

SPBA01B

Bus Extender

MAY. 13, 2003

Table of Contents

PAGI	P	A	G	I
------	---	---	---	---

	GENERAL DESCRIPTION	
	FEATURES	
	APPLICATION FIELD	
4.	BLOCK DIAGRAM	
	4.1. WORK AS MEMORY EXTENDER	
	4.2. WORK AS I/O EXTENDER	
	4.3. SPBA01B BLOCK DIAGRAM	
5.	SIGNAL DESCRIPTIONS	
	5.1. ORDERING INFORMATION	
6.	FUNCTIONAL DESCRIPTIONS	
	6.1. THE EASIEST SYSTEM	
	6.2. ADDRESS/DATA BUS CONTROL	
	6.2.1. Decode table	
	6.2.2. Timing relations between control signals, AH, AL and data.	
	6.3. EXAMPLE ON ADDRESS MAPPING	
	6.4. ADDRESS MAPPING ON A SYSTEM	
	6.5. Daisy chain	
	6.5.1. Example	
	6.5.2. Configuration	
	6.6. CLOCK DIVIDER	11
7.	REGISTER DESCRIPTION	
	7.1. P_00H_BMIBANK(\$0000)(W)	
	7.1.1. CFG=2 Example	
	7.1.2. CFG=6 Example	
	7.2. P_0DH_BMIVoLumeID(\$000D)(W)	
	7.3. P_20H_BEXPORT0 (\$0020)(R/W)	
	7.4. P_21H_BEXPORT1 (\$0021)(R/W)	
	7.5. P_22H_BEXPORT2 (\$0022)(R/W)	
	7.6. P_23H_BEXConFig (\$0023)(W)	
	7.6.1. Bus extender pin assignment for 8 configurations	
	7.6.2. Memory Mapping Summary with Configuration 2~7	
8.	STANDBY CONDITION	16
9.	PCB LAYOUT CONSIDERATION	16
10	ELECTRICAL SPECIFICATIONS	17
	10.1.ABSOLUTE MAXIMUM RATINGS	
	10.2.DC CHARACTERISTICS (VDD = 2.4V - 5.5V, T_A = 0°C TO 70°C).	17
	10.3.AC CHARACTERISTICS (VDD = 2.4V - 5.5V, T_A = 0°C TO 70°C)	18
	10.4.Read Port Cycle	19
	10.5.Read Memory Cycle	19
	10.6. WRITE PORT CYCLE	20
	10.7.WRITE CYCLE	20

SPBA01B

11. APPLICATION CIRCUITS & EXAMPLE PROGRAM	24
TI AFFLICATION GIRCUITS & EAAWFLE PROGRAM	21
11.1. SIMPLEST APPLICATIONONE FLASH MEMORY EXTENSION	21
11.2. SPLB30A/31A WITH BUS EXTENDER AND BUS FLASH	22
11.3. ONE BEX WITH THREE MEMORY	23
11.4. Two BEXs form Daisy-Chain	24
12. DISCLAIMER	25

BUS EXTENDER

1. GENERAL DESCRIPTION

SPBA01B, a low cost 8-bit bus extender(BEX) by SUNPLUS, manipulates two pins, MC0 and MC1, to receive the multiplexed 8-bit address/data bus from main processor, e.g. SUNPLUS SPL13x and SPLB3x and...etc. SPBA01B is able to facilitate the expansion of memory capacity up to 4M bytes of RAM/ROM/EPROM/FLASH, or 25 I/O pins. Users may concatenate numbers of SPBA01B (up to 7) to fit application needs. Plus, SPBA01B equips a Clock divider to easily generate clock for IR application or any other applications. As compared with SPBA01A, majority of functions are identical, but AC characteristics have better performance and DVP mode is phased out.

2. FEATURES

- Fully compatible with SPBA01A expect DVP mode
- A speed-up version of bus extender*:
- One SPBA01B Expansible up to 4M bytes or 25I/Os.
- Daisy chain logic concatenates up to 7 extenders
- Supports varieties of memory types: SRAM, ROM, EPROM, EEPROM and FLASH

Note: when co-work with Sunplus controller, e.g. SPL13X or SPLB3X series and SPR64100 Mask ROM series, it is applicable to 4MHz@2.4V 6MHz@3.6V

3. APPLICATION FIELD

Memory extension, I/O extension for data bank and any others.

