Solution Section 2.1 – Functions and Graphs

Exercise

$$f(x) = \begin{cases} 2+x & \text{if } x < -4 \\ -x & \text{if } -4 \le x \le 2 \\ 3x & \text{if } x > 2 \end{cases}$$
 Find: $f(-5)$, $f(-1)$, $f(0)$, and $f(3)$

Solution

a)
$$f(-5) = 2 - 5 = -3$$

b)
$$f(-1) = -(-1) = 1$$

c)
$$f(0) = -0 = 0$$

d)
$$f(3) = 3(3) = 9$$

Exercise

$$f(x) = \begin{cases} -2x & \text{if } x < -3\\ 3x - 1 & \text{if } -3 \le x \le 2\\ -4x & \text{if } x > 2 \end{cases}$$
 Find: $f(-5)$, $f(-1)$, $f(0)$, and $f(3)$

Solution

a)
$$f(-5) = -2(-5) = 10$$

b)
$$f(-1) = 3(-1) - 1 = -4$$

c)
$$f(0) = 3(0) - 1 = -1$$

d)
$$f(3) = -4(3) = -12$$

Exercise

$$f(x) = \begin{cases} x^3 + 3 & \text{if } -2 \le x \le 0 \\ x + 3 & \text{if } 0 < x < 1 \end{cases}$$
 Find: $f(-5)$, $f(-1)$, $f(0)$, and $f(3)$
$$4 + x - x^2 & \text{if } 1 \le x \le 3$$

a)
$$f(-5) = doesn't exist$$

b)
$$f(-1) = (-1)^3 + 3$$

= 2

c)
$$f(0) = (0)^3 + 3$$

d)
$$f(3) = 4 + (3) - (3)^2$$

= -2

$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$$
 Find: $h(5)$, $h(0)$, and $h(3)$

Solution

a)
$$h(5) = \frac{5^2 - 9}{5 - 3}$$

= 8

b)
$$h(0) = \frac{0^2 - 9}{0 - 3}$$

= 3 |

c)
$$h(3) = 6$$

Exercise

$$f(x) = \begin{cases} 3x+5 & if & x < 0 \\ 4x+7 & if & x \ge 0 \end{cases}$$
 Find

b)
$$f(-2)$$

c)
$$f(1)$$

a)
$$f(0)$$
 b) $f(-2)$ c) $f(1)$ d) $f(3)+f(-3)$ e) Graph $f(x)$

Solution

a)
$$f(0) = 4(0) + 7$$

= 7

b)
$$f(-2) = 3(-2) + 5$$

= -1

c)
$$f(1) = 4(1) + 7$$

= 11

d)
$$f(3) + f(-3) = 4(3) + 7 + 3(-3) + 5$$

= $12 + 7 - 9 + 5$
= $15 \mid$

e)

$$f(x) = \begin{cases} 6x - 1 & if & x < 0 \\ 7x + 3 & if & x \ge 0 \end{cases}$$
 Find

- a) f(0) b) f(-1) c) f(4) d) f(2)+f(-2) e) Graph f(x)

a)
$$f(0) = 7(0) + 3$$

= 3

b)
$$f(-2) = 6(-1) - 1$$

= -7

c)
$$f(4) = 7(4) + 3$$

= 31

d)
$$f(2) + f(-2) = 7(2) + 3 + 6(-2) - 1$$

= $14 + 3 - 12 - 1$
= 4

$$f(x) = \begin{cases} 2x+1 & if & x \le 1 \\ 3x-2 & if & x > 1 \end{cases}$$
 Find

- a) f(0) b) f(2) c) f(-2) d) f(1)+f(-1) e) Graph f(x)

a)
$$f(0) = 2(0) + 1$$

= 1

b)
$$f(2) = 3(2) - 2$$

= 4

c)
$$f(-2) = 2(-2) + 1$$

= -3 |

d)
$$f(1)+f(-1)=(2(1)+1)+(2(-1)+1)$$

= $2+1-2+1$
= $2 \mid$

Graph the piecewise function defined by $f(x) = \begin{cases} 3 & \text{if } x \le -1 \\ x-2 & \text{if } x > -1 \end{cases}$

