Algorithms – Chapter 11 Hash Tables

Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

September 2007

Rev. '08, '11, '12, '15, '16, '18, '19, '20, '21

Introduction

- Many applications require a dynamic set that supports only the dictionary operations insert, search, delete
 - e.g., compiler
- A hash table is an effective way for this
- Under reasonable assumptions, the expected time to insert/search/delete an element in a hash table is O(1)
 - Cool! Isn't it?

Direct-Address Tables

- Direct addressing
 - works well when the universe U of keys is small
 - $U = \{0, 1, ..., m 1\}$ where U is not large
- Direct-address tables (Arrays)
 - assume no 2 elements have the same keys
 - implemented by an array T[0 .. m 1]
 - in which each position, slot, corresponds to a key in U

Operations of Direct-Addressing

Actually, operations on an array

DIRECTED_ADDRESS_SEARCH(T,k)
return T[k]

DIRECTED_ADDRESS_INSERT(T,x) $T[key[x]] \leftarrow x$

DIRECTED-ADDRESS_DELETE(T,x)

 $T[key[x]] \leftarrow nil$

O(1) for each operation (array operation in fact)

Hash Tables

- However, how if U is large?
 - i.e., a table (array) of size |U| may be impractical, or even impossible
- Moreover, K may be so small relative to U
 - i.e., most of space allocated for T is wasted
 - e.g., identifiers used in a program vs. all valid identifiers
- When |K| << |U|, using a hash table can
 - reduce the space requirement to ⊕(|K|)
 - keep the search time take still O(1) on average

Hash Functions

- With direct addressing
 - an element with key k is stored in slot k
- With hashing
 - an element with key k is stored in slot h(k)
 - i.e., a hash function h is used to compute the slot
- A hash function h maps the universe U of keys into the slots of a hash table T[0 .. m – 1]
 - i.e., h: U → { 0, 1, ..., m-1 }, where |U| >> m
 - an element with key k hashes to slot h(k)
 - or, h(k) is the hash value of key k

Illustration

$$|U| >> |T| = m$$
; and $h: U \rightarrow \{ 0, 1, ..., m-1 \}$

Collisions

- Problem: 2 keys may hash to the same slot
 - − → collision

Tactics

- Find a "good" hash function to avoid collisions
 - however, since |U| > m, it's impossible to absolutely avoid collisions
 - well, then minimize collisions
- Methods to resolve collisions
 - chaining
 - open addressing (discussed later)

Chaining (1/2)

Chaining (2/2)

 In chaining, all the elements that hash to the same slot are put in a linked list

CHAINED-HASH-INSERT(T, x) Insert x at the head of the list T[h(key[x])]

CHAINED-HASH-SEARCH(T, k) Search for an element with key k in the list T[h(k)]

CHAINED-HASH-DELETE(T, x) delete x from the list T[h(key[x])]

Time Complexity for Insert/Delete

Time complexity

- INSERT
 - O(1)
- DELETE
 - O(1) if the lists are doubly linked
- How about SEARCH?

Time Complexity for Search

- Given a hash table T with m slots that stores n elements
 - load factor α for T is defined as n/m
 - the average number if elements stored in a slot

- Worst-case time complexity
 - all n keys hash to the same slot $\rightarrow \Theta(n)$
 - extremely unlikely to happen

Simple Uniform Hashing

- Average-case time complexity
 - the performance depends on how well the hash function distribute the keys

- Assumptions of simple uniform hashing
 - any element is equally likely to hash into any of the m slots
 - the hashing result is independent of where any other element has hashed to

Average-Case Time Complexity

• For j = 0, 1, ..., m-1, the length of the list T[j] is denoted by n_j

$$- n = n_0 + n_1 + \dots + n_{m-1}$$

- The average value of n_j is $E[n_j] = \alpha = n/m$
- Assume h(k) can be computed in O(1)
- Two cases for a search
 - unsuccessful search (key not found)
 - successful search (key found)

