Correction des travaux dirigés d' Apprentissage par renforcement

Université Paris-Saclay

Joon Kwon

mercredi 12 novembre 2024

36

EXERCICE 1. — Si on suppose $B_{\pi}v_* = B_*v_*$, cela signifie que v_* est un point fixe de B_{π} . Or v_{π} est l'unique point fixe de B_{π} . Donc $v_* = v_{\pi}$.

Réciproquement, supposons $v_{\pi} = v_{*}$. Alors, en utilisant le fait que v_{π} est point fixe de B_{π} et v_{*} est point fixe de B_{*} ,

$$B_{\pi}v_{*} = B_{\pi}v_{\pi} = v_{\pi} = v_{*} = B_{*}v_{*}.$$

Exercice 2. —

1) On considère les ensembles $\mathcal{S} = \{s^{(1)}, s^{(2)}\}, \mathcal{A} = \{a^{(1)}\}$ et $\mathcal{R} = \{0\}$, et la dynamique

$$p(\cdot|s,a^{(1)}) = \delta_{(0,s^{(2)})}, \quad \text{ pour tout } s \in \mathcal{S}.$$

Alors, on peut facilement montrer que pour $v \neq v'$ dans $\mathbb{R}^\mathscr{S}$ définis par

$$v(s^{(1)}) = 1$$
, $v'(s^{(1)}) = 0$ et $v(s^{(2)}) = v'(s^{(2)}) = 0$,

on a Dv = Dv' = 0, D n'est pas donc pas injective.

2) L'opérateur D étant affine, il est injectif si, et seulement si l'opérateur linéaire associé est injectif. On pose le vecteur

$$R = \left(\sum_{(r,s')\in\Re\times\mathscr{S}} p(r,s'|s,a)r\right)_{(s,a)\in\mathscr{S}\times\mathscr{A}} \in \mathbb{R}^{\mathscr{S}\times\mathscr{A}}$$

et la matrice

$$P = \left(\sum_{r \in \mathcal{R}} p(r, s'|s, a)\right)_{((s,a), s') \in (\mathcal{S} \times \mathcal{A}) \times \mathcal{S}} \in \mathbb{R}^{(\mathcal{S} \times \mathcal{A}) \times \mathcal{S}},$$

de sorte que pour tout $v \in \mathbb{R}^{\mathscr{S} \times \mathscr{A}}$,

$$Dv = R + \gamma Pv$$
.

D est alors injective si, et seulement si Ker $P = \{0\}$.

Exercice 3. — On suppose $v_{\pi} \leqslant v_{\pi'}$. En utilisant la monotonie de l'opérateur D, il vient

$$q_{\pi} = \mathrm{D}v_{\pi} \leqslant \mathrm{D}v_{\pi'} = q_{\pi'}.$$

La réciproque est fausse en général, donnons un contre-exemple avec deux états $\mathscr{S} = \left\{s^{(1)}, s^{(2)}\right\}$ et deux actions $\mathscr{A} = \left\{a^{(1)}, a^{(2)}\right\}$. On considère la dynamique donnée par

$$p(\cdot|s^{(1)}, a^{(1)}) = \delta_{(0,s^{(2)})}$$

$$p(\cdot|s^{(1)}, a^{(2)}) = \delta_{(1,s^{(2)})}$$

$$p(\cdot|s^{(2)}, a^{(1)}) = \delta_{(0,s^{(2)})}$$

$$p(\cdot|s^{(2)}, a^{(2)}) = \delta_{(0,s^{(2)})}$$

et deux politiques stationnaires et déterministes π , π' données par

$$\pi(s^{(1)}) = \pi(s^{(2)}) = a^{(1)},$$

et

$$\pi'(s^{(1)}) = \pi'(s^{(2)}) = a^{(2)}.$$

On vérifie alors facilement que $q_{\pi}=q_{\pi'}$ mais que $v_{\pi'}(s^{(1)})=1>0=v_{\pi}(s^{(1)})$.