

Artificial Neural Networks

Angelehnt an die Serie "ANN" von 3Blue1Brown

Heilbronn, den 24.05.2022

Artificial Neural Networks

Agenda

- **01** Einführung ANN
- **02** Feedforward Neural Network Digit Recognition
- **03** Testing & Optimizing
- **04** Auswertung unseres Modell
- **05** Vergleich zu anderen NN

OL Einführung ANN

Artificial Neural Networks

 Künstliche Neuronale Netze (KNN) sind inspiriert durch den Informationsfluss innerhalb des menschlichen Gehirns

 Neuronen, die mit anderen Neuronen verbunden sind und sich gegenseitig "Signale / Informationen" senden

Einsatzgebiete von Feedfordward NN's

- Pattern Recognition (unsupervised)
 - Automatisches Erkennen von Mustern / Regelmäßigkeiten in Trainingsdaten
 - Clustering von Daten
- Classification (supervised)
 - Einteilung der Daten anhand der Merkmale in vordefinierte Klassen
 - Handschrifterkennung, Bildklassifikation

Feedforward NN - Aufbau

Sigmoid $f(x) = \frac{1}{1 + e^{-x}} = Wert (zwische 0 u. 1)$

Wie wird unser Netzwerk "schlauer"?

Supervised Learning / Überwachtes Lernen:

Back Propagation

- Algorithmus, der für den Lernprozess des Netzwerks zuständig ist
 - Cost des ANN: unterschied zwische output und dem erwarteten Wert
 - Cost wird genutzt um die weights und bias anzupassen
 - Durchschnitt von allen weights und bias bilden das verbesserte Model
 - → Prozess wird so lange wiederholt bis die optimale Anpassung gefunden wurde
 - → Kompromiss, um alle Klassen möglich genau zu erraten

02

Feedforward NN - Digit Recognition

Einführung – Was ist unser Ziel?

Unser Neuronales Netz soll anhand eines Bildes eine handgeschriebene Zahl identifizieren

MNIST- Datensatz (Input)

- Mixed National Institute of Standards and Technology (Öffentliche Datenbank für handgeschriebene Zahlen)
- Training Datensatz aus 60.000 Bildern
- Testing Datensatz aus 10.000 Bildern

- Zahlen aus Training- und Test-Datensatz von unterschiedlichen Personen geschrieben
 - SD-3 (Mitarbeiter von Census Bureau)
 - SD-1 (Schüler)

Input - Verarbeitung

0.22

- Neuronenfeld 28x28 = 784 Pixel
- Jedes **Neuron** nimmt Wert zwischen **0 u. 1** an
- Je heller, desto höher der Wert (näher an 1)

 Je dunkler, desto kleiner der Wert (näher an 0)
- → Jedes Neuron im Input-Layer ist für ein Pixel zuständig

28 -

Erweiterung des Datensatz

links

rechts

Data without expandation: 70.000 Bilder

50.000 (training_data) + 10.000 (validation_data) + 10.000 (test_data)

Expanded Data: <u>350.000 Bilder</u>

50.000 Training Data + 4 * 50.000 (Bilder nach oben, unten, links, recht) +

10.000 Test Data + 4* 10.000 (Bilder nach oben, unten, links, recht) +

10.000 Validation Data + 4 * 10.000 (Bilder nach oben, unten, links, recht)

→ Zusammen gebündelt in **training_data**

Undersampling

31.565 Fünfen in unserem Datensatz

Alle Zahlen mit mehr als 31.565 Bildern sollen auf diese Anzahl begrenzt werden

→ Jede Zahl hat die selbe Anzahl an Trainingsdaten

Unser erstes / simples Modell

Jedes Neuron im Hidden-Layer bekommt einen Input von allen Neuronen der Schicht davor

2 Hidden Layer mit 16 Neuronen

Jedes Neuron besitzt eigene Weights

784×16+16×16+16×10 weights

16 +16+10 biases

→ 13,002 Optimiermöglichkeiten

Mögliche Verarbeitung (Hidden Layer)

Jede Zahl besteht aus einzelnen Komponenten

Die Zahl 9 besteht z.B aus

In den Hidden Layer werden die bestandteile einer Zahl ausgewertet und kombiniert

=> Output

In dem dritten Layer wird entschieden, inwiefern der Input (Bild), dem Pixelausschnitt ähnelt

