

FOR FURTHER TRAN 124

0

V

AD

RESEARCH AND DEVELOPMENT TECHNICAL REPORT

REPORT CORADCOM-76-C-0135-F

AN/VRC-12, 43-49 SERIES RADIO SET SILICONIZATION PRODUCT IMPROVEMENT PROGRAM,

DAABØ7-76-C-913 E-SYSTEMS, MEMCOR DIVISION **HUNTINGTON, INDIANA 46750**

Kevin P. Nelton

MAY 1978

FINAL TECHNICAL REPORT FOR

30 JUNE - 30 APR

DISTRIBUTION STATEMENT Approved for public release. distribution unlimited

PREPARED FOR CORADCOM

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY MURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

US ARMY COMMUNICATION RESEARCH & DEVELOPMENT COMMAND FORT MONMOUTH. NEW JERSEY 07703

ATTN: DRDCO-COM-RN-1

392038

03 079

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED

Inc

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT HUMBER CORADICOM - 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
FINAL TECHNICAL REPORT FOR THE AN/VRC-12 RADIO SET PRODUCT IMPROVEMENT PROGRAM	S. TYPE OF REPORT & PERIOD COVERED FINAL REPORT FOR JUNE 1976 TO APRIL 1978 6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)	
KEVIN P. YELTON	DAAB07-76-C-0135 war	
PERFORMING ORGANIZATION NAME AND ADDRESS E-SYSTEMS, MEMCOR DIVISION 41 EAST PARK DRIVE HUNTINGTON INDIANA 46750	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
U.S. ARMY COMMUNICATIONS RESEARCH AND DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703	12. REPORT DATE APRIL 1978 13. NUMBER OF PAGES 494	
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING SCHEDULE	

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

15. KEY WORDS (Continue on reverse side if necessary and identify by block number)

R-442, RT-246, RT-524, Silicon devices, germanium devices, integrated circuits, transistor reduction, redesigned modules, improved performance, high reliability, compatibility.

20.. ABSTRACT (Cantinue on reverse side if necessary and identity by block number)

Obsolete germanium devices in the AN/VRC-12 series radios were replaced with silicon devices. A significant reduction in types of transistors used was realized. Three vital modules were completely redesigned to eliminate areas of functional deficiency. Those modules are the A2000A Crystal Switch Assembly, the A5200A/A5300A Squelch System and the A9000A/A9400B

DD : JAN 73 1473 SCITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

392 038

B

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Continued from Block 20)

Power Supply Assembly. Improved performance and higher reliability resulted from the Product Improvement Program. The siliconized modules are completely compatible with the germanium modules except that the A5200A/A5300A and the A9000A/A9400B must be interchanged as single units.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

Paragraph	<u>Title</u>	Page
1.0	Introduction	1
2.0	Summary	3
3.0 3.1	Technical Discussion	5
3.2	Scope of Work	5
3.3	Redesign Specification	10
3.4	GFE Radios	11
3.5	Selection of Silicon Transistors	11
3.5.1	RF Devices (> 11.5 MHz, Small Signal)	11
3.5.2	PNP General Purpose Devices (DC to 5.6 MHz,	
3.3.2	Small Signal)	13
3.5.3	NPN General Purpose Devices (Small Signal)	13
3.5.4	Power Devices	13
3.5.5	Unijunction Transistor	14
3.6	Microcircuits	14
3.6.1	CA3018A (SM-A-104220, Transistor Array)	14
3.6.2	LM-3075D (FM IF AMP, Limiter and Detector, Audio	
	Pre-Amp and Regulator)	19
3.6.3	JM38510/10102 BIC (747 Dual Operational Amplifier)	20
3.7	Module Redesign	20
3.7.1	A2000A Crystal Switch Assembly	21
3.7.2	A5200A/A5300A Squelch Amp and Filter	22
3.7.3	A9000A/A9400B Power Supply	23
3.7.4	A3200A CRS Balanced Mixer	24
3.7.5	A4200A Receiver IF Amp., Limiter and Discriminator	25
3.7.6	Remaining Modules	26
4.0	Comments	27
4.0	Comments	21
Appendix A	AN/VRC-12 PIP Electrical Schematics	29
Appendix B	AN/VRC-12 PIP Printed Circuit Board Layouts	59
Appendix C	AN/VRC-12 Lists of Materials	91
Appendix D	AN/VRC-12 PIP Sample Test Data	123
Appendix E	AN/VRC-12 PIP List of ECP's and RFW's for	
	Government Gage Test	339
Appendix F	Distribution List for Technical Reports	377

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>			
3.5.4	Case Comparison: TO-36 vs. TO-203AA	18		
3.6.1	Schematic Diagram for CA3018 and CA3018A	14		
3.6.2	Schematic Diagram for LM-3075D	19		
3.6.3	A. Package Layout and B. Schematic for			
	JM38510/10102 BIC	20		
3.7.1	A2000 Castings	22		

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
3.1.1	AN/VRC-12 Present Ge Transistors	7
3.1.2	Siliconized Modules	9
3.4.1	Serial Numbers of Government Furnished Radios	12
3.5.1	Si Transistor Type and Application	15
3.5.2	Si Transistor Type and Usage	16
3.5.3	Si Diodes and Usage	17

1.0 INTRODUCTION

Germanium semiconductors, as utilized within the AN/VRC-12 series equipment are either presently obsolete or fast becoming obsolete. The great majority of semiconductor manufacturers have dropped germanium devices from their product lines in favor of silicon transistor technology. Because of that obvious shift away from germanium semiconductor technology, manufacturers of equipments utilizing germanium devices have been forced to pay premium prices with no assurance of a continued supply of germanium devices.

In June of 1976, E-Systems, Memcor Division, was awarded ECOM Contract DAAB07-76-C-0135. The primary intent and purpose of that contract was to upgrade the VRC-12 radio from germanium to silicon technology. The contract also designated certain modules which were to be redesigned to eliminate several areas of long standing, functional deficiencies. Those modules designated to be completely redesigned were the A2000 Crystal Switch Assembly, the A5200/A5300 Squelch System and the A9000/A9400 Power Supply Assembly.

The purpose of this report is to show the results of work performed under the <u>Product Improvement Program</u> (PIP) of Contract DAABO7-76-C-0135. This report discusses the replacement of germanium transistors with silicon transistors and the redesign of radio modules to incorporate those silicon transistors. Further, it cites some of the reasoning that led to the choice of transistors to be used and why particular circuit configurations were chosen.

2.0 SUMMARY

2.1 The Engineering effort under Contract DAAB07-76-C-0135 has been segregated into four phases.

The first phase involved the analysis and redesign of the twentynine modules of the VRC-12 to incorporate silicon devices in place of the germanium devices.

The second phase consisted of the fabrication of twenty-five sets of siliconized modules and their assembly into twenty-five, GFE radios.

The third phase of the program involved testing those twenty-five radios assembled in phase two in accordance with the requirements of the VRC-12 radio specifications, MIL-R-55099D(EL) and MIL-R-55100D(EL).

The fourth phase of the program emphasized the preparation and submission of ECP's for each module. Those ECP's were the formal method of formulating the VRC-12 data package in order to show how the VRC-12 series radios were updated to an all-silicon technology that is compatible with the present semiconductor technology.

- 2.2 Significant results were achieved via the <u>Product Improvement Program</u> (PIP) in four major areas of concern:
 - 1. At the component level
 - 2. At the module level
 - 3. At the radio subsystem level
 - 4. And at the radio system level.
- 2.2.1 The major result of the PIP at the component level has been the reduction in the number of transistor types which were used. Twenty-two types of germanium transistors were replaced with eight types of silicon transistors. That reduction of transistor types resulted from a coordinated engineering analysis of all module transistor requirements. Engineering analysis was the basis used to determine the most common types of transistors that could be used throughout the VRC-12 radio, while maintaining good circuit performance in each module. Established reliability parts were specified for several redesigned modules that had had a history of low module reliability.
- 2.2.2 At the module level, the greatest benefit of the Product Improvement Program was increased performance and reliability of various silicon modules in comparison with corresponding germanium modules.

In many cases, germanium modules tended to exhibit regeneration and/or shifts in operating characteristics over the temperature range - a characteristic of all germanium devices. Those deficiencies were detrimental to total radio performance. Replacement of the germanium devices with silicon devices has eliminated that extreme sensitivity to temperature changes and has eased circuit design requirements.

2.2.3 At the subsystem or tray level of the radio, the primary result of the PIP effort is an improved margin of performance. The A4000 tray is a specific example in which the module redesign has resulted in a major improvement in tray level performance. The A4000 tray, using germanium modules, had a history of instability and a tendency to oscillate, which affected other radio systems. That tendency is not present in the siliconized modules making up the A4000A tray. Benefits directly resulting from the siliconization of the A4000 tray are a more stable Intermediate Frequency Amplifier, a less distorted recovered audio signal and easier squelch adjustments.

The A3000A tray, A5000A tray, A6000A tray, A8000A tray and the A9000A/A9400B Power Supply all benefited from the conversion to silicon transistors by increased performance capability as well as results similar to those experienced by the A4000A tray subsystem.

- 2.2.4 At the radio system level, the most significant result is the improved radio performance attributable to the criteria already defined at the lower levels. The AN/VRC-12 series of radios was successfully siliconized and now display improved performance characteristics inherent to a thorough engineering design effort.
- 2.2.5 Other effort included in the Product Improvement Program were the submission of a technical report and the revising and updating of the mylar drawings in the AN/VRC-12 data package.

3.0 TECHNICAL DISCUSSION

3.1 Redesign Objectives

The primary purpose of this contract was to replace the germanium transistors in the AN/VRC-12 radios with silicon transistors. A total of seventy-two (72) germanium and early silicon devices are in the present data package. A total of twenty-two different types are used on the twenty-nine modules. These twenty-two types are listed in Table 3.1.1 and the modules involved are listed in Table 3.1.2. The secondary purpose was to upgrade the PIP units by completely redesigning three modules: the A2000, the A5200/5300 and the A9000/A9400A.

3.2 Scope of Work

The redesign work was completed according to the contract requirements as follows.

3.2.1 Analysis and redesign of the circuits of twenty-nine (29) modules (listed below) was undertaken to provide silicon transistor/integrated circuit replacements for all presently used germanium transistors and to provide silicon diode replacements for all presently used germanium diodes.

Module A200	Receiver Case Assembly (R442)
Module A400	RT Case Assembly
Module A1400	Mixer and Buffer Amplifier
Module A1500	Local Oscillator and Buffer Amplifiers
Module A1600	VHF Tuner Power Supply
Module A2000	Crystal Switch Assembly
Mcdule A2100	Voltage Regulator
Module A3100	CRS Harmonic Generator
Module A3200	CRS Balanced Mixer
Module A3300	CRS Second Mixer
Module A3400	CRS First and Second IF Amplifier
Module A3500	CRS Third IF Amplifier and Limiter
Module A3600	CRS Hunt Discriminator
Module A3700	CRS Phase Discriminator
Module A4100	Receiver First and Second IF Amplifiers
Module A4200	Receiver Third, Fourth and Fifth IF Ampli-
	fiers, Limiter and Discriminator
Module A4300	Audio and Squelch Pre-Amplifier
Module A5100	Audio Amplifier
Module A5200	Receiver Squelch
Module A6300	Transmitter Master Oscillator
Module A6400	Transmitter Buffer Amplifier

Module A7000	Null Switch
Module A7200	Servo Amplifier
Module A8100	Transmitter 11.5 MHz Modulator
Module A8200	Transmitter Phase Discriminator
Module A8300	Transmitter First and Second IF Amplifier
Module A8400	Transmitter Hunt Generator
Module A8500	Transmitter Speech Amplifier
Module A9400	Transistor Adapter

- 3.2.2 The A2000 Crystal Switch Assembly was redesigned to replace the present contacts with newly configured, self-cleaning, wiping contacts and to replace the current seven-piece construction with two castings.
- 3.2.3 Deficiencies in the squelch system were evaluated and were eliminated by appropriately modifying the A5200 and A5300 modules.
- 3.2.4 The power supply, modules A9000 and A9400, was redesigned to decrease power dissipation and to increase reliability.
- 3.2.5 Prototype modules were fabricated, incorporating the improvements cited in paragraphs 3.2.1 thru 3.2.4 (in quantities needed to modify 5 each RT-246, 15 each RT-524, and 5 each R-442). Each new module was tested on government, electrical-interchangeability gages and the performance of sample inspections was tested on the government, mechanical-interchangeability gages (in accordance with paragraph 4.12 of Military Specifications MIL-R-55099(EL) and paragraph 4.13 of MIL-R-55100(EL)).
- 3.2.6 Five (5) each RT-246, 15 each RT-524, and 5 each RT-442 were modified by incorporating prototype modules into them. Those units were subjected to the following: performance of 100% electrical preconditioning (Burn-in), bounce preconditioning and Group A electrical tests, performance of Group B tests on Sour (4) sample units of each equipment type, and performance of Group C tests on two (2) samples of each equipment type. All tests were conducted in accordance with paragraphs 4.5.1, 4.5.2, 4.5.3 and 4.6 of MIL-R-55099(EL) and MIL-R-55100(EL).

Electromagnetic interference tests were conducted on one (1) RT-246 PIP unit. The tests were conducted per the requirements of MIL-R-55100D(EL) and per MIL-STD-461, Table A-1-MIL-E-55301 for CE equipment. The results were for information only.

TABLE 3.1.1

VRC-12 Present Ge Transistors

		Transistor Type Quantity/Radio		Circuit Designations
1.		JAN2N499A	17	Q1401, Q2001, Q2002, Q3101, Q3201, Q3301, Q3401, Q3402, Q3501, Q3502, Q3601, Q3701, Q3702, Q8101, Q8102, Q8301, Q8302
2.		JAN2N328A	8	Q2101, Q2103, Q5101, Q5104, Q5202, Q5205, Q5207, Q8503,
3.		JAN2N335	8	Q2102, Q4301, Q5201, Q5206, Q8501, Q8504, Q8401, Q8403
4.		JAN2N335A	1	Q5102
5.		JAN2N1412A	6	Q9401, Q9402, Q9403, Q9404, Q9405, Q9406
6.	SM-C-374842	2N2208	6	Q4102, Q4202, Q4203, Q8201, Q4204, Q8202
7.	SM-D-413796	2N270	5	Q4302, Q4303, Q5103, Q5203, Q5204
8.		JAN2N502B	4	Q1502, Q1503, Q4101, Q4201
9.		JAN2N297A	2	Q201/Q402, Q202/Q403
10.	SM-C-374843-1	2N618	2	Q7201, Q7202
11.	SM-B-416325	2N2594	2	Q1601, Q1602
12.		JAN2N158	1 .	Q7205
13.	SM-B-416388	2N2199	1	Q6301
14.	SM-B-416430	2N2200	1	Q1501
15.	SM-C-374972	2N2213	1	Q8402
16.	SM-C-374839-1	2N542	1	Q7203

TABLE 3.1.1

VRC-12 Present Ge Transistors

		Transistor Type	Quantity/Radio	Circuit Designations
17.		JAN2N697	1	Q7001
18.	SM-C-374848-1	2N35/5	1	Q7204
19.	SM-B-416401	2N988	1	Q6401
20.	SM-B-416405	· 2N989	1	Q6402
21.		JAN2N1142	1	Q8103
22.	SM-C-374844-1	2N336	1	Q8502

TABLE 3.1.2

Siliconized Modules

	Module No.	Title
1.	A1400A	Receiver Mixer
2.	A1500A	Receiver Oscillator
3.	A1600A	Receiver Power Supply
4.	A2000A	Crystal Switch Assembly
5.	A2100A	Power Supply
6.	A3100A	CRS Harmonic Generator
7.	A3200A	CRS Balanced Mixer
8.	A3300A	CRS 2nd Mixer
9.	A3400A	CRS 1st and 2nd IF Amplifier
10.	A3500A	CRS 3rd IF Amplifier & Limiter
11.	A3600A	CRS Hunt Discriminator
12.	A3700A	CRS Phase Discriminator
13.	A4100A	1st and 2nd IF Amplifier
14.	A4200A	3rd, 4th and 5th IF Limiter & Discriminator
15.	A4300A	Audio & Squelch Preamp
16.	A5100A	Audio Amplifier
17.	A5200A	Squelch Amplifier
18.	A5300A	Squelch Filter
19.	A6300A	Xmtr Oscillator
20.	A6400A	Xmtr Buffer
21.	A7000A	Null Switch Assembly
22.	A7200A	Servo Amp
23.	A8100A	Xmtr 11.5 MHz Modulator
24.	A 8200A	Xmtr Phase Discriminator
25.	A8300A	Xmtr 1st & 2nd IF Amp
26.	A 8400A	Xmtr Hunt Generator
27.	A8500A	Xmtr Speech Amp
28.	A9000A	Power Supply Assy
29.	A9400B	Transistor Adapter Assy

3.3 Redesign Specification

The following technical requirements were applied to the hardware design.

- 3.3.1 The redesign required in paragraphs 3.2.1 thru 3.2.4 cited already, included breadboarding, test and evaluation to ensure that the modules were reproducible and that they would perform reliably per MIL-R-55099(EL) and MIL-R-55100(EL), when installed in end-item equipments.
- 3.3.2 All redesigned modules were marked with a letter "A" behind the module designation and were mechanically and electrically interchangeable with current modules, except that Modules A9000A and A9400B are interchangeable with Modules A9000 and A9400A as a pair only and modules A5200A and A5300A are interchangeable with Modules A5200 and A5300 as a pair only. Radio Sets equipped with redesigned modules performed in accordance with the present specifications of MIL-R-55099D(EL) and MIL-R-55100D(EL).
- 3.3.3 All transistors, purchased parts and components used must be available from at least two independent manufacturers.
- 3.3.4 Microcircuits may be used by the contractor providing the cost of the microcircuit(s), plus any additional components, is less than the cost of the same functional circuit implemented using discrete parts, including the cost of labor involved in the assembly of each design. All microcircuits used were selected in accordance with MIL-STD-1562, List of Standard Microcircuits.
- 3.3.5 Silicon transistor types were selected from types readily available to industry and Government. Direct replacement with no attendant circuit change was desirable, but, if necessary for reasons of lower cost, a change from PNP to NPN was permitted. The total number of silicon transistor types used was much less than the number presently being used.
- 3.3.6 To ensure that nuclear hardness of the equipment is not adversely affected by the germanium to silicon conversion, the Government furnished data on performance before and after radiation exposure on those transistors that were planned for use. Whenever circuit redesign was performed, those transistors were used that were least degraded by nuclear exposure.
- 3.3.7 During the PIP for the AN/VRC-12 Series Radios, Memcor Engineering pursued the following course of action. First, whenever minor changes occurred in a module concerning components, Memcor Engineering specified parts that were comparable to those already in use. Second, in the event of full-up redesign efforts (A2000A, A5200A/A5300A, A9000A/A9400B), Memcor Engineering specified established-reliability parts. Third, whenever possible, Memcor specified tantalum capacitors that have already been converted to established reliability status.

3.3.8 To ensure the compatibility of the AN/VRC-12 Series Radios with Digital Data Systems, Radio Sets incorporating the redesigned modules shall meet the following signal sense criteria: In the High Band (53.00 to 75.95 MHz), a positive going input signal to the transmitter shall produce a deviation of the RF carrier towards higher frequencies and there shall be no signal sense inversion over an AN/VRC-12 Radio Link.

3.4 GFE Radios

In late March, 1977, E-System Engineering had completed redesigning the twenty-nine (29) modules and testing at the module level. The Government furnished twenty-five (25) radios consisting of five (5) RT-246's, fifteen (15) RT-524's and five (5) R-442's for modification. At the end of August, 1977, the modification of the radios with silicon prototype modules and the radio level testing were deemed satisfactory in Memcor's own evaluation. The radios were ready for Government acceptance testing. On September 12, 1977, ECOM/TECOM personnel started radio testing (A, B and C Test) at Memcor production facilities in Huntington, Indiana. Testing was finished at the end of December, 1977.

The serial numbers of the above radios are listed in Table 3.4.1.

3.5 Selection of Silicon Transistors

The new, proposed, silicon transistors were sampled and their characteristics were carefully analyzed in accordance with the desired application. (See Tables 3.5.1, 3.5.2 and 3.5.3 for a total summary of the silicon devices used.)

3.5.1 RF Devices (over 11.5 MHz, Small Signal)

JAN2N918 and JAN2N3866 (NPN Types) were candidates for this application. However, an early investigation of the Al500 and A6300 VFO modules revealed that to convert the input voltage biasing from "PNP" to "NPN" could become very complicated. Problems with tracking, stability, oscillator noise, spectrum spurs, etc., would have to be considered with new boards. Specifically, the 2N918 device shows a very high level of harmonic activity over 400 MHz due to a high $f_{\rm T}$ rating (typically 1.0 GHz). Therefore, a potential problem exists concerning spurs and/or parasitic oscillations in the RF application. While searching the RF devices of the PNP variety, the JAN2N3251A was selected for examination.

The JAN2N3251A device is an improved version of a most common PNP transistor, the JAN2N2907A. The JAN2N3251A has a lower $C_{\mbox{ob}}$ rating and more linearity.

TABLE 3.4.1

Serial Numbers of Government Furnished Radios

		•	
RT-246	(5 each)	S/N	1600
			1602
			1603
			1604
			1605
RT-524	(15 each)	S/N	18782
			18783
			18784
			18785
			18786
			18787
			18788
			18789
			18790
			18791
			18792
			18793
			18794
			18795
			19087
R-442	(5 each)	S/N	3829
			3836
			3838
			3839
			3862

Total (25)

Memcor Engineering designed ten (10) of the high frequency modules using the JAN2N3251A device. A total of eighteen (18) JAN2N3251A transistors were used. (See Table 3.5.2.) For some applications, where low capacitance was required, a controlled $C_{\rm ob}$ rating was recommended. These applications are identified with an asterisk at the device's designation in Table 3.5.2.

3.5.2 PNP General Purpose Devices (DC to 5.6 MHz, Small Signal)

JAN2N2907A device has been chosen for this application. IF Amplifiers (≤ 5.65 MHz) on the A3000 tray and audio amplifiers using PNP devices were designed with the JAN2N2907A. A total of fifteen (15) applications was incorporated. The device performance is excellent. Similarly, the JAN2N2905A device in a TO-39 package (a higher power version of the 2N2907A device) was used in four (4) places where more power dissipation was expected.

3.5.3 NPN General Purpose Devices (Small Signal)

JAN2N2222A device was used for this application. This is complementary to the JAN2N2907A. The price of the JAN2N2222A is most attractive and it is believed to be the most popular transistor in the industry for small signal, NPN applications. The device was used in sixteen (16) places.

The four (4) devices mentioned above (JAN2N3251A, JAN2N2907A, JAN2905A and JAN2N2222A) replace fifty-three (53) germanium transistors. That was approximately 74 percent of the total germanium requirement.

For the NPN, medium power application, the present Si device, SM-B-416325 (2N2594), used on the Al600 (Tuner Power Supply Module) was replaced by an EIA type 2N5681 transistor. The reason for this change is that the 2N2594 device has a relatively high failure rate in the field. ECOM has recommended the 2N5681 transistor, which has a higher BV $_{\rm CEO}$ rating. The 2N5681 transistor also replaced the JAN2N697, an early silicon device, used on the A7000 Null Switch module. Therefore, the 2N5681 was used for three (3) applications.

3.5.4 Power Devices

Some difficulty occurred in finding the best replacement for the JAN2N297A germanium transistor. A study of silicon, PNP, power transistors indicated that a JAN-approved, silicon device (in a TO-3 package) was not available to compare with the JAN2N297A transistor. The nearest approximation among JAN devices is the 2N3792A transistor. However, an EIA type, power transistor (2N5868) was found to be the best possible replacement. An additional feature is the nearly 5:1 differential in price between the 2N5868 and the 2N3792A transistors. For those reasons, the 2N5868 device was recommended for use in four (4) places.

For the replacement of the JAN2N1412A (Ge, PNP, TO-36) Power Device, the JAN2N3792 chip (assembled in a JEDEC TO-203AA press-fit package) was selected for usage on the A9400B transistor Adapter Assembly. The reasons for choosing a TO-203AA package are as follows:

- 1. The current germanium transistors (JAN2N1412A) are assembled in a JEDEC TO-36 package. Since the TO-3 package is standard for silicon power transistors, a direct replacement is impossible.
- 2. The TO-3 package does not lend itself to the rubber boot technique used to prevent water leakage.
- 3. Therefore, E-Systems, Memcor has designed a heatsink casting to fit the JEDEC TO-203AA press-fit devices. The new heatsink has significantly improved heat dissipation and permits easier assembly.

The total usage of the 2N3792 (TO-203AA) is six (6) places.

3.5.5 Unijunction Transistor

A MIL-STD-701 Unijunction Transistor, JAN2N4948, was chosen to replace the SM-D-374972 (SU106) device used on the A8400 Xmtr Hunt generator module.

Concerning the JAN2N4948 device, the minimum intrinsic stand-off ratio needed to be restricted in value from 0.55 to 0.66 due to the output requirements of the module.

3.6 Microcircuits

3.6.1 On the A3200A CRS Balanced Mixer, an integrated circuit, Type CA3018A, was incorporated to improve performance. This IC is being used presently on the PRC-77 A44A Balanced Mixer and is producing significant improvements in module performance. Also, this new design eliminated the need for matched diodes. (Reference M38510/108 for applicable specifications.)

FIGURE 3.6.1. SCHEMATIC DIAGRAM FOR CA3018 AND CA3018A

TABLE 3.5.1
Si Transistor Type & Application

Туре		
PNP	NPN	
JAN2N3251A		
JAN2N2907A JAN2N2905A	JAN2N2222A 2N5861	
2N5868 JAN2N3792 (TO-203AA)		
JAN2N4948		
	PNP JAN2N3251A JAN2N2907A JAN2N2905A 2N5868 JAN2N3792 (TO-203AA)	

TABLE 3.5.2

Si Transistor Type and Usage

	Transistor	Туре		Quantity	Circuit Designations
1.	JAN2N3251A	PNP	TO-18	18	Q1401, Q1501*, Q1502*, Q1503*, Q2001, Q2002, Q3301, Q4101, Q4102, Q4201, Q6301*, Q8101, Q8102, Q8103 Q8201, Q8202, Q8301, Q8302
2.	JAN2N2907A	PNP	TO-18	15	Q3101, Q3401, Q3402, Q3501, Q3502, Q3601, Q3701, Q4202, Q4302, Q4303, Q5101, Q5103, Q5205, Q8503,
3.	JAN2N2222A	NPN	TO-18	16	Q2102, Q4301, Q5102, Q5201, Q5202, Q5203, Q6401*, Q6402 Q7203, Q7204, Q8401, Q8403, Q8501, Q8502, Q8504
4.	JAN2N2905A	PNP	TO-39	4	Q2101, Q2103, Q5104, Q7205
5.	JAN2N3792 (2)	PNP	TO-203AA	6	Q9401, Q9402, Q9403, Q9404, Q9405, Q9406
6.	JAN2N4948 (3)	UJT	TO-18	1	Q8402
7.	2N5868	PNP	TO-3	4	Q201/Q402, Q202/403, Q7201 Q7202
8.	2N5681	NPN	TO-5	3	Q1601, Q1602, Q7001
			Total	67	

NOTE:

- * Indicates C_{ob} is controlled.
 Packaged in JEDEC TO-203AA.
 Intrinsic stand-off ratio is 0.66 minimum.

TABLE 3.5.3. SILICON DIODES AND USAGE

	DIODE TYPE	QTY	CIRCUIT DESIGNATIONS
1.	JAN1N538	1	CR302
2.	JAN1N645	32	CR351, CR404, CR405, CR411, CR1005, CR1601, CR1602, CR1603, CR1604, CR1605, CR2101, CR2102, CR2104, CR2105, CR5101, CR5102, CR5103, CR5206, CR5208, CR5209, CR7003, CR7004, CR7101, CR7102, CR7103, CR7104, CR7105, CR7106, CR7107, CR7108, CR7109, CR7110
3.	JAN1N649	2	CR7001,CR7002
4.	JAN1N752A	3	CR2103,CR5201,CR8101
5.	JAN1N757A	2	CR3601,CR5207
6.	JAN1N759A	2	CR7205,CR8505
7.	JAN1N965B	1	CR3101
8.	JAN1N968B	1	CR1004
9.	JAN1N1202	1	CR301
10.	JAN1N2992B	2	CR202, CR412
11.	JAN1N3998RA	1	CR6201
12.	JAN1N4148	29	CR413, CR1401, CR3102, CR3103, CR3201, CR3301, CR3602, CR3603, CR3701, CR3702, CR3703, CR4201, CR4202, CR5202, CR5203, CR5204, CR5205, CR7201, CR7202, CR8104, CR8105, CR8106, CR8201, CR8202, CR8203, CR8501, CR8502, CR8503, CR8504
13.	JAN1N4942	7	CR9001, CR9002, CR9011, CR9012, CR9013, CR9014, CR9015
14.	JAN1N4944	4	CR9003, CR9004, CR9005, CR9006
15.	JAN1N4948	4	CR9007, CR9008, CR9009, CR9010
16.	SM-C-318069 (ref. 1N4001)	1	CR5104
17.	SM-C-374845-1 (ref. 1N3488)	2	CR8102,CR8103
18.	SM-C-374847-1 (ref. 1N3565)	1	CR406
19.	SM-C-416324 (ref. 1N3550)	1	CR1301
20.	SM-B-416386 (ref. 1N3552)	1	CR1501
21.	SM-B-416394 (ref. 1N3551)	2	CR6301,CR6302

COLLECTOR IS INTERNALLY CONNECTED TO MOUNTING STUD

NOTE: Maximum recommended torque on mounting stud is 12 inch-pounds.

TO-36 WITH METAL LEADS

S	INC	HES	MILLIMETERS		
M	MIN.	MAX.	MIN.	MAX.	
A	.440	.500	11.17	12.70	
ь	.120	.190	3.05	4.83	
OD		1.250		31.75	
N	.375	.500	9.53	12.70	
K	.100	.312	2.54	7.92	
L	.610	.710	15.49	18.03	
T	.070	.120	1.778	3.05	
Ti	.120	.145	3.05	3.68	
R	335	.355	8.51	9.02	
ci	.090	.140	2.29	3.56	

TO-203AA

Press-Fit 6, 10-, and 15-A Triacs; 20- and 35-A SCR's

SYMBOL	INCHES		MILLIMETERS		NOTES
STANDOL	MIN.	MAX.	MIN.	MAX.	10123
φD	-	0.510	-	12.95	1
0D1	0.501	0.505	12.726	12.827	2
øD ₂	0.465	0.475	11.82	12.06	
G	0.330	0.380	8.39	9.65	
н	-	0.800	-	20.32	
P	0.100	-	2.54	-	2
a	0.080	0.097	-	-	
aT.	0.065	0.090	1.66	2.28	3,4
oT1	0.035	0.068	0.89	1.72	1

- Outline contour is optional within zone defined by oD and G min, and H'max.
 Straight knurf surface.
- 3. Elongated hole in terminal is optional.
- Contour and orientation of terminal 1 and terminal 2 are not defined.
- Terminal 1 to be shorter than terminal 2 for identification. 92CS-23134R1

FIGURE 3.5.4. CASE COMPARISON: TO-36 vs TO-203AA

3.6.2 LM-3075D (FM IF Amp, Lim and Det, Audio Pre-Amp & Reg)

For the A4200A (Receiver 3rd, 4th and 5th IF Amplifiers, Limiter and Discriminator), an integrated circuit (FM IF, Subsystem, Type LM3075D) is incorporated. This IC has been used widely in commercial applications. In particular, its performance has been test proven on the ARC-150/ARC-164 airborne radios. This device meets the requirements of MIL-M-38510, Class B.

With this IC, the new A4200A circuit assembly is drastically simplified. The gain has been stabilized and alignment has been simplified by reducing the number of tuning coils from seven to a single quadrature coil. Also, the requirement for matched diodes is eliminated.

FIGURE 3.6.2. SCHEMATIC DIAGRAM FOR LM-3075D

3.6.3 JM38510/10102 BIC (747 Dual Op Amplifier)

The A5200 Squelch Amplifier was redesigned with a microcircuit, Type MC1558, in the ECOM Technical Report #4448. An analysis of MC1558 versus the MIL-STD-IC, Type JM38510/10102, reveals that both are functionally identical for this application. The only difference is that the latter has a split power supply arrangement.

For this application the MIL-STD-IC is recommended.

FIGURE 3.6.3. A - PACKGE LAYOUT AND B - SCHEMATIC FOR JM38510/10102 BIC

3.7 Module Redesign

There are three categories of modules to be redesigned in this Product Improvement Program. The first category of modules involved those that were completely redesigned as indicated in the contract in order to eliminate the deficiencies. Those are the A2000A, the A5200/A5300A and the A9000A/A9400B modules. For those modules, high reliability components were specified for use wherever possible.

The next category of modules included updated modules in which the modification of circuitry was necessary for improved radio performance. Those modules are the A3200A and the A4200A modules.

The third category of modules involves the simple replacement of germanium transistors in many modules. In many cases minor changes are made to PC Boards to eliminate interfering components. A total of twenty-two (22) modules are in that third category.

3.7.1 A2000A Crystal Switch Assembly

Two basic problem areas were attacked. The first major concern was the intermittent contacts of the switches. Since this module provides the reference spectrum for the frequency synthesizer, the consequence of losing contact is detrimental to the radio operation. Secondly, the present frame assembly requires a seven-piece construction which makes mechanical alignment very difficult.

To resolve those critical areas of concern, the Switch Assembly was redesigned from the present spherical contact to a sharp edge contact with wiping action. Also, the frame assembly was changed from a seven-piece construction to a two-piece casting resulting in easier alignment techniques and long term mechanical stability. (See the sketches in Figure 3.7.1.)

Electrically, established reliability parts are used whenever possible. Also, a new type of transformer was chosen to replace the present transformer that did not have enough tuning range and in which the core adjustments were unstable. The new transformer assembly involves a vertically mounted, single-mold, nylon coil form in which the tuning core is mounted securely. The transformer windings are wrapped externally around the coil form. Such transformer construction allows for improved tuning range and higher reliability.

The germanium transistor, JAN2N499A, was replaced with a silicon transistor, JAN2N3251A. The new schematic and performance data are attached in Appendices A and D respectfully.

FIGURE 3.7.1. A2000 CASTINGS

3.7.2 A5200A/A5300A Squelch Amp and Filter

The main problem concerning these modules was the difficulty in adjusting the squelch threshold point and maintaining that point during various operating conditions (temperature, input voltage, variations between units, etc.). That was primarily due to the inability of the relay-driving, DC amplifier to maintain the operating point.

The modules were completely redesigned as described in the ECOM technical report #4448 including a few circuit features that were added as deemed necessary. Namely, during radio operation extra transistor switches were needed to disable the squelch relay when the front panel switch was in the "OFF" position. Also, the new voltage comparator circuit was driving the squelch relay to an excessive "chatter", when the signal level was approaching the threshold point. By adding a low pass filter in the noise channel and by providing a slight amount of positive feedback to the comparator, the "chattering" was reduced to an acceptable rate. The established reliability parts were specified wherever possible for those modules as the contract required. The high precision filter components were specified similar to those parts used on the PRC-77, A54A, squelch amp module.

The performance of the new A5200A/A5300A Squelch Amp and Filter assembly was significantly improved:

- 1 The alignment procedure is simple and definite.
- 2 The gain and the threshold points are stable.
- 3 Unit-to-unit performance variation is minimal.

The new modules' schematics and performance data are attached in Appendices A and D, respectively.

3.7.3 A9000A/A9400B Power Supply

The major problem concerning the power supply was the high rate of transistor failure due to improper switching and excessive heat build-up at the transistors.

The A9000A assembly was completely redesigned to eliminate the above deficiencies by:

- $\underline{1}$ Incorporating a two-transformer converter technique to restrict the load-line within the safe operating area of the transistor,
- $\frac{2}{4}$ Increasing the operating frequency from approximately 2 kHz to
- Choosing a fast switching transistor (2N3792) and by using fast recovery diodes in the rectifier circuits (JAN1N4942, JAN1N4944 and JAN1N4948),
- 4 Replacing the three capacitors at the +700VDC rectifier with a single high voltage capacitor.

Also, the A9400B transistor adapter assembly was redesigned to accommodate a T0-203AA press-fit package in order to increase the heat absorption capacity and the radiating surface. The new A9000A/A9400B power supply performance is significantly better than the present package as shown in the test data attached. Not only does the silicon device have a higher operating temperature limit (200°C) than the germanium device (100°C), but the actual temperature rise at the collector case is lower than before. This is due to the higher efficiency (typ 88-90%) obtained and the usage of a better heatsink design in the new package.

(See the Temperature Data Attached in Appendix D.)

Another important consideration related to the A9000A/A9400B Power Supply improvement involves the 400 Hz blower motor. During lab testing Memcor Engineering discovered a problem in which excessive voltage was available at the blower motor terminals. Load variations among the blower motors were found to be the cause. Three different types of blower motors were being used in the AN/VRC-12 radios. The most abundant type in the field (TRW-Globe) was examined thoroughly and the corresponding blower motor drawing, SM-C-374852, was modified so that any future blower motors would be constructed properly. A formal letter was received from the TRW-Globe Engineering section assuring Memcor Engineering that the Globe motor can operate without failure at the new specification limits.

3.7.4 A3200A CRS Balanced Mixer

This module mixes the frequency of the receiver VFO with the appropriate 1 MHz Harmonic to produce the First IF (approx. 53 MHz) spectrum for the second CRS Mixer stage. The present circuit consists of a buffer amplifier driving a pair of matched diodes (Ge) and the 1 MHz Harmonics are injected to the one side of the matched diodes for mixing. A Faraday-Shielded output transformer balances the output spectrum. These diodes require a strict matching of characteristics and the transformer requires a special winding technique for proper operation. In the past, numerous design changes were attempted to correct the module's deficiency. The primary problem was a potential false locking symptom attributable to spurs in the system, which was a very serious problem for the CRS operation.

Similar problems were known to exist in the PRC-77, A44, balanced mixer module and were solved by utilizing a silicon, monolithic, integrated circuit, transistor array device (CA3018A) in the associated balanced mixer circuit. The A3200A CRS Balanced Mixer was upgraded in a manner similar to the circuit found in the A44A module of the siliconized AN/PRC-77 Radio. (See Attached Schematic and test data in Appendices A and D, respectively.)

In this new circuit, the IC (CA3018A) was arranged as a differential amplifier pair using another transistor connected as a switch for the pair. The VFO signal is fed to the differential amplifier's base inputs through an input transformer and a balanced output transformer is connected across the collectors of the differential amplifier pair. The 1 MHz Harmonics are driving the switching transistor.

The advantages to this type of mixer are:

- 1 The signal is balanced at the input and at the output.
- 2 The output operates at a higher Q.
- 3 The mixer gain is higher than a conventional diode mixer.
- 4 By using a single IC (Monolithic), the device's characteristics and temperature matching are superior to the discrete devices.

For this type of mixing operation the higher harmonics of the local oscillator are not needed other than the 1 MHz fundamental spectrum, but, for interchangeability reasons, the A3100A harmonic generator was retained at its present configuration. The new module reveals a significant reduction of higher harmonic mixing at the output. The output is peaked at the center frequency (53 MHz) and remains that way over the operating frequency band. (See the Attached Schematic and test data in Appendices A and D, respectively.)

3.7.5 A4200A Receiver IF Amp., Limiter and Discriminator

The present module has three stages of tuned IF Amplifiers and a limiter stage is driving a Travis type discriminator using a pair of germanium, matched diodes. A total of seven (7) transformers are needed in order to tune the module for proper gain and bandwidth. A total of seventy-two (72) electrical components are packaged in five, shielded, metal cases. Due to the relatively high gain (typically 70 dB) the present module has a likely tendency to regenerate producing a false quieting in the Receiver channels.

This effect further complicates the adjustment of the Squelch Amplifier. The IF Spectrum is not sufficiently filtered for the detected audio output, which drives the following preamplifier stages. This is not a desirable condition for the IF Tray (A4000) operation. The new A4200A module is upgraded by implementing an FM system, IC (Type LM3075D). This IC was developed and is widely used in consumer products and the chip is currently available from five (5) manufacturers (National, Fairchild, RCA, Motorola and Sprague). The IC provided an FM, IF subsystem while using a single monolithic chip. The three-stage, differential, emitter-followercoupled section provided a typical voltage gain of 60 dB and features, because of its transistor constant-current sink, an output stage with exceptionally good limiting characteristics. The FM detector section, which utilizes a differential peak-detection circuit, requires only a single Quadrature coil. Therefore, tuning the detector circuit is simplified. Also, the audio preamplifier section provides a typical voltage gain of 21 dB. All these sections are regulated with Zener diodes and associated circuitry. The performance of the LM3075D device is well proven in many customer applications as well as in the airborne ARC-150 and ARC-164 radios.

The new A4200A module displayed an upgraded performance as follows:

- 1 Simplified assembly (from 72 parts to 39 parts)
- Easier alignment (from 7 coils to 1 coil)
- 3 Stabilized gain and output.

(See Attached Schematic and performance data in Appendices A and D, respectively.)

3.7.6 Remaining Modules

The readining twenty-two (22) modules involve simple transistor conversions from germanium to silicon devices. In several cases, small changes in printed circuit board layouts were incorporated to accommodate the new silicon transistors and/or to eliminate interfering components. The actual printed circuit board layouts for all of the PIP modules are displayed in Appendix B.

4.0 COMMENTS

All of the modules involved in the Product Improvement Program were successfully siliconized. Consequently, two basic changes to the module drawing structure were incorporated:

- 1. Notices of Revisions (NOR's) were defined in the corresponding Engineering Change Proposals (ECP).
- 2. "SK-NEW-XXXXXX" drawings are similarly listed in the corresponding ECP's. Typical drawing changes involving the "SK-NEW-XXXXXX" format are data lists, schematics, material lists, etc.

It should be noted that several Government gage tests were modified by RFW's. Certain modules were redesigned and a few others were modified to optimize their performance. Although those modules performed adequately within the radio, the corresponding gages were incompatible. Therefore, Requests for Waivers were generated and approved to clarify discrepancies. Reference Appendix E for a copy of each RFW.

APPENDIX A

AN/VRC-12 PIP ELECTRICAL SCHEMATICS

NA N

E-SYSTEMS INC.

41 East Park Drive, Huntington, Indiana 46750

	The state of the s		The state of the s			The state of the s			
iana 46750	ITEM	8E0,0	PART NUMBER	MBER	DESCRIPTION		MAT'L	MAT'L SPEC.	
	30	JNLESS	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	SPECIFIED INCHES	TITLE A-1600A (Si)				
	FRAC ±	01	TOLERANCES	ANGLEST	VIE Timer Power				
	e e		å	DATE	Supply				
	X X		6	DATE	-				
	APP		70	DATE		to the Later of	をおければしていません。	はもないない。では、ないでは、	
					MATERIAL	ū	FINISH		
	APP		70	DATE					
	NE'S	ASSY	1	1	CALI SI NO	7 Y	Ù	PEV.	
REVISIONS					40		The state of the s	The state of the s	- 3

A3100 A CRS HAR GEN

Je.

E-SYSTEMS INC.

11 East Park D

Drive, Huntington, Indiana 46750	ITEM	REG'O	PART	PART NUMBER	DESCRIPTION	TION		MAT'L	MAT'L SPEC.
	50	INLESS (THERWISE	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	TITLE A-3100A (Si)	(Si)		(y)	
		TO	TOLERANCES	S					
	FRAC	0	DEC. +	ANGLES -	CRS Harmonic	onic			
	80	T. P.	T. PHILLIPS	DATE	Generator	tor			
	СНК			DATE					
	400			9440		-	The state of the s	からないないというというないという	いるからかったいれるから
				3 100	MATERIAL		L	FINISH	
	APP			DATE					
				-	SCALE	SHEET NO	3715		REY
REVISIONS	NEXT ASSY	ASSY				OF.	4		

A3300 A CRS 2ND MIXER

REV

N N

MEMCOR DIVISION

E-SYSTEMS INC.

41 East Park Drive, Huntington, Indiana 46750

MAT'L SPEC

FINISH

MATERIAL

CRS Second Mixer

ANGLEST

DATE DATE DATE DATE

A-3300A (Si)

DESCRIPTION

PART NUMBER

TITLE

3ZIS

SHEET NO.

SCALE

NEXT ASSY

REVISIONS

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES DEC. + REO'D FRAC + ITEM CHK

REV

A3400 A CRS IST & 2ND IF AMPL

E-SYSTEMS INC.

41 East Perk Drive, Huntington, Ind

ndiana 46750	ITEM	REO'D	PART NUMBER	DESCRIPTION		MAY'L	MAT'L SPEC.
	20	INENSI	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	TITLE A-3400A (SI)			
		10	TOLERANCES				
	FRAC +	0	DEC. * ANGLES*	CRS First and			
	во		DATE	Second IF Amplifier			
	CHK		DATE	Γ			
	004	-	3		中華の大学の中		
			3	MATERIAL	FILE	FINISH	
	APP		DATE				
010101010	NEXT ASSY	ASSY	1	SALE SF NO.	1215		REV
				-			

| Sizt | | REV.

A3500 A CRS 3RD IF AMPL B LIM

E-SYSTEMS INC.

41 East Park Drive, Huntington, Indlana 46750

Idlana 46750	ITEN	REG'D	PART NUMBER		DESCRIPTION		MAT'L	MAT'L SPEC.
	36	INLESS (UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	2.0	TITLE A-3500A (Si)			
		101	TOLERANCES					が、これである。
	FRAC.		DEC. T ANGLEST	2+	CRS Third IF			
	80		DATE		Amplifier			
	CHK		DATE		and Limiter			
	APP		DATE			Contract of the	さんない あんできる	はいますると
					MATERIAL	Œ.	FINISH	
	APP		DATE					
					SCALE SHEET NO	3/15		236
REVISIONS	NEXT ASSY	ASSY				A		

¥ 3215

A3600 A CRS HUNT DISCR

E-SYSTEMS INC.

41 East Park Drive, Hunt

ntington, Indiana 46750	11EM	RE0'0	PART NUMBER	DESCRIPTION		MAT'L	MAT'L
	-	INLESS	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	TITLE A-3600A (Si)			
		10	TOLERANCES				
	FRAC +	0	DEC. + ANGLES+	CRS Hunt			
	e0		DATE	Discriminator			
	CHK		DATE				
	APP		0476		こうないないできます。	MICH AND SECTION	The state of
				MATERIAL	FINISH		
	APP		DATE	Γ			
	1	1	1	CALL SILL NO.	١	ı	1
BEVISIONS	NEXT ASSY	ASSY			- 4 -		

BEV.

A

1

and the same

R.V.

A3700A CRS PHASE DISCR

E-SYSTEMS INC.

41 East F

1								•	•		
9	t Park Drive, Huntington, Indiana 46750	ITEM	0,038	PART NUMBER	UMBER	OESCRIPTION	NO		MAT'L	MAT'L SPEC.	
		30	INLESS (UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	SPECIFIED I INCHES	TITLE A-3700A (Si)					
			TOI	TOLERANCES							
		FRAC +	0	DEC. +	ANGLEST	CRS Phase					
		0.8			DATE	Discriminator	or				
		CHK			DATE		*****				
		APP		-	9,00			W. Y. L. T.	いったが、ないのかない	可能は無いれたが	
				•	, I	MATERIAL		FIN	FINISH		
		APP		0	DATE						
		- NEXT ASSY	ASSY			SCALE SHEET NO.		Size.		AE.	

A4300 A RCVR AUDIO & SQUELCH PRE-AMPL

AEV

E-SYSTEMS INC.

41 East Park Orive, Huntington, Indiana 46750

	Contraction of the Contraction o								
ntington, Indiana 46750	ITEM	RE0'0	PART A	PART NUMBER	DESCRIPTION		MAT'L	MAT'L SPEC.	
		JNLESS	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	SPECIFIED N INCHES	TITLE A-4300A (SI)				
		TO	TOLERANCES	S					
	FRAC +		DEC. +	ANGLEST	Audio and Squelch			が決敗される	
	BO			DATE	Pre-Amplifier				-
	CHK			DATE					
	1			-		本ないないと	さんして とうないかんしゃ	が出れる。その変なら	
	<u>.</u>			DATE	MATERIAL	F	FINISH		
	APP			DATE					
					CCALE SHEET NO	5613		730	
DEVICIONG	- NEXT ASSY	ASSY				<		_	

THE AND THE PROPERTY OF A CO. SHOWING THE PROPERTY OF THE PROP

E-SYSTEMS INC.

41 East Park Drive, Huntington, Indiana 46750

lane 46750		I			+	
	ITEM	S.O.Ju	PART NUMBER	DESCRIPTION	MAT'L	MAT'L SPEC.
	50	INLESS (UNLESS OTHERVISE SPECIFIED	TITLE A-5300A (Si)		
		101	TOLERANCES			
	FRAC. +	0	DEC 2 ANGLEST	Squelch Filter		
	1	T. PHILLIPS	11PS 04TE -15-77	(Band Pass)		
	CHK		8			
	400		0476	200	では、ないとうできる。	A CONTRACTOR OF THE PARTY OF TH
			,	MATERIAL	FINISH	
	APP		DATE			
	2	100		CALF SHEET NO. SIZE		I REV.
REVISIONS				A		-
MEVISIONS				- OF	1	

SIZE A

E-SYSTEMS INC.

MEMCOR DIV

ngton, Indiana 46750	17.5 M	1 TEM RE0'0	PART NUMBER	DESCRIPTION	MAT'L MA	MAT'L SPEC.
	30	INLESS (UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	TITLE A-7000A (Si)		
		101	TOLERANCES '	(-)		近で
	FRAC +		DEC. T ANGLEST	Null Switch		
	PO		DATE			
	CHA		DATE			
	100	1	,		CANAL PROPERTY AND	
	1		3 . V	MATERIAL	FINISH	
	APP		DATE			
				CCALC CUCET NO	2176	25.3
	MFYT ASSY	ASSA				
DEVICEONS		200			A London	-

A7200 A SERVO AMPLIFICE

E-SYSTEMS INC.

41 East Park Drive, Huntington, Indiana 46

	-	-					•		
46750	ITEM	RE0'0	PART	PART NUMBER	DESCRIPTION	MATL	2	MAT'L SPEC.	
	٥٠	JNLESS	OTHERWISE ONS ARE	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	TITLE A-7200A (Si)				
		10	TOLERANCES	S	(T) WOOT				
	FRAC +		DEC +	ANGLEST	Servio Amplifier				
	во			DATE	1011111111				
	CHK			DATE	T				
			-		T				
	APP			DATE	MATERIAL	FINISH			
	APP			DATE					
	1	1	1	1	SCAL	1	1	1	
S W C C C C C C C C C C C C C C C C C C	- NEXT ASSY	ASSY				- ×			

AEV.

ABIOD A XMTR 11.5 MC MOD

E-SYSTEMS INC.

41 East Pa

Park Drive, Huntington, Indiana 46750	ITEM	RE0'0	PART N	PART NUMBER	DESCRIPTION		MAT'L	MAT'L SPEC.
	30	INLESS (UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	SPECIFIED N INCHES	TITLE A-8100A (SI)			
		10	TOLERANCES	S				
	FRAC +	٥	DEC +	ANGLES +	Transmitter			がある。
	80			DATE	11.5 MHz Modulator			
	CHK			DATE	_			
	400			9440			いいのでは、これのからないできますが、	ないというというないだと
				3 100	MATERIAL	<u>u</u>	FINISH	
	APP			DATE				
				The second secon	CON LEGIT NO	5176		730
020101010	NEXT ASSY	ASSY			SCALE SHEET NO.	4		

REV. N A

A8200 A XMTR PHASE DISCR

E-SYSTEMS INC.

