MFC: User guide

Spencer H. Bryngelson, ^{1,*} Kevin Schmidmayer, ¹ Vedran Coralic, ² Jomela Meng, ³ Kazuki Maeda, ⁴ and Tim Colonius ¹

 1Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA 2Amazon

³ Affiliation here ⁴ University of Washington (Dated: June 3, 2019)

I. BOUNDARY CONDITIONS

	#	Description
	-1	Periodic
al	-2	Reflective
rm	-3	Ghost cell extrapolation
Normal	-4	Riemann extrapolation
	-5	Slip wall
ı.	-6	Non-reflecting subsonic buffer
char.	-7	Non-reflecting subsonic inflow
o c	-8	Non-reflecting subsonic outflow
SOJ	-9	Force-free subsonic outflow
пр	-10	Constant pressure subsonic outflow
Thompson	-11	Supersonic inflow
Ē	-12	Supersonic outflow

TABLE I. Boundary conditions

II. PATCH TYPES

#	Name	Dim.	Smooth	Description and required parameters
1	Line segment	1	N	Requires x_centroid and x_length.
2	Circle	2	Y	Requires x[y]_centroid and radius.
3	Rectangle	2	N	Coordinate-aligned. Requires x[y]_centroid and x[y]_length.
4	Sweep line	2	Y	Not coordinate aligned. Requires x[y]_centroid and normal(i).
5	Ellipse	2	Y	Requires x[y]_centroid and radii(i).
6	Vortex	2	N	Isentropic flow disturbance. Requires x[y]_centroid and radius.
7	2D analytical	2	N	Assigns the primitive variables as analytical functions.
8	Sphere	3	Y	Requires x[y,z]_centroid and radius.
9	Cuboid	3	N	Coordinate-aligned. Requires x[y,z]_centroid and x[y,z]_length.
10	Cylinder	3	Y	Requires x[y,z]_centroid, radius, and x[y,z]_length.
11	Sweep plane	3	Y	Not coordinate-aligned. Requires x[y,z]_centroid and normal(i).
12	Ellipsoid	3	Y	Requires x[y,z]_centroid and radii(i).
13	3D analytical	3	N	Assigns the primitive variables as analytical functions.
14	Sph. harmonic	3	N	Generates spherical harmonic perturbations to a sphere.

TABLE II. Patch geometries

^{*} spencer@caltech.edu

III. INPUT PARAMETERS

Parameter	\mathbf{Type}	Description
case_dir	String	Case script directory
run_time_info	Logical	Output run-time information
nodes	Integer	Number of nodes
ppn	Integer	Number of cores
queue	String	Queue name
walltime	Time	Maximum run time
mail_list	String	Information sent to this email
$x[y,z]_{domain\%beg[end]}$	Real	Beginning [ending] of the $x[y,z]$ -direction domain
$stretch_x[y,z]$	Logical	Stretching of the mesh in the $x[y,z]$ -direction
a_x[y,z]	Real	Rate at which the grid is stretched in the $x[y,z]$ -direction
x[y,z]_a	Real	Beginning of the stretching in the negative $x[y,z]$ -direction
x[y,z]_b	Real	Beginning of the stretching in the positive $x[y,z]$ -direction
cyl_coord	Logical	Cylindrical coordinates (2D: Axisymmetric, 3D: Cylindrical)
m	Integer	Number of grid cells in the x-coordinate direction
n	Integer	Number of grid cells in the y-coordinate direction
р	Integer	Number of grid cells in the z-coordinate direction
dt	Real	Time step size
t_step_start	Integer	Simulation starting time step
t_step_stop	Integer	Simulation stopping time step
t_step_save	Integer	How often to output data

