Course Code	BIO531			
Course Code Course Name	Introduction to Mathematical Biology			
Credits	4			
Course Offered to	UG/PG			
Course Offered to	The aim of this course is to introduce m	nathematics as annlied in quantitati	ve study of hiological sys	tems and highorical data analysis. Use
	of ordinary and partial differential equat			
Course Description	discussed. We also plan to briefly introd			and numerical solutions will be
	alcodocod. The alco plan to briony intro	Pre-requisites	01 0020.	
Pre-requisite (Mandatory)	Pre-requisite (Desirable)	Pre-requiste (Other)		
MTH-101 (for UG); Summer	rie-requisite (Desirable)			
Refresher Course (for CB PG				
students); Others - Instructor's	Molecular biology and biochemistry,			
approval	cell biology	None		
*Please insert more rows if required	con blology	ITTOTIC		
Tiodoo ilicort more rows il required		Post Conditions		
CO1	CO2	CO3	CO4	CO5
001	Students are able to analyze data	003	Students are able to	Students are able to apply the
Students are able to apply	obtained from biological / clinical	Students are able to analyze	model simple problems	concepts of mathematical biology in
mathematical tools for quantitative	experiments (such as SPR, FRAP,	simple biochemical kinetics using		some problems of systems biology an
analysis of biological systems	disc diffusion)	ODEs	using PDEs	Monte Carlo simulations
analysis of biological systems	,		doing i DEo	Monte Gano dimandione
Mook Number		Veekly Lecture Plan	Assignments/Lab/Tit	anio l
Week Number	Lecture Topic	COs Met	Assignments/Lab/Tute	
	Review of linear first and second		HW assignment 1: Kinetic analysis of data obtained from surface plasmon resonace experiments for measuring receptor-ligand binding affinity; Data analysis of SPR experiments for	
	order differential equations (exact			
	solution and analytical			
N/I- 4 O	approaches). Introduction to	004		tant) variants. Ref: Apoptosis 14:778-
Week 1-2	dynamical systems theory	CO1	787 (2009)	
	ODEs as a tool for quantitative			ass ODE problem solving based on
Week 3-4	study of biological systems and	004 000 000	applications in (i) design of affinity variant ligands, (ii) pathogen	
vveek 3-4	biological data analysis	CO1, CO2, CO3	detection based on affir	ity (design of nanotechnology based
	Numerical solution (using MATLAB			
	/ Scilab) of ODEs			
N/I- F C	Use of parallel computation in	004 000 000	HW assignment 2:Aggregation kinetics of amyloid proteins, data analysis of dimeric receptor-ligand binding experiments;	
Week 5-6	numerical solution of ODEs	CO1, CO2, CO3	data analysis of dimeric	receptor-ligand binding experiments;
	Dynamical systems theory as applied			
	to elucidate biological		In-class problem solving based on dynamical systems	
	processes/kinetics; analysis of enzyme			
=	mediated biochemical			gregation and enzyme mediated
Week 7	kinetics	CO1, CO2, CO3	biochemical kinetics	
	to elucidate biological processes;			
	analysis of cellular regulatory		HW assignment 3: Dynamical systems analysis of receptor- ligand binding kinetics (sensitivity to affinity variation). In- class problem solving to elucidate dynamical mechanisms for cellular	
	networks; brief introduction to			
	stochastic			
Week 8-9	approaches and stochastic	CO1, CO2, CO3, CO5	regulatory networks	
	Partial differential equations (analytical			
	methods for solving PDEs: the method		HW assignment 4: Estimation of minimum inhibitory	
	of separation of variables and the	l	concentration of an antibiotic by analyzing data from disk	
Week 10	method of characteristics)	CO1, CO2, CO4	diffusion experiments (F	PDE modeling of spatial fluctuations)
	PDEs as a tool for quantitative study			
M 44 42	of spatial fluctuations in biological		l	
	systems; Brief discussion of numerical	l	HW assignment 4. In-class PDE problem solving based on	
Week 11-13	solution of PDEs and stochastic PDEs		applications to polymeri	c drug delivery systems
Week 16	Endsem Review	CO1, CO2, CO4		
Week 17	Endsem Exam			
*Please insert more rows if required				
		Assessment Plan		
T	% Contribution in Grade			
Type of Evaluation				
<u>, , </u>	35			
Mid-sem End-sem	35			
Mid-sem End-sem Assignments	35 30			
Mid-sem End-sem	35 30			
Mid-sem End-sem Assignments	35 30	Resource Material		
Mid-sem End-sem Assignments *Please insert more row for other types	35 30	Resource Material		
Mid-sem End-sem Assignments *Please insert more row for other types	35 30 e of Evaluation		Edelstein-Keshet. Pub: S	IAM, 2013.
Mid-sem End-sem Assignments *Please insert more row for other typ Type	35 30 e of Evaluation	biology by Lee A Segel and Leah I		
Mid-sem End-sem Assignments *Please insert more row for other typ Type Textbook	35 30 e of Evaluation Title 1. A primer on mathematical models in	biology by Lee A Segel and Leah I C.P. Fall, E.S. Marland, J.M. Wag	ner and J.J. Tyson. Pub	