Financial Time Series Analysis

There are two columns to be used, log-returns of a stock and its google trends. Let the log-returns of the stock on date t be X_t , and let the google trend (for that stock) on date t be Z_t . Google trend series is not the relative change series.

First, change Z_t to a relative change series, call it $Y_t=(Z_t-Z_{t-1})/Z_{t-1}$. This will reduce the series length by 1. Now you have the training data $(X_t,Y_t), 2 \le t \le T$.

Goal: The goal of your analysis is to use Y_{t-1}, Y_{t-2}, \ldots , and X_{t-1}, X_{t-2}, \ldots to come up with prediction intervals for X_t , the future.

Output required: Plot the test series $\{X_t\}$ and the prediction intervals obtained. Additionally, provide plots for the width of the conformal prediction intervals and also trailing coverage probabilities over a window of length 20. Comment on the validity and accuracy of prediction intervals reported.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller
import statsmodels.tsa.api as tsa
from arch import arch_model
from scipy.special import comb

import warnings
warnings.filterwarnings("ignore")

In [5]: train_df = pd.read_csv('./synthetic_train_AAPL.csv', index_col=0)
In [6]: train_df.head()
```

out[6]:		Close	GoogleTrend	log_ret				
	Date	0.000						
	2013-01-03	16.458612	86.193548	-0.012703				
	2013-01-04	16.000160	85.290323	-0.028250				
	2013-01-07	15.906043	82.580645	-0.005900				
	2013-01-08	15.948854	81.677419	0.002688				
	2013-01-09	15.699588	80.774194	-0.015753				
	<pre>plt.suptitle('train: Log Return and Google Trend') fig.tight_layout() plt.show()</pre>							
			Los Datum		train: Log Return and Google Trend			
	0.10 -	والمناور والمارية	Log Return		Google Trend 100 - 90 - 80 - 70 -			
-	0.00 - -0.05 - -0.10 -	Appendix 191			60 - 50 - 40 - 30 -			
_	-0.15			<u> </u>	20 -			

Step 1

2013-01-03 2014-12-29 2016-12-21 2018-12-18 2020-12-11 2022-12-07

*Create the dataset $(X_t,Y_{t-1},Y_{t-2}), 4\leq t\leq T$. This is a trivariate data. Regress X_t on Y_{t-1},Y_{t-2} and obtain the coefficients and residuals. So, you get $u_t=X_t-(\hat{\gamma}_0+\hat{\gamma}_1Y_{t-1}+\hat{\gamma}_2Y_{t-2})$. You should have T-3 residual values. Save

2013-01-03 2014-12-29 2016-12-21 2018-12-18 2020-12-11 2022-12-07

 $\hat{\gamma}_0, \hat{\gamma}_{\text{1}}$, and $\hat{\gamma}_{\text{2}}.$ You will need these later.*

```
In [11]: train_df['Yt'] = train_df['GoogleTrend'].pct_change()

In [12]: X = train_df['log_ret'].iloc[3:]
    X.name = 'X'
    Y_lag1 = train_df['Yt'].shift(1).iloc[3:]
    Y_lag1.name = 'Y_lag1'
    Y_lag2 = train_df['Yt'].shift(2).iloc[3:]
    Y_lag2.name = 'Y_lag2'
    assert len(X) == len(train_df) - 3
    assert len(Y_lag1) == len(train_df) - 3
    assert len(Y_lag2) == len(train_df) - 3

In [13]: # regress X on Y_lag1 and Y_lag2
    X_regressors = sm.add_constant(pd.concat([Y_lag1, Y_lag2], axis=1))
    model = sm.OLS(X, X_regressors).fit()

In [14]: gamma_hat_0, gamma_hat_1, gamma_hat_2 = model.params
```

Step 2

Test if $\{u_t\}$ is stationary or not using an appropriate test. (You should justify your choice of test.) If it is stationary, proceed to Step 3. If not, difference the series as many times as needed to obtain a stationary series. If you think necessary, you can apply transformations to the series. Call the resulting stationary series $\{v_t\}$. Depending on the differencing and your test of stationarity, this can be a shorter series than $\{u_t\}$.

