Лекция 18: Частичное обучение

1

Постановка задачи частичного обучения (SSL)

Дано:

- \square множество объектов X, множество классов Y;
- $\square X^k = \{x_1, ..., x_k\}$ размеченные объекты (labeled data); $\{y_1, ..., y_k\}$
- $U = \{x_{k+1}, \dots, x_l\}$ неразмеченные объекты (unlabeled data).
- Два варианта постановки задачи:
 - \square Частичное обучение (semi-supervised learning): построить алгоритм классификации $a: X \to Y$.
 - □ Трансдуктивное обучение (transductive learning): зная все $\{x_{k+1},...,x_l\}$, получить метки $\{a_{k+1},...,a_l\}$.
- Типичные приложения:
 - Классификация и каталогизация текстов, изображений, и т.п.
 - □ Применяется везде, где разметки мало или она дорогая

- Разные результаты прогноза, если восстанавливать плотности классов по всем или только по размеченным
- Классификация не учитывает кластерную структуру неразмеченных данных
- Кластеризация не учитывает приоритет разметки

Основные подходы к SSL

- Кластеризация с учетом ограничений разметки:
 - □ не объединять в кластер объекты из разных классов
- Последовательная доразметка:
 - □ Последовательное дообучение на своих наиболее уверенных прогнозах (self-training)
 - □ Последовательное дообучение на чужих наиболее уверенных прогнозах, включая ансамбли (co-training, co-learning)
- Вероятностные модели:
 - □ Распространение меток– пересчет распределения меток классов на основе графа связей «сходства» наблюдений (label propagation)
 - Параметрическая оценка распределений классов с учетом неразмеченных примеров
- Оптимизационный подход:
 - \square Включение в целевую функцию потерь прогнозирования и потерь некомпактной кластеризации: $Q_{SSL} = Q_{class} + \gamma Q_{cluster} omes \min$

10

Метод K-средних для частичного обучения

- Модификация алгоритма Ллойда
- При наличии размеченных объектов $\{x_1, ..., x_k\}$
 - \square Вход: X^l , K = |Y|;
 - \square Выход: центры кластеров μ_a , $a \in Y$;
 - $\ \square\ \mu_a \coloneqq$ начальное приближение центров, для всех $a \in Y$;
 - □ Повторять

Отнести каждый $x_i \in U$ к ближайшему центру:

$$a_i \coloneqq \arg\min_{a \in Y} ||x_i - \mu_a||, i = k + 1, ..., l$$

Вычислить новые положения центров:

$$\mu_a := \frac{\sum_{i=1}^{l} [a_i = a] x_i}{\sum_{i=1}^{l} [a_i = a]}, a \in Y;$$

 \square Пока a_i не перестанут изменяться.

Алгоритм Ланса-Уильямса для частичного обучения

- Алгоритм иерархической кластеризации (Ланс, Уильямс, 1967):
- Итеративный пересчет расстояний R_{UV} между кластерами U,V.
- $C_1 \coloneqq \{\{x_1\}, \dots, \{x_l\}\}$ все кластеры 1-элементные;
- $R_{\{x_i\}\{x_i\}} \coloneqq \rho(x_i, x_j)$ расстояния между ними;
- Для всех t = 2, ..., l (t номер итерации):
 - □ Найти в C_{t-1} пару кластеров (U,V) с минимальным R_{UV} , при условии, что в $U \cup V$ нет объектов с разными метками;
 - □ Слить их в один кластер:
 - \square $W \coloneqq U \cup V$;
 - $\square \ C_t \coloneqq C_{t-1} \cup \{W\} \setminus \{U, V\};$
 - \square Для всех $S \in \mathcal{C}_t$ Вычислить R_{ws} по формуле Ланса-Уильямса:

$$R_{WS} := \alpha_U R_{US} + \alpha_V R_{VS} + \beta R_{UV} + \gamma |R_{US} - R_{VS}|$$

Недостатки SSL на основе кластеризации с учетом разметки

- Все недостатки методов кластеризации проявляются сильнее:
 - Для кластеризации на основе
 прототипов ожидаются сферические
 (или эллиптические) формы классов
 - □ Нужно угадать с числом кластеров или брать «с запасом», но сколько?
 - Для иерархической кластеризации важно межкластерное расстояние

Метод частичного обучения selftraining (1965–1970)

