.

See Also: _strset

```
#include <stdio.h>
           #include <string.h>
           char source[] = { "A sample STRING" };
           void main()
            {
              printf( "%s\n", source );
              printf( "%s\n", _strnset( source, '=', 100 ) );
              printf( "%s\n", _strnset( source, '*', 7 ) );
           produces the following:
          A sample STRING
           ==========
           *****
Classification: WATCOM
          _strnset - All, Linux, RDOS, Netware
Systems:
           _fstrnset - All, Linux, RDOS
          _wcsnset - All, Linux
          _mbsnset - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
          _fmbsnset - DOS, Windows, OS/2 1.x(all)
          strnset - All, Linux, RDOS, Netware
          wcsnset - All, Linux
```

Description:

The strpbrk function locates the first occurrence in the string pointed to by s of any character from the string pointed to by charset.

The _fstrpbrk function is a data model independent form of the strpbrk function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcspbrk function is a wide character version of strpbrk that operates with wide character strings.

The _mbspbrk function is a multi-byte character version of strpbrk that operates with multi-byte character strings.

The _fmbspbrk function is a data model independent form of the _mbspbrk function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The strpbrk function returns a pointer to the located character, or NULL if no character from *charset* occurs in *s*.

See Also:

strchr, strrchr, strtok

#include <stdio.h>

Example:

```
#include <string.h>
void main()
{
   char *p = "Find all vowels";

   while( p != NULL ) {
      printf( "%s\n", p );
      p = strpbrk( p+1, "aeiouAEIOU" );
   }
}
```

produces the following:

```
Find all vowels
ind all vowels
all vowels
owels
els
```

strpbrk, _fstrpbrk, wcspbrk, _mbspbrk, _fmbspbrk

Classification: ISO C

_fstrpbrk is WATCOM _mbspbrk is WATCOM _fmbspbrk is WATCOM

Systems: strpbrk - All, Linux, RDOS, Netware

_fstrpbrk - All, Linux, RDOS

wcspbrk - All, Linux

_mbspbrk - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

_fmbspbrk - DOS, Windows, OS/2 1.x(all)

Synopsis: #include <string.h>

Description:

The strrchr function locates the last occurrence of c (converted to a char) in the string pointed to by s. The terminating null character is considered to be part of the string.

The _fstrrchr function is a data model independent form of the strrchr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcsrchr function is a wide character version of strrchr that operates with wide character strings.

The _mbsrchr function is a multi-byte character version of strrchr that operates with multi-byte character strings.

The _fmbsrchr function is a data model independent form of the _mbsrchr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The strrchr function returns a pointer to the located character, or a NULL pointer if the character does not occur in the string.

See Also:

strchr, strpbrk

#include <stdio.h>

Example:

```
#include <string.h>
void main()
{
    printf( "%s\n", strrchr( "abcdeaaklmn", 'a' ) );
    if( strrchr( "abcdeaaklmn", 'x' ) == NULL )
        printf( "NULL\n" );
}
```

produces the following:

aklmn NULL

Classification: ISO C

_fstrrchr is WATCOM _mbsrchr is WATCOM _fmbsrchr is WATCOM

```
strrchr - All, Linux, RDOS, Netware
_fstrrchr - All, Linux, RDOS
```

```
wcsrchr - All, Linux
_mbsrchr - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsrchr - DOS, Windows, OS/2 1.x(all)
```

```
#include <string.h>
char *_strrev( char *s1 );
char __far *_fstrrev( char __far *s1 );
#include <wchar.h>
wchar_t *_wcsrev( wchar_t *s1 );
#include <mbstring.h>
unsigned char *_mbsrev( unsigned char *s1 );
unsigned char __far *_fmbsrev( unsigned char __far *s1 );

** deprecated **
char *strrev( char *s1 );
```

Description:

The _strrev function replaces the string s1 with a string whose characters are in the reverse order.

The _strrev function is identical to _strrev. Use _strrev for ANSI naming conventions.

The _fstrrev function is a data model independent form of the _strrev function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The _wcsrev function is a wide character version of _strrev that operates with wide character strings.

The _mbsrev function is a multi-byte character version of _strrev that operates with multi-byte character strings.

The _fmbsrev function is a data model independent form of the _mbsrev function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The strrev function is deprecated, use _strrev instead.

Returns:

The address of the original string *s1* is returned.

Example:

```
#include <stdio.h>
#include <string.h>

char source[] = { "A sample STRING" };

void main()
    {
       printf( "%s\n", source );
       printf( "%s\n", _strrev( source ) );
       printf( "%s\n", _strrev( source ) );
    }
}
```

produces the following:

A sample STRING GNIRTS elpmas A A sample STRING

Classification: WATCOM

```
Systems: _strrev - All, Linux, RDOS, Netware _fstrrev - All, Linux, RDOS
```

```
_wcsrev - All, Linux
_mbsrev - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsrev - DOS, Windows, OS/2 1.x(all)
strrev - All, Linux, RDOS, Netware
```

Description:

The $_strset$ function fills the string pointed to by s1 with the character fill. The terminating null character in the original string remains unchanged.

The _fstrset function is a data model independent form of the _strset function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The _wcsset function is a wide character version of _strset that operates with wide character strings.

The _mbsset function is a multi-byte character version of _strset that operates with multi-byte character strings.

The _fmbsset function is a data model independent form of the _mbsset function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The strset function is deprecated, use _strset instead.

Returns:

The address of the original string *s1* is returned.

See Also:

_strnset

Example:

```
#include <stdio.h>
#include <string.h>

char source[] = { "A sample STRING" };

void main()
    {
        printf( "%s\n", source );
        printf( "%s\n", _strset( source, '=' ) );
        printf( "%s\n", _strset( source, '*' ) );
    }

produces the following:

A sample STRING
```

Classification: WATCOM

```
__strset - All, Linux, RDOS, Netware
__fstrset - All, Linux, RDOS
__wcsset - All, Linux
__mbsset - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
__fmbsset - DOS, Windows, OS/2 1.x(all)
strset - All, Linux, RDOS, Netware
```

Description:

The strspn function computes the length, in bytes, of the initial segment of the string pointed to by *s* which consists of characters from the string pointed to by *charset*. The terminating null character is not considered to be part of *charset*.

The _fstrspn function is a data model independent form of the strspn function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcsspn function is a wide character version of strspn that operates with wide character strings.

The _mbsspn function is a multi-byte character version of strspn that operates with multi-byte character strings.

The _fmbsspn function is a data model independent form of the _mbsspn function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The length, in bytes, of the initial segment is returned.

See Also:

strcspn, strspnp

Example:

```
#include <stdio.h>
#include <string.h>

void main()
{
    printf( "%d\n", strspn( "out to lunch", "aeiou" ) );
    printf( "%d\n", strspn( "out to lunch", "xyz" ) );
}
```

produces the following:

2

Classification: ISO C

_fstrspn is WATCOM _mbsspn is WATCOM _fmbsspn is WATCOM

```
strspn - All, Linux, RDOS, Netware
_fstrspn - All, Linux, RDOS
```

```
wcsspn - All, Linux
_mbsspn - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsspn - DOS, Windows, OS/2 1.x(all)
```

Description: The strspnp function returns a pointer to the first character in *s* that does not belong to the set of characters in *charset*. The terminating null character is not considered to be part of *charset*.

The _fstrspnp function is a data model independent form of the strspnp function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns: These functions return NULL if s consists entirely of characters from charset.

See Also: strcspn, strspn

Example: #include <stdio.h>
#include <string.h>

```
void main()
{
   printf( "%s\n", strspnp( "out to lunch", "aeiou" ) );
   printf( "%s\n", strspnp( "out to lunch", "xyz" ) );
}
```

produces the following:

```
t to lunch out to lunch
```

Classification: WATCOM

Systems: strspnp - All, Linux, RDOS, Netware _fstrspnp - All, Linux, RDOS

```
Synopsis:
             #include <string.h>
             char *strstr( const char *s,
                               const char *substr );
             char __far *_fstrstr( const char __far *s,
                                         const char __far *substr );
             #include <wchar.h>
             wchar_t *wcsstr( const wchar_t *s,
                                   const wchar_t *substr );
             #include <mbstring.h>
             unsigned char *_mbsstr( const unsigned char *s,
                                            const unsigned char *substr );
             unsigned char ___far *_fmbsstr(
                                       const unsigned char __far *s,
                                       const unsigned char __far *substr );
Description:
             The strstr function locates the first occurrence in the string pointed to by s of the sequence of
             characters (excluding the terminating null character) in the string pointed to by substr.
             The _fstrstr function is a data model independent form of the strstr function. It accepts far
             pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.
             The wesstr function is a wide character version of strstr that operates with wide character strings.
             The _mbsstr function is a multi-byte character version of strstr that operates with multi-byte
             character strings.
             The _fmbsstr function is a data model independent form of the _mbsstr function. It accepts far
             pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.
Returns:
             The strstr function returns a pointer to the located string, or NULL if the string is not found.
See Also:
             strcspn
Example:
             #include <stdio.h>
             #include <string.h>
             void main()
                {
                  printf( "%s\n", strstr("This is an example", "is") );
             produces the following:
             is is an example
Classification: ISO C
             _fstrstr is WATCOM
             wesstr is ISO C95
             mbsstr is WATCOM
             _fmbsstr is WATCOM
Systems:
             strstr - All, Linux, RDOS, Netware
```

_fstrstr - All, Linux, RDOS

wcsstr - All, Linux

_mbsstr - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsstr - DOS, Windows, OS/2 1.x(all)

Systems:

```
Synopsis:
              #include <time.h>
              char *_strtime( char *timestr )
              wchar_t _wstrtime( wchar_t *timestr );
Description:
             The _strtime function copies the current time to the buffer pointed to by timestr. The time is
              formatted as "HH:MM:SS" where "HH" is two digits representing the hour in 24-hour notation, where
              "MM" is two digits representing the minutes past the hour, and where "SS" is two digits representing
              seconds. The buffer must be at least 9 bytes long.
              The _wstrtime function is a wide character version of _strtime that operates with wide character
              strings.
Returns:
              The _strtime function returns a pointer to the resulting text string timestr.
See Also:
              asctime Functions, ctime Functions, gmtime, localtime, mktime, _strdate, time,
              tzset
Example:
              #include <stdio.h>
              #include <time.h>
              void main()
                {
                   char timebuff[9];
                   printf( "%s\n", _strtime( timebuff ) );
Classification: WATCOM
```

_strtime - All, Linux, RDOS _wstrtime - All, Linux

```
#include <stdlib.h>
double strtod( const char *ptr, char **endptr );
#include <wchar.h>
double wcstod( const wchar_t *ptr, wchar_t **endptr );
```

Description:

The strtod function converts the string pointed to by *ptr* to double representation. First, it decompose the input string into three parts: an initial, possibly empty, sequence of white-space characters (as specified by the isspace function), a subject sequence resembling a floating-point constant or representing an infinity or NaN; and a final string of one or more unrecognized characters, including the terminating null character of the input string. Then, it attempts to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

- a decimal floating-point number
- a hexadecimal floating-point number
- INF or INFINITY, ignoring case
- NAN, ignoring case, optionally followed by a sequence of digits and nondigits (upper- or lowercase characters or underscore) enclosed in parentheses.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-whitespace character, that is of the expected form. The subject sequence contains no characters if the input string is not of the expected form.

A decimal floating-point number recognized by strtod (after optional sign was processed) is a string containing:

- a sequence of digits containing an optional decimal point,
- an optional 'e' or 'E' followed by an optionally signed sequence of digits.

A hexadecimal floating-point number recognized by strtod (after optional sign was processed) is a string containing:

- a 0X prefix, ignoring case,
- a sequence of hexadecimal digits containing an optional decimal point,
- an optional 'p' or 'P' followed by an optionally signed sequence of decimal digits.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-white-space character, that is of the expected form. The subject sequence contains no characters if the input string is not of the expected form.

If the subject sequence contains NAN, a NaN (with appropriate sign) will be returned; the optional digit-nondigit sequence is ignored. If the subject sequence contains INF, the value of infinity (with appropriate sign) will be returned. This case can be distinguished from overflow by checking errno.

For a hexadecimal floating-point number, the optional exponent is binary (that is, denotes a power of two), not decimal.

A pointer to the final string (following the subject sequence) will be stored in the object to which *endptr* points if *endptr* is not NULL. By comparing the "end" pointer with *ptr*, it can be determined how much of the string, if any, was scanned by the strtod function.

The wested function is a wide character version of strted that operates with wide character strings.

Returns:

The strtod function returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct value would cause overflow, plus or minus HUGE_VAL is returned according to the sign, and errno is set to ERANGE. If the correct value would cause underflow, then zero is returned, and errno is set to ERANGE. Zero is returned when the input string cannot be converted. In this case, errno is not set. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: atof

Example:

```
#include <stdio.h>
#include <stdlib.h>

void main( void )
{
    double pi;
    pi = strtod( "3.141592653589793", NULL );
    printf( "pi=%17.15f\n",pi );
}
```

Classification: ISO C90

Systems:

strtod - Math wcstod - Math

```
#include <string.h>
char *strtok( char *s1, const char *s2 );
char *strtok_r( char *s1, const char *s2, char **p1 );
char __far *_fstrtok( char __far *s1,
                     const char __far *s2 );
char __far *_fstrtok_r( char __far *s1,
                       const char __far *s2,
                        char __far **p1 );
#include <wchar.h>
wchar_t *wcstok( wchar_t *s1, const wchar_t *s2,
                 wchar_t **ptr );
#include <mbstring.h>
unsigned char *_mbstok( unsigned char *s1,
                  const unsigned char *s2 );
unsigned char *_mbstok_r( unsigned char *s1,
                  const unsigned char *s2,
                  unsigned char **p1 );
unsigned char __far *_fmbstok( unsigned char __far *s1,
                         const unsigned char __far *s2 );
unsigned char __far *_fmbstok_r( unsigned char __far *s1,
                         const unsigned char __far *s2,
                         unsigned char __far **p1 );
```

Safer C: The Safer C Library extension provides the strtok_s function which is a safer alternative to strtok. This newer strtok_s function is recommended to be used instead of the traditional "unsafe" strtok function.

Description:

The strtok function is used to break the string pointed to by s1 into a sequence of tokens, each of which is delimited by a character from the string pointed to by s2. The first call to strtok will return a pointer to the first token in the string pointed to by s1. Subsequent calls to strtok must pass a NULL pointer as the first argument, in order to get the next token in the string. The set of delimiters used in each of these calls to strtok can be different from one call to the next.

The first call in the sequence searches s1 for the first character that is not contained in the current delimiter string s2. If no such character is found, then there are no tokens in s1 and the strtok function returns a NULL pointer. If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the current delimiter string. If no such character is found, the current token extends to the end of the string pointed to by sI. If such a character is found, it is overwritten by a null character, which terminates the current token. The strtok function saves a pointer to the following character, from which the next search for a token will start when the first argument is a NULL pointer.

Because strtok may modify the original string, that string should be duplicated if the string is to be re-used.

The reentrant form of this function, strtok_r, also requires a pointer to a string pointer to be passed. This pointer is used internally by the function for subsequent calls to perform tokenizing without relying on internal state within the function.

The _fstrtok function is a data model independent form of the strtok function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The wcstok function is a wide character version of strtok that operates with wide character strings. The third argument *ptr* points to a caller-provided wchar_t pointer into which the wcstok function stores information necessary for it to continue scanning the same wide string.

On the first call in the sequence of calls to wcstok, sI points to a wide string. In subsequent calls for the same string, sI must be NULL. If sI is NULL, the value pointed to by ptr matches that set by the previous call to wcstok for the same wide string. Otherwise, the value of ptr is ignored. The list of delimiters pointed to by s2 may be different from one call to the next. The tokenization of sI is similar to that for the strtok function.

The _mbstok_r function is a multi-byte character version of strtok that operates with multi-byte character strings.

The _fmbstok_r function is a data model independent form of the _mbstok_r function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns:

The strtok function returns a pointer to the first character of a token or NULL if there is no token found.

```
See Also:
           strcspn, strpbrk, strtok_s
Example:
           #include <stdio.h>
           #include <string.h>
           void main()
               char *p;
               char *buffer;
               char *delims = { " .," };
               buffer = strdup( "Find words, all of them." );
               printf( "%s\n", buffer );
               p = strtok( buffer, delims );
               while( p != NULL ) {
                 printf( "word: %s\n", p );
                 p = strtok( NULL, delims );
               printf( "%s\n", buffer );
           }
           produces the following:
           Find words, all of them.
           word: Find
           word: words
           word: all
           word: of
           word: them
           Find
```

Classification: ISO C

strtok_r is WATCOM _fstrtok is WATCOM _fstrtok_r is WATCOM westok is ISO C95

```
_mbstok is WATCOM
_mbstok_r is WATCOM
_fmbstok is WATCOM
_fmbstok_r is WATCOM

strtok - All, Linux, RDOS, Netware
strtok_r - All, Linux, RDOS, Netware
_fstrtok - All, Linux, RDOS
_fstrtok_r - All, Linux, RDOS
wcstok - All, Linux, RDOS
wcstok - All, Linux
_mbstok - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_mbstok_r - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
```

_fmbstok_r - DOS, Windows, OS/2 1.x(all)

_fmbstok - DOS, Windows, OS/2 1.x(all)

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and strtok_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

None of sImax, s2, or ptr shall be a null pointer. If sI is a null pointer, then *ptr shall not be a null pointer. The value of *sImax shall not be greater than RSIZE_MAX. The end of the token found shall occur within the first *sImax characters of sI for the first call, and shall occur within the first *sImax characters of where searching resumes on subsequent calls. If there is a runtime-constraint violation, the strtok_s function does not indirect through the sI or s2 pointers, and does not store a value in the object pointed to by ptr.

Description:

A sequence of calls to the strtok_s function breaks the string pointed to by s1 into a sequence of tokens, each of which is delimited by a character from the string pointed to by s2. The fourth argument points to a caller-provided char pointer into which the strtok_s function stores information necessary for it to continue scanning the same string. The first call in a sequence has a non-null first argument and sImax points to an object whose value is the number of elements in the character array pointed to by the first argument. The first call stores an initial value in the object pointed to by ptr and updates the value pointed to by sImax to reflect the number of elements that remain in relation to ptr. Subsequent calls in the sequence have a null first argument and the objects pointed to by slmax and ptr are required to have the values stored by the previous call in the sequence, which are then updated. The separator string pointed to by s2 may be different from call to call. The first call in the sequence searches the string pointed to by s1 for the first character that is not contained in the current separator string pointed to by s2. If no such character is found, then there are no tokens in the string pointed to by sI and the strtok_s function returns a null pointer. If such a character is found, it is the start of the first token. The strtok_s function then searches from there for the first character in s1 that is contained in the current separator string. If no such character is found, the current token extends to the end of the string pointed to by s1, and subsequent searches in the same string for a token return a null pointer. If such a character is found, it is overwritten by a null character, which terminates the current token. In all cases, the strtok_s function stores sufficient information in the pointer pointed to by ptr so that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start searching just past the element overwritten by a null character (if any).

The wcstok_s function is a wide character version of strtok_s that operates with wide character strings.

Returns:

The strtok_s function returns a pointer to the first character of a token, or a null pointer if there is no token or there is a runtime-constraint violation.

See Also:

strtok, strcspn, strpbrk

```
Example:
           #define __STDC_WANT_LIB_EXT1__ 1
           #include <stdio.h>
           #include <string.h>
           void main( void )
               char
                       *p;
                      *buffer;
               char
                     *delims = { " ., " };
               char
               size_t buflen;
               char
                       *ptr;
               buffer = strdup( "Find words, all of them." );
               printf( "%s\n", buffer );
               buflen = strlen( buffer );
               p = strtok_s( buffer, &buflen, delims, &ptr );
               while( p != NULL ) {
                 printf( "word: %s\n", p );
                 p = strtok_s( NULL, &buflen, delims, &ptr );
               printf( %s\n", buffer );
           }
           produces the following:
           Find words, all of them.
           word: Find
           word: words
           word: all
           word: of
           word: them
           Find
Classification: TR 24731
Systems:
           strtok_s - All, Linux, RDOS, Netware
           wcstok_s - All, Linux
```

Description:

The strtol function converts the string pointed to by *ptr* to an object of type long int. The strtol function recognizes a string containing:

• optional white space,

#include <stdlib.h>

- an optional plus or minus sign,
- a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to that character will be stored in the object to which *endptr* points if *endptr* is not NULL.

If base is zero, the first characters after the optional sign determine the base used for the conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is '0', the digits are treated as octal. Otherwise the digits are treated as decimal.

If *base* is not zero, it must have a value between 2 and 36. The letters a-z and A-Z represent the values 10 through 35. Only those letters whose designated values are less than *base* are permitted. If the value of *base* is 16, the characters "0x" or "0X" may optionally precede the sequence of letters and digits.

The west-ol function is a wide character version of strtol that operates with wide character strings.

Returns:

The strtol function returns the converted value. If the correct value would cause overflow, LONG_MAX or LONG_MIN is returned according to the sign, and errno is set to ERANGE. If *base* is out of range, zero is returned and errno is set to EDOM.

See Also:

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtoll, strtoul, strtoull, strtoimax, strtoumax, ultoa, ultoa, utoa

Example:

```
void main()
{
    long int v;
    v = strtol( "12345678", NULL, 10 );
}
```

Classification: ISO C

```
strtol - All, Linux, RDOS, Netware wcstol - All, Linux, RDOS
```

		strtol, wcstol

Description:

The strtoll function converts the string pointed to by *ptr* to an object of type long long int. The strtoll function recognizes a string containing:

• optional white space,

#include <stdlib.h>

- an optional plus or minus sign,
- a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to that character will be stored in the object to which *endptr* points if *endptr* is not NULL.

If base is zero, the first characters after the optional sign determine the base used for the conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is '0', the digits are treated as octal. Otherwise the digits are treated as decimal.

If *base* is not zero, it must have a value between 2 and 36. The letters a-z and A-Z represent the values 10 through 35. Only those letters whose designated values are less than *base* are permitted. If the value of *base* is 16, the characters "0x" or "0X" may optionally precede the sequence of letters and digits.

The west-oll function is a wide character version of strtoll that operates with wide character strings.

Returns:

The strtoll function returns the converted value. If the correct value would cause overflow, LLONG_MAX or LLONG_MIN is returned according to the sign, and errno is set to ERANGE. If *base* is out of range, zero is returned and errno is set to EDOM.

See Also:

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoul, strtoull, strtoimax, strtoumax, ultoa, ultoa, utoa

Example:

```
void main()
{
    long long int v;

    v = strtol( "12345678909876", NULL, 10 );
}
```

Classification: ISO C

```
strtoll - All, Linux, RDOS, Netware wcstoll - All, Linux, RDOS
```

		strtoll, wcstoll

Description:

The strtoimax function converts the string pointed to by *ptr* to an object of type intmax_t. The strtoimax function recognizes a string containing:

- optional white space,
- an optional plus or minus sign,
- a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to that character will be stored in the object to which *endptr* points if *endptr* is not NULL.

If *base* is zero, the first characters after the optional sign determine the base used for the conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is '0', the digits are treated as octal. Otherwise the digits are treated as decimal.

If *base* is not zero, it must have a value between 2 and 36. The letters a-z and A-Z represent the values 10 through 35. Only those letters whose designated values are less than *base* are permitted. If the value of *base* is 16, the characters "0x" or "0X" may optionally precede the sequence of letters and digits.

The wcstoimax function is a wide character version of strtoimax that operates with wide character strings.

Returns:

The strtoimax function returns the converted value. If the correct value would cause overflow, INTMAX_MAX or INTMAX_MIN is returned according to the sign, and errno is set to ERANGE. If *base* is out of range, zero is returned and errno is set to EDOM.

See Also:

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoumax, ultoa, ultoa, utoa

Example:

```
#include <inttypes.h>
#include <stdlib.h>

void main()
{
   intmax_t v;
   v = strtoimax( "12345678909876", NULL, 10 );
}
```

Classification: ISO C

```
strtoimax - All, Linux, RDOS, Netware wcstoimax - All, Linux, RDOS
```

strtoimax, wcstoimax

Description:

The strtoul function converts the string pointed to by *ptr* to an unsigned long. The function recognizes a string containing optional white space, an optional sign (+ or -), followed by a sequence of digits and letters. The conversion ends at the first unrecognized character. A pointer to that character will be stored in the object *endptr* points to if *endptr* is not NULL.

If *base* is zero, the first characters determine the base used for the conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is '0', the digits are treated as octal. Otherwise the digits are treated as decimal.

If *base* is not zero, it must have a value of between 2 and 36. The letters a-z and A-Z represent the values 10 through 35. Only those letters whose designated values are less than *base* are permitted. If the value of *base* is 16, the characters "0x" or "0X" may optionally precede the sequence of letters and digits.

If there is a leading minus sign in the string, the value is negated.

The west-oul function is a wide character version of strtoul that operates with wide character strings.

Returns:

The strtoul function returns the converted value. If the correct value would cause overflow, ULONG_MAX is returned and errno is set to ERANGE. If *base* is out of range, zero is returned and errno is set to EDOM.

See Also:

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoull, strtoimax, strtoumax, ultoa, ultoa, utoa

Example:

```
void main()
{
    unsigned long int v;

    v = strtoul( "12345678", NULL, 10 );
}
```

#include <stdlib.h>

Classification: ISO C

```
strtoul - All, Linux, RDOS, Netware wcstoul - All, Linux, RDOS
```

strtoul, wcstou

Description:

The strtoull function converts the string pointed to by *ptr* to an unsigned long long. The function recognizes a string containing optional white space, an optional sign (+ or -), followed by a sequence of digits and letters. The conversion ends at the first unrecognized character. A pointer to that character will be stored in the object *endptr* points to if *endptr* is not NULL.

If *base* is zero, the first characters determine the base used for the conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is '0', the digits are treated as octal. Otherwise the digits are treated as decimal.

If *base* is not zero, it must have a value of between 2 and 36. The letters a-z and A-Z represent the values 10 through 35. Only those letters whose designated values are less than *base* are permitted. If the value of *base* is 16, the characters "0x" or "0X" may optionally precede the sequence of letters and digits.

If there is a leading minus sign in the string, the value is negated.

The west-oull function is a wide character version of strtoull that operates with wide character strings.

Returns:

The strtoull function returns the converted value. If the correct value would cause overflow, ULLONG_MAX is returned and errno is set to ERANGE. If *base* is out of range, zero is returned and errno is set to EDOM.

See Also:

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoimax, strtoumax, ultoa, ultoa, utoa

Example:

```
void main()
{
    unsigned long long int v;

    v = strtoul( "12345678909876", NULL, 10 );
}
```

Classification: ISO C

Systems:

```
strtoull - All, Linux, RDOS, Netware wcstoull - All, Linux, RDOS
```

#include <stdlib.h>

		strtoull, wcstoull

Description:

The strtoumax function converts the string pointed to by *ptr* to an uintmax_t. The function recognizes a string containing optional white space, an optional sign (+ or -), followed by a sequence of digits and letters. The conversion ends at the first unrecognized character. A pointer to that character will be stored in the object *endptr* points to if *endptr* is not NULL.

If *base* is zero, the first characters determine the base used for the conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is '0', the digits are treated as octal. Otherwise the digits are treated as decimal.

If *base* is not zero, it must have a value of between 2 and 36. The letters a-z and A-Z represent the values 10 through 35. Only those letters whose designated values are less than *base* are permitted. If the value of *base* is 16, the characters "0x" or "0X" may optionally precede the sequence of letters and digits.

If there is a leading minus sign in the string, the value is negated.

The wcstoumax function is a wide character version of strtoumax that operates with wide character strings.

Returns:

The strtoumax function returns the converted value. If the correct value would cause overflow, UINTMAX_MAX is returned and errno is set to ERANGE. If *base* is out of range, zero is returned and errno is set to EDOM.

See Also:

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoimax, ultoa, ultoa, utoa

Example:

```
#include <inttypes.h>
#include <stdlib.h>

void main()
{
    uintmax_t v;
    v = strtoumax( "12345678909876", NULL, 10 );
}
```

Classification: ISO C

```
strtoumax - All, Linux, RDOS, Netware wcstoumax - All, Linux, RDOS
```

		strtoumax,	wcstoum

Synopsis: #include <string.h> char *_strupr(char *s); char __far *_fstrupr(char __far *s); #include <wchar.h> wchar_t *_wcsupr(wchar_t *s); #include <mbstring.h> unsigned char *_mbsupr(unsigned char *s); unsigned char __far *_fmbsupr(unsigned char __far *s); ** deprecated ** char *strupr(char *s);

Description:

The _strupr function replaces the string *s* with uppercase characters by invoking the toupper function for each character in the string.

The _fstrupr function is a data model independent form of the _strupr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The _wcsupr function is a wide character version of _strupr that operates with wide character strings.

The _mbsupr function is a multi-byte character version of _strupr that operates with multi-byte character strings.

The _fmbsupr function is a data model independent form of the _mbsupr function. It accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory model applications.

The strupr function is deprecated, use _strupr instead.

Returns: The address of the original string *s* is returned.

```
See Also: _strlwr
```

Example:

```
#include <stdio.h>
#include <string.h>

char source[] = { "A mixed-case STRING" };

void main()
    {
        printf( "%s\n", source );
        printf( "%s\n", _strupr( source ) );
        printf( "%s\n", source );
    }
}
```

produces the following:

```
A mixed-case STRING
A MIXED-CASE STRING
A MIXED-CASE STRING
```

Classification: WATCOM

```
Systems: _strupr - All, Linux, RDOS, Netware
```

```
_fstrupr - All, Linux, RDOS
_wcsupr - All, Linux
_mbsupr - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_fmbsupr - DOS, Windows, OS/2 1.x(all)
strupr - All, Linux, RDOS, Netware
```

Description:

The strxfrm function transforms, for no more than n characters, the string pointed to by src to the buffer pointed to by dst. The transformation uses the collating sequence selected by the setlocale function so that two transformed strings will compare identically (using the strncmp function) to a comparison of the original two strings using the strcoll function. The function will be equivalent to the strncpy function (except there is no padding of the dst argument with null characters when the argument src is shorter than n characters) when the collating sequence is selected from the "C" locale.

The wcsxfrm function is a wide character version of strxfrm that operates with wide character strings. For wcsxfrm, after the string transformation, a call to wcscmp with the two transformed strings yields results identical to those of a call to wcscoll applied to the original two strings. wcsxfrm and strxfrm behave identically otherwise.

Returns:

The strxfrm function returns the length of the transformed string. If this length is more than n, the contents of the array pointed to by dst are indeterminate.

See Also: setlocale, strcoll

#include <stdio.h>

Example:

```
#include <string.h>
#include <locale.h>

char src[] = { "A sample STRING" };
char dst[20];

void main()
    {
        size_t len;

        setlocale( LC_ALL, "C" );
        printf( "%s\n", src );
        len = strxfrm( dst, src, 20 );
        printf( "%s (%u)\n", dst, len );
    }
}
```

produces the following:

```
A sample STRING A sample STRING (15)
```

Classification: ISO C

Systems: strxfrm - All, Linux, RDOS, Netware wcsxfrm - All, Linux

		strxfrm, wcsxfrm

```
Synopsis: #include <stdlib.h>
    void swab( char *src, char *dest, int num );
```

Description: The swab function copies *num* bytes (which should be even) from *src* to *dest* swapping every pair of

characters. This is useful for preparing binary data to be transferred to another machine that has a

different byte ordering.

