# Московский Государственный Технический Университет имени Н.Э.Баумана

# МУЛЬТИВИБРАТОР НА ОСНОВЕ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ИНТЕГРИРУЮЩЕЙ RC – ЦЕПЬЮ

Методические указания к выполнению лабораторных работ по курсу «Электроника и схемотехника»

Москва 2019

# **Лабораторная работа №4.** «МУЛЬТИВИБРАТОР НА ОСНОВЕ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ИНТЕГРИРУЮЩЕЙ RC – ЦЕПЬЮ»

<u>Цель работы</u> - Изучение принципов построения схем мультивибраторов на основе ОУ, исследование режимов работы.. Продолжительность работы - 4 часа.

#### Теоретическая часть

Простой мультивибратор может быть создан и на базе операционного усилителя (ОУ).



Рис.1 Схема мультивибратора на ОУ и временная диаграмма его работы.

Резисторы R1 и R2 образуют делитель напряжения, через который часть выходного напряжения подается обратно на неинвертирующий вход, образуя положительную обратную связь. Резистор R образует цепь отрицательной обратной связи. Наличие сильной положительной обратной связи приводит к тому, что при появлении на входах ОУ отличного от нуля дифференциального сигнала напряжение на его выходе равно либо +Uнас, либо -U\*нас, где +Uнас и -U\*нас - напряжения насыщения ОУ, близкие к напряжениям питания +E1 и -E2. Пусть в момент включения питания выходное напряжение становится равным +Uнас. Тогда на неинвертирующем входе 2 установится напряжение

$$+U_2 = +U_{\text{\tiny HAC}} \, rac{R_2}{R_1 + R_2} \, .$$

Конденсатор C начнет заряжаться через резистор R. Заряд будет продолжаться до тех пор, пока напряжение на конденсаторе, а следовательно, и на инвертирующем входе 1 ОУ не достигнет величины напряжения +U2.

После того, как напряжение на входах 1 и 2 сравняются, дальнейший процесс заряда конденсатора приведет к смене знака дифференциального напряжения, действующего на входах ОУ. Благодаря цепи положительной обратной связи схема быстро перебросится в другое состояние - на выходе ОУ опять будет состояние насыщения, но напряжение изменит знак и станет равным -U\*нас. После переключения конденсатор С начнет перезаряжаться от +U2 до

$$-U^*_2 = \frac{R_2}{R_1 + R_2} (-U^*_{\text{\tiny HAC}}).$$

Затем, после выравнивания напряжений на входах 2 и 1, схема переключается в первоначальное состояние. На рисунке выше показана форма напряжений на конденсаторе C и на выходе ОУ.

Период колебаний мультивибратора вычисляется по времени перезарядки конденсатора С от +U2 до -U\*2 и от -U\*2 до +U2. Предположим, что |+U нас|=|-U\* нас|=|U нас|=|U справедливо для случая симметричного питания |+E1|=|-E2|=|E| и правильной балансировке ОУ.

Пусть в начальный момент времени напряжение на конденсаторе

$$U_{c|_{t=0}} = -U^*_{2} = -B|U_{Hac}|,$$

где  $B = \frac{R_2}{R_1 + R_2}$  - коэффициент передачи цепи положительной обратной связи.

Конденсатор будет перезаряжаться по закону  $U_C = Ae^{-\frac{1}{RC}} + |U_{\text{нас}}|$ . Константа A = -(1+B)|Uнас $|U_C| = Ae^{-\frac{1}{RC}} + |U_{\text{нас}}|$ . Константа  $A = -(1+B)|U_C| = Ae^{-\frac{1}{RC}} + |U_{\text{нас}}|$ . Через половину периода  $A_C = Ae^{-\frac{1}{RC}} + |U_{\text{нас}}|$ . Через половину периода  $A_C = Ae^{-\frac{1}{RC}} + |U_{\text{нас}}|$ . Подставляя это значение в уравнение, определим длительность полупериода колебаний мультивибратора:

откуда следует выражение для полного периода колебаний: 
$$T = 2RC \ln \left( \frac{2R_2}{R_1} + 1 \right)$$
.

При выводе выражения для периода колебаний мы пренебрегли влиянием входного и выходного сопротивлений ОУ, что легко реализуется в практических схемах.

### И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

**Задание 1.** Соберите, согласно варианту (Табл.1), на рабочем поле среды Multisim схему для испытания симметричного автоколебательного мультивибратора на ОУ (рис. 2). Запустите процесс моделирования работы схемы. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.



