Основные формулы раздела «Кинематика»

	Уравнение движения	ямолинейное движение $x=\pm x_0 \pm vt$		
	•			
	Перемещение	$s = x - x_0 = vt$		
	Примечание. Знаки перед слагаемыми в	з правой части уравнения зависят от выбора		
	направления оси Х.			
2.	Равнопеременное прямолинейное движения			
	Ускорение	$a = \frac{v - v_0}{c}$		
		$a = \frac{v - v_0}{t}$ $x = \pm x_0 \pm v_0 t \pm \frac{at^2}{2}$		
	Уравнение движения	$x = +x_0 + v_0 t + \frac{at^2}{at^2}$		
	Vacanta	<u> </u>		
	Уравнение скорости	$v = \pm v_0 \pm at$		
	Перемещение	$v=\pm v_0\pm at$ $S=v_0t+rac{at^2}{2}$ или $S=rac{v^2-v_0^2}{2a}$		
	Примечание. При свободном падении ускорение <i>a</i> заменяют на <i>g</i> =9/8м/ c^2			
	Средняя скорость	$S S_1 + S_2 + S_3 \dots$		
		$v_{cp.} = \frac{1}{t} = \frac{1}{t_1 + t_2 + t_3 \dots}$		
	а) если $S_1 = S_2 = S/2$	$v_{cp.}=rac{S}{t}=rac{S_1+S_2+S_3\}{t_1+t_2+t_3\}$ то $v_{cp}=rac{2v_1v_2}{v_1+v_2}$ то $v_{cp}=rac{v_1+v_2}{2}$ ейное движение вдоль осей X u Y		
	6) 22214 4 4/2	v_1+v_2 v_1+v_2		
	$t_1 = t_2 = t/2$	TO $v_{cp} = \frac{1+v_2}{2}$		
3.	Равномерное прямолине	ейное движение вдоль осей <i>X и Y</i>		
	Уравнения движения по осям X и Y	$x = \pm x_0 \pm v_x t; y = \pm y_0 \pm v_y t$		
	Уравнения проекций скорости по осям	$v_x = v \cos \alpha; \ v_y = v \sin \alpha$		
	Скорость тела в любой момент времени	$x = \pm x_0 \pm v_x t; y = \pm y_0 \pm v_y t$ $v_x = v \cos \alpha; v_y = v \sin \alpha$ $v = \sqrt{v_x^2 + v_y^2}$		
4.	Движение тела, брошенного горизонтально			
	Движение по оси X	$x = V_{0x}t$		
	Движение по оси Ү	$y = \frac{g_y t^2}{2}$		
	Время падения	$y = \frac{g_y t^2}{2}$ $t = \sqrt{\frac{2h}{g}}$		
	Дальность полета	$S = V_0 t = V_0 \sqrt{\frac{2h}{g}}$ $v = \sqrt{v_x^2 + v_y^2}$		
	Скорость тела в любой момент времени	$v = \sqrt{v_x^2 + v_y^2}$		
5.	Движение тела, брошенного под углом к горизонту			
	Проекции вектора скорости	$V_{0x} = V_0 \cos \alpha$; $V_{0y} = V_0 \sin \alpha$		
	Уравнения движения на ось X	$x = V_{0x}t; x = V_0t \cos\alpha$		
	Уравнения движения на ось Ү	$y = V_{0y}t - \frac{g_y t^2}{2}$; $y = V_0 sin\alpha - \frac{g_y t^2}{2}$		
	Скорость тела в любой точке	$V = \sqrt{V_x^2 + V_y^2}$		
	Полное время полета	$t = \frac{2V_0 \sin \alpha}{g}$		
	Максимальная высота подъёма	$x = V_{0x}t; x = V_{0}t \cos \alpha$ $x = V_{0y}t - \frac{g_{y}t^{2}}{2}; y = V_{0}sin\alpha - \frac{g_{y}t^{2}}{2}$ $V = \sqrt{V_{x}^{2} + V_{y}^{2}}$ $t = \frac{2V_{0}sin\alpha}{g}$ $h_{max} = \frac{v_{0}^{2}sin^{2}\alpha}{2g}$ $S = \frac{v_{0}^{2}sin^{2}\alpha}{g}$		
	Дальность полета	2		

