Data Processing Architecture

Google Cloud Platform Fundamentals: Big Data and Machine Learning

Version #1.1

Message-oriented architectures

Serverless data pipelines

GCP Reference Architecture

Asynchronous processing is useful for long-lived tasks or to have loose coupling between two systems

For robust asynchronous processing, you need:

Pub/Sub provides a no-ops, serverless global message queue

Message-oriented architectures

Serverless data pipelines

GCP Reference Architecture

Dataflow offers NoOps data pipelines in Java and Python

Same code does real-time and batch


```
options = PipelineOptions(pipeline_args)
options.view_as(StandardOptions).streaming = True
p = beam.Pipeline(options=options)
   lines = p | beam.io.ReadStringsFromPubSub(input_topic)
   traffic = (lines
        beam.Map(parse data).with output types(unicode)
        beam.Map(get_speedbysensor) # (sensor, speed)
        beam.WindowInto(window.FixedWindows(15, 0))
        beam.GroupByKey() # (sensor, [speed])
        beam.Map(avg_speed) # (sensor, avgspeed)
        beam.Map(lambda tup: '%s: %d' % tup))
   traffic
             beam.io.WriteStringsToPubSub(output_topic)
p.run()
```


Dataflow does ingest, transform, and load; consider using it instead of Spark

Message-oriented architectures

Serverless data pipelines

GCP Reference Architecture

Choosing where to store data on GCP

Run Spark/Hadoop jobs on Cloud Dataproc

On GCP, you can have the same data processing pipeline for processing both batch and stream

Module Review

Module review

Match the use case on the left with the product on the right

- A. Decoupling producers and consumers of data in large organizations and complex systems
- B. Scalable, fault-tolerant multi-step processing of data

- 1. Cloud Dataflow
- 2. Cloud Pub/Sub

Module review answers

Match the use case on the left with the product on the right

- A. Decoupling producers and consumers of data in large organizations and complex systems
 2. Cloud Dataflow

Resources (1 of 2)

Cloud Pub/Sub	https://cloud.google.com/pubsub/
Cloud Dataflow	https://cloud.google.com/dataflow/
Processing media using Cloud Pub/Sub and Compute Engine	https://cloud.google.com/solutions/media-pr ocessing-pub-sub-compute-engine

Resources (2 of 2)

Reverse Geocoding of Geolocation Telemetry in the Cloud Using the Maps API https://cloud.google.com/solutions/reverse-ge ocoding-geolocation-telemetry-cloud-maps-ap

Using Cloud Pub/Sub for Long-running Tasks

https://cloud.google.com/solutions/using-cloud-pub-sub-long-running-tasks

