

[Stamp: Request]

[Stamps]

Application for Utility Model Registration (2)

(4,000 yen)

March 26, 1981¹

Haruki Shimada, Director-General of the Patent Office

- 1. Title of the Device: Distal electrode for electric scalpel
- 2. Creator

Address

Kenshin Ryou, 4-14-1 Miyakodai, Matsudo-shi, Chiba

Name

Akira Kasai

3. Utility Model Registration Applicant

Address

1-7 Yotsuya, Shinjuku-ku, Tokyo

Title

Mochida Pharmaceutical Co., Ltd.

Representative

Nobuo Mochida

4. Agent

Address

Oishi Bldg., 3-8-19 Toranomon, Minato-ku, Tokyo 105

Tel. (433)8727

Name

(7562) Masanori Kai, Patent Attorney²

5. List of Attached Documents

(1) Specification

1 copy

(2) Drawings

1 copy

(3) Application duplicate

1 copy

(4) Power of Attorney

1 copy

(5) Examination Request

1 copy

Examination on Formalities [Stamped]

[Stamp: Baba]

[Stamp: Patent Office; March 2?, 1981]

¹ Here and elsewhere on the page appears the stamp "Teki", which could be an abbreviation of "applicable" or "appropriate", or something else. There is also a faded, illegible stamp partially covering the two revenue stamps; it may be a cancellation stamp.

² Stamped with this person's seal

Specification

1. Title of the Device

Distal electrode for electric scalpel

2. Scope of the Utility Model

An AC-coupled type distal electrode for an electric scalpel, in which the surface of the electrode portion is covered by an insulating film, characterized in that a monitor electrode portion is internalized in the above insulating film, separated from the above electrode portion.

3. Detailed Explanation of the Device

This device concerns an AC-coupled type distal electrode for an electric scalpel, having, in addition to an electrode portion, a monitor electrode portion.

Distal electrodes for conventional electric scalpels are for the most part DC-coupled type devices, in which the patient is placed directly on the electrode portion; hence a metal part, physiological saline solution or conductive molded part is present on the surface of this electrode portion, and during inspections prior to use, or when problems occur during use, it is easy to discover the site requiring repair and to take appropriate measures. However, in the case of an AC-coupled type distal electrode for an electric scalpel previously provided by the inventors, the plate-shape electrode portion is covered by an insulator, in a construction in which the electrode portion is, so to speak, internalized in the insulator, and the conductor cannot be seen from the surface. Hence even when conduction defects due to cracks or damage to the electrode portion with the passage of time occur, requiring repairs or replacement, the device continues to be used without modification, possibly impeding surgery; and so remedial measures have been desired.

The present device was created in consideration of these circumstances, and has as an object the provision of an AC-coupled type distal electrode, the electrode portion of which cannot be seen from the surface, except terminals and similar, said distal electrode being provided with a monitor electrode portion capable of prompt and accurate discovery of failures occurring in the electrode portion.

Below, this device is explained based on an embodiment, and referring to the drawing.

Fig. 1 shows an AC-coupled type distal electrode 10 for an electric scalpel to which this device is applied. The surface of the plate-shape electrode portion 1 is covered with insulating films 2, 3. The electrode portion 1 may be a metal mesh of copper, aluminum or similar, a layer of fine metal fragments of the same material, or a conductive liquid material or similar; as the insulating films, normally a synthetic resin layer of vinyl chloride, polyethylene or similar with a permittivity of 10 to 20, or an unwoven cloth or similar, is preferably used. A terminal 4 is provided in the electrode portion 1, and is connected to a power supply 6 via a lead wire 5; an AC-coupled circuit is formed by the

patient 9 between [the electrode portion 1] and the blade 8 of the electric scalpel, connected to the end of a lead wire 7 extending from the power supply 6.

Within the distal electrode 10 for the electric scalpel exists a monitor electrode portion 11, shown in Fig. 2, as the characteristic portion of this device. This monitor electrode portion 11 is internalized in the above insulating film (in this example, the part labeled 3), separated from the electrode portion 1, and connected to a lead wire 13 via a terminal 12. As the monitor electrode portion, similarly to the ordinary electrode portion 1, metal mesh, a metal sheet, or other conductor can be used.

