General Description

The T SFÌ I F is an 8 bit RISC high performance microcontroller with 15bit A/D converter. It is equipped with 2K word OTP(One Time Programmable) ROM, 128 Bytes RAM, Timer/Counter, Interrupt, LVR(Low Voltage Reset), I/O port, comparator and PWM output in a single chip.

1. Feature

- ROM size: 2K x 16 bits
- RAM: 51 x 8 bits(Special Purpose Register)
 - + 128 x 8 (General Purpose Register)
- STACK: 8 Levels
- One instruction is built by two systems clock.
- Reset mode:
 - (a) Power-On reset
 - (b) Low voltage reset
 - (c) RESETB/PB2 (if be set as reset pin) input a negative pulse.
 - (d) Watchdog timer count overflow reset
- Dual Clock Mode
 - External RC or Crystal oscillator
 - Internal 4MHZ RC oscillator
- Timer/counter: 5 units count up counter.
 - TM0: 16-bit Timer(up-counter)
 - TM1: 8-bit, PWM1(Period) & Timer
 - TM2: 8-bit, PWM1(Duty) & Timer
 - TM3: 8-bit, PWM2(Period) & Timer.
 - TM4: 8-bit, PWM2(Duty) & Timer.
 - TO: PWM2 cycle/2 output
- Watchdog Timer: On chip WDT is based on an internal RC oscillator (for WDT used only). Have 8 period can be selected. User can extend the WDT overflow period by using prescaler.

- Interrupt events:
 - (a) External interrupt (PA7~PA0).
 - (b) Internal timer/event counter interrupt (TM0~TM4, PWM1, PWM2).
 - (c) ADC end of conversion interrupt
 - (d) Comparators compare result activated interrupt.
- I/O port: 29 pins
- 4 Comparator sets which are shared pin with I/O port
- PWM: two channels with 8 bit x 8 bit resolution
- ADC: max 15-bit and 12 channels, at least
 12-bit resolution. It can work at converter mode
 or compare mode by register setting
- Wake-up mode:
 - Port A (PA7~PA0) pin change wakeup -
 - WDT overflow
 - i_WDT overflow
- 500O:500KHZ Clock Out (Adjustable)
- CLO: System Clock Out
- Operating voltage range
 - 2.2V ~ 5.5V

2

Operating temperature range

2. Block Diagram

3. Pin Definition & Pad Assignment

3

2010/05/20 Rev.07

4. Pin Description

Pin name	I/O	Pin	Description
		type	
PA0/ADC0/INT0 ~			1.Bi-direction I/O port (Pull-up option with Input mode)
PA1/ADC1/INT1			2.Wake-up on pin change (option)
PA3/ADC3/INT3 ~	I/O	Α	3.External interrupt input (option)
PA5/ADC5/INT5,			4.A/D converter input
PA7/ADC7/INT7			
			1.Bi-direction I/O port (Pull-up option with Input mode)
PA2/ADC2/INT2/PWM2			2.Wake-up on pin change (option)
PA6/ADC6/INT6/PWM1	I/O	Α	3.External interrupt input (option)
FAO/ADCO/INTO/FWWIT			4.A/D converter input
			5.PWM1 & PWM2 output
OSC1/PB0	I, I/O	С	Bi-direction I/O port (Pull-up option with Input mode)
03C1/FB0	1, 1/O	C	2. Oscillator input
OSC2/PB1	O,I/O	С	Bi-direction I/O port (Pull-up option with Input mode)
U3U2/FB1	0,1/0	C	2. Oscillator output
RESETB/PB2		В	1.Input port
NESETB/FBZ	1	В	2.System reset pin
PB3/Vin3+			1.PB3~PB4 is Bi-direction I/O port (Pull-up option in Input mode)
PB4/Vin3-	I/O	Α	2.Pin shared with comparator3 Vin3+,Vin3
T D4/ VIII3-			Pull-high resistor are disabled automatically in this mode
			1. PB5 is Bi-direction I/O port (Pull-up option in Input mode)
PB5/Vout3	I/O	E	2 Pin shared with comparator3 Vout3 .
			Pull-high resistor are disabled automatically in this mode
			1. PB6 is Bi-direction I/O port (Pull-up option in Input mode)
PB6/Vout4	I/O	E	2 Pin shared with comparator4 Vout4 .
			Pull-high resistor are disabled automatically in this mode
			1.PB7 is Bi-direction I/O port (Pull-up option in Input mode)
PB7/Vin4-	I/O	Α	2.Pin shared with comparator4 Vin4
			Pull-high resistor are disabled automatically in this mode
			1.PC0 is Bi-direction I/O port (Pull-up option in Input mode)
PC0/Vin4+	I/O	Α	2.Pin shared with comparator4 Vin4+ .
			Pull-high resistor are disabled automatically in this mode
PC1/TO/Vin1+	I/O	Α	3.PC1~PC2 is Bi-direction I/O port (Pull-up option in Input mode)
PC2/500O/Vin1-	1/0		4.Pin shared with comparator1 Vin1+,Vin1

		1	1
			5.If the comparator function is used, PC1~PC2 cannot be used
			Vin1+,Vin1- are analog input,
			Pull-high resistor are disabled automatically in this mode
			6.TO(PWM2 interrupt/2) shared with PC1
			7.500O(500KHz clock out) shared with PC2 .
			1. PC3 is Bi-direction I/O port (Pull-up option in Input mode)
PC3/Vout1	I/O	E	2 Pin shared with comparator1 Vout1 .
			Pull-high resistor are disabled automatically in this mode
			1. PC4 is Bi-direction I/O port (Pull-up option in Input mode)
PC4/Vout2	I/O	Е	2 Pin shared with comparator2 Vout2 .
			Pull-high resistor are disabled automatically in this mode
			1.PC5~PC6 is Bi-direction I/O port (Pull-up option in Input mode)
			2.Pin shared comparator2 Vin2+,Vin2
PC5/EXT_CLK/Vin2-		_	3.If the comparator function is used, PC5~PC6 will be disable
PC6/Vin2+	I/O	Α	Vin2+,Vin2- are analog input,
			Pull-high resistor are disabled automatically in this mode
			4.EXT_CLK (External clock input) shared with PC5
			1.Bi-direction I/O port (Pull-up option in Input mode)
PC7/ADC8/CLO	I/O	Α	2.A/D converter input
			3.CLO (system clock out)shared with PC7.
PD0	I/O	D	1.Bi-direction I/O port (Pull-up option in Input mode)
		_	1.Bi-direction I/O port (Pull-up option in Input mode)
PD1/ADC9~PD3/ADC11	I/O	Α	2.A/D converter input
PD4~PD5	I/O	D	1.Bi-direction I/O port (Pull-up option in Input mode)
VDD	Р		Power input
VSS			Ground input
			'

Pin Circuit

Pin circuit Type B

Pin circuit Type D

Pin circuit Type A

7

Pin circuit Type C

Pin circuit Type E

5. Memory Map

The ÓVFÌ I F have two kinds of memory which are ROM (program memory) and RAM (data memory). The ROM is used to store the program, table and interrupt vectors. It is continuous 2048 X 16bits and don't need to switch bank. The RAM is 179(51+128) X 8 bits that include special function register and general-purpose RAM.

5.1 Program Memory (ROM)

Instruction and table are stored at this area. There is only one interrupt vector existed which means all the interrupt occurred would jump to the same vector. Programmer should use interrupt flag to judge what kind of interrupt is occurred. The program counter (PC) is 11 bit which can directly address all the 2048 x 16 location. Look-up table can be put at anywhere of ROM.

The RESET vector is located at 000H and Interrupt vector is at 004H. The map is as below:

5.2 Data Memory (RAM)

The total RAM volume are 179x8bits which includes two kinds of register group. One is 128x8 bits general purpose RAM, the other is special purpose register that are 51x8 bits. Every byte of special purpose register stored control's data or operation's data.

The data memory map is as below:

5.2.1 Special Purpose Register

OIZII Opoolai i a	.	J							
Name	Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG_L		RST_DEF	LV1	LV0	WDTE	CPRT	INRC	FOSC1	FOSC0
CONFIG_H		ADJ6	ADJ5	ADJ4	ADJ3	ADJ2	ADJ1	ADJ0	RTCEN
INDF	\$00	Α7	A6	A5	A4	А3	A2	A 1	A0
PCL	\$01	Α7	A6	A5	A4	А3	A2	A 1	A0
PCH	\$02	-					A10	A9	A8
STATUS	\$03	-			\overline{TO}	\overline{PD}	Z	DC	С
FSR	\$04	D7	D6	D5	D4	D3	D2	D1	D0
I/O PAD & Contr	ol								
Name	Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PA_DIR	\$05	IOA7	IOA6	IOA5	IOA4	IOA3	CA2	IOA1	IOA0
PA_DAT	\$06	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
PB_DIR	\$07	IOB7	IOB6	IOB5	IOB4	IOB3		IOB1	IOB0
PB_DAT	\$08	DB7	DB6	DB5	DB4	DB3		DB1	DB0
PC_DIR	\$09	IOC7	IOC6	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0
PC_DAT	\$0A	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
PD_DIR	\$0B		-	IOD5	IOD4	IOD3	IOD2	IOD1	IOD0
PD_DAT	\$0C		-	DD5	DD4	DD3	DD2	DD1	DD0
Timer 0: 16-bit 1	Timer								

