Procesamiento de Señal y Transformadas

Tema 3: Diseño de Filtros FIR y Muestreo y Reconstrucción

Prof. Rubén Vera Rodríguez ruben.vera@uam.es BiDA Lab, EPS http://atvs.ii.uam.es/atvs/

Contenidos

- 3.1 Muestreo de Señales y Reconstrucción
- 3.2 Diseño de Filtros FIR

Tema 3: Diseño de Filtros FIR y Muestreo y Reconstrucción

3.1 Muestreo de Señales y Reconstrucción

Muestreo y reconstrucción: Teorema de muestreo o de Nyquist

- Si una señal analógica se muestrea uniformemente cumpliendo las siguientes condiciones:
 - ullet Señal analógica de ancho de banda limitado a $arOmega_M$
 - Frecuencia de muestreo mayor que el doble del ancho de banda de la señal analógica: $\Omega_{\rm s}$ > $2\Omega_{\rm M}$ (=pulsación de Nyquist)
- Entonces la señal analógica se puede reconstruir perfectamente a partir de sus muestras

Muestreo y reconstrucción: Teorema de muestreo o de Nyquist

- Importancia del teorema de muestreo:
 - Puente señales analógicas ←→ en tiempo discreto (digitales)
 - Permite procesar señales analógicas con procesamiento digital

Muestreo periódico o uniforme: Conversor ideal de tiempo continuo a tiempo discreto

Conversor ideal de tiempo continuo a tiempo discreto (C/D):

- Realiza el muestreo periódico o uniforme:
 - $x_c(t)$ es una señal analógica
 - x[n] es la señal de tiempo discreto obtenida por muestreo de $x_c(t)$
 - T es el periodo de muestreo (s)
 - $f_s = 1/T$ es la frecuencia de muestreo (Hz)
 - Ω_s =2 πf_s es la *pulsación de muestreo* (rad/s)
- El conversor C/D ideal es una aproximación del Conversor Analógico/Digital (A/D)
 - El A/D es un dispositivo físico real
 - Realiza muestreo y cuantificación a la vez

Muestreo periódico o uniforme: Descomposición matemática del C/D

 Para analizar matemáticamente el muestreo conviene descomponerlo en dos etapas:

• Muestreo (multiplicación) con tren de impulsos:

$$x_{S}(t) = x_{c}(t)s(t) = x_{c}(t)\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} x_{c}(t)\delta(t - nT) = \sum_{n=-\infty}^{\infty} x_{c}(nT)\delta(t - nT)$$

Conversión tren de impulsos -> secuencia tiempo discreto:

$$x[n] = x_c(nT)$$

Muestreo periódico o uniforme: Representación en frecuencia (1)

Muestreo periódico o uniforme: Representación en frecuencia (2)

• Espectro de $x_s(t)$, $X_s(j\Omega)$:

$$x_S(t) = x_c(t)s(t) = x_c(t)\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$X_{S}(j\Omega) = \frac{1}{2\pi} X_{c}(j\Omega) * S(j\Omega) = \frac{1}{2\pi} X_{c}(j\Omega) * \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_{S}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{S}))$$

- Espectro $X_S(j\Omega)$ = copias repetidas de $X_C(j\Omega)$:
 - Separadas entre sí $\Omega_{\rm s}$
 - Escaladas por 1/T
- $x_c(t)$ de banda limitada a $\Omega_M(X_c(j\Omega)=0$ para todo $|\Omega| \ge \Omega_M$):
 - Si $\Omega_s \ge 2 \Omega_M$ (Nyquist) \rightarrow las copias no se superponen:
 - Filtro paso bajo con pulsación corte Ω_{M} recupera espectro y señal originales
 - Si Ω_s < 2 Ω_M (No Nyquist) \rightarrow las copias se pueden superponer:
 - El fenómeno se denomina aliasing o solapamiento
 - No es posible (en general) recuperar espectro y señal originales

