Separacija korijena cjelobrojnih polinoma

Andrej Dujella

PMF - MO, Zagreb

e-mail: duje@math.hr

URL: http://web.math.hr/~duje/

Pitanje: Kolika blizu jedan drugome mogu biti dva različita korijena polinoma P(X) stupnja d s cjelobrojnim koeficijentima?

Uspoređivat ćemo udaljenost između dva korijena od P(X) s njegovom (naivnom) visinom H(P), koja se definira kao maksimum apsolutnih vrijednosti njegovih koeficijenata.

Mahler (1964):
$$|\alpha - \beta| \gg H(P)^{-d+1}$$

za svaka dva različita korijena α i β polinoma P(X) stupnja d s cjelobrojnim koeficijentima (konstanta u \gg je eksplicitna konstanta koja ovisi samo o stupnju d).

Za cjelobrojni polinom P(x) stupnja $d \geq 2$ s različitim korijenima $\alpha_1, \ldots, \alpha_d$, stavljamo da je

$$sep(P) = \min_{1 \le i < j \le d} |\alpha_i - \alpha_j|$$

i definiramo e(P) sa $sep(P) = H(P)^{-e(P)}$. Za $d \ge 2$, definiramo

$$e(d) := \limsup_{\deg(P)=d,H(P)\to+\infty} e(P),$$

$$e_{\mathsf{irr}}(d) := \limsup_{\deg(P) = d, H(P) \to +\infty} e(P),$$

gdje zadnji limsup prolazi po svim ireducibilnim cjelobrojnim polinomima P(x) stupnja d.

Nadalje, na analogan način definiramo $e^*(d)$ i $e^*_{irr}(d)$ tako da promatramo sve normirane, odnosno sve ireducibilne normirane cjelobrojne polinoma stupnja d.

Očito je da vrijedi

$$e(d) \ge e_{\mathsf{irr}}(d)$$
 and $e^*(d) \ge e^*_{\mathsf{irr}}(d)$.

Mahler (1964): $e(d) \le d - 1$ za sve d

$$|d = 3|$$

Evertse (2004), Schönhage (2006):

$$e_{irr}(3) = e(3) = 2$$

Bugeaud & Mignotte (2010):

$$e_{irr}^*(3) = e^*(3) \ge 3/2$$
 (ovdje je jednakost ekvivalentna Hallovoj slutnji)

$$d = 4$$

Bugeaud & D. (2011):

$$e_{irr}(4) \ge 13/6$$

Bugeaud & D. (2013):

$$e(4) \ge 7/3$$

Bugeaud & D. (2013):

$$e_{\rm irr}^*(4) \ge 7/4$$

Bugeaud & Mignotte (2010):

$$e^*(4) \ge 2$$

D. & Pejković (2011):

eksplicitna familija polinoma s eksponentom 2:

$$P_n(x) = (x^2 + x - 1)(x^2 + (1 + F_{n+1})x - (F_n + 1))$$

Ne postoji takva familija s koeficijentima koji rastu polinomijalno u parametru n, ali postoji takva familija s eksponentom $\geq 2 - \varepsilon$ za svaki $\varepsilon > 0$.

 $\lim\sup e(P)=2$, gdje $\lim\sup prolazi po svim reducibil$ nim normiranim polinomima <math>P(x) stupnja 4.

Bugeaud & Mignotte (2004,2010):

 $e_{\mathsf{irr}}(d) \geq d/2$, za svaki parni $d \geq 4$,

 $e(d) \ge (d+1)/2$, za svaki neparni $d \ge 5$,

 $e_{irr}(d) \ge (d+2)/4$, za svaki neparni $d \ge 5$,

Beresnevich, Bernik, & Götze (2010):

 $e_{\mathsf{irr}}(d) \ge (d+1)/3$, za svaki $d \ge 2$.

