

GRADIENT BOOSTING

Alondra Elizabeth Matos Mendoza María Guadalupe López Salomón

12 de junio de 2023

01 02 03 04 05

Introducción

Gradient Boosting

XGBoost

Aplicación

Resultados

Introducción

 En aplicaciones de minería de datos industriales y comerciales, los conjuntos de datos suelen ser grandes y complejos, con diversas variables y observaciones. Estos datos pueden estar desordenados y tener valores faltantes, distribuciones asimétricas, errores de medición y valores atípicos.

.

- Bajo esta problemática, se utilizan árboles de decisión que son rápidos, interpretables y robustos. Sin embargo, su precisión puede no ser óptima.
- Para abordar estos desafíos, se desarrollaron los modelos basados en Gradient Boosting.

- Método utilizado en árboles de regresión y clasificación, en el que el espacio de valores de las variables predictoras se divide en regiones representadas por los nodos terminales del árbol.
- La regla predictiva es:

$$x \in R_j \to f(x) = \gamma_j$$

 Un árbol se representa formalmente como una suma de regiones y constantes

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_{j} I(x \in R_{j})$$

Los parámetros se determinan minimizando:

$$\hat{\Theta} = arg \min_{\Theta} \sum_{j=1}^{J} \sum_{x \in R_j} L(y_i, \gamma_j)$$

- En Gradient Boosting, las deficiencias del modelo se identifican mediante el análisis de los gradientes que representan la dirección y la magnitud del error o residual para cada observación.
- El algoritmo comienza con un único nodo terminal en lugar de un árbol completo, y se inicializa con un valor constante que minimiza el costo total. Luego, se establece el número total de árboles a construir y para cada árbol, se realizan los siguientes pasos:

Algorithm 1 Gradient Tree Boosting

```
Datos
                                \{(x_i, y_i)\}_{i=1}^n y
 1: Entrada
                                                                          función
                                                                                        de
                                                                una
                                                                                                costo
     L(y_i, f(x)) differenciable.
2: Inicializar f_0(x) = argmin_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)
 3: for m = 1 : M do
        \begin{array}{l} \text{for } i=1,2,...,N \text{ do} \\ \text{Calcular } r_{im} = -\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}} \end{array}
 5:
 6:
         end for
         Ajustar un árbol de regresión a los valores r_{im} y crear las regiones
         terminales R_{im} j = 1, 2, ..., J_m
         for j = 1, 2, ..., J_m do
 8:
             Calcular \gamma_{jm} = arg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)
 9:
10:
         end for
         Actualizar f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I (x \in R_{jm})
12: end for
13: Salida \hat{f}(x) = f_M(x)
```

Cálculo de los pseudo residuales:

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]$$

Altura del padre	Altura de la madre	Sexo del hijo	Altura del hijo
160	140	\mathbf{M}	160
210	160	\mathbf{M}	200
140	160	\mathbf{F}	160
180	150	\mathbf{M}	180
200	160	\mathbf{F}	190
160	150	\mathbf{M}	170

$$L(y_i,f(x_i))=rac{1}{2}\left(y_i-f(x_i)
ight)^2$$
 $-\left[rac{\partial L(y_i,f(x_i))}{\partial f(x_i)}
ight]=-\left(y_i-f(x_i)
ight)^2$
Predicción inicial = f(x) = 176.6

-16.6 23.4 -16.6 3.4 13.4 -6.6 Ajustamos un árbol para predecir los residuales

> Altura del padre, Altura de la madre y Sexo del hijo

Solo consideramos 4 hojas!!

Altura del padre	Altura de la madre	Sexo del hijo	Altura del hijo	Residuales
160	140	M	160	-16.6
210	160	М	200	23.4
140	160	F	160	-16.6
180	150	M	180	3.4
200	160	F	190	13.4
160	150	М	170	-6.6

Y así sucesivamente...

