Assignment 5

BST [Array Implementation]

<u>1.</u> Write an ADT for BST using arrays. You must implement following functions recursively.

- Insert
- Remove
- Search
- Get Height of a Node
- Min
- Max
- Traversal (in-order, pre-order, post-order)

The data of the following tree can be mapped on an array using the given formulas.

Parent(r) = $\lfloor (r-1)/2 \rfloor$ if $r \ne 0$.

Left child(r) = 2r+1 if 2r+1 < n.

Right child(r) =2r+2 if 2r+2<n.

Left sibling(r) =r-1 if r is even and $r\neq 0$.

Right sibling(r) =r+1 if r is odd and r+1<n.

- * r is the index of any node.
- * Root will always be placed at **0** index.

Index	0	1	2	3	4	5	6	7	8	9	10	11	12	
BST Data	50	17	72	12	23	54	76	9	14	19			67	