

A meta-analysis of genomewide association with body mass index

Name: Guojun Ma

Supervisor: Dr. Yu-ting Chen and Dr. Xuekui Zhang

Introduction

- In this project, we aim to identify the genetic variations in the human genome underlying body mass index(BMI), by conducting a meta-analysis of previously published studies.
- While previous meta-analysis focused solely on the European population, our study encompasses larger and more diverse samples.
- The objectives are discovering previously unknown genetic variations associated with BMI, as well as comparing the impact of these genetic variations across distinct ethnicity group.
- Our research adds to the expanding knowledge regarding the genetic underpinnings of BMI, with the potential for valuable medical applications.

Background

- The human genome comprises around three billion base pairs of deoxyribonucleic acid (DNA), held together by two strands of sugarphosphate backbones.
- Each DNA has four different nucleotide types: Adenine(A), Thymine(T), Guanine(G) and Cytosine(C).
- Numerous combination of DNA encode distinct information, and variations in these combinations lead to diverse phenotypes.
- The single nucleotide polymorphisms (SNPs) are the most common form of genetic variations throughout populations(> 10% in the population). The possible nucleotide variations of the SNP are referred to as allele.

GWAS study

- Genome-wide association study (GWAS) aims to find the relationship between genetic variations (SNPs) and susceptibility to diseases or traits across the entire genome.
- The first GWAS study was conducted by the Wellcome Trust case control Consortium(WTCCC) in 2005, shortly after the completion of Human Genome Project.
- In the last decade, GWAS has gained substantial popularity, primarily attributed to the declining costs of genome sequencing.
- By the year 2017, Researchers have identified approximately 55,000 unique loci in the genome associated with many traits and diseases.

GWAS study

- GWAS generally require a large sample size. Collected data from study cohorts or use available genetic and phenotypic information from biobanks or repositories.
- Genotypic data can be collected using microarrays to capture common variants, or nextgeneration sequencing methods for whole-genome sequencing(WGS) or whole-exome sequencing sequencing(WES) that also include rare variants.
- Reliable results from GWAS requires careful quality control, such as removing rare variants, removing variants that are not in Hardy-Weinberg equilibrium, identifying and removing genotyping errors and among others.
- Untyped genotypes imputed using information from matched reference population from repositories such as 1000 Genomes Project.

Association testing

• Genetic association tests are performed for each SNP using an appropriate model, such as the mixed linear regression model.

$$y_{i} = \beta G_{i} + \gamma A_{i} + e_{i}, e_{i} \sim N(0, \sigma^{2}),$$

- Where y_i is the quantitative phenotype for the i-th individual; $G_i = \{0,1,2\}$ depends on the phenotype of the ith invidual; A_i encode the characteristic of the i-th individual such as age, sex, location and principal components of genotype; β is the genetic effect of the SNP.
- The p-value is obtained by testing the null hypothesis $\beta = 0$ vs the alternative $\beta \neq 0$.
- Due to the extensive number of SNPs involved (approximately 1 million), it is crucial to control the false positive rate. The Bonferroni correction is frequently employed, wherein the p-value threshold is set at 5×10^{-8} .

Meta-analysis

- Meta-analysis is commonly employed to integrate the findings of multiple GWAS studies through a statistical framework.
 - It increases the statistical power of GWAS study with a larger sample size;
 - Enhances the precision and robustness of research findings;
 - Examines the cross-ethnicity replicability and variability of genetic effects.
- There are multiple types of Meta-analysis:
 - Patient-level: collect and analysis the genotyped data from multiple cohorts.
 - Summary-level: collect only the summary statistics from previous studies.

Methodology

- We conducted a summary-level meta-analysis on the recently published studies on BMI.
- We conducted a thorough literature search on the GWAS catalog website, a comprehensive database that compiles data of published GWAS.
- We identified a few studies published in recent years (2015 – 2022) for which the summary statistics are publicly accessible. The summary statistics include the association level of millions of SNPs.

