

datasheet

PRODUCT SPECIFICATION

1/2.7" color CMOS 1080p/720p HD image sensor with OmniPixel3-HS™ technology

Copyright © 2014 OmniVision Technologies, Inc. All rights reserved.

This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

OmniVision Technologies, Inc. and all its affiliates disclaim all liability, including liability for infringement of any proprietary rights, relating to the use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

The information contained in this document is considered proprietary to OmniVision Technologies, Inc. and all its affiliates. This information may be distributed to individuals or organizations authorized by OmniVision Technologies, Inc. to receive said information. Individuals and/or organizations are not allowed to re-distribute said information.

Trademark Information

OmniVision and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. OmniPixel3-HS is a trademark of OmniVision Technologies, Inc.

All other trademarks used herein are the property of their respective owners.

color CMOS 1080p/720p HD image sensor with OmniPixel3-HS™ technology

datasheet (CSP3)
PRODUCT SPECIFICATION

version 2.01 october 2014

To learn more about OmniVision Technologies, visit www.ovt.com.

OmniVision Technologies is publicly traded on NASDAQ under the symbol OVTI.

applications

- notebook computers
- high-end video conferencing
- security

ordering informatior

 OV02710-A68A-1E (color, lead-free) 68-pin CSP3

features

- programmable controls: gain, exposure, frame rate, image size, horizontal mirror, vertical flip, cropping, windowing, and panning
- automatic image control functions: automatic exposure (AEC), automatic gain control (AGC), automatic white balance (AWB) and automatic black level calibration (ABLC)
- serial camera control bus (SCCB)
- lens correction (LENC)
- defect pixel correction (DPC)
- digital video port (DVP) parallel output interface

- integrated auto focus filter
- support for digital video port (DVP)
- support for one lane MIPI interface (up to 800 Mbps)
- support for output formats: 8-/10-bit RAW RGB
- support for image sizes: 1080p @ 30 fps, cropped 720p @ 60 fps, and VGA @ 60 fps
- support for black sun cancellation
- embedded one-time programmable (OTP) memory
- on-chip phase lock loop (PLL)
- built-in 1.5V regulator for core

key specifications (typical)

active array size: 1920x1080

power supply:

analog: 3.0~3.6V (3.3V typical) core: 1.425~1.575V (1.5V typical) I/O: 1.7~3.6V (1.8V typical)

power requirements:

active: 350 mW power down: 70 µA

temperature range:

operating: -30°C to 85°C junction temperature (see table 8-2) stable image: 0°C to 65°C junction temperature

(see table 8-2)

output interfaces: 10-bit parallel / one-lane MIPI

output formats: RAW RGB (10-bit)

lens size: 1/2.7"

lens chief ray angle: 23.6° (see figure 10-2)

■ input clock frequency: 6 ~ 27 MHz

scan mode: progressive

maximum image transfer rate:

1080p: 30 fps cropped 720p: 60 fps VGA: 120 fps QVGA: 240 fps

sensitivity: 3700 mV/Lux-sec

shutter: rollingmax S/N ratio: 40 dB

■ dynamic range: 69 dB @ 8x gain

maximum exposure interval: 1096 tline

■ pixel size: 3 μm x 3 μm

■ dark current: 20 mV/s @ 60°C junction temperature

image area: 5856 μm x 3276 μm

package dimensions: 7465 μm x 5865 μm

note COB refers to whole wafers with known good die and RW refers to singulated good die on a reconstructed wafer. Die size differs between COB and RW.

table of contents

1	signal descriptions	1-1
2	system level description	2-1
	2.1 overview	2-1
	2.2 architecture	2-1
	2.3 format and frame rate	2-6
	2.4 I/O control	2-6
	2.5 SCCB interface	2-8
	2.6 MIPI interface	2-10
	2.7 external components	2-10
	2.8 power up sequence	2-10
	2.8.1 power up with internal DVDD	2-10
	2.8.2 power up with external DVDD source	2-11
	2.9 power management	2-12
	2.10 power ON reset generation	2-12
	2.11 system clock control	2-12
3	block level description	3-1
	3.1 pixel array structure	3-1
	3.2 subsampling	3-2
4	image sensor core digital functions	4-1
	4.1 mirror and flip	4-1
	4.2 image windowing	4-2
	4.3 test pattern	4-3
	4.4 AEC/AGC algorithm	4-3
	4.4.1 AEC algorithm	4-4
	4.5 AEC/AGC steps	4-6
	4.5.1 auto exposure control (AEC)	4-6
	4.5.2 manual exposure control	4-7
	4.5.3 auto gain control (AGC)	4-7
	4.5.4 manual gain control	4-7
_	4.6 black level calibration (BLC)	4-8
5	image sensor processor digital functions	5-1
	5.1 system control	5-1

6 image sensor output interface digital functions	6-1
6.1 digital video port (DVP)	6-1
6.1.1 DVP timing	6-2
6.2 mobile industry processor interface (MIPI)	6-2
7 register tables	7-1
7.1 system control [0x3008 - 0x301E, 0x3025, 0x302C, 0x3040 - 0x3042]	7-1
7.2 SCCB control [0x3100, 0x3103 - 0x3104]	7-4
7.3 group sharing [0x3200 - 0x3203, 0x3212]	7-4
7.4 analog control [0x3621, 0x370D]	7-5
7.5 timing control [0x3800 - 0x3810, 0x3814 - 0x3815, 0x3818]	7-5
7.6 AEC/AGC [0x3500 - 0x3503, 0x3505 - 0x350D, 0x3A00 - 0x3A30]	7-7
7.7 OTP control [0x3D00 - 0x3D10]	7-10
7.8 BLC [0x4000 - 0x401D]	7-12
7.9 FC control [0x4201 - 0x4202]	7-13
7.10 DVP control [0x4700 - 0x4709]	7-13
7.11 MIPI control [0x4800 - 0x4805, 0x4810 - 0x4815, 0x4818 - 0x4832]	7-15
7.12 ISP control [0x5000 - 0x503F]	7-19
7.13 AWB control [0x3400 - 0x3406, 0x5180 - 0x51BD]	7-20
7.14 AVG control [0x5680 - 0x5691]	7-23
7.15 DPC [0x5780 ~ 0x578C, 0x5790 ~ 0x5797]	7-24
7.16 LENC [0x5800 ~ 0x581C]	7-26
7.17 AFC [0x6000 - 0x603C]	7-28
8 operating specifications	8-1
8.1 absolute maximum ratings	8-1
8.2 functional temperature	8-1
8.3 DC characteristics	8-2
8.4 AC characteristics	8-3
9 mechanical specifications	9-1
9.1 physical specifications	9-1
9.2 IR reflow specifications	9-2
10 optical specifications	10-1
10.1 sensor array center	10-1
10.2 lens chief ray angle (CRA)	10-2

list of figures

figure 1-1	pin diagram	1-3
figure 2-1	OV2710 block diagram	2-2
figure 2-2	reference design schematic	2-3
figure 2-3	CSP3 flex module schematic	2-4
figure 2-4	CSP3 flex with MIPI schematic	2-5
figure 2-5	power up timing with internal DVDD	2-10
figure 2-6	power up timing with external DVDD source	2-11
figure 3-1	sensor array region color filter layout	3-1
figure 3-2	example of 2x2 binning	3-2
figure 4-1	mirror and flip samples	4-1
figure 4-2	image windowing	4-2
figure 4-3	test pattern	4-3
figure 4-4	desired convergence	4-5
figure 6-1	DVP timing diagram	6-2
figure 9-1	package specifications	9-1
figure 9-2	IR reflow ramp rate requirements	9-2
figure 10-1	sensor array center	10-1
figure 10-2	chief ray angle (CRA)	10-2
Coli	Develop	

list of tables

table 1-1 signal descriptions	1-1
table 2-1 formats and frame rates	2-6
table 2-2 driving capability and direction control for I/O pads	2-6
table 2-3 group sharing registers	2-8
table 2-4 group write register	2-8
table 3-1 binning-related registers	3-2
table 4-1 mirror and flip registers	4-1
table 4-2 image cropping control functions	4-2
table 4-3 test pattern selection control	4-3
table 4-4 AEC/AGC control functions	4-4
table 4-5 AEC algorithm functions	4-5
table 4-6 BLC control functions	4-8
table 5-1 system control registers	5-1
table 6-1 DVP control registers	6-1
table 6-2 DVP timing specifications	6-2
table 7-1 system control registers	7-1
table 7-2 SCCB control registers	7-4
table 7-3 group sharing registers	7-4
table 7-4 analog registers	7-5
table 7-5 timing control registers	7-5
table 7-6 AEC/AGC registers	7-7
table 7-7 OTP memory structure	7-10
table 7-8 OTP registers	7-10
table 7-9 BLC registers	7-12
table 7-10 FC control registers	7-13
table 7-11 DVP registers	7-13
table 7-12 MIPI registers	7-15
table 7-13 ISP control registers	7-19
table 7-14 AWB control registers	7-20
table 7-15 AVG registers	7-23
table 7-16 DPC registers	7-24
table 7-17 LENC registers	7-26

table 7-18 AFC registers	7-28
table 8-1 absolute maximum ratings	8-1
table 8-2 functional temperature	8-1
table 8-3 DC characteristics (-30°C < TJ < 85°C)	8-2
table 8-4 AC characteristics (TA = 25°C, VDD-A = 3.3V)	8-3
table 8-5 timing characteristics	8-3
table 9-1 package dimensions	9-1
table 9-2 reflow conditions	9-2
table 10-1 CRA versus image height plot	10-2

Contraction of the contraction o

1 signal descriptions

table 1-1 lists the signal descriptions and their corresponding pin numbers for the OV2710 image sensor. The package information is shown in **section 9**.

table 1-1 signal descriptions (sheet 1 of 3)

pin number	pin per signal name type		description			
A1	NC	_	no connect			
A2	NC	_	no connect			
A3	NC	_	no connect			
A4	NC	_	no connect			
A5	SVDD	power	power for sensor circuit			
A6	SGND	ground	ground for sensor circuit			
A7	SVDD	power	power for sensor circuit			
A8	RESETB	input	reset (active low with internal pull up resistor)			
A9	DOGND	ground	ground for I/O circuit			
A10	VHT	reference	internal analog reference			
A11	VN	reference	internal analog reference			
B1	AVDD	power	power for analog circuit			
B2	NC	2/-	no connect			
B3	NC	_	no connect			
B4	NC	_	no connect			
B5	NC	_	no connect			
B6	SGND	ground	ground for sensor circuit			
B7	TM ^a	input	test mode (active high with internal pull down resistor)			
B8	PWDN	input	power down (active high with internal pull down resistor)			
B9	DOVDD	power	power for I/O circuit			
B10	VH	reference	internal analog reference			
B11	AVDD	power	power for analog circuit			
C1	AGND	ground	ground for analog circuit			
C2	NC	-	no connect			
C10	NC	-	no connect			
C11	AGND	ground	ground for analog circuit			

table 1-1 signal descriptions (sheet 2 of 3)

		6 at a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1		/
	pin number	signal name	pin type	description
	D1	AVDD	power	power for analog circuit
	D2	NC	_	no connect
	D10	NC	_	no connect
	D11	AGND	ground	ground for analog circuit
	E1	NC	-	no connect
	E2	NC	(-())	no connect
	E10	NC		no connect
	E11	AVDD	power	power for analog circuit
	F1	NC	_	no connect
	F2	NC	_	no connect
	F10	NC	_	no connect
	F11	NC	_	no connect
	G1	DGND	ground	ground for digital circuit
	G2	XVCLK	input	system input clock
	G3	NC	_	no connect
	G4	EVDD	power	power for MIPI
	G5	D3	I/O	DVP data output 3
	G6	DOVDD	power	power for I/O circuit
	G7	NC	_	no connect
() 0	G8	NC	_	no connect
COV	G9	SIOC	input	SCCB input clock
CX	G10	DGND	ground	ground for digital circuit
	G11	NC	_	no connect
	H1	PVDD	power	power for PLL circuit
	H2	VSYNC	I/O	DVP VSYNC output / MIPI TX clock lane positive output
	H3	HREF	I/O	DVP HREF output / MIPI TX clock lane negative output
	H4	D9	I/O	DVP data output 9 (MSB) / MIPI TX data lane positive output
	H5	D7	I/O	DVP data output 7 / MIPI TX data lane negative output
	H6	DOVDD	power	power for I/O circuit
	H7	DOGND	ground	ground for I/O circuit

table 1-1 signal descriptions (sheet 3 of 3)

pin number	signal name	pin type	description	
H8	D2	I/O	DVP data output 2 (LSB for 8-bit mode)	
H9	D6	I/O	DVP data output 6	
H10	SIOD	I/O	SCCB data	
H11	DVDD	power	power for digital circuit	
I1	PVDD	power	power for PLL circuit	
13	EGND	ground	ground for MIPI	
15	D5	I/O	DVP data output 5	
16	D1	I/O	DVP data output 1	
17	PCLK	I/O	DVP PCLK output	
18	D0	I/O	DVP data output 0 (LSB for 10-bit mode)	
19	D4	I/O	DVP data output 4	
I10	D8	I/O	DVP data output 8	

a. should be connected to DOGND

figure 1-1 pin diagram

Omni Ision.

