



## **Operations Research**

Vorlesung 5

Technische

Lineare Programmierung: Dualer Simplex & Dualität

## Wiederholung

- Standardproblem der linearen Optimierung
  - Maximierungsproblem
  - Kleiner-Gleich-Bedingungen

- Simplexalgorithmus
  - Umwandlung in Gleichungssystem durch Schlupfvariablen
  - Gleichungssystem mit Freiheitsgraden
  - Entfernen von Freiheitsgraden durch Nichtbasisvariablen (NBV) = 0
  - Lösung des linearen Gleichungssystems mit Gauß (Kreisregel)
  - Suche nach Verbesserung durch Änderung der NBV





## Heutige Fragestellungen

- Unser Simplex-Tableau startet generell mit dem Nullpunkt (Strukturvariablen = Nichtbasisvariablen).
- Was machen wir, wenn der Nullpunkt keine zulässige Lösung ist?

- Gibt es weitere Aussagen über lineare Programme, z.B.
  - Zur Konstruktion alternativer Algorithmen für LP-Modelle?
  - Zur Verringerung des Lösungsaufwandes?
  - Zur Interpretation von LP-Modellen und optimalen Endtableaus?





## Überblick

- 1. Dualer Simplex-Algorithmus
- 2. Duales Programm





## Überblick

- 1. Dualer Simplex-Algorithmus
- 2. Duales Programm





# Standardproblem der linearen Programmierung

**Alternative Sprechweise:** Standard formulierung der linearen Programmierung

max 
$$z = c_1 x_1 + \dots + c_n x_n$$
  
u.d.N.  $a_{11}x_1 + \dots + a_{1n}x_n \le b_1$   
 $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $u.d.N. Ax \le b$   
 $x_1, \dots, x_n \ge 0$ 

$$\max z = c^T x$$
u.d.N.  $Ax \le b$ 

$$x \ge 0$$

$$\text{mit } c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \ b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$





## Herstellung der Standardform

#### Zielfunktion

■ Es liegt ein Minimierungsproblem vor:  $\min z = c^T x \leftrightarrow \max z' = -c^T x$ 

#### Nebenbedingungen

■ Es liegt eine "≥"-Bedingung vor:

$$2x_1 - 4x_2 - 3x_3 \ge 5$$

$$\leftrightarrow$$

$$-2x_1 + 4x_2 + 3x_3 \le -5$$

Es liegt eine Gleichheitsbedingung vor:

$$x_{1} - 2x_{2} - x_{3} = 1$$

$$\leftrightarrow$$

$$x_{1} - 2x_{2} - x_{3} \le 1$$

$$-x_{1} + 2x_{2} + x_{3} \le -1$$

#### Variablen

- Es liegt eine unbeschränkte Variable  $x_i \in \mathbb{R}$  oder nicht-positive Variable  $x_i \leq 0$  vor.
- Es werden zwei bzw. eine neue vorzeichenbeschränkte Entscheidungsvariablen  $x_i^+ \ge 0$  und  $x_i^- \ge 0$  definiert.
- Ursprüngliche Variable wird in der Zielfunktion und den Restriktionen mit den neuen Variablen substituiert:  $x_i = x_i^+ x_i^-$  bzw.  $x_i = -x_i^-$ .







## **Beispiel**

$$\min z = x_1 + 2x_2 \\ x_1 - x_2 = 1 \\ -2x_1 + x_2 \le 2 \\ x_1 \in \mathbb{R}, x_2 \ge 0$$

$$\max z = -x_1 - 2x_2$$

$$x_1 - x_2 \le 1$$

$$-x_1 + x_2 \le -1$$

$$-2x_1 + x_2 \le 2$$

$$x_1 \in \mathbb{R}, x_2 \ge 0$$

$$\max z = -x_1^+ + x_1^- - 2x_2$$

$$x_1^+ - x_1^- - x_2 \le 1$$

$$-x_1^+ + x_1^- + x_2 \le -1$$

$$-2x_1^+ + 2x_1^- + x_2 \le 2$$

$$x_1^+, x_1^-, x_2 \ge 0$$



# Erweiterungen des Simplex-Algorithmus

$$\max z = c^T x$$

u.d.N. 
$$Ax \leq b$$

$$x \geq 0$$

für 
$$b \ge \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
:  $x = 0$  ist zulässige Ausgangslösung

für einzelne 
$$b_i < 0$$
:  $x = 0$  ist *keine* zulässige Ausgangslösung

für einzelne 
$$a_{ij} \cdot x_j = b_j$$
:  $x = 0$  ist keine zulässige Ausgangslösung

