Disaster Prevention Research Institute Kyoto University Gokasho, Uji 611-0011, Kyoto, Japan **☎** +81 (0)774-38-4143 ⋈ marc.kjerland@gmail.com http://www.marckjerland.com marckjerland

Marc Kjerland

Current position

2015 - present Disaster Prevention Research Institute, Postdoctoral researcher, Kyoto University.

- Numerical simulation of storm surge and the impacts of climate change on coastal hazards
- Supervised by Nobuhito Mori in the Coastal Hazards Laboratory

Education

2010 - 2015 **Doctor of Philosophy**, Applied Mathematics, University of Illinois at Chicago (UIC), Chicago, IL.

2007 - 2009Master of Science, Applied Mathematics, UIC.

2002 – 2005 Bachelor of Science, Mathematics with minor in Computer Science, University of Minnesota, Institute of Technology, Minneapolis, MN.

Publications

- o Abramov, R. & Kjerland, M. (2016). The response of reduced models of multiscale dynamics to small external perturbations. Communications in Mathematical Sciences, Vol 14, No 3.
- o Christodoulides, P., Dias, F., Ghidaglia, J.-M., & Kjerland, M. (2010). On the Effect of Compressibility on the Impact of a Falling Jet. Proceedings of the 20th International Offshore and Polar Engineering Conference, Vol. III, Beijing, China

Doctoral thesis

Title Linear response closure approximations for multiscale systems.

Advisor Rafail Abramov

Description For large multiscale systems with processes evolving on fast and slow timescales, direct simulation of long-term behavior can be numerically intractable. We present a model reduction method for the slow dynamics of a two-timescale system of ODEs using an averaging method combined with a first-order response correction for the fast variables using invariant statistics of the fast and slow components. We apply this technique to the Lorenz 96 system, a toy model for atmospheric flow, and examine the dynamics and perturbation response of the reduced models in a variety of parameter regimes.

Previous research positions

2014 – 2015 Institute for Environmental Science and Policy, Research assistant, UIC.

- o Data analysis project comparing universities from an urban metabolism perspective
- o Implemented multivariate regression models and optimization methods
- Supervised by Ning Ai. Papers in progress.

- 2010 2014 Dept of Mathematics, Research assistant, UIC.
 - Examined dynamics of closure approximations to two-timescale systems in chaotic and quasi-periodic parameter regimes
 - Generated ensemble solutions to measure perturbation response and invariant statistics of multiscale and reduced systems
 - Supervised by Rafail Abramov
- Sep 2009 Centre de Mathématiques et de leurs applications, Stage de recherche, École March 2010 Normale Supérieure de Cachan, France.
 - Improved boundary conditions for multiphase compressible fluid solver using a finite volume discretization with Lagrangian interface tracking
 - Compared solutions of faucet flow for compressible and ideal fluids
 - o Supervised by Jean-Michel Ghidaglia and Frédéric Dias
- Spring 2006 **Minnesota Supercomputing Institute**, Research assistant, University of Minnesota.
 - Tested and documented the Co-Array Fortran extension with two other undergraduate students. Supervised by Robert Numrich

Workshops

- November 2013 Institute for Mathematics and its Applications, Predictability in Earth System Processes, Minneapolis, MN.
 - Workshop on data assimilation, model parametrization, and model validation
 - o Invited talk: Model reduction and fluctuation-dissipation for two-timescale systems
 - October 2013 Rennaissance Computing Institute, Mathematics and Climate Research Network (MCRN) Annual Meeting, Chapel Hill, North Carolina.
 - Annual meeting of a National Science Foundation (NSF) network of mathematicians and geoscientists with focus group presentations and planning of future initiatives
 - Poster session: Linear response closure approximation for two-timescale systems
 - July August Centro de Investigación en Matemáticas, A.C., Mathematics of Climate 2013 Change, Related Natural Hazards and Risks, Guanajuato, Mexico.
 - o Satellite of the 2013 Mathematical Congress of the Americas
 - Poster session: Linear response closure approximation for systems with two timescales
- March June Institute for Pure and Applied Mathematics (IPAM), Model and Data Hi-2010, Dec 2011, erarchies for Simulating and Understanding Climate, University of California, Los Dec 2012 Angeles.
 - \circ Series of workshops and residency for geoscientists and applied mathematicians at a NSF Institute
 - Invited talk: Linear response closure approximation for two-timescale systems
 - \circ Junior session talk: Multi-material compressible flow in a finite volume framework
 - July 2008 Mathematical Sciences Research Institute, Climate change summer school, University of California, Berkeley.
 - \circ A three-week course for graduate students at a NSF Institute
 - Topics included dynamical systems, time series analysis, geophysical fluid dynamics, climatology, game theory
 - o Presented independent research on dynamics of the Lorenz '63 system

Additional talks & posters

February 2016 MCRN, Storm surge modeling using adaptive mesh refinement with application to Typhoon Haiyan, MCRN Colloquium Webinar.

