Date: 30th September, 2022

Name: Preyash

Reg No.: 20BPS1022

Data Cleaning, Imputation and Statistics R code

```
Module -03
a <- 33
b <- 200
if (b > a) {
  print("b is greater than a")
## [1] "b is greater than a"
a <- 33
b <- 33
if (b > a) {
  print("b is greater than a")
}else if(a == b){
  print("a and b are equal")
## [1] "a and b are equal"
a <- 200
b <- 33
if (b > a) {
  print("b is greater than a")
}else if(a == b){
  print("a and b are equal")
}else{
  print("a is greater than b")
}
## [1] "a is greater than b"
x <- 41
if (x > 10) {
  print("Above ten")
  if (x > 20) {
    print("and also above 20!")
  } else {
    print("but not above 20.")
} else {
```

```
print("below 10.")
}
## [1] "Above ten"
## [1] "and also above 20!"
a <- 200
b <- 33
c <- 500
if (a > b & c > a) {
  print("Both conditions are true")
}
## [1] "Both conditions are true"
a <- 200
b <- 33
c <- 500
if (a > b | a > c) {
  print("At least one of the conditions are true")
}
## [1] "At least one of the conditions are true"
i<- 1
while(i<6){</pre>
  print(i)
  i <- i+1
  if(i==4){
   break
  }
}
## [1] 1
## [1] 2
## [1] 3
i<- 1
while(i<6){</pre>
  i <- i+1
  if(i==3){
    next
  }
  print(i)
## [1] 2
## [1] 4
## [1] 5
## [1] 6
```

```
dice <- 1
while (dice <= 6)</pre>
  { if (dice < 6) {
    print("No")
  } else {
    print("Yes!")
  }
dice <- dice + 1
## [1] "No"
## [1] "Yes!"
for(x in 1:10){
  print(x)
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
fruits <- list("banana", "apple", "cherry")</pre>
for(x in fruits){
  print(x)
}
## [1] "banana"
## [1] "apple"
## [1] "cherry"
dice \leftarrow c(1,2,3,4,5,6)
for(x in dice){
  print(x)
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
```

```
## [1] 5
## [1] 6
fruits <- list("banana","apple","cherry")</pre>
for(x in fruits){
  if(x == "cherry"){
    break
  }
  print(x)
## [1] "banana"
## [1] "apple"
fruits <- list("banana", "apple", "cherry")</pre>
for(x in fruits){
  if(x == "apple"){
    next
  }
  print(x)
}
## [1] "banana"
## [1] "cherry"
dice <- 1:6
for (x in dice) {
  if (x == 6) {
    print(paste("The dice number is", x, "Yes"))
  } else {
    print(paste("The dice number is", x, "No"))
  }
}
## [1] "The dice number is 1 No"
## [1] "The dice number is 2 No"
## [1] "The dice number is 3 No"
## [1] "The dice number is 4 No"
## [1] "The dice number is 5 No"
## [1] "The dice number is 6 Yes"
adj <- list("red", "big", "tasty")</pre>
fruits <- list("apple", "banana", "cherry")</pre>
for (x in adj) {
  for (y in fruits) {
    print(paste(x, y))
  }
```

```
## [1] "red apple"
## [1] "red banana"
## [1] "red cherry"
## [1] "big apple"
## [1] "big banana"
## [1]
      "big cherry"
## [1] "tasty apple"
## [1] "tasty banana"
## [1] "tasty cherry"
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
data<-data.frame(x1=1:6, x2=c(1,2,2,3,1,2),x3=c("f","d","j","e","a","d"))
data
##
    x1 x2 x3
    1 1 f
## 1
## 2 2 2 d
## 3 3
        2
## 4
     4 3 e
## 5 5
        1 a
## 6 6 2 d
arrange(data,x3)
##
    x1 x2 x3
## 1 5 1 a
## 2 2 2 d
## 3 6
        2 d
## 4 4 3 e
           f
## 5
     1
        1
## 6 3
        2
           j
filter(data,x2==2)
##
    x1 x2 x3
## 1
    2 2 d
        2
## 2 3
           j
## 3 6 2 d
```

```
mutate(data, x4=x1+x2)
     x1 x2 x3 x4
##
## 1 1 1 f
## 2 2 2 d 4
## 3 3 2
           j
              5
              7
## 4 4 3 e
## 5 5 1 a 6
## 6 6 2 d 8
getwd()
## [1] "D:/SEM5/LAB/CSE3505/LAB_30th_Sept"
setwd("D:\\SEM5\\LAB\\CSE3505\\LAB_30th_Sept")
getwd()
## [1] "D:/SEM5/LAB/CSE3505/LAB_30th_Sept"
data1=read.csv("D:\\SEM5\\LAB\\CSE3505\\LAB_30th_Sept\\Datasample.txt",header
=FALSE, sep=" ")
data1
##
      V1 V2 V3
## 1 100 A a
## 2 200 B b
## 3 300 C c
## 4 400
         D d
## 5 500
         E e
## 6 600 F f
data2=read.csv("D:\\SEM5\\LAB\\CSE3505\\LAB_30th_Sept\\events.csv")
data2
##
     student_id student_name event1 event2 event3 event4 sum
## 1
             1
                    Preyash
                                10
                                     10.0
                                              10
                                                    9.0 39
## 2
             2
                     Spidey
                                 8
                                      9.0
                                               9
                                                   10.0 36
## 3
             3
                                 9
                                      7.0
                                               9
                                                    4.0
                                                         29
                      Lynda
                                                    7.0
## 4
             4
                      Disha
                                 6
                                      8.0
                                               8
                                                         29
## 5
             5
                    Arshiya
                                 7
                                      8.0
                                               9
                                                    8.0
                                                         32
                                               9
## 6
                                      8.4
                                                    7.6
x=c(1,3,4,5,10)
y=c(2,4,6,8,10)
z=c(10,12,14,16,18)
data3=cbind(x,y,z)
data3
##
        x y z
## [1,] 1 2 10
## [2,]
        3 4 12
## [3,] 4 6 14
```

```
## [4,] 5 8 16
## [5,] 10 10 18
write.csv(data3,file="D:\\SEM5\\LAB\\CSE3505\\LAB_30th_Sept\\practice.csv",ro
w.names=FALSE)
df=data.frame("name"=c("a","b","c"),"language"=c("r","p","j"),age=c(22,25,28)
)
df
##
     name language age
## 1
        а
                     22
                  r
## 2
        b
                     25
                  р
## 3
        C
                  j
                     28
write.table(df,file="D:\\SEM5\\LAB\\CSE3505\\LAB 30th Sept\\p text.txt",sep="
\t",row.names=TRUE,col.names=NA)
data(mtcars)
cars=mtcars
mtcars
                         mpg cyl
##
                                   disp
                                        hp drat
                                                    wt
                                                        qsec vs am gear carb
## Mazda RX4
                        21.0
                               6 160.0 110 3.90 2.620 16.46
                                                                  1
## Mazda RX4 Wag
                        21.0
                               6 160.0 110 3.90 2.875 17.02
                                                                  1
                                                                             4
                        22.8
## Datsun 710
                               4 108.0
                                        93 3.85 2.320 18.61
                                                                  1
                                                                             1
                                                               1
## Hornet 4 Drive
                        21.4
                               6 258.0 110 3.08 3.215 19.44
                                                               1
                                                                        3
                                                                             1
## Hornet Sportabout
                        18.7
                               8 360.0 175 3.15 3.440 17.02
                                                               0
                                                                             2
## Valiant
                        18.1
                               6 225.0 105 2.76 3.460 20.22
                                                               1
                                                                             1
## Duster 360
                        14.3
                               8 360.0 245 3.21 3.570 15.84
                                                                             4
                                                                             2
## Merc 240D
                        24.4
                               4 146.7
                                         62 3.69 3.190 20.00
                                                               1
                                                                             2
                               4 140.8
                                         95 3.92 3.150 22.90
## Merc 230
                        22.8
                                                               1
## Merc 280
                        19.2
                               6 167.6 123 3.92 3.440 18.30
                                                                             4
                                                               1
                                                                  0
                                                                             4
## Merc 280C
                        17.8
                               6 167.6 123 3.92 3.440 18.90
                                                               1
                                                                  0
                                                                        4
## Merc 450SE
                        16.4
                               8 275.8 180 3.07 4.070 17.40
                                                               0
                                                                        3
                                                                             3
## Merc 450SL
                        17.3
                               8 275.8 180 3.07 3.730 17.60
                                                                  0
                                                                        3
                                                                             3
                               8 275.8 180 3.07 3.780 18.00
                                                                             3
## Merc 450SLC
                        15.2
                                                               0
                                                                        3
## Cadillac Fleetwood
                        10.4
