Proposizione 28.1: Misura di non compattezza di successioni limitate la cui distanza dai termini corrispondenti è infinitesima

Sia (X, d) uno spazio metrico.

Siano $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}\subseteq X$ due successioni limitate.

Si supponga che $\lim_n d(x_n,y_n)=0$.

Allora, $\alpha(\{x_n \mid n \in \mathbb{N}\}) = \alpha(\bigcup \{y_n \mid n \in \mathbb{N}\}).$

Q Osservazioni preliminari

Sia (X, d) uno spazio metrico.

Sia $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ una successione limitata.

Allora, per ogni arepsilon>0 esistono $N_1,\ldots,N_k\subseteq\mathbb{N}$ con $igcup_{i=1}^kN_i=\mathbb{N},$ tali che

 $\operatorname{diam}ig(\{x_n\mid n\in N_i\}ig)<lpha\left(\{x_n\mid n\in\mathbb{N}\}
ight)+arepsilon$ per ogni $i\in\{1,\ldots,k\}$

Infatti, essendo $\{x_n\}_{n\in\mathbb{N}}$ limitata, $\alpha(\bigcup\{x_n\}_{n\in\mathbb{N}})$ è un valore reale;

per sua definizione, esistono allora $V_1,\ldots,V_k\subseteq\{x_n\mid n\in\mathbb{N}\}$ con $igcup_{i=1}^kV_i=\{x_n\mid n\in\mathbb{N}\}$, tali che

 $\operatorname{diam}(V_i) < lpha\left(\{x_n \mid n \in \mathbb{N}\}
ight) + rac{arepsilon}{2} ext{ per ogni } i \in \{1,\dots,k\}.$

Per ogni $i \in \{1, \ldots, k\}$, sia allora $N_i = \{n \in \mathbb{N} : x_n \in V_i\}$.

Si ha
$$\bigcup_{i=1}^k N_i = \mathbb{N};$$

inoltre, fissato $i \in \{1, \ldots, k\}$, per ogni $m, n \in N_i$ si ha $x_m, x_n \in V_i$, dunque

$$d(x_m,x_n) \leq \operatorname{diam}(V_i) < lpha\left(\{x_n \mid n \in \mathbb{N}\}
ight) + rac{arepsilon}{2}$$

Ne segue che diam $\big(\{x_n\mid n\in N_i\}\big)\leq lpha\,(\{x_n\mid n\in\mathbb{N}\})+rac{arepsilon}{2}<lpha\,(\{x_n\mid n\in\mathbb{N}\})+arepsilon$, per ogni $i\in\{1,\ldots,k\}$.

Dimostrazione

Essendo $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ limitate per ipotesi, si ha

$$\alpha\left(\left\{x_n\mid n\in\mathbb{N}\right\}\right),\; \alpha\left(\bigcup\left\{y_n\mid n\in\mathbb{N}\right\}\right)<+\infty.$$

Si fissi ora $\varepsilon > 0$.

Poiché $\lim_n d(x_n,y_n)=0$, esiste $u\in\mathbb{N}$ tale che $d(x_n,y_n)<arepsilon$ per ogni $n\geq
u+1$.

Dalle osservazioni preliminari, segue l'esistenza di $N_1,\ldots,N_k\subseteq\mathbb{N}$ con $igcup_{i=1}^kN_i=\mathbb{N}$, tali che

 $\operatorname{diam}ig(\{x_n\mid n\in N_i\}ig)<lpha\left(\{x_n\mid n\in\mathbb{N}\}
ight)+arepsilon$ per ogni $i\in\{1,\ldots,k\}.$

Per ogni $i \in \{1,\ldots,k\}$, sia ora $Y_i = \{y_n \mid n \in N_i \; , \; n \geq \nu+1\}$.

Si ha $igcup_{n=1}^
u\{y_n\}\cupigcup_{i=1}^kY_i=\{y_n\mid n\in\mathbb{N}\}$;

infatti, per ogni $n \in \mathbb{N}$, se $n \leq \nu$ si ha $y_n \in \{y_n\}$, mentre se $n \geq \nu + 1$ si ha $y_n \in Y_i$, dove $i \in \{1, \dots, k\}$ è tale che $n \in N_i$ (che esiste in quanto N_1, \dots, N_k ricoprono \mathbb{N}).