MEMCOR DIVISION

					The second secon	-		
41 East Park Drive, Huntington, Indiana 46750	1164	9.03H	PART NUMBER	ABER	DESCRIPTION		MAT'L	MAT'L SPEC.
		JNLESS	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	PECIFIED INCHES	TITLE A-8200A (Si)			
		10	TOLERANCES		(TO) WOODS W			
	FRAC		DEC. +	ANGLEST	Transmitter			
	0 A		VO	DATE	Phase Discriminator			
	CHK		DATE	16				
	100	-				土木で見から	A	いませんかと
			DATE	.	MATERIAL	FIN	FINISH	
	APP		DATE	16				
	١٤	13	-	1	CALE SH NO.	3215		REV.
REVISIONS		2			, OF	4		-

(10804) FIRST IF, AMPL SECOND IF. AMPL

AB300A XMTR IST & 2ND IF AMPL

36.

E-SYSTEMS INC. MEMCOR DIVISION

Transmitter First and Second IF Amplifier SHEET NO. DESCRIPTION A-8300A (Si) MATERIAL SCALE UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES ANGLEST PART NUMBER DATE DATE DATE DATE TOLERANCES REO'D NEXT ASSY FRAC + TEN CHK RFVISIONS 11 East Park Drive, Huntington, Indiana 46750

٥٥

A8500A XMTR SPEECH AMPL

E-SYSTEMS INC.

41 East Park

				Management of the Control of the Con		
k Drive, Huntington, Indiana 46750	11 C M	RE0'0	PART NUMBER	DESCRIPTION	MAT'L M	MAT'L SPEC.
	30	INLESS (UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	TITLE A-8500A (Si)		
		10	TOLERANCES			
	FRAC +	۰	DEC. T ANGLEST	Transmitter		
	80		DATE	Speech Amplifier		
	CHK		DATE			
	907				ないないというというという	がなっている
			DATE	MATERIAL	FINISH	
	APP		DATE			
				SCALE CUEST NO		130
REVISIONS	WEXT ASSY	ASSY				
						Control of the Party of the Par

APPENDIX B

AN/VRC-12 PIP
PRINTED CIRCUIT BOARD LAYOUTS

FIGURE B-1. P.C. BOARD LAYOUT FOR THE A1400A RECEIVER MIXER AND BUFFER AMPLIFIER ASSEMBLY

FIGURE B-2. P.C. BOARD LAYOUT FOR THE A1500A LOCAL OSCILLATOR AND BUFFER AMPLIFIERS ASSEMBLY

FIGURE B-3. P.C. BOARD LAYOUT FOR A1600A VHF TUNER POWER SUPPLY ASSEMBLY

A. INTERPOLATION OSCILLATOR

B. REFERENCE OSCILLATOR

FIGURE B-4. P.C. BOARD LAYOUT FOR THE A2000A CRYSTAL SWITCH

FIGURE B-5. P.C. BOARD LAYOUT FOR THE A2100A VOLTAGE REGULATOR ASSEMBLY

FIGURE B-6. P.C. BOARD LAYOUT FOR THE A3100A CRS HARMONIC GENERATOR ASSEMBLY

FIGURE B-7. P.C. BOARD LAYOUT FOR THE A3200A CRS BALANCED MIXER ASSEMBLY

FIGURE B-8. P.C. BOARD LAYOUT FOR THE A3300A CRS SECOND MIXER ASSEMBLY

FIGURE B-9. P.C. BOARD LAYOUT FOR THE A3400A CRS FIRST AND SECOND IF AMPLIFIER ASSEMBLY

FIGURE B-10. P.C. BOARD LAYOUT FOR THE A3500A CRS THIRD IF AMPLIFIER AND LIMITER ASSEMBLY

FIGURE B-11. P.C. BOARD LAYOUT FOR THE A3600A CRS HUNT DISCRIMINATOR ASSEMBLY

FIGURE B-12. P.C. BOARD LAYOUT FOR THE A3700A CRS PHASE DISCRIMINATOR ASSEMBLY

FIGURE B-13. P.C. BOARD LAYOUT FOR THE A4100A RECEIVER FIRST AND SECOND IF AMPLIFIERS ASSEMBLY

FIGURE B-14. P.C. BOARD LAYOUT FOR THE A4200A RECEIVER THIRD, FOURTH, AND FIFTH IF AMPLIFIERS, LIMITER AND DISCRIMINATOR ASSEMBLY

FIGURE B-15. P.C. BOARD LAYOUT FOR THE A4300A AUDIO AND SQUELCH PREAMPLIFIER ASSEMBLY

FIGURE B-16. P.C. BOARD LAYOUT FOR THE A5100A AUDIO AMPLIFIER ASSEMBLY

FIGURE B-17. P.C. BOARD LAYOUT FOR THE A5200A RECEIVER SQUELCH AMPLIFIER ASSEMBLY

FIGURE B-18. P.C. BOARD LAYOUT FOR THE A5300A SQUELCH FILTER ASSEMBLY

FIGURE B-19.1. P.C. BOARD LAYOUT FOR THE A6300A TRANSMITTER MASTER OSCILLATOR ASSEMBLY (FRONT SIDE)

FIGURE B-19.2. P.C. BOARD LAYOUT FOR THE A6300A TRANSMITTER MASTER OSCILLATOR ASSEMBLY (BACK SIDE)

PAGE BOARD LAYOUT FOR THE A6400A TRANSMITTER

86

FIGURE B-21. P.C. BOARD LAYOUT FOR THE A7000A NULL SWITCH ASSEMBLY

FIGURE B-22. P.C. BOARD LAYOUT FOR THE A7200A SERVO AMPLIFIER ASSEMBLY

FIGURE B-23. P.C. BOARD LAYOUT FOR THE A8100A TRANSMITTER 11.5 MHZ MODULATOR ASSEMBLY

FIGURE B-24. P.C. BOARD LAYOUT FOR THE A8200A TRANSMITTER PHASE DISCRIMINATOR ASSEMBLY

FIGURE B-25. P.C. BOARD LAYOUT FOR THE A8300A TRANSMITTER FIRST AND SECOND IF AMPLIFIER ASSEMBLY

FIGURE B-26. P.C. BOARD LAYOUT FOR THE A8400A TRANSMIT HUNT GENERATOR ASSEMBLY

FIGURE B-27. P.C. BOARD LAYOUT FOR THE A8500A TRANSMITTER SPEECH AMPLIFIER ASSEMBLY

APPENDIX C

AN/VRC-12 PIP LISTS OF MATERIALS

MODULE: A-1400A

REF.	PART NO.	DESCRIPTION
C1	SM-C-374834-2	Capacitor, .0047 µF
C2	SM-C-374834-2	Capacitor, .0047 µF
C3	SM-C-374834-2	Capacitor, .0047 µF
C4	PC41J4R5	Capacitor, 0.8-4.5 pF
C5	SM-C-374834-2	Capacitor, .0047 µF
C6	SM-C-374834-2	Capacitor, .0047 µF
C7	SM-C-374834-2	Capacitor, .0047 µF
C8	SM-C-374834-2	Capacitor, .0047 µF
C9	CC20CH040C	Capacitor, 4 pF
C10	SM-C-374834-2	Capacitor, .0047 µF
C11	SM-C-374835-5	Capacitor, 1.0 pF
CR1	JAN1N4148	Diode
Q1	2N3251A	Transistor
R1	RCO7GF301J	Resistor, 300Ω
R2	RC07GF201J	Resistor, 200Ω
R3	RCO7GF471J	Resistor, 470Ω
R4	RCO7GF152J	Resistor, 1500Ω
R5	RCO7GF392J	Resistor, 3900Ω
R6	RC07GF473J	Resistor, 47kΩ
R7	RCO7GF392J	Resistor, 3900Ω
R8	RCO7GF274J	Resistor, 270kΩ
R9	RC07GF392J	Resistor, 3900Ω
R10	RC07GF301J	Resistor, 300Ω
R11	RCO7GF180J	Resistor, 18Ω
R12	RC07GF301J	Resistor, 300Ω
R13	RC07GF273J	Resistor, 27kΩ
T1	SM-C-416328	Transformer
T2	SM-C-416329	Transformer
V1	JAN6205	Tube

MODULE: A-1500A

REF.	PART NO.	DESCRIPTION
C1	PC41J4R5	Capacitor, 0.8-4.5 pF
C2	SM-C-374835-3	Capacitor, 3 pF
C3	SM-C-416360-8	Capacitor, 510 pF, 2%
C4	SM-C-416360-2	Capacitor, 510 pF, 10%
C5	CC20CH180G	Capacitor, 18 pF
C6	CC20CH050C	Capacitor, 5 pF
C7	M39014-01-1368	Capacitor, 22 pF
C8	SM-C-374834-1	Capacitor, .001 µF
С9	SM-C-374834-1	Capacitor, .001 µF
C10	SM-C-374834-1	Capacitor, .001 µF
C11	CC20CH180G	Capacitor, 18 pF
C12	SM-C-374834-1	Capacitor, .001 µF
C13	SM-C-374835-1	Capacitor, 1 pF N750
C14	CMR05C020D0DL	Capacitor, 2 pF
CR1	SM-B-416386	Diode, Varactor 1N3552
L1	SM-C-416321-1	Coil
L2	SM-C-416310	Coil
L3	SM-C-374824-1	Coil
Q1	2N3251A	Transistor
Q2	2N3251A	Transistor
Q3	2N3251A	Transistor
R1	RC07GF273J	Resistor, 27kΩ
R2	RC07GF223J	Resistor, 22kΩ
R3	RC07GF682J	Resistor, 6.8kΩ
R4	RC07GF104J	Resistor, $10k\Omega$
R5	RC07GF472J	Resistor, $4.7k\Omega$
R6	RC07GF821J	Resistor, 820Ω
R7	RC07GF121J	Resistor, 120Ω
R8	RC07GF821J	Resistor, 820Ω
R9	RC07GF182J	Resistor, $1.8k\Omega$
R10	RCO7GF332J	Resistor, $3.3k\Omega$
R11	RC07GF152J	Resistor, $1.5k\Omega$
R12	RC07GF102J	Resistor, $1.0k\Omega$
R13	RC07GF332J	Resistor, $3.3k\Omega$
R14	RC07GF223J	Resistor, 22kΩ
R15	RC07GF222J	Resistor, $2.2k\Omega$
T1	SK-416387	Transformer
T2	SK-416385	Transformer

MODULE: A-1600A

REF.	PART NO.	DESCRIPTION
C1	SM-B-416409	Capacitor, 6.8 µF
C2	SM-B-416409	Capacitor, 6.8 µF
C3	CL31BQ020MPE	Capacitor, 2.0 µF
C4	CL31BQ020MPE	Capacitor, 2.0 µF
CR1	JAN1N645	Diode
CR2	JAN1N645	Diode
CR3	JAN1N645	Diode
CR4	JAN1N645	Diode
CR5	JAN1N645	Diode
L1	SM-C-416323	Coil
Q1	2N5681	Transistor
Q2	2N5681	Transistor
R1	RC07GF822J	Resistor, 8.2kΩ
R2	RC07GF222J	Resistor, 2.2kΩ
R3	RC20GF561J	Resistor, 560Ω
R4	RC07GF104K	Resistor, 100kΩ
T1	SM-C-416326	Transformer

MODULE: A-2000A

REF.	PART NO.	DESCRIPTION
C1	M39014/01-1450	Capacitor, 4700 pF
C2	M39014/01-1450	Capacitor, 4700 pF
C3	M39014/01-1456	Capacitor, .01 µF
C4	CMR05E300J0DM	Capacitor, 30 pF
C5	CMR05E680J0DM	Capacitor, 68 pF
C6	M39014/01-1456	Capacitor, .01 µF
C7	M39014/01-1456	Capacitor, .01 µF
C8	M39014/01-1456	Capacitor, .01 µF
C9	CMR05E620FPDM	Capacitor, 62 pF
C10	CMRO6F511J0DM	Capacitor, 510 pF
L1	SM-C-413577	Coil, 1 mh
L2	SM-C-413577	Coil, 1 mh
L3	SM-C-413577	Coil, 1 mh
Q1	2N3251A	Transistor
Q2	2N3251A	Transistor
R1	RCR07GF222K	Resistor, 2.2kΩ
R2	RCR07GF392K	Resistor, 3.9kΩ
R3	RCR07GF682K	Resistor, 6.8kΩ
R4	RCR07GF222K	Resistor, 2.2kΩ
R5	RCR07GF392K	Resistor, 3.9kΩ
R6	RCR07GF682K	Resistor, 6.8kΩ
T1	SK-414452	Transformer
T2	SK-414461	Transformer

MODULE: A-2100A

REF.	PART NO.	DESCRIPTION
C1 C2 C3 C4 CR1 CR2 CR3	CSR13E686MM CSR13E686MM SM-C-413567-4 CSR13E156MM JAN1N645 JAN1N645 JAN1N752A	Capacitor, 68 µF Capacitor, 68 µF Capacitor, .01 µF Capacitor, 15 µF Diode Diode Diode, Zener
CR4 CR5 CR6 Q1 Q2 Q3 R1 R2 R3 R4	JAN1N645 JAN1N645 JAN1N645 JAN2N2905A JAN2N2222A JAN2N2905A RC07GF271K RC20GF102K RC07GF681K RC07GF101K	Diode Diode Diode Transistor, PNP Transistor, NPN Transistor, PNP Resistor, 270Ω Resistor, 1kΩ Resistor, 680Ω Resistor, 100Ω
R5 R6 R7 R8 R9	RC07GF101K RC07GF102K SM-C-374830-5 RC07GF153K RC07GF153K RC07GF681K	Resistor, 100Ω Resistor, $1k\Omega$ Resistor, Variable, $5k\Omega$ Resistor, $15k\Omega$ Resistor, $15k\Omega$ Resistor, 680Ω

- Victorial Committee

MODULE: A-3100A

REF.	PART NO.	DESCRIPTION
C1	SM-C-413567-1	Capacitor, .001 µF
C2	SM-C-413567-4	Capacitor, .01 µF
C3	SM-C-413567-4	Capacitor, .01 µF
C4	SM-C-413567-4	Capacitor, .01 µF
C5	SM-C-413567-3	Capacitor, .0047 µF
C6	SM-D-413568-18	Capacitor, 160 pF
C7	SM-C-413567-1	Capacitor, .001 µF
C8	SM-C-413567-1	Capacitor, .001 µF
CR1	JAN1N965B	Diode, Zener
CR2	JAN1N4148	Diode
CR3	JAN1N4148	Diode
L1	SM-C-413577	Coil
L2	MS18130-24	Coil, 22 µH
Q1	JAN2N2907A	Transistor
R1	RC07GF102K	Resistor, 1kΩ
R2	RC07GF561K	Resistor, 560Ω
R3	RC07GF332K	Resistor, 3.3kΩ
R4	RCO7GF682K	Resistor, 6.8kΩ
R5	RCO7GF123K	Resistor, 12kΩ
R6	RCO7GF153K	Resistor, 15kΩ
R7	RC07GF102K	Resistor, 1kΩ
T1	SM-D-413582	Transformer
Y1	SM-C-413570	XTAL, 1 MHz

MODULE: A-3200A

REF.	PART NO.	DESCRIPTION
C1	SM-C-413567-4	Capacitor, .01 µF
C2	SM-C-413567-4	Capacitor, .01 µF
C3	CM04ED240G03	Capacitor, 24 pF
C4	CK05BX102M	Capacitor, .001 µF
C5	SM-C-413567-4	Capacitor, .01 µF
C6	SM-C-413567-4	Capacitor, .01 µF
CR1	JAN1N4148	Diode
IC1	SM-A-104220	Integrated Circuit, Transistor Array
L1	MS75084-05	Coil, 2.7 µH
R1	RC07GF471J	Resistor, 470Ω
R2	RCO7GF471J	Resistor, 470Ω
R3	RC07GF333J	Resistor, 33kΩ
R4	RC07GF272J	Resistor, $2.7k\Omega$
R5	RC07GF102J	Resistor, 1kΩ
R6	RC07GF390J	Resistor, 39Ω
R7	RC07GF100J	Resistor, 10Ω
R8	RC07GF122J	Resistor, 1.2kΩ
R9	RC07GF820J	Resistor, 82Ω
R10	RC07GF102J	Resistor, 1kΩ
R11	RC07GF102J	Resistor, 1kΩ
R12	RC07GF102J	Resistor, 1kΩ
T1	SM-A-595916-1	Transformer
T2	SK-621285	Transformer

MODULE: A-3300A

REF.	PART NO.	DESCRIPTION
C2	SM-C-413567-2	Capacitor, .0033 µF
C3	CC20CH120J	Capacitor, 12 pF
C4	SM-C-413567-2	Capacitor, .0033 µF
C5	CC20CK04ROC	Capacitor, 4 pF
C6	SM-C-413567-2	Capacitor, .0033 µF
C7	SM-C-413567-1	Capacitor, .001 µF
C8	SM-C-413567-2	Capacitor, .0033 µF
C9	CC20RH200G	Capacitor, 20 pF
CR1	JAN1N4148	Diode
Q1	JAN2N3251A	Transistor
R1	RCO7GF821K	Resistor, 820Ω
R3	RCO7GF472K	Resistor, 4.7kΩ
R4	RCO7GF101K	Resistor, 100Ω
R5	RCO7GF330K	Resistor, 33Ω
R6	RC07GF330K	Resistor, 33Ω
T1	SM-D-413623	Transformer
T2	SM-D-413625	Transformer
T3	SM-D-413627	Transformer
C1	Not Used	
R2	Not Used	

MODULE: A-3400A

REF.	PART NO.	DESCRIPTION
C1	SM-C-413567-4	Capacitor, .01 µF
C2	SM-C-413567-3	Capacitor, .0047 µF
C3	SM-C-413567-4	Capacitor01 uF
C4	CC20UJ030C	Capacitor, 3 pF
C5	SM-C-413567-4	Capacitor, .01 uF
C6	SM-C-413567-4	Capacitor, .01 µF
C7	SM-C-413567-4	Capacitor, .01 µF
C8	CC20UJ080C	Capacitor, 8 pF
Q1	JAN2N2907A	Transistor
Q2	JAN2N2907A	Transistor
R1	RCO7GF272J	Resistor, 2.7kΩ
R2	RCO7GF821K	Resistor, 820Ω
R3	RCO7GF471K	Resistor, 470Ω
R4	RCO7GF822J	Resistor, 8.2kΩ
R5	RCO7GF182J	Resistor, 1.8kΩ
R6	RCO7GF272J	Resistor, 2.7kΩ
R7	RC07GF562K	Resistor, 5.6kΩ
R8	RC07GF562K	Resistor, 5.6kΩ
R9	RC07GF562K	Resistor, 5.6kΩ
R10	RC07GF562K	Resistor, 5.6kΩ
T1	SM-D-413645	Transformer
T2	SM-D-413647	Transformer

MODULE: A-3500A

REF.	PART NO.	DESCRIPTION
C1	CM05FD221G03	Capacitor, 220 pF
C2	SM-C-413567-4	Capacitor, .01 µF
C3	SM-C-413567-4	Capacitor, .01 µF
C4	SM-C-413567-4	Capacitor, .01 µF
C5	CC20UJ030C	Capacitor, 3 pF
C6	M39014/01-1240	Capacitor, 1500 pF
C7	SM-C-413567-4	Capacitor, .01 µF
C8	SM-C-413567-4	Capacitor, .01 µF
C9	CC20UJ180G	Capacitor, 18 pF
Ll	SM-C-413577	Coil, 1 mh
Q1	JAN2N2907A	Transistor
Q2	JAN2N2907A	Transistor
R1	RCO7GF102K	Resistor, 1kΩ
R2	RCO7GF182K	Resistor, 1.8kΩ
R3	RCO7GF562K	Resistor, 5.6kΩ
R4	RCO7GF222K	Resistor, 2.2kΩ
R5	RCO7GF272K	Resistor, $2.7k\Omega$
R6	RC07GF102K	Resistor, 1kΩ
R7	RCO7GF562K	Resistor, 5.6kΩ
R8	RCO7GF332K	Resistor, $3.3k\Omega$
T1	SM-D-413633	Transformer
T2	SM-D-413665	Transformer
Т3	SM-D-413667	Transformer

MODULE: A-3600A

REF.	PART NO.	DESCRIPTION
C1	SM-D-413568-6	Capacitor, 180 pF
C2	SM-C-413567-4	Capacitor, .01 µF
C3	SM-C-413567-4	Capacitor, .01 µF
C4	SM-C-413567-4	Capacitor, .01 µF
C5	SM-C-413567-4	Capacitor, .01 µF
C6	SM-D-413568-4	Capacitor, 150 pF
C7	CC30PH470F	Capacitor, 47 pF
C8	CC30LH470F	Capacitor, 47 pF
C9	PC41J8R5	Capacitor, .8-8.5 pF
C10	PC41J8R5	Capacitor, .8-8.5 pF
C11	SM-C-413567-1	Capacitor, .001 µF
C12	SM-C-413567-1	Capacitor, .001 µF
CR1	JAN1N757A	Diode, Zener
CR2	JAN1N4148	Diode
CR3	JAN1N4148	Diode
L1	SM-C-413577	Coil, 1 mh
L2	SM-D-413692	Coil, Adjustable
Q1	JAN2N2907A	Transistor
R1	RC07GF222K	Resistor, 2.2kΩ
R2	RCO7GF682K	Resistor, 6.8kΩ
R3	RC07GF471J	Resistor, 470Ω
R5	RC07GF563J	Resistor, 56kΩ
R6	RC07GF563J	Resistor, 56kΩ
T1	SM-D-413690	Transformer
T2	SM-C-413694	Transformer
T3	SM-C-413681	Transformer

MODULE: A-3700A

REF.	PART NO.	DESCRIPTION
Cl	SM-D-413707-3	Capacitor, .2 µF
C2	SM-D-413707-3	Capacitor, .2 µF
C3	SM-D-413707-4	Capacitor, .33 µF
C4	SM-D-413707-2	Capacitor, .1 µF
C5	CM05FD221J03	Capacitor, 220 pF
C6	CK05BX102M	Capacitor, 1000 pF
C7	CM05FD121J03	Capacitor, 120 pF
C8	CM05FD151J03	Capacitor, 150 pF
C9	SM-C-413567-4	Capacitor, .01 µF
C10	SM-C-413567-4	Capacitor, .01 µF
C11	SM-C-413567-4	Capacitor, .01 µF
C12	SM-C-413567-4	Capacitor, .01 µF
C13	SM-C-413567-4	Capacitor, .01 µF
C14	SM-C-413567-4	Capacitor, .01 µF
CR1	JAN1N4148	Diode
CR2	JAN1N4148	Diode
CR3	JAN1N4148	Diode
L1	SM-C-413577	Coil, 1 mh
Q1	JAN2N2907A	Transistor
Q2	JAN2N2907A	Transistor
R1	RC07GF124J	Resistor, 12kΩ
R2	RCO7GF473J	Resistor, 47kΩ
R3	RCO7GF563J	Resistor, 56kΩ
R4	RCO7GF563J	Resistor, 56kΩ
R5	RCO7GF334J	Resistor, 33kΩ
R6	RCO7GF183K	Resistor, 18kΩ
R7	RCO7GF431J	Resistor, 430Ω
R8	SM-C-374830-5	Resistor, Variable 5kΩ
R9	RC07GF132J	Resistor, 1.3kΩ
R10	RCO7GF332J	Resistor, $3.3k\Omega$
R11	RCO7GF132J	Resistor, 1.3kΩ
R12	RCO7GF332J	Resistor, 3.3kΩ
R13	RCO7GF472J	Resistor, 4.7kΩ
R14	RCO7GF182J	Resistor, 1.8kΩ
R15	RC07GF472J	Resistor, 1.8kΩ
R16	RCO7GF182J	Resistor, 1.8kΩ
R17	RCO7GF101K	Resistor, 100Ω
R18	RC07GF470K	Resistor, 470
R19	RCO7GF181K	Resistor, 180Ω
T1	SM-D-413712	Transformer
T2	SM-D-413714	Transformer

MODULE: A-4100A

REF.	PART NO.	DESCRIPTION
C1	SM-C-413567-4	Capacitor, .01 µF
C2	SM-D-413568-6	Capacitor, 180 pF
C3	SM-C-413567-4	Capacitor, .01 µF
C4	SM-C-413567-4	Capacitor, .01 µF
C5	CM05ED300J03	Capacitor, 30 pF
C6	CM05FD111J03	Capacitor, 110 pF
C7	SM-C-413567-4	Capacitor, .01 µF
C8	SM-C-413567-1	Capacitor, .001 µF
C9	SM-C-413567-4	Capacitor, .01 µF
C10	CM05CD070D03	Capacitor, 7 pF
C11	CM05DC120J03	Capacitor, 12 pF
L1	MS18130-23	Coil, 16 µH
L2	MS18130-23	Coil, 16 µH
Q1	JAN2N3251A	Transistor
Q2	JAN2N3251A	Transistor
R1	RC07GF301J	Resistor, 300Ω
R2	RC07GF180J	Resistor, 18Ω
R3	RC07GF301J	Resistor, 300Ω
R4	RC07GF822K	Resistor, $8.2k\Omega$
R5	RCO7GF472K	Resistor, 4.7kΩ
R6	RC07GF682K	Resistor, 6.8kΩ
R7	RCO7GF122K	Resistor, $1.2k\Omega$
R8	RCO7GF472K	Resistor, $4.7k\Omega$
R9	RC07GF562K	Resistor, $5.6k\Omega$
R10	RC07GF332K	Resistor, $3.3k\Omega$
R11	RC07GF390K	Resistor, 390
R12	RC07GF301J	Resistor, 300Ω
R13	RCO7GF180J	Resistor, 18Ω
R14	RCO7GF301J	Resistor, 300Ω
T1	SM-D-413740	Transformer
T2	SM-D-413735	Transformer
T3	SM-D-413742	Transformer

MODULE: A-4200A

REF.	PART NO.	DESCRIPTION
C1	CK05BX102M	Capacitor, 1000 pF
C2	CK05BX103M	Capacitor, .01 µF
C3	CK05BX103M	Capacitor, .01 µF
C4	CM05ED300J03	Capacitor, 30 pF
C5	CM05ED300J03	Capacitor, 30 pF
C6	CK05BX103M	Capacitor, .01 µF
C7	CK05BX103M	Capacitor, .01 µF
C8	CK05BX103M	Capacitor, .01 µF
C9	CK05BX103M	Capacitor, .01 µF
C10	CK05BX103M	Capacitor, .01 µF
C11	CM05ED300J03	Capacitor, 30 pF
C12	CC20CH070F	Capacitor, 7 pF
C13	CKO5BX221M	Capacitor, 220 pF
C14	CK05BX102M	Capacitor, 1000 pF
C15	CSR13E155M	Capacitor, 1.5 µF
C16	CK05BX103M	Capacitor, .01 µF
C17	CK05BX102M	Capacitor, 1000 pF
C18	CK05BX103M	Capacitor, .01 µF
CR1	JAN1N4148	Diode
CR2	JAN1N4148	Diode
IC1	SK-LM3075D	Integrated Circuit
L1 L2	MS75008-33	Coil, 2.7 µH
L2 L3	SM-D-413779	Coil, Adjustable
L3 L4	MS18130-23	Coil, 16 µH
Q1	MS18130-23	Coil, 16 µH
•	JAN2N3251A	Transistor
Q2 R1	JAN2N2907A	Transistor
R2	RC07GF510J	Resistor, 510
R3	RC07GF473K	Resistor, 47kΩ
R4	RC07GF153K	Resistor, 15kΩ
R5	RCO7GF152K	Resistor, 1.5kΩ
R6	RCO7GF273K	Resistor, $27k\Omega$
R7	RC07GF152K RC07GF510J	Resistor, 1.5kΩ
R8		Resistor, 51Ω
R9	RC07GF331K RC07GF103K	Resistor, 330Ω
R10	RC07GF103K	Resistor, 10kΩ
R11	RC07GF103K	Resistor, 10kΩ
R12	RCO7GF682K	Resistor, 27kΩ
MIZ	KCO/Groozk	Resistor, $6.8k\Omega$

MODULE: A-4300A

REF.	PART NO.	DESCRIPTION
C1	CSR13E155MM	Capacitor, 1.5 µF
C2	CSR13E156MM	Capacitor, 15 µF
C3	CK61BX331MM	Capacitor, 330 pF
C4	CSR13E156MM	Capacitor, 15 µF
Q1	JAN2N2222A	Transistor
Q2	JAN2N2907A	Transistor
Q3	JAN2N2907A	Transistor
R1	RCO7GF104J	Resistor, 100kΩ
R2	RCO7GF334J	Resistor, 330kΩ
R3	RCO7GF332K	Resistor, 3.3kΩ
R4	SM-C-374830-2	Resistor, Variable, 1kΩ
R5	RCO7GF472K	Resistor, 4.7kΩ
R6	RCO7GF332K	Resistor, 3.3kΩ
R.7	RC07GF100K	Resistor, 10Ω
R8	RCO7GF511J	Resistor, 5100
R9	RCO7GF471K	Resistor, 4700
R10	RCO7GF472K	Resistor, 4.7kΩ

MODULE: A-5100A

REF.	PART NO.	DESCRIPTION
C1	CSR13E155MM	Capacitor, 1.5 µF
C2	CSR13E156MM	Capacitor, 15 µF
C3	CSR13E156MM	Capacitor, 15 µF
C4	CSR13E155MM	Capacitor, 1.5 µF
C5	CSR13E106MM	Capacitor, 10 µF
C6	CSR13E106MM	Capacitor, 10 µF
C7	SM-C-413567-1	Capacitor, 1000 pF
C8	SM-C-413567-4	Capacitor, .01 µF
C9	SM-C-413567-2	Capacitor, 3300 pF
CR1	JAN1N645	Diode
CR2	JAN1N645	Diode
CR3	JAN1N645	Diode
CR4	SM-C-318069	Diode
Q1	JAN2N2907A	Transistor
Q2	JAN2N2222A	Transistor
Q3	JAN2N2907A	Transistor
Q4	JAN2N2905A	Transistor
R1	RC07GF272J	Resistor, $2.7k\Omega$
R2	RCO7GF912J	Resistor, $9.1k\Omega$
R3	RC07GF561J	Resistor, 560Ω
R4	RC07GF391J	Resistor, 390Ω
R5	RC07GF222J	Resistor, $2.2k\Omega$
R6	RC07GF561J	Resistor, 560Ω
R7	RCO7GF122J	Resistor, $1.2k\Omega$
R9	RC07GF682K	Resistor, $6.8k\Omega$
R10	RC07GF153K	Resistor, $15k\Omega$
R11	RC07GF182J	Resistor, $1.8k\Omega$
R12	RC07GF680J	Resistor, 68Ω
R13	RC07GF680J	Resistor, 68Ω
R14	RC07GF102K	Resistor, $1k\Omega$
R15	RC07GF101J	Resistor, 100Ω
R16	RC07GF102K	Resistor, $1k\Omega$
R17	RC07GF162J	Resistor, $1.6k\Omega$
R18	RC07GF680J	Resistor, 68Ω

MODULE: A-5200A

REF.	PART NO.	DESCRIPTION
C1	M39014/01-1473	Capacitor, .1 µF
C2	M39014/01-1473	Capacitor, .1 µF
C3	M39014/01-1467	Capacitor, .047 µF
C4	M39014/01-1237	Capacitor, .001 µF
C5	CSR13E106KP	Capacitor, 10 µF
C6	M39014/01-1236	Capacitor, .22 µF
D1	JAN1N752A	Diode, Zener 5.6V
D2	JAN1N4148	Diode
D3	JAN1N4148	Diode
D4	JAN1N4148	Diode
D5	JAN1N4148	Diode
D6	JAN1N645	Diode
D7	JAN1N757A	Diode, Zener, 9.1V
D8	JAN1N645	Diode
D9	JAN1N645	Diode
IC1	JM38510/10102BIC	Integrated Circuit, Dual Op-Amp
Q1	JAN2N2222A	Transistor
Q2	JAN2N2222A	Transistor
Q3	JAN2N2222A	Transistor
Q4	JAN2N2222A	Transistor
Q5	JAN2N2907A	Transistor
R1	RCO7G182JM	Resistor, 1.8kΩ
R2	RC07G471JM	Resistor, 470Ω
R3	RC07G104JM	Resistor, 100kΩ
R4	RCO7G124JM	Resistor, 120kΩ
R5	RC07G273JM	Resistor, 27kΩ
R6	RC07G473JM	Resistor, 47kΩ
R7	SM-C-374830-4	Resistor, Variable 20kΩ
R8	SM-C-374830-4	Resistor, Variable 20kΩ
R9	RCR07G102KM	Resistor, 1kΩ
R10	RCR07G181JM	Resistor, 180Ω
R11	RCR07G273JM	Resistor, 27kΩ
R12	RCR07G473JM	Resistor, 47kΩ
R13	RCR07G473JM	Resistor, 47kΩ
R14	RCR07G105JM	Resistor, 1MΩ
R15	RCR07G273JM	Resistor, 27kΩ
R16	RCR07G391JM	Resistor, 390Ω
R17	RCR07G103JM	Resistor, 10kΩ
R18	RCR07G103JM	Resistor, 10kΩ
R19	RCR07G562JM	Resistor, 5.6kΩ
R20	RCR07G270JM	Resistor, 270

MODULE: A-5200A (Cont'd)

REF.	PART NO.	DESCR	IPTION
R21	RCR07G562JM	Resistor,	5.6kg
R22	RCR07G332JM	Resistor,	
R23	RCR07G102KM	Resistor,	
R24	RCR07G103JM	Resistor,	
R25	RCR07G153JM	Resistor,	
R26	RCR07G123JM	Resistor,	
R27	RCR07G123JM	Resistor,	
R28	RCR07G564JM	Resistor,	
R29	RCR07G333JM	Resistor,	
R30	RCR07G333JM	Resistor,	

MODULE: A-5300A

REF.	PART NO.	DESCRIPTION
C1 C2 C3 C4 C5 C6 R1 R2 R3	CFR04ASA103FM CFR04ASA103FM CFR04ASA103FM M23269/01-3112 M23269/01-3112 M23269/01-3112 RNC55H1583FS RNC55H1583FS SM-C-374830-5	Capacitor, .01 μ F, 1% Capacitor, .01 μ F, 1% Capacitor, .01 μ F, 1% Capacitor, 200 μ F, 1% Capacitor, 200 μ F, 1% Capacitor, 200 μ F, 1% Resistor, 158k Ω , 1% Resistor, 158k Ω , 1% Resistor, Variable 5k Ω
R4 R5	RNC55H3922FS RCR07G183JM	Resistor, 39.2k Ω , 1% Resistor, 18k Ω
		TOTAL TORN

MODULE: A-6300A

REF.	PART NO.	DESCRIPTION
C1	CM05ED680G03	Capacitor, 68 pF
C2	SM-C-374834-1	Capacitor, .001 µF
C3	SM-C-374834-1	Capacitor, .001 µF
C4	SM-C-374834-1	Capacitor, .001 µF
C5	CC20CK020C	Capacitor, 2 pF
C6	CC20CH070C	Capacitor, 7 pF
C7	SM-C-374835-9	Capacitor, 7 pF
C8	CM05ED560G03	Capacitor, 56 pF
C9	SM-C-374834-1	Capacitor, .001 µF
C10	CM05FD151G03	Capacitor, 150 pF
C11	SM-C-374835-8	Capacitor, 2.5 pF
C12	CC20UJ080C	Capacitor, 8 pF
C13	PC41J4R5	Capacitor, .8-4.5 pF
C14	PC41J4R5	Capacitor, .8-4.5 pF
C15	CC20TH120G	Capacitor, 12 pF
CR1	SM-B-416394	Diode, Varactor
CR2	SM-B-416394	Diode, Varactor
L1	SM-C-374825-2	Coil
L2	SM-C-416332	Coil
L3	SM-C-416321-2	Coil
L4	SM-C-416352-1	Coil
L5	SM-C-416327-4	Coil
Q1	SK2N3251A	Transistor
R1	RC07GF105J	Resistor, $1M\Omega$
R2	RC07GF512J	Resistor, $5.1k\Omega$
R3	RCO7GF473K	Resistor, $47k\Omega$
R4	RC07GF473K	Resistor, $47k\Omega$
R5	RC07GF102J	Resistor, $1k\Omega$
R6	RC07GF182J	Resistor, $1.8k\Omega$
R7	RC07GF332J	Resistor, $3.3k\Omega$
R8 .	RC07GF470J	Resistor, 47Ω

MODULE: A-6400A

REF.	PART NO.	DESCRIPTION
C1	SM-C-374834-2	Capacitor, .0047 µF
C2	CM05ED680G03	Capacitor, 68 pF
C3	SM-C-374834-1	Capacitor, .001 µF
C4	CM05DD101K03	Capacitor, 100 pF
C5	CC20CH040C	Capacitor, 4 pF
C6	PC41J4R5	Capacitor, .8-4.5 pF
C7	CC20CH100D	Capacitor, 10 pF
C8	CC20CH180J	Capacitor, 18 pF
C9	PC41J4R5	Capacitor, .8-4.5 pF
C10	CC20CH180J	Capacitor, 18 pF
L1	MS75008-33	Coil, 2.7 µH
L2	SM-C-416332	Coil
L3	SM-C-416321-2	Coil
L4	SM-C-416352-2	Coil
L5	SM-C-416327-3	Coil
Q1	SK2N2222A	Transistor
Q2	SK2N2222A	Transistor
R1	RCO7GF182J	Resistor, 1.8kn
R2	RC07GF222J	Resistor, 2.2kΩ
R3	RC07GF331J	Resistor, 330Ω
R6	RC07GF220J	Resistor, 220
R7	RC07GF221J	Resistor, 220Ω
R8	RC07GF182J	Resistor, 1.8kΩ
R9	RC07GF332J	Resistor, 3.3kΩ
R10	RC07GF270J	Resistor, 270

MODULE:	A-7000A

DEE	DADE NO	
REF.	PART NO.	DESCRIPTION
C1	CSR13F476KM	Capacitor, 47 µF
C2	CSR13F476KM	Capacitor, 47 µF
CR1	JAN1N649	Diode
CR2	JAN1N649	Diode
CR3	JAN1N645	Diode
CR4	JAN1N645	Diode
Q1	SK2N5681	Transistor
R1	RCO7GF102J	Resistor, 1kΩ
R2	RCO7GF270K	Resistor, 27Ω
T1	SM-D-414780	Transformer

MODULE: A-7200A

REF.	PART NO.	DESCRIPTION
C1	CSR13E155MM	Capacitor, 1.5 µF
C2	CSR13E106MM	Capacitor, 10 µF
C4	CSR13E155MM	Capacitor, 1.5 µF
C5	SM-C-413567-4	Capacitor, .01 µF
C6	CSR13F226MM	Capacitor, 22 µF
C7	SM-C-413567-3	Capacitor, .0047 µF
CR1	JAN1N4148	Diode
CR2	JAN1N4148	Diode
CR3	JAN1N645	Diode
CR4	JAN1N645	Diode
CR5	JAN1N759A	Diode, Zener
Q1	SK2N5868	Transistor
Q2	SK2N5868	Transistor
Q3	JAN2N2222A	Transistor
Q4	JAN2N2222A	Transistor
Q5	JAN2N2905A	Transistor
R1	RC07GF122K	Resistor, 1.2kΩ
R3	RCO7GF680J	Resistor, 68Ω
R4	RCO7GF562J	Resistor, 5.6kΩ
R5	RCO7GF223J	Resistor, 22kΩ
R6	RCO7GF392J	Resistor, 3.9kΩ
R8	RCO7GF223J	Resistor, 22kΩ
R9	RCO7GF562J	Resistor, 5.6kΩ
R10	RCO7GF181K	Resistor, 180Ω
T1	SM-D-414743	Reactor-Transformer

MODULE:	A-8100A	
REF.	PART NO.	DESCRIPTION
C1	CM05FD331J03	Capacitor, 330 pF
C2	SM-C-413567-3	Capacitor, .0047 µF
C3	CM06FD102J03	Capacitor, 1000 pF
C4	PC41H120	Capacitor, .8-12 pF
C5	CC20SH360G	Capacitor, 36 pF
C6	CM05FD271J03	Capacitor, 270 pF
C7	CSR13G475KM	Capacitor, 4.7 µF
C8	CSR13G394KM	Capacitor, .39 µF
C9	CK05BX102M	Capacitor, 1000 pF
C10	SM-C-413567-3	Capacitor, .0047 µF
C11	SM-C-413567-3	Capacitor, .0047 µF
C12	CSR13G394KM	Capacitor, .39 µF
C13	SM-C-413567-3	Capacitor, .0047 µF
C14	SM-D-413568-14	Capacitor, 510 pF
C15	SM-D-413568-14	Capacitor, 510 pF
C16	PC51J110	Capacitor, 0.8-11 pF
C17	CK05BX102M	Capacitor, 1000 pF
CR1	JAN1N752A	Diode, Zener
CR2	SM-C-374845-1	Diode, Varactor
CR3	SM-C-374845-1	Diode, Varactor
CR4	JAN1N4148 JAN1N4148	Diode Diode
CR5 CR6	JAN1N4148 JAN1N4148	Diode
L1	SM-C-414194	Coil
Q1	JAN2N3251A	Transistor
Q2	JAN2N3251A	Transistor
Q3	JAN2N3251A	Transistor
R1	RC07GF332J	Resistor, 3.3kΩ
R2	RC07GF681J	Resistor, 680Ω
R3	RC07GF103J	Resistor, 10kΩ
R4	RC07GF101K	Resistor, 100Ω
R5	RC07GF122J	Resistor, 1.2kΩ
R6	RC07GF821J	Resistor, 820Ω
R7	RCO7GF152J	Resistor, 1.5kΩ
R8	RC07GF562J	Resistor, 5.6kΩ
R9	RC07GF221J	Resistor, 220Ω
R10	RC07GF273J	Resistor, 27kΩ
R11	RCO7GF271J	Resistor, 270Ω
R12	RCO7GF221J	Resistor, 2200
R13	RC07GF152J	Resistor, $1.5k\Omega$
R14	RC07GF683J	Resistor, 68kΩ
R15	RC07GF683J	Resistor, $68k\Omega$
R16	RC07GF473J	Resistor, 47kΩ
R17	RC07GF103J	Resistor, 10kΩ
R18	RC07GF102J	Resistor, 1kΩ
T1	SM-C-414189	Transformer
Y1	SM-D-414184	Xtal, 11.525 MHz

MODULE: A-8200A

REF.	PART NO.	DESCRIPTION
C1	CM05FD271J03	Capacitor, 270 pF
C2	SM-C-413567-2	Capacitor, .0033 µF
C3	SM-C-413567-2	Capacitor, .0033 µF
C4	SM-C-413567-2	Capacitor, .0033 µF
C5	CC20UJ560G	Capacitor, 56 pF
C6	CM06FD302J03	Capacitor, 3000 pF
C7	PC41J4R5	Capacitor, .5-4.5 pF
C8	CM06FD162J03	Capacitor, 1600 pF
C9	CM05ED300J03	Capacitor, 30 pF
C10	CC20UJ150G	Capacitor, 15 pF
C11	SM-C-413567-2	Capacitor, .0033 µF
C12	CM05FD331J03	Capacitor, 330 pF
CR1	JAN1N4148	Diode
CR2	JAN1N4148	Diode
CR2	JAN1N4148	Diode
L1	SM-C-413577	Coil, 1 mH
L2	SM-C-414805	Coil
Q1	JAN2N3251A	Transistor
Q2	JAN2N3251A	Transistor
R1	RCO7GF431J	Resistor, 430Ω
R2	RCO7GF122K	Resistor, 1.2kΩ
R3	RC07GF103K	Resistor, 10kΩ
R4	RC07GF682k	Resistor, 6.8kΩ
R5	RC07GF473J	Resistor, 47kΩ
R6	RC07GF683K	Resistor, 68kΩ
R7	RC07GF222J	Resistor, 2.2kΩ
R8	SM-C-414224	Resistor, 82.5kΩ
R9	SM-C-414224	Resistor, 82.5kΩ
R10	RC07GF822K	Resistor, 8.2kΩ
R11	RC07GF103K	Resistor, 10kΩ
R12	RC07GF122K	Resistor, 1.2kΩ
R13	RC07GF431J	Resistor, 430Ω
Tl	SM-D-414231	Transformer
T2	SM-D-414233	Transformer
Т3	SM-C-414228	Transformer
T4	SM-D-414235	Transformer

MODULE: A-8300A

REF.	PART NO.	DESCRIPTION
C1	CC20UJ010C	Capacitor, 1 pF
C2	SM-C-413567-4	Capacitor, .01 µF
C3	SM-C-413567-4	Capacitor, .01 µF
C4	SM-C-413567-4	Capacitor, .01 µF
C5	SM-C-413567-4	Capacitor, .01 µF
C6	SM-C-413567-4	Capacitor, .01 µF
C7	SM-C-413567-4	Capacitor, .01 µF
C8	CM05FD391J03	Capacitor, 390 pF
C9	CC20UJ100G	Capacitor, 10 pF
Q1	JAN2N3251A	Transistor
Q2	JAN2N3251A	Transistor
R1	RC07GF103K	Resistor, $10k\Omega$
R2	RC07GF182K	Resistor, $1.8k\Omega$
R3	RC07GF822K	Resistor, $8.2k\Omega$
R4	RC07GF562K	Resistor, $5.6k\Omega$
R5	RC07GF102K	Resistor, $1k\Omega$
R6	RC07GF822K	Resistor, $8.2k\Omega$
R7	RC07GF182K	Resistor, $1.8k\Omega$
R8	RC07GF182K	Resistor, $1.8k\Omega$
R9	RC07GF821K	Resistor, 820Ω
T1	SM-D-414212	Transformer
T2	SM-D-414210	Transformer
Т3	SM-D-414208	Transformer

MODULE:	A-8400A

REF.	PART NO.	DESCRIPTION
C1	SM-D-413568-1	Capacitor, 10 pF
C2	CM05ED200J03	Capacitor, 20 pF
C3	SM-D-413568-1	Capacitor, 10 pF
C4	CM05FD302J03	Capacitor, 3000 pF
C5	SM-D-413707-2	Capacitor, .1 µF
C6	CSR13BE106K	Capacitor, 10 µF
C7	CSR13BF105K	Capacitor, 1 µF
C8	CSR13BF684K	Capacitor, .68 µF
C9	CSR13BF334K	Capacitor, .33 µF
L1	SM-C-414266	Coil
Q1	JAN2N2222A	Transistor
Q2	SK2N4948	Transistor
Q3	JAN2N2222A	Transistor
R1	RCO7GF222J	Resistor, 2.2kΩ
R2	RCO7GF394J	Resistor, 390kΩ
R3	RCO7GF472K	Resistor, 47kΩ
R4	RCO7GF473K	Resistor, 47kΩ
R5	RCO7GF822J	Resistor, 8.2kΩ
R6	RC07GF131J	Resistor, 130Ω
R7	RCO7GF152K	Resistor, 1.5kΩ
R8	RCO7GF473K	Resistor, 47kΩ
R9	RC07GF622J	Resistor, 6.2kΩ
R10	RC07GF821J	Resistor, 820Ω
R11	RC07GF224J	Resistor, 220kΩ
T1	SM-D-413716	Transformer

MODULE:	A-8500A	
REF.	PART NO.	DESCRIPTION
C1	CSR13E106MM	Capacitor, 10 µF
C2	SM-C-413567-3	Capacitor, .0047 µF
C3	CSR13E106KM	Capacitor, 10 µF
C4	CSR13E106MM	Capacitor, 10 µF
C5	CSR13E106KM	Capacitor, 10 µF
C6	CSR13E106MM	Capacitor, 10 µF
C7	CSR13E476KM	Capacitor, 47 µF
C8	CSR13G105KM	Capacitor, 1.0 µF
C9	SM-D-413707-1	Capacitor, .05 µF
C10	SM-D-413707-1	Capacitor, .05 µF
C11	CSR13E106MM	Capacitor, 10 µF
C12	CK61BX471K	Capacitor, 470 µF
CR1	JAN1N4148	Diode
CR2	JAN1N4148	Diode
CR3	JAN1N4148	Diode
CR4	JAN1N4148	Diode
CR5	JAN1N759A	Diode, Zener
Q1	JAN2N2222A	Transistor
Q2	JAN2N2222A	Transistor
Q3	JAN2N2907A	Transistor
Q4	JAN2N2222A	Transistor
R1	RC07GF181K	Resistor, 180Ω
R2	RC07GF183J	Resistor, $18k\Omega$
R3	RCO7GF332J	Resistor, $3.3k\Omega$
R4	RCO7GF561J	Resistor 560Ω
R5	RCO7GF332J	Resistor, $3.3k\Omega$
R6	RCO7GF682K	Resistor, $6.8k\Omega$
R7	RC07GF103K	Resistor, $10k\Omega$
R8	RC07GF332J	Resistor, $3.3k\Omega$
R9	RC07GF223K	Resistor, 22kΩ
R10	RCO7GF102K	Resistor, 1kΩ
R11	RC07GF562K	Resistor, 5.6kΩ
R12	RC07GF621J	Resistor, 620Ω
R13	RCO7GF912J	Resistor, 9.1kΩ
R14	RCO7GF153K	Resistor, 15kΩ
R15	SM-C-374830-3	Resistor, Variable, $10k\Omega$
R16	SM-C-374830-3	Resistor, Variable, 10kΩ
R17	RC07GF121J	Resistor, 120Ω
R18	RC07GF103K	Resistor, 10kΩ
R19	RCO7GF821K	Resistor, 820Ω
R20	RC07GF681K	Resistor, 680Ω
R21	RC07GF561J	Resistor, 560Ω
R22	RC07GF680J	Resistor, 68Ω
R23	RC07GF472K	Resistor, 4.7kΩ
T1	SM-C-414248	Transformer

MODULE: A-9000A

REF.	PART NO.	DESCRIPTION
C1	M39006/09-8332	Capacitor, 160 µF
C2	M39006/09-8332	Capacitor, 160 µF
C3	CP53B1EG105K	Capacitor, 1.0 µF
C4	M39022/02-1212	Capacitor, 3.3 µF
C5	CMR05F391JPDM	Capacitor, 390 pF
C6	M39014/01-1238	Capacitor, 1000 pF
C7	CSR136475KM	Capacitor, 4.7 µF, 50 VDC
C8	M39022/02-1196	Capacitor, .68 µF, 400 VDC
CR1	JAN1N4942	Diode
CR2	JAN1N4942	Diode
CR3	JAN1N4944	Diode
CR4	JAN1N4944	Diode
CR5	JAN1N4944	Diode
CR6	JAN1N4944	Diode
CR7	JAN1N4948	Diode
CR8	JAN1N4948	Diode
CR9	JAN1N4948	Diode
CR10	JAN1N4948	Diode
CR11	JAN1N4942	Diode
CR12	JAN1N4942	Diode
CR13	JAN1N4942	Diode
CR14	JAN1N4942	Diode
CR15	JAN1N4942	Diode
K1	SM-C-413824	Relay
K2	SM-C-413824	Relay
L1	SM-C-374998	Coil, .5 mh
L2	SK-NEW-439959	Coil, 150 mh
R1	RCR42G564KM	Resistor, 560kΩ
R2	RCR32G154KM	Resistor, 150kΩ
R3	RER60F2370M	Resistor, 237Ω
R4	RER60F3480M	Resistor, 348Ω
R5	RWR80S49R9FM	Resistor, 49.90
R6	RWR89S3830FM	Resistor, 383Ω
R7	RWR89S2740FM	Resistor, 274Ω
R8	RWR80S10R0FM	Resistor, 10Ω
R9	RCR20G101KM	Resistor, 100Ω
R10	RCR20G101KM	Resistor, 100Ω
R11 R12	RWR89S6R81FM	Resistor, 6.81Ω
T1	RWR89S6R81FM	Resistor, 6.81Ω
	SK-NEW-439960	Transformer (DC)
T2	SK-NEW-374999	Transformer (AC)

