

we Emulate... Department of Computer Science and Engineering, BUET

COURSE OUTLINE

Course Code: CSE 208

Course Title: Data Structures and Algorithms II Sessional

Level/Term: L2T2 Section: A1(Mon), A2(Mon), B1(Wed), B2(Sat)

Academic Session: January 2023

Course Teacher(s):

Name:	E-mail
Dr. Mohammed Eunus Ali	mohammed.eunus.ali@gmail.com
Dr. Md. Shamsuzzoha Bayzid	shams.bayzid@gmail.com
Dr. Atif Hasan Rahman	atif.bd@gmail.com
Dr. Sadia Sharmin	sadia@teacher.cse.buet.ac.bd
Preetom Saha Arko	preetomarko@gmail.com
Rayhan Rashed	rayhanrashed58@gmail.com
Navid Bin Hasan	navidh86@cse.buet.ac.bd
Sheikh Azizul Hakim	sheikh.hakim.2028@gmail.com
Kowshic Roy	vdrkowshic@gmail.com
Khandokar Md. Rahat Hossain	rahat2975134@gmail.com

Course Outline:

Graph algorithms; MST algorithms, Shortest path algorithms, Maximum flow and maximum bipartite matching; Lower bound theory; Advanced data structures: Balanced binary search trees (AVL trees, red-black trees, splay trees etc.), Advanced heaps (Fibonacci heaps, binomial heaps); Hashing; NP-completeness; NP-hard and NP complete problems; Coping with hardness: Backtracking, branch and bound, Approximation algorithms;

Learning Outcomes/Objectives:

After undergoing this course, students should be able to:

- i. understand and analyze the performance of algorithms in terms of time and space,
- ii. formulate various algorithmic problems and design efficient algorithms to solve those problems,
- iii. solve real-world problems using algorithms,
- iv. utilize advanced data structures for efficient implementations of algorithms,
- v. understand various complexity classes of algorithmic problems, and
- vi. design backtracking, branch and bound, and efficient approximation algorithms to cope with hard combinatorial problems.

we Emulate... Department of Computer Science and Engineering, BUET

Assessment (tentative):

Offline + Viva : 30% - 50% Online + Viva : 20% - 40%

Quiz: 20% - 40%

Text and Reference Books:

- a. Algorithm Design, by Michael T. Goodrich and Roberto Tamassia, John Wiley & Sons, Inc.
- b. Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani.
- c. Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press.
- d. Algorithm Design, by Jon Kleinberg and Eva Tardos, Pearsons Publishers.
- e. Introduction to the Design & Analysis of Algorithms, by Anany Levitin.

Offline: Same for A1, A2, B1, B2

Release: Wednesday 11:59 pm (Week x) Submission: Thursday 11:59 pm (week x+1)

Tentative Weekly schedule:

Week	Topics
Week 1	
Week 2	Introduction - Basic Graph Algorithms (BFS, DFS, Topological sort) (Practice)
Week 3	Sessional Class - MST - Online, Viva
Eid Break	
Week 4	Single Source Shortest Path Problem(Offline, Online, Viva)
Week 5	All-Pair Shortest Path Problem (Offline, Online, Viva)
Week 6	Maximum Flow and Maximum Bipartite Matching (Offline, Online, Viva)
BREAK	
Week 7	Advanced Data Structure-I (Offline, Viva) - Heaps
Week 8	Advanced Data Structure-II (Offline, Viva) - AVL/Red Black Tree
Week 9	Hashing (Offline, Online, Viva)
Week 10	NP & NP-Completeness (Online, Viva)
Week 11	Exact, Approximation Algorithms
Week 12	Branch and Bound (Offline, Online, Viva)
Week 13	Quiz

we Emulate... Department of Computer Science and Engineering, BUET

* Please DO NOT COPY solutions from anywhere (your friends, seniors, internet etc.). Any form of plagiarism (irrespective of source or destination), will result in getting -100% marks in the online/offline.

Prepared by:	
Signature: Sadia Sharmin	
Date:03/06/2023	