

Multi-Level IR Compiler Framework

MLIR Toy Tutorial 概述

张洪滨

2020.02.26

前情提要

• 各个层次进行协同优化

Toy Tutorial 目标效果

通过展示Toy语言的编译流程,介绍MLIR的概念。

f a la si a tay la paya ap ap ta

This tutorial runs through the implementation of a basic toy language on top of MLIR. The goal of this tutorial is to introduce the concepts of MLIR; in particular, how dialects can help easily support language specific constructs and transformations while still offering an easy path to lower to LLVM or other codegen infrastructure.

具体来说, Toy Tutorial 展示Dialect是如何在 Toy语言的分析、表达式变型、Lowering到LLVM的过程中发挥作用。

Toy Tutorial 章节划分

Chapter 1 – 介绍Toy语言以及抽象语法树AST

- 添加Dialect描述 分析AST 生成MLIR表达式
- Chapter 2 定义Toy Dialect, Toy Operation, 生成MLIR表达式

当MLIR表达式存在冗余 进行针对Operation的表达式变型

- Chapter 3 Toy Operation层级的表达式变型
 - 使用已有接口 完成泛化的表达式变型
- Chapter 4 使用接口,完成泛化的表达式变型

将Toy Dialect 的部分Operation 映射到Affine Dialect Operation 对Affine MLIR表达式进行优化

- Chapter 5 将MLIR表达式进行部分Lowering,并进行优化 < 1
 - 混合Dialect MLIR表达式 -> LLVM IR Dialect MLIR表达式
- Chapter 6 混合Dialect表达式Lowering到LLVM IR < -> LLVM IR 表达式
- Chapter 7 扩展源语言,向Toy语言添加struct数据类型

在现有的编译流程中 添加自定义的数据类型


```
定义转置相乘的函数

def multiply_transpose(a, b) {
    return transpose(a) * transpose(b);
}

main函数

def main() {
    var a < 2, 3 > = [[1, 2, 3], [4, 5, 6]];
    var b < 2, 3 > = [1, 2, 3, 4, 5, 6];
    var c = multiply_transpose(a, b);
    var d = multiply_transpose(b, a);
    print(d);
    打印计算结果
}
```


MLIRGen模块

```
遍历AST递归调用子函数
根据不同的输入类型调用相应子函数
return builder.create<TransposeOp>(location, operands[0]);

Dialect模块

负责定义各种操作和分析,具备可扩展性。
void TransposeOp::build(mlir::Builder *builder, mlir::OperationState &state, mlir::Value value) {
    state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
    state.addOperands(value);
}

Operation模块

定义各种操作的类

在编译时向Dialect模块提供支持

def TransposeOp::Toy_Op<"transpose"> {
    .......
}
```

添加文档

▶ 使用summary或者description字段,给Operation提供文档支持。 提供的信息可以自动生成Markdown文档。

Operation模块

定义各种操作的类 在编译时向Dialect模块提供支持

```
def TransposeOp : Toy_Op<"transpose"> {
   let summary = "transpose operation";
```

```
let arguments = (ins F64Tensor:$input);
let results = (outs F64Tensor);
```

// Allow building a TransposeOp with from the input operand.

let builders = [
 OpBuilder<"Builder *b, OperationState &state, Value input">
];

// Invoke a static verify method to verify this transpose operation.
let verifier = [{ return ::verify(*this); }];

定义输入参数和输出结果

arguments和results字段相当于Operation的输入和输出,输入的参数是基于SSA的操作数类型。输出的结果是Operation产生的值的类型。

定义build方法

ODS框架会自定义一些build方法,在builders字段中,可以自定义一个OpBuilder对象列表,其中用字符串的形式定义参数。

Operation语义验证

验证函数会自动生成,为了添加自定义的验证内容,使用verifier字段,将自定义的验证内容添加到自动生成的内容之后。


```
module {
  func @multiply transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
    %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
    %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
    \%2 = \text{"toy.mul"}(\%0, \%1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
    "toy.return"(%2): (tensor<*xf64>) -> ()
                                                                     相同的维数进行reshape操作,存在冗余
  func @main() {
    \%0 = \text{"toy.constant"}() \{ \text{value} = \text{dense} < [[1.0000000e+00, 2.0000000e+00, 3.0000000e+00], [4.0000000e+00, 5.0000000e+00, 5.0000000e+00] \}
                                               6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
    \%1 = \text{"toy.reshape"(\%0)} : \frac{(\text{tensor} < 2x3xf64>)}{} -> \frac{\text{tensor} < 2x3xf64>}{}
    \%2 = \text{"toy.constant"}() \{ \text{value} = \text{dense} < [1.0000000e+00, 2.0000000e+00, 3.0000000e+00, 4.0000000e+00, 5.0000000e+00, } ]
                                              6.000000e+00]>: tensor<6xf64>}: () -> tensor<6xf64>
    %3 = "toy.reshape"(%2) : (tensor<6xf64>) -> tensor<2x3xf64>
    %4 = "toy.generic_call"(%1, %3) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
    %5 = "toy.generic call"(%3, %1) {callee = @multiply transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
    "toy.print"(%5) : (tensor<*xf64>) -> ()
    "toy.return"(): () -> ()
```


