

Spring AB of constant 10 lb/in. is attached to two identical drums as shown. Knowing that the spring is unstretched when $\theta=0$, determine (a) the range of values of the weight W of the block for which a position of equilibrium exists, (b) the range of values of θ for which the equilibrium is stable.

SOLUTION

Have

$$V = \frac{1}{2}kx_{SP}^2 - W_{y_{\text{block}}}$$

where

$$x_{SP} = 2r_A \sin \theta, \qquad r_A = 6 \text{ in.}$$

and

$$y_{\text{block}} = r\theta, \qquad r = 8 \text{ in.}$$

Then

$$V = \frac{1}{2}k(2r_A\sin\theta)^2 - Wr\theta$$

$$=2kr_A^2\sin^2\theta-Wr\theta$$

and

$$\frac{dV}{d\theta} = 2kr_A^2 (2\sin\theta\cos\theta) - Wr$$

$$= 2kr_A^2\sin 2\theta - Wr$$

For equilibrium

$$\frac{d^2V}{d\theta^2} = 4kr_A^2\cos 2\theta\tag{1}$$

 $\frac{dV}{d\theta} = 0: \quad 2kr_A^2 \sin 2\theta - Wr = 0$

Substituting,

$$2(10 \text{ lb/in.})(6 \text{ in.})^2 \sin 2\theta - W(8 \text{ in.}) = 0$$

TA SIN 0 or

$$W = 90\sin 2\theta$$
 (lb)

(a) From Equation (2), with $W \ge 0$:

$$0 \le W \le 90 \text{ lb} \blacktriangleleft$$

(b) From Stable equilibrium

$$\frac{d^2V}{d\theta^2} > 0$$

Then from Equation (1),

$$\cos 2\theta > 0$$

or $0 \le \theta \le 45^{\circ} \blacktriangleleft$

Spring AB of constant 10 lb/in. is attached to two identical drums as shown. Knowing that the spring is unstretched when $\theta=0$ and that W=40 lb, determine the values of θ less than 180° corresponding to equilibrium. State in each case whether the equilibrium is stable, unstable, or neutral.

SOLUTION

See sketch, Problem 10.81.

Using Equation (2) of Problem 10.81, with W = 40 lb

 $40 = 90\sin 2\theta$ (for equilibrium)

Solving $\theta = 13.1939^{\circ}$ and $\theta = 76.806^{\circ}$

Using Equation (1) of Problem 10.81, we have

At $\theta = 13.1939^{\circ}$: $\frac{d^2V}{d\theta^2} = 4kr_A^2\cos(2 \times 13.1939^{\circ}) > 0$ $\therefore \theta = 13.19^{\circ}$, Stable

At $\theta = 76.806^{\circ}$: $\frac{d^2V}{d\theta^2} = 4kr_A^2 \cos(2 \times 76.806^{\circ}) < 0$ $\therefore \theta = 76.8^{\circ}$, Unstable

Q P B

PROBLEM 10.83

A slender rod AB of negligible weight is attached to two collars A and B that can move freely along the guide rods shown. Knowing that $\beta=30^\circ$ and P=Q=100 lb, determine the value of the angle θ corresponding to equilibrium.

SOLUTION

Law of Sines

$$\frac{y_A}{\sin(90^\circ + \beta - \theta)} = \frac{L}{\sin(90 - \beta)}$$

$$\frac{y_A}{\cos(\theta - \beta)} = \frac{L}{\cos\beta}$$

or

$$y_A = L \frac{\cos(\theta - \beta)}{\cos \beta}$$

From the figure:

$$y_B = L \frac{\cos(\theta - \beta)}{\cos \beta} - L \cos \theta$$

Potential Energy:

$$V = -Py_B - Qy_A = -P \left[L \frac{\cos(\theta - \beta)}{\cos \beta} - L \cos \theta \right] - QL \frac{\cos(\theta - \beta)}{\cos \beta}$$

$$\frac{dV}{d\theta} = -PL \left[-\frac{\sin(\theta - \beta)}{\cos \beta} + \sin \theta \right] + QL \frac{\sin(\theta - \beta)}{\cos \beta}$$

$$= L(P+Q)\frac{\sin(\theta-\beta)}{\cos\beta} - PL\sin\theta$$

Equilibrium

$$\frac{dV}{d\theta} = 0: \quad L(P+Q)\frac{\sin(\theta-\beta)}{\cos\beta} - PL\sin\theta = 0$$

