Reinforcement Learning II

Reinforcement Learning Roadmap

1

Core concepts in reinforcement learning
Actions, Rewards, Value, Environments, and Policies

Environment Knowledge

Perfect knowledge Known Markov Decision Process

2

Markov decision processes

...and Markov chains and Markov reward processes

3

Dynamic Programming

How do we find optimal policies? (Bellman equations)

No knowledge Must learn from experience 4 Mo

Monte Carlo Control

How do we estimate our value functions? How do we use the value functions to choose actions? How do we learn optimal policies from experience?

Reinforcement Learning Components

Policy (agent behavior), $\pi(s)$

Reward function (the goal), r_t

Value functions (expected returns), $v_{\pi}(s)$ State value

 $q_{\pi}(s,a)$ Action value

Policy $\pi(s)$

(which actions to take in each state)

Reward r_t

(rewards are received after actions are taken)

State Value $v_{\pi}(s)$

(expected cumulative rewards starting from current state **if** we follow the policy)

Action Value $q_{\pi}(s, a)$

(expected cumulative rewards starting from current state **if** we take action *a* then follow the policy)

Start

	→		
\rightarrow	\longrightarrow	\rightarrow	←
←		→	
	\longrightarrow	\rightarrow	→
	←		→
\rightarrow	↑		\
			Exit

Start

o tar t			
	-1		
-1	-1	-1	-1
-1		-1	
	-1	-1	-1
	-1		-1
-1	-1		-1

Start

	-8		
-8	-7	-6	-7
-9		-5	
	-5	-4	-3
	-6		-2
-8	-7		-1
			Exit

↑ -9 → -7 ← -9

Adapted from David Silver, 2015

Exit

Value functions

s_t Agent action a_t reward r_t

State Value function, $v_{\pi}(s)$

- How "good" is it to be in a state, s_t then follow policy π to choose actions
- Total expected rewards

$$v_{\pi}(s) = E_{\pi}[G_t|s_t = s]$$

Action Value function, $q_{\pi}(s, a)$

- How "good" is it to be in a state, s, take action a, then follow policy π to choose actions
- Total expected rewards

$$q_{\pi}(s, a) = E_{\pi}[G_t | s_t = s, a_t = a]$$

Where
$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

Policy

Policy, $\pi(s)$

- Selects an action to choose based on the state
- Determines an agent's "behavior"

Deterministic policy:

$$a = \pi(s)$$

Stochastic policy:

$$\pi(a|s) = P(A_t = a|S_t = s)$$

Helps us "explore" the state space

RL tries to learn the "best" policy

Returns / cumulative reward

Episodic tasks (finite number, T, of steps, then reset)

$$G_t = r_{t+1} + r_{t+2} + \dots + r_T$$

Continuing tasks with discounting $(T \rightarrow \infty)$

$$G_t=r_{t+1}+\gamma r_{t+2}+\gamma^2 r_{t+3} \ldots=\sum_{k=0}^\infty \gamma^k r_{t+k+1}$$
 where $0\leq \gamma\leq 1$ is the discount rate

 γ makes the agent care more/less about immediate rewards

Building blocks for the full RL problem

1	Markov Chain	{state space <i>S</i> , transition probabilities <i>P</i> }
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{ actions } A\}$ adds decisions (i.e. the ability to control)

MDPs form the framework for most reinforcement learning environments

Adapted from David Silver, 2015

History

The record of all that has happened in this system

Step 0:
$$s_0, a_0$$

Step 1:
$$r_1, s_1, a_1$$

Step 2:
$$r_2, s_2, a_2$$

•

Step T:
$$r_t, s_t, a_t$$

History at time $t: H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$

Markov property

Instead of needing the full history:

$$H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$$

We can summarize everything in the current state

$$H_t = \{s_t, a_t\}$$

The future is independent of the past given the present

Another way of saying this is:

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Example: student life

Two components: $\{S, P\}$

State space, S

Transition matrix, P

State transition probabilities

			To state		
		1	2	3	
state	1	p_{11}	p_{12}	p_{13}	
ım st	2	p_{21}	p_{22}	p_{23}	
E S	3	P_{31}	p_{32}	p_{33}	