Bugeaud & Mignotte (2010):

 $e_{\mathrm{irr}}^*(d) \ge (d-1)/2$, za svaki parni $d \ge 4$,

 $e_{\mathsf{irr}}^*(d) \geq (d+2)/4$, za svaki neparni $d \geq 5$,

Beresnevich, Bernik, & Götze (2010):

 $e_{\text{irr}}^*(d) \ge d/3$, za svaki $d \ge 3$.

Bugeaud & D. (2011):

$$e_{\mathsf{irr}}(d) \geq \frac{d}{2} + \frac{d-2}{4(d-1)}$$
 za svaki $d \geq 4$.

Ovaj rezultat poboljšava sve prethodno poznate donje ograde za $e_{irr}(d)$ za $d \ge 4$.

Bugeaud & D. (2011):

$$e_{\mathsf{irr}}^*(d) \ge \frac{d}{2} + \frac{d-2}{4(d-1)} - 1$$
 za sve neparne $d \ge 7$.

Bugeaud & D. (2013):

$$e(d) \ge \frac{2d}{3} - \frac{1}{3}$$
 za sve $d \ge 4$.

Ovo je prvi poznati rezultat oblika $e(d) \ge C \cdot d$ za $C > \frac{1}{2}$.

Bugeaud & D. (2013):

$$e^*(d) \ge \frac{2d}{3} - 1$$
 za sve parne $d \ge 6$

$$e^*(d) \ge \frac{2d}{3} - \frac{5}{3}$$
 za sve neparne $d \ge 7$

Bugeaud & D. (2013):

$$e_{\mathsf{irr}}^*(d) \geq \frac{d}{2} - \frac{1}{4}$$
 za sve $d \geq 4$.

Teorem 1:
$$e_{irr}(d) \ge \frac{d}{2} + \frac{d-2}{4(d-1)}$$
 za sve $d \ge 4$.

Da bi dokazali ovaj rezultat, za svaki $d \ge 4$, konstuiramo eksplicitnu jednoparametarsku familiju ireducibilnih polinoma $T_{d,a}(x)$ stupnja d.

Primjeri malog stupnja:

Za $a \ge 1$, približne su vrijednosti korijena polinoma $T_{4,a}(x) = (20a^4-2)x^4+(16a^5+4a)x^3+(16a^6+4a^2)x^2+8a^3x+1,$ $r_1 = -1/4a^{-3}-1/32a^{-7}-1/256a^{-13}+\ldots,$ $r_2 = -1/4a^{-3}-1/32a^{-7}+1/256a^{-13}+\ldots,$ $r_3 = -2/5a+11/100a^{-3}+69/4000a^{-7}+4/5a\,i+\ldots,$ $r_4 = -2/5a+11/100a^{-3}+69/4000a^{-7}-4/5a\,i+\ldots$ $H(T_{4,a}) = O(a^6), \ \text{sep}(T_{4,a}) = |r_1-r_2| = O(a^{-13}), \ \text{papuštanjem da} \ a \ \text{teži u beskonačno, dobivamo} \ e_{\text{irr}}(4) \ge 13/6.$

Sličan primjer za stupnja 5 je polinom

$$T_{5,a}(x) = (56a^5 - 2)x^5 + (56a^6 + 4a)x^4 + (80a^7 + 4a^2)x^3 + (100a^8 + 8a^3)x^2 + 20a^4x + 1$$

s dva bliska korijena

$$1/10a^{-4} + 1/250a^{-9} + 3/25000a^{-14} - 3/250000a^{-19}$$

 $\pm \sqrt{10}/500000a^{-43/2} + \dots,$

te dobivamo da je $e_{irr}(5) \ge 43/16$.

Konstrukcija ima smisla i za d=3, te daje familiju

$$T_{3,a}(x)=(8a^3-2)x^3+(4a^4+4a)x^2+4a^2x+1$$
 s bliskim korijenima $-1/2a^{-2}-1/4a^{-5}\pm\sqrt{2}/8a^{-13/2}$, što daje $e_{\rm irr}(3)\geq 13/8$.

