

Statistical Thinking (ETC2420/ETC5242)

Associate Professor Catherine Forbes

Week 5: Resampling techniques for assessing variability in means

Learning Goals for Weeks 4 and 5

- Review the Central Limit Theorem
- \blacksquare Apply one and two sample t-tests and confidence intervals \checkmark
- Build Bootstrap confidence interval for numerical data
- $lue{}$ Distinguish between independent and paired samples \checkmark

Assigned reading for Week 5:

- Chapter 4 (skip Section 4.4) in ISRS
- Section 19.1-19.6 in R for Data Science (writing functions and if-else statements)

The Central Limit Theorem (CLT)

- CLT describes the **sampling distribution** of \bar{X} , as the sample size **increases**
- The (hypothetical) sampling distribution of the sample mean will become normally distributed
 - even if the data from the original population is **not** normally distributed
- \blacksquare F is the population distribution
 - \triangleright $E[X_i] = \mu$
 - $ightharpoonup Var(X_i) = \sigma^2 < \infty$
- The sample mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a **point estimator** of μ

CLT

If $X_1, X_2, \ldots, X_n, \ldots \stackrel{i.i.d}{\sim} F$, then

$$\sqrt{n} \ (\bar{X} - \mu) \xrightarrow{Dist} N \ (0, \sigma^2) \ , \ \text{as } n \to \infty$$

- Provides approximate sampling distribution of \bar{X} (for fixed n)
 - ightharpoonup \Rightarrow hypothesis test about μ
 - ightharpoonup \Rightarrow confidence interval for μ

Some non-normal populations

CLT approximations with n=30

Using the CLT (estimating the SE)

■ We don't usually know σ , but we can **estimate** it with the sample standard deviation:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

■ And replace σ/\sqrt{n} with

$$SE = \frac{s}{\sqrt{n}}$$

Use approximation:

$$T = rac{\sqrt{n} \left(ar{X} - \mu
ight)}{s} = rac{ar{X} - \mu}{SE} \stackrel{approx}{\sim} t_{n-1}$$

■ As $n \to \infty$ then $T \stackrel{D}{\to} N(0,1)$

Testing hypotheses with the CLT (one sample)

- Use CLT to test H_0 : $\mu = \mu_0$ (= 'null value')
- When H_0 is true: $T_0 = \frac{\bar{\chi}_{-\mu_0}}{SE} \stackrel{approx}{\sim} t_{n-1}$ and we test against:

two-sided alternative:
$$H_1: \mu \neq \mu_0$$

Reject
$$H_0$$
 if $|T_0| \ge t_{n-1,0.975}$

upper one-sided alternative:
$$H_1: \mu > \mu_0$$

Reject
$$H_0$$
 if $T_0 \ge t_{n-1,0.975}$

lower one-sided alternative:
$$H_1: \mu < \mu_0$$

Reject
$$H_0$$
 if $T_0 \le t_{n-1,0.025}$

■ Otherwise do not reject H_0 and conclude $\mu = \mu_0$

95% Confidence interval based on T (one sample)

■ Start with 95% sampling interval for \bar{X} :

$$\Pr\left(t_{n-1,0.025} < \frac{\bar{X} - \mu}{s/\sqrt{n}} < t_{n-1,0.975}\right) = 0.95$$

Rearrange expression:

$$\Rightarrow \Pr\left(\bar{X} + \frac{s}{\sqrt{n}} t_{n-1,0.025} < \mu < \bar{X} + \frac{s}{\sqrt{n}} t_{n-1,0.975}\right) = 0.95$$

• 'Plug in' observed: $\bar{X} = \bar{x}_{obs}$ and record observed interval \Rightarrow 95% confidence interval for μ :

$$\left[\bar{x}_{obs} + \frac{s}{\sqrt{n}} \ t_{n-1,0.025}, \ \bar{x}_{obs} + \frac{s}{\sqrt{n}} \ t_{n-1,0.975}\right]$$

- Now there is no probability remaining! Only "confidence"
 - **Before observed,** \bar{X} is random
 - ▶ After observed, \bar{x}_{obs} is no longer random
 - μ is always fixed!

