Machine Learning Models

Gabriel Vasconcelos

June 15, 2018

Outline

- Framework
- Complete Subset Regression
- Shrinkage and Regularization
- Bayesian VAR
- Regression Trees
- ► Tree Based Algorithms
- Artificial Neural Networks

Framework

Most of the models preseted here will follow the framework below:

$$y_{t+h} = f(x_t) + \varepsilon_{t+h}$$

- where:
 - \triangleright y_t is the dependent (response) variable,
 - \triangleright x_t are the independent variables (controls, characteristics),
 - \triangleright ε_{t+h} is an error term,
 - $f(\cdot)$ is a mapping function that is a linar function for most models and a nonlinear function for Trees and Neural Networks.

Framework

- ▶ Most models use the **direct forecasting** framework. In this case we estimate one model for each forecasting horizon *h*.
- ▶ The recursive forecasting is used only in the VAR framework, where a single model is estimated of y_{t+1} on y_t, \ldots, y_{t-j} and the forecasts are iterated until the desired horizon.
- ▶ The *y*^t in the VAR framework is not the response cariable alone, but all the variables in the VAR system.

Complete Subset Regression

- The complete subset regression is a combination of small linear models.
- ▶ Suppose we have K independent variables in x_t , the complete subset regression is estimated following this steps:
 - 1. Set k < K as the number of variables in each linear regression,
 - 2. Estimate all possible combinations of models with k variables,
 - 3. Compute the forecast for each model and take their average as the final forecast.

Complete Subset Regression

- ► There are some minor ajustments which can be made in the CSR:
 - 1. One may chose to use fixed controls in each regression, for example, an autorregressive component and seasonal dummies.
 - 2. The number of variables *K* may be to big for the model to be computationaly feasible. In this case one can use a pre-testing to select a smaller number of variables.
 - Use the LASSO to select the variables,
 - Use t-statistics to select the variables based on individual regressions of each variable on y_{t+h} and the fixed controls.

Complete Subset Regression

- ► The CSR is simple but it has presented some good results,
- It is very robust to overfitting,
- ▶ It provides good forecasts when the data is noisy and the relation between the variables is linear.

Shrinkage and Regularization

Models that are estimated by minimizing a Loss function L plus a penalty function P, which penalizes a set o parameters θ .

$$\min_{\theta} L(\theta; y_{t+h}, x_t) + P(\theta)$$

▶ Loss function: Mostly the quadratic loss, but there are also possibilities such as the ℓ_1 loss function which minimizes the absolute value of the errors.

Quadratic loss:

$$\sum_{t=1}^{T} (y_{t+h} - \beta' x_t)^2$$

ℓ^2 Penalty, the Ridge model

▶ The Ridge estimator is defined as:

$$\arg\min_{\beta} \left[\sum_{t=1}^{T} (y_{t+h} - \beta' x_t)^2 + \lambda \sum_{k=j}^{q} \beta_j^2 \right]$$

where the second term in the equation above is the penalty function. λ is the regularization parameter which controls how much we penalize the β s.

► The Ridge penalizes the squared value of the coefficients. Less relevant variables are shrunk to zero but they will hardly be exactly zero.

ℓ^2 Penalty, the Ridge model

The Ridge has an analytical solution:

$$\hat{\beta} = (X'X + \lambda I)^{-1}X'y$$

where, $y = (y_{1+h}, \dots, y_{T+h})'$ and $X = (x_1, \dots, x_T)'$.

ℓ^1 Penalty, the LASSO model

Some notation:

- ▶ $x_i = (x'_{i,S}, x'_{i,S^c})'$, where $x'_{i,S}$ represents the relevant variables and x'_{i,S^c} the irrelevant ones.
- $\beta = (\beta_S', \beta_{S^c}')'.$
- $\hat{\Sigma} = n^{-1} X' X$

ℓ^1 Penalty, the LASSO model

► The Least Absolute Shrinkage and Selection Operator (LASSO) is defined as:

$$arg \min_{eta} \left[\sum_{t=1}^{T} (y_{t+h} - eta' x_t)^2 + \lambda \sum_{k=j}^{q} |eta_j| \right]$$

