Introduction to RNA sequencing Bioinformatics perspective

Olga Dethlefsen

NBIS, National Bioinformatics Infrastructure Sweden

November 2017

Outline

- Why sequence transcriptome?
- From RNA to sequence
- The most common way: reference based analysis pipeline
- What about de-novo assembly of transcriptomes?
- And what about scRNA-seq?
- Summary
- Introduction to exercises

Why sequence transcriptome?

An RNA sequence mirrors the sequence of the DNA from which it was transcribed.

Consequently, by analyzing transcriptome we can determine when and where each gene is turned on or off in the cells and tissues of an organism.

What can a transcriptome tell us about?

- gene sequences in genomes
- gene functions
- gene activity / gene expression
- isoforms and allelic expression
- fusion transcripts and novel transcripts
- SNPs in genes
- co-expression of genes
- cell-to-cell heterogeneity (scRNA-seq)

Transcriptomes are:

dynamic, that is not the same over tissues and time points

directly derived from functional genomics elements, that is mostly protein-coding genes, providing a useful functionally relevant subset of the genome, translating into smaller sequence space

Overview

- Experimental design (biology, medicine, statistics)
- RNA extraction (biology, biotechnology)
- Library preparation (biology, biotechnology)
- High throughput sequencing (engineering, biology, chemistry, biotechnology, bioinformatics)
- Data processing (bioinformatics)
- Data analysis (bioinformatics & biostatistics)

