CA320 - Computability & Complexity Regular Languages

Dr. David Sinclair

CA320 Dr. David Sinclair

Regular Languages

Regular Languages

The set of *regular languages* $\mathcal R$ over an alphabet Σ is defined as:

- The language \emptyset is an element of \mathcal{R} .
- $\forall a \in \Sigma$, the language $\{a\}$ is in \mathcal{R} .
- $\forall L_1, L_2 \in \mathcal{R}$, then the following languages are in \mathcal{R} .
 - $L_1 \cup L_2$
 - L_1L_2
 - *L**

Regular Expressions

Every regular language can be represented by a regular expressions, and every regular expression represents a regular language.

- \emptyset and ϵ are regular expressions.
- $\forall a \in \Sigma$, a is a regular expression.
- If R_1 , R_2 are regular expressions, them the following are regular expressions in order of precedence with the first having the highest precedence.

```
(R_1) parentheses R_1^* closure R_1R_2 concatenation R_1+R_2 alternation
```

Given regular expression R, L(R) stands for the language represented by R.

CA320 Dr. David Sinclair

Regular Languages

Regular Expressions (2)

Some Examples:

```
Regular Language Corresponding Regular Expression \emptyset \emptyset \{a\} \{a,b\}^* \{aab\}^*a,ab \{aab\}^*\{ab,ba\}\{aa,bb\}^*\{ab,ba\}\}^* (aab)^*(a+ab) (aa+bb+(ab+ba)(aa+bb)^*(ab+ba))^*
```

Some properties of regular expressions.

- $R^* = R^*R^* = (R^*)^* = R + R^*$
- $R_1(R_2R_1)^* = (R_1R_2)^*R_1$
- $(R_1^*R_2)^* = \epsilon + (R_1 + R_2)^*R_2$
- $(R_1R_2^*)^* = \epsilon + R_1(R_1 + R_2)^*$

Some More Examples

Let $\Sigma = \{a, b\}$.

Regular Expression	Language	Comments
$\overline{(a+b)(a+b)}$	$\{aa, ab, ba, bb\}$	(a+b)(a+b) =
		aa+ab+ba+bb
$(a + b)^*$	all strings of a's and b's	$(a + b)^* =$
	including ϵ	$(a^*b^*)^*$
$a + a^*b$	$\{a,b,ab,aab,aaab,\ldots\}$	note order of
		precedence
b*ab*(ab*ab*)*	string with an odd num-	Other valid
	ber of <i>a</i> 's	expressions are
		$b^*a(b+ab^*a)^*$
		or
		$(b+ab^*a)^*ab^*$

CA320 Dr. David Sinclair

Regular Languages

Deterministic Finite Automata

A deterministic finite automata (DFA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$ where

- Q is a **finite** set of *states*;
- Σ is a **finite** input alphabet;
- $q_0 \in Q$ is the *initial state*;
- $A \subseteq Q$ is the set of accepting states;
- $\delta: Q \times \Sigma \to Q$ is the *transition function*.

For any element $q \in Q$ and any symbol $\sigma \in \Sigma$, $\delta(q, \sigma)$ is the state the DFA moves to if it receives input σ while in state q.

Deterministic Finite Automata (2)

Here is the DFA that accepts strings ending in b but does not contain aa.

What is the corresponding regular expression?

CA320 Dr. David Sinclair

Regular Languages

Deterministic Finite Automata (3)

Here is a DFA that accepts binary number that are divisible by 3. Adding a 0 onto a binary number x is doubling it. Adding a 1 onto a binary number x is doubling it and adding 1. The same happens to remainder, though if the remainder is greater than 3 we need to do an additional mod 3 operations.

The states labelled 0.1 and 2 correspond to states in which the $x \mod 3$ is equal to 0.1 and 2 respectively.

What sort of binary strings will it not accept?

