

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 261/20, 453/02, A61K 31/42, C07D 413/04	A1	(11) International Publication Number: WO 97/25317 (43) International Publication Date: 17 July 1997 (17.07.97)
(21) International Application Number: PCT/US96/19569		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 12 December 1996 (12.12.96)		
(30) Priority Data: 08/583,319 5 January 1996 (05.01.96) US		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(71) Applicant: HOECHST MARION ROUSSEL, INC. [US/US]; 2110 East Galbraith Road, P.O. Box 156300, Cincinnati, OH 45215-6300 (US).		
(72) Inventor: HRIB, Nicholas, J.; 2402 Jamestown Common, Somerville, NJ 08876 (US).		
(74) Agent: BARNEY, Charlotte, L.; Hoechst Marion Roussel, Inc., 2110 East Galbraith Road, P.O. Box 156300, Cincinnati, OH 45215-6300 (US).		
(54) Title: 4,5-DIHYDRONAPHTH[1,2-C]ISOXAZOLES AND DERIVATIVES THEREOF HAVING CNS ACTIVITY		
(57) Abstract		
4,5-Dihydronaphth[1,2-c]isoxazole derivatives of general formula (I), where A, X and n are defined herein are disclosed. Such compounds are useful as serotonin 5-HT ₃ antagonists. These compounds are useful for the treatment of anxiety, psychiatric disorders, nausea, vomiting and drug dependency.		
 (I)		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	L1	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

4,5-DIHYDRONAPHTH[1,2-C]ISOXAZOLES AND DERIVATIVES THEREOF HAVING CNS ACTIVITY

The present invention is directed to certain novel compounds and their use as pharmaceutical agents having unique central nervous system activity.

5 This invention relates to 4,5-dihydroronaphth[1,2-c]isoxazoles and derivatives thereof, and their use as serotonin 5-HT₂ antagonists, which may be useful for the treatment of anxiety, psychiatric disorders, schizophrenia, nausea, vomiting and the control of drug dependency, of general formula (I):

10

15

wherein A is hydrogen, hydroxy,

20

5

10

wherein

15 R_1 is hydrogen, an alkyl group of 1 to 6 carbons, optionally substituted with hydroxy, alkoxy or amino substitution; aryl or heteroaryl, optionally substituted with halogen, hydroxy or alkoxy; or benzyl optionally substituted with halogen, hydroxy or alkoxy;

20

n is an integer of 1 or 2;

z is nitrogen, CH or C(OH);

m is an integer of 1 to 3; and

x is hydrogen, hydroxy or alkoxy;

25

or a pharmaceutically acceptable additional salt thereof, or where applicable, a geometric or optical isomer or racemic mixture thereof.

5 The present invention also relates to a process for preparing these compounds, pharmaceutically acceptable addition salts thereof, as well as the pharmaceutical acceptable compositions thereof, and a method of using the compounds as serotonin 5-HT₂ antagonists.

10

Throughout the specification and appended claims, a given chemical formula or name shall encompass all stereo and optical isomers where such isomers exist. Additionally, a given chemical formula or name shall encompass the pharmaceutically acceptable additional salts thereof.

15

In a preferred embodiment of the invention are compounds of formula (I) wherein

20

A is

wherein

25

R₁ is hydrogen, an alkyl group of 1 to 6 carbons, optionally substituted with hydroxy, alkoxy or amino substitution; aryl or heteroaryl, optionally substituted with halogen, hydroxy or alkoxy; or benzyl optionally substituted
5 with halogen, hydroxy or alkoxy;

n is an integer of 1 or 2;

Z is nitrogen;

10

m is an integer of 1 to 3; and

X is hydrogen, hydroxy or alkoxy.

15

More preferred, are compounds of formula (I) wherein

R₁ is hydrogen, or an alkyl group of 1 to 3 carbons;

20

n is 1;

Z is nitrogen;

m is 1 or 2; and

25

X is hydrogen.

The novel compounds of the present invention and the intermediates thereto may be prepared by the reaction sequence illustrated hereinbelow. The substituents Z, m, n and X are generally as defined above unless otherwise indicated.

According to the preparation scheme, hydroxyisoxazoles 3 are prepared from oximes 2 in a solvent such as tetrahydrofuran (THF) at a temperature of from about 25°C to about reflux temperature of the solvent for a period of from about 0.25 to about 4 hours according to the methods of Griffiths and Olofson (Jerome S. Griffiths, et al., J. Chem. Soc. C, 974 (1971) and G.N. Barber and R.A. Olofson, J. Org. Chem. 43, 3015 (1978)). The hydroxyisoxazoles 3 are converted to chloroisoxazoles 4 via

treatment with phosphorous oxychloride in the presence of a suitable base, such as triethylamine, at a temperature of from about 100° to about 200°C for a period of from about 0.25 to about 4 hours in a manner similar to that utilized by Adembri et al. (G. Adembri and P. Tedeschi, Bull. Sci. Fac. Chim. Ind. Bologna 23, 203 (1965)). Intermediates 4 are treated with an appropriate nucleophile H-A (wherein A is defined hereinbefore) at a temperature of from about 100° to about 200° C with or without added base in an appropriate solvent, such as N-methylpyrrolidinone, to provide the novel compounds 1 of the invention.

These compounds may be prepared by the following representative examples. The examples are exemplary and should not be construed as limiting the invention disclosed herein.

EXAMPLE 1

3-Chloro-4,5-dihydronaphth[1,2-c]isoxazole

20

To a stirred mixture of 4,5-dihydronaphth[1,2-c]isoxazol-3-(3aH)-one (7.25g, 38.77mmol) in phosphorus oxychloride (10.84ml, 116.3mmol), triethylamine (5.40ml, 38.77mmol) was added

dropwise. After completion of addition, the mixture was heated to reflux while stirring. After 2 hours, no starting material remained as shown by TLC [silica, ethylacetate (EtOAc)]. The mixture was cooled to room temperature, poured into 300 ml of ice water, and extracted with CH₂Cl₂. The organic extracts were combined, dried over MgSO₄, and concentrated in vacuo. The resultant solid was filtered through silica using CH₂Cl₂ eluent to provide 6.2g of crude product. This crude product was recrystallized from a minimum of heptane to provide a product as needles, mp of 57-59°C, homogeneous by thin layer chromatography (TLC) [silica, CH₂Cl₂, R_f=0.80]. The Infrared (IR) (CHCl₃), nuclear magnetic resonance (NMR) (CDCl₃), and Mass Spectrum (M⁺=205, EI, 70eV) were consistent with the structure. The yield was 5.417g (26.4mmol, 68.16%).

