DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

003819572

1 T - 1 - 1 1

WPI Acc No: 1983-815817/198346

XRAM Acc No: C83-110668 XRPX Acc No: N83-203510

Amino-phenyl and alphaphenyl stilbene cpds. - used in electrophotography in charge transport medium for high speed and uniform visible spectral absorption

Patent Assignee: RICOH KK (RICO)

Inventor: SASAKI M

Number of Countries: 005 Number of Patents: 017

Patent Family:

ra	cent ramary	•							
Pat	cent No	Kind	Date	App	olicat No	Kind	Date	Week	
DE	3315437	Α	19831110	DE	3347905	Α	19830428	198346	В
JР	58189145	A	19831104	JP	8280115	Α	19820514	198350	
JP	58190953	Α	19831108	JP	8280116	Α	19820514	198350	
GB	2121789	Α	19840104	GB	8312042	A	19830503	198401	
JP	58198043	Α	19831117					198401	
JP	58198425	Ā	19831118					198401	
FR	2530835	Α	19840127	FR	837171	Α	19830429	198409	
DE	3347905	Α	19850523	DE	3315437	Α	19830428	198522	
DE	3315437	С	19870507					198718	
GB	2121789	В	19870513					198719	
US	4859556	A	19890822	US	88230319	Α	19880809	198942	
US	4892949	Α	19900109	US	88230320	Α	19880809	199010	
JΡ	90024864	В	19900530	JΡ	8280115	Α	19820514	199025	
JΡ	91039306	В	19910613	JP	8280116	Α	19820514	199128	
JΡ	91059053	В	19910909	JP	8273076	Α	19820430	199140	
DE	3347905	С	19920312	DE	3347905	Α	19830428	199211	
JP	92073141	В	19921120	JP	8273075	Α	19820430	199251	

Priority Applications (No Type Date): JP 8280116 A 19820514; JP 8273075 A 19820430; JP 8273076 A 19820430; JP 8280115 A 19820514

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 3315437 A 97

DE 3347905 C 43 Div ex patent DE 3315437

JP 92073141 B 31 G03G-005/06 Based on patent JP 58190953

Abstract (Basic): DE 3315437 A

Electrophotographic recording material has an electroconductive substrate and a light-sensitive layer contg. stilbene cpd(s). of formula (I) (in which R1 is H or phenyl. R2 is H, alkyl or (substd.) phenyl. A is a gp. of formula (II) or (III) or, if R1 is phenyl, can also be 9-anthryl or (substd.) N-alkylcarbazolyl. R3 is H, alkyl, aljoxy, halogen or -NR4R5; R4 and R5 are alkyl or (substd.) ar(alk)yl or together with the N atom form a ring; m=0-3. n=0 or 1. If R1 is H and n=0, A is a gp. of formula (IIA), in which R6 is H, alkyl, alkoxy or halogen). The aminophenyl- and alpha-phenyl-stilbene cpds. of formula (I) are new (not claimed).

At least one R3 gp. is an -NR4R5 gp. and R4 and/or R5 is (substd.) aryl. The light-sensitive layer also contains sensitising dyestuff(s) (IV) for image prodn. with visible light and a binder, which forms a charge transport medium in conjunction with (I). A charge generating material (V) is dispersed in this medium or forms a separate layer. The light-sensitive layer is 3-50 microns thick and contains 30-70 (wt.)% (I) and 0.5-5.0% (IV) or 10-95% (I) and 0.1-50% (V). If 2 layers are used, one contains 10-95% (V) and is max. 5 microns thick and the other contains 10-95% (I) and is 5-20 microns thick. (V) is an azo pigment with a triphenylamine, fluorenone or distyrylbenzene structure.

The material has high speed and uniform spectral absorption in the visible region. It can be produced easily and relatively cheaply and has excellent durability. It is useful in high speed copiers.

THIS PAGE BLANK (USPTO)

⑩ 日本国特許庁 (JP)

①特許出願公開

⑫公開特許公報(A)

昭58—198043

\$0Int. Cl.3 G 03 G 5/06 識別記号

庁内整理番号 7124-2H 砂公開 昭和58年(1983)11月17日

発明の数 1 審査請求 未請求

(全 23頁)

◎電子写真用感光体

20特

函57-80116

20出

顏 昭57(1982)5月14日

70発明者

者 佐々木正臣

東京都大田区中馬込1丁目3番

6号株式会社リコー内

の出 願 人 株式会社リコー

東京都大田区中馬込1丁目3番

6号

砂代 理 人 弁理士 小松秀岳

」明 稲 曹

1. 発明の名称

程子写真用感光体

2. 特許請求の範囲

避電性支持体上に下記一般式(Ⅰ)で表されるα-フェニルスチルベン化合物を少なくとも 1つを有効成分として含有する吸光関を有する ことを特徴とする電子写真用螺光体。

$$\bigcirc C = C \longrightarrow C \vdash H = C \vdash H \longrightarrow (R \land) \lor W$$

$$\bigcirc C = C \longrightarrow C \vdash H = C \vdash H \longrightarrow (R \land) \lor W$$

(式中、R'は水素原子、アルキル器、アルコキシ基、ハロゲン原子または實換アミノ基

置換もしくは無置換のアラルキル基または 置換もしくは無置換のアリル基を示しR¹、 R⁴は煙を形成してもよい))を、R²は 水素原子、アルキル基または置換もしくは無

