Toward Forward Link Interference Cancellation

Conference Paper · April 2006							
CITATION:	S S	READS 23					
1 autho	r:						
	Shu Wang IDT International 60 PUBLICATIONS 270 CITATIONS SEE PROFILE						
Some of the authors of this publication are also working on these related projects:							
Project	Interference Cancellation & Multi-user Detection View project						
Project	Broadcast and Multicast Services View project						

Toward Forward Link Interference Cancellation

Shu Wang, Sang G. Kim, Soon L. Kwon and Hobin Kim Research and Standards Group

Outline

- □ Introduction
- Multiuser signal modeling and receiver design
 - Conventional multiuser signal modeling and receiver design
 - Subspace-based signal modeling and receiver design
 - Blind multiuser signal modeling and receiver design
- Multiuser receiver performance evaluation
 - Link level simulation considerations
 - Radio network simulation considerations
 - Implementation complexity
- □ Conclusions and recommendations

Introduction (1/3)

- ☐ Through the past 20-year academic and industrial research, it shows that interference cancellation techniques have the potential to increase wireless network reliability and capacity.
- □ Narrowband interference cancellation techniques, named single-antenna interference cancellation, have been intensively investigated for GSM/EDGE network. [Cingular 03].
 - Joint demodulation: accurate interference estimation and mitigation, high complexity; ~70% capacity gain for synchronous network.
 - Blind interference cancellation: low complexity; ~40% capacity gain for synchronous network.

- □ The feasibility of Common Pilot Channel (CPICH) interference cancellation at WCDMA user equipment has been investigated [3GPP-TR25.991].
 - For a Cancellation Set (CS) size of 6, the system level simulation results reported up to 13.6% gain for voice and 20.6% gain for 144kbps data.
 - Due to more receiver impairments/imperfections in practices, these capacity gain results will be reduced.
- ☐ There are also reports of using interference cancellation for 1xEV-DO reverse-link.

Introduction (2/3)

- ☐ The feasibility of Common Pilot Channel (CPICH) interference cancellation at WCDMA user equipment has been investigated [3GPP-TR25.991].
 - For a Cancellation Set (CS) size of 6, the system level simulation results reported up to 13.6% gain for voice and 20.6% gain for 144kbps data.
 - Due to more receiver impairments/imperfections in practices, these capacity gain results will be reduced.
- ☐ There are also reports of using interference cancellation for 1xEV-DO reverse-link.

Introduction (3/3)

- □ Though interference cancellation is widely regarded as an implementation-related issue, it is known to have nontrivial impacts on the whole system capacity.
- □ Recently it is known that many carriers are interested in the possibility of using advanced receiver techniques for enhancing system capacity.
- ☐ Therefore it should be important for us to investigate the feasibility of forward-link interference cancellation.

Forward-Link Interference Cancellation

- ☐ Compared with access network, access terminal, AT, is known to have many limitations:
 - limited knowledge of interfering signals,
 - limited power supply,
 - limited computation capability,
 - and limited physical form factor.
- □ Different understanding of received multiuser signal can lead to different multiuser receiver design frameworks.
 - Conventional multiuser signal modeling and receiver design.
 - Subspace-based signal modeling and receiver design
 - Blind multiuser signal modeling and receiver design
- □ The incorporation of efficient and reliable blind interference cancellation techniques in the AT design is important for designing the next stage mobile systems.

Conv. Multiuser Signal Model (1/3)

This is the information we want to know

(K-1) unknown interfering signal amplitudes

$$\mathbf{r} = \mathbf{L}^{\mathbf{C}} \left(\mathbf{b}_{1}; A_{1}, \mathbf{s}_{1}; \mathbf{b}_{2} \mathbf{K}, \mathbf{b}_{K}; A_{2} \mathbf{K}, A_{K}; \mathbf{s}_{2} (\boldsymbol{\tau}_{2}) \mathbf{K}, \mathbf{s}_{K} (\boldsymbol{\tau}_{K}) \right) + \mathbf{n}$$

The received signal vector.

(K-1) unknown interfering signal signatures or sequences

Unknown information carried by interfering signals

Conv. Multiuser Signal Model (2/3)

Conv. Multiuser Signal Model (2/3)

- ☐ The conventional model is a nature and straightforward description of received signals.
- □ It is known to be critical in understanding multiuser communication and designing conventional interference cancellation receiver.
- □ The problem in developing blind MUD: many parameters in this model are unknown beforehand by AT.

Popular Multiuser Detection Schemes

- □ With different optimization criteria in signal processing, there are lots of conventional multiuser receiver design schemes available.
- □ One of the critical problems of directly applying them in AT is most of these schemes require the channel and signal sequence/signature knowledge of each interference.

Multiuser Receiver Comparison

MUD type	Complexity order	Latency	ECCs?	K > N allowed?
Optimal max. likelihood	2 ^K	1	Separate	Yes
Linear	K to K³	1	Separate ¹	No (ZF), Yes (MMSE)
Turbo	PK to 2 ^K	2 <i>P</i>	Integrated	Yes
Parallel IC	PK	Р	Integrated	Yes
Successive IC	К	К	Integrated	Yes
Nonorth. matched filter	К	1	Separate	Yes ²
Orth. matched filter	К	1	Separate	No

¹ With some exceptions (e.g., [39]), generally linear receivers cannot seamlessly integrate ECCs.

Source: IEEE Communication Magazine, April 2005

² Although allowed in principle, K > N is not likely to be achievable in practice for the MF receiver.

