Business Case Study - Target

Q1: Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

- 1. Data type of columns in a Datatype of Table
- 2. Time period for which the data is given
- 3. Cities and States covered in the dataset

Data type of columns in a Datatype of Table: customers

select
count(*)
from ecommerce.customers

Observation: There are around 99441 rows in customers table

Cities and States covered in the dataset:

select
distinct
customer_city
from ecommerce.customers

Observation: There are around 4119 distinct customer cities.

select distinct customer_state from ecommerce.customers

Observation: There are around 27 distinct customer state.

Data type of columns in a Datatype of Table: geolocation

Observation: There are around 1000163 rows in geolocation table

Cities and States covered in the dataset:

Observation: There are around 8011 distinct geolocation cities

select
distinct geolocation_state

from `ecommerce.geolocation`

Observation: There are around 27 distinct geolocation states

Data type of columns in a Datatype of Table: order_items

select
count(*)

from `ecommerce.order_items`

Observation: There are around 112650 rows in order_items table

Time period for which the data is given: Shipping limit date

select min(shipping_limit_date), max(shipping_limit_date) from `ecommerce.order_items

Observation: Shipping_limit_date range is between 19-09-2016 to 09-04-2020

Data type of columns in a Datatype of Table: order reviews

Time period for which the data is given: review_creation_date, review_answer_timestamp

select
min(review_creation_date) as min_rev_creation_date,
max(review_creation_date) as max_rev_creation_date,
min(review_answer_timestamp) as min_rev_answer_date,
max(review_answer_timestamp) as max_rev_answer_date
from ecommerce.order_reviews

Observation: Range for review and answer is between: 0001-01-18 to 0031-12-17 but the year in the date is not correct hence we cannot consider it for range

Data type of columns in a Datatype of Table: orders

select
count(*)
from `ecommerce.orders`

Observation: There are around 99441 rows in orders table

Time period for which the data is given:

```
select
min(order_purchase_timestamp) as min_order_purchase_timestamp,
max(order_purchase_timestamp) as max_order_purchase_timestamp,
min(order_approved_at) as min_order_approved_at,
max(order_approved_at) as max_order_approved_at,
min(order_delivered_carrier_date) as min_order_delivered_carrier_date,
max(order_delivered_carrier_date) as max_order_delivered_carrier_date,
min(order_delivered_customer_date) as min_order_delivered_customer_date,
max(order_delivered_customer_date) as max_order_delivered_customer_date,
min(order_estimated_delivery_date) as min_order_estimated_delivery_date,
max(order_estimated_delivery_date) as max_order_estimated_delivery_date
from ecommerce.orders
```


Observation: Overall date range for order purchase and delivery lies between 2016-09-04 to 2018-11-12

Data type of columns in a Datatype of Table: payments

f0_

103886

Row

Observation: There are around 103886 rows in payments

Data type of columns in a Datatype of Table: products

Observation: There are around 32951 rows in products table

Data type of columns in a Datatype of Table: sellers

select
count(*)
from `ecommerce.sellers`

Observation: There are around 3095 rows in sellers table

Cities and States covered in the dataset:

select
distinct
seller_city
from ecommerce.sellers

Observation: There are around 611 distinct seller cities

select
distinct
seller_state
from ecommerce.sellers

Observation: There are around 23 distinct seller states

Q2: In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select * from
(select
extract(month FROM ord.order_purchase_timestamp) as purcahse_month,
count(ord.order_id)
from `ecommerce.orders` as ord
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
group by extract(month FROM ord.order_purchase_timestamp)) as x
order by x.purcahse_month
```

JSON	RESULTS	JOB INFORMATION		
	f0_ //	purcahse_m	Row	
	8069	1	1	
	8508	2	2	
	9893	3	3	
	9343	4	4	
	10573	5	5	
	9412	6	6	
	10318	7	7	
	10843	8	8	
	4305	9	9	
	4959	10	10	
	7544	11	11	
	5674	12	12	

	purcahse_month	f0_ ▼	
1.	August	10,843	
2.	May	10,573	
3.	July	10,318	
4.	March	9,893	
5.	June	9,412	
6.	April	9,343	
7.	February	8,508	
8.	January	8,069	
9.	November	7,544	
10.	December	5,674	
11.	October	4,959	
		1-12/12 < >	

Observation: August, May and July month has more orders (greater than 10300 orders) in Brazil city.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Parts of the Day

Dawn – 4 am to 6 am. (4 to 6)

Morning - 6 am to 12 pm (noon). (6 to 12)

Afternoon - 12 pm to 5 pm. (12 to 17)

Evening - 5 pm to 9 pm. (17 to 21)

Night - 9 pm to 4 am. (21 to 4)

```
select
count(y.order_id),
y.time_bins from
(select
x.order_id,
case
 when x.purcahse_time between '04:00:00' and '05:59:59'
 then "Dawn"
 when x.purcahse_time between '06:00:00' and '11:59:59'
 then "Morning"
 when x.purcahse_time between '12:00:00' and '16:59:59'
 then "Afternoon"
 when x.purcahse_time between '17:00:00' and '20:59:59'
 then "Evening"
 when x.purcahse_time between '21:00:00' and '23:59:59'
 then "Night"
 when x.purcahse_time between '00:00:00' and '03:59:59'
 then "Night"
end as time_bins
from
(select
extract(time FROM ord.order_purchase_timestamp) as purcahse_time,
ord.order_id
from `ecommerce.orders` as ord
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id) as x) as y
group by y.time_bins
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION
Row	f0_ //	time_bins	/	
1	22240	Morning		
2	20502	Night		
3	24094	Evening		
4	32211	Afternoon		
5	394	Dawn		

	time_bins	f0_ ▼
1.	Afternoon	32,211
2.	Evening	24,094
3.	Morning	22,240
4.	Night	20,502
5.	Dawn	394

Observation: Afternoon has more orders (around 32211 orders) in Brazil city.

1-5/5 < >

Q3: Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by region, states

```
select * from
(select
extract(month FROM ord.order_purchase_timestamp) as purcahse_month,
cust.customer_city,
cust.customer_state,
count(ord.order_id) as count1
from `ecommerce.orders` as ord
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
group by extract(month FROM ord.order_purchase_timestamp), cust.customer_city, cust.custome
r_state) as x
order by x.count1 desc, x.purcahse_month
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row /	purcahse_m	customer_city	10	customer_state	1.	count1
1	8	sao paulo		SP		1954
2	5	sao paulo		SP		1743
3	7	sao paulo		SP		1625
4	3	sao paulo		SP		1533
5	6	sao paulo		SP		1532
6	4	sao paulo		SP		1467
7	2	sao paulo		SP		1272
8	1	sao paulo		SP		1195
9	11	sao paulo		SP		1118
10	12	sao paulo		SP		840
11	8	rio de janeiro		RJ		770
12	7	rio de janeiro		RJ		714
10	5	rio de ianeiro		DΙ		700

	customer_city	count1 ▼		
1.	sao paulo	15,540		
2.	rio de janeiro			
3.	belo horizonte 2			
4.	brasilia	2,131		
5.	curitiba	1,521		
6.	campinas	1,444		
7.	porto alegre	1,379		
8.	salvador	1,245		
9.	guarulhos	1,189		
10.	sao bernardo do campo	938		
11.	niteroi	849		
12.	santo andre	797		
13.	osasco	740		
14.	santos	71;		
15.	goiania	692		
16.	sao jose dos campos	69		
17.	fortaleza	654		
18.	sorocaba	633		
19.	recife	613		
20.	florianopolis	570		
		1-50/4119 < >		

Observation:

Sao Paulo city in Brazil has highest orders of 15540

Rio de janerio city in Brazil has second highest order of 6882

Belo horizonte city in Brazil has third highest order of 2773

Sao Paulo and Rio de Janeiro city in Brazil has highest orders in the month of August

Belo horizonte city in Brazil has highest orders in the month of March and followed by August

Based on this it looks like August month has more orders

2. How are customers distributed in Brazil

