# Linear State-Variable Equations

ME 340 Fall 2019. Instructor: Hasan Poonawala

We have looked at the following physical systems and ways to represent the EoMs:



# 1 Linear State-Variable Equations

Suppose that we are given the state-variable equations

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

$$y(t) = Cx(t) + Du(t) \tag{2}$$

where x(t) is the state, y(t) is the output, u(t) is the input, and t represents time.

Suppose we know the initial condition (IC)  $x(t_0)$ , and input u(t) for  $t \in [t_0, t_f]$ . We want to understand how the output y(t) will behave over the time interval  $[t_0, t_f]$ . To do so, we may either

- Explicitly solve for x(t), because y(t) = Cx(t) + Du(t)
- Use A, B, C, and D to predict the behavior of solutions x(t) given ICs and input.

We saw that transfer functions allow us to do something similar for Input-Output Differential Equations.

### 1.1 Explicit Solution

In earlier calculus classes, you may have seen methods to solve linear ODEs by computing homogenous and particular solutions. In the notes on Laplace transforms, we solve first-order input-output differential equations in y(t) using this method. This section shows the relationship between that method and the linear state-variable equations given by matrices A, B, C, and D.

Matrix Exponential. Given a matrix A, we define the matrix  $e^{At}$  as the infinite sequence

$$e^{At} = I + \frac{1}{1}At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \frac{1}{4!}A^4t^4 + \cdots$$
 (3)

This definition implies that  $e^{A(t_1+t_2)} = e^{At_1}e^{At_2}$ .

Let's calculate the derivative of  $e^{At}$ :

$$\frac{d}{dt}e^{At} = \frac{d}{dt}\left(I + \frac{1}{1}At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \frac{1}{4!}A^4t^4 + \cdots\right) 
= \frac{d}{dt}\left(I\right) + \frac{d}{dt}\left(\frac{1}{1}At\right) + \frac{d}{dt}\left(\frac{1}{2!}A^2t^2\right) + \frac{d}{dt}\left(\frac{1}{3!}A^3t^3\right) + \frac{d}{dt}\left(\frac{1}{4!}A^4t^4\right) + \cdots 
= 0 + A + \frac{1}{2!}A^2(2t) + \frac{1}{3!}A^3(3t^2) + \frac{1}{4!}A^4(4t^3) + \cdots 
= 0 + A + \frac{1}{1}A^2t + \frac{1}{2!}A^3t^2 + \frac{1}{3!}A^4t^3 + \cdots 
= A\left(I + \frac{1}{1}At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \cdots\right) 
= Ae^{At}$$

Suppose we define  $z(t) = e^{At}v$ , where  $v = e^{-At_0}z(t_0)$ , Then,

$$\dot{z}(t) = \frac{d}{dt} \left( e^{At} v \right) = \frac{d}{dt} \left( e^{At} \right) v$$
$$= \left( A e^{At} \right) v = A \left( e^{At} v \right)$$
$$= A z(t)$$

In other words,  $x(t) = e^{A(t-t_0)}x(t_0)$  is the solution to the differential equation

$$\dot{x}(t) = Ax(t)$$

with initial condition  $x(t_0)$ .

Suppose we have the differential equation

$$\dot{x}(t) = Ax(t) + Bu(t).$$

Multiply on the left by  $e^{-At}$  and rearrange to get

$$e^{-At}\dot{x}(t) - Ae^{-At}x(t) = e^{-At}Bu(t)$$

But,

$$\frac{d}{dt}\left(e^{-At}x(t)\right) = e^{-At}\dot{x}(t) - Ae^{-At}x(t),$$

so that we may write

$$\frac{d}{dt}\left(e^{-At}x(t)\right) = e^{-At}Bu(t).$$

Integrate this equation on both sides:

$$\int_{t_0}^t \frac{d}{dt} \left( e^{-A\tau} x(\tau) \right) d\tau = \int_{t_0}^t e^{-A\tau} B u(\tau) d\tau$$

$$\implies e^{-At} x(t) - e^{-At_0} x(t_0) = \int_{t_0}^t e^{-A\tau} B u(\tau) d\tau$$

Now, multiply both sides by  $e^{At}$ :

$$e^{At}e^{-At}x(t) - e^{At}e^{-At_0}x(t_0) = e^{At} \int_{t_0}^t e^{-A\tau}Bu(\tau)d\tau$$

$$\implies x(t) - e^{A(t-t_0)}x(t_0) = \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$\implies x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$\implies y(t) = Ce^{A(t-t_0)}x(t_0) + \int_{t_0}^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

$$= \text{free response} + \text{forced response}$$

The forced response is  $\int_{t_0}^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$ , which may be difficult to calculate. The first term in the forced response is exactly a convolution operation between the function  $Ce^{At}$  and Bu(t).

