the group of symmetres of a regular n-sided polygon is called dihedreal group Dn. Consider first the equilateral triangle as shown in the figure. The axes of symmetries are shown in the

1 figure by the lines M, N, R, P. Let r denote the

rotation about anis M by $\frac{2\pi}{3}$. This takes

N the vertex 1 to 2, 2 to 3 and 3 back to 1.

Let s denote the reflection about axis P.

S interchanges the vertices 2 and 3.

3 We have the relations $r^3 = e$ and $s^2 = e$ Now rs (sfollowed byr) is reflection

2

Similarly Y^2s is reflection about axis N. In this way we get all the symmetries of the equilateral thangle which is the set $\{e, Y, Y^2, S, Y^2, S^2\}$. What about the element SY^2 . It turns out that $SY = Y^2S$. This can be seen geometrically as shown in the figure. Then, using this fact we can show that $SY^2 = YS$. Indeed, $SY^2 = (SY)Y = (Y^2S)Y = Y^2(SY) = Y^2Y^2S = Y^4S = YS$. Since $Y^3 = e$.

	و	٧	Y2	S	45	72 S	
و	e	Y	۲ 2	s	23	42 S	•
٧	۲	Y2	و	48	Y25	S	
Y 2	Y2	و	۲	۲2	S	Y S	
S	S	4,2	Y S	و	7 ²	~	
۲S	45	s	γ²s	۲	و	۲ ²	
Y2S	Y25	45	S	7 2	~	e	

is the group multiplication table.

For a general n-regular polygon we can generalize this. Let Y be a rotation by angle $\frac{2\Pi}{n}$ by the axis of symmetry that is perpendicular to the plane in which the regular n-gon lies and S be reflection about a line that lies in the plane (it does not matter which one), then again we have $Y^n = e$ and $S^2 = e$. There are an Symmetries given by

{e, x, x2, ... x , x3, x3, x3, ..., x , x }

We also have that $SY = Y^{n-1}S = Y^{-1}S$ (check geometrically!) then using this fact we see that $SY^j = Y^{n-j}S$ (check!)

Each element of the group Dn has elements of the form Y^a or Y^a s for $0 \le a \le n-1$ and we have $Y^aY^b = Y^k$ $\begin{cases} 7 & k = a+b \end{cases}$

 $\gamma^{\alpha}(\gamma^{i}s) = \gamma^{\kappa}s$ $(\gamma^{\alpha}s)\gamma^{i} = \gamma^{k}s$ $(\gamma^{\alpha}s)(\gamma^{i}s) = \gamma^{k}$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

We say that rands generate the group Pn.

Finally, the order of a group is the number of elements in the group. If a group has infinite elements then the group has infinite order. We denote the order of a group G by |G|. If x is an element of G and if there is a positive integer such that $x^m = e$ then we say that x has finite order. The smallest positive integer e such that e is called the order of e.

Examples:

- 1) The order of Dn is 2n. In D_3 $^4, Y^2$ have order 3, where as S, YS, Y^2S have order 2
- 2) Order of Z6 is six. The elements 1 and 5 have order 6, 2 and 4 have order 3 and 3 has order 2.
- 3) (R,+) has infinite order and every element except 0 has infinite order.
- 4) $C = \{2 \in \mathcal{L} \mid |2| = 1\}$ is the unit circle. This is a group of infinite order. At elements of this group are of the form $e^{i\theta}$. The elements when θ is a rational multiple of 2π have finite order.