Returns: The swab function has no return value.

```
Example: #include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *msg = "hTsim seasegi swspaep.d";
#define NBYTES 24

void main()
{
    auto char buffer[80];

    printf( "%s\n", msg );
    memset( buffer, '\0', 80 );
    swab( msg, buffer, NBYTES );
    printf( "%s\n", buffer );
}

produces the following:
```

hTsim seasegi swspaep.d This message is swapped.

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Synopsis: #include <unistd.h>

long sysconf(int name);

Description: The sysconf function retrieves a current system configuration parameter depending on the value of

system information from the kernel via the *name* passed. This implementation currently supports the

following inputs:

Member	Meaning	
_SC_ARG_MAX	The maximum number of arguments supported by execv and related arguments	
_SC_CHILD_MAX	The maximum number of per-user child processes	
_SC_CLK_TCK	The number of clock ticks per second	
_SC_NGROUPS_MAX	The maximum number of groups to which a user may be a member	
_SC_OPEN_MAX	The maximum number of file that may be opened by a user	
_SC_JOB_CONTROL	If job control is supported, the value of 1 is returned	
_SC_SAVED_IDS	If saved identifiers are supported, the value of 1 is returned	
_SC_VERSION	The release year and month of the POSIX.1 standard attempting to be supported, in the format YYYYMM	
_SC_STREAM_MAX	The maximum number of per-process streams supported	
_SC_TZNAME_MAX	The maximum length of a time zone name	
_SC_PAGE_SIZE	The size, in bytes, of one page of memory	
_SC_PAGESIZE	The size, in bytes, of one page of memory	
_SC_NPROCESSORS_CO	NF The number of processors currently configured on the system	
_SC_NPROCESSORS_ON	LN The number of processors currently online and functioning on the system	
_SC_PHYS_PAGES	The total number of physical pages of memory for the system	
_SC_AVPHYS_PAGES	The available number of physical pages of memory for the system	
_SC_REALTIME_SIGNAL	S. If real-time signals are supported, the value of 1 is returned	
_SC_SOMAXCONN	For the socket function, retrieve the largest supported backlog of listen requests	

In this implementation, _SC_PAGE_SIZE and _SC_PAGESIZE have the same value, and a request to _SC_NPROCESSORS_CONF or _SC_NPROCESSORS_ONLN will return the same value. Some inputs, specifically _SC_OPEN_MAX and _SC_CHILD_MAX, are configurable via calls to setrlimit and may change between subsequent sysconf calls.

sysconf

Returns: If successful, the function will return zero. If the call fails, the return value is -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of *name* is unsupported on this implementation

Classification: POSIX 1003.1

Systems: Linux

Synopsis:

```
int sysinfo( struct sysinfo *info );
struct sysinfo {
    unsigned long uptime;
    unsigned long loads[3];
    unsigned long totalram;
    unsigned long freeram;
    unsigned long sharedram;
    unsigned long bufferram;
    unsigned long totalswap; unsigned long freeswap;
    unsigned short procs;
    unsigned short pad;
    unsigned long totalhigh;
    unsigned long freehigh;
    unsigned
                   mem_unit;
    char
                    __reserved[];
};
```

#include <sys/sysinfo.h>

Description:

The sysinfo function retrieves system information from the kernel via the *info* structure. The members of the structure are defined below:

Member	Meaning
uptime	The number of seconds since the system booted
loads	The 1 minute, 5 minute, and 15 minute load averages
totalram	The total usable amount of system memory in bytes
freeram	The amount of memory currently unused and unallocated
sharedram	The amount of memory currently being shared
bufferram	The amount of memory allocated to buffering
totalswap	The amount of swap space available in bytes
freeswap	The amount of unused swap space
procs	The amount of processes currently running
pad	Padding for alignment; can be ignored
totalhigh	Total amount of "high" memory
mem_unit	The memory unit size in bytes

Returns:

If successful, the function will return zero. If the call fails, the return value is -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

sysinfo

Constant Meaning

 ${\it EINVAL}$ The value of ${\it info}$ is NULL

EFAULT The value of *info* is invalid

Classification: WATCOM

Systems: Linux

Synopsis: #include <stdlib.h>

```
int system( const char *command );
int _wsystem( const wchar_t *command );
```

Description:

If the value of *command* is NULL, then the system function determines whether or not a command processor is present ("COMMAND.COM" in DOS and Windows 95/98 or "CMD.EXE" in OS/2 and Windows NT/2000).

Otherwise, the system function invokes a copy of the command processor, and passes the string *command* to it for processing. This function uses spawnl to load a copy of the command processor identified by the COMSPEC environment variable.

This means that any command that can be entered to DOS can be executed, including programs, DOS commands and batch files. The exec... and spawn... functions can only cause programs to be executed.

The _wsystem function is a wide character version of system that operates with wide character strings.

Returns:

If the value of *command* is NULL, then the system function returns zero if the command processor is not present, a non-zero value if the command processor is present. Note that Microsoft Windows 3.x does not support a command shell and so the system function always returns zero when *command* is NULL.

Otherwise, the system function returns the result of invoking a copy of the command processor. A non-zero value is returned if the command processor could not be loaded; otherwise, zero is returned. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also:

abort, atexit, _bgetcmd, exec..., exit, _Exit, _exit, getcmd, getenv, main, putenv, spawn..., _wsystem

Example:

```
#include <stdlib.h>
#include <stdio.h>

void main()
{
   int rc;

   rc = system( "dir" );
   if( rc != 0 ) {
      printf( "shell could not be run\n" );
   }
}
```

Classification: ISO C, POSIX 1003.2

_wsystem is WATCOM

Systems:

```
system - All, Linux, RDOS, Netware
_wsystem - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

system, _wsystem			

Description: The tan function computes the tangent of x (measured in radians). A large magnitude argument may

yield a result with little or no significance.

Returns: The tan function returns the tangent value. When an error has occurred, errno contains a value

indicating the type of error that has been detected.

See Also: atan, atan2, cos, sin, tanh

Example: #include <stdio.h>
#include <math.h>

```
void main()
     {
        printf( "%f\n", tan(.5) );
     }
```

produces the following:

0.546302

Classification: ISO C

Systems: Math

Synopsis: #include <math.h>

double tanh (double x);

Description: The tanh function computes the hyperbolic tangent of x.

When the x argument is large, partial or total loss of significance may occur. The matherr function

will be invoked in this case.

Returns: The tanh function returns the hyperbolic tangent value. When an error has occurred, errno contains

a value indicating the type of error that has been detected.

See Also: cosh, sinh, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
 {
 printf("%f\n", tanh(.5));
}

produces the following:

0.462117

Classification: ISO C

Systems: Math

Synopsis:

```
#include <io.h>
off_t _tell( int handle );
__int64 _telli64( int handle );

** deprecated **
off_t tell( int handle );
```

Description:

The _tell function reports the current file position at the operating system level. The *handle* value is the file handle returned by a successful execution of the open function.

The returned value may be used in conjunction with the lseek function to reset the current file position.

The _telli64 function is similar to the _tell function but returns a 64-bit file position. This value may be used in conjunction with the _lseeki64 function to reset the current file position.

The tell function is deprecated, use _tell instead.

Returns:

If an error occurs in _tell (-1L) is returned.

If an error occurs in _telli64, (-1I64) is returned.

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Otherwise, the current file position is returned in a system-dependent manner. A value of 0 indicates the start of the file.

See Also:

_chsize, close, creat, dup, dup2, _eof, exec..., fdopen, _filelength, fileno, fstat, _grow_handles, isatty, lseek, open, read, _setmode, _sopen, stat, write, umask

Example:

```
if( handle !=-1 ) {
                   /* print file position */
                   printf( "%ld\n", _tell( handle ) );
                    /* write the text */
                   size_written = write( handle, buffer,
                                           sizeof( buffer ) );
                   /* print file position */
                   printf( "%ld\n", _tell( handle ) );
                    /* close the file */
                   close( handle );
               }
           }
           produces the following:
           28
Classification: WATCOM
           _tell - All, Linux, RDOS, Netware
Systems:
           _telli64 - All, Linux
           tell - All, Linux, RDOS, Netware
```

Synopsis: #include <stdio.h>

```
char *_tempnam( const char *dir, const char *prefix );
wchar_t *_wtempnam( const wchar_t *dir, const wchar_t *prefix );
```

Description:

_tempnam creates a temporary filename for use in another directory. This filename is different from that of any existing file. The *prefix* argument is the prefix to the filename. _tempnam uses malloc to allocate space for the filename; the program is responsible for freeing this space when it is no longer needed. _tempnam looks for the file with the given name in the following directories, listed in order of precedence.

Directory Used Conditions

Directory specified by TMP The TMP environment variable must be set and the directory specified by TMP must exist.

dir (function argument) The TMP environment variable must not be set or the directory specified by TMP does not exist.

_P_tmpdir (_wP_tmpdir) in STDIO.H The dir argument is NULL or dir is the name of a nonexistent directory. The _wP_tmpdir string is used by _wtempnam.

Current working directory _tempnam uses the current working directory when _P_tmpdir does not exist. _wtempnam uses the current working directory when _wP_tmpdir does not exist.

_tempnam automatically handles multi-byte character string arguments as appropriate, recognizing multi-byte character sequences according to the OEM code page obtained from the operating system.

The _wtempnam function is a wide character version of _tempnam. It accepts a wide character string argument for *format* and produces wide character output. The _wtempnam function does not handle multi-byte character strings.

The function generates unique filenames for up to TMP_MAX calls.

Returns:

The _tempnam function returns a pointer to the name generated, unless it is impossible to create this name or the name is not unique. If the name cannot be created or if a file with that name already exists, _tempnam returns NULL.

See Also:

fopen, freopen, mkstemp, _mktemp, tmpfile, tmpnam

Example:

```
#include <stdio.h>
           #include <stdlib.h>
             Environment variable TMP=C:\WINDOWS\TEMP
           void main()
             {
               char *filename;
               FILE *fp;
               filename = _tempnam( "D:\\TEMP", "_T" );
               if( filename == NULL )
                   printf( "Can't obtain temp file name\n" );
               else {
                   printf( "Temp file name is %s\n", filename );
                   fp = fopen( filename, "w+b" );
                   /* . */
                   /* . */
                   /* . */
                   fclose(fp);
                   remove( filename );
                   free( filename );
             }
           produces the following:
           Temp file name is C:\WINDOWS\TEMP\_T1
Classification: WATCOM
Systems:
           _tempnam - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
           _wtempnam - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

Synopsis: #include <math.h>
double tgamma(double x);

Description: The tgamma function returns the value of the Gamma function of x.

Returns: If successful, the return value is the value of the Gamma function computed for x. the function returns

NAN. If the argument is positive infinity, the function returns positive infinity.

See Also: lgamma, lgamma_r

Example: #include <stdio.h>
#include <math.h>

```
void main()
    {
      printf( "%f\n", tgamma( 4.0 ) );
    }
```

produces the following:

6.00000

Classification: ISO C99

Systems: Math

```
Synopsis: #include <time.h>
    time_t time( time_t *tloc );
```

Description: The time function determines the current calendar time and encodes it into the type time_t.

The time represents the time since January 1, 1970 Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The time set on the computer with the DOS time command and the DOS date command reflects the local time. The environment variable TZ is used to establish the time zone to which this local time applies. See the section *The TZ Environment Variable* for a discussion of how to set the time zone.

Returns: The time function returns the current calendar time. If *tloc* is not NULL, the current calendar time is also stored in the object pointed to by *tloc*.

See Also: asctime Functions, asctime_s, clock, ctime Functions, ctime_s, difftime, gmtime, gmtime_s, localtime, localtime_s, mktime, strftime, tzset

Example: #include <stdio.h>
#include <time.h>

void main()
{
 time_t time_of_day;

 time_of_day = time(NULL);
 printf("It is now: %s", ctime(&time_of_day));
}

produces the following:

It is now: Fri Dec 25 15:58:42 1987

Classification: ISO C, POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Synopsis:

```
#include <time.h>
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *ti
merid);
struct sigevent {
                 sigev_signo;
    int
    union sigval sigev_value;
                 sigev_notify;
};
```

Description:

The timer_create function creates a new timer using the clock specified by *clockid* as supported by the underlying operating system. The evp argument can be NULL or may specify a handler for when an event of interest occurs. This implementation currently only supports responding using

SIGEV_SIGNAL implementations. The pointer timerid will contain the unique, per-process timer id if

the call is successful.

Returns: If successful, the function will return zero, and the timerid argument will contain the timer id. If the call

fails, the return value is -1, and errno will be set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of timerid is NULL or an invalid clockid is specified

EAGAIN The system was unable to allocate resources for a new timer

See Also: timer_gettime, timer_settime, timer_delete, timer_getoverrun

Classification: POSIX 1003.1

Systems: Linux

timer_delete

Synopsis: #include <time.h>

int timer_delete(timer_t timerid);

Description: The timer_delete function disarms, if necessary, and deletes the timer *timerid* immediately.

Returns: If successful, the function will return zero. If the call fails, the return value is -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of timerid is NULL or invalid

See Also: timer_create, timer_settime, timer_gettime

Classification: POSIX 1003.1

Systems: Linux

```
Synopsis:
           #include <time.h>
           int timer_gettime(timer_t timerid,
                             struct itimerspec *value );
           struct timespec {
               time_t tv_sec;
               long
                    tv_nsec;
           };
           struct itimerspec {
               struct timespec it_interval;
               struct timespec it_value;
               int
                               notify_type;
               int
                               timer_type;
               long
                               data;
           };
```

Description: The timer_gettime function retrieves time remaining in the timer *timerid* until expiration.

Returns: If successful, the function will return zero. If the call fails, the return value is -1, and errno will be set

appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of timerid is NULL or invalid

See Also: timer_create, timer_settime, timer_delete, timer_getoverrun

Classification: POSIX 1003.1

Systems: Linux

Synopsis:

```
#include <time.h>
int timer_settime(timer_t timerid, int flags,
                  struct itimerspec *new_value,
                  struct itimerspec *old_value );
struct timespec {
   time_t tv_sec;
    long tv_nsec;
};
struct itimerspec {
    struct timespec it_interval;
    struct timespec it_value;
   int
                   notify_type;
    int
                   timer_type;
    long
                    data;
};
```

Description:

The timer_settime function arms or resets the timer timerid using the interval and value specified in *new_value* pointer. The previous interval and value is returned in the *oldvalue* pointer.

The structure pointed to by the "it_value" member of new_value specifies the time in the future when the timer will expire, and effectively arms the timer. If the it_value member of new_value specifies a time of zero, the timer is disarmed. The structure pointed to by the "it_interval" member of new_value specifies the interval after the initial timer expiration when the timer would repeat expiration. If the it_interval member's components are set to zero, the timer will expire at the time specified by the "it_value" member of *new_value* and the timer will not automatically rearm.

The "it_value" member of new_value is regarded, by default, as a time relative to the system clock at the time of the function call. If flags incorporates the TIMER ABSTIME constant, the time in "it_value" is regarded as an absolute system time as opposed to a time relative to calling this function.

Returns:

If successful, the function will return zero. If the call fails, the return value is -1, and errno will be set appropriately.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of *timerid* is NULL or invalid

See Also:

timer_create, timer_gettime, timer_delete, timer_getoverrun

Classification: POSIX 1003.1

Systems:

Linux

		timer_settime

timer_getoverrun

Synopsis: #include <time.h>

int timer_getoverrun(timer_t timerid);

Description: The timer_getoverrun function returns the number of intervals for the given *timerid* since

expiration.

Returns: If successful, the function will return the number of elapsed intervals since the latest timer expiration. If

the call fails, the return value is -1, and errno will be set appropriately.

Errors: When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

EINVAL The value of timerid is NULL or invalid

See Also: timer_create, timer_settime, timer_delete

Classification: POSIX 1003.1

Systems: Linux

Synopsis: #include <stdio.h>
 FILE *tmpfile(void);

Safer C: The Safer C Library extension provides the tmpfile_s function which is a safer alternative to

 ${\tt tmpfile}. \ This \ newer \ {\tt tmpfile_s} \ function \ is \ recommended \ to \ be \ used \ instead \ of \ the \ traditional$

"unsafe" tmpfile function.

Description: The tmpfile function creates a temporary binary file that will automatically be removed when it is

closed or at program termination. The file is opened for update. For all systems except NetWare, the temporary file is located in the path specified by one of the following environment variables, if one is defined. Otherwise, the current working directory is used. They are listed in the order examined: TMP,

TEMP, TMPDIR, and TEMPDIR.

Returns: The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be

created, the tmpfile function returns NULL. When an error has occurred, errno contains a value

indicating the type of error that has been detected.

See Also: fopen, fopen_s, freopen, freopen_s, mkstemp, _mktemp, _tempnam, tmpfile_s,

tmpnam, tmpnam_s

Example: #include <stdio.h>

```
static FILE *TempFile;

void main()
{
    TempFile = tmpfile();
    /* . */
    /* . */
    /* . */
    fclose( TempFile );
}
```

Classification: ISO C

Systems: All, Linux, RDOS, Netware

```
Synopsis: #define __STDC_WANT_LIB_EXT1__ 1
    #include <stdio.h>
    errno_t tmpfile_s( FILE * restrict * restrict streamptr);
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and tmpfile_s will return a non-zero value to indicate an error, or the

runtime-constraint handler aborts the program.

streamptr shall not be a null pointer. If there is a runtime-constraint violation, tmpfile_s does not attempt to create a file.

Description:

The tmpfile_s function creates a temporary binary file that is different from any other existing file and that will automatically be removed when it is closed or at program termination. If the program terminates abnormally, whether an open temporary file is removed is implementation-defined. The file is opened for update with "wb+" mode with the meaning that mode has in the fopen_s function (including the mode's effect on exclusive access and file permissions). If the file was created successfully, then the pointer to FILE pointed to by *streamptr* will be set to the pointer to the object controlling the opened file. Otherwise, the pointer to FILE pointed to by *streamptr* will be set to a null pointer. For all systems except NetWare, the temporary file is located in the path specified by one of the following environment variables, if one is defined. Otherwise, the current working directory is used. They are listed in the order examined: TMP, TEMP, TMPDIR, and TEMPDIR.

Returns: The tmpfile_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also: fopen, fopen_s, freopen, freopen_s, mkstemp, _mktemp, _tempnam, tmpfile, tmpnam, tmpnam_s

Example: #define __STDC_WANT_LIB_EXT1__ 1
 #include <stdio.h>

```
void main()
{
    errno_t rc;
    FILE    *TempFile;

    rc = tmpfile_s( &TempFile );
    if( rc == 0 ) {
        /* . */
        /* . */
        fclose( TempFile );
    }
}
```

Classification: TR 24731

Systems: All, RDOS, Netware

		tmpfile_s

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t tmpnam_s( char * s, rsize_t maxsize );
#include <wchar.h>
errno_t _wtmpnam_s( wchar_t * s, rsize_t maxsize );
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and tmpnam_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

s shall not be a null pointer. *maxsize* shall be less than or equal to RSIZE_MAX. *maxsize* shall be greater than the length of the generated file name string.

Description:

The tmpnam_s function generates a string that is a valid file name and that is not the same as the name of an existing file. The function is potentially capable of generating TMP_MAX_S different strings, but any or all of them may already be in use by existing files and thus not be suitable return values. The lengths of these strings shall be less than the value of the L_tmpnam_s macro. The tmpnam_s function generates a different string each time it is called.

The _wtmpnam_s function is a wide character version of tmpnam_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

If no suitable string can be generated, or if there is a runtime-constraint violation, the $tmpnam_s$ function writes a null character to s[0] (only if s is not null and maxsize is greater than zero) and returns a non-zero value. Otherwise, the $tmpnam_s$ function writes the string in the array pointed to by s and returns zero.

See Also:

fopen, fopen_s, freopen, freopen_s, mkstemp, _mktemp, _tempnam, tmpfile, tmpfile_s, tmpnam

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
void main()
            filename[ L_tmpnam_s ];
    char
   FILE
            *fp;
   errno_t rc;
    rc = tmpnam(filename, sizeof(filename));
    if(rc == 0) {
        fp = fopen( filename, "w+b" );
        /* . */
        /* . */
        /* . */
        fclose(fp);
        remove (filename);
    }
}
```

Classification: TR 24731

_wtmpnam_s is WATCOM

Systems: tmpnam_s - All, Linux, RDOS, Netware

_wtmpnam_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Safer C: The Safer C Library extension provides the tmpnam_s function which is a safer alternative to tmpnam. This newer tmpnam_s function is recommended to be used instead of the traditional "unsafe" tmpnam function.

Description: The tmpnam function generates a unique string for use as a valid file name.

The _wtmpnam function is a wide character version of tmpnam. It accepts a wide character string argument for *format* and produces wide character output. An internal static buffer is used to construct the filename. Subsequent calls to tmpnam reuse the internal buffer.

The function generates unique filenames for up to TMP_MAX calls.

Returns: If the argument *buffer* is a NULL pointer, tmpnam returns a pointer to an internal buffer containing the temporary file name. If the argument *buffer* is not a NULL pointer, tmpnam copies the temporary file

name from the internal buffer to the specified buffer and returns a pointer to the specified buffer. It is assumed that the specified buffer is an array of at least L_tmpnam characters.

If the argument *buffer* is a NULL pointer, you may wish to duplicate the resulting string since subsequent calls to tmpnam reuse the internal buffer.

```
char *name1, *name2;
               name1 = strdup( tmpnam( NULL ) );
               name2 = strdup( tmpnam( NULL ) );
See Also:
           fopen, fopen_s, freopen, freopen_s, mkstemp, _mktemp, _tempnam, tmpfile,
           tmpfile_s, tmpnam_s
Example:
           #include <stdio.h>
           void main()
                char filename[ L_tmpnam ];
               FILE *fp;
                tmpnam( filename );
                fp = fopen( filename, "w+b" );
                /* . */
                /* . */
                /* . */
                fclose(fp);
                remove( filename );
```

Classification: ISO C

_wtmpnam is WATCOM

Systems: tmpnam - All, Linux, RDOS, Netware
_wtmpnam - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

	tmpn	am, _wtmpnam

```
Synopsis:
```

```
#include <ctype.h>
int tolower( int c );
int _tolower( int c );
#include <wctype.h>
wint_t towlower( wint_t c );
```

Description:

The tolower function converts c to a lowercase letter if c represents an uppercase letter.

The $_$ tolower function is a version of tolower to be used only when c is known to be uppercase.

The towlower function is a wide character version of tolower that operates with wide character strings.

Returns:

The tolower function returns the corresponding lowercase letter when the argument is an uppercase letter; otherwise, the original character is returned. The towlower function returns the corresponding wide character lowercase letter when the argument is a wide character uppercase letter; otherwise, the original wide character is returned.

The result of _tolower is undefined if *c* is not an uppercase letter.

See Also:

isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans, _strlwr, _strupr, toupper

Example:

```
#include <stdio.h>
#include <ctype.h>
char chars[] = {
    'A',
    151,
    '$',
    'Z'
};
#define SIZE sizeof( chars ) / sizeof( char )
void main()
    int
         i;
    for( i = 0; i < SIZE; i++ ) {
        printf( "%c ", tolower( chars[ i ] ) );
    printf( "\n" );
}
produces the following:
```

a 5 \$ z

Classification: ISO C

_tolower is WATCOM

towlower is ISO C95

Systems: tolower - All, Linux, RDOS, Netware

_tolower - All, Linux, RDOS, Netware towlower - All, Linux, RDOS, Netware

```
Synopsis:
```

```
#include <ctype.h>
int toupper( int c );
int _toupper( int c );
#include <wctype.h>
wint_t towupper( wint_t c );
```

Description:

The toupper function converts c to a uppercase letter if c represents a lowercase letter.

The $_$ toupper function is a version of toupper to be used only when c is known to be lowercase.

The towupper function is a wide character version of toupper that operates with wide character strings.

Returns:

The toupper function returns the corresponding uppercase letter when the argument is a lowercase letter; otherwise, the original character is returned. The towupper function returns the corresponding wide character uppercase letter when the argument is a wide character lowercase letter; otherwise, the original wide character is returned.

The result of $_$ toupper is undefined if c is not a lowercase letter.

See Also:

isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, wctrans, towctrans, _strlwr, _strupr, tolower

Example:

```
#include <stdio.h>
#include <ctype.h>
char chars[] = {
    ′a′,
    151,
    '$',
    'z'
};
#define SIZE sizeof( chars ) / sizeof( char )
void main()
    int
          i;
    for( i = 0; i < SIZE; i++ ) {
        printf( "%c ", toupper( chars[ i ] ) );
    printf( "\n" );
}
produces the following:
```

Classification: ISO C

_toupper is WATCOM

A 5 \$ Z

towupper is ISO C95

Systems: toupper - All, Linux, RDOS, Netware

_toupper - All, Linux, RDOS, Netware towupper - All, Linux, RDOS, Netware

Synopsis: #include <wctype.h>
 wint_t towctrans(wint_t wc, wctrans_t desc);

Description: The towetrans function maps the wide character *wc* using the mapping described by *desc*. Valid values of *desc* are defined by the use of the wetrans function.

The two expressions listed below behave the same as a call to the wide character case mapping function shown.

Expression Equivalent

towctrans(wc, wctrans("tolower")) towlower(wc)

towctrans(wc, wctrans("toupper")) towupper(wc)

Returns: The towetrans function returns the mapped value of wc using the mapping described by desc.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctrans

Example: #include <stdio.h> #include <wctype.h>

```
char *translations[2] = {
    "tolower",
    "toupper"
};

void main( void )
{
    int     i;
    wint_t    wc = 'A';
    wint_t    twc;

    for( i = 0; i < 2; i++ ) {
        twc = towctrans( wc, wctrans( translations[i] ) );
        printf( "%s(%lc): %lc\n", translations[i], wc, twc );
    }
}</pre>
```

produces the following:

tolower(A): a
toupper(A): A

Classification: ISO C95

Systems: All, Linux, RDOS, Netware

		towctrans

Description: The trunc function truncates the argument *x* to the appropriate integer. The function is equivalent to

floor for positive numbers and ceil for negative numbers.

Returns: The value of *x* without any fractional values.

See Also: nearbyint, rint, round, floor, ceil

Example: #include <stdio.h>
#include <math.h>

```
void main()
    {
      printf( "%f\n", round( 1.5 ) );
}
```

produces the following:

1.000000

Classification: ISO C99

Systems: Math

Synopsis: #include <unistd.h>

char *ttyname(int fd);

int ttyname_r(int fd, char *buf, size_t buflen);

Description:

The POSIX-compliant ttyname function retrieves the name of a TTY as specified by the *fd* file descriptor, returning a static pointer to the name. Subsequent calls may change the contents of the string pointed to by the original call to ttyname, and the memory to which the return value points should not be freed.

The ttyname_r function performs the same function as ttyname, but the name of the TTY is returned in the *buf* argument. The argument *buflen* should specify the size of the *buf* argument. The ttyname_r function is an Open Watcom extension commonly implemented in other standard libraries.

Returns:

Upon success, the ttyname function returns a pointer to statically allocated memory containing the name of the TTY. Upon failure, the returned pointer will be NULL and errno will be set appropriately.

Upon success, the ttyname_r function will return zero, and the *buf* argument will contain the name of the TTY. Upon failure, the ttyname_r function will return the error code and set erroe as well.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

Constant Meaning

ENOTTY The value of fd does not refer to a TTY

EACCES The user does not have permission to query the file descriptor

EBADFD The file descriptor fd is invalid

ERANGE The *buf* is not large enough to hold the result, or the file descriptor name exceeds POSIX_PATH_MAX

See Also: isatty

Classification: POSIX 1003.1

Systems: ttyname - Linux

ttyname_r - Linux

Synopsis: #include <time.h>
 void tzset(void);

Description:

The tzset function sets the global variables daylight, timezone and tzname according to the value of the TZ environment variable. The section *The TZ Environment Variable* describes how to set this variable.

Under Win32, tzset also uses operating system supplied time zone information. The TZ environment variable can be used to override this information.

The global variables have the following values after tzset is executed:

daylight Zero indicates that daylight saving time is not supported in the locale; a non-zero

value indicates that daylight saving time is supported in the locale. This variable is cleared/set after a call to the tzset function depending on whether a daylight

saving time abbreviation is specified in the TZ environment variable.

timezone Contains the number of seconds that the local time zone is earlier than

Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time

(GMT)).

tzname Two-element array pointing to strings giving the abbreviations for the name of the

time zone when standard and daylight saving time are in effect.

The time set on the computer with the DOS time command and the DOS date command reflects the local time. The environment variable TZ is used to establish the time zone to which this local time applies. See the section *The TZ Environment Variable* for a discussion of how to set the time zone.

Returns: The tzset function does not return a value.

See Also: ctime Functions, localtime, mktime, strftime

Example:

```
void main()
{
    print_zone();
    setenv( "TZ", "PST8PDT", 1 );
    tzset();
    print_zone();
}

produces the following:

TZ: default EST5EDT
    daylight: 1
    timezone: 18000
    time zone names: EST EDT

TZ: PST8PDT
    daylight: 1
    timezone: 28800
    time zone names: PST PDT
```

Classification: POSIX 1003.1

Systems: All, Linux, RDOS, Netware

Description:

The ulltoa function converts the unsigned binary integer *value* into the equivalent string in base *radix* notation storing the result in the character array pointed to by *buffer*. A null character is appended to the result. The size of *buffer* must be at least 65 bytes when converting values in base 2. The value of *radix* must satisfy the condition:

```
2 <= radix <= 36
```

The _ulltoa function is identical to ulltoa. Use _ulltoa for ANSI naming conventions.

The _ulltow function is a wide character version of ulltoa except that it produces a wide character string.

Returns: The ulltoa function returns the pointer to the result.

See Also: atol. atol. atol

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoimax, strtoimax, ultoa, utoa

Example:

produces the following:

```
2 \ 1001001100011101101101001001101
```

4 1021203231221031

6 322243004113

8 11143555115

10 1234098765

12 2a5369639

14 b9c8863b

16 498eda4d

Classification: WATCOM

_ulltoa conforms to ANSI naming conventions

Systems:

ulltoa - All, Linux, RDOS, Netware _ulltoa - All, Linux, RDOS, Netware _ulltow - All, Linux, RDOS

Description:

The ultoa function converts the unsigned binary integer *value* into the equivalent string in base *radix* notation storing the result in the character array pointed to by *buffer*. A null character is appended to the result. The size of *buffer* must be at least 33 bytes when converting values in base 2. The value of *radix* must satisfy the condition:

```
2 <= radix <= 36
```

The _ultoa function is identical to ultoa. Use _ultoa for ANSI naming conventions.

The _ultow function is a wide character version of ultoa except that it produces a wide character string.

Returns: The ultoa function returns the pointer to the result.

See Also: ato

atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoimax, strtoumax, ulltoa, utoa

Example:

produces the following:

```
2 11000111011101
```

4 3013131

6 135033

8 30735

10 12765

12 7479

14 491b

16 31dd

Classification: WATCOM

_ultoa conforms to ANSI naming conventions

Systems:

ultoa - All, Linux, RDOS, Netware _ultoa - All, Linux, RDOS, Netware _ultow - All, Linux, RDOS

```
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <io.h>
mode_t umask( mode_t cmask );
mode_t _umask( mode_t cmask );
```

Description:

The umask function sets the process's file mode creation mask to *cmask*. The process's file mode creation mask is used during creat, open or _sopen to turn off permission bits in the *permission* argument supplied. In other words, if a bit in the mask is on, then the corresponding bit in the file's requested permission value is disallowed.

The _umask function is identical to umask. Use _umask for ANSI naming conventions.