## 1.2 Laplace Transform

Again, if the goal is to explicitly calculate y(t), we may prefer to work in the s-domain, which implies we work with Laplace transforms.

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{4}$$

$$y(t) = Cx(t) + Du(t)$$
(5)

$$s\hat{x}(s) - x(t_0) = A\hat{x} + B\hat{u}(s) \tag{6}$$

$$\implies (sI - A)\hat{x}(s) = x(t_0) + B\hat{u}(s) \tag{7}$$

$$\hat{x}(s) = (sI - A)^{-1}x(t_0) + (sI - A)^{-1}B\hat{u}(s)$$
(8)

$$\hat{y}(s) = C\hat{x}(s) + D\hat{u}(s) \tag{9}$$

$$\implies \hat{y}(s) = C(sI - A)^{-1}x(t_0) + C(sI - A)^{-1}B\hat{u}(s) + D\hat{u}(s) \tag{10}$$

To find the Laplace transform, set  $x(t_0) = 0$  to obtain

$$\hat{y}(s) = C(sI - A)^{-1}B\hat{u}(s) + D\hat{u}(s)$$
(11)

$$\implies \hat{y}(s) = \left(C(sI - A)^{-1}B + D\right)\hat{u}(s) = G(s)\hat{u}(s) \tag{12}$$

$$\implies G(s) = C(sI - A)^{-1}B + D \tag{13}$$

The remainder of this subsection shows that the explicit time-domain solution would be the same as if we used the s-domain and the inverse Laplace transform to calculate y(t).

**Fact.** Let A be an  $n \times n$  matrix. Then,

$$L\{e^{At}\} = (sI - A)^{-1}e^{At_0} \implies L^{-1}\{(sI - A)^{-1}\} = e^{A(t - t_0)}$$

To derive this fact, apply the Differentiation rule:

$$L\left\{e^{At}\right\} = L\left\{e^{At}\right\} \qquad \text{(Always true)}$$
 
$$\Rightarrow sL\left\{e^{At}\right\} - e^{At_0} = L\left\{\frac{d}{dt}\left(e^{At}\right)\right\} \qquad \text{(Differentiation rule)}$$
 
$$\Rightarrow sL\left\{e^{At}\right\} - e^{At_0} = L\left\{(Ae^{At})\right\} \qquad \text{(derived earlier)}$$
 
$$\Rightarrow sL\left\{e^{At}\right\} - e^{At_0} = AL\left\{e^{At}\right\} \qquad \text{(Linearity of LT)}$$
 
$$\Rightarrow (sI - A)L\left\{e^{At}\right\} = e^{At_0} \qquad \text{(Rearrange terms)}$$
 
$$\Rightarrow L\left\{e^{At}\right\} = (sI - A)^{-1}e^{At_0} \qquad \text{(Matrix inversion)}$$

So, we can take the inverse Laplace transform of (10) to obtain

$$\begin{split} L^{-1} \left\{ \hat{y}(s) \right\} &= L^{-1} \left\{ C(sI - A)^{-1} x(t_0) + C(sI - A)^{-1} B \hat{u}(s) + D \hat{u}(s) \right\} \\ y(t) &= L^{-1} \left\{ C(sI - A)^{-1} x(t_0) \right\} + L^{-1} \left\{ C(sI - A)^{-1} B \hat{u}(s) \right\} + L^{-1} \left\{ D \hat{u}(s) \right\} \\ y(t) &= C e^{A(t - t_0)} x(t_0) + \left( L^{-1} \left\{ C(sI - A)^{-1} \right\} * L^{-1} \left\{ B \hat{u}(s) \right\} \right) (t) + D L^{-1} \left\{ \hat{u}(s) \right\} \\ &\qquad \qquad \text{(Convolution of functions of $t$ is product of Laplace transforms of those functions)} \\ y(t) &= C e^{A(t - t_0)} x(t_0) + \left( C e^{At} * B u(t) \right) (t) + D u(t) \\ y(t) &= C e^{At} x(0) + \int_{t_0}^t C e^{A(t - \tau)} B u(\tau) d\tau + D u(t) \end{split}$$

# 2 Matrix Computations

To calculate the transfer function, we must compute  $(sI - A)^{-1}$ , where  $M^{-1}$  is the inverse of a square matrix M.

To calculate the inverse of M, we need to calculate the determinant of M.

### 2.1 Determinant

The determinant of M, and  $n \times n$  matrix, is always a scalar number.

Let  $M_{i,j}$  be the  $(i,j)^{th}$  element of M.

Let  $S_n$  be the set of n! possible permutations of an ordered set of n numbers.