                               8 472.0 205 2.93 5.250 17.98
                                                               0
                                                                        3
                                                                             4
## Lincoln Continental 10.4
                               8 460.0 215 3.00 5.424 17.82
                                                               0
                                                                             4
## Chrysler Imperial
                        14.7
                               8 440.0 230 3.23 5.345 17.42
                                                               0
                                                                  0
                                                                        3
                                                                             4
                                         66 4.08 2.200 19.47
                                                               1
                                                                  1
                                                                             1
## Fiat 128
                        32.4
                                  78.7
                                         52 4.93 1.615 18.52
## Honda Civic
                        30.4
                                  75.7
                                                                  1
                                                                             2
                                                               1
## Toyota Corolla
                        33.9
                               4
                                  71.1
                                         65 4.22 1.835 19.90
                                                               1
                                                                  1
                                                                        4
                                                                             1
## Toyota Corona
                        21.5
                               4 120.1
                                        97 3.70 2.465 20.01
                                                               1
                                                                        3
                                                                             1
## Dodge Challenger
                        15.5
                               8 318.0 150 2.76 3.520 16.87
                                                               0
                                                                  0
                                                                        3
                                                                             2
## AMC Javelin
                        15.2
                               8 304.0 150 3.15 3.435 17.30
                                                                        3
                                                                             2
                                                                        3
## Camaro Z28
                        13.3
                               8 350.0 245 3.73 3.840 15.41
                                                                             4
                                                                             2
## Pontiac Firebird
                        19.2
                               8 400.0 175 3.08 3.845 17.05
                                                                        3
## Fiat X1-9
                        27.3
                                  79.0
                                         66 4.08 1.935 18.90
                                                                  1
                                                                             1
                                                               1
## Porsche 914-2
                               4 120.3
                                        91 4.43 2.140 16.70
                                                                  1
                                                                        5
                                                                             2
                        26.0
                                   95.1 113 3.77 1.513 16.90
                                                                        5
                                                                             2
## Lotus Europa
                        30.4
                                                               1
                                                                  1
## Ford Pantera L
                        15.8
                               8 351.0 264 4.22 3.170 14.50
```

```
6 145.0 175 3.62 2.770 15.50 0
## Ferrari Dino
                       19.7
## Maserati Bora
                       15.0
                             8 301.0 335 3.54 3.570 14.60
                                                                    5
                                                                         8
                                                              1
                             4 121.0 109 4.11 2.780 18.60
                                                                         2
## Volvo 142E
                       21.4
tail(mtcars)
                  mpg cyl disp hp drat
##
                                            wt qsec vs am gear carb
                        4 120.3 91 4.43 2.140 16.7
## Porsche 914-2
                 26.0
## Lotus Europa
                  30.4
                        4 95.1 113 3.77 1.513 16.9
                                                     1
                                                              5
                                                                   2
                        8 351.0 264 4.22 3.170 14.5
## Ford Pantera L 15.8
                                                              5
                                                                  4
## Ferrari Dino
                 19.7
                        6 145.0 175 3.62 2.770 15.5
                                                        1
                                                              5
                                                                  6
                        8 301.0 335 3.54 3.570 14.6 0
                                                              5
## Maserati Bora
                 15.0
                                                                  8
## Volvo 142E
                  21.4
                        4 121.0 109 4.11 2.780 18.6 1
str(mtcars)
                   32 obs. of 11 variables:
## 'data.frame':
   $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
  $ cyl : num 6646868446 ...
                160 160 108 258 360 ...
##
  $ disp: num
  $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
                3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##
  $ drat: num
  $ wt : num
               2.62 2.88 2.32 3.21 3.44 ...
  $ qsec: num
                16.5 17 18.6 19.4 17 ...
##
  $ vs
         : num 0011010111...
##
##
  $ am : num
                1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
names(mtcars)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt"
                                                 "qsec" "vs"
                                                                "am"
                                                                       "gear"
## [11] "carb"
rownames(mtcars)
  [1] "Mazda RX4"
                              "Mazda RX4 Wag"
                                                    "Datsun 710"
                                                    "Valiant"
##
  [4] "Hornet 4 Drive"
                              "Hornet Sportabout"
  [7] "Duster 360"
                              "Merc 240D"
                                                    "Merc 230"
## [10] "Merc 280"
                              "Merc 280C"
                                                    "Merc 450SE"
                                                    "Cadillac Fleetwood"
## [13] "Merc 450SL"
                              "Merc 450SLC"
## [16] "Lincoln Continental" "Chrysler Imperial"
                                                    "Fiat 128"
## [19] "Honda Civic"
                              "Toyota Corolla"
                                                    "Tovota Corona"
## [22] "Dodge Challenger"
                                                    "Camaro Z28"
                              "AMC Javelin"
## [25] "Pontiac Firebird"
                              "Fiat X1-9"
                                                    "Porsche 914-2"
                                                    "Ferrari Dino"
                              "Ford Pantera L"
## [28] "Lotus Europa"
## [31] "Maserati Bora"
                              "Volvo 142E"
dim(mtcars)
## [1] 32 11
```

```
sub1=cbind(mtcars$mpg,mtcars$cyl)
sub2=mtcars[4:8]
sub2
##
                         hp drat
                                    wt qsec vs
## Mazda RX4
                        110 3.90 2.620 16.46
## Mazda RX4 Wag
                        110 3.90 2.875 17.02
## Datsun 710
                        93 3.85 2.320 18.61
## Hornet 4 Drive
                       110 3.08 3.215 19.44
                       175 3.15 3.440 17.02
## Hornet Sportabout
                       105 2.76 3.460 20.22
## Valiant
## Duster 360
                        245 3.21 3.570 15.84
                                              a
## Merc 240D
                         62 3.69 3.190 20.00
                                              1
## Merc 230
                        95 3.92 3.150 22.90
                                              1
## Merc 280
                       123 3.92 3.440 18.30
## Merc 280C
                       123 3.92 3.440 18.90
## Merc 450SE
                        180 3.07 4.070 17.40
                        180 3.07 3.730 17.60
## Merc 450SL
## Merc 450SLC
                        180 3.07 3.780 18.00
                                              0
## Cadillac Fleetwood
                       205 2.93 5.250 17.98
## Lincoln Continental 215 3.00 5.424 17.82
                                              0
## Chrysler Imperial
                       230 3.23 5.345 17.42