4. BLOCK DIAGRAM

4.1. Work as Memory Extender

4.2. Work as I/O Extender

4.3. SPBA01B Block Diagram

5. SIGNAL DESCRIPTIONS

Mnemonic	History alias	PIN No.	Туре	Description
CI	PCI	17	I	Cascade in for daisy chain
CO	PCO	16	0	Cascade out for daisy chain
AD7 - AD0	PD7 - PD0	4 - 11	I/O	Multiplexing Address/Data bus(AD BUS)
MC1, MC0	PMC1, PMC0	1, 2	I	Input pins to indicate AD bus status
P27(CE0)	XP27 - XP20	27	I/O	P2 are short for P27-P20.
P26 - P20		26 - 20		Memory extender
				P27(CE0): Memory-0 chip-enable pin
				P26-P20: Memory offset address A[14:8].
				I/O extender
				Input Mode: Pull-low internal
				Output Mode: Pure
P17 - P10	XP17 - XP10	37 - 44	I/O	P1 are short for P17-P10.
				Memory extender
				P17-P10: Memory offset address A[7:0].
				I/O extender
				Input Mode: Pull-low internal
				Output Mode: Pure
P07(CE1)	XP07 - XP00	28	I/O	P0 are short for P07-P00.
P06(CE2)		29		Memory extender
P05 - P00		30 - 35		P07(CE1): Memory-1 chip-enable pin
				P06/(CE2): Memory-2 chip-enable pin
				P06-P00: Memory bank address B[6:0], SPBA01B support up to 128
				banks, each bank is 32K bytes.
				I/O extender
				Input Mode: Pull-low internal
				Output Mode: Pure

	_	•		_
OSCO(OE)	PRDZ	18	0	Memory extender
				OSCO(OE): External memories output-enable signal
				I/O extender
				Output only: 1.84MHz oscillator output
P55(WE)	PWRZ	19	0	Memory extender
				P55(WE): External memories write-enable signal
				I/O extender
				Output only control by B5 of \$0023
XI	XTAL1	12	I	1.84 MHz crystal input (20p capacitor required)
ХО	XTAL2	13	0	1.84 MHz crystal output (20p capacitor required)
CLKO	ICLK	15	0	Clock divider output
VDD		36	ı	Positive supply
VSS		3	I	Ground reference
DVP		14		Test mode, please leave it open
				Pull-low internal.

Note1: Fully compatible with SPBA01A, expect DVP mode is discarded.

Note2: There are built-in pull low resistors at all input and bi-direction pins except AD[7:0], MC0, MC1, CI. The pull low resistors of bi-direction pin are disabled when working in output mode.

Note3: Internal pull-low resistor with value of approx. 37K Ohms @ VDD = 5.0V; 78K Ohms @ VDD = 3.0V. **Note4:** Sunplus strongly recommend user use **Mnemonic** name instead of **History alias** for easy understanding.

Note5: Physical address are concatenated from {B[6:0], A[14:8], A[7:0] } }

5.1. Ordering Information

Product Number	Package Type
SPBA01B - C	Chip form

6. FUNCTIONAL DESCRIPTIONS

6.1. The Easiest System

Bus extender (BEX) plays a role as an interface between MPU (SPLB31, SPL131...) and general-purposed (third-party) memory products. In fact, the BEX is a bus translator that translates the AD bus of BMItm to the general-purposed memory bus.

Below figure show the easiest way to use SPBA01B, The MPU send 11 signals to SPBA01B, SPBA01B latch the address and then send it to AT29C040 flash memory, SPBA01B also have responsibility to generate CE, OE, WE to the memory. On read cycle, the memory output the data at the common bus(AD7-AD0); while write cycle, SPL131 drive the written-data to AD7-AD0.

The AD bus(AD7-AD0) may Address High-Byte (AH), Address-Low-Byte (AL) and 8-bit bi-direction data. Also, the AD bus is common for MPU, SPBA01B, and memory. All of these may drive the bus depending on MC1, MC0 status.

6.2. Address/Data Bus Control

The SPBA01B(Bus extender) is a bridge between MPU(SPL130A, SPLB31A,...) and general-purposed (third-party) memory products. The MC1 and MC0 are the control signals for AD7-AD0, which can be three states: Address High-Byte (AH), Address-Low-Byte (AL) and 8-bit bi-direction data.

When MC1 is high, AD[7:0] functions as an address-bus, otherwise the AD[7:0] becomes a data-bus. In address-bus mode, AD[7:0] signifies high-address, A[15:8], when MC0 is high; in contrast, AD[7:0] expresses low-address, A[7:0], when MC0 is low. In data-bus mode, AD[7:0] represents data, D[7:0], which will be read from CPU when MC0 is high and CPU writes data to AD[7:0] when MC0 is low.