MLIRGen模块

遍历AST递归调用子函数 根据不同的输入类型调用相应子函数

return builder.create<TransposeOp>(location, operands[0]);

PassManger模块

使用PassManger添加一道优化工序 运行定义好的canonicalizer用来优化MLIR模型

```
if (enableOpt) {
    mlir::PassManager pm(&context);
    .....
    // Add a run of the canonicalizer to optimize the mlir module.
    pm.addNestedPass<mlir::FuncOp>(mlir::createCanonicalizerPass());
    if (mlir::failed(pm.run(*module)))
        return 4;
}
```

Transformation模块

定义匹配和重写模式 实现MLIR模型的优化

```
方法一:采用C++直接编写matchAndRewrite函数
matchAndRewrite(TransposeOp op,
mlir::PatternRewriter &rewriter) const override {
.....
}

方法二:采用DRR,自动生成匹配和重写函数
def ReshapeReshapeOptPattern:
Pat<(ReshapeOp(ReshapeOp $arg)),(ReshapeOp $arg)>;
将自定义的匹配和重写模式登记为canonicalization模式
void TransposeOp::getCanonicalizationPatterns(.....) {
results.insert<SimplifyRedundantTranspose>(context);
```



```
module {
  func @multiply transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
    %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
    %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
    \%2 = \text{"toy.mul"}(\%0, \%1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
    "toy.return"(%2): (tensor<*xf64>) -> ()
                                                         MLIR表达式中去掉冗余reshape操作
  func @main() {
    \%0 = \text{"toy.constant"}() \{ \text{value} = \text{dense} < [[1.0000000e+00, 2.0000000e+00, 3.0000000e+00], [4.0000000e+00, 5.0000000e+00, 5.0000000e+00] \}
                                            6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
   %1 = \text{"toy.constant"}() \{ \text{value} = \text{dense} < [[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, ] \}
                                            6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
    %2 = "toy.generic call"(%0, %1) {callee = @multiply transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
    %3 = "toy.generic call"(%1, %0) {callee = @multiply transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
    "toy.print"(%3) : (tensor<*xf64>) -> ()
    "toy.return"(): () -> ()
                                                             为了代码执行速度快,将函数进行内联操作
                                                             为了代码生成阶段方便,需要确定所有的tensor形状
```



```
使用PassManger添加优化工序
```

```
if (enableOpt) {
 mlir::PassManager pm(&context);
  // Inline all functions into main
    and then delete them.
  pm.addPass(mlir::createInlinerPass());
  pm.addPass(mlir::createSymbolDCEPass());
 // Now that there is only one function,
    we can infer the shapes of each of
 // the operations.
 mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
 optPM.addPass(mlir::toy::createShapeInferencePass());
 optPM.addPass(mlir::createCanonicalizerPass());
 optPM.addPass(mlir::createCSEPass());
```

内联 Pass

- 1. 继承内联接口,实现变型规则
- 2. 定位函数调用位置
- 3. 将变量类型转变为函数参数类型

Shape推断 Pass

- 1. 使用ODS框架生成Shape推断接口类
- 2. 在Operation模块中添加接口
- 3. 定义各Operation的Shape推断函数
- 4. 编写Shape推断 Pass

使用PassManger添加优化工序

```
if (enableOpt) {
  mlir::PassManager pm(&context);
  .....
  // Inline all functions into main
  // and then delete them.
  pm.addPass(mlir::createInlinerPass());
  pm.addPass(mlir::createSymbolDCEPass());
  .....
}
```

