02_Modeling

July 18, 2025

1 Predicción de Rotación de Empleados (Employee Churn Prediction)

1.1 Fuente del dataset

Este análisis se basa en el dataset IBM HR Analytics Employee Attrition & Performance, disponible públicamente en Kaggle.

Contiene información de 1,470 empleados de IBM, con variables relacionadas al desempeño, satisfacción laboral, ingreso, antigüedad, entre otros factores relevantes para la rotación de personal.

1.2 Descripción del proyecto

El objetivo de este proyecto es aplicar técnicas de ciencia de datos y aprendizaje automático para predecir qué empleados tienen mayor probabilidad de dejar la empresa (rotación o "churn"). Para ello, se realiza un análisis exploratorio del dataset, procesamiento de variables, construcción de modelos predictivos y evaluación de resultados.

Este tipo de análisis es muy útil para el área de Recursos Humanos, ya que permite anticipar posibles renuncias y tomar decisiones informadas para retener talento clave dentro de la organización.

1.3 Objetivos específicos

- Analizar las variables que influyen en la decisión de un empleado de renunciar.
- Construir un modelo de clasificación que prediga la rotación de empleados.
- Evaluar el rendimiento del modelo y las variables más influyentes.
- Proponer recomendaciones basadas en los resultados para mejorar la retención laboral.

1.3.1 1 Importar librerías y cargar datos

```
import matplotlib.pyplot as plt
import seaborn as sns

# Cargar datos (ajusta ruta si es necesario)
df = pd.read_csv('../data/WA_Fn-UseC_-HR-Employee-Attrition.csv')
```

1.3.2 2 Codificar variables categóricas

```
[2]: df_encoded = df.copy()

# Convertir la columna objetivo a binaria
df_encoded['Attrition'] = df_encoded['Attrition'].map({'Yes': 1, 'No': 0})

# Identificar columnas categóricas (excepto Attrition que ya está codificada)
cat_cols = df_encoded.select_dtypes(include='object').columns.drop('Attrition', uerrors='ignore')

# Usar LabelEncoder para codificarlas
le = LabelEncoder()
for col in cat_cols:
    df_encoded[col] = le.fit_transform(df_encoded[col])
```

1.3.3 3 Separar variables predictoras y objetivo

```
[3]: X = df_encoded.drop('Attrition', axis=1)
y = df_encoded['Attrition']
```

1.3.4 4 Dividir en entrenamiento y prueba

```
[4]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u orandom_state=42, stratify=y)
```

1.3.5 5 Entrenar modelo (Random Forest)

```
[5]: model = RandomForestClassifier(random_state=42, n_estimators=100)
model.fit(X_train, y_train)
```

[5]: RandomForestClassifier(random_state=42)

1.3.6 6 Evaluar el modelo

```
[6]: y_pred = model.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))

# Matriz de confusión
```

Accuracy: 0.8299319727891157

Classification Report:

	precision	recall	f1-score	support
0	0.85	0.97	0.91	247
1	0.38	0.11	0.17	47
accuracy			0.83	294
macro avg	0.62	0.54	0.54	294
weighted avg	0.78	0.83	0.79	294

1.3.7 7 Importancia de variables

```
[7]: importances = pd.Series(model.feature_importances_, index=X.columns)
     importances.nlargest(10).plot(kind='barh')
     plt.title("Top 10 variables más importantes")
     plt.xlabel("Importancia")
     plt.show()
```


1.4 Conclusiones del Modelo de Predicción de Rotación de Empleados

El modelo de Random Forest Classifier alcanzó un accuracy del 82.99% sobre el conjunto de prueba. A pesar de ser un buen valor general, es importante mirar otras métricas dado que el dataset está desbalanceado.

1.4.1 Informe de clasificación:

- La clase "No renuncia" (0) tiene una excelente precisión (0.85) y recall (0.97).
- La clase "Sí renuncia" (1) tiene valores muy bajos: precision de 0.38, recall de 0.11, con un f1-score de 0.17.

Esto indica que el modelo tiene dificultad para detectar correctamente a los empleados que efectivamente renuncian, probablemente por el desbalance de clases (solo ~16% renuncia en el dataset original).

La matriz de confusión confirma este problema: el modelo predice que la mayoría de empleados no renunciará, y casi no detecta a los que sí lo hacen.

1.5 Recomendaciones técnicas

- Manejar el desbalance de clases con técnicas como:
 - class_weight='balanced' en el modelo
 - Resampling (SMOTE, undersampling)
- Probar otros algoritmos como XGBoost o Logistic Regression para comparar resultados.
- Evaluar el modelo con ROC-AUC para ver su capacidad de discriminación entre clases.

Variables más importantes 1.6

Según la importancia de características del modelo, las 10 variables que más influyen en la predicción de rotación son:

- OverTime (horas extra)
- MonthlyIncome (ingreso mensual)
- TotalWorkingYears
- JobLevel
- YearsAtCompany
- DistanceFromHome
- YearsInCurrentRole
- StockOptionLevel
- PercentSalaryHike

Estas variables ofrecen señales valiosas para el área de Recursos Humanos.

1.7 Conclusión de negocio

- El modelo puede servir como herramienta de apoyo para identificar patrones de riesgo, aunque todavía necesita mejorar su sensibilidad hacia los empleados que renuncian.
- Las empresas pueden enfocarse en revisar condiciones laborales de empleados con muchas horas extra, bajos sueldos o poca antigüedad, ya que estos parecen ser factores rele

Proyecto desarrollado por: Nabila Isabel Padilla Resendiz

Data Scientist en formación | Ingeniera en Mecatrónica | Apasionada por la tecnología y el aprendizaje

Contacto: https://www.linkedin.com/in/nabilap/