

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Object Detection
Introduction

Bastian Lampe

Institute for Automotive Engineering

Computer Vision Approaches

Single Object

Multi Objects

Overview

- Goal: Find all objects and assign a class from a fixed set of classes
- Solve multiple tasks simultaneously
 - Localization of objects
 - Classification of objects
- Detect multiple objects
- An Object is represented by
 - Bounding box (e.g. position, dimension, orientation)
 - Classification (e.g. car, pedestrian, truck)
 - ...
- Different sensor modalities for input data
 - 2D camera images
 - 3D LiDAR point clouds

Video: gfycat

Video: githu

Main Challenges

- Class ambiguity (fixed set of classes)
- Class imbalance
- Intra-class and inter-class variance
 - Illumination
 - Object pose or sensor viewpoints

Image: becominghuman

Main Challenges

- Class ambiguity (fixed set of classes)
- Class imbalance
- Intra-class and inter-class variance
 - Illumination
 - Object pose or sensor viewpoints
- Overlapping, occluded, truncated objects
- 2D camera images
 - No 3D information (estimation required)
 - Glare, reflection, distortion
- **3D** LiDAR point clouds
 - Unstructured point representation (sparse, variable size)
 - Only intensities instead of RGB

Image: becominghuman

Image: sony

Image: techniexpert

Bounding Box Representation

 Center of bounding box and dimensions as scaled image coordinates

Center of bounding box, dimensions and orientation as 3D absolute world coordinates

$$b_X = 0.5$$
 $b_l = 0.5$ $\phi = 0.25$
 $b_y = 0.25$ $b_w = 0.3$
 $b_z = 0.5$ $b_h = 0.2$

Approaches

3D Multi Object Detection in LiDAR Point Clouds

- 3D bounding boxes enables direct usage in environment model
- LiDAR point clouds provide accurate 3D environment information
- Object detection is most intuitive way of identifying objects in 3D space

- Unsupervised clustering algorithms
 - k-mean clustering
 - DBScan

Supervised deep learning approaches

Source: Lang et al. 2019

Summary

Images: ieee

Main challenges (e.g. occlusion, multiple instances / classes, illumination effects)

Bounding box representation

Different approaches for solving the task

Video: github