

Этикетка

Микросхема 1564ТМ2УЭП

КСНЛ.431253.002 ЭТ

Микросхема интегральная 1564ТМ2УЭП Функциональное назначение: Два триггера «D»

Схема расположения выводов Номера выводов показаны условно Масса не более 1 г.

Условное графическое обозначение

1	CLR1	TT	Q1 6
3	D1		Q1 👉
4	CLK1		
15) S1		
13	CLR2	TT	Q2 11
14	D2		Q2 (1)
13	CLK2		Vcc x16
14) S2		0V × °

Таблица назначения выводов

No॒	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	CLR1	Вход установ- ки «0» первого триггера	9	Q2	Выход инверсный второго триггера
3	D1	Вход первого триггера	11	Q2	Выход второго триггера
4	CLK1	Вход тактовый первого триг- гера	12	S2	Вход установки «1» второго триггера
5	S1	Вход установ- ки «1» первого триггера	13	CLK2	Вход тактовый второго триггера
6	Q1	Выход первого триггера	14	D2	Вход второго триггера
7	Q1	Выход инверсный первого триггера	15	CLR2	Вход установки «0» второго триггера
8	0V	Общий	16	V_{cc}	Питание

Для микросхем 1564ТМ2УЭП выводы 2 и 10 – свободные

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25 \pm 10$ °C)

1.1 Основные электрические параме.	тры (при с 23 <u>-</u> 10 ч	<i>-</i>)	
Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при: $U_{CC}{=}2,0 \text{ B, } U_{IL}{=}0,3 \text{ B, } I_O{=}20 \text{ мкA} \\ U_{CC}{=}4,5 \text{ B, } U_{IL}{=}0,9 \text{ B, } I_O{=}20 \text{ мкA} \\ U_{CC}{=}6,0 \text{ B, } U_{IL}{=}1,2 \text{ B, } I_O{=}20 \text{ мкA}$	UoL max		0,10 0,10 0,10

при:			
$U_{CC}=4,5 \text{ B}, U_{IL}=0,9 \text{ B}, I_{O}=4,0 \text{ MA}$		-	0,26
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_{O}=5.2 \text{ MA}$		•	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IH} =1,5 B, I_{O} = 20 мкА	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IH} =3,15, I_{O} = 20 mkA		4,4	-
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} =4,0 MA		3,98	-
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
	II.		Į.
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	4,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, } f = 10.0 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	12
7. Максимальная частота следования импульсов тактовых сигналов, МГц, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi$	$f_{C max}$	5	-
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi$		27	-
$U_{CC} = 6.0 \text{ B, C}_L = 50 \text{ п}\Phi$		32	-
8. Время задержки распространения при включении и выключении, нс,			
- от тактового входа к выходам Q и $\overline{\mathrm{Q}}$ при:	t _{PHL} ,		
- от тактового входа к выходам Q и Q при. U _{CC} = 2,0 B, C ₁ =50 пФ	$t_{\rm PLH}$		175
$U_{CC} = 4.5 \text{ B}, C_1 = 50 \text{ n}\Phi$		-	35
$U_{CC} = 4.5 \text{ B}, C_1 = 50 \text{ n}\Phi$		_	30
OCC 0,0 B, CL 30 HP		-	50
- от входа S и CLR к выходам Q и $\overline{\mathrm{Q}}$ при:			
$U_{CC} = 2,0 \text{ B, } C_L = 50 \text{ п}\Phi$		-	230
U_{CC} = 4,5 B, C_L = 50 пФ		-	46
$U_{CC} = 6.0 \text{ B, } C_L = 50 \text{ n}\Phi$		-	39
9. Входная емкость, пФ	C_{I}	-	10
	I		l

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

30ЛОТО	Γ.
серебро	Γ.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{\rm C_7}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет. Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-02ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТМ2 УЭП соответствуют техническим условиям АЕЯР.431200.424-02ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	_
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	у (дата) »
Приняты по от от дата)	
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание. Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ .