$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \text{for } x \in \mathsf{Dom}(X)$$

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \text{for } x \in \mathsf{Dom}(X)$$
 $P(X = x) = \sum_{y \in \mathsf{Dom}(Y)} P(X = x \land Y = y)$

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \mathsf{for} \ x \in \mathsf{Dom}(X)$$
 $P(X = x) = \sum_{y \in \mathsf{Dom}(Y)} P(X = x \land Y = y)$

$$\mu(\{\omega \in \Omega \mid \omega \models X = x\}) = \sum_{v \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega \models X = x \land Y = y\})$$

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \text{for } x \in \mathsf{Dom}(X)$$

$$P(X = x) = \sum_{y \in \mathsf{Dom}(Y)} P(X = x \land Y = y)$$

$$\mu(\{\omega \in \Omega \mid \omega \models X = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega \models X = x \land Y = y\})$$

$$\mu(\{\omega \in \Omega \mid \omega(X) = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega(X) = x \text{ and } \omega(Y) = y\})$$

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \text{for } x \in \mathsf{Dom}(X)$$

$$P(X = x) = \sum_{y \in \mathsf{Dom}(Y)} P(X = x \land Y = y)$$

$$\mu(\{\omega \in \Omega \mid \omega \models X = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega \models X = x \land Y = y\})$$

$$\mu(\{\omega \in \Omega \mid \omega(X) = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega(X) = x \text{ and } \omega(Y) = y\})$$

 $v \in Dom(Y)$

From additivity of μ (for finite Ω)

$$\mu(S) = \sum_{\alpha \in S} \mu(\{\omega\})$$

Joint probability from a table

	<i>y</i> 1	<i>y</i> 2	 Ус
<i>x</i> ₁	$P(x_1, y_1)$	$P(x_1, y_2)$	 $P(x_1, y_c)$
<i>X</i> ₂	$P(x_1,y_1) P(x_2,y_1)$	$P(x_2, y_2)$	 $P(x_2, y_c)$
÷			
X _r	$P(x_r, y_1)$	$P(x_r, y_2)$	 $P(x_r, y_c)$

Joint probability from a table

Wikipedia on Marginal distribution

Marginal variables are those variables in the subset of variables being retained. These concepts are "marginal" because they can be found by summing values in a table along rows or columns, and writing the sum in the margins of the table.

$$P(X) = \sum_{Y} P(X, Y)$$

joint probability
$$P(X, Y)$$

$$P(X) = \sum_{Y} P(X, Y)$$

joint probability
$$P(X, Y)$$

$$P(X) = \sum_{Y} P(X, Y)$$

marginal probability P(X)

$$P(X) \ = \ \sum_{Y} P(X,Y)$$
 marginal probability $P(X)$ marginalising out Y

$$P(X) = \sum_{Y} P(X,Y)$$
 marginal probability $P(X)$ marginalising out Y \approx eliminating Y

$$P(X) = \sum_{Y} P(X,Y)$$
 marginal probability $P(X)$ marginalising out Y \approx eliminating Y nuisance variable Y

$$P(X) = \sum_{Y} P(X,Y)$$

$$P(X) = \sum_{Y} P(X,Y)$$
 marginal probability $P(X)$ marginalising out Y \approx eliminating Y nuisance variable Y We'll define $P(X|Y)$ so that
$$P(X) = \text{expected value of } P(X|Y) \text{ over } Y$$

$$P(X) = \sum_{Y} P(X,Y)$$

$$P(X) = \sum_{Y} P(X,Y)$$
marginal probability $P(X)$ marginalising out Y

$$\approx \text{ eliminating } Y$$

$$\text{nuisance variable } Y$$
We'll define $P(X|Y)$ so that
$$P(X) = \text{expected value of } P(X|Y) \text{ over } Y$$

$$= \sum_{Y} P(X|Y)P(Y)$$

$$P(X) = \sum_{Y} P(X,Y)$$

$$P(X) = \sum_{Y} P(X,Y)$$
marginal probability $P(X)$ marginalising out Y

$$\approx \text{ eliminating } Y$$
nuisance variable Y

We'll define $P(X|Y)$ so that
$$P(X) = \text{expected value of } P(X|Y) \text{ over } Y$$

$$= \sum_{Y} P(X|Y)P(Y)$$

$$P(X) = \sum_{Y} P(X|Y)P(Y)$$

 $= \mathbb{E}_{v}[P(x|y)]$