2 system level description

2.1 overview

The OV2710 color image sensor is a low voltage, high performance 1/2.7-inch full size HD CMOS image sensor that provides the full functionality of a single 1080p (1920x1080) camera using OmniPixel3-HS™ technology in a small footprint package. It provides full-frame, sub-sampled and windowed 10-bit images in various formats via the control of the Serial Camera Control Bus (SCCB) interface or MIPI interface.

The OV2710 has an image array capable of operating at up to 30 frames per second (fps) in 1080p resolution with complete user control over image quality, formatting and output data transfer. All required image processing functions, including exposure control, white balance, defective pixel canceling, lens shading correction etc., are programmable through the SCCB interface. In addition, OmniVision image sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, etc., to produce a clean, fully stable, color image.

For customized information purposes, the OV2710 includes a one-time programmable (OTP) memory.

The OV2710 has a single lane MIPI interface and a parallel digital video port (DVP).

2.2 architecture

The OV2710 sensor core generates stream pixel data at a constant frame rate, indicated by HREF, VSYNC, and PCLK. figure 2-1 shows the functional block diagram of the OV2710 image sensor.

The timing generator outputs clocks to access the rows of the imaging array, precharging and sampling the rows of the array sequentially. In the time between precharging and sampling a row, the charge in the pixels decrease with exposure to incident light. This is the exposure time in rolling shutter architecture.

The exposure time is controlled by adjusting the time interval between precharging and sampling. After the data of the pixels in the row has been sampled, it is processed through analog circuitry to correct the offset and multiply the data with corresponding gain. Following analog processing is the ADC which outputs 10-bit data for each pixel in the array.

figure 2-1 OV2710 block diagram

figure 2-2 reference design schematic

figure 2-3 CSP3 flex module schematic

note 8 capacitors should be close to their related sensor pins.

 $\textbf{note 9} \ \ \text{if more space available, use capacitor of } 1 \mu \text{F-}0402 \, \text{for C5 between DVDD and DGND}.$

note 10 D[9:0] (D9:MSB, D0:LSB) is sensor RGB RAW 10-bit output. D[9:2] (D9:MSB, D2:LSB) is RGB RAW 8-bit output.

2710_CSP3_DS_2_3

figure 2-4 CSP3 flex with MIPI schematic

2710_CSP3_DS_2_4

 $\begin{tabular}{ll} \textbf{note 12} & traces of D9_MDP_D7_MDN_VSYNC_MCP and HREF_MCN should have the same or similar length, impedance transmission lines should be controlled at 100 0 hm. \\ \end{tabular}$

2.3 format and frame rate

The OV2710 supports RAW RGB output with 10-bit DVP and 1-lane MIPI interface.

table 2-1 formats and frame rates

format	resolution	frame rate	methodology	DVP pixel clock	1-lane MIPI total bit rate
1080p	1920 x 1080	30 fps	full	80 MHz	800Mbps
720p	1280 x 720	60 fps	cropping	80 MHz	800Mbps
VGA	640 x 480	120 fps	subsampling and cropping	80 MHz	800Mbps
VGA	640 x 480	60 fps	subsampling, binning and cropping	80 MHz	800Mbps
QVGA	320 x 240	240 fps	subsampling and cropping	80 MHz	800Mbps
QVGA	320 x 240	60 fps	subsampling, binning and cropping	80 MHz	800Mbps

2.4 I/O control

The OV2710 I/O pad direction and driving capability can be easily adjusted. table 2-2 lists the driving capability and direction control registers of the I/O pads.

table 2-2 driving capability and direction control for I/O pads (sheet $1\ {\rm of}\ 2$)

output drive capability control 0x302C RW D[9:0] I/O control 0x3017[3:0], 0x3018[7:2] RW D[9:0] output select 0x301D[3:0], 0x301E[7:2] RW	ption
D[9:0] I/O control	7:6]: Output drive capability 00: 1x 01: 2x 10: 3x 11: 4x
D[9:0] output select 0x301D[3:0], RW D[9:0] output value 0x301A[3:0], RW D[9:0]	utput selection for the D[9:0] pins 0: input 1: output
DIG.OI OUTDUT VAIDE	selection for the D[9:0] pins 0: normal data path 1: register-controlled value
	output value
D[9:0] input value 0x3041[3:0], R D[9:0]	input value

driving capability and direction control for I/O pads (sheet 2 of 2) table 2-2

function	register	R/W	description
VSYNC I/O control	0x3017	RW	Bit[6]: input/output selection for the VSYNC pin 0: input 1: output
VSYNC output select	0x301D	RW	Bit[6]: output selection for the VSYNC pin 0: normal data path 1: register-controlled value
VSYNC output value	0x301A	RW	Bit[6]: VSYNC output value
VSYNC input value	0x3041	R	Bit[6]: VSYNC input value
HREF I/O control	0x3017	RW	Bit[6]: input/output selection for the HREF pin 0: input 1: output
HREF output select	0x301D	RW	Bit[5]: output selection for the HREF pin 0: normal data path 1: register-controlled value
HREF output value	0x301A	RW	Bit[5]: HREF output value
HREF input value	0x3041	R	Bit[5]: HREF input value
PCLK I/O control	0x3017	RW	Bit[4]: input/output selection for the PCLK pin 0: input 1: output
PCLK output select	0x301D	RW	Bit[4]: output selection for the PCLK pin 0: normal data path 1: register-controlled value
PCLK output value	0x301A	RW	Bit[4]: PCLK output value
PCLK input value	0x3041	R	Bit[4]: PCLK input value

2.5 SCCB interface

The Serial Camera Control Bus (SCCB) interface controls the image sensor operation. Refer to the OmniVision Technologies Serial Camera Control Bus (SCCB) Specification for detailed usage of the serial control port.

Group write is supported in order to update a group of registers in the same frame. These registers are guaranteed to be written prior to the internal latch at the frame boundary.

The OV2710 supports up to four groups. These groups share 1 KB buffer and the size of each group is programmable by adjusting the start address.

table 2-3 group sharing registers

address	register name	default value	R/W	description
0x3200	GROUP ADDR0	0x40	RW	Start Address for Group0 {group_addr0[7:0], 4'h0}
0x3201	GROUP ADDR1	0x4A	RW	Start Address for Group1 {group_addr1[7:0], 4'h0}
0x3202	GROUP ADDR2	0x54	RW	Start Address for Group2 {group_addr2[7:0], 4'h0}
0x3203	GROUP ADDR3	0x5E	RW	Start Address for Group3 {group_addr3[7:0], 4'h0}

The group write function is controlled by register **0x3212**.

group write register

~ O)	table 2-4	group write register			
000	address	register name	default value	R/W	description
SE	0x3212	GROUP ACCESS	0x00	RW	Bit[7]: group_launch_en Bit[6]: Debug mode (must be 0) Bit[5]: group_launch Bit[4]: group_hold_end Bit[3:0]: group_id 00~11: ID of the group to hold register

The SCCB will enter group write mode after writing to register 0x3212 with a valid group ID. The subsequent registers will be held to the buffer specified by the group_id instead of writing to the registers. Make sure the number of registers does not exceed the capacity of the group. Setting group_hold_end to 1 will exit the group write mode. After that, both group_launch and group_launch_en should be set to 1 in order to write the buffered values to the real registers. Multiple

groups of registers can be prepared before writing to the real registers but be sure the correct group_id is specified when the group write is launched.

The following is an example demonstrating the group write operation:

```
78 3212 00
              Enable group0
              Write registers to be held in group0
78 3600 00
78 3601 01
              End group0
78 3212 10
              Enable group1
78 3212 01
              Write registers to be held in group1
78 3602 02
78 3603 03
78 3212 11
              End group1
              Other direct register access
. . . . . . . . . . .
78 3212 02
              Enable group2
              Write registers to be held in group2
78 3604 04
78 3605 05
78 3212 12
              End group2
78 3212 A0
              Launch group0
              Other direct register access
              Enable group3
78 3212 03
78 3606 06
              Write registers to be held in group3
78 3607 07
78 3212 13
              End group3
78 3212 A1
              Launch group1
  3212 A2
              Launch group2
78 3212 A3
              Launch group3
```


2.6 MIPI interface

The OV2710 supports a single lane MIPI transmitter interface with maximum data transfer rate of 800Mbps.

2.7 external components

Image sensor analog power is provided from a 3.3V (typical) power circuit coming from the system. An internal regulator provides 1.5V for core logic with I/O power (DOVDD). I/O pad power supports 1.7 to 3.6V.

2.8 power up sequence

Based on the system power configuration, the power up sequence will differ.

2.8.1 power up with internal DVDD

When powering up with the internal DVDD and SCCB access during the power ON period, the following conditions must occur:

- 1. when DOVDD and AVDD are turned ON, make sure DOVDD becomes stable before AVDD becomes stable
- 2. PWDN is active high with an asynchronized design (does not need clock)
- 3. PWDN must go high during the power up period
- 4. for PWDN to go low, power must first become stable (AVDD to PWDN ≥ 5 ms)
- 5. RESETB is active low with an asynchronized design
- 6. state of RESETB does not matter during power up period once DOVDD is stable
- 7. master clock XVCLK should be provided at least 1 ms before the host accesses the sensor's registers
- host can access SCCB bus (if shared) during entire period. 20 ms after PWDN goes low or 20 ms after RESETB goes high if reset is inserted after PWDN goes low, the host can access the sensor's registers to initialize the sensor

figure 2-5 power up timing with internal DVDD

DOVDD first, then AVDD, and rising time is less than 5 ms

note $T0 \ge 0$ ms: delay from DOVDD stable to AVDD stable $T2 \ge 5$ ms: delay from AVDD stable to sensor power up stable

2710_DS_2_5

2.8.2 power up with external DVDD source

When powering up with an external DVDD source and SCCB access during the power ON period, the following conditions must occur:

- 1. when DOVDD and AVDD are turned ON, make sure DOVDD becomes stable before AVDD becomes stable
- 2. when AVDD and DVDD are turned ON, make sure AVDD becomes stable before DVDD becomes stable
- 3. PWDN is active high with an asynchronized design (does not need clock)
- 4. for PWDN to go low, power must first become stable (DVDD to PWDN ≥ 5 ms)
- 5. all power supplies are cut off when the camera is not in use (power down mode is not recommended
- 6. RESETB is active low with an asynchronized design
- 7. state of RESETB does not matter during power up period once DOVDD is stable
- 8. master clock XVCLK should be provided at least 1 ms before the host accesses the sensor's registers
- host can access SCCB bus (if shared) during entire period. 20 ms after PWDN goes low or 20 ms after RESETB goes high if reset is inserted after PWDN goes high, the host can access the sensor's registers to initialize the sensor

figure 2-6 power up timing with external DVDD source

DOVDD first, then AVDD, followed by DVDD, and rising time is less than 5 ms

note $T0 \ge 0$ ms: delay from DOVDD stable to AVDD stable $T1 \ge 0$ ms: delay from AVDD stable to DVDD stable

T2≥5 ms: delay from DVDD stable to sensor power up stable

2710_DS_2_6

2.9 power management

Only system control functions are always powered ON. Sensor and ISP functions are cut off during power down mode. Also, during the power on stage of the whole chip, these functions will power up after system control functions power up.

During power down, all registers keep their values.

In power down mode, the clock input, to internal blocks are turned off even when the external clock source is still clocking.

2.10 power ON reset generation

The power on reset can be controlled by an external pin. The OV2710 power ON reset after generation core power becomes stable.

2.11 system clock control

The OV2710 has an on-chip PLL which generates the system clock with a 6~27 MHz input clock. A programmable clock divider is provided to generate different frequencies for the system.

3 block level description

3.1 pixel array structure

The OV2710 sensor has an image array of 1952 columns by 1092 rows (2,131,584 pixels). **figure 3-1** shows a cross-section of the image sensor array.

The color filters are arranged in a Bayer pattern. The primary color BG/GR array is arranged in line-alternating fashion. Of the 2,131,584 pixels, 2,073,600 (1920x1080) are active pixels and can be output. The other pixels are used for black level calibration.

