Modelling and Numerical Methods Lecture 2

Stress and Tensors

Outline

- Cauchy stress tensor recap
- Coordinate transformation (stress) tensors
- (Stress) tensor symmetry
- Tensor invariants
- Diagonalising, eigenvalues, eigenvectors
- Special stress states
- Equation of motion

Learning Objectives

- Understand meaning of different components of 3D Cauchy stress tensor, and know how to determine state of stress on given plane
- Be able to decompose a rank 2 tensor into symmetric and anti-symmetric components
- Be able to transform rank 2 tensor to a new basis.
- Be able to find principal stresses and stress invariants and know what they represent
- Be able to balance body forces and stresses

Cauchy Stress

Stress in a point, measured in medium as deformed by the stress experienced.

forces introduce a state of stress in a body

(Other stress measures, e.g., Piola-Kirchhoff tensor, used in Lagrangian formulations)

 X_3

traction, stress vector

$$\mathbf{t_1} = \mathbf{t}(\hat{\mathbf{n}}_1) = \lim_{\Delta A \to 0} \Delta \mathbf{f} / \Delta A_1$$

$$\mathbf{t_1} = (\sigma_{11}, \sigma_{12}, \sigma_{13})$$

Need nine components to fully describe the stress

$$\sigma_{11}$$
, σ_{12} , σ_{13} for ΔA_1
 σ_{22} , σ_{21} , σ_{23} for ΔA_2
 σ_{33} , σ_{31} , σ_{32} for ΔA_3

first index = orientation of plane second index = orientation of force

Plane area as a vector

The area of plane S can be defined in terms of vectors assuming S_0 and θ are known.

$$S_0 = \mathbf{S} \cdot \hat{\mathbf{n}}_0 = S \cdot \hat{\mathbf{n}}_0 = S \cos \theta$$

$$\Rightarrow S = S_0 / \cos \theta$$

Are nine components sufficient?

Demonstrate with equilibrium for a tetrahedron

Given: stress on A_1, A_2, A_3

Find: $\mathbf{t}(\hat{\mathbf{n}})$

$$x_2$$
 θ_2
 θ_1
 θ_3
 θ_3

1:
$$\hat{\mathbf{n}} = -\hat{\mathbf{x}}_1$$
, $\Delta A_1 = \Delta A \cos \theta_1$

2:
$$\hat{\mathbf{n}} = -\hat{\mathbf{x}}_2$$
, $\Delta A_2 = \Delta A \cos \theta_2$

3:
$$\hat{\mathbf{n}} = -\hat{\mathbf{x}}_3$$
, $\Delta A_3 = \Delta A \cos \theta_3$

4:
$$\hat{\mathbf{n}} = (n_1, n_2, n_3)$$
, $n_i = \cos\theta_i$, $\Delta A_4 = \Delta A$

$$\Sigma f_1 = t_1 \Delta A - \sigma_{11} \Delta A \cos \theta_1 - \sigma_{21} \Delta A \cos \theta_2 - \sigma_{31} \Delta A \cos \theta_3 = 0$$

How many stress components required in 2D?

first index = orientation of plane second index = orientation of force

Positive if force in direction of normal (as shown)

$$t_i = \sigma_{ji} n_j$$

$$\mathbf{t} = \mathbf{\sigma}^T \cdot \hat{\mathbf{n}}$$

Transpose: $\sigma_{ji} = \sigma^{T}_{ij}$

Note: unusual index order

in matrix notation:
$$\mathbf{t} = \begin{bmatrix} \sigma_{11} & \sigma_{21} & \sigma_{31} \\ \sigma_{12} & \sigma_{22} & \sigma_{32} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix} \cdot \hat{\mathbf{n}}$$

t and $\hat{\mathbf{n}}$ - tensors of rank 1 (vectors) in 3-D $\underline{\boldsymbol{\sigma}}$ - tensor of rank 2 in 3-D

compression - negative tension - positive

 σ_{ji} where i=j - normal stresses

 σ_{ji} where $i{\neq}j$ - shear stresses

 2^{nd} order tensors can be written as square matrices and have algebraic properties similar to some of those of matrices.