                                              0
## Fiat 128
                         66 4.08 2.200 19.47
                                               1
## Honda Civic
                         52 4.93 1.615 18.52
## Toyota Corolla
                        65 4.22 1.835 19.90
                                              1
## Toyota Corona
                        97 3.70 2.465 20.01
## Dodge Challenger
                       150 2.76 3.520 16.87
## AMC Javelin
                       150 3.15 3.435 17.30
                                              0
## Camaro Z28
                        245 3.73 3.840 15.41
## Pontiac Firebird
                       175 3.08 3.845 17.05
                                              0
                         66 4.08 1.935 18.90
## Fiat X1-9
                                              1
## Porsche 914-2
                         91 4.43 2.140 16.70
## Lotus Europa
                        113 3.77 1.513 16.90
## Ford Pantera L
                        264 4.22 3.170 14.50
## Ferrari Dino
                       175 3.62 2.770 15.50
## Maserati Bora
                       335 3.54 3.570 14.60
                                              0
## Volvo 142E
                       109 4.11 2.780 18.60
sub3=mtcars[,c(2,6,8)]
sub3
##
                        cyl
                               wt vs
## Mazda RX4
                          6 2.620
                                   0
## Mazda RX4 Wag
                          6 2.875
                                   0
## Datsun 710
                          4 2.320
                                   1
## Hornet 4 Drive
                          6 3.215
                                   1
## Hornet Sportabout
                          8 3.440
                                   0
## Valiant
                          6 3.460
                                   1
## Duster 360
                          8 3.570
                                   0
## Merc 240D
                          4 3.190
                                   1
```

```
## Merc 230
                          4 3.150
                                    1
## Merc 280
                          6 3.440
                                    1
## Merc 280C
                          6 3.440
                                    1
## Merc 450SE
                          8 4.070
                                    0
## Merc 450SL
                          8 3.730
                                    0
## Merc 450SLC
                          8 3.780
                                    0
## Cadillac Fleetwood
                          8 5.250
                                    0
## Lincoln Continental
                          8 5.424
                                    0
## Chrysler Imperial
                          8 5.345
                          4 2.200
## Fiat 128
                                    1
## Honda Civic
                          4 1.615
                                    1
## Toyota Corolla
                          4 1.835
                                    1
## Toyota Corona
                          4 2.465
                                    1
## Dodge Challenger
                          8 3.520
                                    0
## AMC Javelin
                          8 3.435
                                    0
## Camaro Z28
                          8 3.840
                                    0
## Pontiac Firebird
                          8 3.845
                                    0
## Fiat X1-9
                          4 1.935
                                    1
## Porsche 914-2
                          4 2.140
                                    0
## Lotus Europa
                          4 1.513
                                    1
## Ford Pantera L
                          8 3.170
                                    0
## Ferrari Dino
                          6 2.770
                                    0
## Maserati Bora
                          8 3.570
                                    0
## Volvo 142E
                          4 2.780
sub4=mtcars[c("mpg","cyl")]
sub4
##
                         mpg cyl
## Mazda RX4
                        21.0
                                6
## Mazda RX4 Wag
                        21.0
                                6
## Datsun 710
                        22.8
                                4
## Hornet 4 Drive
                        21.4
                                6
## Hornet Sportabout
                        18.7
                                8
## Valiant
                        18.1
                                6
## Duster 360
                        14.3
                                8
## Merc 240D
                        24.4
                                4
## Merc 230
                                4
                        22.8
## Merc 280
                        19.2
                                6
## Merc 280C
                        17.8
                                6
## Merc 450SE
                        16.4
                                8
## Merc 450SL
                        17.3
                                8
## Merc 450SLC
                        15.2
                                8
## Cadillac Fleetwood
                        10.4
                                8
## Lincoln Continental 10.4
                                8
## Chrysler Imperial
                        14.7
                                8
## Fiat 128
                                4
                        32.4
## Honda Civic
                        30.4
                                4
## Toyota Corolla
                        33.9
                                4
## Toyota Corona
                        21.5
```

```
## Dodge Challenger
                               8
                        15.5
## AMC Javelin
                               8
                        15.2
## Camaro Z28
                        13.3
                               8
## Pontiac Firebird
                        19.2
                               8
## Fiat X1-9
                        27.3
                               4
## Porsche 914-2
                        26.0
                               4
## Lotus Europa
                        30.4
## Ford Pantera L
                        15.8
## Ferrari Dino
                        19.7
## Maserati Bora
                        15.0
                               8
## Volvo 142E
                        21.4
sub5=subset(mtcars,mpg>18)
sub5
##
                       mpg cyl disp hp drat
                                                  wt qsec vs am gear carb
## Mazda RX4
                      21.0
                             6 160.0 110 3.90 2.620 16.46
                                                             0
                                                                1
## Mazda RX4 Wag
                      21.0
                             6 160.0 110 3.90 2.875 17.02
                                                             0
                                                                1
                                                                           4
## Datsun 710
                      22.8
                             4 108.0 93 3.85 2.320 18.61
                                                                           1
                                                                1
                                                                     4
                                                             1
## Hornet 4 Drive
                      21.4
                             6 258.0 110 3.08 3.215 19.44
                                                             1
                                                                0
                                                                     3
                                                                           1
## Hornet Sportabout 18.7
                             8 360.0 175 3.15 3.440 17.02
                                                             0
                                                                0
                                                                     3
                                                                           2
## Valiant
                             6 225.0 105 2.76 3.460 20.22
                                                             1
                                                                     3
                      18.1
                                                                           1
## Merc 240D
                      24.4
                             4 146.7
                                       62 3.69 3.190 20.00
                                                                     4
                                                                           2
## Merc 230
                                      95 3.92 3.150 22.90
                                                                           2
                      22.8
                             4 140.8
                                                             1
                                                                     4
## Merc 280
                      19.2
                             6 167.6 123 3.92 3.440 18.30
                                                             1
                                                                     4
                                                                           4
## Fiat 128
                      32.4
                             4
                                78.7
                                      66 4.08 2.200 19.47
                                                                     4
                                                                           1
                                                             1
                                                                1
                             4
                                      52 4.93 1.615 18.52
                                                                     4
## Honda Civic
                      30.4
                                75.7
                                                             1
                                                                1
