Conception centrée utilisateur (User-Centered Design)

Spécifications et conception Guillaume Besacier

Utilisabilité est un processus itératif

Traditionnel: modèle en cascade

Traditionnel: modèle en cascade

Modèle en cascade : pas adapté à la conception d'interfaces utilisateur

- Conception d'interfaces utilisateur est compliqué
 - Très probable qu'on se trompe !
- Utilisateurs pas impliqués avant la phase de validation
 - On va se tromper (c'est sur) et ça va couter cher !
- Problèmes d'interfaces
 utilisateur causent souvent
 des changements d'analyse
 du besoin et/ou de conception
 - Gaspillage de code déjà écrit et testé

Mauvaise conception itérative

- Chaque itération correspond à une version
 - Exemple : Windows XP,
 Windows Vista, Windows 7,
 Windows 8, Windows 10
- « L'évaluation » (les critiques des clients) servent à modifier la conception de la version suivante

Modèle en spirale

Même un prototype papier aurait pu détecter ces erreurs

Conception itérative

- Premières itérations utilisent des prototypes rapides, pas chers, jetables
 - On va les jeter
 - Possibilité d'en faire plusieurs en parallèle
- Itérations suivantes de plus en plus fidèles et riches
 - Low-fi \rightarrow Mid-fi \rightarrow Hi-fi
- Généralement, plus d'itérations = une meilleure interface utilisateur et un système plus utilisable
- Seule la dernière itération sera dévoilée publiquement

Conception centrée utilisateur

- Conception itérative
- Dès le début, les utilisateurs et les tâches
 - Analyse utilisateur : qui sont les utilisateurs ?
 - Analyse de tâches : qu'est-ce qu'ils ont besoin de faire ?
 - Implication réelle des utilisateurs : comme évaluateurs, consultants, et même parfois concepteurs
- Evaluation constante
 - Utilisateurs impliqués à chaque itération
 - Tous les prototypes évalués d'une façon ou d'une autre

Exemple: The Olympic Message System

- Jeux Olympiques de 1984 à Los Angeles
 - Permettre aux athlètes du monde entier d'envoyer et de recevoir des messages vocaux (du monde entier)
 - https://youtu.be/W6UYpXc4czM
- Prototypes rapides
 - Scénarios
 - Manuels utilisateur
 - Simulation (ex : Magicien d'Oz)
 - Outils de prototypage (aujourd'hui : HTML, Flash, etc.)

Exemple: The Olympic Message System

- Conception itérative
 - 200 itérations juste pour le manuel utilisateur !
- Evaluation à chaque étape
- Vous n'êtes pas l'utilisateur
 - Pas plus de 4 choix
 - Erreurs problématiques comme le choix du pays
 - Non-anglophones avaient des difficultés avec la saisie de lettres sur un clavier de téléphone
 - Localisation des kiosks

Plan de la conception centrée utilisateur

- Analyse utilisateur et analyse des tâches
 - Si vous n'êtes pas l'utilisateur, alors qui est-il ?
 - Que veut-il faire ? (« Quoi », pas « Comment »)
- Ergonomie et critères d'utilisabilité
- Prototypage : low-fi, mid-fi
- Hi-fi : implémentation de l'interface utilisateur

Plan de la conception centrée utilisateur

- Evaluation
 - Seule façon de mesurer l'utilisabilité
- Evaluation par des experts
 - Heuristiques
 - Cheminements
- Evaluation prédictive
 - Modèle simulé d'un utilisateur
- Evaluation empirique
 - Observer les utilisateurs utiliser

Exemple sur un petit projet

- 1. Analyse (1 semaine)
- 2. Croquis et dessins (1)
- 3. Prototype papier (1)
- 4. Tests utilisateur (1)
- 5. Prototype informatique (2)
- 6. Evaluation heuristique (1)
- 7. Implémentation finale (3)
- 8. Tests utilisateur (1)
- 9. Déploiement

Analyses

- Analyse utilisateur
 - Si vous n'êtes pas l'utilisateur, alors qui est-il ?
- Analyse des tâches
 - Qu'a-t-il besoin de faire ? (« Quoi », pas « Comment »)
- Analyse du domaine
 - Quel est le contexte dans lequel cet utilisateur travaille ?
- Analyse des exigences
 - Quels sont les conséquences de ces 3 analyses sur la conception

Qui sont les utilisateurs?

