Análisis del Rendimiento de Funciones C en Diferentes Arquitecturas y Compiladores

CI0131 - Diseño de Experimentos

Universidad de Costa Rica

May 7, 2025

Contenido

- Descripción del Problema
- 2 Hipótesis y Objetivos
- **3** Variable de Respuesta
- Unidad Experimental
- **5** Factores de Diseño
- **6** Factores Constantes
- Factores Variables
- 8 Factores de Molestia
- Restricciones y Diseño
- 10 Conclusión

Problema de Investigación

Contexto

En el dominio del desarrollo de software de alto rendimiento, la elección de la arquitectura y el compilador ejerce una influencia sustancial en el tiempo de ejecución y el uso de recursos.

Propósito

Cuantificar el impacto de estas variables y su relación a través de metodologías de diseño y análisis de experimentos, proporcionando información valiosa para la toma de decisiones en proyectos de ingeniería de software.

Hipótesis y Objetivos

Pregunta de Investigación

¿Cuál es el efecto principal de la arquitectura de la CPU y el compilador en el rendimiento de funciones en C?

Objetivos

- Medir el desempeño de ejecución de las funciones seleccionadas en diferentes combinaciones de arquitectura y compilador.
- Analizar la influencia de la arquitectura y el compilador en la variabilidad del desempeño de funciones.

Variable de Respuesta: Descriptivo

Nombre	Descripción	Justificación	Tipo	Unidades
T_exec	Tiempo transcurrido	En esta variable	Continua	Milisegundos
	desde el inicio hasta	almacenamos del		
	el fin de la ejecución	tiempo de ejecución		
	del binario compilado	de la batería de		
	de la función	pruebas		

Variable de Respuesta: Metodológico

Nombre	Metodología de recolección	Rango	Precisión y Exactitud
T_exec	Se ejecutará cada función con medición de tiempo	0 ms – 100,000 ms	Exactitud: Repetir 100 ejecuciones de manera
	utilizando herramientas como time, perf o el mismo clock	100,000 1113	secuencial para cuantificar variabilidad.
	del sistema operativo, Tras investigación exploratoria se		Precisión: calcular la desviación estándar de las
	decidirá si cada medición será repetida 5 veces para disminuir posibles sesgos, o		ejecuciones anteriormente mencionadas.
	solo 1 vez si vemos que no es factible repetirlo 5 veces.		

Unidad Experimental

Nombre	Descripción	Justificación	Tipo	Unidades
Función C	Función escrita en	La función en C es la	Discreta	N/A
	lenguaje C que	unidad fundamental	categórica	
	implementa una lógica	sobre la cual se medirá		
	específica y que será	el rendimiento, ya que		
	compilada y ejecutada.	permite evaluar		
		directamente el		
		impacto de la		
		arquitectura y el		
		compilador sobre un		
		código idéntico.		

Factores de Diseño: Descriptivo

Nombre	Descripción	Justificación de inclusión	Justificación como factor de diseño	Tipo y unidades
Arquitectura CPU	Plataforma hardware utilizada para ejecutar el binario	Afecta el rendimiento por diferencias de arquitecture (ej:manejo de memoria)	Fundamental para probar la hipótesis de variabilidad entre plataformas	Discreta categórica (intel, amd)
Compilador	Herramienta utilizada para generar el binario de la función	Diferentes optimizaciones afectan el desempeño	Necesario para medir la influencia del compilador en el rendimiento	Discreta categórica (GCC, Clang)

Factores de Diseño: Metodológico - Arquitectura CPU

/letodología	Rango	Niveles	Justificación	Precisión y
				exactitud
so de hardware eal para cada rquitectura para liminar el verhead de un mulador	intel i7, amd	2	Representan arquitecturas populares, relevantes y contemporáneas entre ellas	Precisión: cambiar físicamente de máquina limpia en ¡ 1 min. Exactitud: comprobar frecuencia nominal con lscpu y tolerancia ±1%.
reli	so de hardware al para cada quitectura para minar el erhead de un	so de hardware intel i7, al para cada amd quitectura para minar el erhead de un	so de hardware intel i7, 2 al para cada amd quitectura para minar el erhead de un	so de hardware intel i7, 2 Representan arquitecturas populares, relevantes y contemporáneas

Factores de Diseño: Metodológico - Compilador

Nombre	Metodología	Rango	Niveles	Justificación	Precisión y exactitud
Compilador	Selección del compilador instalado apropiadamente para cada arquitectura	GCC, Clang	2	Ambos son cornerstones de los compiladores C opensource	Exactitud: validar con gcc –version y clang –version. Precisión: repetir compilación 5 veces (verificar durante EDA si es factible o no), verificar hash idéntico y tamaño ±0 bytes.