15

Elemental Analysis

20

	Calculated	Found
C	64.25	64.02
H	3.92	3.86
Cl	17.24	
N	6.81	6.77
O	7.78	

EXAMPLE 2

25 3-(4-Methyl-1-piperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole

5 A stirred mixture of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (2.65g, 12.93mmol), N-methyl piperazine (30ml, 270.4mmol) and K₂CO₃ (3.57g, 25.87mmol) under N₂, was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 2 hours. At that time, TLC [CH₂Cl₂] showed no remaining starting material. The mixture was removed from the heating bath and allowed to cool to room temperature. It was then partitioned between heptane/H₂O. The heptane phase was washed with water, dried over MgSO₄, filtered and concentrated in vacuo to yield a solid. This crude product was recrystallized from heptane/ether (Et₂O) to provide the product as needles, mp of 92-94°C, homogeneous by TLC (silica, 1:1 CH₃OH:EtOAc, R_f=0.39). The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=269, EI, 70eV) were consistent with the structure. The yield was 1.2555g (4.67mmol, 36.09%).

Elemental Analysis

	Calculated	Found
C	71.35	71.34
H	7.11	6.98
N	15.60	15.78
O	5.94	

5

EXAMPLE 3

3-(4-(2-Hydroxyethyl)-1-piperazinyl)-4,5-dihydronaphth[1,2-
10 c]isoxazole

15

A stirred mixture of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (3.0g, 14.63mmol), 1-(2-hydroxyethyl)-piperazine (17.95ml, 146.3mmol) and K₂O, (4.1g, 29.3mmol) in 18ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 1 hour. At that time, TLC (CH₂Cl₂) showed no remaining starting material. The mixture was removed from the heating bath, allowed to cool to room temperature, and diluted with H₂O. Upon the addition of heptane, a solid precipitated. The solid was collected, washed with heptane and H₂O, and dried in vacuo.

25

(0.1mm) at 85°C overnight to provide pure product, mp of 137-138°C, homogeneous by TLC [silica, 1:1 CH₃OH:EtOAc, R_f=0.67]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=299, EI, 70eV) were consistent with the structure. The yield was 2.603g (8.70mmol, 59.47%).

Elemental Analysis

	Calculated	Found
C	68.21	68.12
H	7.07	7.01
N	14.04	14.14
O	10.69	

EXAMPLE 4

15 3-(1-Homopiperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole

20 A stirred mixture of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (3.0g, 14.63 mmol) homopiperazine (14.66g, 146.3 mmol) and K₂CO₃ (4.04g, 29.3mmol) in 16ml of N-methyl-pyrrolidinone under N₂, was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 25 45 minutes. At that time, TLC (CH₂Cl₂) showed no remaining

starting material. The mixture was removed from the heating bath, allowed to cool to room temperature, diluted with H₂O and extracted with Et₂O. The Et₂O phase was dried over MgSO₄, filtered and concentrated in vacuo. The crude solid obtained 5 was recrystallized from heptane/Et₂O and dried in vacuo (0.1mm) at 85°C overnight to provide pure product, mp of 79-81°C, homogeneous by TLC [silica, 1:1 CH₃OH:EtOAc, R_f=0.17]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=269, EI, 70eV) were consistent with the structure. The yield was 1.969g (7.32mmol, 10 50.03%).

Elemental Analysis

	Calculated	Found
C	71.35	71.45
H	7.11	7.29
N	15.60	15.56
O	5.94	

EXAMPLE 5

20 3-(1-Piperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole

A stirred mixture of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (5.0g, 24.4mmol), piperazine (34.2g, 397.7mmol) and K₂CO₃ (6.73g, 48.7mmol) in 40ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 45 minutes. At that time, TLC (CH₂Cl₂) showed no remaining starting material. The mixture was removed from the heating bath, allowed to cool to room temperature and extracted with Et₂O. This organic phase was washed twice with H₂O, dried over MgSO₄, filtered and concentrated in vacuo to obtain a crude solid. The solid was collected, recrystallized from heptane/Et₂O and dried in vacuo (0.1mm) at 85°C to provide pure product, mp of 97-99°C, homogeneous by TLC [silica, 1:1 CH₃OH:CH₂Cl₂, R_f=0.35]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=255, EI, 70eV) were consistent with the structure. The yield was 3.372g (13.22mmol, 54.19%).

Elemental Analysis

20

	Calculated	Found
C	70.56	70.38
H	6.71	6.67
N	16.46	16.47
O	6.27	

EXAMPLE 6

3-(4-Benzyl-1-piperazinyl)4,5-dihydronaphth[1,2-c]isoxazole

5

A stirred mixture of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (2.0g, 9.75mmol), 1-benzylpiperazine (17ml, 97.5mmol) and K₂CO₃ (2.7g, 19.5mmol) in 18ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 2 hours. At that time, TLC (CH₂Cl₂) showed no remaining starting material. The mixture was removed from the heating bath, allowed to cool to room temperature and extracted with heptane. The organic phase was dried over MgSO₄, filtered and concentrated in vacuo to obtain a crude solid. The solid was collected, titrated with Et₂O, recrystallized from Et₂O and dried in vacuo (0.1mm) at 85°C to provide pure product, mp of 164-166°C, homogeneous by TLC [silica, 1:1 EtOAc, R_f=0.80]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=345, EI, 70eV) were consistent with the structure. The yield was 1.219g (3.53mmol, 36.24%).

