

13. ZOS

ZOS 2011, L. Pešička

Popis filesystémů

Odkazy, zdroje

http://www.tldp.org/LDP/tlk/fs/filesystem.html

http://www.abclinuxu.cz/clanky/system/na-co-se-castoptame-etc-fstab

Ext2 filesystém

Partition je rozdělena do Block Groups Každá skupina duplikuje informaci kritickou pro integritu fs

Ext2 inode

Mode – file, adresář, blok/znak zařízení

Vlastník (uživ, skupina) Size (v bytech) Timestamp (vytvoření, modifikace)

Datové bloky12 ukazatelů přímých
3 různě nepřímé úrovně

Ext2 superblok

Obvykle se při mountování čte superblok z block group 0 Každý Block Group kopii pro případ poškození

Magic number – říká, že jde opravdu o ext2 fs Revision Level – jaké nové vlastnosti lze bezpečně použít Mount count, Maximum mount count

 Zvětšuje počet přimountování, po dosažení maxima obvykle puštění kontroly konzistence, e2fsck

Block group number

Blok size – velikost bloku v bytech, např. 1024, při vytvoření Block per Group – počet bloků ve skupině, fixováno při vytvoření Free blocks, Free Inodes, First inode (obsahuje adresář /)

EXT2 group descriptor

□ Jako superblok, všechny group desc. pro všechny block groupy duplikovány v každém block group

Blocks bitmap – kde je bitmapa bloků pro tuto skupinu
Inode Bitmap – kde je bitmapa iuzlů této skupiny
Inode Table – číslo bloku, kde začíná inode table pro tuto skupinu

Free blocks count

Free inodes count

Used directory count

Ext2 adresář

□ Adresář – speciální soubor

Záznam v adresáři

- Inode i-uzel pro danou položku (soubor) index do pole inodů v Inode table
- Name length délka adresářové položky v bytech
- Name jméno adresářové položky (souboru)

VFS (Virtual File System)

Mounting a file system

mount –t iso9660 –o ro /dev/cdrom /mnt/cdrom

Soubor /etc/fstab:

/dev/fd0 /mnt/floppy vfat noauto,user 0 0

- Zařízení, které připojujeme,
- 2. Připojovací bod (adresář)
- 3. Typ souborového systému
- 4. Parametry připojení
- 5. Zálohování (pro dump 0 ne, 1 ano)
- 6. Pořadí kontroly při startu

Parametry připojení

```
noauto – nepřipojuje automaticky při startu
users – s tímto svazkem můžou pracovat i běžní
uživatelé
```

codepage – znaková sada, ve které jsou názvy souborů

iocharset – znaková sada, do které se budou převádět názvy souborů

noexec – nespouštět soubory na tomto médiu ro, rw – samovysvětlující ©

Sdílení souborů

- soubor/adresář viditelný ve více podadresářích pod více jmény
- □ Pevné odkazy (hardlinks)
 - Více odkazů na stejný i-uzel
 - Všechny odkazy rovnocenné
 - V i-uzlu je počet odkazů, zrušení když je = 0
- Symbolické odkazy
 - Obsahují jméno odkazovaného souboru
 - Obecnější, větší režie

Správa volného prostoru (které bloky jsou volné?)

- Seznamy diskových bloků
 - Blok obsahuje odkaz na volné bloky a adresu dalšího bloku
 - Problém najít blok s určitými vlastnostmi
- Bitové mapy
 - používanější
 - Konstantní velikost
 - Snadno najdeme volný blok s určitými vlastnosti

- Maximální počet bloků obsazených soubory uživatele
- Pro víceuživatelské systémy
- Soft a hard kvóta
 - Soft krátkodobě překročitelná
 - Hard nepřekročitelná
- Problémy
 - Profile windows x dostatečná kvóta
 - Potřeba nárazově zpracovat větší množství dat (adresáře tmp, scratch, ...)
 - Přesnost určení kvóty (započítání ADS z NTFS?)

