Introduction to Big Data

Taxi trip price prediction

Prepared by:
Alexandra Vabnits
Bulat Akhmatov
Nursultan Abdullaev
Ruslan Izmailov

Project Goal and Vision

This project focuses on building a predictive ML model to <u>estimate the total fare</u> <u>amount</u> for yellow taxi rides in New York City.

Our goal is to accurately forecast the total amount charged to passengers based on various ride-related features available.

This may be useful for passengers, aggregation taxi platforms and as a competition analysis for business owners.

Dataset characteristics

Features:

-	VendorID	INTEGER
-	tpep_pickup_datetime	TIMESTAMP
-	tpep_dropoff_datetime	TIMESTAMP
-	passenger count	INTEGER
-	trip distance	FLOAT
-	pickup_longitude	FLOAT
-	pickup_latitude	FLOAT
-	RatecodeID	INTEGER
-	store_and_fwd_flag	CHAR(1)
-	dropoff_longitude -	FLOAT
-	dropoff_latitude	FLOAT
-	<u>payment type</u>	INTEGER
-	<u>fare amount</u>	FLOAT
-	<u>extra</u>	FLOAT
-	mta_tax	FLOAT
-	<u>tip amount</u>	FLOAT
-	tolls_amount	FLOAT
-	improvement_surcharge	FLOAT
-	total_amount	FLOAT

Parameters:

- 12 210 952 rows
- 1.91 Gb

VendorID	Pickup Time	Dropoff Time	Passengers	Distance (mi)
2	"2016-03-01 00:00:00"	"2016-03-01 00:07:55"	1	2.50
1	"2016-03-01 00:00:00"	"2016-03-01 00:11:06"	1	2.90

Pickup (lon, lat)	Dropoff lon	RateCodeID	Flag	Payment Type
"-73.9767, 40.7652"	-74.0043	1	"N"	1
"-73.9835, 40.7679"	-74.0059	1	"N"	1

Data Analysis - 1/7

To understand our data, we started with identifying the most useful features: the ones that have a high <u>correlation</u> with the target.

Metric	Total (Sum)
corr_total_amount_passenger_count	265µ
corr_total_amount_trip_distance	0.4172
corr_total_amount_pickup_longitude	0
corr_total_amount_pickup_latitude	0
corr_total_amount_fare_amount	0.9996
corr_total_amount_extra	0.0631
corr_total_amount_mta_tax	-0.0182
corr_total_amount_tip_amount	0.0692
corr_total_amount_tolls_amount	0.0593
corr_total_amount_improvement_surcharge	-0.0046

Data Analysis - 2/7

We decided to explore payment types

A numeric code signifying how the passenger paid for the trip.

Cash tips are not included into tip amount

- Credit card
- 2. Cash
- 3. No charge
- 4. Dispute

Data Analysis - 3/7

There is an obvious difference for different passenger counts. Why is the correlation weak?

0 and 7-9 passenger counts are very rare

Data Analysis - 3/7

There is an obvious difference for different passenger counts. Why is the correlation weak?

0 and 7-9 passenger counts are very rare

Data Analysis - 4/7

Trip duration (custom feature) histogram

Data Analysis - 5/7

Trip count by passenger count

Data Analysis - 6/7

Prices and trip count by distance range in miles

Data Analysis - 7/7

Some features have unnatural negative values

stat #	fare_amount >	extra =	mta_tax =	tip_amount =	tolls_amount =	improvement_surcharge =	total_amount =
count	123k	123k	123k	123k	123k	123k	123k
median	9.5	0	0.5	1.35	0	0.3	11.8
max	400	4.5	0.65	120.05	100.99	0.3	520.35
mean	12.76	0.3445	0.4976	1.79	0.3161	0.2997	16
min	-68	-1	-0.5	0	0	-0.3	-68.8
std	11.04	0.5087	0.0377	2.49	1.42	0.0124	13.63

