International IOR Rectifier

PD - 94006A

IRF640N

HEXFET® Power MOSFET

- IRF640NS IRF640NL

 $V_{DSS} = 200V$ $R_{DS(on)} = 0.15\Omega$ $I_{D} = 18A$

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements

Description

Fifth Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF640NL) is available for lowprofile application.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	18	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	13	A
I _{DM}	Pulsed Drain Current ①	72	
P _D @T _C = 25°C	Power Dissipation	150	W
	Linear Derating Factor	1.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ^②	247	mJ
I _{AR}	Avalanche Current①	18	A
E _{AR}	Repetitive Avalanche Energy①	15	mJ
dv/dt	Peak Diode Recovery dv/dt ©	8.1	V/ns
TJ	Operating Junction and	-55 to +175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew [⊕]	10 lbf•in (1.1N•m)	

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$		
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.25		V/°C	Reference to 25°C, I _D = 1mA		
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.15	Ω	V _{GS} = 10V, I _D = 11A ③		
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$		
g _{fs}	Forward Transconductance	6.8			S	V _{DS} = 50V, I _D = 11A ③		
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 200V, V _{GS} = 0V		
DSS	Brain to Gource Leakage Guiterit			250	μΑ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150$ °C		
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V		
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA :	V _{GS} = -20V		
Qg	Total Gate Charge			67		I _D = 11A		
Q _{gs}	Gate-to-Source Charge			11	nC	V _{DS} = 160V		
Q _{gd}	Gate-to-Drain ("Miller") Charge			33		V_{GS} = 10V, See Fig. 6 and 13		
t _{d(on)}	Turn-On Delay Time		10			V _{DD} = 100V		
t _r	Rise Time		19			$I_D = 11A$ $R_G = 2.5\Omega$		
t _{d(off)}	Turn-Off Delay Time		23		ns			
t _f	Fall Time		5.5			$R_D = 9.0\Omega$, See Fig. 10 ③		
L _D	Internal Drain Inductance		4.5		-11	Between lead, 6mm (0.25in.)		
L _S	Internal Source Inductance		7.5		hH	from package and center of die contact		
C _{iss}	Input Capacitance	_	1160			V _{GS} = 0V		
C _{oss}	Output Capacitance		185			$V_{DS} = 25V$		
C _{rss}	Reverse Transfer Capacitance		53		pF	f = 1.0MHz, See Fig. 5		

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current	uous Source Current		18		MOSFET symbol	
	(Body Diode)			10	Α	showing the	
I _{SM}	Pulsed Source Current			72	70] ^`	integral reverse
	(Body Diode)①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 11A, V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		167	251	ns	$T_J = 25$ °C, $I_F = 11A$	
Q _{rr}	Reverse Recovery Charge		929	1394	nC	di/dt = 100A/µs ③	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.0	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface 4	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient 4		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		40	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF640N/S/L

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

International IOR Rectifier

IRF640N/S/L

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

- 5. CONTROLLING DIMENSION: INCH.

D²Pak Part Marking Information

International IOR Rectifier

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

S		Ŋ			
M B O	MILLIM	ETERS	INC	O T	
L	MIN.	MAX.	MIN.	MAX.	É S
Α	4.06	4.83	.160	.190	
A1	2.03	2.92	.080	.115	
b	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	4
b2	1,14	1.40	.045	.055	
С	0.38	0.63	.015	.025	4
c1	1,14	1.40	.045	.055	
c2	0.43	.063	.017	.029	
D	8.51	9.65	.335	.380	3
D1	5.33		.210		
E	9.65	10.67	.380	.420	3
E1	6.22		.245		
е	2.54	BSC	.100 BSC		
L	13.46	14.09	.530	.555	
L1	3.56	3.71	.140	.146	
L2		1.65		.065	

<u>IGBT</u> 1 - GATE

2 - COLLECTOR

3 - EMITTER

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

- NOTES;
 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD. FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- ADIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 5. CONTROLLING DIMENSION: INCH.

TO-262 Part Marking Information

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 4.2mH $R_G = 25\Omega$, $I_{AS} = 11$ A.
- This is only applied to TO-220AB package
- ⑤ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice.

This product has been designed and qualified for the automotive [Q101] (IRF640N)

& industrial market (IRF640NS/L).

Qualification Standards can be found on IR's Web site.

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information, 10/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/