CS182: Introduction to Machine Learning Final Exam

June 19, 2022

I Regression and Probability Estimation [12 points]

We consider the following linear regression model in which y is the sum of a deterministic linear function of x, plus random noise ϵ , i.e.,

$$y = wx + \epsilon, \tag{1}$$

where x is the real-valued input, y is the real-valued output, and w is a single real-valued parameter to be learned. Here ϵ is a real-valued random variable that represents noise which follows a Gaussian distribution with mean 0 and standard deviation σ , that is, $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Note: the probability density function f(X) of a Gaussian distributed variable $X \sim \mathcal{N}(\mu, \sigma^2)$ takes the form

$$f(X = x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$
 (2)

- 1. [4 points] Write down the probability distribution of y conditioned on x and w., i.e. $Pr(y \mid w, x)$.
- 2. [4 points] Given n i.i.d. training examples $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$. Let $\mathcal{Y} = (y_1, ..., y_n)$ and $\mathcal{X} = (x_1, ..., x_n)$, please write down an expression for the conditional data likelihood: $\Pr(\mathcal{Y} \mid \mathcal{X}, w)$.
- 3. [4 points] Suppose a Laplace prior over w with $\mu = 0$ and b (i.e., $w \sim Laplace(0, b)$). Now you need to use MAP(maximum a posterior probability) to estimate w from the training data. Please show that finding the MAP estimate w^* is equivalent to solving the following optimization problem

$$w^* = \underset{w}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (y_i - wx_i)^2 + c|w|.$$
 (3)

Express the regularization parameter c in terms of σ and b.

Hint: the probability density function f(X) of a Laplace distributed variable $X \sim Laplace(\mu, b)$ takes the form

$$f(X = x) = \frac{1}{2b} \exp(-\frac{|x - \mu|}{b}).$$
 (4)

II LINEAR CLASSIFICATION [12 points]

Let X be a d-dimensional binary vector, drawn from one of two classes: P or Q. Assume each element X_i in X is an independent Bernoulli random variable with parameter p_i when X drawn from class P (similarly, with parameter q_i for class Q). That is

$$X_i|(Y=P) \sim Bernoulli(p_i), \qquad 1 \le i \le d,$$

 $X_i|(Y=Q) \sim Bernoulli(q_i), \qquad 1 \le i \le d.$

Note: suppose that the values of p_i and q_i and priors $\Pr(Y = P) = \pi_p$ and $\Pr(Y = P) = \pi_q$ are known.

- 1. [3 points] Given a vector $x \in \{0,1\}^d$, compute the probabilities $\Pr(X = x | Y = P)$ and $\Pr(X = x | Y = Q)$ in terms of class parameters p_i and q_i .
- 2. [4 points] Please write down the equation which holds if and only if x is at the decision boundary of the Bayes' optimal classifier.
- 3. [5 points] The decision boundary derived above is actually linear in x, which can be expressed as:

$${x \in {0,1}^d | w^T x + b = 0},$$

for some vector w and scalar b. Please find expressions for w and b in terms of priors $(\pi_p \text{ and } \pi_q)$ and class parameters $(p_i \text{ and } q_i)$.

III GRAPHICAL MODEL [12 points]

We have a Bayesian network shown in Fig. 1, in which $X_1, X_2, ..., X_8$ are eight boolean random variables. Please answer the following questions.

Note: correct answers without proof will get 0 point.

Figure 1: The Bayesian network with eight variables.

- 1. [3 points] Now we have known probabilities for some random variables. For X_1 , we have $\Pr(x_1) = 0.7$. For X_2 , we have $\Pr(x_2|x_1) = 0.6$ and $\Pr(x_2|\neg x_1) = 0.3$. For X_3 , we have $\Pr(x_3|x_2) = 0.4$ and $\Pr(x_3|\neg x_2) = 0.8$. Apply the method of inference to calculate marginal probability $\Pr(\neg x_3)$. **Note**: please round your results to 3 decimal places.
- 2. [3 points] Using the same probabilities for X_1 , X_2 and X_3 as above, and apply the method of inference to calculate conditional probability $\Pr(\neg x_2 | \neg x_3)$.

 Note: please round your results to 3 decimal places.
- 3. [3 points] Prove that $X_1 \perp \!\!\! \perp X_3 | X_2$ without using D-separation.
- 4. [3 points] Discuss whether the statement, $X_1 \perp \!\!\! \perp X_5 | X_6$, is true or not, and explain the reason based on D-separation.

IV EXPECTATION-MAXIMIZATION [10 points]

Given a Bayesian network with four discrete variables $\{A, B, C, D\}$, where $\{A, C, D\}$ are boolean variables and $B \in \{0, 1, 2\}$. Suppose that $\{A, C, D\}$ are observed variables and $\{B\}$ is a latent variable. Now we implement EM algorithm for this model. Suppose there are K observations in total. $(\{a_k, c_k, d_k\}_{k=1}^K)$.