Name		Addr	Bit 1	7	Bit 6	6	В	it 5	E	Bit 4	Bi	t 3	Bit	t 2	Bit	1	Bit 0
TM0_CTL	;	\$10	TM0_	EN	WR_C	NT	SI	UR1	S	UR0	ED	GE	PR	E2	PRI	≣1	PRE0
TM0L_LA	;	\$11	D7		D6			D5		D4	С)3	D	2	D,	ı	D0
TM0H_LA	;	\$12	D7		D6			D5		D4	С)3	D	2	D,	1	D0
TM0L_CNT	;	\$13	D7		D6			D5		D4	С)3	D	2	D'	1	D0
TM0H_CNT	;	\$14	D7		D6			D5		D4	С)3	D	2	D'	1	D0
Timer 1: 8-bit, P	WM (p	period) & Tim	er													
Name		Addr	Bit	7	В	it 6		Bit	5	Bit	4	Bi	t 3	Bit	2 E	Bit 1	Bit 0
TM1_CTL1	;	\$15	TM1	EN	WR	_CN	Т	SUR	1	SUF	₹0	ED	GE	PRE	2 P	RE1	PRE0
TM1_CTL2	;	\$16	МС	D	PWN	/11_C	S	**		**		РО	S 3	POS	S2 P	OS1	POS0
TM1_LA	;	\$17	D.	7	ı	D6		D5		D4	1	D	3	D2	2	D1	D0
TM1_CNT	;	\$18	D.	7	ı	D6		D5		D4	1	D	3	D2	2	D1	D0
Timer 2: 8-bit, P	WM (d	duty) &	& Time	r													
Name		Addr	Bit	7	Bit 6	5	Bit	t 5	Bi	t 4	Bit	3	Bit	t 2	Bit	1	Bit 0
TM2_CTL	;	\$19	TM2_	EN	WR_C	NT	SU	R1	SU	IR0	ED	GE	PR	E2	PRI	≣1	PRE0
TM2_LA	,	\$1A	D7		D6		D	5	D)4	D	3	D	2	D'	ı	D0
TM2_CNT	,	\$1B	D7		D6		D	5	D)4	D	3	D	2	D'	1	D0
Timer 3: 8 bit, P	WM (p	period) & Tim	er													
Name		Addr	Bit	7	Bit 6	5	Bi	t 5	Ві	it 4	Bi	t 3	Bit	t 2	Bit	1	Bit 0
TM3_CTL1	•	\$1C	TM3_	EN	WR_C	NT	SU	R1	Sl	JR0	ED	GE	PR	E2	PRI	Ξ1	PRE0
TM3_CTL2	•	\$1D	MOI) F	PWM2_	os	*	*	,	**	PC) S3	РО	S2	PO	S1	POS0
TM3_LA	,	\$1E	D7		D6		D	5		D 4	D	3	D	2	D'	1	D0
TM3_CNT	,	\$1F	D7		D6		D	5		D 4	D)3	D	2	D'	1	D0
Timer 4: 8 bit, P	WM (c	duty) 8	& Time	•													
Name		Addr	Bit	7	Bit 6	6	Bi	t 5	Bi	t 4	Bit	3	Bit	t 2	Bit	1	Bit 0
TM4_CTL	;	\$20	TM4_	EN	WR_C	NT	SU	R1	SU	IR0	ED	GE	PR	E2	PRI	≣1	PRE0
TM4_LA	;	\$21	D7		D6		D	5	D)4	D	3	D	2	D'	1	D0
TM4_CNT	,	\$22	D7		D6		D	5	D)4	D	3	D	2	D'	1	D0
IRQ														1			
Name	Add	r Bit	7 B	it 6	Bit 5	Bit	4		В	it 3		Bi	t 2		Bit 1		Bit 0
IRQM	\$25	INT	M A	OCM	PAM	TM4	М	TM3	M/	PWM	2M	TM	I2M	TM1	M/PW	M1M	TMOM
IRQF	\$26		Al	DCF	PAF	TM4	F	TM:	3F/	PWM	2F	TN	12F	TM1	F/PW	M1F	TM0F
IRQM_1	\$27							(CM	P4M		CMF	P3M	С	MP2N	/	CMP1M
IRQF_1	\$28								CI	MP4F		CMF	P3F	C	MP2F	•	CMP1F
ADC control	1	ı					ı				ı			ı			
Name	Ad	ldr	Bit 7	Bit	6 B	it 5	I	Bit 4		Bit 3		Bit	2	В	Bit 1		Bit 0

AD_CTL1	\$29	EN	I	MOI	DE	CHS	EL3	CHS	SEL2	CHSEL1	CHSEL0
AD_CTL2	\$2A	RSUT	I			-	•		- (CKSEL1	CKSEL0
AD_CTL3	\$2B					PISI	EL3	PIS	EL2	PISEL1	PISEL0
AD_DATL	\$2C	D7	D6	D;	5 D4	D	3	D)2	D1	D0
AD_DATH	\$2D		D14	l D1	3 D12	. D1	11	D	10	D9	D8
Other											
Name	Addr	Bit 7	,	Bit 6	Bit 5	Bit 4	В	it 3	Bit 2	Bit 1	Bit 0
CMP_CTL	\$2F						СМ	P4_E	CMP3_	E CMP2_E	CMP1_E
FREQ_CTL	\$30	S500	O 5	00_PR1	500_PR0				500O_I	CLO_E	TO_E
PA_PLU	\$31	UA7	,	UA6	UA5	UA4	U	IA3	UA2	UA1	UA0
PB_PLU	\$32	UB7	,	UB6	UB5	UB4	U	IB3		UB1	UB0
PC_PLU	\$33	UC7	,	UC6	UC5	UC4	U	IC3	UC2	UC1	UC0
PD_PLU	\$34	-			UD5	UD4	U	ID3	UD2	UD1	UD0
IO_CTL	\$35									CK_FL	
WAKEUP	\$3A	EN7	,	EN6	EN5	EN4	Е	N3	EN2	EN1	EN0
WDT_CTL	\$3D	WDTE	N	i_WDT	i_STAB				PRE2	PRE1	PRE0
TAB_BNK	\$3E								BNK2	BNK1	BNK0
SYS_CTL	\$3F	CLK	S							STPRC	STPOSC

<Note> "—": mean no use.

5.2.2 Configure Register

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG_L	RST_DEF	LV1	LV0	WDTE	CPRT	INRC	FOSC1	FOSC0
-	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
CONFIG_H	ADJ6	ADJ5	ADJ4	ADJ3	ADJ2	ADJ1	ADJ0	EXT_CLK

- Bit15~9 (ADJ6~0): Used to calibrated internal RC oscillator.
- Bit8 (EXT_CLK): EXT_CLK input
 - 1: EXT_CLK (PC5) pin is timer source input & PC5 input.
 - 0: EXT_CLK (PC5) pin is normal I/O pin
- Bit7 (RST_DEF): RESETB pin define
 - 0: RESETB is normal input pin
 - 1: RESETB is system reset pin

[&]quot;**": mean is 0 (initial=0)

Bit6~5 (LV1~0): Set reset voltage level of Low Voltage Reset (LVR)

Bit6	Bit5	Detect voltage
LV1	LV0	Detect voltage
0	0	4V
0	1	Unimplemented
1	0	2.1V
1	1	Don't use

<Note> The power-down voltage may be influenced by process and temperature, so the listed voltage will have some tolerance.

Bit4 (WDTE): Watchdog timer enable/disable

0: WDT disable

1: WDT enable

Bit3 (CPRT): ROM Code Protection bit

0: ON

1: OFF

• Bit2~0 (INRC, FOSC1~0): OSC type and system clock select

Bit2	Bit1	Bit0	OSC Type	Resonance Frequency
INRC	FOSC1	FOSC0	OSC Type	Resoliance Frequency
0	0	0	LS (low speed)	System clock=32~200KHz
0	0	1	NS (Normal speed)	System clock=200K~10MHz
0	1	0	HS (high speed)	System clock=10~20MHz
			Dual RC clock:	
0	1	1	External RC & Internal	System clock=32K ~ 10MHz
			RC	
1	0	0	LS &Internal RC	1. Dual clock mode LS & 4MHz
ı	U	O	LS amternal RC	2. Initial system clock=4MHz
1	0	1	NS &Internal RC	1. Dual clock mode NS & 4MHz
ı	U	ı	NS amternal RC	2. Initial system clock=4MHz
1	1	0	HS & Internal RC	1. Dual clock mode HS & 4MHz
ı ı	l l	J	ns a meriidi KC	2. Initial system clock=4MHz
1	1	1	Internal RC	1. System clock=4MHz
, I		Į į	internal KC	2. OSC1 & OSC2 work as I/O ports

13

6. Function Descriptions

This device provide many functions that are Timer, WDT, PWM, ADC, Interrupt, Table location, Reset, Program Counter and STATUS register. We would like to describe in detail.

6.1 I/O Port

There are 4 I/O ports to input or output data, each port has different functions programmed by user. The port A can be used as external interrupt, ADC analog input or PWM output by register option. The port B can be used as system reset or external RC oscillator input function. The port C can be used as ADC analog input, 500KHZ output, system clock output or PWM output function. The port D can be used as ADC analog input.

6.1.1 Port A

There are 3 registers to set the 8 I/O ports which are PA_DIR, PA_DAT, PA_PLU. Each pin of Port A can be external interrupt input or normal I/O. To know how to set these pins as external interrupt, please refer to Chapter 6.7. PA2(PWM2).PA6 (PWM1) can be set as PWM output.

