Sum of Squares: Part 1

Apoorv Vikram Singh

February 2, 2021

Introduction

Reason two basic problems about polynomial inequalities

1. Feasibility of polynomial system.

$$\rho_1(\mathbf{x}) \ge 0$$

$$\vdots$$

$$\rho_m(\mathbf{x}) \ge 0$$
(1)

Is there an x such that (1) is satisfied?

2. Checking non-negativity: Is $q(x) \ge 0$, $\forall x$ satisfying (1) ?

Justification: Feasibility

Feasibility checking is highly expressive.

- Example: MaxCut.
- . Input: G = (V, E), |V| = n.
- . Goal: Find $S\subseteq V$ such that $\left|E(S,\overline{S})\right|$ is maximized.
- . Polynomial Feasibility: For some $\beta \in \mathbb{Z}^+$,

$$\frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i - \mathbf{x}_j)^2 = \beta |E|$$

$$\mathbf{x}_i^2 = 1, \quad \forall 1 \leq i \leq n.$$

. n+1 degree-2 polynomials. Enumerate over polynomial number of values of β and solve MaxCut.

Other examples: MaxClique, Max 3-SAT, Knapsack. Therefore, polynomial feasibility checking problem is *NP*-Hard.

Goal

Analyze a relaxation for the feasibility problem, and try to find interesting situations where one can get a poly-time algorithms.

Justification: Non-Negativity

- ▶ Checking positivity: Given $f: \{-1,1\}^n \to \mathbb{R}$ with rational coefficients, decide if:
 - $f \ge 0$, $\forall x \in \{-1, 1\}^n$, or,
 - find an $\mathbf{x} \in \{-1,1\}^n$ such that $f(\mathbf{x}) \leq 0$.
- ▶ Example MaxCut: Decide if MaxCut $\leq c$.
 - . Let $f_G(\mathbf{x}) \stackrel{\text{def}}{=} \frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i \mathbf{x}_j)^2$.
 - . Decide if $c f_G(\mathbf{x}) \ge 0$, $\forall \mathbf{x} \in \{-1, 1\}^n$.

Certifying Non-Negativity

Given $f:\{-1,1\}^n\to\mathbb{R}$, find an "efficiently verifiable" certificate of non-negativity.

SoS Certificates

Definition (SoS cert of non-neg (or) SoS proof of non-neg)

A <u>degree-d</u> SoS certificate of non-negativity of $f: \{-1,1\}^n \to \mathbb{R}$ is a list of polynomials $g_1, \ldots, g_r: \{-1,1\}^n \to \mathbb{R}$, such such that

- . $\deg(g_i) \leq d/2$, and
- $f(\mathbf{x}) = \sum_{i \leq r} g_i^2(\mathbf{x}), \ \forall \mathbf{x} \in \{-1, 1\}^n.$

Efficiently Verifiable (?)

Polynomials f, g_1, \dots, g_r are represented as a vector of coefficients.

- 1. How large if r? ($\leq n^d$, see later)
- 2. How large are coefficients of g_i ?

Efficiently Verifiable

Proposition (Efficiently Verifiable)

Suppose $r \leq n^d$, all coefficients of g_i are bounded in magnitude by $2^{\text{poly}(n^d)}$. Then the identity $f = \sum_{i \leq r} g_i^2$ over all $\mathbf{x} \in \{-1,1\}^n$ can be checked in $\text{poly}(n^d)$ time.

Proof.

- . Given g_i , can compute g_i^2 , and $\sum_{i \leq r} g_i^2$ in polynomial time.
- . Check if $(f \sum_{i < r} g_i^2)(x) = 0$, $\forall x \in \{-1, 1\}^n$.
- . Using the fact that coefficient vector representation is unique, just check if $f-\sum_{i\le r}g_i^2=\mathbf{0}$

Fact (Unique Representation)

 $\forall f: \{-1,1\}^n \to \mathbb{R}$, there exists a <u>unique</u> representation of f: The multi-linear representation of f

$$f = \sum_{S \subseteq [n]} \hat{f}(S) \prod_{i \in S} x_i.$$

(this representation is its Fourier transform)

 \implies coefficient vector representation is unique.

(multilinear representation exists because ${\it x}_i^2=1$)

Are non-negative functions always certifiable?

Proposition (Certifiablity of non-negative functions)

Let $f:\{-1,1\}^n\to\mathbb{R}$ be non-negative over $\{-1,1\}^n$. Then, there exists a $\deg(2n)$ -SoS certificate of non-negativity.

