Operációs rendszerek

8.Gyakorlat

2025.04.09.

Készítette:

Orosz Kristóf Bsc

Szak: Programtervező Informatikus

Neptunkód: EYZWG9

1. Feladat

Adott következő a RR ütemezési algoritmusok paraméterei.

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét!

Megj.: a Gantt diagram elkészítése Excel programmal.

Határozza meg a processzek végrehajtási sorrendjét!

RR (4 ms)	Beérk. Idő (ms)	CPU löket idő (ms)	1.indulás	1.befejezés	2.indulás	2.befejezés	3.indulás	3.befejezé
P1	0	9	0	4	8	12	24	2
P2	3	9	4	8	16	20	29	3
Р3	6	9	12	16	25	29	34	3
P4	11	9	20	24	30	34	35	3

2. Feladat

Az elkészített RR: 4 ms algoritmusoknak határozza meg a processzek teljesítmény paramétereit, a következő táblázat alapján: Adja meg a kontextus váltások (cs), ill. az ütemező algoritmus (sch) időpontjait ms-ban.

RR (4 ms)	Beérk. Idő (ms)	CPU löket idő (ms)	Indulás	Érkezés	Várakozási idő	Válaszidő	Körülfordulási idő
P1	0	9	0	25	16	0	25
P2	3	9	4	30	18	1	27
Р3	6	9	12	35	20	6	29
P4	11	9	20	36	16	9	25

RR (4 ms)							
CPU kihasználtság átlaga (37,5-1,5)/37,5= 96,5 %							
Körülfordulási idők	(25+27+29+25)/4 =26,5 ms						
Várakozási idők átlaga	(16 + 18 + 20 + 16) / 4 = 17,5 ms						
Válaszidők átlaga	(0+1+6+9) / 4 = 4 ms						

3.Feladat

Adott három processz a rendszerbe, melynek beérkezési sorrendje: A, B, C. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p_usrpri = 50.

Az A, B processz p_nice = 0, a C processz p_nice = 10.

Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés 201. óraütés-ig.

- a.) Határozza meg a processz ütemezést Round_Robin nélkül és az ütemezést Round_Robin külön-külön táblázatba, minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
- c.) Igazolja a számítással (képlettel) a 100. óraütésnél az A, B és C processz p_usrpri és a p_cpu értékét, majd határozza meg a 200. óraütésnél is a két értéket.

RUN ROBIN NÉLKÜL

Képletek:

Képletek								
A processz B processz C processz								
50 + (1 / 2) + (0 * 2)	50 + (0 / 2) + (0 * 2)	50 + (G1 / 2) + (10 * 2)						
Alapképlet								
p_usrpri = 50 + (p_cpu / 2) + (p_nice * 2)								

100. óraütés:

	A processz		B processz		C processz		Rescheudle		
Clock tick	p_usrpi	p_cpu	p_usrpi	p_cpu	p_usrpi	p_cpu	Running before	Running after	
100.	50,5	100	50	100	120	100	С	C	

200. óraütés:

	A processz		B processz		C processz		Rescheudle	
Clock tick p_usrpi p_cpu		p_usrpi	p_cpu	p_usrpi p_cpu		Running before Running afte		
200.	50,5	200	50	200	170	200	С	С

Vezesse le a 1. óraütéstől a 201. óraütésig a folyamatot.

A táblázat 201 soros hosszúsága miatt további óraütési számítások az *eyzwg9.xlxs* fájlban találhatóak meg.