Ovaj zadnji rezultat je slabiji od prije poznatog rezultata $e_{irr}(3) = 2$, ali u primjerima koji su korišteni u dokazu da je $e_{irr}(3) = 2$, koeficijenti polinoma imali su eksponencijalni rast, dok u našem primjeru imaju polinomijalni rast, što je bitno za neke primjene.

Ove primjere smo otkrili zahtjevajući da diskriminanta polinoma bude što manja (tj. bude polinom što manjeg stupnja u parametru a). Diskriminanta $\Delta(P)$ od P(X) se definira kao

$$\Delta(P) = |a_d|^{2d-2} \prod_{1 \le i < j \le d} (\alpha_i - \alpha_j)^2,$$

gdje je a_d vodeći koeficijent od P(X). Podsjetimo da je $\Delta(P)$ cijeli broj, te da je jednaka nuli ako i samo ako P(X) ima višestrukih korijena. Ako P(X) nema višestrukih korijena, onda vrijedi sljedeće profinjenje Mahlerove ocjene:

$$sep(P) \gg |\Delta(P)|^{1/2} H(P)^{-d+1}.$$

Slobodni član svih polinoma $T_{d,a}(x)$ je jednak 1. To znači da je recipročni polinom od $T_{d,a}(x)$ normiran. Stoga naš rezultat daje također donju ogradu za $e^*_{\rm irr}(d)$.

Primijetimo da ako su α i β dva bliska korijena polinoma $T_{d,a}(x)$, onda vrijedi

$$|\alpha|^{-1}, |\beta|^{-1} = O(a^{d-1}) = O(H(T_{d,a})^{1/2}),$$

pa je razlika

$$\left| \frac{1}{\alpha} - \frac{1}{\beta} \right| = \frac{|\alpha - \beta|}{\alpha \beta}$$

vrlo mala, a $1/\alpha$ i $1/\beta$ su korijeni recipročnog polinoma od $T_{d,a}(x)$.

Za $i \geq 0$, s c_i označimo i-ti Catalanov broj definiran sa

$$c_i = \frac{1}{i+1} {2i \choose i}.$$

Niz Catalanovih brojeva $(c_i)_{i>0}$ započinje ovako:

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots$$

i zadovoljava rekurziju

$$c_{i+1} = \sum_{k=0}^{i} c_k c_{i-k}, \quad \text{za } i \ge 0.$$
 (1)

Za prirodne brojeve $d \geq 3$ i $a \geq 1$, promatramo polinom

$$T_{d,a}(x) = (2c_0ax^{d-1} + 2c_1a^2x^{d-2} + \dots + 2c_{d-2}a^{d-1}x)^2 - (4c_1a^2x^{2d-2} + 4c_2a^3x^{2d-3} + \dots + 4c_{d-2}a^{d-1}x^{d+1}) + (4c_1a^2x^{d-2} + 4c_2a^3x^{d-3} + \dots + 4c_{d-2}a^{d-1}x) + 4ax^{d-1} - 2x^d + 1,$$

koji poopćava prije navedene $T_{3,a}(x)$, $T_{4,a}(x)$, $T_{5,a}(x)$.

Iz rekurzije (1) slijedi da $T_{d,a}(x)$ ima stupanj točno d, a ne 2d-2, kako se možda čini na prvi pogled. Nadalje, visina od $T_{d,a}(x)$ je koeficijent uz x^2 , a to je

$$H(T_{d,a}) = 4c_{d-2}^2a^{2d-2} + 4c_{d-3}a^{d-2}.$$

Primjenom Eisensteinovog kriterija za prost broj 2 na recipročni polinom $x^dT_{d,a}(1/x)$, zaključujemo da je polinom $T_{d,a}(x)$ ireducibilan. Zaista, svi koeficijenti od $T_{d,a}(x)$ osim konstantnog člana su parni, a vodeći koeficijent $4c_{d-1}a^d-2$ nije djeljiv sa 4.