Elemental Analysis

	Calculated	Found
C	76.49	76.49
H	6.71	6.85
N	12.16	12.09
O	4.63	

5

EXAMPLE 7

3-Hydroxy-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole

10

15

To a mechanically stirred mixture of 7-methoxy α -tetralone oxime (5.0g, 26.18mmol) in anhydrous THF (150ml) at 0°C under N₂, was slowly added n-butyl-lithium (n-BuLi) (23.0ml of a 2.5M solution in hexane, 57.60mmol). The mixture was stirred at 0°C for 30 minutes, then CO₂ gas was bubbled into the solution. (As this addition progressed, a solid precipitate began to form). After 15 minutes, CO₂ addition was stopped and N₂ flow was restored. The thick mixture was stirred and warmed slowly to room temperature for 1½ hours, then 6N H₂SO₄ (150ml) was slowly added which dissolved the solids. The TLC showed traces of starting oxime and a mixture of desired product and an

20

25

intermediate which was not isolated. Stirring was continued for 4 hours at which time the intermediate was completely converted to product. The mixture was extracted exhaustively with EtOAc. The organic fractions were combined, washed once with H₂O, once with brine, dried over MgSO₄, and filtered. Concentration in vacuo caused the precipitation of a solid which was collected, titrated with EtOAc, and dried in vacuo to provide the product as a solid, mp of 135-138°C, homogeneous by TLC [silica, 10:90 CH₃OH:EtOAc, R_f=0.46]. The IR (KBr), NMR (DMSO-d₆) and Mass Spectrum (M⁺=217, EI, 70eV) were consistent with the structure. The yield was 2.0496g (9.45mmol, 36.08%).

Elemental Analysis

15

	Calculated	Found
C	66.35	66.02
H	5.10	5.03
N	6.45	6.22
O	22.10	

20

EXAMPLE 8

3-Chloro-8-methoxy-4,5-dihydronephth(1,2-c)isoxazole

25

To a stirred mixture of 3-hydroxy-8-methoxy-4,5-dihydroronaphth[1,2-c]isoxazole (10.0g, 46.08mmol) in phosphorus oxychloride (12.8ml, 137.3mmol), triethylamine (6.42ml, 46.08mmol) was added dropwise. After completion of addition, 5 the mixture was heated to reflux while stirring. After 4 hours, no starting material remained as shown by TLC (silica, EtOAc). The mixture was cooled to room temperature, poured into 400ml of ice water, and extracted with heptane. The organic extracts were combined, dried over MgSO₄, filtered and concentrated in 10 vacuo. Concentration of the filtrate in vacuo caused a solid to precipitate. The solid was triturated with heptane and dried in vacuo to provide the product as needles, mp of 55-57°C, homogeneous by TLC (silica, CH₂Cl₂, Rf=0.45). The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=235, EI, 70eV) were consistent 15 with the structure. The yield was 7.75g (32.98mmol, 71.57%).

Elemental Analysis

	Calculated	Found
C	61.16	61.29
H	4.28	4.16
Cl	15.04	
N	5.94	5.90
O	13.58	

EXAMPLE 9

3-[(1-Methyl-4-piperidinyl)oxy]-4,5-dihydronaphth[1,2-c]isoxazole

5

10 To a stirred solution mixture of 4-hydroxy-N-methyl piperidine (5.05g, 43.89mmol) in 100ml of N-methylpyrrolidinone under N₂ was added NaH (1.75g of a 60% dispersion in oil, 43.89mmol). The mixture was stirred at room temperature for 15 minutes, then a solution of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (3.0g, 14.63mmol) in 15ml N-methylpyrrolidinone was added in one portion. The stirred mixture was lowered into an oil bath preheated to 150°C. After 20 minutes TLC (CH₂Cl₂) showed no starting materials remaining. The mixture was removed from the heating bath and allowed to cool to room temperature.

15 It was then partitioned between heptane/H₂O. The heptane phase was washed with water, dried over MgSO₄, filtered and concentrated in vacuo. This crude oil obtained was taken up in Et₂O, filtered, and the HCl salt precipitated by the addition of ethanolic HCl. This salt was recrystallized from CH₂Cl₂/Et₂O to

20

provide the product as a solid, mp of 147-150°C, homogeneous by - TLC (silica, 1:1 CH₃OH:EtOAc, R_f=0.02). The IR (KBr), NMR (CDCl₃) and Mass Spectrum (M⁺+1=285, CI, methane) were consistent with the structure. The yield was 1.2994g (4.05mmol, 36.09%).

5

Elemental Analysis

	Calculated	Found
C	63.65	63.55
H	6.60	6.63
10 Cl	11.05	
N	8.73	8.78
O	9.97	

EXAMPLE 10

15 3-(1-Piperazinyl)-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole

20 A stirred mixture of 3-chloro-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole (2.0g, 8.51mmol), piperazine (7.0g, 80.6mmol) and K₂CO₃ (2.4g, 17.1mmol) in 8.0ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under 25 N₂ for 20 minutes. At that time TLC [CH₂Cl₂] showed no starting

material remained. The mixture was removed from the heating bath and allowed to cool to room temperature. Upon dilution of the reaction mixture with H₂O, a solid precipitated which was collected and dried in vacuo to provide pure product, mp of 86-
 5 88°C, homogeneous by TLC [silica, 1:1 CH₃OH:CH₂Cl₂, R_f=0.37]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=285, EI, 70eV) were consistent with the structure. The yield was 1.932g (6.78mmol, 79.66%).

10

Elemental Analysis

15

	Calculated	Found
C	67.35	66.99
H	6.71	6.77
N	14.73	14.53
O	11.21	

EXAMPLE 11

3-(1-Homopiperazinyl)-8-methoxy-4,5-dihydronaphth(1,2-c]isoxazole

20

A stirred mixture of 3-chloro-8-methoxy-4,5-dihydronaphth(1,2-c]isoxazole (2.66g, 11.32mmol), homopiperazine
 25

(11.40g, 113.2mol) and K₂CO₃ (3.13g, 22.68mmol) in 10.0ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 20 minutes. At that time, TLC (CH₂Cl₂) showed no starting material remained. The mixture was removed from the heating bath, allowed to cool to room temperature and diluted with H₂O, which caused a solid to precipitate. The crude solid was dried, recrystallized from Et₂O and dried in vacuo (0.1mm) at 95°C, to provide pure product, mp of 106-109°C, homogeneous by TLC [silica, 1:1 CH₃OH:CH₂Cl₂, Rf=0.18]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=299, EI, 70eV) were consistent with the structure. The yield was 1.7948g (6.00mmol, 53.03%).