The determinant of a  $n \times n$  square matrix M is given by

$$\det M = \sum_{\sigma \in S_n} (-1)^{N_\sigma} \prod_i^n M_{i,\sigma(i)}$$

where  $N_{\sigma}$  is the number of pairwise exchanges of elements of  $\sigma$  required to reach the order  $(1, 2, \ldots, n)$ .

Example 1. Let

M = [a]

.

Calculate  $\det M$ .

Solution:

 $S_1 = \{(1)\} = \{\sigma_1\}$ .  $N_{\sigma_1} = 0$ , because we don't need to switch any elements to get to the permutation (1). det M has only one term:

$$\det M = (-1)^{N_{\sigma_1}} \Pi_i^1 M_{i,\sigma_1(i)} \tag{1}$$

$$= (-1)^0 M_{1,\sigma_1(1)} \tag{2}$$

$$=1\cdot M_{1,1} \tag{3}$$

$$=a$$
 (4)

Example 2. Let

 $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 

.

Calculate  $\det M$ .

Solution: Since M is a  $2 \times 2$  matrix, we will need to work with  $S_2$ , which has 2! = 2 elements:  $S_2 = \{(1, 2), (2, 1)\} = \{\sigma_1, \sigma_2\}.$ 

 $\det M$  is the sum of two terms:

$$\det M = (-1)^{N_{\sigma_1}} \prod_{i=1}^{2} M_{i,\sigma_1(i)} + (-1)^{N_{\sigma_2}} \prod_{i=1}^{2} M_{i,\sigma_2(i)}$$
(5)

Consider the first term corresponding to  $\sigma_1 = (1,2)$ .  $N_{\sigma_1} = 0$ , because we don't need to permute any entries to reach the permutation (1,2). Since  $\sigma_1 = (1,2)$ , we have

$$\sigma_1(1) = 1, \sigma_1(2) = 2.$$

We need to evaluate  $(-1)^{N_{\sigma_1}} \prod_i^2 M_{i,\sigma_1(i)}$ :

$$(-1)^{N_{\sigma_1}} \prod_{i=1}^{2} M_{i,\sigma_1(i)} = (-1)^{N_{\sigma_1}} M_{1,\sigma_1(1)} M_{2,\sigma_1(2)}$$

$$(6)$$

$$= (-1)^0 M_{1,1} M_{2,2} \tag{7}$$

$$=ab$$
 (8)

For  $\sigma_2 = \{(2,1)\}$ :  $N_{\sigma_2} = 1$ , because we must switch the 1 and 2 to obtain the permutation (1,2). We have

$$\sigma_2(1) = 2, \sigma_2(2) = 1.$$

$$(-1)^{N_{\sigma_2}} \prod_{i=1}^{2} M_{i,\sigma_2(i)} = (-1)^{N_{\sigma_2}} M_{1,\sigma_2(1)} M_{2,\sigma_2(2)}$$

$$(9)$$

$$= (-1)^1 M_{1,2} M_{2,1} \tag{10}$$

$$= -bc \tag{11}$$

Therefore,  $\det M = ad - bc$ 

#### Example 3. Let

 $M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ 

Calculate  $\det M$ .

Solution:  $M \in \mathbb{R}^{3\times 3}$ . Therefore, the permutations we consider belong to  $S_3$ . There are 3! = 6 such permutations. They are:

$$S_3 = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$$

 $\det M$  is the sum of six terms:

$$\det M = (-1)^{N_{\sigma_1}} \Pi_i^3 M_{i,\sigma_1(i)} + (-1)^{N_{\sigma_2}} \Pi_i^3 M_{i,\sigma_2(i)} + (-1)^{N_{\sigma_3}} \Pi_i^3 M_{i,\sigma_3(i)}$$

$$+ (-1)^{N_{\sigma_4}} \Pi_i^3 M_{i,\sigma_4(i)} + (-1)^{N_{\sigma_5}} \Pi_i^3 M_{i,\sigma_5(i)} + (-1)^{N_{\sigma_6}} \Pi_i^3 M_{i,\sigma_6(i)}$$

$$(12)$$

Consider the first term corresponding to  $\sigma_1 = (1, 2, 3)$ .  $N_{\sigma_1} = 0$ , because we don't need to permute any entries to reach the permutation (1, 2, 3). Since  $\sigma_1 = (1, 2, 3)$ , we have

$$\sigma_1(1) = 1, \sigma_1(2) = 2, \sigma_1(3) = 3.$$

We need to evaluate  $(-1)^{N_{\sigma_1}} \prod_i^3 M_{i,\sigma_1(i)}$ :

$$(-1)^{N_{\sigma_1}} \prod_{i=1}^{3} M_{i,\sigma_1(i)} = (-1)^{0} M_{1,\sigma_1(1)} M_{2,\sigma_1(2)} M_{3,\sigma_1(3)}$$

$$(13)$$

$$= M_{1.1} M_{2.2} M_{3.3} (14)$$

$$= aei (15)$$

So, the first term in  $\det M$  is +aei.