Example: Successive Interference Cancellation

☐ A simple and nature idea:

- Estimation or detection is made firstly about interfering user(s) if possible
- Recreate and substrate interfering signal
- So a supposedly better version of desired signals.

☐ Known shortcomings

- Asymmetric performance: equal-power users are demodulated with disparate reliability.
- It requires knowledge of absolute amplitudes/power estimation in addition to the phases and signal sequences estimation of interfering signals.

Subspace-Based Multiuser Signal Model (1/2)

$$\mathbf{r} = \mathbf{L^S} \left(\boldsymbol{b_1} \; ; \boldsymbol{A_1} \; , \mathbf{s_1} \; ; \boldsymbol{v_1} \; , \boldsymbol{v_2} \; \mathbf{K} \; \boldsymbol{v_N} \; ; \boldsymbol{\lambda_1} \; , \boldsymbol{\lambda_2} \; \mathbf{K} \; \boldsymbol{\lambda_N} \; \right) + \mathbf{n}$$
 The current received signal vector

Subspace-Based Multiuser Signal Model (2/2)

- ☐ The subspace-based model gives us in-deep presentation of the received signal structure.
- ☐ The performance of subspace-based detectors can be the exactly the same to conventional detectors.
- ☐ The bad thing is the signal subspace separation or matrix inverse is non-trivial.

Example: Subspace-Based Decorrelator

☐ The basic detection scheme

- Estimate the phases/delays and spreading sequences of interfering signals.
- Calculate a set of orthonormal bases from the signal signatures/sequences of interfering signals. For example, Gram-Schmidt procedure or Gauss elimination.
- Reconstruct the conventional decorrelating detector

☐ The problems with the decorrelators

- The channel estimation cannot be avoided.
- The computation complexity still is more than $O(N^2)$ with Gaussian elimination.
- Possible singularity problem and noise enhancement.
- There is performance degradation when $\alpha = K/N$ is close or greater than 1.

Blind Multiuser Signal Model (1/3)

This is the information we want to know

M previously received signal vectors

$$\mathbf{r}[n] = \mathbf{L}^{\mathrm{B}}(b_{1}[n]; \mathbf{s}_{1}; b_{1}[n-M]...b_{1}[n-1]; A_{1}; \mathbf{r}[n-M], \mathbf{K} \mathbf{r}[n-1]) + \mathbf{n}$$

the trick here is to find the function L^B(...) The signal amplitude of desired users

M previously detected correct information

The current received signal vector

Blind Multiuser Signal Model (2/3)

- ☐ The subspace-based model gives us in-deep presentation of the received signal structure.
- ☐ The performance of subspace-based detectors can be the exactly the same to conventional detectors.
- ☐ The bad thing is the signal subspace separation or matrix inverse is non-trivial.

Blind Multiuser Signal Model (3/3)

$$\mathbf{r}[n] = \mathbf{S}[n]\mathbf{f} + \mathbf{n}$$

A new noise component

 $S[n] = [s_1 r[n-1] r[n-1] \cdots r[n-M]]$ is termed a blind signal signature matrix

It is termed detection vector.

$$\hat{A}_{1} [n] \hat{b}_{1} [n] = \mathbf{f}^{H} \begin{bmatrix} 1 \\ \hat{A}_{1} [n-1] \hat{b}_{1} [n-1] \\ M \\ \hat{A}_{1} [n-M] \hat{b}_{1} [n-M] \end{bmatrix}$$

The interference cancellation can be realized in a simple adaptive filtering format.

Example: An Blind Interference Cancellation Structure

Multiuser Receiver Design Strategies

- ☐ With different signal processing criteria, different blind receiver design scheme can be devised.
 - least squares based approaches
 - minimum mean-squared errors based approaches
 - maximum likelihood based approaches
 - etc.
- □ The good thing is that there is no channel estimation necessary.

Performance Evaluation

- □ Different interference cancellation receivers usually have different trade-offs between performance and complexity.
- ☐ For the evaluation purpose, we need consider
 - Radio network simulations to evaluate capacity gains.
 - Link level simulations to evaluate feasible accuracy of cancellation.
 - Implementation complexity

Network Level Simulation Considerations

■ Many network level simulation assumptions should be made:

- the cell network architecture, e.g. single cell or multiple-cells, etc.
- the definition of Cancellation Set. The Cancellation Set size can be between the number of total received signals and the Active Set size.
- the modeling of IC-enabled/disabled power control and handover.
- the distribution of IC-enabled ATs and IC-disable ATs.

Link Level Simulation Considerations

☐ In link level simulation of interference cancellation receiver, we may consider

- the spreading sequence allocation for interfering signals
- in a multi-cell link level simulation, the power spectral densities of other cells will be modeled, whether or not they are in the Cancellation Set.
- Sensitivity performance with estimation imperfection and/or DSP errors.
- The delays of different multipath and interfering signals.

Implementation Complexity

☐ The evaluation of major receiver DSP components should include

- the calculation of the cross-correlation terms between different spreading codes,
- the tracking of timing,
- the channel estimation,
- the regeneration of interference terms,
- the cancellation of interference terms,
- etc.

Conclusions and Recommendations

- □ With the investigation of existing interference cancellation applications, it is suggested that the employment of interference cancellation techniques at AT is important for enhancing the capacity of future mobile systems.
- ☐ With different understandings of received signal, three interference cancellation frameworks are discussed.
- ☐ For the evaluation purpose, several considerations for network level, link level and complexity evaluations are recommended.

