Hw5, Algorithm

1 Q1. Recerrence Relation

1.
$$t(n)=10t(n/3)+11n$$

$$a=10,\quad b=3,\quad f(n)=11n$$

$$f(n)=\Theta(n^1)$$

$$a=b^1$$

$$t(n)=\Theta(n\log n)$$

2.
$$t(n) = 10t(n/3) + 11n$$
 Same as above, $t(n) = \Theta(n \log n)$

3.
$$t(n) = 27t(n/3) + 11n$$

$$a = 27, \quad b = 3, \quad f(n) = 11n$$

$$f(n) = \Theta(n^1)$$

$$a = b^3$$

$$t(n) = \Theta(n^3)$$

4.
$$t(n) = 64t(n/4) + 10n^3 \log^2 n$$

 $a = 64, \quad b = 4, \quad f(n) = 10n^3 \log^2 n$
 $f(n) = \Theta(n^3 \log^2 n)$
 $a = b^3$
 $t(n) = \Theta(n^3 \log^2 n)$

5.
$$t(n) = 9t(n/2) + n^2$$

$$a = 9, \quad b = 2, \quad f(n) = n^2$$

$$f(n) = \Theta(n^2)$$

$$a = b^2$$

$$t(n) = \Theta(n^2 \log n)$$

6.
$$t(n) = 3t(n/8) + n^2 2^n \log n$$

 $a = 3, \quad b = 8, \quad f(n) = n^2 2^n \log n$
 $f(n) = \Theta(n^2 2^n \log n)$
 $t(n) = \Theta(n^2 2^n \log n)$

7.
$$t(n) = 128t(n/2) + 6n$$

$$a = 128, \quad b = 2, \quad f(n) = 6n$$

$$f(n) = \Theta(n)$$

$$a > b^1$$

$$t(n) = \Theta(n^7)$$

8.
$$t(n) = 128t(n/2) + 6n/n$$
 Same as above, $t(n) = \Theta(n^7)$

9.
$$t(n) = 128t(n/2) + 2/n$$

 $a = 128, \quad b = 2, \quad f(n) = 2/n$
 $f(n) = \Theta(1/n)$
 $a > b^0$
 $t(n) = \Theta(n^7)$

10.
$$t(n)=128t(n/2)+\log n$$

$$a=128,\quad b=2,\quad f(n)=\log n$$

$$f(n)=\Theta(\log n)$$

$$a>b^0$$

$$t(n)=\Theta(n^7)$$

2 Q2. Selection Problem

When r = 3, can the selection problem be solved in O(n) time complexity? For the selection problem to be solved in O(n) time, the algorithm should be linear. When r = 3, based on the table provided, the corresponding f(n) term is $\Theta(n)$, which indicates that the problem can be solved in linear time O(n).

3 Q3. Matrix Multiplication

What is the time complexity of the selected algorithm when r = 7?

For r = 7, the corresponding h(n) is $\Theta(n^7)$. According to the table provided, the time complexity of the selected algorithm will be $\Theta(n^7)$.

To prove that the time complexity of the divide-and-conquer algorithm derived from the usual 2×2 block matrix multiplication is $\Theta(n^3)$, we refer to Example 14-3 on page 435.

Consider the matrices A and B divided into 2×2 blocks:

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \quad B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$$

The product $C = A \times B$ is given by:

$$C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}$$

where

$$C_1 = A_1B_1 + A_2B_3$$

$$C_2 = A_1B_2 + A_2B_4$$

$$C_3 = A_3B_1 + A_4B_3$$

$$C_4 = A_3B_2 + A_4B_4$$

Using these equations, the divide-and-conquer algorithm recursively multiplies the $n/2 \times n/2$ matrices and combines the results. The recurrence relation for the time complexity T(n) is:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Solving this recurrence using the Master Theorem, we find:

$$a = 8$$
, $b = 2$, $f(n) = \Theta(n^2)$

Since $a = b^3$, by Case 1 of the Master Theorem:

$$T(n) = \Theta(n^3)$$

Thus, the time complexity of the divide-and-conquer algorithm is $\Theta(n^3)$.

4 Q4. Recurrence Relation for Defective Chessboard

The defective chessboard problem involves covering a $2^k \times 2^k$ board with one defective square using triominoes. For t(k), the time needed to cover the board, the recurrence relation is:

$$t(k) = \begin{cases} d & \text{if } k = 0\\ 4t(k-1) + c & \text{if } k > 0 \end{cases}$$

Base Case

For k = 0:

$$t(0) = d$$

Recursive Case

For k > 0:

$$t(k) = 4t(k-1) + c$$

Solving the Recurrence

To solve the recurrence, we can expand it step-by-step:

$$\begin{split} t(k) &= 4t(k-1) + c \\ &= 4(4t(k-2) + c) + c \\ &= 4^2t(k-2) + 4c + c \\ &= 4^2(4t(k-3) + c) + 4c + c \\ &= 4^3t(k-3) + 4^2c + 4c + c \\ &= \dots \\ &= 4^kt(0) + c\sum_{i=0}^{k-1}4^i \\ &= 4^kd + c\frac{4^k-1}{3} \\ &= \Theta(4^k) \end{split}$$

Thus, the time complexity of the algorithm is $\Theta(4^k)$.