

Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA MECÂNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA MODELO 2017

Duração da prova: 120 minutos

Nome:		
B.I. / Passaporte N.º	Emitido por:	Validade://

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico-científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- **Grupo 2** Um problema de matemática.
- **Grupo 3** Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- Grupo 5 Seis questões de resposta múltipla enquadradas nos conteúdos do curso.
- **Grupo 6** Questão para desenvolvimento de assunto de cultura científica na área do curso.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

Considere a função real de variável real $f(x) = e^x + x - 1$.

- 1. A equação da reta tangente ao gráfico da função f em x = 0 é:
 - $\square (A) v = 2x + 2$
 - \Box (B) $\frac{y+2}{2} = x$
 - \square (C) $x-2=\frac{1}{2}(y-1)=2-z$
 - \square (D) $(x,y) = (-1,4) + k(1,2), k \in \mathbb{R}$
 - \square (E) y = 2x
- 2. O valor do $\lim_{x\to 0} \frac{f(x)}{x}$ é:
 - □ (A) 1
 - □ (B) 0
 - \square (C) + ∞
 - □ (D) 2
 - \square (E) $-\infty$
- 3. Quantos números naturais de três algarismos diferentes se podem escrever, não utilizando o algarismo 2 nem o algarismo 5?
 - □ (A) 256
 - □ (B) 278
 - □ (C) 286
 - □ (D) 294
 - □ (E) 336

CC /BI / Passaporte N.º

Grupo 2

(Cotação: 2,0 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere a função $g(x) = \frac{e^{x^2 + x}}{2x + 1}$, definida em $\mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$.

- a) Mostre que $g'(x) = \frac{((2x+1)^2-2)e^{x^2+x}}{(2x+1)^2}$.
- b) Determine, caso existam, os zeros de g'.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Indique **as respostas corretas** do seguinte modo **⊠**.

1. Um corpo, inicialmente na origem de um sistema de eixos, é sujeito a um movimento retilíneo e a sua velocidade em função do tempo está indicada no gráfico.

Diga qual das afirmações é verdadeira:

- ☐ (A) O corpo permaneceu parado no intervalo de tempo [2,4] s
- \square (B) No instante t = 5 s o corpo encontra-se de novo na posição de onde partiu
- ☐ (C) A aceleração do corpo é nula no intervalo de tempo [8,10] s
- ☐ (D) Ao fim dos primeiros 5 segundos, o corpo percorreu a distância de 100 m
- ☐ (E) O movimento do corpo nunca é retardado
- 2. Um homem, uma ave e um inseto deslocam-se com velocidades de módulos $v_{\rm H} = 3.6~{\rm km\cdot h^{-1}}$, $v_{\rm A} = 30~{\rm m\cdot min^{-1}}$ e $v_{\rm I} = 60~{\rm cm\cdot s^{-1}}$, respetivamente. Essas velocidades satisfazem a relação:
 - \square (A) $v_{\rm I} > v_{\rm H} > v_{\rm A}$
 - $\square (B) v_A > v_I > v_H$
 - $\square (C) v_{\rm H} > v_{\rm A} > v_{\rm I}$
 - \square (D) $v_{\rm A} > v_{\rm H} > v_{\rm I}$
 - \square (E) $v_{\rm H} > v_{\rm I} > v_{\rm A}$

3. A figura representa a trajetória de uma partícula que se desloca no sentido de A para E, sem nunca inverter o sentido do movimento, passando por vários pontos onde estão representados vetores da velocidade \vec{v} e da força resultante \vec{F} a que está sujeito.

Em qual dos pontos esses vetores podem representar corretamente as grandezas referidas:

- \square (A) ponto A
- ☐ (B) ponto B
- \square (C) ponto C
- \square (D) ponto D
- \Box (E) ponto E

(Cotação: 2,0 valores)

Uma pessoa puxa uma caixa ao longo de uma rampa, exercendo uma força F constante de intensidade 100 N. A caixa, de massa $m = 2 \,\mathrm{kg}$, desloca-se com velocidade v constante, percorrendo, no plano inclinado, uma distância de 1 m. Considere $g = 10 \,\mathrm{m\cdot s}^{-2}$.

Determine:

- a) o trabalho realizado pela força F.
- b) a variação da energia cinética sofrida pelo corpo.
- c) a variação da energia potencial sofrida pelo corpo.

CC/B	I / Passa	porte N.º	
CC/B	I/Passa	porte N.º	

(Cotação total: 6,0 valores; cotação parcial: 1,0 valores por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

1 – Qual das seguintes afirmações é verdadeira?
☐ (A) O quilowatt-hora é uma unidade de potência e o seu símbolo é kW h
□ (B) O quilowatt-hora é uma unidade de potência e o seu símbolo é kW/h
☐ (C) O quilowatt-hora é uma unidade de energia e o seu símbolo é kW h
\square (D) O quilowatt-hora é uma unidade de energia e o seu símbolo é kW/h
2 – Um barco, com o motor à potência máxima, sobe um rio a 10 km/h e desce-o a 30 km/h. Qual a velocidade da corrente do rio (em relação às margens)?
□ (A) 30 km/h
□ (B) 20 km/h
□ (C) 10 km/h
□ (D) 0 km/h
3 – Um cubo com aresta \underline{a} , feito de uma substância X, tem massa m . Um cubo com aresta $\underline{2a}$ e feito de uma substância Y tem massa $2m$. Qual a densidade de Y em relação a X?
□ (A) 1/4
□ (B) 1
□ (C) 2
□ (D) 1/2
4 – Um submarino encontra-se 50 m abaixo da superfície do oceano com o seu peso exatamente contrabalançado pela impulsão. Se ele descer para 100 m, a impulsão:
□ (A) Mantém-se constante
□ (B) Duplica
\square (C) Reduz-se a metade
☐ (D) Quadruplica

CC/BI/	Passa	porte N.º	
00/01/	. 4334	901 to 14.	

5 – Em cada ciclo, uma máquina térmica recebe, sob a forma de calor, quatro vezes o valor da energia que produz, sob a forma de trabalho; nestas condições:
☐ (A) A máquina tem um rendimento de 25% e liberta para a atmosfera 25% do calor recebido
□ (B) A máquina tem um rendimento de 75% e liberta para a atmosfera 25% do calor recebido
□ (C) A máquina tem um rendimento de 25% e liberta para a atmosfera 75% do calor recebido
□ (D) A máquina tem um rendimento de 50% e liberta para a atmosfera 50% do calor recebido
6 – Qual das seguintes grandezas não é vetorial?
□ (A) Velocidade
□ (B) Força
\square (C) Pressão
\square (D) Peso

CC/BI/ Passaporte N.º	
CC/DI/ I assapone in	

Grupo 6 (Cotação: 4,0 valores)

(Responda e desenvolva o tema proposto. Escreva entre 15 a 25 linhas)

Suponha que lidera o Departamento de Desenvolvimento e Inovação de uma prestigiada marca de automóveis. Para aumentar a competitividade da marca, é-lhe solicitado que avalie a possibilidade de substituição de um componente em aço carbono por um componente polímero termoplástico. Neste contexto, quais os aspectos mais pertinentes que iria estudar e indique também duas propriedades que considera fundamentais avaliar e que poderão condicionar (ou mesmo inviabilizar) a opção pelo termoplástico. Justifique a sua resposta.					