Context free grammars - I

Prof. A. Morzenti

LIMITS OF REGULAR LANGUAGES

Simple languages such as $L = \{ a^n b^n, n > 0 \}$

representing basic syntactic structures like

begin begin ... begin ... end ... end end

are *not* regular

e.g., b^+e^+ does not satisfy the constraint #b=#e $(be)^+$ does not ensure nesting

GRAMMARS – a more powerful means to define languages

through rewriting rules

language phrases generated through repeated application of rules

The grammar is characterized by its set of rules

Example – Language of *palindromes*

$$L = \{ uu^R \mid u \in \{a, b\}^* \} = \{ \varepsilon, aa, bb, abba, baab, ..., abbbba, ... \}$$
 a palindrome is...

$$pal \rightarrow \varepsilon$$
 an empty palindrome

$$pal \rightarrow a \ pal \ a$$
 a palindrome surrounded by two a's

$$pal \rightarrow b \ pal \ b$$
 a palindrome surrounded by two b's

A chain of derivation steps:

$$pal \Rightarrow a \ pal \ a \Rightarrow ab \ pal \ ba \Rightarrow abb \ pal \ bba \Rightarrow abb \varepsilon bba = abbbba$$

look out: distinguish the two metasymbols

- → separates the left and right part of a rule
- ⇒ derivation *relation* (rewriting)

Example: a non-empty *list of* palindromes, ex: abba bbaabb aa

```
list \rightarrow pal \ list
list \rightarrow pal
pal \rightarrow \epsilon \qquad pal \rightarrow a \ pal \ a \qquad pal \rightarrow b \ pal \ b
```

non terminal symbols:

- *list* (axiom, or start symbol)
- pal (defines the component palindrome substrings)

CONTEXT-FREE GRAMMAR (BNF - Backus Normal Form – TYPE 2 – FREE GRAMMAR)

defined by four entities

- 1. V, non terminal alphabet, is the set of nonterminal symbols
- 2. Σ , terminal alphabet, is the set of the symbols of which phrases/sentences are made
- 3. P, is the set of rules or productions
- 4. $S \in V$, is the specific nonterminal, called the *axiom* (*Start*), from which derivations start

a rule is an ordered pair (X, α) , with $X \in V$ and $\alpha \in (V \cup \Sigma)^*$ $(X, \alpha) \in P$ is usually written as $X \to \alpha$

rules with the same nonterminal $X: X \to \alpha_1, X \to \alpha_2, \dots X \to \alpha_n$ can be written in brief as $X \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$ or $X \to \alpha_1 \cup \alpha_2 \cup \dots \cup \alpha_n$ $\alpha_1, \alpha_2, \dots, \alpha_n$ are called the *alternatives* of X

To avoid confusion,

the metasymbols ' \rightarrow ', '|', ' \cup ', ' ε ' cannot be symbols, terminal and nonterminal alphabets must be disjointed

NOTATIONS to distinguish terminal and nonterminal symbols

- angle brackets:

$$\langle if\text{-}phrase \rangle \rightarrow if \langle cond \rangle then \langle if\text{-}phrase \rangle else \langle if\text{-}phrase \rangle$$

- bold italic:

$$if$$
-phrase $\rightarrow if$ cond then if -phrase else if -phrase

- quotation marks "

- upper- versus lower-case:

$$F \rightarrow if \ C \ then \ D \ else \ D$$

WE USUALLY ADOPT THESE CONVENTIONS:

- terminal characters {a, b, ...}
- nonterminal characters {A, B, ...}
- strings $\in \Sigma^*$ (only terminals) $\{r, s, ..., z\}$
- strings $\in (V \cup \Sigma)^*$ (terminals and nonterminals) $\{\alpha, \beta, ...\}$
- strings $\in V^*$ (only **nonterminals**) σ

TYPES OF RULES (RP = right part, LP = left part)

<i>Terminal</i> : RP contains only terminals, or the empty string	$\rightarrow u \mid \varepsilon$
Empty (or null): RP is empty	$\rightarrow \mathcal{E}$
<i>Initial / Axiomatic</i> : LP is the axiom	$S \rightarrow$
Recursive: LP occurs in RP	$A \rightarrow \alpha A \beta$
Left-recursive: LP is prefix of RP	$A \rightarrow A \beta$
Right-recursive: LP is suffix of RP	$A \rightarrow \alpha A$
Left- and right-recursive: conjunction of two previous cases	$A \rightarrow A \beta A$
Copy or categorization: RP is a single nonterminal	$A \rightarrow B$
Linear: at most one nonterminal in RP	$\rightarrow u B v \mid w$
Right-linear (type 3): linear + nonterminal is suffix	$\rightarrow u B \mid w$
<i>Left-linear</i> (type 3): linear + nonterminal is prefix	$\rightarrow B v \mid w$
Homogeneous normal: n nonterminals or just one terminal	$\rightarrow A_1 \dots A_n \mid a$
Chomsky normal (or homogeneous of degree 2): two nonterminals or	
just one terminal	$\rightarrow BC \mid a$
Greibach normal: one terminal possibly followed by nonterminals	$\rightarrow a \sigma \mid b$
Operator normal: two nonterminals separated by a terminal (operator);	
more generally, strings devoid of adjacent nonterminals	$\rightarrow A \ a \ B$
	5 / 6 0