A. PA_DIR(\$05H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PA_DIR	IOA7	IOA6	IOA5	IOA4	IOA3	IOA2	IOA1	IOA0

Bit7~0 (IOA7~0): To define each pin is input port or output port

0: Output.

1: Input.

B. PA DAT(\$06H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PA_DAT	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0

Bit7~0 (DA7~0): Data buffer

C. PA_PLU(\$31H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PA_PLU	UA7	UA6	UA5	UA4	UA3	UA2	UA1	UA0

• Bit7~0 (UA7~0): Pull up enables/disable

0: Pull-up disable.

1: Pull-up enable.

6.1.2 Port B

There are 3 registers to set the 7 I/O ports which are PB_DIR, PB_DAT, PB_PLU. Each pin of Port B can be set as normal I/O. User can set Pull up while Port B is set as input mode. PB2 (RESETB) can be set as system-reset (Low voltage reset) or single input pin by CONFIG_L register. Normally, PB0 (OSC1) and PB1 (OSC2) is external oscillator pin, only when internal RC mode is selected, PB0 and PB1 can be normal I/O pin.

14

A. PB_DIR(\$07H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PB_DIR	IOB7	IOB6	IOB5	IOB4	IOB3	-	IOB1	IOB0

Bit7~0 (IOB7~0): To define each pin is input port or output port

0: Output.

1: Input.

<Note> Bit2: Input only and is set to be RESET or Input port at CONFIG_L bit 7...

B. PB DAT(\$08H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PB_DAT	DB7	DB6	DB5	DB4	DB3		DB1	DB0

● Bit7~0 (DB7~0): Data buffer

C. PB_PLU(\$32H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PB_PLU	UB7	UB6	UB5	UB4	UB3		UB1	UB0

Bit7~0 (UB7~0): Pull up enable/disable.

0: Pull-up disable.

1: Pull-up enable.

6.1.3 Port C

There are 3 registers to set the 8 I/O ports which are PC_DIR, PC_DAT, PC_PLU. PC5 (Ext_clk)) can be set as External clk input. User can set Pull up while PC7 ~ PC0 are set as input mode. Pin PC5 has multiple functions. User should define it at CONFIG_H bit 8 at first.

A. PC DIR(\$09H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC_DIR	IOC7	IOC6	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0

Bit7 ~ 0: To define each pin is input port or output port

0: Output.

1: Input.

B. PC_DAT(\$0AH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC_DAT	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0

● Bit7 ~ 0 (DC7 ~ 0): Data buffer

C. PC_PLU(\$33H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC_PLU	UC7	UC6	UC5	UC4	UC3	UC2	UC1	UC0

15

Bit7 ~ 0 (UC7 ~ 0): Pull up enable/disable.

0: Pull-up disable.

1: Pull-up enable

6.1.4 Port D

There are 3 registers to set the 6 I/O ports which are PD_DIR, PD_DAT, PD_PLU. Each pin of Port A can be used as normal I/O or ADC analog input.

A. PD_DIR(\$0BH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PD_DIR			IOD5	IOD4	IOD3	IOD2	IOD1	IOD0

• Bit6~0 (IOD6~0): To define each pin is input port or output port

0: Output.

1: Input.

B. PD DAT(\$0CH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PD_DAT			DD5	DD4	DD3	DD2	DD1	DD0

Bit7~0 (DD7~0): Data buffer

C. PD_PLU(\$34H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PD_PLU			UD5	UD4	UD3	UD2	UD1	UD0

Bit7~0 (UD7~0): Pull up enables/disable

0: Pull-up disable.

1: Pull-up enable.

6.2 Timer/Event Counter (TM0, TM1, TM2, TM3, TM4)

The ÓVFÌ I F provide 5 up count timers/counters and 1 watchdog timer. Clock source of timers can be INRC, CRYSTAL or external clock by setting each timer control register. TM0 is a 16 bits timer, the others are 8 bit timer. All these timers have auto reload function, TM1/TM2 and TM3/TM4 can be cascaded to do PWM function. The detailed registers setting and block diagram are as below.

These timers have multiple functions which can be used as timer, PWM output waveform

6.2.1 TM0

TM0 is a 16 bit timer/counter. There are 5 registers to set its attributes.

A.TM0_CTL (\$10H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0_CTL	TM0_EN	WR_CNT	SUR1	SUR0	EDGE	PRE2	PRE1	PRE0

- Bit7 (TM0_EN): Timer0 enable/disable.
 - 0: TM0 disable.
 - 1: TM0 enable.
- Bit6 (WR_CNT): Latch buffer data write to counter register enable/disable.
 - 0: Latch buffer data write to counter register disable.
 - 1: Latch buffer data write to counter register enable
- <Note> This bit is set only in the initial state of new timer/counter data to let latch buffer data write to counter register. When timer is overflow, the latch buffer data would auto reload into counter register. User doesn't need set again.
- Bit5~4 (SUR1~0): TM0 clock source selection bits

Bit5	Bit4	TM0 clock source						
SUR1	SUR0	TIMO CIOCK SOUTCE						
0	0	EXT_CLK (PC5)						
0	1	Crystal mode OSC1 or EXT_RC(In dual RC clock mode)						
1	0	RC 4MHZ mode						
1	1	Don't use						

<Note> SUR1~0 define TM0 clock source.

Bit3 (EDGE): TM0 clock source edge control bit when the timer used as event counter

- 0: Increment when L→H on external clock
- 1: Increment when H→L on external clock
- Bit2~0 (PRE2~0): Set TM0 prescaler rate :

Bit2	Bit1	Bit0	TMR0 Prescaler rate
PRE2	PRE1	PRE0	TWING Flescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

B. TMOL_LA/TM0H_LA and TM0L_CNT/TM0H_CNT Register (\$11H, \$12H, \$13H, \$14H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0L_LA	D7	D6	D5	D4	D3	D2	D1	D0
TM0H_LA	D7	D6	D5	D4	D3	D2	D1	D0
TM0L_CNT	D7	D6	D5	D4	D3	D2	D1	D0
TM0H_CNT	D7	D6	D5	D4	D3	D2	D1	D0

<Note1> Please don't write FFh data into TM0L_LA & TM0H_LA registers.

6.2.2 TM1 (or PWM1 period)

TM1 is an 8-bit timer/counter. There are 4 registers to set its attribute. The TM1 can be used as PWM1 period with TM2 to do PWM1 waveform.

A.TM1_CTL1 (\$15H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1_CTL1	TM1_EN	WR_CNT	SUR1	SUR0	EDGE	PRE2	PRE1	PRE0

- Bit7 (TM1_EN): TM1(PWM1) enable/disable.
 - 0: TM1 disable.
 - 1: TM1 enable.
- Bit6 (WR_CNT): Latch buffer data write to counter register enable/disable.
 - 0: Latch buffer data write to counter register disable.
 - 1: Latch buffer data write to counter register enable
- <Note> This bit is set only in the initial state of new timer/counter data to let latch buffer data write to counter register. When timer is overflow, the latch buffer data would auto reload into counter register. User doesn't need set again.
- Bit5~4 (SUR1~0): TM1 clock source selection bits

Bit5	Bit4	TM4/DWM4 clock course						
SUR1	SUR0	TM1/PWM1 clock source						
0	0	EXT_CLK (PC5)						
0	1	Crystal mode OSC1 or EXT_RC(In dual RC clock mode)						
1	0	RC 4MHZ mode						
1	1	Don't use						

- Bit3 (EDGE): TM1 clock source edge control bit when the timer used as event counter
 - 0: Increment when L→H on external clock
 - 1: Increment when H→L on external clock

<Note2> TM0L_CNT & TM0H_CNT are read only registers

● Bit2~0 (PRE2~0): Set TM1 prescaler rate

Bit2	Bit1	Bit0	TM1 Prescaler rate					
PRE2	PRE1	PRE0	TWIT Flescaler fate					
0	0	0	1:1					
0	0	1	1:2					
0	1	0	1:4					
0	1	1	1:8					
1	0	0	1:16					
1	0	1	1:32					
1	1	0	1:64					
1	1	1	1:128					

B.TM1_CTL2 (\$16H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1_CTL2	MOD	PWM1_OS	**	**	POS3	POS2	POS1	POS0

- Bit7 (MOD): TM1 can work in different mode, Timer, PWM mode which is setting as below table.
 - 0: TM1 work in timer mode
 - 1: TM1 work in PWM mode
- Bit6 (PWM1_OS): Set PWM1 output duty initial state
 - 0: Set the initial output state is H, this will change to L when TM2 timer overflow.
 - 1: Set the initial output state is L, this will change to H when TM2 timer overflow.
- Bit3~0 (POS3~0): PWM1 output pulse setting (Only active when TM1 work in PWM or PPG mode)

Bit3	Bit2	Bit1	Bit0	DWM1 pulso rato
POS3	POS2	POS1	POS0	PWM1 pulse rate
0	0	0	0	1:1
0	0	0	1	1:2
0	0	1	0	1:3
				•
1	1	1	0	1:15
1	1	1	1	1:16

<Note> In PWM mode. 1:N means interrupt will be occurred after N PWM1 pulse.

C. TM1_LA & TM1_CNT (\$17H, 18H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1_LA	D7	D6	D5	D4	D3	D2	D1	D0
TM1_CNT	D7	D6	D5	D4	D3	D2	D1	D0

<Note> TM1_CNT register is read only

6.2.3 TM2 (or PWM1 duty)

TM2 is an 8-bits timer/counter. There are 3 registers to set its attribute. TM2 can be used as PWM1 duty control with TM1 to do PWM1 waveform.

