Linear Algebra

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

Outline

- 1. Linear transformation.
- 2. Eigenvalues and eigenvectors.
- 3. Diagonalization.
- 4. Decoupling.

1. Linear Transformation

Linear Transformation (L.T.):

 $T(e_1) = T($

Condition
$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

L.T. is given as

Transformation is from \mathbb{R}^2 to \mathbb{R}^3

Transformation function

Transformation matrix

Transformation of standard basis vectors

Transformation of non-standard basis vectors

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \left[\begin{bmatrix} x \\ y \\ x + y \end{bmatrix}\right]$$

$$\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ x + y \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Coefficient

matrix

$$T(e_2) = T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\1\end{bmatrix}$$

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}$$
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) ? !$$

 $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\2\end{bmatrix}$

ker(T) is the set of all vectors x where T(x) = 0 or Ax = 0Also known as NS(A)

$$\operatorname{nullity}(A) = \dim(NS(A))$$

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A)$$

$$\begin{aligned}
 x &= 0 \\
 y &= 0 \\
 x + y &= 0
 \end{aligned}$$

$$A = \boxed{T(\mathbf{e_1})}, \boxed{T(\mathbf{e_2})}$$

Write
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
 as a linear combination of $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$

$$\begin{bmatrix} -R_1 + R_2\\ \begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & -1 \end{bmatrix} \quad C_2 = -1$$

$$\begin{bmatrix} 1 & 1 & 1\\ 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & -1 \end{bmatrix} \quad C_1 - 1 = 1 \Rightarrow C_1 = 2$$

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 2T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) - 1T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}1\\0\\1\end{bmatrix}$$
 Similarly, $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\1\end{bmatrix}$

Find a basis for the range and kernal of T and state their dimensions. Ex 02:

$$Range(T) = span \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ -4 \end{bmatrix}, \begin{bmatrix} -5 \\ 5 \\ -4 \end{bmatrix} \right\}$$

$$= \beta(A)$$

To get a basis for a subspace

- → First, put the vectors in the columns of a matrix.
- **Continue similar to column** space

Find a basis for the range and kernal of T and state their dimensions. Ex 02:

Cont

$$T(x) = A x$$

$$A = \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{bmatrix}$$

To get the kernal of *T* Solve the homogeneous system

Solve the hom
$$-2 R_1 + R_3 \qquad -2 R_2 + R_3 x_1 \quad x_2 \quad x_3 \quad x_4$$

$$A = \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{bmatrix} \quad \sim \quad \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 0 & 2 & -6 & 6 \end{bmatrix} \quad \sim \quad \begin{bmatrix} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & -4 \end{bmatrix} \quad 0 \quad Eq1$$

Pivot columns

Let
$$x_3 = t$$

From
$$Eq3: -4x_4 = 0 \implies x_4 = 0$$

From
$$Eq2: x_2 - 3t = 0 \implies x_2 = 3t$$

From
$$Eq1: x_1 - 3(3t) + 5t = 0 \implies x_1 = 4t$$

$$Kernal(T) = \begin{bmatrix} 4 & t \\ 3 & t \\ t \\ 0 \end{bmatrix} = t \begin{bmatrix} 4 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$

$$dim = 1$$

$$no.4 \text{ free very.}$$

Onto transformation

- Every vector in the co-domain has a preimage.
- A x = b is always consistent.
- A has a pivot in each row (in echelon form).
- For $A_{m imes n}$, it must have $m \leq n$

1-to-1 transformation

- Every vector in the range has only one preimage.
- A x = b has a unique solution.
- A has no free variables $\equiv A$ has a pivot in each column (in echelon form).
- For $A_{m \times n}$, it must have $m \ge n$.
- Kern(T) has only the zero vector.

For each of the following transformation, determine whether T is onto Ex 03: and/or 1-to-1?

Already in echelon form
$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y + z \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 \end{bmatrix}$$

- Pivot in each row.
- Always consistent.
- Range(T) is the whole R^2

Onto

- Has a free variable.
- Infinite number of solutions.