[Ejemplos de Aliasing y No Aliasing]

Muestreo periódico o uniforme: Representación en frecuencia (3)

• Espectro de x[n], $X(e^{j\omega})$:

• Es una conversión de frecuencias de tiempo continuo a tiempo discreto: $\omega = \Omega T$

$$X(e^{j\omega}) = X_S\left(j\frac{\omega}{T}\right) = \frac{1}{T}\sum_{k=-\infty}^{\infty} X_c\left(j\left(\frac{\omega}{T} - k\Omega_S\right)\right) = \frac{1}{T}\sum_{k=-\infty}^{\infty} X_c\left(j\left(\frac{\omega - 2\pi k}{T}\right)\right)$$

- Espectro $X(e^{j\omega})$ = Versión comprimida en frecuencia de $X_s(j\Omega)$:
 - Siempre Ω_s se transforma en 2π en tiempo discreto
 - Para que las copias de $X_c(j\Omega)$ se repitan cada 2π

[Ejemplos E4.1, E4.2, E4.3, P4.2]

Reconstrucción de una señal: Conversor ideal de tiempo discreto a tiempo continuo

Conversor ideal de tiempo discreto a tiempo continuo (D/C):

- Realiza el proceso de reconstrucción ideal (inv. muestreo ideal)
 - x[n] es una señal de tiempo discreto
 - $x_r(t)$ es una señal analógica reconstruida a partir de x[n]
 - T es el periodo de muestreo (s)
 - $f_s = 1/T$ es la frecuencia de muestreo (Hz)
 - Ω_s =2 πf_s es la *pulsación de muestreo* (rad/s)
- El conversor D/C ideal es una aproximación del Conversor Digital/Analógico (D/A)
 - El D/A es un dispositivo físico real
 - Realiza una aproximación al proceso de reconstrucción ideal

Reconstrucción de una señal: Descomposición matemática del D/C

 Para analizar matemáticamente la reconstrucción conviene descomponerla en dos etapas:

- Conversión secuencia de tiempo discreto → tren de impulsos:
 - Coincide con tren de impulsos, $x_s(t)$, obtenido de la señal original, $x_c(t)$

$$x_{S}(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

- En frecuencia es deshacer el cambio de frecuencia: $\omega = \Omega T$
- Filtrado paso bajo con filtro de reconstrucción ideal, $h_r(t)$ o $H_r(j\Omega)$

$$H_{r}(j\Omega) = \begin{cases} T, & |\Omega| < \frac{\Omega_{S}}{2} = \frac{\pi}{T} \\ 0, & resto \end{cases}$$

[Ejemplo completo muestreo y reconstrucción en frecuencia, P4.19]

Reconstrucción de una señal: Descomposición matemática del D/C

Procesado en tiempo discreto de señales en tiempo continuo (1)

Hemos analizado el comportamiento de los módulos C/D y D/C ideales:

$$x[n] = x_c(nT) \leftrightarrow X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega - 2\pi k}{T} \right) \right)$$

$$y_r(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\operatorname{sen}(\pi(t - nT)/T)}{\pi(t - nT)/T} \leftrightarrow Y_r(j\Omega) = H_r(j\Omega)Y(e^{jT\Omega}) = \begin{cases} TY(e^{jT\Omega}), & |\Omega| < \frac{\Omega_s}{2} = \frac{\pi}{T} \\ 0, & resto \end{cases}$$

• Sistema en tiempo discreto lineal e invariante, $h[n] \rightarrow$ salida del sistema completo:

$$Y_{r}(j\Omega) = H_{r}(j\Omega)Y(e^{jT\Omega}) = H_{r}(j\Omega)H(e^{jT\Omega})X(e^{jT\Omega}) = H_{r}(j\Omega)H(e^{jT\Omega})\frac{1}{T}\sum_{k=-\infty}^{\infty}X_{c}\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right)$$

Procesado en tiempo discreto de señales en tiempo continuo (2)

