56p.

N63 17301

TECHNICAL NOTE

D-1793

CENTER-LINE PRESSURE DISTRIBUTIONS ON TWO-DIMENSIONAL
BODIES WITH LEADING-EDGE ANGLES GREATER THAN THAT
FOR SHOCK DETACHMENT AT MACH NUMBER 6 AND

ANGLES OF ATTACK UP TO 250

By Theodore J. Goldberg, George C. Ashby, Jr., and James G. Hondros

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON
June 1963

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1793

CENTER-LINE PRESSURE DISTRIBUTIONS ON TWO-DIMENSIONAL
BODIES WITH LEADING-EDGE ANGLES GREATER THAN THAT
FOR SHOCK DETACHMENT AT MACH NUMBER 6 AND

ANGLES OF ATTACK UP TO 25°

By Theodore J. Goldberg, George C. Ashby, Jr., and James G. Hondros

SUMMARY

17301

Center-line pressure distributions were obtained for two-dimensional sharpnose parabolic arc, circular arc, and wedge bodies having a leading-edge angle greater than that for shock detachment (aerodynamically blunt bodies) at Mach number of 6 for angles of attack up to 250. The maximum pressure coefficient was found to increase continuously from the shock-attachment value to the stagnation value behind a normal shock between leading-edge deflection angles of 42° and 51°. Only the data for contoured bodies having leading-edge angles of 660 or greater are correlated very well by the generalized Newtonian theory. However, at all angles of attack for all aerodynamically blunt bodies having curved surfaces, the agreement between the generalized Newtonian theory and the measured values of pressure coefficient was reasonably good for surface-deflection angles above 30°. This theory can be used to predict pressures on most two-dimensional bodies by the methods shown herein. With few exceptions, at a given deflection angle the pressure distributions rearward of the maximum pressure on the lower and upper surfaces of aerodynamically blunt wedges are essentially coincident with those of wedges having higher and lower half-angles, respectively. In addition, the pressure distributions of these wedges are in good agreement aft of the maximumpressure point with those of a flat plate at corresponding deflection angles to the lower surface above 530 and to the upper surface above 310.

INTRODUCTION

There is a large amount of available experimental and theoretical information in the hypersonic speed range for bodies having either rounded leading edges and therefore detached shock waves or sharp leading edges with attached shock waves. However there is very little, if any, available data in this speed range for the class of bodies with sharp leading edges having detached shock waves. The purpose of the present investigation is to provide some information in that area.

This report presents the center-line pressure distributions on a series of two-dimensional bodies having leading-edge angles from 42° to 90° which were measured in the Langley 20-inch Mach 6 tunnel at angles of attack up to 25°. In addition the means by which the pressure distributions can be predicted are also presented.

SYMBOLS

Cp	pressure coefficient, $\frac{p_1 - p_{\infty}}{\frac{1}{2}(\gamma p_{\infty} M_{\infty})}$
M_{∞}	free-stream Mach number
p ₁	local pressure, lb/sq in.
p _t	total or stagnation pressure, lb/sq in.
p_{∞}	free-stream pressure, lb/sq in.
S	distance along body surface from nose, in.
s _w	total length of wedge surface, in.
t	half the maximum body thickness, in.
x,y	body coordinates
α	angle of attack, deg
γ	ratio of specific heats
δ	local inclination of the body surface referenced to wind axis, deg
θ	local inclination of body surface referenced to body axis, deg
Subscript	s:

geom geometric

lower surface

le leading edge

max maximum

stag stagnation behind a normal shock

u upper surface

APPARATUS AND METHODS

Wind Tunnel and Models

This investigation was conducted in the Langley 20-inch Mach 6 tunnel. The tunnel, which has been described in reference 1, is a blowdown-to-atmosphere type which operates at a maximum stagnation temperature of 600° F and a maximum stagnation pressure of 600 lb/sq in. The air is dried by an activated alumina dryer designed to provide a dewpoint temperature of -40° F at 600 lb/sq in.

The three groups of 5 two-dimensional models used in this investigation consisted of wedges and parabolic and circular arcs. Each group had leading-edge angles of 42°, 54°, 66°, 78°, and 90°. These models will herein be referred to by their leading-edge angles and contours. These contours were selected because they represent a large portion of the entire class of two-dimensional sharp-nose bodies having a leading-edge angle greater than that for shock detachment at a Mach number of 6. For a given deflection angle the wedge and the parabolic arc represent the minimum and maximum surface curvature of the present investigation, respectively, while the circular arc represents an intermediate curvature. Although the theoretical shock-detachment angle at Mach 6.0 is 42.40, it was felt that a perfectly sharp leading edge could not be fabricated and that the shock for a 420-leading-edge-angle model would be detached. This leading-edge angle would represent the lower limit of the aerodynamically blunt range. All models had a span of 4.00 inches and a thickness of 4.00 inches. The models were adapted with a 2.56-inch-long cylindrical section on the rear by using a "quick-disconnect" type connection to facilitate model changes. Photographs of the models and of the model attached to the support connection are shown in figures 1 and 2, respectively. Model dimensions are given in table I along with x, y locations of orifices, local inclinations at orifices, and surface distance-to-thickness ratios. Extensions, which were added to both sides of the 780 parabolic arc body to check the two dimensionality of the flow along the center line, were each 3 inches wide and contoured to match the basic body. A row of orifices on one of the extensions was located at the same position relative to the edge (2 inches inboard) as those on the basic body. This body was selected because it was the longest and any disturbance emanating from the tips of the models would affect the most rearward orifices. The 780 parabola with extensions is shown in figure 2. Model orifice sizes for the basic models and extensions were 0.021 inside diameter near the leading edges and 0.063 inside diameter at all other orifice locations.

The models were supported in the tunnel by the goose-neck support system shown in figure 3, which moved the model 25° in angle of attack in the horizontal plane. A mechanically operated counter geared to the vertical shaft of the support system was used to measure the angle of attack. Deflections due to air loads were negligible because of the stiffness of the sting support.

Tests

All models were tested in 5° increments over an angle-of-attack range of 0° to 25° . In addition, the 42° -leading-edge models were tested in 1° increments at angles of attack from 0° to 15° .

All tests reported herein were conducted at a stagnation pressure and temperature of 400 lb/sq in. absolute and 400° F which yields a Reynolds number of $7.6 \times 10^{\circ}$ per foot.

Pressure data were recorded by photographing a mercury manometer for pressures greater than 1 lb/sq in. absolute. For pressures of 1 lb/sq in. absolute or less a butyl phthalate manometer was used to obtain greater accuracy because of the low specific gravity of the fluid. Tunnel stagnation pressures were measured with a 0 to 600 lb/sq in. Bourdon gage. All pressures were photographically recorded simultaneously.

Data Reduction and Accuracy

Previous tunnel calibrations have shown that at any instant the Mach number

throughout the test section varies by only ±0.02. However, the Mach number level varies from 5.94 to 6.04 depending upon time - the time during each run, the time between runs, and the total time elapsed. This fact makes it extremely difficult, if not impossible, to obtain an exact calibration curve of Mach number against time. The data, therefore, were initially reduced at an average Mach number of 6. This procedure resulted in sufficient data scatter to make difficult an analysis of data trends. One obvious trend emerged, however, which led to a better definition of test Mach numbers. This trend is shown in figure 4 where the maximum pressure coefficients obtained on the various bodies are presented as a function of the flow-deflection angles at which they were obtained. At flow-deflection angle for shock detachment ($\delta = 42^{\circ}$) the data agree with oblique shock theory. At higher flow-deflection angles the data approach and even exceed the stagnationpressure-coefficient value at flow-deflection angles considerably less than 90°. The degree by which the data exceed Cp, stag, of course, is indicative of the data Since the data exceed Cp. stag by as much as 4 percent which is much greater than measuring accuracy, the scatter is attributed to a true Mach number variation different from the assumed constant value of 6.0. By using the data trend shown in figure 4, a more representative Mach number variation for reducing the data was obtained by the following procedure. For each model the ratio of maximum-local to tunnel-stagnation pressure was assumed to be equal to the total pressure ratio across a normal shock. This ratio was then used to compute the corresponding Mach number for each model and α combination. At the angles of attack where the resulting Mach numbers fell within the known tunnel range these values of Mach number were used to reduce the data. The Mach numbers so obtained were applicable to all bodies except the 42° wedge at angles of attack below 7° and the 42° parabolic and circular arc bodies below $\alpha = 10^{\circ}$. For the 42° bodies at 0° angle of attack, the Mach numbers were computed by assuming the measured maximum pressure to be given by oblique shock theory. Since these Mach numbers again fell within the known range of tunnel Mach number, they were used to reduce the data for these models. For the angles of attack of the 42° bodies between 0° and 7° or 10°, as the case may be, a linear variation of Mach number with angle of attack between these limits was assumed. This assumption appears to be justifiable because the variation of tunnel Mach number with time is quasi-linear and in the same direction.

The center line of the body was considered to be the dividing line between the upper and lower surfaces at all angles of attack. The location of the maximum pressure point was determined from faired curves of P_1/P_t against θ on the upper and lower surfaces. Where no peak occurred beyond the first orifice, the values of P_1/P_t and θ at the first orifice were used to compute $C_{p,max}$ and δ_{max} . Where a peak occurred downstream of the first orifice, the faired values were used to compute $C_{p,max}$ and δ_{max} .

It should be noted that the data for the 78° parabolic arc body is the least reliable at angles of attack below 15° because the first orifice on the lower surface was inadvertently plugged. At 0° angle of attack the first orifice on the upper surface was used but it was located at an angle of about 8° less than that of the leading edge. At 5° and 10° angle of attack, the second orifice on the lower surface, which was located at an angle of about 12° less than the leading edge, was used. Therefore, the free-stream Mach number computed from the pressures at these orifices for these angles of attack is too high and results in a value of C_p which is too high. It is only this error in Mach number which raises a question as to the reliability of the data for the 78° body.

The maximum error of the measured pressures is believed to be less than 1 percent of the maximum measured value on the body. Model alinement and angles of attack are believed to be accurate to about $\pm 1/2^{\circ}$. The accuracy of the x,y coordinates of the model orifices is ± 0.001 inch. The measured coordinates were used to compute the slopes for all orifices.

RESULTS AND DISCUSSION

Experimental Results

Basic data. The pressure distributions of the 78° parabolic arc model with and without extension pieces at α = -10°, 0°, and 10° are presented in figure 5 to show the two dimensionality of the flow. Flow blockage prevented any measurements at higher angles of attack; therefore, the agreement between the distributions on the body with and without the extensions establishes only that the flow along the center line of this, the longest, body is two dimensional up to α = 10°. However, all other bodies have the same span but are shorter; therefore, the flow along their center line, with the possible exception of the wedges having higher leading-edge angles, should also be two dimensional up to α = 10°.

Pressure distributions of the 15 models tested are presented in figures 6, 7, and 8 for angles of attack up to 25°. In addition, schlieren photographs of all the bodies near 0° angle of attack are presented in figure 9 to show the variation of the shock shape with changes in leading-edge angle and body contour.

Maximum pressure coefficient. - One of the most important results of these tests is that stagnation pressure occurs on all of the bodies in this investigation having a leading-edge deflection angle greater than about 51° and that the maximum pressure coefficient for all bodies has its locus along a single representative curve. (See fig. 10.) The portion of the curve between

shock-detachment angle and 510 may be questionable because of the small uncertainty in the value of free-stream Mach number and the inability to locate the first orifice directly at the apex of the nose. However, if the maximum known tunnel Mach numbers were used to compute the pressure coefficients for this portion of the curve, it would shift the deflection angle at which stagnation occurs only about 20 to approximately 490. In reference 2 stagnation pressure on a flat plate was measured at a deflection angle of 450. The unrealistic maximum pressure coefficients that are predicted for bodies in this investigation by two modifications to the Newtonian theory are also shown in figure 10 for comparison.

On the upper surface, figure 11 shows that all measured values of $C_{p,\,max}$ do not lie along a single curve but vary with leading-edge angle and angle of attack. However, for each leading-edge angle the values of $C_{p,\,max}$ for all shapes tested generally fall along the same curve with the exception of the 78° and 90° bodies. As the leading-edge angle increases, the variation of $C_{p,\,max}$ with deflection angle approaches that predicted by modified Newtonian theory until at $\delta_{1e} = 90^{\circ}$ the curved-surface bodies agree with this theory.

Location of maximum pressure coefficients .- The location of the maximum pressures would be expected to occur at the point where the slope relative to the flow is the greatest - herein referred to as the geometric location. A comparison of the geometric and measured slopes at which the maximum pressures occurred on both the lower and upper surfaces of the parabolic and circular arc bodies is shown in figure 12. It must be remembered that physical limitations prevented the installation of the first orifice exactly at the leading edge. Therefore, in comparing the measured with the geometric location of Cp, max, they will be considered to coincide whenever the measured values differ from the geometric by the same difference as that indicated at 0° angle of attack. On the lower surface (fig. 12(a)) only for the 90° circular arc body do the measured and geometric locations coincide over the angle-of-attack range investigated. For all other bodies the measured location of Cp, max moves off the nose before its angle relative to the flow becomes 900. This result is attributed to the pressure bleed-off around the sharp leading edge. For bodies having leading-edge angles up to and including 66°, the measured location of Cp, max moves off the nose when its angle relative to the flow becomes approximately 67°. This is also true for the wedges, as can be seen in figures 8(b) to (f). However, the maximum difference between the geometric and measured location for any body through the angle-of-attack range of the tests is only about 80. On the upper surface the location of the maximum pressure might be expected to remain at the nose over the angle-of-attack range of the test. Figure 12(b) shows this to be true only for the 780 and 900 bodies. For bodies having leading-edge angles below 780 the location of Cp, max is seen to move off the nose at angles of attack less than 200. This result can be attributed to leading-edge separation around the nose followed by flow reattachment as indicated in figures 6, 7, and 8.

