МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И.УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЁТ

по лабораторной работе №4 по дисциплине «Машинное обучение»

Тема: Ассоциативный анализ

Студент гр. 6304	 Корытов П.В
Преполаватель	Жангиров Т.Р

Санкт-Петербург 2020

1. Цель работы

Ознакомится с методами ассоциативного анализа из библиотеки MLxtend.

2. Выполнение

2.1. Загрузка данных

- 1. Произведена загрузка данных. В наборе данных 9835 транзакций и 169 товаров.
- 2. Часть списка товаров с их количества приведена на листинге 1.

Листинг 1. Список товаров и количество

```
1
                            item number
 2
     0
                     whole milk
                                    2513
 3
     1
               other vegetables
                                    1903
 4
     2
                     rolls/buns
                                    1809
     3
 5
                            soda
                                    1715
 6
     4
                          yogurt
                                    1372
 7
8
     164
                                       4
                            bags
9
                                       4
     165
                kitchen utensil
10
                                       2
     166 preservation products
11
     167
                      baby food
                                       1
12
     168
          sound storage medium
                                       1
13
14
     [169 rows x 2 columns]
```

2.2. FPGrowth u FPMax

1. Произведено one-hot кодирование набора данных. Результат на листинге 2.

Листинг 2. Закодированный набор данных

```
1
            Instant food products
                                     UHT-milk
                                                      yogurt
                                                               zwieback
 2
     0
                              False
                                         False
                                                       False
                                                                   False
                                                . . .
 3
     1
                              False
                                         False ...
                                                        True
                                                                   False
     2
 4
                              False
                                         False
                                                       False
                                                                   False
                                                . . .
 5
     3
                              False
                                         False ...
                                                        True
                                                                   False
 6
     4
                              False
                                         False
                                                       False
                                                                   False
 7
     . . .
                                . . .
                                           . . .
                                                         . . .
                                                                     . . .
 8
     9830
                              False
                                         False
                                                       False
                                                                   False
                                                . . .
 9
     9831
                              False
                                         False ...
                                                       False
                                                                   False
10
     9832
                              False
                                         False
                                                        True
                                                                   False
11
     9833
                              False
                                         False ...
                                                       False
                                                                   False
12
     9834
                              False
                                         False
                                                       False
                                                                   False
13
14
     [9835 rows x 169 columns]
```

2. Произведен ассоциативный анализ с использованием алгоритмов FPGrowth и FPMax при уровне поддержки 0.3. Часть результатов на листингах 3 и 4.

Листинг 3. Результаты FPGrowth

```
1
          support
                                        itemsets
 2
     0
         0.255516
                                   (whole milk)
 3
         0.193493
                             (other vegetables)
 4
     2
         0.183935
                                   (rolls/buns)
 5
         0.174377
                                          (soda)
 6
     4
         0.139502
                                        (yogurt)
 7
8
     58
         0.031012
                                        (onions)
9
                          (rolls/buns, sausage)
     59
         0.030605
                    (whole milk, citrus fruit)
         0.030503
10
11
         0.030402
                          (specialty chocolate)
     61
12
         0.030097
                        (whole milk, pip fruit)
13
14
     [63 rows x 2 columns]
```

```
1
          support
                                          itemsets
         0.098526
 2
     0
                                   (shopping bags)
 3
         0.080529
                                    (bottled beer)
     1
 4
     2
         0.079817
                                      (newspapers)
 5
     3
         0.077682
                                     (canned beer)
 6
                   (whole milk, other vegetables)
         0.074835
 7
 8
     45 0.031012
                                           (onions)
 9
     46 0.030605
                             (rolls/buns, sausage)
10
     47 0.030503
                        (whole milk, citrus fruit)
11
     48 0.030402
                             (specialty chocolate)
                           (whole milk, pip fruit)
12
     49 0.030097
13
14
     [50 rows x 2 columns]
```

3. Определено минимальные и максимальные значения для уровня поддержки для наборов и 1 и 2 объектов для обоих алгоритмов. Результаты на таблицах 1 и 2.

Таблица 1. Значения уровня поддержки для FPGrowth

	1	2
min	0.0304016	0.0300966
max	0.255516	0.0748348

Таблица 2. Значения уровня поддержки для FPMax

	1	2
min	0.0304016	0.0300966
max	0.0985257	0.0748348

Как можно заметить, две таблицы отличаются в ячейке (max, 1) — максимальный уровень поддержки для набора длиной 1. Это связано с тем, что в FPMах набор не может быть частью другого набора большей длины. В данном случае наиболее часто встречающиеся элементы наборов длины 1 вошли в наборы длины 2.

4. Построена гистограмма для топ-10 наиболее часто встречаемых товаров. Результат на рис. 1.

Рисунок 1 – Гистограмма для наиболее часто встречаемых товаров

Товары на гистограмме отвечают наборам длины 1; аналогичный порядок наблюдается на листинге 3 с результатам FPGrowth.