- Пусть $\mu: X^k \to a$ метод обучения классификации;
- Классификаторы имеют вид $a(x) = argmax_{y \in Y} \Gamma_y(x);$
- Псевдоотступ степень уверенности классификации $a_i=a(x_i)$: $M_i(a)=\Gamma_{a_i}(x_i)-\max_{y\in Y\setminus a_i}\Gamma_y(x_i)$
- Алгоритм self-training обертка (wrapper) над методом μ :
 - $\square Z \coloneqq X^k$;
 - \square Пока |Z| < l
 - $a \coloneqq \mu(Z)$
 - $\Delta \coloneqq \{x_i \in U \setminus Z | M_i(a) \ge M_0 \}$
 - $y_i \coloneqq a(x_i)$ для всех $x_i \in \Delta$
 - $Z := Z \cup \Delta$
 - \square M_0 можно определять, например, из условия $|\Delta| = 0.05|U|$

Метод частичного обучения co-training (Blum, Mitchell, 1990)

- Пусть $\mu_1: X^{k_1} \to a_1, \mu_2: X^{k_2} \to a_2$ два существенно различных метода обучения, использующих
 - □ Либо разные наборы признаков;
 - □ Либо разные парадигмы обучения (inductive bias);
 - $\ \square \$ Либо разные источники данных $X_1^{k_1}$, $X_2^{k_2}$.
- Пока $|Z_1 \cup Z_2| < l$
 - $\square \ a_1 \coloneqq \mu_1(Z_1); \ \Delta_1 \coloneqq \{x_i \in U \setminus Z_1 \setminus Z_2 | M_i(a_1) \ge M_{01} \};$
 - \square $y_i \coloneqq a_1(x_i)$ для всех $x_i \in \Delta_1$;
 - \square $Z_2 \coloneqq Z_2 \cup \Delta_1$;
 - $\square \ a_2 \coloneqq \mu_2(Z_2); \ \Delta_2 \coloneqq \{x_i \in U \setminus Z_1 \setminus Z_2 | M_i(a_2) \ge M_{02} \};$
 - $\ \ \square \ \ y_i \coloneqq a_2(x_i)$ для всех $x_i \in \Delta_2$;
 - \square $Z_1 \coloneqq Z_1 \cup \Delta_2$;

Метод частичного обучения соlearning (deSa, 1993)

- Пусть μ_t : $X^k \to a_t$ разные методы обучения, t = 1, ..., T.
- Алгоритм co-learning это self-training для композиции простого голосования базовых алгоритмов a_1, \ldots, a_T :

$$a(x) = \arg\max_{y \in Y} \Gamma_y(x), \Gamma_y(x_i) = \sum_{t=1}^{T} [a_t(x_i) = y]$$

- Тогда $M_i(a)$ степень уверенности классификации $a(x_i)$.
- $Z := X^k$;
- Пока |Z| < l</p>
 - \square $a \coloneqq \mu(Z)$;
 - $\Box \ \Delta \coloneqq \{x_i \in U \setminus \mathbb{Z} | M_i(a) \geq M_0\};$
 - \square $y_i \coloneqq a(x_i)$ для всех $x_i \in \Delta$;
 - \square $Z \coloneqq Z \cup \Delta$

Self- и co- training не всегда работают

М

Общий оптимизационный подход к задачам SSL

- Дано:
 - $\square X^k = \{x_1, ..., x_k\}$ размеченные объекты (labeled data); $\{y_1, ..., y_k\}$
 - \square $U = \{x_{k+1}, \dots, x_l\}$ неразмеченные объекты (unlabeled data).
- Найти: модель классификации a(x, w)
- Критерий одновременной классификации и кластеризации:

$$\sum_{i=1}^k \mathcal{L}(a(x_i,w),y_i) + \lambda \underbrace{\sum_{i=1}^l \mathcal{L}_u(a(x_i,w))}_{\text{классификация}} o \min_{\mathbf{w}}$$

- \square Где $\mathcal{L}(a,y)$ функция потерь классификации,
- \square $\mathcal{L}_U(a)$ функция потерь для неразмеченных данных.

