HW2 REPORT

Rohith Reddy Kolla | rkolla@buffalo.edu

1.

a) Dividing the data into test with 11 observations and training with 66 observations. Fitting a linear model with rating as the dependent variable and all other variables except name, mfr and type. The MSE for training comes out to be 7.052 * 10^-14 whereas the MSE for test is 1.429 ^ 10^-13.

```
lm(formula = rating ~ . - name - mfr - type, data = cereal_train)
Residuals:
                        Median 3Q
6.692e-08 1.921e-07
                            Median
       Min
-4.802e-07 -2.255e-07
                                                4.518e-07
Coefficients:
               Estimate Std. Error
                                        t value Pr(>|t|)
(Intercept) 5.493e+01 3.751e-07 1.464e+08 calories -2.227e-01 5.554e-09 -4.010e+07
                                                   <2e-16 ***
                                                   <2e-16 ***
protein
fat
                                                   <2e-16 ***
             3.273e+00 5.859e-08 5.587e+07
                                                   <2e-16 ***
             -1.691e+00 6.284e-08 -2.692e+07
sodium
             -5.449e-02
                          5.293e-10 -1.029e+08
              3.443e+00 4.413e-08 7.803e+07
fiber
                                                   <2e-16 ***
             1.092e+00 1.744e-08 6.266e+07
                                                   <2e-16 ***
carbo
                                                   <2e-16 ***
             -7.249e-01
                         1.881e-08 -3.853e+07
sugars
                         1.546e-09 -2.199e+07
                                                   <2e-16 ***
             -3.399e-02
potass
                                                   <2e-16 ***
vitamins
             -5.121e-02
                          2.473e-09 -2.071e+07
she1f
             -1.941e-08
                          5.596e-08 -3.470e-01
                                                    0.730
                          5.254e-07 -6.780e-01
weight
             -3.561e-07
                                                    0.501
              1.498e-07
                          2.013e-07 7.440e-01
                                                    0.460
cups
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.963e-07 on 53 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.313e+16 on 12 and 53 DF, p-value: < 2.2e-16
Multiple R-squared:
                                         1.42934143844153e-13
 fit.test.mse
```

fit.train.mse 7.05232502089955e-14

b) Performing backward subset selection –

```
calories protein fat sodium fiber carbo sugars potass vitamins shelf weight cups
                               . .
     (1
(1
(1
                                                               " <u>*</u>"
                 " * "
                                                               " * "
                " *"
                                                                                                                         . .
4
5
6
7
8
                                             . . . .
                 "*"
                                             " " "*"
                                                               " <u>*</u> "
                                ....
                                             . . . . . . . .
                                                                                   " * "
                 n on
                                                               ....
        1
                                                                                                          . .
                                                                                                                         . .
                " * "
                                                   "*"
                                                                                   " <u>*</u> "
                                                                                               " <u>*</u> "
                                " <u>*</u> "
                                             "*"
                                                                " <u>*</u> "
                                                                         " <u>*</u>"
                                                                                                                         . .
9
        1
                " * "
                                " <u>*</u>"
                                                   ....
                                                                                   " <u>*</u> "
                                                                                               " <u>*</u> "
                                                                                                          " * "
      (1
                                " * "
10
                " * "
                                             "*" "*"
                11.01
                                             .... ....
                                .....
                                                               ....
                                                                                   ....
                                                                                               " * "
                                                                                                          ....
                                                                                                                                   11 40 11
11
                                             "*" "*"
```

c) Performing exhaustive subset selection -

From b) and c) the least significant variables for the prediction with both subset selection methods happen to be shelf, weight and cups while the most significant variables differ significantly based on the number of subsets.

d) Comparing the prediction error of the test set with the two methods of subset selection.

Exhaustive subset selection has always been the more accurate subset selection with the drawback being that it requires more computational power. In the case of 1 subset, the fact that BSS does better than ESS could be attributed to the test set being more suited for BSS prediction. In every other case, ESS performs equally or better as is expected.

From the graph and data above, it appears that the best model for prediction has the 9 predictors – Calories, Protein, Fat, Sodium, Fiber, Carbo, Sugars, Potass and Vitamins with a mean squared error of 1.5*10^-13. The addition of the other 3 predictors brings insignificant change to the predictions.

The upward trend in the BSS mean square error at 4 subsets could be explained by the fact that the predictors have to be a subset of the previous prediction (Since it is BSS) and therefore won't necessarily be the best predictors for a given number of subsets.

