Série Nº3 : Formes bilinéaires et Formes quadratiques

Exercice 1

On désigne par E_1 , E_2 , F et G des espaces vectoriels sur un même corps commutatif \mathbb{K} , par u et v des endomorphismes de E, par w une application linéaire de F dans G et par f une application bilinéaire de $E_1 \times E_2$ dans F.

1. Montrer que l'application g de $E_1 \times E_2$ dans F définie par

$$(x,y) \longmapsto f(u(x),v(y))$$

est bilinéaire.

- 2. Montrer que l'application composée $w \circ f$ est bilinéaire.
- 3. Soit $E_1 = E_2 = E = \mathbb{K}[X]$ l'espace vectoriel des polynômes à coefficients dans \mathbb{K} . Montrer que les applications φ et ψ de $E_1 \times E_2$ dans E définies par

$$\varphi(P,Q)=(PQ)',\quad \text{où}\quad (PQ)' \text{ est la dérivée de } PQ$$

$$\psi(P,Q)=S,\quad \text{où}\quad S(X)=P(X-1)Q(X)$$

sont bilinéaires.

Exercice 2

Soient E et F deux espaces vectoriels sur un même corps commutatif \mathbb{K} et $\{u_1,\ldots,u_m\}$ et $\{v_1,\ldots,v_n\}$ sont des bases de E et F respectivement. Soit T un espace vectoriel sur \mathbb{K} de dimension mn et les mn vecteurs d'une base de T notés e_{ij} sont indexés par les couples d'entiers (i,j) tels que $1 \leq i \leq m$ et $1 \leq j \leq n$. On définit l'application φ de l'ensemble produit $E \times F$ dans T par

$$\varphi(x,y) = \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_i \eta_j e_{ij} \quad \text{si} \quad x = \sum_{i=1}^{m} \xi_i u_i \quad \text{et} \quad y = \sum_{j=1}^{n} \eta_j v_j$$

1. (a) Montrer que, si H un espace vectoriel sur le corps $\mathbb K$ et f une application bilinéaire de $E \times F$ dans H, alors il existe une application linéaire et une seule g de T dans H telle que

$$f = q \circ \varphi$$
.

- (b) Soient $\mathcal{B}(E,F;H)$ l'espace vectoriel des applications bilinéaires de $E\times F$ dans H et $\mathscr{L}(T,H)$ l'espace des applications linéaires de T dans H. Quelles sont les propriétés de l'application $\Phi:\mathcal{B}(E,F;H)\to\mathscr{L}(T,H), f\mapsto g=\Phi(f)$.
- 2. Vérifier que Φ est linéaire.
- 3. On désigne par $\{u'_1, \ldots, u'_m\}$ et $\{v'_1, \ldots, v'_n\}$ des bases de E et F.
 - (a) Ecrire l'expression de $\varphi(x,y)$ en fonction des coordonnées ξ_1,\ldots,ξ_m et η'_1,\ldots,η'_n de x et y dans les bases $\{u'_1,\ldots,u'_m\}$ et $\{v'_1,\ldots,v'_n\}$.
 - (b) Montrer que les vecteurs $e'_{hk} = \varphi(u'_h, v'_k)$ forment une base de T, puis donner les coordonnées de ces vecteurs dans la base e_{ij} en fonction des termes des matrices de passage des bases $\{u_1, \ldots, u_m\}$ et $\{v_1, \ldots, v_n\}$ aux bases $\{u'_1, \ldots, u'_m\}$ et $\{v'_1, \ldots, v'_n\}$
- 4. Peut-on définir pour les applications trilinéaires une décomposition qui généralise celle indiquée en question 1. our les applications bilinéaires ?

Exercice 3

Soit Ω une forme quadratique sur \mathbb{R}^n , on sait que :

(i) il existe des formes linéaires indépendantes f_i telle que

$$\Omega(x) = \sum_{i=1}^{p} \varepsilon_i f_i^2(x)$$
 où $\varepsilon_i = \pm 1$

(ii) le nombre p des formes f_i est le même pour toutes les décompositions de Ω du type précédent (p est le rang de Ω).

Établir que pour deux décompositions de ce type, le nombre des coefficients ε_i égaux à 1 est le même (et donc aussi le nombre des coefficients ε_i égaux à (-1)).

Exercice 4

On considère la forme quadratique f définie dans \mathbb{R}^4 par :

$$f(X) = x^2 + 2y^2 - z^2 + 2t^2 + 2xy + 2xt + 2yt + 2yz - 2zt$$

où x, y, z, t désignent les coordonnées de X dans la base canonique de \mathbb{R}^4 .

1. Déterminer des formes linéaires indépendantes ℓ_i telles que :

$$f(X) = \sum_{i} \varepsilon_{i} [\ell_{i}(X)]^{2}$$
, avec $\varepsilon_{i} = \pm 1$.

2. Indiquer une base de \mathbb{R}^4 telle que la matrice de f dans cette base soit diagonale.

Exercice 5

On considère la forme quadratique f définie dans \mathbb{R}^3 par :

$$f(X) = 4x^2 + 4y^2 + z^2 + 2yz + 2zx - 4xy$$

où x, y, z désignent les coordonnées de X dans la base canonique de \mathbb{R}^3 .

- 1. Déterminer le rang de la forme f et chercher si cette forme est positive (On pourra pour cela écrire f comme combinaison linéaire des carrés de formes linéaires indépendantes).
- 2. Déterminer la matrice A de la forme quadratique f.
- 3. Déterminer une base orthonormale de \mathbb{R}^3 telle que la matrice de la forme f dans cette base soit diagonale; on donnera la matrice de passage P et son inverse P^{-1} .
- 4. Utiliser les résultats du 3. pour retrouver les résultats du 1..

Exercice 6

On déssigne par f une forme quadratique \mathbb{R}^n et par $A=(a_{ij})$ sa matrice dans la base canonique; on écrira :

$$f(X) = X^T A X = (AX, X)$$

où $X=(\xi_1,\ldots,\xi_n)$ est le vecteur X relativament à la base canonique de \mathbb{R}^n .

On suppose que la forme f est positive non dégénérée.

1. Montrer qu'il existe des formes linéaires ℓ_i telles que : $\ell_i(X) = \sum_{i \geq i} a_{ij} \xi_i$, $(i = 1, 2, \dots, n)$

$$f(X) = \sum_{i=1}^{n} [\ell_i(X)]^2$$

et que ces formes sont uniques si on impose les conditions :

$$a_{ij} \ge 0$$
 $(i = 1, 2, \dots, n)$

- 2. Montrer qu'il existe une matrice triangulaire supérieure et une seule $T=(\theta_{ij})$ satisfaisant aux conditions : "les termes θ_{ii} de la diagonale sont positifs $A=T^TT$ "
- 3. Peut-on énoncer un résultat analogue à celui du 2) si la A est la matrice d'une forme quadratique hermitienne sur \mathbb{C}^n positive et non dégénérée ?