- (C'est pas vous)
- Identifier les caractéristiques de la population cible
 - Age, sexe, culture, langue
 - Niveau d'éducation (alphabétisation, mathématique,...)
 - Limitations physiques
 - Expérience de l'informatique (clavier, souris, widgets courants,...)
 - Motivation, attitude
 - Expérience du domaine
 - Expérience de la tâche
 - Environnement et contexte social
 - Relations entre utilisateurs, communication

Plusieurs classes d'utilisateurs

- Beaucoup d'applications ont plusieurs classes (ou types) d'utilisateurs
 - Différents rôles (Moodle : étudiants, profs, secrétaires)
 - Différentes caractéristiques (âge, motivation)
- Exemple : Olympic Message System
 - Athlètes
 - Famille et amis
 - Opérateurs téléphoniques
 - Organisateurs des Jeux

Persona

- Personnage fictif utilisé comme un représentant de sa classe d'utilisateur
 - Akifumi est un sprinter de 20 ans, qui vient de Tokyo et parle un peu anglais
 - Fritz a 50 ans et est le père d'un nageur allemand,
 il n'a pas pu se rendre à Los Angeles avec son fils
 - Lauren est une opératrice téléphonique trilingue de 35 ans, elle habite à Long Beach dans la banlieue de Los Angeles
- Proposé par Alan Cooper en 1999

Persona

- Avantages
 - Pratique pour parler d'une classe d'utilisateur
 - Permet de se concentrer sur le cas typique plutôt que sur les extrêmes
 - Encourage l'empathie
- Inconvénients
 - Peut être trompeur
 - Piège des stéréotypes

Analyse utilisateur

- Questionnaires
- Entretiens
- Observation
- Problèmes potentiels
 - Développeurs et utilisateurs isolés les uns des autres (volontairement)
 - Utilisateurs difficiles à trouver, dont le temps coute cher (avocats, PDG, colonels,...)

Analyse des tâches

- Identifier les différentes tâches que le système informatique pourrait éventuellement résoudre
- Chaque tâche est un but (« quoi », pas « comment »)
- Décomposition en sous-tâches
 - Partir du but général du système
 - Hiérarchie

Analyse des tâches

- Qu'est-ce qui a besoin d'être fait ? → Le but
- Qu'est-ce qui doit être avant, pour rendre le but possible ? → Les préconditions
 - D'autres tâches
 - Des informations qui doivent connues de l'utilisateur
- Qu'elles sont les étapes pour atteindre le but ?
 - → Les sous-tâches
- Analyser récursivement les sous-tâches

Exemple: Olympic Message System

- But : Envoyer un message à un autre athlète
- Précondition : connaitre mon code pays, mon nom d'utilisateur, mon mot de passe, le code pays de l'autre athlète, le nom de famille de l'autre athlète
- Sous-tâches
 - S'identifier (log-in)
 - Identifier le destinateur
 - Enregistrer le message
 - Raccrocher

Analyse des tâches

Pour chaque tâche:

- Où la tâche est-elle effectuée ? → Devant un kiosk, debout
- Environnement ? (Bruyant ? Pas éclairé ? Dangereux ?) → A l'extérieur, bruyant
- A quelle fréquence la tâche est-elle effectuée ? (Toutes les minutes ? Heures ? Jours ? Une fois par mois ? Par an ?) → Probablement une dizaine de fois par jour
- Contrainte de temps ou de ressource ? → Une ou deux minutes (entrainements!)
- Apprentissage de la tâche? (Essai et erreur? En regardant les autres et en faisant pareil? En l'apprenant dans un cours avec un prof?)
- Qu'est-ce qui peut mal se passer ? Erreurs, cas exceptionnels, urgences → Saisie du mauvais code pays, fait tomber le combiné du téléphone pendant l'enregistrement du message, oublie de son mot de passe, etc.
- Quels autres utilisateurs sont impliqués dans cette tâche ? → Destinataire du message, autres athlètes qui font la queue derrière

Analyse des tâches

- Pour identifier (certaines) tâches répondre à (certaines) de ces questions
 - Entretiens avec des utilisateurs
 - Observations des utilisateurs effectuant la tâche
- Exemple : un ascenseur

- Identifier les choses importantes
 - Humains : classes d'utilisateurs
 - Objets physiques : ordinateur (écran, clavier, souris), carte d'accès, téléphone
 - Objets non physiques : messages, comptes d'utilisateur, mot de passe

- Déterminer les relations importantes entre les choses
- Verbe, sauf si « possède » alors nom(s)