La función de costo para clasificación binaria es el negativo de la log-verosimilitud de la binomial (desviación):

$$L(y, p(x)) = -\sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log(1 - p(x_i))$$

$$L(y, f(x)) = \sum_{i=1}^{N} -y_i f(x) + \log(1 + e^{f(x)})$$

log(odds): logaritmo de las razones de probabilidad

$$f(x_i) = \log(odds) = \log \frac{p(x_i)}{(1-p(x_i))}$$

$$\longrightarrow p(x_i) = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

Se inicia con una hoja que representa la predicción inicial: log(odds)

log(4/2) = 0.693

Se obtiene la probabilidad mediante la función logística

$$= \frac{e^{log(odds)}}{1 + e^{log(odds)}} = \frac{e^{log(4/2)}}{1 + e^{log(4/2)}} = 0.666$$

Edad	Anemia	Creatina f.	Cardiopatía
75	0	582	1
62	0	61	0
55	0	7861	1
65	0	146	1
50	0	196	0
50	1	111	1

Para determinar la calidad de la predicción,

Se calculan los pseudo residuales:

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$
$$= y_i - \frac{e^{f(x_i)}}{1 + e^{f(x_i)}}$$
$$= y_i - p(x_i)$$

Considerando p = 0.666,

Edad	Anemia	Creatina f.	Cardiopatía	Residuo
75	0	582	1	0.334
62	0	61	0	-0.666
55	0	7861	1	0.334
65	0	146	1	0.334
50	0	196	0	-0.666
50	1	111	1	0.334

Se ajusta un árbol para predecir los pseudo residuales

Generalmente, el máximo número de hojas se encuentra entre 8 y 32

Creatina > 153

-0.666, 0.334

	4
	Z
\bigcap	
S	ПП
	Z
	W
	Q
	0
O	S
Z	Ă

0.334,0.334,-0.666

Edad	Anemia	Creatina f.	Cardiopatía	Residuo
75	0	582	1	0.334
62	0	61	0	-0.666
55	0	7861	1	0.334
65	0	146	1	0.334
50	0	196	0	-0.666
50	1	111	1	0.334

Se ajusta un árbol para predecir los pseudo residuales

¿Cuáles son los valores de salida?

$$\gamma_{jm} = \arg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$$

Se obtienen los valores de salida

La función de costo se puede aproximar mediante el polinomio de Taylor de segundo orden:

$$\sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma) \approx \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i))$$

$$+ \left[\sum_{x_i \in R_{jm}} \frac{\partial}{\partial f()} L(y_i, f_{m-1}(x_i)) \right] \gamma$$

$$+ \frac{1}{2} \left[\sum_{x_i \in R_{jm}} \frac{\partial^2}{\partial f()^2} L(y_i, f_{m-1}(x_i)) \right] \gamma^2$$

Igualando la derivada del costo y resolviendo para gamma:

$$\hat{\gamma}_{jm} = \frac{\sum_{x_i \in R_{jm}} y_i - p(x_i)}{\sum_{x_i \in R_{im}} p(x_i)(1 - p(x_i))}$$

RADIENT BOOSTING CLASIFICACIÓN

Se calculan los valores de salida y se actualiza el valor de la predicción

Inicialmente, las probabilidades para cada residuo son iguales, pero estas cambian conforme se añaden árboles.

Con las nuevas predicciones, se calculan los residuos y se repite el proceso.

Edad	Anemia	Creatina f.	Cardiopatía	Residuo
75	0	582	1	0.350
62	0	61	0	*
55	0	7861	1	
65	0	146	1	
50	0	196	0	
50	1	111	1	

Sea learning rate = 0.1, la nueva predicción es:

$$f(x_1) = log(odds) = 0.693 + 0.1(-0.746) = 0.618$$

$$\downarrow$$

$$p(x_1) = \frac{e^{f(x)}}{1 + e^{f(x)}} = \frac{e^{0.618}}{1 + e^{0.618}} = 0.649$$

- $T(x;\Theta_m)$: m-ésimo árbol de regresión con parámetros $\Theta_m = \{R_{jm}, \gamma_{jm}\}_1^J$
- $|T_m|$: Número de nodos terminales (hojas) en el m-ésimo árbol.
- γ_m : Valores de salida (pesos/scores) asociados a la hojas del m-ésimo árbol.

El objetivo del XGBoost es encontrar los valores de salida de las hojas que minimicen la siguiente función objetivo regularizada:

$$\mathbf{L}(f_M) = \left[\sum_{i=1}^n L(y_i, f(x))\right] + \sum_{m=1}^M \Omega(T(x; \Theta_m))$$

$$donde \ \Omega(T(x; \Theta_m)) = \alpha |T_m| + \frac{1}{2}\lambda ||\gamma_m||^2$$

1: Entrada Datos $\{(x_i, y_i)\}_{i=1}^n$ una $L(y_i, f(x))$ differenciable.