From RNA to sequence

● ○ ○	fastq	— less —	195×6
@HWI-ST0866_0110:5:1101:1264:2090#GATCAG/1			
AGGCACTCCCTGCAGGTGTTGGACCACCTGGCTGAGCCACAGCGTCGCTTCCTGCTGCCAGGGCCTCGGAGAGGGTGGCTGTGGA	GACACTGT	GGGAGCA	
+HWI-ST0866_0110:5:1101:1264:2090#GATCAG/1			
^_P\`ccceeceeeee[b[beedaae_fdddde_cfhheedfeeh`aeadd`d]baccc\[TKT\]_\ZQT^a[W[^^aW`^`	aX^X^_Y]^aBBBB	
@HWI-ST0866_0110:5:1101:1418:2201#GATCAG/1		*******	
TCTTTATTGGCATCAGGCATCACCACACCATGGTTCTTGGCTCCCATGTTGGCCTGGACTCTCTTGCCATTCCGGGATCCTCTCT +HWI-ST0866_0110:5:1101:1418:2201#GATCAG/1	CATAGATG	TACTUGE	
P`ccceegge]eghhhhdfhhhhhhhhhhhhhhhhhfhhefghfffhhfhheg^eeffgfegf`fghhhffhhggadcX[`bbbbbbb	bbcbbbcb	Dlashaa	
@HWI-ST0866 0110:5:1101:1561:2232#GATCAG/1	DUCUUUCU	n) aavaa	
CCGAAACCCCGAAAGCACCCCAAAATCCCTGTGGGGAACCCCGAAAATCCCGAAATTACCCCAAAATACCTGTGGGATACCCTGA	AAACCCGA	AAGCACC	
+HWI-ST0866_0110:5:1101:1561:2232#GATCAG/1			
[VJ\``\e[eefdgbafagfffagfd`Rc[cac`a_ef[a_N`]aced]\X]Z^RGYYYXa^_``bb_YYYbBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBB	BBBBBBB	
@HWI-ST0866_0110:5:1101:1675:2246#GATCAG/1			
GCTCAAGTCCCGGAGGAGGTCAGAGCTGGCATCTCTTCCCCAGCTGCTCAGGAGTGTAAGCACCTGCAAACAGCTGCCAGCC	AGGGAGCT	GTGACTT	
+HWI-ST0866_0110:5:1101:1675:2246#GATCAG/1 _J\`accccc[eaqaa`qqqdbffhhffqfhhhhheaaefaqhhhfdqhhhdfd`ddqbd]_^abbbb^ababbGXY_[a	1 TOO . ' O .	'hhcvvc	
@HWI-ST0866 0110:5:1101:1752:2075#GATCAG/1	a auuit	DDG113	
CAGCNGCTCTGGGCACCCTGTGCCAGGGCNTGNCCACCCTCCCAGCCAAGAATTCCTTCCCNATATCTAACCCAAATTTCTTCCC	NGTAGGAG	CAGGATG	
+HWI-ST0866 0110:5:1101:1752:2075#GATCAG/1			
Z_[aBQQQ`ccace_d_Y`a_Xd^ecc]fBPYBOYacedeZeVRbWVW_\bcS\bdde`VBKKT^accab]GT\Z_YY``_]YG	BKKWW0] `,	_W^[W_R	
@HWI-ST0866_0110:5:1101:1888:2141#GATCAG/1			
CAGATGAGGACTTTTGCTCCAAATGGGAAAGGAGAAACCTCAGTCCGTAGAGATGCTCCCAGAGATAGTCCTAAAGATGAAGAT	GATGAAGA	CCCTTTG	
+HWI-ST0866_0110:5:1101:1888:2141#GATCAG/1 abbeeeeeggggiihiiiiiiiiiiiiiiiiiiiiiiiiii	denedere	hechece	
@HWI-ST0866_0110:5:1101:1930:2172#GATCAG/1	ocecuccc	occoccc	
ATCCAAGTTAAAACAGAGGCCTGTGACAGACTCTTGGCCCATCGTGTTGATACTAAAATGAAAGGAAACAAAGTGAATGAA	TGAATAGA	TTACACT	
+HWI-ST0866_0110:5:1101:1930:2172#GATCAG/1			
^a^cccegcgghhgZc`ghhc^egggd^[d]defcdfd^Z^0XWaQ^adghWWaff_H_cbdbbd\dbddV^_ZRMHHZGUZ	_b_YRTGT	T]`b[
@HWI-ST0866_0110:5:1101:1945:2183#GATCAG/1			
CTCACGATGGTCCCCAGGCTGTCCACAGTTGCCACACACTGATAATATCCTTCATCAGGTTTATTATGCTTGGAATGCACCACAC +HWI-ST0866_0110:5:1101:1945:2183#GATCAG/1	IGITAATT.	AATAAAG	
^_ccc\ccY\^ae'Z_'bR'b]fa]dec^ceeeffc^fcdceXc]cehehaebefd'eW\\b]bebeeedde'R_aa_c]b\b	aaZ`accd	cfilala.	
@HWI-ST0866 0110:5:1101:1920:2205#GATCAG/1		,	
GCCAGTACAGCTGTAGTAGTCTGTCCTTCCCATCCGTGCCCATGTGACACAGCAGGTTCACAGCATGGTGACCAGTTTGAAGCTT	CCTACCTC	TGTGGTA	
+HWI-ST0866_0110:5:1101:1920:2205#GATCAG/1			
bbbeeeegfggghfhfhhihiiiiiiiiiiiiiiiiiiiiiii	ddcddccc	ccbcccc	
@HWI-ST0866_0110:5:1101:2095:2167#GATCAG/1 GTTCAGACAAGTTCGATCTCTTGTGCATCGACTGTGCTGGATGATAGTTTTTCAGTGAGTATTATGGTTAGTAGATATAGTACCA	CCCTCCAA	ATACCTA	
+HWI-ST0866 0110:5:1101:2095:2167#GATCAG/1	GGCTGCAGC	MINUCIA	
a P\cceeggggiighihiiiiighhiiiiihhiiiiiiiihhiiiiehhiiifhhibfaedfhiiifghih dgeeddgee	eeeddc b	bccccbb	
@HWI-ST0866_0110:5:1101:2494:2131#GATCAG/1	_		
CTCGAAATCCAGGGCAACGTAGCACAGCTTCTCCTTGATGTCACGCACAATTTCTCTCAGCTGTGGTGGTGAAGCTGTAGCCT	CTCTCTGT	CAGGATC	
+HWI-ST0866_0110:5:1101:2494:2131#GATCAG/1			
aaeceeeggggdfgfihghffhhhiiihffgiiiiiihhhfiigghdgdhffhiiifdhihd`^bV^aabbbdc]bZ`b @HWI-ST0866 0110:5:1101:2424:2217#GATCAG/1	ccccccc	CD] DCC	
TAACAGTCCCCCTGGTATGAAATGGCACCTTGGTTACACTGAGGGAGG	GGTTAAAA	444444	
+HWI-ST0866 0110:5:1101:2424:2217#GATCAG/1			
_bPaceeegfggcghfgfhhiiiiiiiffh_fghghhfhhhgfghfcghhiT_bdddddeeeeaac`bbcccb`cbbc`ccbc	ccaacbbb	bcaaccc	
@HWI-ST0866_0110:5:1101:2485:2220#GATCAG/1			
CCTGGATGGTGGGCTGATCAACTTTGAGAAGAAGAAGGAAG	AACAACTA	CAGCTTC	
+HWI-ST0866_0110:5:1101:2485:2220#GATCAG/1 bbeeeeegegggiiiiiiiiiiiiiiiiiiiiiiiiiii			
bbeeeeeggggiiiiiiiiiiiiiiiiiiiiiiiiiii	cccccc	CCDDCCC	
CAGTACTCTTTGTACCGCTCATCTGCATCTCCAAACACTTTGTACCTGCTGCCTTTTATTTTGTATGTTTACCTGTGTCAGAGAG	TCGCCAAG	TTTGTTC	
+HWI-ST0866_0110:5:1101:2476:2244#GATCAG/1			
abbeeeeefgggghifiihiiihigaghefhhdgheghhhhf^afgffhfhiiihidfhhihhhiiggbg`gfdg`bdddeade	`]`_Z^Y[]bcbccb	
@HWI-ST0866_0110:5:1101:2502:2189#GATCAG/1			
AA AAAA GGG UGU U AGAA CE U GG UCCAAGGG AA AA GG COCCAGA CAACAACAA CAACAA CAACAA CAACAA CAACAA CAACAA	GGATTTAG	TECTEAT	