Konzistence fs

- OS blok přečte, změní, zapíše
- Havárie před zápisem všech modifikovaných bloků
- Nekonzistentní stav fs
- Kontrola konzistence
 - Win: chkdsk, scandisk
 - Unix: fsck.ext2 /dev/sda2

Mechanismus ochrany

- □ co je potřeba chránit objekt
 - cokoliv, k čemu je potřeba omezovat přístup
 - soubory
 - hw objekty (segmenty paměti, I/O zařízení)
 - sw objekty (procesory, semafory)
- □ subjekt
 - entita, schopná přistupovat k objektům

Přístupové právo

- □ Read, Write, Execute, Delete
- právo vykonat jednu z možných operací
- □ informace o přístupových právech
- ACL
 - objekt má seznam subjektů a jejich přístup. práv
- capability list
 - se subjektem je sdružen seznam objektů a přístupových práv k nim

Poznámky

Linux

- □ přístupová práva symbolický link
- □ setuid bit

Windows

Ukázka – AD uživatelé, skupiny

- dcpromo
- □ Active Directory Users and Computers

Ukázka – vytvoření uživatele

net user %2 abcdefgh /add /fullname:%3 /homedir:j:\
/profilepath:\herakles\students\%2\profile-KIV /scriptpath:login-KIVstudents.bat /passwordchg:no

mkdir E:\students\%2

cacls E:\students\%2 /e /g %2:f

mkdir E:\students\%2\profile-KIV

ksetup /domain /mapuser %2@ZCU.CZ %2

Linux (wikipedia)

- □ Jádro operačního systému
- □ Planetka
 - Planetka (9885) obíhající mezi Marsem a Jupiterem
- □ Prací prášek
 - Ze Švýcarska

GNU / Linux

- □ Jádro + aplikační sw
 - Linuxové jádro
 - Knihovny a nástroje GNU Richard Stallman

Linus Torvalds

- Např. Debian GNU/Hurd
- Množina serverů pracujících nad mikrojádrem
- GNU Mach jako mikrojádro aktuálně

- Volně šířený systém kdokoliv si ho může nainstalovat a dále šířit
- Zdrojové texty kdokoliv může modifikovat jádro nebo systémové programy
- □ Vypadá a chová se jako UNIX kompatibilita
- Různé distribuce

Komponenty Linuxu

Monolitické jádro OS

- Jediné běží v režimu jádra
- Poskytuje základní abstrakce (procesy, virtuální paměť, soubory)
- Aplikace žádají o služby jádra prostřednictvím volání služeb systému
- Umožňuje za běhu přidávat a vyjímat moduly (ovladače)
 - □ Přidat / zrušit části kódu jádra na žádost

Systémové knihovny

- Standardní funkce pro použití v aplikacích
- Některé komunikují s jádrem OS (write apod.)
- Mnoho knihovních funkcí jádro nevolá (sin, cos, tan, ..)

Komponenty Linuxu

- Systémové programy
 - Nastavení konfigurace systému při startu
 - Démonové procesy
 - □ inetd obsluha příchozích síťových spojení
 - □ Syslogd zápis logů
- Uživatelské programy
 - Is, cat, joe, ...

Linux – jádro systému

- □ Linux jádro systému; od roku 1991
- Uživatelské programy, knihovny, většina systémových vznikla v nezávislých projektech (především GNU – Is, cp, ..)
- ☐ GNU / Linux, GNU / Hurd
- Distribuce (RedHat, SUSE, Mandriva, Debian)
 - Jádro
 - Programy z různých zdrojů
 - Správa balíků (RedHat rpm, Debian dpkg)

Privilegované módy v různých systémech

- □ Linux 2 úrovně (User a Kernel mód)
- □ FreeBSD také 2
- □ VMS 4 (Kernel, Executive, Supervisor, User)
- Multics 8 úrovní