Si ha anche che $\operatorname{diam}\{y_n\}=0$ per ogni $n\in\mathbb{N}$ con $n\leq\nu$;

fissato $i \in \{1, \ldots, k\}$, per ogni $m, n \in N_i$ con $m, n \geq \nu + 1$ si ha

 $d(y_m, y_n) \le d(y_m, x_m) + d(x_m, x_n) + d(x_n, y_n)$

Applicando due volte la disuguaglianza triangolare delle distanze

$$<rac{arepsilon}{3}+d(x_m,x_n)+rac{arepsilon}{3}=d(x_m,x_n)+rac{2arepsilon}{3}$$

Per costruzione di ν , essendo $m, n \ge \nu + 1$

 $\leq \operatorname{diam}\left(\left\{x_n \mid n \in N_i\right\}\right) + \frac{2\varepsilon}{3}$

Avendo supposto $m, n \in N_i$

$$0 Per costruzione di $N_i$$$

da cui segue che $\operatorname{diam}(Y_i) \leq \alpha \left(\{ x_n \mid n \in \mathbb{N} \} \right) + \varepsilon$, per ogni $i \in \{1, \dots, k\}$.

Allora, gli insiemi $\{y_1\},\ldots,\{y_\nu\},Y_1,\ldots,Y_k$ ricoprono $\{y_n\mid n\in\mathbb{N}\}$ e hanno diametro non superiore a $\alpha(\{x_n \mid n \in \mathbb{N}\}) + \varepsilon;$

ne segue che $\alpha(\{y_n \mid n \in \mathbb{N}\}) \leq \alpha(\{x_n \mid n \in \mathbb{N}\}) + \varepsilon$, da cui $\alpha(\{y_n \mid n \in \mathbb{N}\}) \leq \alpha(\{x_n \mid n \in \mathbb{N}\})$ per arbitrarietà di $\varepsilon > 0$.

Ragionando in maniera analoga, si ricava che $\alpha(\{y_n \mid n \in \mathbb{N}\}) \leq \alpha(\{x_n \mid n \in \mathbb{N}\});$

la tesi è allora acquisita.

P Lemma 28.2: Misura di non compattezza della valutazione di una famiglia

Siano (X, d) e (Y, ρ) due spazi metrici.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-uniformemente continue.

Si supponga $\mathcal{F}(x)$ limitato per ogni $x \in X$.

Sia $x \in X$.

Per ogni $\varepsilon>0$, esistono $\mathcal{F}_1,\ldots,\mathcal{F}_n\subseteq\mathcal{F}$ tali che $\bigcup_{i=1}^n\mathcal{F}_i=\mathcal{F}$ e diam $\left(\mathcal{F}_i(x)\right)<lpha\left(\mathcal{F}(x)\right)+arepsilon$ per ogni $i\in\{1,\ldots,n\}$.

Dimostrazione

Dalla definizione di $\alpha(\mathcal{F}(x))$, segue l'esistenza di $Y_1, \ldots, Y_n \subseteq \mathcal{F}(x)$ tali che $\bigcup_{i=1}^n Y_i = \mathcal{F}(x)$ e $\operatorname{diam}(Y_i) < \alpha(\mathcal{F}(x)) + \varepsilon$ per ogni $i \in \{1, \ldots, n\}$.

Per ogni $i \in \{1,\ldots,n\}$, sia allora $\mathcal{F}_i = \{f \in \mathcal{F}: f(x) \in Y_i\}$.

Si ha
$$\bigcup_{i=1}^n \mathcal{F}_i = \mathcal{F}$$
.

Infatti, per ogni $f \in \mathcal{F}$ si ha $f(x) \in \mathcal{F}(x)$;

essendo Y_1,\ldots,Y_n un ricoprimento di $\mathcal{F}(x)$ segue che $f(x)\in Y_i$, ossia $f\in\mathcal{F}_i$, per qualche $i\in\{1,\ldots,n\}$.

Si ha anche diam $(\mathcal{F}_i(x)) < \alpha(\mathcal{F}(x)) + \varepsilon$ per ogni $i \in \{1, \ldots, n\}$.

Infatti, $\mathcal{F}_i(x) \subseteq Y_i$ per definizione di \mathcal{F}_i ;

dunque, dalle proprietà del diametro e per costruzione di Y_1, \ldots, Y_n si ha che

 $\operatorname{diam} ig(\mathcal{F}_i(x) ig) \leq \operatorname{diam}(Y_i) < lpha ig(\mathcal{F}(x) ig) + arepsilon ext{, per ogni } i \in \{1,\dots,n\}.$

Proposizione 28.3: Uniforme continuità della misura di non compattezza

Siano (X, d) e (Y, ρ) due spazi metrici.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-uniformemente continue.

