Вероятностные алгоритмы Наивный Байес

Лекция № 9

Лектор: Шевляков Артём

Есть алгоритмы, которые выдают не метку класса, а вероятность принадлежности классам

Пример предсказания

Объект	Рост	Bec	Пол (0-ж, 1-м) (предсказанный)
А	180	70	0.75
В	150	45	0.1

Примеры таких алгоритмов

- 1. наивный Байес
- 2. логистическая регрессия (см. ниже)
- 3. модификация kNN (подумайте, какая?)

- 4. модификация решающего дерева дерева (подумайте, какая?)
- 5. ...

Зачем нужны такие алгоритмы предсказания?

- 1. Когда данные будут подаваться на вход другим алгоритмам (вероятность несёт в себе дополнительную информацию: нашу уверенность в классификации).
- 2. Возможность переложить ответственность на заказчика)))))
- 3. Помогают избежать обвинений в богохульстве))))

Классический пример (кредитный скоринг)

Клиент	Вероятность невозврата		
Mike	0.78		Отказ
Jack	0.45		
Larry	0.13		p*=0.15
Kate	0.06		
William	0.03		
Jessica	0.02	Ot	добрение

Повторим школьную теорию вероятностей

Вероятность события

```
Пусть A – событие. Например, A = \{монета выпадет орлом\} A = \{докладчик помрёт во время лекции\} A = \{на игральном кубике выпадет 6\} Для событий можно найти их вероятность Pr(A) следующим образом: Пусть A_1, A_2, ..., A_n – все элементарные исходы эксперимента, тогда Pr(A) = \{число исходов при которых наблюдается A\}/n
```

Пример 1

Пример 2

Условные вероятности

Pr(A|B) (читается как «вероятность А при условии В») Условная вероятность считается по правилу:

- 1. Мысленно представьте, что событие В уже произошло.
- 2. Удалите элементарные исходы, которые НЕ удовлетворяют событию В.
- 3. Найдите вероятность события А для нового множества элементарных исходов, используя формулу с предыдущих слайдов.

Пример 1*

Эксперимент: кидаем кубик. Элементарные исходы:

1,2,3,4,5,6

Найдите вероятность Pr(A|B) для:

- 1) $A = \{ выпадет четное число \}$, $B = \{ выпадет число \}$ делящиеся на $3 \}$
- 2) $A = \{ выпадет 6 \}$, $B = \{ выпадет делитель числа 6 \}$
- 3) $A = \{ выпадет 1 \}$, $B = \{ выпадет четное число \}$

Пример 1*

Эксперимент: кидаем кубик. Элементарные исходы:

1,2,3,4,5,6

Найдите вероятность Pr(A|B) для:

- 1) $A = \{ выпадет четное число \}$, $B = \{ выпадет число \}$ делящиеся на $3 \}$
- 2) $A = \{ выпадет 6 \}$, $B = \{ выпадет делитель числа 6 \}$
- 3) $A = \{ выпадет 1 \}$, $B = \{ выпадет четное число \}$

А теперь подсчитайте Pr(B|A) для пп.1-3

Пример 2*

```
Эксперимент: заводим двоих детей.
Элементарные исходы (М – мальчик, Д- девочка):
ММ,МД,ДМ,ДД
```

Найдите вероятность Pr(A|B) для:

- 1) А={дети будут разного пола} В={среди детей есть девочка}
- 2) А={дети будут разного пола} В={старший ребенок девочка}

Пример 2*

Эксперимент: заводим двоих детей. Элементарные исходы (М – мальчик, Д- девочка): ММ,МД,ДМ,ДД

Найдите вероятность Pr(A|B) для:

- 1) А={дети будут разного пола} В={среди детей есть девочка}
- 2) А={дети будут разного пола} В={старший ребенок девочка}

А теперь подсчитайте Pr(B|A) для пп.1-2

Задачка более близкая к проблеме классификации

В выборке 60% женщин и 40% мужчин. Известно, что среди них курит 10% женщин и 70% мужчин. Про человека NN известно, что он курит. С какой вероятностью NN является женщиной (мужчиной)?

Если вы решите эту задачу, то вы фактически осуществите классификацию NN (предскажете значение его пола).

