BTS Ciel
PHYSIQUE

Bruit et rapport signal sur bruit Signaux aléatoires

Chapitre 10

1. Définition

Un signal est toujours affecté d'une fluctuation aléatoire plus ou moins importante que l'on appelle bruit. Il peut être interne : bruit dû aux composants électroniques comme par exemple le bruit de fond en sortie d'un amplificateur audio (souffle).

Il peut être externe : bruit lié à la réception d'un signal (perturbation électromagnétique dans les câbles ou antennes...) comme le bruit de « friture » dans un récepteur entre deux stations radio.

Toute mesure ou transmission d'un signal est donc affectée par un bruit qui se superpose à l'information : ce phénomène est inévitable. Gujours du bruit -> viens du composant

2. <u>Caractéristique d'un bruit</u>

On caractérise le bruit par <u>sa densité spectrale de puissance (DSP-Noise)</u> qui correspond à la répartition de la puissance du bruit sur une bande de fréquence. La DSP se mesure en <u>dBm/Hz.</u>

La relation entre le niveau de puissance et la DSP est :

$$P_{dBm} = 10.\log\frac{P}{P_0} = DSP + 10\log(\Delta f) \text{ avec } \underline{P_0} = 1mW$$

exemple

Calculer la puissance du bruit pour le signal d'une station radio FM ci-contre, sachant que sa DSP était mesurée sur une bande de fréquence de 60 kHz.

Pollom = DSP+ 10 log (Sf) =-139+10 log (60.103) ~-86,2 dbm Pollom -86,2 Pollom

P=10-3 × 10 -86,2 = 2, 4. 10-12

FIGURE 2 : densité spectrale du bruit autour des stations radios FM.

3. Types de bruits électroniques

Il existe différents types de bruit :

- · le bruit blanc dont la DSP est constante sur une bande de fréquence ;
- · le bruit thermique (thermal noise) ou bruit Johnson (1927) généré dans les résistances. Il est lié à l'agitation thermique des électrons de la résistance ;
- ·le bruit de grenaille (shot noise) ou bruit Schottky (1918) dû au déplacement des porteurs de charge dans les semi-conducteurs, donnant lieu à un courant de bruit ;
- · le bruit en 1/f (bruit rose) dont la DSP augmente à basse fréquence ;
- · le bruit de quantification dû aux différences entre le signal analogique initial et ce signal après quantification.

4. Rapport signal bruit

Le rapport signal sur bruit ou SNR (Signal Noise Ratio) compare la puissance du signal à celle du bruit :

$$SNR = 10.\log\left(\frac{P_{signal}}{P_{bruit}}\right) = 20.\log\left(\frac{S}{B}\right) en \underline{dB}$$
 and $P_{bruit} = \frac{S^2}{Z}$

Où

P_{signal}: puissance de signal; P_{bruit}: puissance du bruit, S: valeur efficace du signal, B: valeur efficace du bruit

Exemple: téléphonies: SNR > 50 dB; CD audio: SNR = 98 Db. http://www.gerald-huguenin.ch/Cours/Bruit/pb_10_bits.htm

5. Application: bruit d'un signal Wifi

On donne le spectre d'un signal Wifi 802.11g issu d'une transmission de données entre deux ordinateurs. Un analyseur de spectre nous donne le spectre suivant :

X1. Etude du signal transmis:

- 1.1 Relever la valeur du DSP du signal Wifi, considérée comme constante, dans la bande de transmission.
- 1.2 En déduire le niveau de puissance du bruit sur la même bande d'analyse $\Delta f = 2 \text{ MHz}$.

2. Etude du bruit :

- 2.1 Relever la valeur de la DSP du bruit
- 2.2 Calculer le niveau de puissance du bruit sur la même bande d'analyse que précédemment.

X 3. Signal sur bruit:

- 3.1 Calculer les puissances du signal et du bruit
- 3.2 En déduire leurs valeurs efficaces sachant que les puissances sont calculées pour une résistance R = 1 Ω
- 3.3 Calculer le rapport signal sur bruit SNR de cette transmission et conclure.