Computational Methods in Structural Dynamics, Exam 2 Winter 2004 One 8.5" by 11" cheat sheet. 10 points each. All work must be done in the exam book. No extra scrap paper allowed.

- 1. Derive the equations of motion and allowable boundary conditions for a Timoshenko beam given the following.
 - The bending strain energy is $V_b = \frac{1}{2} \int_0^L EI(\alpha')^2 dx$, the shear strain energy is $V_s = \frac{1}{2} \int_0^L \kappa GA(\alpha \frac{\partial v}{\partial x})^2 dx$, the kinetic energy is $T = \frac{1}{2} \int_0^L \rho A\dot{v}^2 dx + \frac{1}{2} \int_0^L \rho I\dot{\alpha}^2 dx$, and the non-conservative variational work is $W_{nc} = \int_0^L p(x,t)\delta v(x,t)dx$. Of course the total potential energy is $V = V_b + V_s$. Note that for a Timoshenko beam the rotation parameter α is independent of the slope, $\frac{\partial v}{\partial x}$, both being a function of x and t. As a result, you should expect, trust me on this, to derive two, that is **two**, coupled differential equations—one in α , and one in v. Assume A and I are functions of x as well.
- 2. An system is defined by the operator $L = EI \frac{\partial^4}{\partial x^4} + \beta \frac{\partial^3}{\partial x^3}$ with the boundary conditions x(0) = 0, $\frac{\partial^2 w}{\partial x^2}\Big|_{x=0} = 0$, x(l) = 0, and $\frac{\partial^2 w}{\partial x^2}\Big|_{x=l} = 0$.
 - Is the system self adjoint?
 - If so, is the system positive definite?