Решение

В выборке 60% женщин и 40% мужчин. Известно, что среди них курит 10% женщин и 70% мужчин. Про человека NN известно, что он курит. С какой вероятностью NN является женщиной (мужчиной)? Обозначим:

 $M = \{ \text{человек является мужчиной} \}$ $K = \{ \text{человек является женщиной} \}$ $K = \{ \text{человек курит} \}$ Из условия можно найти Pr(M), Pr(K), Pr(K|M), Pr(K|M).

Решение

Имеем:

Pr(M)=0.4, Pr(K)=0.6, Pr(K|M)=0.7, Pr(K|K)=0.1 Из этих чисел можно даже найти Pr(K): Pr(K)=Pr(M)*Pr(K|M)+Pr(K)*Pr(K|K)=0.4*0.7+0.6*0.1=0.34=34%

Но нас интересуют вероятности несколько других событий (каких?):

Решение

Имеем:

```
Pr(M)=0.4, Pr(K)=0.6, Pr(K|M)=0.7, Pr(K|K)=0.1 Из этих чисел можно даже найти Pr(K): Pr(K)=Pr(M)*Pr(K|M)+Pr(K)*Pr(K|K)=0.4*0.7+0.6*0.1=0.34=34%
```

Но нас интересуют вероятности несколько других событий:

```
Pr(M|K)=?

Pr(X|K)=?
```

А как их найти?

Есть формула Байеса!

$$Pr(B|A)=Pr(A|B)*Pr(B)/Pr(A)$$

Для нашей задачи получаем: Pr(M|K)=Pr(K|M)*Pr(M)/Pr(K)=0.7*0.4/0.34=28/34 Pr(X|K)=Pr(K|X)*Pr(X)/Pr(K)=0.1*0.6/0.34=6/34

- фактически мы получили оценки принадлежности «классу мужчин» и «классу женщин» Что делать с вероятностью при классификации?

На прошлом слайде были получены вероятности принадлежности объекта «классу мужчин» и «классу женщин» (28/34 и 8/34). Что с ними делать, чтобы получить точный (а не вероятностный) ответ?

- 1. Выбрать класс с наибольшей вероятностью (в данном примере выбрать «мужчин»).
- 2. С распределением 28/34 и 8/34 сгенерировать случайную величину. Ее значение и будет окончательным ответом.

Что делать с вероятностью при классификации?

2. Установить пороговое значение π для вероятности. Если вероятность принадлежности «классу мужчин» больше π , то объект классифицируется как мужчина. Иначе – как женщина.

Такой подход оправдан, когда ущерб от ошибки классификации различен для первого и второго класса (см. пример на след. слайде).

Террорист или нет?

Допустим мы оцениваем не вероятности принадлежности классам «мужчин» и «женщин», а к классам «террористов» и «честных людей». Допустим, что для человека А были получены вероятностные оценки на принадлежности к классу террористов 6/34 и к классу «честных людей» 28/34.

Его «честность» в 4.5 раза выше его терроризма и в соответствии с методами пп1-2 он (скорей всего) будет окончательно отнесен к классу «честных».

Террорист или нет?

Но тут над понимать, что цена ошибки «террориста приняли за честного» гораздо выше цены ошибки «честного приняли за террориста». А для объекта А принадлежность террористам не такая уж и маленькая (6/34=18%) – заведомо выше доли террористов в населении страны.

Здесь оправдано установить маленький порог π (например, π =10%) и людей, у которых вероятность принадлежности «классу террористов» больше π , отправлять на дополнительную проверку.

Наивный Байес

А как получить вероятности классов, когда признаков >1?

В задаче про курение нецелевой признак был один («курит или нет»). А если нецелевых признаков больше?

Пусть

	Курит	Любит кошек	Пол (Y)
Α	0	1	1
В	0	1	0
С	1	0	1
D	1	0	0
Е	1	0	1

	Курит	Любит кошек	Пол (Y)
F	0	0	?

Вычисления для объекта F

```
Если применять формулу Байеса для объекта F, то нужно будет знать вероятности: Pr(K'*\Pi' \mid M) Pr(K'*\Pi' \mid X) где K=\{\kappa y p u \tau\}, K'=\{he \kappa y p u \tau\}, \Pi=\{n b u \tau \kappa u e \kappa\}, \Pi=\{n b u \tau u e \kappa\}, \Pi=\{n b u e \kappa\}, \Pi=
```

Теорема о произведении вероятности

Pr(A*B)=Pr(A)*Pr(B), если события A и B не зависят друг от друга.

