Gendered Effects of the Minimum Wage

Alessandro Di Nola¹ Haomin Wang²

¹University of Birmingham

²Cardiff University

Money, Macro and Finance Conference September 2025

- Women are more likely to work in low-hours jobs.
 - In Germany, only half of employed women work full-time.
 - For women, marriage and children are strongly associated with reduced hours.

▶ Determinants

- Women are more likely to work in low-hours jobs.
 - In Germany, only half of employed women work full-time.
 - For women, marriage and children are strongly associated with reduced hours.

- Part-time penalty: lower-hours jobs pay lower hourly wages.
 - See Aaronson and French (2004); Calvo, Lindenlaub, and Reynoso (2024).

- Women are more likely to work in low-hours jobs.
 - In Germany, only half of employed women work full-time.
 - For women, marriage and children are strongly associated with reduced hours.

- Part-time penalty: lower-hours jobs pay lower hourly wages.
 - See Aaronson and French (2004); Calvo, Lindenlaub, and Reynoso (2024).
- Germany introduced a national minimum wage in 2015:
 8.50 €/hour.
 - Caliendo et al (2018): Negative effect on marginal employment (minijobs) but little effect on regular employment.

- Women are more likely to work in low-hours jobs.
 - In Germany, only half of employed women work full-time.
 - For women, marriage and children are strongly associated with reduced hours.

▶ Determinants

- Part-time penalty: lower-hours jobs pay lower hourly wages.
 - See Aaronson and French (2004); Calvo, Lindenlaub, and Reynoso (2024).
- Germany introduced a national minimum wage in 2015:
 8.50 €/hour.
 - Caliendo et al (2018): Negative effect on marginal employment (minijobs) but little effect on regular employment.
- The minimum wage likely has a larger impact on women than on men.

Research Questions

- What are the equilibrium effects of the minimum wage on wages, employment, and working hours for men and women?
- How do firms respond, and how do their responses shape equilibrium outcomes?
- How does the minimum wage affect the gender income gap?

What We Do

- Build an equilibrium search model with:
 - heterogeneous workers and firms,
 - jobs differing in wages and hours requirements.
- Calibrate the model using pre-reform data from Germany.
- Implement the minimum wage, allowing for non-compliance.
- Quantify the equilibrium effects of the initial minimum wage and assess the impact of higher minimum wage levels.

Main Takeaways

 The 8.50 € minimum wage induces an upward reallocation in hours: as women transition from marginal to part-time employment, they face lower job separation rates.

Main Takeaways

- The 8.50 € minimum wage induces an upward reallocation in hours: as women transition from marginal to part-time employment, they face lower job separation rates.
- Firms raise wages, with the largest increases concentrated in low-hours jobs. This response dampens the extent of reallocation toward longer hours.

Main Takeaways

- The 8.50 € minimum wage induces an upward reallocation in hours: as women transition from marginal to part-time employment, they face lower job separation rates.
- Firms raise wages, with the largest increases concentrated in low-hours jobs. This response dampens the extent of reallocation toward longer hours.
- Gendered effects:
 - The minimum wage reduces gender inequality mainly through the wage gap.
 - Its impact on the gender hours-worked gap is non-monotonic, peaking at 11 €, where, 30.4% of the impact on the gender income gap is due to hours worked.

Literature Review

Minimum wage and gender gaps:

DiNardo, Fortin, and Lemieux (1996); Autor, Manning, and Smith (2016); Bargain, Doorley, and Van Kerm (2019); Caliendo and Wittbrodt (2022)

We examine not only the effect on the gender wage gap but **also the** hours-worked gap.

Minimum wage policies in equilibrium job search models:
 Engbom and Moser (2022), Bloemer et al. (2024), Drechsel-Grau (2024)

We allow firms to **adjust hours** as well as wages and to choose not to comply with the minimum wage. Focus on gendered effects.

Gender inequality using dynamic equilibrium models:
 Morchio and Moser (2024), Amano-Patino, Baron and Xiao (2021)
 We emphasize the gender hours gap and analyze how minimum wages affect gender inequality.

Outline

- Introduction
- 2 Equilibrium Job-Posting Model
- Model Calibration
- 4 Implementing the Minimum Wage
- 6 Results
- 6 Conclusion

Equilibrium Job-Posting Model

Job-posting model with random search a la Burdett and Mortensen.

- Job offers are characterized by
 - ullet an hourly wage w
 - and an hours requirement $h \in \{h_{ME}, h_{PT}, h_{FT}\}$.

