

Overview of I/O Subsystem Management

- Overview
- ❖ I/O Hardware
- Application I/O Interface
- Kernel I/O Subsystem
- Transforming I/O Requests to Hardware Operations
- ❖ I/O Performance

Objectives

- Explore the structure of an operating system's I/O subsystem
- Discuss the principles of I/O hardware and its complexity
- Provide details of the performance aspects of I/O hardware and software

Importance and Challenges in I/O Management

- I/O management is a major component of operating system design and operation
 - Important aspect of computer operation
 - I/O devices vary greatly
 - Various methods to control them
 - Performance management
 - New types of devices frequent
- Ports, busses, device controllers connect to various devices
- Device drivers encapsulate device details
 - Present uniform device-access interface to I/O subsystem

- Incredible variety of I/O devices
 - Storage
 - Transmission
 - Human-interface

PCI Bus Structure

Components of I/O Subsystem

- I/O Hardware
 - ports, buses, devices, controllers
- I/O Software
 - Interrupt Handlers, Device Driver,
 - Device-Independent Software,
 - User-Space I/O Software
- I/O Data transfer mechanisms
 - ❖Polling, Interrupt and DMAs

- Signals from I/O devices interface with computer
 - Port connection point for device
 - Bus daisy chain or shared direct access
 - ❖PCI bus common in PCs and servers, PCI Express (PCIe)
 - expansion bus connects relatively slow devices

- Controller (host adapter) electronics that operate port, bus, device
 - Sometimes integrated
 - Sometimes separate circuit board (host adapter)
 - Contains processor, microcode, private memory, bus controller, etc.

- I/O instructions control devices
- Devices usually have registers where device driver places commands, addresses, and data to write, or read data from registers after command execution
 - ❖ Data-in register, data-out register, status register, control register
 - ❖ Typically 1-4 bytes, or FIFO buffer
- Devices have addresses, used by I/O instructions

I/O Mapping

- Memory mapped I/O
 - Devices and memory share an address space
 - I/O looks just like memory read/write
 - No special commands for I/O
 - Large selection of memory access commands available
- Isolated I/O (I/O mapped I/O)
 - Separate address spaces
 - ❖ Need I/O or memory select lines
 - Special commands for I/O; Limited set

I/O Mapping

- CPU needs to talk to I/O
- Memory mapped I/O
 - Devices mapped to reserved memory locations like RAM
 - Uses load/store instructions just like accesses to memory
- I/O mapped I/O
 - Special bus line
 - Special instructions

I/O Basics

- I/O module interface I/O to CPU and Memory
- ❖ I/O controller ←→ I/O devices ports
 - Transfers data to/from device
 - Synchronizes operations with software
- Status/ control registers: device status, errors
- Data registers
 - ❖ Write: CPU/RAM data → device [eg Transmit]
 - ❖ Read: CPU← device [eg Receive]

Functions of I/O Module

- Control & Timing
- Processor Communication
- Device Communication
- Data Buffering
- Error Detection (e.g., extra parity bit)

Basic I/O Steps

- CPU checks I/O module device status
- I/O module returns status
- If ready, CPU requests data transfer by sending a command to the I/O module
- I/O module gets a unit of data (byte, word, etc.) from device
- I/O module transfers data to CPU
- Variations of these steps for different I/O mechanisms like poling, interrupt and DMA based I/O.

Thank You