

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used
$T_a =$	0.05	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1154.32</u>	<u>4069.21</u>	k
<u>4714.78</u>	4892.98	k
<u>313.75</u>	<u>1484.72</u>	k
<u>0.64</u>	<u>0.43</u>	k
	4714.78 313.75	1154.324069.214714.784892.98313.751484.72

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check 97425.0 in-lbs $M_O =$ Resisting Force Required = 1476.14 lbs A minimum 132in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2460.23 lbs to resist overturning. Minimum Width = <u>22 in</u> in Weight Provided = 4386.25 lbs Sliding Force = 342.29 lbs Use a 132in long x 22in wide x 18in tall Friction = 0.4 ballast foundation to resist sliding. Weight Required = 855.72 lbs Resisting Weight = 4386.25 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 342.29 lbs Cohesion = 130 psf Use a 132in long x 22in wide x 18in tall 20.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2193.13 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$ Length = 8 in

		Ballast	t Width		
	22 in	<u>23 in</u>	<u>24 in</u>	<u>25 in</u>	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	4386 lbs	4586 lbs	4785 lbs	4984 lbs	

ASD LC		1.0D -	+ 1.0S			1.0D + 0.6W				1.0D + 0.75L + 0.45W + 0.75S				0.6D + 0.6W			
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	
FA	1767 lbs	1767 lbs	1767 lbs	1767 lbs	1349 lbs	1349 lbs	1349 lbs	1349 lbs	2206 lbs	2206 lbs	2206 lbs	2206 lbs	-523 lbs	-523 lbs	-523 lbs	-523 lbs	
F _B	1831 lbs	1831 lbs	1831 lbs	1831 lbs	1400 lbs	1400 lbs	1400 lbs	1400 lbs	2288 lbs	2288 lbs	2288 lbs	2288 lbs	-1868 lbs	-1868 lbs	-1868 lbs	-1868 lbs	
F _V	157 lbs	157 lbs	157 lbs	157 lbs	614 lbs	614 lbs	614 lbs	614 lbs	568 lbs	568 lbs	568 lbs	568 lbs	-685 lbs	-685 lbs	-685 lbs	-685 lbs	
P _{total}	7985 lbs	8184 lbs	8384 lbs	8583 lbs	7135 lbs	7334 lbs	7534 lbs	7733 lbs	8880 lbs	9079 lbs	9279 lbs	9478 lbs	241 lbs	361 lbs	480 lbs	600 lbs	
М	4292 lbs-ft	4292 lbs-ft	4292 lbs-ft	4292 lbs-ft	4014 lbs-ft	4014 lbs-ft	4014 lbs-ft	4014 lbs-ft	5911 lbs-ft	5911 lbs-ft	5911 lbs-ft	5911 lbs-ft	1035 lbs-ft	1035 lbs-ft	1035 lbs-ft	1035 lbs-ft	
е	0.54 ft	0.52 ft	0.51 ft	0.50 ft	0.56 ft	0.55 ft	0.53 ft	0.52 ft	0.67 ft	0.65 ft	0.64 ft	0.62 ft	4.29 ft	2.87 ft	2.15 ft	1.72 ft	
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft										
f _{min}	279.9 psf	277.2 psf	274.7 psf	272.4 psf	245.2 psf	244.0 psf	242.9 psf	241.9 psf	280.4 psf	277.7 psf	275.2 psf	272.9 psf	0.0 psf	0.0 psf	0.0 psf	1.6 psf	
f _{max}	512.0 psf	499.2 psf	487.5 psf	476.7 psf	462.4 psf	451.7 psf	442.0 psf	433.0 psf	600.2 psf	583.6 psf	568.3 psf	554.3 psf	72.6 psf	47.7 psf	47.8 psf	50.8 psf	

Maximum Bearing Pressure = 600 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_O = 2032.2 \text{ ft-lbs}$

Resisting Force Required = 2216.99 lbs

S.F. = 1.67

Weight Required = 3694.98 lbs Minimum Width = 22 in in Weight Provided = 4386.25 lbs A minimum 132in long x 22in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		22 in			22 in		22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	256 lbs	661 lbs	228 lbs	971 lbs	2928 lbs	949 lbs	85 lbs	193 lbs	57 lbs	
F _V	216 lbs	213 lbs	218 lbs	161 lbs	155 lbs	169 lbs	216 lbs	214 lbs	217 lbs	
P _{total}	5686 lbs	6091 lbs	5658 lbs	6140 lbs	8097 lbs	6118 lbs	1673 lbs	1781 lbs	1644 lbs	
М	866 lbs-ft	859 lbs-ft	871 lbs-ft	657 lbs-ft	652 lbs-ft	681 lbs-ft	862 lbs-ft	856 lbs-ft	864 lbs-ft	
е	0.15 ft	0.14 ft	0.15 ft	0.11 ft	0.08 ft	0.11 ft	0.52 ft	0.48 ft	0.53 ft	
L/6	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	
f _{min}	141.4 psf	162.6 psf	139.2 psf	197.9 psf	295.8 psf	192.8 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	422.6 psf	441.5 psf	421.9 psf	411.1 psf	507.3 psf	413.9 psf	252.8 psf	247.5 psf	254.8 psf	

Maximum Bearing Pressure = 507 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.627 k	Maximum Axial Load = 3.588 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>49%</u>	Utilization = 48%
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.081 k 12.808 k 7.421 k <u>15%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
0 0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.466 \text{ in} \\ \end{array}$

 $0.466 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 123 \text{ in}$$

$$J = 0.432$$

$$340.276$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

Not Used

$$\phi F_L = 27.3 \text{ ksi}$$

S2 = 1701.56

Weak Axis:

3.4.14

$$L_b = 123$$

$$J = 0.432$$

$$216.395$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.6$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ lx = & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \\ M_{max} St = & 2.788 \text{ k-ft} \end{array}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.9

$$b/t = 32.195$$

S1 = 12.21 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$\int_{Rt} -\frac{\theta_y}{\theta_x} F$$

$$S1 = \begin{cases} Dt \\ 6.87 \end{cases}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = **BF0**

Strong Axis:

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

29.4 ksi

 $\phi F_L =$

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1 Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_{L} = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.0Dp$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = \phi b [Bt \text{-}Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4

43.2 ksi

$$Sx = 1.375 \text{ in}^3$$

 $M_{max}St = 3.363 \text{ k-ft}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

 $A = 1215.13 \text{ mm}^2$

1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = \left(\frac{BC \theta_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$= \frac{1.6Dp}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$Rn - \frac{\theta_y}{\theta_y} F_{CY}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{1}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{by}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/(LbSc)})}$	(2))] $\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

3.4.16

N/A for Weak Direction

b/t = 24.5

S1 = 12.2

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$

 $S2 = \frac{k_1 Bp}{1.6Dp}$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi 279836 mm⁴

ix =	279836 mm
	0.672 in ⁴
y =	27.5 mm
Sx =	0.621 in ³

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7
$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$
0.672 in⁴

 $\phi F_L W k =$

$$x = 27.5 \text{ mm}$$

Sy = 0.621 in³

28.2 ksi

$$M_{max}Wk = 1.460 \text{ k-ft}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_1 St =$

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.76536$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 18.9268$ ksi

$$\begin{split} \phi cc &= 0.76536 \\ \phi F_L &= \phi cc (Bc-Dc^*\lambda) \\ \phi F_L &= 18.9268 \text{ ksi} \end{split}$$
 3.4.9
$$\begin{array}{ll} b/t &= 24.5 \\ S1 &= 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 &= 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L &= \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \end{split}$$

