## LA2 6

**KYB** 

Thrn, it's a Fact mathrnfact@gmail.com

October 16, 2020

### Overview

- Ch8. The singular value decomposition
  - 8.1 Introduction to the SVD
  - 8.2 The SVD for general matrices Exercies 8.1/8.2
  - 8.3 Solving least-squares problems using the SVD
  - 8.5 The Smith normal form of a matrix

### 8.1 Introduction to the SVD

#### Observation

- ightharpoonup Recall that if  $A \in \mathbb{C}^{n \times n}$  is Hermitian, A can be written as  $A = VDV^*$ where  $V \in \mathbb{C}^{n \times n}$  is unitary and  $D \in \mathbb{R}^{n \times n}$  is diagonal.
- For any  $A \in \mathbb{C}^{m \times n}$ ,  $(AA^*)^* = AA^*$ , that is,  $AA^*$  and  $A^*A$  are always Hermitian.

Then for  $A \in \mathbb{C}^{n \times n}$  we can write  $A^*A$  by  $A^*A = VDV^*$ . Moreover for any vector  $x \in \mathbb{C}^n$ .

$$\langle A^*Ax, x \rangle = \langle Ax, Ax \rangle \ge 0.$$

Thus every diagonal entry of D is nonnegative and we can find the square root matrix of D, say  $\Sigma$ ,

$$A^*A = (V\Sigma V^*)(V\Sigma V^*).$$

We guess  $A = V\Sigma V^*$ . However, that is not true in general, because the matrix of the form is always Hermitian.

## The SVD, Step 1

Suppose A is nonsingular. Then  $\langle A^*Ax,x\rangle=\langle Ax,Ax\rangle=0$  implies x=0. Thus  $A^*A$  is positive definite.

Let  $V = [v_1|\cdots|v_n]$ ,  $D = \operatorname{diag}(\sigma_1^2,\cdots,\sigma_n^2)$  where  $\sigma_i > 0$ . And define  $\Sigma = \operatorname{diag}(\sigma_1,\cdots,\sigma_n)$ .

$$\langle Av_i, Av_j \rangle = \langle A^*Av_i, v_j \rangle = \left\langle \sigma_i^2 v_i, v_j \right\rangle = \sigma_i^2 \langle v_i, v_j \rangle = \sigma_i^2 \delta_{ij}$$

Define  $u_i = \sigma_i^{-1} A v_i$ , and then

$$AV = [Av_1 \mid \cdots \mid Av_n] = [\sigma_1 u_1 \mid \cdots \mid \sigma_n u_n] = U\Sigma$$

Note that

$$\langle u_i, u_j \rangle = \langle \sigma_i^{-1} A v_i, \sigma_j^{-1} A v_j \rangle = \frac{1}{\sigma_i \sigma_j} \langle A^* A v_i, v_j \rangle = \frac{\sigma_i^2}{\sigma_i \sigma_j} \delta_{ij} = \delta_{ij}.$$

Hence U is also unitary.

## The SVD, Step 1

Rearrange  $\sigma_i$ 's so that  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n > 0$ . In this case, we say

$$A = U\Sigma V^*$$

is the Singular Value Decomposition of  ${\cal A}.$ 

## The SVD, Step 2

Now we suppose A is singular and let the nullity be n-r, or

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0.$$

Let  $u_i = c$  for  $i = 1, \dots, r$ . On the other hand for  $i = r + 1, \dots, n$ ,  $Av_i = 0$ because

$$\langle Av_i, Av_i \rangle = \langle A^*Av_i, v_i \rangle = \sigma_i^2 \langle v_i, v_i \rangle = 0,$$

Nevertherless, we can find  $u_i$ 's for  $i = r + 1, \dots, n$  so that  $\{u_i\}$  are orthonormal. Then

$$AV = [Av_1 \mid \cdots \mid Av_n] = [\sigma_1 u_1 \mid \cdots \mid \sigma_n u_n] = U\Sigma$$

Hence  $A \in \mathbb{C}^{n \times n}$  always has the SVD.

# 8.2 The SVD for general matrices

## The SVD, Step 3

The last step is that  $A \in \mathbb{C}^{m \times n}$  has the SVD.

Assume  $m \geq n$ . Then we can find the diagonal matrix  $D \in \mathbb{R}^{n \times n}$  and unitary matrix  $V \in \mathbb{C}^{n \times n}$  such that  $A^*A = VDV^*$ . The diagonal entries of D are  $\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0$ .