```
In [15]: ut = X - (gamma_hat_0 + gamma_hat_1 * Y_lag1 + gamma_hat_2 * Y_lag2)
```

We use the Augmented Dickey-Fuller (ADF) test to determine whether the residual is stationary. Testing for a unit root is essentially testing for stationarity. The ADF test incorporates lagged differences of the series to account for autocorrelation (serial correlation) in the residuals. Without this adjustment, we might obtain misleading results if the residuals are autocorrelated. Therefore, the ADF test is more robust.

```
In [16]: def difference until stationary(series, max diff=5, significance=0.05):
             n diff = 0
             diffed series = series.copy()
             adf_result = adfuller(diffed_series.dropna())
             p value = adf result[1]
             while p_value > significance and n_diff < max_diff:</pre>
                 diffed series = diffed series.diff().dropna()
                 n diff += 1
                 adf result = adfuller(diffed series)
                 p value = adf result[1]
             return diffed series, n diff, adf result
         vt, n diff, adf result = difference until stationary(ut)
         print(f"Number of differences applied: {n_diff}")
         print(f"Final ADF Test p-value: {adf result[1]}")
         if n diff == 0:
             print("Residuals were already stationary.")
         else:
             print(f"Residuals became stationary after {n diff} differencing(s).")
```

Number of differences applied: 0 Final ADF Test p-value: 7.01437200803369e-30 Residuals were already stationary.

Step 3

Find an appropriate ARMA model for $\{v_t\}$. Justify your steps, why you choose those specific p,q for the ARMA model. (Some of your justifications can also be computational constraints. For example, if within the time you cannot run a model with p>10, you can use this as a justification to stop at p=10.) Save the coefficient estimates $\hat{\phi}_1,\dots,\hat{\phi}_p$ and $\hat{\theta}_1,\dots,\hat{\theta}_q$. Calculate the residuals of the ARMA model: call that series $\{e_t\}$.

```
In [17]: fig, axes = plt.subplots(3, 1, figsize=(10, 6))
vt.plot(ax=axes[0])
```

```
tsa.graphics.plot_acf(vt, zero=False, auto_ylims=True, lags=60, ax=axes[1])
tsa.graphics.plot_pacf(vt, zero=False, auto_ylims=True, lags=60, ax=axes[2])
plt.suptitle('vt')
fig.tight_layout()
plt.show()
                                                        vt
0.1
0.0
-0.1
    2013-01-08
                       2015-01-02
                                        2016-12-27
                                                          2018-12-21
                                                                            2020-12-16
                                                                                              2022-12-12
                                                          Date
                                                    Autocorrelation
0.1
0.0
-0.1
                         10
                                         20
                                                          30
                                                                           40
                                                                                            50
                                                                                                            60
                                                 Partial Autocorrelation
0.1
0.0
-0.1
                        10
                                         20
                                                          30
                                                                           40
                                                                                            50
                                                                                                            60
```

The lags for ACF and PACF are significant for up to 10 lags. Due to computation constraints, we could choose an MA(10) and AR(10) model, and search for the optimal coefficients based on AIC.

Step 4

Test if $\{e_t\}$ has ARCH effects. If no, then set $\hat{\sigma}_t^2$ as the variance estimate from ARMA model. If yes, then find an appropriate GARCH model for $\{e_t\}$ and save the coefficient estimators $\hat{\alpha}_0, \hat{\alpha}_1, \dots, \hat{\alpha}_m$ and $\hat{\beta}_1, \dots, \hat{\beta}_s$. This allows you to compute $\hat{\sigma}_t$.

