		Category	L	T	P	Credit	Year of
CST 308	COMPREHENSIVE						Introduction
	COURSE WORK	PCC	1	0	0	1	2019

Preamble:

The objective of this Course work is to ensure the comprehensive knowledge of each student in the most fundamental core courses in the curriculum. Six core courses credited from Semesters 3, 4 and 5 are chosen for the detailed study in this course work. This course helps the learner to become competent in cracking GATE, placement tests and other competitive examinations

Prerequisite:

- 1. Discrete Mathematical Structures
- 2. Data Structures
- 3. Operating Systems
- 4. Computer Organization And Architecture
- 5. Database Management Systems
- 6. Formal Languages And Automata Theory

Course Outcomes: After the completion of the course the student will be able to

CO1	Comprehend the concepts of discrete mathematical structures (Cognitive Knowledge Level: Understand)
CO2:	Comprehend the concepts and applications of data structures (Cognitive Knowledge Level: Understand)
CO3:	Comprehend the concepts, functions and algorithms in Operating System (Cognitive Knowledge Level: Understand))
CO4 :	Comprehend the organization and architecture of computer systems (Cognitive Knowledge Level: Understand)
CO5:	Comprehend the fundamental principles of database design and manipulation (Cognitive Knowledge Level: Understand)
CO6 :	Comprehend the concepts in formal languages and automata theory Cognitive Knowledge Level: Understand)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2
CO1	(0	7	AF	JD.	$[\]$		ζA	LA	W		②
CO2	(0	É	Ή	N	N	\cap	G	(ΔĬ		②
CO3	(0		'n		Ϋ́	50	ĬÏ	∇	1.1.		(
CO4	②	0		LN	1. V		X	1 1	Å.			(
CO5	②	②										②

Assessment Pattern

Bloom's Category	End Semester Examination
Remember	10
Understand	20
Apply	20
Analyse	
Evaluate	
Create	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
50	0	50	1 hour

End Semester Examination Pattern: Objective Questions with multiple choice (Four). Question paper include fifty questions of one mark each covering the five identified courses.

Syllabus

Full Syllabus of all six selected Courses.

- 1. Discrete Mathematical Structures
- 2. Data Structures
- 3. Operating Systems
- 4. Computer Organization And Architecture
- 5. Database Management Systems
- 6. Formal Languages And Automata Theory

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures				
1	DISCRETE MATHEMATICAL STRUCTURES (14 hours)					
1.1	Mock Test on Module 1 and Module 2	1 hour				
1.2	Mock Test on Module 3, Module 4 and Module 5	1 hour				
2	DATA STRUCTURES	DATA STRUCTURES				
2.1	Mock Test on Module 1, Module 2 and Module 3	1 hour				
2.2	Mock Test on Module 4 and Module 5	1 hour				
3	OPERATING SYSTEMS					
3.1	Mock Test on Module 1 and Module 2	1 hour				
3.2	Mock Test on Module 3, Module 4 and Module 5	1 hour				
3.3	Feedback and Remedial	1 hour				
4	COMPUTER ORGANIZATION AND ARCHITECTURE					
4.1	Mock Test on Module 1, Module 2 and Module 3	1 hour				
4.2	Mock Test on Module 4 and Module 5	1 hour				
5	DATABASE MANAGEMENT SYSTEMS					

5.1	Mock Test on Module 1, Module 2 and Module 3	1 hour
5.2	Mock Test on Module 4 and Module 5	1 hour
6	FORMAL LANGUAGES AND AUTOMATA THEORY	
6.1	Mock Test on Module 1, Module 2 and Module 3	1 hour
6.2	Mock Test on Module 4 and Module 5	1 hour
6.3	Feedback and Remedial	1 hour

