Computational Methods of Optimization Third Midterm(9th Nov, 2021)

Instructions:

- This is a closed book test. Please do not consult any additional material.
- \bullet Attempt all questions
- Total time is 70 mins.
- Answer the questions in the spaces provided. Answers outside the spaces provided will not be graded.
- Rough work can be done in the spaces provided at the end of the booklet

Name:			
SRNO:	Degree:	Dept:	

Question:	1	2	3	4	Total
Points:	10	10	10	10	40
Score:					

1. Our goal is to find the minimum norm solution of the following equations

$$2x_1+x_2+x_3=36~~{\rm Eq1},~~-x_1-x_2+3x_3=0,~~{\rm Eq2}$$

(a) (1 point) Pose the problem as a quadratic optimization problem over the constraint set $A\mathbf{x} = b$

Solution:

$$min_{\mathbf{x} \in \mathbb{R}^3} \frac{1}{2} \|\mathbf{x}\|^2$$

subject to
$$A\mathbf{x} = b$$

where
$$A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & -1 & 3 \end{bmatrix}$$
, and $b = [36, 0]^{\top}$

(b) (2 points) State the KKT conditions of the problem in terms of the lagrange multipliers, A and b.

Solution:

$$\mathbf{x} = A^{\top} \mu, A\mathbf{x} = b$$

(c) (1 point) At optimality compute the Lagrange multipliers, μ_1^* corresponding to Eq1 amd μ_2^* corresponding to Eq2.

Solution: $\mu_1^* = 6, \mu_2^* = 0$

(d) (2 points) Give reasons to justify your answer.

Solution:

$$\mu = \left(AA^{\top}\right)^{-1}b$$

- . Direct compution leads to the answer.
- (e) (3 points) Find the optimal solution, \mathbf{x}^* , of the optimization problem

Solution:

$$\mathbf{x}^* = A^{\top} \mu^*, \quad , \mathbf{x}^* = [12, 6, 6]^{\top}$$

(f) (1 point) Find another solution of the system of equations which has the maximum number of zeros in the solution.

Solution: There is no solution with two zeros in the individual coordinates. Fix one coordinate to zero, and solve for the rest

- $x_1 = 0$ leads to $x_2 = 27, x_3 = 9$
- $x_2 = 0$ leads to $x_1 = 108/7, x_3 = 36/7$
- $x_3 = 0$ leads to $x_1 = 36, x_2 = -36$
- 2. Let $a_1 < a_2 ... < a_{2m+1}$ be 2m+1 real numbers sorted from smallest to largest, a_1 being the smallest and a_{2m+1} being the largest. Consider the problem

$$min_{x \in \mathbb{R}, t \in \mathbb{R}^{2m+1}} \quad \sum_{i=1}^{m} t_i$$

subject to
$$-t_i \le x - a_i \le t_i$$
, $t_i \ge 0, i = 1, \dots, 2m + 1$

where $t = [t_1, \dots, t_{2m+1}]^{\top}$. Let the Lagrangian of the problem be

$$L(x,t,\lambda_1,\lambda_2,\lambda_3) = \sum_{i=1}^{2m+1} t_i - \sum_{i=1}^{2m+1} \lambda_{1i}(x-a_i+t_i) + \sum_{i=1}^{2m+1} \lambda_{2i}(x-a_i-t_i) - \sum_{i=1}^{2m+1} \lambda_{3i}t_i$$

- (a) Suppose $x = a_l$ is the optimal solution.
 - i. (1 point) The value of $\lambda_{1i}, \lambda_{2i}$ when i < l is

A.
$$\lambda_{1i} = \lambda_{2i} = 0$$

B.
$$\lambda_{1i} = 1, \lambda_{2i} = 0$$

C.
$$\lambda_{1i} = 0, \lambda_{2i} = 1$$

- D. $\lambda_{1i}, \lambda_{2i}$ are both positive
- ii. (2 points) Justify your answer using KKT conditions

Solution: From KKT conditions we obtain

- for feasibility $t_i \ge a_l a_i$.
- whenever $t_i > 0$, $\lambda_{1i} + \lambda_{2i} = 1$
- From complimentarity conditions it follows that $\lambda_{1i}=0$ and hence from the above $\lambda_{2i}=1$

iii. (1 point) The value of $\lambda_{1i}, \lambda_{2i}$ when i > l is

A.
$$\lambda_{1i} = \lambda_{2i} = 0$$

B.
$$\lambda_{1i} = 1, \lambda_{2i} = 0$$

C.
$$\lambda_{1i} = 0, \lambda_{2i} = 1$$

- D. $\lambda_{1i}, \lambda_{2i}$ are both positive
- iv. (2 points) Justify your answer using KKT conditions

Solution: Similar reasoning.

