BLAST: Búsquedas en Bases de Datos de Secuencias

Luis E. Garreta U luis.garreta@javerianacali.edu.co

Curso de Bioinformática Pontificia Universidad Javeriana – Cali Facultad de Ingeniería - Carrera de Biología

8 de septiembre de 2018

Objetivos

- ► Descubrir porque las búsquedas de similaridades son tan importantes
- ► Entender la relación entre homología, similaridad, e "identidad"
- ► Ejecutar BLAST e interpretar las salidas
- ► Entender el concepto de *e-values*
- ► Conocer cómo hacer preguntas biológicas con BLAST

Plan

- ► Significado biológico de similaridad entre secuencias
- ► Homología, identidad, y similaridad
- ► Ejecución de BLAST
- ► Interpretación de la salida de BLAST
- Análisis biológicos con BLAST
- ► Ejecución de PSI-BLAST

Similaridad entre Secuencias

- ▶ Dos secuencias de proteínas con más del 25 % de aminoácidos identicos (sobre 100 AA) son homologas.
- ▶ Dos secuencias de ADN con más del 70 % de nucleótidos idénticos (sobre 100 NN) son homologas.
- ► Secuencias homologas tienen:
 - ► Un ancestro común (proteínas y ADN)
 - ► Una estructura 3D similar (proteínas)
 - ► A menudo una función similar (proteínas)

Alineamientos

Homología

- ► Cuando dos proteínas tienen menos que el 25 % de identidad
 - ► Pueden ser o no homologos
 - Es imposible decir que es verdad
- Este rango de identidad es llamado:
 - ► "la zona de penumbra"
 - ► "Twilight Zone"

Homología, Similaridad, e Identidad

- ► Identidad es una medida realizada sobre el alineamiento
 - ► Secuencia A puede ser "32 % identica" a la secuencia B
- ► Similaridad es una medida de que tan cerca están dos aminoácidos:
 - ► Por ejemplo, isoleucina y leucina son similares
- ► Homología es una propiedad que existe o no
 - ► Secuencia A ES o NO ES homologa a la secuencia B
 - ► Secuencia A **no puede** ser 40 % homologa a B
- Homología se establece con base en la similaridad e identidad medidas

Cómo Establecer Homología

- Comparar proteína A con cada proteína en una base de datos (e.g. Swiss-Prot)
- ► Identificar una Proteína B que es 40 % identica a su proteína
 - Es mejor usar el *e-value* pero la idea es la misma (...)
- ► Se puede concluir que A y B son probablemente homólogos si ambas son muy similares
 - Es como decir, "Juan y María son probablemente hermanos ya que ellos son muy similares"
- ► Entonces, si se conoce la estructura o función de B, entonces A y B probablemente tienen la misma estructura.

Biología *In-silico*

Cuando ya se logra establecer que dos proteínas (A y B) son homologas, entonces se puede extrapolar todo lo que conoce de la proteína A hacia la proteína B:

BLAST

- ► BLAST: Basic Local Alignment Search Tool
- ► BLAST es una herramienta para comparar una secuencia con TODAS las otras secuencias dentro de una base de datos
- ► BLAST puede comparar:
 - ► Secuencias de ADN
 - Secuencias de Proteínas
- BLAST es más exacto al comparar secuencias de proteínas que al comparar secuencias de ADN

BLAST (continuación)

- ► BLAST realiza alineamientos locales:
 - ► Solamente alinea lo que puede ser alineado
 - ► e ignora el resto
- ► BLAST es muy rápido
 - Sólo unos pocos segundos para explorar la BD Swiss-Prot en un PC estándar

Existen varios sabores de BLAST para realizar diferentes tareas:

BLASTing de una Secuencia de Proteínas

► Seleccione el tipo de BLAST correcto para proteínas

Qué es lo que quiero hacer?

- Quiero encontrar algo acerca de la función de mi proteína blastp, para compara su proteína con otras contenidas en BDs de proteínas
- Quiero descubrir nuevos genes que codifican proteínas: tblastn, para comparar su proteína con secuencias de ADN trasladadas en los 6 posibles marcos de lectura (3 en cada hebra)

Ejecución de blastp

1 Ingrese la secuencia a buscar:

Nombre: Ingresar el código o número de acceso (gen o

proteína)

Secuencia: Cortar y pegar la secuencia cruda (ADN o

Aminoácidos)

Seleccione uno de los servidores públicos:

NCBI: www.ncbi.nlm.nih.gov/blast

EBI: www.ebi.ac.uk/blast

 ${\sf EMBnet:}\ www.{\sf expasy.ch/blast}$

3 Seleccione la base de datos donde buscar:

NR para encontrar cualquier secuencia de proteína Swiss-Prot para encontrar proteínas con funciones conocidas PDB para encontrar proteínas con estructuras 3D conocidas

4 Ejecute BLAST dando click en el botón BLAST

Ejercicio 1: BLASTING Blast para una secuencia de nucleótidos desconocida

- Descargue la secuencia desconocida del github
- ► Ejecute BLAST sobre esta secuencia

Develop

Use NCBI APIs and code libraries to build applications

Analyze

Identify an NCBI tool for your data analysis task

PubChem

Research

Explore NCBI research and collaborative projects

Literature Proteins Sequence Analysis

Taxonomy

Variation

Training & Tutorials

NCBI

Recent Results

Saved Strategies

Help

Sign in to NCBI

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

Learn more

BLAST+ 2.4.0 released

Home

A new version (2.4.0) of the BLAST+ executables is now available.

