Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Alger1 – Benyoucef Benkhadda

Faculté des Sciences

Département Mathématiques Informatique

Module : THL

Durée : 1h30 Date : Filière : L2-INF/S3

Exercice 1 (7pts)

Nature: Rattrapage

1- Calculer le résultat de chacune des dérivées suivantes:

 $(a^+.b)//a$; $(a^+.b)//b$; $(a^*.b)//a$; $(a^*.b)//b$

2- Construire l'AEF qui reconnait le langage défini comme suit :

$$L = \{ b + a^+b * a + b \}$$

Exercice 2 (8pts)

Soit A l'AEF défini comme suit :

- 1- Trouver le sous-langage que l'on peut reconnaître en partant de chacune des états : $q_1,\,q_2,\,q_4$, q_5
- 2- En déduire la relation entre les deux états q1 et q2
- 3- Déterminiser l'AEF A.
- 4- Minimiser l'AEF A.

Exercice 3 (5pts)

Deux AEFs A_1 et A_2 sont dits équivalents s'ils reconnaissent le même langage (c-à-d $L(A_1)=L(A_2)$). Sur la base de cette définition, montrer que les deux AEFs suivants sont équivalents :

Département Mathématiques Informatique

Corrigé de l'examen de Rattrapage THL

Exercice 1 (7pts)

- $(a^+.b)//a = (a^+)//a.b + f(a^+).b//a$ $(a^+)//a.b = (a.a^*)//a.b = [(a)//a.a^* + f(a).(a^*)//a].b$ $f(a^+) = \emptyset$ donc $f(a^+).b//a = \emptyset$ $= [\varepsilon.a^* + \emptyset].b = a^*.b$ (0.5)
- $(a^+.b)//b=(a^+)//b.b+f(a^+).b//b=(a)//b.a^*.b=\emptyset$ (0.5)
- $(a^*.b)//a=(a^*)//a.b+f(a^*).b//a$ $(a^*)//a.b=(a)//a.a^*.b=a^*.b$ (0.5) $f(a^*).b//a=\varepsilon.\emptyset=\emptyset$
- $(a^*.b)//b=(a^*)//b.b+f(a^*).b//b=\emptyset.b+ \varepsilon. \varepsilon= \varepsilon$ (0.5)