Stress components

traction on a plane
$$\mathbf{t} = \begin{bmatrix} \sigma_{11} & \sigma_{21} & \sigma_{31} \\ \sigma_{12} & \sigma_{22} & \sigma_{32} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix} \cdot \hat{\mathbf{n}}$$

what is (1)
$$\hat{\mathbf{e}}_1 \cdot \mathbf{t} = \hat{\mathbf{e}}_1 \cdot \boldsymbol{\sigma}^T \cdot \hat{\mathbf{n}}$$
?

what is (2)
$$\hat{\mathbf{e}}_1 \cdot \boldsymbol{\sigma}^T \cdot \hat{\mathbf{e}}_1$$
? what is (3) $\hat{\mathbf{e}}_1 \cdot \boldsymbol{\sigma}^T \cdot \hat{\mathbf{e}}_2$?

Tensor symmetry

A tensor can be symmetric in one or more indices For rank 2:

$$S_{ij} = S_{ji} \implies S = S^{T}$$
 symmetric
 $S_{ij} = -S_{ji} \implies S = -S^{T}$ antisymmetric

Higher rank:

e.g.,
$$S_{ijk} = S_{jik}$$
 for all i,j,k => symmetric in i,j

antisymmetric T of rank 2

$$\Rightarrow$$
 T_{ii}=0 for i=j, trace(**T**)=0

has n(n-1)/2 independent components

symmetric T of rank 2

has n(n+1)/2 independent components

Any T of rank 2 can be decomposed in symm. and antisymm. part:

$$T_{ij} = (T_{ij} + T_{ji})/2 + (T_{ij} - T_{ji})/2$$

Symmetry of the stress tensor

Try writing out the balance of moments in x₃ direction, assuming static equilibrium

A balance of moments in x_3 direction:

$$m_3 = [$$

$$-[$$

$$\Delta x_1 / 2$$

$$\Delta x_2 / 2 = 0$$

$$\Rightarrow [2\sigma_{12} + \Delta x_1 \frac{\partial \sigma_{12}}{\partial x_1})] - [2\sigma_{21} + \Delta x_2 \frac{\partial \sigma_{21}}{\partial x_2})] = 0$$

$$\lim_{\Delta x_1, \Delta x_2} \to 0 \Rightarrow \boxed{\sigma_{12} = \sigma_{21}}$$

Note: if body force induced rotation:

$$I_{33} \frac{\partial \omega}{\partial t} = O(\Delta x^2)$$

Balancing m_1 and m_2 : $\sigma_{23} = \sigma_{32}$ and $\sigma_{13} = \sigma_{31}$

thus, the stress tensor is symmetric

$$\mathbf{t} = \boldsymbol{\sigma}^{\mathrm{T}} \cdot \hat{\mathbf{n}} \Longrightarrow \mathbf{t} = \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$$

A balance of moments in x_3 direction:

$$m_{3} = \left[\sigma_{12} + (\sigma_{12} + \Delta x_{1} \frac{\partial \sigma_{12}}{\partial x_{1}})\right] \Delta x_{2} \Delta x_{3} \cdot \Delta x_{1} / 2$$
$$-\left[\sigma_{21} + (\sigma_{21} + \Delta x_{2} \frac{\partial \sigma_{21}}{\partial x_{2}})\right] \Delta x_{1} \Delta x_{3} \cdot \Delta x_{2} / 2 = 0$$

$$\Rightarrow \left[2\sigma_{12} + \Delta x_1 \frac{\partial \sigma_{12}}{\partial x_1}\right] - \left[2\sigma_{21} + \Delta x_2 \frac{\partial \sigma_{21}}{\partial x_2}\right] = 0$$

$$\lim_{\Delta x_1, \Delta x_2} \to 0 \Rightarrow \boxed{\sigma_{12} = \sigma_{21}}$$