内联 Pass

- 1. 继承内联接口,实现变型规则
- 2. 定位函数调用位置
- 3. 将变量类型转变为函数参数类型

Dialect模块

```
ToyInlinerInterface 继承 DialectInlinerInterface
实现基类中的相应函数, 启用内联, 定义表达式变型规则
struct ToyInlinerInterface : public DialectInlinerInterface {
  bool isLegalToInline(...) const final {
    return true;
  void handleTerminator(...) cbnst final {...}
登记 ToyInlinerInterface
addInterfaces<ToyInlinerInterface>();
实现 GenericCallOp 成员函数,返回被调用函数,并获取参数操作数
CallInterfaceCallable GenericCallOp::getCallableForCallee() {...}
Operation::operand range GenericCallOp::getArgOperands() {...}
Operation模块
识别函数调用位置,在GenericCallOp中添加接口
def GenericCallOp : Toy_Op__generic_call",
[DeclareOpInterfaceMethods<CallOpInterface>]> { ... }
```

使用PassManger添加优化工序

```
if (enableOpt) {
  mlir::PassManager pm(&context);
  .....

// Inline all functions into main
  // and then delete them.
  pm.addPass(mlir::createInlinerPass());
  pm.addPass(mlir::createSymbolDCEPass());
  .....
}
```

内联 Pass

- 1. 继承内联接口,实现变型规则
- 2. 定位函数调用位置
- 3. 将变量类型转变为函数参数类型

函数定义时,泛化的tensor类型

```
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)
-> tensor<*xf64>

函数调用时, shape确定的tensor类型

/ 内联时需要统一类型

%4 = "toy.generic_call"(%1, %3) {calle@ = @multiply_transpose} :
(tensor<2x3xf64>, tensor<2x3xf64>) => tensor<*xf64>
```

Operation模块

添加CastOp , 将一个tensor转换成等价的不同shape的tensor

```
def CastOp : Toy_Op<"cast",
    [DeclareOpInterfaceMethods<ShapeInferenceOpInterface>, NoSideEffect,
    SameOperandsAndResultShape]> {...}
```

Dialect模块

在内联接口中,重写相应函数,构造CastOp表达式

```
struct ToyInlinerInterface : public DialectInlinerInterface {
   Operation *materializeCallConversion(...) const final {
     return builder.create<CastOp>(conversionLoc, resultType, input);
   }
}
```

Shape推断 Pass

- 1. 使用ODS框架生成Shape推断接口类
- 2. 在Operation模块中添加接口
- 3. 定义各Operation的Shape推断函数
- 4. 编写Shape推断 Pass

Shape推断接口模块

编写Shape推断的tablegen文件,使用ODS框架生成代码

```
def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {
    .....
}
```

Operation模块

向需要Shape推断的Operation添加接口

```
def MulOp : Toy_Op<"mul", [NoSideEffect,
DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {...}
def TransposeOp : Toy_Op<"transpose", [NoSideEffect,
DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {...}
```

Dialect模块

定义各Operation的Shape推断函数

```
void MulOp::inferShapes() { getResult().setType(getOperand(0).getType()); }
void TransposeOp::inferShapes() {
  auto arrayTy = getOperand().getType().cast<RankedTensorType>();
  SmallVector<int64_t, 2> dims(llvm::reverse(arrayTy.getShape()));
  getResult().setType(RankedTensorType::get(dims, arrayTy.getElementType()));
}
```

使用PassManger添加优化工序

```
if (enableOpt) {
  mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
  optPM.addPass(mlir::toy::createShapeInferencePass()); _____
                                                           → Shape推断 Pass
  optPM.addPass(mlir::createCanonicalizerPass());
  optPM.addPass(mlir::createCSEPass());
                                                              1. 使用ODS框架生成Shape推断接口类
                                                              2. 在Operation模块中添加接口
                                                              3. 定义各Operation的Shape推断函数
Shape推断Pass 模块
                                                             4. 编写Shape推断 Pass
定义一个Shape推断Pass类,实现Shape推断算法
class ShapeInferencePass : public mlir::FunctionPass<ShapeInferencePass> {
};
创建一个Shape推断的Pass
std::unique_ptr<mlir::Pass> mliru:toy::createShapeInferencePass() {
  return std::make unique<ShapeInferencePass>();
```



```
module {
    func @main() {
        %0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
        %1 = "toy.transpose"(%0) : (tensor<2x3xf64>) -> tensor<3x2xf64>
        %2 = "toy.mul"(%1, %1) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
        "toy.print"(%2) : (tensor<3x2xf64>) -> ()
        "toy.return"() : () -> ()
        完成内联以及shape推断操作
    }
}
```

