Review

- 2 Algebraic Properties of matrices (§3.2)
- 3 Elementary matrices; A method for finding A^{-1} (§3.3)
- 4 Subspaces and linear independence (§3.4)

Let a and b be scalars. Let A, B, and C be matrices with the same size.

1
$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$(a \pm b)A = aA \pm bB$$

$$a(A \pm B) = aA \pm bB$$

Proof: Exercise.

Assume that the sizes of the matrices A, B, and C are such that the indicated operations can be performed.

$$A(B \pm C) = AB \pm AC$$

$$(B \pm C)A = BA \pm CA$$

$$a(BC)=(aB)C=B(aC)$$
 for $a\in\mathbb{R}$. - commutative for scalar multiplication

distributive

Proof: Exercise.

Assume that the sizes of the matrices A, B, and C are such that the indicated operations can be performed.

- $A(B \pm C) = AB \pm AC$
- $(B \pm C)A = BA \pm CA$

Proof: Exercise.

True or False?

- If AB and BA are defined, then they have the same size. (Falce)
- ② If A and B are square matrices of the same order, then AB = BA.

False!
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$ $(AB)_{11} = 3$ $(BA)_{12} = [1 - 1] \begin{bmatrix} 3 \\ 3 \end{bmatrix} = [-3 = -2]$

A matrix whose entries are all zero is called a zero matrix, denoted by 0.

Theorem

Let c be a scalar. The sizes of matrices are such that the operations can be performed.

- $\mathbf{0} \ A + \mathbf{0} = \mathbf{0} + A$
- **2** $A \mathbf{0} = A$
- **3** A A =**0**
- **4** 0A =**0**
- **5** $cA = \mathbf{0}$ implies that c = 0 or $A = \mathbf{0}$.

Proof: Exercise.

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

True or False?

- 2 Nonzero matrices can have a zero product.

A square matrix with 1's on the main diagonal and zeros elsewhere is called an *identity matrix*. Denote by I_n the $n \times n$ identity matrix.

$$\Gamma_{1} = \begin{bmatrix} 1 \end{bmatrix}, \qquad \Gamma_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \Gamma_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \dots$$

Then for an $m \times n$ matrix, we have that $AI_n = A$ and $I_m A = A$.

Theorem

Let A be a square matrix of size n and let R be the reduced row echelon form of A. Then either R has a row of zeros or $R = I_n$.

pf) On the last row of R has a leading 1, then
$$(a_{n1}, a_{n2}, \dots, a_{nn}) = (o_1 \dots, o_1)$$
.

If the last colum of R is $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, then the last $(n-\bar{a})$ rows are 0 .

Definition

For a square matrix A, if there is a matrix B with the same size as A such that AB = BA = I, then A is invertible (or nonsingular), and B is called an inverse matrix of A. If not, A is singular.

Theorem

An invertible matrix has a unique inverse.

Proof: Suppose that
$$AB = BA = I$$
 & $AC = CA = I$.

Then $B = BI = BAC = IC = C$.

We denote by A^{-1} the *inverse* of an invertible matrix A.

A matrix $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad-bc\neq 0$, in which case the inverse is given by $A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Proof: Exercise.

- ad-bc is called the determinant of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
- We will study the notion of determinant for general square madrices in CH4.

mxn A: Invertible (determinant of A to.

A matrix $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad-bc\neq 0$, in which case the inverse is given by $A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Proof: Exercise.

Theorem

Let A and B be square matrices of the same order. If A and B are invertible, then AB is invertible and $(AB)^{-1}=B^{-1}A^{-1}$.

Proof: Exercise. (Use the associativity.)

If A_1, A_2, \ldots, A_n are invertible, then $A_1 A_2 \cdots A_n$ is also invertible and

$$(A_1 A_2 \cdots A_n)^{-1} = A_n^{-1} A_{n-1}^{-1} \cdots A_1^{-1}.$$

Hence, if $A_1A_2\cdots A_n$ is singular, then one of A_1,A_2,\ldots,A_n is singular.

Powers of a square matrix

For a nonnegative integer n, we define the nth power of a square matrix A:

$$(i) \quad A^0 = I$$

(ii)
$$A^n = \underbrace{AA \cdots A}_{n \text{ factors}}$$
 if $n > 0$.

