

控制论 Cybernetics

授课教师: 吴俊 教授

浙江大学控制科学与工程学院

机器人及其控制技术

关于机器人的概念(目前没有公认的定义)

一种能够进行编程并在自动控制下执行某些操作 和移动作业任务的机械装置

—— 美国国家标准局 (NSB)

一种用于移动各种材料、零部件、工具或专用装置的,通过程序化的动作来执行各种任务,并具有编程能力的多功能操作机

—— 美国机器协会 (RIA)

机器人的类别 (按应用分)

工业制造

工件运输

军事作战

军事侦察

微创手术

心理治疗

家庭清洁

外空探测

机器人的类别

工业制造

工件运输

军事侦察

微创手术

心理治疗

家庭清洁

外空探测

工业机器人应用的若干实例

物包码垛

自动巡检

服务机器人应用的若干实例

扫地机器人

手术机器人

机器人的基本结构类型

机械臂

移动机器人

机械臂

• 通过关节将 (刚性) 连杆连接

• 关节: 转动或滑动

• 驱动: 电机或液压

• 末端执行器安装在 操作臂的自由端

关节

滑动关节

转动关节

机械臂的结构

转动关节型机械臂

• 例: PUMA562机器人

主轴 (1-3) 定位腕部

轴1、2、3指腰、肩、肘关节

从轴(4-6)确定工具位置

轴4: 腕偏转关节

轴5: 腕俯仰关节

轴6: 腕翻转

机器人学的主要内容

- 机器人运动学
- 机器人动力学
- 机器人轨迹规划
- ・机器人控制

• 机器人的笛卡尔空间描述

例:3转动关节的平面机器人

世界坐标系Σw的原点位于基座

机器人末端位姿是操作的关键,建立与 末端固连的末端坐标系Σ₃:

 Σ_3 的原点在 Σ_W 的坐标为 (x,y)

 Σ_3 与 Σ_W 的夹角为 α

由[x,y,α]^T可确定机器人末端位姿,这种描述方式称为机器人的笛卡尔空间 (任务空间、操作空间)描述

・机器人的关节空间描述

例:3转动关节平面机器人

 $[x,y,\alpha]$ 「不适合于机器人的关节执行

就关节执行而言,适合的描述是 关节角度[$\theta_1, \theta_2, \theta_3$]^T

这种描述方式称为机器人的 关节空间描述

· 机器人正运动学 从关节空间到笛卡尔空间

例:已知[$\theta_1, \theta_2, \theta_3$]^T,求[x, y, α]^T

解:建立与 l_1 固连的坐标系 Σ_1 :

 Σ_1 的原点在 Σ_W 的坐标为 (x_a, y_a)

 Σ_1 与 Σ_W 的夹角为 γ

由平面几何知,

$$y = \theta_1$$

$$x_a = l_1 \cos \theta_1$$

$$y_a = l_1 \sin \theta_1$$

建立与/2固连的坐标系Σ2:

 Σ_2 的原点在 Σ_W 的坐标为 (x_b, y_b)

 Σ_2 与 Σ_W 的夹角为 β

由平面几何知,

$$\beta = \theta_1 + \theta_2$$

$$x_b = l_1 \cos \theta_1 + l_2 \cos (\theta_1 + \theta_2)$$

$$y_b = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$

同理可知,

$$\alpha = \theta_1 + \theta_2 + \theta_3$$

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) + l_3 \cos(\theta_1 + \theta_2 + \theta_3)$$

$$y=l_1\sin\theta_1+l_2\sin(\theta_1+\theta_2)+l_3\sin(\theta_1+\theta_2+\theta_3)$$

· 机器人逆运动学 从笛卡尔空间到关节空间

例:已知 $[x,y,\alpha]^{\mathsf{T}}$,求 $[\theta_1,\theta_2,\theta_3]^{\mathsf{T}}$

解:由正运动学

$$\alpha = \theta_1 + \theta_2 + \theta_3$$

$$x=l_1\cos\theta_1+l_2\cos(\theta_1+\theta_2)+l_3\cos(\theta_1+\theta_2+\theta_3)$$

$$y=l_1\sin\theta_1+l_2\sin(\theta_1+\theta_2)+l_3\sin(\theta_1+\theta_2+\theta_3)$$

得

 $l_1\cos\theta_1 + l_2\cos\theta_1\cos\theta_2 - l_2\sin\theta_1\sin\theta_2 = x - l_3\cos\alpha$ $l_1\sin\theta_1 + l_2\sin\theta_1\cos\theta_2 + l_2\cos\theta_1\sin\theta_2 = y - l_3\sin\alpha$