Elemental Analysis

15

	Calculated	Found
C	68.21	68.24
H	7.07	7.11
N	14.04	14.00
O	10.69	

20

25

EXAMPLE 12

- 3-(1-(4-(p-Chlorophenyl)-4-hydroxy-piperidinyl)-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole

5

A stirred mixture of 3-chloro-8-methoxy-4,5-dihydronaphth(1,2-c)isoxazole (2.0g, 8.51mmol), 4-(p-chlorophenyl)-4-hydroxypiperidine (3.6g, 17.02mol) and K₂CO₃ (2.35g, 17.02mmol) in 6ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 1 hour. At that time, TLC [CH₂Cl₂] showed no remaining starting material. The mixture was removed from the heating bath and allowed to cool to room temperature. Upon dilution of the reaction mixture with H₂O, a solid precipitated which was recrystallized from EtOAc and dried in vacuo (0.1mm) at 85°C to provide pure product, mp of 174-177°C, homogeneous by TLC [silica, 2:1 heptane:EtOAc, R_f=0.263]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=410, E.I., 70eV) were consistent with the structure. The yield was 2.3798g (5.60mmol, 68.20%).

Elemental Analysis

	Calculated	Found
C	67.23	67.24
H	5.64	5.75
Cl	8.63	
N	6.82	8.78
O	11.68	

EXAMPLE 13

10 3-[(endo)-8-Methyl-8-azabicyclo[3.2.1]oct-3-yl)oxy]-8-methoxy-
4,5-dihydronaphth[1,2-c]isoxazole

To a stirred mixture of tropine (5.41g, 38.31mmol) in 10 ml of (THF) under N₂ at 0°C was slowly added n-BuLi (15.0ml of a 2.5M solution in hexanes, 38.31mmol). The mixture was stirred for 15 minutes while allowed to warm to room temperature, then a 20 solution of 3-chloro-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole (3.0g, 12.76mmol) in 30ml N-methylpyrrolidinone was added in one portion. The internal temperature increased to 99-100°C and was maintained there. After 3 hours, TLC [CH₂Cl₂] showed no starting material remaining. The mixture was removed from the heating 25 bath and allowed to cool to room temperature. It was then

partitioned between heptane/H₂O. The heptane phase was washed with H₂O, dried over MgSO₄, filtered and concentrated in vacuo, whereupon it solidified. This crude solid was recrystallized from a minimum of heptane and dried in vacuo to provide the product as a solid, mp of 102-104°C, homogeneous by TLC [silica, 5 1:1 CH₃OH:CH₂Cl₂, R_f=0.20]. The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=341, CI, methane) were consistent with the structure. The yield was 1.3729g (4.038mmol, 31.64%).

10

Elemental Analysis

15

	Calculated	Found
C	70.57	70.47
H	7.11	7.25
N	8.23	8.14
O	14.10	

EXAMPLE 14

3-[(endo-8-Methyl-8-azabicyclo[3.2.1]oct-3-yl)oxy]-4,5-dihydronephth[1,2-c]isoxazole hydrochloride hemihydrate

20

25

To a stirred mixture of tropine (4.4g, 31.16mmol) in 10ml

of

- THF under N₂ at 0°C was slowly added n-BuLi (12.47ml of a 2.5M solution in hexanes, 31.16mmol). The mixture was stirred for 15 minutes while allowed to warm to room temperature, then a 5 solution of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (2.13g, 10.39mmol) in 30ml N-methylpyrrolidinone was added in one portion. The stirred mixture was lowered into an oil bath preheated to 150°C. The internal temperature increased to 85°C and was maintained there. After 3 hours, TLC [CH₂Cl₂] showed no 10 remaining starting material. The mixture was removed from the heating bath and allowed to cool to room temperature. It was then partitioned between heptane/H₂O. The heptane phase was washed with H₂O, dried over MgSO₄, filtered and concentrated in vacuo, to provide the free base as an oil, which resisted 15 attempts at crystallization. The oil was taken up in Et₂O and the HCl salt was precipitated by the addition of ethanolic HCl. This crude solid was recrystallized from Et₂O/CH₂Cl₂, and dried in vacuo at 85°C to provide the product as a solid, mp of 167- 20 170°C, (darkens at ca. 150°C) homogeneous by TLC (silica, 1:1 CH₃OH:CH₂Cl₂, R_f=0.14). The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺+1=311, CI, methane) were consistent with the structure. Analysis and NMR confirmed the hemihydrate structure. The yield was 1.268g (3.563mmol, 34.29%).

Elemental Analysis

	Calculated	Found
C	64.12	64.25
H	6.80	6.77
Cl		
N	7.87	7.70
O	9.23	

EXAMPLE 15

10

3-(1-(4-(6-Fluorobenzisoxazol-3-yl)-piperidinyl)-8-methoxy-4,5-dihydroronaphth[1,2-c]isoxazole

A stirred mixture of 3-chloro-8-methoxy-4,5-dihydroronaphth[1,2-c]isoxazole (2.0g, 8.51mmol), 4-(6-fluorobenzisoxazol-3-yl)-piperidine (2.8g, 12.76mmol) and K₂CO₃ (2.35g, 17.02mmol) in 10ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated while stirring under N₂ for 90 minutes. At that time TLC (CH₂Cl₂) showed no remaining starting material. The mixture was removed from the heating bath and allowed to cool to room

20

temperature. Upon dilution of the reaction mixture with H₂O, a solid precipitated which was collected, dried, dissolved in CH₂Cl₂, and filtered through neutral alumina. The fractions containing desired product were combined and concentrated, and the resultant solid obtained was triturated with Et₂O to provide a solid, mp of 181-183°C, homogeneous by TLC (silica, 2:1 Heptane:EtOAc, R_f=0.15). The IR (CHCl₃), NMR (CDCl₃) and Mass Spectrum (M⁺=419, EI, 70eV) were consistent with the structure. The yield was 1.1318g (2.70mmol, 31.70%).