Hence for nonnegative integers r and s, we have $A^rA^s=A^{r+s}.$ If A is invertible, then we can define a negative integer power of A such that

$$A^{-n} = (A^{-1})^n = \underbrace{A^{-1}A^{-1}\cdots A^{-1}}_{n \text{ factors}}.$$

Theorem

Let A be an invertible matrix and n a nonnegative integer. Then

- **1** A^n is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$.
- ② kA is invertible for any nonzero scalar k and $(kA)^{-1} = \frac{1}{k}A^{-1}$.

$$p(x) = a_0 + \underbrace{a_1}_{\alpha_1 \alpha_2} + a_2 x^2 + \cdots + a_m x^m$$
, we define a matrix polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \cdots + a_m A^m.$$

$$p(x) = a_0 + a_x + a_2 x^2 + \cdots + a_m x^m$$
, we define a matrix polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_m A^m.$$

Since $A^rA^s = A^{r+s}$, if $p(x) = p_1(x)p_2(x)$,

$$p(x) = a_0 + a_x + a_2 x^2 + \cdots + a_m x^m$$
, we define a matrix polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_m A^m.$$

Since $A^r A^s = A^{r+s}$, if $p(x) = p_1(x)p_2(x)$, then $p(A) = p_1(A)p_2(A)$.

For a square matrix \boldsymbol{A} and a polynomial

$$p(x) = a_0 + a_x + a_2 x^2 + \cdots + a_m x^m$$
, we define a matrix polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_m A^m.$$

Since $A^rA^s=A^{r+s}$, if $p(x)=p_1(x)p_2(x)$, then $p(A)=p_1(A)p_2(A)$. For example, $(A+I)(A-I)=A^2-I$.

$$\chi^2 - 1 = (\chi_{H})(\chi_{H})$$

$$p(x) = a_0 + \frac{a_1x}{a_2} + a_2x^2 + \cdots + a_mx^m$$
, we define a matrix polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \cdots + a_m A^m.$$

Since $A^rA^s=A^{r+s}$, if $p(x)=p_1(x)p_2(x)$, then $p(A)=p_1(A)p_2(A)$. For example, $(A+I)(A-I)=A^2-I$.

$$A^2 + BA - AB - B^2$$

Note that
$$(A+B)^2 \neq A^2 + 2AB + B^2$$
 and $(A+B)(A-B) \neq A^2 - B^2$ in general. (even though (1+y) = 12+ 2Ay +y2 & (1+y)(1-y) = 12-y2)

If the sizes of the matrices are such that the stated operations can be performed, then

- **2** $(A \pm B)^T = A^T \pm B^T$
- $(kA)^T = kA^T$

Proof of (4):

- Check the sizes of $(AB)^T$ and B^TA^T .

$$(AB)_{j_i}^{\mathsf{T}} = (AB)_{\bar{j}}$$

=
$$n_i(A) \cdot C_i(B)$$

$$= c_{j}(B) \cdot r_{k}(A)$$

$$= \operatorname{lic}_{\mathcal{L}}(\mathcal{B}_{\mathcal{L}}) \cdot \mathbb{C}^{2}(\mathsf{V})$$

If A is invertible, then A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$.

Theorem

Let A and B be square matrices with the same size.

- $cr(cA) = c \operatorname{tr}(A)$

Proof:
$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} (A)_{i,k} (B)_{k,i} = \sum_{k=1}^{n} \sum_{i=1}^{n} (B)_{k,i} (A)_{i,k}$$
$$= \sum_{k=1}^{n} (BA)_{k,k} = \operatorname{tr}(BA)$$

True or False?

$$\operatorname{tr}(AB) = \operatorname{tr}(A)\operatorname{tr}(B) \qquad \qquad \mathsf{A} = \begin{bmatrix} \mathsf{I} & \mathsf{I} \\ \mathsf{a} & \mathsf{I} \end{bmatrix} \qquad \mathsf{B} = \begin{bmatrix} \mathsf{a} & \mathsf{s} \\ \mathsf{a} & \mathsf{I} \end{bmatrix} \Rightarrow \qquad \mathsf{AB} = \begin{bmatrix} \mathsf{3} & \mathsf{k} \\ \mathsf{k} & \mathsf{II} \end{bmatrix}$$

Theorem

Let \mathbf{r} be a $1 \times n$ row vector and \mathbf{c} an $n \times 1$ column vector. Then $\mathbf{rc} = \operatorname{tr}(\mathbf{cr})$.

Proof: Exercise.

True or False?

$$tr(AB) = tr(A)tr(B)$$

Theorem

Let \mathbf{r} be a $1 \times n$ row vector and \mathbf{c} an $n \times 1$ column vector. Then $\mathbf{rc} = \operatorname{tr}(\mathbf{cr})$.

Proof: Exercise.

