Московский государственный технический университет имени Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

ПРЕДДИПЛОМНАЯ ПРАКТИКА

МОДЕЛИРОВАНИЕ ДЕГРАДАЦИИ В ГЕТЕРОСТРУКТУРАХ НА ПРИМЕРЕ РТГС

Выполнил:

Руководитель:

ПРОХОРОВ М. РЛ6-82 к.т.н. доц. ДАНИЛОВ И.И.

Содержание

BE	едени	e			4			
1	Теоретическая часть							
	1.1 Деградация приборов на основе гетероструктур							
	1.2	Дифо	рузия		5			
		1.2.1	Заког	ны Фика	5			
		1.2.2	Mexa	низмы диффузии	6			
		1.2.3	Коэф	официент диффузии	6			
	1.3	е через ГС	8					
		1.3.1	Урав	нение Шредингера	9			
2	Мате	Математический аппарат для моделирования						
	2.1	Мето	д конеч	иных разностей	11			
	2.2 Метод конечных разностей для решения одномерного							
	нестационарного уравнения диффузии							
		2.2.1	Коэф	официент диффузии не зависит от концентрации	13			
		2.2.2	Коэф	официент диффузии зависит от концентрации	15			
	2.3 Метод конечных разностей для расчета токоперенос через							
	гетероструктуру							
3	Исследование параметров РТГС на основе $Al_xGa_{1-x}As$							
	3.1	Исследование параметров ямы						
		3.1.1	Иссл	едование глубины ямы	20			
		3.1	1.1.1	Прозрачность РТГС	20			
		3.1		BAX PTΓC	21			
		3.1.2	Иссл	едование ширины ямы	21			
		3.1.2.1		Прозрачность РТГС	22			
		3.2	1.2.2	BAX PTΓC	22			
		3.1.3	Вывс	д	23			
	3.2	Иссле	едовани	ие парметров барьеров	24			
		3.2.1	Иссл	едование ширины барьеров	24			
	3.2.1.1			Прозрачность РТГС	24			
		3.2	2.1.2	BAX PTΓC	24			
		3.2.2	Вывс	д	25			
	3.3	Иссле	едовани	ие параметров спейсеров	26			

	3.3.1	Иссле	дование влияния размеров спейсера $\cdot\cdot\cdot$:6			
		3.3.1.1	Прозрачность РТГС	6			
		3.3.1.2	BAX PTΓC	27			
	3.3.2	Вывод	ц 2	27			
4 Мод	Моделирование деградации РТГС на основе $Al_xGa_{1-x}As$						
4.1	Ди	ффузионн	ое расплытие активной области	9			
	4.1.1	Вывод	1	1			
4.2	Ди	ффузия л	егирующей примеси	2			
Заключ	ение .			4			
Список	испо.	пьзованны	х источников	5			

Введение

В отчете рассматривается процесс моделирования деградации гетероструктур под действием температуры средствами среды MATLAB. Моделирование термической деградации гетероструктур состоит из двух частей:

- а) Моделирование процессов структурной деградации гетероструктуры;
 - б) Моделирование устройства на основе гетероструры.

Цель практики:

- а) Изучение математического аппарата для моделирования процесса термической деградации;
 - б) Изучение процессов деградации гетероструктур.

Задача практики:

- а) Моделирование процессов термической диффузии;
- б) Моделирование токопереноса;
- в) Исследование влияния основных параметров РТГС на ВАХ;
- г) Моделирование термической деградации ВАХ РТГС на основе AlGaAs.

Индивидуальное задание: Разработка алгоритма и программы, позволящей:

- а) Моделирование диффузии в твердых растворов в гетероструктурах;
- б) Моделирование диффузии в примеси;
- в) Моделирование расплытия потенциального рельефа гетероструктуры;
 - Γ) Моделирование основных параметров РТГС на основе AlGaAs.

1 Теоретическая часть

1.1 Деградация приборов на основе гетероструктур

Деградация — процесс ухудшения характеристик какого-либо объекта с течением времени.

Деградация параметров гетероструктуры во времени связана с диффузионным размытие ГП и ГС в целом. Зонная структура ГС определяет режим работы, а зонная структура ГС зависит от химического состава, поэтому диффузионное размытие изменяет зонную диаграмму и режимы работы прибора на основе ГС.

Факторы влияющие на диффузионное размытие:

- Градиент температуры;
- Градиент концентрации;
- Градиент давления;
- Наличие деффектов;
- и т.д...