Comparison of center-line pressure distributions on wedges and a flat plate at corresponding deflection angles. - Another important result which can be obtained from these tests is the effect of leading-edge angle on the pressure distributions over the wedge surfaces at a given inclination to the flow. The

lower- and upper-surface pressure distributions, in terms of Cp/Cp, max against s/sw for wedges at approximately constant surface-deflection angles are presented in figure 13. The surface-deflection angles are only approximately constant because the wedge angles were varied in 120 increments whereas the angle of attack was varied in 50 increments. It can be seen that the maximum pressure point moves rearward on the lower surface with decreasing wedge angle only for deflection angles greater than about 660 and on the upper surface with increasing wedge angle only for deflection angles less than about 660. The effect of leading-edge angle on wedge surface-pressure distributions is seen to be slight because, with few exceptions, at a given deflection angle, the pressure distributions rearward of the maximum pressure point on the lower and upper surfaces are essentially coincident with those of corresponding surfaces of wedges having higher and lower half-angles, respectively. Thus the wedge-surface pressure distributions are primarily a function only of flow-deflection angles. The effect of leading edge is confined to those regions ahead of the location of the maximum pressure coefficient. Since the value of Cp, max on the lower surface is a constant (as shown in fig. 13), the pressure coefficients aft of the maximum pressure point on the lower surface at a given location of all wedges at the same deflection angles are also coincident. However, on the upper surface the value of Cp, max varies not only with deflection angle but also with wedge angle at the same deflection angle; therefore, the pressure coefficients at a given location on the upper surface of wedges at the same deflection angles are not coincident. It should be noted that at $\delta = 66^{\circ}$ and above, the distributions on the lower and upper surfaces for the same & agree. This can be seen from figures 13(a) and 13(b) since the data for each body at $\alpha = 0$ are presented in both.

Also included in figure 13 are flat-plate pressure distributions from reference 2 at approximately the same deflection angles as the wedge surfaces. In general, the pressure distributions of the wedges are in good agreement aft of the maximum pressure point with those of the flat plate at deflection angles of the lower surface above 53° and of the upper surface above 31° . This agreement might not be envisioned since in a subsonic-flow field behind a normal shock, the upper surface would be expected to affect the pressures on the lower surface of the wedge. It is interesting to note that for deflection angles from 27° to 37° the values of $C_{p,max}$ for the upper surface of wedges at angles of attack other than 0° are about the same as those for a flat plate at corresponding deflection angles.

Prediction of Pressures on Aerodynamically Blunt Bodies

Having obtained the pressure data on these bodies it is of interest to determine if there is a simple method of predicting pressures on two-dimensional aero-dynamically blunt bodies. Probably the most widely used method of predicting pressures and forces (because of its simplicity and ease of calculating) is some form of the Newtonian theory

 $C_p = K \sin^2 \delta$

Various modifications of this theory have been found to give reasonably good predictions of the pressure distribution on different bodies, if the proper value of K is chosen. For example, it is shown in reference 3 that with $K = (\gamma + 1)$, the theory is applicable only to bodies having small leading-edge angles; and in reference 4, with $K = C_{p, stag}$, theory is limited to bodies having 90° leading-edge slopes. As can be seen in figure 10, neither of these modifications is applicable to the bodies of this investigation.

A more recent consideration of the Newtonian theory is presented in reference 5 which suggests that in the general case K has the form $\frac{c_{p,\text{max}}}{\sin^2\!\delta_{\text{max}}},$ thus acknowledging that K is not necessarily constant. This resulted in the generalized Newtonian theory

$$\frac{c_{p}}{c_{p,\max}} = \frac{\sin^{2}\delta}{\sin^{2}\delta_{\max}}$$

which was shown to predict the surface-pressure distribution reasonably well for pointed-nose bodies having a leading-edge angle less than that for shock detachment, as well as for bodies having a 90° leading-edge slope. (Unpublished work also shows that this generalized form of Newtonian theory can be derived by resorting to the tangent-wedge or tangent-cone approximations.) Therefore, it was decided to investigate this method for use in predicting the pressures on the two-dimensional aerodynamically blunt bodies studied herein.

Wedges .- Since the prediction of the pressure distribution for any body by means of the generalized Newtonian theory is basically dependent upon the body having a changing slope, it obviously cannot be applied in the same manner to wedges as to bodies having curved surfaces. However, it is shown in reference 5, that by using pressures computed from attached shock theory, the generalized Newtonian theory is applicable from one wedge to another, for wedge angles less than shock detachment at 0° angle of attack. For the aerodynamically blunt wedges of the present investigation it is apparent from figure 8 that the large and varied pressure gradients require any correlation with generalized Newtonian theory from one wedge to another, or from one surface to another for the same wedge at angle of attack, to be made at more than one point along the surface of the bodies. Even if this could be done with reasonably good results, the pressure distribution of one wedge would first have to be known. In view of the fact that experimental values must be resorted to, and since the data of the present investigation cover the range of aerodynamically blunt wedges, the pressure distribution of any wedge in this regime can be obtained by interpolating these data. addition, the good agreement in pressure distribution from wedge to wedge at the same deflection angles, as well as the agreement from wedges to a flat plate at corresponding deflection angles (fig. 13), enables the pressure distribution to be obtained for either of the two types of bodies if one is known.

<u>Parabolic</u> and <u>circular</u> arc <u>bodies</u>.- Since the lower and upper surfaces of the bodies of the present investigation are separated by a sharp leading edge, which is shown in figures 6 and 7 to result in flow separation and reattachment

at some angles of attack and, therefore, a difference in the value of K between the two surfaces, the theory might not be expected to apply from surface to surface. Therefore, the data for each surface are reduced in the generalized Newtonian form by using their respective measured $\mathtt{C}_{p,\max}$ values. The results for the parabolic and circular arc models together with the generalized Newtonian theory prediction using the measured $\mathtt{C}_{p,\max}$ and its associated δ_{max} are presented in figures 14 and 15.

As can be seen from figures 14 and 15, the data for both the parabolic arc and circular arc bodies can be divided into two distinct correlation groups; bodies having a leading-edge angle closest to that for shock attachment (42° and 54°) and bodies having leading-edge angles much greater than shock attachment (66° to 90°). The data for the former group are not correlated with any consistency by the generalized Newtonian theory, whereas the data of the latter group were in general correlated very well for both surfaces by the theory.

The agreement between the measured and theoretical values in percent of the measured C_p cannot be made directly from figures 14 and 15 because the C_p , max values are not constant for all bodies on either surface. Therefore, a majority of the measured and predicted values of C_p together with their differences in percent of measured C_p are presented in table II. As might be expected the agreement is best near the nose where the body slope is high and becomes progressively poorer as the surface inclination decreases; however, the disagreement does not in general become poorer than about 20 percent of measured C_p down to a surface inclination of 50° (the limit to which modified Newtonian theory is known to predict the pressures very well on cylinders). The very high percentage errors at inclinations below 30° may not be very significant because the pressures are very low over this region. There are points between the nose and the maximum pressure point on both surfaces of some bodies at angle of attack which cannot

be predicted by the generalized Newtonian theory because the value of $\frac{\sin^2\!\delta}{\sin^2\!\delta_{max}}$

becomes greater than 1. But considering all points above deflection angles of 30° , the theory predicts about 85 percent of them within 10 percent of the measured C_p . It should be noted that whereas the data for the lower surface appear to be in better agreement with the theory than those of the upper surface in figures 14 and 15, table II shows that, on the basis of the percentage of measured C_p , both surfaces show about the same agreement for inclinations above 30° . The agreement for the circular arc bodies was, in general, better than that for the parabolic arc bodies and indicated that for the same leading-edge angle the gradient of slope along the body may be the important factor in determining how well the generalized Newtonian theory predicts the pressure distribution for two-diminensional aerodynamically blunt bodies, that is, the more rapidly the slope changes, the poorer the correlation.

Application of Generalized Newtonian Theory to Any Two-Dimensional

Aerodynamically Blunt Body Having Curved Surfaces

It has been shown that the pressure distributions of the aerodynamically blunt bodies having curved surfaces of the present investigation agree reasonably well with the generalized Newtonian theory. However, in order to use this theory to predict the pressures on any body without resorting to experimentation, it is necessary to know a pressure at a given slope on the surface. Since the measured locations of the maximum pressures are shown in figure 12 to occur reasonably close to the geometric locations and because the maximum pressure on the lower surface is equal to stagnation value for the majority of deflection angles between shock detachment and 90° (fig. 10), it would be convenient to utilize the maximum pressure on the lower surface to predict the pressures over the whole body. An analysis shows that this can be accomplished as follows:

On the lower surface $C_{p,max} = C_{p,stag}$ for $\delta_{le} \stackrel{>}{=} 51^{\circ}$, while for $\delta < 51^{\circ}$, $C_{p,max}$ for deflection angles between 42° and 51° can be obtained from

$$\frac{c_{p,\text{max}}}{c_{p,\text{stag}}} = \frac{\sin^2 \delta_{le}}{\sin^2 51^{\circ}}$$

The values of $C_{\mathrm{p,max}}$ obtained in this manner for these deflection angles are shown in figure 10 and are in good agreement with the measured values. For deflection angles equal to or less than shock detachment, $C_{\mathrm{p,max}}$ is obtained from oblique shock theory.

The pressure distribution for the lower surface at each angle of attack can then be computed from

$$\frac{c_{p}}{c_{p,\text{max}}} = \frac{\sin^{2}\delta}{\sin^{2}\delta_{\text{max,geom}}}$$

and the pressure distributions for the upper surface can be obtained at any angle of attack from

$$\frac{c_{p}}{c_{p,\max(\alpha=0^{\circ})}} = \frac{\sin^{2}\delta}{\sin^{2}\delta_{le(\alpha=0^{\circ})}}$$

The pressure coefficients predicted by this method for the parabolic and circular arc bodies are presented in table II. In general, these values are about the same as those obtained from the generalized Newtonian theory by using the values of $C_{p,max}$ at their actual locations on each surface and are within about 20 percent of the measured C_p at deflection angles above 30°. Some of the points between the nose and the actual location of the maximum pressure point, which could not be predicted by the generalized Newtonian theory by using $C_{p,max}$ at

its actual location for each surface, are not predicted by this method within this accuracy. However, on the whole, about 85 percent of all points at deflection angles above 30° are predicted within 10 percent of the measured $c_{\rm p}$ value.

The good agreement between the generalized Newtonian theory and the data of the present investigation as well as the results for bodies having a leading-edge angle less than that for shock detachment in reference 5 indicate that this theory may be applicable to all two-dimensional bodies except aerodynamically blunt wedges.

CONCLUSIONS

An investigation of the center-line pressure distributions on two-dimensional sharp-nose bodies having a leading-edge angle greater than that for shock detachment at a Mach number of 6 and angles of attack up to 250 has resulted in the following conclusions:

- 1. Stagnation pressure behind a normal shock was measured on all bodies having a leading-edge deflection angle greater than about 51° and the maximum pressure coefficient for all bodies has its locus along a single representative curve which continuously increases with increasing deflection angle between shock detachment and about 51° .
- 2. With few exceptions the center-line pressure distributions rearward of the maximum pressure point on the lower and upper surfaces of aerodynamically blunt wedges are primarily a function only of surface-deflection angle and essentially independent of leading-edge angle. In addition, the pressure distributions of these wedges are in good agreement aft of the maximum pressure point with those of a flat plate at corresponding deflection angles to the lower surface above 53° and to the upper surface above 31°.
- 3. Only the data for contoured bodies having leading-edge angles of 66° or greater are correlated very well by the generalized Newtonian theory. However, at all angles of attack for all aerodynamically blunt bodies having curved surfaces, the agreement between the generalized Newtonian theory and the measured values of C_p was reasonably good for surface-deflection angles above 30° (for 85 percent of the points in this region the theoretical values of C_p were within 10 percent of the measured C_p).
- 4. The generalized Newtonian theory can be used to predict the center-line pressures on aerodynamically blunt contoured bodies because the maximum pressures and their locations can be predetermined.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., February 27, 1963.

REFERENCES

- 1. Ashby, George C., Jr., and Fitzgerald, Paul E., Jr.: Longitudinal Stability and Control Characteristics of Missile Configurations Having Several Highly Swept Cruciform Fins and a Number of Trailing-Edge and Fin-Tip Controls at Mach Numbers From 2.21 to 6.01. NASA TM X-335, 1961.
- 2. Hondros, James G.: Pressure Distributions on Two-Dimensional Sharp-Leading-Edge Flat Plates With Sweep Angles of 0°, 30°, and 45° at a Mach Number of 6 and Angles of Attack From 0° to 90°. NASA TN D-1371, 1962.
- 3. Laitone, Edmund V.: Exact and Approximate Solutions of Two-Dimensional Oblique Shock Flow. Jour. Aero. Sci., vol. 14, no. 1, Jan. 1947, pp 25-41.
- 4. Lees, Lester: Hypersonic Flow. Fifth International Aeronautical Conference (Los Angeles, Calif., June 20-23, 1955), Inst. Aero. Sci., Inc., 1955, pp 241-276.
- 5. Love, E. S.: Generalized-Newtonian Theory. Jour. Aero/Space Sci. (Reader's Forum), vol. 26, no. 5, May 1959, pp. 314-315.

