Banking Data Mining Case Study

Knowledge Extraction and Machine Learning 2015/2016

Group 4
Ruben Fernando Pinto Cordeiro <u>ei11097@fe.up.pt</u>
Duarte Nuno Pereira Duarte <u>ei11101@fe.up.pt</u>

Outline

- 1. Methodology
- 2. Understanding the business
- 3. Understanding the data
- 4. Descriptive data analysis
- 5. Predictive data analysis
- 6. Conclusions

Methodology

Understanding the business

Business Model of Banking companies Value Propositions Key Partners Key Activities Relationships **Customer Segments Branch Operations** Personal Assistance Call center Automation where operations Retail and Investments possible **Deposit Products** Corporate partners (Lower Interest Customers **IT Operations** Rates) (Depositors) Technology vendors **Key Resources** Channels Loan Products Retail and (Higher Interest Corporate Physical and IT Regulatory Rates) Bank Branches. Customers Infrastructure Agencies (Borrowers) ATMs, Call centers, Loan Assets Internet. Mobile Devices **Cost Structure Revenue Streams** Interest **Channel Costs** Interest Income Fee Income Expenses

Understanding the data

Data preparation

Data cleaning

- Add labels where missing (district, ...);
- Extract gender from birth date in the Client relation;
- Format dates and numbers;

Data transformation:

- Calculate age in the Client relation;
- Import raw data into RapidMiner;
- Denormalize various relations for the descriptive and predictive analysis algorithms.

DESCRIPTIVE DATA ANALYSIS

Descriptive data analysis

Segmentation

- Primary parameters:
 - Assets & Liabilities
 - Geo-demographic data
 - Profitability

- Secondary parameters:
 - Behavioristic segmentation
 - Life stage segmentation

Age distribution

Credit card type distribution

Average loan duration distribution by status

Average loan amount distribution by status

Exploratory data analysis: conclusions

- Most of the issued credit cards are *classic* (649). There are more *junior* cards (145) than *gold* cards (88).
- Good loans (A, B) tend to be of a lower amount and a shorter duration when compared to bad loans (C, D).

- For the first clustering, the following attributes were precomputed:
 - Amount: the total loan amount borrowed by each client;
 - Duration: the total loan duration by each client;
 - Payments: the monthly amount of loan payments made by each client;
 - Average Income: the monthly average income of each client;
 - Average Withdrawals: the monthly average withdrawals made by each client.

Attribute	Cluster 1	Cluster 2	Cluster 3
Amount	62396,58	152970,91	346722,23
Duration	26,26	36,29	53,54
Payments	3077,07	4251,54	6579,91
Average Income	26038,91	16010,17	33134,65
Average Widthrawals	23624,16	14759,80	29875,93

- With this clustering process, the goal was to segment clients according to their assets and liabilities.
- The clients in the Cluster 1 have less purchase power when compared to clients belonging to Cluster 2 and 3.

Attribute	Cluster 1	Cluster 2	Cluster 3
No. of entrepreneurs per 1000 inhabitants	160,10	112,05	115,43
No. of municipalities with inhabitants 2000-9999	0,00	7,39	5,64
No. of municipalities with inhabitants 500-1999	0,00	23,17	26,41
No. of municipalities with inhabitants < 499	0,00	21,52	74,67
No. of municipalities with inhabitants >10000	1,00	2,24	1,42
Ratio of urban inhabitants	100,00	70,42	55,75

- With this clustering process, the goal was to segment clients according to geo-demographic data.
- Clients in Cluster 1 belong to an urban environment with an higher ratio of entrepreneurs.
- Clients in Cluster 3 live in a district with the smallest ratio of urban inhabitants.

PREDICTIVE DATA ANALYSIS

Predictive Data Analysis

- The loans dataset is relatively small: 682 loans in total.
- The status distribution of the loans is uneven: 606 loans are good, while only 76 loans are bad.
- These factors make the predictive task more difficult.

Decision Tree

- Given the small dataset, there is a great danger of overfitting the data.
- In order to mitigate the risk, the decision tree was pruned pre-pruned, thus reducing the complexity of the final classifier.

