

Quantum Information

MA5770: Modelling Workshop

MD Karimulla Haque

Guided by, Prof. A. K. B. Chand

March 4, 2025

Classical information

Agenda

- Consider a physical system that stores information: let us call it X.
- Assume X can be in one of a finite number of classical states at each moment. Denote this classical state set by Σ .
- Examples:
 - If X is a bit, then its classical state set is $\Sigma = \{0, 1\}$.
 - If X is a six-sided die, then $\Sigma = \{1, 2, 3, 4, 5, 6\}$.
 - If X is a switch on a standard electric fan, then perhaps $\Sigma = \{high, medium, low, off\}.$

Classical information

Agenda

Classical information Qubits

For example, if X is a bit, then perhaps it is in the classical state 0 with probability 3/4 and in the classical state 1 with probability 1/4. This is a probabilistic state of X.

Pr(X = 0) =
$$\frac{3}{4}$$
 and Pr(X = 1) = $\frac{1}{4}$

A succinct way to represent this probabilistic state is by a column vector:

$$\begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \end{pmatrix} \leftarrow \text{entry corresponding to 0} \\ \leftarrow \text{entry corresponding to 1}$$

- This vector is a probability vector:
 - All entries are nonnegative real numbers.
 - The sum of the entries is 1.

Dirac notation

Agenda

- Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, ..., |\Sigma|$.
- We denote by $|a\rangle$ the **column vector** having a '1' in the entry corresponding to $a \in \Sigma$, with '0' for all other entries.
- Example 1:

If
$$\Sigma = \{0, 1\}$$
, then $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Continue...

Agenda

- Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, ..., |\Sigma|$.
- We denote by $|a\rangle$ the **column vector** having a '1' in the entry corresponding to $a \in \Sigma$, with '0' for all other entries.
- Example 2:
 - If $\Sigma = \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$, then we might choose to order these states like this:

$$|\clubsuit\rangle=egin{pmatrix}1\\0\\0\\0\end{pmatrix},\ket{\diamondsuit}=egin{pmatrix}0\\1\\0\\0\end{pmatrix},\ket{\heartsuit}=egin{pmatrix}0\\0\\1\\0\end{pmatrix},\ket{\spadesuit}\rangle=egin{pmatrix}0\\0\\0\\1\end{pmatrix}$$

Continue...

Agenda

- Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers 1, ..., $|\Sigma|$.
- We denote by $|a\rangle$ the **column vector** having a '1' in the entry corresponding to $a \in \Sigma$, with '0' for all other entries.
- Vectors of this form are called standard basis vectors. Every vector can be expressed uniquely as a linear combination of standard basis vectors.
- Example: $\begin{pmatrix} \frac{3}{4} \\ \frac{3}{4} \end{pmatrix} = \frac{3}{4} |0\rangle + \frac{3}{4} |1\rangle$

Dirac notation

Agenda

- Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, ..., |\Sigma|$.
- We denote by $|a\rangle$ the **row vector** having a '1' in the entry corresponding to $a \in \Sigma$, with '0' for all other entries.
- Example 1:
 - If $\Sigma = \{0, 1\}$, then $\langle 0 | = \begin{pmatrix} 1 & 0 \end{pmatrix}$ and $\langle 1 | = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Dirac notation

Agenda

Classical information Qubits

 $|a\rangle\langle b|$ has a 1 in the (a,b)-entry and 0 for all other entries.

Basic Terminology

Agenda

Ket: $|*\rangle$, generally it's a column vector.

■ **Bra:** $\langle *| = |*\rangle^{\dagger}$, generally it's a row vector.

Bra-Ket: $\langle *||*\rangle$ or, $\langle *|*\rangle$

Ket-Bra: |*⟩⟨*|

 $|*\rangle|*\rangle = |**\rangle$

■ **Vector Notations:** $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, standard Qubits. $|0\rangle = (1 \quad 0)$ and $|1\rangle = (0 \quad 1)$

■ Hadamard Qubits: $\langle +|=\begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ and

$$\langle -|=\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

Qubits

Agenda
Classical information
Qubits

Definition: Quantum analog of classical bits; exists in superposition states $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, where

$$lpha, eta \in \mathbb{C}$$

= $cos(rac{ heta}{2})|0\rangle + e^{i\varphi}sin(rac{ heta}{2})|1\rangle$, where $|lpha|^2 + |eta|^2 = 1$.

Let,
$$\alpha = r_1 e^{i\theta_1}$$
 and $\beta = r_2 e^{i\theta_2}$

Then,
$$r_1^2 + r_2^2 = 1$$
 and $\theta_1 = \theta_2 + \varphi$

Take,
$$r_1 = cos(\frac{\theta}{2}), r_2 = sin(\frac{\theta}{2})$$

Figure: The Bloch sphere is a geometrical representation of a qubit. Qubits can take as value each point on the surface described by the two angles φ and θ . The pole points are $|0\rangle$ or $|1\rangle$.

Thank You

