

System Design Specification

Project – ICT 3206

Bachelor of Information and Communication Technology(BICT)

Degree Programme

Department of Information and Communication Technology
Faculty of Technology

Rajarata University of Sri Lanka Mihinthale

Details of the Research Project

Title : Smart Traffic Light Control System Using Arduino

Group Name : Trouble Makers

Group Number : 11

Submission Date : 2022.03.07

Group Members :

Student Name	Index Number	Signature
M.P.Paisul Paree	0465	
S.Sabras	0484	
T.Vergin Priyanka	0479	
J.Keerththana	0462	
P.A.L.Chanaka	0430	
K.G.S.Dineth	0445	
W.G.A.Abeyanayake	0424	

Contents

1. Introduction	2
2. Research Project Scope Overview Diagram	3
3. Research Process flow diagrams	4
4. Implementation Designs	5
4.1. System Architecture	5
4.2. Use Case Diagram	6
4.2.1. use case Identify the vehicle	7
4.2.2. use case Identify the emergency vehicle	7
5. Activity Diagram	8
5.1. Activity diagram for vehicle	8
5.2. Activity diagram for emergency vehicle	9
6. Sequence Diagram	10
6.1. Sequence Diagram for vehicle	10
6.2. Sequence diagram for emergency vehicle	10
7. Hardware Interfaces (Intended to design)	11
8. Software Interfaces (Intended to design)	
Table Table	0.7
Table 1 Use case description	
Figures	
Figure 1 Arduino mega 2560	11
Figure 2 Arduino UNO	12
Figure 3 LED	
Figure 4 Zigbee Module	
Figure 5 Display	
Figure 6 Keypad	
Figure 7 Sample implementation	11

1. Introduction

Traffic congestion becomes a serious issue in our day-to-day activities. It brings down the productivity of individual and thereby the society as lots of work hour is wasted in the signals.

Avoiding traffic jams for example is thought to be beneficial to both environment and economy, but improved traffic-flow may also lead to an increase in demand. It indirectly also adds to the increase in pollution level as engines remain on in most cases, a huge volume of natural resources in forms of petrol and diesel is consumed without any fruitful outcome.

Another major problem is emergency vehicles such as ambulance, fire engines are affected by traffic jams and consequently many people could lose their lives because of an ambulance delay. Newer schemes need to be implemented by bringing in sensor-based automation technique in this field of traffic signaling system.

Present day traffic signaling system is fixed time based which may render inefficient if one lane is operational than the others. To optimize this problem, we have made a framework for a smart traffic control system. Sometimes higher vehicles at one side of the junction demands longer green time.

This research proposes a simple, low cost and real-time traffic light control system, aimed at removing many flaws and improving traffic management.

The next attractive feature of the system is its preference given to the emergency vehicles. This is done by providing special communicating devices that can control the traffic lights so that lane opens and allow that vehicle to pass the signal.

2. Research Project Scope Overview Diagram

3. Research Process flow diagrams

Page 4 of 14

4. Implementation Designs

4.1. System Architecture

4.2. Use Case Diagram

4.2.1. use case Identify the vehicle

Table 1 Use Case Description

Use Case	Identify the vehicle	
Actor	Infra Red Sensor, microcontroller	
Pre Condition	The IR sensor should be transferring the real time vehicle count to	
	microcontroller	
Flow of Event	i. Start IR sensor ii. count the vehicle	
	iii. send the real time count to microcontroller	
	iv. Check if microcontroller received the vehicle count	
	v. If didn't receive the count, the traffic light will be yellow color	
	vi. If there is more than one IR counts received, It will analyze every lane has how much vehicles have.	
	vii. Then green signal will be assigned to vehicle count and signal	
	light work with clockwise.	
Alternative Path	None	
Post Condition	None	

4.2.2. use case Identify the emergency vehicle

Table 2 Use Case Description

Use Case	Identify the emergency vehicle	
Actor	Portable Controller	
Pre-Condition	The zigbee should be transfer the lane number to microcontroller	
Flow of Event	 i. Start Zigbee sender i. The driver will choose the traffic light number ii. The portable microcontroller will check the number is valid iii. If the number is larger than 5, it will ask the driver to enter it again iv. If the number is less than 6, it will save the value v. Zigbee coordinator receive the signal vi. If Xbee did receive a signal, check the which signal light number received vii. Turn on green light for the selected traffic light viii. After that see if there is another signal 	
Alternative Path	None	
Post Condition	None	

5. Activity Diagram

5.1. Activity diagram for vehicle

5.2. Activity diagram for emergency vehicle

6. Sequence Diagram

6.1. Sequence Diagram for vehicle

6.2. Sequence diagram for emergency vehicle

7. Hardware Interfaces (Intended to design)

Figure 1 Arduino mega 2560

Figure 2 Arduino UNO

Figure 3 LED

Figure 4 Zigbee Module

Figure 5 Display

Figure 6 Keypad

Figure 7 Sample implementation

8. Software Interfaces (Intended to design)

Figure 7 Arduino IDE

Figure 2 Zigbee Module IDE

Page 12 of 14