Define  $u_i \in \mathbb{C}^m$  for  $i=1,\cdots,r$  so that  $u_i=\sigma_i^{-1}Av_i$  and extend  $\{u_1,\cdots,u_r\}$  to  $\{u_1,\cdots,u_m\}$  which is orthonormal basis for  $\mathbb{C}^m$ .

Finally, define  $\Sigma \in \mathbb{C}^{m \times n}$  by

$$\Sigma_{ij} = \sigma_i \delta_{ij}.$$

Then we get

$$AV = U\Sigma$$
, or  $A = U\Sigma V^*$ 

If n > m,  $A^* \in \mathbb{C}^{n \times m}$  and this is the above case.

### The SVD

We can write  $A \in \mathbb{C}^{m \times n}$  as simple as possible by using the SVD as follows:

Find  $U\in\mathbb{C}^m$  and  $V\in\mathbb{C}^n$  and  $\Sigma\in\mathbb{R}^{m\times n}$  so that  $A=U\Sigma V^*$ . Let r be the largest index such that  $\sigma_i>0$  and define  $\Sigma_1\in\mathbb{R}^{r\times r}$  by  $\Sigma_1=\mathrm{diag}(\sigma_1,\cdots,\sigma_r)$  and split  $U=[U_1|U_2]$  and  $V=[V_1|V_2]$  by  $U_1=[u_1|\cdots|u_r]$ ,  $U_2=[u_{r+1}|\cdots|u_m]$ ,  $V_1=[v_1|\cdots|v_r]$  and  $V_2=[v_{r+1}|\cdots|v_n]$ . Then

$$A = U\Sigma V^* = \begin{bmatrix} U_1 \mid U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \mid 0 \\ \hline 0 \mid 0 \end{bmatrix} \begin{bmatrix} V_1^* \\ \overline{V_2^*} \end{bmatrix} = U_1\Sigma_1 V_1^*$$

We call  $U_1\Sigma_1V_1^*$  the <u>reduced SVD</u> of A.

## The outer product form of A

Let  $A \in \mathbb{C}^{n \times n}$  with the reduced SVD  $U_1 \Sigma_1 V_1^*$  of rank r. For given  $x \in \mathbb{C}^n$ ,

$$Ax = U_1 \Sigma_1 V_1^* x = U_1 \Sigma_1 \begin{bmatrix} \langle x, v_1 \rangle \\ \vdots \\ \langle x, v_r \rangle \end{bmatrix}$$

$$= \begin{bmatrix} u_1 \mid \cdots \mid u_r \end{bmatrix} \begin{bmatrix} \sigma_1 \langle x, v_1 \rangle \\ \vdots \\ \sigma_r \langle x, v_r \rangle \end{bmatrix}$$

$$= \sum_{i=1}^r \sigma_i \langle x, v_i \rangle u_i = \left(\sum_{i=1}^r \sigma_i u_i \otimes v_i\right) x$$

Hence 
$$A = \sum_{i=1}^r \sigma_i u_i \otimes v_i$$
.

## Summary

- ▶ Every  $A \in \mathbb{C}^{m \times n}$  has the SVD,  $U\Sigma V^*$ .
- ▶ If  $\operatorname{rank}(A) = r$ , there are only r positive singular values and A has the reduced SVD with  $\Sigma_1 \in \mathbb{C}^{r \times r}$ ,  $U_1 \Sigma_1 V_1^*$ .

### How to find the SVD

- 1. Compute (or guess) eigen pairs of  $A^*A$  (or  $AA^*$ ).
- 2. Orthogonalize(need not orthonormalize)  $\{v_1, \dots, v_n\}$  and compute  $u_i = Av_i$  for  $i = 1, \dots, r = \text{rank}(A)$  (need not  $u_i = \frac{1}{\sigma_i}Av_i$ )).
- 3. Extend  $\{u_1, \dots, u_r\}$  and orthonormalize  $\{v_1, \dots, v_n\}$  and  $\{u_1, \dots, u_m\}$ .

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 2 & 4 & 2 \\ 1 & 1 & -3 \end{bmatrix}.$$

Find the SVD of A in both matrix and outer product form.

#### Note

Since the first and second row are linearly dependent, A is singular. So 0 is an singular value of A.