- Si el sistema en tiempo discreto es lineal e invariante y además se cumple el criterio de Nyquist en el C/D ($\Omega_s > 2\Omega_M$):
 - El filtro reconstructor ideal, $H_r(j\Omega)$, selecciona sólo el término con k=0 en la suma de la expresión anterior y se cancela la división entre el periodo de muestreo, T, quedando:

$$Y_{r}(j\Omega) = H_{r}(j\Omega)H(e^{jT\Omega})\frac{1}{T}\sum_{k=-\infty}^{\infty}X_{c}\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right) = \begin{cases} H(e^{jT\Omega})X_{c}(j\Omega), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

Con lo que el sistema completo se comporta como un sistema lineal e invariante en tiempo continuo con respuesta en frecuencia efectiva, $H_{eff}(j\Omega)$, dada por:

$$H_{eff}(j\Omega) = egin{cases} H(e^{jT\Omega}), & \left|\Omega\right| < \pi/T \ 0, & \left|\Omega\right| \ge \pi/T \end{cases}$$

[P4.5, P4.8]

Especificaciones para filtros analógicos y digitales

- Al diseñar filtros digitales para procesar señales analógicas partimos de especificaciones para el filtro analógico
- Relación respuestas en frecuencia de los filtros analógico equivalente y en tiempo discreto → nos permiten pasar de las especificaciones del filtro en tiempo continuo a las especificaciones para el filtro en tiempo discreto y viceversa
- Hay que aplicar la conversión de frecuencias: $\omega = \Omega T$

Time Signal Processing", 2^a Edición, Oppenheim, Schafer y Buck, Prentice-Hall.

Tema 3: Diseño de Filtros FIR y Muestreo y Reconstrucción

3.2 Diseño de Filtros FIR

Introducción a las técnicas de diseño de filtros digitales

- Filtro = sistema que modifica unas frecuencias de forma distinta a otras
 - Casi cualquier SLI se puede denominar filtro
- Principales tipos de filtros:

Introducción a las técnicas de diseño de filtros digitales

- El diseño de filtros se realiza en tres etapas:
 - Especificación de las propiedades del sistema
 - Aproximación a las especificaciones empleando un SLI causal
 - Normalmente sólo usamos filtros causales
 - Realización del sistema
 - Normalmente se realiza utilizando medios de computación digitales
 - Por eso se llaman filtros digitales, pero las técnicas de diseño son aplicables a todo tipo de filtros en tiempo discreto

Especificación del comportamiento de un filtro digital

Reproducción del libro "Discrete-Time Signal Processing", 2ª Edición, Oppenheim, Schafer y Buck, Prentice-Hall.

- Las especificaciones del filtro se dan con un esquema de tolerancias para la respuesta en amplitud como el de la figura:
 - Ancho máximo de la banda de transición
 - Atenuación mínima en banda de corte
 - Rizado máximo en banda de paso
- Condiciones adicionales:
 - Se suele imponer causalidad y estabilidad
 - A veces se impone como condición que la fase sea lineal

- Método del enventanado:
 - Partimos de la respuesta en frecuencia y respuesta al impulso deseadas (ej. filtro paso bajo ideal)

 Muchas de las respuestas en frecuencia deseadas son constantes a tramos con discontinuidades entre tramos (ej. filtro paso bajo ideal y filtros selectivos en frecuencia ideales) → Respuesta al impulso h_d[n] no causal y de duración infinita

- Método del enventanado:
 - Partimos de la respuesta en frecuencia y respuesta al impulso deseadas (ej. filtro paso bajo ideal)

- Muchas de las respuestas en frecuencia deseadas son constantes a tramos con discontinuidades entre tramos (ej. filtro paso bajo ideal y filtros selectivos en frecuencia ideales) \rightarrow Respuesta al impulso $h_d[n]$ no causal y de duración infinita
- Para obtener un filtro FIR causal a partir de una respuesta al impulso infinita, la truncamos entre -M/2 y M/2 y aplicamos un retardo de M/2:

$$h[n] \longrightarrow h[n] \qquad h[n] = \begin{cases} h_d[n-M/2] & 0 \le n \le M \\ 0 & resto \end{cases}$$