                                                                           2
## Toyota Corolla
                      33.9
                                71.1
                                      65 4.22 1.835 19.90
                                                                     4
                                                                           1
                                                             1
                                                                1
## Toyota Corona
                      21.5
                             4 120.1
                                      97 3.70 2.465 20.01
                                                             1
                                                                0
                                                                     3
                                                                           1
## Pontiac Firebird
                      19.2
                             8 400.0 175 3.08 3.845 17.05
                                                                     3
                                                                           2
                                                                0
                      27.3
## Fiat X1-9
                               79.0
                                      66 4.08 1.935 18.90
                                                             1
                                                                1
                                                                     4
                                                                           1
## Porsche 914-2
                      26.0
                             4 120.3 91 4.43 2.140 16.70
                                                                1
                                                                     5
                                                                           2
                                                                     5
                                                                           2
## Lotus Europa
                      30.4
                             4 95.1 113 3.77 1.513 16.90
                                                             1
                                                                1
## Ferrari Dino
                      19.7
                             6 145.0 175 3.62 2.770 15.50
                                                             0
                                                                1
                                                                     5
                                                                           6
## Volvo 142E
                      21.4
                             4 121.0 109 4.11 2.780 18.60
                                                             1
                                                                     4
                                                                           2
                                                                1
#table() Function
df=data.frame("Name"=c("abc","cde","def"),"Gender"=c("Male","Female","Male"))
df
##
     Name Gender
## 1
      abc
            Male
## 2
      cde Female
## 3 def
            Male
table(df)
        Gender
##
## Name Female Male
##
     abc
         0
```

```
##
    cde
    def
             0
##
x=c(1,2,NA,10,3)
is.na(x)
## [1] FALSE FALSE TRUE FALSE FALSE
is.nan(x)
## [1] FALSE FALSE FALSE FALSE
x=c(1,2,NaN,NA,4)
is.na(x)
## [1] FALSE FALSE TRUE TRUE FALSE
is.nan(x)
## [1] FALSE FALSE TRUE FALSE FALSE
#removing missing values
x=c(1,2,NA,4,NA,5)
bad=is.na(x)
x[!bad]
## [1] 1 2 4 5
Х
## [1] 1 2 NA 4 NA 5
data=data.frame(x1=c(7,2,1,NA,9),x2=c(1,3,1,9,NA),x3=c(NA,8,8,NA,5))
data
    x1 x2 x3
##
## 1 7 1 NA
## 2 2 3 8
## 3 1 1 8
## 4 NA 9 NA
## 5 9 NA 5
complete.cases(data)
## [1] FALSE TRUE TRUE FALSE FALSE
data_complete=data[complete.cases(data),]
data_complete
##
    x1 x2 x3
## 2 2 3 8
## 3 1 1 8
```

```
x=c(1,2,NA,4,NA,5)
y=c("a","b",NA,"d",NA,"f")
good=complete.cases(x,y)
good
## [1]
        TRUE TRUE FALSE TRUE FALSE TRUE
x[good]
## [1] 1 2 4 5
y[good]
## [1] "a" "b" "d" "f"
#airquality dataset
airquality[1:6,]
     Ozone Solar.R Wind Temp Month Day
##
## 1
        41
               190
                    7.4
                           67
                                  5
                                       1
## 2
        36
               118
                    8.0
                           72
                                  5
                                       2
## 3
               149 12.6
                                  5
                                       3
        12
                           74
## 4
        18
               313 11.5
                           62
                                  5
                                       4
## 5
        NA
                NA 14.3
                           56
                                  5
                                       5
## 6
        28
                NA 14.9
                           66
                                  5
                                       6
summary(airquality)
##
        0zone
                         Solar.R
                                            Wind
                                                              Temp
##
   Min. : 1.00
                      Min.
                             : 7.0
                                      Min.
                                              : 1.700
                                                         Min.
                                                                :56.00
##
    1st Qu.: 18.00
                      1st Qu.:115.8
                                       1st Qu.: 7.400
                                                         1st Qu.:72.00
   Median : 31.50
                      Median :205.0
                                      Median : 9.700
                                                         Median :79.00
##
##
           : 42.13
                      Mean
                             :185.9
                                       Mean
                                              : 9.958
                                                         Mean
                                                                :77.88
    Mean
    3rd Qu.: 63.25
                                       3rd Qu.:11.500
##
                      3rd Qu.:258.8
                                                         3rd Qu.:85.00
##
    Max.
           :168.00
                      Max.
                             :334.0
                                      Max.
                                              :20.700
                                                         Max.
                                                                :97.00
##
    NA's
           :37
                      NA's
                             :7
##
        Month
                          Day
  Min.
           :5.000
##
                    Min.
                           : 1.0
                    1st Qu.: 8.0
##
    1st Qu.:6.000
##
    Median :7.000
                     Median :16.0
##
   Mean
           :6.993
                            :15.8
                     Mean
##
    3rd Qu.:8.000
                     3rd Qu.:23.0
##
    Max.
           :9.000
                     Max.
                            :31.0
##
mean(airquality$0zone,na.rm=TRUE)
## [1] 42.12931
good=complete.cases(airquality)
airquality[good,][1:6,]
```

```
##
     Ozone Solar.R Wind Temp Month Day
## 1
        41
               190 7.4
                          67
                                  5
                                      1
               118 8.0
                                  5
                                      2
## 2
        36
                          72
## 3
        12
               149 12.6
                          74
                                  5
                                      3
## 4
        18
                                  5
               313 11.5
                          62
                                      4
## 7
        23
               299 8.6
                                  5
                                      7
                          65
## 8
        19
                99 13.8
                          59
                                      8
#na.omit
x=c(1,24,NA,6,NA,9)
x=na.omit(x)
Х
## [1] 1 24 6 9
## attr(,"na.action")
## [1] 3 5
## attr(,"class")
## [1] "omit"
#data imputation
data=data.frame(marks1=c(NA,22,NA,49,75),marks2=c(81,14,NA,61,12),marks3=c(78
.5,19.325,NA,28,48.002))
data
##
     marks1 marks2 marks3
## 1
         NA
                81 78.500
         22
                14 19.325
## 2
## 3
         NA
                NΑ
                       NA
## 4
         49
                61 28.000
## 5
         75
                12 48.002
#impute manually(method 1)
data$marks1[is.na(data$marks1)]=mean(data$marks1,na.rm=TRUE)
data
##
       marks1 marks2 marks3
## 1 48.66667
                  81 78.500
## 2 22.00000
                  14 19.325
## 3 48.66667
                  NA
                         NA
                  61 28.000
## 4 49.00000
## 5 75.00000
                  12 48.002
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.1.3
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
```

```
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.1.3
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
       src, summarize
##
## The following objects are masked from 'package:base':
##
##
       format.pval, units
#using Hmisc
impute(data$marks2,median)
##
             2
   81.0 14.0 37.5* 61.0 12.0
##
#impute with a specific constant value
impute(data$marks3,2000)
##
           1
##
      78.500
                19.325 2000.000*
                                    28.000
                                              48.002
#impute the entire dataset
all column median=apply(data,2,median,na.rm=TRUE)
#imputing median value with NA
for(i in colnames(data))
  data[,i][is.na(data[,i])]=all_column_median[i]
data
##
       marks1 marks2 marks3
## 1 48.66667
                81.0 78.500
## 2 22.00000
                14.0 19.325
## 3 48.66667
               37.5 38.001
## 4 49.00000
                61.0 28.000
## 5 75.00000
               12.0 48.002
```