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+
BBBBBFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

■ Line1:

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358 CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

BBBBBFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

■ Line1: begins with a '@' character and is followed by a sequence identifier and an optional description

Line2:

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358 CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

BBBBBFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

- Line1: begins with a '@' character and is followed by a sequence identifier and an optional description
- Line2: is the raw sequence letters
- Line3:

+

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358 CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

BBBBBFFFFFFGGGGGGGGGGGHFFFHGHHGFFHHHHHAG

- Line1: begins with a '@' character and is followed by a sequence identifier and an optional description
- Line2: is the raw sequence letters
- Line3: begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again
- Line4:

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358 CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

+

BBBBBFFFFFFGGGGGGGGGGGHFFFHGHHGFFHHHHHAG

- Line1: begins with a '@' character and is followed by a sequence identifier and an optional description
- Line2: is the raw sequence letters
- Line3: begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again
- Line4: encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence

- Q = -10 x log P
- where:
 - P, probability of base calling being incorrect
 - High Q = high probability of the base being correct

■ A Phred quality score of 10 to a base means that the base is called incorrectly in 1 out of...

- \blacksquare Q = -10 x log P
- where:
 - P, probability of base calling being incorrect
 - High Q = high probability of the base being correct

- A Phred quality score of 10 to a base means that the base is called incorrectly in 1 out of...10 times.
- A Phred quality score of 20 to a base, means that the base is called incorrectly in 1 out of...

- \blacksquare Q = -10 x log P
- where:
 - P, probability of base calling being incorrect
 - High Q = high probability of the base being correct

- A Phred quality score of 10 to a base means that the base is called incorrectly in 1 out of...10 times.
- A Phred quality score of 20 to a base, means that the base is called incorrectly in 1 out of...100 times.
- A Phred quality score of 30 to a base, means that the base is called incorrectly in 1 out of...