Definition

A square matrix A is idempotent if $A^2=A$. A square matrix A is nilpotent if $A^k=\mathbf{0}$ for some positive integer k. The smallest value of k for which this equation holds is called the index of nilpotency.

$$\text{Let } A = \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \ \, \underline{ \text{Check}} \quad \text{A}^2 = \text{A} \quad \text{\&} \quad \text{B}^2 \neq \text{O} \,\,, \quad \text{B}^3 = \text{O} \,\,.$$

Example (Exercise)

Let \mathbf{u} and \mathbf{v} be column vectors in \mathbb{R}^n . Set $A = I + \mathbf{u}\mathbf{v}^T$. Show that if $\mathbf{u}^T \mathbf{v} \neq -1$, then A is invertible and $A^{-1} = I - \frac{1}{1 + \mathbf{v}^T \mathbf{v}} \mathbf{u} \mathbf{v}^T$.

Proof: Since $A - I = \mathbf{u}\mathbf{v}^T$.

$$(A-I)^2 = (\mathbf{u}\mathbf{v}^T)(\mathbf{u}\mathbf{v}^T) = \mathbf{u}(\mathbf{v}^T\mathbf{u})\mathbf{v}^T = (\mathbf{v}^T\mathbf{u})(\mathbf{u}\mathbf{v}^T) = (\mathbf{v}^T\mathbf{u})(A-I).$$

Since
$$(A - I)^2 = A^2 - 2A + I = (A^2 - A) - (A - I)$$
, we get

$$A^2 - A = (1 + \mathbf{v}^T \mathbf{u})(A - I).$$

Hence if $1 + \mathbf{v}^T \mathbf{u} \neq 0$, then we have

$$I = A - \frac{1}{1 + \mathbf{v}^T \mathbf{u}} (A^2 - A) = A \left\{ I - \frac{1}{1 + \mathbf{v}^T \mathbf{u}} (A - I) \right\}$$
$$= \left\{ I - \frac{1}{1 + \mathbf{v}^T \mathbf{u}} (A - I) \right\} A.$$

Therefore, A is invertible and $A^{-1} = I - \frac{1}{1+\mathbf{v}^T\mathbf{u}}(A-I) = I - \frac{1}{1+\mathbf{v}^T\mathbf{u}}\mathbf{u}\mathbf{v}^T$.

Review

- 2 Algebraic Properties of matrices (§3.2)
- 3 Elementary matrices; A method for finding A^{-1} (§3.3)
- 4 Subspaces and linear independence (§3.4)

Recall that there are three elementary row operations:

- Interchange two rows.
- Multiply a row by a nonzero constant.
- Add a multiple of one row to another.

Definition

An elementary matrix is a matrix that results from applying a simple single elementary row operation to an identity matrix.

Examples of elementary matrices

$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$

Let A be an $m \times n$ matrix. If E is the elementary matrix that results by performing a certain elementary row operation on I_m , then EA is the matrix that results when the same row operation is performed on A.

(column)

Example

Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
. Then we have $E_1 A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$

$$E_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 1 & -1 & 1 \end{bmatrix}$$

$$E_3 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & -2 \end{bmatrix}$$

Check AE2 & AE3.

$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$

The matrices E_1 , E_2 , and E_3 are invertible and their inverse are

$$E_1^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix},$$

respectively. Furthermore, E_1^{-1} , E_2^{-1} , and E_3^{-1} are also elementary matrices.

Theorem

Every elementary matrix is invertible and the inverse is also an elementary matrix.

Let A be an $n \times n$ matrix. Then the following are equivalent.

- **1** The reduced row echelon form of A is I_n .
- $oldsymbol{Q}$ A can be expressed as a product of elementary matrices.
- **3** A is invertible.

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{E_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{E_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{E_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_4} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_5} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = E_0 E_5 E_4 E_5 E_4 E_5 E_1 \qquad A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} E_5^{-1} E_5$$

Let A be an $n \times n$ matrix. Then the following are equivalent.

- **1** The reduced row echelon form of A is I_n .
- ② A can be expressed as a product of elementary matrices.
- A is invertible.

Proof.

 $1 \Rightarrow 2$: Assume $E_k \cdots E_2 E_1 A = I_n$. Then

$$A = (E_k \cdots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \cdots E_k^{-1}.$$

- $2\Rightarrow 3$: Assume $A=E_1E_2\cdots E_k$. Since every elementary matrix is invertible, A is also invertible.
- $3\Rightarrow 1$: Suppose that the reduced row echelon form of A is R. i.e, $E_k\cdots E_2E_1A=R$. Since A is invertible, R is also invertible. Since the reduced echelon form of a square matrix is either G or I_n , R must be I_n .