$$\begin{array}{ll} b/t &= 24.5 \\ S1 &= 12.21 \\ S2 &= 32.70 \\ \phi F_L &= \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-57.906	-57.906	0	0
2	M14	V	-57.906	-57.906	0	0
3	M15	V	-92.65	-92.65	0	0
4	M16	V	-92.65	-92.65	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	133.185	133.185	0	0
2	M14	V	103.073	103.073	0	0
3	M15	V	57.906	57.906	0	0
4	M16	V	57 906	57 906	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	258.579	2	1119.571	1	1.114	1	.005	1	0	1	0	1
2		min	-362.764	3	-950.644	3	-85.106	5	328	4	0	1	0	1
3	N7	max	.047	1	1238.132	1	318	12	0	12	0	1	0	1
4		min	057	2	-254.573	3	-241.348	4	491	4	0	1	0	1
5	N15	max	.024	9	3626.757	1	0	1	0	1	0	1	0	1
6		min	853	2	-887.942	3	-232.674	5	48	4	0	1	0	1
7	N16	max	1081.446	2	3763.834	1	0	3	0	3	0	1	0	1
8		min	-1142.09	3	-3130.158	3	-84.828	5	331	4	0	1	0	1
9	N23	max	.047	1	1238.132	1	8.089	1	.017	1	0	1	0	1
10		min	057	2	-254.573	3	-236.504	4	482	4	0	1	0	1
11	N24	max	258.579	2	1119.571	1	049	12	0	12	0	1	0	1
12		min	-362.764	3	-950.644	3	-85.599	4	331	4	0	1	0	1
13	Totals:	max	1597.637	2	12105.997	1	0	1						
14		min	-1868.01	3	-6428.534	3	-961.413	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	88.769	1	512.877	1	-4.856	12	0	3	.211	1	0	1
2			min	3.498	12	-491.901	3	-139.849	1	013	1	.008	12	0	3
3		2	max	88.769	1	359.34	1	-3.802	12	0	3	.073	4	.477	3
4			min	3.498	12	-346.113	3	-107.544	1	013	1	.003	12	497	1
5		3	max	88.769	1	205.804	1	-2.749	12	0	3	.038	5	.788	3
6			min	3.498	12	-200.325	3	-75.24	1	013	1	034	1	818	1
7		4	max	88.769	1	52.268	1	-1.696	12	0	3	.02	5	.933	3
8			min	3.498	12	-54.538	3	-42.935	1	013	1	101	1	965	1
9		5	max	88.769	1	91.25	3	643	12	0	3	.003	5	.913	3
10			min	3.498	12	-101.269	1	-16.042	4	013	1	132	1	938	1
11		6	max	88.769	1	237.038	3	21.674	1	0	3	004	12	.726	3
12			min	3.498	12	-254.805	1	-11.938	5	013	1	125	1	735	1
13		7	max	88.769	1	382.826	3	53.978	1	0	3	003	12	.373	3
14			min	-4.006	5	-408.342	1	-10.308	5	013	1	082	1	357	1
15		8	max	88.769	1	528.614	3	86.283	1	0	3	0	10	.195	1
16			min	-15.697	5	-561.878	1	-8.679	5	013	1	036	4	146	3
17		9	max	88.769	1	674.402	3	118.587	1	0	3	.114	1	.923	1
18			min	-27.388	5	-715.414	1	-7.05	5	013	1	044	5	831	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	88.769	1	868.951	1	-4.622	12	.005	14	.268	1	1.825	1
20			min	3.498	12	-820.19	3	-150.892	1	013	1	.007	12	-1.682	3
21		11	max	88.769	1	715.414	1	-3.569	12	.013	1	.114	1	.923	1
22			min	3.498	12	-674.402	3	-118.587	1	0	3	.002	12	831	3
23		12	max	88.769	1	561.878	1	-2.516	12	.013	1	.035	4	.195	1
24			min	3.498	12	-528.614	3	-86.283	1	0	3	002	1	146	3
25		13	max	88.769	1	408.342	1	-1.463	12	.013	1	.016	5	.373	3
26			min	3.498	12	-382.826	3	-53.978	1	0	3	082	1	357	1
27		14	max	88.769	1	254.805	1	41	12	.013	1	0	15	.726	3
28			min	.768	15	-237.038	3	-21.674	1	0	3	125	1	735	1
29		15	max	88.769	1	101.269	1	10.631	1	.013	1	004	12	.913	3
30			min	-10.431	5	-91.25	3	-12.477	5	0	3	132	1	938	1
31		16	max		1	54.538	3	42.935	1	.013	1	003	12	.933	3
32			min	-22.122	5	-52.268	1	-10.848	5	0	3	101	1	965	1
33		17	max	88.769	1	200.325	3	75.24	1	.013	1	0	12	.788	3
34			min	-33.813	5	-205.804	1	-9.219	5	0	3	049	4	818	1
35		18	max	88.769	1	346.113	3	107.544	1	.013	1	.07	1	.477	3
36			min	-45.504	5	-359.34	1	-7.59	5	0	3	051	5	497	1
37		19	max	88.769	1	491.901	3	139.849	1	.013	1	.211	1	0	1
38			min	-57.195	5	-512.877	1	-5.96	5	0	3	058	5	0	3
39	M14	1	max	63.36	4	540.735	1	-4.99	12	.006	3	.24	1	0	1
40		-	min	1.507	12	-386.579	3	-144.087	1	011	1	.009	12	0	3
41		2	max	51.669	4	387.199	1	-3.937	12	.006	3	.104	4	.377	3
42		_	min	1.507	12	-275.085		-111.783	1	011	1	.004	12	528	1
43		3	max	40.774	1	233.662	1	-2.883	12	.006	3	.056	5	.627	3
44			min	1.507	12	-163.592	3	-79.478	1	011	1	015	1	882	1
45		4	max	40.774	1	80.126	1	-1.83	12	.006	3	.03	5	.749	3
46			min	1.507	12	-52.098	3	-47.173	1	011	1	087	1	-1.061	1
47		5	max	40.774	1	59.396	3	777	12	.006	3	.006	5	.745	3
48			min	1.507	12	-73.411	1	-23.778	4	011	1	122	1	-1.064	1
49		6	max	40.774	1	170.889	3	17.436	1	.006	3	004	12	.614	3
50			min	-3.427	5	-226.947	1	-18.655	5	011	1	121	1	893	1
51		7	max	40.774	1	282.383	3	49.74	1	.006	3	003	12	.356	3
52			min	-15.118	5	-380.483	1	-17.026	5	011	1	082	1	548	1
53		8	max	40.774	1	393.876	3	82.045	1	.006	3	0	10	0	15
54			min	-26.808	5	-534.02	1	-15.397	5	011	1	058	4	033	2
55		9	max	40.774	1	505.37	3	114.349	1	.006	3	.104	1	.669	1
56			min	-38.499	5	-687.556	1	-13.767	5	011	1	072	5	541	3
57		10	max	62.173	4	841.093	1	-4.488	12	.006	3	.253	1	1.539	1
58		10	min	1.507	12	-616.864		-146.654		011	1	.007	12	-1.18	3
59		11	max	E0 100	4	687.556		-3.435	12	.011	1	.105	4	.669	1
60			min	1.507	12	-505.37	3	-114.349		006	3	.002	12	541	3
61		12	max		1	534.02	1	-2.382	12	.011	1	.054	5	0	15
62		14	min	1.507	12	-393.876		-82.045	1	006	3	007	1	033	2
63		13	max	40.774	1	380.483	1	-1.329	12	.011	1	.028	5	.356	3
64		13	min	1.507	12	-282.383	3	-49.74	1	006	3	082	1	548	1
65		14	max	40.774	1	226.947	1	276	12	.011	1	.004	5	.614	3
66		17	min	1.507	12	-170.889		-24.335	4	006	3	121	1	893	1
67		15	max		1	73.411	1	14.869	1	.011	1	004	12	.745	3
68		10	min	-4.325	5	-59.396	3	-18.768	5	006	3	122	1	-1.064	1
69		16		40.774	1	52.098	3	47.173	1	006 .011	1	122 002	12	.749	3
70		10	max	-16.016	_	-80.126	1	-17.139	5	006	3	002	1	-1.061	1
		17	min		5							087 0	_		
71		17	max		1	163.592	3	79.478	1	.011	1		3	.627	3
72		40	min	-27.707	5	-233.662	1	-15.509	5	006	3	061	4	882	1
73		18	max		1	275.085	3	111.783	1	.011	1	.094	1	.377	3
74		40	min	-39.397	5	-387.199	1	-13.88	5	006	3	074	5	528	1
75		19	max	40.774	1	386.579	3	144.087	1	.011	1	.24	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]								z-z Mome	
76			min	-51.088	5	-540.735	1	-12.251	5	006	3	089	5	0	3
77	M15	1	max	80.277	5	607.5	_1_	-4.967	12	.012	1	.24	1	0	2
78			min	-42.852	1	-213.138	3	-144.067	1	005	3	.009	12	0	3
79		2	max	68.586	5	434.179	1	-3.914	12	.012	1	.14	4	.209	3
80			min	-42.852	1	-153.084	3	-111.762	1	005	3	.004	12	593	1
81		3	max	56.895	5	260.858	1	-2.861	12	.012	1	.081	5	.349	3
82			min	-42.852	1	-93.031	3	-79.458	1	005	3	015	1	989	1
83		4	max	45.204	5	87.537	1	-1.808	12	.012	1	.045	5	.42	3
84			min	-42.852	1	-32.977	3	-47.153	1	005	3	087	1	-1.187	1
85		5	max	33.513	5	27.076	3	755	12	.012	1	.011	5	.424	3
86			min	-42.852	1	-85.784	1	-32.517	4	005	3	122	1	-1.188	1
87		6	max	21.822	5	87.129	3	17.456	1	.012	1	004	12	.359	3
88			min	-42.852	1	-259.106	1	-27.392	5	005	3	121	1	992	1
89		7	max	10.131	5	147.183	3	49.76	1	.012	1	003	12	.225	3
90			min	-42.852	1	-432.427	1	-25.763	5	005	3	082	1	598	1
91		8	max	-1.007	15	207.236	3	82.065	1	.012	1	0	10	.024	3
92			min	-42.852	1	-605.748	1	-24.133	5	005	3	082	4	009	9
93		9	max	-1.724	12	267.29	3	114.369	1	.012	1	.104	1	.782	1
94		9	min	-42.852	1	-779.069	1	-22.504	5	005	3	106	5	247	3
95		10		-42.0 <u>52</u> -1.724	12	952.39	1	-4.511	12	.012	1	.253	1	1.768	1
96		10	max	-1.7 <u>24</u> -42.852	1	-327.343	3	-146.674	1	005	3	.007	12	585	3
		11	min		_										1
97		11	max	8.747	5	779.069	1	-3.458	12	.005	3	.139	4	.782	_
98		40	min	-42.852	1	-267.29	3	-114.369	1	012	1	.002	12	247	3
99		12	max	-1.724	12	605.748	1	-2.404	12	.005	3	.079	5	.024	3
100		40	min	-42.852	1	-207.236	3	-82.065	1	012	1	007	1	009	9
101		13	max	-1.724	12	432.427	1	-1.351	12	.005	3	.043	5	.225	3
102			min	-42.852	1	-147.183	3	-49.76	1	012	1	082	1	<u>598</u>	1
103		14	max	-1.724	12	259.106	1_	298	12	.005	3	.009	5	.359	3
104			min	-42.852	1	-87.129	3	-33.087	4	012	1	121	1	992	1
105		15	max	-1.724	12	85.784	1	14.849	1	.005	3	004	12	.424	3
106			min	-47.149	4	-27.076	3	-27.506	5	012	1	122	1	-1.188	1
107		16	max	-1.724	12	32.977	3	47.153	1_	.005	3	002	12	.42	3
108			min	-58.84	4	-87.537	1	-25.876	5	012	1	087	1	-1.187	1
109		17	max	-1.724	12	93.031	3	79.458	1	.005	3	0	3	.349	3
110			min	-70.531	4	-260.858	1_	-24.247	5	012	1	087	4	989	1
111		18	max	-1.724	12	153.084	3	111.762	1	.005	3	.094	1	.209	3
112			min	-82.222	4	-434.179	1	-22.618	5	012	1	109	5	593	1
113		19	max	-1.724	12	213.138	3	144.067	1	.005	3	.24	1	0	2
114			min	-93.913	4	-607.5	1	-20.989	5	012	1	134	5	0	5
115	M16	1	max	80.103	5	579.902	1	-4.782	12	.012	1	.212	1	0	1
116			min	-93.666	1	-199.775	3	-140.021	1	007	3	.008	12	0	3
117		2	max	68.412	5	406.581	1	-3.729	12	.012	1	.104	4	.193	3
118			min	-93.666	1	-139.722	3	-107.716	1	007	3	.003	12	562	1
119		3	max	56.721	5	233.259	1	-2.676	12	.012	1	.06	5	.318	3
120			min	-93.666	1	-79.668	3	-75.412	1	007	3	033	1	926	1
121		4	max	45.03	5	59.938	1	-1.623	12	.012	1	.033	5	.375	3
122			min	-93.666	1	-19.615	3	-43.107	1	007	3	101	1	-1.093	1
123		5	max	33.339	5	40.439	3	57	12	.012	1	.008	5	.363	3
124			min	-93.666	1	-113.383	1	-23.357	4	007	3	131	1	-1.063	1
125		6	max	21.648	5	100.492	3	21.502	1	.012	1	004	12	.283	3
126			min	-93.666	1	-286.704	1	-19.185	5	007	3	125	1	835	1
127		7	max	9.958	5	160.546	3	53.807	1	.012	1	003	12	.134	3
128			min	-93.666	1	-460.025	1	-17.556	5	007	3	082	1	41	1
129		8		<u>-93.000 </u>	15	220.599	3	86.111	1	.012	1	062 0		.213	1
		0	max			-633.346	1		_		_		10		
130		0	min	<u>-93.666</u>	12			-15.927	5	007	3	056	4	083 1.022	3
131		9	max	-3.549	12	280.652	3	118.416	1	.012	1	.114	1	1.033	1
132			rnın	-93.666	1	-806.668	1	-14.297	5	007	3	072	5	368	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
133		10	max	-3.549	12	979.989	1	-4.696	12	.012	1_	.267	1	2.05	1
134			min	-93.666	1_	-340.706	3	-150.72	1	007	3	.008	12	722	3
135		11	max	4.006	5	806.668	1	-3.643	12	.007	3	.114	1	1.033	1
136			min	-93.666	_1_	-280.652	3	-118.416	1	012	1	.003	12	368	3
137		12	max	-3.549	<u>12</u>	633.346	1	-2.59	12	.007	3	.054	4	.213	1
138			min	-93.666	1_	-220.599	3	-86.111	1	012	1	003	1	083	3
139		13	max	-3.549	12	460.025	1	-1.536	12	.007	3	.027	5	.134	3
140			min	-93.666	1_	-160.546		-53.807	1	012	1	082	1	41	1
141		14	max	-3.549	12	286.704	1	483	12	.007	3	.002	5	.283	3
142		4.5	min	-93.666	1_	-100.492	3	-25.97	4	012	1	125	1	835	1
143		15	max	-3.549	12	113.383	1	10.803	1	.007	3	004	12	.363	3
144			min	-93.666	1_	-40.439	3	-19.715	5	012	1	131	1	<u>-1.063</u>	1
145		16	max	-3.549	12	19.615	3	43.107	1	.007	3	003	12	.375	3
146			min	-93.666	1_	-59.938	1	-18.086	5	012	1	101	1	-1.093	1
147		17	max	-3.549	12	79.668	3	75.412	1	.007	3	0	12	.318	3
148		4.0	min	-93.666	1_	-233.259	1	-16.457	5	012	1	071	4	926	1
149		18	max	-3.549	12	139.722	3	107.716	1	.007	3	.071	1	.193	3
150		40	min	-97.478	4_	-406.581	1	-14.827	5	012	1	081	5	562	1
151		19	max	-3.549	12	199.775	3	140.021	1	.007	3	.212	1	0	1
152	140	4	min	-109.169	4_	-579.902	1_	-13.198	5	012	1	097	5	0	5
153	M2	1		1110.913	1_	2.332	4	1.261	1	0	3	0	3	0	1
154		_	min	-866.293	3	.571	15	-80.663	4	0	4	0	1	0	1_
155		2		1111.242	1_	2.316	4	1.261	1	0	3	0	1	0	15
156			min		3	.568	15	-80.948	4	0	4	018	4	0	4
157		3	max	1111.57	1_	2.301	4	1.261	1	0	3	0	1	0	15
158			min	-865.8	3	.564	15	-81.233	4	0	4	036	4	001	4
159		4		1111.898	1_	2.286	4	1.261	1	0	3	0	1	0	15
160		_	min	-865.554	3_	.561	15	-81.518	4	0	4	054	4	002	4
161		5		1112.227	1_	2.271	4	1.261	1	0	3	.001	1	0	15
162		_	min	-865.308	3	.557	15	-81.803	4	0	4	072	4	002	4
163		6		1112.555	1	2.255	4	1.261	1	0	3	.001	1	0	15
164		-	min	-865.061	3	.553	15	-82.087	4	0	4	09	4	003	4
165		7		1112.884	1	2.24	4	1.261	1	0	3	.002	1	0	15
166		_		-864.815	3	.55	15	-82.372	4	0	4	108	4	003	4
167		8		1113.212	1	2.225	4	1.261	1	0	3	.002	1	0	15
168		_	min	-864.569	3	.546	15	-82.657	4	0	4	127	4	004	4
169		9		1113.541	1	2.21	4	1.261	1	0	3	.002	1	0	15
170		40	min	-864.322	3	.543	15	-82.942	4	0	4	145	4	004	4
171		10		1113.869	1	2.194	4	1.261	1	0	3	.002	1	001	15
172		11	min	-864.076	3	. <u>539</u> 2.179	15	-83.227	1	0	3	163	1	005	15
173		11		1114.198			4	1.261		0		.003		001	
174		10	min		3	.536	<u>15</u>	-83.511	4	0	3	182	4	005	4
175		12		1114.526	1	2.164	4 1E	1.261	1	0		.003	1	001	15
176		12		-863.583	3	.532	15		4	0	3	2	4	005	4
177 178		13		1114.854 -863.337	1	2.149 .528	<u>4</u> 15	1.261 -84.081	1	0	4	.003 219	4	001	15
179		11			3			1.261	4	0	3		_	006	4
		14		1115.183	1	2.133	4 1E		1	0		.004	1	002	15
180		4.5		-863.091	3_	.525	<u>15</u>	-84.366	4	0	4	238	4	006	4
181		15		1115.511	1	2.118	4	1.261	1	0	3	.004	1	002	15
182		16	min	-862.844	3	.521	15	-84.651	4	0	4	256	4	007	4
183		10		1115.84	1	2.103	4	1.261	1	0	3	.004	1	002	15
184		47		-862.598	3	.518	15	-84.936	4	0	4	275	4	007	4
185		17		1116.168	1	2.087	4 1E	1.261	1	0	3	.004	1	002	15
186		4.0		-862.352	3	.514	15	-85.22	4	0	4	294	4	008	4
187		18		1116.497	1	2.072	4	1.261	1	0	3	.005	1	002	15
188		40		-862.105	3	.51	<u>15</u>	-85.505	4	0	4	313	4	008	4
189		19	max	1116.825	1	2.057	4	1.261	1	0	3	.005	1	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-861.859	3	.507	15	-85.79	4	0	4	332	4	009	4
191	<u>M3</u>	1	max	236.964	2	8.105	4	.012	1_	0	3	0	1_	.009	4
192			min	-344.146	3_	1.917	15	-1.215	5	0	4	012	4	.002	15
193		2	max	236.793	2	7.332	4	.012	1	0	3	0	1	.005	4
194			min	-344.274	3	1.736	15	673	5	0	4	013	4	.001	15
195		3	max	236.623	2	6.56	4	.012	1	0	3	0	1_	.003	2
196			min	-344.401	3	1.554	15	131	5	0	4	013	4	0	12
197		4	max	236.453	2	5.787	4	.465	4	0	3	0	1	0	2
198			min	-344.529	3	1.373	15	0	12	0	4	013	4	001	3
199		5	max	236.282	2	5.015	4	1.007	4	0	3	0	1	0	15
200			min	-344.657	3	1.191	15	0	12	0	4	013	4	002	3
201		6	max	236.112	2	4.243	4	1.549	4	0	3	0	1	0	15
202			min	-344.785	3	1.01	15	0	12	0	4	012	4	004	6
203		7	max	235.941	2	3.47	4	2.091	4	0	3	0	1	001	15
204			min	-344.912	3	.828	15	0	12	0	4	011	4	006	6
205		8	max	235.771	2	2.698	4	2.633	4	0	3	0	1	002	15
206			min	-345.04	3	.646	15	0	12	0	4	01	4	007	6
207		9	max	235.601	2	1.925	4	3.175	4	0	3	0	1	002	15
208			min	-345.168	3	.465	15	0	12	0	4	009	4	008	6
209		10	max	235.43	2	1.153	4	3.718	4	0	3	0	1	002	15
210			min	-345.296	3	.283	15	0	12	Ö	4	008	5	009	6
211		11	max	235.26	2	.383	2	4.26	4	0	3	0	1	002	15
212			min	-345.423	3	.048	12	0	12	0	4	006	5	009	6
213		12	max	235.09	2	08	15	4.802	4	0	3	0	1	002	15
214		12	min	-345.551	3	395	3	0	12	0	4	004	5	009	6
215		13	max	234.919	2	261	15	5.344	4	0	3	0	1	002	15
216		13	min	-345.679	3	-1.165	6	0	12	0	4	002	5	002	6
217		14	max	234.749	2	443	15	5.886	4	0	3	0	4	003	15
218		14	min	-345.807	3	-1.938	6	0	12	0	4	0	12	002	6
219		15		234.579	2	625	15	6.428	4	0	3	.003	4	002	15
220		13	max min	-345.934	3	-2.71	6	0.420	12	0	4	.003	12	002	6
		16						6.97							
221		16	max	234.408	2	806	15		12	0	3	.006	4	001	15
222		47	min	-346.062	3	-3.483	6	7.540		0	4	0	12	006	6
223		17	max	234.238	2	988	15	7.512	4	0	3	.009	4	0	15
224		40	min	-346.19	3	-4.255	6	0	12	0	4	0	12	004	6
225		18	max	234.068	2	-1.169	15	8.055	4	0	3	.012	4	0	15
226		10	min	-346.318	3	-5.028	6	0	12	0	4	0	12	002	6
227		19	max	233.897	2	-1.351	15	8.597	4	0	3	.016	4	0	1
228			min	-346.445	3	-5.8	6	0	12	0	4	0	12	0	1
229	M4	1_		1235.065	_1_	0	1	317	12	0	1	.008	4	0	1
230				-256.873		0	_1_	-240.299		0	1_	0	10	0	1
231		2		1235.236	1_	0	1	317	12	0	1	0	12	0	1
232			min		3	0	1	-240.447		0	1	019	4	0	1
233		3		1235.406	_1_	0	1	317	12	0	1	0	12	0	1
234			min		3	0	1	-240.594		0	1	047	4	0	1
235		4	max	1235.576	<u>1</u>	0	1	317	12	0	1	0	12	0	1
236			min		3	0	1	-240.742		0	1	075	4	0	1
237		5		1235.747	1_	0	1	317	12	0	1	0	12	0	1
238				-256.362	3	0	1	-240.89	4	0	1	102	4	0	1
239		6	max	1235.917	1	0	1	317	12	0	1	0	12	0	1
240				-256.234	3	0	1	-241.037		0	1	13	4	0	1
241		7		1236.087	1	0	1	317	12	0	1	0	12	0	1
242			min		3	0	1	-241.185		0	1	158	4	0	1
243		8		1236.258	1	0	1	317	12	0	1	0	12	0	1
244			min		3	0	1	-241.333		0	1	185	4	0	1
245		9		1236.428	1	0	1	317	12	0	1	0	12	0	1
246				-255.851	3	0	1	-241.48	4	0	1	213	4	0	1
										_					