MODULE: A-9400B

REF.	PART NO.	DESCRIPTION
C1	M39014/02-1223	Capacitor, .033 µF
Q1	SK-NEW-3792	Transistor, (2N3792 IN TO-203AA)
Q2	SK-NEW-3792	Transistor, (2N3792 IN TO-203AA)
Q3	SK-NEW-3792	Transistor, (2N3792 IN TO-203AA)
Q4	SK-NEW-3792	Transistor, (2N3792 IN TO-203AA)
Q5	SK-NEW-3792	Transistor, (2N3792 IN TO-203AA)
Q6	SK-NEW-3792	Transistor, (2N3792 IN TO-203AA)
RJ.	RER65F15ROM	Resistor, 15Ω
R2	RER65F24R9M	Resistor, 24.9Ω
R3	RER65F24R9M	Resistor, 24.9Ω
R4	RWR74SR150FM	Resistor, $.15\Omega$
R5	RWR74SR150FM	Resistor, .15Ω
R6	RWR74SR150FM	Resistor, $.15\Omega$
R7	RWR74SR150FM	Resistor, $.15\Omega$

APPENDIX D

AN/VRC-12 PIP SAMPLE TEST DATA

YEST:		SUEC:	TAP:	TEST NO:	
A1400 MODUL	LE PERFORMANCE	SC-A-400692	SEE BI	LOW	
TEST CONDITIONS:				DATE:	
	SEE BE	TOM .		3-10	5-76
MATERIAL:	CUE DU	LOW (A1400)		TEMP:	RH:
	SEE BE	LUM (A1400)			
MANUFACTURER:	E 61/67	T (2 1) (2) (2) (2)		M. NO:	
INCTOUNCELE	E-5151	EMS, INC., MEMO	OR DIVISION		<u> </u>
INSTRUMENTS:				10 (1)	0 100
HP 606	RF Generator	Calibrated		1001	ulles
HP 608 91 HR	RF Generator RF Voltmeter	· Calibrated		LAB. SUP.C	HECK .
91 IR	RF Voltmeter				
1018	Counter	Calibrated		ENGRG. CH	ECK:
NR 324024-	1 Gov't Furnish	ed Gage Calibra	ted 11-22-75		
UNIT	. · RC	VR		NITR .	
NO.			•		
	OUTPUT	BANDWIDTH	OUTPUT	BANDWIDTH	
	Para 8.2.6	Para. 8.2.12		Para. 8.3.12	
	.85/2.7 mV	250 Kilz Min		1.4 MIZ Min	
1/1/	TH A1400 BOARDS	BUILT PER SM-D-	374986 REVISIO	ON F	
	1.30	604			
	1.43	604 571	172	2.810	
3	1.62	591	-216 217	2.630	
4	1.44	555	206	2.565	
5 .	1.16	602	150	2.696	
6	1.33	608	205	2.510	·
7	1.46	623	216	2.653	
3	1.38	579	202	2.643	
9	1.26	582	182	2.659	
10	1.42	. 592	196	2.631	
AVERAGE	1.38	590.7	196.2	2.6214	
				- -	
	WITH A1400 BOX	ARDS MODIFIED PE	R THIS FCP #0	2 2	
			<u> </u>		
1	1.68	603	· 153	2.720	
2	1.97	569	179	2.734	
	2.09	582	202	2.530	
4	1.92	.569	168.	2.692	
5	1.44	608	126	2.792	
<u>6</u> 7	1.80	595 609	169 177	2.642	
3	1.82	590	168	2.835	
9	1.54	574	148	2.788	
10	1.78	607	165	2.703	
AVERAGE	1.791	587.6	165.5	2.708	
		124		-	

- TRACKING - CALCULATED STRAIGHT LINE FREQUENCY

A1500A- Modules # 36, 40, 44, 45, 46 \$ 48

RF TRACKING IN TEST FIXTURE ON CALIBRATED WHEEL. - FREQUENCY, CRS OUTPUT, MIXER OUTPUT

DATA TAKEN ON LAB TEST FIXTURE

46 1323

INTERFER & ESSENCO WAS INVESTED

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.527 Mc	422 mv	1.100 N
42.591	42.536 "	435 11	. 975"
43.682	43.654 "	440 "	.925 .
44.773	44.784 "	450 "	.900 "
45.864	45.880 "	460 "	.875"
46.955	46.880 "	465 11	.850 "
48.045	48.008 "	470 "	.850 "
49.136	49.140 "	475"	. 825 "
50.227	50.240 "	480 "	.810 "
51.318	51.319 "	480 "	.810 "
52.409	52.334 "	480 "	.810 "
53.500	53.444 "	480 "	.810 "
54.591	54.570 "	480 "	.810 "
55.682	53.685 "	475"	. 825"
56.773	56.810 "	470 "	.840 "
57.864	57.902 "	465"	.850 "
58.995	59.010 "	453- "	.870 "
60.045	60.105 "	445 "	.875 "
61.136	61.177 "	435"	.900 "
62.227	62.302 "	425"	. 925 "
63.318	63.367 "	415 "	.950 "
64.409	64.320 "	400 "	.975"

ALIGNED & TESTED ON LAB TEST FIXTURE

A1500A

Calculated Straight	Actual		
Line Frequency	Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.534 Mc	415 mx	1.150 N
42.591	42.546 "	425 11	1.110 "
43.682	43.654 "	435 "	1.075 1
44.773	44.801 .	450 "	1.025 "
45.864	45.895 .	460 "	1.000 "
46.955	46.897 "	470 "	.960 "
48.045	48.026 "	480 "	.940 "
49.136	49.161 "	485 "	. 925 "
50.227	50.267 "	490 "	.900 .
51.318	51.354 "	492 "	.890 "
52.409	52.374 "	495"	.890 "
53.500	53.490 "	495"	. 875"
54.591	54.6/2 "	495 "	. 875 "
55.682	53.732 "	490 "	. 875 "
56.773	56.868 "	485 "	. 875 "
57.864	57.956 "	480 "	.900 "
58.995	59.056	470 "	.900 "
60.045	60.146 "	460 "	. 925 ×
61.136	61.217 "	450 "	. 950 "
62.227	62.328 "	440 "	.960 "
63.318	63.378 "	430 "	.990 "
64.409	64.314 "	420 "	1.050 "

ALIGNMENT & TESTING ON LAB TEST FIXTURE

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.528 MC	410 ma	1.260 N
42.591	42.540 "	420 "	1.200 "
43.682	43.645 "	430 "	1.140 "
44.773	44.789 "	445 "	1.075 "
45.864	45.881 "	455 "	1.050 "
46.955	46.882 "	465 "	1.000 "
48.045	48.013 "	480 "	.975 "
49.136	49.152 "	485 "	.950 "
50.227	50.255"	490 "	.925 "
51.318	51.340 "	495 "	.900 "
52.409	52.361 "	500 "	.900 "
53.500	53.470 "	500 "	. 898 "
54.591	54.603 "	500 "	. 895 "
55.682	55. 7/3 "	495 "	.875"
56.773	56.852 "	490 "	. 875 "
57.864	57.941 "	485 "	. 875 "
58.995	59.041 .	475"	.875"
60.045	60.132	465 "	.875 "
61.136	61.204 "	453" "	.900 "
62.227	62.314 "	445- 11	.900 "
63.318	63.369 "	435 "	.925 "
64.409	64.309 "	425"	.950 "

ALIGNED & TESTED ON LAR TEST FIXTURE

A1500A

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.541 Mc	395 mar	1.175 N
42.591	42.533 "	410 "	1.125 "
43.682	43.657 "	420 "	1.050 "
44.773	44.795 "	430 "	1.000 "
45.864	45.893 "	440 "	. 975"
46.955	46.892	453"	.950
48.045	48.021 "	465 "	910 "
49.136	49.155	470 "	.900
50.227	50.259 "	475"	.875"
51.318	51.339 "	480 "	. 875
52.409	52.362 "	485 "	.850 "
53.500	53.464 "	485	. 850 "
54.591	54.597 "	485 "	. 850 "
55.682	55.709 "	485 "	. 850 "
56.773	56.842 "	470 "	.850 "
57.864	57.934 .	465	. 850 "
58.995	59.040 .	455- "	.860 "
60.045	60.128 "	445"	. 875 "
61.136	61.202 "	435"	. 875-
62.227	62.313 "	425"	.900 "
63.318	63.374 "	4/0 "	.925"
64.409	64.318 .	400 "	.950 "

G

INE HUPFEL & ESSEN CO. MANCH 134

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.538 Mc	430 mv	1.125 N
42.591	42.541 "	440	1.075 "
43.682	43.644 "	453-	1.025 "
44.773	44.788 "	470	1.000 "
45.864	45.880 "	480	1960 "
46.955	46.878 "	490	.940 "
48.045	48.007 "	500	.910 "
49.136	49.140 "	505	.900 "
50.227	50,246 "	510	. 900 "
51.318	51.324 "	575	.890 1
52.409	52.344 "	575	.890 "
53.500	53.450 "	575	.890 "
54.591	54,577 "	575	.890 "
55.682	55.690 "	575	.900 .
56.773	56.825 11	505	.900 "
57.864	57.924 "	495	.925"
58.995	59.023 1	48.5	.950 1
60.045	60.122 "	475	.960 "
61.136	61.196 "	465	. 990 1
62.227	62.312 "	453	1.025"
63.318	63.372 "	440	1.050 "
64.409	64.314 "	4.35	1.100 "

ALIGNMENT & TESTING ON LAB TEST FIXTURE

46 1323

I (4) KEUFFEL & ESSER CO. MAN IN US.

A1500A

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.539 Mc	380 mm	1.075 No
42.591	42.554 "	390 "	1.050 "
43.682	43.656 "	405- "	1,000 "
44.773	44.793 11	415	.950 "
45.864	45.889 "	430 "	.910 "
46.955	46.884 "	440 "	.900 "
48.045	48.017 "	450 "	. 875 "
49.136	49.152 "	460 11	. 850 "
50.227	50.253 "	465 1	.850
51.318	51.330 4	470 "	. 825 "
52.409	52.352 "	470 "	.825 "
53.500	53.459 "	470 "	.825 "
54.591	54.59/ 11	470 "	.825"
55.682	55.701 "	470 "	<u>" 258.</u>
56.773	56.833 "	465 11	.825 "
57.864	57.933 "	453- "	.850 "
58.995	59.037 "	450 11	.850 "
60.045	60.130 "	440 "	.875"
61.136	61.205 "	430 "	.890 n
62.227	62.319 "	415 "	.910 "
63.318	63.380 11	405 "	_950 "
64.409	64.321 "	395 "	.975 "

ALIGNED & TESTED ON LAB TEST FIXTURE

GOV'T GAGE TEST DATA

A1500A - Modules # 36, 40, 44, 45, 46, 47, \$ 48

MIXER OUTPUT, FREQUENCY, CRS OUTPUT, AND VARACTOR SENSITIVITY

SEE ECP # 16

DATA TAKEN ON GOV'T ELECTRICAL GAGES

A1500A

LOT NO.	TEST FREQ	OUTPUT V	OLTAGE (MV)	TUNER FI	REQ CONT	CRS OUTPUT (MV)	
		MIN	MAX	MIN	MAX	MIN	
SAMPLE	41.50 MHz	80	270	987	013	280	
NO.	53.50 MHz	80	270	207	233	280	
# 36	64.41 MHz	80	270	407	433	280	
	41.50	170		000		450	
	53.50	155		224		530	
	64.41	12	0	431		520	

FREQ SHIFT SETTING	LIMITS (KC) FREQUE 41.50 M			NCY SHIFT SEN Z	MHz	64.41 MHz		
	pire	MAX	(-)	(+)	(-)	(+)	(-)	(+)
.2	60	120	73	76	80	84	92	95
.4	60	120	171	. 79	78	86	89	100
.6	60	120	68	83	74	91	86	102
.8	60	120	65	86	73	94	83	107
1.0	60	120	64		70	98	80	1/2
1.2	60	120	61	94	67	103	78	1/7
1.4	60	120	60	100		108		123
1.6	60	120	58	105		114	74	128

GOV'T GAGE - DATA

A1500A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)		TUNER F	REQ CONT	CRS OUTPUT (MV	
,		MIN	MAX	MIN	MAX	MIN	
NO.	41.50 MHz	80	270	987	013	280	
	53.50 MHz	80	270	207	233	280	
	64.41 MHz	80	270	407	433	280	
40	41.50	15	3	0	01	470	
	53.50	150		224		540	
	64.41	110	0	431		500	

FREQ SHIFT SETTING	LIMITS (KC) FREQUE: 41.50 MH			CY SHIFT SEN	MHz	z 64.41 MHz		
	MIN	MAX	(-)	(+)	(-)	· (+)	(-)	(+)
.2	60	120	78	81	85-	88	96	100
.4	60	120	74	84	82	91	93	103
.6	60	120	72	87	78	95	89	108
.8	60	120	69	92	76	100	87	112
1.0	60	120	67	96		104	83	117
1.2	60	120	165	100	71	108		123
1.4	60	120	63	107	109	115	79	128
1.6	60	120	61	112		121	76	135

GOV'T GAGE- DATA

A1500A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)		TUNER F	REQ CONT	CRS OUTPUT (MV	
		MIN	MAX	MIN	MAX	MIN	
SAMPLE	41.50 MHz	80	270	987	013	280	
NO.	53.50 MHz	80	270	207	233	280	
#	64.41 MHz	80	270	407	433	280	
44	41.50	15	3	00	00	480	
	53.50	155		221		530	
	64.41	111	0	424		500	

FREQ SHIFT SETTING			FREQUENCY 41.50 MHz	FREQUENCY SHIFT SENSITE 41.50 MHz		TVITY 53.50 MHz 64.41 MH		Iz	
	MIN	XAM	(-)	(+)	(-)	· (+)	(-)	(+)	
.2	60	120	75	78	84	87	95	98	
.4	60	120	73		80	89	93	102	
.6	60	120	70	84	78	93	89	106	
.8	60	120	68	81	76	96	86	109	
1.0	60	120	66	91	73	101	84	114	
1.2	60	120	64	95	71	105	81	119	
1.4	60	120	63		69	110		124	
1.6	60	120	60		67	115	77	130	

GOV'T GAGE - DATA

A1500A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)		TUNER FREQ CONT		CRS OUTPUT (MV)	
		MIN	MAX	MIN	MAX	MIN	
SAMPLE NO.	41.50 MHz	80	270	987	013	280	
	53.50 MHz	80	270	207	233	280	
#	64.41 MHz	80	270	407	433	280	
45	41.50	16	0	00	0	450	
	53.50	160		223		520	
	64.41	110		431		490	

FREQ SHIFT SETTING				FREQUENCY SHIFT SENSITIVE 41.50 MHz		IVITY 53.50 MHz		Iz
	ЖТИ	MAX	(-)	(+)	. (-)	(+)	(-)	(+)
.2	60	120	74	76	82	95	94	97
.4	60	120	72	80	79	88	90	101
.6	60	120	69	. 83	77	91	87	104
.8	60	120	66	86	74	96	85	108
1.0	60	120	65	89	71		8.2	112
1.2	60	120	62	94	70	103		118
1.4	60	120	61	99		109		123
1.6	60	120	59	103		114	75-	128

GOV'T GAGE- DATA

A1500A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)		TUNER FREQ CONT		CRS OUTPUT (MV)	
		MIN	MAX	MIN	MAX	MIN	
SAMPLE	41.50 MHz	80	270	987	013	280	
мо.	53.50 MHz	80	270	207	233	280	
#	64.41 MHz	80	270	407	433	280	
46	41.50	10	0	00	2	490	
	53.50	160		225		570	
	64.41	11	5	4/3	?/	550	

FREQ SHIFT SETTING			FREQUENC 41.50 MHz	ENCY SHIFT SENSITIVITY MHz 53.50 MHz		ИНZ	2 64.41 MHz		
	MIN	MAX	(-)	(+)	(-)	(+)	(-)	(+)	
.2	60	120	78	81	84	88	97	100	
.4	60	120	75	84	82	92	93	104	
.6	60	120	72	87	79	95	91	108	
.8	60	120	70	91	76		87	112	
1.0	60	120	67	96		103	84	117	
1.2	60	120	65	100	72	108		122	
1.4	60	120	64	105		114		128	
1.6	60	120	61		68	119	77	134	

GOV'T GAGE - DATA

A1500A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)		TUNER FREQ CONT		CRS OUTPUT (MV)	
		MIN	MAX	MIN	MAX	MIN	
SAMPLE NO.	41.50 MHz	80	270	987	013	280	
	53.50 MHz	80	270	207	233	280	
#	64.41 MHz	80	270	407	433	280	
47	41,50	15	9	99	9	460	
	53.50	159		223		530	
	64.41	110		430		520	

FREQ SHIFT SETTING			FREQUENCY 41.50 MHz	ENCY SHIFT SENSITIVITY IHZ 53.50		MHz 64.41 MHz		
	MIN	MAX	[-)	(+)	(-)	(+)	(-)	(+)
.2	60	120	75	79	83	87	95-	99
.4	60 .	120	73	81	81	90	93	103
.6	60	120	70	84	18	94	89	100
8	60	120	68	88	76		87	111
1.0	60	120	66	91	73	101	84	113
1.2	60	120	63	96	71	106		120
1.4	60	120	62	100	69	111		120
1.6	60	120	61	105	68	116	77	131

GOV'T GAGE - DATA

A1500A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)		TUNER FREQ CONT		CRS OUTPUT (MV)	
•		MIN	MAX	MIN	MAX	MIN	
SAMPLE NO.	41.50 MHz	80	270	987	013	280	
	53.50 MHz	80	270	207	233	280	
#	64.41 MHz	80	270	407	433	280	
48	41.50	15	0	00	0	460	
	53.50	150		223		530	
	64.41	110		431		510	

FREQ SHIFT SETTING			FREQUEN 41.50 MHz	CY SHIFT SENSITIVITY 53.50 MHz		MHz	64.41 MHz		
	PITV	MAX	(-)	(+)	(-)	(+)	(-)	(+)	
.2	60	120	77	80	85	89	97	101	
.4	60	120	74	83	82	91	94	107	
.6	60	120	72	86	80	95	91	108	
.8	60	120	70	89	76	99	88	112	
1.0	60	120	67	93	75	103	86	1/7	
1.2	60	120	65	98	72	107	83	122	
1.4	60	120	64	102		1/3	81	124	
1.6	60	120	62	108		118	78	127	

GOV'T GAGE - DATA

TRACKING

A1500A - Modules # 47, 48, \$ 49

RADIO LEVEL DATA -

RF TRACKING - RADIO MC KNOB IN NORMAL DETENT

ALIGNED & TESTED IN GFE RADIO # 18793

Free Running VFO	Actual Frequency + 150 KC	CRS Output	Mixer Output WOUMMY BOARD
41.500	41.527 Mc	370 mm	150 mo
42.500	42.453- "	375"	153 "
43.500	43.468 11	380 "	155 "
44.500	44. 499 11	385"	156 "
45.500	45.527 .	390 "	160 "
46.500	46.454 "	395"	163 "
47.500	47.430 .	400 "	165- "
48.500	48.520 .	405- "	165 "
49.500	49.531 "	410 "	165- "
50.500	50.542 *	415"	1103 "
51.500	51.509 "	420 "	163 "
52.500	52.440 "	422 "	160 1
53.500	53.468 "	425 "	153 "
54.500	54.521 "	425 11	153 "
55.500	55.529 n	425- "	148 "
56.500	56.564 11	425 "	145"
57.500	57.580 "	420 "	143 "
58.500	58.575 "	420 "	140 1
59.500	59.59/ "	415- "	138 "
60.500	60.583 11	410 "	135- 11
61.500	61.560 "	400 "	135"
62.500	62.590 "	395 "	133 "
63.500	63.524 "	390 "	130 "

Free Running VFO	Actual Frequency + 150 KC	CRS Output	Mixer Output WOUNDY BOARD
41.500	41.536 Mc	400 mm	150 mar
42.500	42.495 "	405 "	157 "
43.500	43.496 "	410 "	154 "
44.500	44.540 "	415"	153- "
45.500	45.55/ 11	420 "	157 "
46.500	46.480 "	425- 1	160 "
47.500	47.467 "	435- 1	162 "
48.500	48.544 "	440 11	162 "
49.500	49.559 11	445 "	162 "
50.500	50.562 "	450 "	161 "
51.500	51.534 "	453- 11	160 1
52.500	52.459 11	460 "	157 "
53.500	53.477 4	465"	155 "
54.500	54.531 "	465 "	152 "
55.500	55.537 1	465 "	150 "
56.500	5.558 "	465-	145"
57.500	57.566 "	460 "	142 "
58.500	58.565 "	455- "	140 "
59.500	59.587 1	450 "	137 "
60.500	60.550 1	445"	135-
61.500	61,530 "	440 "	132 "
62.500	62.544 "	430 "	130 "
63.500	63.495"	425"	127 "

Free Running VFO	Actual Frequency + 150 KC	CRS Output W/RADIO A1400	Mixer Output W/DUMMY BOARD
41.500	41.527 Mc	415 mor	155 mor
42.500	42.484 "	420 "	157 "
43.500	43.494 .	425"	162 "
44.500	44.524 "	425 11	165 "
45.500	45.528 '	430 "	165"
46.500	46.471 "	435"	167 "
47.500	47. 435"	440 "	169 "
48.500	48.537 "	445 "	170 "
49.500	49.552 "	455 "	170 "
50.500	50.535 "	455 "	167 "
51.500	51.531 "	460 "	165 "
52.500	52.45/ "	465 "	162 "
53.500	53.479 "	465 "	160 "
54.500	54.526 "	465"	153- "
55.500	55.539 "	465"	150 "
56.500	56.574 "	465 "	147 "
57.500	57.587 "	460 "	144 "
58.500	58.590 "	460 "	142 "
59.500	59.600 "	453- "	1.37 "
60.500	60.576 "	453 "	135"
61.500	61.573 "	445"	132 "
62.500	62.587 "	440 "	130 "
63.500	63.523 "	430 "	127 "

TRACKING

A1500A - Modules # 40, 44, 45, \$46

RADIO LEVEL DATA -

NORMAL DETENT, CLOCKWISE STRESS &

ALIGNED & TESTED IN GFE RADIO # 18793

Free Running VFO	Actual Frequency + 150 KC	Gear Train Stress (CCW)	Gear Train Stress (CW)
41.500	41.542 Mc	41.533 Mc	41.560 Mc
42.500	42.486 "	42.470 "	42.495 "
43.500	43.496 "	43.477 "	43.505 "
44.500	44.528	44 495 11	44.535 "
45.500	45.540 "	45.529 "	45.547 "
46.500	46.469 11	46.436 "	46.479 "
47.500	47. 433 "	47.414 11	47,449 11
48.500	48.527 "	48.483 "	48.539 "
49.500	49.534 "	49.497 "	49.548 "
50.500	50.542 "	D. 504 "	50.548 "
51.500	51.506 "	51.493 "	51.574 "
52.500	52.428 11	52.415"	52.438
53.500	53.455 "	53.434 "	53.463 "
54.500	54.498 "	54. 482 11	54.517 "
55.500	55.509 11	55.495 11	55.527 "
56.500	56.527 11	56.512 "	56.554 "
57.500	57. 546 11	57.534 1	57.560 "
58.500	58.542 11	58.528 1	58.572 "
59.500	59.582 1	59.576 "	59.594 1
60.500	60.548 11	60.537 "	60.564 "
61.500	61.546 "	61.528 "	61. Sel "
62.500	62.563 "	62.553 1	62.582 11
63.500	63.508 "	63.496 1	63.579 "

Free Running VFO	Actual Frequency + 150 KC	Gear Train Stress (CCW)	Gear Train Stress (CW)
41.500	41.532 Mc	41.5/3 Mc	41.538 Mc
42.500	42.478 "	42.454 "	42.489 .
43.500	43.486 "	43.463 "	43.489 "
44.500	44575"	44. 487 "	44.526 .
45.500	45.539 "	45.517 "	45.542 .
46.500	46.465 "	46.434 "	46.473 "
47.500	47. 436 "	47. 425 "	47.448 "
48.500	48.524 "	48.519 11	48.538 "
49.500	49.540 "	49.526 "	49.549
50.500	50.547 "	50.528 H	50.560 "
51.500	51.512 "	51. 498 "	51.527 "
52.500	52.441 "	52.4/5"	52.452 .
53.500	53.470 "	53.444 11	53.487 "
54.500	54.574 "	54.500 "	54.526 1
55.500	55. 539 II	55.5/1 "	55.545- 4
56.500	56.563 "	56.539 "	56.572 "
57.500	57.560 "	57.546 "	57.582 "
58.500	58.564 "	58.554 "	58.586 "
59.500	59.592 "	59.580 "	59.611 "
60.500	60.566 "	60.549 "	60.579 "
61.500	61.552 "	61.542 "	61.564 "
62.500	62.572 "	62.560 "	62.590 "
63.500	63.575"	63.507 "	63.53/ "

Free Running VFO	Actual Frequency + 150 KC	Gear Train Stress (CCW)	Gear Train Stress (CW)
41.500	41.511 Mc	41.486 Mc	41.524 Mc
42.500	42.448 "	42.433 "	42.458 "
43.500	43.457 "	43.441 "	43.469 "
44.500	44.504 .	44 462 "	44.514 "
45.500	45.513 1	45. 497 "	45.530 "
46.500	46.447 "	46.429 "	46.456 "
47.500	47. 429 "	47.418 "	47.437 "
48.500	48.5/3 "	48.483 "	48.527 "
49.500	49.529 "	49.502 "	49.538 "
50.500	50.536 "	50.518 "	50.546 "
51.500	51.509 "	51.497 "	51.514 "
52.500	52.436 "	52.409 "	52.444 "
53.500	53.467 "	53.450 1	53.471 "
54.500	54.518 .	54. 490 "	54.525 "
55.500	55.522 .	55.504 .	55.530 "
56.500	56.556 "	56.531 "	56.566 "
57.500	57.548 .	57.54/ "	57.571 .
58.500	58.573 1	58.549 "	58.577 "
59.500	59.584 "	59.575"	59.601 .
60.500	60.556 "	60.546 "	60.570 "
61.500	61.549 .	61.535 "	61.557 "
62.500	62.569 "	62.559 "	62.582 "
63.500	63.523	63.505 "	43.532 "

Comments: ALIGNED & TESTED IN GFE RADIO # 18793

Free Running VFO	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.511 Mc	430 mm	160 mor
42.500	42.448 "	440 "	162 "
43.500	43.457 "	449 "	165 11
44.500	44.504 1	450 "	169 "
45.500	45.5/3 "	453"	172 "
46.500	46.447 "	455 "	174 "
47.500	47.429 "	470 "	175 11
48.500	48.513 "	475 "	175"
49.500	49.529 1	480 "	174 "
50.500	50.536 "	485 "	172 "
51.500	51.509 1	490 "	169 .
52.500	52.436 "	495 "	165 "
53.500	53.467 1	570 "	161 "
54.500	54.518 "	500 "	157 "
55.500	55.572 1	500 "	154 "
56.500	56.556 "	500 "	150 "
57.500	57.548 "	495 "	147 "
58.500	58.573 4	490 "	145 "
59.500	59.584 1	485"	142 11
60.500	60.556 "	430 "	140 "
61.500	61.549 "	475"	138 "
62.500	62.569 "	465 "	135"
63.500	63.523 "	460 "	134 "

ALIGNED & TESTED IN GFE RADIO # 18793

Free Running VFO	Actual Frequency + 150 KC	Gear Train Stress (CCW)	Gear Train Stress (CW)
41.500	41.531 Mc	41.513 Mc	41.541 Mc
42.500	42.471 "	42.451 "	42.488 "
43.500	43.483 "	43.464 "	43.490 "
44.500	44.518 "	44. 496 "	44.544 "
45.500	45.539 "	45.516 "	45.535 "
46.500	He. 463 "	46.448 "	46.482 "
47.500	47. 427 1	47. 464 "	47, 450 "
48.500	48.523 1	48.478 "	48.537 "
49.500	49.546 "	49.5/8 "	49.556 "
50.500	50.54/ .	50.506 "	50.56/
51.500	57. 572 "	51.488 "	51.529 "
52.500	52.437 1	52.413 1	52.454 "
53.500	53.472 "	53.445 "	53.487 4
54.500	54.527 "	54.502 "	54.547 "
55.500	55.532 "	55.509	55:556 "
56.500	56.550 "	56.538 .	S. 578 "
57.500	57.567 "	57.548 "	57.590 "
58.500	58.556 "	58.545 "	58.587 "
59.500	59.598 "	59.584 "	59. 617 "
60.500	60.576 "	60.562 "	60.591
61.500	61.569 "	Cal. 555 "	61.581 "
62.500	62 585 1	62.577 "	62.605 "
63.500	63.520 "	63.57/ "	63.533 "

TEMPERATURE

44

A1500A - MODULE # 44 \$ 45

MODULE LEVEL DATA TRACKING & BUFFER OUTPUTS

@ +25°C, +65°C, +85°C, -40°C

DATA TAKEN ON LAB TEST FIXTURE

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.527 Mc	405 mor	1.220 N
42.591	42.532 "	415 "	1.150 "
43.682	43.635 "	425 "	1.075"
44.773	44.776 "	440 "	1.050
45.864	45.873 "	450 "	1.000 "
46.955	46.870 "	465	.975"
48.045	48.005 "	475"	.925 "
49.136	49./38 "	480 "	.910 "
50.227	50.249 "	485 "	.900 "
51.318	51.333 "	490 "	.875"
52.409	52.356 "	495"	.875"
53.500	53.459 "	495"	.875 "
54.591	54.589 "	495 "	.875 "
55.682	55.712 "	490 "	.875 "
56.773	56.839 "	485 "	.875"
57.864	57.937 "	475"	.875 "
58.995	59.042 "	470 "	.875 "
60.045	60.129 "	460 "	.890 "
61.136	61.199 "	450 "	. 895 "
62.227	62.316 "	440 "	.900 "
63.318	63.374 "	430 "	. 925 "
64.409	64.316 .	4/5"	.950 "

ALIGNMENT & TESTING ON LAB TEST FIXTURE

	# 44
A1500A	@+65°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.486 Mc	390 mot	1.175 N
42.591	42.506 "	400 "	1.125 "
43.682	43.612 "	410 "	1.050 "
44.773	44.756 "	420 "	1.000 "
45.864	45.848 "	435"	.975 .
46.955	46.846 "	445 "	. 975 "
48.045	47.977 .	455 "	.960 "
49.136	49.112 "	465 "	.940 .
50.227	50,219 "	465 "	.910 .
51.318	51.301 "	470 .	.890 "
52.409	52.324 1	470 "	. 875 -
53.500	53.434 "	465 "	.860 "
54.591	54.564 11	465 .	.850 .
55.682	55.686 "	465 .	.850 "
56.773	56.822 4	455 4	.850 "
57.864	57.914 "	450 "	.850 "
58.995	59.017 "	445 .	.850 "
60.045	60.115 "	435" "	.850 "
61.136	61.188 "	425 "	.875 "
62.227	62.307 "	415 .	.875 1
63.318	63.363 "	405 "	.910 "
64.409	64.307 "	395 "	.925 "

	# 44
A1500A	
	@ +85°C

Calaulatad			
Calculated Straight	Actual	*	
Line Frequency	Frequency + 150 KC	CRS Output	Mixer Output
11 oquency	_ 190 NO	one odepas	THE OUTPUT
41.500	41.435 Mc	385 mrs	1.175 N
42.591	42.449 "	395 "	1.110 "
43.682	43.552 "	410 "	1.050 "
44.773	44.699 "	420	1.000
45.864	45.799 "	430	.975"
46.955	46.800 "	440 "	.940 "
48.045	47.922 "	450 n	.925"
49.136	49.048 "	460 "	.900 "
50.227	50.166 "	465 "	.875
51.318	51.247 "	470 "	. 875"
52.409	52.263 "	470 "	.875
53.500	53.373 "	465 "	.850 "
54.591	54.502 "	465 "	.850 "
55.682	55.624 "	465 11	. 850 "
56.773	56.774 "	455 "	. 850 '
57.864	57.866 .	450 11	.860 '
58.995	58.959 .	445 "	.860 "
60.045	60.060 .	435 "	.875 "
61.136	61.138 .	425"	.875"
62.227	62.254 "	415"	.880 "
63.318	63.318 "	400 "	.910 "
64.409	64.253 "	390 "	.925"

			# 44
		A1500A	00 -
			@-40°C
Calculated Straight Line Frequency	Actual Frequency + 150 KC	CRS Output	Mixer Output
41.500	41.529 Mc	380 mar	1.200 N
42.591	42.535 "	390 "	1.150 "
43.682	43.639 "	405 "	1.100 "
44.773	44.781 .	420 "	1.050 "
45.864	45.878	430 "	.975"
46.955	46.877 "	440 "	.950 "
48.045	48.015 .	450 "	.925"
49.136	49.151 .	460 "	.900 "
50.227	50.256 1	465 "	.875 "
51.318	51.340 "	470 "	.875 "
52.409	52.363 "	475"	.850 "
53.500	53.474 "	475"	.850 "
54.591	54.596 "	475 "	850_"
55.682	53:7/2 "	470 "	.850 "
56.773	570.844 .	460 "	.850 "
57.864	57.936 "	460 "	. 850 "
58.995	59.032 "	450 .	.850 "
60.045	60.117 "	445 "	.850 "
61.136	61.182 "	435"	.850 "
62.227	62.290 .	425 "	. 875"
63.318	63.342 .	415 "	.900 "
64.409	64.280 "	40.5"	.910 "

Calculated Straight	Actual		
Line	Frequency		
Frequency	+ 150 KC	CRS Output	Mixer Output
41.500	41.538 Mc	390 mor	1.175 or
42.591	42.533 "	400 "	1.110 "
43.682	43.659 .	4/5"	1.050 "
44.773	44.798 .	425 '	1.000 "
45.864	45.893 "	440 "	1975 "
46.955	46.890 "	450 .	.940 "
48.045	48.018 "	460 "	.910 "
49.136	49.155 "	465 "	.900 "
50.227	50.253 "	470 "	.875 "
51.318	51.338 "	475 "	.860 "
52.409	52.359 "	480 "	.850 "
53.500	53.470 "	480 "	.850 "
54.591	54.592 "	475"	.850 "
55.682	53.710 "	470	.850 "
56.773	56.845"	465 "	.850 "
57.864	57.934 "	460 "	.850 "
58.995	59.034 "	450 "	. 875 "
60.045	60.132 "	440 "	.875"
61.136	61.197 .	425 "	.875"
62.227	62.3/5.	415 "	.900 "
63.318	63.377 "	405"	.925"
64.409	64.316 "	390 "	.950 "

ALIGNMENT & TESTING ON LAB TEST FIXTURE

		AL)OUR	(a) 763 C
Calculated Straight	Actual		
Line	Frequency		
Frequency	<u>+</u> 150 KC	CRS Output	Mixer Output
41.500	41.496 Mc	355 mor	1.100 0
42.591	42.512 "	365 "	1.050 "
43.682	43.624 "	380 "	.975 .
44.773	44.762 "	390 "	.925"
45.864	45.863 "	405 "	.900 "
46.955	46.856 -	415 "	.875"
48.045	47.990 "	420 "	.850 "
49.136	49.122 "	430 "	.825 "
50.227	50.231 "	435"	.800 .
51.318	57.311 "	435 "	.800 "
52.409	52.334 .	435 "	. 775 "
53.500	53.443 "	425 11	.775 "
54.591	54,573 "	4.35"	. 775"
55.682	55.69/ "	430 "	. 775 "
56.773	56.832 "	425 "	.775 "
57.864	57.922 .	415 !	.775"
58.995	59.028 "	405 "	.775 "
60.045	60.132 .	395 "	.785 "
61.136	61.211 "	385 "	.800 "
62.227	<i>62.330 "</i>	370 "	.810 "
63.318	63.391 .	360 "	<u>.842 "</u>
64.409	64.334 "	345 "	850 "

A1500A

		# 45	
A1500A	@	+85	°c

1			
Calculated Straight	Actual	Acceptance	
Line Frequency	Frequency + 150 KC	CRS Output	Mixer Output
41.500	/// // / Ma	220	1 476
	41.461 Me	330 mor	1.075 N
42.591	42.470 "	335 "	1.010 "
43.682	43.575 "	34.5"	.975"
44.773	44.712 1	355 "	.910 "
45.864	45.819 "	370 "	.875 "
46.955	46.802 1	380 "	.850 "
48.045	47.934 "	385 "	.840 1
49.136	49.070 "	395	.810 "
50.227	50.190 "	400 "	.800 "
51.318	51.268 "	400 "	. 780 "
52.409	52.280 "	400 "	.780 "
53.500	53.383 "	400 "	. 775"
54.591	54.532 11	400 "	775 "
55.682	55.643 "	395"	.775"
56.773	56.779 4	390 "	775"
57.864	57.874 "	380 "	.775"
58.995	58.977 "	375"	.775"
60.045	59.090 "	360 "	.790 "
61.136	60.165 "	350	.800 "
62.227	61.285 11	335"	.825 .
63.318	62.346 "	325"	.840 "
64.409	63.294 "	3/5"	.850 "

45 @ -40° C

A1500A

Calculated			
Straight	Actual		
Line Frequency	Frequency + 150 KC	CRS Output	Mi van Outnut
rrequency	<u>+</u> 130 kc	CRS Output	Mixer Output
41.500	41.559 Mc	400 mos	1.125 N
42.591	42.563 "	410 "	1.075
43.682	43.677 "	420 "	1.000
44.773	44.816 "	435"	,950
45.864	45.910 "	445"	.900
46.955	46.906 "	455 "	875
48.045	48.038 .	465 "	.850
49.136	49.173 .	470 "	.825
50.227	50.278 "	475"	. 800
51.318	51.350 "	480 "	.800
52.409	52.374 "	480 "	. 800
53.500	53.483 .	480 "	. 800
54.591	54.60% "	480 "	. 800
55.682	55.721 -	480 "	.790
56.773	56.846"	470 "	.790
57.864	57.935 "	465 "	.800
58.995	59.032 "	455 "	.800
60.045	60.119 "	445 "	.825
61.136	61.182 "	435 "	. 825
62.227	62.289 "	420 "	. 850
63.318	63.343 "	410 "	.875
64.409	64.279 "	400 "	.900

TEST: A1600A No	dule Per	formance	SPEC		PAR:	2 2	1	EST MO:		
TEST CONDITIONS		- Communico	1 3/1-	B-416432		2.2		ATE:		
							١			
MATERIAL: MODIF	IED A1600	ואטטטגו	:S				T	EIP:	mbient	RH:
MANUFACTURER:		1		· ·				. NO:	MOTERIC	
	TENS, IN	C., MEMIC	OR DIV	ISION			1	. 110.		
INSTRUMENTS:							T	ESTED F	Y:	
				Caliba				S. Shas	tri	
				36-15 Ca			76	AB.SUP.	CHECK	
184A	Digital Oscillos	CODE	ter	Caliba						
2047		cope		-	accu 5		1	NGRG. C	HECK:	
	INPUT	INPUT	INPUT	OUTPUT	OUTPUT	OUTPUT	GEÉTCI	- FREQ		
UNIT		•				0001	3	1	REGUL	ATION
Ю	VOLTAGE	CURRENT	POWER	VOLTAGE	CURRENT	POWER	ENCY			
	VOLTS	mA ·	WATTS	VOLTS-	mΛ	KATT	e,	NIZ	22 -	
· thure										TS. ·
LIMITS	•	-	-	105/115			-	+	70V	Min.
1	25.5	118	3.0	108.3	17.75	1.93	64	10.6	93.5	127.
2	25.5	120	3.06	107	17.54	1.88	61.5	10.9	05.0	126.
<u>3</u>	25.5	122	5.11	107.5	17.62	1.89	60.7	10.9	92.9	126.
5	25.5	125	3.14	109.3	17.59	1.96	61.4	10.4	94.5	128.
6	25.5	121	3.09		17.47	1.86	60.0	10.9	92.2	124.
7	25.5	122	3.11	108.5	17.78	1.95	62.0	10.6	94.2	127.
8	25.5	117	2.98		17.5 .	1.87	62.7	10.6	92.5	125.
10		123	3.14 2.96		17.21	1.94	60.1	10.9	94.1	127. 121.
	30.0		2.00	100.0		1.00	00.1	1 20.4.	217	
1	25	127	3.175	111.2	18.23	2.027	64.0		93.0	129.3
2	25	128			18.15	2.009	62.7		92.7	128.5
3 4	25 25	129		111.2	18.23 18.25	2.027	63.9		93.3	129.0
5	25	129	3.225	110.5	18.11	2.001	62.0		92.6	128.2
<u>6</u> 7		129		109.8	18.00	1.976	61.2		92.1	127.6
8	25	130 128		112.5	18.44	2.074	63.8		94.3	130.4
9		131		111.8	18.33	2.001	62.5		92.6	128.0
10		121		110.2	18.07	1.990	65.7		92.3	127.0
			<u> </u>							
				17	_					

IATERIA	L: New Crystal	Switch Produc	tion Modules		TEMP: Ambien	t RH:	
ANUFA	CTURER: E-Syst	ems Inc., Mem	cor Division		M. NO:		
NSTRUM	Boonton HP5328A	Power Supply 92B RF Milliv Freq. Counter Implifier			TESTED B K.P. Yel LAB. SUP.	ton CHECK	
UNIT	Interpolat Oscillato			Reference (Oscillator		
NO.	Frequency Deviation	Output	5.0	6 MHz	5.65 MHz		
	△f (Hz) + 2300 Hz	(mV) 400 mV (MIN)	△€ (Hz) + 270 Hz	Output 300 mV (MIN)	△f (Hz) + 270 Hz	Output 300 mV (M	
1	+508	550	+93	740	+7	680	
2	-265	620	+126 820		+8	835	
3	-600	530	-210	670	+5	625	
4	+96	600	+1	690	+14		
5	+411	620	-23	625	+9	585	
6	+158	580	+126	690	+5	640	
7	-475	575	+52	650	+10	610	
NOTE:	The above data w					ystal	

TEST NO:

TEST: A2100 Module Performance SPEC: SM-D-414	PARA: TEST NO:
TEST CONDITIONS:	DATE: 3-17-76
MATERIAL: Voltage Regulator Assembly and	tput Transistor TEMP: RH:
MANUFACTURER: E-Systems, Inc., Memcor D.	ision M. NO:
INSTRUMENTS: 6291A HP DC Power Supply 6205B Dual DC Power Supply	TESTED BY: S. Shastri
R5103N Tektronix Oscillosc 3400 Data Precision Digita	
	ENGRG. CHECK

Module: A21	Module: A2100A Output Transistor: 2N5868										
		Output Voltage in Volts									
Load Condition		LOO mA		2	250 mA						
Input Voltage	20 V	25.5 V	30 V	20 V	25.5 V	30 V	Seconds				
Unit Limits	15.8 - 16.2 Volts						0.5 - 1.0				
1	15.98	15.99	16.00	15.97	15.98	15.00	0.85				
2	15.98	15.99	16.00	15.96	15.98	15.99	0.95				
3	15.99	15.99	16.01	15.97	15.99	16.00	0.75				
4	15:99	16.00	16.01	15.98	15.99	16.00	0.84				
5	15.99	16.00	16.00	15.97	15.98	15.99	0.78				
6	15.97	15.99	16.00	15.96	15.98	15.99	0.94				
7	16.01	16.02	16.02	15.99	16.01	16.01	0.80				
8 .	15.98	15.99	16.00	15.97	15.98	15.99	0.85				
9	16.02	16.03	16.03	16.01	16.02	16.03	0.84				
10	15.98	15.99	15.99	15.96	15.97	15.98	0.86				

	MODULE PER	MODULE PERFORMANCE SC-A-400351 C SEE BELOW									TEST NO:					
	TEST CONDITION	S: TESTED	ON N	NR323	841-1					DATE: 11-1-76						
	MATERIAL: NORMAL PRODUCTION MODULES										. d.			RH:		
F	MANUFACTURER:															
1	INSTRUMENTS:	INSTRUMENTS:									STED					
	Type 335 Tektronic Oscilloscope Calib 8-16-76									-	T. Ph					
1		K Hetrodyne Volt	meter	•				-23-76		LA	6.SUP	.CHE	CK			
1		quency Counter						0-1-76			47					
	NR 323841-1 (Government					5.	-13-76		Eil	ତ୍ୟର .	CHEC	K:			
F	Starting	Frequency		Ot	JTPU'	i vo	LTAG	E LEV	EL	(VR)	IS)	PA	RA S	. 4		
1	Time	Para 8.3	35 m	nV 71	IN	23	5 mV	2-3/4/37	1 31	INIMUM						
-	Para 8.2	1 MHz	00 1		_				1		0.11	+				
1	100 Milli Sec	± 51 cps		7	EST	FRI	EQUE	CY	УП	Z						
	MAX	İ	1	2	3	4	5	G	7	8	. 9	10	11	1		
1	66	1,000,002	78	50	49	47	44	39	36	33	33	135	32	13		
			NOF	MAL	PRC	buc	TION	MODI	LE	\$				T		
	54	1,000,008	48	47	48	147	43	39	36	34	32	131	29	+:		
	42	999,993	47	46	47	47	44	41	38		1 33	133	29	1:		
	50	999,997	46	46	46	46	42	39	36	33	1 32	133	130	1		
1	52	999,956	41	42	41	41	37	34	32	29	23		27	1:		
1	50	999, 999	48	49	48		41	40	37	34	1 33		30	1		
+	50 48	999,999	1 50	1 49	47	48		41	37		33	134		1 :		
+	48	999,983		52	52		46	42	39	+	34	34	31	1		
+	46	1,000,004	<u>52</u> 48	49	48	49	46	42		3 <u>6</u> 36		135		1		
t	54	999,993	46	48	1.47	47	44	1 40	37		33	134				
1	49.4	999,944						89.8		-				_		
1		SAN	E MC	DUL	es Mo	DIF	ED P	ERTH	IS E	CP		\vdash				
											1 00	100		1		
}	26	1,000,002	54	54	54	54	53	47	41	37	36	137	32			
1	22 25	999,989 999,992	_ <u>55</u> 53	55 54	55 53	54 53	53	48.	43	39	37	37	32	1:		
1	26	999,978	50	56	54	53	50	45	58	35	34	136	32	1		
1	26	999,994	52	53	54	53	52	42	37	34	32	133	29			
	30	999,996	52	52	52	50	48	42	37	31	32	133	30			
	28	999,977	31	52	50	50	48	43	38	34	33	34	31			
1	28	999.976	54	54	53	52	52	47	41	37	1 34	135	31			
	28	999,999	53	53	52	53	51	46	41	37	35	136	32			
	32	1,000,002	51	52	52	51	46	40	36		33	135		1		
	27.1	999,990.5	52.5	53.5	52.9	52.3	50.5	14.3	39.2	35.7	34.1	35.2	31.3	130		
														F		
						177						1		1		

-

Seven modules were examined. Those modules are in the new A3200A configuration.

