# Chapter 5

## Sang Tran

## September 12, 2024

RUDIN Chapter 5 problems 2, 4, 6, 8, 9, 11, 15, 17, 22, 26.

5.2

 $f'(x) < 0 \ \forall x \in (a,b) \implies f$  is differentiable and hence continuous on (a,b). Then for any  $a < x_1 < x_2 < b$ , by theorem 5.10,  $\exists x \in (a,b)$  such that

$$f(x_2) - f(x_1) = (x_2 - x_1)f'(x),$$

but  $f'(x) > 0 \ \forall x \in (a,b)$  and  $x_2 - x_1 > 0$  by assumption  $\implies f(x_2) - f(x_1) > 0 \implies f(x_2) > f(x_1)$ . Hence f is strictly increasing on (a,b).

Fix  $y_0 = f(x_0)$  for some  $x_0 \in (a, b)$ , and let y = f(x) for  $x \in (a, b)$ . W.T.S. g is differentiable at  $y_0$  i.e.

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall y \in f(a,b), \ 0 < |y - y_0| < \delta \implies \left| \frac{g(y) - g(y_0)}{y - y_0} - \frac{1}{f'(x_0)} \right| < \epsilon.$$

$$(\star)$$

Fix  $\epsilon > 0$ ,

We know that  $\lim_{x\to x_0} \frac{1}{\frac{f(x)-f(x_0)}{x-x_0}} = \frac{1}{f'(x_0)}$  so

$$\exists \delta_1 > 0, \ \forall x \in (a, b), \ 0 < |x - x_0| < \delta_1 \implies \left| \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} - \frac{1}{f'(x_0)} \right| < \epsilon.$$
 (1)

If q is continuous at  $y_0$  (proof below), then

$$\exists \delta_2 > 0, \ \forall y \in f(a, b), \ |y - y_0| < \delta_2 \implies |g(y) - g(y_0)| = |x - x_0| < \delta_1.$$
 (2)

Therefore, if we choose  $\delta = \delta_2$ , and since  $\frac{g(y) - g(y_0)}{y - y_0} = \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}}$ , by (1) and (2), we get  $(\star)$ .

 $\underline{\text{Claim}}$ : g is continuous

Suppose for a contradiction that g is not continuous at  $y_0$  then

$$\exists \epsilon_0 > 0, \ \forall \delta > 0, \ \exists y \in f(a, b) \text{ s.t. } |y - y_0| < \delta \land |x - x_0| \ge \epsilon_0.$$
 (3)

Consider  $\epsilon = min\{\epsilon_0, \frac{1}{2}|x_0 - a|, \frac{1}{2}|x_0 - b|\}$ . Then let  $A = [x_0 - \epsilon, x_0 + \epsilon] \subset (a, b)$  is compact and since f is continuous, f(A) is compact. Thus  $\exists$  a maximum  $y_M$  and a minimum  $y_m \in f(A)$ . O.T.O.H, f is strictly increasing thus  $y_m = f(x_0 - \epsilon)$ and  $y_M = f(x_0 + \epsilon)$ .

If we pick  $\delta = min\{|y_0 - y_m|, |y_0 - y_M|\}$  in (3), then  $y \in (y_0 - \delta, y_0 + \delta) \implies$  $y_m < y < y_M$ .

 $\implies \exists x_0 - \epsilon < x < x_0 + \epsilon \text{ (apply intermediate values theorem 4.23)}.$ 

 $\implies |x - x_0| < \epsilon \le \epsilon_0.$ 

 $\implies |x - x_0| < \epsilon_0 \text{ contradicting (3)}.$ 

5.4

Let  $f(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1}$ . Let  $g(x) = C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n$ .

Then we know f(0) = f(1) = 0 by assumption and f'(x) = g(x).

Since f is a polynomial with real coefficients, f is continuous and differentiable on (0,1).

Thus, by theorem 5.10,  $\exists x_0 \in (0,1)$  such that  $0 = f(1) - f(0) = (1-0)f'(x_0) =$ 

In other words, there exists some  $x_0 \in (0,1)$  such that  $g(x_0) = 0$ , which is the required conclusion.

5.6

By (a) and (b) and since x is continuous and differentiable on  $(0,\infty)$ , q is continuous and differentiable on  $(0, \infty)$  by theorem 4.9 and theorem 5.3.

By (d) and theorem 5.11,  $f'(x) \ge 0 \ \forall x \in (0, \infty)$ .