Deterministic Finite Automata (4)

The extended transition function $\delta^*: Q \times \Sigma^* \to Q$ is defined as:

- for every $q \in Q$, $\delta^*(q, \epsilon) = q$
- for every $q \in Q$, every $y \in \Sigma^*$ and every $\sigma \in \Sigma$ $\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma)$

Let $M = (Q, \Sigma, q_0, A, \delta)$ be a finite automata and let $x \in \Sigma^*$. The string x is accepted by M if

$$\delta^*(q_0,x) \in A$$

and is rejected by M otherwise.

The language accepted by M is the set

$$L(M) = \{x \in \Sigma | x \text{ is accepted by } M\}$$

If L is a language over Σ , L is accepted by M if and only if L = L(M).

CA320 Dr. David Sinclair

Regular Languages

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$ where

- Q is a **finite** set of *states*;
- Σ is a **finite** input alphabet;
- $q_0 \in Q$ is the *initial state*;
- $A \subseteq Q$ is the set of accepting states;
- $\delta: Q \times (\Sigma \cup \{\Lambda\}) \to 2^Q$ is the transition function.

For any element $q \in Q$ and any symbol $\sigma \in \Sigma \cup \{\Lambda\}$, (Λ is the null symbol), $\delta(q, \sigma)$ is the set of states the NFA moves to if it receives input σ while in state q.

Nondeterministic Finite Automata (2)

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA and $S \subseteq Q$ be a set of states. The Λ -closure of S is the set $\Lambda(S)$ and is defined as

- $S \subseteq \Lambda(S)$
- $\forall q \in \Lambda(S), \delta(q, \Lambda) \subseteq \Lambda(S)$

The extended transition function for an NFA, $\delta^*: Q \times \Sigma^* \to 2^Q$ is defined as

- $\forall q \in Q, \delta^*(q, \Lambda) = \Lambda(\{q\})$
- $\forall q \in Q, y \in \Sigma^*, \sigma \in \Sigma,$ $\delta^*(q, y\sigma) = \Lambda(\bigcup \{\delta(p, \sigma) | p \in \delta^*(q, y)\})$

A string $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x) \cap A \neq \emptyset$. The language L(M) accepted by M is the set of all strings accepted by M.

CA320 Dr. David Sinclair

Regular Languages

Nondeterministic Finite Automata (3)

The concept of acceptance for an NFA is quite different than that corresponding concept for a DFA.

Consider the language $\{aab\}^*\{a,aba\}^*$. An NFA that accepts this language is:

Consider how this NFA would process the string aababa.

Nondeterministic Finite Automata (4)

We can represent this by a computation tree.

Regular Languages

Regular Expressions to NFA

It is straightforward to convert a regular expression into a nondeterministic finite automaton.

Regular Expressions to NFA [2]

Regular Expression NFA

CA320 Dr. David Sinclair

Regular Languages

Converting an NFA to a DFA

While NFAs are nice theoretical devices we do not know how to build such a device. DFAs, on the other hand, are devices we can build.

Fortunately we can convert an NFA into a DFA in two steps:

- First remove the Λ transitions.
- Secondly redefine the states so that there is only one possible next state from the current state given any input.

Theorem

 $\forall L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$ there is an NFA M_1 with no Λ -transitions that also accepts L.

Converting an NFA to a DFA (2)

Proof.

Let
$$M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$$

where

$$A_1 = \left\{egin{array}{ll} A \cup \{q_0\} & ext{if } \Lambda \in L \ A & ext{otherwise} \end{array}
ight.$$
 $\delta_1(q,\sigma) = \delta^*(q,\sigma)$

We need to prove that $\delta_1^*(q,x) = \delta^*(q,x)$ for $|x| \ge 1$ and this is done by structural induction on x.

If $x = a \in \Sigma$ then by definition $\delta_1(q, x) = \delta^*(q, x)$ and because M_1 has no Λ -transitions $\delta_1(q, x) = \delta_1^*(q, x)$, hence $\delta_1^*(q, x) = \delta^*(q, x)$.

CA320 Dr. David Sinclair

Regular Languages

Converting an NFA to a DFA (3)

Proof contd.