■ User mode

- nedovolí privilegované instrukce ohrozit systém
- omezen přístup do paměti
- zakázána komunikace na I/O portech

Přístup do paměti - Linux

- mechanismus stránkování
 - program přistupuje na virtuální adresu
 - využití tabulky stránek pro převod na fyzickou adresu
 - mapování není výjimka
 - v tabulce stránek práva přístupu a druh přístupu
 - cache na několik posledních mapování TLB (transaction lookaside buffer)

Procesy, pamět

- procesy běží v USER modu, celé jádro v KERNEL modu
- každý proces vlastní tabulka stránek určuje jeho adresový prostor
- kód i data jádra sdílena mezi všemi procesy, z KERNEL modu vždy přístupné
- nepoužívá se segmentace je lineární adresový prostor

Přepínání procesů

- proces USER mod obsluha systémového volání nebo zpracování výjimky – KERNEL mód
- USER mód preemtivní multitasking
 - k přepnutí může dojít kdykoliv, rozhodnutí plánovače
- □ KERNEL mód kooperativní multitasking
 - když sám požádá
 - čekání na nějakou událost (zablokování procesu)
 - zjednodušuje návrh jádra
 - preemtivní kernel lze při kompilaci jádra 2.6 lepší interaktivita

Přepínání procesů

- kernel thready
 - nemají vlastní tabulku stránek ani uživ. adres. prostor
 - běží celou dobu v jádře
 - činnosti na pozadí např. zápis modifikovaných bufferů
 - druhý význam pojmu (thready přepínané v jádře)
- □ Linux přepnutí procesu v jádře
 - cond_resched() nebo schedule()

Linux – vytvoření procesu

- □ Oddělení operace vytvoření procesu a spuštění nového programu
- Vytvoření nového procesu
 - Volání fork ()
 - Nový proces provádí stejný kód jako původní
- Spuštění nového programu
 - Volání execve()

- Přesná kopie původního procesu
- □ Po vytvoření mají oba procesy stejný stav (obsah proměnných..)
- □ Každý z nich běží ve vlastní kopii VM
- Oba pokračují v běhu návratem z volání fork() a nadále běží nezávisle
- □ pid = fork()
- □ Původní proces rodič, nově vytvořený potomek
- Fork vrací
 - Pro rodiče PID potomka
 - Pro potomka vrací nulu

Implementace fork()

□ První generace Unixů

- Fork zduplikoval celý adresní prostor rodiče fyzickým kopírováním
- Časově náročné, navíc často hned exec tedy zbytečně
- vfork() nedělá kopírování, potomek nesmí modifikovat data, smí pouze exec nebo exit

■ Moderní systémy – copy on write

- Stránky sdíleny nejprve jako read only
- Zápis do stránky výjimka, zduplikuje a nová kopie read write
- Původní rámec zůstává read only, zápis zkontroluje, zda je jen jeden vlastník přeznačí na read write

Implementace fork()

- V Linuxu využívá volání jádra clone()
- Obecnější, lze specifikovat co bude rodič a potomek sdílet a co bude duplikováno (pamět, kořenový a pracovní adresář, otevřené soubory, obslužné rutiny pro signály)
- □ Fork nesdílí nic
- □ Vfork sdílí virtuální paměť

Spuštění programu

- Služba execve nahradí obsah paměti volajícího procesu procesem spuštěným ze zadaného souboru
- □ If (fork() == 0)
 execve ("/bin/ls", argv, envp);
- Proces spustí svého potomka, který místo sebe spustí /bin/ls

Ověřování uživatelů

- Autentizace (authentication)
- □ Jednoznačné prokázání totožnosti (identity) uživatele
- □ Identifikace vůbec vědět, kdo je
- Autentizace ověření, zda je opravdu tím, za koho se vydává
- Uživatel zadá jméno (identifikuje se), po zadání hesla dojde k jeho autentifikaci – systém ověří, zda je opravdu tím, za koho se vydává