The sensor array design is based on a read-out system with line-by-line transfer and an electronic shutter with a synchronous pixel read-out scheme.

figure 3-1 sensor array region color filter layout

3.2 subsampling

There are two subsampling modes in the OV2710: binning and skipping. Both are acceptable methods of reducing output resolution while maintaining the field of view. Binning is usually preferred as it increases the pixel's signal-to-noise ratio. When the binning function is ON, voltage levels of adjacent pixels are averaged. In skipping mode (binning function is OFF), alternate pixels, which are not output, are merely skipped. The OV2710 supports 2x2 binning. **figure 3-2** illustrates 2x2 binning, where the voltage levels of two horizontal (2x1) adjacent same-color pixels are averaged before entering the ADC. See **table 3-1** for horizontal and vertical binning registers.

figure 3-2 example of 2x2 binning

table 3-1 binning-related registers

	address	register name	default value	R/W	description
)	0x370D	SENSOR REG0D	0x0C	RW	Bit[6]: Vertical binning
_	0x3621	ANA ARRAY 01	0x10	RW	Array Control Bit[7]: Horizontal binning Bit[6]: Horizontal skip

4 image sensor core digital functions

4.1 mirror and flip

The OV2710 provides mirror and flip readout modes, which respectively reverse the sensor data readout order horizontally and vertically (see **figure 4-1**). In flip, the OV2710 does not need additional settings because the ISP block will auto-detect whether the pixel is in the red line or blue line and make the necessary adjustments.

figure 4-1 mirror and flip samples

2710 DS 4 1

table 4-1 mirror and flip registers

address	register name	default value	R/W	description
0x3818	TIMING CONTROL 18	0x80	RW	Bit[6]: Horizontal mirror Bit[5]: Vertical flip
Cott	Dene			

4.2 image windowing

An image windowing area is defined by four parameters, horizontal start (HS), horizontal width (HW), vertical start (VS), and vertical height (VH). By properly setting the parameters, any portion within the sensor array size can output as a visible area. Windowing is achieved by masking off the pixels outside of the window; thus, the original timing is not affected.

figure 4-2 image windowing

image cropping control functions

Colos	table 4-2 image croppi	ing control functions	sensor array size 2710 DS 4 2
-40	function	register	description
S ^v	horizontal start	{0x3800, 0x3801}	HS[11:8] = 0x3800 HS[7:0] = 0x3801
	vertical start ^a	{0x3802, 0x3803}	VS[11:8] = 0x3802 VS[7:0] = 0x3803
	horizontal width	{0x3804, 0x3805}	HW[11:8] = 0x3804 HW[7:0] = 0x3805
	vertical height	{0x3806, 0x3807}	VH[11:8] = 0x3806 VH[7:0] = 0x3807

a. VS can only be an even number

4.3 test pattern

For testing purposes, the OV2710 offers one type of test pattern, color bar.

figure 4-3 test pattern

table 4-3 test pattern selection control

function	register	description
color bar	0x503D	Bit[7]: Color bar enable 0: Color bar OFF 1: Color bar enable
-(1)	0x503D	Bit[5:4]: Color bar pattern select 10: Color bar pattern

4.4 AEC/AGC algorithm

The auto exposure control (AEC) and auto gain control (AGC) allows the image sensor to adjust the image brightness to a desired range by setting the proper exposure time and gain applied to the image. Besides automatic control, exposure time and gain can be set manually from external control. The related registers are listed in table 4-4

table 4-4 AEC/AGC control functions

address	register name	default value	R/W	description
0x3500	AEC EXPO	0x00	RW	AEC Exposure Bit[7:4]: Not used Bit[3:0]: Exposure[19:16]
0x3501	AEC EXPO	0x00	RW	AEC Exposure Bit[7:0]: Exposure[15:8]
0x3502	AEC EXPO	0x00	RW	AEC Exposure Bit[7:0]: Exposure[7:0]
0x3503	AEC MANUAL	0x00	RW	AEC Manual Mode Control Bit[7:2]: Not used Bit[1]: AGC manual enable 0: Auto enable 1: Manual enable Bit[0]: AEC manual enable 0: Auto enable 1: Manual enable
0x350A	AEC AGC ADJ	0x00	RW	Gain Output to Sensor Bit[0]: Gain high bit Gain = (0x350A[0]+1) × (0x350B[7]+1) × (0x350B[6]+1) × (0x350B[5]+1) × (0x350B[4]+1) × (0x350B[3:0]/16+1)
0x350B	AEC AGC ADJ	0x00	RW	Gain Output to Sensor Bit[7:0]: Gain low bits Gain = (0x350A[0]+1) × (0x350B[7]+1) × (0x350B[6]+1) × (0x350B[5]+1) × (0x350B[4]+1) × (0x350B[3:0]/16+1)

The AEC controls image luminance using registers AEC CONTROL 0F (0x3A0F), AEC CONTROL 10 (0x3A10), AEC CONTROL 1B (0x3A1B), and AEC CONTROL 1E (0x3A1E). The value of register AEC CONTROL 0F (0x3A0F) indicates the high threshold value, and the value of register AEC CONTROL 10 (0x3A10) indicates the low threshold value. The value of register AEC CONTROL 1B (0x3A1B) indicates the high threshold value for image change from stable state to unstable state and the value of register AEC CONTROL 1E (0x3A1E) indicates the low threshold value for image change from stable state to unstable state. When the target image luminance average value AVERAGE CTRL10 (0x568A) is within the range specified by registers AEC CONTROL 1B (0x3A1B) and AEC CONTROL 1E (0x3A1E), the AEC keeps the image exposure and gain. When register AEC CONTROL 10 (0x568A) is greater than the value in register AEC CONTROL 1B (0x3A1B), the AEC will decrease the image exposure and gain until it falls into the range of {0x3A10, 0x3A0F}. When register AEC CONTROL 10 (0x568A) is less than the value in register AEC CONTROL 1E (0x3A1E), the AEC will increase the image exposure and gain until it falls into the range of {0x3A10, 0x3A1F}. Accordingly, the value in register AEC CONTROL 0F (0x3A0F) should be greater than the value in register

AEC CONTROL 10 (0x3A10). The gap between the values of registers **AEC CONTROL 1B** (0x3A1B) and **AEC CONTROL 1E** (0x3A1E) controls the image stability.

As shown in **figure 4-4**, the AEC/AGC convergence uses two regions, the inner stable operating region and the outer control zone, which defines the convergence step size of fast and slow conditions.

figure 4-4 desired convergence

2710_DS_4_4

As for auto mode, the AEC will automatically calculate the steps needed based on the difference between target and current values. So, the outer control zone is meaningless for this mode.

table 4-5 AEC algorithm functions

		70		
address	register name	default value	R/W	description
0x3A0F	AEC CONTROL 0F	0x78	RW	Stable Range High Limit (enter) Bit[7:0]: Upper limit of unstable to stable range
0x3A10	AEC CONTROL 10	0x68	RW	Stable Range Low Limit (enter) Bit[7:0]: Lower limit of unstable to stable range
0x3A1B	AEC CONTROL 1B	0x78	RW	Stable Range High Limit (go out) Bit[7:0]: Upper limit of stable to unstable range
0x3A1E	AEC CONTROL 1E	0x68	RW	Stable Range Low Limit (go out) Bit[7:0]: Lower limit of stable to unstable range
0x3A11	AEC CONTROL 11	0xD0	RW	Step Manual Mode - fast zone high limit Bit[7:0]: Upper limit of fast AEC/AGC control zone
0x3A1F	AEC CONTROL 1F	0x40	RW	Step Manual Mode - fast zone low limit Bit[7:0]: Lower limit of fast AEC/AGC control zone

4.5 AEC/AGC steps

The AEC and AGC work together to obtain adequate exposure/gain based on the current environmental illumination. In order to achieve the best SNR, extending the exposure time is always preferred rather than raising the gain when the current illumination is getting brighter. Vice versa, under dark conditions, the action to decrease the gain is always taken prior to shortening the exposure time.

4.5.1 auto exposure control (AEC)

The function of the AEC is to calculate the integration time of the next frame and send the information to the timing control block. Based on the statistics of previous frames, the AEC is able to determine whether the integration time should increase, fast increase, fast decrease, or remain the same.

In extremely bright situations, the LAEC activates, allowing integration time to be less than one row. In extremely dark situations, the night mode activates, allowing integration time to be larger than one frame.

To avoid image flickering under a periodic light source, the integration time can be adjusted in steps of integer multiples of the period of the light source. This AEC step system is called the banding filter, suggesting that the exposure time is not continuous but falls in some steps.

4.5.1.1 LAEC

If the integration time is only one row period but the image is too bright, AEC will enter LAEC mode. Within LAEC, the integration time can be further decreased to the minimal of 1/16 row. LAEC ON/OFF can be set in register bit 0x3A00[6].

4.5.1.2 banding mode ON with AEC

In Banding ON mode, the exposure time will fall in steps of integer multiples of the period of light intensity. This design is to reject image flickering when the light source is not steady but periodical.

For a given light flickering frequency, the band step can be expressed in units of row period.

Band Step = 'period of light intensity' × 'frame rate' × 'rows per frame'.

The band steps for 50Hz and 60Hz light sources can be set in registers $\{0x3A08[1:0], 0x3A09[7:0]\}$ and $\{0x3A0A[1:0], 0x3A0B[7:0]\}$, respectively.

4.5.1.3 banding mode OFF with AEC

When banding mode is OFF, integration time increases/decreases as normal. It is not necessarily multiples of band steps.

4.5.1.4 night mode

The OV2710 supports long integration time such as 1 frame, 2 frames, 3 frames, 4 frames, 5 frames, 6 frames, 7 frames, and 8 frames in dark conditions. This is achieved by slowing down the original frame rate and waiting for exposure. Night mode ceiling can be set in register bits {0x3A02[3:0], 0x3A03[7:0], 0x3A04[7:0]} and {0x3A14[3:0], 0x3A15[7:0], 0x3A16[7:0]} for 60Hz and 50Hz, respectively. When banding is OFF, the ceiling is still set by these registers depending on register bits 0x3C01[7] and 0x3C00[2]. Night mode can be disabled by setting register bit 0x3A00[2] to 0. Also, when in night mode, the increase and decrease step can be based on band or frames, depending on register 0x3A05[6]. The minimal increase/decrease step can be one band. The step can be based both on bands and frames.

J, C, 0°

4.5.2 manual exposure control

To manually change exposure value, you must first set both 0x3503[0] and 0x3503[2], where 0x3503[0] enables manual exposure control and 0x3503[2] enables manual frame length - the number of lines in each frame or maximum exposure time, which is defined by registers 0x350C and 0x350D. In auto exposure mode, the maximum exposure values in registers 0x350C/0x350D automatically change. In manual exposure mode, these registers will not automatically change. The manually set exposure in registers 0x3500~0x03502 must be less than the maximum exposure value in 0x350C/0x350D. The exposure value in registers 0x3500~0x3502 is in units of line period/16, the low 4 bits (0x3502[3:0]) is the fraction of line in 1/16 steps, and the maximum value in 0x350C/0x350D is in units of lines. If the manually set exposure value is less than one pre-defined frame period (e.g., 1/15 second in 15fps), there is no need to change 0x350C/0x350D. If the exposure value needs to be set beyond the pre-defined frame period; in another words, if the frame period needs to be extended to extend exposure time, then the maximum frame value in 0x350C/0x350D needs to be set first, then the exposure can be set in registers 0x3500~0x3502 accordingly.

4.5.3 auto gain control (AGC)

Unlike prolonging integration time, increasing gain will amplify both signal and noise. Thus, AGC usually starts after AEC is full. However, in cases where adjacent AEC step changes are too large (>1/16), AGC steps should be inserted in between; otherwise, the integration time will keep switching between two adjacent steps and the image flickers.

4.5.3.1 integration time between 1~16 rows

When integration time is less than 16 rows, the changes between adjacent AEC steps are larger than 1/16, which may possibly make the image oscillate between two AEC levels; thus, some AGC steps are added in between.

4.5.3.2 gain insertion between AEC banding steps

When banding mode is ON, the integration time changes in step of the period of light intensity. For the first 16 band steps, since the exposure time change between adjacent steps is larger than 1/16, AGC steps are inserted to ensure image stability.

4.5.3.3 gain insertion between night mode steps

Between night mode steps (e.g., integration time = 1 frame and 2 frames), AGC steps are inserted to ensure no adjacent step change is larger than 1/16.

4.5.3.4 when AEC reaches maximum

When AEC reaches its maximum while the image is still too dark, the gain starts to increase until the new frame average falls into the stable range or AGC reaches its maximum. The AGC ceiling can be set in {0x3A18[9:8], 0x3A19[7:0]}.

4.5.4 manual gain control

To manually change gain, first set register bit 0x3503[1] to enable manual control, then change the values in 0x350A/0x350B for the manual gain. The OV2710 has a maximum of 16x analog gain and 4x digital gain.