			Mod	lel Quest	ion Paper			
QP CC	DDE:							
Reg No	o:							
Name:								PAGES: 10
		APJ ABI	DUL KALAN	A TEC <mark>H</mark> N	OLOGICAL	UNIVE	RSITY	
	SIXTH	SEMESTI	ER B.TECH	DEGREE urse Co <mark>d</mark> e:		ΓΙΟΝ, M	ONTH &	YEAR
		C	Course Name:	Compreh	ensive Cour	se Work		
Max. N	Marks: 5	0					Du	ration: 1 Hour
Obje	ctive typ	e questions	_		Mark one co arries 1 Mar		swer for e	ach question.
	What is with 4 el		m possible nu	ımber of re	lations from	a set with	5 elemen	ts to another set
	(A) 2^10)	(B)2^16		(C)2^20		(D)2^25	
	The set { element	-	1,13,14} is a	group unde	er multiplicat	ion modu	lo 15. Fin	d the inverse of
	(A) 7		(B) 13	(C) 1		(D) 8		

3. Consider the recurrence relation $a_1=2,\,a_n=3n+a_{n-1}$ Then a_{72} is

	(A) 7882	(B) 7883	(C) 7884	(D) 7885
4.	Which among the following	lowing is a contradic	etion?	
	(A) $(p \land q) \lor \neg (p \lor q)$	q) (B)	$(p \lor q) \land \neg (p \land q)$	
	(C) $(p \land q) \land \neg (p \lor q)$	(D)	$(p \land q) \lor (p \land \neg q)$	
5.	The number of non-n 1is	egative solutions to	x + y + z = 18, wit	th conditions $x \ge 3, y \ge 2, z \ge$
		(C) 105	(D) 121	
6				a_0 with initial conditions a_0 =
0.	$2, a_1 = 7, \text{ is}$		$a_n = a_{n-1} + 2a_{n-1}$	with initial conditions we
	(A) $3(2)^n - (-1)^n$	(B) $3(2)^n + (-1)^n$	$)^n$	
	(C) $-3(2)^n - (-1)^n$			
	(0) 3(2) (1)	(D) 3(2) 1 (I	.)	
7.	Which among the foll addition?	lowing is not a subgr	roup of the set of Co	omplex numbers under
	(A) R , the set of all R	eal numbers.		
	(B) Q ⁺ , the set of pos	itive rational number	°S.	
	(C) Z , the set of all in	tegers.		
	(D) The set <i>iR</i> of pure	ely imaginary numbe	ers including 0	
8.	Minimum number n	of integers to be sele	cted from $S = \{1, 2, \dots \}$,9} to guarantee that the
	difference of two of t			, , ,
	(A) 3	(B) 4 (C)	6 (I	0) 9
			`	
9.	Find the contrapositive	ve the of statement "	If it is a sunday, then	n I will wake up late"
		aking up late, then it		
	(B) If I am not wa	aking up late, then it	is not a suniday	
	` /	unday, then I will no		
		day or I will wake up	_	
10	I. 41 (7 ⁺ 1) (-	1 7 :	C 11	
10	which of the following		of all positive integer	ers and is the divides relation)
	I. 3 and 9 is comparal	ole		
	II. 7 and 10 is compar	rable		
	III. The poset $(Z+,)$	is a total order		
	(A) I and III	(B) II only	(C) II and III	(D) III only
11.	Consider the following	ng sequence of opera	ations on an empty s	tack.

push(22); push(43); pop(); push(55); push(12); s=pop();