```
select * from
(select
cust.customer_city,
count(ord.order_id) as count1
from `ecommerce.orders` as ord
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
group by cust.customer_city ) as x
order by x.count1 desc
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	customer_city	11	count1	
1	sao paulo		15540	
2	rio de janeiro		6882	
3	belo horizonte		2773	
4	brasilia 2131			
5	curitiba		1521	
6	campinas		1444	
7	porto alegre		1379	
8	salvador		1245	
^			1100	

	customer_city	count1 ▼
1.	sao paulo	15,540
2.	rio de janeiro	6,882
3.	belo horizonte	2,773
4.	brasilia	2,131
5.	curitiba	1,521
6.	campinas	1,444
7.	porto alegre	1,379
8.	salvador	1,245
9.	guarulhos	1,189
10.	sao bernardo do campo	938
11.	niteroi	849
		1-50/4119 <

Observation:

Sao Paulo city in Brazil has highest orders of 15540

Rio de janerio city in Brazil has second highest order of 6882

Belo horizonte city in Brazil has third highest order of 2773

Q4: Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
with price_17 as
(select
extract(month FROM ord.order_purchase_timestamp) as purchase_month,
extract(year FROM ord.order_purchase_timestamp) as purchase_year,
round(sum(items.price), 2) as price_2017
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order id = items.order id
where extract(month FROM ord.order_purchase_timestamp) not in (9,10,11,12)
and extract(year FROM ord.order_purchase_timestamp) in (2017)
group by extract(month FROM ord.order_purchase_timestamp), extract(year FROM ord.order_purc
hase_timestamp)),
price_18 as
(select
extract(month FROM ord.order_purchase_timestamp) as purchase_month,
extract(year FROM ord.order_purchase_timestamp) as purchase_year,
round(sum(items.price), 2) as price 2018
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
where extract(month FROM ord.order_purchase_timestamp) not in (9,10,11,12)
and extract(year FROM ord.order_purchase_timestamp) in (2018)
```

```
group by extract(month FROM ord.order_purchase_timestamp), extract(year FROM ord.order_purc
hase_timestamp))
```

```
select price_17.purchase_month, price_17.price_2017, price_18.price_2018,
(price_18.price_2018 - price_17.price_2017) as price_dif,
(round((price_18.price_2018 - price_17.price_2017)*100/(price_18.price_2018 + price_17.price_2017))) as per_inc_price
from price_17 inner join price_18
on price_17.purchase_month = price_18.purchase_month
```

JOB IN	FORMATION	RI	ESULTS	JS0	N E	XEC	UTION DETAILS	
Row /	purchase_month	11	price_2017	/ P	rice_2018	11	price_dif	per_inc_price //
1		4	359927.23		996647.7	5	636720.52	47.0
2		7	498031.48		895507.2	2	397475.74	29.0
3		6	433038.6		865124.3	1	432085.710	33.0
4		2	247303.02		844178.7	1	596875.69	55.0
5		1	120312.87		950030.3	5	829717.49	78.0
6		8	573971.68		854686.3	3	280714.649	20.0
7		3	374344.3		983213.4	4	608869.139	45.0
8		5	506071.14		996517.6	8	490446.540	33.0

	purchase_month	per_inc_price *
1.	January	78
2.	February	55
3.	April	47
4.	March	45
5.	June	33
6.	May	33
7.	July	29
8.	August	20

Observation:

Percentage increase in cost of order is high in month of January around 78% and second highest in February month around 55% for year 2018 when compared with year 2017

1-8/8 < >

2. Mean & Sum of price and freight value by customer state

