Quantum Computing

Chao Liang

School of Computer Science Wuhan University

Review: Lecture 7

1. Deutsch's algorithm

- Deutsch's orcal problems
- Four operations and quantum gates
- Deutsch's algorithm
- Discussion

2. Deutsch-Jozsa algorithm

- > Hadamard matrix and Kronecker product
- N-bit Deutsch oracle problem
- Deutsch-Jozsa algorithm

Lecture 8: Quantum Cryptography

1

Classic cryptography

- Basic concepts
- Symmetric cryptography
- Asymmetric cryptography

2

Quantum key exchange

- The BB84 protocol
- The B92 protocol
- The EPR protocol

3

Quantum teleportation

- Definition
- Bell basis and its quantum circuit
- Quantum teleportation protocol
- 超光速通讯不可行

4

Superdense Coding

- Objective
- Inverse Bell circuit
- Superdense coding protocol

- Definition: Cryptography
 - Cryptography is the art of concealing messages.

DEC(ENC(T, K_E), K_D)=T means that as long as we use the right keys, we can always retrieve the original message intactly without any loss of information

Examples

- Caesar's protocol
 - >> ENC =DEC =shift(-, -)
 - > E.g., shift("MOM," 3) = "PRP"
- Weakness
 - high statistical correlation

Examples

- One-Time-Pad protocol (一次性密码本)
 - ➤ Share the key *K*

$$K_E = K_D = K$$

 $ENC(T,K) = DEC(T,K) = T \oplus K$

DEC(ENC(T, K), K) = DEC(T
$$\oplus$$
K, K)
= (T \oplus K) \oplus K
= T \oplus (K \oplus K)
= T

One-Tim	e-Pa	d Pr	otoc	col			
Original message T		0	1	1	0	1	1
Encryption key K	\oplus	1	1	1	0	1	0
Encrypted message E		1	0	0	0	0	1
Public channel							1
Received message E		1	0	0	0	0	1
Decryption key K	\oplus	1	1	1	0	1	0
Decrypted message T		0	1	1	0	1	1

补充材料: OTP优缺点

- 优点
 - 绝对无法破解
- 缺点
 - 密钥太长
 - 无法重用密钥(存在信息泄露的风险)
 - 密钥的配送
 - 密钥的保存

Examples

- One-Time-Pad protocol's issues
 - > One time only (see Exercise 9.1.4)

•
$$E_1 \oplus E_2 = (T_1 \oplus K) \oplus (T_2 \oplus K)$$

= $T_1 \oplus K \oplus K \oplus T_2$
= $T_1 \oplus T_2$

- Diffie-Hellman Key distribution
 - Core idea: One-way function
 - E.g., modular exponentiation: $g^x \mod p$

补充材料: D-H 密钥交换

■ Diffie-Hellman Key Exchange

- Alice 选择数 a, Bob选择数 b (两人不互知)
- 两人通过p和g从各自的数字里分别算出A和B,
 并且交换A和B(注意不是交换a和b)
- Alice 就可以用 B 和 a 算出 s (秘钥) , 而 Bob 用
 A 和 b 可以算出同样的秘钥 s
- Eve 知道 A 和 B, 但不知道 a 和 b, 所以算不出 s

Reference: Diffie-Hellman Key Exchange: 互联网通信背后的历史虚无主义革命, https://zhuanlan.zhihu.com/p/113072558

补充材料: D-H 密钥交换

■ Diffie-Hellman Key Exchange

Alice		Bob		Eve	
Known	Unknown	Known	Unknown	Known	Unknown
p = 23		p = 23		<i>p</i> = 23	
<i>g</i> = 5		<i>g</i> = 5		<i>g</i> = 5	
<i>a</i> = 6	b	<i>b</i> = 15	a		a, b
A = 5 ^a mod 23		$B = 5^{\mathbf{b}} \mod 23$			
$A = 5^6 \mod 23 = 8$		$B = 5^{15} \mod 23 = 19$			
<i>B</i> = 19		<i>A</i> = 8		A = 8, $B = 19$	
<i>s</i> = B ^a mod 23		<i>s</i> = A ^b mod 23			
<i>s</i> = 19 ⁶ mod 23 = 2		<i>s</i> = 8 ¹⁵ mod 23 = 2			S

《Quantum Computing》

补充材料: D-H 密钥交换

Diffie-Hellman Key Exchange

- 上述做法是安全的,因为:
 - ▶ Eve 不能通过 A 和 p, g 算出 a
 - ▶ Eve 也不能通过 B 和 p, g 算出 b

$$A = g^a \mod p$$
 $B = g^b \mod p$

$$B = g^b \mod p$$

trapdoor function

如果 A, g, a 都是整数, 具体地说, 变成 0 到 p 之间的整数(实际操作中,通常 p很大, 比g, a, b都要大很多)之后, 这个问题就变得很难解了。

Reference: Diffie-Hellman Key Exchange: 互联网通信背后的历史虚无主义革命, https://zhuanlan.zhihu.com/p/113072558

- Private-key cryptography
 - $K_E \leftarrow K_D$, hence K_E and K_D are both kept secret
- Public-key cryptography
 - $K_E \rightarrow K_D$ is extremely hard (trapdoor function)
 - Only K_D is kept secret, K_F is open to the public

- Public-key cryptography
 - Plus side
 - No key distribution problem
 - Minus sides
 - Slower than private-key cryptography
 - ➤ Temporary fact that $K_E \rightarrow K_D$ is extremely hard (三十年河东,三十年河西,未来也许不难)

Typical issues

Success communication

- Intrusion detection
 - Alice and Bob would like to determine whether Eve is, in fact, eavesdropping
- Authentication (身份验证,认证)
 - We would like to ensure that nobody is impersonating Alice and sending false messages

2. Quantum Key E

Motivation

- Classic world
 - Eve can make copies of arbitrary portions of the encrypted bit stream
 - > Eve can listen without affecting the bitstream
- Quantum world (Alice sends qubits)
 - Eve cannot make perfect copies of the qubit stream (because of the no-cloning theorem)
 - > The very act of measuring the qubit stream alters it