3. 発明の詳細な説明

本発明は電子写真用感光体に関し、詳しくは 感光層中に特定のαーフェニルスチルベン化合 物を含有させた電子写真用感光体に関する。

- 1 -

このような電子写真法において感光体に要求される基本的な特性としては、(1) 暗所で適当な電位に帯電できること、(2) 昭所において電荷の適散が少ないこと、(3) 光照射によってすみやかに電荷を逸散せしめうることなどがあげられる。

近年、これらの無機物質の欠点を排除するた - 3 -

ことによって良好な特性が得られるものである。 本発明者は、多くの光導電性物質についての 研究、検討を行なった結果、下配一般式 (I)

(式中、R ' は水素原子、アルキル基、アルコ キシ基、ハロゲン原子または置換アミノ基

配換もしくは無間換のアラルキル基または 酸換もしくは無間換のアリル券を示しR¹、 R・は速を形成してもよい)〕を、R¹は 水素原子、アルキル券または置換もしくは無 酸換のフェニル巻を示し、Xはペンゼン環、 ナフタレン環またはインドール環を示す。 n は O または 1 の整数、 n, は O 、 1 、 2 または 3 の整数である。)

で表わされるα-フェニルスチルペン化合物が

めにいろいろな有機物質を用いた電子写真用感 光体が提案され、実用に供されているものもあ る。例えば、ポリーN-ピニルカルパソールと 2,4,7-トリニトロフルオレンー 9-オンとか らなる感光体(米田特許第 3484237号明都値に 記載)、ポリーN-ピニルカルパソールをピリ リウム塩系色素で増感してなる感光体(特公昭 48-25658号公報に記載)、有機額料を主成分と する感光体(特閒昭47-37543号公報に記載)、 染料と樹脂とからなる共晶錯体を主成分とする 感光体(特別昭 47~10735 身公報に記載)などで ある。これらの感光体は優れた特性を有してお り実用的にも価値が高いと思われるものである が、電子写真法において、感光体に対するいろ いろな要求を考慮すると、まだこれらの要求を 充分に満足するものが得られていないのが実状 である。

だが、これまでに挙げた 級光体は、いずれも 目的により又は製作方法により違い はあるが、 一般的にいって優れた光導着性物質を使用する

- 4 -

しかして、本発明の目的は、先に述べた従来の感光体のもつ様々の欠点を解消し、電子写真法において要求される条件を充分に満足しうる感光体を提供することにある。本発明の他の目的は、製造が容易でかつ比較的安価に行なえ、耐久性にも優れた電子写真用感光体を提供することにある。

即ち、本発明は準電性支持体上に感光層を設けた電子写真用感光体において、前記感光層やに上記の一般式 (『) で表わされる α ーフェニルスチルベン化合物が含有されていることを特徴とするものである。

以下に本発明を抵付の図面を参照しながらさ

- 6 -

特開昭58-198043 (3)

らに詳細に説明する。第1図ないし第3図は木 発明に保る優光体の代数的な三個の断面図であ り、そこに付された番号で1は場悪性支持体、 2、2~、2"は感光層、3は電荷発生物質、 4は電角搬送媒体又は電荷搬送層、5は電荷発 生腐を表わしている。

木発明で用いられる前記-般式(Ι)で示されるα-フェニルスチルベン化合物は、下記-般式(Ι)

【式巾Yは一P (→◆◆◆◆◆)) 1 Z (ここで Z はハロクンイオンを示す) で 表わされるトリフェニルホスホニゥム 基又は P O (OR) 2 (ここで R は低級 アルキル 甚を示す) で 表わされる ジアルキル 亜燐酸 熱である]

で扱わされる1.1-シフェニル排準体と下記一般 式(II)

(式中、 R ' は水素原子、アルキル値、アルコ キシ器、ハロゲン原子または固換アミノ語

理換もしくは無路換のアラルキル基または 関換もしくは無路換のアリル基を示しR³、 R⁴は環を形成してもよい)〕を、R⁷は 水素原子、アルキル基または器検もしくは無 器換のフェニル扱を示し、Xはベンゼン環、 ナフタレン環またはインドール環を示す。 n は()または1の整数、nは()、1、2または 3の整数である。)

で扱わされるカルポニル化合物とを反応させる ことにより得ることができる。

こうして得られるα-フェニルスチルベン化 合物の具体例を以下数1に例示する。

			衷1	9	0	н	- ⊙ -c a
化合物 No	n	R²	(x)	10	0	н	- ∳
1	0	н		11	0	Н	G.₽ -<⊙} G.₽
2	0	н	-∕⊙−сн³	.,	•	,,	Ce
3	0	н	CH3 . (○)C1 H3	12	1	н	-©
			-(⊙)-c (ch) ;	13	1	н	(O)-N (CH₃);
4	0	н		14	1	н	-O-N (C: H;) :
5	0	Н	- () ос, н,	15	1	Н	-⊘-осн₃
6	0	н	-⊘-осн₃	16	1	н	- ©
						٠	осн.
7	0	Н		17	0	н	-8
8	0	Н	О-осн,	18	0	. н	-©-осн,
			оснь ,оснь				

