

Maud: a Rietveld analysis program designed for the internet and experiment integration

Luca Lutterotti
Department of Materials Engineering
University of Trento
Italy

The problem

- Carl is a PhD student in Material Science
- He is developing a new SiC/Si3N4 composite
- He want to know the SiC structure and quantity obtained
- He ask to Lawrence (a Crystallographer) for help
- Lawrence realize that is not an unknown structure and suggest Carl to do it himself just using the XRD instrument and a Rietveld program.
- Carl has three months to do it and he lost:
 - Two weeks repeating the experiment
 - Two months to realize how to manage the analysis

Project Goals

- Ultimate goal of project
 - Provide an analysis tool to help material researchers (non-crystallographer) in characterizing their samples
 - Integrating different measurements and analysis in a unique expert system
- Relationship to other projects
 - ESQUI (EU project for Diffraction-Reflectivity)
 - Hippo (the new Beam Line at Los Alamos)

Description - 1

- Multipurpose Rietveld analysis program for Material Science including:
 - Crystallography
 - Quantitative analysis
 - Texture, Residual Stresses
 - Reflectivity, Layered systems
 - Microstructure
 - **—**
- Easy to use interface including:
 - Wizard for automatic analyses

Description - 2

- Connection to databases and use of the CIF syntax
- Ability to suggest measurements and to drive them locally or remotely
- Possibility to run:
 - Embedded in a browser over the internet
 - Locally as an application
 - On every platform
- Plug-in structure to extend easily some features

Description - 3

•

Written in Java (OOP)

FOR MORE INFO...

Http://www.ing.unitn.it/~luttero/maud

L. Lutterotti - Maud

Methodology

- Methodology included in Rietveld refinement
 - Texture: harmonic, WIMV, Entropy
 - Residual Stresses: Reuss-Voigt, SODF
 - Microstructure: anisotropic size-strain (Popa),
 Planar defects (Warren)
 - Reflectivity: Matrix method
 - ______
- Standards being adopted
 - CIF file format (work saving, output, databases..)

Competitive Analysis - 1

- Advantages
 - Using texture for structural refinement/crystal structure determination
 - Global analysis in one step, automatic analyses
 - Correcting quantitative analysis for texture
 - Residual stress analysis on textured samples
 - Amorphous analysis (quantitative, structural)
 - Possibility to run on a web browser
 - Same program for all platforms
 - Plug-in structure (OOP)

Competitive Analysis - 2

- Weaknesses
 - Need a special instruments for texture-stress (Eulerian cradle + PSD detector or TOF)
 - Instrumental broadening should be determined
 - **—**

Peculiarities

- Based on Java, full OOP Rietveld program
- Use directly physical quantities for fitting:
 - Crystallite size, microstrain, planar defect densities for peak shape
 - ODF for texture, Residual Stresses for peak shift
 - Phase quantities instead of scale factors
- Internet ready

FOR MORE INFO...

Microstructure: Lutterotti, Scardi, J. Appl. Cryst. 1990

Lutterotti, Gialanella, Acta Mat. 1998.

Texture-Stress: Ferrari, Lutterotti, J. Appl. Phys. 1994.

L. Lutterotti - Maud

Maud Applet/Application

- It run unchanged as:
 - An application locally
 - Embedded in a html page over the internet (java applet)
- Applet advantages:
 - Facilities maintain only one installation (on the web)
 - Users have already the last version
 - Run in the client (no server overloading)
 - Can be used out of the office/lab/facility

Applet downside

- Security is good (browser dependent) but if the user need to open/save files on his client:
 - The applet must be "signed" by a certificate
 - Mac OS system may release a less secure certificate but usable (at the user risk and only by other Macs)
 - For other systems the certificate should be obtained by a certification entity (\$\$\$); only one in reality by the developer (?!?)
- Solution: buy a Mac

Distributed/parallel programming

- Java threading model (parallel tasks in computation)
- Each thread may run on:
 - Same machine, same processor
 - Same machine, different processors
 - Different machines, different processors (require internet connection and JPVM)
- JPVM (Java PVM)
 - Provide the infrastructure for distribute programming/processing
 - The computer network could be heterogeneous

JPVM distribute system

- Based on messaging
- Advantages
 - Speed up computation
 - No special computer requirements
 - No limits on the participating computers
- Weaknesses
 - Critical to balance computation/messaging time
 - Requires few long running separated threads to minimize messaging

Current Status - 1

- Algorithms
 - Completed: Rietveld, quantitative analysis, texture, microstructure, amorphous
 - On track (testing): reflectivity, residual stress (SODF), layered system, wizard analyses
 - Behind schedule: texture-structure solution, user manual
- Platform/Network/Internet
 - Completed: Multi-platform

Current Status - 2

- Network/Internet
 - On track: JPVM distributed processing, Maud-Applet (completed for Mac)
 - To do: Server side computation
- Expert system (instrument connection)
 - On track: Client-Server structure, experiment definitions, instrument interface exchange protocol
 - To do: multi-user security, instrument side interface implementation

To finish....

- future plan
 - Release first non-beta version (with manual and on-line Applet for all platforms)
 - Test the expert system with the under-construction ESQUI instrument (Hippo at Los Alamos delayed)
- People contributing
 - H.-R. Wenk, S. Matthies, L. Cont, A. Gibaud.....
- submit questions and addresses
 - Maud: maud@ing.unitn.it
 - Http://www.ing.unitn.it/~luttero/maud

