

Codierung multimedialer Daten

Aufgaben zum nächsten Mal (AZNM 2)

Johann-Markus Batke 2023-04-05 Time-stamp: <2024-04-10 Mi 22:06>

1 PCM

Lesen Sie Abschnitt "2. Pulse-Code-Modulation", insbesondere

- 2.3 Abtastung https://vfhcmd.eduloop.de/loop/Abtastung
- 2.4 Quantisierung https://vfhcmd.eduloop.de/loop/Quantisierung
- 2.5 PCM-Übertragung mit 2.5.1, 2.5.2 und 2.5.3 https://vfhcmd.eduloop.de/loop/PCM-%C3%9Cbertragung

2 Aufgaben

2.1 Abtastung

Nennen Sie typische Abtastraten für die CD, für Tonstudio-Aufnahmen, das Telefon und den Rundfunk DAB+!

2.2 Abtastung und Rekonstruktion

Welche Aufgabe hat ein Tiefpass am Eingang in einem typischen Blockschaltbild zur Abtastung?

Welche Aufgabe hat der Tiefpass am Ausgang eines solchen Blockschaltbildes?

2.3 Quantisierung

Mit Bitbreite bezeichnet man die Anzahl der Bits für eine Integer-Zahlendarstellung. Nennen Sie typische Bitbreiten für die Quantisierung von Telefonsignalen, Musiksignalen im Hörfunk oder bei Studioproduktionen!

2.4 Quantisierungsrauschen

Wie kommt Quantisierungsrauschen zustande?

2.5 Quantisierungsfehler im Audiosignal

Untersuchen Sie ein Musiksignal aus einer Wav-Datei Ihrer Wahl mithilfe eines Audio-Editors (z.B. Audacity). Welche Werte sind an der Ordinate angegeben? Ist die Bitbreite des Zahlenformats ablesbar?

2.6 Gerätedaten

Das Audiointerface von Steinberg Typ UR44C wird mit 32-Bit-Wandlern beworben. Welche Dynamik müsste das Gerät theoretisch bieten? Welche Dynamikangabe findet sich in den Angaben des Herstellers?

2.7 Requantisierung

Führen Sie eine Requantisierung eines Musiksignals einer CD von 16 auf 8 Bit mithilfe von z.B. Python durch.

3 Dynexite Aufgaben

3.1 Aliasing

Bei der Abtastung von Signalen kann es zum Aliasing kommen. Wann tritt Aliasing auf? Beschreiben Sie beispielhaft zwei verschiedene Szenarien, bei denen es zu Aliasing kommen kann!

3.2 Quantisierungsrauschen

Quantisierungsrauschen entsteht bei der Diskretisierung. Welche Aussagen zum Quantisierungsrauschen sind richtig? Beschreiben Sie beispielhaft zwei verschiedene Szenarien, bei denen es zu Aliasing kommen kann!

Das Quantisierungsrauschen enthält immer die redundanten Komponenten des Ursprungssignals
Das Quantisierungsrauschen ist die Differenz zwischen Ursprungssignal und quantisiertem Signal.
Das Ursprungssignal kann auch ohne Übertragung des Quantisierungsrauschens wieder exakt
hergestellt werden.
Das Ursprungssignal kann als Summe aus quantisiertem Signal und dem Quantisierungsrauschen
betrachtet werden.
Das Quantisierungsrauschen enthält immer die irrelevanten Komponenten des Ursprungssignals.

3.3 Dynamik

Bestimmen Sie den nutzbaren Dynamikbereich für ein Signal, das mit einem AD-Wandler mit 8 Bit erzeugt wurde. Nehmen Sie an, dass das Ruhe-Rauschen am AD-Wandlerausgang einen Pegel von 12 dB hat. Geben Sie den Dynamikbereich in dB an!