P0, P1, P2, WE, OE can be utilized as address-line, chip-enable, output-enable or write-enable for addressing external memory chip (please refer to *Bus Extender Pin Assignment for 8 configurations*). The number of pins needed for addressing depends on configuration and the remaining pins used for I/O port. When used as memory extender, chip-enable(CE), output-enable (OE) and write-enable(WE) operate in negative logic (voltage low stands for active, and voltage high stands for inactive). The address lines include A[14:0] (presenting CPU address) and B[6:0] (presenting bank register).

6.2.1. Decode table

MC1 decides AD bus to be address or data bus, and MC0 decides operation mode (Read or Write).

MC1	MC0	AD BUS
Н	Н	AH
Н	L	AL
L	Н	Data for Read
L	L	Data for Write

6.2.2. Timing relations between control signals, AH, AL and data.

6.3. Example on address mapping

```
1. CI=0
2. CI=1
3. %MOV
         P ODH BMIVolumeID, #%0000001
         P 23H BEXConfig, #%1100-0000
4. %MOV
                                             ; set CFG=6(B[7:5]), three 1MB memory enable
         P_00H_BankSelect, #%1010-0000
                                             ; select MEM1's bank0, (i.e. CE1 will active when access)
  %MOV
                                             ; write 0x1111 to MEM0[0x00000]
         0x8000, 0x1111
6. %MOV
         0xBFFF, 0x2222
                                             ; write 0x2222 to MEM0[0x03fff]
7. %MOV
         0x4000, 0x3333
                                             ; write 0x3333 to MEM0[0x04000]
8. %MOV
         0x7fff, 0x4444
                                             ; write 0x4444 to MEM0[0x7fffff]
9. %MOV
                                             ; select MEM1's bank1
         P_00H_BankSelect, #%1010-0001
10.%MOV
                                             ; write 0x5555 to MEM0[0x08000]
11.%MOV
         0x8000, 0x5555
                                             ; write 0x6666 to MEM0[0x0bfff]
12.%MOV
         0xBFFF, 0x6666
                                             ; write 0x7777 to MEM0[0x0c000]
13.%MOV
         0x4000, 0x7777
14.%MOV 0x7fff, 0x8888
                                             ; write 0x8888 to MEM0[0xfffff]
```

After consecutive 8 write

ADDRESS	DATA	Memo
H00000	1111H	BANK0, 32KB per bank
	•••	
03FFFH	2222H	
04000H	3333H	
07FFFH	4444H	
H00080	5555H	BANK1
0BFFFH	6666H	
0C000H	7777H	
0FFFFH	8888H	
10000H		BANK2

6.4. Address Mapping on a System

Bus extender usually use \$4000~\$BFFF for memory extension, while \$0000~003f for register setting.

Each bank are 32K bytes, \$8000H~\$BFFFH are mapped to \$0000H~\$3FFFH; \$4000H~\$7FFFH are mapped to \$4000H~7FFFH.

6.5. Daisy chain

There are 11 pins connecting from MPU to BEX, except MC0, MC1, and AD bus. In addition, there is another pin, named CI, the Cascade-In of BEX. When CI goes from low to high, the VID/SID of BEX will be reset and must be setup. When accessing BEX, the CI pin must keep in logical high level.

Both CI and CO provide the circuitry to concatenate up to seven BEX. In such case, the CO (Cascade-Out) of the former BEX is connected to the CI of next BEX to form a daisy-chain. After CI of 1st BEX goes from low to high, the 1st setting of Volume ID, VID, (setting \$000DH) will apply to the 1st BEX. After the 1st BEX is configured, it will raise its CO. The CO of the 1st BEX is connected with the CI of the 2nd BEX; as a result, the configuration will apply to the 2nd BEX, and...etc.

For correction operation, if there are 5 BEXs on the system, issue exactly five unique VID.

After all VID have been set, any writing activity to \$000D will be taken as "selecting". For example, after setting the VID of the BEXs as 1,2,3,... up to 7, simply write 3 to \$000DH to select and access it when MPU intends to access BEX of ID 3.

Note that the sequence of ID is not necessary of 1,2,3...7. The user is allowed to set the IDs as 3,2,1... or 7,2,4... Just keep in mind that the 1^{st} ID is applied to the 1^{st} BEX in the daisy chain. The 0 is not a valid ID.

