Introduction to Machine Learning

Fall 2018

University of Science and Technology of China

Lecturer: Jie Wang Homework 2
Posted: Oct. 8, 2018
Due: Oct. 15, 2018
Name: Shilong Zhang
ID: PB14214061x

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Projection Operator 4pts

For a nonempty, closed, and convex set $S \subseteq \mathbb{R}^n$, the projection of an arbitrary point $x \in \mathbb{R}^n$ onto S is defined by

$$P_S(x) = \underset{z \in S}{\operatorname{argmin}} \|x - z\|_2. \tag{1}$$

Show that

- 1. (1pt) $P_S(x)$ always exists and is unique;
- 2. (2pt) $y = P_S(x)$ if and only if $y \in S$ and

$$\langle z - y, x - y \rangle \le 0, \, \forall \, z \in S.$$

3. (1pt) for all $x, y \in \mathbb{R}^n$,

$$||P_S(x) - P_S(y)||_2 \le ||x - y||_2.$$

Solution: (1) 1. if $s \in S$, the conclusion is obviously ok.

2. if $s \notin S$ we consider a set that $B = \{z \in R^n | ||z|| < 1\}$, we can find a β big enough to make $D = S \cap (x + \beta B) \neq \emptyset$, and D is a bounded closed set, and $||x - z||_2$ is a continuous function, so that the function must have a minima at $D \in S$, so we prove $P_s(x)$ always exists.

To prove it is unique, we assume x_1 can make $||x-z||_2$ get the minima which equal r, if there is another x_2 can make can make $||x-z||_2$ get the minima too, so the $x_3 = \frac{x_1+x_2}{2}$, and x_3 must belong to S for S is a convex set. and x_1 , x_2 , z can construct a isosceles triangle, and we must have $||x_3-z|| < r$, which is contradictory with r is the minima. So the it is unique.

(2) we first prove if $y = P_S(x)$, there must have $\langle z - y, x - y \rangle \leq 0$, $\forall z \in S$, we proof by contradiction, if there is a $z \in S$, can make $\langle z - y, x - y \rangle > 0$, we can find a $z_1 = y + t(z - y)$, and t is a constant, we now prove $||z_1 - x||_2 < ||y - x||_2$ when t is small enough.

$$||z_1 - x||^2 = ||z_1 - y||^2 + ||y - x||^2 + 2 < z_1 - y, y - x > = t^2 ||z - y||^2 + ||y - x||^2 - 2t < z - y, y - x > t^2 + ||z - y||^2 +$$

when t is small enough, we can get

$$||z_1 - x||^2 < ||y - x||^2$$

which is contradiction with $y = P_S(x)$, then we prove if $\langle z - y, x - y \rangle \leq 0$, $\forall z \in S$, we have $y = P_S(x)$, we can easy prove it by the proof above, for any $z_{n-1} \in S$, we always can find a ponit $z_n = y + t(z_{n-1} - y)$ can make $||z_n - y||$ smaller than $||z_{n-1} - y||$, and the limit

of Z_n is y, so we prove it. (3)

Exercise 2: Separation Theorems 6pts

Let $S_1, S_2 \subseteq \mathbb{R}^n$ be nonempty convex sets. Show that

1. (2pt) if S_1 is closed, then for $x \notin S_1$, there exists a nonzero vector $v \in \mathbb{R}^n$ and $\epsilon > 0$ such that

$$\langle v, y \rangle \le \langle v, x \rangle - \epsilon, \, \forall \, y \in S_1;$$

2. (1pt) if S_1 and S_2 are closed, S_1 is bounded and $S_1 \cap S_2 = \emptyset$, then there exists a nonzero vector $v \in \mathbb{R}^n$ and $\epsilon > 0$ such that

$$\langle v, x_1 \rangle \le \langle v, x_2 \rangle - \epsilon, \, \forall \, x_1 \in S_1, x_2 \in S_2;$$

3. (2pt) for $x \notin S_1$, there exists a nonzero vector $v \in \mathbb{R}^n$ such that

$$\langle v, y \rangle \leq \langle v, x \rangle, \, \forall \, y \in S_1;$$

4. (1pt) if $S_1 \cap S_2 = \emptyset$, then there exists a nonzero vector $v \in \mathbb{R}^n$ such that

$$\langle v, x_1 \rangle \leq \langle v, x_2 \rangle, \, \forall \, x_1 \in S_1, x_2 \in S_2.$$

Solution: 1.we assume that $x_1 = P_s(x)$, and make $v = x - x_1$, we have prove the $\langle v, y - x_1 \rangle \leq 0$, so $\langle v, y \rangle > \langle v, x_1 \rangle$, and $\langle v, x - x_1 \rangle > 0$, so $\langle v, x \rangle > \langle v, x_1 \rangle$, so $\langle v, y \rangle \leq \langle v, x \rangle - \epsilon$, $\forall y \in S_1$.

2. we construct a new set

$$S_0 = S_1 - S_2 = \{x_1 - x_2 | x_1 \in S_1, S_2 \in S_2\}$$

and we know S is convex, closed and $S \neq \emptyset$, and $S_1 \cap S_2 = \emptyset$, so $O \notin S$, so there must exist v can make

$$\langle v, x - 0 \rangle > 0, \, \forall x \in S$$
the conclusion of question 1

we prove it.

3.when S_1 is closed, we have prove it, and when S_1 is't closed, what we can define $P_s(x)$ as a limit point of $z_k \in S_1$ which can make $||z_k - x|| < ||z_{k-1} - x||$, and we easy to know $P_s(x) \in S_1^c$ because S_1 is't closed, so the proof of 1 the x can be x_1 , so $\langle v, x - x_1 \rangle$ 0 should change to $\langle v, x - x_1 \rangle \geq 0$, the = will be ok when x in the border of set S_1 .

so we get
$$\langle v, y \rangle \leq \langle v, x \rangle, \, \forall \, y \in S_1$$

4. we can use the conclusion of 3 and do the same thing as 2 and we can prove it easily.

2