Automated Fact-Checking

Joshua Chen

Universität Bonn Seminar Natural Language Processing SS 2017

25 Jul 2017

Automated fact-checking

Automated fact-checking

Using machine learning, statistical and other techniques to automatically verify the truth of factual claims.

Automated fact-checking

Automated fact-checking

Using machine learning, statistical and other techniques to automatically verify the truth of factual claims.

Todav:

- Knowledge graph based fact-checking of relational claims.
- Framework for checking general claims, finding counterarguments and reverse-engineering vague claims.

Knowledge graphs

Assume knowledge base in the form of relational triples (subject, predicate, object).

Knowledge graphs

Assume knowledge base in the form of **relational triples** (subject, predicate, object).
e.g. ("Obama", "is a", "Muslim"),
("the Danube", "flows through", "Serbia")

Knowledge graphs

Assume knowledge base in the form of **relational triples** (subject, predicate, object).
e.g. ("Obama", "is a", "Muslim"),

```
e.g. ( Obama , is a , Muslim ),
( "the Danube", "flows through", "Serbia")
```

Knowledge graph $\mathcal G$

Vertices ↔ subject and object entities

Edges ↔ predicates between corresponding subject and object

 $\mathcal G$ may be directed/undirected, labeled with extra info...

Key idea

Fact-checking can be viewed as a **link prediction** problem over the knowledge graph \mathcal{G} .

Key idea

Fact-checking can be viewed as a **link prediction** problem over the knowledge graph \mathcal{G} .

• G = (V, E) has a "true" edge set \widetilde{E} .

Key idea

Fact-checking can be viewed as a **link prediction** problem over the knowledge graph G.

- $\mathcal{G} = (V, E)$ has a "true" edge set \widetilde{E} .
- $E \subseteq \widetilde{E}$ is potentially incomplete: some relational triples (s, p, o) may be true but missing from our knowledge base.

Key idea

Fact-checking can be viewed as a **link prediction** problem over the knowledge graph G.

- $\mathcal{G} = (V, E)$ has a "true" edge set \widetilde{E} .
- $E \subseteq \widetilde{E}$ is potentially incomplete: some relational triples (s, p, o) may be true but missing from our knowledge base.
- Want to use structural properties of \mathcal{G} to approximate E: given a candidate edge e corresponding to (s, p, o), determine if $e \in \widetilde{E}$, i.e. if (s, p, o) is true.

Ciampaglia et al. [1]

Undirected knowledge graph \mathcal{G} , vertices labeled with their corresponding entity names.

Ciampaglia et al. [1]

Undirected knowledge graph \mathcal{G} , vertices labeled with their corresponding entity names.

Semantic proximity

For a path $P = v_1 v_2 \cdots v_n$ define

$$W(P) = \left(1 + \sum_{i=2}^{n-1} \log \delta(v_i)\right)^{-1}$$

where $\delta(v)$ is the degree of v in \mathcal{G} .

Semantic proximity captures the heuristic of specificity.

Truth score

Given a claim c = (s, p, o), the **truth score** is

 $\tau(c) = \max\{W(P) \mid P \text{ is a path between } s \text{ and } o \text{ in } G\}.$

Truth score

Given a claim c = (s, p, o), the **truth score** is

 $\tau(c) = \max\{W(P) \mid P \text{ is a path between } s \text{ and } o \text{ in } G\}.$

Algorithm

Given a claim (s, p, o) we compute its truth score. The higher the truth score the more confident we are that it is true.

Results

Results

Discriminative path mining (Shi and Weninger [3]):

ullet ${\cal G}$ is directed. Vertices and edges are labeled with entity and predicate names.

- ullet ${\cal G}$ is directed. Vertices and edges are labeled with entity and predicate names.
- Vertices are further labeled with their ontology (set of classes to which the entity belongs).

- ullet ${\cal G}$ is directed. Vertices and edges are labeled with entity and predicate names.
- Vertices are further labeled with their ontology (set of classes to which the entity belongs).
- First seek to understand a claim e.g. ("New York city", "capital of", "New York") by generalizing to the ontology e.g. (U.S. city, "capital of", U.S. state)

- ullet ${\cal G}$ is directed. Vertices and edges are labeled with entity and predicate names.
- Vertices are further labeled with their ontology (set of classes to which the entity belongs).
- First seek to understand a claim e.g. ("New York city", "capital of", "New York") by generalizing to the ontology e.g. (U.S. city, "capital of", U.S. state)

Wu et al. [4]

Example

"Adoptions went up 65 to 70 percent. . . when I was mayor"

Rudy Giuliani, 2007 Republican presidential debate

This claim is:

Wu et al. [4]

Example

"Adoptions went up 65 to 70 percent. . . when I was mayor"

Rudy Giuliani, 2007 Republican presidential debate

This claim is:

• vague—the precise increase in adoptions is rounded, and the time frame is not stated.