Job-posting model with random search a la Burdett and Mortensen.

- Job offers are characterized by
 - ullet an hourly wage w
 - and an hours requirement $h \in \{h_{ME}, h_{PT}, h_{FT}\}$.
- Workers are exogenously heterogeneous in gender j, child state k, and marital and spousal income type x.

Job-posting model with random search a la Burdett and Mortensen.

- Job offers are characterized by
 - ullet an hourly wage w
 - and an hours requirement $h \in \{h_{ME}, h_{PT}, h_{FT}\}$.
- Workers are exogenously heterogeneous in gender j, child state k, and marital and spousal income type x.
 - Stochastic transitions across child states:

Job-posting model with random search a la Burdett and Mortensen.

- Job offers are characterized by
 - ullet an hourly wage w
 - and an hours requirement $h \in \{h_{ME}, h_{PT}, h_{FT}\}$.
- Workers are exogenously heterogeneous in gender j, child state k, and marital and spousal income type x.
 - Stochastic transitions across child states:

Decisions: Job acceptance/rejection and quitting.

Model: Preference, Labor Efficiency, and Budget Constraint

Flow utility

$$u^{j}(c, h, k) = \ln c + \psi_{k}^{j} \frac{(\bar{h} - h)^{1 - \gamma_{k}^{j}}}{1 - \gamma_{k}^{j}},$$

Preference for non-working hours $(\bar{h}-h)$ depends on gender j and children k

Model: Preference, Labor Efficiency, and Budget Constraint

Flow utility

$$u^{j}(c, h, k) = \ln c + \psi_{k}^{j} \frac{(\bar{h} - h)^{1 - \gamma_{k}^{j}}}{1 - \gamma_{k}^{j}},$$

Preference for non-working hours $(\bar{h}-h)$ depends on gender j and children k

• Gender-specific labor efficiency: $a_j(h)$.

Model: Preference, Labor Efficiency, and Budget Constraint

Flow utility

$$u^{j}(c, h, k) = \ln c + \psi_{k}^{j} \frac{(\bar{h} - h)^{1 - \gamma_{k}^{j}}}{1 - \gamma_{k}^{j}},$$

Preference for non-working hours $(\bar{h}-h)$ depends on gender j and children k

- Gender-specific labor efficiency: $a_i(h)$.
- Budget constraint:

▶ Net-of-tax functions

- Consumption c equals net-of-tax income.
- Progressive income taxation.
- Married workers pool incomes with their spouses and are subject to joint taxation.

Model: Job Finding and Separations

- Employed and non-employed workers receive job offers at rate λ .
- Offer distribution:
 - Δ^h : share of offers with hours requirement h.
 - $F_h(w)$: conditional wage distribution.
- Exogenous job separation rate $\delta(h)$.
- Workers may quit into non-employment upon child state transition.

► Value functions

Model: Firm Decision (I)

ullet Heterogeneous in productivity p, with distribution $\Gamma\left(p\right)$.

Model: Firm Decision (1)

- Heterogeneous in productivity p, with distribution $\Gamma(p)$.
- Firms take labor supply l(w, h) as given.

▶ Labor supply

ullet Decision: choose (w,h) to maximize expected flow profit net of job-posting costs.

Model: Firm Decision (1)

- Heterogeneous in productivity p, with distribution $\Gamma\left(p\right)$.
- Firms take labor supply l(w, h) as given.

▶ Labor supply

- Decision: choose (w,h) to maximize expected flow profit net of job-posting costs.
- Expected flow profit of productivity-p firm when posting job (w,h):

$$\pi_{h}\left(w;p\right) = \underbrace{\left[\frac{\theta_{h}ph - wh}{\rho_{h}ph} \right]}_{\text{profit per efficiency unit of labor}} \cdot \underbrace{l\left(w,h\right)}_{\text{labor supply}}.$$

Model: Firm Decision (I)

- Heterogeneous in productivity p, with distribution $\Gamma\left(p\right)$.
- Firms take labor supply l(w,h) as given.

► Labor supply

- Decision: choose (w,h) to maximize expected flow profit net of job-posting costs.
- Expected flow profit of productivity-p firm when posting job (w,h):

$$\pi_{h}\left(w;p\right) = \underbrace{\left[\frac{\theta_{h}ph - wh}{\theta_{h}ph - wh}\right]}_{\text{profit per efficiency unit of labor}} \cdot \underbrace{l\left(w,h\right)}_{\text{labor supply}}.$$

- Potential mechanisms for "part-time penalty:"
 - θ_h : hourly productivity shifter.
 - ullet Complementarity between p and h.

