Name: _____

FLOW DIAGRAM FOR CARBONATE CHEMISTRY

Step 1 – pH of water

Measure out about 100 mL of tap water into an Erlenmeyer flask. Add a few drops of pH indicator. What's the pH? Is the solution acidic or basic?

Step 2 – Effect of CO₂

Bubble some CO₂ through the water in your flask. What's the pH now? The reaction you just carried out can be expressed as

$$CO_2 + H_2O \rightarrow H_2CO_3$$

followed by

$$H_2CO_3 \rightarrow H^+ + HCO_3^-$$

which $releases\ H^+$, and therefore makes the solution more acidic (Did it?). Circle these reactions and label them as "Step 2" on your flow diagram.

* Average global surface ocean pH

Step 3 – Effect of carbonate ion (CO_3^-) on pH

Add a little sodium carbonate to your flask What's the pH now? The reaction you just carried out can be expressed as

$$CO_3^{2-} + H^+ \rightarrow HCO_3^-$$

which $consumes\ H^+$, and therefore makes the solution less acidic (Did it?). Circle this reaction and label it as "Step 3" on your flow diagram.

Step 4 – Properties of calcium carbonate ($CaCO_3$)

Empty out your flask, and (just like Step 1) add water and a few drops of pH indicator. Now add a little calcium carbonate to your flask. What's the pH now? How does it compare to the pH of ocean water (pH = 8.2, and falling)? Does it look like the carbonate is fully dissolving? The reaction you just carried out is

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Circle this reaction and label it as "Step 4" on your flow diagram.

Step 5 - A super-acidified ocean

Add some concentrated hydrochloric acid to your flask. What's the pH now? Does it look like the calcium carbonate is dissolving?