Transitions out of each state sum to 1

			I o state	
		Netflix	Eat	Study
ate	Netflix	8.0	0.2	0]
m sta	Netflix Eat	0.3	0.1	0.6
Froi	Study	L0.4	0.1	0.5

Example: student life

If we start in state 1, what's the probability we'll be in each state after one step?

$$P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

This is the first row of the state transition probability matrix

Example: student life

If we started in state 1, we can calculate the probabilities of being in each state at step 1 as:

$$P_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{T} \quad P_{1} = P_{0}P_{SS'}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$0.1 \quad P_{1} = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

To state

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
Study
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
O.4
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
O.5

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$
 As $n \to \infty$, we identify our steady state probabilities

$$P_2 = [0.7 \quad 0.18 \quad 0.12]$$

$$P_n = P_0 P_{ss'}^n$$

$$P_{\infty} = [0.64 \quad 0.16 \quad 0.20]$$

Markov Chains with absorbing state

Example: student life

Kyle Bradbury

Example: student life

Markov chains can be used to represent sequential discrete-time data

Can estimate long-term state probabilities

Can simulate state sequences based on the model

Markov property applies (current state gives you all the information you need about future states)

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Valid if the system is **autonomous** and the states are **fully observable**

Hidden Markov Models

Example: student life

What if we don't directly observe what state the system is in, but instead observe a quantity that depends on the state?

Example: the student wears an EEG monitor, and we see readings of brain **0.1** activity.

Eat

Study

Netflix

States are hidden or latent variables

Markov Models

States are **Fully Observable**

States are **Partially Observable**

Autonomous

(no actions; make predictions)

Markov Chain, Markov Reward Process Hidden Markov Model (HMM)

Controlled

(can take actions)

Markov Decision Process (MDP)

Partially Observable
Markov Decision
Process (POMDP)

Applications

HMMs: time series ML, e.g. speech + handwriting recognition

MDPs: framework for reinforcement learning

1 Markov Chain Example

Components:

State space S, Transition probabilities P

$$P_{46} = P_{ss'}$$

$$S_4$$

Sample Episodes:

C1,C2,Sleep

C1,FB,FB,FB,C1,C2,C3,Pass,Sleep

*C*3

State transition probability matrix, $P_{ss'}$

Pass

Pub

FΒ

Example from David Silver, UCL, 2015

C1

*C*2

Building blocks for the full RL problem

1	Markov Chain	{state space <i>S</i> , transition probabilities <i>P</i> }
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{ actions } A\}$ adds decisions (i.e. the ability to control)

MDPs form the framework for most reinforcement learning environments

Adapted from David Silver, 2015

0.4

Pub

R = +1

Components:

State space S, Transition probabilities, P

Rewards, R

Discount rate, γ

Recall that returns, let's call G_t , are the total discounted rewards from time t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Components:

State space S, Transition probabilities, P

Rewards, R

Discount rate, γ

Rewards,
$$R$$
Discount rate, γ

$$v(s) \text{ for } \gamma = 0$$

State value function v(s)is the expected total reward (into the future)

$$v(s) = E[G_t | S = s_t]$$

Example from David Silver, UCL, 2015

R = +1

Components:

State space S, Transition probabilities, P

Rewards, R

Discount rate, γ

$$v(s)$$
 for $\gamma = 0.9$

State value function v(s)is the expected total reward (into the future)

$$v(s) = E[G_t | S = s_t]$$

Example from David Silver, UCL, 2015

R = 0

0.2

0.9

0.8

R = -2

0.4

0.9

-7.6

R = -1

0.5

R = -2

-5.0

"Backup" property of state value functions

$$v(s) \triangleq E[G_t|S_t = s]$$
 where $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots$
 $= E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots | S_t = s]$
 $= E[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} \dots) | S_t = s]$
 $= E[R_{t+1} + \gamma G_{t+1} | S_t = s]$
 $= E[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$

This recursive relationship is a version of the **Bellman Equation**

State values are related to neighboring states

R = +1

possible states we could transition to from s

$$v(s) = E[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

$$v(s) = r_s + \gamma \sum_{s'} P_{ss'} v(s')$$

$$r_{s} = E[R_{t+1}|S_{t} = s]$$

Assume
$$\gamma = 1$$

$$4.3 = -2 + 0.6 \times 10 + 0.4 \times 0.8$$

Building blocks for the full RL problem

1	Markov Chain	{state space S, transition probabilities P}
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{ actions } A\}$ adds decisions (i.e. the ability to control)