預開昭58-198043 (4)

- 1 3 -

特別昭58-198043(5)

特開昭58-198043 (6)

							200 100010 (0)
90	0	н	-⊘-n-⊘-n (C; H;);	98	0	Н	-⊘-и-⊘-осн,
91	0	н	-(O)- N-(O)- C ℓ	••	•		(CH ₂), CH ₃
			Cr Hs	99	0	Н	-⊘-n-⊘-cH²
92	0	Н	- -	100	0	н	⊘-'n-⊘-и (cH²) ¹
			Gz 11s				(CHz) z CHs
93	0	н	-⊘-и-⊘-сн,	101	0	н	- ⊘ -N- ⊙
			C: H:				(CH ⁵) ² CH ³
94	0	н	-⊘-й-⊙-осн	102	0	н	
of.	•		C: H:				(CH ₅) 2 CH ₃
95	0	Н	-⊙-'n-⊙-ce c: h,	103	0	н	-⊘-n-⊘-n (ch);
96	0	н	-(O)-N-(O; H;);				(ČH ₂) ₃ CH ₃
			(CH ₂) 2 CH ₃	104	0	н	
97	0	H		105	0	н	Ö-N-Ó
			'- 1 9 -				- 2 0 -
			_				
106	0	H	-⊘-n' <u></u> CH₃⊘	113	0	Н	(CH 2(C)
107	•		CH2 (○)- CH3	144		.,	CH ³ CO
107	0	Н		114	0	н	-⊙-и сн-⊙-осн-
108	0	н	-(CH2(O)-OCH3	115	0	н	-Ø-N
			<u></u>				,сн,⊘-сн
*00	•		CH; O - C &	116	0	н	-O-N-O-0CH3 -O-N-O-C2
109	0	н	-0)-N 0CH3	117	0	н	-{O-N° (CH₂ (O)
110	0	Н	CH2(O)−OC2 H3		-		© Ca
		.,		118	0	н	-{○}-N (CH ₂);
111	0	н	CH7⊘-C2 -(○)-N_	119	0	, H	-O-N (C2 H4) 2
			<u> </u>				(a) (-1)

- 21-

112

, Н H

121

特開昭58-198043 (7)

本発明感光体は、上記のようなαーフェニルスチルベン化合物の1種又は2種以上を感光離2(2~又は2~)に含有させたものであるが、これらαーフェニルスチルベン化合物の応用の仕方によって第1例、第2例あるいは第3例に示したごとくに用いることができる。

第2 図における感光体は、導電性支持体 1 上 に電荷発生物質3 を α - フェニルスチルベン化

- 23 -

して働くのがその特徴である。

実際に本発明感光体を作成するには、第1図に示した感光体であれば、結合剤を溶かした溶液にα-フェニルスチルベン化合物の1種又は2種以上を溶解し、更にこれに増感染料を加えた液をつくり、これを巣管性支持体1上に塗布

合物と結合剤とからなる配荷酸送媒体4の中に 分散せしめた感光層2~が設けられたものであ る。ここでのα…フェニルスチルペン化合物は 括合剤(又は粘合剤及び可塑剤)とともに電荷 殿送媒体を形成し、一方、電荷発生物質3(無 機又は有機額料のような電荷発生物質)が電荷 出体を発生する。この場合、電荷搬送媒体4は 主として電荷発生物質3が発生する電荷組体を 受入れ、これを搬送する作用を担当している。 そして、この感光体にあっては電荷発生物質と αーフェニルスチルペン化合物とが互いに、主 として司視領域において吸収放長低級が重なら ないというのが基本的条件である。これは電荷 現生物質3に電荷担体を効率よく発生させるた めには賃前発生物質表面まで、光を洗過させる 必要があるからである。一般式(丁)で表わさ れるα・フェニルスチルペン化合物は可細酸は にほとんど吸収がなく、一般に可視傾域の光線 を吸収し、電荷退休を発生する電荷発生物質3 と組合わせた場合、特に有効に配荷搬送物質と

- 24 -

し乾燥して感光層2を形成すればよい。

感光暦2の厚さは3~50μ■、好ましくは5 ~20μ m が適当である。感光層2に占めるα-フェニルスチルペン化合物の最は、30~70重量 %好ましくは約50重量%であり、また、感光層 うに占める類感染料の量は 0.1~5番番%がま しくは 0.5~3 煎費%である。増感染料として は、プリリアントグリーン、ピクトリアブルー B、メチルバイオレット、クリスタルバイオレ ット、アシッドパイオレット 6 8 のようなトリ アリールメタン染料、ローダミンB、ローダミ ン 6 G 、ローダミン G エキストラ、エオシン S 、 エリトロシン、ローズペンガル、フルオレセイ ンのようなキサンテン染料、メチレンブルーの ようなチアジン染料、シアニンのようなシアニ ン染料、 2.6-ジフェニリー4-(N、N-ジ メチルアミノフエニル) チアピリリウムパーク ロレート、ペンソビリリウム 四(特 公 約 48-258 58月公報に記載)などのピリリウム染料などが 挙げられる。なお、これらの坦感染料は単独で

- 26 -

.

