AD-A101 279

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA NATIONAL DAM INSPECTION PROGRAM. CAMP DELMONT DAM (NDI I.O. PA---ETC(U) APR 81 P C JOHNSON

UNCLASSIFIED

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

NL

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (NDI I.O. PA---ETC(U) DACW31-81-C-0016

O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA (N

AD A 101279

DELAWARE RIVER BASIN
UNAMI CREEK
PENNSYLVANIA

NDI ID PA 00938 PA DER 46-244

CAMP DELMONT DAM

OWNED BY
BOY SCOUTS OF AMERICA

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

"Criginal contains color plates: All DTIC reproduct ions will be in black and white"

PREPARED FOR

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT CORPS OF ENGINEERS

BALTIMORE, MARYLAND 21203

BY

O'BRIEN & GERE

PHILADELPHIA, PENNSYLVANIA
19103

APRIL 1981

DISTRIBUTION STATEMENT A

Ar proved for public release

Distribution Unlimited

81 7 10 0

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By Pex DTIC Form 50
Distribution/on File
Availability Codes

Avail and/or
Dist
Special

National Dam Inspection Program. Camp Delmont Dam (NDI ID PA 00938, PA DER 46-244), Delaware River Basin, Unami Creek, Pennsylvania. Phase I Inspection Report,

DELAWARE RIVER BASIN

CAMP DELMONT DAM PENNSYLVANIA

NDI ID PA 00938

OWNED BY BOY SCOUTS OF AMERICA

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

Prepared for:

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203

Prepared by:

O'BRIEN & GERE ENGINEERS, INC. 1617 JF Kennedy Boulevard - Suite 1760 / Philadelphia, Pennsylvania 19103

Contract DACW 31-81-C-0016/

APRA 181

412963

Approved for public release;

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected, and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I REPORT

NATIONAL DAM INSPECTION PROGRAM

Name of Dam: State Located: County Located: Stream: Coordinates: Date of Inspection:

Camp Delmont Dam Pennsylvania Montgomery Unami Creek Latitude 40°20.8', Longitude 75°26.3' December 18, 1980

ASSESSMENT

Camp Delmont Dam is a concrete capped rockfilled timber crib structure with steel and timber sheetpile abutments about 190 feet long, with a maximum height of 19 feet. The dam, which was built in 1947, impounds a lake used for recreation by the Owner, the Boy Scouts of America.

The dam has a maximum storage capacity of 236 acre feet and a maximum height of 19 feet which places it in the "Small" size category. Because of the chance for appreciable damage to several cottages located downstream of the site and little chance for loss of life due to failure of the dam, the dam is judged to be a "Significant" hazard structure. Due to the inhabitable dwellings located downstream of the dam, fifty percent of the Probable Maximum Flood (PMF) was selected as the appropriate Spillway Design Flood (SDF).

An examination of the results of the hydrologic and hydraulic analyses indicates that the spillway and adjacent roadway are capable of passing 36 percent of the PMF without overtopping the dam abutments. The selected SDF for the dam is fifty percent of the PMF. Since the spillway is not capable of passing the SDF, the spillway is classified as "Inadequate". Further examination of the hydrologic and hydraulic analyses indicates that the spillway and adjacent roadway are capable of passing the 100 year event without overtopping the dam abutments.

Based on visual observations and a review of the information obtained from Pennsylvania Department of Environmental Resources, Camp Delmont Dam appears to be in good condition.

Recommendations and Remedial Measures

The following recommendations and remedial measures should be initiated immediately by the Owner.

CAMP DELMONT DAM NDI ID PA 00938

a. Facilities

- 1. The displaced portion of the horizontal planking on the downstream face of the overflow section should be replaced.
- 2. The control valve for the reservoir drain should be exercised and repaired if necessary.

b. Operation and Maintenance

- 1. A formal inspection and maintenance program should be developed and implemented to insure that the dam and appurtenances are maintained on a regularly scheduled basis. Maintenance performed should be recorded to provide a history of corrected deficiencies.
- 2. A formal downstream warning system should be developed. During periods of heavy rainfall, the dam should be monitored and appropriate agencies should be alerted in the event of an impending failure.

O'BRIEN & GERE ENGINEERS, INC.

Peter C. Johnson, P.E.

Senior Vice President

Pennsylvania Registration No. PE-02246-E

Date: 29 Apr. 181

Approved by

JAMES W. PECK

Colonel, Corps of Engineers

istrict Engineer

Date:

OVERVIEW OF THE DAM FROM THE LEFT ABUTMENT. (12/19/81)

OVERVIEW OF THE DAM FROM THE RIGHT ABUTMENT. (12/19/81)

TABLE OF CONTENTS

	PAGE
Preface Assessment Overview Photograph	i ii iv
SECTION 1 - PROJECT INFORMATION 1.1 General 1.2 Description of Project 1.3 Pertinent Data	1 1 3
SECTION 2 - ENGINEERING DATA 2.1 Design 2.2 Construction 2.3 Operational Data 2.4 Evaluation	5 5 5 5
SECTION 3 - VISUAL INSPECTION 3.1 Findings 3.2 Evaluation	6 6
SECTION 4 - OPERATIONAL PROCEDURES 4.1 Procedures 4.2 Maintenance of the Dam 4.3 Maintenance of Operating Facilities 4.4 Description of any Warning Systems in Effect 4.5 Evaluation	7 7 7 7 7
SECTION 5 - HYDROLOGY AND HYDRAULICS 5.1 Evaluation of Features	8
SECTION 6 - STRUCTURAL STABILITY 6.1 Evaluation of Structural Stability	10
SECTION 7 - ASSESSMENT, RECOMMENDATIONS AND PROPOSED REMEDIAL MEASURES 7.1 Dam Assessment 7.2 Recommendations and Remedial Measures	11 11
APPENDIX A Visual Inspection B Checklist, Engineering Data C Photographs D Hydrologic and Hyraulic Engineering Data E Regional Vicinity Map and Drawings F Geology	

PHASE I REPORT NATIONAL DAM INSPECTION PROGRAM CAMP DELMONT DAM NDI ID PA 00938 PA DER 46-244

SECTION 1

PROJECT INFORMATION

1.1 General

- a. <u>Authority</u>. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of this inspection is to determine if Camp Delmont Dam constitutes a hazard to human life or property.
- 1.2 <u>Description of Project</u> (Based on information obtained from the Pennsylvania Department of Environmental Resources (DER), Division of Dam Safety, Harrisburg, Pennsylvania, and from the field inspection.)
- a. Dam and Appurtenances. Camp Delmont Dam is a rockfilled timber crib structure approximately 190 feet long with a maximum height of 19 feet constructed as a run-of-river dam at the southern end of the impoundment.

The overflow section of the dam is 150 feet long, approximately 10 feet high and capped with concrete. Vertical steel sheet piling, which acts as a cutoff, is located along the entire upstream face of the structure. The crest width of the overflow portion of the dam is 10 feet. The 30-foot wide downstream portion of the overflow section is on a slope of 5H:1V. The downstream end of the overflow section is a timber wall about four feet high.

The dam abutments are both 40 feet wide, and are 24 feet long on the left side looking downstream and 15 feet long on the right side. The left abutment is filled with concrete while the non-overflow portion on the right side is filled with earth. A 36-inch diameter corrugated metal reservoir drain pipe is situated in the spillway section approximately 105 feet from the left abutment. A control gate which is located on the entrance to the pipe has a stem that extends to the reservoir surface.

A paved roadway about 30 feet wide is located adjacent to the left abutment. The roadway elevation is about 7 feet below top of dam elevation. Additional discharge capacity is provided (prior to dam overtopping) by the roadway.

b. <u>Location</u>. Camp Delmont Dam is located on Unami Creek in Marlboro Township, Montgomery County, Pennsylvania. The dam and impoundment are shown on USGS Quadrangle entitled "Perkiomenville, Pa" at coordinates N 40⁰20.8, W 75⁰26.3, approximately 2 miles east of Green Lane, Pennsylvania. A regional location plan of Camp Delmont Dam is included as Figure 1, Appendix E of this report.

- c. <u>Size Classification</u>. Camp Delmont Dam is about 19 feet high and has a maximum storage capacity of 236 acre-feet. The dam is therefore classified as a "Small" dam (height less than 40 feet and maximum storage capacity less than 1,000 acre-feet).
- d. <u>Hazard Classification</u>. Several vacation cottages are located along Unami Creek within the first 2 miles downstream of the dam. The dam is classified as a "Significant" hazard structure because of the probability of appreciable property damage, but the chance for the loss of lives is low.
- e. Ownership. The dam is owned by the Boy Scouts of America, Valley Forge Council. All correspondence should be directed to: Boy Scouts of America, Valley Forge Council, Route 252, Valley Forge, Pennsylvania (Phone 215-688-6900).
- f. <u>Purpose of Dam.</u> The dam was constructed to provide a lake for recreational purposes. The lake continues to be used solely for recreational activities of the Boy Scouts.
- g. Design and Construction History. The initial application for construction of a masonry dam in the vicinity of the existing dam was submitted in November, 1944. After a review of comments made relative to the initial application by the Commonwealth of Pennsylvania, Department of Forests and Waters, a rockfilled timber crib structure was selected as an alternate to the original dam proposed. The change in design was primarily due to foundation conditions at the dam site.

The spillway was designed for a capacity of 13,000 cfs at a head of 8.5 feet and discharge coefficient of 3.0.

The application for Construction was approved in July 1946 and construction began in 1947. The contractor was Henkels & McCoy, Philadelphia, Pennsylvania.

The foundation material which was described as sandy-clay was exposed and inspected by the State in February 1947. Boulders were encountered approximately 4 to 6 feet below the foundation surface during test driving of the steel sheet piles.

The Owner notified the State that construction of the dam was completed on October 1, 1947.

No design drawings of the dam are available. However, a review of correspondence indicates that the maximum height of the overflow spillway section above the streambed was 12 feet while the non-overflow abutments were 8.5 feet above the spillway crest. The base width was 40 feet. The upstream face was interlocking steel sheet piles. Information relative to the depth of the sheet piling below the dam was requested by the State, but this information is not available from the Pennsylvania DER files. The crest and downstream slope of the spillway was protected with concrete slabs.

In February 1950, the State inspected the dam site. It was noted at this time that the road adjacent to the left abutment was about 5 feet below the crest of the left abutment crib. This apparently conflicted with design drawings. This matter was brought to the attention of the Owner; however, no further information is available in the Pennsylvania DER corresponding files relative to this situation.