Диффузионное размытие под действием градиента концентрации описывается с помощью законов Фика.

1.2 Диффузия

Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры.

Диффундировать могут как собственные атомы решетки, так и атомы растворенных в полупроводнике элементов, а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии.

1.2.1 Законы Фика

Первый закон Фика говорит, что плотность потока вещества пропорциональна коэффициенту диффузии (D) и градиенту концентрации (C).

Является стационарным уравнением.

$$\overline{J} = -D\nabla C; \tag{1.1}$$

$$\overline{J}_x = -\overline{e}_x D_x \frac{\delta}{\delta x} C_x. \tag{1.2}$$

(1.3)

Второй закон Фика связывает пространственное и временное изменения концентрации.

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \tag{1.4}$$

$$\frac{\delta}{\delta t}C_x = -\frac{\delta}{\delta x}D_x \frac{\delta}{\delta x}C_x. \tag{1.5}$$

1.2.2 Механизмы диффузии

Вакансионный механизм диффузии — заключается в миграции атомов по кристаллической решётке при помощи вакансий.

Межузельный механизм диффузии— заключается в переносе вещества межузельными атомами.

Прямой обмен атомов местами — заключается в том, что два соседних атома одним прыжком обмениваются местами в решетке кристалла.

1.2.3 Коэффициент диффузии

Коэффициент диффузии (D) — макроскопическая величина, которая определяется экспериментально. Коэффициент диффузии зависит от температуры (T) по закону Аррениуса:

$$D = D_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.6}$$

где D_0 — предэкспоненциальный множитель.

Коэффициент (D_0) и энергия активации (E_a) не зависят от температуры.

Основным механизмом диффузии Al и Si в GaAs является диффузия по вакансиям галлия (V_{Ga}) . Это связано с тем, что атомы Al и Si имеют сходные массы и размеры.

С учетом эффекта уровня Ферми коэффициент диффузии Al и Si в GaAs получен в работах [7], [8], [9]:

$$D_{Al,Si} = D_{i-GaAs} \left(\frac{N_D}{n_i}\right)^3 = D_0 \exp\left[-\frac{3.5}{k_B T}\right] \left(\frac{n}{n_i}\right)^3,$$
 (1.7)

где n — концентрация донорной примеси (Si);

 n_i — концентрация собственных носителей заряда.

Концентрация собственных носителей заряда:

$$n_i = \sqrt{N_c N_v} \exp\left[-\frac{E_g}{2k_B T}\right]; \tag{1.8}$$

$$N_c = 2 \left[\frac{2\pi m_e^* k_B T}{h^2} \right]^{\frac{3}{2}}; \tag{1.9}$$

$$N_v = 2 \left[\frac{2\pi m_h^* k_B T}{h^2} \right]^{\frac{3}{2}},\tag{1.10}$$

где E_g — ширина запрещенной зоны (33) п/п.

1.3 Токоперенос через ГС

Один из способов расчета плотности тока через гетероструктуру — это формула Цу-Есаки:

$$J(V) = \frac{2mek_BT}{(2\pi)^2\hbar^3} \int_0^\infty T(E)D(E)dE, \qquad (1.11)$$

где J(V) — плотность тока при приложенном напряжении V;

T(E) — прозрачность гетероструктуры;

D(E) — функция снабжения электронами;

m — эффективная масса электрона;

e — заряд электрона;

T — температура;

 \hbar — постоянная Дирака;

 k_B — постоянная Больцмана.

$$D(E) = \ln \frac{1 + \exp \frac{E_F - E}{k_B T}}{1 + \exp \frac{E_F - E - eV}{k_B T}},$$
(1.12)

где E_F — уровень Ферми;

V — приложенное напряжение.

Коэффициент прозрачности гетероструктуры определяется как отношение потока вероятности прошедших через структуру электронов в правом резервуаре к падающим на неё электронам в левом резервуаре. Поток вероятности находится из формулы:

$$\overline{j} = \frac{i\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi), \tag{1.13}$$

где ψ — волновая функция электрона.

Будем рассматривать электроны, приходящие из левого контакта. Левому контакту соответствуют волновые функции ψ_L , а в правому — ψ_R .

$$\psi_L = \exp[ik_L z]; \tag{1.14}$$

$$\psi_R = T_L \psi_L = T_L \exp[ik_L z], \tag{1.15}$$

где T_L — Амплитуда прошедшей волновой функции;

 k_L — волновой вектор в левом резервуаре.

