

AWS Start re: Start

Build and Access an RDS Server

WEEK 7

Overview

Amazon Relational Database Service (Amazon RDS) makes it easy to set up, operate, and scale a relational database in the cloud. It provides cost-efficient and resizable capacity while managing time-consuming database administration tasks, which allows you to focus on your applications and business.

Your Challenge

- Launch an Amazon RDS DB instance using either Amazon Aurora Provisioned DB or MySQL database engines.
- Connect (SSH) to the LinuxServer
- Install a MySQL client, and use it to connect to your db.
- Create a table RESTART with the following columns:
 - Student ID (Number),
 - Student Name,
 - Restart City,
 - Graduation Date (Date Time)
- Insert 10 sample rows into this table
- Select all rows from this table
- Create a table CLOUD_PRACTITIONER with the following columns:
 - Student ID (Number)
 - Certification Date (Date Time)
- Insert 5 sample rows into this table
- Select all rows from this table
- Perform an inner join between the 2 tables created above and display student ID, Student Name, Certification Date

Create a Security Group for the RDS DB Instance

Step 1: Access the VPC management console

Open the AWS Management Console, and select VPC.

Step 2: Create security group

Navigate to the **Security Groups** section, and select Create security group.

Create a Security Group for the RDS DB Instance

Step 3: Basic details

In the **Basic details** section, configure the DB Security Group using the following settings.

Step 4: Inbound rules

In the **Inbound rules** section, configure the DB Security Group to permit inbound traffic on port 3306 from any EC2 instance that is associated with the Web Security Group.

Create a DB Subnet Group

Step 1: Access the RDS database service

In the AWS Management Console, select RDS.

Step 2: Create DB subnet group

Navigate to the **Subnet groups** section, and select Create DB subnet group.

Create a DB Subnet Group

Step 3: Subnet group details

In the **Subnet group details** section, configure the DB Subnet Group using the following settings.

Step 4: Add subnets

In the Add subnets section, configure the following settings.

Launch an Amazon RDS DB instance

Step 1: Create database

Navigate to the Databases section, and select Create database.

Step 2: Engine options

In the **Engine options** section, for Engine type, choose MySQL, for Engine version, choose the latest version.

Launch an Amazon RDS DB instance

Step 3: Templates

In the **Templates** section, choose Free tier.

Step 4: Availability and durability

Notice that when you selected the Free tier template, the Single DB instance option was selected and locked as the default deployment option in the Availability and durability section.

Launch an Amazon RDS DB instance

Step 5: Settings

In the **Settings** section, configure the following parameters.

Step 6: Instance configuration

In the **Instance configuration** section, for DB instance class, configure the following settings.

Launch an Amazon RDS DB instance

Step 7: Storage

In the **Storage** section, for Storage type, select General Purpose SSD (gp2).

Step 8: Connectivity

In the Connectivity section, configure the following settings.

Launch an Amazon RDS DB instance

Step 9: Monitoring

In the **Monitoring** section, for Additional configuration, uncheck Enable Enhanced Monitoring.

Step 10: Review database creation

Verify the availability of the challenge-lab-db database and take note of its endpoint in the **Connectivity & Security** section.

Use SSH to connect to the Linux Server

Initial Preparations

In the AWS Management Console, select the LinuxServer EC2 instance and make note of the **Public IPv4 address**.

Download the **private key file** labsuser.pem. Change to the Downloads directory and modify the permissions on the key to be read-only (r-----).

Connect to the Linux Server using SSH

Establish a connection to the LinuxServer EC2 instance using the ssh command, the key and the instance's public IPv4 address.

Configure the EC2 instance to connect to the DB

Step 1: Install the DB client

Run the command sudo yum install mariadb –y to install the MariaDB client

```
[ec2-user@ip-10-0-2-249 ~]$ sudo yum install mariadb -y
Loaded plugins: extras_suggestions, langpacks, priorities, update-motd
amzn2-core
Resolving Dependencies
---> Running transaction check
---> Package mariadb.x86_64 1:5.5.68-1.amzn2.0.1 will be installed
--> Finished Dependency Resolution
```

Step 2: Connect to the database

After installing a MySQL client, run the following command to connect to the database.

```
[ec2-user@ip-10-0-2-249 ~]$ mysql -u admin --password='lab-password' -h challenge-lab-db.chosw0e4egpw.us-west-2.rds.amazonaws.com
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 27
Server version: 8.0.36 Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>
```