An application was made in April 1968 to repair damage that had occurred to both abutments and to reconstruct each abutment to its original dimensions. The State was notified in December 1969, that these repairs were complete.

h. <u>Normal Operating Procedures</u>. No normal operating procedures exist for the site.

1.3 Pertinent Data

a.	Drainage	Area.

Square Miles	34.9

b. Discharge at Dam Site (cfs).

Maximum Known Flood at Damsite	Unknown
Maximum Spillway Capacity at Top of Dam	12,555
Maximum Spillway Capacity at Top of Dam (including roadway)	17,041

c. Elevation (Feet above MSL, estimated from USGS Quad).

Top of Dam	279
Spillway Crest	270
Normal Pool	270
Reservoir Drain Outlet	260
Streambed at Downstream Toe	- 260
Crest of Adjacent Roadway (Auxiliary Spillway)	272

d. Reservoir Length (Feet).

Normal Pool, El. 270	2,500
Top of Dam, El. 279	4,000

e. Reservoir Storage (Acre Feet)

No 1 Deal Cl 270	40
Normal Pool, El. 270	40
Top of Dam, El. 279	236

f. Reservoir Surface Area (Acres).

Normal Pool, El. 270	11.9
Top of Dam, Fl. 279	34.2

g. Dam Data.

Туре	Concrete Capped, Rockfilled Timber Crib
Length	189 Feet
Height (Above Streambed)	19 Feet
Crest Width	10 Feet

Side Slopes (Upstream) (Downstream)

Cut-off Foundation Treatment Grout Curtain Vertical 5H:1V & Vertical Steel Sheet Piling None None

h. Spillway.

Type Length Elevation of Crest Discharge Channel Free Overflow 150 Feet 270 Natural downstream creek channel

i. Auxiliary Spillway.

Type Length Elevation of Crest Discharge Channel Paved Roadway 36 Feet 272 Normal flows would return to creek

j. Outlet Works.

Type Control Location 36-inch diameter corrugated metal pipe Control gate located at intake

ENGINEERING DATA

2.1 Design

a. Data Available. A summary of engineering data available for Camp Delmont Dam is included as Appendix B of this report.

No design or "as built" drawings are available.

b. <u>Design Features</u>. A description of design features is included in Section 1.2a and a summary of the pertinent features is included in Section 1.3.

2.2 Construction

Documented information available relative to construction of the dam consists of a correspondence file provided by the Pennsylvania DER. Periodical inspection reports included in the file relate only to percent completion of the project work items.

2.3 Operation

According to the Owner's representative, no reservoir stage or rainfall records are maintained and no operating procedures exist for the dam. However, the stage during Tropical Storm Agnes (1972) was reported to be about 6 feet above the spillway crest.

2.4 Evaluation

The second second

- a. Availability. Information was obtained from the files of the Pennsylvania the Pennsylvania DER and supplemented by discussions with the Owner's representative during and after the inspection.
- b. Adequacy. The information made available by the Pennsylvania DER, conversations with the Owner's representative and observations made during the field inspection provided adequate data for a Phase I evaluation.
- c. $\underline{\text{Validity}}$. The available information from the above sources appears to be valid.

VISUAL INSPECTION

3.1 Findings

- a. General. The field inspection of Camp Delmont Dam took place on December 18, 1980. The observations and comments of the field inspection team are presented in Appendix A of this report. At the time of the inspection, the water surface was approximately 0.1 feet above the spillway crest. Because of the discharge conditions at the time of the inspection, a complete visual inspection of the spillway portion of the dam could not be made. No underwater areas were inspected.
- b. Dam. The horizontal and vertical alignment of the dam appears to be good. No significant settlement or displacement of the concrete slabs was noted. The concrete cap over the rockfilled timber crib spillway portion of the dam appears to in good condition. The steel sheeting on the upstream face of the spillway portion of the dam was not visible at the time of inspection, since it is below the normal reservoir level.

The abutments of the dam appear to be in good condition. Evidence of major repairs made after the initial construction were observed. The abutments are protected with concrete slabs. A length of the horizontal timber planking on the downstream face of the spillway portion of the dam has been displaced.

- c. Appurtenant Structures. The discharge end of the reservoir drain pipe was noted in the downstream face of the dam. No discharge through the pipe was evident at the time of the inspection. The reservoir drain gate stem is visible in the impoundment. The road adjacent to the left abutment is 7 feet lower than the crest of the left abutment. Based on a review of available correspondence, it appears that the roadway was to be raised in elevation to at least equal the top of dam elevation. This modification was not made. Access to the dam along the roadway during floods would not be possible. Evidence of erosion around the left abutment was noted. However, the erosion is minimal and appears to be due to foot traffic.
- d. Reservoir Area. The banks adjacent to the reservoir are wooded. No indications of slope instability were noted. The impoundment appears to be silted in the immediate vicinity of the spillway.
- e. <u>Downstream Channel</u>. The channel immediately downstream of the dam is covered with large boulders and the overbanks consist of earth with some rock outcrops. A 7-foot high rock dam (run-of-the-river) is located about 0.3 miles downstream of Camp Delmont Dam.

3.2 Evaluation

Based on visual observations, the dam and appurtenances appear to be in good condition except for the missing planking on the downstream face of the spillway portion of the dam. The condition of the reservoir drain gate could not be verified during the inspection.

OPERATIONAL PROCEDURES

4.1 Procedures

Under normal operating procedures, water is discharged over the spillway. The reservoir is frequently drained to remove and replace a dock and for the removal of sediment and vegetative growth in the reservoir.

4.2 Maintenance of the Dam

According to the Owner's representative, no regular maintenance program exists for the dam. Accumulations of debris are removed from the spillway as required.

4.3 Maintenance of Operating Facilities

According to the Owner's representative, no regular maintenance program exists for the operating facilities.

4.4 Description of any Warning Systems in Effect

According to the Owner's representative, no written warning system or procedures are established for monitoring the structure during periods of heavy rainfall or in the event of impending dam failure. However, the dam is monitored during large storms by Camp Delmont personnel. In the event of impending failure, the Marlboro Township Fire-Rescue unit would be notified.

4.5 Evaluation

A formal maintenance program for the dam and appurtenances should be developed and implemented. Records of all maintenance performed should be maintained by the Owner.

Periodic inspection of the dam and appurtenances should be made by a qualified engineer. The control valve should be opened for his inspection. Maintenance records should also be reviewed by the engineer.

A written warning system should be developed and implemented.

HYDROLOGY AND HYDRAULICS

5.1 Evaluation of Features

The second secon

a. Design Data. Design information relative to the dam is limited to information provided in the application for construction.

The drainage area is 34.9 square miles. According to the application, several dams were upstream of the proposed dam. The largest was located about 1.1 miles upstream and was reported to be 12 feet high. This structure no longer exists. The area of the proposed impoundment was estimated to be 13 acres.

The spillway was estimated to be 150 feet long. The design discharge head is 8.5 feet. The spillway was designed for a capacity of 13,000 cfs.

Based on a review of available topographic maps, the watershed has a maximum length of about 16 miles and a maximum width of about 6 miles. The ground surface ranges from approximately El. 580 to normal pool El. 270. The planimetered drainage area of 34.9 square miles is essentially rural with forests, pasture, farmland and a limited amount of residential, commercial and industrial development.

- b. Experience Data. According to the Owner's representative, no rainfall or spillway discharge records are maintained. However, it was reported that the reservoir stage during Tropical Storm Agnes (June 1972) was about 6 feet above the spillway crest. Based on the appearance of the roadway (paved) and the overbank adjacent to the left abutment, this area would provide additional discharge capacity and act as an auxiliary spillway.
- c. <u>Visual Observations</u>. Nothing was observed during the inspection that would indicate the spillway would not perform as designed. The roadway would also provide additional spillway capacity.
- d. Overtopping Potential. Camp Delmont Dam is classified as a "Small" size "Significant" hazard dam. According to the Guidelines, the recommended Spillway Design Flood (SDF) ranges from the one-hundred year to fifty percent of the Probable Maximum Flood (PMF). Because of several inhabitable dwellings located downstream of the dam, fifty percent of the PMF was selected as the appropriate SDF.

The SDF was routed through Camp Delmont Dam using the HEC-1 DB computer program with the starting water surface elevation at the spillway crest, elevation 270. A brief description of the program is included in Appendix D. The peak inflow and outflow rates for the SDF are about 23,550 cfs. The maximum reservoir stage for this event is about 1.5 feet above the top of the dam and the duration of overtopping is 5.5 hours. The spillway and roadway adjacent to the left abutment are capable of discharging about 36 percent of the PMF before over-

topping the abutments. The spillway is capable of discharging about 26 percent of PMF before overtopping the abutments.

The one-hundred year flood event was developed and routed through Camp Delmont Dam using the HEC-1 DB Computer program with the starting water surface elevation at the spillway crest. The peak inflow and outflow rates for the one-hundred year flood are 11,809 and 11,750 cfs respectively. The maximum reservoir stage during this event is 277.4. The spillway and roadway are capable of discharging the one-hundred year flood event without overtopping the dam.

e. Spillway Adequacy. Since the Camp Delmont Dam spillway and adjacent roadway are incapable of passing the SDF, the spillway system is classified as "Inadequate".

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. <u>Visual Observation</u>. The horizontal and vertical alignments of the dam appear to be satisfactory. The concrete surfaces of the spillway slabs appear to be in good condition. A section of the horizontal planking on the downstream face of the overflow section has been displaced. The portions of the steel and timber sheet pile which are visible appear to be in satisfactory condition. Recent repairs have been made to both of the abutment sections.

Based upon the visual observations, the dam appears to be stable for normal loading conditions.

- b. Design and Construction Data. Limited design and construction data is available. No design drawings are available. Based on measurements made in the field, the dam has been constructed in general conformance with information provided in the Report Upon the Application.
- c. Operating Records. According to the Owner's representative, no operating records are available.
- d. <u>Post-Construction Changes</u>. No records exist of post-construction changes. No visible evidence of post-construction changes are apparent.
- e. <u>Seismic Stability</u>. Camp Delmont Dam is located in Seismic Zone 1 on the Seismic Zone Map of Contiguous States. A dam located in Seismic Zone 1 is generally considered to be safe under any expected Zone 1 earthquake loading conditions if it is stable under static loading conditions.

