Review: Rules for Forming MOs: 1

Combining certain number of AO's produces the same number of MO's e.g. combining 4 AOs give 4 MOs

Rules for Forming MOs: 2

Recall: Only AO's of the correct symmetry will give MOs

Rules for Forming MOs: 3

Size: In order to interact for form MOs, the AOs must overlap significantly- high S

Example: Look at the MO formed from 2s AO's and 1s AO's of Li

- The 2s AO's overlap significantly- the resulting bonding and antibonding MO will be significantly shifted from the energy of AO's
- For the 1s's, even though symmetry is correct to overlap, S will be zero

Rules for Forming MOs: 4

Energy match and contribution from different AOs

- When AOs are closely matched in energy, the bonding and antibonding MOs lie significantly above and below the AOs
- The bonding MO lies closer in energy to that of the lower energy
 AO
- The anti-bonding MO lies closer in energy to that of the higher energy AO

Rule 5 for Forming MOs

Energy match and contribution from different AOs

- Contribution to the bonding MO from the lower energy AO increases, while from the higher energy AO decreases
- Contribution to the anti-bonding MO from the higher energy AO increases, while from the lower energy AO decreases

Dihydrogen Molecule: Orbital Interaction Diagram

- 1. Plot atomic valence orbital energies
- 2. Determine which orbitals can interact (those with S>0).
- 3. Plot MO energies and draw orbitals Interaction
- 4. Use Aufbau principle to fill in electrons

H₂, He and their Ions

Molecule	BDE (kJ/mol)	Bond length (pm)
H ₂ ⁺	256	106
H ₂	432	74
He ₂ ⁺	241	108
He ₂	Not Observed	Not Observed

HOMO: <u>Highest Occupied Molecular Orbital</u>

LUMO: Lowest Unoccupied Molecular Orbital

Electron Density Maps/Contours

Probability density is equal for each line drawn in the contour plot.

Value of probability density higher close to the Nucleus and decreased radially

Idealized MO Diagrams: 2nd Row

Recall:

Idealized MO Diagrams: 2nd Row

Idealized MO Diagrams: O2, F2, Ne2

Oxygen as a Fuel

Fossil Fuels

Carbohydrates

$$CH_4 + 2 O_2 \longrightarrow CO_2 + H_2O$$

Sucrose + 12 $O_2 \longrightarrow CO_2 + H_2O$
 $C_2H_5OH + 3 O_2 \longrightarrow CO_2 + H_2O$
 $H_2 + O_2 \longrightarrow H_2O \triangle H = -460 \text{ kJ/mol}$

Idealized MO Diagrams: O2, F2, Ne2

Idealized MO Diagrams: O2

Photoelectron Spectroscopy of O₂

- Irradiate molecules with high-energy radiation and scan
- Determine the energies of the electrons ejected from the molecules

A + photon
$$\rightarrow$$
 A⁺ + e⁻

Conservation of energy then requires that $E(A) + hv = E(A^+) + E(e^-)$

Since the free electron's energy is present solely as kinetic energy (KE): $E(e^{-}) = KE$

$$KE = hv - [E(A^+)-E(A)]$$

$$IE = hv - KE$$

Schematic P.E.S. Spectrum

Schematic P.E.S. Spectrum

Photoelectron Spectra of O₂

Possible Excited States of O₂

Photodynamic Therapy

Mechanism of Photodynamic Therapy

- Reactive oxygen species / free radicals
- PDT initiates cellular apoptosis

Expected MO Diagrams of N2

Actual MO and Energy Diagram for N₂

Nature 2004 vol 432 867

- HOMO of No. The reconstruction is from a tomographic inversion of the high harmonic
- Mixing of 25 and $2P_7$ orbital \rightarrow due to small energy gap
 - 2s and $2p_7$ electrons feels not so different Z_{eff}

Actual MO and Energy Diagram for N2

S-P Mixing in Atomic Orbitals

Recall:

$MO \text{ of } N_2$

4 MO's can be constructed from 2s (two) and $2p_z$ (two) Example one MO can be $c_1^*(2s) + c_2^*(2s) + c_3^*(2p_z) + c_4^*(2p_z)$

S-P Mixing in Atomic Orbitals

Mixing of 2s and 2p

Actual MO and Energy Diagram for N2

