- (1) An R-C coupled amplifier is shown in fig. 1, which uses a BJT transistor of current gain (β) of 50. The d.c. collector current is 2mA. Assume that a conducting diode voltage is 0.7V and the thermal voltage is V_T=0.25V. C + 0.25 V
- [2] (a) Find the values of R₁ and R₂ that would bias the transistor in the forward active mode.
- [2] **(b)** Calculate the voltage gain of the amplifier $A_{\nu}=(\nu_{0}/\nu_{1})$.
- (c) What is the lower cut-off frequency of the amplifier?
 - (2) For the OpAmp circuit shown in fig. 2, supplied with a $\pm 10 V$ sources, where it is required to plot the output voltage V_0 as a function of the potentiometer position of the variable resistor R_g . The OpAmp can be assumed to be ideal.
- [2] (i) Hence find an expression of V_0 , as a function of α .
- [2] (ii) What is V_0 , at $\alpha = 0$, $\alpha = 0.5$, and $\alpha = 1$?

Figure 1.

Figure 2.

Figure 2.

[A) $I_{Cq} = 2mA$, 6 = 50 : $I_{B} = \frac{2}{50}$ 200 A $A = 0.04mA = 40\mu A$.

[Chapse $I_{R_1} = 10I_{B} = 0.4mA$ $V_{C} = 10 - 2.2k \times 2m = 5.6V$ $V_{E} \cong 3k \times 2m - 5V = +1V$. $V_{B} = 1+0.7V$ $V_{R_1} = 10 - 1.7 = 8.3V$: $V_{R_1} = \frac{8.3}{10.4m} = \frac{20.75}{9.4m} = \frac{6.7}{9.04m} = \frac{18.61}{9.81} \times \frac{1$

 2) For ideal Optup 1 = 1 = 0, 0 = 0 + 1 = 0 $0 = \frac{2V}{Rg} \times dRg = 2dV = 0 - 1 = 0$ KCL at mode $0 = \frac{2V}{R_1} \times \frac{4V_1 - 4V_2}{6R_1} = 0$. or $60 = -12 + 0 = 20 \cdot 0 \times 0 = 70 + -12$ $0 = 7 \times 2d - 12 = 14d - 12$. $0 = 7 \times 2d - 12 = 14d - 12$. 0 = -12, but supply is only -10V 0 = -10 0 = -

- (1) An R-C coupled amplifier is shown in fig. 1, which uses a BJT transistor of current gain (β) of 80. The d.c. collector current is 2mA. Assume that a conducting diode voltage is 0.7V and the thermal voltage is $V_T=0.25V$. 0.025 V
- (a) Find the values of R₁ and R₂ that would bias the transistor in the forward active mode.
- [2] **(b)** Calculate the voltage gain of the amplifier $A_v = (v_0/v_i)$.
- (c) What is the lower cut-off frequency of the amplifier?
 - (2) For the OpAmp circuit shown in fig. 2, supplied with a $\pm 8V$ sources. It is required to know the output voltage V_O as a function of the potentiometer position of the variable resistor R_g . The OpAmp can be assumed to be ideal.
- [2] (i) Hence find an expression of V_0 , as a function of α .
- [2] (ii) What is V_0 , at $\alpha = 0$, $\alpha = 0.5$, and $\alpha = 1$?

Figure 1.

Figure 2. $V_{c} = 102 \text{ m} \times 2.7 \text{ k} = 10-5.4 = 4.6 \text{ V}$ Figure 2. $V_{c} = 10-1.1=8.9 \text{ V}$ $V_{c} = 2.7 \text{ k} \times 2 \text{ m} - 5 = 0.4 \text{ V}$ $V_{c} = 0.4 \text{ m}$ $V_{c} = 1.1 \text{ V}$ $V_{c} = 1.1 \text{ m}$ $V_{c} = 1.1 \text{ m}$ (b) As R_E is by-persed by C_E enemywhere except at low fraguenes, a.c. equivalent is: $C = \frac{1}{2.7k} \left[\frac{1}{3.4k} \right]$ $C = \frac{1}{5k} \left[\frac{1}{3.4k} \right]$ C =Aunid = $-80 \text{m/m} \times 1.5 \text{K} \times \frac{15.38 \text{K} || 1 \text{K}}{0.53 \text{K} + 15.38 \text{K} || 1 \text{K}} \approx -120 \times \frac{1 \text{K}}{1.53 \text{K}} = -7843$ $\pm :$ $\frac{\text{Grant}:}{\text{Cont}:} = -120 \times \frac{0.94}{0.53 + 0.94} = -120 \times 0.64 = -76.6$ $\frac{\text{Cin & Cont Capaciture hone we fleet}:}{\text{Cont Capaciture hone we fleet}:} : f_{\perp} = \frac{1}{2\pi C_{\text{E}}} \frac{\text{with O}}{\text{Shurted}};$ $\frac{\text{Cin & Cont Capaciture hone we fleet}:}{\text{Result}:} = 2.7 \text{K} \frac{1.51 \text{K}}{81} = 2.7 \text{K} \frac{1$

2) For ideal Ophnop
$$i_{-}=i_{+}=0$$
, $u_{-}=0_{+}$
 $u_{+}=\frac{2V}{R_{q}}\times dR_{q}=2X$ $V=0_{-}$
 KCL at u_{-} mode gives $u_{-}-2$ $u_{-}-u_{0}=0$

or $5U_{-}-10=-0_{-}+U_{0}$. $U_{0}=6U_{-}-10$

or $U_{0}=6U_{+}-10=6\times 2\times -10=12\times -10$.

 $x_{-}=0$, $y_{0}=-10$ but supply is at -8 . $y_{0}=-8V$ $y_{0}=0$, $y_{0}=12\times 0.5-10=6-10=-4V$.

 $x_{-}=0$, $y_{0}=12\times 0.5-10=+2V$.