(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-247663 (P2000-247663A)

(43)公開日 平成12年9月12日(2000.9.12)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
C 0 3 B 23/035		C 0 3 B 23/035	3 C 0 1 6
B 2 3 Q 3/08		B 2 3 Q 3/08	Z 4G015
C 0 3 B 35/24		C 0 3 B 35/24	

審査請求 未請求 請求項の数3 OL (全 13 頁)

(21)出願番号	特願平11-54678	(71) 出願人 000004008
		日本板硝子株式会社
(22) 出版日	平成11年3月2日(1999, 3, 2)	大阪府大阪市中央区道修町3丁目5番11号
		(72)発明者 梶井 培秀
		大阪府大阪市中央区道修町3丁目5番11号
		日本板硝子株式会社内
		(74)代理人 100067356
		弁理士 下田 容一郎
		Fターム(参考) 30016 DA15
		40015 AAD6 AR10 CAD1

(54) 【発明の名称】 板ガラス浮上用ペッド構造

(57)【要約】

【課題】 搬送ベッドのエア圧分布を調整する際に、作 業者の負担を軽減することができる技術を提供する。 【解決手段】 エア排出孔20…の一部を塞ぐことで流 路断面積を調整する流路調整部材30…を複数種類準備 し、板ガラス35をエア圧で浮上させるための多数個の エア排出孔20…を湾曲上面14に備えた搬送ベッド1 2のエア排出孔20…に流路調整部材30…を上から差 込む構成とし、流路調整部材30…を、上から見たとき に区別がつく様に、種類毎に形状に差をつけた。このた め、エア排出孔20…に差込んが流路調整部材30…の 種類を簡単に目視で区別することができる。

【特許請求の範囲】

【請求項1】 流路の一部を塞ぐことで流路断面積を調 整する流路測整部材を複数種類準備し、板ガラスをエア 圧で浮上させるための多数個のエア孔を上面に備えたべ ッドの前記エア孔に流量調整部材を上から差込んでなる ベッド構造において、

前記流量調整部材は、上から見たときに区別がつく様 に、前記種類毎に区別可能な識別手段を備えたことを特 微とした板ガラス浮上用ベッド構造。

に差をつけた形状であることを特徴とする請求項1記載 の板ガラス浮上用ベッド構造。

【請求項3】 前記談別手段は、流量調整部材の種類毎 に差をつけたマーク、色又は材料であることを特徴とす る請求項1記載の板ガラス浮上用ベッド構造。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、板ガラスを加熱工 アで浮トさせながら曲げ成形する板ガラス浮ト用ベッド 構造に関する。

[00002]

【従来の技術】自動車用の窓ガラスには湾曲に曲げた板 ガラスが使用され、板ガラスを湾曲に曲げる装置には、 加熱エアで板ガラスを浮上させながら曲げ成形するもの がある。この装置の代表的な例は、特開平9-1324 20号公報「板ガラスの曲げ成形方法及び装置」などが ある。同公報の要部を次図で再掲して説明する。但し符 号は新たに振り直した。

【0003】図18は従来の板ガラスの曲げ成形装置の 斜視図であり、搬送ベッド100の湾曲上面101に加 30 執工アを暗射するエア暗射孔102…を形成し、エア暗 射孔102…に隣接させて加熱エアを排出するエア排出 引.104…を形成し、エア排出引.104…の排出量を調 整するエア排出量調整手段105を取り付けた状態を示 す。エア排出量調整手段105…のハンドル106…を 回転することで、排出管107…を回転して排出管10 7…の開口107a…をエア排出孔104…の所定箇所 に配置する。なお、108は板ガラスである。

【0004】図19は図18のF-F線断面図であり、 搬送ペッド100の下方から加熱エアを矢印 a…の如く 40 エア暗射孔102…に供給して矢印b…の如く湾曲上面 101上に暗射し、暗射した加熱エアで板ガラス108 を浮上させ、板ガラス108で折り返した加熱エアをエ ア排出孔104…から矢印c…の如くエア排出孔104 …→開口107a…→排出管107…の順に排出する状 顔を示す。

【0005】図20は図18のG-G線断面図であり、 エア排出量調整手段105(図18に示す)のハンドル を回転することで排出管107を回転し、排出管107 の開口107a…をエア排出孔104…の所定箇所に配 50 できる技術を提供することにある。

2 置した姿を示す。中央部E1の開口107a…をエア排 出孔104…から比較的ずらし、両側部E2, E2の開 □107a…をエア排出孔104…に完全に一致させ

【0006】このため、中央部E1の範囲においてエア 排出孔104…の排出量は矢印は…の如く少量になり。 両側部E2, E2の範囲においてエア排出孔104…の 排出量は白抜き矢印e…の如く多量になる。従って、板 ガラス108の中央で受けるエア圧を高くして、板ガラ 【請求項2】 前記識別手段は、流量割整部材の種類毎 10 ス108の両側で受けるエア圧を低くすることができ る。この結果、板ガラス108を湾曲上面101と異なる。 った湾曲形状に曲げることができる。すなわち、エア排 出量調整手段105を取付けることで、例えば、自動車 のモデルチェンジで板ガラス108の曲げ形状が変った とき、エア排出量調整手段105を調整して、新たな曲 げ形状に合うように板ガラス108を曲げ成形すること が可能である。

[0007]

【発明が解決しようとする課題】ところで、上述した板 20 ガラスの曲げ成形装置は、板ガラス108を成形型に押 し付けて強制的に曲げ成形するものではなく、板ガラス 108を加熱エアで浮上させた状態で板ガラス108の 白重のみで曲げ成形するものである。従って、板ガラス 108を浮上させる加熱エアのエア圧分布を高精度に設 定しなければ、板ガラス108を規定の形状に合せて曲 げ成形することは難しい。このため、板ガラス108の 曲げ形状を変更するときには、最適の曲げ形状を得るた めに、何度もテストを繰返して最適なエア圧分布を見つ け出さなければならない。

【0008】しかし、エア排出量調整手段105は、エ ア排出孔104…の排出量を調整する各々の排出管10 7…を搬送ベッド100の内部に取付けたので、各々の エア排出孔104…における排出量の設定状態を、外部 から目視で判別することはできない。このため、作業者 が勘に頼って湾曲上面101のエア圧分布を設定するの で最適なエア圧分布を得るまでに多大なテスト時間を必 要とする。また、作業者が勘に頼って湾曲上面101の エア圧分布を設定するので、作業者の負担が大きい。

【0009】また、エア排出量調整手段105は、1本 の排出管排出管107を回転することで搬送ベッド10 0の一方側部から他方側部主で一列に配置した複数個の エア排出孔104…の排出量を同時に調整するので、例 えば、一列に配置したエア排出引、104…の排出量を個 別に微調整することは難しい。このため、一列に配置し たエア排出孔104…の排出量を各々最適に設定するこ とができない歳がある。

【0010】そこで、本発明の目的は、搬送ベッドのエ ア圧分布を調整するときに、作業者の負担を軽減するこ とができ、さらにエア排出孔を個別に微調整することが [0011]

【課題を解決するための手段】上記課題を解決するため に本発明の請求項1は、流路の一部を塞ぐことで流路断 面積を調整する流路調整部材を複数種類準備し、板ガラ スをエア圧で浮上させるための多数個のエア孔を上面に 備えたベッドのエア孔に流量調整部材を上から差込んで なるベッド構造において、流量調整部材は、上から見た ときに区別がつく様に、種類毎に区別可能な識別手段を 備えたことを特徴とする。

【0012】流量調整部材を、上から見たときに区別が 10 つく様に、種類毎に区別可能な識別手段を備えたので、 エア孔に差込んだ流量調整部材の種類を簡単に目視で区 別することができる。このため、流量調整部材の配置情 報を簡単に得ることができるので、流量調整部材の配置 情報に基いてエア圧分布を設定することで、最適なエア 圧分布を時間をかけないで設定することができる。ま た、流量調整部材の配置情報に基いてエア圧分布を設定 することで、作業者の勘に頼ってエア圧分布を設定する 必要がなく、作業者の負担を大幅に軽減することができ

【0013】さらに、各々のエア孔に個別に流量調整部 材を差込む構成としたので、各々のエア孔の流量を独立 させて個別に調整することができる。このため、エア圧 分布を微細に調整することができるので、板ガラスの形 状や曲げ形状に合せて最適な状態に設定することができ

【0014】請求項2において、識別手段は、流量調整 部材の種類毎に差をつけた形状であることを特徴とす る。流量調整部材の種類毎に形状に差をつけることで、 量調整部材の形状を識別手段として利用することがせき るので、流量調整部材のコストを抑えることができる。 【0015】請求項3において、識別手段は、流量調整 部材の種類毎に差をつけたマーク、色又は材料であるこ とを特徴とする。流量調整部材にマークをつけるだけ で、流量調整部材を区別することができる。従って、流 量調整部材に識別手段を簡単につけることができるの で、流量調整部材のコストを抑えることができる。ま た、流量調整部材を色分けするだけで、流量調整部材を 区別することができる。従って、流量調整部材に識別手 40 段を簡単につけることができるので、流量調整部材のコ ストを抑えることができる。さらに、流量調整部材の材 料を変えるだけで、流量調整部材を区別することができ る。従って、流量調整部材に識別手段を簡単につけるこ とができるので、流量調整部材のコストを抑えることが できる.

[0016]

【発明の実施の形態】本発明の実施の形態を添付図に基 づいて以下に説明する。なお、図面は符号の向きに見る ものとする。図1は本発明に係る板ガラス浮上用ベッド 50 の上端23aに流路調整部材30を載せて、流路調整部

構造 (第1実施例) の斜視図である。板ガラス浮上用べ ッド構造10は、板ガラスを搬送するベッドとしての搬 送ベッド12と、搬送ベッド12の上面に形成した湾曲 上面14と、湾曲上面14に開口したエア噴出孔18… 及びエア孔としてのエア排出孔20…と、エア排出孔2 0…の一部(上端)20a…を塞ぐことで流路断面積を 調整する複数種類の流路調整部材30…とからなる。流 路調整部材30は、一例として円断面のものを示すが、 具体的な形状は図4 (a)~(j)で説明する。

【0017】板ガラス浮上用ベッド構造10を、想像線 で示すように複数個直列に並べた状態で加熱炉(図示せ ず)内に配置して板ガラスの曲げ成形装置を構成する。 板ガラス浮上用ベッド構造10…で搬送中の板ガラスを 加熱炉で軟化温度まで上昇することで、板ガラスを自重 で湾曲状に曲げ成形することができる。エア噴射流路1 8は、搬送ベッド12の湾曲上面14から下面15まで 貫通させて下面15側をエア供給手段(図示せず)につ ないだものである。エア供給手段から供給した加熱エア をエア哺射流路18から流曲上面14上に哺射すること 20 ができる。