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Evaluation. Based on visual observations, the dam and appurtenances appear to be in good condition except for a length of horizontal planking on the downstream face of the dam which has been displaced.

The control valve for the reservoir drain was not operated during the inspection. It is not known if the valve is operable.

The spillway and roadway are capable of discharging approximately 36 percent of the PMF prior to overtopping the dam. The selected SDF of 50 percent of the PMF would overtop the dam by a maximum of 1.5 feet for about 5.5 hours. Since the spillway is not capable of passing the SDF, the spillway is classified as "Inadequate". Further examination of the hydrologic and hydraulic analyses indicates that the spillway and adjacent roadway are capable of passing the one-hundred year event without overtopping the dam abutments.

- b. Adequacy of Information. The information available from the Pennsylvania DER, visual observations, and discussions with the Owner's representative are considered adequate for a Phase I investigation.
- c. Urgency. The remedial measures recommended in Section 7.2 should be effected immediately.
- d. Necessity for Further Investigation. Further investigations should be implemented as discussed in Section 7.2a.

7.2 Recommendations and Remedial Measures

The Owner should immediately initiate he following recommendations and remedial procedures.

- a. Facilities.
- 1. The displaced portion of the horizontal planking on the downstream face of the overflow section should be replaced.
- 2. The control valve for the reservoir drain should be exercised and repaired if necessary.

b. Operation and Maintenance

- 1. A formal inspection and maintenance program should be developed and implemented to insure that the dam and appurtenances are maintained on a regularly scheduled basis. Maintenance performed should be recorded to provide a history of corrected deficiencies.
- 2. A formal downstream warning system should be developed. During periods of heavy rainfall, the dam should be monitored and appropriate agencies should be alerted in the event of an impending failure.

APPENDIX A

CHECKLIST VISUAL INSPECTION

CHECK LIST VISUAL INSPECTION

Sheet 1 of 11

National ID # PA 00938		ection <u>±261</u> M.S.L.	J. Rauschkolb	Recorder	
ntgomery State Pennsylvania	Hazard Category Significant Cloudy Temperature 30º	.L. Tailwater at Time of Inspection <u>±261</u>			accompanied by Mr. Charles Vargason representing America, Valley Forge Council,
mont Dam County Montgomery	Type of Dam Rock filled timber Crib Hazard Date(s) Inspection 12/18/80 Weather Partly Cloudy	Pool Elevation at Time of Inspection <u>±270</u> M.S.L.	l: L. R. Beck	L.H. DeHeer	1 4-1
Name Dam Camp Delmont Dam	Type of Dam Rock filled to Date(s) Inspection 12/18/80	Pool Elevation at T	Inspection Personnel: L. H. DeHeer Richard Beck		Remarks: The inspection team was the Owner, Boy Scouts o

CONCRETE CAPPED ROCK-FILLED TIMBER CRIB

VISUAL EXAMINATION OF	08SERVAT 104S	Sheet 2 of 11 REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	The structure is a run-of-the-river dam constructed as a rock-filled timber crib and capped with concrete. Seepage through the structure is tolerable.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	No seepage or erosion was observed.	
ORAINS	N/A	
WATER PASSAGES	N/A	
FOURDATION	Not observed.	

CONCRETE CAPPED ROCK-FILLED TIMBER CRIB

The state of the s

VISUAL EXAMINATION OF	0BSERVAT104S	Sheet 3 of 11 REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	No significant cracking was noted in the concrete surfaces. A portion of the vertical timber planking located at the downstream face of the left non-overflow section appears to be loose.	Repair the planking.
STRUCTURAL CRACKING	No structural cracking was noted.	
VERTICAL AND HORIZONTAL ALIGNMENT	The vertical and horizontal align- ment of the dam appears to be good.	
MOHOLITH JOINTS	N/A	
CONSTRUCTION JOINTS	No significant relative movement was noted at the construction joints.	

ENBANKMENT

		Sheet 4 of 11
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	N/A	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	N/A	
SLOUGHING OR EROSION OF EMBANKNENT AND ABUTMENT SLOPES	N /A	
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	N/A	
RIPRAP FAILURES		

N/A

EMBANKMENT

	N/A	DRAINS
	N/A	STAFF GAGE AND RECORDER
	N/A	ANY NOTICEABLE SEEPAGE
	N/A	JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM
REMARKS OR RECOMMENDATIONS	OB SERVATI ONS	VISUAL EXAMINATION OF
Sheet 5 of 11		

OUTLET WORKS

وروستان والمراوس والمراوس والمراوسة والمراوسة والمراوسة والمراوسة والمراوسة والمراوسة والمراوسة والمراوسة		Sheet 6 of 11
VISUAL EXAMINATION OF	OBSEAVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	N/A	
INTAKE STRUCTURE	Gate valve is reportedly mounted on upstream vertical steel sheet pile wall of the overflow portion of dam which could not be observed during the inspection.	
OUTLET STRUCTURE	Outlet works pipe outlets at the downstream vertical portion of the overflow section.	
OUTLET CHANNEL	The outlet channel is the natural boulder strewn channel.	
EMERGENCY GATE	Intake structure described above Access would be almost impossible during high discharges.	

OUTLET WORKS

		Sheet 6 of 11
VISUAL EXAMINATION OF	OBSEAVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	N/A	
INTAKE STRUCTURE	Gate valve is reportedly mounted on upstream vertical steel sheet pile wall of the overflow portion of dam which could not be observed during the inspection.	
OUTLET STRUCTURE	Outlet works pipe outlets at the downstream vertical portion of the overflow section.	
OUTLET CHANNEL	The outlet channel is the natural boulder strewn channel.	
EMERGENCY GATE	Intake structure described above Access would be almost impossible during high discharges.	

UNGATED SPILLWAY

		Sheet 7 of 11
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	The concrete surfaces appear to be in satisfactory condition.	
APPROACH CHANNEL	The impoundment is the approach channel.	·
DISCHARGE CHAINTEL	The discharge channel is the natural stream. The channel is littered with large boulders downstream of the dam. The overbank area is unprotected earth in many areas.	
BRIDGE AND PIERS	N/A	

GATED SPILLWAY

		Sheet 8 of 11
VISUAL EXAMINATION OF	ODSERVATIONS	REMARKS OR RECOMMENDATIONS
COMCRETE SILL	N/A	
APPROACH CHANNEL	N/A	
DISCHARGE CHANNEL	N/A	
BRIDGE AND PIERS	N/A	
GATES AND OPERATION EQUIPMENT	N/A	

INSTRUMENTATION

		Sheet 9 of 11
VISUAL EXAMINATION	OBSERVAT10HS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None.	
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	

RESERVOIR

The state of the s

		Sheet 10 of 11
VISUAL EXAMINATION OF	0BSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES .	The slopes to the reservoir are moderate and appear to	

SEDIMENTATION

The level of sedimentation appears to be high in the immediate area of the dam.

DOWNSTREAM CHANNEL

		Sheet 11 of 11
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	The channel is littered with large boulders. A small rock-filled run of the river dam is located about 1,500 feet downstream of Camp Delmont Dam.	
SLOPES	The overbanks are wooded. The banks are moderate to steeply sloped. The slope of the invert of the creek downstream of Camp Delmont Dam averaging about one percent.	·
APPROXIMATE NO. OF HOMES AND POPULATION	A number of cottages (approximately 7) are located one half mile downstream of the dam. Approximately 30 to 40 people would be involved.	

SUBJECT IOH NO 1 1131 1 - --- 1151-1.11-11A ... 0 +00 SWAMP CREEK RD. Scel sheet Pite Walls DAM ABUTMEN El.279 Concrete Cap Timber Walls OPERATIONAL CONDITION OF SATE UNKNOWN PESTENOIR DEALL LENGTH OF HORIZONTAL PLANKING DISPLACED Steel Steet Aling Aling Upstr. Level El. 270 FLOVI 5:1 Impoundment 30' Steel skeet Pile Nolls El. 279 Steel steet Pike Walls

SUBJECT JOB NO 1841 014 111 SHEET DATE DAM 3/3/81 113 DE+ CAMP DELMONT P. ABST. 15. Farth 2+00 Scale: 1":30" - APPROX. & - RESERVOIR DEAN 270.012 SPILLWAY CREST ELEVATION PROFILE TOP OF DAM LOOKING DOWNSTREAM 2 STA 1+05 (36) 00+1 EL. 279.0 LT. ABUT Cap 24. Earth Fill - PAVED BOADWAY 0000

APPENDIX B

CHECKLIST ENGINEERING DATA

	CHECK LIST ENGINEERING DATA DESIGH, COMSTRUCTION, OPERATION PHASE I	NAME OF DAM Camp Delmont Dam
ITEM	REMRKS	Sheet 1 of 4
AS-BUILT DRAWINGS	No "as built" drawings are available.	
REGIONAL VICINITY MAP	Refer to Appendix E, Figure 1	
CONSTRUCTION HISTORY	Construction history is limited to a correspondence file initiated by the State in 1947.	
TYPICAL SECTIONS OF DAM	No design drawings are available. For plan and section sketches prepared for this report refer to sheet 3 & 4, Appendix E.	
OUTLETS - PLAN		
DETAILS	No drawings are available.	
CONSTRAINTS		
DISCHARGE RATINGS	None available.	
RAINFALL/RESERVOIR RECORDS	Rainfall/reservoir records are not available.	

	Sheet 2 of 4	₹
DESIGN REPORTS	None available.	1
GEOLOGY REPORTS	None available.	1
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS UAM STABILITY SEEPAGE STUDIES	None available.	ι
MATERIALS INVESTIGATIONS		
BORING RECORDS LABORATORY FIELD }	None available.	
POST-CONSTRUCTION SURVEYS OF DAM	None available.	1
BORROW SOURCES	No information available.	1

	Sheet 3 of 4
ITEM	REMARKS
AÛNITORING SYSTEMS	None known of.
MOD IF I CATIO:45	None known of.
HIGH POOL RECORDS	Records are not maintained.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None known of.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None known of.
MAINTENANCE OPERATION RECORDS	None available.

