TTK4150 Nonlinear Control Systems Lecture 7

Input-to-State Stability (ISS)

and

Input-Output Stability (IOS)

Previous lecture:

Lyapunov's direct method for nonautonomous systems

- Time-varying Lyapunov functions candidates
- Lyapunov's theorems for
 - stability
 - uniform stability (US)
 - uniform asymptotic stability (UAS)
 - global uniform asymptotic stability (GUAS)
 - local and global exponential stability (GES ⇒ GUAS)
- Barbalat's lemma

Outline I

- 1 Introduction
 - Previous lecture
 - Today's goals
 - Literature
- Input-to-State Stability
 - Systems with inputs
 - Motivation for ISS
 - Definition of ISS
 - How to check ISS
 - ISS vs. Lyapunov stability properties
 - How do we use ISS?
- Stability of cascades
 - Application example
 - Background material
 - Input-output stability

Outline II

- Introduction
- \mathscr{L}_p norms and spaces
- Definition
- Causal operators
- Examples

Today's goals

After today you should...

 Know that there exists other stability concepts than Lyapunov stability

In particular

- Understand the motivation and the definition of Input-to-State stability (ISS)
- Be able to analyze ISS using ISS-Lyapunov functions
- Know some relations between ISS and Lyapunov stability
- Know the definition of Input-Output Stability (IOS)
- Be able to analyze IOS using the definition
- Know the small-gain theorem

Today's lecture is based on

Khalil Section 4.9

Background material:

- Paper and talk by E.D. Sontag:
 The ISS Philosophy as a Unifying Framework for Stability-Like Behavior
- Mini-course by A. Loria:
 Cascaded nonlinear time-varying systems:
 analysis and design

Sections 5.1 and 5.4

(5.2 - 5.3 and Ex. 5.14 are additional material)

Part I

Input-to-state stability (ISS)

System

We want to analyse systems on the form

$$\dot{x} = f(t, x, u) \qquad (\Sigma)$$

$$f:[0,\infty)\times\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$$

Input

u(t) pieciewise continuous, bounded function

- disturbance
- modelling error

When
$$u(t) = 0$$

$$\dot{x} = f(t, x, 0)$$

$$x = 0$$
 is GUAS (0-GUAS)

What if $u(t) \neq 0$?

Motivation

- Adding to control system theorist's "toolkit" for studying systems via decomposition
- Quantify response to external signals
- Unify state-space and i/o stability theory

Motivation: Decomposition (Cascades)

Even if the original system is autonomous

$$\dot{x} = f(x)$$

we may study "systems with i/o signal"

(Otherwise, how do we interconnect them?)

0

Motivation: Response to external signals

$$\begin{array}{c|c} u_1 & e_1 \\ \hline y_2 & H_2 \\ \hline e_2 & u_2 \\ \end{array}$$

 $u = (u_1, u_2)$ = noise, disturbance, modelling error, ... $y = (y_1, y_2)$ = distance to desired states, tracking error, ...

Motivation: Unify state-space and i/o stability theory

Motivation: Merge Lyapunov/Zames

- We have Lyapunov theory for systems without inputs and outputs
- We have a rich theory for stability of input/output operators developed by George Zames, and many others
- ISS allows us to combine features of both

For $\underline{\text{linear}} \ \dot{x} = Ax + Bu$, A Hurwitz $\Rightarrow (u \to 0 \Rightarrow x \to 0)$ i.e. Bounded Input Bounded State (BIBS)

This is NOT true for nonlinear systems. Ex: $\dot{x} = -x + (x^2 + 1)u$

even though $\dot{x} = f(x,0)$ is GES: $\dot{x} = -x$.

