Aplikace neuronových sítí

Sequence-to-sequence

RNN znakový jazykový model

Písmena vs slova

- Místo znaků modelovat závislost slov
- U znaků jsme každé písmeno reprezentovali jako jednotkový vektor (one-hot kódování)
- Matice všech vektorů tedy jednotková s velikostí = počet symbolů
- Problém: slovník řádově $\approx 10^4$, $10^5 \rightarrow$ matice $10^5 \times 10^5 = 10^{10} \cdot 4B \approx 40GB$!
 - matice je řídká, pouze jednotkové vektory -> nemusí být celá v paměti
 - ale: ovlivňuje i velikost matice parametrů $W^{xh} \rightarrow$ bude mít rozměr $10^5 \times H$
- Řešení: reprezentace znaků kratšími vektory \rightarrow matice např. $10^5 \times 300 \approx 12 MB$
 - matice W^{xh} : $300 \times H$

Písmena vs slova

one-hot řídká reprezentace

hustá reprezentace

libovolná dimenze

počet symbolů

Jak ale vektory zvolit?

symbol 1:
symbol 2:
symbol 3:

symbol V-2:
symbol V-1:
symbol V:

	5.2		0.1		0.22	$-2.0 \\ 0.31 \\ -0.12$	-4.44
		i		٠.		i	
3	-0.45	-0.56	0.67		1.64	2.32	-3.16
	2.22	3.33	1.11		-0.01	2.74	3.14
	2.81	-7.1	-0.05		1.13	-3.61	1.0

word2vec

Tzv. skip-gram model -> predikce okolních slov z aktuálního (prostředního)

Mikolov et al.: Distributed Representations of Words and Phrases and their Compositionality

word2vec: trénovací data

word2vec: základní architektura sítě

word2vec: základní architektura sítě

word2vec: kritérium

• Maximalizujeme pravděpodobnost správného slova (třídy), tzn. **pro jeden krok** (jedno aktuální slovo u "v čase t") je kritérium

$$L_t(U,V) = \prod_{v \in \text{okoli}(u)} P(v|u) = \prod_{v \in \text{okoli}(u)} \frac{\exp(u^T v)}{\sum_{w \in \text{slovnik}} \exp(u^T w)}$$

- Což je zjednodušená forma zápisu, který je např. v přednáškách Stanford CS224D (2017)
- word2vec je ale jen logistická regrese -> prostě minimalizujeme křížovou entropii

$$L_{u,v}(U,V) = -u^T v + \log \sum_{\substack{\text{skóre správné třídy}}} \exp(u^T w)$$

• a to opakujeme pro každé slovo u z trénovacího korpusu a pro každé $v \in \text{okoli}(u)$

word2vec: záporné vzorkování

Problém:

$$L_{u,v}(U,V) = -u^T v + \log \sum_{w \in \text{slovn}(k)} \exp(u^T w)$$

- se v každém kroku vyhodnocuje pro celý slovník -> velmi pomalé
- Suma představuje "záporná slova" w která mají mít pro slovo u malou P(w|u)
- Není přitom nutné vyhodnocovat pro celý slovník, např. dvojici "soudruzi" a "labrador"
- Stačí 5-20 slov pro menší datasety, 2-5 pro velké
- Suma se tedy vyhodnotí místo celého slovníku jen pro několik málo slov, tj.

$$L_{u,v}(U,V) = -u^T v + \log \sum_{w \in \text{náhodný výběr}} \exp(u^T w)$$

- Výběr není úplně náhodný, závisí na frekvenci slov apod.
 - detaily v článku či např. zde: Stanford CS224D (2017)

word2vec: naučené vztahy mezi slovy

Příklady:

France – Paris + London = England

king - man + woman = queen

každé slovo je vektor, zde 2D

obrázek: http://www.samyzaf.com/ML/nlp/nlp.html

word2vec: naučené vztahy mezi slovy

Male-Female

king – man + woman = queen

queen – king = woman - man

Verb tense

walking – swimming + swam = walked

walked – walking = swam - swimming

Country-Capital

podobně pak státy a města jsou od sebe vždy stejným směrem (liší se od sebe stejným vektorem)

obrázek: https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

word2vec: nejbližší soused a kosinová vzdálenost

Výsledkem operace s vektory je vektor

$$u = r - s + v$$

- Jakému slovu u odpovídá?
- Mezi všemi slovy w ∈ slovník najdeme takový, který se mu nejvíce podobá
- Používá se kosinová vzdálenost

$$d(u, w) = \cos \alpha = \frac{u^T w}{\|u\| \cdot \|w\|}$$

- Nezohledňuje velikost
- Zákonem velkých čísel bývají vektory ve vysokodim. prostorech na vrcholech hyperkvádru (jedna ze souřadnic >> ostatní) -> úhly vystihují lépe než vzdálenost

word2vec: poznámky

- V příkladech z praxe obvykle velikost okna = 5 (tj. 5 nalevo + 5 napravo)
- Dimenze vektorů 300
- Kromě záporného vzorkování se optimalizuje navíc omezováním příliš častých slov nebo vyhledáváním častých frází, které se pak považují za jedno slovo (např. "Dobrý den")
- Pro různé jazyky existují předtrénované word-vektory na velkých korpusech podobně jako u konvolučních sítí není nutné trénovat
 - např. zde: https://fasttext.cc/docs/en/pretrained-vectors.html
- Existují i další známé varianty:
 - CBOW namísto skip-gram: predikce prostředního slova ze sumy okolních
 - GloVe: kombinuje word2vec se singulárním rozkladem SVD
 - byť to autoři alt. metod rádi tvrdí, žádná z variant ve skutečnosti nefunguje lépe než word2vec

word2vec: finetuning

- podobný princip jako u předtrénovaných konvoučních sítí
- stáhneme předtrénované vektory a použijeme ve vlastní úloze

word2vec: finetuning

RNN znakový jazykový model

RNN znakový jazykový model

Analýza sentimentu

• Monitorování médií, kampaně, sledování značek, recenzí, telefonních rozhovorů, ...

příklad:

film je plný akce, speciálních efektů a humoru, řemeslné zpracování na jedničku, děj sice dětinský, ale zábavný

VS

přemíra akce, speciálních efektů a humoru, kvalitní zpracování, sice vcelku zábavný, ale dětinský

zpříkladu je zřejmé, že pouhé počítání kladných a záporných přívlastků stačit nebude

RNN jazykový model

v každém okamžiku t síť přijme jeden symbol a <u>ihned</u> predikuje následující

- vstup: jeden znak / slovo
- výstup: jeden znak / slovo

label síť generuje v každém kroku

vstup : výstup \rightarrow 1 : 1

(vector-to-vector)

Klasifikace textu

např. analýza sentimentu: klasifikace <u>celého</u> textu do jedné z kategorií, např. pozitivní vs negativní komentář, tj. nejprve načte celý text, pak teprve predikuje výstup

- vstup: sekvence znaků / slov
- výstup: třída

vstup : výstup $\rightarrow \underline{\mathbf{M}}$: 1

(sequence-to-vector)

Sentiment analysis: state of the art

obrázek: http://blog.paralleldots.com/data-science/breakthrough-research-papers-and-models-for-sentiment-analysis/

Generování textu, tagování obrázků

síť převezme vstup pouze jednou jako inicializaci, poté v každém okamžiku t síť predikuje výstup (následující znak)

- vstup: jeden vektor, např. FC7 příznaky z VGG
- výstup: sekvence znaků / slov

vstup : výstup \rightarrow 1 : $\underline{\mathbf{N}}$

(vector-to-sequence)

Tagování obrázků: VGG schéma

Tagování obrázků

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

"man in blue wetsuit is surfing on wave."