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10		1236.599	<u>1</u>	0	1	317	12	0	_1_	0	12	0	1
248				-255.723	3	0	1	-241.628	4	0	1_	241	4	0	1
249		11	max	1236.769	_1_	0	1	317	12	0	1_	0	12	0	1
250			min	-255.595	3	0	1	-241.775	4	0	1	268	4	0	1
251		12		1236.939	<u>1</u>	0	1	317	12	0	1_	0	12	0	1
252			min	-255.467	3	0	1	-241.923	4	0	1	296	4	0	1
253		13	max	1237.11	1	0	1	317	12	0	1	0	12	0	1
254			min	-255.34	3	0	1	-242.071	4	0	1	324	4	0	1
255		14	max	1237.28	1	0	1	317	12	0	1	0	12	0	1
256			min	-255.212	3	0	1	-242.218	4	0	1	352	4	0	1
257		15	max	1237.45	1	0	1	317	12	0	1	0	12	0	1
258			min	-255.084	3	0	1	-242.366	4	0	1	38	4	0	1
259		16	max	1237.621	1	0	1	317	12	0	1	0	12	0	1
260			min	-254.956	3	0	1	-242.514	4	0	1	407	4	0	1
261		17	max	1237.791	1	0	1	317	12	0	1	0	12	0	1
262			min	-254.829	3	0	1	-242.661	4	0	1	435	4	0	1
263		18	max	1237.961	1	0	1	317	12	0	1	0	12	0	1
264			min	-254.701	3	0	1	-242.809	4	0	1	463	4	0	1
265		19	max	1238.132	1	0	1	317	12	0	1	0	12	0	1
266			min	-254.573	3	0	1	-242.956	4	0	1	491	4	0	1
267	M6	1	max	3582.273	1	2.583	2	0	1	0	1	0	4	0	1
268			min		3	.338	12	-81.388	4	0	4	0	1	0	1
269		2	max	3582.601	1	2.571	2	0	1	0	1	0	1	0	12
270				-2846.688	3	.332	12	-81.673	4	0	4	018	4	0	2
271		3	max	3582.93	1	2.559	2	0	1	0	1	0	1	0	12
272				-2846.442	3	.326	12	-81.957	4	0	4	036	4	001	2
273		4		3583.258	1	2.547	2	0	1	0	1	0	1	0	12
274			min	-2846.196	3	.32	12	-82.242	4	0	4	054	4	002	2
275		5	max	3583.586	1	2.536	2	0	1	0	1	0	1	0	12
276			min	-2845.949	3	.314	12	-82.527	4	0	4	073	4	002	2
277		6		3583.915	1	2.524	2	0	1	0	1	0	1	0	12
278			min	-2845.703	3	.308	12	-82.812	4	0	4	091	4	003	2
279		7		3584.243	1	2.512	2	0	1	0	1	0	1	0	12
280				-2845.457	3	.302	12	-83.097	4	0	4	109	4	003	2
281		8		3584.572	1	2.5	2	0	1	0	1	0	1	0	12
282				-2845.21	3	.296	12	-83.382	4	0	4	128	4	004	2
283		9	max		1	2.488	2	0	1	0	1	0	1	0	12
284			min	-2844.964	3	.29	12	-83.666	4	0	4	146	4	004	2
285		10		3585.229	1	2.476	2	0	1	0	1	0	1	0	12
286			min	-2844.718	3	.284	12	-83.951	4	0	4	165	4	005	2
287		11		3585.557		2.464	2	0	1	0	1	0	1	0	12
288				-2844.471	3	.278	12	-84.236	4	0	4	183	4	006	2
289		12		3585.885	1	2.452	2	0	1	0	1	0	1	0	12
290				-2844.225	3	.273	12	-84.521	4	0	4	202	4	006	2
291		13		3586.214	1	2.44	2	0	1	0	1	0	1	0	12
292				-2843.979	3	.267	12	-84.806	4	0	4	221	4	007	2
293		14		3586.542	1	2.429	2	0	1	0	1	0	1	0	12
294			1	-2843.732	3	.261	12	-85.091	4	0	4	24	4	007	2
295		15		3586.871	1	2.417	2	0	1	0	1	0	1	0	12
296			min	-2843.486	3	.255	12	-85.375	4	0	4	259	4	008	2
297		16		3587.199	<u> </u>	2.405	2	0	1	0	1	0	1	0	12
298		'		-2843.24	3	.249	12	-85.66	4	0	4	278	4	008	2
299		17		3587.528	<u> </u>	2.393	2	0	1	0	1	0	1	001	12
300				-2842.993	3	.243	12	-85.945	4	0	4	297	4	009	2
301		18		3587.856	<u> </u>	2.381	2	0	1	0	1	291	1	009 001	12
302		10		-2842.747	3	.237	12	-86.23	4	0	4	316	4	001	2
303		19		3588.185	<u> </u>	2.369	2		1	0	1	316 0	1	009 001	12
JUJ		l 19	шах	JJ00.105		2.309		0		U		U		UU I	14

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
304			min	-2842.501	3	.231	12	-86.515	4	0	4	335	4	01	2
305	M7	1	max		2	8.119	6	0	1	0	1	0	1	.01	2
306			min	-1078.222	3_	1.905	15	-1.285	5	0	4	013	4	.001	12
307		2	max		2	7.346	6	0	1	0	1	0	1	.007	2
308			min	-1078.35	3_	1.723	15	743	5	0	4	013	4	0	3
309		3	max	1021.95	2	6.574	6	0	1	0	1	0	1_	.005	2
310			min	-1078.477	3_	1.542	15	201	5	0	4	013	4	002	3
311		4	max	1021.78	2	5.801	6	.387	4	0	1	0	1	.003	2
312		_	min	-1078.605	3_	1.36	15	0	1	0	4	013	4	003	3
313		5		1021.609	2	5.029	6	.929	4	0	1	0	1	0	2
314			min	-1078.733	3	1.178	15	0	1	0	4	013	4	004	3
315		6		1021.439	2	4.257	6	1.471	4	0	1	0	1	001	15
316		-	min	-1078.861	3	.997	15	0	1	0	4	012	4	005	3
317		7		1021.268	2	3.484	6	2.013	4	0	1	0	1	001	15
318			min	-1078.988	3	.815	15	0	1	0	4	012	4	006	3
319		8	max		2	2.712	6	2.556	4	0	1	0	1	002	15
320			min	-1079.116	3	.634	15	0	1	0	4	011	4	007	4
321		9		1020.928	2	1.939	6	3.098	4	0	1	0	1	002	15
322		4.0	min	-1079.244	3	.45	12	0	1	0	4	009	4	008	4
323		10		1020.757	2	1.301	2	3.64	4	0	1	0	1_	002	15
324		4.4	min	-1079.372	3	.149	12	0	1	0	4	008	4	009	4
325		11		1020.587	2	.699	2	4.182	4	0	1	0	1	002	15
326		40	min	-1079.499	3	276	3	0	1_	0	4	006	4	009	4
327		12		1020.417	2	.097	2	4.724	4	0	1	0	1	002	15
328		40	min	-1079.627	3	728	3	0	1_4	0	4	005	4	009	4
329		13		1020.246	2	274	15	5.266	4	0	1	0	1	002	15
330		4.4	min	-1079.755	3	-1.179	3	0	1	0	4	002	4	009	4
331		14		1020.076	2	456	15	5.808	4	0	1	0	1	002	15
332		4.5	min	-1079.883	3	-1.923	4	0	1	0	4	0	5	008	4
333		15		1019.906	2	637	15	6.35	4	0	1_4	.002	4	002	15
334		10	min	-1080.01	3_	-2.695	4	0		0	4	0	1	007	4
335		16		1019.735	2	819	15	6.893	4	0	11	.005	4	001	15
336		47	min	-1080.138	3_	-3.468 -1	4	7.405	1	0	4	0	1	006	4
337		17		1019.565	2		15	7.435	4	0	1	.008	4	0	15
338		10	min		3	-4.24	4	7.977	1	0	<u>4</u> 1	0	1_1	004	4
339		18		1019.395 -1080.394	2	-1.182 -5.012	15		4	0		.012	1	0	15
340		10	min		3		15	0 510		0	4	0		002	
341		19	max	-1080.522	3	-1.363		8.519	4	0	4	.015	4	0	1
343	M8	1	min		<u>၂</u> ၂	-5.785	1	0	1	0	1	.008	4	0	1
344	IVIO	-	max	-890.242		0	1	-234.915		0	1	0	4	0	1
345		2		3623.861	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-235.062		0	1	019	4	0	1
347		3		3624.031	<u> </u>	0	1	0	1	0	1	0	1	0	1
348		3		-889.987	3	0	1	-235.21	4	0	1	046	4	0	1
349		4		3624.201	<u> </u>	0	1	0	1	0	1	0	1	0	1
350		-		-889.859	3	0	1	-235.358		0	1	073	4	0	1
351		5		3624.372		0	1	0	1	0	1	0	1	0	1
352		-		-889.731	3	0	1	-235.505		0	1	1	4	0	1
353		6		3624.542	_ <u></u>	0	1	0	1	0	1	0	1	0	1
354		U		-889.603		0	1	-235.653	•	0	1	127	4	0	1
355		7		3624.712	<u> </u>	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-235.801	4	0	1	154	4	0	1
357		8		3624.883	<u> </u>	0	1	0	1	0	1	134	1	0	1
358		0	min		3	0	1	-235.948		0	1	181	4	0	1
359		9		3625.053		0	1	0	1	0	1	0	1	0	1
360		9	min		3	0	1	-236.096		0	1	208	4	0	1
500			1111111	-003.22	J	U		200.030	+	U		200	_	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		11 1	LC	_	
361		10		3625.224	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-889.092	3	0	1	-236.243	4	0	1_	235	4	0	1
363		11		3625.394	1	0	1	0	11	0	<u>1</u> 1	0	1_4	0	1
364		40		-888.964 3625.564	3	0	1	-236.391	4	0	<u>1</u> 1	263	4	0	1
365 366		12		-888.837	<u>1</u> 3	0	1	-236.539	4	0	1	29	4	0	1
367		13		3625.735	<u> </u>	0	1	0	1	0	1	0	1	0	1
368		13	min	-888.709	3	0	1	-236.686	4	0	1	317	4	0	1
369		14		3625.905	<u> </u>	0	1	0	1	0	+	0	1	0	1
370		14	min	-888.581	3	0	1	-236.834	4	0	1	344	4	0	1
371		15		3626.075	<u> </u>	0	1	0	1	0	1	0	1	0	1
372		10	min	-888.453	3	0	1	-236.982	4	0	1	371	4	0	1
373		16	_	3626.246	1	0	1	0	1	0	1	0	1	0	1
374		-10		-888.326	3	0	1	-237.129	4	0	1	399	4	0	1
375		17		3626.416	1	0	1	0	1	0	1	0	1	0	1
376				-888.198	3	0	1	-237.277	4	0	1	426	4	0	1
377		18		3626.586	1	0	1	0	1	0	1	0	1	0	1
378			min	-888.07	3	0	1	-237.425	4	0	1	453	4	0	1
379		19	max	3626.757	1	0	1	0	1	0	1	0	1	0	1
380				-887.942	3	0	1	-237.572	4	0	1	48	4	0	1
381	M10	1	max	1110.913	1	2.229	6	046	12	0	1	0	1	0	1
382			min	-866.293	3	.503	15	-81.296	4	0	5	0	3	0	1
383		2	max	1111.242	1_	2.214	6	046	12	0	1	0	10	0	15
384			min	-866.047	3	.499	15	-81.581	4	0	5	018	4	0	6
385		3	max	1111.57	1_	2.199	6	046	12	0	1	0	12	0	15
386			min	-865.8	3	.496	15	-81.865	4	0	5	036	4	0	6
387		4	max	1111.898	_1_	2.184	6	046	12	0	_1_	0	12	0	15
388			min	-865.554	3	.492	15	-82.15	4	0	5	054	4	001	6
389		5		1112.227	_1_	2.168	6	046	12	0	1_	0	12	0	15
390			min	-865.308	3	.489	15	-82.435	4	0	5	073	4	002	6
391		6		1112.555	1_	2.153	6	046	12	0	1	0	12	0	15
392		-	min	-865.061	3	.485	15	-82.72	4	0	5	091	4	002	6
393		7		1112.884	1_	2.138	6	046	12	0	1_	0	12	0	15
394		0		-864.815	3	.481	15	-83.005	4	0	5	109	4	003	6
395		8		1113.212	1	2.123	6 15	046	12	0	1	120	12	0	15
396		9		<u>-864.569</u> 1113.541	<u>3</u> 1	.478 2.107	6	-83.29 046	<u>4</u> 12	0	<u>5</u> 1	128 0	12	003 0	15
397 398		9	min	-864.322	3	.474	15	-83.574	4	0	5	146	4	004	6
399		10		1113.869	<u> </u>	2.092	6	046	12	0	1	0	12	0	15
400		10		-864.076	3	.471	15	-83.859	4	0	5	165	4	004	6
401		11		1114.198	1	2.077	6	046	12	0	1	0	12	004	15
402			min	-863.83	3	.467	15	-84.144	4	0	5	183	4	005	6
403		12		1114.526	1	2.062	6	046	12	0	1	0	12	001	15
404				-863.583	3	.463	15	-84.429	4	0	5	202	4	005	6
405		13		1114.854	1	2.046	6	046	12	0	1	0	12	001	15
406				-863.337	3	.46	15	-84.714	4	0	5	221	4	006	6
407		14		1115.183	1	2.031	6	046	12	0	1	0	12	001	15
408				-863.091	3	.456	15	-84.999	4	0	5	239	4	006	6
409		15		1115.511	1	2.016	6	046	12	0	1	0	12	001	15
410				-862.844	3	.453	15	-85.283	4	0	5	258	4	007	6
411		16		1115.84	1	2.001	6	046	12	0	1	0	12	002	15
412				-862.598	3	.449	15	-85.568	4	0	5	277	4	007	6
413		17		1116.168	_1_	1.985	6	046	12	0	1	0	12	002	15
414				-862.352	3	.445	15	-85.853	4	0	5	296	4	007	6
415		18		1116.497	1_	1.97	6	046	12	0	1	0	12	002	15
416				-862.105	3	.442	15	-86.138	4	0	5	315	4	008	6
417		19	max	1116.825	_1_	1.955	6	046	12	0	1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-861.859	3	.438	15	-86.423	4	0	5	334	4	008	6
419	M11	1	max	236.964	2	8.051	6	0	12	0	1	0	12	.008	6
420			min	-344.146	3	1.881	15	-1.216	5	0	4	013	4	.002	15
421		2	max	236.793	2	7.279	6	0	12	0	1	0	12	.005	6
422			min	-344.274	3	1.7	15	674	5	0	4	013	4	.001	15
423		3	max	236.623	2	6.506	6	0	12	0	1	0	12	.003	2
424			min	-344.401	3	1.518	15	132	5	0	4	013	4	0	12
425		4	max	236.453	2	5.734	6	.459	4	0	1	0	12	0	2
426			min	-344.529	3	1.337	15	012	1	0	4	013	4	001	3
427		5	max	236.282	2	4.961	6	1.001	4	0	1	0	12	0	15
428			min	-344.657	3	1.155	15	012	1	0	4	013	4	003	4
429		6	max		2	4.189	6	1.543	4	0	1	0	12	001	15
430			min	-344.785	3	.974	15	012	1	0	4	012	4	005	4
431		7	max	235.941	2	3.416	6	2.085	4	0	1	0	12	002	15
432			min	-344.912	3	.792	15	012	1	0	4	011	4	006	4
433		8	max	235.771	2	2.644	6	2.628	4	0	1	0	12	002	15
434			min	-345.04	3	.61	15	012	1	0	4	01	4	007	4
435		9	max		2	1.872	6	3.17	4	0	1	0	12	002	15
436			min	-345.168	3	.429	15	012	1	0	4	009	4	008	4
437		10	max	235.43	2	1.099	6	3.712	4	0	1	0	12	002	15
438		'	min	-345.296	3	.247	15	012	1	0	4	008	4	009	4
439		11	max	235.26	2	.383	2	4.254	4	0	1	0	12	002	15
440			min	-345.423	3	.048	12	012	1	0	4	006	4	009	4
441		12	max	235.09	2	116	15	4.796	4	0	1	0	12	002	15
442		'-	min	-345.551	3	447	4	012	1	0	4	004	4	009	4
443		13	max		2	297	15	5.338	4	0	1	0	12	002	15
444		13	min	-345.679	3	-1.219	4	012	1	0	4	002	4	009	4
445		14	max		2	479	15	5.88	4	0	1	0	5	002	15
446		17	min	-345.807	3	-1.992	4	012	1	0	4	0	1	002	4
447		15	max	234.579	2	661	15	6.422	4	0	1	.003	4	002	15
448		13	min	-345.934	3	-2.764	4	012	1	0	4	0	1	007	4
449		16	max		2	842	15	6.965	4	0	1	.006	4	001	15
450		10	min	-346.062	3	-3.536	4	012	1	0	4	0	1	006	4
451		17	max	234.238	2	-1.024	15	7.507	4	0	1	.009	4	001	15
452		11/	min	-346.19	3	-4.309	4	012	1	0	4	0	1	004	4
453		18	max	234.068	2	-1.205	15	8.049	4	0	1	.012	4	0	15
454		10	min	-346.318	3	-5.081	4	012	1	0	4	0	1	002	4
455		19			2	-1.387	15	8.591	4	0	1	.016	4	0	1
456		19	max	-346.445	3	-5.854	4	012	1	0	4	.010	1	0	1
457	M40	1			<u>ა</u> 1		1		1		1	.008	4	_	1
457	M12			-256.873		0	1	8.413 -236.067		0	1		4	0	1
459		2		1235.236	<u> </u>	0	1		1	0	1	0	1	0	1
460						0	1	8.413 -236.214		0	1	019	4	0	1
		3		-256.745											
461		3		1235.406	1	0	1	8.413	1	0	1	.002	1	0	1
462		1		-256.617	3	0		-236.362		0		046	4	0	-
463		4		1235.576	1	0	1	8.413	1	0	1	.003	1	0	1
464		-	min		3	0		-236.509		0	1	073	4	0	1
465		5		1235.747	1	0	1	8.413	1	0	1	.004	1	0	1
466				-256.362	3	0	1	-236.657	4	0	1	1	4	0	1
467		6		1235.917	1_	0	1	8.413	1	0	1	.005	1	0	1
468		-	min		3	0	1	-236.805		0	1	127	4	0	1
469		7		1236.087	1_	0	1	8.413	1	0	1	.006	1	0	1
470				-256.106	3	0	1	-236.952		0	1	1 <u>55</u>	4	0	1
471		8		1236.258	_1_	0	1	8.413	1	0	1	.007	1	0	1
472				-255.979	3_	0	1_	-237.1	4	0	1	182	4	0	1
473		9		1236.428	1_	0	1	8.413	1	0	1	.008	1	0	1
474			min	-255.851	3	0	1	-237.248	4	0	1	209	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
475		10	max	1236.599	_1_	0	1	8.413	1	0	_1_	.009	_1_	0	1
476			min	-255.723	3	0	1	-237.395	4	0	1	236	4	0	1
477		11	max	1236.769	1	0	1	8.413	1	0	1	.01	1	0	1
478			min	-255.595	3	0	1	-237.543	4	0	1	264	4	0	1
479		12	max	1236.939	1	0	1	8.413	1	0	1	.01	1	0	1
480			min	-255.467	3	0	1	-237.691	4	0	1	291	4	0	1
481		13	max	1237.11	1	0	1	8.413	1	0	1	.011	1	0	1
482			min	-255.34	3	0	1	-237.838	4	0	1	318	4	0	1
483		14	max	1237.28	1	0	1	8.413	1	0	1	.012	1	0	1
484			min	-255.212	3	0	1	-237.986	4	0	1	346	4	0	1
485		15	max		1	0	1	8.413	1	0	1	.013	1	0	1
486			min	-255.084	3	0	1	-238.133	4	0	1	373	4	0	1
487		16		1237.621	1	0	1	8.413	1	0	1	.014	1	0	1
488		1	min	-254.956	3	0	1	-238.281	4	0	1	4	4	0	1
489		17		1237.791	1	0	1	8.413	1	0	1	.015	1	0	1
490			min	-254.829	3	0	1	-238.429	4	0	1	428	4	0	1
491		18		1237.961	1	0	1	8.413	1	0	1	.016	1	0	1
492		''	min	-254.701	3	0	1	-238.576	4	0	1	455	4	0	1
493		19	+	1238.132	1	0	1	8.413	1	0	1	.017	1	0	1
494		15	min	-254.573	3	0	1	-238.724	4	0	1	482	4	0	1
495	M1	1	max	139.851	1	491.89	3	57.184	5	0	1	.211	1	0	3
496	171 1	<u> </u>	min	-5.96	5	-511.684	1	-88.683	1	0	3	058	5	013	1
497		2	max	140.222	1	490.852	3	58.426	5	0	1	.164	1	.257	1
498			min	-5.787	5	-513.068	1	-88.683	1	0	3	028	5	259	3
499		3	max	202.618	3	566.327	1	-3.449	12	0	3	.117	1	.515	1
500		-	min	-131.334	2	-355.156	3	-87.644	1	0	1	.001	15	507	3
501		4	max	202.896	3	564.944	1	-3.449	12	0	3	.071	1	.216	1
502		-	min	-130.963	2	-356.194	3	-87.644	1	0	1	008	5	32	3
503		5	max	203.174	3	563.56	1	-3.449	12	0	3	.025	1	004	15
504			min	-130.593	2	-357.232	3	-87.644	1	0	1	017	5	131	3
505		6	max	203.452	3	562.176	1	-3.449	12	0	3	0	12	.057	3
506			min	-130.222	2	-358.27	3	-87.644	1	0	1	029	4	378	1
507		7	max	203.73	3	560.793	1	-3.449	12	0	3	003	12	.247	3
508			min	-129.851	2	-359.307	3	-87.644	1	0	1	068	1	675	1
509		8	max	204.008	3	559.409	1	-3.449	12	0	3	004	12	.437	3
510		"	min	-129.48	2	-360.345	3	-87.644	1	0	1	114	1	97	1
511		9	max	211.818	3	34.051	2	39.23	5	0	9	.067	-	.51	3
512		 	min	-73.651	2	.418	15	-128.438	1	0	3	119	5	-1.105	1
513		10	max	212.096	3	32.668	2	40.472	5	0	9	0	12	.497	3
514		10	min	-73.28	2	0	5	-128.438	1	0	3	099	4	-1.115	1
515		11		212.374	3	31.284	2	41.713	5	0	9	003	12	.484	3
516			min	-72.909	2	-1.732	4	-128.438		0	3	09	4	-1.123	1
517		12	max		3	237.06	3	127.621	5	0	1	.112	1	.421	3
518		12	min		5	-595.224	1	-85.626	1	0	3	171	5	991	1
519		13		220.425	3	236.022	3	128.862	5	0	<u> </u>	.067	1	.296	3
520		13	min		5	-596.608	1	-85.626	1	0	3	103	5	677	1
521		14		220.703	3	234.984	3	130.103	5	0	<u> </u>	.022	1	.172	3
522		14	min	-46.95	5	-597.991	1	-85.626	1	0	3	035	5	362	1
523		15		220.981	3	233.947	3	131.345	5	0	<u> </u>	.034	<u>5</u>	.048	3
524		15		-46.777		-599.375		-85.626	1		3	023	<u> </u>		1
		16	min		5		1			0			•	046	_
525		16	max		3	232.909	3	132.586	5	0	1	.104	<u>5</u> 1	.271	3
526		17	min	-46.604	5	<u>-600.758</u>	2	-85.626	5	0	3	068		075	
527		17	max		3_	231.871 -602.142	3	133.828	1	0	3	.174 114	<u>5</u> 1	.588 197	3
528		40	min		<u>5</u>		1	-85.626 2.540		0			•		
529 530		Ιδ	max		<u>5</u> 1	582.415 -198.765	3	-3.549 -110.459	12	0	<u>5</u> 1	.144 163	<u>5</u> 1	.295	3
		10	min							0	_		_	098	
531		19	max	13.198	<u>5</u>	581.031	1	-3.549	12	0	5	.097	5	.007	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