	Sheet	Sheet 4 of 4
ITEM	REMARKS	
SPILLWAY PLAN SECTIONS DETAILS	None available.	
OPERATING EQUIPMENT PLANS & DETAILS	None available.	
MISCELLANEOUS		

APPENDIX C
PHOTOGRAPHS

APPENDIX C PHOTOGRAPH TABLE OF CONTENTS

		Page	flo
Site	Plan	\mathbf{V}	
РНОТ	OGRAPH		
ilo.			
1.	View along the axis of the dam from the left abutment. (12/19/80)	1	
2.	Left side of the dam and channel conditions immediately downstream of the dam. (12/19/80)	1	
3.	Right side of the dam and channel conditions immediately downstream of the dam. (12/19/80)	2	
4.	Looking downstream along the road on the left abutment which acts as an auxilary spillway. (12/19/80)	2	
5.	Typical downstream channel conditions. (12/19/80)	3	
6.	Dam about 1.5 miles upstream of Camp Delmont Dam. (12/19/80)	3 3	
7.	Dam about 1,500 feet downstream of Camp Delmont Dam. (12/19/80)	4	
8.	Initial potential damage area about 2,000 feet downstream of Camp Delmont Dam. (12/19/80)	4	
9.	Potential damage area about 5,000 feet downstream of Camp Delmont Dam. (12/19/80)	5	
10.	Bridge which would restrict flow about 5,500 feet down- stream of the dam. (12/19/80)	5	

JOB NO DELMONT DAM がた げ 2/2/81 1841.014.111 CAMP SWAMP CREEK RD. Steel Sheet Pite Walis El. 279 Concrete Caps Timber TINK [] (NOVIET ES) LEGEND THE DIRECTION AND 00 LOCATION IN WHICH EACH PHOTO WAS TAKEN AND THE NUMBER OF steel sleet Aling Along Upstr. THE PHOTO. 5:1 Impoundment 10' 30' Steel skeet Pile plalls -El. 279) Usteel steet P.te Walla

1. VIEW ALONG THE AXIS OF THE DAM FROM THE LEFT ABUTMENT. (12/19/80)

2. LEFT SIDE OF THE DAM AND CHANNEL CONDITIONS IMMEDIATELY DOWNSTREAM OF THE DAM. (12/19/80)

3. RIGHT SIDE OF THE DAM AND CHANNEL CONDITIONS IMMEDIATELY DOWNSTREAM OF THE DAM. (12/19/80)

4. LOOKING DOWNSTREAM ALONG THE ROAD ON THE LEFT ABUTMENT WHICH ACTS AS AN AUXILARY SPILLWAY. (12/19/80)

5. TYPICAL DOWNSTREAM CHANNEL CONDITIONS. (12/19/80)

6. DAM ABOUT 1.5 MILES UPSTREAM OF CAMP DELMONT DAM. (12/19/80)

7. DAM ABOUT 1,500 FEET DOWNSTREAM OF CAMP DELMONT DAM. (12/19/80)

8. INITIAL POTENTIAL DAMAGE AREA ABOUT 2,000 FEET DOWN-STREAM OF CAMP DELMONT DAM. (12/19/80)

9. POTENTIAL DAMAGE AREA ABOUT 5,000 FEET DOWNSTREAM OF CAMP DELMONT DAM. (12/19/80)

10. BRIDGE WHICH WOULD RESTRICT FLOW ABOUT 5,500 FEET DOWNSTREAM OF THE DAM. (12/19/80)

APPENDIX D

HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

CAMP DELMONT DAM APPENDIX D HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

TABLE OF CONTENTS

	Sheet
Checklist, Hydrologic and Hydraulic Engineering Data.	1
HEC-1, Revised, Flood Hydrograph Package.	2
Hydrology Calculations (PMF).	3 through 4
Hydraulics Calculations.	4 through 6
HEC-1 Dam Safety Version, Non-Breach Computer Output.	7 through 11
Hydrology Calculations (100 year storm).	12 through 16
HEC-1 Dam Safety Version, 100 Year Storm Computer Output.	17 through 19

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

	DRAINAGE AREA CHARACTERISTICS: Rural, open pasture & formland
*	ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 270 (40 Acrefact)
*	ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N/A
*	ELEVATION MAXIMUM DESIGN POOL: N/A
*	ELEVATION TOP DAM (STORAGE CAPACITY): 279 (236 Acre-Feet)
	SPILLWAY
	a. *Elevation
	b. Type Concrete Wein
	c. Width 150 feet
	d. Length 40 feet
	e. Location Spillover Center of Dam
	f. Number and Type of Gates None
	OUTLET WORKS:
	a. Type 36 inch diameter CMP
	b. Location Approx 100 feet from Right Abutment
	c. Entrance inverts == *E1 260
	d. Exit inverts == FI 260
	e. Emergency draindown facilities 36-inch diameter controlvalve
	HYDROMETEOROLOGICAL GAGES: at intake. Operational condition
	a. Type None unthin Watershed
	b. Location N/L
	c. Records N/A
	MAXIMUM NON-DAMAGING DISCHARGE: Not Known
	· •

* Elevations estimated from USGS quad. All elevations are in feet, mean sea level.

HEC-1, REVISED FLOOD HYDROGRAPH PACKAGE

The original "Flood Hydrograph Package" (HEC-1), developed by the Hydrologic Engineering Center, Corps of Engineers, has been modified for use under the National Dam Inspection Program. The "Flood Hydrograph Package (HEC-1), Dam Safety Version", hereinafter referred to as, HEC-1, Rev., has been modified to require less detailed input and to include a dam breach analysis. The required input is obtained from the field inspection of a dam, any available design/evaluation data, relatively simple hydraulic calculations, or information from the USGS Quandrangle maps. The input format is flexible in order to reflect any unique characteristics of an individual dam.

HEC-1, Rev. computes a reservoir inflow hydrograph based on individual watershed characteristics such as: area, percentage of impervious surface area, watershed shape, and hydrograph characteristics determined from regional correlation studies by the Corps of Engineers, Baltimore District. The inflow is routed through the reservoir using spillway discharge data obtained from the field inspection or design data. Flood storage capacity is determined from USGS maps or design information and verified by the field inspection. In the event a spillway cannot discharge 0.5 PMF without overtopping and failure of the dam, downstream channel characteristics obtained from the field inspection and USGS maps are inputed and flows are routed downstream to the damage center and a dam breach analysis is performed.

Included in this Appendix are the HEC-1, Rev. pertinent input values and a summary print-out.

"High "hazard structures only

	SHEET	BA	DATE	JOB NO
CAMP DELMONT DAM	3	REH	3/4/81	1841-014
		V JE	3/16/81	
11: 42-11:				1 1 1
Hydrology		•	:	
and the state of t		•		
- Drainage Area - 34.9 =	quare !	miles (planimete	from !
: U.S.C.S. Quid Sheets.)	V		•	1 :
		•		
	:			
		: .		
	1000		!	
- Design Flust		: :	•	
313e Classification -	5 ~~	1	1 ;	
Hogard Classification -	2/3	NITT.CA	VT	1 : : :
use PMF		;	f .	
		:		
- PMP Determination (HR	#33			
		1 1	• • •	
	ν Δ., Ι		7	1
Camp Delmont Dam is	10Cat	ea in	tone Non	Apet &
				$\{\zeta_i: i=1\}$
PMP == 23.5" (200 5	guare	miles,	24 hours	ن ، . إلى إ د
Time (Hn) Percont Rainf	all (me	hes)		
	5			
	-	· • • • i		
12 110 25	1 1		1	
. 7A 170 28	'	1 I		
132 31	.0	1		
	:			
- Snyder Crefficients (Pr	mu de	1 h. F	5014 D	+
winder metrician is	, 55, 581	- Joy	San Similar	- LUE /
			1 1 :	
comp Delmont Dom 15	. loca	rted in	- Zone	Humber 7
	1 :			
$C_{\pm} = 1.35$:			
Cp = 0.65				
		. !	1 1	1

OBRIEN & GERE

UBJECT							_							ł	1EET	18	*			DATE			JOB					
	CA	MP	\mathcal{D}	EL	MOT	47	\mathcal{I}_{-}	<u> 4C</u>	<u> </u>						4		2.6	<u> </u>		3/4	<u>/e</u>	1_	16	341	<u>- c</u>	14	<u> </u>	
																✓.	帮		ني	3/16	181							
 -	1 : 1		1	7	·	1		Ī	T -	7	1	T	1	T	i	!	70_	Π		T	T		_			1		T
	بط.	fako	1.02	-Y,	<u>ت </u>	<u>n+</u>	!		 			 	-	-	 -		 -	 -	 		ļ	ļ	 	 		┼	 	┼
	<u> </u>	- -	+	-	· •——-	ļ	 	ļ		ļ		<u>.</u>	ļ	ļ	ļ		ļ	<u> </u>	 	ļ	ļ	ļ	ļ +	-	ļ	-	ļ	ļ
	++	+	LP.	=	•	<u>ر</u>		L	ار).	Ì	<u> </u>		<u> </u>		ļ	<u> </u>	· 	<u>i_</u>	1	Ĺ				<u>L</u> _		<u> </u>
1		:	1		,		1			'		!				1	ļ		1	Ì	1		Ì	1	!			
					1				!		†	-		1		i	!		 	1					1			
		+,		<u>ب</u>					(÷	 	· 		_					ļ.—	\vdash	 	-	 	 		-	1-
			4				1	i		1		4	 	15		!				 				:	 -	-	+-	
	+-+		-CA	يعت	-	4_2	0,	پيد	<u></u>	++	=	·	·	-7	<u>,.9</u>	I	<u>m.</u>	le:	5 1	İ	<u> </u>	ļ —	-	<u>:</u>	┼	!	↓	-
		_	 -	· +-	!	<u> </u>		ļ	<u>-</u>	<u> </u>	l	<u>L</u> .	ļ	-	ļ		-	-	<u> </u>	<u> </u>	<u> </u>		ļ Ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	1 1		}	! !	!	i) L		_				}	į										İ	i.		l
		1		-	i	∠ =	1	1.5	. 0) ~		<u></u>)	3			-	-		h.~								Π
	1		<u>ح</u> ېت	•			- >_√.	 	ے _د و	<u></u>	Į L. •		1-				بــک ا	• (·	 	 17, ~	-			 	1-	1		
	+-+	-	+	+	 -	:				 	 -	:	 - -			-	 	1			 		 		1	-	+	-
	+		<u>:</u>		 	!		 		 		1-	┼-		<u></u>	L	-	├-	 -	1	 	<u>:</u> —		├	-	 	 	
	14	yda	<u>براره</u>	<u>-S</u>	-	-	!		į	ļ	<u> </u>	···-	-	ļ	-		<u>:</u>	ļ	<u> </u>	<u> </u>	<u> </u>			 -	-	!	ļ	-
		: 	<u>.</u>	ļ!		· 		l	; •	; 		<u> </u>	<u> </u>				<u> </u>			<u> </u>				ļ 1	L_	<u> </u>	! +	L_
j	-	54	୍ । ପ୍ୟକ	. /	5	أبحلو	KO.	ا جہ	<u> </u>		į				į		1								•	•		
		i	9					0				ļ					;			ĺ					1	1		
1	1		· · · ·	<u>se</u>				-	-2-			_ (Λ <u> </u>)				1		1					 	1		1
	 																l — —		7			-	-		ļ	 	 -	-
	+	1	1	06	: :	ina.	eq.						ر. را 1	120	na	\;	يحاد	<u> </u>	1	-					<u> </u>	 	 	-
	 	- †_2	20	9			 	-	36	7		<u>.</u>		 				<u> </u>					<u> </u>	 		ļ	 	-
	<u> </u>		ļ- —						ļ	ļ		_	_	ļ						 	L			1_	L.	<u> </u>	<u> </u>	<u> </u>
		5	tos	رع		D	.139	وبإد	:) <u>15</u> -	_ب	Ĺ			<u></u>				<u>L</u>						<u> </u>		<u> </u>		L
			\	/				1	1 0			Ì							ĺ					İ				
		- 1		رور	121			~ ~	Ν.	20			C	D -			\ \	_ 3	2					1 =		I		
· - · ·	+-+				7 19	ييد		7	1		¥			حـ عد ا		_		j		ļ		-		-3.~	<u> </u>		†	
	+ +	+-	10	+	<u> </u>	3	30		 	i	j									-			-		-	1	 	-
EI	270	-		\vdash				 	 	_	1		 	ļ—			 	-		-					-		-	-
	 	_		 				_		<u> </u>	6	-	-					_	ļ		<u> </u>			 	<u></u>	ļ	ļ	-
	<u> </u>	_	1_				L .		<u> </u>	ļ	T 							<u> </u>							ļ	<u> </u>	ļ	
								L	<u> </u>		<u> </u>	<u> </u>		l										<u>_</u>		<u> </u>		
1			Δ		0	<i>(</i>	\ <	sha						US		C.	=	3	1									
	 -						<u> </u>		1			J	1					رب	 `					1		1-		\vdash
	 	- †	-	 				 					 					<u> </u>	 							-	 	-
- +		+	-	 				-				 								 	-					 	-	
	 -			╂					ļ				 							ļ	 			 			ļ	
	1		1_		ļ J			L	ļ				 	L				L		L_	ļ		 	ļ	L	<u> </u>	<u> </u>	
			1										1															
1		7						_]									T					
	1	1	†							1 -			1					<u> </u>							1-	1		
	1	i	ı	1 1	, ;		1	!	1	ł	1	,	ī	1	1			ı	Ì	ı	ſ	1		1		1	1	i

