MOCE ZBIORÓW

NANO-KOMPENDIUM

1. Definicje

Zbiór A nazywamy

- (1) $sko\acute{n}czonym$, gdy $A=\emptyset$ lub istnieje liczba $0 < n \in \mathbb{N}$ taka, że $A \sim \{1,\ldots,n\}$;
- (2) przeliczalnym, $gdy A \sim \mathbb{N}$;
- (3) co najwyżej przeliczalnym, gdy A jest zbiorem skończonym lub przeliczalnym;
- (4) *nieskończonym*, gdy A nie jest zbiorem skończonym;
- (5) nieprzeliczalnym, gdy A nie jest zbiorem co najwyżej przeliczalnym.
- (6) Dowolny zbiór równoliczny z \mathbb{R} nazywamy zbiorem mocy *continuum*.

2. Twierdzenia

Następujące zdania są twierdzeniami Teorii Mnogości:

- (1) $|\mathbb{N}|$ jest najmniejsza mocą nieskończoną (mocy \aleph_0)¹.
- (2) Zbiór *A* jest przeliczalny wtedy i tylko wtedy, gdy można elementy zbioru *A* "ustawić w ciąg".
- (3) Obraz zbioru względem dowolnej funkcji jest zbiorem cnp².
- (4) Produkt kartezjański dwóch zbiorów przeliczalnych jest zbiorem przeliczalnym.
- (5) \mathbb{Z} jest zbiorem przeliczalnym (mocy \aleph_0).
- (6) \mathbb{Q} jest zbiorem przeliczalnym (mocy \aleph_0).
- (7) \mathbb{R} jest zbiorem nieprzeliczalnym (w tym przypadku, mocy \mathfrak{c})³.
- (8) Suma przeliczalnej rodziny zbiorów przeliczalnych jest zbiorem przeliczalnym.
- (9) Iloczyn kartezjański przeliczalnej rodziny zbiorów przeliczalnych jest zbiorem przeliczalnym.
- (10) Zbiory *wszystkich skończonych* ciągów oraz wszystkich skończonych podzbiorów zbioru przeliczalnego są przeliczalne.
- (11) Zbiory *wszystkich* ciągów oraz wszystkich podzbiorów zbioru przeliczalnego są zbiorami mocy continuum.
- (12) $|\mathbb{R}| = |\{0,1\}^{\mathbb{N}}| = |\mathbb{N}^{\mathbb{N}}| = |\mathscr{P}(\mathbb{N})|$

tp - 2021

 $^{^{1}}$ Alef-zero.

²Czesty skrót dla wyrażenia *co najwyżej przeliczalny*.

 $^{^3}$ Continuum.