500	Member	Sec		Axial[lb]						Torque[k-ft]					
532	N.15	4		-140.019	1_	-199.803	3	-109.217	4_	0	1_	212	1_	012	1
533	<u>M5</u>	1	max	301.779	_1_	1640.335	3	87.128	5	0	1	0	1	.027	1
534			min	9.244	12	-1730.799	1_	0	_1_	0	4_	132	4	0	3
535		2	max	302.15	_1_	1639.297	3	88.369	5_	0	_1_	0	1	.941	1
536		_	min	9.429	12	-1732.183	1_	0	_1_	0	4	086	4	866	3
537		3	max	650.743	3	1737.291	1	13.693	4	0	4	0	1	1.813	1
538			min	-496.927	1_	-1144.631	3	0	1_	0	1_	04	4	-1.698	3
539		4	max	651.021	3_	1735.907	_1_	14.935	_4_	0	_4_	0	1_	.897	1
540			min	-496.556	1	-1145.669	3	0	1_	0	1	033	4	-1.093	3
541		5	max	651.299	3_	1734.524	1	16.176	4	0	4_	0	1	.013	9
542			min	-496.186	1	-1146.706	3	0	1	0	1	025	4	488	3
543		6	max	651.577	3	1733.14	1	17.418	4	0	4	0	1	.117	3
544			min	-495.815	1_	-1147.744	3	0	1	0	1	016	5	934	1
545		7	max	651.855	3	1731.757	1	18.659	4	0	4	0	1	.723	3
546			min	-495.444	1	-1148.782	3	0	1	0	1	008	5	-1.848	1
547		8	max	652.133	3	1730.373	1	19.901	4	0	4	.004	4	1.329	3
548			min	-495.073	1	-1149.82	3	0	1	0	1	0	1	-2.761	1
549		9	max	665.78	3	112.702	2	125.337	4	0	1	0	1	1.531	3
550				-367.266	2	.418	15	0	1	0	1	156	4	-3.122	1
551		10	max	666.058	3	111.318	2	126.579	4	0	1	0	1	1.483	3
552		10	min	-366.895	2	0	15	0	1	0	1	09	5	-3.154	1
553		11	max	666.336	3	109.934	2	127.82	4	0	1	0	1	1.436	3
554		- ' '	min	-366.524	2	-1.587	6	0	1	0	1	024	5	-3.185	1
555		12	max		3	751.32	3	173.729	4	0	1	0	1	1.26	3
556		12		-252.168	2	-1850.62	1	0	1	0	4	237	4	-2.836	1
557		13	min	680.336		750.282	3	174.971	4	0	1	23 <i>1</i> 0	1	.864	3
		13	max		3										
558		4.4	min	-251.797	2	-1852.003	1	0	1_	0	4	145	4	-1.859	1
559		14	max	680.614	3_	749.244	3	176.212	4_	0	1	0	1	.468	3
560				-251.426	2	-1853.387	1	0	1_	0	4	052	4	882	1
561		15	max	680.892	3_	748.206	3	177.454	4_	0	1	.041	4	.143	2
562			min	-251.056	2	-1854.771	1_	0	_1_	0	4	0	1_	004	13
563		16	max	681.17	3	747.169	3	178.695	4	0	1	.135	4	1.076	1
564			min	-250.685	2	-1856.154	1_	0	<u>1</u>	0	4_	0	1	321	3
565		17	max		3	746.131	3	179.937	4	0	1_	.229	4	2.055	1
566			min	-250.314	2	-1857.538	1	0	1	0	4	0	1	715	3
567		18	max	-9.576	12	1968.019	1	0	1_	0	4	.225	4	1.063	1
568			min	-301.815	1	-680.541	3	-42.097	5	0	1	0	1	374	3
569		19	max	-9.391	12	1966.636	1	0	1	0	4	.204	4	.024	1
570			min	-301.444	1	-681.579	3	-40.855	5	0	1	0	1	014	3
571	M9	1	max	139.851	1	491.89	3	88.683	1	0	3	008	12	0	3
572			min	4.855	12	-511.684	1	3.497	12	0	1	211	1	013	1
573		2	max		1	490.852	3	88.683	1	0	3	006	12	.257	1
574			min		12	-513.068	1	3.497	12	0	1	164	1	259	3
575		3		202.618	3	566.327	1	87.644	1	0	1	005	12	.515	1
576				-131.334	2	-355.156	3	-10.388	5	0	3	117	1	507	3
577		4		202.896	3	564.944	1	87.644	1	0	1	003	12	.216	1
578		-		-130.963	2	-356.194	3	-9.146	5	0	3	071	1	32	3
579		5		203.174	3	563.56	1	87.644	1	0	1	001	12	004	15
580				-130.593	2	-357.232	3	-7.905	5	0	3	025	1	131	3
581		6		203.452	3	562.176	1	87.644	1	0	1	.021	1	.057	3
582		0		-130.222	2	-358.27	3	-6.663	5	0	3	023	5	378	1
583		7	max		3	560.793	1	87.644	<u> </u>	0	<u> </u>	.068	1	.247	3
584		/		-129.851	2	-359.307	3	-5.422	5	0	3	026	5	675	1
		0							_		<u>3</u> 1				
585		8		204.008	3	559.409	1	87.644	1	0		.114	1	.437	3
586		^	min	-129.48	2	-360.345	3	-4.181	5	0	3	029	5	97	1
587		9		211.818	3_	34.051	2	128.438	1	0	3	003	12	.51	3
588			mın	-73.651	2	.422	15	4.955	12	0	9	141	4	-1.105	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	212.096	3	32.668	2	128.438	1	0	3	0	1	.497	3
590			min	-73.28	2	.005	15	4.955	12	0	9	099	4	-1.115	1
591		11	max	212.374	3	31.284	2	128.438	1	0	3	.069	1	.484	3
592			min	-72.909	2	-1.693	6	4.955	12	0	9	07	5	-1.123	1
593		12	max	220.146	3	237.06	3	155.213	4	0	3	004	12	.421	3
594			min	-43.397	10	-595.224	1	3.232	12	0	1	206	4	991	1
595		13	max	220.425	3	236.022	3	156.455	4	0	3	003	12	.296	3
596			min	-43.088	10	-596.608	1	3.232	12	0	1	124	4	677	1
597		14	max	220.703	3	234.984	3	157.696	4	0	3	0	12	.172	3
598			min	-42.779	10	-597.991	1	3.232	12	0	1	041	4	362	1
599		15	max	220.981	3	233.947	3	158.938	4	0	3	.042	4	.048	3
600			min	-42.47	10	-599.375	1	3.232	12	0	1	0	12	046	1
601		16	max	221.259	3	232.909	3	160.179	4	0	3	.126	4	.271	1
602			min	-42.161	10	-600.758	1	3.232	12	0	1	.003	12	075	3
603		17	max	221.537	3	231.871	3	161.421	4	0	3	.211	4	.588	1
604			min	-41.852	10	-602.142	1	3.232	12	0	1	.004	12	197	3
605		18	max	-4.967	12	582.415	1	93.749	1	0	1	.196	4	.295	1
606			min	-140.39	1	-198.765	3	-81.428	5	0	3	.006	12	098	3
607		19	max	-4.782	12	581.031	1	93.749	1	0	1	.212	1	.007	3
608			min	-140.019	1	-199.803	3	-80.186	5	0	3	.008	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.112	1	.004	3	8.868e-3	1	NC	1	` NC	1
2			min	484	4	015	3	001	2	-1.112e-3	3	NC	1	NC	1
3		2	max	0	1	.235	3	.035	1	1.022e-2	1	NC	5	NC	2
4			min	484	4	127	1	014	5	-1.161e-3	3	985.812	3	7361.326	1
5		3	max	0	1	.437	3	.084	1	1.157e-2	1	NC	5	NC	3
6			min	484	4	315	1	016	5	-1.211e-3	3	544.985	3	3000.814	1
7		4	max	0	1	.559	3	.126	1	1.293e-2	1	NC	5	NC	3
8			min	484	4	421	1	011	5	-1.261e-3	3	428.933	3	1981.426	1
9		5	max	0	1	.586	3	.148	1	1.428e-2	1	NC	5	NC	3
10			min	484	4	429	1	002	5	-1.31e-3	3	409.328	3	1684.629	1
11		6	max	0	1	.521	3	.143	1	1.563e-2	1	NC	5	NC	3
12			min	484	4	343	1	.005	15	-1.36e-3	3	459.001	3	1741.115	1
13		7	max	0	1	.383	3	.113	1	1.698e-2	1	NC	5	NC	3
14			min	484	4	182	1	.007	10	-1.41e-3	3	618.644	3	2211.409	1
15		8	max	0	1	.208	3	.067	1	1.834e-2	1	NC	4	NC	2
16			min	484	4	003	9	.002	10	-1.459e-3	3	1106.078	3	3796.684	1
17		9	max	0	1	.189	1	.02	1	1.969e-2	1	NC	4	NC	1
18			min	484	4	.005	15	002	10	-1.509e-3	3	3166.82	1	NC	1
19		10	max	0	1	.268	1	.011	3	2.104e-2	1	NC	3	NC	1
20			min	484	4	023	3	007	2	-1.559e-3	3	1578.104	1	NC	1
21		11	max	0	12	.189	1	.02	1	1.969e-2	1	NC	4	NC	1
22			min	484	4	.005	15	011	5	-1.509e-3	3	3166.82	1	NC	1
23		12	max	0	12	.208	3	.067	1	1.834e-2	1_	NC	4	NC	2
24			min	484	4	003	9	011	5	-1.459e-3	3	1106.078	3	3796.684	1
25		13	max	0	12	.383	3	.113	1	1.698e-2	1_	NC	5	NC	3
26			min	484	4	182	1	004	5	-1.41e-3	3	618.644	3	2211.409	1
27		14	max	0	12	.521	3	.143	1	1.563e-2	1	NC	5	NC	3
28			min	484	4	343	1	.004	15	-1.36e-3	3	459.001	3	1741.115	1
29		15	max	0	12	.586	3	.148	1	1.428e-2	1	NC	5	NC	3
30			min	485	4	429	1	.009	12	-1.31e-3	3	409.328	3	1684.629	1
31		16	max	0	12	.559	3	.126	1	1.293e-2	1_	NC	5	NC	3
32			min	485	4	421	1	.008	12	-1.261e-3	3	428.933	3	1981.426	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

