Théorie de l'information : DS du 24 octobre 2018

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- Exercice 1.

On tire au hasard avec la loi uniforme un sommet X d'un cube. Puis on choisit aléatoirement un sommet voisin Y de X, uniformément parmi ses trois voisins possibles. Que vaut l'information mutuelle I(X,Y)?

- Solution. On a : $H(X) = \log_2 8 = 3 = H(Y)$, $H(Y|X) = \log_2 3$, d'où $I(X,Y) = H(Y) - H(Y|X) = 3 - \log_2 3 \approx 1.42$ shannons.

– EXERCICE 2. On suppose que A et B sont deux événements d'un même espace probabilisé Ω , tels que $A\cap B=\emptyset$ et P(A)=P(B)=1/4. Soient X et Y les variables aléatoires $\Omega\to\{0,1,-1\}$ définies par :

$$X(\omega) = \begin{cases} 1 & \omega \in A \\ -1 & \omega \in B \\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad Y(\omega) = \begin{cases} -1 & \omega \in A \\ 1 & \omega \in B \\ 0 & \text{sinon} \end{cases}$$

- a) Les variables X et Y sont-elles indépendantes?
- b) Montrer que H(X) = H(Y) = H(X,Y) = I(X,Y). Que vaut cette valeur commune? Que valent H(X|Y) et H(Y|X)?
- c) Soit Z = XY. Montrer que H(X|Z) = H((X,Y)|Z). Que vaut cette valeur?
- Solution.
 - a) Non. On a P(X=1)=P(A)=1/4, de même P(Y=1)=P(B)=1/4, mais $P(X=1,Y=1)=P(A\cap B)=0\neq P(X=1)P(Y=1)$.

b) On a
$$P(X = 1) = P(X = -1) = 1/4$$
 et $P(X = 0) = 1/2$. D'où

$$H(X) = \frac{2}{4}\log_2 4 + \frac{1}{2}\log_2 2 = \frac{3}{2}.$$

Un calcul similaire donne $H(Y)=H(X)=\frac{3}{2}.$ Par ailleurs,

$$P(X = 1, Y = -1) = P(A) = 1/4$$

$$P(X = -1, Y = 1) = P(B) = 1/4$$

$$P(X = 0, Y = 0) = P((A \cup B)^c) = 1/2.$$

Le couple (X,Y) suit donc la même loi (1/4,1/4,1/2) que X et Y et H(X,Y)=H(X)=H(Y). Donc I(X,Y)=H(X)+H(Y)-H(X,Y)=H(X). La formule H(X,Y)=H(X)+H(Y|X)=H(Y)+H(X|Y) donne donc H(Y|X)=H(X|Y)=0.

c) On a :

$$H(X, Z) = H(Z) + H(X|Z)$$

 $H((X, Y), Z) = H(Z) + H((X, Y)|Z)$

et comme la valeur de Y est entièrement déterminée par celle de X, on a H(X,Z)=H((X,Y),Z). Donc H(X|Z)=H((X,Y)|Z). La loi de Z est (1/2,1/2), donc H(Z)=1 et comme Z est entièrement déterminée par X on a H(X,Z)=H(X). Donc

$$H(X|Z) = H(X) - H(Z) = \frac{3}{2} - 1 = \frac{1}{2}.$$

- EXERCICE 3. Soient X et Y deux variables indépendantes, à valeurs entières, la variable X prenant ses valeurs dans un ensemble de n entiers dénoté A, et la variable Y prenant ses valeurs dans un ensemble de n entiers également, dénoté B. Ceci sous-entend que P(X=a) et P(Y=b) sont toutes les deux non nulles pour tout $a \in A$ et $b \in B$. Si on suppose que H(X+Y) = H(X) + H(Y), quel est le cardinal de l'ensemble $A + B = \{a + b, a \in A, b \in B\}$?
- **Solution.** Comme X et Y sont supposées indépendantes, on a H(X,Y) = H(X) + H(Y) = H(X+Y). Donc H((X,Y)|X+Y) = 0, ce qui implique qu'il n'y a jamais deux couples (a,b) et (a',b') distincts dont la somme vaut la même valeur, sinon on ne pourrait pas toujours déterminer (X,Y) à partir de X+Y. Donc $|A+B| = |A\times B| = |A||B|$.