```
In [23]: residuals_arma_sq = np.square(et)
sm.stats.acorr_ljungbox(residuals_arma_sq, lags=10, boxpierce=True)
```

Out[23]:		lb_stat	lb_pvalue	bp_stat	bp_pvalue
	1	110.287924	8.474328e-26	110.170887	8.989719e-26
	2	200.178486	3.402469e-44	199.934260	3.844387e-44
	3	238.072710	2.484709e-51	237.761463	2.901218e-51
	4	284.734302	2.124133e-60	284.324020	2.604062e-60
	5	370.923689	5.460064e-78	370.299992	7.439461e-78
	6	431.561536	4.556422e-90	430.766242	6.756551e-90
	7	463.367955	5.974232e-96	462.471403	9.308341e-96
	8	530.388383	2.113921e-109	529.254759	3.702331e-109
	9	571.394351	2.875108e-117	570.101170	5.445439e-117
	10	616.196664	5.953841e-126	614.713307	1.238029e-125

The p-values are very significant, so we reject the null hypothesis that the process is a white noise with no autocorrelation. Therefore, there are ARCH effects, i.e. the volatility at time t is predictive of volatility at time t + h.

```
In [24]: __, p_lagrange, __, p_f = sm.stats.diagnostic.het_arch(et, nlags=10)
    print("Engle's test p-value (Lagrange):", p_lagrange)
    print("Engle's test p-value (F-test):", p_f)

Engle's test p-value (Lagrange): 7.003560664248858e-54
    Engle's test p-value (F-test): 7.884175905803032e-57
```

The ARCH effects is once again confirmed by the Engle test.

```
In [25]: model_aic = []
for p in range(1, 5):
    for q in range(1, 5):
        model = arch_model(et, vol='Garch', p=p, q=q, rescale=False)
        result = model.fit(disp="off")
        print(f"GARCH({p}, {q}) AIC: {result.aic}")
        model_aic.append([[p, q], result.aic])
```

```
GARCH(1, 1) AIC: -15244.555001015931
        GARCH(1, 2) AIC: -15238.514743023006
        GARCH(1, 3) AIC: -15235.94467475155
        GARCH(1, 4) AIC: -15257.83243705662
        GARCH(2, 1) AIC: -15233.96379426013
        GARCH(2, 2) AIC: -15245.614381597621
        GARCH(2, 3) AIC: -15252.993116714224
        GARCH(2, 4) AIC: -15256.229930535763
        GARCH(3, 1) AIC: -15223.2059236598
        GARCH(3, 2) AIC: -15243.526128304973
        GARCH(3, 3) AIC: -15249.26650769521
        GARCH(3, 4) AIC: -15248.735855181254
        GARCH(4, 1) AIC: -15225.928987412059
        GARCH(4, 2) AIC: -15254.49158099038
        GARCH(4, 3) AIC: -15238.05948585339
        GARCH(4, 4) AIC: -15237.989003535196
In [26]: pd.DataFrame(model_aic, columns=['p,q', 'AIC']).sort_values(by='AIC', ascending=True).head(10)
Out[26]:
                             AIC
               p,q
          3 [1, 4] -15257.832437
          7 [2, 4] -15256.229931
         13 [4, 2]
                   -15254.491581
                   -15252.993117
          6 [2, 3]
         10 [3, 3] -15249.266508
         11 [3, 4] -15248.735855
          5 [2, 2] -15245.614382
          0 [1, 1] -15244.555001
          9 [3, 2] -15243.526128
          1 [1, 2] -15238.514743
```

According to the AIC, we can choose GARCH(1, 1) to model e_t , but GARCH(1, 1) is already sufficient to eliminate the ARCH effect.

