Tespena (banex, aparent oneparop) Pyero A: X > Y, numberous, expanse

buerque mexogy X-Y ($D_{om}A-X$, Rouge A=Y, Ker $A=\{0\}$), X,Y- Especially. Targe cycychych obfarmennni neperania A^{-1} .

Dorgozenosto.

You Norme nesquerement upochando X ects introsecto kropin koxerofin b ciro, Y.e. X the upocolumn of huge $X = \bigcup_{n=1}^{\infty} X_n$, rege X_n turge the

Donojarenocho yrleps genue

Tongene upontoner, Te. $X=\bigcup_{x\in X}$, X_x unge ne morro. Sopue cupyen upontonom secuent $x_0\in X$, paccuothm uap $F(x_0,1)=J_X$: doct $(x_0,x_0)\in J_X$. There is X_1 , turge ne morro, constant that the property of $F_1=F(x_1,r_1)\subset F(x_0,1)$, taken $F_1\cap X_1=\emptyset$, infinite mounts cutor, no $F_1\in \{1,r_1\}\subset F(x_0,1)$, taken $F_2=F(x_2,r_2)\subset F_2$, famou no $F_2\cap X_2=\emptyset$, $F_2\subseteq \{1,r_2\}$, $F_3=F_3$. Languages because $F_1\supset F_2\supset F_3>$. Jamenyi ox wapot, where $F_1\supset F_2\supset F_3>$. Jamenyi ox wapot, where $F_1\supset F_2\supset F_3>$. Jamenyi ox wapot, where $F_1\supset F_2\supset F_3>$. Jamenyi ox wapot, $F_1\supset F_2\supset F_3>$.

Dongosendho Teopena. Du oformression A' xoresch: $\forall y \in Y$ $\|A^{-1}(y)\| \leq N \cdot \|y\|$ gu varoù po abconostroù kondonn N.

Parcuajum $Y_n = 2y \in Y$: $\|A^{-1}(y)\| \leq N \cdot \|y\|$ 3, $N \in M$. Goodonemes $Y = \bigcup_{n \in X} Y_n$. Desidourenons: $O \in Y_n \quad \forall n : a ecum <math>y \neq 0$, $Y \in Y_{n(y)}$, ose $n(y) = \left[\frac{\|A^{-1}(y)\|}{\|y\|}\right] + 1$, $\tau \cdot \ell$. $\|A^{-1}(y)\| \leq N(y) \cdot \|y\|$.

No njegogyweny greptgenuro gonten kaninco rakai to wap F(yo, To) u money no, Takur no cl Yno DF(yo, No) dy: My-yoll 603. November jagora: nain TN, sous no dY=Y. 1) (A-y 11 & N-1/y 1) Pacendpun map F (ys, r,) CF(yo, ro), r.z. Paccuapium 2 y: My V= T,3, F(51,T) Yo F(yo) To yell Monaspell, 200 he store invariable Monaspell monaspell ynomen No. y E IN J of genetaria verexog ono lapino (lapeonisso c porasonosi) que y € t 7 a. M-18/11 = C.NINII Pacaudpun uforformin Aresetti y∈ Si, CF(yz,72) N Yno, Forme no Se -> ytyz, ourcen, ne quande Dougnoss, no ye:= Sx-y1 mgenens or cooper Siz, T.R. Ti < lyell </tr>

Ti
2
lyell
)Tr. Done, ye
> J, u, spone nov, ye
Se
\(\)_0, 11 A-1(ye) 1= 11 A-1(3e-72) 1 = 11 A-1(y,) 11 = \[
\text{No- | | \(\frac{1}{2} \times | \) + \(\times \) | \(\left| \) | \(\times \) | \(\times \) | \(\left| \) | \(\times \) | \ 7.K. llyx11 & 27, < no. llyel+ 2no. llys11 & no. (2rs +2.lly.11)= = No · (2r, + 2lly, 11) . r, \(\frac{1}{2}\) \ He jabrari or y. Novature renepo N:= = [4 no (r,+ lly, ll)] +). Tope Jr E Yn, um

