#### Lecture 12

#### **Ashis Kumar Chanda**

chanda@rowan.edu





# Neural Network Example



# XOR Example

| X | Y | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

#### XOR Architecture



Sigmoid function is used as activation function

- Suppose the first input is (0,0).
- We randomly initialize the weights with some small values.
- The weights are in green color.
- We need to calculate the activation function values (red color) for 1<sup>st</sup> layer, and then, for 2<sup>nd</sup> layer.

#### 1st layer

| $X_1$ | $X_2$ | V <sub>01</sub> | V <sub>11</sub> | V <sub>21</sub> | V <sub>02</sub> | V <sub>12</sub> | V <sub>22</sub> | <b>Z</b> <sub>1</sub> | $Z_2$ |
|-------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-------|
|       |       |                 |                 |                 | 0.25            |                 |                 |                       |       |
| 0     | 1     |                 |                 |                 |                 |                 |                 |                       |       |
| 1     | 0     |                 |                 |                 |                 |                 |                 |                       |       |
| 1     | 1     |                 |                 |                 |                 |                 |                 |                       |       |

#### 2<sup>nd</sup> layer

| <b>Z</b> <sub>1</sub> | $Z_2$ | W <sub>01</sub> | W <sub>11</sub> | W <sub>21</sub> | y <sub>1</sub> |
|-----------------------|-------|-----------------|-----------------|-----------------|----------------|
|                       |       | -0.4            | -0.2            | 0.3             |                |
|                       |       |                 |                 |                 |                |
|                       |       |                 |                 |                 |                |
|                       |       |                 |                 |                 |                |



#### 1<sup>st</sup> layer

$$z_{in1} = -.3(1) + .21(0) + .15(0) = -.3$$
 $z_1 = f(z_{in1}) = .43$ 
 $g(z) = \frac{1}{1 + e^{-z}}$ 

$$z_{in2} = .25(1) - .4(0) + .1(0) = 0.25$$
  
 $z_2 = f(z_{in2}) = .56$ 

$$y_{in1} = -.4(1) - .2(.43) + .3(.56) = -.318$$
  
 $y_1 = f(y_{in1}) = .42$ 

$$g(z) = \frac{1}{1 + e^{-z}}$$

- We finished the calculation for the first example.
- Our model prediction is 0.42
- Now, we need to update weights (Backpropagation).

| X <sub>1</sub> | <b>X</b> <sub>2</sub> | V <sub>01</sub> | V <sub>11</sub> | V <sub>21</sub> | V <sub>02</sub> | V <sub>12</sub> | V <sub>22</sub> | Z <sub>1</sub> | $Z_2$ |
|----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-------|
| 0              | 0                     | -0.3            | 0.21            | 0.15            | 0.25            | -0.40           | 0.1             | 0.43           | 0.56  |
| 0              | 1                     |                 |                 |                 |                 |                 |                 |                |       |
| 1              | 0                     |                 |                 |                 |                 |                 |                 |                |       |
| 1              | 1                     |                 |                 |                 |                 |                 |                 |                |       |

| <b>Z</b> <sub>1</sub> | $Z_2$ | <b>W</b> <sub>01</sub> | W <sub>11</sub> | W <sub>21</sub> | <b>y</b> <sub>1</sub> |
|-----------------------|-------|------------------------|-----------------|-----------------|-----------------------|
| 0.43                  | 0.56  | -0.4                   | -0.2            | 0.3             | 0.42                  |

$$\delta_1 = (t_1 - y_1)f'(y_{in1})$$
  $t_1 = real order t_1 - y_1) \{ f(y_{in1})[1 - f(y_{in1})] \}$   $y_1 = preconstant t_2 = (0 - .42).42[1 - .42] = -0.102$   $f' = derivative t_1 = real order t_2 = -0.102$ 

$$\Delta W_{01} = -0.102 \text{x } 1 = -0.102$$
  
 $\Delta W_{11} = -0.102 \text{x } 0.43 = -0.04386$   
 $\Delta W_{21} = -0.102 \text{x } 0.56 = -0.05712$ 

