МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа № 3 по курсу «Программирование графических процессоров»

Классификация и кластеризация изображений на GPU.

Выполнил: Ф.М. Шавандрин

Группа: 8О-408Б

Преподаватель: А.Ю. Морозов

Условие

Формат изображений. Изображение является бинарным файлом, со следующей структурой:

width(w)	height(h)	r	g	b	а	r	g	b	а	r	g	b	а	 r	g	b	а	r	g	b	а
4 байта, int	4 байта, int	3	4 ба нач пикс [1	ени	е	4 байта, значение пикселя [2,1]			е	4 байта, значение пикселя [3,1]			 3	4 ба нач пикс w -	ени	e	3	нач	айта ени селя ,h]	е	

В первых восьми байтах записывается размер изображения, далее построчно все значения пикселей, где

- r -- красная составляющая цвета пикселя
- g -- зеленая составляющая цвета пикселя
- b -- синяя составляющая цвета пикселя
- а -- значение альфа-канала пикселя

В результирующем изображении, на месте альфа-канала, должен быть записан номер класса (кластера), к которому был отнесён соответствующий пиксель. Если пиксель можно отнести к нескольким классом, то выбирается класс с наименьшим номером. Формат изображений соответствует формату, описанному ниже.

Цель работы: Научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти и одномерной сетки потоков.

Вариант 1. Метод максимального правдоподобия.

Программное и аппаратное обеспечение **GPU**:

- Название NVIDIA GeForce GT 545
- Compute capability: 2.1
- Графическая память: 3150381056
- Разделяемая память: 49152
- Константная память: 32768
- Количество регистров на блок: 32
- Максимальное количество нитей: (1024, 1024, 64)
- Максимальное количество блоков: (65535, 65535, 65535)
- Количество мультипроцессоров: 3

Сведения о системе:

- Процессор: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
- ОЗУ: 15 ГБ
- HDD 500 ГБ

Программное обеспечение:

- OS: Ubuntu 16.04.6 LTS
- Текстовый редактор: Vim
- Компилятор: nvcc

Метод решения

Для решения данной задачи необходимо сначала вычислить вектор средних и ковариационной матрицы по следующим формулам:

$$avg_{j} = \frac{1}{np_{j}} \sum_{i=1}^{np_{j}} ps_{i}^{j}$$

$$cov_{j} = \frac{1}{np_{j} - 1} \sum_{i=1}^{np_{j}} (ps_{i}^{j} - avg_{j}) * (ps_{i}^{j} - avg_{j})^{T},$$

где $ps_i^j = (r_i^j g_i^j b_i^j)^T$ - i-ый пиксель j-ой выборки.

Затем для каждого пикселя p, номер класса jc считается следующим образом:

$$jc = argmax \left[-\left(p - avg_{j} \right)^{T} * cov^{-1} * \left(p - avg_{j} \right) - \log\left(\left| det\left(cov_{j} \right) \right| \right) \right]$$

Описание программы

Вектор средних, ковариационная и обратная ковариационная матрицы и детерминант считаются на ЦПУ. В функции *kernel* каждый пиксель обрабатываемого изображения классифицируется с помощью формулы, описанной выше.

Пример работы программы

В качестве примера выбрал изображение 3 граней кубика рубика: синей, жёлтой и красной. В качестве тестовой выборки выбрал 5 пикселя для каждого цвета, определив, что классу 0 соответствует синий цвет, классу 1-жёлтый и классу 2 — красный.

Результаты

Для тестирования программы на GPU, будем сравнивать её с программой на CPU, обрабатывающей изображения с разрешением 736*736, 1280*720, 2975*2980, 3264*2724 соответственно.

CPU:

Разрешение	Время работы, мс					
736*736	1.4078					
1280*720	1.9215					
2975*2980	10.8620					
3264*2724	11.1214					

<1, 32>

Разрешение	Время работы, мс
736*736	28.4864
1280*720	48.4596
2975*2980	465.7523
3264*2724	466.9933

<32, 32>

Разрешение	Время работы, мс					
736*736	2.2897					
1280*720	3.8695					
2975*2980	37.0149					
3264*2724	37.0729					

<128, 128>

Разрешение	Время работы, мс					
736*736	1.6004					
1280*720	2.7009					
2975*2980	25.8122					
3264*2724	25.8861					

Выводы

В ходе данной лабораторной работы были освоены навыки работы с классификацией изображений с помощью различных методов. реализован метод максимального правдоподобия для кластеризации обрабатываемых изображений с использованием константной памяти и одномерной сетки потоков. На практике кластеризация изображений нужна для того, чтобы определить, например, какие пиксели относятся к Ferrari, а какие — к Porsche, если рассматривается задача, связанная с автомобилями. Глобально, суть кластеризации состоит в том, чтобы объекты, попавшие в одну группу, имели сходные характеристики, в то время как у объектов из разных групп эти характеристики должны значительно отличаться.