Model: Firm Decision (I)

- Heterogeneous in productivity p, with distribution $\Gamma\left(p\right)$.
- Firms take labor supply l(w,h) as given.

► Labor supply

- Decision: choose (w,h) to maximize expected flow profit net of job-posting costs.
- Expected flow profit of productivity-p firm when posting job (w,h):

$$\pi_h\left(w;p\right) = \underbrace{\left[\underbrace{\theta_h ph} - wh \right]}_{\text{profit per efficiency unit of labor}} \cdot \underbrace{l\left(w,h\right)}_{\text{labor supply}} \; .$$

- Potential mechanisms for "part-time penalty:"
 - θ_h : hourly productivity shifter.
 - Complementarity between p and h.
- Optimal wage policy: $w_h(p)$ maximizes $\pi_h(w;p)$.

Model: Firm Decision (II)

ullet Optimal hours requirement given job-posting cost arepsilon

$$h\left(p,\varepsilon\right) = \arg\max_{h\in\mathcal{H}} \left\{ \underbrace{\pi_{h}\left(w_{h}(p),p\right)}_{\text{expected flow profit}} - \underbrace{\left(\bar{\epsilon}_{h} - \varepsilon_{h}\right)}_{\text{Job posting costs}} \right\}.$$

- $\bar{\epsilon}_h$: common to all firms
- ε_h : idiosyncratic component with mean zero.

Model: Firm Decision (II)

ullet Optimal hours requirement given job-posting cost arepsilon

$$h\left(p,\boldsymbol{\varepsilon}\right) = \arg\max_{h\in\mathcal{H}} \left\{ \underbrace{\pi_{h}\left(w_{h}(p),p\right)}_{\text{expected flow profit}} - \underbrace{\left(\bar{\epsilon}_{h} - \varepsilon_{h}\right)}_{\text{Job posting costs}} \right\}.$$

- $\bar{\epsilon}_h$: common to all firms
- ε_h : idiosyncratic component with mean zero.
- ullet Optimal hours policy $\Delta\left(h;p\right)$: the share of productivity-p firms that post a job with hours requirement h.

Model: Firm Decision (II)

ullet Optimal hours requirement given job-posting cost arepsilon

$$h\left(p,\boldsymbol{\varepsilon}\right) = \arg\max_{h\in\mathcal{H}} \left\{ \underbrace{\pi_{h}\left(w_{h}(p),p\right)}_{\text{expected flow profit}} - \underbrace{\left(\bar{\epsilon}_{h} - \varepsilon_{h}\right)}_{\text{Job posting costs}} \right\}.$$

- $\bar{\epsilon}_h$: common to all firms
- ε_h : idiosyncratic component with mean zero.
- Optimal hours policy $\Delta(h;p)$: the share of productivity-p firms that post a job with hours requirement h.
- Offer distribution (equilibrium object):

$$\Delta^{h} = \int_{\underline{p}}^{\overline{p}} \Delta(h; p) d\Gamma(p)$$

$$F_{h}(w) = \frac{\int_{\underline{p}}^{(w_{h})^{-1}(w)} \Delta(h; p) d\Gamma(p)}{\Delta^{h}}$$

Model Estimation

Overview of Estimation Strategy

- Data: German Socio-Economic Panel (SOEP) 2013-2014.
- Sample selection: civilians age 25 to 54 without tertiary education.

Overview of Estimation Strategy

- Data: German Socio-Economic Panel (SOEP) 2013-2014.
- Sample selection: civilians age 25 to 54 without tertiary education.
- Two-step estimation strategy (Bontemps, Robin and Van den Berg, 1999, 2000; Shephard, 2017):
 - Supply side: estimate preference parameters, LF transition rates, parametrized offer distribution to match observed wage-hours distribution and transitions.

Overview of Estimation Strategy

- Data: German Socio-Economic Panel (SOEP) 2013-2014.
- Sample selection: civilians age 25 to 54 without tertiary education.
- Two-step estimation strategy (Bontemps, Robin and Van den Berg, 1999, 2000; Shephard, 2017):
 - Supply side: estimate preference parameters, LF transition rates, parametrized offer distribution to match observed wage-hours distribution and transitions.
 - Demand side: estimate production function and job-posting cost distribution to match the offer distribution from supply-side estimation.