```
with price_avg as
(select
cust.customer_state,
round(sum(items.price + items.freight_value)) as total_price_freight,
round(sum(items.price + items.freight_value)/count(ord.order_id)) as mean_price_freight,
count(ord.order_id) as count1
from `ecommerce.orders` as ord
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
left join `ecommerce.order_items` as items
on items.order_id = ord.order_id
group by cust.customer_state )

select customer_state, total_price_freight, mean_price_freight from price_avg
order by total_price_freight desc
```

JOB IN			JSON	EXECUTION DETAILS
Row	customer_state	le	total_price_f	mean_price
1	SP		5921678.0	124.0
2	RJ		2129682.0	145.0
3	MG		1856161.0	140.0
4	RS		885827.0	141.0
5	PR		800935.0	138.0
6	BA		611507.0	160.0
7	SC		610214.0	145.0
8	DF		353229.0	146.0
9	GO		347707.0	148.0
10	ES		324802.0	143.0
11	PE		322238.0	178.0

K		_	↓ 註 ★ :
	customer_state	mean_price_freight	total_price_freight
1.	SP	124	5,921,678
2.	RJ	145	2,129,682
3.	MG	140	1,856,161
4.	RS	141	885,827
5.	PR	138	800,935
6.	ВА	160	611,507
7.	sc	145	610,214
8.	DF	146	353,229
9.	GO	148	347,707
10.	ES	143	324,802
11.	PE	178	322,238
			1-27/27 < >

Observation:

1) Sum of price and freight is more for SP customer state with value 5921678

And second highest for RJ state with value 2129682.0

2) Mean of price and freight is more for PB customer state with value 233

And second highest for AL State with value 216

Q5: Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

```
select
count(*)
from `ecommerce.orders`
where order_delivered_customer_date is null
```

Quer	y results		
JOB IN	FORMATION	RESULTS	JSON
Row	f0_ //		The state of the s
1	2965		

There are around 2965 rows are null for order_delivered_customer_date

Hence analysing the number days for actual delivery and estimated delivery for non null values in field order_delivered_customer_date

```
select * from
(select
order_id,
datetime_diff(order_delivered_customer_date , order_purchase_timestamp, DAY) as time_to_del
ivery ,
datetime_diff(order_estimated_delivery_date , order_purchase_timestamp, DAY) as diff_estima
ted_delivery
from `ecommerce.orders`
where order_delivered_customer_date is not null
) as x
order by x.time_to_delivery desc, x.diff_estimated_delivery desc
```

ow /	order_id	time_to_delivery	diff_estimated_delivery
1	ca07593549f1816d26a572e06		28
2	1b3190b2dfa9d789e1f14c05b	208	19
3	440d0d17af552815d15a9e41a	195	30
4	2fb597c2f772eca01b1f5c561b	. 194	39
5	0f4519c5f1c541ddec9f21b3bd	. 194	32
6	285ab9426d6982034523a855f	194	28
7	47b40429ed8cce3aee9199792	. 191	15
8	2fe324febf907e3ea3f2aa9650	189	22
9	2d7561026d542c8dbd8f0daea	188	28
10	437222e3fd1b07396f1d9ba8c	187	42

oad more

		↑ ↓ 菲	<i>*</i> :
	order_id	time_to_delivery *	diff_esti
1.	ca07593549f1816d26a572	209	28
2.	1b3190b2dfa9d789e1f14c	208	19
3.	440d0d17af552815d15a9e	195	30
4.	2fb597c2f772eca01b1f5c5	194	39
5.	285ab9426d6982034523a	194	28
6.	0f4519c5f1c541ddec9f21b	194	32
7.	47b40429ed8cce3aee9199	191	15
8.	2fe324febf907e3ea3f2aa9	189	22
9.	2d7561026d542c8dbd8f0d	188	28
10.	437222e3fd1b07396f1d9b	187	42
11.	c27815f7e3dd0b926b5855	187	25
		1 - 50 / 96476	(>

2. Create columns:

- time_to_delivery = order_purchase_timestamp order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
select * from
(select
order_id,
datetime_diff(order_delivered_customer_date , order_purchase_timestamp, DAY) as time_to_del
ivery ,
datetime_diff(order_estimated_delivery_date , order_purchase_timestamp, DAY) as diff_estima
ted_delivery
from `ecommerce.orders`
where order_delivered_customer_date is not null
) as x
order by x.time_to_delivery desc, x.diff_estimated_delivery desc
```

