Лабораторная работа №7

Эффективность рекламы

Хохлачева Яна Дмитриевна

Содержание

Цель работы	5
Выполнение лабораторной работы	6
Задание	
Код на Python	7
Графики	
Ответы на вопросы	12
Выводы	15

Список таблиц

Список иллюстраций

0.1	Первый случай	10
0.2	Второй случай	11
0.3	Третий случай	12
0.4	График решения уравнения модели Мальтуса	13
0.5	График логистической кривой	14

Цель работы

- 1. Рассмотреть модель эффективности рекламы в разных случаях.
- 2. Построить график распространения рекламы о салоне красоты.
- 3. Сравнить решения, учитывающее вклад только платной рекламы и учитывающее вклад только сарафанного радио.

Выполнение лабораторной работы

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{\partial n}{\partial t}$ — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить;

t — время, прошедшее с начала рекламной кампании;

n(t) — число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем. Это описывается следующим образом:

$$\alpha_1(t)(N-n(t))$$

N- общее число потенциальных платежеспособных покупателей

 $\alpha_1(t) > 0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной

$$\alpha_2(t)n(t)(N-n(t))$$

эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

- $\frac{\partial n}{\partial t} = (0.815 + 0.000033n(t))(N n(t))$
- $\frac{\partial n}{\partial t} = (0.000044 + 0.27n(t))(N n(t))$
- $\frac{\partial n}{\partial t} = (0.5 * t + 0.8 * np.cos(t)n(t))(N n(t))$

При этом объем аудитории N=1225, в начальный момент о товаре знает 8 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Код на Python

import math import numpy as np

```
from scipy.integrate import odeint
import matplotlib.pyplot as plt
{
m x0}=8~\# количество людей, знающих о товаре в начальный момент времени
N=1225~\# максимальное количество людей,<br/>которых может заинтересовать товар
t = np.arange(0, 12, 0.01) \# временной промежуток (длительность рекламной компании)
# функция, отвечающая за платную рекламу, альфа1
def k1(t):
   g = 0.815
   return g
def k2(t):
   g = 0.000044
   return g
def k3(t):
   g = 0.5*t
   return g
# функция, описывающая сарафанное радио, альфа2
def p1(t):
   v = 0.000033
   return v
```

```
def p2(t):
   v = 0.27
   return v
def p3(t):
  v = 0.8*np.cos(t)
   return v
\# уравнение, описывающее распространение рекламы
def f1(x, t):
  xd1 = (k1(t) + p1(t)*x)*(N-x)
   return xd1
def f2(x, t):
   xd2 = (k2(t) + p2(t)*x)*(N-x)
   return xd2
def f3(x, t):
   xd3 = (k3(t) + p3(t)*x)*(N-x)
   return xd3
# решение ОДУ
x1 = odeint(f1, x0, t)
x2 = odeint(f2, x0, t)
x3 = odeint(f3, x0, t)
# Момент времени с максимальной скоростью
m = t[np.argmax(x2[1:].reshape(1,1199)/t[1:]) + 1]
```

```
print(m)

plt.plot(t, x1, label='случай 1') # случай 1

plt.legend()

plt.show()

plt.plot(t, x2, label='случай 2') # случай 2

plt.legend()

plt.show()

plt.show()

plt.plot(t, x3, label='случай 3') # случай 3

plt.legend()
```

Графики

plt.show()

Первый случай: $\alpha_1(t)=0.815,$ $\alpha_2(t)=0.000033.$ $\alpha_1(t)>\alpha_2(t).$ (рис. @fig:001)

Рис. 0.1: Первый случай

Второй случай: $\alpha_1(t)=0.000044,$ $\alpha_2(t)=0.27.$ Наибольшая скорость достигается в момент времени 0.02.

 $\alpha_1(t) < \alpha_2(t)$. (рис. @fig:002)

Рис. 0.2: Второй случай

Третий случай: $\alpha_1(t) = 0.5*t, \, \alpha_2(t) = 0.8*cos(t)$. (рис. @fig:003)

Рис. 0.3: Третий случай

Ответы на вопросы

1. Записать модель Мальтуса (дать пояснение, где используется данная модель)

$$\frac{\partial N}{\partial t} = rN$$

Данная модель используется для расчета изменения популяции особей животных.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial P}{\partial t} = rP(1 - \frac{P}{K})$$

Исходные предположения для вывода уравнения при рассмотрении популяционной динамики выглядят следующим образом:

- скорость размножения популяции пропорциональна её текущей численности,
 при прочих равных условиях;
- скорость размножения популяции пропорциональна количеству доступных ресурсов, при прочих равных условиях.

Таким образом, второй член уравнения отражает конкуренцию за ресурсы, которая ограничивает рост популяции.

- 3. На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы $\alpha_1(t)$ интенсивность рекламной кампании, зависящая от затрат $\alpha_2(t)$ интенсивность рекламной кампании, зависящая от сарафанного радио
- 4. Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg\alpha_2(t)$

При $\alpha_1(t) \gg \alpha_2(t)$ получается модель типа модели Мальтуса (рис. @fig:006):

Рис. 0.4: График решения уравнения модели Мальтуса

5. Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$

При $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис. @fig:007):

Рис. 0.5: График логистической кривой

Выводы

Ознакомилася с моделью Мальтуса и моделью логистической кривой на примере эффективности рекламы. Построила соответствующие графики.