10

Elemental Analysis

15

	Calculated	Found
C	68.72	68.47
H	5.29	5.28
F	4.53	
N	10.02	9.97
O	11.44	

EXAMPLE 16

3-(1-(4-2-Oxo-1-benzimidazolinyl)piperidinyl))-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole

5

10 A stirred mixture of 3-chloro-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole (2.57g, 10.9mmol), 4-(2-oxo-1-benzimidazolinyl)piperidine (4.74g, 21.8mmol) and K₂CO₃ (3.02g, 21.8mmol) in 12ml of N-methylpyrrolidinone under N₂ was lowered into an oil bath preheated to 150°C. The mixture was heated
15 while stirring under N₂ for 4 hours. At that time, TLC (CH₂Cl₂) showed no remaining starting material. The mixture was removed from the heating bath and allowed to cool to room temperature. Upon dilution of the reaction mixture with H₂O, a solid
20 precipitated which was collected, dried, dissolved in CH₂Cl₂, and then 1:1 CH₂Cl₂:Et₂O. The fractions containing desired product were combined and concentrated, and the resultant solid obtained was triturated with EtOAc and dried in vacuo (0.1mm Hg, 85°C) to provide a solid, mp of 211-214°C, homogeneous by TLC (silica,

EtOAc, $R_f=0.38$). The IR (CHCl_3), NMR (CDCl_3) and Mass Spectrum ($M^+=416$, EI, 70eV) were consistent with the structure. The yield was 1.602g (3.85mmol, 33.33%).

5

Elemental Analysis

10

	Calculated	Found
C	69.21	68.88
H	5.81	5.90
N	13.45	13.10
O	11.52	

EXAMPLE 17

3-[(Quinuclidin-3-yl)oxy]-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole hydrochloride

15

20

To a stirred mixture of 3-quinuclidinol (4.87g, 38.28mmol) in 10ml of THF under N_2 at 0°C was slowly added n-BuLi (15.32g of a 2.5M solution in hexanes, 38.28mmol). The mixture was stirred for 10 minutes while allowing to warm to room temperature, then a solution of 3-chloro-8-methoxy-4,5-dihydronaphth[1,2-

25

c) isoxazole (3.0g, 12.76mmol) in 30ml N-methylpyrrolidinone was added in one portion. The stirred mixture was lowered into an oil bath preheated to 150°C. The internal temperature increased to 85°C and was maintained there. After 3 hours, TLC [CH₂Cl₂] showed no remaining starting material. The mixture was removed from the heating bath and allowed to cool to room temperature. It was then partitioned between heptane/H₂O. The heptane phase was dried over MgSO₄, filtered and concentrated in vacuo to provide the free base as an oil. The oil was taken up in Et₂O and the HCl salt was precipitated by the addition of ethanolic HCl. This solid was collected and dried in vacuo (0.1mm Hg, 85°C) to provide the product as a solid, mp of 133-136°C, homogeneous by TLC (silica, 1:1 CH₂OH:CH₂Cl₂, R_f=0.23). The IR (KBr), NMR (DMSO-d₆) and Mass Spectrum (M⁺+1=326, EI, 70eV) were consistent with the structure. The yield was 0.965g (2.39mmol, 18.79%).

Elemental Analysis

	Calculated	Found
C	62.89	62.91
H	6.39	6.28
Cl	9.77	
N	7.72	7.51
O	13.23	

EXAMPLE 18

5, 6-Dihydro-4H-benzo[6,7]cyclohept[1,2-c]isoxazol-3-ol

5

To a mechanically-stirred mixture of 1-benzosuberone oxime (10.0g, 57.1mmol) in anhydrous THF (200ml) at 0°C under N₂ was slowly added n-BuLi (50.3ml of a 2.5M solution in hexane, 125.62mmol). The mixture was stirred at 0°C for 30 minutes, then CO₂ gas was bubbled into the solution. After 15 minutes, CO₂ addition was stopped and N₂ flow was restored. The thick mixture was stirred and warmed slowly to room temperature for 14 hours, then 6N H₂SO₄ (220ml) was slowly added, which dissolved the solids. Stirring was continued for 18 hours, at which time the TLC [EtOAc] showed a mixture of starting oxime and product (starting oxime was best visualized using 2:1 heptane:EtOAc eluent). The mixture was poured into a separatory funnel, and the organic phase drawn off. The aqueous phase was extracted with EtOAc, and the organic phase and the EtOAc extracts were combined, washed with H₂O, dried over MgSO₄, and filtered. Concentration in vacuo caused the precipitation of a solid which was collected and dried in vacuo to provide the product as a

solid, mp of 165-168°C, homogeneous by TLC [silica, Et₂O, R_f=0.28]. The IR (KBr), NMR (DMSO-d₆) and Mass Spectrum (M⁺=201, EI, 70 eV) were consistent with the structure. The yield was 3.0324g (15.09mmol, 26.42%).

5

Elemental Analysis

	Calculated	Found
C	71.63	71.45
H	5.51	5.50
N	6.96	6.91
O	15.90	

EXAMPLE 19

3-(1-(4-(2-Oxo-1-benzimidazolinyl)piperidinyl))-4,5-

15 dihydronaphth[1,2-c]isoxazole hemihydrate

A stirred mixture of 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole (3.1g, 15.12mmol), 4-(2-oxo-1-benzimidazolinyl)-piperidine (8.2g, 37.8mmol) and K₂CO₃ (4.2g, 30.24mmol) in 18ml 20
25 of N-methylpyrrolidinone under N₂, was lowered into an oil bath

preheated to 150°C. The mixture was heated while stirring under N₂ for 90 minutes. At that time, TLC (CH₂Cl₂) showed no remaining starting material. The mixture was removed from the heating bath and allowed to cool to room temperature. Upon dilution of the reaction mixture with H₂O, a solid precipitated which was collected, dried, dissolved in CH₂Cl₂, and filtered through neutral alumina using CH₂Cl₂ and then 1:1 CH₂Cl₂:Et₂O. The fractions containing desired product were combined and concentrated, and the solid obtained was recrystallized from EtOAc and dried in vacuo (0.1mm Hg, 110°C) to provide a solid, mp of 229-233°C, homogeneous by TLC [silica, EtOAc, Rf=0.54]. The IR (KBr), NMR (CDCl₃) and Mass Spectrum (M⁺=386, EI, 70eV) were consistent with the structure. Analysis and NMR confirmed a hemihydrate structure. The yield was 1.103g (2.79mmol, 18.45%).

