Homework 4 (Due Sept 18, 2023)

Jack Hyatt MATH 554 - Analysis I - Fall 2023

September 18, 2023

Justify all of your answers completely.

2.36 Prove that in the real numbers, every nonempty set that is bounded below has a greatest lower bound.

Proof. Let S be a nonempty subset of \mathbb{R} that is bounded below. Let b be a lower bound. Let -S be

$$-S\coloneqq \{-s:s\in S\}$$

So then $\forall s \in \S, b \leq s$. Then $-b \geq -s$. So -b is an upper bound for -S, which means $c = \sup(-S)$ exists by least upper bound property. So $c \geq s \forall s \in S$.

 $c \ge s \implies -c \le -s$, and every -s comprises up S. If -c was not the infimum of S, then -(-c) would be a better supremum of -S, which is a contradiction.

2.37 Prove for any real number x, there is a natural n with x < n.

Proof. BWOC, assume $\exists x \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, n \leq x$. Then \mathbb{N} is bounded above, so $b = \sup(\mathbb{N})$ exists.

So $n \le b$. Since $n \in \mathbb{N} \implies n+1 \in \mathbb{N}$. So $\forall n \in \mathbb{N}, n+1 \le b \implies n \le b-1$.

So b-1 is an upper bound for \mathbb{N} . But $b-1 < b = \sup(\mathbb{N})$.

2.38 Let a > 1 be a real number. Prove that for any real number x, there is a natural number n such that $a^n > x$.

Proof. Let $N = \{a^n : n \in \mathbb{N}\}$. BWOC, assume $\exists x \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, a^n \leq x$. Then N is bounded above, so $b = \sup(N)$ exists. So $a^n \leq b$. Since $a^n \in N \implies a^{n+1} \in N$. So $\forall a^n \in N, a^{n+1} \leq b \implies a^n \leq b/a$.

So b/a is an upper bound for N. But $b/a < b = \sup(N)$.

BOOM, A CONTRADICTION!!!

2.39 Prove $a > 0 \implies \exists n \in \mathbb{N} s.t.1/n < a$ with the method specified in the notes.

Proof. Let $S = \{1/n : n \in \mathbb{N}\}$. This is bounded below by 0. Showing $\inf(S) = 0$ proves Archimedes axiom.

BWOC, assume $c := \inf(S) > 0$. Then $\forall n \in \mathbb{N}$ we have $c \le 1/n$. But if $n \in \mathbb{N}$, then so is 2n and therefore $c \le 1/(2n)$ which implies $2c \le 1/n$. So 2c is also a lower bound for S and c < 2c. So c is not the infimum.

BOOM, A CONTRADICTION!!!

2.40 Let a be a real number with 0 < a < 1. Prove for any positive real number x, there is a natural number n such that $a^n < x$.

Proof. Let $N = \{a^n : n \in \mathbb{N}\}$. BWOC, assume $\exists x \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, a^n > x$. Then N is bounded below, so $b = \inf(N)$ exists.

So $a^n > b$. Since $a^n \in N \implies a^{n+1} \in N$. So $\forall a^n \in N, a^{n+1} > b \implies a^n > b/a$.

So b/a is a lower bound for N. But $b/a > b = \inf(N)$.

BOOM, A CONTRADICTION!!!

2.41 For any real number x, there is a unique integer n such that

 $n \le x < n + 1$

Proof. Want $m_0 \in \mathbb{Z}$ s.t. $m_0 < x$ Case 1: x > 0. Let $m_0 = 0$. Case 2: $x \le 0$. So $-x \le 0$, and by Archimedes Big Axiom, $\exists m_1 \in \mathbb{N} s.t. -x < m_1$. So let $m_0 = -m_1$. Now let

$$S \coloneqq \{k \in \mathbb{Z} : m_0 \le k \le x\}$$

Clearly $m_0 \in S$. By Archimedes Big Axiom again, $\exists m_1 \in \mathbb{N} s.t. - x < m_1$. So $S \subseteq \{m_0, m_0 + 1, \dots, m_1 - 1, m_1\}$. This set is finite, with $m_1 - m_0 + 1$ elements. So $n = \max(S) \in S$ exists.

Since $n \in S$, then $n \le x$. Since $n = \max(S), n + 1 \notin (S)$, which means x < n + 1. So $n \le x < n + 1$.

Now showing uniqueness.

Let m, n be integers that both satisfy the desired inequality. Then $m, n \in (x-1, x]$. Since $x_1, x_2 \in (a, b) \implies |x_2 - x_1| < |b-a|$, we have |m-n| < 1. But since $m, n \in \mathbb{Z}$, m must equal n.

