Quantum Finance:

Using Quantum Methods to Speed-up Monte Carlo Simulations

Zach Buttenwieser Dillon Dunteman

Background

Why did we choose this project?

We can potentially predict prices <u>faster</u> and <u>more accurately</u> using quantum methods!

Finance Introduction

What is a European call option?

$$f(S_T) = \max\{0, S_T - K\}$$

IBM stock has been trading at ~\$140 on the NYSE

Assume that one month ago, Zach bought a European call option at a strike price of \$130 with an expiration date of today.

He can then sell the stock at its market value of **\$140** for a profit of **\$10**.

Finance Introduction

Analytical Pricing: The Black Scholes Model

By taking the limit of a binomial tree, underlying assets are modeled by a stochastic process known as Brownian Motion

$$S_t = S_0 e^{\sigma W_t + (\alpha - \sigma^2/2)t}$$

$$f(S_T) = \max\{0, S_T - K\}$$

$$\Pi = e^{-rT} \mathbb{E}_{\mathbb{Q}}[f(S_T)]$$

Improving this Pricing Method

Can a quantum algorithm be utilized in order to improve efficiency of Monte Carlo methods and decrease estimation error?

Loading Uncertainty Models

Given:

$$W_t - W_s \sim N(0, t-s)$$

We know:

$$p_T(x) = rac{1}{\sqrt{2\pi T}}e^{-rac{x^2}{2T}}.$$

Qubits only hold discrete distributions

Create the G gate

```
|\mathcal{G}|0^n\rangle = \sum_{j=0}^{2^n-1} \sqrt{p_j} |j\rangle.
```

```
Find G 0:
[[ 0.17747501+0.j]
   0.28963622+0.jl
  0.40147945+0.jl
  0.47268143+0.jl
  0.47268143+0.jl
   0.40147945+0.j]
   0.28963622+0.j]
   0.17747501+0.j]
```

Create the Chi State

The R gate encodes the payoff function v(x) in an ancillary qubit

$$\mathcal{R}|x\rangle|0\rangle = |x\rangle(\sqrt{1-v(x)}|0\rangle + \sqrt{v(x)}|1\rangle).$$

$$ightarrow \sum_{j=0}^{2^n-1} \sqrt{p(x_j)} |j
angle \left(\sqrt{1- ilde{v}(x_j)} |0
angle + \sqrt{ ilde{v}(x_j)} |1
angle
ight) =: |\chi
angle.$$

Measuring the final qubit gives the expectation

$$\mu = \langle \chi | (\mathcal{I}_{2^n} \otimes |1\rangle\langle 1|) | \chi \rangle = \sum_{j=0}^{2^n-1} p_T(x_j) \tilde{v}(x_j).$$

Quantum Circuit Overview

Q Gate and amplitude amplification

$$V|\chi\rangle = \cos(\theta/2)|\chi\rangle + e^{i\phi}\sin(\theta/2)|\chi^{\perp}\rangle$$

Expectation value from multi-qubit state $|\chi\rangle$ can be calculated if we find θ

$$1 - 2\mu = \cos(\theta/2).$$

Our Simulation

```
In [834]: # One Function to Price Option
          def Quantum Price(S, K, T, r, sigma, qubits):
              def v euro(x):
                  return max(0, S * np.exp((sigma * x) + (r - 0.5 * sigma * sigma)*T)
              dp = disc points(T, sigma, 2, qubits)
              norm probs = norm disc probs(dp, T)
              G 0 = G on zero(norm probs, qubits)
              chi = get Chi(G 0, dp, norm probs, gubits, v euro)
              eq = mu(chi, qubits)
              return eq * np.e ** (-r * T)
          print(Quantum Price(100, 95, 60/365, 0.05, 0.3, 3))
          print(Quantum Price(100, 95, 60/365, 0.05, 0.3, 6))
          print(bs price(100, 95, 60/365, 0.05, 0.3))
```

7.87276420958 7.65438447923 8.15000633124

Our Simulation

Quantum Generated Prices (brown) vs. Analytically Calculated Prices (blue)

Running on a Real Device

- Qiskit Aqua Finance Package

```
# construct circuit factory for payoff function
european_call = EuropeanCallExpectedValue(
   uncertainty_model,
   strike_price=strike_price,
   c_approx=c_approx
)
```

```
# number of ancillary qubits = number in uncertainty model+2
anc_qubits = num_uncertainty_qubits+2
N = num_uncertainty_qubits + anc_qubits

q = QuantumRegister(N)
c = ClassicalRegister(N)
qc = QuantumCircuit(q,c)
european_call.build(qc,q, q_ancillas=[q[i] for i in range(anc_qubits, N)])
qc.measure(q,c)
for i in range (0,7):
    qc.measure(q[i],c[i])
```

Real Device Results

5 Qubit Device (3 ancillary qubits measured)

Real Device Results - Amplitude Amplification

With a strike price of \$2 and payoff price estimated at ~\$3, we can see a calculated payoff of \$1

Real Device Results

14 Qubit Device (7 ancillary qubits measured)

Future Work

 Future experimentation and analysis of results on the real device, along with successful amplitude estimation, could lead to meaningful conclusions about the speed-up

- Current theoretical speed-up is nearly quadratic, but robustness-to-noise is unknown

 Modifying "G" gate and changing payoff functions can allow for speed-up of pricing of more complex derivatives