DMA Domácí úkol č. 4a

Tento úkol vypracujte po přednášce a před cvičením, na druhé straně je řešení. Pokud vám něco není jasné, zeptejte se na cvičení.

- 1.
- a) Vyřešte lineární kongruenci $35x \equiv 14 \pmod{77}$.
- b) Vyřešte rovnici 35x = 14 v \mathbb{Z}_{77} .
- **2.** Vyřešte soustavu $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{4}$ a $x \equiv 5 \pmod{3}$.

Řešení:

1. Převod na diofantickou rovnici: 35x + 77y = 14.

Tabulka dá $7 = 1 \cdot 77 + (-2) \cdot 35$. Vynásobíme dvěma, $14 = 2 \cdot 77 + (-4) \cdot 35$. Proto $x_p = -4$.

Homogenní rovnice po zkrácení sedmičkou: 5x + 11y = 0.

Máme $x_h = 11k$. Nebo to vykoukáme z tabulky.

Závěr:

- a) Obecné řešení je x = -4 + 11k pro $k \in \mathbb{Z}$.
- b) Řeení je x = 7, 18, 29, 40, 51, 62, 73.
- **2.** Nejprve $x_h = 5 \cdot 4 \cdot 3k = 60k$.

Rovnice si zjednodušíme:

Množina všech řešení je tedy x = 60k - 112 pro $k \in \mathbb{Z}$ neboli x = 8 + 60k pro $k \in \mathbb{Z}$. Kdyby se vzalo $x_3 = 2$, dostaneme x = -72 + 80 = 8 rovnou.

Diskuse: V prvním sloupci stačilo díky příhodné pravé straně pracovat se členem $4 \cdot x_1 \cdot 3$, kde $4x_1 \equiv 1 \pmod{5}$. Podobně u třetího členu, kde potřebujeme nulovost modulo 4 a dvojku už máme, stačí dodat další, tedy tvar $5 \cdot 2x_3 \cdot 2$.