Unsuccessful Search

- In a hash table in which collisions are resolved by chaining, an unsuccessful search takes expected time Θ(1+α), under the assumption of simple uniform hashing
 - to compute $h(k) \rightarrow \Theta(1)$
 - − to search to the end of T[h(k)] → E[$n_{h(k)}$] = α

if
$$n = O(m)$$
 then $\Theta(1+\alpha) \rightarrow \Theta(1)$

Successful Search

- In a hash table in which collisions are resolved by chaining, a successful search takes expected time Θ(1+α), under the assumption of simple uniform hashing
 - assume the key being searched is equally likely to be any of the n keys stored in the table
 - to find x, # of elements examined is (1 + # of elements appear before x in x's list)
 - elements before x in the list are inserted after x is inserted

Time Complexity Analysis (1/2)

- Let x_i denote the ith element inserted into the table
- Let k_i = key[x_i]
- Define the random variable X_{ij} = I{ h(k_i) = h(k_j) },
 i < j
 - in simple uniform hashing, $Pr\{ h(k_i) = h(k_i) \} = 1/m \implies E[X_{ij}] = 1/m$

Time Complexity Analysis (2/2)

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right] = \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E[X_{ij}]\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right)$$

$$=1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$

$$=1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right)$$

$$=1+\frac{1}{nm}\left(n^2-\frac{n(n+1)}{2}\right)$$

$$=1+\frac{n-1}{2m}=1+\frac{\alpha}{2}-\frac{\alpha}{2n}$$

$$\Theta(2 + \frac{\alpha}{2} - \frac{\alpha}{2n}) = \Theta(1 + \alpha)$$

if
$$n = O(m)$$
 then $\Theta(1+\alpha) \rightarrow \Theta(1)$

Hash Functions

- What makes a good hash function?
 - satisfy (approximately) the assumption of simple uniform hashing
- If the distribution is known
 - e.g., keys are random real numbers k independently and uniformly distributed in the range 0≤k<1
 - a hash function can be easily obtained;
 e.g., h(k) = \[km \]

Keys as Natural Numbers

- Most hash functions assume that the universe of keys is N
- If keys are not natural numbers
 - need a mapping method
- Example
- the ASCII string "pt" can be interpreted as 112*128+116 = 14452

Hash Function – Division

- Map a key k into one of m slots by taking the remainder of k divided by m
- That is, the hash function is defined as
 - $-h(k) = k \mod m$
- Avoid certain values of m
 - e.g., m should not be a power of 2
 - since if $m = 2^p$, h(k) is just the p lowest-order bits of k
- It's better to make hash function depend on all the bits of the key!
- A prime not too close to 2^p is often a good choice for m

Hash Function – Multiplication (1/2)

- Multiplication method
 - multiply the key k by a constant A, where 0 < A < 1
 - extract the fractional part of kA \rightarrow f, where $0 \le f < 1$
 - i.e., f = kA \ kA \
 - $-h(k) = \lfloor fm \rfloor$
- An advantage of this method is
 - the value of m is not critical
 - typically, m is selected as a 2^p
 - multiplication vs. division

Hash Function – Multiplication (2/2)

Knuth's suggestion

$$m=2^{\frac{p}{2}}, A=\frac{\sqrt{5-1}}{2}\cong 0.618$$

Open Addressing

- Open addressing
 - all elements are stored in the hash table itself
 - each entry contains either an element or NIL
 - no elements are stored outside the table (not like chaining)
 - the load factor α can never exceed 1

- Instead of following pointers (in chaining), we compute the sequence of slots to be examined
 - another way to resolve collisions

Element Insertion

- To insert an element
 - the hash table is successively probed until an empty slot is found
- Probing in a fixed order starting with 0
 - actually append an element $\rightarrow \Theta(n)$ time
- Instead, the sequence of positions probed depends on the key
 - $-h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$
 - for every key k, the probe sequence < h(k, 0), h(k, 1), ..., h(k, m-1) > MUST be a permutation of < 0, 1, ..., m-1 >

