Idea de la Regresión Lineal Simple

Tipos de Variables

Tipos de Variables

En estadística, se llama análisis de la regresión al proceso estadístico de estimar las relaciones que existen entre variables.

. . .

Se centra en estudiar las relaciones entre una variable dependiente de una o más variables independientes.

-Wikipedia

Lineal

Regresión Lineal Múltiple Logística

Regresión Logística Simple Regresión Logística Múltiple

Machine Learning A-Z

Regresión

Lineal Simple

Regresión Lineal Simple

Regresión Lineal Múltiple

Regresión Lineal Simple

Método de los Mínimos Cuadrados

Método de los Mínimos Cuadrados

Regresión Lineal Simple:

$$SS_{res} = \sum (y_i - \hat{y}_i)^2$$

$$SS_{res} = \sum_{i} (y_i - \hat{y}_i)^2$$
$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Regresión Lineal Simple:

$$SS_{res} = \sum_{i} (y_i - \hat{y}_i)^2$$
$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Regresión Lineal Simple:

$$R^{2} = 1 - SS_{res}$$

$$y = b_{0} + b_{1}^{*}x_{1}$$

$$y = b_{0} + b_{1}^{*}x_{1} + b_{2}^{*}x_{2}$$

$$R^{2} - Bondad de Ajuste (cuanto más grande mejor)$$

$$Problema:$$

$$y = b_{0} + b_{1}^{*}x_{1} + b_{2}^{*}x_{2}$$

$$R^{2} \text{ nunca va a decrecer!}$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Adj R² = 1 - (1 - R²)
$$\frac{n-1}{n-p-1}$$

- p número de variables regresoras
- n tamaño de la muestra