Analysis results

- Pretty natural data with logically explainable correlations
- There are unnatural outliers sometimes
- Coordinates are not important (linearly)
- Trip distance is very important

Project stages - 1/4 | Data Collection & Ingestion

Work done:

- 1. Prepared git repository
- 2. Cluster workspace prepared
- Dataset downloaded
- Created postgres database with data loaded in it
- 5. Data imported to HDFS
- All tasks automated

Project stages - 2/4 | Data Preparation & EDA

Work done:

- **Hive database** is built
 - 1. Hive tables are prepared
 - 2. Partitioning added
 - All tasks automated
- EDA is performed
 - 1. Correlation analysis
 - 2. Data distribution charts
 - 3. All charts saved in superset

Project stages - 3/4 | Modeling

Work done:

- 1. Read data from hive tables
- 2. Built and fit a **feature extraction pipeline**
- 3. Build initial models
- 4. Performed hyperparameter tuning for 2 models
- 5. **Predicted samples** with baseline and tuned models
- 6. **Evaluated** the performance of baseline and tuned models
- 7. Saved results and models to hdfs and local file system
- 8. All tasks automated

Goal: price prediction

Task: regression

Preprocessing of data

Preprocessing steps:

- 1. Timestamp Conversion: Convert Unix ms to timestamp (pickup & dropoff)
- 2. Time Features: Extract hour and month from timestamps
- 3. Coordinate features: Normalize longitude & latitude
- 4. Cyclical Encoding: Encode time and coordinate features using sine & cosine
- 5. Feature Selection: Select relevant columns, rename target to label
- **6. Vectorization:** Assemble features into features_raw
- 7. Scaling: Standardize features with StandardScaler → features

Selected features + total_amount as target:

```
inputCols=[
    'vendorid',
    'passenger_count', 'trip_distance',
    'pickup_lon_sin', 'pickup_lon_cos',
    'pickup_lat_sin', 'pickup_lat_cos',
    'dropoff_lon_sin', 'dropoff_lon_cos',
    'dropoff_lat_sin', 'dropoff_lat_cos',
    'pickup_hour_sin', 'pickup_hour_cos',
    'pickup_month_sin', 'pickup_month_cos',
    'dropoff_hour_sin', 'dropoff_hour_cos',
    'dropoff_month_sin', 'dropoff_month_cos'
```

Example of preprocessed data:

```
{"features":{"type":1,"values":[-1.0630742931954804,-0.5027240155344938,-6.316393234651101E-4,0.12310002259860722,0.12348787089425196,-0.12358977055149964,0.1277356740605677,0.12050713415702378,0.12519547592627084,-0.11895071927886203,0.11725674967757459,0.3085005601304578,1.5451783392028042,0.0,0.0,0.3222530730629602,1.510794060360022,0.019825547669352874,0.019906855989815335]},"label":12.35}
```

Modeling results

Training on a split train=80%, test=20% 9 768 762 train, 2 442 190 test
Best parameters are <u>highlighted</u>

Model	Parameters space	RMSE base	RMSE tuned	R2 base	R2 tuned	Inference time per sample
Gradient Boosting	maxBins: 24, <u>32</u>	\$5.35	\$5.16	0.84	0.85	0.04ms
(GBTRegressor)	maxDepth: 3, <u>8</u>					
Random Forest	numTrees: 10, <u>40</u>	\$5.77	\$5.16	0.81	0.85	0.05ms
(RandomForestRegressor)	maxDepth: 5, <u>10</u>					

Project stages - 4/4 | Presentation

Work done:

Web dashboard in superset describing:

- 1. Feature types
- 2. EDA storytelling
- 3. Model metrics
- 4. Prediction results

Challenges

- 1. Cluster uptime
- 2. Long time of training (~ 4 hours for one grid search run)
- 3. No git extensions in jupyter and one session for multiple users -> may lead to merge conflicts

Demo

Do you have any questions?