ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Estatística Descritiva

Desvio Padrão

- O conceito de variância é bastante rico, contudo, deve ser utilizado com cautela já que trata do problema original em escala quadrática.
- O desvio padrão surge como uma alternativa para corrigir este detalhe e assim facilitar a análise dos resultados.
- Tal medida e dada pela raiz quadrada da variância amostral:

$$S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2}.$$

Desvio Padrão

Em geral, a variância amostral possui propriedades matemáticas melhores, enquanto o desvio padrão oferece interpretações mais razoáveis.

Desvio Padrão

Desvio Padrão (S)

Exemplo:

Calcular o desvio padrão

da população

representada por:

Xi	X	(Xi - X)	(Xi - X̄) ²
- 4	- 0,2	- 3,8	14,44
- 3	- 0,2	- 2,8	7,84
- 2	- 0,2	- 1,8	3,24
3	- 0,2	3,2	10,24
5	- 0,2	5,2	27,04
		E =	62,8

Sabemos que n = 5 e 62,8 / 5 = 12,56.

A raiz quadrada de 12,56 é o desvio padrão = 3,54

Intervalo Interquartil

- Variância e desvio padrão também são sensíveis a valores discrepantes por considerar os valores observados diretamente.
- Uma maneira alternativa de contornar tal problema e considerar a amplitude interquartil:

$$A_{IQ}=Q_3-Q_2.$$

- Tal quantidade indica a faixa de variação dos 50% centrais das observações.
- A escala original dos dados é preservada neste caso.

Intervalo Interquartil

- Calcular o Intervalo Interquartil da sequência: 12,6; 12,9; 13,4; 12,3; 13,6; 13,5; 12,6; 13,1.
- Ordenando os dados, obtemos: 12,3; 12,6; 12,6; 12,9; 13,1; 13,4; 13,5;13,6; Logo:

$$Q_3 = \frac{13,4+13,5}{2} = 13,45$$
 e $Q_1 = \frac{12,6+12,6}{2} = 12,6$

e,

$$A_{IQ} = 13,45 - 12,6 = 0,85.$$

Coeficiente de Variação

 Trata-se de uma medida relativa de dispersão útil para a comparação em termos relativos do grau de concentração. O coeficiente de variação e a relação entre o desvio padrão (S) e a média x.

$$CV = \frac{S}{\overline{x}}$$

Baixa dispersão: CV ≤ 15%

Média dispersão: 15% < CV < 30%

Alta dispersão: CV ≥ 30%

Coeficiente de Variação

Exemplo: como comparar as dispersões de alturas de pessoas com pesos destas mesmas pessoas?

	X	S
ESTATURAS	175 cm	5,0 cm
PESOS	68 kg	2,0 kg

$$CV_E = \frac{5}{175} \times 100 = 0,0285 \times 100 = 2,85\%$$

$$CV_p = \frac{2}{68} \times 100 = 0,0294 \times 100 = 2,94\%$$

Logo, nesse grupo de indivíduos, os pesos apresentam maior grau de dispersão que as estaturas.

- Estas medidas referem-se a forma da curva de uma distribuição de frequência, mais especificamente do polígono de frequência ou do histograma. Denomina-se assimetria o grau de afastamento de uma distribuição da unidade de simetria.
- Em uma distribuição simétrica, tem-se igualdade dos valores da média, mediana e moda.

Simetria

<u>Assimetria</u>

Assimetria à direita (ou positiva)

Assimetria à esquerda (ou negativa)

$$\overline{X} < Md < Mo$$

Figura 4: Posição relativa de medidas de tendência central sob assimetria dos dados

- Existem varias fórmulas para o cálculo do coeficiente de assimetria. As mais utilizadas são:
 - 1º Coeficiente de Pearson

$$AS = \frac{\overline{x} - Mo}{S}$$

Mo: valor modal (moda)

S : Desvio padrão

 \overline{X} : Média

2º coeficiente de Pearson

$$AS = \frac{Q_1 + Q_3 - 2Md}{Q_3 - Q_1}$$

 Q_1 : valor do 1º Quartil Q_3 : valor do 3º Quartil

M_d: valor da Mediana

Quando:

AS = 0, diz-se que a distribuição é simétrica.