Cohorts

Cohorts	Sample sizes	Ethnicity	Year of publication	Reference
UK Biobank + GIANT	694,649	White European	2016	Meta-analysis of genome-wide association studies for height and body mass index in $\sim\!\!700000$ individuals of European ancestry
Korea biobank	72,298	East Asian	2022	Genome-wide study on 72,298 individuals in Korean biobank data for 76 traits
Taiwan Biobank	21,930	East Asian	2022	Genome-wide association study identifies genetic risk loci for adiposity in a Taiwanese population.
Japan biobank	179,000	East Asian	2021	A cross-population atlas of genetic associations for 220 human phenotypes
Hispanic/Latino Anthropometry (HISLA) Consortium	56,161	Hispanic/Latino	2022	Ancestral diversity improves discovery and fine- mapping of genetic loci for anthropometric traits- The Hispanic/Latino Anthropometry Consortium

Methodology

- We performed the fixed-effect inverse-variance weighted meta-analysis, using the command line software METAL.
 - Fixed-effect: assume the genetic effects are consistent across all cohorts.
 - Inverse-variance: assigning the weight to the effect size from each study based on the inverse of its variance.
- β_i : effect size estimate from study i; se_i : standard error of estimate from study i;
- The overall effect estimate is $\beta = \frac{\sum_i \beta_i w_i}{\sum_i w_i}$, where $w_i = \frac{1}{se_i^2}$
- The overall standard error is $se = \sqrt{\frac{1}{\sum_i w_i}}$

Results

- We analyzed a subset (~2.3 millions) of SNPs, which were reported in the previous metaanalysis study (UKB + GIANT cohorts).
- Using the strict threshold of the p-value (5 \times 10⁻⁸), we identified a total of 61,507 significant SNPs.
- If we break the genome into different parts (a disjoint window of 500Kb), these significant SNPs correspond to 1,966 different loci. For comparison, the previous meta-analysis identified 981 loci.

Regional plot

Distribution of new significant SNPs

- In comparison to the previous GWAS study on the UKB+GIANT cohort, our metaanalysis has identified an additional 27,616 significant SNPs.
- These SNPs correspond to 774 new loci, each of which encompasses more than 10 significant SNPs.
- The plots show the distribution of those SNPs and loci.

Gene Functions

- We identified the nearby genes for the 10 new SNPs with the highest levels of significant association.
- The functions of these genes can be found using the UCSC Genome Browser gateway.
- We identified that several genes are the pseudogene which are no longer functional.

Gene	Type	Tissue speci-	Disease associa-
		ficity	tion
CDKAL1	protein coding	pancreatic	type 2 diabetes
		islets	
RPL12P41	pseudogene	-	-
LINC01554	intergenic non-protein coding RNA	-	-
KCNQ1	protein coding	heart, pan-	hereditary long
		creas, prostate,	QT syndrome
		kidney, small	1, Jervell and
		intestine and	Lange-Nielsen
		peripheral	syndrome, and
		blood leuko-	familial atrial
		cytes	fibrillation
SNRPEP3	pseudogene	-	-
CDKN2B-AS1	antisense RNA	-	intracranial
			aneurysm,
			periodontitis,
			endometriosis
KRT18P9	pseudogene	-	-
BDNF-AS	antisense RNA	-	-
FTO	protein coding	ubiquitous	growth retarda-
			tion and early
			death
NEK4	protein coding	highest expres-	retinitis pig-
		sion in adult	mentosa 23
		heart, followed	
		by pancreas,	
		skeletal muscle,	
		brain, liver,	
		kidney, lung	
		and placenta	
		1	I

Heterogeneity analysis

- Compare the effect size of SNP markers across different cohorts.
- Some SNPs exhibit heterogeneity between ethnicity groups. (~ 10 %)
- For example, SNPs rs9368219 and rs1861866 have opposite effect size.

