Lecture 5. Max-Flow Algorithms

History of Worst-Case Running Times

Year	Discoverer	Method	Asymptotic Time
1951	Dantzig	Simplex	m n ² C [†]
1955	Ford, Fulkerson	Augmenting path	m n C [†]
1970	Edmonds-Karp	Shortest path	m² n
1970	Edmonds-Karp	Fattest path	m log U (m log n) †
1970	Dinitz	Improved shortest path	m n ²
1972	Edmonds-Karp, Dinitz	Capacity scaling	m² log C †
1973	Dinitz-Gabow	Improved capacity scaling	m n log C †
1974	Karzanov	Preflow-push	n ³
1983	Sleator-Tarjan	Dynamic trees	m n log n
1986	Goldberg-Tarjan	FIFO preflow-push	m n log (n²/m)
			• • •
2013	Orlin + KTR	Contraction	mn

 $[\]dagger$ Edge capacities are between 1 and C.

Assumptions

Flow network D = (V, A; c)

- · Simple, bidirected
- \cdot c is nonnegative
- · Every node is on an s-t path
- No uncapacitated s-t path

Outline

- Augmenting flow by single path-flow
- · Augmenting flow by blocking-flow
- · Preflow push on arcs

1. Augmenting Flow by Single Path-Flow

Ford-Fulkerson Method

Ford-Fulkerson Method

```
Ford-Fulkerson (D, s, t, c)

f \leftarrow 0

while (there exists f-augmenting path P) f \leftarrow f \oplus P

return f
```


Zwick's flow network

Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it may converge to a value not equal to the value of the maximum flow.

Valid Ford-Fulkerson sequence

Iteration 4k - 3: r^{2k-1}

Iteration 4k-2: r^{2k}

Iteration 4k-2: r^{2k-1}

Iteration 4k: r^{2k}

Choosing good augmenting paths

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

(Nearly) Widest Augmenting Path

A greedy intuition

[Edmonds - Karp 1970,1972; Dinitz 1973]

Widest augmenting path: max increase, but slow to find

Nearly widest augmenting path: nearly max increase in O(m) time

- $_{ to}$ Maintain scaling parameter Δ .
- $D_f(\Delta)$: the subgraph of D_f consisting of only arcs with capacity $\geq \Delta$

Capacity scaling

Assumption. All edge capacities are integers with absolute values at most C.

```
 \begin{array}{l} {\bf Scaling-Max-Flow} \ (D,s,t,c) \\ \\ {\bf C} \leftarrow {\bf max} \{c(a) \colon a \in A\} \\ \\ {\bf \Delta} \leftarrow {\bf smallest} \ {\bf power} \ {\bf of} \ 2 \ {\bf greater} \ {\bf than} \ {\bf or} \ {\bf equal} \ {\bf to} \ C \\ \\ {\bf f} \leftarrow 0 \\ \\ {\bf while} \ (\Delta \geq 1) \\ \\ {\bf while} \ ({\bf there} \ {\bf exists} \ {\bf augmenting} \ {\bf path} \ {\bf P} \ {\bf in} \ D_f(\Delta)) \ {\bf do} \ f \leftarrow f \oplus P \\ \\ {\bf \Delta} \leftarrow \Delta \ / \ 2 \\ \\ {\bf return} \ f \\ \end{array}
```

The outer while loop (scaling phase) repeats $1 + \lceil \log C \rceil$ times.

Correctness

Invariants.

- At the beginning of Δ -phase, $D_f(2\Delta)$ has no s-t path
- · All flow and residual capacity values are integral.

Correctness. When the algorithm terminates, f is a max flow.

Pf.

- By integrality invariant, when $\Delta = 1 \Rightarrow D_f(\Delta) = D_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths. •

Optimality gap at the end of each phase

Claim. At the end of a Δ -scaling phase, $val(f^*) - val(f) < m\Delta$.

Pf.

- U: the set of nodes reachable from S in $D_f(\Delta)$
- $val(f^*) val(f) \le$ (residual) cut-capacity of U in $D_f < m\Delta$

residual network

Running time

Claim. There are at most 2m augmentations per scaling phase.

Pf.

- ¹ At the beginning of Δ-phase, the optimality gap $< m(2\Delta) = 2m\Delta$.
- Each augmentation in a Δ -phase decreases the gap by at least Δ .

Totally, $O(m \log C)$ augmentations. Overall running time: $O(m^2 \log C)$ time.

Weakly polynomial, may not terminate for irrational capacities [Queyranne 1980]

Queyranne's flow network

Theorem. The Edmonds-Karp algorithm may not terminate.

