Probability Density Functions

A high level overview and numerical sampling strategies

Andrew Siegel

April 3, 2017

Probability Density Functions (PDFs)

Basics
Joint PDFs
Example Distributions
Weak Law of Large Numbers
Central Limit Theorem

Probability Density Functions (PDFs) Basics

Joint PDFs
Example Distributions
Weak Law of Large Numbers
Central Limit Theorem

Basics

- ▶ In an experiment, we can describe the unknown outcome with a random variable *X*. Though the particular outcome is unknown, the probability of any outcome can be described.
- ► For a random variable X, the cumlative distribution function (or CDF) is the probability that the value of X is less than some value x:

$$F(x) = P\{X < x\}$$

▶ The probability mass function $p(x_i)$ describes the probability for a countably-infinite number of discrete outcomes $x_1, x_2, ...$ such that

$$p(x_i) = P\{X = x_i\}$$

and has the property:

$$\sum_{i=1}^n p(x_i) = 1$$

Basics

For a continuously-valued random variable X, The probability density function f(x) describes the probability for some range C of continuously-valued outcomes:

$$\int_C f(x) \, dx = P\{X \in C\}$$

Note that for any single value X, the probability of that value is identically zero (why?). We can express the PDF for for an infinitesimally-small range ϵ as:

$$P\left\{a-\frac{\epsilon}{2}\leq X\leq a+\frac{\epsilon}{2}\right\}=\int_{a-\frac{\epsilon}{2}}^{a+\frac{\epsilon}{2}}f(x)\,dx\approx\epsilon f(a)$$

Probability Density Functions (PDFs)

Basics

Joint PDFs

Example Distributions
Weak Law of Large Numbers
Central Limit Theorem

PDFs.

Joint PDFs

▶ For two discrete random variables X and Y, the joint probability mass function p(x, y) is described as:

$$p(x,y) = P\{X = x, Y = y\}$$

Likewise, for two continous random variables X and Y, the joint probability density function is described as:

$$\int_D \int_C f(x, y) \, dx \, dy = P\{X \in C, Y \in D\}$$

▶ The variables X and Y are independent if:

$$f(x,y)=f_X(x)f_Y(y)$$

where

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy; f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

 $f_X(x)$ and $f_Y(y)$ are known as the marginal PDFs.

Marginal Distribution Example

Y	x ₁	x ₂	х ₃	x ₄	p _y (Y)↓
y ₁	4/32	2/32	1/32	1/32	8/32
У2	2/32	4/32	1/32	1/32	8/32
Уз	2/32	2/32	2/32	2/32	8/32
У4	8/32	0	0	0	8/32
$p_x(X) \rightarrow$	16/32	8/32	4/32	4/32	³² / ₃₂

Probability Density Functions (PDFs)

Loint PDFs

Example Distributions

Weak Law of Large Numbers Central Limit Theorem

Uniform Distribtion

▶ A random variable *X* is said to be uniformly distributed over the interval (*a*, *b*) if it has a pdf given by:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

The mean is thus:

$$E[X] = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{b^2 - a^2}{2(b-a)} = \frac{b+a}{2}$$

and the second moment is:

$$E[X^{2}] = \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3(b-a)} = \frac{a^{2} + b^{2} + ab}{3}$$

Uniform Distribtion, cont.

and the variance is thus

$$Var[X] = \frac{1}{12}(b-a)^2$$

and the CDF is

$$F(x) = P\{X \le x\} = \int_{a}^{x} \frac{1}{b-a} dx = \frac{x-a}{b-a}$$

Gaussian Distribution

▶ A random variable is said to be normally distributed with mean μ and variance σ^2 if its pdf is given by:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

▶ The expected value is then

$$E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} dx = \mu$$

and the variance is

$$E[X^2] - \mu^2 = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} dx - \mu^2 = \sigma^2$$

Probability Density Functions (PDFs)

Joint PDFs
Example Distributions
Weak Law of Large Numbers

Central Limit Theorem

Weak Law of Large Numbers

Markov Inequality

Markov Inequality

$$P\{X \ge a\} \le \frac{E[X]}{a}$$

► Proof

$$E[X] = \int_0^\infty x f(x) dx$$

$$= \int_0^a x f(x) dx + \int_a^\infty x f(x) dx$$

$$\geq \int_a^\infty x f(x) dx$$

$$\geq \int_a^\infty a f(x) dx$$

$$= a \int_a^\infty f(x) dx$$

$$= aP\{X > a\}$$

Markov Inequality

Intuition

- ▶ Imagine a 6-sided fair die with E[X] = 3.5
- ▶ Let's use Markov to bound e.g. $P(x \ge 6)$.
- Markov: $P\{X \ge a\} \le \frac{E[X]}{a}$
- ▶ In this case $P(x \ge 6) \le \frac{3.5}{6} = \frac{7}{12}$
- ▶ Imagine this is not the case, and that $P(x \ge 6) > \frac{7}{12}$

$$E[X] = 1P(X = 1) + 2P(X = 2) + \dots + 6P(X = 6) \ge 6P(X = 6)$$

- ▶ But if $P(X = 6) > \frac{7}{12}$ then E[X] > 3.5.
- Contradiction!

Weak Law

Chebyshev Inequality

▶ Chebyshev Inequality says that for any value k > 0

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}$$

That is, most points are close to the mean.

