ОПТИМАЛЬНОЕ ПОБУКВЕННОЕ КОДИРОВАНИЕ

4.1 Определения

• При кодировании сообщений считается, что символы сообщения порождаются некоторым источником информации.

• Если вероятностный источник с алфавитом $A = \{a_1, a_2, ..., a_n\}$ порождает символы алфавита независимо друг от друга, т.е. знание предшествующих символов не влияет на вероятность последующих, то такой источник называется бернуллиевским.

• Для любого сообщения $x_1x_2...x_L$ порождаемого бернуллиевским источником, выполняется равенство:

$$P(x_1x_2...x_L) = P(x_1) \cdot P(x_2) \cdot ... \cdot P(x_L)$$

где P(x) – вероятность появления символа x,

 $P(x_1x_2...x_L)$ – вероятность появления последовательности $x_1x_2...x_L$

• Пусть имеется дискретный вероятностный источник без памяти, порождающий символы алфавита

$$A = \{a_1, a_2, ..., a_n\}$$

с вероятностями

$$p_i = P(a_i) \qquad \sum_{i=1}^n p_i = 1$$

• Пусть имеется разделимый двоичный побуквенный код для бернуллиевского источника, порождающего символы алфавита $A = \{a_1, a_2, ..., a_n\}$

с вероятностями $p_i = P(a_i)$

состоящий из п кодовых слов

с длинами $L_1,...,L_n$

Средней длиной кодового слова

называется величина
$$L_{cp} = \sum_{i=1}^n p_i L_i$$

которая показывает среднее число кодовых букв на одну букву источника.

Пример

• Пусть имеются два источника с одним и тем же алфавитом $A = \{a_1, a_2, a_3\}$ но с разными вероятностными распределениями

$$P = \{1/3, 1/3, 1/3\}$$
 $Q = \{1/4, 1/4, 1/2\}$

которые кодируются одним и тем же

КОДОМ
$$\sigma = \langle a_1 \rightarrow 10, a_2 \rightarrow 000, a_3 \rightarrow 01 \rangle$$

 Средняя длина кодового слова для разных источников будет различной

$$L_{cp}(P) = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 2 = \frac{7}{3} \approx 2.33$$

$$L_{cp}(Q) = \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 3 + \frac{1}{2} \cdot 2 = \frac{9}{4} = 2.25$$

 Побуквенный разделимый код называется оптимальным, если средняя длина кодового слова минимальна среди всех побуквенных разделимых кодов для данного распределения вероятностей символов

4.2 Теоремы Шеннона

 Взаимосвязь между средней длиной кодового слова и энтропией дискретного вероятностного источника при побуквенном кодировании выражает следующая теорема.

Прямая теорема кодирования

Для бернуллиевского источника с алфавитом $A = \{a_1, a_2, ..., a_n\}$ и вероятностями $p_i = P(a_i) \sum_{i=1}^n p_i = 1$ существует разделимый побуквенный код, у которого средняя длина кодового слова превосходит энтропию не больше, чем на единицу

$$L_{cp} < H(p_1,...,p_n) + 1.$$

Обратная теорема кодирования

• Для бернуллиевского источника с алфавитом $A = \{a_1, a_2, ..., a_n\}$ и вероятностями $p_i = P(a_i)$ $\sum_{i=1}^n p_i = 1$ и любого разделимого побуквенного кода средняя длина кодового слова всегда не меньше энтропии источника

$$L_{cp} \ge H(p_1, ..., p_n)$$

Доказательство обратной теоремы

• Поскольку код разделимый, то для него верно неравенство МакМиллана

$$\sum_{i=1}^n 2^{-L_i} \le 1$$

• Применим известное неравенство

$$\ln x \le x-1$$

$$H(p_1,...,p_n) - L_{cp} = -\sum_{i=1}^n p_i \log p_i - \sum_{i=1}^n p_i L_i = \sum_{i=1}^n p_i (-\log p_i + \log 2^{-L_i}) =$$

$$= \sum_{i=1}^n p_i \log \frac{2^{-L_i}}{p_i} \le \sum_{i=1}^n p_i (\frac{2^{-L_i}}{p_i} - 1) \log e = (\sum_{i=1}^n 2^{-L_i} - 1) \log e \le 0$$

$$H(p_1,...,p_n) \le L_{cp}$$

- Второе неравенство доказывается конструктивно с помощью кода, построенного по методу Шеннона
- Каждому символу источника будет соответствовать кодовое слово из $\log \frac{1}{p_i}$ двоичных цифр числа $q_i = \sum_{j=1}^{n} p_j$

Вероятности упорядочены по убыванию

• Избыточностью кода называется разность между средней длиной кодового слова и предельной энтропией источника сообщений

$$r = L_{cp} - H(p_1, ..., p_n)$$

Следствие

- Для существования разделимого кода с нулевой избыточнотью $\it r=0$
- для бернуллиевского источника с алфавитом $A = \{a_1, a_2, ..., a_n\}$ и вероятностями $p_i = P(a_i)$ необходимо и достаточно, чтобы все вероятности сообщений источника
- имели вид $p_i = 2^{-L_i}$ где $\{L_i\}$ целые положительные числа