ow /	order_id	time_to_delivery	diff_estimated_delivery
1	ca07593549f1816d26a572e06	209	9 28
2	1b3190b2dfa9d789e1f14c05b	. 208	3 19
3	440d0d17af552815d15a9e41a.	195	5 30
4	2fb597c2f772eca01b1f5c561b.	194	39
5	0f4519c5f1c541ddec9f21b3bd.	194	32
6	285ab9426d6982034523a855f.	194	4 28
7	47b40429ed8cce3aee9199792.	191	1 15
8	2fe324febf907e3ea3f2aa9650	. 189	22
9	2d7561026d542c8dbd8f0daea	188	3 28
10	437222e3fd1b07396f1d9ba8c	. 187	7 42

oad more

		↑ ↓ 菲	<i>*</i> :
	order_id	time_to_delivery •	diff_esti
1.	ca07593549f1816d26a572	209	28
2.	1b3190b2dfa9d789e1f14c	208	19
3.	440d0d17af552815d15a9e	195	30
4.	2fb597c2f772eca01b1f5c5	194	39
5.	285ab9426d6982034523a	194	28
6.	0f4519c5f1c541ddec9f21b	194	32
7.	47b40429ed8cce3aee9199	191	15
8.	2fe324febf907e3ea3f2aa9	189	22
9.	2d7561026d542c8dbd8f0d	188	28
10.	437222e3fd1b07396f1d9b	187	42
11.	c27815f7e3dd0b926b5855	187	25
		1 - 50 / 96476	(>

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
select
x.customer_state,
round(avg(x.freight_value)) as avg_freight_value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
(select
ord.order_id,
items.freight_value,
cust.customer_state,
datetime diff(ord.order delivered customer date , ord.order purchase timestamp, DAY) as tim
e_to_delivery ,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f estimated delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order_delivered_customer_date is not null
) as x
group by x.customer_state
```

JOB IN	FORMATION	RESULTS	JSON EXECUTION	ON DETAILS	
Row /	customer_state	le	avg_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
1	RJ		21.0	15.0	26.0
2	MG		21.0	12.0	24.0
3	SC		22.0	15.0	26.0
4	SP		15.0	8.0	19.0
5	GO		23.0	15.0	27.0
6	RS		22.0	15.0	28.0
7	BA		26.0	19.0	29.0
8	MT		28.0	18.0	31.0
9	SE		37.0	21.0	30.0
10	PE		33.0	18.0	31.0
11	ТО		37.0	17.0	29.0
12	CE		33.0	21.0	31.0
13	PR		20.0	11.0	24.0

Resulte r

avg_diff_estimated_delivery avg_freight_value avg_time_to_delivery

40

Analysis avg_time_to_delivery

Analysis a

4. Sort the data to get the following:

1. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Top 5 highest average freight

```
with ord_details as (
select
x.customer_state,
round(avg(x.freight_value)) as avg_freight_value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
(select
ord.order_id,
items.freight_value,
cust.customer_state,
```

```
datetime_diff(ord.order_delivered_customer_date , ord.order_purchase_timestamp, DAY) as tim
e_to_delivery ,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f_estimated_delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order_delivered_customer_date is not null
) as x
group by x.customer_state
)

select customer_state, avg_freight_value from ord_details
order by avg_freight_value desc limit 5
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	customer_state	h	avg_freight	
1	RR		43.0	
2	PB		43.0	
3	RO		41.0	
4	AC		40.0	
5	PI		39.0	

Observation: State RR has the highest average freight value followed by PB, RO, AC and PI.