Module-04

```
#Module 4
library(MASS)
## Warning: package 'MASS' was built under R version 4.1.3
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
        select
painters
                     Composition Drawing Colour Expression School
##
## Da Udine
                                10
                                          8
                                                 16
                                                              3
## Da Vinci
                                15
                                         16
                                                  4
                                                             14
                                                                      Α
## Del Piombo
                                 8
                                         13
                                                 16
                                                              7
                                                                      Α
## Del Sarto
                                                  9
                                                              8
                                12
                                         16
                                                                      Α
## Fr. Penni
                                                  8
                                                              0
                                                                      Α
                                 0
                                         15
## Guilio Romano
                                15
                                         16
                                                  4
                                                             14
                                                                      Α
                                                  4
## Michelangelo
                                         17
                                                              8
                                                                      Α
                                 8
## Perino del Vaga
                               15
                                         16
                                                  7
                                                              6
                                                                      Α
## Perugino
                                 4
                                         12
                                                 10
                                                              4
                                                                      Α
## Raphael
                               17
                                         18
                                                 12
                                                             18
                                                                      Α
## F. Zucarro
                                10
                                         13
                                                  8
                                                              8
                                                                      В
                                                  8
## Fr. Salviata
                               13
                                         15
                                                              8
                                                                      В
## Parmigiano
                                         15
                                                  6
                                                              6
                                                                      В
                                10
## Primaticcio
                                                  7
                                                                      В
                               15
                                         14
                                                             10
## T. Zucarro
                               13
                                         14
                                                 10
                                                              9
                                                                      В
                               12
                                         15
                                                  5
                                                              8
                                                                      В
## Volterra
                                                             10
                                                                      C
## Barocci
                                14
                                         15
                                                  6
                                                                      C
## Cortona
                               16
                                         14
                                                 12
                                                              6
## Josepin
                               10
                                         10
                                                  6
                                                              2
                                                                      C
                                                  9
                                                                      C
## L. Jordaens
                                13
                                         12
                                                              6
                                                                      C
                                                  0
## Testa
                                11
                                         15
                                                              6
                                         15
                                                             13
                                                                      C
## Vanius
                                15
                                                 12
                                                              0
## Bassano
                                 6
                                          8
                                                 17
                                                                      D
## Bellini
                                 4
                                          6
                                                 14
                                                              0
                                                                      D
## Giorgione
                                 8
                                          9
                                                 18
                                                              4
                                                                      D
## Murillo
                                 6
                                          8
                                                 15
                                                              4
                                                                      D
## Palma Giovane
                               12
                                          9
                                                 14
                                                              6
                                                                      D
## Palma Vecchio
                                 5
                                          6
                                                 16
                                                              0
                                                                      D
## Pordenone
                                 8
                                         14
                                                 17
                                                              5
                                                                      D
## Tintoretto
                               15
                                         14
                                                              4
                                                                      D
                                                 16
## Titian
                                12
                                         15
                                                 18
                                                              6
                                                                      D
## Veronese
                                15
                                                              3
                                                                      D
                                         10
                                                 16
## Albani
                                14
                                         14
                                                 10
                                                              6
                                                                      Ε
## Caravaggio
                                 6
                                          6
                                                 16
```

```
## Corregio
                              13
                                       13
                                              15
                                                          12
                                               9
                                                                   Ε
## Domenichino
                              15
                                       17
                                                          17
                                                           4
                                                                   Е
## Guercino
                              18
                                       10
                                              10
                                                           5
## Lanfranco
                              14
                                       13
                                              10
                                                                   Ε
## The Carraci
                              15
                                              13
                                                          13
                                                                   Ε
                                       17
## Durer
                               8
                                              10
                                                           8
                                                                   F
                                       10
                                                                   F
## Holbein
                               9
                                       10
                                              16
                                                          13
                               4
                                                                   F
## Pourbus
                                       15
                                               6
                                                           6
                                                                   F
## Van Leyden
                               8
                                               6
                                                           4
                                        6
## Diepenbeck
                              11
                                       10
                                              14
                                                           6
                                                                   G
## J. Jordaens
                                        8
                                                           6
                                                                   G
                              10
                                              16
## Otho Venius
                              13
                                       14
                                              10
                                                          10
                                                                   G
## Rembrandt
                              15
                                        6
                                              17
                                                          12
                                                                   G
## Rubens
                              18
                                       13
                                              17
                                                          17
                                                                   G
## Teniers
                              15
                                       12
                                              13
                                                           6
                                                                   G
                                                                   G
## Van Dyck
                              15
                                       10
                                              17
                                                          13
## Bourdon
                              10
                                        8
                                               8
                                                           4
                                                                   Н
                                               8
## Le Brun
                                       16
                                                          16
                                                                   Н
                              16
## Le Suer
                              15
                                       15
                                               4
                                                          15
                                                                   Н
## Poussin
                              15
                                       17
                                               6
                                                          15
                                                                   Н
painters$School
## [1] A A A A A A A A A B B B B B C C C C C D D D D D D D D D E E E
EEE
## [39] E F F F F G G G G G G H H H H
## Levels: A B C D E F G H
help(painters)
## starting httpd help server ... done
summary(painters)
                                           Colour
##
     Composition
                        Drawing
                                                          Expression
School
## Min.
           : 0.00
                     Min.
                             : 6.00
                                      Min.
                                              : 0.00
                                                        Min.
                                                                : 0.000
                                                                          Α
:10
##
    1st Qu.: 8.25
                     1st Qu.:10.00
                                       1st Qu.: 7.25
                                                        1st Qu.: 4.000
                                                                          D
:10
##
   Median :12.50
                     Median :13.50
                                      Median :10.00
                                                        Median : 6.000
                                                                           Ε
7
##
            :11.56
                             :12.46
                                      Mean
                                              :10.94
                                                                : 7.667
   Mean
                     Mean
                                                        Mean
                                                                          G
7
                     3rd Qu.:15.00
                                       3rd Qu.:16.00
##
    3rd Qu.:15.00
                                                        3rd Qu.:11.500
6
##
                                                                :18.000
                                                                          C
   Max.
           :18.00
                     Max.
                             :18.00
                                      Max.
                                              :18.00
                                                        Max.
6
##
                                                                           (Other):
```

```
#frequency distribution of qualitative data
school=painters$School
school.freq=table(school)
school.freq
## school
## A B C D E
                 F G H
## 10 6 6 10 7 4 7 4
cbind(school.freq)
##
     school.freq
## A
## B
               6
               6
## C
## D
              10
## E
               7
## F
               4
## G
               7
## H
#relative frequency distribution of the painter schools
school.relfreq=school.freq/nrow(painters)
school.relfreq
## school
                                                        E
##
                       В
                                  C
                                             D
G
## 0.18518519 0.11111111 0.11111111 0.18518519 0.12962963 0.07407407
0.12962963
##
## 0.07407407
#enhanced
old=options(digits=1)
school.relfreq
## school
               C
                     D
                          Ε
## 0.19 0.11 0.11 0.19 0.13 0.07 0.13 0.07
options(old)
cbind(school.relfreq)
     school.relfreq
##
## A
         0.18518519
## B
         0.1111111
## C
         0.1111111
## D
         0.18518519
## E
         0.12962963
## F 0.07407407
```

```
## G
          0.12962963
## H
          0.07407407
options(old)
#quantitative data
faithful
##
       eruptions waiting
## 1
            3.600
                        79
## 2
            1.800
                        54
                        74
## 3
            3.333
## 4
            2.283
                        62
## 5
                        85
            4.533
## 6
                        55
            2.883
## 7
            4.700
                        88
## 8
            3.600
                        85
            1.950
## 9
                        51
## 10
            4.350
                        85
## 11
            1.833
                        54
## 12
            3.917
                        84
## 13
                        78
            4.200
## 14
            1.750
                        47
## 15
            4.700
                        83
## 16
            2.167
                        52
## 17
            1.750
                        62
## 18
            4.800
                        84
## 19
            1.600
                        52
## 20
            4.250
                        79
## 21
                        51
            1.800
## 22
                        47
            1.750
## 23
                        78
            3.450
## 24
                        69
            3.067
## 25
            4.533
                        74
## 26
                        83
            3.600
## 27
            1.967
                        55
## 28
            4.083
                        76
## 29
            3.850
                        78
                        79
## 30
            4.433
## 31
                        73
            4.300
## 32
            4.467
                        77
## 33
            3.367
                        66
## 34
            4.033
                        80
## 35
            3.833
                        74
## 36
            2.017
                        52
## 37
                        48
            1.867
## 38
            4.833
                        80
## 39
            1.833
                        59
## 40
            4.783
                        90
## 41
            4.350
                        80
```

