CS 61C: Great Ideas in Computer Architecture

Virtual Memory III

Miki Lustig

Where Are TLBs Located?

- Which should we check first: Cache or TLB?
 - Can cache hold requested data if corresponding page is not in physical memory? No
 - With TLB first, does cache receive VA or PA?

Address Translation Using TLB

Question: How many bits wide are the following?

- 16 KiB pages
- 40-bit virtual addresses
- 64 GiB physical memory
- 2-way set associative TLB with 512 entries

Valid	Dirty	Ref	Access Rights	TLB Tag	PPN
X	X	X	XX		

	TLB Tag	TLB Index	TLB Entry
A)	12	14	38
B)	18	8	45
(C)	14	12	40
D)	17	9	43

- 16 KiB pages
- 40-bit virtual addresses
- 64 GiB physical memory
- 2-way set associative TLB with 512 entries

Valid	Dirty	Ref	Access Rights	TLB Tag	PPN
X	X	X	XX		

	TLB Tag	TLB Index	TLB Entry
A)	12	14	38
B)	18	8	45
C)	14	12	40
D)	17	9	43

: How many bits wide are the following?

- 16 KiB pages
- 40-bit virtual addresses
- 64 GiB physical memory
- 2-way set associative TLB with 512 entries

Valid	Dirty	Ref	Access Rights	TLB Tag	PPN
1	1	1	2	18	22

TLB Tag TLB Index Page Offset

Recall VPN = 26, PPN = 22
TLB gets VPN as input = 26 bits
TLB Index =
$$512/2 = 256 = 8$$
bits
TLB Tag = $26 - 8 = 18$ bits
Total = $1+1+1+2+18+22=45$

Fetching Data on a Memory Read

- 1) Check TLB (input: VPN, output: PPN)
 - TLB Hit: Fetch translation, return PPN
 - TLB Miss: Check page table (in memory)
 - Page Table Hit: Load page table entry into TLB
 - Page Table Miss (Page Fault): Fetch page from disk to memory, update corresponding page table entry, then load entry into TLB
- 2) Check cache (input: PPN, output: data)
 - Cache Hit: Return data value to processor
 - Cache Miss: Fetch data value from memory, store it in cache, return it to processor

Page Faults

- Load the page off the disk into a free page of memory
 - Switch to some other process while we wait
- Interrupt thrown when page loaded and the process' page table is updated
 - When we switch back to the task, the desired data will be in memory
- If memory full, replace page (LRU), writing back if necessary, and update both page table entries
 - Continuous swapping between disk and memory called "thrashing"

Performance Metrics

- VM performance also uses Hit/Miss Rates and Miss Penalties
 - TLB Miss Rate: Fraction of TLB accesses that result in a TLB Miss
 - Page Table Miss Rate: Fraction of PT accesses that result in a page fault
- Caching performance definitions remain the same
 - Somewhat independent, as TLB will always pass
 PA to cache regardless of TLB hit or miss

Data Fetch Scenarios

 Are the following scenarios for a single data access possible?

 TLB Miss, Page Fault 	Yes
--	-----

- TLB Hit, Page Table Hit
- TLB Miss, Cache HitYes
- Page Table Hit, Cache Miss
- Page Fault, Cache Hit

Question: A program tries to load a word at X that causes a TLB miss but not a page fault. Are the following statements TRUE or FALSE?

- The page table does not contain a valid mapping for the virtual page corresponding to the address X
- 2) The word that the program is trying to load is present in physical memory

```
1 2
A) F F
B) F T
C) T F
D) T T
```


Question: A program tries to load a word at X that causes a TLB miss but not a page fault. Are the following statements TRUE or FALSE?

- The page table does not contain a valid mapping for the virtual page corresponding to the address X
- 2) The word that the program is trying to load is present in physical memory

VM Performance

- Virtual Memory is the level of the memory hierarchy that sits below main memory
 - TLB comes before cache, but affects transfer of data from disk to main memory
 - Previously we assumed main memory was lowest level, now we just have to account for disk accesses
- Same CPI, AMAT equations apply, but now treat main memory like a mid-level cache

Typical Performance Stats

Caching

cache entry
cache block (≈32 bytes)
cache miss rate (1% to 20%)
cache hit (≈1 cycle)
cache miss (≈100 cycles)

Demand paging

page frame
page (≈4Ki bytes)
page miss rate (<0.001%)
page hit (≈100 cycles)
page miss (≈5M cycles)

Impact of Paging on AMAT (1/2)

- Memory Parameters:
 - L1 cache hit = 1 clock cycles, hit 95% of accesses
 - L2 cache hit = 10 clock cycles, hit 60% of L1 misses
 - DRAM = 200 clock cycles (≈100 nanoseconds)
 - Disk = 20,000,000 clock cycles (≈10 milliseconds)
- Average Memory Access Time (no paging):
 - $-1 + 5\% \times 10 + 5\% \times 40\% \times 200 = 5.5$ clock cycles
- Average Memory Access Time (with paging):
 - -5.5 (AMAT with no paging) +?

Impact of Paging on AMAT (2/2)

- Average Memory Access Time (with paging) =
 - $5.5 + 5\% \times 40\% \times (1-HR_{Mem}) \times 20,000,000$
- AMAT if $HR_{Mem} = 99\%$?
 - $5.5 + 0.02 \times 0.01 \times 20,000,000 = 4005.5$ ($\approx 728x$ slower)
 - 1 in 20,000 memory accesses goes to disk: 10 sec program takes 2 hours!
- AMAT if $HR_{Mem} = 99.9\%$?
 - $5.5 + 0.02 \times 0.001 \times 20,000,000 = 405.5$
- AMAT if HR_{Mem} = 99.9999%
 - $5.5 + 0.02 \times 0.000001 \times 20,000,000 = 5.9$

Impact of TLBs on Performance

- Each TLB miss to Page Table ~ L1 Cache miss
- *TLB Reach:* Amount of virtual address space that can be simultaneously mapped by TLB:
 - TLB typically has 128 entries of page size 4-8 KiB
 - $-128 \times 4 \text{ KiB} = 512 \text{ KiB} = \text{just } 0.5 \text{ MiB}$
- What can you do to have better performance?
 - Multi-level TLBs ← Conceptually same as multi-level caches
 - Variable page size (segments)
 - Special situationally-used "superpages"

Not covered

Aside: Context Switching

- How does a single processor run many programs at once?
- Context switch: Changing of internal state of processor (switching between processes)
 - Save register values (and PC) and change value in Page Table Base register
- What happens to the TLB?
 - Current entries are for different process
 - Set all entries to invalid on context switch

Virtual Memory Summary

User program view:

- Contiguous memory
- Start from some set VA
- "Infinitely" large
- Is the only running program

Reality:

- Non-contiguous memory
- Start wherever available memory is
- Finite size
- Many programs running simultaneously

Virtual memory provides:

- Illusion of contiguous memory
- All programs starting at same set address
- Illusion of ~ infinite memory (2³² or 2⁶⁴ bytes)
- Protection, Sharing

Implementation:

- Divide memory into chunks (pages)
- OS controls page table that maps virtual into physical addresses
- memory as a cache for disk
- TLB is a cache for the page table