We repeat this process for the second term in det M corresponding to  $\sigma_2 = (1, 3, 2)$ .  $N_{\sigma_2} = 1$ , because we need to exchange the last two elements of  $\sigma_2$  to get the permutation (1, 2, 3). Since  $\sigma_2 = (1, 3, 2)$ , we have

$$\sigma_2(1) = 1, \sigma_2(2) = 3, \sigma_2(3) = 2.$$

$$(-1)^{N_{\sigma_2}} \prod_{i=1}^{3} M_{i,\sigma_2(i)} = (-1)^1 M_{1,\sigma_2(1)} M_{2,\sigma_2(2)} M_{3,\sigma_2(3)}$$

$$(16)$$

$$= -M_{1,1}M_{2,3}M_{3,2} (17)$$

$$= -afh (18)$$

Continuing this process, we get

$$\det M = aei - afh + dhc - dib + gbf - gce.$$

#### 2.2 Matrix Inverse

sad Let M be an  $n \times n$  matrix.

The inverse of M, denoted  $M^{-1}$ , is a matrix whose  $(i,j)^{\text{th}}$  element  $M_{i,j}^{-1}$  is given by

$$M_{i,j}^{-1} = (-1)^{(i+j)} \frac{\det M_{[i,j]}}{\det M},$$

where  $M_{[i,j]}$  is an  $(n-1) \times (n-1)$  matrix obtained by deleting the  $i^{\text{th}}$  column and  $j^{\text{th}}$  row of M.

### Example 4. Let

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Calculate  $M^{-1}$ .

Solution:

$$\det M = ad - bc.$$

By deleting the  $i^{th}$  column and  $j^{th}$  row of M, we get

$$M_{[1,1]} = d \tag{19}$$

$$M_{[1,2]} = b (20)$$

$$M_{[2,1]} = c \tag{21}$$

$$M_{[2,2]} = a \tag{22}$$

The  $(i,j)^{\text{th}}$  entry of  $M^{-1}$  is then

$$M_{1,1}^{-1} = (-1)^{(1+1)} \frac{\det M_{[1,1]}}{\det M} = \frac{d}{ad - bc}$$
 (23)

$$M_{1,2}^{-1} = (-1)^{(1+2)} \frac{\det M}{\det M} = \frac{aa - bc}{ad - bc}$$
(24)

$$M_{2,1}^{-1} = (-1)^{(2+1)} \frac{\det M}{\det M} = \frac{ad - bc}{ad - bc}$$
(25)

$$M_{2,2}^{-1} = (-1)^{(2+2)} \frac{\det M}{\det M} = \frac{aa - bc}{ad - bc}$$
(26)

Therefore,

$$M^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

#### Example 5.

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, B = 0, D = 0$$
 (27)

Let

$$x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Find the free response using Laplace transforms.

Note:  $L\{e^{At}\} = (sI - A)^{-1}e^{At_0}$ 

Solution:

The free response  $\hat{y}_{free}(s)$  is

$$\hat{y}_{free}(s) = C(sI - A)^{-1}x(t_0)$$

Let's first construct M = (sI - A):

$$M = (sI - A) = s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} (s+1) & -1 \\ 0 & (s+2) \end{bmatrix}$$

Calculate the determinant:

$$\det M = (s+1)(s+2) - (-1) \cdot (0) \tag{28}$$

$$= (s+1)(s+2) (29)$$

We've derived the expression for the inverse of a  $2 \times 2$  matrix, so that

$$M^{-1} = (sI - A)^{-1} = \frac{1}{(s+1)(s+2)} \begin{bmatrix} (s+2) & 1\\ 0 & (s+1) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{s+1} & \frac{1}{(s+1)(s+2)}\\ 0 & \frac{1}{s+2} \end{bmatrix}$$
(30)

$$\hat{y}_{free}(s) = C(sI - A)^{-1}x(t_0)$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{s+1} & \frac{1}{(s+1)(s+2)} \\ 0 & \frac{1}{s+2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \frac{1}{(s+1)(s+2)}$$

$$= \frac{1}{s+1} - \frac{1}{s+2}$$

$$\implies y_{free}(t) = L^{-1} \left\{ \frac{1}{s+1} \right\} - L^{-1} \left\{ \frac{1}{s+2} \right\}$$

$$= e^{-t} - e^{-2t}$$