The argument *cmask* is a constant expression involving the constants described below. The access permissions for the file or directory are specified as a combination of bits (defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission	Meaning
S_IRWXU	Read, write, execute/search
S_IRUSR	Read permission
S_IWUSR	Write permission
S_IXUSR	Execute/search permission

The following bits define permissions for the group.

Permission	Meaning
S_IRWXG	Read, write, execute/search
S_IRGRP	Read permission
S_IWGRP	Write permission
S_IXGRP	Execute/search permission

The following bits define permissions for others.

Permission	Meaning
S_IRWXO	Read, write, execute/search
S_IROTH	Read permission
S_IWOTH	Write permission
S_IXOTH	Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission	Meaning
S_IREAD	is equivalent to S_IRUSR (read permission)
S_IWRITE	is equivalent to S_IWUSR (write permission)

S_IEXEC is equivalent to **S_IXUSR** (execute/search permission)

For example, if S_IRUSR is specified, then reading is not allowed (i.e., the file is write only). If S_IWUSR is specified, then writing is not allowed (i.e., the file is read only).

Returns: The umask function returns the previous value of *cmask*.

See Also: chmod, creat, mkdir, open, _sopen

Classification: POSIX 1003.1

}

_umask conforms to ANSI naming conventions

Systems: umask - All, Linux, RDOS, Netware

_umask - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis: #include <stdio.h>
 int ungetc(int c, FILE *fp);
 #include <stdio.h>
 #include <wchar.h>
 wint_t ungetwc(wint_t c, FILE *fp);

Description:

The ungetc function pushes the character specified by c back onto the input stream pointed to by fp. This character will be returned by the next read on the stream. The pushed-back character will be discarded if a call is made to the fflush function or to a file positioning function (fseek, fsetpos or rewind) before the next read operation is performed.

Only one character (the most recent one) of pushback is remembered.

The unget c function clears the end-of-file indicator, unless the value of c is EOF.

The ungetwo function is identical to ungeto except that it pushes the wide character specified by c back onto the input stream pointed to by fp.

The ungetwo function clears the end-of-file indicator, unless the value of c is WEOF.

Returns: The ungetc function returns the character pushed back.

See Also: fgetc, fgetchar, fgets, fopen, getc, getchar, gets

Example:

```
#include <stdio.h>
#include <ctype.h>
void main()
  {
   FILE *fp;
   int c;
   long value;
    fp = fopen( "file", "r" );
   value = 0;
   c = fqetc(fp);
   while( isdigit(c) ) {
        value = value*10 + c - '0';
        c = fgetc(fp);
    }
   ungetc( c, fp ); /* put last character back */
   printf( "Value=%ld\n", value );
    fclose(fp);
```

Classification: ISO C

Systems: ungetc - All, Linux, RDOS, Netware

ungetwc - All, Linux

ungetc, ungetwc

Synopsis: #include <conio.h>
 int ungetch(int c);

Description: The ungetch function pushes the character specified by c back onto the input stream for the console.

This character will be returned by the next read from the console (with getch or getche functions)

and will be detected by the function kbhit. Only the last character returned in this way is

remembered.

The ungetch function clears the end-of-file indicator, unless the value of c is EOF.

Returns: The ungetch function returns the character pushed back.

See Also: getch, getche, kbhit, putch

Example: #include <stdio.h>

#include <ctype.h>
#include <conio.h>

void main()
 {
 int c;
 long value;

value = 0; c = getche(); while(isdigit(c)) { value = value*10 + c - '0'; c = getche();

ungetch(c);
printf("Value=%ld\n", value);
}

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

```
Synopsis: #include <io.h>
    int unlink( const char *path );
    int _unlink( const char *path );
    int _wunlink( const wchar_t *path );
```

Description: The unlink function deletes the file whose name is the string pointed to by *path*. This function is equivalent to the remove function.

The _unlink function is identical to unlink. Use _unlink for ANSI naming conventions.

The _wunlink function is a wide character version of unlink that operates with wide character strings.

Returns: The unlink function returns zero if the operation succeeds, non-zero if it fails.

See Also: chdir, chmod, close, getcwd, mkdir, open, remove, rename, rmdir, stat

Classification: POSIX 1003.1

_unlink conforms to ANSI naming conventions

_wunlink is WATCOM

Systems: unlink - All, Linux, RDOS, Netware

_unlink - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS _wunlink - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

Description: The unlock function unlocks *nbytes* amount of previously locked data in the file designated by *handle* starting at byte *offset* in the file. This allows other processes to lock this region of the file.

Multiple regions of a file can be locked, but no overlapping regions are allowed. You cannot unlock multiple regions in the same call, even if the regions are contiguous. All locked regions of a file should be unlocked before closing a file or exiting the program.

With DOS, locking is supported by version 3.0 or later. Note that SHARE.COM or SHARE.EXE must be installed.

Returns: The unlock function returns zero if successful, and -1 when an error occurs. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also: lock, locking, open, _sopen

Example:

```
#include <stdio.h>
#include <fcntl.h>
#include <io.h>
void main()
    int handle;
    char buffer[20];
    handle = open( "file", O_RDWR | O_TEXT );
    if ( handle !=-1 ) {
      if( lock( handle, OL, 20L ) ) {
        printf( "Lock failed\n" );
      } else {
        read( handle, buffer, 20 );
        /* update the buffer here */
        lseek( handle, OL, SEEK_SET );
        write( handle, buffer, 20 );
        unlock( handle, OL, 20L);
      close( handle );
  }
```

Classification: WATCOM

Systems: All, RDOS, Netware

		unlock

Synopsis: #include <graph.h>
 void _FAR _unregisterfonts(void);

Description: The _unregisterfonts function frees the memory previously allocated by the

_registerfonts function. The currently selected font is also unloaded.

Attempting to use the _setfont function after calling _unregisterfonts will result in an error.

Returns: The _unregisterfonts function does not return a value.

See Also: _registerfonts, _setfont, _getfontinfo, _outgtext, _getgtextextent,

_setgtextvector, _getgtextvector

Example: #include <conio.h>
#include <stdio.h>

#include <std10.n>
main()

int i, n;
char buf[10];

_setvideomode(_VRES16COLOR);
n = _registerfonts("*.fon");
for(i = 0; i < n; ++i) {
 sprintf(buf, "n%d", i);
 _setfont(buf);
 _moveto(100, 100);
 _outgtext("WATCOM Graphics");</pre>

getch();
 _clearscreen(_GCLEARSCREEN);
}
_unregisterfonts();
 _setvideomode(_DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS

Synopsis: #include <stdlib.h>

int unsetenv(const char *name);
int _wunsetenv(const wchar_t *name);

Description:

The environment list consists of a number of environment names, each of which has a value associated with it.

The unsetenv delete all items with name name from the environment list.

The _wunsetenv function is a wide character version of unsetenv that operates with wide character strings.

Returns:

The unsetenv function returns zero upon successful completion. Otherwise, it will return -1 value and set errno to indicate the error.

Errors:

When an error has occurred, errno contains a value indicating the type of error that has been detected.

EINVAL The name argument points to an empty string, or points to a string containing an '=' character.

See Also:

exec..., _wexec..., clearenv, getenv, getenv_s, putenv, _searchenv, setenv,
_wgetenv, _wputenv, _wsearchenv, _wsetenv, _wunsetenv, spawn..., _wspawn...,
system, _wsystem

Example:

```
#include <stdio.h>
#include <stdlib.h>

int main( void )
    {
     if( unsetenv( "INCLUDE" ) == 0 )
        printf( "INCLUDE environment variable deleted\n" );
}
```

Classification: POSIX 1003.1

_wunsetenv is WATCOM

Systems:

```
unsetenv - All, Linux, RDOS _wunsetenv - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32
```

```
#include <sys/utime.h>
int utime ( const char *path,
          const struct utimbuf *times );
int _utime( const char *path,
          const struct utimbuf *times );
int _wutime( const wchar_t *path,
            const struct utimbuf *times );
struct utimbuf {
   time_t actime; /* access time
   time_t modtime; /* modification time */
```

Description:

The utime function records the access and modification times for the file identified by path.

The _utime function is identical to utime. Use _utime for ANSI naming conventions.

If the times argument is NULL, the access and modification times of the file or directory are set to the current time. Write access to this file must be permitted for the time to be recorded.

If the times argument is not NULL, it is interpreted as a pointer to a utimbuf structure and the access and modification times of the file or directory are set to the values contained in the designated structure. The access and modification times are taken from the actime and modtime fields in this structure.

The _wutime function is identical to utime except that path points to a wide character string.

Returns:

The utime function returns zero when the time was successfully recorded. A value of -1 indicates an error occurred.

Errors:

When an error has occurred, erroc contains a value indicating the type of error that has been detected.

Constant	Meaning			
EACCES	Search permission is denied for a component of <i>path</i> or the <i>times</i> argument is NULL and the effective user ID of the process does not match the owner of the file and write access is denied.			
EINVAL	The date is before 1980 (DOS only).			
EMFILE	There are too many open files.			
ENOENT	The specified <i>path</i> does not exist or <i>path</i> is an empty string.			
<pre>#include <stdio.h> #include <sys utime.h=""></sys></stdio.h></pre>				

Example:

{ if((utime(argv[1], NULL) != 0) && (argc > 1)) { printf("Unable to set time for %s\n", argv[1]); }

void main(int argc, char *argv[])

Classification: POSIX 1003.1

_utime conforms to ANSI naming conventions _wutime is WATCOM

Systems:

utime - All, Linux, RDOS, Netware
_utime - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
_wutime - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32

```
Synopsis: #include <stdlib.h>
```

```
char *utoa( unsigned int value, char *buffer, int radix );
char *_utoa( unsigned int value, char *buffer, int radix );
```

Description:

The utoa function converts the unsigned binary integer *value* into the equivalent string in base *radix* notation storing the result in the character array pointed to by *buffer*. A null character is appended to the result. The size of *buffer* must be at least (8 * sizeof(int) + 1) bytes when converting values in base 2. That makes the size 17 bytes on 16-bit machines, and 33 bytes on 32-bit machines. The value of *radix* must satisfy the condition:

```
2 <= radix <= 36
```

The _utoa function is identical to utoa. Use _utoa for ANSI naming conventions.

The utoa function is a wide character version of <ret> that operates with wide character strings.

Returns: The utoa function returns the pointer to the result.

See Also: atoi, atol, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul, strtoull, strtoimax, strtoimax, ultoa, ultoa

Example:

produces the following:

```
2 11000111011101
4 3013131
6 135033
8 30735
10 12765
12 7479
14 491b
16 31dd
```

Classification: WATCOM

_utoa conforms to ANSI naming conventions

Systems: utoa - All, Linux, RDOS, Netware _utoa - All, Linux, RDOS, Netware

_utow - All, Linux, RDOS

Synopsis: #include <stdarg.h>
 type va_arg(va_list param, type);

Description:

va_arg is a macro that can be used to obtain the next argument in a list of variable arguments. It must be used with the associated macros va_start and va_end. A sequence such as

```
void example( char *dst, ... )
{
   va_list curr_arg;
   int next_arg;

  va_start( curr_arg, dst );
   next_arg = va_arg( curr_arg, int );
   .
  .
  .
  .
  .
}
```

causes next_arg to be assigned the value of the next variable argument. The argument *type* (which is int in the example) is the type of the argument originally passed to the function.

The macro va_start must be executed first in order to properly initialize the variable curr_arg and the macro va_end should be executed after all arguments have been obtained.

The data item curr_arg is of type va_list which contains the information to permit successive acquisitions of the arguments.

Returns:

The macro returns the value of the next variable argument, according to type passed as the second parameter.

See Also:

va_end, va_start, vfprintf, vprintf, vsprintf

Example:

```
types_ptr = types;
               printf( ^{n} n%s -- %s\n", msg, types );
               va_start( argument, types );
               while( *types_ptr != '\0' ) {
                   if (*types_ptr == 'i') {
                       arg_int = va_arg( argument, int );
                       printf( "integer: %d\n", arg_int );
                   } else if (*types_ptr == 's') {
                       arg_string = va_arg( argument, char * );
                       printf( "string: %s\n", arg_string );
                   ++types_ptr;
               va_end( argument );
           }
           void main( void )
               printf( "VA...TEST\n" );
               test_fn( "PARAMETERS: 1, \"abc\", 546",
                        "isi", 1, "abc", 546);
               test_fn( "PARAMETERS: \"def\", 789",
                         "si", "def", 789);
           }
           produces the following:
           VA...TEST
           PARAMETERS: 1, "abc", 546 -- isi
           integer: 1
           string: abc
           integer: 546
           PARAMETERS: "def", 789 -- si
           string: def
           integer: 789
Classification: ISO C90
```

MACRO

Systems:

Library Functions and Macros 1333

Synopsis: #include <stdarg.h>
 void va_end(va_list param);

Description: va_end is a macro used to complete the acquisition of arguments from a list of variable arguments. It

must be used with the associated macros va_start and va_arg. See the description for va_arg

for complete documentation on these macros.

Returns: The macro does not return a value.

See Also: va_arg, va_start, vfprintf, vprintf, vsprintf

Example: #include <stdio.h>
#include <stdarg.h>

#include <time.h>

#define ESCAPE 27

```
void tprintf( int row, int col, char *fmt, ...)
{
   auto va_list ap;
   char *p1, *p2;

   va_start( ap, fmt );
   p1 = va_arg( ap, char * );
   p2 = va_arg( ap, char * );
   printf( "%c[%2.2d;%2.2dH", ESCAPE, row, col );
   printf( fmt, p1, p2 );
   va_end( ap );
}

void main()
```

Classification: ISO C

Systems: MACRO

		va_end

Synopsis: #include <stdarg.h>
 void va_start(va_list param, previous);

Description: va_start is a macro used to start the acquisition of arguments from a list of variable arguments. The

param argument is used by the va_arg macro to locate the current acquired argument. The previous argument is the argument that immediately precedes the "..." notation in the original function definition. It must be used with the associated macros va_arg and va_end. See the description of

va_arg for complete documentation on these macros.

Returns: The macro does not return a value.

See Also: va_arg, va_end, vfprintf, vprintf, vsprintf

Example: #include <stdio.h>

#include <stdarg.h>
#include <time.h>

auto va_list ap;

#define ESCAPE 27

void tprintf(int row, int col, char *fmt, ...)
{

char *p1, *p2;

va_start(ap, fmt);
p1 = va_arg(ap, char *);
p2 = va_arg(ap, char *);
printf("%c[%2.2d;%2.2dH", ESCAPE, row, col);

struct tm time_of_day;
time_t ltime;
auto char buf[26];

Classification: ISO C

Systems: MACRO

}

			va_start

Description:

The _vbprintf function formats data under control of the *format* control string and writes the result to *buf*. The argument *bufsize* specifies the size of the character array *buf* into which the generated output is placed. The *format* string is described under the description of the printf function. The _vbprintf function is equivalent to the _bprintf function, with the variable argument list replaced with *arg*, which has been initialized by the va_start macro.

The _vbwprintf function is a wide character version of _vbprintf. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The _vbprintf function returns the number of characters written, or a negative value if an output error occurred.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start, vcprintf, vfprintf, vprintf, vsprintf

Example:

The following shows the use of _vbprintf in a general error message routine.

```
#include <stdio.h>
#include <stdarq.h>
#include <string.h>
char msgbuf[80];
char *fmtmsg( char *format, ... )
  {
    va_list arglist;
    va_start( arglist, format );
    strcpy( msgbuf, "Error: " );
    _vbprintf( &msgbuf[7], 73, format, arglist );
    va_end( arglist );
    return ( msgbuf );
  }
void main()
  {
    char *msg;
   msg = fmtmsg( "%s %d %s", "Failed", 100, "times" );
    printf( "%s\n", msg );
```

Classification: WATCOM

Systems: _vbprintf - All, Linux, RDOS, Netware _vbwprintf - All, Linux

		_vbprintf, _vbwprintf

Synopsis: #include <conio.h>
#include <stdarg.h>

int vcprintf(const char *format, va_list arg);

Description: The vcprintf function writes output directly to the console under control of the argument *format*.

The putch function is used to output characters to the console. The *format* string is described under the description of the printf function. The vcprintf function is equivalent to the cprintf function, with the variable argument list replaced with *arg*, which has been initialized by the

va_start macro.

Returns: The vcprintf function returns the number of characters written, or a negative value if an output error

occurred. When an error has occurred, errno contains a value indicating the type of error that has

been detected.

See Also: _bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start,

_vbprintf, vfprintf, vprintf, vsprintf

Example: #include <conio.h>

#include <stdarg.h>
#include <time.h>

#define ESCAPE 27

void tprintf(int row, int col, char *format, ...)
{
 auto va_list arglist;

 cprintf("%c[%2.2d;%2.2dH", ESCAPE, row, col);
 va_start(arglist, format);
 vcprintf(format, arglist);
 va_end(arglist);
}

void main()
{
 struct tm time_of_day;
 time_t ltime;
 auto char buf[26];

time(<ime);

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

		,	vcprintf

Synopsis: #include <conio.h>
#include <stdarg.h>

int vcscanf(const char *format, va_list args)

Description:

The vcscanf function scans input from the console under control of the argument *format*. The vcscanf function uses the function getche to read characters from the console. The *format* string is described under the description of the scanf function.

The vcscanf function is equivalent to the cscanf function, with a variable argument list replaced with arg, which has been initialized using the va_start macro.

Returns:

The vcscanf function returns EOF when the scanning is terminated by reaching the end of the input stream. Otherwise, the number of input arguments for which values were successfully scanned and stored is returned. When a file input error occurs, the erroo global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vfscanf, vscanf, vsscanf, fwscanf, wscanf, vswscanf, vswscanf, vswscanf

Example:

```
#include <conio.h>
#include <stdarg.h>
void cfind( char *format, ... )
  {
    va_list arglist;
   va_start( arglist, format );
    vcscanf( format, arglist );
    va_end( arglist );
  }
void main()
  {
    int day, year;
    char weekday[10], month[10];
    cfind( "%s %s %d %d",
            weekday, month, &day, &year );
    cprintf( "\n%s, %s %d, %d\n",
            weekday, month, day, year );
  }
```

Classification: WATCOM

Systems: All, Linux, RDOS, Netware

Safer C:

The Safer C Library extension provides the vfprintf_s function which is a safer alternative to vfprintf. This newer vfprintf_s function is recommended to be used instead of the traditional "unsafe" vfprintf function.

Description:

The vfprintf function writes output to the file pointed to by fp under control of the argument format. The format string is described under the description of the printf function. The vfprintf function is equivalent to the fprintf function, with the variable argument list replaced with arg, which has been initialized by the va_start macro.

The vfwprintf function is a wide character version of vfprintf. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The vfprintf function returns the number of characters written, or a negative value if an output error occurred. The vfwprintf function returns the number of wide characters written, or a negative value if an output error occurred. When an error has occurred, error contains a value indicating the type of error that has been detected.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start, _vbprintf, vcprintf, vprintf, vsprintf

Example:

#include <stdio.h>

```
#include <stdarq.h>
FILE *LogFile;
/* a general error routine */
void errmsg( char *format, ... )
    va_list arglist;
    fprintf( stderr, "Error: " );
    va_start( arglist, format );
    vfprintf( stderr, format, arglist );
    va_end( arglist );
    if( LogFile != NULL ) {
        fprintf( LogFile, "Error: " );
        va_start( arglist, format );
        vfprintf( LogFile, format, arglist );
        va_end( arglist );
    }
}
```

```
void main( void )
{
    LogFile = fopen( "error.log", "w" );
    errmsg( "%s %d %s", "Failed", 100, "times" );
}

Classification: ISO C
    vfwprintf is ISO C95

Systems:    vfprintf - All, Linux, RDOS, Netware
    vfwprintf - All, Linux
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vfprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *stream* nor *format* shall be a null pointer. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by *format*. Any argument to vfprintf_s corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the vfprintf_s function does not attempt to produce further output, and it is unspecified to what extent vfprintf_s produced output before discovering the runtime-constraint violation.

Description:

The vfprintf_s function is equivalent to the vprintf function except for the explicit runtime-constraints listed above.

The vfwprintf_s function is a wide character version of vfprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The vfprintf_s function returns the number of characters written, or a negative value if an output error or runtime-constraint violation occurred.

The vfwprintf_s function returns the number of wide characters written, or a negative value if an output error or runtime-constraint violation occurred.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdarg.h>

FILE *LogFile;

/* a general error routine */

void errmsg( char *format, ... )
{
    va_list arglist;
```

```
fprintf_s( stderr, "Error: " );
               va_start( arglist, format );
               vfprintf_s( stderr, format, arglist );
               va_end( arglist );
               if( LogFile != NULL ) {
                    fprintf_s( LogFile, "Error: " );
                    va_start( arglist, format );
                   vfprintf_s( LogFile, format, arglist );
                   va_end( arglist );
               }
           }
           void main( void )
           {
               errmsg( "%s %d %s", "Failed", 100, "times" );
           produces the following:
           Error: Failed 100 times
Classification: TR 24731
Systems:
           vfprintf_s - All, Linux, RDOS, Netware
           vfwprintf_s - All, Linux
```

Safer C:

The Safer C Library extension provides the vfscanf_s function which is a safer alternative to vfscanf. This newer vfscanf_s function is recommended to be used instead of the traditional "unsafe" vfscanf function.

Description:

The vfscanf function scans input from the file designated by *fp* under control of the argument *format*. The *format* string is described under the description of the scanf function.

The vfscanf function is equivalent to the fscanf function, with a variable argument list replaced with *arg*, which has been initialized using the va_start macro.

The vfwscanf function is a wide character version of vfscanf. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The vfscanf function returns EOF if an input failure occurred before any conversion. Otherwise, the number of input arguments for which values were successfully scanned and stored is returned. When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vcscanf, vscanf, vsscanf, fwscanf, wscanf, vswscanf, vswscanf

Example:

```
#include <stdio.h>
#include <stdarq.h>
void ffind( FILE *fp, char *format, ... )
    va_list arglist;
    va_start( arglist, format );
    vfscanf( fp, format, arglist );
    va_end( arglist );
}
void main( void )
    int day, year;
    char weekday[10], month[10];
    ffind( stdin,
            "%s %s %d %d",
            weekday, month, &day, &year );
    printf( "\n%s, %s %d, %d\n",
            weekday, month, day, year );
}
```

Classification: ISO C99

vfscanf, vfwscanf

vfscanf - All, Linux, RDOS, Netware vfwscanf - All, Linux **Systems:**

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s( FILE * restrict stream,
        const char * restrict format, va_list arg );
#include <stdarq.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream,
       const wchar_t * restrict format, va_list arg );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vfscanf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither stream nor format shall be a null pointer. Any argument indirected through in order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vfscanf_s function does not attempt to perform further input, and it is unspecified to what extent vfscanf_s performed input before discovering the runtime-constraint violation.

Description:

The vfscanf_s function is equivalent to fscanf_s, with the variable argument list replaced by arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The vfscanf_s function does not invoke the va_end macro.

The vfwscanf_s function is identical to vfscanf_s except that it accepts a wide character string argument for format.

Returns:

The vfscanf_s function returns EOF if an input failure occurred before any conversion or if there was a runtime-constraint violation. Otherwise, the vfscanf_s function returns the number of input items successfully assigned, which can be fewer than provided for, or even zero.

When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vcscanf, vfscanf, vscanf, vsscanf, fwscanf, wscanf, vfwscanf, vwscanf, vswscanf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdarg.h>
void ffind( FILE *fp, char *format, ...)
    va_list arglist;
   va_start( arglist, format );
   vfscanf_s( fp, format, arglist );
   va_end( arglist );
```

```
Synopsis: #include <stdarg.h>
    #include <stdio.h>
    int vprintf( const char *format, va_list arg );
    #include <stdarg.h>
    #include <wchar.h>
```

Safer C: The Safer C Library extension provides the vprintf_s function which is a safer alternative to vprintf. This newer vprintf_s function is recommended to be used instead of the traditional "unsafe" vprintf function.

int vwprintf(const wchar_t *format, va_list arg);

Description: The vprintf function writes output to the file stdout under control of the argument *format*. The *format* string is described under the description of the printf function. The vprintf function is equivalent to the printf function, with the variable argument list replaced with *arg*, which has been initialized by the va_start macro.

The vwprintf function is a wide character version of vprintf. It accepts a wide character string argument for *format* and produces wide character output.

Returns: The vprintf function returns the number of characters written, or a negative value if an output error occurred. The vwprintf function returns the number of wide characters written, or a negative value if an output error occurred. When an error has occurred, error contains a value indicating the type of error that has been detected.

See Also: __bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start, __vbprintf, vcprintf, vfprintf, vsprintf

Example: The following shows the use of vprintf in a general error message routine.

```
#include <stdio.h>
#include <stdarg.h>

void errmsg( char *format, ... )
{
    va_list arglist;

    printf( "Error: " );
    va_start( arglist, format );
    vprintf( format, arglist );
    va_end( arglist );
}

void main( void )
{
    errmsg( "%s %d %s", "Failed", 100, "times" );
}

produces the following:

Error: Failed 100 times
```

Classification: ISO C

vwprintf is ISO C95

Systems: vprintf - All, Linux, RDOS, Netware

vwprintf - All, Linux

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vprintf_s( const char * restrict format, va_list arg );
#include <stdarg.h>
#include <wchar.h>
int vwprintf_s( const wchar_t * restrict format, va_list prg );
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

The *format* argument shall not be a null pointer. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by *format*. Any argument to <code>vprintf_s</code> corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the <code>vprintf_s</code> function does not attempt to produce further output, and it is unspecified to what extent <code>vprintf_s</code> produced output before discovering the runtime-constraint violation.

Description:

The vprintf_s function is equivalent to the vprintf function except for the explicit runtime-constraints listed above.

The vwprintf_s function is a wide character version of vprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The vprintf_s function returns the number of characters written, or a negative value if an output error or runtime-constraint violation occurred.

The vwprintf_s function returns the number of wide characters written, or a negative value if an output error or runtime-constraint violation occurred.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdarg.h>

void errmsg( char *format, ... )
{
    va_list arglist;

    printf_s( "Error: " );
    va_start( arglist, format );
    vprintf_s( format, arglist );
    va_end( arglist );
}

void main( void )
{
    errmsg( "%s %d %s", "Failed", 100, "times" );
}
```

vprintf_s, vwprintf_s

produces the following:

Error: Failed 100 times

Classification: TR 24731

Systems: vprintf_s - All, Linux, RDOS, Netware

vwprintf_s - All, Linux

```
Synopsis: #include <stdarg.h>
    #include <stdio.h>
    int vscanf( const char *format, va_list arg );
    #include <stdarg.h>
    #include <wchar.h>
    int vwscanf( const wchar_t *format, va_list arg );
```

Safer C: The Safer C Library extension provides the vscanf_s function which is a safer alternative to vscanf. This newer vscanf_s function is recommended to be used instead of the traditional "unsafe" vscanf function.

Description: The vscanf function scans input from the file designated by *stdin* under control of the argument *format*. The *format* string is described under the description of the scanf function.

The vscanf function is equivalent to the scanf function, with a variable argument list replaced with arg, which has been initialized using the va_start macro.

The vwscanf function is identical to vscanf except that it accepts a wide character string argument for *format*.

Returns: The vscanf function returns EOF if an input failure occurred before any conversion. values were successfully scanned and stored is returned.

See Also: cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vcscanf, vfscanf, vsscanf, fwscanf, wscanf, vfwscanf, vwscanf, vswscanf

Example: #include <stdio.h>
#include <stdarg.h>

void find(char *format, ...)
{
 va_list arglist;

 va_start(arglist, format);
 vscanf(format, arglist);
 va_end(arglist);
}

void main(void)

weekday, month, day, year);

Classification: ISO C99

}

Systems: vscanf - All, Linux, RDOS, Netware vwscanf - All, Linux


```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vscanf_s( const char * restrict format, va_list arg );
#include <stdarg.h>
#include <wchar.h>
int vwscanf_s( const wchar_t * restrict format, va_list arg );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vscanf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> The argument format shall not be a null pointer. Any argument indirected through in order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vscanf_s function does not attempt to perform further input, and it is unspecified to what extent vscanf_s performed input before discovering the runtime-constraint violation.

Description:

The vscanf_s function is equivalent to scanf_s, with the variable argument list replaced by arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The vscanf_s function does not invoke the va_end macro.

The vwscanf_s function is identical to vscanf_s except that it accepts a wide character string argument for format.

Returns:

The vscanf_s function returns EOF if an input failure occurred before any conversion or if there was a runtime-constraint violation. Otherwise, the vscanf_s function returns the number of input items successfully assigned, which can be fewer than provided for, or even zero.

When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vcscanf, vfscanf, vscanf, vsscanf, fwscanf, wscanf, vfwscanf, vwscanf, vswscanf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdarq.h>
void find( char *format, ... )
    va_list arglist;
    va_start( arglist, format );
    vscanf_s( format, arglist );
    va_end( arglist );
void main( void )
    int day, year;
    char weekday[10], month[10];
```

Description:

The _vsnprintf function formats data under control of the *format* control string and stores the result in *buf*. The maximum number of characters to store is specified by *count*. A null character is placed at the end of the generated character string if fewer than *count* characters were stored. The *format* string is described under the description of the printf function. The _vsnprintf function is equivalent to the _snprintf function, with the variable argument list replaced with *arg*, which has been initialized by the va_start macro.

The _vsnwprintf function is a wide character version of _vsnprintf. It accepts a wide character string argument for *format* and produces wide character output. The argument *buf* specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream. The maximum number of wide characters to write is specified by *count*. A null wide character is placed at the end of the generated wide character string if fewer than *count* wide characters were stored.

Returns:

The _vsnprintf function returns the number of characters written into the array, not counting the terminating null character, or a negative value if more than *count* characters were requested to be generated. An error can occur while converting a value for output. The _vsnwprintf function returns the number of wide characters written into the array, not counting the terminating null wide character, or a negative value if more than *count* wide characters were requested to be generated. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also:

```
_bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start, _vbprintf, vcprintf, vfprintf, vprintf
```

Example:

The following shows the use of _vsnprintf in a general error message routine.

```
#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg( char *format, ...)
{
   va_list arglist;

   va_start( arglist, format );
   strcpy( msgbuf, "Error: " );
   _vsnprintf( &msgbuf[7], 80-7, format, arglist );
   va_end( arglist );
   return( msgbuf );
}
```

Systems: _vsnprintf - All, Linux, RDOS, Netware _vsnwprintf - All, Linux

Safer C:

The Safer C Library extension provides the vsnprintf_s function which is a safer alternative to vsnprintf. This newer vsnprintf_s function is recommended to be used instead of the traditional "unsafe" vsnprintf function.

Description:

The vsnprintf function formats data under control of the *format* control string and stores the result in *buf*. The maximum number of characters to store, including a terminating null character, is specified by *count*. The *format* string is described under the description of the printf function. The vsnprintf function is equivalent to the _snprintf function, with the variable argument list replaced with *arg*, which has been initialized by the va_start macro.

The vsnwprintf function is a wide character version of vsnprintf. It accepts a wide character string argument for *format* and produces wide character output. The argument *buf* specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream. The maximum number of wide characters to write, including a terminating null wide character, is specified by *count*.

Returns:

The vsnprintf function returns the number of characters that would have been written had *count* been sufficiently large, not counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than *count*. The vsnwprintf function returns the number of wide characters that would have been written had *count* been sufficiently large, not counting the terminating null wide character, or a negative value if an encoding error occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than *count*. When an error has occurred, erroc contains a value indicating the type of error that has been detected.

