Math 3012 Updated Spring 2025

Note 2. Operations on Sets and the Pigeonhole Principle

1 Operations on Sets

Definition 1.1. The universe, denote as U, is the set of all elements being considered in a given context, such that every other set under discussion is a subset of U.

Definition 1.2.

- $A \cap B$ is the intersection of A and B: the set containing all elements that are members of both A and B.
- $A \cup B$ is the union of A and B: the set containing all elements that are members of A, or B, or both.
- $A \setminus B$ is the set difference between A and B: the set containing all elements of A that are not elements of B.
- \overline{A} is The complement of A: the set of everything which is not an element of A.

Example:

Let $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{2, 4, 6\}$, $C = \{1, 2, 3\}$, $D = \{7, 8, 9\}$. If the universe is $U = \{1, 2, ..., 10\}$, find:

- 1. $A \cup B$
- 2. $A \cap B$
- 3. $B \cap C$
- 4. $A \cap D$
- 5. $\overline{B \cup C}$
- 6. *A* \ *B*
- 7. $(D \cap \overline{C}) \cup (\overline{A \cap B})$
- 8. ∅ ∪ *C*
- 9. ∅∩*C*

Solution:

- 1. $A \cup B = \{1, 2, 3, 4, 5, 6\}$. Since everything in B is already in A, the union is just A.
- 2. $A \cap B = \{2, 4, 6\}$. Since everything in B is in A, the intersection is B.
- 3. $B \cap C = \{2\}$. The only element common to both B and C is 2.
- 4. $A \cap D = \emptyset$. A and D have no common elements.
- 5. $\overline{B \cup C} = \{5, 7, 8, 9, 10\}$. First we find that $B \cup C = \{1, 2, 3, 4, 6\}$, then we take everything not in that set.
- 6. $A \setminus B = \{1, 3, 5\}$. The elements 1, 3, 5 are in A but not in B. This is the same as $A \cap \overline{B}$.
- 7. $(D \cap \overline{C}) \cup (\overline{A \cap B}) = \{1, 3, 5, 7, 8, 9, 10\}$. The set contains all elements that are either in D but not in C (i.e., $\{7, 8, 9\}$), or not in both A and B (i.e., $\{1, 3, 5, 7, 8, 9, 10\}$).
- 8. $\emptyset \cup C = C$. The empty set does not add anything.

Math 3012 Updated Spring 2025

9. $\emptyset \cap C = \emptyset$. Nothing can be both in a set and in the empty set.

You can draw a picture!

Sizes of sets:

1.

 $|A \cup B| = |A| + |B| - |A \cap B|.$

2.

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|.$

Proof. Set $D = A \cup B$. Then

$$|D| = |A \cup B| = |A| + |B| - |A \cap B|,$$

and

$$|A \cup B \cup C| = |D \cup C| = |D| + |C| - |D \cap C|$$
.

It remains to calculate $|D \cap C|$. We have

$$|D \cap C| = |(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |(A \cap C) \cap (B \cap C)|.$$

Since

$$|(A \cap C) \cap (B \cap C)| = ||A \cup B \cup C|,$$

we are now finished.

Math 3012 Updated Spring 2025

2 the Pigeonhole Principle

Theorem 2.1 (the Pigeonhole Principle). *If you must put* n + 1 *pigeons into n holes, then you must put two pigeons into the same hole.*

Example 2.2. You have 12 pairs of socks (different colors) in a laundry bag. Drawing the socks from the bag randomly, you'll have to draw at most 13 of them to get a matched pair.

Proof. Consider the 12 pairs as 12 holes. By the pigeonhole principle, you need at least 13 draws (pigeons) to ensure that at least one hole contains two pigeons. \Box

Example 2.3. Let $S \subset Z^+$, where |S| = 37. Then S contains two elements that have the same remainder upon division by 36

Proof. Here the pigeons are the 37 positive integers in S. We know for any positive integer n, there exist a unique quotient q and a remainder r such that

$$n = 36q + r$$
, $0 \le r < 36$.

The 36 possible values of r constitute the pigeonholes, and the result is now established by the pigeonhole principle. \Box

Generalized versions:

Theorem 2.4. If you must put 2n + 1 pigeons into n holes, then you must put three pigeons into the same hole.

Theorem 2.5. If you must put kn + 1 pigeons into n holes, then you must put k + 1 pigeons into the same hole.