Top 5 lowest average freight

```
with ord_details as (
select
x.customer_state,
round(avg(x.freight_value)) as avg_freight_value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
```

```
(select
ord.order_id,
items.freight_value,
cust.customer_state,
datetime_diff(ord.order_delivered_customer_date , ord.order_purchase_timestamp, DAY) as tim
e_to_delivery ,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f_estimated_delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order_delivered_customer_date is not null
) as x
group by x.customer_state
select customer_state, avg_freight_value from ord_details
order by avg_freight_value asc limit 5
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	le	avg_freight	
1	SP	500	15.0	
2	PR		20.0	
3	MG		21.0	
4	DF		21.0	
5	RJ		21.0	

Observation: State SP has the lowest average freight value followed by PR, RJ, MG and DF.

2. Top 5 states with highest/lowest average time to delivery

Top 5 states with highest average time to delivery

```
with ord_details as (
select
x.customer_state,
round(avg(x.freight value)) as avg freight value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
(select
ord.order_id,
items.freight_value,
cust.customer_state,
datetime_diff(ord.order_delivered_customer_date , ord.order_purchase_timestamp, DAY) as tim
e_to_delivery ,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f estimated delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order_delivered_customer_date is not null
) as x
group by x.customer_state
select customer_state, avg_time_to_delivery from ord_details
order by avg_time_to_delivery desc limit 5
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	customer_state	li	avg_time_to	
1	RR	Ψ.	28.0	
2	AP		28.0	
3	AM		26.0	
4	AL		24.0	
5	PA		23.0	

Observation: State RR has the highest average time to delivery followed by PA, AP, AM and AL.

Top 5 states with lowest average time to delivery

```
with ord details as (
select
x.customer_state,
round(avg(x.freight_value)) as avg_freight_value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
(select
ord.order_id,
items.freight_value,
cust.customer_state,
datetime diff(ord.order delivered customer date , ord.order purchase timestamp, DAY) as tim
e_to_delivery,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f_estimated_delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order delivered customer date is not null
) as x
group by x.customer_state
select customer_state, avg_time_to_delivery from ord_details
order by avg_time_to_delivery asc limit 5
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	customer_state	le	avg_time_to	
1	SP	5004	8.0	
2	PR		11.0	
3	MG		12.0	
4	DF		13.0	
5	SC		15.0	

Observation: State SP has the lowest average time to delivery followed by PR, MG, DF and SC.

3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 states where delivery is fast compared to estimated date

```
with ord_details as (
select
x.customer_state,
round(avg(x.freight_value)) as avg_freight_value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
(select
ord.order_id,
items.freight_value,
```

```
cust.customer_state,
datetime_diff(ord.order_delivered_customer_date , ord.order_purchase_timestamp, DAY) as tim
e_to_delivery ,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f_estimated_delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order_delivered_customer_date is not null
) as x
group by x.customer_state
)
select customer_state, avg_diff_estimated_delivery from ord_details
order by avg_diff_estimated_delivery desc limit 5
```

JOB IN	IFORMATION	RESULTS	JSON EXECUT	TION DETAILS
Row /	customer_state	le	avg_diff_estimated_delive	ry /
1	RR	**		46.0
2	AP			46.0
3	AM			45.0
4	AC			41.0
5	RO			39.0

Observation: State RR has the fastest delivery when compared with estimated delivery which is followed by AP, AM, AC and RO

Top 5 states where delivery is not so fast compared to estimated date