 $l_1\cos\theta_1 + l_2\cos\theta_1\cos\theta_2 - l_2\sin\theta_1\sin\theta_2 = x - l_3\cos\alpha$ $l_1\sin\theta_1 + l_2\sin\theta_1\cos\theta_2 + l_2\cos\theta_1\sin\theta_2 = y - l_3\sin\alpha$

再由三角函数知:

 $\cos^2 \theta_1 + \sin^2 \theta_1 = 1$ $\cos^2 \theta_2 + \sin^2 \theta_2 = 1$

联立求解上述4个非线性方程,可得 $\cos \theta_1$, $\sin \theta_1$, $\cos \theta_2$ 和 $\sin \theta_2$

进而可计算得到 θ_1 , θ_2 以及 $\theta_3 = \alpha - \theta_1 - \theta_2$

路径与轨迹

障 碍

例:机器人将盛满水的杯子由p移到q

因有障碍,机器人末端不能走直线段 pq, 需绕障碍 (红线是一种选择)

移动过程中,机器人末端的姿态需要保持不变(姿态角 α 恒定)

机器人末端位姿在3维笛卡尔空间中,形成一条连接 $[x_p,y_p,\alpha_p]^{\mathsf{T}}$ 和 $[x_q,y_q,\alpha_p]^{\mathsf{T}}$ 的曲线段,即笛卡尔空间路径

笛卡尔空间路径可以直观地考虑机 器人避障、最短路径等要求

路径与轨迹

笛卡尔空间路径是运动的纯几何描述, 与时间无关

笛卡尔空间轨迹[$x(t),y(t),\alpha(t)$]^T则是指定了时间律的笛卡尔空间路径

笛卡尔空间轨迹不仅包含机器人末端位 姿信息,还包含速度和加速度信息

通过逆运动学,可以将笛卡尔空间路径 和笛卡尔空间轨迹分别变换为关节空间 路径和关节空间轨迹

关节空间轨迹[$heta_{d1}(t), heta_{d2}(t), \cdots, heta_{dn}(t)$] $^{\mathsf{T}}$ 可以方便地考虑各关节角度范围、最大角速度、最大角加速度等约束,n是机器人的关节数(轴数),轨 $^{\mathsf{T}}$ 迹规划即是找出合适的关节空间轨迹,为机器人控制提供给定信号

被控对象、执行器、传感器

传感器: 光电码盘

在带有明暗方格的码盘两侧,安放发光元件和光敏元件 随着码盘的旋转,光敏元件输出脉冲

根据脉冲计数,可以测量固定在码盘上的转轴的角位移

根据单位时间内的脉冲计数(高速)或两个相邻脉冲的时间间隔(低速),可以测量角速度

・单关节建模

第i连杆

 $\theta_i(t)$

 $\tau_{ai}(t)$

 $\theta_{mi}(t)$

通过对功率模块、电机和减速器的机电分析,得到第i关节的动力学模型

 $D_i(s)$ 是其他关节和重力对第i关节的干扰, $s\theta_i(s)$ 是第i关节的角速度

• 比例-微分补偿控制器 (PD控制)

比例系数 $K_{Pi} = K_i K_{ei}$ 微分系数 $K_{Di} = K_i K_{si}$

$$e_i(s) = \frac{s^2 + s(B_i + K_{Di})/J_i}{s^2 + s(B_i + K_{Di})/J_i + K_{Pi}/J_i} \theta_{di}(s) + \frac{1/J_i}{s^2 + s(B_i + K_{Di})/J_i + K_{Pi}/J_i} D_i(s)$$

特征方程 $s^2 + s(B_i + K_{Di})/J_i + K_{Pi}/J_i = s^2 + 2\zeta_i\omega_i s + \omega_i^2$

自然频率 ω_i ,阻尼系数 ζ_i 闭环系统稳定

通常取 ζ_i =1常使得响应是临界阻尼,以产生最快的非振动响应。在这种情况下, ω_i 决定响应的速度

阶跃响应(有干扰 $d_i(t) = 40$)

· 比例-积分-微分补偿控制器 (PID控制)

积分系数 $K_{li} = K_i K_{fi}$

特征方程 $s^3 + s^2(B_i + K_{Di})/J_i + sK_{Pi}/J_i + K_{Ii}/J_i$

由Routh判据可知,闭环系统稳定的充要条件是 $K_{Ii} < (B_i + K_{Di})K_{Pi}/J_i$

在控制器中增加积分环节,主要是为了消除稳态误差

• 前馈控制

若 $\theta_{di}(t)$ 二阶可导,可增加前馈提高控制性能,如下面的前馈+PD控制

$$e_i(s) = \frac{1/J_i}{s^2 + s(B_i + K_{Di})/J_i + K_{Di}/J_i} D_i(s)$$
 引入前馈可以使偏差与 $\theta_{di}(t)$ 的变化无关