用いられても2種以上が併用されてもよい。

また、第2回に示した感光体を作割するには、 1種又は2種以上のαーフェニルスチルペン化合物と結合剤とを溶解した溶液に常荷発生物質3の改粒子を分散せしめ、これを導電性支持体1上に塗布の乾燥して感光器2~を形成すればよい

顕 料 、 アルゴスカーレット B (パイエル社製) 、 インダスレンスカーレット R (パイエル社製) などのペリレン系 颜料などが挙げられる。なお、

- 27-

これらの電荷発生物質は単独で用いられても 2 種以上が併用されてもよい。

電荷発生器 5 の厚さは 5 μ m 以下好ましくは 2 μ m 以下であり、電荷搬送層 4 の厚さは 3 ~

ーシックレッド3 (Cl 45210)、カルパゾー ル母校を有するアソ 顔料 (特開昭 53-95033号公 相に記収)、ジスチリルペンゼン份核を有する アゾ鎖科(特朗昭 53-133445号公報に記載)、 トリフェニルアミン骨核を有するアゾ原料(特 開昭 53-132347号公報に記載)、ジベンソチオ フェン骨核を有するアソ節料 (特開昭 54-21728 **号公報に記載)、オキサジアソール骨核を有す** るアゾ顔料(特開昭 54-12742 月公報に記収)、 フルオレノン母校を有するアゾ顕料(特開昭54 - 22834月公報に記収)、ピススチルペン骨核を 有するアゾ原料(特開昭 54-17733 月公相に記収) 、ジスチリルオキサジアゾール骨枝を有するア ソ 町料 (特開昭 54-2129身公前に記載) ジスチ リルカルパソール骨核を有するアゾ新料(特問 昭54-14967月公報に記載)などのアソ額料、例 えばシーアイピグメントプルー16 (CI 741 00) などのフタロシアニン系顕料、例えばシー アイバットプラウン5 (CT 73410)、シーア イパット 4 イ (C I 13030) などのインジゴ系

-28-

50μm 好ましくは5~20μm が適当である。 電荷発生 層 5 が 電荷発生 物質の 微粒子 3 を結合 剤中に分散させたタイプのものにあっては、電荷発生物質の微粒子 3 の電荷発生 層 5 に占める 剤 合は 10~95重量 %、好ましくは 50~90重量 % 径 ある。また、電荷搬送 層 4 に 占める α ~ フェニルスチルペン化合物の 最は、 10~95重量 % 好ましくは 30~90重量 % である。

- 29 -

特別昭58-198043 (8)

合制に加えられるが、そうした可塑剤としては ハロゲン化パラフィン、ポリ塩化ピフェニル、 ジメチルナフタリン、ジブチルフタレートなど が例示できる。

更に、以上のようにして切られる感光体には、 準電性支持体と感光層の間に、必要に応じて接 着層又はパリヤ脳を設けることができる。これ らの間に用いられる材料としては、ポリアミド、 ニトロセルロース、酸化アルミニウムなどであ り、また膜厚は1 4 m 以下が好ましい。

本発明の感光体を用いて被写を行なうには、 感光面に帯震、露光を施した後、現像を行ない、 必要によって、紙などへ転写を行なう。本発明 の感光体は感度が高く、また可憐性に富むなど の優れた利点を有している。

以下に実施例を示す。下記実施例において部はすべて重量部である。

実施例1

1.1-ジフェニルメチルホスホニウムプロマイド 5.09g (0.01 モル) と、4 - N、N - ジフ - 3 1 -

実施例2~27

電荷発生物質および電荷設送物質(α-フェニルスチルベン化合物)を表2に示したものに 代えた以外は実施例1とまったく同様にして感 光体No.2~27を作成した。 エニルアミノペンズアルデヒド 2.740 (0.01 モル)に N、 N ー ジメチルホルムアミド 20 a 2 を加え、これにナトリウムメチラートの 2.8% メクノール 溶液 2.90gを 22~2.8℃で 3.0分を 要して なった 後 で 5.0 a 2 の水で 希釈 した。生 成物を下しなった 後 で 5.0 a 2 の水で 希釈 した。生 成物を下ルエンで 抽出した 後、 有機 個を水洗、 乾燥 後 トルエンを除去し、 少 の の エタノールを 加えて 茶品 と は の n ー へ キサンートルエンの 混合 溶媒 から 再 結 品 して 淡黄色針 状結晶 () い ○ 95.0℃)の の へ フェニルー 4 ~ ー N , N ー ジフェニルアミノスチルペン(喪 1 の 化合物 N 0 . 5.8) 5.79g (収率 6.5%)を 物た。

電荷発生物質としてダイアンブルー(シーアイピグメントブルー 25、 C I 21180) 76郎、ポリエステル制館(パイロン 200、(株)東洋紡舗製)の2%テトラビドロンフラン溶液1260部およびテトラビドロフラン3700部をボールミル中で粉砕混合し、縛られた分散液をアルミニウ

- 3 2 -

感光体 私	電荷 另生物質	配荷撒送物質 (化合物系)
1	O-HNOC OH H3CO UCH3 HO CONH-O	5 8
2	N=N-O-O-N=N-O	5 8
3	# CH-O-N=N-O-CH=CH-O-CH= # CH3 H3C W CH-O-N=N-O-CH=CH-O-CH3	5 8
4	О-ниос он и-и но соин-	5 8
5	C7 -HNOC OH O HO CONH-	5 8

特開昭58-198043 (11)

松光体 K	160. 荷 発 生 物 質	電荷搬送物質 (化合物紙)
6	H ₃ CO-O-HNOC OH HO CONH-O-OCH ₃	5 8
7	β型 銅フタロシアニン	5 8
8	— N=N- О ОСН3 НО СОМН- О ОСН- О ОСН Н3 СО ОС	2 1
9	O-HNOC OH CL CL HO CONH-O	2 1
10	# CH-()-N=N-()-CH = # CH3 H3C-()-HNOC OH H3C	2 1

特開報58-198043 (12)

感光体	電 荷 発 生 物 質	電荷搬送物質 (化合物紙)
11	Ст С	2 1
1 2	# CH-(1 1 9
1 3	CZ CZ N=N-O HO CONH-O N=N-O HO CONH-O	I 1 9
1.4	# CH-O-N=N-O-CH = # HO CONH-O-CH = # CH 3 CH 3 CH 3	1 3

持開昭58-198043 (13)

感光体 //a	银荷兔生物型	電荷搬送物質 (化合物ル)
15	СД — НКОС ОН О НО СОИН— О — N=N — О — О — О — О — О — О — О — О — О —	1 3
1 6	# CH-O-N=N-O-CH = # H 3 C-O-HNOC OH H	4 1
i 7	CL CL OHO CONH- N=N- OHO N=N- OHO OHO OHO OHO OHO OHO OHO OH	41.
1 8	# CH-()-N-N-()-CH=CH-()-CH = # CH ₃ # CH-()-N-N-()-CH=CH-()-CH = # CH ₃ # CH-()-N-N-()-CH=CH-()-CH = # CH ₃	3 5

特開昭58-198043 (14)

感光体	電荷発生物質	電荷搬送物質 (化合物系)
1 9	CL CL O-HNOC OH O HO CONH-O	3 5
2 0	# CH-O-N-N-O-CH3 # CH-O-N-N-O-CH3 # CH-O-N-N-O-CH3	5 9
2 1	CL CL O-HNOC ON O HO CONH-O	5 9
2 2	HO CONH ← ₩ CH 3 HO CONH ← → CH 3 W CH ← → N = N + → → CH 3	2 0

特開昭58-198043 (15)

感光体 Ma	电石 死生物 質	電荷搬送物質 (化合物紙)
2 3	C.Z. C.Z.	2 0
2 4	ж сн- <u>О</u> -и-и-О-сн ж н ³ с О-ниос он н ³ с О-ниос он	1 8
2 5	C7 O)-HNOC OH O HO CUNH-O	1 8
2 6	H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃	1 6
2 7	CT C	1 6

事務 例 2 8

厚さ的 300μ m のアルミニウム 板上に、セレをを厚さ的 1 μ m に真空蓋着 U て電荷発生ニル 形成せしめた。次でN 0 、 58の α ーフェル 別 の で で いで N 0 、 ボリエステル 別 場 の で ア ア ド ヒーシア 49000) 3 節 の 電荷 発生層(セレン ス チ 2 が 表 音 層 が た で と の で に た り よ で に か な か 10 μ m の 電荷 搬送 配 を の の の で に た り な 水 発 明 の 感光体 N 0 、 28を 得 た 。 実 施 例 2 9

セレンの代りにベリレン系顔料

を用いて 電荷発生層 (但し、厚さは的 0.3μπ) を形成し、また α ーフェニルスチルベン化合物 をNo. \$8の代りにNo. 21のものを用いた以

- 40 -

テンランプ光を感光体表面の照度が20ルックスになるよう照射してその表面電位が Vpoの1/2になるまでの時間(秒)を求め、露光量E1/2 (ルックス・秒)を算出した。その結果を表3に示す。

また、以上の各級光体を市販の電子写真複写機を用いて停電せしめた後、原因を介して光照射を行なって静電勘散を形成せしめ、乾式現像剤を用いて現像し、得られた適像(トナー画像)を普通紙上に静電転写し、定着したところ、鮮明な転写画像が得られた。

表 3

感光体	V po	E 1/2
No.	(ポルト)	(ルックス・秒)
ŧ	- 1 1 2 0	. 3.0
2	- 990	2.5
3	- 1 1 7 0	1.3
4	-1290	4.1

- 4 2 -

外は実施例28とまったく同様にして感光体No. 29を作成した。

実施例30

ダイアンブルー(実施例 1 で用いたものと同じ) 1 部にテトラヒドロフラン 158 部を加えた 独合物をボールミル中で粉砕、混合した 後、これにNo 、58の αーフェニルスチルベン 化合 物 12 郎、ポリエステル制節(デュポン社製ポモ、 3 テルアドヒーシブ 49000) 18 部を加えて、 3 テルアドヒーシブ 49000) 18 部を加えて、 ウム 熱替ポリエステルフィルム上にドクターレム 発酵ポリエステルフィルム上にドクターレードを用いて 進布し、 100℃で 30分間 乾燥 発の 感光 作成 した .

