

介绍

教程简介:

• 面向对象:量子计算初学者

• 依赖课程:线性代数,解析几何,量子力学(非必需)

知乎专栏:

https://www.zhihu.com/column/c_1501138176371011584

Github & Gitee 地址:

https://github.com/mymagicpower/qubits https://gitee.com/mymagicpower/qubits

* 版权声明:

- 仅限用于个人学习,或者大学授课使用 (大学授课如需ppt 原件,请用学校邮箱联系我获取)
- 禁止用于任何商业用途

名称	真值表	经典逻辑电路	量子逻辑电路
AND 与门	A B C 0 0 0 0 1 0 1 0 0 1 1 1	$A \longrightarrow C$ $B \longrightarrow C$ $C = A \cdot B$	Toffoli (*)
OR 或门	A B C 0 0 0 0 1 1 1 0 1 1 1 0	$A \longrightarrow C$ $C = A + B$	A>

名称	真值表	经典逻辑电路	量子逻辑电路	
NOT 非门	A B 0 1 1 0	$A - B$ $B = \bar{A}$	A\\	
NAND 与非门	A B C 0 0 1 0 1 1	$A \longrightarrow C$	A>	Toffoli (`)

 $C = \overline{A \cdot B}$

1 0

1 1 0

名称	真值表	经典逻辑电路	量子逻辑电路
NOR 或非门	A B C 0 0 1 0 1 0 1 0 0 1 1 0	$A \longrightarrow C$ $C = \overline{A + B}$	A>
XOR 异或门	A B C 0 0 0 0 1 1 1 0 1 1 1 0	$A \longrightarrow C$ $C = A \oplus B$ $= (A + B) mc$	$ A\rangle$ $ B\rangle$ $0d \ 2 = (A + B) \% 2$

Calvin, QQ: 179209347 Mail: 179209347@qq.com

名称	真值:	表	经典逻辑电路	量子逻辑电路
XNOR 同或门	A B 0 0 0 1 1 0 1 1	C 1 0 0	$A \longrightarrow C$ $C = \overline{A \oplus B}$	A)

一位加法器 - 半加器

半加器可以实现两个 1 位的二进制数字相加,并且输出结果和进位。它的真值表根据二进制加法就可以得到。

经典逻辑电路

$$S = A \oplus B$$

($A + B$) $mod 2$

进位
$$CO = AB$$

量子逻辑电路

半加器真值表

输	入	输出		
A	В	CO	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

一位加法器 - 全加器

全加器和半加器的区别在于全加器考虑来自低位来的进位数,实质上是一个三个数的加法器。

全加器真值表

	输入	输出		
A	В	CI	CO	S
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

Calvin, QQ: 179209347 Mail: 179209347@qq.com

一位加法器 - 全加器线路

全加器可以由两个半加器和一个或门构成:

全加器量子线路为:

图形符号

在数字逻辑电路中A、B为 0 或 1,但是在量子电路中A、B 还可以是 0 和 1 的叠加态,得到的结果也可以是叠加态。

在经典数字电路中,多位加法器是由多个全加器集成而来,如下图:4位二进制数相加需要使用4个全加器。

一种更高效的量子电路多位加法器

在某些情况下,量子计算机中需要实现基本的四则运算,而量子加法器是量子四则运算的实现基础。

加法器算法背景

除了测量之外的所有量子门操作都是幺正变换,所以不含测量的量子线路整体是可逆的。量子加法器的量子线路也应当可逆,因而输入输出是数量相等的量子比特,量子线路图如下所示。

参考来源: https://pyqpanda-toturial.readthedocs.io/zh/latest/QArithmetic.html

Calvin, QQ: 179209347 Mail: 179209347@qq.com

两个电路用于求进位和求当前位: in-place majority gate (MAJ) 和UnMajority and Add gate(UMA)。

MAJ的量子线路

MAJ模块是为了获得进位结果

UMA 的量子线路 UMA模块是为了获得当前位结果

输入为:

前一位的进位值 c_i 、当前位的两个待加值 a_i , b_i , 输出为:

 $a_i+c_i \mod 2$, $a_i+b_i \mod 2$ 和当前位进位值 c_{i+1} 。

输入为:

 $a_i+c_i \mod 2$, $a_i+b_i \mod 2$ 和当前位进位值 c_i+1 输出为:

 c_i , $a_i+b_i+c_i \mod 2 := s_i \not \square a_i$.