Uz oznaku

$$g = g(a, x) = 2c_0ax^{d-1} + 2c_1a^2x^{d-2} + \dots + 2c_{d-2}a^{d-1}x,$$

vidimo da je

$$T_{d,a}(x) = (1+g)^2 + x^d (4ax^{d-1} - 2(1+g)).$$

Jasno je da $(1+g)^2$ ima dvostruki korijen, nazovimo ga sa x_0 , blizu $-1/(2c_{d-2}a^{d-1})$. Preciznije, vrijedi

$$x_0 = -a^{-d+1}/(2c_{d-2}) + O(a^{-2d+1}).$$

Konstanta u O ne ovisi o a.

Polinom $T_{d,a}(x)$ ima dva različita korijena blizu x_0 , budući da je član $x^d(4ax^{d-1}-2(1+g))$ predstavlja malu perturbaciju kada je x blizu x_0 .

Neka je $\delta_0=\frac{1}{2^{d-1/2}c_{d-2}^{d+1/2}}$. Tada za svaki dovoljno mali $\varepsilon>0$ i dovoljno veliki a, polinom $T_{d,a}(x)$ ima korijen x_1 u intervalu

$$(x_0 - (\delta_0 + \varepsilon)a^{-d^2 + d/2 + 1}, x_0 - (\delta_0 - \varepsilon)a^{-d^2 + d/2 + 1})$$

i korijen x_2 u intervalu

$$(x_0 + (\delta_0 - \varepsilon)a^{-d^2 + d/2 + 1}, x_0 + (\delta_0 + \varepsilon)a^{-d^2 + d/2 + 1}).$$

To povlači da je

$$\operatorname{sep}(T_{d,a}) \le \frac{1}{2^{d-3/2} c_{d-2}^{d+1/2} a^{d^2-d/2-1}}.$$

Budući da je $H(T_{d,a}) = O(a^{2d-2})$, dobivamo

$$e_{\mathsf{irr}}(d) \ge \frac{2d^2 - d - 2}{4(d - 1)} = \frac{d}{2} + \frac{d - 2}{4(d - 1)},$$

što je i trebalo dokazati.

Teorem 2:
$$e(d) \ge \frac{2d}{3} - \frac{1}{3}$$
 za sve $d \ge 4$.

Želimo konstruirati jednoparametarsku familiju cjelobrojnih polinoma $p_{d,n}(x)$ stupnja d koji imaju korijen vrlo blizu racionalnog broja $x_n=(n+2)/(n^2+3n+1)$. Tada će polinomi

$$P_{d,n}(x) = ((n^2 + 3n + 1)x - (n + 2))p_{d-1,n}(x)$$

imati dva korijena vrlo brizu jedan drugome. Niz $p_{d,n}(x)$ definiramo rekurzivno sa

$$p_{0,n}(x) = -1, \quad p_{1,n}(x) = (n+1)x - 1,$$

$$p_{d,n}(x) = (1+x)p_{d-1,n}(x) + x^2p_{d-2,n}(x).$$

Vrijedi

$$p_{d,n}\left(\frac{n+2}{n^2+3n+1}\right) = \frac{(-1)^{d-1}}{(n^2+3n+1)^d}.$$

Ovo svojstvo nam omogućava dokazati da za dovoljno veliki n polinom $p_{d,n}(x)$ ima korijen između x_n i

$$z_{d,n} = x_n + \frac{(-1)^d}{n(n^2 + 3n + 1)^d}.$$

Stoga polinom $P_{d,n}(x)$ ima dva bliska korijena: x_n i $y_{d,n}$, koji je između x_n i $z_{d-1,n}$. To povlači da je

$$sep(P_{d,n}) \le |x_n - y_{d,n}| \le \frac{1}{n(n^2 + 3n + 1)^{d-1}} \le \frac{1}{n^{2d-1}},$$

kada je n dovoljno velik. Budući da je $H(P_{d,n}) = O(n^3)$, kad pustimo da n teži u beskonačno, dobivamo da je

$$e(d) \ge \frac{2d-1}{3}.$$

Teorem 3:
$$e^*(d) \ge \frac{2d}{3} - 1$$
 za svaki parni $d \ge 6$, $e^*(d) \ge \frac{2d}{3} - \frac{5}{3}$ za svaki neparni $d \ge 7$.

