1 **Basics**

The multiplication AB stacks

$$\mathbf{AB} = \begin{bmatrix} \mathbf{A}b_1 & \cdots & \mathbf{A}b_m \end{bmatrix}$$

Example 1.1. Let $X_{n\times k}$ and $Y_{n\times m}$. Then

$$\mathbf{X'Y} = \begin{bmatrix} \mathbf{X'} \begin{bmatrix} y_{11} \\ \vdots \\ y_{n1} \end{bmatrix} & \cdots & \mathbf{X'} \begin{bmatrix} y_{1m} \\ \vdots \\ y_{nm} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} x_1 & \cdots & x_k \end{bmatrix} \begin{bmatrix} y_{11} \\ \vdots \\ y_{n1} \end{bmatrix} & \cdots & \begin{bmatrix} x_1 & \cdots & x_k \end{bmatrix} \begin{bmatrix} y_{1m} \\ \vdots \\ y_{nm} \end{bmatrix} \end{bmatrix} \\
= \begin{bmatrix} \sum_{i=1}^n x_i y_{i1} & \cdots & \sum_{i=1}^n x_i y_{im} \end{bmatrix} = \sum_{i=1}^n x_i \begin{bmatrix} y_{i1} & \cdots & y_{im} \end{bmatrix} = \sum_{i=1}^n x_i y_i'$$

2 Kronecker Product

Given $\mathbf{A}_{I_A \times J_A}$ and $\mathbf{B}_{I_B \times J_B}$,

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{ij} \mathbf{B} \end{bmatrix}_{ij} \sim I_A I_B \times J_A J_B$$

- (i) $(A \otimes B)(C \otimes D) = \overline{AC} \otimes BD$ (ii) $(A \otimes B)' = A' \otimes B'$ (iii) $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

- (iv) $\operatorname{tr}(\boldsymbol{A} \otimes \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A})\operatorname{tr}(\boldsymbol{B})$

The following result implies that $A \otimes B$ is nonsingular iff both A and B are nonsingular.

Theorem 2.2. Let $A_{N_A \times N_A}$ and $B_{N_B \times N_B}$. Then

- (i) $|\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^{N_B} |\mathbf{B}|^{N_A}$
- (ii) $\operatorname{rank}(\boldsymbol{A} \otimes \boldsymbol{B}) = \operatorname{rank}(\boldsymbol{A}) \operatorname{rank}(\boldsymbol{B})$

3 The vec operator

Let $\mathbf{A}_{I\times J} = \begin{bmatrix} a_1 & \cdots & a_j \end{bmatrix}$.

$$\operatorname{vec}(\mathbf{A}) = \begin{bmatrix} a_1 \\ \vdots \\ a_J \end{bmatrix} \sim IJ \times 1$$

Lemma 3.1

- (i) $\operatorname{vec}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = (\boldsymbol{C}'\otimes\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})$
- (ii) $\operatorname{vec}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{vec}(\boldsymbol{A}) + \operatorname{vec}(\boldsymbol{B})$
- (iii) $\operatorname{tr}(\mathbf{A}'\mathbf{B}) = \operatorname{vec}(\mathbf{A})'\operatorname{vec}(\mathbf{B})^1$

Corollary 3.2. Let $A_{I_A \times J_A}$ and $B_{I_B \times J_B}$.

$$\operatorname{vec}(AB) = (\boldsymbol{B}' \otimes \boldsymbol{I}_{I_A})\operatorname{vec}(\boldsymbol{A})$$
$$= (\boldsymbol{B}' \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{I}_N)$$
$$= (\boldsymbol{I}_{J_B} \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{B})$$

¹Here \boldsymbol{A} and \boldsymbol{B} must have the same dimensions.

Standard Calculus 4

Let $f: \mathbb{R}^n \to \mathbb{R}^m$.

$$Df(x) = \frac{\partial}{\partial x'} f(x) = \left[\nabla' f_i(x) \right]_i \quad \sim m \times n$$
$$D'f(x) = \frac{\partial}{\partial x} f(x) = \left[\nabla f_j(x) \right]_j \quad \sim n \times m$$

