## Etapa județeană/a sectoarelor municipiului București a olimpiadei de fizică 23 februarie 2019 Probă scrisă



#### Pagina 1 din 2

#### Problema 1: Becul cu incandescență

(10 puncte)

Un bec cu incandescență are filamentul din Tungsten. Din experimente științifice de precizie se știe că rezistenta unui fir de tungsten depinde de temperatură după o lege aproximativ pătratică

$$R = R_0(a + bx + cx^2), \tag{1}$$

unde  $x = T/T_0$ , iar  $R_0 = R(T_0)$  este rezistența firului la temperatura  $T_0$ . Într-un laborator de fizică școlar s-a făcut următorul montaj electric pentru studiul dependentei de temperatură a filamentului unui bec auto. Pentru becul folosit în experiment se cunosc valorile nominale  $U_n = 12 \text{ V}$  și  $P_n = 21 \text{ W}$ . Sursa de tensiune continuă este o sursă electronică reglabilă. Un pirometru optic a fost folosit pentru estimarea temperaturii



filamentului. Experimentul a produs următorul tabel cu date experimentale. Primele 4 seturi de date din tabel sunt dedicate estimării rezistenței becului la temperatura camerei  $T_0 = 300$  K.

- a) Folosiți aceste date pentru a estima rezistența becului la temperatura camerei,  $R_0$ .
- **b**) Estimați lungimea firului dacă diametrul său este  $d=80.0~\mu m$ . Rezistivitatea tungstenului la temperatura camerei este  $5.65~\mu \Omega \cdot cm$ .

| U[mV] | I[mA] | T[K] | U[V] | I[A]  | T[K] | U[V]  | I[A]  | T[K] |
|-------|-------|------|------|-------|------|-------|-------|------|
| 1,2   | 3,0   | 300  | 1,94 | 0,894 | 1200 | 6,53  | 1,330 | 2400 |
| 2,0   | 5,0   | 300  | 2,75 | 0,977 | 1500 | 8,36  | 1,480 | 2700 |
| 2,9   | 7,5   | 300  | 3,77 | 1,080 | 1800 | 10,60 | 1,650 | 3000 |
| 3,9   | 10    | 300  | 4,98 | 1,190 | 2100 | 13,20 | 1,830 | 3300 |

Pentru următoarele cerințe, folosiți toate temperaturile date în tabel.

- c) Calculați valorile rezistenței becului, iar rezultatele vor fi trecute în tabelul aflat pe fișa de răspuns anexată subiectului.
- d) Calculați valorile variabilei x. Rezultatele vor fi trecute în tabelul aflat pe fișa de răspuns anexată subiectului.

Dintr-un experiment mai precis a fost estimat coeficientul lui  $x^2$  (din formula 1) la valoarea c = 0.030078.

- e) Folosind această valoare calculați variabila  $y = \frac{R}{R_0} cx^2$ . Rezultatele vor fi trecute în tabelul aflat pe fișa de răspuns anexată subiectului.
- f) Reprezentați grafic y în funcție de x. Graficul va fi realizat pe hârtia milimetrică aflată pe fișa de răspuns.
- g) Estimați din acest grafic parametrii a si b din formula (1).
- h) Estimati temperatura becului la tensiunea nominală.

În toate estimările numerice prezentați rezultatul folosind 3 cifre semnificative.

Problemă propusă de: Prof. Ion TOMA, CN "Mihai Viteazul", București Lector univ. dr. Cornel NICULAE Fac. Fizica; Universitatea București

<sup>1.</sup> Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

<sup>2.</sup> În cadrul unei probleme, elevul are dreptul să rezolve cerințele în orice ordine.

