

Learning Macroscopic Brain Connectomes via Group-Sparse Factorization

Farzane Aminmansour¹, Andrew Patterson¹, Lei Le², Yisu Peng³, Daniel Mitchell¹, Franco Pestilli², Cesar Caiafa⁴, Russell Greiner¹, Martha White¹ University of Alberta¹, Indiana University², Northeastern University³, Instituto Argentino de Radioastronom⁴

Abstract

We propose a data driven framework to determine tracts within a brain from diffusion-weighted magnetic resonance imaging data. Applying tensor encoding enables us to design an objective function with a group regularizer that captures the biologically plausible fascicle structure in order to extract connectomes automatically as a fully unsupervised method. Moreover, we proved that this objective is convex and has a unique solution ensuring identifiable connectomes for an individual. We develop an efficient optimization strategy for this extremely high-dimensional sparse problem by designing a greedy algorithm that significantly improves the standard one, called OMP.

BACKGROUND & SETTINGS

1. Motivations

Goal:

- Map structural brain <u>connectomes</u> from dMRI data:
- ► Neuronal axon bundles travelling through white matter

Applications:

Investigating white matter health and disease, development and aging of brain, tumors and preoperative planning, psychiatric disorders, and many more!

Problem statement:

No unique result for different models, algorithms and parameter sets.

Previous Work:

- Supervised learning
- ► Requires labelled data
- Regularized learning
- ► To remove false connections

2. Encoding Brain Connectomes as Tensors

ENCODE:

- \triangleright Encodes natural brain space \rightarrow 3D sparse tensor
- Tensor of brain structure, $\Phi \in R^{Na \times Nv \times Nf}$
- $\triangleright N_{\alpha}$: #orientations, fascicles orientation at each position
- \triangleright N_y : #voxels, fascicles spatial position
- $\triangleright N_f$: #fascicles, indices of each fascicle
- ► Unified dMRI signal with connectome structure
- Matrix of dMRI signal $Y \in R^{N\theta \times Nvd}$, θ is gradient direction
- ightharpoonup Factorizing **Y** into Φ and dictinary **D**
- $ightharpoonup D \in R^{N\theta \times Na}$
- ▶ $Y \approx \Phi \times_{I} D \times_{3} W$, where $W \subseteq R^{Nf}$

B. Discretizing space

C. Natural brain space and tensor encoding

fascicle f₂

THEORIES & ALGORITHMS

3. A Tractography Objective for Learning Brain Connectomes

- \blacktriangleright Unconstrained objective to learn Φ
- $lackbox{\Phi} = argmin_{\Phi} \| Y \Phi \times_{I} D \times_{3} I \|^{2}$, where $I \in \mathbb{R}^{Nf}$
- Designing a group regularizer to enforce continuity and smoothness of fascicles
- ► Neighbouring voxels are more likely to share similar orientations
- \triangleright $\mathcal{G}_{v} \subseteq V$, group of neighbouring voxels
- ▶ $\mathcal{G}_{A} \subseteq \mathcal{A}$, group of similar orientations
- ► We want either all-zero or more than one none-zero entries in $\Phi(\mathcal{G}_{A}, \mathcal{G}_{V}, :)$
- ightharpoonup Constrained objective to learn Φ

Model formulation and block regularizer

4. An Efficient Algorithm for the Tractography Objective

 \blacktriangleright Challenge: number of optimization parameters is large: $N_f \times N_v \times N_g$

Screening Algorithms:

- Orthogonal Matching Pursuit (OMP)
- ► Issue: it selects orthogonal or dissimilar orientations for the fascicles in an individual voxel!
- Proposed Orientation Greedy Strategy:
- ► Goal: Select similar orientations to reconstruct diffusion information, Y.
- Selection criterion: $\overline{g}(S) \stackrel{\text{def}}{=} g(S) + \sum g(s)$
- ightharpoonup g(S) is squared multiple correlation $s \in S$
- $ightharpoonup \overline{g}(S)$ prefers S with high multiple correlation & ensures usefulness of each orientation itself.

Full Algorithm:

- Screen the orientations using GreedyOrientation, $|S| \le k$
- ► Optimize the tractography objective using subgradient descent

EMPIRICAL RESULTS

5. Reconstructing the anatomical structure of tracts

6. Conclusion and Future Work

- This fully unsupervised learning approach does not require any labelled data and is able to capture brain structures beyond the expert's settings and tractography results.
- In the future: do more experiments on different brains & learn fascicles as well.