O de forma más general, multiplicamos por una ventana de duración finita entre
 -M/2 y M/2 y posteriormente aplicamos un retardo de M/2:

$$h[n] = w[n - M/2]h_d[n - M/2]$$

Diseño de filtros FIR por enventanado: Interpretación en frecuencia

Teorema de modulación o enventanado \rightarrow multiplicar $h_d[n]$ por una ventana w[n] es equivalente a realizar la convolución periódica de sus espectros:

$$h[n] = h_d[n]w[n] \xleftarrow{DTFT} H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta})W(e^{j(\omega-\theta)})d\theta$$

- Si w[n] es tal que $W(e^{j\omega})$ está concentrada alrededor de $0 \rightarrow H(e^{j\omega})$ se parecerá bastante a $H_d(e^{j\omega})$, excepto en las transiciones bruscas de $H_d(e^{j\omega})$
- Las transiciones bruscas se convertirán en transiciones más suaves y con oscilaciones, según el siguiente esquema

Diseño de filtros FIR por enventanado: Interpretación en frecuencia (2)

Diseño de filtros FIR por enventanado: Interpretación en frecuencia (3)

- La elección de la ventana se basa en dos requisitos:
 - Duración temporal mínima (para realización poco costosa w (k)
 computacionalmente)
 - Que esté muy concentrada en frecuencias alrededor de $\omega = 0$ \longrightarrow \longleftrightarrow
- Ambos requisitos son contrapuestos, ya que una señal de duración corta será extensa en frecuencia y viceversa
 - Un ejemplo de esto lo proporciona la ventana rectangular

Diseño de filtros FIR por enventanado: La ventana rectangular

La ventana rectangular (causal) y su DTFT vienen definidas por:

$$w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & resto \end{cases} \xrightarrow{DTFT} W(e^{j\omega}) = \sum_{n=0}^{M} e^{-j\omega n} = e^{-j\omega M/2} \frac{\sin(\omega(M+1)/2)}{\sin(\omega/2)}$$

• La amplitud de $W(e^{j\omega})$ queda representada en la siguiente figura:

- Al aumentar longitud ventana (*M*):
 - Lóbulo principal: anchura ↓ (+), altura ↑ (+)
 - Lóbulos secundarios: anchura ↓ (=), altura
 ↑ lo mismo que el lóbulo principal (-)
 - Área de los lóbulos constante →
 oscilaciones en proximidades transiciones
 bruscas H_d(e^{jω}) mantienen amplitud (Gibbs)
 - Amplitud mayor lóbulo secundario sólo 13 dB inferior a la del principal

Diseño de filtros FIR por enventanado: La ventana rectangular y otras ventanas

- mude Wited
- Problema ventana rectangular: lóbulos secundarios demasiado grandes
- Este problema se puede reducir suavizando las transiciones bruscas de la ventana rectangular, en las que se pasa de 0 a 1 y de 1 a 0 bruscamente
 - Esto reduce los lóbulos secundarios, pero aumenta la anchura del lóbulo principal
- La siguiente figura muestra las ventanas más comúnmente empleadas:
 - Salvo la rectangular, las demás presentan un comportamiento más suavizado

Diseño de filtros FIR por enventanado: Expresiones de otras ventanas

Bartlett (triangular)

$$w[n] = \begin{cases} 2n/M & 0 \le n \le M/2 \\ 2 - 2n/M & M/2 + 1 \le n \le M \\ 0 & resto \end{cases}$$

Hanning

$$w[n] = \begin{cases} 0.5 - 0.5\cos(2\pi n/M) & 0 \le n \le M \\ 0 & resto \end{cases}$$

Hamming

$$w[n] = \begin{cases} 0.54 - 0.46\cos(2\pi n/M) & 0 \le n \le M \\ 0 & resto \end{cases}$$

Blackman

$$w[n] = \begin{cases} 0.42 - 0.5\cos(2\pi n/M) + 0.08\cos(4\pi n/M) & 0 \le n \le M \\ 0 & resto \end{cases}$$

Diseño de filtros FIR por enventanado: Comparación de ventanas

(a) Rectangular

Tiene el lóbulo principal más estrecho → Δω has. → coheche.