Factores que se Mantendrán Constantes: Descriptivo

Nombre	Descripción	Justificación de inclusión	Justificación como factor	Tipo y unidades
			constante	
Código	Funciones escritas	Garantizar	Para atribuir	N/A
fuente	en C	comparabilidad	diferencias	
			únicamente a	
			arquitectura o	
			compilador	

Factores que se Mantendrán Constantes: Metodológico

Nombre	Metodología de	Rango	Nivel	Justificación	Precisión y
	fijación				exactitud
Sistema operativo	Se usará la misma versión del sistema operativo entre ejecuciones de pruebas	ubuntu 24.02	1	No es parte del experimento probar diferentes sistemas operativos	Chequeo previo con Isb_release cada día de prueba.
Versión del compilador e flags	Usar misma versión del compilador y mismo comando	gcc 15.1	1	Para aislar efecto del compilador puro sin variación de flags	Script automatizado que imprime versión y flags antes de cada corrida.
Cantidad de programas en primer plano	Solo estara ejecutandose las pruebas en primer plano	1	1	Lo ideal es tener la misma carga de trabajo en todas las pruebas	Medir uso de CPU y RAM antes de cada bloque; debe ser 5%

Factores a los que se Permitirá Variar

Nombre	Descripción	Justificación de inclusión	Justificación como factor variable	Tipo y unidades
Carga del	Procesos en	La carga del	No se controlará	Continua (%
sistema	segundo plano y	sistema puede	para reflejar	de uso de
	uso de recursos	afectar los	condiciones más	CPU/memoria)
	del sistema	tiempos de	realistas de uso	
		ejecución	en producción	
Temperatura	Temperatura del	La temperatura	Representar	Continua (°C)
de CPU	procesador	puede influir en	condiciones reales	
		el rendimiento	de operación	
Tamaño de	Volumen de	Puede afectar los	Se medirá su	Discreta
datos	datos procesados	patrones de	efecto pero no se	numérica
	por la función	acceso a memoria	controlará	(bytes)
		y caché	estrictamente	

Factores de Molestia

Nombre	Descripción	Justificación de inclusión	Estrategia de minimización	Tipo y unidades
Código con	Bibliotecas	Pueden variar la	USar herramientas	Categórica
librerías dinámicas	compartidas cargadas en tiempo de ejecución	latencia de enlace dinámico	como prelink	(sí/no)
Interrupciones de CPU y cambios de contexto	Eventos de sistema que detienen el proceso y redistribuyen tiempo CPU	Alteran mediciones de tiempo de ejecución	Se registran con perf record y se aleatoriza el orden de pruebas	Continua (even- tos/minuto)
Materiales y enfriamiento (throttling térmico)	Temperatura del procesador durante la ejecución	La temperatura puede influir en el rendimiento	Se permite variar naturalmente para representar condiciones reales	Continua (°C)

Restricciones

- Solo se disponen de dos máquinas físicas (Intel y AMD)
- No se probarán sistemas operativos ni flags adicionales
- Máximo de 5 ejecuciones por combinación debido a tiempo computacional (se tiene que averiguar durante EDA si es factible a nivel de tiempo)
- No se incluyen arquitecturas virtuales/emuladas

Aspectos de Diseño

- Diseño factorial 2^2 (2 arquitecturas \times 2 compiladores)
- Dos réplicas completas (10 ejecuciones por combinación)
- Aleatorización: orden aleatorio de las corridas

Figure: Diseño factorial 2²

Corridas de Prueba

- Se realizara pruebas preliminares con 10 funciones de prueba para verificar scripts de automatización y medición (ademas de la EDA)
- Ajustes realizados:
 - Confirmación de sincronización de relojes
 - Limpieza de caché entre ejecuciones
- No hay datos de interés adicional para el experimento principal

Conclusión y Siguientes Pasos

Valor esperado del estudio

Este experimento proporcionará información cuantitativa sobre:

- Efectos principales de arquitectura y compilador en el rendimiento
- Posibles interacciones entre estos factores
- Variabilidad del rendimiento bajo condiciones controladas

Aplicaciones prácticas

Los resultados pueden informar decisiones de:

- Selección de hardware para desarrollo de software
- Elección de compilador según el caso de uso
- Estimación de rendimiento en diferentes entornos

¡Gracias por su atención! ¿Preguntas?