Тогда коэффициент туннельной прозрачности:

$$T(E) = |T_L|^2 \frac{|k_R|m_L}{|k_L|m_R},\tag{1.16}$$

где k_R — волновой вектор в правом резервуаре;

 m_R — эффективная масса электрона в правом резервуаре;

 m_L — эффективная масса электрона в левом резервуаре.

1.3.1Уравнение Шредингера

Для нахождения волновых функций необходимо решить уравнение Шредингера. Для твердого тела уравнение Шредингера имеет вид:

$$-\frac{\hbar}{2} \left[\left(\frac{1}{m} \sum_{i} \Delta_{i} + \sum_{i} \frac{\Delta_{i}}{M_{i}} \right) + \frac{1}{2} \sum_{i,j \neq i} \frac{e^{2}}{k_{k} |\overline{r_{i}} - \overline{r_{j}}|} + \frac{1}{2} \sum_{i,j \neq i} \frac{Z_{i} Z_{j} e^{2}}{k_{k} |\overline{R_{i}} - \overline{R_{j}}|} - \frac{1}{2} \sum_{i,j \neq i} \frac{Z_{i} e^{2}}{k_{k} |\overline{R_{i}} - \overline{r_{j}}|} \right] \psi = E \psi$$

где M_i — масса атомного остова;

 k_k — постоянная Кулона;

— атомное число;

 $\frac{\Delta_i}{m}$ — кинетическая энор. $\frac{\Delta_i}{M_i}$ — кинетическая энергия i-ого атомного остова, $\frac{e^2}{k_k |\overline{r_i} - \overline{r_j}|}$ — потенциальное взаимодействие i и j электрона; $\frac{Z_i Z_j e^2}{k_k |\overline{R_i} - \overline{R_j}|}$ — потенциальное взаимодействие остовов; $\frac{Z_i e^2}{m_i}$ — потенциальное взаимодействие остова и электр $\frac{Z_i e^2}{k_k |\overline{R_i} - \overline{r_i}|}$ — потенциальное взаимодействие остова и электрона.

Ряд приближений упрощает полное уравнение Шредингера для твердого тела:

- а) Атомные остовы находятся в состоянии покоя;
- б) Электрон движется, не взаимодействуя с другими электронами, в некотором эффективном поле, создаваемым остальными электронами;

в) Движение электрона в периодическом потенциале заменяется на эффективную массу.

Упрощенное уравнение Шредингера:

$$-\frac{\hbar^2}{2m}\Delta\psi + U\psi = E\psi, \qquad (1.17)$$

где U — потенциальный профиль.

Одномерное ур. Шредингера:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dz^2}\psi(z) + U(z)\psi(z) = E\psi(z). \tag{1.18}$$

Для решения уравнения на границе гетероперехода рассматриваются условия непрерывности волновой функции и непрерывности потока плотности вероятности — эти условия так же называются условием Бастарда:

$$\begin{cases} \psi_I = \psi_{II}; \\ \frac{1}{m_I} \frac{d}{dz} \psi_I = \frac{1}{m_{II}} \frac{d}{dz} \psi_{II}, \end{cases}$$
 (1.19)

где m_I — эффективная масса в I структуре;

 m_{II} — эффективная масса во II структуре;

 ψ_I — волновая функция в I структуре;

 ψ_{II} — волновая функция во II структуре.

Учтем эффективную массу в ур. 1.18:

$$-\frac{\hbar^2}{2}\frac{d}{dz}\frac{1}{m(z)}\frac{d}{dz}\psi(z) + U(z)\psi(z) = E\psi(z).$$
 (1.20)

В случае произвольного потенциального рельефа для решения уравнения Шредингера применяются численные методы.

2 Математический аппарат для моделирования

2.1 Метод конечных разностей

Суть метода конечных разностей заключается в аппроксимации дифференциальных операторов отношением конечных разностей. Так например производную некоторой функции y(x) в точке x_0 $(\dot{y}(x_0))$ можно представить [10]:

$$\dot{y}_{+}(x_0) = \frac{d}{dx}y(x_0) = \frac{y(x_0 + \Delta x) - y(x_0)}{\Delta x};$$
(2.1)

$$\dot{y}_{-}(x_0) = \frac{d}{dx}y(x_0) = \frac{y(x_0) - y(x_0 - \Delta x)}{\Delta x};$$
(2.2)

$$\dot{y}_{-}(x_0) = \dot{y}_{+}(x_0) = \frac{d}{dx}y(x_0), \tag{2.3}$$

где \dot{y}_{-} — производная слева;

 \dot{y}_{+} — производная справа;

 Δx — приращение аргумента (шаг сетки).

