## Predicting Loan Foreclosures

How Freddie Mac could reduce foreclosure losses by 80%

### The problem

### Company



We make home possible®

Freddie Mac operates in the U.S. secondary mortgage market. They don't lend directly to borrowers but buy loans that meet their standards from approved lenders.

#### Context

Freddie Mac provides
Single Family Loan-Level
Dataset in an effort to
increase transparency
and help investors build
more accurate credit
performance models.

I chose data from 1999 Q1 for my analysis.

### Problem statement

About 1.6% of the loans in the 1999 loan dataset ended up in foreclosure. My goal was to understand how well modeling could predict foreclosure of loans. Potentially reducing loan loss for Freddie Mac

### Challenges deep-dive

### Challenge 1

### **Data Imbalance**

Total records: 383,834

Normal Loans: 379,370

Foreclosed Loans: 4,464

RandomForestClassifier

Accuracy > 98%

### Challenge 2

### **Data Undersampling**

Determine the right ratio for undersampling.

Records of normal loans

to

Records of foreclosed loans

### Challenge 3

### Modelling

RandomForestClassifier

KNeighborsClassifier

Support Vector Classifier

Hyperparameter Tuning

**Cross Validation** 

### Solution

Random Forest Classification method resulted in a recall score of 0.81

### Performed modelling with

- Random Forest Classification
- K Neighbors Classifier
- Support Vector Classifier

### **Nested Cross Validation with**

- GridSearchCV for
   Hyperparameter tuning
- Cross\_val\_score to measure the prediction performance of the estimator

# Implementation



### Impact

Potential loss reduction \$347,580,720



# Implementation Details

### **EDA**

#### Features:

- Credit Score
- First Time Buyer (category to bool)
- Number of Units (median to fill missing values)
- Occupancy Status (category to bool)
- Loan-to-value (4 missing values, removed rows)
- Debt-to-income (replaced missing values with median)
- Unpaid balance
- Interest rate
- Channel (category to int)
- Property state (category to int)
- Property type (category to int)
- Purpose (category to int)
- . ..

#### Target:

- Foreclosure status (category to bool)

# Undersampling

Normal Loans: 379,370 (98.84%) Foreclosed Loans: 4,464 (1.16%)

### RandomForestClassifier on original dataset:

- 98% accuracy
- Recall score of 0.56 !!.

### **Determine Optimal Undersampling Ratio**

| Ratio | Algorithm     | Recall score |
|-------|---------------|--------------|
| 1:1   | Logistic Reg  | 0.75         |
| 1:1   | Random Forest | 0.78         |
| 2:1   | Logistic Reg  | 0.43         |
| 2:1   | Random Forest | 0.59         |
| 3:1   | Logistic Reg  | 0.23         |
| 3:1   | Random Forest | 0.46         |

# Classification Algorithms

Nested Cross Validation for Hyperparameter Tuning and Prediction Performance

#### Random Forest Classifier:

- Hyperparameter Tuning:
  - N\_estimators: 100
  - Max\_depth: 10
  - Min\_samples\_leaf: 1
- Recall score: 0.81

#### KNeighbors Classifier:

- Hyperparameter Tuning:
  - N\_neighbors: 5
  - leaf\_size: 1
- Recall score: 0.73

### **Support Vector Classifier**:

- Hyperparameters Tuning:
  - <u>-</u> C: 6
- Recall score: 0.51