## Proof of Ex 8.1.3

$$A^{T}A = \begin{bmatrix} 2 & 2 & 1 \\ 4 & 4 & 1 \\ 2 & 2 & -3 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 2 & 4 & 2 \\ 1 & 1 & -3 \end{bmatrix} = \begin{bmatrix} 9 & 17 & 5 \\ 17 & 33 & 13 \\ 5 & 13 & 17 \end{bmatrix}$$

$$\begin{split} p_{A^TA}(r) &= \begin{vmatrix} r-9 & -17 & -5 \\ -17 & r-33 & -13 \\ -5 & -13 & r-17 \end{vmatrix} \\ &= r(r-11)(r-48). \end{split}$$

### Proof of Ex 8.1.3

| λ  | $\sigma$    | $v_i$      | $  v_i  $   |
|----|-------------|------------|-------------|
| 48 | $4\sqrt{3}$ | (1, 2, 1)  | $\sqrt{6}$  |
| 11 | $\sqrt{11}$ | (1, 1, -3) | $\sqrt{11}$ |
| 0  | 0           | (7, -4, 1) | $\sqrt{31}$ |

Take  $u_i = \frac{1}{\sigma_i} A \frac{v_i}{\|v_i\|}$ .

$$\begin{array}{c|c} u_1 & (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \\ \hline u_2 & (0, 0, 1) \\ \end{array}$$
 Take  $u_3 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ 

Then  $u_3\cdot u_i=0$  for i=1,2. Finally, Take  $V=\left[\frac{v_1}{\|v_1\|}\Big|\frac{v_2}{\|v_2\|}\Big|\frac{v_3}{\|v_3\|}\right]$  and  $U=\left[u_1|u_2|u_3\right]$  and  $\Sigma=\mathrm{diag}(4\sqrt{3},\sqrt{11},0)$ . Then  $A=U\Sigma V^T$ .

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4\sqrt{3} & 0 & 0 \\ 0 & \sqrt{11} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{11}} & \frac{-3}{\sqrt{11}} \\ \frac{7}{\sqrt{31}} & \frac{-4}{\sqrt{31}} & \frac{1}{\sqrt{31}} \end{bmatrix}$$

### Proof of Ex 8.1.3

$$u_1 \otimes v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{2\sqrt{3}} \\ \frac{1}{2\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{2\sqrt{3}} \\ 0 & 0 & 0 \end{bmatrix}$$
$$u_2 \otimes v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{11}} & \frac{-3}{\sqrt{11}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{\sqrt{11}} & \frac{1}{\sqrt{11}} & \frac{-3}{\sqrt{11}} \end{bmatrix}$$

$$A = \sigma_1 u_1 \otimes v_1 + \sigma_2 u_2 \otimes v_2 = \begin{bmatrix} 2 & 4 & 2 \\ 2 & 4 & 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & -3 \end{bmatrix}$$

Let A be the  $2 \times 3$  matrix defined as  $A = uv^T$ , where

$$u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Find the SVD of A.

#### Proof

Let  $u_1=(1/\sqrt{5},2/\sqrt{5}), v_1=(1/\sqrt{2},0,1/\sqrt{2})$  and  $\sigma_1=\sqrt{10}.$  Then  $A=\sigma_1u_1\otimes v_1.$  Take  $u_2=(-2/\sqrt{5},1/\sqrt{5}),\ v_2=(-1/\sqrt{2},0,1/\sqrt{2}),\ v_3=(0,1,0)$  and  $\sigma_2=0.$  Then

$$A = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix}$$

Suppose  $A \in \mathbb{R}^{n \times n}$  has orthogonal columns. Find the SVD of A.

Suppose  $A \in \mathbb{C}^{n \times n}$  is invertible and  $A = U \Sigma V^*$  is the SVD of A. Find the SVD of each of the following matrices:

- (a)  $A^*$
- (b)  $A^{-1}$
- (c)  $A^{-*}$

Let  $A\in\mathbb{C}^{n\times n}$  be normal, and let  $A=XDX^*$  be the spectral decomposition of A. Explain how to find the SVD of A from X and D.