#### Verfahren zur Bestimmung einer zulässigen Ausgangslösung:

**Duale Simplex-Methode** 





## **Dualer Simplex: Motivation**



Hinweis: 
$$a_1x_1 + a_2x_2 \ge b \iff -a_1x_1 - a_2x_2 \le -b$$

Überführung in Standardform:

max 
$$z = -2x_1 - 2x_2$$
  
u.d.N.  $x_1 + x_2 \le 4$   
 $-2x_1 - x_2 \le -2$   
 $x_1, x_2 \ge 0$ 

Einführung von Schlupfvariablen:

max 
$$z = -2x_1 - 2x_2$$
  
u.d.N.  $x_1 + x_2 + x_3 = 4$   
 $-2x_1 - x_2 + x_4 = -2$   
 $x_1, \dots, x_4 \ge 0$ 



## **Duale Simplex-Methode: Voraussetzungen**

#### Starttableau:

|       | $x_1$ | $x_2$ | RS |
|-------|-------|-------|----|
| -z    | -2    | -2    | 0  |
| $x_3$ | 1     | 1     | 4  |
| $x_4$ | -2    | -1    | -2 |
|       |       |       |    |

#### **Problem:**

- Zielfunktion ist optimal (nur negative Koeffizienten)
- rechte Seite der 2. Nebenbedingung ist nicht zulässig

#### Idee:

Wähle Pivotelement so, dass die Zielfunktion optimal bleibt und die Basislösung zulässig wird





## **Duale Simplex-Methode**

*Voraussetzung:* mindestens ein  $b_i < 0$ 

#### Vorgehensweise:

- Bestimme Pivotzeile r:  $b_r = \min\{b_i < 0\}$  (kleinstes negatives  $b_i$ )
- Bestimme Pivotspalte s: gilt wenn  $a_{ri} < 0$  für mindestens ein j

$$\Rightarrow \frac{c_s}{a_{rs}} = \min \left\{ \frac{c_j}{a_{rj}} \middle| a_{rj} < 0 \right\}$$

Austauschschritte wie bisher (primaler Simplex) durchführen

#### Abbruch:

- 1. alle  $b_i \ge 0$  und alle  $c_i \le 0$   $\Rightarrow$  optimale Lösung gefunden
- 2. alle  $b_i \ge 0$  und mind. ein c > 0  $\Rightarrow$  weiter mit primalem Simplex
- 3. mindestens ein  $b_i < 0$  und alle zugehörigen  $a_{ij} \ge 0$ 
  - ⇒ es existiert keine zulässige Lösung!





# Duale Simplex-Methode: Beispiel für Abbruch nach Fall 1. (I)

#### Starttableau:



Pivotzeile r:  $b_r = \min\{b_i < 0\}$ 

Pivotspalte s:

gilt  $a_{rj} < 0$  für mindestens ein j

$$\Rightarrow \frac{c_s}{a_{rs}} = \min\left\{\frac{c_j}{a_{rj}} \middle| a_{rj} < 0\right\}$$

Pivotzeile

Basiswechsel:  $x_1 \rightarrow BV$ 

 $x_4 \rightarrow \mathsf{NBV}$ 





# Duale Simplex-Methode: Beispiel für Abbruch nach Fall 1. (II)

#### Folgetableau:

|            |     | RS |
|------------|-----|----|
| _z _1      | -1  | 2  |
| $x_3$ 1/2  | 1/2 | 3  |
| $x_1$ -1/2 | 1/2 | 1  |

