3D Vision LU

Christian Brändle Stefan Zaufl
Matr.Nr.: 1428543 Matr.Nr.: 0925357

Dominik Schörkhuber Matr.Nr.: 1027470

28. Juni 2015

1 Einleitung

In dieser Übung wurden von uns selbst gewählte Objekte mit einem 3D-Laserscanner virtualisiert. Dieses Dokument enthält alle Schritte des Scan- und Bearbeitungsvorganges. Eine abschließende Evaluation und ein Vergleich mit Autodesk 123D Catch zeigt die Qualität und Genauigkeit der erzeugten Modelle.

2 Modelle

2.1

2.2 Mann

Das Modell von Stefan Zaufl ist eine Statuette von einem zusammengekauertern, weinenden Mann. Zu sehen in Abbildung 1.

Abbildung 1: Weinender Mann

2.3 Sparschwein

Abbildung 2: Sparschwein

3 3D Scanning

Die Modelle wurden mit einem Minolta 3D-Scanner virtualisiert. Dabei waren viele Arbeitsschritte bei uns allen ident: Zuerst wurde eine oder mehrere Linsen gewählt, die für den Scannvorgang benutzt werden sollten. Diese Auswahl hing größtenteils von der Größe des Objekts ab, da man den Scanner mit unterschiedlichen Linsen in unterschiedlichen Reichweiten zum Objekt platzieren konnte. Das Objekt selbst wurde auf einen Drehteller platziert, damit automatisch rundum-Messungen vorgenommen werden konnten.

Nachdem man das Objekt gut platziert hatte, musste man den Scanner kalibrieren. Dafür musste man das Objekt wieder vom Drehteller entfernen und stattdessen das Kalibrierungsobjekt in die Mitte des Tellers stellen. Der Scanner nahm dann ein paar Messungen vor und danach war die Kamera zum Drehteller registriert.

Nun konnte man das Objekt wieder auf den Teller platzieren und in der Software einen Autofokus durchführen. Manchmal musste hier der Fokus manuell nachgestellt werden, um eine bessere Tiefenschärfe über das gesamte Objekt zu erlangen. Nachdem nun alles bereit war konnte man den Scanvorgang starten. Der Scanner nahm automatisch 6 Messungen in unterschiedlichen Ansichten vor. Danach konnte das Objekt in eine z.B. liegende Position gebracht werden, um noch eine Messung durchzuführen. Wenn dabei die Kamera und der Drehteller nicht bewegt wurden, musste keine erneute Kalibrierung vorgenommen werden. In Abbildung 3 kann man einen Screenshot der Software vor einem Scanvorgang sehen.

Polyport Class files and the Windows Total Helps

Windows Total

W

Abbildung 3: Screenshot der Scansoftware vor einem Scanvorgang

Nachdem alle Scans vorgenommen wurden mussten die erhobenen Daten nur noch exportiert werden. Diese sind aber keinesfalls schon finalisiert: Zwar sind die Rundumscans innerhalb registriert, doch untereinander noch gar nicht. Manche Scanns wurden in der Software sogar an anderen Orten angezeigt. Um die Daten zu bereinigen, mussten wir zu einer anderen Software greifen: Geomagic Studio.

3.1

3.2 Mann

Die Mann-Statuette war ein dankbares Modell. Das Holz war matt genug um keine Probleme zu bereiten und die Form ist annähernd eine Kugel. Nur die Größe war schon grenzwertig. Es ging sich gerade noch aus alle Scans mit einer Linse für Nahaufnahmen durchzuführen. Wäre das Modell ein bisschen größer gewesen, hätten wir die Linse wechseln müssen und dann wäre das Objekt in den Scans sehr klein gewesen.

3.3 Sparschwein

Das Sparschwein Modell ist geometrisch nicht komplex, dennoch stellt es für den Minolta 3D-Scanner eine Herausforderung dar. Da das Modell sehr dunkel ist wird nur ein sehr kleiner Anteil des Laser Lichts reflektiert. Um das zu kompensieren wurde beim Scanvorgang die Intensität des Lasers manuell erhöht. Weiters besitzt das Objekt einige sehr stark reflektierende Teile welche durch den Scanner schlecht bis gar nicht erfasst werden. In den Scans erscheinen diese Bereiche als Löcher. An den reflektierenden Bereichen konnte keine Oberfläche rekonstruiert werden. Glücklicherweise sind diese Bereiche nicht sehr groß und können in der Nachbearbeitung automatisch geschlossen werden.