4.3 Почти оптимальное кодирование

Метод Шеннона

 Метод кодирования, предложенный К. Шенноном, позволяет построить почти оптимальный двоичный префиксный код. • Пусть имеется дискретный вероятностный источник, порождающий символы алфавита $A = \{a_1, a_2, ..., a_n\}$

с вероятностями $p_i = P(a_i)$

при этом символы исходного алфавита упорядочены по убыванию их вероятностей, т.е. $p_1 \ge p_2 \ge ... \ge p_n$

Код Шеннона строится следующим образом:

• 1. Вычисляются кумулятивные вероятности

$$Q_i = \sum_{j=1}^{i-1} p_j$$
 $i = 0,...,n-1$

• 2. В качестве кода символа a_i берут $L_i = \lceil -\log p_i \rceil$ первых двоичных цифр после запятой числа Q_{i-1} i=1,...,n

• Утверждение

Код Шеннона является префиксным.

доказательство прямой теоремы

•

$$L_{cp} = \sum_{i} p_{i} L_{i} = \sum_{i} p_{i} \left[\log \frac{1}{p_{i}} \right] < \sum_{i} p_{i} (\log \frac{1}{p_{i}} + 1) = H(p_{1}, ..., p_{n}) + 1$$

Пример

• Пусть источник имеет алфавит

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

• с вероятностями

$$p_1 = 0.36$$

$$p_2 = 0.18$$

$$p_3 = 0.18$$

$$p_4 = 0.12$$

$$p_5 = 0.09$$

$$p_6 = 0.07$$

• Вычислим кумулятивные вероятности

$$Q_0 = 0$$

 $Q_1 = p_1 = 0.36$
 $Q_2 = p_1 + p_2 = 0.54$
 $Q_3 = p_1 + p_2 + p_3 = 0.72$
 $Q_4 = p_1 + p_2 + p_3 + p_4 = 0.84$
 $Q_5 = p_1 + p_2 + p_3 + p_4 + p_5 = 0.93$

Кодирование символа а4

Q₃>1/2, поэтому кодовый символ 1

Q₃<3/4, поэтому кодовый символ 0

Q₃>5/8, поэтому кодовый символ 1

Q₃>11/16, поэтому кодовый символ 1

• Для вероятностей, представленных в виде десятичных дробей, удобно определять длину кодового слова L_i из соотношения

$$\frac{1}{2^{L_i}} \le p_i < \frac{1}{2^{L_i - 1}} \qquad i = 1, \dots, n$$

$$\frac{1}{2^{L_1}} \le 0.36 < \frac{1}{2^{L_1 - 1}} \qquad L_1 = 2 \qquad \frac{1}{2^{L_4}} \le 0.12 < \frac{1}{2^{L_4 - 1}} \qquad L_4 = 3$$

$$\frac{1}{2^{L_2}} \le 0.18 < \frac{1}{2^{L_2 - 1}} \qquad L_2 = 3 \qquad \qquad \frac{1}{2^{L_5}} \le 0.09 < \frac{1}{2^{L_5 - 1}} \qquad L_5 = 4$$

$$\frac{1}{2^{L_3}} \le 0.18 < \frac{1}{2^{L_3 - 1}} \qquad L_3 = 3 \qquad \frac{1}{2^{L_6}} \le 0.07 < \frac{1}{2^{L_6 - 1}} \qquad L_6 = 4$$

Код Шеннона

a_i	P_i	Q_{i-1}	$oxed{L_i}$	кодовое слово
a_1	1/2 ² ≤ 0.36 < 1/2	0	2	00
a_2	$1/2^3 \le 0.18 < 1/2^2$	0.36	3	010
a_3	$1/2^3 \le 0.18 < 1/2^2$	0.54	3	100
$ a_4 $	$1/2^4 \le 0.12 < 1/2^3$	0.72	4	1011
a_5	$1/2^4 \le 0.09 < 1/2^3$	0.84	4	1101
a_6	$1/2^4 \le 0.07 < 1/2^3$	0.93	4	1110

$$L_{cp} = 0.36 \cdot 2 + (0.18 + 0.18) \cdot 3 +$$

+ $(0.12 + 0.09 + 0.07) \cdot 4 = 2.92 < 2.37 + 1$

Код Фано

• Пусть имеется дискретный вероятностный источник, порождающий символы алфавита $A = \{a_1, a_2, ..., a_n\}$

с вероятностями $p_i = P(a_i)$

при этом символы исходного алфавита упорядочены по убыванию их вероятностей, т.е. $p_1 \ge p_2 \ge ... \ge p_n$

- Упорядоченный по убыванию вероятностей список букв алфавита источника разбивается на две части.
- Кодам символов из первой части списка приписывается 0, а символам из второй части – 1. Далее каждую из частей списка разбивают на две части и т.д.
- Процесс продолжается до тех пор, пока весь список не разобьется на части, содержащие по одному символу.

