1SE

(d) Using the method of separation of variables, solve

$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$$

given that $u(x, 0) = 6e^{-3x}$. [7]

- 5. (a) Define the terms random variable and probability density function. [2]
 - (b) A random variable X has the density function

$$f(x) = ax, \quad 0 \le x < 1$$

$$= a, \quad 1 \le x \le 2$$

$$= -ax + 3a, \quad 2 < x \le 3$$

$$= 0, \text{ otherwise}$$

Determine a and compute $P(X \le 1.5)$. [7]

(c) The frequency distribution of a measurable characteristic varying between 0 and 2 is as under:

$$f(x) = x^3$$
, $0 \le x \le 1$
= $(2-x)^3$, $1 \le x \le 2$

Calculate the standard deviation and also the mean of deviation about the mean. [7]

(d) Find the probability that at most 5 defective fuses will be found in a box of 200 fuses, if experience shows that 2 percent of such fuses are defective.

322311(14)

BE (3rd Semester) Examination, April-May, 2018

(Old Scheme)

Mathematics-III

Time Allowed: 3 hours Maximum Marks: 80
Minimum Pass Marks: 28

- Note: (i) Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.
 - (ii) The figures in the right-hand margin indicate marks.
- 1. (a) What are the conditions of function f(x), that can be developed as a Fourier series? [2]
 - (b) Find a series of sines and cosines of multiples of x which will represent f(x) in the interval $(-\pi, \pi)$ when

$$f(x) = \begin{cases} 0 & , & -\pi < x < 0 \\ \frac{1}{4} \pi x & , & 0 < x < \pi \end{cases}$$

Hence deduce that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

[7]

[7]

(c) Find the Fourier series for the function f(x)defined by

$$f(x) = \begin{cases} -1 & , & -3 < x < 0 \\ 0 & , & x = 0 \\ 1 & , & 0 < x < 3 \end{cases}$$
 [7]

(d) The turning moment T on the crankshaft of a steam engine for the crank angle θ degree is given as:

θ	0	15	30	45	60	75	90	105	120	135	150	165	180
T	0	2.7	5.2	7.0	8.1	8.3	7.9	6.8	5.5	4.1	2.6	1.2	0

Expand T in a series of sine up to the second harmonics. Calculate T for $\theta = 75^{\circ}$. [7]

- 2. (a) Write the convolution theorem for inverse Laplace transform. [2]
 - (b) Find the Laplace transform of: [7]
 - (i) $f(t) = t \sin^2 t$, (ii) $f(t) = t^2 e^{-at}$ and (iii) $f(t) = \frac{\sinh t}{t}$.
 - (c) Evaluate the following: [7] (i) $L^{-}\left\{\frac{1}{s}\right\}$, (ii) $L^{-1}\left\{\frac{1}{s-a}\right\}$, (iii) $L^{-1}\left\{\frac{1}{s^2+a^2}\right\}$
 - (d) Using Laplace transform, solve

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}, \ y(0) = 1, \left(\frac{dy}{dx}\right)_{x=0} = 0$$
[7]

(Continued)

- (a) Define analytic function. [2]
 - (b) State Cauchy-Riemann equations. If $w = \phi + i\psi$ represents the complex potential for an electric field and $\psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$, determine the function $\phi(x, y)$.
 - (c) Using Cauchy's integral formula, evaluate

$$\int_{C} \frac{e^{2z}}{(z-1)(z-2)} dz$$
where C is the simple $z = 2$

where C is the circle |z| = 3. [7]

- (d) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent's and Taylor series valid for the regions (i) |z| < 1, (ii) 1 < |z| < 3, (iii) |z| > 3. [7]
- (a) Form a partial differential equation by eliminating the arbitrary function f from the relation

$$z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$$
 [2]

- [7] $(y^3x-2x^4)p+(2y^4-x^3y)q=9z(x^3-y^3)$
- (c) Solve

$$\left(2\frac{\partial^2}{\partial x^2} - 5\frac{\partial^2}{\partial y \partial x} + 2\frac{\partial^2}{\partial y^2}\right)z = 24(y - x)$$
[7]

TC-358

(Turn Over)