الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التوبية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (03 نقاط)

-1 ادر س، حسب قيم العدد الطبيعي n، بواقي قسمة 9 على -1

-2 ما هو باقى قسمة العدد -2011^{2012} على -2

-3 برهن أنّه من أجل كل عدد طبيعي n، العدد $(4 \times 9^{15n+1} + 4 \times 2011^{10n} + 2011^{2012})$ يقبل القسمة على -3

.11 مضاعفا للعدد ($2011^{2012} + 2n + 2$) مضاعفا للعدد n بحيث يكون العدد -4

التمرين الثاني: (06 نقاط)

$$\left\{ egin{aligned} 2Z_1 + 3Z_2 &= 9 - 2i \ 3Z_1 - Z_2 &= 8 + 8i \end{aligned}
ight.$$
 عيَّن العددين المركبين Z_1 و Z_2 بحيث:

 Ω و B ، A النقط B ، A النسوب إلى المعلم المتعامد والمتجانس ($O; \vec{u}, \vec{v}$)، النقط B ، B و B النسي

$$Z_0 = 1 - 2i$$
 و $Z_B = -3$ ، $Z_A = 3 + 2i$ الاحقاتها على الترتيب Z_B ، Z_A و Z_B حيث:

$$\cdot z_B - z_\Omega = i (z_A - z_\Omega)$$
 أُثبت أن: (أ

ب) عين طبيعة المثلث Ω4B.

. 2 هو التحاكي الذي مركزه النقطة A ونسبته h-3

أ) عين الكتابة المركبة للتحاكي h.

ب) عين Z_c لاحقة النقطة C صورة النقطة Ω بالتحاكي D

 $\{(A,1),(B,-1),(C,1)\}$ عين Z_D عين Z_D عين ج

د) بيّن أن ABCD مربع.

 $|\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}|| = 4\sqrt{5}$:حقق: مجموعة النقط M من المستوي التي تحقق: $(E)^{-4}$

أ) تحقق أن النقطة B تنتمي إلى المجموعة (E)، ثم عيّن طبيعة (E) وعناصرها المميزة.

ب) أنشئ المجموعة (E).

التمرين الثالث: (07 نقاط)

- $g(x) = -4 + (4 2x)e^x$ كما يلى: \mathbb{R} كما يلى: $g(x) = -4 + (4 2x)e^x$
 - 1- ادرس تغير ات الدالة و، ثم شكِّل جدول تغير اتها.
- -2 بيّن أن المعادلة g(x)=0 تقبل حلين أحدهما معدوم والآخر α حيث: g(x)=0
 - g(x) استنتج إشارة -3
 - $f(x) = \frac{2x-2}{x^2}$ هي الدالة المعرفة على \mathbb{R} كما يلي: f -II
- (2cm في المستوي المنسوب إلى المعلم المتعامد والمتجانس ((C_f)). وحدة الطول ((C_f))
 - y=0 و y=-1 و الترتیب معادلتاهما علی الترتیب y=0 و y=-1 و y=0 و الترتیب y=0 و الترتیب y=0 و الترتیب y=0
 - $f'(x) = \frac{g(x)}{(e^x 2x)^2}$: x عدد حقیقی عدد عفی فرمن أنه من أجل كل عدد عقیقی (-2
 - . f استنتج إشارة f'(x) ، ثم شكًل جدول تغيرات الدالة
 - f(x) أشارة (x) أشارة (x) أشارة (x) أشارة (x)
 - .I من أنّ: $\frac{1}{1}$ السؤال 2 من الجزء α هو العدد المعرف في السؤال 2 من الجزء -3
 - ب) استنتج حصر اللعدد $f(\alpha)$ (ندور النتائج إلى $f(\alpha)$
 - (C_r) ly (C_r)
 - $-2x-2=(e^x-2x)(m+1)$: عدد و إشارة حلول المعادلة: -4
 - . $h(x) = [f(x)]^2$: كما يلي \mathbb{R} كما الدالة المعرفة على الدالة المعرفة على h = -5
 - h'(x) أ احسب h'(x) بدلالة كل من f'(x) و f'(x) ثم استنتج إشارة h'(x)
 - ب) شكّل جدول تغيرات الدالة h.

التمرين الرابع: (04 نقاط)

. $(O; \overline{i}, \overline{j}, \overline{k})$ سنجانس و المتجانس المعلم المتعامد و المتجانس

- له. المستوي الذي يشمل النقطة (2;-5;2) و A(2;-5;2) شعاع ناظمي له.
 - المستوى الذي: x + 2y 2 = 0 معادلة له.
 - (P) عين معادلة ديكارتية للمستوي -1
 - . بيّن أنّ المستويين (P) و (Q) متعامدان -2
 - (Q) و (P) قاطع المستويين (Δ) ، تقاطع المستويين (P) و (Q)
- .(Q) و المسافة بين النقطة K و المستوي K و المستوي K و المستوي K المسافة بين النقطة K و المستوي K و المستوي Kب) استنتج d المسافة بين النقطة K و المستقيم (Δ).