4 Nachbearbeitung in Geomagic

- 1. Globale Registrierung in Gruppen 2. Manuelle Registrierung der Gruppen, n-punkt 3. Vereinigen der registrierten Meshes
- 4. Nachbearbeitung Glätten, Spitzen entfernen, Mesh Doctor, löcher füllen bis modell wasserdicht 5. sandpapier für feine nachbearbeitung

Zunächst wurden alle 40 Scans gruppiert und manuell in den Gruppen zueinander registriert, da eine automatische Registrierung in den meisten Fällen fehlschlug.

Danach wurden die einzelnen Gruppen zueinander registriert um eine Gesamtdatenbasis des Modells zu erhalten.

Im Anschluss wurden auf den einzelnen Scans Fehler an den Scanrändern und bzw. überflüssige Teile der Scans von der Scanplatte entfernt.

Eine erneute Registrierung der bereinigten Daten verbesserte die Passgenauigkeit etwas.

Das merging wurde auf Basis von allen Scans und auf Basis einer reduzierten Anzahl von Scans vorgenommen um Überlagerungen von identischen Scandaten zu vermeiden.

Im der Reduktion wurde auf die detailierten Facescans und auf die doppelt vorhandenen 360 Grad Scans der aufrechten Figur zugunsten eines besseren Rausch- bzw. Interpolationsverhaltens verzichtet.

4.1 Waterproof 3D Model

Das Schließen des Modells erforderte manuelle Arbeit für jedes einzelne Loch. Das beste Vorgehen bestand darin, die Umgebung des Loches von von allen störenden Artefakten zu befreien welche die 2D Mannigfaltigkeit des Meshes in diesem Bereich stören. Danach wird das Loch unter Berücksichtigung der Krümmung der umgebenden Oberfläche geschlossen.

4.2

4.3 Mann

Bei der Nachbearbeitung habe ich einen großen Fehler begangen: ich habe sehr lange Zeit nicht gespeichert, ganz und gar darauf vergessen. Nachdem ich das Objekt vereinigt hatte, stürzte die Software ab und ich musste alles noch einmal machen. Dieser Fehler ist mir dann nicht mehr unterlaufen. Ansonsten bin ich auf keine besonderen Probleme gestoßen.

4.4 Sparschwein

Durch die einfache Geometrie des Modells war auch die Nachbearbeitung der Oberfläche relativ einfach. Fast alle Bereiche der Oberfläche weisen eine sehr niedrige Krümmung auf. Dadurch hatte das rekonstruierte Modell auch schon vor der Nachbearbeitung nur sehr wenige Fehler. Am meisten Probleme bereitete der Münzeinwurfschlitz. Da die Hülle des Sparschweins nur wenige Millimeter dick ist wurde innerhalb des Schlitzes keine Geometrie aufgenommen. Ein automatisches Schließen des Bereiches hat erst nach einigen Versuchen zum gewünschten Ergebnis geführt, da je nach dem wie viel Geometrie gelöscht wurde sich auch die automatische Rekonstruktion verändert.

5 Evaluierung

Um die Qualität der 3D-Scans zu beurteilen wurden Messungen an den realen Objekten durchgeführt und mit Messungen an den erzeugten Modellen verglichen.

5.1

5.2 Mann

Beim Mann wurden beim Vergleich der Messungen des Originals gegen die Minolta-Scans von rund ± 0.9 mm festgestellt(Siehe Tabelle 1). Das Volumen des

Originalmodells konnte nicht ermittelt werden, da Wasser die Figur geschädigt hätte. Das von Geomagic berechnete Volumen beträgt $544250.14mm^3$.

Modell: Mann	Original	Scan	Diff
Fußlänge	34.76mm	35.94mm	-1.18mm
Armlänge	70.53mm	$69.80 \mathrm{mm}$	$0.73 \mathrm{mm}$
Hosenbund	14.95mm	$15.83\mathrm{mm}$	$0.88 \mathrm{mm}$
Durchschnitt			$\pm 0.93 \text{mm}$

Tabelle 1: Messfehler Original/Minolta-Scan

5.3 Sparschwein

Für das Sparschwein wurden 7 Messungen durchgeführt und eine Genauigkeit von $\pm 1 \text{mm}$ festgestellt.