M

Автокодировщики для частичного обучения

- Данные:
 - \square размеченные $(x_i, y_i)_{i=1}^k$, неразмеченные $(x_i)_{i=k+1}^l$
- Совместное обучение кодировщика, декодировщика и предсказательной модели (классификации, регрессии или др.):

$$\sum_{i=1}^{l} \mathcal{L}(g(f(x_i,\alpha),\beta),x_i) + \lambda \sum_{i=1}^{k} \tilde{\mathcal{L}}(\hat{y}(f(x_i,\alpha),\gamma),y_i) \to \min_{\alpha,\beta,\gamma}$$

- $\Box z_i = f(x_i, \alpha)$ кодировщик
- \square $\hat{x}_i = g(z_i, \beta)$ декодировщик
- $\ \ \ \ \ \hat{y}_i = \hat{y}(z_i, \gamma)$ предиктор
- Функции потерь:
 - \square $\mathcal{L}(\hat{x}_i, x_i)$ реконструкция
 - \square $\tilde{\mathcal{L}}(\hat{y}_i, y_i)$ предсказание

M

Функция потерь для трансдуктивного SVM

- Функция потерь $L = (1 |M|)_+$:
 - штрафует за попадание объектавнутрь разделяющей полосы
- Обучение весов w, w₀ по частично размеченной выборке:

$$Q = \sum_{i=1}^{k} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 + \frac{1}{2C} ||$$

- Достоинства TSVM:
 - как и в обычном SVM, можно использовать ядра;
 - имеются эффективные реализации для больших данных

Проблемы TSVM

- задача невыпуклая методы оптимизации сложнее и неединственное решение;
- lacktriangle требуется настройка двух параметров регуляризации C,γ
- решение неустойчиво или неверно, если нет области разреженности между классами;

- Общая идея подхода (есть много разных версий):
 - □ Графовая модель представления всех данных (и размеченных, и неразмеченных), где узлы – наблюдения, ребра – оценка сходства без учета разметки
 - □ Разметка на основе случайного блуждания (random walk), где вероятность перехода задаётся, пропорционально «весу» ребра сходству
 - Метка размеченного наблюдения не меняется, а для неразмеченного выбирается голосованием или пропорционально сходству всех уже размеченных ближайших соседей

Распространение меток

Дано:

- $\square X^k = \{x_1, ..., x_k\}, \{y_1, ..., y_k\}$ размеченные объекты (labeled data);
- $U = \{x_{k+1}, ..., x_l\}$ неразмеченные объекты (unlabeled data), обычно имеет смысл применять распространение меток при $k \ll l$;
- \square Y различные метки классов, $A^{(0)}$ матрица начальной разметки l imes |Y|, где $A^{(0)}_{ij}=1$ ттт, когда $y_i=j$ для $i \le k$, иначе $A^{(0)}_{ij}=0$
- □ мера близости двух любых примеров (не зависит от разметки), обычно на основе RBF или другого ядра: $w_{ij} = K(\rho(x, x_i)^2/h)$, чем разреженней матрица $l \times l$ ядра тем лучше;
- \square $\{w_{ij}\}$ задает матрицу $l \times l$ переходов $T_{ij} = P(i \to j) = w_{ij} / \sum_{s=1}^l w_{sj}$
- Алгоритм в цикле находит матрицу разметки $A^{(t)}: X \to Y$:
 - \Box Пересчет меток: $A^{(t)} = \alpha T A^{(t-1)} + (1-\alpha) A^{(0)}, \ 0 < \alpha < 1$
 - П Нормализация $Y^{(t)}$: обычно фиксируют размеченные метки $A_{x\notin U}^{(t)}=A_{x\notin U}^{(0)}$, остальные нормируют ($\sum_{s=1}^{|Y|}A_{is}^{(t)}=1$) или выбирает по максимальной уверенности в прогнозе ($y_{i>k}=\operatorname{argmax}_i[A_{ii}^{(t)}]$)

Пример

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.svm import SVC
from sklearn.semi supervised import LabelSpreading
from sklearn.semi supervised import SelfTrainingClassifier
iris = datasets.load iris()
X = iris.data[:, :2]
y = iris.target
# step size in the mesh
h = .02
rng = np.random.RandomState(0)
y rand = rng.rand(y.shape[0])
y 30 = np.copy(y)
y 30[y rand < 0.3] = -1 # set random samples to be unlabeled
y 50 = np.copy(y)
y 50[y rand < 0.5] = -1
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')
ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')
ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')
# the base classifier for self-training is identical to the SVC
base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)
st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),
        y 30, 'Self-training 30% data')
st50 = (SelfTrainingClassifier(base classifier).fit(X, y 50),
        y_50, 'Self-training 50% data')
rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')
# create a mesh to plot in
x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
y min, y max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y min, y max, h))
```