22	Member	Sec	m 0 1	x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
33		17	max	0 485	12	.437 315	3	.084 .006	12	1.157e-2 -1.211e-3	<u>1</u> 3	NC 544.985	<u>5</u> 3	NC 3000.814	3
35		18	min max	465	12	.235	3	.035	1	1.022e-2	<u>3</u> 1	NC	<u>5</u>	NC	2
36		10	min	485	4	127	1	.002		-1.161e-3	3	985.812	3	7361.326	
37		19	max	465	12	.112	1	.002	3	8.868e-3	1	NC	<u> </u>	NC	1
38		19	min	485	4	015	3	004 001	2	-1.112e-3	3	NC NC	1	NC NC	1
39	M14	1	max	<u>405</u> 0	1	.15	3	.003	3	5.58e-3	<u> </u>	NC	1	NC	1
40	IVI 14		min	387	4	361	1	001		-2.723e-3	3	NC	1	NC	1
41		2	max	- <u>367</u> 0	1	.39	3	.025	1	6.713e-3	<u> </u>	NC	5	NC	1
42			min	387	4	732	1	02	5	-3.323e-3	3	664.592	1	NC	1
43		3	max	- <u>367</u> 0	1	.592	3	.068	1	7.845e-3	<u> </u>	NC	15	NC	3
44		3	min	387	4	-1.049	1	024	5	-3.922e-3	3	357.862	1	3733.497	1
45		4	max	- <u>367</u> 0	1	.731	3	.109	1	8.978e-3	<u> </u>	NC	15	NC	3
46		4	min	387	4	-1.277	1	016	5	-4.522e-3	3	268.734	1	2310.03	1
47		5		361 0	1		3	.132	1		<u> </u>			NC	3
48		<u> </u>	max min	387	4	<u>.794</u> -1.397	1	002	5	1.011e-2 -5.121e-3	3	9468.875 237.516	<u>15</u> 1	1895.589	
		6			1		3	002 .13						NC	3
49 50		6	max	0 387	4	.781	1	.009	12	1.124e-2 -5.721e-3	1	9394.133 234.739	<u>15</u> 1	1915.415	
		7	min		1	<u>-1.409</u>	3				3			NC	3
51		1	max	0		.706		.105	1	1.238e-2	1	NC 252.660	<u>15</u>		1
52		0	min	387	1	<u>-1.331</u>	1	.006	10	-6.32e-3	3	253.669	1_	2393.821	2
53		8	max	0	4	.596	3	.063	1	1.351e-2 -6.92e-3	1	NC 204 000	<u>15</u>	NC 4052 740	2
54			min	387	1	<u>-1.198</u> .49	1	.002 .027	10		3	294.009 NC	<u>1</u> 15	4053.719 NC	1
55		9	max	0			3		4	1.464e-2	1				
56		40	min	387	4	<u>-1.064</u>	1	002	10	-7.52e-3	3	350.232	1_	8946.295	
57		10	max	0	1	44	3	.01	3	1.577e-2	1	NC 205 225	<u>5</u>	NC NC	1
58		44	min	387	4	<u>-1</u>	1	006	2	-8.119e-3	3	385.325	_	NC NC	•
59		11	max	0	12	.49	3	.02	1	1.464e-2	1	NC 250,222	<u>15</u>	NC NC	1
60		40	min	387	4	<u>-1.064</u>	1	02	5	-7.52e-3	3	350.232	1_	NC NC	2
61		12	max	0	12	.596	3	.063	1	1.351e-2	1	NC 204.000	<u>15</u>	NC	
62		12	min	387	4	<u>-1.198</u>	1	023	5	-6.92e-3	3	294.009	<u>1</u> 15	4053.719	
63		13	max	0	12	.706	3	.105	1	1.238e-2	1	NC 252.660		NC	3
64		4.4	min	387	4	<u>-1.331</u>	1	<u>014</u>	5	-6.32e-3	3	253.669	1_	2393.821	1
65		14	max	0	12	.781	3	.13	1	1.124e-2	1	9393.797	<u>15</u>	NC	3
66		4.5	min	387	4	-1.409	1	0			3	234.739	1_	1915.415	
67 68		15	max	0	12	<u>.794</u> -1.397	3	.132	1	1.011e-2	1	9468.447	<u>15</u>	NC 1895.589	3
		16	min	387	12		3	.008	12	-5.121e-3	3	237.516 NC	1_	NC	
69 70		16	max	0 387		.731 -1.277	1	.109 .007	12	8.978e-3 -4.522e-3	1	268.734	<u>15</u> 1	2310.03	3
71		17	min		12		3		1		3	NC	15	NC	3
		17	max	0		.592	1	.068		7.845e-3	1_		1		
72 73		10	min max	387	12	<u>-1.049</u>	3	.005 .028		-3.922e-3 6.713e-3	<u>3</u> 1	357.862 NC	5	3733.497	1
		10				.39								NC 9652 592	1
74 75		19	min	<u>387</u> 0	12	<u>732</u> .15	3	.003	3	-3.323e-3 5.58e-3	<u>3</u> 1	664.592 NC	<u>1</u> 1	8652.582 NC	1
		19	max								3	NC NC	1		1
76	NAF	1	min	387	4	361	3	001	10	-2.723e-3	_		1	NC NC	
77 78	<u>M15</u>	1_	max min	0 326	12	.154 361	1	<u>.003</u> 	10	2.295e-3 -5.674e-3	<u>3</u> 1	NC NC	1	NC NC	1
79		2		<u>320</u> 0	12	.306	3	.025	-	2.803e-3		NC NC	5	NC NC	1
		 	max	326		765	1	03	1	-6.83e-3	3		1	7921.174	
80		2	min		12		3		5		1	608.817			
81		3	max	<u>0</u>		.438	1	.068	1	3.31e-3 -7.986e-3	3	NC	<u>15</u>	NC	3
82		1	min	326	12	<u>-1.11</u>	3	037	5	2 9192 2	1	328.542	15	3723.356	
83		4	max	0	12	.534		.109	1 5	3.818e-3	3	NC	<u>15</u>	NC	3
84			min	326	4	<u>-1.354</u>	1	026	5	-9.142e-3	1	247.643	1_	2305.079	
85		5	max	0	12	.588	3	.132	1	4.325e-3	3_1	9476.982	<u>15</u>	NC	3
86		6	min	326	4	<u>-1.479</u>	1	007	5	-1.03e-2	1_	220.144	1_	1891.837	
87		6	max	<u>0</u>	12	.598	3	.131	1	4.833e-3	3	9403.738	<u>15</u>	NC	3
88		7	min	326	4	-1.482	1	.008	12	-1.145e-2	1	219.465		1911.394	
89		7	max	0	12	.573	3	.105	1	5.34e-3	3	NC	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		
90			min	326	4	-1.385	1	.006	10	-1.261e-2	1_	240.243	_1_	2387.505	
91		8	max	0	12	.524	3	.063	1_	5.848e-3	3	NC	15	NC	2
92			min	326	4	-1.228	1	.002	10	-1.377e-2	_1_	283.69	1_	4035.954	
93		9	max	0	12	.474	3	.036	4	6.355e-3	3	NC	15	NC	1
94			min	326	4	-1.072	1	002	10	-1.492e-2	1	345.846	1_	6741.695	4
95		10	max	0	1	.45	3	.01	3	6.863e-3	3	NC	5	NC	1
96			min	326	4	999	1	006	2	-1.608e-2	1	385.824	1	NC	1
97		11	max	0	1	.474	3	.02	1	6.355e-3	3	NC	15	NC	1
98			min	326	4	-1.072	1	029	5	-1.492e-2	1	345.846	1	8513.987	5
99		12	max	0	1	.524	3	.063	1	5.848e-3	3	NC	15	NC	2
100			min	326	4	-1.228	1	034	5	-1.377e-2	1	283.69	1	4035.954	1
101		13	max	0	1	.573	3	.105	1	5.34e-3	3	NC	15	NC	3
102			min	326	4	-1.385	1	022	5	-1.261e-2	1	240.243	1	2387.505	
103		14	max	0	1	.598	3	.131	1	4.833e-3	3	9403.492	15	NC	3
104			min	326	4	-1.482	1	002	5	-1.145e-2	1	219.465	1	1911.394	1
105		15	max	0	1	.588	3	.132	1	4.325e-3	3	9476.671	15	NC	3
106		13	min	326	4	-1.479	1	.008	12	-1.03e-2	1	220.144	1	1891.837	1
107		16	max	0	1	.534	3	.109	1	3.818e-3	3	NC	15	NC	3
108		10	min	326	4	-1.354	1	.006	12	-9.142e-3	1	247.643	1	2305.079	
109		17		320 0	1		3		1	3.31e-3	3	NC	15	NC	3
		17	max	326	4	.438 -1.11	1	.068	12		<u> </u>				
110		40	min					.005		-7.986e-3	•	328.542	1	3723.356	
111		18	max	0	1	.306	3	.039	4	2.803e-3	3	NC COO 047	5_	NC coco coa	1
112		40	min	326	4	765	1	.001	10	-6.83e-3	1	608.817	1_	6360.204	_
113		19	max	0	1	.154	3	.003	3	2.295e-3	3	NC	1_	NC NC	1
114	1440		min	326	4	361	1	0	10	-5.674e-3	1	NC	1_	NC	1
115	M16	1	max	0	12	.108	1	.003	3	3.986e-3	3	NC	1	NC NC	1
116		_	min	143	4	051	3	0	10	-8.345e-3	1	NC	<u>1</u>	NC	1
117		2	max	0	12	.039	3	.035	1	4.706e-3	3	NC	5	NC	2
118			min	144	4	165	1	023	5	-9.57e-3	1	899.48	1	7404.597	1
119		3	max	0	12	.109	3	.084	1	5.426e-3	3	NC	5_	NC	3
120			min	144	4	383	1	028	5	-1.08e-2	_1_	501.164	1_	3008.738	1
121		4	max	0	12	.147	3	.126	1_	6.147e-3	3	NC	5_	NC	3
122			min	144	4	506	1	021	5	-1.202e-2	1	400.264	1	1983.06	1
123		5	max	0	12	.146	3	.148	1	6.867e-3	3	NC	5	NC	3
124			min	144	4	519	1	007	5	-1.325e-2	1	392.019	1	1683.42	1
125		6	max	0	12	.109	3	.143	1	7.587e-3	3	NC	5	NC	3
126			min	144	4	425	1	.005	15	-1.447e-2	1	461.742	1	1736.625	1
127		7	max	0	12	.044	3	.114	1	8.307e-3	3	NC	5	NC	3
128			min	144	4	246	1	.007	10	-1.57e-2	1	695.349	1	2198.789	1
129		8	max	0	12	.004	4	.067	1	9.027e-3	3	NC	3	NC	2
130			min	144	4	053	2	.003	10	-1.692e-2	1	1806.671	2	3745.588	
131		9	max	0	12	.17	1	.026	4	9.747e-3	3	NC	4	NC	1
132			min	144	4	104	3	001			1	4000.287	1	9457.215	4
133		10	max	0	1	.258	1	.008	3	1.047e-2	3	NC	5	NC	1
134		l .	min	144	4	135	3	005	2	-1.937e-2	1	1647.714	1	NC	1
135		11	max	0	1	.17	1	.021	1	9.747e-3	3	NC	4	NC	1
136			min	144	4	104	3	018	5	-1.815e-2	1	4000.287	1	NC	1
137		12	max	0	1	.004	6	.067	1	9.027e-3	3	NC	3	NC	2
138		12	min	143	4	053	2	019	5	-1.692e-2	1	1806.671	2	3745.588	
139		13	max	0	1	.044	3	.114	1	8.307e-3	3	NC	5	NC	3
140		13	min	143	4	246	1	009	5	-1.57e-2	1	695.349	1	2198.789	
141		14			1	.109	3	.143	1	7.587e-3	3	NC	5	NC	3
142		14	max	0 143	4	425	1	.004	15			461.742	<u> </u>	1736.625	
		15	min		1		_			-1.447e-2	<u>1</u>				
143		15	max	0		.146	3	.148	1	6.867e-3	3	NC	5	NC	3
144		40	min	143	4	<u>519</u>	1	.008	12	-1.325e-2	1	392.019	1_	1683.42	1
145		16	max	0	1	.147	3	.126	1	6.147e-3	3	NC 400.004	5	NC 4000.00	3
146			min	143	4	506	1	.007	12	-1.202e-2	_1_	400.264	_1_	1983.06	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

