الدوال كثيرات الحدود

تعریف کثیر الحدود: عبارة الدالة کثیر الحدود تکتب على الشكل:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

درجة كثير الحدود nمعاملاته a_n ،... a_1 a_0 p الحد الذي درجته $a_n x^p$

✓ طریقة 3: (هورنر Horner)

معاملات كثير الحدود الناتج

 $f(x) = (x-2)(x^2-4x-21)$

الدالة الثابتة a درجته f(x) = a الدالة الثابتة الثابتة الدالة الثابتة الثابة الثابتة الثابت الثابتة الثابتة الثابتة الثابتة الثابتة الثابتة الثابتة الثابتة

الدالة الخطية f(x)=ax و التآلفية g(x)=ax+b هي دوال كثيرات حدود من الدرجة 1

₩ملاحظة: كل الدوال كثيرات الحدود معرفة على ١

II]. عمليات على كثير الحدود

- 1) قواعد الحساب الجبري:
- مجموع، فرق وجداء كثيرات الحدود هي كثيرات حدود
 - مرکب کثیری حدود هو کثیر حدود
- n+p و کثیر حدود درجتهما n و p هو کثیر حدود درجته n+p
 - 2) جذر كثير حدود: (جذر مرادف كلمة حل)

$$f(lpha)=0$$
 معناه معناه معناه $lpha$

3) تحلیل کثیر حدود:

f(x) = (x-lpha)g(x) بحیث g(x) بحیث f(x) فإنه یوجد کثیر حدود g(x) بحیث g(x)

n طرق تحليل كثير حدود: هناك ثلاث طرق لتحليل كثير حدود من الدرجة n

$$f(x) = x^3 - 6x^2 - 13x + 42$$
 جذره $f(x) = x^3 - 6x^2 - 13x + 42$ جذره $x + 42$

✓ طريقة 2: (القسمة الإقليدية) ✓ طريقة 1: (المطابقة)

$$\begin{array}{c|ccccc}
 & x^3 - 6x^2 - 13x + 42 & x - 2 \\
 & -\frac{x^3 - 2x^2}{-4x^2 - 13x + 42} & x^2 - 4x - 21 \\
 & -\frac{-4x^2 + 8x}{-21x + 42} & -21x + 42
\end{array}$$

$$f(x) = (x-2)(x^2-4x-21)$$

$f(x) = (x-2)(ax^2 + bx + c)$ $f(x) = ax^3 + bx^2 + cx - 2ax^2 - 2bx - 2c$ $f(x) = ax^3 + (b-2a)x^2 + (c-2b)x - 2c$ بالمطابقة مع $f(x) = x^3 - 6x^2 - 13x + 42$ نجد:

$$\begin{cases} a=1 \\ b-2a=-6 \\ c-2b=-13 \\ -2c=42 \end{cases} \Longrightarrow \begin{cases} a=1 \\ b-2=-6 \\ c-2b=-13 \\ c=-21 \end{cases} \Longrightarrow \begin{cases} a=1 \\ b=-4 \\ c=-21 \end{cases}$$

$$f(x) = (x-2)(x^2-4x-21)$$

III]. المعادلات من الدرجة الثانية (مراجعة)

$$ax^2+bx+c=a\left[\left(x+rac{b}{2a}
ight)^2-rac{\Delta}{4a^2}
ight]$$
 الشكل النموذجي: (1

$$\Delta = b^2 - 4ac$$
 حيث

42

-42

-13

-21

$E = ax^2 + bx + c$ ملخص حل واشارة وتحليل معادلة من الدرجة الثانية من الشكل (2

$\Delta = (b)^2 - 4(a)(c)$				
Δ > 0	$\Delta = 0$	Δ < 0	إذا كان	
تقبل حلین متمایزین $x_1=rac{-b-\sqrt{\Delta}}{2a}$; $x_2=rac{-b+\sqrt{\Delta}}{2a}$	تقبل حل مضاعف $x_0=rac{-b}{2a}$	لا تقبل حلول	فإن المعادلة	
$egin{array}{c cccc} x & -\infty & rac{-b-\sqrt{\Delta}}{2a} & rac{-b+\sqrt{\Delta}}{2a} & +\infty \ \hline E & a imil & igo a a a a a a a a a a $	$egin{array}{c cccc} x & -\infty & rac{-b}{2a} & +\infty \ \hline E & a & & & & & & & & & & & & & & & & &$	x -∞ +∞ E a أشارة	إشارتها	
$a(x-x_1)(x-x_2)$	$a(x-x_0)^2$	لا تقبل تحليلا	تحليلها	

IV]. مجموع وجداء حلى معادلة من الدرجة الثانية

إذا كان مميز معادلة من الدرجة الثانية $0 \leq \Delta$ فإن:

$$x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}$$

$$x_1 \times x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a} = \frac{(-b)^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}$$

نرمز للمجموع بالرمز S و للجداء بالرمز P

$$P = \frac{c}{a} \qquad : \quad S = \frac{-b}{a}$$

* نتائج:

1 حساب أحد الحلين بمعرفة الآخر

 $x_1 imes x_2 = rac{c}{a}$ إذا علم أحد الجذرين فيمكن حساب الحل الآخر باستعمال المجموع: $x_1 + x_2 = -rac{b}{a}$ أو الجداء:

2 حساب عددین علم مجموعهما وجداؤهما

 $x^2 - Sx + P = 0$ يمكن حساب عددين علم مجموعهما وجداؤهما باستعمال العلاقة:

 $(ax^2+bx+c=0)$ تعيين إشارة حلي معادلة من الدرجة الثانية (3

فْإن	إذا كان		
المعادلة تقبل حلين من إشارتين مختلفتين	$\frac{c}{a} < 0$		
المعادلة تقبل حلين موجبين	$-\frac{b}{a} > 0$ 9	$c \sim 0$	
المعادلة تقبل حلين سالبين	$-rac{b}{a}<0$ 9	$\frac{\overline{a}}{a}$	

$(ax^4+bx^2+c=0)$ المعادلات مضاعفة التربيع.[V

$$X=x^2$$
يوَول حل المعادلة مضاعفة التربيع $ax^4+bx^2+c=0$ إلى حل الجملة:

x هيم تعويضهما $X=x^2$ المعادلة $X=x^2$ المعادلة $X=x^2$ المعادلة $X=x^2$ المعادلة عند إيجاد المعادلة $X=x^2$