First-order conditions

Suppose f is differentiable. Then f is convex iff dom f is convex and

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$
 (1)

holds for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$.

Proof. If f is convex, then $f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y})$, which can be rewritten as

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha},$$

Letting $\alpha \to 0^+$, we have (1). If (1) holds, we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le f(\mathbf{x}) - (1 - \alpha)\langle \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle,$$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le f(\mathbf{y}) + \alpha\langle \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

Multiplying the first inequality with α and the second with $(1 - \alpha)$ and adding them together, we obtain $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$.

If $\nabla f(\mathbf{x}) = \mathbf{0}$, then for all $\mathbf{y} \in \text{dom } f$, $f(\mathbf{y}) \geq f(\mathbf{x})$, *i.e.*, \mathbf{x} is a global minimizer of f.

Strictly convex:

$$f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle, \quad \text{if } \mathbf{y} \neq \mathbf{x}.$$
 (1)

Proof. $f(\mathbf{y}) > f(\mathbf{x}) + \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha}$, $\forall \alpha \in (0, 1)$. For all $\alpha \in (0, 1)$ by the convexity we have $f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x}) \geq \alpha \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$. Thus $\langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle = \inf_{\alpha \in (0, 1)} \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha}$. If there exists $\alpha \in (0, 1)$ such that $\frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha} > \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$, then (1) holds. Otherwise,

$$\frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha} = \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle, \quad \forall \alpha \in (0, 1).$$

So $f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x}))$ is a linear function of $\alpha \in (0, 1)$ and f cannot be strictly convex.

Strongly convex: $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2$.

Proof. Follow the proof of convexity.

Second-order conditions

Assume that f is twice differentiable. Then f is convex iff dom f is convex and its Hessian is positive semidefinite: for all $\mathbf{x} \in \text{dom } f$,

$$\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}.$$

For a function on \mathbb{R} , this reduces to the simple condition $f''(x) \geq 0$ (and dom f convex, *i.e.*, an interval), which means that the derivative is nondecreasing. The condition $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ can be interpreted geometrically as the requirement that the graph of the function have positive (upward) curvature at \mathbf{x} .

Strictly convex: $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$.

Strongly convex: $\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}$.

- Examples
- Exponential. e^{ax} is convex on \mathbb{R} , for any $a \in \mathbb{R}$.
- Powers. x^a is convex on \mathbb{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$.
- Powers of absolute value. $|x|^p$, for $p \ge 1$, is convex on \mathbb{R} .
- Logarithm. $\log x$ is concave on \mathbb{R}_{++} .
- Negative entropy. $x \log x$ (either on \mathbb{R}_{++} , or on \mathbb{R}_{+} , defined as 0 for x = 0) is convex.

- Examples
- Norms. Every norm on \mathbb{R}^n is convex.
- Max function. $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ is convex on \mathbb{R}^n .
- $f(x,y) = x^2/y$ with dom $f = \mathbb{R} \times \mathbb{R}_{++} = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ is convex.
- Log-sum-exp. $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ is convex on \mathbb{R}^n .
- Geometric mean. $f(\mathbf{x}) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on dom $f = \mathbb{R}_{++}^n$.

- Examples
- Log-determinant. $f(\mathbf{X}) = \log \det \mathbf{X}$ is concave on $\dim f = \mathbb{S}_{++}^n$.

The Hessian of f at \mathbf{X} is a fourth-order tensor \mathcal{T} . We have shown that $\mathcal{T}(\Delta \mathbf{X}) = -\mathbf{X}^{-1}\Delta \mathbf{X}\mathbf{X}^{-1}$.

$$\langle \mathcal{T}(\Delta \mathbf{X}), \Delta \mathbf{X} \rangle = -\operatorname{tr}\left[(\mathbf{X}^{-1}\Delta \mathbf{X}\mathbf{X}^{-1})\Delta \mathbf{X} \right] = -\operatorname{tr}\left[\mathbf{X}^{-1}(\Delta \mathbf{X}\mathbf{X}^{-1}\Delta \mathbf{X}) \right] \le 0.$$

Sublevels

The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$C_{\alpha} = \{ \mathbf{x} \in \text{dom } f \mid f(\mathbf{x}) \le \alpha \}.$$

Sublevel sets of a convex function are convex, for any value of α .