Because we want all BEXs to share the same BMI, every BEX needs two variables, Volume-ID(VID) and Select-ID(SID) inside. We must send unique VID to every BEX and then we should choose one of these BEX by setting SID. At any time, only one BEX can operate. Which BEX will be activated depending on which BEX has VID=SID (but VID cannot be 0). \$000DH register is used for set both VID and SID, but VID can be written once only.

When MPU sends OUT=0, CI of BEXA=0 causes VID,SID, CO of BEXA=0, too; CO of BEXA always causes VID,SID, CO of BEXB=0. Finally, all functions in these two SPBA01B are disabled and all registers remain at the previous states, except volume-id(VID) and select-id(SID), which are reset to zero.

6.5.1. Example

We will describe the action of two BEX on the daisy chain as follows. It's important that MPU shares bus with BEXs. How can we identify BEX and send a unique VID to each BEX? It is achieved by CI and CO.

<u>\$000DH</u> register works for setting a unique VID for each BEXs, and then acts as SID only. VID are write-once register. The first step is accessing BEXA and then accessing BEXB as follows:

- 1. MPU's OUT=0
- 2. MPU's OUT=1
- 3. Send_addr_data(\$000d,\$03)
 - ; Set 3 to VID of BEXA(VID write once)
- 4. Send_addr_data(\$000d,\$05)
 - ; Set 5 to VID of BEXB(VID write once)
- 5. Send_addr_data(\$000d,\$03)
 - ; Set 3 to SID of BEXA and BEXB

(BEXA active, BEXB inactive)

- 6. Send_addr_data(\$0023,\$XX)
 - ; Configure BEXA as 'Memory extender' or 'I/O extender'
- 7. (Access BEXA....)
- 8
- Send_addr_data(\$000d,\$05)
 - ; Set 5 to **SID** of BEXA and BEXB (BEXA inactive, **BEXB active**)
- 10. Send_addr_data(\$0023,\$XX)
 - ; Configure BEXB as 'Memory extender' or 'I/O extender'
- 11. (Access BEXB.....)

After step 9, the status of BEXA and BEXB are as following

6.5.2. Configuration

BEX has two modes: memory extender (major mode), and I/O extender. As we use the BEX, we need to set configuration register immediately after volume-id is given. Writing to B[7:5] of \$0023H establishes the SPBA01B configurations.

When SPBA01B works as memory extender, it can extend from 1 to 3 memories, depending configuration. Please refer to **Register description** chapter.

When using as I/O extender, P0, P1 and P2 are bi-directional pins. The value written to B[4:0] of \$0023H defines directions. Logical "1" stands for output and logical "0" stands for input. Specially, P55($\overline{\text{WE}}$) and OSCO($\overline{\text{OE}}$) cannot operate in input direction.

6.6. Clock Divider

Writing to PS[1:0] (B[5:4] of register \$0021H) and CDP[7:0] (register \$0022H) sets the frequency of CLKO out. Writing a logical one to OSCE (B7 of register \$0021H) makes the crystal oscillator enable. Writing a logical zero to OSCE makes the crystal oscillator disable, and reduces power consumption. When both OSCE and CLKOE are logical one, CLKO is enabled.

OSCE	CLKOE	osco	CLKO
0	Х	Н	L
1	0	Freq1	L
1	1	Freq1	Freq2

Freq1 is dependent on crystal.

 $Freq2 = freq1/(m*n*2), where n=2^PS[1:0],$

m=256-(CDP[7:0] value)

OSCO is available in CFG0 and CFG1

7. REGISTER DESCRIPTION

7.1. P_00H_BMIBank(\$0000)(W)

Bank Selection Register

	B7	В6	B5	B4	В3	B2	B1	В0
w	must be1	BANK6	BANK5	BANK4	BANK3	BANK2	BANK1	BANK0

B6 - B0 are BANK6-BANK0. The extended memory are divide into banks, 32K bytes per bank. Each AD BUS cycle can only address up to 32KB. To access another bank, you should issue P_00H_BMIBank(\$0000) command. When SPBA01B connects to one 4MB memory, B6 - B0 are bank selections for total of 128 banks. In CFG=6 mode, one SPBA01B can support up to three memory; thus, B6 - B5 act as memory selections while B4 - B0 act as bank selection.

7.1.1. CFG=2 Example

CFG=2, one 4MB is configured and B6 - B0 are all for 128-bank coloctions

B6-B0	Description
B6	A21
B5	A20
B4	A19
В3	A18
B2	A17
B1	A16
В0	A15

7.1.2. CFG=6 Example

CFG=6, three 1MB are configured and B4 - B0 are for 32-bank selections.