```
color_map = {-1: (1, 1, 1), 0: (1, 0, 0), 1: (0.2, 0.2, 0.6), 2: (0.7, 0.7, 0.7)}

classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)
for i, (clf, y_train, title) in enumerate(classifiers):

   plt.subplot(3, 2, i + 1)
   Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

   Z = Z.reshape(xx.shape)
   plt.contourf(xx, yy, Z, cmap="Pastel1")
   plt.axis('off')

   colors = [color_map[y] for y in y_train]
   plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')

   plt.title(title)

plt|.suptitle("Unlabeled points are colored white", y=0.1)
plt.show()
```

Label Spreading 30% data

Label Spreading 50% data

Label Spreading 100% data

Self-training 30% data

Self-training 50% data

SVC with rbf kernel

Unlabeled points are colored white

- Для размеченной выборки (если число компонент смеси = числу классов):
 - \square Модель: $p(x,y|\theta) = P(y|\theta)p(x|y,\theta)$
 - \square Задача максимизации правдоподобия по θ :

$$\log(p(X_l, Y_l | \theta)) = \sum_{l} \log(P(y_i | \theta) p(x_i | y_i, \theta)) \to \max_{\theta}$$

- \square Классификация $P(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$
- Для частично размеченной выборки:
 - $\square \ X^k = \{x_1, ..., x_k\}, \{y_1, ..., y_k\}$ размеченные объекты;
 - $\Box U = \{x_{k+1}, ..., x_l\}$ неразмеченные объекты;
 - \square Задача максимизации правдоподобия по θ :

$$\log(p(X_k, Y_k, U|\theta)) = \sum_{i=1}^k \log(P(y_i|\theta)p(x_i|y_i, \theta)) + \sum_{i=k+1}^l \log\left(\sum_j P(j|\theta)p(x_i|j, \theta)\right) \to \max_{\theta}$$

2

SSL GMM (Gaussian Mixture Model)

- Вход:
 - \square $X^k = \{x_1, ..., x_k\}, \{y_1, ..., y_k\}$ размеченные объекты (labeled data);
 - $U = \{x_{k+1}, \dots, x_l\}$ неразмеченные объекты (unlabeled data);
- Выход: $(w_j, \mu_j, \Sigma_j)_{i=1}^{|Y|}$ параметры смеси гауссиан;
- Инициализировать $\left(oldsymbol{\mu_j}, oldsymbol{\Sigma_j}
 ight)_{j=1}^{|Y|}$, $w_j \coloneqq rac{1}{|Y|}$
- Повторять:
 - \square **Е-шаг** (expectation): для $x_i \notin U$ $g_{ij} \coloneqq 1$ если $y_i = j$, иначе $g_{ij} \coloneqq 0$ для всех $x_i \in U$, j = 1, ..., |Y|:

$$g_{ij} \coloneqq p(y_i = j | x_i) \frac{w_j N(x_i; \mu_j, \Sigma_j)}{\sum_{s=1}^{|Y|} w_s N(x_i; \mu_s, \Sigma_s)}$$

 \square **М-шаг** (maximization): для всех j=1,...,|Y|

$$w_j \coloneqq \frac{1}{l} \sum_{i=1}^l g_{ij}, \mu_j \coloneqq \frac{1}{lw_j} \sum_{i=1}^l g_{ij} x_i, \Sigma_j \coloneqq \frac{1}{lw_j} \sum_{i=1}^l g_{ij} (x_i - \mu_j) (x_i - \mu_j)^T$$

■ Пока (w_j, μ_j, Σ_j) и / или g_{ij} не сошлись.

Особенности SSL EM

- SSL EM специальный случай со-training
- Чтобы контролировать важность разметки можно использовать регуляризацию (0 < γ < 1):

$$\log(p(X_k, Y_k, U|\theta)) = \sum_{i=1}^k \log(p(y_i|\theta)p(x_i|y_i, \theta)) +$$

$$+ \gamma \sum_{i=k+1}^l \log\left(\sum_j p(j|\theta)p(x_i|j, \theta)\right) \to \max_{\theta}$$

- Зачастую надо брать компонент смеси больше чем классов
- В целом не всегда работает:

