Project Group 2: Visualizing Ranked Theta-Join Results

Zixuan Chen, Aamod Khatiwada

CS 7250 Spring 2021 - Prof. Cody Dunne, Northeastern University

Main Objective

Visually explaining the ranking results of Theta Joins

Theta-join

Car		ar
	CarModel	CarPrice
1		

	Charles and the second	
CarA	20,000	
CarB	30,000 50,000	
CarC		

Boat

BoatModel	BoatPrice	
Boat1	10,000	
Boat2	40,000	
Boat3	60,000	

$Car \bowtie Boat$

$CarPrice \ge BoatPrice \longrightarrow \Theta$				
CarModel	CarPrice	BoatModel	BoatPrice	
CarA	20,000	Boat1	10,000	
CarB	30,000	Boat1	10,000	
CarC	50,000	Boat1	10,000	
CarC	50,000	Boat2	40,000	

Ranked theta-join results between 2 tables

Car

CarModel	CarPrice	
CarA	20,000	
CarB	30,000	
CarC	50,000	

Boat

at BoatPrice
10,000
40,000
60,000

Ranked by (carne	
Ranked by (carprice	- boatprice) ascendin

This is usually defined to be a link strength of this theta-join between these two tables

$Car \bowtie Boat$

CarPrice>BoatPrice

CarModel	CarPrice	BoatModel	BoatPrice
CarA	20,000	Boat1	10,000
CarB	30,000	Boat1	10,000
CarC	50,000	Boat1	10,000
CarC	50,000	Boat2	40,000

$Car \bowtie Boat$

Car Price > Rout Price

CarModel	CarPrice	BoatModel	BoatPrice
CarA	20,000	Boat1	10,000
CarC	50,000	Boat2	40,000
CarB	30,000	Boat1	10,000
CarC	50,000	Boat1	10,000

Ranked theta-join results between multiple tables

How to rank the join results?

By a ranking function. E.g., f(x) = x.W1 + x.W2. x is a result.

Ranked theta-join results between multiple tables

How to rank the join results?

By a ranking function. E.g., f(x) = x.W1 + x.W2. x is a result.

Application

This ranking can be used for route plan. Let's say you're hungry and want to go outside for dinner. After that you plan to go to a supermarket and then go back home.

Since you're quite hungry, you need the distance from your home to the restaurant to be as short as possible but for the distance 2 and 3, you don't really care much.

Ranking function $f(x) = 0.8 \times x.Distance1 + 0.1 \times x.Distance2 + 0.1 \times x.Distance3$

Ranked theta-join results between multiple tables

How to rank the join results?

Application

This ranking can be used for route plan. Let's say you're hungry and want to go outside for dinner. After that you plan to go to a supermarket and then go back home.

Since you're quite hungry, you need the distance from your home to the restaurant to be as short as possible but for the distance 2 and 3, you don't really care much.

Ranking function f(x) = 0.8 * x.Distance1 + 0.1 * x.Distance2 + 0.1 * x.Distance3

Partner

Partner

Prof. Mirek Riedewald Data Lab @ Northeastern

- Author of several papers about ranked enumeration over joins
- Thought it would be good to use visualizations to help him better understand the ranking
- Several questions he proposed:
 - Can you use visualizations to help me understand why certain results are at the top of a ranking?
 - Can you use visualizations to show the influence of different ranking functions on the ranked join results?

Tasks

Tasks

- Present
 - Present the ranked results with link strengths and the parameter coefficients
- Lookup
 - Look up for the appearances of one result in different rankings
- Compare
 - Compare the ranked results of multiple functions

Data

Original Data: Bitcoin OTC Trust Dataset

- **Semantics:** Trust Score in Bitcoin Transaction
- Nodes: Bitcoin User IDs
- Edges: Trust Score ranging from -10 to +10
- Sample Tuple:
 - o 2,21,5,1289370557

Preprocessed Dataset:

- 3-hop paths
- Generated Schema: node1, node2, node3, node4, edge1, edge2, edge3

We use graph dataset to simulate the Theta-Join Condition

Visualizations

Visualization 1: Single Ranking

Visualization 2: Multiple Ranking

K: 20

Encodings

K: 100

Order: Descending ~

K: 100

Order: Descending ✓

Size: Edge Weight

Size: Edge Weight

Luminance: Importance of a Column

Luminance: Importance of a Column

X-Axis: Edge Weight Y-Axis: Total Weight = f(x,y,z)

Interactions

Visualization 1: Single Ranking

Other Applications

Other Applications

Making decision on the basis of multiple parameters

- **Prettiness**
- Security

Other Applications:

Selecting the best path from source to destination on the basis of prettiness, Time and Security.

Conclusion:

Conclusion

- Helpful in understanding the outliers
- Effective in testing the ranking functions
- Performs well in comparing the multiple functions

Thank you