```
In [28]: scale = 100
         garch model = arch model(scale * et, p=1, g=1)
         garch results = garch model.fit()
         garch_results.summary()
                             Func. Count:
                                                6,
                                                     Neg. LLF: 32597641921.415146
        Iteration:
                        1,
                                                     Neg. LLF: 15724446288.951365
        Iteration:
                             Func. Count:
                                               14.
        Iteration:
                        3,
                             Func. Count:
                                               22.
                                                     Neg. LLF: 5680.072207534429
                                                     Neg. LLF: 5859.979740295255
        Iteration:
                             Func. Count:
                                               30,
        Iteration:
                             Func. Count:
                                                     Neg. LLF: 5395.205339422912
                        5,
                                               37.
                                                     Neg. LLF: 5374.57518892362
        Iteration:
                             Func. Count:
                                               43,
        Iteration:
                             Func. Count:
                                                     Neg. LLF: 5374.469388062561
                        7,
                                               48,
        Iteration:
                                               53,
                                                     Neg. LLF: 5374.458122707876
                             Func. Count:
                             Func. Count:
                                                     Neg. LLF: 5374.456819457536
        Iteration:
                                               58,
        Iteration:
                       10,
                             Func. Count:
                                               63,
                                                     Neg. LLF: 5374.455818368411
        Iteration:
                       11,
                             Func. Count:
                                               68,
                                                     Neg. LLF: 5374.455816908305
                       12,
                             Func. Count:
                                                     Neg. LLF: 5374.455816908136
        Iteration:
```

Optimization terminated successfully (Exit mode 0)

Current function value: 5374.455816908305

Iterations: 12

Function evaluations: 72 Gradient evaluations: 12

```
Out[28]:
```

Constant Mean - GARCH Model Results

Dep. Variable:	None	R-squared:	0.000
Mean Model:	Constant Mean	Adj. R-squared:	0.000
Vol Model:	GARCH	Log-Likelihood:	-5374.46
Distribution:	Normal AIC:		10756.9
Method:	Maximum Likelihood	BIC:	10780.7
		No. Observations:	2825
Date:	Sat, May 03 2025	Df Residuals:	2824
Time:	11:32:25	Df Model:	1

Mean Model

	coef	std err	t	P> t	95.0% Conf. Int.
mu	0.0552	3.049e-02	1.812	7.003e-02	[-4.519e-03, 0.115]

Volatility Model

		coef	std err	t	P> t	95.0% Conf. Int.
	omega	0.1291	4.282e-02	3.015	2.572e-03	[4.516e-02, 0.213]
	alpha[1]	0.0888	2.099e-02	4.229	2.344e-05	[4.763e-02, 0.130]
	beta[1]	0.8679	3.003e-02	28.900	1.210e-183	[0.809, 0.927]

Covariance estimator: robust

```
In [30]: sm.stats.acorr_ljungbox(st_residuals**2, lags=10, boxpierce=True)
Out[30]:
               Ib stat Ib pvalue
                                  bp_stat bp_pvalue
           1 0.034811
                       0.851992
                                 0.034774
                                           0.852070
                       0.950012
           2 0.102561
                                 0.102428
                                           0.950075
          3 0.642693
                      0.886593
                                 0.641605
                                           0.886845
          4 1.943934
                       0.746070
                                1.940084
                                            0.746778
             1.952077
                      0.855736
                                1.948207
                                           0.856264
            2.109784
                                 2.105468
                       0.909330
                                           0.909748
          7 2.829758
                       0.900292
                                 2.823150
                                           0.900866
          8 3.296948
                       0.914365 3.288687
                                            0.914957
             3.297391
                      0.951329
                                3.289128
                                            0.951721
             3.650717
                       0.961731 3.640954
                                           0.962094
In [31]: _, p_lagrange, _, p_f = sm.stats.diagnostic.het_arch(
             st_residuals,
             nlags=10,
         print("Engle's test p-value (Lagrange):", p_lagrange)
         print("Engle's test p-value (F-test):", p_f)
        Engle's test p-value (Lagrange): 0.9636849645218315
        Engle's test p-value (F-test): 0.9639246202427323
```

Step 5

There is no more ARCH effect.

Using the conformity score $s_t(v) = |v - \hat{v}_t|/\hat{\sigma}_t$ compute sequential conformal prediction intervals based on the test data. Convert these prediction intervals for $\{v_t\}$ to prediction intervals for $\{X_t\}$ using your calculations in Steps 1 and 2.