【0018】エア排出孔20は、上端20aを搬送ベッ ド14の湾曲上面14に開口して下端205を集合排出 孔26に開口したものである。上端20aに大径の差込 孔22を形成することで、差込孔22に流路調整部材3 0を湾曲上面14の上側から差込むことができる。

【0019】集合排出孔26は、搬送ベッド12の左側 部16から右側部17まで貫通した孔で、左右側部1 6,17の開口にエア吸込手段(図示せず)をつないだ ものである。エア吸込手段を作動することで、撤送ベッ

流量調整部材を区別することができる。このように、流 30 ド12の湾曲上面14側のエア加熱を流路調整部材30 …→エア排出孔20…→集合排出孔26を通して排出す ることができる。

> 【0020】図2は図1のA-A線断面図であり、各々 のエア排出孔20…の差込孔22…に流路調整部材30 …を差込んだ状態を示す。一例として、断面円形の流路 調整部材30…を差込孔22…に差込んだ状態を示した が、流路調整部材30…の種類毎に断而形状に差をつけ ることで、エア排出孔20…の流路断面積を調整するこ レができる。

【0021】図3は図2のB部拡大図であり、エア排出 孔20の差込孔22に清終調整部材30を差込んだ状態 を示す。差込孔22は孔径d1をエア排出孔20の孔径 d2より大径とし、孔深さも1を孔径d1と同一(も1) = d1)に設定したものである。また、流路調整部材3 0は、外径d3を孔径d1より僅かに小さく設定し、高 さ11を孔深さ11より僅かに小さく設定したものであ

【0022】差込孔22の孔径d1を孔径d2より大径 としてテーパ状の段部23を形成することで、段部23

5

材30を差込孔22に保持することができる。また、流 路調整部材30の高さh1を差込孔22の孔深さt1よ り僅かに小さく設定したので、流路調整部材30が搬送 ベッド12の湾曲上面14から突出する心配はない。 な お、図面上では、理解を助けるために孔径 d 1 と外径 d 3との間に比較的大きな隙間を開けたが、実際には隙間 を殆どなくしてもよい。

【0023】図4(a)~(j)は本発明に係る板ガラ ス浮上用ベッド構造 (第1実施例)を構成する流路調整 部材の平面図であり、多種の流路調整部材30を第1流 10 力) S7=30%にするように断面積Sgを設定したも 路調整部材30a〜第10流路調整部材30jとして示 す。第1~第10流路調整部材30a~30jは、上か ら見たときに区別がつく様に種類毎に形状 (識別手段) に差をつけ、更に各々のエア排出孔20…(図1に示 す)の排出能力に10段階の差をつけることができるも のである。

【0024】第1~第10流路調整部材30a~30j は、例えば金属やセラミックス製の部材であって、温度 劣化を防ぐために加熱炉の最大設定温度以上の耐熱性を 備えた耐熱材で形成したものである。しかしながら、第 1~第10流路調整部材30a~30jを交換するとき の容易さを考慮すると、第1~第10流路調整部材30 a~30 jを磁性体の材質(例えば、鋼材)で形成して もよい、第1~第10流路調整部材30a~30iを磁 石(マグネット)で吸着することで差込孔22…から簡 単に取り出すことができる。なお、第1~第10流路調 整部材30a~30jは、冷間状態で交換しやすいよう に溶融シリカと付着しない材質が好ましい。溶融シリカ は、SiO2であり、ガラスの主成分である。

【0025】以下、第1~第10流路調整部材30a~ 30 30jの断面形状を説明する。ここで、差込孔22の断 而積をS. 第1~第10流路調整部材30a~30iの 各々の断面積をSa~Sj、エア排出孔の排出能力をS $1 \sim S10 \geq t \leq L$, $S1 \sim S10 = \lceil (Sa \sim S.i)$ /S]×100%の関係が成立する。従って、例えばS 1のときには、 $S1 = Sa/S \times 100% と たる$ 、 【0026】(a):第1流路調整部材30aは、断面 Ⅰ型に形成して、差込孔22の開口断面(排出能力)S

1=90%にするように断面積Saを設定したものであ 8. (b):第2流路調整部材30bは、断面道V型に形成

して、差込孔22の開口断面(排出能力)S2=80% にするように断面積Sbを設定したものである。

【0027】(c);第3流路調整部材30cは、断面 C型に形成して、差込孔22の開口断面(排出能力)S 3=70%にするように断面積Scを設定したものであ

(d):第4流路調整部材30dは、断面直角三角形に 形成して、差込孔22の開口断面(排出能力) S4=6 0%にするように断面積Sdを設定したものである。

【0028】(e);第5流路調整部材30eは、断面 十字型に形成して、差込孔22の開口断面(排出能力) S5=50%にするように断面積Seを設定したもので ある。

(f);第6流路調整部材30fは、断面N字型に形成 して、差込孔22の開口断面(排出能力) S6=40% にするように断面積Sfを設定したものである。

【0029】(g);第7流路調整部材30gは、断面 正三角形型に形成して、差込孔22の開口断面(排出能 のである。

(h):第8流路調整部材30hは、断面正四角形型に 形成して、差込孔22の開口断面(排出能力) S8=2 0%にするように断面積Shを設定したものである。 【0030】(i);第9流路調整部材30iは、断面 環状型に形成して、差込孔22の開口断面(排出能力) S9=10%にするように断面積Siを設定したもので ある。dは孔径である。