4.6 black level calibration (BLC)

The pixel array contains several optically shielded (black) lines. These lines are used as reference for black level calibration. There are two main functions of the BLC:

- · adjusting all normal pixel values based on the values of the black levels
- applying multiplication to all pixel values based on digital gain

Black level adjustments can be made with registers 0x4000 through 0x401D shown in table 4-6.

table 4-6 BLC control functions

address	register name	default value	R/W	description
0x4000	BLC CTRL00	0x05	RW	Bit[7:1]: Not used Bit[0]: BLC enable 0: Disable 1: Enable
0x4006	BLACK LEVEL TARGET	0x00	RW	Black Level Target Bit[1:0]: I_blacklevel_target[9:8] Black level target
0x4007	BLACK LEVEL TARGET	0x20	RW	Black Level Target Bit[7:0]: _blacklevel_target[7:0] Black level target
0x401D	BLC FRAME CONTROL	0x22	RW	Bit[1]: Format change enable 0: BLC does not change when format changes 1: Do n frames of BLC when image format changes Bit[0]: Not used

image sensor processor digital functions

$5.1\,$ system control

table 5-1 system control registers

address	register name	default value	R/W	description
0x3008	SYSTEM CONTROL00	0x02	RW	System Control Bit[7]: System software reset 0: Normal work mode 1: Software reset mode Bit[6]: System sleep mode 0: Normal work mode 1: Software sleep power down mode Bit[5:1]: Debug only Changing these values are not allowed Bit[0]: Not used
0x300F	PLL1 CTRL00	0x8A	RW	Bit[7:6]: Not used Bit[5:3]: Charge pump control Bit[2]: Not used Bit[1:0]: PLL SELD5 divider 0x: Bypass 10: Divided by 4 when in 8-bit mode 11: Divided by 5 when in 10-bit mode
0x3010	PLL1 CTRL01	0x00	RW	Bit[7:4]: PLL DIVS divider System divider ratio Bit[3:0]: PLL DIVM divider MIPI divider ratio
0x3011	PLL1 CTRL02	0x0A	RW	Bit[7]: PLL bypass Bit[5:0]: PLL DIVP
0x3012	PLL PREDIVIDER	0x00	RW	Bit[2:0]: PLL pre-divider ratio 000: 1 001: 1.5 010: 2 011: 2.5 100: 3 101: 4 110: 6 111: 8

6 image sensor output interface digital functions

6.1 digital video port (DVP)

The digital video port (DVP) provides 10-bit parallel data output in all formats supported and extended features including compression mode, CCIR656 format, HSYNC mode and test pattern output.

table 6-1 DVP control registers

		default		
address	register name	value	R/W	description
0x4732	CCIR656 FS	0x01	RW	CCIR656 SYNC Code Frame start
0x4733	CCIR656 FE	0x0F	RW	CCIR656 SYNC Code Frame end
0x4734	CCIR656 LS	0x00	RW	CCIR6656 SYNC Code Line start
0x4735	CCIR656 LE	0x00	RW	CCIR656 SYNC Code Line end
0x4740	POLARITY CTRL00	0x20	RW	DVP output polarity control Bit[5]: PCLK polarity 0: Active low 1: Active high Bit[4]: Reserved Bit[3]: Gate PCLK under VSYNC Bit[2]: Gate PCLK under HREF Bit[1]: HREF polarity 0: Active low 1: Active high Bit[0]: VSYNC polarity 0: Active low 1: Active high

6.1.1 DVP timing

figure 6-1 DVP timing diagram

table 6-2 DVP timing specifications

mode	timing
1280x720	(1) 1333247tp = 744lines (2) 1788tp (3) 23790tp (4) 1792tp (5) 17940tp (6) 1280tp
1610b	(7) 512tp where 1 pclk = 1 tp
1920×1080	(1) 2671678tp = 1104lines (2) 2420tp (3) 31938tp (4) 2420tp (5) 24220tp (6) 1920tp (7) 500tp
	where 1 pclk = 2 tp

6.2 mobile industry processor interface (MIPI)

The OV2710 MIPI interface provides a single uni-directional clock lane and two uni-directional data lanes to communicate to components in a mobile device. The two data lanes have full support for high speed (HS) and low power (LP) data transfer modes. Contact your local OmniVision FAE for more details.

7 register tables

The following tables provide descriptions of the device control registers contained in the OV2710. For all registers enable/disable bits, ENABLE = 1 and DISABLE = 0. The device slave addresses are 0x6C for write and 0x6D for read.

7.1 system control [0x3008 - 0x301E, 0x3025, 0x302C, 0x3040 - 0x3042]

table 7-1 system control registers (sheet 1 of 4)

address	register name	default value	R/W	descriptio	on
0x3008	SYSTEM CONTROL00	0x02	RW	System Co Bit[7]: Bit[6]:	System software reset 0: Normal work mode 1: Software reset mode System sleep mode 0: Normal work mode 1: Software sleep power down
			6	Bit[5:1]: Bit[0]:	mode Debug only Changing these values are not allowed Not used
0x3009	NOT USED	, O	_	Not Used	
0x300A	PIDH	0x27	R	Product ID	High Byte MSBs
0x300B	PIDL	0x10	R	Product ID	Low Byte LSBs
0x300C~ 0x300D	NOT USED	_	_	Not Used	
5	CDene			Bit[7:5]: Bit[4]:	Not used MIPI high speed power down control 0: Enable MIPI PHY HS TX module 1: Power down MIPI PHY HS TX module
0x300E	MIPI CTRL00	0x00	RW	Bit[3]: Bit[2]:	MIPI low power, power-down control 0: Enable MIPI PHY HS RX module 1: Power down MIPI PHY LP RX module MIPI enable 0: DVP enable 1: MIPI enable
				Bit[1]: Bit[0]:	MIPI system suspend control 0: MIPI power ON 1: MIPI suspend Not used

table 7-1 system control registers (sheet 2 of 4)

		7	•	,	
	address	register name	default value	R/W	description
	0x300F	PLL CTRL00	0x8A	RW	Bit[7:6]: Not used Bit[5:3]: Charge pump control Bit[2]: Not used Bit[1:0]: PLL SELD5 divider 0x: Bypass 10: Divided by 4 when in 8-bit mode 11: Divided by 5 when in 10-bit mode
	0x3010	PLL CTRL01	0x00	RW	Bit[7:4]: PLL DIVS divider System divider ratio Bit[3:0]: PLL DIVM divider MIPI divider ratio
	0x3011	PLL CTRL02	0x0A	RW	Bit[7]: PLL bypass Bit[5:0]: PLL DIVP
	0x3012	PLL PREDIVIDER	0x00	RW	Bit[7:3]: Not used Bit[2:0]: PLL1 pre-divider ratio 000: 1 001: 1.5 010: 2 011: 2.5 100: 3 101: 4 110: 6 111: 8
	0x3013~ 0x3015	NOT USED	-	-	Not Used
() 00	0x3016	PAD OUTPUT ENABLE00	0x00	RW	Input/Output Control (0: input; 1: output) Bit[7:1]: Not used Bit[0]: SDA OEN
SE	0x3017	PAD OUTPUT ENABLE01	0x00	RW	Input/Output Control (0: input; 1: output) Bit[7]: Not used Bit[6]: VSYNC OEN Bit[5]: HREF OEN Bit[4]: PCLK OEN Bit[3:0]: D[9:6] OEN
	0x3018	PAD OUTPUT ENABLE02	0x00	RW	Input/Output Control (0: input; 1: output) Bit[7:2]: D[5:0] OEN Bit[1:0]: Not used
	0x3019	PAD OUTPUT VALUE00	0x00	RW	GPIO Output Value Bit[7:1]: Not used Bit[0]: SDA

table 7-1 system control registers (sheet 3 of 4)

-	3y3tem control register	(3.1.3.3.1		
address	register name	default value	R/W	description
0x301A	PAD OUTPUT VALUE01	0x00	RW	GPIO Output Value Bit[7]: Not used Bit[6]: VSYNC Bit[5]: HREF Bit[4]: PCLK Bit[3:0]: D[9:6] output
0x301B	PAD OUTPUT VALUE02	0x00	RW	GPIO Output Value Bit[7:2]: D[5:0] output Bit[1:0]: Not used
0x301C	PAD OUTPUT SELECT00	0x00	RW	Output Selection for GPIO (0: normal data path; 1: register controlled GPIO) Bit[7:1]: Not used Bit[0]: SDA select
0x301D	PAD OUTPUT SELECT01	0x00	RW	Output Selection for GPIO (0: normal data path; 1: register controlled GPIO) Bit[7]: Not used Bit[6]: VSYNC select Bit[5]: HREF select Bit[4]: PCLK select Bit[3:0]: D[9:6] select
0x301E	PAD OUTPUT SELECT02	0x00	RW	Output Selection for GPIO (0: normal data path; 1: register controlled GPIO) Bit[7:2]: D[5:0] select Bit[1:0]: Not used
0x3025	CHIP REVISION	0x01	R	Chip Revision ID (for Rev 1C only)
0x302C	PAD OUTPUT DRIVE CAPABILITY	0x02	RW	Bit[7:6]: Output drive capability 00: 1x 01: 2x 10: 3x 11: 4x Bit[5:0]: Not used
0x3040	PAD INPUT VALUE00	-	R	Pad Input Status Bit[7:6]: Not used Bit[5]: TM Bit[4]: Not used Bit[3]: PWDN Bit[2]: PWUP Bit[1]: SCL Bit[0]: SDA
0x3041	PAD INPUT VALUE01	-	R	Pad Input Status Bit[7]: OTP Bit[6]: VSYNC Bit[5]: HREF BIt[4]: PCLK Bit[3:0]: D[9:6] input

table 7-1 system control registers (sheet 4 of 4)

address	register name	default value	R/W	description
0x3042	PAD INPUT VALUE02	-	R	Pad Input Status Bit[7:2]: D[5:0] input Bit[1:0]: Not used

7.2 SCCB control [0x3100, 0x3103 - 0x3104]

table 7-2 SCCB control registers

address	register name	default value	R/W	description
0x3100	SCCB ID	0x6C	RW	SCCB Slave ID
0x3103	PLL CLOCK SELECT	0x01	RW	PLL Clock Select Bit[7:2]: Not used Bit[1]: Select PLL input clock 0: From pad clock 1: From pre divider (clock modulator)
0x3104	SCCB PAD CLOCK DIVIDER	0x01	RW	Pad Clock Divider for SCCB Clock

7.3 group sharing [0x3200 - 0x3203, 0x3212]

table 7-3 group sharing registers (sheet 1 of 2)

address	register name	default value	R/W	description
0x3200	GROUP ADDR0	0x40	RW	Start Address for Group0 {group_addr0[7:0], 4'h0}
0x3201	GROUP ADDR1	0x4A	RW	Start Address for Group1 {group_addr1[7:0], 4'h0}
0x3202	GROUP ADDR2	0x54	RW	Start Address for Group2 {group_addr2[7:0], 4'h0}
0x3203	GROUP ADDR3	0x5E	RW	Start Address for Group3 {group_addr3[7:0], 4'h0}

group sharing registers (sheet 2 of 2) table 7-3

address	register name	default value	R/W	description
0x3212	GROUP ACCESS	0x00	RW	Bit[7]: group_launch_en Bit[6]: Debug mode (must be 0) Bit[5]: group_launch Bit[4]: group_hold_end Bit[3:0]: group_id 00~11: ID of the group to hold register

7.4 analog control [0x3621, 0x370D]

table 7-4 analog registers

address	register name	default value	R/W	description
0x3621	ANA ARRAY 01	0x10	RW	Array Control Bit[7]: Horizontal binning Bit[6]: Horizontal skip
0x370D	SENSOR REG0D	0x0C	RW	Bit[7]: Debug mode Bit[6]: Vertical binning Bit[5:0]: Debug mode