•	SHEET Resise	Вү	DATE	JOB NO
CAMP DELMONIT DAM	5_	REH	5/15/81	1841.010
Rating for Cherflow Spillway				11111
- Rams Jon Serrico Spiritary				
	- .			
Stage Head (ft) Die	charge (cf	,)	Note: Ve	elocity head
270	0		a:	ssumed to be
272	1,315			gligible
	3,720			0.2.00
	6,834	. ; ;	4 4 .	• 1
	0,522	÷ ;	+	
	4,705		1 - 1 - 1	
282	€,330		1 1 1	
284 2	4,358			
Roadway Adjacent to Left Abo	1		· · · · · · · · · · · · · · · · · · ·	• ; • ;
	11116111	1110 TO	S. STIMEN T	,
		,		
(Abdments) (Road) (Slope) [,		abutments = 30
(Slope) (Slope) [,	ngth, both	•
$Q = 3(39) H_{279}^{32} + 2.7(30) H_{272}^{72} + 2.7(1.)(.)$	33H /2 -	,	ngth, both	abutmonts = 30
(Abdments) (Road) 3/2 (Slope) (Slope) (Q=3(39)H ₂₇₉ +2.7(30)H ₂₇₂ +2.7(L,)(.)	33H /2 -	,	ngth, both	•
$Q = 3(39) H_{279}^{\frac{1}{2}} + 2.7(30) H_{272}^{\frac{7}{2}} + 2.7(L_{1})(.1)$	33H /2 -	To Tal les	ngth, both	abutmonts = 30
$Q = 3(39) H_{279}^{32} + 2.7(30) H_{272}^{72} + 2.7(L_1)(.1)$	33H y/2	To Tal les	272.0	leu 279.0
$Q = 3(39) H_{279}^{32} + 2.7(30) H_{272}^{72} + 2.7(L_1)(.1)$	33H y/2	To Tal les	272.0	leu 279.0
$Q = 3(39) H_{279}^{32} + 2.7(30) H_{272}^{72} + 2.7(L_1)(.1)$ $\frac{11}{6} El. 279.0$	33H / 2 -	To Tal les	272.0	leu 279.0
$Q = 3(39) H_{279}^{32} + 2.7(30) H_{272}^{72} + 2.7(L_1)(.1)$	33H / 2 -	To Tal les	272.0	leu 279.0
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)(.) 11 11 12 130 14 150 Rating for Abotherits, Road and	B3H)/2	70 Tal les	272.0	leu 279.0
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)(.) 11 11 11 30 Rating for Abotments, Road and Stage Head(ft) L1(ft) Q	33H / 2 -	To Tal les	272.0	leu 279.0
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)(.) 11 71 6 El, 279.0 Rating for Abstracts, Road and Stage Head(H) L1(ft) Q 272 0 0	B3H)/2	70 Tal les	272.0	leu 279.0
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)(.) 11 71 30 11 71 30 11 71 30 Rating for Abstrants, Road and Stage Head(ft) L1(ft) Q 272 0 0	B3H /2	To Tal les	272.0 272.0	0 Q ToTA
Q=3(39)H ₂₇₉ +2.7(30)H ₂₇₂ +2.7(L,)(.) 11 11 30 N 77 b El. 279.0 Rating for Abstments, Road and Stage Head(ft) L1(ft) (1) 272 0 18	Ref: Par slope	70 Tal les Eles 14-, NEL- () RUAD 22-9	272.0 4-4,5cs	UPR QTOTA 0 0 04 333
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)(.) 11 71 30 11 71 30 11 71 30 Rating for Abstrants, Road and Stage Head(ft) L1(ft) Q 272 0 0 274 2 18 276 4 36	Ref: Par slope	70 Ta/ les Eles 14-, NEL- 0 229 648	272.0 2-4,5C5	UPR QTOTA 0 0 04 333 68 1236
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)(.) 11 71 30 b El. 279.0 Rating for Abstments, Road and Stage Head(ft) L1(ft) Q 272 0 0 274 2 18 216 4 36 218 6 54	Pef: Per Slope ABUT O O O	14-, NEL- (V RUND 0 229 648	272.0 4-4,5C5	OPE QTATA O O O O O O O O O O O O O O O O O O O
Q=3(39)H ₂₇₉ +2.7(30)H ₂₇₂ +2.7(L,)(.) 11	Ref: Pa	70 Tal les Eles 14-, NEL- (2 RUAD 0 22-9 64-8 11-90 1833	272.0 4-4, SC \$ 16 33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q=3(39)H ₂₇₉ + 2.7(30)H ₂₇₂ + 2.7(L,)()() # El. 279.0 Rating for Abotments, Road and Stage Head(ft) L_1(ft) Q 272 0 0 274 2 18 276 4 36 278 6 54 280 8 72 11 282 10 90 60	Ref: Par Slope	14-, NEL- (V RUAD 0 229 648 1190 1833 2561	272.0 4-4, SC \$ 16 33	10 279.0 10 279.0 10 333 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236
Q=3(39)H ₂₇₉ +2.7(30)H ₂₇₂ +2.7(L,)(.) 11	Ref: Par Slope	70 Tal les Eles 14-, NEL- (2 RUAD 0 22-9 64-8 11-90 1833	272.0 272.0 1-4,5C5 16 33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

		Teures	BY	DATE	IOR NO
SUFCT		BHEET POLICE	1	((JOB NO
CAND DELMONT	DAM	6	REH	5/15/81	1841,014
		In In T	Ţ Ţ		
Stage - Disc	monte - 20m	mary			
		1 2			
Stage.	Discharge 1	K 48 71	- +	+- + +	
270	0.				
272	1,3 15		1		
					1
274	4,053				
276.	8,070			.,	
278	13,332		1 1		
			1 1	· · ·	
280	100,001		+ 1		
282	28,30,8				
2.84	38,199	+ + +		. 4 1	+ + +
				1	
For Overto	stbind 1 Lezel	COUR IS	togle >	279)	
	9				
135	L = 300 feet	(ach.	atad for	NECS	took Sheet
	L - SOS TRET	162.11	nated in	- USG	and a succe
			1 1 .		: : :
	C = 2.7 for	over	topping		
		1 1		0	
		1 1	1 ! !	1 1	
and the	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			.	
129 -	150 -15		≈ 300		>
					EI. 219.0
Abort .	A3.A			1 1	21.2.0
Road			. 1. 1.		
		+		! - !	
	Spillway El.	<u>270.0</u>			
E 272					
			1 ;	•	
		2		•	
		+ , +	* : :		
			* * * * * * * * * * * * * * * * * * *		
			f :		

THE SAFETY VERSION OF THE WORLD COULT INTO COURT OF THE WORLD COURT OF			0					1			A management of the control of the c
0 0 .4 .4 .65 .053.5 1 13.5 40 11.9 36 272 2 272 2 270 2 270 2 270 2 8UN RUN RUN RUN RUN		INT DAM	11NEER3 0 -		1			1		ATIONS	
0 0 .4 .4 .65 .053.5 1 13.5 40 11.9 36 272 2 272 2 270 2 270 2 270 2 8UN RUN RUN RUN RUN		S OF CAMP DELMO SAFETY PROGRAM	CORPS OF END	0	_AKE130	.		280	; !	NETWORK CALCUL	LAKE
0 0 .4 .4 .65 .053.5 1 13.5 40 11.9 36 272 2 272 2 270 2 270 2 270 2 8UN RUN RUN RUN RUN		DLOGIC ANALYSI NATIONAL DAM	IMORE DIVISION O O	1.0 0		,	OUTFLOW 1	1 4	300	ENCE OF STREAM	YDROGRAPH AT
######################################	<u>.</u>	HYDR	BALT 10	- no		N	•	274	280		RUNDEF !
######################################	978 0 ***		0	.4 LAKE	23.5	. 60 . 05	E B B B B B B B B B B B B B B B B B B B	272 1315	270	2.7 PREVIE	
######################################	.AGE (MEC JULY 1 01 APR 8	122	<u> </u>	- F 0	HO.	x 5.75				7	
	FLOOM HINGGRAFH FACK DAM SAFETY VERSION LAST MODIFICATION				- -	7 0					

HYDROLOGIC ANALYSIS OF CAMP DELMONT DAM NATIONAL DAM SAFETY PROGRAM BALTIMORE DIVISION _ CORPS OF ENGINEERS

RUN DATEK 81705715. TIME# 10.30.24.

