Subject : Digital Electronics

DPP - 02

Chapter: Boolean Theorems and GATES

Topic: Boolean Theorems and Basics of Gates (Part-2)

[MCQ]

- **1.** Which of the following is true?
 - (a) We can use '1' as enable input for OR gate
 - (b) We can use '0' as enable input for AND gate
 - (c) '0' as well as '1' can be used as enable input for XNOR gate
 - (d) None of the these

[MCQ]

- **2.** Which of the following relation is true?
 - (a) $A \oplus \bar{B} = \bar{A} \odot B$
 - (b) $\overline{A \oplus \overline{B}} = A \odot B$
 - (c) $\overline{A} \odot \overline{B} = A \oplus B$
 - (d) $\overline{\overline{A} \oplus \overline{B}} = A \oplus B$

[MCQ]

3. A logical circuit is as given below:

Output y will be

- (a) $\bar{A} + B$
- (b) $\bar{A} + \bar{B}$
- (c) AB
- (d) A + B

[MSQ]

4. A logic circuit has 4-input & 1-output line as shown:

Output *y* is '1' wherever no. of zeroes on input side are odd, then output y can be expressed as:

- (a) $A \odot B \odot C \odot D$
- (b) $\overline{A \odot B \odot C} \odot D$
- (c) $\overline{A \oplus B} \oplus C \oplus \overline{D}$
- (d) None of these

[MCQ]

5. A logic circuit is as given below:

Which of the following is true?

- (a) Output y is $\overline{A}B$ if control input = 0
- (b) Output *y* is $\overline{A + B}$ if control input = 1
- (c) Output *y* is $\overline{A \cdot B}$ if control input = 0
- (d) Output y is $\overline{\overline{A} \cdot B}$ if control input = 1

[MCQ]

6. A logic circuit is as given below:

Which of the following is true?

- (a) Output is \overline{A} if n is even
- (b) Output is A if n is even
- (c) Output is \overline{A} if n is odd
- (d) Output is A if n is odd

[MCQ]

7. A logical circuit is as given below:

Output y is

(a) A

- (b) **B**
- (c) Ā
- (d) B

[NAT]

8. A logical expression is given as:

$$f(A,B,C,D) = \overline{A} + AB[ABC + \overline{B}C + AB\overline{C} + C\overline{D}]$$

then minimum number of 2-input NAND gate require to implement above logic function will be

[MCQ]

9. A logical expression is given as:

 $f(A, B, C) = (\overline{A} + B) (A + \overline{B})$, minimum number of 2-input NAND gate require to implement above logical function is _____.

[NAT]

10. A logical expression is given as:

 $f(A, B, C) = \overline{A} + ABC$, then minimum number of 2-input NAND gate require to implement above logical function is ______.

[NAT]

11. A logical function is given as:

 $f(A, B) = A \oplus A\overline{B}$, If we implement this logical function using 2-input NAND gate then, minimum number of NAND gate require is

Answer Key

1. (c)

2. (c)

3. (b)

4. (b,c)

5. **(b)**

6. (a)

7. (a)

8. (2)

9. (5)

10. (2)

11. (2)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