Supply-Side Parameters

Parameter		Value	Target
Preference parameters, ψ_k^j	male, no children	1	Normalization
$u^{j}\left(c,h,k\right)$	male, young children	0.057	Employment rate
$u^{j}(c, h, k) = \ln c + \psi_{k}^{j} \frac{(\bar{h} - h)^{1 - \gamma_{k}^{j}}}{1 - \gamma_{k}^{j}}$	male, grown children	0.363	by gender and
1 1 _k	female, no children	0.847	child state
	female, young children	1.814	
	female, grown children	1.675	

Supply-Side Parameters

Parameter		Value	Target
Preference parameters, ψ_k^j	male, no children	1	Normalization
$u^{j}\left(c,h,k\right)$	male, young children	0.057	Employment rate
$u^{j}(c, h, k) = \ln c + \psi_{k}^{j} \frac{(\bar{h} - h)^{1 - \gamma_{k}^{j}}}{1 - \gamma_{k}^{j}}$	male, grown children	0.363	by gender and
1 /k	female, no children	0.847	child state
	female, young children	1.814	
	female, grown children	1.675	
Preference parameters, γ_k^j	male, no children	2	Standard value.
$u^{j}\left(c,h,k\right)$	male, young children	2.636	Hours distribution
$u^{j}(c, h, k) = \ln c + \psi_{k}^{j} \frac{(\bar{h} - h)^{1 - \gamma_{k}^{j}}}{1 - \gamma_{k}^{j}}$	male, grown children	1.159	by gender and
	female, no children	4.665	child state.
	female, young children	5.044	
	female, grown children	4.465	

Supply-Side Parameters

Parameter		Value	Target
Preference parameters, ψ_k^j	male, no children	1	Normalization
$u^{j}(c,h,k) = \ln c + \psi_{k}^{j} \frac{(\bar{h}-h)^{1-\gamma_{k}^{j}}}{1-\gamma_{k}^{j}}$	male, young children	0.057	Employment rate
	male, grown children	0.363	by gender and
	female, no children	0.847	child state
	female, young children	1.814	
	female, grown children	1.675	
Preference parameters, γ_k^j	male, no children	2	Standard value.
$u^{j}\left(c,h,k\right)$	male, young children	2.636	Hours distribution
$u^{j}(c,h,k) = \ln c + \psi_{k}^{j} \frac{(\bar{h}-h)^{1-\gamma_{k}^{j}}}{1-\gamma_{k}^{j}}$	male, grown children	1.159	by gender and
	female, no children	4.665	child state.
	female, young children	5.044	
	female, grown children	4.465	
Labor efficiency, $a_j(h)$	male, all $\it h$	1	Normalization.
	female, ME	1.261	Gender wage gap by
	female, PT	1.310	hours.
	female, FT	0.856	

► Demand-side parameters

Model Fit

Moment	M	len	Wo	men
	Data	Model	Data	Model
Employmen	t distribu	tion:		
No children				
ME	0.031	0.024	0.061	0.040
PT	0.072	0.096	0.213	0.152
FT	0.756	0.718	0.608	0.588
Young child	ren			
ME	0.028	0.024	0.153	0.128
PT	0.055	0.103	0.318	0.322
FT	0.809	0.842	0.111	0.106
Grown child	ren			
ME	0.023	0.024	0.129	0.127
PT	0.027	0.105	0.417	0.330
FT	0.857	0.849	0.288	0.271
Job separati	on prob.	(monthly,	both gender	rs):
ME-to-NE	0.022	0.019		
PT-to-NE	0.007	0.004		
FT-to-NE	0.006	0.003		

Model Fit

Moment	Men		Wo	men
	Data	Model	Data	Model
Employmen	t distribu	tion:		
No children				
ME	0.031	0.024	0.061	0.040
PT	0.072	0.096	0.213	0.152
FT	0.756	0.718	0.608	0.588
Young child	ren			
ME	0.028	0.024	0.153	0.128
PT	0.055	0.103	0.318	0.322
FT	0.809	0.842	0.111	0.106
Grown child	lren			
ME	0.023	0.024	0.129	0.127
PT	0.027	0.105	0.417	0.330
FT	0.857	0.849	0.288	0.271
Job separat	ion prob.	(monthly,	both gende	rs):
ME-to-NE	0.022	0.019		
PT-to-NE	0.007	0.004		
FT-to-NE	0.006	0.003		