- Identifier les cardinalités des relations où c'est pertinent
 - « * » zéro, un, ou plusieurs
 - « + » un ou plusieurs (= au moins un)
 - «? » zéro ou un (= un maximum)
 - «! » un et un seul (= toujours)
 - « typique [minimum-maximum] »

- Feedback vers l'analyse des utilisateur et l'analyse des tâches
- Identifier les classes d'utilisateurs manquantes
- Identifier les taches manquantes : CRUD
 - Create
 - Read
 - Update
 - Delete

Analyse des exigences

- Exigences : qu'est-ce que le **système informatique** *devrait* faire ?
- Première fois qu'on parle du système informatique
- Première fois qu'on utilise le mot « devrait »

Pas de « devrait » dans l'analyse utilisateur

- On doit décrire ce que les utilisateurs sont
- Pas ce qu'ils devraient être
 - C'est une exigence, pas une analyse
 - « Les utilisateurs devraient avoir un master d'informatique, parler couramment français et japonais, être gauchers, et mesure au moins 1m85 »
 - Pour Olympic Message System : « Les familles des athlètes devraient avoir un téléphone à clavier »

Erreurs dans l'analyse des tâches

- Penser du point de vue du système plutôt que ce celui de l'utilisateur
 - Non: « Afficher une notification 5 minutes avant le rendez-vous »
 - Oui : « Recevoir une notification 5 minutes avant le rendez-vous »
- Penser aux détails de l'interface utilisateur
 - « Une sonnerie retentit/un message s'affiche en haut de l'écran/une icône est ajoutée dans la barre des tâches pour prévenir l'utilisateur d'un rendez-vous »
- Décrire ce que les utilisateurs font en ce moment (tâches concrètes) plutôt que *pourquoi* ils le font (but, tâches essentielles)
 - Non : « sauvegarder le fichier sur le disque dur et le copier sur un clef usb »
 - Oui : « être sur que mon travail est en sécurité et ne va pas être perdu »
- Reproduire une mauvaise procédure existante dans le logiciel
- Ne pas reproduire une bonne procédure existante dans le logiciel

Procédures pour l'analyse utilisateur et l'analyse des tâches

- Entretiens
 - « Pourquoi vous faites ça ? » → But
 - « Comment vous faites ça ? » → Sous-taches
- Chercher des problèmes
 - Echec à atteindre le but
 - Temps gaspillé
 - Utilisateurs pas contents

Contextual Inquiry

- Proposé en 1990
- Observer les utilisateurs travailler pour de vrais dans leur vrai environnement de travail
- Parler de choses concrètes
- Etablir une relation maître-apprenti
 - L'utilisateur montre comment faire et explique
 - Le concepteur regarde et pose des questions
- Contredire les non-dits et les suppositions
 - Forcer l'utilisateur à réfléchir au pourquoi
- Interpréter et reformuler
 - L'utilisateur a l'opportunité de corriger le concepteur

Conception participative

- Inclure des utilisateurs dans l'équipe de conception
 - Exemple : Olympic Message System a embauché un ancien athlète olympique (2 participations + plusieurs championnats du monde) comme consultant

Attention: Cours important!

http://www.lemonde.fr/campus/article/2016/01/18/les-vingt-cinq-competences-qui-aident-a-trouver-un-emploi 4848854 4401467.html

Article du 18/01/2016 dans Le Monde

« Certaines compétences précédemment absentes du classement français y figurent désormais en bonne place : **conception des interfaces utilisateurs** (au 7^e rang) »

« **Le test utilisateur** et l'assurance qualité logicielle bondissent à la 5^e place (+19 places) »

Classement global, pas que pour les informaticiens! « Que ceux qui n'étudient ou ne travaillent pas dans ces domaines numériques se rassurent, d'autres compétences sont aussi recherchées: le droit des sociétés et la gouvernance se classent au 4e rang. Suivent le droit du travail et la conformité réglementaire (8e, +10 places), le commerce de détail (10e, alors qu'il n'était pas classé l'an dernier), des profils d'ingénieurs dans les domaines de la mécanique et de l'aérospatial (11e, -3), des compétences en matière de sciences économiques (18e, -4), de politiques publiques et de relations internationales (19e, -7), de recrutement (20e, -3), de traduction (21e,+2). La restauration fait son entrée, à la 23e place. »

Twitter

- Faire l'analyse utilisateur, l'analyse des tâches, et l'analyse du domaine pour Twitter
- Utiliser tous les outils à notre disposition (persona, entretiens, etc.)
- Groupe de 4 ou 5 personnes
- Les gens qui utilisent Twitter seront les utilisateurs