Edge Coupler

Moisés de Araújo Oliveira

Referência

J. Wang et al., "Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers," 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2016, pp. 1–3.

Double-tip Inverse Taper

- maior grau de liberdade para design
- maior coeficiente de acoplamento
- tolerância ao desalinhamento

Design

semana 1

Design – FDTD

FDTD SETTINGS

me [FDTD				
General	Geometry	Mesh settings	Boundary conditions	Advanced options
		,		
	din	nension 3D	•	
	simulation t	ime (fs) 1200		
cimula	tion tompora	turo (K) 300		
Simula	ition tempera	ture (K) 300		
backgrou	ınd material	<object defined="" of<="" td=""><td>dielectric> 🔻</td><td></td></object>	dielectric> 🔻	
	index	1		

eneral Geor	netry	Mesh settings	Boun	dary conditions	Advanced options
Cilciui		resir sectings	Dodii	dary conditions	Advanced options
x (μm) 1	9.25	x mir	n (μm)	-2	
x span (µm) 4	2.5	x max	κ (μm)	40.5	
y (μm) 0		y mir	n (μm)	-4	
y span (µm) 8		y ma:	κ (μm)	4	
z (µm) 0		z mir	n (μm)	-5	
z span (µm) 1	0	z ma:	κ (μm)	5	

General	Geometry	Mesh settings	Boundary c	onditions	Advance	ed options
mesh type	auto non-ur	niform 🔻				
Mesh accu	iracy			Time step		
mesh ac	curacy 5	_		dt stabil	lity factor	0.99
High accuracy. Please check memory requirements before running simulations.			dt (fs)		0.0367515	
			Minimum mesh step settings			
Mesh refin	ement			min me	sh step (µr	m) 0.00025
mesh refinement conformal variant 0 ▼ How do I choose?			min me	зії зсер (ді	11) 0.00023	

TE MODE INPUT FIELD IN THE FIBER

y span = 6 umz span = 10 um

DISTRIBUIÇÃO DE CAMPO

COUPLING LOSS

semana 2 06/03 - 17/03

- o yspan da porta de entrada foi aumentada para 8um
- a condição de fronteira para z min foi mudada para symmetric
- o mesh utilizado foi de 5

TE MODE INPUT FIELD IN THE FIBER

y span = 8 umz span = 10 um

COUPLING LOSS

- o autoshutoff level foi de 5e-4
- simulation time estava em 1200 fs
- o probelma para esse caso foi a convergência da simulação

- setando o DT STABILITY FACTOR para 0.95
- o aumentando o simulation time para 1500 fs

- o autoshutoff level foi de 3.3e-4
- o mais uma vez temos um problema na convergência

- o mudando o zspan da porta de excitação para 8um
- o setando a condição de fronteira em zmin para PML

- setando o mesh para 3
- deixando o simulation time em 1500 fs
- DT stability factor em 0.99

- o autosutoff level foi em torno de 2.2e-4
- mais uma vez temos um problema na convergência

SEMANA 3

17/03 - 24/03

INPUT PORT NO FDE

Geometria da fibra:

- core radius = 1.5 um
- ncore = 1.44
- cladding radius = 20 um
- ncladding = 1.383
- MFD = 3.3 um

- Análise inicial com:
- mesh cells = 300
- yspan = 10 um
- z span = 10 um
- Z min BC = Symmetric
- Z max BC = PML
- Y min BC = PML
- Y max BC = PML
- min step mesh = 1e-6

SIMULAÇÃO NO EME

SOI waveguide

EME SETTINGS:

- y min BC = PML
- y max BC = PML
- z min BC = Symmetric
- z max BC = PML
- y span = 10 um
- z span = 10 um
- min mesh step = 1e-6

Port 1 settings:

- y span = 10 um
- z span = 10 um

Port 2 settings:

- y span 4 um
- z span = 4 um

mode convergence sweep

Results

wavelength sweep

EME sweep

referência

