Security Involution

Consider a function f:X o X where X is any set, and f is a bijection.

Now, if $f=f^{-1}$ then f is called an *involution*. In other words, a function f is called an involution if f(f(x))=x

In this task you're given a permutation $f:\{1,2,3,\ldots,n\} o \{1,2,3,\ldots,n\}$.

Determine whether f is an involution or not.

Constraints

$$1 \le n \le 20$$

Input Format

There are 2 lines in the input.

The first line contains a single positive integer n.

The second line contains n space separated integers, the values of $f(1), f(2), f(3), \ldots, f(n)$, respectively.

Output Format

Output "YES" if f is an involution. Otherwise, output "NO".

Sample Input

2 2 1

Sample Output

YES

Explanation

Since,
$$f(1)=2$$
 and $f(2)=1,\ f^{-1}(1)=2$ and $f^{-1}(2)=1.$

Hence, f is an involution.