Decision Tree

- In RapidMiner:
 - The decision tree operator was used:
 - Criterion: information_gain;
 - Level of confidence set to 25%;
 - · Applying pruning and pre-pruning;
 - Minimal gain set to 4%;
 - Maximal depth set to 6.

Decision Tree model

- The following relations were joined: Client, Account, Loan, Disposition and Transactions.
- For this classification, several attributes were pre-computed:
 - Average(ratio): Average debt-to-income ratio of the client.
 - Count(sanction_date): Number of sanctions that the client is responsible for. A sanction occurs when the client's bank account balance reaches negative values.
 - Amount: the total loan amount borrowed by the client.
 - Payments: the monthly amount of loan payments made by the client.
 - Gender: the client's gender.
 - VarWD: The monthly average variation of the withdrawals made by the client.

Decision Tree model

Decision Tree model: evaluation

- Using the Rapidminer 'x-validation' operator (cross validation):
 - Number of validations: 15.

	true bad	true good	class precision
pred. bad	65	8	89.04%
pred. good	11	598	98.19%
class recall	85.53%	98.68%	

K-Nearest Neighbor

- In Rapidminer:
 - The 'K-NN' operator was used:
 - K was set to 1;
 - Measure Types: MixedMeasures;
 - Mixed Measure: MixedEuclideanDistance.
- The following relations were joined: Client, Account, Loan, Disposition and Transactions.

K-Nearest Neighbor

- The model contains 682 examples with 11 dimensions of the following classes:
 - bad
 - good

K-Nearest Neighbor: evaluation

- Using the Rapidminer 'x-validation' operator (cross validation):
 - Number of validations: 15.

accuracy: 82.11% +/- 6.	.48% (mikro: 82.11%)		
	true bad	true good	class precision
pred. bad	19	65	22.62%
pred. good	57	541	90.47%
class recall	25.00%	89.27%	

K-Nearest Neighbor: discussion

- This model performs worse than the Decision Tree model.
- The K-Nearest Neighbor generally performs badly with high-dimensional data (curse of dimensionality).

Naïve Bayes

- The following relations were joined: Client, Account, Loan, Disposition and Transactions.
- The same pre-computed attributes from the Decision Tree model were used.
- In RapidMiner:
 - The Naïve Bayes operator was used:
 - The laplace correction option was set to true.

Naïve Bayes model

- Distribution model for label attribute status.
 - Class bad (0.111)13 distributions
 - Class good (0.889)13 distributions

Naïve Bayes model

Naïve Bayes model

Naïve Bayes model: evaluation

- Using the Rapidminer 'x-validation' operator (cross validation):
 - Number of validations: 15.

accuracy: 95.61% +	/- 2.65% (mikro: 95.60%)		
	true bad	true good	class precision
pred. bad	58	12	82.86%
pred. good	18	594	97.06%
class recall	76.32%	98.02%	

Neural Net model

- Using the Rapidminer 'Neural Net' operator:
 - Training cycles: 500;
 - Learning rate: 0.3;
 - Momentum: 0.3;
 - Shuffle: true;
 - Normalize: true.
- The following relations were joined: Client, Account, Loan, Disposition and Transactions.

Neural Net model

Neural Net model: Evaluation

- Using the Rapidminer 'x-validation' operator (cross validation):
 - Number of validations: 15.

	true bad	true good	class precision
ored. bad	66	10	86.84%
ored. good	10	596	98.35%
class recall	86.84%	98.35%	

Neural Net model: Discussion

- Better performance than all of the remaining models.
- However, there are some drawbacks:
 - Slow training process;
 - Difficult to interpret final weight values.

Conclusions and future work

- The data set example has a strong *class imbalance*, which can mislead some classification algorithms presented. There are two possible solutions:
 - Sampling of the input data;
 - Collection of new data.
- Apply more predictive data mining algorithms for the creation of new models:
 - Support Vector Machine;
 - Ensemble methods.

Conclusions and future work

• Empirical validation of the predictive models in a real world scenario is essential.