• 机器人机构的动力学

对n关节的转动关节型机械臂,设旋转关节无摩擦

令: 关节角向量
$$\theta(t) = \begin{bmatrix} \theta_1(t) \\ \theta_2(t) \\ \vdots \\ \theta_n(t) \end{bmatrix}$$
, 关节力矩向量 $\tau(t) = \begin{bmatrix} \tau_1(t) \\ \tau_2(t) \\ \vdots \\ \tau_n(t) \end{bmatrix}$

由理论力学可导出机器人机构的动力学方程

$$D(\theta(t))\ddot{\theta}(t) + C(\theta(t), \dot{\theta}(t))\dot{\theta}(t) + G(\theta(t)) = \tau(t)$$

或简记为
$$D(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = \tau$$

$$D(\theta)$$
是一个依赖于 θ 的 $n \times n$ 正定矩阵

$$C(\theta,\dot{\theta})$$
是一个依赖于 θ 和 $\dot{\theta}$ 的 $n \times n$ 矩阵

$$G(\theta)$$
是一个依赖于 θ 的 $n \times 1$ 向量

$D(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = \tau$

例:2转动关节的平面机器人,连杆i 的长度、质量和转动惯量(绕质心)分别是 l_i 、 m_i 和 I_i , l_{ci} 表示前一个关节与连杆i 的质心之间的距离

动力学模型:

$$\begin{bmatrix} m_{1}l_{c1}^{2} + m_{2}(l_{1}^{2} + l_{c2}^{2} + 2l_{1}l_{c2}\cos\theta_{2}) + I_{1} + I_{2} & m_{2}(l_{c2}^{2} + l_{1}l_{c2}\cos\theta_{2}) + I_{2} \\ m_{2}(l_{c2}^{2} + l_{1}l_{c2}\cos\theta_{2}) + I_{2} & m_{2}l_{c2}^{2} + I_{2} \end{bmatrix} \begin{bmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \end{bmatrix}$$

$$+ \begin{bmatrix} -m_{2}l_{1}l_{c2}\sin\theta_{2}\dot{\theta}_{2} & -m_{2}l_{1}l_{c2}\sin\theta_{2}\dot{\theta}_{1} - m_{2}l_{1}l_{c2}\sin\theta_{2}\dot{\theta}_{2} \\ m_{2}l_{1}l_{c2}\sin\theta_{2}\dot{\theta}_{1} & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}$$

$$+ \begin{bmatrix} (m_{1}l_{c1} + m_{2}l_{1})g\cos\theta_{1} + m_{2}l_{c2}g\cos(\theta_{1} + \theta_{2}) \\ m_{2}l_{c2}g\cos(\theta_{1} + \theta_{2}) \end{bmatrix} = \begin{bmatrix} \tau_{1} \\ \tau_{2} \end{bmatrix}$$

其中,g是重力加速度

多输入多输出复杂非线性系统

・多变量模型

将电机执行单元的动力学与机器人机构的动力学进行联合

有电机执行机构动力学: $J\ddot{\theta} + B\dot{\theta} = v - \tau$

机器人机构动力学: $D(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = \tau$

忽略摩擦: B=0, 并联合两个动力学方程, 得 $(D(\theta)+J)\ddot{\theta}+C(\theta,\dot{\theta})\dot{\theta}+G(\theta)=v$

多变量模型: $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = v$ $M(\theta) = D(\theta) + J$ 正定

• 反馈线性化: 逆动力学控制

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = v$$
 内环控制律 $v = M(\theta)a_q + C(\theta,\dot{\theta})\dot{\theta} + G(\theta)$ $\ddot{\theta} = a_q$ n 个独立的双积分系统

对每个双积分系统,可实施"前馈+PD控制"

即
$$a_q = \ddot{\theta}_d + F_0(\theta_d - \theta) + F_1(\dot{\theta}_d - \dot{\theta})$$
 外环控制律 F_0 和 F_1 是对角矩阵

- 鲁棒逆动力学控制
- 自适应逆动力学控制
- 模糊控制
- 滑模变结构控制
- 智能控制

• • • • •

力控制

增加力/力矩传感器,可进行力控制

基于视觉的控制

增加视觉传感器,可进行基于视觉的控制

谢纳!