TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Design and Implementation of a Low Cost Embedded System for Localization of Drones Flying in Swarms

Author:

Thesis Committee:

Christos Spyridakis

Prof. Apostolos Dollas (Supervisor) Asst. Prof. Eftychios Koutroulis Asst. Prof. Panagiotis Partsinevelos

A thesis submitted in fulfillment of the requirements for the diploma of Electrical and Computer Engineer in the

School of Electrical and Computer Engineering Microprocessor and Hardware Laboratory

November 27, 2020

TECHNICAL UNIVERSITY OF CRETE

Abstract

School of Electrical and Computer Engineering

Electrical and Computer Engineer

Design and Implementation of a Low Cost Embedded System for Localization of Drones Flying in Swarms

by Christos Spyridakis

TODO ...

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Περίληψη

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών

Σχεδίαση και Υλοποίηση Ενσωματωμένου Συστήματος Χαμηλού Κόστους για Εύρεση Θέσης μη Επανδρωμένων Αεροσκαφών που Πετούν σε Σχηματισμό

από τον Χρήστο ΣΠΥΡΙΔΑΚΗ

TODO ...

Acknowledgements

TODO

Contents

A	bstract	iii
\mathbf{A}	bstract	v
\mathbf{A}	cknowledgements	vii
C	ontents	ix
Li	st of Figures	xi
Li	st of Tables	xiii
Li	st of Algorithms	xv
\mathbf{P}	hysical Constants	xvii
Li	st of Symbols	xix
Li	st of Abbreviations	xxi
1	Introduction 1.1 UAV and Swarm	1
	1.1.1 UAV	
	1.1.2 Swarms	5
	1.2 Motivation	5
	1.3 Scientific Goals and Contributions	5
	1.4 Thesis Outline	5
2	Theoretical Background	7
3	Related Work	9
	3.1 Thesis Approach	9
4	Design Features and Implementation	11
5	Applications and Usage Examples	13

6	Experiments and Results	15
7	Conclusions and Future Work	17
Re	eferences	19

List of Figures

1.1	UAV Examples															٠
1.2	UAV principal axe															4

List of Tables

1.1	Κατηγοριοποίηση	των UAV	βάση της	δομή τους	[8].				2
-----	-----------------	---------	----------	-----------	------	--	--	--	---

List of Algorithms

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m \, s^{-1}} \; (\mathrm{exact})$

xix

List of Symbols

a distance m

 ω angular frequency rad

xxi

List of Abbreviations

MCU Micro Controller Unit

MPU Micro Processor Unit

UAV Unmanned Aerial Vehicle

VTOL Vertically Hover, Take-off, and Land

ESC Electronic Speed Control

IMU Intertial Measurement Unit

GPS Global Positioning System

FPV First Person View

WSN Wireless Sensor Networks

UGV Unmanned Ground Vehicle

MAV Micro Aerial Vehicle

USV Unmanned Surface Vehicle

UAS Unmanned Aircraft System

ISR Intelligence, Surveillance, and Reconnaissance

UCAV Unmanned Combat Aerial Vehicle

Dedicated to those people who have helped me be the person I am today...

Introduction

"Alone we can do so little, together we can do so much"

Hellen Keller

Τα τελευταία χρόνια η ανάπτυξη της επιστήμης έχει επιφέρει την απόκτηση των τεχνολογικών επιτευγμάτων από το ευρύ κοινό με ένα πολύ οικονομικό αντίτιμο. Αυτό σημαίνει ότι ο καθένας πολύ εύκολα μπορεί να έχει στην κατοχή του ακόμα και προϊόντα τα οποία θεωρούνται state-of-the-art χωρίς να χρειάζεται να δαπανήσει μεγάλα ποσά. Το ίδιο φυσικά, συμβαίνει και με τον κλάδο των drone και την - κατά επέκταση - χρήση αυτών · ακόμα και για ψυχαγωγικό σκοπό.