2. Observables and measuring

- Classic physics
 - the act of measuring would leave the system in whatever state it already was, at least in principle
 - the result of a measurement on a well-defined state is predictable, i.e., if we know the state with absolute certainty, we can anticipate the value of the observable on that state
- Quantum physics
 - systems do get perturbed and modified as a result of measuring them
 - only the probability of observing specific values can be calculated: measurement is inherently a nondeterministic process

2. Quant

- Motivation
- Bennett's thought (1970s)

 ➤ If erasing information is the only operation that use energy, then a computer that is reversible and does
- not erase would not use any energy

 Reversible circuits and programs

 Examples: NOT, controlled-NOT, Toffoli, Fredkin,
- > Examples: NOT, controlled-NOT, Toffoli, Fredkin
 > Note: AND, OR gates are irreversible

 Lecture 6

- Preliminaries (预备1/4)
 - Alice sends Bob a key via a quantum channel (like one-time-pad protocol)
 - Her key is a sequence of random (classic) bits, perhaps, by tossing a coin
 - Alice sends a qubit each time she generates a new bit of her key

- BB84 protocol
 - Preliminaries (预备2/4)
 - + and X bases

$$\boldsymbol{+} = \{|\rightarrow\rangle, \mid \uparrow\rangle\} = \left\{ [1, 0]^T, [0, 1]^T \right\}$$

$$\mathsf{X} = \{|\nwarrow\rangle, \mid \nearrow\rangle\} = \left\{\frac{1}{\sqrt{2}}[-1, 1]^T, \frac{1}{\sqrt{2}}[1, 1]^T\right\}$$

2. Quantu

BB84 protocol

同一个向量在不同基下对应不同的线性组合

- Preliminaries (预备3/4)
 - ➤ Cross representation under 'plus' and 'times' bases (交叉表示,将一个基向量在另外一组基下进行表示)

$$+ = \{ | \to \rangle, | \uparrow \rangle \} = \left\{ [1, 0]^T, [0, 1]^T \right\} \qquad \qquad \mathsf{X} = \{ | \nwarrow \rangle, | \nearrow \rangle \} = \left\{ \frac{1}{\sqrt{2}} [-1, 1]^T, \frac{1}{\sqrt{2}} [1, 1]^T \right\}$$

$$| \searrow \rangle$$
 with respect to $+$ will be $\frac{1}{\sqrt{2}} | \uparrow \rangle - \frac{1}{\sqrt{2}} | \rightarrow \rangle$.

$$|\nearrow\rangle$$
 with respect to $+$, will be $\frac{1}{\sqrt{2}}|\uparrow\rangle + \frac{1}{\sqrt{2}}|\rightarrow\rangle$.

$$|\uparrow\rangle$$
 with respect to X, will be $\frac{1}{\sqrt{2}}|\nearrow\rangle + \frac{1}{\sqrt{2}}|\nwarrow\rangle$.

$$| \rightarrow \rangle$$
 with respect to X, will be $\frac{1}{\sqrt{2}} | \nearrow \rangle - \frac{1}{\sqrt{2}} | \nwarrow \rangle$.

- BB84 protocol
 - Preliminaries (预备4/4)
 - Map table between bit and qubit

State / Basis	+	Χ
0>	$ \rightarrow \rangle$	/ / >
1>	↑>	abla angle

- Meaning
 - Sender: from bit (0/1) to qubit (arrows)
 - > Receiver: from qubit (arrows) to bit (0/1)

■ BB84 protocol

- Step 1 (Alice)
 - Randomly determines classical bits to send
 - Randomly determines the bases to send bits
 - sends the bits in their appropriate basis

Step 1:	Step 1: Alice sends n random bits in random bases													
Bit number	1	2	3	4	5	6	7	8	9	10	11	12		
Alice's random bits	0	1	1	0	1	1	1	0	1	0	1	0		
Alice's random bases	+	+	X	+	+	+	X	+	X	X	X	+		
Alice sends	\rightarrow	\uparrow	_	\rightarrow	↑	↑	_	\rightarrow	_	1	_	\rightarrow		
Quantum channel						\Downarrow	\Downarrow	\Downarrow						

■ BB84 protocol

- Step 2 (Bob)
 - Randomly determines the bases to receive qubits
 - > measures the qubit in those random bases

Step 2: Bob receives n random bits in random measurements													
Bit number	1	2	3	4	5	6	7	8	9	10	11	12	
Bob's random bases	Χ	+	Χ	Χ	+	Χ	+	+	Χ	Χ	Χ	+	
Bob observes	1	↑	_		\uparrow	1	↑	\rightarrow	_	1	_	\rightarrow	
Bob's bits	0	1	1	1	1	0	1	0	1	0	1	0	

- BB84 protocol
 - Step 2 (Bob)

- | \nwarrow | with respect to + will be $\frac{1}{\sqrt{2}}|\uparrow\rangle \frac{1}{\sqrt{2}}|\rightarrow\rangle$. | \nearrow | with respect to +, will be $\frac{1}{\sqrt{2}}|\uparrow\rangle + \frac{1}{\sqrt{2}}|\rightarrow\rangle$. | \uparrow | with respect to X, will be $\frac{1}{\sqrt{2}}|\nearrow\rangle + \frac{1}{\sqrt{2}}|\nwarrow\rangle$. | \rightarrow | with respect to X, will be $\frac{1}{\sqrt{2}}|\nearrow\rangle - \frac{1}{\sqrt{2}}|\nwarrow\rangle$.
- Randomly determines the bases to receive bits
- > measures the qubit in those random bases

BB84 protocol

- Step 2 (Bob)
 - Randomly determine the bases to receive bits
 - measure the qubit in those random bases

·致基观测,确定性结果(**100%**的正确概率)

BB84 protocol

- Step 2 (Bob)
 - Randomly determine the bases to receive bits
 - measure the qubit in those random bases

一致基观测,确定性结果(100%的正确概率)

■ BB84 protocol

Step 2 (Bob)

