Important CPM parameters

temperature

J values

 λ

targetvolume: too small vs too large

Guideline: multiplying J, λ and T by the same constant keeps the dynamics the same T and J in order 10, λ in order one typically yields decent dynamics.

Objections and limitations

volume fluctuations are required for dynamics no explicit membrane
When J is lower: more adhesion, more fluctuations no explicit time scale computational costs
Do due diligence

"minimal" energy configurations

Depending on initial conditions and parameters, reaching the minimal energy configuration may take very long.

we can also use this in our favour

Convergent extension

the importance of where you start from

or

Differential adhesion and convergent extension

from Choe et al. 2006

Convergent extension could potentially mess up segments

segment-specific adhesion solves this

Convergent extension by differential adhesion

Convergent extension by graded expression of adhesive proteins

Persistent random walk in T cells

From Beltman et al, 2007

Underlying mechanism in brief

Persistent random walk in CPM

$$\Delta H + = -\mu \cos(\alpha)$$

The angle is updated every x timesteps, to reflect the actual direction of motion of the cell

We define this mechanism as change in the Hamiltonian: directly add an extra bias to copy probability

Exercises part 2

