Les Réseaux Informatiques

Introduction aux Réseaux Informatiques

Sommaire

- . Histoire de la Communication
- 2. Évolution des Réseaux
- 3. Classification
- 4. Topologie
- 5. Normalisation
- 6. Architecture de Communication
- 7. Modèle OSI
- 8. Approche Métiers

Histoire de la Communication (1)

- Nécessité de la communication Codes, alphabets, langages...
- Les humains ont toujours voulu <u>communiquer plus vite et plus loin</u>. Les Gaulois, écrit Jules César dans "La guerre des Gaules ", avec la voix, de champ en champ, pouvaient transmettre une nouvelle à 240 km de distance en une journée.
- Les Grecs, en utilisant des flambeaux disposés de façon à indiquer les lettres de l'alphabet (grâce à un code établi), communiquaient, au temps d'Alexandre, de l'Inde à la Grèce, en cinq jours.

Histoire de la Communication (2)

- > 1464: Poste Royale (Louis XI)
- > 1794: Télégraphe Optique (Chappe)

Inconvénients de la poste et du Télégraphe optique: Temps de transmission, Visibilité, Atténuation...

Histoire de la Communication (3)

- > 1832: <u>Télégraphe Électrique</u> (Shilling)
- > 1837: <u>Code Télégraphique</u> (Morse) et Création de l'Administration du Télégraphe

Histoire de la Communication (4)

> 1854: 1er projet de <u>téléphone</u> (Bourseul)

- > 1876: Brevet du Téléphone (Bell)
- Etude sur la propagation des ondes:
 - Lois de l'<u>électromagnétisme</u> (Maxwell - 1860);
 - <u>Ondes Radioélectriques</u> (Hertz - 1887);
 - Radiodiffusion (Crooker - 1892)

Histoire de la Communication (5)

> 1889: Nationalisation de la Société Française de

<u>Téléphone</u>

> 1896: Liaison de <u>TSF</u> (Marconi)

> 1897: Émission Radio au Panthéon

> 1901: 1ère <u>liaison radio</u> transatlantique

> 1912: Monopole d'état sur la radiodiffusion

> 1915: <u>Téléphone automatique</u>

> 1917: <u>Télégraphe</u> de Baudot

lors de la première diffusion.

Histoire de la Communication (6)

- Première moitié du siècle: Radiodiffusion, télévision, radar, télex, téléphone...
- > 1943: Premier <u>calculateur électronique</u> Début de l'ère du traitement électronique de l'infor<u>mation</u>:

INFORMATIQUE

RESEAUX INFORMATIQUES

Histoire de la Communication (7)

Histoire de la Communication (8)

Evolution des Réseaux (1)

- Évolution de l'Informatique
- Coûts des équipements Informatiques / Coûts de la Communication
- Système de Télétraitement

Evolution des Réseaux (2)

- Processeur Frontal de Communication (FEP: Front End Processor)
- > Multiplexeurs et Concentrateurs
- Liaisons Spécialisées
- > Modems
- Commutateurs
- Protocole de Communication

Evolution des Réseaux (3)

Années 70 = Genèse des protocoles de communication et

baisse des coûts.

Mini-Calculateurs

Applications réparties

Evolution des Réseaux (4)

- Années 80 = <u>Informatique personnelle</u> et mise en œuvre des <u>réseaux locaux</u>
- Années 90 = Applications de l'<u>INTERNET</u>... <u>Mobiles</u>... <u>Satellites</u>

Evolution des Réseaux (5)

Classification (1)

- Critère de classification = Distance entre entités communicantes
- Architecture des Calculateurs/ Architecture de Communication
- LAN ou RLE
- WAN ou RLD
- > DAN, MAN...

1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country]
1000 km	Continent	Wide area network
10,000 km	Planet	The Internet

Classification (2)

> Autres Critère de classification = - Débit; - Architecture (OSI, TCP/IP...); Classification pour un LAN: - PABX; - Bureautique; - Industriel: - Large bande;

Classification (3)

Topologie (1)

- Réseau de Communication:
 - Terminaux:
 - Nœuds (IMP);
 - Liens:
- Ensemble des nœuds = <u>Sous-Réseau</u> (SubNet) ou <u>Système de Transport</u>
- Deux types de Topologie:
 - Point à Point;
 - Diffusion;

Topologie (2)

- Topologie point à point:
 - Etoile;
 - Boucle;
 - Maillé;

- > Topologie à diffusion :
 - Bus;
 - Anneau;
 - Radio/Satellite;

> Interconnexion de Réseaux

Topologie (3)

- Conception d'un réseau:
 - Stations à connecter;
 - Flux de données;
 - Coût;
 - Distance entre entités;
 - Evolution possible;
 - Lignes de secours;
 - Administration;

– ...