- | \nwarrow | with respect to + will be $\frac{1}{\sqrt{2}}|\uparrow\rangle \frac{1}{\sqrt{2}}|\rightarrow\rangle$. | \nearrow | with respect to +, will be $\frac{1}{\sqrt{2}}|\uparrow\rangle + \frac{1}{\sqrt{2}}|\rightarrow\rangle$. | \uparrow | with respect to X, will be $\frac{1}{\sqrt{2}}|\nearrow\rangle + \frac{1}{\sqrt{2}}|\nwarrow\rangle$. | \rightarrow | with respect to X, will be $\frac{1}{\sqrt{2}}|\nearrow\rangle - \frac{1}{\sqrt{2}}|\nwarrow\rangle$.
- Randomly determine the bases to receive bits
- measure the qubit in those random bases

Step 2: Bob receives n random bits in random measurements

Bit number	1	2	3	4	5	6	7	8	9	10	11	12
Bob's random bases	X	+	Χ	Х	+	X	+	+	X	Χ	Χ	+
Bob observes	7	\uparrow		Κ,	↑	7	↑	\rightarrow	_	7	_	\rightarrow
Bob's bits	0	_1_		71	1	0	1	0	1	0	1	0

跨基观测,随机结果(50%的正确概率)

■ BB84 protocol

- Step 2 (Bob): without eavesdropping
 - > consistent bases: 100% correct
 - Inconsistent bases: 50% correct

$$| \nwarrow \rangle$$
 with respect to $+$ will be $\frac{1}{\sqrt{2}} | \uparrow \rangle - \frac{1}{\sqrt{2}} | \rightarrow \rangle$.
 $| \nearrow \rangle$ with respect to $+$, will be $\frac{1}{\sqrt{2}} | \uparrow \rangle + \frac{1}{\sqrt{2}} | \rightarrow \rangle$.
 $| \uparrow \rangle$ with respect to X, will be $\frac{1}{\sqrt{2}} | \nearrow \rangle + \frac{1}{\sqrt{2}} | \nwarrow \rangle$.
 $| \rightarrow \rangle$ with respect to X, will be $\frac{1}{\sqrt{2}} | \nearrow \rangle - \frac{1}{\sqrt{2}} | \nwarrow \rangle$.

> Expected correct rate (ECR): $\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} = 75\%$

- BB84 protocol
 - Step 2 (Bob): with eavesdropping

- What Eve does?
 - > Eve reads the information that Alice transmits
 - Eve sends that information onward to Bob

■ BB84 protocol

- ECR = P(Bob receives correct bit)
- Solution I
 - Case 1: Eve √ and Bob √
 - Case 2: Eve × but Bob √

Case 2: Eve gets incorrect bits

Bob uses the same base as Eve (definitely wrong)

$$\left[\frac{3}{4} \times \frac{3}{4}\right] + \left[\frac{1}{4}\right] \times \left(\frac{1}{2} \times 0\right) + \left[\frac{1}{2} \times \frac{1}{2}\right) = \frac{10}{16} = 62.5\%$$

Case 1: Eve gets correct bits and Bob too

Bob uses different base as Eve

■ BB84 protocol

ECR = P(Bob receives correct bit)

Solution II

E	ve	В	ob	
Receiving basis (consistent to Alice)	Sending bit (qubit) Receiving basis e) (consistent to Alice) (consistent to Eve)		Receiving bit (consistent to Alice)	Probability
D(-/) = 1/2	D(-/) - 1	P(√) = 1/2	P(√) = 1	$\frac{1}{2} \cdot 1 \cdot \left[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} \right] = \frac{6}{16}$
$P() = 1/2 \qquad \qquad P() = 1$		P(×) = 1/2	P(√) = 1/2	$\begin{bmatrix} 2 & \begin{bmatrix} 2 & 1 & 2 & 2 \end{bmatrix} & \begin{bmatrix} 16 & \end{bmatrix}$
	D(-/) = 1/2	P(√) = 1/2	P(√) = 1	$\frac{1}{2} \cdot \frac{1}{2} \cdot \left[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} \right] = \frac{3}{16}$
D(x) = 1/2	P(√) = 1/2	P(×) = 1/2	P(√) = 1/2	$\begin{bmatrix} 2 & 2 & \begin{bmatrix} 2 & 1 & 1 & 2 & 2 \end{bmatrix}^{-} & 16 \end{bmatrix}$
P(x) = 1/2	D(x) = 1/2	P(√) = 1/2	P(√) = 0	$\frac{1}{2} \cdot \frac{1}{2} \cdot \left[\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} \right] = \frac{1}{16}$
	P(×) = 1/2	P(×) = 1/2	P(√) = 1/2	$\begin{bmatrix} 2 & 2 & 2 & 2 & 2 \end{bmatrix} = \frac{16}{16}$

- BB84 protocol
 - ECR = P(Bob receives correct bir)
 - Solution II

Receiving basis

P(√)

$$\therefore \frac{6}{16} + \frac{3}{16} + \frac{1}{16} = \frac{10}{16} < \frac{12}{16} = 0.75$$

:: 一旦有人窃听ECR会降低

$$\left[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2}\right] = \frac{6}{16}$$

$$\frac{1}{2} \cdot \left[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} \right] = \frac{3}{16}$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \left[\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} \right] = \frac{1}{16}$$

- BB84 protocol
 - Step 3 (Alice and Bob)
 - publicly compare which basis they used at each step
 - > scratch out corresponding bits under different bases

Step 3: A	Alice	and	Bob	publi	icly c	omp	are b	ases	used			
Bit number	1	2	3	4	5	6	7	8	9	10	11	12
Alice's random bases	+	+	X	+	+	+	X	+	X	X	X	+
Public channel	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
Bob's random bases	Χ	+	Χ	Χ	+	Χ	+	+	Χ	Χ	Χ	+
Which agree?		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	✓
Shared secret keys		1	1		1			0	1	0	1	0

On average this subsequence is of length n

- BB84 protocol
 - Step 4 (Alice and Bob)
 - ➤ Bob randomly chooses half of the n/2 bits
 - publicly compares them with Alice

Step 4: Alice and Bob	pub	licly	com	pare	e hal	f of	the	rem	ainir	ıg bit	S	
Bit number	1	2	3	4	5	6	7	8	9	10	11	12
Shared secret keys		1	1		1			0	1	0	1	0
Randomly chosen to compare			\checkmark						✓	\checkmark		✓
Public channel			\$						\$	\$		\$
Shared secret keys		1	1		1			0	1	0	1	0
Which agree?			\checkmark						✓	\checkmark		✓
Unrevealed secret keys:		1			1			0			1	

