Ch. 4: Calcul vectoriel dans le plan

Les vecteurs

Un vecteur (différent du vecteur nul) est caractérisé par : sa direction , son sens et sa longueur (appelée encore norme)

Le vecteur \overrightarrow{AB} (A et B deux points distincts du plan) a :

- a- Pour direction, celle de la droite (AB)
- b- Pour sens, celui de la demi-droite [AB).
- c- Pour longueur, celle du segment [AB].

Remarques

- 1) Le vecteur \overrightarrow{AA} , encore appelé vecteur nul et noté par $\overrightarrow{0}$, n'a pas de direction, pas de sens et a pour longueur 0.
- 2) La longueur, c'est-à-dire la norme, du vecteur \overrightarrow{AB} est AB.
- 3) Soit \vec{u} et \vec{v} deux vecteurs quelconque, $\vec{u} = \vec{v}$ si, et seulement si, \vec{u} et \vec{v} on même direction, même sens et même longueur.

Vecteur unitaire

On appelle vecteur unitaire tout vecteur de longueur 1.

Soit \overrightarrow{AB} un vecteur non nul. Alors les deux vecteurs $\overrightarrow{x} = \frac{1}{AB}\overrightarrow{AB}$ et $\overrightarrow{y} = -\frac{1}{AB}\overrightarrow{AB}$ sont les seuls vecteurs unitaires colinéaires à \overrightarrow{u} .

Mesure algébrique d'un vecteur.

Soit Δ une droite munie d'un repère (O, I), soit A et B deux points de Δ , on appelle mesure algébrique du vecteur \overrightarrow{AB} et l'on note \overrightarrow{AB} la différence $x_B - x_A$ des abscisses x_B de B et x_A de A dans le repère (O, I); on a donc: $\overrightarrow{AB} = x_B - x_A$ et, en particulier $\overrightarrow{AA} = 0$.

Exemple: On a $x_A = 2$ et $x_B = -2$ alors $\overline{AB} = x_B - x_A = -2 - 2 = -4$

Remarques

- 1) On a, pour tout point M de Δ , $\overline{OM}=x_M-x_0=x_M$. En particulier $\overline{AB}=x_B-x_A=\overline{OB}-\overline{OA}$
- 2) On $a: |\overline{AB}| = |x_B x_A| = AB$
- 3) Relation de Chasles : Pour tout points A, B, C d'une droite Δ munie d'un repère (O,I), on a l'égalité : $\overline{AB} + \overline{BC} = \overline{AC}$

Parallélogramme

1 dranelogramme	
ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$	D D
$ABCD$ est un paral·lélogramme si et seulement si $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$	D C
Soit I le milieu de segment [BC] on $a: \overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI}$	A C

Milieu d'un segment

I est le milieu de segment [AB] équivaut à $\overrightarrow{AI} = \overrightarrow{IB}$ I est le milieu de segment [AB] équivaut à $\overrightarrow{AB} = 2\overrightarrow{AI}$

Points alignées

Soient quatre points A, B, C et D tels que A, B et C sont alignés

Si $\overrightarrow{AB} = \overrightarrow{CD}$ alors AB = Cd et les points A, B , C et D sont alignées.

Relation de Chasles

Pour tout point A, B et C de plan on a : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Vecteurs colinéaires

Deux vecteurs \vec{u} et \vec{v} sont dit colinéaires s'il existe un réel a tel que $\vec{u} = \vec{av}$

Lorsque $\overrightarrow{u} = \overrightarrow{av}$ et a > 0, alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de même sens

Lorsque $\vec{u} = \vec{av}$ et $\vec{a} < 0$, alors \vec{u} et \vec{v} sont colinéaires et de sens contraires.

 $Lorsque \ \overrightarrow{AM} = a\overrightarrow{AB} \ et \ a > 0 \ , \ alors \ \overrightarrow{AM} \ et \ \overrightarrow{AB} \ sont \ de \ m\^{e}me \ sens$

Lorsque $\overrightarrow{AM} = a\overrightarrow{AB}$ et a < 0, alors \overrightarrow{AM} et \overrightarrow{AB} sont de sens contraires.

Droites parallèle

(AB)//(CD) si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires .

Translation

Soit \vec{u} un vecteur fixé. On appelle translation de vecteur \overrightarrow{AB} qu'on note $t_{\overrightarrow{AB}}$, l'application du plan dans lui-

meme qui à tout point M on associe un point M' tel que $\overrightarrow{MM'} = \overrightarrow{AB}$

C'est-à-dire: $M' = t_{\overrightarrow{AB}}(M)$ équivaut à $\overrightarrow{MM'} = \overrightarrow{AB}$

Remarque:

 $t_{\overrightarrow{AB}}\big(A\big) = B \qquad ; \qquad t_{\overrightarrow{AB}}\big(B\big) = B' \ avec \ B' = S_A\big(B\big)$

Propriétés

- *) la translation conserve les distances
- *)L'image d'une droite par une translation est une droite qui lui est parallèle.
- *)L'image d'un segment par une translation est un segment qui lui est isométrique.
- *)L'image d'un cercle de centre I et de rayon r par $t_{\overrightarrow{AB}}$ est le cercle de centre $t_{\overrightarrow{AB}}(I)$ et de rayon r.
- *)L'image d'un polygone par $t_{\overrightarrow{AR}}$ est un polygone qui lui est superposable.