Thu, 02 Jun 2016 14:00:00 EST More BLAST news...

Web BLAST

BLAST®

blastx

translated nucleotide > protein

tblastn

protein ▶ translated nucleotide

Enter accession n	umber(s), gi(s), or FASTA sequence(s) 🥹	Clear	Query subrange		
GAATCGGAGAGTG ACGACAAGCAGG CAGTTCCTGCAGA	S893.1 Tarantula mRNA for hemocyanin subunit a STTGGTCACTTACCGCGGGGAACATCGAGCAATTCCA TTCAGGCACTGAAGTTGTTCGAGAAGCTCAGCGTAGC CCAGATCGACGAAAGGCTTAGAACATCACAACCTT. ACCCAGACCACTTGGAACAAGCCAAGAGAGTCTACGA	CGCCACTGGTGAGC AGGTCCCAATGAATC	То		
Or, upload file Job Title	Choose File no file selected				
☐ Align two or mo	re sequences 🚇				
Choose Searc	h Set				
Database	Human genomic + transcript Mouse genomic + transcript Others (nr etc.): Nucleotide collection (nr/nt)				
Organism Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown @				
Exclude Optional	☐ Models (XM/XP) ☐ Uncultured/environmental sample sequences				
Limit to Optional Entrez Query Optional	Sequences from type material You to Create custom database Enter an Entrez query to limit search &				
Program Sele	ction				
Optimize for	Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast)				
	Somewhat similar sequences (blastn) Choose a BLAST algorithm	•	last to find the best equence or change to		
BLAST	Search database Nucleotide collection (nr/nt) u	blastn to find related sequences from other organisms			

Lectura de los resultados de BLAST:

- ► Graphic Display:
 - Vista Gráficos de los alineamientos
- ► Hit List:
 - Descripción de los alineamientos
- ► Alignments:
 - ► Detalle de los alineamientos

Resultados: Search Summary

Copyright © 2016 Digital World Biology LLC All rights reserved.

Resultados: Vista Gráfica

Resultados: Lista de Hits

Results: e-values o valor esperado

The E (Expect) value is equal to the number of matching sequences you would expect to find if you searched a database of random sequences.

Two important parameters that influence the E value are:

The number sequences in the database
The length of the query sequence

The E value increases when the database is larger and / or the query sequence is shorter. Both of these changes increase the probability of finding a matching sequence.

If the E value is close to zero, the program rounds the value off to zero.

The letter "e" in the number means exponent.

0.86

In this example, the E value equals

1 x 10 -21

An E value this low corresponds to a very low chance of finding a random sequence that matches this well.

This sequence has an E value of 3.4. That means you would expect to find 3.4 sequences in a random database that match the query as well as this one.

Results: Descripciones de las Secuencias Hits

Results: Detalle de los Alineamientos

In this alignment the raw blast score is 4420 (about twice the number of nucleotides), the E value is 0.0. All 2110 aligned bases are identical and there aren't any gaps.

Notice, the end

each line is at 6

nucleotides, bu

alignments con

on the next line

Results: Otro alineamiento con dos matches

Results: Registro de la Base de Datos

Sequences producing significant alignments:

Results: Encabezado Registro de la Base de Datos

Tarantula mRNA for hemocyanin subunit a

Results: Features Registro de la Base de Datos

Results: Publicación

reading frame coding for 630 amino acids and includes the 5"- and 3"-noncoding regions. Northern blot analysis revealed single transcripts for subunits a and e, each 2.3 kilobases long. The cDNAs for subunits a and e were both found to lack any leader pectide sequence. This supports the idea that the mature protein accumulation

cytoplasm and is released by cell rupture.

Los *E-Values*

- ► E-value significa valor experado (*expecta*)
- E-value es la medida más usada para estimar similaridad entre secuencias
- ► Cuantas veces es puedo encontrar al azar un alineamiento igual
- ► Si un alineamiento es altamente inexperado, este problemente no se dará solo por azar
 - ► Origin común es la explicación más probable
 - Es así como se infiere homología

Qué valores son aceptables para los *E-values*

- ► Bajo e-value **implica** un buen hit
 - ► 1 = bad e-Value
 - ► 10e-3 = borderline E-value
 - ► 10e-4 = good E-value
 - ▶ 10e-10 = very good E-value
- ► E-values menores que 10e-4 indican posible homología
- ► E-values más altos que10e-4 requierne evidencia extra evidence para soportar la homología

Porqué usar e-values

- e-values hacen posible comparar alineamientos de diferentes longitudes
- e-values son usados por la mayoría de programas de comparación de secuencias
 - ► BLAST
 - ► FASTA
 - ► PSI-BLAST
 - ▶ ..

BLASTing Secuencias de ADN

- ► Secuencias de ADN:
 - ► ADN codificante
 - ► ADN no-codificante
- ▶ BLASTing de secuencias de ADN es menos exacto que realizar BLAST con secuencias de proteínas

BLASTing Secuencias de ADN

Program	Query	Database
blastn	nucleotide	nucleotide
blastx	nucleotide protein	vs protein
tblastx	nucleotide protein	nucleotide vs protein

Ejercicio2: Realizar el BLAST de la proteína P09405