Speech Features per i task di Speaker Identification e Verification

Autore: Gabriele Nicolò Costa

Outline

1

Introduzione al problema

2

Speech features e speech embeddings 3

Speaker Models e Backend – Architettura proposta 4

Risultati sperimentali

Speaker Identification

Speaker Verification

Metriche e Valutazione dei sistemi

Task	Obiettivo	Metriche utilizzate		
Speaker Identification (Closed-set)	Riconoscere l'identità del par- lante tra un insieme noto di speaker (classificazione multi- classe).	 Accuracy Precision, Recall, F1-score (per classe e macro media) Confusion Matrix 		
Speaker Verification (Open-set)	Verificare se un parlante è chi dichiara di essere (classificazione binaria: accetta/rifiuta).	 True Positive Rate (TPR) False Positive Rate (FPR) False Acceptance Rate (FAR) False Rejection Rate (FRR) Equal Error Rate (EER) ROC / DET Curve 		

Table 2.1: Task, obiettivi e metriche nei sistemi di speaker recognition

Speech Features

Cepstrum

FilterBanks e Mel-scale

Mel-Frequency Cepstral Coefficients (MFCCs)

Framework estrazione Features

Speech Embeddings

Figure 1: Computation in TDNN with sub-sampling (red) and without sub-sampling (blue+red)

Figure 1: Diagram of the DNN. Segment-level embeddings (e.g., **a** or **b**) can be extracted from any layer of the network after the statistics pooling layer.

Speaker Identificatione Verification pipieline

TABLE I: COMPARATIVE STUDY OF VARIOUS SPEAKER VERIFICATION SYSTEM BASED ON DNN ARCHITECTURES

Reference	Type of System	Input Features	DNN Type	Score	Baseline	Dataset	Score
				Function	System		(%EER)
[10]	Text-dependent	40 log Mel-filter bank coefficients	7-layered, fully-connected	PLDA	UBM/i-vector	NIST SRE'12, Noisy narrowband	1.39
[12]	Text-independent	39 dimension PLP	7-layered RBM	Cosine Distance	GMM-UBM	NIST SRE'05-06	0.88
[14]	Text-independent	60 dimension MFCCs	5-layered	PLDA	UBM/i-vector	NIST SRE'12, Switchboard I, II, III	1.58
[16]	Text-dependent	39 dimension PLP	4-layered, fully-connected	Cosine Distance	UBM/i-vector	Self-created	1.21
[17]	Text-dependent	20 dimension MFCCs	4-layeres, fully-connected	PLDA	UBM/i-vector, GMM-DTW	RSR 2015 Specifically designed for text dependent speaker verification.	0.2
[18]	Text-dependent	39 dimension PLP	4-layered, fully-connected	PLDA	GMM-UBM, d-vector, j-vector	SR 2015	0.54
[19]	Text-dependent	40 dimension MFCCs	7-layered, multi-splice time delay	GPLDA	GMM-UBM	NIST SRE'10	7.2
[20]	Text-independent	Phone-blind & Phone-aware 40 dimensional d-vectors	7-layered, time-delay	PLDA	UBM/i-vector	Fisher dataset, CSLT-CUDGT2014	8.37
[21]	Text-independent	20 dimension MFCCs	4-layered, temporal pooling	PLDA	UBM/i-vector	US English telephonic speech,	5.3

Speaker Models e Background models

Architettura proposta

Figure 4.2: Architettura del progetto proposta

Risultati sperimentali

Feature Extraction		Speaker Identification	Speaker Verification	
Features used	Frame Analysis	Model Used	Embedding	Backend
25 MFCCs	25ms frame length 10ms frame hop	DNN	Bottle-neck layer	GMM-UBM
25 MFCCs	25ms frame length 10ms frame hop	DNN	Last Hidden layer	GMM-UBM
25 MFCCs	25ms frame length 10ms frame hop	RNN	Mean Hidden Layers	GMM-UBM
25 MFCCs	25ms frame length 10ms frame hop	CNN+LSTM	Mean Hidden Layers	GMM-UBM
20 MFCCs	25ms frame length 10ms frame hop	I-DNN	Segment Embedding	GMM-UBM
24 MFCCs, 24 Delta-MFCCs VAD 30% energy	25ms frame length 10ms frame hop	TDNN	X-embedding	GMM-UBM

Table 5.1: Riassunto degli esperimenti condotti

Feature Extraction		Speaker Identification	Metriche		
Features used	Frame Analysis	Model Used	Acc	F1	Precision
25 MFCCs	25ms frame length 10ms frame hop	DNN	1.0	1.0	1.0
25 MFCCs	25ms frame length 10ms frame hop	DNN	1.0	1.0	1.0
25 MFCCs	25ms frame length 10ms frame hop	RNN	0.97	0.96	0.97
25 MFCCs	25ms frame length 10ms frame hop	CNN+LSTM	0.99	0.99	0.99
20 MFCCs	25ms frame length 10ms frame hop	I-DNN	0.98	0.98	0.98
24 MFCCs, 24 Delta-MFCCs VAD 30% energy	25ms frame length 10ms frame hop	TDNN	0.94	0.94	0.95

Table 5.2: Speaker Identification

Feature Extraction		Speaker Identification	Speaker Verification		Metrics
Features used	Frame Analysis	Model Used	Embedding	Backend	EER
25 MFCCs	25ms frame length 10ms frame hop	DNN	Bottle-neck layer	GMM-UBM	0.03
25 MFCCs	25ms frame length 10ms frame hop	DNN	Last Hidden layer	GMM-UBM	0.13
25 MFCCs	25ms frame length 10ms frame hop	RNN	Mean Hidden Layers	GMM-UBM	0.12
25 MFCCs	25ms frame length 10ms frame hop	CNN+LSTM	Mean Hidden Layers	GMM-UBM	0.15
20 MFCCs	25ms frame length 10ms frame hop	I-DNN	I-embedding	GMM-UBM	0.16
24 MFCCs, 24 Delta-MFCCs VAD 30% energy	25ms frame length 10ms frame hop	TDNN	X-embedding	GMM-UBM	0.48

Table 5.3: Speaker Verification

Architettura: DNN-1

Genuine vs Impostor PLDA Confidence Genuine Users Impostors --- EER Threshold (2.14) 15 Frequency 01 -2000 -1500 -1000 -500 PLDA

Architettura: DNN-2

Architettura: RNN

Architettura: CNN+LSTM

Architettura: I-DNN

Architettura: X-DNN