2.42 Between any two real numbers, there is a rational number.

Proof. Let $a, b \in \mathbb{R}$ and WLOG assume a < b. So (b - a) > 0. So by Archimedes axiom, $\exists N \in \mathbb{N}, \frac{1}{N} < (b - a) \implies Na + 1 < Nb$. Let $n = \lfloor Na \rfloor$. Then

$$n \le Na < n+1 \le Na+1 < Nb$$

So

$$Na < n+1 < Nb \implies a < \frac{n+1}{N} < b$$

And (n+1)/N is a rational number.

2.43 Prove between any two rational numbers, there is a irrational number.

Proof. Let a, b be distinct rational numbers. WLOG, let a < b. Consider the irrational number $a + (b - a)/\sqrt{2}$. Since b > a, then

$$(b-a)/\sqrt{2} > 0 \implies a + (b-a)/\sqrt{2} > a$$

$$b = a + (b-a) > a + (b-a)/\sqrt{2} \implies a + (b-a)/\sqrt{2} < b$$
So $a < a + (b-a)/\sqrt{2} < b$.

2.44 Let $y_0, y_1 \in \mathbb{R}$ and assume that there is a number M > 0 such that $\forall \epsilon > 0, |y_1 - y_0| \leq M\epsilon$. Prove $y_0 = y_1$.

Proof. BWOC, assume $y_0 \neq y_1$. Let $\epsilon = |y_1 - y_0|/2M$. Then

$$|y_1 - y_0| \le M\epsilon \implies |y_1 - y_0| \le M \frac{|y_1 - y_0|}{2M} \implies |y_1 - y_0| \le \frac{|y_1 - y_0|}{2}$$

which only is true iff $|y_1-y_0|=0$, but we assumed $y_0\neq y_1$.

2.45 Prove if $f:[a,b] \to \mathbb{R}$ is Lipschitz, with Lipschitz constant M, then for any $x, x_0 \in [a, b]$, the inequalities

$$-M[x-x_0] \le f(x) - f(x_0) \le M|x-x_0|$$

and

$$f(x_0) - M[x - x_0] \le f(x) \le f(x_0) + M|x - x_0|$$

hold.

Proof. Assume $f:[a,b] \to \mathbb{R}$ is Lipschitz, with Lipschitz constant M. Then

$$\forall x_1, x_2 \in [a, b]$$
 $|f(x_2) - f(x_1)| \le M|x_2 - x_1|$

Since $|x| \le a$ iff $-a \le x \le a$,

$$|f(x_2)-f(x_1)| \le M|x_2-x_1| \implies -M|x_2-x_1| \le f(x_2)-f(x_1) \le M|x_2-x_1|$$

Adding $f(x_1)$ to every side, we get

$$|f(x_1) - M|x_2 - x_1| \le f(x_2) \le f(x_1) + M|x_2 - x_1|$$

Problem 1 Let A and B be nonempty subsets of \mathbb{R} that are each bounded above. Let

$$S = A + B = \{a + b : a \in A \text{ and } b \in B\}$$

(a) show that S is bounded above.

(b) Prove

$$\sup(S) = \sup(A) + \sup(B)$$

Proof. Since A and B are both bounded above, they both have a supremum s_a, s_b respectively. So $\forall a \in A, a \leq s_a$ and $\forall b \in B, b \leq s_b$. Then $a + b \leq s_a + s_b$. So then S is bounded above.

Let $\epsilon > 0$. Let $a \in A$ s.t. $a > s_a - \epsilon/2$ and $b \in B$ s.t. $b > s_b - \epsilon/2$. We know that a and b exist since A and B are nonempty, and s_a, s_b are the best supremums for A and B.

So then $a+b>s_a+s_b-\epsilon$, which makes anything smaller than s_a+s_b not an upper bound for S.

Problem 2 Let $S \subseteq \mathbb{R}$ be a subset that satisfies the two conditions

- (a) S is bounded above.
- (b) If $s_1, s_2 \in S$ with $s_1 \neq s_2$, then

$$|s_1 - s_2| \ge 1$$

Show $\sup(S) \in S$ and therefore S has a maximum.

Proof. Since S is bounded above, $s = \sup(S)$ exists. BWOC, let $s \notin S$. Then for $0 < \epsilon < 1, s - \epsilon \in S$ as that would be a better $\sup(S)$ otherwise. However, there can only be one ϵ that satisfies that, since a second ϵ would mean the (b) condition is violated. So $s - \epsilon \ge s_1$, $\forall s_1 \in S$, but then $s - \epsilon$ is a better supremum than s.

So $s \in S$, which is a maximum element.