Exercies 8.1/8.2

### Ex 8.2.2

Let

$$A = \begin{bmatrix} 3 & 1 \\ 1 & -1 \\ 1 & -1 \\ -1 & -3 \end{bmatrix}.$$

Find the SVD of  ${\cal A}$  and orthonormal bases for the four fundamental subspace of  ${\cal A}.$ 

### Proof of Ex 8.2.2

$$A^T A = \begin{bmatrix} 12 & 4 \\ 4 & 12 \end{bmatrix}.$$

Then  $\sigma_1=4$ ,  $v_1=(1,1)$  and  $\sigma_2=2\sqrt{2}$ ,  $v_2=(1,-1)$ . Take  $u_1=Av_1=(4,0,0,-4)$  and  $u_2=Av_2=(2,2,2,2)$ . Revalue  $u_1=(1,0,0,-1)$  and  $u_2=(1,1,1,1)$ . Put  $u_3=(0,1,-1,0)$  and  $u_4=(0,0,1,0)-\frac{1}{4}(1,1,1,1)+\frac{1}{2}(0,1,-1,0)=(-1/4,1/4,1/4,-1/4)$ . Finally normalize  $v_i$  and  $u_j$ . Then the SVD of A is

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2\sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Let  $u \in \mathbb{R}^m$  and  $v \in \mathbb{R}^n$  be given, and define  $A = uv^T$ . What are the singular values of A? Explain how to compute a singular value decomposition of A.

Let  $u \in \mathbb{R}^n$  have Euclidean norm one, and define  $A = I - 2uu^T$ . Find the SVD of A.

Let  $A \in \mathbb{R}^{m \times n}$  be nonsingular. Compute

$$\min\{\|Ax\|_2 \ : \ x \in \mathbb{R}^n, \|x\|_2 = 1\},$$

and find the vector  $x \in \mathbb{R}^n$  that gives the minimum value.

Let  $A\in\mathbb{C}^{n\times n}$  be arbitrary. Using the SVD of A, show that there exist a unitary matrix Q and a Hermitian positive semidefinite matrix H such that A=QH. Alternatively, show that A can be written as A=GQ, where G is also Hermitian positive semidefinite and Q is the same unitary matrix. The decompositions A=QH=GQ are the two forms of the polar decomposition of A.

#### Note

$$\det(A) = \det(Q)\det(H) = e^{i\theta} \cdot r$$

where  $r = |\det(A)|$ .

## Geometrical meaning of the SVD



Link to Wiki: singular value decomposition

### O'Neill - Elementary Differential Geometry

### Ex 3.3.4 in O'Neill

Suppose  $C\in\mathbb{R}^{3 imes3}$  is an orthogonal matrix. Then there is a number  $\theta$  and an orthonormal sets  $\{v_1,v_2,v_3\}$  such that

$$Cv_1 = \cos \theta v_1 + \sin \theta v_2$$

$$Cv_2 = -\sin \theta v_1 + \cos \theta v_2$$

$$Cv_3 = \pm v_3$$

#### Note

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

rotates vectors in  $\mathbb{R}^2$  counterclockwise throughout an angle  $\theta$  with respect to the x axis.

### Proof

 $\det(rI-C)$  is a polynomial of degree 3. So it has at least one real solution, say  $\lambda_3$ . Let  $v_3$  be the corresponding e.vec with norm one. Then

$$\lambda_3^2 = \lambda_3 v_3 \cdot \lambda_3 v_3 = C v_3 \cdot C v_3 = C^T C v_3 \cdot c_3 = ||v_3||^2 = 1.$$

So  $\lambda_3=\pm 1$ . Now extend  $v_3$  to an orthonormal basis  $\{v_1,v_2,v_3\}$ . Then

$$Cv_1 \cdot v_3 = \pm Cv_1 \cdot Cv_1 = \pm C^T Cv_1 \cdot v_3 = \pm v_1 \cdot v_3 = 0.$$

So  $Cv_1=a_1v_1+b_1v_2$  and  $Cv_2=a_2v_1+b_2v_2$ . Since  $\|Cv\|=\|v\|$ ,  $a_1^2+b_1^2=1$  and  $a_2^2+b_2^2=1$ .  $v_1\cdot v_2=0$  implies  $a_1a_2+b_1b_2=0$ . Then we can find (if you need, interchange  $v_1$  and  $v_2$  each other) some  $\theta$  such that

$$a_1 = \cos \theta, \quad a_2 = \sin \theta$$
  
 $b_1 = -\sin \theta, \quad b_2 = \cos \theta.$ 

Let  $A \in \mathbb{C}^{n \times n}$ . Prove that  $\|Ax\|_2 \leq \sigma_1 \|x\|_2$  for all  $x \in \mathbb{C}^n$ , where  $\sigma_1$  is the largest singular value of A.