We must bound the solution $||x(t,x_0,u)||$ in a "nonlinear gain" sense

$$\|x(t)\|$$
 ("ultimately") $\leq \gamma(\|u(\cdot)\|_{\infty})$

$$\gamma \in \mathscr{K}_{\infty}:$$

$$\gamma(0) = 0$$

$$C^{0}, \nearrow +\infty$$

Figure: Example class \mathscr{K}_{∞} function γ

Repetition (from last lecture):

Global asymptotic stability (GAS) of the origin means

$$\exists \text{ class } \mathscr{K}\mathscr{L} \text{ function } \beta \text{ s.t. } \|x(t)\| \leq \beta(\|x(t_0)\|, t-t_0) \quad \forall t \geq t_0 \geq 0 \\ \forall \|x(t_0)\|$$

$$||x(t)|| \le \beta(||x(t_0)||, 0) \rightsquigarrow \text{ stability (small overshoot)}$$

$$\|x(t)\| \le \beta(\|x(t_0)\|, t-t_0) \xrightarrow{(t-t_0) \to \infty} 0 \leadsto \text{convergence}$$

0

Original definition

 $\exists \beta \in \mathscr{KL}, \ \gamma \in \mathscr{K} \text{ s.t.}$

$$||x(t,x_0,u)|| \le \max\{\beta(||x(t_0)||,t-t_0),\gamma(||u||_{\infty})\}$$

Transient (overshoot) depends on x_0 When $(t-t_0)$ is large x(t) bounded by $\gamma(\|u\|_{\infty})$ independent of x_0

An alternative definition is found in Khalil

Definition

Consider

$$\Sigma : \dot{x} = f(t, x, u)$$

The system Σ is ISS if $\exists \beta \in \mathscr{KL}$ and $\exists \gamma \in \mathscr{K}$ such that $\forall \ u \in \mathscr{L}_p \text{ and } x_0 = x(0) \in \mathbb{R}^n \text{ (the solution } x(t) \text{ exists } \forall t \geq t_0 \text{ and)}$

$$||x(t)|| \le \beta(||x_0||, t-t_0) + \gamma(\sup_{t_0 < \tau < t} ||u(\tau)||)$$

Linear case, for comparison

Example: Linear case

Given a stable linear system:

(i.e. the matrix A is Hurwitz: $Re(\lambda_i(A)) < 0 \quad \forall i = 1, ..., n$)

$$\dot{x} = Ax + Bu$$

Is this an input-to-state stable system?

Well-known that the system solution is:

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$
$$\|x(t)\| \le \left\| e^{A(t-t_0)} \right\| \|x(t_0)\| + \int_{t_0}^t \left\| e^{A(t-\tau)} \right\| \|B\| \|u(\tau)\| d\tau$$

Theorem 4.11: A Hurwitz $\Leftrightarrow ||e^{A(t-t_0)}|| \le ke^{-\lambda(t-t_0)}$ $k, \lambda > 0$

Linear case, for comparison

$$||x(t)|| \le ke^{-\lambda(t-t_0)} ||x(t_0)|| + \frac{k||B||}{\lambda} \sup_{t_0 \le \tau \le t} ||u(\tau)||$$

$$||x(t)|| \le ke^{-\lambda(t-t_0)} ||x(t_0)|| + \frac{k||B||}{\lambda} ||u(\tau)||_{\infty}$$

$$\iff ||x(t)|| \le \beta(t) ||x(t_0)|| + \gamma ||u||_{\infty}$$

$$\beta(t) = ke^{-\lambda(t-t_0)} \xrightarrow{(t-t_0)\to\infty} 0$$

$$\gamma = \frac{k \|B\|}{\lambda}$$

This is a particular case of the ISS estimate

$$\left(\|x(t,x_0,u)\| \le \beta(\|x(t_0)\|,t-t_0) + \gamma(\|u\|_{\infty}) \right)$$

Definition: ISS Lyapunov function (ISS-LF)

 $V:[0,\infty)\times\mathbb{R}^n\to\mathbb{R}$ is an ISS-LF for Σ iff

- i) V is C^1
- $\exists \ \alpha_1, \alpha_2 \in \mathscr{K}_{\infty} \ \text{and} \ \rho \in \mathscr{K} \ \text{s.t.}$
 - ii) $\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||)$
 - iii) $\dot{V}(t,x) = \frac{\partial V}{\partial x} f + \frac{\partial V}{\partial t} \le -W_3(x) \quad ||x|| \ge \rho(||u||) > 0$

where $W_3(x)$ is a C^0 positive definite function on \mathbb{R}^n .

