Statistical Formulas

Descriptive Statistics

Frequencies

Sample size n num of individuals in the sample. **Absolute frequency** n_i . (num of x_i in the sample) Relative frequency $f_i = n_i/n$.

Cumulative absolute freq $N_i = \sum_{k=0}^{i} n_i$. Cumulative relative freq $F_i = N_i/n$.

Central tendency statistics

Mean
$$\bar{x} = \frac{\sum x_i n_i}{n}$$

Median me The value with cum.rel.freq. $F_{me} =$

Mode mo The most frequent value.

Position statistics

Quartiles Q_1,Q_2,Q_3 divide the distribution into 4 equal parts. Their cum.rel.freqs. are $F_{Q_1}=0.25$, $F_{Q_2} = 0.5$ and $F_{Q_3} = 0.75$.

Percentiles P_1, P_2, \cdots, P_{99} divide the distribution into 100 equal parts.

The cum.rel.freq. is $F_{P_i} = i/100$.

Dispersion statistics

Interquartile range $IQR = Q_3 - Q_1$. Variance $s^2 = \frac{\sum (x_i - \bar{x})^2 n_i}{n} = \frac{\sum x_i^2 n_i}{n} - \bar{x}^2$ Standard deviation $s = +\sqrt{s^2}$.

Coefficient of variation $cv = \frac{s}{|\bar{x}|}$

Shape statistics

Coefficient of skewness $g_1 = \frac{\sum (x_i - \bar{x})^3 f_i}{s^3}$. Coefficient of kurtosis $g_2 = \frac{\sum (x_i - \bar{x})^4 f_i}{s^4} - 3$.

Standarization

$$z = \frac{x - \bar{x}}{s_x}$$

Regression and correlation

Linear regression

y on x:
$$y = \bar{y} + \frac{s_{xy}}{s_x^2}(x - \bar{x})$$

$$x \text{ on } y \colon \ x = \bar{x} + \frac{s_{\bar{x}y}}{s_{xy}^2} (y - \bar{y})$$

Regression coefficients

$$(y \text{ on } x) b_{yx} = \frac{s_{xy}}{s_x^2} (x \text{ on } y) b_{xy} = \frac{s_{xy}}{s_y^2}$$

Coefficient of determination

$$r^2 = \frac{s_{xy}^2}{s_x^2 s_y^2} \qquad 0 \le r^2 \le 1$$

Correlation coefficient

$$r = \frac{s_{xy}}{s_x s_y}. \qquad -1 \le r \le 1$$

Non-linear regression

Exponential model $y = e^{a+bx}$

Apply the logarithm to the dependent variable and compute the line $\log y = a + bx$.

Logarithmic model $y = a + b \log x$

Apply the logarithm to the independent variable and compute the line $y = a + b \log x$.

Potential model $y = ax^b$

Apply the logarithm to both variables and compute the line $\log y = a + b \log x$.