

Tidydata y manipulación de datos

Sesión N° 5 05 septiembre 2021 Análisis de datos estadísticos en R

Profesora Valentina Andrade de la Horra **Ayudantes** Dafne Jaime y Nicolás Godoy

Contenidos Sesión 5

Estructura de datos

Cálculos agregados

Tidy data

Combinar dara

1: Estructura de datos

1: Estructura de datos

- Hasta ahora hemos asumido una estructura de datos ad hoc a los análisis que queremos realizar
- No siempre los datos vendrán "limpios" o con la estructura columna-fila que necesitamos
- No siempre nuestros datos vendrán completos y necesitaremos "unir" distintas fuentes de información

Estructura de los datos

- También ocurrirá que vamos a querer hacer cálculos agregados
- Algunos agregando por cada observación o cada columna

Pensemos algunos ejemplos... 1. 2. 3.

Creación de variables agregadas

rowwise() para agrupar filas

- Construcción de índices para cada observación
- Sumativos y promedio

```
datos %>% #Especificamos que trabajaremos con el dataframe dat
rowwise() %>% #Especificamos que agruparemos por filas
mutate(ing_tot = sum(ss_t, svar_t, reg_t)) #Creamos una nuev
```

group_by() para agrupar columnas

- Cálculos en base a características de una o varias columnas
- Calcular el promedio de edad según comuna (group_by() + mutate())
- Calcular una nueva variable que diga cuántas mujeres tengo en mis datos (group_by() + summarise())

datos %>%
 group_by(sexo) %>% #Espeficicamos que agruparemos por sexo
 summarise(media = mean(ing_tot)) #Creamos una columna llamad

Vamos a practicar!

¿Dónde?

Descargar el zip del sesión 5 el sitio del curso

1. Recursos de la práctica

- Datos: Encuesta Suplementaria de Ingresos (ESI) en su versión 2020.
- Libro de códigos.

Tarea Bonus

- Con CASEN 2020 calcular
 - Cuántas personas en la muestra son de FONASA
 - Cuántas personas en la muestra son Mujeres y de FONASA
 - Replicar los cálculos de ingresos del hogar y contrastar con la variable original obtenida

Entrega: próximo lunes 13 de septiembre

Tidydata

Paquete tidyr

tidyr para solucionar los problemas estructura de datos

- La estructura "**limpia**" considera a las observaciones en las filas y las variables en las columnas
- Esto no siempre podrá ser así.

country	year	cases	population		
Afghanstan	100	45	18:57071		
Afghanistan	2000	2666	20!95360		
Brazil	1999	37737	172006362		
Brazil	2000	80488	174:04898		
China	1999	212258	1272915272		
Chin	200	21 66	1280 28583		
variables					

Las tres reglas de un buen dataset tidyr

- 1. Cada variable tiene que estar su propia columna
- 2. Cada observación tiene que estar en su propia fila
- 3. Cada valor tiene que estar en su propia celda.

¿Cumple con las reglas?

• ¿Qué problema de procesamiento nos podría producir?


```
#> # A tibble: 6 x 3
#>
  country year cases
  <chr> <chr>
#>
                    <int>
#> 1 Afghanistan 1999
                  745
#> 2 Afghanistan 2000
                  2666
#> 3 Brazil
              1999
                    37737
#> 4 Brazil 2000
                  80488
#> 5 China
              1999 212258
#> 6 China
              2000 213766
```

pivot_*()

- Para hacer ese paso de filas a columnas (o viceversa) se hace un procedimiento que se llama pivote
- pivot_longer() y pivot_wider() (son los inversos)

Wide format

• Pensemos en el primer ejemplo donde a1, a2 y a3 son los años

ID	a1	a2	a3
1			
2			
3			

wide format

Long format

ID	key	value
1	a1	
2	a1	
3	a1	
1	a2	
2	a2	
3	a2	
1	a3	
2	a3	
3	a3	

long format

¿Cómo ocupar pivot_longer?


```
table %>%
 pivot_longer(c(`1999`, `2000`), names_to = "year", values_to
#> # A tibble: 6 x 3
#> country year cases
#> <chr> <chr> <chr> <int>
#> 1 Afghanistan 1999 745
#> 2 Afghanistan 2000 2666
#> 3 Brazil 1999 37737
#> 4 Brazil 2000
                  80488
#> 5 China
              1999 212258
         2000 213766
#> 6 China
```


country	year	cases		country	1999	2000
Afghanistan	1999	745	\leftarrow	Afghanistan	7/15	2666
Afghanistan	2000	2666	\leftarrow	Brazil	37737	80488
Brazil	1999	37737		China	212258	213766
Brazil	2000	80488	\leftarrow			
China	1999	2122581				
China	2000	213766			table4	

