Συναρτήσεις Fermat, Κρίσιμα Σημεία

Κωνσταντίνος Λόλας

Λίγη Γεωγραφία?

- ① Το ψηλότερο σημείο στη γη
- ② Το ψηλότερο σημείο στην Ελλάδα
- ③ Το ψηλότερο σημείο στη διαδρομή Θεσσαλονίκη Γιάννινα

Λίγη Γεωγραφία?

- 1 Το ψηλότερο σημείο στη γη
- Το ψηλότερο σημείο στην Ελλάδα
- ③ Το ψηλότερο σημείο στη διαδρομή Θεσσαλονίκη Γιάννινα

Λίγη Γεωγραφία?

- 1 Το ψηλότερο σημείο στη γη
- Το ψηλότερο σημείο στην Ελλάδα
- Το ψηλότερο σημείο στη διαδρομή Θεσσαλονίκη Γιάννινα

Τοπικά Ακρότατα

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0\in A$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται <u>θέση</u> ή <u>σημείο τοπικού ακροτάτου</u>, ενώ το $f(x_0)$ <u>τοπικό</u> μέγιστο της f

Αρα ΣΤΟ
$$x_0$$
, ΤΟ $f(x_0)$

Λόλας Συναρτήσεις 3/22

Τοπικά Ακρότατα

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού ${\bf A}$, θα λέμε ότι παρουσιάζει στο $x_0\in {\bf A}$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται <u>θέση</u> ή <u>σημείο τοπικού ακροτάτου</u>, ενώ το $f(x_0)$ <u>τοπικό</u> μέγιστο της f

Αρα <u>ΣΤΟ</u> x_0 , <u>ΤΟ</u> $f(x_0)$

Λόλας Συναρτήσεις 3/22

Συγκρίσεις παντού

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού \mathbf{A} , θα λέμε ότι παρουσιάζει στο $x_0 \in \mathbf{A}$ μέγιστο, όταν

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathbf{A}$

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού ${\bf A}$, θα λέμε ότι παρουσιάζει στο $x_0\in {\bf A}$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται <u>θέση</u> ή <u>σημείο τοπικού ακροτάτου</u>, ενώ το $f(x_0)$ <u>τοπικό</u> μέγιστο της f

Λόλας Συναρτήσεις 4/22

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστασή
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μένιστα

- Το μέγιστο είναι και τοπικό ΣΩΣΤΟ
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστο

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μένιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο ΛΑΘΟΣ!!!!!!!!!!
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάργει συνάρτηση με άπειρα τοπικά μένιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο ΛΑΘΟΣ!!!!!!!!!
- 🕘 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστο

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 4 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα ΛΑΘΟΣ!!!!!!!!!!
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 4 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα ΣΩΣΤΟ

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- 2 Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενό διαστήματος
- \P Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενόσο διαστήματος και να υπάρχει το $f'(x_0)$
- \bigcirc Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενό διαστήματος
- **4** Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

Λόλας Συναρτήσεις 6/22

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- **4** Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $extbf{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- lacktriangle Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

- 📵 Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $oxed{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑤ Συμπέρασμα για το $f'(x_0)$?

Θεώρημα Fermat

Ορισμός

Εστω μια συνάρτηση f ορισμένη σ' ένα διάστημα Δ και x_0 ένα εσωτερικό σημείο του Δ . Αν η f παρουσιάζει τοπικό ακρότατο στο x_0 και είναι παραγωγίσιμη στο σημείο αυτό, τότε: $f'(x_0)=0$

Απόδειξη

Ολα μαζί

- f 4 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Ολα μαζί

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Ολα μαζί

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

- f 4 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- ullet Τα εσωτερικά που f'=0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f' = 0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

Λόλας Συναρτήσεις 9/22

- f 4 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- Τα εσωτερικά που δεν ορίζεται η f'
- ο Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

- f 1 Αν στο εσωτερικό δεν ισχύει f'=0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- ullet Τα εσωτερικά που f'=0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Κρίσιμα σημεία είναι οι 2 πρώτες περιπτώσεις

Ναι, αλλά πότε τα "πιθανά" είναι και "σίγουρα"

Να βρείτε συνθήκη για την f ώστε ένα σημείο της να είναι τοπικό μέγιστο

Ελεγχος πιθανών ακροτάτων

Εστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α, β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής.