Proof.

- . Consider $g: \{-1,1\}^n \to \mathbb{R}$, and $g(\mathbf{x}) = \sqrt{f(\mathbf{x})}$.
- . Every function on $\{-1,1\}^n$ is a polynomial of deg $\leq n$.
- . $f = g^2 \implies \deg(2n)$ -SoS Certificate.

Tensor Notation

- . Suppose vector $\mathbf{v} \in \mathbb{R}^n$.
- . $\mathbf{v}^{\otimes 2} \in \mathbb{R}^{n^2}$, where $\mathbf{v}(i,j) = \mathbf{v}_i \mathbf{v}_j$.
- . $\mathbf{v}^{\otimes k} \in \mathbb{R}^{n^k}$.

Proving Efficient Verifiability

Theorem (PSD Matrices and SoS Certificates)

 $f: \{-1,1\}^n \to \mathbb{R}$ has a $\deg(d)$ -SoS certificate of non-negativity \underline{iff} there exists a matrix A such that $A \succcurlyeq 0$, and

$$f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle.$$

- Parsing Notation:
 - $(1, \mathbf{x}) \in \mathbb{R}^{(n+1)}$.
 - . $(1, \mathbf{x})^{\otimes \frac{d}{2}}$: populate in a vector all possible monomials in the variable \mathbf{x} of degree at most d/2.
 - $A \in \mathbb{R}^{(n+1)^{d/2} \times (n+1)^{d/2}}$

Proof

- If Part:

$$f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$

$$= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, (B^{\top}B) \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$

$$= \left\langle B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}}, B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$

$$= \left\| B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\|^{2}. \tag{2}$$

- . Let $g_i(\mathbf{x}) = \left\langle e_i, B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$, i.e., *i*-th entry of the vector.
- . B is a matrix of constants, applied to monomials of degree at most d/2, therefore, $deg(g_i) \leq d/2$.
- . Therefore,

$$f(\mathbf{x}) = \sum_{i=1}^{(n+1)^{\otimes d/2}} g_i^2(\mathbf{x}).$$

Proof Cont...

- Only if Part: Suppose f has a degree-d SoS certificate.

$$f = \sum_{i \leq r} g_i^2$$
, and $\underbrace{g_i(\mathbf{x})}_{\deg \leq d/2} = \left\langle \mathbf{v}_i, (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$.

$$f(\mathbf{x}) = \sum_{i \leq r} \left\langle \mathbf{v}_i, (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle^2$$

$$= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, \underbrace{\left(\sum_{i \leq r} \mathbf{v}_i \mathbf{v}_i^{\top}\right)}_{0} \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle.$$

Efficient Verifiability

Corollary (Bound on r)

If $f: \{-1,1\}^n \to \mathbb{R}$ has a degree-d SoS certificate, then it has a certificate with $r \leq (n+1)^{d/2}$.

Proof.

Follows from (2):

$$f(\mathbf{x}) = \left\| B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\|^2.$$

Efficient Verifiability

Lemma (Bit-complexity of SoS proofs)

Suppose f has a degree-d certificate over $\{-1,1\}^n$. Then, f has a degree-d SoS certificate with bit complexity $poly(n^d)$.

• $\{-1,1\}^n$ is important, and doesn't necessarily hold for other domains.

Proof.

Since we are given f, we know that it can be efficiently represented. Therefore, we try to bound the entries of A in terms of f.

.
$$f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$$
, for some A .

.
$$f = \sum_{u} \hat{f}_{u} \mathbf{x}_{u}$$
, where $\mathbf{x}_{u} = \prod_{i \in u} \mathbf{x}_{i}$.

- . Expanding the inner product, we see $\hat{f}_u = \sum_{S,T} A_{S,T}$, such that $S\Delta T = u$, and $|S|, |T| \le d/2$.
- . $\hat{f}_{\emptyset} = \sum_{S} A_{S,S} = \operatorname{tr}(A) = \sum_{i} \underbrace{\lambda_{i}(A)}_{\geq 0}$.
- . $||A||_F^2 = \sum_{S,T} A_{S,T}^2 = \sum_i \lambda_i^2(A) \le \hat{f}_{\phi}^2$.

References I

Moitra, A. (2015).

Super-resolution, extremal functions and the condition number of vandermonde matrices.

In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC '15, page 821–830, New York, NY, USA. Association for Computing Machinery.