Photoelectron Spectroscopy, UPS

$$\begin{split} &H_2\left(^1\Sigma_g^+,\,\upsilon''=0\right) + h\nu \to H_2^+\left(^2\Sigma_g^+,\,\upsilon'\right) + e^- & \upsilon'=0,\,1,\,2,\,3,\,...... \\ &D_o^{ion} = 18.07 \text{ eV} - 15.43 \text{ eV} = 2.64 \text{ eV}. \end{split}$$

The fundamental vibration frequency of H₂ is 4158.5 cm⁻¹.

Koopmans' Theorem:

Ionization potentials at the $0 \leftarrow 0$ transitions \approx MO energies

Assumptions:

- 1. the orbital approximation is valid
- 2. the molecule does not change shape upon ionization
- 3. the correlation energies of the ground state and molecular ion are similar: frozen orbital approximation (valid to \sim 1-3 eV).

Under Koopmans' Theorem, UPS ionization potentials are comparable to Hartree-Fock molecular orbital calculations, which do not account for correlation energies.

 N_2 : The fundamental stretch of neutral N_2 is at 2345 cm⁻¹

<u>CO</u>: The fundamental vibration frequency for neutral CO is 2170 cm⁻¹.

 $\underline{\text{H}_2\text{O}}$: The asymmetric stretch in the molecular ion at 3220 cm⁻¹ and bending at 1370 cm⁻¹ The corresponding frequencies in neutral H₂O are 3756 cm⁻¹ and bending at 1595 cm⁻¹