Using Control Std #1:

Harmonic Oscillator Position = -55.5 dB 5 Mc Oscillator Position = -56.5 dB

Freq. (MHz)		. 0	utput Indicat	tion (dB)		,	
41	-67	-67	-68	-67	-64	-67	-68
42	-66	-65.5	-66	-65	-62.5	-66	-66
43	-64	-64	-65	-64	-62	-64	-65
44	-63	-62.5	-63	-62.5	-60	-63	-63.5
45 .	-62	-61	-62	-61.5	-59	-62	-62
46	-61	-60.5	-61	-61	-58	-61	-62
47	-60	-59	-60	-59.5	-56.5	-60.5	-61
48	-60	-58	-59.5	-58	-55.5	-59.5	-60
49	-58.5	-57.5	-59	-58	-55	-58.5	-59
50	-58	-57	-58	-57.5	-55.	-57	-58.5
51	-58	-57	-58	-57	-55	-57	-58
52	-57.5	-56.5	-58	-58	-55	-57.5	-58
53 -	-59	-57.5	-58	-58	-55	-58	-59.5
54	-59	-57	-58	-57	-55	-58	-58
55	-59.5	-57	-58	-57	-55.5	-58	-58
56	-60	-58	-59	-58-	-55.5	-58.5	-59
57	-60.5	-58	-59	-58.5	-56	-59	-59
58	-61	-59	-60	-59	-57	-60	-60
59	-61.5	-60	-61	-60	-57	-61	-61
60	-62	-61	-62	-61	-58	-61.5	-62.0
61	-63	-62	-63	-62 .	-59	-62	-62.5
62	-63	-63	-64	-64	-60	-64	-64
63	-64	-65	-66	-64.5	-61	-65	-65
64	-65	-66.5	-67	-66	-62	-66.5	-67
65	-70	-70	-69	-68	-64	-68	-68
Mod #	17	18	19	20	23	25	30
Conversion Gain	-9.5	-7.5	-9.0	-7.5	-5.0	-9.0	-9.5
Min-Max	12.5	13	11	11	9	11	10

	2907A	SILICONIZED A3000 TRAY AT EXTREME TEMPERATURE	Contract	0135
A3200	CA3018		-100	

A3300 2N3251A
A3400 2N2907A'S
A3500 2N2907A'S
A3600 2N2907A
A3600 2N2907A
A3700 2N2907A'S
Unit Serial 16606

7.0 Catching Range

+25.5 VDC INPUT

		The state of the state of		•	25.5 VDC INP	UT				
R	F Level - 1	lo uv								
Freq.	Ambient	-40°F	+160°F	Ambient	Limit(p. 1)	Freq.	Ambient	-40°F	+160°F	AMB
30.90	550	550	550	550	250 ks	41.95	550	550	600	550
31.90	400	400	400	450	250 kc	42.95	400	400	400	400
Sum	950	950	950	1000	250 kc	Sum	950	950	1000	950
31.95	600	600	600	600	250 kc	42.90	450	500	450	450
32.95	350	350	350	350	250 kc	43.90	450	450	450	450
Sum	950	950	950	950	350 kc	Sum	900	950	900	900
32.90	500	500	500	450	250 ←	43.95	550	550	550	550
33.90	450	450	500	500	250 ke	44.95	400	400	400	400
Sum	950	950	1000	950	350 kc	Sum	950	950	950	950
33.95	600	350	600	550	250 kg	44.90	400	450	400	400
34.95	400	400	350	400	250 'cc	45.90	550	500	550	550
Sum	1000	950	950	950	850 kc	Sum	950	950	950	950
34,90	550 -	550	550	500	250 kc	45.95	500	500	500	500
35.50	400	400	400	400	250 kc	46.95	450	450	450	450
Sum	950	950	950	900	850 kc	Sum	950	950	950	950
35.95	600	600	650	600	250 kc	46.90	400	450	400	450
36.95	350	350	300	350	250 kc	47.90	550	500	550	550
Sum	950	950	950	950	850 kc	Sum	950	950	950	950
36.90	500	300	500	500	230 kc	47.95	500	500	550	500
37.90	450	450	450	450	250 kc	48.95	450	450	450	450
Sum	950	950	950	950	850 kc	Sum	950	950	1000	950
37.95	600	600	600	600	250 kc	48.90	450	500	450	450
38.95	400	400	350	400	250 kc	49.90	500	500	500	500
Sum	1000	1000	950	1000	850 kc	Sum	950	1000	950	950
28.90	450	500	450	450	250 kc	49.95	500	500	550	500
39.90	450	450	450	450	250 kc	50.95	450	450	450	450
Sum	900	950	900	900	850 kc	Sum	950	950	1000	950
39.95	600	550	600	550	250 kc	50,90	400	400	400	100
40.95	400	400	350	400	250 kc	51.90	600	550	550	550
Sum	1000	950	950	950	850 kc	·Sum	1000	950	950	950
40.90	550	550	350	500	250 kc	51.93	550	600	600	600
41.90	400	400	450	450	250 kc	52.95	400	350	350	350

85J KE

1000 950

950

Sum

950

950

950 950

950

Sum

TEST NO:

TEST: A3300A Module Performance

30

ASSOUR INC	dule refrommance	SC-A-400349A S	See Below	
TEST CONDITION	NS: Tested on Gov.			re: 26-77
MATERIAL: With	New Artwork & Par	ts per this ECP	TE	MP: RH:
MANUFACTURE	R: Memcor	A SECTION	M.	NO:
INSTRUMENTS:	HP 506 RF Generat	or Calibrated 2		STED BY: Phillips
	1018 Systrom Donn B&K 2006 Hetrodyn	er Counter 2	· · · · · · · · · · · · · · · · · · ·	B. SUP. CHECK
	HP 461A Wide Band HR 323841-1 Gov.		EN	GRG. CHECK
UNIT NO.	Gain at 53.050 MHz	Frequency at 53.450 MHz Paragraph 8.3.3	Response at 52.650 MHz Paragraph 8.3.6	RT 22827 S+N/N
	Paragraph 8.2.3	Taragraph ovg		of MIL-R-55100
	1.8 to 13	(within 4.6 dB	(within 4.6 dB	45 dB minimum
		of 8.2.3)	of 8.2.3)	
	mV	dB .	dB	dB
21	7.2	0.4	0.6	56.0
22	7.6	0.3	0.3	56.0
23	9.4	0.8	0.4	54.0
24	8.2	0.0	0.5	56.0
25	6.4	0.0	1.0	57.0
26	7.2	0.2	0.3	56.5
27	7.1	0.0	0.7	55.0
28	6.9	0.0	0.6	57.0
29	8.0	0.3	0.3	58.0

SPEC: SC-A-400349A

PARA: See Below

Maria Comment

0.0

0.6

55.0

7.8

TEST: A3400)A	SPEC: SC-A-400350	PARA: See Below	TEST NO:
TEST CONDIT	TIONS: Tested on Gov			DATE: 29 March 1976
MATERIAL:	A3400 CRS 1st & 2nd	IF built per thi	s ECP	TEMP: RH:
MANUFACTU	RER: E-Systems, Me	emcor Division		M. NO:
INSTRUMENT	CS: HP 606 RF Gener HP 606 RF Gener	rator Calibrat	ed 2-7-77 3-18-77	TESTED BY: T. Phillips
	Type 2006 B & F	K Hetrodyne Voltm	eter 2-21-77	LAB. SUP. CHECK
	NR-323842-1 Gov	ency Counter v Elect Gage	11-12-76	ENGRG. CHECK
UNIT	GAIN	RESPO	NSE 5.9 MHz	CONVERSION GAIN
NO.	Paragraph 8.3	Paragraph 8.2 Paragraph		Paragraph 8.2
	0.6/1.5			21.2/30.9
	Volts RMS	dB	dB	dB
1	1.02	61.4	91.8	30.4
2	1.06	61.3	89.4	28.1
3	1.02	61.4	90	28.6
4	1.00	61.4	90.6	29.2
5	0.98	61.6	90.4	28.8
6	1.02	61.2	90.6	29.4
7	1.06	61.4	90.8	29.4
8	1.04	61.1	91.0	29.9
9	1.02	61.2	90.8	29.6
10	1.02	61.4	91.8	30.4
NR 1	96	61.7	91.8	30.1
NR 2	97	61.8	91.2	29.4

TEST: A3	500 Module Peri	formance SPEC	400352	PAR.	A: Below	TEST	NO:
TEST COND	OITIONS: Teste	ed on WR 323844		,		DATE: 3-18	
MATERIAL	: A350	004				TEMP	: RH:
MANUFACT		stems Inc., Mem	cor Divis	on		M. NO);
INSTRUMEN	NTS:					TEST	ED BY:
Type 200 HP 5216A	4-1 Government 6 Hetrodyne Vol Electronic Cou RF Signal Gener	inter	Calibra Calibra Calibra Calibra	ed 2.	-21 -7 7 -26 -7 7		SUP. CHECK
HP 606B HP 410B	RF Signal Gener	rator	Calibra Calibra			TE	helleps
		A3500 MODULE	S Built 1	er thi	is ECP		
UNIT NO.	Oscillations	Para. 8.2 Frequency Response	Para. 8		Para. 8.4 Limiting		Para. 8.4 Limiting 2
LIMITS >		21-31 (dB)	0.5 VRM	(MIN)	0.8 - 1.	4 VRMS	0.21-0.53 VRMS
61	None	25.2	.92		1.04		.38
62	None	25.0	.89		1.00		.35
63	None	25.0	.90		1.02		.36
64	None	25.1	.85		1.00		.36
65	None	25.4	.90		.98		.38
66	None	25.0	.92		.98		.38
67	None	25.0	.93		.98		.37
68	None	25.0	.90		1.05		.40
69	None	25.0	.93		.98		.33
70	None	25.3	.90		.98		.35
					,		

With Siliconized Al400A, Al500A, A3100A, A3200A, A3300A Unit Sarial 15707
A3400A, A3500A, A3600A & A3700A

L

Per	ching Rang MIL-R-55 NF Level -	100 per 3.9	.7		•			
Freq.	22.09	25.5v	30.0v	Limit	Freq.	22.0v	25.5v	30.00
30.90	500	500	500	250 ka	41.95	600_	600	500
31.90	500	500	500	250 kc	42.95	400	100	100
Sum	1000	1000	1000	250 kc	Sum	1000	1000	1000
31.95	550	550	550	250 kg	42.90	450	450	4=0
32.95	450	450	450	250 kc	43.90	550	550 .	550
Sum	1000	1000	1000	850 kc	Sum	1000	1000.	-: -: -: -:
32.90	500	500	500	250 ≺c	43.95	450	250	400
33,90	500	500	500	250 kc	44.95	550	550	-600
Sum	1000	1000	1000	350 kc	Sum .	1000	1000	1000
33.95	500	500	500	250 kc	44.90	350	350	<u> </u>
34.95	500	500	500	250 '10	45.90	650	650	550
Sum	1000	1000	1000	850 kc	Sum	1000	1000	0=0
34.90	600	600	600	250 kc	45.95	350	350	350
35.90	350	350	350	250 kc	46.95	650	650	<u>5=0</u>
Sum	950	950	950	850 kc	Sum	1000	<u>1000</u>	1000
35.95	500	500	500	250 kc	46.90	300	300	300
35.93	500	500	500	250 kc	47.90	722_	700_	
Sum	1000	1007	1000	850 kc	Sum	1222	:::::	
36.90	400	400	<u>700</u>	230 kg	47.95	500_	===	-500
37.90	550	550	550	230 kc	45.95	===	<u> </u>	-353-
Sum	950	950	950	850 KC	Sun	1050	1050	-:50:
37.99	500	500	450	250 Kc	48.90	300_	300_	-322
38.95	550	550	550	250 kc	49.90	<u> </u>	<u>6=0</u>	.450
Sum	1050	1050	1000	850 KC	Sum	950	25)	363
38.90	450	450	450	250 kc	49.95	-60	700	157
39.90	550	550	550	250 kg	50.95	650_	653	450
Sum	1000	1000	1000	650 kc	Sum	1050	1252	
39.25	550	550	550_	250 kc	50.95	<u>m</u>	110_	112
40.95	450	450	450	250 kc	51.90	713	752	-=-
Sum	1000	1000	1000	830 °C	-Sum	2050_	3017	
40.90	550	550	550	250 kg	51.93	7.50		
41.90	450	450	450	230 ×c	52.05	620	<u> </u>	
Sum	7000	1000	1000	85J xc	Sum	1255	1111	

ATTACHMENT "E" SILICONIZED A3000 TRAY AT EXTREME TEMPERATURE

	ATTACHMENT "E"									
A310 A320 A340 A350 A360	00 CA3018 00 2N3251 00 2N2907 00 2N2907 00 2N2907	A A's A's	LICONIZE	ED A3000	TRAY AT	EXTREME ?	TEMPERATU	T. E. 1-8-7	Phillips	
A370										
	ching Range			•	25.5 VDC	INPUT .				
Freq.		-40°F	+160°F	A b t A	Limit	Freq.				
30.90	Ambient 550	550	550	Ambient 550	250 ks		Ambient 550	-40°F	+160°F	550
31.90	400	400	400	450	250 kc	41.95	. 400	400	400	400
Sum	950	950	950	1000	250 kc	Sum	950	950	1000	950
31.95	600	600	600	600	250 kc	42.90	450	500	450	450
32.95	350	350	350	350	250 kc	43.90	450	450	450	450
Sum	950	950	950	950	350 kc	Sum	900	950	900	900
32.90	500	500	500	450	250 ≺€	43.95	550	550	550	550
33.90	450	450	500	500	250 kg	44.95	400	400	400	400
Sum	950	950	1000	950	350 kc	Sum	950	950	950	950
33.95	600	550	600	550	250 ks	44.90	400	450	400	400
34.95	400	400	350	400	· 250 'cc	45.90	550	500	550	550
Sum	1000	950	950	950	850 kc	Sum	950	950	950	950
34.90	550	550	550	500	250 kc	45.95	500	500	500	500
35.50	400	400	400	400	250 kc	46.95	450	450	450	450
Sum	950	950	950	900	850 kc	· Sum	950	950	950	950
35.95	600	600	650	600	250 kc	46.90	400	450	400	450
36.95	350	350	300	350	250 kc	47.90	550	500	550	550
Sum .	950	950	950	950	850 kc	Sum	950	950	950	950
36.90	500	500	500	500	230 kc	47.95	500	500	550	500
37.90	450	450	450	450	250 kg	48.95	450	450	450	450
Sum	950	950	950	950	850 kc	Sum	950	950	1000	950
37.95	600	600	600	600	250 kc	48.90	450	500	450	450
38.95	400	400	350	400	250 kc	49.90	500	500	500	500
Sum	1000	1000	950	1000	850 kc	. Sum	950	1000	950	950
38.90	450	500	450	450	250 kc	49.95	500	500	550	500
39.90	450	450	450	450	250 kc	50.95	450	450	450	450
Sum	900	950	900	900	850 kc	Sum	950	950	1000	950
39.95	600	550	600	550	250 kc	50.90	400	400	400	400
40.95	400	400	350	400	250 kc	51.90	600	550	550	550
Sum	1000	950	950	950	850 kc	·Sum	1000	950	950	950
40.90	550	350	550	500	250 kc	51.95	550	600	600	600
41.90	400	400	450	450	250 ke	\$2.95	400	350	350	350
Sum	950	950	1000	950	85J kc	Sum	950	950	950	950

TEST:	A3600A M	odule Pe	rformand	se SPEC	400353A	PAR:	Below		TEST NO:	· · · · · · · · · · · · · · · · · · ·	
TEST CO	ONDITION		les Buil	t Per I	nis ECP				DATE: 11-10-	-76	
MATERIA	AL:								TEMP:	RH:	
MANUFAC	CTURER:	Memo	or						M. NO:		
INSTRUM	INSTRUMENTS: HP606RF Signal Generator Calib 11-5-76 TESTED BY: NR323845-1 Gov Electrical Gage Calib 5-13-76										
HP5216A Electronic Counter Calib 10-19-76 HP413A DC Null Meter Calib 9-6-76 LAB.SUP.CHECK											
					• .				ENGRG. (
	NIT NO	Freq	uency Re	sponse	Characte	eristic 1	est Fre	buency	(MHz)	VOLTAGE REVERSAL EXCEPT DISCR PEAKS	
		5.200	5.400	5.500	5.600	5.650	5.750	5.850	6.050	5.0 to 6.2	
TIMITS	Upper	-0.38	1-1.34	1-0.86	-0.14	0.000	1+0.68	1+1.24	1+0.38		
	Lower	-2.46	-2.46	1 -1.56	-0.42	+0.32	+1.26	1+2.16	+2.46	וויי ווייים	
UNITS		VDC	VDC	VDC	VDC	ADC	VDC	VDC	VDC		
TEST PA	ARA	8.2.1	8.2.2	18.2.3	18.2.4	18.2.5	10.2.0	10.2.7	18.2.6	8.3	
		-1.82	-1.96	1-1.18	-0.35	0.20	0.69	1.35	1.24	None	
	2	-1.50	-1.70	1-1.25	-0.40	0.10	0.91	11.62	1.26	None	
	3	-1.86	1-1.88	-1.15	-0.36	0.20	0.81	11.70	10.74	None	
	4	-1.60	-1.75	-1.22	-0.38	0.16		11.72	1.46	None	
	5	-1.70	-1.90	-1.30	1-0.40	0.20		11.70	0.96	None	
	6	-1.95	-2.02	-1.24	1-0.38	0.10	0.70	11.40	0.70	None	
	7	-1.60	-1.87	-1.22	-0.39	0.08	0.74	1.42	1.48	None	
	9	-1.64	-1.84	1-1.10	-0.37 -0.39	0.25	0.70	1.30	1.42	None None	
10		-1.88	1-1.75	-1.18	I-0.35	0.08	0.76	1.62	11.56	None	
1		-1.00	1-1010	-1.10	1-0.30	0.00	0.70	1 1.02	1.50	. None	
							 		-		
									-		
								W			
							-				
					-						
							-				
									1		
					i						
									1		
									1		

TEST: A3700A Modul	Le Performance SPEC	i400354 PARA: See Below	TEST NO:	
TEST CONDITIONS:	Tested on Governmen		DATE: 2-14-77	
MATERIAL: A3700	DA Module built per th		TEMP: RH:	
MANUFACTURER:	Memcor		M. NO:	
		Calibrated 2-6-76	TESTED BY: T. Phillips	
н		Calibrated 2-7-76 Calibrated 1-5-77 Calibrated 11-15-76	LAB. SUP. CHECK	
NI NI	Calibrated 11-18-76	ENGRG, CHECK T. Phillips		
UNIT NO.	GAIN Para. 8.2	DC RESIDU	AL VOLTAGE	
Limits	5.3 to 7.2	Maximum Negative t	Maximum Positive +0.20	
	VP-P	VDC	VDC	
11	6.2	-0.1	+0.05	
12	6.2	-0.04	+0.04	
13	6.4	-0.06	+0.09	
14	6.3	-0.10	+0.05	
15	∘ 6.2	-0.09	+0.03	
16	6.2	-0.11	+0.07	
17	6.2	-0.09	+0.05	
18	6.4	-0.06	+0.06	
19	6.4	-0.05	+0.08	
20	6.2	-0.05	+0.03	
21	6.3	-0.07	+0.06	

A4100A TEST DATA

Unit	Gain Test	Bandwid	dth	Temp
No.	Output = 100mV	Output = 10	00mV	Cond
Freq	11.5 MHz	11.075 MHz	11.925 MHz	
Limits	0.325 to 1.75 mV	37mV (Min)	37mV (Min)	
	1.05	. 56	60	AMB
#52	0.9	50	64	-50°C
	1.2	60	. 59 .	+75°C
	0.9	. 52	61	AMB
#55	0.7	50	70	-50°C
	1.2	66	56	+75°C
	.56	51	40	AMB
#53	.50	50	50	-50°C
•	.70	55	39	÷75°C
	1.2	47	54	AMB
#54	1.0	40	52	-50°C
	1.45	54	56	+75°C
	0.9	47	56	AMB
#1	. 85	47	58	-50°C
	1.05	47	54	+75°C-
	1.5	76	60	AMB
#3	1.3	. 75	62	-50°C
	1.6	75	60	+75°C
	1.05	53	57	AMB
#4	. 85	53	. 60	-50°C
	1.35	53	54	+75°C
	1.0	61	62	AMB
#6	.95	61	64	-50°C
	1.25	71	60	+75°C
	1.3	55	63	AMB
#8	0.9	50	63	-50°C
	1.8	64	62	+75°C
	1.4	49	59	AMB
#9	1.2	48	59	-50°C
	2.1	61	60	+75°C

GENERAL DATA SHEET

TEST:	-4200A	SPEC	NEW P	AR:	TEST, NO:
TEST COND	ITIOMS:	VERSION .			DATE: 6-21-77
MATERIAL:	-				TEMP: Ril:
MANUFACTU	RER:		•		и. кэ:
INSTRUMENT	YS:	·	CALIB	TESTED EY: Y.Min	
SIGN	IAL GENERATOR	BOONTON 10)2A (3297)	4-7-77	LAB. SUP. CHECK
	O GENERATOR	hp 209A		6-13-77 .	ENGRG. CHECKE
DIST	CORTION ANALYZE	R hp 331A	(3774)		
TEST	9.1 INPUT LIMIT- ING THRESHOLD	9.2 FREQ.RESPONSE 1mv	9.3 AUDIO OUTPU @ 1mv @ 68kΩ	fm = 20	KHz
	@ -1.0 dB	Ref 11.5MHz		fd = 20	
LIMIT 54	.140 μν Max.	±0.5 dB	70mV ± 3d1		lax.
55	37 uv.	0	73 mv 78 mv	.35%	
56	35 µv	0	85 my	.23%	
57	43 µv	0	73 mv	.23%	
58	36 μν	. 0	85 mv	. 24%	
59	39 μν	0	76 mv	.22%	
60	36 µv	0	78 mv	.24%	
61	45 μν	0	79 mv	.21%	
62	40 μν	0	75 mv	.48%	
63	43 uv	0	74 mv	. 40%	
				·	
		•			
			1		

TEST: A4300A Module	SPEC: SC-A-400347A	PARA: 9.0	TEST NO:
TEST CONDITIONS:			DATE:
MATERIAL: Govt. Test Fix	sure		TEMP: RH: AMBIENT
MANUFACTURER: E-Systems	Inc., Memcor Divisi	on	M. NO:
HP Signal (RCVR Audio and Squel Generator Model 206A 303 Distortion Analyz 30 D VTVM		TESTED BY: S. Shastri LAB, SUP, CHECK
			ENGRG. CHECK

SENSITIVITY

LIMITS	•		0.2 t	0.42 VRMS			
NIT YZ	150	300	1000	2000	3000	10,000	20,000
1	0.305	0.300	0.300	0.300	0.290	0.280	0.285
2	0.305	0.300	0.300	0.297	0.290	0.285	0.285
3	0.305	0.300	0.297	0.297	0.290	0.285	0.285
4 .	0.305	0.300	0.297	0.297	0.297	0.300	0.290
5	0.300	0.300	0.295	0.290	0.285	0.280	0.280
6	0.305	0.300	0.297	0.295	0.290	0.290	0.290
7	0.305	0.300	0.297	0.295	0.290	0.280	0.280
8	0.300	0.300	0.297	0.290	0.290	0.280	0.280
9	0.300	0.300	0.295	0.290	0.290	0.280	0.285
10	0.300	0.300	0.300	0.295	0.290	0.280	0.280

TEST: A4300A N	fodule	SPEC: SC-A-400347A	PARA: 9.0	TEST NO:	
TEST CONDITION	KS:			DATE: 10-6-76	
MATERIAL: GOV	t. Test Fixture			TEMP:	RH: Ent
MANUFACTURE	R: E-Systems, In	c., Memcor Divisio	n .	M. NO:	
INSTRUMENTS:	HP Signal Gene	R Audio and Squelo		TESTED BY	Y: S. Shastri
	HP Model 400 D	Distortion Analyz	er .	LAB. SUP.	CHECK
				ENGRG. CI	HECK

DISTORTION

LIMITS .				2.1% Mex			
FREQ	150	300	1000	. 2000	3000	10,000 .	20,000
1	0.41	0.35	0.32	0.32	0.31	0.30	0.26
2	0.46	0.37	0.36	0.34	0.35	0.32	0.40
3	0.42	0.36	0.39	0.36	0.32	0.28	0.27
14	0.46.	0.38	0.36	0.36	0.40	0.36	0.36
5	0.40	0.40	0.41	0.38	0.36	0.32	0.32
6	0.46	0.38	0.38	0.38	0.35	0.32	0.32
7	0.40	0.34	0.32	0.30	0.30	0.32	0.34
8	0.37	0.30	0.30	0.27	0.25	0.24	0.26
9	0.44	0.36	0.34	0.34	0.24	0.32	0.36
10	0.43	0.42	0.37	0.34	0.33	0.30	0.30

TEST:	A-	5100		dio A	mp			CA40	0355A	P	AR:	8.2		TEST	110:	2		
TEST	COND A-5	ITION 100A	IS: Modu	ıle wi	th Sil	licon	outpu	t Tra	nsisto	r·(2N	15868)		DATE	3-1	16-76		200
MATER	TAL:											•		TEMP.	: RI	1:		2
MANUF	ACTU	RER:	E-S	YSTE	MS I	NC	MEN	ICOR	DIVIS	ION				H. NO	0:			Current including output stage @ 25.5 VDC
INSTR	UHEN	TS:									DATI	Ξ_		TEST	D BY	:	-	afort
			lyzer				3494				-10-7				MUN SUP.C	IECV		1
Audio VTV				HP26			3491 0838				-10-7 -21-7				•			1
Test	ed in	Eng	inecri	ing La	ıb			•						ENGR	G. CHI	ECK:		·
@2	2. 0 V	DC					@25	5.5V	DC				@30	. ov :	DC .			1100
. 36	nin	COV	Dis	stortic		1	ain		Dis	tortic		G	ain		Dis	stort		1
			1.17	MIA	_	.36	10	.68V	1.7	%_N	<u>AX</u>	.36_	to.	6 <u>8</u> y	1.7	%_NI	AX_	1
.48		3K	500	1K	-	500	1K	3K	500	1K		500	1K	310	500	1K	3K	(n
.491	.46	.45	. 23	. 22	.15 .16	.49	.46	1.44	. 26 . 24	.16		.48	.46	.4 <u>1</u>	. 27 . 25	15	.14	1:
.50	.47	.45	.31	. 18	. 16			1.45	.31	.18	.16	.50	.47	.45	.31	.19	.17	1
.50	.48	.17	.32	.15	.16	.50		.47	.21	.15	.15	50	-5.0 -1.5	1	_,32 25		15_	1 1
.48	. 4-1	.44	.49	. 27	. 23	.48	.44	.45	.33	.21	.17		-46	.4.1 .4.1	-3·1 -3·1	-21 -28		1
.49	.47	.45	.31	.10	.16	.49	1.54	1.50	.32	. 19	.16	.49	. 47	.45	.32	.20	.15	1:
.50	.48	.47	. 3.4	. 25	. 21	.50	1.48	.47	.37	.24		.51_	+	47		26		1
													-				-	
		-					-	-					-	_				
										<u> </u>								
																_	-	
		-			<u> </u>		-	-		-		 	-	-		-	-	
		-								-								
								-		!		-	-	-	-	-		-
	-	-		<u> </u>		-	-			-	_			-			-	
_		<u></u>				1						1						
-	-	-	-	-	-	-	-	!-	-			<u> </u>	-	-		-	-	-
		i			1	!					1-	1				1	1	1

ec

:eq

7 8 9

Equipment RT246			60U		steins/MEM	COR	(1)
C TEST Subgroup		MPERATURE			DAAROT		0135
Tested by: C. Talu	ne Witr	ness by:				: 6APF	
Test		Voltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts				
Loudspeaker 3.9.1.2	60.05		17.3V Min.				
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				
Sensitivity 3.9.5	30.00		10db Min.	23.5	33.5		23,5
	65.10		@5 uv	22.0	21.0		120.5
	41.30		10db Min.	24.0	24.0		24.0
	75.90		@ .6 uv	22.0	21.0		121.5
	52.95		@ Temp.	24.5	24.0		25.0
	53.00			22.5	22.5		21.5
<u> </u>	41.50			24.0	24.0		124.0
	64.50			22.0	21.01		20.
Squelch Sensitivity	30.00		Normal	34-37	3.2-3.5		13.6-3.5
Noise 3.9.6.2	65.40		ON - 7 Max.	4.2-4.4	4.6-5.0		14.3-1 6
	41.50		OFF - 5:5 Max.	32-34	30-3.3		3,2-3.6
	53.60		Extreme	4.0-4.2	4244		4.24 5
	52.70		ON - 8 Max.	3.1-3.2	2.6-3.0		130-3.2
	75.80		OFF - 7 Max.	14.1.4.2	4.7-5.0		43-67
Squelch Sensitivity	30.00		Normal	17-2.1	2.0-2.7		24-3.3
Tone 3.9.6.1	65.20		ON - 5 Max.	21-28	3.4-4.4		30.38
	41.50		OFF - 4 Max.	1.6-2.0	1.8-2.5		2.0-3,0
	52.45		Extreme	1.6-2.1	1.9-2.4		20-27
	53.00		ON - 8 Max.	1.8-2.5	2.5-3.3		2.6-
	75.95		OFF - 7 Max.		3.3-4.6		30-41
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total		850				
1	32.90		250				
	33.90		250				
	Total		850				
	33.95						-
•	34.95		192				
	Total						

Equipment RT246			604		stems/ME	MCOR	
C TEST Subgroup	V T	EMPERATURE				7-76-C	-0135
Tested by F. telle	me Wit	ness by:				e: O APR	
Test	Freq.	Voltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts				
Loudspeaker 3.9.1.2	60.05		17.3V Min.				
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				
Sensitivity 3.9.5	30.00		10db Min.	23.5		125.0	22.0
	65.10		@ .5 uv	20,5		17.0	17.0
	41.30		10db Min.	24.0		26.0	23.0
	75.90		@ .6 uv	21.5		19.5	17.0
	52.95		@ Temp.	25.0		26.0	23.0
	53.00			21.5		1-21.5	19.0
	41.50			24.0		126.0	23.0
	64.50			120.5		17.0	16.5
Squelch Sensitivity	30.00		Normal	3:6-3.9		14.1-4.8	4.1-43
Noise 3.9.6.2	65.40		ON - 7 Max.	4.3.4.6		54-6.4	5.0-5.
-	41.50		OFF - 5:5 Max.	3.2-3.6		13.6-4.2	3.6-3.8
•	53.60		Extreme	14.2-4.5		14.9-5.6	4.9-5.
	52.70		ON - 8 Max.	3.0-3.2		3.4-4.0	36-38
	75.80		OFF - 7 Max.	14.3.4.7		15.4-6.3	5.0-5.
Squelch Sensitivity	30.00		Normal	24-3.3		2.4-3.5	2.3-3.
Tone 3.9.6.1	65.20		ON - 5 Max.	3.0-3.8		3.6-4.6	3.1-4.0
	41.50		OFF - 4 Max.	20-3.0		2.3-3.3	2.0-3
	52.45		Extreme	2.0-2.7		2.2-3.0	2.0-3.2
	53.00		ON - 8 Max.	12.6-3.6		3.0-4.2	h.8-4.0
	75.95		OFF - 7 Max.	3.0-4.0		13:4-4:8	
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total		850				
	32.90		250				
	33.90		250				
	Total		850				
	33.95						
	34.95		193				
	Total						

			ADIO LEVEL TEST D	ATA			
Equipment R442	Serial		3839	E-S	ystems/MEM	COR	
C TEST Subgroup		RATURE	E LÓW H	IGH	DAAROT	-76-C-	0135
Tested by: Tul	me Witness	by:			Date	: 6 APF	278
Test	Freq. Vol	ltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05 25	5.5	5 - 6 volts				
Louispeaker 3.9.1.2	60.05.		17.3V Min.				L.
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				U
Sensitivity 3.9.5	30.00		10db Min.	124.0	33.5		1220
	65.10		@ .5 uv	20.0	23.5	•	122.C
	41.30		10db Min.	122.5	124.0		121.0
	75.90		@ .6 uv	225	23.5		21.0
	52.95		@ Temp.	122.5	22.5		22.0
	53.00			21.0	23.0		20.0
	41.50			23.0	123.0		220
	64.50			1325	123.0		22.c
Squelch Sensitivity	30.00		Normal		3.4-3,8		13.6.4.
Noise 3.9.6.2	65.40		ON - 7 Max.	34-37	3.43.7		36-3
	41.50		OFF - 5.5 Max.	3.4.3.5	33-36		3.6-3.9
	53.60		Extreme		3.6-3.8		37-4
	52.70		ON - 8 Max.		3.4-3.7		38-4
	75.80		OFF - 7 Max.		35-3.7		136-4
Squelch Sensitivity	30.00		Normal	Annual Contract of the Party of	24-34		2.4-3.4
Tone 3.9.6.1	65.20		ON - 5 Max.		2.6-3.4		22-3
	41.50		OFF - 4 Max.		18.6-0.6	•	2.4-3.
	52.45		Extreme		1.7-2.6		2.4-31
	53.00		ON - 8 Max.		2.0-3.2		13.2.4.
	75.95		OFF - 7 Max.		1.6-2.5		2.0.3
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total		850				
	32.90		250				
	33.90		250				
	Total		850				
	33.95						
	34.95		194				
	Total						

Equipment TOLILIA		al No.	3839		stems/ME	MCOR	
C TEST Subgroup		PERATURE		IGH)	DAABO	7-16-C.	0135
Tested by Ctul	une Witne	ess by:			-	e: 9 APR	
Test	Freq.	Voltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts	10.0			
Louispeaker 3.9.1.2	60.05		17.3V Min.				
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				
Sensitivity 3.9.5	30.00		10db Min.	22.0		123.0	20.0
	65.10		@ .5 uv	22.0		19.0	19.0
	41.30		10db Min.	21.0		22.0	18.0
	75.90		@ .6 uv	21.0		18.0	20.0
	52.95		@ Temp.	22.0		120,5	19.0
	53.00			20.01		19.5	17.0
	41.50			22.0		121.5	18.0
	64.50			22.0		19.5	19.0
Squelch Sensitivity	30.00		Normal	3.6-4.0		3.8-4.1	3.8-4.
Noise 3.9.6.2	65.40		ON - 7 Max.	3.6-3.9		14.7-4.9	4.1-4.
	41.50		OFF - 5.5 Max.	3.6-3.9		4.24.4	4.04.
	53.60		Extreme	3.7.4.0		14.2-4.8	4.0-4
	52.70		ON - 8 Max.	3.8-4.1		14.4-4.6	4.0-4.4
	75.80		OFF - 7 Max.	3.6-4.d		14.7-5.0	4.0-4.3
Squelch Sensitivity	30.00		Normal	24-34		34-4.5	2.1-3.0
Tone 3.9.6.1	65.20		ON - 5 Max.	2.2-3.4		4.8-6.0	
	41.50		OFF - 4 Max.	24-3.3		13.7-4.8	
1	52.45		Extreme	24-36		3.0-4.8	23-3
	53.00			3.2-4.3		42-56	•
	75.95			20-30		14.0-4.8	
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total		850			,	
	32.90		250				
	33.90		250				
	Total		850				
	33.95			1 20,13			
••	34.95		195	26.33			
	Total			Talk to			

Equipment RUU2		rial No. 3	862		stems/MEM	ICOR	
C TEST Subgroup		EMPERATURE		IGH	DAABOT	-76-C-	0135
Tested by: Teller	e Wit	ness by:				: GAPF	
Test	Freq.	Voltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts				
Loudspeaker 3.9.1.2	60.05		17.3V Min.				4
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				L. L
Sensitivity 3.9.5	30.00		10db Min.	23.0	23.0		122.5
	65.10		@ .5 uv	22.5	23.5		21.0
	41.30		10db Min.	24.0	24.0		23.5
	75.90		@ .6 uv	19.5	22.0		19.C
	52.95		@ Temp.	24.5	24.0		33.0
	53.00			22.5	23.5		20.0
	41.50			24.0	24.0	•	23.5
	64.50			22.5	24.0		30%
Squelch Sensitivity	30.00		Normal	30-32	3.0-3.3		134-3.6
Noise 3.9.6.2	65.40		ON - 7 Max.	13.4.3.60	3.5-3.7		3.8-41
•	41.50		OFF - 5:5 Max.	29-30	2.8-3.1		30-3.3
•	53.60		Extreme	3.2-3.4	3.2-3.5		4.1-4
	52.70		ON - 8 Max.	2.8.29	3.0-3.2		13.4-3.6
	75.80		OFF - 7 Max.	14.2-4.4	3.7-4.0		144-L is
Squelch Sensitivity	30.00		Normal	1.4-2.1	1.1-1.8		2.0-2.6
Tone 3.9.6.1	65.20		ON - 5 Max.	1.8-2.5	1.5-2.2		16-:7
	41.50		OFF - 4 Max.	11.4-20	1.0-1.8		2.0-2.6
	52.45		Extreme	1.5-2.1	114-2.1		Ja.a-3 2
	53.00		ON - 8 Max.	1.8.25	1.3-2.1		27-3.1
	75.95		OFF - 7 Max.	23-3.2	1.5-2.5		1.8-37
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total		850				
	32.90		250				
	33.90		250				
	Total	,	850				
	33.95						
	34.95		196				
	Total						7

Equipment RUU2	Seri	lal No.	3862	E-Sy	stems/ME	MCOR	
C TEST Subgroup	V TE	MPERATURE		ĬĠII	DAABO	7-76-0	-0135
Tested by: F. Tul	me Witr	ness by:				e: 9 APR	
Test	Freq.	Voltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts				
Loudspeaker 3.9.1.2	60.05		17.3V Min.				
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.15V31V				5
Sensitivity 3.9.5	30.00		10db Min.	1225		1.24.0	22.0
	65.10		@ .5 uv	21.0		20,5	19.0
	41.30		10db Min.	23.5		25.0	22.0
	75.90		@ .6 uv	19.0		1.17.5	17.0
	52.95		@ Temp.	23.0		25.5	23.0
	53.00			20.0		20.5	20.5
	41.50			23.5		125.5	22.0
	64.50			20.5		19.5	19.0
Squelch Sensitivity	30.00		Normal	3.4-3.6		3.8-4.2	38-40
Noise 3.9.6.2	65.40		ON - 7 Max.	3.8-41		14.6-4.8	141-49
	41.50		OFF - 5.5 Max.	3.0-3.3		3.1-3.5	3.4-3.6
	53.60		Extreme	4.1.4.4		14.3-4.5	
	52.70		ON - 8 Max.	34-3.6		3.2-3.5	
	75.80		OFF - 7 Max.	4.4-4.4		158-60	
Squelch Sensitivity	30.00		Normal	20-26		1.6-3.3	
Tone 3.9.6.1	65.20		ON - 5 Max.	1.6-27		2.6-3.6	
	41.50		OFF - 4 Max.	2.0-2.6		11.4-2.6	
	52.45		Extreme	2.2-3.0		1.8-2.6	
	53.00		ON - 8 Max.	27-37		12.4-3.6	
	75.95		OFF - 7 Max.	1.8-3.2		12,6-4.0	
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total	•	850				
	32.90		250				
	33.90		250				
	Total		850				
·	33.95						
	34.95		197				
	Total						

Equipment RT524	Ser	ial No.	18786	E-Sy	stems/MEN	1COR	
C TEST Subgroup		EMPERATURE		IGH	DAARO	7-765	0135
Tested by Tell	me Witz	ness by:				: 6 API	
Test	Freq.	Voltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts				
Loudspeaker 3.9.1.2	60.05		17.3V Min.				
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				
Sensitivity 3.9.5	30.00		10db Min.	23.0	22.5		22.0
	65.10		@ .5 uv	22.0	24.5		120 3
	41.30		10db Min.	25.0	25.0		125.0
	75.90		@ .6 uv	22.5	23.0		120.
	52.95		@ Temp.	25.0	25.0		124.0
	53.00			23.0	24.0		121.0
	41.50			25.0	24.5		25.0
	64.50			122.0	245		120.
Squelch Sensitivity	30.00		Normal	4:0-42	4.4-4.8		4.4-4.0
Noise 3.9.6.2	65.40		ON - 7 Max.	14.04.2	4,0-4,2		142.00
	41.50		OFF - 5.5 Max.	33-35	3.3-3.5		13.4-5.
	53.60		Extreme	4.1-4.4	4.0-4.3		4.5-18
	52.70		ON - 8 Max.	3.0-3.2	2.8-3.1		3.1-3,4
	75.80		OFF - 7 Max.		4.04.4		14.1-46
Squelch Sensitivity	30.00		Normal		2.8-3.8		243.0
Tone 3.9.6.1	65.20		ON - 5 Max.		2.6-4.0		12.2.34
	41.50		OFF - 4 Max.	1.8-2.6	1.8-2.8		11.8-1
	52.45		Extreme	1.8-2.5	1.8-2.6		11.8-26
	53.00		ON - 8 Max.		2.0-3.0		2.3 -: 5
	75.95		OFF - 7 Max.		2.5-3.8		2.3-3.5
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
1	Total		850				
	31.95		250				
	32.95		250				
	Total		850			`	
- Version and	32.90		250				1
	33.90		250				
	Total		850				
·	33.95		•				
. •	34.95		198				
	Total						

Equipment RT52U	Seria	al No.	18786	E-Sy:	stems/M2	MCOR	
C TEST Subgroup	V TEM	PERATURE		IGII) -	DAABO	7-76-C	-0135
Tested by: 1. tell	luno Witne	ess by:				e: GAPP	
Test	Freq. V	/oltage	Limits	+77	LOW	HIGH	+77
Muting 3.9.1.1	60.05	25.5	5 - 6 volts				
Loudspeaker 3.9.1.2	60.05		17.3V Min.				
Headphone 3.9.1.3	60.05		7.75V Min.				
Monitor 3.9.1.4	60.05		.16V31V				
Sensitivity 3.9.5	30.00		10db Min.	122.01		133.0	20.C
	65.10		@ .5 uv	20.5		17.0	19.5
	41.30		10db Min.	25.0		35.0	23.0
	75.90		@ .6 uv	20.0		120.5	20.0
	52.95		@ Temp.	24.0		25.5	235
	53.00			21.0		21.0	20.0
	41.50			25.0		125.5	230
	64.50			20.0		17.0	20.0
Squelch Sensitivity	30.00		Normal	4:4-46		4.8-5.3	4.64.8
Noise 3.9.6.2	65.40		ON - 7 Max.	4.2-4.5		14.8-5.6	14,241
	41.50		OFF - 5:5 Max.	3,4-3,7		4.0-4.3	3.64.0
	53.60		Extreme	45-4.8		15.2-5.7	4.6.49
	52.70		ON - 8 Max.	13,1-3,4		3.6-3.9	3.6-3.8
	75.80		OFF - 7 Max.	14.1-4.4		4.8-5.4	
Squelch Sensitivity	30.00		Normal	24-3.6		13.4-44	
Tone 3.9.6.1	65.20		ON - 5 Max.	2.2-3,4		135-52	
	41.50		OFF - 4 Max.	1.8-3.0		127-39	2.2-3.
	52.45		Extreme	1.8-2.6		2.6-3.8	
	53.00		ON - 8 Max.	2.3-3.5		3.8-4.8	
	75.95		OFF - 7 Max.	2.3-3.5		134-4.4	
Receiver Catching	30.90		250 KC Min.				
Range 3.9.7	31.90		250				
	Total		850				
	31.95		250				
	32.95		250				
	Total		850				
	32.90		250				
	33.90		250				
	Total		850				
	33.95						
•	34.95		199				
	Total						

GOVERNMENT GAGE DATA

A6300A - Modules # 1,2,3,4,6,
7, 8, 10, \$ 11

MODULE LEVEL TEST ON GOV'T ELECTRICAL
GAGES. (TUNER FREQUENCY, RF OUTPUT VOLTAGE,
AND VARACTOR SENSITIVITY.)

LOT NO.	TEST I	FREQ	OUTPUT	T VOLTAGE (M	V) TUNE	R FREQ	FREQ RE	ADING .
			(MIN)	WO/COUNTED		(MAX)		
SAMPLE	30.00 M	Hz	48	100	987	013		204
NO.	40.91 M	Нz	60	110	187	213		203
#	52.91 M	Hz	62	110	403	433	4	123
1	53.00 M	Hz	66	160	987	013	1	06
	63.91 M	Hz	68	145	187	. 213		200
	75.91 M	Hz	70	130	403	433	4	125
FREQ SHIFT		S (KC)			NCY SHIFT SE	NSITIVITY		
	MIN	MAX	30.00	MHZ (+)	40.91 MHz	(+)	52.91 MH:	z (+)
.2	48	130	61	61_	76	77	97	98
.4	48	130	58	65	73	80	96	107
.6	48	130	57	67	49	83	93	110
.8	48	130	54	69	68	87	88	112
1.0	48	130	53	75-	66	89	82	114
			53.00	MHz	63.91 MHz		75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	: 130	70	68	84	81	113	110
.4	55	130	69	70	82	92	98	111
.6	55	130	68	7/	77	106	95	116
.8	55	130	66	77	72	107	85	118
1.0	55	130	62	82	71	114	84	124

A6300A

LOT NO.	TEST I	FREQ	OUTPUT	VOLTAGE (MV) TUNI	ER FREQ	FREQ REA	DING
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(MIN)	WO COUNTER		(MAX)		
SAMPI.E	30.00 M	Hz	48	118	987	013	0	28
NO.	40.91 M	Hz	60	120	187	213		25
#	52.91 M	Hz	62	1/2	403	433	4	25
2	53.00 M	Hz	66	147	987	013	0	28
	63.91 M	Hz	68	135	187	213	2	01
	75.91 M	Hz	70	105	403	433	4	26
FREQ SHIFT	LIMIT	S (KC)		FREQUEN	CY SHIFT S	ENSITIVITY		
	MIN	MAX			40,91 MHz		52.91 MHz	
.2	48	130	57	(+) 59	(-)		90	· (+)
.4	48	. 130	55	60	69	77	87	96
.6	48	130	53	63	68	80	85	99
.8	48	130	52	64	65	82	83	104
1.0	48	130	47	68	63	85	80	106
			1 53.00	MHz	63.91 MHz		75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	130	61	64	74	77	90	92
.4	53	130	60	65	72	79	87	94
.6	55	130	59	68	70	81	83-	97
.8	55	130	100	10	1.0	00	09	100

1.0

A6300A

LOT NO.	TEST FREQ	OUTPU	T VOLTAGE (MV)	TUNER	FREQ FR	EQ READING
		(MIN)	WO/COUNTER LOADING	(MIN)	(MAX)	
SAMPLE NO.	30.00 MHz	48	118	987	013	007
	40.91 MHz	60	125	187	213	205
#	52.91 MHz	62	120	403	433	424
3	53.00 MHz	66	154	987	013	007
	63.91 MHz	68	136	187	213	200
	75.91 MHz	70	112	403	433	423

FREQ SHIFT	LIMIT	S (KC)		FREQUENCY SHIFT SENSITIVITY						
	MIN	MAX	30.00 MHz		40.91 MHz		52.91 MHz			
.2	48	130	(-) 57	(+) 58	(-) 72	75	(-)	(+) 94		
.4	48	130	55	62	70	77	87	97		
.6	48	130	54	43	68	79	85	101		
.8	48	130	53	66	67	83	82	104		
1.0	48	130	49	69	61	86	81	108		

			53.00 MHz	_ \	63.91 MHz	•	75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
. 2	55	130	68	70	80	82	95-	98
.4	55	130	66	7/	79	85	93	101
.6	55	130	64	73	76	87	92	104
.8	55	130	62	76	73	92	88	157
1.0	55	130	60	77	72	99	89	110

A6300A

LOT NO.	TEST I	FREQ	OUTPU	T VOLTAGE (MV	TUNE	R FREQ	FREQ REAL	DING
			(MIN)	WO/COUNTER LOADING	(MIN)	(MAX)		
SAMPLE NO.	30.00 M	Hz	48	102	987	013	00	2
	40.91 M	Нz	60	115	187	213	20	1
#	52.91 M	OHZ	62	115	403	433	42	
4	53.00 M	Нz	66	167	987	013	00	
/	63.91 M	Hz	68	150	187	213	190	6
	75.91 M	Hz	70	137	403	433	42	
FREQ SHIFT		rs (KC)			CY SHIFT SE	NSITIVITY		
	MIN	MAX	30.00	MHz (+)	40,91 MHz	(†)	52.91 MHz	(+)
.2	48	130	62	63	76	80	100	103
.4	48	130	59	66	75	83	96	107
.6	48	130	58	69	71	85	93	111
.8	48	130	56	71	70	90	90	115
1.0	48	130	54	74	67	94	87	119
			53.00	MHz	63.91 MHz		75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	130	99	104	P5-	88	10.3	105
.4	55	130	97	107	84	90	101	108
.6	55	130	100		~:	21	^~	

GOV'T GAGE DATA

.8

1.0

A6300A

LOT NO.	TEST FREQ	OUTPU	JT VOLTAGE (MV)	TUNER	TUNER FREQ FREQ READIN		
		(MIN)	WO/COUNTER LOADING	(MIN)	(MAX)		
SAMPLE NO.	30.00 MHz	48	139	987	013	004	
	40.91 MHz	60	142	187	213	200	
#	52.91 MHz	62	130	403	433	422	
5	53.00 MHz	66	160	987	013	997	
	63.91 MHz	68	143	187	213	199	
	75.91 MHz	70	112	403	433	427	

FREQ SHIFT	LIMIT	S (KC)		FREQUEN	CY SHIFT SE	NSITIVITY		
	MIN	MAX I	30.00 MHz		40.91 MHz	•	52.91 MHz	
.2	48	130	(-) 53	(+)	(-)	(+)	79	(+) 8 /
.4	48	130	51	56	62	69	76	84
.6	48	130	49	58	61	7/	74	87
.8	48	130	48	60	59	73	72	90
1.0	48	130	47	62	56	75	69	92

			53.00 MHz	_	63.91 MHz	\	75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	130	65	67	78	80	92	96
.4	55	130	64	69	75	82	90	98
.6	55	130	61	70	74	85	87	101
.8	55	130	60	23	72	87	86	103
1.0	55	130	59	75	70	90	82	107

A6300A

LOT NO.	TEST F	REQ	OUTPUT	VOLTAGE (MV	TUNE	RFREQ	FREQ REA	DING
			(MIN)	W/COUNTER	(MIN)	(MAX)		
SAMPLE	30.00 M	Hz	48	69	987	013	0	03
NO.	40.91 M	Hz	60	80	187	213		2
#	52.91 M	Hz	62	82	403	433		22
6	53.00 M	Hz .	66	110	987	013		00
0	63.91 M	Hz	68	100	187	213		00
	75.91 M	Hz	70	91	. 403	433		24
FREQ SHIFT	LIMIT	S (KC)	1 30.00 N		CY SHIFT SE		52.91 MHz	•
			(-)	(+)	(-)	(+)	(-)	(+)
.2	48	130	50	59	70	74	91	92
.4	48	130	55	60	69	75	89	94
.6	48	130	54	64	68	79	87	98
.8	48	130	51	66	64	82	83	102
1.0	48	130	50	69	63	85	82	106
			53.00	MHz \	63.91 MHz		75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	130	63	64	78	80	93	94
.4	55	130	61	66	77	83	92	98
.6	55	130	60	67	75	PS-	91	102
.8	55	130	58	70	73	87	87	107
1.0	55	130	56	72	71	89	84	100

A6300A

LOT NO.	TEST F	REQ	OUTPU	T VOLTAGE (MV	TUNE	R FREQ	FREQ REA	DING
			(MIN)	W/COUNTETZ LOADING	(MIN)	(MAX		
SAMPLE	30.00 M	Hz	48	67	987	013	0	00
NO.	40.91 M	Hz	60	76	187	213		00
#	52.91 M	Hz	62	76	403	433		20
7	53.00 M	Hz	66	100	987	013		97
	63.91 M	Hz	68	100	187	213	1	96
	75.91 M	Hz	70	93	403	433	. 4	20
FREQ SHIFT	LIMIT	S (KC)		FREQUENC	CY SHIFT SE	NSITIVITY		
	MIN	MAX	30.00		40.91 MHz		√52.91 MHz	
.2	48	130	(-)	(+) 61	(-) 74	78	(-)	(+)
.4	48	130	57	63	72	80	94	103
.6	48	130	56	lde	7/	83	91	107
.8	48	130	55	67	66	84	88	111
1.0	48	130	50	72	65	87	84	1/3
			53.00		63.91 MHz		75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	130	70	65	85-	92	99	105
.4	55	130	65	48	80	93	97	110
.6	55	130	63	7/	79	94	95-	114
.8	55	130	61	74	78	96	93	116
1.0	55	130	60	78	76	98	92	117

A6300A

TUNER FREQ

FREQ READING

OUTPUT VOLTAGE (MV)

LOT NO.

TEST FREQ

						the second secon		•	Committee of the Commit
			(MIN)	W/COUNTER		(MIN)	(MAX)		
SAMPLE NO.	30.00 M	Hz	48	64	WO/COUNTER	987	013	0	02
	40.91 M	Hz	60	71		187	213	2	00
#	52.91 M	Hz	62	67		403	433	4	20
8	53.00 M	Hz	66	91		987	013	9	96
	63.91 M	Hz	68	83		187	213	1	99
	75.91 MHz		70	45-	5-99		433	427	
FREQ SHIFT	r LIMIT	S (KC)		FRE	QUENCY	SHIFT SE	NSITIVITY		
	MIN	MAX) MHz		.91 MHz		52.91 MHz	
.2	48	130	(-)			(-) 14	77	(-)	(+) 99
.4	48	130	58			73	80	92	102
.6	48	130	57		66	69	83	89	105
.8	48	130	54			68	87	86	109
1.0	48	130	53		72	166	89	84	114
			1 53.0	0 MHz	\ 63	.91 MHz	\7:	5.91 MHz	
			(-)		(+)	(-)	(+)	(-)	(+)
.2	55	130	68		9	81	82	95	100
.4	55	130	45			18	85-	94	102
.6	55	130	64		3	76	88	92	105
.8	55	130	62			75	89	90	109
	1								

A6300A

LOT NO.	TEST FREQ	OUTPUT VOLTAGE (MV)	TUNER FREQ	FREQ READING
		(MIN) W/COUNTER	(MIN) (MAX	
MPLE NO.	30.00 MHz	48 82 WO/COUNTER	987 013	003
	40.91 MHz	60 82	187 213	200
#	52.91 MHz	62 75	403 433	420
10	53.00 MHz	66 100	987 013	994
	63.91 MHz	68 88	187 213	198
	75.91 MHz	70 67 - 100	403 433	426
FREQ SHIFT	LIMITS (KC) MIN MAX		SHIFT SENSITIVITY	√ 52.91 MHz
			(-) (+)	(-) (+)
. 2	48 130	59 60 3	7 77	95 98

	MIN	MAX I	30.00 MHz		40.91 MHz		∑52.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	48	130	59	60	77	77	95	98
.4	48	130	56	62	73	81	92	101
.6	48	130	55	65	70	83	90	105
.8	48	130	53	68	68	86	86	110
1.0	48	130	52	69	66	89	84	115

	,		53.00 MHz		63.91 MHz		75.91 MHz	
			(-)	(+)	(-)	(+)	(-)	(+)
.2	55	130	63	64	76	78	90	92
.4	55	130	61	66	73	19	88	96
.6	55	130	60	68	7/	82	85	98
.8	55	130	58	70	70	84	84	101
1.0	55	130	57	72	68	86	82	103

A6300A

LOT NO.	TEST F	REQ	OUTPU	r voltage (M) TUNI	ER FREQ	FREQ REA	DING	
	30.00 MHz 40.91 MHz 52.91 MHz 53.00 MHz 63.91 MHz		(MIN)	W/COUNTER LOADING	(MIN)	(MAX)			
SAMPLE NO.			48	66	987	013	0	00	
			60	75	187	187 213		198	
#			62	75	403	403 433	4	419	
//			66	100	987	013	996		
			68	98	187	213			
	75.91 MI	Iz	70	86	403	433	4	18	
FREQ SHIFT	LIMIT	S (KC)		FREQUEN	CY SHIFT S	ENSITIVITY			
	MIN	MAX	30.00		40.91 ME		52.91 MHz		
.2	48	130	63	(+) 64	79	81	101	(+) 105	
.4	48	130	60	67	77	84	98	109	
.6	48	130	58	70	74	88	95	113	
.8	48	130	57	72	72	9/	92	117	
1.0	48	130	55	75-	70	94	89	121	
			53.00	MHz	63.91 MHz		75.91 MHz		
			(-)	(+)	(-)	(+)	(-)	(+)	
.2	55	130	67	69	84	86	100	103	
.4	55	130	65	70	82	88	1 98	106	
6	55	130	64	73	79	90	95	110	
.8	55	130	63	75	77	94	92	1/2	
1.0	55	130	60	77	75-	96	91	115	

TEMPERATURE

@ +25°C, +85°C, \$ -40°C

A6300A - Module # 40

MODULE LEVEL TESTS. (AS PER PRINT SM-8-416427.)
TRACKING @ ROOM, HOT & COLD TEMP.
R.F. OUTPUT @ ROOM, HOT, & COLD TEMP.
VARACTOR SENSITIVITY @ ROOM, HOT & COLD TEMP.