Wu et al. [4]

Example

"Adoptions went up 65 to 70 percent. . . when I was mayor"

Rudy Giuliani, 2007 Republican presidential debate

This claim is:

- vague—the precise increase in adoptions is rounded, and the time frame is not stated.
- misleading—upon clarification, the exact time frame was cherry-picked to present the increase as greater than it actually was over the period Giuliani was mayor [2].

If claims are:

- vague, then we want to reverse-engineer them to be more precise.
- **2** misleading, then we want to find counterarguments exposing the actual trends.

If claims are:

- vague, then we want to reverse-engineer them to be more precise.
- **2** misleading, then we want to find counterarguments exposing the actual trends.

Key idea

A general factual claim contains **parameters** that we can vary in order to change its **result**.

e.g. "Unemployment decreased by 20 percent between 2012 and 2016."

Basic framework

Definitions

- A parametrized query template q: P → R maps the parameter space P of a claim to its result space R.
- A claim is represented by a triple (q, p, r) where $p \in \mathcal{P}$ and $r \in \mathcal{R}$.
- A relative parameter sensibility function S_P: P × P → R gives the sensibility of one parameter setting relative to another.
- A relative result strength function $S_R \colon \mathcal{R} \times \mathcal{R} \to \mathbb{R}$ gives the strength of one result relative to another.

Let (q, p_0, r_0) be a claim.

 $S_R(r, r_0)$ is the strength of r relative to the reference result r_0 .

 $S_R(r, r_0) < 0$ means that r is **weaker** than r_0 .

Let (q, p_0, r_0) be a claim.

 $S_R(r, r_0)$ is the strength of r relative to the reference result r_0 . $S_R(r, r_0) < 0$ means that r is **weaker** than r_0 .

Example

"Unemployment decreased by 20 percent between 2012 and 2016." If the actual unemployment rate was 10 percent we may say that the true result r = 0.1 is weaker than the claimed result $r_0 = 0.2$.

Let (q, p_0, r_0) be a claim.

 $S_R(r, r_0)$ is the strength of r relative to the reference result r_0 . $S_R(r, r_0) < 0$ means that r is **weaker** than r_0 .

Example

"Unemployment decreased by 20 percent between 2012 and 2016." If the actual unemployment rate was 10 percent we may say that the true result r = 0.1 is weaker than the claimed result $r_0 = 0.2$.

 $S_P(p, p_0)$ is the sensibility of p relative to the reference parameter setting p_0 . $S_P(p, p_0) > 0$ means that p is **more sensible** than p_0 .

Relative result strength (left) and parameter sensibility (right) surfaces relative to Giuliani's adoption claim.

Let a claim (q, p_0, r_0) be given.

Let a claim (q, p_0, r_0) be given.

Reverse engineering

Find parameter settings p maximizing sensibility relative to p_0 , with result as close as possible to r_0 (i.e. minimizing $|S_R(q(p), r_0)|$).

Let a claim (q, p_0, r_0) be given.

Reverse engineering

Find parameter settings p maximizing sensibility relative to p_0 , with result as close as possible to r_0 (i.e. minimizing $|S_R(q(p), r_0)|$).

Counterargument finding

Find parameter settings p maximizing sensibility relative to p_0 , that weaken the original claim as much as possible (i.e. minimizing $S_R(q(p), r_0)$.

Let a claim (q, p_0, r_0) be given.

Reverse engineering

Find parameter settings p maximizing sensibility relative to p_0 , with result as close as possible to r_0 (i.e. minimizing $|S_R(q(p), r_0)|$).

Counterargument finding

Find parameter settings p maximizing sensibility relative to p_0 , that weaken the original claim as much as possible (i.e. minimizing $S_R(q(p), r_0)$.

Bicriteria optimization problems over the result strength and parameter sensibility surfaces, can be solved by enumerating $p \in \mathcal{P}$ in a suitable way.

- [1] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen, F. Menczer, and A. Flammini. 2015. Computational Fact Checking from Knowledge Networks. PLoS ONE 10, 6 (June 2015), e0128193. DOI: http://doi.org/10.1371/journal.pone.0128193
- [2] B. Jackson. 2007. Levitating Numbers. (May 2007). Retrieved July 17, 2017 from http://www.factcheck.org/2007/05/levitating-numbers/
- [3] B. Shi and T. Weninger. 2016. Discriminative predicate path mining for fact checking in knowledge graphs. Know.-Based Syst. 104, C (July 2016), 123-133. DOI: http://dx.doi.org/10.1016/j.knosys.2016.04.015
- [4] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. 2014. Toward computational fact-checking. Proc. VLDB Endow. 7, 7 (March 2014), 589-600. DOI: http://dx.doi.org/10.14778/2732286.2732295