#### Abbruchkriterium erfüllt!

alle  $b_i \ge 0$  und alle  $c_j \le 0$ 

⇒ optimale Lösung gefunden

$$x_1^* = 1, x_2^* = 0, z^* = -2$$

Rücktransformation in alte (Minimierungs-) Zielfunktion:  $v^* = -z^* = 2$ 





# Duale Simplex-Methode: Beispiel für Abbruch nach Fall 2. (I)

#### Maximierungsproblem:

$$\max z = 2x_1 + 1x_2$$

$$1x_1 + 1x_2 \ge 8$$

$$3x_1 + 1x_2 \ge 12$$

$$1x_1 + 1x_2 \le 10$$

$$x_1, x_2 \ge 0$$

#### Standardform:

$$\max z = 2x_1 + 1x_2$$

$$-1x_1 - 1x_2 \le -8$$

$$-3x_1 - 1x_2 \le -12$$

$$1x_1 + 1x_2 \le 10$$

$$x_1, x_2 \ge 0$$

Starttableau:

Pivotzeile r:  $b_r = \min\{b_i < 0\}$ 

→ Dualer Simplex

Pivotspalte s:

gilt  $a_{rj} < 0$  für mindestens ein j

$$\Rightarrow \frac{c_s}{a_{rs}} = min\left\{\frac{c_j}{a_{rj}} \middle| a_{rj} < 0\right\}$$





## Duale Simplex-Methode: Beispiel für Abbruch nach Fall 2. (II)

|                 | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RS  |
|-----------------|-------|-------|-------|-------|-------|-----|
| -z              | -1    | 0     | 0     | 1     | 0     | -12 |
| $x_3$           | 2     | 0     | 1     | -1    | 0     | 4   |
| $x_2$           | 3     | 1     | 0     | -1    | 0     | 12  |
| $x_5$           | (-2)  | 0     | 0     | 1     | 1     | -2  |
| $\overline{-z}$ | 0     | 0     | 0     | 1/2   | -1/2  | -11 |
| $x_3$           | 0     | 0     | 1     | 0     | 1     | 2   |
| $x_2$           | 0     | 1     | 0     | (1/2) | 3/2   | 9   |
| $x_1$           | 1     | 0     | 0     | -1/2  | -1/2  | 1   |
| -z              | 0     | -1    | 0     | 0     | -2    | -20 |
| $x_3$           | 0     | 0     | 1     | 0     | 1     | 2   |
| $x_4$           | 0     | 2     | 0     | 1     | 3     | 18  |
| $x_1$           | 1     | 1     | 0     | 0     | 1     | 10  |

Lösung (II): 
$$x_1 = 0$$
;  $x_2 = 12$ 

Pivotzeile r:  $b_r = \min\{b_i < 0\}$ 

→ Dualer Simplex

Lösung (III):  $x_1 = 1$ ;  $x_2 = 9$ Zulässige Lösung gefunden!

ABER: Lösung nicht optimal, da ein  $c_j > 0$ 

→ Weiter mit primalem Simplex

Abbruch, da alle  $c_i < 0$  und alle  $b_i > 0$ 

→ Lösung (IV) zulässig und optimal

$$x_1 = 10; x_3 = 2; x_4 = 18;$$

$$ZF = 20$$





# Duale Simplex-Methode: Beispiel für Abbruch nach 2. (III)



I: Startlösung unzulässig

→ Dualer Simplex

II: Lösung unzulässig

→ Dualer Simplex

III: Lösung zulässig, aber nicht optimal

→ Primaler Simplex

IV: Lösung zulässig und optimal





# Dualer Simplex: Beispiel für Abbruch nach Fall 3.

|       |   | -1    | _     |    |     |
|-------|---|-------|-------|----|-----|
|       |   | $x_1$ | $x_2$ | RS | _   |
| -z    |   | 1     | 1     | 0  |     |
| $x_3$ |   | 1     | 1     | 2  | _   |
| $x_4$ | ( | -1    | ) 1   | -3 | < 0 |
|       |   |       |       |    | ı   |

Basistausch:  $x_1$  in die Basis

 $x_4$  verlässt die Basis

|       | $x_4$ | $x_2$ | RS | _   |
|-------|-------|-------|----|-----|
| -z    | 1     | 2     | -3 |     |
| $x_3$ | 1     | 2     | -1 | < 0 |
| $x_1$ | -1    | -1    | 3  |     |

alle Koeffizienten in Pivotzeile > 0

- → Abbruch
- → es existiert keine zulässige Lösung





# Lösung von Linearen Programmen: Übersicht der Schritte

- 1. Herstellen der Standardform und Aufstellen des Simplextableaus
- 2. Prüfen, ob x = 0 eine zulässige Lösung ist

