Progetto compressore

Kuhn - Paoliello

LZ77 - Kuhn

Motivazioni

- "Semplicità"
- Combinabilità
- Ottimizzazioni

Funzionamento

```
RTAAATARTTATTARTARRTARRR
  RTAAATARTTATTARTARRTARRR
... RTAAATARTTATTARTARRTARR ...
  RTAAATARTTATTARTARRARRR
  RTAAATARTTATTARTARRTARRR ...
   OFFSET = 4 LENGTH = 5 NEXT = R
```

Codificare l'informazione

- Dimensione dizionario: n_d
- Dimensione look-ahead buffer: n_{la}
- Bits per codificare offset: **lb(n_d+1)**
- Bits per codificare length: **lb(n_{la})**
- Buffer di scrittura

Risultati

Ottimizzazioni

- Sperimentate
 - Skip caratteri già letti
- Future
 - Maggiore compressione
 - o Minore tempo di calcolo

Huffman - Paoliello

Motivazioni

- Funzionamento trasparente
- Modificabilità
- Combinabile con algoritmi con dizionario

encodingStruct['i'].code+="0"
encodingStruct['e'].code+="1"

Reverse!

Il problema dello \0 (ASCII code: 0):

Scrittura mappa canonizzata:

- Caratteri impliciti
- Minimizzare bit per descrivere la lunghezza delle codifiche, solitamente 5 bit

01110<mark>011</mark>01010<mark>1</mark>0101<mark>111110</mark>0001...

Mappa nel file compresso

Tentativo di ottimizzazione

Sviluppi futuri

Sviluppi futuri

- Huffman adattivo
- Combinazione "custom" Huffman-LZ77