- 2: Inicializar $f_0(x) = argmin_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$
- 3: for m = 1 : M do
- $\begin{array}{l} \text{for } i=1,2,...,N \text{ do} \\ \text{Calcular } r_{im} = -\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}} \end{array}$ 5:
- end for 6:
- Ajustar un árbol de regresión a los valores r_{im} y crear las regiones terminales R_{im} $j = 1, 2, ..., J_m$
- 8: for $j = 1, 2, ..., J_m$ do
- Calcular $\gamma_{jm} = arg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$ 9:
- 10: end for
- 11: Actualizar $f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^m \gamma_{jm} I(x \in R_{jm})$
- 12: **end for**
- 13: Salida $\hat{f}(x) = f_M(x)$

Los valores de salida se encuentran minizando:

$$\mathbf{L}^{(m)} = \sum_{j=1}^{J_m} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma_{jm}) + \alpha |T_m| + \frac{1}{2} \lambda \sum_{j=1}^{J_m} \gamma_{jm}^2$$

función

de

costo

$$\mathbf{L}^{(m)} \approx \sum_{j=1}^{J_m} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i)\right)$$

$$+ \sum_{x_i \in R_{jm}} \frac{\partial}{\partial f(x_i)} L\left(y_i, f_{m-1}(x_i)\right) \gamma_{jm}$$

$$+ \sum_{x_i \in R_{jm}} \frac{1}{2} \frac{\partial^2}{\partial f(x_i)^2} L\left(y_i, f_{m-1}(x_i)\right) \gamma_{jm}^2 + \alpha |T_m| + \frac{1}{2} \lambda \sum_{j=1}^{J_m} \gamma_{jm}^2$$

Si se denota el gradiente como g y la matriz hessiana como h, y se eliminan los términos constantes que no tienen efecto en los valores de salida, la función objetivo se simplifica a:

$$\bar{\mathbf{L}}^{(m)} = \sum_{j=1}^{J_m} \left[\left(\sum_{x_i \in R_{jm}} g_i \right) \gamma_{jm} + \frac{1}{2} \left(\sum_{x_i \in R_{jm}} h_i + \lambda \right) \gamma_{jm}^2 \right] + \alpha |T_m|$$

$$\text{Derivando el costo} \quad \bar{\mathbf{L}}^{(m)} = \sum_{j=1}^{J_m} \left[\left(\sum_{x_i \in R_{jm}} g_i \right) \gamma_{jm} + \frac{1}{2} \left(\sum_{x_i \in R_{jm}} h_i + \lambda \right) \gamma_{jm}^2 \right] + \alpha |T_m|$$

Igualando la derivada a 0 y resolviendo para gamma, se obtiene que la constante óptima para la j-ésima región es:

$$\frac{\partial}{\partial \gamma_{jm}} \bar{\mathbf{L}}^{(m)} = \sum_{x_i \in R_{jm}} g_i + \left(\sum_{x_i \in R_{jm}} h_i + \lambda\right) \gamma_{jm} \longrightarrow \gamma_{jm} = -\frac{\sum_{x_i \in R_{jm}} g_i}{\sum_{x_i \in R_{jm}} h_i + \lambda}$$

El valor del costo total del m-ésimo árbol con los valores de salida óptimos es:

$$\bar{\mathbf{L}}_{similaridad}^{(m)} = -\frac{1}{2} \sum_{i=1}^{J_m} \frac{\left(\sum_{x_i \in R_{jm}} g_i\right)^2}{\sum_{x_i \in R_{jm}} h_i + \lambda} + \alpha |T|$$

Considerando *I_L* e L_R como los conjuntos de instancias correspondientes a los nodos izquierdo y derecho después de la partición, la ganancia (reducción de costo) después del split viene dado por:

$$\begin{split} Gain_{split} &= left_{similarity} + right_{similarity} - root_{similarity} \\ &= \frac{1}{2} \left[\frac{\left(\sum_{x_i \in I_L} g_i\right)^2}{\sum_{x_i \in I_L} h_i + \lambda} + \frac{\left(\sum_{x_i \in I_R} g_i\right)^2}{\sum_{x_i \in I_R} h_i + \lambda} \right] \\ &- \frac{1}{2} \frac{\left(\sum_{x_i \in I} g_i\right)^2}{\sum_{x_i \in I} h_i + \lambda} - \alpha \end{split}$$