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"black cat is sitting on top of suitcase."

obrázek: https://cs.stanford.edu/people/karpathy/deepimagesent/

Strojový překlad

síť nejprve "spolkne" celou vstupní sekvenci (větu), pak teprve začne generovat překlad

- vstup: sekvence znaků / slov
- výstup: sekvence znaků / slov

vstup : výstup $\rightarrow \underline{\mathbf{M}} : \underline{\mathbf{N}}$

(sequence-to-sequence)

Klasifikace textu

např. analýza sentimentu: klasifikace <u>celého</u> textu do jedné z kategorií, např. pozitivní vs

negativní komentář

vstup: sekvence znaků / slov

výstup: třída

problém: stavový vektor h_T musí nějak obsahovat informaci z celé věty, protože dále už následuje pouze lineární klasifikace na základě tohoto vektoru

Strojový překlad

síť nejprve "spolkne" celou vstupní sekvenci (větu), pak teprve začne generovat překlad

- vstup: sekvence znaků / slov
- výstup: sekvence znaků / slov

podobný problém i zde: na to, aby síť vygenerovala celý překlad, jí musí stačit skrytý stavový vektor h_4 , slova "fire" a "oheň" jsou však od sebe vzdálena potenciálně neomezeně \rightarrow problém s gradientem

Attention

Problémy:

- stavový vektor h_t musí nějak obsahovat celou větu, protože dale už následuje pouze lineární klasifikace na základě tohoto vektoru \rightarrow sentence embedding
- nezávisle na délce vstupní věty, embedding vektor má vždy stejnou dimenzi
- navíc řešíme potenciálně velmi dlouhé závislosti, na které je v praxi i LSTM krátká

• Pokusy o řešení:

- především v oblasti strojového překladu zadat vstupní sekvenci v obráceném pořadí
- nechat projít vstupní sekvenci rekurentní sítí 2x

• Řešení:

- mechanismus paměti/soustředěnosti (attention)
- zapamatovat a při rozhodování váhově zohlednit všechny skryté stavy, ne jen ten poslední

tam, kde jsou si attention vektor a_1 a skrytý stav h_t podobné \rightarrow velké p_{1t} = "soustředění pozornosti"

Princip attention pro strojový překlad

Princip attention pro strojový překlad

Princip attention pro strojový překlad

Attention pro strojový překlad: animace

(ne)průhlednost čar znázorňuje váhu = výsledné koeficienty p_t

animace: https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Vizualizace attention vah pro strojový překlad

- vysoké váhy znázorňují, na která slova překládací síť zaměřuje pozornost
- na mechanismus lze nahlížet také jako na "soft" asociativní pameť
- attention vektor a je query, kontext vektor c pak navrácená hodnota
- s rozdílem, že c je složeninou celé paměti danou vahami p

obrázek: http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/

Attention pro obrazová data: show, attend and tell

např. článek: Xu et al.: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Vizualizace attention vah pro obrazová data

váhy jsou přes konvoluční mapy

obrázky znázorňují, na jaké části

obrázku se síť při generování

jednotlivých slov soustředí

menší rozměr než vstupní

z vrchní vrstvy zpětně

dopočteno do obrázku

obrázek

(b) A person is standing on a beach with a surfboard.

Automatické odezírání ze rtů: listen/watch, attend and spell

Figure 1. Watch, Listen, Attend and Spell architecture. At each time step, the decoder outputs a character y_i , as well as two attention vectors. The attention vectors are used to select the appropriate period of the input visual and audio sequences.

obrázek: Chung, Zisserman: Lip Reading Sentences in the Wild

Automatické odezírání ze rtů

člověk expert!

trénovací data

Channel	Series name	# hours	# sent.
BBC 1 HD	News [†]	1,584	50,493
BBC 1 HD	Breakfast	1,997	29,862
BBC 1 HD	Newsnight	590	17,004
BBC 2 HD	World News	194	3,504
BBC 2 HD	Question Time	323	11,695
BBC 4 HD	World Today	272	5,558
All		4,960	118,116

Table 1. Video statistics. The number of hours of the original BBC video; the number of sentences with full facetrack. †BBC News at 1, 6 and 10.

výsledky: CER, WER ... chybovost (méně = lépe)

