

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
- It computed the action for a single state only

Optimal policy when R(s, a, s') = -0.03for all non-terminals s

Utilities of Sequences What preferences should an agent have over reward sequences? More or less? [1, 2, 2] or [2, 3, 4] Now or later? [0, 0, 1] or [1, 0, 0]

Quiz: Discounting

• Given:

10				1
а	b	С	d	е

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For γ = 1, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?

10		1

 $\,\blacksquare\,$ Quiz 3: For which γ are West and East equally good when in state d?

Quiz

• If discounting factor < 1, what is the maximum utility an agent would acquire by infinitively doing actions?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - \blacksquare Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\mathsf{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- $\,\blacksquare\,\,$ Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

Example: Value Iteration						
			45	05 0 *1		
V_2	3.5	2.5	0	Slow Fast 10		
V_1	2	1	0	Foot 0.5 +2 Overheated		
V_0 (0	0	0	$\textit{Assume no discount!}$ $V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right]$		

Quiz

• Compute the race problem with discount factor = 0.5

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 That last layer is at best all R_{MAX}

 - I hat last layer is at best all R_{MAX}
 It is at worst R_{MIN}
 But everything is discounted by γ^k that far out
 So V_k and V_{k+1} are at most γ^k max |R| different
 So as k increases, the values converge