 Δx – это шаг нашей конечно-разностной схемы (аппроксимации). Если шаг сетки постоянен, то говорят о регулярной сетке, иначе о нерегулярной. Мы будем рассматривать только регулярные сетки. Далее вместо Δx будет использовать Δ .

Из выше сказанного можно найти трехточечную аппроксимацию второй производной y(x):

$$\frac{d^2}{dx^2}y(x_0) = \frac{\dot{y}_+ - \dot{y}_-}{\Delta} = \frac{y(x_0 + \Delta) - 2y(x_0) + y(x_0 - \Delta)}{\Delta^2}.$$
 (2.4)

Для связи конечно-разностной схемы по времени и координате для нестационарного уравнения диффузии (??) воспользуемся апроксимацией двухточечной апроксимацией первой производной и по времени и трехточечной апроксимацие второй производной по координате:

$$\frac{C_i^{j+1} - C_i^j}{\Delta t} = \frac{C_{i-1}^j - 2C_i^j + C_{i+1}^j}{2C_i^j}$$
(2.5)

где C_i^j — значение функции в точке i, в момент времени j;

 Δt — шаг сетки по времени;

 Δx — шаг сетки по координате.

Конечно разностную схему (2.5) наглядно можно представить так:

где S(x,t) — состояние системы в момент t и точке x;

 Δx — приращение по координате;

 Δt — приращение по времени.

Рисунок $2.1 - \Gamma$ рафическая схема для конечно-разностной схемы (2.5)

2.2 Метод конечных разностей для решения одномерного нестационарного уравнения диффузии

2.2.1 Коэффициент диффузии не зависит от концентрации

Одномерное нестационарное уравнение диффузии, соответствующее второму закону Фика имеет вид:

$$\frac{\delta}{\delta t}C = D\frac{\delta^2}{\delta x^2}C; \tag{2.6}$$

Аппроксимация первой производной по времени в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta}{\delta t}C_j^i = \frac{C_j^{i+1} - C_j^i}{\Delta t};\tag{2.7}$$

Аппроксимация первой производной по координате в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$J_{j}^{i} = \frac{\delta}{\delta x} C_{j}^{i} = \frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x}; \tag{2.8}$$

Аппроксимация второй производной по координате в момент времени t_i концентрации $C_j(t_i)=C_j^i$ в точке j:

$$\frac{\delta^{2}}{\delta x^{2}} C_{j}^{i} = \frac{\delta}{\delta x} \left[\frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x} \right] = \frac{\frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x} - \frac{C_{j}^{i} - C_{j-1}^{i}}{\Delta x}}{\Delta x} = \frac{C_{j+1}^{i} - 2C_{j}^{i} + C_{j-1}^{i}}{\Delta x^{2}};$$
(2.9)

Подставляя в (2.6) аппроксимацию производных (2.7), (2.9), получим связь C_j^{i+1} с C_j^i , т.е. изменение концентрации через Δt :

$$C_j^{i+1} = \lambda C_{j-1}^i + (1 - 2\lambda)C_j^i + \lambda C_{j+1}^i, \tag{2.10}$$

где $\lambda = \frac{D\Delta t}{\Delta x^2}$ — связь коэффициента диффузии и шагов по сетке времени и координаты.

Уравнение (2.10) справедливо для всех не крайних точек конечно разностной схемы, при коэффициенте диффузии не зависящем от концентрации.

Выделим два граничных приближения для концентрации:

- а) «Закрытая система» концентрация на границе не изменяется $(J_0^i=0,\ J_{N+1}^i=0),\ {\rm cm.\ puc.} 2.2;$
- б) «Открытая система» поток частиц подходящий к границе равен потоку уходящих частиц ($J_0^i=J_1^i,\,J_N^i=J_{N+1}^i$), см. рис.2.3.