Next, the effect of action of the monitor electrode portion is explained.

As described above, the occurrence of cracks or damage in the electrode portion 1 due to bending and stretching or similar during use not only detracts from the performance inherent in the electric scalpel, but also abnormally raises the impedance of the distal electrode, causing shunting of excessive electric currents to the electrode portions of electrocardiographs or other ME [Translator's note: Probably stands for "medical equipment"] used in conjunction with the electric scalpel, so that the electrode portion of the other ME is heated excessively, and accidents involving burns to the patient are not uncommon. Consequently it is extremely important that monitoring be performed to determine whether the function [Translator's note: Possible typo for Japanese kinou meaning "function"; the original kisaku could be inferred from context as "construction"] of the distal electrode is normal or not. In the case of the distal electrode having a monitor electrode of this device, the electrostatic capacitance between the normal electrode portion 1 and the monitor electrode portion 11 can be monitored. In this case, if the electrostatic capacitance value falls below a reference value, an alarm is sounded. If the electrostatic capacitance between two electrodes is C, then the following equation obtains.

$$C = \epsilon \epsilon_0 \frac{S}{d} \qquad \dots \bigcirc$$

Here ε_0 is the permittivity of vacuum, ε is the relative permittivity of the insulator between 1 and 11, d is the thickness of the insulator, and S is the area of the facing [surfaces] of 1 and 11. If a constant AC voltage E (at frequency f) is applied across the two electrodes 1 and 11, and a current I flows, this relation may be expressed as

where Z is the impedance of C, expressed by
$$|Z| = \frac{1}{2 \pi f C} \quad \text{Hence from eq. } \mathbb{O},$$

$$|Z| = \frac{d}{2 \pi f \epsilon \epsilon_0 S} \quad \text{and so}$$

$$I = \underbrace{E2 \pi f \epsilon_0 S}_{d}$$

As explained above, E, f, ε , ε 0, and d are constants, so that the current I is proportional to the area S. That is, if 1 or 11 is cut for some reason, so that the area of the opposing [surfaces] of 1 and 11 changes, this can be detected by monitoring the current I.

If some abnormality is discovered, use of the distal electrode can be stopped immediately, and a measure such as replacement or repair taken, so that surgery is not impeded.

The present device is configured as described above, and can improve the safety of the AC coupled-type distal electrode and ensure safety for surgery, and so is extremely useful.

4. Brief Explanation of the Drawings

Fig. 1 is a figure which explains the AC-coupled type distal electrode for an electric scalpel to which this device is applied; and Fig. 2 is an enlarged cross-sectional view of the distal electrode for an electric scalpel of this device.

- 1: Electrode portion
- 2, 3: Insulating film
- 6: Power supply
- 8: Electric scalpel blade
- 11: Monitor electrode portion

Figure 1

Figure 2

公開実用 昭和57-154409

案 登 録 願(Z)

(4.% QOP)\$

昭和56年3月26日

将許庁長官 殿 田

- 1. 考案の名称 デンキ ヨウタイキヨグシ 電気メス用対極板
- 2. 考 案 者

住 所 千葉県松戸市三矢小台4-14-1研心寮

氏名

3. 実用新案登録出顧人

住所 東京都新宿区四谷1丁目7番地

特田製薬株 名称

> 代 表 者 持 田 信 夫

理 人 〒105 4. 代

住所 東京都港区虎ノ門3丁目8番19号大石ピル

(433)8727 話

氏名 (7562) 弁理士 斐 正

5. 添付書類の目録

(1) 明

1 通 /(2) 図

1

1 迪

(3) 顧書副本

1通(4)委任

1通

- (5) 審査請求書

1通

90

56 043133

1311109

明 細 書

1. 考案の名称

電気メス用対極板

2. 実用新案登録請求の範囲

電極部の表裏面を絶縁被膜で覆ってなる交流結合型の電気メス用対極板において、上記絶縁被膜に上記電極部と離隔してモニタ電極部を内蔵してあることを特徴とする電気メス用対極板。

3. 考案の詳細な説明

本考案は電極部のほかにモニタ電極部を有する交流結合型の電気メス用対極板に関する。

従来電気メス用対極板は、被術者を直接電極部に載置する方式の直流結合型のものが大生理的で、 従ってその電極部の表面に金属部分、生理的食塩 水又は導電成型物等が現われ、使用前の点をした場合等にはその要にはその要にはその要した場合等にはその要した。 関所の発見及び処置が容易であった。しかメス度 考案者がさきに提供した交流結合型の電気体である。 対極板の場合には、平板状の電極部が絶縁体に おわれていて、いわば、絶縁体に電極部が内蔵さ

(1)

91,3%

154409

公開実用 昭和57-154409

. .