 - احسب المسافة d بطريقة ثانية. -5

الموضوع الثاني

التمرين الأول: (05 نقاط)

Z المعادلة ذات المجهول Z المعادلة ذات المجهول Z

$$(z^2 + 2z + 4)(z^2 - 2\sqrt{3}z + 4) = 0$$

. $(O; \vec{u}, \vec{v})$ المعلم المتعامد والمتجانس المركب منسوب البي المعلم المتعامد والمتجانس

و D نقط من المستوى لاحقاتها على الترتيب: C ، B ، A

$$.z_{D}=-1+i\sqrt{3} \ , \ z_{C}=-1-i\sqrt{3} \ , \ z_{B}=\sqrt{3}-i \ , \quad z_{A}=\sqrt{3}+i$$

أ) اكتب كلا من Z_A ، Z_B ، Z_A على الشكل الأسي.

ب) تحقق أنَّ:
$$\frac{Z_D-Z_B}{Z_A-Z_C}=i$$
 ، ثم استنتج أن المستقيمين (AC) و (BD) متعامدان.

و مدة له حيث n عدد طبيعي. $\frac{2\pi}{3}$ و مدة له حيث n عدد طبيعي. z_n عدد طبيعي.

 $L_n = z_D \times z_n$ العدد المركب المعرف بـ المعرف للم

أ) اكتب كلا من $L_{_{1}}$ ، $L_{_{0}}$ على الشكل الجبري.

$$U_n = ig| L_n ig|$$
 : ب $U_n = ig| L_n ig|$ هي المتتالية المعرفة من أجل كل عدد طبيعي $u_n = ig| L_n ig|$

الأول.
$$(U_n)$$
 المتتالية (U_n) هندسية يطلب تعيين أساسها وحدها الأول.

. $+\infty$ البي الم يؤول n البي S_n عندما يؤول -

التمرين الثاني: (03.5 نقاط)

$$(x\in\mathbb{Z})$$
 عدد صحیح $x\in\mathbb{Z}$ حیث $x\equiv 3$ [15] خیث $x\equiv 6$ [7]

(S) العدد 153 حل الجملة (S).

-3 حل الجملة -3

4- يريد مكتبي وضع عدد من الكتب في علب، فإذا استعمل علبا تتسع لـ 15 كتابا بقي لديه 3 كتب، وإذا استعمل علبا تتسع لـ 7 كتب بقي لديه 6 كتب.

إذا علمت أنّ عدد الكتب التي بحوزته محصور بين 500 و 600 كتابا، ما عدد هذه الكتب ؟

التمرين الثالث: (04.5 نقاط)

الفضاء منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ المستوي الذي:

ه المستقيم الذي:
$$x=k$$
 تمثيل وسيطي له. $y=\frac{1}{3}-\frac{4}{3}k$, $k\in\mathbb{R}$ المستقيم الذي: $z=-\frac{3}{4}+\frac{3}{4}k$

- (P) محتوى في المستقيم (D) محتوى المستوي (P).
- . اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة (4;1;3) و (4;1;3) شعاع توجيه له -2
 - (Δ) عين إحداثيات نقطة تقاطع المستقيمين (D) و
- (Δ) و (Δ) و (Δ) الذي يحوي المستقيمين (Δ) و (Δ) و (Δ) و (Δ) و (Δ) بيّن أنّ : (Δ) و (Δ) هي معادلة ديكارتية للمستوي
 - باء. الفضاء M(x;y;z) -4
 - (Q) و (P) من من (P) و كل من (P)
- (P_1) أثبت أنَّ مجموعة النقط M من الفضاء المتساوية المسافة عن كل من (P) و (Q) هي اتحاد مستويين متعامدين (P_1) في المسافة عن كل من (P_2) علين معادلة ديكارتية لكل منهما.
 - $\begin{cases} 4x+3y-1=0 \\ 3x-4z-3=0 \end{cases}$ عين مجموعة النقط M(x;y;z) من الفضاء التي إحداثياتها حلول للجملة الآتية -5 x+3y+4z+2=0

التمرين الرابع: (07 نقاط)

- و عددان حقيقيان. $g(x) = x^2 + a + b \ln(x)$ عددان حقيقيان. $g(x) = x^2 + a + b \ln(x)$ كما يلي: g(x) = a
 - .4 عين a عاما أن التمثيل البياني للدالة a يقبل في النقطة A(1;-1) مماسا معامل توجيهه a
 - .b = 2 و a = -2 نضع -2
 - أ) ادرس تغيرات الدالة ج، ثم شكِّل جدول تغيراتها.
- .] $0;+\infty$ على g(x)=0 على g(x)=0 على أن المعادلة g(x)=0 على g(x)=0 على أن المعادلة وحيدا g(x)=0

 - . (2cm وحدة الطول) ($O; \vec{i}, \vec{j}$) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)
 - $\lim_{x \to +\infty} f(x)$ $\lim_{x \to +\infty} f(x)$ $\lim_{x \to +\infty} f(x)$
 - $f'(x) = \frac{g(x)}{x^2}$: ثم تحقق أنّ f'(x) حسب (ب
 - . f'(x) استنتج إشارة f'(x)، ثم شكّل جدول تغيرات الدالة
 - \cdot (Δ) بيّن أن المستقيم (Δ) ذا المعادلة: y=x-2 مقارب لِــ (C_f)، ثم ادرس وضعية (Δ) بالنسبة إلى (Δ)
 - ب بین أن (C_f) يقبل مماسا (T) يو از ي (Δ) ، ثم جد معادلة له.
 - ج) نأخذ $\alpha=1,25$ عين أن المعادلة $\alpha=1,25$ عين $\alpha=1,25$ خيث:

 - $(m+2)x+2\ln(x)=0$ عدد حلول المعادلة: m عدد الوسيط الحقيقي ، m عدد عدد المعادلة: -3