A.TM2_CTL (\$19H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM2_CTL	TM2_EN	WR_CNT	SUR1	SUR0	EDGE	PRE2	PRE1	PRE0

Bit7 (TM2_EN): TM2 enable bit.

0: TM2 disable.

1: TM2 enable.

<Note> When TM1_CTL2 is set to PWM mode, this bit will be inhibited automatically. The TM2 became duty counter of PWM1 waveform.

- Bit6 (WR_CNT): Latch buffer data write to counter register enable/disable.
 - 0: Latch buffer data write to counter register disable.
 - 1: Latch buffer data write to counter register enable
- <Note> This bit is set only in the initial state of new timer/counter data to let latch buffer data write to counter register. When timer is overflow, the latch buffer data would auto reload into counter register. User doesn't need set again.
- Bit5~4 (SUR1~0): TM2 clock source selection bits

Bit5	Bit4	TM2 electrocures						
SUR1	SUR0	TM2 clock source						
0	0	EXT_CLK (PC5)						
0	1	Crystal mode OSC1 or EXT_RC(dual RC mode)						
1	0	RC 4MHZ mode						
1	1	Don't use						

- Bit3 (EDGE): TM2 clock source edge control bit when the timer used as event counter
 - 0: Increment when L→H on external clock
 - 1: Increment when H→L on external clock
- Bit2~0 (PRE2~0): Prescaler assignment bit.

Bit2	Bit1	Bit0	TM2 Prescaler rate					
PRE2	PRE1	PRE0	Timz Prescaler rate					
0	0	0	1:1					
0	0	1	1:2					
0	1	0	1:4					
0	1	1	1:8					
1	0	0	1:16					

1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

B. TM2_LA & TM2_CNT (\$1AH,1BH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM2_LA	D7	D6	D5	D4	D3	D2	D1	D0
TM2_CNT	D7	D6	D5	D4	D3	D2	D1	D0

<Note> TM2_CNT register is read only

6.2.4 TM3 (or PWM2 period)

TM3 is an 8-bit timer/counter. There are 4 registers to set its attribute. The TM3 can be used as PWM2 period with TM4 to do PWM2 waveform.

A.TM3_CTL1 (\$1CH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM3_CTL1	TM3_EN	WR_CNT	SUR1	SUR0	EDGE	PRE2	PRE1	PRE0

- Bit7 (TM3_EN): TM3 (PWM2) enable/disable.
 - 0: TM3 disable.
 - 1: TM3 enable.
- Bit6 (WR_CNT): Latch buffer data write to counter register enable/disable.
 - 0: Latch buffer data write to counter register disable.
 - 1: Latch buffer data write to counter register enable
- <Note> This bit is set only in the initial state of new timer/counter data to let latch buffer data write to counter register. When timer is overflow, the latch buffer data would auto reload into counter register. User doesn't need set again.
- Bit5~4 (SUR1~0): TM3 clock source selection bits

Bit5	Bit4	TM2/DWM2 clock course		
SUR1	SUR0	TM3/PWM2 clock source		
0	0	EXT_CLK (PC5)		
0	1	Crystal mode OSC1 or EXT_RC(dual RC mode)		
1	0	RC 4MHZ mode		
1	1	Don't use		

- Bit3 (EDGE): TM3 clock source edge control bit when the timer used as event counter
 - 0: Increment when L→H on external clock
 - 1: Increment when H→L on external clock
- Bit2~0 (PRE2~0): Set TM3 prescaler rate

Bit2	Bit1	Bit0	TM3 Prescaler rate
PRE2	PRE1	PRE0	Tivis Frescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

B.TM3_CTL2 (\$1DH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM3_CTL2	MOD	PWM2_OS	**	**	POS3	POS2	POS1	POS0

- Bit7 (MOD): TM3 can work in different mode, Timer, PWM mode which is setting as below table
 - 0: TM3 work in timer mode
 - 1: TM3- work in PWM mode
- Bit6 (PWM2_OS): Set PWM2 output duty initial state
 - 0: Set the initial output state is H, this will change to L when TM4 timer overflow.
 - 1: Set the initial output state is L, this will change to H when TM4 timer overflow.

<Note> : " ** " bits are reserved for system and can not be set to "1".

Bit3~0 (POS3~0): PWM2 output pulse setting (Only active when TM3 work in PWM mode)

Bit3	Bit2	Bit1	Bit0	DWM2 pulso roto					
POS3	POS2	POS1	POS0	PWM2 pulse rate					
0	0	0	0	1:1					
0	0	0	1	1:2					
0	0	1	0	1:3					
-			-	•					
				•					
1	1	1	0	1:15					
1	1	1	1	1:16					

<Note> In PWM mode. 1:N means interrupt will be occurred after N PWM2 pulse.

C. TM3_LA & TM3_CNT (\$1EH, 1FH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM3_LA	D7	D6	D5	D4	D3	D2	D1	D0
TM3_CNT	D7	D6	D5	D4	D3	D2	D1	D0

<Note> TM3_CNT register is read only

6.2.5 TM4 (or PWM2 duty)

TM4 is an 8-bits timer/counter. There are 3 registers to set its attribute. TM4 can be used as PWM2 duty control with TM3 to do PWM2 waveform.

A.TM4_CTL (\$20H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM4_CTL	TM4_EN	WR_CNT	SUR1	SUR0	EDGE	PRE2	PRE1	PRE0

Bit7 (TM4_EN): TM4 enable bit.

0: TM4 disable.

1: TM4 enable.

<Note> When TM3_CTL2 is set to PWM2 mode, this bit will be inhibited automatically. The TM4 became duty counter of PWM2 waveform.

Bit6 (WR_CNT): Latch buffer data write to counter register enable/disable.

0: Latch buffer data write to counter register disable.

1: Latch buffer data write to counter register enable

<Note> This bit is set only in the initial state of new timer/counter data to let latch buffer data write to counter register. When timer is overflow, the latch buffer data would auto reload into counter register. User doesn't need set again.

● Bit5~4 (SUR1~0): TM4 clock source selection bits

Bit5	Bit4	TMA clock course	
SUR1	SUR0	TM4 clock source	
0	0	EXT_CLK (PC5)	
0	1	Crystal mode OSC1 or EXT_RC(dual RC mode)	
1	0	RC 4MHZ mode	
1	1	Don't use	

23

Bit3 (EDGE): TM4 clock source edge control bit when the timer used as event counter

0: Increment when L→H on external clock

1: Increment when H→L on external clock

Bit2~0 (PRE2~0): Prescaler assignment bit.

Bit2	Bit1	Bit0	TM4 Prescaler rate
PRE2	PRE1	PRE0	Tivi4 Flescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

B. TM4_LA & TM4_CNT (\$21H,\$22H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM4_LA	D7	D6	D5	D4	D3	D2	D1	D0
TM4_CNT	D7	D6	D5	D4	D3	D2	D1	D0

<Note> TM4_CNT register is read only

C. CMP_CTL (\$2FH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CMP_CTL					CMP4_E	CMP3_E	CMP2_E	CMP1_E

- Bit3 (CMP4_E): Comparator 4 enable/disable .
 - 0: CMP4 disable.
 - 1: CMP4 enable.
- Bit2 (CMP3_E): Comparator 3 enable/disable .
 - 0: CMP3 disable.
 - 1: CMP3 enable.
- Bit1 (CMP2_E): Comparator 2 enable/disable.
 - 0: CMP2 disable.
 - 1: CMP2 enable.
- Bit0 (CMP1_E): Comparator 1 enable/disable .
 - 0: CMP1 disable.
 - 1: CMP1 enable.

6.3 PWM (Pulse Width Modulation)

PWM waveform is composed of TM1,3(period) and TM2,4(duty). These two timers can be used as general purpose timer or PWM waveform counter by setting register. The setting flow is as following example.

6.3.1 PWM

If timers are used as PWM, both of them are 8bit programmable duty and period. Each can generate pulse

width from 0.5us to 8,192ms when the system frequency is 4MHz. To set timers work in PWM mode, the register TM1_CTL2(\$16) or TM3_CTL2(\$1D) will be set to 1XX0XXXX(X means don't care). Please refer to below sample program and timing chart:

<Example> Timers work as PWM:

Set PWM period:

MOVLA b01100001 ; set clk_source=RC, prescale=2

MOVAM TM1_CTL1
MOVLA b10000000
MOVAM TM1_CTL2

MOVLA F0H ; set period counter value (up count to FFH)

MOVAM TM1 LA

Set PWM duty:

MOVLA b01010010 ; set clk_source=OSC, prescale=4

MOVAM TM2_CTL

MOVLA F8H ; set duty counter value (up count to FFH)

MOVAM TM2_LA

BS TM1_CTL1,b7 ; start PWM output

MOVLA 82H ; enable INTM & PWM1 interrupt

MOVAM IRQM

CLR IRQF ; clear interrupt flag

PWM Waveform

C.FREQ_CTL (\$30H):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FREQ_CTL	S500O	500_PR1	500_PR0			500O_E	CLO_E	TO_E

- Bit7 (S500O): Select clock source for 500khz Output.
 - 0: set 500Khz clock source = INRC (Init).
 - 1: set 500Khz clock source = OSC.
- Bit6,5 (S500 PR1, S500 PR0): Prescaler assignment bit

Bit6	Bit5	500Khz prospalor
S500_PR1	S500_PR0	500Khz prescaler
0	0	1:2
0	1	1:4
1	0	1:8
1	1	1:16

- Bit2 (5000_E): 500khz Output enable(pin shared with PC2).
 - 0: set this pin is normal I/O pin
 - 1: set this pin is 500KHZ output
- Bit1 (CLO_E): System clock output enable(pin shared with PC7).
 - 0: set this pin is normal I/O pin
 - 1: set this pin is system clock output.
- Bit0(TO_E): The Timer out(TO) enable/disable (pin shared with PC1)
 - 0: Set this pin is PC1 normal I/O pin
 - 1: Set this pin is TO (Timer output pin, frequency is TM3 (PWM2) counter frequency /2)
- <Note> Before TO signal output, the PC1 must set as output port.