Pero los lóbulos secundarios más altos

- (b) Bartlett (triangular)
- (c) Hanning
- (d) Hamming
- (e) Blackman
 - Tienen los lóbulos secundarios más bajos
 - Pero el lóbulo principal más ancho

Peak Side-Lobe Amplitude Window Relative) Approximate Width of Main Lobe	Peak Approximation Error, $20 \log_{10} \delta$ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular -13 $4\pi/(M+1)$ Bartlett -25 $8\pi/M$ Hanning -31 $8\pi/M$ Hamming -41 $8\pi/M$ Blackman -57 $12\pi/M$	-21	0	$1.81\pi/M$
	-25	1.33	$2.37\pi/M$
	-44	3.86	$5.01\pi/M$
	-53	4.86	$6.27\pi/M$
	-74	7.04	$9.19\pi/M$

Reproducción del libro "Discrete-Time Signal Processing", 2ª Edición, Oppenheim, Schafer y Buck,

Problema 7.15. Queremos diseñar un filtro FIR paso bajo que satisface las siguientes especificaciones:

$$0.95 \le |H(e^{j\omega})| \le 1.05$$
 $0 \le |\omega| \le 0.25\pi$
 $|H(e^{j\omega})| \le 0.1$ $0.35\pi \le |\omega| \le \pi$

Utilizamos el método del enventanado aplicando una ventana w[n] a la respuesta al impulso $h_d[n]$ del filtro paso bajo ideal con $w_c = 0.3\pi$.

¿Cuál de los filtros correspondientes a las distintas ventanas cumpliría las especificaciones? Para los que las cumplirían, indique la longitud de la ventana M+1 mínima necesaria.

Solución:

 TABLE 7.1
 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, $20\log_{10}\delta$ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

Problema 7.15. Queremos diseñar un filtro FIR paso bajo que satisface las siguientes especificaciones:

$$0.95 \le |H(e^{j\omega})| \le 1.05$$
 $0 \le |\omega| \le 0.25\pi$
 $|H(e^{j\omega})| \le 0.1$ $0.35\pi \le |\omega| \le \pi$

Utilizamos el método del enventanado aplicando una ventana w[n] a la respuesta al impulso $h_d[n]$ del filtro paso bajo ideal con $w_c = 0.3\pi$.

¿Cuál de los filtros correspondientes a las distintas ventanas cumpliría las especificaciones? Para los que las cumplirían, indique la longitud de la ventana M+1

Problema 7.15. Queremos diseñar un filtro FIR paso bajo que satisface las siguientes especificaciones:

$$0.95 \le |H(e^{j\omega})| \le 1.05$$
 $0 \le |\omega| \le 0.25\pi$
 $|H(e^{j\omega})| \le 0.1$ $0.35\pi \le |\omega| \le \pi$

Utilizamos el método del enventanado aplicando una ventana w[n] a la respuesta al impulso $h_d[n]$ del filtro paso bajo ideal con $w_c = 0.3\pi$.

¿Cuál de los filtros correspondientes a las distintas ventanas cumpliría las especificaciones? Para los que las cumplirían, indique la longitud de la ventana M+1 mínima necesaria.