Theorem 4.19

 \exists ISS-LF for $\Sigma \Rightarrow \Sigma$ is ISS

Sontag & Wang 1995

For autonomous systems: Σ is ISS $\Leftrightarrow \exists$ ISS-LF for Σ

$$\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$$

Example

$$\dot{x} = -x^3 + x^2 u$$

The system is 0-GUAS ($\dot{x} = -x^3$)

Determine the system's ISS properties using the ISS-LFC $V(x) = \frac{1}{2}x^2$

Read

Read Examples 4.25 - 4.27

ISS vs. Lyapunov stability properties

ISS vs. 0-GUAS

$$\Sigma$$
 is ISS $\Rightarrow \Sigma$ is 0-GUAS

 \downarrow

$$\neg(\Sigma \text{ is 0-GUAS}) \Rightarrow \neg(\Sigma \text{ is ISS})$$

ISS vs. 0-GES (Lemma 4.6)

$$\Sigma : \dot{x} = f(t, x, u)$$
 f is C^1 and globally Lipschitz in (x, u)

$$\Sigma$$
 is 0-GES $\Rightarrow \Sigma$ is ISS

How do we use this?

ISS = Robust Stability

Y. Wang & E.D. Sontag, Systems and Control Letters 1995

ISS $\Leftrightarrow \exists$ "margin of stability" $\rho \in \mathscr{K}_{\infty}$

$$\dot{x} = f(t, \Delta(t, x))$$

has GUAS origin \forall time-varying feedback laws Δ s.t.

$$|\Delta(t,x)| \leq \rho(||x||)$$

Stability of cascades

$$\Sigma_1: \dot{x}_1 = f_1(t, x_1, x_2)$$

$$\Sigma_2$$
: $\dot{x}_2 = f_2(t, x_2)$

 $f_1:[0,\infty)\times\mathbb{R}^{n_1}\times\mathbb{R}^{n_2}\to\mathbb{R}^{n_1}$ and $f_2:[0,\infty)\times\mathbb{R}^{n_2}\to\mathbb{R}^{n_2}$ are piecewise continuous in t and locally Lipschitz in x

Lemma 4.7

GUAS

Example

Example

$$\dot{x}_1 = -x_1^3 + x_1^2 x_2
\dot{x}_2 = -kx_2 \quad k > 0$$

Use cascaded systems theory to prove that the origin $(x_1,x_2) = (0,0)$ of this system is globally uniformly asymptotically stable (GUAS)

Application example: Compressor

$$\begin{split} \dot{m} &= \frac{A_1}{L_c} \left(p_2(m, \omega) - p \right) \\ \dot{p} &= \frac{a_{01}^2}{V_p} \left(m - m_t(p) \right) \\ \dot{\omega} &= \frac{1}{J} \left(\tau_d - \sigma r_2^2 |m| \omega \right) \end{split}$$

- Objective: Active surge control
 - High efficiency
 - Avoid surging: pressure and mass flow oscillations
- Need mass flow observer
 - Bøhagen & Gravdahl (2004)
 - reduced order observer

Compressor application cont.

Suggested observer

$$\dot{z} = \frac{A_1}{L_c} (p_2 - p - u) + k_{\tilde{m}} (m_t(p) - \hat{m})$$

$$\hat{m} = z + k_{\tilde{m}} \frac{V_p}{a_{01}^2} p$$

Observer error is GES

$$\dot{\tilde{m}} = -k_{\tilde{m}}\tilde{m}$$

 CE control yields the cascade

$$\Sigma_1$$
: $\dot{x}_1 = f_1(x_1) + g(x_1, x_2)$
 Σ_2 : $\dot{x}_2 = f_2(x_2)$

Interconnection

$$|g(x_1, x_2)| \le g_1 |x_2|$$

- Hence, Σ_1 is ISS wrt x_2
- ⇒ The cascade is GUAS
 - Moreover, Σ_1 is 0-GES
 - The cascade is GES

Autonomous systems

$$\Sigma_1$$
: $\dot{x}_1 = f_1(x_1) + g(x_1, x_2)$

$$\Sigma_2$$
: $\dot{x}_2 = f_2(x_2)$

For more information see

http://www.math.rutgers.edu/~sontag

Background material

Nonautonomous systems

$$\Sigma_1$$
: $\dot{x}_1 = f_1(t, x_1) + g(t, x)x_2$

$$\Sigma_2: \quad \dot{x}_2 = f_2(t, x_2)$$

Panteley & Loria (Automatica 2001)

Loria (Tutorial)

Part II

Input-output stability (IOS)

Input-output models

We consider systems on the form

$$y = Hu$$

 $u:[0,\infty)\to\mathbb{R}^m$ piecewise continuous $y:[0,\infty)\to\mathbb{R}^q$ piecewise continuous

Input-output stability

How do we analyze stability of such systems?

