

## MultiE: Multi-Task Embedding for Knowledge Base Completion



Zhao Zhang, Fuzhen Zhuang, Zheng-Yu Niu,

Deging Wang, Qing He

Institute of Computing Technology, CAS; Baidu Inc.; Beihang University.



#### Introduction

Knowledge bases are comprised of knowledge triples in the form of (h, r, t), e.g. (Beijing, capitalOf, China). Knowledge base completion (KBC) aims to fill the missing values into incomplete triples.

(Donald Trump, nationality,?)



Recent KBC models have the following two flaws:

(1) each relation is embedded into a latent vector separately, and the correlations among relations are ignored;



(2) most models embed entities and relations into a unified space instead of separate spaces.



## Network Structure



Relation embedding  $r = r_0 + r'$ First Layer  $e \oplus r = f(W_e e + W_r r + b_c)$ Second Layer  $(e \oplus r)' = f(W_t (e \oplus r) + b_t)$ Third Layer  $s(e, r, c_i) = g(c_i^\top (e \oplus r)' + b_r)$ 



## **Experiment**

Dataset: FB15k、FB15k-237 and WN18

| Dataset   | $ \mathcal{S} $ | $ \mathcal{R} $ | #triples in Train/Valid/Test |
|-----------|-----------------|-----------------|------------------------------|
| FB15k     | 14,951          | 1,345           | 483,142 / 50,000 / 59,071    |
| FB15k-237 | 14,541          | 237             | 272,115 / 17,535 / 20,466    |
| WN18      | 40,943          | 18              | 141,442 / 5,000 / 5,000      |

#### Results

|               | FB15k     |       |       |       | FB15k-237 |     |       |       |       | WN18  |     |       |       |       |       |
|---------------|-----------|-------|-------|-------|-----------|-----|-------|-------|-------|-------|-----|-------|-------|-------|-------|
|               | MR        | MRR   | H10   | Н3    | H1        | MR  | MRR   | H10   | Н3    | H1    | MR  | MRR   | H10   | Н3    | H1    |
| TransE [1]    | 125       | 0.463 | 0.749 | 0.578 | 0.297     | -   | 0.233 | 0.398 | 0.263 | 0.147 | 251 | 0.495 | 0.943 | 0.888 | 0.113 |
| TransR [4]    | 77        | 0.346 | 0.582 | 0.404 | 0.218     | -   | -     | -     | -     | -     | 225 | 0.427 | 0.940 | 0.876 | 0.335 |
| DistMult [15] | -         | 0.654 | 0.824 | 0.733 | 0.546     | -   | 0.191 | 0.376 | 0.207 | 0.106 | -   | 0.532 | 0.936 | 0.914 | 0.728 |
| HolE [6]      | -         | 0.524 | 0.739 | 0.613 | 0.402     | -   | 0.222 | 0.391 | 0.253 | 0.133 | -   | 0.938 | 0.949 | 0.945 | 0.930 |
| ComplEx [14]  | -         | 0.692 | 0.840 | 0.759 | 0.599     | -   | 0.201 | 0.388 | 0.213 | 0.112 | -   | 0.941 | 0.947 | 0.945 | 0.936 |
| ProjE [8]     | <b>34</b> | 0.727 | 0.884 | 0.772 | 0.646     | 237 | 0.241 | 0.410 | 0.258 | 0.160 | 271 | 0.817 | 0.948 | 0.928 | 0.913 |
| R-GCN+ [7]    | -         | 0.696 | 0.842 | 0.760 | 0.601     | -   | 0.249 | 0.417 | 0.264 | 0.151 | -   | 0.819 | 0.964 | 0.929 | 0.697 |
| MultiE-STL    | 56        | 0.756 | 0.883 | 0.817 | 0.668     | 240 | 0.262 | 0.441 | 0.287 | 0.179 | 257 | 0.940 | 0.949 | 0.945 | 0.939 |
| MultiE        | 42        | 0.775 | 0.887 | 0.832 | 0.681     | 247 | 0.284 | 0.463 | 0.312 | 0.199 | 248 | 0.925 | 0.942 | 0.938 | 0.931 |
| N-MultiE-STL  | 59        | 0.713 | 0.836 | 0.771 | 0.616     | 148 | 0.287 | 0.470 | 0.322 | 0.203 | 229 | 0.949 | 0.956 | 0.949 | 0.941 |
| N-MultiE      | 48        | 0.736 | 0.859 | 0.792 | 0.637     | 183 | 0.309 | 0.491 | 0.339 | 0.219 | 223 | 0.938 | 0.949 | 0.939 | 0.933 |

#### Examples of Relation Clusters in FB15k

|   |                                                                              | relations                                                              |  |  |  |  |  |
|---|------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| 1 | /location/country/languages_spoken                                           |                                                                        |  |  |  |  |  |
|   | /location/country/official_language                                          |                                                                        |  |  |  |  |  |
|   | 2                                                                            | /film/producer/film, /film/writer/film                                 |  |  |  |  |  |
| 2 | 4                                                                            | /film/director/film, /film/cinematographer/film                        |  |  |  |  |  |
|   |                                                                              | /sports/sports_team/roster./soccer/football_roster_position/player     |  |  |  |  |  |
|   | 3                                                                            | /sports/sports_team/roster./sports/sports_team_roster/player           |  |  |  |  |  |
| 3 | /soccer/football_team/current_roster./soccer/football_roster_position/player |                                                                        |  |  |  |  |  |
|   |                                                                              | /soccer/football_team/current_roster./sports/sports_team_roster/player |  |  |  |  |  |

# The Change of Hits@10 with The Number of Relation Clusters Increasing



#### Conslusion

In this paper, we propose MultiE, a MTL-based model for the KBC task. MultiE uses a three-layer network and a ranking-based loss function to predict the missing values of incomplete knowledge triples. In MultiE, three semantic spaces are considered, which guarantees the expressivity of our model. Experiments show that our model can outperform other baselines with a large margin, especially on the data sets which have dense semantic distributions over relations.