148		Member	Sec		x [in]	LC	y [in]	LC	z [in]	1	x Rotate [r					
149	147		17	max	0	1	.109	3	.084	1	5.426e-3	3	NC	5	NC	3
150																
151			18													
152												_		•		
183			19											_		_
154		140	4											•		
155		IVI2	1													
156			_													
157			2											-		
158			-													
159			3													
160			1								-1.498e-4					
161			4									5_4				
162			-									_1_				
163			5			-								-		_
164			6											_		
165			6													
166			7													
167										_		-		-		
168			0									_				_
169			-									-				_
170			0											-		
171			9									4				
172			10									<u> </u>		•		
173			10			-								-		_
174			11									•		•		
175																
176			12													
177			12											-		
178			13									_				_
179			13									-				-
180			14													
181 15 max .001 1 0 15 0 1 2.46e-3 4 NC 1 NC 1 182 min 0 3 002 3 034 4 -3.208e-8 3 NC 1 1423.249 4 183 16 max 0 1 0 15 0 1 2.551e-3 4 NC 1 NC 1 184 min 0 3 001 6 02 4 5.074e-7 12 NC 1 2415.887 4 185 17 max 0 1 0 15 0 1 2.643e-3 4 NC 1 NC 1 186 min 0 3 001 6 009 4 1.019e-6 12 NC 1 NC 1 187 18 max 0 1 0 1			17											1		
182 min 0 3 002 3 034 4 -3.208e-8 3 NC 1 1423.249 4 183 16 max 0 1 0 15 0 1 2.551e-3 4 NC 1 NC 1 184 min 0 3 001 6 02 4 5.074e-7 12 NC 1 2415.887 4 185 17 max 0 1 0 15 0 1 2.643e-3 4 NC 1 NC 1 186 min 0 3 001 6 009 4 1.019e-6 12 NC 1 NC </td <td></td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>1</td> <td></td> <td></td>			15									_		1		
183 16 max 0 1 0 15 0 1 2.551e-3 4 NC 1 NC 1 184 min 0 3 001 6 02 4 5.074e-7 12 NC 1 2415.887 4 185 17 max 0 1 0 15 0 1 2.643e-3 4 NC 1 NC 1 186 min 0 3 001 6 009 4 1.019e-6 12 NC 1 5068.432 4 187 18 max 0 1 0 15 0 1 2.734e-3 4 NC 1 NC </td <td></td> <td></td> <td>10</td> <td></td> <td>-</td> <td></td> <td>_</td>			10											-		_
184 min 0 3 001 6 02 4 5.074e-7 12 NC 1 2415.887 4 185 17 max 0 1 0 15 0 1 2.643e-3 4 NC 1 NC 1 186 min 0 3 001 6 009 4 1.019e-6 12 NC 1 5068.432 4 187 18 max 0 1 0 15 0 1 2.734e-3 4 NC 1 NC 1 188 min 0 3 0 6 003 4 1.53e-6 12 NC 1 NC 1 189 19 max 0 1 0 1 2.825e-3 4 NC 1 NC 1 190 min 0 1 0 1 2.041e-6 12 NC			16											•		
185 17 max 0 1 0 15 0 1 2.643e-3 4 NC 1 NC 1 186 min 0 3 001 6 009 4 1.019e-6 12 NC 1 5068.432 4 187 18 max 0 1 0 15 0 1 2.734e-3 4 NC 1 NC 1 188 min 0 3 0 6 003 4 1.53e-6 12 NC 1 NC 1 189 19 max 0 1 0 1 2.825e-3 4 NC 1 NC 1 190 min 0 1 0 1 2.041e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -6.383e-7 12 NC 1 <td></td> <td></td> <td>- 10</td> <td></td>			- 10													
186 min 0 3 001 6 009 4 1.019e-6 12 NC 1 5068.432 4 187 18 max 0 1 0 15 0 1 2.734e-3 4 NC 1 NC 1 188 min 0 3 0 6 003 4 1.53e-6 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.825e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 2.041e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -6.383e-7 12 NC 1 NC 1 192 min 0 1 0 1 -6.299e-4 4 NC			17									-		1		1
187 18 max 0 1 0 15 0 1 2.734e-3 4 NC 1 NC 1 188 min 0 3 0 6 003 4 1.53e-6 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.825e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 2.041e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -6.383e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -6.299e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .014 4 4.239e-6 1					-					_				1		4
188 min 0 3 0 6 003 4 1.53e-6 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.825e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 2.041e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -6.383e-7 12 NC 1 NC 1 192 min 0 1 0 1 -6.383e-7 12 NC 1 NC 1 193 2 max 0 3 0 15 .014 4 4.239e-6 1 NC 1 NC 1 194 min 0 2 001 6 0 12 -4.581e-6 5 NC			18	max							2.734e-3			1		
189 19 max 0 1 0 1 0 1 2.825e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 2.041e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 0 1 -6.383e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -6.299e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .014 4 4.239e-6 1 NC 1 NC 1 194 min 0 2 001 6 0 12 -4.581e-6 5 NC 1 NC 1 195 3 max 0 3 003 6 0<																
190 min 0 1 0 1 2.041e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 0 1 -6.383e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -6.299e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .014 4 4.239e-6 1 NC 1 NC 1 194 min 0 2 001 6 0 12 -4.581e-6 5 NC 1 NC 1 195 3 max 0 3 0 15 .027 4 6.251e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 9.665e-7			19				0			1				1		1
191 M3 1 max 0 1 0 1 -6.383e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -6.299e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .014 4 4.239e-6 1 NC 1 NC 1 194 min 0 2 001 6 0 12 -4.581e-6 5 NC 1 NC 1 195 3 max 0 3 0 15 .027 4 6.251e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 9.665e-7 12 NC 1 NC 1 197 4 max 0 3 001 15 .039 4										1				1		
192 min 0 1 0 1 -6.299e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .014 4 4.239e-6 1 NC 1 NC 1 194 min 0 2 001 6 0 12 -4.581e-6 5 NC 1 NC 1 195 3 max 0 3 0 15 .027 4 6.251e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 9.665e-7 12 NC 1 NC 1 197 4 max 0 3 001 15 .039 4 1.253e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 1.769e-6		M3	1			1		1		1				1		1
193 2 max 0 3 0 15 .014 4 4.239e-6 1 NC 1 NC 1 194 min 0 2 001 6 0 12 -4.581e-6 5 NC 1 NC 1 195 3 max 0 3 0 15 .027 4 6.251e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 9.665e-7 12 NC 1 NC 1 197 4 max 0 3 001 15 .039 4 1.253e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 1.769e-6 12 NC 1 NC 1 199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 <						1		1		1				1		1
194 min 0 2 001 6 0 12 -4.581e-6 5 NC 1 NC 1 195 3 max 0 3 0 15 .027 4 6.251e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 9.665e-7 12 NC 1 NC 1 197 4 max 0 3 001 15 .039 4 1.253e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 1.769e-6 12 NC 1 NC 1 199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 min 0 2 007 6 0			2		0	3	0	15	.014	4		1		1		1
195 3 max 0 3 0 15 .027 4 6.251e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 9.665e-7 12 NC 1 NC 1 197 4 max 0 3 001 15 .039 4 1.253e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 1.769e-6 12 NC 1 NC 1 199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 2.571e-6 12 NC 1 8714.412 4										12		5		1		1
196 min 0 2 003 6 0 12 9.665e-7 12 NC 1 NC 1 197 4 max 0 3 001 15 .039 4 1.253e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 1.769e-6 12 NC 1 NC 1 199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 2.571e-6 12 NC 1 8714.412 4			3		0	3			.027	4		4	NC	1	NC	1
197 4 max 0 3 001 15 .039 4 1.253e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 1.769e-6 12 NC 1 NC 1 199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 2.571e-6 12 NC 1 8714.412 4					-		-					12		1		1
198 min 0 2 005 6 0 12 1.769e-6 12 NC 1 NC 1 199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 2.571e-6 12 NC 1 8714.412 4			4	1 1	0				.039					1		1
199 5 max 0 3 001 15 .051 4 1.88e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 2.571e-6 12 NC 1 8714.412 4										12		12		1		1
200 min 0 2007 6 0 12 2.571e-6 12 NC 1 8714.412 4			5		0				.051					1		1
										12		12		1		4
			6	max	0				.063	4		4		1	NC	1
202 min 0 2008 6 0 12 3.374e-6 12 NC 1 7842.706 4					0					12		12		1		4
203 7 max .001 3002 15 .073 4 3.135e-3 4 NC 1 NC 1	203		7	max	.001	3	002	15	.073	4	3.135e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