Not 1-to-1

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x & y \\ z & 0 \end{bmatrix}$$

$$R^3 \rightarrow R^4$$

$$A_{4\times 3}$$

$$R^{3} \rightarrow R^{4}$$

$$A_{4\times 3} \qquad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Already in

echelon form

Not onto

1-to-1

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x - y \\ x + y \end{bmatrix}$$

$$R^2 \to R^2$$

$$A_{2\times 2}$$

$$R^{2} \rightarrow R^{2}$$

$$A_{2\times 2}$$

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

Onto 1-to-1 Isomorphic

If **T:** $x \rightarrow Ax$ find the dimension and a suitable basis for the range and kernel of T, Ex 04: state whether T is onto and/or 1 to 1

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix}$$

then determine whether the following vector belongs to the range and/or kernel. If it belongs to the range find its pre image:

$$v = [6 \quad 16 \quad 2 \quad 27]^T$$

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix}$$
 Gauss
$$\begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 • Pivot in each row \Rightarrow Onto. Pivot in each column \Rightarrow 1-to-1.

Isomorphic

Ex 04: If T: $x \rightarrow Ax$ find the dimension and a suitable basis for the range and kernel of T, (Cont.) state whether T is onto and/or 1 to 1

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix}$$

then determine whether the following vector belongs to the range and/or kernel. If it belongs to the range find its pre image:

$$v = [6 \ 16 \ 2 \ 27]^T$$

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix} \quad \begin{array}{c} \text{Gauss} \\ \sim \\ \end{array} \quad \begin{array}{c} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \quad \begin{array}{c} 3 \\ 4 \\ 0 \\ 0 \\ \end{array} \quad \begin{array}{c} 0 \\ 1 \\ 2 \\ \end{array} \quad \begin{array}{c} 2 \\ 6 \\ 2 \\ 1 \\ \end{array} \quad \begin{array}{c} \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ \end{array} \quad \begin{array}{c} \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \\ \end{array} \quad \begin{array}{c} \begin{bmatrix} 2 \\ 6 \\ 2 \\ 5 \\ \end{array} \quad \begin{array}{c} \begin{bmatrix} -1 \\ 8 \\ 1 \\ 7 \\ \end{array} \right] \\ \text{Basis to } \textit{CS}(A) \\ \end{array}$$

If **T:** $x \rightarrow Ax$ find the dimension and a suitable basis for the range and kernel of T, (Cont.) state whether T is onto and/or 1 to 1

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix}$$

then determine whether the following vector belongs to the range and/or kernel. If it belongs to the range find its pre image:

$$v = [6 \ 16 \ 2 \ 27]^T$$

Has only the zero solution

$$Ker(T) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$dim = 0$$

Ex 04: If $T: x \rightarrow Ax$ find the dimension and a suitable basis for the range and kernel of T,

(Cont.) state whether T is onto and/or 1 to 1

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix}_{4 \times 4}$$
Given
$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix}_{4 \times 4}$$

then determine whether the following vector belongs to the range and/or kernel. If it belongs to the range find its pre image:

$$A = \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 2 & 6 & 8 \\ -1 & 1 & 2 & 1 \\ 3 & 9 & 5 & 7 \end{bmatrix} \begin{bmatrix} 6 \\ 16 \text{ Gauss} \\ 27 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$Eq1$$
After solving the system using back substitution the pre-image of v is the pre-image o

2. Eigenvalues and Eigenvectors

EXAMPLE

Finding Eigenvalues and Eigenvectors

Find the eigenvalues and corresponding eigenvectors of

- Reverse the sign of all elements
- Add λ to the main diagonal elements

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}. \quad |\lambda I - A| = \left| \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix} \right| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix}$$