TABLE III. Logistics and computational domain parameters

Parameter	Type	Description
num_patches	Integer	Number of initial condition geometric patches
model_eqns	Integer	Multicomponent model: [1] Γ/Π_{∞} ; [2] 5-equation; [3] 6-equation
alt_soundspeed	Logical	Alternate sound speed and $K\nabla \cdot \boldsymbol{u}$ for 5-equation model
num_fluids	Integer	Number of fluids/components present in the flow
adv_alphan	Logical	Equations for all N volume fractions (instead of $N-1$)
mpp_lim	Logical	Mixture physical parameters limits
mixture_err	Logical	Mixture properties correction
time_stepper	Integer	Runge–Kutta order [1–5]
weno_vars	Integer	WENO reconstruction on [1] Conservative; [2] Primitive variables
weno_order	Integer	WENO order [1,3,5]
weno_eps	Real	WENO perturbation (avoid division by zero)
char_decomp	Logical	Characteristic decomposition
avg_state	Integer	Averaged state evaluation method: [1] Roe average; [2] Arithmetic mean
mapped_weno	Logical	WENO with mapping of nonlinear weights
null_weights	Logical	Null undesired WENO weights
mp_weno	Logical	Monotonicity preserving WENO
riemann_solver	Integer	Riemann solver algorithm: [1] HLL; [2] HLLC; [3] Exact
wave_speeds	Integer	Wave-speed estimation: [1] Direct (Batten et al. 1997); [2] Pressure-velocity
	Laminal	(Toro 1999)
commute_err	Logical	Commutative error correction via cell-interior quadrature
split_err	Logical	Dimensional splitting error correction via cell-boundary
bc_x[y,z]%beg[end]	Integer	Beginning [ending] boundary condition in the $x[y,z]$ -direction (negative integer, see table I)

TABLE IV. Simulation algorithm parameters

Parameter	Type	Description
format	Integer	Output format. [1]: Silo-HDF5; [2] Binary
precision	Integer	[1] Single; [2] Double
parallel_io	Logical	Parallel I/O
cons_vars_wrt	Logical	Write conservative variables
prim_vars_wrt	Logical	Write primitive variables
fourier_decomp	Logical	Apply a Fourier decomposition to the output variables
alpha_rho_wrt(i)	Logical	Add the partial density of the fluid i to the database
rho_wrt	Logical	Add the mixture density to the database
mom_wrt(i)	Logical	Add the i-direction momentum to the database
<pre>vel_wrt(i)</pre>	Logical	Add the i-direction velocity to the database
E_wrt	Logical	Add the total energy to the database
pres_wrt	Logical	Add the pressure to the database
alpha_wrt(i)	Logical	Add the volume fraction of fluid i to the database
gamma_wrt	Logical	Add the specific heat ratio function to the database
heat_ratio_wrt	Logical	Add the specific heat ratio to the database
pi_inf_wrt	Logical	Add the liquid stiffness function to the database
pres_inf_wrt	Logical	Add the liquid stiffness to the formatted database
c_wrt	Logical	Add the sound speed to the database
omega_wrt(i)	Logical	Add the i-direction vorticity to the database
schlieren_wrt	Logical	Write numerical schlieren
fd_order	Integer	Order [1,2,4] finite differences for the numerical Schlieren function
schlieren_alpha(i)	Real	Numerical Schlieren computed via alpha(i)
probe_wrt	Logical	Write the flow chosen probes data files for each time step
num_probes	Integer	Number of probes
probe(i)%x[y,z]	Real	Coordinates of probe i
com_wrt(i)	Logical	Add the center of mass of fluid i to the database
cb_wrt(i)	Logical	Add coherent body data of fluid i to the database

TABLE V. Formatted database output parameters

Parameter	\mathbf{Type}	Description
alter_patch(i)	Logical	Alter the i-th patch
geometry	Integer	Geometry configuration of the patch (see table II)
$x[y,z]_{-centroid}$	Real	Centroid of the applied geometry in the $x[y,z]$ -direction
length_x[y,z]	Real	Length, if applicable, in the $x[y,z]$ -direction
radius	Real	Radius, if applicable, of the applied geometry
smoothen	Logical	Smoothen the applied patch
${\tt smooth_patch_id}$	Integer	Smoothen of the applied patch with another patch
${\tt smooth_coeff}$	Real	Smoothen coefficient
alpha(i)	Real	Volume fraction of fluid i
alpha_rho(i)	Real	Partial density of fluid i
pres	Real	Pressure
vel(i)	Real	Velocity in direction i

TABLE VI. Patch parameters. All parameters should be prepended with patch_icpp(j)% where j is the patch index.

Parameter	Type	Description
gamma	Real	Stiffened-gas parameter Γ of fluid i: Specific heat ratio
pi_inf	Real	Stiffened-gas parameter Π_{∞} of fluid i: Liquid stiffness
Prop	erties used	l only for non-polytropic bubble compression model
mu_10	Real	Liquid viscosity (only specify in liquid phase)
ss	Real	Surface tension (only specify in liquid phase)
pv	Real	Vapor pressure (only specify in liquid phase)
gamma_v[n]	Real	Water [air] compression model property (see Ando 2010)
M_v [n]	Real	Water [air] compression model property (see Ando 2010)
mu_v[n]	Real	Water [air] compression model property (see Ando 2010)
k_v[n]	Real	Water [air] compression model property (see Ando 2010)

TABLE VII. Fluid properties. All parameters should be prepended with fluid_pp(i)% where i is the fluid index.

