Badanie złożoności obliczeniowej dwóch implementacji stosu

Szymon Leśniak

21 marca 2014

1 Opis badania

Dokonano implementacji stosu na liczby całkowite typu int za pomocą tablicy. Implementacji dokonano w dwóch wariantach: w każdym z nich wielkość stosu nie była stała; przy próbie położenia liczby na pełny stos dokonywano realokacji tablicy.

Przy zastosowaniu strategii inkrementacyjnej nowoalokowany stos miał rozmiar o jeden większy niż dotychczas. Innymi słowy, stosowi zmieniano wielkość przy każdym położeniu nowego elementu. Analogicznie stos był zmniejszany za każdym razem, gdy z niego zabierano liczbę.

Strategia podwajania miała na celu zmniejszenie częstotliwości realokacji stosu. W tym celu rozmiar przy każdym przepełnieniu stosu jego rozmiar jest powiększany dwukrotnie. Pamięć zajmowana przez stos była zwalniana wtedy, gdy zapełnienie stosu spadło poniżej $\frac{1}{4}$ zarezerwowanej dla niego pamięci.

Zbadany został czas napełnienia stosu dla różnych wielkości problemu. Dla każdej z wielkości badanie było powtórzone wielokrotnie. Implementacji dokonano w języku C++, przy użyciu systemu operacyjnego Ubuntu 13.10 oraz kompilatora g++ 4.8.1.

2 Wyniki badania

Wyniki są przedstawione w poniższych tabelach oraz na wykresie (skala log-log)

Tablica 1: Wyniki badania strategii inkrementacyjnej

Ilość liczb	Ilość badań	Średni czas [s
10	100	$1,74\cdot10^{-5}$
100	75	$0,\!000104885$
1000	50	$0,\!00203451$
5000	25	0,0444254
10000	10	$0,\!178434$
100000	2	21.1769

Tablica 2: Wyniki badania strategii podwajania

Ilość liczb	Ilość badań	Średni czas [s
10	100	$1,79 \cdot 10^{-5}$
100	100	$3,83 \cdot 10^{-5}$
1000	50	$0,\!000271155$
5000	50	0,000732078
10000	25	$0,\!00115531$
100000	15	0,0115602
1000000	5	$0,\!114574$

Czas wstawiania liczb całkowitych na stos

3 Wnioski

We wszystkich przypadkach strategia podwajania okazała się szybsza. Różnica w czasie wykonania wypełnienia stosu stała się jednak znacząca dla większych rozmiarów problemu.

Strategia inkrementacyjna okazała się mieć złożoność obliczeniową $\Theta(n)$, zaś strategia podwajania – $\Theta(n^2)$.