		llowing sequence of ope			
		queue(27); dequeue(); e	nqueue(38); enq	ueue(12); q=deo	queue();
	The value of s+		(G) 20	(D) 70	
	(A) 44	(B) 54	(C) 39	(D) 70	
10	TT1 C 11 :		. 1 1 7		Λ./Ι
12.		postfix expression with	single digit opera	ands is evaluate	ed using a stack:
		4 3 * + 5 1 * -	1 II I I I I I I I I I I I I I I I I I	1	41 C41 C4 *
		ne exponentiation opera	tor. The top two	elements of the	e stack after the first *
	is evaluated are		(0) 2.12		(D) 2.5
	(A) 12,2	(B) 12,5	(C) 2,12		(D) 2,5
12	Construct a bin		in = 9 (12 2 1()	41
13.		ary search tree by insert			iother. To make the
	(A) One right ro	AVL tree which of the	ionowing is requ	illeu:	
	` ,	nation only ation followed by two ri	aht rotations		
	` ′	ation and one right rotat	_		
	` ´	g tree itself is AVL	1011		
	(D) The resulting	ig tree fisch is AVL			
14	In a complete 4	-ary tree, every internal	node has exactl	v 4 children or	no child. The number
1 1.	_	n a tree with 6 internal r		y remidien or	no cinia. The number
	(A) 20		(C) 19	(D) 17	
	(11) 20	(B) 10	(8) 19	(2) 17	
15.	Consider the fol	llowing graph with the f	following sequen	ces	
	I. a b c f d e				
	II. a b e d f c				
	III. a b f c d e				
	IV. afcbed				
	а		/		
		b	e		
	f	С			
		d			

Which are Depth First Traversals of the above graph?

- (A) I, II and IV only(B) I and IV only(C) II, III and IV only(D) I, III and IV only
- 16. Consider a hash table of size seven, with starting index zero, and a hash function (2x + 5) mod7. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 4, 9, 6 is inserted into the table using closed hashing? Note that 'denotes an empty location in the table.
 - $(A) 9, _, 1, 6, _, _, 4$
- (B) 1, _, 6, 9, _, _, 4
- (C) 4, _, 9, 6, _, _, 1
- (D) 1, _, 9, 6, _, _, 4
- 17. Consider the following C program where TreeNode represents a node in a binary tree

```
struct TreeNode {
struct TreeNode *leftChild;
struct TreeNode *rightChild;
int element;
};
int CountNodes(struct TreeNode *t)
{
if((t==NULL)||((t->leftChild==NULL) && (t->rightChild==NULL)))
    return 0;
else
{
    return 1+CountNodes(t->leftChild)+CountNodes(t->rightChild)
}
}
```

The value returned by CountNodes when a pointer to the root of a binary tree is passed as its argument is

- (A) number of nodes
- (B) number of leaf nodes
- (C) number of non leaf nodes
- (D) number of leaf nodes-number of non leaf nodes
- 18. How many distinct binary search trees can be created out of 6 distinct keys?
 - (A) 7
- (B) 36
- (C) 140
- (D) 132
- 19. Suppose a disk has 400 cylinders, numbered from 0 to 399. At some time the disk arm is at cylinder 58, and there is a queue of disk access requests for cylinder 66, 349, 201, 110, 38, 84, 226, 70, 86. If Shortest-Seek Time First (SSTF) is being used for scheduling the disk access, the request for cylinder 86 is serviced after servicing ______ number of

requests. (A) 1	(B) 2	(C)3	(D)4
		system with page table e	entry of 2 bytes can address
(A) 2^12	f physical memory. (B) 2^16	(C) 2 ¹⁸	(D) 2^28
21. Calculate the int (A) 3KB	ernal fragmentation i (B) 4KB	f page size is 4KB and prod (C) 1KB (D) 2I	
22. Which of the fol (A) FCFS (C) Shortest Pro-		olicy is likely to improve in (B) Round Robin (D) Priority Based Scgedu	
23. Consider the following Semantic	lowing program ore X=1, Y=0		
Void A () {	put of the program: of 0's followed by a of 1's followed by a		
•	such process require	new process arrives at the rest 5 seconds of service time	rate of 12 processes per . What is the percentage of
(A) 41.66	(B) 100.00	(C) 240.00	(D) 60.00
25. A system has tw two resources. T		identical resources. Each	process needs a maximum of