(i):第10濱路調整部材30iは、断面円形型は形 成して、差込孔22の開口断面(排出能力)S10=0 %にするように断面積Sjを設定したものである。 【0031】このように、第1~第10流路調整部材3 0 a~30 jを準備することにより、エア排出孔の排出 能力を0%~100%の10段階に調整することができ る。但し、エア排出孔の排出能力が100%とは、流路 調整部材を使用しない状態をいう。以下、流路調整部材 30の第1~第10流路調整部材30a~30jのうち

の数種類の流路調整部材を使用してエア圧を設定した例

を示す。 【0032】図5は本発明に係る板ガラス浮上用ベッド 構造(第1字論例)の平面図であり、第1~第10流路 調整部材30a~30iのうちの数種類の流路調整部材 30a, 30d, 30iを使用してエア圧を設定した例 を示す。すなわち、搬送ベッド12の中央部領域E1の 差込孔22…に第9の流路調整部材30i…を差込み、 中間部領域E 2. 3の差込孔22…に第4の流路調整部 材30 d…を差込み、側部領域E4,5の差込孔22… に第1の流路調整部材30a…を差込んだ状態を示す。 【0033】中央部領域E1の範囲における差込孔22 40 …の開口率はS9=10%と小さく、中間部領域E2,

3の範囲における差込孔22…の開口率はS4=60% と比較的大きく、側部領域E4,5の範囲における差込 引.22…の開口率はS1=90%と十分に大きくなる。 各々の差込孔22…に個別に流量調整部材30a.30 d、30iを差込むことで、各々のエア排出孔20…

(図1に示す)の排出量を独立させて個別に調整するこ とができる。このため、板ガラスを浮上させるエア圧の エア圧分布を微調整して、板ガラスの曲げ形状に合せて 最適な状態に曲げることができる。

50 【0034】また、流量調整部材30は、流量調整部材

30a、30d、30iの形状に差やつけたことで、エ ア排出孔20…(図1に示す)に差込んだ最佳調整部材 30a、30d、30iの種類を上から見ただけで区別 することができる。従って、流量調整部材30a、30 d、30iの配置情報を簡単に得ることができるので、 エア圧庁布を比較的簡単に最適状態に設定することがで 8 z

【0035] 図6(a).(b) は本発明に係る板ガラ くっ ス浮上用ペッド構造(第1実施例のエア排出量の調整 説明図であり、(a) は孔径(D1~D3)の大きさを 10 変えた流路調整部材を「比較例」として示し、(b) は 図4(a)~(j)で説明した第1実施例の流路調整部 4位を「実施例」として示し、

[0036] (a) において、上段の遊込孔22、22 に孔径D1の第1 流路測整部材40、40を変込み、中段の遊込孔22、22に孔径D2の第2 流流調整部材41、41を送込み、下段の遊込孔22、22に孔径D3の第3 流路測整部材40、42を送込んで状態を示す。第1~第3流程測整部材40~42の孔径をD1>D2>D3とすることで、並込孔22、22のエア排出量を20割整する。通常、流路列排出量を調整するときには、第1~第3流路測整部材40~42に肝径の異なる流量調整部材40~42に肝径の異なる流量調整部材を準備にて排出量を調整する。しかし、第1~第3流路測整部材40~42に折面形状が頻似しているので、目視だけで簡単に区別・分接い。

【0038】(b)において、上段の差込孔。22、22 に第1流路調整部材30a,30aを差込み、中段の差 込孔。22、22年第4流路調整部材30d,30dを差 込み、下段の差込孔。22、22年第9流路調整部材30 1,301を差込んだ状態を示す。第1、第4、第9の 流量調整部材30a,30d,301を種類毎に形状に 差をつけたことで、エア孔に差込んだ第1、第4、第9 の流量調整部材30a,30d,301の種類を上から 見ただけで区別することができる。

【0039】このため、第1、第4、第9の流量調整部材30a、30d、301の配置情報を簡単に得ることができる。この結果、第1、第4、第9の流量調整部材30a、30d、30iの配置情報に基いてエア圧分布を設定することができるので、最適なエア圧分布を時間4、第9の流量調整部材30a、30d、30iの配置情報に基いてエア圧分布を設定することができるので、保業者の離に頼ってエア圧分布を設定することができるので、保業者の離に頼ってエア圧分布を設定することができるので、

る。以下、第1、第4、第9の流量調整部材30a,3 0d,30iで所望のエア圧に設定した搬送ベッド12 を使用して板ガラス35を曲げる例を説明する。

【0040】図7(a).(b)は本発明に係る板ガラス浮上用ペッド構造(第1実施例の第1年限期限であり、(b)は(a)のか-b線勝両図を示す。(a)において、搬送ペッド12を投棄側面列に配置し、搬送ペッド12小労由上面14から加速以下を午印の如く輸出させて搬送ペッド12上に板ガラス35を載せ

【0041】(b)において、エア噴精溶料18から湾 血上面14上に噴射した加熱エアを板ガラス35の下面 35aに当て、下面35aで対り返した加熱エアを流路 調整部付301・・・エア排出孔20・・・・ 集合排出孔26・・・・ を通して排出する。このとき、板ガラス35の下面11 5a側にエア圧が発生して板ガラス35を消止上面14 から浮上させる。この休息で、板ガラス35を自抜き矢 即のの如く搬送ペッド12・・の湾曲上面14に沿って加 熱炉(図示せず)内に搬送する。