Solution

Exercise

Sketch the graph $f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^3 & \text{if } -1 < x < 1 \\ -x+3 & \text{if } x \ge 1 \end{cases}$

Sketch the graph
$$f(x) = \begin{cases} x-3 & \text{if } x \le -2 \\ -x^2 & \text{if } -2 < x < 1 \\ -x+4 & \text{if } x \ge 1 \end{cases}$$

Solution

Exercise

Determine any *relative maximum* or *minimum* of the function, determine the intervals on which the function *increasing* or *decreasing*, and then find the *domain* and the *range*.

$$f(x) = x^2 - 2x + 3$$

Solution

Relative Maximum: None

Minimum Point: (1, 2)

Increasing: $(1, \infty)$

Decreasing: $(-\infty, 1)$

Domain:

Range: $[2, \infty)$

Determine any *relative maximum* or *minimum* of the function, determine the intervals on which the function *increasing* or *decreasing*, and then find the *domain* and the *range*.

$$f(x) = -x^2 - 2x + 3$$

Solution

Maximum Point: (-1, 4)

Relative Minimum: None

Increasing: $(-\infty, -1)$

Decreasing: $(-1, \infty)$

Domain:

Range: $\left(-\infty, 4\right]$

Exercise

Determine any *relative maximum* or *minimum* of the function, determine the intervals on which the function *increasing* or *decreasing*, and then find the *domain* and the *range*.

$$f(x) = -x^3 + 3x^2$$

Solution

Relative Maximum: (2, 4)

Relative Minimum: (0, 0)

Increasing: (0, 2)

Decreasing: $(-\infty, 0)$ $(2, \infty)$

Domain:

Range:

Determine any *relative maximum* or *minimum* of the function, determine the intervals on which the function *increasing* or *decreasing*, and then find the *domain* and the *range*.

$$f(x) = x^3 - 3x^2$$

Solution

Relative Maximum: (0, 0)

Relative Minimum: (2, -4)

Increasing: $(-\infty, 0)$ $(2, \infty)$

Decreasing: (0, 2)

Domain:

Range: \mathbb{R}

Exercise

Determine any *relative maximum* or *minimum* of the function, determine the intervals on which the function *increasing* or *decreasing*, and then find the *domain* and the *range*.

$$f\left(x\right) = \frac{1}{4}x^4 - 2x^2$$

Solution

Relative Maximum: (0, 0)

Minimum Points: (-2, -4) & (2, -4)

Increasing: $(-2, 0) \cup (2, \infty)$

Decreasing: $(-\infty, -2) \cup (0, 2)$

Domain: \mathbb{R}

Range: $[-4, \infty)$

Determine any *relative maximum* or *minimum* of the function, determine the intervals on which the function *increasing* or *decreasing*, and then find the *domain* and the *range*.

$$f(x) = \frac{4}{81}x^4 - \frac{8}{9}x^2 + 4$$

Solution

Relative Maximum: (0, 4)

Minimum Points: (-3, 0) & (3, 0)

Increasing: $(-3, 0) \cup (3, \infty)$

Decreasing: $(-\infty, -3) \cup (0, 3)$

Domain:

Range: $[0, \infty)$

Exercise

The elevation H, in *meters*, above sea level at which the boiling point of water is in t degrees Celsius is given by the function

$$H(t) = 1000(100 - t) + 580(100 - t)^{2}$$

At what elevation is the boiling point 99.5°.

Solution

$$H(99.5) = 1000(100 - 99.5) + 580(100 - 99.5)^2$$

= 645 m |

Exercise

A hot-air balloon rises straight up from the ground at a rate of $120 \, ft$./min. The balloon is tracked from a rangefinder on the ground at point P, which is $400 \, ft$. from the release point Q of the balloon. Let d = the distance from the balloon to the rangefinder and t - the time, in minutes, since the balloon was released.

Express d as a function of t.

$$d^{2} = (120t)^{2} + 400^{2}$$

$$d = \sqrt{14400t^{2} + 160000}$$

$$d = \sqrt{1600(9t^{2} + 100)}$$

$$d(t) = 40\sqrt{9t^{2} + 100}$$

An airplane is flying at an altitude of 3700 *feet*. The slanted distance directly to the airport is d *feet*. Express the horizontal distance x as a function of d.