Solución:

Diseño de filtros FIR por enventanado: El método de la ventana de Kaiser

La ventana de Kaiser se define como:

$$w[n] = \begin{cases} \frac{I_0 \left[\beta \left(1 - \left[(n - \alpha)/\alpha^2\right]\right)^{1/2}\right]}{I_0(\beta)} & 0 \le n \le M \\ 0 & resto \end{cases}$$

- Donde $\alpha = M/2$ e $I_0(.)$ representa la función de Bessel tipo I modificada de orden 0
- La ventana de Kaiser depende de 2 parámetros:
 - La longitud de la ventana: (M+1)
 - El parámetro de forma: *β*
 - Variando estos dos parámetros se puede ajustar el compromiso entre la amplitud de los lóbulos secundarios y la anchura del lóbulo principal
 - La figura muestra distintas formas de la ventana de Kaiser (arriba) así como la variación de su DTFT en función de los parámetros que la definen (abajo)

Diseño de filtros FIR por enventanado: El método de la ventana de Kaiser (2)

Reproducción del libro "Discrete-Time Signal Processing", 2ª Edición, Oppenheim, Schafer y Buck, Prentice-Hall.

- Lo mejor del método de la ventana de Kaiser es que Kaiser obtuvo un par de fórmulas empíricas para obtener los valores de M y β para cumplir las especificaciones de un filtro selectivo en frecuencia
- Si las tolerancias del filtro vienen dadas como el esquema de la figura, entonces definiendo

$$A = -20\log_{10}\delta$$

• El β requerido para cumplir especificaciones es:

$$\beta = \begin{cases} 0.1102(A - 8.7) & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21) & 21 \le A \le 50 \\ 0.0 & A < 21 \end{cases}$$

Y el valor de M requerido es

$$M = \frac{A - 8}{2.285\Delta\omega}$$

 Con estas fórmulas este método de diseño no requiere apenas iteraciones ni prueba y error

Diseño de filtros FIR por enventanado: Ejemplo método ventana de Kaiser

 Reproducción del libro "Discrete-Time Signal Processing", 2ª Edición, Oppenheim, Schafer y Buck, Prentice-Hall. Diseñamos filtro FIR con especificaciones:

$$0.99 \le |H(e^{j\omega})| \le 1.01 \quad |\omega| \le 0.4\pi$$

$$|H(e^{j\omega})| \le 0.001 \quad 0.6\pi \le |\omega| \le \pi$$

- Simetría método ventana Kaiser \rightarrow frecuencia corte filtro paso bajo ideal = mitad banda de transición (0.5 π). Anchura banda de transición: $\Delta \omega = 0.2\pi$
- Error de pico, δ , con ventana de Kaiser igual en banda de paso y de corte \rightarrow debemos tomar δ =0.001, A= 60 dB
- Con esto y fórmulas Kaiser $\rightarrow \beta$ = 5.653, M = 37
- Respuesta al impulso = respuesta al impulso filtro paso bajo ideal enventanada con ventana de Kaiser obtenida:

$$h[n] = \begin{cases} \frac{\sin 0.5\pi (n-\alpha)}{\pi (n-\alpha)} \frac{I_0\left[\beta \left(1-\left[(n-\alpha)/\alpha^2\right]\right)^{1/2}\right]}{I_0(\beta)} & 0 \le n \le M \\ 0 & resto \end{cases}$$

 La figura representa: respuesta al impulso obtenida y respuesta en amplitud del filtro obtenido

Relación entre la ventana de Kaiser y otras ventanas

- Al aproximar un filtro paso bajo ideal con el método del enventanado:
 - Ancho de la banda de transición determinado por el ancho del lóbulo principal
 - Rizado en banda de paso y en banda de corte (atenuación mínima banda de corte)
 determinados por área lóbulos secundarios (idénticas en ambas bandas por simetría)
- Área lóbulos secundarios = f (forma ventana) → Rizado = f (forma ventana)
- Dos últimas columnas tabla: valores para la ventana de Kaiser equivalente
 - 5^a columna: valor de β que da el mismo error de aproximación de pico (δ)
 - 6ª columna: anchura banda de transición de la ventana de Kaiser equivalente ($\Delta\omega$)
 - Mejor medida anchura banda de transición obtenida que anchura del lóbulo principal