DERIVATIONS AND GENERATED LANGUAGE

Def. of derivation relation \Rightarrow

for β , $\gamma \in (V \cup \Sigma)^*$ β derives γ for grammar G, $\beta \Rightarrow \gamma$, or $\beta \Rightarrow \gamma$,

$$A \rightarrow \alpha$$
 is a rule of G , $\beta = \delta A \eta$, $\gamma = \delta \alpha \eta$

the rule $A \to \alpha$ is applied in that derivation step, and α reduces to A

power, reflexive and transitive closure of ' \Rightarrow ' $\beta_0 \stackrel{^n}{\Rightarrow} \beta_n \quad \beta_0 \stackrel{^*}{\Rightarrow} \beta_n \quad \beta_0 \stackrel{^+}{\Rightarrow} \beta_n$

$$\beta_0 \stackrel{^n}{\Rightarrow} \beta_n \quad \beta_0 \stackrel{^*}{\Rightarrow} \beta_n \quad \beta_0 \stackrel{^+}{\Rightarrow} \beta_n$$

If $A \stackrel{\hat{}}{\Rightarrow} \alpha \quad \alpha \in (V \cup \Sigma)$ called string form generated by G

If $S \stackrel{*}{\Rightarrow} \alpha$ \(\alpha\) called sentential or phrase form

If $A \stackrel{\cdot}{\Rightarrow} s \ s \in \Sigma^*$, s is called **phrase** or **sentence**

LANGUAGE GENERATED FROM NONTERMINAL A OR FROM AXIOM S

$$L_{A}(G) = \left\{ x \in \Sigma^{*} \mid A \stackrel{+}{\Rightarrow} x \right\}$$

$$L(G) = L_{S}(G) = \left\{ x \in \Sigma^{*} \mid S \stackrel{+}{\Rightarrow} x \right\}$$

Example: Grammar G_l generates the structure of a book: it contains

- a front page (f)
- a series (denoted by the nonterm. A) of one or more chapters
- every chapter starts with the title (t) and contains a sequence (B) of one or more lines (l)

$$S \to fA$$

$$A \to AtB \mid tB$$

$$B \to lB \mid l$$

from A one generates the string form tBtB and the phrase $tlltl \in L_A(G_l)$

from S one generates the phrase forms fAtlB, ftBtB

The language generates from B is $L_B(G_l) = l^+$

 $L(G_l)$, being generated by the context free grammar G_l , is **context free** or **free**

Notice: it is also regular, because it is defined also by the regular expressione $f(tl^+)^+$ 9/20

Two grammars G and G' are equivalent if they generate the same language, that is, L(G) = L(G')

 $Y \stackrel{n}{\Rightarrow} l^n$ in G_l and $B \stackrel{n}{\Rightarrow} l^n$ in G_{l2} generate the same language $L_B = l^+$

ERRONEOUS GRAMMARS AND USELESS RULES: all nonterminals must

- be *reachable* from S, and hence contribute to the generation of the language
- be *defined*: eventually generate "something" –we are not interested in the \emptyset lang.

a grammar G is *clean* (or *reduced*) iff the following conditions hold:

1. Every nonterminal A is **reachable** from the axiom, that is, there exists a derivation

$$S \stackrel{*}{\Rightarrow} \alpha A \beta$$

2. Every nonterminal A is *defined*, that is, it generates a non-empty language

$$L_A(G) \neq \emptyset$$

NB: $L_A(G) = \emptyset$ includes also the case when no derivation from A terminates with a terminal string s (i.e. $s \in \Sigma^*$), e.g.: $P = \{S \to aA, A \to bS\}$

GRAMMAR CLEANING: two steps algorithm:

The FIRST PHASE builds the set *UNDEF* of undefined nonterminals

The SECOND PHASE builds the set of unreachable nonterminals

PHASE 1- We first build the *complement* set $DEF = V \setminus UNDEF$

DEF is *initialized* from the *terminal rules* (the n.t. that immediately generate a terminal string)

$$DEF := \{A \mid (A \to u) \in P, \text{ with } u \in \Sigma^*\}$$

The following *update* is repeated until a *fixed point* is reached:

$$DEF := DEF \cup \{ \ B \mid (B \to D_1 D_2 ... D_n) \in P \land \forall i \ (D_i \in DEF \cup \Sigma) \}$$
 Every D_i is already in DEF or it is a terminal

In algebra, the *fixed point* of a transformation is an object that is transformed into itself

At each iteration, two cases can occur:

- 1. New nonterm. are found having the RP all with defined nonterm. or term., or
- 2. No new nonterm. is found, algorithm terminates (a *fixed point* has been reached) nonterminals $\in UNDEF$ are eliminated