Solution

$$d^2 = (3,700)^2 + x^2$$

$$h^2 = d^2 - (3700)^2$$

$$h(t) = \sqrt{d^2 - (3,700)^2}$$

Exercise

For the first minute of flight, a hot air balloon rises vertically at a rate of 3 *m/sec*. If *t* is the time in *seconds* that the balloon has been airborne, write the distance *d* between the balloon and a point on the ground 50 *meters* from the point to lift off as a function of *t*.

Solution

$$h = 3t$$
 $v = \frac{h}{t}$

$$d^2 = h^2 + 50^2$$

$$d\left(t\right) = \sqrt{9t^2 + 2,500}$$

Exercise

A light house is 2 *miles* south of a port. A ship leaves port and sails east at a rate of 7 *miles* per *hour*. Express the distance d between the ship and the lighthouse as a function of time, given that the ship has been sailing for t hours.

$$d^2 = 4^2 + (7t)^2$$

$$d\left(t\right) = \sqrt{16 + 49t^2}$$

A cone has an altitude of 15 cm and a radius of 3 cm. A right circular cylinder of radius r and height h is inscribed in the cone. Use similar triangles to write h as a function of r.

Solution

$$\frac{15-h}{15} = \frac{r}{3}$$

$$15 - h = 5r$$

$$h(r) = 15 - 5r$$

Exercise

Water is flowing into a conical drinking cup with an altitude of 4 inches am a radius of 2 inches.

- a) Write the radius r of the surface of the water as a function of its depth h.
- b) Write the volume V of the water as a function of its depth h.

Solution

$$a) \quad \frac{h}{4} = \frac{r}{2}$$

$$r(h) = \frac{1}{2}h$$

b) Area =
$$\pi r^2$$

$$V = \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3}\pi \left(\frac{h^2}{4}\right) h$$

$$=\frac{1}{12}\pi h^3$$

Exercise

A water tank has the shape of a right circular cone with height $16 \, feet$ and radius $8 \, feet$. Water is running into the tank so that the radius r (in feet) of the surface of the water is given by r = 1.5t, where t is the time (in minutes) that the water has been running.

- a) The area A of the surface of the water is $A = \pi r^2$. Find A(t) and use it to determine the area of the surface of the water when t = 2 minutes.
- b) The volume V of the water is given by $V = \frac{1}{3}\pi r^2 h$. Find V(t) and use it to determine the volume of the water when t = 3 minutes

Solution

c)
$$Area = \pi r^2$$

$$A(t) = \pi \left(\frac{3}{2}t\right)^2$$
$$= \frac{9\pi}{4}t^2$$

d)
$$\frac{h}{16} = \frac{r}{8}$$

$$h = 2r$$

$$V(t) = \frac{1}{3}\pi r^2 h$$

$$= \frac{1}{3}\pi r^2 (2r)$$

$$= \frac{2}{3}\pi r^3$$

$$= \frac{2}{3}\pi \left(\frac{3}{2}t\right)^3$$

$$= \frac{9}{4}\pi t^3$$

Exercise

An athlete swims from point A to point B at a rate of 2 *miles* per *hour* and runs from point B to point C at a rate of 8 *miles* per *hour*. Use the dimensions in the figure to write the time t required to reach point C as a function of t.

Solution

Swimming distance =
$$\sqrt{x^2 + 1}$$

$$t_{swim} = \frac{\sqrt{x^2 + 1}}{2} \qquad t = \frac{d}{v}$$

Running distance = 3 - x

$$t_{run} = \frac{3-x}{8} \qquad t = \frac{d}{v}$$
$$t_{total} = \frac{\sqrt{x^2 + 1}}{2} + \frac{3-x}{8}$$

A device used in golf to estimate the distance d, in yards, to a hole measures the size s, in *inches*, that the 7-foot pin appears to be in a viewfinder. Express the distance d as a function of s.