Κατά το τέλος του έτους 2019 μόνο στις Ηνωμένες Πολιτείες της Αμερικής υπήρχαν πάνω από 990 χιλιάδες εγγεγραμμένοι χειριστές drone με πάνω από 1.32 εκατομμύρια drone ψυχαγωγικού χαρακτήρα να χρησιμοποιούνται [1]. Ενώ μέχρι το 2025 υπολογίζεται ότι το μέγεθος αγοράς των υπηρεσιών drone θα κοστολογείται στα 63.6 εκατομμύρια δολάρια [2].

Φυσικά η χρήση τους δεν περιορίζεται μόνο στην ψυχαγωγία, εταιρίες όπως η Απαzon έχουν αποκτήσει ήδη τα απαραίτητα πιστοποιητικά και εγκρίσεις και σκοπεύουν να χρησιμοποιήσουν drone για παράδοση των δεμάτων [3] αρκετά σύντομα, καθώς προς το παρόν η διαδικασία βρίσκεται σε στάδιο δοκιμών. Συνεπώς είναι εύκολο να κατανοηθεί ότι ο συγκεκριμένος κλάδος πρόκειται να έχει ακόμα μεγαλύτερη άνθιση, με αρκετά μεγάλο ερευνητικό ενδιαφέρον να του αναλογεί.

Με την αύξηση των drone και την αύξηση των εφαρμογών, υπάρχει η ανάγκη συνεργασίας και η δημιουργία drone swarms για την επιτυχή ολοκλήρωση των στόχων που έχουν οριστεί. Όμως για να καταφέρουν τα drone να συνεργαστούν χρειάζεται πρώτα να μπορούν να ξεπεράσουν τα προβλήματα τα οποία υπάρχουν.

1.1 UAV and Swarm

Είναι σημαντικό από τα πρώτα βήματα, να έχει γίνει κατανοητό με τον όρο drone σε τι παραπέμπουμε - όπως επίσης πότε θεωρείται ότι ένα σμήνος από drone πετάει σε σχηματισμό (drone swarm).

1.1.1 UAV

Όταν αναφερόμαστε στον όρο Unmanned aerial vehicle (UAV) ή απλούστερα drone κάνουμε αναφορά για ένα μη επανδρωμένο ιπτάμενο αεροσκάφος το οποίο ελέγχεται είτε απομακρυσμένα από έναν άνθρωπο, είτε είναι τελείως αυτόνομο. Τα UAV μαζί με ένα σταθμό βάσης και την από κοινού επικοινωνίας του σταθμού - drone, δημιουργούν αυτό που ονομάζουμε Unmanned aircraft system (UAS) [4] [5].

Η πρώτη εμφάνιση των UAV έγινε κατά το 1849 στα πλαίσια μάχης, ενώ οι πρώτες καινοτομίες πάνω σε αυτά ξεκίνησαν ήδη από τις αρχές του 20ου αιώνα. Το 2013 τουλάχιστον 50 χώρες χρησιμοποιούσαν UAVs για κάποιον σκοπό, με μερικές από αυτές φυσικά να σχεδιάζουν τα δικά τους [5]. Αυτήν την στιγμή υπάρχουν πάνω από 1000 διαφορετικά μοντέλα UAV που χρησιμοποιούνται ανά τον κόσμο, με τα περισσότερα από αυτά να μην έχουν ψυχαγωγικό χαρακτήρα [6].