Elemental Analysis

	Calculated	Found
C	69.82	70.25
H	5.86	5.64
N	14.17	14.22
O	8.28	

Preferred pharmaceutically acceptable addition salts include salts of inorganic acids such as hydrochloric, hydrobromic, sulfuric, nitric, phosphoric and perchloric acids; as well as organic acids such as tartaric, citric, acetic, succinic, maleic, fumaric, and oxalic acids.

The active compounds of the present invention may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the compounds may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, waters, chewing gums and the like. These preparations should contain or form at least 0.5% of active compound, but may be varied depending upon the particular form and may conveniently be from about 4 to about 75% of the weight of the unit. The amount of compound present in such composition is such that a suitable dosage of active compound will be obtained. Preferred compositions and preparations according to the present invention are prepared so that an oral dosage unit form contains from about 1.0 to about 300mgs of active compound.

The tablets, pills, capsules, troches and the like may also contain the following ingredients: a binder such as

microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel™, corn starch and the like; a lubricant such as magnesium stearate or Sterotex®; a glidant such as colloidal silicon dioxide; and a sweetening agent such as sucrose or saccharin or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring may be added. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as fatty oil.

5 Other dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings. Thus tablets or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the active compounds, sucrose as a sweetening

10 agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used.

15

For the purpose of parenteral therapeutic administration, 20 the active compounds of the invention may be incorporated into a solution or suspension. These preparations should contain at least 0.1% of the aforesaid compound, but may be varied from about 0.5 to about 30% of the weight thereof. The amount of compound in such composition is such that a suitable dosage of 25 active compound will be obtained. Preferred compositions and

preparations according to the invention are prepared so that a parenteral dosage unit contains from about 0.5 to about 100mgs of active compound.

5 The solutions or suspensions may also include the following components; a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants 10 such as ascorbic acid or sodium bisulfite; chelating agents such as EDTA; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of 15 glass or plastic.

The compounds of the invention may be useful as 5-HT, antagonists on the coronary chemoreflex for the treatment of anxiety, psychiatric disorders, nausea and vomiting by virtue of 20 their ability to bind to rat entorhinal cortex membranes.

³H-GR 65630 Binding to Rat Entorhinal Cortex Membranes

Studies have been performed to determine the affinity of the compounds of the invention for the SHT, binding site in the 25 brain. This study or assay may be useful for predicting the

potential of compounds to exhibit antiemetic, anxiolytic or atypical antipsychotic profiles.

Originally, it was believed that 5HT₁ binding sites existed only in the periphery. However, with the recent introduction of potent and selective 5HT₁ antagonist drugs such as GR65630, Zacopride, ICS 205 930 and MDL 72222 (Bemesetron, C₁₃H₁₇Cl₂NO₂), data from binding studies have indicated that 5HT₁ binding sites are also located in selected areas of the brain. The highest levels of 5HT₁ binding sites have been detected in limbic and dopamine containing brain areas (entorhinal cortex, amygdala, nucleus accumbens and tuberculum olfactorium) (Kilpatrick, G.J. et al. Identification and distribution of 5HT₁ receptors in rat brain using radioligand binding. *Nature* **330**: 746-748). Besides possessing selective binding in dopamine rich areas, 5HT₁ antagonists have been reported to block behavioral effects associated with certain drugs of abuse (nicotine and morphine) and to be active in behavioral tests predictive of anxiolytic activity. Based on these selective regional binding results and behavioral studies, 5HT₁ antagonists may have a therapeutic benefit in disease states believed to be associated with excessive dopaminergic activity, i.e., schizophrenia, anxiety and drug abuse.

In accordance with the above-discussed assay, a 0.05M of Krebs-Hepes buffer, pH 7.4 was prepared as follows:

	11.92g	Hepes
5	10.52g	NaCl
	0.373g	KCl
	0.277g	CaCl ₂
	0.244g	MgCl ₂ .6H ₂ O
	q.s. to 1 liter with distilled H ₂ O,	
10	bring pH up to 7.4 (at 4°C) with 5N NaOH	

[³H]-GR65630 (87.0Ci/mmol) was obtained from New England Nuclear. For IC₅₀ determinations: [³H]-GR65630 was made up to a concentration of 1.0nM in Krebs-Hepes buffer such that when 15 100μl is added to each tube, a final concentration of 0.4nM is attained in the 250μl assay.

GR38032F was obtained from Research Biochemical Inc. GR38032F was made up to a concentration of 500μM in Krebs-Hepes 20 buffer. 50μl of Krebs-Hepes were added to each of 3 tubes for determination of nonspecific binding (yields a final concentration of 100μM in the 250μl assay).

For most assays, a 50μl stock solution was prepared in a 25 suitable solvent and serially diluted with Krebs-Hepes buffer

such that when 50 μ l of drug is combined with the total 250 μ l assay, a final concentration from 10⁻⁹ to 10⁻⁴M was attained. Characteristically, seven concentrations may be used for each assay; however, higher or lower concentrations may be used,
5 depending on the potency of the drug.

During tissue preparation, Male Wistar rats (15-200g) were decapitated, the entorhinal cortex removed, weighed and homogenized in 10 volumes of ice cold 0.05M Krebs-Hepes buffer,
10 pH 7.4. The homogenate is centrifuged at 48,000g for 15 minutes at 4°C. The resulting pellet was rehomogenized in fresh Krebs-Hepes buffer and recentrifuged at 48,000g for 15 minutes at 4°C. The final pellet was resuspended in the original volume of ice-cold Krebs-Hepes buffer. This yielded a final tissue
15 concentration of 1.2 to 1.6mg/ml with the addition of 100 μ l to the assay. Specific binding was approximately 55 to 65% of the total bound ligand.

In conducting the assay, the following volumes were utilized:

20

100 μ l of Tissue suspension;
100 μ l of [³H]-GR65630; and
50 μ l 500M GR38032F (Vehicle for binding)
 or appropriate drug concentration

25

Sample tubes were kept on ice for additions, then vortexed and incubated with continuous shaking for 30 minutes at 37°C. At the end of the incubation period, the incubate is diluted with 5 ml of ice-cold Krebs-Hepes buffer and immediately vacuum filtered through Whatman GF/B filters, followed by two 5ml washes with ice-cold Krebes-Hepes buffer. The filters are dried and counted in 10 ml of liquid scintillation cocktail. Specific GR 65630 binding is defined as the difference between the total binding and that bound in the presence of 100 μ M GR38032F. IC₅₀ values were derived from computer-derived log-probit analysis.

