### Week 01 hw

# ANN을 이용한 OR Logic Gate Implementation

#### 핵심 코드 분석

```
class ANN(nn.Module):
    def __init__(self):
        super(ANN, self).__init__()
        self.fc1 = nn.Linear(in_features=2, out_features=1)

def forward(self, input_data):
    out = self.fc1(input_data)
    out = F.sigmoid(out)
    return out

model = ANN()

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_function = nn.BCELoss()
```

저의 ANN 구현에서는 다음을 사용하여 Network를 구성 하였습니다.

- Activation Function: Sigmoid
- Loss Function: Binary Cross Entropy Loss
- Optimizer: adam
   근거는 다음과 같습니다.
- Binary Label을 가지는 경우로써, BCE 사용시 완전 틀린 경우 아주 강한 신호를 보내서 더 빠르게 학습
- BCE는 0-1까지 input을 받음으로 sigmoid 함수를 사용하였습니다.
- 웬만한 상황에서 좋은 adam을 optimizer로 설정하였습니다.
- Two class problem이여서 multi-class classification이 아닌 binary classification을 사용하였습니다. (computationally efficient)



# 시각화



학습이 반복될수록 loss가 0으로 수렴함을 확인할수 있었습니다.



결정 경계가 예쁘게 만들어짐을 확인 했습니다.

# ANN이용한 XOR Logic Gate Implementation



아무리 반복해도 loss가 0.6931로 수렴 (0.6931 == BCE(0.5))



아무리 여러번 돌려도 절반만 맞추는 model이 나온다.

### 분리가 되지 않는 이유

하나의 layer로는 하나의 linear 한 line으로 밖에 decision boundary를 만들지 못해서. 여러 layer을 둠으로써 non-linear한 line을 그릴수 있게 해주자

## DNN이용한 XOR Logic Gate Implementation

#### 핵심 코드 분석

```
class ANN(nn.Module):
    def __init__(self):
        super(ANN, self).__init__()
        self.fc0 = nn.Linear(in_features=2, out_features=9)
        self.fc1 = nn.Linear(in_features=9, out_features=1)

def forward(self, input_data):
    out = self.fc0(input_data)
    out = F.leaky_relu(out)
    out = self.fc1(out)
    out = F.sigmoid(out)
    return out

model = ANN()
```

```
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_function = nn.BCELoss()
```

- 새로운 layer에 9개의 node를 두었습니다. 2개의 node만으로도 충분한 경우이지만 (b/c 두개의 직선으로 분류가능) local optima에 빠지는 경우가 많아 9개로 설정하여 학습하였습니다.
- 새로운 layer의 activation function으로는 leakyReLU를 사용하였습니다. 이에 따라 sigmoid 보다 더 빠르게 학습할수 있습니다. (b/c stronger derivative for positive inputs)
- 기존 layer의 activation function은 sigmoid로 유지 (b/c BCE의 입력값의 범위는 0-1)

### 시각화



학습을 함에 따라 0으로 수렴함을 확인할수 있었습니다.



결정 경계가 non linear하게 만들어 짐을 확인 했습니다.

# 분리가 되는 이유

여러 layer을 둠으로써 non-linear한 결정 경계가 만들어 질수 있었기 때문에