Metody autentikace

- Uživatel něco zná
 - Heslo
 - Transformační funkce (výzva odpověď)
- Uživatel něco má
 - Kalkulátor pro jednorázová hesla
- Uživatel má určité biometrické vlastnosti
 - Otisky prstů
 - Sítnice oka
 - ? Spolehlivost

Autorizace

- □ Řízení přístupu ke zdrojům systému
- Např. zda máme právo nějaký soubor číst, zapisovat do něj..
- Musíme systému prokázat kdo jsme (autentizace) a on ověří, zda pro danou činnost máme právo (autorizace)

PAM (Pluggable Authentication Modules)

- Zajistit nezávislost programů na konkrétních autentizačních postupech
- Aplikaci zajímá pouze to, zda má službu poskytnout nebo ne
- Mezivrstva
 - Aplikace, požadující ověření identity
 - Autentizační metoda (/etc/passwd, Kerberos, biometrie)

- 4 funkční oblasti
- Autentizace uživatele
 - Ověřuje identitu uživatele kontrola hesla, připojení k serveru Kerberos, …
- ☐ Kontrola účtu
 - Např. povolení přístupu jen během určité doby
 - Omezení počtu současně přihlášených uživatelů
- Správa relace
 - Před a po provedení služby
 - Nastavuje proměnné prostředí, omezuje systémové prostředky
 - Připojení dalších filesystémů, chroot, ...
- Změna hesla
 - Kontrola délky a kvality hesla

Kerberos

- Použití tzv. lístků vydávaných centrálním autentizačním serverem (spravuje databázi všech uživatelů)
- □ Podpora single sign-on
- □ Uživatel se autentizuje vůči serveru Kerbera pouze jednou
- □ Získá základní lístek Ticket Granting Ticket (TGT)
- □ TGT použije pro získání dalších lístků pro přístup ke službám vyžadujícím autentizaci
- Kromě prvotní auntetizace vše ostatní transparentně
- □ Použití např. distribuovaný souborový systém AFS

Kerberos, distribuovaný fs AFS

■ Kerberos

- kinit získání TGT lístku
- klist seznam akt. lístků na disku
- kdestroy zničení uložených lístků
- kpasswd změna kerberovského hesla

AFS

- oprávnění k systému afs token
- aklog –c kiv.zcu.cz
- tokens

Ukázka kdestroy, kinit, klist

```
C:\WINDOWS\system32\cmd.exe
C:\Documents and Settings\pesicka>kdestroy
C:\Documents and Settings\pesicka>klist
klist: No credentials cache found (ticket cache API:krb5cc)
Kerberos 4 ticket cache: API:krb4cc
klist: No ticket file (tf_util)
C:\Documents and Settings\pesicka>kinit
Password for pesicka@ZCŪ.CŽ:
kinit(v4): Principal unknown (kerberos)
Maybe your KDC does not support v4. Try the -5 option next time.
C:\Documents and Settings\pesicka>klist
Ticket cache: API:krb5cc
Default principal: pesicka@ZCU.CZ
Valid starting
                                      Service principal
                   Expires
12/22/08 09:11:00 12/22/08 19:10:54 krbtgt/ZCU.CZ@ZCU.CZ
        renew until 12/22/08 09:11:00
Kerberos 4 ticket cache: API:krb4cc
klist: No ticket file (tf_util)
C:\Documents and Settings\pesicka>_
```


Ukázka aklog

For Help, press F1 Kerb-5 Ticket Life: 09:56 Kerb-4: No Tickets AFS Token Life: 09:

Škodlivé programy

- Malicious software
- Vyžadují hostitelský program nebo nezávislé
- Bacteria
 - Konzumuje systémové zdroje tím, že se replikuje
- Logic bomb
 - Pokud v systému nastanou určité podmínky, provede se nějaká škodlivá akce.
- □ Trapdoor
 - Tajný nedokumentovaný vstupní bod do programu, obejdou se běžné přístupové kontroly

Škodlivé programy

□ Trojan Horse

 Tajná nedokumnetovaná rutina obsažená v jinak užitečném programu. Při spuštění programu dojde i k vykonání tohoto kódu.