B6-B5	Description
00	CE2 will be asserted
01	CE1 will be asserted
1X	CE0 will be asserted

B6-B0	Description
B4	A19
В3	A18
B2	A17
B1	A16
В0	A15

7.2. P_0DH_BMIVolumeID(\$000D)(W)

Bus memory Volume ID Setup & Selection

	D7	DC	DE	D4	Da	D0	D4	DO
	В/	B6	B5	B4	B3	B2	B1	B0
Write-once	-	-	-	-	-	VID2	VID1	VID0
w	-	-	-	-	-	SID2	SID1	SID0

VID[2:0]: Volume-ID for unique identify the SPBA01B on the daisy-chain, write once only.

SID[2:0]: Select-ID for selection one of SPBA01Bs on the daisy-chain.

7.3. P_20H_BEXPort0 (\$0020)(R/W)

Extender Port0

	B7	В6	B5	B4	В3	B2	B1	В0
W/R	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0

I/O extender: P07-P00: bi-direction port to communication with external device. The direction is set by B[2:0] of \$0023.

Memory extender: No function.

7.4. P_21H_BEXPort1 (\$0021)(R/W)

Extender Port1 & Function Control (W)

	B7	В6	B5	B4	В3	B2	B1	В0
W/R	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
W	OSCE	CLKOE	PS1	PS0	1	Х	Χ	Х

I/O extender: P17-P10: bi-direction port to communicate with external device. The direction is set by B3 of \$0023.

Memory extender: OSCE: Oscillator Enable

CLKOE: Clock Output Enable PS[1..0]: Pre-scalar Counter

B3: Must be 1.

7.5. P_22H_BEXPort2 (\$0022)(R/W)

Extender Port2 & ClockDividerPreload (W)

	B7	В6	B5	B4	В3	B2	B1	В0
W/R	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
W	CDP7	CDP 6	CDP 5	CDP 4	CDP 3	CDP 2	CDP 1	CDP 0

I/O extender: P27-P20: bi-direction port to communication with external device. The direction is set by B4 of \$0023.

Memory extender: CDP[7:0]: Clock divider preload value.

7.6. P_23H_BEXConfig (\$0023)(W)

Bus Extender Configuration

	B7	В6	B5	B4	В3	B2	B1	В0
w	CFG2	CFG1	CFG0	DIR2	DIR1	DIR03	DIR01	DIR00
			P55					

CFG[2..0]: Bus Extender Configuration Number (0~7) **P55:** ExterndPort55 Output Bit (P55 is output pin only)

DIR2: ExtendPort2 Control (1:Output, 0: Input)

DIR1: ExtendPort1 Control (1:Output, 0: Input)

DIR03: ExtendPort0 [7..3] Control (1:Output, 0: Input)

DIR01: ExtendPort0 [2..1] Control (1:Output, 0: Input)

DIR00: ExtendPort0.0 Control (1:Output, 0: Input)

Note 1: P55 is available for output only if CFG=0 or 1

Note 2: If the extend port is configured as input, there will be an internal pull-low resistor (37K Ohms @ VDD=5V or 78K Ohms @ VDD=3V).

7.6.1. Bus extender pin assignment for 8 configurations

PINs			Con	figuration Re	gister \$0023	[7:5]		
Name	000(I/O)	001(I/O)	010(32KB)	011(4MB)	100(1MB)	101(4MB)	110(1MB)	111(2MB)
P00	I/O	I/O	I/O	В0	B0	B0	B0	В0
P01	I/O	I/O	I/O	B1	B1	B1	B1	B1
P02	I/O	I/O	I/O	B2	B2	B2	B2	B2
P03	I/O	I/O	I/O	В3	В3	В3	В3	В3
P04	I/O	I/O	I/O	B4	B4	B4	B4	B4
P05	I/O	I/O	I/O	B5	I/O	B5	I/O	B5
P06	I/O	I/O	I/O	В6	I/O	В6	CE2	CE2
P07	I/O	I/O	I/O	I/O	CE1	CE1	CE1	CE1
P10	I/O	I/O	A0	A0	A0	A0	A0	A0
P11	I/O	I/O	A1	A1	A1	A1	A1	A1
P12	I/O	I/O	A2	A2	A2	A2	A2	A2
P13	I/O	I/O	A3	A3	A3	A3	A3	A3
P14	I/O	I/O	A4	A4	A4	A4	A4	A4
P15	I/O	I/O	A5	A5	A5	A5	A5	A5
P16	I/O	I/O	A6	A6	A6	A6	A6	A6
P17	I/O	I/O	A7	A7	A7	A7	A7	A7
P20	I/O	I/O	A8	A8	A8	A8	A8	A8
P21	I/O	I/O	A9	A9	A9	A9	A9	A9
P22	I/O	I/O	A10	A10	A10	A10	A10	A10
P23	I/O	I/O	A11	A11	A11	A11	A11	A11
P24	I/O	I/O	A12	A12	A12	A12	A12	A12
P25	I/O	I/O	A13	A13	A13	A13	A13	A13
P26	I/O	I/O	A14	A14	A14	A14	A14	A14
P27	I/O	I/O	CE0	CE0	CE0	Х	CE0	X
OSCO/ OE	osco	osco	OE	OE	OE	OE	OE	OE
P55/ WE	LOW	HIGH	WE	WE	WE	WE	WE	WE
Total I/O Available	25	25	8	1	2	0	1	0
No. of Memories available	0	0	1	1	2	1	3	2
Total memory size	0	0	32KB	4MB	2MB	4MB	3MB	4MB