### Ex 8.2.12

Let  $A \in \mathbb{C}^{n \times n}$ . Prove that  $||Ax||_2 \ge \sigma_n ||x||_2$  for all  $x \in \mathbb{C}^n$ , where  $\sigma_n$  is the smallest singular value of A.

Given  $A \in \mathbb{C}^{m \times n}$ , the pseudoinverse  $A^\dagger \in \mathbb{C}^{n \times m}$  is defined by the condition that  $x = A^\dagger b$  is the minimum-norm least-squares solution to Ax = b.

- (a) Let  $\Sigma \in \mathbb{C}^{m \times n}$  be a diagonal matrix. Find  $\Sigma^{\dagger}$ .
- (b) Find the pseudoinverse of  $A \in \mathbb{C}^{m \times n}$  in terms of the SVD of A.

Let m>n and suppose  $A\in\mathbb{R}^{m\times n}$  has full rank. Let the SVD of A be  $A=U\Sigma V^T.$ 

- (a) Find the SVD of  $A(A^TA)^{-1}A^T$ .
- (b) Prove that  $\|A(A^TA)^{-1}A^Tb\|_2 \le \|b\|_2$  for all  $b \in \mathbb{R}^m$ .

The Frobenius norm  $\left\|\cdot\right\|_F$  on  $\mathbb{C}^{m\times n}$  is defined by

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2}.$$

(a) Prove that if  $U \in \mathbb{C}^{m \times m}$  is unitary, then

$$\|UA\|_F = \|A\|_F.$$

Similarly, if  $V \in \mathbb{C}^{n \times n}$  is unitary, then

$$\|AV\|_F = \|A\|_F.$$

(b) Let  $A\in\mathbb{C}^{m\times n}$  be given, and let r>0 such that  $r<\mathrm{rank}(A).$  Find  $B\in\mathbb{C}^{m\times n}$  of rank r such that B solve

$$\begin{split} \min & \|A - B\|_F \\ \text{s.t.} & \operatorname{rank}(B) = r. \end{split}$$

# Solving least-squares problems using the SVD

### Recall

 $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ 

- $lacksquare x \in \mathbb{R}^n$  be a LS solution to  $Ax = b \Leftrightarrow x$  is a solution to  $A^TAx = A^Tb$ .
- ▶  $x \in \mathbb{R}^n$  be a MN-LS solution to  $Ax = b \Leftrightarrow x$  is a LS sol to Ax = b and  $x \in \operatorname{col}(A^T)$ .
- ▶ A has the SVD such that  $A = U\Sigma V^T$ .
- $A^{\dagger} = V \Sigma^{\dagger} U^{T}.$

If  $U \in \mathbb{R}^{n \times n}$  is orthogonal and  $x \in \mathbb{R}^n$ ,

$$\|Ux\|_2^2 = Ux \cdot Ux = U^T Ux \cdot x = x \cdot x = \|x\|_2^2.$$

## MN-LS solution using the SVD, Step 1

 $A = U\Sigma V^T$ ,  $x^*$ : LS solution to Ax = b.

$$\left\|Ax-b\right\|_2^2 = \left\|U\Sigma V^Tx-b\right\|_2^2 = \left\|U\Sigma V^Tx-UU^Tb\right\|_2^2 = \left\|\Sigma V^Tx-U^Tb\right\|_2^2$$

Write  $y = V^T x$ .

$$||Ax - b||_2^2 = ||\Sigma y - U^T b||_2^2$$

Let  $U_1\Sigma_1V_1$  be the reduced SVD of A and write  $y=[w^T|z^T]^T$  where  $w\in\mathbb{R}^r$ .

$$\left\|\Sigma y - U^T b\right\|_2^2 = \left\|\left[\frac{\Sigma_1 w}{0}\right] - \left[\frac{U_1^T b}{U_2^T b}\right]\right\|_2^2 = \left\|\left[\frac{\Sigma_1 w - U_1^T b}{-U_2^T b}\right]\right\|_2^2$$

So we get

$$||Ax - b||_2^2 = ||\Sigma_1 w - U_1^T b||_2^2 + ||U_2^T b||_2^2.$$

## MN-LS solution using the SVD, Step 2

By Step 1, if  $x^*$  is a LS solution to Ax = b,  $x^* = Vy^*$  where  $y^* = [w^{*T}|z^{*T}]^T$  and  $w^* \in \mathbb{R}^r$  is a LS solution to  $\Sigma_1 w = U_1^T b$ .