5. Произведено ограничение количества товаров до 16. Часть измененного набора данных представлена на листинге 5.

Листинг 5. Ограниченный набор данных

1		bottled beer	bottled water	 whole milk	yogurt
2	0	False	False	 False	False
3	1	False	False	 False	True
4	2	False	False	 True	False
5	3	False	False	 False	True
6	4	False	False	 True	False
7				 	
8	9830	False	False	 True	False
9	9831	False	False	 False	False
10	9832	False	False	 False	True
11	9833	True	True	 False	False
12	9834	False	False	 False	False
13					
14	[9835	rows x 16 colu	mns]		

6. Произведен анализ FPGrowth и FPMax для нового набора данных. Часть результатов представлена на листингах 6 и 7.

Листинг 6. FPGrowth для ограниченного набора данных

```
support
                                              itemsets
 1
 2
     0
         0.255516
                                          (whole milk)
 3
     1
         0.193493
                                   (other vegetables)
 4
     2
         0.183935
                                          (rolls/buns)
 5
     3
         0.174377
                                                (soda)
 6
         0.139502
                                              (yogurt)
 7
              . . .
8
                                 (whole milk, pastry)
     29
         0.033249
9
         0.032740
                             (other vegetables, soda)
10
         0.032232
                    (whipped/sour cream, whole milk)
11
        0.030605
                                (rolls/buns, sausage)
        0.030503
                           (whole milk, citrus fruit)
12
13
     [34 rows x 2 columns]
14
```

Листинг 7. FPMах для ограниченного набора данных

```
support
 1
                                             itemsets
 2
     0
         0.098526
                                      (shopping bags)
 3
         0.080529
                                       (bottled beer)
 4
         0.077682
                                        (canned beer)
 5
         0.074835
                      (whole milk, other vegetables)
 6
     4
         0.057651
                                                (pork)
 7
8
     17
         0.033249
                                 (whole milk, pastry)
9
                            (other vegetables, soda)
     18
        0.032740
                    (whipped/sour cream, whole milk)
10
     19
         0.032232
         0.030605
                                (rolls/buns, sausage)
11
     20
12
        0.030503
                          (whole milk, citrus fruit)
13
14
     [22 rows x 2 columns]
```

В сравнении с результатами на листингах 3 и 4, количество найденных наборов уменьшилось, но для найденных наборов уровень поддержки не изменился.

7. Построен график изменения количества получаемых правил от уровня поддержки для FPGrowth и FPMax. Результаты на рис. 2 и 3.

Рисунок 2 – Изменение количества получаемых правил от уровня поддержки для FPGrowth

Рисунок 3 – Изменение количества получаемых правил от уровня поддержки для FPMax

Как видно, для алгоритма FPGrowth количество любых наборов уменьшается с уменьшением уровня поддержки. Более длинные наборы исчезают раньше.

Для алгоритма FPMах количество наборов длины 1 с увеличением уровня поддержки увеличивается примерно до уровня 10^{-2} , после чего опять снижается. Это связано с тем, что при небольших уровнях поддержки элементы с большей вероятностью присутствуют в наборах большей длины, что для FPMах исключает их присутствие в наборах меньшей длины.

2.3. Ассоциативные правила

- 1. Набор данных сформирован так, чтобы размер транзации был >= 2.
- 2. Получены частоты наборов с использованием FPGrowth. Часть результатов на листинге 8.

Листинг 8. Результаты FPGrowth для нового набора данных

```
1
          support
                                                   itemsets
 2
         0.241240
     0
                                                   (yogurt)
 3
         0.185864
                                           (tropical fruit)
 4
         0.421869
                                               (whole milk)
     2
 5
     3
         0.335079
                                         (other vegetables)
 6
         0.296214
                                               (rolls/buns)
 7
 8
     37 0.059203
                                      (whole milk, sausage)
 9
     38 0.053363
                               (sausage, other vegetables)
10
     39 0.063834
                          (whipped/sour cream, whole milk)
     40 0.057189
                    (whipped/sour cream, other vegetables)
11
12
     41 0.065848
                                       (whole milk, pastry)
13
14
     [42 rows x 2 columns]
```

