Readiness Assurance Test

Choose the most appropriate response for each question.

21) Simplify the following Euclidean vector expression.

$$4\begin{bmatrix}1\\2\\3\end{bmatrix}-2\begin{bmatrix}1\\2\\3\end{bmatrix}$$

22) Express the following system of linear equations as an augmented matrix.

$$2x_1 + x_2 + 4x_3 = 0$$
$$x_1 + x_2 + x_3 = 1$$
$$-3x_1 + 4x_2 + x_3 = -7$$

- (a) $\begin{bmatrix} 2 & 1 & | & -3 \\ 1 & 1 & | & 4 \\ 4 & 1 & | & 1 \\ 0 & 1 & | & -7 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 & | & 1 \\ 1 & -2 & | & 4 \\ 4 & 1 & | & 1 \\ 0 & 1 & | & -7 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & | & 4 \\ 1 & 1 & | & 1 \\ -3 & 4 & | & -7 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 & | & 4 & | & 0 \\ 1 & 1 & 1 & | & 1 \\ -3 & 4 & 1 & | & -7 \end{bmatrix}$

23) Find RREF $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 5 \\ -2 & 0 & -2 \end{bmatrix}$.

- (a) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

24) Solve the following system of linear equations.

$$2x_1 + x_2 + 4x_3 = 0$$
$$x_1 + x_2 + x_3 = 1$$
$$-3x_1 + 4x_2 + x_3 = -7$$

(a) $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 1 \\ -6 \\ 1 \end{vmatrix}$

- $\begin{array}{c|c}
 (c) & \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$
- (b) $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} for all real numbers <math>a$

25) Solve the following system of linear equations.

$$x_1 + x_2 + x_3 + x_4 = 4$$
$$2x_1 + 3x_2 + x_4 = 0$$

- (b) $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 12 \\ -8 \\ 0 \\ 0 \end{bmatrix} + a \begin{bmatrix} -3 \\ 2 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$
- (c) $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \\ -5 \end{bmatrix} + a \begin{bmatrix} 0 \\ 3 \\ 1 \\ 1 \end{bmatrix}$ for all real numbers a

for all real numbers a, b

- (d) No solutions
- 26) How many vectors are required to span all of \mathbb{R}^4 (the space of Euclidean vectors with four components)?
 - (a) 3

(b) 4

(c) 5

- (d) Infinitely Many
- 27) How many vectors are required to span all of \mathcal{P}^3 (the space of polynomials of degree four or less)?
 - (a) 3

(b) 4

(c) 5

(d) Infinitely Many

- 28) Which vector is a linear combination of $\begin{bmatrix} -3\\2\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -2\\1\\0\\1 \end{bmatrix}$?
- (b) $\begin{bmatrix} 0 \\ 0 \\ 3 \\ -7 \end{bmatrix}$ (c) $\begin{bmatrix} -5 \\ 3 \\ 1 \\ 1 \end{bmatrix}$

- 29) Which vector belongs to span $\left\{ \begin{bmatrix} -3\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix} \right\}$?
 - (a) $\begin{bmatrix} -7 \\ 1 \\ 1 \end{bmatrix}$
- (b) $\begin{bmatrix} 4\\1\\2\\3 \end{bmatrix}$ (c) $\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$
- 30) The graphical representation of span $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$ in three-dimensional Euclidean space \mathbb{R}^3 would be which of the following?

(a) a line

(b) a plane

(c) a sphere

(d) all of \mathbb{R}^3