Note that 1) such  $w^*$  is unique and 2)  $z^* \in \mathbb{R}^{n-r}$  is arbitrary.

Take MN-SL  $\bar{x}$  to Ax = b, i.e.,

- $\hat{x}$  is a LS solution to Ax = b
- $\bar{x}_2^2 = \min\{\|x^*\|_2^2 : x^* \text{ is a LS to } Ax = b\}.$

If we write  $\bar{x}=V_1\bar{w}+V_2\bar{z}$ ,  $\bar{w}=w^*$  and

$$\|\bar{x}\|_{2}^{2} = \|w^{*}\|_{2}^{2} + \|\bar{z}\|_{2}^{2} \le \|w^{*}\|_{2}^{2} + \|z^{*}\|_{2}^{2}.$$

Since  $z^*$  is arbitrary,  $\bar{z}=0$ , or  $\bar{x}=V_1w^*$ .

#### 8.3 Solving least-squares problems using the SVD

# MN-LS solution using the SVD, Step 3

Since 
$$\Sigma_1$$
 is invertible,  $w^* = \Sigma_1^{-1} U_1^T b$ .

$$\bar{x} = V_1 w^* = V_1 \Sigma_1^{-1} U_1^T b = (U_1 \Sigma_1 V_1^T)^{\dagger} b$$
  
=  $(U \Sigma V^T)^{\dagger} b = A^{\dagger} b$ .

Hence 
$$A^{\dagger} = V \Sigma^{\dagger} U^T$$
.

8.3 Solving least-squares problems using the SVD

#### Ex 8.3.4

Suppose  $A \in \mathbb{R}^{m \times n}$  has SVD  $A = U\Sigma V^T$ , and we write  $U = [U_1|U_2]$ , where  $U_1$  form a basis for  $\operatorname{col}(A)$  and the columns of  $U_2$  form a basis for  $\mathcal{N}(A^T)$ . Show that, for  $b \in \mathbb{R}^m$ ,  $U_2U_2^Tb$  is the projection of b onto  $\mathcal{N}(A^T)$  and  $\left\|U_2U_2^Tb\right\| = \left\|U_2^Tb\right\|$ .

8.3 Solving least-squares problems using the SVD

#### Ex 8.3.7

Let  $A \in \mathbb{R}^{m \times n}$  have rank r. Write the formular for the MN-LS solution to Ax = b in outer product form.

#### The Smith normal form of a matrix

#### Recall

- $ightharpoonup \mathbb{Q}$ ,  $\mathbb{R}$ , and  $\mathbb{C}$  are fields.
- $ightharpoonup \mathbb{Z}$  is not a field but it is closed under addition, multiplication and additive inverse operator.
- ▶ LA6 Equivalance Relation and Partition of Set

#### Definition

A matrix  $U \in \mathbb{Z}^{n \times n}$  is called unimodular if its determinant is 1 or -1.

#### Link to SNF - FTFGAG

## Theorem (368, The Smith normal form)

Lset  $A\in\mathbb{Z}^{m\times n}$  be given. There exist unimodular matrices  $U\in\mathbb{Z}^{m\times m}$ ,  $V\in\mathbb{Z}^{n\times n}$  and a diagonal matrix  $S\in\mathbb{Z}^{m\times n}$  such that A=USV, the diagonal entries of S are  $d_1,\cdots,d_r,0,\cdots,0$ , each  $d_i>0$  and  $d_i|d_{i+1}$  for  $i=1,\cdots,r-1$ . S is called the Smith normal form of A.

 $d_1, \cdots, d_r$  are called the elementary divisors (or the invariant factors).

8.5 The Smith normal form of a matrix

#### Ex 4.4.7

Suppose  $A \in \mathbb{R}^{n \times n}$  is invertible and has integer entries, and assume  $\det(A) = \pm 1$ . Prove that  $A^{-1}$  also has integer entries.

