Problem definition - reminder Experimental setup Algorithms and parallel implementations Results overview References

Minimum Spanning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

December 2018

- Problem definition reminder
 - The MST Problem
 - Use cases
- Experimental setup
 - Software
 - Hardware
- 3 Algorithms and parallel implementations
 - Base serial algorithms
 - Parallel improvements
- Results overview

The MST Problem Use cases

Problem definition - reminder

The MST problem

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted (un)directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.

Input sets: G(n, p)

G(100, 0.02)

Input sets: PA(n, m)

PA(100, 1)

Input sets: 9th DIMACS challenge dataset

USA Roads

Name	Description	# nodes	# arcs
USA	Full USA	23,947,3	47 58,333,344
CTR	Central USA	14,081,8	16 34,292,496
w	Western USA	6,262,1	04 15,248,146
E	Eastern USA	3,598,6	23 8,778,114
LKS	Great Lakes	2,758,1	19 6,885,658
CAL	California and Nevada	1,890,8	15 4,657,742
NE	Northeast USA	1,524,4	53 3,897,636
NW	Northwest USA	1,207,9	45 2,840,208
FLA	Florida	1,070,3	76 2,712,798
COL	Colorado	435,6	66 1,057,066
BAY	San Francisco Bay Area	321,2	70 800,172
NY	New York City	264,3	46 733,846

Software Hardware

Experimental setup

Software

- OMP
- Intel Threading Building Blocks (TBB)
- Intel Parallel Standard Template Library (PSTL)

EULER

- 1 node limitation (OMP)
- 2 sockets filled with 18 cores up to 3.7Ghz
- Inter-sockets bus speed: 10.4 GT/s

Base serial algorithms Parallel improvements

Algorithms and parallel implementations

Baselines

- Boost Kruskal
- Boost Prim

Sollin

- For each connected component, find adjacent edge with minimum weight
- 2 Add edge to mst (each edge add at most twice)
- Merge connected components

Kruskal

```
1: A = \emptyset
 2: for all v \in G.V do
      MAKE-SET(v)
 4: end for
5: Sort (asc.) (weight(u, v))_{(u,v)\in G.E}
6: for all (u, v) in G.E ordered by weight do
      if FIND-SET(u) \neq FIND-SET(v) then
 7:
        A = A \cup (u, v)
 8:
        UNION(u, v)
      end if
10:
11: end for
```

12: return A

Parallel sorting on Kruskal

m is the number of edges, p is the number of cores, T(m) is the runtime with m edges.

- Sequential: $O(m \ln(m) + m)$
- Parallel sort (Intel TBB): $O\left(\frac{m\ln(m)}{p} + m\right)$

- If $m \le threshold$ then solve with Kruskal
- Find pivot for edges (weight)
- **3** Partition E into $E \le E$

- \bullet $A_{>} = filterKruskal(E_{>})$
- **?** Return $merge(A_{\leq}, A_{>})$

- **1** If $m \le threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight): O(1)
 - Concurrently sample 256 elements from the list (OpenMP)
 - Sort the list and return the median (TBB)
- **3** Partition E into $E_{\leq}, E_{>}$

- **?** Return $merge(A_{\leq}, A_{>})$

- If $m \le threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$
 - Partition function (Intel Parallel STL)

- **1** Return $merge(A_{\leq}, A_{>})$

- If $m \le threshold$ then solve with Kruskal
- ② Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$

- **?** Return $merge(A_{\leq}, A_{>})$

- **1** If $m \le threshold$ then solve with Kruskal
- $oldsymbol{2}$ Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$
- - Partition function (Intel Parallel STL)
- **O** Return $merge(A_{\leq}, A_{>})$

- **1** If $m \le threshold$ then solve with Kruskal
- ② Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$

- $A_{>} = filterKruskal(E_{>}): O(T(\frac{m}{2}))$
 - In practice way less than $\frac{m}{2}$
- **?** Return $merge(A_{\leq}, A_{>})$

- If $m \leq threshold$ then solve with Kruskal
- ② Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$
- $A_{\leq} = filterKruskal(E_{\leq}): \ T\left(\frac{m}{2}\right)$

- **?** Return $merge(A_{\leq}, A_{>})$: O(1)

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m\ln(m)}{p} + m\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m\ln(m)}{p} + m\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m}{p} + m\right) = O(m)$

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m\ln(m)}{p} + m\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m}{p} + m\right) = O(m)$
- $O(m) \leq T(m) \leq O\left(\frac{m\ln(m)}{p} + m\right)$

Kruskal vs Sollin

- Same complexity, but Sollin computing steps are more fine-grained
- Sollin is entirely paralelizable
- Filter Kruskal can be adapted to Filter Sollin

Problem definition - reminder Experimental setup Algorithms and parallel implementations Results overview References

Results overview

Speedup compared to Boost Kruskal

Speedup compared to Boost Prim

Speedups

Amdahl's law

 S_p is the speedup with p cores, f is the part of the program that is sequential.

$$S_p = \frac{1}{\frac{1-f}{p} + f}$$
$$f = \frac{\frac{p}{S_p} - 1}{p - 1}$$

Amdahl's law: Kruskal

Graph: Erdos-Renyi (100,000 nodes, p = 0.0005)

Cores	Median speed-up	Standard deviation	f
1	1	0.0129805395	-
2	1.1881513396	0.0400305172	0.6832872491
4	1.3340592415	0.0130798641	0.6661225318
8	1.3134515984	0.01048841	0.7272602975
16	1.4399618642	0.0088220116	0.6740936918
32	1.3877640643	0.0442081933	0.7115701488

Amdahl's law: Filter Kruskal

Graph: Preferential attachment (10,000 nodes, 1,000 edges per vertex)

Cores	Median speed-up	Standard deviation	f
1	1	0.174182691	-
2	1.6268639022	0.2472258016	0.2293591353
4	2.669168898	0.5213238241	0.1661979381
8	5.3584384444	0.9757941767	0.0704246098
16	5.7447285937	1.108109986	0.1190108026
32	5.6322979489	1.497976882	0.1510166972

References

- Bader, D. A. and G. Cong (2006). "Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs". In: *Journal of Parallel and Distributed Computing* 66.11, pp. 1366–1378.
- Chung, S. and A. Condon (1996). "Parallel Implementation of\Boruvka". In: ipps. IEEE, p. 302.
 - Osipov, V., P. Sanders, and J. Singler (2009). "The Filter-Kruskal Minimum Spanning Tree Algorithm". In: *Proceedings of the Meeting on Algorithm Engineering & Expermiments*. New York, New York: Society for Industrial and Applied Mathematics, pp. 52–61.