SOLUTION The characteristic polynomial of A is

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix}$$

$$= (\lambda - 2)(\lambda + 5) - (-12)$$

$$= \lambda^2 + 3\lambda - 10 + 12$$

$$= \lambda^2 + 3\lambda + 2$$

$$= (\lambda + 1)(\lambda + 2) = 0$$

Eigen value $A x = \lambda x$ Square matrix
Eigen vector

Non-zero vector

$$(\lambda + 1)(\lambda + 2) = 0$$
, which gives $\lambda_1 = -1$ and $\lambda_2 = -2$

EXAMPLE

Finding Eigenvalues and Eigenvectors

(Continued)

Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}.$$

SOLUTION

For
$$\lambda_1 = -1$$
,

$$(-1)I - A = \begin{bmatrix} -1 - 2 & 12 \\ -1 & -1 + 5 \end{bmatrix} = \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix}, \quad \begin{array}{c} \text{Gauss} \\ \text{Elimination} \end{array} \begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix} 0$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix}, \quad t \neq 0.$$
All scalar multiples of $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ are eigenvectors of $\lambda = -1$ \equiv eigenspace of $\lambda = -1$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix} = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad t \neq 0.$$

All scalar multiples of
$$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

are eigenvectors of $\lambda = -1$

Finding Eigenvalues and Eigenvectors

(Continued)

Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}.$$

SOLUTION

For
$$\lambda_2 = -2$$
,

$$(-2)I - A = \begin{bmatrix} -2 - 2 & 12 \\ -1 & -2 + 5 \end{bmatrix} = \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \xrightarrow{\text{Gauss}} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} \overset{\text{\o}}{\circ}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3t \\ t \end{bmatrix} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad t \neq 0.$$

THEOREM 7.3

Eigenvalues of Triangular Matrices

If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

EXAMPLE

Finding Eigenvalues of Diagonal and Triangular Matrices

Find the eigenvalues of each matrix.

SOLUTION

(a) Without using Theorem 7.3, you can find that

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & 0 \\ 1 & \lambda - 1 & 0 \\ -5 & -3 & \lambda + 3 \end{vmatrix}$$
$$= (\lambda - 2)(\lambda - 1)(\lambda + 3).$$

Properties of eigenvalues and eigenvectors:

If A is **singular** i.e. has no inverse, A^{-1} does not exist $\longleftrightarrow \lambda = 0$

If A is **invertible** i.e. has inverse, Eigenvalues Eigenvectors $A \rightarrow \lambda_1, \lambda_2, \lambda_3, \dots$ v_1, v_2, v_3, \dots $A^{-1} \rightarrow \frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_3}, \dots$ v_1, v_2, v_3, \dots

Eigenvalues Eigenvectors $A \rightarrow \lambda_1, \lambda_2, \lambda_3, \dots$ v_1, v_2, v_3, \dots $A^n \rightarrow (\lambda_1)^n, (\lambda_2)^n, (\lambda_3)^n, \dots$ v_1, v_2, v_3, \dots

A and A^T have the same eigenvalues

Example: If $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ has the eigen values $\lambda = 7$, -4. Find the eigen values of A^{-1} , A^{T} and A^{2} . 71-4 + invecs (7), (-4) + sant eignels.

CAYLEY-HAMILTON THEOREM:

- Statement: Every square matrix satisfies its own characteristic equation
- 1. Verify that $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ satisfies its own characteristic equation and hence find A^4

Solution: Given A = $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. the characteristic equation is $\lambda^2 - 0\lambda - 5 = 0$ i.e., $\lambda^2 - 5 = 0$

To prove: $A^2 - 5I = 0$ -----(1)

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1+4 & 2-2 \\ 2-2 & 4+1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$A^{2} - 5I = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

To find A^4 : From (1), we get, $A^2 - 5I = 0 \Rightarrow A^2 = 5I$

Multiplying by A^2 on both sides, we get, $A^4 = A^2(5I) = 5A^2 = 5\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$

3. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$, using Cayley-Hamilton theorem $A^3 = 2A + 5A - 6T$