See Also:

```
_bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start, _vbprintf, vcprintf, vfprintf, vprintf
```

Example:

The following shows the use of vsnprintf in a general error message routine.

```
#include <stdio.h>
           #include <stdlib.h>
           #include <stdarg.h>
           #include <string.h>
           char *fmtmsg( char *format, ... )
                       *msgbuf;
               char
               int
                       len;
               va_list arglist;
               va_start( arglist, format );
               len = vsnprintf( NULL, 0, format, arglist );
               va_end( arglist );
               len = len + 1 + 7;
               msgbuf = malloc( len );
               strcpy( msgbuf, "Error: " );
               va_start( arglist, format );
               vsnprintf( &msgbuf[7], len, format, arglist );
               va_end( arglist );
               return( msgbuf );
           }
           void main( void )
               char *msg;
               msg = fmtmsg( "%s %d %s", "Failed", 100, "times" );
               printf( %s\n, msg );
               free( msg );
Classification: ISO C
Systems:
           vsnprintf - All, Linux, RDOS, Netware
           vsnwprintf - All, Linux
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vsnprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *s* nor *format* shall be a null pointer. The *n* argument shall neither equal zero nor be greater than RSIZE_MAX. The number of characters (including the trailing null) required for the result to be written to the array pointed to by *s* shall not be greater than *n*. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by *format*. Any argument to vsnprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and less than RSIZE_MAX, then the vsnprintf_s function sets s[0] to the null character.

Description:

The vsnprintf_s function is equivalent to the vsnprintf function except for the explicit runtime-constraints listed above.

The vsnprintf_s function, unlike vsprintf_s, will truncate the result to fit within the array pointed to by s.

The vsnwprintf_s function is a wide character version of vsnprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

The $vsnprintf_s$ function returns the number of characters that would have been written had n been sufficiently large, not counting the terminating null character, or a negative value if a runtime-constraint violation occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than n.

The $vsnprintf_s$ function returns the number of wide characters that would have been written had n been sufficiently large, not counting the terminating wide null character, or a negative value if a runtime-constraint violation occurred. Thus, the null-terminated output has been completely written if and only if the returned value is nonnegative and less than n.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

The following shows the use of vsnprintf_s in a general error message routine.

```
#define __STDC_WANT_LIB_EXT1__ 1
           #include <stdio.h>
           #include <stdlib.h>
           #include <stdarg.h>
           #include <string.h>
           char *fmtmsg( char *format, ... )
                       *msgbuf;
               char
               int
                       len;
               va_list arglist;
               va_start( arglist, format );
               len = vsnprintf( NULL, 0, format, arglist );
               va_end( arglist );
               len = len + 1 + 7;
               msgbuf = malloc( len );
               strcpy( msgbuf, "Error: " );
               va_start( arglist, format );
               vsnprintf_s( &msgbuf[7], len, format, arglist );
               va_end( arglist );
               return( msgbuf );
           }
           void main( void )
               char *msg;
               msg = fmtmsg( "%s %d %s", "Failed", 100, "times" );
               printf_s( "%s\n", msg );
               free ( msg );
           }
Classification: TR 24731
Systems:
           vsnprintf_s - All, Linux, RDOS, Netware
           vsnwprintf_s - All, Linux
```

Safer C:

The Safer C Library extension provides the vsprintf_s function which is a safer alternative to vsprintf. This newer vsprintf_s function is recommended to be used instead of the traditional "unsafe" vsprintf function.

Description:

The vsprintf function formats data under control of the *format* control string and writes the result to *buf*. The *format* string is described under the description of the printf function. The vsprintf function is equivalent to the sprintf function, with the variable argument list replaced with *arg*, which has been initialized by the va_start macro.

The vswprintf function is a wide character version of vsprintf. It accepts a wide character string argument for *format* and produces wide character output. The argument *buf* specifies an array of wide characters into which the generated output is to be written, rather than converted to multibyte characters and written to a stream. The maximum number of wide characters to write, including a terminating null wide character, is specified by *count*.

Returns:

The vsprintf function returns the number of characters written, or a negative value if an output error occurred. The vswprintf function returns the number of wide characters written into the array, not counting the terminating null wide character, or a negative value if *count* or more wide characters were requested to be generated.

See Also:

```
_bprintf, cprintf, fprintf, printf, sprintf, va_arg, va_end, va_start, _vbprintf, vcprintf, vfprintf, vprintf
```

Example:

The following shows the use of vsprintf in a general error message routine.

```
#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg( char *format, ...)
{
   va_list arglist;

   va_start( arglist, format );
   strcpy( msgbuf, "Error: " );
   vsprintf( &msgbuf[7], format, arglist );
   va_end( arglist );
   return( msgbuf );
}
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vsprintf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *s* nor *format* shall be a null pointer. The *n* argument shall neither equal zero nor be greater than RSIZE_MAX. The number of characters (including the trailing null) required for the result to be written to the array pointed to by *s* shall not be greater than *n*. The %n specifier (modified or not by flags, field width, or precision) shall not appear in the string pointed to by *format*. Any argument to vsprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and less than RSIZE_MAX, then the vsprintf_s function sets s[0] to the null character.

Description:

The vsprintf_s function is equivalent to the vsprintf function except for the explicit runtime-constraints listed above.

The vsprintf_s function, unlike vsnprintf_s, treats a result too big for the array pointed to by *s* as a runtime-constraint violation.

The vswprintf_s function is a wide character version of vsprintf_s. It accepts a wide character string argument for *format* and produces wide character output.

Returns:

If no runtime-constraint violation occurred, the vsprintf_s function returns the number of characters written in the array, not counting the terminating null character. If an encoding error occurred, vsprintf_s returns a negative value. If any other runtime-constraint violation occurred, vsprintf_s returns zero.

If no runtime-constraint violation occurred, the vswprintf_s function returns the number of wide characters written in the array, not counting the terminating null wide character. If an encoding error occurred or if *n* or more wide characters are requested to be written, vswprintf_s returns a negative value. If any other runtime-constraint violation occurred, vswprintf_s returns zero.

See Also:

_bprintf, cprintf, fprintf, printf, sprintf, _vbprintf, vcprintf, vfprintf, vprintf, vsprintf, _bwprintf, fwprintf, swprintf, _vbwprintf, vfwprintf, vwprintf, vswprintf

Example:

The following shows the use of vsprintf_s in a general error message routine.

```
#define ___STDC_WANT_LIB_EXT1__ 1
           #include <stdio.h>
           #include <stdarg.h>
           #include <string.h>
           char msgbuf[80];
           char *fmtmsg( char *format, ... )
               va_list arglist;
               va_start( arglist, format );
               strcpy_s( msgbuf, sizeof( buffer ), "Error: " );
               vsprintf_s( &msgbuf[7], sizeof( msgbuf ) - 7,
                            format, arglist );
               va_end( arglist );
               return ( msgbuf );
           }
           void main( void )
               char *msg;
               msg = fmtmsg( "%s %d %s", "Failed", 100, "times" );
               printf( "%s\n", msg );
Classification: TR 24731
Systems:
           vsprintf_s - All, Linux, RDOS, Netware
           vswprintf_s - All, Linux
```

Safer C:

The Safer C Library extension provides the vsscanf_s function which is a safer alternative to vsscanf. This newer vsscanf_s function is recommended to be used instead of the traditional "unsafe" vsscanf function.

Description:

The vsscanf function scans input from the string designated by *s* under control of the argument *format*. The *format* string is described under the description of the scanf function.

The vsscanf function is equivalent to the sscanf function, with a variable argument list replaced with *arg*, which has been initialized using the va_start macro.

The vswscanf function is identical to vsscanf except that it accepts a wide character string argument for *format*.

Returns:

The vsscanf function returns EOF if the end of the input string was reached before any conversion. Otherwise, the number of input arguments for which values were successfully scanned and stored is returned.

See Also:

cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vcscanf, vfscanf, vscanf, fwscanf, wscanf, vfwscanf, vwscanf, vswscanf

Example:

```
#include <stdio.h>
#include <stdarq.h>
void sfind( char *string, char *format, ... )
    va_list arglist;
    va_start( arglist, format );
    vsscanf( string, format, arglist );
    va_end( arglist );
void main( void )
    int day, year;
    char weekday[10], month[10];
    sfind( "Saturday April 18 1987",
            "%s %s %d %d",
            weekday, month, &day, &year );
    printf( "\n%s, %s %d, %d\n",
            weekday, month, day, year );
}
```

Classification: ISO C99

vsscanf, vswscanf

vsscanf - All, Linux, RDOS, Netware
vswscanf - All, Linux **Systems:**

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsscanf_s( const char * restrict str,
               const char * restrict format,
               va_list arg );
#include <stdarq.h>
#include <wchar.h>
int vswscanf_s( const wchar_t * restrict str,
                const wchar_t * restrict format,
                va_list arg );
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and vsscanf_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither str not format shall be a null pointer. Any argument indirected through in order to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the vsscanf_s function does not attempt to perform further input, and it is unspecified to what extent vsscanf_s performed input before discovering the runtime-constraint violation.

Description:

The vsscanf_s function is equivalent to sscanf_s, with the variable argument list replaced by arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The vsscanf_s function does not invoke the va_end macro.

The vswscanf_s function is identical to vsscanf_s except that it accepts wide character string arguments for str and format.

Returns:

The vsscanf_s function returns EOF if an input failure occurred before any conversion or if there was a runtime-constraint violation. Otherwise, the vsscanf_s function returns the number of input items successfully assigned, which can be fewer than provided for, or even zero.

When a file input error occurs, the errno global variable may be set.

See Also:

cscanf, fscanf, scanf, sscanf, va_arg, va_end, va_start, vcscanf, vfscanf, vscanf, vsscanf, fwscanf, wscanf, swscanf, vfwscanf, vwscanf, vswscanf

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <stdarg.h>
void sfind( char *string, char *format, ... )
    va_list arglist;
    va_start( arglist, format );
    vsscanf_s( string, format, arglist );
    va_end( arglist );
}
```

```
void main( void )
               int day, year;
               char weekday[10], month[10];
               sfind( "Friday August 0013 2004",
                        "%s %s %d %d",
                         weekday, sizeof( weekday ),
                         month, sizeof( month ),
                         &day, &year );
               printf_s( "\n%s, %s %d, %d\n",
                        weekday, month, day, year );
           }
           produces the following:
           Friday, August 13, 2004
Classification: TR 24731
Systems:
           vsscanf_s - All, Linux, RDOS, Netware
           vswscanf_s - All, Linux
```

Synopsis: #include process.h>
int wait(int *status);

Description:

The wait function suspends the calling process until any of the caller's immediate child processes terminate.

Under Win32, there is no parent-child relationship amongst processes so the wait function cannot and does not wait for child processes to terminate. To wait for any process, you must specify its process ID. For this reason, the cwait function should be used (one of its arguments is a process ID).

If *status* is not NULL, it points to a word that will be filled in with the termination status word and return code of the terminated child process.

If the child process terminated normally, then the low order byte of the status word will be set to 0, and the high order byte will contain the low order byte of the return code that the child process passed to the DOSEXIT function. The DOSEXIT function is called whenever main returns, or exit, or _Exit or _exit are explicitly called.

If the child process did not terminate normally, then the high order byte of the status word will be set to 0, and the low order byte will contain one of the following values:

Value	Meaning
1	Hard-error abort
2	Trap operation
3	SIGTERM signal not intercepted

Note:

This implementation of the status value follows the OS/2 model and differs from the Microsoft implementation. Under Microsoft, the return code is returned in the low order byte and it is not possible to determine whether a return code of 1, 2, or 3 imply that the process terminated normally. For portability to Microsoft compilers, you should ensure that the application that is waited on does not return one of these values. The following shows how to handle the status value in a portable manner.

```
cwait( &status, process_id, WAIT_CHILD );
#if defined(__WATCOMC__)
switch( status & 0xff ) {
case 0:
   printf( "Normal termination exit code = %d\n", status >> 8 );
   break;
case 1:
   printf( "Hard-error abort\n" );
   break;
case 2:
   printf( "Trap operation\n" );
   break;
case 3:
   printf( "SIGTERM signal not intercepted\n" );
   break;
default:
   printf( "Bogus return status\n" );
#else if defined(_MSC_VER)
switch( status & 0xff ) {
case 1:
   printf( "Possible Hard-error abort\n" );
   break;
case 2:
   printf( "Possible Trap operation\n" );
   break;
   printf( "Possible SIGTERM signal not intercepted\n" );
   break;
default:
   printf( "Normal termination exit code = dn, status);
#endif
```

Returns:

The wait function returns the child's process ID if the child process terminated normally. Otherwise, wait returns -1 and sets errno to one of the following values:

Constant Meaning

ECHILD No child processes exist for the calling process.

EINTR The child process terminated abnormally.

```
See Also: cwait, exit, _Exit, _exit, spawn...
```

wait(&status);

Classification: WATCOM

}

Systems: Win32, OS/2 1.x(all), OS/2-32, Linux

Synopsis: #include <wchar.h>

```
size_t wcrtomb( char *s, wchar_t wc, mbstate_t *ps );
size_t _fwcrtomb( char __far *s, wchar_t wc, mbstate_t __far *ps );
```

Safer C:

The Safer C Library extension provides the wcrtomb_s function which is a safer alternative to wcrtomb. This newer wcrtomb_s function is recommended to be used instead of the traditional "unsafe" wcrtomb function.

Description:

If s is a null pointer, the wortomb function determines the number of bytes necessary to enter the initial shift state (zero if encodings are not state-dependent or if the initial conversion state is described). The resulting state described will be the initial conversion state.

If s is not a null pointer, the wcrtomb function determines the number of bytes needed to represent the multibyte character that corresponds to the wide character given by wc (including any shift sequences), and stores the resulting bytes in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes will be stored. If wc is a null wide character, the resulting state described will be the initial conversion state.

The _fwcrtomb function is a data model independent form of the wcrtomb function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The restartable multibyte/wide character conversion functions differ from the corresponding internal-state multibyte character functions (mblen, mbtowc, and wctomb) in that they have an extra argument, ps, of type pointer to mbstate_t that points to an object that can completely describe the current conversion state of the associated multibyte character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object instead. You are guaranteed that no other function in the library calls these functions with a null pointer for ps, thereby ensuring the stability of the state.

Also unlike their corresponding functions, the return value does not represent whether the encoding is state-dependent.

If the encoding is state-dependent, on entry each function takes the described conversion state (either internal or pointed to by ps) as current. The conversion state described by the pointed-to object is altered as needed to track the shift state of the associated multibyte character sequence. For encodings without state dependency, the pointer to the mbstate_t argument is ignored.

Returns:

If *s* is a null pointer, the wortomb function returns the number of bytes necessary to enter the initial shift state. The value returned will not be greater than that of the MB_CUR_MAX macro.

If s is not a null pointer, the wortomb function returns the number of bytes stored in the array object (including any shift sequences) when wc is a valid wide character; otherwise (when wc is not a valid wide character), an encoding error occurs: the wortomb function stores the value of the macro EILSEQ in errno and returns (size_t)-1; but the conversion state is unspecified.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb_s, wcsrtombs_s, wcsrtombs_s, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

```
Example:
           #include <stdio.h>
           #include <wchar.h>
           #include <mbctype.h>
           #include <errno.h>
           const wchar_t wc[] = {
               0 \times 0020,
               0x002e,
               0 \times 0031,
               0 \times 0041,
               0x3000,
                            /* double-byte space */
                            /* double-byte A */
               0xff21,
                            /* double-byte Hiragana */
               0x3048,
               0x30a3,
                            /* double-byte Katakana */
               0xff61,
                            /* single-byte Katakana punctuation */
               0xff66,
                            /* single-byte Katakana alphabetic */
                           /* single-byte Katakana alphabetic */
               0xff9f,
                            /* double-byte Kanji */
               0x720d,
               0x0000
           };
           #define SIZE sizeof( wc ) / sizeof( wchar_t )
           void main()
               int
                            i, j, k;
               char
                            s[2];
               _setmbcp( 932 );
               i = wcrtomb( NULL, 0, NULL );
               printf( "Number of bytes to enter "
                        "initial shift state = %d\n", i );
               j = 1;
               for( i = 0; i < SIZE; i++ ) {
                    j = wcrtomb( s, wc[i], NULL );
                   printf( "%d bytes in character ", j );
                   if( errno == EILSEQ ) {
                     printf( " - illegal wide character\n" );
                    } else {
                      if (j == 0) {
                          k = 0;
                      } else if ( j == 1 ) {
                          k = s[0];
                      } else if( j == 2 ) {
                          k = s[0] << 8 \mid s[1];
                      printf( "(%#6.4x->%#6.4x)\n", wc[i], k );
                    }
               }
           }
```

produces the following:

```
Number of bytes to enter initial shift state = 0
           1 bytes in character (0x0020->0x0020)
           1 bytes in character (0x002e->0x002e)
           1 bytes in character (0x0031->0x0031)
           1 bytes in character (0x0041->0x0041)
           2 bytes in character (0x3000->0x8140)
           2 bytes in character (0xff21->0x8260)
           2 bytes in character (0x3048->0x82a6)
           2 bytes in character (0x30a3->0x8342)
           1 bytes in character (0xff61->0x00a1)
           1 bytes in character (0xff66->0x00a6)
           1 bytes in character (0xff9f->0x00df)
           2 bytes in character (0x720d->0xe0a1)
           1 bytes in character ( 0000 -> 0 \times 0069)
Classification: ISO C
           _fwcrtomb is WATCOM
Systems:
           wcrtomb - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, Linux,
           RDOS
           _fwcrtomb - DOS, Windows, OS/2 1.x(all)
```

Constraints:

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and wortomb_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

Neither *retval* nor ps shall be a null pointer. If s is not a null pointer, then smax shall not equal zero and shall not be greater than RSIZE_MAX. If s is not a null pointer, then smax shall be not be less than the number of bytes to be stored in the array pointed to by s. If s is a null pointer, then smax shall equal zero.

If there is a runtime-constraint violation, then wcrtomb_s does the following. If s is not a null pointer and smax is greater than zero and not greater than RSIZE_MAX, then wcrtomb_s sets s[0] to the null character. If retval is not a null pointer, then the wcrtomb_s sets *retval to (size_t)-1.

Description:

If s is a null pointer, the wcrtomb_s function is equivalent to the call wcrtomb_s(&retval, buf, size of buf, L'\0', ps) where *retval* and *buf* are internal variables of the appropriate types, and the size of *buf* is greater than MB_CUR_MAX.

If s is not a null pointer, the wcrtomb_s function determines the number of bytes needed to represent the multibyte character that corresponds to the wide character given by wc (including any shift sequences), and stores the multibyte character representation in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide character, a null byte is stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state described is the initial conversion state.

If wc does not correspond to a valid multibyte character, an encoding error occurs: the wcrtomb_s function stores the value (size_t)-1 into *retval* and the conversion state is unspecified. Otherwise, the wcrtomb_s function stores into *retval* the number of bytes (including any shift sequences) stored in the array pointed to by s.

The _fwcrtomb_s function is a data model independent form of the wcrtomb_s function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The wcrtomb_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcsrtombs, wcsrtombs_s, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

```
Example:
           #define __STDC_WANT_LIB_EXT1__ 1
           #include <stdio.h>
           #include <wchar.h>
           #include <mbctype.h>
           #include <errno.h>
           const wchar_t wc[] = {
               0x0020,
               0x002e,
               0x0031,
               0x0041,
               0x3000,
                           /* double-byte space */
                           /* double-byte A */
               0xff21,
               0x3048,
                           /* double-byte Hiragana */
               0x30a3,
                           /* double-byte Katakana */
               0xff61,
                           /* single-byte Katakana punctuation */
                           /* single-byte Katakana alphabetic */
               0xff66,
                           /* single-byte Katakana alphabetic */
               0xff9f,
                           /* double-byte Kanji */
               0x720d,
               0x0000
           };
           #define SIZE sizeof( wc ) / sizeof( wchar_t )
           int main()
           {
               int
                           i, j, k;
               char
                           s[2];
               errno_t
                           rc;
               size_t
                           retval;
               mbstate_t
                           state;
               _setmbcp( 932 );
               j = 1;
               for( i = 0; i < SIZE; i++ ) {
                   rc = wcrtomb_s( &retval, s, 2, wc[i], &state );
                   if( rc != 0 ) {
                     printf( " - illegal wide character\n" );
                   } else {
                     printf( "%d bytes in character ", retval );
                     if ( retval == 0 ) {
                         k = 0;
                      } else if ( retval == 1 ) {
                         k = s[0];
                      } else if( retval == 2 ) {
                         k = s[0] << 8 \mid s[1];
                     printf( "(\#6.4x->\#6.4x)\n", wc[i], k );
                   }
               return( 0 );
           }
           produces the following:
```

```
1 bytes in character (0x0020->0x0020)
           1 bytes in character (0x002e->0x002e)
           1 bytes in character (0x0031->0x0031)
           1 bytes in character (0x0041->0x0041)
           2 bytes in character (0x3000->0x8140)
           2 bytes in character (0xff21->0x8260)
           2 bytes in character (0x3048->0x82a6)
           2 bytes in character (0x30a3->0x8342)
           1 bytes in character (0xff61->0x00a1)
           1 bytes in character (0xff66->0x00a6)
           1 bytes in character (0xff9f->0x00df)
           2 bytes in character (0x720d->0xe0a1)
           1 bytes in character ( 0000 -> 0 \times 0069)
Classification: TR 24731
           _fwcrtomb_s is s WATCOM
           wcrtomb_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
           Linux, RDOS
           _fwcrtomb_s - DOS, Windows, OS/2 1.x(all)
```

Systems:

Safer C:

The Safer C Library extension provides the wcsrtombs_s function which is a safer alternative to wcsrtombs. This newer wcsrtombs_s function is recommended to be used instead of the traditional "unsafe" wcsrtombs function.

Description:

The wcsrtombs function converts a sequence of wide characters from the array indirectly pointed to by *src* into a sequence of corresponding multibyte characters that begins in the shift state described by *ps*, which, if *dst* is not a null pointer, are then stored into the array pointed to by *dst*. Conversion continues up to and including a terminating null wide character, but the terminating null character (byte) will not be stored. Conversion will stop earlier in two cases: when a code is reached that does not correspond to a valid multibyte character, or (if *dst* is not a null pointer) when the next multibyte character would exceed the limit of *len* total bytes to be stored into the array pointed to by *dst*. Each conversion takes place as if by a call to the wcrtomb function.

If dst is not a null pointer, the pointer object pointed to by src will be assigned either a null pointer (if conversion stopped due to reaching a terminating null wide character) or the address just past the last wide character converted. If conversion stopped due to reaching a terminating null wide character and if dst is not a null pointer, the resulting state described will be the initial conversion state.

The _fwcsrtombs function is a data model independent form of the wcsrtombs function that accepts far pointer arguments. It is most useful in mixed memory model applications.

The restartable multibyte/wide string conversion functions differ from the corresponding internal-state multibyte string functions (mbstowcs and wcstombs) in that they have an extra argument, ps, of type pointer to mbstate_t that points to an object that can completely describe the current conversion state of the associated multibyte character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object instead. You are guaranteed that no other function in the library calls these functions with a null pointer for ps, thereby ensuring the stability of the state.

Also unlike their corresponding functions, the conversion source argument, *src*, has a pointer-to-pointer type. When the function is storing conversion results (that is, when *dst* is not a null pointer), the pointer object pointed to by this argument will be updated to reflect the amount of the source processed by that invocation.

If the encoding is state-dependent, on entry each function takes the described conversion state (either internal or pointed to by ps) as current and then, if the destination pointer, dst, is not a null pointer, the conversion state described by the pointed-to object is altered as needed to track the shift state of the associated multibyte character sequence. For encodings without state dependency, the pointer to the mbstate_t argument is ignored.

Returns:

If the first code is not a valid wide character, an encoding error occurs: the wcsrtombs function stores the value of the macro EILSEQ in erro and returns (size_t)-1; but the conversion state is unspecified. Otherwise, it returns the number of bytes in the resulting multibyte characters sequence, which is the same as the number of array elements modified when *dst* is not a null pointer.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs_s, mbstowcs_s, mbstowcs_s, mbstowcs, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs_s, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const wchar_t wc[] = {
    0x0020,
    0x002e,
    0x0031,
    0 \times 0041,
    0x3000,
               /* double-byte space */
    0xff21,
               /* double-byte A */
               /* double-byte Hiragana */
    0x3048,
               /* double-byte Katakana */
    0x30a3,
    0xff61,
               /* single-byte Katakana punctuation */
               /* single-byte Katakana alphabetic */
    0xff66,
               /* single-byte Katakana alphabetic */
    0xff9f,
               /* double-byte Kanji */
    0x720d,
    0x0000
};
void main()
    int
                    i;
    size_t
                    elements;
    const wchar_t
                    *src;
    char
                    mb[50];
   mbstate_t
                    pstate;
    _setmbcp( 932 );
    src = wc;
    elements = wcsrtombs( mb, &src, 50, &pstate );
    if( errno == EILSEQ ) {
        printf( "Error in wide character string\n" );
    } else {
        for(i = 0; i < elements; i++) {
            printf( "0x%2.2x\n", mb[i] );
    }
}
```

produces the following:

$wcsrtombs, _fwcsrtombs$

Systems:

```
0x20
           0x2e
           0x31
           0x41
           0x81
           0x40
           0x82
           0x60
           0x82
           0xa6
           0x83
           0x42
           0xa1
           0xa6
           0xdf
           0xe0
           0xa1
Classification: ISO C
           _fwcsrtombs is WATCOM
           wcsrtombs - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
           Linux, RDOS
           _fwcsrtombs - DOS, Windows, OS/2 1.x(all)
```

Synopsis:

```
#define __STDC_WANT_LIB_EXT1_
errno_t wcsrtombs_s( size_t * restrict retval,
                     char * restrict dst,
                     rsize_t dstmax,
                     const wchar_t ** restrict src,
                     rsize_t len,
                     mbstate_t * restrict ps);
errno_t _fwcsrtombs_s( size_t __far * restrict retval,
                       char __far * restrict dst,
                       rsize_t dstmax,
                       const wchar_t __far * __far * restrict src,
                       rsize_t len,
                       mbstate_t __far * restrict ps);
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and wcsrtombs_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> None of retval, src, *src, or ps shall be null pointers. If dst is not a null pointer, then neither len nor dstmax shall be greater than RSIZE_MAX. If dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a null pointer and len is not less than dstmax, then the conversion shall have been stopped (see below) because a terminating null wide character was reached or because an encoding error occurred.

> If there is a runtime-constraint violation, then wcsrtombs_s does the following. If retval is not a null pointer, then the wcsrtombs_s sets *retval to (size_t) -1. If dst is not a null pointer and dstmax is greater than zero and less than RSIZE_MAX, then wcsrtombs_s sets dst[0] to the null character.

Description:

The wcsrtombs_s function converts a sequence of wide characters from the array indirectly pointed to by src into a sequence of corresponding multibyte characters that begins in the conversion state described by the object pointed to by ps. If dst is not a null pointer, the converted characters are then stored into the array pointed to by dst. Conversion continues up to and including a terminating null wide character, which is also stored.

Conversion stops earlier in two cases:

- when a wide character is reached that does not correspond to a valid multibyte character;
- (if dst is not a null pointer) when the next multibyte character would exceed the limit of n total bytes to be stored into the array pointed to by dst. If the wide character being converted is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null pointer, then a null character is stored into the array pointed to by dst immediately following any multibyte characters already stored. Each conversion takes place as if by a call to the wortomb function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion stopped due to reaching a terminating null wide character) or the address just past the last wide character converted (if any). If conversion stopped due to reaching a terminating null wide character, the resulting state described is the initial conversion state.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide character that does not correspond to a valid multibyte character, an encoding error occurs: the wcsrtombs_s

function stores the value (size_t) -1 into *retval and the conversion state is unspecified. Otherwise, the wcsrtombs_s function stores into *retval the number of bytes in the resulting multibyte character sequence, not including the terminating null character (if any).

All elements following the terminating null character (if any) written by wcsrtombs_s in the array of dstmax elements pointed to by dst take unspecified values when wcsrtombs_s returns.

If copying takes place between objects that overlap, the objects take on unspecified values.

The _fwcsrtombs_s function is a data model independent form of the wcsrtombs_s function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The wcsrtombs_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

_mbccmp, _mbccpy, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbtowc, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcstombs_s, wcstombs_s, wctob, wctomb, wctomb_s

Example:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
#include <wchar.h>
#include <mbctype.h>
#include <errno.h>
const wchar_t wc[] = {
   0x0020,
    0x002e,
    0x0031,
    0x0041,
              /* double-byte space */
    0x3000,
               /* double-byte A */
    0xff21,
               /* double-byte Hiragana */
    0x3048,
               /* double-byte Katakana */
    0x30a3,
    0xff61,
               /* single-byte Katakana punctuation */
    0xff66,
               /* single-byte Katakana alphabetic */
    0xff9f,
              /* single-byte Katakana alphabetic */
    0x720d,
              /* double-byte Kanji */
    0x0000
};
int main()
    int
                  i;
    size_t
                   retval;
   const wchar_t
                   *src;
   char
                  mb[50];
   mbstate_t
                  pstate;
   errno_t
                   rc;
   _setmbcp( 932 );
   src = wc;
   rc = wcsrtombs_s( &retval, mb, 50, &src, sizeof(wc), &pstate );
   if( rc != 0 ) {
        printf( "Error in wide character string\n" );
    } else {
        for( i = 0; i < retval; i++ ) {
            printf( "0x%2.2x\n", mb[i] );
    }
    return( rc );
}
```

produces the following:

wcsrtombs_s, _fwcsrtombs_s

```
0x20
           0x2e
           0x31
           0x41
           0x81
           0x40
           0x82
           0x60
           0x82
           0xa6
           0x83
           0x42
           0xa1
           0xa6
           0xdf
           0xe0
           0xa1
Classification: TR 24731
           _fwcsrtombs_s is WATCOM
Systems:
           wcsrtombs_s - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32,
           Linux, RDOS
           _fwcsrtombs_s - DOS, Windows, OS/2 1.x(all)
```

Safer C: The Safer C Library extension provides the wcstombs_s function which is a safer alternative to wcstombs. This newer wcstombs_s function is recommended to be used instead of the traditional "unsafe" wcstombs function.

Description: The westombs function converts a sequence of wide character codes from the array pointed to by *pwcs* into a sequence of multibyte characters and stores them in the array pointed to by *s*. The westombs function stops if a multibyte character would exceed the limit of *n* total bytes, or if the null character is stored. At most *n* bytes of the array pointed to by *s* will be modified.

The _fwcstombs function is a data model independent form of the wcstombs function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: If an invalid multibyte character is encountered, the wcstombs function returns (size_t)-1. Otherwise, the wcstombs function returns the number of array elements modified, not including the terminating zero code if present.

