Informatyka stosowana, st	studia	dzienne,	II	st.
---------------------------	--------	----------	----	-----

semestr II

Analiza danych złożonych

2020/2021

Prowadzący: dr hab. inż. Agnieszka Duraj

poniedziałek, 11:45

Etap 3: Badanie podobieństwa oraz przynależności zbiorów tekstowych

Autorzy:

Paweł Galewicz 234053 Karol Podlewski 234106

Spis treści

1.	Cel		3
2.	Impl	ementacja	3
3.	Opis	teoretyczny	3
	3.1.	Zbiory rozmyte	3
	3.2.	Podobieństwo tekstu	4
	3.3.	Współczynnik R	4
4.	Zbió	r danych	4
5.	Bada	nnia	5
	5.1.	Porównanie tekstu tweetów	5
	5.2.	Przynależność z wykorzystaniem zbiorów rozmytych	6
	5.3.	Przynależność z wykorzystaniem przedziałowych zbiorów rozmytych	8
	5.4.	Wyliczenie współczynnika R	12
6.	Wnic	oski	13
T.id	torati	lpo	1.4

1. Cel

Zadanie polegało na analizie zbioru danych pod kątem podobieństwa atrybutów tekstowych oraz przynależności atrybutów numerycznych do określonych etykiet.

2. Implementacja

Program został stworzony w języku Python w wersji 3.8.6. Wyniki zostały zapisane w skoroszycie Excel za pomocą biblioteki *openpyxl*. Do wygenerowania wykresów przynależności wykorzystano bibliotekę *matplotlib*. Podobieństwo atrybutów tekstowych sprawdzano z wykorzystaniem wzoru Niewiadomskiego. Dla atrybutów numerycznych określono etykiety na podstawie charakterystyki zbioru i nadano im trapezowe funkcje przynależności.

3. Opis teoretyczny

W sprawozdaniu wykorzystano następujące zagadnienia.

3.1. Zbiory rozmyte

Niech X będzie przestrzenią o skończonej liczbie elementów, wówczas zbiorem rozmytym A określonym na przestrzeni X nazywamy zbiór par w postaci

$$A = \{ \langle x, \mu_A(x) \rangle : x \in X \}, x \in X \}$$

gdzie $\mu_A(x)$ jest funkcją przynależności wyrażoną jako

$$\mu_A(x): X \to [0,1]$$

i określającą stopień przynależności elementu x do zbioru A.

Rozszerzeniem zbioru rozmytego jest przedziałowy zbiór rozmyty, dla którego definiowane są dwie funkcje przynależności - dolna i górna. Oznaczają one odpowiednio minimalny i maksymalny stopień przynależności elementu.

$$A = \{ \langle x, \mu_A(x), \overline{\mu_A(x)} \rangle : x \in X \}, x \in X$$

gdzie

$$\mu_A(x), \overline{\mu_A(x)}: X \to [0; 1]$$

oraz

$$0 \leqslant \underline{\mu_A(x)} \leqslant \overline{\mu_A(x)} \leqslant 1$$

3.2. Podobieństwo tekstu

Podobieństwo słów s_1 i s_2 zdefiniować można następującym wzorem:

$$\mu_{RS}(s_1, s_2) = \frac{2}{N^2 + N} \sum_{i=1}^{N(s_1)} \sum_{i=1}^{N(s_1)-i+1} h(i, j)$$

w którym N definiowane jest jako maksymalna długość słów s_1 i s_2 , zaś h(i,j) przyjmuje wartość 1 gdy podciąg i-elementowy liter występujący w słowie s_1 i rozpoczynający się od j-tego miejsca w słowie s_1 występuje co najmniej raz w słowie s_2 , a 0, jeżeli podciąg i-elementowy liter występujący w słowie s_1 i rozpoczynający się od j-tego miejsca w słowie s_1 nie występuje w słowie s_2 .

Korzystając z powyższego wzoru zdefiniować możemy funkcję podobieństwa zdań z_1 i z_2 , wyrażoną następującym wzorem:

$$\mu_{RZ}(z_1, z_2) = \frac{1}{N} \sum_{i=1}^{N(z_1)} \max_{j \in \{1, 2, \dots, N\}} g(s_i, s_j)$$

gdzie N jest maksymalną liczbą słów z_1 i z_2 , a $g(s_i, s_j)$ jest funkcją podobieństwa słów s_i i s_2 .