Subgroup analysis

- Perform meta-analysis for each ethnicity group – to identify which SNPs are common in all population, as well as SNPs that are unique in the population.
- We identified that genes FTO, RSL24D1P11, AL136114.1 and many others (the loci with the highest association level) are common in each ancestry group.
- But also identified 8908 new SNPs(27 new loci) that are unique in the east Asian group, as well as 25 new SNPs(2 new loci) that are unique in the Latino/Hispanic population.

Cohort ancestry	sample sizes	number	number of	Cumulative
		of GWAS	non overlap-	length
		significant	ping GWAS	of non-
		SNPs(p <	loci(defined	overlapping
		5×10^{-8})	as a window	GWAS loci
			of 500Kb)	in Mb(%
				of genome
				length)
European	778,580	41, 103	1,239	619.5(20.4%)
East Asian	273,228	18,332	842	421(13.9%)
Latino/Hispanic	56, 161	193	14	7(0.23%)
Trans-ancestry meta-analysis	1,107,969	61,507	1,966	983(30.4%)

The trans-ancestry meta-analysis confirmed the presence of many previously discovered SNPs, while also unveiling an additional 19,215 new SNPs.

Discussion

- Our research has unveiled a notable rise in the count of associated SNPs. However, it's
 important to acknowledge that these associations might be spurious due to confounding
 biases.
 - ➤ The genetic compositions of various ethnic groups differ significantly, a phenomenon referred to as population stratification. This can lead to certain SNPs displaying apparent associations even when there isn't a causal relationship.
 - > SNPs in close proxy may be in linkage disequilibrium.
- Our findings indicate a substantial quantity of distinctive SNPs specific to the East Asian
 population, while there are considerably fewer unique SNPs in the Latino/Hispanic population.
 - Underpower of GWAS due to a small sample size.
- The polygenic nature of BMI(many signal with small effect size) presents a challenge for understanding the biological mechanisms and exploring potential therapeutic interventions.
 - > Individuals with the same disease may have unique genetic profiles.

Future studies

- Incorporating a more diverse population into the meta-analysis to obtain a more comprehensive grasp of the genetic architecture.
- To achieve more robust results, it's essential to control for confounding biases like population stratification.
 - Existing methods possess certain limitations; for instance, LD score regression might exhibit inaccuracies when dealing with large sample sizes.
 - > Developing a more effective correction for potential bias is a continuous focus within the ongoing research in this field.
- In order to gain mechanistic and biological insight, there is a need for novel techniques that deal with polygenicity and translate the finding of GWAS discoveries.
 - Identifying how the causal SNPs influence genes and establishing connections with physiological and cellular functions

Reference

- Klein et al., 2005] Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J.-Y., Sackler, R. S., Haynes, C., Henning, A. K., SanGiovanni, J. P., Mane, S. M., Mayne, S. T., et al. (2005). Complement factor h polymorphism in age-related macular degeneration. Science, 308(5720):385–389.
- MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., et al. (2017). The new nhgri-ebi catalog of published genome-wide association studies (gwas catalog). Nucleic acids research, 45(D1):D896–D901.
- Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., Frayling, T. M., Hirschhorn, J., Yang, J., Visscher, P. M., et al. (2018). Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of european ancestry. Human molecular genetics, 27(20):3641–3649.23
- Nam, K., Kim, J., and Lee, S. (2022). Genome-wide study on 72,298 individuals in korean biobank data for 76 traits. Cell Genomics, 2(10):100189.
- Fern´ andez-Rhodes, L., Graff, M., Buchanan, V. L., Justice, A. E., Highland, H. M., Guo, X., Zhu, W., Chen, H.-H., Young, K. L., Adhikari, K., et al. (2022). Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits—the hispanic/latino anthropometry consortium. Human Genetics and Genomics Advances, 3(2):100099.
- Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S., Narita, A., Konuma, T., Yamamoto, K., Akiyama, M., et al. (2021). A cross-population atlas of genetic associations for 220 human phenotypes. Nature genetics, 53(10):1415–1424.