

YIWEI YU, 2022 NOV

NETWORK INTRUSION DETECTOR

KDD Cup 1999 Data

Try the following approaches to detect the intrusions:

- 1. PCA (Principal Component Analysis)
- 2. AE: Simple Autoencoder, Deeper Autoencoder
- 3. VAE (Variational autoencoders)

DATA PREPARATION

Download files <u>kddcup.data_10_percent.gz</u> and <u>kddcup.names</u> to build <u>Pandas Dataframe</u>.

- Remove columns which value is fixed, like 'num_outbound_cmds', 'is_host_login'.
- Transfer columns which contain different string value, to one-hot type, like 'protocol_type', 'service', 'flag'.
- Normalize numerical columns via <u>MinMaxScaler</u>.

PCA (PRINCIPAL COMPONENT ANALYSIS)

- Take 8 components
 - Variance Explained = 0.92
 - MSE Reconstruction = 981.74
 - As the baseline while comparing results from AE and VAE.

SIMPLE AE (AUTOENCODER)

- Training
 - Epochs = 32
 - Batch size = 256
 - Accuracy = 93.77%
- Evaluation
 - Impressive outcome

• MSE Reconstruction = 680.99 (> Score on PCA)

Threshold = value at 99%

Model: "simple_ae"

Layer (type)	Output Shape	Param #
input (InputLayer)	[(None, 116)]	0
encoder (Functional)	(None, 29)	3393
input (InputLayer)	[(None, 116)]	0
encoder_out (Dense)	(None, 29)	3393
decoder (Functional)	(None, 116)	3480
decoder_in (InputLayer)	[(None, 29)]	0
 reconstruction (Dense)	(None, 116)	3480

Total params: 6,873 Trainable params: 6,873 Non-trainable params: 0

0.0	0.99	0.98	0.99	19456
1.0	0.98	0.99	0.99	19456
accuracy macro avg	0.99	0.99	0.99 0.99	38912 38912
weighted avg	0.99	0.99	0.99	38912

recall f1-score

DEEPER AE (AUTOENCODER)

- Training
 - Epochs = 32
 - Batch size = 256
 - Accuracy = 93.78%
- Evaluation
 - Impressive outcome

Model: "deeper_ae"

Layer (type)	Output Shape	Param #
input (InputLayer)	[(None, 116)]	0
encoder (Functional)	(None, 29)	8497
 input (InputLayer)	[(None, 116)]	0
hidden-1 (Dense)	(None, 58)	6786
encoder_out (Dense)	(None, 29)	1711
decoder (Functional)	(None, 116)	8584
decoder_in (InputLayer)	[(None, 29)]	0
hidden-2 (Dense)	(None, 58)	1740
decoder_out (Dense)	(None, 116)	6844

Total params: 17,081 Trainable params: 17,081

Non-trainable params: 0

Confuse	Matrix
CUIIIUSE	ויומנווג

- MSE Reconstruction = 360.76 (> Score on Simple AE)
 - Threshold = value at 99%

0	.0	0.99	0.98	0.99	19456
1	.0	0.98	0.99	0.99	19456
accura	су			0.99	38912
macro a	vg	0.99	0.99	0.99	38912
veighted a	vg	0.99	0.99	0.99	38912

recall f1-score support

precision

VAE (VARIATIONAL AUTOENCODER)

- Training
 - Epochs = 50
 - Batch size = 256

- Evaluation
 - Impressive outcome

•

- MSE Reconstruction = 863.42 (> Score on PCA)
 - Threshold = value at 99%

Model: "vae_mlp" Layer (type) Output Shape

encoder_input (InputLayer)	[(Non	e, 116)]	0	
encoder (Functional)	(None	, 29)	10208	
 encoder_input (InputLayer)) [(No	ne, 116)]	0	
 dense_7 (Dense) 	(None,	58)	6786	
z_mean (Dense)	(None,	29)	1711	
z_log_var (Dense)	(None,	29)	1711	
 z (Lambda)	(None,	29)	0	

decoder (Functional)	(None, 116)	8584
z_sampling (InputLayer)	[(None, 29)]	0
dense_8 (Dense)	(None, 58)	1740
dense_9 (Dense)	(None, 116)	6844

Total params: 18,792 Trainable params: 18,792		precision	recall	f1-score	support
Non-trainable params: 0	0.0	0.99	0.98	0.99	19456
	1.0	0.98	0.99	0.99	19456

Param #

Confuse Matrix

accuracy 0.99 38912 macro avg 0.99 0.99 0.99 38912 weighted avg 0.99 0.99 0.99 38912

LATENT SPACE (ERROR TERM)

Examine the latent space generated by the encoder, by only using the encoder model without the decoder.

The image below shows a scatter plot of the latent space generated by the encoder (after dim reduction to 2 dims). The color of each point reflects its associated reconstruction error term.

A darker dot implies a larger error term. We can clearly see one large cluster of points that seem quite on the normal side (with a relatively small error term), surrounded by 3 main clusters with a relatively high error term.

LATENT SPACE (ANOMALY)

We can confirm this with the plot below which plots the same points above after marking each point that has crossed the error threshold as an anomaly (in orange).

LATENT SPACE (GROUND-TRUTH)

Finally, we can compare the above to the ground-truth plot below which actually shows the true labels of the data. That is the points colored in orange in this plot are in fact anomalies — network packets sent during a network cyber attack. We can see that while we correctly identified the vast majority of the anomalies (98% of them), still there is a small group which we failed to identify, as the plot shows, probably because of some similarity to the normal points.

SUMMARY

Variational autoencoders are widely perceived as extremely effective for a variety of machine learning tasks. There is a lot of writing about variational autoencoders, but not too many practical examples in the areas of anomaly detection. The purpose of this post was to help to fill this gap by providing a simple example that can be used to prototype and test it. The greatest advantage of VAEs derives from the regularization imposed on the generated latent space. The ability to work with smoother and more continuous vector space can lead to more stable and accurate results, as it ensures similar data points lie closer together and makes similarity measures more reliable. After putting forward a simple architecture, I have shown how these qualities of VAE networks can generate pretty impressive results with relatively little tweaking, though I tried to highlight where tweaks and experimentation will be required if results are not satisfactory.

THANK YOU

YUYW (GITHUB.COM)