Quaternion algebras

George McNinch

2025-06-08 11:07:06 EDT (george@valhalla)

1 Some references

- Some notes of Keith Conrad (UConn)
- first chapter of Gille-Szamuely "Central Simple Algebras and Galois Cohomology"

2 Quaternion algebras, defined

If k is a field, an algebra A over k is a k-vector space A together with operations $+: A \times A \to A$ and $\cdot: A \times A \to A$ which satisfy the axioms of a ring.

Here, we are going to insist that the algebra A be finite dimensional as a k-vector space, and that there is a multiplicative identity element $1 \in A$.

Given a field ℓ containing k (a "field extension of k") we can form an ℓ -algebra A_{ℓ} by extension of scalars. (Really, this is the tensor product: $A_{\ell} = A \otimes_k \ell$).

The algebra A is said to be *central simple* over k if for some field extension ℓ of k and for some $n \in \mathbb{N}$, the ℓ -algebra A_{ℓ} is isomorphic as ℓ -algebras to $\mathrm{Mat}_n(\ell)$, the algebra of $n \times n$ matrices over ℓ .

Now, a quaternion algebra is a central simple algebra Q over k with dim Q=4. Thus for some field extension ℓ of k, the ℓ -algebra Q_{ℓ} is isomorphic to $\mathrm{Mat}_2(k)$

3 A description of quaternion algebras

A quaternion algebra Q over k can be described in a explicit manner. The case where k has characteristic 2 is slightly different and I'll omit it here, so suppose that k has characteristic $\neq 2$.

Given $a, b \in k$ non-zero elements, we define the k-algebra $(a, b)_k$ to be the k-vector space with basis 1, i, j, ij where the multiplication satisfies

$$i^2 = a, j^2 = b, ij = -ji$$

Theorem 3.0.1. Suppose that k does not have characteristic 2. If Q is a quaternion algebra over k, there are non-zero elements $a, b \in k$ for which $Q \simeq (a, b)_k$.

If $\alpha = s + ti + uj + vij \in (a,b)_k$ for $s,t,u,v \in k$, the conjugate $\overline{\alpha}$ is defined to be

$$\overline{\alpha} = s - ti - uj - vij$$

Proposition 3.0.2. The assignment $N:(a,b)_k \to k$ given by $N(\alpha) = \alpha \cdot \overline{\alpha} = s^2 - at^2 - bu^2 + abv$ defines a non-degenerate quadratic form on the vector space $(a,b)_k$.

We call this quadratic form N the norm – or the norm – of the quaternion algebra $(a,b)_k$.

Theorem 3.0.3. The quaternion algebra $(a,b)_k$ is a division algebra if and only if the norm N does not vanish at any nonzero element of $(a,b)_k$; i.e. $N(\alpha) = 0 \implies \alpha = 0$.

4 Associated conics

Associated with the quaternion algebra $(a,b)_k$ is the conic C=C(a,b) which is the set of solutions to the equation $ax^2+by^2=z^2$ in the projective plane \mathbb{P}^2 . In turn, we can consider the field of rational functions k(C) on this conic; it is the field of fractions of the algebra $k[x,y]/\langle ax^2+by^2-1\rangle$. One sometimes calls k(C) the "function field of C".

We may now state an important theorem due to Witt:

Theorem 4.0.1. Let $Q_1 = (a_1, b_1)_k$ and $Q_2 = (a_2, b_2)_k$ be quaternion algebras over k, and let C_1 and C_2 be the associated conics. The algebra Q_1 and Q_2 are isomorphic if and only if the the function fields $k(C_1)$ and $k(C_2)$ are isomorphic.

In particular, Witt's theorem shows that two quaternion algebras are isomorphic if and only if the associated conics are isomorphic as algebraic curves.