(B) Deadlock is not possible

(A) Deadlock is possible

(C) Starvation may be present	` '	0	
26. Which of the following is true	=		
(A) Responds poorly to short	•	e quantum.	
(B) Works like SJF for larger	•		
(C) Does not use a prior know		_	
(D) Ensure that the ready que	ue is always of the sam	e size.	
27. The size of the physical addr cache memory is 2^N words.	•	rocessor is 2 ^N words. The care block is 2 ^N words. For a M	
associative cache memory, the			J
$(A) W - N + \log_2 M$			
$(C) W - N - K - \log_2 M$			
28. A 64-bit processor can suppose addressable (one word is of 6 bits.		y of 8 GB, where the memory e address bus of the processor	
${(A) 30}$ (B) 31	(C) 32	(D) None	
stages with respective delay pipeline is percent.	is replaced with a func	400 and 350 picoseconds. The actionally equivalent design invocationals. The throughput increases	lving two
 30. Consider a direct mapped cace 6 bits in the tag. The number of address are is: (A) block (index) field = 6 bit (B) block (index) field = 7 bit (C) block (index) field = 9 bit (D) block (index) field = 8 bit (D) block (index) field = 8 bit (D) 	ts, word (offset) field =	and word (offset) fields of phy 9 bits 8 bits 9 bits	
	fields: an opcode field address field to spec a is 64 bits long, how la	d; a mode field to specify of ify one of 48 registers; and a rge is the opcode field?	ne of 12
32. A computer has 64-bit instructions. How many 1-add			ldress

(D) 2³0

(C) 2^28

33.	Determine the number pipeline.(Assume there	• •	•	· ·	ent			
	(A) 1200 cycles	(B) 206 cycles	(C) 207 cycles	(D) 205 cy	cles			
34.	Match the following I	Lists:						
	P.DMA	1.Prio	rity Interrupt					
	Q. Processor status W	ord 2.I/O	Transfer					
	R. Daisy chaining	3.CPU						
	S. Handshaking 4. Asynchronous Data Transfer							
	(A) P-1, Q-3, R-4, S-2							
	(C) P-2, Q-1, R-3, S-4							
	(-), (-,,-	(=), (=-,	,					
35.	Let E1, E2 and E3 be R1 and R2 are two re to-many. R3 is anothe R3 do not have any a to represent this situat	lationships between E er relationship betwee ttributes of their own	E1 and E2, where R1 on E2 and E3 which is the minimum odel?	is one-to-many, R s many-to-many. I am number of tabl	22 is many- R1, R2 and			
	(A) 3	(B) 4	(C) 5	(D) 6				
36.	Identify the minimal dependencies $F = \{U \}$ (A) UV			(D) UY	functional			
37.	It is given that: "Every many students", what entity to the "Course" (A) M:1 relationship (C) 1:1 relationship	is the cardinality of the	ne relation say "Regi ram to implement the tionship	ster" from the "Stu	ıdent"			
38.	Consider the relation SELECT DISTINCT AND S.branch_city = Finds the names of (A) All branches that (B) All branches that (C) The branch that had (D) Any branch that h	T.branch_name FROM "TVM". have greater assets the have greater assets the as the greatest asset in	M branch T, branch S an all branches locate an some branch locate TVM.	S WHERE T.assets ed in TVM. ed in TVM.	s > L.assets			