将MLIR表达式向下Lowering,并进行表达式优化

使用PassManger添加优化工序

```
if (isLoweringToAffine) {
 // Partially lower the toy dialect with a few cleanups afterwards.
                                                                    ToyToAffineLoweringPass
 pm.addPass(mlir::toy::createLowerToAffinePass());
                                                                     1. 匹配重写Operation pattern
 mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
 optPM.addPass(mlir::createCanonicalizerPass());
                                                                     2. 添加target和pattern
 optPM.addPass(mlir::createCSEPass());
 // Add optimizations if enabled.
 if (enableOpt) {
   optPM.addPass(mlir::createLoopFusionPass());
                                                               LoopFusionPass
   optPM.addPass(mlir::createMemRefDataFlowOptPass());
                                                               MemRefDataFlowOptPass
                                                               消除冗余的load操作
                                                               使得转置和矩阵相乘在一个循环中完成
```

```
使用PassManger添加优化工序
if (isLoweringToAffine) {
 // Partially lower the toy dialect
 // with a few cleanups afterwards.
 pm.addPass(mlir::toy::createLowerToAffinePass());
                                           ToyToAffine模块
 ToyToAffineLoweringPass
```

- 1. 匹配重写Operation pattern
- 2. 添加target和pattern

```
定义Operation Lowering
匹配Toy中的Operation,并且进行Operation重写
struct TransposeOpLowering : public ConversionPattern {...}
添加Affine和Standard Dialect target
将原有Toy Dialect设为非法target
添加Operation Lowering pattern
void ToyToAffineLoweringPass::runOnFunction() {
  target.addLegalDialect<AffineOpsDialect, StandardOpsDialect>();
  target.addIllegalDialect<toy::ToyDialect>();
  target.addLegalOp<toy::PrintOp>();
  OwningRewritePatternList patterns;
  ReturnOpLowering, TransposeOpLowering>(&getContext());
```

```
使用PassManger添加优化工序
if (isLoweringToAffine) {
    ......
    if (enableOpt) {
        optPM.addPass(mlir::createLoopFusionPass());
        optPM.addPass(mlir::createMemRefDataFlowOptPass());
    }
}
```

LoopFusionPass

MemRefDataFlowOptPass

消除冗余的load操作

使得转置和矩阵相乘在一个循环中完成

```
affine.for %arg0 = 0 to 3 {
  affine.for %arg1 = 0 to 2 {
   %3 = affine.load %2[%arg1, %arg0] : memref<2x3xf64>
    affine.store %3, %1[%arg0, %arg1] : memref<3x2xf64>
affine.for %arg0 = 0 to 3 {
 affine.for %arg1 = 0 to 2 {
   %3 = affine.load %1[%arg0, %arg1] : memref<3x2xf64>
   %4 = affine.load %1[%arg0, %arg1] : memref<3x2xf64>
   %5 = mulf %3, %4 : f64
    affine.store %5, %0[%arg0, %arg1] : memref<3x2xf64>
affine.for %arg0 = 0 to 3 {
  affine.for %arg1 = 0 to 2 {
   %2 = affine.load %1[%arg1, %arg0] : memref<2x3xf64>
   %3 = mulf %2, %2 : f64
   affine.store %3, %0[%arg0, %arg1] : memref<3x2xf64>
```

```
将MLIR表达式进行部分Lowering,并进行优化
                       表达式
            语法
                                                                                              LLVM IR
            分析
                        生成
                                                           mlir-affine选项
.toy源文件 --- AST --- MLIRGen --- Transformation --> Lowering
                                                              -opt选项
module {
                                                                                              JIT 编译引擎
 func @main() {
   %cst = constant 1.000000e+00 : f64
   %cst 0 = constant 2.000000e+00 : f64
   %cst 1 = constant 3.000000e+00 : f64
   %cst 2 = constant 4.000000e+00 : f64
   %cst 3 = constant 5.000000e+00 : f64
   %cst 4 = constant 6.000000e+00 : f64
   \%0 = alloc() : memref<3x2xf64>
   %1 = alloc() : memref<2x3xf64>
                                                            混合Dialect的MLIR表达式需要进一步Lowering
   affine.store %cst, %1[0, 0] : memref<2x3xf64>
   affine.store %cst_0, %1[0, 1] : memref<2x3xf64>
   affine.store %cst 1, %1[0, 2] : memref<2x3xf64>
   affine.store %cst_2, %1[1, 0] : memref<2x3xf64>
   affine.store %cst 3, %1[1, 1] : memref<2x3xf64>
   affine.store %cst 4, %1[1, 2] : memref<2x3xf64>
   affine.for %arg0 = 0 to 3 {
                                                            "toy.print"(%0) : (memref<3x2xf64>) -> ()
     affine.for %arg1 = 0 to 2 {
                                                                dealloc %1 : memref<2x3xf64>
       %2 = affine.load %1[%arg1, %arg0] : memref<2x3xf64>
                                                                dealloc %0 : memref<3x2xf64>
       %3 = \text{mulf } %2, \%2 : f64
                                                                return
       affine.store %3, %0[%arg0, %arg1] : memref<3x2xf64>
```


