K-Nearest Neighbor Algorithm

- 1. The way I approached this problem was to follow the steps I would usually follow, then work on building the model and K-Nearest Neighbor analysis for the dataset. A K-nearest neighbor analysis is an algorithm that classifies data into different groups based on something they share in common. Using the K-nearest neighbor algorithm I was able to classify things based on the groups of what they are most similar to. After having done this classification, I was able to then analyze the results and take note of my observations.
- 2. K and Predictor Selection

k and Predictor Selection

The optimal K-value will be 5 because the error rate for each variable is a lot lower than the K-values for 4 and 6, in which model_version's error rate is significantly higher.

3. Predictor importance

Predictor Importance

Target: failure

The most important variable is hours_run, and the least important variable is model_version. Even though hours_run is not that much further ahead than its neighbors, it still is the most important predicting variable.

4. Classification Table

Classification Table

D. dat	01		Predi	cted
Partition	Observed	1.000	0.000	Percent Correct
	1.000	37	5	88.1%
Training	0.000	3	183	98.4%
	Overall Percent	17.5%	82.5%	96.5%

The training model has a high level of accuracy with there being 82.5% in success, and 17.5% in failure.

5. Analysis node

Results for output field failure Comparing \$KNN-failure with failure 'Partition' 2_Testing Correct 98.61% Wrong 1.39% Total 72 Coincidence Matrix for \$KNN-failure (rows show actuals) 1.000000 0.000000 'Partition' = 2_Testing 0.000000 58 0 13 1.000000 1

The test model has a higher level of success than the training model (test results include 1.39% failure and 98.61% success, and training results include 17.5% failure and 82.5% success.

Results for output field failure

Comparing \$KNN-failure with failure

'Partition'	1_Training	2_Testing	
Minimum Error	-0.75	-0.5	
Maximum Error	0.75	0.25	
Mean Error	0.0	-0.008	
Mean Absolute Error	0.027	0.032	
Standard Deviation	0.105	0.11	
Linear Correlation	0.961	0.965	
Occurrences	277	73	

6. Based on the results of the analysis, I can conclude that the K-nearest neighbor classification algorithm was a success in this scenario. The reason why was because the training model was outperformed by the test model, which means in the actual application it performed well. It was able to identify what the most important variable was (hours_run) and were able to find out a value for k that worked best, and identify a good model. The machines in records 301-350 that are predicted to fail are #'s 309, 318, 323, 324, 326, 336, 337, 339, 347, 348 (highlighted in yellow below).

	A	В	С	D	E	F	G	Н
L	record	hours_run	avg_hours_between_maint	model_version	failure	\$KNN-failure	\$KNNP-failure	\$KNNRP-failure
2	301	7089	1572	3		0	0.857142857	0.142857143
	302	3465	1404	2		0	0.571428571	0.428571429
	303	5327	1053	3		0	0.857142857	0.142857143
5	304	5665	1330	3		0	0.857142857	0.142857143
;	305	8671	1132	2		0	0.857142857	0.142857143
7	306	6466	1857	1		0	0.857142857	0.142857143
3	307	5774	1944	2		0	0.857142857	0.142857143
)	308	6881	1553	3		0	0.857142857	0.142857143
0	309	1753	1586	2		1	0.857142857	0.857142857
1	310	3957	1645	2		0	0.714285714	0.285714286
2	311	5946	1510	2		0	0.857142857	0.142857143
3	312	1400	1014	1		0	0.571428571	0.428571429
4	313	3363	1175	1		0	0.857142857	0.142857143
5	314	4002	1669	1		0	0.857142857	0.142857143
6	315	7978	1855	1		0	0.857142857	0.142857143
7	316	6788	1046	2		0	0.857142857	0.142857143
8	317	8172	1565	1		0	0.857142857	0.142857143
9	318	2576	1183	3		1	0.857142857	0.857142857
0	319	7495	1691	1		0	0.857142857	0.142857143
1	320	8391	1720	3		0	0.857142857	0.142857143
2	321	8218	1732	2		0	0.857142857	0.142857143
3	322	8971	1561	1		0	0.857142857	0.142857143
4	323	2971	1952	1		1	0.571428571	0.571428571
5	324	3809	1892	2		1	0.571428571	0.571428571
6	325	5910	1524	3		0	0.857142857	0.142857143
7	326	1970	1332	3		1	0.857142857	0.857142857
8	327	3763	1749	3		0	0.857142857	0.142857143
9	328	8559	1174	1		0	0.857142857	0.142857143
0	329	4670	1597	2		0	0.857142857	0.142857143
1	330	3530	1702	3		0	0.857142857	0.142857143
2	331	4468	1525	3		0	0.857142857	0.142857143
3	332	6285	1410	3		0	0.857142857	0.142857143
4	333	6682	1364	1		0	0.857142857	0.142857143
5	334	1866	1030	1		0	0.571428571	0.42857143
6	335	6663	1006	3		0	0.857142857	0.1428571429
7	336	1748	1377	2		1	0.857142857	0.142857143
8	337	2416	1230	1		1	0.857142857	0.857142857
8 9	338		1982	2		0	0.857142857	0.857142857
	339	6228 2692	1849	1		1	0.85/14285/	0.7142857143
0	340			3		0		0.714285714
		5901	1652				0.857142857	
2	341	7250	1502	2		0		0.142857143
3	342	6281	1091				0.857142857	0.142857143
4	343	4614		1			0.857142857	
5	344	5686		2			0.857142857	
6	345	3581		3			0.714285714	0.285714286
7	346	4275	1201	3			0.857142857	
8	347	2922	1951	3			0.571428571	
9	348	2938	1428	1			0.714285714	0.714285714
0	349	7212					0.857142857	0.142857143
1	350	5905	1066	3		0	0.857142857	0.142857143