3.3.1 Progressive and stationary waves

3.3.1.1 Progressive waves

- Mechanical waves
 - Involve particles in a substance vibrating
- Electromagnetic waves
 - Travel through space without the need for a substance
 - Electromagnetic spectrum

- Progressive wave
 - A wave that transfers energy and momentum from one point to another without transferring the medium itself
 - · Made up of particles of an oscillating medium
- Terminologies

	Term	Definition
	Displacement	The vibrating particle's distance and direction from its equilibrium position
•	Amplitude	A wave's maximum displacement from the equilibrium position (unit = m)
	Frequency f	The number of complete oscillations passing through a point per second (unit = Hz)
	Period T	The time taken to make one oscillation (unit = s)
	Wavelength λ	The length of one whole oscillation (e.g. the distance between successive peaks/troughs) (unit = m)
	Speed c	Distance travelled by the wave per unit time (unit = ms ⁻¹)
	Phase	The fraction of a cycle a vibrating particle has completed since the start of the cycle
	Cycle	One complete cycle of a wave is from maximum displacement to next maximum displacement

- · Phase difference
 - The fraction of a cycle between the vibration of two particles
 - phase difference in radians = $\frac{2\pi d}{\lambda} = \frac{2\pi \times \text{distance between two points}}{\text{wavelength}}$
- In phase
 - Two points on a wave are in phase if they are both at the same point of the wave cycle
 - · Same displacement and velocity
 - Phase difference is a multiple of $360^{\circ} / 2\pi$
- Completely out of phase / in anti-phase
 - $(2n+1)\pi$ apart in phase
- Wave speed
 - $c = f\lambda$
- Frequency / period conversion
 - $f = \frac{1}{T}$
 - $T = \frac{1}{f}$
- Properties of waves
 - Reflection
 - Refraction
 - Diffraction

3.3.1.2 Longitudinal and transverse waves

- Longitudinal and transverse waves
 - Transverse waves
 - The particles oscillate **perpendicular** to the direction of travel of the wave
 - Can be polarised
 - o e.g. EM waves, waves on a string
 - Longitudinal waves
 - The particles oscillate **parallel** to the direction of travel of wave
 - o The particles get compressed so they have more energy than the particles around them
 - \circ When they vibrate they transfer energy to particles nearby \rightarrow more compressions
 - Cannot be polarised
 - Cannot travel in vacuums (require a medium to propagate)
 - e.g. sound waves

Longitudinal Waves

Transverse Waves

- Types of waves
 - Mechanical waves
 - o Oscillations of the particles of the medium

- Electromagnetic waves
 - Oscillating electric and magnetic field that progress through space without the need for a substance
 - o Transverse waves
 - All have the same speed in vacuum (3×10⁸ ms⁻¹)
- Polarisation
 - Can only happen when transverse waves travel in one plane only
 - Particle oscillations occur in **only one of the directions** perpendicular to the direction of wave propagation (vibrations stay in 1 plane only)
 - Cannot occur on longitudinal waves as it does not oscillate perpendicular to the direction of travel
 - (Transverse waves are called plane-polarised if the vibrations occur in one plane only, more than one plane = unpolarised)
- Polarising filter

- Only the wave along the transmission axis can completely pass through
- Greater angle between wave + axis = lower light intensity
- Waves perpendicular to the transmission axis cannot pass through = 0 intensity
- Why only transverse waves can be polarised
 - Transverse waves oscillate perpendicular to direction of travel of wave
 - They initially oscillate in many different planes
 - o Intensity is reduced due to oscillations being limited to one plane only
 - Longitudinal waves oscillate parallel to direction of travel of wave
 - o There is no perpendicular plane to restrict the oscillations to
- Applications of polarisation
 - Polaroid sunglasses
 - Reduce glare by blocking partially polarised light reflected from water and glass
 - Only oscillations in the plane of the filter is allowed
 - o Easier to see
 - EV and radio signals
 - o Plane-polarised by the orientation of the rods on the transmitting aerial
 - The receiving aerial must be aligned in the same plane of polarisation to receive the signal at full strength