The memory is divided into banks, 32KB per bank. banks are address by B6-B0, while A14-A0 are offset address of bank.

ITEM	Description	Memo
B6-B0	Memory extender: Bank selection pin	
A14-A0	Memory extender: Address pin to access 32KB memory in a bank	
CE2, CE1, CE0	Memory extender: Chip enable pin	
Х	Memory extender: Don't use.	
I/O	I/O extender: Pins can be configured as input or output	
0	I/O extender: Output pin only	
OSCO	I/O extender: Crystal output	
P55	I/O extender: When CFG=0 output Low, when CFG=1 output High	

7.6.2. Memory Mapping Summary with Configuration 2~7

Mapping Address	Bank Select Value(\$0000)	Mode	Chip Selection
\$2000~\$3FFF (8K)		CFG=2	Asserting CE0 to select last 8KB memory
		CFG=4	Bank, with b[4:0] become 11111.
		CFG=5	
		CFG=6	
		CFG=7	
\$8000~\$BFFF	1XXXXXXX	CFG=2	Access 32KB Memory with CE0
\$4000~\$7FFF	1BBBBBBB	CFG=3	Access 4MB Memory with CE0
(32K each bank, mainly	10XBBBBB	CFG=4	Access 1MB Memory with CE1
used for memory extension)	11XBBBBB	CFG=4	Access 1MB Memory with CE0
extension)	1BBBBBBB	CFG=5	Access 4MB Memory with CE1
	100BBBBB	CFG=6	Access 1MB Memory with CE2
	101BBBBB	CFG=6	Access 1MB Memory with CE1
	11XBBBBB	CFG=6	Access 1MB Memory with CE0
	10BBBBBB	CFG=7	Access 2MB Memory with CE2
	11BBBBBB	CFG=7	Access 2MB Memory with CE1

Note1: "B" is for extender memory bank selection; "KB" means K-byte and "MB" for M-byte.

Note2: "X" means "don't care" which has no effect on bank selection.

8. STANDBY CONDITION

Item	Description
CI	VDD VSS
MC1-MC0	VDD
AD7-AD0	VDD or VSS
P0, P1, P2	Memory extender:
	Leave open
	I/O extender:
	Output mode: inhibit any pull-low or pull-up
	Input mode: leave open or VSS
DVP	Leave open or VSS
Register OSCE(B7 of \$0021)	Must be set to 0

9. PCB LAYOUT CONSIDERATION

Due to MC0 and Mc1 are edge triggering signal, the trace must be as short as possible; shielding with ground signal is better.

10. ELECTRICAL SPECIFICATIONS

10.1. Absolute Maximum Ratings

Characteristics	Symbol	Ratings
DC Supply Voltage	V ₊	< 7.0V
Input Voltage Range	V _{IN}	-0.5V to V ₊ + 0.5V
Operating Temperature	T _A	0°C to +70°C
Storage Temperature	T _{STO}	-50°C to +150°C

Note: Stresses beyond those given in the Absolute Maximum Ratings table may cause operational errors or damage to the device. For normal operational conditions see AC/DC Electrical Characteristics.

