Linear Discriminant Analysis (LDA)

Model the distribution of predictors in each category separately

ullet Use **Bayes theorem** to flip things around and obtain $P(\mathsf{category} \mid \mathsf{predictors})$

Naive Bayes: features are conditionally independent given the class label

Now: model the joint distribution of features given the class label

- assume distribution of the features within each category is normally distributed

assume covariances of the MVN distributions are equal for both classes

use the Bayes optimal classifier

Linear Discriminant Analysis (LDA)

- Model the distribution of predictors in each category separately
- Use **Bayes theorem** to flip things around and obtain P(category | predictors)
- Naive Bayes: features are conditionally independent given the class label
- Now: model the joint distribution of features given the class label
 - assume distribution of the features within each category is normally distributed
 - assume covariances of the MVN distributions are equal for both classes
 - use the Bayes optimal classifier

Linear Discriminant Analysis (LDA) with 1 Predictor

