ANSWER SCHEME PRE-PSPM SP015 2023/2034

1)	$A = \pi r^2$	
	[length][width] = [radius][radius]	
	$L^2 = L^2$	G1
	LHS = RHS	J1
	This expression is homogeneous.	
	TOTAL	2

2)	v = u + at		
a) i.	0 = 63 + a(2)		
1.	$a = -31.5 \text{ m s}^{-2}$		GJU1
ii.	$v^2 = u^2 + 2as$		
	$0^2 = 63^2 + 2(-31.5)s$		
	s = 63 m		GJU1
b) i.	Total distance travelled = area	under the <i>v-t</i> graph	
	$S = \frac{1}{2}(10)(2$	$(20) + 5(20) + \frac{1}{2}(6)(20) = 260 \text{ m}$	GJU1
ii.	v = u + at		
	20 = 0 + a(10)		
	$a = 2 \text{ m s}^{-2}$	Label both axes correctly (symbol & unit) – D1	
	v = u + at	Shape of the graph – D1	
	0 = 20 + a(6)	Label all values on x and y axis – D1	
	$a = -3.33 \text{ m s}^{-2}$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	→ t/s 1/5 2/1	
c) i.	$u_x = 11\cos 20^\circ = 10.33 \text{ m s}^{-1}$ $u_y = 11\sin 20^\circ = 3.76 \text{ m s}^{-1}$		
	$S_y = u_y t - \frac{1}{2}gt^2$ $0 = 3.76(t) - 4.90t^2$		
	$t = 0.767 \mathrm{s}$		G1
	$S_x = u_x t = 10.33(0.767)$		JU1
ii.	$S_x = 7.92 \text{ m}$		301
11.	$ v_y ^2 = u_y^2 - 2gS_y$		
	$0^2 = 3.76^2 - 2(9.81)S_y$		G1
	$S_y = 0.72 \text{ m}$		JU1
		TOTAL	10

3)	Fdt = m(v - u)	K1 for negative u
a) i.	F(0.14) = 3.5(3.5 - (-4.5))	G1
	F = 200 N	JU1
ii.	$\sum K_i = \frac{1}{2}mu^2 = \frac{1}{2}(3.5)(-4.5^2) = 35.4375 \mathrm{J}$	G1
	$\sum K_f = \frac{1}{2} m v^2 = \frac{1}{2} (3.5)(3.5^2) = 21.4375 \mathrm{J}$	G1
	Loss in kinetic energy = $35.4375 - 21.4375 = 14 \text{ J}$	JU1
b)	T_1 T_2	D2
	$\Sigma F = 0$	K1
	$\sum F_{x} = 0$	
	$T_1 \cos 50^\circ = T_2 \cos 40^\circ$ $T_1 = 1.19T_2$	G1
	$\sum F_{y} = 0$	
	$T_1 \sin 50^{\circ} + T_2 \sin 40^{\circ} = W$	G1
	$1.19T_2 \sin 50^\circ + T_2 \sin 40^\circ = 7.5$	
	$T_2 = 4.83 \text{ N}$	JU1
	$T_1 = 5.75 \text{ N}$	JU1
	TOTAL	13

4) a)	$W_T = F_T \cdot s$	
a)	$W_T = (F\cos 25^\circ - f)s \cos 0^\circ$	
	$W_T = (20\cos 25^{\circ} - 2)3\cos 0^{\circ}$	G1
	$W_T = 48.39 \text{ J}$	JU1
b)	$\sum E_i = \sum E_f$	K1
	U + K = U + K	
	$mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2$	R1
	$(9.81)(70) + \frac{1}{2}38^2 = (9.81)(35) + \frac{1}{2}mv^2$	G1
	$v = 46.16 \mathrm{m s^{-1}}$	JU1
c)	$P = F \cdot v$	
	$P = mgv\cos 0^{\circ}$	
	$P = (1.1 \times 10^{-3})9.81(2.5 \times 10^{-2})$	G1
	$P = 2.7 \times 10^{-4} \mathrm{W}$	JU1
	TOTAL	8