The converse is not true: a function can have all its sublevel sets convex, but not be a convex function. Such functions are called *quasi-convex functions*.

Quasi-convex:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \max\{f(\mathbf{x}), f(\mathbf{y})\}, \quad \alpha \in [0, 1].$$

Sublevels

Example: The geometric and arithmetic means of $\mathbf{x} \in \mathbb{R}^n_+$ are, respectively,

$$G(\mathbf{x}) = \left(\prod_{i=1}^{n} x_i\right)^{1/n}, \quad A(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

The arithmetic-geometric mean inequality states that $G(\mathbf{x}) \leq A(\mathbf{x})$. Suppose $0 \leq \alpha \leq 1$, and consider the set

$$\{\mathbf{x} \in \mathbb{R}^n_+ \mid G(\mathbf{x}) \ge \alpha A(\mathbf{x})\},\$$

i.e., the set of vectors with geometric mean at least as large as a factor α times the arithmetic mean. This set is convex, since it is the 0-superlevel set of the function $G(\mathbf{x}) - \alpha A(\mathbf{x})$, which is concave. In fact, the set is positively homogeneous, so it is a convex cone.

Epigraph

The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$epi f = \{(\mathbf{x}, t) \mid \mathbf{x} \in dom f, f(\mathbf{x}) \le t\},\$$

which is a subset of \mathbb{R}^{n+1} .

A function is convex iff its epigraph is a convex set.

Example: $f(\mathbf{x}, \mathbf{Y}) = \mathbf{x}^T \mathbf{Y}^{-1} \mathbf{x}$ is convex on dom $f = \mathbb{R}^n \times \mathbb{S}_{++}^n$. By its epigraph:

epi
$$f = \{ (\mathbf{x}, \mathbf{Y}, t) \mid \mathbf{Y} \succ \mathbf{0}, \, \mathbf{x}^T \mathbf{Y}^{-1} \mathbf{x} \le t \}$$

$$= \left\{ (\mathbf{x}, \mathbf{Y}, t) \mid \begin{bmatrix} \mathbf{Y} & \mathbf{x} \\ \mathbf{x}^T & t \end{bmatrix} \succeq \mathbf{0}, \, \mathbf{Y} \succ \mathbf{0} \right\}.$$

The last condition is a linear matrix inequality in $(\mathbf{x}, \mathbf{Y}, t)$, and therefore epi f is convex.

Epigraph

Many results for convex functions can be proved (or interpreted) geometrically using epigraphs, and applying results for convex sets. As an example, consider the first-order condition for convexity:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$$

If $(\mathbf{y}, t) \in \text{epi } f$, then

$$t \ge f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$$

We can express this as:

$$(\mathbf{y}, t) \in \operatorname{epi} f \Longrightarrow \begin{bmatrix} \nabla f(\mathbf{x}) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} \mathbf{y} \\ t \end{bmatrix} - \begin{bmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{bmatrix} \right) \le 0.$$

This means that the hyperplane defined by $(\nabla f(\mathbf{x}), -1)$ supports epi f at the boundary point $(\mathbf{x}, f(\mathbf{x}))$.

Proper function

f is called *proper* if $f(\mathbf{x}) < \infty$ for at least one $\mathbf{x} \in \mathcal{X}$ and $f(\mathbf{x}) > -\infty$ for all $\mathbf{x} \in \mathcal{X}$, and we say that f is *improper* if it is not proper. In words, a function is proper iff its epigraph is nonempty and does not contain a vertical line.

Jensen's inequality and extensions

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \leq \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).$$

$$f(\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k) \leq \theta_1 f(\mathbf{x}_1) + \dots + \theta_k f(\mathbf{x}_k).$$

$$f\left(\int_S p(\mathbf{x})\mathbf{x} d\mathbf{x}\right) \leq \int_S f(\mathbf{x})p(\mathbf{x}) d\mathbf{x}.$$

$$f(\mathbb{E} \mathbf{x}) \leq \mathbb{E} f(\mathbf{x}).$$

Inequality

Arithmetic-geometric mean inequality:

$$\sqrt{ab} \le (a+b)/2.$$

Hölder's inequality: for p, q > 1, 1/p + 1/q = 1, and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}.$$

• Bregman distance

Given a differentiable strictly convex function $f: C \to \mathbb{R}$, where $C \subset \mathbb{R}^n$ is a convex set, the Bregman distance is defined as:

$$B_f(\mathbf{y}, \mathbf{x}) = f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle. \tag{1}$$

It it clear that $B_f(\mathbf{y}, \mathbf{x}) \geq 0$ for all $\mathbf{x}, \mathbf{y} \in C$ due to the convexity of f. However, the Bregman distance may not be symmetric: $B_f(\mathbf{y}, \mathbf{x}) \neq B_f(\mathbf{x}, \mathbf{y})$.

