Faithful Embeddings for EL++ Knowledge Bases

Bo Xiong¹, Nico Potyka², Trung-Kien Tran³, Mojtaba Nayyeri¹, and Steffen Staab^{1,4}

¹ University of Stuttgart, Germany
 ² Imperial College London, United Kingdom
 ³ Bosch Center for Artificial Intelligence, Germany
 ⁴ University of Southampton, United Kingdom

ISWC 2022 Virtual 02.09.2022

Knowledge Graphs (KGs)

- KG is often considered as a set of tripes (h,r,t) defined over
 - a set of entities E (nodes) and
 - a set of relations \mathcal{R} (edges)
- KG embeddings embed entities and relations into vector spaces
 - such that the relational structure is preserved
 - and new plausible links can be inferred

Data vs Conceptual knowledge

- A knowledge base (KB) can be divided into
 - ABox: instance information (data level) and
 - TBox: class information (concept level)
- Knowledge is often expressed via logical statements/assertions in Description Logic

- (alice, type, DataScientist)
- (bob, type, Software Engineer)
- (alice, has_employer, ibm)
- (bob, has_employer, ibm)
- (ibm, type, TechCompany)
- $DataScientist \sqsubseteq Employee$
- SoftwareEngineer \sqsubseteq Employee
- $Employee \equiv \exists has_employer. Employer$
- $TechCompany \subseteq Company$
- $Company \subseteq Employer$

Can we embed KBs with conceptual knowledge?

EL++ Knowledge Bases

- EL++ is a lightweight description logic that
 - balances well between expressive power and reasoning complexity (polynomial)
 - has many applications in large-scare ontologies (e.g., Gene Ontology)

EL++ ABox contains:

- 1. concept assertion: C(a)
- 2. role assertion: r(a,b)

EL++ TBox statements can be normalized into the following forms

- 1. concept subsumption: $C \subseteq D$,
- 2. concept intersection: $C_1 \sqcap C_2 \sqsubseteq D$,
- 3. right existential: $\exists r. C_1 \sqsubseteq D$,
- 4. left existential: $C_1 \sqsubseteq \exists r. C_2$,

Ball EL++ Embedding

- Ball EL++ embedding embeds
 - concepts/entities as (convex) regions (balls)
 - relations as translation (like TransE)

Male $\sqsubseteq Person$ Female $\sqsubseteq Person$ Father $\sqsubseteq Male$ Mother $\sqsubseteq Female$ Father $\sqsubseteq Parent$ Mother $\sqsubseteq Parent$ $Female \sqcap Male$ $\Box \bot$ $Female \sqcap Parent$ \square Mother $Male \sqcap Parent$ $\sqsubseteq Father$ $\exists hasChild.Person \ \Box Parent$ Parent $\sqsubseteq Person$ $\Box \exists hasChild. \top$ Parent

Ball EL++ Embedding

- Advantages: parameterization is simple
- Disadvantages:
 - Balls cannot faithfully represent concept intersection
 - Translation causes issues for concepts with varying size
 - No distinction between entities/concepts

Our idea: Box EL++ Embedding

- Box EL++ embedding represents
 - concepts by hyper-rectangulars (boxes)
 - relations by affine-transformations (translation + scaling)
 - entities by points in \mathbb{R}^n

(a) Ball and Box embedding

(b) Translation and affine transformation

Parameterization

Box (concept) is parameterized by a lower-left corner + upper-right corner

$$\operatorname{Box}_w(C)=\{x\in\mathbb{R}^n\mid m_w(C)\leq x\leq M_w(C)\},$$
• Point (entity) is a special case of Box where m=M

 Affine transformation (relation) is parameterized by a diagonal scaling matrix + a translation vector

 $T_w^r(x) = D_w^r x + b_w^r$, where D_w^r is an $(n \times n)$ diagonal matrix with non-negative entries

Geometric Interpretation

Idea: mapping logical constraints/axioms to geometric (soft) constraints

- we encode the axioms by designing one loss term for every axiom
- such that the axiom is satisfied by the geometric interpretation when the loss is 0

ABox embedding

- Concept assertion C(a)
 - Demanding point a to be inside the box of C

$$\mathcal{L}_{C(a)}(w) = \sum_{i=1}^{n} \left\| \max(0, m_w(a)_i - M_w(C)_i) \right\|_2 + \sum_{i=1}^{n} \left\| \max(0, m_w(C)_i - m_w(a)_i) \right\|_2.$$

- Role assertion r(a, b)
 - Point a should be mapped b by an affine transformation

$$\mathcal{L}_{r(a,b)}(w) = ||T_w^r(m_w(a)) - m_w(b)||_2.$$

Proposition 1. We have

- 1. If $\mathcal{L}_{C(a)}(w) = 0$, then $\mathcal{I}_w \models C(a)$, 2. If $\mathcal{L}_{r(a,b)}(w) = 0$, then $\mathcal{I}_w \models r(a,b)$.

TBox embedding

Definition 2 (Disjoint measurement). Given two boxes B_1, B_2 , the disjoint measurement can be defined by the (modified) volumes of B_1 and the intersection box $B_1 \cap B_2$,

$$Disjoint(B_1, B_2) = 1 - \frac{MVol(B_1 \cap B_2)}{MVol(B_1)}.$$
(4)

We have the following guarantees.

Lemma 1. $1. 0 \leq \operatorname{Disjoint}(B_1, B_2) \leq 1$,

- 2. Disjoint $(B_1, B_2) = 0$ implies $B_1 \subseteq B_2$, 3. Disjoint $(B_1, B_2) = 1$ implies $B_1 \cap B_2 = \emptyset$.

