

Space-time Galerkin POD for optimal control of Burgers' equation Manuel Baumann Peter Benner Jan Heiland April 27, 2017 venten Seminar • Numerische Mathematik, TU Berlin

Outline

- 1. Introduction
- 2. Optimal Space Time Product Bases
- 3. Relation to POD
- 4. Space-Time Galerkin-POD for Optimal Control

Introduction

$$\dot{x} - \Delta x = f(t, x)$$

Consider the solution of a PDE:

$$x \in L^2(I; L^2(\Omega))$$

with $I \subset \mathbb{R}$... the time-interval $\Omega \subset \mathbb{R}^n$... the spatial domain

and its numerical approximation:

$$\textbf{x} \in \mathcal{S} \cdot \mathcal{Y}$$

with $\mathcal{S} \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space

Task: Find $\hat{\mathcal{S}} \subset \mathcal{S}$ and $\hat{\mathcal{Y}} \subset \mathcal{Y}$ of much smaller dimension to express \mathbf{x} .

Space-Time Spaces

PDE solution $x \in L^2(I; L^2(\Omega))$ $S \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space

Consider finite dimensional subspaces

$$\mathcal{S} = \operatorname{span}\{\psi_1, \cdots, \psi_s\} \subset L^2(I)$$

 $\mathcal{Y} = \operatorname{span}\{\nu_1, \cdots, \nu_q\} \subset L^2(\Omega)$

with the mass matrices

$$\mathbf{M}_{\mathcal{S}} = \left[(\psi_i, \psi_j)_{L^2} \right]_{i,j=1,\dots,s}$$
 and $\mathbf{M}_{\mathcal{Y}} = \left[(\nu_i, \nu_j)_{L^2} \right]_{i,j=1,\dots,q}$

and the product space

$$S \cdot \mathcal{Y} \subset L^2(I; L^2(\Omega)).$$

Space-Time Spaces

We represent a function

$$\mathbf{x} = \sum_{i=1}^{s} \sum_{i=1}^{q} \mathbf{x}_{i \cdot j} \nu_{i} \psi_{j} \in \mathcal{S} \cdot \mathcal{Y}$$

via its matrix of coefficients

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{i \cdot j} \end{bmatrix}_{i=1,\dots,q}^{j=1,\dots,s} \in \mathbb{R}^{q,s}$$

and vice versa.

Optimal Bases

Lemma (Optimal low-rank bases in space¹)

Given $x \in \mathcal{S} \cdot \mathcal{Y}$ and the associated matrix of coefficients \mathbf{X} . The best-approximating subspace $\hat{\mathcal{Y}}$ in the sense that $\|\Pi_{\mathcal{S} \cdot \hat{\mathcal{Y}}} x - x\|_{\mathcal{S} \cdot \mathcal{Y}}$ is minimal over all subspaces of \mathcal{Y} of dimension \hat{q} is given as $\operatorname{span}\{\hat{\nu}_i\}_{i=1,\dots,\hat{q}}$, where

$$\begin{bmatrix} \hat{\nu}_1 \\ \hat{\nu}_2 \\ \vdots \\ \hat{\nu}_{\hat{q}} \end{bmatrix} = V_{\hat{q}}^\mathsf{T} \mathbf{M}_{\mathcal{Y}}^{-1/2} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \vdots \\ \nu_q \end{bmatrix},$$

where $V_{\hat{q}}$ is the matrix of the \hat{q} leading left singular vectors of

$$\mathbf{M}_{\mathcal{Y}}^{1/2}\mathbf{X}\mathbf{M}_{\mathcal{S}}^{1/2}.$$

¹ BM&PB&JH '16: *ArXiv:1611.04050*

csc computational methods in Optimal Bases

The same arguments apply to the transpose of \mathbf{X} :

Lemma (Optimal low-rank bases in time²)

