Représentation de lewis

Pour un atome

Deux électrons appariés 🕴

Un électron célibataire

Orbitale innocupée

Exemple:

$$\begin{bmatrix} ^{12}_{6}\mathrm{C} \end{bmatrix} = \underbrace{1s^{2}}_{\begin{subarray}{c} \bullet \end{subarray}} \underbrace{2s^{2}}_{\begin{subarray}{c} \bullet \end{subarray}} \underbrace{2p^{2}}_{\begin{subarray}{c} \bullet \end{subarray}}$$
 valence

Pour une molécule

Règle de l'octet

Les atomes forment des liaisons covalentes pour s'entourer de 8 électrons

Exemples :

 Cl_2 :

8 électrons

 O_2

- Liaison double

Règle du duet

Les atomes ayant peu d'électrons forment des liaisons covalentes pour s'entourer de 2 électrons

Exemple:

 H_2 :

H — H

Charges formelles

Pour détermier la charge portée par un atome, on lui attribue la moitié des électrons des liaisons auxquelles il participe.

Exemple:

car l'atome d'oxygène possède normalement 6e¯ de valence.

1 électron 7 électrons

	Méthode générale	Application à CO ₃ ²⁻
1	Déterminer le nombre de doublets à placer en comptant le nombre total d'électrons de valence	$\begin{aligned} n_v(C) &= 4 & n_v(O) &= 6 \\ n_v(CO_3^{\ 2}) &= 3 \times 6 + 4 + 2 = 24 \\ & \left(n_d(CO_3^{\ 2}) = 12\right) \end{aligned}$
2	Structure de la molécule : l'atome avec le plus d'électrons célibataires ou case vides au milieu	ı <u>ō</u> · 0 0
3	Placer les doublets non liants sur les atomes	IŌ ŌI
4	Placer les doublets restants et faire les ajustements nécessaires pour respecter la règle de l'octet	Ι <u>Θ</u> , <u>Θ</u> Ι
5	Déterminer les charges portées par chaque atome.	"IO_C II O>

la liaison chimique

Interaction attractive entre différents atomes pour former des structures plus grandes (molécules, cristaux)

Liaison ionique

Interaction électrostatique attractive entre des ions.

Exemple : sel de cuisine (NaCl)

Liaison covalente

Partage d'électrons de valence entre différents atomes.

Si les atomes A et B sont différents, la liaison peut être polaire.

(B)

Molécules et cristaux

Cristaux

Modèle du cristal parfait

Formule chimique d'un cristal

Position	Valeur
Dans la maille	1
Sur une face	1/2
Sur une arête	1/4
Sur un coin	1/8

face intérieur

Fluorure de manganèse

 $n(Mn) = 8 \times 1/8 + 1 = 2$ $n(F) = 4 \times 1/2 + 2 = 4$

Formule chimique : $Mn_2F_4 = MnF_2$