【0042】図8は本発明に高え板ガラス浮上門ペッド 構造(第1実施例)の第2件用線明図であり、図7のC C(観断面図を示す。中央部領域包1の範囲において、 差込孔22…の間口車をS9=10%と小さくしたの 、加熱エアの押出量が少量になりエア圧ら比較的高 い。中間部領域を2、3の範囲において、差込孔22… が用出量が比較的多量になりエア圧は比較的低い。側部 域色4、5の範囲において、差込孔22…の間口車をS4 1=90%と十分に大きくしたので、加熱エアの非出量 がを単たカンエアビサ出機管が見つ。2、10年1、 がを単たカンエアビサ出機管が見つ。2、10年1、

【0043】様って、板ガラス35の中央部が湾曲上面 14から浮上高さH1と高く浮上して、板ガラス35の 側部が湾曲上面14から浮上高さH2と低く浮上す る。板ガラス35を加熱炉で軟化温度まで上昇すること で、湾曲上面14の湾曲形状より深い湾曲形状に曲げ る。この曲呼は板ガラス35の幅方向の曲げであり、以 下「単一品種がよいう。

【0044】次に、第1実態例の変形例を設明する。図 9は本帯即に係る板ガラス津上州へい下構造、約1実施 40 例)の第3 作用設明3であり、変形例を示す。中央部領 域E 10 範囲において、差込孔22・・・の間口率をS1 = 9 0 %と大きくしたので、加熱なアの対阻は影が多量にな りエア圧が下がる。中間部領域E 2の範囲において、差 込孔22・・・の間口率をS4 = 60 %と中間にしたので、 加熱エアの排出量が比較的多量になりエア圧が比較的下 がる。側部部域E 4の範囲とおいて、差込孔22・・・の開 口率をS9 = 1 0 %と小さくしたので、加熱エアの排出 量が少量になりエア圧が高くなる。従って、板ガラス3 50 中央路を汚歯上面14からH3と比較的低く浮上さ 50 せ、板ガラス35の側部を消由上面14からH3と比較的低く浮上さ 50 せ、板ガラス35の側部を消由面14からH3と比較的低く浮上さ 9

的高く浮上させる。この結果、板ガラス35を湾曲上面 14と異なった湾曲状に曲げ成形することができる。 【0045】図10(a),(b)は本発明に係る板ガ ラス浮上用ベッド構造 (第1実施例) の第4作用説明図 である。(a)において、湾曲上面14の中央エリア1 4 aの差込孔22…(図1に示す)に第9の流路調整部 材30i…を差込むことで、中央エリア14aの加熱エ アの排出量を少量にしてエア圧を高く設定する。中央エ リア14aの周囲の周囲エリア14bの差込孔22…に 第1の流路調整部材30a…(図示せず)を差込む。周 10 させる。ここで、サドルバッグ形状の板ガラス108を **開エリア14bの加熱エアの排出量を多量にしてエア圧** を低く設定する。このように設定した湾曲上面14で板 ガラス35を所定時間浮上させながら、加熱炉(図示せ ず)で板ガラス35を軟化温度まで加熱する。

【0046】(b)において、板ガラス35は前辺37 a、後辺37b、左辺37c及び右辺37dが垂れ下が ることで、中央38が突出した凸形になる。このため、 板ガラス35は中央の母線38aの長さLc1が左右辺 37c,37dの長さLp1より長くなり、Lc1>L p 1 の関係が成立する。

【0047】図11(a),(b)は本発明に係る板ガ ラス浮上用ベッド構造 (第1実施例) の第5作用説明図 であり、(a)は図9で説明した板ガラスを「二次元曲 げ」成形する例を「実施例」として示し、(b)は従来 技術の項で説明した板ガラスを「二次元曲げ」成形する 例を「比較例」として示した。なお、48は加熱炉を示 す。なお、「二次元曲げ」については後述する。

【0048】(a)において、搬送ベッド12aの板ガ ラス35は中央の母線38aの長さしc1と左右辺37 c、37dの長さLp1とはLc1>Lp1である。こ の状態で板ガラス35を白抜き矢印②の加く搬送して搬 送べッド12b及び12cで浮上させる。板ガラス35 は上方に反ろうとするが、板ガラス35はしc1>しp 1の関係が成立しているので、板ガラス35は上方に反 り難くい。このため、左右辺37c,37dの伸びを△ L.1と小さく抑えて、板ガラス35を上方に反らさない ようにできる。このため、Lc1≥Lp1+△L1の関 係が成立する。

【0049】この状態で板ガラス35を白抜き矢印3の 如く搬送して搬送ベッド12c及び12dで浮上させ る。板ガラス35は搬送ペッド12c及び12dに沿っ て確実に曲り、板ガラス35を「単一R曲げ」に加えて 板ガラス35の長手方向に確実に曲げ成形することがで きる。なお、板ガラス35を幅方向と長手方向とに夫々 異なった曲げ半径(R)で曲げることを、以下「二次元 曲げ」という。従って、本発明によれば、板ガラス35 を簡単に「二次元曲げ」成形することができるので、装 置の稼働率を上げることができ、さらに生産性を高める こともできる。

【0050】(b)において、搬送ベッド100aの板 50 【0055】図13(a)~(b)は本発明に係る板ガ

ガラス108は中央の母線108aの長さしc2と右辺 108bの長さLp2とはLc2=Lp2である。この 状態で板ガラス108を白抜き矢印@の如く搬送して搬 送ベッド100b及び100cで浮上させる。右辺10 8 bが△L2と比較的大きく伸びて板ガラス108が上 方に反り、いわゆるサドルバッグ形状になる。従って、 Lc2<Lp2+△L2の関係が成立する。