AS > 0, diz-se que a distribuição é assimétrica positiva (à direita)

AS < 0, diz-se que a distribuição é assimétrica negativa (à esquerda)

Coeficiente de Assimetria de Pearson

$$A_P = \frac{\bar{x} - m_o}{S}.$$

Temos

- a) Distribuições simétricas unimodais: $\bar{x}=m_d=m_o$; nesse caso, $A_P=0$
- b) Distribuições assimétricas positivas: $\bar{x}>m_d>m_o$; então $A_P>0$
- c) Distribuições assimétricas negativas: $\bar{x} < m_d < m_o$, fazendo com que $A_P < 0$.
- O fato do denominador de ser o desvio-padrão faz com que essa medida seja adimensional, o que permite sua comparação mesmo quando se trabalha com dados em diferentes escalas (por exemplo, preços em reais ou em dólares).

Coeficiente de Assimetria de Pearson

A determinação da moda para dados contínuos não é trivial. Pode-se ter uma amostra de 1000 valores diferentes, por exemplo. Isso requer o uso de algoritmos que levam a diferentes estimativas dessa medida. Uma alternativa é utilizar o coeficiente

$$A_{P2} = \frac{\bar{x} - m_d}{S}.$$

Coeficiente de Assimetria de Pearson - Exemplo

Coeficiente de Assimetria de Pearson - Exemplo

Tabela 1: Estatísticas descritivas para os dados representados na Figura 3.

Estatística	X	Y	Z
Mínimo	1,592	0,004	0,000
Q_1 : primeiro quartil	8,691	0,319	2,946
m_d : mediana	10,050	0,567	3,278
Q_3 : terceiro quartil	11,400	0,918	3,514
Máximo	17,740	4,281	3,838
Média	10,050	0,675	3,172
S: desvio-padrão	1,993	0,477	0,469
m_o : moda ²	10,040	0,294	3,386

variavei	Ap	A _{P2}
X	0,005	0,000
Y	0,799	0,226
Z	-0,456	-0,226

Maniforal

Tamanho das amostras = 10.000

■ Na Tabela 2, estão apresentados os coeficientes de Assimetria. Há indícios de assimetria fraca (quase simetria) para a variável X, assimetria positiva para Y e negativa para Z.

Curtose

- Curtose e o grau de achatamento (ou afilamento) de uma distribuição em comparação com uma distribuição padrão (chamada curva normal).
- De acordo com o grau de curtose, classificamos três tipos de curvas de frequência:

Curtose

Curtose

Para medir o grau de curtose utiliza-se o coeficiente:

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Q₁: valor do 1º Quartil Q₃: valor do 3º Quartil

P₁₀: valor do percentil 10

P₉₀: valor do percentil 90

- Se K= 0,263, diz-se que a curva correspondente à distribuição de frequência é mesocúrtica.
- Se K > 0,263, diz-se que a curva correspondente à distribuição de frequência é platicúrtica.
- Se K < 0,263, diz-se que a curva correspondente à distribuição de frequência é leptocúrtica.

Curtose - Exemplo

 Conclua a respeito do tipo de curva da distribuição da Tabela abaixo quanto à curtose

Tabela 6.2 – Distribuição de dados de uma variável "B" de determinada época

Intervalo de classe	Frequência	F,
3 — 8	5	5
8 — 13	15	20
13 18	20	40
18 — 23	10	50

Fonte: Dados fictícios, apenas para fins ilustrativos.

Curtose - Exemplo

Para o cálculo do Coeficiente K, necessita-se calcular Q₁, Q₃, C₁₀ e C₉₀:

$$Q_1 = li_k + A_k \frac{\frac{n}{4} - F_{k-1}}{f_k}$$

$$Q_1 = 8 + 5 \frac{12,5-5}{15} = 8 + 2,5 = 10,5$$

$$Q_3 = li_k + A_k \frac{\frac{3n}{4} - F_{k-1}}{f_k}$$

$$Q_3 = 13 + 5 \frac{37,5 - 20}{20} = 13 + 4,38 = 17,38$$

Curtose - Exemplo

$$C_{10} = li_k + A_k \frac{\frac{10n}{100} - F_{k-1}}{f_k}$$

$$C_{10} = 3 + 5 \frac{5 - 0}{5} = 3 + 5 = 8$$

$$C_{90} = li_k + A_k \frac{\frac{90n}{100} - F_{k-1}}{f_k}$$

$$C_{90} = 18 + 5 \frac{45 - 40}{10} = 18 + 2,5 = 20,5$$

$$K = \frac{Q_3 - Q_i}{2(C_{90} - C_{10})} = \frac{17,38 - 10,5}{2(20,5 - 8)} = \frac{6,88}{25} = 0,27$$

Resposta:

Como K > 0,263, logo, a curva correspondente é suavemente platicúrtica.