 $t_1$  = real output  $y_1$  = predicted output f' = derivation of sigmoid

#### Weight update of 2<sup>nd</sup> layer:

$$W_{01}$$
 (new) = -0.4 + (-0.102) = -0.502  
 $W_{11}$  (new) = -.2 + (-0.04386) = -0.243  
 $W_{21}$  (new) = -.3 + (-0.05712) = 0.243

[Here, we don't use learning rate]

$$\delta_{\text{in1}} = \delta_1 \text{ w}_{11} = -.102(-.2) = .02$$
  
 $\delta_1 = \delta_{\text{in1}} \text{ f'}(z_{\text{in1}}) = .02(.43)(1-.43) = .005$ 

$$\delta_{\text{in2}} = \delta_1 \text{ w}_{21} = -.102(.3) = -.03$$
  
 $\delta_2 = \delta_{\text{in2}} \text{ f'}(z_{\text{in2}}) = -.03(.56)(1-.56) = -.007$ 

$$\Delta v_{01} = 0.005 \quad x \quad 1 = 0.005$$
 $\Delta v_{02} = -0.007 \quad x \quad 1 = -0.007$ 
 $\Delta v_{11} = 0.005 \quad x \quad 0.0 = 0.0$ 
 $\Delta v_{12} = -0.007 \quad x \quad 0.0 = 0.0$ 
 $\Delta v_{21} = 0.005 \quad x \quad 0.0 = 0.0$ 
 $\Delta v_{22} = -0.007 \quad x \quad 0.0 = 0.0$ 

#### Weight update of 1<sup>st</sup> layer:

```
V_{01} (new) = -0.3 + (0.005) = -0.295

V_{11} (new) = 0.21 + (0.0) = 0.21

V_{21} (new) = 0.15 + (0.0) = 0.15

V_{02} (new) = 0.25 + (-0.007) = 0.243

V_{12} (new) = -0.4 + (0.0) = -0.4

V_{22} (new) = 0.1 + (0.0) = 0.1
```

| $X_1$ | $X_2$ | V <sub>01</sub> | V <sub>11</sub> | V <sub>21</sub> | V <sub>02</sub> | V <sub>12</sub> | V <sub>22</sub> | <b>Z</b> <sub>1</sub> | $Z_2$ |
|-------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-------|
| 0     | 0     | -0.3            | 0.21            | 0.15            | 0.25            | -0.40           | 0.1             | 0.43                  | 0.56  |
| 0     | 1     | 295             | 0.21            | 0.15            | 0.243           | -0.40           | 0.1             |                       |       |
| 1     | 0     |                 |                 |                 |                 |                 |                 |                       |       |
| 1     | 1     |                 |                 |                 |                 |                 |                 |                       |       |

| <b>Z</b> <sub>1</sub> | $Z_2$ | <b>w</b> <sub>01</sub> | W <sub>11</sub> | W <sub>21</sub> | <b>y</b> <sub>1</sub> |
|-----------------------|-------|------------------------|-----------------|-----------------|-----------------------|
| 0.43                  | 0.56  | -0.4                   | -0.2            | 0.3             | 0.42                  |
|                       |       | -0.502                 | -0.243          | 0.243           |                       |
|                       |       |                        |                 |                 |                       |
|                       |       |                        |                 |                 |                       |

o After around 100 iteration the program reach termination condition.

#### Vanishing gradient

- The fact that in a feedforward network (FFN), the backpropagated error signal typically decreases (or increases) exponentially as a function of the distance from the final layer.
- The result is the general **inability** of models with **many layers** to learn on a given dataset.
- The use of **Relu** as an activation function can help to reduce the problem.

#### Fun Neural Net Demo Site

o Demo-site:

o <a href="http://playground.tensorflow.org/">http://playground.tensorflow.org/</a>



# Thanks!