- "Irrelevant" variables are set exactly to 0.
- ▶ Does not have analytical solution. An algorithm is required.
- Cycling coordinate descent algorithm and the soft-thresholding operator

LASSO and Ridge in one picture

Figure 1: Lasso and Ridge Regularization

LASSO and Ridge regularization path

Figure 2: Lasso and Ridge Regularization Path

LASSO: Properties

- Can handle many more variables than observations,
- Under some restrictive conditions can select exactly the correct set of variables,
- Under less restrictive conditions has variable screening, i. e. selects the relevant variables butt some irrelevant variables are also selected,
- Not consistent, in general,
- Biased estimators for the non-zero parametes.

- ► This is an important condition for the LASSO to have variable selection consistency.
- ▶ It dictates how the relevant variables may be correlated with irrelevant variables.

Strong Version: $\exists \eta > 0$ such that:

$$\left|\hat{\Sigma}_{S^cS}\hat{\Sigma}_{SS}^{-1}\mathsf{sign}(\beta_S)\right| \leq 1 - \eta$$

Week Version:

$$\left|\hat{\Sigma}_{\mathcal{S}^c\mathcal{S}}\hat{\Sigma}_{\mathcal{S}\mathcal{S}}^{-1}\mathsf{sign}(eta_{\mathcal{S}})
ight|\leq 1$$

Imagine a model with only 10 candidate variables where only the first five variables are relevant and consider the two covariance designs below:

Figure 4: Regularization path

adaptive LASSO (adaLASSO)

The adaLASSO estimator is defined as:

$$\arg\min_{\beta} \left[\sum_{t=1}^{T} (y_{t+h} - \beta' x_t)^2 + \lambda \sum_{k=j}^{q} w_j |\beta_j| \right]$$

where $w_j = |\beta_j^*|^{-\tau}$ and β_j^* are coefficients from a first step model.

► The first step model is normally the LASSO but other models such as Ridge, Elastic-Net and OLS are admitted.

adaptive LASSO (adaLASSO)

- Consistent under milder conditions than the LASSO,
- Consistent estimator for the non-zero parameters,
- ► Har the oracle property under very general conditions.

Figure 5: LASSO and adaLASSO

Forecasting Issue

- ▶ Is the adaLASSO better than the LASSO for forecasting?
- ► The answer is *NO*!
- There is absolutely nothing that ensures that the adaLASSO produces better out-of-sample forecasts. The results will deppend on the data.

Choosing λ

- ▶ There is not a definitive way to choose λ . The process is usualy data-driven.
- Usual approaches:
 - ► Information criteria, such as the Bayesian Information Criterion (BIC),
 - ► Cross-Validation.

 ℓ^1 and ℓ^2 regularizations combined: The Elastic-Net

▶ The Elastic-net estimator is defined as:

$$\arg\min_{\beta} \left[\sum_{t=1}^{T} (y_{t+h} - \beta' x_t)^2 + (1 - \alpha) \lambda \sum_{k=j}^{q} \beta_j^2 + \alpha \lambda \sum_{k=j}^{q} |\beta_j| \right]$$

- It combines the LASSO and the Ridge penalties.
- ▶ Shrinks "irrelevant" variables exactly to zero.

 ℓ^1 and ℓ^2 regularizations combined: The Elastic-Net

Figure 6: Ridge, LASSO and Elastic-Net

Consider the following VAR model:

$$\mathbf{y_t} = \mathbf{c} + \sum_{k=1}^{p} \mathbf{A}_k \mathbf{y_{t-k}} + \varepsilon_t$$

where, \mathbf{y}_t is an n-dimensional vector with the VAR variables, \mathbf{c} is an n-dimensional vector of constants, \mathbf{A}_k are the coefficient matrixs and $\boldsymbol{\varepsilon}_t$ is an n-dimensional vector of gaussian and covariance matrix $E[\boldsymbol{\varepsilon}_t \boldsymbol{\varepsilon}_t'] = \Sigma$. The equation above may be written as:

$$m{Y} = m{X}m{A} + m{\epsilon}$$

,

where,
$$\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_t)'$$
, $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_t)'$ with $\mathbf{y}_t = (y_{1,t}, \dots, y_{n,t})'$, $\mathbf{X}_t = (1, \mathbf{y}'_{t-1}, \dots, \mathbf{y}'_{t-\rho})'$, $\mathbf{A} = (c, \mathbf{A}_1, \dots, \mathbf{A}_p)'$ and $\epsilon = (\varepsilon_1, \dots \varepsilon_T)'$.