Resumo – População e Amostra

- População e Amostra: Ao examinar um grupo qualquer, considerando todos os seus elementos, estamos tratando da população ou universo. Nem sempre isso e possível. Nesse caso, examinamos uma pequena parte chamada amostra.
- Uma população pode ser finita ou infinita. Por exemplo:
 - a população dos alunos de sua escola é finita e a população constituída de todos os resultados (cara ou coroa) em sucessivos lances de uma moeda e infinita.
- Se uma amostra é representativa de uma população, podemos obter conclusões importantes sobre a população.

Resumo

Parâmetro (População)		Estatística (Amostr	
Valor médio	μ	Média	x
Desvio padrão	σ	Desvio padrão	S
Proporção	p	Proporção	p
Correlação	ρ	Correlação	r

Resumo - Variância (S²)

Variância (S²)

Sendo a variância calculada a partir dos quadrados dos desvios, ela é um número em unidade quadrada em relação a variável em questão, o que, sob o ponto de vista prático é um inconveniente; por isso, tem pouca utilidade na estatística descritiva, mas é extremamente importante na inferência estatística e em combinações de amostras.

Resumo - Desvio Padrão (S) x Variância (S²)

Desvio Padrão (S) x Variância (S²)

 O desvio padrão é a medida mais usada na comparação de diferenças entre conjuntos de dados, por ter grande precisão. O desvio padrão determina a dispersão dos valores em relação à média e é calculado por meio da raiz quadrada da variância.

Resumo – Variância (S²)

Resumo – Desvio Padrão

- O desvio padrão é uma medida que só pode assumir valores não negativos e quanto maior for, maior será a dispersão dos dados.
- Algumas propriedades do desvio padrão, que resultam imediatamente da definição, são:
 - O desvio padrão é sempre não negativo e será tanto maior, quanta maior a variabilidade entre os dados.
- Se S = 0, então não existe variabilidade, isto é, os dados são todos iguais.

Resumo – Exercício

- Tendo por base uma amostra da altura de uma parcela da população apresentada na Tabela 5.2, determinar:
 - a) A variância das alturas;
 - b) O desvio-padrão das alturas.

Tabela 5.2 – Estatura de uma amostra de uma população A

Altura (cm)	Nº de pessoas
150 — 158	5
158 166	18
166 174	42
174 182	27
182 190	8
Σ	100

Fonte: Dados fictícios, apenas para fins ilustrativos.

Resumo – Exercício - Solução

Solução

a) A variância das alturas

Usando a fórmula 5.13 obtém-se o seguinte resultado:

$$s^{2} = \frac{\sum X_{i}^{2} f_{i} - \frac{\left(\sum X_{i} f_{i}\right)^{2}}{n}}{n-1}$$

Para calcular a variância, necessita-se conhecer as informações a seguir, cujos valores estão calculados na Tabela 5.3:

$$\sum X_i f_i$$
$$\sum X_i^2 f_i$$

Resumo – Exercício - Solução

Solução

a) A variância das alturas

Usando a fórmula 5.13 obtém-se o seguinte resultado:

$$s^{2} = \frac{\sum X_{i}^{2} f_{i} - \frac{\left(\sum X_{i} f_{i}\right)^{2}}{n}}{n-1}$$

Para calcular a variância, necessita-se conhecer as informações a seguir, cujos valores estão calculados na Tabela 5.3:

$$\sum X_i f_i$$
$$\sum X_i^2 f_i$$

Tabela 5.3 - Tabela auxiliar da Tabela 5.2

Altura (cm)	Nº de pessoas	X,	X,f,	X _{i2} f _i
150 — 158	5	154	770	118.580
158 166	18	162	2916	472.392
166 174	42	170	7140	1.213.800
174 182	27	178	4806	855.468
182 190	8	186	1.488	276.768
Σ	100		17.120	2.937.008

Fonte: Dados fictícios, apenas para fins ilustrativos.

Resumo – Exercício - Solução

Substituindo os valores na fórmula 5.13 obtém-se os seguinte resultados:

$$s^2 = \frac{2937008 - \frac{17120^2}{100}}{100 - 1}$$

$$s^2 = \frac{2937008 - 2930944}{100 - 1} = \frac{6064}{99}$$

$$s^2 = 61,25$$

Resposta:

A variância das alturas é de 61,25 cm²

b) O desvio-padrão das alturas
 Solução

Extrai-se a raiz quadrada da variância.

Assim,

$$s = \sqrt{s^2}$$

$$s = \sqrt{61}, 25$$

$$s = 7,8263$$

Resposta: As estaturas das pessoas estão dispersas em média 7,83 cm em relação à

média da distribuição.