Übungen zu Lineare Algebra II

Jendrik Stelzner

13. Juni 2016

Übung 1.

Es sei V ein reeller Vektorraum und $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$. Zeigen Sie, dass genau dann $V=\bigoplus_{i\in I}U_i$, wenn $V_{\mathbb C}=\bigoplus_{i\in I}(U_i)_{\mathbb C}$.

Übung 2

Es seien V und W zwei reelle Vektorräume, und $f\colon V\to W$ sei $\mathbb R$ -linear.

- 1. Zeigen Sie, dass $\ker(f_{\mathbb{C}}) = (\ker f)_{\mathbb{C}}$.
- 2. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann injektiv ist, wenn f injektiv ist.
- 3. Folgern Sie ferner, dass $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}}) = V_{\lambda}(f)_{\mathbb{C}}$ für jedes $\lambda \in \mathbb{R}$.
- 4. Zeigen Sie, dass $\operatorname{im}(f_{\mathbb{C}}) = (\operatorname{im} f)_{\mathbb{C}}$.
- 5. Folgern Sie, dass $f_{\mathbb C}$ genau dann surjektiv ist, wenn f surjektiv ist.

Übung 3.

Es sei V ein reeller Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn $f_{\mathbb C}$ diagonalisierbar mit reellen Eigenwerten ist.

Übung 4.

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Ferner sei $f\colon V\to W$ eine $\mathbb R$ -lineare Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein \mathbb{R} -linearer Isomorphismus ist.

- 2. Geben Sie die Definition der dualen Abbildung $f^*\colon W^*\to V^*$ an. Zeigen Sie, dass f^* \mathbb{R} -linear ist.
- 3. Zeigen Sie, dass die Abbildung $g \coloneqq \Phi_V^{-1} \circ f^* \circ \Phi_W$ \mathbb{R} -linear ist, und dass

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle $v \in V$, $w \in W$.

4. Inwiefern ändern sich die obigen Resultate, wenn V und W unitäre Vektorräume sind?

Übung 5.

Es sei $V := \mathcal{C}([0,1],\mathbb{R})$ der Raum der stetigen Funktionen $[0,1] \to \mathbb{R}$. Ferner sei $U := \{f \in V \mid f(0) = 0\}$.

- 1. Zeigen Sie, dass U ein Untervektorraum von V ist.
- 2. Zeigen Sie, dass

$$\langle f,g \rangle \coloneqq \int_0^1 f(t)g(t)\,\mathrm{d}t \quad \text{für alle } f,g \in V$$

ein Skalarprodukt auf V definiert.

- 3. Zeigen Sie, dass $U^{\perp}=0$. Folgern Sie, dass $V\neq U\oplus U^{\perp}$. (Hinweis: Betrachten Sie für $g\in U^{\perp}$ die Funktion $h\colon [0,1]\to \mathbb{R}$ mit $h(t)=t^2g(t)$.)
- 4. Zeigen Sie ferner, dass $V/(U \oplus U^{\perp})$ eindimensional ist.

Übung 6.

Es sei

$$W = \{(a_n)_{n \in \mathbb{Z}} \mid a_n \in \mathbb{R} \text{ für alle } n \in \mathbb{Z}\}\$$

der Vektorraum der beidseitigen reellwertigen Folgen. Ferner sie

$$V := \left\{ (a_n)_{n \in \mathbb{Z}} \in W \left| \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right. \right\}$$

der Untervektorraum der quadratsummierbaren Folgen.

- 1. Zeigen Sie, dass V ein Untervektorraum von W ist.
- 2. Zeigen Sie für alle $(a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$, dass

$$\sum_{n\in\mathbb{Z}}a_nb_n<\infty.$$

(*Hinweis*: Zeigen sie zunächst, dass $ab \leq (a^2 + b^2)/2$ für alle $a, b \in \mathbb{R}$.)

3. Zeigen sie, dass

$$\langle (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}} \rangle := \sum_{n\in\mathbb{Z}} a_n b_n$$

ein Skalarprodukt auf V definiert.

4. Es sei

$$R: V \to V, \quad (a_n)_{n \in \mathbb{Z}} \mapsto (a_{n-1})_{n \in \mathbb{Z}}$$

der Rechtsshift-Operator. Zeigen Sie, dass R ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, unitär, bzw. normal ist.

- 5. Zeigen Sie, dass R keine Eigenwerte besitzt.
- 6. Es sei

$$S: V \to V, \quad (a_n)_{n \in \mathbb{N}} \mapsto (a_{-n})_{n \in \mathbb{N}}.$$

Zeigen Sie, dass S ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, unitär, bzw. normal ist.

