PHYS 170

Week 9: Kinetics: Force and Acceleration

Section 201 (Mon Wed Fri 12:00 – 13:00)

Relative Motion

Text: 12.10

Content:

- Translating (but not rotating!) moving coordinate systems
- Relative velocity, relative acceleration

RELATIVE MOTION

• Velocity and acceleration of both particles in the fixed frame, *O*:

$$\vec{v}_A = \dot{\vec{r}}_A$$
 $\vec{v}_B = \dot{\vec{r}}_B$

$$\vec{a}_A = \dot{\vec{v}_A}$$
 $\vec{a}_B = \dot{\vec{v}_B}$

• How can we describe motion of particle B in the frame moving together with particle A (which, in the fixed frame, moves with velocity \vec{v}_A and acceleration \vec{a}_A)?

RELATIVE MOTION

• Position of B relative to A is described by the position vector $\vec{r}_{B/A}(t)$

• Then:
$$\vec{v}_{B/A}=\dot{\vec{r}}_{B/A}$$
, $\vec{a}_{B/A}=\dot{\vec{v}}_{B/A}$

• Note that: $\vec{r}_{B/A} = \vec{r}_B - \vec{r}_A$

• Differentiating this equality with respect to time we find:

$$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$$

$$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A$$

W8-5. At the instant shown, car A travels east along the highway at 30 m/s and accelerates at 2 m/s². At the same instant, car B travels on the interchange curve at 15 m/s and decelerates at 0.8 m/s². Determine the velocity and acceleration of B relative to A at this instant.

Which coordinate system will you use for this problem? Explain.

- A. Cartesian for both cars.
- \rightarrow B. (n,t)-coordinates for both cars.
 - Polar for both cars.
- D. A mixture of two of the above.
 - E. It actually does not matter.

W8-5. At the instant shown, car A travels east along the highway at 30 m/s and accelerates at 2 m/s². At the same instant, car B travels on the interchange curve at 15 m/s and decelerates at 0.8 m/s². Determine the velocity and acceleration of B relative to A at this instant.

W8-5. At the instant shown, car A travels east along the highway at 30 m/s and accelerates at 2 m/s². At the same instant, car B travels on the interchange curve at 15 m/s and decelerates at 0.8 m/s². Determine the velocity and acceleration of B relative to A at this instant.

A at this instant.

$$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$$

$$\vec{v}_A, \vec{a}_A : \vec{v}_A = (30) \vec{i} \qquad \vec{a}_A = (+2) \vec{i}$$

$$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$$

$$\vec{v}_B, \vec{a}_B : \vec{v}_B = (15) \vec{v}_A = (15) \begin{bmatrix} \vec{i} \cos 60^\circ + \vec{j} \sin 60^\circ \end{bmatrix} - (30) \vec{i} = (-22.5) \vec{i} + (13.0) \end{bmatrix} \qquad (30) \vec{i} = (-22.5) \vec{i} + (13.0) \end{bmatrix} \qquad (42) \vec{i} = (-1.62) \vec{i} - (14) \vec{i} = (-1.62) \vec{i} - (-1.62) \vec{$$

Kinetics: Intro

Text: 13.1-13.3

Content:

- Mass / weight
- Inertia
- Inertial coordinate systems
- Second Newton's law: $\vec{F}_R = m\vec{a}$

FUNDAMENTAL LAWS

Newton's 1st law:

A particle which is originally at rest or is moving in a straight line with a constant velocity, will remain in this state provided the particle is not subjected to unbalanced forces (or *motion with a constant velocity along a straight line is a natural state and it does NOT require a constant force to maintain this velocity* – very counter-intuitive, since we live in the world where we always cause motion by applying a force to compensate for friction/drag)

Newton's 2nd law:

A particle acted upon by an unbalanced force experiences an acceleration in the same direction as the net force with a magnitude proportional to the force (or $\vec{F}_R = m\vec{a}$)

• Newton's 3rd law:

The mutual forces of "action" and "reaction" between particles are equal and opposite (or "all forces appear in pairs", or you cannot touch without being touched).

Newton's law of gravitation:

Gravity force due to two masses (magnitude): $F_G = G \frac{m_1 m_2}{r^2}$ on the Earth: W = mg

Please read:

• Section 13.1

Mass (m) vs Weight (W):

- Mass:
 - Internal property of each object
 - Units: kg (SI) / slugs (FPS)

- Weight:
 - o Gravity **force** acting on the object

W = mg

Units: N (SI) / Ib (FPS)

$$m = \frac{W}{g}$$

$$g = 9.81 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$$

- Units: kg (SI) / slugs (FPS)
- \circ 1 slug = $\frac{1 \text{ lb}}{32.2 \text{ ft/s}^2}$

Please have a look:

- Section 13.2
 - > Inertia: tendency of a massive object to resist change in its velocity
 - > Inertial reference frame (= coordinate system): It is not accelerating (which also means that it is not rotating)
 - o If a particle's acceleration in some inertial frame is \vec{a}_0 , and another system moves with acceleration $\vec{a}_{\rm fr}$ with respect to that system, the particle's acceleration in the second system will be $\vec{a}_{0/{\rm fr}} = \vec{a}_0 \vec{a}_{\rm fr}$
 - Internal coordinate systems: observers will agree on acceleration
 - Observer in non-inertial coordinate system: will measure a different acceleration

The equation of motion $\vec{F}_R = m\vec{a}$ will look different for these two observers!

Optional:

- Section 13.3
 - > Equation of motion for a system of particles
 - > You can skip it since we did not discuss the concept of center of mass
 - > ...but it is nice and is worth reading if you have time

FUTURE PLANS

particles!

 Kinematic characteristics (velocity, position)

 $\vec{F}_R = m\vec{a}$

- Free-body diagrams
- 3rd Newton's law pairs
- Kinetic friction

•

- Cartesian coordinates!
- Tangential-normal coordinates!
- Polar coordinates!

- Dependent motion
- Relative motion
-

Equation of motion: Examples

Text: 13.4-13.5

Content:

- Equation of motion in Cartesian components
- Equation of motion in tangential-normal components

W9-1. The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic friction between block B and the inclined plane is 0.4. A and B are released from rest. Determine the acceleration of block A and the tension in the cord. Neglect the mass of the pulleys and the cord.

Direction of accelerations?

- A. a_A up, a_B up
- B. a_A down, a_B down
- \longrightarrow C. a_A up, a_B down
 - ? D. a_A down, a_B up
 - It does not really matter. Let's chose them somehow and correct after we know the sign of the answer

W9-1. The mass of block A is 100 kg. The mass of block B is 60 kg. The coefficient of kinetic friction between block B and the inclined plane is 0.4. A and B are released from rest. Determine the acceleration of block A and the tension in the cord. Neglect the mass of the pulleys and the cord.