Решая нашу задачу, сделаем допущение, что курение НЕ ЗАВИСИТ от любви к кошкам и наоборот (а в жизни это действительно так?). Тогда мы получаем: $Pr(K'*\Pi' \mid M) = Pr(K' \mid M) * Pr(\Pi' \mid M),$ $Pr(K'*\Pi' \mid X) = Pr(K' \mid X) * Pr(\Pi' \mid X),$ а вероятности из правых частей равенств можно найти по таблице.

Из таблицы получаем вероятности:

Pr(X) = 2/5 Pr(M) = 3/5

Pr(K|X)=1/2 Pr(K'|X)=1/2

Pr(K|M)=2/3 Pr(K'|M)=1/3

 $Pr(\Pi|X)=1/2$ $Pr(\Pi'|X)=1/2$ $Pr(\Pi|M)=1/3$ $Pr(\Pi'|M)=2/3$

	Курит	Любит кошек	Пол (Ү)
Α	0	1	1
В	0	1	0
С	1	0	1
D	1	0	0
Ε	1	0	1

По формуле Байеса для объекта F получаем вероятности принадлежности классам:

$$Pr(X|K'\Pi') = Pr(K'\Pi'|X)*Pr(X)/Pr(K'\Pi')$$

 $Pr(M|K'\Pi') = Pr(K'\Pi'|M)*Pr(M)/Pr(K'\Pi')$

Используем предположение о независимости курения от любви к кошкам:

```
Pr(\mathcal{K}|\mathcal{K}'\Pi') = Pr(\mathcal{K}'|\mathcal{K})^* Pr(\Pi'|\mathcal{K})^* Pr(\mathcal{K})/Pr(\mathcal{K}'\Pi')

Pr(\mathcal{M}|\mathcal{K}'\Pi') = Pr(\mathcal{K}'|\mathcal{M})^* Pr(\Pi'|\mathcal{M})^* Pr(\mathcal{M})/Pr(\mathcal{K}'\Pi')
```

Подставляем числа:

$$Pr(X|K'\Pi')= (1/2* 1/3* 2/5)/Pr(K'\Pi')=(1/15)/Pr(K'\Pi')$$

 $Pr(M|K'\Pi')= (2/3* 1/3* 3/5)/Pr(K'\Pi')=(2/15)/Pr(K'\Pi')$

Кстати, величину Pr(K'Л') можно не вычислять (она нам не нужна), а воспользоваться равенством Pr(K'Л') + Pr(M|K'Л') = 1

И получить

$$Pr(\mathcal{K}|\mathcal{K}'\mathcal{I}')=1/3$$
 $Pr(\mathcal{M}|\mathcal{K}'\mathcal{I}')=2/3$

Таким образом, принадлежность классу мужчин в 2 раза выше принадлежности классу женщин.

$$Pr(X|K'J')=1/3$$
 $Pr(M|K'J')=2/3$

Вот таким макаром и происходит классификация с помощью формулы Байеса.

Аналогично обрабатываются таблицы с бОльшим числом признаков.

Допущение о независимости признаков

Работа классификатора существенно использует предположение о независимости признаков друг от друга.

Но независимость признаков (когда коэфф.

корр=0) не часто наблюдается на практике.

Поэтому наш классификатор называют наивным байесовским классификатором (НБК).

Когда между признаками существует сильная зависимость НБК может сильно ошибаться.

Работа НБК при зависимых признаках

В этой таблице признаки коррелируют (более того: они совпадают).

Проведем расчет принадлежности классам объекта F

- 1) без использования второго признака,
- 2) с двумя признаками.

	курит	кошек	Пол (т)
Α	0	0	1
В	0	0	0
С	1	1	1
D	1	1	0
Е	1	1	1

	Курит	Любит кошек	Пол (Y)
F	0	0	?