buguer, no 49: 1/4/1=F, mostres aprilongues merresson y Yn. Nonasseur Teneps, no YN morns & Y. Japuncupyeur mponylouseuri $y \in Y$, $y \neq 0$. Total monoxum $y' := \frac{1}{11911} \cdot \Gamma$, $\in S_{\Gamma_i}$. Grano surso nonigéra usangolaxensmois dy_k^2 : $y_k' \in Y_N$, $y_k' \rightarrow y'$. Nonstein Yx:= \frac{11911}{\(\chi_1\)}. \(\chi_k\), \(\chi_1\) \(\chi_1\), \(\chi_2\) \(\chi_1\). \(\chi_1\), \(\chi_2\) yr → y. Donee: 1) A' (ye) | = | A- ((||y||) | | = ||y|| . || A- (yk) || \in \tau \) Nommer e nonepa le; uneen: lly-yell & llyell, a croso duro upu K = k; begano: N. lly 1/2 N. (1+2-1). Ilyell, i.e. YEE [NE1+2-])]+1 +1, close show JEE EN. Max, nonquere unormour YN b Y. You game? Eyeu overuber chepig $\|A'(y)\|$ reneps your one uponformono ye Y, y \$0. Sapircupyen rakon y, wrokun (lyll=170) Tak Kak Yn nnomo ex, no varboires ys E YN, Taxañ no lly, 11 ET, lly-y, ll ∈ 1/2. Done, noingéres yz ∈ YN, ranon vo llyell € \(\frac{1}{2} \), 11 y - (y1+ /2) 11 = 1/2.2, u Tax gones. Busine nongraem uschegolorensmon 2 yx3 anemetros In, Takyro 20 | y - (y,+ yz+- +yz) | ≤ \(\frac{1}{2^{\nu}}\), ||y_\(\nu\)| ≤ \(\frac{1}{2^{\nu_\(\nu_\(\nu_\)}}\). Gam 8 200 y = lim 2 y; = 5 y; . Nonoxum Xx:= A' (yx), T.e. yx = A(Xx),

$ x_{\varepsilon} = A^{-1}(y_{\varepsilon}) \stackrel{y_{\varepsilon} \in V_{\varepsilon}}{=} N \cdot y_{\varepsilon} \leq \frac{N \cdot r}{2^{\kappa - 1}}$. Yource mups, no $A^{-1}(y) = x \cdot rge X = \sum_{j=1}^{\infty} x_{\varepsilon}$.
Ybegunce reneps, no A'(y)= x, rge X= \(\sigma_{j=1}^{2}\) \(\times_{j=1}^{2}\)
Dre Door Malapum pgregamentanteror 2 Sk3, rge Sk = 2 xj.
Deviabusenous, $\ S_{n+m} - S_n\ = \ \sum_{j=n+1}^{n+m} X_j\ \leq N.7 \cdot \sum_{j=n+1}^{n+m} \frac{1}{2^{j-1}} \leq \frac{N\tau}{2^{n-1}}$
Npolepunu, chegoleterono (no Sanoxobocon X) noisétes
$X \to X = \sum_{j=1}^{\infty} X_j.$ $A(x) = A(\lim_{k \to \infty} \sum_{j=1}^{\infty} X_j)$ $A \to X_j$
- ten Zigi = y. Oronge cfazy A-(y)=x.
$\ A^{-1}(y)\ = \ x\ = \ \sum_{j=1}^{\infty} x_j\ \leq \sum_{j=1}^{\infty} \ x_j\ \leq \sum_{j=1}^{\infty} \frac{Nr}{2^{j-1}} = 0$
= 2NF) = 2N y , nfuzeur N ve jahrens 08 y.
Teopena (So oxymnou onofraxerum) Nyero A:X->Y,

Teopena (50 orcheson orografenni Orfanormin organop. Toosa A Ronze A = X, A - munimin orfanormin organop. Toosa A orkfirs.

Dougetentos.

Neuma Nyro X- Janaxolo, Xo EX - jamengres uguforfanctes Pacemorphin orospanseme T: x -> 2x3 Torge T-original and passeme. X Donges encolo. Pyro & CX - oreforde unaxecto, pacaratum T(G), gagerkappen $30 \in T(G)$, 7-c. $T(30) 9 \times 6G$, to cycyechyen C-oxfermore Xo, yeneron retayor & G. Myere S resur l mpocyhonori ε-oxfectmoere τουνα (καατά) 30 ET(G), 7-1. |3-3-1/2 , 700 granus, no varigires menero xeT(5) 1.200 $\|\chi - \chi_0\|_{X} < \varepsilon$, crons the $\chi \in \mathcal{C}$, and the $\chi \in \mathcal{C}$, and the $\chi \in \mathcal{C}$ T(x)= S. Noononemy 3-afoybourne, 10 T(6) sixfurto, Donogerenoire Ropews & art. and. other. 1.4. och. oroge. renferendes. A: X -> Y

A: X corch. X Ker A Strekyen

Tesp. 05 00. ouparope
bland.

