Seminário dos Usuários das Previsões Numéricas de Mudanças Climáticas e Seus Impactos Regionais

CPTEC/INPE

Cachoeira Paulista, outubro de 2004

Interação entre a ciência e a formulação de políticas na abordagem da mudança do clima

Luiz Gylvan Meira Filho Instituto de Estudos Avançados Universidade de São Paulo

DELFOS

"neste local, são produzidas reduções máximas de variância de valores futuros de qualquer variável"

ass.: Apolo, ao assumir a gerência do oráculo

CPTEC

"neste local, são produzidas as maiores reduções de variância de valores futuros de elementos climáticos"

ass.: Maria Assunção, coordenadorageral do CPTEC o formulador de políticas públicas busca maximizar uma função utilidade, que inclui o seu fator de aversão ao risco. o cientista busca explicar a natureza, e assim prever o futuro.

usa o método científico: as hipóteses são verificadas contra as observações.

o formulador de políticas públicas precisa, dos cientistas, não somente a previsão do valor da variával, no futuro, mas também da variância

a ausência dessa informação, demonstravelmente, conduz a perdas indevidas o fato de o sistema climático ser um sistema caótico cria dificuldades de comunicação entre os cientistas e os formuladores de políticas públicas

mudança global do clima: três opções: INAÇÃO **MITIGAÇÃO ADAPTAÇÃO** (ou combinação das três) e um objetivo, o de maximizar sua função utilidade

INAÇÃO

há uma previsão de mudança global do clima resultante da ação antrópica. Essa previsão é de que a mudança resulte em danos; os estudos de impacto e de vulnerabilidade são necessários para estimar o valor das perdas associadas à política de inação.

INAÇÃO danos associados à inação tema central deste seminário

os danos são decalados no tempo em relação às suas causas

temperature increase response to a pulse of emission

dióxido de carbono e óxido nitroso: máximo efeito após 50 anos metano: máximo efeito após 20 anos efeito residual do dióxido de carbono a muito longo prazo

os danos estão associados a extremos de precipitação, temperatura, etc. dentro dos limites de mudança do clima cobertos pela modelagem atual, pode-se admitir que as anomalias das variáveis de interesse são proporcionais ao aumento da temperatura média global

para o formulador de políticas públicas o que interessa é a função densidade de probabilidade dos danos; na prática, há que decompor o problema e tomar o produto de probabilidades

probabilidade de a hipótese do aquecimento global ser verdadeira: problema de verificação e atribuição CPTEC precisa contribuir com o aperfeiçoamento dos modelos para melhor reproduzir as observações

função distribuição de probabilidade da magnitude da mudança do clima: variação suave pode ser decomposta na distribuição de probabilidade da temperatura e dos outros elementos ligados aos danos

função distribuição de probabilidade da magnitude da mudança do clima: variação brusca precisa ser expressa em termos da probabilidade de eventos súbitos mudança da circulação termohalina, liberação de metano e de carbono, fenômenos bruscos em gêlos

em todos os casos, para os formuladores de políticas públicas, é essencial a indicação das probabilidades em função do tempo; o processo não é estacionário

MITIGAÇÃO

mitigação significa evitar que o clima mude, ou diminuir a mudança do clima;

há somente uma possibilidade: reduzir a emissão líquida antrópica de gases de efeito estufa.

carbon dioxide atmospheric concentration at Mauna Loa

annual rate of change of carbon dioxide atmospheric concentration at Mauna Loa

o formulador de políticas públicas precisa saber, dos cientistas, qual a eficiência de medidas de mitigação; isto é fácil para metano e óxido nitroso; para o díóxido de carbono, precisa saber sobre o ciclo de carbono, que por sua vez depende da biosfera e dos oceanos

marginal cost of abatement

os custos a mitigação podem ser estimados em função da redução de emisões;

a redução de emissões precisa ser relacionada à redução da mudança do clima, e portanto à redução dos danos, caso contrário é difícil tomar decisões.

ADAPTAÇÃO

a opção de políticas públicas de adaptação corresponde a reduzir os danos, na presença da mudança do clima

em muitos casos a adaptação é impossível; no entanto, é importante saber disso porque a decisão fica reduzida aos casos de inação e mitigação

em alguns casos é possível a adaptação;

a previsão é aqui essencial porque é preciso saber a que adaptar-se

a opção de adaptação na realidade confunde-se com o uso de previsões para evitar perdas, quando isso é possível, seja para a variabilidade natural seja para a variabilidade modificada pela mudança do clima

daí a conclusão do Dr. Michel Jarraud, Secretário-Geral da Organização Meteorológica Mundial, de que a mudança do clima aumenta a exigência de melhores previsões

valor esperado da função utilidade em função do custo de adaptação

o que os formuladores de políticas públicas querem dos cientistas é o valor dos parâmetros que lhe permitem tomar decisões;

alguns desses parâmetros podem ser fornecidos por instituições como o CPTEC, outros não;

é importante que os cientistas saibam como decisões são tomadas, ainda que não explicitamente

$$\gamma = -\left(\tau - \kappa\mu^{\rho}\right)^{\lambda} + \eta\alpha^{\upsilon} - \alpha - \mu$$

$$U = \frac{1 - e^{-a \gamma}}{a}$$

em resumo...