

planetmath.org

Math for the people, by the people.

uniformities on a set form a complete lattice

 ${\bf Canonical\ name} \quad {\bf Uniformities On A Set Form A Complete Lattice}$

Date of creation 2013-03-22 16:30:46 Last modified on 2013-03-22 16:30:46

Owner mps (409) Last modified by mps (409)

Numerical id 4

Author mps (409) Entry type Derivation Classification msc 54E15 Classification msc 06B23

Defines discrete uniformity
Defines initial uniformity
Defines weak uniformity

Theorem. The collection of uniformities on a given set ordered by set inclusion forms a complete lattice.

Proof. Let X be a set. Let $\mathfrak{U}(X)$ denote the collection of uniformities on X. The coarsest uniformity on X is $\{X \times X\}$, and the finest is the *discrete uniformity*:

$${S \subset X \times X \colon \Delta(X) \subseteq S}.$$

Hence $\mathfrak{U}(X)$ is bounded. To show that $\mathfrak{U}(X)$ is complete, we must prove that it has the least upper bound property.

Suppose $\{\mathcal{U}_{\alpha}\}_{{\alpha}\in I}$ is a nonempty family of uniformities on X. Let \mathcal{B} consist of all finite intersections of elements of the \mathcal{U}_{α} . Let us check that \mathcal{B} is a fundamental system of entourages for a uniformity on X.

- (B1) Let $S, T \in \mathcal{B}$. Each of S and T is a finite intersection of elements of the \mathcal{U}_{α} , so their intersection is as well. Hence $S \cap T \in \mathcal{B}$.
- (B2) Every element of \mathcal{B} is a finite intersection of subsets of $X \times X$ containing $\Delta(X)$. So every element of \mathcal{B} contains the diagonal.
- (B3) Let $S \in \mathcal{B}$. Without loss of generality, $S = S_{\alpha} \cap S_{\beta}$, where $S_{\alpha} \in \mathcal{U}_{\alpha}$ and $S_{\beta} \in \mathcal{U}_{\beta}$. Since $S_{\alpha} \in \mathcal{U}_{\alpha}$, $S_{\alpha}^{-1} \in \mathcal{U}_{\alpha}$. Similarly, $S_{\beta}^{-1} \in \mathcal{U}_{\beta}$. Since the process of taking the inverse of a relation commutes with taking finite intersections, $(S_{\alpha} \cap S_{\beta})^{-1} \in \mathcal{B}$.
- (B4) Let $S \in \mathcal{B}$. Again suppose $S = S_{\alpha} \cap S_{\beta}$ with $S_{\alpha} \in \mathcal{U}_{\alpha}$ and $S_{\beta} \in \mathcal{U}_{\beta}$. Then there exist $T_{\alpha} \in \mathcal{U}_{\alpha}$ and $T_{\beta} \in \mathcal{U}_{\beta}$ such that $T_{\alpha} \circ T_{\alpha} \subseteq S_{\alpha}$ and $T_{\beta} \circ T_{\beta} \subseteq S_{\beta}$. The set $T = T_{\alpha} \cap T_{\beta}$ is in \mathcal{U} , and since $T \circ T$ is a subset of both S_{α} and S_{β} , it is a subset of S.

The fundamental system \mathcal{B} generates a uniformity \mathcal{U} . By construction, \mathcal{U} is an upper bound of the \mathcal{U}_{α} . But any upper bound of the \mathcal{U}_{α} would have to contain all finite intersections of elements of the \mathcal{U}_{α} . So $\mathcal{U} = \sup_{\alpha \in I} \mathcal{U}_{\alpha}$.

This theorem is useful because it allows us to assert the existence of the coarsest uniform space satisfying a particular property.

Corollary. Let X be a set and let $\{Y_{\alpha}\}_{{\alpha}\in I}$ be a family of uniform spaces. Then for any family of functions $\{f_{\alpha}\colon X\to Y_{\alpha}\}$, there is a coarsest uniformity on X making all the f_{α} uniformly continous.

The coarsest uniformity making a family of functions uniformly continuous is called the *initial uniformity* or *weak uniformity*.

References

[1] Nicolas Bourbaki, *Elements of Mathematics: General Topology: Part 1*, Hermann, 1966.