Lecture 14: Large-scale biological networks

- Network topology
- Network motifs
- Condition-specific networks
- Network reconstruction

Life's complexity pyramid

Biological networks

Network description and layout

Degree

 k_i = number of links connected to node i

Distance

 d_{ij} = shortest path length between node i and j

Diameter

 $D = \max \left\{ \left. d_{ij} \right| i, j \in N \right\} \quad N \, : \, \text{all nodes in the network}$

Clustering Coefficient

 $c_i = \frac{2e_i}{k_i(k_i - 1)}$

 e_i : number of existing links (labeled in red) among the k_i nodes that connect to node i

Betweenness $b_l = \sum_{ij} p_{ij}(l)/p_{ij}$

 p_{ij} : number of shortest paths between i and j $p_{ij}(l)$: number of shortest paths between i and j going through node l

Barabasi, Oltvai (2004) Nat. Rev. Genet. Zhu (2007) Genes & Dev.

Yeast TF-target network

Network description and layout

Network motifs

Network motifs

Network evolution

(iii) Duplication of transcription factor and target gene

Reconstructing networks from observational data

Coexpression

Downstream effects of interventions

Reconstructing networks from observational data

Context likelihood relatedness