Model Fit

Moment	Men		Wo	men
	Data	Model	Data	Model
Employmen	t distribu	tion:		
No children				
ME	0.031	0.024	0.061	0.040
PT	0.072	0.096	0.213	0.152
FT	0.756	0.718	0.608	0.588
Young child	ren			
ME	0.028	0.024	0.153	0.128
PT	0.055	0.103	0.318	0.322
FT	0.809	0.842	0.111	0.106
Grown child	ren			
ME	0.023	0.024	0.129	0.127
PT	0.027	0.105	0.417	0.330
FT	0.857	0.849	0.288	0.271
Job separat	on prob.	(monthly, L	both gende	rs):
ME-to-NE	0.022	0.019		
PT-to-NE	0.007	0.004		
FT-to-NE	0.006	0.003		

Model Fit: Hourly Wage Distribution

- Gender wage gap conditional on hours
- Positive correlation between hours and hourly wages ("part-time penalty")

Minimum Wage Policy

 The first federal minimum wage came into effect on January 1, 2015, at 8.5 € per hour. The coverage is almost universal.

- The first federal minimum wage came into effect on January 1, 2015, at 8.5 € per hour. The coverage is almost universal.
- The minimum wage has been regularly adjusted. On October 1, 2022, it was raised to 12 € (10 in 2015 €). Further increase has been announced.

- The first federal minimum wage came into effect on January 1, 2015, at 8.5 € per hour. The coverage is almost universal.
- The minimum wage has been regularly adjusted. On October 1, 2022, it was raised to 12 € (10 in 2015 €). Further increase has been announced.
- Widespread non-compliance has been documented in the literature (Burauel et al., 2017; Bossler et al., 2022; Duetsch and Bruttel, 2021)
 - In 2016, about 10% of eligible employees were receiving hourly wages below the 8.5 € threshold.

- The first federal minimum wage came into effect on January 1, 2015, at 8.5 € per hour. The coverage is almost universal.
- The minimum wage has been regularly adjusted. On October 1, 2022, it was raised to 12 € (10 in 2015 €). Further increase has been announced.
- Widespread non-compliance has been documented in the literature (Burauel et al., 2017; Bossler et al., 2022; Duetsch and Bruttel, 2021)
 - In 2016, about 10% of eligible employees were receiving hourly wages below the 8.5 € threshold.
 - There is a lack of resources to enforce the minimum wage.
 - Lack of awareness: Less than one-fifth of workers are aware of the exact minimum wage level in 2020.

Implementing the Minimum Wage in the Model

Non-compliance penalty:

$$\kappa(\omega; w_{min}) = \begin{cases} \kappa_0 \left(w_{min} - \omega \right)^2 & \text{if } \omega < w_{min} \\ 0 & \text{else.} \end{cases}$$

- Job contact rate becomes $\lambda \max\{0, 1 \kappa(\omega; w_{min})\} \leq \lambda$.
- Parameter κ_0 is calibrated to match the observed share of non-compliance. Calibration of κ_0 Validation

Implementing the Minimum Wage in the Model

Non-compliance penalty:

$$\kappa(\omega; w_{min}) = \begin{cases} \kappa_0 \left(w_{min} - \omega \right)^2 & \text{if } \omega < w_{min} \\ 0 & \text{else.} \end{cases}$$

- Job contact rate becomes $\lambda \max\{0, 1 \kappa(\omega; w_{min})\} \leq \lambda$.
- Parameter κ_0 is calibrated to match the observed share of non-compliance. Calibration of κ_0 Validation
- Firms can **choose to be inactive** (by not posting any jobs).
 - Inactivity is associated with zero profit.
 - The fraction of active firms:

$$\Delta^{act}(w_{min}) = \sum_{h \in \mathcal{H}} \Delta^h(w_{min}) \le 1.$$

Results

- Equilibrium effects of imposing the minimum wage of 8.5 €.
- Varying the minimum wage from 8.5 € to 14 €.

Firm Response to Minimum Wages Margins of adjustment

Firms have three margins of adjustment:

- Increasing the posted wage
- 2 Changing the hours requirement
- 3 Choosing to become inactive

Firm Response to the Min. Wage

Wage adjustment

Effects on the wage offer distribution, $F_h(w)$

Summary:

Largest wage increases among marginal-employment job offers.

Firm Response to the Min. Wage

Activity and hours requirement

	Min. wage effect
	(% change)
Active firms	-0.9
Firms posting ME jobs	-5.5
Firms posting PT jobs	-2.9
Firms posting FT jobs	-0.4

Summary:

- Imposing the minimum wage only modestly reduces the share of recruiting firms,
- ...and it leads to a shift of the offer distribution toward full-time jobs.