Рисунок 2.2 — "Закрытая" система диффузии

Рисунок 2.3 — "Открытая" система диффузии

Для «закрытой системы» должно выполняться условие $J_0^i=0,$ $J_{N+1}^i=0.$ Рассмотрим $(2.8),\,(2.10)$ для точки j=1:

$$J_0^i = \frac{C_1^i - C_0^i}{\Delta x} = 0 \Rightarrow C_0^i = C_1^i;$$

$$C_1^{i+1} = \lambda C_0^i + (1 - 2\lambda)C_1^i + \lambda C_2^i = \lambda C_1^i + (1 - 2\lambda)C_1^i + \lambda C_2^i =$$

$$= (1 - \lambda)C_1^i + \lambda C_2^i = C_1^{i+1};$$

Рассматривая точки $N-1,\ N,\ N+1$ аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = (1-\lambda)C_1^i + \lambda C_2^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = (1-\lambda)C_N^i + \lambda C_{N-1}^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases} (2.11)$$

Для «открытой» системы должно выполняться условие $J_0^i=J_1^i,$ $J_N^i=J_{N+1}^i.$ Рассмотрим (2.8), (2.9), (2.10) для точки j=1:

$$J_0^i = J_1^i$$

$$\frac{C_1^{i+1} - C_1^i}{\Delta t} = \frac{J_1^i - J_0^i}{\Delta x} = \frac{0}{\Delta x} = 0 \Rightarrow$$

$$\Rightarrow C_1^{i+1} = C_1^i;$$

Рассматривая точки $N-1,\ N,\ N+1$ аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases} (2.12)$$

2.2.2 Коэффициент диффузии зависит от концентрации

Если коэффициенте диффузии (D) зависит от концентрации, тогда уравнение диффузии принимает вид:

$$\frac{\delta}{\delta t}C = \frac{\delta}{\delta x}D\frac{\delta}{\delta x}C; \tag{2.13}$$

Тогда уравнение конечно-разностной схемы будет [11]:

$$\frac{C_j^{i+1} - C_j^i}{\Delta t} = \frac{D_{j+1/2}^i \frac{C_{j+1}^i - C_j^i}{\Delta x} - D_{j-1/2}^i \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x};$$
(2.14)

$$D_{j\pm 1/2}^{i} = \frac{D_{j}^{i} + D_{j\pm 1}^{i}}{2} = D_{j\pm}^{i}.$$
 (2.15)

Проводя рассуждения аналогичные предыдущему параграфу получит конечно-разностную схему для открытой схемы:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda_-^i C_{j-1}^i + (1 - \lambda_+^i - \lambda_-^i) C_j^i + \lambda_+^i C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda_+^i = D_{j+\frac{\Delta t}{\Delta x^2}}^i; \\
\lambda_-^i = D_{j-\frac{\Delta t}{\Delta x^2}}^i.
\end{cases} (2.16)$$

Метод конечных разностей для расчета токоперенос 2.3 через гетероструктуру

Конечно-разностная схема уравнения Шредингера (1.20) для ГС на рис.2.4 [6]:

$$\psi_{i-1} \frac{m_{i+1}^*}{m_{i-1}^*} + \psi_i \left(\frac{2\Delta^2 m_{i+1}^*}{\hbar^2} (E - U_i) - \frac{m_{i+1}^*}{m_{i-1}^*} - 1 \right) + \psi_{i+1} = 0, \tag{2.17}$$

где m_i^* — эффективная масса в точке i;

 ψ_i — волновая функция в точке i;

E — энергия электрона;

 U_{i} — потенциальная энергия в точке i;

 Δ — шаг сетки.

Рисунок 2.4 — Схема модели РТГС

Данное схема подходит для любой внутренней точки гетероструктуры, но не подходит для граничных точек. Граничные условия, для «левых» и «правых» электронов получаются из граничного условия Бастарда и вида волных функций в резервуарах:

$$\begin{cases} (ik_L - 1)\psi_1 + \psi_2 = 2ik_L \Delta; \\ \psi_{N-1} + (ik_R \Delta - 1)\psi_N = 0; \end{cases}$$
 (2.18)

$$\begin{cases}
(ik_{L} - 1)\psi_{1} + \psi_{2} = 2ik_{L}\Delta; \\
\psi_{N-1} + (ik_{R}\Delta - 1)\psi_{N} = 0;
\end{cases}$$

$$\begin{cases}
(ik_{L} - 1)\psi_{1} + \psi_{2} = 2ik_{L}\Delta; \\
\psi_{N-1} + (ik_{R}\Delta - 1)\psi_{N} = 0;
\end{cases}$$
(2.18)

где $k_{L(R)}$ — волновые функции в левом (правом) резервуаре.

