VE281

Data Structures and Algorithms

Topological Sorting

Learning Objectives:

- Know what a topological sorting is and why it is useful
- Know the topological sorting algorithm and its runtime complexity

- Topological sorting: an ordering on nodes of a directed graph so that <u>for each</u> edge (v_i, v_j) (means: an edge from v_i to v_j) in the graph, v_i is before v_j in the ordering.
 - Also known as **topological ordering**.

A topological sorting is: A, G, D, B, E, C, F

Which Graph Has Topological Sorting?

- Is there any "topological sorting" for directed graph with cycles?
 - In other words, can we order the nodes so that for each edge (v_i, v_j) , v_i is before v_j in the ordering?
 - Answer: No! (Why?)
- How about directed acyclic graph (DAG)?
 - Yes! Guarantee to have a topological ordering.
 - Why? There is always a **source node** S in a DAG. Put S first. For the graph without S, again, there is a source node. Put it next ...
- Next, we will focus on topological sorting on **DAG**.

- Topological sorting is not necessarily **unique**:
 - A, G, D, B, E, C, F and A, B, G, D, E, F, C are both topological sorting.
- Are the following orderings topological sorting?
 - A, B, E, G, D, C, F
 - A, G, B, D, E, F, C

Applications

• Scheduling tasks when some tasks depend on other tasks being completed.

Applications

• Evaluating a combination logic circuit given a set of inputs.

- Based on a queue.
- Algorithm:
 - 1. Compute the in-degrees of all nodes. (in-degree: number of incoming edges of a node.)
 - 2. Enqueue all in-degree 0 nodes into a queue.
 - 3. While queue is not empty
 - 1. **Dequeue** a node ν from the queue and visit it.
 - 2. Decrement in-degrees of node v's neighbors.
 - 3. If any neighbor's in-degree becomes 0, **enqueue** it into the queue.

Example

Queue

Enqueue A and G

In-degrees

_							
	A	В	С	D	Е	F	G
	$\left(0 \right)$	1	2	2	2	1	0

1		l		

Example

Queue

A G

Dequeue A, visit A, and decrement in-degrees of A's neighbors.

In-degrees

A	В	С	D	Е	F	G
O	1	2	2	2	1	0

1		l		

Example

Queue

G

Enqueue B

In-degrees

A	В	C	D	Е	F	G
О	40	2	2 1	2	1	0

Δ			
A			

Example

Queue

G B

decrement

Dequeue G, visit G, and decrement in-degrees of G's neighbors.

In-degrees

A	В	С	D	Е	F	G
0	0	2	1	2	1	0

Δ			
$ \Lambda $			
		l	

Example

Queue

В

Enqueue D

In-degrees

A	В	C	D	Е	F	G
0	О	2	40	2	1	О

A	G			

Example

Queue

В

D

Dequeue B, visit B, and decrement in-degrees of B's neighbors.

In-degrees

A	В	C	D	E	F	G
O	0	2	О	2	1	О

A	G			

Example

Queue

D

Dequeue D, visit D, and decrement in-degrees of D's neighbors.

In-degrees

A	В	C	D	E	F	G
О	O	2 1	О	2 1	1	О

A	G	В		

Example

Queue

Enqueue E

In-degrees

A	В	С	D	E	F	G
0	0	1	0	10	1	0

|--|

Example

Queue

E

Dequeue E, visit E, and decrement in-degrees of E's neighbors.

In-degrees

A	В	С	D	Е	F	G
0	0	1	0	0	1	0

A G B	D		
-------	---	--	--

Example

In-degrees

A	В	C	D	Е	F	G
0	0	10	O	О	40	О

A	G	В	D	E	

Example

Queue

C

F

Dequeue C, visit C, and decrement in-degrees of C's neighbors.

In-degrees

A	В	C	D	E	F	G
О	O	0	О	О	О	О

Example

Queue

F

Dequeue F, visit F, and decrement in-degrees of F's neighbors.

In-degrees

A	В	C	D	E	F	G
O	0	О	О	0	0	0

A	G	В	D	Е	C	

Example

Queue

Queue is now empty. Done!

In-degrees

A	В	C	D	E	F	G
0	0	О	0	О	0	О

A	G	В	D	Е	С	F

Time Complexity

Assume adjacency list representation

- Compute the in-degrees of all nodes.
- O(|V| + |E|) in total
- Enqueue all in-degree 0 nodes into a queue.

O(|V|) in total

- 3. While queue is not empty
 - Dequeue a node v from the queue and visit it. O(|V|) in total

Decrement in-degrees of node v's neighbors. O(|E|) in total

- If any neighbor's in-degree becomes 0 ...
 - ... place it in the queue.

O(|V|) in total

Total running time is O(|V| + |E|).