Résolution d'inéquations

F1

a. Résolvons l'inéquation h(x)>0 par le calcul :

$$h(x)>0$$
 $rac{3}{4}x-rac{7}{4}>0$ $3x-7>0$ en multipliant par 4 $3x>7$ en ajoutant 7 $x>rac{7}{3}$ en divisant par 3

L'ensemble des solutions de l'inéquation h(x)>0 est donc l'intervalle $|rac{7}{3};+\infty[$.

b. Résolvons l'inéquation $h(x)\leqslant 1$ par le calcul :

$$h(x) \leqslant 1$$
 $\frac{3}{4}x - \frac{7}{4} \leqslant 1$ $3x - 7 \leqslant 4$ en multipliant par 4 $3x \leqslant 11$ en ajoutant 7 $x \leqslant \frac{11}{3}$ en divisant par 3

L'ensemble des solutions de l'inéquation $h(x)\leqslant 1$ est donc l'intervalle $]-\infty; rac{11}{3}]$.

La fonction f

$$f(x) = \frac{1}{10}x^3 - \frac{1}{36}x^2 - \frac{131}{60}x + \frac{10}{9}$$

Tableau de valeurs

La calculatrice permet d'obtenir le tableau de valeurs de la fonction f pour les valeurs de x comprises entre -4 et 4 avec un pas de 1. Les valeurs sont approchées à 10^{-2} près.

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
f(x)	3	4,71	4,57	3,17	1,11	-1	$-2,\!57$	-2,99	-1,67

Image

E3

coordonnées (1;-1).

- **a.** L'image de -2 par la fonction f est environ 4,57. La courbe représentative de f coupe l'axe des ordonnées au point de coordonnées (-2;4,57). **b.** L'image de 1 par la fonction f est -1. En effet par lecture graphique, la courbe représentative de f passe par le point A de
- c. L'image de 0 par la fonction f est $\frac{10}{9}$. La courbe représentative de f coupe l'axe des ordonnées au point de coordonnées $(0;\frac{10}{9})$.

Antécédent

F4

a. La courbe représentative de f semble passer par les points de coordonnées (-4;3) et (-0,9;3) par lecture graphique. Donc 3 semble posséder pour antécédents -4 et -0,9 par la fonction f. b. La calculatrice permet d'être plus précis en donnant les valeurs de la fonction entre -1 et -0,5 avec un pas de 0,1. Les valeurs sont approchées à 10^{-2} près.

\boldsymbol{x}	-1	-0,9	-0,8	-0,7	-0,6	-0,5
f(x)	3,17	2,98	2,79	2,59	2,39	2,18

c. La courbe représentative de f semble remonter et pourrait passer par un autre point d'ordonnée 3 après 5. La calculatrice permet de trouver qu'il semble y avoir un autre antécédent de 3 par la fonction f entre $5{,}18$ et $5{,}19$.

\boldsymbol{x}	5,15	5,16	5,17	5,18	5,19
f(x)	2,79	2,84	2,9	2,96	3,01

Donc la 3 possède au moins trois antécédents par la fonction f:-4, environ -0.9 et environ 5.19.

La fonction g

$$g(x) = \frac{11}{20}x^2 + \frac{17}{20}x - \frac{12}{5}$$

Positions relatives de courbes

E5

a. La courbe représentative de g semble couper la droite représentative de h au point de coordonnées (-1,3;-2,7) par lecture graphique et au point A de coordonnées (1;-1). Donc l'équation g(x)=h(x) semble avoir pour solutions -1,3 et 1. En affichant les tableaux de valeurs des deux fonctions entre -2,5 et -1 avec un pas de 0,1, on peut trouver une valeur plus précise.

x	1,5	$-1,\!4$	-1,3	$-1,\!2$	$-1,\!1$
h(x)	$-2,\!88$	$-2,\!8$	-2,73	$-2,\!65$	$-2,\!58$
g(x)	$-2,\!44$	$-2,\!51$	$-2,\!58$	$-2,\!63$	$-2,\!67$

b. L'ensemble des solutions de l'inéquation $g(x) \leqslant h(x)$ est l'ensemble des abscisses des points de la courbe représentative de g situés en dessous de la courbe de h. L'ensemble des solutions de l'inéquation $g(x) \leqslant h(x)$ semble être l'intervalle [-1,2;1].