or

$$(P+Q)\sin(\theta-\beta) = P\sin\theta\cos\beta$$

$$(P+Q)(\sin\theta\cos\beta - \cos\theta\sin\beta) = P\sin\theta\cos\beta$$

PROBLEM 10.83 CONTINUED

$$-(P+Q)\cos\theta\sin\beta + Q\sin\theta\cos\beta = 0$$

$$-\frac{P+Q}{Q}\frac{\sin\beta}{\cos\beta} + \frac{\sin\theta}{\cos\theta} = 0$$

$$\tan\theta = \frac{P+Q}{Q}\tan\beta \tag{2}$$

With

$$P = Q = 100 \text{ lb}, \qquad \beta = 30^{\circ}$$

$$\tan \theta = \frac{200 \text{ lb}}{100 \text{ lb}} \tan 30^\circ = 1.1547$$

 $\theta = 49.1^{\circ}$

A slender rod AB of negligible weight is attached to two collars A and B that can move freely along the guide rods shown. Knowing that $\beta=30^{\circ}$, P=40 lb, and Q=10 lb, determine the value of the angle θ corresponding to equilibrium.

SOLUTION

Using Equation (2) of Problem 10.83, with P = 40 lb, Q = 10 lb, and $\beta = 30^{\circ}$, we have

$$\tan \theta = \frac{(40 \text{ lb})(10 \text{ lb})}{(10 \text{ lb})} \tan 30^\circ = 2.88675$$

$$\theta = 70.89^{\circ}$$

 $\theta = 70.9^{\circ} \blacktriangleleft$

Collar A can slide freely on the semicircular rod shown. Knowing that the constant of the spring is k and that the unstretched length of the spring is equal to the radius r, determine the value of θ corresponding to equilibrium when $m=20\,\mathrm{kg},\ r=180\,\mathrm{mm},\ \mathrm{and}\ k=3\,\mathrm{N/mm}.$

SOLUTION

Stretch of Spring

$$s = AB - r$$

$$s = 2(r\cos\theta) - r$$

$$s = r(2\cos\theta - 1)$$

Potential Energy:

$$V = \frac{1}{2}ks^2 - Wr\sin 2\theta \qquad W = mg$$

$$V = \frac{1}{2}kr^2(2\cos\theta - 1)^2 - Wr\sin 2\theta$$

$$\frac{dV}{d\theta} = -kr^2(2\cos\theta - 1)2\sin\theta - 2Wr\cos2\theta$$

Equilibrium

$$\frac{dV}{d\theta} = 0: -kr^2(2\cos\theta - 1)\sin\theta - Wr\cos 2\theta = 0$$

$$\frac{(2\cos\theta - 1)\sin\theta}{\cos 2\theta} = -\frac{W}{kr}$$

Now

$$\frac{W}{kr} = \frac{(20 \text{ kg})(9.81 \text{ m/s}^2)}{(3000 \text{ N/m})(0.180 \text{ m})} = 0.36333$$

Then

$$\frac{(2\cos\theta - 1)\sin\theta}{\cos 2\theta} = -0.36333$$

Solving numerically,

$$\theta = 0.9580 \text{ rad} = 54.9^{\circ}$$

 $\theta = 54.9^{\circ} \blacktriangleleft$

Collar A can slide freely on the semicircular rod shown. Knowing that the constant of the spring is k and that the unstretched length of the spring is equal to the radius r, determine the value of θ corresponding to equilibrium when m = 20 kg, r = 180 mm, and k = 3 N/mm.

SOLUTION

Stretch of spring

$$s = AB - r = 2(r\cos\theta) - r$$

$$s = r(2\cos\theta - 1)$$

$$V = \frac{1}{2}ks^2 - Wr\cos 2\theta$$

$$= \frac{1}{2}kr^2(2\cos\theta - 1)^2 - Wr\cos 2\theta$$

$$\frac{dV}{d\theta} = -kr^2(2\cos\theta - 1)2\sin\theta + 2Wr\sin 2\theta$$

Equilibrium

or

$$\frac{dV}{d\theta} = 0: -kr^2 (2\cos\theta - 1)\sin\theta + Wr\sin2\theta = 0$$

$$-kr^2 (2\cos\theta - 1)\sin\theta + Wr(2\sin\theta\cos\theta) = 0$$
or
$$\frac{(2\cos\theta - 1)\sin\theta}{2\cos\theta} = \frac{W}{kr}$$
Now
$$\frac{W}{kr} = \frac{(20\text{ kg})(9.81\text{ m/s}^2)}{(3000\text{ N/m})(0.180\text{ m})} = 0.36333$$
Then
$$\frac{2\cos\theta - 1}{2\cos\theta} = 0.36333$$