Пример

• Пусть источник имеет алфавит

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

• с вероятностями

$$p_1 = 0.36$$

$$p_2 = 0.18$$

$$p_3 = 0.18$$

$$p_4 = 0.12$$

$$p_5 = 0.09$$

$$p_6 = 0.07$$

Разбиение множества символов

1-ый блок	$S1 = \sum p_i$	2-ой блок	$S2 = \sum p_j$	$\Delta S = S1-S2 $
$a_1 a_2 a_3 a_4 a_5$	0,93	a_6	0,07	0,86
$a_1 a_2 a_3 a_4$	0,84	$a_5 a_6$	0,16	0,68
$a_1 a_2 a_3$	0,72	$a_4 a_5 a_6$	0,28	0,44
$a_1 a_2$	0,54	$a_3 a_4 a_5 a_6$	0,46	0,08
a_1	0,36	$a_2 a_3 a_4 a_5 a_6$	0,64	0,28

Разбиение множества аза4а5а6

$SP = \sum p_j \mid \Delta S = S1-S2 $
0,07 0,32
0,16 0,14
a ₆ 0,28 0,10

Разбиение множества а₄а₅а₆.

1-ый	$S1 = \sum$	2-ой	$S2 = \sum$	$\Delta S =$
блок	p_{i}	блок	p_{j}	S1-S2
$a_4 a_5$	0,21	a_6	0,07	0,14
a_4	0,12	$a_5 a_6$	0,16	0,04

a _i	P _i	кодовое слово		Li		
a ₁	0.36	0	0			2
a ₂	0.18	0	1			2
a_3	0.18	1	0			2
a ₄	0.12	1	1	0		3
a ₅	0.09	1	1	1	0	3
a ₆	0.07	1	1	1	1	4

• Полученный код является префиксным и почти оптимальным со средней длиной кодового слова

$$L_{cp} = 0.36 \cdot 2 + 0.18 \cdot 2 + 0.18 \cdot 2 + 0.12 \cdot 3 + 0.09 \cdot 4 + 0.07 \cdot 4 = 2.44$$

Алфавитный код Гилберта – Мура

• Пусть символы алфавита источника некоторым образом упорядочены

$$a_1 \le a_2 \le \dots \le a_n$$

• Код σ называется алфавитным, если кодовые слова лексикографически упорядочены, т.е. $\sigma(a_1) \le \sigma(a_2) \le ... \le \sigma(a_n)$

• Вычисляются величины

$$q_i$$
 $i = 1,...,n$

$$q_1 = Q_0 + \frac{p_1}{2}$$

$$q_2 = Q_1 + \frac{p_2}{2}$$

$$q_3 = Q_2 + \frac{p_3}{2}$$

. . .

$$q_n = Q_{n-1} + \frac{p_n}{2}$$

• где Q_i кумулятивные вероятности

$$i = 1, ..., n$$

• В качестве кода символа a_i i = 0,...,n-1

• берут
$$L_i = \left\lceil -\log \frac{p_i}{2} \right\rceil$$
 первых двоичных цифр

после запятой числа q_i i=1,...,n

• Утверждение

Код Гилберта-Мура является алфавитным и префиксным. • **Утверждение** Средняя длина кодового слова кода Гилберта-Мура удовлетворяет соотношению

$$L_{cp} < H(p_1,...,p_n) + 2$$

• Доказательство. Действительно,

$$L_{cp} = \sum_{i=1}^{n} L_{i} p_{i} = \sum_{i=1}^{n} \left[-\log \frac{p_{i}}{2} \right] p_{i} <$$

$$< \sum_{i=1}^{n} (-\log p_{i} + 1 + 1) p_{i} = H(p_{1}, ..., p_{n}) + 2$$

Пример

• Пусть источник имеет алфавит

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

• с вероятностями

$$p_1 = 0.07$$

$$p_2 = 0.18$$

$$p_3 = 0.18$$

$$p_4 = 0.12$$

$$p_5 = 0.09$$

$$p_6 = 0.36$$

Вычислим величины

$$q_1 = Q_0 + \frac{p_1}{2} = 0 + 0.035 = 0.035$$

$$q_4 = Q_3 + \frac{p_4}{2} = 0.43 + 0.06 = 0.49$$

$$q_2 = Q_1 + \frac{p_2}{2} = 0.7 + 0.9 = 0.16$$

$$q_5 = Q_4 + \frac{p_5}{2} = 0.55 + 0.045 = 0.595$$

$$q_3 = Q_2 + \frac{p_3}{2} = 0.25 + 0.09 = 0.34$$

$$q_6 = Q_5 + \frac{p_6}{2} = 0.64 + 0.18 = 0.82$$

Кодирование символа а3

Код Гилберта-Мура

a_i	q_i	L_i	кодовое слово
a_1	0.035	5	00001
$ a_2 $	0.16	4	0010
$ a_3 $	0.34	4	0101
a_4	0.49	5	01111
$ a_5 $	0.595	5	10001
$\begin{vmatrix} a_5 \\ a_6 \end{vmatrix}$	0.82	3	110

- *Lcp*=4.0.18+4.0.18+3.0.36+5.0.07+
 - +5.0.09+5.0.12=3.92<2.37+2