

Lecture 1
Mahmoud Selim
EEC 4122 – Fall 2016

Tanta
University

Course information

Lectures:

- Four-hour lecture per week
- Lecture time slots: Sunday (8:30 ~ 10:30) + Tuesday (8:30 ~ 10:30)
- PPT-based lectures are mainly used throughout this course and white board is used for further explanation

Tutorials:

- Two-hour tutorial per week
- Tutorial time slots: <u>check the Department schedule</u>
- Tutorials will cover assignments associated with different course topics
- Assigned TA: Eng. Maram

Office Hours:

Tuesday (12:30 ~ 2:30)

Course Objectives

- This course aims to cover the following topics
 - Overview of Satellite Systems
 - Orbits and launching
 - Geostationary Orbits
 - Space and Earth Segments
 - Satellite radio wave propagation
 - The space link
 - Satellite Mobile and Specialized Services
 - GPS Navigation System

Course teaching materials

- Reference:
- **SATELLITE COMMUNICATIONS**, DENNIS RODDY (4th Edition)
- There will be lecture notes on course topics (TBD)

Introduction

- In many homes for reception of satellite television
- Carrying large amounts of data in addition to television signals
- Advantages over other communication methods:
 - Very large earth areas are visible from satellite
 - Connecting very widely geographically separated users on earth
 - Reaching remote communities
 - No political boundaries
- Launching Cost is high but "distance insensitive" so it should be wisely
 used to be economical
- Satellite are used for remote sensing: water pollution detection, weather conditions

Frequency Allocations for Satellite S

- Carried out by ITU
- World is divided into three regions:
 - Region 1: Europe, Africa, Russia
 - Region 2: North and South America and Greenland
 - Region 3: Asia, Australia, and the south west Pacific
- Each of the following satellite services are allocated a frequency band
 - Fixed Satellite services (FSS): telephone, cable TV
 - Broadcast satellite services (BSS): DBS
 - Mobile satellite services: maritime mobile
 - Navigation service: GPS
 - Meteorological service: rescue and search

Frequency Allocations for Satellite S

Satellite Frequency band designations (UpLink/DownLink)

TABLE 1.1 Frequency Band Designations

Frequency range, (GHz)	Band designation	
0.1-0.3	VHF	For weather satellites
0.3-1.0	UHF	
1.0-2.0	L	→ For mobile/navigation
2.0-4.0	S	
4.0-8.0	С	→ For FSS
8.0-12.0	X	(6/4)
12.0-18.0	Ku]	• • •
18.0-27.0	K Fo	
27.0-40.0	Ka DE	3S (14/12)
40.0-75	V	
75-110	W	
110-300	mm	
300-3000	μm	

INTELSAT

- International Telecommunications
 Satellite (organization)
- 140 member countries
- providing end-to-end solutions through a network of teleports, leased fiber, and points of presence (PoPs)
- satellites are in *geostationary* orbit
- INTELSAT covers three main regions: AOR, IOR and POR

Recent INTELSAT Satellite

TABLE 1.3 INTELSAT Geostationary Satellites

Satellite	Location	Number of transponders	Launch date	
901	342°E	Up to 72 @ 36 MHz in C-Band	June 2001	
		Up to 27 @ 36 MHz in Ku Band		
902	62°E	Up to 72 @ 36 MHz in C-Band	August 2001	
		Up to 23 @ 36 MHz in Ku Band		
903	$325.5^{\circ}E$	Up to 72 @ 36 MHz in C-Band	March 2002	
		Up to 22 @ 36 MHz in Ku Band		
904	$60^{\circ}\mathrm{E}$	Up to 72 @ 36 MHz in C-Band	February 2002	
		Up to 22 @ 36 MHz in Ku Band		
905	$335.5^{\circ}E$	Up to 72 @ 36 MHz in C-Band	June 2002	
		Up to 22 @ 36 MHz in Ku Band		
906	$64^{\circ}\mathrm{E}$	Up to 72 @ 36 MHz in C-Band	September 2002	
		Up to 22 @ 36 MHz in Ku Band		
907	$332.5^{\circ}E$	Up to 72 @ 36 MHz in C-Band	February 2003	
		Up to 23 @ 36 MHz in Ku Band	•	
10-02	359°E	Up to 70 @ 36 MHz in C-Band	June 2004	
		Up to 36 @ 36 MHz in Ku Band		

U.S. Domsats

- United States domestic satellite (within U.S.)
- Domsats are situated in geostationary orbit
- TV channel and commercial telecommunication traffic
- U.S. Domsats can be classified into: High, medium and low power

Categories of U.S. Domsats

TABLE 1.4 Defining Characteristics of Three Categories of United States DBS Systems

	High power	Medium power	Low power
Band	Ku	Ku	С
Downlink frequency allocation GHz	12.2–12.7	11.7–12.2	3.7-4.2
Uplink frequency allocation GHz	17.3–17.8	14–14.5	5.925-6.425
Space service	BSS	FSS	FSS
Primary intended use	DBS	Point-to-point	Point-to-point
Allowed additional use	Point-to-point	DBS	DBS
Terrestrial interference possible	No	No	Yes
Satellite spacing degrees	9	2	2-3
Satellite spacing determined by	ITU	FCC	FCC
Adjacent satellite interference possible?	No	Yes	Yes
Satellite EIRP range (dBW)	51-60	40-48	33-37

DBS P-to-P TVRO

Polar Orbiting Satellites

 orbit the earth in such a way as to cover the north and south polar regions

Height 36000 km

Height 36000 km

The geostationary orbit

- Relatively low orbits (800~900 Km) → LEO Satellites
- Orbits are almost circular
- Can track weather conditions over the entire earth

 Orbits are sun synchronous, meaning that they cross the equator at the same local time each day

Figure 1.7 Polar orbiting satellite: (a) first pass; (b) second pass, earth having rotated 25° . Satellite period is 102 min.

Can track weather conditions

Argos System

- Data collection system (Polar orbiting)
- Collects environmental data from platform transmitter terminals (PTT)
- Transmitters can be installed on many kinds of platforms, including fixed and drifting buoys, balloons, and animals
- PTTs transmit automatically at preset intervals, and those within the 6000 km swath are received by the satellite
- Doppler shift in the frequency received at the satellite is used to determine the location of the PTT
- Cospas-Sarsat (Russian System)