Рис. 2 Схема исследования симметричного мультивибратора на ОУ

Варианты при моделировании в Multisim, для задания 1:

Таблица 1

| Вариант          | R1, R2, R4 | C1    |
|------------------|------------|-------|
|                  | кОм        | мкФ   |
| 1,6,11,16,21,26  | 51         | 0,043 |
| 2,7,12,17,22,27  | 47         | 0,047 |
| 3,8,13,18,23,28  | 43         | 0,051 |
| 4,9,14,19,24,29  | 40         | 0,056 |
| 5,10,15,20,25,30 | 39         | 0,062 |

В окне осциллографа **XSC1**, с помощью визирных линий, и с помощью частотомера **XFC1 проведите измерения** параметров выходного напряжения:  $U_{\textit{наc}}^{^{+}}$ ,  $U_{\textit{nac}}^{^{-}}$ ,  $U_{\textit{2}}^{^{-}}$ ,  $tu_{1}$ ,  $tu_{2}$ , периода T и частоты f колебаний напряжения на выходе и **сравните** измеренные временные параметры с расчётными величинами. Параметры внесите в таблицу 2.

Таблица 2

|        | $U_{_{\it Hac}}^{^{^{+}}}$ | $U_{{\scriptscriptstyle Hac}}^{^-}$ | $U_{2}^{^{\scriptscriptstyle +}}$ | $\overline{U_2}$ | $tu_1$ | $tu_2$ | T | f |
|--------|----------------------------|-------------------------------------|-----------------------------------|------------------|--------|--------|---|---|
| Измер. |                            |                                     |                                   |                  |        |        |   |   |
| Расч.  |                            |                                     |                                   |                  |        |        |   |   |

Объясните полученные результаты.

**Задание 2.** Соберите, согласно варианту (Табл.3), на рабочем поле среды Multisim схему для испытания несимметричного автоколебательного мультивибратора на ОУ (рис. 3). Запустите процесс моделирования работы схемы. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.

Варианты при моделировании в Multisim, для задания 2:

Таблица 3

| Вариант          | C1    | R1, R2, R4 | R5  |
|------------------|-------|------------|-----|
|                  | мкФ   | кОм        | кОм |
| 1,6,11,16,21,26  | 0,091 | 51         | 102 |
| 2,7,12,17,22,27  | 0,082 | 47         | 94  |
| 3,8,13,18,23,28  | 0,075 | 43         | 86  |
| 4,9,14,19,24,29  | 0,068 | 40         | 80  |
| 5,10,15,20,25,30 | 0,062 | 39         | 78  |



Рис.3 Схема исследования несимметричного мультивибратора на ОУ

В окне осциллографа **XSC1**, с помощью визирных линий, и с помощью частотомера **XFC1 проведите измерения** параметров выходного напряжения:  $U_{\textit{наc}}^{^{+}}$ ,  $U_{\textit{nac}}^{^{-}}$ ,  $U_{\textit{2}}^{^{-}}$ ,  $tu_{1}$ ,  $tu_{2}$ , периода T и частоты f колебаний напряжения на выходе и **сравните** измеренные временные параметры с расчётными величинами. Параметры внесите в таблицу 4.

Таблица 4

|        | $U_{{\scriptscriptstyle Hac}}^{^{\scriptscriptstyle +}}$ | $U_{\scriptscriptstyle{	extit{	extit{hac}}}}^{^{-}}$ | $U_2^{^{\scriptscriptstyle +}}$ | $\overline{U_2}$ | $tu_1$ | $t_{u_2}$ | T | f |
|--------|----------------------------------------------------------|------------------------------------------------------|---------------------------------|------------------|--------|-----------|---|---|
| Измер. |                                                          |                                                      |                                 |                  |        |           |   |   |
| Расч.  |                                                          |                                                      |                                 |                  |        |           |   |   |

Объясните полученные результаты.

**Задание 3.** Соберите, согласно варианту (Табл. 5), на рабочем поле среды Multisim схему для испытания автоколебательного мультивибратора на ОУ, с изменяемой скважностью импульсов. (рис. 4). Запустите процесс моделирования. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.