By Ex 4.4.7,  $U^{-1}$  and  $V^{-1}$  belong to  $\mathbb{Z}^{m\times m}$  and  $\mathbb{Z}^{n\times n}$ , respectively. Define  $W=V^{-1}$  and then

$$A = USV = USW^{-1}$$

# The Division Algorithm

Let  $m,n \in \mathbb{Z}$  with m>n. Then there is  $q,r \in \mathbb{Z}$  such that  $0 \leq r < n$  and

$$m = qn + r.$$

#### **Elementary Matrices**

For given  $\lambda(\neq 0) \in \mathbb{R}$  and  $i, j = 1, \dots, n$ , consider the following  $n \times n$  matrices

- $ightharpoonup M_{ij}(\lambda): e_i \mapsto e_i + \lambda e_j \text{ for } k=i; \text{ otherwise } e_k \mapsto e_k.$
- $ightharpoonup A_{ij}: e_i \leftrightarrow e_j \text{ and } e_k \mapsto e_k \text{ for } k \neq i, j.$
- $ightharpoonup N_i(\lambda): e_i \mapsto \lambda e_i \text{ and } e_k \mapsto e_k \text{ for } k \neq i.$

#### Check

- $ightharpoonup \det(M_{ij}(\lambda)) = 1$ ,  $\det(A_{ij}) = -1$ , and  $\det(N_i(\lambda)) = \lambda$ .
- $ightharpoonup M_{ij}(\lambda)^{-1} = M_{ij}(-\lambda)$ ,  $A_{ij}^{-1} = A_{ij}$ , and  $N_i(\lambda)^{-1} = N_i(\lambda^{-1})$ .

## Example

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 2 & 1 \\ 3 & 5 & 4 & 1 \\ 4 & 7 & 8 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 4 & 1 \\ 2 & 3 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 4 & 7 & 8 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 2 & 1 \\ 3 & 5 & 4 & 1 \\ 4 & 7 & 8 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 2 & 1 \\ 5 & 7 & 6 & 3 \\ 4 & 7 & 8 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 2 & 1 \\ 3 & 5 & 4 & 1 \\ 4 & 7 & 8 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 6 & 4 & 2 \\ 3 & 5 & 4 & 1 \\ 4 & 7 & 8 & 1 \end{bmatrix}$$

8.5 The Smith normal form of a matrix

## The Smith normal form, Step 1

Given  $X \in \mathbb{Z}^{m \times n}$ , multiply  $A_{ij}$  (or perform row and column interchanges) so that  $X_{11}$  is the smallest nonzero absolute value in all entries of X.

## The Smith normal form, Step 2

If  $X_{11}|X_{1j}$  for each  $j=2,\cdots,n$  go to Step 3. Otherwise, take the smallest value of j such that  $X_{11}|X_{1j}$  fails. Then by Euclidean Algorithm, we can find q,r such that  $X_{1j}=qX_{11}+r$ . Mulitply replace X to  $M_{j1}(-q)X$  and Go to Step 1.

## The Smith normal form, Step 3

If  $X_{11}|X_{i1}$  for each  $i=2,\cdots,m$ , go to Step 4. Otherwise, take the smallest value of i such that  $X_{11}|X_{i1}$  fails. Choose q,r, and replace X to  $XM_{i1}(-q)$  and go to Step 1.

## The Smith normal form, Step 4

Now  $X_{11}$  divides other entries in the first row and column. Add muliples of column 1 to culumns  $2,3,\cdots,n$ , to zero out those entries. Similarly, add mutiples of row 1 to rows  $2,3,\cdots,m$  to zero out those entries. Then we get

$$X = \begin{bmatrix} X_{11} & 0 \\ \hline 0 & \widetilde{X} \end{bmatrix},$$

where  $\tilde{X}$  is  $(m-1) \times (n-1)$ .

#### The Smith normal form, Step 5

If m-1-0 or n-1=0, then X is diagonal; otherwise aplly Steps 1 through 4 to the submatrix  $\tilde{X}$ .