使用PassManger添加优化工序

```
if (isLoweringToLLVM) {
 // Finish lowering the toy IR to the LLVM dialect.
 pm.addPass(mlir::toy::createLowerToLLVMPass());
                                                   LLVM IR Dialect
                                                   MLIR表达式
      createLowerToLLVMPass
```

- 确定Lowering target
- 将MemRef类型映射到LLVM IR Dialect的表达式
- 定义Lowering pattern
- 进行完全Lowering

将MLIR表达式翻译成LLVM IR表达式

再进行LLVM IR的优化处理

定义MLIR的执行引擎

mlir::ExecutionEngine

混合Dialect表达式Lowering到LLVM IR

LLVM IR Dialect MLIR表达式

```
module {
    llvm.func @free(!llvm<"i8*">)
    llvm.mlir.global internal constant @nl("\0A\00")
    llvm.mlir.global internal constant @frmt_spec("%f \00")
    llvm.func @printf(!llvm<"i8*">, ...) -> !llvm.i32
    llvm.func @malloc(!llvm.i64) -> !llvm<"i8*">
    llvm.func @main() {
        %0 = llvm.mlir.constant(1.000000e+00 : f64) : !llvm.double
        %1 = llvm.mlir.constant(2.000000e+00 : f64) : !llvm.double
        %2 = llvm.mlir.constant(3.000000e+00 : f64) : !llvm.double
        ......
}
```

JIT编译引擎 执行结果

```
1.000000 16.000000
```

4.000000 25.000000

9.000000 36.000000

混合Dialect表达式Lowering到LLVM IR

LLVM IR表达式

- 1 定义Type 类
- 2 语法分析&打印
- 3 StructType上的操作

Dialect模块

```
在ToyTypes命名空间中,添加struct

namespace ToyTypes {
    enum Types {
        Struct = mlir::Type::FIRST_TOY_TYPE,
        };
    }
    定义存储类

struct StructTypeStorage : public mlir::TypeStorage {...}

定义用户可见的StructType

class StructType : public mlir::Type::TypeBase<StructType,
mlir::Type, detail::StructTypeStorage> {...}
```


- 1 定义Type 类
- 2 语法分析&打印 ———
- 3 StructType上的操作

Dialect模块

重载parseType函数,对struct语法结构进行语法分析

```
mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
    ...
}
```

重载printType函数, 打印struct语法结构

添加Operation,针对性地处理struct数据类型

def StructConstantOp : Toy_Op<"struct_constant", [NoSideEffect]> {...}
def StructAccessOp : Toy_Op<"struct_access", [NoSideEffect]> {...}

ToyCombine模块

3 StructType上的操作

对 struct Operation进行优化

```
OpFoldResult StructConstantOp::fold(ArrayRef<Attribute> operands) {...}
OpFoldResult StructAccessOp::fold(ArrayRef<Attribute> operands) {...}
```


带有struct数据类型的源程序

```
struct Struct {
  var a;
  var b;
}

def multiply_transpose(Struct value) {
  return transpose(value.a) * transpose(value.b);
}

def main() {
  Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};

  var c = multiply_transpose(value);
  print(c);
}
```

JIT编译引擎 执行结果

1.000000 16.000000

4.000000 25.000000

9.000000 36.000000

未来工作

- 完成MLIR Toy的学习路线
- 调研各种python binding, 比较哪种更适合项目
- 学习Operation Definition Specification (ODS)框架

相关文章

- MLIR ODS 框架的使用示例 -- 自定义Operation: https://zhuanlan.zhihu.com/p/105576276
- MLIR 表达式变型:<u>https://zhuanlan.zhihu.com/p/105905654</u>
- MLIR 实现泛化的表达式变型: https://zhuanlan.zhihu.com/p/106472878
- MLIR 表达式优化 -- 部分Lowering: https://zhuanlan.zhihu.com/p/107137298
- MLIR 表达式Lowering到LLVM IR: https://zhuanlan.zhihu.com/p/108386819
- MLIR 向源语言添加struct类型: https://zhuanlan.zhihu.com/p/108575517