Da bi dobili familiju normiranih polinoma sa sličnim separacijskim svojstvima poput familije $P_{d,n}(x)$, zamijenit ćemo linearni nenormirani polinom $L_n(x) = (n^2 + 3n + 1)x - (n+2)$ s kvadranim normiranim polinomom

$$K_n(x) = x^2 - (n^2 + 3n + 1)x + (n + 2).$$

Dakle, želimo konstruirati jednoparametarsku familiju cjelobrojnih polinoma $q_{d,n}(x)$ stupnja d koji imaju korijen vrlo blizu korijenu $y_n=1/n+O(1/n^2)$ od $K_n(x)$. Tada će polinom

$$Q_{d,n}(x) = (x^2 - (n^2 + 3n + 1)x + (n + 2))q_{d-2,n}(x)$$

imati dva korijena vrlo blizu jedan drugome.

Za $d \ge 0$ paran, definiramo niz $q_{d,n}(x)$ rekurzivno sa

$$q_{0,n}(x) = 1$$
, $q_{2,n}(x) = x^2 - (n+1)x + 1$,

$$q_{d,n}(x) = (2x^2 + x + 1)q_{d-2,n}(x) - x^4q_{d-4,n}(x).$$

Primijetimo da je $q_{d,n}(x)-q_{d-2,n}(x)q_{2,n}(x)$ djeljiv sa $K_n(x)$, što povlači da je

$$q_{d,n}(y_n) = q_{d-2,n}(y_n)q_{2,n}(y_n) = (q_{2,n}(y_n))^{d/2},$$

za paran $d \geq 2$. Iz

$$y_n = 1/n - 1/n^2 + 2/n^3 - 4/n^4 + 8/n^5 + O(1/n^6),$$
dobivamo $q_{2,n}(y_n) = 1/n^4 + O(1/n^5)$ i stoga je $q_{d,n}(y_n) = 1/n^{2d} + O(1/n^{2d+1}).$

Može se pokazati da za dovoljno veliki n polinom $q_{d,n}(x)$ ima korijen između y_n i $w_{d,n}=y_n+\frac{2}{n^{2d+1}}$. Stoga polinom $Q_{d,n}(x)$ ima dva bliska korijena: y_n i $v_{d,n}$, koji je između y_n i $w_{d-2,n}$. To povlači da je

$$\operatorname{sep}(Q_{d,n}) \le \frac{2}{n^{2d-3}},$$

kada je n dovoljno velik. Budući da je $H(Q_{d,n}) = O(n^3)$, poštajući n da teži u beskonačno, dobivamo da je

$$e^*(d) \ge \frac{2d-3}{3}.$$

Neka je sada d neparan. Definiramo

$$Q_{d,n}(x) = x(x^2 - (n^2 + 3n + 1)x + (n + 2))q_{d-3,n}(x).$$

Ovaj polinom ima dva bliska korijena: y_n i korijen koji leži između y_n i $w_{d-3,n}$. Zato je

$$\operatorname{sep}(Q_{d,n}) \le \frac{2}{n^{2d-5}},$$

za n dovoljno velik, što povlači da je

$$e^*(d) \ge \frac{2d-5}{3}.$$

Teorem 4:
$$e_{irr}^*(d) \ge \frac{d}{2} - \frac{1}{4}$$
 za svaki $d \ge 4$.

Koristimo polinome $p_{d,n}(x)$ da bi konstruirali ireducibilne normirane polinome s dva vrlo bliska korijena.