We need a measure of the size of a signal (u(t)) and y(t)

Recall from Lecture 1: Norm

Norms on $C[0,\infty)$

$$||f||_{p} = \left(\int_{0}^{\infty} |f(t)|^{p} dt\right)^{\frac{1}{p}}$$

$$||f||_{\infty} = \sup_{0 \le t \le \infty} |f(t)|$$

$$\mathcal{L}_{p} - \text{norms}$$

\mathcal{L}_p -space

$$(C[0,\infty), \mathcal{L}_p - \mathsf{norm})$$

 $\bullet \ f \in \mathscr{L}_p \Leftrightarrow \|f\|_p \text{ is bounded } \quad (\exists \ c: \|f\|_p \leq c)$

Extension to multivariable, piecewise continuous functions $u:[0,\infty)\to\mathbb{R}^m$

\mathscr{L}_{p}^{m} space

$$u \in \mathscr{L}_p^m \quad 1 \le p < \infty \quad \Leftrightarrow \quad \|u\|_{\mathscr{L}_p} = \left(\int_0^\infty \|u(t)\|_{\bar{p}}^p dt\right)^{\frac{1}{\bar{p}}} < \infty$$

\mathscr{L}_2^m space (with $\bar{p}=2$)

$$u \in \mathcal{L}_2^m \quad \Leftrightarrow \quad \|u\|_{\mathcal{L}_2} = \sqrt{\int_0^\infty u^T(t)u(t)\,dt} < \infty$$

$\mathscr{L}_{\infty}^{\overline{m}}$ space

$$u \in \mathscr{L}_{\infty}^{m} \quad \Leftrightarrow \quad \|u\|_{\mathscr{L}_{\infty}} = \sup_{t > 0} \|u(t)\|_{\bar{p}} < \infty$$

Extension to multivariable, piecewise continuous functions $u:[0,\infty)\to\mathbb{R}^m$

\mathscr{L}_{n}^{m} space

$$u \in \mathcal{L}_p^m \quad 1 \le p < \infty \quad \Leftrightarrow \quad \|u\|_{\mathcal{L}_p} = \left(\int_0^\infty \|u(t)\|_{\bar{p}}^p dt\right)^{\frac{1}{p}} < \infty$$

Arbitrary \bar{p} -norm on \mathbb{R}^m

\mathcal{L}_2^m space (with $\bar{p}=2$)

$$u \in \mathcal{L}_2^m \quad \Leftrightarrow \quad \|u\|_{\mathcal{L}_2} = \sqrt{\int_0^\infty u^T(t)u(t)} \, dt < \infty$$

\mathscr{L}_{∞}^{m} space

$$u \in \mathscr{L}_{\infty}^{m} \quad \Leftrightarrow \quad \|u\|_{\mathscr{L}_{\infty}} = \sup_{t > 0} \|u(t)\|_{\bar{p}} < \infty$$

Extension to multivariable, piecewise continuous functions $u:[0,\infty)\to\mathbb{R}^m$

\mathscr{L}_{p}^{m} space

$$u \in \mathscr{L}_p^m \quad 1 \le p < \infty \quad \Leftrightarrow \quad \|u\|_{\mathscr{L}_p} = \left(\int_0^\infty \|u(t)\|_{\bar{p}}^p dt\right)^{\frac{1}{\bar{p}}} < \infty$$

 \mathcal{L}_2 : "Space of piecewise continuous, square-integrable functions"

"Space of piecewise continuous, bounded functions"