Si supponga $\mathcal{F}(x)$ limitato per ogni $x \in X$.

La funzione $\alpha(\mathcal{F}(\cdot)):X o\mathbb{R}_0^+$, definita ponendo $x\mapsto \alpha(\mathcal{F}(x))$ per ogni $x\in X$, è allora uniformemente continua.

Dimostrazione

Si fissi $\varepsilon > 0$.

Essendo le funzioni in \mathcal{F} equi-uniformemente continue, esiste $\delta > 0$ tale che $\rho \big(f(x), f(z) \big) < \frac{\varepsilon}{3}$ per ogni $x, z \in X$ con $d(x, z) < \delta$ e per ogni $f \in \mathcal{F}$.

Siano quindi $x, z \in X$ con $d(x, z) < \delta$.

Applicando il [Lemma 28.2] a $\mathcal{F}(z)$, esistono $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{F}$ tali che $\bigcup_{i=1}^n \mathcal{F}_i = \mathcal{F}$, e diam $(\mathcal{F}_i(z)) < \alpha(\mathcal{F}(z)) + \frac{\varepsilon}{3}$.

Si considerino ora $\mathcal{F}_1(x), \ldots, \mathcal{F}_n(x)$; questi ricoprono $\mathcal{F}(x)$ in quanto $\mathcal{F}_1, \ldots, \mathcal{F}_n$ ricoprono \mathcal{F} per costruzione.

Si vuole stimare diam $(\mathcal{F}_i(x))$ per ogni $i \in \{1, \dots, n\}$.

Fissato quindi $i \in \{1, \ldots, n\}$, siano $f, g \in \mathcal{F}_i$.

Si ha

$$hoig(f(x),g(x)ig)\leq
hoig(f(x),f(z)ig)+
hoig(f(z),g(z)ig)+
hoig(g(z),g(x)ig)$$

Applicando due volte la disuguaglianza triangolare delle distanze

$$0<rac{arepsilon}{3}+
hoig(f(z),g(z)ig)+rac{arepsilon}{3}=
hoig(f(z),g(z)ig)+rac{2}{3}arepsilon$$

Per costruzione di δ , essendo $d(x,z)<\delta$ ed essendo $f,g\in\mathcal{F}$

$$\operatorname{diam}\left(\mathcal{F}_i(z)\right) + rac{2}{3}arepsilon$$

Dalla definizione di diametro; essendo $\mathcal{F}(z)$ limitato per ipotesi, anche $\mathcal{F}_i(z)$ lo è; dunque, diam $(\mathcal{F}(z))$ è un valore reale

$$\alpha(\mathcal{F}(z)) + \frac{\varepsilon}{3} + \frac{2}{3}\varepsilon = \alpha(\mathcal{F}(z)) + \varepsilon$$

Per costruzione di \mathcal{F}_i

Dunque, diam $(\mathcal{F}_i(x)) < \alpha(\mathcal{F}(z)) + \varepsilon$ per ogni $i \in \{1, \ldots, n\}$.

Allora, $\mathcal{F}_1(x), \ldots, \mathcal{F}_n(x)$ costituiscono un ricoprimento finito di $\mathcal{F}(x)$, e hanno diametro minore di $\alpha(\mathcal{F}(z)) + \varepsilon$;

ne segue che $\alpha \big(\mathcal{F}(x) \big) \leq \alpha \big(\mathcal{F}(z) \big) + \varepsilon.$

Dall'arbitrarietà di $x,z\in X$ con $d(x,z)<\delta$, segue che vale anche

$$lphaig(\mathcal{F}(z)ig)\leq lphaig(\mathcal{F}(x)ig)+arepsilon;$$

pertanto, si ha $ig|lphaig(\mathcal{F}(x)ig)-lphaig(\mathcal{F}(z)ig)ig|<arepsilon.$

Proposizione 28.4: Maggiorazione della misura di non compattezza di una famiglia di integrali

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia \mathcal{F} una famiglia di funzioni da [a;b] in X, equi-continue ed equi-limitate.

Sia
$$\Gamma = \Bigl\{ \int_a^b f(t) \, dt \mid f \in \mathcal{F} \Bigr\}.$$

Si ha $lpha(\Gamma) \leq \int_a^b lphaig(\mathcal{F}(t)ig)\,dt$.