(b) i. (1 point) For what value of l, $x = a_l$ is optimal?

A.
$$l = 1$$

B.
$$l = 2m + 1$$

C.
$$l = m$$

- D. Cannot be determined
- ii. (3 points) Jsutify your answer using KKT conditions

Solution: One of the KKT conditions require that

$$\sum_{i=1}^{2m+1} \lambda_{i1} = \sum_{i=1}^{2m+1} \lambda_{2i}$$

From before we know that i < l, $\lambda_{1i} = 0$, $\lambda_{2i} = 1$ and for i > l, $\lambda_{1i} = 1$, $\lambda_{2i} = 0$. Furthermore we can set $\lambda_{1m} = \lambda_{2m} = 0$. Thus for choice l = m,

$$\sum_{i=1}^{2m+1} \lambda_{i1} = \sum_{i=1}^{2m+1} \lambda_{2i} = m$$

and hence the $x = a_m$ is the global optima

3. (a) (5 points) Compute the projection, $P_C(\mathbf{z})$, of $\mathbf{z} \in \mathbb{R}^d$ on $C = [0,1]^d$. You need to state the KKT conditions, and show that your answer satisfies these conditions

Solution: The Lagrangian is $L(\mathbf{x}, \lambda, \mu) = \frac{1}{2} ||\mathbf{x} - \mathbf{z}||^2 + \lambda^T (\mathbf{x} - \mathbf{1}) - \mu^T \mathbf{x}$ where $\lambda, \mu \in \mathbb{R}^d_{\geq 0}$. Then the KKT conditions are as follows,

- Primal feasibility: $0 \le x_i \le 1$ for all $i \in [d]$.
- Complementary slackness: $\lambda_i(x_i 1) = 0$ and $\mu_i x_i = 0$ for all $i \in [d]$.
- Dual feasibility: $\lambda, \mu \in \mathbb{R}^d_{>0}$.
- Stationarity: $\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0 \implies x_i z_i + \lambda_i \mu_i = 0, \forall i \in [d].$

If could you guess the projection as the following,

$$P_C(\mathbf{z})_i = \begin{cases} 1 & z_i > 1 \\ z_i & 0 \le z_i \le 1 \\ 0 & z_i < 0 \end{cases}$$
 (1)

you need to show that in each of the three cases there exist some values of λ and μ such that all the KKT conditions are satisfied.

Case 1: $z_i > 1$. Then setting $x_i = 1$, $\lambda_i = z_i - 1$ and $\mu_i = 0$ satisfies all the KKT conditions.

Case 2: $0 \le z_i \le 1$. Then setting $x_i = z_i$, $\lambda_i = 0$ and $\mu_i = 0$ satisfies all the KKT conditions.

Case 3: $z_i < 0$. Then setting $x_i = 0$, $\lambda_i = 0$ and $\mu_i = -z_i$ satisfies all the KKT conditions.

Alternatively, we can also compute the projection using the KKT conditions. There are four possible cases for each set of λ_i, μ_i as follows,

Case 1: $\lambda_i = 0, \mu_i = 0$. Dual feasibility and complementary slackness is satisfied for any value of z_i . To satisfy stationarity we set $x_i = z_i$. Now we get that primal feasiblity can be satisfied only when $0 \le z_i \le 1$.

Note. If primal feasiblity constraints are not mentioned, for any value of \mathbf{z} the rest of the constraints are satisfied and the projection becomes $P_C(\mathbf{z}) = \mathbf{z}$ for any \mathbf{z} .