The characteristic equation of A is $\lambda^3 - 2\lambda^2 - 5\lambda + 6 = 0$ Solution:

By Cayley- Hamilton theorem, $A^3 - 2A^2 - 5A + 6I = 0$ ----- (1)

To find A^{-1} : Multiplying (1) by A^{-1} , we get, $A^2 - 2A - 5A^{-1}A + 6A^{-1}I = 0 \Rightarrow A^2 - 2A - 5I + 6A^{-1} = 0$

$$6A^{-1} = -A^2 + 2A + 5I \Rightarrow A^{-1} = \frac{1}{6}(-A^2 + 2A + 5I) - - - - (2)$$

$$A^{2} = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1-3+8 & -1-2+4 & 4+1-4 \\ 3+6-2 & -3+4-1 & 12-2+1 \\ 2+3-2 & -2+2-1 & 8-1+1 \end{bmatrix} = \begin{bmatrix} 6 & 1 & 1 \\ 7 & 0 & 11 \\ 3 & -1 & 8 \end{bmatrix}$$

$$-A^{2} + 2A + 5I = \begin{bmatrix} -6 & -1 & -1 \\ -7 & 0 & -11 \\ -3 & 1 & -8 \end{bmatrix} + \begin{bmatrix} 2 & -2 & 8 \\ 6 & 4 & -2 \\ 4 & 2 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$

From (2),
$$A^{-1} = \frac{1}{6} \begin{bmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$

3. Diagonalization

Eigenvalues

 $A \rightarrow \lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$

Eigenvectors

$$v_1, v_2, v_3, \dots, v_n$$

$$P = \begin{bmatrix} v_1 & v_2 & v_3 & \dots & v_n \end{bmatrix}$$

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Condition for diagonalization

An $n \times n$ matrix can be diagonalized if it has n independent eigenvectors

■Thm:

Eigenvectors of a matrix corresponding to different (unequal) eigenvalues are independent.

- If $A_{n\times n}$ has n different eigenvalues \rightarrow Diagonalizable.
- If $A_{n \times n}$ has less than n different eigenvalues \rightarrow Might be diagonalizable (Check the repeated eigenvalues)

Ex: Show that the following matrix is not diagonalizable.

A =
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 Triang.
 $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ Triang.

$$\left|\lambda \mathbf{I} - A\right| = \begin{vmatrix} \lambda - 1 & -2 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

Sol: Characteristic equation:
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

$$\text{Eigenvalue} : \lambda_1 = 1$$

$$\lambda I - A = I - A = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{Eigenvector} : p_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\text{Sol: Characteristic equation:}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ 0 & 0 \end{vmatrix} \sim \begin{bmatrix} \lambda - 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{Eigenvector} : p_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\text{Sol: Characteristic equation:}$$

$$\lambda I - A = I - A = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{Eigenvector} : p_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

A does not have two (n=2) linearly independent eigenvectors, so A is not diagonalizable.

Find a matrix P such that $P^{-1}AP$ is diagonal.

Sol: Characteristic equation:

$$|\lambda \mathbf{I} - A| = \begin{vmatrix} \lambda - 1 & 1 & 1 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 2)(\lambda - 3) = 0$$

Eigenvalues: $\lambda_1 = 2$, $\lambda_2 = -2$, $\lambda_3 = 3$

$$\lambda_{1} = 2$$

$$\Rightarrow \lambda_{1} \mathbf{I} - A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 3 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_{1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\lambda_{2} = -2$$

$$\Rightarrow \lambda_{2} I - A = \begin{bmatrix} -3 & 1 & 1 \\ -1 & -5 & -1 \\ 3 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4}t \\ -\frac{1}{4}t \\ t \end{bmatrix} = \frac{1}{4}t \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_{2} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$

$$\lambda_{3} = 3$$

$$\Rightarrow \lambda_{3} I - A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 3 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ t \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_{3} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\text{Let } P = \begin{bmatrix} p_{1} & p_{2} & p_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\Rightarrow D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 33 \end{bmatrix} \xrightarrow{\text{Const.}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 \end{bmatrix}$$