Valid Edmonds-Karp sequence

Iteration 3k-2: r^{3k-2}

Iteration 3k-1: r^{3k-1}

Iteration 3k: r^{3k}

Shortest Augmenting Path

Shortest Augmenting Path

[Dinits 1970, Edmonds-Karp 1972]


```
Shortest-Augmenting-Path (D,s,t,c)
f \leftarrow 0
while (there exists an augmenting path)
\text{find such a shortest such path } P \text{ using BFS}
f \leftarrow f \oplus P
\text{return } f
```

Level graph

- · L_f : subgraph of D_f containing of all vertices and edges appearing in some shortest s-t path in D_f
 - Compute in O(m+n) time using BFS by keeping only forward edges (deleting back and side edges).
- · P is a shortest s-t path in D_f iff it is an s-t path L_f .

Evolution of level graphs

- Let f and f' be flow before and after a shortest path augmentation.
- Only back edges added to $D_{f'}$, and at least one edge (the bottleneck edge) in D_f (and L_f) is deleted from $D_{f'}$ (and $L_{f'}$)
- Path with back edge has length greater than previous length.

Evolution of level graphs

- The length of the shortest path never decreases.
- If the length of shortest s-t path in $D_{f^{\prime}}$ does not increases, then the edge set of $L_{f^{\prime}}$ strictly decreases.

Running time

Phase: successive shortest path augmentations in which the shortest augmenting paths have the same length

Fact: at most n phases, and at most m augmentations per phase

Theorem. The shortest augmenting path algorithm performs at most O(mn) augmentations. The overall running time is $O(m^2n)$.

2. Augmenting Flow by Blocking-Flow

Blocking augmenting flow

Analogy of maximal disjoint paths in the Hopcroft-Karp algorithm for maximum bipartite matching

Def. For a flow f in D, a flow g in L_f is blocking if all edges in L_f not saturated by g contain no s-t path

Maximum ⇒ Blocking

Dinitz's Method

```
\begin{aligned} \textbf{Dinitz} & (D, s, t, c) \\ f &\leftarrow 0 \\ \text{while (there exists } f\text{-augmenting path)} \\ & L_f \leftarrow \text{the level graph of } D_f \\ & g \leftarrow \text{a blocking flow in } L_f \\ & f \leftarrow f\text{+}g \\ & \text{return } f \end{aligned}
```

Algorithms for finding block-flow:

```
[Dinitz 1970]: O(mn)
[Karzanov 1974]: O(n^2)
[Sleator-Tarjan 1983]: O(m \log n)
```

Finding blocking flow via DFS

[Dinitz 1970]

Each iteration starts at s, and acts at current vertex v as follows:

- ${\color{blue} \underline{\ }}$ <u>Case 1</u>: v has a forward edge. Move along a forward edge to the next node.
- \Box Case 2: v has no forward edge.
 - subcase 2.1: v = s. Stop
 - <u>subcase 2.2</u>: v = t. Augment and delete bottleneck edges on path. If t has no incoming edge, stop; otherwise, move on to the next iteration
 - <u>subcase</u> 2.3: $v \neq s, t$. Delete v (and all its incident edges) and move backward to its predecessor.

Demo

Demo

edge

Running time

- Each iteration, at least one edge is deleted. There are O(m) iterations.
- Running time of each iteration: O(n + number of edges deleted)
- Total running time of finding a blocking flow: O(mn + m) = O(mn)
- Total running time of finding maximum flow: $O(n^2 m)$

Finding blocking flow via preflow push/pull

Def. (residual) capacity of a vertex in L_f :

$$c(s) \coloneqq c(\delta^{out}(s))$$
$$c(t) \coloneqq c(\delta^{in}(t))$$
$$c(v) \coloneqq \min\{c(\delta^{in}(v)), c(\delta^{out}(v))\}$$

Each iteration:

- · Compute a vertex v^* with minimum capacity ε .
- If $\varepsilon > 0$, then
 - Compute an $s-v^*$ flow of value ε by greedy pulling
 - Compute a v^* t flow of value ε by greedy pushing
- If c(s) or c(t) is ε , return g;
- Remove v^* and its incident edges, update its neighbors' capacity, and repeat.

Greedy pulling/pushing

- Greedy pulling (or pushing) backward (or forward) from v^* to s (or t) level-by-level
- · At each vertex scan the incoming (or outgoing) edges one at a time:
 - fully saturate the edge before going on to the next one.
 - remove saturated edges
 - Update the capacities of itself and its neighbors.

Running time

- O(n) iterations: at least one vertex is removed in each iteration.
- Running time of each iteration: O(n + number of edges removed)
- Total running time of finding blocking flow: $O(n^2 + m) = O(n^2)$
- Total running time of finding maximum flow: $O(n^3)$

3. Preflow Push on Arcs

Overview

- Flow-augmenting approach: maintain a flow f and iteratively augment it until no s-t path in A_f (i.e. optimality)
- Preflow push/lift approach: maintain an s-preflow f without s-t path in A_f and modify it on an arc-by-arc basis until f is a flow, which is optimal
 - Initial s-preflow: the source s saturates all outgoing arcs
 - Subsequently, pick an excessive node $u \neq t$ to discharge its excess towards residual neighbors (including s possibly) "closer" to t

Recap: preflow

f: s-preflow

Fact. Every excessive node has at least one residual neighbor and can reach s in the residual graph.