Various compounds of the invention were subjected to the above-described assay and the results the affinity for 5 HT, receptors are reported in Table I, below.

15

TABLE I

20 Affinity for 5-HT, Receptor-Displacement of ³H-GR 65630

Compound	IC ₅₀ , μ M
Ex. 3	0.868
Ex. 4	0.083
Ex. 5	0.056

Ondansetron (standard)	0.089
ICS 205 930 (standard)	0.039

5

Measurement of 5 HT, Antagonist Effects in the Bezold-Jarisch Assay

This assay evaluates the effect of these compounds as 5-HT, antagonists. They were examined in this assay on the coronary chemoreflex (Bezold-Jarisch) initiated by 5-HT, *in vivo* and characterized by leading inhibition of sympathetic outflow and increased activity of the cardiac vagus, leading to profound bradycardia and hypotension. The values obtained allow for continuous monitoring of arterial pressure and heart rate responses by these compounds over an extended period of time to determine their efficacy for 5 HT, antagonism.

The catheters were prepared from Tygon tubing (45cm length, 0.05mm, ID) bonded to Teflon tubing (0.38mm, ID). The mechanical bonding was achieved by insertion of the Teflon tubing (5mm) into the dilated (ethylene dichloride, 3-4 min.) tip of the Tygon tubing. The junction was then sealed with vinyl glue, the catheters were soaked in cold sterilization solution (Amerse instrument germicide) and flushed thoroughly

with saline prior to implantation.

Long Evans rats were anesthetized with sodium pentobarbital (50mg/kg, ip). The catheters filled with hepranized saline (100 U/ml) were inserted in the left femoral artery and vein and passed into the abdominal aorta and inferior vena cava, respectively. The catheters were then sutured to the underlying muscle and the free ends were passed subcutaneously and exteriorized through an incision on the top of the skull. The catheters were then secured to the skin with sutures, nitrofurazone powder was dusted over the area of the incision and the incision was closed using 3-0 silk sutures. The catheters were flushed with saline and sealed with metal obturators. Patency of the two catheters was maintained by daily flushing with hepranized saline (0.2 ml of 100 U/ml). The rats were given 48 hours recovery prior to obtaining cardiovascular data.

In the anesthetized rat model the catheters were not exteriorized, data was collected acutely under the influence of general anesthesia.

The baseline data Arterial Blood Pressure(mm Hg, systolic/diastolic) and Heart Rate (beats/min) were recorded and the rats were injected with 5-HT (3-7.5ug/kg, iv). The

individual response to the 5-HT intervention was determined and the compound was then administered singly or in an ascending dose range. The rats were challenged with 5-HT again at intervals postdosing and the peak response was recorded.

5

Several compounds of the invention were tested according to the above-described assay and the results are reported in Table II, below.

TABLE II

Inhibitory Potency of 5-HT₂ Antagonists on Reflex Bradycardia Induced by Intravenous 5-HT, in the Anesthetized Long-Evans Rat

5	Compound	Dose, mg/kg, ip	% Inhibition of Bezold-Jarisch Reflex (Values are mean ± SEM, 2-3 rats/dose)
	Ondansetron	3.0	57.3 ± 9.7
	Ondansetron	10.0	94.6 ± 2.7
	Ex. 4	0.03	58.6 ± 16.4
	Ex. 4	0.05	83.3 ± 8.2
10	Ex. 4	0.10	93.0 ± 1.0
	Ex. 5	1.0	55.6 ± 9.7
	Ex. 5	3.0	89.3 ± 2.9

15 In accordance with Table II, maximal reductions in heart rate induced by 5HT, (e.g. Bezold-Jarisch reflex) occurred 15 to 60 minutes after administration.

I Claim:

1. A compound of the formula:

where A is hydrogen, hydroxy,

or

where R₁ is hydrogen, an alkyl group of 1 to 6 carbons, optionally substituted with hydroxy, alkoxy or amino substitution; aryl or heteroaryl, optionally substituted

with halogen, hydroxy or alkoxy; or benzyl optionally substituted with halogen, hydroxy or alkoxy; n is an integer of 1 or 2; Z is N, CH or C(OH); m is an integer of 1 to 3; and X is hydrogen, hydroxy or alkoxy; and the pharmaceutically acceptable salts thereof, and its geometric or optical isomers, or the racemic mixtures, where applicable.

2. The compound according to Claim 1, wherein A is

3. The compound according to Claim 1, wherein A is

4. The compound according to Claim 1, wherein A is

5. The compound according to Claim 1, wherein A is

6. The compound according to Claim 1, which is 3-chloro-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.

7. The compound according to Claim 1, which is 3-hydroxy-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.

8. The compound according to Claim 1, which is 3-chloro-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.

9. The compound according to Claim 1, which is 5,6-dihydro-4H-benzo[6,7]cyclohept(1,2-c)isoxazol-3-ol, its salts, isomers and racemic mixtures, where applicable.
10. The compound according to Claim 2, which is 3-(4-methyl-1-piperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
11. The compound according to Claim 2, which is 3-(4-(2-hydroxyethyl)-1-piperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
12. The compound according to Claim 2, which is 3-(1-homopiperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
13. The compound according to Claim 2, which is 3-(1-piperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
14. The compound according to Claim 2, which is 3-(4-benzyl-1-piperazinyl)-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
15. The compound according to Claim 2, which is 3-(1-

piperazinyl)-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole,
its salts, isomers and racemic mixtures, where applicable.

16. The compound according to Claim 2, which is 3-(1-homopiperazinyl)-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
17. The compound according to Claim 2, which is 3-(1-(4-(p-chlorophenyl)-4-hydroxy-piperidinyl)-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
18. The compound according to Claim 2, which is 3-(1-(4-(6-fluorobenzisoxazol-3-yl)-piperidinyl)-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
19. The compound according to Claim 2, which is 3-(1-(4-(2-oxo-1-benzimidazolinyl)piperidinyl))-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.
20. The compound according to Claim 2, which is 3-(1-(4-(2-oxo-1-benzimidazolinyl)piperidinyl))-4,5-dihydronaphth[1,2-

c]isoxazole hemihydrate, its salts, isomers and racemic mixtures, where applicable.

