EA 614 - Exame: 11/07/2005 - Duração: 2 horas - Com consulta

1- Seja o sinal h(t) = u(t+2) - u(t-2) + 3u(t) - 2u(t-3) - u(t-5), conforme mostrado na figura a seguir.

Suponha que h(t) seja a resposta ao impulso de um sistema linear e invariante com o tempo.

- a) (1,5) Calcule a resposta y(t) do sistema para a entrada x(t) = u(t) u(t-2). Esboce y(t).
- b) (1,5) Suponha que h(t) é periódico com período fundamental $T_0=14$. Calcule a série exponencial de Fourier de h(t).
 - 2- Considere: $x[n] = 5\cos(2\pi n/5 + \pi/3) + 7j\sin(7n/3 + \pi/4), -\infty < n < \infty.$
- a) (0,5) Demonstre se a seqüência é periódica em n ou não é periódica. Se possível, calcule o período fundamental.
 - b) (0,5) Calcule o valor de $\sum_{n=-\infty}^{\infty} x[n] \delta[2n-10]$.
 - 3- (1,5) Considere o sinal x(t) most rado na figura a seguir.

Calcule a transformada de Fourier do sinal x(t), expressando-a em termos das funções sampling e cosseno.

VIRE

- 4) Considere o sinal $x(t) = |\cos(2\pi t)|$.
- a) (1,0) Calcule a transformada de Fourier de x(t).
- b) (1,0) Suponha que o sinal x(t) é colocado na entrada de um sistema linear invariante com o tempo com a função de sistema $H(\omega)$ mostrada na figura a seguir. Calcule o sinal y(t) na saída do sistema.

- 5- Considere o sinal $x(t)=50.000\,\mathrm{Sa}(50.000\pi t)$. Este sinal foi amostrado com uma frequência de amostragem $\omega_s=120.000\pi$ e filtrado com um filtro discreto passa-baixas ideal com frequência de corte $\Omega_c=\pi/5$, onde $\Omega=\omega T$ e T é o intervalo entre amostras.
 - a) (0,5) Esboce o espectro das amostras $X_a(\Omega)$.
- b) (0,5) Calcule o sinal contínuo no tempo y(t) recuperado a partir das amostras após o filtro discreto.
 - 6- Seja $x_1[n] = 2^{(n-3)}u[n-3]; \ x_2[n] = -(0,5)^{(n-5)}u[-n+4]; \ x_3[n] = u[n-10] u[n-20].$
 - a) (0,5) Calcule $X_1(z)$, $X_2(z)$ e $X_3(z)$.
 - b) (0,5) Calcule $X_1(\Omega)$, $X_2(\Omega)$ e $X_3(\Omega)$. Justifique.
 - c) (0,5) Considere $X(z) = X_1(z) + X_2(z)$; 0,5 < |z| < 2. Calcule x[n].