204	Member	Sec	:	x [in]	LC 2	y [in]	LC	z [in]		x Rotate [r					
204		8	min max	.001	3	01 002	15	<u> </u>	1 <u>2</u>	4.176e-6 3.763e-3	<u>12</u> 4	9458.294 NC	<u>6</u> 1	7448.54 NC	1
206		0	min	0	2	002 011	6	<u>.064</u>	12	4.978e-6		8418.843	6	7386.754	
207		9	max	.001	3	003	15	.094	4	4.39e-3	4	NC	1	NC	1
208		9	min	0	2	003 012	6	<u>.094</u>	12	5.781e-6	12	7796.615	6	7607.453	
209		10	max	.002	3	003	15	.103	4	5.018e-3	4	NC	2	NC	1
210		10	min	001	2	012	6	0	12	6.583e-6	12	7480.521	6	8124.71	5
211		11	max	.002	3	003	15	.112	4	5.645e-3	4	NC	2	NC	1
212			min	001	2	013	6	0	12	7.386e-6	12	7422.962	6	9016.007	5
213		12	max	.002	3	003	15	.121	4	6.273e-3	4	NC	2	NC	1
214			min	001	2	012	6	0	12	8.188e-6	12	7621.395	6	NC	1
215		13	max	.002	3	002	15	.13	4	6.9e-3	4	NC	1	NC	1
216			min	001	2	012	6	0	12	8.99e-6	12	8119.561	6	NC	1
217		14	max	.002	3	002	15	.138	4	7.528e-3	4	NC	_1_	NC	1
218			min	001	2	01	6	0	12	9.793e-6		9030.954	6	NC	1
219		15	max	.002	3	002	15	.147	4	8.155e-3	4	NC	1_	NC	1
220			min	002	2	009	1	0	12	1.06e-5	12	NC	1_	NC	1
221		16	max	.003	3	<u>001</u>	15	<u>.155</u>	4	8.783e-3	4	NC	1_	NC NC	1
222		47	min	002	2	008	1	0	12	1.14e-5	12	NC NC	1_	NC NC	1
223		17	max	.003	3	0	15	.164	4	9.411e-3	4	NC NC	1	NC NC	1
224 225		18	min	002 .003	3	006 0	15	<u> </u>	1 <u>2</u>	1.22e-5 1.004e-2	<u>12</u> 4	NC NC	1	NC NC	1
226		10	max min	002	2	005	1	0	12	1.3e-5	12	NC NC	1	NC NC	1
227		19	max	.002	3	<u>005</u> 0	5	.184	4	1.067e-2	4	NC	1	NC	1
228		13	min	002	2	003	1	0	12	1.38e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	12	-3.995e-7	12	NC	1	NC	3
230	171 1		min	0	3	003	3	184	4	-9.493e-4	4	NC	1	134.945	4
231		2	max	.003	1	.001	2	0	12	-3.995e-7	12	NC	1	NC	2
232			min	0	3	003	3	169	4	-9.493e-4	4	NC	1	146.926	4
233		3	max	.003	1	.001	2	0	12	-3.995e-7	12	NC	1	NC	2
234			min	0	3	003	3	154	4	-9.493e-4	4	NC	1	161.173	4
235		4	max	.002	1	.001	2	0	12	-3.995e-7	12	NC	1	NC	2
236			min	0	3	002	3	139	4	-9.493e-4	4	NC	1_	178.278	4
237		5	max	.002	1	.001	2	0	12	-3.995e-7	12	NC	_1_	NC	2
238			min	0	3	002	3	125	4	-9.493e-4	4_	NC	_1_	199.043	4
239		6	max	.002	1	.001	2	0	12	-3.995e-7	12	NC		NC	2
240		-	min	0	3	002	3	<u>11</u>	4	-9.493e-4	4	NC	1_	224.581	4
241		7	max	.002	1	.001	2	0	12	-3.995e-7	12	NC	1_	NC OFC 470	2
242		0	min	0	3	002	3	097	4	-9.493e-4	4	NC NC	<u>1</u> 1	256.473	4
243 244		8	max min	.002	3	002	3	0 084	12	-3.995e-7 -9.493e-4	12	NC NC	1	NC 297.022	4
245		9	max	.002	1	<u>002</u> 0	2	064 0	12	-3.995e-7	12	NC	1	NC	2
246		-	min	0	3	002	3	071	4	-9.493e-4	4	NC	1	349.699	4
247		10	max	.001	1	0	2	0	12	-3.995e-7	12	NC	1	NC	1
248		1.0	min	0	3	001	3	059	4	-9.493e-4	4	NC	1	419.93	4
249		11	max	.001	1	0	2	0	12	-3.995e-7	12	NC	1	NC	1
250			min	0	3	001	3	048	4	-9.493e-4	4	NC	1	516.589	4
251		12	max	.001	1	0	2	0	12	-3.995e-7	12	NC	1	NC	1
252			min	0	3	001	3	038	4	-9.493e-4	4	NC	1	655.032	4
253		13	max	0	1	0	2	0	12	-3.995e-7	12	NC	1	NC	1
254			min	0	3	0	3	029	4	-9.493e-4	4	NC	1	863.768	4
255		14	max	0	1	0	2	0	12	-3.995e-7	12	NC	1	NC	1
256		F	min	0	3	0	3	021	4	-9.493e-4	4	NC	1_	1200.803	
257		15	max	0	1	0	2	0	12	-3.995e-7	12	NC	1_	NC 1700 000	1
258		10	min	0	3	0	3	014	4	-9.493e-4	4	NC NC	1_	1799.882	
259		16	max	0	1	0	2	0	12	-3.995e-7	12	NC	1_	NC 2020 020	1
260			min	0	3	0	3	008	4	-9.493e-4	4	NC	1_	3030.836	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
261		17	max	0	1	0	2	0	12	-3.995e-7	12	NC	1_	NC	1
262			min	0	3	0	3	004	4	-9.493e-4	4	NC	1_	6265.463	4
263		18	max	0	1	0	2	0	12	-3.995e-7	12	NC	1	NC	1
264			min	0	3	0	3	001	4	-9.493e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	-3.995e-7	12	NC	1	NC	1
266			min	0	1	0	1	0	1	-9.493e-4	4	NC	1	NC	1
267	M6	1	max	.017	1	.01	2	0	1	1.267e-3	4	NC	3	NC	1
268	1410		min	013	3	015	3	463	4	0	1	4747.821	2	103.432	4
269		2	max	.016	1	.009	2	0 0	1	1.352e-3	4	NC	3	NC	1
270			min	012	3	014	3	425	4	0	1	5235.039	2	112.703	4
271		3		.015	1	.008	2	425	1	1.438e-3	4	NC	1	NC	1
		3	max							_					
272		-	min	012	3	013	3	387	4	0	1_	5828.606	2	123.728	4
273		4	max	.014	1	.007	2	00	1	1.523e-3	4_	NC	1_	NC	1
274		_	min	011	3	012	3	349	4	0	1_	6561.119	2	136.965	4
275		5_	max	.013	1	.006	2	0	1_	1.609e-3	4_	NC	_1_	NC	1
276			min	01	3	012	3	313	4	0	1_	7479.156	2	153.04	4
277		6	max	.012	1	.006	2	0	1	1.694e-3	4_	NC	<u>1</u>	NC	1
278			min	009	3	011	3	277	4	0	1	8651.209	2	172.82	4
279		7	max	.011	1	.005	2	0	1	1.78e-3	4	NC	1	NC	1
280			min	009	3	01	3	242	4	0	1	NC	1	197.538	4
281		8	max	.01	1	.004	2	0	1	1.865e-3	4	NC	1	NC	1
282			min	008	3	009	3	209	4	0	1	NC	1	228.996	4
283		9	max	.009	1	.003	2	0	1	1.951e-3	4	NC	1	NC	1
284		Ť	min	007	3	009	3	177	4	0	1	NC	1	269.911	4
285		10	max	.008	1	.002	2	0	1	2.036e-3	4	NC	1	NC	1
286		10	min	007	3	008	3	147	4	0	1	NC	1	324.541	4
		11					2		1	2.121e-3			•	NC	
287		11	max	.007	1	.002		0			4	NC	1_		1
288		10	min	006	3	007	3	12	4	0	_1_	NC	1_	399.874	4
289		12	max	.006	1	.001	2	0	1	2.207e-3	4_	NC		NC	1
290		10	min	005	3	006	3	094	4	0	1_	NC	1_	508.039	4
291		13	max	.006	1	0	2	0	1	2.292e-3	4	NC	1_	NC	1
292			min	004	3	005	3	071	4	0	1_	NC	_1_	671.655	4
293		14	max	.005	1	0	2	0	1	2.378e-3	4	NC	<u>1</u>	NC	1
294			min	004	3	004	3	051	4	0	1	NC	1	937.009	4
295		15	max	.004	1	0	2	0	1	2.463e-3	4	NC	1	NC	1
296			min	003	3	004	3	034	4	0	1	NC	1	1411.678	4
297		16	max	.003	1	0	2	0	1	2.549e-3	4	NC	1	NC	1
298			min	002	3	003	3	02	4	0	1	NC	1	2396.591	4
299		17	max	.002	1	0	2	0	1	2.634e-3	4	NC	1	NC	1
300			min	001	3	002	3	01	4	0	1	NC	1	5029.276	
301		18	max	0	1	<u>.002</u>	2	0	1	2.72e-3	4	NC	1	NC	1
302		10	min	0	3	0	3	003	4	0	1	NC	1	NC	1
		19		0	1	0	1		1	2.805e-3	4	NC	1	NC	1
303		19	max		1	0	1	0	1		4	NC NC	1		1
304	N 477	-	min	0				0		0	1		•	NC NC	
305	M7	1_	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
306		_	min	0	1	0	1	0	1	-6.231e-4	4	NC	1_	NC	1
307		2	max	00	3	0	15	.014	4	0	_1_	NC	_1_	NC	1
308			min	0	2	002	3	0	1	-9.191e-6	5	NC	1_	NC	1
309		3	max	.001	3	0	15	.027	4	6.069e-4	4	NC	1_	NC	1
310			min	0	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	.039	4	1.222e-3	4	NC	1	NC	1
312			min	001	2	005	3	0	1	0	1	NC	1	NC	1
313		5	max	.002	3	002	15	.051	4	1.837e-3	4	NC	1	NC	1
314			min	002	2	007	4	0	1	0	1	NC	1	8359.493	
315		6	max	.003	3	002	15	.062	4	2.452e-3	4	NC	1	NC	1
316			min	002	2	002	4	0	1	0	1	NC	1	7499.671	4
317		7		.003	3	009	15	.073	4	3.067e-3	4	NC	1	NC	1
317		/	max	.003	⊥ა	002	LIO	.013	4	3.0076-3	4	INC	1	INC	<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		LC
318			min	003	2	01	4	0	1	0	1_	9561.6	4	7096.68	4
319		8	max	.004	3	003	15	.083	4	3.682e-3	4	NC	_1_	NC	1
320			min	003	2	011	4	0	1	0	1_	8503.383	4_	7007.413	
321		9	max	.004	3	003	15	.093	4	4.297e-3	4	NC	1_	NC	1
322		40	min	004	2	012	4	0	1	0 4.912e-3	1_1	7869.295	4_	7183.674	
323		10	max	.005	3	003	15	.102	1	4.912e-3	<u>4</u> 1	NC 7545 005	<u>1</u> 4	NC 7633.547	4
325		11	min max	004 .005	3	013 003	15	<u> </u>	4	5.527e-3	4	7545.805 NC	_ 4	NC	1
326			min	005	2	013	4	0	1	0.0276-3	1	7484.071	4	8417.327	4
327		12	max	.006	3	003	15	.119	4	6.142e-3	4	NC	1	NC	1
328		12	min	005	2	013	4	0	1	0.1426-3	1	7680.99	4	9668.169	-
329		13	max	.006	3	003	15	.128	4	6.757e-3	4	NC	1	NC	1
330		10	min	006	2	012	4	0	1	0.70700	1	8180.259	4	NC	1
331		14	max	.007	3	003	15	.136	4	7.372e-3	4	NC	1	NC	1
332			min	006	2	012	1	0	1	0	1	9095.899	4	NC	1
333		15	max	.007	3	002	15	.144	4	7.987e-3	4	NC	1	NC	1
334			min	007	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.008	3	002	15	.153	4	8.602e-3	4	NC	1	NC	1
336			min	007	2	011	1	0	1	0	1	NC	1	NC	1
337		17	max	.008	3	001	15	.161	4	9.217e-3	4	NC	1	NC	1
338			min	008	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.009	3	0	15	.17	4	9.832e-3	4	NC	1	NC	1
340			min	008	2	009	1	0	1	0	1	NC	1	NC	1
341		19	max	.009	3	0	15	.18	4	1.045e-2	4	NC	1	NC	1
342			min	009	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.007	2	0	1	0	_1_	NC	<u>1</u>	NC	1
344			min	002	3	009	3	18	4	-9.711e-4	4	NC	1_	137.948	4
345		2	max	.008	1	.007	2	00	1	0	1	NC	_1_	NC	1
346			min	002	3	009	3	165	4	-9.711e-4	4	NC	1_	150.197	4
347		3	max	.008	1	.007	2	0	1	0	1	NC	_1_	NC	1
348			min	002	3	008	3	151	4	-9.711e-4	4	NC	1_	164.764	4
349		4	max	.007	1	.006	2	0	1	0	1	NC	_1_	NC 100 0 TO	1
350			min	002	3	008	3	<u>136</u>	4	-9.711e-4	4_	NC	1_	182.252	4
351		5	max	.007	1	.006	2	0	1	0	1	NC NC	1_	NC 000 400	1
352			min	002	3	007	3	122	4	-9.711e-4	4_	NC NC	1_	203.482	4
353		6	max	.006	1	.005	2	0	1	0 744 5 4	1_1	NC NC	1_1	NC	1
354		7	min	002	3	007	2	108	1	-9.711e-4	4	NC NC	1_1	229.593	4
355			max	.006	3	.005	3	0	4	0 -9.711e-4	1_1	NC NC	1_1	NC 262.199	4
356 357		8	min	001 .005	1	006 .004	2	<u>095</u> 0	1	0	<u>4</u> 1	NC NC	1	NC	1
358		0	max min	001	3	006	3	082		-9.711e-4		NC NC	1	303.656	
359		9	max	.005	1	.004	2	<u>002</u> 0	1	0	1	NC	1	NC	1
360		9	min	001	3	005	3	069	4	-9.711e-4	4	NC	1	357.514	4
361		10	max	.004	1	.004	2	<u>.009</u>	1	0	1	NC	1	NC	1
362		10	min	001	3	005	3	058	4	-9.711e-4	4	NC	1	429.317	4
363		11	max	.004	1	.003	2	<u>.030</u> 0	1	0	1	NC	1	NC	1
364			min	0	3	004	3	047	4	-9.711e-4	4	NC	1	528.141	4
365		12	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
366			min	0	3	004	3	037	4	-9.711e-4	4	NC	1	669.687	4
367		13	max	.003	1	.002	2	0	1	0	1	NC	1	NC	1
368			min	0	3	003	3	028	4	-9.711e-4	4	NC	1	883.099	4
369		14	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
370			min	0	3	003	3	02	4	-9.711e-4	4	NC	1	1227.686	4
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372			min	0	3	002	3	013	4	-9.711e-4	4	NC	1	1840.191	4
373															
374		16	max	.001 0	3	.001 002	3	008	1	0 -9.711e-4	4	NC NC	<u>1</u>	NC 3098.739	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