ű.,

PLT IPRT NSTAN	• · · · · · · · · · · · · · · · · · · ·	•	!
IDAY IHR IMIN METRC I	JOPER NUT LROPT - TRACE	MULTI-PLAN ANALYSES TO BE PERFORMED	.40 .30 1.00
NAIN	3		.30
NO NHK		:	RT109=
2 6		t • •	

******	SUB-AREA RUNOFF COMPUTATION	IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO O O 0 1 0 0	HYDROGRAPH DATA TRSDA TRSPC RATIO ISNOW ISAME LOCAL 34.90 0.00 0.000 0.000	PRECIP DATA R12 R24 R48 R72 R96	LDSS DATA STRKS RIDK STRTL CNSTL ALSHX RIIMP 0.00 1.00 1.00 .050.00 0.00	UNIT HYDROGRAPH DATA	RECESSION DATA ORCSN=05 RTIOR=-2.00	ORDINATES, LAG= 5.71 HOURS, CP= .65 UOL= .93	334, 423, 518, 617,	1392. 1510, 1630, 1750.	2532, 24(0, 2460, 2512, 2555, 2591, 2633, 2410, 2522, 2511, 2411, 2411	1927, 1864, 1803, 1744.	1381, 1336, 1292, 1250,	990, 957, 926, 896,	709, 686. 664. 642.	508, 492, 476, 460,	352, 341, 330,
*****		ISTAG ICOMP	IUHG TAKEA 1 34.90	FE PMS R6 00 23.50 100.00 S .840	DLTKR RTIDL 0.00 - 1.00	1P=	STRT0"	AFH100 END-OF-FERIOD	.90	1046, 1159,		29.	1526.	1094.	784.	562.	403.
******		· · · · · · · · · · · · · · · · · · ·	IHYDG	SPFE 0.00 TRSPC COMFUTED BY THE FROGRAM IS	LROPT STRNR O 0.00		i	UNIT HYPROGRAPH1		1922. 2020.						601. 581.	430. 416.
Cas				TRSPC COMPUTED			1			•	4	-	1	-			

SUM 25.65 23.23 2.43 2422604, (652.)(590.)(62.)(68600.51)

L089 COMP 0

O MO.DA HR.MN PEKIOD KAIN EXCS LOSS (אריף ס אס.DA HR.MN PERIOD RAIN EXCS

			- -	TA LIA											•
			•		!	•	• I	1	. •	,	•		!	5h	10
										1		:			1
******			IAUTO	0		284.00	38199.00			•		:			
*			ISTA	LSTR	RA ISPRAT	282.00	28308,00			÷	EXPL 0.0				
******		!	JPRT INAME	IPMP	TSK STORA 0.000270.	280.00	19981.00		!	:	COOL - CAREA	DAMWID 300.	;		
* *	ROUTING	PAM -	ITAPE JPLT	NG DATA ISANE IOPT	AMSKK X 0.000	278.00	13332.00				O'O CC	DAM DATA COOD EXPD 2.7 1.5			
****	HYDROGRAPH ROUTING	OUTFLOW FROM DAM	IECON	ROUTI IRES	LAG AMS	276.00	8070.00	105.	1630.	300.	10W EXPW	TOPEL C: 279.0			
*******		0	ICO		NSTFS NSTDL	274.00	4053.00		271.	280.	SPWID COOM 0.0		5.00 HOURS	5.00 HOURS	5.00 HOURS
*			SI		SN	272.00	1315.00	-037.	40.	61	CREL 270.0		14113. AT TIME 45.00 HOURS	18818, AT TIME 45,00 HOURS	23524, AT TIME 45.00 HOURS
******			•			270.00	00.00	1		= 260.	•				
**		ı				STAGE	FLOW	SURFACE AREA=	CAPACITY=	ELEVATION=			PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS
		!		1	1				,		ļ ļ			4	

47049, AT TIME 44.83 HOURS

PEAK OUTFLOW IS

FEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY F JULTIFLE PLAN-RATIO ECONUMIC COMPUTATIONS FLOW IN CURIC FEET PER SECOND (CURIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

				1 2
	i			i
				TOF OF DAH 236. 16657.
RATIOS AFPLIED TO FLOWS RATIO 3 RATIO 4 .50 1.00	14122. 18830. 23537. 47075. - 399,90)(533,20)(666;50)(-1333:00)(23524, 47049. 666.12)(1332.28)(SUMMARY OF DAM SAFETY ANALYSIS	SPILLWAY CREST T 270,00
PLAN RATIO 1 KATIO 2 KATIO 3 KATIO 4 .50 .50 1.00	14122. 18830. 23537. 399.90)(—533.20)(—666:50)(1		PAH SAFET	SPILLUP
EATIO 2	18830.	18818. 532.87)(SUMMARY DE	INITIAL VALUE270.000.
RATIO 1	14122.	14113.		
: .		,		-ELEVATION STORAGE OUTFLOW
AREA	34.90	34.90		
STATION	LAKE	HAT 		
OPERATION	HYDROGRAPH AT	ROUTED TO	-	FLAN 1

TIME OF FAILURE HOURS

TIME OF HAX OUTFLOW HOURS

DURATION OVER TOP HOURS

MAXIMUM OUTFLOW -CFS

MAXIMUM STORAGE AC-FT

MAXIHUM DEFTH OVER DAM

MAXIMUN -RESERVOIR -W.S.ELEV

0000

45.00 45.00 44.00

3.17

14113, 18818, 23524, 47049,

211. 255. 290. 438.

0.00

278.23 279.55 280.50

SUBJEC		MP	D	EL	MC	<u>کر</u>	Τ	7	A	1	·				1EET 12			-R		DATE 4-	23.	· 81	J06		11-	01	4	
																1/	C	1										
		S	CS		LA	د.	7	11	E																			
11										+									1									
1		1 1		YG	1	BA			_		0 =	!	=		1	EL	-	1	!	-	-			1	1			
+-+		††	_ A		+	IDA 	חס	٦	3	LU		1	-			<u></u>	<u> </u>	-	!	ļ	1	 	} -	-	 	 	1	-
	- 	+		- -	+	-			-		-	-			 _ 			<u> </u>	 	 	-		 -	 	 	 	 	
++		++		+	-	-			-		 		=	 		0				-	-	0.	PC	25	-£	<u>-</u> -	┼	-
		╁┼	-+		-	 				├		 -				75,	مار	20 _	! 	}	 				F	-	┼	
	_ -	1-1			↓						 	ļ	ļ	<u> </u>	ļ	-	 	<u> </u>	 	ļ	-	ļ	-		ļ	 	ļ	-
		1_1	A	55	ارا	re		1	ra	pe	7	عند	لحا	<u> </u>	مل	ساعا	we	1	_5	ec	Hic	بد	-	4	1- 1	亡	<u> </u>	-
				100	1th		_t	D.P.	L	L'ie	711	_	5	0	7	Ł_		5	id	<u></u>	SI	P	es	<u> </u>	24	1:	X	_
				'					ļ		1	1	ļ			<u> </u>				ĺ	L	,	Ĺ_			1		_
				1	<u> </u>	1	4	4	R	43	5	517	2				1											
			-		Ī	_					1	i	1		1											İ		
	- 	1	- 	-	<u> </u>	i ,	L)	<u> </u>	1	17	0	2	3	1		`ــر	7/7	-	!	1	 	-	1		1	1		1
	+	1-1		1	Ŧ	1	- 1	-	(1				.3	ر						1	-	 	1	1	1
-		+-+	+	+-	<u> </u>	<u> </u>	0	-		2/	7	1	ļ	 		<u> </u>	ļ		-	 		 -	1	l	1-	-	 	-
+		+			-	ت	38	<u>ما ا</u>		م		12.	<u>_</u>			 	<u> </u>	<u> </u>		 	-	į	 	-	 -	-	-	-
+		+-+		<u> </u>	-	-					ļ				 	<u> </u>				<u> </u>		<u>:</u> 		-	 		┼-,	1
4-+		+-+		-c-	1 =	<u> </u>	6				?	-	=_	1	6,	9	95)	se	ے.	-	=		4.	77	/	4	٠
		1-1			 	ļ		3	80			<u> </u>					ļ			<u> </u>	ļ	ļ		<u> </u>		<u> </u>	ļ	_
					 	ļ									ļ., .	<u> </u>				<u> </u>		<u> </u>	L.		ļ			_
			يل!		=	!	0	صا		<u> </u>		=		D .	_ حا	(4.	72		=	<u> </u> 	2	8	<u> </u>	ho.	<u>.</u>		_
														_										<u> </u>	<u> </u>			
			_	.	=		Α	_	+			=		. 1	33	7		+	_ ر									
							Z									z	-											
+-+		† †		1	1-	1		2 2	1	<u> </u>	12			_		3							-					-
-	-	++		1	 	1	•	ح د					+			-2					t	 -			1.			-
	+	 		-	 - -		5	>	1		/				-	 -				-	1-	 	ļ		1		1	-
		 		+-	 	- -	با		7		hr.	-		L		 					 	-	-	 -	1		 	
		 			-				-	ļ	+-				<u> </u>	<u> </u>				 			ļ	-	ļ	!		-
- -		-	h	Jh	ere	<u></u>		_ ے	=	- 	1	يما		70		ام	برد	<u>د س</u> ـ	+~	4	مم	<u></u>	 	 		!	 	-
1-1-		1_1			-				ļ		ļ	 								-	 	1 	<u> </u>	<u> </u>	 	1	-	-
				-			_1		=	<u> </u> 	_ E	a.	in		صا	4	1	نب	ا ا						ļ	ί ∤	<u> </u>	ļ_
																J								!	L-			
1							-	-	=		-	Tù.	~ =		60	1	کھا	٤				İ						1
+		11-	7		T			1																				
1-+		1 -	+	 	†		7	\ \ \			-	Ţ		,		-		2			 		†	1			1	
		+-+		 1	+	 		ا س			سا. ا		C	יסת		03	- 1	-	•	اما	1			 	-	1	j	-
		ţ ‡				- 1																		ļ		 	 -	-
			 		}						!	<u> </u>			<u> </u>	ļ					 	1	ļ	<u> </u>		<u>.</u>		
$1 \cdot 1$			ĺ	i	1						į :	1		ŀ	•	İ		1	l	1	İ	ļ	Ì	1	1	1	1	1