3 Исследование параметров РТГС на основе $Al_xGa_{1-x}As$

Вольт-амперная характеристика РТГС зависит от ее конструкционных и физических параметров:

- Ширина потенциальной ямы (ПЯ);
- Глубина ПЯ;
- Ширина потенциальных барьеров (ПБ);
- Ширина спейсеров.

В работе [12] исследована деградация отдельных параметров ГС. Каждый фактор влияет на ВАХ по-разному, рассмотрим их подробнее.

3.1 Исследование параметров ямы

Энергетический спектр в бесконечно глубокой потенциальной яме:

$$E_n = \frac{\pi^2 \hbar^2 n^2}{2mL^2}; (3.1)$$

$$\Delta E_n = E_{n+1} - E_n = \frac{\pi^2 \hbar^2}{2mL^2} (2n+1); \tag{3.2}$$

$$\Delta E_1 = \min(\Delta E_n) = \frac{3\pi^2 \hbar^2}{2mL^2},\tag{3.3}$$

где E_n — энергия n-ого связного состояния;

 \hbar — постоянная Дирака;

n — номер (1, 2, ...) связного состояния;

L — ширина ямы.

Из зависимостей 3.1, 3.3 видно, что с увеличением ширины ямы, энергия основного состояния уменьшается (n=1), так же, как и минимальное расстояние, между энергетическими уровнями. Условие размерного квантования для потенциальной ямы:

$$\Delta E_1 \gg 3k_B T. \tag{3.4}$$

В случаи ямы с конечной высотой, энергия основного и остальных состояний понижается, при этом минимальная высота барьера ограничи-

вает состояние с максимальной энергией. В потенциальной яме конечной высоты всегда будет хотя бы одно связное состояние.

3.1.1 Исследование глубины ямы

Варьирую процентное содержание Al в $Al_xGa_{1-x}As$, можно изменять высоту барьеров и глубину ямы соответственно. Рассмотрим вольтамперную характеристику и прозрачность резонансно-туннельной структуры.

Так как в ходе деградации Γ С высота барьеров будет уменьшаться, так как атомы Al будут диффундировать в структуру из барьеров, рассмотрим Γ СС (рис. \ref{puc}) с высотой потенциальных барьеров:

- a) 1.0eV;
- б) 0.7eV;
- в) 0.5eV;
- Γ) 0.3eV.

3.1.1.1 Прозрачность РТГС

Рисунок 3.1 — Прозрачность РТГС при различных высотах потенциального барьера

Как видно из рис. 3.1 уменьшение высоты барьеров ведет к повышению резонансного уровня и увеличению коэффициента прозрачности исследуемой РТГС.

3.1.1.2 BAX PTCC

Рисунок 3.2 — Плотность тока через РТГС при различных высотах потенциального барьера

Поднятие резонансного уровня на рис. 3.1 увеличило напряжение, при котором достигается пиковое значение тока. Увеличение коэффициента прозрачности повысило пиковое значение тока на один порядок с изменением высоты барьеров на 0.2эВ (рис. 3.2).

3.1.2 Исследование ширины ямы

Уменьшая или увеличивая количество монослоев, мы варьируем ширину ямы в РТГС. Минимальная разница между соседними уровнями и энергия этих уровней уменьшаются с увеличением ширины ямы (см. (3.1) – (3.3)).

Для исследования влияния ширины ямы, рассмотрим следующий ряд ширины ям:

- а) 10 монослоев;
- б) 7 монослоев;
- в) 5 монослоев;
- г) 3 монослоев.

3.1.2.1 Прозрачность РТГС

Рисунок 3.3 — Прозрачность РТГС при различных ширинах потенциальной ямы

С уменьшением ширины ямы высота резонансного уровня подымается, при этом прозрачность ГС остается прежней. Резонансный уровень при ширине 2нм и второй резонансный уровень при ширине ПЯ в 10нм практически совпадают.

3.1.2.2 BAX PTCC

Увеличение ширины ямы уменьшает напряжение достижения пикового тока, при этом значение величина тока не изменяет порядок его величины (рис. 3.4).

Рисунок 3.4 — Плотность тока через РТГС при различных ширинах потенциальной ямы

3.1.3 Вывод

Глубина ямы влияет на величину тока, причем пиковое напряжение изменяется не значительно. Значительное влияние на смещение пикового напряжения оказывает изменение ширины ПЯ.