So these objects are just transposes of each other. The most common cases are

f(x)	Df(x)	D'f(x)
$\boldsymbol{A}x$	$oldsymbol{A}$	$oldsymbol{A}'$
$x'\mathbf{A}x$	$x'(\boldsymbol{A}+\boldsymbol{A}')$	$(\boldsymbol{A} + \boldsymbol{A}')x$
$g(x)' \mathbf{A} g(x)$	$g(x)'(\boldsymbol{A}+\boldsymbol{A}')Dg(x)$	$D'g(x)(\boldsymbol{A}+\boldsymbol{A}')g(x)$
$f(x)'g(x)^2$	f(x)'Dg(x) + g(x)'Df(x)	D'f(x)g(x) + D'g(x)f(x)
$\frac{p(x)}{q(x)}$	×	$\frac{1}{q(x)}\nabla p(x) - \frac{p(x)}{q(x)^2}\nabla q(x)$
$m(h(x))^3$	m'(h(x))Dh(x)	×

 $²f, g: \mathbb{R}^n \to \mathbb{R}^m$ $3h: \mathbb{R}^n \to \mathbb{R} \text{ and } m: \mathbb{R} \to \mathbb{R}$

5 Matrix Calculus

Let $F: \mathbb{R}^{I_1 \times J_1} \to \mathbb{R}^{I_2 \times J_2}$. We identify the domain of F as $\mathbb{R}^{I_1 \times J_1} \sim \mathbb{R}^{I_1 J_1}$ and define

$$DF(\boldsymbol{X}) = \frac{\partial}{\partial \overrightarrow{\boldsymbol{X}'}} \text{vec } F(\overrightarrow{\boldsymbol{X}}) \qquad \sim \quad I_2 J_2 \times I_1 J_1$$

Where $\overrightarrow{X} := \text{vec}(X)$.

Example 5.1. Let F(X) = AX. Then

$$\operatorname{vec} F(\boldsymbol{X}) = \operatorname{vec} (\boldsymbol{A}\boldsymbol{X}) = (\boldsymbol{I}_{J_X} \otimes \boldsymbol{A}) \operatorname{vec} (\boldsymbol{X})$$

So we can apply the rule from standard calculus

$$DF(\boldsymbol{X}) = \frac{\partial}{\partial \overrightarrow{\boldsymbol{X}'}} (\boldsymbol{I}_{J_X} \otimes \boldsymbol{A}) \overrightarrow{\boldsymbol{X}} = \boldsymbol{I}_{J_X} \otimes \boldsymbol{A}$$

$F(\boldsymbol{X})$	$DF(oldsymbol{X})$
AXB	$\boldsymbol{B}'\otimes\boldsymbol{A}$
$oldsymbol{X}^{-1}$	$-(oldsymbol{X}')^{-1}\otimesoldsymbol{X}^{-1}$
$G(\boldsymbol{X})H(\boldsymbol{X})$	$(\boldsymbol{I}_{J_H} \otimes G(\boldsymbol{X}))DH(\boldsymbol{X}) + (H(\boldsymbol{X})' \otimes \boldsymbol{I}_{I_G})DG(\boldsymbol{X})$

$f(oldsymbol{X})$	$Df(oldsymbol{X})$
$\mathrm{tr}\left(oldsymbol{A}oldsymbol{X} ight)$	$\operatorname{vec}'({m A}')$
$\mathrm{tr}\left(\boldsymbol{X}\boldsymbol{A}\boldsymbol{X}'\right)$	$\mathrm{vec}^{\prime}\big[\boldsymbol{X}(\boldsymbol{A}+\boldsymbol{A}^\prime)\big]$
$ m{X} $	$ oldsymbol{X} \operatorname{vec}'ig[(oldsymbol{X}')^{-1}ig]$
$\log m{X} $	$\operatorname{vec}'ig[(oldsymbol{X}')^{-1}ig]$
X'X	$ \boldsymbol{X}'\boldsymbol{X} \operatorname{vec}{'}ig[\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}ig]$
$\log m{X}'m{X} $	$\operatorname{vec}'ig[m{X}(m{X}'m{X})^{-1}ig]$
XX'	$ \boldsymbol{X}\boldsymbol{X}' \operatorname{vec}'ig[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}ig]$

Theorem 5.2 (Chain rule). If $F: \mathbb{R}^{I_1 \times J_1} \to \mathbb{R}^{I_2 \times J_2}$ and $F: \mathbb{R}^{I_2 \times J_2} \to \mathbb{R}^{I_3 \times J_3}$,

$$D(G \circ F)(\mathbf{X}) = DG(F(\mathbf{X})) \times DF(\mathbf{X})$$