6.5 WDT (Watchdog Timer)

WDT is a timer to prevent software from malfunction or jumping to an unknown location with unpredictable result. The source clock of WDT is an independent internal RC oscillator. This timer would be affected by temperature, voltage and different production lot.

A.WDT_CTL (\$3DH):

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDT_CTL	WDTEN	i_WDT	i_STAB			PRE 2	PRE 1	PRE0

- Bit7 (WDTEN): Watchdog timer Enable bit
 - 0: WDT disable.
 - 1: WDT enable.
- Bit6 (i_WDT): i_WDT wakeup enable bit
 - 0: i_WDT disable.(init=disable)
 - 1: i WDT enable.
- Bit5 (i_STAB): i_STAB wakeup times(in i_WDT mode) set bit

0: wakeup time=10ms(init)

1: wakeup time=5ms

• Bit2~0 (PRE2~0): Set Prescaler rate. All the data are not accurate because it is RC OSC.

Bit2	Bit1	Bit0	WDT Prescaler rate
PRE2	PRE1	PRE1	WDI Flescalei fale
0	0	0	20mS
0	0	1	40mS
0	1	0	80mS
0	1	1	160mS
1	0	0	320mS
1	0	1	640mS
1	1	0	1.28\$
1	1	1	2.56S

WDT-Wakeup: (Watch-dog timer wake-up)

i_WDT-Wakeup : (Internal watch-dog timer wake-up)

*When wakeup must CLRWDT, otherwise watchdog timer will keep operation

6.6 Reset

There are 4 events will cause reset which is listed as below. The power-down event will cause $\not N$ OVFì I F reset and the detected voltage is according to the bit6~bit5 in the CONFIG register. This condition is used to protect chip in deficient power environment. The last two cases are called warm reset. The different reset events will affect registers and RAM. The \overline{TO} and \overline{PD} bits can be used to determine the type of reset.

- (1) Power-on reset.
- (2) Low voltage reset (LVR).
- (3) RESETB pin reset (input a negative pulse).
- (4) WDT timer overflow reset.

Figure: System Reset Block

<Note>: the watchdog setup time is approximately 20ms that will has some tolerance due to power voltage, process and temperature variations. Setup time is set by WDT_CTRL (\$3DH).

The default value during different reset condition

Address	Name	Cold Reset	Warm Reset
N/A	Accumulator	xxxx xxxx	рррр рррр
00H	INDF	0000 0000	0000 0000
01H	PCL	0000 0000	0000 0000
02H	PCH	000	000
03H	STATUS	0001 1xxx	0001 1xxx
04H	FSR	Xxxx xxxx	Рррр рррр
05H	PA_DIR	1111 1111	1111 1111
06H	PA_DAT	Xxxx xxxx	Рррр рррр
07H	PB_DIR	1111 1x11	1111 1x11
08H	PB_DAT	Xxxx xxxx	рррр рхрр

09H PC_DIR 1111 1111 1111 1111 1111 1111 0AH PC_DAT XXXX XXXX pppp ppxp 0BH PD_DIR XX11 1111 XX11 1111 0CH PD_DAT XXXX XXXX Xxpp pppp 10H TM0_CTL 0000 0000 0000 0000 11H TM0L_LA (Don't write FF) 0000 0000 0000 0000 12H TM0H_LA (Don't write FF) 0000 0000 0000 0000 13H TM0L_DAT (Read only) 1111 1111 1111 1111 14H TM0H_DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL2 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM2_DAT (Read only) 1111 1111 1111 1111 19H TM2_DAT (Read only) 1111 1111 1111 1111 11CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000				
OBH PD_DIR XX11 1111 XX11 1111 OCH PD_DAT Xxxx xxxx xxpp pppp 10H TM0_CTL 0000 0000 0000 0000 11H TM0L_LA (Don't write FF) 0000 0000 0000 0000 12H TM0H_LA (Don't write FF) 0000 0000 0000 0000 13H TM0L_DAT (Read only) 1111 1111 1111 1111 14H TM0H_DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1BH TM3_CTL2 0000 0000 0000 0000 1BH TM3_CTL2 0000 0000	09H	PC_DIR	1111 1111	1111 1111
OCH PD_DAT Xxxx xxxx xxpp pppp 10H TM0_CTL 0000 0000 0000 0000 11H TM0L_LA (Don't write FF) 0000 0000 0000 0000 12H TM0H_LA (Don't write FF) 0000 0000 0000 0000 13H TM0L_DAT (Read only) 1111 1111 1111 1111 14H TM0H_DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1BH TM3_CTL2 0000 0000 0000 0000 1BH TM3_LA (Don't write FF) 0000 0000 0000 0000 <	0AH	PC_DAT	Xxxx xxxx	рррр ррхр
10H TM0_CTL 0000 0000 0000 0000 11H TM0L_LA (Don't write FF) 0000 0000 0000 0000 12H TM0H_LA (Don't write FF) 0000 0000 0000 0000 13H TM0L_DAT (Read only) 1111 1111 1111 1111 14H TM0H_DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_LA (Don't wri	0BH	PD_DIR	XX11 1111	XX11 1111
11H TMOL_LA (Don't write FF) 0000 0000 0000 0000 12H TMOH_LA (Don't write FF) 0000 0000 0000 0000 13H TMOL_DAT (Read only) 1111 1111 1111 1111 14H TMOH_DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1BH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM4_LA (Don't write FF) 0000 0000 0000 0000 2H TM4_LA (Don't write FF) 0000 0000 0000 00	0CH	PD_DAT	Xxxx xxxx	ххрр рррр
12H TM0H_LA (Don't write FF) 0000 0000 0000 0000 13H TM0L_DAT (Read only) 1111 1111 1111 1111 14H TM0H_DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111	10H	TM0_CTL	0000 0000	0000 0000
13H TMOL_DAT (Read only) 1111 1111 1111 1111 1111 1111 14H TMOH_DAT (Read only) 1111 1111 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 000	11H	TM0L_LA (Don't write FF)	0000 0000	0000 0000
14H TM0H_ DAT (Read only) 1111 1111 1111 1111 15H TM1_CTL1 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 26H	12H	TM0H_LA (Don't write FF)	0000 0000	0000 0000
15H TM1_CTL1 0000 0000 0000 0000 16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_	13H	TM0L_DAT (Read only)	1111 1111	1111 1111
16H TM1_CTL2 0000 0000 0000 0000 17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H	14H	TM0H_ DAT (Read only)	1111 1111	1111 1111
17H TM1_LA (Don't write FF) 0000 0000 0000 0000 18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H	15H	TM1_CTL1	0000 0000	0000 0000
18H TM1_DAT (Read only) 1111 1111 1111 1111 19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 xxxx 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0xxx xx00 0xxx xx00 2BH AD_CTL2<	16H	TM1_CTL2	0000 0000	0000 0000
19H TM2_CTL 0000 0000 0000 0000 1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0xxx xx00 0xxx xx00 2BH AD_CTL2 0xxx xx00 0xxxx xx00 2CH AD_DATL	17H	TM1_LA (Don't write FF)	0000 0000	0000 0000
1AH TM2_LA (Don't write FF) 0000 0000 0000 0000 1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0xxx xx00 2BH AD_CTL2 0xxx xx00 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH	18H	TM1_DAT (Read only)	1111 1111	1111 1111
1BH TM2_DAT (Read only) 1111 1111 1111 1111 1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0xxx xx00 0xxx xx00 2AH AD_CTL2 0xxx xx00 xxxx 0000 2BH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 xxxx 0000 2FH CMP_CTL xxxx 0000 </td <td>19H</td> <td>TM2_CTL</td> <td>0000 0000</td> <td>0000 0000</td>	19H	TM2_CTL	0000 0000	0000 0000
1CH TM3_CTL1 0000 0000 0000 0000 1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0xxx xx00 2BH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 xxxx 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000	1AH	TM2_LA (Don't write FF)	0000 0000	0000 0000
1DH TM3_CTL2 0000 0000 0000 0000 1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 xxxx 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000	1BH	TM2_DAT (Read only)	1111 1111	1111 1111
1EH TM3_LA (Don't write FF) 0000 0000 0000 0000 1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 xxxx 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	1CH	TM3_CTL1	0000 0000	0000 0000
1FH TM3_DAT (Read only) 1111 1111 1111 1111 20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 xxxx 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	1DH	TM3_CTL2	0000 0000	0000 0000
20H TM4_CTL 0000 0000 0000 0000 21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 Xxxx 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	1EH	TM3_LA (Don't write FF)	0000 0000	0000 0000
21H TM4_LA (Don't write FF) 0000 0000 0000 0000 22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	1FH	TM3_DAT (Read only)	1111 1111	1111 1111
22H TM4_DAT (Read only) 1111 1111 1111 1111 25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	20H	TM4_CTL	0000 0000	0000 0000
25H IRQM 0000 0000 0000 0000 26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	21H	TM4_LA (Don't write FF)	0000 0000	0000 0000
26H IRQF x000 0000 x000 0000 27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	22H	TM4_DAT (Read only)	1111 1111	1111 1111
27H IRQM_1 xxxx 0000 xxxx 0000 28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	25H	IRQM	0000 0000	0000 0000
28H IRQF_1 xxxx 0000 xxxx 0000 29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	26H	IRQF	x000 0000	x000 0000
29H AD_CTL1 0x0x 0000 0x0x 0000 2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	27H	IRQM_1	xxxx 0000	xxxx 0000
2AH AD_CTL2 0xxx xx00 0xxx xx00 2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	28H	IRQF_1	xxxx 0000	xxxx 0000
2BH AD_CTL3 xxxx 0000 xxxx 0000 2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	29H	AD_CTL1	0x0x 0000	0x0x 0000
2CH AD_DATL 0000 0000 0000 0000 2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	2AH	AD_CTL2	0xxx xx00	0xxx xx00
2DH AD_DATH X000 0000 X000 0000 2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	2BH	AD_CTL3	xxxx 0000	xxxx 0000
2FH CMP_CTL xxxx 0000 xxxx 0000 30H FREQ_CTL 000x x000 000x x000	2CH	AD_DATL	0000 0000	0000 0000
30H FREQ_CTL 000x x000 000x x000	2DH	AD_DATH	X000 0000	X000 0000
	2FH	CMP_CTL	xxxx 0000	xxxx 0000
31H PA_PLU 0000 0000 0000 0000	30H	FREQ_CTL	000x x000	000x x000
	31H	PA_PLU	0000 0000	0000 0000
32H PB_PLU 0000 0000 0000 0000	32H	PB_PLU	0000 0000	0000 0000