Let
$$x = y\sigma, y \in \Sigma^*, \sigma \in \Sigma$$

 $\delta_1^*(q, y\sigma) = \bigcup \{\delta_1(p, \sigma) | p \in \delta_1^*(q, y)\}$
 $= \bigcup \{\delta_1(p, \sigma) | p \in \delta^*(q, y)\}$ by induction hypothesis
 $= \bigcup \{\delta^*(p, \sigma) | p \in \delta^*(q, y)\}$ by definition of δ_1
 $= \delta^*(q, y\sigma)$

Hence $L(M_1) = L(M) = L$.

Theorem

 $\forall L \in \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$ there is a DFA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L.

Converting an NFA to a DFA (4)

Proof.

The previous theorem means we can remove all Λ -transitions. We can remove the last source of nondeterminism, the multiple next states, by redefining the states as the set of states that can be reached given a specific input symbol.

$$egin{aligned} Q_1 &= 2^Q \ q_1 &= \{q_0\} \ A_1 &= \{q \in Q_1 | q \cap A
eq \emptyset\} \ \delta_1(q,\sigma) &= igcup \{\delta(p,\sigma) | p \in q\} \end{aligned}$$

To prove M and M_1 accept the same languages we need to show $\delta_1^*(q_1,x) = \delta^*(q_0,x), \forall x \in \Sigma^*$. This is done by structural induction on x.

CA320 Dr. David Sinclair

Regular Languages

Converting an NFA to a DFA (5)

Proof contd.

If
$$x = \epsilon$$
, then $\delta_1^*(q_1, x) = \delta_1^*(q_1, \Lambda)$ $= q_1$ by definition of δ_1^* $= \{q_0\}$ by definition of q_1 $= \delta^*(q_0, \Lambda)$ by definition of δ^* $= \delta^*(q_0, x)$ If $x = y\sigma$, then $\delta_1^*(q_1, y\sigma) = \delta_1(\delta_1^*(q_1, y), \sigma)$ by the definition of δ_1^* $= \delta_1(\delta^*(q_0, y), \sigma)$ by the induction hypothesis $= \bigcup \{\delta(p, \sigma) | p \in \delta^*(q_0, y)\}$ by definition of δ_1 $= \delta^*(q_0, y\sigma)$ by the definition of δ^* Hence $L(M_1) = L(M) = L$.

CA320 Dr. David Sinclair

Example NFA to DFA

Consider the following NFA.

Regular Languages

Example NFA to DFA (2)

This results in the following DFA.

This technique is called *subset construction*.

Pumping Lemma

A finite automaton, whether it is deterministic or nondeterministic, has a finite number of states, n. So, can it deal with an input x whose length is longer than n, i.e. |x| > n?

The *Pumping Lemma for Regular Languages* describes the conditions that *x* must adhere to if the automaton is to accept it.

Lemma (Pumping Lemma for Regular Languages)

Let $L \in \Sigma^*$ and $M = (Q, \Sigma, q_0, A, \delta)$ such that L = L(M). If M has n states then for every $x \in L$ satisfying $|x| \ge n$, there are three strings u, v and w such that x = uvw and:

- $|uv| \leq n$
- |v| > 0
- $\forall i \geq 0, uv^i w \in L$

CA320 Dr. David Sinclair

Regular Languages

Limitations of Regular Languages

Consider the language $AnBn = \{a^nb^n | n \ge 0\}$.

Let's assume there is a finite automaton that accepts *AnBn*.

Let $x = a^n b^n$. Since $x \in AnBn$ and $|x| \ge n$, the Pumping Lemma conditions must apply.

Condition 1 $|uv| \le n$ and since the first n symbols of x are a's then all the symbols of u and v are a.

Condition 2 $v = a^k$ for some k > 0.

Condition 3 $uv^iw \in AnBn$ but $uv^iw = a^{n+k}b^n \notin AnBn$. Hence the contradiction implies the initial assumption that there exists a FA that accepts AnBn must be false.

- DFAs cannot count.
- Not all languages are regular languages. In fact AnBn is not a regular language.