

INTERNATIONAL QUALIFICATIONS

Please write clearly in	y in block capitals.					
Centre number	Candidate number					
Surname						
Forename(s)						
Candidate signature	I declare this is my own work.	/				

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Thursday 11 January 2024 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
TOTAL				

Answer all	questions	in the s	paces	provided.
------------	-----------	----------	-------	-----------

1	The line L has Cartesian equations $\frac{x-1}{2} = \frac{y-4}{5} = \frac{2z-3}{4}$
	The plane Π has Cartesian equation $x + 2y + 3z = 18$
	The line L intersects the plane Π at the point A
	Find the Cartesian coordinates of <i>A</i> [3 marks]
	Answer

3

2	(a)	Express the complex number $-2\sqrt{3} + 2i$ in the form $r e^{i\theta}$				
		where $r>0$ and $0\leq heta < 2\pi$	[2 marks]			
		Answer				
2	(b)	Solve the equation				
		$z^4 = -2\sqrt{3} + 2i$				
		giving your solutions in the form $r{ m e}^{{ m i} }\theta$ where $r>0$ and $0\leq \theta \leq 2\pi$	[4 marks]			
		Answer				

Turn over ▶

6

3	(a) (i)	Find the gradient of the curve	$v = \tanh^{-1} x$	when	x = 0

[1 mark]

Answer____

3 (a) (ii) Sketch the curve $y = \tanh^{-1} x$ for |x| < 1 on the axes below.

[1 mark]

$\tanh^{-1}\left(\frac{1+x}{2}\right)$	+ tanh ⁻¹	$\left(\frac{1-x}{2}\right) =$	$\frac{3}{2}$ ln3 –	$\frac{1}{2}$ ln2	
· ·					[5

By expressing $\frac{r}{r}$	$\frac{r+r+1}{(r+1)}$ in the form	$A + \frac{D}{r} + \frac{C}{r+1}$	where A , B	and C are
integers, use the r	method of difference	s to show that		
	$\sum_{r=0}^{n} \frac{r^2 + r + 1}{r^2 + r^2}$	$=1+n-\frac{1}{n+1}$		
	r=1 $r(r+1)$	n+1		[6

6

5	Find the	solution	of the	differential	equation
อ	rina ine	Solution	or the	umerendar	equation

$$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y = \cos^2 x + \sin x$$
 where $0 \le x < \frac{\pi}{2}$

given that
$$y = 1$$
 when $x = \frac{\pi}{3}$

Give your answer in the form
$$y = f(x)$$

[6	marks]
----	--------

6

		Find the first three non-zero terms in the Maclaurin series expansion in ascending
		powers of x of $\cos(2x)$ [1 mark]
		[Timark]
		Апсиист
		Answer
^	(1-)	Hence find the Maclaurin series expansion of $e^{\cos(2x)-1}$ in ascending powers of x
6	(b)	up to and including x^4
		[2 marks]
		Answer

6

6	(c)	Hence show that	$\lim_{x\to 0} \left(\frac{e-e}{e} \right)$	$\left.\frac{e^{\cos(2x)}}{x^2}\right)$	= k e	where	k	is a constant.	
				,					[3 marks]
				Answe	er				

Turn over for the next question

7	(a)	Explain why $\int_3^\infty \frac{x-3}{e^x} dx$ is an improper integral.	
			[1 mark]
7	(b)	Find the exact value of the improper integral	
		$\int_{3}^{\infty} \frac{x-3}{e^{x}} dx$	
		showing the limiting process used.	
			[5 marks]

	Do not write outside the
	box
Answer	6
Allewei	
Turn over for the next question	

8 (a)	Prove by induction that, for all integers $n \ge 1$					
		$\sum_{r=1}^{n} (r^3 + 3r^5) = \frac{1}{2} n^3 (n+1)^3$				
			[5 marks]			

Do not write
outside the
hov

8 (b)	Hence show that
	$\sum_{r=1}^{3N} r^5 = \frac{3}{4} N^2 (3N+1)^2 (18N^2 + 6N - 1)$
	where N is a positive integer. [3 marks]

8

(a) (ii)		arks]
	Answer	
(a) (i)		arks]
(a)	In the case when T has a line of invariant points:	
	where k is an integer.	
	$\mathbf{M} = \begin{bmatrix} 2 & 3 & 6 \\ 1 & 3 & -2 \end{bmatrix}$	
	The transformation T is represented by the non-singular matrix $\begin{bmatrix} -1 & 4 & k \end{bmatrix}$	
	(a) (i)	$\mathbf{M} = \begin{bmatrix} -1 & 4 & k \\ 2 & 3 & 6 \\ 1 & 3 & -2 \end{bmatrix}$ where k is an integer. (a) In the case when T has a line of invariant points: (a) (i) find the value of k [3 m