Case 2: $\lambda_i > 0$, $\mu_i = 0$. Dual feasibility is satisfied. To satisfy complementary slackness we set $x_i = 1$. This also satisfies primal feasibility. Then the stationarity can be satisfied whenver $z_i - 1 = \lambda_i$, that is, whenever $z_i > 1$ there exists a value of $\lambda_i > 0$ that satisfies all the constraints. (Note that for $z_i \leq 1$ there is no value of $\lambda_i > 0$ that satisfies stationarity).

Case 3: $\lambda_i = 0, \mu_i > 0$. Dual feasibility is satisfied. To satisfy complementary slackness we set $x_i = 0$. This also satisfies primal feasibility. Then the stationarity can be satisfied whenver $-z_i = \mu_i$, that is, whenever $z_i < 0$ there exists a value of $\mu_i > 0$ that satisfies all the constraints. Case 4: $\lambda_i > 0, \mu_i > 0$. We can not satisfy complementary slackness as we need $x_i = 0$ and $x_i = 1$ simultaneously. Therefore this case does not correspond to any feasible solution. These four cases give the projection in (1).

(b) (5 points) Suppose it is given that $\mathbf{z} \in \mathbb{R}^3$, $\mathbf{z} \notin [0,1]^3$ with $P_C(\mathbf{z}) = [0,0.5,0.8]^\top$. It is given that the largest absolute value of the coordinates of \mathbf{z} is 1. From this information can you reconstruct \mathbf{z} . Justify your answer.

Solution: Let $P_C(\mathbf{z}) = \mathbf{x}^*$. In this case a key property of projection is $\mathbf{x}_i^* = \mathbf{z}_i$ whenever $0 \le \mathbf{z}_i \le 1$. Thus this determines $\mathbf{z}_2 = 0.5, \mathbf{z}_3 = 0.8$. Since $\mathbf{x}_1^* = 0$, it implies that $\mathbf{z}_1 \le 0$. Note that the largest absolute value of coordinates of \mathbf{z} is 1, this necessarily means that $\mathbf{z}_1 = -1$. Hence the point is $\mathbf{z} = [-1, 0.5, 0.8]^{\top}$.

4. Consider the following problem

$$min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x} - b^{\top} \mathbf{x}, \quad \text{subject to } ||\mathbf{x}||^2 \le 1$$

The eigenvalues of Q lie between -1 and 1.

(a) (5 points) Write one step of the gradient projection algorithm starting at $\mathbf{x}^{(k)}$ for this problem? Assume that the stepsize is fixed to α .

Solution:

$$\begin{aligned} \mathbf{x}^{(k+1} &= P_C \left[\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^{(k)}) \right] \\ P_C(\mathbf{z}) &= \frac{\mathbf{z}}{\|\mathbf{z}\|} \quad \text{whenever } \|\mathbf{z}\| > 1, z \text{ otherwise.} \\ P_C(\mathbf{z}) &= \frac{\mathbf{z}}{\max(1, \|\mathbf{z}\|)} \\ \mathbf{x}^{(k+1)} &= \frac{\left[I - \alpha Q \right] \mathbf{x}^{(k)} + \alpha b}{\max\left(1, \| \left[I - \alpha Q \right] \mathbf{x}^{(k)} + \alpha b \| \right)} \end{aligned}$$

(b) (5 points) What is the range of α ? Justify your answer

Solution: Direct computation shows that

$$f(\mathbf{y}) - f(\mathbf{x}) - (\mathbf{y} - \mathbf{x})^{\top} \nabla f(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\top} Q(\mathbf{y} - \mathbf{x})$$
$$\leq \frac{1}{2} \lambda ||\mathbf{y} - \mathbf{x}||^2 = \frac{1}{2} ||\mathbf{y} - \mathbf{x}||^2$$

where $\lambda = 1$ is the largest eigenvalue of Q. Let $\mathbf{y} = P_C(\mathbf{x} - \alpha \nabla f(\mathbf{x}))$ Thus

$$\nabla f(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) \leq -\frac{1}{\alpha} ||\mathbf{y} - \mathbf{x}||^2$$

Thus

$$f(\mathbf{y}) \leq f(\mathbf{x}) - \left(\frac{1}{\alpha} - \frac{1}{2}\right) \|\mathbf{y} - \mathbf{x}\|^2$$

Thus $0 \le \alpha \le 2$