(a) Parabolic arc models

Orifice location		Slope		ø,
x, in.	y, in.	θ, deg	s/t	φ, deg
.226 .407 .565 .726 1.227 1.512 1.861 2.255 2.698 3.829 4.306 4.774 5.241 5.720 6.999	-1.033 -1.199 -1.358 -1.512 -1.792 -1.873 -1.933 -1.975 -1.999 -2.000 .148 .236 .338 .456	3.97 2.03 0 40.0)	0.045. .149. .265. .563. .918. 1.110. 1.558. 2.142. 2.853. 3.0933. 3.114. .868. .367. .558. .569. .111. 1.358. .269. .289. .36	180

Orifice location		Slope	s/t	ø,
x, in.	y, in.	θ, deg	s/t	deg
.140 .275 .415 .610 1.106 1.446 1.875 2.422 3.497 3.972 4.564 5.097 5.427 6.701 .122 .194 .275 .419	.242 .332 .481 .655 .802 1.062 1.405 1.602 1.852 1.924 1.973 1.988 1.999	53.04 50.39 44.12 40.21 351.89 27.22 21.10 9.546 4.21 2.090 0 8.38 47.19 44.021 36.90 31.71 22.30 17.51 6.371 2.09 0 89 0 89	0.030 .114 .217 .448 .565 .755 .951 .1.187 1.147 2.029 2.567 2.032 2.299 3.636 .217 .320 .321 .448 .565 .217 .320 .217 .320 .217 .320 .228 .344 .365 .365 .317 .320 .321 .321 .331 .331 .331 .331 .331 .331	180

66° parabolic arc				
	Orifice location		s/t	ø,
x, in.	y, in.	θ, deg	5/0	deg
.105 .195 .293 .402 .664 .985 1.446 2.155 3.049 3.049 4.612 5.128 5.655 6.182	0.068202335546859240515924.5914.5914.5914.5985955953415985953415983	64.19 59.35 59.35 59.35 66.23 38.32 23.96 16.55 7.99 9.16 16.55 16.5	0.031 .114 .197 .360 .536 .536 .536 .132 .992 .2.555 .168 .2.616 .2.875 .3.402 .3.950 .082 .198 .2.82 .538 .3.402 .538 .2.931 .2.031 .2.575 .3.138 .2.031 .2.575 .3.138 .3.137 .3.138 .3.137 .3.138 .3	180

7	8° para	abolic 8	arc			
Orific		Slope s/t				ø,
x, in.	y, in.	θ, deg	5/0	deg		
.052 .108 .406 .777 1.309 2.035 3.251 3.876 4.500 5.021 5.749 6.363 6.999 7.620 8.246 8.865	-1.988 -1.998 -1.999 -1.999 -0.84 -1.83 -260 -1.865 -1.107 -1.334 -1.584 -1.751 -1.863 -1.861 -1.902 -1.937 -1.94 -1.987 -1.995 -1.995 -1.995	73.93 66.82 573.28.87 57.51 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47	0.031 .0866 .148 .891 1.272 2.1893 3.176 2.523 2.785 5.023 3.458 4.400 4.710 .048 .098 1.422 2.523 3.576 6.048 .098 1.277 1.893 3.458 3.476 8.95 1.872 3.458 3.458 8.95 1.872 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95			

	000			
	yo par	rabolic	arc	
	Orifice location		s/t	ø,
x, in.	y, in.	θ, deg	5,0	deg
.005 .019 .055 .124 .345 .665 .958 1.415 2.164 4.193 4.193 5.693 6.444	0.007 117 214 353 480 765 101 176 362 372 392 999 190 213 352 352 352 110 213 352 352 110	85.50 77.743 61.212 44.422 25.64 19.16 10.90 0.	0.004 .0519. .0599. .167 .252 .4536. .8033 .2199. .1050 .1.439 .2.990 .3.217 .4.599. .4.651 .4.599. .4.651 .4.599. .4.651 .4.599. .4.651 .4.65	180

42° circular arc				
Orifice location		Slope	s/t	ø,
x, in.	y, in.	θ, deg	5/0	deg
.203 .278 .481 .675 .1.226 1.226 1.279 2.27 3.036 3.567 3.056 2.162 .287 .363 .592 .162 .287 .797 979 1.233 1.583 1.979 2.273 3.036	751 906 -1.053 -1.298 -1.423 -1.690 -1.823 -1.918 -1.998 -1.997 -1.998 -1.399 -243 -305 -480 -592 -749 -1.104 -1.104 -1.124	28.56 24.51 22.19 16.21	0.056 .136 .183 .132 .132 .618 .913 .1.188 .913 .1.186 .2.299 2.575 2.749 3.205 .105 .1187 .236 .476 .616 .616 .616 .1.547 .1.547 .1.547 .1.751 .2.22 .2.29 .2.20 .20 .20 .20 .20 .20 .20 .20 .20	180

54° circular arc				
Orifice location		Slope	s/t	ø,
x, in.	y, in.	θ, deg	5,0	deg
.117 .195 .302 .422 .538 .721 .941 1.149 1.579 2.430 2.905 3.375 3.843	1.762 1.890 1.967 1.995 1.998	51.7296 51.	0.040 .097 .156 .237 .326 .409 .943 .535 .535 .535 .679 .808 .808 .808 .1.769 2.002 2.177 2.722 .722 .664 .457 .545 .664 .457 .984 1.069 1.069 1	180

66° circular arc				
Orifice location		Slope	s/t	ø,
x, in.	y, in.	θ, deg	5/0	deg
.060 .111 .177 .253 .382 .495 .611 .763 .906 1.111 1.342 2.027 2.506 3.018	225 341 465 647 922 -1.366	63.59 61.74 59.45 56.98 53.19 50.05 47.10 43.39 40.12 35.71	0.021 .070 .125 .265 .3766 .555 .665 .665 .665 .1.441 1.656 .259 .543 .493 .579 .579 .563 .493 .1.404 .133 .762 .493 .493 .493 .579 .579 .579 .579 .579 .579 .579 .579	180

	78° c:	ircular	arc	
Orifi		Slope	s/t	ø,
x, in.	y, in.	θ, deg	5/0	deg
.022 .047 .089 .149 .208 .274 .382 .493 .967 1.174 2.072 2.386 3.470 .026 .091 .147 .205 .273 .351 .445 .544 .648	- 128	73.02 706.70 63.57 66.70 63.57 55.70 51.43 42.90 56.49 50.89 91.89 91.89 91.89 91.34 91.66 91.34 91.66 91.34 91.66 91.34 91.66 91.34 91.66 91.34 91.66 91.34 91.66	0.023 .068 .112 .251 .319 .389 .588 .667 .776 .917 .042 .1 .521 .1 .665 .2 .207 .241 .385 .461 .544 .623 .768 .768 .768 .768 .768 .768 .768 .768	180

	90° c	ircular	arc	
	Orifice location		s/t	ø,
x, in.	y, in.	θ, deg	5,0	deg
.002 .011 .028 .056 .089 .134 .215 .279 .373 .503 .611 .822	190 323 461 582 714 897 -1.014 -1.156 -1.322 -1.538 -1.614 -1.940 -1.996	87.90 84.53 80.71 76.64 73.06 69.05 63.31 59.47	0.001 .036 .095 .162 .232 .295 .465 .532 .616 .722 .802 .939 1.326 1.504 .044 .085 .138 .196 .261 .330 .418 .489 .568 .637 .722 .803 .939 .568	180

42° wedge					
Orifice location			ope	s/t	ø,
x, in.	y, in.	θ,	deg	270	deg
.203 .357 .459 .573 .761 .944 1.125 1.320 1.489 2.145 3.216	.517 .689 .855 1.027 1.192 1.358 1.523 1.941	0		0.036 .136 .240 .308 .386 .515 .756 .855 .756 .108 1.134 1.499 .100 .172 .245 .380 .514 .638 .767 .891 1.015 1.138 1.138 1.138	180

a	=	1	.4	3

54	o wedge		
Orifice location	Slope	s/t	ø,
x, y, in.	θ, deg	5,0	deg
0.046 0.063 .132181 .231518 .410565 .560771 .704790 .934 1.285 1.037 1.428 1.046 1.936 2.448 2.000 .099 .137 .164 2.266 .231 .318 .324 .446 .231 .574 .777 .564 .777 .714 .982 .982 1.284 1.042 1.435 1.148 1.581 1.412 1.944 1.548 2.000		0.039 .112 .196 .270 .599 .794 .882 .976 1.134 .084 .140 .276 .354 .480 .607 .794 .887 .794 .887 .1201 1.284	180

a = 2.063

Orifice location	Slo			
			/t	ø,
x, y, in in	1	deg	, 0	deg
0.025 0.00 .0771' .1384' .2555' .3598' .453 1.0' .547 1.2: .634 1.4' .844 1.4' .844 1.3' .844 1.4' .844 1.3' .844 1.4' .844 1.4' .844 1.4' .845 2.0' .094 .136 .35 .190 .4' .355 .7' .452 1.0' .547 1.2: .630 1.4' .837 1.8'	72 73 74 74 75 76 77 78 78 78 78	0.00	031 0169 244 314 441 557 672 779 037 588 056 115 166 234 4326 6562 774 028	180

	780	o wedge		
Orifi		Slope	s/t	ø,
x, in.	y, in.	θ, deg	8/0	deg
.028 .061 .087 .117 .168 .219 .274 .325 .404 .022 .044 .068 .089 .117 .168 .222 .274 .297	.320 .418 .552 .788	78.00	0.005 .068 .147 .210 .280 .526 .658 .782 .970 1.520 .052 .1064 .214 .282 .403 .532 .660 .716 .982 1.121	180
	a	= 3.090	0	

	90	o wedge		
Orif:		Slope	s/t	ø,
x, in.	y, in.	θ, deg	5/0	deg
	109 199 314 449 696 945 -1.096 -1.246 -1.394 -1.915 -2.000	90.00	0.000 .054 .100 .157 .224 .348 .472 .548 .623 .697 .958 1.498 .056 .100 .167 .228 .350 .479 .540 .603 .668 .965 1.099	180