33H	PC_PLU	0000 0000	0000 0000
34H	PD_PLU	Xx00 0000	Xx00 0000
35H	IO_CTL	Xxxx 0000	Xxxx 0000
ЗАН	WAKEUP	0000 0000	0000 0000
3DH	WDT_CTL	1xxx x111	1xxx x111
3EH	TAB_BNK	Xxxx x000	Xxxx x000
3FH	SYS_CTL	0xxx xx00	0xxx xx00

X: unknown; ?: value depends on condition ;

P: previous data; -: unimplemented and read as"0".

6.7 Interrupt

The ÁÓVFÌ I F provides 7 external interrupt (PA0~7), three internal timer/event counter interrupt and an A/D converter interrupts. IRQM and IRQF registers are used to control or declare request state of all interrupts. The external interrupt is triggered by pin changed of PA0~7 and the related interrupt request flag (PAF; bit5 of IRQF) will be set. The A/D converter interrupt is initialized by setting the A/D converter request flag (ADCF; bit 6 of IRQF), interrupt is occurred when end of A/D conversion.

IRQM is used to enable/disable interrupt and IRQF is used to indicate which interrupt is occurred. If the specific IRQM doesn't enable at first then the hardware interrupt would not occurred. But the IRQF will response the status no matter how IRQM enable or not. For example, user enable TM1 to start counting. If IRQM bit 1 is enabled, the hardware interrupt would generate when timer overflow and IRQF bit 1 will be set. At the same time, program will jump to interrupt vector. User should clear IRQF in interrupt service routine, otherwise the interrupt would not generate again. Another condition is if IRQM bit 1 is disabled, the interrupt would not generate when timer overflow, but IRQF bit 1 still will be set. There is no hardware interrupt occurred and program would not jump to interrupt vector.

A. IRQM (\$25H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRQM	INTM	ADCM	PAM	TM4M	TM3M/PWM2M	TM2M	TM1M/PWM1M	ТМОМ

- Bit7 (INTM): Global enable bit.
 - 0: Disable all interrupts mask.
 - 1: Enable all interrupt mask

<Note> When interrupt is serving, the INTM will reset to "0" to prevent the other interrupt happen. After being served, the IRETI instruction will set INTM as '1' automatically.

- Bit6 (ADCM): ADC end of conversion (EOC) interrupt enable:
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit5 (PAM): PA interrupt enable.
 - 0: Disable Interrupt

- 1: Enable Interrupt
- Bit4 (TM4M): TM4 interrupt enable
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit3 (TM3M/PWM2M): TM3/PWM2 interrupt enable
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit2 (TM2M): TM2 interrupt enable
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit1 (TM1M/PWM1M): TM1/PWM1 interrupt enable
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit0 (TM0M): TM0 interrupt enable
 - 0: Disable Interrupt
 - 1: Enable Interrupt

B. IRQF (\$26H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRQF		ADCF	PAF	TM4F	TM3F/PWM2F	TM2F	TM1F/PWM1F	TMOF

- Bit6 (ADCF): ADC end of conversion interrupt request flag:
 - 0: End of conversion interrupt request off
 - 1: End of conversion interrupt request on
- Bit5 (PAF): PA0~7 Interrupt request flag:
 - 0: PA interrupt request off
 - 1: PA interrupt request on
- Bit4 (TM4F): TM4 Interrupt request flag:
 - 0: TM4 interrupt request off
 - 1: TM4 interrupt request on
- Bit3 (TM3F/PWM2F): TM3/PWM2 Interrupt request flag
 - 0: TM3/PWM2 overflow interrupt request off
 - 1: TM3/PWM2 overflow interrupt request on
- Bit2 (TM2F): TM2 interrupt request flag
 - 0: TM2 overflow interrupt request off
 - 1: TM2 overflow interrupt request on
- Bit1 (TM1F/PWM1F): TM1/PWM1 Interrupt flag
 - 0: TM1/PWM1 overflow or PWM1 interrupt request off

- 1: TM1/PWM1 overflow or PWM1 interrupt request on
- Bit0 (TM0F): TM0 interrupt request flag
 - 0: TM0 overflow interrupt request off
 - 1: TM0 overflow interrupt request on

C. IRQM_1 (\$27H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRQM_1					CMP4M	СМР3М	CMP2M	CMP1M

• Bit7 : Don't Use

IRQM_1 global mask use the IRQM(\$25) bit7 (INTM).

- <Note> When interrupt is serving, the INTM will reset to "0" to prevent the other interrupt happen. After being served, the IRETI instruction will set INTM as '1' automatically.
- Bit3 (CMP4M): Comparator4 interrupt enable:
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit2 (CMP3M): Comparator3 interrupt enable.
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit1 (CMP2M): Comparator2 interrupt enable:
 - 0: Disable Interrupt
 - 1: Enable Interrupt
- Bit0 (CMP1M): Comparator1 interrupt enable.
 - 0: Disable Interrupt
 - 1: Enable Interrupt

D. IRQF_1 (\$28H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRQF_1					CMP4F	CMP3F	CMP2F	CMP1F

- Bit3 (CMP4F): Compartaor4 interrupt request flag:
 - 0: Compartaor4 interrupt request off
 - 1: Compartaor4 interrupt request on
- Bit2 (CMP3F): Compartaor3 Interrupt request flag:
 - 0: Compartaor3 interrupt request off
 - 1: Compartaor3 interrupt request on
- Bit1 (CMP2F): Compartaor2 Interrupt request flag:
 - 0: Compartaor2 interrupt request off
 - 1: Compartaor2 interrupt request on
- Bit0 (CMP1F): Compartaor1 Interrupt request flag
 - 0: Compartaor1 interrupt request off
 - 1: Compartaor1 interrupt request on

6.7.1 External interrupt / Wake up function

Port A (PA) provide external interrupt and wake up function. When device is not in sleep mode, the PA input single will serve as external interrupt. When external interrupt is occurred, program will jump to 004H (Interrupt vector). If device is in sleep mode, the PA input single will serve as wake up function. When wake up single input, device will let system clock work at first. Then wait for wake up timer (set by WDT_CTL register \$3DH) overflow. After that, program will jump to 004H. The below flow chart describe how to set port A to work as external interrupt or wake up function.

Figure. Port A wake_up and external interrupt setting flow

Pin change (portA) interrupt:

MOVLA FFH MOVAM PA_DIR (set portA is input) MOVLA A0H MOVAM IRQM (set global&PA irq enable) BC IRQF,b5 (Clear PA irq flag) MOV PA,a (read PA status) MOVLA 01H MOVAM WAKEUP(\$3A) (set PA0 is pin change interrupt) When Interrupt is PC=100H Occured into the interrupt vector ORG 004H IRQF,b5 IRETI Return interrupt Next Address (PC=101H)

Pin change (portA) wake up:

6.8 ADC

The ÁOVFÌ I F provide 12 channels and 15-bits(11bit + 4bit) resolution A/D converter. The A/D converter contains 5 registers which are AD_CTL1 (29H), AD_CTL2 (2AH), AD_CTL3 (2BH), AD_DATL (2DH), and AD_DATH(2EH).

A.AD CTL1 (\$29H)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_CTL1	EN		MODE	-	CHSEL3	CHSEL2	CHSEL1	CHSEL0

- Bit7 (EN): ADC enable bit
 - 0: ADC disable.
 - 1: ADC enable.

<Note> When end of conversion, this bit will reset to "0" automatically.