For two matrices A and B, we say that A and B are row equivalent if $B = E_k \cdots E_1 A$, where E_1, \ldots, E_k are elementary matrices.

Theorem

Let A and B are square matrices of the same size. The following are equivalent.

- A and B are row equivalent.
- ② There is an invertible matrix E such that B = EA.
- **3** There is an invertible matrix F such that A = FB.

 \clubsuit A and B are column equivalent if $B = AE_1E_2\cdots E_k$, where E_1,\ldots,E_k are elementary matrices.

The inversion algorithm

- lacktriangle Find a sequence of elementary row operations that reduces A to I.
- ② Perform the same sequence of operations on I to obtain A^{-1} .

$$\begin{bmatrix} A & E_1 & E_2 & E_3 & E_4 & E_4 & E_5 & E_6 & E_6 & E_7 & E_8 & E_8$$

Linear Algebra

Let $A\mathbf{x} = \mathbf{b}$ be a linear system of n equations in n unknowns. If A is invertible, then the system has a unique solution, namely $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem

Let $A\mathbf{x}=\mathbf{0}$ be a homogeneous linear system of n equations in n unknowns. Then the system has only the trivial solution if and only if A is invertible.

Let A be an $n \times n$ matrix. The following are equivalent.

- **1** The reduced row echelon form of A is I_n .
- $oldsymbol{Q}$ A can be expressed as a product of elementary matrices.
- **1** A is invertible.
- **4** $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.

- Let A and B be square matrices such that AB = I or BA = I. Then A and B are invertible and $A^{-1} = B$ and $B^{-1} = A$.
- 2 Let A and B be square matrices such that AB is invertible. Then A and B are invertible.

Let A be an $n \times n$ matrix. The following are equivalent.

- **1** The reduced row echelon form of A is I_n .
- A can be expressed as a product of elementary matrices.
- A is invertible.
- $\mathbf{4} \mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **5** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **1** $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $\mathbf{b} \in \mathbb{R}^n$.

Review

2 Algebraic Properties of matrices (§3.2)

- 3 Elementary matrices; A method for finding A^{-1} (§3.3)
- 4 Subspaces and linear independence (§3.4)

Theorem 1.1.5 on page 9

 \mathbb{R}^n is closed under (vector) addition and scalar multiplication, and they satisfy the following properties, see Theorem 1.1.5 on page 9.

- $\mathbf{0} \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- **2** (u + v) + w = u + (v + w)
- u + 0 = u
- $\mathbf{0} \ \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- $(k+\ell)\mathbf{u} = k\mathbf{u} + \ell\mathbf{u}$
- $k(\ell \mathbf{u}) = (k\ell)\mathbf{u}$
- $\mathbf{0} \quad 1\mathbf{u} = \mathbf{u}$

Definition

A nonempty set of vectors in \mathbb{R}^n is called a *subspace* of \mathbb{R}^n if it is closed under scalar multiplication and addition.

i.e., A subset
$$W \subseteq \mathbb{R}^n$$
 is a subspace of \mathbb{R}^n if \mathbb{Q}^n $\forall v \in \mathbb{R}$, $v \in \mathbb{W}$.

Definition

A nonempty set of vectors in \mathbb{R}^n is called a *subspace* of \mathbb{R}^n if it is closed under scalar multiplication and addition.

- $\{0\}$? trivial subspaces

- $\{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0, 2x-y+z=0\}$ is a subspace of \mathbb{R}^3 .

Note that every subspace W of \mathbb{R}^n contains $\mathbf{0}$, and it satisfies the properties $(1)\sim(8)$ in Theorem 1.1.5 on page 9.

Let $\mathbf{v}_1, \dots, \mathbf{v}_s$ be vectors in \mathbb{R}^n . Then the set of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_s$ is a subspace of \mathbb{R}^n .

Let $W = \{ \mathbf{x} \mid \mathbf{x} = t_1 \mathbf{v}_1 + \dots + t_s \mathbf{v}_s, \forall t_i \in \mathbb{R} \}$. The subspace W is called the *span* of $\mathbf{v}_1, \dots, \mathbf{v}_s$ and is denoted by

$$W = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_s\}.$$

We also say that the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_s$ span W.

We will study the following subspaces

* span {
$$C_1(A)$$
, $C_2(A)$, ..., $C_n(A)$ }

* span { $I_1(A)$, $I_2(A)$, ..., $I_m(A)$ }

for an max matrix A