2016年TI杯大学生电子设计竞赛

D 题:单相正弦波变频电源

1. 任务

设计并制作一个单相正弦波变频电源,其原理框图如图 1 所示。变压器输入电压 U_1 =220V,变频电源输出交流电压 U_0 为 36V,额定负载电流 I_0 为 2A,负载为电阻性负载。

图 1 单相正弦波变频电源原理框图

2. 要求

(1)	输出频率范围为 20Hz~100Hz, U_{O} =36 \pm 0.1V 的单相正弦波交流电。	(15分)
(2)	输出频率 $f_{\rm O}$ =50±0.5Hz,电流 $I_{\rm O}$ =2±0.1A时,使输出电压 $U_{\rm O}$ =36±0.1V。	(10分)
(3)	负载电流 $I_{\rm O}$ 在 $0.2\sim2$ A 范围变化时,负载调整率 $S_{\rm I}\!\!\leq\!\!0.5\%$ 。	(15分)
(4)	负载电流 I_0 =2A, U_1 在 198V \sim 242V 范围变化时, 电压调整率 S_U \leq 0.5%。	(15分)
(5)	具有过流保护,动作电流 $I_{\mathrm{O(th)}}$ =2.5±0.1A,保护时自动切断输入交流电源	Ĩ.
		(10分)
(6)	$I_{\rm O}$ =2A, $U_{\rm O}$ =36V 时,输出正弦波电压的 THD \leq 2%。	(15分)
(7)	I_{O} =2A, U_{O} =36V 时,变频电源的效率达到 90%。	(15分)
(8)	其他。	(5分)
(9)	设计报告	(20分)

项目	主要内容	满分
方案论证	设计与论证,方案描述	3
理论分析与计算	电路结构设计,器件选择,仿真分析	5
电路与程序设计	电路图及有关设计文件	5
测试方案与测试结果	测试方法与仪器,测试数据及测试结果分析	5
设计报告结构及规范性	摘要,正文结构规范,图表的完整与准确性	2
总 分		20

3. 说明

- (1) 变频电源系统(包括辅助电源)供电仅由变压器输出 U_2 提供。
- (2) 题中交流参数均为有效值。
- $S_{\rm I} = \left| \frac{U_{\rm OI2} U_{\rm OII}}{U_{\rm OII}} \right| \times 100\%$, 其中 $U_{\rm OII}$ 为 $I_{\rm O}$ =0.2A 时的输出电压; $U_{\rm OI2}$ 为 $I_{\rm O}$ =2.0A 时的输出电压。
- $S_{\rm U} = \left| \frac{U_{\rm OU2} U_{\rm OU1}}{U_{\rm OU1}} \right| \times 100\%$, $U_{\rm OU1}$ 为 $U_{\rm I} = 198$ V 时的输出电压; $U_{\rm OU2}$ 为 $U_{\rm I} = 242$ V 时的输出电压。
- (5) 辅助电源可购买电源模块(亦可自制),作为作品的组成部分,测试时,不再 另行提供稳压电源。
- (6) 效率测量时,可采用功率分析仪或电参数测量仪测量,损耗应包括辅助电源损 $\eta = \frac{P_{\rm O}}{P_{\rm 2}}$ 耗,效率 $\frac{P_{\rm O}}{P_{\rm 2}}$, $\frac{P_{\rm O}}{P_{\rm 2}}$
- (7) 制作时需考虑测试方便,合理设置测试点。