

Fairness in SMV

- Specified as a CTL formula φ
 - \blacksquare SMV will define a path as unfair if ϕ is not true in it infinitely often
 - During Model Checking, the A and E quantifiers will be applied to fair paths only
 - In our example, this means
 - Eventual message delivery holds infinitely often.

Fairness Constraints

- We want to prove that a message is eventually delivered.
 - Channel does not drop forever.
 - Need to impose fairness constraint on channel.
- A fairness constraint marks some states as distinguished.
 - It forces a process to visit one of the distinguished states infinitely often.
 - Any execution trace which does this is considered a fair path.

Fairness

- Given Kripke Structure M=(S,S0,→,L)
 - $\scriptstyle \bullet$ Each Fairness constraint is a set $S' \subseteq S$
 - A path π in the Kripke Structure satisfies the constraint if elements of S' appear infinitely often, i.e.
 - At least one element of S' must appear infinitely often in
 - Model Checking is now restricted to ignore unfair computation traces while interpreting the path formulae in the property being verified.

Fair Kripke Structure

- M = (S, S0, R, L, F)
- ullet S is set of states, R is transition relation and L is labelling
- ullet $F\subseteq 2^S$ is a set of fairness constraints.
- · We consider only those paths which are fair w.r.t. each constraint

These are called fair paths.

Fair CTL* semantics

- · Meaning of path quantifiers must consider F.
- $-M,s\models_F Af$ iff for all fair paths π starting from s, $M,\pi\models_F f$
- $-M,s\models_F Ef$ iff there exists a fair path π starting from s,
- $M, s \models_F p$ iff $p \in L(s)$ and there exists a fair path from s.
- Meaning of the temporal operators $M, \pi \models_F \dots$ does not change

Model Checking with fairness

- M,s |=_F EGf
 - \blacksquare There exists a fair path π starting from s which satisfies f globally.
 - For simplicity, assume a single fairness constraint represented by the formula fair. Thus
 - f holds globally in π
 - fair holds infinitely often in π
 - Not enough for an outgoing state to satisfy EGf
 - A state satisfying fair should hold in every finite segment

Comparison

- Without fairness
 - St_{EGf} = fixed point of
 func_f(Y) = f_A EX Y
 - starting from the set of all states as initial approximation
- With fairness
 - St_{EGf} = fixed point of
 - $func_{f, fair}(Y) = f_{\wedge} E(f \cup (Y_{\wedge} fair))$

 - starting from the set of all states as initial approximation
 The above equation leads to a symbolic model checking procedure using BDDs.
- Let us look at the pictorial description.

Fair CTL model checking

- What about EX, EU, ¬, ∨ ?
- $\bullet \ \ \, \text{Checking f} \lor g \text{ is not affected due to fairness} \\$ constraints (involves a disjunction of BDDs)
 - Of course f, g might themselves involve EX, EU, EG the checking of which is affected due to fairness constraints.
- Similarly checking of ¬ f is not affected.
- For EX, EU

 - M, s |= FEX f iff M,s |= EX(f \(fair \))
 M, s |= FE(f U g) iff M,s |= E(f U (g \(fair \)))

Exercises

- Write down the modification to our symbolic MC computation for EX, EU.
- Write down the fairness constraints for our lossy channel explicitly
 - As a CTL* formula
 - As sets of states
- For the Kripke Structure of the lossy channel, are the following paths "fair"?
 - s1 s3 s1 s3 s1 s3 s1 s3 ...
 - s0 s2 s0 s2 s0 s2 s0 s2 ...