

MADE

Analysis of the impact of Extreme Weather Events on the USA

Richard Heinz

January 15, 2025

- 1. Introduction
- 2. Data Outputs
- 3. Data Analysis
- 4. Conclusion

- 1. Introduction
- 2. Data Outputs
- 3. Data Analysis
- 4. Conclusion

Introduction

Background

- Increase in extreme weather events like storms, floods, and tornadoes across the USA.
- Key economic concern: their impact on GDP and financial resources.

Research question

 To what extent do extreme weather events such as storms, floods and tornadoes impact the GDP of the United States and consequently the availability of financial resources?

Objective

- Analyze historical data of storm events in the years 1999 to 2023
- Analyze historical data of GDP and other financial factors in the years 1999 to 2023
- Provide actionable insights

R. Heinz Analysis-Report January 15, 2025 4/16

- 1. Introduction
- 2. Data Outputs
- 3. Data Analysis
- 4. Conclusion

NOAA Storm Events Database

Key Facts

- Covers extreme weather events (1999–2024).
- Details:
 - State, date, event type.
 - Injuries, fatalities, and financial damages.
- Financial damages:
 - Abbreviated formats (e.g., 50K = \$50,000).
 - Challenges with NULL values (missing or \$0?).

Data Structure

- Stored in SQLite tables.
- Uniform yearly structure (1999–2024).
- Includes SOURCE column for context.

Challenges for Analysis

Careful handling of NULL values is critical to avoid biased results.

R. Heinz Analysis-Report January 15, 2025 6/16

Bureau of Economic Analysis: GDP by State

Key Facts

- Comprehensive economic dataset (1999–2023).
- Includes:
 - GDP, personal income, employment statistics.
 - Real and current dollar statistics.
- Data covers both national and state levels for comparative analysis.

Data Structure

- Organized in three interlinked SQLite tables:
 - GeoNames: Locations.
 - Indicators: Economic categories (e.g., GDP, income).
 - GDPData: Annual percentage changes.

Challenges

- Initial rows contain irrelevant supplementary information.
- Geographic names must repeat for yearly mapping.
- Presence of NA values complicates correlation analysis.

R. Heinz Analysis-Report 7/16

Bureau of Economic Analysis: GDP by State - structure

Example

Real GDP in Alabama increased by 5.1% based on GeoNameID and IndicatorID

R. Heinz Analysis-Report January 15, 2025 8/16

- 1. Introduction
- 2. Data Outputs
- 3. Data Analysis
- 4. Conclusion

Methodology

Analysis Overview

- Correlation analysis between financial damages (NOAA) and economic indicators (BEA).
- Focus on Real GDP percentage change (inflation-adjusted).
- Additional metrics: Real per capita personal income, Real PCE.

Key Variables

- X: Financial Damages from NOAA (property + crop damages).
- Y: Real GDP (primary), Real personal income, and Real PCE.

Analysis Focus

- Real GDP as the main indicator of economic performance.
- Real per capita personal income to gauge average income changes.
- Real PCE to assess purchasing power and consumption trends.

R. Heinz Analysis-Report January 15, 2025 10/16

Key Findings

State-Level Correlations

- New Hampshire: Moderate negative correlation (-0.54), indicating that higher financial damages from extreme weather events are linked to a decrease in Real GDP.
- Kansas: Moderate positive correlation (+0.42), suggesting that in Kansas, higher financial damages tend to coincide with an increase in Real GDP.

Nationwide Correlation

 Nationwide, the correlation is weakly negative (-0.16), pointing to a slight negative impact of extreme weather events on Real GDP across all states.

Additional Metrics

- Real personal income showed a weak positive correlation of 0.29, suggesting limited impact on income levels.
- **Real PCE** had a similarly weak positive correlation of 0.18, indicating a minor relationship between extreme weather damages and consumer spending.

R. Heinz Analysis-Report January 15, 2025 11/16

Correlation Analysis Visualization

Correlation Examples

Abbildung 3: Correlation: New Hampshire, Kansas (Source: Own representation).

R. Heinz Analysis-Report January 15, 2025 12/16

- 1. Introduction
- 2. Data Outputs
- 3. Data Analysis
- 4. Conclusion

Conclusion

Key Insights

- Extreme weather impacts vary across states, with different correlations to economic indicators.
- **New Hampshire:** Negative correlation (-0.54), indicating a negative impact on the economy.
- **Kansas:** Positive correlation (+0.42), suggesting higher financial damages do not necessarily hinder economic growth, possibly due to better preparedness.

General Findings

- Nationwide, weak negative correlation (-0.16) suggests a slight economic impact.
- Low positive correlations with Real per capita personal income and Real PCE contradict intuition, pointing to possible long-term effects.

Limitations & Next Steps

- Limitations: Missing data, variability in state responses.
- Need for deeper exploration of regional resilience mechanisms and demographic factors (e.g. state size, population).

R. Heinz Analysis-Report January 15, 2025 14/16

Thank you

Thank you for your attention!

R. Heinz Analysis-Report January 15, 2025 15/16