Basics of Differential Geometry

Maxime Willaert

August 26, 2024

Contents

	Topology	3
1	Intro 1.1 Things left to learn	4 4
2	Topological spaces	5
II	Manifolds	8

Part I Topology

Chapter 1

Intro

Main references are [6, 5].

1.1 Things left to learn

The different sets of axioms one can use to define a topological space, as in [1]. A topological space is most commonly defined by specifying its open sets. But one can also define a topology in the following ways:

- (i) By specifying its neighborhoods or closed sets.
- (ii) By specifying the interior, closure, exterior, boundary or 'derived set' operators.
- (iii) Through nets or filters (which are equivalent).

The notions of **nets** and **filters**, their equivalence and their relationship with the notion of a topology, should be explored (see [3]). The different notions of convergence that can be defined in a topology, and the degree to which they determine this topology is also an interesting question [4, 2].

General topology (more set-theoretic than algebraic, and not focused on finite-dimensional topological manifolds) as in [6].

Chapter 2

Topological spaces

Definition 2.0.1 (Topology). A **topology** on a set X is a collection τ of subsets of X such that

- (i) τ contains \emptyset and X;
- (ii) The union of the elements of any subset of τ is again in τ ;
- (iii) The intersection of the elements of any finite subset of τ is again in τ .

A topological space is a pair (X, τ) consisting of a set X together with a topology τ on X. The elements of τ are called the **open sets** of (X, τ) .

Given two topological spaces (X,τ) , (X',τ') , a map $f:(X,\tau)\to (X',\tau')$ is said to be **continuous** if for any $U\in\tau'$, $f^{-1}(U)\in\tau$. In most instances we can omit τ when referring to the topological space (X,τ) with no risk of confusion.

Definition 2.0.2 (Neighborhoods). Let X be a topological space.

- (i) Let K be a subset of X, another subset N of X is said to be a **neighborhood** of K if there exists an open subset U of X such that $K \subseteq U \subseteq N$. An **open neighborhood** of K is an open subset of X that contains K.
- (ii) Let x be a point of X. An (open) neighborhood of x is an (open) neighborhood of the singleton $\{x\}$.

Definition 2.0.3 (Closed subsets). A subset F of X is said to be **closed** if its complement X - F is open.

Proposition 2.0.1. Let X be a topological space.

- (i) \emptyset and X are closed.
- (ii) Any intersection of closed subsets of X is closed.
- (iii) A finite unions of closed subsets of X is closed.

Proposition 2.0.2. A map between topological spaces is continuous if and only the preimage of any closed subset is closed.

Proof. This is because for any map
$$f: X \to Y$$
 and any subset $A \subseteq Y$, $f^{-1}(Y - A) = X - f^{-1}(A)$.

Definition 2.0.4 (Closure and interior). Let A be a subset of a topological space X.

(i) The **closure** of A, denoted \bar{A} is the smallest closed subset containing A.

$$\bar{A}:=\bigcap\{F\subseteq X|S\text{is closed and }A\subseteq F\}.$$

(ii) The **interior** of A, denoted Int(A) is the largest open subset contained in A.

$$\operatorname{Int}(A) := \bigcup \{ U \subseteq X | U \text{ is open and } U \subseteq A \}.$$

- (iii) The **exterior** of A, denoted by $\operatorname{Ext}(A)$, is defined to by $\operatorname{Ext}(A) := X \bar{A}$, it is the complement of the closure, that is the largest open that does not overlap with A.
- (iv) The **boundary** of A, denoted by ∂A is defined by $\partial A := \bar{A} \operatorname{Int}(A)$.

Proposition 2.0.3. Let A be a subset of an topological space X.

- (i) A point is in Int(A) if and only if it has a neighborhood contained in A.
- (ii) A point is in Ext(A) if and only if it has a neighborhood contained in X A.
- (iii) A point is in ∂A if and only if any neighborhood of it contains both a point of A and a point of X A.
- (iv) A point is in \bar{A} if and only if any neighborhood of it contains a point of A.
- (v) The following are equivalent:
 - A is open.
 - A = Int(A).
 - A contains none of its boundary points (hence the 'open terminology').
 - Any point of A has a neighborhood contained in A.
- (vi) The following are equivalent:
 - A is closed.
 - $A=\bar{A}$.
 - A contains all of its boundary points (hence the 'closed' terminology).
 - Any point of X A has a neighborhood contained in X A.

Definition 2.0.5 (Limit and isolated points). Let A be a subset of a topological space X.

- (i) A point $p \in X$ (not necessarily in A) is a **limit point** of A if any neighborhood of p contains a point of A other than p. Limit points are also called **cluster points** and **accumulation** points.
- (ii) A point $p \in A$ is **isolated in** A if p has a neighborhood N such that $N \cap A = \{p\}$. Observe that any point of A is either isolated in A or a limit point of A.

Proposition 2.0.4. A set is closed if and only if it contains all of its limit points.

Definition 2.0.6 ((Nowhere) dense sets). A subset A of a topological space X is said to be **dense** in X if $\bar{A} = X$. Given a subset S of X, A is said to be dense in S if $A \cap S$ is dense in S (with the subset topology). It is said to be **nowhere dense** or **rare** in X if \bar{A} has empty interior. Equivalently A is rare if it is not dense in any nonempty open subset of X. Equivalently, A is rare if its exterior is dense in X.

Part II Manifolds

Bibliography

- [1] Wikipedia contributors. Axiomatic foundations of topological spaces. 2024. URL: https://en.wikipedia.org/w/index.php?title=Axiomatic_foundations_of_topological_spaces&oldid=1237268389 (visited on 08/25/2024).
- [2] Wikipedia contributors. Convergence spaces. 2024. URL: https://en.wikipedia.org/w/index.php?title=Convergence_space&oldid=1240724450 (visited on 08/25/2024).
- [3] Wikipedia contributors. Filters in topology. 2024. URL: https://en.wikipedia.org/w/index.php?title=Filters_in_topology&oldid=1238941858 (visited on 08/25/2024).
- [4] Wikipedia contributors. Sequential space. 2024. URL: https://en.wikipedia.org/w/index.php?title=Sequential_space&oldid=1237307585 (visited on 08/25/2024).
- [5] John M. Lee. Introduction to Topological Manifolds. 2nd ed. Springer, 2010.
- [6] James Munkres. *Topology*. 2nd ed. Pearson, 2014.