MAJ量子线路组件

MAJ模块是为了实现获得进位:

我们想要得到进位 c_{i+1} ,等价于判断 $(a_i+b_i+c_i)/2$ 。

MAJ表达式:

 $|c_i\rangle|b_i\rangle|a_i\rangle \xrightarrow{MAJ} |a_i \oplus c_i\rangle |a_i \oplus b_i\rangle |c_{i+1}\rangle$

$$A \oplus B = (A + B) \mod 2 = (A + B) \% 2$$

 $A \bullet B = A * B$
 $\overline{A} = (A + 1) \mod 2 = (A + 1) \% 2$

1. 当 a_i =0 时,满足与门:

$$c_{i+1} = A \cdot B = [(a_i + c_i) \% 2] * [(a_i + b_i) \% 2]$$

2. 当 a_i =1 时,满足与非门:

$$c_{i+1} = \overline{A \cdot B} = ([(a_i + b_i) \% 2] * [(a_i + c_i) \% 2] + 1) \% 2$$

MAJ量子线路组件

通过枚举分析,我们知道只需要考察 a_i , $[(a_i+b_i)\%2]*[(a_i+c_i)\%2]$ 就可以判断进位情况。

从现有的量子逻辑门出发,制备量子态:

$$a_i$$
, (a_i+b_i) % 2, (a_i+c_i) % 2

即可以准确判断出进位的情况。

此处选取的考察对象并不唯一,其他方案会衍生出相应的量子线路。

制备三个量子态的方案如图中所示:

使用 CNOT 门来完成模 2 加法得到 (a_i+b_i) % 2 , (a_i+c_i) % 2 使用 Toffoli 门完成 a 与 $[[(a_i+b_i)$ % 2]* $[(a_i+c_i)$ % 2] 的运算。

CNOTIJ

Toffoli []

UMA量子线路组件

UMA模块是为了获得当前位:

我们想要得到当前位 s_i ,等价于判断 $(a_i+b_i+c_i)$ % 2。

参考MAJ模块:

- 首先通过与MAJ所用的完全相反的Toffoli门由 c_{i+1} 得到 a_i
- 然后利用与MAJ所用的相反的CNOT变换得到 c_i
- 综合已有的 $a_i + b_i \mod 2$, 于是可以通过简单的 CNOT门得到 $(a_i + b_i + c_i)$ % 2。

从图中的UMA电路中可以看出,开始的前两步Toffoli 和 CNOT 恰好为 MAJ 中的后两个门的逆变换,即互相抵消。 所以MAJ和UMA合起来的表达式为:

$$|c_i\rangle|b_i\rangle|a_i\rangle \xrightarrow{MAJ\ UMA} |c_i\rangle|s_i\rangle|a_i\rangle$$

求和位:
$$s_i = a_i \oplus b_i \oplus c_i$$

进位位:
$$c_{i+1} = a_i b_i \oplus b_i c_i \oplus c_i a_i$$

量子减法器实质上就是量子加法器的带符号版本。

对于带符号变换的量子加法,需要追加辅助比特用于记录符号位。 任给两个目标量子态 A,B,对第二个量子态 B 进行特定的补码操作,然后转换为A-B=A+(-B),此处的 -B 并不以符号位取反的方式实现。

该特定的补码操作为:

- 符号位为正则不变
- 符号位为负需要按位取反后再加1 因此需要一个额外的辅助比特来控制是否进行求补码的操作。

 α_{\sim}

量子乘法器是基于加法器完成的。

选择乘数 A 作为受控比特,选择乘数 B 以二进制展开逐位作为控制比特,将受控加法器的运算结果累加到辅助比特中。每完成一次 B 控制的受控加法就将乘数 A 左移一位并在末位补零。于是把通过受控加法输出的数值在辅助比特中累加起来,得到乘法结果。

从竖式中可以看出:

- 乘法相当于做与运算和加法运算。
- 并且 n 位二进制数的乘法最 多有 2n 位 , 其中 c_i 为进位。

			a_2	u_1	a_0
×			b_2	b_1	b_0
	0	0	$a_{2}b_{0}$	a_1b_0	a_0b_0
	0	a_2b_1	a_1b_1	a_0b_1	0
+	a_2b_2	a_1b_2	a_0b_2	0	0
C_i	S ₄	S ₃	S ₂	S ₁	S ₀

 α_{\sim}

量子除法器是基于量子减法器完成的。

通过执行减法后被除数的符号位是否改变来完成大小比较,并决定除法是否终止。 除数减去被除数时,商结果加 1。每完成一次减法后,重新进行被除数与除数的大小比较,直至除尽或者达到 预设精度。因此还需要额外追加一个存储精度参数的辅助比特。

与乘法器类似,除法器也是分为带符号运算和仅限正数两类。