MDPs form the basis for most reinforcement learning environments

Adapted from David Silver, 2015

3 Markov Decision Process **Facebook** R = -1Actions Facebook Quit Sleep R = 0R = 0R = -1Study Study Study R = +10R = -2R = -2Pub R = +10.4 0.2

Components:

State space S, Transition probabilities, P Rewards, R Discount rate, γ Actions, A

Adds interaction with the environment

An agent in a state chooses an action, the environment (the MDP) provides a reward and the next state

3 Markov Decision Process

Policy (how we choose actions)

(can be stochastic or deterministic)

$$\pi(a|s) = P(a|s)$$

State value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E[G_t|s]$$

$$v_{\pi}(s) = E[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

Action value function

(expected return from state s, taking action a, and following policy π)

$$q_{\pi}(s,a) = E_{\pi}[G_t|s,a]$$

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1})|s, a]$$

"Backup" property of state value functions

$$v_{\pi}(s) \triangleq E_{\pi}[G_t|S_t = s]$$
 where $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots$
 $= E_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots | S_t = s]$
 $= E_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} \dots) | S_t = s]$
 $= E_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$
 $= E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$

This recursive relationship is a version of the **Bellman Equation**

Bellman Expectation Equations for the state value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

Expectation over the possible actions

Expectation over the rewards

(based on state and choice of action)

Expectation over the next possible states

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

p(s',r|s,a) is the joint distribution of state transitions and rewards given you start in state s and take action a

Bellman Expectation Equations for the action value function

(expected return from state s, taking action a, then following policy π)

$$q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$$

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Expectation over the rewards

(based on state and choice of action)

Expectation over the next possible states

Expectation over the possible actions

$$q_{\pi}(s, a) = \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s', a') \right]$$

 $q_{\pi}(s',a') \leftarrow a'$

Bellman Expectation Equations

State value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$q_{\pi}(s,a)$$

Action value function

(expected return from state s, taking action a, then following policy π)

$$q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a]$$

$$q_{\pi}(s,a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1})|S_t = s, A_t = a]$$

$$q_{\pi}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma \sum_{\underline{a'}} \pi(a'|s') q_{\pi}(s',a') \right]$$

$$v_{\pi}(s')$$

Example

Policy: randomly choose an action $\pi(a_1|s_0) = \pi(a_2|s_0) = 0.5$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

$$v_{\pi}(s_0) = (0.5)(5-1) + (0.5)[(0.9)(1) + (0.1)(-50) + (0.9)(10) + (0.1)(0)] \qquad \gamma = 1$$

$$\frac{r}{q_{\pi}(s_0, a_1)} \qquad \frac{p}{q_{\pi}(s_0, a_2)} \qquad \frac{p}{q_{\pi}(s$$

 S_2

 $v_{\pi}(s_2)$

Optimal state-value function, $v_*(s)$

Maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal state-value function, $v_*(s)$

Maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal action-value function, $q_*(s,a)$

Maximum value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

3 Markov Decision Process

Optimal **policy**, $\pi_*(s)$ Which action to take at each moment

$$\pi_*(s) = \arg\max_{a} q_*(s, a)$$

Once we have the optimal value functions, we've "solved" the MDP!

Building blocks for the full RL problem

1	Markov Chain	$\{ \text{state space } S, \text{ transition probabilities } P \}$
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{ actions } A\}$ adds decisions (i.e. the ability to control)

- RL methods do NOT ASSUME knowledge of P or R (while dynamic programming does)
- RL learns/approximates that knowledge

Adapted from David Silver, 2015

Reinforcement Learning Roadmap

1

Core concepts in reinforcement learning
Actions, Rewards, Value, Environments, and Policies

Environment Knowledge

Perfect knowledge Known Markov

Known Markov Decision Process

No knowledgeMust learn from experience

2 Markov decision processes

...and Markov chains and Markov reward processes

3 Dynamic Programming

How do we find optimal policies? (Bellman equations)

4 Monte Carlo Control

How do we estimate our value functions? How do we use the value functions to choose actions? How do we learn optimal policies from experience?