Is This Construction Legal?

To construct μ from ρ , we may have to perform an infinite number of transformations. Since we can't actually do that, we need to define μ more carefully and show that it is a behavior of \mathcal{F} . The proof is not hard, but you may find it confusing if you have not studied infinite sequences in a math course.

We say that an infinite sequence μ_0, μ_1, \ldots of behaviors converges iff it satisfies the following condition: For every postive integer p, there exists a positive integer q such that every μ_i with i > q has the same prefix of length p. If μ_0, μ_1, \ldots converges, then there is a unique behavior μ such that, for every positive integer p, there is a q such that the p^{th} state of μ is the p^{th} state of μ_i for all i > q. In that case, we call μ the limit of the sequence μ_0, μ_1, \ldots

We now inductively construct a (finite or infinite) sequence μ_0, μ_1, \ldots of behaviors as follows. We start with $\mu_0 = \rho$. For every j > 0, find the j^{th} occurrence of an r_1 step in μ_{j-1} . If there is none, or if there is no later r_n step, the sequence stops with μ_{j-1} . Otherwise, construct μ_j from μ_{j-1} by moving r_i steps right (for i < k) or left (for i > k) so that the j^{th} r_1 step is immediately followed by r_2, \ldots, r_n steps. This produces a finite or infinite sequence of behaviors μ_i that all satisfy \mathcal{F} . There are three cases:

- 1. The sequence of μ_0, μ_1, \ldots is infinite. In this case, the sequence converges and we define μ to be its limit.
- 2. The sequence is finite and ends with μ_p , and the last r_i step of μ_p has i = n. In that case, we let μ equal μ_p .
- 3. The sequence is finite and ends with μ_p , and the last r_i step of μ_p has i < k. In this case, we define an infinite sequence ν_1, ν_2, \ldots of behaviors as follows. Suppose that the last r_i step is the q^{th} step of μ_p . Define ν_j to be the behavior obtained from μ_p by moving the last r_1, r_2, \ldots, r_i steps to the right past the $q+j^{\text{th}}$ step. Each ν_j is a behavior of \mathcal{F} , and the sequence ν_1, ν_2, \ldots converges. Let μ be its limit.

In each case, μ either satisfies \mathcal{F} (case 2) or is the limit of a sequence of behaviors, each of which satisfies \mathcal{F} (cases 1 and 3). The following argument shows that if a sequence τ_1, τ_2, \ldots converges to the limit μ and each τ_i is a behavior of \mathcal{F} , then μ is a behavior of \mathcal{F} . The proof is by contradiction. Suppose μ is not a behavior of \mathcal{F} . Since \mathcal{F} has the form $Init \wedge \Box [Next]_{vars}$, either the initial state of μ does not satisfy Init or some step of μ is not a Next step. By definition of limit, that initial state or step must be in infinitely many of the τ_i . This is impossible, since all the τ_i are behaviors of \mathcal{F} , so μ is also a behavior of \mathcal{F} .