- 7. Zeigen Sie, dass S diagonalisierbar ist.
- 8. Es sei

$$U := \{(a_n)_{n \in \mathbb{Z}} \in V \mid a_n = 0 \text{ für fast alle } n \in \mathbb{Z}\}.$$

Bestimmen Sie U^{\perp} und entscheiden Sie, ob $V=U\oplus U^{\perp}.$

9. Bestimmen Sie eine Orthonormalbasis von U.

Übung 7.

1. Zeigen Sie, dass durch

$$\sigma(A,B) \coloneqq \operatorname{tr}\left(A^TB\right) \quad \text{ für alle } A,B \in \operatorname{M}_n(\mathbb{R})$$

ein Skalarprodukt auf $M_n(\mathbb{R})$ definiert wird.

2. Zeigen Sie, dass die Standardbasis $(E_{ij})_{i,j=1,\dots,n}$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$(E_{ij})_{kl} := \delta_{ik}\delta_{jl}$$
 für alle $1 \le i, j, k, l \le n$

eine Orthonormalbasis von $\mathrm{M}_n(\mathbb{R})$ bezüglich σ bilden.

3. Es sei

$$S_+ := \{ A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A \}$$

der Untervektorraum der symmetrischen Matrizen, und

$$S_{-} := \{ A \in \mathcal{M}_{n}(\mathbb{R}) \mid A^{T} = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie, dass

$$M_n(\mathbb{R}) = S_+ \oplus S_-,$$

und dass die Summe orthogonal ist.

Übung 8.

Für je zwei K-Vektorräume V und W sei

$$Bil(V, W) := \{b \colon V \times W \to K \mid b \text{ ist bilinear}\}\$$

der Raum der Bilinearformen $V \times W \to K$.

1. Zeigen Sie, dass die Flipabbildung

$$F \colon \text{Bil}(V, W) \to \text{Bil}(W, V), \quad b \mapsto F(b) \quad \text{mit} \quad F(b)(w, v) = b(v, w)$$

ein Isomorphismus von K-Vektorräumen ist.

2. Es sei $b \in Bil(V, W)$ eine Bilinearform. Zeigen Sie, dass b ein lineare Abbildung

$$\Phi_{VW}(b) \colon V \to W^*, \quad v \mapsto b(v, -)$$

induziert. Dabei ist

$$b(v,-)\colon W\to K, \quad w\mapsto b(v,w).$$

3. Zeigen Sie, dass die Abbildung

$$\Phi_{V,W} \colon \text{Bil}(V,W) \to \text{Hom}(V,W^*), \quad b \mapsto \Phi_{V,W}(b)$$

ein Isomorphismus von K-Vektorräumen ist.

4. Geben Sie mithilfe der vorherigen Aufgabenteile explizit einen Isomorphismus $\operatorname{Hom}(V,W^*) \to \operatorname{Hom}(W,V^*)$ an.

Wir betrachten nun den Fall $W = V^*$.

5. Zeigen Sie, dass die Evaluation

$$e: V \times V^* \to K, \quad (v, \varphi) \mapsto \varphi(v)$$

eine Bilinearform ist.

- 6. Nach den vorherigen Aufgabenteilen entspricht die Bilinearform e einer linearen Abbildung $V \to V^{**}$, sowie einer linearen Abbildung $V^* \to V^*$. Bestimmen Sie diese Abbildungen.
- 7. Woher kennen Sie diese Abbildung?

Übung 9.

Es seien V und W zwei K-Vektorräume und $f:V\to W$ eine lineare Abbildung.

- 1. Geben Sie die Definition der dualen Abbildung $f^*\colon W^*\to V^*$ an, und zeigen sie ihre Linearität.
- 2. Zeigen Sie für jeden K-Vektorraum U, dass die Abbildung

$$\langle \cdot, \cdot \rangle \colon U \times U^* \to K, \quad \text{mit} \quad \langle v, \varphi \rangle = \varphi(v)$$

eine Bilinearform ist.

3. Zeigen Sie, dass

$$\langle f(v), \psi \rangle = \langle v, f^*(\psi) \rangle \quad \text{für alle } v \in V, \psi \in W^*.$$

Übung 10.

1. Zeigen Sie, dass die Abbildung

$$\sigma \colon M_n(K) \times M_n(K) \to K \quad \text{mit} \quad \sigma(A, B) \coloneqq \operatorname{tr}(AB)$$

eine symmetrische Bilinearform ist.

2. Zeigen Sie, dass σ in dem Sinne assoziativ ist, dass

$$\sigma(AB,C)=\sigma(A,BC)\quad \text{für alle }A,B,C\in \mathrm{M}_n(K).$$