

CRYPTOGRAPHY AND NETWORK SECURITY

Lab 2

Exercise 1.

A transformation is singular if it is not invertible or undoable. This means if you apply that, you will lose information. A nonsingular transform means you can undo the transform.

Exercise 2.

A block cipher is one in which a block of plain-text is treated as a whole and used to produce cipher-text block of equal length.

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time.

Exercise 4.

Part a. Derive K1, the first round key.

 $K = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110$

PC-1

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

Follow the table PC-1, we have:

 $K + = 1111\ 0000\ 1100\ 1100\ 1010\ 1010\ 0000\ 1010\ 1010\ 1100\ 1100\ 1111\ 0000\ 0000$

Next, split this key into left and right halves, C0 and D0, where each half has 28 bits.

 $C0 = 1111\ 0000\ 1100\ 1100\ 1010\ 1010\ 0000$

 $D0 = 1010\ 1010\ 1100\ 1100\ 1111\ 0000\ 0000$

To derive K1, we will calculate C1, D1 by moving each bit one place to the left of C0 and D0.

 $C1 = 1110\ 0001\ 1001\ 1001\ 0101\ 0100\ 0001$

 $D1 = 0101\ 0101\ 1001\ 1001\ 1110\ 0000\ 0001$

We have C1D1 = 1110 0001 1001 1001 0101 0100 0001 0101 0101 1001 1001 1110 0000 0001 Follow the table PC-2, we have:

PC-2								
14	17	11	24	1	5			
3	28	15	6	21	10			
23	19	12	4	26	8			
16	7	27	20	13	2			
41	52	31	37	47	55			
30	40	51	45	33	48			
44	49	39	56	34	53			
46	42	50	36	29	32			

After we apply the permutation PC-2, becomes

$K1 = 0000\ 1011\ 0000\ 0010\ 0110\ 0111\ 1001\ 1011\ 0100\ 1001\ 1010\ 0101$ b,

ΙP

$\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110$

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Follow the table IP, we have:

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010 Next divide the permuted block IP into left half L0 of 32 bits and a right half R0 of 32 bits.

L0 = 1100 1100 0000 0000 1100 1100 1111 1111

R0 = 1111 0000 1010 1010 1111 0000 1010 1010

c,

E BIT-SELECTION TABLE

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

The E table expands R0 to 48 bits:

 $E(R0) = 01110\ 100001\ 010101\ 010101\ 011110\ 100001\ 010101\ 010101$ d,

 $A = 011100\ 010001\ 011100\ 110010\ 111000\ 010101\ 110011\ 110000$

e,

Follow tables S1, S2, S3, S4, S5, S6, S7, S8, we have:

B1 = 111100, S1[0,14] = 0 or 0000

B2 = 010001, S2[1,8] = 12 or 1100

B3 = 011100, S3[0,14] = 2 or 0010

B4 = 110010, S4[2,9] = 1 or 0001

B5 = 111000, S5[2,12] = 6 or 0110

B6 = 010101, S6[1,10] = 13 or 1101

B7 = 110011, S7[3,9] = 5 or 0101

B8 = 110000, S8[2,8] = 0 or 0000

f, Follow the results of exercise e, we get B with 32 bits:

 $B = 0000\ 1100\ 0010\ 0001\ 0110\ 1101\ 0101\ 0000$

g,

Ρ

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Follow table P, we have:

$P(B) = 1001\ 0010\ 0001\ 1100\ 0010\ 0000\ 1001\ 1100$

h,

 $R1 = P(B) \oplus L0$

 $R1 = 0101 \ 1110 \ 0001 \ 1100 \ 1110 \ 1100 \ 0110 \ 0011$

i,

 $R0 = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$

 $R1 = 0101 \ 1110 \ 0001 \ 1100 \ 1110 \ 1100 \ 0110 \ 0011$

L1 = R0. The cipher-text which is the concatenation of L1 and R1, is

F 0 A A F 0 A A 5 E 1 C E C 6 3

Exercise 5.

Decrypt the string (10100010) using the key (0111111101)

- First, we generate 2 keys:

We use table P10 to permutation key:

Table P10

1001011	. WOLV 1 10									
Input	1	2	3	4	5	6	7	8	9	10
Output	3	5	2	7	4	10	1	9	8	6

We derive K = 11111 10011

We will calculate K1 by moving each bit one place to the left of 2 section of 11111-10011 and using table P8:

LS-1 = 111111001111

Table P8

Input	1	2	3	4	5	6	7	8	9	10
Output	6	3	7	4	8	5	10	9		·

We use table P8 to deriving permutation key:

K1 = 0101 1111

We will calculate K2 by moving each bit two place to the left of 2 section of 11111-00111 and using table P8:

LS-2 = 111111111100

We use table P8 to deriving permutation key:

$K2 = 1111 \ 1100$

- Secondly, we decrypt the string S = 10100010

Table IP

Input	1	2	3	4	5	6	7	8
Output	2	6	3	1	4	8	5	7

IP(S) = 0011 0001

Split IP(S) into 2 section such as the left section (0011) and the right section (0001)

Table E/P

Input	1	2	3	4				
Output	4	1	2	3	2	3	4	1

We use table E/P to deriving the permutated right section(0001)

E/P(0001) = 1000 0010

Xor(K2 and E/P(0001)) = 0111 1110

Split Xor(K2 and E/P(0001)) into 2 section such as the left section(0111) and the right section(1110)

We derive the left section(0111) to use for table S0:

• S₀

	0	1	2	3
0	1	0	3	2
1	3	2	1	0
2	0	2	1	3
3	3	1	3	2

We have row= 01 and column = $11 \rightarrow S0(left) = 00$ We derive the right section(1110) to use for table S1:

• S₁

	0	1	2	3
0	0	1	2	ო
1	2	0	1	თ
2	3	0	1	0
3	2	1	0	3

We have row = 10 and column = $11 \rightarrow S1(right) = 00$

We use S1S2(0000) to use for table P4(2341) we derive P4(S1S2) = 0000

Xor(the left section of IP and P4(S1S2)) = 0011

We put together the right section of IP and the result of XOR above: 0001 0011 (1)

Split 0001 0011 into 2 section left (0001) and section right (0011)

We derive the left section(0011) to use for table S0:

• S₀

	0	1	2	3
0	1	0	3	2
1	3	2	1	0
2	0	2	1	3
3	3	1	3	2

We have row= 01 and column = $01 \rightarrow S0(left) = 10$ We derive the right section(0001) to use for table S1:

	0	1	2	3
0	0	1	2	3
1	2	0	1	3
2	3	0	1	0
3	2	1	0	3

• S₁

We have row = 01 and column = $00 \rightarrow S1(right) = 10$

We use S1S2(0100) to use for table P4(2341) we derive P4(S1S2) = 1010

Xor(the left section of (1) and P4(S1S2)) = 1011

We put together the right section of (1) and the result above: 1011 0011

We use it for table IP-1:

Input	1	2	3	4	5	6	7	8
Output	4	1	3	5	7	2	8	6

We derive the plain-text: 1110 1010