Method	SNR	CER	WER	BLEU†		
Lips only						
Professional [‡]	-	58.7%	73.8%	23.8		
WAS	-	59.9%	76.5%	35.6		
WAS+CL	-	47.1%	61.1%	46.9		
WAS+CL+SS	-	44.2%	59.2%	48.3		
WAS+CL+SS+BS	-	42.1%	53.2%	53.8		
Audio only						
LAS+CL+SS+BS	clean	16.2%	26.9%	76.7		
LAS+CL+SS+BS	10dB	33.7%	48.8%	58.6		
LAS+CL+SS+BS	0dB	59.0%	74.5%	38.6		
Audio and lips						
WLAS+CL+SS+BS	clean	13.3%	22.8%	79.9		
WLAS+CL+SS+BS	10dB	22.8%	35.1%	69.6		
WLAS+CL+SS+BS	0dB	35.8%	50.8%	57.5		

Table 5. Performance on the LRS test set. **WAS**: *Watch*, *Attend and Spell*; **LAS**: *Listen*, *Attend and Spell*; **WLAS**: *Watch*, *Listen*, *Attend and Spell*; **CL**: Curriculum Learning; **SS**: Scheduled Sampling; **BS**: Beam Search. †Unigram BLEU with brevity penalty. ‡Excluding samples that the lip reader declined to annotate. Including these, the CER rises to 78.9% and the WER to 87.6%.

zdroj: Chung, Zisserman: Lip Reading Sentences in the Wild

Automatické odezírání ze rtů

příklady rozpoznaných vět pouze z videa

MANY MORE PEOPLE WHO WERE INVOLVED IN THE		
ATTACKS		
CLOSE TO THE EUROPEAN COMMISSION'S MAIN		
BUILDING		
WEST WALES AND THE SOUTH WEST AS WELL AS		
WESTERN SCOTLAND		
WE KNOW THERE WILL BE HUNDREDS OF JOURNAL-		
ISTS HERE AS WELL		
ACCORDING TO PROVISIONAL FIGURES FROM THE		
ELECTORAL COMMISSION		
THAT'S THE LOWEST FIGURE FOR EIGHT YEARS		
MANCHESTER FOOTBALL CORRESPONDENT FOR		
THE DAILY MIRROR		
LAYING THE GROUNDS FOR A POSSIBLE SECOND		
REFERENDUM		
ACCORDING TO THE LATEST FIGURES FROM THE OF-		
FICE FOR NATIONAL STATISTICS		
IT COMES AFTER A DAMNING REPORT BY THE		
HEALTH WATCHDOG		

Table 6. Examples of unseen sentences that WAS correctly predicts (lips only).

zdroj: Chung, Zisserman: Lip Reading Sentences in the Wild

Transformer

- Vaswani et al: Attention is all you need
- RNN zpracovávají vstupy jeden po druhém
 jsou hůře paralelizovatelné
- Ukazuje se, že rekurentní sítě lze úplně vynechat a vše řešit pouze attention!
- Lepší paralelizace + zkrácení délky cesty mezi závislými slovy ve větě → naučí se opravdu dlouhé závislosti
- State of the art výsledky v NLP
- Nevýhoda: seq2seq modely s LSTM transformer překonává pouze na opravdu velkých datasetech

Figure 1: The Transformer - model architecture.

Self attention

pro každý x_t se vytvoří 3 různé vektory q_t , k_t , v_t

 q_t ... query vektor $q_t = W^Q \cdot x_t$

 k_t ... key vektor $k_t = W^K \cdot x_t$

 v_t ... value vektor $v_t = W^V \cdot x_t$

Self attention

 d_k ... rozměr key vektorů

p ... attention váhy

Self attention

Transformer: encoder

Transformer: decoder

Transformer: decoder

Transformer: výsledky v půdovním článku

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	2.3 ·	10^{19}

Další varianty

obrázek: http://jalammar.github.io/illustrated-gpt2/

Shrnutí

- slova vhodné reprezentovat jako husté vektory
- nejrozšířenější metoda skipgram word2vec
- podobně jako u konv. sítí lze využít předtrénované word-vektory a příp. finetunit

aplikace a odpovídající architektura		
jazykový model	1:1	
klasifikace sekvence, analýza sentimentu	M:1	
popis obrázků	1:N	
strojový překlad, klasifikace na úrovni snímků, chatbot	M:N	

- pro fungování především M:1 a M:N systémů velmi důležitý attention mechanismus
- stav poznání v NLP jsou transformer-based sítě, které RNN (mnohdy) vůbec nevyužívají