- Q = -10 x log P
- where:
 - P, probability of base calling being incorrect
 - High Q = high probability of the base being correct

- A Phred quality score of 10 to a base means that the base is called incorrectly in 1 out of...10 times.
- A Phred quality score of 20 to a base, means that the base is called incorrectly in 1 out of...100 times.
- A Phred quality score of 30 to a base, means that the base is called incorrectly in 1 out of...1000 times etc...

PE, paired-end

- Two .fastq files are created per sequenced library
- The order of reads in files is identical and naming of reads is the same with the exception of the end information
- The way of naming reads are changing over time so the read names depend on software version

```
@61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCCCAC
```

```
@61DFRAAXX100204:1:100:10494:3070/2
ATCCAAGTTAAAACAGAGGCCTGTGACAGACTCTTGGCCCATCGTGTTGATA
+
_^a^cccegcgghhgZc`ghhc^egggd^_[d]defcdfd^Z^0XWaQ^ad
```

RNA-sea

SE

- F: the single read is in the sense (F, forward) orientation
- R: the single read is in the antisense (R, reverse) orientation

PF

- RF: first read (/1) is sequenced as anti-sense (R) & second read (/2) is in the sense strand (F)
- FR: first read (/1) is sequenced as sense (F) & second read (/2) is in the antisense strand (R)

16/34

Reference based data analysis pipeline

Main steps

- Initial processing incl. QC
- Aligning reads to reference genome
- Counting reads
- Differential gene expression
- Annotations of transcripts

Initial processing incl. QC

- Demultiplex by index or barcode
- Remove adapter sequences
- Trim reads by quality
- Discard reads by quality/ambiguity

Available tools

FastQC, PRINSEQ, TRIMMOMATIC, TrimGalore, FastX, Cutadapt

Initial processing incl. QC

- filtering reads for quality score, e.g. with avg. quality below 20 defined within 4-base wide sliding window
- filtering reads for read length, e.g. reads shorter than 36 bases
- removing artificial sequences, e.g. adapters

Aligning reads

Aligning reads

Aligning reads: mappers

- important to use mappers allowing for a read to be "split" between distant regions of the reference in the event that the read spans two exons
- lots of different aligners exists based on various algorithms e.g. brute force comparison, Burrows-Wheeler Transform, Smith-Waterman, Suffix tree
- usually there is a trade-off between speed versus accuracy and sensitivity
- usually the "biggest differece" is with default settings, most mappers will allow to optimise settings
- perfomance vary by genome complexity

A good read: Barruzo et. al. Nature Methods 14, (2017) https://www.nature.com/articles/nmeth.4106

Available tools

STAR, HISAT, MapSlice2, Subread, TopHat

Olga (NBIS) RNA-seq November 2017 24 / 34

Aligning reads: reference files

.fasta (download reference genome FASTA file)

.gtf (download the corresponding genome annotation in GTF or GFF)

```
#!genone-build GRCm38.p4
#!genone-version GRCm38
#!genone-det 2012-0!
#!genone-but 2012-0!
#!
```

Source

ENSEMBL. NCBI

Aligning reads

Aligning reads: QC

Post mapping QC, e.g. reads should mostly map to known genes, most splice event should be known and canonical (GU-AG)

