FUNDACIÓN PF

Módulo VIII: Deployando modelo

Clase 29: Puesta en producción
Pipelines - monitoreo de modelos

¿Ponemos a grabar el taller?

¿Con qué practicaremos?

 Conceptos de puesta en producción y MLOps

- Concepto de pipelines
- Monitoreo de modelos y herramientas

¿Repasamos?

Etapas de un proyecto

01

Recolección de datos

02

Exploración y procesamiento

03

Modelado

04

Puesta en producción

Puesta en producción

- Predecir nuevos datos
- Comunicar los resultados
- Integrar los resultados con aplicación

Puesta en Producción

¿Qué es la puesta en producción?

Poner un **modelo en producción** significa que el modelo va a operar en la vida real. Va a recibir datos, va a predecir y estos resultados van a ser usados.

¿Por qué la puesta en producción?

Necesitamos que el modelo creado pueda ser usado por otros usuarios. Debemos tener en cuenta tres aspectos principales que pueden resultar problemáticos:

- Acceso
- Compatibilidad
- Escala

Se estima que **90%** de los **modelos de ML** desarrollados **nunca** llegan a producción.

Desarrollo de ML ideal

Desarrollo de ML ideal

^{*} Glue code es código que sirve solamente para adaptar distintas partes del código que de otra manera serían incompatibles juntas.

Sistema de ML

El desarrollo del código del modelo es sólo una pequeña fracción del sistema de ML

Machine Learning Operations

El objetivo de **MLOps** es reducir la fricción técnica para poder llevar la idea de un modelo de ML a su puesta en producción en el **menor tiempo posible** con el **menor riesgo posible**.

MLOps

En otras palabras, lo que busca **MLOps** es desarrollar, entrenar y desplegar modelos de ML con procedimientos automatizados que integren a los equipos de Data, desarrolladores, seguridad e infraestructura.

MLOps

Necesitamos una infraestructura robusta:

- Acceso a los datos
- Repositorio de modelos versionados
- Pipeline automatizado
- Contenedores de software que aislen y simplifiquen la ejecución de los modelos

Desarrollo de ML con MLOps

- Se acelera el proceso de creación de valor.
- Se reduce el riesgo durante la validación de modelos
- Se simplifica la implementación de soluciones más complejas
- Procesos de mejora de modelos más rápidos y con menos errores gracias a la automatización de procesos.
- Monitoreo y actualización continua de los modelos para que evolucionen con los datos.

MLOps

MLOps provee herramientas en las siguientes etapas:

- Creación de los modelos y pipelines
- Evaluación de los modelos antes de su puesta en producción
- Puesta en producción
- Testeo continuo de los modelos en producción
- Deployado de los modelos
- Monitoreo y Auditoría continua

MLOps

Algunas herramientas:

- MLFlow
- TensorFlow Extended (TFX) Serving
- AWS SageMaker
- Kubeflow
- Databricks
- Vertex AI
- H2O

Descanso

Nos vemos en 10 minutos

Pipelines

MLOps

Necesitamos una infraestructura robusta:

- Acceso a los datos
- Repositorio de modelos versionados
- Pipeline automatizado
- Contenedores de software que aislen y simplifiquen la ejecución de los modelos

Flujo de trabajo

Desde qué leemos los datos hasta el momento en que obtenemos los resultados del modelo, aplicamos una serie de pasos encadenados y secuenciales, lo que se conoce como **flujo de trabajo**.

Tanto los datos de entrenamiento como los de testeo siguen el mismo camino

¿Qué es un pipeline?

Es un único objeto que nos permite empaquetar todos los pasos que van del preprocesamiento de los datos a la predicción del modelo.

Pipeline

pipeline.fit() when using the training data pipeline.predict() on test data

Pipeline

Pipeline: beneficios

- Simplifica el proceso y aumenta la reproducibilidad
- Evita cometer errores
- Simplifica la implementación de cross-validation y la elección de hiper parámetros.