See Also: wcstombs_s, mblen, mbtowc, mbstowcs, mbstowcs_s, wctomb, wctomb_s

Example: #include <stdio.h> #include <stdlib.h> wchar_t wbuffer[] = { 0x0073, 0×0074 , 0×0072 , 0x0069, 0x006e, 0×0067 , 0x0000 }; void main() { char mbsbuffer[50]; int. i, len;

len = wcstombs(mbsbuffer, wbuffer, 50);
if(len != -1) {
 for(i = 0; i < len; i++)
 printf("/%4.4x", wbuffer[i]);
 printf("\n");
 mbsbuffer[len] = '\0';
 printf("%s(%d)\n", mbsbuffer, len);
}</pre>

produces the following:

wcstombs, _fwcstombs

/0073/0074/0072/0069/006e/0067 string(6)

Classification: ISO C

_fwcstombs is WATCOM

Systems: wcstombs - All, Linux, RDOS, Netware

_fwcstombs - DOS, Windows, OS/2 1.x(all)

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t wcstombs_s( size_t * restrict retval,
                    char * restrict dst,
                    rsize_t dstmax,
                    const wchar_t * restrict src,
                    rsize_t len);
errno_t _fwcstombs_s( size_t __far * restrict retval,
                      char ___far * restrict dst,
                      rsize_t dstmax,
                      const wchar_t __far * restrict src,
                      rsize_t len);
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and wcstombs_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Neither retval nor src shall be a null pointer. If dst is not a null pointer, then neither len nor dstmax shall be greater than RSIZE_MAX. If dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a null pointer and len is not less than dstmax, then the conversion shall have been stopped (see below) because a terminating null wide character was reached or because an encoding error occurred.

> If there is a runtime-constraint violation, then wcstombs_s does the following. If retval is not a null pointer, then the wcstombs_s sets *retval to (size_t)-1. If dst is not a null pointer and dstmax is greater than zero and less than RSIZE_MAX, then wcstombs_s sets dst[0] to the null character.

Description:

The westombs_s function converts a sequence of wide characters from the array pointed to by src into a sequence of corresponding multibyte characters that begins in the initial shift state. If dst is not a null pointer, the converted characters are then stored into the array pointed to by dst. Conversion continues up to and including a terminating null wide character, which is also stored.

Conversion stops earlier in two cases:

when a wide character is reached that does not correspond to a valid multibyte character; (if dst is not a null pointer) when the next multibyte character would exceed the limit of n total bytes to be stored into the array pointed to by dst. If the wide character being converted is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null pointer, then a null character is stored into the array pointed to by dst immediately following any multibyte characters already stored. Each conversion takes place as if by a call to the wortomb function.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide character that does not correspond to a valid multibyte character, an encoding error occurs: the wcstombs_s function stores the value (size_t)-1 into *retval. Otherwise, the wcstombs_s function stores into *retval the number of bytes in the resulting multibyte character sequence, not including the terminating null character (if any).

All elements following the terminating null character (if any) written by wcstombs_s in the array of dstmax elements pointed to by dst take unspecified values when wcstombs_s returns.

If copying takes place between objects that overlap, the objects take on unspecified values.

The _fwcstombs_s function is a data model independent form of the wcstombs_s function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The wcstombs_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also: wcstombs, mblen, mbtowc, mbstowcs, mbstowcs_s, wctomb, wctomb_s

```
Example:
            #define __STDC_WANT_LIB_EXT1__ 1
            #include <stdio.h>
            #include <stdlib.h>
            wchar_t wbuffer[] = {
                0x0073,
                0 \times 0074,
                0 \times 0072,
                0x0069,
                0x006e,
                0 \times 0067,
                0x0073,
                0x0074,
                0 \times 0072,
                0x0069,
                0x006e,
                0x0067,
                0x0000
              };
            int main()
                         mbsbuffer[50];
                char
                int
                         i;
                size_t retval;
                errno_t rc;
                rc = wcstombs_s( &retval, mbsbuffer, 50, wbuffer, sizeof( wbuffer
             ) );
                if(rc == 0) {
                     for( i = 0; i < retval; i++ )
                         printf( "/%4.4x", wbuffer[i] );
                    printf( "\n" );
                    mbsbuffer[retval] = '\0';
                    printf( "%s(%d)\n", mbsbuffer, retval );
                return( rc );
            produces the following:
            /0073/0074/0072/0069/006e/0067
            string(6)
```

Classification: TR 24731

_fwcstombs_s is WATCOM

Systems: wcstombs_s - All, Linux, RDOS, Netware

_fwcstombs_s - DOS, Windows, OS/2 1.x(all)

```
Synopsis: #include <wchar.h>
    int wctob( wint_t wc );
```

Description: The wotob function determines whether *wc* corresponds to a member of the extended character set whose multibyte character representation is as a single-byte character when in the initial shift state.

Returns: The wotob function returns EOF if wc does not correspond to a multibyte character with length one; otherwise, it returns the single-byte character representation.

See Also: _mbccmp, _mbcicmp, _mbcjistojms, _mbcjmstojis, _mbclen, _mbctohira, _mbctokata, _mbctolower, _mbctombb, _mbctoupper, mblen, mbrlen, mbrtowc, mbsrtowcs, mbsrtowcs_s, mbstowcs, mbstowcs_s, mbstowcs_s, mbstowcs, mbsinit, btowc, wcrtomb, wcrtomb_s, wcsrtombs, wcsrtombs_s, wcstombs, wcstombs_s, wctomb, wctomb_s

> 0x002e, 0x0031, 0x0041,

0x3000, /* double-byte space */ 0xff21, /* double-byte A */ 0x3048, /* double-byte Hiragana */ /* double-byte Katakana */ 0x30a3, /* single-byte Katakana punctuation */ 0xff61, /* single-byte Katakana alphabetic */ 0xff66, /* single-byte Katakana alphabetic */ 0xff9f, 0x720d/* double-byte Kanji */ 0x0000 }; #define SIZE sizeof(wc) / sizeof(wchar_t) void main() i, j; int _setmbcp(932); for(i = 0; i < SIZE; i++) { j = wctob(wc[i]);if(j == EOF) { printf("%#6.4x EOF\n", wc[i]); } else { printf(%#6.4x->%#6.4x\n", wc[i], j);

produces the following:

}

}

```
0x0020->0x0020

0x002e->0x002e

0x0031->0x0031

0x0041->0x0041

0x3000 EOF

0xff21 EOF

0x3048 EOF

0x30a3 EOF

0xff61->0x00a1

0xff66->0x00a6

0xff9f->0x00df

0x720d EOF

0000->0x0000
```

Classification: ISO C

Systems: DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS

Synopsis:

```
#include <stdlib.h>
int wctomb( char *s, wchar_t wc );
#include <mbstring.h>
int _fwctomb( char __far *s, wchar_t wc );
```

Safer C:

The Safer C Library extension provides the wctomb_s function which is a safer alternative to wctomb. This newer wctomb_s function is recommended to be used instead of the traditional "unsafe" wctomb function.

Description:

The wetomb function determines the number of bytes required to represent the multibyte character corresponding to the wide character contained in wc. If s is not a NULL pointer, the multibyte character representation is stored in the array pointed to by s. At most MB_CUR_MAX characters will be stored.

The _fwctomb function is a data model independent form of the wctomb function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

If s is a NULL pointer, the wetomb function returns zero if multibyte character encodings are not state dependent, and non-zero otherwise. If s is not a NULL pointer, the wetomb function returns:

Value Meaning

-1 if the value of wc does not correspond to a valid multibyte character

len the number of bytes that comprise the multibyte character corresponding to the value of wc.

See Also: wctomb_s, mblen, mbstowcs, mbstowcs_s, mbtowc, wcstombs, wcstombs_s

Example:

```
#include <stdio.h>
#include <stdlib.h>
wchar_t wchar = \{0x0073\};
char mbbuffer[2];
void main()
  {
    int len;
    printf( "Character encodings are %sstate dependent\n",
             ( wctomb( NULL, 0 ) )
             ? "" : "not " );
    len = wctomb( mbbuffer, wchar );
    mbbuffer[len] = ' \setminus 0';
    printf( "%s(%d)\n", mbbuffer, len );
  }
produces the following:
Character encodings are not state dependent
```

Classification: ISO C

s(1)

_fwctomb is WATCOM

Systems: wctomb - All, Linux, RDOS, Netware

_fwctomb - DOS, Windows, OS/2 1.x(all)

Synopsis:

```
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t wctomb_s( int * restrict status,
                 char * restrict s,
                  rsize_t smax,
                  wchar_t wc);
errno_t _fwctomb_s( int __far * restrict status,
                  char __far * restrict s,
                  rsize_t smax,
                  wchar_t wc);
```

Constraints: If any of the following runtime-constraints is violated, the currently active runtime-constraint handler will be invoked and wctomb_s will return a non-zero value to indicate an error, or the runtime-constraint handler aborts the program.

> Let *n* denote the number of bytes needed to represent the multibyte character corresponding to the wide character given by wc (including any shift sequences).

If s is not a null pointer, then smax shall not be less than n, and smax shall not be greater than RSIZE_MAX. If s is a null pointer, then smax shall equal zero.

If there is a runtime-constraint violation, wctomb_s does not modify the int pointed to by status, and if s is not a null pointer, no more than smax elements in the array pointed to by s will be accessed.

Description:

The wctomb_s function determines n and stores the multibyte character representation of wc in the array whose first element is pointed to by s (if s is not a null pointer). The number of characters stored never exceeds MB_CUR_MAX or smax. If wc is a null wide character, a null byte is stored, preceded by any shift sequence needed to restore the initial shift state, and the function is left in the initial conversion state.

The implementation shall behave as if no library function calls the wctomb_s function.

If s is a null pointer, the wctomb_s function stores into the int pointed to by status a nonzero or zero value, if multibyte character encodings, respectively, do or do not have state-dependent encodings.

If s is not a null pointer, the wctomb_s function stores into the int pointed to by status either n or -1 if wc, respectively, does or does not correspond to a valid multibyte character.

In no case will the int pointed to by *status* be set to a value greater than the MB_CUR_MAX macro.

The _fwctomb_s function is a data model independent form of the wctomb_s function that accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns:

The wctomb_s function returns zero if there was no runtime-constraint violation. Otherwise, a non-zero value is returned.

See Also:

wctomb, mblen, mbstowcs, mbstowcs_s, mbtowc, wcstombs, wcstombs_s

```
#define __STDC_WANT_LIB_EXT1__ 1
Example:
           #include <stdio.h>
           #include <stdlib.h>
           wchar_t wchar = \{0x0073\};
           char mbbuffer[3];
           int main()
               int
                        len;
               int
                       status;
               errno_t rc;
               rc = wctomb_s( &status, NULL, 0, wchar );
               printf( "Character encodings are %sstate dependent\n",
                        ( status ) ? "" : "not " );
               rc = wctomb_s( &len, mbbuffer, 2, wchar );
               if( rc != 0) {
                    printf( "Character encoding error\n");
               } else {
                   mbbuffer[len] = ' \setminus 0';
                    printf( %s(%d) n, mbbuffer, len );
               return( rc );
           }
           produces the following:
           Character encodings are not state dependent
           s(1)
Classification: TR 24731
           _fwctomb_s is WATCOM
Systems:
           wctomb_s - All, Linux, RDOS, Netware
           _fwctomb_s - DOS, Windows, OS/2 1.x(all)
```

Synopsis: #include <wctype.h>
 wctrans_t wctrans(const char *property);

Description:

The wctrans function constructs a value with type wctrans_t that describes a mapping between wide characters identified by the string argument *property*. The constructed value is affected by the LC_CTYPE category of the current locale; the constructed value becomes indeterminate if the category's setting is changed.

The two strings listed below are valid in all locales as *property* arguments to the wctrans function.

Constant Meaning

#include <stdio.h>

tolower uppercase characters are mapped to lowercase

toupper lowercase characters are mapped to uppercase

Returns:

If *property* identifies a valid class of wide characters according to the LC_CTYPE category of the current locale, the wctrans function returns a non-zero value that is valid as the second argument to the towctrans function; otherwise, it returns zero.

See Also:

isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype, wctype, towctrans

Example:

```
#include <wctype.h>
char *translations[2] = {
    "tolower",
    "toupper"
};

void main( void )
{
    int     i;
    wint_t    wc = 'A';
    wint_t    twc;

    for( i = 0; i < 2; i++ ) {
        twc = towctrans( wc, wctrans( translations[i] ) );
        printf( "%s(%lc): %lc\n", translations[i], wc, twc );
    }
}</pre>
```

produces the following:

tolower(A): a
toupper(A): A

Classification: ISO C95

Systems: All, Linux, RDOS, Netware

wctrans

Synopsis: #include <wctype.h>

wctype_t wctype(const char *property);

Description: The wctype function constructs a value with type wctype_t that describes a class of wide characters

identified by the string argument, *property*. The constructed value is affected by the LC_CTYPE category of the current locale; the constructed value becomes indeterminate if the category's setting is

changed.

The twelve strings listed below are valid in all locales as property arguments to the wctype function.

Constant	Meaning
alnum	any wide character for which one of iswalpha or iswdigit is true
alpha	any wide character for which iswupper or iswlower is true, that is, for any wide character that is one of an implementation-defined set for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true
blank	any wide character corresponding to a standard blank character (space or horizontal tab) or is one of an implementation-defined set of wide characters for which iswblank is true
cntrl	any control wide character
digit	any wide character corresponding to a decimal-digit character
graph	any printable wide character except a space wide character
lower	any wide character corresponding to a lowercase letter, or one of an implementation-defined set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true
print	any printable wide character including a space wide character
punct	any printable wide character that is not a space wide character or a wide character for which iswalnum is true
space	any wide character corresponding to a standard white-space character or is one of an implementation-defined set of wide characters for which <code>iswalnum</code> is false
upper	any wide character corresponding to a uppercase letter, or if c is one of an implementation-defined set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true
xdigit	any wide character corresponding to a hexadecimal digit character
	ntifies a valid class of wide characters according to the LC_CTYPE category of the

Returns:

If *property* identifies a valid class of wide characters according to the LC_CTYPE category of the current locale, the wctype function returns a non-zero value that is valid as the second argument to the iswctype function; otherwise, it returns zero.

See Also:

isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, toupper, isleadbyte, iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint,

```
iswpunct, iswspace, iswupper, iswxdigit, towlower, towupper, iswctype,
            wctrans, towctrans
Example:
            #include <stdio.h>
            #include <wchar.h>
            char *types[] = {
                 "alnum",
                 "blank",
                 "alpha",
                 "cntrl",
                 "digit",
                 "graph",
                 "lower",
                 "print",
                 "punct",
                "space",
"upper",
                 "xdigit"
            } ;
            void main( void )
                int
                         i;
                wint_t wc = 'A';
                for( i = 0; i < 12; i++ )
                     if( iswctype( wc, wctype( types[i] ) ) )
                         printf( "%s\n", types[i] );
            }
            produces the following:
            alnum
            alpha
            graph
            print
            upper
            xdigit
Classification: ISO C95
Systems:
            All, Linux, RDOS
```

Synopsis: #include <graph.h>
 short _FAR _wrapon(short wrap);

Description: The _wrapon function is used to control the display of text when the text output reaches the right side

of the text window. This is text displayed with the _outtext and _outmem functions. The wrap

argument can take one of the following values:

_GWRAPON causes lines to wrap at the window border

_GWRAPOFF causes lines to be truncated at the window border

Returns: The _wrapon function returns the previous setting for wrapping.

_outtext(buf);

_setvideomode(_DEFAULTMODE);

getch();

See Also: _outtext, _outmem, _settextwindow

Example: #include <conio.h>
#include <graph.h>

#include <stdio.h> main() int i; char buf[80]; _setvideomode(_TEXTC80); _settextwindow(5, 20, 20, 30); _wrapon(_GWRAPOFF); for($i = 1; i \le 3; ++i$) { _settextposition(2 * i, 1); sprintf(buf, "Very very long line %d", i); _outtext(buf); } _wrapon(_GWRAPON); for($i = 4; i \le 6; ++i$) { _settextposition(2 * i, 1); sprintf(buf, "Very very long line %d", i);

Classification: PC Graphics

Systems: DOS

_wrapon

Synopsis:

Description:

The write function writes data at the operating system level. The number of bytes transmitted is given by *len* and the data to be transmitted is located at the address specified by *buffer*.

The writev function performs the same action as write, but gathers the output data from the iovent buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovent-1].

The _write function is identical to write. Use _write for ANSI naming conventions.

The *handle* value is returned by the open function. The access mode must have included either O_WRONLY or O_RDWR when the open function was invoked.

The data is written to the file at the end when the file was opened with O_APPEND included as part of the access mode; otherwise, it is written at the current file position for the file in question. This file position can be determined with the _tell function and can be set with the lseek function.

When O_BINARY is included in the access mode, the data is transmitted unchanged. When O_TEXT is included in the access mode, the data is transmitted with extra carriage return characters inserted before each linefeed character encountered in the original data.

A file can be truncated under DOS and OS/2 2.0 by specifying 0 as the *len* argument. **Note**, however, that this doesn't work under OS/2 2.1, Windows NT/2000, and other operating systems. To truncate a file in a portable manner, use the _chsize function.

Returns:

The write function returns the number of bytes (does not include any extra carriage-return characters transmitted) of data transmitted to the file. When there is no error, this is the number given by the *len* argument. In the case of an error, such as there being no space available to contain the file data, the return value will be less than the number of bytes transmitted. A value of -1 may be returned in the case of some output errors. When an error has occurred, errno contains a value indicating the type of error that has been detected.

See Also:

_chsize, close, creat, dup, dup2, _eof, exec..., fdopen, _filelength, fileno, fstat, _grow_handles, isatty, lseek, open, read, _setmode, _sopen, stat, _tell, umask

Example:

```
/* open a file for output
                 /* replace existing file if it exists */
                handle = open( "file",

O_WRONLY | O_CREAT | O_TRUNC | O_TEXT,

S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP );
                 if (handle !=-1) {
                     /* write the text
                     size_written = write( handle, buffer,
                                              sizeof( buffer ) );
                      /* test for error
                     if( size_written != sizeof( buffer ) ) {
                          printf( "Error writing file\n" );
                      }
                     /* close the file
                                                                 */
                     close( handle );
Classification: POSIX 1003.1
            _write conforms to ANSI naming conventions
            writev is WATCOM
Systems:
            write - All, Linux, RDOS, Netware
            _write - DOS, Windows, Win386, Win32, OS/2 1.x(all), OS/2-32, RDOS
            writev - Linux, Netware
```

1408 Library Functions and Mad	cros

5 Re-entrant Functions

The following functions in the C library are re-entrant:

abs bsearch_s	atoi div	atol fabs	bsearch _fmbsrtowcs_s
_fmbstowcs_s	_fmemccpy	fmemchr	_fmemcmp
_fmemcpy	_fmemicpy	fmemmove	fmemset
fstrcat	fstrchr	_	_fstrcpy
_	_	_fstrcmp	
_fstrcspn	_fstricmp	_fstrlen	_fstrlwr
_fstrncat	_fstrncmp	_fstrncpy	_fstrnicmp
_fstrnset	_fstrpbrk	_fstrrchr	_fstrrev
_fstrset	_fstrspn	_fstrstr	_fstrupr
_fwcrtombs_s	_fwcsrtombs_s	_fwcstombs_s	_fwctomb_s
isalnum	isalpha	isascii	isblank
iscntrl	isdigit	isgraph	islower
isprint	ispunct	isspace	isupper
isxdigit	itoa	labs	ldiv
lfind	longjmp	_lrotl	_lrotr
lsearch	ltoa	_makepath	mblen
mbsrtowcs_s	mbstowcs	mbstowcs_s	mbtowc
memccpy	memchr	memcmp	memcpy
memcpy_s	_memicmp	memmove	memmove_s
memset	movedata	qsort	qsort_s
_rotl	_rotr	segread	setjmp
_splitpath	strcat	strcat_s	strchr
strcmp	strcoll	strcpy	strcpy_s
strcspn	strerror_s	strerrorlen_s	_stricmp
strlen	_strlwr	strncat	strncat_s
strncmp	strncpy	strncpy_s	_strnicmp
strnlen_s	_strnset	strpbrk	strrchr
_strrev	_strset	strspn	strstr
strtok_s	_strupr	swab	tolower
toupper	ultoa	utoa	wcrtombs_s
wcscat_s	wcscpy_s	_wcserror_s	_wcserrorlen_s
wcsncat_s	wcsncat_s	wcsncpy_s	wcsnlen_s
wcsrtombs_s	wcstok_s	wcstombs	wcstombs_s
wctomb	wctomb_s	wmemcpy_s	wmemmove_s

Appendices

A. Implementation-Defined Behavior of the C Library

This appendix describes the behavior of the 16-bit and 32-bit Open Watcom C libraries when the ISO/ANSI C Language standard describes the behavior as *implementation-defined*. The term describing each behavior is taken directly from the ISO/ANSI C Language standard. The numbers in parentheses at the end of each term refers to the section of the standard that discusses the behavior.

A.1 NULL Macro

The null pointer constant to which the macro NULL expands (7.1.6).

The macro NULL expands to 0 in small data models and to 0L in large data models.

A.2 Diagnostic Printed by the assert Function

The diagnostic printed by and the termination behavior of the assert function (7.2).

The assert function prints a diagnostic message to stderr and calls the abort routine if the expression is false. The diagnostic message has the following form:

Assertion failed: [expression], file [name], line [number]

A.3 Character Testing

The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and isupper functions (7.3.1).

Function	Characters Tested For
isalnum	Characters 0-9, A-Z, a-z
isalpha	Characters A-Z, a-z
iscntrl	ASCII 0x00-0x1f, 0x7f
islower	Characters a-z
isprint	ASCII 0x20-0x7e
isupper	Characters A-Z

A.4 Domain Errors

The values returned by the mathematics functions on domain errors (7.5.1).

When a domain error occurs, the listed values are returned by the following functions:

Function	Value returned
acos	0.0
acosh	- HUGE_VAL
asin	0.0
atan2	0.0
atanh	- HUGE_VAL
log	- HUGE_VAL
log10	- HUGE_VAL
log2	- HUGE_VAL
pow(neg,frac)	0.0
pow(0.0,0.0)	1.0
pow(0.0,neg)	- HUGE_VAL
sqrt	0.0
y 0	- HUGE_VAL
y1	- HUGE_VAL
yn	- HUGE_VAL

A.5 Underflow of Floating-Point Values

Whether the mathematics functions set the integer expression errno to the value of the macro ERANGE on underflow range errors (7.5.1).

The integer expression errno is not set to ERANGE on underflow range errors in the mathematics functions.

A.6 The fmod Function

Whether a domain error occurs or zero is returned when the fmod function has a second argument of zero (7.5.6.4).

Zero is returned when the second argument to fmod is zero.

A.7 The signal Function

The set of signals for the signal function (7.7.1.1).

See the description of the signal function presented earlier in this book.

The semantics for each signal recognized by the signal function (7.7.1.1).

See the description of the signal function presented earlier in this book.

The default handling and the handling at program startup for each signal recognized by the signal function (7.7.1.1).

See the description of the signal function presented earlier in this book.

A.8 Default Signals

If the equivalent of $signal(sig, SIG_DFL)$ is not executed prior to the call of a signal handler, the blocking of the signal that is performed (7.7.1.1).

```
The equivalent of signal (sig, SIG_DFL);
```

is executed prior to the call of a signal handler.

A.9 The SIGILL Signal

Whether the default handling is reset if the SIGILL signal is received by a handler specified to the signal function (7.7.1.1).

```
The equivalent of signal ( SIGILL, SIG_DFL );
```

is executed prior to the call of the signal handler.

A.10 Terminating Newline Characters

Whether the last line of a text stream requires a terminating new-line character (7.9.2).

The last line of a text stream does not require a terminating new-line character.

A.11 Space Characters

Whether space characters that are written out to a text stream immediately before a new-line character appear when read in (7.9.2).

All characters written out to a text stream will appear when read in.

A.12 Null Characters

The number of null characters that may be appended to data written to a binary stream (7.9.2).

No null characters are appended to data written to a binary stream.

A.13 File Position in Append Mode

Whether the file position indicator of an append mode stream is initially positioned at the beginning or end of the file (7.9.3).

When a file is open in append mode, the file position indicator initially points to the end of the file.

A.14 Truncation of Text Files

Whether a write on a text stream causes the associated file to be truncated beyond that point (7.9.3).

Writing to a text stream does not truncate the file beyond that point.

A.15 File Buffering

The characteristics of file buffering (7.9.3).

Disk files accessed through the standard I/O functions are fully buffered. The default buffer size is 512 bytes for 16-bit systems, and 4096 bytes for 32-bit systems.

A.16 Zero-Length Files

Whether a zero-length file actually exists (7.9.3).

A file with length zero can exist.

A.17 File Names

The rules of composing valid file names (7.9.3).

A valid file specification consists of an optional drive letter (which is always followed by a colon), a series of optional directory names separated by backslashes, and a file name.

FAT File System: Directory names and file names can contain up to eight characters followed optionally by a period and a three letter extension. The complete path (including drive, directories and file name) cannot exceed 143 characters. Case is ignored (lowercase letters are converted to uppercase letters).

HPFS File System: Directory names and file names can contain up to 254 characters in the OS/2 High Performance File System (HPFS). However, the complete path (including drive, directories and file name)

cannot exceed 259 characters. The period is a valid file name character and can appear in a file name or directory name as many times as required; HPFS file names do not require file extensions as in the FAT file system. The HPFS preserves case in file names only in directory listings but ignores case in file searches and other system operations (i.e, a directory cannot have more than one file whose names differ only in case).

A.18 File Access Limits

Whether the same file can be open multiple times (7.9.3).

It is possible to open a file multiple times.

A.19 Deleting Open Files

The effect of the remove function on an open file (7.9.4.1).

The remove function deletes a file, even if the file is open.

A.20 Renaming with a Name that Exists

The effect if a file with the new name exists prior to a call to the rename function (7.9.4.2).

The rename function will fail if you attempt to rename a file using a name that exists.

A.21 Printing Pointer Values

The output for %p conversion in the fprintf function (7.9.6.1).

Two types of pointers are supported: near pointers (%hp), and far pointers (%lp). The output for %p depends on the memory model being used.

In 16-bit mode, the fprintf function produces hexadecimal values of the form XXXX for 16-bit near pointers, and XXXX:XXXX (segment and offset separated by a colon) for 32-bit far pointers.

In 32-bit mode, the fprintf function produces hexadecimal values of the form XXXXXXXX for 32-bit near pointers, and XXXX:XXXXXXXX (segment and offset separated by a colon) for 48-bit far pointers.

A.22 Reading Pointer Values

The input for %p conversion in the fscanf function (7.9.6.2).

The fscanf function converts hexadecimal values into the correct address when the %p format specifier is used.

A.23 Reading Ranges

The interpretation of a – character that is neither the first nor the last character in the scanlist for %[conversion in the fscanf function (7.9.6.2).

The "-" character indicates a character range. The character prior to the "-" is the first character in the range. The character following the "-" is the last character in the range.

A.24 File Position Errors

The value to which the macro errno is set by the fgetpos or ftell function on failure (7.9.9.1, 7.9.9.4).

When the function fgetpos or ftell fails, they set errno to EBADF if the file number is bad. The constants are defined in the <errno.h> header file.

A.25 Messages Generated by the perror Function

The messages generated by the perror function (7.9.10.4).

The perror function generates the following messages.

Error	Message
0	"Error 0"
1	"No such file or directory"
2	"Argument list too big"
3	"Exec format error"
4	"Bad file number"
5	"Not enough memory"
6	"Permission denied"
7	"File exists"
8	"Cross-device link"
9	"Invalid argument"
10	"File table overflow"
11	"Too many open files"
12	"No space left on device"
13	"Argument too large"
14	"Result too large"
15	"Resource deadlock would occur"

A.26 Allocating Zero Memory

The behavior of the calloc, malloc, or realloc function if the size requested is zero (7.10.3).

The value returned will be NULL. No actual memory is allocated.

A.27 The abort Function

The behavior of the abort function with regard to open and temporary files (7.10.4.1).

The abort function does not close any files that are open or temporary, nor does it flush any output buffers.

A.28 The atexit Function

The status returned by the exit function if the value of the argument is other than zero, EXIT_SUCCESS, or EXIT_FAILURE (7.10.4.3).

The exit function returns the value of its argument to the operating system regardless of its value.

A.29 Environment Names

The set of environment names and the method for altering the environment list used by the getenv function (7.10.4.4).

The set of environment names is unlimited. Environment variables can be set from the DOS command line using the SET command. A program can modify its environment variables with the puterv function. Such modifications last only until the program terminates.

A.30 The system Function

The contents and mode of execution of the string by the system function (7.10.4.5).

The system function executes an internal DOS, Windows, or OS/2 command, or an EXE, COM, BAT or CMD file from within a C program rather than from the command line. The system function examines the COMSPEC environment variable to find the command interpreter and passes the argument string to the command interpreter.

A.31 The strerror Function

The contents of the error message strings returned by the strerror function (7.11.6.2).

The strerror function generates the following messages.

Error	Message
0	"Error 0"
1	"No such file or directory"
2	"Argument list too big"
3	"Exec format error"

4	"Bad file number"
5	"Not enough memory"
6	"Permission denied"
7	"File exists"
8	"Cross-device link"
9	"Invalid argument"
10	"File table overflow"
11	"Too many open files"
12	"No space left on device"
13	"Argument too large"
14	"Result too large"
15	"Resource deadlock would occur"

A.32 The Time Zone

The local time zone and Daylight Saving Time (7.12.1).

The default time zone is "Eastern Standard Time" (EST), and the corresponding daylight saving time zone is "Eastern Daylight Saving Time" (EDT).

A.33 The clock Function

The era for the clock function (7.12.2.1).

