CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

NETWORKED APPLICATIONS – EMAIL AND DNS sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

How do you send the cat picture?

Looked at Web

How about email?

I LIKE HOW WE'VE HAD THE INTERNET FOR DECADES, YET "SENDING FILES" IS SOMETHING EARLY ADOPTERS ARE STILL FIGURING OUT HOW TO DO.

Electronic mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server

Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction (like HTTP, FTP)
 - commands: ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob

- 1) Alice uses UA to compose message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Sample SMTP interaction

```
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection
```

Mail message format

SMTP: protocol for exchanging email msgs

RFC 822: standard for text message format:

• header lines, e.g.,

- To:

- From:

- Subject:

different from SMTP MAIL

- Body: the "message"
 - ASCII characters only

FROM, RCPT TO: commands!

Mail access protocols

- SMTP: delivery/storage to receiver's server
- mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

IP Based Communication

youtube.com/catvideo1

IP Based Communication

DNS – IP to Name

People: Good with names

Machines: Good with numbers

Ask a person to remember 100s of Ips

- May not work well

DNS maps IP addresses to human readable names.

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com;

- 1) client queries root server to find com DNS server
- 2) client queries .com DNS server to get amazon.com DNS server
- 3) client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - Served from cache
 - Looked up
 - Attack?

DNS name resolution example - <u>lterative</u>

 host at tntech.edu wants IP address for youtube.com

iterated query:

- contacted server replies with name of server to contact
- " I don't know this name, but ask this server"

root DNS server

DNS name resolution example- Recursive

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

DNS protocol, messages

query and reply messages, both with same message format

msg header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

Inserting records into DNS

example: new startup "tornadogurard"

- register name tornadoguard.com at DNS registrar (godaddy, gandi.net)
 - Tell them the IP of your local DNS server and name
 - registrar inserts two RRs into .com TLD server

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache
 IPs of TLD servers, allowing
 root server bypass
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

Sequence number

(AdvertisedWindow)≥(Delay)×(Bandwidth)

SequenceNum)≥(Maximum Segment Lifetime)×(Bandwidth)