075	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	0	2	0	1	0 744 - 4	1_4	NC NC	1	NC C40F 007	1
376		40	min	0	3	001	3	004	4	-9.711e-4	4_	NC NC	1_	6405.897	4
377		18	max	0	3	<u> </u>	2	0	1	0 -9.711e-4	1_1		1	NC NC	1
378		40	min	0			3	001	4		4	NC NC		NC NC	
379		19	max	0	1	0	1	0	1	0 -9.711e-4	1_1	NC NC	1	NC NC	1
380	MAO	1	min	0		0	-	0			4	NC NC		NC NC	
381	M10	1	max	.005	3	.002	2	0	12	1.268e-3	4	NC NC	1	NC 402.FF	2
382			min	004	_	005	3	462	4	7.162e-6	12	NC NC	1_	103.55	4
383		2	max	.005	1	.002	2	0	12	1.353e-3	4	NC NC	1_4	NC 440,000	2
384		-	min	004	3	005	3	424	4	6.651e-6	12	NC NC	1_	112.832	4
385		3	max	.005	3	.001	2	0	12	1.438e-3	4	NC NC	1	NC 400,000	2
386		1	min	004		004	3	386	4	6.139e-6	12	NC NC		123.869	4
387		4	max	.004	1	0	2	0	12	1.523e-3	4	NC NC	1	NC 407.404	2
388		+	min	003	3	004	3	349	4	5.628e-6	12	NC NC		137.121	4
389		5	max	.004	1	0	2	0	12	1.608e-3 5.117e-6	4	NC NC	1	NC 450 045	1
390			min	003	3	004	3	312	4		12	NC NC		153.215	4
391		6	max	.004	3	0	2	0	12	1.693e-3	4	NC NC	1	NC	1
392		7	min	003	_	004	3	277	4	4.606e-6	12		1_	173.017	4
393			max	.003	1	0	2	0	12	1.778e-3	4	NC NC	1	NC 407.704	1
394			min	003	3	004	3	242	4	4.094e-6	12	NC NC	1_	197.764	4
395		8	max	.003	1	0	2	0	12	1.863e-3	4	NC NC	1	NC 000.057	1
396			min	002	3	004	3	209	4	3.583e-6	12	NC NC	1_	229.257	4
397		9	max	.003	1	0	10	0	12	1.948e-3	4	NC NC	1	NC 070.040	1
398		40	min	002	3	004	3	177	4	3.072e-6	12	NC NC	_	270.219	4
399		10	max	.003	1	0	10	0	12	2.033e-3	4	NC NC	1_	NC 204.040	1
400		44	min	002	3	003	3	147	4	2.56e-6	12	NC NC	1_	324.912	4
401		11	max	.002	1	0	15	0	12	2.118e-3	4	NC NC	1_	NC 400,000	1
402		40	min	002	3	003	3	12	4	2.049e-6	12	NC NC	1_	400.332	4
403		12	max	.002	1	0	15	0	12	2.202e-3	4	NC NC	1	NC 500,000	1
404		40	min	002	3	003	3	094	4	1.538e-6	12	NC NC	1_	508.623	4
405		13	max	.002	1	0	15	0	12	2.287e-3	4	NC	1	NC C70 400	1
406		44	min	001	3	003	4	071	4	1.026e-6	12	NC NC	1_	672.429	4
407		14	max	.001	1	0	15	0	12	2.372e-3	4	NC NC	1	NC 000 004	1
408		4.5	min	001	3	002	4	051	4	5.152e-7	12	NC NC		938.094	4
409		15	max	.001	1	0	15	0	12	2.457e-3	4	NC NC	1	NC	1
410		10	min	0	3	002	4	034	4	-4.871e-6	1_	NC NC	_	1413.325	4
411		16	max	0	3	0	15	0	12	2.542e-3	4	NC NC	1	NC	1
412		47	min	0	_	002	4	02	4	-1.776e-5	1_	NC NC	1_	2399.421	4
413		17	max	0	3	0	15	0	12	2.627e-3	4	NC NC	1	NC FOOT OF	1
414		40	min	0		001	4	<u>01</u>	4	-3.065e-5	1_	NC NC	1	5035.356	4
415		18		0	1	0	15	0		2.712e-3	4	NC NC	1	NC NC	1
416		10	min	<u> </u>	3	<u> </u>	1	<u>003</u>	1	-4.354e-5	1	NC NC	<u>1</u> 1	NC NC	1
417		19	max	0	1	0	1	0 0	1	2.797e-3	4	NC NC	1		1
418	N/4.4	4	min		1				-	-5.643e-5	1_			NC NC	
419 420	<u>M11</u>	1_	max min	0	1	0	1	<u> </u>	1	1.749e-5 -6.211e-4	<u>1</u> 4	NC NC	<u>1</u> 1	NC NC	1
421		2			3	0	15	.014	4	-6.211e-4 -1.641e-7		NC NC	1	NC NC	1
421		+ 4	max	0 0	2	002	4	<u>.014</u> 0	1	-1.641e-7	<u>12</u> 5	NC NC	1	NC NC	1
422		2	min	0	3	<u>002</u> 0	15	.027				NC NC	1	NC NC	1
423		3	max		2				1	6.121e-4 -2.597e-5	<u>4</u> 1	NC NC	1		1
424		1	min	<u> </u>	3	003 001	15	<u> </u>	-	1.229e-3		NC NC	1	NC NC	1
		4	max			001			4		4		1		1
426		E	min	0	3	005	15	<u> </u>	1 1	-4.77e-5	1	NC NC	1	NC NC	1
427 428		5	max	0	2	002 007		001	1	1.845e-3	<u>4</u> 1	NC NC	1	8596.943	
		6	min	0			15		4	-6.943e-5			1		
429 430		6	max	0	3	002	15 4	.062 001	1	2.462e-3 -9.116e-5	<u>4</u> 1	NC NC	1	NC 7731.557	1
		7	min		3	009	_						1		
431			max	.001	<u> </u>	003	15	.073	4	3.078e-3	4	NC		NC	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) L/y Ratio	LC	(n) I /z Ratio	I.C.
432			min	0	2	01	4	002	1	-1.129e-4	1	9108.365	4	7336.789	
433		8	max	.001	3	003	15	.083	4	3.695e-3	4	NC	1	NC	1
434			min	0	2	012	4	002	1	-1.346e-4	1	8131.383	4	7268.506	4
435		9	max	.001	3	003	15	.092	4	4.312e-3	4	NC	1	NC	1
436			min	0	2	013	4	002	1	-1.564e-4	1	7548.702	4	7480.733	4
437		10	max	.002	3	003	15	.102	4	4.928e-3	4	NC	2	NC	1
438			min	001	2	013	4	003	1	-1.781e-4	1	7257.253	4	7987.263	4
439		11	max	.002	3	003	15	.111	4	5.545e-3	4	NC	2	NC	1
440			min	001	2	013	4	003	1	-1.998e-4	1_	7213.522	4	8859.68	4
441		12	max	.002	3	003	15	.119	4	6.161e-3	4	NC	2	NC	1
442		10	min	001	2	013	4	004	1	-2.216e-4	1	7416.773	4	NC	1
443		13	max	.002	3	003	15	.128	4	6.778e-3	4	NC	1	NC NC	1
444		4.4	min	001	2	012	4	004	1	-2.433e-4	1_	7910.838	4	NC NC	1
445		14	max	.002	3	003	15	.136	4	7.395e-3	4	NC 0007.040	1_	NC NC	1
446		15	min	001 .002	3	011 002	4	004 .144	4	-2.65e-4 8.011e-3	1_4	8807.343 NC	<u>4</u> 1	NC NC	1
447		15	max min	002	2	002 01	15 4	005	1	-2.867e-4	<u>4</u> 1	NC NC	1	NC NC	1
449		16	max	.002	3	002	15	.153	4	8.628e-3	4	NC NC	1	NC NC	1
450		10	min	002	2	002 008	4	005	1	-3.085e-4	1	NC NC	1	NC NC	1
451		17	max	.002	3	008 001	15	.162	4	9.244e-3	4	NC	1	NC	1
452		17	min	002	2	006	1	006	1	-3.302e-4	1	NC	1	NC	1
453		18	max	.002	3	0	15	.171	4	9.861e-3	4	NC	1	NC	1
454		10	min	002	2	005	1	006	1	-3.519e-4	1	NC	1	NC	1
455		19	max	.003	3	0	12	.181	4	1.048e-2	4	NC	1	NC	1
456		-10	min	002	2	003	1	006	1	-3.737e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.006	1	1.369e-5	1	NC	1	NC	3
458	···· -		min	0	3	003	3	181	4	-9.423e-4	4	NC	1	137.388	4
459		2	max	.003	1	.001	2	.006	1	1.369e-5	1	NC	1	NC	2
460			min	0	3	003	3	166	4	-9.423e-4	4	NC	1	149.585	4
461		3	max	.003	1	.001	2	.005	1	1.369e-5	1	NC	1	NC	2
462			min	0	3	003	3	151	4	-9.423e-4	4	NC	1	164.089	4
463		4	max	.002	1	.001	2	.005	1	1.369e-5	1	NC	1_	NC	2
464			min	0	3	002	3	137	4	-9.423e-4	4	NC	1	181.502	4
465		5	max	.002	1	.001	2	.004	1	1.369e-5	1	NC	_1_	NC	2
466			min	0	3	002	3	122	4	-9.423e-4	4	NC	1	202.641	4
467		6	max	.002	1	.001	2	.004	1	1.369e-5	_1_	NC	_1_	NC	2
468			min	0	3	002	3	108	4	-9.423e-4	4	NC	1_	228.639	4
469		7	max	.002	1	.001	2	.003	1	1.369e-5	_1_	NC	_1_	NC	2
470			min	0	3	002	3	095	4	-9.423e-4	4_	NC	1_	261.105	4
471		8	max	.002	1	0	2	.003	1	1.369e-5	1	NC	1_	NC 000,005	2
472			min	0	3	002	3	082	4	-9.423e-4		NC NC	1_	302.385	4
473		9	max	.002	1	0	2	.002	1	1.369e-5	1_1	NC NC	1_1	NC 256 011	2
474		10	min	0	3	002	3	07	4	-9.423e-4	4	NC NC	1_	356.011	4
475 476		10	max	.001	3	0 001	3	.002	1	1.369e-5 -9.423e-4	1_1	NC NC	1	NC 427.506	1
476		11	min max	.001	1	001 0	2	058 .002	1	1.369e-5	<u>4</u> 1	NC NC	1	NC	1
477			min	0	3	001	3	002 047	4	-9.423e-4	4	NC NC	1	525.906	4
479		12	max	.001	1	<u>001</u> 0	2	.001	1	1.369e-5	1	NC NC	1	NC	1
480		14	min	.001	3	001	3	037	4	-9.423e-4	4	NC NC	1	666.843	4
481		13	max	0	1	0	2	.001	1	1.369e-5	1	NC	1	NC	1
482		13	min	0	3	0	3	028	4	-9.423e-4	4	NC	1	879.337	4
483		14	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
484		17	min	0	3	0	3	02	4	-9.423e-4	4	NC	1	1222.439	4
485		15	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
486			min	0	3	0	3	014	4	-9.423e-4	4	NC	1	1832.301	4
487		16	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
488			min	0	3	0	3	008	4	-9.423e-4	4	NC	1	3085.409	_
											_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	1.369e-5	_1_	NC	_1_	NC	1
490			min	0	3	0	3	004	4	-9.423e-4	4	NC	1_	6378.232	4
491		18	max	0	1	0	2	0	1	1.369e-5	_1_	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-9.423e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	1.369e-5	_1_	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-9.423e-4	4	NC	1_	NC	1
495	M1	1	max	.004	3	.112	1	.485	4	1.816e-2	_1_	NC	_1_	NC	1
496			min	001	2	015	3	0	12	-1.894e-2	3	NC	1	NC	1
497		2	max	.004	3	.055	1	.471	4	8.905e-3	4	NC	3	NC	1
498			min	001	2	007	3	005	1	-9.371e-3	3	2025.627	1	NC	1
499		3	max	.004	3	.005	3	.458	4	1.405e-2	4	NC	5	NC	1
500			min	001	2	006	1	007	1	-1.279e-4	1	968.432	1	8625.032	5
501		4	max	.004	3	.027	3	.446	4	1.245e-2	4	NC	5	NC	1
502			min	001	2	077	1	006	1	-3.427e-3	3	604.468	1	5845.637	5
503		5	max	.004	3	.056	3	.433	4	1.084e-2	4	NC	15	NC	1
504			min	001	2	153	1	004	1	-6.762e-3	3	432.138	1	4448.941	5
505		6	max	.004	3	.087	3	.421	4	1.541e-2	1	NC	15	NC	1
506			min	001	2	227	1	002	1	-1.01e-2	3	337.887	1	3632.01	5
507		7	max	.003	3	.117	3	.407	4	2.059e-2	1	9557.39	15	NC	1
508			min	001	10	293	1	0	12	-1.343e-2	3	282.583	1	3108.69	4
509		8	max	.003	3	.142	3	.393	4	2.577e-2	1	8489.959	15	NC	1
510			min	001	10	346	1	0	12	-1.677e-2	3	250.013	1	2758.45	4
511		9	max	.003	3	.158	3	.377	4	2.832e-2	1	7933.583	15	NC	1
512			min	001	10	379	1	0	1	-1.685e-2	3	233.111	1	2563.227	4
513		10	max	.003	3	.164	3	.359	4	2.912e-2	1	7764.188	15	NC	1
514			min	0	10	39	1	0	12	-1.478e-2	3	228.046	1	2511.656	4
515		11	max	.003	3	.161	3	.339	4	2.993e-2	1	7933.432	15	NC	1
516			min	0	10	379	1	0	12	-1.27e-2	3	233.369	1	2580.533	4
517		12	max	.003	3	.147	3	.317	4	2.82e-2	1	8489.611	15	NC	1
518			min	0	10	345	1	0	1	-1.061e-2	3	250.817	1	2787.893	5
519		13	max	.003	3	.125	3	.292	4	2.266e-2	1	9556.721	15	NC	1
520			min	0	10	291	1	0	1	-8.495e-3	3	284.571	1	3291.407	4
521		14	max	.003	3	.097	3	.264	4	1.712e-2	1	NC	15	NC	1
522			min	0	10	224	1	0	12	-6.378e-3	3	342.17	1	4305.05	4
523		15	max	.003	3	.065	3	.237	4	1.158e-2	1	NC	15	NC	1
524		1.0	min	0	10	149	1	0	12	-4.261e-3	3	440.996	1	6449.133	4
525		16	max	.003	3	.033	3	.209	4	9.293e-3	4	NC	5	NC	1
526		1.0	min	0	10	074	1	0	12	-2.144e-3	3	623.198	1	NC	1
527		17	max	.003	3	.002	3	.184	4	1.018e-2	4	NC	5	NC	1
528			min	0	10	004	1	0	12	-2.752e-5	3	1010.956	1	NC	1
529		18	max	.003	3	.055	1	.162		1.048e-2		NC	5	NC	1
530			min	0	10	025	3	0	12	-3.357e-3	3	2133.891	1	NC	1
531		19	max	.003	3	.108	1	.143	4	2.082e-2	1	NC	1	NC	1
532		10	min	0	10	051	3	0	1	-6.814e-3	3	NC	1	NC	1
533	M5	1	max	.011	3	.268	1	.484	4	0	1	NC	1	NC	1
534	IVIO	<u>'</u>	min	007	2	023	3	0	1	-2.163e-6	4	NC	1	NC	1
535		2	max	.011	3	.133	1	.474	4	7.196e-3	4	NC	5	NC	1
536			min	007	2	012	3	0	1	0	1	847.693	1	NC	1
537		3	max	.011	3	.017	3	.462	4	1.417e-2	4	NC	15	NC	1
538		3	min	007	2	021	1	. <u>.402</u> 0	1	0	1	396.051	1	7211.62	4
539		4	max	.011	3	.078	3	.449	4	1.154e-2	4	9110.921	15	NC	1
540		14	min	007	2	209	1	<u>.449</u>	1	0	1	240.144	1	5216.18	4
541		5	max	007 .011	3	<u>209 </u>	3	.436	4	8.92e-3	4	6377.323	15	NC	1
542		<u> </u>	min	007	2	414	1	436 0	1	0.926-3	1	167.765	1 <u>1</u>	4191.448	_
543		6		007 .011	3		3	.422	4	6.296e-3		4910.763	15	NC	1
544		6	max	007	2	.252 619	1	4 <u>ZZ</u>	1	0.2966-3	<u>4</u> 1	128.966	15	3560.891	4
		7	min				_		4		4				-
545		//	max	.011	3	.341	3	.407	4	3.671e-3	4	4063.65	15	NC	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		
546			min	006	2	805	1	0	1	0	1_	106.569	1_	3123.835	4
547		8	max	.01	3	.417	3	.393	4	1.046e-3	4_		<u>15</u>	NC	1
548			min	006	2	955	1	0	1	0	1	93.55	1	2791.369	4
549		9	max	.01	3	.465	3	.377	4	0	1_	3318.355	<u> 15</u>	NC	1
550			min	006	2	-1.049	1	0	1	-1.238e-6	5	86.88	1	2563.742	4
551		10	max	.01	3	.483	3	.359	4	0	_1_		<u>15</u>	NC	1
552			min	006	2	-1.08	1	0	1	-1.171e-6	5	84.892	1	2529.548	4
553		11	max	.01	3	.471	3	.339	4	0	<u>1</u>		<u> 15</u>	NC	1
554			min	006	2	-1.048	1	0	1	-1.104e-6	5	86.984	1	2605.833	4
555		12	max	.01	3	.43	3	.318	4	7.33e-4	4		<u> 15</u>	NC	1_
556			min	006	2	952	1	0	1	0	1	93.891	1	2751.208	4
557		13	max	.009	3	.364	3	.292	4	2.572e-3	4	4063.911	<u> 15</u>	NC	1
558			min	006	2	8	1	0	1	0	1	107.455	1	3242.152	4
559		14	max	.009	3	.281	3	.264	4	4.411e-3	4		<u> 15</u>	NC	1_
560			min	006	2	61	1	0	1	0	1	130.96	1	4423.371	4
561		15	max	.009	3	.188	3	.235	4	6.25e-3	4		<u> 15</u>	NC	1
562			min	005	2	403	1	0	1	0	1	172.086	1	7463.8	5
563		16	max	.009	3	.094	3	.206	4	8.089e-3	4		<u>15</u>	NC	1
564			min	005	2	197	1	0	1	0	1	249.808	1	NC	1
565		17	max	.008	3	.006	3	.18	4	9.929e-3	4		<u> 15</u>	NC	1_
566			min	005	2	013	1	0	1	0	1	419.509	1	NC	1
567		18	max	.008	3	.133	1	.16	4	5.042e-3	4_	NC	5	NC	1
568			min	005	2	068	3	0	1	0	1_	910.45	1	NC	1
569		19	max	.008	3	.258	1	.144	4	0	1_	NC	1_	NC	1_
570			min	005	2	135	3	0	1	-8.907e-7	4	NC	1	NC	1
571	M9	1	max	.004	3	.112	1	.484	4	1.894e-2	3	NC	1_	NC	1
572			min	001	2	015	3	0	1	-1.816e-2	1	NC	1	NC	1
573		2	max	.004	3	.055	1	.474	4	9.371e-3	3	NC	3	NC	1
574			min	001	2	007	3	0	12	-8.849e-3	1	2025.627	1	NC	1
575		3	max	.004	3	.005	3	.462	4	1.413e-2	4	NC	5	NC	1_
576			min	001	2	006	1	0	12	-1.935e-5	10	968.432	1	7322.467	4
577		4	max	.004	3	.027	3	.449	4	1.108e-2	5	NC	5	NC	1
578			min	001	2	077	1	0	12	-5.051e-3	1_	604.468	1	5254.076	4
579		5	max	.004	3	.056	3	.436	4	8.312e-3	5		15	NC	1
580			min	001	2	153	1	0	12	-1.023e-2	1_	432.138	1	4192.938	4
581		6	max	.004	3	.087	3	.422	4	1.01e-2	3		<u>15</u>	NC	1
582			min	001	2	227	1	0	12	-1.541e-2	1_	337.887	1	3545.417	4
583		7	max	.003	3	.117	3	.407	4	1.343e-2	3		15	NC	1
584			min	001	10	293	1	0	1	-2.059e-2	1	282.583	1	3104.633	4
585		8	max	.003	3	.142	3	.393	4	1.677e-2	3		<u> 15</u>	NC	1_
586			min	001	10	346	1	0	1	-2.577e-2	1_		1	2776.477	5
587		9	max	.003	3	.158	3	.377	4	1.685e-2	3		<u> 15</u>	NC	1
588			min	001	10	379	1	0	12	-2.832e-2	1_	233.111	1	2557.446	4
589		10	max	.003	3	.164	3	.359	4	1.478e-2	3		<u> 15</u>	NC	1
590			min	0	10	39	1	0	1	-2.912e-2	1	228.046	1	2512.515	4
591		11	max	.003	3	.161	3	.339	4	1.27e-2	3		<u> 15</u>	NC	1
592			min	0	10	379	1	0	1	-2.993e-2	1	233.369	1	2587.764	4
593		12	max	.003	3	.147	3	.317	4	1.061e-2	3	8479.439	<u> 15</u>	NC	1
594			min	0	10	345	1	0	12	-2.82e-2	1	250.817	1	2769.971	4
595		13	max	.003	3	.125	3	.292	4	8.495e-3	3		15	NC	1
596			min	0	10	291	1	0	12	-2.266e-2	1		1	3292.108	4
597		14	max	.003	3	.097	3	.264	4	6.378e-3	3	NC	<u> 15</u>	NC	1
598			min	0	10	224	1	002	1	-1.712e-2	1		1	4405.941	5
599		15	max	.003	3	.065	3	.235	4	5.818e-3	5	NC	15	NC	1
600			min	0	10	149	1	004	1	-1.158e-2	1	440.996	1	6965.446	5
601		16	max	.003	3	.033	3	.206	4	7.849e-3	5	NC	5	NC	1
602			min	0	10	074	1	006	1	-6.035e-3	1	623.198	1	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.003	3	.002	3	.181	4	9.952e-3	4	NC	5	NC	1
604			min	0	10	004	1	007	1	-4.941e-4	1	1010.956	1	NC	1
605		18	max	.003	3	.055	1	.16	4	4.663e-3	5	NC	5	NC	1
606			min	0	10	025	3	005	1	-1.048e-2	1	2133.891	1	NC	1
607		19	max	.003	3	.108	1	.143	4	6.814e-3	3	NC	1	NC	1
608			min	0	10	051	3	0	12	-2.082e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.