

planetmath.org

Math for the people, by the people.

Perron family

Canonical name PerronFamily

Date of creation 2013-03-22 14:19:42 Last modified on 2013-03-22 14:19:42

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 6

Author jirka (4157)
Entry type Definition
Classification msc 31B05
Related topic RadosTheorem
Defines Perron function

Definition. Let $G \subset \mathbb{C}$ be a region, $\partial_{\infty}G$ the extended boundary of G and S(G) the set of subharmonic functions on G, then if $f \colon \partial_{\infty}G \to \mathbb{R}$ is a continuous function then the set

$$\mathcal{P}(f,G) := \{ \varphi : \varphi \in S(G) \text{ and } \limsup_{z \to a} \varphi(z) \leq f(a) \text{ for all } a \in \partial_{\infty}G \},$$

is called the *Perron family*.

One thing to note is the $\mathcal{P}(f,G)$ is never empty. This is because f is continuous on $\partial_{\infty}G$ it attains a maximum, say |f| < M, then the function $\varphi(z) := -M$ is in $\mathcal{P}(f,G)$.

Definition. Let $G \subset \mathbb{C}$ be a region and $f: \partial_{\infty}G \to \mathbb{R}$ be a continuous function then the function $u: G \to \mathbb{R}$

$$u(z) := \sup \{ \phi : \phi \in \mathcal{P}(f, G) \},\$$

is called the *Perron function* associated with f.

Here is the reason for all these definitions.

Theorem. Let $G \subset \mathbb{C}$ be a region and suppose $f: \partial_{\infty}G \to \mathbb{R}$ is a continuous function. If $u: G \to \mathbb{R}$ is the Perron function associated with f, then u is a harmonic function.

Compare this with http://planetmath.org/RadosTheoremRado's theorem which works with harmonic functions with range in \mathbb{R}^2 , but also gives a much stronger statement.

References

[1] John B. Conway. . Springer-Verlag, New York, New York, 1978.