かくしてつくられた側光体 No. 1~30について、市販の静管複写紙試験装置(KK川口電機製作所製SP 428型)を用いて-6KV又は+6KVのコロナ放電を20秒間行なって帯電せしめた後、20秒間的所に放露し、その時の姿面電位V00(ボルト)を割定し、ついでタングス

- 4 1 -

5	- 1 0 9 0	0.9
6	- 980	1.2
1	- 820	2.7
8	-1200	3.4
9	- 1 1 0 0	2.4
10	- 1 0 7 0	2.2
11	- 890	1.5
12	-1350	1.3
13	- 1 0 6 0	1.1
14	- 980	1.4
15	- 600	1.0
16	- 1 2 1 0	2.1
17	-1070	1.4
18	- 1 2 8 0	1.3
19	1 1 7 0	1.1
20	- 1 2 8 0	1.2
2 1	-1130	0.8
2 2	- 1 3 1 0	2.4
2 3	- 1 0 1 0	4,5
2 4	- 1 2 5 0	3.1

- 4 3 -

2 5	- 1000	2.9
2 6	- 1 3 9 0	1 , 5
2 7	- 1 1 4 0	2.6
2 8	- 1 1 2 0	2.8
2 9	- 1 3 0 0	4.8
3.0	+ 1 2 2 0	4 . 7

4. 図面の簡単な説明

第1回、第2回および第3回は本発明にかか わる電子写真感光体の厚さ方向に拡大した断面 図である。

- 1 … 導電性支持体
- 2、21、2"…感光的
- 3 … 電荷発生物質
- 4 … 電荷搬送媒体又は電荷搬送層
- 5 … 電荷発生層

特許川頭人 株式会社 リコー 代理人弁理士 小松 秀岳 - 44-

手統補正書

特許庁長官 島田 春

- 1. 事件の表示
 - 四年 57 海
- 2. 発明の名称
- 電子写真用感光体
- 3. 補正をする者

事件との関係 符許出願人

フリガナ

ッパグラ 氏 (名称) (674) 株式会社リコー

- 〒107 (電話586-8854)
 - 東京都游区赤坂 4 丁目 1 3 番 5 号

赤坂オフィスハイツ (7899) 弁理士 小 松 秀

- 6. 補正により増加する発明の数

明細書中、特許請求の範囲並びに発明の詳細 な説明の欄

8. 補正の内容 別紙のとかり

第 1 図

第 2 図

第 3 図

(別紙)

- 1. 明細書第1頁第4行ないし第2頁第4行の特 許請求の範囲を下記のとおり訂正する。
 - 「2. 特許請求の範囲

導常性支持体上に下記一般式(1)で表わ されるαーフェニルスチルペン化合物を少 なくとも1つを有効成分として含有する感 光層を有することを特徴とする電子写真用 感光体。

$$C = C + C H = C H \rightarrow_{\overline{n}} \underline{A} \qquad \dots \dots \qquad (1)$$

9-アントリル基、または置換または無 置換のNーアルキルカルパソリル基を示 <u>し、</u>R¹ は水泉原子、アルキル基、アルコ キシ基、ハロゲン原子または置換アミノ

特開昭58-198043 (18)

(-N^{R³}(式中R³及びR⁴はアルキル

2. 第5頁第4行の一般式を下記のとおり訂正する。

$$C = C \xrightarrow{\qquad} C + C H = C H \xrightarrow{\qquad} A \qquad \cdots \cdots (1)$$

 同員第5行の「(式中、R¹は……」を下記の とかり訂正する。

(2)

- 8. 同員下より第8行ないし第7行の「……示し、 Xは……インドール環を示す。」を「……を示す。」と訂正する。
- 9. 第9 資表 I の欄外 見出し中

- 10. 第26頁下より第5行の「ジフェニリ」を 「ジフェニル」と訂正する。
- 11. 第32頁第9行ないし第10行の「微量のヨウ素と共に」を削除する。
- 12. 第33頁第6行の「化合物」を削除する。

アントリル芸、または簡換または無僅換の Nーアルキルカルパゾリル芸を示し、R'は… … 」

- 何頁下より第7行の「漫」を「環」と訂正する。
- 5. 同頁下より第5行ないし第4行の「…示し、 X は……インドール環を示す。」を「…示す。」 と訂正する。
- 6. 第8頁第1行の一般式を下記のとおり訂正する。 0

 同頁第2行の「(式中、R¹ は……」を下記の とおり訂正する。

アントリル茲、または世換または無償換の Nーアルキルカルパゾリル基を示し、R¹ は… …」

(3)

手統補正會

特顧昭57-80116月

明和57年10月22日

特許庁長官 若杉和 夫 殷

1. 事件の表示

机球色 有伦化大 威

2. 発明の名称 電子写真用感光体

3. 補正をする者 事件との関係 特許出願人 住 所 東京都大田区中馬込

住 所 東京都大田区中馬込1丁目3番6号 名 称 (674)株式会社リコー

4.代理人 〒107(電話586-8854) 住所 東京部港区赤坂4丁日13番5号 ・赤坂オフィスハイツ 氏名 (7899) 弁理士 小松 秀 島門

- 5. 補正命令の日付 (自 発)
- 6. 補正の対象 明柳倉中、発明の詳細な説明の個
- 7. 補正の内容 別紙の通り。

57.10 23

特開昭58-198043 (19)

(別紙)