Note: if body force induced rotation:

$$I_{33} \frac{\partial \omega}{\partial t} = O(\Delta x^2)$$

Balancing m_1 and m_2 : $\sigma_{23} = \sigma_{32}$ and $\sigma_{13} = \sigma_{31}$

thus, the stress tensor is symmetric

$$\mathbf{t} = \boldsymbol{\sigma}^{\mathrm{T}} \cdot \hat{\mathbf{n}} \Rightarrow \mathbf{t} = \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$$

Take a break

Then try Exercises 1 & 2 in the notebook

Learning Objectives

- Understand meaning of different components of 3D Cauchy stress tensor, and know how to determine state of stress on given plane
- Be able to decompose a rank 2 tensor into symmetric and anti-symmetric components
- Be able to transform rank 2 tensor to a new basis.
- Be able to find principal stresses and stress invariants and know what they represent
- Be able to balance body forces and stresses

physical parameters should not depend on coordinate frame \Rightarrow tensors follow linear transformation laws

for vectors on orthonormal basis:

$$\mathbf{v'} = \mathbf{A}\mathbf{v}$$

$$\square \mathbf{v'} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \mathbf{v}$$

 $--x_1$ coefficients α_{ij} depend on angle ϕ between x_1 and x'_1 (or x_2 and x'_2)

$$\mathbf{v'} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \mathbf{v} = \begin{bmatrix} \cos \phi & \cos(90 - \phi) \\ \cos(90 + \phi) & \cos \phi \end{bmatrix} \mathbf{v} \quad \boxed{\alpha_{ij} = \hat{\mathbf{e}'}_i \cdot \hat{\mathbf{e}}_j}$$

Inverse transform: $v_i = \alpha_{ii} v'_i$ $\alpha_{ii} = \hat{e}_i \cdot \hat{e}'_i$

$$\alpha_{ji} = \hat{e}_j \cdot \hat{e}_i'$$

In a new coordinate system:

Traction
$$\mathbf{t}' = \mathbf{A}\mathbf{t} \Rightarrow \mathbf{t} = \mathbf{A}^T\mathbf{t}'$$

normal $\mathbf{n}' = \mathbf{A}\mathbf{n} \Rightarrow \mathbf{n} = \mathbf{A}^T\mathbf{n}'$

$$\mathbf{t} = \boldsymbol{\sigma}^T \mathbf{n}$$

$$\mathbf{t}' = \boldsymbol{\sigma}'^T \mathbf{n}'$$

Relation σ' to σ ?

⇒ transformation for stress tensor

$$\mathbf{t}' = \mathbf{A}\boldsymbol{\sigma}^T \mathbf{n}$$

$$\mathbf{t}' = \mathbf{A}\boldsymbol{\sigma}^T \mathbf{A}^T \mathbf{n}'$$

$$\mathbf{t}' = \boldsymbol{\sigma}'^T \mathbf{n}'$$

$$\boldsymbol{\sigma}'^T = \mathbf{A}\boldsymbol{\sigma}^T \mathbf{A}^T$$

• transformation matrices
are orthogonal
$$\alpha_{ii}^{-1} = \alpha_{ii} \ (\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}})$$

• remember
$$\alpha_{ij} = \hat{\mathbf{e}}'_i \cdot \hat{\mathbf{e}}_j$$

 $\alpha_{ij}^{-1} = \hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}'_j = \alpha_{ji} = \alpha_{ij}^T$

⇒ each dependence on direction transforms as a vector, requiring two transformations

An *n-dimensional* tensor of rank r consists of n^r components

This tensor $T_{i1,i2,...,in}$ is defined relative to a basis of the real, linear n-dimensional space S_n

and under a coordinate transformation T transforms as:

$$T'_{ij...n} = \alpha_{ip}\alpha_{jq}...\alpha_{nt} T_{pq...t}$$

For *orthonormal* bases the matrices α_{ik} are *orthogonal* transformations, i.e. $\alpha_{ik}^{-1} = \alpha_{ki}$. (columns and rows are orthogonal and have length =1, i.e., perpendicular unit vectors are transformed to perpendicular unit vectors)

If the basis is *Cartesian*, α_{ik} are *real*.