03

Testing & Optimizing

Recap Feedforward NN - Aufbau

Adjusting Hyper-Parameter

- Number of Hidden Layers, Neurons (mehr Neurons dauert länger)
- Activation (sigmoid, ReLU, tanh etc.)
- Solver (Verschiedene Ansätze, um die Weights anzupassen)

- Batch Size (Legt fest, wie viele Bilder werden bearbeitet bis die weights angepasst werden)
- Learning Rate (Bestimmung der Start-rate / Schrittgröße, Veränderung der Rate im Lern-Prozess, Stop festlegen)

Learning Rate (η) – Kostenfunktion

Low η

- **Niedrige Annäherung pro Update**
- **Hohe Dauer**
- Hohe Chance, den richtigen

- Schnelle Annäherung pro Update
- **Niedrige Dauer**
- Niedrige Chance, den richtigen Parameter zu finden

Annealing the Learning Rate → adaptive

learning_rate{'constant', 'invscaling', 'adaptive'}

Loss rate = Fehlerrate im Training des NN

- 1. Loss rate wird geringer, η bleibt gleich
- 2. Loss rate wird geringer, η bleibt gleich
- 3. Loss rate wird geringer, η bleibt gleich
- 4. Loss rate wird höher, η wird verkleinert
- 5. Loss rate wird geringer
- → Optimum/Minimum gefunden

04

Auswertung unseres Modells

Evaluation of our model (Confusion matrix)

Unser Modell identifiziert eine handgeschriebene Zahl in Form eines Bildes mit einer **Genauigkeit von 0.988**

- Niedrige Loss Rate
- "Niedrige Anzahl an falsch erratenen Zahlen (im Verhältnis zur Menge der Daten (63130 Test Daten))
- Hohe precision, recall, f1-score, support

weighted avg

0.99

0.99

0.99

63130

Vergleich der Modelle

05

Vergleich zu anderen Neuronalen Netzen

Arten von Neuronalen Netzwerken

Feedforward Neural Network	Convolutional (CNN)	Recurrent (RNN)	Generative Adversarial Networks (GANs)
Informationsfluss ausschließlich vorwärtsgerichtet	Convolutional Layer - Pooling Layer - Fully- Connected Layer.	Output wird wieder als Input verwendet Rückkopplung	Erzeugen aus Input neue Daten
			Generatoren und Diskriminatoren
→ Klassifikation	→ Bilderkennung	→ Spracherkennung	→ Erzeugen eines fiktiven Bild

Einsatzgebiete

Das Wichtigste auf einen Blick

X2-

Х3

Activation Functions

Adjusting Hyper-Parameter

- Number of Hidden Layers, Neurons → braucht sehr viel Rechenleistung
- Activation (sigmoid, ReLU, tanh etc.)
- Solver (Verschiedene Ansätze, um die Weights anzupassen)
- Batch Size (Legt fest, wie viele Bilder werden bearbeitet bis die weights angepasst werden)
- Learning Rate (Bestimmung der Start-rate / Schrittgröße, Veränderung der Rate im Lern-Prozess , Stop festlegen)

Quellen

- https://www.youtube.com/watch?v=aircAruvnKk&list=LL&index=2&ab_channel=3Blue1Brown
- https://www.youtube.com/watch?v=IHZwWFHWa-w&list=LL&index=1&ab_channel=3Blue1Brown
- https://www.marketing-boerse.de/fachartikel/details/2049-pattern-matching---muster-fuer-marketing-nutzen/173145 Letzter
 Zugriff: 12.05.22
- https://www.bigdata-insider.de/die-wichtigsten-typen-neuronaler-netze-fuer-deep-learning-a-1101586/ Letzter Zugriff: 16.05.22
- https://data-science-blog.com/blog/2019/01/13/training-eines-neurons-mit-dem-gradientenverfahren/ Letzter Zugriff: 20.05.22
- <a href="https://machine-learning.paperspace.com/wiki/weights-and-biases#:~:text=In%20an%20ANN%2C%20each%20neuron,inputs%20along%20with%20the%20bias.&text=Weights%20control%20the%20signal%20(or,the%20connection)%20between%20two%20neurons. Letzter Zugriff: 20.05.22
- https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/ Letzter Zugriff: 22.05.22
- https://github.com/MichalDanielDobrzanski/DeepLearningPython Letzter Zugriff: 23.05.22
- Powerpoint Ruben Nuredini

Vielen Dank für eure Aufmerksamkeit!

Bei späteren Fragen könnt Ihr euch gerne bei uns melden.

Moritz Theis

moritz.theis@gmail.com

Máté Benedek Jordán

mate.jordan.b@gmail.com