	Des				
6.	Равномерное движение по окружности				
	Линейная скорость	$v = \frac{l}{l} = \frac{2\pi R}{l}$			
		t - t - T			
	Центростремительное ускорение	$a = v^2$			
		$u_{u}-\frac{R}{R}$			
	Угловая скорость	$a_{u} = \frac{1}{R}$ $\omega = \frac{2\pi}{T} = 2\pi \nu$			
		$\omega - \frac{1}{T} = 2\pi v$			
	_				
7.	•	рльное движение			
	Угловое перемещение при равномерном	$\varphi = \omega t$			
	вращении				
	Угловое перемещение при	$\varphi = \omega_0 t \pm \frac{\varepsilon t^2}{2}$			
	равнопеременном вращении	$\varphi = \omega_0 t \pm \frac{1}{2}$			
		$oldsymbol{arepsilon}$ - угловое ускорение, рад/ c^2 .			
	Угловая скорость при равнопеременном	$\omega = \omega_0 \pm \varepsilon t$			
	вращении				
	Связь линейных величин	$l = \varphi R; v = \omega R; a_{\kappa} = \varepsilon R; a_{u} = \omega^{2} R$			
		, , , , , ,			
	$oldsymbol{a}_{\kappa}$ — проекция вектора линейного ускорения на направление касательной в данной точ				
	$a_{\rm u}$ — проекция вектора линейного ускорения на направление радиуса в данной точь (центростремительное ускорение)				
	$oldsymbol{a} = \sqrt{oldsymbol{a}_{ ext{ iny K}}^2 + oldsymbol{a}_{ ext{ iny I}}^2}$				
	\vec{a} $\vec{d}_{\mathbf{K}}$ $\vec{d}_{\mathbf{K}}$				

Основные формулы раздела «Динамика»

1.Сила упругости. Закон Гука			
$F_x = -k\Delta x = -k(x_2 - x_1)$	k – коэффициент жесткости		
	Δx – смещение при деформации		
Сила упругости, возникающая при деформации опоры или подвеса			
\overrightarrow{N}	сила реакции опоры		
$ec{T}$	сила реакции подвеса		
2.Сила тяжести			
F=mg	т – масса тела (m = $ho V)$		
$g = 9.8 \text{ m/c}^2$	g – ускорение свободного падения		
3.Вес тела			
P= mg	при равномерном движении		
P= m(g+a)	при движении вверх с ускорением		
P= m(g-a)	при движении вниз с ускорением		
4.Сила трения			
$F = \mu N$	μ - коэффициент трения		
	N - сила реакции опоры		

Примечание. При решении задач считаем, что все силы приложены к центру тяжести тела. Также стоит обратить особое внимание на применение второго закона Ньютона.

- 1.Прежде всего, необходимо сделать к задаче рисунок.
- 2. Расставить все силы, действующие на каждое тело.
- 3. Указать направление скорости и ускорения.
- 4.Записать уравнение второго закона Ньютона в векторной форме:

$$\sum_{i} \vec{F} = m\vec{a}$$

Геометрическая сумма всех сил, действующих на тело, равна произведению массы тела, на приобретаемое им ускорение.

5.3аписать уравнения второго закона Ньютона в скалярном виде, на выбранные направления осей $X\ u\ Y.$

Примечание. Если в движении находится не одно, а несколько связанных между собой тел, то необходимо для каждого тела отдельно выполнить все вышеуказанные действии и решить полученную систему уравнений.

полученную систему уравнений.			
5.Третий закон Ньютона			
$\overrightarrow{F_1} = \overrightarrow{F_2}$ или $m_1 \overrightarrow{a_1} = -m_2 \overrightarrow{a_2}$			
6.Закон всемирного тяготения			
$F = G \frac{m_1 m_2}{P^2}$	G – гравитационная постоянная		
R^2	m_1m_2 - массы взаимодействующих тел		
	R – расстояние между телами		
7.Сила тяжести на высоте h от поверхности планеты			
. — С Мт — G — гравитационная постоянная			
$F = G \frac{Mm}{(R_0 + h)}$	М – масса планеты		
	т – масса тела		
	R_0 — радиус планеты		
	h -расстояние от планеты до тела		
8.Первая и вторая космические скорости			
$v_{\kappa 1} = \sqrt{gR} = \sqrt{\frac{GM}{R}}$	$v_{\kappa 2} = \sqrt{2v_{\kappa 1}} = \sqrt{\frac{2GM}{R}}$		