4. Decoupling

Ordinary linear differential equation (OLDE)

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of OLDEs (Decoupling) Vs = VR+VL+Vc

Example

Example:
$$x'_1 = x_1 - x_2 - x_3$$
 $x_1(0) = 0$ $x'_2 = x_1 + 3x_2 + x_3$ $x_2(0) = -1$ $x'_3 = -3x_1 + x_2 - x_3$ $x_3(0) = 10$

$$x_1(0) = 0$$

$$x_2(0) = -1$$

$$x_3(0) = 10$$

ample:
$$x'_1 = x_1 - x_2 - x_3$$
 $x_1(0) = 0$ $x'_2 = x_1 + 3x_2 + x_3$ $x_2(0) = -1$ $x'_3 = -3x_1 + x_2 - x_3$ $x_3(0) = 10$ $x'_4 = 0$ $x'_5 = 0$ x'_5

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$

$$|\lambda I - A| =$$

$$\rightarrow \lambda = 2$$

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 3 & -1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $\lambda I - A$

$$\begin{bmatrix} -1\\0\\1\end{bmatrix}$$

$$\rightarrow \lambda = -2$$

$$\Rightarrow$$

Ordinary linear differential equation (OLDE)

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of **OLDEs (Decoupling)**

Example

$$x_1' = x_1 - x_2 - x_3$$

$$x_2' = x_1 + 3x_2 + x_3$$

$$x_2(0) = -1$$

 $x_1(0) = 0$

$$x_3^{-} = -3x_1 + x_2 - x_3$$

$$x_3(0) = 10$$

$$X = \sum_{i=1}^{n} c_i e^{\lambda_i t} p_i$$

$$\lambda_1 = 2 \qquad \lambda_2 = -2 \qquad \lambda_3 = 3$$

$$p_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad p_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \qquad p_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_1 = 2$$

$$\begin{bmatrix} 1 \\ p_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_3 = 3$$

$$p_3 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c_1 e^{2t} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$\begin{vmatrix} c_{1} \\ c_{3} \\ c_{3} \end{vmatrix} + c_{3}e^{3t} \begin{vmatrix} c_{1} \\ c_{1} \\ c_{3} \end{vmatrix}$$

$$x_3(t) = c_1 e^{2t} + 4c_2 e^{-2t} + c_3 e^{3t}$$

Ordinary linear differential equation (OLDE)

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of **OLDEs (Decoupling)**

Example

(Cont.)

Example:
$$(x_1') = x_1 - x_2 - x_3$$

 $(x_2') = x_1 + 3x_2 + x_3$
 $x_3' = -3x_1 + x_2 - x_3$
 $(2000) x_1' = x_1 - x_2 - x_3$

$$x_1(t) = -c_1 e^{2t} + c_2 e^{-2t} - c_3 e^{3t}$$

$$x_2(t) = -c_2 e^{-2t} + c_3 e^{3t}$$

$$x_3(t) = c_1 e^{2t} + 4c_2 e^{-2t} + c_3 e^{3t}$$

Particular slu

$$x_1(t) = -e^{2t} + 2e^{-2t} - e^{3t}$$

$$x_2(t) = -2e^{-2t} + e^{3t}$$

$$x_3(t) = e^{2t} + 8e^{-2t} + e^{3t}$$

$$x_1(0) = 0 = -c_1 + c_2 - c_3$$

 $x_2(0) = -1 = -c_2 + c_3$
 $x_3(0) = 10 = c_1 + 4c_2 + c_3$

System of linear equations in

$$c_1$$
 , c_2 , and c_3

$$c_1 = 1$$
 , $c_2 = 2$, $c_3 = 1$

Next week

Office hours: Tuesday 9:00 AM to 11:00 AM

مبنى اعدادي - الدور الأخير - الجهة البحرية