Transforming the 2-D stress tensor

(determining normal and shear stress on a plane)

Try writing force balance in x_1 *direction*

Force balance

in
$$x_1$$
 direction: (1)
$$\sigma_{11} dy + \sigma_{21} dx = \sigma_{nn} \sin \phi ds + \sigma_{ns} \cos \phi ds$$
$$\sigma_{11} \sin \phi + \sigma_{21} \cos \phi = \sigma_{nn} \sin \phi + \sigma_{ns} \cos \phi$$

in
$$x_2$$
 direction: (2)
$$\sigma_{12}dy + \sigma_{22}dx = \sigma_{nn}\cos\phi ds - \sigma_{ns}\sin\phi ds$$
$$\sigma_{12}\sin\phi + \sigma_{22}\cos\phi = \sigma_{nn}\cos\phi - \sigma_{ns}\sin\phi$$

(1)
$$\sin \phi + (2) \cdot \cos \phi$$
: verify yourself
$$\sigma_{nn} = \sigma_{11} \sin^2 \phi + \sigma_{21} \cos \phi \sin \phi + \sigma_{12} \cos \phi \sin \phi + \sigma_{22} \cos^2 \phi$$

$$(1) \cdot \cos \phi - (2) \cdot \sin \phi:$$

$$\sigma_{ns} = \sigma_{11} \cos \phi \sin \phi + \sigma_{21} \cos^2 \phi - \sigma_{12} \sin^2 \phi - \sigma_{22} \cos \phi \sin \phi$$

This is equivalent to the tensor transformation $\sigma'_{qp} = \alpha_{pi} \alpha_{qj} \sigma_{ji}$ $\sigma'_{nn} = \alpha_{ni} \alpha_{nj} \sigma_{ji}$ $\sigma'_{ns} = \alpha_{si} \alpha_{nj} \sigma_{ji}$

With
$$\alpha_{n1} = \sin \phi$$
, $\alpha_{n2} = \cos \phi$, $\alpha_{s1} = \cos \phi$, $\alpha_{s2} = -\sin \phi$

$$x_1' = x_s$$
$$x_2' = x_n$$

Write out transformation

$$\sigma'_{qp} = \alpha_{pi} \alpha_{qj} \sigma_{ji}$$

 x_2 $x'_2=x_n$ x_1 $x_1=x_s$

$$\alpha_{ij} = \hat{\mathbf{e}}'_{i} \cdot \hat{\mathbf{e}}_{j}$$

$$\alpha_{s1} = \hat{\mathbf{e}}_{s} \cdot \hat{\mathbf{e}}_{1} = \cos \phi$$

$$\alpha_{s2} = \hat{\mathbf{e}}_{s} \cdot \hat{\mathbf{e}}_{2} = -\sin \phi$$

$$\alpha_{n2} = \hat{\mathbf{e}}_{n} \cdot \hat{\mathbf{e}}_{2} = \cos \phi$$

$$\alpha_{n1} = \hat{\mathbf{e}}_{n} \cdot \hat{\mathbf{e}}_{1} = \sin \phi$$

In tensor notation:

$$\sigma'^{T} = A \cdot \sigma^{T} \cdot A^{T}$$

In matrix notation:

$$\begin{bmatrix} \sigma_{ss} & \sigma_{ns} \\ \sigma_{sn} & \sigma_{nn} \end{bmatrix} = \begin{bmatrix} \alpha_{s1} & \alpha_{s2} \\ \alpha_{n1} & \alpha_{n2} \end{bmatrix} \begin{bmatrix} \sigma_{11} & \sigma_{21} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} \begin{bmatrix} \alpha_{s1} & \alpha_{n1} \\ \alpha_{s2} & \alpha_{n2} \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{ss} & \sigma_{ns} \\ \sigma_{sn} & \sigma_{nn} \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \sigma_{11} & \sigma_{21} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix}$$