3.2 Исследование парметров барьеров

3.2.1 Исследование ширины барьеров

Ширина барьеров уменьшает вероятность прохождения электрона сквозь барьер и величину тока соответсвенно.

Рассмотрим РТГС с шириной барьеров:

- а) 10 монослоев;
- б) 7 монослоев;
- в) 5 монослоев;
- г) 3 монослоев.

3.2.1.1 Прозрачность РТГС

Рисунок 3.5 — Прозрачность РТГС при различных ширинах потенциальных барьеров

Как видно на рис. 3.5 изменение ширины барьеров не сказывается на высоту резонансного уровня, а влияет только на прозрачность ГС. Увеличение ширины уменьшает прозрачность РТГС.

3.2.1.2 BAX PTCC

Пиковое значения тока изменяется значительно при изменении ширины потенциальных барьеров.

Рисунок 3.6 — Плотность тока через РТГС при различных ширинах потенциальных барьеров

3.2.2 Вывод

Уменьшение ширины барьеров увеличивает пиковое значение тока, причем изменение ширины барьера на 2нм уменьшает величину тока на порядок.

3.3 Исследование параметров спейсеров

Спейсер предназначен для отделения высоколегированной области вырожденного полупроводника от активной. Диффундируя донорная примесь изменяла бы зонную структуру активной (квантовой) области. Так же спейсер препятствует накоплению заряда вблизи барьеров, что влияет на пиковое напряжение и ток.

3.3.1 Исследование влияния размеров спейсера

Рассмотрим спейсеры:

- 3 монослоя;
- 7 монослоя;
- 10 монослоя;
- 15 монослоя.

3.3.1.1 Прозрачность РТГС

Рисунок 3.7- Прозрачность РТГС при различной ширине спейсеров

Прозрачность гетероструктуры изменяется незначительно.

3.3.1.2 BAX PTΓC

Увеличение размеров спейсера ведет к незначительному (порядок не изменяется), а пиковое напряжение не смещается.

Рисунок 3.8 — ВАХ РТГС при различной ширине спейсеров

3.3.2 Вывод

Уменьшение длины спейсера приводит к увеличению величины пикового тока, при этом пиковое напряжение не смещается и остается постоянным.

4 Моделирование деградации РТГС на основе $Al_xGa_{1-x}As$

На основе выше исследованных параметров и полученных моделей получим модель деградации РГТС на основе AlGaAs.

В схема исследуемой на диффузионное расплытие модели приведена на рис.4.1

Рисунок 4.1 — Стуктура РТГС для моделирования диффузии

В данной модели возможны:

- Диффузия Al из барьеров в яму;
- Диффузия Si из приконтактных областей в активную область.

Рассмотрим диффузионное расплытие активной области и проникновение легирующий примеси отдельно.

Размеры нашей модели:

- Спейсер: a = 10 монослоев;
- Барьер: b=6 монослоев;
- Яма: a = 6 монослоев;

Рисунок 4.2 — Размеры РТГС

4.1 Диффузионное расплытие активной области

Диффузионное расплытие активной области в случаи чистых полупроводников подчиняется (1.6). Коэффициент диффузии постоянен и скорость ухода части Al с границ активной области равен скорости их прихода – это соответствует конечно-разностной схеме (2.12).

Температуру ГС (T) выберем равной 800 K. Время воздействия: 1, 5, 10 лет.

Рисунок 4.3 — Расплытие потенциального рельефа чистого $Al_xGa_{1-x}As$

Рисунок 4.4 — Деградация тока через РГТС на основе чистого $Al_xGa_{1-x}As$

В процессе деградации ГС уменьшается ширина и глубина ПЯ (рис. 4.3).

Как видно из рис. 4.4 в результате деградации увеличивается пиковое напряжение и величина пикового тока, что соответствует ранее полученным результатам.

Так как невозможно получить чистный полупроводник, в нем всегда присутствует донорная примесь, которая увеличивает скорость диффузии, что соответствует (1.7).

Рисунок 4.5 — Расплытие потенциального рельефа $Al_xGa_{1-x}As$ при наличии донорной примеси $N_D=10^{22}\ 1/m^3$

Рисунок 4.6 — Деградация тока через РГТС на основе $Al_xGa_{1-x}As$ при наличии донорной примеси $N_D=10^{22}\ 1/m^3$

Аналогичный результат деградации (рис. 4.5) был получен при меньшей температуре T=650K и концентрации донорной примеси (N_D) $10^{22}\,1/m^3.$

4.1.1 Вывод

В процессе деградации преобладающими факторами деградации ВАХ РТГС являются: уменьшение глубины и ширины ПЯ, которые увеличивают пиковое напряжение и пиковый ток.