a = 3.515

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES

(a) Parabolic arc bodies - lower surface

			θ2,	= 42°						026	= 540						θίε	= 660		
T				B A	Cp.meas - Cp	Cp, meas - Cp						Cp, meas - Cp	Cp, meas - Cp		e				Cp, meas - Cp	Cp, meas -
g	δ, deg	Cp, meas	Cp	Cp	C _{p, meas}	C _{p, meas}	a, deg	δ, deg	Cp, meas	Cp	Cp	C _{p,meas}	C _{p,meas}	deg	δ, deg	Cp, meas	Cp	Cp	C _{p,meas}	C _{p,meas}
0	u-B		(a)	(b)	(a)	(b)				(a)	(b)	(a)	(b)				(a)	(b)	(a)	(b)
		000		2 01.1.2		0.02971	0	53.041	1.8182	1.8178	1.7734	0.00022	0.02464	0	61, 106	1.8179	1.8180	1.7656	-0.00006	0.0287
		1.2822	1.2822	1.2441	06075	02913	0	50.391	1.6148	1.6897	1.6484	04638	02808	0		1.6746	1.6600	1.6122	.00872	.0372
1	35.800	.93906		.97988	07543	04347		44.120	1.2832	1.3799	1.3462	07536	04910		50.375	1.3699	1.3303	1.2919	.02891	.0569
	29.332	.65852	.70248	.68158	06676	03502			1.0886	1.1872	1.1581	09058	06384			1.1989	1.1697	1.1360	.02476	.0524
	26.800	.57012	.60001	.58214	05243	02108		36.920	.94213	1.0273	1.0022	09040 08744	06376 06085		38.334	.91565	.86281	.83792	.05771	. 0848
	23.884	.46761	.48380	.46940	03462 .28739	00383		31.892	.73125	.79519 .59632	.77575	07246	04622		23.969		.37007	.35940		.1842
	10.753 3.976	.05815	.01426	.01382	.75477	.76234		17.108			.24018	.10694	.12877		16.548	.28411	.18199	.17674	. 35944	.3779
	0	.01764	0	0	1.0000	1.0000		9.546	.13049	.07840	.07647	-39919	.41398		5.907	.08221	.02371	.02301	.71159	.7201
1	46.232	1.6314	1.6314	1.5906	0	.02501		0	.01598	0	0	1.0000	1.0000		0	.01218	0	0	1.0000	1.0000
	44.441	1.4039	1.5332	1.4949	09210	06482	5	58.041	1.8177	1.8174	1.7805	.00017	.02047	5		1.8176	1.8177	1.7767	00006	.0225
	40.800		1.3357	1.3022	15067	12181			1.6749	1.7103	1.6756	02114	00042		64.356	1.7371	1.6902	1.6521	.02700	.048
	34.332 31.800	.83187	.99511	.97021	19623	16630			1.3674	1.4434	1.4141	07133	04960			1.3232	1.2645	1.2360	.04436	.0659
	28.884	.60192	.72989	.71163	21260	18227			1.0532	1.1270	1.1041	07007	04833			1.0450	.97952	.95744	06266	.083
	15.753	.22472	.23048	.22473	02563	00004		36.892		.91032	.89185	08263	06067	- 48	36.229	.79406	.72669	.71030	.08484	.1051
1	8.979	.10756	.07627	.07436	.29091	.30866		32.229	.66268		.70378	08402	06202		28.969		.48786	.47687	.11488	.134
	5.000	.05117	.01523	.01485	.70236	.70979		27.272	.50222	.53000	.51926	05531	03393		15.534 9.165	.20918	.14917	.14581	. 28688	. 302
1	51.232	1.8190	1.8190	1.7809	0	.02095	1	9.219	.06354	.15936	.06346	.17902	.19571		5.000	.03693	.01581	.01545	.57189	.581
	49.441		1.7267	1.6904	08223	05948		5.000	.01534	.01919	.01880	25098	22555						121-2	
1	45.800	1.3371	1.5379	1.5056	15018	12602				0.0				10		1.8187		1.7885		.016
	39.332		1.2021	1.1768	21922	19356	10	63.041		1.8182	1.7882	.00016	.01666		69.356	1.8069	1.7528	1.6915	.02994	.063
	36.800 33.884	.73834	1.0737	1.0511	23717	21088		5), 100	1.7524	1.7299	1.4777	00812	.00859			1.4638	1.3833	1.3350	.05499	.087
1	27.667	.50660	.64511	.63156	25958 27341	24666			1.3295	1.3517	1.3294	01670	.00038			1.1946	1.1171	1.0780	. 06488	.097
	16.029	.21390	. 22825	.22345	06709	04465		46.920	1.1924	1.2210	1.2008	02399	00704		41.229	.94583	.86965	.83926	.08054	.112
1	10.000	.09771	.07321	.07169	.25074	-26630		41.892	.98312	1.0209	1.0040	03853	02124		33.969	.69831	.62485	.60303	.10520	.136
1	-(070	2 0206	2 0106	1.7868		03.771.0		37.229	.80196		.82413	04491	02764		26.548		.39991	.38595	.17739	.206
	56.232	1.8186	1.8186	1.7108	004170	02345		27.107	.62755	.65237	.46715	00747	.00920		14.165		.11991	.11571	. 25849	. 284
1		1.4362	1.5804	1.5527	10040	08112		16.968	.21078	.19493	.19171	.07520	.09047		10.000		.06034	.05823	.20058	. 228
	44.332	1.0984	1.2852	1.2627	17007	14958		10.000	.08348	.06901	.06787	.17333	.18699						1	
	41.800	.98350	1.1691	1.1487	18871	16797	125	68.041	1.8089		3 5076		.00846	15	79.196	1.7631	1.8038	1.7986	.00803	020
1	38.884 32.667	.86305	1.0370	1.0188	20155 23227	18046	15		1.8176	1.7890	1.7936	.05172	.00046			1.6861	1.6074	1.5402	.04668	.008
	25.753	.40783	.49670	.48800	21791	19658			1.6138	1.5942	1.5360	.01215	.04821		61.236	1.5736	1.4948	1.4323	.05008	.089
	18.979	.24477	.27848	.27361	13772	11782			1.4651	1.4601	1.4067	.00341	.03986		53.334	1.3349	1.2516	1.1993	.06240	.101
	15.000	.15212	.15404	.15133	01262	.00519			1.3319	1.3410	1.2920	00683	.02996		46.229	1.0857	1.0145	.97212	.06558	.104
	61.232	1.8170	1.8170	1.7909	0	.01436		46.892	1.1392	1.1540	1.1118	.01299	.02405	-	38.969	.83585	.76935	.73718		.164
		1.7523	1.7532	1.7279	00051	.01392		37.272	.77671	.79366	.76465	02182	.01552		25.534		.36143	.34631	.09118	.129
	55.800	1.5496	1.6176	1.5943	04388	02885	1	32.107	.59270	.61122	.58888	03125	.00645		19.165	.22864	. 20968	.20092	. 08284	.121
		1.2352	1.3605	1.3409	10144	08557	1 2	24.546			.36001	01425	.02280		15.000	.12920	.13032	.12487	00867	.033
	45.884	1.1192	1.2566	1.2385	12277	10659 11300		19.219		.23449	.22591	.05763 02829	.09211	20	84 196	1.6818	1 3 4 4	1.8081		075
	37.667	.75410		.87027	17089	15405		15.000	.14102	.14701	101667.	02029	.00900	20	79.356	1.8179		1.7644		.02
	30.753	.53493	.61818	.60929	15563	13901	20		1.7527		1.7997		02682		70.375	1.7671	1.6946	1.6205	.04103	.082
١	26.026	.39756		.44896	14574	12929		70.391	1.8177	1.8175	1.7454	.00011	.03978			1.6856	1.6000	1.5305	.05078	.092
1	20.000	.24067	.25064	.24702	04143	02638			1.6870	1.6581	1.5923	.01713	.05614		58.334	1.4741	1.3838	1.3233	.06126	.102
	66.232	1.8187		1.7978		-01149			1.4517	1.4381	1.3810	.00937	.04870		43.969		.92068		.06868	.109
	64.441	1.8138	1.7902	1.7466	.01301	.03705			1.2666	1.2685	1.2182	00150	.03821		36.548	.75520	.67746	.64788	.10294	.142
	60.800	1.6619	1.6763	1.6355	00866	.01589	1	47.229	1.0883	1.1040	1.0602	01443	.02582		30.534	.52810	.49303	.47149	.06641	.107
	54.332	1.3774	1.4520	1.4167	05416	02853		42.272	.91303	.92665	.88989	01492	.02534		27.998		.42101			.086
		1.1490	1.3586	1.2182	08668	04932		29.546	.72789	.49823	.47847	04289	00153		20.000		.22346	.21369		035
	42.667	.88970		.98588	13578	10810		24.219	.34337		.33097	00373	.03611				1.22			
	35.753 31.029	.65514	.75094	.73266	14623	11833	1	20.000	.21458	.23963	.23012	11674	07242	25	89.196	1.6187		1.8185	1 1 1 1 1 1	123
ı	31.029	.50699		.57047	15326	12521	06	78.041	1 7060		1.8054		04546			1.8062	1.7624	1.8012	.03101	.002
	28.979 25.000	.32612		.50394	12725	09978	25	75,301	1.7269		1.7664	10000	.02828			1.7621	1.6877	1.6306	.04222	.074
		JEGIL	. ,00,75	,,,,,,	122/	100000		69.120	1.7818	1.7315	1.6468	.02823	.07577		63.334	1.5922	1.5033	1.4530	.05583	.087
		No se		120	1			65.217	1.6839	1.6350	1.5550	.02904	.07655		56.229	1.3890	1.3009	1.2569	.06343	.095
					The state of the		1	61.920	1.5880	1.5439	1.4684	.02777	.07531			1.1328	1.0712	1.0349	.05438	.086
								50.092	1.4182	1.3920	1.3239	.01847	.06649		41.548		.82817	.80014		.070
			100					47.272	1.2496	1.0701	1.0178	.00428	.05295		32.998	.57524	.55841	.5395	.02926	.062
		100						42.107	.87839	.89152	.84791	01495	.03470		30.907	.51230	.49646	.47965	.03092	.063
				9 11 4				34.546		.63796	.60675	04354	.00751		29.165		.44712			.044
					1		18	31.968			.52876	05927	00745		25.000	.30903	.33624	.32486	08805	051

a, b See footnotes at end of table.

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Continued

(a) Parabolic arc bodies - lower surface - Concluded

			θ 7	le = 78°						θle	= 900		
					Cn meas - Cn	C _{p,meas} - C _p						Cp, meas - Cp	Cn. meas - (
a, eg	δ, deg	Cp, meas	Cp	Cp	Cp, meas		a, deg	δ, deg	Cp, meas	Cp	Cp	C _{p,meas}	C _{p, meas}
-8	ucg	.,	(a)	(b)	(a)	(b)				(a)	(b)	(a)	(b)
					-			00 (00	- 0-0-			0	
0			1.8192	1.6909	0 - 00180	0.07053 .06899 .09457 .18699 .26549 .37896 .48109 .84679 .71388 .85347 1.0000	0	83.508	1.8183		1.8182	.00217	0.00011
	59.517			1.4122	.02577	.09457		77.797	1.7330	1.7372	1.7371	00010	00077
	39.792	.95817	.83825	.77900	.12516	.18699		70.437	1.6129	1.7372	1.7371	00093	00093
	28.875	.60391		.44358	.20962	. 26549		61.219	1.7330 1.6129 1.4225 1.0019	1.3968	1.3967	.01807	.01814
	20.759	.38482		.23899	.33169	.37896		32.224	.63411	.89279	.89275	18654	00237 00093 .01814 .10894 .18500
	9.470	.13178		.02019	.57975	.84679		25.648		.34073	.34071	.26993	.26997
	6.172	.07668	.02361	.02194	.69210	.71388		19.168	.30430	.19599	.19599	-35593	-35593
	2.565		.00366	.00382	.85961	.85347		12.935	.18482		.09108	00242 00093 .01807 .10890 .18654 .26993 .35593 .50720 .77192	.50720
	0	.00237	O	0	1.0000	1.0000		5.121	.06340		0	1.0000	1.0000
		1.8185	1.8187	1.6623	00011	.08589 .11078 .18532 .23201 .30388 .42398 .43506 .45496		-1 (2 0062		00655
				1.5043	.02719	.11078	5	94.633	1.8180	1.8180	1.8061	0 .00472 .00711 .02327 .09440	.00655
	33.875		1.0027	.91651	.15982	.23201	-	82.797	1.7992	1.7907	1.7894	.00472	.00545
	25.759 19.743	.50109	.38161	.34882	.23844	.30388		75.437	1.7164	1.7042	1.7030	.00711	.00781
	19.743	-33110	.23046	.19072	.30396	.42398		66.219	1.5597		1.5223	.02327	.02398
	12.569	.15467	.09560	.08738	. 50191	.43506		37.224	1.1610	.66552	.66506	.16201	.16259
	5.000	.02002	.01535	.01402	.30291	.36331		30.648	.60297	.47281	.47248	.21557	.21641
								24.168	.41550	.30490	.30470	.26619	.26667
0	76.612	1.8184	1.8184	1.7231	0	.05241		17.935		.17247	.17236	. 35232	.35274
	49.792	1.7405	1.6862	1.5977	.10593	.05241 .08205 .15283 .19223 .22914 .25172 .22758 .16797 05395		5.000		.01383	.01382	.16201 .21557 .26619 .35232 .48476 .51761	.51796
	38.875	.88814	.75715	.71741	.14749	.19223							
	30.759	.61804		.47642	.18644	.22914	10	99.633	1.7827		1.7677	0 .00729 .02017 .07816 .13009 .15880 .19063 .24737 .17170	.00841 00111 .00148 .00874 .02167
	24.743			.31911	18/180	25172		87.707	1.8186	1.8186	1.8159	0	.00148
	12.565				.12192	.16797		80.437	11.7840	1.7710	1.7684	.00729	.00874
	10.000	.05209			11211	05395		71.219	1.6661	1.6325	1.6300	.02017	.02167
	02 (20	2 0200	2 0200	3 55505		90,500		54.481 42.224	.94529		1.2048	13000	.13138
5	74.520	1.8182	1.8182	1.7795	.03404	.05459		35.648				.15880	.16004
	54.792	1.3880	1.2405	1.2141	.10627	.01253		29.168	.53445	.43257	.43194	.19063	.19180
	43.875		.89268	.87368	.14560	.16378		15.121	.16457	.12386	.12368	.24737	.19180 .24847 .17275
	35.759 29.743	.76556		.62113	17101	.18866					.05483	.1110	.1151)
	17.565	.16819	.17173	.16807	02105	.02128 .05459 .01253 .16378 .18866 .19175 .00071 16342	15	104.63	1.7142 1.7648 1.8096		1.7023	100	.00694
	15.000	.10432		.12180	19306	16342		98.508	1.7648		1.7787		00788 00249 .00632
0	86.612	1 8000		1.8125		00601		85 437	1 8184	1.8184	1.8069	0	.00632
0	79.517	1.8188	1.7851	1.7586	.01853	.03310		76.219	1.7502	1.7261	1.7152	.01377	.02000
	59.792	1.5289	1.3791	1.3586	.01853	.11139		59.481	1.4579	1.3581	1.3495	.06845	.07435
	48.875	1.1989	1.0478	1.0323	.12603	.13896		47.224	1.1050	.98572	.97948	0 .01377 .06845 .10795 .13335 .14903 .14773	.11359
	40.759	.91897	.78719	.77550	.13512	.14796		34.168	.67826	.57718	.57352	.14903	.15442
	29.470	.48378	.44684	.44020	.07636	.09008		27.935	.47119	.40158		.14773	.15314
	25.207	.33538	.33470	.32973	.00203	.01685		20.121		.21646		.13713	00296
	22.565 20.000	.17383	.21596	.21276	24236	00694 .03310 .11139 .13896 .15612 .14796 .09008 .01685 08402 22395						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
								109.663			1.6135		.00585
5	91.612	1.7420		1.8187		04403		103.508	1.7764		1.7854		DOEDT
	64.792	1.7420 1.8189 1.6607	1.5248		.08183	04403 .00913 .10327 .14060 .15333 .13980 .09239 .06309 .03101 .00908 03908		90.437	1.8189		1.8136		.00907 .00291 .02283 .06418 .10353 .12041 .16095 .09947
	53.875	1.3812	1.2154	1.1870	.12004	.14060	100	81.219	1.8180	1.7861	1.7765	.01755 .05913 .09863 .11566 .15644 .09456 09268	.02283
	45.759	1.1029	.95616	•93379	.13305	.15333		64.481	1.5830	1.4894	1 1361	.09863	.10353
	39.743 34.470	.86458	.76154	.74371	.07066	.09239		45.648	1.0574	.93510	.93008	.11566	.12041
	32.569	.56252	.53965	.52703	.04066	.06309		39.168	.82781	1.1423 .93510 .69831	.69457	.15644	.16095
	30.207	.47497	.47126	.46024	.00781	.03101		32.935	.59699	.54054	.53761	.09456	- 08670
	29.079 27.565	.43369		.42975	01466	.00908		22.206	. 22350	.26181	.38004	09260	16515
	25.000				15020	12326		20.000	.19370	.21392	.21277	10439	09845
							05				1 5000		.00013
							25	114.633	1.5031		1.5029		02597
								102.797	1.6982		1.7296		01849
								95.437	1.7878	. 0.0-	1.8026	0	00828
								86.219	1.8189		1.8110	.04727	.00434
								57.224	1.5820	1.6025	1.2856	.07718	.08125
								50.648	1.2092	1.0924	1.0876	.09659	.10056
								44.168	.97590	.88690	.88300	.09120	.09519
								37.935 30.121				.07003	.03073
								28.521	.40930	.41638	.41456	01730	01285
								25.000			.32487	10434	0994

a, b See footnotes at end of table.