Είναι λοιπόν ξεκάθαρο ότι το πλήθος των drone είναι τόσο μεγάλο, λόγω των διαφορετικών αναγκών - και ότι κάποια έχουν καλύτερα αποτελέσματα από ότι άλλα σε συγκεκριμένες αποστολές. Για αυτό, έχουν γίνει ήδη προσπάθειες για την κατηγοριοποίηση των UAVs σύμφωνα με τα διάφορα χαρακτηριστικά που μπορεί να έχουν. Ενδεικτικά με βάση το μέγεθος, την αυτονομία, το βάρος ή το μηχανολογικό σχεδιασμό των UAV είναι μερικές από τις υπάρχουσες [4] [7] [8]. Στο Table 1.1 υπάρχει μία απλουστευμένη κατηγοριοποίηση η οποία προτάθηκε από τους συγγραφείς του [8] σύμφωνα με τη βασική μηχανολογική δομή που μπορεί να έχει ένα drone καθώς και τα πλεονεκτήματα της κάθε δομής.

TABLE 1.1: Κατηγοριοποίηση των UAV βάση της δομή τους [8].

Drones	Main features
Fixed-Wing	long endurance and fast flight speed
Fixed-Wing Hybrid	VTOL and long endurance flight
Single Rotor	VTOL, hover, and long endurance flight
Multirotor	VTOL, hover, and short endurance flight

FIGURE 1.1: UAV Examples

Τυπικά τα Fixed-Wing drones είναι αρκετά ακριβά, χρειάζονται εξειδικευμένους χειριστές για να λειτουργήσουν, όπως επιπλέον και περισσότερο χώρο για την απογείωση και την προσγείωση. Είναι ιδανικά για εφαρμογές που χρειάζεται να καλύψουμε μεγάλες περιοχές και συχνά έχουν αυτονομία τουλάχιστον μερικών ωρών. Για αυτούς τους λόγους χρησιμοποιούνται κυρίως από κυβερνήσεις, στρατιωτικές μονάδες ή επιχειρήσεις για την γρήγορη επίβλεψη μεγάλων εκτάσεων [9].

Τα Fixed-Wing Hybrid προσπαθούν να λύσουν τα μειονεχτήματα που έχουν τα Fixed-Wing drones, την μη ικανότητα δηλαδή για Vertically Hover, Take-off, and Land (VTOL) όμως είναι ακόμα σε αρχικά στάδια [8].

Τα Single Rotor είναι επίσης αρκετά ακριβά, πολύπλοκα μηχανολογικά μηχανήματα, που δέχονται πολλούς κραδασμούς, απαιτούν εξειδικευμένους χειριστές όμως μπορούν να μεταφέρουν αρκετά βαριά payloads, θετικό στην χρήση τους ότι μπορούν να πραγματοποιήσουν VTOL [8].

Τα Multirotor είναι ίσως τα πιο ευρέως διαδεδομένα. Καθώς είναι τα πιο οικονομικά από τα παραπάνω και εύκολο να κατασκευαστούν. Μπορούν να βρεθούν στο εμπόριο με διάφορο πλήθος από έλικες και είναι το κύριο είδος που χρησιμοποιείται από ερασιτέχνες ή χομπίστες για λόγους αναψυχής [8].

Στο Figure 1.1 δίνονται κάποια ενδεικτικά παραδείγματα UAVs με βάση την κατηγοριοποίηση του Table 1.1. Φυσικά αυτή η κατηγοριοποίηση δεν περιλαμβάνει όλα τα είδη drone, είναι όμως ικανοποιητική για να γίνουν ξεκάθαρα δύο βασικές ιδέες. Αρχικά ανάλογα με την εφαρμογή που μας ενδιαφέρει, θα πρέπει να επιλέξουμε την χρήση του πλέον κατάλληλου τύπου drone. Όπως επίσης με βάση την επιλογή του συγκεκριμένου τύπου - αυτόματα έχουμε να διαχειριστούμε τα πλεονεκτήματα ή τα μειονεκτήματα που έχει.

Σε περίπτωση που μας ενδιαφέρει, οι συγγραφείς του [7] παρουσιάζουν με εκτενέστερο τρόπο διάφορες κατηγοριοποιήσεις και είδη drone τα οποία δεν εμπίπτουν στα πλαίσια αυτής της διπλωματικής και κυμαίνονται από smart dust, bio-drones, hybrid drones και άλλα πολλά.