10.2. DC Characteristics (VDD = 2.4V - 5.5V, $T_A = 0^{\circ}$ C to 70° C)

21			Limits			
Characteristics	Symbols	Min.	Тур.	Max.	Units	Test conditions
Operating Voltage	VDD	2.4	1	5.5	V	
		-	0.32	0.6	mA/MHz	VDD = 2.4V, C _L = 10pF
Operating Current	I _{CC}		0.55	1.0	mA/MHz	VDD = 3.6V, C _L = 10pF
		-	0.88	2.0	mA/MHz	VDD = 5.5V, C _L = 10pF
		-	1.4	3.0	mA/MHz	VDD = 2.4V, C _L = 50pF
Operating Current	I _{CC2}		2.3	4.0	mA/MHz	VDD = 3.6V, C _L = 50pF
		-	3.6	6.0	mA/MHz	VDD = 5.5V, C _L = 50pF
Standby Current	I _{STBY}	-	-	1.0	μА	All signal un-toggle, T_A = 25 $^{\circ}$ C
Input high voltage	V_{IH}	0.7VDD	-	VDD	V	
Input low voltage	V_{IL}	-0.3V	-	0.2 VDD	V	
						I _{OH} = 1.0mA @ 2.4V
Output high voltage	V_{OH}	0.75 VDD	-	-	V	I _{OH} = 1.5mA @ 3.0V
						I _{OH} = 4mA @ 5.0V
						I _{OL} = 0.8mA @ 2.4V
Output low voltage	V_{OL}	-	-	0.15VDD	V	I _{OL} = 1.2mA @ 3.0V
						I _{OL} = 3mA @ 5.0V
Pull-low MOS current	I _{PL3}	-	38	-	μΑ	VDD = 3.0V, V _{IN} = VDD
Pull-low MOS current	I _{PL3}	-	157	-	μΑ	VDD = 5.0V, V _{IN} = VDD

10.3. AC Characteristics (VDD = 2.4V - 5.5V, $T_A = 0^{\circ}$ to 70°)

Test Condition V_{IH} = VDD, V_{II} = 0V. Input Rise and Fall Times = 1ns. I/O Timing Reference Level = VDD/2. Output Load: C_{I OAD} = 100pF

Characteristics	Symbols	Limits			110-24-	Took on 199
		Min.	Тур.	Max.	Units	Test conditions
AH setup time	T _{ahs}	10	-	-	ns	
AH hold time	T_{ahh}	10	-	-	ns	
AL setup time	T_{als}	10	-	-	ns	
AL hold time ¹	T_{alh}	10	-	25	ns	VDD = 2.4V
		10	-	15	ns	VDD = 3.6V
		10	-	10	ns	VDD = 5.5V
Data setup time	T_{ds}	10	-	-	ns	
Data hold time ²	T_{dh}	10	-	-	ns	
MC1 falling to MC0 rising	T _{m1m0}	-	-	15	ns	VDD = 2.4V
		-	-	9	ns	VDD = 3.6V
		-	-	4	ns	VDD = 5.5V
Address high delay	T_{ahd}	-	31	49	ns	VDD = 2.4V
		-	21	30	ns	VDD = 3.6V
		-	16	22	ns	VDD = 5.5V
Address low delay ³	T_{ald}	-	32	58	ns	VDD = 2.4V @ ah hold time = 10n
		-	20	31	ns	VDD = 3.6V @ ah hold time = 10n
		-	17	23	ns	VDD = 5.5V @ ah hold time = 10n
MC1 rising to Chip-enable falling	T _{cezf}	-	46	69	ns	VDD = 2.4V
		-	28	40	ns	VDD = 3.6V
		-	22	30	ns	VDD = 5.5V
MC1 rising to Chip-enable rising	T _{cezr}	-	29	46	ns	VDD = 2.4V
		-	19	28	ns	VDD = 3.6V
		-	14	20	ns	VDD = 5.5V
MC1 falling to Write-enable falling		-	36	52	ns	VDD = 2.4V
	T _{wrzf}	-	23	34	ns	VDD = 3.6V
		-	18	23	ns	VDD = 5.5V
MC1 falling to Write-enable rising	T _{wrzr}	-	19	25	ns	VDD = 2.4V
		-	13	20	ns	VDD = 3.6V
		-	10	15	ns	VDD = 5.5V
MC1 falling to Read-enable falling	T_{rdzf}	-	37	54	ns	VDD = 2.4V
		-	24	35	ns	VDD = 3.6V
		-	18	25	ns	VDD = 5.5V
MC1 rising to Read-enable rising		-	24	39	ns	VDD = 2.3V
	T_{rdzr}	-	16	24	ns	VDD = 3.6V
		-	12	17	ns	VDD = 5.5V
Read port data delay time	$T_{\sf dd}$	-	54	90	ns	VDD = 2.3V
		-	34	54	ns	VDD = 3.6V
		_	25	37	ns	VDD = 5.5V