Student-t quantiles for CLT-based confidence intervals

■ The notation $t_{df,\alpha}$ refers to the lower α quantile of the student t distribution with df degrees of freedom:

$$\Pr\left(T \leq t_{df,\alpha}\right) = \alpha$$

- If the degrees of freedom df is "large", then $t_{df,\alpha} \approx z_{\alpha}$, the lower α quantile of the N(0,1) distribution, i.e.
 - $t_{0.025,n-1} \to z_{0.025} = -1.96$ as $n \to \infty$, and
 - ► $t_{0.975,n-1} \rightarrow z_{0.975} = +1.96$ as $n \rightarrow \infty$
- In **R**, use
 - ightharpoonup qt(0.025, (n-1)) for $t_{0.025,n-1}$, and qt(0.975, (n-1)) for $t_{0.975,n-1}$
- And note that
 - ightharpoonup qnorm(0.025) is $z_{0.025}$, and qnorm(0.975) is $z_{0.975}$

Confidence intervals via a "Bootstrap" approach

- **Bootstrap** techniques provide alternative approaches to constructing a confidence interval
- The basic idea: Replicate "hypothetical" data sets (Bootstrap samples) by re-sampling observed values with replacement
- There are several Bootstrap approach variations. Here we consider one referred to the **Bootstrap percentile interval** approach

The Bootstrap CI for single population mean, based on $ar{X}$

An approximate 95% confidence interval for a single population mean is obtained in three steps:

- Generate a Bootstrap sample of B potential \bar{X} values
 - Denote these as $\{\bar{x}^{[1]}, \bar{x}^{[2]}, \dots, \bar{x}^{[B]}\}$
 - \blacksquare B = should be a large number (e.g. B = 1000)
- Use the empirical distribution from this Bootstrap sample to approximate the sampling distribution of \bar{X}
 - give each $\bar{x}^{[b]}$ equal weight= 1/B, and
 - approximate

$$\hat{\Pr}(\bar{X} \le c) = \frac{\text{number of } [\bar{x}^{[b]} \le c]}{B}$$

Construct an approximate 95% confidence interval by selecting interval from 2. with (empirical) probability (at least) 95%

How to generate a Bootstrap sample

- How to calculate $\bar{x}^{[b]}$?
- For each b in 1 : B
 - resample n draws from the D_n set, with replacement

 - ▶ label these values as $\{x_1^{[b]}, x_2^{[b]}, \dots, x_n^{[b]}\}$ ▶ compute the average $\bar{x}^{[b]} = \frac{1}{n} \sum_{i=1}^{n} x_i^{[b]}$
- In R use (with replace = TRUE) either:
 - sample(), or
 - slice sample()

Resampling in R with sample()

[1] 7.2

```
a <- c(1:10)
а
 [1] 1 2 3 4 5 6 7 8 9 10
mean(a)
[1] 5.5
atil <- sample(a, replace = TRUE)
atil
 [1] 5 8 7 7 2 10 8 10 10 5
mean(atil)
```

13

Resampling in R with slice_sample()

df < - tibble(a = c(1:10), b = letters[1:10])

```
mean(df$a)

[1] 5.5

dftil <- slice_sample(df, n = nrow(df), replace = TRUE)</pre>
```

```
Columns: 2
$ a <int> 5, 8, 7, 7, 2, 10, 8, 10, 10, 5
$ b <chr> "e", "h", "g", "g", "b", "j", "h", "j", "j", "e"
```

```
mean(dftil$a)
```

glimpse(dftil)

