EVENT CLASSIFICATION FOR HIGGS PARTICLE WITH QUANTUM MACHINE LEARNING IN HIGH-ENERGY PHYSICS

Shiwen An

School of High Energy Accelerator Science
The Graduate University for Advanced Studies, SOKENDAI
Tsukuba, Japan
shiwenan@post.kek.jp

Xuanqiang Zhao

Department of Computer Science
University of Hong Kong
HK
Xuanqiang. Zhao@hku.edu

September 29, 2022

ABSTRACT

Machine Learning Algorithms like Deep Neural Network (DNN), Binary Decision Tree (BDT), has been used in high energy physics for a long time, specifically in track signal identification and supervised classification tasks. Meanwhile, quantum computing was proposed by Richard Feynman in the early 1980s as a way to performs computations that would be unreachable by classical computers. Over the past 40 years, the noisy intermediate-scale quantum computing devices have been developed and multiple new algorithms are proposed with such device. In this paper, we present the studies of quantum algorithms exploiting machine learning to classify the events of interest from background.

Keywords Quantum Machine Learning · Variational Quantum Circuit · Variational Shadow Quantum Learning · Quantum Kernel Method ·

1 Introduction

In High-Energy Physics experiments, particles created by collisions are observed by layers of high precision detectors. In this field, many early attempts to use quantum computing for HEP exist. For example, the data analysis [3], identification of charged particles[], reconstruction of particles collision points []. ([] indicates adding citation based on those paper) As discussed in many literatures, the quantum machine learning (QML) is considered as one of the QC algorithms that could bring quantum advantages over classical methods[[1], 16].

2 Task description and data construction

Discrimination of events of interests is always the most frequently used ML techniques in HEP data analysis. In this research, we examine the most frequently used variational quantum classider (VQC), Quantum Kernel Methods, Variational Shadow Quantum Learning (VSQL) [2] and Quantum Generative Adversarial Network (Quantum GAN).

Dataset Here we use the dataset from UCI's Machine Learning Repository [Lib].

Task modeling. We approach this task as a regression problem. For every item and shop pair, we need to predict its next month sales(a number).

Construct train and test data. The dataset provided has 28 features, 21 low-level features and 7 high-level features.

2.1 Method 1: Variational Quantum Classifier

2.2 Method 2: Variational Shadow Quantum Learning

2.3 (

Method 3: Variational Shadow Quantum Learning) Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Paragraph Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

3 Examples of citations, figures, tables, references

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed portitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui. [4, 5] and see [6].

The documentation for natbib may be found at

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Of note is the command \citet, which produces citations appropriate for use in inline text. For example,

\citet{hasselmo} investigated\dots

produces

Hasselmo, et al. (1995) investigated...

https://www.ctan.org/pkg/booktabs

3.1 Figures

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi. See Figure 1. Here is how you add footnotes.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

3.2 Tables

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien

¹Sample of the first footnote.

Figure 1: Sample figure caption.

	item_name	item_id	item_category_id
0	! ВО ВЛАСТИ НАВАЖДЕНИЯ (ПЛАСТ.) D	0	40
1	!ABBYY FineReader 12 Professional Edition Full	1	76
2	***В ЛУЧАХ СЛАВЫ (UNV) D	2	40
3	***ГОЛУБАЯ ВОЛНА (Univ) D	3	40
4	***КОРОБКА (СТЕКЛО) D	4	40

facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo. See awesome Table 1.

3.3 Lists

- Lorem ipsum dolor sit amet
- consectetur adipiscing elit.
- Aliquam dignissim blandit est, in dictum tortor gravida eget. In ac rutrum magna.

References

[1]

- [2] Li, G., Song, Z., & Wang, X. (2021). VSQL: Variational Shadow Quantum Learning for Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9), 8357-8365. https://doi.org/10.1609/aaai.v35i9.17016
- [3] Mott, A., Job, J., Vlimant, JR. et al. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). https://doi.org/10.1038/nature24047
- [4] George Kour and Raid Saabne. Real-time segmentation of on-line handwritten arabic script. In *Frontiers in Handwriting Recognition (ICFHR)*, 2014 14th International Conference on, pages 417–422. IEEE, 2014.

Table 1: Sample table title

	Part	
Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	~ 100 ~ 10 up to 10^6

- [5] George Kour and Raid Saabne. Fast classification of handwritten on-line arabic characters. In *Soft Computing and Pattern Recognition (SoCPaR)*, 2014 6th International Conference of, pages 312–318. IEEE, 2014.
- [6] Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. Estimate and replace: A novel approach to integrating deep neural networks with existing applications. *arXiv preprint arXiv:1804.09028*, 2018.