Ethics: The Alignment Problem

How do we harness artificial intelligence for the good of humanity?

The problem we think about: Skynet

Immediate Problems

Immediate Problems

Long-Term Problems

Immediate Problems

Long-Term Problems

Weak Al

Immediate Problems

Long-Term Problems

- Weak Al
- Subtle Challenges

Immediate Problems

- Weak Al
- Subtle Challenges

Long-Term Problems

• Strong Al

Immediate Problems

- Weak Al
- Subtle Challenges

Long-Term Problems

- Strong Al
- Existential Threats

word2vec

word2vec

```
Czech + currency = koruna
    Vietnam + capital = Hanoi
    German + airlines = Lufthansa
French + actress = Juliette Binoche*
```

word2vec

```
Czech + currency = koruna
Vietnam + capital = Hanoi
German + airlines = Lufthansa
French + actress = Juliette Binoche*
Berlin - Germany + Japan = Tokyo
```

word2vec

```
Czech + currency = koruna
Vietnam + capital = Hanoi
German + airlines = Lufthansa
French + actress = Juliette Binoche*
Berlin - Germany + Japan = Tokyo
bigger - big + cold = colder
```

word2vec

300-dimensional embedding trained just based on hiding words from phrases

```
Czech + currency = koruna
Vietnam + capital = Hanoi
German + airlines = Lufthansa
French + actress = Juliette Binoche*
Berlin - Germany + Japan = Tokyo
bigger - big + cold = colder
```

doctor - man + woman

word2vec

```
Czech + currency = koruna
Vietnam + capital = Hanoi
German + airlines = Lufthansa
French + actress = Juliette Binoche*
Berlin - Germany + Japan = Tokyo
bigger - big + cold = colder

doctor - man + woman = nurse
```

Immediate Problem: Difficulty removing information from Data

Immediate Problem: Difficulty removing information from Data

date of birth + gender + zip code = % uniquely identified

Immediate Problem: Difficulty removing information from Data

date of birth + gender + zip code = 87% uniquely identified

COMPAS: predicting recidivism

COMPAS: predicting recidivism

• Well-calibrated: among people with risk score of 7/10, 60% of whites and 61% of blacks re-offend

COMPAS: predicting recidivism

- Well-calibrated: among people with risk score of 7/10, 60% of whites and 61% of blacks re-offend
- Proportion of those who did *not* re-offend, but were falsely rated high risk was 45% for blacks and 23% for whites

COMPAS: predicting recidivism

- Well-calibrated: among people with risk score of 7/10, 60% of whites and 61% of blacks re-offend
- Proportion of those who did *not* re-offend, but were falsely rated high risk was 45% for blacks and 23% for whites

Suggested possible solution in AIMA: "Equal Impact": assigning utility

Immediate Problem: Decision Feedback Loops

Lender: Lend to people who have highest prob. making payments on time Credit Score

Person 1 — more financially stable — higher credit score

Person 2 — House Credit Score

Person 2 — Financially less stable — lower credit score

Immediate Problem: Employment

- Bank Tellers / ATM -1900. >40% in agriculture 2000: <2% - Differences: -AI can do interesting things - Pace of Change -100 years vs 10 years - Zero-marginal cost of replication - 10% better farmer - 20% more income -10% better AI engineer -> 1000% more income - Less cost for adoption - Employment ti production of goods Ex 2. income 3. sense of purpose, accomplishment, social integration

Values: Trolley Problems

Transparency / Trust
- Releasing system specification
- Automated explanation

IEEE P7001 Standard for transparency in autonomous systems

B. F. Skinner

Pigeon-guided bombs, 1943

B. F. Skinner

Pigeon-guided bombs, 1943

B. F. Skinner Pigeon-guided bombs, 1943

We decided to reinforce any response which had the slightest resemblance to a swipe—perhaps, at first, merely the behavior of looking at the ball—and then to select responses which more closely approximated the final form. The result amazed us. In a few minutes, the ball was caroming off the walls of the box as if the pigeon had been a champion squash player.

"As a general rule, it is better to design performance measures according to what one actually wants in the environment, rather than according to how one thinks the agent should behave." - Stuart Russell

•

"As a general rule, it is better to design performance measures according to what one actually wants in the environment, rather than according to how one thinks the agent should behave." - Stuart Russell

Reward

"As a general rule, it is better to design performance measures according to what one actually wants in the environment, rather than according to how one thinks the agent should behave." - Stuart Russell

Reward

Value

0.41	0.74	0.96	1.18	1.43	1.71	1.98	2.11	2.39	2.09
0.74	1.04	1.27	1.52	1.81	2.15	2.47	2.58	3.02	2.69
0.86	1.18	1.45	1.76	2.15	2.55	2.97	3	3.69	3.32
0.84	1.11	1.31	1.55	2.45	3.01	3.56	4.1	4.53	4.04
0.91	1.2	1.09	-3	2.48	3.53	4.21	4.93	5.5	4.88
1.1	1.46	1.79	2.24	3.42	4.2	4.97	5.85	6.68	5.84
1.06	1.41	1.7	2.14	3.89	4.9	5.85	6.92	8.15	6.94
0.92	1.18	0.7	-7.39	3.43	5.39	6.67	8.15	10	8.19
1.09	1.45	1.75	2.18	3.89	4.88	5.84	6.92	8.15	6.94
1.07	1.56	2.05	2.65	3.38	4.11	4.92	5.83	6.68	5.82

Potential - Based Reward Shaping

$$F(s')-\gamma F(s'') \qquad \text{will not} \\ \text{change} \\ \text{optimal policies}$$

 any other transformation may yield sub optimal policies unless further assumptions are made about the underlying MDP

Long-Term Problems

Defining Reward Functions is Hard

Hypothetical Examples:

Defining Reward Functions is Hard

Hypothetical Examples:

Acme paper clip research division

Defining Reward Functions is Hard

Hypothetical Examples:

- Acme paper clip research division
- Asimov's laws
 - A robot may not injure a human being or, through inaction, allow a human being to come to harm.
 - A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
 - A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Gorilla Problem: Super-Human Intelligence