1. 明細虫第8頁下から2行と3行との脚に下駅 の文を挿入する。

「上記 R ³ 及び R ⁴ における闘換基としては低級アルキル基、低級アルコキシ基、アリールオキシ基、ハロゲン原子、低級ジアルキルアミノ基、ヒドロキシ基、カルボキシル基、及びそのエステル、ニトロ基、アセチル基、またはシアノ基などがあげられる。次に製造例を示す。

製造例1

1. 1 - ジフェニルメチルホスホニウムプロマイド 5.09g (0.01 モル) と、4・N、N・ツフェニルアミノベンズアルデヒド 2.74g (0.01 モル) に、N、Nージメチルホルムアミド 20 m & を加え、これにナトリウムメチラートの28% メタノール溶液 2.90 g を22~28℃で30分を要して滴下した。滴下複整温で6時間かきまぜを行なった後、50 m & の水で希釈した。生成物をトルエンで抽出した観、有機磨を水洗、乾燥後トルエンを除去し、少

- 4 ´ - N , N - ジフュニルアミノスチルペン(敵点 94.0~95,0℃)を得た。

- 1 **-**

2. 明報書第22頁の次に、下記の化合物No. 122~ 132を追加する。

化合物 No.	n	R ²	Α
122	0	Н	
123	0	Н	-⊘- n⊘
124	0	н	-O- N-O H

爾のエタノールを加えて結晶化した。 結晶を 値取、 乾燥後、 n - ヘキサンートルエン の 混 合溶媒から再結晶して 淡黄色針 状結晶 () 励 点 94.0~95.0 C) の α - フェニル - 4 ´ - N . N - ジフェニルアミノスチルベン 5.79g (収 本65%) を得た。

製造例 2

1 . 1 - ジフェニルメチルホスホン酸ジェチル 6.50g(0.021モル)と 4 - N , N - ジフェニルアミノベンズアルデヒド 5.84g(0.021モル)を N , N - ジメチルホルムアミド 40 m 2 に溶解し、これにカリウムーt - ブトキサイド 2.83g(0.025モル)を 21~33℃に T 20分を要して 添加した。 添加 後 室温 で 4 時間かきまぜを行なった 後、反応混合物を 80 m 2 の氷水に注ぎ生成した 抗震物を 輝取、 水洗、 乾燥し 8.20g(収率 90.6%)の 粗製品を 得に トルエン・エタノールの 混合 溶媒 から 再結 島 を は、 神られた 炎 黄色針 状結 島を 遮取し、メタノールで 洗浄した 後、 乾燥して α - フェニル

- 2 -

化合物 No.	n	R * .	A
125	٥	н —	O- NO C O O H
126	0	н -{О	N C C C C C 7 H .
127	0	н •	-O- NO 1
128	0	н	сн, осн,

化合物	n	R *	Α
<u>No.</u>		-	
129	0	н	осн, О сн,
			د C H ع Oر
130	0	н	осн ³
131	0	н	~~~ ~~~
132	0	н	-О-и
			- 5 -

手統補正書

昭和58年1月11日

特許庁長官 若杉和 失 殿

1. 事件の表示

特額昭57-80116月

2. 発明の名称

電子写真用 感光体

3. 補正をする者

事件との関係住所

特許出顧人

名称

東京都大田区中馬込1丁目3番6号 (674)株式会社リコー

(0/4/ мядп)-

4. 代 现 人 住 所 〒 107 (電話586-8854) 東京都港区赤坂4丁目13番 5月

氏名

赤坂オフィスハイツ (7899) 弁理士 小 松 秀 岳

5. 補正命令の日付 (自 発)

6. 補正の対象

明朝書中、特許請求の範囲並びに発明の詳細な 説明の簡

7、補正の内容

別紙の通り。

3. 第31頁下から第2行乃至第32頁第14行の「 1.1-ジフェニルメチルホスホニウムプロマイド…………… (表1の化合物No.58) 5.790 (収率65%)を特た。」を削除する。

- в **-**

(別報)

1. 昭和57年5月26日提出の手続補正書別報、 第1頁乃至第2頁記載の特許請求の範囲を下記 のとおり訂正する。

「 2. 特許請求の範囲

導電性支持体上に下記一般式(Ⅰ)で表されるα-フェニルスチルペン化合物を少なくとも1つを有効成分として含有する陽光度を有することを特徴とする電子写真用磁光体。

9 ー はアントリル基、または面換または無 置換の N ー アルキルカルパソリル基を示し、 R ¹ は水素原子、アルキル甚、アルコキシ

特開昭58-198043 (21)

甚、ハロゲン原子または置換アミノ基

基、関換もしくは無置換のアラルキル基ま たは爾換もしくは無置換のアリール 長を示 しR³、R⁴は頭を形成してもよい)】を、 R*は水素原子、アルキル基または置後も しくは無置換のフェニル基を示す。 n は O または1の整数、mは0、1、2または3 の整数である。)」

- 2. 明柳書第5頁下から第8行の「アリル基」を 「アリール歩」と訂正する。
- 3. 明和書第5頁第6行の「アリル基」を「アリ ール基」と訂正する。

以上

(別板)