Рис.4 Схема исследования мультивибратора на ОУ с изменяемой скважностью импульсов

#### Варианты при моделировании в Multisim, для задания 3:

Таблица 5

| Вариант          | C1    | R1, R2 | R3  | R4, R5, R6 |
|------------------|-------|--------|-----|------------|
| Бариант          | мкФ   | кОм    | кОм | кОм        |
| 1,6,11,16,21,26  | 0,047 | 43     | 5,1 | 51         |
| 2,7,12,17,22,27  | 0,022 | 42     | 5,6 | 39         |
| 3,8,13,18,23,28  | 0,033 | 39     | 8,2 | 47         |
| 4,9,14,19,24,29  | 0,068 | 47     | 4,7 | 24         |
| 5,10,15,20,25,30 | 0,062 | 51     | 6,2 | 39         |

Проведите исследование влияния элементов схемы, влияющих на скважность импульсов, на примере изменения величины R4. Для этого необходимо изменять значение резистора R4 от 0% до 100%, через 20%.

С помощью частотомера **XFC1 проведите измерения** параметров выходного напряжения:  $tu_1$ ,  $tu_2$ , периода T и частоты f колебаний напряжения на выходе и внесите в таблицу 6.

Таблица 6

|        | R4<br>0% | R4<br>20% | R4<br>40% | R4<br>60% | R4<br>80% | R4<br>100% |
|--------|----------|-----------|-----------|-----------|-----------|------------|
| $tu_1$ |          |           |           |           |           |            |
| $tu_2$ |          |           |           |           |           |            |
| T      |          |           |           |           |           |            |
| f      |          |           |           |           |           |            |

Начертите графики зависимостей  $tu_1$ ,  $tu_2$ , периода T и частоты f колебаний от значения резистора R4.

Объясните полученные результаты.

**Задание 4.** Соберите, согласно варианту (Табл. 7), на рабочем поле среды Multisim схему для испытания автоколебательного мультивибратора на ОУ, с изменяемой частотой следования импульсов. (рис. 5). Запустите процесс моделирования. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.



Рис.5 Схема исследования мультивибратора на ОУ с изменяемой частотой следования импульсов

#### Варианты при моделировании в Multisim, для задания 4:

Таблица 7

| Вариант          | C1    | R1, R2 | R3  | R4, R5 |
|------------------|-------|--------|-----|--------|
| Бариант          | мкФ   | кОм    | кОм | кОм    |
| 1,6,11,16,21,26  | 0,047 | 43     | 5,1 | 51     |
| 2,7,12,17,22,27  | 0,022 | 42     | 5,6 | 39     |
| 3,8,13,18,23,28  | 0,033 | 39     | 8,2 | 47     |
| 4,9,14,19,24,29  | 0,068 | 47     | 4,7 | 24     |
| 5,10,15,20,25,30 | 0,062 | 51     | 6,2 | 39     |

Проведите исследование влияния элементов схемы, влияющих на частоту следования импульсов. Для этого необходимо изменять значение резистора R4 от 0% до 100%, через 20%.

С помощью частотомера **XFC1 проведите измерения** параметров выходного напряжения:  $tu_1$ ,  $tu_2$ , периода T и частоты f колебаний напряжения на выходе и внесите в таблицу 8.

Таблина 8

|        | R4<br>0% | R4<br>20% | R4<br>40% | R4<br>60% | R4<br>80% | R4<br>100% |
|--------|----------|-----------|-----------|-----------|-----------|------------|
| $tu_1$ |          |           |           |           |           |            |
| $tu_2$ |          |           |           |           |           |            |
| T      |          |           |           |           |           |            |
| f      |          |           |           |           |           |            |

Начертите графики зависимостей  $tu_1$ ,  $tu_2$ , периода T и частоты f колебаний от значения резистора R4.

Объясните полученные результаты.

## СОДЕРЖАНИЕ ОТЧЕТА:

- 1. Наименование и цель работы.
- 2. Перечень приборов, использованных в экспериментах, с их краткими характеристиками.
- 3. Изображения электрических схем для испытания мультивибраторов.
- 4. Копии осциллограмм, отображающих работу мультивибраторов.
- 5. Таблицы результатов измеренных и расчётных параметров исследуемых мультивибраторов.
  - 6. Выводы по работе.

### Контрольные вопросы:

- 1. Объясните принцип работы автоколебательного мультивибратора, построенного на ОУ.
- 2. Укажите как можно вычислить длительность импульсов и период колебаний выходного напряжения мультивибратора на ОУ?
- 3. Укажите, чем определяется максимальное значение выходного напряжения мультивибратора на ОУ?
- 4. Объясните, каким образом симметричный мультивибратор на ОУ можно преобразовать в несимметричный?
- 5. Расскажите о принципе работы мультивибратора на ОУ при изменении скважности импульсов.
- 6. Поясните принцип работы мультивибратора при изменении частоты следования импульсов.