For
$$\hat{\mathbf{x}}_1 = (1,0)$$
, $\hat{\mathbf{x}}_2 = (0,1)$, first row of **A** consists of $\hat{\mathbf{x}}_1'$, second of $\hat{\mathbf{x}}_2'$

$$\mathbf{A} = \begin{bmatrix} \mathbf{x}'_1 \cdot \mathbf{x}_1 & \mathbf{x}'_1 \cdot \mathbf{x}_2 \\ \mathbf{x}'_2 \cdot \mathbf{x}_1 & \mathbf{x}'_2 \cdot \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \quad \mathbf{X}_2$$

You may recognise \mathbf{A} as a matrix that describes a rigid-body rotation over and angle $-\phi$

 A^T describes a rotation over angle ϕ

First column of \mathbf{A}^{T} consists of $\hat{\mathbf{X}}'_{1}$, second of $\hat{\mathbf{X}}'_{2}$

$$\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} \mathbf{x}_{1} \cdot \mathbf{x}'_{1} & \mathbf{x}_{1} \cdot \mathbf{x}'_{2} \\ \mathbf{x}_{2} \cdot \mathbf{x}'_{1} & \mathbf{x}_{2} \cdot \mathbf{x}'_{2} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$$

$$\hat{\mathbf{x}}'_1 = (\cos\phi, -\sin\phi)$$

$$\hat{\mathbf{x}}'_2 = (\sin\phi, \cos\phi)$$

Objectives

- Understand meaning of different components of 3D Cauchy stress tensor, and know how to determine state of stress on given plane
- Be able to decompose a rank 2 tensor into symmetric and anti-symmetric components
- Be able to transform rank 2 tensor to a new basis.
- Be able to find principal stresses and stress invariants and know what they represent
- Be able to balance body forces and stresses

Take a break

Then try Exercise 5 in the notebook

Learning Objectives

- Understand meaning of different components of 3D Cauchy stress tensor, and know how to determine state of stress on given plane
- Be able to decompose a rank 2 tensor into symmetric and anti-symmetric components
- Be able to transform rank 2 tensor to a new basis.
- Be able to find principal stresses and stress invariants and know what they represent
- Be able to balance body forces and stresses

Diagonalizing

Real-valued, symmetric rank 2 tensors (square, symmetric matrices) can be diagonalized, i.e. a coordinate frame can be found, such that only the diagonal elements (normal stresses) remain.

For stress tensor, these elements, σ_1 , σ_2 , σ_3 are called the principal stresses

$$egin{bmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & \sigma_3 \ \end{bmatrix}$$

Such a transformation can be cast as:

$$\mathbf{T} \cdot \mathbf{x} = \lambda \mathbf{x}$$

where \mathbf{x}_i are eigenvectors or characteristic vectors and λ_i are the eigenvalues, characteristic or principal values

$$\Rightarrow (T-\lambda\delta)\cdot x = 0$$

Non-trivial solution only if $det(\mathbf{T}-\lambda \mathbf{\delta}) = 0$

Determinant

For 2-dimensional rank 2 tensor

$$\det(\mathbf{T}) = \begin{vmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{vmatrix} = T_{11}T_{22} - T_{12}T_{21}$$
$$\det(\mathbf{a}, \mathbf{b}) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 = \mathbf{a} \times \mathbf{b}$$

$$\det(\mathbf{a}, \mathbf{b}) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 = \mathbf{a} \times \mathbf{b} \quad \text{signed} \quad \text{area}$$

For 3-dimensional rank 2 tensor $\mathbf{T} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ $\begin{aligned} \mathbf{T} \cdot \hat{\mathbf{e}}_1 &= \mathbf{a} \\ \mathbf{T} \cdot \hat{\mathbf{e}}_2 &= \mathbf{b} \\ \mathbf{T} \cdot \hat{\mathbf{e}}_3 &= \mathbf{c} \end{aligned}$

$$\det(\mathbf{T}) = \det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 \\ -a_1 b_3 c_2 - a_2 b_1 c_3 - a_3 b_2 c_1 \\ = \varepsilon_{ijk} a_i b_j c_k = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \begin{vmatrix} signed \\ volume \end{vmatrix}$$