Sa F_k označimo k-ti Fibonaccijev broj. Primijetimo da se Fibonaccijevi brojevi javljaju u asimptotskom razvoju od $x_n = (n+2)/(n^2+3n+1)$. Naime,

$$x_n = 1/n - 1/n^2 + 2/n^3 - 5/n^4 + \dots - (-1)^k F_{2k-3}/n^k + \dots$$

Za $d \ge 0$, najprije definiramo normirane polinome $s_{d,n}(x)$, s korijenom blizu x_n , sa

$$s_{d,n}(x) = (-1)^{d-1} (F_{d-1}p_{d,n}(x) - F_d x p_{d-1,n}(x)),$$

a potom normirane polinome s dva bliska korijena sa

$$r_{2d+1,n}(x) = xs_{d,n}^2(x) + F_d^2 p_{d,n}^2(x),$$

$$r_{2d,n}(x) = s_{d,n}^2(x) + F_{d-1}^2 x p_{d-1,n}^2(x).$$

Tvrdimo sa su ovi polinomi normirani. Dovoljno je tvrdnju dokazati za $s_{d,n}(x)$. Budući da je vodeći koeficijent od $p_{d,n}(x)$ jednak $F_{dn}+F_{d-2}$, dobivamo da je vodeći koeficijent od $s_{d,n}(x)$ jednak

$$(-1)^{d-1}(F_{d-1}(F_{dn} + F_{d-2}) - F_d(F_{d-1}n + F_{d-3}))$$

$$= (-1)^{d-1}(F_{d-1}F_{d-2} - F_dF_{d-3}) = 1.$$

Imamo

$$r_{d,n}(x_n) = F_{\lfloor (d-1)/2 \rfloor}^2 / n^{2d-3} + O(1/n^{2d-2}).$$

Uočimo da je stupanj polinoma $r_{d,n}(x)$ jednak d te da je $H(r_{d,n}) = O(n^2)$.

Može se pokazati da $r_{d,n}(x)$ ima dva kompleksno konjugirana korijena $v_{d,n}$ i $\overline{v_{d,n}}$ blizu x_n , preciznije, ti korijeni su

$$1/n - 1/n^2 + 2/n^3 - 5/n^4 + 13/n^5 - \dots + (-1)^d F_{2d-5}/n^{d-1} \pm i/n^{(2d-1)/2} + O(1/n^d).$$

Nije sasvim jednostavno, no može se pokazati da su za dovoljno veliki prirodan broj n polinomi $r_{d,n}(x)$ ireducibilni nad $\mathbb{Z}[x]$. Dokaz koristi ocjene za rezultantu polinoma $R_{d,n}(x)$ i $L_n(x)$, gdje $R_{d,n}(x)$ označava ireducibilni faktor od $r_{d,n}(x)$ koji ima korijene $v_{d,n}$ i $\overline{v_{d,n}}$. Te ocjene povlače da je stupanj od $R_{d,n}(x)$ jednak ili d ili d-1, a zadnju mogućnost se može isključiti za dovoljno velike n.

Budući da je

$$sep(r_{d,n}) = O(n^{-(d-1/2)}),$$

dobivamo

$$e_{\mathsf{irr}}^*(d) \ge \frac{2d-1}{4}.$$

Hallova slutnja: Za svaki $\varepsilon > 0$, postoji konstanta $c(\varepsilon) > 0$ sa svojstvom da ako su x i y prirodni brojevi takvi da je $x^3 - y^2 \neq 0$, onda je

$$|x^3 - y^2| > c(\varepsilon)x^{1/2 - \varepsilon}$$
.

Poznato je da Hallova slutnja slijedi iz abc-slutnje (postoji i jača verzija Hallove slutnje koja je ekvivalentna sabc-slutnjom).

Promotrimo kubni polinom

$$P(X) = X^3 + pX + q.$$

Njegova diskriminanta je $\Delta(P)=-4p^3-27q^2$. Zanima nas koliko mali može biti izraz $4p^3+27q^2$ u usporedbi s $\max\{|p|,|q|\}$. Stavimo li $p=-3x,\ q=2y,$ u stvari naše pitanje postaje koliko mali može biti izraz $|x^3-y^2|$. Ovo objašnjava vezu problema separacije korijena kubnih ireducibilnih normiranih polinoma s Hallovom slutnjom.