PHASE 2 - The computation of the set of nonterminals reachable from S consists of finding paths from S to other nonterminals in the graph of the **produce** relation, defined as

A produce B iff
$$(A \rightarrow \alpha B\beta) \in P$$
, with $A \neq B$ α, β any string

C is *reachable* from S iff there exists, in the graph, a path from S to C nonterminals that are not reachable can be eliminated

often another requirement is added for cleanness condition of a grammar G:

3. G must not allow for circular derivations: they are not essential and introduce ambiguity

if $A \stackrel{+}{\Rightarrow} A$ then

if the derivation $A \stackrel{+}{\Rightarrow} x$ is possible

then also $A \stackrel{+}{\Rightarrow} A \stackrel{+}{\Rightarrow} x$ and many other similar ones exist

NB: circular derivations must not be confused with recursive rules and derivations !!

EXAMPLES OF GRAMMARS THAT ARE NOT CLEAN

- 1) $\{S \rightarrow aASb, A \rightarrow b\}\ (S \text{ does not generate any phrase, i.e., } L(S) = \emptyset)$
- 2) $\{S \rightarrow a, A \rightarrow b\}$ (A not reachable) $\{S \rightarrow a\}$ equiv. clean version)
- 3) $\{S \rightarrow aASb \mid A, A \rightarrow S \mid b\}$ (circular on S and A) $(\{S \rightarrow aSSb \mid b\})$ equiv. clean)

circularity can also derive from an empty rule

$$X \to XY \mid \dots \quad Y \to \varepsilon \mid \dots$$

NB: even if clean, a grammar can have *redundant rules* (leading to ambiguity)

$$1. S \rightarrow aASb$$
 $4. A \rightarrow c$

$$\begin{array}{ll}
1. S \rightarrow aASb & 4. A \rightarrow c \\
2. S \rightarrow aBSb & 5. B \rightarrow c \\
3. S \rightarrow \varepsilon
\end{array}$$

3.
$$S \rightarrow \varepsilon$$

RECURSION AND LANGUAGE *INFINITY*

most interesting languages are infinite
but what determines the ability of a grammar to generate an infinite language?

infinity of the language implies unbounded phrase length therefore the grammar must be recursive

a derivation $A \stackrel{n}{\Rightarrow} xAy$ $n \ge 1$ is recursive

if n = 1 it is *immediately recursive*

A is a recursive nonterminal

if $x = \varepsilon$ then it is *left recursive* (l.r. derivation, l.r. nonterminal)

if $y = \varepsilon$ then it is **right recursive** (r.r. derivation, r.r. nonterminal)

NB: circularity and recursiveness are (very) different notions
a grammar may be recursive (admit recursive derivations) but not circular
circular ⇒ recursive but it is **not** the case that recursive ⇒ circular

necessary and sufficient condition for language L(G) to be infinite,

assuming G clean and devoid of circular derivations,

is that G allows for recursive derivations

necessary condition: if no recursive derivation was possible, then every derivation would have limited length hence L(G) would be finite

sufficient condition:

$$A \stackrel{n}{\Longrightarrow} xAy \text{ implies } A \stackrel{+}{\Longrightarrow} x^m Ay^m$$

for any $m \ge 1$ with $x, y \in \Sigma^*$ not both empty

Furthermore *G* clean implies

$$S \stackrel{\uparrow}{\Rightarrow} uAv \ (A \text{ reachable from } S)$$

and $A \stackrel{\tau}{\Rightarrow} w$ (derivation from A terminates successfully)

therefore there exist nonterminals that generate an infinite language

$$S \stackrel{*}{\Rightarrow} uAv \stackrel{+}{\Rightarrow} ux^m Ay^m v \stackrel{+}{\Rightarrow} ux^m wy^m v, (\forall m \ge 1)$$

a grammar is devoid of recursive derivations

if and only if

the graph of the *produce* relation has no circuits

Example

$$S \to aBc$$

$$B \to ab \mid Ca$$

$$C \to c$$

finite language: { aabc, acac }

Example (arithmetic expressions)

$$G = \left\{\underbrace{E, T, F}_{non \ term.}, \underbrace{\{i, +, *, \}, (\}}_{term.}, \underbrace{P}_{productions}, \underbrace{E}_{axiom}\right\}$$

$$P = \left\{E \to E + T \mid T, \quad T \to T * F \mid F, \quad F \to (E) \mid i\right\}$$

$$L(G) = \left\{i, i + i + i, \quad i * i, \quad (i + i) * i, \dots\right\}$$

F (factor) has indirect recursion (non immediate)

E (expression) has immediate left recursion and non immediate recursion

T (term) has immediate left recursion and non immediate recursion

G is clean, recursive, noncircular, hence the generated language is infinite

grammar has recursions

the graph of the produce relation has circuits

$$G = (\{E, T, F\}, \{i, +, *,), (\}, P, E)$$

$$P = \{E \to E + T \mid T, \quad T \to T * F \mid F, \quad F \to (E) \mid i\}$$