- Αν f'(x) > 0 στο (α, x_0) και f'(x) < 0 στο (x_0, β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f
- Αν f'(x) < 0 στο (α, x_0) και f'(x) > 0 στο (x_0, β) , τότε το $f(x_0)$ είναι τοπικό ελάχιστο της f
- Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(\beta,x_0)$ τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β)

Λόλας Συναρτήσεις 10/22

Ναι, αλλά πότε τα "πιθανά" είναι και "σίγουρα"

Να βρείτε συνθήκη για την f ώστε ένα σημείο της να είναι τοπικό μέγιστο

Ελεγχος πιθανών ακροτάτων

Εστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α,β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής.

- \bullet Αν f'(x)>0 στο (α,x_0) και f'(x)<0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f
- \bullet Αν f'(x)<0 στο (α,x_0) και f'(x)>0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό ελάχιστο της f
- Φ Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(\beta,x_0)$ τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β)

Λόλας Συναρτήσεις 10/22

Εξάσκηση 1

Εστω η συνάρτηση $f(x)=2\alpha\ln x-\frac{\beta}{x}+3\alpha$, όπου α , $\beta\in\mathbb{R}.$ Αν η fπαρουσιάζει ακρότατο στο 1 το 5, να $\tilde{\mathbf{\beta}}$ ρείτε τα α και β

> Λόλας Συναρτήσεις 11/22

Εξάσκηση 2

Δίνεται η συνάρτηση $f(x)=e^x-\alpha x$, για την οποία ισχύει

$$f(x) \geq 1$$
 για κάθε $x \in \mathbb{R}$

Να αποδείξετε ότι $\alpha=1$

Λόλας Συναρτήσεις 12/22

Εξάσκηση 3

Αν για κάθε x>0 ισχύει

$$\alpha \ln x \le x - 1, \alpha \in \mathbb{R}$$

να βρείτε την τιμή του α

Λόλας Συναρτήσεις 13/22

Εστω $f: \mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0) = 1 και ισχύει

$$f(x) \geq 2e^x - x - 1$$
 για κάθε $x \in \mathbb{R}$

- Να βρείτε την εφαπτομένη της C_f στο $x_0=0$

Λόλας Συναρτήσεις 14/22

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0)=1 και ισχύει

$$f(x) \geq 2e^x - x - 1$$
 για κάθε $x \in \mathbb{R}$

- Να βρείτε την εφαπτομένη της C_f στο $x_0=0$
- Να υπολογίσετε το $\lim_{x \to +\infty} f(x)$

Λόλας Συναρτήσεις 14/22

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0)=1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- ullet $f(x) \geq 1$ για κάθε $x \in \mathbb{R}$
- ullet f''(x)>0 για κάθε $x\in\mathbb{R}$

Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία

Λόλας Συναρτήσεις 15/22

Δίνεται η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τα κρίσιμα σημεία της f

Λόλας Συναρτήσεις 16/22

Δίνεται η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τα κρίσιμα σημεία της f
- Τις πιθανές θέσεις ακροτάτων της f

Λόλας Συναρτήσεις 16/22

Δίνεται η συνάρτηση
$$f(x)= egin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τα κρίσιμα σημεία της f
- Τις πιθανές θέσεις ακροτάτων της f
- Το σύνολο τιμών της f

Λόλας Συναρτήσεις 16/22

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη και ισχύει:

$$f^3(x)+3f(x)=x^3+x$$
 για κάθε $x\in\mathbb{R}$

Να δείξετε ότι η f δεν έχει ακρότατα

Λόλας Συναρτήσεις 17/22

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f'(0)=1και ισχύει:

$$f^3(x) + e^x = f(f(x)) + x$$
 για κάθε $x \in \mathbb{R}$

Να δείξετε ότι η f δεν έχει ακρότατα

Λόλας Συναρτήσεις 18/22

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f(1)=1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $\bullet \ f(x) \ge x$ για κάθε $x \in \mathbb{R}$
- $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
- f Q Να βρείτε την εφαπτομένη της C_f στο $x_0=1$
- \bigcirc Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσο
- ③ Να βρείτε το $\lim_{x\to 0^+} f\left(\frac{1}{x}\right)$