ALIGNED & TESTED IN LAB TEST FIXTURE #1

"A" Band

#<u>40</u> @+25°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC		RF Output
30.000	29.972 Mc		330 mor
31.091	31.030 "		335
32.182	32.206 "	- <u> </u>	340 "
33.273	33.386 "		340 "
34.364	34.459 "		350 "
35.455	35.447 "		350 "
36.545	36.581 "		350 "
37.636	37.731 "		350 "
38.727	38.826"		360 "
39.818	39 888 "		370 "
40.909	40.915 "	<u> </u>	370 "
42.000	41.986 "		375
43.091	43.093 "		375"
44.182	44.190 "	<u> </u>	375"
45.273	45.3/8 "		375"
46.364	46.426 "		380 "
47.455	47.488 "		370 "
48.545	48.55% "		370 "
49.636	49.646 "		365 "
50.727	50.815 .		365"
51.818	51.901 "	<u> </u>	365 "
52.909	52.810 "	290 **	365 "

A6300A "A" Band #<u>40</u> @-40°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC		RF Output
30.000	29.922 Mc		365 mor
31.091	30.984 "		370 "
32.182	32.154 "		380 "
33.273	33.343 "	· · · · · · · · · · · · · · · · · · ·	380 "
34.364	34,420 "		390 "
35.455	35.426 "		390 "
36.545	36.557 "		360 .
37.636	37.7/8		370 "
38.727	38.853 "		370 "
39.818	39.903 "		380 .
40.909	40.920 "	•	330 "
42.000	41.987 "		385 "
43.091	43.108 "		390 "
44.182	44.208 "		390 "
45.273	45.327 "		390 "
46.364	46.431 "		385 "
47.455	47.518		380 "
.48.545	48.589 "		380 "
49.636	49.685 "		375 "
50.727	50.835 "		370 "
51.818	51.9.30 "		365 "
52.909	52.838 "		365 "

"A" Band

#<u>40</u> @+85°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC		RF Output
30.000	29.945 MC		300 mor
31.091	30.998 "		3/0 "
32.182	32.170	_	3/5"
33.273	33.347 "		320 "
34.364	34 432 "		320 "
35.455	35.414 "		325"
36.545	36.548 "		325 "
37.636	37.705 "		330 "
38.727	38.795"		330 '
39.818	39.858 "		335"
40.909	40.863 "	•	340 "
42.000	41.935-"		340 "
43.091	43.032 "		.345- "
44.182	44,130 "	<u> </u>	345- "
45.273	45.269 "		340 "
46.364	40.368 "		340 "
47.455	47.409 "		335"
48.545	49.407 "		735 "
49.636	49.591"	·	330 "
50.727	50.73/- "		330 "
51.818	51.812 "		325 "
52.909	52.7/4 "		322 .

VARACTOR SENSITIVITY

"A" BAND

FREQ. SHIFT VOLTAGE	/ LIMITS (KC)	FREQUE	ency shift MHz		IVITY MHz	52.910	MHz ·
	(Min)	(Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 ₹			58	60	72	75	93	97
.4 ▼			56	62			.91	99
.6 ₹			54	64			89	164
₹ 8.			53	67			85-	107
1.0 7	225 to 6		51		64		84	110
1.2 V			50	71			81	115
1.4 v			49	75			79	119
1.6 ▼			47	78	1		77	124
1.8 7			46	81			74	129
2.0 ₹	225 to 60		45	85		104		135

Comments:	AS PER	PRINT #	SM-B-41	6427-	STEP 2	(2)

ACTOR SENSITIVITY

Module # _______

"A" BAND + 85 C or - 40 C

@ - 40°C

					<u> </u>	- 40	
. SHIFT	LIMITS (KC)	FREQUE	NCY SHIF	SENSIT:		52.910) MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 ₹		57	60	70	74	91	94
.4 ▼		55-		68	75	88	98
.6 ▼	i i	53		67		87	101
₹8.		52		125	80	83	104
L.0 V	215 to 615 Kc per volt	50	67	62	83	81	107
L.2 T		49		61	87	79	112
L.4 T		148		60	89	76.	116
1.6 v		146	76	58	94	75-	120
1.8 7		45		56	96	74	126
2.0 ₹	215 to 615 Ke per volt	43	83	53-	102	73	/3/

Comments:	AS PER	SM-B-	416427	(2.5)	
				7	

VARACTOR SENSITIVITY

Module # 40

T.F. # ____

"A" BAND

+ 85 C or - 40 C

LIMITS (EC)	FREQUE	NCY SHIFT			52.910	MHz
(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+
	57	61	74	17	95	98
	56	62	71	76	93	102
•	33	65	70	83	89	105
						109
215 to 615 Kc per volt						1/2
	50					_117
	49					121
	48					127
						/3/
215 to 615 Kc per volt	45					138
	(Min) (Max) 215 to 615 Kc per volt 215 to 615 Kc	30,000 (Min) (Max) (-) 57 56 53 53 215 to 615 Ke per volt 57 50 49 48 46 46 46 46 46 46 46	30,000 MHz (Min) (Max) (-) (+) 57	30,000 MHz	30,000 MHz	S0.000 MHz

Comments:	AS PER	SM-B-416427	(2.5)	

. 323

A6300A "B" Band #<u>#40</u> @ +25° C

Calculated Straight Line Frequency	Actual Frequency + 150 KC		RF Output
53.000	53.025 Mc		435 mot
54.091	54.043 "		430 "
55.182	55.190 .		425 "
56.273	56.338 .		420 "
57.364	57.406 "		415 "
58.455	58.374 "		415"
59.545	59.510 "	-	410 "
60.636	60.685 "		40 "
61.727	61.782 "		405 "
62.818	62.857 "		395 "
- 63.909	63.864 "		395 "
65.000	64.959 "		390 "
66.091	66.097 "		390 "
67.182	67.212 "	-	390 "
68.273	68.356 "		390 "
69.364	69.444 .		390 "
70.455	70.511 "		375 "
71.545	71.599 .	<u> </u>	375 "
72.636	72.686 "		372 "
73.727	73.849 .		370 "
74.818	74.905 "		370 "
75.909	75.800 .		370 "

"B" Band

#<u># 40</u> @-40° C

Calculated Straight Line Frequency	Actual Frequency + 150 KC		RF Output
53.000	52.940 Mc		470 mor
54.091	53.965 "		41.5 "
55.182	53:120 "		458 "
56.273	56.264 "		450 "
57.364	57.353 "		445 "
58.455	<u>58.316 "</u>		440 "
59.545	59. 442 "		430 "
60.636	60.615 "		425 "
61.727	61.704 "		420 "
62.818	62.779 "		415- 11-
63.909	13.801 "		415 "
65.000	64,000 "		410 "
66.091	66.057 "		405"
67.182	67.170 "		40.5"
68.273	62.315 "	· <u>· · · · · · · · · · · · · · · · · · </u>	400 "
69.364	69.420 "		395"
70.455	70.485 "		395"
71.545	71.579 1	<u> </u>	390 "
72.636	72.677 "	· <u></u>	390 "
73.727	73.831 "	0.000	380 "
74.818	74.959 11		355 "
75.909	75.780 "	10 N	380 "

#<u>40</u> @ +85°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC		RF Output
53.000	53.066 Mc		395 mm
54.091	54.078 .		390 "
55.182	55.226 "		388 .
56.273	56.362 "		385 "
57.364	57.420 "		380 "
58.455	58.383 "		380 "
59.545	59.508 "		375"
60.636	60.677 "		375 "
61.727	61.777 "		365 .
62.818	62.836 "		360 "
63.909	63.842 "	<u></u>	360 "
65.000	64.926 "		358 "
66.091	66.061 "		355"
67.182	67.174 "		350 "
68.273	68.306 "	<u> </u>	350 "
69.364	69.388 .		348 "
70.455	70.449 11		345"
71.545	71.535 "		340 "
72.636	72.623 "		340 "
73.727	73.777 "		3.35"
74.818	74.828 "		330 "
75.909	75.722 "		330 "

VARACTOR SENSITIVITY

Module # 40

"B" Band

0 +25°C

LTAGE		53.000	MHz	63.91	MHz	75.91	O MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 ₹		61	63	76	78	93	95
•4 ₹		60	65			89	99
.6 ▼		59	66	72	82	87	103
.8 ▼		57		70	84	84	105
1.0 ▼	265 to 600 Kc per Volt	56	70			82	107
1.2 ₹		55		67		80	
1.4. V		54		10/0	92	79	112
1.6 ₹		52		65	94	77	116
,1.8 v		51	79		98		119
2.0 7	265 to 600 Kc per Volt	50	82		101		123

Comments:	AS PER PRINT # SM-B-416427 (2.5)

" B " Band

VARACTOR SENSITIVITY

Module # 40

T.F. # ____

+ 85 C or - 40 C

@-40°C

LTAGE		53.000	MHz	63.910	MHz	75.91	0 MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 ₹		62	63	76	76	91	93
.4 ₹		60	64	74	80	89	96
.6 ₹		58	66	73	82	87	99
.8 ▼		57	68	7/	84	85	101
1.0 ¥	255 to 610 Kc per Volt .	56	69	69	86	83	104
1.2 V		54	72	67		81	106
1.4 ₹		13		66	92	79	110
1.6 🔻		50		65	95	78	114
1.8 7		51		64	98	77	117
2.0 ₹	255 to 610 Kc per Volt	50		62	101		121

Comments:	AS PER	SM-B-416427	(25-)	

VARACTOR SENSITIVITY

Module # _______

T.F. # ____

"B" Band

+ 85 C or - 40 C

@ +85°C

LTAGE		/ 53.000	MHz	63.910	MHz	75.91	O MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+
.2 ▼		61	63	74	17	91	94
.4 ▼		60	65	73	79	89	90
.6 ▼	•	59	66	72	82	87	101
.8 T		57	68	69	83	85	102
1.0 T	255 to 610 Kc per Volt	56		68		82	105
1.2 T		55	72		88	•	109
1.4 ▼		54	74	45		80	_///
1.6 ▼		52		64		77	117
1.8 ▼		51		62	97		118
2.0 ▼	255 to 610 Kc per Volt	50	82			75	124
		1					

Comments:	AS	PER	PRINT #	SM-B-46427	(2.5)	
					7	

TEMPERATURE

@+25°c, +85°c \$ -40°c

A6300A - MODULES # 41 \$ 51

O.B. LEVEL TESTS - (AS PER PRINT # SM-B-416421)
MODULES TESTED WITH A6400A # 70
TRACKING, RF OUTPUT, & VARACTOR SENSITIVITY @
ROOM, HOT, & COLD TEMP.

ALIGNED & TESTED ON CALIBRATED LAB T.F. # 1

A6300A							
"A"	Band						

#___4/__ w/A6400A # 70 @ +25°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
30.000	29.975 Mc	2.23 VOLTS	420 mr
31.091	31.018 "	2.26	430 "
32.182	32./93 "	2.32	435"
33.273	33.374	2.37	450 "
34.364	34.467 "	2.41 "	470 -
35.455	35.478 "	2.45	480 "
36.545	36.584 "	2.45	480 "
37.636	37.738 "	2.49 .	480 "
38.727	38.828 "	2.50	480 "
39.818	39.875	2,50	480 "
40.909	40.898 "	2.49 "	475 "
42.000	41.959 "	2.46	470 "
43.091	43.070	2.42 "	465 "
44.182	44.169 "	2.36 "	462 "
45.273	45.307 .	2.30	453- "
46.364	46.422 "	2.25"	445 "
47.455	47.476 "	2.19	430 .
48.545	48.5574 "	2.14 .	425-
49.636	49.647 "	2.09 "	415 "
50.727	50.822 "	2.02 "	40.5 "
51.818	57.925"	1.96 "	395 "
52.909	52.829 "	1.92 "	385 "

#<u>4/</u> W/A6400A # 70 @ - 40° C

A6300A "A" Band

Calculated Straight	Actual		
Line	Frequency	High Power	Low Power
Frequency	<u>+</u> 150 KC	Output	Output
30.000	29.924 Mc	2.22 VOLTS	420mm
31.091	30.970 "	2.25 "	42/ "
32.182	32./55 "	2.32 "	430 "
33.273	33.340 "	2.35 "	440 "
34.364	34.442 "	2.42 "	453- "
35.455	35.459 "	2.45"	470 "
36.545	36.565 "	2.47 "	470
37.636	37.727 "	2.49 *	472 "
38.727	38.814 "	2.50 "	472 "
39.818	39.862 "	2.50	469 "
40.909	40.890 "	2.50 "	465- "
42.000	41.949 "	2.48 "	460 "
43.091	43.074 "	2.42 "	455 .
44.182	44.165 "	2.38 "	450 "
45.273	45.290 "	2.30 "	440 "
46.364	46.400 "	2.25"	430 "
47.455	47.453 "	2.18 "	425 "
48.545	48.531 "	2.12 "	420 "
49.636	49.612 "	2.05"	420 "
50.727	50.789 "	1.99 "	410 "
51.818	51.888 "	192 "	400 "
52.909	52.787 "	1.90 "	385 -

#<u>4/</u> w/A6400A #70 @+85°C

A6300A "A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
30.000	29.966 Mc	2.10 YOLTS	412 mar
31.091	31.006 "	2.15	420 "
32.182	32.176 "	2.19 "	430 '
33.273	33.356 "	2.25 "	445 "
34.364	34.454 "	2.25"	455 "
35.455	35.452 "	2.28 "	460 "
36.545	36.560	2.30	460 "
37.636	37.709 "	2.32 "	460 "
38.727	38.797 "	2.32 "	460 "
39.818	39.845-	2.30 "	455- "
40.909	40.860 "	2.28 "	453 "
42.000	41.920 "	2.25	445 "
43.091	43.032 "	2.21 "	435"
44.182	44,134 "	2:18 "	430 "
45.273	45.279 "	2./2 "	420 "
46.364	46.388 *	2.08 "	410 "
47.455	47.442 "	2.02 "	395
48.545	48.516 "	1.98 "	385"
49.636	49.605 "	1.92 "	375"
50.727	50.782	1.85"	360 '
51.818	57.888 "	1.80 "	350 "
52.909	52.785	1.78 "	340 "

. A6000

"A" BAND

VARACTOR SENSITIVITY

@ +25°C

EQ. SHIFT LTAGE	LIMITS (EC)	30.000		SENSIT		52.910	MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 ₹		58	60	7/	74	94	96
.4 ▼		56		70		9/	100
.6 ₹		54		67		88	104
.8 ¥		53		66		P5-	109
1.0 ₹	**	51		63	86		
1.2 ₹	***	50		62	88		115
1.4 v		149		60	9/		120
1.6 v		47		59	96		124
1.8 7		146		57	100		130
2.0 7		45	85-		105		136

These	Limi	Lts	ap	ply
over a	(+)	OI	٠ (-)
500 KC	ahi	ft	70	700

Comments:	AS PER PRINT # SM-B-416421	(2.1.3	./)

^{**} Incr Sens for Voltages less than ± 1.0V 225 - 600 Kc

^{***} Incr Sens for Voltages equal to and greater than ± 1.0 V 215 - 625 Kc

VARACTOR SENSITIVITY

.

A6300A 4/

"A" BAND

@-40°C

			30,000	MHz	40.910	MAZ	52.910	MHz .
	(Min)	(Max)	(-)	(+)	(-)	(+)	(-)	(+
.2 ₹			56	60	70	72	92	95
.4 ₹			55	62	68	75	89	99
.6 ₹		•	54	64	67	17	88	102
₹ 8.		•	52	67			84	105
1.0 ₹		**	50	69	63		82	109
1.2 7			49	72			80	113
1.4 v			48	74			78 :	11/2
1.6 7			46	75		We'dla se	75	124
1.8 7			45	17		99	74	126
2.0 ₹			44	80		104	72	/33

These limits apply over a (+) or (-) 500 Kc shift range

** Incr Sens for Voltages less than ± 1.0V 215 - 615 Kc *** Incr Sens for Voltages
equal to and greater than
± 1.0V 205 - 640 Kc

Comments:	AS PER FRINT # SM-B-416421	(2.1.3.1)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~

VARACTOR SENSITIVITY

A6300A 4/ A6400A 70

EQ. SHIFT LTAGE	/ LIMITS (RC)	30.000	NCY SHIFT	40.910		52.910	MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(
.2 ₹		58	60	74	77	94	98
.4 ₹		56	63	72	80	92	101
.6 ₹	•	33	64	69	83	89	104
₹ 8.	••	53	67	67	85	26	108
1.0 v	***	52		65	88		112
1.2 7		50		63	93		116
1.4 ▼		49		62		79:	121
1.6 7		47		60	100		126
1.8 ▼		46		58	103		131
2.0 ₹		44	85-		108		137

Comments: As PER PRINT # SM-R-4/642/ (2.1.3.1)



A6300A				
"B"	Band			

	41
WARRE	DOA # 70
@ + 2-	-° C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
53.000	53.018 Mc	235 v	445 me
54.091	54.024 "	2.37 "	440 "
55.182	55.175 "	2.40 "	425 "
56.273	56.328 "	2.40 "	415 "
57.364	57.407 "	2,40.	410 "
58.455	58.39! "	2.39 "	405 .
59.545	59.502 1	2.36 "	395 "
60.636	60.674 "	2.34 "	38.5
61.727	61.768 "	2.32 "	380 "
62.818	62.833 "	2.32 "	370 "
63.909	63.860 "	2.32 "	36.5"
65.000	64,929	2.29 "	360 "
66.091	66.07.5	2.26 "	3555 "
67.182	67.139 "	2.25 "	352 "
68.273	68.345 "	2.22 "	345 "
69.364	69.4410 "	2.00 "	340 "
70.455	70.502 1	2.18 "	330 "
71.545	71.596 "	2.16 "	320 "
72.636	72.684 "	2.15 "	315"
73.727	73.845 "	2.10 "	310 "
74.818	74.922 "	2.07 .	<u>300 "</u>
75.909	75:822	2.55 "	290 "

A6300A "B" Band

... ...

#__4/ W/A6400A #70 @ +85°C

Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC	High Power Output	Low Power Output
53.000	53.010 Mc	2.25 v	430 mr
54.091	54.010 "	2.25"	420 "
55.182	55.154 "	2.25"	410 "
56.273	56.288 "	2.25 "	400 "
57.364	57.364 "	2.25 "	390 "
58.455	58.343 "	2.20 "	380 "
59.545	59.449 "	2.20	370 "
60.636	60.626 "	2.20 "	365 "
61.727	61.720 "	2.18 "	360 "
62.818	62.789 "	2.18 "	350 "
63.909	63.799 "	2.15"	345 1
65.000	64.878 "	2.13 "	340 "
66.091	66.019 "	2.10 "	335 "
67.182	67.127 "	2.09 "	330 "
68.273	68.283 "	2.08 "	320 1
69.364	69.385 "	2.05 "	315"
70.455	70.440 "	2.05 "	310 "
71.545	71.538 "	2.05 "	300 "
72.636	72.624 "	2.00 "	295 "
73.727	73.794 "	1.98 "	285 "
74.818	74.872 "	1.95 "	275 "
75.909	75.757 "	1.92 "	270 "

A6300A "B" Band # 41 w/a6400A #70 @-40°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
53.000	52.950 Ma	2.37 V	450 min
54.091	53.957 "	2.42 "	440 "
55.182	55.102 "	2.45"	430 "
56.273	56.296 "	2.47 "	425 "
57.364	57.374 "	2.47 "	420 "
58.455	58.360 *	2.47 "	415 11
59.545	59.474 "	2.45"	400. "
60.636	60.621 "	2.40 "	390 "
61.727	(01.715"	2.40 "	380 "
62.818	62.789 "	2.39 "	370 "
63.909	63.904 "	2.35 "	360 "
65.000	64.397 "	2.31 "	350 "
66.091	1.6.035 "	2.30 "	340 "
67.182	67.137 "	2.27 "	340 "
68.273	68.294 "	2.25 "	340 "
69.364	1.9.401 "	2.25 "	335- "
70.455	70.457 "	2.25 "	330 "
71.545	71.537 "	2.19 "	320 "
72.636	72.621 "	2./5"	3/0 "
73.727	73.790 "	2.10 "	305 "
74.818	74,871. "	2.07 "	300 "
75.909	75.742. 1	2.05"	290 "

VARACTOR SENSITIVITY

A6300A 4/ A6400A 70 @ +25°C

" B " Band

TAGE		/ 53.00	O MHz	63.910	MHz	75.91	O MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+
.2 ₹		61	63	75	77	92	97
.4 ▼		60	65	73	80	90	98
.6 ▼	•	58	66	72	82	88	101
.8 ₹	• •	57	68	70	83	25	103
1.0 7	•••	56	70	68		83	105
1.2 ₹		55-		67	89		108
1.4 T		54		65	92		111
1.6 v		52		64	95		116
1.8 7		51		63		77	118
2.0 ₹		50	82		102		123

These I	يست	ts a	1gg	y
over a	(+)	OF	(-)	
500 Kc	shi	ft r	ans	8

** Incr Sens for Voltages less than ± 1.0V 265 - 600 Kc

*** Incr Sens for Voltages
equal to and greater than
± 1.0V 250 - 600 Kc

Comments:	As	PER	PRINT	# 54	1-8-	4164	21	(2.1.	3.1)	
								·		

A 6000 .

" B " Band

VARACTOR SENSITIVITY

A6300A 4/ A6400A 70

TAGE		•	53.000	MHz	63.910	63.910 MHz		75.910 MHz	
	(Min)	(Max)	(-)	(+)	(-)	(+)	(-)	(+)	
.2 7	7		61	62	16	78	9/	93	
٠4 ٢	7		60	64	74	80	89	96	
.6 7		•	58	67	73	83	87	97	
.8 7	•	•	57	68	70	84	86	100	
1.0	•	• • .	56	69	69	86	83	103	
1.2	7		54	72	67	89	81	106	
1.4	7		53	73	66	92	79	109	
1.6			52	76	64	95	18	113	
1.8	7		51	79	63	97	76	115	
2.0	7		50	81	61	101	75	121	
			1						

The	se 1	111	ts a	מקם	J
OVE	: 2	(+)	OF	(-)	)
500	Kc	shi	ft r	and	Te

Comments:	AS PER	PRINT #	SM-B-41	642/ (21)	3.1)

^{***} Incr Sens for Voltages
less than ± 1.0V

*** Incr Sens for Voltages
equal to and greater the 255 - 610 Kc

equal to and greater than ± 1.0V 240 - 610 Kc

A 6000 .

VARACTOR SENSITIVITY

A6300A 4/ A6400A 70 Q +85°C

•.				MHz	63.910	1412	1,70,70	0 MHz
	(Min)	(Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 ₹			61	62	75	77	92	98
.4 ▼			60	65	73	78	90	99
.6 ₹		•	59	66	72	81	88	102
.8 ₹			57	68	69	83	8-	10.3
1.0 +	• •	• .	56	70	68	85	83	166
1.2 ₹			54	72	66	89	82	108
1.4 ₹			53	74	65		80	113
1.6 T			52		64	94		116
1.8 7			51	78	62		77	118
2.0 ₹		* *	50	82			75-	124

These 1	1 11	ts a	pply
over a	(+)	OF	(-)
500 Kc	shi	ft r	ange

255 - 610 Kc

her Sens for Voltages
less than ± 1.0V
l equal to and greater than ± 1.0V 240 - 610 Kc

Comments:	AS DER	PRINT # SM-B-416421	(2.1.3.1)
		***************************************	7



A63	300A
"A"	Band

# #_51 w/A6400A #;1 @ +25°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
30.000	29.978 Mc	2.18 VOLTS	405 mm
31.091	31.026 "	2.20 "	400 "
32.182	32.202	2.24 "	400 "
33.273	33.377 "	2.26 "	405"
34.364	34.447 "	2.28 "	410 "
35.455	35.449 "	2.30 "	4/5 "
36.545	36.587 "	2.30 "	420 "
37.636	37.718 "	2.34 "	420 "
38.727	38.796 "	2.34 "	422 "
39.818	39.842 "	2.34 "	425"
40.909	40.863 "	2.32 "	425 "
42.000	41.938 -	2,30 "	420 "
43.091	43.044 "	2.28 "	420 "
44.182	44.142 "	2.24 "	420 "
45.273	45.245"	2.19 "	415 "
46.364	46.390 "	2.12 "	405"
47.455	47.470 "	2.06 "	395" "
48.545	48.546 "	2.01 "	390 "
49.636	49.646 "	1.95"	390 "
50.727	50.832 "	1.90 "	375 "
51.818	51.945"	1.85 "	370 "
52.909	52.848 "	1.82 "	365 "

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
30.000	29.929 Mc	2.25 VOLTS	425 mv
31.091	30.977 "	2.28 "	410 "
32.182	32. /52 "	2.32 "	415
33.273	33.333 .	2.35 "	415"
34.364	34.402 "	2.40 "	420 "
35.455	35.380 "	2.42 "	425 "
36.545	36.529 "	2.42 "	425"
37.636	37.668 "	2.44 "	425 "
38.727	38.748	2.45 "	425- "
39.818	39.806 "	2.45"	425"
40.909	40.825 "	2.41 "	415"
42.000	41.897 "	2.38 "	410 "
43.091	43.022 "	2.32 "	405-
44.182	44.120 "	2.28 "	405 .
45.273	45.218 "	2.25 "	410 "
46.364	46.345-	2.15"	405 "
47.455	47.43/ -	2.08 "	395 "
48.545	48.526 .	2.02 "	390 "
49.636	49.601 "	1.98 "	385 "
50.727	50.782 "	1.90 "	385 "
51.818	51.904 "	1.85"	<u>380 "</u>
52.909	52.8/2 "	1.82 "	370 "

"A" Band

#<u>51</u> <u>W/A6400A # 70</u> @ +85°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
30.000	29.979 Mc	2.05 VOLTS	390 mar
31.091	31.023 "	2.10 "	385 "
32.182	32.186 "	2.12 .	390 "
33.273	33.349 "	2.15 "	400 "
34.364	34.426 "	2.18 "	405 "
35.455	35.431 "	2.18 "	410 "
36.545	36.549 "	2.18 "	4/2 "
37.636	37.675 "	2.22 "	415 "
38.727	38.757 "	2.22 "	418 "
39.818	39.804 "	2.22 "	420 "
40.909	40.826 "	2.20 "	420 "
42.000	41.893 "	2.18	415 "
43.091	42.994 .	2.15 "	410 "
44.182	44.094 "	2.12 "	40.5 "
45.273	45.226 "	2.10 "	405- "
46.364	46.357 "	2.05	395 "
47.455	47.422 "	2.00 "	380 "
48.545	48.501	1.95"	370 "
49.636	49.596 "	1.90 "	365 "
50.727	50.779 "	1.87 "	353"
51.818	51.886 "	1.82 "	345 "
52.909	52.790 "	1.80 "	340 "

"A" BAND

VARACTOR SENSITIVITY

A6300A 5/
A6400A 70

@ +25°C

EQ. SHIF LTAGE	LIMITS (KC)	FREQUE:	NCY SHIF	T SENSITI	VITY	52.910	MHz
	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+
.2 ₹		53-	57	63	64	84	90
.4 ▼		53	59			81	94
.6 ₹		52		60		79	96
₹ 8.		50	63			77	100
1.0 ₹	**	49		57		75	103
1.2 ₹	***	48		56		73	107
1.4 ▼		47		55-		70	111
1.6 ₹	* .	146		54		69	116
1.8 7		44		52		67	120
2.0 ₹		43	80			65	126

These limits apply over a (+) or (-) 500 Kc shift range

** Incr Sens for Voltages less than ± 1.0V 225 - 600 Kc

*** Incr Sens for Voltages equal to and greater than ± 1.0 V 215 - 625 Kc

Comments:	As.	PER PRIN	IT # 5M	B-4164	21 /2	1.3.1)	

VARACTOR SENSITIVITY

A6300A 57
A6400A 70

"A" BAND

@-40°C

REQ. SHIP OLTAGE	PT / LIMITS (E	30,000	MHz	40.910		52.91	o MHz
•	(Min)	(Max) (-)	(+)	(-)	(+)	(-)	(-
.2 ₹		59	59	67	68	91	93
.4 ₹		57	61	65	72	88	97
.6 ₹		56	63	63	75	86	99
₹ 8.	**	53	64	1		83	10.3
1.0 v	***	51	66		82		106
1.2 v		50	69		86		110
1.4 v		47	72			77:	116
1.6 v		46	78			74	120
1.8 v		44		53	102		125
2.0 ₹		43	87		106		131

These I	Limits	appl	7
OASL S	(+) 0	r (-)	
500 Kc	shift	rang	8

** Incr Sens for Voltages less than ± 1.0V 215 - 615 Kc *** Incr Sens for Voltages
equal to and greater than
± 1.0V 205 - 640 Kc

Comments:	: AS PER PRINT # SM-B-416421 (2.1.3.1)	

#### VARACTOR SENSITIVITY

A6300A #5-1

A6400A # 70

@ + 85°C "A" BAND

							00	=_
FREQ. SHIFT VOLTAGE	LIMITS	(KC)	FREQUE	NCY SHIF	40.910		52.91	0 MHz
	(Min)	(Max)	(-)	(+)	(-)	(+)	(-)	(+
.2 ₹			58	61	72	74	93	97
.4 ▼			56		71	17	90	160
.6 ₹			53-		68	79	89	10.3
.8 ₹	**		54		66	82	P5-	107
1.0 ₹	***		57		64		81	110
1.2 V			50		63		80	116
1.4 v			48		60	90	79:	120
1.6 v			47		59		77	125
1.8 🔻			46	£3		99		130
2.0 ₹			44	86		105		137

These 1 over a 500 Kg	imi	ts a	pply
over a	(+)	OF	(-)
500 Kc	shif	ft r	anse

*** Incr Sens for Voltages equal to and greater than ± 1.0V 205 - 640 Kc

Comments:	AS PER PRINT # SM-B-41642	1 (2.1.3.1)

^{**} Incr Sens for Voltages less than ± 1.0V 215 - 615 Kc

(



A63	300A
"B"	Band

# #<u>#51</u> w/A6400A #70 @ +25°C

			@ +25 C
Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC	High Power Output	Low Power Output
53.000	53.010 Mc	_2.35 v	450 mm
54.091	54.016 "	2.38 "	440 "
55.182	55.162 "	2.40 "	430 "
56.273	56.321 "	2.40 "	420 "
57.364	57.408	2.40 "	410 "
58.455	58.397 "	2.40 "	400 "
59.545	59.497 "	2.37 "	395"
60.636	60.650 "	2.37 "	395"
61.727	61.735 "	_237 "	390 "
62.818	62.799 "	2.37	380 "
63.909	63.8.35 "	2.35 "	370 "
65.000	64.920 "	2.30 "	36.5 "
66.091	66.069 "	2.29 "	365"
67.182	67.208 "	2.27 "	365 "
68.273	63.374 "	2.27	360 "
69.364	69.472 "	2.27 "	360 "
70.455	70.515 "	2.25 "	350 "
71.545	71.615 "	2.25 "	349 "
72.636	72.686 "	2.22	340 "
73.727	73.831 "	2.20 4	345 "
74.818	74.908 "	2.20 "	335"
75.909	75.780 "	2.17 "	330 "

A63	300A
"B"	Band

# #__51 <u>w/A6400A</u> #70 @ +85°C

			@ +85 C
Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC	High Power Output	Low Power Output
53.000	53.025 Mc	2.25 N	420 mm
54.091	54.017 "	2.25 "	410 "
55.182	55.170 "	2.27 "	400 "
56.273	56.312 "	2.27 "	390
57.364	57.396 "	2.25 "	380 "
58.455	58.380	2.22 .	375 "
59.545	59.487	2.20 "	370 .
60.636	60.664 "	2.20 "	365
61.727	61.760 "	2.20 "	360 "
62.818	62.838 "	2.19 "	355 "
63.909	63.858 "	2.17 "	350
65.000	64.931 "	2.15 "	350 "
66.091	66.084 .	2.13 "	340 "
67.182	67.191 "	2.12 .	3.35 "
68.273	68.344 .	2.10 "	330 "
69.364	69.431	2.10 "	325
70.455	70.464 .	2.10 "	320
71.545	71.530 "	2.09 "	3/5
72.636	72.627 "	2.06 "	310 .
73.727	73.782 "	2.05	305"
74.818	74.844 "	2.02 "	300 "
75.909	75.711 "	2.01 "	295"

A6300A "B" Band #<u>51</u> <u>w/A6400A # 70</u> @ - 40°C

Calculated Straight Line Frequency	Actual Frequency + 150 KC	High Power Output	Low Power Output
53.000	52.971 Mc	2.35 V	450 mm
54.091	53.982 *	2.40 '	440
55.182	55.133	2.45	430
56.273	56.309 "	2.45	420 "
57.364	57.409 "	2.47 "	415"
58.455	58.416 "	2.47 "	410 .
59.545	59.527 "	2.45 "	400 "
60.636	60.639 "	2.42 "	395 "
61.727	61.676 .	2.40 "	385
62.818	62.739 "	2.40 "	375"
63.909	63.786 "	2.39 "	365 "
65.000	64.892 "	2.37	355 "
66.091	66.055 "	2.35"	350 "
67.182	67.164 "	2.32 "	350 "
68.273	68.355 "	2.31 "	350 "
69.364	69.465 "	2.30 "	350 "
70.455	70.524 "	2.30 "	350 "
71.545	71.616 "	2.29 "	345 "
72.636	72.707 "	2.27 "	335 "
73.727	73.866 "	2.25"	335
74.818	74.934 "	2.21 "	330
75.909	75:793 "	2.20 "	325 "

A 6000

" B " Band

VARACTOR SENSITIVITY

A6400A 70

@ +25°C

REQ. SHIFT OLTAGE	LIMITS (KC)	53.000			63.910 MHz		75.910 MHz	
•.	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+	
.2 T		61	63	75	76	94	94	
.4 ♥		59	64	73	79	91	99	
.6 ▼		58	66	72	82	90	103	
.8 ▼		57	67	69	83	87	108	
1.0 ₹	• • •	56		68	8	86	111	
1.2 7		54		46	89	84	1/3	
1.4 ▼		53	74	65	92	82	116	
1.6 v		52	76	63	95	80	119	
1.8 7		57		62	97		120	
2.0 ▼		50		61	102		124	

These I	imi	ts a	pply
over a	(+)	OF	(-)
500 Kc	shi	It 1	ange

Comments:	AS PER PRINT # SM-B-416421	(2.1.3.1)	

^{**} Incr Sens for Voltages less than ± 1.0V 265 - 600 Kc

^{***} Incr Sens for Voltages
equal to and greater than
± 1.0V 250 - 600 Kc

A 6000 .

VARACTOR SENSITIVITY

A6300A 5/ @ -40°C

" B " Band

LTAGE	1		53.000	MHZ	63.910	MHz	75.91	O MHz
	(Min)	(Max)	(-)	(+)	(-)	(+)	(-)	(+)
.2 7			61	63	78	79	91	95
•4 ₹			60	65	75	82	90	98
.6 ₹		•	159	67	73	94	99	101
.8 ₹	* *		56	68	72	86	86	103
1.0 7		•	53-	70	70	89	94	105
1.2 T			54	73	68	91	83	109
1.4 V			53	75	66	94	81	112
1.6 ₹			52	78	64	98	80	117
1.8 4			57	81	63	99	77	119
2.0 ₹			50	23		104	76	125

255 - 610 Kc

These limits apply ** Incr Sens for Voltages over a (+) or (-) less than ± 1.0V equal to and greater the 255 - 610 Kc ± 1.0V 240 - 610 Kc equal to and greater than ± 1.0V 240 - 610 Kc

Comments:	ASPER	BENT #	SM-B-4	1421 (2	1.3.1)	

A 6000 .

. .

ARACTOR SENSITIVITY

A6300A _5/ A6400A _70 _@ +85°C

LTAGE		53.000	MHz	63.910	MHz	75.91	O MHz
•	(Min) (Max)	(-)	(+)	(-)	(+)	(-)	(+
.2 ₹		61	62	75	77	94	96
.4 ₹		60	64	73	78	92	101
.6 ₹		58	65	71	81	91	102
.8 ₹		56	67	70	83	87	103
1.0 v	* * * *	55	69	68	84	85	107
1.2 ₹		54	71	67	88	84	110
1.4 ▼		53	73	65	90	82	114
1.6 ¥		52	76	64	94	81	118
1.8 7		151	18	62	95	79	119
2.0 ₹		50	SO.	61	99	78	125

These	Limi	ts	ap	p1	Ţ
over a	(+)	02	• 7	-)	
500 Kg	shi	14	ra	ng	8

** Incr Sens for Voltages
less than ± 1.0V equal to and greater than
255 - 610 Kc ± 1.0V 240 - 610 Kc

Comments:	AS PER	PRINT #	SM-B-416	421 (2.1.	3.1)

### TRACKING

A6300A - Modules #1, 3, 7, 8, 9, 10, \$ 19

MODULES TESTED WITH A6400A # 80.
TRACKING CURVES & SUPPORTIVE DATA ONLY.

ALIGNED ON LAB T.F. #1

46 1323

KEUFFEL & ESSER CO. MAN IN SA

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.050 Mc	-	
54.091	54.033 "		
55.182	55.174 "		
56.273	56.338 "	-	
57.364	57.426 "		
58.455	58.403 "		
59.545	59,495"		
60.636	60.626 "		
61.727	61.693 4	-	
62.818	62.775 "		
63.909	63.798 "		
65.000	44.893 "		
66.091	66.042 "		
67.182	67.171 "		
68.273	68.343 "		
69.364	69.442 "		
70.455	70.485 "		
71.545	7/.583 "		
72.636	72.668 "		347 34
73.727	73.820 "		102 20
74.818	74.89/ "		
75.909	75.804 "	A 200 Pm	

# R6300 A # 1 R6400 A # 80

#### A6300A

Calculated Straight Line Frequency	Actual Frequency + 150 KC	
30.000	30.0/3 Mc	
31.091	31.064 "	
32.182	32.239 "	
33.273	33.404 "	
34.364	34.490 "	
35.455	35.495"	
36.545	36.606 "	
37.636	37.737 *	
38.727	38.793 .	
39.818	37.835 "	
40.909	40.854 "	
42.000	41.908 .	
43.091	43.014 "	
44.182	44,086 "	 4
45.273	45,208 "	
46.364	46.355 "	
47.455	47.435 "	
48.545	48.519 1	
49.636	49.617 "	
50.727	50.821 "	
51.818	51.936 "	
52.909	52.883 "	

259

#### A6300A

"A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	29.989 Mc		
31.091	31.034 "		
32.182	32.197 1		
33.273	33.368 "		
34.364	34.457 .		
35.455	35.454 "		
36.545	36.590 "		
37.636	37.722 "		
38.727	38.794 "		
39.818	39.836 "		
40.909	40.857 "		
42.000	41.937 "	<del></del> .	
43.091	43.038 "		
44.182	44.142 "		
45.273	45.297 "		
46.364	46.391 "		
47.455	47.474 "		
48.545	48.556		
49.636	49.642 "		
50.727	50.838 "		
51.818	51.947 "		
52.909	52.892 "		

TRACKING DATA CNLY - LAB TEST FIXTURE

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.046 Mc		
54.091	54.038 "		
55.182	55.186 "		
56.273	56.337 "		
57.364	57.428 "		<u>-</u>
58.455	58.399 "	<del></del>	
59.545	59.532 "		
60.636	60.711 "		
61.727	61.785 "		. ———
62.818	62.840 "		
63.909	63.855 "		
65.000	64.945"		
66.091	66.093 "		
67.182	67.205 "		
68.273	68.367 "		
69.364	69.460 "	-	
70.455	70.579 "		
71.545	71.608 "		
72.636	72.695 "		
73.727	73.853 "		
74.818	74.918 "		
75.909	75.838 "		-



#### A6300A

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	30.005 Mc		
31.091	31.061 "		
32.182	32.241 "		
33.273	33.408 "		
34.364	34.499 "		
35.455	35.518 1		
36.545	36.614 "		
37.636	37.734 "		
38.727	38.810 "		
39.818	39.857 "		
40.909	40.861 "		
42.000	41.917 "		
43.091	43.007 "	-	
44.182	44.062 "		
45.273	45.246 "		
46.364	46.385 "		
47.455	47.451 "		
48.545	48.538 "		
49.636	49.642 "		
50.727	50.839 "		
51.818	57.950 "		
52.909	52.888 ·		

Calculated Straight Line Frequency	Actual Frequency + 150 KC	
53.000	52.987 Mc	
54.091	53.998 "	 
55.182	55.160 "	 
56.273	56.328 "	 
57.364	57.435"	 
58.455	58.410 "	 
59.545	59.510 "	 
60.636	60.651 "	 -
61.727	61.736	
62.818	62.818 "	
63.909	63.844 1	 
65.000	64.941 "	 
66.091	66.099 "	 
67.182	67.223 .	 
68.273	68.403 "	 
69.364	69,49/ "	
70.455	70.536 "	 
71.545	71.626	 
72.636	72.697 "	
73.727	73.849	 
74.818	74.899	 
75.909	75.805 "	 

#### A6300A

Calculated Straight Line	Actual Frequency	
Frequency	± 150 KC	
30.000	29.958 Mc	 
31.091	31.019 "	 
32.182	32.187	
33.273	33.367 "	 
34.364	34.470 "	 
35.455	35.490 "	
36.545	36.613 "	
37.636	37.745 "	
38.727	38.815 "	
39.818	39.864 "	
40.909	40.885 "	
42.000	41.954 "	
43.091	43.052 "	
44.182	44.142 "	
45.273	45.293 "	 
46.364	46.406 "	 
47.455	47.462 "	 
48.545	48.533	 
49.636	49.626 "	 
50.727	50.805 "	 
51.818	51.920 "	
52.909	52.825 "	

Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC		
53.000	53.023 Me		
54.091	54.032 "		
55.182	55.193 "		
56.273	52.353 "		
57.364	57.447 "		
58.455	58.427 "		
59.545	59.55/ "		
60.636	60.730 "	· · · · · · · · · · · · · · · · · · ·	
61.727	61.814 "		
62.818	62.877 "		
63.909	63.889 "		
65.000	64.967 "		
66.091	66.115 "		
67.182	67.219 "		
68.273	68.372 "		
69.364	69,463 .		
70.455	70.511 "		
71.545	71.603 "	1	
72.636	72,683 n		
73.727	73.84/ "		
74.818	74,902 "		
75.909	75.781 "		



# A6400A # 9

### A6300A

Calculated			
Straight Line	Actual Frequency		
Frequency	<u>+</u> 150 KC		
30.000	20010 NA		
	29.969 Mc	•	
31.091	31.017 "		
32.182	32./8/ "		
33.273	33.344 "		
34.364	34,440 "	2 135 77	
35.455	35.471 "		
36.545	36,566 "		
37.636	37.710 "		
38.727	38.785		
39.818	39.841 "		
40.909	40.858 "		
42.000	41.932 .		
43.091	43.037 "		
44.182	44.107 "		
45.273	45.278 .		
46.364	46.418 "		
47.455	47.470 -	1.7%	
48.545	48,550 "		
49.636	49,632.		
50.727	50.829 .		
51.818	51.928 "		
52.909	52.823 "		

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	52.999 Mc		
54.091	54.001 "		
55.182	55.149 "		
56.273	56.312 "		<u></u>
57.364	57.404 "		
58.455	58.381 "		
59.545	59.501 .		
60.636	60.677		
61.727	61.768 "		
62.818	62.840 "		
63.909	63.861		9.86
65.000	64.936 "		
66.091	66.075"		
67.182	67.195		
68.273	68.354 "	-	
69.364	69.446 1		
70.455	70.499 "		
71.545	71.59/ "		
72.636	72.676 "		
73.727	73.845"		30.00
74.818	74.902 "		
75.909	75.795"		

46 1323

Note that the essence we ment

II:

271

## A6300A # 10 A6400 A # 80

# A6300A "A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC	
30.000	29.968 Mc	 
31.091	31.011 "	
32.182	32.175 "	
33.273	<i>3</i> 3.333 "	 
34.364	34.430 "	
35.455	35.465 "	
36.545	36.565 "	
37.636	37.705 "	 
38.727	38.779 "	
39.818	39.834 "	
40.909	40.851 "	
42.000	41.932 "	
43.091	43.035"	 
44.182	44.108 "	 
45.273	45.284 "	 
46.364	46.402 "	
47.455	47.472 "	 
48.545	48.546 "	
49.636	49.631 "	 
50.727	50.822 "	
51.818	57.924 "	
52.909	52.858 "	

## A6300A # 10 A6400A # 80

# A6300A "A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC			
30.000	53.041 Mc			
31.091	54.045 "			
32.182	55.198 1			
33.273	56.362 "			
34.364	57.443 1			
35.455	58.423 "			
36.545	57.554 "			
37.636	60.719 "		-	
38.727	61.815 "	*		
39.818	62.882 1			
40.909	63.896 "			
42.000	64.982 "			
43.091	66.121			
44.182	67.232 "			
45.273	68.396 "			
46.364	69.487 "			
47.455	70.538 "			
48.545	71.634 "			
49.636	72.708 1			
50.727	73.867 "			
51.818	74.934 "			
52.909	15.850 ·			

46 1323

K. 10 X 10 TO 12 INCH 7 X 10 INCHES

# A6300A # 19 A6400A # 80

#### A6300A

Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC		
30.000	30.007 Mc		
31.091	31.082 "		
32.182	32.236 "		
33.273	33.385 +		
34.364	34.478 "		
35.455	35.489 11		
36.545	36.622 "		
37.636	37.723 "		
38.727	38.789 "	Land Control	200
39.818	39.856 "		898.58
40.909	40.887 1	534.55	200 100
42.000	41.973 "		
43.091	43.067 "		
44.182	44.150 "		
45.273	45.296 "		
46.364 -	46.412 "		
47.455	47.492 "	76.65.57	
48.545	48.555 "	77 P. S. 10 P.	
49.636	49.632 "	73.0.57	
50.727	50.821 "	0.93500	
51.818	51.921 "	650 57	
52.909	52.844 "		

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.045 Mc		
54.091	54.103		
55.182	55.255		
56.273	55.395		
57.364	57.475		
58.455	58.456		
59.545	59.605	<u> </u>	
60.636	60.746		
61.727	61.811		
62.818	62.884		
63.909	63.898		
65.000	65.010		
66.091	66.135		
67.182	67.230		
68.273	68.385		981-081
69.364	69.466		
70.455	70.544		
71.545	71.617		
72.636	72.687		
73.727	73.847	850.6	
74.818	74.890		
75.909	75.782	L. Metters.	

## TRACKING

# A6300A - Modules # 2,6, \$ 12

MODULES TESTED WITH A6400A # 84.
TRACKING CURVES & SUPPORTIVE DATA ONLY.

A6300A - MODULES # 11, 17, \$ 18

MODULES TESTED WITH A6400A #83.

# A6300A - Modules # 16 \$ 20

MODULE # 16 TESTED WITH A6400A # 82.
MODULE # 20 TESTED WITH A6400A # 79

ALIGNED ON LAB TEST FIXTURE. # /





# A6300 A # 2 A6400 A # 84

#### A6300A

Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC		
30.000	29.962 Mc		
31.091	31.000 "		
32.182	32.166 "	-	
33.273	33.326 "		
34.364	34.4/1 "		
35.455	35.413 "		
36.545	36,542 "		
37.636	37.674 "		
38.727	38.750 "		
39.818	39,807 "		
40.909	40.826 "		
42.000	41.896 .		
43.091	43.004 "		
44.182	44.114 "		
45.273	45.259 "		
46.364	46.383 "		
47.455	47.454 "		<u> </u>
48.545	48.574 "		
49.636	49.609 1		
50.727	50.809 "		
51.818	51.922 "		
52.909	52.822 "		

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.015 Mc		
54.091	54.033 "		
55.182	55.188 "	(	
56.273	56.342 "		
57.364	57.43/ "		
58.455	58.4/3 1		
59.545	59.532 "		
60.636	60.732		
61.727	61.814 "		
62.818	62.880 "		
63.909	63.892 "		
65.000	64.979 "		
66.091	66.114 .		
67.182	67.229 "		
68.273	68.389 .	-	
69.364	69,479 "		
70.455	70.538 "		
71.545	71.624		
72.636	72.705 -		
73.727	73.871 "	,	
74.818	74.920		
75.909	75.795"		

46 1323

Ket KEUFFEL & ESSLR CO MAN MUSA

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	52.988 Mc		
54.091	53.997	·	
55.182	537./33		
56.273	56.275		
57.364	57.358		
58.455	58.337		
59.545	59.492		
60.636	60.654		
61.727	61.702		
62.818	62.754		
63.909	63.766		
65.000	64.885		
66.091	66.036		
67.182	67.163		
68.273	68.375		
69.364	69.461		
70.455	70.527		
71.545	71.616		
72.636	72.700		
73.727	73.868		
74.818	74.901		
75.909	75.776		

# A6400A #6

#### A6300A

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	29.955 MC		
31.091	31.045 "		
32.182	32.229 "		
33.273	33.395"		
34.364	34.495"		
35.455	35.494 "		
36.545	36.643 "		
37.636	37.758		
38.727	38.802 "	<del></del>	
39.818	39.845"		
40.909	40.850 "		
42.000	41.916 "		
43.091	43.009 "		
44.182	44.097 "		
45.273	45.224 "		
46.364	46.344 "		
47.455	47.429 "		
48.545	48.508 .		
49.636	49.616 "		
50.727	50.832 "		
51.818	51.914 -		
52.909	52.819 "		



## A6400A # 12 A6400A # 84

### A6300A "A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC	
30.000	29.943 Mc	
31.091	30.985 "	 
32.182	32.161 "	 
33.273	33.343 "	 <u> </u>
34.364	34.448 "	 
35.455	35.469 "	 
36.545	36.579 "	 
37.636	37.731	 
38.727	38.807 "	 
39.818	39.866 1	 
40.909	40.886 "	 
42.000	41.944 "	 
43.091	43.051 "	 
44.182	44.139 "	
45.273	45.282 "	 
46.364	46.398 "	 
47.455	47.452 "	 
48.545	48.534 "	 
49.636	49.619 "	
50.727	50.798 "	 
51.818	51.917 "	 
52.909	52.827 "	

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.049 Mc		
54.091	54.065 "		
55.182	55.225 "		
56.273	56.385 "	<del></del>	
57.364	57.478 1	·	
58.455	58.461 "		
59.545	59.583 "		
60.636	60.763 "		
61.727	61.854 "		
62.818	62.915-	<del></del>	
63.909	63.929 "		
65.000	65.013 "		
66.091	lde. 149 "		
67.182	67.253 "	-	
68.273	68.396 "		
69.364	69.494 "		
70.455	70-547 "		
71.545	71.625 "		
72.636	72.691 "		
73.727	73.836 "		
74.818	74.901 "		
75.909	75.776 "		

NE NEAPPEL & ESSENCO, MAR IN USA

E-SYSTEMS INC HUNTINGTON IN MEMCOR DIV F/G 17/2.1
AN/VRC-12, 43-49 SERIES RADIO SET SILICONIZATION PRODUCT IMPROV--ETC(U)
MAY 78 K P YELTON DAABO7-76-C-0135 AD-A056 084 CORADCOM-76-C-0135-F NL UNCLASSIFIED 4 of **5** ADA 056084 MI) COUNTY D

### A6300A "A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	30.048 Mc		
31.091	31.043 "		
32.182	32.252 .		
33.273	33.409 .		
34.364	34.494 "		
35.455	35.482 "		
36.545	36.614 "		
37.636	37.737 "		
38.727	38.804 "	<u> </u>	
39.818	39.853 .		·
40.909	40.874 "		<u> </u>
42.000	41.935		
43.091	43.040 "	ļ <u></u>	
44.182	44.120 .		
45.273	45.217 "	-	
46.364	46.371 "		
47.455	47.449 "		
48.545	48.543 .		
49.636	49.611 "		
50.727	50.799 -		
51.818	51.915.		
52.909	52.853		

Calculated Straight Line Frequency	Actual Frequency <u>+</u> 150 KC		
53.000	53.046 Mc		
54.091	54.029 "		
55.182	55.167 "		
56.273	56.324 '		
57.364	57.408 "		
58.455	58.406		
59.545	59.507 "		
60.636	60.656 "	<u> </u>	
61.727	61.728 "	· .	
62.818	62.814 "		
63.909	63.85/ "		
65.000	64.9.37 "		
66.091	66.073		
67.182	67.230 "		
68.273	68.391 "		
69.364	69.503 "		
70.455	70.548 "		
71.545	71.627 "		
72.636	72.709 "		
73.727	73.862 "		
74.818	74.933 "		
75.909	75:847 "		



A6300A

"A" Band

A6300A # 17 A6400A # 83 TUNER #3 @ +25°C

			@ +25°C
Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	29.995 Mc		
31.091	31.048 "		
32.182	32.198		
33.273	33.346 "		
34.364	34,427 "		
35.455	35.445 "		
36.545	36.565		
37.636	37.676 "		
38.727	38.750 °		•
39.818	39.805 "		
40.909	40.820 "		
42.000	4.917		
43.091	43.032 1		
44.182	44.118 "		
45.273	45,260 "		
46.364	46.391 "		
47.455	47.483 "		
48.545	48.539 "		
49.636	49.619 "	-	
50.727	50.797 .		
51.818	51.918 "		
52.909	52.890 .		