TBox embedding

• concept subsumption $C \subseteq D$

$$\mathcal{L}_{C \sqsubseteq D}(w) = \text{Disjoint}(\text{Box}_w(C), \text{Box}_w(D)).$$

(c)
$$C \sqsubseteq D, D \neq \bot$$

Proposition 2. If $\mathcal{L}_{C \sqsubseteq D}(w) = 0$, then $\mathcal{I}_w \models C \sqsubseteq D$, where we exclude the inconsistent case $C = \{a\}, D = \bot$.

concept intersection

$$\mathcal{L}_{C \cap D \subseteq E}(w) = \text{Disjoint}(\text{Box}_w(C) \cap \text{Box}_w(D), \text{Box}_w(E)).$$

(d)
$$C \sqcap D \sqsubseteq E, E \neq \perp$$

Proposition 3. If $\mathcal{L}_{C \sqcap D \sqsubseteq E}(w) = 0$, then $\mathcal{I}_w \models C \sqcap D \sqsubseteq E$, where we exclude the inconsistent case $a \sqcap a \sqsubseteq \bot$ (that is, $C = D = \{a\}, E = \bot$).

TBox embedding

Concept disjointedness

$$\mathcal{L}_{C \sqcap D \sqsubseteq \bot}(w) = \frac{\text{MVol}(\text{Box}_w(C) \cap \text{Box}_w(D))}{\text{MVol}(\text{Box}_w(C)) + \text{MVol}(\text{Box}_w(D))}.$$

Right/Left existential

$$\mathcal{L}_{C \sqsubseteq \exists r.D}(w) = \operatorname{Disjoint}(T_w^r(\operatorname{Box}_w(C)), \operatorname{Box}_w(D)).$$

Proposition 4. If
$$\mathcal{L}_{C \sqsubseteq \exists r.D}(w) = 0$$
, then $\mathcal{I}_w \models C \sqsubseteq \exists r.D$. (f) $C \sqsubseteq \exists r.D$ (resp. $\exists r.C \sqsubseteq D$)

Toy family example

We sum up all loss terms and use Adam as optimizer

 Male □ Person
 Female □ Person

 Father □ Male
 Mother □ Female

 Father □ Parent
 Mother □ Parent

 Female □ Male □ ⊥
 Female □ Parent □ Mother

 Male □ Parent □ Father
 ∃hasChild.Person □ Parent

 Parent □ Person
 Parent □ ∃ hasChild.Person

 Father(Alex)
 Father(Bob)

 Mother(Marie)
 Mother(Alice)

Run the toy example from scratch?

https://colab.research.google.com/drive/17U5olNtQotVXFT9kfr2p9K8RM_x2qH40?usp=sharing

Subsumption reasoning

Table 4: The ranking based measures of embedding models for sumbsumtion reasoning on the testing set. * denotes the results from [20].

Dataset	Metric	TransE*	TransH*	DistMult*	ELEm	EmEL ⁺⁺	BoxEL
GO	Hits@10	0.00	0.00	0.00	0.09	0.10	0.03
	Hits@100	0.00	0.00	0.00	0.16	0.22	0.08
	AUC	0.53	0.44	0.50	0.70	0.76	0.81
	Mean Rank	-	-	-	13719	11050	8980
GALEN	Hits@10	0.00	0.00	0.00	0.07	0.10	0.02
	Hits@100	0.00	0.00	0.00	0.14	0.17	0.03
	AUC	0.54	0.48	0.51	0.64	0.65	0.85
	Mean Rank	-	-	-	8321	8407	3584
ANATOMY	Hits@10	0.00	0.00	0.00	0.18	0.18	0.03
	Hits@100	0.01	0.00	0.00	0.38	0.40	0.04
	AUC	0.53	0.44	0.49	0.73	0.76	0.91
	Mean Rank	-	-	-	28564	24421	10266

Protein-Protein Interactions

- Knowledge base constructed from
 - STRING database (ABox)
 - Gene Ontology (TBox)

$$P(\mathsf{interacts}(P_1,P_2)) = \left\| T_w^{\mathsf{interacts}}(m_w(P_1)) - m_w(P_2)
ight\|_2.$$

https://string-db.org/

http://geneontology.org/

Protein-protein interaction

Table 6: Prediction performance on protein-protein interaction (human).

Method	Raw	Filtered	Raw	Filtered	Raw	Filtered	Raw	Filtered
	Hits@10	Hits@10	Hits@100	Hits@100	Mean Rank	Mean Rank	AUC	AUC
TransE	0.05	0.11	0.24	0.29	3960	3891	0.78	0.79
BoxE	0.05	0.10	0.26	0.32	2121	2091	0.87	0.87
SimResnik	0.05	0.09	0.25	0.30	1934	1864	0.88	0.89
SimLin	0.04	0.08	0.20	0.23	2288	2219	0.86	0.87
ELEm	0.01	0.02	0.22	0.26	1680	1638	0.90	0.90
$EmEL^{++}$	0.01	0.03	0.23	0.26	1671	1638	0.90	0.91
Onto2Vec	0.05	0.08	0.24	0.31	2435	2391	0.77	0.77
OPA2Vec	0.03	0.07	0.23	0.26	1810	1768	0.86	0.88
BoxEL (Ours)	0.07	0.10	0.42	0.63	1574	1530	0.93	0.93

Takeaway

- We propose Box EL++ KB embedding that
 - faithfully encodes concepts and relations
 - provides soundness guarantee for the underlying logical structure
 - shows significant improvements in biomedical KBs
 - Code is open available: https://github.com/Box-EL/BoxEL

- Future work
 - Incorporating such background knowledge into ML tasks
 - Embedding probabilistic description logic

Thank You