□ Virus

Kód zapouzdřený v programu, kopíruje se a vkládá do dalších programů. Kromě vlastního šíření vykonává různé škodlivé činnosti

Škodlivé programy

- Worm (červ)
 - Program může replikovat sebe a šířit se z počítače na počítač přes sít. Na cílovém stroji ve své činnosti pokračuje. Může vykonávat další škodlivé činnosti.

- Parazitní
- Memory-resident
- Boot sector
- ☐ Stealth virus
 - Skrývá se před detekčními programy
- Polymorphic
 - Mění se kód viru
 - Snaží se bránit detekci podle signature viru

Příklad: SillyFD-AA

- □ V kořenové složce skrytý soubor autorun.inf
- □ Při zapojení USB disku spuštění souboru s červem
- Mj. mění položky systémového registru
- □ Text Hacked by 1BYTE v záhlaví IE

Šíření a projevy škodlivého kódu

Šíření

- □ Přes síť, USB disk, Bluetooth (mobilní zařízení), ...
- Přežívání ve starých zálohách

Projevy

- DOS (denial of service)
- Spamování
- Vzdálené ovládání, krádež informací
- Posílání drahých textovek, hovory (mobilní zař.)

- □ Detekce
 - Zjistit, že je soubor napadený
- □ Identifikace
 - Zjistit, o jaký virus se jedná
- Odstranění
- □ Databáze signatur virů (aktualizace)
- □ Heuristika

Koncept verifikačního monitoru

- □ Reguluje přístup subjektů (uživatelské procesy) k objektům (paměť)
- □ Verifikační monitor má přístup k security kernel databázi
 - Seznam přístupových privilegií každého subjektu
 - Seznam ochranných atributů každého objektu
- Audit file
 - Loguje důležité události
 - Přístupy, změny přístupových práv

Bezpečnostní chyby

- Příklad starší bezp. chyby
- Ipr vytiskne zadaný soubor na tiskárnu
- □ lpr –r soubor po vytisknutí zruší
- □ Ve starších verzích Unixu bylo možné, aby kdokoliv vytisknul a zrušil /etc/passwd

Vnější útoky na systém

- Vyhledání vhodného systému
 - "skenování" sítě
- Zjištění informací o počítači
 - OS, spuštěné servery
- Napadení systému
- Problém pro všechny fáze existují na síti vytvořené nástroje, útočník nemusí být ani žádným odborníkem na dané téma

Zjištění informací o počítači

- Zjištění typu stroje (fingerprint)
 - Např. reakce na nesmyslné příznaky (SYN-FIN-URG-PUSH) - každý OS a protokolový zásobník odpoví jinak
 - Odposloucháváním provozu
- □ Scan portů
 - Servery poslouchají na určeném portu, nejčastěji na wellknown portech
 - Např. program nmap
- Network vulnerability scanner
 - Testování bezpečnostních problémů v síti
 - Program nessus

Přetečení bufferu uloženého na zásobníku

- Programy vytvořené v C
- □ Nekontroluje např. meze polí, umožnuje přepsat část paměti
- Volání procedury na zásobník návratovou hodnotu
- Spustí proceduru, vytvoří místo pro lokální proměnné
- Uživatel zadá např. delší řetězec, přepíše část další paměti, včetně návratové adresy
- □ Návrat instrukce RET začne vykonávat instrukce od jiné adresy (pokud náhodné, program většinou zhavaruje)

Virtualizace – fenomén dnešní doby

- Oddělené stroje zákazníků
 - snadnější údržba
 - Zálohování, snapshoty
 - Neovlivňují se navzájem (např. vypnutý safe mode..)
- □ Vývojáři
- Výukové účely
 - Vrácení do původního stavu
 - Předpřipravené scénáře (např. konfigurace Exchange)
- Migrace virtuálních strojů
 - Snadno přesuneme virtuální stroj z železa Ž1 na Ž2

