R² and Radj

TEXES 1 and 2 can be used to evaluable the model's adequacy.

If I do not reject $\beta = 0$ for some j, I can remove that covariate

If I do not reject $\beta_1 = ... = \beta_p = 0$, the whole model is wells.

How do I choose between different models?

· I can compare R2 (larger R2 means more variability explained)

However, If I we R^2 to compose nested models (i.e. one can be obtained starting from the other by fixing some parameters = 0), R^2 is not a valid measure.

onsider (e) $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$

(b) \hat{y}_{i} = $\hat{\beta}_{1}$ + $\hat{\beta}_{2}$ xi + $\hat{\beta}_{3}$ wi → | add one covariate

 $R^2_{(a)} \leq R^2_{(b)}$ by construction: the SSR of model (b) can not be smaller than $SSR_{(a)}$. In the worst case (if wi is really useless), I set $\beta_3 = 0$ and I obtain $SSR_{(a)}$. The more voriables I include in the model, the larger R^2 will be.

In general: + covariates < R2 increases

(less interpretable overfit

- covoriates < partinary interpretable

of course, we wont few cononiates, but not too few!

ADJUSTED R^2 $R^2_{adj} = 1 - (1-R^2) \cdot \frac{n-1}{n-p}$

it is "adjusted" for the model dim. p

pendizes models with many covariates.

when I introduce a new coroniste:

- R² can remain the same or increase

Radi can increase, remain the same, or decrease

Rady can be < 0!