PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-269808

(43)Date of publication of application: 20.09.2002

(51)Int.CL

G11B 7/24

G11B 7/004

(21)Application number: 2001-067625

(71)Applicant: RICOH CO LTD

(22)Date of filing:

09 03 2001

(72)Inventor: HAYASHI YOSHITAKA

(54) OPTICAL INFORMATION RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain higher sensitivity in a write-once recording medium in which information is recorded by alloying or mutually diffusing two layers of recording materials by irradiation with light.

SOLUTION: In the recording medium, a layered film of Al or an Al alloy and Ge is used as the recording layer and the film thickness ta of the Al or the Al alloy and the film thickness tg of Ge satisfy the relation of ta≤tg.

LEST AVAILABLE COPY

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-269808

(P2002-269808A)

(43)公開日 平成14年9月20日(2002.9.20)

(51) IntCl.'	nt.Cl. ⁷ 離別記号		FΙ	ΡΙ		デーマコート*(参考)	
G11B	7/24	5 2 2	G11B	7/24	5 2 2 D	5D029	
		511			511	5 D O 9 O	
	7/004			7/004	Z		

審査請求 未請求 請求項の数5 OL (全 5 頁)

(21)出顧番号	特顧2001-67625(P2001-67625)	(71)出顧人 000006747			
		株式会社リコー			
(22)出顧日	平成13年3月9日(2001.3.9)	東京都大田区中馬込1丁目3番6号			
		(72)発明者 林 嘉隆 東京都大田区中馬込1丁目3番6号 株式 会社リコー内			
		Pターム(参考) 50029 JA01 JB35 JB45			
		50090 AA01 BB03 CC14 EE20 KK09			
•					

(54) 【発明の名称】 光情報記録媒体

(57)【要約】

【課題】 二層の記録材料を光照射により合金化または 相互拡散させて情報を記録する追記型記録媒体におい て、さらなる高感度化を図ること。

【解決手段】 記録層としてAIまたはAI合金とGeの積層 膜を用い、前記AIまたはAI合金の膜厚taと前記Geの膜厚 tgがta≦tgの関係にあることを主要な構成とする。その 他4項ある。

(2)

【特許請求の範囲】

【請求項】】 二層の記録材料を光照射により合金化ま たは相互拡散させて情報を記録する追記型記録媒体にお いて、記録層としてATまたはAT合金とGeの積層膜を用 い、前記AIまたはAI合金の膜厚taと前記Geの膜厚toがta ≦tgの関係にあることを特徴とする光情報記録媒体。 【請求項2】 請求項1記載の光情報記録媒体におい て、前記Ge層の膜厚taがtg は5nmであることを特徴とす る光情報記録媒体。

1

【請求項3】 請求項1または2記載の光情報記録媒体 10 において、前記積層膜においてGe側から光を照射し記録 を行い、前記AIまたはAI合金側から再生を行うことを特 徴とする光情報記録媒体。

【請求項4】 請求項1、2または3記載の光情報記録 媒体において、基板上に形成した記録層を含む積層構成 の最表面に保護層を有することを特徴とする光情報記録

【請求項5】 請求項1、2、3または4記載の光情報 記録媒体において、基板上に保護層、記録層の順に形成 した積層構成を含むことを特徴とする光情報記録媒体。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光情報記録媒体に 関し、更に詳しくは、積層構造を構成する各層の材料が 光照射に伴う温度上昇により互いに拡散または合金化す ることにより記録を行うような記録層を含む記録可能な 光情報記録媒体に関するものである。この光情報記録媒 体を用いることにより従来のシステムに用いられる光情 報記録媒体と再生互換をとりつつ大容量の記録を行うと とが可能で、今後将来にわたり大容量光メモリ関連機器 30 に応用可能である。

[0002]

【従来の技術】光情報記録媒体はCD-ROM に代表される ように大容量で取り扱いが容易で可搬であり、その需要 は更に増加している。レーザービームの照射により情報 の記録、再生可能な光情報記録媒体として相変化記録媒 体、光磁気記録媒体などがあり、CD・ROM と再生互換を 持った、記録が可能な光情報記録媒体として一度だけ書 き込みが可能なCD-Rや書き換え可能なCD-RW も実用化さ りも記録密度が高い光情報記録媒体としてDVD が登場 し、DVD-ROM が一部のパソコンにも搭載されるようにな ってきた。また、記録可能なDVD-R、書き換え可能なDV D-RWなども実用化に向けた開発が行われている。

【0003】本発明の光情報記録媒体は一度だけ書き込 みが可能な追記型光記録媒体であり、従来CD-Rなどが実 用化されている。CD-Rの記録材料として有機材料が用い られているが従来用いられていたシアニン色素は耐光性 が悪いという欠点があった。この点はアゾ系材料やフタ ロシアニン系材料を用いることにより耐光性を向上させ 50 る。