- Bit5 (MODE): ADC mode select bit
 - 0: ADC channels work as A/D conversion.
 - 1: ADC channels work as comparator
- <Note> (a) If this bit is "1", Vin data will compare with AD_DAT. The result was stored at the AD_CTL2 Bit7.

 If this bit is "0", the Vin was converted into 15-bit digital data and saved in AD_DAT register.
 - (b) Vin: Input voltage from ADC channel
- Bit3~0 (CHSEL3~0): ADC input channel select bits

Bit3	Bit2	Bit1	Bit0	Input channel
CHSEL3	CHSEL2	CHSEL1	CHSEL0	input channer
0	0	0	0	Channel 0, PA0 pin
0	0	0	1	Channel 1, PA1 pin
0	0	1	0	Channel 2, PA2 pin
0	0	1	1	Channel 3, PA3 pin
0	1	0	0	Channel 4, PA4 pin
0	1	0	1	Channel 5, PA5 pin
0	1	1	0	Channel 6, PA6 pin
0	1	1	1	Channel 7, PA7 pin
1	0	0	0	Channel 8, PC7 pin
1	0	0	1	Channel 9, PD1 pin
1	0	1	0	Channel 10, PD2 pin
1	0	1	1	Channel 11, PD3 pin

B.AD_CTL2 (\$2AH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_CTL2	RSUT						CKSEL1	CKSEL0

Bit7 (RSUT): Compare mode result bit.

 $0: Vin < AD_DAT.$

1: $Vin \ge AD_DAT$

● Bit1~0 (CKSEL1~0): ADC Conversion clock source select bits

Bit1	Bit0	Conversion clock
CKSEL1	CKSEL0	Conversion clock
0	0	System clock X2
0	1	System clock X8
1	0	System clock X32
1	1	System clock X128

<Note> The conversion clocks decide the conversion rate and precision. If fast conversion clock is selected, that will drop-off the precision. If user wants to get more accurate A/D data, use slower speed is recommended.

C.AD_CTL3 (\$2BH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_CTL3					PISEL3	PISEL2	PISEL1	PISEL0

Bit3~0 (PBSEL3~0): ADC Channel input mode select bits, to set each port is analog or digital input

Bit3	Bit2	Bit1	Bit0	configurations
PISEL3	PISEL2	PISEL1	PISEL0	Joining di dilonis
0	0	0	0	All the ports are digital input
0	0	0	1	AN0
0	0	1	0	AN1
0	0	1	1	AN2
0	1	0	0	AN3
0	1	0	1	AN4
0	1	1	0	AN5
0	1	1	1	AN6
1	0	0	0	AN7
1	0	0	1	AN8
1	0	1	0	AN9
1	0	1	1	AN10
1	1	0	0	AN11

<Note> To minimize power consumption, all the I/O pins should be carefully managed before entering sleep mode.

D. AD_DATL (2CH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_DATL	D7	D6	D5	D4	D3	D2	D1	D0

<Note> This register has two different usage. If work in compare mode, this data will compare with input voltage from ADC channel. In ADC mode, the registers stored the ADC conversion data.

E.AD_DATH (2DH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AD_DATH		D14	D13	D12	D11	D10	D9	D8

<Note> This register has two different usage. If work in compare mode, this data will compare with input voltage from ADC channel. In ADC mode, the registers stored the ADC conversion data.

Figure. ADC setting flow

6.9 Table Look-up Function

The ÁÓVFÌ I F provide table look-up function. The look-up tables can be placed at any location in the ROM space. The instruction of TABRDL is to read low byte of ROM table. And The TABRDH is to read high byte. The register of TAB_BNK is used to define address of high bit (MSB) of table location (3+8=11bits-address bit, 2¹¹=2Kbytes-data byte).

6.9.1 TAB_BNK (\$3EH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TAB_BNK						BANK2	BANK1	BANK0

Bit2~0 (BANK2~0): High byte Table location select bits

	, ,		
Bit2	Bit1	Bit0	BANK select
BANK2	BANK1	BANK0	DANK SCIECT
0	0	0	000 XXXX XXXX Table location
0	0	1	001 XXXX XXXX Table location
0	1	0	010 XXXX XXXX Table location
	-		
1	1	1	111 XXXX XXXX Table location

6.9.2 Table look up Example program

The below program is an example to show how to program table looking-up function. The results of TABRDL and TABRDH will be 55H and AAH (Address is 0704H).

#DEFINE	TAB_BNK	3EH	; Define address 3EH of RAM named TAB_BNK
BUFA	EQU	43H	; Define address 43H of RAM named BUFA
(address)	ORG	0700H	; Program start from 0700H of ROM
0700H	MOVLA	00H	; Save 00H to A register
0701H	DW	1122H	; Store 1122H at 0701H of ROM
0702H	DW	3344H	; Store 3344H at 0702H of ROM
0703H	DW	6677H	; Store 6677H at 0703H of ROM
0704H	DW	55AAH	; Store 55AAH at 0704H of ROM
	MOVLA MOVAM MOVLA MOVAM TABRDL	04H BUFA 0FH TAB_BNK BUFA	; Save 04H to A register (low bit address) ; Save A register's value to BUFA ; Save 0FH to A register (high bit address) ; Save A register's value to TAB_BNK ; Looking-up the Low-byte value of TAB_BNK and BUFA pointed address, saved it to A register.
	TABRDH	BUFA	; Looking-up the High-byte value of TAB_BNK and BUFA pointed address, saved it to A register.

6.10 System Control

The ÁÓVFÌ I F provide Auto-Bank function and dual clock operation mode. Auto-Bank means when program jumping, system will automatically save the high byte of PC to prevent from carry over to cause program counter error. The dual clock mode has internal RC and external crystal clock source. User can use dual clock in the same time. For example, internal RC (4MHz) used to be system clock source, external crystal (32KHz) used to be counter clock source.

6.10.1 SYS_CTL (\$3FH)

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SYS_CTL	CLKS						STPRC	STPOSC

 Bit7 (CLKS): System clock source select bit. Only active in dual clock mode (Internal RC 4MHz and Crystal) or dual RC mode (Internal RC 4MHz and external RC).

Dual clock mode:

- 0: System clock is internal RC 4MHz.
- 1: System clock is OSC (if dual clock mode) or external RC(if dual RC mode).

Single clock mode:

Don't use.

• Bit1 (STPRC): RC (Internal RC 4MHz) oscillator control bit.

Dual clock mode or dual RC mode:

- 0: 4MHz RC oscillation on.
- 1: 4MHz RC oscillation off.

The other mode:

Don't use.

<Note> Before setting RC oscillation off, CLKS should be switched to OSC oscillation at first.

• Bit0 (STPOSC): OSC (crystal) oscillator control bit

Dual clock mode or dual RC mode:

- 0: External OSC oscillation on (if dual clock mode) or External RC on (if dual RC mode).
- 1: External OSC oscillation off (if dual clock mode) or External RC on (if dual RC mode)

The other mode:

Don't use.

<Note> Before setting OSC oscillation off, CLKS should be switched to RC oscillation at first.

6.11 Program Counter – PC

The MÁÓVFÌ I F has an 11-bits program counter (PC) that includes PCL (8-bits) and PCH (3bits). PC is used to store the routing of program. Once user changes the value of PCL, then program will jump to the indicated location. Ex1: PCH=01H, PCL=02H+10H=12H, the program will jump to PC=112H.

Ex2: PCH= 01H, PCL=F0H+30H=20H with carry 1, the program will jump to PC=220H but PCH still be 01H. <Note> (a) When execute IRET and IRETI, PCH data would not be updated

(b) When execute LGOTO, LCALL and RET, PCH would be updated after mathematic operation

Example 1:

The below pr	ogram is sh	ow how PCL	and PCH working with direct mathematic operation.
#DEFINE	PCL	01H	; Define address 01H of RAM named PCL
#DEFINE	PCH	02H	; Define address 02H of RAM named PCH
#DEFINE	ADMIN	41H	; Assist for PCL operation.
(address)			
1C0H	MOVLA	HIGH P1	; Save P1 (1C6H) High-byte address to A register ; PC=1C0H, PCL=C0H, PCH=00H
1C1H	MOVAM	PCH	; Save A register to PCH (To avoid jumping error at PCL operation, store the real jumping high-byte address to PCH at first.)
1C2H	MOVLA	4BH	; PC=1C1H, PCL =C1H, PCH=01H. ; Save 4BH to A register (Address of ADDAM PCL,M is 1C5H, prepare jump to 210H, PCL have to add 210H-1C5H =4BH)
1C3H	MOVAM	ADMIN	; PC=1C2H, PCL =C2H, PCH=01H. ; Ready for PCL operation. ; PC=1C3H, PCL =C3H, PCH=01H.
1C4H	DEC	ADMIN, a	; ADMIN –1 (The real jumping happen at 1C6H, not 1C5H. So 1C6H+(4BH-1H) =210H)
1C5H	ADD	PCL,M	; PC=1C4H, PCL =C4H, PCH=01H. ; PCL add with A register, result store at PCL ; PC=1C5H, PCL =C5H, PCH=01H
P1 : 1C6H	NOP		; Jump to 0210H. ; PC=1C6H, PCL=C6+4AH=10H with carry in 1,the carry will count with PCH, PCH=01H, the purpose PC high byte address will be PCH + PCL's carry=02H. The
210H	MOVLA	00H	program will jump to PC=210H ; Purpose function part. ; PC=210H, PCL =10H, PCH=01H

Example 2:

The below program is show how PCL and PCH working with direct mathematic operation.