## The Smith normal form, Step 6

Now X is diagonal. Rearrange  $X_{ii}$ 's so that  $0 < X_{11} \le X_{22} \le \cdots \le X_{rr}$  and  $X_{r+1,r+1} = \cdots = 0$ . If there is  $i \le r-1$  such that  $X_{ii} \not | X_{jj}$  for some j > i, add row j to row i and apply Step 1. If  $X_{11}|X_{22}|\cdots|X_{rr}$ , stop. For each step, we just multiplied  $P_s \in \mathbb{Z}^{m \times m}$  and  $Q_s \in \mathbb{Z}^{n \times n}$  to X,  $P_s X Q_t$ . Thus

$$S = P_k P_{k-1} \cdots P_1 X Q_1 Q_2 \cdots Q_l$$

Note that each  $P_t$  and  $Q_s$  are of the types  $M_{ij}(\lambda)$  or  $A_{ij}$ . Hence  $P_k P_{k-1} \cdots P_1$  and  $Q_1 Q_2 \cdots Q_l$  are unimodular, as desired.

8.5 The Smith normal form of a matrix

#### Ex 8.5.2

Let

$$A = \begin{bmatrix} 8 & 4 & 16 \\ 10 & 5 & 20 \\ 11 & 7 & 7 \end{bmatrix}.$$

Find the Smith decomposition  ${\cal A}=USV$  of  ${\cal A}.$ 

## Application of the Smith normal form

Recall  $(\mathbb{Z}_p,+,\cdot)$  is a ring, and it is a field if and only if p is a prime number.(LA1, LA6)

## Theorem (372)

Let  $A \in \mathbb{Z}^{n \times n}$ , and let  $\tilde{A} \in \mathbb{Z}_p^{n \times n}$  be obtained by replacing each entry of A by its congruence class modulo p. Then the congruence class of  $\det(A)$  modulo p is the same as the  $\det(\tilde{A})$  in  $\mathbb{Z}_p$ .

$$\det(A) \equiv \det(\tilde{A}) \bmod p$$

#### Corollary (373)

 $\tilde{A}$  is singular if and only if  $p|\det(A)$ .

8.5 The Smith normal form of a matrix

#### Definition

Let  $A \in \mathbb{Z}^{n \times n}$ . The p-rank of A is the rank of  $\tilde{A}$ .

## Theorem (375)

- 1. Let  $A \in \mathbb{Z}^{n \times n}$  and let  $S \in \mathbb{Z}^{n \times n}$  be the Smith normal form of A, with nonzero diagonal entries  $d_1, \dots, d_r$ . Then the rank of A is r.
- 2. Let  $B \in \mathbb{Z}_p^{n \times n}$  and let  $T \in \mathbb{Z}_p^{n \times n}$  be the Smith normal form over  $\mathbb{Z}_p$  of B with nonzero diagonal entries  $e_1, \cdots, e_s$ . Then the rank of B is s.

#### Corollary (376)

Let  $A \in \mathbb{Z}^{n \times n}$  and let  $S \in \mathbb{Z}^{n \times n}$  be the Smith normal form of A, with nonzero diagonal entries  $d_1, \dots, d_r$ . Let p be prime and let k be the largest integer such that p does not divide  $d_k$ . Then thee p-rank of A is k.

8.5 The Smith normal form of a matrix

#### Remark 1

Suppose  $A\in\mathbb{Z}^{n\times n}$  has the Smith normal form USV. Since  $\det(U)=\dim(V)=1$ ,  $\dim(\tilde{U})=\dim(\tilde{V})=1\mod p$ . So  $\tilde{U}\tilde{S}\tilde{V}$  is the Smith normal form of  $\tilde{A}$  over  $\mathbb{Z}_p$ .

#### Remark 2

If A has p-rank s, then so does  $A^T$ .

## Example 377 in 8.5

$$A = \begin{bmatrix} 3 & 2 & 10 & 1 & 9 \\ 7 & 6 & 8 & 9 & 5 \\ -100 & -102 & -2 & -204 & 46 \\ -1868 & -1866 & 26 & -3858 & 1010 \\ -27204 & -27202 & 34 & -54734 & 13698 \end{bmatrix}$$

Find 5-rank of A.

#### Remark

Suppose  $A \in \mathbb{Z}^{n \times n}$  has p-rank s. By theorem 375, the s

#### 8.5 The Smith normal form of a matrix

#### Proof

$$\tilde{A} = \begin{bmatrix} 3 & 2 & 0 & 1 & 4 \\ 2 & 1 & 3 & 4 & 0 \\ 0 & 3 & 3 & 1 & 1 \\ 2 & 4 & 1 & 2 & 0 \\ 1 & 3 & 4 & 1 & 3 \end{bmatrix} \in \mathbb{Z}_5^{5 \times 5}.$$

Apply row operation.

So 5-rank of A is 3.

# The End