Note1: T_{alh} Max value prevent bus fighting

Note2: When write memory cycle, please refer to accompany memory

Note3: Measure from al_in to al_out

10.4. Read Port Cycle

10.5. Read Memory Cycle

10.6. Write Port Cycle

10.7. Write cycle

11. APPLICATION CIRCUITS & EXAMPLE PROGRAM

11.1. Simplest application--One Flash memory extension


```
%PullBEXENLow
                                          ; Set CI to 0
%PullBEXENHigh
                                          ; Set CI to 1
LDA #1
                                          ; Set Volume-ID and Select-IDto 1
STA P ODH BexVolID
LDA #%011XXXXX
                                          ; Set CFG=3 for 4MB configuration
STA P 23H BEXConfig
                                          ; 128 banks in total(bank0~bank127)
LDA #%1000-0010
                                          ; Set bank to 2,
STA P 00H BexBank
                                          ; mapping $8000-$BFFF to $010000-$013FFF
                                          ; mapping $4000-$7FFF to $014000-$017FFF
(access bank 2)
LDA #%1000-0000
                                          ; Set bank to 0,
STA P_00H_BexBank
                                          ; mapping $8000-$BFFF to $000000-$003FFF
                                          ; mapping $4000-$7FFF to $004000-$007FFF
(access bank 0)
LDA #%1111-1111
                                          ; Set bank to 127,
                                          ; mapping $8000-$BFFF to $3F8000-$3FBFFF
STA P_00H_BexBank
                                          ; mapping $4000-$7FFF to $3FC000-$3FFFFF
(access bank 127)
```

Note %PullBEXENLow and %PullBEXENHigh are macros that control the high or low for SPBA01B's CI.

11.2. SPLB30A/31A with Bus Extender and Bus Flash

- The area in solid line can be viewed as a micro-controller with address bus.
- The area in dash line can be viewed as the memory within the bus extender.

11.3. One BEX with Three Memory


```
%PullBEXENLow
                                              ; Set CI to 0
%PullBEXENHigh
                                              ; Set CI to 1
LDA
       #1
                                              ; Set Volume-ID and Select-IDto 1
      P_ODH_BexVolID
STA
      #%110XXXXX
LDA
                                              ; Set CFG=6 for three 1MB configuration
      P 23H BEXConfig
                                              ; 128 banks in total (bank0~bank127)
STA
       #%1100-0010
LDA
                                              ; Select memory0, set bank to 2
       P_00H_BexBank
STA
 (access memory0 bank 2)
       #%1010-0000
LDA
                                              ; Select memory1, set bank to 0
       P_00H_BexBank
STA
 (access memory2 bank 3)
 . . .
       #%1001-1111
LDA
                                              ; Select memory2, set bank to 31
STA
       P 00H BexBank
 (access bank 127)
```


11.4. Two BEXs form Daisy-Chain


```
%PullBEXENLow
                                             ; Set CI to 0
%PullBEXENHigh
                                             ; Set CI to 1
                                             ; Set BEXA Volume-ID to 1, BEXA Select-ID=1
LDA
      #1
STA
      P_ODH_BexVolID
LDA
                                             ; Set BEXB Volume-ID to 3
                                             ; BEXA VID=1, SID=3(inactive)
STA
     P_ODH_BexVolID
                                             ; BEXB VID=3, SID=3(active)
LDA
     #%00011111
                                             ; Set CFG=0 ; BEXB act as IO extender, all port are output
     P_23H_BEXConfig
STA
      #%10101010
LDA
                                             ; BEXB: P0=AAH
     P 20H BEXPort0
STA
      #%01010101
                                             ; BEXB: P2=55H
T.DA
      P 22H BEXPort2
STA
LDA
      #1
                                             ; BEXA: VID=1, SID=1 (active)
     P ODH BexVolID
                                             ; BEXB: VID=3, SID=1(inactive)
STA
      #%1100-0010
LDA
                                             ; BEXA: Select memory1, set bank to 2
     P 00H BexBank
STA
     #%1110-1000
LDA
                                             ; BEXA: oscillator enable, CLKO enable, pre-scale = 2
STA
      P 21H BEXPort1
LDA
      #%0011-1100
                                             ; BEXA: CDP[7:0]=60, CLKO=1.84MHz/(2^2)/60/2=3.83KHz
      P 22H BEXPort2
 (access memory0 bank 2)
                                             ; Access BEXA memory1
```

. . .

12. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Sunplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. SUNPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, SUNPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. SUNPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by SUNPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.