

EE 354/CE 361/MATH 310 – Introduction to Probability and Statistics

Fall 2023

Aamir Hasan

Lecture No 01 – 21st August 2023

Announcements!

- Welcome to Fall 2023 semester & to EE 354/CE 361/MATH 310 class
- Fun class!

Agenda for today

- Get to know the 'Elephant in the room'
- Introduction personnel (You & Me) & the course
- Course Aims & objectives
- Course Structure, Expectations & share previous experience

Course Character & Objectives!

Introductions

- Instructor
 - Dr Aamir Hasan, Vice President Academic Affairs & Dean of Faculty, Acting Associate Dean Undergraduate Education & Accreditation & Associate Professor in Electrical & Computer Engineering
- Students?
- What is Probability?
 - MATH 310/EE 354 Introduction to Probability & Statistics
 - Probability? & Random Variables?
- Why study Probability?

Introductions

Why 'Study of Probability' is important now?

Science & Engineering together have developed complex systems that inherently contain uncertainties

Role of information using data analysis has an important role in making decisions

Course Character & Objectives

Parallel Objectives

- Probabilistic concepts, and languages: menu of common models
- Mathematical tools
- Intuition
- Acquire working knowledge of the subject

Not a mathematics class but to develop intuition through mathematical arguments & constructs

How do we do it?

- To acquire working knowledge, we:
 - Cover relevant material &
 - Capitalize on effective organization of the material

Course Character & Objectives

CE 361/ MATH 310/ EE 354

- **❖** An introduction/overview course
- **Rich in specific applications**
- **Rich in computational exercise**
- Rich in demos

Probability

- In real life, engineers make decisions on the basis of incomplete or imperfect information
- The theory of probability helps provide a formal mechanism for understanding, quantifying, and dealing with uncertainty, which is ever present in our lives, pure science, or engineering applications
- Simply, by uncertainty we mean the condition when outcomes or future are not completely determined or can be captured by a deterministic function; they depend on a number of factors and perhaps just on pure chance
- A lot of our present day technologies will not be possible without an understanding of how to make decisions under uncertainties

Where is Probability useful?

- Everywhere
 - Physics (quantum)
 - Biology (evolution)
 - Communications & Signal processing (Noise)
 - Management (demand model ...)
 - Finance
 - Transportation
 - Social networks (trends....)

Example - Probability (I)

Question: How many (unbiased) dice must be thrown so that there is a better than 0.5 chance (probability) of obtaining at least one six?

- Question No I: What is the probability of getting a Head in a throw of an un-biased coin?
- Question No II: What is the probability of getting n-heads in n throws of a un-biased coin?
- Question No III: Assume now a biased coin with Probability of Head = 1/6 & probability of tail = 5/6. What's the probability of getting at least one head (≥ 1) in n-throws?
- Question No IV: How many times should this biased coin be thrown that there is a better than 0.5 chance (probability) of obtaining at least one head?

Example - Probability (II)

 Question No 2: In a certain college, 25% of the students failed mathematics, 15% of the students failed chemistry, and 10% of the students failed both mathematics and chemistry. A student is selected at random. If he failed chemistry, what is the probability that he failed mathematics too?

Example - Probability (III)

- Question No 3: The amount of rain in Karachi in the month of August is X cm.
- Question No 3b: What is X? Discuss
- Question No 3c: Predict any formula for X
- Question No 3d: Discuss the variability in X from 2000 to 2017
- Question No 3e: Draw or predict a histogram of X?