Normalisation (1)

- Nécessité de la normalisation
- Normalisation: assujettissement à des normes, des types, des règles techniques
- Norme: principe, règle, type, modèle
- Des normes multiples et incompatibles coexistent et des passerelles existent entre elles.

Normalisation (2)

- Constructeurs Informatiques et Opérateurs de Télécommunications.
- Organismes de Normalisation:
 - International: ISO, ITU (ex-CCITT)
 - Multi-National: CEN/CENELEC,...
 - National: AFNOR (FR), ANSI (US), DIN (DE)...
- Organismes privés:
- DARPA (DOD) IEEE EIA ECMA ISOC FORUMS -

Architecture de Communication (1)

- Architecture = Structure d'éléments définissant un système complexe
- Architecture de Communication:
 - Entités communicantes;
 - Règles d'échange;
- Architecture de Réseau
- Pile de protocoles

Architecture de Communication (2)

- > Transmission physique
- Contrôle d'erreurs
- Contrôle de flux
- Routage
- Régulation de flux (congestion)
- > Séquencement
- Contrôle de bout en bout

Architecture de Communication (3)

- > Gestion du dialogue
- > Reprise sur incidents
- Transformation de l'information
- > Synchronisation des processus ...

Architecture de Communication (4)

- Architectures normalisées par les <u>opérateurs</u> de Télécommunications (X.21, X.25, ISDN...).
- Architectures propriétaires par les constructeurs Informatiques (SNA, DNA, DSA...)
- ➤ 1977: <u>ISO</u> constitue un comité pour la normalisation dans le domaine des Télécommunications et de l'Interconnexion des Systèmes.

Modèle OSI (1)

- > 1979: Premier modèle OSI
- > 1984: ISO 7498 référence CCITT X.200 (ITU)
- OSI = Cadre fonctionnel -Modèle de référence
- Objectifs OSI:
 - Décomposer;
 - Structurer;
 - Assurer l'indépendance vis à vis du matériel et du logiciel.

Modèle OSI (2)

Modèle de Référence OSI:

Modèle OSI (3)

Modèle OSI (4)

Modèle OSI (5)

Modèle OSI (6)

Modèle OSI (7)

Modèle OSI (8)

Modèle OSI (9)

- > 4 Primitives de Service :
 - Requête: une entité sollicite un service pour faire une activité;
 - Indication: Informe d'un évènement;
 - Réponse: réponse à l'évènement;
 - Confirmation: informe de la demande de service;

Modèle OSI (10)

- Modes de Communication :
 - Mode Connecté;
 - Mode Non Connecté;
- > Trois <u>Phases</u> pour le <u>mode connecté</u>:
 - Établissement de la connexion avec négociation entre les 2 entités (N+1) et le service (N);
 - Transfert de données entre entités (N+1) sur la connexion (N) avec séquencement;
 - Libération de la connexion;
- Multiplexage de connexions et éclatement de connexions

Approche Métiers: Débouchés

- Ingénieur Télécoms (Radio, Mobile...)
- Ingénieur Administrateur Système/Réseau,
- Ingénieur Sécurité,
- Ingénieur de développement,
- Chef de Projet,
- > Consultant,
- > Architecte Système/Réseau ...

Approche Métiers: Architecte

- > Analyser les besoins de ses clients
- Choix des équipements logiciels et matériels en réseaux et télécommunications
- Mise en oeuvre de l'infrastructure de réseaux de données
- > Administration des moyens informatiques
- > Gestion des performances des réseaux
- Conseil et assistance dans les projets utilisant les réseaux

Approche Métiers: Compétences

- > Systèmes de transmission filaires, hertziens et optiques
- > Mobiles
- >Antennes, Satellites,
- PRéseaux locaux, Réseaux étendus,
- >Interconnexion,
- ➤ Interopérabilité,
- Réseaux haut-débit,

Approche Métiers: Compétences

- Ingénierie des protocoles,
- Architecture Client-Serveur / Applications Réparties,
- > Sécurité, Systèmes d'Information
- > Supervision et Administration Réseau, Bases de Données,
- Systèmes Informatiques,

>....

Le futur est déjà là!