- BB84 protocol
 - Step 4 (Alice and Bob)
 - ➤ Bob randomly chooses half of the n/2 bits
 - publicly compares them with Alice
 - If $ECR \le 1 \epsilon$, Eve is listening, scratch the whole sequence
 - Otherwise, scratch out the revealed test subsequence and keep the remains as unrevealed secret private key

- B92 protocol (Bennett, 1992)
 - Motivation
 - > two different bases are redundant for Alice
 - But Bob still needs two bases
 - Main idea
 - Alice uses only one non-orthogonal basis

$$\{| \to \rangle | \nearrow \rangle\} = \left\{ [1, 0]^T, \frac{1}{\sqrt{2}} [1, 1]^T \right\}$$

■ B92 protocol

- Step 1 (Alice)
 - randomly determine classical bits to send
 - > send the bits in the appropriate polarization

Ste	Step 1: Alice sends n random bits in the \angle basis													
Bit number	1	2	3	4	5	6	7	8	9	10	11	12		
Alice's random bits	0	0	1	0	1	0	1	0	1	1	1	0		
Alice's qubits	\rightarrow	\rightarrow	7	\rightarrow	7	\rightarrow	7	\rightarrow	7	7	7	\rightarrow		
Quantum channel	#		#					#		#	#			

■ B92 protocol

- Step 2 (Bob)
 - > randomly determines the bases to receive bits
 - > measures the qubit in those random bases
 - If Bob uses the + basis and observes a $|\uparrow\rangle$, then he knows that Alice must have sent a $|\nearrow\rangle = |1\rangle$ because if Alice had sent a $|\rightarrow\rangle$, Bob would have received a $|\rightarrow\rangle$.
 - If Bob uses the + basis and observes a $| \rightarrow \rangle$, then it is not clear to him which qubit Alice sent. She could have sent a $| \rightarrow \rangle$ but she could also have sent a $| \nearrow \rangle$ that collapsed to a $| \rightarrow \rangle$. Because Bob is in doubt, he will omit this bit.
 - If Bob uses the X basis and observes a $| \setminus \rangle$, then he knows that Alice must have sent a $| \rightarrow \rangle = |0\rangle$ because if Alice had sent a $| \nearrow \rangle$, Bob would have received a $| \nearrow \rangle$.
 - If Bob uses the X basis and observes a $| \nearrow \rangle$, then it is not clear to him which qubit Alice sent. She could have sent a $| \nearrow \rangle$ but she could also have sent a $| \rightarrow \rangle$ that collapsed to a $| \nearrow \rangle$. Because Bob is in doubt, he will omit this bit.

2. Quantum $K(\blacksquare)$ If Bob uses the + basis and observes a $| \rightarrow \rangle$, then it is not clear to him which qubit Alice sent. She could have sent a $| \rightarrow \rangle$ but she could also have sent a $| \nearrow \rangle$

- If Bob uses the + basis and observes a $|\uparrow\rangle$, then he knows that Alice must have sent a $| \nearrow \rangle = |1\rangle$ because if Alice had sent a $| \rightarrow \rangle$, Bob would have received a
 - that collapsed to a \rightarrow). Because Bob is in doubt, he will omit this bit.
 - If Bob uses the X basis and observes a $|\nabla\rangle$, then he knows that Alice must have sent a $| \rightarrow \rangle = | 0 \rangle$ because if Alice had sent a $| \nearrow \rangle$, Bob would have received a
 - If Bob uses the X basis and observes a $| \nearrow \rangle$, then it is not clear to him which qubit Alice sent. She could have sent a $| \nearrow \rangle$ but she could also have sent a $| \rightarrow \rangle$ that collapsed to a $| \nearrow \rangle$. Because Bob is in doubt, he will omit this bit.

- B92 protocol
 - Step 2 (Bob)
 - randomly determines the bases to receive bits
 - > measures the qubit in those random bases

Step 2:	Bob	recei	ves n	rand	om b	its in	a ran	dom	basis			
Bit number	1	2	3	4	5	6	7	8	9	10	11	12
Alice's random bits	\rightarrow	\rightarrow	1	\rightarrow	1	\rightarrow	1	\rightarrow	1	1	1	\rightarrow
Quantum channel	\Downarrow	\Downarrow	\Downarrow	\Downarrow	\Downarrow	\Downarrow	U	\Downarrow	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Bob's random bases	Χ	+	Χ	Χ	+	Χ	+	+	Χ	+	Χ	+
Bob's observations	_	\rightarrow	7	_	\uparrow	_	\rightarrow	\rightarrow	1	\uparrow	1	\rightarrow
Bob's bits	0	?	?	0	1	0	?	?	?	1	?	?

- B92 protocol
 - Step 3 (Alice and Bob)
 - Bob publicly tells Alice which bits were uncertain
 - they both omit uncertain bits
 - Step 4 (optional for intrusion detection)
 - ➤ Bob randomly chooses half of the n/2 bits
 - publicly compares them with Alice

- EPR protocol (Ekert, 1991)
 - Idea: entangled state $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$ or $\frac{|01\rangle + |10\rangle}{\sqrt{2}}$
 - > Prepare a sequence of entangled pairs of qubits

- EPR protocol (Ekert, 1991)
 - Aims
 - > Intrusion detection
 - Quantum decoherence detection
 - Idea
 - Measure a qubit in two bases:X and + bases(same vocabulary of BB84)

State / Basis	+	Χ
0>	$ \rightarrow \rangle$	/ / >
1>	↑>	\

- EPR protocol (Ekert, 1991)
 - Step 1 (Alice and Bob)
 - Both sides are each assigned one of each of the pairs of a sequence of entangled qubits

2. Quantum Key Exc

State / Basis	+	X
0>	$ \rightarrow \rangle$	/)
1>	↑>	🥄

- EPR protocol with intrusion detection
 - Step 2 (Alice and Bob)
 - > separately choose a random sequence of bases
 - > measure their qubits in their chosen basis