Основные формулы раздела «Статика и гидростатика»

Давление твёрдого тела			
$p = \frac{F}{S}$ - Па	Давление твёрдого тела обратно пропор-		
$p = \frac{1}{s}$ The	ционально площади поверхности, на кото-рую		
	действует сила.		
Давление жидкостей и газов			
p= ho g h -Па			
	Паскаля		
	передается в любую точку без изменений во всех		
направлениях.	, , , , , , , , , , , , , , , , , , , ,		
	циеся сосуды		
$h_{nea.} = h_{no.}$	Однородная жидкость		
$h_{\kappa_{ep}}$ ρ_{e}	Разнородные жидкости		
$egin{aligned} oldsymbol{h}_{ extit{nee}.} &= oldsymbol{h}_{ extit{np}.} \ oldsymbol{h}_{oldsymbol{\kappa} oldsymbol{ep}.} &= oldsymbol{ ho}_{oldsymbol{\kappa} oldsymbol{ep}.} \end{aligned}$			
	еская машина		
$\frac{F_{M}}{S_{M}}=\frac{F_{6}}{S_{6}}$ unu $F_{6}=F_{M}\frac{S_{6}}{S_{M}}$	Сила \mathbf{F}_{6} во столько раз больше силы \mathbf{F}_{M} , во		
$S_{\rm M} = S_{\rm 6}$ and $I_{\rm 6} = I_{\rm M} S_{\rm M}$	сколько раз площадь большого поршня больше		
	площади малого (<mark>выигрыш в силе!</mark>)		
Архиме	дова сила		
$F_A = \rho_{\mathcal{H}} V_T g$	Тело, погруженное в жидкость или газ теряет		
	в своём весе столько, сколько весит		
	вытесненная им жидкость или газ.		
Условия п	лавания тел		
F _A < m g - <i>m</i> c	рнет - ρ _ж < ρ _τ		
F _A = mg - пло	asaem - $\rho_{x} = \rho_{\tau}$		
F _A > mg - всп	лывает - р _ж > р _т		
Условия равн	ювесия рычага		
$\frac{F_1}{F_2} = \frac{l_2}{l_1}$ или $M_1 = M_2$	Рычаг находится в равновесии тогда, когда		
r_2 l_1	силы, действующие на него, обратно		
	пропорциональны плечам этих сил (или		
	моменты этих сил равны).		
	ительно оси вращения		
$M = \pm Fl$	Момент силы относительно оси вращения - это		
	физическая величина, которая равна		
	произведению силы на ее плечо.		
	I – плечо силы F относительно оси;		
	знак \pm зависит от того, вращает сила тело		
по или против часовой стрелки.			
Условия равновесия твердого тела			
$\begin{cases} M_1 + M_2 + \dots = 0 \\ \vec{F}_1 + \vec{F}_2 + \dots = 0 \end{cases}$	1 правило моментов.Тело, имеющее		
$(r_1 + r_2 + \dots = 0)$	неподвижную ось вращения, находится в равновесии, если алгебраическая сумма		
	моментов всех приложенных к телу сил		
	относительно этой оси равна нулю.		
	2 условие равновесия . Не вращающееся тело		
	находится в равновесии, если геометрическая		
	сумма сил, приложенных к телу, равна нулю.		

Основные формулы раздела «Законы сохранения»