Virtualizace

Různé úrovně (viz wikipedia)

- Celý stroj (virtuální stroj)
- HW komponenty (virtuální procesory, paměť, disk)
- SW prostředí (virtualizace OS)

Virtualizace platformy

Řídící program (sw hostitele) vytváří simulované prostředí počítače (virtuální stroj) pro hostovaný sw (může jím být např. celý operační systém)

Přístupy k virtualizaci

(zdroj wikipedia)

- □ Emulace / Simulace
 - Simulace HW, dovoluje běh OS na odlišném procesoru
 - např. vývoj pro PDA pod Visual Studiem 2008, QEMU
- Nativní (plná) virtualizace
 - VS (virt. stroj) emuluje HW
 - umožní běh neupraveného OS (nejčastěji pro stejný druh CPU)
 - Lze i více instancí
 - VirtualBox, VirtualPC, Vmware Workstation/Server, QEMU

Přístupy k virtualizaci

□ Částečná virtualizace

- Zejména adresního prostoru
- Sdílení zdrojů a izolace procesů
- Neumí oddělit instance hostovaných OS
- Obecně nelze hovořit o virtuálním stroji

Paravirtualizace

- VS nabízí speciální API, které lze použít z upraveného hostovaného OS – systémové volání hypervizora
- XEN, Win4lin

Přístupy k virtualizaci

□ Virtualizace na úrovni OS

- Hostované OS sdílejí jeden OS s hostitelským systémem
- Stejné jádro OS je použito pro implementaci hostovaného OS,
- Linux-Vserver, Virtuozzo, FreeBSDJail

□ Aplikační virtualizace

- Aplikace běží na daném stroji, používá místní zdroje, ale ve virtuálním stroji (položky registrů, soubory, proměnnné prostředí)
- Např. Java Virtual Machine

Zdroj: http://www.parallels.com/products/virtuozzo/os/

Win Server 2008 Hyper-V

- □ Podporované OS
 - Windows Server 2003/2008 x64/x86
 - Windows Server 2000
 - SUSE Linux Enterprise Server 10
 - Windows Vista x64/x86
 - Windows XP Prof x64/x86

Každý guest OS ukládá do .vhd souboru

Hyper-V

(zdroj http://www.konzultant.net/a27-Windows-Server-2008-Hyper-V.aspx)

- Podpora HW virtualizace na úrovni CPU (Intel-VT, AMD-V)
- Hypervisor
 - Tenká vrstva pod OS (v podstatě mikrojádro)
 - Vytvoření a separace oddílů
 - Komunikace mezi virt. OS a HW
 - Neobsahuje ovladače, jen virtualizační logiku

Parent partition

- Instalace Win2008 serveru s rolí Hyper-V
- OS vlastní HW, poskytuje pro něj ovladače virtuálním stanicím

Child partition

Virtualizované stanice a systémy

IHV
Independent
Hardware
Vendor

VSP

Virtualization Service Provider Komunikace mezi ovladači a systémy

VM Worker
Process
Reprezentuje
A obsluhuje
Každou
virtuální stanici

- Některé použité při zpracování této přednášky
- □ Báječný svět Linuxu 2.6 (z roku 2003)
 - http://www.linuxzone.cz/index.phtml?ids=10&idc=782
- Porovnání systémů Linux a FreeBSD
 - http://www.root.cz/serialy/porovnani-systemu-linux-a-freebsd/
- PAM
 - http://www.root.cz/clanky/pam-sprava-autentizacnich-mechanismu/
 - http://www.root.cz/clanky/pam-pouziti-v-praxi/

- □ PAM, Kerberos
 - http://www.fi.muni.cz/~kas/p090/referaty/2005jaro/st/referat_kerberos_pam.html
- Kerberos: http://web.mit.edu/Kerberos/