Objectif. Calculer les termes d'une suite définie explicitement.

Exercice 1. Soit (u_n) la suite définie par $u_n = 2n + 3$ pour tout $n \in \mathbb{N}$. Calculer u_0 , u_1 , et u_2

Exercice 2. Soit (u_n) la suite définie par $u_n = \frac{n+1}{2n-3}$ pour tout $n \in \mathbb{N}$. Calculer u_0 et u_{10}

Exercice 3. Soit (u_n) la suite définie par $u_n = 2^n - 1$ pour tout $n \in \mathbb{N}$. Calculer les cinq premiers termes de la suite.

Exercice 4. Soit (u_n) la suite définie par $u_n=2n-1$ pour tout $n\in\mathbb{N}$. Exprimer u_{n+1},u_{n-1},u_{n-1} , u_{2n} et u_n+1 en fonction de n.

Exercice 5. Thomas paye $45 \in$ un abonnement résidentiel annuel pour garer sa voiture dehors. Il doit ensuite payer $1,5 \in$ supplémentaire par jour de stationnement. On note u_n le prix que Thomas paye pour son abonnement et n jours de stationnements.

- 1. Exprimer u_n en fonction de $n \in \mathbb{N}$.
- 2. Combien payera-t-il au total s'il gare sa voiture dehors 300 jours par an ?

Objectif. Calculer les termes d'une suite définie explicitement.

Exercice 6.

- a) Soit (u_n) la suite définie par $u_0=-5$ et $u_{n+1}=2u_n+1$ pour tout $n\in\mathbb{N}$. Calculer u_1 et u_2 .
- b) Soit (u_n) la suite définie par $u_0=2$ et $u_{n+1}=\frac{2u_n-2}{u_n-3}$ pour tout $n\in\mathbb{N}$. Calculer u_1 et u_2 .

Exercice 7. Soit (u_n) la suite définie par $u_2 = -3$ et $u_{n+1} = u_n^2 - 6$ pour tout $n \ge 2$. Calculer les 4 premiers termes de (u_n) .

Exercice 8. Une ludothèque possède 100 jeux de société en 2019. Chaque année, elle donne 5 % de ses jeux à une œuvre de charité et décide d'acheter 10 nouveaux jeux.

- 1. Combien aura-t-elle de jeux en 2020 ?
- 2. On note u_n le nombre de jeux de société de la ludothèque en 2019 + n. Donner l'expression de u_{n+1} en fonction de u_n .

Exercice 9. Un matin, Mathéo décide de poser un récipient dans son jardin, contenant 200 g de noisettes. Chaque après-midi, un écureuil vient manger la moitié du récipient, puis Mathéo remet 80 g de noisettes le soir. On note u_n la quantité en grammes de noisettes dans le récipient le n-ième jour au matin.

- 1. Donner la valeur de u_1 et de u_2 .
- 2. Exprimer u_{n+1} en fonction de u_n .

Objectif. Lire une représentation graphique

Exercice 10. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = f(n)$. On donne ci-contre la courbe représentative de la fonction f. Déterminer la valeur des cinq premiers termes de la suite (u_n)

Exercice 11. Soit (v_n)

la suite définie par $v_0 = 1$ et $v_{n+1} = f(v_n)$ pour tout $n \in \mathbb{N}$. On donne ci-dessous la courbe représentative de la fonction f. Déterminer la valeur des cinq premiers termes de la suite (v_n) .

Objectif. Représenter graphiquement une suite

Exercice 12. Soit (u_n) la suite définie par $u_0 = 6$ et $u_{n+1} = \frac{1}{3}u_n - 1$ pour tout $n \in \mathbb{N}$.

- 1. Calculer les 4 premiers termes de (u_n)
- 2. Représenter la suite (u_n) de deux manières différentes.

Objectif. Etudier les variations d'une suite

Exercice 13. Etudier les variations des suites suivantes définies pour tout $n \in \mathbb{N}$:

a)
$$u_n = n^2 + 2n$$

b)
$$v_n = \frac{4}{n+1}$$

c)
$$w_n = -5^n$$

d)
$$a_n = -2n^2 + 5$$

e)
$$(u_n)$$
 définie par $u_0=3$ et $u_{n+1}=u_n+\sqrt{n}$ pour tout $n\in\mathbb{N}$

Exercice 14. Etudier les variations des suites suivantes en remarquant qu'elles sont positives :

a)
$$u_n = 7 \times 0.5^n$$

b)
$$v_n = 4 \times 9^n$$

Exercice 15. Etudier les variations des suites suivantes définies pour tout $n \in \mathbb{N}$:

a)
$$u_n = 2n^2 - 3n + 1$$

b)
$$v_n = \frac{3^n}{2^{n-1}}$$

c)
$$w_n = \frac{n-3}{2n+1}$$

Exercice 16.

Soit (u_n) la suite définie par $u_n = \frac{2^n}{n}$ pour $n \ge 1$.

a) Calculer
$$\frac{u_{n+1}}{u_n}$$

- b) Résoudre l'inéquation $\frac{2n}{n+1} > 1$ d'inconnue n.
- c) En déduire les variations de (u_n) .

Exercice 17.

- 1. Montrer que la suite définie par $u_n = (-3)^n$ n'est ni croissante, ni décroissante.
- 2. Montrer que la suite définie pour tout $n \in \mathbb{N}$ par $u_n = -n^2 + 4n$ n'est ni croissante ni décroissante

Exercice 18. On considère la suite (w_n) définie par $w_0 = 1$ et pour tout $n \in \mathbb{N}$, $w_{n+1} = \frac{1}{2}w_n + 2$.

1. Recopier et compléter ce programme Python pour qu'il affiche w_{20}

$$w = \dots$$
for i in range(......)

 $w = \dots$
print(.....)

- 2. Implémenter cet algorithme. Combien vaut w_{20} ?
- 3. Conjecturer la limite de w_n

Objectif. Conjecturer la limite d'une suite

Exercice 19.

Conjecturer, si elle existe, la limite des suites cidessous :

Exercice 20. Conjecturer, si elle existe, la limite des suites dont certaines valeurs sont données ci-dessous.

1.
$$u_1 = -1$$
, $u_{10} = -20$, $u_{1000} = -4000$, $u_{10000} = -5000$

2.
$$v_1 = 3$$
, $v_{10} = -2$, $v_{100} = 3$, $v_{1000} = -2$, $v_{10000} = 3$

3.
$$w_1 = -1$$
, $w_{100} = -1,95$, $w_{1000} = -1,98$, $w_{10000} = -1,99$

Exercice 21. Conjecturer la limite de :

- 1. La suite (u_n) définie pour $n \in \mathbb{N}$ par $u_n = n$
- 2. La suite (v_n) définie pour tout $n \ge 1$ par $v_n = \frac{1}{n}$