Импульс тела		
$\overrightarrow{p} = m\overrightarrow{v} - \frac{{}_{\mathrm{K}\Gamma^{*}\mathrm{M}}}{{}_{\mathrm{C}}} = Hc$	Импульсом или количеством движения	
$p = mv - \frac{1}{c} = mc$	называется произведение массы тела на	
	его скорость.	
	Импульс –векторная величина –	
	направление вектора импульса совпадает с	
	вектором скорости	
$\Delta \vec{p} = m \Delta \vec{v} = \vec{F} \Delta t$	Изменение импульса тела равно импульсу	
•	силы.	
Закон сохрано	ения импульса	
$m_1\vec{v}_1 + m_2\vec{v}_2 = m_1\vec{v}_1' + m_2\vec{v}_2'$	Геометрическая сумма импульсов тел,	
	составляющих замкнутую систему,	
	остается постоянной при любых	
	взаимодействиях тел этой системы	
	между собой.	
	(замкнутая система — система, на	
	которую не действуют внешние силы)	
Do	бота	
$A = FScos\alpha = 1 \text{H} * 1 \text{M} = 1 \text{Дж}$	скалярная величина, равная произведению	
A - FSCOSu - III * IM - IAM	модуля силы, действующей на тело, на	
	модуль перемещения и на косинус угла	
	между векторами силы и перемещения	
	(или скорости).	
$A = k \Delta x^2$	Работа силы упругости	
$A = k\Delta x^{2}$ $A_{\text{Tp.}} = -F_{\text{Tp.}}S\cos\alpha = -F_{\text{Tp.}}$	Работа силы трения	
A = mgh	Работа силы тяжести	
Мощность		
$N = \frac{A}{I}$ - BT	Скорость выполнения работы	
Эне	ргия	
	сть тела или системы тел совершать	
	кую работу.	
$E_{\rm K} = \frac{mV^2}{2}$	Кинетическая энергия – энергия, которой	
$E_{\rm K} = \frac{1}{2}$	обладает тело вследствие своего	
	движения	
$A = E_{\kappa 2} - E_{\kappa 1}$	Теорема о кинетической энергии - работа	
	равнодействующей всех сил, приложенных	
	к телу равна изменению его кинетической	
_ ,	энергии	
$E_p = mgh$	Потенциальная энергия, поднятого над	
2	Землёй тела.	
$E_p = \frac{kx^2}{2}$	Потенциальная энергия упруго	
2 2 C 2	деформируемого тела	
$A = E_{p1} - E_{p2} = -(E_{p2} - E_{p1})$ $E_{K1} + E_{p1} = E_{K2} + E_{p2}$	Теорема о потенциальной энергии	
$\boldsymbol{E}_{\mathrm{K}1} + \boldsymbol{E}_{\boldsymbol{p}1} = \boldsymbol{E}_{\mathrm{K}2} + \boldsymbol{E}_{\boldsymbol{p}2}$	Закон сохранения энергии	

Основные формулы раздела «Молекулярная физика»

Основные формулы		
$A = \frac{m_0}{m_0}$	Относительная атомная масса	
$1/12m_{0c}$	т ₀ - масса атома элемента	
$M_r=rac{m_0}{1/12m_{0c}}$	Относительная молекулярная масса m_0 - масса молекул вещества	
$ u = \frac{N}{N_A}$ - моль	Количество вещества	

Моль-это количество вещества, содержащегося столько же молекул (атомов), сколько содержится атомов в 0,012кг углерода.

В 1 моле любого вещества содержится одно и то же число атомов или молекул. Число атомов или молекул, содержащихся в одном моле вещества, называют **числом или постоянной Авогадро.**

$N_A = rac{m_c (1 { m MOЛЬ})}{m_{oc}} = rac{0,012 { m Kr/MOЛЬ}}{1,995 * 10^{-26} { m Kr}} = 6,02 * 10^{23} { m MОЛЬ}^{-1}$ $M = rac{m}{v}$		
$M = \frac{m}{v}$ Молярная масса		
$M = \frac{1}{v}$ МОЛЯРНИЯ МИССИ m		
$M = \frac{1}{v}$ МОЛЯРНИЯ МИССИ m		
$oldsymbol{v} = rac{oldsymbol{v}}{oldsymbol{m}} \hspace{1cm} ext{Количество вещества} \ oldsymbol{m}_0 = rac{oldsymbol{M}}{oldsymbol{N}_A} \hspace{1cm} ext{Масса молекулы}$		
$oldsymbol{v} = rac{M}{M}$ Количество вещества $oldsymbol{m}_0 = rac{M}{N_A}$ Масса молекулы		
$m_0 = rac{M}{N_A}$ Масса молекулы		
N _A		
Cogo, monedu ma gangou maccou u		
$M = 10^{-3} M_r \frac{\kappa 2}{1000}$ Связь между молярной массой и		
Идеальный газ		
$n=rac{N}{V}$ Концентрация газов $ar V_X^2=rac{1}{3}ar V^2$ Средний квадрат проекции скорости равен 1/3 среднего квадрата самой скорости		
$\mathbf{T}_{\mathbf{Z}^2} = 1_{\mathbf{T}^2}$ Средний квадрат проекции скорости равен		
$v_X = \frac{1}{3}v^{-1}$ 1/3 среднего квадрата самой скорости		
Основное уравнение МКТ - устанавливает		
$P=rac{1}{3}nm_0\overline{V}^2$ связь между макро- и микропараметрами		
$m{P} = rac{2}{3} n rac{m_0 ar{V}^2}{2} = rac{2}{3} n ar{m{E}}$ Связь давления со средней кинетической энергией		
$P = \frac{1}{3}n\frac{1}{2} = \frac{1}{3}nE$ энергией		
$p=rac{1}{3} ho \overline{V}^2$ Связь давления с плотностью газа		
т 2 1 Температура прямо пропорциональн		
I = I - E		
o k		
поступательного движения молекул.		
o k		