Q Osservazioni preliminari

- 1. Essendo equi-continue e definite su [a; b] compatto, le funzioni in \mathcal{F} sono equi-uniformemente continue ([Proposizione 5.1]).
- 2. \mathcal{F} è una famiglia di funzioni equi-uniformemente continue per il punto precedente: $\mathcal{F}(\mathbf{x})$ è limitato per ogni $\mathbf{x} \in X$, essendo $\mathcal{F}(X)$ limitato in quanto le funzioni in \mathcal{F} sono per ipotesi equi-limitate; per la [Proposizione 28.2], $\alpha(\mathcal{F}(\cdot))$ è una funzione uniformemente continua, dunque continua, dunque integrabile secondo Riemann.

Allora, risulta ben definito l'integrale $\int_a^b \alpha(\mathcal{F}(t)) dt$.

3. Sia $f:[a;b] \to \mathbb{R}$ una funzione continua;

f è uniformemente continua in quanto continua su [a; b] compatto.

Fissato $\varepsilon > 0$, esiste allora $\delta > 0$ tale che $|f(t) - f(s)| < \frac{\varepsilon}{b-a}$,

per ogni $t, s \in [a; b]$ con $|t - s| < \delta$.

Nella dimostrazione dell'integrabilità secondo Riemann di funzioni continue a valori reali, si deduce che, data una decomposizione $\Delta=(t_1,\ldots,t_{n+1})$ di [a;b] con $\max_{1\leq i\leq n}(t_{i+1}-t_i)<\delta,$ si ha allora

$$\left|\sum_{i=1}^n (t_{i+1}-t_i)f(t_i) - \int_a^b f(t)\,dt
ight| < arepsilon.$$

Data una famiglia $\mathcal{G}\subseteq C^0([a;b],\mathbb{R})$ di funzioni equi-continue, si ha allora che per ogni $\varepsilon>0$ esiste $\delta>0$ tale che, per

ogni
$$\Delta=(t_1,\ldots,t_{n+1})\in\mathcal{D}[a;b]$$
 con $\max_{1\leq i\leq n}(t_{i+1}-t_i)<\delta$, valga $\left|\sum_{i=1}^n(t_{i+1}-t_i)f(t_i)-\int_a^bf(t)\,dt
ight| per ogni $f\in\mathcal{G}$.$

4. Sia $u:X \to \mathbb{R}$ una funzione uniformemente continua.

Allora, la famiglia $u \circ \mathcal{F} = \{u \circ f \mid f \in \mathcal{F}\}$ è costituita da funzioni equi-continue.

Infatti, si fissi $\varepsilon > 0$.

Sia $\rho > 0$ tale che $|u(\mathbf{x}) - u(\mathbf{y})| < \varepsilon$ per ogni $\mathbf{x}, \mathbf{y} \in X$ con $||\mathbf{x} - \mathbf{y}|| < \rho$;

sia $\delta > 0$ tale che $||f(t) - f(s)|| < \rho$ per ogni $t, s \in [a; b]$ con $|t - s| < \delta$ e per ogni $t \in \mathcal{F}$.

Allora, per ogni $t, s \in [a; b]$ con $|t - s| < \delta$ e per ogni $f \in \mathcal{F}$, si ha

 $\big|u\big(f(t)\big)-u\big(f(s)\big)\big|<\varepsilon.$

Si consideri la famiglia di funzioni reali $\mathcal{G} = \{\|f(\cdot) - g(\cdot)\| : f, g \in \mathcal{F}\};$ esse sono equi-continue.

Infatti, essendo le funzioni in \mathcal{F} equi-uniformemente continue per le osservazioni preliminari, fissato $\varepsilon > 0$ sia $\delta > 0$ tale che $\|f(t) - f(s)\| < \frac{\varepsilon}{2}$ per ogni $t, s \in \mathbb{R}$ con $|t - s| < \delta$ e per ogni $f \in \mathcal{F}$.

per ogni $t,s\in [a;b]$ con $|t-s|<\delta$ e per ogni $f,g\in \mathcal{F}$, si ha allora

$$\begin{aligned} & \left| \|f(t) - g(t)\| - \|f(s) - g(s)\| \right| \\ & \leq \left\| f(t) - g(t) - \left(f(s) - g(s) \right) \right\| & \text{Dalla seconda disuguaglianza triangolare delle norme} \\ & = \left\| f(t) - f(s) + g(s) - g(t) \right\| \\ & \leq \left\| f(t) - f(s) \right\| + \left\| g(s) - g(t) \right\| & \text{Dalla sub-additività delle norme} \\ & < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon & \text{Per costruzione di δ, essendo $\$} \end{aligned}$$

Si fissi ora $\varepsilon > 0$.