• 
$$x = 0$$
 ist zulässig

• x = 0 ist nicht zulässig

- → Gehe zu Schritt 4
- → weiter mit Schritt 3

3. Durchführen des dualen Simplex bis

■ alle 
$$b_i \ge 0$$
 und alle  $c_i \le 0$ 

- alle  $b_i \ge 0$  und mindestens ein c > 0
- mind. ein  $b_i < 0$  und alle zugehörigen  $a_{ij} \ge 0$
- → Optimale Lösung, gehe zu Schritt 5
- → zulässige Lösung, weiter mit Schritt 4
- → keine zulässige Lösung → Ende

- 4. Durchführen des primalen Simplex bis
  - mind. ein  $c_i > 0$  und alle zugehörigen  $a_{ij} \le 0$
  - alle  $c_i \le 0$

- → keine optimale Lösung → Ende
- → weiter mit Schritt 5
- 5. Falls das Ausgangsproblem ein Minimierungsproblem war:
  - Rücktransformation des Zielfunktionswerts durch Multiplikation mit -1



## Überblick

- 1. Dualer Simplex-Algorithmus
- 2. Duales Programm





#### **Dualitätstheorie**

- Dualitätstheorien sagen etwas über Paare von Systemen aus.
- Dualitätsaussagen beziehen sich hier auf Modellpaare, deren Beziehungen in eineindeutiger Weise definiert sind.
- Dualitätsaussagen dienen vor allem:
  - Zur Konstruktion alternativer Algorithmen für LP-Modelle
  - Zur Verringerung des Lösungsaufwandes
  - Zur Interpretation von LP-Modellen und optimalen Endtableaus





### **Dualität**

Primales Problem (P)

(Maximierungsproblem)

$$(1) \quad \text{Max } z = c^T x$$

$$Ax \le b$$

 $x \ge 0$ 

(2) 
$$\max z = c^T x$$
  
 $Ax = b$   
 $x \ge 0$ 

Duales Problem (D)

(Minimierungsproblem)

$$Min v = b^T y$$

$$A^T y \ge c$$

$$y \ge 0$$

$$\Leftrightarrow$$

 $\Leftrightarrow$ 

$$Min v = b^T v$$

$$A^T y \ge c$$

$$y \in \mathbb{R}^m$$

(nicht vorzeichenbeschränkt)



## **Dualisierung eines Standardform-Problems**

(P) 
$$\max z = c_1 x_1 + \ldots + c_j x_j + \ldots + c_n x_n$$
 
$$a_{11} x_1 + \ldots + a_{1j} x_j + \ldots + a_{1n} x_n \leq b_1$$
 
$$\ldots \qquad \ldots \qquad \ldots$$
 
$$ai_1 x_1 + \ldots + a_{ij} x_j + \ldots + a_{in} x_n \leq b_i$$
 
$$\ldots \qquad \ldots \qquad \ldots$$
 
$$am_1 x_1 + \ldots + a_{mj} x_j + \ldots + a_{mn} x_n \leq b_m$$
 
$$x_1, \ldots x_i, \ldots x_n \geq 0$$

(D) 
$$\min v = b_1 y_1 + ... + b_i y_i + ... + b_m y_m$$
 
$$a_{11} y_1 + ... + a_{i1} y_i + ... + a_{m1} y_m \ge c_1$$
 
$$... \cdot ... \cdot ...$$
 
$$a_{1j} y_1 + ... + a_{ij} y_i + ... + a_{mj} y_m \ge c_j$$
 
$$... \cdot ... \cdot ...$$
 
$$a_{1n} y_1 + ... + a_{in} y_i + ... + a_{mn} y_m \ge c_n$$
 
$$y_1 ... y_i ... y_m \ge 0$$

#### Vorgehen:

- 1. Jede Restriktion i von (P) entspricht einer Variable  $y_i$  in (D), die  $b_i$  werden zu Zielfunktions-koeffizienten in (D)
- 2. Jede Variable j von (P) entspricht einer Restriktion in (D), die  $c_j$  werden zur rechten Seite von  $\geq$  Restriktionen in (D)
- 3. Die Koeffizientenmatrix wird transponiert, d.h. die Zeilen  $a_{i1}$ .  $a_{ij}$ ...  $a_{in}$  in (P) werden zu Spalten in (D)
- 4. Für die Variablen  $y_i$  in (D) werden Nichtnegativitätsrestriktionen eingeführt