Cómo ocupar pivot wider


```
table2
#> # A tibble: 12 x 4
#> country year type
                                count
#> <chr> <int> <chr>
                           <int>
#> 1 Afghanistan 1999 cases
                         745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases
                                2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil 1999 cases 37737
#> 6 Brazil 1999 population 172006362
#> # ... with 6 more rows
```


table2 %>% pivot_wider(names_from = type, values_from = count) #> # A tibble: 6 x 4 #> country year cases population *#> <chr> <int> <int> <int> <int> <* #> 1 Afghanistan 1999 745 19987071 #> 2 Afghanistan 2000 2666 20595360 1999 37737 172006362 #> 3 Brazil #> 4 Brazil 2000 80488 174504898 #> 5 China 1999 212258 1272915272

2000 213766 1280428583

#> 6 China

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

table2

¡Vamos a practicar pivotes en tidyr!

¿Qué pasa si la regla N°3 no se cumple?

separate() y unite

Columnas con información de más de una variable

1999 212258/1272915272

2000 213766/1280428583

#> 4 Brazil 2000 80488/174504898

table3

#> 5 China

#> 6 China


```
table3 %>%
 separate(rate, into = c("cases", "population"))
#> # A tibble: 6 x 4
#> country year cases population
#> <chr> <int> <chr> <int> <chr> <
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China
         1999 212258 1272915272
#> 6 China
          2000 213766 1280428583
```


country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

table3

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

separate() y algunos argumentos adicionales

• Especificar el separador (sep =)

```
table3 %>%
  separate(rate, into = c("cases", "population"), sep = "/")
```

• Especificar si queremos que se cambie la clase de la variable

```
table3 %>%
  separate(rate, into = c("cases", "population"), convert = TR
#> # A tibble: 6 x 4
```

unite() el proceso inverso

country	year	rate
Afghanistan	19 99	745 / 19987071
Afghanistan	20 00	2666 / 20595360
Brazil	19 99	37737 / 172006362
Brazil	20 00	80488 / 174504898
China	19 99	212258 / 1272915272
China	20 00	213766 / 1280428583

country	century	year	rate
Afghanistan	19	99	745 / 19987071
Afghanistan	20	0	2666 / 20595360
Brazil	19	99	37737 / 172006362
Brazil	20	0	80488 / 174504898
China	19	99	212258 / 1272915272
China	20	0	213766 / 1280428583

table6

unite()

• Será muy útil para construir variables "combinatorias"

```
table5 %>%
 unite(new, century, year, sep = "")
#> # A tibble: 6 x 3
#> country new rate
#> <chr> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
          1999 37737/172006362
#> 3 Brazil
#> 4 Brazil
              2000 80488/174504898
              1999 212258/1272915272
#> 5 China
              2000 213766/1280428583
#> 6 China
```

¡Vamos a practicar con ESI©

Unir datos

Unir datos

No es una tarea fácil unir un set de datos x e y

Recomendaciones

- 1. Conocer bien los datos x e y
- 2. Verifica las unidades de observación
- 3. Define tu variable "llave" o **key**
- 4. Define qué procedimiento quieres hacer

4. Procedimientos de unión

rbind(A, B)	cbind(A, B)	merge(A, B, by='key)
A	A C B	key A Key R
В	열 결합	동일 key 값 기준 결합
행 결합		http://rfriend.tistory.com

merge()

bind_cols y bind_rows

• bind_* para "pegar" o columnas o filas

En sintesis

Estructura de datos

Cálculos agregados

Tidy data

Combinar data

¡Y a no olvidar el flujco para el análisis!

Nos permite hacernos amigas/os más rápido del programa

¿Y eso era?

Tidydata y manipulación de datos

Sesión Nº 5 05 septiembre 2021 Análisis de datos estadísticos en R

Profesora Valentina Andrade de la Horra **Ayudantes** Dafne Jaime y Nicolás Godoy