1-
$$q_0 = L = \{ (b + a^+b)^*(a + b) \}$$

- $q_0 \parallel a = [(b + a^+b)^*(a + b)] \parallel a = (b + a^+b)^* \parallel a.(a + b) + f((b + a^+b)^*).(a + b) \parallel a$ = $[(b + a^+b) \parallel a.(b + a^+b)^*].(a + b) + \epsilon.[(a \parallel a) + (b \parallel a)]$ = $[((b \parallel a) + (a^+b) \parallel a).(b + a^+b)^*].(a + b) + \epsilon.[(a \parallel a) + (b \parallel a)]$ = $[(\emptyset + a^*.b).(b + a^+b)^*].(a + b) + \epsilon.(\epsilon + \emptyset)$ = $[(\emptyset + a^*.b).(b + a^+b)^*].(a + b) + \epsilon.(\epsilon + \emptyset)$ = $(a^*.b).(b + a^+b)^*.(a + b) + \epsilon = q_1$ (état final) (0.5)
- $\mathbf{q_0} \parallel \mathbf{b} = [(\mathbf{b} + \mathbf{a}^+ \mathbf{b})^* (\mathbf{a} + \mathbf{b})] \parallel \mathbf{b} = (\mathbf{b} + \mathbf{a}^+ \mathbf{b})^* \parallel \mathbf{b}. (\mathbf{a} + \mathbf{b}) + \mathbf{f}((\mathbf{b} + \mathbf{a}^+ \mathbf{b})^*). (\mathbf{a} + \mathbf{b}) \parallel \mathbf{b}$ $= [(\mathbf{b} + \mathbf{a}^+ \mathbf{b}) \parallel \mathbf{b}. (\mathbf{b} + \mathbf{a}^+ \mathbf{b})^*]. (\mathbf{a} + \mathbf{b}) + \epsilon. [(\mathbf{a} \parallel \mathbf{b}) + (\mathbf{b} \parallel \mathbf{b})]$ $= [((\mathbf{b} \parallel \mathbf{b}) + (\mathbf{a}^+ \mathbf{b}) \parallel \mathbf{b}). (\mathbf{b} + \mathbf{a}^+ \mathbf{b})^*]. (\mathbf{a} + \mathbf{b}) + \epsilon. [(\mathbf{a} \parallel \mathbf{b}) + (\mathbf{b} \parallel \mathbf{b})]$ $= [(\epsilon + \emptyset)(\mathbf{b} + \mathbf{a}^+ \mathbf{b})^*]. (\mathbf{a} + \mathbf{b}) + \epsilon. (\emptyset + \epsilon)$ $= (\mathbf{b} + \mathbf{a}^+ \mathbf{b})^*. (\mathbf{a} + \mathbf{b}) + \epsilon = \mathbf{q_2} \quad \text{(état final)} \quad \text{(0.5)}$
- $\mathbf{q_1} \parallel \mathbf{a} = [(a^*.b).(b+a^+b)^*.(a+b)+\varepsilon] \parallel \mathbf{a} = [(a^*.b).(b+a^+b)^*.(a+b)] \parallel \mathbf{a} + \varepsilon \parallel \mathbf{a}$ = $(a^*.b) \parallel \mathbf{a}.[(b+a^+b)^*.(a+b)] + f(a^*.b).[(b+a^+b)^*.(a+b)] \parallel \mathbf{a} + \emptyset$ = $(a^*.b).(b+a^+b)^*.(a+b)+\emptyset.[(b+a^+b)^*.(a+b)] \parallel \mathbf{a}$ = $(a^*.b).(b+a^+b)^*.(a+b) = \mathbf{q_3}$ (0.5)
- $\mathbf{q_1} \parallel \mathbf{b} = [(a^*.b).(b+a^+b)^*.(a+b)+\epsilon] \parallel \mathbf{b} = [(a^*.b).(b+a^+b)^*.(a+b)] \parallel \mathbf{b} + \epsilon \parallel \mathbf{b}$ = $(a^*.b) \parallel \mathbf{b}.[(b+a^+b)^*.(a+b)] + f(a^*.b).[(b+a^+b)^*.(a+b)] \parallel \mathbf{b} + \emptyset$ = $\epsilon.(b+a^+b)^*.(a+b) + \emptyset.[(b+a^+b)^*.(a+b)] \parallel \mathbf{b}$ = $(\mathbf{b}+\mathbf{a}^+\mathbf{b})^*.(\mathbf{a}+\mathbf{b}) = \mathbf{q_0}$ (0.5)
- $\mathbf{q_2} \parallel \mathbf{a} = [(\mathbf{b} + \mathbf{a}^+ \mathbf{b})^* (\mathbf{a} + \mathbf{b}) + \varepsilon] \parallel \mathbf{a} = [(\mathbf{b} + \mathbf{a}^+ \mathbf{b})^* (\mathbf{a} + \mathbf{b})] \parallel \mathbf{a} + \varepsilon \parallel \mathbf{a} = \mathbf{q_0} \parallel \mathbf{a} + \emptyset = \mathbf{q_1}$ (0.5)
- $\mathbf{q}_2 \parallel \mathbf{b} = [(\mathbf{b} + \mathbf{a}^+ \mathbf{b})^* (\mathbf{a} + \mathbf{b}) + \varepsilon] \parallel \mathbf{b} = [(\mathbf{b} + \mathbf{a}^+ \mathbf{b})^* (\mathbf{a} + \mathbf{b})] \parallel \mathbf{b} + \varepsilon \parallel \mathbf{b} = \mathbf{q}_0 \parallel \mathbf{b} + \emptyset = \mathbf{q}_2$ (0.5)
- $\mathbf{q_3} \parallel \mathbf{a} = [(a^*.b)(b+a^+b)^*(a+b)] \parallel \mathbf{a}$ = $(a^*.b) \parallel \mathbf{a}.[(b+a^+b)^*.(a+b)] + f(a^*.b).[(b+a^+b)^*.(a+b)] \parallel \mathbf{a}$ = $(a^*.b).(b+a^+b)^*.(a+b) + \emptyset.[(b+a^+b)^*.(a+b)] \parallel \mathbf{a}$ = $(a^*.b).(b+a^+b)^*.(a+b) = \mathbf{q_3}$ (0.5)

