Gráfalgoritmusok

Gaskó Noémi

2023. március 16.

Tartalomjegyzék

- Alkalmazások (folyt.)
 - BFS, DFS alkalmazások
 - Elvágó pontok, hidak és kétszeresen összefüggő komponensek
- Fák
 - Fák száma
 - Prüfer kódolás
 - Huffmann algoritmusa
 - Minimális feszítőfák

Múlt órán

- mélységi bejárás
- szélességi bejárás
- alkalmazások

Páros gráf

eldönteni egy gráfról, hogy páros-e

Páros gráf

Egy gráf páros gráf, ha csomópontjainak a halmaza felosztható, két diszjunkt halmazra (A és B), úgy hogy az élek végpontjai különböző halmazokba kerüljenek.

Megoldás: lásd 3_jegyyet.pdf

Körök ellenőrzése

Hogyan ellenőrizzük irányított gráfokban, hogy van-e kör?

Megoldás: lásd 3_jegyzet.pdf

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 5/52

Elvágó pontok és hidak

Elvágó pont

Legyen G=(V,E) egy nem irányított gráf és $u\in V$ egy tetszőleges csomópont a gráfban. Az u csomópont **elvágó pont** a G gráfban, ha létezik legalább két csomópont $x,y\in V, x\neq y, x\neq u,$ és $y\neq u$, úgy hogy bármely $x\leadsto y$ út átmegy u-n.

vagy

Elvágó pont

Egy irányítatlan gráfban elvágó pontnak vagy artikulációs pontnak nevezzük azokat a csúcsokat, melyeket ha eltávolítjuk a gráfból a hozzá illeszkedő élekkel együtt, növekszik az összefüggő komponensek száma.

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 6 / 52

Híd

Legyen G = (V, E) egy nem irányított gráf, $(u, v) \in E$ egy él a gráfból. Az (u, v) egy híd a G gráfban ha létezik legalább két pont $x, y \in V, x \neq y$ úgy hogy bármely $x \rightsquigarrow y$ út a G-ben tartalmazza (u, v)-t.

vagy

Híd

Egy nem irányított gráfban hídnak nevezzük azokat az éleket, melyek eltávolításával növekszik az összefüggő komponensek száma.

Kétszeresen összefüggő komponensek

Kétszeresen összefüggő komponens

Legyen G=(V,E) egy nem irányított gráf. Egy **kétszeresen összefüggő komponense** a G-nek egy maximális részgráf $G_b=(V_b,E_b),\,V_b\subseteq V$ és $E_b\subseteq E$ amely nem tartalmaz elvágó pontot.

vagy

Kétszeresen összefüggő komponens

Legyen G=(V,E) egy nem irányított gráf. Egy **kétszeresen összefüggő komponense** a G-nek egy maximális részgráf $G_b=(V_b,E_b),\ V_b\subseteq V$ és $E_b\subseteq E$ úgyhogy bármely él esetén α és $\beta\in E_b$ létezik egy lánc mely tartalmazza az α és β éleket.

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 8/5

- elvágó pontok naiv megkeresése: O(n(n+m)) időben
- hidak megkeresése O(m(n+m)) időben
- Tarjan BICONNECT algoritmusa: egyetlen mélységi bejárással

Tarjan BICONNECT algoritmusa

- hasonlóan mint a Tarjan STRONGCONNECT algoritmusa
- tároljuk a belépési időt minden csúcsra (belep[v])
- a vermen éleket tárolunk
- minden v csomópont esetén tároljuk a low[v] értéket, a legkorábbi csúcs belépési ideje, amelyet v-ből elérhetünk faéleken vagy max 1 visszamutató élen

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 10 / 52

Tarjan BICONNECT algoritmusa (folyt.)

Híd

Egy (u,v) él akkor híd, ha (u,v) faél és $low[v] \geq belep[v]$

Elvágó pont

Egy v csomópont elvágó pont:

- Ha v nem a bejárási fa gyökere, és létezik olyan w gyereke a fában, melyre $low[w] \geq belep[v]$
- Ha v a bejárási fa gyökere és van legalább két gyereke

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 11/52

Tarjan BICONNECT algoritmusa¹ (folyt.)

```
BIC(v, parent)
time++
belep[v]=time
low[v]=time
gyerek=0
elvagocsucs=false;
FOR minden w szomszédjára v-nek
  IF (belep[w]=-1)
    verem.push(v,w)
    gyerek++
    BIC(w,v)
    low[v] = min(low[v], low[w])
    IF (low[w]>belep[w])
      hidak.add(v,w)
```

