

Bergische Universität Wuppertal

ELEKTRONIK PRAKTIKUM

Versuch.....

Autoren: Henrik JÜRGENS Frederik STROTHMANN Tutoren:
Hans-Peter Kind
Peter Knieling
Marius Wensing

Inhaltsverzeichnis

1 Einleitung		2	
2	Fingerpulssensor		
	2.1	Aufbau	2
	2.2	Bestimmung des SVR	2
	2.3	Differenzieren/Filtern des Sensorsignals	:
	2.4	Verstärkung des gefilterten Signals und ADC-Erfassung	4
	2.5	Digitalisierung mit Diskriminator	4
	2.6	Automatische Einstellung der Referenzspannung	1
	2.7	Pulsschlag hörbar machen	6
3	Fazi	${f it}$	7

1 Einleitung

2 Fingerpulssensor

In diesem Versuch wir das Signal eines Fingerpulsmessers untersucht.

2.1 Aufbau

Im ersten Versuchsteil wird die Schaltung zur Inbetriebnahme des Fingerpulssensors aufgebaut.

Verwendete Geräte

Es werden ein Netzgerät, Widerstände, Kondensatoren, ein Potentiometer, der Fingerpulssensor und ein Oszilloskop verwendet.

Versuchsaufbau

Die Werte der Bauteile sind in der Abbildung angegeben. Der nicht eingezeichnete Kondensator wird als Tiefpassfilter direkt über die eingangs Kabel am Oszilloskop gesteckt.

Abbildung 1: Schaltskizze zur Inbetriebnahme des Fingerpulssensors¹

Versuchsdurchführung

Die Schaltung in Abbildung 1 wird aufgebaut. Es wird ein 100 nF Kondensator am Oszilloskop eingebaut, um die Signalqualität zu verbessern.

2.2 Bestimmung des SVR

In diesem Versuchsteil soll das Signal-Rausch-Verhältnis untersucht werden.

¹Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep12_14.pdf am 20.12.2014

Verwendete Formeln

Das Signal-Störungs-Verhältnis ergibt sich nach Gleichung 1.

$$SRV = \frac{U_{\text{nutz}}^2}{U_{\text{rausch}}^2} \tag{1}$$

Versuchsdurchführung

Mittels der Funktion Measure wird für das Eingangssignal und das Störsignal die Spitze zu Spitze Spannung gemessen. Dann wird mit Gleichung 1 das SVR bestimmt. Dann wird aus den Quadraten der gemessenen Spannungen das Leistungsverhältnis bestimmt.

Messergebnisse

Auswertung

Diskussion

2.3 Differenzieren/Filtern des Sensorsignals

In diesem Versuchsteil wird ein Differenzierer/Filter in die Schaltung eingebaut, dadurch wird das Offset raus geschnitten.

Verwendete Geräte

Es werden ein Netzgerät, Widerstände, Kondensatoren, ein Potentiometer, der Fingerpulssensor und ein Oszilloskop verwendet.

Versuchsaufbau

In Abbildung 2 ist die Schaltskizze des Fingerpulssensors mit Differenzierer/Filter. R_H ist ein $10k\Omega$ Widerstand, für C_H wird ein 10μ F Kondensator verwendet. R_T ist ein $100k\Omega$ Widerstand, für C_T wird ein 100nF Kondensator verwendet.

Abbildung 2: Schaltskizze für das Differenzieren/Filtern des Sensorsignals²

²Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep12_14.pdf am 20.12.2014

Versuchsdurchführung

Es wird die Schaltung in Abbildung 2 aufgebaut und mit dem Oszilloskop der Verlauf des Ausgangssignals aufgenommen. Dann wird der Kondensator CT durch einen 1μ F Kondensator ersetzt und das Ausgangssignal mit dem Oszillator aufgenommen.

Auswertung

Diskussion

2.4 Verstärkung des gefilterten Signals und ADC-Erfassung

Verwendete Geräte

Es werden ein Netzgerät, Widerstände, Kondensatoren, ein Potentiometer, ein Op-Amp, der Fingerpulssensor und ein Oszilloskop verwendet.

Versuchsaufbau

Abbildung 3: Schaltskizze für das Differenzieren/Filtern des Sensorsignals³

Versuchsdurchführung

Messergebnisse

Auswertung

Diskussion

2.5 Digitalisierung mit Diskriminator

Mit einen Komperator wird das Ausgangssignal in ein Rechtecksignal umgewandelt.

Verwendete Geräte

Es werden ein Netzgerät, Widerstände, Kondensatoren, eine LED, ein 10-Gang Potentiometer, ein Op-Amp, der Fingerpulssensor und ein Oszilloskop verwendet.

³Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep12_14.pdf am 20.12.2014

Versuchsaufbau

Mit der Schaltung in Abbildung 4 wir das Ausgangssignal in ein Rechtecksignal umgewandelt.

Abbildung 4: Schaltskizze für die Umwandelung des Ausgangssignals in ein Rechtecksignal⁴

Versuchsdurchführung

Die Schaltung in Abb. 4 wir aufgebaut. Dann Referenzspannung wird so eingestellt, dass ein sauberes Signal zu sehen ist. Mit dem Oszilloskop wird das Ein- und das Ausgangssignal aufgenommen.

Auswertung

Diskussion

2.6 Automatische Einstellung der Referenzspannung

In diesem Versuchsteil wird die Referenzspannung automatisch eingestellt.

Verwendete Geräte

Es werden ein Netzgerät, Widerstände, Kondensatoren, eine LED, ein 10-Gang Potentiometer, ein Op-Amp, der Fingerpulssensor und ein Oszilloskop verwendet.

Versuchsaufbau

Mit der Schaltung in Abbildung 5 wird die Referenzspannung automatisch eingestellt.

⁴Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep12 14.pdf am 20.12.2014

Abbildung 5: Schaltskizze für das automatische einstellen der Referenzspannung⁵

Versuchsdurchführung

Es wird die Schaltung in Abbildung 5 aufgebaut.

Auswertung

Diskussion

2.7 Pulsschlag hörbar machen

In diesem Versuchsteil wird der Pulsschlag mit einem Lautsprecher hörbar gemacht.

Verwendete Geräte

Es werden ein Netzgerät, Widerstände, Kondensatoren, eine LED, ein 10-Gang Potentiometer, ein Op-Amp, der Fingerpulssensor, ein Lautsprecher und ein Oszilloskop verwendet.

Versuchsaufbau

Mit der Schaltung in Abbildung 6 wird das Pulssignal hörbar gemacht.

Abbildung 6: Schaltskizze für das automatische einstellen der Referenzspannung⁶

 $^{^5}$ Abbildung entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep12_14.pdf am 20.12.2014

 $^{^6}$ Abbildung entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep12_14.pdf am 20.12.2014

Versuchsdurchführung

Es wird die Schaltung in Abbildung 6 aufgebaut und das Pulssignal gehört.

Auswertung

Diskussion

3 Fazit