La famiglia \mathcal{G} è stata vista essere costituita da funzioni equi-continue.

Inoltre, $\alpha(\mathcal{F}(\cdot))$ è uniformemente continua per le osservazioni preliminari; sempre per le osservazioni preliminari, si ha allora che anche la famiglia $\alpha(\mathcal{F}(\cdot)) \circ \mathcal{F}$ è costituita da funzioni equi-continue.

Facendo ancora uso delle osservazioni preliminari, esiste perciò $\Delta=(t_1,\ldots,t_{n+1})\in\mathcal{D}[a;b]$ dimodoché

$$\max\left\{\left|\sum_{i=1}^n(t_{i+1}-t_i)\|f(t_i)-g(t_i)\|-\int_a^b\|f(t)-g(t)\|\,dt\right|,\left|\sum_{i=1}^n(t_{i+1}-t_i)\alpha\big(\mathcal{F}(t_i)\big)-\int_a^b\alpha\big(\mathcal{F}(t)\big)\,dt\right|\right\}<\frac{\varepsilon}{4},\text{per ogni}\\f,g\in\mathcal{F}.$$

Fissato
$$i \in \{1, \ldots, n+1\}$$
, applicando il [Lemma 28.2] a $\mathcal{F}(t_i)$, esistono $\mathcal{F}_{i,1}, \ldots, \mathcal{F}_{i,k_i} \subseteq \mathcal{F}$ con $\bigcup_{j=1}^{k_i} \mathcal{F}_{i,j} = \mathcal{F}$, tali che diam $\left(\mathcal{F}_{i,j}(t_i)\right) < \alpha\left(\mathcal{F}(t_i)\right) + \frac{\varepsilon}{2(b-a)}$ per ogni $j \in \{1, \ldots, k_i\}$.

Sia
$$\mathcal{D}=\prod\limits_{i=1}^n\{1,\ldots,k_i\}=\{(j_1,\ldots,j_n)\in\mathbb{N}^n: orall i\in\{1,\ldots,n\},\ j_i\leq k_i\}.$$

Si considerino gli insiemi non vuoti del tipo $\mathcal{F}_{1,j_1} \cap \mathcal{F}_{2,j_2} \cap \cdots \cap \mathcal{F}_{n,j_n}$ al variare di $(j_1,\ldots,j_n) \in \mathcal{D}$; si osserva intanto che questi ricoprono \mathcal{F} , in quanto $\bigcup_{j=1}^{k_i} \mathcal{F}_{i,j} = \mathcal{F}$ per ogni $i \in \{1,\ldots,n\}$ per costruzione.

Fissato ora $(j_1,\ldots,j_n)\in\mathcal{D}$, siano $f,g\in\mathcal{F}_{1,j_1}\cap\mathcal{F}_{2,j_2}\cap\cdots\cap\mathcal{F}_{n,j_n}$; si ha

$$\left\|\int_a^b f(t)\,dt - \int_a^b g(t)\,dt
ight\| = \left\|\int_a^b f(t) - g(t)\,dt
ight\|$$

 $\leq \int_a^b \|f(t) - g(t)\| dt$

$$<\sum_{i=1}^n (t_{i+1}-t_i)\|f(t_i)-g(t_i)\|+rac{arepsilon}{4}$$

$$<\sum_{i=1}^n (t_{i+1}-t_i) \left(lphaig(\mathcal{F}(t_i)ig) + rac{arepsilon}{2(b-a)}
ight) + rac{arepsilon}{4}$$

Per linearità dell'integrale di Riemann ([Proposizione 21.5])

Per maggiorazione della norma dell'integrale di Riema ([Proposizione 21.6])

Per costruzione di Δ

Avendo supposto $f,g\in\mathcal{F}_{1,j_1}\cap\mathcal{F}_{2,j_2}\cap\cdots\cap\mathcal{F}_{n,j_n}$ ogni $i\in\{1,\ldots,n\}$ si ha allora $\|f(t_i)-g(t_i)\|\leq \mathrm{diam}(\mathcal{F}_{i,j_i}(t_i))<lpha(\mathcal{F}(t_i))+rac{1}{2}$