(A) 2²4

(B) 2²6

1 1 1 Null 5 5 2 1 5 9 13 5 13 9 15 13 Which one of the following can be a foreign key that refers to the same relation? (A) A2 (B) A3 (C) A4(D) ALL 40. A relation R(ABC) is having the tuples (1,2,1), (1,2,2), (1,3,1) and (2,3,2). Which of the following functional dependencies holds well? $(A) A \rightarrow BC \quad (B) AC \rightarrow B$ $(C) AB \rightarrow C$ (D) BC \rightarrow A 41. Consider a relation R with attributes A, B, C, D and E and functional dependencies $A \rightarrow BC$, BC \rightarrow E, E \rightarrow DA. What is the highest normal form that the relation satisfies? (A) BCNF (B) 3 NF (C) 2 NF (D) 1 NF 42. For the given schedule S, find out the conflict equivalent schedule. S: r1(x); r2(Z); r3(X); r1(Z); r2(Y); r3(Y); W1(X); W2(Z); W3(Y); W2(Y)(A) $T1 \rightarrow T2 \rightarrow T3$ (B) T2->T1->T3(C) T3 \rightarrow T1 \rightarrow T2 (D) Not conflict serializable 43. Which of the following strings is in the language defined by the grammar: $S \rightarrow aX$ $X \rightarrow aX \mid bX \mid b$ (A) aaaba (B) babab (C) aaaaa (D) ababb 44. Consider the regular expression (x+y)*xyx(x+y)* where $\Sigma = (x,y)$. If L is the language represented by this regular expression, then what will be the minimum number of states in a DFA recognizing L? (C)4(D) 5 (A) 2(B) 3 45. Which of the following cannot handle the same set of languages? (A) Deterministic Finite Automata and Non-Deterministic Finite Automata (B) Deterministic Push Down Automata and Non-Deterministic Push Down Automata (C) All of these (D) None of these 46. Consider L be a context-free language and M be a non-context-free language. Which among the following is TRUE?

39. Consider the following relation instance, where "A" is primary Key.

A4

A2

A1

A3

- (I) L will definitely pass the pumping lemma test for CFLs.
 (II) M will definitely pass the pumping lemma test for CFLs.
 (III) L will not definitely pass the pumping lemma test for CFLs.
 (IV) M will not definitely pass the pumping lemma test for CFLs.
 (V) L may or maynot pass the pumping lemma test for CFLs.
- (VI) M may or maynot pass the pumping lemma test for CFLs.
- (A) I, II (B) II, V (C) I, VI (D) IV, V
- 47. Which of the following problem(s) is/are decidable?
 - (I) Whether a CFG is empty or not.
 - (II) Whether a CFG generates all possible strings.
 - (III) Whether the language generated by a Turing Machine is regular.
 - (IV) Whether the language generated by DFA and NFA are same.
- (B) II and III (C) II and IV
- (D) I and IV

- 48. Which of the following is/are TRUE?
 - (I) Regular languages are closed under complementation.
 - (II) Recursive languages are closed under complementation.
 - (III) Context free languages are closed under complementation.
 - (IV) Context free languages are not closed under complementation.
 - (A) I, II and III

(A) I and II

- (B) I, II and IV
- (C) II and III
- (D) III only
- 49. Which of the following regular expressions defined over the alphabet $\Sigma = \{0,1\}$ defines the language of all strings of length 1 where 1 is a multiple of 3?
 - (A) (0+1+00+11+000+111)*
- (B) (000 + 111)*
- (C) ((0+1)(0+1)(0+1))*
- (D) ((000 + 01 + 1)(111 + 10 + 0))*
- 50. Determine the minimum number of states of a DFA that recognizes the language over the alphabet {a,b} consisting of all the strings that contain at least three a's and at least four b's.
 - (A) 6

- (B) 12
- (C) 15
- (D) 20

ANSWER KEY:-

QNo	Ans. Key								
1	(C)	11	(C)	21	(C)	31	(B)	41	(A)

2	(A)	12	(A)	22	(B)	32	(D)	42	(D)
3	(B)	13	(A)	23	(D)	33	(D)	43	(D)
4	(C)	14	(C)	24	(B)	34	(B)	44	(C)
5	(B)	15	(A)	25	(B)	35	(C)	45	(B)
6	(A)	16	(D)	26	(C)	36	(D)	46	(C)
7	(B)	17	(C)	27	(A)	37	(A)	47	(D)
8	(C)	18	(D)	28	(A)	38	(B)	48	(B)
9	(B)	19	(C)	29	(D)	39	(B)	49	(C)
10	(C)	20	(D)	30	(C)	40	(D)	50	(D)