Consider  $0 < x_1 < x_2$ ,

Since f, g are continuous and differentiable on  $(0, \infty)$ , then by theorem 5.3 we have:

$$g'(x) = \frac{xf'(x) - f(x)}{x^2}$$

WTS  $g'(x) \ge 0$  for x > 0, or equivalently,  $xf'(x) - f(x) \ge 0$ .  $\iff f'(x) \ge \frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(x_0)$  for some  $x_0 \in (0, 1)$ , where the last equality holds by theorem 5.10.

 $\iff f'(x) \ge f'(x_0)$  which holds by (d) and  $0 < x_0 < x$ .

Hence,  $g'(x) \ge 0$  for x > 0.

5.8

Since f' is continuous on [a, b], which is compact is  $\mathbb{R}$ , f' is uniformly continuous. Then fix  $\epsilon > 0$ ,  $\exists \delta > 0$ , such that  $\forall x, t \in [a, b]$  and  $0 < |t - x| < \delta \implies$  $|f'(t) - f'(x)| < \epsilon$ .

Since f' exists on [a,b], f is continuous on [a,b]. Apply mean value theorem on the interval [t,x] or [x,t], then W.L.O.G  $\exists y \in (t,x)$  such that  $0 < |x-y| < |t-x| < \delta$ , where  $f'(y) = \frac{f(t)-f(x)}{t-x}$  and thus since  $0 < |x-y| < \delta$ , we have  $|\frac{f(t)-f(x)}{t-x} - f'(x)| < \epsilon$ .

This still holds for vector-valued functions.

Define  $\mathbf{f} := \mathbb{R}^1 \to \mathbb{R}^k$  where  $k \geq 2$  and  $\mathbf{f} = (f_1, f_2, ..., f_k)$ . Similarly, since  $\mathbf{f}'$  is continuous on [a, b] we have  $\mathbf{f}'$  is uniformly continuous. Fix  $\epsilon > 0$ ,

$$\exists \delta > 0, \ \forall x, t \in [a, b], \ |x - t| < \delta \implies |\mathbf{f}'(t) - \mathbf{f}'(x)| < \frac{\epsilon}{\sqrt{k}}.$$
 (4)

Since  $\mathbf{f}'$  exists on [a, b], by definition,

$$f'_1, f'_2, ..., f'_k$$
 exists on  $[a, b]$ . (5)

Note that

$$\frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} = \left(\frac{f_1(t) - f_1(x)}{t - x}, \frac{f_2(t) - f_2(x)}{t - x}, \dots, \frac{f_k(t) - f_k(x)}{t - x}\right).$$

W.L.O.G. Suppose t < x. We apply similar technique as above for  $1 \le i \le k$ , we have

$$\frac{f_i(t) - f_i(x)}{t - x} = f_i'(\theta_i) \text{ where } \theta_i \in (t, x).$$

And , thus  $0 < |x - \theta_i| < \delta$ , and by (4) and (5), we have

$$|f_i'(\theta_i) - f_i'(x)| \le |\mathbf{f}'(\theta_i) - \mathbf{f}'(x)| < \frac{\epsilon}{\sqrt{k}}.$$

Then

$$\left| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x) \right| = \left| (f_1'(\theta_1), \dots, f_k'(\theta_k)) - \mathbf{f}'(x) \right|$$

$$= \sqrt{\left[ f_1'(\theta_1) - f_1'(x) \right]^2 + \dots + \left[ f_k'(\theta_k) - f_k'(x) \right]^2}$$

$$< \sqrt{k \cdot \frac{\epsilon^2}{k}}$$

$$= \epsilon.$$

By definition,  $f'(0) = \lim_{t\to 0^-} \frac{f(t)-f(0)}{t-0} = \lim_{t\to 0^+} \frac{f(t)-f(0)}{t}$ . If  $t\to 0^-$ , since f is continuous on  $\mathbb{R}$ , and differentiable everywhere except 0, for each  $t_i$  in the sequence  $\{t_n\}$  approaching  $0^-$ , by the mean value theorem  $\exists$  an associated  $x_i \in (t_i, 0)$  such that  $f(t_i) - f(0) = (t_i - 0)f'(x_i)$ . Observe that  $x_n \to 0$  as  $t_n \to 0$ , therefore

$$\lim_{t \to 0^{-}} \frac{f(t) - f(0)}{t} = \lim_{x \to 0^{-}} f'(x_t) = 3.$$

Similarly, if  $t \to 0^+$ , we have

$$\lim_{t \to 0^+} \frac{f(t) - f(0)}{t} = \lim_{x \to 0^+} f'(x_t) = 3.$$

Hence, f'(0) exists.