Interact With Your DB

Step 1: Create a database

CREATE the challenge_lab database and switch to it.

```
MySQL [(none)]> CREATE DATABASE challenge_lab;
Query OK, 1 row affected (0.00 sec)
MySQL [(none)]> USE challenge_lab;
Database changed
MySQL [challenge_lab]>
```

Step 2: Create the RESTART table

CREATE a table **RESTART** with the following columns: Student ID (Number), Student Name, Restart City, Graduation Date (Date Time).

```
MySQL [challenge_lab]> CREATE TABLE RESTART (
-> `Student ID` INT PRIMARY KEY,
-> `Student Name` VARCHAR(255),
-> `Restart City` VARCHAR(255),
-> `Graduation Date` DATETIME
-> );
Query OK, 0 rows affected (0.02 sec)

MySQL [challenge_lab]>
```


Interact With Your DB

Step 3: Insert sample rows

INSERT 10 sample rows into the RESTART table.

Step 4: Select all rows

SELECT all rows from the RESTART table.

```
MySQL [challenge_lab]> SELECT * FROM RESTART;
                                  Restart City | Graduation Date
 Student ID | Student Name
                                                   2023-05-15 10:00:00
2023-06-20 09:30:00
               John Doe
                                   New York
               Jane Smith
                                   Los Angeles
               Michael Johnson
                                  Chicago
                                                    2023-07-10 11:15:00
               Emily Davis
David Brown
                                                    2023-08-05 14:45:00
                                   San Francisco
                                                    2023-09-12 12:00:00
                                   Houston
               Jessica Wilson
                                                    2023-10-18 13:30:00
                                   Miami
               Matthew Miller
                                                    2023-11-25 08:45:00
                                   Dallas
               Olivia Anderson
                                                    2023-12-10 09:00:00
                                   Seattle
                Ethan Martinez
                                                    2024-01-05 10:30:00
                                   Atlanta
          10
              | Ava Taylor
                                   Denver
                                                    2024-02-20 11:45:00
10 rows in set (0.00 sec)
MySQL [challenge_lab]>
```


Interact With Your DB

Step 5: Create the CLOUD_PRACTITIONER table

CREATE a table CLOUD_PRACTITIONER with the following columns: Student ID (Number), Certification Date (Date Time).

```
MySQL [challenge_lab]> CREATE TABLE CLOUD_PRACTITIONER (
-> `Student ID` INT PRIMARY KEY,
-> `Certification Date` DATETIME
-> );
Query OK, 0 rows affected (0.02 sec)

MySQL [challenge_lab]>
```

Step 6: Insert sample rows

INSERT 5 sample rows into the CLOUD_PRACTITIONER table.

```
MySQL [challenge_lab]> INSERT INTO CLOUD_PRACTITIONER (`Student ID`, `Certification Date`) VALUES
-> (1, '2023-05-10 10:00:00'),
-> (2, '2023-06-15 09:30:00'),
-> (3, '2023-07-05 11:15:00'),
-> (4, '2023-07-31 14:45:00'),
-> (5, '2023-09-07 12:00:00');
Query OK, 5 rows affected (0.00 sec)
Records: 5 Duplicates: 0 Warnings: 0

MySQL [challenge_lab]>
```


Interact With Your DB

Step 7: Select all rows

SELECT all rows from the CLOUD PRACTITIONER table.

Step 8: Perform an inner join

Perform an INNER JOIN between the 2 tables created above and display Student ID, Student Name, Certification Date.

Amazon Relational Databases

Amazon Relational Databases offer scalable and reliable solutions for managing structured data, catering to diverse business needs.

Amazon RDS DB Instances

Amazon RDS DB Instances provide flexible configurations and high availability options, ensuring continuous access to databases.

Permitting connections to a DB instance

Permitting connections to a DB instance allows seamless communication between applications and databases, facilitating real-time data interactions.

DB Subnet Groups

DB Subnet Groups enable secure networking configurations, ensuring data privacy and compliance with regulatory requirements.

Interacting with a Database

Interacting with a database through applications or query tools enables data retrieval, updates, and analysis, empowering informed decision-making and efficient data management.

aws re/start

Cristhian Becerra

cristhian-becerra-espinoza

(C) +51 951 634 354

cristhianbecerra99@gmail.com

Lima, Peru