```
In [32]: test_df = pd.read_csv('./synthetic_test_AAPL.csv', index_col=0)
         test df = pd.concat([train df.iloc[-3:], test df])
In [33]: test df['Yt'] = test_df['GoogleTrend'].pct_change()
         vt true = (test_df['log_ret'] - (gamma_hat_0 + gamma_hat_1 * test_df['Yt'].shift(1) \
                                             + gamma hat 2 * test df['Yt'].shift(2))).dropna()
In [34]: def get_conformal_pred_interval(ts, ts_pred, cond_vol):
             st = np.abs(ts - ts pred) / cond vol
             B = \max(5 * ts.iloc[0], 10)
             C = 6
             pt, qt = np.array([0]), np.array([0])
             for t in range(1, len(ts)):
                 ind = 1 if st.iloc[t] > qt[-1] else 0
                 p_new = pt[-1] + ind - 0.05
                 pt = np.r_[pt, p_new]
                 q_new = B * np.tan(min(max(np.log(t) * p_new / (t * C), -np.pi/2), np.pi/2))
                 qt = np.r [qt, q new]
             return qt
In [35]: garch_fct_results = garch_results.forecast(horizon=len(test_df), reindex=False,)
         vol forecasts = np.sgrt(garch fct results.variance) / scale
In [36]: def reconstruct u from v(v pred, u last values, N):
             if N == 0:
                 return v_pred
             u pred = []
             buffer = list(u_last_values)
             for v_hat in v_pred:
                 u hat = 0.0
                 for k in range(1, N+1):
```

```
coeff = comb(N, k) * (-1)**(k+1)
                     u hat += coeff * buffer[-k]
                 u hat += v hat
                 u_pred.append(u_hat)
                 buffer.append(u hat)
                 buffer.pop(0)
             return np.array(u pred)
In [39]: pred df = pd.DataFrame()
         pred df['vt true'] = vt true
         pred df["cond vol"] = vol forecasts.values[-1, 3:]
         pred df["vt pred"] = arima results.forecast(steps=len(test df)-3).values
         pred df["log ret true"] = test df['log ret'].iloc[3:]
         pred_df.index = test_df.index[3:]
In [40]: ut_pred = reconstruct_u_from_v(pred_df["vt_pred"], ut[-n_diff:], n_diff)
         pred df["log ret pred"] = gamma hat 0 + gamma hat 1 * test df['Yt'].shift(1) \
                                     + gamma hat 2 * test df['Yt'].shift(2) + ut pred
         qt = get_conformal_pred_interval(pred_df['vt_true'], pred_df['vt_pred'], pred_df['cond_vol'])
         pred df['conf low'] = pred df["log ret pred"] - qt * pred df['cond vol']
         pred_df['conf_high'] = pred_df["log_ret_pred"] + qt * pred_df['cond vol']
         pred df["is covered"] = (pred_df['log_ret_true'] >= pred_df['conf_low']) \
                                     * (pred df['log_ret_true'] <= pred_df['conf_high']) * 1
In [41]: pred_df.head()
```

Date

Date								
2024-04-01	-0.009141	0.016315	0.001560	-0.008492	0.002209	0.002209	0.002209	0
2024-04-02	-0.007594	0.016357	-0.003786	-0.007023	-0.003216	-0.003216	-0.003216	0
2024-04-03	0.004623	0.016397	0.003886	0.004786	0.004049	-0.014019	0.022118	1
2024-04-04	-0.006030	0.016436	-0.002657	-0.004904	-0.001532	-0.020169	0.017105	1
2024-04-05	0.003368	0.016472	0.000298	0.004492	0.001422	-0.015767	0.018610	1

• Validity:

- Intervals are valid most of the time the true X_t falls inside the predicted bands.
- Empirical coverage matches the intended target reasonably well.
- Adaptivity to volatility is clearly working.

• Accuracy:

- Predicted point values track the general movement of true values but remain centered.
- Widths react dynamically to local uncertainty not static.

• Limitations:

- Sharp market shocks are harder to catch immediately occasional undercoverage spikes.
- Slight early instability (first few days) when model has limited training history.

In summary, the constructed conformal prediction intervals achieve near-nominal coverage and adapt to local volatility dynamics, validating the modeling approach. Some transient undercoverage periods may be addressed by enhanced volatility modeling or dynamic recalibration.