## 42				
## 44	##	42	1.883	58
## 45	##	43	4.567	84
## 46	##	44	1.750	58
## 47	##	45	4.533	73
## 48	##	46	3.317	83
## 49	##	47	3.833	64
## 49	##	48		53
## 50	##	49		82
## 51	##	50		59
## 52				
## 53	##	52		90
## 54	##	53		
## 55				
## 56				
## 57				
## 58				
## 59	##	58		
## 60				
## 61				
## 62	##	61		
## 63				
## 64				
## 65				
## 66				
## 67				
## 68				
## 69				
## 70				
## 71				
## 72				
## 73				
## 74				
## 75				
## 76 5.067 76 ## 77 2.017 60 ## 78 4.567 78 ## 79 3.883 76 ## 80 3.600 83 ## 81 4.133 75 ## 82 4.333 82				
## 77 2.017 60 ## 78 4.567 78 ## 79 3.883 76 ## 80 3.600 83 ## 81 4.133 75 ## 82 4.333 82				
## 78				
## 79 3.883 76 ## 80 3.600 83 ## 81 4.133 75 ## 82 4.333 82				
## 80 3.600 83 ## 81 4.133 75 ## 82 4.333 82				
## 81 4.133 75 ## 82 4.333 82				
## 82 4.333 82				
## 83 4.100 70			4.100	70
## 84 2.633 65	##	84		65
## 85 4 . 067 73				
## 86 4 . 933 88				
## 87 3.950 76				
## 88 4.517 80				
## 89 2.167 48				
				86
## 90 4.000 86			2.200	60