$k = 1,36 * 10^{-23} \frac{\text{Дж}}{\text{K}}$	Постоянная Больцмана
$\overline{V} = \sqrt{\frac{3kT}{m_0}}$	Средняя квадратичная скорость молекул газа
Уравнение сос	гояния идеального газа
$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	Уравнение Клайперона (m=const)
T_1 T_2	
$PV = \frac{m}{M}RT$	уравнение Клайперона-Менделеева
$p = p_1 + p_2 \dots + p_n$	Закон Дальтона для давления смеси
	разряженных газов – давление смеси газов
	равно сумме давлений, производимых
	каждым газом в отдельности, если бы он
	один занимал весь сосуд

Основные формулы раздела «Термодинамика»

Основные формулы		
Кол-во теплоты при нагревании/охлаждении	$Q = cm\Delta t$	
Кол-во теплоты при плавлении/кристаллизации	$Q = \lambda m$	
Кол-во теплоты при парообразовании/конденсации	Q = Lm	
Кол-во теплоты при сгорании топлива	Q = qm	
Уравнение теплового баланса	$Q = Q_1 + Q_2 + Q_3 + \dots + Q_n$	
Внутренняя энергия одноатомного идеального газа	$Q = Q_1 + Q_2 + Q_3 + \dots + Q_n$ $U = \frac{3}{2} \nu R \Delta T$	
Работа газа при изобарном процессе	$A = p\Delta V$	
Работа при изотермическом процессе	$A = \frac{m}{M}RTln\frac{V_2}{V_1}$	
Работа при изохорном процессе	A = 0	
Первый закон термодинамики	$Q = \Delta U + A$	
Адиабатический процесс	$Q = 0 \Rightarrow A = -\Delta U$	

Газовые законы

Изотермический	Изобарный	Изохорный
(закон Бойля-Мариотта)	(закон Гей-Люссака)	(закон Шарля)
1662г. 1667г.	1802г.	1787г.
T, m, M = const	P, m, M = const	V, m, M = const
PV = const	$\frac{V}{T} = const$	$\frac{P}{T} = const$
$P_1V_1 = P_2V_2$	$\frac{V_1}{V_2} = \frac{T_1}{T_2}$	$\frac{P_1}{P_2} = \frac{T_1}{T_2}$
ИЗОТЕРМЫ	ИЗОБАРЫ	ИЗОХОРЫ
	T	P
	P	V
P	P •	V T

Основные формулы раздела «Электростатика»