- 3. Проведен ассоциативный анализ. Результаты в таблице 3. Пусть A антецент, C консеквент. Значения столбцов следующие:
 - antecedent support, consequent support поддержка антецедента (support(A)) и консеквента (support(C)).
 - support поддержка набора из антецента и консеквента

$$support(A \to C) = support(A \cup C) \tag{2.1}$$

 ∞

Таблица 3. Результаты ассоциативного анализа

	antecedents	consequents	ant. support	cons. support	support	confidence	lift	leverage	conviction
0	['yogurt']	['whole milk']	0.24	0.42	0.11	0.46	1.09	0.01	1.07
1	['yogurt']	['other vegetables']	0.24	0.34	0.09	0.36	1.06	0.01	1.03
2	['tropical fruit']	['yogurt']	0.19	0.24	0.06	0.31	1.29	0.01	1.10
3	['tropical fruit']	['other vegetables']	0.19	0.34	0.07	0.38	1.14	0.01	1.08
4	['tropical fruit']	['whole milk']	0.19	0.42	0.08	0.45	1.07	0.01	1.05
5	['whole milk']	['other vegetables']	0.42	0.34	0.15	0.35	1.05	0.01	1.03
6	['other vegetables']	['whole milk']	0.34	0.42	0.15	0.44	1.05	0.01	1.04
7	['rolls/buns']	['whole milk']	0.30	0.42	0.11	0.38	0.90	-0.01	0.93
8	['bottled water']	['whole milk']	0.19	0.42	0.07	0.37	0.87	-0.01	0.91
9	['bottled water']	['soda']	0.19	0.27	0.06	0.31	1.16	0.01	1.06
10	['citrus fruit']	['whole milk']	0.15	0.42	0.06	0.41	0.98	-0.00	0.98
11	['citrus fruit']	['other vegetables']	0.15	0.34	0.06	0.39	1.17	0.01	1.09
12	['root vegetables']	['other vegetables']	0.20	0.34	0.09	0.48	1.43	0.03	1.27
13	['root vegetables']	['whole milk']	0.20	0.42	0.10	0.49	1.17	0.01	1.14
14	['sausage']	['rolls/buns']	0.17	0.30	0.06	0.36	1.22	0.01	1.10
15	['sausage']	['whole milk']	0.17	0.42	0.06	0.35	0.84	-0.01	0.89
16	['sausage']	['other vegetables']	0.17	0.34	0.05	0.32	0.95	-0.00	0.98
17	['whipped/sour cream']	['whole milk']	0.12	0.42	0.06	0.51	1.22	0.01	1.19
18	['whipped/sour cream']	['other vegetables']	0.12	0.34	0.06	0.46	1.37	0.02	1.23
19	['pastry']	['whole milk']	0.15	0.42	0.07	0.44	1.04	0.00	1.03

• confidence — вероятность увидеть консеквент в транзакции, содержащей антецедент.

$$confidence(A \to C) = \frac{support(A \to C)}{support(A)}$$
 (2.2)

• lift — насколько чаще $A \to C$ встречаются вместе, чем если бы они были статистически независимы. Для независимых A, C lift будет равен 1.

$$lift(A \to C) = \frac{support(A \to C)}{support(A)support(C)}$$
 (2.3)

• leverage — разница между частотой появления $A \to C$ вместе и частотой, ожидаемой при статистической независимости A, C. Для независимых A, C leverage будет равен 0.

$$leverage(A \rightarrow C) = support(A \rightarrow C) - support(A) support(C)$$
 (2.4)

• conviction — зависимость консеквента от антецедента.

$$conviction(A \to C) = \frac{1 - support(A \to C)}{1 - confidence(A \to C)}$$
 (2.5)

В случае абсолютной зависимости $1-\operatorname{confidence}(A\to C)=0$ и $\operatorname{conviction}(A\to C)=\infty$. Для независимых A,C conviction равен 1.

4. Проведено построение ассоциативных правил для каждой из метрик. Среднее значение, медиана и СКО для каждой метрики представлены в таблице 4.

Таблица 4. Статистический анализ метрик

	min_threshold	mean	median	mse
support	0.08	0.102019	0.0953484	0.0210117
confidence	0.35	0.417044	0.412655	0.053484
lift	1.16	1.26685	1.22134	0.0974603
leverage	0.01	0.0155331	0.0135937	0.00606334
conviction	1.05	1.11696	1.09696	0.068747

5. Построен граф для заданного анализа. Результат на рис. 4.

Рисунок 4 – Граф

Из графа можно сделать выводы вроде: если в транзакции есть предметы вроде yougurt, tropical fruits и т.п., то с высокой вероятностью также окажется whole milk.

6. Произведена визуализация тех же результатов с помощью матрицы. Результат на рис. 5

Рисунок 5 – Матрица

3. Выводы

Произведено знакомство с методами ассоциативного анализа из библиотеки MLxtend.

Установлено, что применение алгоритма FPGrowth к рассматриваемому набору данных с уровнем поддержки 10^{-4} требует примерно $12~\Gamma Б$ оперативной памяти.

Отличие результатов между FPGrowth и FPMax объясняется тем, что в FPMax набор не может быть частью другого набора большей длины. Этим же вызван рост числа наборов длины 1 для FPMax при небольших (до 10^{-2}) уровнях поддержки, тогда как в FPGrowth наблюдается только снижение.

Ограничение товаров в наборе данных изменило количество наборов в результатах алгоритмов, но не изменило уровень поддержки для оставшихся наборов.