PorePy: Simulation software for mixed-dimensional problems

Eirik Keilegavlen

INSPIRE Summer School – Geilo August 2019

Content

- Part I: Introduction to mixed-dimensional problems
- Part II: Technical aspects (software design, PorePy specifics)
- Part III: Multiphysics simulations jupyter notebooks

Part I: Mixed-dimensional problems (in PorePy)

Outline of Part I

- Motivation: Examples of mixed-dimensional problems
- Challenges to software design
- Example: Mixed-dimensional flow problem
 - Modeling
 - Discretization
 - PorePy implementation and usage

Examples of mixed-dimensional problems / geometries

Geometry

Centimeters

Meters

Kilometers

Flow Transport

Deformation

Mixed-dimensional problems

- Starting point: The simulation domain contains inclusion with high aspect ratio
- Governing equations posed both in inclusion and surroundings
- Lower-dimensional problem obtained by averaging
 - Inclusion represented as embedded manifold
- Mixed-dimensional problem formed by
- Herein: Only dimension gaps of 1

'Fractures' can include anything long and thin that may be treated with dimension reduction. Subsurface examples:

- Real fractures
- Near-fault regions
- Aquifers (Carbon storage)

Modeling in complex geometries

(Coupled) processes in mixed-dimensions

- Flow in fracture network and the host medium
- Transport (advection-diffusion)
- Chemical deposition within fractures
- Deformation of the host medium
- Dynamic fractures:
 - Opening of existing fractures
 - Sliding of existing fractures (induced seismicity / earthquakes)
 - Fracture propagation

Representation in standard simulation tools requires the processes be upscaled (represented by averaging).

Depending on the application, this can be okay, or an illusion.

PorePy:

- Python framework for dynamics in fractured porous media
- Build as a multi-physics framework for mixed-dimensional geometries
- Usage: Test numerical methods, models, application-motivated simulations
- Emphasis on rapid prototyping
 - Computational efficiency prioritized within constraints of the framework
- Development team: 5-6 people, mainly PhD students
- Development started in 2017 (2016), open sourced May 2017

www.github.com/pmgbergen/porepy

Functionality

- Meshing of domains with complex internal constraints
- Discretization schemes for flow, transport, poro-mechanics
- Strong emphasis on coupling between physics and dimensions

Flow and transport

Video: Unstable displacement.

Fracture deformation

Model problem: Mixed-dimensional elliptic equation

- Goal: Define a mixed-dimensional version of the elliptic model problem.
- Solve with PorePy
- Ingredients:
 - Geometry
 - Model equations
 - Discretization strategy, emphasis on reuse of existing implementation
 - Implementation

Geometry I: Subdomains

Partition into subdomains

- Ω_i^D : Matrix
- Ω_i^{D-1} : Fractures
- Ω_i^{D-2} , (Ω_i^{D-3}) : Fracture intersections

Also need to deal with boundary between subdomains

Next slides: Occasionally drop dimension superscript

Geometry II: Notation

- Ω_i : Generic subdomain (matrix, fracture, intersection)
- Γ_i : Generic interface between subdomains

Generic variables marked by subscripts: p_i , λ_j

Interaction between subdomains

- Ω_l : Lower-dimensional neighbor
- Γ_i : Interface
- Ω_h : Lower-dimensional neighbor

Geometrically, Ω_l , Γ_j , $\partial_j \Omega_i$ coincide.

Note: No + and - side

Geometry III: Neighbors

For a subdomain Ω_i :

- \widehat{S}_i is the set of interfaces to higher-dimensional subdomains
- \check{S}_i is the set of interfaces to lower-dimensional subdomains

Geometry IV: Projections

- Ξ_i^j projects fluxes from Ω_i to Γ_j
- Ξ_j^i projects fluxes from Γ_j to Ω_i
- Π_i^j projects pressures from Ω_i to Γ_j
- Π^i_j projects pressures from Γ_j to Ω_i

Projections from Γ_j to Ω_h really goes to $\partial_j\Omega_h$

Extensive and intensive quantities require different projections

Governing equations for mixed-dimensional flow – strong form

Within subdomain Ω_i

Darcy's law:

$$\mathbf{u}_i + K_i \nabla p_i = \mathbf{0}$$

Conservation of mass:

$$\nabla \cdot \boldsymbol{u}_i = f_l + \sum_{j \in \widehat{S}_i} \Xi_j^i \lambda_j$$

Boundary condition:

$$\boldsymbol{u}_i \cdot \boldsymbol{n}_j = \Xi_j^i \lambda_j, \qquad j \in \check{S}_j$$