7.5 timing control [0x3800 - 0x3810, 0x3814 - 0x3815, 0x3818]

timing control registers (sheet $1\ {\rm of}\ 2$)

address	register name	default value	R/W	descriptio	n
0x3800	TIMING CONTROL HS HIGHBYTE	0x01	RW	Bit[7:4]: Bit[3:0]:	Not used HREF horizontal start point[11:8]
0x3801	TIMING CONTROL VH LOWBYTE	80x0	RW	Bit[7:0]:	HREF horizontal start point[7:0]
0x3802	TIMING CONTROL VH HIGHBYTE	0x00	RW	Bit[7:4]: Bit[3:0]:	Not used HREF vertical start point[11:8]
0x3803	TIMING CONTROL VH LOW BYTE	0x0A	RW	Bit[7:0]:	HREF vertical start point[7:0]
0x3804	TIMING CONTROL HW HIGHBYTE	0x08	RW	Bit[7:4]: Bit[3:0]:	Not used HREF horizontal width[11:8]

table 7-5 timing control registers (sheet 2 of 2)

	tuning control registers (sin		,	
address	register name	default value	R/W	description
0x3805	TIMING CONTROL HW LOWBYTE	0x00	RW	Bit[7:0]: HREF horizontal width[7:0]
0x3806	TIMING CONTROL VH HIGHBYTE	0x06	RW	Bit[7:4]: Not used Bit[3:0]: HREF vertical height[11:8]
0x3807	TIMING CONTROL VH LOW BYTE	0x00	RW	Bit[7:0]: HREF vertical height[7:0]
0x3808	TIMING CONTROL DVP HSIZE	0x08	RW	Bit[7:4]: Not used Bit[3:0]: DVP output horizontal width[11:8]
0x3809	TIMING CONTROL DVP HSIZE LOW	0x00	RW	Bit[7:0]: DVP output horizontal width[7:0]
0x380A	TIMING CONTROL DVP VSIZE HIGH	0x06	RW	Bit[7:4]: Not used Bit[3:0]: DVP output vertical height[11:8]
0x380B	TIMING CONTROL DVP VSIZE LOW	0x00	RW	Bit[7:0]: DVP output vertical height[7:0]
0x380C	TIMING CONTROL HTS HIGHBYTE	0x09	RW	Bit[7:4]: Not used Bit[3:0]: Total horizontal size[11:8]
0x380D	TIMING CONTROL HTS LOWBYTE	0x48	RW	Bit[7:0]: Total horizontal size[7:0]
0x380E	TIMING CONTROL VTS HIGHBYTE	0x06	RW	Bit[7:4]: Not used Bit[3:0]: Total vertical size[11:8]
0x380F	TIMING CONTROL VTS LOWBYTE	0x18	RW	Bit[7:0]: Total vertical size[7:0]
0x3810	TIMING CONTROL HV OFFSET	0xC2	RW	Bit[7:4]: Horizontal offset Bit[3:0]: Vertical offset
0x3814~ 0x3815	NOT USED	_	-	Not Used
0x3818	TIMING CONTROL18	0x80	RW	Bit[7]: Not used Bit[6]: Horizontal mirror Bit[5]: Vertical flip Bit[4:2]: Not used Bit[1]: Vertical subsample /4 Bit[0]: Vertical subsample /2

7.6 AEC/AGC [0x3500 ~ 0x3503, 0x3505 ~ 0x350D, 0x3A00 ~ 0x3A30]

AEC/AGC registers (sheet 1 of 4) table 7-6

address	register name	default value	R/W	description
0x3500	AEC PK EXPO	0x00	RW	Bit[7:4]: Not used Bit[3:0]: AEC exposure[19:16]
0x3501	AEC PK EXPO	0x00	RW	Bit[7:0]: AEC exposure[15:8]
0x3502	AEC PK EXPO	0x20	RW	Bit[7:0]: AEC exposure[7:0]
0x3503	AEC PK MANUAL	0x00	RW	Bit[7:4]: Not used Bit[2]: VTS manual enable Bit[1]: AGC manual enable Bit[0]: AEC manual enable
0x3505~ 0x3509	NOT USED	X-1/C	_	Not Used
0x350A	AEC AGC ADJ	0x00	RW	Gain Output to Sensor Bit[7:1]: Not used Bit[0]: Gain high bit Gain = (0x350A[0]+1) × (0x350B[7]+1) × (0x350B[6]+1) × (0x350B[5]+1) × (0x350B[4]+1) × (0x350B[3:0]/16+1)
0x350B	AEC AGC ADJ	0x00	RW	Gain Output to Sensor Bit[7:0]: Gain low bits Gain = (0x350A[0]+1) × (0x350B[7]+1) × (0x350B[6]+1) × (0x350B[5]+1) × (0x350B[4]+1) × (0x350B[3:0]/16+1)
0x350C	AEC PK VTS	0x00	RW	Bit[7:0]: AEC VTS[15:8]
0x350D	AEC PK VTS	0x00	RW	Bit[7:0]: AEC VTS[7:0]

table 7-6 AEC/AGC registers (sheet 2 of 4)

		,	<u> </u>			
	address	register name	default value	R/W	descriptio	n
	0x3A00	AEC CONTROLO	0x7C	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[2]: Bit[1]: Bit[0]:	Not used Less 1 line enable 0: Less 1 line function disable 1: Less 1 line function enable Band enable 0: Band function disable 1: Band function enable Auto band enable 0: Exposure can not be less than 1 band 1: Exposure can be less than 1 band Line complete 0: Fractional line enable 1: Fractional line disable Night mode 0: Night mode disable 1: Night mode enable Not used Freeze 0: Freeze disable
	0x3A01	AEC CONTROL1	0x04	RW	Bit[7:0]:	1: Freeze enable Minimum exposure
	0x3A02	AEC MAX EXPO 60	0x02	RW		Not used AEC maximum exposure for 60Hz[19:16]
CO'0	0x3A03	AEC MAX EXPO 60	0x28	RW	Bit[7:0]:	AEC maximum exposure for 60Hz[15:8]
0.000	0x3A04	AEC MAX EXPO 60	0x00	RW	Bit[7:0]:	AEC maximum exposure for 60Hz[7:0]
SKI	0x3A05~ 0x3A07	NOT USED	_	-	Not Used	
	0x3A08	AEC B50 STEP	0x11	RW		Not used AEC band50 step[13:8]
	0x3A09	AEC B50 STEP	0x40	RW	Bit[7:0]:	AEC band50 step[7:0]
	0x3A0A	AEC B60 STEP	0x11	RW		Not used AEC band60 step[13:8]
	0x3A0B	AEC B60 STEP	0x40	RW	Bit[7:0]:	AEC band60 step[7:0]
	0x3A0C	NOT USED	-	-	Not Used	

table 7-6 AEC/AGC registers (sheet 3 of 4)

	MEC/Macregisters (sine				
address	register name	default value	R/W	description	n
0x3A0D	AEC CONTROLD	0x04	RW	Bit[7:6]: Bit[5:0]:	Not used Band60 max[5:0]
0x3A0E	AEC CONTROLE	0x03	RW	Bit[7:6]: Bit[5:0]:	
0x3A0F	AEC CONTROLF	0x78	RW	Bit[7:0]:	Stable range high threshold 1
0x3A10	AEC CONTROL10	0x68	RW	Bit[7:0]:	Stable range low threshold 1
0x3A11	AEC CONTROL11	0xD0	RW	Bit[7:0]:	Fast zone high threshold
0x3A12	AEC CONTROL12	0x00	RW	Bit[7:0]:	Manual average setting
0x3A13	AEC CONTROL13	0x50	RW	Bit[7:6]: Bit[5]: Bit[4:0]:	Pre gain enable
0x3A14	AEC MAX EXPO50	0x02	RW	Bit[7:4]: Bit[3:0]:	Not used AEC maximum exposure for 50Hz[19:16]
0x3A15	AEC MAX EXPO 50	0x28	RW	Bit[7:0]:	AEC maximum exposure for 50Hz[15:8]
0x3A16	AEC MAX EXPO 50	0x00	RW	Bit[7:0]:	AEC maximum exposure for 50Hz[7:0]
0x3A17	AEC CONTROL17	0x89	RW	Bit[7:2]: Bit[1:0]:	Not used Gain night threshold[1:0] 00: Night mode gain threshold as 1x 01: Night mode gain threshold as 2x 10: Night mode gain threshold as 4x 11: Not used
0x3A18	AEC G CEIL	0x03	RW	Bit[7:1]: Bit[0]:	Not used AEC gain ceiling
0x3A19	AEC G CEIL	0xE0	RW	Bit[7:0]:	AEC gain ceiling
0x3A1A	NOT USED	_	_	Not Used	
0x3A1B	AEC CONTROL1B	0x78	RW	Bit[7:0]:	Stable range high threshold 2
0x3A1C	AEC LED ADD ROW	0x06	RW	Bit[7:0]:	Row adding number[15:8] in AEC LED mode
0x3A1D	AEC LED ADD ROW	0x18	RW	Bit[7:0]:	Row adding number[7:0] in AEC LED mode
0x3A1E	AEC CONTROL1E	0x68	RW	Bit[7:0]:	Stable range low threshold 2
0x3A1F	AEC CONTROL1F	0x40	RW	Bit[7:0]:	Fast zone low threshold

table 7-6 AEC/AGC registers (sheet 4 of 4)

address	register name	default value	R/W	descriptio	n
0x3A20	AEC CONTROL20	0x20	RW	Bit[7:2]: Bit[1]: Bit[0]:	Not used Manual average enable 0: Average data manual set disable 1: Average data manual set enable Not used
0x3A21~ 0x3A2D	RSVD		-	Reserved	
0x3A2E~ 0x3A30	NOT USED	-	_	Not Used	

7.7 OTP control [0x3D00 - 0x3D10]

The first OTP bytes of 0x3D00~0x3D04 are reserved for OmniVision use. These bits are usually used to store production information or used by some internal functions. OTP register 0x3D05 is used for version information. The remaining OTP registers 0x3D06~0x3D0F are fully user programmable. The user can store production tracking information, camera module calibration data, etc. to these bits.

table 7-7 OTP memory structure

	OTP address	function
	0x3D00 ~ 0x3D04	reserved for OmniVision use
() 00	0x3D05	version check 0x00: previous OV2710 rev 0x01: new rev 1E
0,0	0x3D06 ~ 0x3D0F	user programmable
S		

table 7-8 OTP registers (sheet 1 of 2)

address	register name	default value	R/W	description
0x3D00	OTP DATA 0	0x00	RW	OTP Dump/Load Data 0
0x3D01	OTP DATA 1	0x00	RW	OTP Dump/Load Data 1
0x3D02	OTP DATA 2	0x00	RW	OTP Dump/Load Data 2
0x3D03	OTP DATA 3	0x00	RW	OTP Dump/Load Data 3

OTP registers (sheet 2 of 2) table 7-8

address	register name	default value	R/W	description
0x3D04	OTP DATA 4	0x00	RW	OTP Dump/Load Data 4
0x3D05	OTP DATA 5	0x00	RW	OTP Dump/Load Data 5
0x3D06	OTP DATA 6	0x00	RW	OTP Dump/Load Data 6
0x3D07	OTP DATA 7	0x00	RW	OTP Dump/Load Data 7
0x3D08	OTP DATA 8	0x00	RW	OTP Dump/Load Data 8
0x3D09	OTP DATA 9	0x00	RW	OTP Dump/Load Data 9
0x3D0A	OTP DATA A	0x00	RW	OTP Dump/Load Data A
0x3d0b	OTP DATA B	0x00	RW	OTP Dump/Load Data B
0x3d0c	OTP DATA C	0x00	RW	OTP Dump/Load Data C
0x3D0D	OTP DATA D	0x00	RW	OTP Dump/Load Data D
0x3D0E	OTP DATA E	0x00	RW	OTP Dump/Load Data E
0x3D0F	OTP DATA F	0x00	RW	OTP Dump/Load Data F
0x3D10	OTP CONTROL	0x00	RW	Bit[7:3]: Not used Bit[2]: OTP load option 0: Fast 1: Slow Bit[1:0]: OTP mode 00: OTP OFF 01: Load/dump OTP 10: Write/program OTP 11: OTP OFF
C	Clene			

7.8 BLC [0x4000 - 0x401D]

table 7-9 BLC registers

address	register name	default value	R/W	description	1
0x4000	BLC CONTROL 00	0x01	RW	Bit[7:4]: Bit[3]: Bit[2]: Bit[1]:	Not used AVG frame enable 0: BLC is the calculating value 1: BLC will be the average of the calculating value and the original BLC Not used Freeze enable 0: BLC will be updated in some cases 1: BLC will be keep original value BLC enable 0: Disable 1: Enable
0x4001	BLC CONTROL 01	0x00	RW	Bit[7:5]: Bit[4:0]:	Not used Start line Start statistic black line Range from 0 to 31
0x4002	BLC CONTROL 02	0x00	RW	Bit[7]: Bit[6]: Bit[5:0]:	Not used Manual offset enable Not used
0x4003~ 0x401C	NOT USED	-	-	Not Used	
0x401D	BLC FRAME CONTROL	0x22	RW	Bit[7:6]: Bit[5:4]: Bit[3:2]: Bit[1]: Bit[0]:	Not used BLC enable mode 00: Always update 10: Update when gain changes x1: No update Not used Format change enable Not used

7.9 FC control [0x4201 - 0x4202]

table 7-10 FC control registers

address	register name	default value	R/W	description
0x4201	FRAME CTRL00	0x00	RW	Bit[7:4]: Not used Bit[3:0]: Frame ON number Control passed frame number When both ON and OFF numbers are set to 0x00, frame control is in bypass mode.
0x4202	FRAME CTRL01	0x00	RW	Bit[7:4]: Not used Bit[3:0]: Frame OFF number Control masked frame number When both ON and OFF numbers are set to 0x00, frame control is in bypass mode.