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Continued

(b) Parabolic arc bodies - upper surface

_			θ	= 420						θ	= 54°						θ -	= 66°		
-	δ.				C _{p,meas} - C _p	Cp, meas - Cp		δ,				Cp, meas - Cp	Cp, meas - Cp				- 16		Cp, meas - Cp	Cp,meas - Cp
deg		Cp, meas	Cp (a)	Cp (c)	Cp, meas	Cp,meas (c)	a, deg	deg	Cp, meas	Cp (a)	Cp (c)	C _{p,meas}	Cp,meas (c)	a, deg	δ, deg	Cp, meas	Cp (a)	Cp (c)	Cp, meas	Cp,meas (c)
0		.93783 .86294 .75797 .66589 .56767 .28897	1.0976 1.0416 .97869 .90415 .83395 .73473 .64015 .54264 .24325 .09167	1.1854 1.1256 1.0571 .97681 .90055 .79348 .69187 .58617 .26300 .09898	-0.00018 .00932 .01143 .03591 .03359 .03066 .03866 .04409 .15822 .33253	-0.08019 07057 06777 04156 04358 04685 03905 03259 .08987 .27931 .74508	0	49.090	1.4446	1.6530 1.5700 1.4794 1.3284 1.1462 .99117 .77136 .39589 .23772 .03382	1.6701 1.5863 1.4947 1.3421 1.1581 1.0015 .77936 .40000 .24018 .03417 .00372	0 01023 02409 03121 04219 04511 03189 .07312 .14159 .64800 .90094 1.0000	-0.07034 -02072 -03469 -04184 -05301 -05600 -04259 .06350 .13271 .64436 .90013 1.0000	0	57.757 54.654	.90556 .65950 .43805	1.7390 1.6193 1.5061 1.3337 1.1754 .86773 .60637 .37258 .20282 .04386 .01186	1.6732 1.5582 1.4492 1.2831 1.1308 .83510 .58355 .35869 .19501 .04226 .01141	0 00248 00160 .00678 .01648 .04178 .08056 .14946 .29549	0.03784 .03535 .03624 .04446 .05380 .07781 .11516 .18117 .32262 .61350 .81221
5	35.044 33.824 32.413 30.735 29.110 26.761 24.441 21.900 12.641 5.714 -1.030 -5.000	.56370 .48851 .40204 .19528 .08813 .02548	.86149 .80906 .75064 .68221 .61847 .52979 .44634 .36340 .12493 .02591	.94422 .88735 .82283 .74797 .58059 .49027 .39840 .13715	00020 .01706 .03437 .06734 .06673 .06016 .08632 .09611 .36025 .70600	09625 07806 05849 02275 02273 02996 00360 .00905 .29768 .67786	5	44.080	1.1825 1.0355 .86403 .73224 .56201 .29478 .18678 .04585		1.4299 1.3441 1.2527 1.1018 .92379 .77577 .57186 .24571 .12207 .00159	.00022 00448 00778 01226 01718 00787 .03190 .20717 .37825 .96707	05132 05552 05937 06403 06916 05945 01753 16646 34645 96532	5	52.757	.72095 .50348 .31822 .19678 .06234 .02702	1.3031 1.1271 .96959 .67452 .43633	1.5047 1.3802 1.2653 1.0941 .94118 .65503 .42373 .22950 .10060	.13337 .25768 .47291	.02916 .02197 .02406 .04737 .06210 .09143 .15840 .27880 .48877 .90391
10	30.044 28.824 27.413 25.735 24.110 21.761 19.441 16.900 7.641 .714 -6.030 -10.000	.54914 .49517 .41072 .34596 .27803 .12310 .04882 .00818	.66355 .61481 .56106 .49887 .44180 .36389 .29294 .22364 .04668	.71782 .66567 .60703 .53992 .47784 .39362 .31724 .24200 .05063	.04210 .05378 .09154 .10778 .11402 .15325	08200 03714 02375 .01679 .03500 .04163 .08302 .12959 .58871 .99099	10	40.839 39.080 37.190 34.035 30.217 26.901 21.979 12.307 7.101 -3.626 -7.906	1.0290 .95802 .83930 .67895 .57124 .42314 .20955 .12387 .02167	.65300 .52774 .36128 .11700 .03939	1.1881 1.1037 1.0148 .87020 .70361 .56867 .38922 .12614 .042447	.00018 .00418 .01704 .03779 .03822 .07615 .14619 .44166 .68201	07764 07259 05927 05682 03632 .00460 .080163 .39804 .65733	10	51.215 47.757 44.654 40.129 36.096 28.256 21.171 13.941 7.410 -1.993 -5.850 -10.000	1.2312 1.1226 .97499 .84223 .57424 .38504 .23615 .13132 .03082	1.3739 1.2389 1.1167 .93943 .78495 .50656 .29480 .13081	1.3236 1.1937 1.0759 .90484 .75607 .48818 .28411 .12643 .03623	.23437	.03661 .03046 .04160 .07195 .10230 .14987 .26213 .46462 .72411
15	25.044 23.824 22.413 20.735 19.110 16.761 14.441 11.900 2.641 -4.286 -11.030 -15.000	.41957 .38807 .35101 .29603 .24106 .18980 .07429 .02241	.50187 .45648 .40710 .35085 .30024 .23297 .17393 .11903 .00591	.51315 .46726 .41630 .35897 .30693 .23816 .17809 .12176	.02972 .09591 .14464 .21302 .27848 .37287	02278 02328 .00779 .07499 .12558 .19549 .26122 .35848 .91816	15	35.839 34.080 32.190 29.035 25.217 21.901 16.979 7.307 2.101 -10.789 -15.000	.75379 .64908 .53507 .42913 .30459 .13916 .07163	.74594 .61931 .47727 .36580 .22434 .04247	.95246 .87208 .78820 .55433 .50424 .38649 .23695 .04491	.01610 .01041 .04586 .10802 .14758 .26347 .69481 .95072	16760 03906 04565 00808 .05762 .09936 .22207 .67728 .94793	15	46.215 42.757 39.654 35.129 31.096 23.256 16.171 8.941 2.410 -10.850 -15.000	.80788 .67301 .44306 .29017 .17768 .08694	1.0650 .94108 .76543 .61666 .36014 .17917 .05572 .00412	1.1353 1.0039 .88705 .72125 .58104 .33958 .16896 .05262	.18715	.03444 .13014 .08384 .10723 .13665 .23356 .41772 .70385 .95572
20	20.044 18.824 17.413 15.735 14.110 11.761 9.441 6.900 -2.359 -9.286 -16.030	.36460 .36460 .33468 .29866 .25776 .21075 .17046 .13566 .05568 .01905	.38458 .34039 .29314 .24059 .19465 .13608 .08789 .04722	.33640 .29815 .25647 .21061 .17018 .11898 .07655	05480 .06640 .12412 .19444 .24484 .35451 .48440 .65192	.07735 .18225 .23369 .29482 .35977 .43544 .55092 .69534	20	30.839 29.080 27.190 24.035 20.217 16.901 11.979 2.307 -2.899 -13.626 -17.956 -20.000	.57310 .49136 .37310 .29755 .21211 .08765 .04121	.53493 .42515 .30609 .21661 .11050	.73011 .65639 .57988 .46082 .33176 .23479 .11969 .00450	.06660 .13475 .17960 .27202 .47904 .95288	52430 11756 01183 .06215 .11080 .21092 .43572 .94866	20	41.215 37.757 34.654 30.129 26.096 18.256 11.171 3.941 -2.590	.75834 .64102 .52434 .32546 .19623	.50262	.94568 .81665 .70426 .54882 .42148 .21375 .08176 .01029	.02899 .02485 .02098 .04142 .21748 .50359 .88652	.099952 .18531 .07131 .14383 .19617 .34324 .58335 .90452
25	15.044 13.824 12.413 10.735 9.110 6.761 4.441 1.900 -7.359 -14.286 -21.030 -25.000	.20452 .26378 .25884 .25230 .20452 .16254 .12859 .09835 .03353 .00822	.34618 .29285 .23739 .17808 .12889 .07127 .03071 .00565	.19293 .16350 .13233 .09936 .07179 .03969 .01717 .00315	11021 .08287 .23341 .36979 .56152	.05667 .38017 .48876 .57228 .64898 .75581 .86647 .96797	25			.41212 .30744 .19915 .12292 .04273	.52777 .46236 .39621 .29548 .19139 .11814 .04103	.00056 .15668 .27956 .42082 .70127	-1.1548 49670 .03914 .18949 .30764 .44334 .71316		32.757 29.654 25.129 21.096 13.256 6.171 -1.059 -7.590 -16.993 -20.850	.76970 .59663 .49216 .39462 .23855 .14100 .06800 .02269	.45579 .13273 .02916	. 63771 . 53320 . 39283 . 28220 . 11453 . 02517	.03933 03640 25640 15501 .44360	.17148 .10631 .20182 .28488 .51989 .82148

a, csee footnotes at end of table.

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR

TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Continued

(b) Parabolic arc bodies - upper surface - Concluded

			θ	$le = 78^{\circ}$			-			θ	le = 90°		FILE
a,	δ, deg	C _{p, meas}	Cp (a)	Cp (c)	Cp, meas - Cp Cp, meas (a)	C _{p,meas} - C _p C _{p,meas} (c)	a, deg	δ, deg	Cp, meas	Cp (a)	C _p (c)	Cp, meas - Cp Cp, meas	Cp, meas - Cp, meas (c)
0	65.353	1.0113 .60519 .38354 .24004 .13306 .07860	1.8192 1.6899 1.5405 .87584 .47381 .25522 .13144 .05399 .02361	1.6908 1.5707 1.4316 .81393 .44053 .23709 .12211 .05019	0 00273 .00907 .13395 .21709 .33457 .45242 .59424 .69962 .84973 1.0000	0.07058 .06800 .07912 .19516 .27208 .38184 .49129 .62280 .72074 .86106 1.0000	0	77.532 70.540 61.096	1.6279 1.4344 .99129 .63784 .46547 .31799 .19416	1.7348 1.6175 1.3946 .90713 .51907 .34219 .19544 .09114 .02871	.34175	0 .00721 .00639 .02775 .08490 .18621 .26485 .38539 .53059 .69648 .84714 1.0000	0.000667 .00790 .00700 .02851 .08537 .18697 .26584 .38583 .53054 .69659 .84485
5	60.353 55.192 35.864 23.773 15.678 9.680 4.350 1.168 -2.437 -5.000	.48178 .29118 .17656 .08384 .04198 .00399 00824	1.4197 .72279 .34199 .15385 .05956 .01211 .00086	1.5760 1.4362 1.2818 .65261 .30897 .13885 .05376 .01094 .000790		.09690 .08749 .09445 .23405 .35869 .52315 .69551 .86951 .98118	5	72.532 65.540 56.096 39.922 27.279 20.692 14.131 7.932 2.217 -1.503	1.5152 1.2945 .84121 .51394 .36347 .23745 .13275 .05626	1.2536 .74922 .38235 .22735	1.7509 1.6545 1.5066 1.2525 .74883 .38195 .22702 .10838 .03463 .00272	0 .00036 .00508 .03160 .10935 .25604 .37450 .54331 .73891 .95148	.00074 .00109 .00568 .03244 .10982 .25682 .37541 .54357 .73913 .95165
10	55.353 50.192 30.864 18.773 10.678 4.680 650 -3.832 -7.437	1.3718 1.2003 .66515 .35673 .20786 .11490 .04643	1.3961 1.2177 .54299 .21352	1.4421 1.2868 1.1220 .50039 .19693 .06528 .01266	001771 01450 .18366 .40145 .65886 .88033	.07829 .06196 .06523 .24770 .44796 .68594 .88982	10	73.900 67.532 60.540 51.096 34.922 22.279 15.692 9.131 2.932 -6.503	1.1337 .68190 .39205 .26917 .16457	1.5413 1.3682 1.0932 .59132 .27104 .13216 .04547	.13302	0 .00130 00007 .03572 .13283 .30866 .50901 .72370 .94189	00744 00609 - 00760 .02867 .12615 .33340 .50581 .72176 .94152
15	50.353 45.192 25.864 13.773 5.678 320 -5.650 -8.832 -12.437	.52699 .26274 .14126 .06988	1.2163 1.0330 .39053 .11619	1.2914 1.1273 .95706 .36185 .10777 .01861	0 02529 01603 .25894 .55778 .85757	.07460 .04973 .05866 .31336 .58982 .86826	15	68.900 62.532 55.540 46.096 29.922 17.279 10.692 4.131 -2.062	1.5476 1.4005 1.2067 .96804 .55642 .29948	1.3998 1.2086 .92314 .44227 .15694 .06128	.16042	.20515 .47596 .69319	02268 02213 02445 .02495 .18689 .46454 .68663
20	45.353 40.192 20.864 8.773 .678 -5.320 -10.650 -13.832 -17.437	.40457 .18015 .09217 .03519	1.0418 .85757 .26116 .04782 .00028		01552 .35448 .73455	.07624 .05803 .06225 .40389 .75448 .99711	20	-15.000 63.900 57.532 50.540 41.096 24.922 12.279 5.692 869	01366 02186 1.4309 1.2622 1.0599 .79420 .43339 .21843 .13029	1.0575 .76675 .31493 .07853	.08224	.64048	02481 02543 02264 .01079 .25504 .62348 .86269
25	40.353 35.192 15.864 3.773 -4.322 -10.320 15.650 -18.832 -22.437	.66946 .29398 .12925 .05808	.84420 .66914 .15053 .00469	.79718 .63153 .14207	0 00701 .00048 .48796 .96371	.05583 .04907 .05666 .51674 .93632	25	-12.783 -16.503 -20.000 58.900 52.532 45.540 36.096 19.922 7.279 .692 -5.869 -12.062 -17.783 -21.503	.32800 .14664 .08159 .03407	.60714 .20295 .02811 .00026	.63111 .21110 .02919	.04773 .38125 .80831	03969 03741 031101 .01013 .35640 .80094 .99669

a, c See footnotes at end of table.