A6300A "B" Band A6300A # 17 A6400A # 8_ TUNER # 3

Calculated Straight	Actual		@+25°C
Line Frequency	Frequency + 150 KC		
53.000	53.040 Mc		
54.091	54.064		
55.182	55.204 "	<del></del> .	
56.273	56.343 "		
57.364	57.413 "	100000000000000000000000000000000000000	
58.455	58.386 "		
59.545	59.522 "		2 2 32
60.636	60.671 .		
61.727	61.760 "		
62.818	62.814 "	_	
63.909	63.824 "	100000000000000000000000000000000000000	
65.000	64.936 .	1	
66.091	66.080 "	·	·
67.182	67.190 "		
68.273	68.336 "		25.31
69.364	69.432 "		
70.455	70.522 "		
71.545	71.595 "	4 680.69	396.94
72.636	72.67/ 1	0.00	232,80
73.727	73.827 "		20.00
74.818	74.915	20.787.2	200.05
75.909	75:868 .		100000000000000000000000000000000000000

KOZ BU A 10 TO STACH 7 - W JICHUS

# A6300A "A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC	
30.000	30.031 Mc	 
31.091	31.069 "	 
32.182	32.24/ "	 
33.273	33.388 *	
34.364	34.472 .	
35.455	35.475 "	 
36.545	36.582 "	
37.636	37.722 .	
38.727	38.790 1	
39.818	39.835"	 
40.909	40.854 "	 
42.000	41.914 "	 
43.091	43.013 "	 
44.182	44.019 "	 
45.273	45.234 "	 
46.364	46.344 1	 
47.455	47.4/3 "	 
48.545	48.495 "	 
49.636	49.590 "	 
50.727	50.780 1	 
51.818	51.893 "	 
52.909	52.822 "	 

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.023 Mc		
54.091	54.007 "		
55.182	55.114 "		
56.273	56.305 "		
57.364	57.410 11		
58.455	58.421 "		
59.545	59.572 "		
60.636	60.671 "	·	
61.727	61.729 "		
62.818	62.796 "		
63.909	63.813 "		
65.000	64,911 "		
66.091	66.084 "		
67.182	67.240 "		
68.273	68.358 "		
69.364	69.489 "		
70.455	70.529 11		
71.545	71.621 "		
72.636	72.704 "		
73.727	73.860 "		
74.818	74,926 "		
75.909	75, 832 "		



### A6300A

"A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	30.005 Mc	9 15.55 5.59	
31.091	31.077		
32.182	32.238 "		<u> </u>
33.273	33.390 ·		
34.364	34.475 "		
35.455	35.477 "		
36.545	36.607 .		-
37.636	37.71/		
38.727	38.779 "		
39.818	39.830 .		
40.909	40.844 .		
42.000	41.936		
43.091	43.041 "		
44.182	44.125		
45.273	45.256		
46.364	46.369 "		
47.455	47.456 "	-	
48.545	48.506		
49.636	49.58/	-	
50.727	50.758 "		
51.818	51.870 "		
52.909	52.800 "		

Francisco Company

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	53.058 Mc		
54.091	54.119 "		
55.182	55.276 "		
56.273	56.416 "		
57.364	57.489 "		
58.455	58.468 .		
59.545	59.623 "	-	
60.636	60.756 "		
61.727	61.835"		
62.818	62.900		
63.909	63.906		
65.000	65:037 "		
66.091	66.173 "	AND STATE OF THE PARTY OF THE P	
67.182	67.274 "		
68.273	68.410 "		
69.364	69.492 "		
70.455	70.580 1	-	
71.545	71.630 "		
72.636	72.699 "		
73.727	73.852 "		
74.818	74.905 "		
75.909	75.804 .		

HOE KEUFFEL & ESSER CO MAINUSA

### A6300A

. . . .

"A" Band

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
30.000	29.934 Mc		
31.091	30.976 "	· .	
32.182	32.146 "		
33.273	33.328 "		·
34.364	34.423 "		
35.455	35.443 "		
36.545	36.571 "		
37.636	37.7/2 "		
38.727	38.788 "		
39.818	39.837 "		
40.909	40.869		
42.000	41.944 "		
43.091	43.048 1		
44.182	44.147 "		
45.273	45.290 *		
46.364	46.404 "		
47.455	47.459 "		
48.545	48.527 "		
49.636	49.612 "		
50.727	50.782 "		
51.818	51.888 "		
52.909	52.827 "		

TRACKING DATA ONLY - LAB TEST FIXTURE

Calculated Straight Line Frequency	Actual Frequency + 150 KC		
53.000	52.927 Mc	***************************************	
54.091	53.950 "		
55.182	55.099 "		
56.273	56.272 "		
57.364	57.373 "		
58.455	58.374 "		
59.545	59.507 1		
60.636	60.691 "		
61.727	61.785 "		
62.818	62.848 "		
63.909	63.872 1		
65.000	64.966 11		
66.091	66.106 11		
67.182	67.224 "		
68.273	68.393 "		
69.364	69.496 "		
70.455	70.551 "		
71.545	71.63/ "		
72.636	72.701 "	-	
73.727	<i>13.842</i> "		
74.818	74.915"		
75.909	75:824 "		

TEST: A6400	A Buffer Output	31'L SC-1	0: 4-400369   PAI 8.2	₹: ,8.3,8.4	TEST 1.0:
TEST COND	17151.01	raph 5.0 of S			DATE: 3-21-77
****					TEMP: Bil:
MATERIAL:	New A6400A Tr	ansmit Buffer	r Amplifier Boa	rds	Ambient .
MANUFACTU	RCR: E-Systems,	Inc., Memcon	Division		M. KO: As Shown
INSTRUMEN	YS:		2000/2		TESTED LY:
	Teac Live	ure Set NR. 3	SC 3001		K.P. Yelton
	. 2.10 200.10				LAB. SUP. CHEC
					ENCAG. CHECA
					<u> </u>
				1	
UNIT	Oscillator		Output	Output	
610	Frequency	Control	Level	Level	
NO,			High PWR (V)	Low PWR (mV)	
	. Band	Setting			
70	A	000	2.35	430	
70	A .	200	2.20	420	
70	A	420	1.6	320	
70	. В	000	2.35	430	
70	В	200	3.0	370	
70	B	420	1.6	300	
71	. A	000 .	2.0	410	
71	Α .	200	2.4	390	
71	A	420	1.95	1 340	
71	В	000	2.75	430	
71	B B	200	2.55	350	
71	B	420	2.0	280	
72	A	000	2.1	1 420	
72	Α	200	2.35	410	
72	A	420	1.75	350	
72	В	000	2.4	440	
72 .	В	200	2.35	360	
72	В	420	1.9.	275	
73	A	000	2.15	420	·
73	A	200	2.6	1 440	
73	A	420	2.0	380	
73	В	000	2.7	460	
73	B ·	200	2.6	370	
73	В	420	2.2	300	
78	A	000	2.1	440	
78	. A	200	2.45	140	
78	A	420	1.95	380	
78	В	000	2.7	460	
78	<u>B</u>	200	2.5	380	
78	В	420	2.1	300	

TEST: A6400	A Buffer Outpu	st SC-A-L	+00369 PA.	8: 8.3, 8.4	TEST, 1.3:
TEST CONDI	Tions: Parag	graph 5.0 of SC-	-A-400369		DATE: 3-25-77
MATERIAL:					TEMP: Kil
""YICH LYF:	New A6400A Tr	ansmit Buffer A	Amplifier Boar	ds	Ambient
MANUFACTUR	.E.				M. KD:
I.M. OF NO FOR	Memcor				As Shown
INSTRUMENT	5.				TESTED EY:
111011102.111	Test Fixt	ure Set NR. 323			K.P. Yelton
	Two Boour	con Model 91-CA	RF VIVM		LAB. SUP. CHE
					ENORG. CHEC
	Osillator	- Buffer	Output	Output	T
UNIT	Frequency		Level	Level	
NO,			High PWR	Low PWR	
,	D	Cotti	. (v)	(mV)	
	Band	Setting	2.2	1 420	
79	<u>A</u>	000	2.2	390	
79	A .	420	2.55	1 390	
79 79	A B	000	2.7	430	
79	В	200	2.6	360	
79	В	420	2.25	270	
80	A	000	2.25	470	
80	· A	200	2.5	410	
80	A	420	1.85	390	
80	В	000	2.75	1 480	
80	В	200	2.55	400	
80	В	420	2.1	320	
82	A	000	2.35	380	
82	A	200	2.5	370	
82	A	420	1.9	320	
82	В	000	2.8	380	
82 ·	В	200	2.65	320	
82 83	В	1420	2.14	250 400	
83	A	200	2.5	380	
83	A	420	1.9	320	
83	В	000	2.7	410	
83	В	200	2.45	350	
83	B	420	2.1	370	
84	A	000	2.25	420	
84	A	200	2.55	410	
84		420	1.9	360	
84	В	000	2.7	450	*
84	В	200	2.6	370	
84	В	420	2.1	290	

TEST: A700	00A		SPEC: SM-C-414770	PAR:	TEST	NO: 2
TEST CONDIT	IONS: ized Null Sw	itch (2N5681	)			9-14-76
MATERIAL:					TEMP:	
MANUFACTURE	R:		·		M. NO	Y. Min
INSTRUMENTS	Scope Audio Ge VTVM	enerator	HP 181A HP 201C Ballantine 3		LAB.S	D BY: UP.CHECK
TEST	5msec pulse 22V COMPLETION TIME	5msec pulse 25.5V COMPLETION TIME	5msec pulse 30V COMPLETION TIME	SENSITIVITY @ 400 Hz		7199
UNIT	1.0±0.3 Sec	1.0±0.3 Sec	1.0±0.3 Sec	3.5V Max		
#11 12 13 14 15 16 17 18 19 20	.80 .75 .72 .80 .90 .92 .80 .80 .75	.82 .75 .80 .90 .95 .85 .80	.90 .85 .75 .80 .92 .95 .85 .80	2.40 2.5 3.1 2.35 2.2 3.15 2.05 2.8 2.95 2.50		

TEST: A7200A		SPEC: SC-A-400364B	PAR: See Below		TEST NO:	
TEST CONDITIONS	S:				DATE:	5-14-76
MATERIAL:					TEMP:	RH:
MANUFACTURER:					M. NO:	
INSTRUMENTS:					TESTED B	
Audio Generator Input VTVM Output VTVM	HP330B Ballantin	752 e 0730	5-13-76 2-16-76		LAB.SUP.	
DC Milliameter Government Gage	Simpson A7200		1-23-76 12-13-75		ENGRG. C	HECK:
TEST	9.1	9.2	9.3		9.4	NOTE
	D.C. CURRENT	IMPEDANCE	GAIN @12.5 mV Inpu		URATION	
Spec.	49-62 mA	5.9 mV Min	7.3 V Min	26.4	- 38 V	
1.	42	7.1	10.3		30	
2	37	7.1	10.1			
3	39	7.3	1 9.7	1 8	27.3	
4	40	7.2	11.0	1 2	29.0	
· 5	41	7.1	10.3	1 2	27.5	
6	1 36	7.1	10.5	1 2	27.5   28.5	
7	41	7.2	1 10.8	1 2	29 1	
8	37	7.1	1 9.5	1 2	27.5	
9	37	7.1	10.9		20.5	
10	43	7.2	10.3		27.5	
11	34	7.1	10.8		27	
12	42	7.3	10.7		29	
						•
				_		
				-		
			1.4.1.18			

+								TEST	NO.	
TEST: A810	OOA Modu	le mance		SPE	C:	PAR	A:Below	1231	NO:	
TEST CONE			d on Go	v Gage I	NR323854-		1brated 13-77	DATE	8-19-7	7
MATERIAL	: 11.5 M	c Modul	ator B	uilt per	r this EC	P		TEME	?:	RH:
MANUFACT	URER:	Memcor	Divisi	on				M. NO	D:	
INSTRUMEN	INSTRUMENTS: HP206A Audio Generator Calibrated 8-4-77 HP330B Distortion Analyzer 8-11-77 TESTED BY: T. Phillips									
HP400D Audio VTVM 6-6-77 CMC738A Frequency Counter 7-1-77 LAB.										HECK
	TF2300B Marconi Deviation Meter 6-29-77 Type 2006 B & K Hetrodyne Voltmeter 5-23-77 HP5216A Electronic Counter 7-19-77									CK
Level Para 8.3 Para 8								istortic		
Frequency	Para 8.2								Modulation Frequency	
		500	ıĸ	2K	3К	lok	20K	500	ıĸ	3K
11.495-11.505	180 min	± .75			$-\pm .75$ ko		<b>→</b>	<u>←</u>	_ 2.2 ma	$\rightarrow$
MHz	mV	<u></u>	6-10kc		<del></del>	kHz		<del></del>	<u> </u>	<del></del>
11.4991	264	0.0	8.3	0.0	0.0	-0.2	-0.6	0.4	0.4	0.5
11.4996	312	+0.1	8.8	0.0	+0.1	-0.1	-0.6	0.4	0.4	0.5
11.4993	300	0.0	8.3	0.0	0.0	0.0	-0.8	0.4	0.4	0.5
11.5008	290	-0.1	8.1	0.0	-0.2	-0.3	-0.8	0.4	0.4	0.5
11.5002	306	0.0	7.8	0.0	0.0	-0.1	-0.6	0.4	0.4	0.5
11,4999	286	0.0	8.6	0.0	-0.1	-0.3	-0.8	0.4	0.4	0.5
11.4996	290	0.0	7.8	0.0	-0.1	-0.3	-0.6	0.4	0.4	0.5
11.4974	290	0.0	8.7	-0.1	-0.3	-0.4	-1.0	0.3	0.3	0.4
11.5000	310	0.0	8.9	0.0	-0.1	-0.2	-0.7	0.4	0.4	0.5
11.5007	320	0.0	8.7	-0.1	-0.2	-0.3	-0.9	0.3	0.3	0.4

A8100A 11.5MHz MODULE FREQUENCY RESPONSE Tested on Gov. Gage NR 323854-1 per SC-A-400362A

A8100A Modules		cy Respon		ith 36mv : y (cps)	Input	
from Radio S/N	500	lk	3k	10k	20k	(Kc) 50k
19087	8.75	8.70	8.8	8.6	8.0	-0.7
18790	9.4	9.4	9.3	9.0	8.2	-1.2
18793	8.7	8.7	8.7	8.3	7.8	-0.9
18785	9.3	9.4	9.3	9.15	8.4	-1.0
1605	9.4	9.4	9.3	9.1	8.2	-1.2
18787	9.3	9.3	9.2	9.0	8.3	-1.0

XMTR AUDIO RESPONSE - WIDEBAND SYSTEM TEST Per Para. 3.10.15.2 of MIL-R-55100D(EL)

Using A8100A with Silicon Transistor and Phase Inverted

			Modulation Modulation				
Radio S/N	Dial Test Frequency	500	1k	<u>5k</u>	10k	20k	<u>&amp;</u>
19087	30.00 54.00	9.3 9.1	9.2	9.6 9.2	9.7 9.6	11.7	2.1
18790	30.00 54.00	8.75 8.5	8.7 8.5	9.0 8.7	9.2 9.0	11.2	2.2
18793	30.00 54.00	8.6 8.2	8.5	8.6 8.2	8.8 8.6	10.4	1.7
18785	30.00 54.00	9.2	9.2 9.1	9.4 9.3	9.8 9.4	11.4 9.0	1.8
1605	30.00 54.00	8.6 8.3	8.6 8.3	8.6 8.5	8.9 8.7	10.5	1.7
18787	30.00 54.00	8.8 8.7	8.8 8.7	8.8	9.4 8.9	10.7 8.4	1.7
Using (	Germanium A8100 (oz	riginal	module of	GFE rad	iio)		
18787	30.00 54.00	9.6 9.25	9.6	9.6	10.2 9.8	13.0	2.6

Transmitter Catching Range per MIL-R-55100(D) Para. 3.10.7
Using A8000 Modules with Silicon Transistors

### Transmitter Catching Range Limits - 750 kc minimum

Test Frequency	Ambient	-40°F	+160°F
35.00	- 1050 kc	1250 kc	1000
	+ 1850	1600	1600
57.00	- 1300	1500	1400
	+ 1950	1700	2000
48.00	- 1100	1350	1000
	+ 2750	2400	2300
71.00	- 1550	1850	1600
	+ 2750	2400	2700

TEST: A820	00 Module Perfor	mance Data SPE	C: 400359	PARA	١:	TEST	NO:
TEST CON	DITIONS: Test	ed on Gov Gage	NR 323851			DATE	: 5-10-77
MATERÍAL	<b>.</b> :				nang Ja	TEMP	RH:
MANUFAC	TURER:				pleist!	M. NO	):
INSTRUME		RF Generator	Calibrat		3-77 L8-77	TEST	ED BY;
	HP413A HP5216	DC Null Meter	ınter	3-7	7-77 L8-77	LAB.	SUP. CHECK
	Type 5	35 Oscilloscope	Tektronia	x 2-	L4 <b>-</b> 77	ENGR	G. CHECK Philllips
UNIT NO.	Gain Output at 11.5 Mc Para. 8.2 Volts P-P	Residual DC Voltage 11.0 to 12.0 MHz Para. 8.3 Volts DC					
	12.5 to 24.0	Max -1.2 to 1	Max +1.2				
11	19.0	-0.18	+0.38				
12	20.0	-0.26	+0.40				
13	20.5	-0.20	+0.70				
14	19.5	+0.10	+0.5				
15	21.0	-0.05	+0.70				
16	20.8	-0.10	+0.20				
17	21.0	-0.1	+0.7				
18	20.5	-0.20	0.0				
19	20.5	-0.35	+0.4				
20	20.6	-0.25	+0.5				
		•					

# Transmitter Catching Range per MIL-R-55100(D) Para. 3.10.7 Using A8000 Modules with Silicon Transistors

Transmitter Catching Range

Limits - 750 kc minimum

Test Frequency	Ambient	<u>-40°</u> F	+160°F
35.00	- 1050 kc + 1850	1250 kc 1600	1600
57.00	- 1300	1500	1400
	+ 1950	1700	2000
48.00	- 1100	1350	1000
	+ 2750	2400	2300
71.00	- 1550	1850	1600
	+ 2750	2400	2700

TEST:		SPEC:	FAR:		TEST NO:		
	le Performance	SC-A-400358	SEE BELO				
TEST CONDITIONS	:			DATE:	2-3-76		
MATERIAL:				. TEIP:	FH:		
	O Modified for S	ilicon Transist	or JAN2N3251A	Ambie	ent Ca.		
MANUFACTURER:				M. NO:			
	STEMS, INC., MEN	COR DIVISION					
INSTRUMENTS: T	уре 2006 В & К Н	letrodyna Voltme	ter Cal 2-23-	76 TESTED	ĜΥ:		
ģ	1 CR Boonton RF	Voltmeter	Cal. 2-14-	/ 0	Phillips		
н	P 606 RF Generat	OT	Cal. 2-6-7	,			
			Cal. 1-20-	76 LAB. SUP	. Crieck		
N	P 5216A Frequenc /R 323850-1 Gov'	t Furnished Gag	e Cal. 11-14	-76			
				ENGRG.	CHECK:		
UNIT	•	RF OUTPUT (mV)					
	WITH FOO -11 TH	WITTI 10 -11 TV	WITTL 10 -V TV	WITTH 10 11 T			
NO.	WITH 500 mV IN @ 11.5 MHz						
	e 11.5 MHz	e 11.5 Miz	@ 10.75 MIZ	@ 12.25 MHz	10.75 TO 12.		
					Miz		
· · · · · · · · · · · · · · · · · · ·	240/470 mV	150 mV Min	4.5 dB Max.	4.5 dB Max	2.25 dB Max		
	Para. 8.2.4	Para. 8.2.3	Para 8.3.6	Para. 8.3.2	Para. 8.3.7		
WITH JAN2N499A							
1	350	· 216	1.9	1,5	0.4		
2	340	214	1.8	1.5	0.3		
3	350	215	2.2	1.5	0.7		
44	356	210	2.0	1.3	0.7		
5	348	186	0.9	0.8	0.1		
6	340	215	1.9	1.0	0.9		
7	360	205	1.1	0.5	0.5		
8	350	200	1.2	0.7	0.5		
9	370	205	1.1	1.1	0.0 "		
10	370	210	0.5	0.6	Q.l		
AVERAGE	353,4	207.6	1.46	1.06	0.42		
MODIFIED WITH J	AN2N3251A C1=1pF	. C9=10 pF. C8=	390 pF				
1	376	216	1.7	1.4	1 0.3		
2	368	250	1.7	1.9	0.2		
3	370	216	1.5	1.5	0.0		
4	380	200	1.2	0.9	0.3		
5	375	250	2.0	1.9	0.1		
6	367	210	1,4	1.4	0.0		
7	400	230	2.5	1.8	0.7		
. 8	390	230	2.1	2.1	0.0		
9 .	390	215	1.8.	1.6	0.2		
10	400	245	1.2	2.0	0.8		
AVERAGE	381.6	226.2	1,71	1.65	1 ,36		

TEST:		Hunt Ger	erator		.: C-A-400361	PARA:		TEST N	10.:	
TEST	CONDITIO		relator		J-A-400001			DATE:		
			G-GA	GE						
MATER								TEMP.:	RN	
		-8400A S	ILICON	VERSIO	ON ON					
MANUE	FACTURER:			•		•		M. NO.		
INSTR	UMENTS:					· Cal Dat	e .	TESTE	BY:	
	fixture	32385						Y.	MIN	
		TEK		35A		8-15-		LAB. Si	JP. CHECK	
VTVM		HP CMC		3A 88A		8-19- 7-1-7				
								ENGR.	CHECK:	
	9.1	9.2	9.3							
TEST	OUT-	CUT-	HUNT							
	PUT	OFF VTG	FREQ							
SPEC	6.0 11.5V	+2.2 +5.8	90 - 265 Hz							
Module		VDC								
#										
4	10.4V	3.6V	150 Hz							
24	9.5V	3.6V	146 Hz							
25	9.0V	3.5V	151 Hz						1	
36	9.7V	3.6V	142 Hz							1
37	10.4V	3.8V	136 Hz	•		·				
38	9.5V	3.4V	156 Hz							
41	9.5V	3.5V	137 Hz							
48	10.0V	3.5V	147 Hz		•					
. 45	9.0V	3.8V	163 Hz				•			
								·		

TEST: AS	8500 Module	Output	SPE	C 40036	0 B	PARA See	Below	T	EST NO.		
WEST CONDITIONS: Standard								D	ATE:	9-14-76	
MATERIAL: A Version of A8500 Module on Govt Gauge								Т	EMP:	Ambient	
MANUFACTURER: Memcor								M. No.			
INSTRUMENTS: CAL DATE								TESTED BY S. Shastri			
A8500 Govt	Gauge			5-13	-76			-			
IIP 400D V	TVM			6-7-	76			LAB SUP CHECK			
IIP 330B D	istortion An	alyzer		8-12-	-76			_			
HP 20GA A	udio Signal (	Generator		8-5-	76			ENGRG CHECK			
Computer 1	Measuremen	t Co, Mod	cl 738A	7-1-	76			1			
Frequen	cy Counter							_			
	-	@ 1.5 mV Input								@ 7.5 mV	Input
UNIT	10	OUTPUT FREQUENCY RESPONSE					DISTORTION			0 cps	
NO.	Speech	Ymode	500	1 kliz	3 kHz	500 cps	1 kliz	1	3 kllz	Change	ln
								1		AMPL	DIST
	para 9.1	para 9.3	para 9.2	para 9.2	para 9.2	para 9.4	para 9.	4	para 9.4	para 9.3	para 9.

		<b>@ 1.</b>	5 mV Inpu	t					@ 7.5 mV	Input
UNIT	OUTPUT		FREQUENCY RESPONSE			DISTORTION			1000 cps	
NO.	Speech   Xmode		500   1 kHz   3 kHz		500 cps 1 kilz		1 3 kHz	Change	bı	
						500 cps			AMPL	DIST
	para 9.1	para 9.3	para 9, 2	para 9.2	para 9.2	para 9.4	para 9.4	para 9.4	para 9.3	para 9.
Limits	41/31	1100/500	2.0 mx	ref	2.0 mx	5.0 nx	5.0 mx	5.0 mx	3.8 mx	7.0 n
Units	mV	mV	dB	dB	dB	%	e e	%	dB	76
1	34	550	-0.1	0	-0.5	1.2	1.0	0.5	1.8	1.4
2	32	690	+0.1	0	-0.7	0.6	0.8	0.5	2.0	3.0
3	34	690	-0.2	0	-0.5	1.2	1.1	0.5	1.8	4.6
4	34	640	-0.1	0	-0.6	0.8	1.0	0.4	2.1	4.0
5	35	580	-0.1	0	-0.5	1.0	1.1	0.3	1.9	4.2
G	34	670	-0.1	0	-0.5	0.95	1.0	0.4	2.0	4.1
7	34	630	-0.2	0	-0.5	0.95	1.0	0.4	1.7	4.3
8	34.5	560	-0.1	0	-0.4	1.0	1.1	0.4	2.0	3.7
9	34-	680	-0.1	0	-0.7	1.0	1,1	0.4	1.8	4.4
10	34	610	-0.2	0	-0.6	1.0	1,1	0.4	1.9	4.0

TEST: A9000.	A/A9400B R SUPPLY OUT	TPUT SM-D		: T	EST, i.J:
TEST CONDI			C INPUT		ATE:
MATERIAL	7	TEMP: Nil			
maren i Ae	A	AMBIENT			
MANUFACTUR	CR:				. KD:
INSTRUMENT		TESTED BY:			
Engineering L	ab Test Setup				K. Yelton
Fluke Multi-M				L.	AB. SUP. CHE
HP331A Disto	rtion Analyzer			. E	NORG. CHEC
		•			
	PARA 7A	PARA 7B	PARA 7E	PARA 7C	PARA 7D
	(Plate)	(Screen)	(Bias)	(400 Hz)	Distortion
Limit	700 VDC	280 VDC	$-16.5 \pm 1.5$	113 VRMS	
Unit	(MIN)	(MIN)	VDC .	(MIN)	10% (MAX)
•	. (4.52-)		1		
0	717.	302	-15.7	126	5%
1	703	296	-15.4	126	(Typically)
2	718	303	-15.7	131	
3	718	302	-15.8	130	<u> </u>
4	717	302	-15.4	132	
5	709	299	-15.5	128	
6	712	301	-15.8	117	
7	711	301	-15.7	123	
9	711	299	-15.6	118	
10	$\frac{711}{712}$	299	-15.6	122	-
11	710	302 ·	-15.6 -15.6	123	
12	705	299	-15.7	124	<del>                                     </del>
13	712	301	-15.5	117	
14	711	300	-15,6	120	
15	710	300	-15.6	128	
16	711	301	-15.6	123	
17	711	300	-15.6	117	
18	706	. 297	-15.6	130	
19	720	301	-15.8	117	<del></del>
20	719	305	-15.8	127	-  <del>-</del>
21	716	304	-15.7	115	<u>5</u> ~
			<del> </del>		-

### A9000A/A9400B TEST DATA

TABLE II

MOD	Ein	Iin	TES	T POIN	T MONI	FORS	Temp	Temp	Monitor
	(DC Amp)	Plate (V _{dc} )	Screen (V _{dc} )	Bias (V _{dc} )	AC (400 Hz) (VAC)	Cond's Collector of Q9406		Collector of Q9401	
20	22.0 25.5 30.0	8.0 9.4 11.3	619 714 837	262 303 356	-13.6 -15.7 -18.5	93 126 166	AMB (77°F)	82°F	82ºF
20	22.0 25.5 30.0	8.0 9.3 11.2	622 719 844	263 305 359	-13.5 -15.8 -18.5	93 126 165	-40°C (-40°F)	80F	70F
20	22.0 25.5 30.0	7.8 9.2 11.0	611 708 825	257 299 350	-13.4 -15.6 -18.3	93 125 163	+65°C (+149°F)		194 ⁰ F

- NOTES: 1. The data shown above was recorded using a lab test setup which simulates the loading conditions of an RT-246.
  - 2. The unit under test (U. U. T.) was keyed to transmit during the entire test consisting of a minimum one (1) hour saturation at both temperature extremes.
  - 3. Another typical unit was subjected to approximately three (3) hours of temperature extremes during the test period the U.U.T. was keyed to transmit several times to initiate a transistor breakdown attributable to surge currents. No failures could be induced.

# A9000A/A9400B TEST DATA

TABLE III

C Low Power @ 53 MHz	685 285 -16.7 82	795 331 -19.4 113	931 388 -22.8 154
At -40°C High Power @ 53 MHz	636 267 -20.6 78	736 309 -23.8 109	851 362 -27.2 152
= +65°C   Low Power  \theta(@ 53 MHz	683 285 -16.4 87	791 330 -19.2 117	929 387 -22.4 154
At High Temp = $+65^{\circ}$ C High Power Low P @ 53 MHz $\frac{1}{2}$ @ 53 N	631 264 -19.7 83	732 308 -22.4 113	853 358 -25.5 149
perature Low Power @53 MHz	685 285 -16.6 83.9	793 331 -19.4 115.4	929 387 -22.8 155
At Room Temperature High Power Low Pov @53 MHz @53 MHz	627 263 -20.4 80.0	726 305 -23.2 109.7	848 357 -26.5 149.1
Test Point Monitor	Plate Screen Bias A.C.	Plate Screen Bias A.C.	Plate Screen Bias A.C.
E _{in} (V _{dc} )	22.0	25.5	30.0

The data shown above was recorded using actual radio testing. An RT-524 was used and Power Supply #9 was examined. NOTES:

The U.U.T. was subjected to a minimum one (1) hour saturation at both temperature extremes. The U.U.T. was keyed and unkeyed approximately 1000 times during the test with no failures being induced. 5

### A9000A/A9400B TEST DATA

TABLE IV

Test	Ein	OUTPUT HIGH POWER (W)					
Frequency		@ Room	@#65°C	@ -40°C			
(MHz)	$(V_{dc})$	Temp					
	22.0	42.5	41.0	43.0			
30.0	25.5	57.5	56.0	59.0			
	30.0	81.0	78.0	83.0			
	22.0	35.0	33.5	36.0			
52.0	25.5	47.5	45.0	49.0			
	30.0	66.0	63.0	67.0			
	22.0	37.0	36.5	38.0			
53.0	25.5	50.0	49.0	51.5			
	30.0	70.0	68.0	72.0			
	22.0	35.5	35.0	37.0			
75.0	25.5	48.0	47.5	48.0			
	30.0	66.0	65.0	67.5			

### NOTES:

- 1. The data shown above was recorded using an RT-524.
- 2. The U.U.T. was subjected to a minimum one (1) hour saturation at both temperature extremes.
- 3. The limits are the following as defined in MIL-R-55100D (EL) Para 3.10.1:
  - @ 22.0 VDC input, High Power Output = 25W (Min)
  - @ 25.5 VDC and 30.0 VDC input, High Power Output = 35 W (Min)

APPENDIX D - Continued

AN/VRC-12 PIP RADIO LEVEL TEST DATA

OPERATOR D. G. G.	GROUP A UNIT	SERIAL 3829
		IMBER PIP
2.1.0 Distortion (Narrow)	4.0 Sensitivity 6.	0 Limiting
60.05 mc 0 100 uv Volume Control = 17.3v	FR Level = 5.0 uv for Sens.	1-100kuv for Limiting
22.0v 25.5v 30.0v	Volume Control = 17.3v	Volume Control - 17.3
4.8° 3.8: 36:	mc 22.0v 25.5v 30.0v	30.00db
Limit - 8.0% Max.	30.00 25 db 26 db 26 db	75.95 <u>o</u> db
1.1 Muting	65.1024.24b 25 db 25 db	65.55 <u>O</u> db
60.05 mc # 100 uv Volume Control = 17.3v	41.05 <u>No 4b</u> 2b 4b 26 4b 75.90 23 4b 23 4b 23 4b	41.05 <u>./</u> db
22.0v 25.5v 30.0v	52.95 <u>25 db</u> <u>27 db</u> <u>27 db</u>	53.00 <u>O</u> db
5.4 . 5.4 . 5.4 .	53.00 24 db 25 db 25 db	32.10
Limit - S.Uv min-6.0v max.	41.50 85 ub 26 db 26 db	
1.2 & 3.1 Loudspecker Output	64.50 24db 24db 24db	Limits: 1 db Max.
60.05 mc # 100uv Volume Control = #	Limits 8db 10bd 10bd	
22.0v 25.5v 30.0v	Min. Min. Min.	
216 × 244 × 259 ×	5.2 Noise Squelch	
Limit = 17.3v min.	7.0 uv for Noise Squelch	
CCW .0008 Limit U.38v max.	22.0v 25.5v 30.0v	
1.3 & 3.2 Headphone output	30.00 2.6 uv 2.6 uv 2.6 uv	
60.05 mc # 100uv Volume Control = #	65.40 30 uv 30 uv 30 uv	
22.0v 25.5v 30.0v	41.50 3.0 uv 2.0 uv 2.0 uv	
12.1 v 13.6 v 145 v Limit = 7.75 v min.	53.60 36uv 36uv 3.6uv	
CCW	52.70 20uv 20uv 20 uv	Limits: Squelch and C lamps shall remain li
.0007 _v	75.80 3.6 uv 2.6 uv 26 uv	while the RF level is reduced to 4.0 uv. R
	Squelch & Call Lamp shall lifht and remain lit as RF	of the RF signal from antenna jack will cau
1.4 & 3.3 Monitor Output 60.05 mc # 100 uv	level is reduced to 5.5 uv. Removing RF signal from	above condition to disappear in one (1)
Volume Control - *	antenna jack shall cause above condition to disappear in four (4) seconds.	second.
22.0v 25.5v 30.0v .	5.0 Tone Squeich	
. 25 v . 25 v . 25 v Limit = 0.10v min-0.31v max.	RF Level = 5.0 uv	
,26 8 v	150 cycle mod. # 3 kc dev.	
Limit = 0.lov min-0.31v max.		
Ratio CCW/CW Limit - 1.26db max.	30.00 / 9 uv / 9 uv / 9 uv 65.20 / 9 uv / 9 uv / 9 uv	
01	41.30 <u>69 uv <u>19 uv</u> <u>19 uv</u></u>	
.92	52.95 68 uv 18 uv 18 uv	
	55.00 18 uv 18 uv 18 uv	
3-8138-2	75.95 21/ uv 21/uv 21/ uv	

				TED		Unit Serial	20-1	
7.0 Cat	ching Range	•						
	RF Level -	VL 001						
Freq.	22.0v	25.5v	30.0v	Limit	Freq.	22.0v	25.5v	30.0v
30.90	500	500	500	250 ka	41.95	550	550	SSC
31.90	500	500	500	250 kc	42.95	4.50	450	450
Sum	1000	1000	1000	250 kc	Sum	1000	1000	1000
31.95	550	550	550	250 kc	42.90	450	450	450
32.95	500	500	500	250 kc	43,90	550	550	550
Sum	1050	1050	1050	850 kc	Sum	1000	1000	1000
32.90	450	450	450	250 ←	43.95	500	500	500
33.90	550	550	550	250 kg	44.95	450	450	450
Sum	1000	1000	1000	850 kc	Sum	950	250	950
33.95	550	550	550	250 kc	44.90	400	400	400
34.95	450	450	450	250 'cc	45.90	600	600	600
Sum	1000	1000	1000	850 kc	Sum	1000	1000	1000
34.90	550	550	550	250 kc	45.95	450	450	4.50
35.50	450	1150	450	250 kc	46.95	300	500	500
Sum	1000	1000	1000	850 kc	Sum	950	950	950
35.95	550	550	550	250 kc	46.90	400	400	400
36.95	450	450	450	250 kc	47.90	600	600	600
Sum	1000	1000	1000	850 kc	Sum	1000	1000	1000
36.90	450	450	450	250 kc	47.95	450	450	050
37.90	550	550	550	250 kc	48.95	550	550	550
Sum	1000	1000	1000	850 kc	Sum	1000	1550	1000
37.95	550	550	550	250 kc	48.90	400	400	400
38.95	450	450	450	250 kc	49.90	600	600	600
Sum	1000	1000	1000	850 kc	Sum	1000	1000	1000
38.90	450	450	450	250 kc	49.95	400	450	450
39.90	550	550	550	250 kc	50.93	500	250	500
Sum	1000	1000	1000	850 kc	Sum	900	1000	950
39.95	600	600	600	250 kc	50.90	400	400	411-1
40.95	400	400	450	250 kc	51.90	600	600	600
Sum	1000	1000	11.50	850 kc	·Sum	1000	1000	1000
40.90	500	500	500)	250 kg	51.95	550	550	550
41.90	500	500	500	250 kg	52.95	400	4,0	400
Sum	1000	100	(my	85J KC	Sum	900	950	250

fanily COOLD "8" DATA	
GROUP & DATA	
DATE	124 LOT + Rigo
MAX. S+N/N Ratio )Para. 3.9.8) Sig. Gen. @ 1000 μν; P.S. @ 25.5 VDC	VFO RESETABILITY (Para. 3.9.16) Input 25.5V Limit: Diff. between 2 of settings not great
30 mg/db 52.95 mg/db 45.80 mg/db 65.70 mg/db 75.85 mg/db 53.10 mg/db	than 85 kc.
Limit45.0 db	CH 2285 2286 2884 2884 2879
RESIDUAL PHASE (Para. 3.9.10) Sig. Gen. CW 0 250 mv; P.S. 0 25.5 vdc	co <u>8911 2910 2918 2918 2933</u>
Neg. Swing-09 vdc Pos. Swing 4.02dc	dif 26 24 34 34 34
Limit = 0.17 vdc/swing	41.5
AUDIO RESPONSE (Para. 3.9.12.1) Sig. Gen. 0 100 μν; P.S. 0 25.5 VDC	cu <u>2903 2895 89/2 2909 a90 6</u>
1 K Q db 500 - 5db 2 K - 4db 3 K - 4db	ccm2952 2956 2953 2947 2953
Timit = ± 2.0 db of 1 K	dif 49 61 41 41 47
DESENSITIZATION (Para. 3.9.9) P.S. @ 25.5 VDC	51.5
29.5 mc/20 mv 30.5 mc/20 mv 52.45mc/20 mv	CH 3058 3077 3067 3064 3067
53.45mc/omv 52.55mc/omv 53.55mc/omv 74.6 mc/omv 75.6 m/omv	con <u>2093 3095 3093 3092 3094</u>
Limit = 25 mv sig. shall not degrade 26db 6db	dif35 18 26 28 17
VFO MODULATION SENS (Para. 3.9.13) P.S. @ 25.5 VDC	VFO TEMP. STABILITY (Para. 3.9.15)
-0.5vdc 2085 3.5mc 74.5mc	53.5 mc -40 C
	Amb
+0.5vdc 1 <u>701 1777 2831</u>	dif
oiff. 324 410 394	63.5 mc -40 C
Limit = 300 kc to 600 kc	Amb
VFO MODULATION CAP. (Para. 3.9.14) P.S. @ 25.5 VOC; FR = Free Running	d1f
53.5mc -1.5vd@409 FR/90.3	74.5 mc -40 C
F1903 +1.5vdc1228 Diff <u>573</u> kc Diff <u>675</u> kc	. Amb
63.5mc -1.5vdc2=34 FR/99 +1.5vdc/279	dif
FRM 41.5vdc 779 D1ff 77 kc	53.5 mc +65 C
74.5mc -1.5vdc374/ FB089	Amb
F3027 +1.5vd 2028 D1ff 42 D1ff 86kc	d1f
Limit = 450 kc to 950 kc	63.5 mc +65 C
MC SHORTING (Para. 3.9.16) P.S. 0 25.5 VDC; CF = Center Frequency	Amb
31.50 41.50 51.50	d1f
CF 4903 2957 309/	74.5 mc +65 C
-Stress 5 7 2627 2727 Diff 3 49 kc 330kc 3 64kc	Amb

Limit = 150 kc

Limit: Diff. shall not be 180 kc when reset or 130 kc when not reset.

	142	Serial No. 38	29	E	_	s/MEMCOR	
B TEST		VFO				09-76-C-068	
Tested by: O	Huffman	Witness by:			D	ate: 14 00	T77
Lot: PIP							
ODULATOR SENS.	(para. 3.10.	9)					
	30.00	45.00	52.00	53.00	6	8.00	75.00
77 -1vdc	<u> </u>						•
+1vdc							
Diff	•						
Diff/2	-						
imit -	30mc to 52mc	- 240 to 650Kc	/ 53mc to	75mc - 27	75 to 65	OKc	
40 -1vdc							
+1vdc							
Diff						· · · ·	
Diff/2		-		•			
imit -	30mc to 52mc	- 230 to 660Kc	/ 53mc to	75mc - 27	5 to 65	0Kc	
150 -1vdc	***************************************			•			
+1vdc							
Diff							
Diff/2							
imit -	30mc to 52mc	- 230 to 660Kc	/ 53mc to	75mc - 26	5 to 66	5Kc	
FO TEMP. STABI	LITY (para. 3	.9.15)					
2	2.0v 25.	5v 30.0v		22	.ov	25.5V	30.0V
2 50 400111	987 4199	11 41994	53.50	+65C 419	949	41952	4195
3.50 -400 4				-			
	990 4190	41996		Amb. 419	990	41994	LIPPIL
Amb. 41		3 2					-
Amb. 4	3			Dif.	41	41	4
Amb. 41 Dif	3 519°	3 <u>2</u>	63.50	pif	41 952	<u>41</u> 51967	5197
Amb. 41 Dif. 3.50 -40C 51 Amb. 51	3 957 519 981 5199	3 2	63.50	Dif. +65C 51 Amb. 51	41 952 981	51967 51996	5197 5300
Amb. 41 Dif. 3.50 -40C 51 Amb. 51 Dif4.50 -40C 63	3 957 519 981 5199 24 3053 630	3 2 71 51982 36 52007 25 25 55 63056	63 <b>.</b> 50	Dif. +65C 51 Amb. 51 Dif. +65C 63	41 952 981 39	51967 51996 39 63066	5197 5300 3
Amb. 41 Dif. 3.50 -40C 51 Amb. 51 Dif4.50 -40C 63	3 957 519 981 5199 24 3053 630	3 2 71 51982 36 52007 25 25 55 63056	63 <b>.</b> 50	Dif. +65C 51 Amb. 51 Dif. +65C 63	41 952 981 39	51967 51996 39 63066	5197 5300 3 6306
Amb. 41 Dif.  3.50 -40C 51 Amb. 51 Dif.  4.50 -40C 65 Amb. 65 Dif.	3 957 5199 981 5199 24 3053 630 3092 630	3 2 71 51982 76 52007 25 25	63 <b>.</b> 50	Dif. +65C 51 Amb. 51 Dif. +65C 63 Amb. 63	41 952 981 39 064 (92 29	51967 51996 39 63066 63094 28	5197 5300 3 6306

# RT-246

GROUP "A"	
INSPECTOR fandes P.P	UNIT NO. 1605 LOT NO. PIP
TIME	DATE 9-16-77
3-8138-1	•••••
TONE MODULATION (Para. 3.10.3) Input 25.5V Freq. 40.10 MC	CATCHING RANGE (Para. 3.10.7) Input 25.5V
Old OFF-Tone Osc. 150 CPS Dev. 3/ KC	35 MC - Diff. KC/200 57 MC - Diff3050 + Diff. KC/200 + Diff./300
New OFF-Tone Osc. 13.7 CPS Dev. 3.7 KC	48 MC - Diff. KC3800 70 MC - Diff. 38-50 + Diff. KC7900 + Diff. 1700
New ON-Tone Osc. /5 C CPS Dev. 3 / KC	LIMIT: Diff. must be 750 KC
LIMIT: Tone Osc. 148-152 CPS. Dev.	POWER OUT (Para. 3.10.1 & 3.10.2)
2.5-35KC	LOW POWER
SIDETONE (Para. 3.10.5) Input 25.5V Freq. 40.10 MC	22V 25.5 30V 30MC 3.6 5.0 7.5
Speaker-Limit: 3.87V to 7.75V 6./ Headphone-Limit: 6.14V to 9.74V 8.6	65.20M(7) 3.2 3.1 5.0 41.05HC 3.2 5.0 7.5 75.96HC 3.1 4.2 6.5
DISTORTION (Para 3.19.4.1) Freq. 40.10 MC - Input 22V / 4	52.90MC 3.5 7.5 4.5 53.00MC 4.5 6.2 10.2
25.5V /.4 30V /.4	LIMIT: Low Power 22V & W Min.
LIMIT: 10%	25.5V 1 to 8 W
MAX. S+N/N RATIO (PARA. 3.10.13)	HIGH POWER
Freq. 75.95 MC - Input 22V 48. 25.5V 48. 30V 47.4	30MC 36 25.5 30V 65.20MC 33 4/3 60 41.05MC 3.9 49 70
LIMIT: -35db	75.95MC 30 30 55 52.90MC 42 40 59
DEVIATION (Para. 3.10.18.1)	53.00HC 33 43 60
30MC 22V B. 0 54MC 8. 2 25.5V 8. 0 8. 2 30V 8. 0 8. 2	LIMIT: High Power 22V 25W Min. 25.5V 35W Min. to 65 W Max. 30V 35W Min.
52MC 22V <b>8. 0</b> 75MC <b>8. 2</b> 25.5V <b>8. 0 8. 2</b> 30V <b>8. 0 8. 2</b>	
LIMIT: 6 to 10 KC	
RESETABILITY (Para. 3.10.10) Input 25.5 * Centered Freq.	
41.50 MC + Detent 4/3.52 54.50 M - Detent 4/3/ Diff. 4/	C + Detent <u>54579</u> - Detent <u>5457 6</u> Diff. 63
51.50 MC + Detent_57.502 - Detents/46/ Diff. 4/	
64.50 MC + Detent 6432 / - Detent 4279 Diff. 4 9	
74.50 MC + Detent 74.57 O Diff. 4	
LIMIT: Detent 150 KC Max. ± Stress 150 Min.	

```
MODULATION CAPABILITY (Para. 3.10.6)
                                                         # 1605
Input 25.5V
FORM 3-8138-2
                         1000
                                       2000
           500
                                                     3000
                                                                 10,000
                                                                               20,000
                      >28 to
                                     >28K
                                                    > 20KG
35MC
        > 29 Kc
                                                                  >30Kc 230Kc
                                                                  730Kc
                                                  25K
57MC
                                                                 136
                                                                            >306
                      >28/6
                                                               > 28Kc
        728/4
                                    >28/c
                                                  >28/4c
70MC
                                                                             >284
LIMIT: 25KC
AUTO FREQ SELECTION (Para. 3.10.8)
            55 520 20.30 30.45 53.00 15.45 53.70 53.50
      30.30
             VV
LIMIT: No error in selection - 5 sec MAX from 30 MC to 52.95 MC 5 sec MAX from 52.95 MC 5 sec MAX from 52.95 MC to 30 MC 5election shall repeat from both directions
                                       XMTR GROUP "B"
FREQ. STABILITY (Para. 3.10.11)
Input 25.5V
```

51.00 51.05 51.10 53.00 53.05 53.10 53.15 53.20 53.25 53.30 53.45 53.45 53.50 53.65 53.65 53.70 53.75 53.80 53.90 75.00 75.05 75.10 110 =3/ 75.15 75.20 75.25 75.30 75.45 75.45 75.50 75.55 75.60 75.75 75.75 75.80 75.75 75.80 75.90 51.15 51.15 51.20 51.25 51.25 1.16 51.30 2.0 51.35 1.19 51.40 2.10 51.45 2.10 51.45 2.10 51.50 2.10 51.25 -1.6 -3.0 -2.1 -2.2 -3.1 -3.1 -1.9 -6.7 -2.4 30 30.50 £ /_/ 30.55 £ 2.3 30.65 £ 2.2 30.65 £ 1.7 30.70 £ 1.7 30.70 £ 1.7 30.80 £ 2.6 30.80 £ 2.6 30.90 £ 2.6 30.90 £ 2.6 51.50 £ / £ 7 51.55 £ 7 7 51.60 £ 7 2 51.65 £ 6 6 51.70 £ 6 51.75 £ 7 3 51.80 £ 7 3 51.80 £ 7 5 51.90 £ 7 6 51.90 £ 7 6 75 -15 -15 41.00 £/.7 41.05 £/.0 41.10 £/.0 41.12 £/.7 41.25 £/.7 41.25 £/.7 41.35 £/.9 41.45 £/.9 41.45 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.50 £/.0 41.60 £/.0 41.75 £/.0 41.75 £/.0 41.75 £/.0 41.75 £/.0 41.80 £/.0 +1.7 +1.0 +0.7 +1.7 +1.6 -2.4 52.00 52.05 52.10 52.15 52.25 52.25 52.30 52.35 52.40 52.55 52.50 52.55 52.50 52.55 52.60 52.65 52.70 52.30 64.00 64.10 64.12 64.25 64.30 64.30 64.35 64.45 64.55 64.55 64.65 64.75 64.30 64.30 64.30 + (6 + (7 + (9 + 19 + 19 41.80 52.90 52.95

LIMIT: = 3.5 KC

OPERATOR SA Herbers GROUP A UNIT SERIAL 1605 F DATE 9/16/77 LOT NUMBER TIME 2.1.0 Distortion (Narrow) 4.0 Sensitivity 6.0 Limiting 60.05 mc # 100 uv FR Level = 5.0 uv for Sens. 1-100kuv for Limiting Volume Control = 17.3v Volume Control = 17.3v Volume Control - 17.3v 22.0v 25.5v 30.0v mc 22.0v 25.5v 30.0v 30.00 O db 38 . 38 . Limit - 8.05 Max. 30.00 28.5 db 28.5 db 28.5 db 75.95 0 db 65.10 27.5 db 27.5 db 27.5 db 65.55 O db 1.1 Muting 41.05 28 db 28 db 28 db 41.05 O db 60.05 mc # 100 uv 75.90 27.5db 27.5db 27.5db Volume Control = 17.3v 53.00 O db 22.0v 25.5v 52.95 29.5 db 29.5 db 29.5 db 52.10 0 db 30.0v 5.4 v 5.4 v 5.4 v Linit - 5.0 v max. 53.00 J7.5 db 27.5 db 27.5 db 41.50 2<u>8.5 db</u> 2<u>8.5 db</u> 2<u>85 db</u> 1.2 & 3.1 Loudspecker Output Limits: 1 db Max. 64.50 29.5 db 29.5 db 29.5 db 60.05 mc # 100uv Volume Control = # Limits 8db 1064 1064 Min. 22.0v 25.5v 30.0v 5.2 Noise Squelch 2/.5 v 23.4 v 23.5 v Limit = 17.3 v min. .03 Limit 0.38 v max. 7.0 uv for Noise Squelch 22.0v 25.5v 30.0v 30.00 /. Our /. Our 1. Our 1.3 & 3.2 Headphone output 60.05 mc # 100uv 65.40 1.0 uv 1.0 uv Volume Control . # 41.50/.0 uv 1.0 uv .09 uv 22.0v 25.5v 30.0V 53.60 60 uv 1.0 uv .09 uv /2./ v /3./ v /3.3 v Limit = 7.75v min. 52.70,09 uv .09 uv ,08 uv Limits: Squelch and Call lamps shall remain lit while the RF level is 75.80 / O ur 1.0 uv 1.0 uv .018 v reduced to 4.0 uv. Removal of the RF signal from the Squeich & Call Lamp shall lifht and remain lit as RF antenna jack will cause the 1.4 & 3.3 Monitor Output level is reduced to 5.5 uv. above condition to Removing RF signal from disappear in one (1) 60.05 mc # 100 uv antenna jack shall cause above condition to disappear second. Volume Control - # in four (4) seconds. 22.0v 25.5v 30.0v 5.0 Tone Squelch 225 v .226 v .226 v Limit = 0.16v min-0.31v max. RF Level = 5.0 uv 150 cycle mod. # 3 kc dev. .24 . Limit . 0.16v min-0.31v max. mc 22.0v 25.5v 30.0v 30.00-25 uv .25 uv .25 uv Ratio CCW/CW Limit - 1.26db max. 65.20 42uv 12uv 12uv 41.30 .8 uv . 8 uv . 8 uv 52.95 .8 uv .8 uv .8 uv 53.00.25 uv .25 uv .25 uv

75.95 1/ uv 1/ uv 1/ uv

3-8138-2

7.0 Cat	ching Rang	•						
R	F Level -	VL 901						
Freq.	22.04	25.5v	30.0v	Limit	Freq.	22.0v	25.5v	30.0v
30.90	600	600	600	250 ks	41.95	500	500	500
31.90	500	500	900	250 kc	42.95	450	450	450
Sum	1100	1100	1100	250 kc	Sum	990	250	290
31.95	550	550	550	250 kc	42.90	300	300	300
32.95	450	450	450	250 kc	43.90	600	600	600
Sum	1000	1000	1000	850 kc	Sum	900	200	900
32.90	350	350	350	250 <€	43.95	500	500	500
33.90	600	600	600	250 kc	44.95	500	500	500
Sum	950	950	950	850 kc	Sum	1000	1000	1000
33.95	500	500	500	250 kg	44.90	300	300	300
34.95	450	450	450	250 'cc	45.90	650	650	650
Sum	950	950	950	850 kc	Sum	950	950	950
34.90	400	400	400	250 kc	45.95	450	450	450
35.90	550	550	550	250 kc	46.95	500	500	500
Sum	950	80	950	850 kc	Sum	950	950	950
35.95	<u>550</u>	550	550	250 kc	46.90	300	300	300
36.95	400	40	450	250 kc	47.90	650	650	650
Sum	950	1000	1000	850 kc	Sum	950	950	950
36.90	350	300	300	230 kc	47.95	450	450	450
37.90	600	650	650	250 kc	48.95	600	600	600
Sum	950	950	950	850 kc	Sum	1090	1050	1050
37.95	500	500	500	250 kc	48.90	300	300	300
38.95	500	500	500	250 kc	49.90	650	30	650
Sum	1000	1000	1000	850 kc	Sum	950	950	950
38.90	300	300	300	250 kc	49.95	450	450	450
39.90	650	650	650	250 kc	50.93	500	500	500
Sum	950	950	950	850 kc	Sum	950	250	. १९००
39.95	550	550	550	250 kc	50.90	350	350	350
40.95	450	450	450	250 kc	51.90	600	600	600
Sum	950	1000	1000	850 kc	·Sum	250	950	950
40.90	400	400	400	250 kc	51.95	550	550	550
41.90	200	570	550	250 kg	52.95	400	400	400
Sum	900	950	950	850 kc	Sum	200	250	250

328

Limit =

150 kc

Dif

Limit: Diff. shall not be 180 kc when reset or 130 kc when not reset.