Σε όποια από τις κατηγορίες και αν αντιστοιχεί ένα drone από την στιγμή που είναι ένα ιπτάμενο αντικείμενο, θα πρέπει να έχει την δυνατότητα να κινείται - φυσικά - στον αέρα. Στο Figure 1.2 παρουσιάζονται στους 3 άξονες, οι βαθμοί ελευθερίας κίνησης ενός UAV [10] καθώς και το όνομα που δίνεται στην κίνηση ανάλογα με τον άξονα που πραγματοποιείται.

FIGURE 1.2: UAV principal axes: URL

Κάτι αχόμα σημαντικό είναι το πλήθος και είδος των αισθητήρων που υπάρχουν πλέον πάνω στα drones. Με τους

Electronic Speed Control (ESC) Inertial Measurement Unit (IMU)

1.2. Motivation 5

1.1.2 Swarms

1.2 Motivation

TODO: χρήση των drone

1.3 Scientific Goals and Contributions

ΤΟΟΟ: Σκοπός αυτής της διπλωματικής

1.4 Thesis Outline

- Chapter 2 Theoretical Background:
- Chapter 3 Related Work:
- Chapter 4 Design Features and Implementation:
- Chapter 5 Applications and Usage Examples:
- Chapter 6 Experiments and Results:
- Chapter 7 Conclusions and Future Work:

Theoretical Background

"Let no one ignorant of geometry enter"

Plato

Related Work

"This is where technology is now, imagine where we can go in the future"

Timothy Chung

3.1 Thesis Approach

This should be the last section

Design Features and Implementation

Applications and Usage Examples

Experiments and Results

Conclusions and Future Work

References

- [4] Suraj G Gupta, Dr Ghonge, Pradip M Jawandhiya, et al. "Review of unmanned aircraft system (UAS)". In: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 2 (2013). URL: http://refhub.elsevier.com/S0376-0421(16)30134-8/sbref2.
- [7] M. Hassanalian and A. Abdelkefi. "Classifications, applications, and design challenges of drones: A review". In: *Progress in Aerospace Sciences* 91 (2017), pp. 99–131. ISSN: 0376-0421. DOI: https://doi.org/10.1016/j.paerosci. 2017.04.003. URL: http://www.sciencedirect.com/science/article/pii/S0376042116301348.
- [8] Anam Tahir et al. "Swarms of Unmanned Aerial Vehicles A Survey". In: Journal of Industrial Information Integration 16 (2019), p. 100106. ISSN: 2452-414X. DOI: https://doi.org/10.1016/j.jii.2019.100106. URL: http://www.sciencedirect.com/science/article/pii/S2452414X18300086.

External Links

- [1] Matt Satell. *Ultimate List of Drone Stats for 2020*. July 2020. URL: https://www.phillybyair.com/blog/drone-stats/ (visited on 11/2020).
- [2] Business Insider Intelligence. Drone market outlook: industry growth trends, market stats and forecast. Mar. 2020. URL: https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts (visited on 11/2020).
- [3] Concepción de León. Drone Delivery? Amazon Moves Closer With F.A.A. Approval. Aug. 2020. URL: https://www.nytimes.com/2020/08/31/business/amazon-drone-delivery.html (visited on 11/2020).
- [5] Unmanned aerial vehicle. URL: https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle (visited on 11/2020).
- [6] List of unmanned aerial vehicles. URL: https://en.wikipedia.org/wiki/List_of_unmanned_aerial_vehicles (visited on 11/2020).
- [9] A Guide to Fixed Wing Drones. URL: https://www.coptrz.com/a-guide-to-fixed-wing-drones/ (visited on 11/2020).
- [10] Aircraft principal axes. URL: https://en.wikipedia.org/wiki/Aircraft_principal_axes (visited on 11/2020).