Laboratório 2 - Computação Concorrente

Carlos Bravo

Configurações da Máquina

Notebook Inspiron 15 Série 5000

Processador: Intel i5 - 7° Ger. (4 cores)

Memória RAM: 8GB

Resultados Obtidos

Inicialização:

Dimensão/Cores	1	2	4
500	0,002709	0,002708	0,002707
1000	0,010937	0,010946	0,010931
2000	0,043903	0,043597	0,043904

Multiplicação:

Dimensão/Cores	1	2	4
500	0,443645	0,227169	0,233244
1000	4,451472	2,273627	2,601985
2000	47,299734	23,702556	23,286479

Finalização:

Dimensão/Cores	1	2	4
500	0,000716	0,000716	0,000724
1000	0,002869	0,002853	0,002863
2000	0,011461	0,011432	0,011475

Conclusões

Nos tempos de inicialização e finalização não há diferença entre o número de threads, o que é esperado, dado que essas partes são sequenciais. No entanto é possível ver o aumento de tempo ao aumentar a dimensão, pois são mais espaços de memória para alocar ou liberar.

Quanto à multiplicação, de 1 para 2 threads é possível ver que o tempo cai quase pela metade, mostrando que há o paralelismo da tarefa. No entanto, de 2 para 4 não houve diferença significativa. Provavelmente isso se deve ao fato de que o computador possui apenas 4 cores, então não sobraria núcleos para o processamento padrão do computador. Quando o mesmo código foi rodado em uma outra máquina de 6 cores, foi possível ver que o tempo também diminui quase pela metade.