Step 2: Ali	Step 2: Alice and Bob measure in each of their random bases											
Bit number	1	2	3	4	5	6	7	8	9	10	11	12
Alice's random bases	Χ	Χ	+	+	Х	+	Χ	+	+	Χ	+	X
Alice's observations	7	_	\rightarrow	\uparrow	7	\rightarrow	_	\rightarrow	\rightarrow	7	\rightarrow	7
Bob's random bases	Х	+	+	X	Х	+	+	+	+	Χ	Χ	+
Bob's observations	7	\rightarrow	\rightarrow	7	7	\rightarrow	↑	\rightarrow	\rightarrow	7	_	\rightarrow

- EPR protocol with intrusion detection
 - Step 3 (Alice and Bob)
 - publicly compare what bases were used
 - > keep only those bits measured in the same basis

Step 3: A	Alice	and	Bob	publi	icly c	omp	are tl	heir b	ases			
Bit number	1	2	3	4	5	6	7	8	9	10	11	12
Alice's random bases	X	Χ	+	+	X	+	X	+	+	X	+	X
Public channel	\$											
Bob's random bases	X	+	+	X	X	+	+	+	+	X	X	+
Which agree?	✓		✓		✓	✓		✓	✓	✓		

- EPR protocol with intrusion detection
 - Step 4 (optional for intrusion or disentangled detection)
 - ➤ Bob randomly chooses half of the n/2 bits
 - publicly compares them with Alice
 - Remark
 - In Ekert's original protocol, qubits are measured in three different bases
 - > Bell's inequality is used to detect decoherence

- Definition: Quantum teleportation (远距离 传输,量子隐形传态)
 - Quantum teleportation is the process by which the state of an arbitrary qubit is transferred from one location to another
- Note (no-cloning theorem)
 - Move is possible, copy is impossible

Definition

- Alice has $|\psi\rangle$
- Bob is far from Alice
- Transmit $|\psi\rangle$ from Alice to Bob

Preliminary

- Canonical basis
 - \rightarrow { $|0\rangle$, $|1\rangle$ }

$$\geqslant \left\{ \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right\}$$

Preliminary

Canonical basis for a single qubit

$$\rightarrow \{|0\rangle, |1\rangle\}$$

Non-canonical basis (Bell basis) for single qubit

$$\geqslant \left\{ \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right\}$$

Φφ	φεῖ	Phi	/ˈfaɪ/
Хχ	χεῖ	Chi	/ˈkaɪ/
Ψψ	ψεῖ	Psi	/ˈsaɪ/ , /ˈpsaɪ/

3. Quantum ve vei Psi /sai

Preliminary

Canonical basis for two qubits

$$\gt$$
 { $|0_A 0_B \rangle$, $|0_A 1_B \rangle$, $|1_A 0_B \rangle$, $|1_A 1_B \rangle$ }

- Non-canonical basis (Bell basis) for two qubits
 - entangled states

$$\cdot |\Psi^{+}\rangle = \frac{|0_{A}1_{B}\rangle + |1_{A}0_{B}\rangle}{\sqrt{2}} \quad \text{and} \quad |\Psi^{-}\rangle = \frac{|0_{A}1_{B}\rangle - |1_{A}0_{B}\rangle}{\sqrt{2}}$$

$$\cdot |\Phi^{+}\rangle = \frac{|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle}{\sqrt{2}} \quad \text{and} \quad |\Phi^{-}\rangle = \frac{|0_{A}0_{B}\rangle - |1_{A}1_{B}\rangle}{\sqrt{2}}$$

Фφ	φεῖ	Phi	/ˈfaɪ/
Хχ	χεῖ	Chi	/ˈkaɪ/
Ψψ	ψεῖ	Psi	/ˈsaɪ/ , /ˈpsaɪ/

Preliminary

- Bell circuit: Derivation of Bell basis
 - > Two-dimensional case

$$|\mathbf{H}|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 and $|\mathbf{H}|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

Four-dimensional case

$$\begin{split} & \text{Example: } |00\rangle \mapsto |\Phi^{+}\rangle \\ & \text{CNOT} \cdot (\mathbf{H}|0\rangle \otimes |0\rangle) = \text{CNOT} \cdot \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |0\rangle\right) \\ & = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \frac{|00\rangle + |11\rangle}{\sqrt{2}} = |\Phi^{+}\rangle \end{split}$$

$$|00
angle\mapsto |\Phi^{+}
angle, \quad |10
angle\mapsto |\Phi^{-}
angle, \quad |01
angle\mapsto |\Psi^{+}
angle, \quad |11
angle\mapsto |\Psi^{-}
angle$$

Φφ	φεῖ	Phi	/ˈfaɪ/
Хχ	χεῖ	Chi	/ˈkaɪ/
Ψψ	ψεῖ	Psi	/ˈsaɪ/ , /ˈpsaɪ/

3. Quantum vei poi tationi

■ Step 0

• Alice has a qubit $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

Φφ	φεῖ	Phi	/ˈfaɪ/
Хχ	χεῖ	Chi	/ˈkaɪ/
Ψψ	ψεῖ	Psi	/ˈsaɪ/ , /ˈpsaɪ/

3. Quantum 44 461 Psi / Sal

- Step 1: 制备两个纠缠的量子比特A和B
 - two entangled qubits are formed as $|\Phi^+\rangle$.
 - one is given to Alice and one is given to Bob

$$\begin{aligned} |\varphi_{0}\rangle &= |\psi\rangle \otimes |0_{A}\rangle \otimes |0_{B}\rangle = |\psi\rangle \otimes |0_{A}0_{B}\rangle, \\ |\varphi_{1}\rangle &= |\psi\rangle \otimes \frac{|0_{A}\rangle + |1_{A}\rangle}{\sqrt{2}} \otimes |0_{B}\rangle, \\ |\varphi_{2}\rangle &= |\psi\rangle \otimes |\Phi^{+}\rangle = |\psi\rangle \otimes \frac{|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle}{\sqrt{2}} \\ &= (\alpha|0\rangle + \beta|1\rangle) \otimes \frac{|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle}{\sqrt{2}} \\ &= \frac{\alpha|0\rangle(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle) + \beta|1\rangle(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle)}{\sqrt{2}}. \end{aligned}$$

- Step 2: 用目标量子比特对A进行控制
 - Alice lets her $|\psi\rangle$ interact with her entangled qubit