 $\|f(t_i)-g(t_i)\| \leq \operatorname{diam}(\mathcal{F}_{i,j_i}(t_i)) < lpha(\mathcal{F}(t_i)) + rac{1}{2}$, per costruzione dei $\mathcal{F}_{i,j}$

$$=\sum_{i=1}^n (t_{i+1}-t_i)\,lphaig(\mathcal{F}(t_i)ig)+rac{arepsilon}{2}+rac{arepsilon}{4}=\sum_{i=1}^n (t_{i+1}-t_i)\,lphaig(\mathcal{F}(t_i)ig)+rac{3arepsilon}{4}$$

$$<\int_a^b lphaig(\mathcal{F}(t)ig)\,dt + rac{arepsilon}{4} + rac{3arepsilon}{4} = \int_a^b lphaig(\mathcal{F}(t)ig)\,dt + arepsilon$$

Per costruzione di Δ

Allora, la famiglia $\left\{ \left\{ \int_a^b f(t) dt \mid f \in \mathcal{F}_{1,j_1} \cap \mathcal{F}_{2,j_2} \cap \cdots \cap \mathcal{F}_{n,j_n} \right\} \mid (j_1,\ldots,j_n) \in \mathcal{D} \right\}$ è un ricoprimento finito di Γ , essendo $\left\{ \mathcal{F}_{1,j_1} \cap \mathcal{F}_{2,j_2} \cap \cdots \cap \mathcal{F}_{n,j_n} \mid (j_1,\ldots,j_n) \in \mathcal{D} \right\}$ un ricoprimento finito di \mathcal{F} .

Inoltre, per quanto appena osservato si ha che diam $\left(\left\{\int_a^b f(t) dt \mid f \in \mathcal{F}_{1,j_1} \cap \mathcal{F}_{2,j_2} \cap \cdots \cap \mathcal{F}_{n,j_n}\right\}\right) \leq \int_a^b \alpha \left(\mathcal{F}(t)\right) dt + \varepsilon$ per ogni $(j_1, \ldots, j_n) \in \mathcal{D}$.

Dalla definizione di $\alpha(\Gamma)$ viene allora che $\alpha(\Gamma) \leq \int_a^b \alpha(\mathcal{F}(t)) \, dt + \varepsilon;$

dall'arbitrarietà di $\varepsilon > 0$, segue infine che

 $lpha(\Gamma) \leq \int_a^b lphaig(\mathcal{F}(t)ig)\,dt$, come si voleva.

Proposizione 28.5: Lemma di Gronwall

Sia $[a;b) \subseteq \mathbb{R}$, con $b \in \mathbb{R} \cup \{+\infty\}$.

Sia $f:[a;b) o\mathbb{R}$ una funzione continua.

Si supponga che esistano $\beta, \gamma \in \mathbb{R}$, tali che

 $f(t) \leq eta + \gamma \int_a^b f(au) \, d au$ per ogni $t \in [a;b)$.

Allora, $f(t) \leq \beta e^{\gamma(t-a)}$ per ogni $t \in [a;b)$.

🔁 Corollario 28.6: Condizione sufficiente affinché una funzione continua nonnegativa sia identicamente nulla

Sia $[a;b)\subseteq\mathbb{R}$, con $b\in\mathbb{R}\cup\{+\infty\}$.

Sia $f:[a;b) o \mathbb{R}$ una funzione continua e nonnegativa.

Si supponga che esista $\gamma \in \mathbb{R}$ tale che $f(t) \leq \gamma \int_a^b f(\tau) \, d au$ per ogni $t \in [a;b)$.

Allora, f(t)=0 per ogni $t\in [a;b)$.

Dimostrazione

Per la [Proposizione 28.5], $f(t) \leq 0e^{\gamma(t-a)} = 0$ per ogni $t \in [a;b)$.

Essendo f nonnegativa per ipotesi, si ha allora che f(t)=0 per ogni $t\in [a;b)$.

Proposizione 28.7: Limitatezza dell'immagine di una funzione uniformemente continua su un convesso limitato

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia (Y, d) uno spazio metrico.

Sia $A \subseteq X$ convesso e limitato.

Sia $f: A \rightarrow Y$ una funzione uniformemente continua.

f(A) è limitato.

Dimostrazione

Per uniforme continuità di f, in corrispondenza a $\varepsilon = 1$ esiste $\delta > 0$ tale che $d(f(\mathbf{x}), f(\mathbf{z})) < 1$ per ogni $\mathbf{x}, \mathbf{z} \in A$ con $\|\mathbf{x} - \mathbf{z}\| < \delta$.

