ADC IN MBED-OS

Handong university

Jong-won Lee

学四 (明 23 美型

- One 12-bit ADC (analog-to-digital converter)
 - □ Up to 16 external channels
 - □ In the (single-shot) or (scan mode.)
 - In scan mode, automatic conversion is performed on a selected group of analog inputs.
 - An interrupt can be generated when the converted voltage is outside the programmed thresholds.
- □ Input signal range: 0 ~ VREF+ 0 ~ 1,3 ✓
 - \square VREF+ = VDDA = VDD (=3.3V) (in Nucelo-F411)
 - VSSA = VSS (in Nucelo-F411)

- Block diagram
 - Up to 16 external channels
 - Internal temp. sensor (V_{SENSE})
 - V_{REFINT}: internal reference voltage
 - \square V_{BAT} : battery voltage if a battery is used.

□ Pins for Analog input signals

	아날로그	шша	외부 확장	아날로그	핀 번호	외부 확장	
	입력신호	핀 번호	커넥터	입력신호	고 건쪽	커넥터	
	ADC1_IN0	PA_0	A0	ADC1_IN8	PB_0	А3	
	ADC1_IN1	PA_1	A1	ADC1_IN9	PB_1		
,	ADC1_IN2	PA_2		ADC1_IN10	PC_0	A5	
	ADC1_IN3	PA_3		ADC1_IN11	PC_1	A4	
•	ADC1_IN4	PA_4	A2	ADC1_IN12	PC_2		
	ADC1_IN5	PA_5		ADC1_IN13	PC_3		
	ADC1_IN6	PA_6		ADC1_IN14	PC_4		
	ADC1_IN7	PA_7		ADC1_IN15	PC_5		

Internal signal names for Analog input signals

```
ADC_TEMP, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 16, 0)}, {ADC_VREF, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 17, 0)}, {ADC_VBAT, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 18, 0)},
```

- Internal temperature sensor
 - connected to the ADC1_IN16 input channel

Mbed AnalogIn API

AnalogIn class

생	성자 혹은 함수	설명				
	AnalogIn (PinName pin)	생성자				
float	read()	입력 신호를 읽은 다음, 그 값을 0.0 ~ 1.0 값 으로 정규화 시켜 반환한다.				
unsigned16_t	read_u16()	입력 신호를 읽은 다음, 그 값을 0x0000 ~ 0xFFFF의 16비트 값으로 변환하여 반환한다.				
	operator float()	read() 함수와 동일하다.				
float	read_voltage()	입력 신호의 전압 값을 반환한다. 단위는 [V]이다. (현재 동작하지 않음.)				

□ Ex.:

M = AnalogIn ainO(A0);

• float x = ain0.read();

• float y = ain0;

ADC IN MBED-OS

Handong university

Jong-won Lee

- □ 실습 목적
 - □ 1. ADC를 사용하여 조도 센서 값을 읽어올 수 있다.
 - □ 2. 디지털 값과 아날로그 값의 차이를 이해한다.
- □ 실습 시나리오
 - □ 빛이 밝으면 ADC를 통해 측정되는 값이 커지고, 빛이 어두우면ADC 통해 측정되는 값이 작아지도록 회로를 구성한다.
 - □ 1초 간격으로 ADC의 값을 읽어서, 터미널에 출력한다. 출력되는 값은 ADC를 이용하여 읽은 전압 값 [mV] 이다

•

□ CdS 조도 센서와 특성

□ 밝아질수록 저항 값이 작아지고, 어두울수록 저항 값이 커진다.

□ 회로 구성 예.

- □ 실습 회로 구성.
 - 조도 센서의 한쪽은 Nucleo board의 A0에, 다른 한쪽은 VCC(3V3) 에 연결
 - 저항(10k)의 한쪽은 Nucleo board의 A0에, 다 른 한쪽은 GND에 연결
 - 조도센서에는 극성이 없음

A sample code.

```
#include "mbed.h"
#define MAXIMUM BUFFER SIZE 80
char buf[MAXIMUM BUFFER SIZE];
Analogln ain0(A0);
BufferedSerial pc(CONSOLE TX, CONSOLE RX, 115200);
int main() {
  float meas;
  sprintf(buf, "\r\n Welcome to Analog In Lab.\r\n");
  pc.write(buf, strlen(buf));
  while(1) {
     meas = ain0.read(); // Converts and read the analog input value [0.0 1.0]
     meas = meas * 3300; // Change the value to be in the 0 to 3300 mV range
     sprintf(buf, "A0 input voltage = \%.2f mV\r\n", meas);
     pc.write(buf, strlen(buf));
     ThisThread::sleep for(chrono::milliseconds(1000));
```

• 실습 목적

- MCU 내부의 온도를 측정하기 위한 내부 온도 센서의 값을 ADC를 이용하여 측정할 수 있다.
- ADC로 읽은 온도 센서의 전압 값을 온도 값으로 변환할 수 있다.
- 실습 시나리오
 - 5초 간격으로 내부 온도 센서의 값을 ADC를 이용하여 읽은 다음, 그 값을 온도 값으로 변환하여 터미널에 출력한다.

□ 내부 온도 센서 특성

Table 71. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1	2.5	1	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} (2)	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

■ Temperature (°C) =
$$\frac{V_{SENSE} - V_{25}}{Avg_Slope}$$
 + 25

A sample code.

```
#include "mbed.h"
BufferedSerial pc(USBTX, USBRX, 115200);
AnalogIn tempSensor(ADC TEMP);
char buf[80];
int main() {
  float meas;
  sprintf(buf, ("\r\n *** ADC Example (Internal Temp Sensor) ***\r\n");
  pc.write(buf, strlen(buf));
  while (true) {
     // write your code
    ThisThread::sleep_for(chrono::seconds(5));
```

A sample result.

Lab7-3: 빛의 밝기에 따라 LED On/Off

- □ 실습 시나리오.
 - □ 밝으면 LED가 꺼지고, 어두우면 LED가 켜지도록 함.
 - (threshold 값은 실험 환경에 맞추어 적절하게 선택하여야 한다.)
 - □ 터미널에 측정된 조도 값 (ADC를 통해서 읽은 조도 센서 전압 값)을 표시한다.
 - □ 5초 간격으로 밝기를 측정하여 LED를 제어한다.

Lab7-3: 빛의 밝기에 따라 LED On/Off

- □ 회로 구성.
 - 조도 센서의 한쪽은 Nucleo board의 A0에, 다른 한쪽은 VCC(3V3) 에 연결
 - 저항(10k)의 한쪽은 Nucleo board의 A0에, 다른 한쪽은 GND에 연 결

