Income Prediction Analysis: Insights and Recommendations

Maksym Solodarenko, PhD

January 26, 2025

Problem Statement

Understanding Income Predictors

- **Business Goal**: Identify characteristics associated with individuals earning more than \$50,000 annually.
- Key Challenges:
 - Class imbalance in the dataset: Most individuals earn less than \$50,000.
 - Need for interpretable and actionable insights for stakeholders.

Dataset Overview

Data Source and Composition

• Dataset: US Census Income Data

• Training Set: 200,000 rows

• Testing Set: 100,000 rows

• Key Variables:

Target: Income Class (<=50K or >50K)

- Features: Age, Education, Marital Status, Capital Gains, Hours Worked, etc.
- **Challenge**: Highly imbalanced target variable (6% earning >50K).

Data Preprocessing Steps

Cleaning and Preparation Pipeline

- Target Encoding:
 - Converted income class into binary (1 for >50K, 0 for <=50K).
- Handling Skewed Features:
 - Applied log-transformation to capital_gains, capital_losses, and dividends_from_stocks.
- © Encoding Categorical Variables:
 - Label encoded features like marital_status and education.
- Scaling Numeric Features:
 - Standardized features like age and hours_worked_per_year using StandardScaler.
- Addressing Class Imbalance:
 - Applied SMOTE (Synthetic Minority Oversampling Technique) to balance training data.

Exploratory Data Analysis

Key Insights

- Feature Correlations with Income:
 - Number Of Weeks Worked In Year: Strong positive correlation with income.
 - Number Of People In Household Working: A higher number of people working for an employer correlates with higher income.
 - Capital Gains: Significant predictor of earning >50K.
- Class Distribution:
 - Only $\approx 6\%$ of individuals in the training set earn >50K.
- Feature Importance (Random Forest):
 - Top Features: Occupation, Age, Dividends From Stocks, Capital Gains, Industry, Education

Feature Correlations with Income

6 / 12

Feature Importance (Random Forest)

Models Evaluated

Algorithms and Performance

- Logistic Regression
 - Strengths: Simplicity and interpretability.
 - Accuracy: 95%, but struggled with recall (28%) for >50K class.
- Random Forest
 - Strengths: Non-linear relationships and feature importance.
 - Accuracy: 95%, improved recall (39%) and F1-score for >50K.
- XGBoost
 - Strengths: Robust handling of imbalanced data.
 - **Accuracy**: 95%, slight decrease in recall (38%) for >50K.

Improvements through Hyperparameter Tuning

Random Forest with GridSearchCV

- Optimized Parameters:
 - n_estimators: 200
 - max_depth: 10
 - min_samples_split: 5
- Performance:
 - Accuracy: 90%
 - Recall for >50K: 76%
 - Highlight: Improved balance between precision and recall.

Ensemble Approach

Custom Soft Voting Ensemble

- Method:
 - Averaged probabilities from Logistic Regression, Random Forest, and XGBoost.
- Performance:
 - Accuracy: 82%
 - Recall for >50K: 92%
 - Precision for >50K: 24%
 - Tradeoff: Improved recall at the cost of precision.

Summary of Key Takeaways

- Random Forest was the best model overall, with a balanced tradeoff between precision and recall.
- Feature Importance highlighted age, education, and capital gains as key predictors.
- Custom Ensemble improved recall significantly but suffered from low precision.

Questions Discussion

Let's Collaborate!

- Questions about methodology?
- Suggestions for further improvements?