The LBVAR inflates Y and X with dummy observations to replicate the Normal-Inverse-Wishart prior, which has the following moments:

$$E[(\boldsymbol{A}_k)_{i,j}] = \left\{ \begin{array}{ll} \delta_i, & j = i, k = 1 \\ 0, & \text{otherwise} \end{array} \right., \quad V[(\boldsymbol{A}_k)_{i,j}] = \left\{ \begin{array}{ll} \frac{\lambda^2}{k^2}, & j = i \\ \frac{\lambda^2 \sigma_i^2}{k^2 \sigma_j^2}, & \text{c.c.} \end{array} \right.$$

- $ightharpoonup \lambda$ controls the relative importance between the prior and the data:
 - $\lambda = 0$: posterior equals prior and the data is ignored,
 - $\lambda = \infty$: Model ignores the prior and we have the OLS estimates

The Normal-Inverse-Wishart prior is defined as:

$$\textit{vec}(\textbf{A})|\Sigma \sim \textit{N}(\textit{vec}(\textbf{A}_{\textbf{0}}), \Sigma \otimes \Omega_{0})$$

,

$$\Sigma \sim iW(\mathbf{S}_0, \alpha_0)$$

,

where \mathbf{A}_0 , Ω_0 , \mathbf{S}_0 and α_0 hyperparameters chosen to obtain the moments from the previous slide and Σ is the Minnesota prior covariance matrix.

The dummy observations follow the expressions below:

$$\boldsymbol{Y}_{d} = \begin{pmatrix} diag(\delta_{1}\sigma_{1}, \dots, \delta_{n}\sigma_{n})/\lambda \\ - & - & \underline{0}_{n(p-1)\times n} \\ - & - & \underline{0}_{1}\underline{o}_{1}(\underline{\sigma}_{1}, \dots, \underline{\sigma}_{n}) \\ - & - & \underline{0}_{1\times n} \end{pmatrix}, \boldsymbol{X}_{d} = \begin{pmatrix} - & \underline{J}_{p} \otimes diag(\sigma_{1}, \dots, \sigma_{n})/\lambda \\ - & - & \underline{0}_{n\times np} \\ - & - & - & \underline{0}_{n\times np} \\ - & - & - & \underline{0}_{1\times np} \end{pmatrix}$$

where, $J_p = diag(1, 2, ..., p)$ and ρ is a small value. σ_i^2 is the variance of the ith variable.

Finally, we plug the dummy observations in the data:

- $\bullet_* = (\epsilon' \epsilon'_d)'.$

Resulting on the following VAR model:

$$oldsymbol{Y}_* = oldsymbol{X}_*oldsymbol{A} + oldsymbol{\epsilon}_*$$

The model posterior will be:

$$\textit{vec}(\pmb{A})|\Sigma, \pmb{Y} \sim \textit{N}(\textit{vec}(\tilde{\pmb{A}}), \Sigma \otimes (\pmb{X}_*'\pmb{X}_*)^{-1})$$

$$\Sigma | \mathbf{Y} \sim iW(\tilde{\Sigma}, T_d + 1 + T - np)$$

where $\tilde{\mathbf{A}} = (\mathbf{X}_*' \mathbf{X}_*)^{-1} \mathbf{X}_*' \mathbf{Y}_*$, which is the OLS estimator of the inflated VAR and the posterior mean of the Minnesota prior VAR.

The posterior covariance matrix will deppend on:

$$\tilde{\Sigma} = (Y_* - X_* \tilde{A})' (Y_* - X_* \tilde{A}).$$

Regression Trees - Intuition

- A regular regression tree is a nonparametric model that approximates a nonlinear function with local predictions using recursive partitioning of the space of the predictor variables.
- ▶ A tree may be represented by a graph as in the left side of figure below, which is equivalent as the partitioning in the right side of the figure for this bi-dimensional case.