3.3. Współczynnik R

Współczynnik r atrybutów R, S dla których etykiety zdefiniowane są odpowiednio a_1, a_2, a_3 i b_1, b_2, b_3 wyrażony jest wzorem:

$$r = \frac{\sum_{i=1}^{n} [\mu_R(a_i) * \mu_S(b_i)]}{\sum_{i=1}^{n} \mu_R(a_i)}$$

4. Zbiór danych

Do zadania wykorzystano zbiór wpisów na portalu Tweeter - dalej zwanych tweetami - dotyczących zmian klimatycznych. Zbiór pobrano z platformy Kaggle [1]. Zbiór zawiera ok. 400 rekordów zawierających treść wpisu oraz metadane dotyczące jego oraz jego autora. Do analizy wybrano następujące atrybuty:

- twitter name nazwa użytkownika z portalu Tweeter, autora tweeta
- text tekst tweeta
- followers liczba osób obserwujących autora tweeta

- likes liczba polubień tweeta
- polarity odbiór tweeta przez innych użytkowników prezentowana liczbą
 z przedziału [-1, 1], gdzie -1 oznacza negatywny odbiór, zaś 1 oznacza pozytywny odbiór

Na potrzeby wyznaczenia etykiet oraz wzorów przynależności dla liczbowych atrybutów: followers, likes, polarity wyznaczono statystyki zaprezentowane Tabeli 1.

Tabela 1. Statystyki wybranych atrybutów numerycznych

	followers	likes	polarity
mean	11472.44	6.74	0.04
std	95007.77	46.87	0.14
min	0	0	-0.5
25%	132	0	0
50%	1069	0	0
75%	4191.25	2	0.12
max	1720089	88.0	0.6

5. Badania

W ramach analizy przeprowadzono następujące zadania.

5.1. Porównanie tekstu tweetów

Do analizy wykorzystano atrybut text. W ramach badania porównane zostały wszystkie tweety ze sobą i na podstawie wyników stworzono macierz, w której w kolumnami i rzędami są tweety, a na przecięciu wpisany jest wyliczony współczynnik podobieństwa tweetów. Wynikowa tabela znajduje się w arkuszu *Tweets similarity*, a jej poglądową część prezentuje Tabela 2.

Tabela 2. Porównanie tekstu tweetów

Similarity	Tweet 1	Tweet 2	Tweet 3	Tweet 4	Tweet 5
Tweet 1	1	0,342888	0,299971	0,251233	0,226598
Tweet 2	0,209888	1	0,312124	0,225024	0,189221
Tweet 3	0,214364	0,312775	1	0,402763	0,346178
Tweet 4	0,113415	0,130878	0,243279	1	0,468254
Tweet 5	0,12073	0,122297	0,212279	0,490781	1

Tweet 396 0,381816 0,311165 0,326685 0,157893 0,161802

Tweet 396	0.277615	0.348182	0.346694	0.265106	0.262948
	,	,	,	/	/

1

5.2. Przynależność z wykorzystaniem zbiorów rozmytych

Do badań przynależności wykorzystano atrybuty followers, likes, polarity. Każdemu z atrybutów nadano etykietę, do którego stworzono funkcję przynależności w następujący sposób:

- Dla atrybutu followers etykietę "Tweet author is very popular", której funkcję przynależności prezentuje Rysunek 1
- Dla atrybutu likes etykietę "Tweet has no likes", której funkcję przynależności prezentuje Rysunek 2
- Dla atrybutu polarity etykietę "Tweet was neutrally received", której itemize przynależności prezentuje Rysunek 3

Rysunek 1. Funkcja przynależności dla atrybutu followers

Rysunek 2. Funkcja przynależności dla atrybutu likes

Rysunek 3. Funkcja przynależności dla atrybutu polarity

Dla każdego tweeta wyliczono wartości przynależności funkcji i zapisano w arkuszu *Fuzzy membership*, którego poglądową część zaprezentowano w Tabeli 3

Tabela 3. Wartości funkcji przynależności tweetów

Author	Tweet	Tweet has no likes	Tweet was	Tweet author
Tuttioi	Tweet Tweet has no ha		neutrally recieved	is very popular
ECOWARRIORSS	{Treść}	0	0,73	0
ElsevierEnergy	{Treść}	0	0	0,80
siwarr5	{Treść}	1	0	0
EDITORatWORK	{Treść}	0	1	0
EDITORatWORK	{Treść}	1	1	0
mapsofworld	{Treść}	0	0,39	0,15
EnvirHealthNews	{Treść}	1	0	0,95