Insertion Procedure

```
Hash-Insert(T, k)
1 i \leftarrow 0
2 repeat j \leftarrow h(k, i)
             if T[j] = NIL
3
             then T[j] \leftarrow k
                     return j
5
             else i \leftarrow i + 1
        until i = m
```

8 error "hash table overflow"

Search Procedure

Hash-Search(T, k)

- 1 $i \leftarrow 0$
- 2 repeat $j \leftarrow h(k, i)$
- $\mathbf{3} \qquad \qquad \mathbf{if} \ T[j] = k$
- 4 then return j
- $i \leftarrow i + 1$
- 6 until T[j] = NIL or i = m
- 7 return NIL

Question: How about deletion?

Probing Methods

- How to generate a probe sequence?
 - i.e., how to implement $h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$?

- Methods
 - linear probing
 - quadratic probing
 - double hashing

Linear Probing

Given an ordinary hash function

$$-h': U \rightarrow \{0, 1, ..., m-1\}$$

- referred as auxiliary hash function
- Linear probing

$$h(k,i) = (h'(k)+i) \mod m$$

- Drawbacks
 - only m distinct probe sequences
 - primary clustering

Quadratic Probing

Quadratic probing

$$h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod m, c_2 \neq 0$$

- c₁, c₂ and m should be carefully selected
- one good way: $c_1 = c_2 = 0.5$, m is a power of 2 (Check Problem 11-3)
- No primary clustering issue
- However
 - only m distinct probe sequences as well
 - secondary clustering
 - if $h(k_1, 0) = h(k_2, 0)$, k_1 and k_2 have the same probe sequence

Double Hashing

Double hashing

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m$$

- h₂ must be relatively prime to m
 - e.g., let m is a power of 2 and h₂ always produce odd numbers
- Relax clustering problem
 - m² distinct probe sequences
 - k₁ and k₂ have the same probe sequence only if $(h_1(k_1), h_2(k_1)) = (h_1(k_2), h_2(k_2))$
 - better than linear and quadratic probing

Analysis – Unsuccessful Search (1/2)

- Uniform hashing
 - each key is equally likely to have any of the m! permutations of < 0, 1, ..., m-1 > as its probe sequence
- Given an open-addressing hash table with load facor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$
 - uniform hashing is assumed
- Definition
 - random variable X as the number of probes in an unsuccessful search

Analysis – Unsuccessful Search (2/2)

$$\Pr\{X \ge 1\} = 1$$

$$\Pr\{X \ge i\} = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \le \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1} \quad \text{, for } 2 \le i \le n+1$$

$$\Pr\{X \ge i\} = 0 \quad \text{, for } i > n+1$$

$$E[X] = \sum_{i=1}^{n+1} i \cdot \Pr\{X = i\} = \sum_{i=1}^{n+1} \Pr\{X \ge i\}$$

$$\leq \sum_{i=1}^{n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i}$$

$$=\frac{1}{1-\alpha}$$

ng @mail.nctu.edu.

Analysis – Element Insertion

- Inserting a key
 - requires an unsuccessful search first
 - places the key into the first empty slot found
- On average, at most $1/(1 \alpha)$ probes are expected

Analysis – Successful Search (1/2)

- A search for a key k follows the same probe sequence as was followed when k was inserted
- If k was the (i+1)th key inserted into the hash table, the expected number of probes for k is at most

$$-1/(1-\alpha) = 1/(1-i/m) = m/(m-i)$$

ng @mail.nctu.edu.tv

Analysis – Successful Search (2/2)

Average number of probes in a successful search

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} (H_m - H_{m-n})$$

$$\leq \frac{1}{\alpha} (\ln m - \ln(m-n))$$

$$= \frac{1}{\alpha} \ln \frac{m}{m-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$