Модель аналитической задачи, решаемой в условиях неопределенности среды («игра с природой»)

Постановка задачи

$$\Gamma = \langle \mathbf{X}, \mathbf{Z}, \mathbf{F}(\mathbf{x}, \mathbf{z}) \rangle$$
 (1)

$$x \in X; z \in Z; F(x, z) \rightarrow max$$

Особенность задачи (1):

При
$$\mathbf{x} = \mathbf{x}^*$$
 значение $\mathbf{F} \Big(\mathbf{x}^*, \mathbf{z} \Big)$ известно лишь

с точностью до множества

$$\mathbf{F}(\mathbf{x}^*,\mathbf{Z}) = \bigcup_{\mathbf{z}\in\mathbf{Z}}\mathbf{F}(\mathbf{x}^*,\mathbf{Z})$$

Рассмотрим вариант постановки задачи (1), когда

$$\mathbf{F}(\mathbf{x}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z})$$
 - скалярный критерий

Множество
$$f(\mathbf{x}^*, \mathbf{Z}) = \bigcup_{\mathbf{z} \in \mathbf{Z}} f(\mathbf{x}^*, \mathbf{Z})$$

интерпретируется в виде

Буден рассматривать загачи:
$$X = \{x_i, i=1, m\} \leftarrow$$
 конечивие ми-ва $Z = \{z_j, j=1, m\}$

3000	14a (1) B -	Табл	ичном	В	ude	: 4
	Xi Zi	7,		Zj		Zn	
	×	911		913		9 _{in}	
Q:	 ×3	2:1		gi;		9in	B := Maxq ;
		704				a	Jo K-JM J
	×m	1 9ma	•••	B:		9mn Bu	
Q=[9;	j, i=4,	m ; j=1,4] - 1		a E	Bur	pumen rabui)

Матрица рисков (сожалений)

X. Z.	71		zj	 Zn
×	711			智儿
X			Zij	
×IM	75m	1.		2mn

Пример1. Пересчитать: Q→R

Q:

XX	Z	72	73
×1	250	200	100
Xz	200	230	120
X3	100	240	260
100	1	,	

R:

X	21	72	73
×4	0	40	160
×2	50	10	140
X3	150	0	0

$$2_{11} = S_1 - 9_{11} = 0$$

 $2_{12} = S_2 - 9_{12} = 40$
 $2_{13} = S_3 - 9_{13} = 160$
 $u = 7.9$

KpuTepme MP & yenobusix reonpedenermociu

- 1. Критерий Вальда (максиминный)
 2. Критерий максимума (крайний оттимизм).
 3. Критерий СЭвидна (минимальных сожалений).
 - 4. Kputepnú Typhuga (Tieccumusma-ontumusma)

 - 5. Kputepui Marinaca 3 (Bepoginoshne)
 6. Kputepui Baneca. 3 (Bepoginoshne)

1. Kmiepnin Banbda

Dre Yx; buyucagem:

$$a_i = \min_{j=1,n} q_{ij}$$

2) Dance, Churchurs:

$$a_{iB} = \max_{i=1,m} a_i = a^*$$

1

Xis - peromendyemos

2. Критерий Максимума.

2) Dance BHYUCAMIB

$$a_{iM} = \max_{i=1,m} a_i = a^*$$

1

Xin- peromendyence pemenne.

3. Крптерий СЭвидиа.

1)
$$\forall x_i$$
 burucmis $b_i = \max_{j=1,n} z_{ij}$

1

Хіс - рекомендуемые решение.

4. Kpniepmi Typluya.

- 1). Produpactae becolon KOPP-T $\lambda \in [0;1]$ xapakrepnzyronymi cknothtocib k neccumuzmý $\lambda_1=0,2$; $\lambda_2=0,5=7$ λ_2 otpakact $\lambda_2=0,5=7$ λ_2 otpakact $\lambda_2=0,6$ heccumuzmý heccumuzm).
- 2). Brancomis $\forall x_i$: $C_i = \lambda \min_{j=1,n} q_{ij} + (1-\lambda) \max_{j=1,n} q_{ij}$
- 3) Boyucmit : Cir = Max Ci => Xir-pekom.

1-1- Критерий Вальда; $\lambda = 0$ - Критерий Максимума.

5. Критерий Лапласа Основания) 112 MONATACTOS, 4TO BOC COCTOS HUS Zi,j=1,n - pabhobepogither. 1). \ Z; -> Pj = 1 2) Yx; bonnernis: di = 1 Zivij -- среднее знач. выпрыма 3). BANNCANTE din = Max di (me a)

(Dre R: din = mindi,) di = 1 \(\frac{1}{2}i; \)

6. Kputepmi toaneca

Используетая при известном распределении вероятностей размичных сост. среды.

I	2	21	 Zj	 Zu
	P	PA	Pj	Pn

1). Yx: thuncant b cpedtimi bourpoint $\bar{q}_i = \sum_{j=1}^{n} p_j q_{ij}$

BHUNCANTS:

$$V_{i5} = Max V_{i} = X_{i5} - percomend.$$

Perceptue

Пример.