The Daily Climate $\{\text{Tre\'s\'e}\}\ 0$ 0,44 0

5.3. Przynależność z wykorzystaniem przedziałowych zbiorów rozmytych

Dla tych samych atrybutów nadano inne etykiety, dla których tym razem stworzono funkcje przynależności z wykorzystaniem przedziałowych zbiorów rozmytych. Etykiety prezentują się następująco:

- Dla atrybutu followers etykietę "Tweet author is moderately popular", której funkcję przynależności pokazano na Rysuneku 4
- Dla atrybutu likes etykietę "Tweet has a lot of likes", której funkcję przynależności pokazano na Rysuneku 5
- Dla atrybutu polarity etykietę "Tweet was negatively received", której funkcję przynależności pokazano na Rysuneku 6

Rysunek 4. Przedziałowa funkcja przynależności dla atrybutu followers

Rysunek 5. Przedziałowa funkcja przynależności dla atrybutu likes

Rysunek 6. Przedziałowa funkcja przynależności dla atrybutu polarity

Ponownie dla każdego twe
eta wyliczono wartości przedziałowych funkcji przynależności i zapisano w arkuszu
 $\it Fuzzy~interval~membership.$ Poglądowa część zaprezentowana jest w Tabeli
 4

Tabela 4. Wartości przedziałowych funkcji przynależności tweetów

Author	Tyroot	Tweet has a lot of	Tweet has a lot of	Tweet was negatively	Tweet was negatively	Tweet author is moderately	Tweet author is moderately
Author	Author	likes (min)	likes (max)	received (min)	received (max)	popular (min)	popular (max)
ECOWARRIORSS	{Treść}	0	0	0	0	0	0
ElsevierEnergy	{Treść}	0	0	0	0	0	0
siwarr5	{Treść}	0	0	0	0	0	0
EDITORatWORK	{Treść}	0	0	0	0	0,65	0,81
EDITORatWORK	{Treść}	0	0	0	0	0,65	0,81
mapsofworld	{Treść}	0	0	0,03	0,04	0	0
EnvirHealthNews	{Treść}	0	0	0	0	0	0
				•••			
TheDailyClimate	{Treść}	0	0	0	0	0	0

5.4. Wyliczenie współczynnika R

Do wyliczenia współczynnika R wybrano atrybuty polarity i followers. Każdemu z nich nadano 5 etykiet i stworzono funkcje przynależności:

- Dla atrybutu polarity nadano etykiety:
 - Negatively received
 - Moderately negatively received
 - Neutrally received
 - Moderately positively received
 - Positively receive

których funkcje przynależności pokazano na Rysunku 7

- Dla atrybutu followers nadano etykiety:
 - Not popular
 - Little popular
 - Moderately popular
 - Very popular
 - Extremely popular

których funkcje przynależności pokazano na Rysunku 8

Rysunek 7. Funkcje przynależności dla atrybutu polarity

Rysunek 8. Funkcje przynależności dla atrybutu followers

Dla każdego tweeta wyliczono współczynnik R i zapisano w arkuszu $Receival\ to\ popularity\ R\ coef.$ Część wyników pokazuje Tabela 5

Tabela 5. Wartości przedziałowych funkcji przynależności tweetów

Author	Tweet	Receival to popularity R coefficient
ECOWARRIORSS	{Treść}	0
ElsevierEnergy	{Treść}	0,37
siwarr5	{Treść}	0
EDITORatWORK	{Treść}	0,81
EDITORatWORK	{Treść}	0,81
mapsofworld	{Treść}	0
EnvirHealthNews	{Treść}	0,95
	•••	

6. Wnioski

- 1. Wykorzystana metoda porównywania tekstu nie jest symetryczna
- 2. Do skonstruowania odpowiedniej etykiety i funkcji przynależności wymagana jest wiedza ekspercka

Literatura

[1] Zbiór danych z wpisami z portalu Tweeter, https://www.kaggle.com/joseguzman/climate-sentiment-in-twitter?select=Climate_twitter.csv [dostęp: 15.11.2020]