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Continued

(c) Circular arc bodies - lower surface

			Fig		9 _{1e} = 42 ^o						θ _{1e} =	540		1				θ _{2e} =	66°	
a, deg	δ, deg	C _{p,meas}	Cp (a)	С _р	Cp, meas - Cp Cp, meas (a)	C _{p,meas} - C _p C _{p,meas} (b)	a, deg	δ, deg	Cp, meas	Cp	C _p (b)	Cp, meas - Cp Cp, meas (a)	Cp, meas - Cp Cp, meas (b)	a, deg	ð, deg	Cp, meas	Cp (a)	C _p (b)	Cp, meas - Cp Cp, meas (a)	Cp, meas - Cp Cp, meas (b)
0	40.01	1.2802 1.1786 1.1341 1.0375 .96749 .85232 .74025 .64427 .49071 .24303 .16563 .11362 .01926	1.2798 1.2205 1.1842 1.0898 1.0019 .87173 .77243 .67496 .50828 .23021 .13148 .06201	1.2397 1.1822 1.1470 1.0556 .97047 .84432 .74819 .65377 .49231 .22299 .12734 .06007	0.00031 03555 04418 05041 03557 02277 04347 04764 03581 .05275 20618 .45423 1.0000	0.03164 00305 01137 01745 00308 .00939 01023 01475 00326 .08246 .23118 .47131	0	50.29	1.6974 1.6008 1.5092 1.3802 1.1214 .95296 .82137 .69740 .58170	1.8181 1.7532 1.6836 1.5895 1.4856 1.2428 1.0769 .93223 .78643 .65901 .27075 .03665	1.7749 1.7117 1.6437 1.5518 1.4504 1.2133 1.0513 .91012 .76777 .64337 .26433 .03578	0.00005 03287 05172 05321 07637 10826 13006 13497 12766 13290 .04726 .66090 1.0000	0.02381 00842 02680 02823 05086 08195 10319 10602 10609 10602 6685 66895 1.0000	0	61.74 59.45 56.98 50.05	1.7647 1.6997 1.6256 1.5290 1.2580 1.1468 .88377 .71487 .57028		1.7977 1.7474 1.6900 1.6157 1.5318 1.2803 1.1691 .90452 .74246 .57902 .21215 .06289	-0.00011 -00153 -00571 -00535 -01328 -02941 -03113 -03518 -05050 -02697 17609 -55942	0.01127 .00980 .00571 .00609 -00183 -01773 -01945 -02348 -03859 -01533 .18542 .56447
5	44.30	1.6295 1.4691 1.4045 1.2767 1.1796 .90016 .78926 .61382 .52673 .33939 .24415 .17961	1.6292 1.5654 1.5214 1.4236 1.3270 1.0690 .95660 .75953 .65304 .40982 .27310 .16640	1.5862 1.5241 1.4860 1.3861 1.2919 1.0407 .93134 .73947 .63580 .39900 .26590 .16200	.00018065550832311506124961875721202237382398020752118570735555711	.02657 -03744 -05803 -08569 -09520 -15613 -18002 -20470 -20707 -17564 -08908 .09805 -56847	5	55.29 53.36 51.27 49.31	1.7330 1.6500 1.5603 1.4457 1.3542 1.2069 1.0506 .93361 .68149	1.8184 1.7644 1.7058 1.6258 1.5363 1.4519 1.3225 1.1728 1.0395 .77995 .38439 .10064 .01919	1.7826 1.7296 1.6723 1.5938 1.5060 1.4233 1.2965 1.1497 1.0191 .76461 .37683 .09865 .01880	.00005 01812 03382 04198 06267 07215 09578 11631 11342 14448 07052 .34483 .69689	.01974 .00196 -01352 -02147 -04171 -05103 -07424 -09433 -09157 -12197 -04946 -35779 -70305	5	66.74 64.45 61.98 55.05 52.10	1.8127 1.7746 1.7208 1.6422 1.3931 1.2909 1.0303 .85804 .70447 .34715 .18814	1.8437 1.8031 1.7558 1.6934 1.6214 1.3977 1.2954 1.0445 .88527 .71991 .32242 .13547 .01582	1.8022 1.7625 1.7163 1.6553 1.5849 1.3663 1.0210 .86536 .70373 .31517 .13241	01408 .00530 .01059 .01592 .01267 00330 00349 01378 02192 .07124 21995 .78409	.00875 .02769 .03285 .03806 .03489 .01924 .01906 .00903 .00853 .00105 .09212 .29622 .78914
10	50.01 49.30 47.41	1.6617 1.5900 1.4529 1.3432 1.0507 .94025 .76004 .66614 .45674 .26449	1.7207	1.7772 1.7187 1.6826 1.5870 1.4960 1.2482 1.1378 .93997 .83048 .57132 .28963 .18147	.00022 05771 08220 11708 15907 02149 23754 264.74 27479 27920 11985 .04053 .09306	.02233 03430 05824 09230 11376 18797 21010 23674 24670 25086 09505 .06178 .11315	100	60.29 58.36 56.27 54.31 51.36 47.96	1.7915 1.7334 1.6572 1.5573 1.4745 1.3347 1.1907 1.0716 .81687 .46181 .21796	1.8174 1.7731 1.7246 1.6575 1.5814 1.5085 1.3953 1.2614 1.1399 .89645 .50285 .18480 .06894	1.7883 1.7447 1.6970 1.6310 1.5560 1.4844 1.3729 1.2412 1.1217 .88207 .49480 .18184 .06783	.00022 .01027 .00508 .00508 .001548 .02306 .04540 .05938 .06374 .09742 .08887 .15214	.01607 .02612 .02100 .01578 .00633 .00671 .02862 .04241 .04675 .07982 .07144 .16572 .36755	10	73.59 71.74 69.45 66.98 60.05 57.10 50.12	1.8178 1.8178 1.7929 1.7359 1.5231 1.4285 1.1786 1.0131 .85841 .46181	1.8123 1.7621 1.7025 1.5088 1.4168 1.1834 1.0300 .86616 .44829 .23022 .06059	1.8062 1.7766 1.7411 1.6929 1.6356 1.4496 1.3612 1.1369 .98956 .83215 .43069 .22119	.00303 .01718 .01924 .00939 .00819 .00407 -01668 00903 .02928 .15360	03005 .02266 .04219 .05578 .05778 .04826 .04711 .03558 .02324 .03059 .06739
15	55.01 54.30 52.41	1.7100 1.6527 1.5283 1.4200 1.1422 1.0425 .86761 .77032 .55542 .43288	1.7369 1.6540 1.5742 1.3521	1.7844 1.7353 1.7048 1.6235 1.5450 1.3272 1.2279 1.0467 .94424 .69439 .53951 .28569 .17317	00016 03392 05095 08225 10859 18377 20000 22912 24887 27374 26980 14731 15533	.01864014800315206229088031619717784206422257825021246331261401340	15	66.71 65.29 63.36 61.27 56.36	1.8182 1.7889 1.7321 1.6539 1.4561 1.3182 1.2077 .96531 .58741 .42868	1.8105 1.7707 1.7146 1.6499 1.4875 1.3674 1.2561 1.0267 .63537 .44682 .28866 .14375	1.7951 1.7602 1.7214 1.6669 1.6040 1.4461 1.3294 1.2212 .99817 .61770 .43439 .28062 .13975	.00423 .01017 .01010 .00242 02156 04008 06360 08165 04252 .03931 .15590	.00300 .03190 .03773 .03764 .05017 .00687 -00850 -01118 -03404 -05157 -01332 .06606 .15894	15	78.59 76.74 74.45 71.98 65.05 62.10 55.12	.58905	1.8046 1.7584 1.5984 1.5186 1.3084 1.1649 1.0072 .58245 .34167	1.8100 1.7901 1.7650 1.7292 1.6849 1.5316 1.4551 1.2537 1.1162 .96513 .55810 .32739 .12481	.00710 .01426 .01419 .01594 .00578 00457 00149 .01120 .05404 .21393	09082 00106 .02889 .04858 .05538 .05538 .05709 .04734 .03743 .04034 .05254 .09358 .24682
20	60.01 59.30 57.41 55.63	.90594 .68324 .54888	1.8174 1.7761 1.7503 1.6808 1.6130 1.4203 1.3307 1.1637 1.0675 .82643 .67160 .53325 .27693	1.7897 1.7492 1.7238 1.6553 1.5885 1.3988 1.3105 1.1461 1.0513 .81388 .66141 .52516	22358	.01529 .01331 .00560 -01752 -03830 -09899 -11741 -14773 -16045 -19121 -20502 -18285 -22042	20	70.29 68.36 66.27 61.36 57.96	1.8181 1.8138 1.7814 1.7259 1.5609 1.4363 1.3306 1.0967 .71364 .54504 .39782	1.8065 1.7615 1.7085 1.5704 1.4650 1.3651 1.1476 .77153 .57726 .40633 .23848	.39218	.00402 .01117 .01008 00609 01998 02593 04641 08112 05911 02139	02202 .02431 .03870 .04558 .04456 .02896 .02553 .00977 01003 04350 02224 .01418 .04422	20	83.95 79.45 76.98 73.19 70.05 67.10 60.12	.72156	1.8029 1.7402 1.6781 1.6116 1.4277 1.2966 1.1481 .72579 .46859	1.8136 1.8032 1.7648 1.7734 1.6731 1.6134 1.5495 1.3727 1.2466 1.1039 .69780 .45053	.00781 .01578 .01598 .01565 .00578 00496 00586 .01597 .08801	15501 03710 .02878 .04606 .05373 .05200 .05166 .04408 .03379 .03480 .03293 .05197 .12322
25	65.01 64.30 62.41 60.63 55.77 53.56	1.3141 1.0475 .82246 .67925 .57014 .45110	1.7805 1.7228 1.6656	1.7964 1.7635 1.7427 1.6862 1.6302 1.4671 1.3894 1.1549 .93188 .78399 .64813 .51780	17923 16145 17273	.01226 .03035 .02854 .01937 .00537 .00537 .05730 .10253 .13304 .15420 .13679 .14786 .21098	25	76.71 75.29 73.36 71.27 66.36 62.96	1.7966 1.8174 1.8112 1.7807 1.6571 1.5501 1.4516 1.2351 .85284 .67486	1.7951 1.7536 1.6411 1.5514 1.4640 1.2673 .90830 .71309 .53430	.51540	.00889 .01522 .00966 -00084 -00854 -02607 -06454 -05665 -04948 -01467	06050 .05622 .02916 .04400 .05009 .04472 .03464 .02714 .01028 -02733 -01925 -01235	25	86.74 81.98 78.19 75.05 72.10 65.12	.85333	1.7852 1.77394 1.6874 1.5335 1.4176 1.2817 87265 2.60642 .33286	1.8178 1.8167 1.8119 1.8008 1.7416 1.6968 1.6461 1.4960 1.3829 1.2504 85125 2.59158 3.2468		21633 08369 03043 .00431 .03475 .03437 .03635 .0882 .01964 .01667 .00259 00163

a, b See footnotes at end of table.

