18.02 Fall 2007 - Problem Set 5, Part B Solutions

1. In general, $\frac{dg}{ds}\Big|_{\hat{u}} = \nabla g \cdot \hat{u}$ is largest when $\hat{u} = \text{dir } \nabla g$ and

$$\nabla g \cdot (\operatorname{dir} \nabla g) = \nabla g \cdot \frac{\nabla g}{|\nabla g|} = \frac{|\nabla g|^2}{|\nabla g|} = |\nabla g|.$$

Similarly, the directional derivative is smallest when $\hat{\boldsymbol{u}} = -\text{dir }\nabla g$ and its value is $-|\nabla g|$. Therefore the answers to (a) and (b) are as follows.

- a) Since $\nabla f = \langle 3x^2 y^2 8x + 3 + 2xy, -2xy + x^2 \rangle = \langle -1/4, -3/4 \rangle$, the maximum directional derivative is $|\langle -1/4, -3/4 \rangle| = \sqrt{10}/4$; the minimum is $-\sqrt{10}/4$.
- b) The maximum is achieved in the direction $\hat{\boldsymbol{u}} = \operatorname{dir} \langle -1/4, -3/4 \rangle = \langle -1, -3 \rangle / \sqrt{10}$. The minimum is achieved in the opposite direction, $\hat{\boldsymbol{u}} = -\operatorname{dir} \langle -1/4, -3/4 \rangle = \langle 1, 3 \rangle / \sqrt{10}$.
 - c) We need $\hat{\boldsymbol{u}} \cdot \langle -1/4, -3/4 \rangle = 0$. So $\hat{\boldsymbol{u}} = \pm \operatorname{dir} \langle 3, -1 \rangle = \pm \frac{\langle 3, -1 \rangle}{\sqrt{10}}$.
- d) The maximum of df/ds is approximately 0.8 (±.05) achieved when $\hat{\boldsymbol{u}} = \langle \cos \theta_1, \sin \theta_1 \rangle$, $\theta_1 \approx 252^{\circ}$ (±8°). $\hat{\boldsymbol{u}}$ points parallel to (and in the same direction as) the gradient vector and perpendicular to the contour line.

The minimum of df/ds is approximately -0.8 ($\pm .05$) achieved when $\hat{\boldsymbol{u}} = \langle \cos \theta_2, \sin \theta_2 \rangle$, $\theta_2 = -180^\circ + \theta_1 \approx 72^\circ$ ($\pm 8^\circ$). $\hat{\boldsymbol{u}}$ points parallel to (and opposite) the gradient vector and perpendicular to the contour line.

df/ds = 0 when $\hat{\boldsymbol{u}} = \langle \cos \theta, \sin \theta \rangle$, $\theta = \theta_1 \pm 90^\circ \approx 162^\circ$ and 342° ($\pm 5^\circ$). $\hat{\boldsymbol{u}}$ points parallel to the contour line and perpendicular to the gradient vector.

Remark: because dir $\nabla f = -\text{dir} \langle 1, 3 \rangle$, the exact value of the angle θ_2 is $\tan^{-1}(3) \approx 71.6^{\circ}$.

- **2.** a) $\nabla g = \langle g_x, g_y, g_z \rangle = \langle 2x, z, y \rangle = \langle 4, 1, -1 \rangle$ at (2, -1, 1). The direction of greatest decrease is that of $-\nabla g$, i.e. the unit vector $-\frac{\nabla g}{|\nabla g|} = \frac{\langle -4, -1, 1 \rangle}{\sqrt{18}} = \frac{\langle -4, -1, 1 \rangle}{3\sqrt{2}}$.
- b) Let $\Delta x = x 2$, $\Delta y = y + 1$, $\Delta z = z 1$; then the line in the direction of $\langle -4, -1, 1 \rangle$ can be parametrized by $\Delta x = -4t$, $\Delta y = -t$, $\Delta z = t$. (Dividing by $3\sqrt{2}$ is unnecessary and just makes calculations more complicated.) At $P_0 = (2, -1, 1)$, we have g = 3, and $\nabla g = \langle 4, 1, -1 \rangle$ (from part (a)), so linear approximation gives

$$g(x, y, z) \approx g(P_0) + \nabla g(P_0) \cdot \langle \Delta x, \Delta y, \Delta z \rangle = 3 + 4\Delta x + \Delta y - \Delta z$$
$$= 3 + 4(-4t) + (-t) - t = 3 - 18t.$$

Therefore, g=2 when $t\approx 1/18$. At t=1/18, we obtain $(x,y,z)=(2-4t,-1-t,1+t)=(2-\frac{2}{9},-1-\frac{1}{18},1+\frac{1}{18})$. Evaluating g at this point, we find ≈ 2.046 , which is close to 2.

3. a) Minimizing $f(x,y,z)=(x-2)^2+(y+1)^2+(z-1)^2$ subject to the constraint $g(x,y,z)=x^2+yz=2$ gives the Lagrange multiplier equations $\nabla f=\lambda\nabla g$, or

$$2(x-2) = \lambda(2x) \tag{1}$$

$$2(y+1) = \lambda z \tag{2}$$

$$2(z-1) = \lambda y \tag{3}$$

We also need to remember a fourth equation, the constraint equation: $x^2 + yz = 2$.

b) Summing (2) and (3) gives $2(y+z) = \lambda(y+z)$, so either $\lambda = 2$ or y+z=0.

We first assume that z=-y. Then $(1) \Leftrightarrow x-2=\lambda x \Leftrightarrow x=2/(1-\lambda)$, while plugging y=-z into (3) gives $2(z-1)=-\lambda z \Leftrightarrow z=2/(2+\lambda)$, and $y=-2/(2+\lambda)$. The constraint equation $x^2+yz=2$ then becomes

$$\left(\frac{2}{1-\lambda}\right)^2 - \left(\frac{2}{2+\lambda}\right)^2 = 2.$$

Clearing denominators we get $4(2+\lambda)^2 - 4(1-\lambda)^2 = 2(2+\lambda)^2(1-\lambda)^2$, or

$$\lambda^4 + 2\lambda^3 - 3\lambda^2 - 16\lambda - 2 = 0.$$

The two roots of this equation are $\lambda_1 \approx -0.1283$ and $\lambda_2 \approx 2.3448$. Using the above expressions of x, y, z in terms of λ , the first possibility gives , while the second one gives $(x, y, z) \approx (-1.4872, -0.4603, 0.4603)$ which is much further from (2, -1, 1).

Finally we look at the other possibility $\lambda = 2$: then (1) gives x = -2, so any solution with $\lambda = 2$ lies far away from (2, -1, 1). So the point closest to (2, -1, 1) at which $x^2 + yz = 2$ is

$$(x, y, z) \approx (1.7725, -1.0686, 1.0686).$$

The approximate answer obtained in Problem 2, namely $(x,y,z)=(2-\frac{2}{9},-1-\frac{1}{18},1+\frac{1}{18})\approx (1.7778,-1.0556,1.0556)$, is close to the exact solution but not quite within 1/100.