7.10 DVP control [0x4700 - 0x4709]

table 7-11

address	register name	default value	R/W	description
0x4700	DVP CTRL00	0x04	RW	Bit[7:4]: Not used Bit[3]: CCIR656 v select Bit[2]: CCIR656 f value Bit[1]: CCIR656 mode enable Bit[0]: HSYNC mode enable
0x4701~ 0x4703	NOT USED	_	-	Not Used
0x4704	DVP CTRL01	0x00	RW	Bit[7:4]: Not used Bit[3:2]: Debug only Changing these values is not recommended Bit[1:0]: VSYNC mode enable 00: VSYNC1 mode enabled 01: VSYNC2 mode enabled 10: VSYNC3 mode enabled 11: Not used
0x4705~ 0x4707	NOT USED	-	-	Not Used

table 7-11 DVP registers (sheet 2 of 2)

address	register name	default value	R/W	descriptior	1
0x4708	DVP CTRL02	0x01	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	CLK DDR mode enable Not used VSYNC gate CLK enable HREF gate CLK enable Not used HREF polarity VSYNC polarity PCLK gate low enable
0x4709	DVP CTRL03	0x00	RW	Bit[7]: Bit[6:4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	Video FIFO bypass mode Data bit swap 000: Output data is the same order as input that is [9:0] 001: Output data is reversed, [0:9] 010: Output data is reordered as {[2:9], [1:0]} 011: Output data is reordered as {[7:0], [9:8]} 100: Output data is reordered as {[9:8], [0:7]} 101: Output data is reordered as {[9] [0:8]} 110: Output data is reordered as {[1:9], [0]} 111: Output data is reordered as {[8:0], [9]} 115: Test mode Test mode Test mode 8-bit Test mode enable

7.11 MIPI control [0x4800 - 0x4805, 0x4810 - 0x4815, 0x4818 - 0x4832]

MIPI registers (sheet 1 of 5) table 7-12

address	register name	default value	R/W	description	1
			5	Bit[7:6]: Bit[5]: Bit[4]:	Not used Clock lane gate enable 0: Enable 1: Disable Line sync enable 0: Do not send line short packet for each line
0x4800	MIPI CTRL 00	0x04	RW	Bit[3]:	Send line short packet for each line Lane select Use lane1 as default data lane Use lane2 as default data
			10	Bit[2]:	lane Idle status 0: MIPI bus will be LP00 when no packet is transmitted 1: MIPI bus will be LP11 when
	* O	, Co		Bit[1:0]:	no packet is transmitted Not used
6	CDevelopin				

table 7-12 MIPI registers (sheet 2 of 5)

	address	register name	default value	R/W	description	1
					Bit[7]:	Long packet data type manual enable 0: Use MIPI data type
					Bit[6]:	1: Use manual data type Short packet data type manual enable 0: Use auto value 1: Use manual value as short
		18),		Bit[5]:	packet data Short packet WORD COUNTER manual enable 0: Use frame counter or line counter
	0x4801	MIPI CTRL 01	0x04	RW	Bit[4]:	1: Select manual value PH bit order for ECC 0: {DI[7:0],WC[7:0], WC[15:8]} 1: {DI[0:7],WC[0:7], WC[8:15]}
	96	Coltd			Bit[3]:	PH byte order for ECC 0: {DI,WC_I,WC_h} 1: {DI,WC_h,WC_I}
					Bit[2]:	PH byte order2 for ECC 0: {DI,WC}
C\					Bit[1]:	1: {WC,DI} MARK1 enable for data lane1 0: Disable MARK1 1: When resume, lane1 should
~ O(1)	elopin	Ø,			Bit[0]:	send MARK1 MARK1 enable for data lane2 0: Disable MARK1 1: When resume, lane2 should send MARK1
00	0x4802	NOT USED	_	_	Not Used	
SEC					Bit[7:4]: Bit[3]:	Not used Enable LP CD when HS TX for lane1 0: Disable 1: Enable
					Bit[2]:	Enable LP CD when HS TX for lane2 0: Disable
	0x4803 MIPI CT	MIPI CTRL 03	0x5F	RW	Bit[1]:	1: Enable Enable LP CD when LP TX for lane2 0: Disable
					Bit[0]:	1: Enable Enable LP CD when LP TX for lane1 0: Disable 1: Enable

table 7-12 MIPI registers (sheet 3 of 5)

	<u> </u>			
address	register name	default value	R/W	description
0x4804	MIPI CTRL 04	0x8C	RW	Bit[7:5]: Not used BIt[4]: Enable MIPI LP RX to read/write registers 0: Disable, RX LP data will write to VFIFO 1: Enable Bit[3]: Address read/write register will auto add 1 0: Disable 1: Enable Bit[2]: LP TX lane select 0: Select lane1 to transmit LP data 1: Select lane2 to transmit LP data Bit[1:0]: Not used
	76	Co	10	Bit[7]: MIPI lane2 disable 0: Enable lane2 1: Disable MIPI data lane1, lane1 will be LP00 Bit[6]: MIPI lane1 disable 0: Enable lane1 1: Disable MIPI data lane1, lane1 will be LP00
0x4805	MIPI CTRL 05	0x10	RW	Bit[5]: LPX global timing select 0: Auto calculate T LPX in PCLK2X domain, unit CLK2X 1: Use lp_p_min[7:0] Bit[4:3]: Not used Bit[2]: MIPI read/write registers disable 0: Enable MIPI access SRB 1: Disable MIPI access SRB Bit[1:0]: Not used
0x4810	MAX FCNT H	0xFF	RW	High Byte of Max Frame Counter of Frame Sync Short Packet
0x4811	MAX FCNT L	0xFF	RW	Low Byte of Max Frame Counter of Frame Sync Short Packet
0x4812	MIN SPKT WC REG H	0x00	RW	High Byte of Manual Short Packet Word Counter
0x4813	MIN SPKT WC REG L	0x00	RW	Low Byte of Manual Short Packet Word Counter
0x4814	MIPI CTRL 14	0x2A	RW	Bit[7:6]: Virtual channel of MIPI packet Bit[5:0]: Data type manual
0x4815	MIPI SPKT DT	0x00	RW	Manual Data Type for Short Packet
0x4818	MIN HS ZERO H	0x00	RW	High Byte of Minimum Value of hs_zero, unit ns

table 7-12 MIPI registers (sheet 4 of 5)

-	ote / 12	1411 Tregisters (sincet	·		
а	ıddress	register name	default value	R/W	description
0	x4819	MIN HS ZERO L	0x96	RW	Low Byte of Minimum Value of hs_zero hs_zero_real = hs_zero_min_o + tui × ui_hs_zero_min_o
0	x481A	MIN MIPI HS TRAIL H	0x00	RW	High Byte of Minimum Value of hs_trail, unit ns
0	x481B	MIN MIPI HS TRAIL L	0x3C	RW	Low Byte of Minimum Value of hs_trail hs_trail_real = hs_trail_min_o + tui × ui_hs_trail_min_o
0	x481C	MIN MIPI CLK ZERO H	0x01	RW	High Byte of Minimum Value of clk_zero, unit ns
0	x481D	MIN MIPI CLK ZERO L	0x86	RW	Low Byte of Minimum Value of clk_zero clk_zero_real = clk_zero_min_o + tui × ui_clk_zero_min_o
0	x481E	MIN MIPI CLK PREPARE H	0x00	RW	High Byte of Minimum Value of clk_prepare, unit ns
0	x481F	MIN MIPI CLK PREPARE L	0x3C	RW	Low Byte of Minimum Value of clk_prepare clk_prepare_real = clk_prepare_min_o + tui × ui_clk_prepare_min_o
0	x4820	MIN CLK POST H	0x00	RW	High Byte of Minimum Value of clk_post, unit ns
0	x4821	MIN CLK POST L	0x56	RW	Low Byte of Minimum Value of clk_post clk_post_real = clk_post_min_o + tui × ui_clk_post_min_o
0	x4822	MIN CLK TRAIL H	0x00	RW	High Byte of Minimum Value of clk_trail, unit ns
0	x4823	MIN CLK TRAIL L	0x3C	RW	Low Byte of Minimum Value of clk_trail clk_trail_real = clk_trail_min_o + tui × ui_clk_trail_min_o
0	x4824	MIN LPX PCLK H	0x00	RW	High Byte of Minimum Value of lpx_p, unit ns
0	x4825	MIN LPX PCLK L	0x32	RW	Low Byte of Minimum Value of lpx_p lpx_p_real = lpx_p_min_o + tui × ui_lpx_p_min_o
0	x4826	MIN HS PREPARE H	0x00	RW	High Byte of Minimum Value of hs_prepare, unit ns
0	x4827	MIN HS PREPARE L	0x32	RW	Low Byte of Minimum Value of hs_prepare hs_prepare_real = hs_prepare_min_o + tui × ui_hs_prepare_min_o
0	x4828	MIN HS EXIT H	0x00	RW	High Byte of Minimum Value of hs_exit, unit ns
0	x4829	MIN HS EXIT L	0x64	RW	Low Byte of Minimum Value of hs_exit hs_exit_real = hs_exit_min_o + tui × ui_hs_exit_min_o
0	x482A	MIN HS ZERO/UI	0x05	RW	Minimum UI Value of hs_zero, unit UI
0	x482B	MIN HS TRAIL/UI	0x04	RW	Minimum UI Value of hs_trail, unit UI

table 7-12 MIPI registers (sheet 5 of 5)

address	register name	default value	R/W	description
0x482C	MIN CLK ZERO/UI	0x00	RW	Minimum UI Value of clk_zero, unit UI
0x482D	MIN CLK PREPARE/UI	0x00	RW	Minimum UI Value of clk_prepare, unit UI
0x482E	MIN CLK POST/UI	0x34	RW	Minimum UI Value of clk_post, unit UI
0x482F	MIN CLK TRAIL/UI	0x00	RW	Minimum UI Value of clk_trail, unit UI
0x4830	MIN LPX PCLK/UI	0x00	RW	Minimum UI Value of lpx_p (pclk2x domain), unit UI
0x4831	MIN HS PREPARE/UI	0x04	RW	Minimum UI Value of hs_prepare, unit UI
0x4832	MIN HS EXIT/UI	0x00	RW	Minimum UI Value of hs_exit, unit UI

7.12 ISP control [0x5000 - 0x503F]

table 7-13 ISP control registers (sheet 1 of 2)

address	register name	default value	R/W	description
0x5000	ISP CONTROL0	0xDF	RW	Bit[7]: LENC enable 0: Disable 1: Enable Bit[6:4]: Not used Bit[2]: Black pixel cancellation enable 0: Disable 1: Enable Bit[3,1]: White pixel cancellation enable 0: Disable 1: Enable Bit[0]: Not used
0x5001	ISP CONTROL1	0x4F	RW	Bit[7:1]: Not used Bit[0]: AWB enable 0: Disable 1: Enable
0x5002	ISP CONTROL2	0xE0	RW	Bit[7:3]: Not used Bit[2]: VAP enable 0: Disable 1: Enable Bit[1:0]: Not used
0x5003~ 0x5004	NOT USED	-	-	Not Used

Register bits, 0x5000[3] and 0x5000[1], must both be set to '1' to enable white pixel cancellation.

