

Anomaly Detection in Operating Room Performance and Bed Occupancy Forecasting

Students: Dvora Goncharok, Arbel Shifman

Supervisors:

Prof. Aviv Gibali – HIT

Dr. Yariv Marmor – Braude College

Dr. Rovi Barnea - Assuta Ramat HaHayal Hospital

Project Purpose

Predict Bed Occupancy

Develop accurate forecasting models to predict inpatient bed requirements 7 days in advance.

Support Decision-Making

Create an interactive dashboard that provides real-time insights to hospital administrators and medical staff.

Predict Surgery Duration

Build an accurate machine learning model to estimate surgery durations in advance, enabling smarter OR scheduling and reducing delays.

Optimize OR Utilization

Detect anomalies in operating room performance and refine scheduling algorithms to maximize resource efficiency.

Goal:

Improve hospital efficiency through smart scheduling and predictive analytics.

Theoretical Background

The Operating Room Challenge

- Operating Rooms (OR) are high-cost, limited-capacity assets.
- Poor scheduling leads to delays, underuse, and long patient stays.
- ML techniques allow prediction, optimization, and real-time monitoring.
- At Assuta, the average yearly OR utilization during the years we analyzed was approximately 40–45%.

Continued Background

Tools and Techniques Applied in Our Project:

- CatBoostUsed for predicting surgery durations.
- Optimization

 Applied with linear constraints and hospitalspecific business rules.

BiLSTM

Used for forecasting inpatient bed occupancy.

Used to integrate results into real-time decision-support tools.

Power BI Dashboard

Together, these tools supported both the predictive and operational components of our solution.

Project Workflow

Data Acquisition & Analysis

Collected surgical and inpatient data from Assuta Hospital (2017–2024).
Performed extensive data cleaning and exploratory analysis to identify patterns and anomalies.

2

Duration Modeling & Optimization

Developed a CatBoost model to accurately predict surgery durations, enabling the creation of optimization algorithms for improved OR schedules.

3

Bed Occupancy Forecasting

Implemented a BiLSTM neural network to forecast department-level inpatient bed requirements up to 7 days in advance.

Dashboard Development

An interactive Power Bl
dashboard was created to
integrate predictions and
actual performance metrics,
providing real-time support for
critical hospital decisions

Results: Prediction Models

Surgery Duration Prediction

- CatBoost model achieved
 MAE of 19 minutes
- R² score of approximately
 0.72
- Key features: procedure type, surgeon, anesthesia method

Bed Occupancy Forecasting

- BiLSTM achieved R² up to
 0.61 for 7-day forecasts
- Accuracy decreases with prediction horizon
- The model learns from past occupancy trends, including weekly and seasonal patterns, to make accurate short-term predictions

Challenges:

- Missing or inaccurate timestamps for surgical events.
- Surgeon estimates often inconsistent and biased.
- For bed occupancy:
 incomplete hospitalization
 records and delayed
 discharges.
- Capturing departmentspecific patterns required tailored preprocessing and input engineering.
- Trade-off between accuracy and forecast horizon (shortterm more accurate).

Dashboard Demo

Real-Time Monitoring

Real-time tracking of bed availability and occupancy rates, with automated anomaly detection and customizable admin alerts

Forecasting Visualization

Interactive bed occupancy predictions by department with confidence intervals and historical comparison features.

Strategic Planning

What-if scenario planning capabilities allowing schedulers to evaluate different allocation strategies and their impacts.

Challenges:

- Integration issues due to lack of real-time hospital APIs.
- Limited granularity due to privacy constraints.

Functionality:

- Real-time monitoring of bed availability and occupancy rates
- Department-level bed occupancy forecasts (e.g. 7-day ahead)
- Anomaly detection and seasonal trend analysis
- Automated alerts for occupancy thresholds and irregularities

Preview of the dashboard:

Results: Operating Room Utilization

Findings:

Target Utilization

Defined and calculated a daily utilization metric per room, measuring the percentage of available OR time that was actively used.

Utilization Improvement

Optimization model nearly doubled average utilization, from 28.4% (historical) to 57.2% (model) in the rolling horizon evaluation.

Framework for Deployment

The scheduling framework was implemented using a rolling horizon strategy, simulating real-world weekly constraints and enabling modular hospital planning.

Challenges:

- Lack of existing daily OR utilization metric in raw data.
- Significant variation in utilization between rooms and departments.
- Difficulty identifying whether low utilization was due to cancellations, scheduling errors, or early finishes.
- Absence of unified benchmark to compare performance over time.
- Heavy model constraints led to memory issues MILP crashed even with 50GB RAM, and CP required strict time limits.

Conclusions

- Improved OR Efficiency
 Achieved better alignment between scheduled and actual surgery times, reducing idle periods and delays.
- Developed Robust Predictive Models Built accurate models for forecasting surgery durations and inpatient bed requirements, outperforming manual estimates.
- Delivered Real-Time Insights via Dashboard

 Provided planners with real-time access to key

 performance indicators and forecasts, enabling faster,
 data-driven decisions.
- Advanced Hospital Resource Optimization

 Our results directly support strategic resource planning and optimization across departments.

Challenges & Solutions

Challenges

- Incomplete or inaccurate timestamp data
- Non-standardized
 procedure naming across
 departments
- Difficulty modeling rare and high-impact events (e.g., prolonged surgeries, ICU transitions)
- Missing ICU admission data, limiting model confidence in critical cases

Solutions

- Rule-based imputation logic tailored to surgical workflows
- Standardization and mapping of procedure codes
- Use of ensemble models to improve predictions on rare events

Technical Innovations

Custom Anomaly Detection

Developed specialized algorithms to detect outliers in surgical durations, leveraging contextual features (e.g., procedure type, department, weekday) instead of relying solely on static statistical thresholds.

API Integration Layer

Built a secure, real-time data pipeline that connects hospital systems with our predictive engines and dashboards.

Dynamic Scheduling

Designed an adaptive scheduling mechanism that learns from historical patterns and continuously refines parameters to optimize future planning.

Cross-Department Transfer Prediction

Introduced a novel model to forecast patient transfers between departments, improving the accuracy of downstream bed occupancy predictions.

You can explore the source code, models, and scripts via the following link:

Summary & Future Roadmap

Key Achievements

- Significantly improved OR efficiency and scheduling precision through data-driven insights
- Built robust machine learning models for predicting surgery durations and inpatient bed occupancy
- Delivered an intuitive, real-time dashboard for surgical and operational decision-making
- Successfully integrated advanced data science techniques into real-world hospital workflows under clinical constraints

Future Directions

- Expand model scope to emergency surgeries and unplanned admissions
- Develop mobile tools for real-time updates and alerts for clinicians and managers
- Generalize the solution across diverse hospitals and specialties for scalable impact

Link to the Drive folder

Thank you for your attention. Questions?