Filière : 5IIR Data Mining

Data Mining

Exercice 1 : KNN

On souhaite utiliser l'algorithme K-NN pour prédire l'état d'un patient dépendamment de différents attributs. Le tableau ci-dessous comprend les informations concernant les trois attributs ainsi que l'état de 8 patients :

Travail à faire :

- 1. Classer les nouvelles observations **P9** et **P10** en appliquant l'algorithme K-NN. (Détailler les calculs).
- 2. Utiliser la distance euclidienne qui a la formule suivante : $D_E = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}$
- 3. Considérer la valeur : k=3 et par la suite k=5.

ID	Attribut 1	Attribut 2	Attribut 3	Etat	
P1	3	1	1	Négative	
P2	1	1	0	Négative	
P3	6	7	1	Positive	
P4	1	1	1	Négative	
P5	10	3	3	Positive	
P6	8	2	3	Positive	
P7	6	8	4	Positive	
P8	2	1	1	Négative	
P9	1	1	1	?	
P10	1	10	1	?	

Exercice 2: K-Means

Soit l'ensemble de données suivants constitué des deux attributs « Attribut 1 et Attribut 2 ». L'attribut ID ne va pas rentrer dans les calculs :

ID	Attribut 1	Attribut 2	
A 1	2	10	
A2	2	5	
А3	8	4	
Α4	5	8	
A5	7	5	
A6	6	4	
Α7	1	2	
А8	4	9	

Ilham KADI Page: 1

Filière: 5IIR Data Mining

On veut utiliser l'algorithme K-Means pour répartir les données en trois (3) clusters. On choisit d'une manière aléatoire les centres initiaux suivants des trois clusters respectivement :

$$M1 = (2, 10), M2 = (5, 8) \text{ et } M3 = (1, 2)$$

La distance **d** entre les instances et les centres est calculée en utilisant la distance Manhattan : $D_E = \sum_{i=1}^{n} |x_i - y_i|$

Travail à faire:

- 1. Appliquer l'algorithme K-Means et montrez toutes les étapes de calcul.
- 2. Donnez le résultat final et précisez le nombre d'itérations qui ont été nécessaires pour arriver à une situation de stabilité.

Exercice 3: Règles d'association

Soit le problème suivant :

Produits = $\{A, B, C, D, E, F\}$

Transactions = {AB, ABCD, ABD, ABDF, ACDE, BCDF}

Transactions	A	В	С	D	Е	F
T1	1	1	0	0	0	0
T2	1	1	1	1	0	0
T3	1	1	0	1	0	0
T4	1	1	0	1	0	1
T5	1	0	1	1	1	0
T6	0	1	1	1	0	1

Avec : MINSUP = $\frac{1}{2}$, MINCONF= 75%

- 1. Donner l'ensemble des items et ItemSets fréquents.
- 2. Donner l'ensemble des règles valides.

Ilham KADI Page: 2