Algorithm 2 Algoritmo voraz exacto para la búsqueda de splits

- 1: Entrada: I, conjunto de instancias del nodo actual,
- 2: Entrada: d, número de variables (características/columnas)
- 3: $gain \leftarrow 0$
- 4: $G \leftarrow \sum_{i \in I} g_i$, $H \leftarrow \sum_{i \in I} h_i$
- 5: **for** k = 1 : K **do**
- 6: $G_L \leftarrow 0, H_L \leftarrow 0$
- 7: **for** $j \in (I, ordenado \ por \ x_{jk})$ **do** 8: $G_L \leftarrow G_L + g_i, H_L \leftarrow H_L + h_i$
- 9: $G_R \leftarrow G G_L, H_R \leftarrow H H_L$
- 10: $score \leftarrow máx \left(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} \frac{G^2}{H + \lambda} \right)$
- 11: end for
- 12: end for
- 13: Salida: Split con el máximo score de ganancia

Para determinar la división óptima:

Weighted Quantile Sketch

- 1: for k = 1 : K do
- Proponer $S_k = \{s_{k1}, s_{k2}, ..., s_{kl}\}$, donde S_k es el conjunto de percentiles de la variable k
- 3: El conjunto S_k puede proponerse por árbol (global) o por split (local)
- 4: end for
- 5: for k = 1 : K do
- 6: $G_{kv} \leftarrow \sum_{j \in \{j \mid s_{k,v} \geq x_{jk} > s_{k,v-1}\}} g_i$
- 7: $H_{kv} \leftarrow \sum_{j \in \{j | s_{k,v} > x_{jk} > s_{k,v-1}\}} h_i$
- 8: end for
- Seguir el mismo paso que en la sección anterior para encontrar max puntuar solo entre los splits propuestas

Algorithm 4 Sparsity-aware Split Finding

```
1: Entrada: I, conjunto de instancias del nodo actual
 2: Entrada: I_k = \{i \in I | x_{ik} \neq missing\}

    Entrada: d, número de variables (características/columnas)

 4: qain ← 0
 5: G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i
 6: for k = 1 : K do
         Los valores faltantes se clasifican a la derecha.
       G_L \leftarrow 0, H_L \leftarrow 0
        for j \in (I_k, ordenado ascendentemente por x_{jk}) do
        G_L \leftarrow G_L + g_i, H_L \leftarrow H_L + h_i
         G_R \leftarrow G - G_L, H_R \leftarrow H - H_L

score \leftarrow \max \left( score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda} \right)
11:
13:
         end for
14:
         Los valores faltantes se clasifican a la izquierda.
15:
         G_R \leftarrow 0, H_R \leftarrow 0
         for j \in (I_k, ordenado descendentemente por x_{jk}) do
17:
         G_R \leftarrow G_R + g_i, H_R \leftarrow H_R + h_i
         G_L \leftarrow G - G_R, H_L \leftarrow H - H_R

score \leftarrow \max \left( score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda} \right)
19:
20:
          end for
21: end for
22: Salida: Split y dirección predeterminada con el máximo score de ganancia
```

Diseño computacional

El XGBoost utiliza las siguientes técnicas de programación para poder optimizar tomando en cuenta el hardware del ordenador:

Aplicación: Heart failure clinical records

Se consideró la base de datos correspondiente a registros médicos de 299 pacientes que sufrieron falla cardiaca, recolectados durante su seguimiento médico, en donde cada perfil de paciente tiene 13 características clínicas.

- Edad
- Anemia
- Creatina cinasa
- Diabetes
- Fracción de eyección
- Plaquetas
- Sexo
- Creatinina sérica
- Fumador
- Periodo de sequimiento en días
- Fallecimiento

Rendimiento y tiempo de ejecución de GBoosting y XGBoost vs otros métodos de clasificación

Modelos de clasificación implementados:

- Decision Tree Classifier
- AdaBoost Classifier
- Gradient Boosting Classifier
- XGBoost
- Random Forest
- MLP Classifier

Thank you!