ている。

【0004】追記型記録の方式としては穴あけ型、形状 変形型、相変化型などがある。穴あけ型は記録膜に光を 照射することにより局所的に温度上昇させ、溶解、蒸発 により記録部分に穴を形成することにより記録するもの である。変形型としては例えば温度上昇した部分がガス を出す、膨張するなどして局所的に変形することにより 情報を記録するというものである。相変化型は光照射に よる温度上昇で非晶質状態から結晶状態に変化させるな ど相変化させることにより、非晶質と結晶など相の違い による光の反射・吸収等の違いを利用し情報を記録再生 するものである.

【0005】無機材料を用いた穴あけ型としてはTeを記 録材料に用いたものがあったが耐湿性に問題があった。 また、金属材料のある種のものでは融点が高いため感度 が悪い、耐食性が悪いなどの問題があり、記録を溶融、 蒸発で行うので記録ビットの端の部分がきれいな形状に なりにくいというような問題があった。有機材料を用い る場合前述したように耐光性に問題があり、かなり改善 20 されているが、まだ十分とはいえない場合があった。

【0006】そこで追記型の記録媒体として、例えば実 開平4-89374号公報などには、2層の材料を光照 射により合金化し、その合金部分を記録部とする方法が 提案されている。この方法によれば信頼性の高い追記型 光情報記録媒体が提供できることが述べられている。し かし、感度については十分とはいえなかった。

[0007]

【発明が解決しようとする課題】本発明は上記背景に鑑 みてなされたもので、二層の記録材料を光照射により合 金化または相互拡散させて情報を記録する追記型記録媒 体において、さらなる高感度化を図ることを目的とする ものである。

[0008]

【課題を解決するための手段】上記本発明の課題は、下 記の手段により解決される。

【0009】すなわち、本発明によれば、第一に、韻求 項1では、二層の記録材料を光照射により合金化または 相互拡散させて情報を記録する追記型記録媒体におい て、記録層としてAIまたはAI合金とGeの積層膜を用い、 れ多くのパソコンに搭載されるようになった。またCDよ 40 上記ATまたはAT合金の膜厚taと上記Geの膜厚tgがta≦tg の関係にある光情報記録媒体であることを主要な特徴と する.

> 【0010】第二に、 請求項2では、上記請求項1記載 の光情報記録媒体において、上記Ce層の膜厚tgがtg <25 mである光情報記録媒体であることを特徴とする。

> 【0011】第三に、 請求項3では、上記 請求項1ま たは2記載の光情報記録媒体において、上記積層膜にお いてGe側から光を照射し配録を行い、AIまたはAI合金側 から再生を行う光情報記録媒体であることを特徴とす

(3)

【0012】第四に、請求項4では、上記請求項1、2 または3記載の光情報記録媒体において、基板上に形成 した記録層を含む積層構成の最表面に保護層を有する光 情報記録媒体であることを特徴とする。

【0013】第五に、 請求項5では、上記請求項1、 2、3または4記載の光情報記録媒体において、基板上 に保護層、記録層の順に形成した積層構成を含む光情報 記録媒体であることを特徴とする。

[0014]

【発明の実施の形態】以下に本発明を詳細に説明する。 【0015】本発明の光情報記録媒体は、図1のように 基板101 、AIまたはAI合金層102 、Ce層103 を基本構成 要素としている。 基板101 としてはポリカーポネートな どの樹脂基板やガラス基板などが用いられる。

【0016】光照射することによりATまたはAT合金層10 2 とCe層103 の材料が溶融し合金化するか、またはそれ ぞれの材料の原子が相互拡散し混ざり合う。その結果、 合金化または相互拡散の起きた部分だけ光の反射率が周 りとは異なるようになる。このことを利用して情報を 度だけ記録できる追記型記録を行うことができる。

【0017】AlまたはAl合金層102 とGe層103 との界面 に酸化物や不純物などの層が存在することにより、相互 拡散または合金化が阻害される可能性があるため、AIま たはAT合金層102 とGe層103 とは直接接していることが 好ましい。

【0018】各層の作製法は特に限定はなくスパッタ 法、CVD 、蒸着法、塗布法、湿式法などを用いることが できる。しかし、AIまたはAI合金層102 とGe層103 は不 植物が少ないほうが合金化、相互拡散が起きやすく、良 好に記録ができるため湿式法のような方法よりもスパッ 30 にSiN などのような保護層を設けた。 タ法などが好ましい。

