Realistic Optimization-based Driving Using a Constrained Double-Integrator Model

Andreas Belavic

Technical University of Munich

March 31, 2025

Starting GIF

Given a 7-tuple $(\mathcal{X}, \mathcal{U}, x_{\text{initial}}, X_{\text{goal}}, f, J, \{t_i\}_{i=1,...,m})$, the discrete-time optimal trajectory planning problem is defined as:

$$u^* = \arg\min_{u \in \mathcal{U}^{m-1}} \sum_{i=1}^{m-1} J(x_{i+1}, u_i), \tag{1}$$

s.t.
$$x_1 = x_{\text{initial}}$$
 (2)

$$x_m \in X_{\mathsf{goal}} \subseteq \mathcal{X}$$
 (3)

$$(x_i, u_i) \in \mathcal{C} \subseteq \mathcal{X} \times \mathcal{U}$$
 for all $i \in \{1, \dots, m-1\}$ (4)

$$x_{i+1} = f(x_i, u_i, \Delta t_i)$$
 for all $i \in \{1, \dots, m-1\}$ (5)

Convex vs Non-Convex

Figure: Convex

Figure: Non-Convex

Convex Optimization in Motion Planning

- Non-convex formulations often lack robust convergence criteria.
- Our approach transforms the problem into a convex formulation to ensure:
 - Reliable convergence guarantees.
 - Predictable and efficient computation times.
 - Efficient checkability of the convexity.

Overview of the Methodology

Vehicle Modeling: Double Integrator Model (DI)

Figure: Double Integrator Model

- Transform to Frenet Frame, introduce Assumption $\xi = 0$.
- Feedback Linearization.
- Convex Inner Approximation.

(6)

Coordinate Transformation: Frenet Frame

- Transforms global coordinates into a path-following system.
- Simplifies handling of road curvature and lateral deviations.
- This transformation introduces nonlinear vehicle dynamics.

Figure: Frenet Frame Representation

$$\xi = \psi - \theta$$
, where θ is the angle of the reference path.

$$C(s) = \frac{d\theta}{ds} \tag{7}$$

Resulting Model & Simplifications

$$x_{di} = \begin{bmatrix} s & n & \xi & \dot{s} & \dot{n} & \dot{\psi} \end{bmatrix}^T \tag{8}$$

$$u_{di} = \begin{bmatrix} a_{x} & a_{y} & a_{\psi} \end{bmatrix}^{T} \tag{9}$$

$$\overbrace{\left(\begin{array}{c} \dot{s} \\ \dot{n} \\ \dot{\psi} - C(s)\dot{s} \\ a_{x,tn} + 2\dot{n} C(s)\dot{s} + n C'(s)\dot{s}^{2} \\ a_{y,tn} - C(s)\dot{s}^{2}(1 - n C(s)) \\ a_{\psi} \end{array}\right)}^{\dot{x}_{di}} \qquad \xi = 0 \qquad \qquad \begin{bmatrix} \dot{s} \\ \dot{n} \\ 0 \\ \frac{a_{x} + 2\dot{n} C(s)\dot{s} + n C'(s)\dot{s}^{2}}{1 - n C(s)} \\ \frac{a_{y} - C(s)\dot{s}^{2}(1 - n C(s))}{\ddot{\theta}} \end{bmatrix}$$

$$\frac{\dot{s}}{\dot{n}} \\
0 \\
\frac{a_{x} + 2\dot{n} C(s)\dot{s} + n C'(s)\dot{s}^{2}}{1 - n C(s)} \\
\frac{a_{y} - C(s)\dot{s}^{2}(1 - n C(s))}{\ddot{\theta}}$$

ТΛП

Feedback Linearization Technique

Linearize the vehicle's nonlinear dynamics.

Figure: Feedback control structure for a nonlinear system.

Technique detailed in Section 3.1.4 of the thesis.

$$\tilde{\mathbf{x}}_{di} = \begin{bmatrix} \mathbf{s}, & \mathbf{n}, & \dot{\mathbf{s}}, & \dot{\mathbf{n}} \end{bmatrix}^T$$
 (10)

$$\tilde{u}_{di} := \begin{bmatrix} u_t & u_n \end{bmatrix}^T \tag{11}$$

$$\frac{d\tilde{x}_{di}}{dt} = \begin{bmatrix} \dot{s} \\ \dot{n} \\ u_t \\ u_n \end{bmatrix} \tag{12}$$

Constraint Handling in the Framework

- Feedback linearization leads to nonlinear physical constraints: acceleration, velocity, and road boundaries.
- Using convex inner approximations for non-convex constraints.

$$\hat{C} = \left\{ \begin{bmatrix} \tilde{x}_{di} \\ \tilde{u}_{di} \end{bmatrix} \middle| N \begin{bmatrix} \tilde{x}_{di} \\ \tilde{u}_{di} \end{bmatrix} \le b \right\} \subseteq C, \tag{13}$$

- We apply quantifier elimination, using two approaches:
 - Interval Fitting and
 - Cylindrical Algebraic Decomposition (CAD).

$$\tilde{C} = \left\{ \begin{bmatrix} \dot{s} \\ u_t \\ u_n \end{bmatrix} \middle| \begin{bmatrix} \tilde{x}_{di} \\ \tilde{u}_{di} \end{bmatrix} \in C, \quad \forall \begin{bmatrix} s \\ n \\ \dot{n} \end{bmatrix} \in \begin{bmatrix} \underline{s}, \overline{s} \\ \underline{n}, \overline{n} \\ \underline{\dot{n}}, \overline{\dot{n}} \end{bmatrix} \right\}. \tag{14}$$

Interval Fitting Illustration

Cylindrical Algebraic Decomposition

- It is applied to polynomials and divides the space into cylindrical cells.
- Example for $x^2 + bx + 1$.