(address)			
` 1C0H	MOVLA	03H	; Save 03H to A register
			; PC=1C0H, PCL=C0H, PCH=00H
1C1H	MOVAM	PCH	; Save A register to PCH
			; PC=1C1H, PCL =C1H, PCH=03H.
1C2H	MOVLA	4BH	; Save 4BH to A register
			; PC=1C2H, PCL =C2H, PCH=03H.
1C3H	MOVAM	ADMIN	; Ready for PCL operation.
			; PC=1C3H, PCL =C3H, PCH=01H.
1C4H	DEC	ADMIN, a	; ADMIN –1 (The real jumping happen at 1C6H, not 1C5H.
			So 1C6H+(4BH-1H) =210H)
			; PC=1C4H, PCL =C4H, PCH=03H.
1C5H	ADD	PCL,M	; PCL add with A register, result store at PCL
			; PC=1C5H, PCL =C5H, PCH=03H
1C6H	NOP		; Jump to 410H.
			; PC=1C6H, PCL=C6+4AH=10H with carry in 1,the carry
			will count with PCH, PCH=03H, the purpose PC high
			byte address will be PCH + PCL's carry=04H. The
			program will jump to PC=410H
410H	MOVLA	00H	; Purpose function part.
			; PC=410H, PCL =10H, PCH=03H

Example3

The below program is show how PCL and PCH working through A register

10	\sim	ress)
11		1622

(addicoo)			
018H	MOVLA	02H	; Save 02H to A register
019H	MOVAM	PCH	; Save A register to PCH(The purpose address is 200H, so store "02H" to PCH)
01AH	MOVLA	00H	; Save 00H to A register
01CH	MOVAM	PCL	; Save A register to PCL(The purpose address is 200H, so store "00H" to PCL)
01DH	NOP		; Jump to 200H.
200H	MOVLA	00H	; Purpose function part.

6.12 STATUS Register

The STATUS register is an 8-bit register that contains the zero flag (Z), carry flag (C), Nibble carry flag (DC), power down flag (\overline{PD}), and watchdog timer overflow flag (\overline{TO}). It records the status information.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS				\overline{TO}	\overline{PD}	Z	DC	С

• Bit4 (\overline{TO}): Timer overflow flag bit

• Bit3 (PD):Power down flag bit

\overline{TO}	\overline{PD}	Description			
0	0	WDT timer overflow from sleep mode			
0	1	WDT timer overflow from normal mode			
1	0	Input a 'low" at RESETB from sleep mode			
1	1	Power on reset			
Unchanged	Unchanged	Input a "low" at RESETB from normal mode			

• Bit2 (Z): zero flag bit

0: The result of a logic operation is not zero

1: The result of a logic operation is zero

• Bit1 (DC): Nibble Carry and Nibble \overline{Borrow} flag bit

ADD instruction:

0: No nibble carry occurred

1: Nibble carry occurred

SUB instruction

0: Nibble borrow occurred

1: No nibble borrow occurred

• Bit0 (C): Carry and Borrow flag bit

ADD instruction:

0: No carry occurred

1: Carry occurred from the MSB

SUB instruction

0: Borrow occurred from the MSB

1: No borrow occurred

A ? 1841

8. Electrical Characteristics

8.1 Absolute Maximum Ratings

Supply Voltage Vss-0.3V to Vss+5.5V Storage Temperature -40° C to 125° C Input Voltage Vss-0.3V to VDD+0.3V Operating Temperature -40° C to 85° C

<Note>: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

8.2 DC Characteristics

Symbol	Parameter	Test Conditions		Test Conditions		Parameter Test Conditions M		Min.	Тур.	Max.	Unit
		VDD	Conditions								
			f _{sys} =4MHZ	2.0		5.5					
VDD	Operating Voltage		f _{sys} =8MHZ	2.5		5.5	V				
			f _{sys} =12MHZ	3.3		5.5					
,	Operating Current	3.3V	No Load , f _{sys} =32KHZ		10		uA				
I _{DD1}	(Crystal OSC)	5V	ADC disable		26		uA				
,	Operating Current	3.3V	No Load , f _{sys} =4MHZ		0.8		m A				
l _{DD2}	(Crystal OSC)	5V	ADC disable		1.7		mA				
,	Operating Current	3.3V	No Load , f _{sys} =4MHZ		0.8		m A				
I _{DD3}	(RC OSC)	5V	ADC disable		1.4		mA				
I _{DD4}	Operating Current (Crystal OSC)	5V	No Load , f _{sys} =8MHZ ADC disable		3		mA				
I _{DD5}	Operating Current (Crystal OSC)	5V	No Load , f _{sys} =12MHZ ADC disable		4.2		mA				
V _{IH}	Input High Voltage	5V	I/O Port	2		VDD	V				
V_{IL}	Input Low Voltage	5V	I/O Port			0.8	V				
		5V	WDT disable			1					
	Standby Current	50	WDT enable			6	., Δ				
I _{STB}	Standby Current	3\/	WDT disable			1 μA					
		3V	WDT enable			2					

_____A ?1841

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{IL}	Input Leakage Current	5V	Vin=VDD, VSS			1	μ A
	I/O Dowt Dwining		Voh=5V			9.9	
I _{OH}	I/O Port Driving Current	5.5V	Voh=4.5V			17.6	mA
	Current		Voh=4V			24.8	
	I/O Dart Circle		Vol=0.5V			24.5	
I _{OL}	I/O Port Sink Current	5.5V	Vol=0.75V			35.3	mA
	Current		Vol=1V			43.8	
Б	Pull-high Resistance	3V		80	100	120	ΚΩ
R_{PH}		5V		30	50	70	ΚΩ
V_{AD}	A/D input Voltage			0		VDD	V
R _{AD}	Resolution					15	Bits
DNL	A/D Differential Non- Linear					4	LSB
INL	A/D Integral Non- Linear					6	LSB
ı	A/D Operating Compant	3.3V			200		uA
I _{ADc}	A/D Operating Current	5V			700		uA
V _{osv}	Comparator Input Offset Voltage			-30		30	mV
V _{CI}	Comparator Input Voltage Range			0.2		VDD-0.7	٧

______A ?1841

8.3 AC Characteristics

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit	
		Conditions	VDD					
f _{sys1}	System Clock	LS Crystal mode	5V	32		200	Khz	
'sys1	System Clock	Lo Orystal Mode	3V	32		200	MIZ	
f	System Clack	NS Crystal mode	5V	0.2		10	Mhz	
f _{sys2}	System Clock	NS Crystal filode	3V	0.2		10	IVIIIZ	
£	Custom Clash	LIC On otal made	5V	10		20	N 415	
f _{sys3}	System Clock	HS Crystal mode					Mhz	
	0 1 01 1	DO 1	5V	3.4	4	4.6	Mhz	
f _{sys4}	System Clock	RC mode	2.2V	3.4	4	4.6		
_			5V		20		•	
T_{wdt}	Watchdog Timer		3V				mS	
_			5V					
T_{rht}	Reset Hold Time	3V			20		mS	
T _{AD}	A/D clock period			3			us	
T _{ADC}	A/D Conversion Time				34		t _{AD}	
T _{ADCS}	A/D Sampling Time				8		t _{AD}	
	A/D clock period(Fast	System-clk=4MHZ,						
F T _{AD}	mode)	Clksel=01(4MHZ/8)		2			us	
	A/D Conversion Time	· .						
F T _{ADC}	(Fast mode)				50		us	
F R _{AD}	Resolution (Fast mode)					8	MSB	
_	Comparator Response							
T_{COMP}	Time					3	us	

8.4 External RC Table

R value(R2)	C value (C4)	RC Frequency	R connect to (VDD, OSC1)
4.9M	0.1u (need)	32KHZ	The capacitor is need for stabile frequency
250K	0.1u (suggest)	455KHZ	
116K	0.1u (suggest)	1MHZ	
60K	0.1u (suggest)	2MHZ	
32K	0.1u (suggest)	4MHZ	
18K	0.1u (suggest)	8MHZ	
14K	0.1u (suggest)	10MHZ	

8.5 Oscillator circuit in different mode

Crystal mode	Crystal	C2	C3
LP mode	32 Khz	20~100P	20~100P
	455 Khz	100P	100P
NT mode	455 Khz	100P	100P
	1 Mhz	20~100P	20~100P
	2 Mhz	20~100P	20~100P
	4 Mhz	20~100P	20~100P
	8 Mhz	20~50P	20~50P
	10 Mhz	20~50P	20~50P
HS mode	12 Mhz	20~50P	20~50P
	16 Mhz	20~50P	20~50P
	20 Mhz	20~50P	20~50P

8.6

Internal RC Electrical Characteristics (Ta= -40°C ~ 85°C , VDD=2.2V ~ 5.5V , VSS=0V)

Voltage 2.2V ~ 5.5V							
Temperature	-40°C	25°C	85°C				
Internal RC	4.6MHZ	4MHZ	3.4MHZ				

8.7

LVR Electrical Characteristics (Ta= -40 $^{\circ}$ C ~ 85 $^{\circ}$ C)

LVR		2V	
Temperature	-40°C	25°C	85°C
LVR	2.67V	2.17V	1.7V

Reset Circuit

6;

Timming:

1. LVR on

2. LVR off

米科电子 供应MK1841D3 Q..Q: 5315_21080