By Wenjie

The Priority Queue/Heap

- ADT:
 - o insert.
 - o remove
 - o isEmpty
- Store ordered data
- Operator "<" must be implemented
- Whenever remove is called, the data structure pops out an element with a predetermined property (for example, the smallest element)
 - o Just like a Stack/Queue, we cannot tell the structure what it removes
 - Unlike Stack/Queue, the Priority Queue always remove an element with a certain priority (for example, the smallest element)

Implementations

• Possible (bad) implementations of the above ADT and their running times:

Runtime	insert	removeMin	Total time
Unsorted Array	O(1)*	O(n)	O(n)
Unsorted List	O(1)	O(n)	O(n)
Sorted Array	O(n)	O(1)	O(n)
Sorted List	O(n)	O(1)	O(n)

Further, HashTable is not ordered so not useful. Only thing left is, the Tree!

By Wenjie

Tree structure implementation: the (min)Heap

- o A binary, complete tree with the smallest element on the root
- o Children are larger than their parent
- o Definition of a minHeap:

A complete binary tree is a minHeap if

- $\mathbf{T} = \{\}, \text{ or }$
- $T = \{r, T_L, T_R\}$, where T_L, T_R are minHeaps and r is greater than their root
- We map the tree into a simpler data structure : **minHeap**.
 - We will map level order tree traversal to an array or vector.
 - We will use trees just for representation.

• In this case we traverse the array in the following way:

By Wenjie

- Left child is at index: 2 * i + 1
- Right child is at index: 2 * i + 2
- Parent is at index: (i 1) / 2
- However, if we want an easier way to compute indices add a dummy to the beginning of the array to shift the indices by one.

- o Now, we can compute indices as follows:
 - Left child is at index: 2 * i
 - Right child is at index: 2 * i + 1
 - Parent is at index: i / 2

Insertion

- Check if we still have the array capacity
 - o If not, we double the size of the array

o This is just adding a new layer to the tree

By Wenjie

- Insert the element at the end of the array
- Make sure the result is still a heap (heapify-up)

```
template <class T>
void Heap<T>::_insert(const T & key) {
    // Check to ensure there's space to insert an element
    // ...if not, grow the array
    if ( size_ == capacity_ ) { _growArray(); }

// Insert the new element at the end of the array
    item_[++size] = key;

// Restore the heap property
    _heapifyUp(size);
}
```

Heapify-Up

- Starts from the inserted node, assumes the heap is valid everywhere above that node
- If the current element is not the root and smaller than its parent

By Wenjie

- Swap the current element and its parent
- Continue on the parent

```
template <class T>
void Heap<T>::_heapifyUp(unsigned index) {
   if ( index > 1 ) {
      if ( item_[index] < item_[ parent(index) ] ) {
        std::swap( item_[index], item_[ parent(index) ] );
        _heapifyUp(parent(index));
}
heapifyUp(parent(index));
}
</pre>
```

- Runtime of Insertion
 - o growArray() takes O(1) amortized
 - o insertion takes O(1)
 - heapify-up takes O(h) = O(lg n) since the tree is complete
 - o Total runtime: O(lg n)

Remove

- Swap the root with the last element
- Remove the last element
- Heapify-Down to ensure the heap property

```
template <class T>
 2
   void Heap<T>:: removeMin() {
 3
     // Swap with the last value
 4
     T minValue = item [1];
 5
     item [1] = item [size ];
 6
     size--;
 7
 8
     // Restore the heap property
 9
     heapifyDown();
10
11
     // Return the minimum value
12
     return minValue;
13
```