【0051】この状態で板ガラス108を白抜き矢印

⑤ の如く搬送して搬送ベッド100c及び100dで浮上 搬送ベッド100c及び100dに沿って曲げるために は、右辺108bの伸び△L2を収縮させる必要があ る。しかし、板ガラス108は自重だけで曲げ成形する ので、右辺108bの伸び△L2を十分に吸収できない こともある。このため、たとえ板ガラス108と搬送べ ッド100dとの間に比較的大きな間隔しを発生させて も、板ガラス108を搬送ベッド100dに沿って「」 次元曲げ」成形できないこともある。

【0052】以下、板ガラス浮上用ベッド構造10の流 20 量調整部材の配置パターンを調整する例を説明する。図 12(a)~(c)は本発明に係る板ガラス浮上用ベッ ド構造 (第1実施例) の流量調整部材の配置パターンの 第1説明図である。なお、第1流路調整部材30a、第 3流路調整部材30c. 第6流路調整部材30f及び第 9流路調整部材30iの各々の断面形状は、図4

(a), (c), (f), (i)に示す。(a)は、湾 曲上面14を仕切り線(想像線)45で仕切った内側領 域(中央及び前端)E10に第9流路調整部材30i… を配置し、外側領域(左右端及び後端)E11に第1流 30 路調整部材30a…を配置した状態を示す。

【0053】(b)は、流曲上面14を仕切り線(想像 線) 46で仕切った内側左段領域(中央及び前端)E1 2に第6流路調整部材30f…を配置し、内側中段領域 (中央及び前端) E13に第9流路調整部材30i…を 配置し、内側右段領域(中央及び前端) E14に第3流 路調整部材30c…を配置し、外側領域(左右端及び後 端) E15に第1流路調整部材30a…を配置した状態 を示す。

【0054】(c)は、湾曲上面14の中央に第9流路 調整部材301…を配置し、その左右側に第6流路調整 部材30 f…を配置し、その他の領域に第1流路調整部 材30a…を配置した状態を示す。(a)~(c)に示 すように、各々のエア排出孔20…(図1に示す)に個 別に流量調整部材30 a~30 j を差込む構成としたの で、各々のエア排出孔20…の流量を独立させて個別に 調整することができる。このため、エア圧分布を微調整 することができるので、板ガラス35(図7(a)に示 す)の形状や曲げ形状に合せて最適な状態に設定するこ とができる.

ラス浮上用ベッド構造(第1実施例)の流量調整部材の 配置パターンの第2説明図である。(a)は、湾曲上面 14の中央領域E16のみに流量調整部材30…を配置 した構成とした例を示す。湾曲上面14全域に流量調整 部材30…を配置する必要がないので、流量調整部材3 0…を交換するときの手間を省くことができる。(b) は、湾曲上面14の略右側半分の領域E17のみに流量 調整部材30…を配置した構成とした例を示す。(a) ~ (b) によれば、湾曲上面14全域に流量調整部材3 交換するときの手間を省くことができる。

【0056】以下、板ガラス浮上用ベッド構造の第2実 施例及び第3実施例を説明する。 なお、第1実施例と同 一部材については同一符号を付して説明を省略する。図 14は本発明に係る板ガラス浮上用ベッド構造(第2実 縮例)の要部拡大図である。板ガラス浮上用ベッド構造 50は、板ガラス35(図7(a)に示す)を搬送する ベッドとしての搬送ベッド51と、搬送ベッド51の上 面に形成した湾曲上面52と、湾曲上面52に開口させ たエア噴出孔18…(図1に示す)及びエア孔としての 20 エア排出孔53…(1個のみ図示する)と、エア排出孔 53…の一部を塞ぐことで流路断面積を調整する複数種 類の流路調整部材56…(1個のみ図示する)とからな

【0057】エア排出孔53は、流路調整部材56…を 差込み可能に孔径 d 5 に形成した孔であって 上端の拡 径部54を湾曲上面52に開口して下端を集合排出孔2 6につないだものである。拡径部54は、孔径d6を孔 径d5より大きく設定し、孔深さをt2と設定したもの である。

【0058】流路調整部材56は 下端57を集合排出 引26の周壁に載せた状態で、上端58と湾曲上面52 との間に隙間G1 (G1≥0)が発生し、かつ上端58 を拡径部54の途中まで突出させるように高され2を設 定したものである。隙間G1を発生することで、流路調 整部材56が適曲上面52から突出する心配はない。ま た、上端58を拡径部54の途中まで突出させること で、流路調整部材56をエア排出孔53に差込みやす く、かつエア排出孔53から抜出しやすくすることがで \$8.

【0059】流路調整部材56は、断面四角形型の部材 として説明したが、その他の断而形状として例えば第1 実施例の図4(a)~(j)に示す流路調整部材30a ~30jの断面形状の部材を準備することが可能である。 る。この結果、流路調整部材56を第1実施例と同様の バターンで湾曲上面52に配置することができる。 【0060】図15は図14のD矢視図であり、流路調 整部材56…の四隅をエア排出孔53の周壁に接触させ てエア排出孔53に差込んだ状態を示す。流路調整部材 56の四隅をエア排出孔53の周壁に接触させること

で、流路調整部材56…をエア排出孔53内に安定させ た状態に配置することができる。

【0061】第2実施例によれば、エア排出孔53に個 別に流量調整部材56を差込むことで、各々のエア排出 孔53の排出量を独立させて個別に調整することができ る。このため、板ガラスを浮上させるエア圧のエア圧分 布を勧調整して、板ガラスの曲げ形状に合せて最適な状 態に曲げることができる。