▶ Proof. Since $(X - \mu)^2$ is a nonnegative random variable we can apply Markov's inequality with $a = k^2$:

$$P\{(X-\mu)^2 \ge k^2\} \le \frac{E[(X-\mu)^2]}{k^2}$$

▶ But since $|X - \mu|^2 \ge k^2$ if and only if $|X - \mu| \ge k$, then the distributions $P\{|X - \mu| \ge k\}$ and $P\{(X - \mu)^2 \ge k^2\}$ are **identical and**

$$P\{|X - \mu| \ge k\} \le \frac{E[(X - \mu)^2]}{k^2} = \frac{\sigma^2}{k^2}$$

Weak Law of Large Numbers

Weak Law Proof

▶ Weak Law of Large Numbers: Let X_1, X_2, \cdots , be a sequence of i.i.d. random variables each with mean μ . Then for any $\epsilon > 0$

$$P\left\{\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|>\epsilon\right\}\to 0 \text{ as } n\to\infty$$

▶ Proof: Since

$$E\left[\frac{X_1+\cdots+X_n}{n}\right]=\mu \text{ and } Var\left(\frac{X_1+\cdots+X_n}{n}\right)=\frac{\sigma^2}{n}$$

then since $Var(\frac{X_1+\cdots+X_n}{n})=\frac{\sigma^2}{n}$ we have

$$P\left\{\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|>\epsilon\right\}\leq \frac{\sigma^2}{n\epsilon^2}$$

Probability Density Functions (PDFs)

Basics Joint PDFs Example Distributions Weak Law of Large Numbers

Central Limit Theorem

Central Limit Theorem

- One of the most important theorems in all of statistics.
- Has many different forms, will look at others later
- ▶ Start with a random sample of size n X_1, X_2, \dots, X_n where the X_i are iid with mean μ and variance σ^2 .
- ▶ Then, consider the sample mean of the X_i

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- ▶ The Law of Large Numbers says that the sequence S_n converges in probability to the true mean μ as $n \to \infty$
- ▶ The Central Limit Theorem says, roughly, that the sample means are normally distributed as $n \to \infty$ independent of the distribution of the individual X_i .

Central Limit Theorem, cont.

- A more precise statement is the Lindeberg-Levy CLT.
- We ask at what rate does $\overline{x}_n \to \mu$
- It can be easily shown that $|\overline{x}_n \mu|$ tends to zero in distribution at the rate $\frac{1}{\sqrt{n}}$.
- This leads to Lindeberg-Levy CLT, which gives a non-degenerate form of the limiting distribution. It is one form of the Central Limit Theorem:

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)-\mu\right)\to N(0,\sigma^{2})$$

➤ The difference between the sample mean and true mean when multiplied by the square root of the number of samples tends to a normal distribution

Probability Density Functions (PDFs Basics
Joint PDFs
Example Distributions
Weak Law of Large Numbers

Inverse Transform Method

- ► How do you sample a random value from an arbitrary PDF or probability mass function?
- The inverse transform method is a simple technique appropriate for both discrete or continuous random variables.
- ▶ First consider the continuous case. Suppose you want to generate a random variable X with an arbitrary CDF, F(x).
- Assuming you have a way to generate U(0,1), a uniform random number between 0 and 1, then the following algorithm applies:

Inverse Transform Method

- Algorithm
 - 1. Generate U from U(0,1)
 - 2. Find a value of X such that F(X) = U
- ▶ That is, we want to solve $X = F^{-1}(U)$.
- Note that there are some limitations: first, if the CDF is given as a continuous function it must be invertible, which is not always the case
- ▶ If the CFD is discrete we interpret step (2) to mean the first index of cdf such that $U \ge cdf$.
- Also note that non-ivertible functions can be discretized even though this process is often expensive. Other approaches may be superior (see Rejection sampling).

Inverse Transform Method

Proof

$$P\{X \le x_0\} = P\{F^{-1}(U) \le x_0\}$$

$$= P\{F(F^{-1}(U)) \le F(x_0)\} \quad \text{since } F(x) \text{ is increasing}$$

$$= P\{U \le F(x_0)\}$$

$$= F(x_0) \quad \text{since } U \text{ is uniform}$$

Inverse Transform Method

Example: Consider the PDF

$$p(x) = e^{-x} \quad 0 < x < \infty$$

▶ The CDF is

$$F(x) = 1 - e^{-x}$$

.

▶ The inverse, which yields a random variable *X*, is

$$F^{-1}(U) = -\log(1-U) = X$$

.

 A discrete form of the algorithm is extremely useful for tabulated functions or those that cannot be inverted. See Ross and course demos.

Probability Density Functions (PDFs Basics Joint PDFs Example Distributions Weak Law of Large Numbers

Central Limit Theorem

Sampling from an Arbitrary distribution

Rejection Sampling

- ▶ Goal is still to sample a random variable X from an arbitrary PDF f(x).
- uppose you have a method of sampling from some other PDF, g(x) such that, for some constant M:

$$f(x) \leq Mg(x)$$

- ▶ Then the following algorithm applies:
 - 1. Sample X from g(x)
 - 2. Calculate α , the probability of accepting X:

$$\alpha = \frac{f(x)}{Mg(x)}$$

- 3. Sample U from U(0,1)
- 4. If $\alpha \geq U$, then accept the value of X. If not, reject X and repeat.

Sampling from an Arbitrary distribution

Rejection Sampling

- ▶ Rejection Sampling is inefficient if f(x) and g(x) are not sufficiently similar, since the chances of accepting X are low.
- ▶ If f(x) and g(x) are "similar", then α is closer to 1, and the method is likely to be efficient
- In practice rejection sampling is very useful if you aren't overly concerned with performance since it is completely general and very simple to code.
- See course examples