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR

TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Continued

(c) Circular arc bodies - lower surface - Concluded

			θ	le = 78°						9 2	$e = 90^{\circ}$		
a,	δ, deg	C _{p, meas}	cp	cp	Cp, meas - Cp	Cp, meas - Cp	α, deg	δ, deg	Cp, meas	Ср	Ср	Cp, meas - Cp	Cp, meas - Cp
			(a)	(b)	(a)	(b)				(a)	(b)	(a)	(b)
0	75.05 73.02 66.70 60.39 55.70 51.43	1.3029	1.8189 1.7879 1.7519 1.6157 1.4523 1.3071 1.1709 1.0522 .88753 .67714 .50366	1.8055 1.7747 1.7390 1.6037 1.4416 1.2974 1.1623 1.0445 .88098 .67214 .49993 .04720	0.00005 .00490 .00782 .01265 .00446 .00322 -01105 -00766 .00406 .01811 .05953 .66495	0.00742 01.224 01.512 01.998 011.79 .00422 00363 00029 .00335 .02536 .06649 .66756	0	87.90 84.53 76.64 73.06 69.05 63.31 59.47	1.8042 1.7181 1.6582 1.5685 1.4311 1.3242 1.1845 .87192	1.8179 1.8152 1.8011 1.7204 1.6634 1.5852 1.4511 1.3485 1.2072 .87708 .63149 .10342	.63149	-0.00017 .00132 .00172 -00134 -00314 -01065 -01398 -01835 -01916 -00592 -00698	0 .00132 .00172 -00134 -00314 -01398 -01398 -01916 -00592 -00698 -0392 1.0000
5	80.05 78.02 71.70 65.39 60.70 56.43 52.83	.66956	1.8185 1.7937 1.6897 1.5492 1.4255 1.3014 1.1903 1.0319 .82249 .64259 .11073 .01424	1.8104 1.7908 1.7663 1.6639 1.5256 1.4038 1.2816 1.1722 1.0162 .80994 .63315 .10904 .01402	0 .01026 .02267 .01906 .01069 .00314 .00692 .00280 .01957 .04028 .41518 .81619	.00006 .01523 .02538 .03760 .03400 .02575 .01831 .02203 .01701 .03453 .05438 .42410 .81903	5	89.53 85.71 81.64 74.05 68.31 64.47 59.59	1.4540 1.3279 1.0238 .76661 .25046	1.8177 1.8077 1.7793 1.6805 1.5697 1.4801 1.3519 1.0354 .78607 .18880 .01382	1.8044 1.8131 1.8177 1.8077 1.7793 1.6805 1.5697 1.4801 1.3519 1.0354 .78607 .18880 .01382		00306 00077 .00006 00083 .00039 00943 01330 01795 01807 01133 02538 .24619 .83325
10	85.05 83.02 80.27 76.70 70.39 65.70	1.8172 1.7875 1.6743 1.5612 1.3373 1.1814 .99343 .81038 .26369	1.8312 1.8055 1.7743 1.6492 1.5439 1.3319 1.1824 .97744 .79518 .19834	1.8163 1.8076 1.7943 1.7692 1.7386 1.6159 1.5128 1.3050 1.1586 .95774 .87021 .19434 .05492	00671 .00644 .00738 .00150 .01108 .00404 -,00085 .01610 .01876 .24783	04505 00467 01358 .02641 .02736 .03488 .03100 .02415 .01930 .03593 07383 .26300 .55681	10	97.90 90.71 86.64 83.06 79.05 73.31 69.47 64.59 54.00	1.7898 1.7394 1.6522 1.5742 1.4600 1.1663 .92740 .33772	1.8172 1.8110 1.7910 1.7519 1.6677 1.5939 1.4827 1.1896 .94415 .29598 .05480	1.7738 1.7832 1.8172 1.8110 1.7910 1.7519 1.6677 1.5939 1.4827 1.1896 .94415 .29598	.00017 00050 00067 00719 00719 01251 01555 01998 01806 .12359 .58660	01187 03207 00017 00050 00067 00719 00938 01251 01555 01998 01806 .12359 .58660
15	92.05 88.02 81.70 78.57 75.39 70.70 62.83 57.90	1.7948 1.7511 1.6675 1.4740 1.3291 1.1419 .96148 .35848	1.7677 1.7228 1.6390 1.4564 1.3204 1.1264 .94726 .30598	1.8162 1.8185 1.8163 1.7806 1.7471 1.7027 1.6198 1.4394 1.3050 1.1133 .93622 .30242 .12182	.00929 .01510 .01616 .01709 .01194 .00655 .01357 .01479 .14645 .27745	11938 04668 01407 .02084 .02658 .02764 .02861 .02347 .01815 .02505 .02627 .15638 .28589		102.90 99.53 91.64 88.06 84.05 78.31 74.47 69.51 59.00 51.11	1.8189 1.7985 1.7477 1.6895 1.5947 1.3248 1.0913 .45542	1.8174 1.8168 1.7993 1.7443 1.6884 1.5976 1.3364 1.1022 .42215 .12185	1.6984 1.7282 1.7690 1.8174 1.8168 1.7993 1.6884 1.5976 1.3364 1.1022 .42215 .12185	.00082 .00115 00044 .00195 .00065 00182 00876 0099 .07305 .30834	00861 00670 00437 .00082 .00115 00044 .00195 .00065 00182 00876 00999 .07305 .30834
20	95.05 93.02 86.70 83.60 80.39 75.70 67.83 62.90 56.49 50.85	1.7940 1.7390 1.5846	1.8093 1.7812 1.7205 1.5715 1.4521 1.2736 1.1120 .43249 .21435	1.7911 1.8043 1.8134 1.8124 1.7956 1.7676 1.7075 1.5595 1.4410 1.2640 1.0936 .42920 .21272	.00500 .00713 .01064 .00827 .00643 .00570 .00407 .07540	02234 09991 04805 .00330 .01254 .01472 .01811 .01584 .01403 .01319 .01166 .08244 .16459		107.90 100.71 93.06 89.05 83.31 79.47 74.59 64.00 56.11	1.7568 1.8186 1.8136 1.7899 1.7550 1.6864 1.4599 1.2441 .57656	1.8134 1.8181 1.7939 1.7578 1.6901 1.4691 1.2534 .56278 .25588 .21274	. 25588	.00286 00248 00223 00160 00219 00626 00742 .00656 .23364 .19615	01088 00868 00057 00286 00248 00223 00160 00219 00626 00742 00656 23364 19615
25	91.70 88.57 85.39 80.70 72.82 67.90 61.49 55.85	1.5237 1.6442 1.7954 1.8179 1.8129 1.7847 1.6711 1.5657 1.4058 1.2370 .58832	1.8111 1.7753 1.6641 1.5649 1.4074 1.2484 .57198 .32559	1.7389 1.7625 1.7825 1.8163 1.8168 1.8061 1.7704 1.5594 1.5606 1.3127 1.2450 .57042 .32470	.000993 .00527 .00419 .00051 00114 00922 .02777 .07453	- 34371 - 15672 - 08411 - 01164 - 00061 - 00374 - 00801 - 00700 - 00326 - 00647 - 03043 - 07706		88.31 84.47 79.59 69.00	1.5272 1.6009 1.7447 1.8084 1.8178 1.0828 1.7597 1.5778 1.3847	1.8162 1.8009 1.7584 1.5843 1.3937 .71372 .37552 .32468	1.4952 1.5425 1.6146 1.7439 1.8087 1.8162 1.8009 1.7584 1.5843 1.3937 .71372 .37552 .32468	.00088 .00105 .00074 00412 00650 .00130 .14829 .10961	01048 00992 00856 .00046 00017 .00088 .00105 .00074 00412 00650 .00130 .14829 .10961

a, b See footnotes at end of table.

TABLE II.- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR

TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Continued

(d) Circular arc bodies - upper surface

			θ,	te = 420	-			-		0	te = 54°						0	le = 66°		
a, deg	δ, deg	C _{p,meas}	Cp (a)	C _p (c)	Cp, meas - Cp Cp, meas (a)	C _{p,meas} - C _p C _{p,meas} (c)	a,	δ, deg	Cp, meas	Cp (a)	C _p (c)	C _{p,meas} - C _p C _{p,meas} (a)	Cp, meas - Cp Cp, meas (c)	a, deg	δ, deg	Cp, meas	Cp (a)	C _p (c)	Cp,meas - Cp Cp,meas	C _{p,meas} - C _p C _{p,meas} (c)
0	40.43 39.24 38.51 34.99 32.92 30.71 27.76 24.51 16.20 12.18 4.42 0	1.1724 1.1241 1.0938 .92910 .83437 .73467 .60836 .48762 .24303 .16440 .06285 .02570	1.1725 1.1151 1.0810 .91634 .82318 .72731 .60502 .47999 .21699 .12416 .01653	1.2027 1.1438 1.1088 .93990 .84433 .74601 .62055 .49231 .22255 .12734 .01695	-0.0009 .00801 .01170 .01384 .01341 .01002 .00549 .01565 .10715 .24477 .73699	-0.02584 -0.1753 -0.1371 -0.1162 -0.1194 -0.1544 -0.0962 .084:27 -22543 -73031	0	48.66	1.7737 1.6243 1.5035 1.3242 1.2034 .96695 .84044 .70249 .58869 .28608 .10935 .04514	.03599	1.7454 1.6556 1.5660 1.4084 1.3009 1.0671 .92837 .76199 .64337 .26291 .03542	0.00017 -03565 -05520 -08065 -09839 -12126 -12235 -10214 -11045 -06628 -67087	0.01596 01927 04157 06359 08102 10357 10462 08470 09288 .08099 .67609	0	61.49	1.6839 1.6280 1.4190 1.2112	1.7615 1.6942 1.6463 1.4483 1.2511 1.1463 .91432 .59338 .21787 .06531	1.7491 1.6821 1.6345 1.4379 1.2422 1.1381 .90464 .74401 .58913 .21631 .06484	0.00011 00612 011.24 02065 03294 02844 02802 03069 01987 21646 53997 1.0000	0.00727 .00107 -00399 -01332 -02559 -02108 -02067 -03027 -01256 .22207 .54328 1.0000
5	35.43 34.24 33.51 31.39 29.99 27.92 22.76 17.16 11.20 7.18 58 -5.00	.91207 .87886 .85505 .75605 .69590 .61320 .43525 .28675 .16645 .10442 .02798	.91225 .85893 .82750 .73601 .67782 .59491 .40081 .23642 .10240	1.0222 .90588 .87212 .77572 .71491 .62733 .42825 .24890 .10794 .04471	00020 .02268 .03222 .02651 .02598 .02983 .07913 .17552 .38480 .59347	12075 03074 01996 02602 027317 02504 .01608 .13200 .35152 .57183	5	45.53	1.4669 1.3391 1.2354 1.0815 .96876 .87179 .75119 .64331 .52755	.93939	1.5069 1.4147 1.3240 1.1670 1.0619 .96487 .83734 .70796 .55634 .13866	.00020 02838 03448 05021 06662 07754 08496 07091 02637	02727 05646 07172 07906 09614 10677 11468 10050 05457	5	55.01	1.6204 1.5297 1.4675 1.2498 1.3046 .94268 .72744 .57932 .45114 .19600 .09201 .01849	1.6202 1.5447 1.4918 1.2785 1.0736 .96736 .73534 .58151 .43726 .11878	1.5885 1.5145 1.4624 1.2533 1.0528 .94843 .72101 .56985 .42858 .11649 .01615	.00012 00981 01656 02296 03770 02618 01086 00378 .03077 .39398 .82122	.01969 .01520 .00361 00280 019301 006301 .00884 .00211 .05001 .40566 .82448
10	30.43 29.24 28.51 26.39 24.99 20.71 17.76 12.16 6.20 2.18 -5.58 -10.00	.69342 .67312 .64647 .56525 .51512 .37743 .29685 .18517 .09570 .05510	.69356 .64469 .61608 .53377 .48218 .33826 .25168 .12007 .03152 .00392	.73358 .68273 .65188 .56487 .51066 .35784 .26623 .12686 .03338 .00414	00020 .04224 .04701 .05569 .06395 .10378 .15216 .35157 .67064 .92886	05792 01428 00836 .00067 .00866 .05190 .10315 .51490 .65120 .92486	10	42.44 40.53 38.66 37.65 33.19 31.11 28.30 25.32 18.76 7.91 -3.51 -10.00	1.1847 1.0861 1.0044 .97537 .77332 .69165 .59122 .49866 .31838 .12903 .02800	1.1844 1.0988 1.0111 .97060 .77932 .69478 .58473 .47572 .26926 .04935	1.2651 1.1732 1.0841 1.0366 .83248 .74162 .62438 .50809 .28733 .05261	.0025 01169 00667 .00489 00776 00453 .01098 .04600 .15428	06787 08020 07935 06278 07650 07225 05609 01891 .09752 .59227	10	51.49 50.01	1.4400 1.3581 1.2944 1.0828 .97485 .86933 .78200 .59158 .45756 .13919 .05489	1.4398 1.3593 1.3036 1.0844 .98006 .88065 .77760 .55904 .41960 .04700	1.4129 1.33339 1.2788 1.0638 .96149 .86429 .76318 .54857 .41149	.00014 00088 00711 00148 00534 01302 .00563 .00501 .08296 .66233	.01882 .01782 .01205 .01755 .01370 .00580 .02407 .07270 .10069 .66837
15	25.43 24.24 23.51 21.39 19.99 15.71 12.76 7.16 1.20 -2.82 -10.58 -15.00	.50788 .47537 .44766 .38239 .35099 .24754 .18966 .10653 .04680 .01909 -00134 00241	.50803 .46403 .43852 .36617 .32169 .20212 .13450 .04286	.52760 .48231 .45511 .38031 .33440 .20978 .13959 .04442 .001254	00030 .02386 .02042 .04242 .08348 .18349 .29084 .59767 .97415	03883 01460 01664 .00544 .04727 .15254 .26400 .58303 .97321	15	37.44 35.53 35.66 30.40 28.19 26.11 20.32 16.59 13.76 2.91 -8.51 -15.00	.55016 .88899 .78216 .67104 .60023 .54162 .35969 .28032 .21988 .07886	.80475 .67408 .58719 .51011 .31733 .21443	1.0264 .93814 .85337 .71137 .61994 .53808 .33438 .22646 .15717 .00716	00020 02888 00453 .02173 .05818 .11777 .23505 .32204 .91352	86564 05529 09104 06010 03284 .00654 07037 .19214 28520 .90921	15	48.64 46.49 45.01 39.33 36.63 31.29 28.45 25.12 16.33 3.37 -5.06 -15.00	.91586 .81018 .63242 .55789 .46504 .25979 .09119	1.2680 1.1839 1.1263 .90#4# .80155 .60705 .51093 .40562 .17806	1.2273 1.1458 1.0897 .87510 .77558 .58967 .49444 .39262 .17226 .00802	.00024 01666 01854 .01247 .01065 .04012 .08417 .127777 .31460 .91490	.03233 .01606 .01456 .04450 .04271 .07076 .11373 .15572 .33693 .91205
20	20.43 19.24 18.51 16.39 14.99 10.71 7.76 2.16 -3.88 -7.82 -15.58 -20.00	.32802 .36422 .34950 .28324 .24520 .16115 .11882 .06115 .01925 00007 02185 02879	.40880 .36395 .33829 .26685 .22419 .11599 .06125 .00480	.34862 .31072 .28840 .22765 .19142 .09882 .05216	24627 .00074 .03207 .05998 .08569 .28024 .48451 .92150	06280 14689 17482 19626 21933 38678 56102 93361	20	32.44 30.53 28.66 25.40 21.11 18.30 15.32 11.59 8.76 -2.09 -13.51 -20.00	.33612 .59208 .64583 .50655 .37583 .30863 .25243 .19562 .15103 .04535 01061	.64609 .51657 .36434 .27680 .19591 .11320 .06522	.79936 .71684 .63900 .51113 .36037 .27388 .19392 .11213 .06443	00040 01978 .03057 .10313 .22390 .42133 .56817	13782 21071 .00293 00904 .04114 .11259 .23179 .42680 .57340	20	43.64 41.49 40.01 34.33 31.63 29.04 26.29 20.12 11.33 -1.63 -10.06 -20.00	.64803 1.0138 .93479 .72707 .63761 .55550 .48565 .34227 .17866 .05305 .00526	1.0135 .95506 .73478 .63541 .54406 .45293 .27324 .08920	1.0376 .95612 .90049 .59289 .59920 .51334 .42738 .25779 .08409	.00030 02168 01060 .00345 .02059 .06737 .20168 .50073	60116 .05689 .03669 .04701 .06024 .07590 .11998 .24682 .52933
25	15.43 14.24 13.51 11.39 9.99 5.71 2.76 -2.84 -8.80 -12.82 -20.58 -25.00	.16158 .25148 .25148 .21552 .18700 .11446 .07727 .03077 00054 01356 02726 02838	.25171 .17951 .13846 .04571 .01074	.20254 .17314 .15616 .11152 .08611 .02833 .006634	00091 -16708 -25957 -60065 -86101	25350 .31152 .37904 .48255 .53952 .75249 .91415	න	27.44 25.53 23.66 20.40 18.19 16.11 13.30 10.32 6.59 -7.09 -18.51 -25.00	.22042 .35559 .42654 .38067 .32623 .27791 .22226 .17394 .12807 .01504 01988	.43934 .33394 .26765 .21180 .14545 .08814 .03612	.58993 .51597 .44738 .33753 .27072 .21389 .14701 .08914 .03658	03001 .12276 .17957 .23788 .34559 .49327 .71797	16764 45103 04886 .11333 .17016 .23036 .33857 .48752 .71437	25	38.64 36.49 35.01 32.37 29.33 26.63 21.29 15.12 6.33 -6.63 -15.06 -25.00	.39894 .58573 .66105 .64451 .56674 .48897 .35180 .23667 .11971 .02418 ~.00968 ~.02879	.67500 .58751 .49200 .41197 .27010 .13943 .02495	.84942 .77040 .71706 .62447 .52171 .43771 .28721 .14822 .02648	02110 .08844 .13188 .15747 .23223 .41087 .79158	-1.1292 31528 08473 .03109 .07945 .10483 .18360 .37373 77880

a, c See footnotes at end of table.