Min. Wage Effects on Labor Market Dynamics

	CF Effects Without firm response	Equilibrium Effects With firm response
	(% change)	(% change)
Offer contact rate	-2.0	
MEN		
Job-finding rate	-1.9	
Job-separation rate	-0.8	
WOMEN		
Job-finding rate	-0.2	
Job-separation rate	-4.5	

Min. Wage Effects on Labor Market Dynamics

	CF Effects Without firm response (% change)	Equilibrium Effects With firm response (% change)
Offer contact rate	-2.0	-1.2
MEN		
Job-finding rate	-1.9	-0.1
Job-separation rate	-0.8	-0.6
WOMEN		
Job-finding rate	-0.2	-0.5
Job-separation rate	-4.5	-2.3

Summary:

- Non-compliance penalty reduces offer contact rate.
- Higher posted wages lead to higher job-acceptance rates.
- Job separation rates become lower as worker reallocate to jobs with longer hours.

Min. Wage Effects on Employment and Hours

Counterfactual Effects

(Without firm response)

Equilibrium Effects

(With firm response)

Summary:

- The minimum wage leads to upward reallocation in hours for both men and women.
- Firms' response dampens the reallocation and the positive employment effects of the minimum wage, particularly for women.

Min. Wage Effects: Summary

- The minimum wage compels low-productivity firms to post higher wages. Wage increases are the largest among ME jobs.
- Non-compliance penalty leads to a reduction in the job contact rate.
- Since higher wages increase the job acceptance probability, the minimum wage only modestly reduces the job-finding rate.
- Workers upward reallocate in hours as low-hours jobs are more impacted by the policy. Firms' wage response dampens this reallocation effect.
- As women move from ME to PT jobs, their job separation and non-employment rates decrease.

▶ Role of enforcement) (▶ Heterogeneous Effects

Equilibrium Effects of Minimum Wages on Gender Gaps

 We vary the minimum wage from 8.5 € to 14 € to study how the policy affects gender inequality.

• Gender gap in a variable x is defined as x^f/x^m . (A gender gap of 100% indicates gender equity.)

 We consider the gender income gap, which is decomposed into gender gaps in wage and hours worked.

Equilibrium Effects of Minimum Wages on Gender Gaps

Equilibrium Effects of Minimum Wages on Gender Gaps

Gender Gap Decomposition

Conclusion

- We build and estimate an equilibrium search model with
 - heterogeneous workers and firms and
 - jobs characterized by an hourly wage and an hours requirement.

Findings

- Equilibrium effects of the 8.5 € minimum wage:
 - Firms increase posted wages most for marginal employment (ME) jobs.
 - Workers reallocate upward in hours; the firm wage response dampens this effect.
 - As women transition away from marginal-employment jobs, they benefit from lower job separation rates.
- The minimum wage reduces both the gender wage gap and the gender hours-worked gap. At 11 €, 30% of the reduction in the gender income gap is attributable to the hours-worked margin.

Appendix

Gender Differences in Employment and Hours in Germany

Employment distribution by gender:

	Men	Women	Women/Men
Full-time	0.811	0.393	0.48
Part-time	0.052	0.302	5.8
Marginal employment*	0.026	0.085	3.3
Non-emp.	0.112	0.220	2.0

Source: SOEP. 25-55 year olds, 2006-2017.

* Marginal employment ("minijobs") are jobs with monthly pay below 450 € and average weekly hours around 11.

What Drives Gender Differences in Employment and Hours?

- Marriage is associated with a higher marginal-employment rate for women, but a higher full-time rate for men.
- Having young children is associated with lower employment and lower hours for women only.
- Employment rate and hours decrease in **spousal income**. Back

Marginal effects on	Full-time	Part-time	Marginal emp.	Non-emp.
Men:				
Marital status and spousal incor	ne (base = u	nmarried):		
Married, high-income spouse	0.14***	0.039***	0.0013	-0.18***
Married, low-income spouse	0.24***	0.0059	0.00013	-0.25***
N. kids under 6	0.021	-0.00310	-0.027***	0.0093
N. kids	-0.0028	-0.00038	0.00042	0.0028
Women:				
Marital status and spousal incor	ne (base = u	nmarried):		
Married, high-income spouse	-0.049***	0.065***	0.051***	-0.0662**
Married, low-income spouse	-0.0034	0.053***	0.058***	-0.11***
N. kids under 6	-0.13***	-0.092***	-0.057***	0.28***
N. kids	-0.042***	0.0047	0.010***	0.027***

^{***}p < 0.001. Other controls: age, education, and year and federal state fixed effects.