 $det(\mathbf{T})\neq 0$ columns of T are linearly independent, and T^{-1} exists

volume

Determinant and cross product

Can write cross product as a determinant

$$\mathbf{a} \times \mathbf{b} = \varepsilon_{ijk} a_i b_j \hat{\mathbf{e}}_k = \begin{vmatrix} \hat{\mathbf{e}}_1 & \hat{\mathbf{e}}_2 & \hat{\mathbf{e}}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\begin{vmatrix} \hat{\mathbf{e}}_1 \\ b_2 \\ b_3 \end{vmatrix} = \begin{vmatrix} a_3 \\ b_3 \end{vmatrix} + \hat{\mathbf{e}}_2 \begin{vmatrix} a_3 \\ b_3 \\ b_1 \end{vmatrix} + \hat{\mathbf{e}}_3 \begin{vmatrix} a_1 \\ b_1 \\ b_2 \end{vmatrix} = \begin{vmatrix} a_2 \\ b_1 \\ b_2 \end{vmatrix}$$

Diagonalizing

Real-valued, symmetric rank 2 tensors (square, symmetric matrices) can be diagonalized, i.e. a coordinate frame can be found, such that only the diagonal elements (normal stresses) remain.

For stress tensor, these elements, σ_1 , σ_2 , σ_3 are called the principal stresses

$$egin{bmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & \sigma_3 \ \end{bmatrix}$$

Such a transformation can be cast as:

$$\mathbf{T} \cdot \mathbf{x} = \lambda \mathbf{x}$$

where \mathbf{x}_i are eigenvectors or characteristic vectors and λ_i are the eigenvalues, characteristic or principal values

$$\Rightarrow (T-\lambda\delta)\cdot x = 0$$

Non-trivial solution only if $det(\mathbf{T}-\lambda \mathbf{\delta}) = 0$

Eigenvalues, eigenvectors

For real-valued, symmetric rank 2 order *n* tensors

- All eigenvalues are real

 $\Rightarrow \mathbf{x}_2 \cdot \mathbf{x}_1 = 0$

- If **T** is positive definite, then eigenvalues are positive
- Eigenvectors for two distinct λ are orthogonal.
- There are *n* linearly independent eigenvectors

$$\mathbf{T} \cdot \mathbf{x}_1 = \lambda_1 \mathbf{x}_1 \quad \text{where } \lambda_1 \neq \lambda_2$$

$$\mathbf{T} \cdot \mathbf{x}_2 = \lambda_2 \mathbf{x}_2$$

$$\mathbf{x}_2 \cdot \mathbf{T} \cdot \mathbf{x}_1 = \lambda_1 \mathbf{x}_2 \cdot \mathbf{x}_1 \quad \mathbf{x}_1 \cdot \mathbf{T} \cdot \mathbf{x}_2 = \lambda_2 \mathbf{x}_1 \cdot \mathbf{x}_2 = \lambda_2 \mathbf{x}_2 \cdot \mathbf{x}_1$$

$$\mathbf{x}_2 \cdot \mathbf{T} \cdot \mathbf{x}_1 = \mathbf{x}_1 \cdot \mathbf{T}^T \cdot \mathbf{x}_2 \quad \text{with symmetry} = \mathbf{x}_1 \cdot \mathbf{T} \cdot \mathbf{x}_2$$

$$\mathbf{x}_2 \cdot \mathbf{T} \cdot \mathbf{x}_1 - \mathbf{x}_1 \cdot \mathbf{T} \cdot \mathbf{x}_2 = (\lambda_1 - \lambda_2) \mathbf{x}_2 \cdot \mathbf{x}_1 = 0$$

Eigenvectors

- If x is an eigenvector with eigenvalue λ , then any multiple αx is also an eigenvector: $\mathbf{T} \cdot \alpha \mathbf{x} = \alpha \lambda \mathbf{x}$
 - ⇒ Eigenvectors often scaled to unit vectors
- For repeated λ , infinite range of possible \mathbf{x} , usually set of orthonormal vectors chosen

