CS581 Theory of Computation: Homework #1

Due on January 20 2015 at 2:00pm

Harry H. Porter Winter 2016

Konstantin Macarenco

- a. Start State: M_1 q_1 , M_2 q_1
- b. Set of accept states M_1 $F = \{q_2\}, M_2$ $F = \{q_1, q_4\},$
- c. $M_1 = \{q_1, q_2, q_3, q_1, q_1\}, M_2 = \{q_1, q_1, q_1, q_2, q_4\}$
- d. M_1 No, M_2 Yes
- e. M_1 No, M_2 Yes

Problem 2

 M_1

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\sum = \{a, b\}$
- 3. δ described as

Table 1: M_1 Transition function

	a	b
q_1	q_2	q_1
q_2	q_3	q_3
q_3	q_2	q_1

- 4. Start state $q_1 \in Q$
- 5. $F = \{q_3\} \subseteq Q$ Start state $q_1 \in Q$

 M_2

1.
$$Q = \{q_1, q_2, q_3, q_4\}$$

2.
$$\sum = \{a, b\}$$

3. δ described as

Table 2: M_2 Transition function

	a	b
q_1	q_1	q_2
q_2	q_3	q_4
q_3	q_2	q_1
q_4	q_3	q_4

- 4. Start state $q_1 \in Q$
- 5. $F = \{q_1, q_4\} \subseteq Q$ Start state $q_1 \in Q$

Problem 3

Problem 4

a

b.

 \mathbf{c}

 \mathbf{d}

 \mathbf{e}

 \mathbf{f}

1.6f

Problem 6

1.6i

1.7c

1.7e

Problem 8

1.12

1.21

Problem 10

1.28b

Convert the following regular expression to NFA using the procedure given in Theorem 1.54. In all parts, $\sum = \{a, b\}.$

Problem 11

1.29b

Use the pumping lemma to show that the following languages are not regular. $A_2=\{www|w\in\{a,b\}^*\}$

Assume that $A_2 = \{www|w \in \{a, b\}^*\}$

is regular. Let p be the pumping length given by the pumping lemma. Choose s to be the string $a^pba^pba^pb$.

Because s is a member of A_2 and s is longer than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, where $|xy| \le p$, hence y can only be contained in first a^p . Since $y \ge 1$, let $y = a^i$, i > 0. However, $xy^2z = a^{p+k}ba^pba^pb$, where p+k > P, is not in A_2 . That is s cannot be pumped. This is a contradiction. Thus, A_2 is not regular.

Problem 12

1.31

For any string $w = w_q w_2 \cdot w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n \cdots w_2 w_1$. For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, so is A^R .

By theorem if A is regular, then there is a DFA $M = (Q, \sum, \delta, q_0, F)$ such that M recognizes A. We will show that it is possible to construct an NFA $N = (Q', \sum', \delta', q'_0, F')$ that will recognize A^R . Informally:

- 1. Reverse all the connections in the automaton.
- 2. Add a new state q_f
- 3. Draw ϵ connection from state q_f to every final state.
- 4. Make all the final states normal states.
- 5. Make start state final state.
- 6. Make q_f the start state.

Formally

- $Q' = Q \cup \{q'_0\}$, where q_0 is the new start state
- $F' = \{q_0\}$, is the new final state. We accept only in the start state of the original DFA.
- Define transition functions δ' .

$$\delta(q, a)' = \begin{cases} F, & \text{if } q = q_0' \text{ and } a = \epsilon \\ \delta^{-1}(q, a), & \text{if } q \neq q_0' \text{ and } a \neq \epsilon. \end{cases}$$

$$\emptyset, & \text{otherwise.}$$
(1)

By how we dfined $\delta', q_0, q_1, \cdot, q_n$ is an accepting computation of M on input $w_1w_2 \cdot w_n$ if and only if $q'_0, q_n, \cdot, q_1, q_0$ is an accepting computation of N on input $w_n \cdot w_2w_1$ (since $\delta(q_i, w_{i+1} = q_{i+1}iffq_i \in \delta'(q_{i+1}, w_{i+1})$ for $0 \le i < n$ and $q_n \in \delta'(q'_0, \epsilon)$). Thus, N recognizes A^R . Since for any regular language A there exists an NFA that recognizes A^R , we conclude that the class of regular languages is closed under reverse.

Problem 13

1.32

Let w^R denote the reverse of the string w. For any language A, let $A^R = \{w^R | w \in A\}$. Then if A is regular, so is A^R .

Now, the construction of the automata for the language B^R is simple. We get columns of size 3 as our alphabets at each stage, we will need to keep track of two things, wheter there is a carry or not. Depending on wheter there was a carry or not, we just need to verify that the provided 3-column is consistent.

Figure 4 shows that NFA for B^R .

1.46c

 $L = \{w | w \in \{0, 1\}^* \text{ is not a palindrome } \}$

We can show that L is not regular, by showing that it's compliment $L' = \{w | w \in \{0,1\}^* \text{ is a palindrome } \}$ is not regular.

Choose $s=0^p10^p=xyz$, a palindrome in L'. Here xy contains only 0's. Let $y=0^k, k>0$. Thus $xy^0z=0^{p-k}10^p$ is not in the language. Thus, it's not regular.