Sia d = diam(A); esso è un valore reale in quanto A è limitato per ipotesi.

Si fissi ora $\mathbf{x}_0 \in A$.

Sia $\mathbf{z} \in A$;

per convessità di A, si ha che $\mathbf{x}_0 + \frac{i}{n}(\mathbf{y} - \mathbf{x}_0) \in A$ per ogni $n \in \mathbb{N}$ e per ogni $i \in \{0, \dots, n\}$.

Sia $n>rac{d}{\delta}$, e sia $\mathbf{z}_i=\mathbf{x}_0+rac{i}{n}(\mathbf{z}-\mathbf{x}_0)$ per ogni $i\in\{0,\dots,n\};$

per ogni $i \in \{0, \ldots, n-1\}$ si ha

 $\|\mathbf{z}_{i+1} - \mathbf{z}_i\| = \frac{1}{n} \|\mathbf{z} - \mathbf{x}_0\|$ Per legge degli \mathbf{z}_i

 $<\delta$ per costruzione di n

Si ha allora

$$dig(f(\mathbf{z}),f(\mathbf{x}_0)ig)=dig(f(\mathbf{z}_n),f(\mathbf{z}_0)ig)$$
 Per legge degli \mathbf{z}_i $\leq \sum\limits_{i=0}^{n-1}dig(f(\mathbf{z}_i),f(\mathbf{z}_{i+1})ig)$ Applicando la disc

$$\leq \sum\limits_{i=0}^{n-1} dig(f(\mathbf{z}_i),f(\mathbf{z}_{i+1})ig)$$

Applicando la disuguaglianza triangolare n-1 volte

$$<\sum_{i=0}^{n-1}1=n$$

Per costruzione di δ , avendo osservato che $\|\mathbf{z}_{i+1} - \mathbf{z}_n\| < \delta$ per ogni

$$i \in \{0,\dots,n-1\}$$

Per arbitrarietà di $\mathbf{z} \in A$, si ha allora $f(A) \subseteq B(f(\mathbf{x}_0), n)$; dunque, f(A) è limitato.

\mathbb{H} Definizione: Funzione α -Lipschitziana

Siano (X, d) e (Y, ρ) due spazi metrici.

Sia $f: X \to Y$ una funzione.

Sia L > 0.

f si dice α -Lipschitziana di costante L, quando $\alpha(f(A)) \leq L \cdot \alpha(A)$, per ogni $A \subseteq X$ limitato.

Sia (X, d) uno spazio metrico.

Sia $(Y, \|\cdot\|)$ uno spazio normato.

Sia f:X o Y una funzione totalmente limitata

Sia g:X o Y una funzione Lipschitziana, di costante L>0.

Allora, f+g è α -Lipschitziana, di costante L.

Q Osservazioni preliminari

• Sia (X, d) uno spazio metrico. Siano $A, B \subseteq X$, con $B \subseteq A$.

Allora,
$$\alpha(B) \leq \alpha(A)$$
.

Infatti, se A non è limitato, si ha $\alpha(A)=+\infty$, e la proprietà è acquisita.

Si supponga ora A limitato; dunque, $\alpha(A) \in \mathbb{R}^+_0$.

Si fissi $\varepsilon > 0$;

per definizione di lpha(A), esistono $A_1,\ldots,A_n\subseteq A$ tali che $igcup_{i=1}^nA_i=A$, e $\mathrm{diam}(A_i)<lpha(A)+arepsilon$ per ogni $i\in\{1,\ldots,n\}$

•

Sia ora $B_i=A_i\cap B$ per ogni $i\in\{1,\ldots,n\};$ si ha che $\bigcup_{i=1}^n B_i=B$, e $\operatorname{diam}(B_i)\leq\operatorname{diam}(A_i)<lpha(A)+arepsilon$ per ogni $i\in\{1,\ldots,n\}.$

Ne viene che $\alpha(B) \leq \alpha(A) + \varepsilon$, da cui $\alpha(B) \leq \alpha(A)$ per arbitrarietà di $\varepsilon > 0$.

• Sia $(Y, \|\cdot\|)$ uno spazio normato. Siano $A, B \subseteq X$.

Si ha
$$\alpha(A+B) \leq \alpha(A) + \alpha(B)$$
.

Infatti, se almeno uno tra A e B non è limitato, si ha $\alpha(A) + \alpha(B) = +\infty$, e la proprietà è acquisita. Si suppongano ora A e B entrambi limitati; dunque, $\alpha(A), \alpha(B) \in \mathbb{R}_0^+$.

