WS23/24: Numerische Mathematik Übungszettel 3

1. Let g be defined on $[5\pi/8, 11\pi/8]$.

$$g(x) = x + \sin x$$
.

Show that you can apply the contraction mapping theorem and determine the (smallest possible) Lipschitz constant L (i.e. the constant in the definition of a contraction).

- 2. Es sei $g(x) = ax^3 4ax + x$ definiert auf [-3, 3] mit a > 0 und $x_{k+1} = g(x_k)$.
 - (a) Finden Sie alle drei Fixpunkte $\xi_1 < \xi_2 = 0 < \xi_3$ von g (diese sind unabhängig von a) und bestimmen Sie deren Stabilität (abhängig von a).
 - (b) Für $\xi_2 = 0$ und a, so dass ξ_2 stabil: Wie konvergiert x_k (linear, sublinear, quadratisch, etc.)? Bei linearer Konvergenz, was ist die asympt. Konvergenzrate?
 - (c) (P) Implemetieren Sie die Fixpunkiteration x=g(x) für das gegebene g und dokumentieren/illustrieren Sie die Resultate von a) und b) für verschiedene a und Startwerte. Diskutieren Sie insbesondere die Interpretation der asympt. Konvergenzrate.
- 3. Es sei g gegeben, stetig differenzierbar mit Fixpunkt ξ und definiert eine Folge $x_{k+1} = g(x_k)$.
 - (a) Sie wissen, dass für die Stabilität $|g'(\xi)| \le 1$ relevant ist. Diskutieren Sie graphisch, was die Auswirkungen von $g'(\xi) \le 0$ auf das Verhalten der Folge x_k ist (Hinweis: vergleichen Sie die Vorzeichen von ξx_k und ξx_{k+1}).
 - (b) Basierend auf den obrigen Beobachtungen, formulieren Sie ein Lemma: Es sei ξ stabiler Fixpunkt von g, x_0 nah genug bei ξ und $x_{k+1} = g(x_k)$. Dann gilt

falls
$$-1 < g'(\xi) < 0$$
 gilt für alle $j = 0, 1, 2, ...$ dass ????? (1)

falls
$$0 < g'(\xi) < 1$$
 gilt für alle $j = 0, 1, 2, ...$ dass ????? (2)

Beweisen Sie es (Hinweis: Taylor Entwicklung!).

- 4. Series convergence
 - (a) Find the limit and order of convergence for the following sequences:
 - i. $x_{k+1} = \alpha x_k$ for some $|\alpha| < 1$.
 - ii. $c_{k+1} = c_k \tan c_k$.
 - iii. $b_k = 2^{-2^k}$.
 - (b) (P) Demonstrate your results of (a) numerically.
- 5. (P) Implementieren Sie die Newton Methode zur Nullstellen-Findung, wenden Sie sie auf folgende Beispiele an und diskutieren Sie das Verhalten bzgl Konvergenz und Konvergenzgeschwindigkeit.
 - (a) $f(x) = e^{-x} 1$ für $x_0 = 1$, $x_0 = 3$.
 - (b) $f(x) = \ln(x)$ für $x_0 = 1.5$, $x_0 = 3$.
 - (c) f(x) = x(x-2)(x-4) für $x_0 = 0.5$, $x_0 = 2.5$, $x_0 = \frac{2}{3}(3-\sqrt{3})$, $x_0 = 0.85$.
 - (d) $f(x) = e^x 1 x$ für $x_0 = 1$.