#1605

XMTR GROUP "B"

ANTENN SWITCHING (Para. 3.10.2) Input 25.5V	FORM 3-8	139-2
33MC High 20 56MC High 200 18P-  37MC High 50 66MC High 200 18P-  Low 65MC High 200 18P-  Low 50 18P-  47.5 MC High 30 70.5 MC High 30 18P-  Low 50		
LIMIT: ± 400 KC		
MODULATOR SENS: (Para. 3.10.9)		
30mc 45mc 52mc 53mc	68mc	75mc
77°F -Ivdc		
LIMIT: 30 mc to 52mc - 240 to 650KC/53mc to 75mc - 275 to 650 KC		
-40 ⁰ F -Ivdc +Ivdc Diff Diff/2	=	
LIMIT: 30mc to 52mc - 230 to 660 KC/52mc to 75mc - 275 to 650 KC		
150°F +1vdc	=	

LIMITS: 30mc to 52mc - 230 to 660 KC/52mc to 75mc - 265 to 665 KC

	pment RT	246	Seri	al No. 16	05		E-Syst	ems/MEMCOR	
	ST _		VFO				DA	AB09-76-C-0	185
Teste	ed by: 10.4	Luffman	Witne	ess by:				Date: 13 C	TTT
Lot:	PIP								
DULA	TOR SENS.	(para. 3.1	0.9)						
		30.00	45	•00	52.00	53	3.00	68.00	75.00
77	-1vdc	30217	45	112	32390	53	174	68423	75442
	+1vdc	29635	44	358	51396	52	561	67594	74502
	Diff	582		754	894		613	829	939
	Diff/2	291		377	447		306.5	414.5	469.
imit .	•	30mc to 52	mc - 24	0 to 650Kc	/ 53mc to	75mc	- 275 to	650Kc	
40	-1vdc	30143	45	065 5	2225	53	152	68392	75383
	+1vdc	29566			1345			67533	7444
	Diff	517			880		611	859	937
	Diff/2	288		389.5	440		305.5	429	468.
imit .	-	30mc to 52							
150	-1vdc	30239	45	134 5	2245	.53	128	68343	75304
	+1vdc	29656	44	381 5	1351			67522	94369
	Diff	583		753	894		615	821	935
	Diff/2	291.5		376.5	447	710000000000000000000000000000000000000		410.5	467.
imit -	•	30mc to 52	nc - 230	0 to 660Kc	/ 53mc to	75mc	- 265 to	665Kc	
							-		
TO TEN		ITY (para.					£		
			5.5V	30.0V			22.0V	25.5V	30.0V
3.50					53.50			71934	
	Amb. 419		152	मावरम			41950	41952	4195
								18	
3.50								51940	
	Amb. 510	166 519	180	21991		Amb.	51966	51980	5199
								40	
				1	74 50	+65C	63014	1.3015	6-3016
	-40c <u>67</u>	996 629							
	-40c <u>6ე</u> Amb. <u>(ი</u> ვ	996 639 055 639	055	63056		Amb.	13055	63055	63050
	-40C <u>63</u> Amb. <u>63</u> Dif.	996 639 055 639	59	63056		Amb. Dif.	13055	(3055 40	<u>63650</u> 4

OPERATOR S. Librare To	GROUP A UNIT	SERIAL 18788
TIME	DATE 9/20/77 LOT 1	NUMBER PIP
2.1.0 Distortion (Narrow)	4.0 Sensitivity 6	.0 Limiting
60.05 mc # 100 uv Volume Control = 17.3v-	FR Level = 5.0 uv for Sens.	1-100kuv for Limiting
22.0v 25.5v 30.0v	Volume Control = 17.3v	Volume Control - 17.3v
48: 38: 38:	ac 22.0v 25.5v 30.0v	30.00 <u>•/</u> db
CIMIC - 0.00 Max.	30.00 <u>22.5</u> 1b <u>22.5</u> 1b <u>22.5</u> 4b 65.10 <u>22.5</u> 1b <u>2/7</u> 4b <u>2/0</u> 4b	75.95 <u>O</u> db 65.55 •/ db
1.1 Muting	41.05 25.746 26 db 26.76	41.05 O db
60.05 mc # 100 uv Volume Control = 17.3v	75.90 19 db 19 db 19 db	53.00 O db
22.0v 25.5v 30.0v	52.95 130 db 1904b 19.06	52.10 O db
5.4 v 5.4 v 154 v Linit = 5.0 v ain-o.0 v max.	53.00 19 db 19 db	
1.2 & 3.1 Loudspecker Output	41.50 246 25Ab 254ab	Limits: 1 db Max.
60.05 mc # 100uv	64.50 22.48b 2/6db 2/6db	
22.0v 25.5v 30.0v	Limits 8db 10bd 10bd Min. Min. Min.	
1/5 92/ 2/15	5.2 Noise Squeich	
Limit = 17.3v min.	7.0 uv for Noise Squelch	
Limit 0.38v max.	22.0v 25.5v 30.0v	
1.3 & 3.2 Headphone output	30.00 2.6 uv 2.4 uv 2.4 uv	
60.05 mc # 100uv Volume Control = #	65.40 <u>2.5 uv</u> 2 <u>.5 uv</u> 41.50 <u>20 uv</u> 2.0 uv	
22.0v 25.5v 30.0v	53.60 2.6 uv 26 uv 2.6 uv	
Limit = 1.75v min.	52.70 22uv 22uv 22uv	Limits: Squelch and Call
19	75.802.4 uv 2.4 uv 2.4 uv	lamps shall remain lit while the RF level is
Limit = 0.19v max.	Squelch & Call Lamp shall lifht and remain lit as RF	of the RF signal from the antenna jack will cause th
1.4 & 3.3 Monitor Output	level is reduced to 5.5 uv. Removing RF signal from	above condition to disappear in one (1)
Volume Control - #	antenna jack shall cause above condition to disappear	second.
CN 233 233 233	in four (4) seconds. 5.0 Tone Squelch	
Limit = 0.16v min-0.31v max.	RF Level = 5.0 uv	
Limit = U.lov min-0.31v max.	150 cycle mod. # 3 kc dev. mc 22.0v 25.5v 30.0v	
Ratio CCW/CW	30.00 19 uv 19 uv 19 uv	
0. 5 46	65.26 2 uv 22 uv 22 uv	
	11.30 1.8 uv 1.8 uv 1.8 uv	
	52.95 1.8 uv 1.8 uv 1.8 uv	
3-8138-2	53.00 8.2uv 22 uv 2.2uv	
	75.95 19 uv 19 uv 19 uv	

52.95

Sur

me

250 kc

853 KC

500.

41.90

0	ROUP "A"						
INSPECTOR Londes		UNIT NO.	1878	7	LOT N	0. PM	0
TIME			7	Ep	DATE	9-20-	77
3-8138-1 TONE MODULATION (Para. 3.10.3) Input 25.5V Freq. 40.10 MC		CATCHING Input 25	RANGE (P	ara. 3.1	0.7)		
01d 0FF-Tone 0sc.			Diff. KC/			Diff. /3	
New OFF-Tone Osc. 151 CPS Dev. 3.2 KC			Diff. KC/		70 MC -	Diff. /9	150
New ON-Tone Osc. /5/ CPS Dev. 2.2 KC		LIMIT:	Diff. mu	st be	750 KC		
LIMIT: Tone Osc. 148-152 CPS. Dev.		POWER OU	IT (Para.	3.10.1	3.10.2	2)	
2.5-35KC SIDETONE (Para. 3.10.5) Input 25.5V Freq. 40.10 MC		30MC	22V 4. 2	OW POWE 25.	5	30V	
Speaker-Limit: 3.87V to 7.75V 6. 9 Headphone-Limit: 6.14V to 9.74V 9. / DISTORTION (Para 3.19.4.1) Freq. 40.10 MC - Input 22V / 8	_	65.20MC 41.05MC 75.96MC 52.90MC 53.00MC	3.5	3.3		2.0	•
25.5V / P 30V / V		LIMIT:	Low Power	25.5V I			
LIMIT: 10%  MAX. S+N/N RATIO (PARA. 3.10.13)				204 10	N PEA.		
Freg. 75.95 MC - Input 22V 47.			22V H	IGH POW		30V	
25.5V 47. 30V 47.		30MC 65.20MC 41.05MC 75.95MC	43. 40. 41. 30-	125 25 25		75-	
DEVIATION (Para. 3.10.18.1)		52.90MC. 53.00MC	3/	45-	= 4	0.	
30MC 22V 7.9 54MC 7.0 7.0 7.0 7.0 7.0 7.0 7.0	=		High Powe	r 22V 2		to 65 W	Max.
52MC 22V 7.9 75MC 8./ 25.5V 7.9 30V 7.9 7.1	=						
LIMIT: 6 to 10 KC							
RESETABILITY (Para. 3.10.10) Input 25.5 * Centered Freq.							
41.50 MC + Detent 4/303 - Detent 4/242 Diff.	54.50 MC	+ Detent - Detent Diff.					
51.50 MC + Detents-/44/ - Detents-/33/ Diff							
64.50 MC + Detent/ 4337 - Detent/ 4777 Diff. 3 7							
74.50 MC + Detent 74.64 - Detent 74.52 Diff. 5.72							
LIMIT: Detent 150 KC Max. ± Stress 150 M	in.						

MODULATION CAPABILITY (Para. 3.10.6) Input 25.5V FORM 3-8138-2

Delly 220-77

	500	1000	2000	3000	10,000	20,000
35MC	730	730	730	>30	730	730
48MC	730	730	730	730	730	730
57MC	230	_	730			730
70MC	730	730	730	730		730

LIMIT: 25KC

AUTO FREQ SELECTION (Para. 3.10.8)

LIMIT: No error in selection - 5 sec MAX from 30 MC to 52.95 MC 5 sec MAX from 52.95 MC to 30 MC Selection shall repeat from both directions

XMTR GROUP "S"

FREQ. STABILITY (Para. 3.10.11) Input 25.5V

20 00 00	E1 00 -/	53.00 -/. 2	75 00 14
30.00 - 14	51.00-0/	53.00 -	75.00 -1.4
30.05-07	51.05	53.05 7.4	75.05-1.3
30.10_03	51.10 20	53.10-7.7	75.10-7.4
30.15 -04	51.15-03	53.15-20	75.15 -1.7
30.20-07	51.20-04	53.20 -2./	75.20 -1.2
30.25 -1.0	51.20-64 51.25-67	53.25 2.4 53.30 2.3	15.25-2./
30.30-/./	51.30-07	53.30- 7.5	75.30 -2.2
30.35-04	51.35.0/	33.45-//	75.35 7.4
30.40-24	51.40_0/	53.40-7.X	75.40 _/.5
30.45-7.0	51.45-67	53.40- <u>7.8</u> 53.45- <u>2.4</u>	75.45-2./
30.50 -1.0	51.50-07	33.3U_ 2 3	75.50 -2./
30.55-04	51.55-66	53.55-2.3	75.55 2.0
30.60 -04	51 60 04	53.60-2.4	75 60 7 0
30.60 <del>-04</del> 30.65 <del>-1.4</del>	51.65.43	53.65-3.0	75.60 - 2.0 75.65 - 2.7
30.70 -/. 2	51.05.43	53.03-3.0	75.03-4
30.70 -/.	51.70 /4	53.70 -3./	75.70 -2.8
30.75 -7.3	51.75-09	53.75-2.4 53.80-2.7 53.85-2.7	75.75-2-2
30.80 -7.2	51.80-69	53.80 2.7	75.80-2.3
30.85 <u>-/. 2</u> 30.90 <u>-/. 3</u>	51.85-09	53.85 2.7	13.03 2.3
30.90_/.3	51.90-1C	53.90,2.7	75.90-2.4
30.95-73	51.95 00	53.95-1.7	75.95-1.4
41.00 7	52.00-0/	64.00 -/. 4	
41.00	52.00-0/ 52.05-0/	64.00-/-/	
41.05-1	52.05-0/	64.05-/-	
41.05-1	52.05-0/ 52.10-0/	64.05-/.5	
41.05 - / 41.10 - c/ 41.15 - c/	52.05.0/ 52.10.0/ 52.15.03	64.05-/.5 64.10-/.5 64.15-/.9	
41.05 - / 41.10 - c / 41.15 - c s -	52.05.0/ 52.10.0/ 52.15.03 52.20.03	64.05-/.5 64.10-/.5 64.15-/-9 64.20-/-9	
41.05 -/ 41.10 -/ 41.15 - cs - 41.20 -/ 41.25 - cg	52.05, 0/ 52.10 4/ 52.15 03 52.20 23 52.25 14/	64.05-/.5 64.10-/.5 64.15-/.9 64.20-/.9 64.25-7.2	
41.05 - / 41.10 - / 41.15 - 65 41.25 - 69 41.30 - 7	52.05, 0/ 52.10 4/ 52.15 03 52.20 23 52.25 14/	64.05-/.5 64.10-/.5- 64.15-/.9 64.20-/.9 64.25-2.2 64.30-7.3	
41.05 x/ 41.10 x/ 41.15 xs 41.20 xr 41.25 cr/ 41.35 x 2	52.05. 0/ 52.10 - 0/ 52.15 - 03 52.20 - 23 52.25 - 0/ 52.30 - 0/ 52.35 - 0/	64.05-/.5 64.10-/.5- 64.15-/.9 64.20-/.9 64.25-2.2 64.35-/.2	
41.05 - / 41.10 - / 41.15 - 65 41.20 - 75 41.25 - 67 41.35 - 62 41.40 - 62	52.05, 0/ 52.10 \( \phi \) / 52.15 \( \phi \) / 52.25 \( \phi \) / 52.30 \( \phi \) / 52.35 \( \phi \) / 52.40 \( \chi \) /	64.05-65 64.10-7.5 64.15-7.9 64.20-7.9 64.25-7.2 64.30-7.3 64.35-7.4 64.40-7	
41.05 -/ 41.10 -/ 41.15 -/ 41.20 -/ 41.25 -/ 41.35 -/ 41.35 -/ 41.40	52.05. 2/ 52.10 -2/ 52.15 -43 52.20 -3 52.25 -4/ 52.30 -07 52.35 -4/ 52.40 -6/ 52.40 -6/	64.05-65 64.10-7.5 64.15-7.9 64.20-7.9 64.25-7.2 64.30-7.3 64.35-7.4 64.40-7	
41.10 - 2/ 41.10 - 2/ 41.15 - 25 41.20 - 27 41.30 - 27 41.30 - 27 41.30 - 27 41.40 - 22 41.45 - 27 41.50 - 20	52.05. 0/ 52.10 · 0/ 52.15 · 0/ 52.25 · 1/ 52.30 - 0/ 52.30 - 0/ 52.40 · 0/ 52.40 · 0/ 52.45 · 0/ 52.45 · 0/ 52.45 · 0/ 52.50 · 7	64.05-6.5 64.10-6.5 64.10-6.5 64.20-6.9 64.25-2.2 64.35-2.6 64.35-4.6 64.40-6.7 64.45-2.2 64.50-3.3	
41.05 -/ 41.10 -c/ 41.15 -c/ 41.25 -c/ 41.25 -c/ 41.30 -c/ 41.35 -c/ 41.40 -c/ 41.45 -c/ 41.50 -c/ 41.50 -c/	52.05. 0/ 52.10. 0/ 52.15. 0/3 52.20. 0/3 52.25. 1/6 52.30. 0/7 52.35. 0/0 52.40. 0/1 52.45. 0/6 52.50. 0/7	64.05-6.7 64.10-7.5 64.10-7.5 64.20-7.9 64.25-7.2 64.30-2.3 64.35-7.7 64.45-7.2 64.50-7.3 64.55-7.7	
41.05 -/ 41.10 -/ 41.15 -/ 41.20 -/ 41.25 -/ 41.35 -/ 41.35 -/ 41.40 -/ 41.55 -/ 41.55 -/ 41.50 -/ 41.55 -/ 41.50 -/ 41.55 -/ 41.50 -/ 41.50 -/ 41.50 -/ 41.50 -/ 41.50 -/ 41.60	52.05. 2/ 52.10 -2/ 52.15 -43 52.20 -3 52.25 -4/ 52.30 -07 52.35 -0/ 52.40 -0/ 52.40 -0/ 52.55 -2/ 52.55 -2/ 52.55 -2/ 52.55 -2/ 52.50 -2/	64.05-7.5 64.10-7.5 64.10-7.5 64.20-7.9 64.20-7.9 64.35-7.5 64.35-7.5 64.40-7.7 64.45-7.5 64.50-7.3 64.55-7.5 64.60-7.7	
41.05 -/ 41.10 -/ 41.15 -/ 41.20 -/ 41.25 -/ 41.35 -/ 41.35 -/ 41.40 -/ 41.55 -/ 41.50 -/ 41.55 -/ 41.60 -/ 41.60 -/ 41.65 -/ 41.65 -/	52.05. 2/ 52.10 - 2/ 52.15 - 23 52.20 - 23 52.25 - 4/ 52.35 - 2/ 52.40 - C/ 52.40 - C/ 52.55 - C/ 52.55 - C/ 52.55 - C/ 52.60 - C/ 52.65 - C/ 52.65 - C/	64.05-7.5 64.10-7.5 64.10-7.5 64.20-7.9 64.20-7.9 64.35-7.5 64.35-7.5 64.40-7.7 64.45-7.5 64.50-7.3 64.55-7.5 64.60-7.7	
41.05 -/ 41.10 -e/ 41.15 -e/ 41.20 -0/ 41.30 -e/ 41.30 -e/ 41.35 -c/ 41.40 -e/ 41.45 -c/ 41.55 -c/ 41.60 -e/ 41.65 -/ 41.70 -/-5	52.05. 0/ 52.10 - 0/ 52.15 - 03 52.25 - 1/ 52.30 - 07 52.35 - 0/ 52.40 - 0/ 52.45 - 0/ 52.55 - 0/ 52.55 - 0/ 52.60 - 0/ 52.65 - 0/ 52.65 - 0/ 52.7	64.05-65 64.10-65 64.10-65 64.20-69 64.20-69 64.35-66 64.40-67 64.45-22 64.55-22 64.60-22 64.70-23	
41.05 -/ 41.10 -/ 41.12 -/ 41.25 -/ 41.25 -/ 41.35 -/ 41.35 -/ 41.50 -/ 41.55 -/ 41.65 -/ 41.65 -/ 41.70 -/ 41.70 -/ 41.75 -/	52.05. 2/ 52.10 -2/ 52.15 -43 52.20 -3 52.25 -4/ 52.30 -07 52.35 -0/ 52.40 -0/ 52.40 -0/ 52.55 -2 52.50 -2/ 52.65 -4/ 52.70 -43 52.70 -43	64.05-7.5 64.15-7.9 64.20-7.9 64.25-2.2 64.35-7.7 64.45-7.7 64.45-7.7 64.65-7.7 64.65-7.7 64.70-7.7 64.70-7.7	
41.05 -/ 41.10 -e/ 41.15 -e/ 41.20 -0' 41.25 -e/ 41.35 -e/ 41.35 -e/ 41.40 -e/ 41.55 -e/ 41.55 -e/ 41.55 -e/ 41.55 -e/ 41.70 -/-5	52.05. 2/ 52.10 - 2/ 52.15 - 23 52.20 - 23 52.25 - 4/ 52.35 - 2/ 52.40 - C/ 52.40 - C/ 52.45 - C/ 52.50 - C/ 52.55 - C/ 52.60 - C/ 52.60 - C/ 52.75 - 2/ 52.75 - 2/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.80 - C/ 52.90 -	64.05-6.7 64.10-6.5 64.10-6.5 64.20-6.9 64.25-7.2 64.35-7.6 64.40-7.7 64.55-7.2 64.50-7.3 64.55-7.6 64.60-7.7 64.70-7.6 64.70-7.6 64.70-7.6 64.70-7.6 64.70-7.6 64.70-7.6 64.75-7.6 64.80-7.5	
41.05 -/ 41.10 -e/ 41.15 -e/ 41.20 -0' 41.25 -e/ 41.35 -e/ 41.35 -e/ 41.40 -e/ 41.55 -e/ 41.55 -e/ 41.55 -e/ 41.55 -e/ 41.70 -/-5	52.05. 2/ 52.10 - 2/ 52.15 - 23 52.20 - 23 52.25 - 4/ 52.35 - 2/ 52.40 - C/ 52.40 - C/ 52.45 - C/ 52.50 - C/ 52.55 - C/ 52.60 - C/ 52.60 - C/ 52.75 - 2/ 52.75 - 2/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.80 - C/ 52.90 -	64.05-6.7 64.10-6.5 64.10-6.5 64.20-6.9 64.20-6.9 64.35-2.2 64.35-2.2 64.40-6.7 64.55-2.2 64.50-2.2 64.60-2.2 64.65-2.9 64.70-2.3 64.75-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3	
41.05 -/ 41.10 -/ 41.15 -/ 41.25 -/ 41.25 -/ 41.35 -/ 41.35 -/ 41.40 -/ 41.55 -/ 41.55 -/ 41.65 -/ 41.65 -/ 41.70 -/ 41.80 -/ 41.85 -/ 41.85 -/ 41.85 -/ 41.85 -/ 41.95	52.05. 2/ 52.10 - 2/ 52.15 - 23 52.20 - 23 52.25 - 1/ 52.35 - 2/ 52.40 - C/ 52.45 - C/ 52.55 - C/ 52.55 - C/ 52.60 - C/ 52.65 - C/ 52.65 - C/ 52.75 - 2/ 52.75 - 2/ 52.85 - C/ 52.85 - C/	64.05-6.7 64.10-6.5 64.10-6.5 64.20-6.9 64.20-6.9 64.35-2.2 64.35-2.2 64.40-6.7 64.55-2.2 64.50-2.2 64.60-2.2 64.65-2.9 64.70-2.3 64.75-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3 64.80-2.3	
41.05 -/ 41.10 -e/ 41.15 -e/ 41.20 -0' 41.25 -e/ 41.35 -e/ 41.35 -e/ 41.40 -e/ 41.55 -e/ 41.55 -e/ 41.55 -e/ 41.55 -e/ 41.70 -/-5	52.05. 2/ 52.10 - 2/ 52.15 - 23 52.20 - 23 52.25 - 4/ 52.35 - 2/ 52.40 - C/ 52.40 - C/ 52.45 - C/ 52.50 - C/ 52.55 - C/ 52.60 - C/ 52.60 - C/ 52.75 - 2/ 52.75 - 2/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.75 - 2/ 52.80 - C/ 52.80 - C/ 52.90 -	64.05-6.7 64.10-6.5 64.10-6.5 64.20-6.9 64.25-7.2 64.35-7.6 64.40-7.7 64.55-7.2 64.50-7.3 64.55-7.6 64.60-7.7 64.70-7.6 64.70-7.6 64.70-7.6 64.70-7.6 64.70-7.6 64.70-7.6 64.75-7.6 64.80-7.5	

LIMIT: ± 3.5 KC

Limit .

150 kc

		XM	R GROUP "B"			
ANTENNA SWITCHING	G (Para. 3.1	0.2)		Rip	FORM 3-6	139-2
33MC High /3 to	56	MC High 1570			18200	
37MC High 30 Low 157		MC High 50			18787	
42MC High /57		MC High /57				
47.5 MC High_		.5 MC High 2	50			
LIMIT: ± 400 KC						
MODULATOR SENS:	(Para. 3.10	.9)				
	30mc	45mc	52mc	53mc	68mc	75mc
77°F -Ivdc +Ivdc Diff Diff/2					=	=
LIMIT: 30 mc to	52mc - 240	to 650KC/53mc 1	to 75mc - 275 to	650 KC		
-40°F -Ivdc +Ivdc 01ff D1ff/2		=				=
LIMIT: 30mc to	52mc - 230 t	o 660 KC/52mc 1	to 75mc - 275 to	650 KC		
150°F ±tvdc +Ivdc						

LIMITS: 30mc to 52mc - 230 to 660 KC/52mc to 75mc - 265 to 665 KC

Equip	oment RT	524	Serial No.	18788	E	-System	s/MEMCOR	
B TES			VFO			DAAE	03-76-C-0	85
Teste	ed by: Od	Luthnan	Witness by:			D	ate: 13 00	2777
Lot:	PIP	CU						
MODULAT	TOR SENS.	(para. 3.1	0.9)					
		30.00	45.00	52.00	53.00	6	8.00	75.00
+77	-1vdc	30151	45059	52201	5392	4	8369	75488
	+1vdc	29587	44299	51327	5233	5 6	7547	74584
	Diff	564	760	874	586		822	904
	Diff/2	282	380	437	29	3	4/1	452
Limit .		30mc to 52	nc - 240 to 65	50Kc / 53mc to	75mc - 27	5 to 65	0Kc	
-40	-1vdc	30164	45056	52204	5297	3 6	8361	75484
	+1vdc	29600	44267	51354	52385	5 6	7506	74573
	Diff	5 64	789	850	58	8	855	911
	Diff/2	282	394.5	425	29	4	427.5	455.5
Limit .		30mc to 52	nc - 230 to 66	50Kc / 53mc to	75mc - 27	5 to 65	OKC .	
+150	-1vdc	30179	45071	52158	5291	6 6	8337	75396
	+1vdc	29615	44307	51282	5232	8 6	7523	74501
	Diff	564	764	876	.58	8 .	814	995
	Diff/2	282		438	29	4	407	447.5
Limit -		30mc to 52	nc - 230 to 66	50Kc / 53mc to	75mc - 26	5 to 66	55Kc	
	- CM1077	TTM: /	2.0.45)					
VFO TE	MP. STABIL		3.9.15)			0	25 511	20.00
52.50			5.5V 30.0			.00	25.5V	30.0V
53.50		396 mid			+65C <u>11</u>		<u>11953</u>	<u> 41955</u>
			उठत नावत					11996
			5 =====================================					4/
63.50			984 5190					
			384 5191				•	51995
								52
74.50			088 630					
			103 6310					
	Dif.	15	15 .	16	Dif.	48	48	48

Limit - Diff. shall not be 180Kc when reset or 130Kc when not reset.

#### APPENDIX E

AN/VRC-12 PIP LIST OF ECP'S AND RFW'S FOR GOVERNMENT GAGE TEST

TABLE E-1. LIST OF ECP'S FOR THE AN/VRC-12 PIP

ECP NO.		TITLE
1R2	Germani	um to Silicon Conversion Q8301 and Q8302
2R1	Germani	um to Silicon Conversion, Q1401
3R3	A1600A	Power Supply for VHF Tuner, Modified Version
5R2	A5100A	Audio Amplifier Silicon Conversion
6R1	A3100	Germanium to Silicon Conversion, Q3101 Changed to JAN2N2907A
7R2	A8500A	Speech Amplifier Assembly
8R1	A3600A	Silicon Conversion, CRS Hunt Discriminator
9R1	A7200A	Servo-Amplifier Assembly, Silicon Conversion
10R1	A4300A	Audio and Squelch Pre-Amplifier
11	A2100	Silicon Update
12R1	A6400A	Transmitter Buffer Amplifier
13R1	A2000	Crystal Switch
14	A3200A	CRS Balanced Mixer, Silicon Conversion
18	A8400A	XMTR Hunt Generator, Silicon Conversion
19	A9000A/	A9400B Power Supply Assembly Redesign and Silicon Update
20	A4100A	Silicon Conversion
21	A3700A	Silicon Conversion
22R1	A3300A	Silicon Conversion
23	A3400A	Silicon Conversion
24	A3500A	Silicon Conversion
25	A8100A	Silicon Conversion
26	A8200A	Silicon Conversion
27	A7000A	Silicon Conversion
28	A4200A	Silicon Conversion
29	Redesig	n of Squelch Modules A5200A/A5300A
30	A6300A	Silicon Conversion
31	A1500A	Silicon Conversion

TABLE E-2. LIST OF RFW'S FOR GOVERNMENT GAGE TESTS

RFV NO			TITLE
1		IF Wide	Band Selectivity @ -40 dB Bandwidth Test
2		A7200A	Zero Signal DC Current Test
3		A4200A	Gain, Frequency and Discriminator Test
4		A3200A	Balanced Mixer Test
5		A4300A	Audio and Pre-Amp Test
6		A8500A	Transmitter Speech Test
7		A8100A	20 kHz Frequency Response Test
ECP	16	A1500A	Government Gage Test Procedure Change
ECP	17	A6300A	Government Gage Test Procedure Change

							12 =				
	MS INC.,		DIVISION				4.	DEVIA	TION		WAIV
41 E.Pa		Hunting		46750			3.	MINOR	П	MAJOR	CRIT
			IATION/WAIVE		5. BASE LINE	AFFECTED			6. OTH	ER SYST	EMS/CONFI
	b. MFR. COD		5. , DESIG.   4. (						RAT	TION ITE	S AFFECT
RT-246"	83777	A		RFW 1	TIONAL	CATED		PROD-		YES	NO
RT-524				-	TIONAL						
R-442 7.			TED-TEST PL					NGS A	FFECTE		
	MFR. CODE	SPEC	./DOC. NO.	SCN	MFR. CODE		NUMBER		REV.	N	OR. NO.
. SYSTEM											
- ITEM			-55099D								
. TEST PLAN		MIL-R	-55100D								
. TITLE OF DEV	IATION/WAIVER								10. CON	TRACT NO	. & LINE
Wide Ban	d IF Sele	ativity	@-40dB	Bandwi	dth				DA	AB07-	76-C-C
. CONFIGURATIO	ON ITEM NOMEN	CLATURE	6 1000	Danawa			CLASSIFI	CATION O	P OFFECT		
437/3TDG 1	2 12 10	Conton			12. CD NO.	13. DEFECT N	0. 14. 0	FFECT.	CLASSIF	ICATION	_
ALI/ VRC-1	2, 43-49	Series					IL	MINOR		MAJOR	CRIT
. NAME OF PART O	R LOWEST ASSEMBL	Y AFFECTED	16. SART NO.	OR TYPE DESIG.	17. LOT NO.	IS. QTY	19. F	ECURRI	NG DEVI	ATION/W	LIVER
Receiver/	Receiver-	-Transmi	tter SC-I	DL-413500			15	YES			X NO
. EFFECT ON CO				DL-414825		N DELIVERY	SCHEDUL	.ε			
NONE				DL-414900							
	NTEGRATED LOG	ISTIC SUPPO	AT. INTERFACE.	and the second second	L						
NONE											
. DESCRIPTION	AF AFW 15161	/WALLES								-	
. DESCRIPTION	OF DEVIATION	HAIVER						A TOTAL	2		
		gure on	MCOR DIVIS performing B points,	the tes	t listed	in para				2.b,	
		gure on	performing	the tes	t listed	in para				2.b,	
		gure on	performing	the tes	t listed	in para				2.b,	
Wid	viation/waive	gure on ith 40 d	performing B points,	g the tes	t listed -55099D :	in para	-R-55	1000.			
Wide As coi	suance of mance, his shown in ls, also ls. Since	VRC-12 corporation reliation in the literature of the lessonant	performing	improveme 200A Modu simple al gram, it te to acci	nt, an in le, which ignment a is not ne ess insidifier, A-	in para and MIL- ntegrate n result and cost ecessary ie of IG- 4100A,	ed ci: eed in eff	reuit n impective have	seven	3075, d pers. n ajuages	stable to put
As coi coi wit sel	suance of shown in ls, also ls. Since the three rectivity.	V VRC-12 corporation reliation in it is not the little or	product is ed on A-42 ability, sed IC Diagot feasible st and 2nd coils, the	improveme 200A Modu simple al gram, it te to acci	nt, an including nent a signment	in para and MIL- ntegrate n result and cost ecessary de of IC- 4100A, sponse n	ed circled in efficient in the last last last last last last last last	reuit n imp ectiv have lifie been ns co	seveness seveness re-de re-de	3075, d pers. n aju ages esigne erable	stable to put
A. MEED FOR DE Pur has for As coi coi with sel	suance of shown in als, also als. Since the three rectivity articles activity articles activity articles activity articles.	V VRC-12 corporation reliation in it is not the little or	product is ed on A-42 ability, sed IC Diagot feasible st and 2nd coils, the	improvement and it is a consistent of MIL-R  improvement and a consistent of a	nt, an including nent a signment	in para and MIL- ntegrate n result and cost ecessary ie of IC- 4100A, sponse n	ed circled in efficient in the last last last last last last last last	reuit n imp ectiv have lifie been ns co	sever sever re-de pnside	3075, d pers. n aju ages esigne erable	stable to put

Contract DAAB07-76-C-01. MAT'L SPEC. Memcor RFW 1 MAT'L FINISH INTEGRATED CIRCUIT, SHEET NO. DESCRIPTION LM3075. MATERIAL SCALE TITLE ANGLEST UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES CIRCUIT SCHEMATIC PART NUMBER DATE DATE TOLERANCES P4643A ITEM REG'D 2:2 NEXT ASSY 1000 FRAC. + CHK APF REVISIONS E-SYSTEMS INC. MEMCOR DIVISION 41 East Park Orive, Huntington, Indiana 46750 343

									· Jule
REQUEST FOR I				OATE PREP	CERA		PROCURING A	CTIVITY NO.	9
********				8-11-	77				
E-System		ss Memcor Div	rision				2. DEVI	TION	X WALVER
T		, Huntingto		6750			3. MINO	MAJO	
		FOR DEVIATI			5. BASE LINE	VEETCEED			
- HOOEL TYPE	b. MFR. COO			EY/WAIVER NO.	S. BASE CINE	AFFEC.ED ,		RATION	YSTEMS/CONFIGU-
RT-246 RT-524	83777		C-13 H		TICNAL	CATED	PROD	YES	NO
R-442 7.	MFR. CODE	ONS AFFECTED					ORAWINGS A		
4. SYSTEM	MPN. COUE	SPEC./DOC	. NO.	SCY	MFR. CDDE 80063		MBER	REV.	NOR. NO.
6. ITEM				<del> </del>	30003	SC-A	-400364	B	
. TEST PLAN									
. TITLE OF DEY	TATION/WAIVER	-			11			IIO. CONTRAC	T NO. & LINE ITE
A-7200A	Zero Signa	l DC-Curre	ent Test						07-76-C-01
II. CONFIGURATI						-	JSSIFICATION	1	
ANATEC	-12, 43-49	Sarios			12. CD NO. 11		14. DEFECT		IGN
19. MANG OF PART					•		MINOF		
				ACCOUNTY	17. LOT NO. 1	s. crr		NG DEVIATION	
Test Proc	EST/PRICE	ervo Amp.	SC-A-	400364B	121. EFFECT ON	261 1115311 -	YES		X NO
None				•	ZI. EFFECT ON	DELIVERY 5	CHECULE		
	NTEGRATED LOG	STIC SUPPORT.	MTERFACE.	ATC.	L				
None									
3. CESCRIPTION	OF DEVIATION	WALVER						,	
								(N	1 8 24 11
24. NEED FOR DE	VIATION VALVE				·				
oranch er	ent charact arrent. onger nece	Servo Am eristic of s	ilicon d	evices, i	e. less le	akage c	urrent ai	d less bi	ias
		F SERIAL MANGER		- 22	Project	Enginee	r/Qualit	,	
			27		DISAPPROVAL				
			• • • • • • • • • • • • • • • • • • • •	- TOVAC	0				
	GOVAL RECOMMEN	CED							
C. WYERMENT					APPRO	VED C3V		DISMPROVE	9

DD . 120.1

REQUEST FOR I	DEVIATION/WA O OR 481 FOR I	IVER NSTRUCTIONS)		0ATE PREF			PROCURING A	CTIVITY NO.	
	ms Inc., A	Iemcor Di					2. DEVIA	TION	X WAIVER
41 East	Park Driv	e, Hunting	ton, IN	46750			3. MINOR	MAJOR	CRITICAL
	DESIGNATION				S. BASE LINE	AFFECTED		6. OTHER SY	STEMS/CONFIGU.
RT-246 RT-524	5. MFR. CODE 83777	AN/VI	RC-12 F		TIONAL	ALLO-	PROD-	YES	NO NO
R-442 7.	MFR. CODE			7			DRAWINGS A		
. SYSTEM	MPR. CODE	\$760./00	C. NO.	SCN	MFR. CODE 80063		-400346	B B	NOR. NO.
6. ITEM				<del> </del>	00003	100-2	-400340	B	
. TEST PLAN									
. TITLE OF DEV	STATE OF THE PARTY.							10. CONTRACT	NO. & LINE ITEM
	Gain, Fr	-	nd Discr	iminator	Test			DAABO	7-76-C-013
1. CONFIGURATIO					12. CD NO.  1		LASSIFICATION	CLASSIFICATIO	in .
	C-12, 43-4						MINOR		CRITICAL
19. MANE OF PART O				OR TYPE DESIG	17. LOT NO. 1	a. QTY	19. RECURRI	NG DEVIATION	WAIVER
Test Pr	ocedure of	A4200	SC-A-	400346B			YES		□ NO
None	J31/PHICE				21. EFFECT ON	DELIVERY :	SCHEDULE		
12. EFFECT ON I	NTEGRATED LOGI	STIC SUPPORT.	INTERFACE.	ETC.	l				
. None									
3. DESCRIPTION	OF DEVIATION	VAIVER							
Similari 9.3 disc	y the accer riminator	ptance lim will be aff	its of 9. ected. (	1 gain ch Page 8, 9	aracterist ), 10, 11 a	ic, 9.2 and 12)	frequency	y respons	e and
24. NEED FOR DE									
& Detec	rated circu tor Module entioned to	. Since th	ne signal	is being	processed	in insi	de of IC a	mplifier	stages.
The gair overall	test with module per	a different formance.	level ar	nd the dis	tortion tes	st are s	ufficient t	o check t	he
25. PRODUCTION	EFFECTIVITY BY	SERIAL NUMBER							
25. SUMITTING	ACTIVETY METHO			_	TITLE	-	<u> </u>		
- ing		m 8.	-/2-7°		DISAPPROVAL		er/Quality		
				- TETTOVAL	I.				
C. GOVERNMENT	CTIVITY	(6)			SIGNATURE	VED		DISAPPROVED	
DD : 500 1	694			3	45				

REQUEST FOR D				DATE PREP			PROCURING AC	CTIVITY NO.	
				8-11-77					
E-SYSTEM		EMCOR DIVI	STON				2. DEVIA	TION	X WAIVER
		E. HUNTING		46750			3. X MINOR	MAJOR	CRITICAL
		FOR DEVIAT			S. BASE LINE	AFFECTED	<b>└</b> ═──	6. OTHER SYS	TEMS/CONFIGU.
. MODEL/TYPE	83777		ESIG. 4. 0	RFW 4	FUNC.	ALLO.	PROD-	RATION IT	TEMS/CONFIGU- EMS AFFECTED
7.	SPECIFICATI	ONS AFFECTED	-TEST PLA	N		8.	DRAWINGS A	FFECTED	
	MFR. CODE	\$PEC./00	C. NO.	SCN	MFR. CODE	N	UMBER	REV.	NOR. NO.
- SYSTEM									
. ITEM		N/A	\		80063	SC-	V-700378	A	
TEST PLAN									
. TITLE OF CEVI									NO. & LINE ITE
Test Proce			the CRS	Balanced	Mixer, 1	Part of	AN/VRC-1	P DAABO7	-76-c-0139
1. CONFIGURATIO	N I TEM NOMENC	LATURE			12. CD NO.		LASSIFICATION C	CLASSIFICATIO	
Radio Set	AN/VRC-	L2: RT246,	RT442,	RT524	N/A	N/A	XMINOR		CRITICAL
S. HAME OF PART OF						18. QTY		NG DEVIATION	
Balanced	Mixer Ass	sembly	the same of the same of the same of	-413592	All	All	YES		XNO
O EFFECT ON CO	ST/PRICE				21. EFFECT ON	DELIVERY :	SCHEDULE		
					None				
2. EFFECT ON IN	TEGRATED LOGI	STIC SUPPORT.	INTERFACE.	ETC.					
None									
the A3200	z Oscillat L (50 mV) OA transis	tor is no of the sistor bridgon to the	ngle fr	equency tead. th	oscillato e Harmoni	or is in	adequate	for swit	ching
Meorge.		PIZING SIGNAR	JAE -12-1		DISAPPROVA		ineer/Que	elity	
. GOVERNMENT A				3	SIGNATURE			DAYE	
DD . 55 1	694						U. J. GOVERNME	AT PRINTING OF	

U. J. GOVERNMENT PRINTING OFFICE (144 0 - 111-04)

MEMCOR RFW 4 CONTRACT DAABO7-76-C-0135 ATTACHMENT "A" AUGUST 11, 1977

The test procedure changes as follows:

On Sheet 4 of 19, Paragraph 8.1.3 has been changed to read:

"8.1.3. Set the Function switch to 5 MC Osc. (Set the Function swit switch to Hor. Osc. position for the A3200A standard reference)."

On Sheet 5 of 19, add to Paragraph 8.2.6:

"Note: At 53 MC, only, the Function switch must be set to the 5 MC Osc. position. (When testing the A3200A module, the Function switch remains at the Hor. Osc. position)."

On Sheet 5 of 19, Paragraph 8.3.2 has been changed to read:

"8.3.2. Set the Function switch to the 5 MC Osc. position. (For the A3200A module set the Function switch to the Hor. Osc. position)."

7.		•		8-11-77			1				
I. ORIGINATOR	NAME AND ADDRES	3					12.				
	MS INC., ME						DEVI	TION		<u>K</u>	WAIVER
41 EAST	PARK DR. H	UNTINGTON,	IN 46	5750			MINO!	, <u> </u>	MAJOR		CRITICAL
	. DESIGNATION				S. BASE LINE	AFFECTED		6. OT	HER SYST	TEMS/C	CONFIGU.
4. MODEL/TYPE		c. 575. DE	51G. d. o	CY/VAIVER NO.	FUNC.	MALLO.	PRO0-	_			NO
	83777			RFW 5	TICNAL	CATED	Lict		YES		, no
7		ONS AFFECTED					DRAWINGS A	_			
	MFR. CODE	\$980./000	. NO.	SCN	MFR. CODE		NUMBER	REV.		NOR.	NO.
e- SYSTEM					00060						
. ITEM					80063	SC-	4-400357	A			
	EVIATION/WAIVER				<u> </u>			110. CO	ATRACT N	WO. 4	LINE ITEM
	Gain Test I	imits						1			C-0135
	TION I TEM NOMENC						CLASSIFICATION	1		70-	0-0137
					12. CD NO.		O. 14. DEFECT				
	et AN/VRC-1				N/A	N/A	XMINO		MAJCR		CRITICAL
Test Pr	ocedure for	Testing	Control of the state of the second	OR TYPE DESIG	17. LOT NO.		19. RECURRE	NG DEV	IATION/Y		
Audio &	Squelch Pr	eamplifier	SC-A-	400357	All	All	MES			X	NO
					21. EFFECT OF						
	curred Abso				Appro	val Nec	essary to	Meet	; Deli	.ver	y Schedi
None	miles cod.	arrown, t	mienrae.	•							
	ON OF DEVIATION	WALVER									
	ms Inc., Me	ALTONO IN CASE OF THE PARTY OF	propose	s to cha	nge the	rain te	st limit	realit	remer	nts	of
	io and Sque										
	present lim										
	uirement is										
Page 3,	Para 8.2.2	Page 4. F	era. 9	O Pages	5,6,7,8,	and 9.					
						, ,					
FT 1122 123											
ZA. NEED FOR	DEVIATION/WAIVER										
			See .	Attachmen	t "A"						
										*	
	•										
25. PRODUCTIO	N EFFECTIVITY BY	SERIAL NUMBER									
25. SHEMITTIN	שלו שוניו נו ודי בו	BIZING SIGNATU	(		TITLE					_	
Mean.	4/ 1/2	~ 0	7/2-7	7	Pr	oject E	ngineer/Q	ualit	T		
			27	. APPOQVAL.	/015A2290VA	16					
•					10.			1			
	PROVAL RECOMEN	060				HOVED			PROVED		
c. GOVERNMENT	ACTIVITY				SIGNATURE				DATE		
				34	8						
DD . 22	1694						U. S. GOVERNME	NT PROF		CX - 12	69 O - 132-093

U. S. COVERNMENT PROFING OFFICE : 1989 0 - 132-093

MEMCOR RFW 5 CONTRACT DAABO7-76-C-0135 ATTACHMENT "A" AUGUST 11, 1977

The radio system test (MIL-R-55099 & MIL-R-55100EL) call for the modules to be tested after the modules are adjusted in the radio (interchange-ability, Group B). The module test limits were set up on modules prior to adjusting in the radio. Since the A4300 module has a very wide gain adjustment and the gain must be adjusted in the radio to compensate for the variations of audio output of the A4200 modules, the proposed change in limits are necessary so that the A4300's may be re-inserted into the radio (without readjustment) to continue the Group C Radio Tests.

The new IC A4200A modules have less audio output, therefore the A4300 must be adjusted for more gain (less input for 2.0V output) for functional operation in the radio. The data below was taken on six radios with the A4300 modules adjusted as noted in the radio for .78V = 0.5dB output in X-mode which is necessary to meet the radio wideband specification paragraph 3.9.1.5 of MIL-R-55100 (EL).