Counting reads

Available tools

HTSeq, featureCounts, R

Counting reads

from: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Counting reads

-	A	B	C	D	E	F	G	H	D4000 0	D4000 0	K	D4000 44	M	N	0	P	Q
	Transcript	P1822_1	P1822_2	P1822_3	_	P1822_5	P1822_6	_	P1822_8	P1822_9	_	_	_	P1822_13		_	P1822_16
2	ENSMUSG00000102693	0) 0	0	0	0	0	0		•			0	0	0	0	0
30	ENSMUSG00000088000	0) 0	0	0	0	0	0		· ·			0	0	0	0	0_
31	ENSMUSG00000103265	0	0	1	0	0	0	0	(0	0	•	0	0	0	0	0
32	ENSMUSG00000103922	7	7	7	7		. 12		6	14			3	9	7	9	7
33	ENSMUSG00000033845	972				1058		992	1143		1059				837		927
34	ENSMUSG00000102275	0) 0	0	•		•	•				•		0	0	0	0
35	ENSMUSG00000025903	0) 0	0	0	•							0	0	0	0	0
36	ENSMUSG00000104217	16												-	9		12
37	ENSMUSG00000033813	2560	2581	2937	3904	2975		3027	3417	2272	2801				2578	2554	2806
38	ENSMUSG00000062588	3	1	. 1	. 1	. 0	1	. 0	3	3	0	4	0	2	1	. 0	0
39	ENSMUSG00000103280	1	. 0	0	1	. 0	0	0	(0	-	•	0	1	0	0	0
40	ENSMUSG00000002459	7	10	5	7	4	- 6	3	8	2	. 5	7	8	1	5	4	1
41	ENSMUSG00000091305	0) 0	0	0	0	0	0	(0	0	0	0	0	0	0	0
42	ENSMUSG00000102653	0) 0	0	0	0	0	0	(0	0	0	0	0	0	0	0
43	ENSMUSG00000085623	0) 0	0	0	0	0	0	1	. 0	0	0	0	0	0	0	0
44	ENSMUSG00000091665	0) 0	0	0			-		-			-	0	0		0
45	ENSMUSG00000033793	3682	3757	4414	5978	3774	4102	3815	4250	4193	4962	4240	5694	3565	3757	3849	4094
46	ENSMUSG00000104352	0) 0	0	0	0	0	0	(0	0	0	0	0	0	0	0
47	ENSMUSG00000104046	0) 0	0	0	0	0	0		1	. 0	0	0	0	0	0	0
48	ENSMUSG00000102907	0) 0	0	0	0	0	0		0	0	0	0	0	0	0	0
49	ENSMUSG00000025905	0) 0	0	0	0	0	0	(0	0	0	0	0	1	. 0	0
50	ENSMUSG00000103936	0) 0	0	0	0	0	0	(0	0	0	0	0	0	0	0
51	ENSMUSG00000093015	0) 0	0	0	0	0	0		0	0	0	0	0	0	0	0
52	ENSMUSG00000103519	0) 0	0	0	0	0	0		0	0	0	0	0	0	0	0
53	ENSMUSG00000033774	0) 0	0	0	0	0	0		0	0	0	0	0	0	0	0
54	ENSMUSG00000103090	0) 0	0	0	0	0	0		0	0	0	0	0	0	0	0
55	ENSMUSG00000025907	1816	2087	2088	2820	2012	2236	2065	2727	2586	2931	2813	3667	2410	2739	2479	2745
56	ENSMUSG00000090031	43	58	55	73	38	38	57	96	89	107	98	123	76	93	66	69
57	ENCMI ICCOMMONOTOAT			9	- 1			- 1		9	1		- 1	A	9		

Differential expression analysis

- means taking the normalized read count data &
- performing statistical analysis to discover quantitative changes in expression levels between experimental groups.
- e.g. to decide whether, for a given gene, an observed difference in read counts is significant, that is, whether it is greater than what would be expected just due to natural random variation.
- or simply: checking for differences in distributions

$$Outcome_i = (Model_i) + error_i$$

- we collect data on a <u>sample</u> from a much larger <u>population</u>. <u>Statistics</u> lets us to make inferences about the population from which it was derived
- we try to predict the outcome given a model fitted to the data

Olga (NBIS) RNA-seq November 2017 32 / 34

$$t = \frac{x_1 - x_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Olga (NBIS) RNA-seq November 2017 33 / 34

Simple recipe

- model e.g. gene expression with random error
- fit model to the data and/or data to the model, estimate model parameters
- use model for prediction and/or inference

Implications

the better model fits to the data the better statistics