■ Step 2

• Alice lets her $|\psi\rangle$ interact with her entangled qubit

$$\begin{split} |\varphi_2\rangle &= \frac{\alpha|0\rangle(|0_A0_B\rangle + |1_A1_B\rangle) + \beta|1\rangle(|0_A0_B\rangle + |1_A1_B\rangle)}{\sqrt{2}}. \\ |\varphi_3\rangle &= \frac{\alpha|0\rangle(|0_A0_B\rangle + |1_A1_B\rangle) + \beta|1\rangle(|1_A0_B\rangle + |0_A1_B\rangle)}{\sqrt{2}}, \\ |\varphi_4\rangle &= \frac{1}{2}(\alpha(|0\rangle + |1\rangle)(|0_A0_B\rangle + |1_A1_B\rangle) + \beta(|0\rangle - |1\rangle)(|1_A0_B\rangle + |0_A1_B\rangle) \\ &= \frac{1}{2}(\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)). \\ |\varphi_4\rangle &= \frac{1}{2}(|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\beta|0\rangle + \alpha|1\rangle) \\ &+ |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(-\beta|0\rangle + \alpha|1\rangle). \end{split}$$

3. Qua

■ Step 2

• Alice lets her $|\psi\rangle$ interact with her entangled qubit.

$$\begin{split} |\varphi_{2}\rangle &= \frac{\alpha|0\rangle(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle) + \beta}{\sqrt{2}} \frac{1\rangle(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle)}{\sqrt{2}}. \\ |\varphi_{3}\rangle &= \frac{\alpha|0\rangle(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle) + \beta}{\sqrt{2}} \frac{1}{\sqrt{2}}, \\ |\varphi_{4}\rangle &= \frac{1}{2}(\alpha(|0\rangle + |1\rangle)(|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle) + \beta(|0\rangle - |1\rangle)(|1_{A}0_{B}\rangle + |0_{A}1_{B}\rangle) \\ &= \frac{1}{2}(\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)). \\ |\varphi_{4}\rangle &= \frac{1}{2}(|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\beta|0\rangle + \alpha|1\rangle) \\ &+ |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(-\beta|0\rangle + \alpha|1\rangle). \end{split}$$

3. Qua

$$\mathbf{H}|0\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{H}|1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

■ Step 2

• Alice lets her $|\psi\rangle$ interact with her entangled qubit.

$$\begin{split} |\varphi_2\rangle &= \frac{\alpha|0\rangle(|0_A0_B\rangle + |1_A1_B\rangle) + \beta|1\rangle(|0_A0_B\rangle + |1_A1_B\rangle)}{\sqrt{2}}. \\ |\varphi_3\rangle &= \frac{\alpha|0\rangle(|0_A0_B\rangle + |1_A1_B\rangle) + \beta|1\rangle(|1_A0_B\rangle + |0_A1_B\rangle)}{\sqrt{2}}, \\ |\varphi_4\rangle &= \frac{1}{2}(\alpha(|0\rangle + |1\rangle)(|0_A0_B\rangle + |1_A1_B\rangle) + \beta(|0\rangle - |1\rangle)(|1_A0_B\rangle + |0_A1_B\rangle) \\ &= \frac{1}{2}(\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)). \\ |\varphi_4\rangle &= \frac{1}{2}(|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\beta|0\rangle + \alpha|1\rangle) \\ &+ |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(-\beta|0\rangle + \alpha|1\rangle). \end{split}$$

3. Quantum Telepo

■ Step 2

ullet Alice lets her $\ket{\psi}$ interact with her entangled qubit.

$$\begin{split} |\varphi_2\rangle &= \frac{\alpha|0\rangle(|0_A0_B\rangle + |1_A1_B\rangle) + \beta|1\rangle(|0_A0_B\rangle + |1_A1_B\rangle)}{\sqrt{2}}. \\ |\varphi_3\rangle &= \frac{\alpha|0\rangle(|0_A0_B\rangle + |1_A1_B\rangle) + \beta|1\rangle(|1_A0_B\rangle + |0_A1_B\rangle)}{\sqrt{2}}, \\ |\varphi_4\rangle &= \frac{1}{2}(\alpha(|0\rangle + |1\rangle)(|0_A0_B\rangle + |1_A1_B\rangle) + \beta(|0\rangle - |1\rangle)(|1_A0_B\rangle + |0_A1_B\rangle) \\ &= \frac{1}{2}(\alpha(|000\rangle + |011\rangle + |100\rangle + |111\rangle) + \beta(|010\rangle + |001\rangle - |110\rangle - |101\rangle)). \\ |\varphi_4\rangle &= \frac{1}{2}(|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\beta|0\rangle + \alpha|1\rangle) \\ &+ |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(-\beta|0\rangle + \alpha|1\rangle). \end{split}$$
 The first two qubits is now in a superposition of four possible states

■ Step 3: Alice进行观测

```
|\varphi_4\rangle = \frac{1}{2}(|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\beta|0\rangle + \alpha|1\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(-\beta|0\rangle + \alpha|1\rangle).
```

- Alice measures her two qubits
- Alice determines to which of the four possible states the system collapses
- Two problems
 - Alice knows this state but Bob does not
 - Bob may not have the desired state after Alice's measurement

- Step 4: Bob根据Alice观测结果进行相应变换
 - Alice sends copies of her two bits (not qubits) to Bob
 - Bob uses that information to achieve the desired state

■ Example

$$|\varphi_{4}\rangle = \frac{1}{2}(|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\beta|0\rangle + \alpha|1\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(-\beta|0\rangle + \alpha|1\rangle)).$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha|0\rangle + \beta|1\rangle = |\psi\rangle$$

' 				
I	Bob's reco	nstruction r	natrices	
Bits received	00>	01>	10>	11>
Matrix to apply	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
¦	1 [7	Х门	Ζ门	Υ门

补充材料

■ 墨子号

空间的光子对话,视频来源: https://www.bilibili.com/video/BV1FC4y1h779

Remarks

- After teleportation, Alice has only two classic bits
- Entanglement acts at a super-light speed, but communication does not (见后续页补充材料)
- Information teleported from Alice to Bob via qubit is infinite (无穷维小数,所以信息是无限的), but it is useless to Bob once he make the measurement (qubit will collapse to a classic bit)
- no particle has been moved at all, only the state