Parameter	Type	Description
Monopole	Logical	Acoustic source terms
num_mono	Integer	Number of acoustic sources
		Properties of acoustic source i
Mono(i)%pulse	Integer	Type of pulse. [1] Sine [2] Gaussian [3] Square
Mono(i)%npulse	Integer	Number of pulse cycles
Mono(i)%support	Integer	Spatial support [1] Delta function [2] Finite width (2D) [3] Support for finite
		line/patch
Mono(i)%loc(j)	Real	Location of source in coordinate direction j
Mono(i)%dir	Real	Direction of propagation
Mono(i)%mag	Real	Pulse magnitude
Mono(i)%length	Real	Spatial pulse length

TABLE VIII. Acoustic source terms.

Parameter	\mathbf{Type}	Description
bubbles	Logical	Ensemble-averaged bubble modeling
bubble_model	Integer	[1] Gilmore; [2] Keller–Miksis
polytropic	Logical	Polytropic gas compression
thermal	Integer	Thermal model: [1] Adiabatic; [2] Isothermal; [3] Transfer
ROref	Real	Reference bubble radius
nb	Integer	Number of bins: [1] Monodisperse; [> 1] Polydisperse
Ca	Real	Cavitation number
Web	Real	Weber number
Re_inv	Real	Inverse Reynolds number

TABLE IX. Ensemble-averaged bubble model parameters.

Parameter	Type	Description
weno_avg	Logical	Averaged left/right cell-boundary states (for Re and We)
weno_Re_flux	Logical	WENO reconstruct velocity gradients for viscous stress tensor
regularization	Logical	Regularization algorithm of Tiwari et al. (2013)
reg_eps	Real	Interface thickness parameter for regularization terms
tvd_riemann_flux	Logical	Apply TVD flux limiter to cell edges inside Riemann solver
tvd_rhs_flux	Logical	Apply TVD flux limiter to intercell fluxes outside Riemann solver
tvd_wave_speeds	Logical	TVD wave-speeds for flux computation inside Riemann solver
flux_lim	Integer	Choice of flux limiter: [1] Minmod; [2] MC; [3] Ospre; [4] Superbee; [5]
		Sweby; [6] van Albada; [7] van Leer.
We_riemann_flux	Logical	Capillary effects in the Riemann solver
We_rhs_flux	Logical	Capillary effects using a conservative formulation
We_src	Logical	Capillary effects using a non-conservative formulation
We_wave_speeds	Logical	Capillary effects when computing the contact wave speed
lsq_deriv	Logical	Use linear least squares to calculate normals and curvatures
alt_crv	Logical	Alternate curvature definition

TABLE X. Experimental features

IV. NAMING CONVENTIONS

	Description					
	Scalar field					
*_vf	Vector field					
	Physical parameters					
*[K,L,R]	WENO-reconstructed cell averages					
*_avg	Roe/arithmetic average					
*_cb	Cell boundary					
	Cell center					
*_cbc	Characteristic boundary conditions					
cons	Conservative					
prim	Primitive					
gm_*	Gradient magnitude					
*_ndqp	Normal direction Gaussian quadrature points					
*_qp	Cell-interior Gaussian quadrature points					
un_*	Unit-normal					
dgm_*	Curvature (derived gradient magnitude)					
*_icpp	Initial condition patch parameters					
*_idx	Indices of first and last (object)					
cont_*	Continuity equations					
mom_*	Momentum equations					
E_*	Total energy equation					
	Volume fraction equations					
*_id	Identifier					
dflt_*	Default value					
*_fp	???					
orig_*	Original variable					
	Cell-average conservative or primitive variables					
q[L,R]_*	Left[right] WENO-reconstructed cell-boundary					
	values					
dq_*	First-order spatial derivatives					
*_rs	Riemann solver variables					
*_src	Source terms					
*_gsrc	Geometric source terms					
	Related to TVD options					
*_IC	Inter-cell					
*_ts	Time-stage (for time-stepper algorithm)					
wa_*	WENO average					
crv_*	Geometrical curvature of the material interfaces					

TABLE XI. Code variables