Due Date: Feb 14, 2018, Beginning of the class

How to submit: Hard copy in the Class

- 1.1 Let $C \in \mathbf{R}^n$ be a convex set, with $x_1, \dots, x_k \in C$, and let $\theta_1, \dots, \theta_k \in \mathbf{R}$ satisfy $\theta_i \geq 0$, $\theta_1 + \dots + \theta_k = 1$. Show that $\theta_1 x_1 + \dots + \theta_k x_k \in C$. (The definition of convexity is that this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.
- 1.2 Show that the convex hull of a set S is the intersection of all convex sets that contain S.
- 1.3 Let a and b be distinct points in \mathbf{R}^n . Show that the set of all points that are closer (in Euclidean norm) to a than b, i.e., $\{x \mid \|x a\|_2 \le \|x b\|_2\}$, is a halfspace. Describe it explicitly as an inequality of the form $c^T x \le d$. Draw a picture.

1.4 Show that:

- (a) The intersection $\bigcap_{i \in I} C_i$ of a collection $\{C_i | i \in I\}$ of cones is a cone.
- (b) The Cartesian product $\mathcal{C}_1 \times \mathcal{C}_2$ of two cones \mathcal{C}_1 and \mathcal{C}_2 is a cone.
- (c) The vector sum $C_1 + C_2$ of two cones C_1 and C_2 is a cone.
- (d) The image and the inverse image of a cone under a linear transformation is a cone.
- (e) A subset C is a convex cone if and only if it is closed under addition and positive scalar multiplication, i.e., $C + C \subset C$, and $\gamma C \subset C$ for all $\gamma > 0$.
- 1.5 Is the set $\{a \in \mathbf{R}^n | p(0) = 1, |p(t)| \le 1 \text{ for } \alpha \le t \le \beta\}$, where $p(t) = a_1 + a_2t + \dots + a_kt^{k-1}$, convex? Give the details of your conclusion.
- 1.6 Let $C \in \mathbf{R}^n$ be the solution set of a quadratic inequality, $C = \{x \in \mathbf{R}^n | x^T A x + b^T x + c \le 0\}$ with $A \in \mathbf{S}^n$, be \mathbf{R}^n , and $c \in \mathbf{R}$. Show that C is convex if $A \ge 0$.
- 1.7 Which of the following sets are convex?
- (a) A slab, i.e., a set of the form $\{x \in \mathbf{R}^n | \alpha \le \alpha^T x \le \beta\}$
- (b) A rectangle, i.e., a set of the form $\{x \in \mathbf{R}^n | \alpha_i \le x_i \le \beta_i, i = 1, ..., n\}$
- (c) A wedge, i.e., $\{x \in \mathbf{R}^n | a_1^T x \le b_1, a_2^T x \le b_2\}$
- (d) The set of points closer to a given point than a given set, i.e., $\{x | \|x x_0\|_2 \le \|x y\|_2$, for all $y \in S\}$, where $S \subseteq \mathbf{R}^n$.
- (e) The set of points closer to one set than another, i.e., $\{x | \mathbf{dist}(x, S) \leq \mathbf{dist}(x, T)\}$, where $S, T \subseteq \mathbf{R}^n$ and $\mathbf{dist}(x, S) = \inf\{\|x z\|_2 | z \in S\}$.
- (f) The set $\{x \mid x + S_2 \subseteq S_1\}$, where $S_1, S_2 \subseteq \mathbb{R}^n$, with S_1 convex
- (g) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, i.e., the set $\{x | \|x a\|_2 \le \theta \|x b\|_2\}$. You can assume $a \ne b$ and $0 \le \theta \le 1$.