Используем только один признак

Имеем:
$$Pr(Ж)=2/5$$
, $Pr(K'|Ж)=1/2$, $Pr(M)=3/5$, $Pr(K'|M)=1/3$

$$Pr(X|K') = Pr(K'|X) * Pr(X)/Pr(K') = (1/5)/Pr(K')$$

 $Pr(M|K') = Pr(K'|M) * Pr(M)/Pr(K') = (1/5)/Pr(K')$

Из равенства
$$Pr(\mathcal{K}|K')+Pr(M|K')=1$$
 находим $Pr(\mathcal{K}|K')=1/2$, $Pr(M|K')=1/2$

	Курит	Любит кошек	Пол (Ү)
Α	0	0	1
В	0	0	0
С	1	1	1
D	1	1	0
Е	1	1	1

Используем оба признака

Имеем:
$$Pr(\mathcal{K})=2/5$$
, $Pr(K'|\mathcal{K})=1/2$, $Pr(\Pi'|\mathcal{K})=1/2$, $Pr(M)=3/5$, $Pr(K'|M)=1/3$, $Pr(\Pi'|M)=1/3$

$$Pr(X|K'\Pi')=Pr(K'|X)*Pr(\Pi'|X)*Pr(X)/Pr(K'\Pi')=(1/10)/Pr(K'\Pi')$$

 $Pr(M|K'\Pi')=Pr(K'|M)*Pr(\Pi'|M)*Pr(M)/Pr(K'\Pi')=(1/15)/Pr(K'\Pi')$

Из равенства
$$Pr(X|K'J')+Pr(M|K'J')=1$$
 находим

Pr(X|K'J')=3/5, Pr(M|K'J')=2/5

	Курит	Любит кошек	Пол (Ү)
Α	0	0	1
В	0	0	0
С	1	1	1
D	1	1	0
Е	1	1	1

Ответ-то изменился!!!

... хотя никакой принципиально новой информации мы в таблицу не добавляли.

Вот к чему приводит наличие зависимостей между признаками!!!

Зависимые признаки нужно удалять (или как-то модифицировать) – об этом в теме «Отбор признаков»

Плюсы НБК:

- 1. Простота и быстрая работа. Используется в системах массового обслуживания. Например, при фильтрации спама.
- 2. В некоторых случаях НБК хорошо работает даже для коррелированных признаков (так что стОит рискнуть)))). Например, при фильтрации спама признаки, как правило, не являются независимыми этот эффект и рассмотрим на след. слайдах.

Фильтрация спама (общая постановка)

Задача: есть текст письма, определить является ли оно спамом (класс 1) или нет (класс 0).

Какие признаки есть у письма?

Самый простой способ (count vectorizer): для каждого слова из словаря завести свой бинарный признак (он будет равен 1, если это слово встречается в рассматриваемом письме).

	лекарс тво	запой	геморрой	заработать	миллион	Путин	Спам?
Α	1	1	1	0	0	0	1
В	1	1	0	0	0	0	1
С	1	0	1	0	0	0	1
D	0	0	0	1	1	0	1
Ε	1	0	0	0	1	0	1
F	0	0	0	0	1	1	0

Результат работы НБК

Был загружен «**SMS Spam Collection Data Set**». Нормальные сообщения там помечены словом «ham», а плохие «spam».

ham What you doing?how are you?

ham Ok lar... Joking wif u oni...

ham dun say so early hor... U c already then say...

ham MY NO. IN LUTON 0125698789 RING ME IF UR AROUND! H*

ham Siva is in hostel aha:-.

ham Cos i was out shopping wif darren jus now n i called him 2 ask wat present he wan lor. Then he started guessing who i was wif n he finally guessed darren lor.

spam FreeMsg: Txt: CALL to No: 86888 & claim your reward of 3 hours talk time to use from your phone now! ubscribe6GBP/ mnth inc 3hrs 16 stop?txtStop

spam Sunshine Quiz! Win a super Sony DVD recorder if you canname the capital of Australia? Text MQUIZ to 82277. B

spam URGENT! Your Mobile No 07808726822 was awarded a L2,000 Bonus Caller Prize on 02/09/03! This is our 2nd attempt to contact YOU! Call 0871-872-9758 BOX95QU

Результат работы НБК

kNN для фильтрации спама показал precision=1 recall=0.61 НБК для фильтрации спама показал precision=0.98 recall=0.92 при пороге π =0.5

И это несмотря на то, что в данных много зависимых признаков.

Имейте в виду: в задаче про спам очень важно правильно установить порог π классификации.

Напомню смысл порога π : если

 $Pr(Cnam \mid текст письма) > \pi$,

то письмо относим к классу «Спам».

В этой задаче порог должен быть большим (а почему?).

Вообще говоря...

... там много зависимых признаков (к тому же объем выборки небольшой).

Но НБК не обязательно на них начнет косячить (проверено на практике)!