【0062】また、流量調整部材56は、流量調整部材 0…を配置する必要がないので、流量調整部材30…を 10 56の形状に差をつけたことで、エア排出孔53に差込 んだ流量調整部材56の種類を上から見ただけで区別す ることができる。従って、流量調整部材56の配置情報 を簡単に得ることができるので、エア圧分布を比較的簡 単に最適状態に設定することができる。さらに、大径の 拡径部54に流量調整部材56を突出することで、比較 的簡単に流路調整部材56を交換することができる。こ の結果、より時間をかけないでエア圧分布を設定するこ とができ、かつ作業者の負担をより大幅に軽減すること ができる。

> 【0063】図16は本発明に係る板ガラス浮上用ベッ ド構造 (第3実験例) の要部拡大図である。板ガラス浮 上用ベッド構造60は、板ガラスを搬送するベッドとし ての搬送ベッド61と、搬送ベッド61の上面に形成し た湾曲上面62と、湾曲上面62に開口させたエア暗出 孔18…(図1に示す)及びエア孔としてのエア排出孔 63…(1個のみ図示する)と エア排出孔63…の一 部を塞ぐことで流路断面積を調整する複数種類の流路調 整部材66…(1個のみ図示する)とからなる。

【0064】エア排出孔63は、流路調整部材66…の 30 下部ロッド67を差込み可能に孔径d7に形成した孔で あって、上端の拡径部64を流曲上面62に開口して下 端を集合排出孔26につないだものである。拡径部64 は、孔径 d 8を孔径 d 7より大きく設定し、孔深さを t 3と設定したものである。

【0065】流路調整部材66は、全体を円柱形に形成 した部材であって、上端に逆円錐台形の座部68を形成 し、座部68の下側テーバ面に突起68a…を形成し、 摩部68の上端にをつまみ69としたものである。流路 調整部材66は、突起68a…の高さを異ならせたもの 40 を複数種類準備することで、エア排出孔63と座部68 との隙間Sを任意に調整することができる。この結果。 第1実験例及び第2実験例と同様に、エア排出量を調整 して湾曲上面62上のエア圧を調整することができる。 【0066】つまみ69は湾曲上面52との間の隙間G 2≥0となるように高さh3を設定したものである。こ のため、流路調整部材56のつまみ69が湾曲上面52 から突出する心配はない。なお、つまみ69を掴みやす いように比較的細い形状とし、さらに拡径部64に配置 することで、つまみ69を簡単に掴むことができる。3 50 の結果、流路測整部材66をエア排出孔63に差込みや

すく且つエア排出孔63から抜出しやすくすることがで きる。

【0067】図17は図16のE矢視図であり、流路調 整部材66…をエア排出孔63に差込んだ状態を示す。 流路調整部材66の座部68の下側テーバ面に3個の突 起68 a…を形成したので、3個の突起68 a…をエア 排出孔63の上端63a(図16も参照)に載せること で、流路調整部材66をエア排出孔63と同心上に安定 状態に配置することができる。

【0068】第3実施例によれば、エア排出孔63に個 10 別に流量調整部材66を差込むことで、各々のエア排出 孔63の排出量を独立させて個別に調整することができ る。このため、板ガラスを浮上させるエア圧のエア圧分 布を微調整して、板ガラスの曲げ形状に合せて最適な状 態に曲げることができる。さらに、大径の拡径部64に つまみ69を突出することで、比較的簡単に流路調整部 材66を交換することができる。この結果、より時間を かけないでエア圧分布を設定することができ、かつ作業 者の負担をより大幅に軽減することができる。

としてのマーク70 (例えば「△」) をつけることで、 流路調整部材66を区別することができる。マーク70 には刻印も含む。マークに代えて、流路調整部材68を 色分けすることや、流路調整部材68の材質を変えるこ とで流路調整部材68を区別するようにしてもよい。流 量調整部材66にマーク70をつけるだけで、流量調整 部材66を区別することができる。従って、流量調整部 材66に識別手段を簡単につけることができるので、流 量調整部材66のコストを抑えることができる。

【0070】また、流量調整部材66を色分けするだけ 30 【0075】 で、流量調整部材66を区別してもよい、流量調整部材 6.6に識別手段を簡単につけることができるので、流量 調整部材66のコストを抑えることができる。さらに、 流量調整部材66の材料を変えるだけで、流量調整部材 66を区別してもよい。流量調整部材66に識別手段を 簡単につけることができるので、流量調整部材66のコ ストを抑えることができる。

【0071】なお、前記実施例では搬送ベッド12に流 路調整部材30を配置する例を説明したが、その他に、 例えば、従来技術の欄で説明したエア排出量調整手段1 40 ができる。 05と併用することも可能である。 流路調整部材30を エア排出量調整手段105と併用することで、エア排出 量調整手段105で予めラフにエア排出量を調整して、 その後、流路調整部材30でエア排出量を微調整を行う ことができる。すなわち、本発明に係る流路調整部材3 0は、従来技術の欄で説明したエア排出量調整手段10 5の補完、補強用の部材として使用することも可能であ る。この結果、より時間をかけないでエア圧分布を設定 することができ、かつ作業者の負担をより大幅に軽減す ることができる。