Corrigé de l'examen de Rattrapage THL

•
$$\mathbf{q_3} \parallel \mathbf{b} = [(a^*.b)(b+a^+b)^*(a+b)] \parallel \mathbf{b}$$

= $(a^*.b) \parallel \mathbf{b}.[(b+a^+b)^*.(a+b)] + f(a^*.b).[(b+a^+b)^*.(a+b)] \parallel \mathbf{b}$
= $\varepsilon.(b+a^+b)^*.(a+b) + \emptyset.[(b+a^+b)^*.(a+b)] \parallel \mathbf{a}$
= $(\mathbf{b}+\mathbf{a}^+\mathbf{b})^*.(\mathbf{a}+\mathbf{b}) = \mathbf{q_0}$ (0.5)

L'AEF résultat : (1)

Exercice 2 (8 pts)

1- Le sous-langage:

$$q_1 \longrightarrow a^*.b^+$$
 (0.25); $q_2 \longrightarrow a^*.b^+ + a^*.b = a^*(b^+ + b) = a^*.b^+$ (0.25)
 $q_4 \longrightarrow b^*$ (0.25); $q_5 \longrightarrow \epsilon$ (0.25)

- 2- Les deux états q_1 et q_2 permettent de reconnaitre le même sous-langage, d'où q_1 et q_2 sont β équivalents (0.5)
- 3- Déterminisation: (3pts)

	а	В
$\rightarrow \{q_0\} = e_0$	$\{\mathbf{q_1},\mathbf{q_2},\mathbf{q_3}\}$	
$*\{q_1,q_2,q_3\}=e_1$	$\{q_1, q_2, q_3\}$	$\{\mathbf{q_4},\mathbf{q_5}\}$
$*\{\mathbf{q}_4,\mathbf{q}_5\}=\mathbf{e}_2$		$\{\mathbf{q_4}\}$
$*\{\mathbf{q_4}\} = \mathbf{e_3}$		$\{\mathbf{q_4}\}$

Automate A': (0.5pt)

Corrigé de l'examen de Rattrapage THL

4- Minimisation de A':

Etape 1 : classe B={ états finaux}= $\{e_1, e_2, e_3\}$; classe C={états simples}= $\{e_0\}$ (0.5) Considérons la classe $B=\{e_1, e_2, e_3\}$

	а	b
$\mathbf{e_1}$	$e_1 \in B$	$\mathbf{e}_2 \in \mathbf{B}$
\mathbf{e}_2		$\mathbf{e}_3 \in \mathbf{B}$
$\mathbf{e_3}$		$e_3 \in B$

Donc, séparer e_1 de la classe B , e_2 et e_3 doivent être regroupés

On obtient une nouvelle classe D={ e_1 } d'où $\,$ D={ e_1 } ; B={ $e_2,e_3\}$; C={ $e_0\}$

Etape 2 : considérons la classe $B=\{e_2, e_3\}$

	a	b
$\mathbf{e_2}$		$\mathbf{e}_3 \in \mathbf{B}$
\mathbf{e}_3		$e_3 \in B$

Donc e₂ et e₃ doivent être regroupés

(0.75)

Etape 3 : arrêt (0.25)

AEF minimal résultat : (0.5)

Exercice 3 (5 pts)

1- Langage reconnu par A₁:

$$L(A_1)=L_0 \rightarrow \begin{cases} L_0=a.L_0+a.L_1 \\ L_1=b.L_1+b.L_2 \\ L_2=\varepsilon \end{cases} \Rightarrow L_1=b.L_1+b=b^*.b=b^+$$

$$\Rightarrow L_0=a.L_0+a.b^+=a^*.a.b^+=a^+b^+$$

$$d'où L(A_1)=\{a^+b^+\}$$
 (2.5)

2- Langage reconnu par A₂:

Langage reconnu par A₂:

$$L(A_2)=L_0 \rightarrow \begin{cases} L_0=a.L_1 \\ L_1=a.L_1+b.L_2 \\ L_2=b.L_2+\varepsilon \end{cases} \implies L_2=b^*. \ \varepsilon=b^*$$

$$\implies L_1=a.L_1+b.b^*=a^*b^+=a^*b^+$$

$$L0=a. \ a^*b^+=a^+b^+$$

$$D'où \ L(A_2)=\{\ a^+b^+\}$$

$$(2.5)$$

 $L(A_1)=L(A_2)$ donc les deux AEFs A_1 et A_2 sont équivalents