Over interface Γ_i

Flux-pressure relation

$$\lambda_j + \kappa_j \left(\Pi_l^j p_l - \Pi_h^j tr \, p_h \right) = 0$$

Mathematical framework

The modeling emphasizes conservation:

- Integral formulation of the equations follows immediately
- Dual variational formulation uses function spaces

$$p_i \in L^2(\Omega_i), \quad q_i \in H(\nabla \cdot, \Omega_i),$$

 $tr(p_i) \in L^2(\partial_i \Omega_i), \quad \lambda_i \in L^2(\Gamma_i)$

- Exception: Contact mechanics, cast in primal form
- The modeling framework presented herein can be analyzed as a mixed-dimensional de Rahm complex

Discretization

- Subdomain problems have the same form as a fixed-dimensional pressure equation.
- Boundary conditions and source terms are not known.
- Formulate discretization centered on the interface.
- Subdomain discretization considered a black box that converts fluxes and sources to pressures and pressure traces

Darcy's law:

$$\boldsymbol{u}_i + K_i \nabla p_i = \mathbf{0}$$

Conservation of mass:

$$\nabla \cdot \boldsymbol{u}_i = f_l + \sum_{j \in \widehat{S}_i} \Xi_j^i \lambda_j$$

Boundary condition:

$$\boldsymbol{u}_i \cdot \boldsymbol{n}_j = \Xi_j^i \lambda_j, \qquad j \in \check{S}_j$$

Interface:

$$\lambda_j + \kappa_j \left(\Pi_l^j p_l - \Pi_h^j tr \, p_h \right) = 0$$

```
class EllipticDiscretization():
   def discretize neumann flux(...):
       # Neumann boundary term from
       # lower-dimensional interface
   def impose source term(...):
       # Source term from
       # higher-dimensional interface
   def pressure_trace_discretization(...):
       # Pressure trace on
       # lower-dimensional interface
   def pressure cell discretization(...):
       # Pressure values for
       # higher-dimensional interfaces
    def discretize_standard_problem(...):
       # Standard existing code
All methods return discretization matrices
Actual function names are different (longer)
```

Darcy's law:

$$\boldsymbol{u}_i + K_i \nabla p_i = \mathbf{0}$$

Conservation of mass:

$$\nabla \cdot \boldsymbol{u}_i - \sum_{j \in \widehat{S}_i} \Xi_j^i \lambda_j = f_l$$

Boundary condition:

$$u_i \cdot n_j = \Xi_j^i \lambda_j, \qquad j \in \check{S}_j$$

Interface:

$$\lambda_j + \kappa_j \left(\prod_l^j p_l - \prod_h^j tr \, p_h \right) = 0$$

Subdomain coupling via the interfaces

```
class RobinCoupling():
    def dicretize(discr_h, discr_l, ...):
       # discretize the interface variable
       discr_h.discretize_neumann_flux(...)
        discr_l.impose_source_term(...):
        discr_h.pressure_trace_discretization(...):
       discr_l.pressure_cell_discretization(...):
```

$$\begin{pmatrix} 0 & 0 & A_{HM} \\ 0 & 0 & A_{LM} \\ A_{MH} & A_{ML} & A_{MM} \end{pmatrix} \begin{pmatrix} p_H \\ p_L \\ \lambda_M \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Discretization – pseudo code

- 1. Loop over all subdomains, apply discretization scheme
- 2. Loop over all interfaces
 - 1. Discretize the interface variable
 - 2. Impose on neighboring subdomains

$$\begin{pmatrix} A_1 & 0 & 0 & \ddots & \cdots & \ddots \\ 0 & \ddots & 0 & \vdots & S_{ij} & \vdots \\ 0 & 0 & A_N & \ddots & \cdots & \ddots \\ \vdots & \cdots & \ddots & B_1 & 0 & 0 \\ \vdots & T_{ji} & \vdots & 0 & \ddots & 0 \\ \ddots & \cdots & \ddots & 0 & 0 & B_M \end{pmatrix} \begin{pmatrix} p_1 \\ \vdots \\ p_N \\ \lambda_1 \end{pmatrix} = 0$$

No requirements on the subdomain discretizations, grids etc.

External boundaries and source terms are ignored

Discretization in PorePy: Steps

- 1. Define fracture network, create mesh
- 2. Set parameters
- 3. Define variables and discretization schemes
- 4. Apply discretization method
- 5. Assemble and solve linear system
- 6. Visualize, post process

.. over to jupyter