Regression Trees

Let $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,m})'$ be a set of m explanatory variables for the response variable y_i . The relation between y_i and \mathbf{x}_i is mapped by a unknown function f such that:

$$y_i \approx f(\mathbf{x_i}) + \varepsilon_i, \quad i = 1, \ldots, N$$

- A Regression Tree model with K terminal nodes (leaves) is a recursive partitioning model that approximates $f(\cdot)$ by a general nonlinear function $H(\mathbf{x}_i, \boldsymbol{\psi})$, where $\boldsymbol{\psi}$ is a vector of parameters.
- ▶ $H(\cdot)$ is a piecewise function with K subregions that are orthogonal to the axis of the predictor variables.

Regression Trees

Each subregion represents one terminal node, and they are defined by $k_j(\theta_j)$, $j=0,\ldots,K-1$. The parameter θ_j defines each subregion such that:

$$f(\mathbf{x}_i) = \sum_{j=0}^{K-1} \beta_j I_j(\mathbf{x}_i; \boldsymbol{\theta}_j)$$

where $l_j(\mathbf{x}_i; \boldsymbol{\theta}_j)$ is an indicator function such that:

$$I_j(\mathbf{x}_i; \mathbf{\theta}_j) = \left\{ egin{array}{ll} 1 & ext{if } \mathbf{x}_i \in k_j(\mathbf{\theta}_j), \\ 0 & ext{otherwise.} \end{array}
ight.$$

Regression Trees

- ► Each new partition in the tree is created by solving an optimization problem.
- ► The objective is to find the partition that has the biggest contribution in reducing the model's squared error.
- ► The optimal partition is found by searching every possible variable and observation.

Random Forests

- ► Random Forest is an algorithm that combines regression trees with bootstrap aggregating (Bagging) techniques.
- Regression trees alone are know to be very unstable models. A small change in the data may drastically change the predicted values.
- ▶ Bagging benefits from this instability to generate stable models.

Random Forests

The Random Forest estimation follows these steps:

- ▶ 1. Generate a bootstrap sample *b* from the data with replacement. Normally *b* has the same number of observations as the data.
- 2. In the bootstrap sample, grow a regression tree (normally big trees).
- ▶ 3. Repeat steps 1) and 2) B times and compute the forecast as the average forecast across all estimated trees.
- ► OBS: In every new node in a tree it is usual to select only a subset of the potential variables to determine where to make the split. This adds more instability to individual trees but the final Random Forest results improve.

Boosting

- Boosting is an iterative algorithm that combines models in an aditive way.
- Although the algorithm is very general and accepts several types of models, the most usual is to use boosting on regression trees.
- ► Has the advantage of growing smaller trees than the Random Forest, which makes the algorithm faster in some cases.
- More succetible to over-fitting if poorly tuned than the Random Forest.
- ▶ More parameters to tune than the Random Forest.

Boosting

The Boosting algorithm follows these steps:

- ▶ Set $\phi_0 = \bar{y}$ and for m = 1, ..., M do:
- 1. Estimate the residuals $u_m = y \phi_m$,
- 2. Grow a regression tree in $u_{i,m} = H_m(\mathbf{x}_t, \boldsymbol{\psi}_m) + \varepsilon$,
- 3. Make $\hat{\rho}_m = arg \min_{\rho} \sum_{t=1}^{T} [u_{t,m} \rho H_m(\mathbf{x}_t, \psi_m)]^2$
- 4. Update $\phi_{m+1} = \phi_m + v \rho H_m(\mathbf{x}, \psi_m)$

Artificial Neural Networks

- Nonlinear models,
- Regression and classification,
- Components:
 - Input layer,
 - ▶ Weights w,
 - Activation Function,
 - ► Hidden layers,
 - Output layer.

Artificial Neural Networks

Figure 8: General ANN

Artificial Neural Networks

Figure 9: Simple ANN

Activation Functions: Indicator

Activation Functions: Logistic

$$f(x) = \frac{1}{1 + e^{-x}}$$

Activation Functions: Hyperbolic Tangent

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Activation Functions: Rectifier