## Preamp Gain Input for 2.0V out

	Silicon A4300A adj. for A4200A	Germanium A4300 adj. for A4200
Radio No.	VRMs	VRMs
1605 3829 18783 18790 19087 18785	.162 .168 .163 .168 .167	.20 .37 .29 .29 .28 .314

	DEVIATION/WALV		DATE PRE	ARED		PROCUE	RING AC	רוויוד	NO.	
(SEE MIL-STD-48	O OR 481 FOR INS	TRUCTIONS)	8-12-7	7						
I. ORIGINATOR N	AME AND ADDRESS			<del></del>		12.5				
E-SYSTE	MS INC., ME	MCOR DIVISION	1				DEVIA	TICN		X WAIVER
		. HUNTINGTON.				1,.	MINOR		MAJOR	CRITICAL
		OR DEVIATION/WA		S. BASE LINE	AFFECTED					EMS/CONFIGU-
e. MODEL/TYPE	83777	c. SYS. DESIG.	REW 6	TFUNC.	TALLO.		PROD-			MS AFFECTED
				FUNC-	CATED		uct		YES	No
7.	MFR. CODE	SPEC./DOC. NO.		1.52	7	DRAWII	NGS A			
e. SYSTEM		3-EC.700C. NO.	SCN	MFR. CODE	NR.	RERMU		REV.		IOR. NO.
. ITEM				80063	SC-A	-400	260	В		
. TEST PLAN					1 SC-A	-400	200	2		
. TITLE OF DEV	REVIATION/WAIVER			<u>"</u>				10. CO	NTRACT N	. A LINE ITES
A8500A	Test Proced	ure Limits						DA	ABO7-	76-C-0135
II. CONFIGURATI	CH ITEM NOMENCLA	TURE		<u> </u>		LASSIFIC		POEFEC	7	
Radio S	et AN/VRC-1	2 RT524, RT2	46	N/A	DEFECT HO.	-	MINOR		MAJOR	CRITICAL
		Testing 16. Past		N/A	N/A				ATION/W	
Transmi	ocedure for	resting	C A 1:00360	All	A71	1	YES	-0 027	A LUNU W	XNO
		Amplifier 5		21. EFFECT ON	DELIVERY S	CHEDUL	Ε			
		rbed by Contr		Approve	l nece	ssary	7 to	meet	deli	very sche
	NTEGRATED LOGIST	C SUPPORT. INTERFA	CE. ETC.							
None	OF DEVIATION WA									
tested	io system t after the m ule test li	est (MIL-R-55 odules are ad mits were set	justed in	the radio	(Inter	chans	reabj	11 to	. Gro	um B).
variati sensiti	ons in the	ust be readjudeviation ser	sitivity o	f the syst	em tes	the r	radio	to fily	allow	for
All										
SUMITTING	ACTI VI TY THORI		G-22	Title	7		-/-	7.4		
رموري	2 Mail	~~ 57	5-77		et Eng	THEE	المراح / ا	-1-1 U/		<u>_</u>
			ET. APPROVAL	DISAPPROVAL						
	POVAL RECOMMENDED			APPROV	ED			DISAP	PROVED	
e. SOVERMENT	CTIVITY			SIGNATURE				-	MIE	
				350						
DD . 22.1	594						7244	T ====	-	Z : 1069 O - 332-0
				- 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				· callet	OF FEE	7 : 1064 Q - 321-0
			Towners Till							

(SEE MIL-STD-480 OR 481 FOR INS	ER		DATE PREP	ARED		PROCUR	NG AC	TIVITY	NO.		
	TRUCTIONS)		8-16-7	7							
E-SYSTEMS INC., MEM						2.	DEVIAT	ION		X WAI	VER
41 EAST PARK DRIVE,	HUNTINGTO	N, IN	46750			1.	MINOR		MAJOR		TICAL
4. DESIGNATION F	OR DEVIATION		EV/BAIVER NO.	5. BASE LINE	AFFECTED					TEMS/CONF	
83777		I	RFW 7	FUNC- TIONAL	CATED		PROD-		YES	NO	
7. SPECIFICATION	S AFFECTED-TE			MFR. CODE		DRAWIN	GS AF	FECTE	D	NOR. NO.	
. SYSTEM	SPEC.700C.	<del></del>	SCH	MFR. COUR	-	UMBER	-	REV.		NOR. NO.	
- ITDA				80063	SC-A	-4003	62	A			
- TEST PLAN											
. TITLE OF DEVIATION/WAIVER			0							NO. & LIN	-
Waiver of 20kc Frequency		onse o	of A8100.	A 11.5MC	Modulat	or		DA	ABO7	-76-c-	3135
11. CONFIGURATION ITEM NOMENCLA				12. CD NO.	13. DEFECT NO	114. DE				N	
Radio Set AN/VRC-12	RT524, R	T246		N/A	N/A		MINOR		MAJOR	CRI	TICAL
Test Procedure for	Testing 14		OR TYPE DESIG	17. LOT NO.	18. QTY	19. RE	CURRIN	G DEVI	ATION		
the 11.5MHz Modulate	or	SC-A-	-400362	All	All		res			X NO	
O. EFFECT ON COST/PRICE	ad her tha	Contra		21. EFFECT OF	gent up	-		-1 -	e +2.	i a Duni	
Cost Incurred Absorb				COUCT	Reur np	OH SP	prov	<u>ar</u> 0	1 611	TS KTM	
None		Enr Acc.									
3. DESCRIPTION OF DEVIATION WA	IVER						-				
8.3.13 via paragrapi paragraph 9.0 pages	h 8.3.14 f	or 201	ke modul		ge 6, a						raph
	h 8.3.14 f	or 201	ke modul	ation, pa	ge 6, a						
paragraph 9.0 pages	nse at 20k MHz module silicon t dulation i 5MHz modul e fall in frequency	or 201 10, and the models which ransis ator. the 20 response	ulation ch was r stors (s ses in t The ri Okc resp nse is w	artion, pa SC-A-400 arcops muce edesigned ee data s he system se in the onse of t ell within	ch more to income at a radio e system the sili.n the 3	than orpor tachm test freq con A	the ate ent when uence 8100 vari	-0.7 the A). usi y re A mo	The module spon dule	variatilation frequise at ;	ion ency sent 20kc
paragraph 9.0 pages  24. NEED FOR DEVIATION WAIVER  The frequency responsable in the 11.5 phase invertion and response at 20kc more germanium A8100 11.  tends to off set the the overall system the MIL-R-55100(EL)  25. PRODUCTION EFFECTIVITY BY SALL	nse at 20k MHz module silicon t dulation i 5MHz modul e fall in frequency paragraph	or 201 10, ar 10 modes which ransis nereas ator. the 20 respon	ulation ch was r stors (s ses in to the riokc response is w.15.2 sy	irops muce edesigned edesigned edeta she system se in the stem test	ch more ito income at radio e system the sili in the 3 c; (see a	than orpor tachm test freq con A .OdB	the ate ent when uenc 8100 vari	-0.7 the A). usi y re A mo	The module spon dule	variatilation frequise at ;	ion ency sent 20kg
The frequency responsation waiver The frequency responsationed in the 11.5 phase invertion and response at 20kc mongermanium A8100 11. tends to off set the the overall system the MIL-R-551CO(EL)  25. PRODUCTION EFFECTIVITY BY SALL	nse at 20k MHz module silicon t dulation i 5MHz module fall in frequency paragraph	or 201 10, ar 10 modes which ransis nereas ator. the 20 respon	ulation ch was r stors (s ses in to the riokc response is w.15.2 sy	irops muce designed at a special within the stem test	ch more ito income at radio e system the sili in the 3 c; (see a	than orpor tachm test freq con A .OdB	the ate ent when uenc 8100 vari	-0.7 the A). usi y re A mo	The module spon dule	variatilation frequise at ;	ion ency sent 20kc

" - CONTRACTO SOUTH DESIGN : 180 0 . 121-103

DD. 07.1594

MEMCOR RFW 7 CONTRACT DAABO7-76-C-0135 ATTACHMENT "A"

# A8100A 11.5MHz MODULE FREQUENCY RESPONSE Tested on Gov. Gage NR 323854-1 per SC-A-400362A

A8100A Modules		cy Respon Modulation			Input	
from Radio S/N	500	lk	<u>3k</u>	10k	20k	(kc)
19087	8.75	8.70	8.8	8.6	8.0	-0.7
18790	9.4	9.4	9.3	9.0	8.2	-1.2
18793	8.7	8.7	8.7	8.3	7.8	-0.9
18785	9.3	9.4	9.3	9.15	8.4	-1.0
1605	9.4	9.4	9.3	9.1	8.2	-1.2
18787	9.3	9.3	9.2	9.0	8.3	-1.0

### XMTR AUDIO RESPONSE - WIDEBAND SYSTEM TEST Per Para. 3.10.15.2 of MIL-R-55100D(EL)

### Using A8100A with Silicon Transistor and Phase Inverted

	install and the second	Mc Mc	odulation odulation	Frequency	(cps)		
Radio S/N	Dial Test Frequency	<u>500</u>	lk	<u>5k</u>	10k	20k	盘
19087	30.00 54.00	9.3 9.1	9.2 9.0	9.6 9.2	9.7 9.6	11.7 9.2	2.1
18790	30.00 54.00	8.75 8.5	8.7 8.5	9.0 8.7	9.2 9.0	11.2	2.2
18793	30.00 54.00	8.6 8.2	8.5 8.2	8.6 8.2	8.8 8.6	10.4 8.2	1.7
18785	30.00 54.00	9.2 9.2	9.2 9.1	9.4 9.3	9.8 9.4	11.4 9.0	1.8
1605	30.00 54.00	8.6 8.3	8.6 8.3	8.6 8.5	8.9 8.7	10.5	1.7
18787	30.00 54.00	8.8 8.7	8.8 8.7	8.8 8.8	9.4 8.9	10.7 8.4	1.7
Using Ger	rmanium A8100 (o	riginal n	nodule of	GFE radio	)		
18787	30.00 54.00	9.6 9.25	9.6 9.2	9.6 9.4	10.2 9.8	13.0	2.6

6750	2. MFR. CODE	3. CLASS OF ECP	14	
5750			Ja. Just.	S.PRIORIT
5750	83777		CODE	
	7. DRA	NINGS AFFECTED		1
MFR. CODE		NUMBER		REV.
80063	SC-A-40	00603		C
00003	- DO-R-40	,0093		1-
		I 9. CONTRACT NO	A LINE IT	Dy.
e Change				
		III. IN PRODUCTION		
1 R442		XYES		
	1 37498	19-D		
acceptance li	mit for the	e 1.6V settin	S	
18. EFFECT	ON PRODUCTION DE	ELIVERY SCHEDULE		
N/A				
		•		
20. ESTIMAT	ED KIT DELIVERY	SCHEDULE		
N/A				
	-			
	iest Frain	an/Ougliter		
		er/ wattruy		
ROVAL/DISAPPROVA	<u> </u>			
ISLONATION		0475		
		UA!		
354				
			0P0 : 1	DOD 0-130-0
	requests the 9.4.1 as fol acceptance line acce	80063 SC-A-40  Change  R442  13. PART NO. 0 37498  requests the approval to 9.4.1 as follows: acceptance limit for the acceptance limit for the acceptance limit for the second with the secon	MFR. CODE NAMEER  80063 SC-A-400693  Change DAABO7-76  II. IN PRODUCTION  X YES  13. PART NO. OR TYPE DESIGNATION  374989-D  requests the approval to change the 9.4.1 as follows: acceptance limit for the 1.4V setting acceptance limit for the 1.6V setting accep	SOO63   SC-A-400693

MEMCOR ECP 16 CONTRACT DAABO7-76-C-0135 ATTACHMENT "A" Sheet 1 of 1

#### Need For Change (Block 15)

Memcor is unable to consistently obtain a minimum frequency shift of 60kHz, with a frequency shift setting of 1.4V and 1.6V, when testing the Al500A module @ 41.500MHz on the Government Gage Test fixture.

Circuit changes to bring these readings within the present requirements, would cause the 64.410MHz (+) frequency shift requirements to be out of tolerance, thereby necessitating degradation of the tracking alignment of the module; or, a tolerance change for the (+) frequency shift requirements @ 64.410MHz.

Allowing these two (2) limit changes will not affect the overall performance of the module, and the radio will still meet the minimum sensitivity requirement of 450kHz when 1.5 VDC is applied to the frequency shift circuit.

## NOTICE OF REVISION (NOR)

RIGINATOR NAME AND ADD	RESS		DATE	M/R. COOK	NOR. NO.
-SYSTEMS INC	MEMCOR DIVISION		0 15 55		
1 EAST PARK DRI	VE, HUNTINGTON, IN	46750	8-15-77	83777	105
THE OF DOCUMENT			3. wa. cood 80063	4. SOCHEN	400693
est Procedure -	Government Gage T.F		S. REVISION	LETTER	-400693
		•		C I'men N/A	A ECP 16
	SYSTEM TO WHICH ECP APPLIES				
adio Set AN/VRC	-12				
ESCRIPTION OF REVISION					
nange the minim	um acceptance limits	of step 9.4.1 a	s follows:		
	Freq. Shift	Acceptance	74-44-		
	Setting	Acceptance	Limits		
	Decorne	Minimum	Maximum		
	1.4	57	120		
	1.6	55	120		
		•			
	a Tuic are	TION FOR GOVERNMENT			-
ca cat		TION FOR GOVERNMENT	UZE ONLY		
EXISTING COCUMENT SUPPLEM	12 CAN IAN E SINE AS CALE	CUMENT WEST IE RECEIVED SEFO	E CUSTOOLAN OF	HASTER DOCUMENT	
HOR MAY SE USED IS HAMPFA	TURE. MARGAETIE	ER MAY INCOMPORATE THIS CHAN	M. ICYLOIAS ISA	FURNISH REVISED	mach and and

THEVISION COMPLETED (SIGNATURE)

356

DD . 22. 1695

IG. ACTIVITY ACCOMPLISHING REVISION

# A1500 A

1.0T NO .	TEST FREQ.	OUTPUT VO	DLTAGE (MV)	TUNER FR	EQ. CONT.	CRS CUTPUT (MV)
		MIN	MAX	MIN	MAX	MIN
SAMPLE NO.	41.50 MHz	80	270	987	013	280
	53.50 MHz	80	270	207	233	280
36	64.41 MHz	80	270	407	433	280
	41.50	170	2	0	00	450
	53.50	15.	-		24	530
* ******	64.41	12	0	4	3/	520

FREQ. SHIFT SETTING	618111	S (KC)	41.50 M	FREQUENCY SHIFT SENSITIVITY 41.50 MHz S3.50 MHz			64.41 1Hz		
	MIN	MAX	(-)	(+)	(-)	(+)	(-)	(+)	
0	60	120							
.2	60	120	73	76	80	84	92	95	
.4	60	120	7/	79	78	86	89	100	
.6	60	120	68	83	74	91	86	102	
.8	60	120	65	86	73	94	83	107	
1.0	60	120	64	90	70	98	80	112	
1.2	60	120	61	94	67	103	73	117	
1.4 ·	60	120	60	100	66	103	76	123	
1.6	60	120	58	105	64	114	74	128	

GOU'T GAGE

MEMCOR ECP 16 CONTRACT DAABO7-76-C-0135

# A1500 A

LOT NO.	TEST FREQ.	OUT	PUT VOLTA	KGE (MV)	TUNER FR	EQ. CONT.	CRS CUT	TPUT (MV)
		MIN		MAX	MIN	MAX	MIN	
SAMPLE NO.	41.50 MHz	30		270	987	013	230	
	53.50 MHz	. 80		270	207	233	280	
.11.	64.41 MHz	: 80		270	407	433	280	
46	41.50		160		00	12	49	30
	53.50		160		22	25-	57	
	64.41		115	-	4	3/	55	
	MIN	MAX	(-)	(+)	(-)	(+)	(-)	(+)
SETTING			41.50	NCY SHIFT SE	53.50	MHz	64.41	Miz
0	60	120						
.2	60	120	78	81	84	88	97	100
.4	60	120	75	84	82	92	93	104
.6	60	120	72	87	79	95	5/	108
.8	60	120	70	91	76	99	87	112
1.0	60	120	67	96	74	103	94	117
1.2	60	120	65	100	72	108	83	122
1.4 .	60	120	64	105		114	80	128
1.6	60	120	61	111	68	119	77	170

#### A1500 A

LOT NO.	TEST FREQ.	OUTPUT VO	DLTAGE (MV)	TUNER FE	EQ. CONT.	CRS CUTPUT (MV)
		MIN	MAX	MIN	MAX	MIN
SAMPLE NO.	41.50 MITZ	30	270	987	013	230
	53.50 MHz	80	270	207	233	280
48	64.41 MHz	80	270	407	433	280
	41.50	15	0	0	00	460
	53.50	/.5	0	2	23	530
••••	64.41	11	0	4	3/	570

SETTING			41.50 MI	FREQUENCY SHIFT SENSITIVITY 41.50 MHz 53.50		MHz 64.41 MHz		
	MIN	МАХ	(-)	(+)	(-)	(+)	(-)	(+)
0	60	120						
.2	60	120	177	80	85	89	97	101
.4	60	120	74	83	82	91	94	104
.6	60	120	72	86	80	95-	91	103
.8	60	120	70	89	76	99	88	_//2
1.0	50	120	67	93	75	103	86	117
1.2	60	120	65	98	72	107	83	122
1.4 .	50	120	64	102	7/	113	81	127
1.6	60	120	65	108	68	118	78	124

DWg SC-A-400693 C (*UNADU) /3-C-UUU!) MEMCOR ECP 16
CONTRACT DAABO7-76-C OI

NOTE: STANDARD MODULE PERFORMANCE OF FAGES 22 THROUGH 26 IS APPLICABLE WHEN USING FIXTURE NO. 323859-3.

8.2.32 Set the test fixture set FREQ SHIFT POLARITY switch in the plus (4) position.

8.2.33 Repeat steps 8.2.29, 8.2.30 and 8.2.31. The subtraction order will be reversed and the frequency shifts will be decreasing.

### 8.3 TEST COMPLETION

- 8.3.1 Set the test fixture set TEST switch in OFF position.
- 8.3.2 Remove the Tuner Oscillator board from the test fixture set.
- 8.3.3 Disconnect connector P1004 form connector J1004.

# 9.0 ACCEPTANCE LIMITS AND CONTROL STANDARD PERFORMANCE

### 9.1 OUTPUT VOLTAGE

### VOLTAGE (MV)

FREQUENCY		NCE LIMITS	CONTROL STANDARDS		
SETTING (MC)	MINIMUM	MAXIMUM	NR.1	NR. 2	
41.500	80	270	125	115	
53 .500	80	270	210	170	
53 .500	80	270	130	110	

#### 9.2 OUTPUT FREQUENCY

FREQUENCY		ACCEPTANCE LIMITS TUNER FREQUENCY CONTROL.		TANDARDS
0211110	TONER PREQUEN	CI CONTROL.		
(MC)	MINIMUM	MAXIMUM	NR.1	1. F.
41.500	987	013	000	000
53.500	207	233	222	222
41.500 53.500 64.4/0	407	433	440	420
				1-1

# 9.3 CRS OUTPUT

# CRS OUTPUT VOLTAGE (MV)

TUNER	ACCEPTANCE LIMIT	CONTROL.	STANDARDS
FREQUENCY SETTING (MC)	MINIMUM	NR.1	NR.2
41.500	280	520	480
53,500	. 280	600	560
64.4/0	280	640	590

### 9.4 SHIFT SENSITIVITY, 41,500 MC

# 9.4.1 FREQ SHIFT POLART Y(-) POSITION, 41.500 MC

# FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT	ACCEPTANO	CE LIMITS	CONTROL	STANDARDS
SETTING	MINIMUM	MUMIXAM	NR.I	NR.2
0	·	•		• • •
.2	60	120	84	87
.4	60	120	82	83
, .6	60	120	80	8/
.8	6.0	120	77	77
1.0	60	120	74	76
1.2	60	120	73	73
1.4	57	120	TEST LIMET	TEST AMIT
1.6	55	6120		

UPPER LEST LIMIT: 41,975 MC

# 9.4.2 FREQ SHIFT POLARITY (4) POSITION, 41.500 MC

# FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT	ACCEPTAN	CE LIMITS	CONTRO	L STANDARDS
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
0				
2	60	120	90	90
-14	60	1204	92	94
6	60	120	96	98
. 8	. 60	126	99	102
1.0	60	126	104	107
1.2	60	126	110	4/2
1.4	60 -	126	TEST LIMIT	TEST LIMIT
1.6.	60	126		

LOWER TEST LIMIT: 41.025 MC

### 9.5 SHIFT SENSITIVITY, 53.500 MC

# 9.5.1 FREQ SHIFT POLARITY (-) POSITION, 53.500 MC

# FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT	ACCEPTAN	CE LIMITS	CONTRO	L STANDARDS
SETTING	MINIMUM	MAXIMUM	NR.I	NR.2
0	•			
.2	60 .	120	92	93
.4	60.	120	89	88
6	60	120	85	86
8	60	120	83	84
1.0	. 60	120	81	80
1.2	60	120	78	7.9
1.4	60:	120	TEST LIMIT	TEST LIMIT
1.6	60	120	•••	

UPPER TEST LIMIT: 53.975 MC

# 9.5.2 FREQ SHIFT POLARITY (4) POSITION, 53.500 MC

### FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT	ACCEPTAN	CE LIMITS	CONTR	OL STANDARDS
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
0		_		
2	60	120	95	95
. 4	60	120	99	99
.6	60	120	102	102
. 8	60	126	106	107
1.0	60	126	1//	111
1.2	60	126	116	116
1.4	60	126	TEST LIMIT	TEST LEMIT
1.6	60	126	•••	• • •

LOWER TEST LIMIT: 53.025MC

#### 9.6 SHIFT SENSITIVITY, 64.410 MC

### 9.6.1 FREQ SHIFT POLARTIY (-)POSITION, 64.4/0 MC

# FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT	ACCEPTAN	CE LIMITS	CONTR	OL STANDARDS	
SETTING	MUMINIM	MAXIMUM	NR.1	NR.2	
0	•				
.2	60	120	101	103	
.4	60	120	99	100	
6	60	120	96	97	
.8	60	120	93	96	
1.0	60	120	91	91	
1.2	60	120	88	89	
1.4	60	120	TEST LIMIT	TES. LIMIT	
1 1.6	60	120			

UPPER TEST LIMIT: 64.885MC

### 9.6.2 FREQ SHIFT POLARITY (+) POSITION, 64.410 MC

#### FREQUENCY SHIFT, DECREASE (KC)

FREQ SHI FT	ACCEPTANCE LIMITS			CONTR	CONTROL STANDARDS	
SETTING	MINIMUM	MAXIMUM		NR.I	NR.2	
. 0					·	
2	60	120		107	107	
4	60	120		110	710	
. 6	60	120		1.14	114	
8	60	126		1.17	118	
1.0.	60 :	126		122	123	
1.2	60	126	TES'	LIMIT	TEST LIMIT	
1.4	60	12%				
. 1.6	60	125				

LOWER TEST LIMIT: 63,935 MC

### 10.0 CALIBRATION INSTRUCTIONS FOR TEST FIXTURE SET

10.1 Check the test fixture set using the Tuner Oscillator board nominal control standard modules furnished with the test fixture set. Test according to paragraphs 8.1 to 8.2. Perform step 10.2 if required.

#### 10.2 CALIBRATION

- equivalent, to TP1.
  - 10.2.2 Set the test fixture set TEST switch in ON position
- 10.2.3 Set the test fixture set FREQ SHIFT POLARITY switch in the plus (+) position and ro tate the FREQ SHIFT switch to the 1.6 position.
- 10.2.4 Adjust the test fixture set CONTROL VOLTAGE potentionmeter for an indication of +1.60 volts on the multimeter.
  - 10.2.5 Set the test fixture set TEST switch in OFF position

	CHANGE PROPOSAL (SHORT FORM) DATE PRE SEI FOR INSTRUCTIONS) 8-15-7		Memcor ECP 17	PROCURING ACTIVE	ITY NO.	
	NAME AND ADDRESS		2. MFR. CODE	3. CLASS OF ECP	4. JUST.	S.PRICRI
L-SYSTEM	S INC., MEMCOR DIVISION PARK DRIVE, HUNTINGTON, IN 46750		83777			
41 DASI						
MFR. CODE	6. SPECIFICATIONS AFFECTED  SPECIFICATION/DOCUMENT NO.	MFR. CODE	7. DRA	NINGS AFFECTED		REV.
1	•	1		Woma Ch		1
	N/A	80063	SC-A-L	100368		A
TITLE OF CH	MGE			9. CONTRACT NO.	& LINE IT	EM
A6300A -	Government Gage Test Procedure Char	nge		DAABO7-7	76-c-013	35
. CONFIGURAT	ION ITEM NOMENCLATURE			11. IN PRODUCTIO	N	
	t AN/VRC-12 RT246 and RT524		113 BART NO. C	X YES	NO	
	or - Buffer, Oscillator Board		37499			
. DESCRIPTIO			31433	,,,		
accepta	ns Inc., Memcor Division hereby required limits of SC-A-400368 step 9.3.1 30.000MHz - change the minimum accept from 48 to 45	as follow	₹S:			
	- change the minimum acception 48 to 45.	otance lim	its for the	e 1.0V settir	æ	
S. NEED FOR C						
	See Attac	chment "A"				
. EFFECT ON	ASSOCIATED EQUIPMENT					
None						
. PRODUCTION	EFFECTIVITY BY SERIAL NO.	18. EFFECT O	N PRODUCTION DE	LIVERY SCHEDULE		
NT / A						
N/A		N/A				
. RECOMMENDE	O RETROFIT EFFECTIVITY	20. ESTIMATE	D KIT DELIVERY	SCHEDULE		
None		N/A				
	COSTS/ SAVINGS	.,,				
2. SUBMITTING	ACTIVITY AUTHORIZING SIGNATURE	TYTTLE				
1 00	nel Kitten 8-15-77		ect Engine	er/Quality		
7	23. APPROVAL			-, 4,		
OVERNMENT ACT	IVITY	SIGNATURE		DAT	E	
	3	65				
\D	1603				400	M+ 0-122-
DD . 32.	1693				<b>20</b> : 11	<b>**</b> 0 –

MEMCOR ECP 17 CONTRACT DAABO7-76-C-0135 ATTACHMENT "A" Sheet 1 of 1

# Need For Change (Block 15)

Memcor is unable to consistently obtain a minimum frequency shift of 48kc, with a frequency shift setting of .8V and 1.0V, when testing the A6300A module at 30.000MHz on the Government Gage Test Fixture #323860.

Circuit changes to bring these readings within the present requirements, would cause the 52.910MHz (+) frequency shift requirements of some modules to be out module; or, a tolerance change for some of the (+) frequency shift requirements @ 52.910MHz.

Allowing these (2) two limit changes will not affect the overall performance of the module. The module will still meet the minimum sensitivity requirements of 225 to 600kc per volt, as required on prints SM-B-416421 and

RIGINATOR NAME AND ADDRE	revision described below		DATE	MFR. CODE	NOR. NO.
E-SYSTEMS INC., 1	MEMCOR DIVISION				
ITLE OF DOCUMENT	VE. HUNTINGTON, IN	46750	8-15-77	83777	106
TILE OF DOCUMENT			8006	SC-A	-40036
Test Procedure -	Gov. Gage T.F.		S. REVISION	A I N/A	ECF
ONFIGURATION ITEM (OR SY	STEM TO WHICH ECP APPLIES		1.0000	A N/A	ECF
Radio Set AN/VRC-					
ESCRIPTION OF REVISION					
change the minimu	m acceptance limits	of step 9.3.1 as f	ollows:		
	Freq. Shift	Acceptance	T.i mi + e		
	Setting		Maximum		
	.8	45	130		
	1.0	45	130		
	9. THIS SECT	ION FOR GOVERNMENT USE	ALI S		
CA COLE					
EXISTING DOCUMENT SUPPLEMENT NOR MAY BE USED IN MANUFACTU	IRE. AEVISED DOCU	MENT MUST BE RECEIVED BEFORE MAY INCOMPORATE THIS CHANGE.	CUSTODIAN OF REVISION AND	MASTER DOCUMENT !	MALL MARE

DD . 22. 1695

# A 6300A

GOV'T GAGE

MEMCOR ECP 17

CONTRACT DAABO7-76-C-0135

				KEADING-				ency.
			min(mv)		MIN	MAX	KER	DING
		OMER		79	987	013	00	4
SAMPLE		1 114 2	6.0	80	15' 7	2/3	20	0
NO	52.11	Mr.	62	76	403	433	42	20
#2	53.00	111 42	6.6	99	957	013	99	
	63.91	MNZ	68	91	187	2/3	20	
	75.71	1142	70	73	403	433	42	
FREQ	LIM				-auene)			П
SHIFT	MIN.	MAX	30.00-	50.00 /	40.41-	4-0:41+	52.91-	5 .
. 2	93	130	57	59	72	73	90	93
-4	45	130	53	60	69	77	87	94
6	48	130	53	63	68	80	85	99
8	98	130		64	65	82	83	104
1.0	48	130	47	68	63	85	80	106
			53.00-	53.001	63,91 -	63911	75.91 -	7.
. 2.	55	130	6/	64	74	77	90	92
4	55	130	6/	65	72	79	87	94'
.6.	55	130	59	68	70	8/	85	97
8	55	130	58	69	69	87	82	100
1.0	55	130	57	71	67	88	83	103
					368			

A 6300A

MEMCOR ECP 17 CONTRACT DAABO7-76-C-0135

			7,65		CONTRACT DAAL	307-76-C-013	5 .
TES	17				OUTPUT.	FREGUE	Ney
		min(mv)		MIN	MAX		DING-
50,00	2410	4.8		987	013	000	4
40.9	1 114 2	60	84	187	2/3		
5:11	Mr. 5	62	78	103	433		
		6.6	100	957	013		
1		68	88	157	21.3		
75.11	1142	70	67-100	403	433	42	
LIM	175	7	TEST FRO	GUENE	,		
MIN.	MAX	30.00 -	50.00 f	40.41-	4-0.91+	5291-	5
98	150	53	54	65	67	79	8.
43	130	51	56	62	69	76	- 6
	130	49	58	61	71		8
	130	48	60	59	73		90
98	130	47	62_	56	75	69	7:
		53.00-	53.001	63191 -	63914	75.91-	7.
55	130	65	67	_78	80	92	9
55	130	64	69	75	82	90	9
55	130	61	70	74	- 25	87	10
55	130	61	73	72	87	86	10
55	130	59	75	70	90		10
	50.00 40.9 53.21 53.00 63.91 75.11 41m MIN. 48 48 48 48 55 55	48     130       48     130       48     130       48     130       48     130       55     130       55     130       55     130       55     130       55     130	FREQ min(mv)  30,00 m z 48  40.91 m z 60  53.00 m n z 66  63.91 m n z 68  75.11 m n z 70  LIMITS 70  LIMITS 70  48 130 51  48 130 49  48 130 48  48 130 48  55 130 61  55 130 61  55 130 61	### 130 48 60 13000 48 130 48 130 48 130 48 60 55 130 61 70 55 130 61 70 73	50,00 M R 2 48 84 987  40.91 M R 2 60 84 187  53.00 M R 2 66 100 987  63.91 M R 2 68 88 187  75.11 M R 2 70 67-100 403  LIMITS TEST FREQUENCE)  AND MAX 30.00 - 50.00 + 40.91-  48 130 51 56 62  48 130 49 58 61  48 130 48 60 59  48 130 48 60 59  48 130 48 60 59  55 130 64 69 75  55 130 61 70 74  55 130 61 70 74  55 130 61 70 74	TEST FREQUENCY  MIN. MAX  48 84 987 013  40.91 m+2 60 84 187 213  53.00 m+2 66 100 987 013  63.91 m+2 68 88 187 213  75.41 m+2 70 67-100 403 433  LIMITS TEST FREQUENCY  MIN. MAX 30.00 50 67  48 130 49 58 61 71  48 130 48 60 59 73  48 130 48 60 59 73  48 130 48 60 59 73  48 130 48 60 59 73  55 130 64 69 75 82  55 130 64 69 75 82  55 130 61 70 74 85	TEST FREQUENCY  AND MAX READ NO. 1877 213 200 100 100 100 100 100 100 100 100 100

# GOVT GAGE

# A 6300A

MEMCOR ECP 17 CONTRACT DAABO7-76-C-0135

EQUENCY.
KERDING
003
200
420
994
198.
426
5.9
98
10,
105
114
115
7- 754
96
9,
98
10'
105

# GOV'T GAGE A 6 300A

MEMCOR ECP 17 CONTRACT DAABO7-76-C-0135

LOT NO.	TES	COR		READING	1	OUTPUT,	FREGUE	Ney.
			MIN (MV)	KEND1.0 G-	MIN	· MAX	7'61:0	126
		5 4 19 0	48	66_	987	013	00	0
SAMPLE	40.9	1 114 2	60	75	18'7	2/3	19	8
NO_	52.91	1100	63	75	103	433	41	
4	1	11112	6.6	100	957	013	99	6
11		MAZ	68	98	187	2/3	19	
	75.91	1147	70	86	903 .	433	41	
FREQ	LIM			TEST FRO	- QUENC,			
	MIN.	MAX	30,00 -	50.00 F	40.41-	9-0.91+	52.91-	52.
. 2	45	130	63	64	79	81	101	105
	45	130	60	67	77_	84	98	109
.6	43	130	58	70	14	88	95	1/3
-8	198	130	57	72	70	9/	92	117
1.0	48	130	55	75	_70	94	89	121
			53.00-	53.001	(3.91 -	63914	75.91-	75
2	55	130	67	69	84	86	100	10.
-4	55	130	65	70	82	88		10
	55	130	64	73	79	90	95	11
.8	55	130	63	75-	77	94	97	11
1.0	55	130	60	77		96	91	11:

NOTE: Standard Module performance on Pages 11 thru 15 is applicable when using Fixture 323864-1

#### 8.3 TEST COMPLETION

- 8.3.1 Set TEST switch to OFF.
- 8.3.2 Remove the Oscillator-Buffer Oscillator board under test from the test fixture set.

# CAUTION: HANDLE OSCILLATOR-BUFFER OSCILLATOR BOARDS WITH CARE. CRITICAL PARTS ARE EXPOSED

8.3.3 Unplug connector P6002 from connector J6002.

#### 9.0 ACCEPTANCE LIMITS AND CONTROL STANDARD PERFORMANCE

#### 9.1 OUTPUT LEVEL.

FREQ SETTING (MC)	ACCEPTANCE (MV) MINIMUM		CONTROL STANDARDS OUTPUT LEVEL (MV) NR.1 NR.2		
30 000	40	122	128		
30.000	48 60	. 131	139		
	66	136	147		
	68	125	137		
75.910	70	116	128		
52.910 53.000 63.910 75.910	68	125			

#### 9.2 OUTPUT FREQUENCY

FREQ SETTING	ACCEPTA	NCE LIMITS	CONT	ROL STANDARDS
(MC)	OSCILLATO	OR-BUFFER	NR:1	. NR.2
	FREQUENC	Y CONTROL		
والمحاجب والمتار فيهوم	MINIMUM	MAXIMUM		
• *				
30.000	987	. 013	998	
40.910	187	213	199	199
52.910	403	433	419	419.
. 53.000	. 987	013	997	997
63.910	187	213	198	196:
75.910	403	433	421	419

### 9.3 SHIFT SENSITIVITY, 30.000 MC

# 9.3.1 FREQ SHIFT POLARITY (-) POSITION, 30.000 MC

# FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT SETTING	ACCEPTANC MINIMUM MA	CONTROL ST AND ARDS			
0					
	48	130	62	62	
. 4	48	130	60	60	
.6	48	130	59	58	
.8	4548	130	56	57	
1.0	4548	130	55	55	

# 9.3.2 FREQ SHIFT POLARITY (+) POSITION, 30.000 MC

# FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT SETTING		NCE LIMITS	CONTROL ST	
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
0				
.2	48	130	64	64
.4	48	130	67	66
.6	48	130	68	69
.8	48	130	72	72 .
1.0	48	130	74	74

#### 9.4 SHIFT SENSITIVITY, 40.910 MC

### FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT	ACCEPTA	NCE LIMITS	CO.	NTROL STAND	ARDS:
SETTING	MINIMUM	MAXIMUM	NR.		NR.2
0	•				-
.2	48	130	82		81
.4	.48	130	. 79		79
.6	48	130	. 77		76
.8	48	130	74		74
1.0	48	130 •	73		71.

^{9.4.1} FREQ SHIFT POLARITY (-) POSITION, 40.910 MC

#### MEMCOR ECP 17 CONTRACT DAABO7-76-C-0135

# 9.4.2 FREQ SHIFT POLARITY (+) POSITION, 40.910 MC

# FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT SETTING	ACCEP MINIMUM	TANCE LIMITS MAXIMUM	CONTROL NR.1	STANDARDS NR.2
. 0		<u>-</u>		
.2	48	130	84	84
.4'	48	130	88	86
.6	48	130	90	89
8	48	130	94	93
1.0	48	130	97	95

### 9.5 SHIFT SENSITIVITY, 52.910 MC

# 9.5.1 FREQ SHIFT POLARITY (-) POSITION, 52.910 MC

# FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT	ACCEPT	ANCE LIMITS	CONTRO	LSTAN	DARDS
SETTING	MINIMUM	MAXIMUM	NR.1		NR.2
. 2	48	130	108		100
.4	48	130	106		108
.6	48	130	102		.102
.8	. 48	130	99		98
1.0	48	130	97		96

# 9.5.2 FREQ SHIFT POLARITY (+) POSITION, 52.910 MC

# FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT	ACCEPTA	NCE LIMITS	CONTROL	STANDARDS
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
. 0		•		
2	48.	130	112	112
.4	48	130	116	.115
.6	48	130	120	119
	48.	130	124	123
1.0	. 48	130	128	127

# Dwg SC-A-400368 A (*DAAb1)5 73-C-0001)

MEMCOR ECP 17 CONTRACT DAABO7-76-C-0135

#### 9.6 SHIFT SENSITIVITY, 53.000 MC.

# 9.6.1 FREQ SHIFT POLARITY (-) POSITION, 53.000 MC

### FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT SETTING	ACCEPT MINIMUM	ANCE LIMITS MAXIMUM	CONTE	ROL. STANDARDS NR.2
.2.	55	130	69	70
.4		130		
6	55	130	66	66
.8	55	130	64	66
1.0	55	130	62	64

# 9.6.2 FREQUENCY SHIFT POLARITY (+) POSITION, 53.000 MC

### FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT	ACCEP	TANCE LIMITS	CONTROL	STANDARDS
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
0		<u>-</u>		
.2	55	130	70	72 -
.4	55	130	72	73
.6	55	130	74	75
.8	55	130	76	68
1.0	55	130	77	80

## 9.7 SHIFT SENSITIVITY, 63.910 MC

### 9.7.1 FREQ SHIFT POLARITY (-) POSITION, 63.910 MC

#### FREQUENCY SHIFT, INCREASE (KC)

FREQ SHIFT	ACCEPT	ANCE LIMITS	CONTROL ST	TANDARDS
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
0				
2	. 55	130	87	90
4	55	130	85	87
.6	55	130	82	85
.8	55	130	81	84.
1.0	55	130 -	79	82

# 9.7.2 FREQ SHIFT POLARITY (+) POSITION, 63.910 MC

# FREQUENCY SHIFT, DECREASE (KC)

FREQ SHIFT	ACCEPTA	ANCE LIMITS	CONTROL	TANDARDS
SETTING	MINIMUM	MAXIMUM	NR.1	NR.2
.2	55	130	88	91
.4	55	130	91	95
.6	55	130	94	97
. 8	55	130	96	99
1.0	55	130	. 99	102

### 9.8 SHIFT SENSITIVITY, 75.910 MC

# 9.8.1 FREQ SHIFT POLARITY (-) POSITION, 75.910 MC

# FREQUENCY SHIFT, INCREASE (KC)

ACCEPT	ANCE LIMITS		CONTR	OL STAND	ARDS
MINIMUM	MAXIMUM		NR.1		NR.2
-	<u>-</u>				_
55	130		106		110
55	130		104		107
55	130		101		104
55	130		99 ·		102
55	130		97		100
	MINIMUM  55 55 55 55	55 130 55 130 55 130 55 130	MINIMUM MAXIMUM	MINIMUM MAXIMUM NR.1	MINIMUM MAXIMUM NR.1  55 130 106 55 130 104 55 130 101 55 130 99

# 9.8.2 FREQ SHIFT POLARITY (+) POSITION, 75.910 MC

# FREQUENCY SHIFT, DECREASE (KC)

ACCEPTA	ANCE LIMITS	CONTRO	LSTANDARDS
MINIMUM	MAXIMUM	NR.1	NR.2
		•	•
55	130	109	112
55	130	112	
55	139	116	118
55	130	118	122
55	130	121	. 125
	MINIMUM - 55 55 55	55 130 55 130 55 130 55 130	MINIMUM MAXIMUM NR.1  55 130 109 55 130 112 55 130 116 55 130 118

### APPENDIX F

DISTRIBUTION LIST FOR TECHNICAL REPORTS

#### DISTRIBUTION LIST FOR TECHNICAL REPORTS

101	DEFENSE DOCUMENTATION CENTER ATTN: DDC-TCA
	CAMERON STATION (BLDG. 5)
*012	ALEXANDRIA, VA 22314
102	DIRECTOR
	NATIONAL SECURITY AGENCY ATTN: TDL
001	
001	FUNT GEORGE G. MEADE, MD 20755
103	CODE R123, TECH LIBRARY DCA DEFENSE COMM ENGRG CTR
	1860 WIEHLE AVE
001	RESTON, VA 22090
104	DEFENSE COMMUNICATIONS AGENCY
	TECHNICAL LIBRARY CENTER
	CODE 205 (P. A. TOLOVI)
001	
001	WASHINGTON, DC 20303
200	OFFICE OF NAVAL RESEARCH
	CCDR 427
001	ARLINGTON, VA 22217
203	GIDEP ENGINEERING & SUPPORT DEPT
	TE SECTION
	PO BOX 398
001	NORCO, CA 91760
	10100, 411 72,00
205	
	NAVAL RESEARCH LABORATORY
	ATTN: CODE 2627
001	WASHINGTON, DC 20375
206	COMMANDER
	NAVAL ELECTRONICS LABORATORY CENTER
	ATTN: LIBRARY
001	SAN DIEGO, CA 92152
207	CDR. NAVAL SURFACE WEAPONS CENTER
	WHITE OAK LABORATORY
	ATTN: LIBRARY, CODE WX-21
001	SILVER SPRING, MD 20910

^{*} Decrease to 2 copies if report is not releasable to public. See ECOMR 70-31 for types of reports not to be sent to DDC

210	COMMANDANT, MARINE CORPS HQ. US MARINE CORPS ATTN: CODE LMC
002	WASHINGTON, DC 20380
211	HQ. US MARINE CORPS ATTN: CODE INTS
001	WASHINGTON, DC 20380
212	COMMAND, CONTROL & COMMUNICATIONS DIV DEVELOPMENT CENTER MARINE CORPS DEVELOPMENT & EDUC COMD
001	QUANTICO, VA 22134
215	NAVAL TELECOMMUNICATIONS COMMAND TECHNICAL LIBRARY, CODE 91L 4401 MASSACHUSETTS AVENUE, NW
001	WASHINGTON, DC 20390
217	NAVAL AIR SYSTEMS COMMAND CODE: AIR-5332
004	WASHINGTON, DC 20360
	AUL/LSE 64-285 MAXWELL AFB, AL 36112
301 001	ROME AIR DEVELOPMENT CENTER ATTN: DOCUMENTS LIBRARY (TILD) GRIFFISS AFB, NY 13441
304	AIR FORCE GEOPHYSICS LAB L.G. HANSCOM AFB
001	ATTN: LIR BEDFORD, MA 01730
307	HQ ESD (DRI) L. G. HANSCOM AFB
001	BEDFORD, MA 01731
310	HQ. AFCS ATTN: EPECRW MAIL STOP 105B
001	RICHARDS-GEBAUR AFB, MO 64030
312	HQ. AIR FORCE ELECTRONIC WARFARE CENTER ATTN: SURP
002	SAN ANTONIO, TX 78243

314	HQ. AIR FORCE SYSTEMS COMMAND ATTN: DLCA ANDREWS AFB
001	WASHINGTON, DC 20331
403	CDR. MIRCOM REDSTONE SCIENTIFIC INFO CENTER ATTN: DRCP-CFE
001	
406	COMMANDANT US ARMY AVIATION CENTER ATTN: ATZQ-D-MA
003	
408	COMMANDANT US ARMY MILITARY POLICE SCHOOL ATTN: ATSJ-CD-M-C
003	FORT McCLELLAN, AL 36201
417	COMMANDER US ARMY INTELLIGENCE CENTER & SCHOOL ATTN: ATSI-CO-MD
002	FORT HUACHUCA, AZ 85613
418	COMMANDER HQ. FORT HUACHUCA
001	ATTN: TECHNICAL REFERENCE DIV FORT HUACHUCA, AZ 85613
419	COMMANDER US ARMY ELECTRONIC PROVING GROUND ATTN: STEEP-MT
002	
420	COMMANDER USASA TEST & EVALUATION CENTER ATTN: IAO-CDR-T
001	FORT HUACHUCA, AZ 85613
432	DIR, US ARMY AIR MOBILITY R&D LAB ATTN: T. GOSSETT, BLDG 207-5 NASA AMES RESEARCH CENTER
001	MOFFETT FIELD, CA 94035

437	DEPUTY FOR SCIENCE & TECHNOLOGY
001	OFFICE, ASSIST SEC ARMY (R&D)
001	WASHINGTON, DC 20310
438	HQDA (DAMA-APR/DR. F. D. VERDERAME)
001	WASHINGTON, DC 20310
470	DIRECTOR OF COMBAT DEVELOPMENTS US ARMY ARMOR CENTER ATTN: ATZK-CD-MS
002	FORT KNOX, KY 40121
473	COMMANDANT US ARMY ORDNANCE SCHOOL ATTN: ATSL-CD-OR
002	ABERDEEN PROVING GROUND, MD 21005
475	CDR. HARRY DIAMOND LABORATORIES ATTN: LIBRARY 2800 POWDER MILL ROAD
001	
477	DIRECTOR US ARMY BALLISTIC RESEARCH LABS ATTN: DRXBR-LB
001	ABERDEEN PROVING GROUND, MD 21005
478	DIRECTOR US ARMY BALLISTIC RESEARCH LABS ATTN: DRXBR-CA (DR. L. VANDEKIEFT)
001	ABERDEEN PROVING GROUND, MD 21005
479	DIRECTOR US ARMY HUMAN ENGINEERING LABS
001	ABERDEEN PROVING GROUND, MD 21005
482	DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACT ATTN: DRXSY-T
001	ABERDEEN PROVING GROUND, MD 21005
507	CDR. AVRADCOM ATTN: DRSAV-G PO BOX 209
001	ST. LOUIS, MD 63166

512	COMMANDER PICATINNY ARSENAL ATTN: SARPA-ND-A-4 (BLDG 95)
001	DOVER, NY 07801
514	DIRECTOR JOINT COMM OFFICE (TRI-TAC) ATTN: TT-AD (TECH DOCU CEN)
001	FORT MONMOUTH, NJ 07703
	PROJECT MANAGER, REMBASS ATTN: DRCPM-RBS
002	FORT MONMOUTH, NJ 07703
516	PROJECT MANAGER, NAVCON ATTN: DRCPM-NC-TM BLDG 2539
001	FORT MONMOUTH, NJ 07703
517	COMMANDER US ARMY SATELLITE COMMUNICATIONS AGCY ATTN: DRCPM-SC-3
002	FORT MONMOUTH, NJ 07703
518	TRI-TAC OFFICE ATTN: TT-SE (DR. PRITCHARD)
001	FORT MONMOUTH, NJ 07703
51,9	CDR. USA AVIONICS LAB AVRADCOM ATTN: DAVAA-D
001	FORT MONMOUTH, NJ 07703
531	CDR. US ARMY RESEARCH OFFICE ATTN: DRXRO-IP PO BOX 12211
001	RESEARCH TRIANGLE PARK, NC 27709
533	COMMANDANT US ARMY INST FOR MILITARY ASSISTANCE
001	ATTN: ATSU-CTD-MO FORT BRAGG, NC 28307

536	COMMANDER US ARMY ARCTIC TEST CENTER ATTN: STEAC-TD-MI
002	
537	CDR. US ARMY TROPIC TEST CENTER ATTN: STETC-MO-A (TECH LIBRARY) DRAWER 942
001	
542	COMMANDANT US ARMY FIELD ARTILLERY SCHOOL ATTN: ATSFA-CTD
002	
554	COMMANDANT US ARMY AIR DEFENSE SCHOOL ATTN: ATSA-CD-MC
001	FORT BLISS, TX 79916
555	COMMANDER US ARMY NUCLEAR AGENCY
001	FORT BLISS, TX 79916
563	COMMANDER, DARCOM ATTN: DRCDE 5001 EISENHOWER AVE
001	ALEXANDRIA, VA 22333
564	CDR. US ARMY SIGNALS WARFARE LAB ATTN: DELSW-OS ARLINGTON HALL STATION
001	ARLINGTON, VA 22212
566	ATTN: DELSW-AQ
001	ARLINGTON HALL STATION ARLINGTON, VA 22212
	COMMANDER US ARMY LOGISTICS CENTER
	ATTN: ATCL-MC FORT LEE, VA 22801

575	COMMANDER US ARMY TRAINING & DOCTRINE COMMAND ATTN: ATCD-TEC
001	FORT MONROE, VA 23651
577	COMMANDER US ARMY TRAINING & DOCTRINE COMMAND ATTN: ATCD-TM
001	FORT MONROE, VA 23651
578	CDR. US ARMY GARRISON VINT HILL FARMS STATION ATTN: IAVAAF
001	WARRENTON, VA 22186
602	DIRECTOR, NIGHT VISION LABORATORY US ARMY ELECTRONICS COMMAND ATTN: DRSEL-NV-D
001	FORT BELVOIR, VA 22060
603	CDR/DIR. ATMOSPHERIC SCIENCES LABORATORY US ARMY ELECTRONICS COMMAND ATTN: DRSEL-BL-SY-S
001	WHITE SANDS MISSILE RANGE, NM 88002
605	CHIEF, AVIATION ELECTRONICS DIV (SIMO) US ARMY ELECTRONICS COMMAND ATTN: DRSEL-SI-AE, PO BOX 209
001	ST. LOUIS, MO 63166
606	CHIEF INTEL MATERIEL DEV & SUPPORT OFC ELECTRONIC WARFARE LAB. ECOM
001	FORT MEADE, MD 20755
701	MIT - LINCOLN LABORATORY ATTN: LIBRARY (RM A-082) PO BOX 73
002	
703	NASA SCIENTIFIC & TECH INFO FACILITY BALTIMORE/WASHINGTON INTL AIRPORT
001	PO BOX 8757, MD 21240

AD-A056 084

E-SYSTEMS INC HUNTINGTON IN MEMCOR DIV

AN/VRC-12, 43-49 SERIES RADIO SET SILICONIZATION PRODUCT IMPROV--ETC(U)

MAY 78 K P YELTON

CORADCOM-76-C-0135-F

NL

UNCLASSIFIED







END DATE FILMED 8 - 78

705	ADVISORY GROUP ON ELECTRON DEVICES 201 VARICK STREET, 9TH FLOOR
002	NEW YORK, NY 10014
706	ADVISORY GROUP ON ELECTRON DEVICES ATTN: SECY. WORKING GROUP D (LASERS 201 VARICK STREET
002	
707	TACTEC BATTELLE MEMORIAL INSTITUTE 505 KING AVENUE
001	COLUMBUS, OH 43201
710	KETRON, INC. ATTN: MR. FREDERICK LEUPPERT 1400 WILSON BLVD., ARCHITECT BLDG.
002	
712	R. C. HANSEN, INC. PO BOX 215
001	
680	COMMANDER US ARMY ERADCOM
000	
	1 DELEW-D
	1 DELET-D
	3 DELCS-D 1 DELAS-D
	1 DELSD-L
680	COMMANDER
	US ARMY CORADCOM
000	FORT MONMOUTH, NJ 07703
	2 DRDCO-PP-A-SA
	3 DRDCO-COM-RN
	1 DRDCO-COM-D-4
	15 DRDCO-COM-RN-1
	1 DRCPM-AA 1 DRCPM-TDS-SE
	1 USMC-LNO

- 680 COMMANDER
  - US ARMY CERCOM
- 000 FT MONMOUTH, NJ 07703
  - 1 DRSEL-PL-S
  - 1 DRSEL-PP-I-PI 1 DRSEL-LE

  - 1 DRSEL-MA-MP
  - 2 DRSEL-MS-TI
  - 1 DRSEL-LE-CR
  - 1 DRSEL-GS-H
  - 1 TRADOC-LNO