Autovalores e Autovetores

6.1 - Autovalor e Autovetor de um Operador Linear

Definição:

Seja T: V \rightarrow V um operador linear. Um vetor v \in V, v \neq 0 é dito um autovetor de T se existe um número real λ tal que:

$$T(v) = \lambda . v$$

O número real λ acima é denominado autovalor de T associado ao autovetor v.

6.1 - Autovalor e Autovetor de um Operador Linear

Exemplo 1:

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
, T(x, y) = $(4x + 5y, 2x + y)$.

$$T(5, 2) = (30, 12) = 6.(5, 2).$$

 \therefore 6 e um autovalor associado ao autovetor (5, 2) do operador T.

Exemplo 2:

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
, T(x, y, z) = (x, y, 0).

$$T(x, y, 0) = 1.(x, y, 0) = 6.(5, 2).$$

∴ Qualquer qualquer vetor (x, y, 0) é um autovetor de T e seu autovalor associado é 1.

Determinação dos Autovalores

- Seja T : $\mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (ax + by, cx + dy).
- Queremos encontrar $\lambda \in \mathbb{R}$ tal que exista $(x, y) \neq (0, 0)$ com $T(x, y) = \lambda \cdot (x, y)$
- Isto é o mesmo que encontrar (x, y) ≠ (0, 0) tal que:

$$ax + by = \lambda x \Leftrightarrow (a - \lambda)x + by = 0$$

 $cx + dy = \lambda y \Leftrightarrow cx + (d - \lambda)y = 0$

O sistema linear homogêneo acima possui solução se, e só se:

$$\det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0$$

Os autovalores de T são as soluções da equação acima, se existirem.

Determinação dos Autovetores

- Queremos agora encontrar os autovetores de T associados a um determinado autovalor λ.
- Isto é, queremos encontrar $(x, y) \neq (0, 0)$ tal que $T(x, y) = \lambda \cdot (x, y)$.
- Isto é o mesmo que encontrar (x, y) ≠ (0, 0) tal que

$$ax + by = \lambda x \Leftrightarrow (a - \lambda)x + by = 0$$

 $cx + dy = \lambda y \Leftrightarrow cx + (d - \lambda)y = 0$

 Os autovetores de T associados a λ são as soluções não-nulas do sistema linear homogêneo acima.

Obs.: Obrigatoriamente há tais soluções pois o λ foi calculado para que isto aconteça.

Determinação dos Autovalores e Autovetores - Resumo:

- 1. Dada T : $\mathbb{R}^n \to \mathbb{R}^n$ determine a matriz canônica A = [T].
- 2. Calcule a matriz A λI, onde I é a matriz identidade n x n.
- Calcule p(λ) = det(A λI).
 Obs.: p(λ) é denominado polinômio característico de T.
- Resolva a equação p(λ) = 0. As raízes desta equação são os autovalores de T.
 Obs.: p(λ) = 0 é denominada a equação característica de T.
- 5. Para cada autovalor λ encontrado, resolva o sistema linear homogêneo cuja matriz dos coeficientes é A λI.

Exemplo 1: Determine os autovalores e autovetores de T : $\mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (x+2y, -x+4y).

Exemplo 2: Determine os autovalores e autovetores de T : $\mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (-y, x).

Exemplo 3: Determine os autovalores e autovetores de T : $\mathbb{R}^3 \to \mathbb{R}^3$ dado por T(x,y,z) = (4x + 2y, -x + y, y + 2z).

6.3 - Propriedades

Teorema: Seja λ um autovalor do operador T: V \rightarrow V. O conjunto S_{λ} = {v ∈ V ; T(v) = λ .v} (S_{λ} é o conjunto dos autovetores de T associados ao autovalor λ) é um subespaço vetorial de V denominado autoespaço associado a λ .

Prova:

- $T(0) = 0 = \lambda.0$, logo, $0 \in S_{\lambda} \in S_{\lambda} \neq \emptyset$;
- $u, v \in S_{\lambda} \Rightarrow T(u + v) = T(u) + T(v) = \lambda u + \lambda v = \lambda(u + v)$. Logo, $u + v \in S_{\lambda}$;
- $u \in S_{\lambda}$, $\alpha \in \mathbb{R} \Rightarrow T(\alpha u) = \alpha(T(u)) = \alpha(\lambda u) = \lambda(\alpha u)$. Logo, $\alpha u \in S_{\lambda}$;
- Pelo visto acima, S_λ é um subespaço vetorial de V.

Teorema: Autovetores associados a autovalores distintos de um operador linear $T:V\to V$ são linearmente independentes.