Λόλας Συναρτήσεις 19/22

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f(1)=1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
- $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
- $oldsymbol{0}$ Να βρείτε την εφαπτομένη της C_f στο $x_0=1$
- ② Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσα
- ③ Να βρείτε το $\lim_{x\to 0^+} f\left(\frac{1}{x}\right)$

Λόλας Συναρτήσεις 19/22

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f(1)=1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $\bullet \ f(x) \ge x$ για κάθε $x \in \mathbb{R}$
- $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
- $oldsymbol{0}$ Να βρείτε την εφαπτομένη της C_f στο $x_0=1$
- ② Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσα
- ③ Να βρείτε το $\lim_{x \to 0^+} f\left(\frac{1}{x}\right)$

Λόλας Συναρτήσεις 19/22

Δίνεται η συνάρτηση $f(x)=|e^x+\alpha x-1|$, $x\in\mathbb{R}$ η οποία είναι παραγωγίσιμη.

 $oldsymbol{1}$ Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

② Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x) = e^x - x - 1, x \in \mathbb{R}$$

Λόλας Συναρτήσεις 20/22

Δίνεται η συνάρτηση $f(x)=|e^x+\alpha x-1|$, $x\in\mathbb{R}$ η οποία είναι παραγωγίσιμη.

f Q Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

② Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x) = e^x - x - 1, x \in \mathbb{R}$$

Λόλας Συναρτήσεις 20/22

Δίνεται η συνάρτηση $f(x)=|e^x+\alpha x-1|$, $x\in\mathbb{R}$ η οποία είναι παραγωγίσιμη.

 $oldsymbol{\mathbb{Q}}$ Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

② Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x)=e^x-x-1, x\in\mathbb{R}$$

Λόλας Συναρτήσεις 20/22

Εστω $f:[0,2]\to\mathbb{R}$ μια συνάρτηση με f(0)=1, f(1)=0, f(2)=3 η οποία είναι παραγωγίσιμη. Αν $f'\uparrow(0,2)$, να δείξετε ότι υπάρχει μοναδικό $x_0\in(0,2)$ τέτοιο ώστε $f'(x_0)=0$

Λόλας Συναρτήσεις 21/22

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις παραγωγίσιμες που έχουν κοινά σημεία τα $(\alpha,f(\alpha))$ και $(\beta,f(\beta))$ και η C_f είναι πάνω από τη C_g στο διάστημα (α, β) . Να δείξετε ότι:

- **1** Υπάρχει $\xi \in (\alpha, \beta)$, τέτοιο ώστε η κατακόρυφη απόσταση των σημείων με τετμημένη ξ των C_f και C_g , να γίνεται μέγιστη

Λόλας Συναρτήσεις 22/22

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις παραγωγίσιμες που έχουν κοινά σημεία τα $(\alpha, f(\alpha))$ και $(\beta, f(\beta))$ και η C_f είναι πάνω από τη C_g στο διάστημα (α, β) . Να δείξετε ότι:

- **1** Υπάρχει $\xi \in (\alpha, \beta)$, τέτοιο ώστε η κατακόρυφη απόσταση των σημείων με τετμημένη ξ των C_f και C_g , να γίνεται μέγιστη
- Οι εφαπτόμενες των C_f και C_g στα σημεία $(\xi,f(\xi))$ και $(\xi,g(\xi))$ είναι παράλληλες

Λόλας Συναρτήσεις 22/22

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 .

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Λόλας Συναρτήσεις 1/1

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Λόλας Συναρτήσεις

1/1

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Λόλας

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$\begin{split} f'(x_0) &= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R} \\ \operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg} \\ &\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \\ \operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg} \\ &\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \end{split}$$

Αρα $0 \leq k \leq 0$, δηλαδή $f'(x_0) = 0$ (Πίσω στη θεωρία

1/1

Εστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Αρα $0 \leq k \leq 0$, δηλαδή $f'(x_0) = 0$ Πίσω στη θεωρία

Λόλας Συναρτήσεις

1/1