Relación de ejercicios 5

1. Establece si son verdaderas o falsas las siguientes relaciones:

- $\begin{array}{lll} \text{II)} & a \in \{a\} & & \text{III)} & \{a\} \in \{a\} & & \text{III)} & \{a,b\} \in \{a,\{a,b\}\} \\ \text{IV)} & a \subseteq \{a\} & & \text{V)} & \{a\} \subseteq \{a\} & & \text{VI)} & \{a,b\} \subseteq \{a,\{a,b\}\} \end{array}$

2. Sean los conjuntos $A_1 = \{-2, -1, 0, 1, 2\}, A_2 = \{0, 1, 2\}, A_3 = \{-1, 0, 1\}$ y sea el conjunto de índices $I = \{1, 2, 3\}.$

- \bullet Determina los siguientes conjuntos: a) $\bigcup_{i \in I} A_i$ b) $\bigcap_{i \in I} A_i$

• Tomando \mathbb{Z} como conjunto universal, determina:

- $c) \bigcup_{i \in I} \overline{A_i} \qquad d) \bigcap_{i \in I} \overline{A_i}$

3. En el conjunto N de los números naturales se consideran los subconjuntos siguientes:

P: conjunto de números naturales primos; D: conjunto de múltiplos de dos; T: conjunto de múltiplos de tres; I: conjunto de números impares y S: conjunto de múltiplos de seis.

- Determina o escribe de forma alternativa:

 - a) $P \cap I$, b) $P \cap D$, c) $D \cap T$, d) $D \cap S$,
- e) $I \cap S$.

• Determina o escribe de forma alternativa el complementario de:

- f) P, g) I, h) D.
- Determina o escribe de forma alternativa:
 - $i) \ P \cup I, \quad j) \ P I, \quad k) \ \overline{D \cap I}.$

4. Sin utilizar propiedades básicas, solo definiciones, demuestra que para cualquier par de conjuntos A y B, los siguientes enunciados son equivalentes:

- I) $A \subseteq B$, II) $A \cap B = A$, III) $A \cup B = B$

5. Demuestra la validez de las siguientes igualdades para cualquier terna de conjuntos A, B y C.

- a) $A \cap (B-C) = (A \cap B) (A \cap C)$
- b) $A (B \cup C) = (A B) \cap (A C)$
- c) $A \cup (B C) = (A \cup B) (\overline{A} \cap C)$

6. Da un contraejemplo que demuestre que la siguiente igualdad no es válida para cualesquiera conjuntos A, B y C:

$$A - (B - C) = (A - B) - C$$

7. La operación \triangle , diferencia simétrica de los conjuntos A y B se define:

$$A \triangle B \stackrel{def}{=} (A - B) \cup (B - A)$$

- a) Demuestra la igualdad $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$
- b) Da un contraejemplo para demostrar que no se verifican la igualdad $A \triangle (B \cup C) = (A \triangle B) \cup (A \triangle C)$
- 8. Sea el conjunto $X=\{a,b,c,d\}\;\; {\rm y}\;\; f\subseteq X\times X\;\;$ la relación binaria dada por la matriz

$$\mathcal{M}_f = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 \\ - & - & - \end{pmatrix}$$

Completa la matriz \mathcal{M}_f sabiendo que f es una función inyectiva.

9. Dados los conjuntos $A = \{1, 2, 3, 4, 5\}$ y $B = \{6, 7, 8, 9\}$, se define la relación $\mathcal{R} \subseteq A \times B$

$$\mathcal{R} = \{(1,8), (2,6), (5,y), (5,7), (x,z), (t,8)\}$$

En cada uno de los apartados, encuentra todos los posibles valores de las variables $x, t \in A, y, z \in B$ de tal forma que:

- a) \mathcal{R} no sea una función.
- b) \mathcal{R} sea una función invectiva.
- c) \mathcal{R} sea una función, pero no sea sobreyectiva.
- 10. Sea la función $f: \mathbb{Z}_{51} \to \mathbb{Z}_{51}$ definida $f([x]_{51}) = [3x]_{51}$.
 - a) Halla la imagen de $[20]_{51}$.
 - b) Encuentra, si existe, la preimagen de [21]₅₁ y la de [22]₅₁.
 - c) Analiza si f es inyectiva, sobreyectiva y biyectiva.
- 11. Consideramos la función $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \frac{x}{1+x}$. Halla la imagen de f. Demuestra que $f: \mathbb{R}^+ \to \text{Im}(f)$ es biyectiva y determina su inversa.
- 12. Demuestra que si escogemos cinco números cualesquiera entre el 1 y el 8, dos de ellos suman 9.
- 13. Demuestra que si se eligen diez puntos cualesquiera en el interior de un triángulo equilátero de lado 1, al menos dos de ellos se encuentran a una distancia no superior a $\frac{1}{3}$.
- 14. Demuestra que si $g \circ f$ es sobreyectiva, entonces g también es sobreyectiva.