Pf. The elementary decomposition of f has an s-v path $P \subseteq A^+(f) \subseteq A_f^{-1}$

 $P^{-1} \subseteq A_f$ is a v-s path in D_f .

Push operation

Condition: $u \neq t$ is excessive and $(u, v) \in A_f$

```
\begin{aligned} & \textbf{Push}(u,v) : \\ & \varepsilon \leftarrow \min\{f(\delta^{in}(u)), \, c_f(u,v)\}; \, //\text{maximal amount} \\ & f(u,v) \leftarrow f(u,v) \, + \varepsilon, \, f(v,u) \leftarrow -f(u,v). \end{aligned}
```

Classification: balancing if $\varepsilon = f(\delta^{in}(u))$, non-balancing otherwise

- · balancing: u becomes balanced;
- · non-balancing: (u, v) is removed from A_f

Decision: which u and which residual edge (u, v)? Analogy: fluid naturally finds its way "downhill".

Valid heights

 $h: V \to Z_+$ with h(s) = n (hill middle) and h(t) = 0 (hill bottom)

Def. h is valid for f if for each $(u, v) \in A_f$ then $h(u) - h(v) \le 1$

Initial height for initial f: h(s) = n and h(v) = 0 for all $v \neq s$.

Properties of valid height

Claim. There exists a valid h for $f \Leftrightarrow$ there is no s-t path in D_f .

- Pf. (\Rightarrow) Otherwise, the s-t distance in D_f would be $\geq h(s) h(t) = n$.
 - (\Leftarrow) Put all nodes reachable from s at level n, and others at level 0.

Claim. For any valid h and any excessive node u, h(u) < 2n.

Pf.

$$n>u\text{-}s \text{ distance in } D_f\geq h(u)-h(s)=h(u)-n$$
 So, $h(u)<2n.$

The highest rule and downhill rule

- Choose a highest (excessive) u
- □ If u has a residual neighbor v with h(v) = h(u) 1, push along (u, v)

Claim. Push(u, v) preserves the validity of h.

Pf. Easy verification at u and also at v.

Otherwise,

Lift(
$$u$$
): $h(u) := h(u) + 1$.

Claim. Lift(u) preserves the validity of h.

Treatment on u

```
while (u is not balanced) if (\exists (u,v) \in A_f with h(v)=h(u)-1) Push(u,v); else Lift(u).
```

The last push is balancing, and all others are non-balancing.

Push/Lift Algorithm

```
initialize f, h;
while (there is an excessive node other than t)
pick a highest excessive node u \neq t;
treat u;
return f
```

- ullet The number of lifts is $<2n^2$
- The number of balancing pushes is $O(n^3)$
- \Box The number of non-balancing push is O(mn)
- The total number of operations is $O(n^3)$

Simple $O(n^3)$ -time implementation with linked lists and arrays.

Evolution of heights

- s and t have fixed heights
- - \Box If u has never been lifted, its final height is 0.
 - Otherwise, it is excessive right after the last lift and hence its final height is < 2n.
- The number of lifts per node is < 2n
- The total number of lifts is $< 2n^2$.

Number of balancing pushes

Claim: $\leq n-2$ balancing pushes between any two consecutive lifts,

Pf. Each of them makes one highest excessive node balanced.

The total number of balancing pushes is $O(n^3)$.

Number of non-balancing pushes

- $\forall (u,v) \in A$, a non-balancing Push(u,v) can occur at most n times.
- The number of non-balancing pushes is O(mn).

Claim Between two consecutive non-balancing Push(u, v), the height of v increases by at least 2.

Pf. Right after the first non-balancing Push(u, v), u is above v, and (u, v) is no longer a residual edge.

Right before the second non-balancing $\operatorname{Push}(u,v)$, (u,v) must have become a residual edge again, which must be a consequence of some $\operatorname{Push}(v,u)$.

However, in order to make Push(v,u), we first need for v's height to increase by at least 2 so that v is above u.

Summary

- Augmenting flow by single path-flow
 - . (Nearly) Widest Augmenting Path
 - Shortest Augmenting Path
- Augmenting flow by blocking-flow
 - . via DFS
 - via preflow push/pull
- Preflow push on arcs: push/lift
- Still active research on faster weakly polynomial-time algorithm
- https://www.quantamagazine.org/researchers-achieve-absurdlyfast-algorithm-for-network-flow-20220608/