Наличие донорной примеси ускоряет процесс деградации ГС. При это из-за сильно экспоненциальной зависимости коэффициента диффузии скорость диффузии при комнатных температурах не существенна (T=300K).

4.2 Диффузия легирующей примеси

Приконтактные области выполняют роль резервуаров электронов. Они сильно легированы. Концентрация донорной примеси в них $N_D=10^{24}\,m^{-3}$. В случае РТГС, представленной на рис. 2.4 на основе AlGaAs в роли донорной примеси выступает Si.

Рисунок 4.7 — Расплытие потенциального рельефа $Al_xGa_{1-x}As$ и Si из приконтактных областей

Рисунок 4.8 — Деградация тока через РГТС

Повышение температуры на 60 приводит к значительной деградации, причем в первые 5 лет деградации подвержены спейсеры, которые предохраняют РТГС от деградации ВАХ, в соответствии с результатами полученными ранее.

Заключение

В работе был рассмотрен математический аппарат для моделирования различных физических процессов, в том числе:

- Токоперенос;
- Не стационарное уравнение диффузии.

Была рассмотрена РТГС на основе AlGaAs и исследованы влияния ее основных параметров на BAX:

- Глубина ПЯ;
- Ширина ПЯ;
- Ширина ПБ;
- Ширина спейсеров.

На основе полученных данных была исследована деградация РТГС и выявлено, что доминирующим фактором, влияющим на деградацию ВАХ РТГС является диффузия донорной примеси из приконтактных областей.

Список использованных источников

- 1. Bohu-Bpyeeuu, B. Λ . Физика полупроводников / В. Λ . Бони-Bpyeeuu, С. Γ . Калашников. М.: Мир, 1977. 678 с.
- 2. Шиляев, П.А. Полупроводниковые гетероструктуры гетеропереход: учебно-методическое пособие / П.А. Шиляев, Д.А. Павлов. Н.Новгород: Нижегородский госуниверситет, 2009.-18 с.
- 3. Шинкаренко, В. Г. Электрические свойства полупроводников: учебно-методическое пособие / В. Г. Шинкаренко. М.: МФТИ, 2012. 80 с.
- 4. Harrison, W. A. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond / W. A. Harrison. Massachusetts: Courier Corporation, 2012. 582 pp.
- 5. Усанов, Д. А. Физические основы наноэлектроники / Д. А. Усанов, А. В. Скрипаль. Саратов: ил. Электронное издание, 2013. $128~\mathrm{c}.$
- 6. Москалюк, B. A. Сверхбыстродействующие приборы электроники / В. А. Москалюк, В. И. Тимофеев, А. В. Федяй. К.: НТУУ «КПИ», 2012.-479 с.
- 7. *Макеев*, *М.О.* Оценка стойкости к диффузионной деструкции наноразмерных AlAs/GaAs резонансно-туннельных гетероструктур методом ИК-спектральной эллипсометрии / М.О. Макеев, Ю.А. Иванов, С.А. Мешков // Физика и техника полупроводников. 2016.
- 8. *Макеев, Мстислав Олегович*. Разработка конструкторско-технологических методов и средств повышения надёжности смесителей радиосигналов на основе резонансно-туннельных диодов: автореф. дис. канд. техн. наук: 05.11.14 / Мстислав Олегович Макеев. М., 2014. 17 с.
- 9. Diffusion in GaAs and Related Compounds: Resent Developments / U. Gosele, T. Y. Tan, M. Schultz et al. // Deffect and Diffusion Forum. 1997. Pp. 143–147.
- 10. *Самарский, А. А.* Введение в численные методы / А. А. Самарский. М.: Наука, 1987. 288 с.

- 11. Becker, T. W. Numerical Modeling of Earth Systems / T. W. Becker, J. P. Kaus. California: USC, 2016. 222 pp.
- 12. Ветрова, Н. А. Определение управляемых параметров для конструкторско-технологической оптимизации СВЧ смесителей радиосигналов на резонансно-туннельных диодах по критерию их надежности / Н. А. Ветрова, В. Д. Шашурин, Н. В. Назаров // Наука и образование. 2011.