1.	Закон Кулона	$F = k \frac{ q_1 q_2 }{R^2}$; $k = \frac{1}{4\pi r^2}$		
2.	Напряжённость	$F=krac{ q_1 q_2 }{R^2}$; $k=rac{1}{4\piarepsilon_0}$ $ec{E}=rac{ec{F}}{q}$		
3.	Работа электрического поля по перемещению заряда	$A = -\Delta W = W_1 - W_2 = q(\varphi_1 - \varphi_2) = -q\Delta \varphi = qU$		
4.	Потенциал	$\varphi = \frac{W}{q}$ $\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2} + \overrightarrow{E_3} + \cdots; \ \varphi = \varphi_1 + \varphi_2 + \varphi_3 + \cdots$		
5.	Принцип суперпозиции полей	$\overrightarrow{E} = \overrightarrow{E_1}$ -	$+\overrightarrow{E_2}+\overrightarrow{E_3}+\cdots;\; \varphi=\varphi_1+\varphi_2+\varphi_3+\cdots$	
6.		Поле точечно	ого заряда	
6.1	Напряжённость			
6.2	Потенциальная энергия		$W = \frac{kqQ}{R}$	
6.3	Потенциал		$E = \frac{k Q }{R^2}$ $W = \frac{kqQ}{R}$ $\varphi = -\frac{kQ}{R}$	
7.	Однородное поле ($\overrightarrow{E}=const$)			
7.1	Связь напряжения и напряжённости		$U = E\Delta d$	
7.2	Потенциальная энергия заряда		W = -Eqd	
7.3	Потенциал		$\varphi = -Ed$	
7.4	Работа электрических сил		$A = Eq\Delta d$	
8.	Конденсаторы			
	Ёмкость конденсатора		$C = \frac{q}{U}$	
	Ёмкость плоского конденсатора		$C = \frac{\varepsilon \varepsilon_0 S}{d}$	
	Энергия конденсатора		$C = \frac{q}{U}$ $C = \frac{\varepsilon \varepsilon_0 S}{d}$ $W = \frac{q^2}{2C} = \frac{CU^2}{2} = \frac{qU}{2}$	
8.1	Последовательное соединение			
	Заряды		$q = q_1 + q_2 + \cdots$	
	Напряжение		$U = U_1 + U_2 + \cdots$	
	Электроемкость			
8.2	Г	Тараллельное		
	Заряды		$q = q_1 + q_2 + \cdots$	
	Напряжение		$q = q_1 + q_2 + \cdots$ $U = U_1 = U_2 = \cdots$	
	Электроемкость		$\boldsymbol{\mathcal{C}} = \boldsymbol{\mathcal{C}}_1 + \boldsymbol{\mathcal{C}}_2 + \cdots$	

Основные формулы раздела «Постоянный ток»

1. Сила тока. Напряжение. Закон Ома		
1.1	Сила тока	
		$I = \frac{1}{\Delta t}$
1.2	Напряжение	$U = \frac{A}{q}$
1.3	Закон Ома для участка цепи	$I = \frac{\Delta q}{\Delta t}$ $U = \frac{A}{q}$ $I = \frac{U}{R}$
1.4	Формула сопротивления	$R = \rho \frac{l}{\varsigma}$
1.5	Закон Ома для полной цепи	$I = \frac{\varepsilon}{R+r}$
1.6	ЭДС источника тока	$R = \rho \frac{l}{S}$ $I = \frac{\varepsilon}{R+r}$ $\varepsilon = \frac{A_{\text{ctop.}}}{a}$
2	Соединен	ия проводников
2.1	.,	
	Сила тока	$I = I_1 = I_2 = \cdots$
	Напряжение	$U = U_1 + U_2 = \cdots$
	Сопротивление	$R = R_1 + R_2 = \cdots$
2.2	2 Параллельное соединение	
	Сила тока	$I = I_1 + I_2 = \cdots$
	Напряжение	$U = U_1 = U_2 = \cdots$
	Сопротивление	$U = U_1 = U_2 = \cdots$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
3.	Работа тока (закон Джоуля-Ленца)	R R_1 R_2 $A=Q=IUt=I^2Rt=rac{U^2}{R}t$ $P=IU=I^2R=rac{U^2}{R}$ $\eta=rac{R}{R+r}$ я источников тока
4.	Мощность тока	$P = IU = I^2R = \frac{U^2}{R}$
5.	КПД источника тока	$\eta = \frac{R}{R+r}$
6.	6. Соединения источников тока	
Последовательное Параллельное		
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$arepsilon = \pm arepsilon_1 \pm arepsilon_2$		$rac{arepsilon}{r}=\pmrac{arepsilon_1}{r_1}\pmrac{arepsilon_2}{r_2}$
$r = r_1 + r_2$		$\frac{1}{r}=\frac{1}{r_1}+\frac{1}{r_2}$
$oldsymbol{r}=oldsymbol{r_1}oldsymbol{n}$ (если $r_1=r_2$)		
$I = \frac{n\varepsilon}{R + r_1 n}$		$oldsymbol{r} = rac{r_1}{n}$ (если $r_1 = r_2$) $oldsymbol{I} = rac{oldsymbol{arepsilon}}{R + rac{oldsymbol{r}_1}{n}}$