The clock function's era begins with a value of 0 when the program starts to execute.

	acosh 67, 1414
	actime 1328
8	AF_INET 417-418, 420, 427
	AF_INET6 417, 427
	alloca 68
8086 Interrupts	AM_STR 889
_chain_intr 130	_amblksiz 35, 1035
_dos_getvect 211	_ANALOGCOLOR 468
_dos_setvect 228	_ANALOGMONO 468
int386 517	_arc 69 , 48, 385, 396, 967
	_arc_w 69
int386x 518	_ arc_wxy 69
int86 520	_argc 35
int86x 521	argv 35
intr 527	=
intrf 529	asctime 72 , 72, 169
	asctime Functions 70
	_asctime 72 , 72
	asctime_s 74 , 72
A	asin 77 , 1414
	asinh 78
	assert 79 , 31, 1413
	assert.h 31
_A_ARCH 198, 206, 222	atan 80
_A_HIDDEN 191, 193, 197-198, 206, 222	atan2 81, 1414
_A_NORMAL 191, 193, 197-198, 206, 222	atanh 82 , 1414
_A_RDONLY 191, 193, 197-198, 206, 222	atexit 83 , 264, 266, 896
_A_SUBDIR 198, 206, 222	atof 84
_A_SYSTEM 191, 193, 197-198, 206, 222	atoi 85
_A_VOLID 197-198, 206, 222	atol 86
ABDAY_1 890	atoll 87
ABDAY_2 890	_atouni 88
ABDAY_3 890	
ABDAY_4 890	
ABDAY_5 890	
ABDAY_6 890	<i>B</i>
ABDAY_7 890	-
ABMON_1 891	
ABMON_10 892	
	_BASE 1107
ABMON_11 892	basename 89
ABMON_12 892	_bcalloc 125 , 14, 103, 125
ABMON_2 891	bcmp 97
ABMON_3 891	÷
ABMON_4 892	bcopy 98
ABMON_5 892	bdos 91, 56
ABMON_6 892	_beginthread 92 , 253
ABMON_7 892	_beginthreadex 92 , 92-93, 253
ABMON_8 892	Bessel Functions 95 , 16-17
ABMON_9 892	_bexpand 270 , 103, 270
abort 61 , 1135, 1413, 1419	_bfree 351 , 14, 351
abort_handler_s 62	_bfreeseg 99
	_bgetcmd 101
abs 63	_bheapchk 492 , 492
access 64	_bheapmin 497 , 497
_access 64	-
acos 66 , 1414	_bheapseg 103 , 99

acos 66, 1414

_bheapset 499 , 499	_CENTER 1107
_bheapshrink 501 , 501	CGA 1124
_bheapwalk 503 , 503	_CGA 467
binary files 36	cgets 129
BINMODE.OBJ 36, 328, 332	_chain_intr 130
BIOS classification 58	CHAR_MAX 643
BIOS Functions 26	Character Manipulation Functions 5-6
_bios_disk 105	isalnum 531
_bios_equiplist 107	isalpha 532
_bios_keybrd 108	isascii 533
_bios_memsize 110	isascii 533
_bios_printer 111	isblank 536
bios_serialcom 112	iscntrl 538
_bios_timeofday 114	iscsym 540
bios.h 31	iscsym 540
_bios_disk 105	iscsymf 542
_bios_equiplist 107	iscsymf 542
_bios_keybrd 108	isdigit 544
_bios_memsize 110	isgraph 547
_bios_printer 111	isleadbyte 550
bios serialcom 112	islower 552
_bios_timeofday 114	isprint 616
_bmalloc 678 , 14, 103, 678	ispunct 618
_bmsize 879 , 879	isspace 620
bool 33	isupper 622
_BOTTOM 1107	iswalnum 531
_bprintf 115, 1338	iswalpha 532
BREAK 1136	iswascii 533
break Functions 115	iswblank 536
break_off 116, 116	iswortrl 538
break_on 116 , 116	iswcsym 540
_brealloc 1015 , 14, 103, 1015-1016 brk 117	_iswcsymf 542
	iswctype 624
bsearch 118	iswdigit 544
bsearch_s 120 , 118	iswgraph 547 iswlower 552
btom 746	
btowe 122	iswprint 616
bufferram 1279	iswpunct 618
BUFSIZ 1072	iswspace 620
_bwprintf 115	iswupper 622
bzero 123	iswxdigit 626
	isxdigit 626
	_mbctohira 703
\overline{c}	_mbctokata 705
	_mbctolower 699
	_mbctoupper 701
	tolower 1304
cabs 124	_tolower 1304
calloc 125 , 14, 125, 351, 879, 1418	toupper 1306
calloc Functions 124	_toupper 1306
_CAP 1107	towlower 1304
cbrt 127	towupper 1306
ceil 127	wctype 1402
CON 1210, 1310	chdir 132

_chdir 132	_fmbscmp 1188
_chdrive 134	_fmbsicmp 1209
chkctype 684	_fmbsnbcmp 736
chmod 135	_fmbsnbicmp 740
_chmod 135	_fmbsncmp 1225
chsize 137	_fmbsnicmp 1233
_chsize 137 , 137, 665, 1406	_fmemcmp 777
classes of functions 46	_fmemicmp 783
_clear87 139	_fstrcmp 1188
cleareny 140	_fstricmp 1209
clearerr 141	_fstrncmp 1225
_clearscreen 142 , 1054	_fstrnicmp 1233
clock 143 , 1420	_mbscmp 1188
clock_getres 145	_mbscoll 1191
clock_gettime 146	_mbsicmp 1209
clock_nanosleep 147	_mbsicoll 1211
clock_settime 148	_mbsnbcmp 736
CLOCKS_PER_SEC 143	_mbsnbicmp 740
clone 149	_mbsncmp 1225
CLONE_CHILD_CLEARTID 149	_mbsncoll 1227
CLONE_CHILD_SETTID 150	_mbsnicmp 1233
CLONE_FILES 149	_mbsnicoll 1235
CLONE_FS 149	memcmp 777
CLONE_IO 150	memicmp 783
CLONE_NEWIPC 150	_memicmp 783
CLONE_NEWNET 150	strcasecmp 1181
CLONE_NEWNS 149	stremp 1188
CLONE_NEWPID 150	strempi 1190
CLONE_NEWUSER 150	strcoll 1191
CLONE_NEWUTS 150	stricmp 1209
CLONE_PARENT 149	_stricmp 1209
CLONE_PARENT_SETTID 149	_stricoll 1211
CLONE_PTRACE 149	strncasecmp 1220
CLONE_SETTLS 149	strncmp 1225
CLONE_SIGHAND 149	_strncoll 1227
CLONE_SYSVSEM 149	strnicmp 1233
CLONE THREAD 149	_strnicmp 1233
CLONE_UNTRACED 150	_strnicoll 1235
CLONE_VFORK 149	strxfrm 1274
CLONE_VM 149	wcscmp 1188
close 151 , 433, 907	wcscmpi 1190
close 151	wescoll 1191
closedir 152 , 902-903, 1009	_wcsicmp 1209
cmdname 154	_wesicoll 1211
CODESET 889	wesnemp 1225
_COLOR 468	_wcsncoll 1227
_COM_INIT 112	_wesniemp 1233
COM RECEIVE 112	_wesnicoll 1235
_COM_SEND 112	wmemcmp 777
_COM_STATUS 112	complex 33
_commit 155	COMSPEC 140, 1281, 1419
COMMODE.OBJ 329, 332	CON 54
Comparison Functions	Concatenation Functions
bcmp 97	_fmbscat 1182
-	

_fmbsnbcat 734	_ltow 670
_fmbsncat 1221	_strdate 1198
_fstrcat 1182	_strtime 1252
_fstrncat 1221	strtod 1253
_mbscat 1182	strtoimax 1264
_mbsnbcat 734	strtol 1260
_mbsncat 1221	strtoll 1262
streat 1182	strtoul 1266
strcat_s 1184	strtoull 1268
strlcat 1213	strtoumax 1270
strncat 1221	tolower 1304
strncat s 1223	_tolower 1304
wescat 1182	toupper 1306
wcscat_s 1184	_toupper 1306
wesleat 1213	towerrans 1308
westeat 1215 wesneat 1221	towlower 1304
wesheat 1221 wesheat_s 1223	towupper 1306
conio.h 31	ultoa 1314
Console I/O 26, 31	ulltoa 1314
cgets 129	ulltow 1314
cprintf 163	_untow 1314 ultoa 1316
cputs 164	ultoa 1316
cscanf 168	-
	_ultow 1316
getche 392	utoa 1330
kbhit 630	_utoa 1330
_kbhit 630	wested 1253
putch 990	wcstoimax 1264
stdin 18	westol 1260
stdout 18	westoll 1262
ungetch 1322	westoul 1266
veprintf 1340	westoull 1268
vescanf 1342	westoumax 1270
const 57	wctrans 1400
_control87 156	_wecvt 242
_controlfp 158	_wfcvt 275
Conversion Functions 13	_wgcvt 381
atof 84	_wstrdate 1198
atoi 85	_wstrtime 1252
atol 86	_wtof 84
atoll 87	_wtoi 85
ecvt 242	_wtol 86
_ecvt 242	_wtoll 87
fevt 275	coordinate systems 47
_fcvt 275	Coordinated Universal Time 39-40, 42
gcvt 381	Copying Functions
_gcvt 381	bcopy 98
itoa 628	_fmbscpy 1192
_itoa 628	_fmbscspn 1196
_itow 628	_fmbsdup 1199
lltoa 668	_fmbsnbcpy 738
_lltoa 668	_fmbsncpy 1229
_lltow 668	_fmemcpy 779
ltoa 670	_fmemmove 786
Itoa 670	fstrcpy 1192

_fstrdup 1199	
_fstrncpy 1229	
mbscpy 1192	D
_mbscspn 1196	
mbsdup 1199	
_mbsnbcpy 738	d attm 002 1000
_mbsncpy 1229	d_attr 902, 1009
memcpy 779	d_date 902, 1009
memcpy_s 781	D_FMT_889
memmove 786	D_T_FMT 889
memmove s 788	d_time 902, 1009
movedata 809	data
strcpy 1192	_amblksiz 35
strcpy_s 1194	_argc 35
strdup 1199	argv 35
_strdup 1199	assert.h 31
strlepy 1214	bios.h 31
strncpy 1229	conio.h 31
strncpy_s 1231	ctype.h 31
wescpy 1192	daylight 35
wesepy 1192 wesepy_s 1194	direct.h 31
wesdup 1199	dos.h 31
_wesdup 1199	_doserrno 35
weslepy 1214	env.h 32
wesnepy 1214 wesnepy 1229	environ 35
wesnepy_s 1231	errno 35
weshepy_3 1231 wmemcpy 779	errno.h 32
wmemcpy 779 wmemcpy_s 781	fentl.h 32
wmemmove 786	fenv.h 32
wmemmove_s 788	float.h 32
copysign 160	fltused_ 35
cos 161	_fmode 35
cosh 162	fnmatch.h 32
cprintf 163 , 1340	graph.h 32
CPUID 790	i86.h 32
cputs 164	inttypes.h 32
creat 165 , 36, 151, 278, 665, 1318	io.h 32
	limits.h 32
_creat 165 CREATE SUSPENDED 93	locale.h 32
cscanf 168 , 1342	malloc.h 32
ctime 169 , 41, 72	math.h 33
ctime Functions 168	MaxThreads 36
_ctime 169, 41, 169	minreal 36
ctime_s 171, 169	mmintrin.h 33
ctype.h 31	optarg 36
	opterr 36
current directory, 132	optind 36
current drive 132	optopt 36
current drive 132	_osbuild 37
current working directory 132	_osmajor 37
cwait 173 , 1154, 1156, 1373	_osminor 37
_cwait 173	_osmode 37
	_osver 37
	process.h 33
	_psp 37

search.h 33	DIR 31
setjmp.h 33	direct.h 31
share.h 33	directory 53
signal.h 33	Directory Functions 24
_stacksize 37	_bgetcmd 101
stdarg.h 33	chdir 132
stdaux 37	_chdir 132
stdbool.h 33	closedir 152
stddef.h 33	getcmd 394
stderr 38	getcwd 397
stdin 38	_getdcwd 399
stdint.h 33	mkdir 795
stdio.h 33	_mkdir 795
stdlib.h 34	opendir 902
stdout 38	popen 976
stdprn 38	_popen 978
string.h 34	readdir 1009
sys/locking.h 34	rewinddir 1028
sys/stat.h 34	rmdir 1031
sys/timeb.h 34	_rmdir 1031
sys/types.h 34	_wchdir 132
sys/utime.h 35	_wclosedir 152
sys_errlist 38	_wgetcwd 397
sys_nerr 38	_wgetdcwd 399
_threadid 38	_wmkdir 795
time.h 34	_wopendir 902
timezone 38	_wopendn 902 _wpopen 978
tzname 38	_wreaddir 1009
varargs.h 34	_wrewinddir 1028
wargc 38	_wrmdir 1031
wargv 38	dirent 902, 1009
wchar.h 34	dirname 180
wether in 54 wetype.h 34	_disable 181 , 246
_wenviron 39	_DISK_FORMAT 105
win_alloc_flags 39	_DISK_READ 105
win_realloc_flags 39	_DISK_RESET 105
winmajor 39	_DISK_STATUS 105
_winminor 39	_DISK_VERIFY 105
_winver 39	_DISK_WRITE 105
DAY_1 889	diskfree_t 203, 402
DAY_2 889	diskinfo_t 105
DAY_3 889	_displayeursor 183
DAY_4 889	div 184
DAY_5 890	div_t 184
DAY_6 890	_dmsbintoieee 185
DAY_7 890	DOMAIN 680, 1093
daylight 35, 40, 1312	DOS
default drive 132	Program Segment Prefix 37
Default Windowing Functions 26	PSP 37
DEFAULTMODE 1124	DOS classification 58
delay 176	DOS command
devices 53	CHDIR (CD) 54
_dieeetomsbin 177	date 39, 169, 477, 646, 1290, 1312
difftime 179	PATH 260, 1155

SET 40, 260, 406, 408, 993, 1079, 1156	close 151
time 39, 169, 477, 646, 1290, 1312	_close 151
DOS commands 56	creat 165
DOS considerations 53	_creat 165
DOS devices 53	_dos_close 189
DOS directory 53	_dos_creat 191
DOS file 55	_dos_creatnew 193
DOS Functions 27	_dos_open 214
_chdrive 134	_dos_read 216
chsize 137	_dos_write 230
_chsize 137	dup 231
delay 176	dup2 233
_dos_allocmem 187	_dup2 233
_dos_close 189	_dup 231
_dos_creat 191	eof 255
_dos_creatnew 193	_eof 255
_dos_findclose 197	_fdopen 278
_dos_findfirst 197	filelength 305
_dos_findnext 197	_filelength 305
dos freemem 200	_filelengthi64 305
_dos_getdate 202	fileno 308
_dos_getdiskfree 203	fstat 369
_dos_getdrive 205	fstat 369
_dos_getfileattr 206	fstati64 369
_dos_getftime 208	_grow_handles 481
_dos_gettime 200 _dos_gettime 210	isatty 535
_dos_open 214	_isatty 535
_dos_read 216	lock 650
_dos_setblock 217	locking 652
_dos_setdate 219	_locking 652
_dos_setdrive 221	lseek 665
_dos_setfileattr 222	_lseek 665
_dos_setftime 224	lseeki64 665
_dos_settime 226	open 898
_dos_write 230	_open 898
findclose 309	read 1007
_findfirst 310	_read 1007
_findfirsti64 310	readlink 1013
_findnext 313	ready 1007
findnexti64 313	setmode 1096
_getdiskfree 402	_setmode 1096
_getdrive 404	sopen 1148
nosound 894	_sopen 1148
sleep 1141	_tell 1285
sound 1152	_telli64 1285
swab 1276	umask 1318
_wdos_findclose 197	umask 1318
_wdos_findfirst 197	unlock 1324
_wdos_findnext 197	utime 1328
wfindfirst 310	utime 1328
wfindfirsti64 310	_wcreat 165
wfindnext 313	_wopen 898
_windnext 313 _wfindnexti64 313	write 1406
DOS I/O Functions 24	write 1406

writev 1406	_dwYield 241
_wsopen 1148	
_wutime 1328	
DOS Interrupts 56	
bdos 91	<i>E</i>
intdos 523	
intdosx 525	
DOS LFN aware Functions 30	
DOS path 53	E2BIG 261, 1157
dos.h 31	EACCES 64, 136-137, 166, 193, 214, 261, 652, 795,
_dos_allocmem 187 , 200, 217	807, 839, 900, 903, 1013, 1150, 1178, 1311,
_dos_close 189	1328
	EAGAIN 93, 804-805, 839, 1065, 1291
_dos_commit 190	EBADF 137, 151-152, 231, 233, 255, 371, 373, 433,
_dos_creat 191	652, 666, 1010, 1418
_dos_creatnew 193	EBADFD 1311
_dos_find Functions 196	EBUSY 881, 1061
_dos_find 198	ECHILD 175, 918-919, 1374
_dos_findclose 197 , 198	ecvt 242 , 275
_dos_findfirst 197 , 197-198	_ecvt 242 , 273
_dos_findnext 197 , 198	EDEADLOCK 652
_dos_freemem 200	
_dos_getdate 202	EDOM 66-67, 77, 81-82, 96, 654-655, 657, 980, 1168
_dos_getdiskfree 203	1260, 1262, 1264, 1266, 1268, 1270
_dos_getdrive 205 , 221	EEXIST 193, 795
_dos_getfileattr 206	EFAULT 1046, 1050-1052, 1280
_dos_getftime 208	EGA 1124
_dos_gettime 210	_EGA 467
_dos_getvect 211	EILSEQ 297-298, 345, 388, 391, 716, 720, 755, 1376,
_dos_keep 213	1382
_dos_open 214	EINTR 147, 175, 918-919, 1374
_dos_read 216	EINVAL 93, 145-148, 175, 203, 214, 226, 311, 373,
_dos_setblock 217	397, 402, 652, 666, 804-805, 807, 839, 881,
_dos_setdate 219	883, 885, 976, 978, 1013, 1047-1049,
_dos_setdrive 221 , 132	1051-1052, 1062-1066, 1136, 1157, 1278, 1280
_dos_setfileattr 222	1291-1294, 1296, 1327-1328
_dos_setftime 224	EIO 373
_dos_settime 226	_ellipse 244 , 48, 411
_dos_setvect 228	_ellipse_w 244
_dos_write 230	_ellipse_wxy 244
dosdate_t 32, 202, 219	ELOOP 1013
_doserrno 35	EMFILE 166, 193, 214, 231, 233, 261, 900, 970,
_DOSERROR 32	1150, 1328
DOSEXIT 173, 1157, 1373	_enable 246 , 181
dosexterr 195	ENAMETOOLONG 1013
dostime_t 32, 210, 226	endhostent 248
dup 231 , 151, 278, 665	endnetent 249 , 1098
dup2 233 , 151, 278, 433, 665, 906	endprotoent 250 , 1104
_dup2 233	endpwent 251
_dup 231	endservent 252 , 1106
_dwDeleteOnClose 235	_endthread 253 , 93
_	_endthreadex 253 , 93, 253
_dwSetAboutDlg 236	ENFILE 970
_dwSetAppTitle 237	_ENHANCED 468
_dwSetConTitle 238	ENODEV 399, 807
_dwShutDown 239	11,000,001

ENOENT 64, 132, 136, 166, 193, 214, 261, 309, 311,	Error Handling 32, 35
314, 377, 795, 900, 903, 1013, 1150, 1157,	_clear87 139
1328	clearerr 141
ENOMEM 93, 140, 217, 261, 377, 397, 399, 804-805,	_control87 156
807, 839, 881, 883, 994, 1080, 1157	_controlfp 158
ENOSPC 137, 970	dosexterr 195
ENOSYS 373, 1013, 1063	feof 287
ENOTDIR 1013	ferror 289
ENOTSUP 147, 839	_fpreset 340
ENOTTY 1311	matherr 680
env.h 32	perror 920
environ 35, 140, 1079	raise 1004
environment 406, 408, 993, 1079, 1327	_set_matherr 1093
environment variable	signal 1135
tmpfile 1297	_status87 1180
tmpfile_s 1298	stderr 18
EOF 255 , 122, 168, 274, 295, 297-298, 345-346, 348,	strerror 1201
359, 361, 388, 390-392, 475, 989, 991, 998-999,	strerror_s 1202
	——————————————————————————————————————
1038, 1044, 1170, 1172, 1320, 1322, 1342,	_wcserror 1201
1347, 1349, 1355, 1357, 1369, 1371, 1394	_wcserror_s 1202
_eof 255 , 255	_wperror 920
EOVERFLOW 807	ESRCH 1046, 1049-1052
EPERM 148, 804-805, 807, 1046, 1050	exception 33
ERANGE 162, 267, 377, 397, 399, 1140, 1254, 1260,	exec 21-22, 33, 56, 1035, 1155, 1281
1262, 1264, 1266, 1268, 1270, 1311, 1414	exec Functions 258
ERESCOLOR 1124	execl 259 , 260, 976
ERESNOCOLOR 1124	_execl 259
erf 257	execle 259 , 260
erfc 258	_execle 259
EROFS 970	execlp 259 , 259-260
errno 32, 35, 57, 64, 66-67, 77, 81-82, 84, 93, 96, 115,	_execlp 259
	÷
117, 132, 136-137, 140, 145-148, 150-152, 155,	execlpe 259 , 259-260
162, 164, 166, 168, 174, 187, 189-191, 193,	_execlpe 259
198, 200, 203, 206, 208, 214, 216-217, 219,	execv 259 , 260
222, 224, 226, 230-231, 233, 255, 260, 267,	_execv 259
273, 278, 295, 297-298, 300-301, 305, 308-309,	execve 259 , 260
311, 314, 319, 329, 341, 345-346, 348-349, 354,	_execve 259
359, 361, 363, 365, 367, 371, 373, 375, 377,	execvp 259 , 259-260
380, 388, 391, 397, 399, 402, 433, 451, 481,	_execvp 259
507, 523, 525, 535, 650, 652, 654-655, 657,	execvpe 259 , 259-260
666, 680, 716, 720, 755, 795, 800, 804-806,	_execvpe 259
839, 881, 883, 885, 899, 903, 918-920, 970,	exit 266 , 93, 173, 672, 1135, 1373, 1419
976, 978, 980-981, 989, 991, 994, 998, 1007,	_exit 264 , 264 , 93, 173, 1373
1010, 1013, 1025-1026, 1031, 1035, 1044,	EXIT_FAILURE 61, 1419
1046-1052, 1061-1066, 1079-1080, 1093, 1096,	EXIT_SUCCESS 1419
1136, 1140, 1142, 1144, 1150, 1157, 1164,	exp 267
1168, 1178, 1207, 1253-1254, 1260, 1262,	exp2 268
1264, 1266, 1268, 1270, 1278-1279, 1281,	_expand Functions 269
1283-1285, 1291-1294, 1296-1297, 1311, 1324,	_expand 270 , 270
1327-1328, 1340, 1342-1343, 1347, 1349, 1351,	expm1 269
1357, 1359, 1361, 1371, 1374, 1376, 1382,	extern 32
1406, 1414, 1418	
errno.h 32	
errno_t 1067	
_	

	fgetpos 300 , 365, 1418
F	fgets 301 , 451
	fgetwc 297
	_fgetwchar 298
	fgetws 301
F OK 64	_fheapchk 492 , 492
fabs 272	_fheapgrow 495 , 495
false 33	_fheapmin 497 , 497
	_fheapset 499 , 499
_fcalloc 125, 14, 125 fclose 273	_fheapshrink 501 , 501
fcloseall 274	_fheapwalk 503 , 503
fentl.h 32	_fieeetomsbin 303
	FILE 18, 34
fevt 275 , 242	file open limits 481
_fevt 275	File Operations 25
fdim 277	access 64
fdopen 278 , 274	access 64
_fdopen 278 , 329	chmod 135
FE_ALL_EXCEPT 284	chmod 135
FE_DENORMAL 284	_commit 155
FE_DFL_ENV 290	lstat 1176
FE_DIVBYZERO 284	
FE_DOWNWARD 292	mkstemp 798
FE_INEXACT 284	_mktemp 800
FE_INVALID 284	remove 1025
FE_OVERFLOW 284	rename 1026
FE_TONEAREST 292	stat 1176
FE_TOWARDZERO 292	_stat 1176
FE_UNDERFLOW 284	_stati64 1176
FE_UPWARD 292	_tempnam 1287
feclearexcept 280	tmpnam 1302
fedisableexcept 281	tmpnam_s 1300
fedisableexcept 281	unlink 1323
feenableexcept 282	_unlink 1323
feenableexcept 282	_waccess 64
fegetenv 283 , 290	_wchmod 135
fegetexceptflag 284 , 280-282, 288, 291, 293	_wmktemp 800
fegetround 285 , 887, 1030	_wremove 1025
feholdexcept 286 , 290	_wrename 1026
fenv.h 32	_wstat 1176
feof 287 , 349	_wstati64 1176
feraiseexcept 288	_wtempnam 1287
ferror 289 , 349, 475, 999	_wtmpnam 1302
fesetenv 290 , 290	_wtmpnam_s 1300
fesetexceptflag 291	_wunlink 1323
fesetround 292, 285	FILE 79
fetestexcept 293	filelength 305
feupdateenv 294	_filelength 305 , 305
•	_filelengthi64 305
_fexpand 270 , 270	Filename Parsing Functions
fflush 295 , 319, 328-329, 332, 367, 1320	_fullpath 377
_ffree 351 , 14, 351, 1199	_makepath 676
ffs 296	_splitpath2 1162
fgetc 297 , 298, 388	_wfullpath 377
fgetchar 298	_wrunpath 577 _wmakepath 676
_fgetchar 298	_winakepatii 070

_wsplitpath2 1162	_fmbsdec 726
_wsplitpath 1160	_fmbsdup 1199
FILENAME_MAX 307	_fmbsicmp 1209
fileno 308 , 19	_fmbsinc 728
FILES= 481	fmbslen 1215
find_t 32, 197	_fmbslwr 1218
_findclose 309 , 311	_fmbsnbcat 734
_finddata_t 310, 313	_fmbsnbcmp 736
_finddatai64_t 310, 313	fmbsnbcnt 744
_findfirst 310 , 309, 313	_fmbsnbcpy 738
_findfirsti64 310 , 313	_fmbsnbicmp 740
_findnext 313 , 311	_fmbsnbset 742
_findnexti64 313	_fmbsncat 1221
_finite 315, 986	_fmbsncent 744
fixed-point 983, 1040	_fmbsncmp 1225
float.h 32	_fmbsncpy 1229
	fmbsnextc 750
Floating Point Environment 32	-
feclearexcept 280	_fmbsnicmp 1233
fedisableexcept 281	_fmbsninc 752
feenableexcept 282	_fmbsnset 1237
fegetenv 283	_fmbspbrk 1239
fegetexceptflag 284	_fmbsrchr 1241
fegetround 285	_fmbsrev 1243
feholdexcept 286	_fmbsrtowcs 755
feraiseexcept 288	_fmbsrtowcs_s 758
fesetenv 290	_fmbsset 1245
fesetexceptflag 291	_fmbsspn 1247
fesetround 292	_fmbsspnp 761
fetestexcept 293	_fmbsstr 1250
feupdateenv 294	_fmbstok 1255
_floodfill 316 , 411	_fmbstok_r 1255
_floodfill_w 316	_fmbstowcs 763
floor 318 , 1310	_fmbstowcs_s 765
fltused_ 35	_fmbsupr 1272
flushall 319	_fmbterm 767
_flushall 319 , 319, 328, 332	_fmbtowc 769
fma 320	_fmbvtop 771
_fmalloc 678 , 14, 495, 678, 1199	_fmemccpy 774
fmax 321	_fmemchr 775
_fmbccmp 687	_fmemcmp 777
_fmbccpy 689	_fmemcpy 779
_fmbcicmp 691	_fmemicmp 783
_fmbclen 697	_fmemmove 786
_fmbgetcode 709	_fmemset 792
_fmblen 711	fmin 322
_fmbputchar 714	fmod 323 , 1414
_fmbrlen 716	_fmode 35-36, 328, 332, 366, 898, 906, 978, 1149
_fmbrtowc 719	_fmsbintoieee 324
_fmbsbtype 723	_fmsize 879 , 879
_fmbscat 1182	FNM_CASEFOLD 326
_fmbschr 1186	FNM_IGNORECASE 326
_fmbscmp 1188	FNM_LEADING_DIR 326
_fmbscpy 1192	FNM_NOESCAPE 326
fmbscspn 1196	FNM PATHNAME 326

FNM_PERIOD 326	_fstrnicmp 1233
fnmatch 326 , 32	_fstrnset 1237
fnmatch.h 32	_fstrpbrk 1239
fopen 328 , 36, 274, 278, 354, 363	_fstrrchr 1241
fopen_s 331, 328	_fstrrev 1243
fp 354	_fstrset 1245
FP_INFINITE 338	_fstrspn 1247
FP_NAN 338	_fstrspnp 1249
FP_NORMAL 338	_fstrstr 1250
FP_OFF 334 , 32, 797	_fstrtok 1255
FP_SEG 336 , 32, 797	_fstrtok_r 1255
FP_SUBNORMAL 338	_fstrupr 1272
FP_ZERO 338	fsync 373
fpclassify 338	ftell 375 , 363, 1418
_fpreset 340	ftime 376 , 34
fprintf 341 , 343, 920, 1142, 1144, 1164, 1343, 1417	_fullpath 377
fprintf_s 343 , 341	function 1135
fputc 345 , 989	function classification 3
fputchar 346	_fwcrtomb 1376
_fputchar 346	_fwcrtomb_s 1379
fputs 348	_fwcsrtombs 1382
fputwc 345	_fwcsrtombs_s 1385
_fputwchar 346	_fwcstombs 1389
fputws 348	_fwcstombs_s 1391
fread 349	_fwctomb 1396
_frealloc 1015 , 14, 1015	_fwctomb_s 1398
free 351 , 14, 125, 351, 377, 397, 399, 1015, 1199	fwide 379
free Functions 349	fwprintf 341
_freect 353	fwprintf_s 343
freeram 1279	fwrite 380
freeswap 1279	fwscanf 359
freopen 354, 18, 20, 274, 363	fwscanf_s 361
freopen_s 356 , 354	
frexp 358	
fscanf 359, 361, 1347, 1417-1418	
fscanf_s 361, 359, 1044, 1172, 1349	G
fseek 363, 329, 332, 367, 375, 1320	
fsetpos 365, 300, 329, 332, 367, 1320	
_fsopen 366	GAND 400 006 1100
fstat 369 , 32, 34	_GAND 439, 996, 1102
_fstat 369	_GBORDER 244, 968, 974, 1017
_fstati64 369 , 371	_GCLEARSCREEN 142
_fstrcat 1182	_GCURSOROFF 183
_fstrchr 1186	_GCURSORON 183
_fstrcmp 1188	gcvt 381
_fstrcpy 1192	_gcvt 381
_fstrcspn 1196	_get_osfhandle 433 , 906
_fstrdup 1199	_getactivepage 383
_fstricmp 1209	_getarcinfo 385
_fstrlen 1215	_getbkcolor 387
_fstrlwr 1218	getc 388 , 391
_fstrncat 1221	getch 390 , 392, 630, 1322
_fstrncmp 1225	getchar 391
_fstrncpy 1229	getche 392 , 168, 390, 630, 1322, 1342

_getcliprgn 393	_gettextextent 459
getcmd 394 , 672	_gettextposition 461 , 1120
_getcolor 395	_gettextsettings 462 , 1073
_getcurrentposition 396	_gettextwindow 464
_getcurrentposition_w 396	gettid 465
getcwd 397	getuid 466
_getdcwd 399	•
=	GetVersionEx 37, 39
getdelim 401 _getdiskfree 402	_getvieweerd 471
getdrive 404	_getviewcoord 471
	_getviewcoord_w 471
getegid 405	_getviewcoord_wxy 471
getenv 406 , 40, 260, 993, 1079, 1156, 1419	_getvisualpage 473
getenv_s 408 , 406	_getw 475
geteuid 410	getwc 388 , 391
_getfillmask 411	getwchar 391
_getfontinfo 412	_getwindowcoord 476
getgid 414	_getws 451
_getgtextextent 415	_GFILLINTERIOR 244, 968, 974, 1017
_getgtextvector 416	GMT 39
gethostbyaddr 417	gmtime 477
gethostbyname 418	gmtime Functions 476
gethostent 420 , 1086	_gmtime 477 , 477
_getimage 422 , 50, 510, 996	gmtime_s 479 , 477
_getimage_w 422	_GOR 439, 996, 1102
_getimage_wxy 422	_GPRESET 996
getline 424	_GPSET 439, 996, 1102
_getlinestyle 425	graph.h 32
getlogcoord 471	graphic page 46
_getmbcp 426	graphics adapters 45
getnetbyaddr 427	graphics functions 45
getnetbyname 428	graphics header files 52
getnetent 429 , 1098	graphics library 45
getopt 430 , 36-37	GRCLIPPED 483
getpgrp 435	Greenwich Mean Time 39
_getphyscoord 436	GRERROR 483
getpid 437	GRFONTFILENOTFOUND 483
_getpid 437	GRINSUFFICIENTMEMORY 483
_getpixel 438	GRINVALIDFONTFILE 483
_getpixel_w 438	GRINVALIDPARAMETER 483
_getplotaction 439	GRMODENOTSUPPORTED 483
getppid 441	GRNOOUTPUT 483
getprotobyname 442	GRNOTINPROPERMODE 483
getprotobynumber 443	GROK 483
getprotoent 444, 1104	grouping 643
getpwent 445	_grow_handles 481
getpwent 443	_grstatus 483
getpwidid 449	_grtext 485 , 459, 462, 485, 910, 912, 917, 1073, 1075.
gets 451 , 301	•
	1107, 1113, 1115
gets_s 453	_grtext_w 485
getservbyname 454	_GSCROLLID 1054
getservbyport 455	_GSCROLLUP 1054
getservent 456 , 1106	_GVIEWPORT 142
_gettextcolor 457	_GWINDOW 142
gettextcursor 458	GWRAPOFF 1404