Solving
$$\theta = 38.2482^{\circ}$$
 $\theta = 38.2^{\circ} \blacktriangleleft$

The 12-kg block D can slide freely on the inclined surface. Knowing that the constant of the spring is 480 N/m and that the spring is unstretched when $\theta=0$, determine the value of θ corresponding to equilibrium.

SOLUTION

First note, by Law of Cosines

$$d^{2} = (0.4)^{2} + \left(0.4\sin\frac{\theta}{2}\right)^{2} - 2(0.4)\left(0.4\sin\frac{\theta}{2}\right)\cos\frac{\theta}{2}$$
$$d = 0.4\sqrt{1 + \sin^{2}\frac{\theta}{2} - \sin\theta} \text{ m}$$

Now

$$V = \frac{1}{2}kx_{SP}^{2} - m_{D}gy_{D}$$

$$= \frac{1}{2}k(r_{A}\theta)^{2} - m_{D}g[(y_{D})_{0} + (0.4 - d)\sin 60^{\circ}]$$

$$= \frac{1}{2}kr_{A}^{2}\theta^{2} - m_{D}g[(y_{D})_{0} + (0.4 - 0.4\sqrt{1 + \sin^{2}\frac{\theta}{2} - \sin \theta})\sin 60^{\circ}]$$

For equilibrium

$$\frac{dV}{d\theta} = 0:$$

$$kr_A^2\theta + 0.4m_Dg\sin 60^\circ \frac{2\left(\frac{1}{2}\right)\left(\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \cos\theta\right)}{2\sqrt{1+\sin^2\frac{\theta}{2} - \sin\theta}} = 0$$

or
$$kr_A^2\theta + 0.1m_Dg\sin 60^\circ \frac{\sin\theta - 2\cos\theta}{\sqrt{1 + \sin^2\frac{\theta}{2} - \sin\theta}} = 0$$

PROBLEM 10.87 CONTINUED

Substituting,

$$(480 \text{ N/m})(0.050 \text{ m})^2 \theta \sqrt{1 + \sin^2 \frac{\theta}{2} - \sin \theta}$$

$$+ (0.1 \text{ m})(12 \text{ kg})(9.81 \text{ m/s}^2) \frac{\sqrt{3}}{2} (\sin \theta - 2\cos \theta) = 0$$
or
$$\theta \sqrt{1 + \sin^2 \frac{\theta}{2} - \sin \theta} + 8.4957 (\sin \theta - 2\cos \theta) = 0$$

Solving numerically,

$$\theta = 1.07223 \text{ rad}$$

or $\theta = 61.4^{\circ} \blacktriangleleft$

Cable AB is attached to two springs and passes through a ring at C. Knowing that the springs are unstretched when y = 0, determine the distance y corresponding to equilibrium.

SOLUTION

First note that the tension in the cable is the same throughout.

$$\therefore F_1 = F_2$$

or

$$k_1 x_1 = k_2 x_2$$

or

$$x_2 = \frac{k_1}{k_2} x_1$$

 $= \frac{960 \text{ N/m}}{480 \text{ N/m}} x_1$

$$= 2x_1$$

Now, point *C* is midway between the pulleys.

$$y^{2} = \left[0.2 + \frac{1}{2}(x_{1} + x_{2})^{2}\right] - (0.2)^{2}$$

$$= 0.2(x_{1} + x_{2}) + \frac{1}{4}(x_{1} + x_{2})^{2}$$

$$= 0.2(x_{1} + 2x_{1}) + \frac{1}{4}(x_{1} + 2x_{1})^{2}$$

$$= 0.6x_{1} + \frac{9}{4}x_{1}^{2}(m^{2})$$

PROBLEM 10.88 CONTINUED

Now

$$V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2 - mgy$$

$$= \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(2x_1)^2 - mg\left(\frac{1}{4}\sqrt{2.4x_1 + 9x_1^2}\right)$$

$$= \frac{1}{2}(k_1 + 4k_2)x_1^2 - mg\left(\frac{1}{4}\sqrt{2.4x_1 + 9x_1^2}\right)$$