Solution

$$\frac{d}{6} = \frac{7}{s} \frac{ft}{in}$$

$$d = \frac{7}{s} \frac{ft}{in} 6in$$

$$d = \frac{42}{s} ft \frac{1yd}{3ft}$$

$$d(s) = \frac{14}{s}$$

Exercise

A *rhombus* is inscribed in a rectangle that is *w meters* wide with a perimeter of 40 *m*. Each vertex of the rhombus is a midpoint of a side of the rectangle. Express the area of the *rhombus* as a function of the rectangle's width.

Solution

The area of the rhombus = $\frac{1}{2}$ area of the rectangle, since each vertex of the rhombus is a midpoint of a side of the rectangle.

Perimter:
$$2l + 2w = 40$$
 Divide both sides by 2 $l + w = 20$ $l = 20 - w$

Area of the rectangle = lw = (20 - w)w

Area of the rhombus =
$$\frac{1}{2} \left(20w - w^2 \right)$$

= $-\frac{1}{2} w^2 + 10w$

The surface area S of a right circular cylinder is given by the formula $S = 2\pi rh + 2\pi r^2$. if the height is twice the radius, find each of the following.

- a) A function S(r) for the surface area as a function of r.
- b) A function S(h) for the surface area as a function of h.

Solution

Given:
$$h = 2r$$

a)
$$S = 2\pi r h + 2\pi r^2$$

 $S(r) = 2\pi r (2r) + 2\pi r^2$
 $= 4\pi r^2 + 2\pi r^2$
 $= 6\pi r^2$

b)
$$r = \frac{1}{2}h$$

$$S(h) = 2\pi \left(\frac{1}{2}h\right)h + 2\pi \left(\frac{1}{2}h\right)^2$$
$$= \pi h^2 + \frac{1}{2}\pi h^2$$
$$= \frac{3}{2}\pi h^2$$

Exercise

A boat is towed by a rope that runs through a pulley that is 4 feet above the point where the rope is tied to the boat. The length (in feet) of the rope from the boat to the pulley is given by s = 48 - t, where t is the time in seconds that the boat has been in tow. The horizontal distance from the pulley to the boat is d.

- a) Find d(t)
- b) Evaluate s(35) and d(35)

a)
$$s^2 = d^2 + 4^2$$

 $d^2 = (48 - t)^2 - 16$
 $d(t) = \sqrt{2,304 - 96t + t^2 - 16}$
 $= \sqrt{t^2 - 96t + 2,288}$

b)
$$s(35) = 48 - 35$$

 $= 13 \text{ feet }$

$$d(35) = \sqrt{(48 - 35)^2 - 16}$$

$$= \sqrt{13^2 - 16}$$

$$= \sqrt{153} \text{ feet }$$

The light from a lamppost casts a shadow from a ball that was dropped from a height of 22 *feet* above the ground. The distance d, in *feet*, the ball has dropped t seconds after it is released is given by $d(t) = 16t^2$. Find the distance x, in *feet*, of the shadow from the base of the lamppost as a function of time t.

Solution

$$\frac{22-16t^2}{22} = \frac{x-12}{x}$$

$$(22-16t^2)x = 22(x-12)$$

$$(22-16t^2)x = 22x-264$$

$$(22-16t^2-22)x = -264$$

$$-16t^2x = -264$$

$$x(t) = \frac{33}{2t^2}$$

Exercise

A right circular cylinder of height h and a radius r is inscribed in a right circular cone with a height of 10 feet and a base with radius 6 feet.

- a) Express the height h of the cylinder as a function of r.
- b) Express the volume V of the cylinder as a function of r.
- c) Express the volume V of the cylinder as a function of h.

a)
$$\frac{h}{10} = \frac{6-r}{6}$$

 $h(r) = \frac{5}{3}(6-r)$

b)
$$V = \pi r^2 h$$

$$V(r) = \frac{5}{3}\pi r^2 (6-r)$$

$$= \frac{5}{3}\pi \left(6r^2 - r^3\right)$$

c)
$$\frac{3}{5}h = 6 - r$$

$$r = 6 - \frac{3}{5}h$$

$$V = \pi r^2 h$$

$$V(h) = \pi \left(\frac{30 - 3h}{5}\right)^2 h$$

$$= \frac{1}{25}\pi h (30 - 3h)^2$$