Example:
$$\mathbf{T} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Characteristic equation: $(2-\lambda)^2(3-\lambda)=0$ $\Rightarrow \lambda=2$ (twice), $\lambda=3$

Easy to verify that: $\mathbf{T} \cdot \hat{\mathbf{e}}_1 = 2\hat{\mathbf{e}}_1$, $\mathbf{T} \cdot \hat{\mathbf{e}}_2 = 2\hat{\mathbf{e}}_2$, $\mathbf{T} \cdot \hat{\mathbf{e}}_3 = 3\hat{\mathbf{e}}_3$ $\Rightarrow \hat{\mathbf{e}}_1$ and $\hat{\mathbf{e}}_2$ eigenvectors, but so are any $a\hat{\mathbf{e}}_1 + b\hat{\mathbf{e}}_2$

Invariants

$$I_{1} = tr(\mathbf{T}) = T_{11} + T_{22} + T_{33}$$

$$I_{2} = minor(\mathbf{T}) = \begin{vmatrix} T_{11} & T_{21} \\ T_{21} & T_{22} \end{vmatrix} + \begin{vmatrix} T_{11} & T_{31} \\ T_{31} & T_{33} \end{vmatrix} + \begin{vmatrix} T_{22} & T_{32} \\ T_{32} & T_{33} \end{vmatrix}$$

$$= T_{11}T_{22} + T_{22}T_{33} + T_{11}T_{33} - T_{21}^{2} - T_{32}^{2} - T_{31}^{2}$$

$$I_{3} = det(\mathbf{T}) = \begin{vmatrix} T_{11} & T_{21} & T_{31} \\ T_{21} & T_{22} & T_{32} \\ T_{31} & T_{32} & T_{33} \end{vmatrix} = T_{11}T_{22}T_{33} + 2T_{21}T_{32}T_{31} - T_{11}T_{32}^{2} - T_{22}T_{31}^{2} - T_{33}T_{21}^{2}$$

In terms of eigenvalues, invariants simplify to:

$$I_1 = tr(\mathbf{T}) = \lambda_1 + \lambda_2 + \lambda_3$$

$$I_2 = minor(\mathbf{T}) = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3$$

$$I_3 = det(\mathbf{T}) = \lambda_1 \lambda_2 \lambda_3$$

Check yourself

Hydrostatic and Deviatoric stress

Diagonalizing
$$=>$$
 principal stress coordinate frame $\begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$

(σ_1 to σ_3 usually ordered from largest to smallest)

$$\sigma_{ij} = -p\delta_{ij} + \sigma'_{ij}$$

 $tr(\sigma)$ = sum of normal stresses $tr(\sigma)/3$ = - pressure p = average normal stress = *hydrostatic stress* \Rightarrow volume change

Second invariant deviatoric stress

 σ'_{ij} is deviatoric stress = $\sigma_{ij}+p\delta_{ij}$

$$\min(\sigma') = \sigma'_{11}\sigma'_{22} + \sigma'_{22}\sigma'_{33} + \sigma'_{11}\sigma'_{33} - \sigma'_{21}^2 - \sigma'_{32}^2 - \sigma'_{31}^2$$
 (1)

$$= -\sigma'_{11}^{2} - \sigma'_{22}^{2} - \sigma'_{33}^{2}$$

$$-\sigma'_{11}\sigma'_{33} - \sigma'_{11}\sigma'_{22} - \sigma'_{22}\sigma'_{33}$$

$$-\sigma'_{21}^{2} - \sigma'_{32}^{2} - \sigma'_{31}^{2}$$

$$= 0$$
Using that:
$$tr(\sigma') = \sigma'_{11} + \sigma'_{22} + \sigma'_{33}$$

$$= 0$$

$$= \frac{1}{2}[(1)+(2)]$$

$$= -\frac{1}{2} \left[\sigma'_{11}^2 + \sigma'_{22}^2 + \sigma'_{33}^2 + \sigma'_{21}^2 + \sigma'_{32}^2 + \sigma'_{31}^2 \right]$$

minor(
$$\sigma$$
)=½[tr(σ^2)-(tr σ)²], minor(σ ')=½tr(σ '²)

measure of stress magnitude, important in flow and plastic yielding

Maximum shear stress

Principal stresses include largest and smallest normal stresses in given stress system (see proof in Lai et al.)