6)	$k = m\omega^2$	
a) i.	$7 = 0.2\omega^2$	
1.	$\omega = \sqrt{35} \text{rad s}^{-1}$	G1
	$v_{max} = A\omega$	
	$=0.05(\sqrt{35})$	
	$= 0.3 \mathrm{m s^{-1}}$	GJU1
ii.		
	$v = \pm \omega \sqrt{A^2 - y^2}$	
	$= \pm \sqrt{35}\sqrt{0.05^2 - 0.03^2}$	G1
	$= \pm 0.237 \mathrm{m s^{-1}}$	JU1
	$a = -\omega^2 y$	
	$a = -\omega^2 y$ $= -\left(\sqrt{35}\right)^2 0.03$	
	$= -1.05 \mathrm{m s^{-2}}$	GJU1
iii.		
	$K_{max} = \frac{1}{2} m v_{max}^2$	
	_	
	$=\frac{1}{2}(0.2)(0.3)^2$	G1
	$= 0.009 \mathrm{J}$	JU1
b)		
	$\omega = 2\pi f$	
	$=2\pi(500)$	
	$= 1000\pi \text{rad s}^{-1}$	G1
	$v = f\lambda$	
	$300 = 500 \lambda$	
	$\lambda = 0.6 \text{ m}$	G 1
	$k = \frac{2\pi}{\lambda} = \frac{2\pi}{0.6} = \frac{10\pi}{3} \text{ m}^{-1}$	G1
	$y = A\sin(\omega t \pm kx)$	K1
	$y = 0.5 \sin \left(1000\pi t + \frac{10\pi}{3}x\right)$, where x, y in meters, t in seconds	
	$\frac{1}{3}$ $\frac{1}$	JU1

$440 = \frac{1(500)}{2l}$ $l = 0.57 \text{ m}$ $V = \sqrt{\frac{r}{\mu}}$ $500 = \sqrt{\frac{850}{\mu}}$ $\mu = 3.4 \times 10^{-3} \text{ kg m}^{-1}$ $G1$ $\mu = \frac{m}{l}$ $3.4 \times 10^{-3} = \frac{m}{0.57}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $JU1$ $f = \frac{n\nu}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ $First overtone:$ $f = \frac{n\nu}{4l}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$ $= 1.375 \text{ Hz}$ $GJU1$	c)	$f = \frac{nv}{2l}$	
$v = \sqrt{\frac{r}{\mu}}$ $500 = \sqrt{\frac{850}{\mu}}$ $\mu = 3.4 \times 10^{-3} \text{ kg m}^{-1}$ $3.4 \times 10^{-3} = \frac{m}{0.57}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ $f = \frac{nv}{4l}$ $= \frac{1}{4} = \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$		$440 = \frac{1(500)}{2l}$	
$500 = \sqrt{\frac{850}{\mu}}$ $\mu = 3.4 \times 10^{-3} \text{ kg m}^{-1}$ $G1$ $\mu = \frac{m}{l}$ $3.4 \times 10^{-3} = \frac{m}{0.57}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $JU1$ $f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ $GJU1$ $First overtone:$ $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$		l = 0.57 m	GJU1
$\mu = \frac{m}{l}$ $\mu = \frac{m}{l}$ $3.4 \times 10^{-3} \text{ kg m}^{-1}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $\mu = \frac{nv}{0.57}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $\mu = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ $\mu = \frac{nv}{4l}$ $= \frac{1}{4l}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$		$v=\sqrt{rac{T}{\mu}}$	
$\mu = \frac{m}{l}$ $\mu = \frac{m}{l}$ $3.4 \times 10^{-3} \text{ kg m}^{-1}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $\mu = \frac{nv}{0.57}$ $m = 1.938 \times 10^{-3} \text{ kg}$ $\mu = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ $\mu = \frac{nv}{4l}$ $= \frac{1}{4l}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$		$500 = \sqrt{\frac{850}{\mu}}$	
$3.4 \times 10^{-3} = \frac{m}{0.57}$ $m = 1.938 \times 10^{-3} \text{ kg}$ JU1 d) Fundamental mode: $f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ GJU1 First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$			G1
d) Fundamental mode: $f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ First overtone: $f = \frac{nv}{4l}$ $= \frac{nv}{4(0.18)}$ $= 458.33 \text{ Hz}$ GJU1 $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$		$\mu = \frac{m}{l}$	
Fundamental mode: $f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$ $= \frac{3(330)}{4(0.18)}$			****
Fundamental mode: $f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ GJU1 First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$		$m = 1.938 \times 10^{-3} \text{ kg}$	JUI
$f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ GJU1 First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$	d)	Fundamental mode:	
$f = \frac{nv}{4l}$ $= \frac{1(330)}{4(0.18)}$ $= 458.33 \text{ Hz}$ GJU1 First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$			D.1
$= \frac{1(330)}{4(0.18)}$ = 458.33 Hz GJU1 First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$			D1
$= \frac{1}{4(0.18)}$ = 458.33 Hz GJU1 First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$			K1
$= 458.33 \text{ Hz}$ First overtone: $f = \frac{nv}{4l}$ $= \frac{3(330)}{4(0.18)}$ $D1$			
$f = \frac{nv}{4l} = \frac{3(330)}{4(0.18)}$			GJU1
$f = \frac{nv}{4l} = \frac{3(330)}{4(0.18)}$		First overtone:	
$=\frac{3(330)}{4(0.18)}$			D1
$=\frac{3(330)}{4(0.18)}$		$f = \frac{nv}{4l}$	
		_ 3(330)	
			GJU1