¹forrás: Patcas Csaba kurzus

Tarjan BICONNECT algoritmusa (folyt.)

```
IF (low[w] \ge belep[v])
      elvagoCsucs=TRUE
      komponensek++
      WHILE (verem.empty==false) AND
(komponensek[komponensek].last\neq \{v, w\})
         komponensek[komponensek].add(verem.top())
         verem.pop()
  ELSE IF (w \neq parent) AND (belep[w] < belep[v])
    verem.push(v,w)
    low[v]=min(low[v],belep[w])
IF ((parent\neq-1) AND elvagoCsucs) OR ((parent=-1) AND (gyerek>1))
  elvagocsucsok.add(v)
```

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 13/52

Egy példa

lásd 3_jegyzet.pdf

Fák

Fák értelmezése

Legyen G egy n-csúcsú gráf. A következő állítások egyenértékûek és a fákat jellemzik:

- ullet G összefüggő és körmentes
- ullet G körmentes és n-1 éle van
- ullet G összefüggő és n-1 éle van
- G körmentes, de bármely két nem szomszédos csúcsának összekötésével kör keletkezik
- ullet G összefüggő, de bármely élének törlésével szétesik két komponensre Bizonyítás: 2. szeminárium

Értelmezések

Egy körmentes gráfot ligetnek (erdőnek) nevezünk. Egy összefüggő körmentes gráfot fának nevezünk. A liget több fából állhat. Az elsőfokú csúcsokat levélnek nevezzük.

Fák és ligetek

fa

Fák és ligetek (II)

liget

Fák és ligetek

• ???????

Gyökeres fák

Gyökeres fa

A gyökeres fa olyan irányított él \hat{u} fa, amelyben kijelölünk egy gyökérnek nevezett r csúcsot, azzal a tulajdonsággal, hogy bármely v csúcsára igaz legyen, hogy létezik r-v irányított út.

Bináris fák

Bináris fa

A bináris fa olyan sajátos gyökeres fa, amelynek élei nem irányítottak, ennek ellenére úgy tekinthetjük, mintha azok a gyökértől a levelek felé lennének irányítva.

Bináris fák

Bináris fa

A bináris fa olyan sajátos gyökeres fa, amelynek élei nem irányítottak, ennek ellenére úgy tekinthetjük, mintha azok a gyökértől a levelek felé lennének irányítva.

Értelmezés

- Egy csúcs bináris fa és gyökér a neve
- Ha az A és B, a és b gyökerû bináris fák, akkor bináris fák a következők is, amelyekben A bal oldali részfa, míg B jobb oldali részfa:
 - egy r gyökerû fa, amelyben r egy-egy éllel kapcsolódik a-hoz és b-hez.
 - egy r gyökerû fa, amelyben r egy éllel kapcsolódik a-hoz,
 - egy r gyökerû fa, amelyben r egy éllel kapcsolódik b-hez.

- A bináris fákat mindig úgy rajzoljuk le, hogy felül van a gyökére, alatta a többi csúcs.
- Amint az értelmezésből is látszik, a bináris fáknál megkülönböztetjük a bal és a jobb oldali részfákat. Ha ezeket felcseréljük, akkor más bináris fát kapunk, annak ellenére, hogy ezek mint gráfok, izomorfak.

Bináris fák bejárása

Bejárásuk:

- preorder bejárás: gyökér, bal, jobb
- o inorder bejárás: bal, gyökér, jobb
- o posztorder bejárás: bal, jobb, gyökér

Bináris fák száma

Jelöljük b_n -el az n csomópontú bináris fák számát, $b_1=1, b_2=2, b_3=5$.

Ha $b_0=1$, rekurzivan megadva a bináris fák számát:

$$b_n = \sum_{k=0}^{n-1} b_k \cdot b_{n-1-k}$$

Bináris fák száma

Tétel

Az n csomópontú bináris fák száma $b_n=\frac{1}{n+1}C_{2n}^n=\frac{(2n)!}{n!(n+1)!}$. Ezeket az értékeket Catalan számoknak is nevezzük és C_n -el jelöljük.

Tétel

Az n csúcsú és k levelű bináris fák száma: $b_n^k = \frac{1}{n} C_{2k}^k C_n^{2k-1} \dot{2}^{n-2k}$

Catalan számok - Más feladatok

 a zárójelezés probléma - hányféleképpen lehet n pár zárójelet elrendezni (úgy hogy a zárójelezés jó legyen)

n=0	*	1
n=1	().	1
n=2	(()), ()().	2
n=3	((())), (())(), (()()), ()(()), ()()().	5

• n+1 csomópontból hány gyökeres bináris fa építhető fel

skó Noémi Gráfalgoritmusok 2023. március 16.