Имейте в виду: в задаче про спам очень важно правильно установить порог π классификации.

Напомню смысл порога π : если

 $Pr(Cпам \mid текст письма) > \pi$,

то письмо относим к классу «Спам».

В этой задаче порог должен быть большим (а почему?).

Показатели качества алгоритма, выдающего вероятности

Проблема:

Как оценить качество работы алгоритма, выдающего вероятности принадлежности к классам. Самый простой способ: округлить вероятности до целых значений и получить обычный алгоритм классификации.

Объект	Рост	Bec	Пол (0-ж, 1-м) (предсказанный)	Ответ (округл)
А	180	70	0.75	1
В	150	45	0.1	0

A потом считать для округленных значений считать precision, recall и т.д.

Ho:

такой способ не является оптимальным, особенно когда

- 1) классы не сбалансированы (число объектов одного класса много больше объектов другого класса);
- 2) цены ошибок за неправильные классификации объектов класса 1 и класса 0 различны.

Для вероятностей используют свои показатели качества

- 1. log-loss
- 2. ROC-AUC
- 3. ...

На каких идеях основаны эти величины? Смысл формулы для log-loss такой:

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$

модель штрафуется сильнее тогда, когда она сильно уверена в неправильном ответе.

На последующих слайдах мы рассмотрим ROC-AUC.

Качество классификации в первом приближении

Пусть алгоритм выдал оценки, как показано в табл. 1. Упорядочим строки табл. 1 по убыванию ответов алгоритма — получим табл. 2. Ясно, что в идеале её столбец «класс» тоже станет упорядочен (сначала идут 1, потом 0); в случае «слепого угадывания» будет случайное распределение 0 и 1.

Так вот: число нарушений порядка в табл. 2 определяет качество алгоритма.

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

ROC (receiver operating characteristic) - кривая

Выглядит примерно так (синяя синяя):

Чем больше площадь (AUC=area under curve) под ней – тем лучше.

А как строить ROC-кривую?

Строим ROC-кривую

Как и все показатели качества ROC-кривая строится по тестовой выборке.

Пусть n –число нулей в тестовой выборке, m – число единиц. Надо взять единичный квадрат на координатной плоскости, разбить его на m равных частей горизонтальными линиями и на n – вертикальными

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

Строим ROC-кривую

Теперь будем просматривать строки в таблице сверху вниз и прорисовывать на сетке линии, переходя их одного узла в другой. Стартуем из точки (0, 0). Если значение метки класса в просматриваемой строке 1, то делаем шаг вверх; если 0, то делаем шаг вправо.

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

Важное правило:

если у нескольких объектов значения меток равны, то мы делаем сразу шаг в точку, которая на *а* блоков выше и *b* блоков правее,

где a — число единиц в группе объектов с одним значением метки, b — число нулей в ней.

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

Как выбрать порог *р* для округления с помощью ROCкривой?

Смысл порога *p*: если вероятность для объекта выше *p*, то объект относят к классу 1. Для этого нужно взять точку с кривой. Порог р для нее будет равен вероятности объекта, который использовался при построении кривой в эту точку. Точка на рисунке соотв. порогу 0.3

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

https://alexanderdyakonov.wordpress.com

А что значат координаты точки на ROC-прямой?

Значение по горизонтали: FPR (false positive rate), доля объектов класса 0, которые неверно классифицированы нашим алгоритмом Значение по вертикали: TPR (true positive rate, recall), доля объектов класса 1, которые верно классифицированы нашим алгоритмом.

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Табл. 2

Использованная литература

- 1. Т.Сегаран «Программируем коллективный разум» (фильтрация спама)
- 2. https://alexanderdyakonov.wordpress.com/2017/07/28/auc-roc-
 - %D0%BF%D0%BB%D0%BE%D1%89%D0%B0%D0%B4%D1%8
 - C-%D0%BF%D0%BE%D0%B4-
 - %D0%BA%D1%80%D0%B8%D0%B2%D0%BE%D0%B9-
 - <u>%D0%BE%D1%88%D0%B8%D0%B1%D0%BE%D0%BA/</u> (про
 - показатели качества) Оттуда же взяты и картинки

Приложение: логистическая регрессия

Формально:

Логистическую регрессию (ЛР) можно рассматривать как один из видов линейного классификатора, результаты которого преобразуются в вероятности.

Ниже я напомню, что делают линейные классификаторы.