TABLE 7.1 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, $20\log_{10}\delta$ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window	م م 42 -
Rectangular Bartlett Hanning Hamming Blackman	-13 -25 -31 -41 -57	$4\pi/(M+1)$ $8\pi/M$ $8\pi/M$ $8\pi/M$ $12\pi/M$	-21 -25 -44 -53 -74	0 1.33 3.86 4.86 7.04	$ \begin{array}{c} 1.81\pi/M \\ 2.37\pi/M \\ 5.01\pi/M \\ 6.27\pi/M \\ 9.19\pi/M \end{array} $	

Reproduccion dei libro "Discrete-1 ime Signai Processing", Z-Edicion, Oppenneim, Schaier y Buck, Prentice-Ha

Problema 7.6. Queremos utilizar el método de diseño de la ventana de Kaiser para diseñar un filtro FIR que cumpla las siguientes especificaciones:

$$\begin{array}{ccc} 0.9 \leq |H(e^{j\omega})| \leq 1.1 & 0 \leq |\omega| \leq 0.2\pi \\ |H(e^{j\omega})| \leq 0.06 & 0.3\pi \leq |\omega| \leq 0.475\pi \\ 1.9 \leq |H(e^{j\omega})| \leq 2.1 & 0.525 \leq |\omega| \leq \pi \end{array}$$

Esto se va conseguir aplicando la ventana de Kaiser al filtro cuya respuesta en frecuencia es:

$$\begin{aligned} \left| H_{d(e^{j\omega})} \right| = \begin{cases} 1, & 0 \le |\omega| \le 0.25\pi \\ 0, & 0.25\pi \le |\omega| \le 0.5\pi \\ 2, & 0.5 \le |\omega| \le \pi \end{cases} \end{aligned}$$

a) ¿Cuál es el mayor valor de δ que se puede utilizar para cumplir esta especificación? ¿Cuál es el correspondiente valor de β ?

TABLE 7.1 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, $20\log_{10}\delta$ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

Problema 7.6. Queremos utilizar el método de diseño de la ventana de Kaiser para diseñar un filtro FIR que cumpla las siguientes especificaciones:

$$0.9 \le |H(e^{j\omega})| \le 1.1$$
 $0 \le |\omega| \le 0.2\pi$
 $|H(e^{j\omega})| \le 0.06$ $0.3\pi \le |\omega| \le 0.475\pi$
 $1.9 \le |H(e^{j\omega})| \le 2.1$ $0.525 \le |\omega| \le \pi$

a) ¿Cuál es el mayor valor de δ que se puede utilizar para cumplir esta

especificación? ¿Cuál es el correspondiente valor de β ?

$$\begin{cases} 71 & 61 = 0.01 \\ 52 = 0.054 \\ & 54 = 0.072 = 0.05 \end{cases}$$

$$\begin{cases} 71 & 61 = 0.05 \\ 72 & 60.05 \\ & 60.05$$

Problema 7.6. Queremos utilizar el método de diseño de la ventana de Kaiser para diseñar un filtro FIR que cumpla las siguientes especificaciones:

$$0.9 \le |H(e^{j\omega})| \le 1.1$$
 $0 \le |\omega| \le 0.2\pi$
 $|H(e^{j\omega})| \le 0.06$ $0.3\pi \le |\omega| \le 0.475\pi$
 $1.9 \le |H(e^{j\omega})| \le 2.1$ $0.525 \le |\omega| \le \pi$

b) ¿Cuál es el máximo valor de $\Delta\omega$ que se puede emplear para cumplir esta especificación? ¿Cuél es el correspondiente valor de M?

$$M = \frac{A - 8}{2'185 A \omega} = \frac{36'47 - 8}{2'185 \cdot 6070} = Q'76$$

$$M = 63 \sqrt{M + 1} = 64.$$