#### 5.11

Following the hint, using theorem 5.13 and since f is defined around x and f''(x)exists

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x+h) + f'(x-h)}{2h}$$

$$= \frac{1}{2} \lim_{h \to 0} \left( \frac{f'(x+h) - f'(x)}{h} + \frac{f'(x) - f'(x-h)}{h} \right)$$

$$= \frac{1}{2} (f''(x) + f''(x))$$

$$= f''(x).$$

Take f(x)=sgn(x), then consider at x=0, we have  $\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}=\lim_{h\to 0}\frac{f(x+h)+f(x-h)}{h^2}=0$  but f''(0) does not

5.15

It is trivial to show the inequality holds for  $M_0 = \infty$  or  $M_2 = \infty$ , thus suppose  $M_0, M_2$  are both finite.

If h > 0, Taylor's theorem shows that

$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(\xi)$$

for some  $\xi \in (x, x + 2h)$ .

$$\implies f'(x) = \frac{1}{2!} [f(x+2h) - f(x)] + h f''(\xi)$$

$$\implies |f'(r)| < \frac{1}{2}(M_0 + M_0) + hM_0 = \frac{M_0}{2} + hM_0$$

$$\implies sup(|f'(x)|) = M_1 < \frac{M_0}{h} + hM_2$$

 $\Rightarrow f'(x) = \frac{1}{2h} [f(x+2h) - f(x)] + hf''(\xi)$   $\Rightarrow |f'(x)| \le \frac{1}{2h} (M_0 + M_0) + hM_2 = \frac{M_0}{h} + hM_2$   $\Rightarrow \sup(|f'(x)|) = M_1 \le \frac{M_0}{h} + hM_2$ Let  $g(h) = \frac{M_0}{h} + hM_2$  which is continuous on  $(0, \infty)$ .

$$g'(h) = -\frac{M_0}{h^2} + M_2$$
 and  $g'(h) = 0 \iff M_2 h^2 - M_0 = 0 \implies h = \pm \sqrt{\frac{M_0}{M_2}}$ 

Since h > 0,  $h = \sqrt{\frac{M_0}{M_2}}$ . For  $0 < h < \sqrt{\frac{M_0}{M_2}}$ , then  $h^2 < \frac{M_0}{M_2}$  and thus g'(h) = $M_2 - \frac{M_0}{h^2} < 0$ . Similarly, for  $h > \sqrt{\frac{M_0}{M_2}}$ , g'(h) > 0. Hence, g(h) attains minimum at  $h = \sqrt{\frac{M_0}{M_2}}$ .

 $\implies M_1 \leq \inf(\frac{M_0}{h} + hM_2)$   $\implies M_1 \leq 2\sqrt{M_0M_2}$   $\implies M_1^2 < 4M_0M_2.$ 

Note that if  $M_0 = 0$ , there is nothing to prove. If  $M_2 = 0$ , then f' is a some constant and f is some linear function. Since we assume  $M_0 < \infty$ , f must be a constant. It suffices to assume  $0 < M_0 < \infty$  and  $0 < M_2 < \infty$ .

Define: 
$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty). \end{cases}$$

To show  $M_1^2 = 4M_0M_2$ , following the hint, take a = -1.

Define:  $f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty). \end{cases}$ For  $x \in (-1,0)$ ,  $0 < 2x^2 < 2 \implies -1 < 2x^2 - 1 < 1 \implies |f(x)| \le 1$ . For  $x \in [0, \infty)$ , since  $\frac{x^2 - 1}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$ , for any  $x_1 < x_2$ , we have  $x_1^2 + 1 < x_2^2 + 1$   $\implies 1 - \frac{2}{x_2^2 + 1} > 1 - \frac{2}{x_1^2 + 1}$  so f is strictly increasing and as  $x \to \infty$ ,  $\frac{2}{x^2 + 1} \to 0$ .

Now, we have

From, we have 
$$f'(x) = \begin{cases} 4x & (-1 < x < 0), \\ \frac{4x}{(x^2+1)^2} & (0 \le x < \infty) \end{cases}$$
 and 
$$f''(x) = \begin{cases} 4 & (-1 < x < 0), \\ \frac{4-12x^2}{(x^2+1)^3} & (0 \le x < \infty) \end{cases}$$

$$f''(x) = \begin{cases} 4 & (-1 < x < 0), \\ \frac{4 - 12x^2}{(x^2 + 1)^3} & (0 \le x < \infty) \end{cases}$$