# Ökonomische Interpretation Beispiel Produktionsprogrammplanung

(P) Maximierung des Deckungsbeitrags (bei gegebenen Ressourcen)

$$\max z = 3x_1 + 4x_2$$

$$3x_1 + 2x_2 \le 1200$$

$$5x_1 + 10x_2 \le 3000$$

$$0,5x_2 \le 125$$

$$x_1, x_2 \ge 0$$

(D) Minimierung des Ressourcenverbrauchs / der Ressourcenbewertung (bei gegebenem Ziel / bei gegebenen Produktpreisen)

$$\min \mathsf{v} = \begin{array}{ll} 1200y_1 \,+\, 3000y_2 \,+\, 125y_3 \\ 3y_1 \,+\, & 5y_2 \,\geq 3 \\ \\ 2y_1 \,+\, & 10y_2 \,+\, 0.5y_3 \geq 4 \\ \\ y_1, y_2, y_3 \geq 0 \end{array}$$





# Dualitätstheorie: Eine ökonomische Interpretation für den Produktionsplanungsfall

Primales Modell: Sicht des Produktionsplaners einer Firma

**Ziel:** Deckungsbeitragsmaximale Gesamtproduktion

Entscheidungen: Produktionsmengen der einzelnen Produkte

Nebenbedingungen: Die gegebenen Kapazitäten pro Ressource dürfen nicht überschritten werden

Duales Modell: Sicht eines möglichen Käufers der Produktionsanlagen

Ziel: Minimaler Gesamtkaufpreis, Erkenntnis über Beitrag der Ressourcen am DB

**Entscheidungen:** Bewertung der Ressourcen je Einheit (→Schattenpreise)

**Nebenbedingungen:** Der sich aus den Ressourcenpreisen ergebende Herstellungspreis je Produkt

darf den Marktpreis des Produktes nicht überschreiten





(D) min 
$$v=1200y_1+3000y_2+125y_3$$
 
$$3y_1+5y_2\geq 3$$
 
$$2y_1+10y_2+0.5y_3\geq 4$$
 
$$y_1,y_2,y_3\geq 0$$

#### (D') Äquivalente Formulierung

$$\max v' = -1200y_1 - 3000y_2 - 125y_3$$
 
$$-3y_1 - 5y_2 \le -3$$
 
$$-2y_1 - 10y_2 - 0.5y_3 \le -4$$
 
$$y_1, y_2, y_3 \ge 0$$





#### Primales Problem:

2 Strukturvariablen, 3 Schlupfvariablen

$$x_1, x_2,$$

$$x_3, x_4, x_5$$

#### Duales Problem:

3 Strukturvariablen, 2 Schlupfvariablen

$$y_1, y_2, y_3,$$

$$y_4, y_5$$

- 1. Strukturvariablen des primalen Problems
- 1. Schlupfvariablen des dualen Problems,  $\leftrightarrow$
- 1. Schlupfvariablen des primalen Problems
- $\leftrightarrow$
- 1. Strukturvariablen des dualen Problems, usw.

$$x_1 \leftrightarrow y_4$$

$$x_1 \leftrightarrow y_4$$
,  $x_2 \leftrightarrow y_5$ ,  $x_3 \leftrightarrow y_1$ ,  $x_4 \leftrightarrow y_2$ ,

$$x_3 \leftrightarrow y_1$$

$$x_4 \leftrightarrow y_2$$

$$x_5 \leftrightarrow y_3$$





(P) Primales Problem
Standard-Maximierungsproblem,
Nullpunkt zulässig,
mit primalem Simplex lösbar

|   |       | $x_1$  | $x_2$    | RS   |       |           |
|---|-------|--------|----------|------|-------|-----------|
|   | -z    | 3      | 4        | 0    |       |           |
|   | $x_3$ | 3      | 2        | 1200 | $y_1$ | \B\       |
|   | $x_4$ | 5      | 10       | 3000 | $y_2$ | duale NBV |
|   | $x_5$ | 0      | 0,5      | 125  | $y_3$ | enp       |
| • |       | $-y_4$ | $-y_{5}$ |      |       | •         |