Figure 2: The Bayesian network with four discrete variables $\{A,B,C,D\}$.

- 1. [4 points] Derive the E-step.
- 2. [6 points] Derive the M-step, and update parameters for the Bayesian network

V SUPPORT VECTOR MACHINES [12 points]

Support vector machines (SVM) are supervised learning models, that directly optimize for the maximum margin separator. Fig. 3 shows an example of maximum margin separator over a dataset $S = \{(x_i, y_i)\}_{i=1}^n$, in which $x_i \in \mathbb{R}^2$ and $y_i \in \{-1, 1\}$ denote the *i*-th sample and the *i*-th label $(\forall i)$, respectively. For simplicity, here we assume that the dataset S has been standardized, and thus the bias can be omitted in the linear model. In Fig. 3, "+" and "-" denote the samples with labels "1" and "-1", respectively, and \mathbf{w} is the normal vector of the maximum margin separator $\mathbf{w}^{\top}x = 0$. You need to derive the optimization problem of SVM in the linearly separable case.

Note: correctly giving the results without detailed derivation will get 0 point.

Figure 3: Maximum margin separator in the linearly separable case.

- 1. [5 points] Derive the constraint optimization problem of SVM in the separable case shown in Fig. 3.
- 2. [5 points] Derive the dual problem of the above primal problem based on K.K.T. conditions.
- 3. [2 points] Kernel functions implicitly define some mapping function $\phi(\cdot)$ that transforms an input instance $x \in \mathbb{R}^d$ to a high or even infinite dimensional feature space Q, by giving the form of dot product in $Q: k(x_i, x_j) = \phi(x_i)\dot{\phi}(x_j)$. Please kernelize the dual problem, in order to learn a non-linear classifier.

VI CLUSTERING [10 points]

Given six data points in 2D space (shown in Table 1) and two initial cluster centers $c_1 = (0, 1), c_2 = (0, -1),$ please answer the following questions.

Note: correct answers without detailed derivation will get 0 point.

i	\boldsymbol{x}	y
1	-2	1
2	0	2
3	2	1
4	2	-1
5	0	-2
6	-2	-1

Table 1: Six input data points

- 1. [5 points] Please use k-means algorithm to cluster the given points into two groups.
- 2. [5 points] Please give the center points for the two groups after the algorithm converges.

VII DIMENSIONALITY REDUCTION [12 points]

Given three data points in 2D space: $x_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, please answer the following questions: **Note**: correct answers without detailed derivation will get 0 point.

- 1. [4 points] What are the first and second principal components?
- 2. [4 points] If we project the original data points on the new coordinate system represented by the principal components, what are their coordinates?
- 3. [4 points] What is the variance of the data in each direction? Verify that it is equal to the total variance of the origin data.

VIII NEURAL NETWORKS [12 points]

As shown in Fig.4, we have a feed-forward neural network with two hidden-layer nodes and one output node, and x_1 and x_2 are two inputs. For simplicity, the bias b is omitted here. For the following questions, assume the learning rate η in gradient descent is fixed by $\eta = 0.1$. Both hidden and output units use the same activation function $g(\cdot)$.

Figure 4: The Neural network with one hidden layer.

- 1. [4 points] Express the output y_{output} in terms of inputs x_1, x_2 , weights $w_1, w_2, w_3, w_4, w_5, w_6$ and the activation function g.
- 2. [8 points] Assume that we have one input $\{x_1 = 1, x_2 = 1\}$ and the real target of it is $y_{\text{target}} = 1$. The initial values of $w_1^{(0)}, w_2^{(0)}, w_3^{(0)}, w_4^{(0)}, w_5^{(0)}, w_6^{(0)}$ are $1, 2, -1, \frac{1}{2}, -2$ and 1, respectively. And the loss on the given example is defined as $L = \frac{1}{2}(y_{\text{target}} y_{\text{output}})^2$. Suppose that the sigmoid activation function $g(z) = \frac{1}{1+e^{-z}}$ is used.

Note: please round your results to 3 decimal places.

- (1) [3 points] Without any optimization, calculate the output h_1, h_2 and y_{output} on the given example.
- (2) [5 points] Compute the updated weights $w_1^{(1)}, w_2^{(1)}, w_3^{(1)}, w_4^{(1)}, w_5^{(1)}, w_6^{(1)}$ by performing ONE step of gradient descent. Show all steps in your calculation.

IX CONVOLUTIONAL NEURAL NETWORKS [8 points]

Convolutional neural networks are designed to process 2D features instead of the 1D ones in multi-layer perceptron (MLP).

1. [4 points] Please calculate the feature map based on 2D convolution, if you are given the following 5×5 image matrix in Table 2 and 2×2 kernel matrix in Table 3. (stride = 1, no padding)

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Table 2: 5×5 image matrix.

1	0
0	1

Table 3: 2×2 kernel matrix.

2. [4 points] Based on the above result, calculate the feature maps after max-pooling and average-pooling, respectively. (both pooling with 2×2 filters and stride = 2)