21. The compound according to Claim 3, which is 3-[(1-methyl-4-piperidinyl)oxy]-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.

22. The compound according to Claim 4, which is 3-[(*endo*)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)oxy]-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole, its salts, isomers and racemic mixtures, where applicable.

23. The compound according to Claim 4, which is 3-[(*endo*-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)oxy]-4,5-dihydronaphth[1,2-c]isoxazole hydrochloride hemihydrate, its salts, isomers and racemic mixtures, where applicable.

24. The compound according to Claim 5, which is 3-[(quinuclidin-3-yl)oxy]-8-methoxy-4,5-dihydronaphth[1,2-c]isoxazole hydrochloride, its salts, isomers and racemic mixtures, where applicable.

25. A method of preparing a compound of the formula:

comprising the sequential reaction steps of:

26. A method of treating a patient in need of relief from a psychiatric disorder, nausea, vomiting and control of drug use, comprising providing to said patient an effective amount of the compound of Claim 1.

27. A method of treating a condition ameliorated by the use of a 5-HT₃ antagonist, comprising administering to a patient an effective amount to relief said condition of the compound of claim 1.
28. A pharmaceutical composition, comprising an effective amount of the compound of Claim 1, and a pharmaceutically acceptable carrier therefor.
29. A compound of Claim 1 for use as an active pharmaceutical substance.
30. The use of a compound of Claim 1 for the production of a medicament for the treatment of psychiatric disorders, nausea, vomiting and control of drug use.
31. The use of a compound of Claim 1 for the production of a medicament for the treatment of a condition ameliorated by the use of a 5-HT₃ antagonist.

INTERNATIONAL SEARCH REPORT

Intern. Application No
PCT/US 96/19569

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07D261/20 C07D453/02 A61K31/42 C07D413/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ORG. PREP. PROCED. INT., vol. 23, no. 2, 1991, pages 186-188, XP000653459 M. D. SAMI ET AL.: "Synthesis and thermolysis of cycloalkenyl azides. A simple route to polycyclic isoxazoles" * Compound of formula 3a * ---	1
X	J. ORG. CHEM., vol. 43, no. 16, 1978, pages 3015-3021, XP000653518 G. N. BARBER, R. A. OLOFSON: "A Useful, Regiospecific Synthesis of Isoxazoles" cited in the application * Compound of formula 22 * --- -/-	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

1

Date of the actual completion of the international search Date of mailing of the international search report

28 April 1997

23.05.1997

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Herz, C

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/US 96/19569

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	J. ORG. CHEM., vol. 49, no. 14, 1984, pages 2652-2653, XP000653517 R. A. OLOFSON ET AL.: "Azetinones Revealed" * Compounds of formula 7a * ---	1
Y	WO 94 10162 A (MERCK, SHARP & DOHME LTD.) 11 May 1994 see claims 1-11 ---	1-31
Y	EP 0 402 644 A (HOECHST-ROUSSEL PHARMACEUTICALS INC.) 19 December 1990 see claims 1-15 ---	1-31
A	DE 21 19 977 A (TEIKOKU HORMONE MANUFACTURING CO., LTD.) 16 December 1971 see page 13, line 16 - line 20; claims 1-27 ---	1-31
A	J. MED. CHEM., vol. 19, no. 2, 1976, pages 229-239, XP000609112 M. M. HASHEM ET AL.: "Novel Pyrazolo, Isoxazolo, and Thiazolo Steroidal Systems and Model Analogs Containing Dimethoxylaryl (or Dihydroxylaryl) Groups and Derivatives. Synthesis, Spectral Properties, and Biological Activity" * Scheme VII; Compound of formula XX *	1-31
A	TETRAHEDRON, vol. 23, no. 5, 1967, pages 2081-2093, XP000612134 E. C. TAYLOR ET AL.: "Heterocyclic Syntheses from α -Aminonitriles - XXVIII. Syntheses of some benzo(f)- and benzo(h)quinazolines" * Compound of formula XXIX *	1-31

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern.	Application No
	PCT/US 96/19569

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9410162 A	11-05-94	AU 5341394 A CA 2146018 A EP 0665840 A JP 8502958 T	24-05-94 11-05-94 09-08-95 02-04-96
-----	-----	-----	-----
EP 402644 A	19-12-90	AT 126512 T AU 640653 B AU 5577090 A CA 2017193 A CN 1048037 A DE 69021645 D DE 69021645 T ES 2076253 T HU 9500576 A IE 68431 B IL 94425 A JP 3063263 A JP 6062580 B NO 177301 B PL 163965 B PT 94084 B RU 2062776 C US 5550130 A US 5552414 A US 5612342 A US 5559117 A US 5574032 A US 5607945 A US 5583145 A US 5580875 A US 5554614 A US 5556858 A US 5580890 A US 5580879 A US 5612343 A US 5589488 A US 5578624 A US 5614543 A US 5599821 A US 5571828 A	15-09-95 02-09-93 22-11-90 19-11-90 26-12-90 21-09-95 22-02-96 01-11-95 28-12-95 12-06-96 27-02-94 19-03-91 17-08-94 15-05-95 31-05-94 31-12-96 27-06-96 27-08-96 03-09-96 18-03-97 24-09-96 12-11-96 04-03-97 10-12-96 03-12-96 10-09-96 17-09-96 03-12-96 03-12-96 18-03-97 31-12-96 26-11-96 25-03-97 04-02-97 05-11-96

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern. Appl. No
PCT/US 96/19569

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 402644 A		US 5591745 A US 5602158 A US 5559116 A US 5561128 A US 5580886 A US 5589494 A US 5578605 A US 5597842 A US 5602159 A US 5605913 A US 5580891 A US 5559126 A US 5593995 A US 5589495 A US 5571814 A	07-01-97 11-02-97 24-09-96 01-10-96 03-12-96 31-12-96 26-11-96 28-01-97 11-02-97 25-02-97 03-12-96 24-09-96 14-01-97 31-12-96 05-11-96
DE 2119977 A	16-12-71	DE 2166686 A	02-10-75