- 1. 昭和58年1月11日提出の手続補正書別紙、 第1頁乃至第2頁記載の特許請求の範囲を下記 のとおり訂正する。
- 「2. 特許請求の範囲

導電性支持体上に下記一般式(1)で表 されるα-フェニルスチルベン化合物を少 なくとも1つを有効成分として含有する感 光麗を有することを特徴とする君子写真用 感光体。

9 - アントリル基、または置換または無数 検のN-アルキルカルパゾリル基を示し、 R「は水業原子、アルキル基、アルコキシ **手統補正**

昭和58年2月24日

特許庁長官 岩 杉 和 夫

1. 事件の表示 特願昭57-80116号

2. 発明の名称 **鞋子写真用 够光体**

3、補正をする者 事件との関係

特許出顧人 住 所

東京都大田区中馬込1丁目3番6身

名 称 (674)株式会社リコー

4. 代 理 人 住 所

〒 107 (電話586-8854) 東京都港区赤坂4丁自13番 5号

赤坂オフィスハイツ (7899) 弁理士 小 松 秀

5. 補正命令の日付 (白 発)

6. 補正の対象

Æ 8

> 明朝書(昭和58年1月11日提出の手続補正 書も含む)中、特許請求の範囲並びに発明の詳細 な説明の棚

7. 補正の内容 別紙の通り。

58. 2, 24

基、ハロゲン原子または智換アミノ基

基、屋換もしくは無魔換のアラルキル基ま たは置換もしくは無置換のアリール暴を示 しR³、R⁴は環を形成してもよい)]を 示し、a が2以上の場合は周一の基でも異 なる基でもよい。R* は水素原子、アルキ ル基または産換もしくは無冒換のフェニル 基を示す。 n は O または 1 の 敷数 、 n は O 、 1、2または3の整数である。)」

2. 明和書第5頁下から第7行の『R 4 は環を形 成してもよい)〕を、」を「R・は頭を形成し てもよい)】を示し、a が2以上の場合は同一 の是でも異なる基でもよい。」と訂正する。

L F

- 1 -

手統補正會

昭和58年4月20日

特許庁長官 若杉和 失 股

1、事件の表示

特顧昭57-80116号

2. 発明の名称

電子写真用纸光体

3. 補正をする者

事件との関係

特許出顧人

名称

(674) 株式会社リコー

4. 代 및 人

〒 107 (電話586-8854)

東京都港区赤坂4丁目13番5号 赤収オフィスハイツ

(7899) 弁理士 小松秀岳

5. 補正命令の日付 (自 発)

6. 福正の対象

明報書(昭和57年10月22日提出の手続補正書も含む)中、 発明の詳細な説明の側。

7. 補正の内容

別紙の通り。

(別紙)

(1) 昭和57年10月22日付手統福正書第5 頁の末尾の化合物NO.132の次に下紀化合 物 N 0.133を追加する。

化合物

R *

No. 133

(2)明細書第33頁の下より5行の「実施例2 ~ 2 7 」を「実施例 2 ~ 3 9 」に、また下 2 行の「感光体No.2~27」を「感光体No. 2~39」と訂正する。

(3) 明相書第33頁の表の末尾に、次の感光体 No.28~39を追加する。

感光体 No.	電荷 尭 生 物 質	電荷搬送物質 化合物No.
28	H ₃ C H	72
29	C L C L O-HNOC OH HO CONTH-O	72
30	H3 C-(0)-HNOC OH O -N=:1-(0)-CH=CH-(0)-CH= ° CH3 H0 CONH-(0)-CH3 • CH-(0)-N=N-(0)	75
31	O-ILHOC OH HO COMH-O	75
3 2	• CH- (Q) - N=N-(Q) (CH) (CH) (CH) (CH) (CH) (CH) (CH) (CH	63

悠光体 No.	電 荷 発 生 物 質	電荷搬送物質 化合物No.
33	CL CL OH HU CONH-O	63
34	• CH-(O-N=N-(O)-CH3 • CH-(O-N-(O)-CH3 • C	122
35	О-ннос он но соми-(о) О-ннос он но соми-(о)	122
36	H3 CCH-(123
37	O-HNX: OH HO COMM-O	123

特開昭58-198043 (23)

感光体 No.	循 荷 尭 生 物 質	電荷搬送物質 化合物No.
38	• CH-○-H-N-○-CH3 H 3C- ○-HNISC OH H 3C OH-O-CH-O-CH3 H 3C	133
39	O-H-N-O-N-N-N-O	133
		J

- (4) 阴細器第40資乃至第41頁の「実施例2 8」(実施例29」「実施例30」をそれぞれ「実施例40」「実施例41」「実施例4
 - (5) 明報電第44頁表3の感光体No.27の次に下記No.2月乃至39の感光体を追加すると共に、感光体No.28、29、30をそれぞれ40、41、42に訂正する。

「感光体	V po	E 1/2
<u>No.</u>	(ポルト)	(ルックス・粉)
2 8	- 350	0.7
29	- 600	0.6
30	- 540	1.3
31	- 980	0.9
32	- 990	1.2
33	- 1 1 0 0	1.0
3 4	-1300	.1.4
35	-1210	1.5
36	- 850	1.3
37	-1400	4.4
38	- 680	1.2
39	-1100	1.0

- 4 -

THIS PAGE BLANK (USPTO)