2) Fitting a linear model for the training data considering only 2's and 3's –

```
Residual standard error: 0.1745 on 1132 degrees of freedom
Multiple R-squared: 0.9005, Adjusted R-squared: 0.878
F-statistic: 40.01 on 256 and 1132 DF, p-value: < 2.2e-16
```

The Training and Test mean squared error for the linear fit comes out to be –

Performing KNN with k of values 1,3,5,7,9,11,13,15 –

	test_predic	:t			test_predic	t	
testing\$v1	2	3	Row Total	testing\$v1	. 2	3	Row Total
2	192	6	 198	2	731	0	 731
-	69.611	80.320	130	-	311.709	346.291	, ,,,,
	0.970	0.030	0.544	i i	1.000	0.000	0.526
	0.985	0.036	!!!	!	1.000	0.000	!!
	0.527	0.016	!!!		0.526	0.000	!!
3	 3	163	 166	3	0	658	 658
,	83.030	95.804	100 	1	346.291	384.709	80
	0.018	0.982	0.456		0.000	1.000	0.474
	0.015	0.964	i i	İ	0.000	1.000	i i
	0.008	0.448	!!	!	0.000	0.474	!!
Column Total	195	169	 3 6 4	Column Total	731	658	1389
corumn rocur	0.536	0.464	i 30. i	i	0.526	0.474	i i
[1] "KNN Test predictions for k = 1"			[1] "KNN Training predictions for k = 1"				
[-]csc						·	

Test Error = 02.4%

	test_predic	t					
testing\$V1	2	3	Row Total				
2	191	7	198				
	68.000	78.462					
	0.965	0.035	0.544				
	0.979	0.041					
	0.525	0.019	i i				
3	4	162	166				
	81.108	93.587					
	0.024	0.976	0.456				
	0.021	0.959					
	0.011	0.445	i i				
Column Total	195	169	364				
	0.536	0.464					
[1] "KNN Test	predictions	for $k = 3$ "					

	test_predict	t	
testing\$V1	2	3	Row Total
2	- 728	 3	731
	304.976	339.791	
	0.996	0.004	0.526
	0.995	0.005	İ
	0.524	0.002	ı
	-		
3	4	654	658
	338.811	377.488	l
	0.006	0.994	0.474
	0.005	0.995	l
	0.003	0.471	
Column Total	732	657	1389
	0.527	0.473	

Test Error = 03.02%

Training Error = 0.5%

[1] "KNN Training predictions for k =

	test_predic	:t			test_predic	:t	
testing\$V1	2	3	Row Total	testing\$V1	2	3	Row Total
2	191	7	198	2	726	5	731
I	68.000	78.462	l I		305.479	337.415	
	0.965	0.035	0.544		0.993	0.007	0.526
I	0.979	0.041	I I		0.996	0.008	
	0.525	0.019	l I		0.523	0.004	l I
3	4	162	166	3	3	655	658
	81.108	93.587	i i		339.369	374.849	i i
i	0.024	0.976	0.456		0.005	0.995	0.474
i	0.021	0.959	i i		0.004	0.992	i i
ĺ	0.011	0.445	i i		0.002	0.472	i i
Column Total	195	169	364	Column Total	729	660	1389
	0.536	0.464	i i		0.525	0.475	i i
[1] "KNN Test	predictions	for $k = 5$ "		[1] "KNN Trair	ning predicti	ons for k =	5"
			*				*

Test Error = 03.02%

Training Error = 0.57%

test_predict				test_predict			
testing\$V1	2	3	Row Total	testing\$V1	2	3	Row Total
2	189	9	198	2	725	6	731
	68.465	76.426			305.053	335.973	ļ ļ
	0.955	0.045	0.544		0.992	0.008	0.526
	0.984	0.052	l I		0.996	0.009	
İ	0.519	0.025	i i		0.522	0.004	l I
3	3	163	166	3	3	655	658
i	81.663	91.159	i i		338.896	373.247	
i	0.018	0.982	0.456		0.005	0.995	0.474
i	0.016	0.948	i i		0.004	0.991	
i	0.008	0.448	i i		0.002	0.472	i i
			ii				
Column Total	192	172	364	Column Total	728	661	1389
į	0.527	0.473	i i		0.524	0.476	i i
			ii				
[1] "KNN Test predictions for k = 7"			[1] "KNN Training predictions for k = 7"				
L-3							