Net-of-Tax Income

- Net-of-tax income of employed workers:
 - Single workers

$$\mathbf{1}_{\{PT,FT\}}\tau_{0,k,x}y^{1-\tau_{1,k,x}}+\mathbf{1}_{\{ME\}}\underbrace{y}_{=a_{j}(h)wh}$$

Married workers

$$\frac{1}{2} \left\{ \tau_{0,k,x} [\mathbf{1}_{\{PT,FT\}} y + \underbrace{\mathcal{X}(x)}_{\text{Spousal inc.}}]^{1-\tau_{1,k,x}} + \mathbf{1}_{\{ME\}} y \right\}$$

- Net-of-tax income of non-employed workers:
 - Single workers

$$b_{j,x} + b_j^k$$
Non-emp. benefit Parental benefit

Married workers

$$\frac{1}{2} \left\{ b_{j,x} + b_j^k + \tau_{0,k,x} [\mathcal{X}(x)]^{\tau_{1,k,x}} \right\}$$

Value of Non-employment, V_j^n

$$\mathcal{D}_{j}^{n}V_{j}^{n}(k,x) = u^{j}\left(c,0,k\right) + \overbrace{\phi_{j,x}(k)V_{j}^{n}(k',x)}^{\text{child state transition}} + \underbrace{\sum_{h' \in \mathcal{H}} \int \lambda \Delta^{h'} \max \left\{ \overbrace{V_{j}^{e}\left(\left\{w',h'\right\},k,x\right) - \mu(j,k,h')}^{\text{child state transition}}, \overbrace{V_{j}^{n}\left(k,x\right)}^{\text{reject}} \right\} dF_{h'}(w'),}_{\text{job offer arrival}}$$

where

- $\mathcal{D}_i^n = \rho + \rho_d + \phi_j(k) + \lambda$.
- $c = \mathcal{N}^n(j, k, x)$ (net-of-tax income).
- $\phi_{i,x}(k)$ is child state transition rate
- ullet $\lambda\Delta^h$ is contact rate for job offers with hours requirement h
- \bullet $\mu(j,k,h)$ is "adjustment" disutility

→ Back

Value of Employment, V_j^e

$$\mathcal{D}^{e}_{j}V^{e}_{j}\left(\left\{w,h\right\},k,x\right)=u^{j}\left(c,h,k\right)+\overbrace{\delta(h)V^{n}_{j}(k,x)}^{\text{polymer}}$$

$$+\phi_{j,x}(k)\max\left\{\overbrace{V^{e}_{j}\left(\left\{w,h\right\},k',x\right)-\mu(j,k',h),V^{n}_{j}(k',x)}^{\text{stay employed}}\right\}$$

$$+\sum_{h'\in\mathcal{H}}\int\lambda\Delta^{h'}\max\left\{\overbrace{V^{e}_{j}\left(\left\{w',h'\right\},k,x\right)-\mu(j,k,h'),V^{e}_{j}\left(\left\{w,h\right\},k,x\right)}^{\text{reject}}\right\}dF_{h'}(w'),$$
 independent of the properties of the p

where

- ullet $c=\mathcal{N}^e(a_j(h)wh,j,k,x)$ (net-of-tax income)
- ullet $\phi_{j,x}(k)$ is child state transition rate
- ullet $\lambda \Delta^h$ is contact rate for job offers with hours requirement h
- ullet $\mu(j,k,h)$ is "adjustment" disutility

▶ Back

Labor Supply

- Steady state distributions
 - $g^{j,e}(w,h,k,x)$: measure of the employed.
 - ullet $g^{j,n}(k,x)$: measure of the non-employed.
- Labor supply to job (w,h) is

$$l\left(w,h\right) \ = \ \frac{\displaystyle \sum_{j} \sum_{k} \sum_{x} a_{j}(h) g^{j,e}\left(w,h,k,x\right)}{\underbrace{\Delta^{h} f_{h}\left(w\right)}_{\text{measure of job offers}}}.$$

▶ Back

Equilibrium

Definition

A stationary equilibrium is defined by the offer distribution Δ^h and $F_h\left(w\right)$ for each $h\in\mathcal{H}$ such that

- *i.* Given the offer distribution, individuals make optimal job acceptance and quitting decisions.
- ii. The distribution of individuals is stationary.
- iii. Given labor supply, firms make the optimal sector choice and wage policy $w_h(p)$ and $\Delta(p;h)$.
- iv. Offer distribution Δ^h and $F_h\left(w\right)$ are derived from $w_h\left(p\right)$, $\Delta(p;h)$, and $\Gamma_h(w)$.

