Question Number	Answer		Mark
18(a)	Use of $V = \frac{4}{3}\pi r^3$	(1)	
	Use of $\rho = \frac{m}{V}$	(1)	
	Use of $F = \frac{Gm_1m_2}{r^2}$	(1)	
	$F = 7.4 \times 10^5 \mathrm{N}$	(1)	4
	Example of calculation $V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \left(\frac{5.65 \text{ m}}{2}\right)^3 = 94.437 \text{ m}^3$		
	$m = \rho V = 1950 \text{ kg m}^{-3} \times 94.437 \text{ m}^3 = 1.842 \times 10^5 \text{ kg}$		
	$F = \frac{Gm_1m_2}{r^2}$		
	$= \frac{6.67 \times 10^{-1} \text{ N m}^2 \text{ kg}^{-3} \times 5.98 \times 10^{24} \text{ kg} \times 1.842 \times 10^5 \text{ kg}}{(6.38 \times 10^6 \text{ m} + 3.59 \times 10^6 \text{ m})^2}$		
	$\therefore F = 7.39 \times 10^5 \text{ N}$		
18(b)	$\therefore F = 7.39 \times 10^5 \text{ N}$ Use of $V_{\text{grav}} = (-) \frac{GM}{r}$	(1)	
	Use of $E_{\text{grav}} = m \times V_{\text{grav}}$	(1)	
	$\therefore \Delta E_{\text{grav}} = (-) \text{ 4.1} \times 10^{12} \text{ J (Allow ecf for mass from (a))}$	(1)	3
	[Either mass can be used for M in the potential equation, but to award MP2 the multiplier m . must not be the mass used in the potential equation.]		
	$\therefore \Delta E_{\rm grav} = -4.14 \times 10^{12} \text{J}$		
	[Note the following values, but different degrees of rounding may change these slightly:		
	$V_{\text{final}} = (-) 6.252 \times 10^7 \text{J kg}^{-1}$ $V_{\text{initiall}} = (-) 4.001 \times 10^7 \text{J kg}^{-1}$		
	$E_{\text{final}} = (-)1.152 \times 10^{13} \text{ J}$ $E_{\text{initial}} = (-)7.296 \times 10^{12} \text{ J}$		
18(c)	Work would be done on the asteroid by frictional forces Or Drag/friction causes heating (of the asteroid)	(1)	
	Asteroid burns up	(1)	2
	Total for question 18		9