Corso di Laurea in Informatica Algebra. a.a. 2023-24. Canale 1. Compito a casa del 17/11/2023

Esercizio 1. Svolgere gli esercizi 4.1, 4.2 e 4.3 del libro.

Esercizio 2. Stabilire se l'insieme \mathbb{R}^2 è uno spazio vettoriale su \mathbb{R} rispetto alle operazioni:

$$(x,y) + (x',y') = (x+x',y+y'), \qquad k(x,y) = (kx,-ky), \quad \forall k \in \mathbb{R}.$$

Esercizio 3. Abbiamo visto che $\mathbb{R}[x]$, l'insieme dei polinomi a coefficienti in \mathbb{R} , è uno spazio vettoriale.

Verificare che $\mathbb{R}_3[x] \subset \mathbb{R}[x]$, l'insieme dei polinomi di grado minore o uguale a tre, è un sottospazio di $\mathbb{R}[x]$ ed è quindi lui stesso uno spazio vettoriale (Osservazione 4.3 nel libro).

Si consideri il sottoinsieme

$$W = \{p(x) \in \mathbb{R}_3[x] \mid p(1) = 0\} \subset \mathbb{R}_3[x]$$

Stabilire se W è un sottospazio. Stesso esercizio per

$$U = \{ q(x) \in \mathbb{R}_3[x] \mid q(2) = 4 \}.$$

Esercizio 4. Sia $V = \mathbb{R}[x]$ e sia $p(x) = 1 + x + x^2 + 5x^4$. Consideriamo $q(x) = x^2 + 5x^4$. Stabilire se $q(x) \in \text{Span}(p)$.

Esercizio 5. Una matrice $A = (a_{ij}) \in M_{nn}(\mathbb{R})$ è detta simmetrica se $a_{ij} = a_{ji}$ per ogni i, j. Una matrice A è detta antisimmetrica se $a_{ij} = -a_{ji}$ per ogni i, j.

5.1. Verificare che il sottoinsieme $S_{nn}(\mathbb{R}) \subset M_{nn}(\mathbb{R})$ delle matrici simmetriche è un sottospazio.

5.2. Verificare che il sottoinsieme $\mathcal{A}_{nn}(\mathbb{R}) \subset M_{nn}(\mathbb{R})$ delle matrici antisimmetriche è un sottospazio.