_GWRAPON 1404	_heapgrow 495
_GXOR 439, 996, 1102	_heapinfo 503
	_heapmin Functions 495
	_heapmin 497 , 497, 501
	_HEAPOK 492, 499, 503
H	_heapset Functions 497
	_heapset 499 , 492, 499, 503
	_heapshrink Functions 500
1 11 11 14 14 14 14 14 14 14 14 14 14 14	_heapshrink 501 , 497, 501
h_addr_list 417-418	_heapwalk Functions 501
h_aliases 417	_heapwalk 503 , 492, 499, 503
h_name 417-418	HERCMONO 1124
_HALF 1107	_HERCULES 467
halloc 487 , 495, 506	hfree 506
hantozen 683	HGC 1124
_harderr 488	hInstance 672
_hardresume 488 , 489	hPrevInstance 672
_hardretn 488 , 489	HRES16COLOR 1124
hardware port 514-516, 914-916	HRESBW 1124
_hdopen 491	HUGE_VAL 1254
Heap Functions 15	Hyperbolic Functions
_bheapchk 492	acos 66
_bheapmin 497	acosh 67
_bheapset 499	asinh 78
_bheapshrink 501	atan 80
_bheapwalk 503	atanh 82
_fheapchk 492	cosh 162
_fheapgrow 495	sinh 1140
_fheapmin 497	tanh 1284
_fheapset 499	hypot 507
_fheapshrink 501	71
_fheapwalk 503	
_heapchk 492	
_heapenable 494	1
_heapgrow 495	
_heapmin 497	
_heapset 499	
_heapshrink 501	i86.h 32
_heapwalk 503	IA MMX 33
_nheapchk 492	IA MMX functions 28
_nheapgrow 495	ignore_handler_s 508
_nheapmin 497	ilogb 509
_nheapset 499	_imagesize 510 , 422
_nheapshrink 501	_imagesize_w 510
_nheapwalk 503	_imagesize_wxy 510
_HEAPBADBEGIN 492, 499, 503	imaxabs 512
_HEAPBADNODE 492, 499, 503	imaxdiv 513
_HEAPBADPTR 503	imaxdiv_t 513
_heapchk Functions 491	INCLUDE 994, 1080
_heapchk 492 , 492, 499, 503	infinity 315, 986
_HEAPEMPTY 492, 499, 503	inp 514
_heapenable 494	inpd 515
_HEAPEND 503	inpw 516
_heapgrow Functions 494	int 1099, 1332

int386 **517**, 56 ismbcalpha **580**, 578 _ismbccntrl 582 int386x 518, 56 int64 984, 1041 ismbcdigit **584**, 578 int86 **520**, 56 _ismbcgraph **586**, 602 _ismbchira 588 int86x **521**, 56, 527, 529 intdos 523, 56 _ismbckata 590 intdosx 525, 56 ismbcl0 592 Intel classification 58 ismbcl1 **594** _ismbcl2 **596** Intel-Specific Functions 27 Interrupt Functions _ismbclegal 598 disable 181 _ismbclower 600 _enable 246 _ismbcprint **602**, 586 _ismbcpunct 604 **INTMAX MAX 1264** INTMAX MIN 1264 ismbespace 606 intmax_t 984, 1040 _ismbcsymbol 608 _ismbcupper 610 INTPACK 32 intr **527**, 56 _ismbcxdigit 612 intrf **529**, 56 isnan 614 isnormal 615 inttypes.h 32 io.h 32 ISO C classification 57 _IOFBF 1122 ISO C90 classification 57 _IOLBF 1122 ISO C95 classification 57 IONBF 1122 ISO C99 classification 57 isalnum **531**, 554, 1413 isprint 616, 547, 1413 isalpha **532**, 531, 556, 1413 ispunct 618 isascii 533 isspace 620 __isascii 533 isupper **622**, 532, 1413 isatty 535 iswalnum **531**, 536, 618, 620, 1402 _isatty 535 iswalpha **532**, 531, 1402 isblank 536 iswascii 533 iscntrl 538, 1413 iswblank 536, 1402 iscsym 540 iswentrl **538**, 532, 552, 622, 1402 iscsym 540 iswcsym 540 __iswcsymf 542 iscsymf 542 __iscsymf **542** iswctype **624**, 1402 isdigit 544, 531 iswdigit 544, 531-532, 552, 622, 1402 isfinite 546 iswgraph 547 isgraph 547, 558, 616 iswlower 552, 532, 1402 isinf **549** iswprint **616** isleadbyte 550 iswpunct 618, 532, 552, 622, 1402 islower **552**, 532, 1413 iswspace **620**, 532, 552, 622, 1402 iswupper 622, 532, 1402 _ismbbalnum 554 ismbbalpha 556 iswxdigit 626 isxdigit 626 ismbbgraph 558 _ismbbkalnum **560**, 554 itoa 628 _ismbbkalpha **564**, 556 itoa **628** ismbbkana 562 itow **628** _ismbbkprint **566**, 558 _ismbbkpunct 568 ismbblead 570 _ismbbprint **572** _ismbbpunct 574 _ismbbtrail 576

_ismbcalnum 578

	_lineto 638 , 48, 396, 810
	_lineto_w 638
	_LK_LOCK, LK_LOCK 652
	_LK_LOCK 652
	_LK_NBLCK, LK_NBLCK 652
j0 96 , 16, 96	_LK_NBLCK 652
j1 96 , 16, 96	_LK_NBRLCK, LK_NBRLCK 652
jistojms 693	_LK_RLCK, LK_RLCK 652
jmp_buf 659, 1087	_LK_UNLCK, LK_UNLCK 652
jmstojis 695	llabs 640
jn 96 , 16, 96	lldiv 641
jtohira 703	lldiv_t 641
jtokata 705	LLONG_MAX 1262
jtolower 699	LLONG_MIN 1262
jtoupper 701	lltoa 668
Joupper 701	_lltoa 668
	loads 1279
K	Locale Functions
^	localecony 642
	setlocale 1091
	_wsetlocale 1091
kbhit 630 , 390, 392, 1322	locale.h 32
_kbhit 630	localecony 642
_KEYBRD_READ 108	localtime 646 , 41
_KEYBRD_READY 108	localtime Functions 644
_KEYBRD_SHIFTSTATUS 108	_localtime 646 , 41, 646
	localtime_s 648 , 646
	lock 650
	locking 652 , 34
L	_locking 652
	log 654 , 656, 1414
	log10 655 , 1414
	log1p 656
L_tmpnam 1302	log2 657 , 1414
L_tmpnam_s 1300	logb 658
labs 631	long double 984, 1041
LC_ALL 1091	long long 984
LC_COLLATE 1091	LONG_MAX 1260
LC_CTYPE 1091, 1400, 1402	LONG_MIN 1260
LC_MONETARY 1091	longjmp 659 , 33, 1004, 1087, 1135
LC_NUMERIC 1091	lpszCmdLine 672
LC_TIME 1091	_lrotl 661
ldexp 632	_lrotr 662
ldiv 633	lsearch 663 , 33
ldiv_t 633	lseek 665 , 1007, 1285, 1406
_LEFT 1107	_lseek 665
lfind 634 , 33	_lseeki64 665 , 1285
lgamma 636	lstat 1176 , 1013, 1178
lgamma_r 637 , 636	ltoa 670
limits	_ltoa 670
file open 481	_ltow 670
limits.h 32	

__LINE__ 79

	_m_punpckhdq 868
	_m_punpckhwd 870
M	_m_punpcklbw 872
	_m_punpckldq 874
<u></u>	_m_punpcklwd 876
	_m_pxor 878
m64 33	_m_to_int 882
_m_empty 790	main 672 , 35, 173, 430, 1373
_m_from_int 793	
_m_packssdw 811	main program 672 _makepath 676
_m_packsswb 813	_ •
_m_packuswb 815	malloc 678 , 14, 92, 351, 353, 377, 397, 399, 495, 678
_m_paddb 817	879, 1199, 1287, 1418
_m_paddd 818	malloc Functions 677
_m_paddsb 819	malloc.h 32
_m_paddsw 821	MAP_ANONYMOUS 806
_m_paddusb 822	MAP_FIXED 806
_m_paddusw 824	MAP_LOCKED 806
_m_paddw 825	MAP_NORESERVE 806
 _m_pand 826	MAP_POPULATE 806
	MAP_PRIVATE 806, 839
 _m_pcmpeqb 828	MAP_SHARED 806
_m_pcmpeqd 829	math.h 33
_m_pcmpeqw 830	Mathematical Functions 15, 33
_m_pcmpgtb 831	acos 66
_m_pcmpgtd 832	acosh 67
_m_pcmpgtw 833	asin 77
_m_pmaddwd 834	asinh 78
_m_pmulhw 836	atan 80
_m_pmullw 837	atan2 81
_m_por 838	atanh 82
_m_pslld 841	Bessel Functions 96
_m_pslldi 842	cabs 124
_m_psllq 843	cbrt 127
_m_psllqi 844	ceil 128
	copysign 160
_m_psllw 845	cos 161
_m_psllwi 846	cosh 162
_m_psrad 847	_dieeetomsbin 177
_m_psradi 848	dmsbintoieee 185
_m_psraw 849	erf 257
_m_psrawi 850	erfc 258
_m_psrld 851	exp 267
_m_psrldi 852	exp2 268
_m_psrlq 853	expm1 269
_m_psrlqi 854	fabs 272
_m_psrlw 855	fdim 277
_m_psrlwi 856	_fieeetomsbin 303
_m_psubb 857	_finite 315
_m_psubd 858	—
_m_psubsb 859	floor 318
_m_psubsw 861	fma 320
_m_psubusb 862	fmax 321
_m_psubusw 864	fmin 322
_m_psubw 865	fmod 323
m nunnckhhw 866	_fmsbintoieee 324

_m_punpckhbw 866

frexp 358	_MBC_SINGLE 684, 723
hypot 507	_MBC_TRAIL 684, 723
ilogb 509	_mbccmp 687
j0 96	mbccpy 689
j1 96	_mbcicmp 691
jn 96	_mbcjistojms 693
ldexp 632	_mbcjmstojis 695
lgamma 636	_mbelen 697
lgamma_r 637	_MBCS 726, 728, 748, 750, 752, 761
log 654	_mbctohira 703
log10 655	_mbctokata 705
log1p 656	_mbctolower 699 , 13
log2 657	_mbctombb 707
logb 658	_mbctoupper 701 , 13
matherr 680	_mbgetcode 709
modf 808	_
	mblen 711 , 716, 719, 1376
nan 886	_mbputchar 714
nearbyint 887	mbrlen 716
nextafter 888	mbrtowc 719 , 755, 758, 765
pow 980	_mbsbtype 723
remainder 1020	_mbscat 1182
rint 1030	_mbschr 1186
round 1034	_mbscmp 1188
scalbn 1037	_mbscoll 1191
_set_matherr 1093	_mbscpy 1192
sin 1139	_mbscspn 1196
sinh 1140	_mbsdec 726
sqrt 1168	_mbsdup 1199
tan 1283	_mbsicmp 1209
tanh 1284	_mbsicoll 1211
tgamma 1289	_mbsinc 728
trunc 1310	mbsinit 731 , 731
y0 96	_mbslen 1215
y1 96	_mbslwr 1218 , 13
yn 96	_mbsnbcat 734
matherr 680 , 33, 66-67, 77, 81-82, 96, 124, 162, 267,	_mbsnbcmp 736
507, 654-655, 657, 980, 1093, 1140, 1168, 1284	_mbsnbcnt 744
max 682	_mbsnbcpy 738
_MAX_DIR 676, 1160	_mbsnbicmp 740
_MAX_DRIVE 676, 1160	_mbsnbset 742
_MAX_EXT 676, 1160	_mbsncat 1221
_MAX_FNAME 676, 1160	_mbsnccnt 744
_MAX_PATH2 1162	_mbsncmp 1225 , 736
MAX_PATH 377, 676, 1160	_mbsncoll 1227
_MAX_VOLUME 1160	_mbsncpy 1229
MAXCOLORMODE 1124	mbsnextc 750
MAXRESMODE 1124	_mbsnicmp 1233 , 740
_MaxThreads 36	_mbsnicoll 1235
MB_CUR_MAX 716, 719, 769, 1376, 1379, 1396,	mbsninc 752
1398	_mbsnset 1237 , 742
_mbbtombc 683	_mbspbrk 1239
_mbbtype 684	_mbsrchr 1241
_MBC_ILLEGAL 684, 723	_mbsrev 1243
_MBC_LEAD_684, 723	mbsrtowes 755
MIDS DEATH VOT. 14.7	111D21101WC2 122

mbsrtowcs_s 758 , 755	_fheapchk 492
_mbsset 1245	_fheapgrow 495
_mbsspn 1247	_fheapmin 497
_mbsspnp 761	_fheapset 499
_mbsstr 1250	_fheapshrink 501
mbstate_t 34, 716, 719, 731, 755, 1376, 1382	_fheapwalk 503
_mbstok 1255	_fmalloc 678
_mbstok_r 1255	_fmsize 879
mbstowcs 763 , 755, 1382	_frealloc 1015
mbstowcs_s 765 , 763	free 351
_mbsupr 1272 , 13	_freect 353
_mbterm 767	halloc 487
mbtowc 769 , 716, 719, 1376	_heapchk 492
_mbvtop 771	_heapgrow 495
MCGA 1124	_heapmin 497
_MCGA 467	_heapset 499
MCL_CURRENT 805	_heapshrink 501
MCL_FUTURE 805, 884	_heapwalk 503
MDPA 1124	hfree 506
_MDPA 467	malloc 678
mem_unit 1279	_memavl 773
_memavl 773	_memmax 785
memccpy 774	_msize 879
_memccpy 774	_ncalloc 125
memchr 775	_nexpand 270
memcmp 777, 97	_nfree 351
memcpy 779 , 786	_nheapchk 492
memcpy_s 781 , 779	_nheapgrow 495
memicmp 783	_nheapmin 497
_memicmp 783 , 783	_nheapset 499
	_nheapshrink 501
memmove 786 , 98, 779, 1192, 1214, 1229	_nheapwalk 503
memmove_s 788 , 781, 786	_nmalloc 678
Memory Allocation 14	_nmsize 879
alloca 68	_nrealloc 1015
_bcalloc 125	realloc 1015
_bexpand 270	sbrk 1035
_bfree 351	stackavail 1174
_bfreeseg 99	stackavail 1174
_bheapchk 492	Memory Manipulation Functions 8
_bheapmin 497	memset 792 , 123
_bheapseg 103	min 794
_bheapset 499	minreal 36
_bheapshrink 501	Miscellaneous Functions 29
_bheapwalk 503	MK_FP 797 , 32
_bmalloc 678	mkdir 795
_bmsize 879	_mkdir 795
_brealloc 1015	mkstemp 798
brk 117	_mktemp 800
calloc 125	mktime 802 , 41
_expand 270	mlock 804
_cxpand 270 _fcalloc 125	mlockall 805 , 884
_fexpand 270	mm_release 149
_ffree 351	mmap 806
_11100 331	mmap ooo

mmintrin.h 33	_fmbsnccnt 744
MMX 33	_fmbsncmp 1225
MMX detection 790	_fmbsncpy 1229
MMX functions 28	_fmbsnextc 750
modf 808	_fmbsnicmp 1233
modtime 1328	_fmbsninc 752
MON_1 890	_fmbsnset 1237
MON_10 891	fmbsrchr 1241
MON_11 891	fmbsrev 1243
MON_12 891	fmbsrtowcs 755
MON_2 890	_fmbsrtowcs_s 758
MON_3 891	fmbsset 1245
MON_4 891	_fmbsspn 1247
MON_5 891	_fmbsspnp 761
MON_6 891	fmbsstr 1250
MON_7 891	fmbstowes 763
MON_8 891	_fmbstowcs_s 765
MON_9 891	_fmbsupr 1272
mon_grouping 643	fmbterm 767
MONO 468	fmbtowc 769
movedata 809	_fmbvtop 771
_moveto 810 , 396, 461, 910, 1117	fwertomb 1376
_moveto_w 810	_fwertomb_s 1379
mprotect 839	fwertombs 1382
MRES16COLOR 1124	_fwestomes 1382
MRES256COLOR 1124	fwestombs 1389
MRES4COLOR 1124	_fwestombs_s 1391
MRESNOCOLOR 1124	fwetomb 1396
MS_ASYNC 881	_fwctomb_s 1398
MS_INVALIDATE 881	_nbccmp 687
MS_SYNC 881	_mbccpy 689
_msize Functions 878	_mbcicmp 691
_msize 879, 270, 879	mbclen 697
msync 881	mblen 711
mtob 746	mbscat 1182
Multibyte Character Functions 6, 10-11	mbschr 1186
_fmbccmp 687	_mbscmp 1188
_fmbccpy 689	_mbscoll 1191
_fmbcicmp 691	_mbscpy 1192
fmbelen 697	_mbscspn 1196
_fmblen 711	_mbsdec 726
_fmbscat 1182	_mbsdup 1199
_fmbschr 1186	_mbsicmp 1209
_fmbscmp 1188	_mbsicoll 1211
_fmbscpy 1192	_mbsinc 728
_fmbscspn 1196	mbsinit 731
_fmbsdec 726	_mbslen 1215
	mbslwr 1218
_fmbsdup 1199	_mbsnbcnt 744
_fmbsicmp 1209	_
_fmbsinc 728 fmbslen 1215	_mbsncat 1221
-	_mbsnccnt 744
_fmbslwr 1218	_mbsncmp 1225
_fmbsnbcnt 744	_mbsncoll 1227
_fmbsncat 1221	_mbsncpy 1229

mbsnextc 750 nheapgrow **495**, 353, 495, 773, 785 mbsnicmp 1233 nheapmin **497**, 497 mbsnicoll 1235 nheapset **499**, 499 mbsnine 752 _nheapshrink **501**, 501 _nheapwalk **503**, 503 mbsnset 1237 _mbsrchr 1241 _NKEYBRD_READ 108 mbsrev 1243 NKEYBRD READY 108 _NKEYBRD_SHIFTSTATUS 108 mbsrtowcs 755 mbsrtowcs s 758 nl langinfo 889 _mbsset 1245 _nmalloc **678**, 14, 353, 678 _mbsspn 1247 nmsize **879**, 879 mbsspnp 761 NODISPLAY 467 mbsstr 1250 NOEXPR 893 mbstowes 763 Non-local Jumps 33 mbstowcs_s 765 longjmp 659 _mbsupr 1272 setjmp 1087 _NORMAL 1107 _mbterm 767 mbtowc 769 nosound 894, 1152 _mbvtop 771 _nrealloc **1015**, 14, 1015 sisinit 731 NULL 93, 752, 1062, 1064-1066, 1311, 1413, 1418 wertomb 1376 _NULLOFF 125, 678, 1016 wcrtomb_s 1379 _NULLSEG 103, 492, 501 wesrtombs 1382 wcsrtombs_s 1385 westombs 1389 wcstombs_s 1391 wctob 1394 wctomb 1396 wctomb_s 1398 O_APPEND 898, 906, 1148, 1406 Multimedia Extension 33 O_BINARY 36, 898, 906, 1007, 1096, 1148-1149, Multimedia Extension functions 28 1406 munlock 883 O CREAT 898-899, 906, 1148-1149 munlockall 884 O_EXCL 898, 906, 1149 munmap 885 O_NOINHERIT 214, 898, 906, 1148 O_NONBLOCK 970 O_RDONLY 214, 898, 906, 1007, 1148 O RDWR 214, 898, 906, 1007, 1148, 1406 Ν O_TEXT 36, 898, 906, 1007, 1096, 1148-1149, 1406 O TRUNC 898, 906, 1148 O_WRONLY 214, 898, 906, 1148, 1406 n aliases 427-429 offsetof 895, 33 n sign posn 643 onexit 896 _onexit **896**, 264 NaN 886, 315, 986 ncalloc **125**, 14, 125 open 898, 32, 36, 151, 278, 308, 665, 1007, 1285, nCmdShow 672 1318, 1406 NDEBUG 79 _open 898 nearbyint 887 open osfhandle **906**, 433 opendir 902, 152, 903, 1009, 1028 nExitCode 673 _nexpand **270**, 270 optarg 36, 430 nextafter 888 opterr 36, 430 _NFILES 481 optind 36, 430 nfree **351**, 14, 351 optopt 36, 430 _nheapchk **492**, 492 OS/2 classification 58

OS/2 Functions	_pg_analyzescatter 926
_beginthread 92	_pg_analyzescatterms 926
cwait 173	_PG_BARCHART 938
_cwait 173	_pg_chart 929 , 921
_endthread 253	_pg_chartms 929 , 921
wait 1373	_pg_chartpie 932 , 923
_os_handle 909	_pg_chartscatter 935 , 926
_osbuild 37	_pg_chartscatterms 935 , 926
_osmajor 37	_PG_COLUMNCHART 938
_osminor 37	_pg_defaultchart 938
_osmode 37	_pg_getchardef 940
_osver 37	_pg_getpalette 942
_outgtext 910 , 415-416, 485, 910, 912, 917, 1019,	_pg_getstyleset 945
1083, 1085	_pg_hlabelchart 948
_outmem 912 , 49, 457, 461, 485, 910, 912, 917, 1077,	_pg_initchart 950 , 51
1109, 1117, 1120, 1130, 1404	_PG_LINECHART 938
outp 914	PG_NOPERCENT 938
outpd 915	PG_PERCENT 938
outpw 916	_PG_PIECHART 938
_outtext 917 , 49, 457, 461, 485, 910, 912, 917,	PG_PLAINBARS 938
1077-1078, 1109, 1117, 1120, 1130, 1404	PG_POINTANDLINE 938
OVERFLOW 680, 1093	PG_POINTONLY 938
	_pg_resetpalette 952
	_pg_resetstyleset 955
	_PG_SCATTERCHART 938
<i>P</i>	_pg_setchardef 957
	_pg_setpalette 959
	_pg_setstyleset 962
11 442 444	PG_STACKEDBARS 938
p_aliases 442-444	_pg_vlabelchart 965
P_DETACH 1155, 1157	PharLap TNT Functions
P_NOWAIT 33, 1154, 1156	_beginthread 92
P_NOWAITO 33, 1154, 1157	_beginthreadex 92
P_OVERLAY 21, 33, 1155	physical coordinates 47
p_sign_posn 643	_pie 967 , 48, 385, 411
_P_tmpdir 1287	_pie_w 967
P_WAIT 21, 33, 56, 1154, 1156	_pie_wxy 967
pad 1279	_pipe 970 , 978
PATH 53, 140, 259, 1155	PLOSS 680, 1093
_PATH_DOWN 1115	PM_STR 889
_PATH_LEFT 1115	_polygon 974 , 48, 411
PATH_MAX 397, 399	_polygon_w 974
_PATH_RIGHT 1115	_polygon_wxy 974
_PATH_UP 1115	popen 976 , 918
PC Graphics classification 58	_popen 978 , 919
pclose 918 , 976	port
_pclose 919 , 978	hardware 514-516, 914-916
_pentry 503	Port I/O 26, 31
perror 920 , 35, 1418	inp 514
PFU 1009	inpd 515
PFV 1099	inpw 516
_pg_analyzechart 921	outp 914
_pg_analyzechartms 921	outpd 915
_pg_analyzepie 923	outpw 916

positive_sign 643	spawnl 1154
POSIX 1003.1 classification 58	_spawnl 1154
POSIX 1003.2 classification 58	spawnle 1154
POSIX 1003.4 classification 58	_spawnle 1154
POSIX classification 58	spawnlp 1154
POSIX_PATH_MAX 1311	_spawnlp 1154
PostQuitMessage 673	spawnlpe 1154
pow 980	_spawnlpe 1154
pow(0.0,0.0) 1414	spawnv 1154
pow(0.0,neg) 1414	_spawnv 1154
pow(neg,frac) 1414	spawnve 1154
Prime Meridian 40, 42	_spawnve 1154
_PRINTER_INIT 111	spawnvp 1154
PRINTER_STATUS 111	_spawnvp 1154
_PRINTER_WRITE 111	spawnype 1154
printf 981 , 35, 115, 163, 341, 983-984, 987, 1117,	_spawnvpe 1154
1142, 1144, 1164, 1338, 1340, 1343, 1351,	system 1281
1359, 1361, 1365	unsetenv 1327
printf_s 987 , 981	_wexecl 259
PRN 54	_wexecle 259
Process Functions 21, 23, 33, 56	_wexeclp 259
abort 61	_wexeclpe 259
abort_handler_s 62	_wexecv 259
atexit 83	_wexecve 259
_bgetcmd 101	_wexecvp 259
cleareny 140	_wexecvpe 259
execl 259	_wgetenv 406
_execl 259	_wputenv 993
execle 259	_wsetenv 1079
_execle 259	_wspawnl 1154
execlp 259	_wspawnle 1154
_execlp 259	_wspawnlp 1154
execlpe 259	_wspawnlpe 1154
_execlpe 259	_wspawnv 1154
execv 259	_wspawnve 1154
_execv 259	_wspawnvp 1154
execve 259	_wspawnvpe 1154
_execve 259	_wsystem 1281
execvp 259	_wunsetenv 1327
_execvp 259	process.h 33
execvpe 259	procs 1279
_execvpe 259	Program Segment Prefix 37
_Exit 264	PROT_EXEC 806, 839
getcmd 394	PROT_NONE 806, 839
getenv 406	PROT_READ 806, 839
ignore_handler_s 508	PROT_WRITE 806, 839
main 672	PSP 37
onexit 896	_psp 37, 213
_onexit 896	ptrdiff_t 33, 984, 1041
putenv 993	putc 989
_putenv 993	putch 990 , 163-164, 1340
set_constraint_handler_s 1067	putchar 991 , 346
setenv 1079	putenv 993 , 40, 260, 406, 408, 1079, 1156, 1419
seteny 1079	puteny 993

putimage **996**, 50, 422 RIGHT 1107 putimage w 996 rint 1030 puts 998, 164 rmdir **1031** _putw **999** rmdir **1031** putwc 989 **Rotate Functions** putwchar 991 _lrotl 661 putws **998** lrotr 662 rotl 1032 _rotr 1033 rotl 1032 Q _rotr 1033 round 1034 RSIZE_MAX 120, 408, 453, 758, 765, 781, 1002, 1184, 1194, 1202, 1223, 1231, 1258, 1300, qsort 1000 1379, 1385, 1391, 1398 qsort_s 1002, 1000 quot 184, 513, 633, 641 S R s_aliases 454-456 S_IEXEC 135, 166, 370, 899, 1149, 1177, 1319 R OK 64 S_IREAD 135, 166, 370, 899, 1149, 1177, 1318 RADIXCHAR 892 S_IRGRP 135, 165, 370, 899, 1149, 1177, 1318 raise **1004**, 33, 659, 1136 S_IROTH 135, 165, 370, 899, 1149, 1177, 1318 rand 1006, 1169 S_IRUSR 135, 165, 370, 899, 1149, 1177, 1318-1319 RAND_MAX 1006 S_IRWXG 135, 165, 370, 899, 1149, 1177, 1318 Random Numbers S_IRWXO 135, 165, 370, 899, 1149, 1177, 1318 rand 1006 S_IRWXU 135, 165, 370, 899, 1149, 1177, 1318 srand 1169 S_ISBLK(m) 370, 1177 read 1007 S ISCHR(m) 370, 1177 _read 1007 S_ISDIR(m) 370, 1177 readdir 1009, 902-903 S_ISFIFO(m) 370, 1177 readlink **1013**, 1013 S_ISGID 371, 1178 readv 1007 S_ISREG(m) 370, 1177 realloc 1015, 14, 351, 879, 1015, 1418 S ISUID 371, 1178 realloc Functions 1014 S_IWGRP 135, 165, 370, 899, 1149, 1177, 1318 _rectangle **1017**, 48, 411 S IWOTH 135, 165, 370, 899, 1149, 1177, 1318 _rectangle_w 1017 S_IWRITE 135, 166, 370, 899, 1149, 1177, 1318 _rectangle_wxy 1017 S_IWUSR 135, 165, 370, 899, 1149, 1177, 1318-1319 _registerfonts 1019, 50, 1083, 1326 S IXGRP 135, 165, 370, 899, 1149, 1177, 1318 REGPACK 32 S IXOTH 135, 165, 370, 899, 1149, 1177, 1318 REGS 32 S_IXUSR 135, 165, 370, 899, 1149, 1177, 1318 rem 184, 513, 633, 641 sbrk 1035, 495 remainder 1020 _SC_ARG_MAX 1277 remapallpalette 1021 _SC_AVPHYS_PAGES 1277 _remappalette 1023 SC CHILD MAX 1277 remove 1025, 1323, 1417 _SC_CLK_TCK 1277 rename 1026, 1417 _SC_JOB_CONTROL 1277 ResumeThread 93 _SC_NGROUPS_MAX 1277 return 672 SC NPROCESSORS CONF 1277 rewind 1027, 141, 329, 332, 367, 1320 _SC_NPROCESSORS_ONLN 1277

rewinddir 1028

_SC_OPEN_MAX 1277	strspn 1247
_SC_PAGE_SIZE 1277	strspnp 1249
_SC_PAGESIZE 1277	_strspnp 761
_SC_PHYS_PAGES 1277	strstr 1250
_SC_REALTIME_SIGNALS 1277	strtok 1255
_SC_SAVED_IDS 1277	strtok_s 1258
_SC_SOMAXCONN 1277	weschr 1186
SC_STREAM_MAX 1277	wesespn 1196
SC_TZNAME_MAX 1277	wcspbrk 1239
_SC_VERSION 1277	wesrchr 1241
scalbn 1037	wcsspn 1247
scanf 1038 , 168, 359, 1170, 1342, 1347, 1355, 1369	_wcsspnp 761
scanf_s 1044 , 1038, 1357	wesstr 1250
sched_get_priority_max 1047	westok 1255
sched_get_priority_min 1048	westok 1255 westok_s 1258
sched_getparam 1046	western 1274
sched_getscheduler 1049	weskilli 1274 wmemchr 775
sched_rr_get_interval 1050	_wsearchenv 1056
<u> </u>	search.h 33
sched_setparam 1051	
sched_setscheduler 1052	_searcheny 1056
sched_yield 1053	Searching Functions 17
_scrolltextwindow 1054	SECURITY_ATTRIBUTES 93
Search Functions	SEEK_CUR 363, 665
_fmbschr 1186	SEEK_END 363, 665
_fmbspbrk 1239	SEEK_SET 363, 665
_fmbsrchr 1241	segread 1058 , 518, 521, 525
_fmbsspn 1247	_selectpalette 1059
_fmbsspnp 761	sem_destroy 1061
_fmbsstr 1250	sem_getvalue 1062
_fmbstok_r 1255	sem_init 1063
_fmemchr 775	sem_post 1064
_fstrchr 1186	sem_trywait 1065
_fstrcspn 1196	SEM_VALUE_MAX 1063
_fstrpbrk 1239	sem_wait 1066
_fstrrchr 1241	set_constraint_handler_s 1067
_fstrspn 1247	_set_matherr 1093
_fstrspnp 1249	set_new_handler 1099
_fstrstr 1250	_set_new_handler 1099
_fstrtok 1255	_setactivepage 1069
lfind 634	_setbkcolor 1071
lsearch 663	setbuf 1072
_mbschr 1186	_setcharsize 1073 , 49
_mbspbrk 1239	_setcharsize_w 1073
_mbsrchr 1241	_setcharspacing 1075
_mbsspn 1247	_setcharspacing_w 1075
_mbsspnp 761	_setcliprgn 1077 , 393
_mbsstr 1250	_setcolor 1078 , 48, 1109
_mbstok_r 1255	setenv 1079 , 40, 406, 408
memchr 775	_setenv 1079
_searchenv 1056	_setfillmask 1081 , 48
strchr 1186	_setfont 1083 , 50, 412, 910, 950, 1019, 1326
strespn 1196	_setgtextvector 1085
strephrk 1239	sethostent 1086, 420
strichr 1241	setimostent 1080 , 420 setjmp 1087 , 33, 659
SUICIII 1241	scijiip 100 7, 33, 037