AGU Ocean Sciences Meeting, Storm surge modeling using adaptive mesh refinement with application to Typhoon Haiyan, Oral Presentation, New Orleans, LA.

- April 2014 Minneapolis Community and Technical College, Celestial motion and the three-body problem, Math Club.
- November 2013 MCRN, Model reduction and response for two-timescale systems with nonlinear coupling, Data Assimilation for Model Parameterization webinar.
 - April 2013 UIC, Mathematical Modeling of the Earth's Climate, Undergraduate Math Club.
 - March 2013 UIC, Chaos and perturbations in nonlinear systems, Graduate student seminar.
 - January 2013 **Joint Mathematics Meetings**, *Linear response closure approximation for multiscale systems*, AMS Special Session on Challenges in Data Assimilation and the Mathematics of Planet Earth and Its Climate, San Diego, CA.

Dynamics Days US, Linear response closure approximation for multiscale systems, Contributed talk, Denver, CO (Univ of Colorado travel award).

December 2012 **Science Day**, *Modeling Climate Change*, General audience talk, Minnehaha Free Space, Minneapolis, MN.

University of La Verne, The Mathematics of Climate Change, Invited lecture, La Verne, CA.

November 2012 **Drexel University**, Linear response closure approximation for multiscale systems, Graduate student seminar, Philadelphia, PA.

New Jersey Institute of Technology, Linear response closure approximation for multiscale systems, Fluids seminar, Newark, NJ.

- July 2012 Society for Industrial & Applied Mathematics (SIAM) Annual Meeting, Linear response closure approximation for multiscale systems, Poster session, Minneapolis, MN (SIAM Student travel award).
- June 2012 International Union of Geodesy and Geophysics (IUGG) Conference on Mathematical Geophysics, Linear response closure approximation for multiscale systems, Contributed talk, Edinburgh, Scotland (NSF travel award).
- February 2011 UIC, Finite volume method for hyperbolic PDEs, Graduate applied math seminar.
- October 2010 **UIC**, Multi-material compressible flow in a finite volume framework, SIAM student seminar.

Teaching

April 2009 Graduate Student Teaching Award, Dept of Mathematics, UIC.

Awarded for exceptional teaching and strong academic progress

2007 - 2009 Teaching assistant, Dept of Mathematics, UIC.

Led discussion sections, wrote quizzes, graded assignments, and tutored students in Calc I, Finite Math for Business, Business Calculus

Service

2013 – 2014 Ocean biogeochemistry focus group, Organizer, MCRN.

 \circ Organized speakers and discussions for we binar meetings with mathematicians and geoscientists \circ Topics of discussion include current models of biogeochemical processes and techniques for coupled nonlinear systems

April 2013 Chicago-Area SIAM Student Conference, Co-organizer, UIC.

- \circ Conference for graduate and undergraduate students in applied mathematics and related disciplines
- o Jointly organized with students from UIC, Northwestern University, and Illinois Institute of Technology
- December 2012 Science Day, Organizer, Minnehaha Free Space, Minneapolis.
 - \circ General audience event featuring science and mathematics presentations at a progressive community space
 - 2009 2013 UIC Graduate Employees Organization (Local 6297), Steering committee.
 - \circ Served on several committees of labor union representing over 1400 teaching assistants and graduate assistants at UIC
 - Spring 2011 Graduate applied math seminar, Organizer, UIC.
 - \circ Organized and presented seminars on numerical methods for PDEs

Languages

French	fluent	spoken and written. 'mother' tongue plus coursework
German	${\bf intermediate}$	spoken and written. courses at Sprachschule Babylonia in Berlin
Japanese	beginner	currently immersed. lessons in Uji, Japan
\mathbf{C}	fluent	preferred language for computation
Octave/Matlab	fluent	great for mathematical protoyping
Python	${\bf intermediate}$	preferred language for data analysis, visualization, and prototyping
Fortran	intermediate	contributed to numerical solvers for fluid flow
\mathbb{A}_{EX}	fluent	preferred language for professional documents and presentations
Bash script	fluent	command line and shell scripting on unix-like systems

Other Interests

I greatly enjoy traveling, bicycling, cooking, baking, photography, live music, craft beer, and do-it-yourself culture.