补充材料

■墨子号

- 世界首颗量子科学实验卫星,潘建伟院士,2016年
- 目的: 建立卫星与地面远距离量子科学实验平台
 - > 空间大尺度量子科学实验
- 有效载荷

载荷名称	目标/用途
量子纠缠发射机QET	将卫星上产生的 <mark>量子密钥</mark> 通过激光分发到地面上。
量子密钥通信机QKC	对星地量子 <mark>密钥分发</mark> 进行验证,进行星地量子通讯。
量子纠缠源QEPS	产生纠缠光子对。
量子实验控制与处理机QCP	通过 <mark>量子纠缠和隐形传态</mark> 实验对量子理论的完备性进行验证。

图片来源: https://www.163.com/dy/article/H4CTB8RC05327GVA.html

■ 硬币的两面

■ 将两枚硬币分别放入两个盒子

■ 用 A 方法打开两个盒子,一正一反

知乎,为什么量子通信不能超光速传递信息? https://www.zhihu.com/question/34773362

■ 用 B 方法打开两个盒子,同正或同反

知乎,为什么量子通信不能超光速传递信息? https://www.zhihu.com/question/34773362

- 甲乙两人分别带着两个盒子去往两处,他们各自可以自由决定用何种方式(A或B)打开盒子
- 打开盒子的方式就是双方要传递的信息

■ 甲打开盒子, 然后打电话告诉乙自己硬币的正反

■ 乙看一眼自己的硬币,就知道甲用哪种方法打开的硬币,信息也就传递了

■ 哪怕别人窃听了电话,也没法知道信息内容,所以量子通信是一种安全的信息加密方法

■ 信息传播的速度不会超过打电话的速度,在没有接到电话时,乙光凭自己的硬币无法得知任何信息。所以量子通讯并非超光速通讯的手段。

■ 纠缠电子

● 给定一对纠缠电子,将其分别给Alice和Bob

$$rac{1}{2}\ket{a_0}\ket{b_0}+rac{1}{2}\ket{a_0}\ket{b_1}+rac{1}{\sqrt{2}}\ket{a_1}\ket{b_0}+0\ket{a_1}\ket{b_1}$$

- 两人如果同时测量,则根据概率幅知:
 - > 00的概率为1/4
 - ▶ 01的概率为1/4
 - ▶ 10的概率为1/2
 - ▶ 11的概率为0

■ 假设Alice进行测量, Bob没有测量

$$\begin{split} &\frac{1}{2}|a_0\rangle|b_0\rangle + \frac{1}{2}|a_0\rangle|b_1\rangle + \frac{1}{\sqrt{2}}|a_1\rangle|b_0\rangle + 0|a_1\rangle|b_1\rangle \\ &= |a_0\rangle\left(\frac{1}{2}|b_0\rangle + \frac{1}{2}|b_1\rangle\right) + |a_1\rangle\left(\frac{1}{\sqrt{2}}|b_0\rangle + 0|b_1\rangle\right) \\ &= \frac{1}{\sqrt{2}}|a_0\rangle\left(\frac{1}{\sqrt{2}}|b_0\rangle + \frac{1}{\sqrt{2}}|b_1\rangle\right) + \frac{1}{\sqrt{2}}|a_1\rangle\left(1|b_0\rangle + 0|b_1\rangle\right) \% 括号内为量子比特 \end{split}$$

- 括号内项不同,所以状态是纠缠的
- ➤ a粒子的状态振幅表明, Alice观测到0的概率为1/2, 观测到1的概率为1/2
- ightharpoonup 如果Alice观测到0,则b粒子状态为 $\frac{1}{\sqrt{2}}|b_0\rangle + \frac{1}{\sqrt{2}}|b_1\rangle$;如果Alice观测到1,则b粒子状态为 $|b_0\rangle$

来源于:《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

■ 假设Bob进行测量, Alice没有测量

$$\begin{split} &\frac{1}{2}\left|a_{0}\right\rangle\left|b_{0}\right\rangle+\frac{1}{2}\left|a_{0}\right\rangle\left|b_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle\left|b_{0}\right\rangle+0\left|a_{1}\right\rangle\left|b_{1}\right\rangle \\ &=\left(\frac{1}{2}\left|a_{0}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle\right)\left|b_{0}\right\rangle+\left(\frac{1}{2}\left|a_{0}\right\rangle+0\left|a_{1}\right\rangle\right)\left|b_{1}\right\rangle \\ &=\left(\frac{1}{\sqrt{3}}\left|a_{0}\right\rangle+\frac{\sqrt{2}}{\sqrt{3}}\left|a_{1}\right\rangle\right)\frac{\sqrt{3}}{2}\left|b_{0}\right\rangle+(1\left|a_{0}\right\rangle+0\left|a_{1}\right\rangle)\frac{1}{2}\left|b_{1}\right\rangle\%$$
 括号内为量子比特

- ▶ 括号内项不同,所以状态是纠缠的
- ▶ b粒子的状态振幅表明, Bob观测到0的概率为3/4, 观测到1的概率为1/4
- ightharpoonup 如果Bob观测到0,则a粒子状态为 $\frac{1}{\sqrt{3}}|a_0\rangle + \frac{\sqrt{2}}{\sqrt{3}}|a_1\rangle$;如果Bob观测到1,则a粒子状态为 $|a_0\rangle$

来源于:《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

- 假设Alice先于Bob进行测量
 - Alice观测到0的概率为1/2,观测到1的概率为1/2
- 假设Bob先于Alice进行测量
 - Alice观测到0的概率为 ¹/₄ + ¹/₄ = ¹/₂
 - > Bob观测先到0, Alice后观测到0的概率为 $\frac{3}{4} \times \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{4}$ > Bob观测先到1, Alice后观测到0的概率为 $\frac{1}{4} \times 1 = \frac{1}{4}$
 - Alice观测到1的概率为 ¹/₂ + 0 = ¹/₂
 - ightharpoonup Bob观测先到0, Alice后观测到1的概率为 $\frac{3}{4} imes \left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2 = \frac{1}{2}$
 - ightharpoonup Bob观测先到1,Alice后观测到1的概率为 $\frac{1}{4} imes 0 = 0$