setjmp.h 33	sin 1139
_setlinestyle 1089, 48	SING 680, 1093
setlocale 1091 , 32, 1191, 1274	sinh 1140
setlogorg 1129	sisinit 731
_setmbcp 1095 , 1211, 1227, 1235	size_t 33-34, 361, 984, 1040
setmode 1096	sleep 1141
_setmode 1096 , 55, 1096	snprintf 1144 , 1146
setnetent 1098 , 429	_snprintf 1142 , 1359, 1361
_setpixel 1101	snprintf_s 1146 , 1144, 1166
_setpixel_w 1101	snwprintf 1144
_setplotaction 1102, 48	_snwprintf 1142
setprotoent 1104, 444	snwprintf_s 1146
setpwent 1105	sopen 1148
setservent 1106 , 456	_sopen 1148 , 32-33, 36, 151, 278, 665, 1150, 1318
_settextalign 1107 , 49	sound 1152
_settextcolor 1109 , 49, 912, 917, 1078	spawn 21-22, 33, 56, 174, 497, 501, 1035, 1281
_settextcursor 1111, 458	spawn Functions 1153
_settextorient 1113, 49	spawnl 1154 , 978, 1155, 1281
_settextpath 1115	_spawnl 1154
_settextposition 1117, 49, 396, 461, 810, 912, 917,	spawnle 1154 , 1155
1120	_spawnle 1154
_settextrows 1118 , 1128	spawnlp 1154 , 1155
_settextwindow 1120 , 49, 461, 464, 1054, 1077, 1130	_spawnlp 1154
setvbuf 1122	spawnlpe 1154 , 1155
_setvideomode 1124 , 46, 950, 1128	_spawnlpe 1154
_setvideomoderows 1128	spawnv 1154 , 1155
_setvieworg 1129 , 47, 436, 471	_spawnv 1154
_setviewport 1130 , 393, 396, 436, 471, 1133	spawnve 1154 , 1155
_setvisualpage 1131	_spawnve 1154
_setwindow 1133 , 47, 471, 476	spawnvp 1154 , 1155
SH_COMPAT 214, 367, 1150	_spawnvp 1154
SH_DENYNO 214, 367, 1150	spawnvpe 1154 , 1155
SH_DENYRD 214, 367, 1150	_spawnvpe 1154
SH_DENYRW 214, 367, 1150	_splitpath2 1162
SH_DENYWR 214, 367, 1150	_splitpath 1160
share.h 33	sprintf 1164 , 115, 1166, 1365
sharedram 1279	sprintf_s 1166 , 1146, 1164
sig_atomic_t 1136	sqrt 1168 , 1414
SIG_DFL 1136, 1415	srand 1169 , 1006
SIG_ERR 1136	SREGS 32
SIG_IGN 1136	sscanf 1170 , 1369
SIGABRT 1135	sscanf_s 1172 , 1170, 1371
SIGBREAK 1135-1136	st_archivedID 369, 1176
SIGFPE 1135	st_atime 369, 1176
SIGILL 1135, 1415	st_attr 369, 1176
SIGINT 1135-1136	st_btime 369, 1176
signal 1135 , 33, 1004, 1414-1415	st_ctime 369, 1176
signal.h 33	st_dev 369, 1176
signbit 1138	st_gid 369, 1176
SIGSEGV 1135	st_inheritedRightsMask 369, 1176
SIGTERM 1135	st_ino 369, 1176
SIGUSR1 1135	st_mode 369-370, 1176-1177
SIGUSR2 1135	st_mtime 369, 1176
SIGUSR3 1135	st_nlink 369, 1176

st_originatingNameSpace 369, 1176	fcloseall 274
st_rdev 369, 1176	fdopen 278
st_size 369-370, 1176-1177	feof 287
st_uid 369, 1176	ferror 289
st_updatedID 369, 1176	fflush 295
stackavail 1174	fgetc 297
_stackavail 1174	fgetchar 298
_stacksize 37	_fgetchar 298
stat 1176 , 34, 369-370, 1176-1177	fgetpos 300
_stat 1176	fgets 301
stati64 1176 , 369, 1176, 1178	fgetwc 297
status87	_fgetwchar 298
stdarg.h 33	fgetws 301
stdaux 18, 37, 274, 308, 481	flushall 319
STDAUX_FILENO 308	_flushall 319
stdbool.h 33	fopen 328
STDC_CONSTANT_MACROS 33	fopen_s 331
STDC_FORMAT_MACROS 32	fprintf 341
STDC_LIMIT_MACROS 32	fprintf_s 343
stddef.h 33	fputc 345
stder. 18, 36, 38, 66-67, 77, 79, 81-82, 96, 162, 267,	fputchar 346
274, 308, 430, 481, 654-655, 657, 680, 920,	_fputchar 346
980, 1093, 1140, 1168, 1413	•
	fputs 348
STDERR_FILENO 308	fputwe 345
stdin 18, 36, 38, 274, 298, 308, 391, 451, 453, 481,	_fputwchar 346
1038 CEDIN EILENO 208 070	fputws 348
STDIN_FILENO 308, 970	fread 349
stdint.h 33	freopen 354
stdio.h 33	freopen_s 356
stdlib.h 34	fscanf 359
stdout 18, 36, 38, 274, 308, 346, 481, 981, 991, 998,	fscanf_s 361
1117, 1351	fseek 329, 332, 363, 367
STDOUT_FILENO 308, 970	fsetpos 365
stdprn 18, 38, 274, 308, 481	_fsopen 366
STDPRN_FILENO 308	ftell 375
strcasecmp 1181	fwprintf 341
streat 1182	fwprintf_s 343
strcat_s 1184 , 1182, 1184	fwrite 380
strchr 1186	fwscanf 359
strcmp 1188 , 1191	fwscanf_s 361
strempi 1190	getc 388
strcoll 1191 , 1274	getchar 391
strcpy 1192 , 993	gets 451
strcpy_s 1194 , 1192, 1194	_getw 475
strcspn 1196	getwc 388
_strdate 1198	getwchar 391
_strdec 726	_getws 451
strdup 1199 , 993, 1302	Multibyte Character Functions 20
_strdup 1199	perror 920
Stream I/O Functions 18, 20	printf 981
_bprintf 115	printf_s 987
_bwprintf 115	putc 989
clearerr 141	putchar 991
fclose 273	puts 998

_putw 999	strerror_s 1202 , 1201, 1204
putwc 989	strerrorlen_s 1204
putwchar 991	strftime 1205 , 41, 1091
_putws 998	stricmp 1209
rewind 1027	_stricmp 1209 , 1181, 1190, 1209
scanf 1038	_stricoll 1211
scanf_s 1044	_strinc 728
setbuf 1072	
	String Functions 8
setvbuf 1122	bcmp 97
snprintf_s 1146	bcopy 98
snwprintf_s 1146	bzero 123
sprintf_s 1166	_cmdname 154
sscanf_s 1172	ffs 296
swprintf_s 1166	_fmbscat 1182
swscanf_s 1172	_fmbschr 1186
tmpfile 1297	_fmbscmp 1188
tmpfile_s 1298	_fmbscpy 1192
ungetc 295, 1320	_fmbscspn 1196
ungetwc 1320	_fmbsdec 726
vfprintf 1343	_fmbsdup 1199
vfprintf_s 1345	_fmbsicmp 1209
vfscanf 1347	_fmbsinc 728
vfscanf_s 1349	fmbslen 1215
vfwprintf 1343	fmbslwr 1218
vfwprintf_s 1345	fmbsnbcat 734
vfwscanf 1347	_fmbsnbcmp 736
vfwscanf_s 1349	fmbsnbcnt 744
vprintf 1351	_fmbsnbcpy 738
vprintf_s 1353	_fmbsnbicmp 740
vscanf 1355	fmbsnbset 742
vscanf_s 1357	fmbsnoset 742 fmbsncat 1221
_	fmbsncat 7221
vsnprintf_s 1363	-
vsnwprintf_s 1363	_fmbsncmp 1225
vsprintf_s 1367	_fmbsncpy 1229
vsscanf_s 1371	_fmbsnextc 750
vswprintf_s 1367	_fmbsnicmp 1233
vswscanf_s 1371	_fmbsninc 752
vwprintf 1351	_fmbsnset 1237
vwprintf_s 1353	_fmbspbrk 1239
vwscanf 1355	_fmbsrchr 1241
vwscanf_s 1357	_fmbsrev 1243
_wfdopen 278	_fmbsset 1245
_wfopen 328	_fmbsspn 1247
_wfopen_s 331	_fmbsspnp 761
_wfreopen 354	_fmbsstr 1250
_wfreopen_s 356	_fmbstok_r 1255
_wfsopen 366	_fmbsupr 1272
Wide Character Functions 20	_fmemccpy 774
_wperror 920	_fmemset 792
wprintf 981	_fstrcat 1182
wprintf_s 987	_fstrchr 1186
wscanf 1038	_fstremp 1188
wscan 1038 wscanf_s 1044	_fstrepy 1192
strerror 1201 , 35, 1419	_fstrespn 1196
Suction 1401, 33, 1417	_1811C8pii 1190

fstrdup 1199 mbsupr 1272 _fstricmp 1209 memccpy 774 fstrlen 1215 memccpy 774 _fstrncat 1221 memset 792 _fstrncmp 1225 snprintf 1144 _snprintf 1142 _fstrncpy 1229 fstrnicmp 1233 snwprintf 1144 _fstrnset 1237 _snwprintf 1142 _fstrpbrk 1239 sprintf 1164 _fstrrchr 1241 sscanf 1170 _fstrrev 1243 strcasecmp 1181 fstrset 1245 strcat 1182 _fstrspn 1247 strcat_s 1184 _fstrspnp 1249 strchr 1186 _fstrstr 1250 strcmp 1188 _fstrtok 1255 strempi 1190 _fstrupr 1272 strcoll 1191 _mbscat 1182 strcpy 1192 _mbschr 1186 strcpy_s 1194 _mbscmp 1188 strcspn 1196 _mbscoll 1191 _strdec 726 _mbscpy 1192 strdup 1199 _mbscspn 1196 _strdup 1199 _mbsdec 726 strerror 1201 _mbsdup 1199 strerror_s 1202 _mbsicmp 1209 strerrorlen_s 1204 _mbsicoll 1211 stricmp 1209 _mbsinc 728 _stricmp 1209 _mbslen 1215 _stricoll 1211 _mbslwr 1218 _strinc 728 _mbsnbcat 734 strlcat 1213 mbsnbcmp 736 strlcpy 1214 mbsnbcnt 744 strlen 1215 _mbsnbcpy 738 strlwr 1218 _mbsnbicmp 740 strlwr 1218 mbsnbset 742 strncasecmp 1220 _mbsncat 1221 strncat 1221 _mbsnccnt 744 strncat_s 1223 mbsncmp 1225 strncmp 1225 _mbsncoll 1227 _strncnt 744 _strncoll 1227 _mbsncpy 1229 _mbsnextc 750 strncpy 1229 _mbsnicmp 1233 strncpy_s 1231 mbsnicoll 1235 strnextc 750 _mbsninc 752 strnicmp 1233 _mbsnset 1237 _strnicmp 1233 _mbspbrk 1239 _strnicoll 1235 _mbsrchr 1241 _strninc 752 _mbsrev 1243 strnlen_s 1217 _mbsset 1245 strnset 1237 _mbsspn 1247 _strnset 1237 _mbsspnp 761 strpbrk 1239 _mbsstr 1250 strrchr 1241 strrev 1243 _mbstok_r 1255

_strrev 1243	_wcsnicmp 1233
strset 1245	_wcsnicoll 1235
_strset 1245	_wesnine 752
strspn 1247	wcsnlen_s 1217
strspnp 1249	wesnset 1237
_strspnp 761	wcsnset 1237
strstr 1250	wespbrk 1239
strtok 1255	wesperk 1235 wesrchr 1241
strtok_s 1258	_wcsrev 1243
strupr 1272	_wester 1245
_strupr 1272	wcsspn 1247
strxfrm 1274	_wcsspn 761
swprintf 1164	wcsstr 1250
swscanf 1170	westok 1255
_vbprintf 1338	westok 1255 westok_s 1258
-	
_vbwprintf 1338	_wcsupr 1272 wcsxfrm 1274
vsnprintf 1361	
_vsnprintf 1359	wmemset 792
vsnwprintf 1361	string.h 34
_vsnwprintf 1359	strlcat 1213
vsprintf 1365	strlcpy 1214
vsscanf 1369	strlen 1215
vswprintf 1365	strlwr 1218
vswscanf 1369	_strlwr 1218 , 13, 1218
wescat 1182	strncasecmp 1220
wescat_s 1184	strncat 1221
weschr 1186	strncat_s 1223 , 1221
wescmp 1188	strncmp 1225 , 1274
wesempi 1190	_strncnt 744
wescoll 1191	_strncoll 1227
wesepy 1192	strncpy 1229 , 1274
wcscpy_s 1194	strncpy_s 1231 , 1229, 1231
wesespn 1196	_strnextc 750
_wcsdec 726	strnicmp 1233
wcsdup 1199	_strnicmp 1233 , 1220, 1233
_wcsdup 1199	_strnicoll 1235
_wcserror 1201	_strninc 752
_wcserror_s 1202	strnlen_s 1217 , 1215
_wcserrorlen_s 1204	strnset 1237
_wesicmp 1209	_strnset 1237 , 1237
_wcsicoll 1211	strpbrk 1239
_wesine 728	strrchr 1241
wesleat 1213	strrev 1243
weslepy 1214	_strrev 1243 , 1243
weslen 1215	strset 1245
_wcslwr 1218	_strset 1245 , 1245
wesneat 1221	strspn 1247
wcsncat_s 1223	strspnp 1249
wesnemp 1225	_strspnp 761
_wesnent 744	strstr 1250
_wcsncoll 1227	_strtime 1252
wesnepy 1229	strtod 1253
wesnepy_s 1231	strtoimax 1264
wesneyte 750	etrtok 1255

strtok_r 1255 , 1255	system 1281 , 21, 33, 56, 497, 501, 1419
strtok_s 1258 , 1255	system 1201, 21, 33, 30, 477, 301, 1417
strtol 1260	
strtoll 1262	
strtoul 1266	T
strtoull 1268	'
strtoumax 1270	
struct 895	
struct lconv 642	T_FMT 889
struct protoent 442-443	T_FMT_AMPM 889
struct servent 454-455	tan 1283
struct tm 34, 802	tanh 1284
structure	_tcsdec 726
complex 33	_tcsinc 728
exception 33	_tcsnbcnt 748
INTPACK 32	_tcsnccnt 748
	_tcsnextc 750
m64_33	_tcsninc 752
REGPACK 32	_tcsspnp 761
REGS 32	tell 1285
SREGS 32	_tell 1285 , 665, 1007, 1285, 1406
stat 34	telli64 1285
strupr 1272	TEMP 1297-1298
_strupr 1272, 13, 1272	TEMPDIR 1297-1298
strxfrm 1274	_tempnam 1287
SVGA 1124	Terminate and Stay Resident
_SVGA 467	_dos_keep 213
SVRES16COLOR 1124	text files 36
SVRES256COLOR 1124	TEXTBW40 1124
SW_HIDE 673	TEXTBW80 1124
SW_MINIMIZE 673	TEXTC40 1124
SW_RESTORE 673	TEXTC80 1124
SW_SHOW 673	TEXTMONO 1124
SW_SHOWMAXIMIZED 673	tgamma 1289
SW_SHOWMINIMIZED 673	THOUSEP 892
SW_SHOWMINNOACTIVE 673	_threadid 38, 93
SW_SHOWNA 673	time 1290 , 169, 646, 802
SW_SHOWNOACTIVATE 673	Time Functions 17, 34
SW_SHOWNORMAL 673	asctime 72
swab 1276	_asctime 72
swprintf 1164	asctime_s 74
swprintf_s 1166	clock 143
swscanf 1170	ctime 169
swscanf_s 1172	ctime 169
sys 34	ctime_s 171
sys/locking.h 34	difftime 179
sys/stat.h 34	ftime 376
sys/timeb.h 34	gmtime 477
sys/types.h 34	gmtime 477
sys/utime.h 35	gmtime_s 479
SYS_clone 149	localtime 646
sys_errlist 38	_localtime 646
sys_nerr 38	localtime_s 648
sysconf 1277	_
sysinfo 1279	mktime 802

strftime 1205	acosh 67
time 1290	asin 77
_wasctime 72	asinh 78
wasctime 72	atan 80
wasctime_s 74	atan 281
wesftime 1205	atanh 82
_wctime 169	cos 161
_wetime 169	cosh 162
_wetime_s 171	hypot 507
_wetrine_s 171 _wstrftime_ms 1205	sin 1139
time zone 39, 42, 169, 477, 646, 1290, 1312	sinh 1140
time.h 34	tan 1283
_TIME_GETCLOCK 114	tanh 1284
_TIME_GETCLOCK 114 _TIME_SETCLOCK 114	true 33
time_t 1290	trunc 1310
timeb 34	ttyname 1311
timer_create 1291	ttyname_r 1311 , 1311
timer_delete 1292	TZ 39-43, 140, 169, 477, 646, 1290, 1312
timer_getoverrun 1296	tzname 38, 40-41, 1312
timer_gettime 1293	tzset 1312 , 35, 38, 40-41, 169, 646, 802, 1207
timer_settime 1294	
timezone 38, 40, 1312	
TLOSS 680, 1093	
tm 34, 477, 646	U
tm_hour 802	
tm_isdst 802	
tm_mday 802	LINTEMAN MAN 1070
tm_min 802	UINTMAX_MAX 1270
tm_mon 802	uintmax_t 984, 1040
tm_sec 802	ULLONG_MAX 1268
tm_wday 802	ulltoa 1314
tm_yday 802	_ulltoa 1314
TMP 1287, 1297-1298	_ulltow 1314
TMP_MAX 1287, 1302	ULONG_MAX 1266
TMP_MAX_S 1300	ultoa 1316
TMPDIR 1297-1298	_ultoa 1316
tmpfile 1297 , 264, 266	_ultow 1316
tmpfile_s 1298 , 1297	umask 1318, 899, 1149
tmpnam 1302	_umask 1318
tmpnam_s 1300 , 1302	undefined references
tolower 1304 , 13, 1218, 1400	fltused_ 35
tolower 1304	UNDERFLOW 680, 1093
_TOP 1107	ungetc 1320 , 295, 363
totalhigh 1279	ungetch 1322
totalram 1279	ungetwc 1320
totalswap 1279	_UNICODE 726, 728, 748, 750, 752, 761
toupper 1306 , 13, 1272, 1400	union 895
_toupper 1306	_UNKNOWN 467
_toupper 1306 towctrans 1308, 1400	unlink 1323
	_unlink 1323
towlower 1304 , 13	unlock 1324 , 650
towupper 1306 , 13	_unregisterfonts 1326
TR 24731 classification 58	unsetenv 1327
Trigonometric Functions 15	unsigned 1099
acos 66	211010110111011

uptime 1279 vsnwprintf 1359 URES256COLOR 1124 vsnwprintf_s 1363 UTC 39-40, 42 vsprintf **1365**, 1367 utimbuf 35, 1328 vsprintf_s 1367, 1363, 1365 utime 1328, 35 vsscanf 1369 _utime 1328 vsscanf_s 1371, 1369 utoa 1330 vswprintf 1365 utoa 1330 vswprintf s 1367 _utow 1330 vswscanf 1369 vswscanf_s 1371 vwprintf 1351 vwprintf s 1353 vwscanf 1355 vwscanf s 1357 va arg 1332, 1334, 1336, 1349, 1357, 1371 va_end 1334, 1332, 1336, 1349, 1357, 1371 W va list 1332 va_start 1336, 1332, 1334, 1338, 1340, 1342-1343, 1347, 1349, 1351, 1355, 1357, 1359, 1361, W OK 64 1365, 1369, 1371 varargs.h 34 _waccess 64 variable arguments 18 wait 1373, 1154, 1156 WAIT_CHILD 174 va_arg 1332 va_end 1334 WAIT_GRANDCHILD 174 va_start 1336 __wargc 38 _vbprintf 1338 _wargv 38 _vbwprintf 1338 _wasctime 72, 72 veprintf 1340 __wasctime 72, 72 vescanf 1342 _wasctime_s 74 vfprintf 1343 WATCOM classification 58 vfprintf_s **1345**, 1343 wchar.h 34 wchar_t 34, 984, 1256 vfscanf 1347 vfscanf_s 1349, 1347 _wchdir 132 vfwprintf 1343 _wchmod 135 _wclosedir 152, 903 vfwprintf_s 1345 vfwscanf 1347 wcreat 165 vfwscanf s 1349 wertomb **1376**, 1382, 1385 VGA 1124 wertomb s 1379, 1376 _VGA 467 wcscat 1182 view coordinates 47 wescat s 1184 void 672, 1099 weschr 1186 vprintf 1351, 1345, 1353 wescmp 1188, 1274 vprintf_s 1353, 1351 wcscmpi 1190 VRES16COLOR 1124 wcscoll 1191, 1274 VRES256COLOR 1124 wescpy 1192 VRES2COLOR 1124 wcscpy_s 1194 vscanf 1355 wcscspn 1196 vscanf_s 1357, 1355 _wcsdec **726** vsnprintf **1361**, 1363 wcsdup 1199 _vsnprintf 1359 _wcsdup 1199 vsnprintf_s 1363, 1361, 1367 _wcserror 1201 vsnwprintf 1361 _wcserror_s 1202

_wcserrorlen_s 1204	wctype.h 34
wesftime 1205	wctype_t 34, 1402
_wesiemp 1209 , 1190	_wdirent 903, 1010
_wesicoll 1211	_wdos_findclose 197
_wesine 728	_wdos_findfirst 197
wesleat 1213	_wdos_findnext 197
weslepy 1214	_wecvt 242
wcslen 1215	_wenviron 39
_wcslwr 1218 , 13	WEOF 34, 122, 297-298, 345-346, 388, 391, 989, 991,
wesneat 1221	1320
wcsncat_s 1223	_wexecl 259
wesnemp 1225	_wexecle 259
_wcsncnt 744	_wexeclp 259
_wcsncoll 1227	_wexeclpe 259
wesnepy 1229	_wexecv 259
wcsncpy_s 1231	_wexecve 259
_wcsnextc 750	_wexecvp 259
_wesniemp 1233	wexecvpe 259
_wesnicoll 1235	_wfcvt 275
_wesnine 752	_wfdopen 278
wcsnlen_s 1217	wfind t 32
wcsnset 1237	wfindfirst 310
wesnset 1237	_wfindfirsti64 310
wcspbrk 1239	_wfindnext 313
wespen 1241	wfindnexti64 313
_wcsrev 1243	_wfopen 328
westev 1243 westev 1243	_wfopen_s 331
westombs_s 1385 , 1382	_wfreopen 354
_wcsset 1245	_wfreopen_s 356
wesser 1247	_wfsopen_366
_wcsspn 761	_wfullpath 377
wesstr 1250	_wgcvt 381
wested 1253	_wgetcwd 397
westou 1233 westoimax 1264	_wgetdcwd 399
westohilax 1204 westok 1255	_wgeteewu 399 _wgetenv 406
westok 1255 westok_s 1258	Wide Character Functions 6, 10-11
westok_s 1236 westol 1260	btowe 122
westol 1260 westoll 1262	
weston 1202 westombs 1389, 755, 1382	_bwprintf 115 fgetwc 297
westombs_s 1391 , 1389	_fgetwc 297
	fgetws 301
westoul 1266 westoull 1268	_fmbspbrk 1239
westoumax 1270	_fmbstok_r 1255
_wcstoumax 1270 _wcsupr 1272, 13	fputwc 345
	1
wcsxfrm 1274	_fputwchar 346
_wctime 169	fputws 348
wctime 169	_fwcrtomb 1376
_wctime_s 171	_fwcrtomb_s 1379
wctob 1394	_fwcsrtombs 1382
wctomb 1396 , 716, 719, 1376	_fwcsrtombs_s 1385
wctomb_s 1398 , 1396	_fwcstombs 1389
wetrans 1400 , 1308	_fwcstombs_s 1391
wctrans_t 1400	_fwctomb 1396
wctype 1402 , 624	_fwctomb_s 1398

fwprintf 341 vwprintf s 1353 fwprintf s 343 vwscanf 1355 fwscanf 359 vwscanf s 1357 fwscanf_s 361 _waccess 64 getwc 388 wasctime 72 getwchar 391 __wasctime 72 getws 451 wasctime s 74 iswalnum 531 wchdir 132 iswascii 533 _wchmod 135 iswblank 536 _wclosedir 152 iswentrl 538 wcreat 165 __iswcsym 540 wertomb 1376 __iswcsymf 542 wertomb s 1379 iswctype 624 wescat 1182 iswdigit 544 wcscat_s 1184 iswgraph 547 weschr 1186 iswlower 552 wescmp 1188 iswprint 616 wcscmpi 1190 iswpunct 618 wcscoll 1191 iswspace 620 wescpy 1192 iswupper 622 wcscpy_s 1194 iswxdigit 626 wcscspn 1196 _itow 628 _wcsdec 726 _lltow 668 wcsdup 1199 _ltow 670 _wcsdup 1199 _mbspbrk 1239 _wcserror 1201 _mbstok_r 1255 _wcserror_s 1202 putwc 989 _wcserrorlen_s 1204 putwchar 991 wcsftime 1205 _putws 998 _wcsicmp 1209 snwprintf_s 1146 _wcsicoll 1211 swprintf s 1166 wesine 728 swscanf 1170 wcslcat 1213 swscanf s 1172 wcslcpy 1214 towetrans 1308 wcslen 1215 towlower 1304 wcslwr 1218 towupper 1306 wesneat 1221 _ulltow 1314 wcsncat_s 1223 ultow 1316 wesnemp 1225 _wcsncnt 744 ungetwc 1320 _wcsncoll 1227 utime 1328 _vbwprintf 1338 wcsncpy 1229 vfwprintf 1343 wcsncpy_s 1231 vfwprintf s 1345 wcsnextc 750 _wcsnicmp 1233 vfwscanf 1347 vfwscanf_s 1349 _wcsnicoll 1235 vsnwprintf 1361 _wcsninc 752 _vsnwprintf 1359 wcsnlen_s 1217 wcsnset 1237 vsnwprintf_s 1363 vswprintf 1365 wcsnset 1237 vswprintf_s 1367 wcspbrk 1239 vswscanf 1369 wesrchr 1241 vswscanf_s 1371 _wcsrev 1243 vwprintf 1351 wcsrtombs 1382

wcsrtombs_s 1385	_wopen 898
_wcsset 1245	_wopendir 902
wcsspn 1247	_wperror 920
_wcsspnp 761	_wpopen 978
wesstr 1250	wprintf 981
wested 1253	wprintf_s 987
westoimax 1264	_wputenv 993
westok 1255	_wreaddir 1009
wcstok_s 1258	_wremove 1025
westol 1260	_wrename 1026
westoll 1262	_wrewinddir 1028
westombs 1389	_wrmdir 1031
wcstombs_s 1391	wscanf 1038
westoul 1266	wscanf_s 1044
westoull 1268	_wsearchenv 1056
westoumax 1270	_wsetenv 1079
_wcsupr 1272	_wsetlocale 1091
wcsxfrm 1274	_wspawnl 1154
_wctime 169	_wspawnle 1154
wctime 169	_wspawnlp 1154
_wctime_s 171	_wspawnlpe 1154
wctob 1394	_wspawnv 1154
wctomb 1396	_wspawnve 1154
wctomb_s 1398	_wspawnvp 1154
wetrans 1400	_wspawnvpe 1154
wctype 1402	_wsplitpath2 1162
_wdos_findclose 197	_wsplitpath 1160
_wdos_findfirst 197	_wstat 1176
_wdos_findnext 197	_wstati64 1176
_wexecl 259	_wstrdate 1198
_wexecle 259	_wstrftime_ms 1205
_wexeclp 259	_wstrtime 1252
_wexeclpe 259	_wsystem 1281
_wexecv 259	_wtempnam 1287
_wexecve 259	_wtmpnam 1302
_wexecvp 259	_wtmpnam_s 1300
_wexecvpe 259	_wtof 84
_wfdopen 278	_wtoi 85
_wfindfirst 310	_wtol 86
_wfindfirsti64 310	_wtoll 87
_wfindnext 313	_wunlink 1323
_wfindnexti64 313	_wunsetenv 1327
_wfopen 328	Win32 Functions
_wfopen_s 331	_beginthread 92
_wfreopen 354	_beginthreadex 92
_wfreopen_s 356	cwait 173
_wfsopen 366	_cwait 173
_wfullpath 377	_endthread 253
_wgetcwd 397	_endthreadex 253
_wgetdcwd 399	wait 1373
_wgetenv 406	win_alloc_flags 39
_wmakepath 676	win_realloc_flags 39
_wmkdir 795	window coordinates 47
_wmktemp 800	Windows classification 58

WinMain **672**, 672-673 _winmajor 39 winminor 39 wint_t 34 _winver 39 WM_QUIT 673 wmain 672, 38-39 _wmakepath 676 wmemchr 775 wmemcmp 777 wmemcpy 779 wmemcpy s 781 wmemmove 786 wmemmove s 788 wmemset 792 _wmkdir **795** _wmktemp 800 _wopen 898 _wopendir 902, 152, 1028 _wP_tmpdir 1287 wParam 673 _wperror 920 _wpopen **978** wprintf 981, 983-984 wprintf_s 987 _wputenv 993 wr_date 198 wr_time 198 _wrapon **1404** _wreaddir **1009**, 903 _wremove 1025 wrename 1026 wrewinddir 1028 write 1406 _write 1406 writev 1406 _wrmdir 1031 wscanf 1038 wscanf s 1044 _wsearchenv 1056 _wsetenv 1079 _wsetlocale 1091 _wsopen 1148 wspawnl 1154 _wspawnle 1154 _wspawnlp 1154 _wspawnlpe 1154 _wspawnv 1154 _wspawnve 1154 _wspawnvp 1154 _wspawnvpe 1154 _wsplitpath2 1162 _wsplitpath 1160

_wstat 1176, 1178

wstati64 **1176**, 1178 _wstrdate 1198 wstrftime ms **1205**, 1205 _wstrtime 1252 _wsystem 1281 _wtempnam 1287 wtmpnam 1302 _wtmpnam_s 1300 _wtof **84** _wtoi 85 _wtol 86 _wtoll 87 _wunlink 1323 wunsetenv 1327 _wutime 1328 wWinMain 672, 672

X_OK 64 XRES16COLOR 1124 XRES256COLOR 1124

y0 **96**, 16, 96, 1414 y1 **96**, 16, 96, 1414 YESEXPR 892 yn **96**, 16, 96, 1414

zentohan 707