Si fissi $\varepsilon > 0$;

per definizione di $\alpha(A)$, esistono $A_1,\ldots,A_n\subseteq A$ tali che $\bigcup_{i=1}^nA_i=A$, e $\mathrm{diam}(A_i)<\alpha(A)+rac{arepsilon}{2}$ per ogni $i\in\{1,\ldots,n\}$.

per definizione di $\alpha(B)$, esistono $B_1, \ldots, B_m \subseteq B$ tali che $\bigcup_{i=1}^n B_i = B$, e diam $(B_i) < \alpha(B) + \frac{\varepsilon}{2}$ per ogni $i \in \{1, \ldots, m\}$.

Sia considerino ora gli insiemi del tipo A_i+B_j , per ogni $i\in\{1,\ldots,n\}$ e per ogni $j\in\{1,\ldots,m\}$; si ha che $\bigcup_{\substack{1\leq i\leq n\\1\leq j\leq m}}A_i+B_j=A+B.$

Inoltre, fissati $i\in\{1,\ldots,n\}$ e $j\in\{1,\ldots,m\}$, per ogni $a_1,a_2\in A_i$ e per ogni $b_1,b_2\in B_j$ si ha

$$\|a_1 + b_1 - (a_2 + b_2)\| \le \|a_1 - a_2\| + \|b_1 - b_2\|$$

 $\le \operatorname{diam}(A_i) + \operatorname{diam}(B_j) < \alpha(A) + \alpha(B) + \varepsilon;$

pertanto, si ha $\operatorname{diam}(A_i+B_j) \leq \alpha(A) + \alpha(B) + \varepsilon$ per ogni $i \in \{1,\ldots,n\}$ e per ogni $j \in \{1,\ldots,m\}$.

Ne viene che $\alpha(A+B) \leq \alpha(A) + \alpha(B) + \varepsilon$, da cui $\alpha(A+B) \leq \alpha(A) + \alpha(B)$ per arbitrarietà di $\varepsilon > 0$.

• Siano (X, d) e (Y, ρ) due spazi metrici.

Sia $f: X \to Y$ una funzione Lipschitziana, di costante L > 0.

Sia $A \subseteq X$ limitato.

Si ha $\alpha(f(A)) \leq L \cdot \alpha(A)$.

Infatti, essendo $\alpha(A)$ un valore reale in quanto A è limitato, dalla definizione si ha che esistono $A_1, \ldots, A_n \subseteq A$ tali che

$$igcup_{i=1}^n A_i = A,$$
 e $\operatorname{diam}(A_i) < lpha(A) + rac{arepsilon}{L}$ per ogni $i \in \{1, \dots, n\}.$

Si considerino ora gli insiemi $f(A_1), \ldots, f(A_n)$;

si ha che $igcup_{i=1}^n f(A_i) = f(A)$.

Inoltre, fissato $i \in \{1, \dots, n\}$, per ogni $a, b \in A_i$ si ha

 $dig(f(a),f(b)ig) \leq L \cdot d(a,b)$

 $\leq L \cdot \operatorname{diam}(A_i) < L\left(lpha(A) + rac{arepsilon}{L}
ight) = L \cdot lpha(A) + arepsilon;$

pertanto, si ha $\operatorname{diam} ig(f(A_i)ig) \leq L \cdot lpha(A) + arepsilon$ per ogni $i \in \{1, \dots, n\}$.

Ne viene che $lphaig(f(A)ig) \leq L \cdot lpha(A) + arepsilon$, da cui $lphaig(f(A)ig) \leq L \cdot lpha(A)$ per arbitrarietà di arepsilon > 0.

Dimostrazione

Sia $A \subseteq X$ limitato.

Si ha che

$$lphaig((f+g)(A)ig)$$
 $\leq lphaig(f(A)+g(A)ig)$ Dalle osservazioni preliminari, in quanto $(f+g)(A)\subseteq f(A)+g(A)$
 $\leq lphaig(f(A)ig)+lphaig(g(A)ig)$ Dalle osservazioni preliminari
 $=lphaig(g(A)ig)$ $lphaig(f(A)ig)=0$ in quanto $f(A)$ è totalmente limitato per ipotesi
 $\leq L\cdotlpha(A)$ Dalle osservazioni preliminari, in quanto g è Lipschitiziana di costante L

La tesi è dunque acquisita.