Notation

$$u \in \mathcal{L}_p^m$$
 $u \in \mathcal{L}^m$ $u \in \mathcal{L}$

To be able to handle unbounded signals we introduce an extended space:

$$\mathscr{L}_{pe}^m$$
 - space

$$u \in \mathscr{L}_{pe}^m \Leftrightarrow u_{\tau} \in \mathscr{L}_p^m \quad \forall \ \tau \in [0, \infty)$$

where

$$u_{\tau}(t) = \left\{ egin{array}{ll} u(t), & t \in [0, \tau] \\ 0, & t > \tau \end{array}
ight.$$
 truncation

Consider the mapping

$$H: \mathscr{L}_{pe}^m \to \mathscr{L}_{pe}^q$$

\mathscr{L}_p stable

 $H: \mathscr{L}^m_{pe} o \mathscr{L}^q_{pe}$ is $\underline{\mathscr{L}_p}$ stable iff

- i) $\exists \alpha \text{ class } \mathscr{K} \ \alpha : [0, \infty) \to [0, \infty)$
- ii) \exists constant $\beta \ge 0$

s.t.

$$\|(Hu)_\tau\|_{\mathscr{L}_p} \leq \alpha(\|u_\tau\|_{\mathscr{L}_p}) + \beta \qquad \forall u \in \mathscr{L}_{pe}^m \text{ and } \tau \in [0, \infty)$$

Input-output stability cont.

0

Finite-gain \mathscr{L}_p stable

 $H: \mathscr{L}_{pe}^m \to \mathscr{L}_{pe}^q$ is <u>finite-gain</u> \mathscr{L}_p stable iff

 \exists constants $\gamma, \beta \geq 0$

s.t.

$$\|(Hu)_{ au}\|_{\mathscr{L}_p} \leq \gamma \ \|u_{ au}\|_{\mathscr{L}_p} + \beta$$
 \mathscr{L}_p gain \mathscr{L}_p Bias term

BIBO stability $\equiv \mathscr{L}_{\infty}$ stability

0

Definition (causal)

 $H: \mathscr{L}_e^m \to \mathscr{L}_e^q$ is causal iff

$$(Hu)_{\tau} = (Hu_{\tau})_{\tau}$$

If H is causal and \mathcal{L}_p stable, then

$$egin{aligned} u \in \mathscr{L}_p^m &\Rightarrow Hu \in \mathscr{L}_p^q \ & ext{and} \ \|(Hu)\|_{\mathscr{L}_p} &\leq lpha(\|u\|_{\mathscr{L}_p}) + eta \end{aligned}$$

If H is causal and finite-gain \mathcal{L}_p stable, then

$$u \in \mathscr{L}_p^m \Rightarrow Hu \in \mathscr{L}_p^q$$
 and $\|(Hu)\|_{\mathscr{L}_p} \leq \gamma \|u\|_{\mathscr{L}_p} + \beta$

Examples

Example

Given

$$y=u^{\frac{1}{3}},$$

is it BIBO stable? Finite-gain \mathcal{L}_{∞} stable?

Read

Read Examples 5.1 and 5.3

Read Definition 5.2 page 201

Feedback interconnection

$$H_1: \mathscr{L}_e^m \to \mathscr{L}_e^q \qquad H_2: \mathscr{L}_e^q \to \mathscr{L}_e^m$$

$$H_2: \mathscr{L}_e^q o \mathscr{L}_e^m$$

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad e = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Stability of feedback interconnection

The feedback interconnection where H_1 and H_2 are finite-gain \mathcal{L} -stable, i.e.

$$||y_{1\tau}||_{\mathscr{L}} \le \gamma_1 ||e_{1\tau}||_{\mathscr{L}} + \beta_1 ||y_{2\tau}||_{\mathscr{L}} \le \gamma_2 ||e_{2\tau}||_{\mathscr{L}} + \beta_2$$

is finite-gain \mathcal{L} -stable if

$$\gamma_1 \gamma_2 < 1$$

Example

A Hurwitz

$$G(s) = C(sI - A)^{-1}B + D$$

Analyse the Input-Output stability properties of the interconnection.

Next lecture

- How to analyze the stability of perturbed systems
 - Vanishing perturbation
 - Nonvanishing perturbation
- Recommended reading
 Khalil Chapter 9
 Sections 9.1 and 9.2