Система для детекции дефектов в сварных швах

С помощью ИИ

Проблема

От качества сварных швов зависит **безопасность** эксплуатации оборудования, особенно на нефтяных и газовых трубопроводах, промышленных предприятиях.

Одним из методов неразрушающего контроля качества сварных швов является радиографический контроль – делается рентгеновский снимок шва, на котором видны дефекты. Достаточно трудоемким процессом является просмотр снимков и поиск дефектов, а ошибка может стоить очень дорого.

Боль

Все снимки **подолгу отсматриваются специалистами**, что наиболее критично на промышленных предприятиях, где идет непрерывный выпуск продукции.

На снимках нужно обнаружить порой очень маленькие дефекты.

Экономика решения

Сокращение времени контроль шва на 71%.

Экономия **350 тыс.** рублей в месяц для отдела из 10 дефектоскопистов.

Рентабельность решения 440%.

Целевая аудитория

Промышленные предприятия

Сокращение времени, затрачиваемого отделом контроля качества на проверку продукции

Строительные организации

Ускорение работы подразделения неразрушающего контроля сварных соединений

Лаборатории

Ускорение выполнения заказов на контроль соединений

Обзор существующих решений

sentin

Решение <u>EXPLORER</u> упрощает проверку снимков сварных швов в цифровом режиме. Решение позволяет подготавливать датасета для машинного обучения, также развивается возможность детекции дефектов прямо в ПО.

Идёт разработка решения в DNV GL's Artificial Intelligence Research Centre в Шанхае для неразрушающего контроля сварных соединений. Организация специализируется на испытаниях, сертификации и консалтинге в сфере энергетики и мореплавания. Подробности о решении и стадия разработки на сайте не указаны.

Osaka Gas Network ведёт разработку <u>решения</u> для ускорения контроля с помощью ИИ. Подробности о решении не раскрываются. Система должна ускорить проверку с 35 до 10 минут.

Решение

C применением модели YOLOv8

Схема работы решения

Создание снимка с помощью оборудования предприятия

Оцифровка снимка в случае его выполнении на плёнке и загрузка в систему. Возможна подача видеопотока для некоторого оборудования (8-10 FPS)

Обнаружение дефектов с помощью ИИ и оповещение пользователя о качестве сварного шва

Стек технологий

Выбор датасета и модели

Датасет

Используется датасет, содержащий 3336 изображений сварных швов. На сервисе Roboflow изображения были переведены в чёрно-белые для ускорения работы модели, а также была проведена аугментация: поворот, блюр, введение шума. В результате аугментации количество изображений было увеличено до 7994.

Модель

Используется модель **YOLOv8** в связи с её универсальностью, надёжностью и простотой использования.

Обучение модели

Обучение модели проводилось в течение 150 эпох. Метрики:

mAP50	Precision	Recall
99,0%	97,4%	97,8%

Для повышения надёжности работы модели был установлен низкий уровень confidence - 10%.

mAP

Разработка веб-демо

Веб версия была разработа с помощью фреймворка **Streamlit**.

Пользователь может подгрузить изображение или архив, сервис указывает дефекты и уведомляет пользователя о том, качественный ли шов.

При загрузке архива для удобства идентификации выводятся название изображения и дата создания.

С помощью слайдера пользователь может убрать "боксы" и увидеть исходную картинку.

Select an image to upload

Drag and drop file here

Limit 200MB per file • PNG, JPG, JPEG, ZIP

Browse files

Confidence threshold:

Overlap threshold:

How it works

Weld defects detection

Детекция на видеопотоке

Для проверки возможности детекции дефектов на поступающем видеопотоке была разработана отдельная версия решения с примененем сервиса **WebRTC**.

Версия продемонстрировала возможность детекции дефектов на видео. В дальнейшем, возможно поступление в сервис видеопотока со сканирующего оборудования.

Тестирование продукта

На подавляющем большинстве изображений модель обнаруживает все дефекты, особенно крупные. Не смотря на то, что датасет был несбаласирован, дефекты, изображения которых были в меньшинстве, обнаруживаются стабильно.

Единственный дефект, который мог быть пропущен моделью – маленькие поры, но, так как поры обычно идут в группе, модель детектировала более различимые поры и всё равно отбраковывала сварной шов.

Тестирование продукта

На части снимков обнаружены все поры различных размеров и яркости

Менее чёткие поры пропущены. Для устранения этого возможен сбор изображений с плохо различимыми порами и дообучене модели на них.

Развёртывание на сервере

Модель была развёрнута на сервере хостинга Render.

Получить доступ к сервису можно по **ссылке**.

Изображения для тестирования.

Доработка продукта

Добавление возможности захвата видеопотока со сканирующего оборудования.

Генерация отчёта по результату проверки

Обучение модели на данных конкретного оборудования. В зависимости от назначения продукции и условий, снимки могут иметь различную яркость, контрастнось и типы дефектов.

Изображения, сделанные на различном оборудовании могут значительно отличаться, в таком случае, обученная на изображениях одного из типов модель плохо работает на изображениях других типов. Для устранения этого недостатка возможно обучение модели индивидуально для каждого вида оборудования.