If σ_1 is largest and σ_3 smallest principal stress, then maximum shear stress

$$\left|\sigma_s^{\text{max}}\right| = \frac{\sigma_1 - \sigma_3}{2}$$
 See Exercise 4

- Show this using case of 2-D stress in σ_1 , σ_3 coordinate frame,
- Determine the orientation of the corresponding direction relative to the σ_1 , σ_3 coordinate frame

Maximum shear stress important for yield criteria

Equation of motion

Force balance:

$$\mathbf{F}_{\text{body}} + \mathbf{F}_{\text{stress}} = \mathbf{ma}$$

In x_1 - direction:

$$\sigma_{11} \leftarrow \sigma_{11} + \frac{\partial \sigma_{11}}{\partial x_1} \Delta x_3$$

$$\sigma_{21} \leftarrow \sigma_{21}$$

 σ_{31}

 X_2

+

+ $= \rho \Delta x_1 \Delta x_2 \Delta x_3 \partial^2 u_1 / \partial t^2$

$$\Rightarrow f_1 + \partial \sigma_{11} / \partial x_1 + \partial \sigma_{21} / \partial x_2 + \partial \sigma_{31} / \partial x_3 = \rho \partial^2 u_1 / \partial t^2$$

$$\Rightarrow \ f_i + \partial \sigma_{ji}/\partial x_j \ = \rho \partial^2 u_i/\partial t^2$$

+

$$\Rightarrow$$
 f + $\nabla \cdot \underline{\sigma} = \rho \partial^2 \mathbf{u} / \partial t^2$

Equation of motion

Force balance:

$$\mathbf{F}_{\text{body}} + \mathbf{F}_{\text{stress}} = \mathbf{ma}$$

 X_2

$$f_1 \Delta x_1 \Delta x_2 \Delta x_3 +$$

$$(\sigma_{11}+\Delta x_1\partial\sigma_{11}/\partial x_1-\sigma_{11})\Delta x_2\Delta x_3+$$

$$(\sigma_{21} + \Delta x_2 \partial \sigma_{21} / \partial x_2 - \sigma_{21}) \Delta x_1 \Delta x_3 +$$

$$(\sigma_{31} + \Delta x_3 \partial \sigma_{31} / \partial x_3 - \sigma_{31}) \Delta x_1 \Delta x_2 = \rho \Delta x_1 \Delta x_2 \Delta x_3 \partial^2 u_1 / \partial t^2$$

$$\Rightarrow f_1 + \partial \sigma_{11} / \partial x_1 + \partial \sigma_{21} / \partial x_2 + \partial \sigma_{31} / \partial x_3 = \rho \partial^2 u_1 / \partial t^2$$

$$\Rightarrow f_i + \partial \sigma_{ii}/\partial x_i = \rho \partial^2 u_i/\partial t^2$$

$$\Rightarrow$$
 f + $\nabla \cdot \underline{\sigma} = \rho \partial^2 \mathbf{u} / \partial t^2$

Take a break

Then try Exercise 6 & 8 in the notebook

Learning Objectives

- Understand meaning of different components of 3D Cauchy stress tensor, and know how to determine state of stress on given plane
- Be able to transform rank 2 tensor to a new basis.
- Be able to decompose a rank 2 tensor into symmetric and anti-symmetric components
- Be able to find principal stresses and stress invariants and know what they represent
- Be able to balance body forces and stresses

Summary Stress Tensors

- Cauchy stress tensor
- Tensor coordinate transformation
- (Stress) tensor symmetry
- Tensor invariants
- Diagonalizing, eigenvalues, eigenvectors
- Special stress states
- Equation of motion

Further reading on the topics in the lecture can be done in for example: Lai, Rubin, Kremple (2010): Ch. 2.18 through 2.25, 4.4 through 4.7