OLITE

Differentiable Lighting Informed Trajectory Evaluation for On-Orbit Inspection

Jack Naylor¹

Raghav Mishra^{1,2}

Nicholas Barbara¹

Donald G. Dansereau^{1,2}

76TH
INTERNATIONAL
ASTRONAUTICAL
CONGRESS

1. High-dynamic range

- 1. High-dynamic range
- 2. Specular objects

- 1. High-dynamic range
- 2. Specular objects
- 3. Self-shadowing

- 1. High-dynamic range
- 2. Specular objects
- 3. Self-shadowing
- 4. Dynamic lighting/imaging distances

- 1. High-dynamic range
- 2. Specular objects
- 3. Self-shadowing
- 4. Dynamic lighting/imaging distances
- 5. Cannot just move anywhere in an orbit to avoid these conditions

- 1. High-dynamic range
- 2. Specular objects
- 3. Self-shadowing
- 4. Dynamic lighting/imaging distances
- 5. Cannot just move anywhere in an orbit to avoid these conditions

But what if you could plan ahead and choose your orbit?

Our Approach

Our Approach

Optimise orbit of inspection "chaser" satellite to minimise visual costs relative to a "target" satellite.

Our Approach

Optimise orbit of inspection "chaser" satellite to minimise visual costs relative to a "target" satellite.

How?

- Build an end-to-end differentiable simulator for on-orbit inspection
 - Differentiable orbit propagation
 - o Differentiable rendering
- Minimise arbitrary costs via simple gradient descent.

Related Work

NAME	Diff. Orbits?	Diff. Rendering?	Photometric?	Optical Effects?	Photorealistic?
ALL-STAR [Li et al. 2024]					
SPIN [Montalvo et al. 2024]					
SISPO [Pajusalu et al. 2022]					
HySIM [Felicetti et al. 2024]					
ƏLITE [Ours]					

End-to-End Differentiable Inspection

 Differentiable orbit propagation in JAX + Mitsuba 3 rendering

- Differentiable orbit propagation in JAX + Mitsuba 3 rendering
- Assume state & geometry are known (requires depths and surface normals)

- Differentiable orbit propagation in JAX + Mitsuba 3 rendering
- Assume state & geometry are known (requires depths and surface normals)
- Assume always pointing at target

- Differentiable orbit propagation in JAX +
 Mitsuba 3 rendering
- Assume state & geometry are known (requires depths and surface normals)
- Assume always pointing at target
- Simulate passive inspections e.g.,
 circular "football" orbits

- Main cost: reduce direct specular reflections seen by the camera

- Main cost: reduce direct specular reflections seen by the camera
 - Model sun illumination direction, use known geometry
 - Use physically-based reflection model, model strength of reflection from surface seen by the camera

Phong Reflection Model

- Main cost: reduce direct specular reflections seen by the camera
 - Model sun illumination direction, use known geometry
 - Use physically-based reflection model, model strength of reflection from surface seen by the camera

Phong Reflection Model

- Main cost: reduce direct specular reflections seen by the camera
 - Model sun illumination direction, use known geometry
 - Use physically-based reflection model, model strength of reflection from surface seen by the camera
- Additional cost: relative distance between chaser and target to avoid drift

Phong Reflection Model

Specular Cost

Before Optimisation

Before Optimisation

After Optimisation

Before Optimisation

Pixel Saturation

Pixel Saturation

Before Optimisation

Pixel Saturation

Before Optimisation

After Optimisation

Pixel Saturation

Before Optimisation

Target satellite (e.g., Hubble)

Comparing Relative Orbits 30 20 E 20 z (m) z10 -10Target satellite (e.g., Hubble) -10 $^{-30}_{-20}_{-10}_{-10}_{x \ (m)}^{0}_{10}$ -2020 Original relative orbit x (m) 20 30 20 20 y (m) z (m) -20-2020 40

-25

0

x (m)

25

y (m)

Comparing Relative Orbits 30 20 Optimised relative orbit 10 -10Target satellite (e.g., Hubble) 30 -10 $^{-30}_{-20}_{-10}_{-10}_{x(m)}^{0}_{10}$ -2020 Original relative orbit x (m)

Optimising the orbital elements to improve visual costs leads to new, specialised inspection trajectories in the relative frame.

30

Optimised relative orbit

Target satellite (e.g., Hubble)

Original relative orbit

- Optimising the orbital elements to improve visual costs leads to new, specialised inspection trajectories in the relative frame.
- Deviation from the initial orbit is very small, so delta V costs are low.

30

- Fully-differentiable vision-to-planning pipeline.
- Demonstrated capability in optimising inspection trajectories.

- Fully-differentiable vision-to-planning pipeline.
- Demonstrated capability in optimising inspection trajectories.

Future Work

- Fully-differentiable vision-to-planning pipeline.
- Demonstrated capability in optimising inspection trajectories.

Future Work

- Integrate attitude dynamics & materials, add uncertainty quantification
- Apply to mission planning & operations.
- Other applications combining imaging & orbits (e.g., Earth observation tasking).

Q & A

E: jack.naylor@sydney.edu.au

nackjaylor.github.io roboticimaging.org

Supported by:

Project Page