For register bits 0x5000[3:0], OmniVision strongly recommends using the default value of 0xF to ensure that pixel cancellation is turned on properly.

table 7-13 ISP control registers (sheet 2 of 2)

	13. 23.11.31.28.31.	•	,	
address	register name	default value	R/W	description
0x5005	ISP CONTROL5	0xDC	RW	Bit[7:5]: Not used Bit[4]: AWB bias ON BIt[3:0]: Not used
0x5006~ 0x501E	NOT USED	-	_	Not Used
0x501F	ISP CONTROL31	0x03	RW	Bit[7:3]: Not used Bit[2:0]: Format select 000: Not used 001: Not used 010: Not used 011: ISP RAW 100: INT CIF RAW 101: Not used 111: Not used
0x5020~ 0x503C	NOT USED	_	_	Not Used
0x503D	ISP TEST	0x00	RW	Bit[7]: Color bar enable 0: Color bar OFF 1: Color bar enable Bit[6]: Not used Bit[5:4]: Color bar pattern select 10: Color bar pattern Bit[3]: Not used Bit[2]: Color bar rolling enable Bit[1:0]: Not used
0x503E	ISP SENSOR BIAS READOUT	_	R	ISP Sensor Bias Readout
0x503F	ISP SENSOR GAIN READOUT	-	R	ISP Sensor Gain Readout

7.13 AWB control [0x3400 - 0x3406, 0x5180 - 0x51BD]

table 7-14 AWB control registers (sheet 1 of 3)

address	register name	default value	R/W	description
0x3400	AWB GAIN PK RED GAIN	0x04	RW	Bit[7:4]: Not used Bit[3:0]: AWB R GAIN[11:8]
0x3401	AWB GAIN PK RED GAIN	0x00	RW	Bit[7:0]: AWB R GAIN[7:0]

table 7-14 AWB control registers (sheet 2 of 3)

	_				
address	register name	default value	R/W	descriptio	n
0x3402	AWB GAIN PK GREEN GAIN	0x04	RW		Not used AWB G GAIN[11:8]
0x3403	AWB GAIN PK GREEN GAIN	0x00	RW	Bit[7:0]:	AWB G GAIN[7:0]
0x3404	AWB GAIN PK BLUE GAIN	0x04	RW	Bit[7:4]: Bit[3:0]:	Not used AWB B GAIN[11:8]
0x3405	AWB GAIN PK BLUE GAIN	0x00	RW	Bit[7:0]:	AWB B GAIN[7:0]
0x3406	AWB GAIN PK AWB MAN CTRL	0x00	RW	Bit[7:1]: Bit[0]:	Not used AWB manual control 0: AWB gain automatically updated 1: AWB gain manual enable
0x5180	AWB CONTROL 00	0x40	R/W	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1:0]:	Not used fast_awb freeze_gain_en freeze_sum_en Not used start_sel Not used
0x5181	AWB CONTROL 01	0x02	R/W	Bit[7:0]:	Delta
0x5182	AWB CONTROL 02	0x04	RW	Bit[7:0]:	Stable range
0x5183	STABLE RANGE WIDE	0x08	RW	Bit[7:0]:	Stable range to determine whether it is in stable status when it is already in stable status
0x5184~ 0x518B	NOT USED	-	-	Not Used	
0x518C	RED GAIN LIMIT	0xF0	RW	Bit[7:4]: Bit[3:0]:	Maximum red gain is: red gain up limit *256 + 0xFF
0x518D	GREEN GAIN LIMIT	0xF0	RW	Bit[7:4]: Bit[3:0]:	Maximum green gain is: green gain up limit*256 + 0xFF

table 7-14 AWB control registers (sheet 3 of 3)

		9	•		•	
	address	register name	default value	R/W	descriptio	n
	0x518E	BLUE GAIN LIMIT	0xF0	RW	Bit[7:4]: Bit[3:0]:	Blue gain up limit Maximum blue gain is: blue gain up limit*256 + 0xFF Blue gain down limit Minimum blue gain is: blue gain down limit*256 + 0
	0x518F	AWB FRAME COUNTER	0x04	RW	Bit[7:4]: Bit[3:0]:	Not used Number of frames to do AWB when AWB is in stable mode
	0x5190~ 0x5195	NOT USED	1	-	Not Used	
	0x5196	RED BEFORE GAIN AVERAGE	_	R	Bit[7:0]:	Before AWB gain's red data average
	0x5197	GREEN BEFORE GAIN AVERAGE	_	R	Bit[7:0]:	Before AWB gain's green data average
	0x5198	BLUE BEFORE GAIN AVERAGE	_	R	Bit[7:0]:	Before AWB gain's blue data average
	0x5199	RED AFTER GAIN AVERAGE	_	R	Bit[7:0]:	After AWB gain's red data average high byte
	0x519A	RED AFTER GAIN AVERAGE	-	R	Bit[7:0]:	After AWB gain's red data average low byte
	0x519B	GREEN AFTER GAIN AVERAGE	-	R	Bit[7:0]:	After AWB gain's green data average high byte
c 0)	0x519C	GREEN AFTER GAIN AVERAGE	_	R	Bit[7:0]:	After AWB gain's green data average low byte
() 0°	0x519D	BLUE AFTER GAIN AVERAGE	-	R	Bit[7:0]:	After AWB gain's blue data average high byte
CEL	0x519E	BLUE AFTER GAIN AVERAGE	-	R	Bit[7:0]:	After AWB gain's blue average low byte
-5	0x519F~ 0x51BD	NOT USED	-	_	Not Used	

7.14 AVG control [0x5680 - 0x5691]

table 7-15 AVG registers

address	register name	default value	R/W	description	1
0x5680	AVG START POSITION AT HORIZONTAL	0x00	RW		Not used AVG start position[11:8] at horizontal
0x5681	AVG START POSITION AT HORIZONTAL	0x00	RW	Bit[7:0]:	AVG start position[7:0] at horizontal
0x5682	AVG END POSITION AT HORIZONTAL	0x08	RW		Not used AVG end position[11:8] at horizontal
0x5683	AVG END POSITION AT HORIZONTAL	0x00	RW		AVG end position[7:0] at horizontal
0x5684	AVG START POSITION AT VERTICAL	0x00	RW	Bit[2:0]:	Not used AVG start position[10:8] at vertical
0x5685	AVG START POSITION AT VERTICAL	0x80	RW		AVG start position[7:0] at vertical
0x5686	AVG END POSITION AT VERTICAL	0x00	RW	Bit[2:0]:	Not used AVG end position[10:8] at vertical
0x5687	AVG END POSITION AT VERTICAL	0x38	RW		AVG end position[7:0] at vertical
0x5688~ 0x568F	NOT USED	_	_	Not Used	
0x5690	AVG R10	-	R	Bit[7:0]:	Average of raw image[9:2]
0x5691	NOT USED	-	-	Not Used	

7.15 DPC [0x5780 - 0x578C, 0x5790 - 0x5797]

table 7-16 DPC registers (sheet 1 of 2)

	address	register name	default value	R/W	descriptio	n
			5		Bit[7]: Bit[6]: Bit[5]:	Not used Keep vertical channel 0: Do not keep vertical line 1: Keep vertical line Enable same channel connected 0: Disable removing the same channel connected defected pixels 1: Enable removing the same channel connected
	0x5780	DPC CTRL00	0x7F	RW	Bit[4]:	defected pixels Enable different channel connected 0: Disable removing the different channel connected defected pixels 1: Enable removing the different channel connected defected
Color	olopin				Bit[3:2]: Bit[1:0]:	pixels
	0x5781	WHITE THRESHOLD LISTO	0x20	RW	Bit[7]: Bit[6:0]:	Not used White pixel threshold list 0
	0x5782	WHITE THRESHOLD LIST1	0x18	RW	Bit[7]: Bit[6:0]:	Not used White pixel threshold list 1
	0x5783	WHITE THRESHOLD LIST2	0x08	RW	Bit[7]: Bit[6:0]:	Not used White pixel threshold list 2
	0x5784	WHITE THRESHOLD LIST3	0x04	RW	Bit[7]: Bit[6:0]:	Not used White pixel threshold list 3

table 7-16 DPC registers (sheet 2 of 2)

address	register name	default value	R/W	descriptio	n
0x5785	BLACK THRESHOLD LISTO	0x40	RW	Bit[7:0]:	Black pixel threshold list 0
0x5786	BLACK THRESHOLD LIST1	0x18	RW	Bit[7:0]:	Black pixel threshold list 1
0x5787	BLACK THRESHOLD LIST2	0x08	RW	Bit[7:0]:	Black pixel threshold list 2
0x5788	BLACK THRESHOLD LIST3	0x04	RW	Bit[7:0]:	Black pixel threshold list 3
0x5789	GAIN LIST1	0x08	RW	Bit[7]: Bit[6:0]:	Not used Gain list 1
0x578A	GAIN LIST2	0x20	RW	Bit[7]: Bit[6:0]:	Not used Gain list 2
	5	9/3)	Bit[7:4]: Bit[3]:	Not used Mode 1 enable 0: Disable 1: Enable only remove cluster
0x578B	DPC CTRL01	0x07	RW	Bit[2]: Bit[1]: Bit[0]:	Mode 2 enable 0: Disable 1: Enable Not used Enable mode 3 0: Disable 1: Enable
0x578C	DPC SATURATE	0x00	RW	Saturate Va	alue Set for Cross Cluster
0x5790	PATTERN THRESHOLD LIST0	0x00	RW	Bit[7:2]: Bit[1:0]:	
0x5791	PATTERN THRESHOLD LIST0	0x08	RW	Bit[7:0]:	Pattern threshold list 0[7:0]
0x5792	PATTERN THRESHOLD LIST1	0x00	RW	Bit[7:2]: Bit[1:0]:	Not used Pattern threshold list 1[9:8]
0x5793	PATTERN THRESHOLD LIST1	0x18	RW	Bit[7:0]:	Pattern threshold list 1[7:0]
0x5794	PATTERN THRESHOLD LIST2	0x00	RW	Bit[7:2]: Bit[1:0]:	Not used Pattern threshold list 2[9:8]
0x5795	PATTERN THRESHOLD LIST2	0x80	RW	Bit[7:0]:	Pattern threshold list 2[7:0]
0x5796	PATTERN THRESHOLD LIST3	0x01	RW	Bit[7:2]: Bit[1:0]:	Not used Pattern threshold list 3[9:8]
0x5797	PATTERN THRESHOLD LIST3	0x00	RW	Bit[7:0]:	Pattern threshold list 3[7:0]

7.16 LENC [0x5800 - 0x581C]

table 7-17 LENC registers (sheet 1 of 3)

		0 (,			
	address	register name	default value	R/W	descriptio	n
	0x5800	LENC RED X0	0x00	RW	Bit[7:0]:	Red center horizontal position (x0) high bits
	0x5801	LENC RED X0	0x0C	RW	Bit[7:0]:	Red center horizontal position (x0) low eight bits
	0x5802	LENC RED Y0	0x00	RW	Bit[7:0]:	Red center vertical position (y0) high bits
	0x5803	LENC RED Y0	0x06	RW	Bit[7:0]:	Red center vertical position (y0) low eight bits
	0x5804	LENC RED A1	0x22	RW	Bit[7:0]:	Red parameter a1 a1 and a2 are used to generate the a parameter
	0x5805	LENC RED A2	0x07	RW	Bit[7:0]:	Red parameter a2 a1 and a2 are used to generate the parameter a
	0x5806	LENC RED B1	0xC2	RW	Bit[7]: Bit[6:0]:	Sign bit 0: b1 is positive 1: b1 is negative Red parameter b1 b1 and b2 are used to generate the parameter b
CO)	0x5807	LENC RED B2	0x08	RW	Bit[3:0]:	Red parameter b2 b1 and b2 are used to generate the parameter b
O'CO.	0x5808	LENC GRN X0	0x00	RW	Bit[7:0]:	Green center horizontal position (x0) high bits
SKI	0x5809	LENC GRN X0	0x0C	RW	Bit[7:0]:	Green center horizontal position (x0) low eight bits
	0x580A	LENC GRN Y0	0x00	RW	Bit[7:0]:	Green center vertical position (y0) high bits
	0x580B	LENC GRN Y0	0x06	RW	Bit[7:0]:	Green center vertical position (y0) low eight bits
	0x580C	LENC GRN A1	0x22	RW	Bit[7:0]:	Green parameter a1 a1 and a2 are used to generate the parameter a
	0x580D	LENC GRN A2	0x07	RW	Bit[7:0]:	Green parameter a2 a1 and a2 are used to generate the parameter a

table 7-17 LENC registers (sheet 2 of 3)

address	register name	default value	R/W	description	ı
0x580E	LENC GRN B1	0xC2	RW	Bit[7]: Bit[6:0]:	Sign bit 0: b1 is positive 1: b1 is negative Green parameter b1 b1 and b2 are used to generate the parameter b
0x580F	LENC GRN B2	0x08	RW	Bit[3:0]:	Green parameter b2 b1 and b2 are used to generate the parameter b
0x5810	LENC BLU X0	0x00	RW	Bit[7:0]:	Blue center horizontal position (x0) high bits
0x5811	LENC BLU X0	0x0C	RW	Bit[7:0]:	Blue center horizontal position (x0) low eight bits
0x5812	LENC BLU Y0	0x00	RW	Bit[7:0]:	Blue center vertical position (y0) high bits
0x5813	LENC BLU Y0	0x06	RW	Bit[7:0]:	Blue center vertical position (y0) low eight bits
0x5814	LENC BLU A1	0x22	RW	Bit[7:0]:	Blue parameter a1 a1 and a2 are used to generate the parameter a
0x5815	LENC BLU A2	0x07	RW	Bit[7:0]:	Blue parameter a2 a1 and a2 are used to generate the parameter a
0x5816	LENC BLU B1	0xC2	RW	Bit[7:0]: Bit[6:0]:	Sign bit 0: b1 is positive 1: b1 is negative blue parameter b1 b1 and b2 are used to generate the parameter b
0x5817	LENC BLU B2	0x08	RW	Bit[7:4]: Bit[3:0]:	

table 7-17 LENC registers (sheet 3 of 3)

address	register name	default value	R/W	description	n
0x5818	LENC CTRL00	0x04	RW	Bit[7:3]: Bit[2]: Bit[1]:	Not used Round enable 0: Round disable, do not use random round bit 1: Round enable, generate random round bit Coefficient manual enable 0: Disable coefficient manual mode 1: Enable coefficient manual mode, use auto mode to calculate the coefficient gain coefficient enable 0: Use the gain = 128 to calculate the coefficient 1: Use the sensor gain to calculate the coefficient
0x5819	LENC COEF TH	0x80	RW	Bit[7:0]:	LENC coefficient threshold
0x581A	LENC GAIN THRE1	0x00	RW	Bit[7:0]:	LENC gain low threshold (t1)
0x581B	LENC GAIN THRE2	0x00	RW	Bit[7:0]:	LENC gain high threshold (t2)
0x581C	LENC COEF MAN	0x80	RW	Bit[7:0]:	Coefficient manual input