【0072】また、第1実施例では、第1~第10流路 調整部材30a~30jを差込孔22…に差込んでエア 排出孔20…のエア排出能力を調整する例について説明 したが、その他の流路調整部材の形状として、例えば直 径のことなる円柱状の流路調整部材を複数個準備して、 これらの流路調整部材を差込孔22…に差込むことによ り、エア排出孔20…のエア排出能力を調整することも 可能である。この場合、各々の流路調整部材を区別する ために、各々の流路調整部材の頂部に護別用のマーク (刻印を含む)をつけることが好ましい。また、マーク に代えて、各々の流路調整部材を色分けすることや、各 々の流路調整部材の材質を変えることで、各々の流路調 整部材を区別するようにしてもよい。なお、直径のこと なる円柱状の流路調整部材を複数個準備して、これらの 流路調整部材を差込孔に差込む例は、第2実施例の流路 調整部材56に適用することもできる。

【0073】さらに、第2実施例では、流路調整部材5 6をエア排出孔53から抜出しやすくするために拡径部 54を形成したが、流路調整部材56を磁性体の材質で 【0069】また、例えば座部68の表面に、識別手段 20 形成することで拡径部54を形成しなくてもエア排出孔 53から簡単に抜出すことができる。 すなわち、 マグネ ットで流路調整部材56を吸着することで、流路調整部 材56をエア排出孔53から簡単に抜出すことができ る。搬送ベッド51に拡径部54を加工する工程を省く ことができるので、設備コストを抑えることができる。 【0074】また、第3実施例では、流量調整部材66 につけたマーク70を「 \triangle 」にしたが、その他に、

「○」、「×」やアルファベット「A, B…」などを使 用してもよい。

【発明の効果】本発明は上記機成により次の効果を発揮 する、請求項1は、流量調整部材を、上から見たときに 区別がつく様に、種類毎に区別可能な識別手段を備え て、ベッドのエア孔に上から差込む構成とした。このた め、エア孔に差込んだ流量調整部材の種類を簡単に目視 で区別することができるので、流量調整部材の配置情報 を簡単に得ることができる。この結果、流量調整部材の 配置情報に基いてエア圧分布を設定することができるの で、最適なエア圧分布を時間をかけないで設定すること

【0076】また、流量調整部材の配置情報に基いてエ ア圧分布を設定することができるので、作業者の勘に類 ってエア圧分布を設定する必要はない。この結果、作業 者の負担を大幅に軽減することができる。

【0077】さらに、各々のエア孔に個別に流量調整部 材を差込む構成としたので、各々のエア孔の流量を独立 させて個別に調整することができる。このため、エア圧 分布を微細に調整することができるので、板ガラスの形 状や曲げ形状に合せて最適な状態に設定することができ 50 る。この結果、板ガラスを比較的簡単に最適な形状に曲 げることができる。

【0078】請求項2は、流量調整部材の種類毎に形状 に差をつけることで、流量調整部材を区別することがで きる。このように、流量調整部材の形状を識別手段とし て利用することがせきるので、流量調整部材のコストを 抑えることができる。

【0079】請求項3は、識別手段を流量調整部材の種 類毎に差をつけたマーク、色又は材料とした。このた め、流量調整部材にマークをつけるだけで、流量調整部 材を区別することができる。従って、流量調整部材に識 10 1実施例)の第5作用説明図 別手段を簡単につけることができるので、流量調整部材 のコストを抑えることができる。また、流量調整部材を 色分けするだけで、流量調整部材を区別することができ る。従って、流量測整部材に識別手段を簡単につけるこ とができるので、流量調整部材のコストを抑えることが できる。さらに、流量調整部材の材料を変えるだけで、 流量調整部材を区別することができる。従って、流量調 整部材に識別手段を簡単につけることができるので、流 量調整部材のコストを抑えることができる。

【図面の簡単な説明】

【図1】本発明に係る板ガラス浮上用ベッド構造(第1 宇施例)の斜視図

【図2】図1のA-A線断面図

【図3】図2のB部拡大図

【図4】本発明に係る板ガラス浮上用ベッド構造(第1 実施例)を構成する流路調整部材の平面図

【図5】本発明に係る板ガラス浮上用ベッド構造(第1 実施例) の平面図

【図6】本発明に係る板ガラス浮上用ベッド構造(第1

実施例)のエア排出量の調整説明図

【図7】本発明に係る板ガラス浮上用ベッド構造(第1 実施例)の第1作用説明図

【図8】本発明に係る板ガラス浮上用ベッド構造(第1 実施例)の第2作用説明図

【図9】本発明に係る板ガラス浮上用ベッド構造(第1

実施例) の第3作用説明図 【図10】本発明に係る板ガラス浮上用ベッド構造(第 1実施例)の第4作用説明図

【図11】本発明に係る板ガラス浮上用ベッド構造(第

【図12】本発明に係る板ガラス浮上用ベッド構造(第 1実施例)の流量調整部材の配置バターンの第1説明図 【図13】本発明に係る板ガラス浮上用ベッド構造(第 1 実施例)の流量調整部材の配置パターンの第2説明図 【図14】本発明に係る板ガラス浮上用ベッド構造(第

2実施例) の要部拡大図 【図15】図14のD矢視図

【図16】本発明に係る板ガラス浮上用ベッド構造(第 3実締例)の要部拡大図

20 【図17】図16のE矢視図

【図18】従来の板ガラスの曲げ成形装置の斜視図

【図19】図18のF-F線断面図

【図20】図18のG-G線断面図

【符号の説明】

(9)

10,50,60…板ガラス浮上用ベッド構造、12, 51,61…ベッド(搬送ベッド)、14,52,62 …上面(湾曲上面)、20,53,63…エア孔(エア 排出孔.) . 30.56.66…流路調整部材.30a~ 30j…第1~第10濱路調整部材、35…板ガラス、 30 70…識別手段。

(b)

4/20/2009, EAST Version: 2.3.0.3