【0019】また、基板と記録層の間、あるいは記録層 の上面などに保護層104を設けることによって、記録特 性を向上することができる。

【0020】層の構成を図3のように、ポリカーポネー ト等の基板101 の上に、記録層102としてAlTi合金層、 記録層103 としてCeを用い、その上面にSiN などのよう な保護層を設けて、この媒体の膜面からの記録、または 再生を行う。

【0021】高密度記録を行うために媒体と光へッドと 40 の距離を小さくすることが好ましいが、距離を小さくす ることにより媒体と光ヘッドの接触が起きやすくなる。 そういった場合に、膜の表面に硬質保護層を設けておく ことにより媒体が傷つくことを防ぐことができる。ま た、膜の表面側から光を照射し記録、再生を行う場合. 記録層の温度が上昇し、記録層を構成する材料が蒸発し やすくなる。そとで膜の表面に保護層を最表面に構成す ると記録層が温度上昇により蒸発、流動化することを防 止することができる。さらに、保護層を設けることによ りその組成、材料を変えることにより記録層の温度上昇 50 る。記録時には基板101 面側から光を入射し基板を透過

を制御できるようになり、感度の向上、記録密度の向上 につなげることができる。

【0022】保護暦104 としてはSiN、AN、などの窒 化物、SiC などの炭化物、SiO2などの酸化物、ZnS など の硫化物、またはこれらの複合化合物が例示できる。ま た、ダイヤモンドライクカーボンのような炭素膜も適用 でき自己潤滑性を有するなど好ましい特徴がある。記録 時には保護層104 を透過して光を入射し記録を行う場合 があるため光の吸収が大きい材料などは記録感度が悪く 10 なるため光の透過率が記録可能な程度に大きいことが必 要である。

【0023】基板に直接記録層が接するような層構成で は記録時に記録層が高温となるため基板が変形などの損 傷を受ける可能性がある。そとで基板上に保護層、記録 層の順に構成した積層構造を含む光情報記録媒体を構成 することにより基板の損傷を防ぐことができる。また、 保護層の材質、組成などを適当に選択することにより記 録層の温度上昇を制御することができ、その結果、記録 感度、記録密度の向上につなげることができる。さらに 20 保護層の光学特性を適当に選択することにより媒体の光 学特性を制御しやすくなり感度の向上などが可能とな

【0024】 (実施例) 次に、実施例によって本発明を さらに詳細に説明する。ただし、本発明は以下の実施例 によって限定されるものではない。

実施例1

図3 に本発明の光情報記録媒体の構成例を示す。基板10 1 としてポリカーボネート基板を用い、記録層102 とし てAlti合金層、記録層103 としてCeを用いる。その上面

【0025】各層の厚さはATTi合金層102 は10nm、Ge層 103 の厚さは15mmとした。この媒体に記録出力14mMの光 照射をし3Tから14T のランダムパターンを記録したとこ ろ52%の変調度を示した。

【0026】記録はGe暦103 のある膜の表面側から光を 入射し記録を行った。光照射によりAITi、Geの温度が上 昇し相互拡散を起とし、その結果、相互拡散を起とした 微小領域が記録マーク105 となる(図4)。再生は記録 時と同方向から再生光を入射し記録マーク105 とその周 りの未記録部との反射率の違いを利用して情報を読み出 した

実施例2

記録層の構成要素であるGe層の膜厚tgが、tg <25mであ る光情報記録媒体の例として、図5 に示したように基板 101 としてポリカーボネート基板を用い、その上面にCe 層103 、A1層102 の順に積層した構造とした。

【0027】各層の膜厚はGe層103が20mm、AI層102が 15mmとした。膜の最上面に保護層104 を設けてもよい。 保護層としてはSiN、炭素、などを用いることができ

特開2002-269808

6

した光がGe層103、AI層102 に照射され、Ge、AIの温度 が上昇し合金化、または相互拡散を起こす。その結果合 金化した部分、または相互拡散を起こした微小領域が記 録マーク105 となる。再生時には基板101 側から光を入 射し記録マーク105 とその周りの反射率の違いを利用し て情報を読み出す。記録光の出力を14mM、DVD と同様の 密度で記録したところ変調度は56%となった。

S

比較例1

図6 のように基板101 としてポリカーボネート基板を用 とした。各層の膜厚はGe層103 が10nm、A7層102 が15nm とした。この媒体に実施例1または2と同様に記録をし たところ変調度は16%程度とかなり低いものであった。 比較例2

図6 のように基板101 としてポリカーボネート基板を用 い、その上面にGe層103 、AT層102 の順に積層した構造 とした。各層の膜厚はCe層103 が30nm、A1層102 が25nm とした。この媒体に実施例1 または2 と同様に記録をし たところ変調度は12%程度とかなり低いものであった。 の膜厚tgがta≤tgのような関係にないとき記録感度が悪 くなる。また、比較例2に示したようにCe層の膜厚toが tq <25mmの関係にないとき記録層の温度が充分上がらな くなるため記録感度が悪くなってしまう。