Feszítőfák száma

Cayley formula

Egy címkézett K_n teljes gráfban a feszítőfák száma n^{n-2} .

Bízonyítása Prüfer kóddal.

Prüfer kódolás

PrüferKódolás(F)

- 1. legyen K üres sorozat
- 2. **while** F nemcsak gyökérből áll **do**
- 3. legyen v a legkisebb címkéjû levél F-ben
- 4. írjuk be K-ba v ősét
- 5. töröljük v-t F-ből
- 6. return K

Egy példa:

Gaskó Noémi Gráfalgoritmusok 2023. március 16.

Prüfer dekódolás

```
PrüferDekódolás(K, n)
```

- 1. legyen F egy üres gráf
- 2. **for** $i = 1, 2, \dots, n-1$ **do**
- 3. legyen x a K sorozat első eleme
- 4. legyen y a legkisebb természetes szám, amely nincs benne K-ban
- 5. rajzoljunk egy (x, y) élt F-be
- 6. töröljük x-et a K elejéről, és adjuk hozzá a végére y-t
- 7. return F

Gaskó Noémi Gráfalgoritmusok 2023. március 16. 31/52

Prüfer dekódolás

 $\begin{array}{c} 2,3,2,1,6,1 \parallel 4 \\ 3,2,1,6,1,4 \parallel 5 \\ 2,1,6,1,4,5 \parallel 3 \\ 1,6,1,4,5,3 \parallel 2 \\ 6,1,4,5,3,2 \parallel 7 \\ 1,4,5,3,2,7 \parallel 6 \\ 4,5,3,2,7,6 \end{array}$

askó Noémi Gráfalgoritmusok 2023. március 16. 32 / 52

Huffmann algoritmusa

Tekintsünk egy gyökeres fát, amelynek v_1,v_2,\ldots,v_k levelei rendre a w_1,w_2,\ldots,w_k súlyokkal rendelkeznek. Ha a gyökértől egy v_j levélig az út hosszát l_j -vel jelöljük, akkor értelmezzük a $\sum_{i=1}^k w_j l_j$ értéket, amelynek

neve súlyozott úthossz.

Feladatunk, hogy adott véges számsorozathoz mint levelekhez rendelt súlyokhoz, keressünk minimális súlyozott úthosszú bináris fát.

Gaskó Noémi Gráfalgoritmusok 2023. március 16.

Huffman algoritmusa

- Válasszuk ki a sorozatból a két legkisebbet, legyenek ezek w_i és w_j , töröljük ki őket a sorozatból, majd adjuk hozzá a sorozathoz a $w_i + w_j$ számot, aztán pedig adjuk hozzá a keresendő fához a következő részfát.
- Folytassuk az eljárást mindaddig, amíg a sorozat egyetlen számmá zsugorodik.
- Az így kapott bináris fa a keresett minimális súlyozott úthosszú bináris fa.

Példa.

Huffman kód - tömörítés

Huffman algoritmusát használhatjuk optimális kódok generálására.

Egy példa: kódoljuk a köv. szöveget:

alma a fa alatt

lásd 3. szeminárium

Feladatok

Hófehérkének egy szobát építettek a törpök (az építkezésről majd később :)), hogyan rendezzék el a vezetékeket, hogy a költség minimális legyen?

Feladatok

Hófehérkének egy szobát építettek a törpök (az építkezésről majd később :)), hogyan rendezzék el a vezetékeket, hogy a költség minimális legyen?

Más feladat: városokat szeretnénk autópályákkal összekötni, hogyan oldható meg, hogy a költség minimális legyen?

Feszítőfa

A G gráf feszítőfája vagy faváza a G olyan részgráfja, amely fa, és tartalmazza a G gráf minden csúcsát.

Ha egy gráf T részgráfja a következő tulajdonságok közül bármely hárommal rendelkezik, akkor T feszítőfa:

- T összefüggő
- T körmentes
- T-nek n csúcsa van
- T-nek n-1 éle van

Megjegyzés. A második és negyedik tulajdonság önmagában is elegendő

Minimális feszítőfa

Egy irányítatlan súlyozott gráfban a gráf legkisebb költség? feszítőfáját nevezzük minimális feszítőfának (a költség az éleihez rendelt súlyok összege).

Kruskal algoritmusa

Minimális feszítőfa

Egy irányítatlan súlyozott gráfban a gráf legkisebb költség? feszítőfáját nevezzük minimális feszítőfának (a költség az éleihez rendelt súlyok összege).