Правило классификации

Если объект А описывается признаками $(x_1, x_2, ... x_n)$, то он принадлежит классу 1, если $w_1x_1+w_2x_2+...+w_nx_n>0$, и объект А принадлежит классу -1, если $w_1x_1+w_2x_2+...+w_nx_n<0$.

- Числа *w_i* являются параметрами модели и настраиваются по тренировочной выборке.
- (Как вы уже заметили, в теории линейной классификации классы удобнее обозначать через 1 и -1).

Геометрическая интерпретация

Фактически строится разделяющая гиперплоскость, разделяющая классы.

Например, если признаков 2,

то строится прямая.

если признаков 3 штуки, то строится гиперплоскость в пространстве.

Когда линейный классификатор ошибается?

Вспомним правило классификации:

если $w_1x_1+w_2x_2+...+w_nx_n+w_0>0$, то объект относим к классу 1 (иначе к классу -1).

Когда модель допускает ошибку на тренировочной выборке?

Это происходит в 2-х случаях

- 1) когда $w_1 x_1 + w_2 x_2 + ... + w_n x_n > 0$, но объект из класса -1
- 2) когда $w_1 x_1 + w_2 x_2 + ... + w_n x_n < 0$ но объект из класса 1

Когда модель ошибается?

Иными словами, модель ошибается на объекте тренировочной выборки, если

$$M = y(w_1x_1 + w_2x_2 + ... + w_nx_n) < 0$$

здесь у – значение целевого признака объекта.

Величина M называется отступом.

Что минимизировать?

Введем обозначение

$$[M < 0] = \begin{cases} 1, \text{если } M < 0 \\ 0, \text{если } M > 0 \end{cases}$$

тогда для объектов тренировочной выборки нужно минимизировать функцию

$$\sum_{i=1}^{m} [M_i < 0] = \sum_{i=1}^{m} [y_i (w_1 x_1 + w_2 x_2 + \dots + w_n x_n)]$$

где M_i – отступ i-го объекта тренировочной выборки, y_i – истинная метка класса i-го объекта тренировочной выборки.

Что минимизировать?

Есть проблема: эта функция

$$\sum_{i=1}^{m} [M_i < 0] = \sum_{i=1}^{m} [y_i(w_1 x_1 + w_2 x_2 + \dots + w_n x_n)]$$

не дифференцируемая (нельзя взять производную). Искать минимум таких функций – это мазохизм.

Идея: найти дифференцируемую функцию f, которая приближенно равна [M<0]. Желательно также, чтобы выполнялось неравенство [M<0]<f (мажорирование).

И таких функций несколько

Все эти функции мажорируют функцию [M<0](темно-зеленого цвета)

$$Q(M) = (1-M)^2$$
 — квадратичная; $V(M) = (1-M)_+$ — кусочно-линейная; $S(M) = 2(1+e^M)^{-1}$ — сигмоидная; $L(M) = \log_2(1+e^{-M})$ — логистическая; $E(M) = e^{-M}$ — экспоненциальная.

- квадратичная;

 - экспоненциальная.

Схема построения линейного классификатора

- 1. Выбрать мажорирующую [М<0] функцию.
- 2. Составить выражение для минимизации.
- 3. Найти точку минимума выражения. Она даст оптимальные значения весов w_i .

ЛР укладывается в эту схему

Для мажорирования выражения нужно выбрать функцию

$$L(M)=ln(1+e^{-M})$$

А дальше...

То есть

Нужно взять сумму

$$L(M)=ln(1+e^{-M})$$

Объект

по всем объектам тренировочной выборки (выражение будет зависеть от весов w_i) и

найти точку минимума.

Например, для данных

Нужно минимизировать функцию

$$\ln(1 + e^{-1(w_1 + w_2 + w_0)}) + \ln(1 + e^{1(w_1 + w_2 + w_0)})$$

Переход к вероятностям

Линейный классификатор действует так:

если $w_1x_1+w_2x_2+...+w_nx_n+w_0>0$, то объект относим к классу 1 (иначе к классу -1).

А в ЛР делаем так:

вероятность принадлежности классу 1 равна $\sigma(w_1x_1+w_2x_2+...+w_nx_n+w_0)$, где $\sigma(z)$ – сигмоидная функция (сигмоид)

$$\sigma(z) = \frac{e^z}{e^z + 1}$$