##	92	4.333	90
##		1.867	50
##		4.817	78
##		1.833	63
##		4.300	72
##		4.667	84
##		3.750	75
##		1.867	51
	100	4.900	82
	101	2.483	62
	102	4.367	88
	103	2.100	49
	104	4.500	83
	105	4.050	81
	106	1.867	47
	107	4.700	84
	108	1.783	52
	109	4.850	86
	110	3.683	81
	111	4.733	75
	112	2.300	59
	113	4.900	89
	114	4.417	79
	115	1.700	59
	116	4.633	81
	117	2.317	50
	118	4.600	85
	119	1.817	59
	120	4.417	87
	121	2.617	53
	122	4.067	69
	123	4.250	77
	124	1.967	56
	125	4.600	88
	126	3.767	81
	127	1.917	45
	128	4.500	82
	129	2.267	55
	130	4.650	90
	131	1.867	45
	132	4.167	83
	133	2.800	56
	134	4.333	89
	135	1.833	46
	136	4.383	82
	137	1.883	51
	138	4.933	86
	139	2.033	53
	140	3.733	79
##	141	4.233	81

##	142	2.233	60
##	143	4.533	82
##	144	4.817	77
##	145	4.333	76
##	146	1.983	59
##	147	4.633	80
##	148	2.017	49
##	149	5.100	96
##	150	1.800	53
##	151	5.033	77
##	152	4.000	77
##	153	2.400	65
##	154	4.600	81
##	155	3.567	71
##	156	4.000	70
##	157	4.500	81
##	158	4.083	93
##	159	1.800	53
##	160	3.967	89
##	161	2.200	45
##	162	4.150	86
##	163	2.000	58
##	164	3.833	78
##	165	3.500	66
##	166	4.583	76
##	167	2.367	63
##	168	5.000	88
##	169	1.933	52
##	170	4.617	93
##	171	1.917	49
##	172	2.083	57
##	173	4.583	77
##	174	3.333	68
##	175	4.167	81
##	176	4.333	81
##	177	4.500	73
	178	2.417	50
	179	4.000	85
	180	4.167	74
	181	1.883	55
	182	4.583	77
	183	4.250	83
	184	3.767	83
	185	2.033	51
	186	4.433	78
	187	4.083	84
	188	1.833	46
	189	4.417	83
	190	2.183	55
##	191	4.800	81