```
with ord_details as (
select
x.customer_state,
round(avg(x.freight_value)) as avg_freight_value,
round(avg(x.time_to_delivery)) as avg_time_to_delivery,
round(avg(x.diff_estimated_delivery)) as avg_diff_estimated_delivery
from
(select
ord.order_id,
items.freight_value,
cust.customer_state,
datetime_diff(ord.order_delivered_customer_date , ord.order_purchase_timestamp, DAY) as tim
e_to_delivery ,
datetime_diff(ord.order_estimated_delivery_date , ord.order_purchase_timestamp, DAY) as dif
f_estimated_delivery
from `ecommerce.orders` as ord
left join `ecommerce.order_items` as items
on ord.order_id = items.order_id
left join `ecommerce.customers` as cust
on ord.customer_id = cust.customer_id
where ord.order_delivered_customer_date is not null
) as x
group by x.customer_state
select customer_state, avg_diff_estimated_delivery from ord_details
order by avg_diff_estimated_delivery asc limit 5
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	customer_state	1.	avg_diff_est	
1	SP		19.0	
2	DF		24.0	
3	MG		24.0	
4	PR		24.0	
5	ES		25.0	

	customer_state *	avg_diff_estimated_delivery
1	SP	19
2.	PR	24
3.	MG	24
4.	ES	25
5.	DF	24

1-5/5 < >

Observation: State SP has slowest delivery when compared with estimated delivery which is followed by DF, MG, PR and ES

Q6: Payment type analysis:

1. Month over Month count of orders for different payment types

```
select * from
(select
pay.payment_type,
count(ord.order_id) as order_counts,
extract(month from ord.order_purchase_timestamp) as order_month
from
   `ecommerce.orders`as ord
inner join
   `ecommerce.payments`as pay
on ord.order_id = pay.order_id
group by pay.payment_type, extract(month from ord.order_purchase_timestamp)) as x
order by x.order_month
```

000111	FORMATION RESULTS	JSON	EXECUTION DETAILS
low /	payment_type //	order_counts //	order_month //
1	credit_card	6103	1
2	UPI	1715	1
3	voucher	477	1
4	debit_card	118	1
5	UPI	1723	2
6	credit_card	6609	2
7	voucher	424	2
8	debit_card	82	2
9	credit_card	7707	3
10	UPI	1942	3
11	debit_card	109	3
12	voucher	591	3
13	voucher	572	4

Observation:

Credit card payment is more for all the months and it is highest for August month.

UPI payment is second in all the months and it is highest for August month.

Voucher payment is highest for May month.

Debit card payment is highest for August month.

2. Distribution of payment instalments and count of orders

select * from (select
pay.payment_installments,

```
count(ord.order_id) as order_counts
from
    `ecommerce.orders`as ord
    inner join
    `ecommerce.payments`as pay
    on ord.order_id = pay.order_id
    group by pay.payment_installments) as x
    order by x.order_counts desc
```

JOB IN	FORMATION RESU	JLTS	JSON	EXECUTION [
Row	payment_installments //	order_coun	ts /	
1	1	525		
2	2	124	13	
3	3	104	61	
4	4	70	98	
5	10	53	28	
6	5	52	39	
7	8	42	68	
8	6	39	20	
9	7	16	26	
10	9	6	44	
11	12	1	33	
12	15		74	
13	18		27	

		1 V 2 7 1
	payment_installments	order_counts ▼
1.	1	52,546
2.	2	12,413
3.	3	10,461
4.	4	7,098
5.	10	5,328
6.	5	5,239
7.	8	4,268
8.	6	3,920
9.	7	1,626
10.	9	644
11.	12	133
12.	15	74
13.	18	27
14.	11	23
15.	24	18
16.	20	17
17.	13	16
18.	14	15
		1-24/24 < >

Observation:

Count of orders is more for single payment around 52546

And count of orders gradually decreases if the number of instalments increases.