Since f'' exists, f' is continuous and we have  $f'(0-) = \lim_{x\to 0-} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^-} \frac{2x^2-1+1}{x} = \lim_{x\to 0^-} 2x = 0$ . Similarly,

$$f'(0+) = \lim_{x \to 0+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x^2 - 1 + x^2 + 1}{x(x^2 + 1)} = \lim_{x \to 0^+} \frac{2x}{x^2 + 1} = 0.$$

we have 
$$f'(0+) = \lim_{x \to 0+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x^2 - 1 + x^2 + 1}{x(x^2 + 1)} = \lim_{x \to 0^+} \frac{2x}{x^2 + 1} = 0.$$
 Since  $f$  is continuous then by problem 9, this implies  $f'(0) = 0$ . O.T.O.H. we have  $\frac{4x}{(x^2 + 1)^2} = \frac{\frac{4}{x^3}}{(1 + \frac{1}{x^2})^2} \to 0$  as  $x \to \infty$  or  $f'(x) \to 0$  as  $x \to \infty$ .

So f' is continuous on  $[0, \infty)$  and  $f'(x) > 0 \ \forall x \in [0, \infty)$ .

There must exist at least one local maximum on  $[0, \infty)$ . And by theorem 5.8,

$$f''(x) = 0 \iff \frac{4 - 12x^2}{(x^2 + 1)^3} = 0 \implies x = \frac{1}{\sqrt{3}}$$

Plug in x, we have  $f'(\frac{1}{\sqrt{3}}) = \frac{\frac{4}{\sqrt{3}}}{(\frac{1}{2}+1)^2} = \frac{3\sqrt{3}}{4}$ .

So 
$$M_1 = \sup |f'(x)| = \max\{4, \frac{3\sqrt{3}}{4}\} = 4.$$

For  $x \in [0, \infty)$ , we have  $\frac{4-12x^2}{(x^2+1)^3} = \frac{4(1-3x^2)}{(x^2+1)^3}$  then for any  $x_1 < x_2$ ,  $\frac{4-12x_1^2}{(x_1^2+1)^3} > 1$ 

 $\frac{4-12x_2^2}{(x_2^2+1)^3} \Longrightarrow f'' \text{ is strictly decreasing.}$ Since  $\frac{4-12x^2}{(x^2+1)^3} \to 4$  as  $x \to 0$ , and f' is continuous, by problem 9, f''(0) = 4.
Therefore,  $M_2 = \sup|f''(x)| = \max\{4, f''(0)\} = 4$ .

#### 5.17

By assumption, we can follow the hint and apply theorem 5.15 with  $\alpha = 0$  and  $\beta = \pm 1$ . Then,

$$0 = f(-1) = \frac{f^{(0)}(0)}{0!}(-1 - 0)^0 + \frac{f^{(1)}(0)}{1!}(-1 - 0)^1 + \frac{f^{(2)}(0)}{2!}(-1 - 0)^2 + \frac{f^{(3)}(0)}{3!}(-1)^3$$
$$= \frac{f^{(2)}(0)}{2!} - \frac{f^{(3)}(s)}{3!},$$

for some  $s \in (-1,0)$ .  $\implies f^{(3)}(s) = 3f^{(2)}(0)$ .

$$1 = f(1) = \frac{f^{(0)}(0)}{0!} (1 - 0)^0 + \frac{f^{(1)}(0)}{1!} (1 - 0)^1 + \frac{f^{(2)}(0)}{2!} (1 - 0)^2 + \frac{f^{(3)}(0)}{3!} (1)^3$$
$$= \frac{f^{(2)}(0)}{2!} + \frac{f^{(3)}(t)}{3!},$$

for some  $t \in (0,1)$ .

 $\implies f^{(3)}(t) = 6 - 3f^{(2)}(0).$ 

So,  $f^{(3)}(s) + f^{(3)}(t) = 6$ . If  $f^{(3)}(s) < 3$  and  $f^{(3)}(t) < 3$ , their sum will be < 6. Thus, either  $f^{(3)}(s) \ge 3$  or  $f^{(3)}(t) \ge 3$ , hence the required result.

### 5.22

(a)

Suppose not, then  $\exists x \neq y$  such that  $f(x) = x \land f(y) = y$ .

Since f is differentiable, f is continuous. Consider [x, y], by theorem 5.10,  $\exists t \in (x,y)$  at which

$$f(y) - f(x) = (y - x)f'(t) \implies f'(t) = \frac{f(y) - f(x)}{y - x} = 1$$
, contradiction.