Given $x \in \mathcal{S} \cdot \mathcal{Y}$ and the associated matrix of coefficients \mathbf{X} . The best-approximating subspace $\hat{\mathcal{S}}$ in the sense that $\|\Pi_{\hat{\mathcal{S}}\cdot\mathcal{Y}}x-x\|_{\mathcal{S}\cdot\mathcal{Y}}$ is minimal over all subspaces of \mathcal{S} of dimension $\hat{\mathbf{s}}$ is given as $\mathrm{span}\{\hat{\psi}_j\}_{j=1,\ldots,\hat{\mathbf{s}}}$, where

$$\begin{bmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \\ \vdots \\ \hat{\psi}_{\hat{s}} \end{bmatrix} = U_{\hat{s}}^\mathsf{T} \mathbf{M}_{\mathcal{S}}^{-1/2} \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_s \end{bmatrix},$$

where $U_{\hat{s}}$ is the matrix of the \hat{s} leading right singular vectors of

$$\mathbf{M}_{\mathcal{Y}}^{1/2}\mathbf{X}\mathbf{M}_{\mathcal{S}}^{1/2}.$$

2

BM&PB&JH '16: ArXiv:1611.04050

Relation to POD

The solution of a spatially discretized PDE

$$x \colon \tau \mapsto \mathbb{R}^q$$

is projected to $\mathcal{S}\cdot\mathbb{R}^q$ via

$$\Pi_{\mathcal{S}.\mathcal{Y}} x = \begin{bmatrix} (x_1, \psi_1)_{L^2} & \dots & (x_1, \psi_s)_{L^2} \\ \vdots & \ddots & \vdots \\ (x_q, \psi_1)_{L^2} & \dots & (x_q, \psi_s)_{L^2} \end{bmatrix} \mathbf{M}_{\mathcal{S}}^{-1}.$$

In the (degenerated) case that ψ_j is a delta distribution centered at $\tau_j \in I$, the coefficient matrix degenerates to

$$\begin{bmatrix} x_1(\tau_1) & \dots & x_1(\tau_s) \\ \vdots & \ddots & \vdots \\ x_q(\tau_1) & \dots & x_q(\tau_s) \end{bmatrix}$$

- the standard POD snapshot matrix.

Section 4

Space-Time Galerkin-POD for Optimal Control

Target 1: Step function

Figure: Illustration of the state, the adjoint, and the target and their approximation via POD-reduced space-time bases.

Target 2: Heart shape

Figure: Illustration of the state, the adjoint, and the target and their approximation via POD-reduced space-time bases.

Space-Time Galerkin-POD for Optimal Control

For a target trajectory $x^* \in L^2(0, T; L^2(\Omega))$ and a penalization parameter $\alpha > 0$, consider

$$\mathcal{J}(x,u) := \frac{1}{2} \|x - x^*\|_{L^2}^2 + \frac{\alpha}{2} \|u\|_{L^2}^2 \to \min_{u \in L^2(0,T;L^2(\Omega))}$$

subject to the generic PDE

$$\dot{x} - \Delta x + N(x) = f + u, \quad x(0) = 0. \tag{FWD}$$

If the nonlinearity is smooth, then necessary optimality conditions for (x, u) are given through $u = \frac{1}{\alpha}\lambda$, where λ solves the adjoint equation

$$-\dot{\lambda} - \Delta\lambda + D_x N(x)^{\mathsf{T}} \lambda + x = x^*, \quad \lambda(T) = 0.$$
 (BWD)

Space-Time Galerkin-POD for Optimal Control

Algorithm:

- 1. Do standard forward/backward solves to compute the matrix of measurements for x and λ .
- 2. Compute optimal low-dimensional spaces \hat{S} , \hat{R} , \hat{Y} , and $\hat{\Lambda}$ for the space and time discretization of the state x and the adjoint state λ .
- 3. Solve the space-time Galerkin projected necessary optimality conditions (FWD)-(BWD)³ for the reduced costate $\hat{\lambda}$.
- 4. Define the suboptimal control via $\hat{\bf u}=\frac{1}{\alpha}\hat{\lambda}$ and inflate it to the full space.
- 5. Apply it in the full order simulation.

Jan Heiland Space-time Galerkin POD 13/19

³(FWD)-(BWD) is a two-point boundary value problem with initial and terminal conditions for which time stepping schemes like RKM do not apply.