##	192	1.833	57
	193	4.800	76
	194	4.100	84
	195	3.966	77
	196	4.233	81
	197	3.500	87
	198	4.366	77
	199	2.250	51
	200	4.667	78
	201	2.100	60
	202	4.350	82
	203	4.133	91
	204	1.867	53
	205	4.600	78
	206	1.783	46
	207	4.367	77
	208	3.850	84
	209	1.933	49
	210	4.500	83
	211	2.383	71
	212	4.700	80
	213	1.867	49
	214	3.833	75
	215	3.417	64
	216	4.233	76
	217	2.400	53
	218	4.800	94
	219	2.000	55
	220	4.150	76
	221	1.867	50
	222	4.267	82
	223	1.750	54
	224	4.483	75
	225	4.000	78
	226	4.117	79
	227	4.083	78
	228	4.267	78
	229	3.917	70
	230	4.550	79
	231	4.083	70
	232	2.417	54
	233	4.183	86
	234	2.217	50
	235	4.450	90
	236	1.883	54
	237	1.850	54
	238	4.283	77
	239	3.950	79
	240	2.333	64
##	241	4.150	75

```
## 242
            2.350
                        47
## 243
            4.933
                        86
## 244
            2.900
                        63
## 245
            4.583
                        85
## 246
                        82
            3.833
## 247
            2.083
                        57
## 248
            4.367
                        82
## 249
                        67
            2.133
## 250
            4.350
                        74
                        54
## 251
            2.200
## 252
            4.450
                        83
## 253
            3.567
                        73
## 254
                        73
            4.500
## 255
            4.150
                        88
## 256
            3.817
                        80
                        71
## 257
            3.917
## 258
            4.450
                        83
## 259
                        56
            2.000
## 260
            4.283
                        79
## 261
            4.767
                        78
                        84
## 262
            4.533
## 263
            1.850
                        58
## 264
            4.250
                        83
## 265
            1.983
                        43
## 266
            2.250
                        60
## 267
            4.750
                        75
## 268
                        81
            4.117
## 269
            2.150
                        46
## 270
            4.417
                        90
## 271
            1.817
                        46
## 272
            4.467
                        74
head(faithful)
##
     eruptions waiting
## 1
                      79
          3.600
## 2
          1.800
                      54
## 3
          3.333
                      74
## 4
          2.283
                      62
## 5
          4.533
                      85
## 6
                      55
          2.883
#range of eruption duration
duration=faithful$eruptions
range(duration)
## [1] 1.6 5.1
#break the range into non-overlapping sub-intervals
breaks=seq(1.5,5.5, by=0.5)
breaks
```

```
## [1] 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
#CUT METHOD
duration.cut=cut(duration,breaks,right=FALSE)
#frequency of eruptions in each sub-interval with table function
duration.freq=table(duration.cut)
#cumulative frequency
duration.cumfreq=cumsum(duration.freq)
duration.cumfreq
## [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5) [4.5,5) [5,5.5)
                        97
                               104
                                        134
                                                207
#mean
mean(duration)
## [1] 3.487783
#median
median(duration)
## [1] 4
#quartiles
quantile(duration)
##
        0%
               25%
                       50%
                                75%
                                       100%
## 1.60000 2.16275 4.00000 4.45425 5.10000
#percentile
quantile(duration,c(.32,.57,.98))
##
       32%
               57%
                       98%
## 2.39524 4.13300 4.93300
#range
max(duration)-min(duration)
## [1] 3.5
#interquartile range
IQR(duration)
## [1] 2.2915
#variance
var(duration)
## [1] 1.302728
#standard deviation
sd(duration)
```

```
## [1] 1.141371
library(e1071)
## Warning: package 'e1071' was built under R version 4.1.3
##
## Attaching package: 'e1071'
## The following object is masked from 'package:Hmisc':
##
##
       impute
#central moment
moment(duration, order=3, center=TRUE)
## [1] -0.6149059
#skewness
skewness(duration)
## [1] -0.4135498
#kurtosis
kurtosis(duration)
## [1] -1.511605
#visualisation
dat=airquality
plot(dat$0zone)
```


plot(dat\$Ozone,dat\$Wind)

#bar plot barplot(dat\$0zone,main='0zone levels',ylab='ozone value')

barplot(dat\$0zone,main='0zone levels',xlab='ozone value',horiz=TRUE)

Ozone levels

#histogram
hist(dat\$Solar.R)

Histogram of dat\$Solar.R

#boxplot boxplot(dat\$0zone)

boxplot(dat[,1:4],main='multiple box plot')

multiple box plot

#Lattice graphs
library(lattice)
densityplot(dat\$0zone)

splom(dat[c(1,3,4)])

Scatter Plot Matrix

```
#ggplot
library(ggplot2)
ggplot(data = mtcars,
mapping = aes(x=wt,y=mpg))+geom_point()
```



```
ggplot(iris,aes(x=Sepal.Length,y=Petal.Length,col=Species))+geom_point(color=
"blue")+geom_smooth(color="red")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


ggplot(mtcars,aes(x=gear))+geom_bar()

#histogram

ggplot(mtcars,aes(x=mpg))+geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#boxplot

ggplot(mtcars,aes(x=as.factor(cyl),y=mpg))+geom_boxplot()