For equilibrium

$$\frac{dV}{dx_1} = 0: \quad \left(k_1 + 4k_2\right)x_1 - mg\left(\frac{2.4 + 18x_1}{2\sqrt{2.4x_1 + 9x_1^2}}\right) = 0$$

or
$$(980 + 4 \times 490) \text{N/m} \times (x_1) (\text{m}) (\sqrt{2.4x_1 + 9x_1^2}) (\text{m}) - \frac{1}{2} (10 \text{ kg}) (9.81 \text{ m/s}^2) (1.2 + 9x_1) (\text{m}) = 0$$

or
$$288x_1\sqrt{2.4x_1 + 9x_1^2} - 5.886(1 + 7.5x_1) = 0$$

Solving,
$$x_1 = 0.068151 \,\text{m}$$

Then
$$y^2 = 0.6(0.068151) + \frac{9}{4}(0.068151)^2$$
 or $y = 227 \text{ mm}$

Rod AB is attached to a hinge at A and to two springs, each of constant k. If h = 50 in., d = 24 in., and W = 160 lb, determine the range of values of k for which the equilibrium of the rod is stable in the position shown. Each spring can act in either tension or compression.

SOLUTION

Have
$$x_C = d \sin \theta$$
 $y_B = h \cos \theta$

Potential Energy:
$$V = 2\left(\frac{1}{2}kx_C^2 + Wy_B\right)$$

$$= kd^2 \sin^2 \theta + Wh \cos \theta$$

Then
$$\frac{dV}{d\theta} = 2kd^2 \sin \theta \cos \theta - Wh \sin \theta$$
$$= kd^2 \sin 2\theta - Wh \sin \theta$$

and
$$\frac{d^2V}{d\theta^2} = 2kd^2\cos 2\theta - Wh\cos\theta \tag{1}$$

For equilibrium position $\theta = 0$ to be stable, we must have

$$\frac{d^2V}{d\theta^2} = 2kd^2 - Wh > 0$$

$$kd^2 > \frac{1}{2}Wh$$
(2)

Ωr

Note: For $kd^2 = \frac{1}{2}Wh$, we have $\frac{d^2V}{d\theta^2} = 0$, so that we must determine which is the first derivative that is not equal to zero. Differentiating Equation (1), we write

$$\frac{d^3V}{d\theta^3} = -4kd^2\sin 2\theta + Wh\sin \theta = 0 \qquad \text{for } \theta = 0$$

$$\frac{d^4V}{d\theta^2} = -8kd^2\cos 2\theta + Wh\cos \theta$$

PROBLEM 10.89 CONTINUED

For
$$\theta = 0$$
:

$$\frac{d^4V}{d\theta^4} = -8kd^2 + Wh$$

Since $kd^2 = \frac{1}{2}Wh$, $\frac{d^4V}{d\theta^4} = -4Wh + Wh < 0$, we conclude that the equilibrium is unstable for $kd^2 = \frac{1}{2}Wh$ and the > sign in Equation (2) is correct.

With

$$W = 160 \text{ lb}, h = 50 \text{ in.}, \text{ and } d = 24 \text{ in.}$$

Equation (2) gives

$$k(24 \text{ in.})^2 > \frac{1}{2}(160 \text{ lb})(50 \text{ in.})$$

k > 6.944 lb/in.

or

$$k > 6.94 \text{ lb/in.} \blacktriangleleft$$

Rod AB is attached to a hinge at A and to two springs, each of constant k. If h = 30 in., k = 4 lb/in., and W = 40 lb, determine the smallest distance d for which the equilibrium of the rod is stable in the position shown. Each spring can act in either tension or compression.

SOLUTION

or

Using Equation (2) of Problem 10.89 with

$$h = 30 \text{ in.}, k = 4 \text{ lb/in.}, \text{ and } W = 40 \text{ lb}$$

$$(4 \text{ lb/in.})d^2 > \frac{1}{2}(40 \text{ lb})(30 \text{ in.})$$

 $d^2 > 150 \text{ in}^2$

d > 12.247 in.

smallest d = 12.25 in.