

توزيع الحلويات

n-1 تقوم العمة كونغ بتحضير n صندوقاً، يحتوي كل منها على قطع الحلوى للطلاب في المدرسة المجاورة. الصناديق مرقمة من 0 الى i=n-1 وتكون جميعها فارغة في البداية. الصندوق i=n-1 الى يتسع لـ i=n-1 قطعة حلوى.

r[j] و l[j] و يوما بتحضير الصناديق. في اليوم j اليوم j اليوم j اليوم j اليوم يقضي العمة كونغ q يوما بتحضير الصناديق. في اليوم $v[j] \neq 0$ و $v[j] \neq 0$. ومن اجل كل صندوق j يحقق $v[j] \leq v[j] \leq v[j]$

- اذا كان v[j]>0 ، تضيف العمة كونغ قطع الحلوى الى الصندوق k واحدة تلو الأُخرى حتى تضيف v[j]>0 قطعة تماما او يمتلئ الصندوق. بعبارة أخرى، إذا كان الصندوق يحتوي على p قطعة حلوى قبل الإجراء، فسيحتوي على p قطعة حلوى بعد الإجراء.
- اذا كان v[j] < 0 ، تزيل العمة كونغ قطع الحلوى من الصندوق j واحدة تلو الأُخرى حتى تزيل v[j] < 0 قطعة تماما او يصبح الصندوق فارغاً. بعبارة أخرى، إذا كان الصندوق يحتوي على j قطعة حلوى قبل الإجراء، فسيحتوي على والصندوق يحتوي على j قطعة حلوى بعد الإجراء.

مهمتك هي تحديد عدد قطع الحلوى في كل صندوق بعد ال q يوم.

تفاصيل التتجيز

يجب عليك تتجيز الإجرائية التالية:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- . i مصفوفة بطول n . من أجل كل $i \leq n 1$, العنصر c[i] ، مصفوفة بطول c[i] . من أجل كل c[i]
- و v و v و ثلاث مصفوفات بطول q . في اليوم v ، من أجل كل v=1 كل v=1 ، تقوم العمة كونغ بالإجراء المحدد بالأعداد الصحيحة v=1 الصحيحة v=1 v=1 ، كما هو موضح أعلاه.
- بيجب أن تعيد هذه الإجرائية مصفوفة بطول n هي المصفوفة s . من أجل كل $i\leq n-1$ كل يجب أن تمثل عدد قطع الحلوى في الصندوق i بعد الp يوم.

الأمثلة

المثال 1

ليكن الإستدعاء التالي:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

هذا يعنى أن الصندوق 0 يتسع ل 10 قطعة حلوي، الصندوق 1 يتسع ل 15 قطعة حلوي والصندوق 2 يتسع ل 13 قطعة حلوي.

في نهاية اليوم 0 ، يحتوي الصندوق 0 على على $\min(c[0],0+v[0])=10$ قطعة حلوى ويحتوي الصندوق 1 على غي نهاية اليوم $\min(c[2],0+v[0])=15$ قطعة حلوى ويحتوي الصندوق 1 على $\min(c[2],0+v[0])=15$

في نهاية اليوم 1 ، يحتوي الصندوق 0 على 0 على $\max(0,10+v[1])=0$ قطعة حلوى ويحتوي الصندوق 1 على $\max(0,15+v[1])=4$ فان عدد قطع الحلوى في الصندوق 1 لن يتغير . عدد قطع الحلوى في نهاية كل يوم ملخص ادناه:

يوم	صندوق 0	صندوق 1	صندوق 2
0	10	15	13
1	0	4	13

على هذا النحو يجب ان تعيد الاجرائية [0,4,13].

القيود

- $1 \leq n \leq 200\,000$ •
- $1 \le q \le 200\,000$ •
- ر $0 \leq i \leq n-1$ من اجل کل $1 \leq c[i] \leq 10^9$ •
- ($0 \leq j \leq q-1$ من اجل کل) $0 \leq l[j] \leq r[j] \leq n-1$ •
- ر $0 \leq j \leq q-1$ من اجل کل) $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ •

المسائل الجزئية

$$n,q \leq 2000$$
 (3 علامة) 1.

(
$$0 \leq j \leq q-1$$
 من اجل كل $v[j] > 0$ (عالمة) 2.

$$c[0] = c[1] = \ldots = c[n-1]$$
 (3 علامة) 3

ر (0
$$\leq j \leq q-1$$
 (من اجل کل $r[j]=n-1$ و $l[j]=0$ (علامة) 4.

5. (33 علامة) لا يوجد قيود إضافية.

المصحح النموذجي

يقوم المصحح النموذجي بقراءة الدخل كما يلي:

- n:1 السطر \bullet
- $c[0] \; c[1] \; \ldots \; c[n-1]$: السطر
 - q:3 السطر •
- $l[j] \; r[j] \; v[j]$:($0 \leq j \leq q-1$) 4+j السطر •

يقوم المصحح النموذجي بطباعة الخرج كما يلي:

 $s[0] \; s[1] \; \dots \; s[n-1]$ السطر •