→ Back

Supply-Side Estimation

- We parametrize the wage offer distribution $F_h(\cdot)$ with Beta-distributions with parameters $\{\alpha_{F_h},\beta_{F_h}\}_{h\in\mathcal{H}}$
- Supply-side parameters to be determined
 - ullet Offer distribution parameters: $\left\{lpha_{F_h},eta_{F_h},\Delta^h
 ight\}_{h\in\mathcal{H}}$
 - \bullet Preference parameters: $\left\{\psi_k^j,\gamma_k^j\right\}_{j=1,2;k=1,2,3}$
 - Labor efficiency: $\{a_j(h)\}_{j=1,2;h\in\mathcal{H}}$
 - Labor force transition rates: λ , $\{\delta(h)\}_{h\in\mathcal{H}}$
- Method of moments estimation. Targets:
 - Hourly wage distribution by hours and gender.
 - Employment rate and hour distribution by gender, and child state.
 - Job separation rate by hour type.

Demand-Side Estimation

- Demand-side parameters to be determined
 - Production function: $\{\theta_h\}_{h\in\mathcal{H}}$
 - Job-posting cost: $\left\{ ar{\epsilon}_h \right\}_{h \in \mathcal{H}}$, scale parameter of the type-I extreme value distribution σ_{ε}
- Estimation strategy: look for demand-side parameters such that, when firms make optimal job-posting decisions, the resulting offer distribution is the one uncovered in the supply-side estimation.

► Back

Demand-Side Parameters

Parameter	Value	Target
Hourly produ	ıctivity sh	ifter:
$ heta_{ME}$	0.649	Mana affar distribution by bours
θ_{PT}	0.386	Wage offer distribution by hours.
$ heta_{FT}$	1	Normalization.
Common con	пропень	or the job-posting cost (monthly):
_	•	of the job-posting cost (monthly):
$ar{\epsilon}_{ME}$ $ar{\epsilon}_{PT}$	2477.5 913.5	Offer distribution over hours.
$ar{\epsilon}_{ME}$	2477.5	
$ar{\epsilon}_{ME} \ ar{\epsilon}_{PT} \ ar{\epsilon}_{FT}$	2477.5 913.5 0	Offer distribution over hours.

▶ Back

Model Validation

Effects of the Introduction of the German Minimum Wage Empirical Estimates vs. Model Predictions

	Data	Model	Data Source
Overall employment effect (p.p.)	-0.42	0.07	Caliendo et al. (2018)
Marginal employment effect (p.p.)	-2.97	-3.09	Caliendo et al. (2018)
Regular employment effect (p.p.)	-0.19	0.38	Caliendo et al. (2018)
Effect on monthly wage at P5	11.9%	38.56%	Bossler and Schank (2023)
Effect on monthly wage at P20	21.1%	23.93%	Bossler and Schank (2023)
Effect on monthly wage at P50	2.0%	-0.86%	Bossler and Schank (2023)

▶ Back

Non-Compliance Penalty Calibration

- Impose the 8.5 € minimum wage in the estimated model.
- We calibrate the penalty parameter κ_0 to match the drop in the share of full-time jobs with an hourly wage below 8.5 \in .
 - Data (SOEP): 3.93 percentage point drop.
 - Model: 4.04 percentage point drop.

Role of Enforcement

Baseline

Higher Non-Compliance Penalty

 $(\kappa_0$ is doubled)

Heterogeneous Effects of the 8.5 € Minimum Wage

- Employment and hours: marital status and spousal matter for the upward reallocation in hours.
- Welfare: Singles gain from higher wages while the married are hurt.
- Employer productivity: lower average employer productivity for those who are single or married to a low-income spouse. Higher average employer productivity for the rest.

▶ Back

Heterogeneous Effects on Employment and Hours

Women, Young Children

Women, Childless

Women, Grown Children

Heterogeneous Effects on Welfare

Heterogeneous Effects on Employer Productivity

Men, Grown Children

Women, Young Children

Women, Childless

Women, Grown Children