Pipeline: Sklearn

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OrdinalEncoder
categorical_encoder = OrdinalEncoder(
    handle_unknown="use_encoded_value", unknown_value=-1, encoded_missing_value=-1
numerical pipe = SimpleImputer(strategy="mean")
preprocessing = ColumnTransformer(
        ("cat", categorical_encoder, categorical_columns),
        ("num", numerical pipe, numerical columns),
    verbose_feature_names_out=False,
rf = Pipeline(
        ("preprocess", preprocessing),
        ("classifier", RandomForestClassifier(random_state=42)),
rf.fit(X_train, y_train)
```


Repasamos en Kahoot

Descanso

Nos vemos en 10 minutos

Monitoreo de Modelos

¿Qué es el monitoreo de modelos?

El monitoreo de modelos de ML mide que tan bien el modelo desempeña una tarea durante el entrenamiento y cuando está en producción en tiempo real.

¿Qué es el monitoreo de modelos?

- Proveer datos de que tan bien el modelo se desempeña en producción y por qué el modelo esta haciendo ciertas predicciones y como se mejorarían
- Alertar cuando haya problemas
- Proveer información para poder investigar y remediar los problemas

¿Por qué monitorear un modelo?

Cuando un modelo se ha puesto en producción, pueden surgir inconvenientes que llevan a que el modelo no tenga el desempeño esperado.

Si no "monitoreamos" el modelo y su desempeño no podremos detectar estos inconvenientes.

¿Por qué monitorear un modelo?

- Los datos de entrenamiento son siempre ligeramente distintos a los datos dinámicos de producción
- Los valores reales cambian, por lo que los datos con los que fueron entrenados los modelos pueden no representar la realidad con el tiempo.
- El desempeño del modelo empeora con el tiempo
- El modelo tiene efecto sobre el mundo real, por lo que puede cambiar la situación o problema a la cual se encontró solución mediante el modelo
- Puede haber efectos secundarios que no se vieron durante el entrenamiento, sobre todo en modelos muy complejos

¿Qué elementos monitorear?

Datos entrantes del modelo:

Identificar cambios en la distribución de los datos (Data Drift) y de diferencias entre la distribución de datos de entrenamiento y de producción

Monitoreo operativo de fallas evidentes: ej: imágenes que son muy oscuras, mucho contraste, etc

Monitoreo estadísticas comparadas con el set de entrenamiento: media, desvío estándar, correlaciones

¿Qué elementos monitorear?

Monitoreo del desempeño y observar si cambia la distribución de las predicciones a través del tiempo (concept drift)

Monitoreo de la salud de los pipelines y de que no sufran fallos inesperados

Monitoreo de que el desempeño cumpla con los requisitos del usuario (ej: Velocidad de respuesta)

Espacio práctico: entrega final

Preparando la entrega final

En la **última clase** deberán presentar un resumen de lo trabajado durante el curso. Para ello podrán preparar una **presentación** en PowerPoint, Slides o Canva.

Tendrán 15 minutos para contar a sus compañeras la síntesis de lo aprendido.

Además, para recibir el certificado, deberán adjuntar en el aula virtual un link a su repositorio. El mismo debe incluir los ítems detallados en la siguiente hoja.

Preparando la entrega final

Ítems a incluir en el repositorio:

- Readme (resumen, no más de un párrafo por ítem. En el mismo pueden contar de dónde obtuvieron dataset, resumen proyecto, qué objetivo se propusieron y qué descubrieron en análisis exploratorio, detalle de los modelos ajustados)
- Dataset
- Notebook con análisis exploratorio (correspondiente a pre-entrega 2)
- Notebooks donde apliquen modelos de aprendizaje supervisado y no supervisado y donde se observen resultados obtenidos (correspondientes a pre-entrega 3 y 4)
- Será valorado que cuente una historia con esos datos: que puedan demostrar cualitativamente qué preguntas se hicieron, conclusiones que sacaron con los datos, decisiones tomadas

¿DUDAS?

FUNDACIÓN Y PF

¡Muchas gracias!

