

Name:

KIT-Fakultät für Informatik

Prof. Dr. Mehdi Tahoori, Prof. Dr. Wolfgang Karl

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 29. März 2023, 11:00 – 13:00 Uhr

Matrikelnummer:

Vorname:

Digitaltechnik und Entwurfsv	verfahren (TI-1)
Aufgabe 1	von 9 Punkten
Aufgabe 2	von 10 Punkten
Aufgabe 3	von 5 Punkten
Aufgabe 4	von 12 Punkten
Aufgabe 5	von 9 Punkten
Rechnerorganisation (TI-2)	
Aufgabe 6	von 7 Punkten
Aufgabe 7	von 5 Punkten
Aufgabe 8	von 15 Punkten
Aufgabe 9	von 6 Punkten
Aufgabe 10	von 7 Punkten
Aufgabe 11	von 5 Punkten
Gesamtpunktzahl:	
	Note:

${\bf Aufgabe\ 1} \quad \textit{Schaltfunktionen}$

1.

- 2. Konjunktive Minimalformen:
- 3. Ausgangsgleichung für das Nelson-Verfahren:

4.

Nr.	gebildet aus		Wi	irfel		gestrichen wegen
1		1	1	_	1	
2		1	0	_	1	
3		1	0	_	0	
4		0	1	1	_	
5		0	0	1	1	
	I	1				I

Die Menge der Primimplikanten:

Aufgabe 2 Schaltnetze und CMOS-Technologie

1. y:

2. Minimalform von y:

3. Minimal form von y in NAND-Form:

Schaltnetz:

4. Realisierung von $g(x_1, x_2, x_3)$ mit NAND-Gattern:

Schaltbild:

 $5. \ \ CMOS\text{-Realisierung eines } 2\text{:}1\text{-}Multiplexers\text{:}$

Aufgabe 3 Laufzeiteffekte

1.

2. Typ des Fehlers und Behebungsmöglichkeit:

Name: Vorname: 8

Aufgabe 4 Schaltwerke

- 1. (a) Das Schaltwerk ist:
 - (b) Maximale Anzahl der Zustände ist:
 - (c) Verläufe der Signale a, b, c und d:

2. (a) Automatengraph:

9

q_2^t	q_1^t	q_0^t	q_1^{t+1}	q_0^{t+1}	
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- (c) Minimalformen der Ansteuerfunktionen der Flipflops:
- (d) Schaltbild des Zählers:

Aufgabe 5 Rechnerarithmetik

- 1. Anzahl der Prüfbits:
- 2. Carry-Ripple-Addierer und Carry-Lookahead-Addierer:

- 3. Mindest-Bitanzahl für die Darstellung von -70 als Zweierkomplementzahl:
 - 70 mit minimaler Bitanzahl als Zweierkomplementzahl:

• -70 als 16-Bit-Zweierkomplementzahl:

Name:	Vorname:	MatrNr.:	11

- 4. 1000 0011 0101 1000 0000 0000 0000 0101
 - (a) BCD:
 - (b) Vorzeichenlose Dualzahl:

(c) Gleitkommazahl im IEEE-754-Standard in einfacher Genauigkeit:

Aufgabe 6 RISC-V

1. Zeichnung der Hardware-Komponenten:

2. Inhalte der Zielregister:

Befehl	Zielregister =	(z. B. x7 = 0x0000 F00A)	
addi x1, zero, 0x69			
lui x2, 0x06			
andi x3, x1, 0x0a			
srai x4, x2, 8			
xor x5, x4, x3			
slt x6, x5, x2			

Aufgabe 7 MIMA-Architektur

1. Takt:

2. Takt:

:

Matr.-Nr.:

${\bf Aufgabe~8} \quad {\it Cache-Speicher}$

- 1. (a) Blockgröße in Bytes:
 - (b) Cache-Organisation:

2. Speicherbedarf:

3.

Adresse	0	8	40	52	4	8	52	32	2
read/write	r	r	W	r	r	r	w	W	r
Index	0								
Tag	0								
Byte-Offset	0								
Hit/Miss	Miss								

4. Direkt-abgebildeter Cache mit 16 Speicherblöcken:

Adresse	Hilfsspalte	Tag	Index	Offset	Hit/Miss
0x04					
0x34					
0xcf					
0x02					
0x4c					
0xcf					
0x84					
0xb6					
0xb5					
0x07					

${\bf Aufgabe~9} \quad \textit{Virtuelle Speicherverwaltung}$

1. Unterteilung der virtuellen Adresse:

2. Physikalische Adressen:

Virtuelle Adresse	Physikalische Adresse
1023	
1024	
4204	
6200	

3. Breite des Tags:

Aufgabe 10 Pipelining

1. Echte Datenabhängigkeiten:

2. Behebung der Konflikte:

Aufgabe 11 Verschiedenes

1. Faktor bei RISC:

2. Komponenten eines allgemeinen Schnittstellenbausteins:

3. Aufgaben der Busarbitrierung:

4. Hauptunterschied zwischen PCI und PCI-E: