WORKSHOP SCHEDULE

- 4 days
 - 1. Intro to R and data analysis
 - Descriptive statistics and visual data exploration
 - 2. Statistical inference & hypothesis testing
 - probability, CI, comparing 1 sample to population, comparing 2 samples, tests
 - 3. From association to prediction
 - Supervised ML (regression)
 - 4. Intro to ML, elements of power analysis
 - Unsupervised ML algorithm (PCA)
- Each day will include:
 - Frontal class (MORNING)
 - Practical training with R about the topics discussed in the morning. (AFTERNOON)

DAY 1 – LECTURE OUTLINE

- Introduction to R and R-studio
 - Why R?
 - Principles of reproducible analysis with R + RStudio
- R objects, functions, packages
- Understanding different types of variables
 - Principles of "tidy data"
 - Data cleaning and manipulation
- Descriptive statistics
 - measures of central tendency, measures of variability (or spread), and frequency distribution
- Visual data exploration
 - {ggplot2}

- fatto!
- dataset autism
- REFERENCE
- + Benjamin Soltoff [Linear regression with a single predictor](
 https://info2950.infosci.cornell.edu/slides/16-models-single-predictor.html#/goals)
- Benjamin Soltoff [Linear regression with multiple predictors](https://info2950.infosci.cornell.edu/slides/17-models-multiple-predictors.html#/title-slide)
- + [biostats](https://biostats.w.uib.no/up-in-the-r-2/basic-statistics-in-r/)
- Modelling vocabulary
 - Predictor/feature/explanatory variable/independent variable
 - Outcome/dependent variable/response variable
 - Correlation
 - Regression line (for linear models)
 - Slope
 - Intercept

DAY 2 - LECTURE OUTLINE

- Purpose and foundations of inferential statistics
 - Population and samples
 - Probability and random variables &
 - Meaningful probability distributions
 - Sampling distributions and Central Limit Theorem
- Getting to know the "language" of hypothesis testing
 - The null and alternative hypothesis
 - The probability of error? (α or "significance level")
 - The p-value probability and tests interpretation
 - Types of errors (Type 1 and Type 2)
 - Confidence Intervals (spostato dopo Z score)
 - Effective vs statistical significance (mettere altrove?)
- Hypothesis tests examples
 - Comparing sample mean to a hypothesized population mean (Z test & t test)
 - Comparing two independent sample means (t test)
 - Comparing sample means from 3 or more samples (ANOVA)
- A closer look at testing assumptions (with examples)
 - Testing two groups that are NOT independent
 - Testing if the data are not normally distributed: non-parametric tests
 - Testing samples without homogeneous variance of observations

- vedi Esercitazione 2
 - dataset genes.xlsx
 - data/gait_clean.csv

- spostare esempi da Lecture a Practice?
- nuovi esempi?

Source image: https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/business/hypothesis-tests/

DAY 3 - LECTURE OUTLINE

- Testing for a correlation hypothesis (relationship of variables)
 - Pearson rho analysis (param)
 - Spearman test (no param)
- Measures of association
 - Fisher's Exact Test
 - Chi-Square Test of Independence
- From association to prediction -> Machine learning algorithms
 - Supervised
 - Example: Linear regression models
 - Multiple Linear Regression
 - logistic regression?

- vedi Esercitazione 3
 - dataset metabolomica catanzaro?
 - https://new.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml

DAY 4 - LECTURE OUTLINE

- INQUADRAMENTO SCENARI DI RICERCA
 - causal inference v. prediction (ML)
 - observational Longitudinal analysis ?
 - (vedere LEZIONE 3 cocca PDF)
 - CLINICAL TRIAL ANALYSS? Survival analisi?
- From association to prediction -> Machine learning algorithms
 - from causal concern to prediction
 - Unsupervised
 - Example: PCA
 - PLS- DA
- Mostrare https://new.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml
- Elements of Statistical Power analysis
 - Underlying principles of statistical power
 - Power calculations for basic study designs
 - Use power and sample size calculations as the basis of argument in support of study design, feasibility, and testing
- Mostrare (PACCHETTO metsize)

- vedi Esercitazione 4
 - dataset metabolomica catanzaro
- TEST + correzione