(b)	Find \mathbf{M}^{-1} in terms of k	[6 mark
	Answer	

10 (a)	Find the general solution of the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \sin 4x + 38\cos 4x$	
	$dx^2 dx$	[6 marks]
	Answer	

[4 marks]

10	(b)	It is given that	y = f(x)	is the solution of the differential equation
----	-----	------------------	----------	--

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = \sin 4x + 38\cos 4x$$

It is also given that the first two non-zero terms in the Maclaurin series expansion in ascending powers of x of f(x) are $4+17x^2$

Find the value of $f\left(\frac{\pi}{16}\right)$ giving your answer in a simplified exact form.

Answer

10

11	The plane Π_1 has equation $\mathbf{r} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$	
11 (a)	Find the sum of the direction cosines of a line perpendicular to the plane Π_1	[5 marks]
	Answer	

		6			
11 (b)	The plane $\Pi_2^{}$ has equation ${f r}{ullet}$	c	= 14	where c	is a constant.
		2			

The line $\,L\,$ is the line of intersection of the planes $\,\Pi_1\,$ and $\,\Pi_2\,$

The equation of the line L is $\begin{pmatrix} \mathbf{r} - \begin{bmatrix} p \\ q \\ 7 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} 2 \\ -5 \\ 4 \end{bmatrix} = \mathbf{0}$ where p and q are constants.

Find the value of $\ c$, the value of $\ p$ and the value of $\ q$

[6 marks]

11

12	(a)	Use de	Moivre's	theorem	to	show	that
----	-----	--------	----------	---------	----	------	------

$$\cos 5\theta = 16\cos^5\theta + a\cos^3\theta + b\cos\theta$$

where a and b are integers.

[5 marks]

		_

12 (b) Hence prove that the quartic equation whose roots are

$$\cos\frac{2\pi}{5}$$
 , $\cos\frac{4\pi}{5}$, $\cos\frac{6\pi}{5}$ and $\cos\frac{8\pi}{5}$

is

$$16x^4 + 16x^3 + kx^2 + kx + 1 = 0$$

where k is an integer.

[4 marks]

	Do not writ outside the box
	DOX
12 (c) Hence use the equation in part (b) to fin	
integer coefficients whose roots are cos	$s\frac{2\pi}{5}$ and $cos\frac{6\pi}{5}$
	[4 marks]
Answer	13

13	A curve C is given parametrically by the equations
	$x = \tanh t$ and $y = \frac{1}{\cosh t}$ for all real values of t
	The length of the arc of C between the points on the curve where $t=-1$ and $t=1$ is equal to s
13 (a) (i)	Prove that $s = \int_{-1}^{1} \operatorname{sech} t dt$ [5 marks]

	Hence find the exact value of s giving your answer in terms	oi e	[4 marks]
	Answer		
(b)	Find the Cartesian equation of the curve <i>C</i> and state as ineq	jualities the poss	ible values
(b)	Find the Cartesian equation of the curve $\ C$ and state as ineq of $\ x$ and the possible values of $\ y$	ualities the poss	
(b)		ualities the poss	ible values [3 marks]
(b)		ualities the poss	
(b)	of x and the possible values of y		[3 marks]
(b)	of x and the possible values of y		[3 marks]
(b)	of x and the possible values of y		[3 marks]
(b)	of x and the possible values of y		[3 marks]
(b)	of x and the possible values of y		[3 marks]

14 Figure 1 shows an ellipse *E* and a curve *C* which intersect at the points *P* and *Q* The pole *O* and the initial line are also shown.

Figure 1

The Cartesian equation of the ellipse E is

$$5x^2 + 9y^2 = 36 - 24x$$

The polar equation of the curve C is

$$r = 5 + 4\cos\theta$$
 where $-\pi \le \theta \le \pi$

14	(a)	Show that the polar equation of the ellipse	F	ie	r =	6
17	(α)	chow that the polar equation of the ellipse	_	13	'	$3+2\cos\theta$

[4 marks]

Show that the area of triangle <i>OPQ</i> is $\frac{9\sqrt{3}}{4}$	
	[4 n
Question 14 continues on the next pa	age

14 (c) Figure 2 shows an enhanced version of part of Figure 1.

The line segment PQ intersects the curve C at the points S and T

The finite region bounded by the line segment ST and the curve C is shaded.

Figure 2

Find the area of the shaded region.

Give your answer in the form $a\sqrt{n}+m\cos^{-1}(b)$ where n and m are integers and a and b are rational.

and a and b are rational.		[7 marks]

	Do not write outside the
	box
Answer	15
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Do not write outside the