Insights / Observations:

- 1) 99441 rows are available in customers table.
- 2) There are around 4119 distinct customer cities in customer table.
- 3) There are around 27 distinct customer state in customer table.
- 4) 1000163 rows are available in geolocation table.
- 5) There are around 8011 distinct geolocation cities in geolocation table.
- 6) There are around 27 distinct geolocation states in geolocation table.
- 7) 112650 rows are available in order_items table.
- 8) Shipping limit date range is between 19-09-2016 to 09-04-2020 in order items table.
- 9) Range for review and answer is between: 0001-01-18 to 0031-12-17 in reviews table But the year in the date is not correct hence we cannot consider it for range.
- 10) 99441 rows are available in orders table.
- 11) Overall date range for order purchase and delivery lies in range 2016-09-04 to 2018-11-12 in orders table.
- 12) 103886 rows are available in payments table.
- 13) 32951 rows are available in products table.
- 14) 3095 rows are available in sellers table.
- 15) There are around 611 distinct seller cities in sellers table.
- 16) There are around 23 distinct seller states in sellers table.
- 17) August, May and July month has more orders (greater than 10300 orders) in Brazil city.
- 18) Afternoon time has more orders (around 32211 orders) in Brazil city.
- 19) Sao Paulo city in Brazil has highest orders of 15540 Rio de janerio city in Brazil has second highest order of 6882 Belo horizonte city in Brazil has third highest order of 2773.

- 20) Sao Paulo and Rio de Janeiro city in Brazil has highest orders in the month of August Belo horizonte city in Brazil has highest orders in the month of March and followed by August Based on this it looks like August month has more orders.
- 21) Percentage increase in cost of order is high in month of January around 78% and second highest in February month around 55% for year 2018 when compared with year 2017.
- 22) Sum of price and freight is more for SP customer state with value 5921678 And second highest for RJ state with value 2129682.0.
- 23) Mean of price and freight is more for PB customer state with value 233 And second highest for AL State with value 216.
- 24) State RR has the highest average freight value followed by PB, RO, AC and PI.
- 25) State SP has the lowest average freight value followed by PR, RJ, MG and DF.
- 26) State RR has the highest average time to delivery followed by PA, AP, AM and AL.
- 27) State SP has the lowest average time to delivery followed by PR, MG, DF and SC.
- 28) State RR has the fastest delivery when compared with estimated delivery which is followed by AP, AM, AC and RO.
- 29) State SP has slowest delivery when compared with estimated delivery which is followed by DF, MG, PR and ES.
- 30) Credit card payment is more for all the months and it is highest for August month.

 UPI payment is second in all the months and it is highest for August month.

Voucher payment is highest for May month.

Debit card payment is highest for August month.

31) Count of orders is more for single payment around 52546

And count of orders gradually decreases if the number of instalments increases.

Recommendations:

- 1) August, May and July month has more orders (greater than 10300 orders) in Brazil city. Target company can provide attractive promotions for people for months other than August, May and July so that people in Brazil start buying products over other months also. So that the order purchase is uniform across the year.
- 2) Afternoon time has more orders (around 32211 orders) in Brazil city. <u>Target company can Offer discounted price during other timings so that the orders will be placed during other timings also which will increase the business.</u>
- 3) Sao Paulo city in Brazil has highest orders of 15540. Rio de janerio city in Brazil has second highest order of 6882. Belo horizonte city in Brazil has third highest order of 2773. <u>Target company can provide attractive promotions and offer discounted price to attract the customers from other cities of Brazil where the orders is less, which will increase the number of orders, number of new customers and in turn it increases the business.</u>
- 4) <u>Target company can increase the resources in Sao Paulo, Rio de janero, and Belo horizonto cities of Brazil which has the highest orders especially during the festive season.</u>
- 5) Percentage increase in cost of order is high in month of January around 78% and second highest in February month around 55% for year 2018 when compared with year 2017. <u>Target company can give promotions and offers on other months for bulk orders which will increase the business</u>.
- 6) State RR has the highest average freight value followed by PB, RO, AC and PI. Hence <u>Target</u> company can give offer on regions with highest freight value to increase the business.

- 7) State SP has slowest delivery when compared with estimated delivery which is followed by DF, MG, PR and ES. So <u>target company can increase their presence in slowest delivery regions to reduce the delivery timings.</u>
- 8) <u>Target company can give products without EMI so that customers can buy more products and pay later which will increase the business.</u>