Rows: 10

[1] 7.2

A N(3, 4) sample of size n=30

Bootstrap 95% confidence interval

- Take off 2.5% from each tail of the Bootstrap empirical distribution
- Just sort the $\{\bar{x}_{obs}^{[b]}\}$ values and find
 - the lower 2.5% quantile $\Rightarrow L_{\bar{x}_{obs}}$
 - ▶ the lower 97.5% quantile $\Rightarrow U_{\bar{x}_{obs}}$
- And then $[L_{\bar{X}_{obs}}, U_{\bar{X}_{obs}}]$ is an approximate 95% confidence interval for μ
- For N(3,4) example: 95% CIs (approximate and exact)

L _{Boot}	U _{Boot}	L _{CLT}	U_{CLT}	L _{Exact}	U _{Exact}
2.34	3.83	2.25	3.90	2.28	3.72

■ Exact available since $X_1, X_2, \dots, X_n \overset{i.i.d.}{\sim} N(3,4)$ then $\bar{X} \sim N(3,\frac{4}{30})$

Testing hypotheses with a Bootstrap approach

- It is possible to use a Bootstrap approach to test H_0 : $\mu = \mu_0$ (= 'null value')
- But the process is more involved and easy to get wrong
- See Hall, P. and Wilson, S. R. (1991) Two Guidelines for Bootstrap Hypothesis Testing, *Biometrics*, Vol. 47, No. 2, pp. 757-762
- ⇒ We will not pursue Bootstrap hypothesis tests in this unit.

Bootstrap for paired samples

Like with the CLT, we can apply the Bootstrap to paired data

$$\{(X_{1,i},X_{2,i}), \text{ for } i=1,2,\ldots,n\}$$

First calculate the sample of paired differences:

$$DD_n = \{Diff_i = X_{1,i} - X_{2,i}, \text{ for } i = 1, 2, ..., n\}$$

- Then apply the **single population Bootstrap** method to the DD_n sample
 - \blacktriangleright for each b in 1 : B
 - * resample n draws from the DD_n set, with replacement
 - ★ compute the average Diff^[b]
 - ▶ Use the empirical sample of $\{D\overline{iff}^{[b]}, \text{ for } b=1,2,\ldots,B\}$ to obtain a confidence interval for $\mu_{Diff}=\mu_1-\mu_2$

Bootstrap for the different in two independent samples

- For unpaired data $D1_{n_1} = \{X_{1,i}, \text{ for } i = 1, 2, ..., n_1\}$ and $D2_{n_2} = \{X_{2,j}, \text{ for } j = 1, 2, ..., n_2\}$, we can use the Bootstrap to build the relevant confidence interval
- For each b,
 - resample with replacement n_1 observations from $D1_{n_1}$ to produce $\bar{x}_{1 \text{ obs}}^{[b]}$,
 - resample with replacement n_2 observations from $D2n_2$ to produce $\bar{x}_{2,obs}^{[b]}$, and
 - calculate $(\bar{x}_{1,obs}^{[b]} \bar{x}_{2,obs}^{[b]})$
- And compute an approximate 95% confidence interval using the lower 2.5% and 97.5% quantiles of $\{(\bar{x}_{1.obs}^{[b]} \bar{x}_{2.obs}^{[b]}), \text{ for } b = 1, 2, \dots, B\}$
- Again we will not attempt hypothesis tests using a Bootstrap approach in this setting.

What's the real advantage of the Bootstrap approach?

- Both CLT and Bootstrap approaches do not require knowledge of the true underlying population distribution
- Both CLT and Bootstrap approaches are (relatively) easy to implement
- However, the CLT only works for the sampling distribution of \bar{X} (for single population)
- Whereas we can apply the Bootstrap approach to any point estimator!
- e.g. for
 - single population median
 - parameters of assumed models models
 - ▶ to assess single population asymmetry: e.g. mean median
 - differences in the medians of two independent samples
 - and more!
- Use resampling of the available data to assess uncertainty in the estimator
- (If you are interested in frequentist inference)