- Kruskal algoritmusa
- Prim algoritmusa

Minimális feszítőfa

Egy irányítatlan súlyozott gráfban a gráf legkisebb költség? feszítőfáját nevezzük minimális feszítőfának (a költség az éleihez rendelt súlyok összege).

- Kruskal algoritmusa
- Prim algoritmusa
- Boruvka algoritmusa

Minimális feszítőfa

Egy irányítatlan súlyozott gráfban a gráf legkisebb költség? feszítőfáját nevezzük minimális feszítőfának (a költség az éleihez rendelt súlyok összege).

- Kruskal algoritmusa
- Prim algoritmusa
- Boruvka algoritmusa
- fordított törlés algoritmusa

Kruskal algoritmusa

Kruskal, 1957

Kruskal algoritmusa

Az algoritmus:

```
Kruskal(E)
    for j=1,2,...,n do
        h_i := j
    i := 1
    while h elemei különbözőek do
        if (e_i \text{ v\'egpontjai } v_k, v_l) és (h_k \neq h_l) then
           kiír e_i
           for i:=1, 2, ..., n do
               if h_i = h_l then
                  h_i := h_k
        i:=i+1
```

Bonyolultság: legjobb esetben O(mlogm), diszjunkt halmaz adatszerkezetet használva, lineáris rendezéssel

Gaskó Noémi Gráfalgoritmusok 2023. március $16.\hspace{1cm}42/5$

Prim algoritmusa

Jarník 1930, Dijkstra 1957, Prim 1959

Prim algoritmusa

```
\begin{array}{ll} \operatorname{PRIM}(G,x) \\ 1. & A := \{x\} \\ 2 & B := V \setminus A \\ 3. & \text{while } A \neq V \text{ do} \\ 4. & \operatorname{legyen} \ \{a,b\} \in E, \ a \in A, \ b \in B \ \text{a legkisebb súlyú él} \\ & \operatorname{az \ \"{o}sszes} \ A \ \acute{e}s \ B \ k\"{o}\breve{z}\"{o}{t}{t}{i} \ \acute{e}l \ k\"{o}\ddot{z}\"{u}l \\ 5. & \mathbf{ki\acute{r}} \ \{a,b\} \\ 6. & A := A \cup \{b\} \\ 7. & B := B \setminus \{b\} \end{array}
```

Bonyolultság: a használt adaszerkezettől függően $O(n^2)$, O(mlogn) bináris kupaccal

Boruvka algoritmusa

Az algoritmus lépései:

- minden csomópont esetén válasszuk ki a minimális hosszúságú élt
- határozzuk meg az összefüggő komponenseket, az előző lépésben kiválasztott éleket tartalmazó gráfban
- "egyesítjük" az összefüggő csomópontokat
- addig ismételjük ezeket a lépéseket, amig egy összefüggő gráfot kapunk

Példa: lásd 3_jegyzet.pdf

Fordított törlés algoritmusa

Alapötlet:

- az éleket a súlyúk szerinti csökkenő sorrendben járja be
- az eredeti gráfból kitörli a legnagyobb súlyú éleket, ha a törléssel a gráf nem esik szét két komponensre (ha nem nő az összefüggő komponensek száma)

Példa: lásd 3_jegyzet.pdf

Alkalmazások

Alkalmazások 2

Euklideszi minimális feszítőfa:

Adott N pont a síkban, határozzuk meg a minimális feszítőfát.

Minimális feszítőfa irányított gráfokban

Irányított gyökeres fa

Egy irányított gráfot irányított gyökeres fának nevezünk, ha van egy kitüntetett s csomópont, és minden $u \neq s$ esetén pontosan egy irányított út létezik s-ből u-ba.

Gyökeres feszítőfa, minimális gyökeres feszítőfa

Egy irányított gráf gyökeres feszítőfája s pontra nézve egy s gyökerű irányított gyökeres fa, mely egy maximális részgráf. Ha az élek súlyának összege minimális, akkor minimális gyökeres feszítőfáról beszélünk.

Gabow-Tarjan algoritmus

A Prim algoritmus irányított gráfokra adaptálva

Gabow-Tarjan algoritmus

A Prim algoritmus irányított gráfokra adaptálva

Egy példa: lásd 4_jegyzet.pdf

Chiu-Liu/Edmonds algoritmus

Chiu-Liu 1965, Edmonds 1967

Az algoritmus lépései:

- minden csomópont esetén válasszuk ki a legkiseb bemenő élt, és vonjuk ki a többi bemenő élből
- ha kört találtunk húzuk össze egy csomópontba
- rekurzivan keressük meg a minimális szerteágazást az összehúzott gráfban
- "kibontjuk" az összehúzott gráfot

Példa: lásd 4_jegyzet.pdf