Prova:

- Faremos a demonstração para o caso de λ₁, λ₂, λ₃ distintos.
- Suponha v_i ≠ 0 tal que T(v_i) = λ_iv_i, para i = 1, 2, 3.
- Tomemos a_i tais que $a_1v_1 + a_2v_2 + a_3v_3 = 0$. (1)
- Aplicando T em ambos os lados da equação, obtemos, pela linearidade de T, e pela definição de autovetores

$$a_1T(v_1) + a_2T(v_2) + a_3T(v_3) = 0$$

 $a_1\lambda_1v_1 + a_2\lambda_2v_2 + a_3\lambda_3v_3 = 0.$ (2)

Prova - continuação:

- Multiplicando ambos os membros da equação (1) por λ_1 , obtemos $a_1\lambda_1v_1 + a_2\lambda_1v_2 + a_3\lambda_1v_3 = 0$. (3)
- Subtraindo (3) de (2): $a_2(\lambda_2 - \lambda_1)v_2 + a_3(\lambda_3 - \lambda_1)v_3 = 0.$ (4)
- Aplicando T em (4), obtemos:

$$a_2 \lambda_2 (\lambda_2 - \lambda_1) v_2 + a_3 \lambda_3 (\lambda_3 - \lambda_1) v_3 = 0.$$
 (5)

• Multiplicando ambos os lados de (4) por λ_2 , vem:

$$a_2 \lambda_2 (\lambda_2 - \lambda_1) v_2 + a_3 \lambda_2 (\lambda_3 - \lambda_1) v_3 = 0.$$
 (6)

Prova - continuação:

- Subtraindo (6) de (5):
 - $a_3(\lambda_3 \lambda_2)(\lambda_3 \lambda_1)v_3 = 0. \tag{7}$
- Como $\lambda_3 \lambda_2 \neq 0$, $\lambda_3 \lambda_1 \neq 0$ e $v_3 \neq 0$, segue que $a_3 = 0$.
- Substituindo $a_3 = 0$ em (4), obtemos $a_2 = 0$.
- Substituindo $a_2 = a_3 = 0$ em (1), vem $a_1 = 0$.
- Logo, v₁, v₂ e v₃ são L.I.

Corolário: Se λ_1 , λ_2 ,..., λ_n são autovalores distintos e $v_i \in S_\lambda$, para todo i = 1, 2,..., n, então $v_1 + v_2 + ... + v_n = 0$ se, e só se, $v_i = 0$ para todo i.

Prova: Se fosse possível ter $v_1 + v_2 + ... + v_n = 0$ sem que todos fossem nulos, seria uma contradição com o Teorema anterior.

Corolário: Seja T : V \rightarrow V um operador linear. Se \mathcal{B}_1 , \mathcal{B}_2 , ..., \mathcal{B}_n são bases dos autoespaços associados aos autovalores distintos λ_1 , λ_2 ,..., λ_n de T, então $\mathcal{B} = \mathcal{B}_1$ U \mathcal{B}_2 U ... U \mathcal{B}_n é um conjunto L.I.

Prova: Faremos a demonstração para dois autovalores distintos λ_1 e λ_2 com bases de seus respectivos autoespaços $\mathcal{B}_1 = \{v_1, v_2\}$ e $\mathcal{B}_2 = \{w\}$.

- Tomemos $a_1v_1 + a_2v_2 + bw = 0$.
- Como cada $S_{\lambda i}$ é um subespaço, $a_1v_1 + a_2v_2 \in S_{\lambda 1}$ e bw $\in S_{\lambda 2}$.
- Pelo Corolário anterior, $a_1v_1 + a_2v_2 = 0$ e bw = 0.
- Como cada \mathcal{B}_i é L.I. segue, $a_1 = a_2 = 0$ e b = 0.

Teorema: Seja T : V \rightarrow V um operador linear, com dim V = n. Se \mathcal{B}_1 , \mathcal{B}_2 , ..., \mathcal{B}_n são bases dos autoespaços associados aos autovalores distintos λ_1 , λ_2 ,..., λ_n de T, e $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup ... \cup \mathcal{B}_n$ possui n vetores, então \mathcal{B} é base de V.

Definição: Se T : $V \rightarrow V$ possui uma base formada por autovetores de T, dizemos que T é um operador *diagonalizável*.

Definição: Sejam T : $\mathbb{R}^n \to \mathbb{R}^n$ um operador diagonalizável e \mathcal{B} uma base de autovetores de T. Então,

- (i) $D = [T]_{\mathcal{B}}$ é uma matriz diagonal.
- (ii) A matriz $P = [I]_{\mathcal{B}}^{c}$ de mudança de base de \mathcal{B} para a base canônica, satisfaz $D = P^{-1}[T]P$. Dizemos que a matriz P diagonaliza [T].

Exemplo 1: Seja T : $\mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (-5x + 2y, 2x - 2y).

- a) Determine os autovalores e os autoespaços de T.
- b) Determine se T é diagonalizável. Em caso afirmativo, determine uma base de \mathbb{R}^2 formada por autovetores de T e determine a matriz T com relação a esta base.
- c) Se T for diagonalizável, determine a matriz diagonalizadora P de T.

Exemplo 2: Seja T : $\mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (-2x + 2y -3z, 2x + y -6z, -x -2y).

- a) Determine os autovalores e os autoespaços de T.
- b) Determine se T é diagonalizável. Em caso afirmativo, determine uma base de \mathbb{R}^3 formada por autovetores de T e determine a matriz T com relação a esta base.
- c) Se T for diagonalizável, determine a matriz diagonalizadora P de T.

Exemplo 3: Seja T : $\mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (4x + 2y, -x + y, y + 2z).

- a) Determine os autovalores e os autoespaços de T.
- b) Determine se T é diagonalizável. Em caso afirmativo, determine uma base de \mathbb{R}^3 formada por autovetores de T e determine a matriz T com relação a esta base.
- c) Se T for diagonalizável, determine a matriz diagonalizadora P de T.