IIT Jodhpur

Biological Vision and Applications

Module 05-02: Cognitive attention models

Hiranmay Ghosh

Cognitive Models

Motivated by Feature Integration Theory

- Based on the observations
 - Early vision distinguishes local contrasts
 - ... colors, edges
 - Features are subsequently integrated
 - Treismann's Feature Integration Theory
 - Higher acuity at central vision (5°)
 - ightharpoonup ... lower at paracentral / macular $(8-18^\circ)$

Itti's model (1998)

Overview

Itti, et al., A saliency based search mechanism ...

Multi-resolution image analysis

- Multi-resolution analysis of input image
 - ▶ Using Gaussian pyramids (9 scales: 0 8)

Feature extraction

- For images at each resolution level, 3 features are extracted
 - ► Color (*C*): R-G and B-Y contrasts
 - ► Intensity (1): B-W contrast
 - Edge Orientations (O): 0, 45, 90, 135 degrees
- 2+1+4=7 features extracted for each resolution level

Center-surround operations: Multi-scale feature maps

- Center-surround difference computed for each of 7 features for every location
- Center at hi-res, Surround at lo-res
- Scales used:
 - ightharpoonup Center: $c = \{2, 3, 4\}$
 - ► Surround: $s = c + \delta [\delta = \{3, 4\}]$
- Multi-scale differences

$$ightharpoonup \mathcal{F} = \mid F(c) \ominus F(s) \mid$$

- 6 scales for each feature
- $7 \times 6 = 54$ "feature maps" (contrasts)
 - Each represents local contrast at a location based on a feature at a certain scale

Combining the features: Conspicuity and Saliency Maps

- Feature maps are combined
- Equal weights normalized N()
- Combined in two stages
 - Intra-feature-class, giving three conspicuity maps

$$\bar{I} = \bigoplus_{c,s} N(I(c,s))$$

$$\bar{C} = \sum_{RG,BY} \bigoplus_{c,s} N(C(c,s))$$

$$ar{O} = \sum_{\theta} \bigoplus_{c,s} N(O(c,s))$$

Inter-feature-class, giving the final saliency map

BioVision 05-02

Normalization

- Two reasons to normalize
 - Features are at arbitrary scale
 - Normalize to a fixed range [0, M]
- Some feature may have many nearly equal peaks, indicating texture
- Steps:
 - ► Choose M
 - Normalize so that the global max = M
 - Compute the average of all other local maxima \bar{m}
 - Multiply the map by $(M \bar{m})^2$

"Winner take it all" and "Return Inhibition" policies

- Winner-take-it-all policy
 - ► The image location with highest saliency attracts attention
 - All other locations are ignored
- Return Inhibition policy
 - Attention never returns to a location once attended
 - The neurons at the attended place tires out.
 - Attention moves to the location with next highest salience.

Sample Results

Discussions

- Remains a reference model till date
 - ► WTA and RI policies are common to all classical models
- Based on cognitive theories of early vision
- Features used: Color, Intensity and Orientations
 - Equal weights to all features
- Models bottom-up attention
- Provides static saliency map
- Eve movement guided by
 - Winner Take All policy

 - Return Inhibition policy

Adaptation to top-down attention

- Visual search task
- Weights assigned to features based on task requirement
- Weights learned from statistical features of target and distractors
- Inflexible

Extension of feature set

Object level attributes

- Recall what is likely to be a foreground object
 - Local motion (for video)
 - convex-ness ...

Extension to feature set (contd.)

What draws human attention? - Rethinking the principles

Semantic features

- Semantic features
 - Human face and emotions
 - Text
 - Man-made objects designed to be watched (TV, clock, ...)
 - Objects with sound, smell, taste, touch attributes
 - Objects interacted with (touched or gazed upon by) humans (a computer mouse, ...)

Early fusion vs. late fusion

When to fuse the conspicuity maps?

- Early fusion
 - As in Itti's model
 - Fused immediately after normalization
 - Overall saliency map created after fusion
- Late fusion
 - Create saliency map based on one feature
 - Fuse conspicuity maps from the other features for the competing locations
 - One at a time
 - Computationally more efficient
 - Sequence?
 - Color first. No consensus of other features

Khan, et al. Top down color attention ...

Quiz

Quiz 05-02

End of Module 05-02