6 Structure from Motion mit 123d Catch

Autodesk 123d Catch ist eine Online Platform für Structure from Motion rekonstruktion. Zunächst werden Bilder des Objektes in konzentrischen Kreisen und aus mehreren Winkeln aufgenommen. Dabei ist es wichtig für eine gleichbleibende Beleuchtung zu sorgen. Am besten verwendet man mehrere Lampen die das Objekt gleichmäßig ausleuchten. Beim Aufnehmen der Bilder muss man sehr darauf achten keine Schatten auf das Objekt zu werfen. Nachdem man 40+ Bilder aufgenommmen hat werden diese mit der 123d Catch Applikation hochgeladen und automatisch verarbeitet. Sobald der Vorgang abgeschlossen ist kann man das fertige Modell herunterladen. Die Rekonstruktion nimmt mit einer Berechnungszeit von ca. 45 Minuten sehr viel Zeit in Anspruch da die gesamte Verarbeitung der Daten am Server passiert. Ein großer Vorteil der Technologie ist dass keine spezielle Hardware benötigt wird. Sogar eine Handykamera reicht bereits aus um gute Ergebnisse zu erzielen.

6.1

6.2 Mann

Erwartungsgemäß ist das Modell, das mit 123D Catch erstellt worden ist weniger akkurat als jenes, das mit dem Laserscanner vermessen wurde. Dennoch weist das Modell einen hohen Detail und Genauigkeitsgrad auf. Zwar war eine direkte Messung nicht möglich, da bei Structure from Motion Algorithmen nur relative Werte entstehen, aber nachdem ich das Modell in Geomagic so gut wie möglich an den Minolta Scan angenähert hatte, konnte ich die Messungen durchführen.

Man kann allerdings auch mit dem freien Auge erkennen, dass der Rücken der Statue nicht gut erkannt wurde. Der Hosenbund, der auf dem Original sehr deutlich zu erkennen ist verschwimmt bei der Rekonstruktion mit dem Rücken.

Das kann man dadurch erklären, dass der Rücken bei der Aufnahme von der Lichtquelle abgewandt war und deshalb nicht genügend Features gefunden werden konnten.

Beim Mann wurden beim Vergleich der Messungen des Originals gegen die Rekonstruktion von 123d Catch von rund ± 2.6 mm festgestellt(Siehe Tabelle 2). Das von Geomagic berechnete Volumen beträgt $583912.27mm^3$, das ist ein Unterschied von $39662.13mm^3 (7.28\%)$ zum Minolta-Scan.

Modell: Mann	Original	SFM	Diff
Fußlänge	34.76mm	$38\mathrm{mm}$	-3.24mm
Armlänge	70.53mm	$73.07 \mathrm{mm}$	-2.54mm
Hosenbund	14.95mm	12.88mm	2.07mm
Durchschnitt			$\pm 2.62 \mathrm{mm}$

Tabelle 2: Messfehler Original/123D Catch

6.3 Sparschwein

Im Gegensatz zum Laserscanner hat 123d Catch große Probleme das Sparschwein zu rekonstruieren. Die Structure from Motion Technik verwendet Bildfeatures um die Bilder zueinander zu registrieren. Leider hat das Modell aber nur sehr wenige verwendbare Features. Entsprechend schlecht fällt das Ergebnis aus. In einem ersten Versuch wurden die Bilder so aufgenommen dass das Sparschwein das ganze Bild ausfüllt. In diesem Fall konnte 123d Catch überhaupt keine Registrierung erreichen. Um die Bilder mit Features anzureichern wurden die Aufnahmen in weiteren Versuchen aus etwas größerer Entfernung aufgenommen. Die Oberfläche konnte dann erfolgreich Rekonstruiert werden, wenn auch nur in sehr niedriger Qualität. In Bereichen wo Features vorhanden sind ist die Rekonstruktion durchaus detailliert. Man beachte den Schriftzug an der rechten Seite.

Abbildung 4: Vergleich Scan vs 123D Catch

(a) Ansicht von Vorne(Scan rechts, 123D Catch links)

(b) Ansicht von Hinten(Scan links, 123D Catch rechts)

Abbildung 5: Vergleich mit 123d catch

Abbildung 6: Finale Modelle