Figure: Illustrating the cells with shaded regions.

Vehicle Modeling: Kinematic Bicycle Model (KST)

Figure: Bicycle model representation of a vehicle.

- Transform to Frenet Frame.
- Approximate Dynamics.
- Convex Relaxation for Bilinear Terms.
- Approximate Constraints.

KST Dynamics

$$x_{kst} = \begin{bmatrix} s & n & \xi & v & \delta \end{bmatrix}^{T}$$

$$u_{kst} = \begin{bmatrix} a & v_{\delta} \end{bmatrix}^{T}$$
(15)

$$u_{kst} = \begin{bmatrix} a & v_{\delta} \end{bmatrix}^T$$
 (16)

$$\dot{x}_{kst} = egin{bmatrix} rac{v\cos\xi}{1-nC(s)} \ v\sin\xi \ rac{1}{I_{wb}}v an\delta - C(s)\dot{s} \ a \ v_{\delta} \end{bmatrix}$$

(17)

- For small steering angles, trigonometric functions can be approximated.
- This simplifies the nonlinear equations in the bicycle model.

$$\begin{bmatrix} \frac{v\cos\xi}{1-nC(s)} \\ v\sin\xi \\ \frac{1}{l_{wb}}v\tan\delta - C(s)\dot{s} \\ a \\ v_{\delta} \end{bmatrix}$$

(18)

McCormick Relaxation for Bilinear Terms

- McCormick relaxation provides a convex envelope for bilinear terms such as $w = v_1 v_2$.
- Given $v_1 \in [\underline{v_1}, \overline{v_1}]$ and $v_2 \in [\underline{v_2}, \overline{v_2}]$, the McCormick envelopes are:

$$w \ge \underline{v_1}v_2 + \underline{v_2}v_1 - \underline{v_1}v_2,
w \ge \overline{v_1}v_2 + \overline{v_2}v_1 - \overline{v_1}v_2,
w \le \overline{v_1}v_2 + \underline{v_2}v_1 - \overline{v_1}\underline{v_2},
w \le \underline{v_1}v_2 + \overline{v_2}v_1 - \underline{v_1}\overline{v_2}.$$

 This relaxation transforms the non-convex bilinear constraint into linear inequalities.

Example for Different Bounds

(a) Difference to the upper bound

(b) Difference to the lower bound

Example for Different Bounds

(c) Tighter upper bound on w

(d) Tighter lower bound on w

- We define road segments, planner configurations, and soft constraints.
- Simulation scenarios mimic realistic driving conditions.
- Multiple scenarios: straight roads, curved segments.
- Metrics: trajectory feasibility, computational time, road completion, and objective values.

- Solver times validate the framework's efficiency.
- $t_{\text{conf}}^{(1)} = (3s, 0.1s, 10\text{ms}, 40\text{ms})$
- $t_{\text{conf}}^{(2)} = (5s, 0.1s, 20\text{ms}, 20\text{ms})$

Model	Config	Avg Time	Time Deviation
DI	$t_{conf}^{(1)}$	3.9ms	1.0ms
DI	$t_{\rm conf}^{(2)}$	3.8ms	1.3ms
Bicycle	$t_{ m conf}^{(1)}$	9.5ms	2.1ms
Bicycle	$t_{\rm conf}^{(2)}$	9.4ms	2.9ms

Comparison: Double Integrator vs. Bicycle Model

- Double integrator: Fast and efficient, less detailed.
- Bicycle model: Higher fidelity but increased computational load.
- Trade-offs guide model selection based on application needs.

Numerical Experiment: Lane Change

- Scenario: Handling a sharp curve.
- Result: Both models perform well on moderate and slower velocities.
- Difference: DI accounts for lateral acceleration from the initial point onward.

Numerical Experiment: Slalom

- Scenario: Handling a sharp curve.
- Result: KST performs better.
- Inscribed polytope too conservative.

Numerical Experiment: Left Curve

- Scenario: Minimize control derivatives.
- Result: Approximation errors noticeable for KST.

- Conservative approximations can limit feasibility.
- KST performs worse in high speed scenarios, due to restricted friction circle.

$$\sqrt{a^2 + \left(v\dot{\psi}\right)^2} = \sqrt{a^2 + \left(\frac{v^2}{l_{wb}}\tan(\delta)\right)^2} \le a_{max} \tag{19}$$

Summary

- Proposed a convex optimization framework for motion planning.
- Demonstrated realistic, safe trajectories with a constrained double-integrator and kinematic bicycle model.
- Validated through extensive simulations and performance evaluations.

- Continue work on the KST model.
- Open work on the inscribed polytope, i.e. restrict $n \in [0, \overline{n}]$ in right curves.
- Implement the problem without the need of constraints compilation during runtime.