

Estrutura da Matéria 2018-2 – Prof. Célio BIK0102 – S.A. Aula 12 – Forma e estrutura das moléculas I

Modelo VSEPR Básico

2 Sulfur hexafluoride, SF₆

6 Boron trifloride, BF₃

Regiões de alta concentração de elétrons

Octahedral

Pentagonal bipyramidal

Nomes das formas de moléculas simples e seus ângulos de ligação

Ligações simples ou múltiplas

4 Beryllium chloride, BeCl₂

9 Carbon dioxide, CO₂

Híbridos de Ressonância

15 Nitrate ion, NO₃⁻

Moléculas com pares de elétrons isolados no átomo central

- Fórmula VSEPR geral: AX_nE_m;
 - A representa um átomo central;
 - X um átomo ligado;
 - E um par isolado.
- $BF_3 \rightarrow AX_3$;
- $SO_3^{2-} \rightarrow AX_3E$.
- Ao reconhecer a fórmula, podemos predizer a forma, mas não o valor numérico preciso dos ângulos de ligação.

Moléculas com pares de elétrons isolados no átomo central

20 Nitrogen dioxide, NO₂

Modelo VSEPR revisto

- Regiões de alta concentração de elétrons ocupam posições que as afastam o máximo possível;
- Todas as ligações se repelem da mesma maneira, independentemente de serem simples, duplas ou triplas;
- A ligação em torno de um átomo central não depende do número de "átomos centrais" da molécula;

Modelo VSEPR revisto

- Os pares de elétrons isolados contribuem para a forma da molécula, embora eles não sejam incluídos na descrição da forma molecular;
- Os pares de elétrons isolados exercem uma repulsão maior do que os pares de elétrons de ligação e tendem a comprimir os ângulos de ligação.

AX₄E → Bipirâmide trigonal

AX₃E₂ → Bipirâmide trigonal

AX₄E₂ → Arranjo octaédrico

AX₂E → Forma molecular angular

23 Ozone, O_3

24 Nitrite ion, NO₂

25 Sulfur dioxide, SO₂

Moléculas Polares

 São moléculas com momento de dipolo diferente de zero.

28 Water, H₂O

Moléculas poliatômicas: molécula polar X ligação polar

26 Carbon dioxide, CO₂

A forma de uma molécula define a sua polaridade

29 cis-Dichloroethene, C₂H₂Cl₂

30 trans-Dichloroethene, C₂H₂Cl₂

Tetrachloromethane, CCI₄

32 Trichloromethane, CHCl₃

Bibliografia

 Atkins e Jones, Princípios de Química, cap. 3, ed. Bookman (2006).