来源于: 《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

- 假设Alice先于Bob进行测量
 - Alice观测到0的概率为1/2,观测到1的概率为1/2
- 假设Bob先于Alice进行测量
 - Alice观测到0的概率为1/2,观测到1的概率为1/2

全一致。因此,Alice 无法从她的测量结果中判断出它们是在 Bob 测量之前还是之后。所有纠缠态都是这样的。如果 Alice 和 Bob 无法通过他们的测量结果判断谁先测量,那么其中一个人肯定无法向另一个发送任何信息。

- 传信息的条件是你要能操纵测量结果,但量子 纠缠不能,一操作就不纠缠了
- 实际上测量后,原纠缠对里的粒子A就无法决定粒子B的状态了,无论在测量后对粒子A进行任何操作,都不会改变粒子B的状态

Objective

Communicate a two-bit message via a qubit

Preliminary

Bell circuit and Bell basis

Example:
$$|00\rangle \mapsto |\Phi^{+}\rangle$$

$$CNOT \cdot (\mathbf{H}|0\rangle \otimes |0\rangle) = CNOT \cdot \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |0\rangle\right)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \frac{|00\rangle + |11\rangle}{\sqrt{2}} = |\Phi^{+}\rangle$$

$$\begin{split} |0_A 0_B\rangle &\mapsto |\Phi^+\rangle = \frac{|0_A 0_B\rangle + |1_A 1_B\rangle}{\sqrt{2}} \quad \text{ and } \quad |1_A 0_B\rangle &\mapsto |\Phi^-\rangle = \frac{|0_A 0_B\rangle - |1_A 1_B\rangle}{\sqrt{2}} \\ |0_A 1_B\rangle &\mapsto |\Psi^+\rangle = \frac{|0_A 1_B\rangle + |1_A 0_B\rangle}{\sqrt{2}} \quad \text{ and } \quad |1_A 1_B\rangle &\mapsto |\Psi^-\rangle = \frac{|0_A 1_B\rangle - |1_A 0_B\rangle}{\sqrt{2}} \end{split}$$

Preliminary

Inverse Bell circuit

$$|\Phi^{+}\rangle = \frac{|0_{A}0_{B}\rangle + |1_{A}1_{B}\rangle}{\sqrt{2}} \mapsto |0_{A}0_{B}\rangle \quad \text{and} \quad |\Phi^{-}\rangle = \frac{|0_{A}0_{B}\rangle - |1_{A}1_{B}\rangle}{\sqrt{2}} \mapsto |1_{A}0_{B}\rangle$$

$$|\Psi^{+}\rangle = \frac{|0_{A}1_{B}\rangle + |1_{A}0_{B}\rangle}{\sqrt{2}} \mapsto |0_{A}1_{B}\rangle \quad \text{and} \quad |\Psi^{-}\rangle = \frac{|0_{A}1_{B}\rangle - |1_{A}0_{B}\rangle}{\sqrt{2}} \mapsto |1_{A}1_{B}\rangle$$

The protocol

preparation,
 sharing,
 encoding,
 sending, and
 decoding

- Step 1: Preparation
 - The protocol starts with the preparation of an entangled state, which is later shared between

Alice and Bob

$$|\Phi^{+}
angle\!=\!rac{|0_{\scriptscriptstyle A}0_{\scriptscriptstyle B}
angle\!+\!|1_{\scriptscriptstyle A}1_{\scriptscriptstyle B}
angle}{\sqrt{2}}$$

- Step 2: Sharing
 - The qubit denoted by subscript A is sent to
 Alice and the qubit denoted by subscript B is
 sent to Bob

$$|\Phi^{+}
angle\!=\!rac{|0_{\scriptscriptstyle A}0_{\scriptscriptstyle B}
angle\!+\!|1_{\scriptscriptstyle A}1_{\scriptscriptstyle B}
angle}{\sqrt{2}}$$

Step 3: Encoding

• Alice can transform the entangled state $|\Phi^+\rangle$ into any of the four Bell states (including, of course $|\Phi^+\rangle$)

Intended Message	Applied Gate	Resulting State ($\cdot\sqrt{2}$)
00	I	$ 00\rangle + 11\rangle$
10	X	$ 01\rangle + 10\rangle$
01	\boldsymbol{Z}	$ 00\rangle - 11\rangle$
11	ZX	$- 01\rangle + 10\rangle$

Source: https://medium.com/geekculture/understanding-superdense-coding-c10b42adecca

- Step 4: Sending
 - Alice send her entangled qubit to Bob using a quantum network through some conventional Sender Encodes Bits

physical medium

Source: https://en.wikipedia.org/wiki/Superdense coding

- Step 5: Decoding
 - Bob applies the inverse Bell circuit to decode the two qubits

Bob Receives:	After CNOT-gate:	After H-gate:
----------------------	------------------	---------------

$ 00\rangle + 11\rangle$	$ 00\rangle + 01\rangle$	00>
$ 01\rangle + 10\rangle$	$ 11\rangle + 10\rangle$	10⟩
$ 00\rangle - 11\rangle$	$ 00\rangle - 01\rangle$	01>
$- 01\rangle + 10\rangle$	$- 11\rangle + 10\rangle$	11>

Source: https://medium.com/geekculture/understanding-superdense-coding-c10b42adecca

Discussion

- Secure quantum communication
 - without access to Bob's qubit, Eve is unable to get any information from Alice's qubit
 - an attempt to measure either qubit would collapse the state of that qubit and alert Bob and Alice

补充材料

■ 量子隐形传态 vs. 超密编码

量子通讯	中间媒介 (Alice -> Bob)	传递对象 (Bob)
量子隐形传态	(2个)经典比特	(1个)量子比特
超密编码	(1个)量子比特	(2个)经典比特

Conclusion

- Classic cryptography
 - private-key cryptography
 - Key exchange
- Quantum key exchange (量子保密通讯)
 - BB84 protocol
 - B92 protocol
 - EPR protocol
- Quantum teleportation (量子隐形传态)
 - Canonical and non-canonical bases
 - The protocol: entanglement, interaction, measurement, reconstruction
- Superdense coding (超密编码)
 - Inverse bell circuit
 - The protocol: entanglement, sharing, encoding, sending, decoding