Exam 4 Crib Sheet

Full Version of Maxwell's Equations

Integral Form	Differential Form
$\oint \vec{H} \cdot d\vec{l} = \int \vec{J} \cdot d\vec{S} + \int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$	$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$
$\oint \vec{B} \cdot d\vec{S} = 0$	$\nabla \cdot \vec{B} = 0$
$\oint \vec{E} \cdot \vec{dl} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{S}$	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
$\oint \vec{D} \cdot dS = \oint ho dv = Q_{encl}$	$\nabla \cdot \vec{D} = \rho$

Complex Permittivity and EM Waves In Media

$\epsilon_c = \epsilon' - j\epsilon''$	$\epsilon' = \epsilon \epsilon'' = \frac{\sigma}{\omega}$
Skin Depth: $\delta_s = \frac{1}{\alpha}$	$\eta = \frac{ \tilde{E} }{ \tilde{H} }$

Low-Loss Dielectric

$\frac{\epsilon''}{\epsilon'} < 0.01$	$\eta = \sqrt{\frac{\mu}{\epsilon}}$
$\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\beta = \omega \sqrt{\mu \epsilon}$

Good Conductor

$\frac{\epsilon''}{\epsilon'} > 100$	$\eta = (1+j)\frac{\alpha}{\sigma}$
$\alpha = \sqrt{\pi f \mu \sigma}$	$\beta = \sqrt{\pi f \mu \sigma}$

EM Waves and Energy

Poynting Vector: $ec{S} = ec{E} imes ec{H}$	$P = \int_{A} (\vec{S} \cdot \hat{a}_n) dA$
$P = S A\cos\theta$	$S_{av} = \hat{a}_z \frac{ \tilde{E} ^2}{2\eta} \qquad \text{W/m}^2$

Wave Polarization

Polarization phasor expression:

$$\tilde{E}(z) = (a_x \hat{a}_x + a_y e^{j\delta} \hat{a}_y) e^{-jkz}$$

Linear polarization inclination angle:

$$\psi = tan^{-1}(\frac{a_y}{a_x})$$

For circular polarization,

when $\delta = +\pi/2$, polarization is left-handed (rotates clockwise) when $\delta = -\pi/2$, polarization is right-handed (rotates counter-clockwise)

Elliptical polarization auxiliary angle:

$$\psi_0 = tan^{-1}(\frac{a_y}{a_x})$$

Elliptical polarization rotation angle (γ):

$$tan2\gamma = (tan2\psi_0)cos\delta$$

 $(\text{for } -\pi/2 \le \gamma \le \pi/2)$

Elliptical polarization ellipticity angle (χ) :

$$sin2\chi = (sin2\psi_0)sin\delta$$

 $(\text{for } -\pi/4 \le \chi \le \pi/4)$

Magnetic field direction:

$$\tilde{H}(z) = \hat{a}_z \times \frac{\tilde{E}_z}{\eta}$$

Wave Reflection

Wave Phasor with E pointed in x and propagating in z:

$$\tilde{E}_1(z) = \hat{a}_x E_0^i (e^{-\gamma_1 z} + \Gamma e^{\gamma_1 z})$$

$$\gamma_1 = k_1 = \alpha_1 + j\beta_1$$

Normal Incidence Reflection Coefficient:

$$\Gamma = \frac{E_0^r}{E_0^i} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{\sqrt{\epsilon_{r1}} - \sqrt{\epsilon_{r2}}}{\sqrt{\epsilon_{r1}} + \sqrt{\epsilon_{r2}}}$$

Normal Incidence Transmission Coefficient:

$$\tau = 1 + \Gamma = \frac{E_0^t}{E_0^i} = \frac{2\eta_2}{\eta_2 + \eta_1}$$

Snell's Law

$$k_1 sin\theta_1 = k_2 sin\theta_2 \quad n_1 sin\theta_1 = n_2 sin\theta_2$$
$$\eta = \frac{\eta_0}{n}$$

Parallel Polarization Reflection:

$$\Gamma_{\parallel} = \frac{\eta_2 \cos \theta_2 - \eta_1 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1} \qquad \tau_{\parallel} = \frac{2 \eta_2 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1}$$

$$1 + \Gamma_{||} = \tau_{||} \frac{\cos \theta_2}{\cos \theta_1}$$

Perpendicular Polarization Reflection:

$$\Gamma_{\perp} = \frac{E_{m1}^{-}}{E_{m1}^{+}} = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}$$

$$\tau_{\perp} = \frac{E_{m2}^{+}}{E_{m1}^{+}} = \frac{2 \eta_{2} \cos \theta_{1}}{\eta_{2} \cos \theta_{1} + \eta_{1} \cos \theta_{2}}$$

$$1 + \Gamma_{\perp} = \tau_{\perp}$$

Critical Angle:

$$\theta_c = \sin^{-1} \sqrt{\frac{\epsilon_2}{\epsilon_1}} = \sin^{-1} \left(\frac{n_2}{n_1}\right)$$

Perpendicular Brewster Angle:

$$\sin \theta_{\rm B\perp} = \sqrt{\frac{1 - (\mu_1 \epsilon_2 / \mu_2 \epsilon_1)}{1 - (\mu_1 / \mu_2)^2}} \ .$$

Parallel Brewster Angle

$$\sin \theta_{\mathrm{B}\parallel} = \sqrt{\frac{1 - (\epsilon_1 \mu_2 / \epsilon_2 \mu_1)}{1 - (\epsilon_1 / \epsilon_2)^2}} \ .$$