e)		
	$f_o = \left(\frac{v + v_o}{v}\right) f_s$	K1
	$= \left(\frac{330+30}{330}\right)5000$	G1
	= 5454.55 Hz	JU1
	TOTAL	23

7) a) i.	$\sigma = \frac{F}{A}$	
1.		
	$=\frac{50}{0.52\times10^{-6}}$	
ii.	$= 96.2 \times 10^6 \text{ N m}^{-2}$	GJU1
11.	$arepsilon = rac{\Delta L}{L_o}$	
	$=\frac{0.12\times10^{-2}}{0.6}$	
	$= 2 \times 10^{-3}$	GJU1
iii.	σ	
	$Y = \frac{\sigma}{\varepsilon}$	
	$=\frac{96.2\times10^6}{2\times10^{-3}}$	
	$=4.81 \times 10^{10} \text{ Pa}$	GJU1
iv.	1	
	$U = \frac{1}{2}F\Delta L$	
	$=\frac{1}{2}(50)(0.12\times10^{-2})$	
	= 0.03 J	GJU1
b)		
	$\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$	
	$= -(3.78 \times 10^{-2})(2 \times 2) \left(\frac{28 - 87}{0.01}\right)$	G1
	= 892.08 W	JU1
c)		
	$\Delta L = \alpha L_o \Delta T$ $0.8 \times 10^{-3} = (1.6 \times 10^{-5})(0.15) \Delta T$	
	$\Delta T = 333.33 ^{\circ}\text{C}$	G1
	$\Delta T = T_f - T_i$	
	$333.33 = T_f - 33$	##T4
	$T_f = 366.33 ^{\circ}\text{C}$	JU1
	TOTAL	8

0)		
8) a)	$v_{rms} = \sqrt{\frac{3kT}{m}}$	
	$v_{rms1} = \sqrt{\frac{3k(86 + 273.15)}{m}} = \sqrt{\frac{3k(359.15)}{m}}$ (1)	G1
	$v_{rms2} = \sqrt{\frac{3k(25 + 273.15)}{m}} = \sqrt{\frac{3k(298.15)}{m}}$ (2)	G1
	$\frac{(1)}{(2)} \qquad \frac{v_{rms1}}{v_{rms2}} = \frac{\sqrt{\frac{3k(359.15)}{m}}}{\sqrt{\frac{3k(298.15)}{m}}}$	
	= 1.098	GJ1
b) i.	$K_{tr} = \frac{3}{2}nRT$ $= \frac{3}{2}(1.3)(8.31)(3 + 273.15)$	
	$=\frac{3}{2}(1.3)(8.31)(3+273.15)$	
	= 4474.87 J	GJU1
ii.	$K_{ave} = \frac{3}{2}kT$ $= \frac{3}{2}(1.38 \times 10^{-23})(3 + 273.15)$	
	$= 2^{(1.30 \times 10^{-3})(3 + 273.13)}$ $= 5.71 \times 10^{-21} \text{ J}$	GJU1

c) i.	$W_T = W_{XY} + W_{YZ}$ $W_{YZ} = 0 \text{ J}$ $W_T = [1(1.013 \times 10^5)(1.5 \times 10^{-3} - 3.0 \times 10^{-3})] + 0$ $W_T = -151.95 \text{ J}$	K1 G1 JU1
ii.	$T_x = T_z$ Isothermal process	
	$P_X V_X = P_Z V_Z$ $1(3) = P_Z (1.5)$ $P_Z = 2 \text{ atm}$	K1 G1 JU1
	TOTAL	11