<sup>3.</sup> Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subjectelor către elevi

<sup>4.</sup> Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

<sup>5.</sup> Fiecare problemă se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

## Etapa județeană/a sectoarelor municipiului București a olimpiadei de fizică 23 februarie 2019 Probă scrisă



Pagina 2 din 2

#### Problema 2: Inelul și busola

(10 puncte)

Un inel circular subțire, de rază r=30 cm și rezistență electrică R, se rotește în jurul diametrului vertical cu frecvența  $\nu=10$  rotații/secundă. În centrul inelului este așezat un mic ac magnetic (busolă), de masă neglijabilă și care se poate roti în jurul aceleiași axe verticale, fără frecare. Dacă inelul nu s-ar roti, atunci acul magnetic ar fi orientat pe direcția componentei orizontale a câmpului magnetic terestru,  $B_0=20\,\mu\mathrm{T}$ . Atunci când inelul se rotește se constată o deviație medie a acului magnetic cu unghiul  $\theta=2^\circ$ 

față de direcția menționată. Consideră că la momentul  $t_0=0$  inelul se află într-un plan perpendicular pe direcția lui  $B_0$ . Stabilește:

- a) expresia dependenței de timp a fluxului magnetic prin inel;
- b) expresia intensității curentului electric prin inel;
- c) expresia sarcinii electrice care traversează o secțiune transversală a conductorului inelului la rotația acestuia cu unghiul  $\varphi_0=\pi$  față de starea inițială;
- d) expresia câmpului magnetic în centrul inelului, produs de curentul indus, precum și componentele acestui câmp pe direcțiile paralelă și, respectiv, perpendiculară la  $B_0$ ;
- e) valoarea medie în timp a celor două componente;
- f) expresia și valoarea rezistenței electrice a inelului, R;
- g) expresia momentului cuplului care menține inelul în rotație, neglijând frecările.

Notă: Se dă permeabilitatea magnetică a vidului:  $\mu_o = 4\pi \cdot 10^{-7} \ \text{N} \cdot \text{A}^{-2}$ .

## Problema 3 Două corpuri punctiforme

(10 puncte)

Două corpuri identice A și B, de masă m și sarcină q sunt plasate pe un plan înclinat cu unghiul  $\alpha$  față de orizontală. Fixăm A la baza planului înclinat. Corpul B se poate deplasa numai pe direcția Ax. Se neglijează frecările.

- a) Află  $x_0$  poziția de echilibru a corpului B.
- b) Stabilește dacă echilibrul este stabil sau instabil.
- c) Reprezentă grafic dependența energiei potențiale a sistemului în funcție de distanța *x* dintre cele două corpuri.
- d) Deplasăm corpul B de-a lungul planului înclinat la o distanță  $x_M > x_0$  și-l lăsăm liber. La ce distanță minimă vor ajunge cele două corpuri?
- e) Prima oprire a corpului se petrece după un timp  $\Delta t$ . Consideră că acest timp depinde numai de masa corpului m, de distanța  $x_0$  și de valoarea forței electrice  $F_0$  în poziția de echilibru. Folosește analiza dimensională pentru a afla această dependență.
- f) Scoatem corpul B din poziția de echilibru, în lungul axei x. Determină pulsația oscilațiilor armonice.

Probleme propuse de:

Lect. univ. dr. Mihai Vasilescu, Facultatea de fizică, UBB Cluj-Napoca, Conf. univ. dr. Daniel ANDREICA, Facultatea de fizică, UBB Cluj-Napoca. Prof. dr. Constantin COREGA, Colegiul Național "Emil Racoviță", Cluj-Napoca

- 1. Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unei probleme, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi
- 4. Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare problemă se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.



# FIȘA DE RĂSPUNS Problema 1, clasa a XI-a

| U[V]  | I[A]  | T[K] | R[Ω] | $x = T/T_0$ | $y = \frac{R}{R0} - cx^2$ |
|-------|-------|------|------|-------------|---------------------------|
| _     | _     | 300  |      | 1           |                           |
| 1,94  | 0,894 | 1200 |      |             |                           |
| 2,75  | 0,977 | 1500 |      |             |                           |
| 3,77  | 1,080 | 1800 |      |             |                           |
| 4,98  | 1,190 | 2100 |      |             |                           |
| 6,53  | 1,330 | 2400 |      |             |                           |
| 8,36  | 1,480 | 2700 |      |             |                           |
| 10,60 | 1,650 | 3000 |      |             |                           |
| 13,20 | 1,830 | 3300 |      |             |                           |