Examples:

- $\bullet \ f(\mathbf{x}) = \|\mathbf{x}\|^2.$
- $f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{P} \mathbf{x}.$
- $f(\mathbf{x}) = \sum_{i} x_i \log x_i$.

Subgradient

$$\partial f(\mathbf{x}) = \{ \mathbf{g} | f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle, \forall \mathbf{x}, \mathbf{y} \in \text{dom } f \}.$$

Subgradient can be identified with a non-vertical supporting hyperplane to the epigraph of f at $(\mathbf{x}, f(\mathbf{x}))$.

Proposition 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a proper convex function. The subgradient $\partial f(\mathbf{x})$ is nonempty, convex, and compact for all $\mathbf{x} \in (\text{dom } f)^{\circ}$.

 $\partial f(\mathbf{x})$ may be empty when $\mathbf{x} \in \partial(\text{dom } f)$. Example?

Subgradient

Proposition 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. For every $\mathbf{x} \in \mathbb{R}^n$, we have

$$f'(\mathbf{x}; \mathbf{y}) = \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{y}, \mathbf{g} \rangle, \quad \forall \mathbf{y} \in \mathbb{R}^n.$$
 (1)

In particular, f is differentiable at \mathbf{x} with gradient $\nabla f(\mathbf{x})$ iff it has $\nabla f(\mathbf{x})$ as its unique subgradient at \mathbf{x} .

Proof: Apply Separating Hyperplane Theorem to

$$C_1 = \{(\mathbf{z}, w) | f(\mathbf{z}) < w\},$$

and

$$C_2 = \{(\mathbf{z}, w) | \mathbf{z} = \mathbf{x} + \alpha \mathbf{y}, w = f(\mathbf{x}) + \alpha f'(\mathbf{x}; \mathbf{y}), \alpha \ge 0\}.$$

Subgradient

Example: |x|, $\max\{0, \frac{1}{2}(x^2 - 1)\}$, $I_{\mathcal{C}}(\mathbf{x})$.

Subgradient

Proposition 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function.

- (a) If \mathcal{X} is a bounded set, then the set $\bigcup_{\mathbf{x} \in \mathcal{X}} \partial f(\mathbf{x})$ is bounded.
- (b) If a sequence $\{\mathbf{x}_k\}$ converges to a vector $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{g}_k \in \partial f(\mathbf{x}_k)$ for all k, then the sequence $\{\mathbf{g}_k\}$ is bounded and each of its accumulation points is a subgradient of f at \mathbf{x} .

Proposition 2. Let $f_j : \mathbb{R}^n \to \mathbb{R}$, $j = 1, \dots, m$, be convex functions and let $f = f_1 + \dots + f_m$. Then

$$\partial f(\mathbf{x}) = \partial f_1(\mathbf{x}) + \dots + \partial f_m(\mathbf{x}).$$

Subgradient

Proposition 1 (Chain Rule). (a) Let $f : \mathbb{R}^m \to \mathbb{R}$ be a convex function, and let \mathbf{A} be an $m \times n$ matrix. Then the subgradient of the function F, defined by $F(\mathbf{x}) = f(\mathbf{A}\mathbf{x})$, is given by

$$\partial F(\mathbf{x}) = \mathbf{A}^T \partial f(\mathbf{A}\mathbf{x}).$$

(b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $h: \mathbb{R} \to \mathbb{R}$ be a differentiable scalar function. Then the function F, defined by $F(\mathbf{x}) = h(f(\mathbf{x}))$, is directionally differentiable at all \mathbf{x} , given by

$$F'(\mathbf{x}; \mathbf{y}) = h'(f(\mathbf{x}))f'(\mathbf{x}; \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

Furthermore, if h is convex and monotonically nondecreasing, then F is convex and its subgradient is given by

$$\partial F(\mathbf{x}) = \partial h(f(\mathbf{x})) \partial f(\mathbf{x}) = \{ g\mathbf{g} | g \in \partial h(f(\mathbf{x})), \mathbf{g} \in \partial f(\mathbf{x}) \}, \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Subgradient

Theorem 1 (Subgradient of norms). Let \mathcal{H} be a real Hilbert space endowed with an inner product $\langle \cdot, \cdot \rangle$ and a norm $\|\cdot\|$. Then $\partial \|\mathbf{x}\| = \{\mathbf{y} | \langle \mathbf{y}, \mathbf{x} \rangle = \|\mathbf{x}\| \text{ and } \|\mathbf{y}\|^* \leq 1\}$, where $\|\cdot\|^*$ is the dual norm of $\|\cdot\|$.

Proof. Let $S = \{\mathbf{y} | \langle \mathbf{y}, \mathbf{x} \rangle = \|\mathbf{x}\| \text{ and } \|\mathbf{y}\|^* \leq 1\}$. For every $\mathbf{y} \in \partial \|\mathbf{x}\|$, we have

$$\|\mathbf{w} - \mathbf{x}\| \ge \|\mathbf{w}\| - \|\mathbf{x}\| \ge \langle \mathbf{y}, \mathbf{w} - \mathbf{x} \rangle, \quad \forall \ \mathbf{w} \in \mathcal{H}.$$
 (1)

Choosing $\mathbf{w} = 0$ and $\mathbf{w} = 2\mathbf{x}$ for the second inequality above, which results from the convexity of norm $\|\cdot\|$, we can deduce that

$$\|\mathbf{x}\| = \langle \mathbf{y}, \mathbf{x} \rangle. \tag{2}$$

Subgradient

On the other hand, (1) gives

$$\|\mathbf{w} - \mathbf{x}\| \ge \langle \mathbf{y}, \mathbf{w} - \mathbf{x} \rangle, \quad \forall \ \mathbf{w} \in \mathcal{H}.$$
 (3)

So

$$\left\langle \mathbf{y}, \frac{\mathbf{w} - \mathbf{x}}{\|\mathbf{w} - \mathbf{x}\|} \right\rangle \le 1, \quad \forall \ \mathbf{w} \ne \mathbf{x}.$$

Therefore $\|\mathbf{y}\|^* \leq 1$. Thus $\partial \|\mathbf{x}\| \subset S$.

For every $\mathbf{y} \in S$, we have

$$\langle \mathbf{y}, \mathbf{w} - \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{w} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{w} \rangle - \|\mathbf{x}\| \le \|\mathbf{y}\|^* \|\mathbf{w}\| - \|\mathbf{x}\| \le \|\mathbf{w}\| - \|\mathbf{x}\|, \quad \forall \mathbf{w} \in \mathcal{H},$$
(4)

where the second equality utilizes $\langle \mathbf{y}, \mathbf{x} \rangle = ||\mathbf{x}||$ and the first inequality is by the definition of dual norm. Thus, $\mathbf{y} \in \partial ||\mathbf{x}||$. So $S \subset \partial ||\mathbf{x}||$.

Subgradient

Theorem 1 (Danskin's Theorem). Let \mathcal{Z} be a compact subset of \mathbb{R}^m , and let $\phi: \mathbb{R}^n \times \mathcal{Z} \to \mathbb{R}$ be continuous and such that $\phi(\cdot, \mathbf{z}): \mathbb{R}^n \to \mathbb{R}$ is convex for each $\mathbf{z} \in \mathcal{Z}$. Define $f: \mathbb{R}^n \to \mathbb{R}$ by $f(\mathbf{x}) = \max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z})$ and

$$\mathcal{Z}(\mathbf{x}) = \left\{ \bar{\mathbf{z}} \middle| \phi(\mathbf{x}, \bar{\mathbf{z}} = \max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z})) \right\}.$$

If $\phi(\cdot, \mathbf{z})$ is differentiable for all $\mathbf{z} \in \mathcal{Z}$ and $\nabla_x \phi(\mathbf{x}, \cdot)$ is continuous on \mathcal{Z} for each \mathbf{x} , then

$$\partial f(\mathbf{x}) = conv\{\nabla_x \phi(\mathbf{x}, \mathbf{z}) | \mathbf{z} \in \mathcal{Z}(\mathbf{x})\}, \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Subgradient

Example: $\partial \|\mathbf{X}\|_*$, $\partial \|\mathbf{X}\|_2$.