(b)

$$\begin{split} \lim_{h \to 0} \frac{(1 + e^{t+h})^{-1} - (1 + e^t)^{-1}}{h} &= \lim_{h \to 0} \frac{e^t - e^{t+h}}{(1 + e^t)(1 + e^{t+h})h} \\ &= \frac{e^t}{1 + e^t} \cdot \lim_{h \to 0} \frac{-e^h}{1 + e^{t+h} + he^{t+h}} \text{ by L'Hopital's Rule} \\ &= \frac{e^t}{1 + e^t} \cdot \frac{-1}{1 + e^t} \\ &= \frac{-e^t}{(1 + e^t)^2} = \frac{-e^t}{1 + 2e^t + e^{2t}}. \end{split}$$

So  $f'(t) = 1 - \frac{e^t}{1 + 2e^t + e^{2t}}$ . Since  $0 < \frac{e^t}{1 + 2e^t + e^{2t}} < 1 \implies 0 < f'(t) < 1$ . Suppose there is a fixed point  $x_0$ , then  $f(x_0) = x_0$  i.e.  $x_0 + (1 + e^{x_0})^{-1} = x_0$   $\implies (1 + e^{x_0})^{-1} = 0$ 

$$\implies (1 + e^{x_0})^{-1} = 0$$

$$\implies 1 = 0, \text{ contradiction.}$$

(c)

Start with  $x_1 \in \mathbb{R}$ , define  $f(x_n) = x_{n+1}$ . Since f' is differentiable, Consider the sequence  $\{x_n\}$ . Let  $n, m \in N$  and n > m.

$$|x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})|$$

$$= |f'(\theta)(x_{n-1} - x_{n-2})| \text{ for some } \theta \text{ between } x_{n-1} \text{ and } x_{n-2}$$

$$\leq A|f(x_{n-2}) - f(x_{n-3})|$$

$$\leq \dots$$

$$< A^{n-2}|x_2 - x_1|.$$

and

$$\begin{aligned} |x_n - x_m| &= |x_n - x_{n-1} + x_{n-1} - x_{n-2} + \dots + x_{m+1} - x_m| \\ &\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m| \\ &\leq A^{n-2} |x_2 - x_1| + A^{n-3} |x_2 - x_1| + \dots + A^{m-1} |x_2 - x_1| \\ &= A^{m-1} (A^{n-m-1} + A + 1) |x_2 - x_1| \\ &< A^{m-1} \frac{|x_2 - x_1|}{1 - A} \end{aligned}$$

Then given  $\epsilon>0,\ \exists N^*$  such that  $\frac{1}{N^*}\frac{1-A}{|x_2-x_1|}<\epsilon$  by A.P. and we can find N large enough such that  $A^N<\frac{1}{N^*}$  since  $A<1,\ A^{m-1}\to 0$  as  $m\to\infty$ .

Therefore, for all n > m > N+1, we have  $|x_n - x_m| < A^{m-1} \frac{|x_2 - x_1|}{1-A} < \epsilon$ , and hence  $\{x_n\}$  is Cauchy in  $\mathbb{R}$ , which is complete. Thus,  $\{x_n\}$  converges to some  $x \in \mathbb{R}$ .

Since  $x_n \to x$ , we have  $x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f(x)$  since f is continuous.

(d)



5.26

Following the hint, if  $A(x_0 - a) < 1$ , and  $M_0 \ge 0$  by definition of  $M_0$ . Suppose  $M_0 > 0$ , and from the assumption, we know

$$|f'(x)| \le A|f(x)| < AM_0$$

for  $x \in [a, b]$  and hence  $M_1 \leq AM_0$ . For any  $x \in [a, x_0]$ , we have

$$|f(x)| = |f(x) - f(a)| = |f(x')|(x - a) \le M_1(x_0 - a) \le A(x_0 - a)M_0$$

for some  $x' \in (a, x)$ , which exists by the mean value theorem. Take the sup over  $[a, x_0]$ , we get

$$M_0 \le A(x_0 - a)M_0 \implies A(x_0 - a) \ge 1$$

contradiction. Therefore,  $M_0 = 0$  and f(x) = 0 on  $[a, x_0]$ .

Essentially, the above argument has shown that as long as we pick  $x_0 \in (a, b]$  such that  $A(x_0 - a) < 1$ , we get the result we want in the restricted inverval  $[a, x_0]$ . For example, pick  $x_0 = a + \frac{1}{2A}$ . We can partition [a, b] into intervals of length at most  $a + \frac{1}{2A}$ . If  $b - a = k \left(a + \frac{1}{2A}\right)$  for some  $k \in \mathbb{N}$ , then just repeat the above argument k times by considering intervals  $[a, x_0], ..., [x_{k-2}, b]$ . If not,  $\exists n \in \mathbb{N}$  such that  $b - a = n \left(a + \frac{1}{2A}\right) + b - x_n$  and  $b - x_n < x_0 - a < \frac{1}{A} \Longrightarrow A(b - x_n) < 1$ , then similarly repeat the above argument n times.