PARAMETRIC & GEOMETRIC CONTINUITY

A big Question Comes in mind when we join 2 piece wise polynomial parametric Coure that how to specify the smootness of the

There are two approaches which determine the Smootness of Cure ie Cure Continuity:

Continuity Conditions Geometrical Continuity Conditions

PARAMETRIC CONTWUITY

Parametric Continuity deals in parametric equations associated to piecewise parametric polynomial Cure. not the Shape or appearance of the Curue.

-> Zero Order Parametric Continuity: Co Continuity means that 2 piece of aures are joined or meet at same point.

Thèse are two piece of Cure P&Q If P(t=1) = 0(t=0) => Zero order Parametric Continuity.

First Order Parametric Continuity (C1):-

In first Order Parametric Continuity C' means that first Parametric derivatives of the Coordinate Fⁿ for 2 Successive Curve Sections are equal at the Joining Point. $(1 \rightarrow)$ First Derivatives are P'(t=1) = Q'(t=0)

P40 are first order Derivative.

Second Order Parametric Continuity C^2 :

It means both first and Second derivative of 2

Cure Section are Same at the intersection point P''(t=1) = 8''(t=0)

GIEOMETRIC CONTINUITY CONDITION:-

Geometric Continuity refers to the way that a Cure Or Swyace looks (wit targent or Curvature vector Continuity.)

Parametric Continuity implies geometric Continuity and Vice Versa however exception do exist.

Zero order geometric Continuity Go

It is same as Cizero order parametric Continuity. It means two curves sections must have the Same Coordinate position at the boundary point.

P & are two segments of Curres.

P(t=1) = 0(t=0)

First Order Geometric Continuity:

Geometric first Order Continuity means that the Parametric first derivative are proportional at the Intersection of a Successive Sections.

If P and Q are two piece of Curves, then P(t) & O'(t) must have Same direction of tangent

Vector but not necessary the same magnitud

Here tangent vector has same direction but their magnitude are not same (length)

Cl(1) = (a,b,c) & (2'(0)=(K*a, K*b,

P'(t) \$ 0'(t)

Propostional. G' #7 C' Mayor
C' > G' Mayor

Second Order Geometrical Continuity:

Both first & Second derivative are proportional at their boundary point of targent vector direction is Same & Magnitude may or may not some.

The tangent vector O(t) is the velocity of a point on the Curve with respect to parameter t. Dimilarly O'(t) is the acceleration

In general c' continuity => G' but converse is not true generally

Join point with G' continuity will appear fist Smooth as those with I continuity.

Special Case: - C' Continuity does not imply G' Continuity When Segments tangent vector are [0 00] at the Join point.

In this case the tangent vectors are equal but there directions Can be different