JOB NO 1841-014-111 CAMP DELMONT DAM JFR 4-15-81 13 STORM ONE HUNDRED YEAR DEVELOPMENT FOR 100 YEAR RETURN * RAINFALL DURATION 24" 3.2 3.9. 4.3" 3 HR. 5.21 OHE. 6.24 12 HZ. 7.2" 24 HR. * FROM TP-40, U.S. WEATHER BUREAU THE FOLLOWING HYPOTHETICAL HYETOGRAPH WAS DEVELOPED USING THE SCS METHOD OF RAINPALL DISTRIBUTION DATA FOR THE STORM WAS AQUIRED FROM AN ACCUMULATED RAINFALL - DURATION CURVE THE ZY-HOUR MASS CURVE WAS DIVIDED INTO IS MINUTE INTERVALS TO OBTAIN THE CORRESPONDING RAINFALL INCREMENTS

		-																															_
	SUBJ	ECT			C	A	MP.	7	> -	ELM	ە <i>ب</i>	τ	DA	M				- 1	/4		<u>J</u> F	R		DATE	15-1	31 —	JOB 1 8		١ -	- 011	<u></u>	111	
							,	г	_			·			1 -			1	KC	0		r	T	τ	,	ī —	т	, 	_		—		
i		\perp	\perp				<u>_</u> _		L		1c	0	71	<u> </u>	5	70	<u>R</u> M	_D	15	TR	1B	<u>ں</u>	410	7		_		!	\perp	\perp	\bot	4	\dashv
																					l							1		\perp	1		
7					-					RVA					_	> ^		Al	,				11				Ţ		1				
+	\top	+	+	7	\		Į.	j))					1 1		1	YE.	i '					אונ	0 =	0		1	T	\top	7	\top	T
-	+	+	+	\dashv			40	750	. • ا			-	-		1 1			ł	×1.			-	}	į.	i	l	ļ	1	+	+	\top	+	+
1	-	+	+	!	F	20	<u> </u>	 	=		!					in	HE	5)					11/	CR	EM	EV	17.	₹ T	+	- -	+	+	-
	+	+	+	-			<u> </u>		-	_		-		-			ļ 						-				-	-	╀		+	+	+
,	╀	\downarrow	\perp	_		0			_	43/	4					•	02	; 				<u> </u>	<u> </u>	-	19.		╂		+-		+	-+	+
•	1_	_	\perp	_		3/	H			711	4						03						ļ	ļ	10	 	ļ	_	\dotplus	4	1	\dashv	\dashv
		\perp			_	11/	4			_ ୫							05	<u> </u>							3		ļ	_	1_		\bot	\perp	
i						8				q							25					<u></u>			4	Ĺ			\perp		\perp	\perp	
1						9				91/							06	ĺ							2							\perp	
-	1	1	7			31/2	1			10	1						27								2			\prod	T				
	i	\dagger	+				i ——		-	יסו	i —						08								2				1	\top	1	\top	
+	+	+-	+	1		10	Ī		1		-					- 1		i					-		1	-	1	1	\dagger	1	+	\top	1
+	-	+	+			0'/	_		-	103	74_					•	10										†	1	+-	+	+	+	+
+	┼	+-			\	D_3	1.		L								12					<u> </u>	1			<u> </u>	 -	┼	+-	+	+	+	+
- +	1-	+		. !		11	1		L	11,						•	17								_L_		 - -		+	- -	+		-
1	1	1	4	4		14	<u> </u>		!_	117	2				-		20	<u> </u>					-	ļ	1_		∤	 	<u> </u>		+	-+	+
	1_	1	\perp	_ļ		14	,		L	1 3	3						34								1		 	<u> </u>	+	<u> </u>		-	
					1	13	4			12						R	90						ļ					_	\perp		1	4	
1						12				121	4					_1	<u>50</u>								1					1	\bot		_
	7				<u>j</u>	21	4			121	2						41						}		L				L			Ĺ	
-	1	7-	1	\neg	- 1	21	1			123	ł			-			20								1.								
	1	-	\top		- 1	23	ļ.		Γ	13	l					- 1	J.6	i '							1				Ī			T	
	+-	+	+	-		13			-	_137							13													1	1		1
-	+-	+							-		,					- -							 		-			1	 	+	+	+	\top
	+-		+	\dashv		3 <u>"/</u>			-	131/		-					10						 				1-	 	+	+		+	
-	 		+			34			-	133	•					•	04										-	┼	┤─	-	+	+	
· · ·	1		- -			33	Ì		_	_14.1						•.	80]		۲	- :		<u> </u>	+				
	1	ļ	_	_		4.7	4		L	143					ļ ļ	_• ¦	רט						! î	·	٦		 		+-		-		Ļ.
]		_			7 3	4_		L	_1,5_1	4						09 08 07 06						<u> </u>		2		!	; i	ļ	_ _	_	-+	. .
		ĺ				5.1				صال						•.	05						ļ.·		3		<u> </u>	<u> </u> 	-		1		
- 1			1		1	عاز	i			17	1						οΉ								4						i.		
; ;	1-	1	1			17	1			191							03		·						10			!					
+7	-∔	+-				91			-	2 4						· •	20	_					† i		18		1 -	:	-	!	1	•	•
	1	- -	- {-		۔ ۔ ا	77	2_		:	<u>_</u> 4	 !					•	٥٢	,	 -			:	;	!	10		٠,	į	-!	- :-		- † ·	•
		٠.		_	_				:		-		!					1			. !		١ -			-			٠.	;			
		•	:													7.	20	2_			· .				حا		•	•					
1													,		-			_ <u>_</u>															

SUBJECT	CAMP DELMONT DAM	SHEET /5	JFR	H-22-B1	1814-014
		_//	EU.		
<u> </u>	PEAK INFLOW FOR 100	IR.	FLOOD		+-+-+-
	1-	1-++		1	
— 					
	Reference: Water Resou	vces.	_ Bullet	107-	3 "TL0008
	of Pennsylvan	ia	Detab	erimi	
-				+	
	Drainage tosin is in Re	acion	7		
i			 		
	Model 7A (Area > 15 sq.	mi.)			
! !		• • • • • • •			
:	Q_ = C A x 5t5			;	
÷		00			
	Q,00 = 760 A 5t				
	5t = 1,0 + 0.01 =				
			1	• ; ;	
	A = 34.9 sq.mi.				
		23	- u _{ma}		
	Q,00 = 760 (34.9)	12 (110	21)		
i - i '		: :			!
- !	= 8845 cFs	•	• • •		
			· · · · · ·		
			. ! -		
		:	1 -1		1
			· · · · · · · · · · · · · · · · · · ·		<u> </u>
		: : :		1	
• •					· - · · · · · · · · · · · · · · · · · ·
					• • • • • • • • • • • • • • • • • • • •
		1 1	•	• • • • • • • • • • • • • • • • • • •	
			•	· · · · · · · · · · · · · · · · · · ·	

OBRIEN & GERE

SUBJECT	CAMP	DELMONT	DAM	SHEET BY 16 JFR	DATE 4 - 22-81	JOB NO
	 _			1 pa / v		
	PEAK	INFLOW	FOR DO Y	E FLOOD	(cont.)	
	Refer	ence : Re	dional Frequ	ecy Stude	Vope	Delougra
		lan	A Hudson	Rivers, Neu	4 Hork	District
		e.	D. E . , No	vember 10	174.	
+	+				 	
		$g(Q_m) =$	Cm + 0.8	7 lag (A)		-
					+	
			Cs - 0.0	2 (20)		
+-+-+	1 1 1,		Log (am) +	KS		
		7.00	73.44			
		en =	= 2.0 (F	-iqure 2)		
						
	+	Cs =	= 0355 ((Figure 3)		
			 	. K = 2,61		
+++	+++-+	9 =	+ 0, 4	. 7 4.6	٦	
++++	+-+-	S =	0.355 -	0.05 68 (34	1.97 =	0.278
		0a (Qu) =	2.0 + 0.5	Bh log (34.9) = ;	3.342
.		9				
	<u> </u>	oc (Q100) =	3.342 +	2.615 (1278	7 = 4	1009
+			_		8845	
+	+++-	- CV 100-	+ 111,721	- CTS	0047	
+	SCS	C	enter is	determined	1 1 4	rial of erra
1-1-	الالانام	HEC-1-D	B. Resulti	a discharge	2 3	et be
			+ 00,00)	
			<u> </u>		<u> </u>	
		(C):	= 64	OPEAK =	11,80	9
		_ _ _	1 1 1 1 1			
		11.809 -	11,721 # 10	0,7	5/4	
	-i -i -i -i -i -i -i -i -i -i -i -i -i -	//.7	21		-	

