

# 矩阵计算



### **Review Scalar Derivative**



| У               | a    | $x^n$      | $\exp(x)$ | $\log(x)$     | $\sin(x)$ |
|-----------------|------|------------|-----------|---------------|-----------|
| $\frac{dy}{dx}$ | 0    | $nx^{n-1}$ | $\exp(x)$ | $\frac{1}{x}$ | $\cos(x)$ |
|                 | a is | s not a f  | function  | of x          |           |

Derivative is the slope of the tangent line



The slope of the tangent line is 2

$$y \qquad u + v \qquad uv \qquad y = f(u), u = g(x)$$

$$\frac{dy}{dx} \qquad \frac{du}{dx} + \frac{dv}{dx} \qquad \frac{du}{dx}v + \frac{dv}{dx}u \qquad \frac{dy}{du}\frac{du}{dx}$$

### Subderivative



Extend derivative to non-differentiable cases



slope=0.5 
$$\frac{\partial}{\partial x} \max(x,0) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \\ a & \text{if } x = 0, \quad a \in [0,1] \end{cases}$$

$$\frac{\partial |x|}{\partial x} = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0\\ a & \text{if } x = 0, \quad a \in [-1, 1] \end{cases}$$

### **Gradients**



Generalize derivatives into vectors



$$\partial y/\partial \mathbf{x}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_n} \end{bmatrix}$$





$$\frac{\partial y}{\partial x}$$

$$\frac{\partial y}{\partial \mathbf{x}}$$

$$\frac{\partial \mathbf{y}}{\partial x}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

$$\frac{\partial}{\partial \mathbf{x}} x_1^2 + 2x_2^2 = [2x_1, 4x_2]$$

Direction (2, 4), perpendicular to the

 $(x_1, x_2) = (1,1)$ 

## Examples



| У                                        |       | аи                                        | sum(x) | $\ \mathbf{x}\ ^2$ | $a$ is not a function of $\mathbf{x}$ |
|------------------------------------------|-------|-------------------------------------------|--------|--------------------|---------------------------------------|
| $\frac{\partial y}{\partial \mathbf{x}}$ | $0^T$ | $a\frac{\partial u}{\partial \mathbf{x}}$ | $1^T$  | $2\mathbf{x}^T$    | 0 and 1 are vectors                   |

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial u + v}{\partial \mathbf{x}} = \frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}} = \frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}} = \frac{\partial u}{\partial \mathbf{x}} + \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_t \end{bmatrix} \qquad \frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \end{bmatrix} \qquad \mathbf{y} \qquad \frac{\partial \mathbf{y}}{\partial x} \qquad \frac{\partial \mathbf{y}}{\partial x}$$

$$\mathbf{y} \qquad \frac{\partial \mathbf{y}}{\partial x} \qquad \frac{\partial \mathbf{y}}{\partial x}$$

 $\partial y/\partial x$  is a row vector, while  $\partial x$  is

is a column vector

It is called numerator-layout notation. The reversed version is called denominator-layout https://courses.d2l.ai/zh-v2

$$\partial y/\partial x$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \mathbf{x}} \\ \frac{\partial y_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial y_m}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1}, \frac{\partial y_1}{\partial x_2}, \dots, \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1}, \frac{\partial y_2}{\partial x_2}, \dots, \frac{\partial y_2}{\partial x_n} \\ \vdots \\ \frac{\partial y_m}{\partial x_1}, \frac{\partial y_m}{\partial x_2}, \dots, \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$



$$\frac{\partial y}{\partial x}$$

$$\frac{\partial y}{\partial \mathbf{x}}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

## **Examples**



| <b>y</b>                                          | a | X | Ax | $\mathbf{x}^T \mathbf{A}$ |
|---------------------------------------------------|---|---|----|---------------------------|
| $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ | 0 | I | A  | $\mathbf{A}^T$            |

$$\mathbf{x} \in \mathbb{R}^n, \quad \mathbf{y} \in \mathbb{R}^m, \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n}$$

a, a and A are not functions of x

0 and I are matrices

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = a \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \qquad \mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$

### **Generalize to Matrices**