3.3.1.3 Principle of superposition of waves and formation of stationary waves

- The principle of superposition
 - When two or more waves arrive at one point, the resultant displacement is the sum of the displacement of each wave
- Constructive interference
 - Occurs when 2 waves have displacement in the same direction (arrives in phase)
- Destructive interference
 - Occurs when one wave has positive displacement and the other has negative displacement (arrives out of phase)
 - If the waves have equal but opposite displacements (π rad out of phase), total destructive interference occurs (zero amplitude)
- Stationary waves

Waves where there is no net transfer of energy and momentum from one point to another

- Formation of stationary waves
 - Formed by the superposition of two or more progressive waves of the same frequency and wavelength and pass through each other in opposite directions in the same medium
 - (The waves are emitted by ..., reflected through 180° by ...)
 - Formed as a result of the **superposition** of the progressive waves
 - Amplitudes of the two waves do not need to be the same
 - Constructive interference occurs at where the waves meet in phase so antinodes are formed
 - Destructive interference occurs at where the waves meet completely out of phase so nodes are formed
- Nodes
 - Fixed points in a stationary wave where the amplitude is **minimum** (usually zero)
 - Distance between 2 nodes = $\frac{\text{wavelength}}{2}$
- Antinode
 - Fixed point in a stationary wave pattern where the amplitude is maximum
 - The particles have maximum energy at the antinode
- Progressive waves + stationary waves comparison

		Stationary	Progressive
	Energy & momentum	No net transfer of energy from one point to another through space	Energy is transferred through space
	Wavelength	Wavelength = 2 × distance between adjacent nodes	Wavelength = distance between 2 particles at the same phase
	Frequency	All particles expect the particles at the nodes vibrate at the same frequency	All particles vibrate at the same frequency
•	Amplitude	The amplitude varies from minimum (0) at the nodes to maximum at the antinode Particles immediately on either side of a node are moving in opposite directions	The amplitude is the same for each point along wave
	Phase difference between 2 particles (rad)	Between nodes all particles are vibrate in phase phase difference = $m\pi$ = number of nodes between 2 particles $\times \pi$	phase difference $=\frac{2\pi d}{\lambda}$ Adjacent points vibrate with different phase

- · Examples of stationary waves
 - Transverse stationary waves
 - o String fixed at one end and fixed to a driving oscillator at the other end / plucked
 - Wave reflected at the end of the string
 - Two waves superpose with each other
 - Both ends are fixed so both ends of the string are always nodes
 - Stationary microwaves

- Reflected on a soft surface
- The reflected end is an antinode, the emitter end is a node
- A microwave probe can be used to find the nodes and antinodes
- Longitudinal stationary waves
 - Sound waves
 - Speaker causes the wave → antinode
 - Open end: when air leaves the tube the pressure around it is lower so it expands
 → air pushed back to the tube → antinode
 - Close end: reflects the wave which reverses its displacement → cancelled out by upcoming wave → node
- Harmonics
 - The number of antinodes on the string
- First harmonic frequency / fundamental frequency
 - The lowest frequency at which a stationary wave forms
 - Forms a stationary wave with two nodes and a single antinode
 - Distance between adjacent nodes = half a wavelength
 - $\lambda = 2L$

•
$$f = \frac{c}{2L} = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$
 ($T = \text{tension in the wire}, \mu = \frac{m}{L} = \text{mass per unit length}$)

- nth harmonic frequency = $n \times$ first harmonic frequency = nf_1
- nth harmonic frequency = nodes at a distance of $\frac{1}{n}L$
- Factors affecting the fundamental frequency
 - · Mass per unit length
 - Tension
 - Length
 - Temperature

Required Practical 1 - Stationary Waves

- Frequency vs length / tension / mass per unit length
 - Keep other variables constant
 - Use a signal generator + vibrator connected to signal generator to produce the vibrations
 - Measure length using ruler / tension by hanging mass at one end / mass per unit length by changing the wire
 - Graph of f vs. $\frac{1}{l}/f$ vs \sqrt{T}/f vs $\frac{1}{\sqrt{\mu}}$