Course Character & Objectives - <u>Summary</u>

MATH 310/EE 354 Course

- **An introduction/overview course**
- **Rich in specific applications**
- **Rich in computational exercise**
- **Rich in demos**

- ❖ Not a mathematics class but to develop intuition through mathematical arguments & constructs
- ❖ We need to able to understand, model, analyze & predict uncertainties
- ❖ We need to able to have a grip on the mathematical models, tools and procedures for determining the inherent randomness in complex systems

Aim of the Course

- Course will cover foundations of probability and statistics, with examples from electrical engineering, computer science, and everyday life.
- Course contents can broadly be divided:-
 - 1. fundamentals of probability
 - 2. common probability models, and
 - 3. statistics

Objectives:-

- Gaining an appreciation for the limitation of human intuition when faced with finding optimal solution for a problem in presence of uncertainty
- Recognizing presence of uncertainty in a scenario and modeling it using formal notions of probability
- Identifying the right questions to ask when drawing inferences from a probability model and interpreting results correctly

Aim of the Course

Summary

- To develop the art of describing uncertainty in terms of probabilistic models, as well as the skill of probabilistic reasoning
- Therefore, the first we will describe the generic structure of such models and their basic properties. The models we consider assign probabilities to collections (sets) of possible outcomes
- For this reason, we will do a short review of set theory

Required Course Reading

• Required text - Bertsekas, Dimitri P., and John N. Tsitsiklis. Introduction to probability. Vol. 1. Belmont, MA: Athena Scientific, 2002.

Structure of Required Course Reading

Chapter Title

1. Sample Space and Probability

• Sets, Probabilistic Models, Conditional Probability, Total Probability, Theorem and Bayes' Rule, Independence, Counting

2. Discrete Random Variables

 Basic Concepts, Probability Mass Functions, Functions of Random Variables, Expectation, Mean, and Variance, Joint PMFs of Multiple Random Variables, Conditioning, Independence

3. General Random Variables

 Continuous Random Variables and PDFs, Cumulative Distribution Functions, Normal Random Variables, Joint PDFs of Multiple Random Variables, Conditioning, The Continuous Bayes' Rule

4. Further Topics on Random Variables

 Derived Distributions, Covariance and Correlation, Conditional Expectation and Variance Revisited, Transforms, Sum of a Random Number of Independent Random Variables

Structure of Required Course Reading

Chapter Title

5. Limit Theorems

 Markov and Chebyshev Inequalities, The Weak Law of Large Numbers, Convergence in Probability, The Central Limit Theorem, The Strong Law of Large Numbers

6. The Bernoulli and Poisson Processes

• The Bernoulli Process, The Poisson Process

7. Markov Chains

 Discrete-Time Markov Chains, Classification of States, Steady-State Behavior, Absorption Probabilities and Expected Time to Absorption, Continuous-Time Markov Chains

8. Bayesian Statistical Inference

• Bayesian Inference and the Posterior Distribution, Point Estimation, Hypothesis Testing, and the MAP Rule, Bayesian Least Mean Squares Estimation

9. Classical Statistical Inference

Classical Parameter Estimation, Linear Regression, Binary Hypothesis Testing,
 Significance Testing

Course Plan MATH 310/EE 354/CE 361 – Probability & Statistics

Tentative course schedule – Ambitious Do Not Worry!

	Assessment type	Total	Weight (%)	Remarks
1	Short 15-20 mins quiz	8	40	These will be held every alternate week – these will mostly be based on the lectures and practice questions from the lectures. During the midterm and end term week the quizzes may not happen.
2	Assignments	4	16	Two assignment on module No 1 (chapter No 1), one assignment from module 2 (chapter No 2) & one assignment from module 3 (Chapter No 3)
3	Mid-term Exam	1	20	An in-person exam will be conducted that would be comprehensive with the material taught till end of week No 7/8
4	End-term Exam	1	24	An in-person exam will be conducted that would be comprehensive

GRADING SCALE

LETTER GRADE	GPA POINTS	PERCENTAGE
A+	4.00	[95-100]
A	4.00	[90-95)
A-	3.67	[85-90)
B+	3.33	[80-85)
В	3.00	[75-80)
B-	2.67	[70-75)
C+	2.33	[67-70)
С	2.00	[63-67)
C-	1.67	[60-63)
F	0.00	[0-60)

Summary Predictions Probability Theory Real World (Analysis) **Decisions** Models **Data Inference/Statistics** Fair Coin Probability Given model, predict data **Biased Coin** Statistics Given data, predict model

Norm setting – for course

Inputs?