Spomenut ćemo jedan nedavni rezultat u vezi polinomijalne verzije Hallove slutnje.

Davenport (1965): Za nekonstantne kompleksne polinome x i y, takve da je $x^3 \neq y^2$, vrijedi

$$\deg(x^3 - y^2)/\deg(x) > 1/2.$$

Zannier (1995): Za svaki prirodan broj δ postoje kompleksni polinomi x i y takvi da je $\deg(x) = 2\delta$, $\deg(y) = 3\delta$ i $\deg(x^3 - y^2) = \frac{1}{2}\deg(x) + 1 = \delta + 1$.

Birch, Chowla, Hall and Schinzel (1965), Elkies (2000): Postoje polinomi x i y s cjelobrojnim koeficijentima takvi da je $deg(x^3 - y^2)/deg(x) = 0.6$.

D. (2011): Za svaki $\varepsilon > 0$ postoje polinomi x i y s cjelobrojnim koeficijentima takvi da je $x^3 \neq y^2$ i $\deg(x^3 - y^2)/\deg(x) < 1/2 + \varepsilon$.

Preciznije, za svaki parni prirodni broj δ postoje polinomi x i y s cjelobrojnim koeficijentima takvi da je $\deg(x) = 2\delta$, $\deg(y) = 3\delta$ i $\deg(x^3 - y^2) = \delta + 5$.

Ovo je dio "najjednostavnijeg" eksplicitnog primjera koji poboljšava kvocijent $\deg(x^3-y^2)/\deg(x)=0.6$ iz spomenutih primjera koje su našli Birch, Chowla, Hall, Schinzel i Elkies, i kod kojeg je $\deg(x^3-y^2)/\deg(x)=31/52=0.5961...$:

```
\begin{array}{c} x &= 281474976710656t^{52} + 3799912185593856t^{50} + \\ & \dots \\ & + 496080t^5 + 130625t^4 + 15750t^3 + 629t^2 + 150t + 4, \\ y &= 4722366482869645213696t^{78} + \\ & \dots \\ & + 11812545t^5 + 642429t^4 + 94050t^3 + 6591t^2 + 225t + 19, \\ x^3 - y^2 &= -905969664t^{31} - 8380219392t^{29} - 35276193792t^{27} \\ & - 89379569664t^{25} - 151909171200t^{23} - 182680289280t^{21} \\ & - 159752355840t^{19} - 102786416640t^{17} - 48661447680t^{15} \\ & - 16772918400t^{13} - 4116359520t^{11} - 692649360t^9 \\ & - 75171510t^7 - 297t^6 - 4749570t^5 - 891t^4 - 144450t^3 \\ & - 891t^2 - 1350t - 297. \end{array}
```

Za dani polinom P(X) s cjelobrojnim koeficijentima koji ima svojstvo da je P(x) > 0 za sve $x \in \mathbb{R}$, pitamo se koliko mala može biti veličina $m(P) = \min\{P(x) : x \in \mathbb{R}\}$, kao funkcija od stupnja d i visine H(P).

Bugeaud & Mignotte (2010):

$$m(P) \ge d^{(9-7d)/2}H(P)^{-2d+3}$$

Neka je
$$\pi(d) = \limsup_{\deg(P) = d, H(P) \to +\infty} \frac{-\log m(P)}{\log H(P)}.$$

Bugeaud & Mignotte (2010):

$$d-1 \le \pi(d) \le 2d-3$$
 za sve $d \ge 2$

Bugeaud & D. (2011):
$$\pi(4) \ge 10/3$$

$$P_n(x) = (20n^4 + 2)x^4 + (-16n^5 + 4n)x^3 + (16n^6 - 4n^2)x^2 + 8n^3x + 1$$
$$m(P_n) = 1/4096 n^{-20} - 15/65536 n^{-24} + \cdots$$