- Exercice 4. Le code {10,00,11,110} est-il uniquement déchiffrable?
- **Solution.** Oui. On peut décomposer une plage de 1 consécutifs suivie d'un 0, soit $1\cdots 10$, ainsi : si le nombre de 1 est supérieur ou égal à trois, la plage ne peut que commencer par le symbole 11. Ensuite il reste soit 110 soit 10 suivant la parité de nombre de 1 dans la plage. Une fois tous les 1 traités, il ne reste plus qu'à intercaler les symboles 00 ce qui se fait clairement sans ambiguité.

- Exercice 5.

- a) Soit C un code de Huffman à quatre mots. Quelles sont les possibles distributions des longueurs $\ell_1 \leq \ell_2 \leq \ell_3 \leq \ell_4$ de C?
- b) Donner un exemple de loi de probabilité $p_1 \ge p_2 \ge p_3 \ge p_4$ pour laquelle toutes les distributions de longueurs ci-dessus correspondent à un code de Huffman pour cette loi.
- c) Caractériser l'ensemble des lois avec cette propriété.

- Solution.

a) Il n'y en n'a que deux possibles, (2,2,2,2) et (1,2,3,3) qui correspondent aux deux arbres binaires saturés à quatre feuilles.

- **b)** $(p_1, p_2, p_3, p_4) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$. If y a deux choix après la première étape de l'algorithme de Huffman, qui mènent aux deux arbres distincts.
- c) Posons $p_3'=p_3+p_4$. Pour que les deux choix soient possibles après la première étape, c'est-à-dire associer p_2 et p_3' ou bien associer p_1 et p_2 , il faut que $p_3'=p_1$. Il s'agit donc de caractériser les lois (p_1,p_2,p_3,p_4) telles que $p_1\geqslant p_2\geqslant p_3\geqslant p_4$ et telles que $p_3'=p_1$. Comme $p_1+p_2+p_3'=1$ on en déduit $p_2=1-2p_1$, donc, en écrivant $\frac{1}{2}p_3'\leqslant p_2\leqslant p_1$,

$$\frac{1}{2}p_1 \leqslant 1 - 2p_1 \leqslant p_1$$

soit

$$\frac{1}{3} \leqslant p_1 \leqslant \frac{2}{5}.$$

On trouve donc l'ensemble de lois :

$$(p_1, p_2, p_3, p_4) = (p_1, 1 - 2p_1, \frac{p_1}{2} + t, \frac{p_1}{2} - t)$$

avec

$$\frac{1}{3} \leqslant p_1 \leqslant \frac{2}{5}$$

$$0 \leqslant t \leqslant 1 - \frac{5}{2}p_1.$$

- EXERCICE 6. On considère une source $X_1, X_2, \ldots, X_k \ldots$ constituée de variables indépendantes de même loi. Cette loi est celle d'une variable prenant quatre valeurs avec probabilités 1/2, 1/4, 1/8, 1/8.
 - a) Quelle est la longueur moyenne d'un encodage optimal, en bits, de la suite X_i . Quelle est la particularité de cette longueur moyenne?
 - b) On considère maintenant la suite des bits encodés $b_1, b_2, \ldots, b_n \ldots$ Évaluer de manière approchée la quantité

$$\frac{H(b_1, b_2, \dots, b_n)}{n}$$

et sa limite quand n tend vers l'infini.

c) En déduire $H(b_n)$, pour n grand, ainsi que la loi de b_n .

- Solution.

- a) $\bar{\ell} = 14/8 = 7/4$. Elle est égale à l'entropie de X_i .
- b) Comme (b_1,\ldots,b_n) permet de reconstituer la source, on a $H(b_1,b_2,\ldots,b_n)=H(X_1,\ldots,X_k)$ où (b_1,b_2,\ldots,b_n) encode (X_1,\ldots,X_k) . On a $n\approx k\bar{\ell}$, donc

$$\frac{H(b_1, b_2, \dots, b_n)}{n} \approx \frac{H(X_1, \dots, X_k)}{k\overline{\ell}}.$$

Comme les X_i sont indépendantes on a $H(X_1,\ldots,X_k)=kH(X_1)$, et comme $\overline{\ell}=H(X_1)$ on en déduit :

$$\frac{H(b_1, b_2, \dots, b_n)}{n} \approx 1.$$

c) Comme $H(b_1,b_2,\ldots,b_n)\leqslant H(b_1)+\cdots+H(b_n)$ et que, les variables b_i étant binaires, $H(b_i)\leqslant 1$, on déduit de la question précédente qu'on doit avoir, pour n grand $H(b_n)\approx 1$. La loi de b_n ne peut donc que tendre vers la loi uniforme (1/2,1/2).