Test Error = 3.29%

Training Error = 0.64%

	test_predic	Ť			test_predic	t	
testing\$V1	2		Row Total	testing\$V1	2	3	Row Total
			i				
2	188	10	198	2	722	9	731
i	68.083	75.167	i		302.418	331.154	
i	0.949	0.051	0.544		0.988	0.012	0.526
i	0.984	0.058			0.994	0.014	
i	0.516	0.027	i		0.520	0.006	
3	3	163	166	3	4	654	658
	81.208	89.657			335.969	367.893	
	0.018	0.982	0.456		0.006	0.994	0.474
	0.016	0.942			0.006	0.986	
	0.008	0.448	i		0.003	0.471	
Column Total	191	173	364	Column Total	726	663	1389
	0.525	0.475			0.523	0.477	
[1] "KNN Test	predictions	for k = 9"		[1] "KNN Training predictions for $k = 9$ "			

Test Error = 3.57%

Training Error = 0.93%

	test_predic	:t			test_predic	t	
testing\$V1	2	3	Row Total	testing\$V1	2	3	Row Total
2	188	10	198	2	723	8	731
	68.083	75.167	- 1		302.844	332.580	
	0.949	0.051	0.544		0.989	0.011	0.526
	0.984	0.058	- 1		0.994	0.012	1
	0.516	0.027	- 1		0.521	0.006	l I
3	3	163	166	3	4	654	658
	81.208	89.657	- 1		336.442	369.477	
	0.018	0.982	0.456		0.006	0.994	0.474
	0.016	0.942	- 1		0.006	0.988	
	0.008	0.448	ĺ		0.003	0.471	i i
Column Total	191	173	364	Column Total	727	662	1389
	0.525	0.475	ĺ		0.523	0.477	i i
			i				
[1] "KNN Test	predictions	for k = 11'	•	[1] "KNN Train	ning predicti	ions for k =	11"

Test Error = 3.57%

Training Error = 0.86%

	test_predic	ct				test_predic	:t	
testing\$V1	2	3	Row Total	ļ	testing\$v1	2	3	Row Total
				L				
2	187	11	198	ı	2	723	8	731
	67.701	73.927		1		302.844	332.580	
	0.944	0.056	0.544	ı		0.989	0.011	0.526
i	0.984	0.063		Ĺ		0.994	0.012	
j	0.514	0.030		Ĺ		0.521	0.006	
i				i I				
3	3	163	166	i	3	4	654	658
I	80.752	88.178		П		336.442	369.477	
İ	0.018	0.982	0.456	Ĺ		0.006	0.994	0.474
	0.016	0.937		П		0.006	0.988	
ĺ	0.008	0.448		Ĺ		0.003	0.471	
				Т				
Column Total	190	174	364	П	Column Total	727	662	1389
ĺ	0.522	0.478		Ĺ		0.523	0.477	
				Ĺ				
[1] "KNN Test predictions for k = 13"					[1] "KNN Train	ning predicti	ions for k =	13"
	<u> </u>	·	·			·	·	·

Test Error = 3.84%

Training Error = 0.86%

	test_predic	t	
testing\$v1	2	3	Row Total
2	187	11	198
	67.701	73.927	
	0.944	0.056	0.544
	0.984	0.063	
	0.514	0.030	1
			i
3	3	163	166
	80.752	88.178	
	0.018	0.982	0.456
	0.016	0.937	i i
	0.008	0.448	i i
Column Total	190	174	364
	0.522	0.478	
[1] "KNN Test	predictions	for $k = 15$	•

	test_predic	t	
testing\$V1	2	3	Row Total
2	721	10	731
		330.261	
	0.986	0.014	0.526
	0.996	0.015	
	0.519	0.007	
	-		
3	3	655	658
	337.001	366.900	i i
	0.005	0.995	0.474
	0.004	0.985	i i
	0.002	0.472	i i
Column Total	724	665	1389
	0.521	0.479	i i
			ii
[1] "KNN Train	ning prediction	ons for k =	15"
	<i>-</i>		

Test Error = 3.84%

Training Error = 0.93%

From the above results it is evident that the best test results for KNN from the given values is when k=1 with 355 correct predictions out of 364 with a success rate of around 97.5%. The linear regression classification however seems to have only made 349 correct predictions as shown below which is worse than the results of KNN with any of the considered k values.

Linear Regression Model Predictions -

	pred		
test_data\$v1	2	3	Row Total
	101		100
2	191	7	198
	63.263	76.299	
	0.965	0.035	0.544
	0.960	0.042	
	0.525	0.019	
3	8	158	166
	75.458	91.007	
	0.048	0.952	0.456
	0.040	0.958	
	0.022	0.434	l I
Column Total	199	165	364
	0.547	0.453	

Test Error = 4.1%

a) The data has been split into a training set containing 700 of the observations and a test set containing the remaining 77 observations. (Private variable is not considred).

Fitting a linear model to the training set -

```
fit <- lm(Apps~., data = college_train[,-1])
summary(fit)</pre>
lm(formula = Apps \sim ... data = college_train[, -1])
Residuals:
             1Q Median
    Min
                              3Q
                                     Max
-5174.2
        -445.9
                   -26.2
                           321.3 7320.2
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.708e+02 4.171e+02
                                    -2.327
                                             0.02025 *
                        4.235e-02
Accept
             1.608e+00
                                    37.970
                                             < 2e-16 ***
                         1.932e-01
Enro 11
            -9.402e-01
                                     -4.867 1.41e-06
Top10perc
             4.847e+01
                         6.028e+00
                                     8.040
                                            3.96e-15
Top25perc
             -1.331e+01
                         4.865e+00
                                     -2.735
                                            0.00640
                         3.389e-02
F. Undergrad 7.635e-02
                                      2.253
                                             0.02460
P. Undergrad
             4.726e-02
                         3.393e-02
                                      1.393
                                             0.16414
             -1.179e-01
                         1.930e-02
                                     -6.106 1.71e-09
Outstate
                                            0.01958
Room.Board
             1.200e-01
                         5.127e-02
                                      2.340
Books
             1.444e-02
                         2.550e-01
                                      0.057
                                             0.95486
                         6.830e-02
             9.986e-03
Personal
                                             0.88381
                                      0.146
PhD
             -8.571e+00
                         5.013e+00
                                     -1.710
                                             0.08776
            -1.713e-01
                         5.457e+00
                                             0.97497
                                     -0.031
Terminal
S.F.Ratio
             2.704e+01
                         1.384e+01
                                      1.954
                                             0.05105
perc.alumni -1.248e+00
                         4.409e+00
                                     -0.283
                                            0.77725
             9.900e-02
                        1.455e-02
                                     6.806 2.20e-11 ***
Expend
Grad.Rate
             8.751e+00
                         3.205e+00
                                      2.731 0.00648 **
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1070 on 683 degrees of freedom
Multiple R-squared: 0.9284,
                                 Adjusted R-squared: 0.9267
F-statistic: 553.2 on 16 and 683 DF, p-value: < 2.2e-16
```

Considering the fact that the residuals are enormous, the mean squared error will be significantly greater as shown below.

```
fit.test.mse 753299.815497666
fit.train.mse 1117847.53086034
```

b) Fitting a ridge regression model on the training set using the glmnet package –

```
# Fitting a Ridge Regression Model
ridge.mod = glmnet(as.matrix(college_train[,3:18]), college_train[,2], alpha = 0)
```

Upon cross-examination, the best lambda value turns out to be –

best_lamda 372.904453168218

The test mean squared error using the best lambda is test_err 599864.680747206 which is considerably lower than the test mean squared error using linear regression.

c) Fitting a LASSO model on the training set using the glmnet package

best_lamda_2

```
# Fitting a Lasso Model|
lasso.mod <- glmnet(as.matrix(college_train[,3:18]), college_train[,2], alpha = 1)</pre>
```

2.18410914175671

Upon Cross-Examination, the best lambda turns out to be –

The test mean squared error is higher than that from Ridge at test_err_2 743676.823592791

Furthermore, there are no zero coefficient estimates.

```
17 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) -9.883371e+02
Accept
Enroll
              1.593464e+00
              -8.259286e-01
Top10perc
              4.670414e+01
Top25perc -1.190245e+01
F.Undergrad 6.144553e-02
P.Undergrad 4.667938e-02
              -1.150868e-01
Outstate
             1.188840e-01
Room.Board
               7.780168e-03
Books
               7.825325e-03
Personal
PhD
              -8.359176e+00
              -5.578330e-02
Terminal
              2.587183e+01
S.F.Ratio
perc.alumni -1.412061e+00
.
Expend
               9.779808e-02
               8.339086e+00
Grad.Rate
```