Представлены 8 проектов информационно-вычислительной системы (ИВС). Эффективность каждого проекта зависит от различных неопределенных факторов. Предполагается, что выделено 4 различных состояния, каждое из которых означает определенное сочетание внешних факторов, влияющих на эффективность проектируемой ИВС. Экономическая эффективность отдельных типов ИВС задана матрицей Q.

Сформировать матрицу «голосования», используя критерии Вальда, Сэвиджа, Гурвица (), Байеса (р=[0,1; 0,4; 0,4; 0,1], Лапласа. Принять решение о выборе типа ИВС.

$\mathbf{Q} =$

	Z ₁	z_2	Z3	Z ₄
X1	10	6	3	2
X 2	10	5	4	8
X3	7	7	2	3
X4	3	8	6	5
X 5	3	10	6	4
X6	9	6	12	8
X 7	6	8	7	16
X8	12	9	7	14

1. Критерий Вальда.

Минимальный элемент матрице \mathbf{Q} по строке: $a_i = min \ q_{ij}$

a_i	$min q_{ij}$
a_1	2
a_2	4
a ₃	2
a ₄	3
a ₅	3
a ₆	6
a ₇	6
a ₈	7

Максимальный элемент по столбцу: $a^* = \max a_i = a_8$

Оптимальное решение по критерию Вальда: х₈

2. Критерий Сэвиджа

Матрица рисков: $Q \rightarrow R$.

$$\beta_j = \max q_{ij}$$

$$\beta = [12\ 10\ 12\ 16]$$

$$r_{ij} = \beta_j - q_{ij}$$

 $\mathbf{R} =$

	z_1	z_2	Z3	Z4
\mathbf{x}_1	2	4	9	14
X 2	2	5	8	8
X 3	5	3	10	13
X 4	9	2	6	11
X 5	9	0	6	12
X6	3	6	0	8
X 7	6	2	5	0
X8	0	1	5	2

Максимальный элемент по строке в матрице рисков: $b_i = \max r_{ij}$

b_1	14
b ₂	8
b ₃	13
b ₄	11
b ₅	12
b ₆	8
b ₇	6
b ₈	5

Минимальный элемент по столбцу: $b^* = \min b_i$

$$b^* = b_8 = 5$$

Оптимальное решение по критерию <u>Сэвиджа</u>: х₈

3. **Критерий Гурвица (\gamma = 0.6).** Соответствует условию:

	• •		/		
+		$G_i = \gamma * r$	$\min q_{ij} + 1$	$(1-\gamma)*$	$\max q_{ij}$
	\min_1	2		max ₁	10
	\min_2	4		max_2	10
	min_3	2		max ₃	7
	\min_4	3		max ₄	8
	min_5	3		max ₅	10
	\min_6	6		max ₆	12
	min ₇	6		max ₇	16
	min ₈	7		max ₈	14

`	1/	
ma	X1	10
ma	X 2	10
ma	X3	7
ma	X4	8
ma	X 5	10
ma	X6	12
ma	X 7	16
ma	X8	14

G ₁	0.6 * 2 + (1 - 0.6) * 10 = 5.2
G_2	0.6 * 4 + (1 - 0.6) * 10 = 6,4
G ₃	0.6 * 2 + (1 - 0.6) * 7 = 4
G_4	0.6 * 3 + (1 - 0.6) * 8 = 5
G_5	0.6 * 3 + (1 - 0.6) * 10 = 5.8
G ₆	0.6 * 6 + (1 - 0.6) * 12 = 8,4
G ₇	0.6 * 6 + (1 - 0.6) * 16 = 10
G ₈	0.6 * 7 + (1 - 0.6) * 14 = 9.8

Максимальный элемент : $c^* = \max G_i$

 $c^* = \max G_7 = 10$

Оптимальное решение по критерию Гурвица: х7

4. **Критерий Байеса.** Исходные условия: $p = [0.1\ 0.4\ 0.4\ 0.1]$ Вычисляем:

$$\overline{d}_i = \sum_{j}^{n} p_j q_{ij}$$

	<u> </u>
d ₁	4,8
d_2	5,4
d ₃	4,6
d ₄	6,4
d ₅	7,1
d ₆	8,9
d ₇	8,2
d ₈	9

Максимальный элемент: $\overline{d_i^*} = \max \overline{d_i}$ $\overline{d_i^*} = d_8 = 9$

Оптимальное решение по критерию Байеса: х₈

5. Критерий Лапласа

Вычисляем:

$$f_i = rac{1}{n} * \sum_{j=1}^n q_{ij}$$
 , где $n=4$

f_1	5,25
\mathbf{f}_2	6,75
f3	4,75
f4	5,5
f5	5,75
f6	8,75
f7	9,25
f8	10,5

Максимальный элемент: $f_i^* = \max f_i$

$$f_i^* = f_8 = 10,5$$

Оптимальное решение по критерию Лапласа: x₈

Матрица «голосования»:

Критерий	Вальда	Сэвиджа	Гурвица	Байеса	Лапласа	Σ
<i>\\\\\\\</i>						
Проект						
x_I						0
x_2						0
x_3						0
x_4						0
x_5						0
x_6						0
x_7			+			1
x_{8}	+	+		+	+	4