Numerical Setup

The PDE

- 1D Burger's equation
- $I = (0,1], \Omega = (0,1)$
- Viscosity: $\nu = 5 \cdot 10^{-3}$
- Stepfunction as initial value
- Zero Dirichlet conditions

The optimization

- target 1: keep the initial state
- target 2: make a heart
- parameter: $\alpha = 10^{-3}$

The full model

- Equidistant space and time grids
- $\mathcal{S} = \mathcal{R} \dots 120$ linear hat functions
- $\mathcal{Y} = \Lambda$... 220 linear hat functions

The reduced model

- $\hat{\mathcal{Y}} = \hat{\Lambda}$... of dimension $\hat{q} = \hat{p}$
- $\hat{\mathcal{S}}
 eq \hat{\mathcal{R}}$... of dimensions $\hat{s} = \hat{r}$
- \hat{q} , \hat{p} , \hat{s} , \hat{r} ... varying
- n_t ... varying⁴

Jan Heiland Space-time Galerkin POD 14/19

⁴dimension of time parametrization for an gradient based approach

Target 1: Step function

Ŕ	24	36	48	72	96
$\frac{1}{2}\ \hat{x}-x_0\ _{L^2}^2$					
$\mathcal{J}(\hat{x},\hat{u})$	0.0351	0.0309	0.0234	0.0177	0.0152
walltime[s]	0.1	0.48	1.81	18.7	155

Table : Performance of the suboptimal control versus the cumulative dimension $\hat{K} = \hat{p} + \hat{q} + \hat{r} + \hat{s}$ of the reduced bases with $\hat{p} = \hat{q} = \hat{r} = \hat{s}$.

$(\hat{q},\hat{s})/(\hat{p},\hat{r})$						
$\frac{1}{2}\ \hat{x}-x_0\ _{L^2}^2$	0.0143	0.0106	0.0151	0.0303	0.0318	0.0357
$\mathcal{J}(\hat{x},\hat{u})$	0.0189	0.0159	0.0192	0.0340	0.0353	0.0382
walltime	1.43	2.71	1.58	1.42	2.54	1.11

Table : Performance of the suboptimal control versus varying distributions of space and time resolutions.

Target 1: Step function

$(\hat{q},\hat{s})/(\hat{p},\hat{r})$	(16, 7)	(15,10)	(12,10)	(10,12)	(10,15)	(7,16)
$\frac{1}{2}\ \hat{x}-x_0\ _{L^2}^2$	0.0143	0.0106	0.0151	0.0303	0.0318	0.0357
$\mathcal{J}(\hat{x},\hat{u})$	0.0189	0.0159	0.0192	0.0340	0.0353	0.0382
walltime	1.43	2.71	1.58	1.42	2.54	1.11

Table : Performance of the suboptimal control versus varying distributions of space and time resolutions.

(\hat{q}, n_t)						
$\frac{1}{2}\ \hat{x}-x_0\ _{L^2}^2$	0.0144	0.0119	0.0110	0.0090	0.0091	0.0087
$\mathcal{J}(\hat{x},\hat{u})$	0.0146	0.0122	0.0113	0.0093	0.0095	0.0091
walltime	21.98	35.04	40.34	41.93	46.54	50.62

Table : Benchmark of an gradient based approach (SQP-POD-BFGS with $\alpha = 6.25 \cdot 10^{-5})$

Jan Heiland Space-time Galerkin POD 16/19

Conclusion

- The space-time Galerkin POD approach allows for
 - construction of optimized Galerkin bases in space and time
 - in a functional analytical framework
- The resulting space-time Galerkin discretization
 - approximates PDEs by a small system of algebraic equations
 - and naturally extends to boundary value problems in time
 - can be used for efficient computations of (sub)optimal controls
- Future work:
 - Use the functional analytical framework for error estimates.
 - lacksquare Exploit the freedom of the choice of the measurement functions in \mathcal{Y} ,
 - to produce, e.g., optimal measurements or to compensate for stochastic perturbations.

Further Reading and Coding

M. Baumann, P. Benner, and J. Heiland.

Space-Time Galerkin POD with application in optimal control of semi-linear parabolic partial differential equations.

ArXiv:1611.04050, Nov. 2016.

M. Baumann, J. Heiland, and M. Schmidt.

Discrete input/output maps and their relation to POD.

In P. Benner et al., editors, *Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory*, pages 585–608.

Springer, 2015.

J. Heiland and M. Baumann.

spacetime-galerkin-pod-bfgs-tests – Python/Matlab implementation space-time POD and BFGS for optimal control of Burgers equation. 2016, doi:10.5281/zenodo.166339.

Thank you!

Thank you for your attention!

I am always open for discussion

heiland@mpi-magdeburg.mpg.de www.janheiland.de github.com/highlando