層の構成を図3 のように基板101 としてポリカーボネー

ト基板を用い、記録層102 としてAITi合金層、記録層10

3 としてCeを用いた。その上面にSiN の保護層を設け

実施例3

た。各層の厚さはAlTi合金層102 は10nm、Ge層103 の厚 さは15mmとした。この媒体の膜面から記録出力14mmの光 30 照射をし3Tから14T のランダムパターンの記録をしたと とろ54%の変調度を示した。とのように膜面から記録す ることにより基板面から記録する場合と比較して記録層 の表面に近いところから記録可能となるため媒体と光へ ッドの距離を近づけて密度を向上させる方法や基板の傾 きの影響を少なくし高密度記録を行うことができる。 【0029】また、基板側から再生することにより従来 の方式に近い構成で再生を行うことが可能となり有効で ある。 基板101 側から再生することにより、 記録部にお くなる。従来のCD、DVD などは未記録部の反射率が記録 部の反射率よりも高くなるような構成であり、これとの 互換が取り易くなり、システムとして大きな変更が必要 でなくなる利点が有る。上記のような構成にすることに より再生時に未記録部の反射率が記録部の反射率よりも 高くなるような媒体が実現できる。高密度記録を行うた めには膜面側からの記録が有効であり、基板101 上にA 1、Ceをこの順に構成し、膜面であるCe側から記録を行 い、基板側から再生すると未記録部の反射率が記録部で あるATとGeが相互拡散した部分の反射率より高くなっ

tc. 実施例4

図2のように基板101 にガラス基板を用い、その上面に AI層102 、Ce層103 の順に積層し、その更に上面に保護 層104 を設けた。保護層104 としてはSiN を用いた。 C れにより光ヘッドとの接触による媒体の損傷を防ぎ、ま た記録層の蒸発、流動化を防止することができた。 実施例5

図7のように基板101 としてポリカーボネート基板を用 い、その上面にCe層103 、A)層102 の順に積層した構造 10 い、その上面に下部保護層106 を構成した。その上面に A)層102 、Ce層103 、保護層104 の順に積層した。下部 保護層106 としてはSiN を用いた。保護層104 により媒 体の損傷を防ぐと共に記録層の蒸発、流動化が防止さ れ、また下部保護層106 により基板の損傷を防ぐことが できた。

[0030]

【発明の効果】以上のように、請求項1の光情報記録媒 体によれば、記録層としてATまたはAT合金層とGe層の積 層膜とすると共にGe層の膜厚をAIまたはAI合金層の膜厚 【0028】比較例1 に示したようにAI層の膜厚taとGe 20 より厚くすることから、感度よく高密度で追記型記録を 行うととができる。

> 【0031】請求項2の光情報記録媒体によれば、上記 Ce層の膜厚を25mmより小さくしたことから、記録感度が 向上し高密度で記録を行うことができる。

> 【0032】請求項3の光情報記録媒体によれば、上記 Ge層側から光を照射し記録を行い、AlまたはAl合金層側 から再生を行うようにしたことから、より感度よく記録 ができると共に従来の再生装置との互換性がとりやす

【0033】請求項4の光情報記録媒体によれば、膜の 最表面に保護層を設けたことから、髙密度記録を行うた めに媒体と光ヘッドの接触が起きやすくなっても媒体の 損傷を防ぐことができる。また、記録層温度が上昇し、 記録層構成材料が蒸発、流動化しやすくなるのを防止す ることができる。さらに、保護層の組成、材料により記 録層の温度上昇を制御でき、感度の向上、記録密度の向 上につなげることができる。

【0034】請求項5の光情報記録媒体によれば、基板 上に保護層、記録層の順に構成することから、記録時に ける光の反射率よりも未記録部における光の反射率が高 40 記録層が髙温となっても基板の損傷を防ぐことができ

【図面の簡単な説明】

【図1】光情報記録媒体の基本構成を示す概略断面図で ある。

【図2】保護層を設けた光情報記録媒体の構成例を示す 概略断面図である.

【図3】光情報記録媒体の構成例を示す概略断面図であ

【図4】光情報記録媒体への記録の一例を示す瞭略断面 50 図である。

特開2002-269808 (5) 【図5】光情報記録媒体への記録の別の例を示す概略断 *101 基板 102 AlまたはAl合金層 面図である。 103 Ge∰ 【図6】光情報記録媒体の構成例を示す概略断面図であ 104 保護層 105 記録マーク 【図7】光情報記録媒体の構成例を示す概略断面図であ 106 下部保護層 る. 【符号の説明】 【図2】 (図3) 【図1】