TABLE II .- MEASURED AND THEORETICAL VALUES OF PRESSURE COEFFICIENTS FOR

TWO-DIMENSIONAL AERODYNAMICALLY BLUNT BODIES - Concluded

(d) Circular arc bodies - upper surface - Concluded

θ _{le} = 78°							θ _{le} = 90°						
a, deg	ð, deg	C _p , meas	C _p	C _p (c)	C _{p,meas} - C _p C _{p,meas} (a)	Cp, meas - Cp Cp, meas (c)	a, deg	δ, deg	Cp, meas	C _p	C _p (c)	Cp, meas - Cp Cp, meas (a)	Cp, meas - Cp Cp, meas (c)
0	75.11 72.89 70.46 67.10 60.56 57.11 49.76 43.16 37.08 31.47 9.82	1.8010 1.7651 1.7181 1.6488 1.4718 1.3604 1.1135 .92354 .72057 .55906 .15683 .05349	1.8012 1.7613 1.7128 1.6363 1.4627 1.3599 1.1238 .90250 .70109 .52544 .05607	1.7758 1.7365 1.6887 1.6133 1.4421 1.3408 1.1080 .88980 .69124 .51805 .05526	-0.00011 .00215 .00308 .00758 .00618 .00037 -00925 .02278 .02703 .06014 .64248	0.01399 .01620 .01711 .02153 .02018 .01441 .00494 .03653 .04070 .07336 .64764	0	87.45 85.13 82.07 78.73 71.05 61.88 57.39 53.40 43.82 36.02 14.27	1.8164 1.8103 1.7864 1.7510 1.6173 1.4006 1.2767 1.1546 .86764 .64176 .19121	1.8164 1.8069 1.7853 1.7505 1.6281 1.4158 1.2912 1.1730 .87242 .62931 .11053	1.8140 1.8045 1.7830 1.7482 1.6259 1.4138 1.2897 1.1715 .87138 .62858 .11043	0 .00188 .00062 .00029 .00668 .01085 .01136 .01594 .00551 .01940 .42194 1.0000	0.00132 .00320 .00190 .00160 -00532 00950 01003 01464 00418 .02071 .42273 1.0000
5	70.11 67.89 65.46 62.10 55.56 52.11 44.76 38.16 32.08 26.47 4.82 -5.00	1.7277 1.6757 1.6127 1.5350 1.3352 1.2091 .95943 .76474 .58303 .44088 .10467 .02494	1.7279 1.6769 1.5908 1.5260 1.3292 1.2171 .96898 .74611 .55122 .38809 .01377	1.6812 1.6318 1.5733 1.4849 1.2931 1.1841 .94265 .72580 .53629 .37774 .01342	00012 00716 .01358 .00457 .00449 00662 00995 .02436 .05456 .11974 .86844	.02691 .02620 .02443 .03138 .03153 .02068 .017490 .05092 .08017 .14321 .87179	5	82.45 80.13 77.07 73.73 66.05 60.96 52.39 43.51 38.82 31.02 9.27 -5.00	1.7782 1.7520 1.7154 1.6624 1.4948 1.3632 1.1219 .85802 .71603 .51311 .13712	1.7800 1.7581 1.7205 1.6691 1.5128 1.3846 1.1364 .85875 .71167 .48093 .04696	1.7863 1.7642 1.7266 1.6749 1.5181 1.3894 1.1406 .86157 .71428 .48085	00101 00348 00297 00403 01204 01570 01292 00085 .00609 .06272 .65753	01041 00696 00652 00752 01559 01922 01667 00414 .00244 .06287 .65672
10	65.11 62.89 60.46 57.10 50.56 43.34 36.37 33.16 27.08 21.47 18 -10.00	1.6038 1.5432 1.4740 1.3948 1.1858 .93530 .70586 .62237 .46406 .34099 .06455	1.6040 1.5441 1.4755 1.3740 1.1627 .91787 .68527 .58333 .40401 .26103	1.5644 1.5064 1.4391 1.3402 1.1339 .89553 .66856 .56883 .39400 .25470	00012 00058 00102 .01491 .01948 .01864 .02917 .06273 .12940 .23449	.02457 .02385 .02368 .03915 .04377 .04252 .05284 .08603 .15097 .25306	10	77.45 75.13 72.07 68.73 61.05 55.96 47.39 43.40 38.51 33.82 26.02 -10.00	1.7143 1.6756 1.6166 1.5546 1.3555 1.2192 .97286 .84447 .71119 .57974 .39853 .00431	1.7143 1.6808 1.6287 1.5626 1.3777 1.2357 .97439 .84942 .69777 .57726 .34615	1.7318 1.6979 1.6453 1.5784 1.3917 1.2481 .98453 .85809 .70468 .56308 .34978	0 00310 00748 00515 01638 01353 00157 00586 .01887 .00424 .13143	01021 01331 01775 01551 02671 02379 01200 01613 .00915 .02874 .12232
15	60.11 57.89 55.46 52.10 45.56 42.11 38.34 31.37 28.16 16.47 -5.18 -15.00	1.4596 1.3997 1.3285 1.2517 1.0445 .91903 .79294 .57758 .50330 .25361 .03451 01018	1.4597 1.3930 1.3178 1.2091 .99012 .87337 .74701 .52610 .43268 .15603	1.4290 1.3641 1.2900 1.1837 .96920 .85489 .73158 .51519 .42346 .15282	-:00007 .00479 .00805 .03403 .05206 .04968 .05792 .08913 .14031 .38476	.02096 .02543 .02898 .05433 .07209 .06979 .07736 .10802 .15863 .39742	15	72.45 70.13 67.07 63.73 56.05 50.96 46.88 38.40 33.51 28.82 21.02 -15.00	1.6341 1.5839 1.5139 1.4440 1.2297 1.0879 .96905 .71456 .58483 .46998 .30960 00689	1.6341 1.5899 1.5246 1.4455 1.2369 1.0846 .95783 .69353 .54808 .41763 .23121	1.6524 1.6076 1.5417 1.4622 1.2507 1.0966 .96837 .70130 .55400 .42238 .23385	0 00379 00707 00104 00586 .00303 .01158 .02943 .06236 .11139 .25320	01120 01496 01836 01260 01708 00799 .00070 .01856 .05272 .10128 .24467
20	55.11 52.89 50.46 47.10 40.56 37.11 33.34 29.76 23.16 11.47 -10.18 -20.00	1.2715 1.2234 1.1515 1.0859 .88588 .76401 .64526 .53588 .38838 .17651 .01251 01912	1.2717 1.2017 1.1241 1.0141 .79926 .66816 .57065 .46580 .29248	1.2792 1.2091 1.1307 1.0201 .80387 .69210 .57428 .46843 .29409 .07518	00016 .01774 .02380 .06612 .09778 .12546 .11563 .13078 .24692 .57685	00606 .01169 .01806 .06059 .09257 .09412 .11000 .12587 .24278	20	67.45 65.13 62.07 58.75 51.05 41.88 37.39 33.40 28.51 16.02 -5.73 -20.00	1.5304 1.4686 1.3925 1.3158 1.0881 .81674 .68885 .57843 .46240 .22410 .02759	1.5304 1.4770 1.4005 1.3109 1.0852 .79973 .66141 .54372 .40895 .13660	1.5503 1.4961 1.4188 1.3279 1.0993 .81000 .67021 .55080 .41410 .15660	0 00572 00575 .00372 .00267 .02083 .03983 .06001 .11560 .39045	01300 01737 01889 00920 01029 .00825 .02706 .04777 .10446 .30120
25	50.11 47.89 45.46 42.10 38.91 35.56 32.11 28.34 21.37 6.47 -15.18 -25.00	1.0198 .99127 .92507 .86680 .79212 .69194 .58690 .48732 .32217 .11877 00642	1.0200 .95316 .88023 .77860 .68358 .58666 .48963 .39020 .22994 .02197	1.1193 1.0464 .96589 .85453 .75001 .64303 .53719 .42840 .25244	00020 .00384 .04847 .08820 .13702 .15302 .16574 .19929 .28628 .81502	09757 05562 04413 .01419 .05316 .07068 .08470 .12091 .21644 .79675	25	62.45 60.13 57.07 53.73 46.05 40.96 32.39 28.40 23.51 18.82 -10.73 -25.00	1.4028 1.3384 1.2522 1.1722 .93903 .78965 .55715 .45715 .35528 .26590 .00565 02723	1.4028 1.3420 1.2571 1.1601 .92498 .76708 .51191 .40371 .28412 .18565	1.4288 1.3668 1.2805 1.1815 .94211 .78108 .52155 .41117 .28924 .18916	0 00269 00391 .01032 .01496 .02858 .08120 .11690 .20029 .30181	01853 02122 02260 00793 00322 .01085 .06390 .10058 .18588 .28860

 $c_{\rm p} = c_{\rm p, max} \frac{\sin^2 6}{\sin^2 6_{\rm max}}$ bComputed by using generalized Newtonian theory with the maximum pressure coefficient at its actual location on each surface, $c_{\rm p} = c_{\rm p, max} \frac{\sin^2 6}{\sin^2 6_{\rm max}}$ bComputed by using generalized Newtonian theory with the lower-surface maximum pressure coefficient at its geometric location, $c_{\rm p} = c_{\rm p, max} \frac{\sin^2 6}{\sin^2 6_{\rm loc}(a=0^{\circ})}$ computed by using generalized Newtonian theory with both the maximum pressure coefficient and leading-edge angle at $\sqrt[3]{a} = \sqrt[3]{a} = \sqrt[$

(a) Parabolic arc models.

(b) Circular arc models.

(c) Wedge models.

L-63-83

25 Photograph of two-dimensional aerodynamically blunt bodies.

Figure 2.- Photograph of 780 parabola with extensions and support.

Figure 3.- Schematic diagram of model support system.

Figure 4.- Maximum pressure coefficients based upon an assumed Mach number of 6.

Figure 5.- Pressure distributions of two-dimensional 780 parabola with and without extensions.

Figure 6.- Pressure distributions of two-dimensional parabolas.

Figure 6.- Continued.

Figure 6.- Continued.

Figure 6.- Continued.

(e) $\alpha = 20^{\circ}$.

Figure 6.- Continued.

Figure 6. - Concluded.

(f) $\alpha = 25^{\circ}$.

Figure 7.- Pressure distributions of two-dimensional circular arcs.

Figure 7. - Continued.

(c) $\alpha = 10^{\circ}$.

Figure 7.- Continued.

Figure 7.- Continued.

Figure 7.- Continued.

(f) $\alpha = 25^{\circ}$.

Figure 7.- Concluded.

Figure 8.- Pressure distributions of wedges.

Figure 8.- Continued.

Figure 8. - Continued.

(a) $\alpha = 15$

Figure 8. - Continued.

(e) $\alpha = 20^{\circ}$.

Figure 8. - Continued.

Figure 8.- Concluded.

Figure 9.- Schlieren photographs of aerodynamically blunt bodies near 0° angle of attack.

Figure 10.- Comparison of measured and predicted pressure coefficients on the lower surface for aerodynamically blunt bodies.

 δ_{le} , deg

Figure 11.- Comparison reasured and predicted maximum pressure coefficients on the upper surface for aerodynamically blunt bodies.

Figure 12.- Comparison of geometric and measured slopes at which maximum pressure occurred for various angles of attack on the parabolic and circular arc bodies.

(a) Lower surface

(a) Lower surface.

Figure 13.- Comparison of pressure distributions on wedges with constant deflection angles. Solid symbols are for flat-plate data at approximately the same deflection angles (ref. 2).

1, 1, 6

(b) Upper surface.

Figure 13. - Continued.

53

(b) Concluded.

Figure 13. - Concluded.

Figure 14.- Correlation of pressure distributions with generalized Newtonian theory for two-dimensional parabolic arc models.

Figure 15.- Correlation of pressure distributions with generalized Newtonian theory for two-dimensional circular arc models.

0

55