	0x581C	LENC COEF MAN		0x80	RW	Bit[7:0]: Coefficient manual input
7.	17 AFC [I	0x6000 ~ 0x603 AFC registers	-	f 2)		
1,C	address	register name	default value	R/W	descriptio	n
5	0x6000	AFC CTRL00	0x1F	RW	Bit[7:5]: Bit[4]: Bit[3]: Bit[2:0]:	Edge filter enable 0: afc_edge module will not update 1: afc_edge module will update Edge filter b select 0: DGE selects b2 1: Edge selects b1

table 7-18 AFC registers (sheet 2 of 2)

address	register name	default value	R/W	description
0x6001	AFC CTRL01	0x01	RW	Bit[7:0]: Edge window0 left coordinate
0x6002	AFC CTRL02	0x00	RW	Bit[7:0]: Edge window0 top coordinate
0x6003	AFC CTRL03	0x76	RW	Bit[7:0]: Edge window0 right coordinate
0x6004	AFC CTRL04	0x42	RW	Bit[7:0]: Edge window0 bottom coordinate This bottom must be larger than any other
0x6005	AFC CTRL05	0x01	RW	Bit[7:0]: Edge window1 left coordinate
0x6006	AFC CTRL06	0x00	RW	Bit[7:0]: Edge window1 top coordinate
0x6007	AFC CTRL07	0x76	RW	Bit[7:0]: Edge window1 right coordinate
0x6008	AFC CTRL08	0x42	RW	Bit[7:0]: Edge window1 bottom coordinate
0x6009	AFC CTRL09	0x01	RW	Bit[7:0]: Edge window2 left coordinate
0x600A	AFC CTRL10	0x00	RW	Bit[7:0]: Edge window2 top coordinate
0x600B	AFC CTRL11	0x76	RW	Bit[7:0]: Edge window2 right coordinate
0x600C	AFC CTRL12	0x42	RW	Bit[7:0]: Edge window2 bottom coordinate
0x600D	AFC CTRL13	0x01	RW	Bit[7:0]: Edge window3 left coordinate
0x600E	AFC CTRL14	0x00	RW	Bit[7:0]: Edge window3 top coordinate
0x600F	AFC CTRL15	0x76	RW	Bit[7:0]: Edge window3 right coordinate
0x6010	AFC CTRL16	0x42	RW	Bit[7:0]: Edge window3 bottom coordinate
0x6011	AFC CTRL17	0x01	RW	Bit[7:0]: Edge window4 left coordinate
0x6012	AFC CTRL18	0x00	RW	Bit[7:0]: Edge window4 top coordinate
0x6013	AFC CTRL19	0x76	RW	Bit[7:0]: Edge window4 right coordinate
0x6014	AFC CTRL20	0x42	RW	Bit[7:0]: Edge window4 bottom coordinate
0x6015~ 0x603C	NOT USED	-	-	Not Used

8 operating specifications

8.1 absolute maximum ratings

table 8-1 absolute maximum ratings

parameter		absolute maximum rating ^a
ambient storage temperature		-40°C to +125°C
	V _{DD-A}	4.5V
supply voltage (with respect to ground)	V_{DD-D}	3V
	$V_{\text{DD-IO}}$	4.5V
electro etatio dicebargo (ESD)	human body model	2000V
electro-static discharge (ESD)	machine model	200V
all input/output voltages (with respect to ground)		-0.3V to V _{DD-IO} + 1V
I/O current on any input or output pin		±200 mA
peak solder temperature (10 second dwell time)	1,10	245°C

exceeding the absolute maximum ratings shown above invalidates all AC and DC electrical specifications and may
result in permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods
may affect device reliability.

8.2 functional temperature

table 8-2 functional temperature

parameter	range
operating temperature ^a	-30°C to +85°C junction temperature
stable image temperature ^b	0°C to +65°C junction temperature

a. sensor functions but image quality may be noticeably different at temperatures outside of stable image range

b. image quality remains stable throughout this temperature range

8.3 DC characteristics

DC characteristics (-30°C < T_J < 85°C) table 8-3

min	min	typ	max	unit			
3.0	3.0	3.3	3.6	V			
1.425	1.425	1.5	1.575	V			
1.7	1.7	1.8	3.6	V			
		80	90	mA			
		50	60	mA			
		0.7	1	mA			
		70	120	μΑ			
.5V, DOVI	.5V, DOVI	DD = 1.8V	/)				
			0.54	V			
1.26	1.26			V			
			10	pF			
digital outputs (standard loading 25 pF)							
1.62	1.62			V			
			0.18	V			
-0.5	-0.5	0	0.54	V			
1.26	1.26	1.8	2.3	V			
r minimum	r minimum	power dow	n current				
b. active current is based on sensor resolution at full size and at full speed, 25°C							
c. with MIPI function, the active current needs an additional 20mA							
full s	full s			nimum power down current speed, 25°C			

using the internal DVDD regulator is strongly recommended for minimum power down current

b. active current is based on sensor resolution at full size and at full speed, 25°C

with MIPI function, the active current needs an additional 20mA

standby current is measured at room temperature

based on DOVDD = 1.8V.

8.4 AC characteristics

AC characteristics ($T_A = 25$ °C, $V_{DD-A} = 3.3V$) table 8-4

symbol	parameter	min	typ	max	unit
ADC parar	neters				
В	analog bandwidth		40		MHz
DLE	DC differential linearity error		0.5		LSB
ILE	DC integral linearity error		1		LSB
	settling time for hardware reset	$ \sqrt{} $		<1	ms
	settling time for software reset			<1	ms
	settling time for resolution mode change			<1	ms
	settling time for register setting			<300	ms

table 8-5 timing characteristics

symbol	parameter	min	typ	max	unit
oscillator a	and clock input				
f _{OSC}	frequency (XVCLK)	6	24	27	MHz
t _r , t _f	clock input rise/fall time			5 (10 ^a)	ns

9 mechanical specifications

9.1 physical specifications

figure 9-1 package specifications

table 9-1 package dimensions

parameter	symbol	min	typ	max	unit
package body dimension x	А	7440	7465	7490	μm
package body dimension y	В	5840	5865	5890	μm
package height	С	720	780	840	μm
ball height	C1	130	160	190	μm
package body thickness	C2	575	620	665	μm
cover glass thickness	C3	425	445	465	μm
ball diameter	D	270	300	330	μm
total pin count	N		68 (23 NC)		
pin count x-axis	N1		11		
pin count y-axis	N2		9		
pins pitch x-axis	J1		640		μm
pins pitch y-axis	J2		600		μm
edge-to-pin center distance along x	S1	503	533	563	μm
edge-to-pin center distance along y	S2	503	533	563	μm

9.2 IR reflow specifications

figure 9-2 IR reflow ramp rate requirements

reflow conditions^{ab}

	table 9-2 reflow	conditions ^{ab}	
a () \	zone	description	exposure
70	ramp up A (T ₀ to T _{min})	heating from room temperature to 150°C	temperature slope ≤ 3°C per second
U c.V	soaking	heating from 150°C to 200°C	90 ~ 150 seconds
	ramp up B (t_L to T_p)	heating from 217°C to 245°C	temperature slope ≤ 3°C per second
5	peak temperature	maximum temperature in SMT	245°C +0/-5°C (duration max 30 sec)
	reflow (t_L to T_L)	temperature higher than 217°C	30 ~ 120 seconds
	ramp down A $(T_p \text{ to } T_L)$	cooling down from 245°C to 217°C	temperature slope ≤ 3°C per second
	ramp down B (T_L to T_f)	cooling down from 217°C to room temperature	temperature slope ≤ 2°C per second
	T_0 to T_p	room temperature to peak temperature	≤ 8 minutes

maximum number of reflow cycles = 3

N2 gas reflow or control O2 gas PPM<500 as recommendation

10 optical specifications

10.1 sensor array center

figure 10-1 sensor array center

note 1 this drawing is not to scale and is for reference only.

 $\begin{tabular}{ll} \textbf{note 2} as most optical assemblies invert and mirror the image, the chip is typically mounted with pins A1 to A11 oriented down on the PCB. \end{tabular}$

2710_CSP3_DS_10_1

10.2 lens chief ray angle (CRA)

figure 10-2 chief ray angle (CRA)

table 10-1 CRA versus image height plot (sheet 1 of 2)

field (%)	image height (mm)	CRA (degrees)	maximum +4 degree	minimum +4 degree
0	0.000	0.0	4.0	-4.0
0.05	0.165	1.0	5.0	-3.0
0.1	0.330	2.1	6.1	-1.9
0.15	0.496	3.1	7.1	-0.9
0.2	0.661	4.2	8.2	0.2
0.25	0.826	5.2	9.2	1.2
0.3	0.991	6.3	10.3	2.3
0.35	1.156	7.4	11.4	3.4
0.4	1.322	8.5	12.5	4.5
0.45	1.487	9.7	13.7	5.7

table 10-1 CRA versus image height plot (sheet 2 of 2)

0.5 1.652 10.8 14.8 6.8 0.55 1.817 12.0 16.0 8.0 0.6 1.982 13.2 17.2 9.2 0.65 2.148 14.4 18.4 10.4 0.7 2.313 15.7 19.7 11.7 0.75 2.478 16.9 20.9 12.9 0.8 2.643 18.2 22.2 14.2 0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6		maximum +4 degree	CRA (degrees)	image height (mm)	field (%)
0.6 1.982 13.2 17.2 9.2 0.65 2.148 14.4 18.4 10.4 0.7 2.313 15.7 19.7 11.7 0.75 2.478 16.9 20.9 12.9 0.8 2.643 18.2 22.2 14.2 0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	 6.8	14.8	10.8	1.652	0.5
0.65 2.148 14.4 18.4 10.4 0.7 2.313 15.7 19.7 11.7 0.75 2.478 16.9 20.9 12.9 0.8 2.643 18.2 22.2 14.2 0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	8.0	16.0	12.0	1.817	0.55
0.7 2.313 15.7 19.7 11.7 0.75 2.478 16.9 20.9 12.9 0.8 2.643 18.2 22.2 14.2 0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	9.2	17.2	13.2	1.982	0.6
0.75 2.478 16.9 20.9 12.9 0.8 2.643 18.2 22.2 14.2 0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	10.4	18.4	14.4	2.148	0.65
0.8 2.643 18.2 22.2 14.2 0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	11.7	19.7	15.7	2.313	0.7
0.85 2.808 19.5 23.5 15.5 0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	12.9	20.9	16.9	2.478	0.75
0.9 2.974 20.9 24.9 16.9 0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	14.2	22.2	18.2	2.643	0.8
0.95 3.139 22.2 26.2 18.2 1 3.304 23.6 27.6 19.6	15.5	23.5	19.5	2.808	0.85
1 3.304 23.6 27.6 19.6	16.9	24.9	20.9	2.974	0.9
ci O Coltà	18.2	26.2	22.2	3.139	0.95
O Development Coltid	19.6	27.6	23.6	3.304	1
CK!					

revision history

version 2.0 02.13.2014

initial release

Operelopment Col

version 2.01 10.17.2014

- in table 2-2, removed rows for STROBE I/O control, STROBE output select, STROBE output value, STROBE input value
- in table 7-1, changed description of register bit 0x3016[1] to Not used, changed description of register bit 0x3019[1] to Not used, changed description of register bit 0x301C[1] to Not used, and changed description of register bit 0x3A20[2] to Not used

defining the future of digital imaging $^{\text{\tiny M}}$

OmniVision Technologies, Inc.

UNITED STATES

4275 Burton Drive Santa Clara, CA 95054

tel: +1 408 567 3000 fax: +1 408 567 3001 email: sales@ovt.com

UNITED KINGDOM

Hook, Hampshire +44 1256 744 610

GERMANY

Munich +49 89 63 81 99 88

INDIA

Bangalore +91 80 4112 8966

CHINA

Beijing + 86 10 6580 1690 Shanghai + 86 21 6175 9888

Shenzhen + 86 755 8384 9733

JAPAN

Yokohama +81 45 478 7977 Osaka +81 6 4964 2606

KOREA

Seoul + 82 2 3478 2812

SINGAPORE +65 6933 1933

TAIWAN

Taipei +886 2 2657 9800