(D') Duales Problem Standard-Minimierungsproblem, Nullpunkt nicht zulässig, mit dualem Simplex lösbar

|            | $y_1$ | $y_2$ | $y_3$  | RS            |
|------------|-------|-------|--------|---------------|
| -v'        | -1200 | -3000 | -125   | 0             |
| $y_4$      | -3    | -5    | 0      | -3            |
| $y_5$      | -2    | -10   | (-0,5) | -4            |
| <i>y</i> 5 | -2    | -10   | -0,5   | <del>-4</del> |





#### (P) Endtableau

| • •   |        |        |       | _     |
|-------|--------|--------|-------|-------|
|       | $x_4$  | $x_3$  | RS    |       |
| -z    | -3/10  | -1/2   | -1500 |       |
| $x_5$ | -3/40  | 1/8    | 50    | $y_3$ |
| $x_1$ | -1/10  | 1/2    | 300   | $y_4$ |
| $x_2$ | 3/20   | -1/4   | 150   | $y_5$ |
|       | $-y_2$ | $-y_1$ |       |       |
|       |        |        |       |       |

#### (D') Endtableau

|       | $y_3$  | ${\cal Y}_4$ | ${\cal Y}_5$ | RS   |
|-------|--------|--------------|--------------|------|
| -v'   | -50    | -300         | -150         | 1500 |
| $y_2$ | 3/40   | 1/10         | -3/20        | 3/10 |
| $y_1$ | -1/8   | -1/2         | 1/4          | 1/2  |
|       | $-x_5$ | $-x_1$       | $-x_2$       |      |

$$x_1 = 300, x_2 = 150, z = 1500$$

$$y_1 = \frac{1}{2}, y_2 = \frac{3}{10}, y_3 = 0, v' = -1500$$
  
 $\Rightarrow v = 1500$ 

Austauschschritte für das primale und duale Problem lassen sich in einem Tableau durchführen





duale NBV

#### **Dualität**

#### Es gilt (schwache Dualität):

x sei zulässige Lösung von (P)

y sei zulässige Lösung von (D)

$$\left\{ c^T x \le b^T y \right\}$$

#### Satz (Dualität):

Sind  $x^*$  zulässige Lösung von (P)

und  $y^*$  zulässige Lösung von (D) und gilt:

$$c^T x^* = b^* y^* \Rightarrow x^* \text{ und } y^* \text{ sind } \mathbf{optimal}$$

#### Satz (Umkehrung):

Sind  $x^*$  und  $y^*$  optimale Lösungen von (P) bzw. (D), so gilt:

$$c^T x^* = b^T y^*$$



#### **Dualitätstheorie**

Dualitätsaussagen dienen vor allem:

- Zur Konstruktion alternativer Algorithmen für LP-Modelle
  - Abschätzung des optimalen ZFW durch ZFW des Duals
  - Duale und primale Austauschschritte in einem Tableau
- Zur Verringerung des Lösungsaufwandes
  - Simplex Operationen steigen linear mit der Anzahl Variablen
  - Steigen quadratisch mit der Anzahl der Nebenbedingungen
- Zur Interpretation von LP-Modellen und optimalen Endtableaus
  - Widersprüche im Modell können erkannt werden
  - ZF Koeffizienten und rechte Seite in Beziehung setzen





### Zusammenfassung

- Dualer Simplex-Algorithmus
  - Um Startlösung für primalen Simplex-Algorithmus zu bestimmen
- Schritte im Simplex-Algorithmus
  - Primal: Zeilentransformation
  - Dual: Spaltentransformation
- Restriktionsparameter des primalen sind Zielfunktionskoeffizienten des dualen Programms
- Restriktionsparameter des dualen sind Zielfunktionskoeffizienten des primalen Programms
- Zeileneinträge des primalen entsprechen Spalteneinträgen des dualen Programms und umgekehrt
- Sensitivitätsanalyse im primalen Simplex:
  - Restriktionsparameter: Durchsuchen der Spalte
  - Zielfunktionskoeffizient: Durchsuchen der Zeile