1	DAM SAFETY VERSION LAST MODIFICATION RAMARKWARKWARKWARKWARKWARKWARKWARKWARKWARKW	₩ ₩	JULY 1978 APR 80 ******	HADI	HYDROLOGIC ANALYSIS OF CAMP DELHONT	NALYSIS	OF CAMP		рен			
R 300 0 15 0 0 0 0 0 0 0 0 0	N	A. A.	;	BAL	NATION TIMORE DI		CORPS O	OGRAM F ENGINE	ERS			,
K1 0 2 34.9 INFLOW TO LAKE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41	30	0	15	•	•	•	•				0
NA	i i	×	,	0	•	٥	•					
1	_	K1			-	NFLOW TO	LAKE					
01 02 02 02 02 02 02 02 02 02 02 02 02 02	60 (×. (34.9						***		
01 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02	10	0.00		.00	.00	.00	.00	, 00				ç
01 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03		10		0.	.02	.02	20.	.02	•			100
01 .04 .09 .05 .05 .05 .05 .06 .06 .07 .07 .07 .08 .08 .08 .07 .07 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08	12	٠	ı	.03	.03	.03	.03	• 03	•			4
01 .08 .08 .10 .12 .14 .20 .34 .90 1.50 01 .20 .16 .13 .10 .09 .08 .00 .07 .07 .07 01 .06 .05 .05 .05 .05 .03 .03 .03 .03 .03 .03 .03 01 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02	13	01 0		.05	.0°	0	.05	90.	•			07
0112014131009080807030303030303030303030303030303030302 .	**	01		.10	.12	.14	.20	.34	٠.	_		41
01 .06 .05 .05 .05 .04 .04 .04 .04 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	-15	01-	1			60.	80.	80.	01	;		90
01 .03 .03 .03 .03 .03 .03 .03 .03 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02	16	0.		0	0	• 0 •	• 0 •	•0•	·			03
01 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02	17	01		.03	.03	.03	.03	.03	•			02
1	007	-10	1	.05	.05	.05	.02	.02	٠		ı	0.2
N	1	7.		70.	• 05	• 05	.02	•	•			
X -1.505	20	: : :					;	7-	9-	₹ .		
KI 1 DAM 0 0 0 0 1 KI 1 DAM 0 0 0 0 1 KI 1 1 DAM 0 0 0 0 0 1 Y 1 1 1	77	73		,			:					
No. No.	776			V (•	•	•	•				
## 1 1 1 272 274 276 278 280 282 ## 270 272 274 276 278 280 282 ## 0 11.9 36.7 105 ## 270 2.7 1.5 300	23	4 3	E H 1	>	> [†]	ָ פַּיּ		٦				
71 1 2 -270	1	: , , , , , , , , , , , , , , , , , , ,		•		IFLOW FR				1	:	
74 270 -272 -274 276 278 280 282 75 0 1315 4053 8070 13332 19981 28308 4 0 11.9 36.7 105 4 270 270 280 300 4 279 2.7 1.5 300 K 999 2.7 1.5 300 REVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIO) * C		-		•	•		-270	•	-		
Y5 0 1315 4053 8070 13332 19981 28308 4 0 11.9 36.7 105 4 270 280 300 4 279 2.7 1.5 300 K 999			į	274	276	278	280	282	28			
## 0 11.9 36.7 105 ## 250 270 280 300 ## 270 2.7 1.5 300 K 99 2.7 1.5 300 FREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIO	28		•	4053	8070	13332	19981	29308	3819	•		
# 270	29			36.7	105							
#\$ 270 #D 279 2.7 1.5 300 K 99 PREVIEW OF SEGUENCE OF RUNDEF HYDROGRA END OF HYDROGRA	· · · · · · · · · · · · · · · · · · ·		:	280	300					1		
*D 279 2.7 1.5 300 K 99 PREVIEW OF SEQUENCE OF RUNDEF HYDROGRA ROUTE HYDROGRAP ROUTE HYDROGRAP ROUTE HYDROGRAP	31		0									
PREVIEW OF SEQUENCE OF RUNDEF HYDROGRAF ROUTE HYDROGRAF FAND OF METHODS	32			1.5	300							
RUNOFF HYDROGRAF ROUTE HYDROGRAF	33	Š				: 40000		T 4 11 0 1 4	0			
<i>t</i>	H		PKEVIEN			SINTERN	E SWUKA	ALCULAI	SNOT			
		1	1	RUNOFF	HYDROGRA	FH AT	- LA	·	!	•	٠,	
				ROUTE	HYDROGRAP	¥ 10	á	Ę				

roman in just

建筑建筑建筑建筑建筑建筑建筑建筑建筑建筑建筑建筑建筑建筑建筑

RUN DATE# 81/05/18.

HYDROLOGIC ANALYSIS OF CAMP DELMONT DAM NATIONAL DAM SAFETY PROGRAM BALTIMORE DIVISION _ CORPS OF ENGINEERS

NSTAN IFRT -4 IPLT 0 METRC TRACE JOB SPECIFICATION
JHR ININ HE
O O O
O O JOPER 3 IDAY ž Š

*	
*	
*	
£	

*	:
	•
	í
×	
¥	
×	
*******	, ,
×	
*	
	z
	Ξ
	Ā
	-
	3
*	OMPU
***	COMPU
****	F COMPU
****	OFF COMPU
*****	UNDFF COMPU
****	RUNDFF COMPU
*****	A RUNDFF COMPU
****	REA RUNDFF COMPU
****	-AREA RUNDFF COMPU
*****	JB-AREA RUNDFF COMPU
*****	SUB-AREA RUNDFF COMPUTATION
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU
***************************************	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNOFF COMPU
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU
•	SUB-AREA RUNDFF COMPU

INFLOW TO LAKE

PIT IDET)	TTAFF		TANTA SECTION
JPL 1 JFRT	i	1 A P P P	CUMP IECUN ITAFE	JECON JIAPE O O
,		ATAG MAAAAAAA	24 A C C C C C C C C C C C C C C C C C C	A F A G LIGA COUNTY
RATIO ISNOW ISAME			SNAP TRSDA TRSPC	TRSDA TRSPC
000			0.00 34.90 0.00	2 34.90 0.00 34.90 0.00
	;	LOSS DATA	LOSS DATA	LOSS DATA
STRTL -1.00	ž	0.00 1.00	O.OO O.OO	STRKS
?				
00	CN # . 64.	1.00 EFFECT CN # . 64.	ETNESS = -1.00 EFFECT CN # 64.	CURVE NO = -64,00 WETRESS = -1,00 EFFECT CN = -64,00

-1.00 EFFECT CN = UNIT HYDROGRAPH DATA TC= 0.00 LAG= 2.83

RTIOR= 2.00 RECESSION DATA -1.50 STRIG

END-OF-PERIOD FLOW
COMP G MO.DA HR.MN PERIOD RAIN LXCS LOSS COMP G 2507 O MO.DA HR.MN PERIOD RAIN EXCS

SUM 7.20 3.15 4.05 289122. (183.)(80.)(103.)(8187.02)

			,		_	HYDROGR/ OUTFLOW (HYDROGRAPH ROUTING UTFLOW FROM DAM	אפ					:	
							באט בטאר					· •		
:	!			ISTAR	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME I	STAGE IV	IAUTO		
		. •	0.0 0.0	0000.0	AVG 00.0	ROUT.	ROUTING DATA ES ISAME 1 1	1001	IPMP 0	•	LSTR	•		
				NSTFS 1	NSTDL 0	LAG 0	AMSKK 0.000	×000.0	15K 0.000	STORA 19	ISPRAT -1			
STAGE	i	270.00	272.00	274.	4.00	276.00	278	278.00	280.00	282.00		284.00		:
FLOW		0.00	1315.00	4053.	3.00	8070.00	13332.00	;	19981.00	28308.00	i	38199.00		<u>′. =:</u>
SURFA	SURFACE AREA	.0	12.	•	37.	105.			!				1	
ú	CAPACITY=	ò	40.		271.	1630.								
. ដ	ELEVATION=	260.	270.	!	280.	300.		•				!		. =
			_ CREL 270.0	3S.	۵	COGW EXPW 0.0	PW ELEVL	טיס סיסר סיס	DOL CAREA	A EXPL 0 0.0	:			
		r	i		į	70PEL 279.0	DAM DATA COOD EXPD 2.7 1.5	,	EAMWID 300.	1 1				
PEAK OU	PEAK OUTFLOW IS	11749.	AT TINE	15.50 HDL	HOURS	!		1		1			 	
	!												1	- 1
	* *	***********************************		**	* *	**	***	<u>;</u>	***		***		;	1
;		RUNOFF		SUMMARY, AVERAGE ARE	FLOW A IN	IN CURIC	IN CURIC FEET FER SECOND (CURI SQUARE MILES(SQUARE KILOMETERS)	S SECOND	(CUBIC METERS ETERS)	ETERS PER	S SECOND)			: !
	i İ	HYDI	HYDROGRAFH AT	j	LAKE 1	FEAK 11809. 334.41)(6-HOUR 8353. 236.54)(24-HOUR 2993. 84.74)(72-HDUR 1004.	106	AREA 34.90 90.39)			· · .
1		ROU	ROUTED TO	-	БАМ 1 (33	11749.	8339. 236.14)(2993.	1004.	6	34.90	!	;	1
-		,				SUMMARY OF	Y OF DAM	SAFETY	ANALYSIS			•	,	
PLAN	1		: ST OU	ELEVATION STORAGE OUTFLOW		INITIAL VALUE 270.00 40. 0.		SPILLWAY CREST 270.00 40.	CREST .00 40.	TOP OF DAN 279.00 236. 16657.	рам 00 5.		Sh 19	•
		RATIO OF FMF		HAXIHUH RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM		MAXINUM STORAGE AC-FT	HAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS		TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS	<u> </u>	;
		1.00	6	277.40	00.0	Ç.	186.	11749.	00°c	ç	15.50	00.0		

APPENDIX E
REGIONAL VICINITY MAP
&
DRAWINGS

CAMP DELMONT DAM APPENDIX E REGIONAL VICINITY MAPS & DRAWINGS

	Sheet
Regional Vicinity Map, Figure 1, Scale 1: 24,000.	1
Regional Vicinity Map, Figure 1A, Scale 1:250,000.	2
Plan View of Dam and Section Through Spillway.	3
Section Along Axis of Dam Looking Downstream.	4

G O'BRIEN & GERE ENGINEERS, INC

CAMP DELMO	ut Dam	3	SE I	5/5/E1	1841.0.4 III
			- 		·

The second secon

DATE JOB NO SUBJEC 111 3/3/81 1841,014 DEH+ DAM DELMONT CAMP 20.01% P. A. A. elle Walls Paria Paria 15. 2+00 £1.279.0 Z APPROX E-RESERVOIR DENNY 270.012 SPILLWAY CREST ELEYATION SECTION ALONG AXIS OF DAM 000 LOOKING DOWNSTREAM 90+1 279.0 tare Osp 24. LT. ABUT Pally Filled PAVED ROADWAY shed sheet 0400

APPENDIX F
GEOLOGY

SITE GEOLOGY CAMP DELMONT DAM

Camp Delmont Dam is located in the Lowland section of the Piedmont Physiographic Province. As shown on Figure 1, bedrock at the damsite is a Triassic Diabase which is dark gray, medium to coarse grained; composed chiefly of gray plagioclase feldspar and black or green augite. No known active faults are located in the vicinity of the damsite.