れたような構造であるので、導電体は表面からは 見えない。従って、経時的に電極部に亀裂や折損 等による導通不良を招き修理又は交換を要する場 合でもそのまま継続使用して施術に支障を来すこ とがあり、その対策が要望されていた。

本考案はかかる実情に鑑みてなされたもので、 端子等以外表面から電極部の見えない交流結合型 の対極板にあって、該電極部に生じた故障を迅速 かつ確実に発見しうるモニタ電極部を設けた対極 板を提供することをその目的とするものである。

以下図面を参照し実施例に基づいて本考案を説明する。

第1図には、本考案が適用される交流結合型の電気メス用対極板10が示されている。平板状の電極部1の表裏面には、絶縁被膜2,3が覆われている。電極部1は銅又はアルミ等の金網、同材料の金属細片層、導電性液状物等のいずれでもよく、また、絶縁被膜には通常誘電率10~20の塩化ビニル,ポリエチレン等の合成樹脂層又は不織布等が好んで使用される。電極部1には端子4

が設けられ、リード線 5 を介して電源 6 に結合し、 さらに、電源 6 から延設されるリード線 7 の先端 に連結される電気メスの刃先 8 との間に被術体 9 を介して交流結合型の回路が形成される。

かかる電気メス用対極板10において、本考案の特徴部分は第2図に示されるモニタ電極部11 に存する。このモニタ電極部11は、前記の絶縁被膜(本例では符号3の部分)に、電極部1から離隔して内蔵せしめられ、端子12を介しリード線13を接続している。モニタ電極部には、通常の電極部1と同様に金属網、金属板其の他の導電体も使用可能である。

次に、かかるモニタ電極部の作用効果について 説明する。

前述の如く、使用中の屈伸等に基づく電極部1 の亀裂、折損等の発生は、電気メス本来の性能を 低下せしめる許りでなく、対極板のインピーダン スを異常に高め、電気メスと併用する心電計等の 他のMEの電極部に過大な電流を分流してこの結 果該他のMEの電極部を過熱し被術体に火傷を生

公開実用 昭和57—154409

ぜしめる事故が少なくない。このため、対極板の機作が正常であるか否とはすることは極めて重要である。本考案に係るモニタ電極を有する対極を切りる。通常の電極部1とモニタ電極部11との間の静電容量をモニタしうる。この場合静電容量値が規格値に対して下廻ったときには警報が発せられる。ここでふたつの電極間の静電容量をCとすると次式が成り立つ。

$$C = \epsilon \epsilon_0 \frac{S}{d} \qquad \cdots \text{ }$$

ここで € 0 は真空誘電率、 € は 1 と 1 1 との間の 絶縁物の比誘電率、 d はその絶縁物の厚さ、 S は 1 と 1 1 との対向する面積である。このときこの 両極板 1 , 1 1 間に一定の交流電圧 E (周波数を f とする) を加えると I なる電流が流れるこの関 係を式で示すと

$$I = \begin{bmatrix} E \\ Z \end{bmatrix}$$
 ここで Z は C の A ンピーダンスであり
$$|Z| = \frac{1}{2\pi f C}$$
 で表わされるから①より
$$|Z| = \frac{d}{2\pi f \varepsilon \varepsilon_0 S}$$
 となり
$$I = \frac{E2\pi f \varepsilon \varepsilon_0 S}{d}$$
 となる。

さきに示したように E , f , ϵ , ϵ , d は定数で (4)

あるから電流 I は面積 S に比例することがわかる。 つまり 1 あるいは 1 1 が何らかの原因で切断され て 1 , 1 1 の対向する面積が変化した場合 I をモニターすることによってこれを検知できることが 明確となる。しかして、異常が発見されれば直ち に当該対極板の使用を中止して、交換又は修理等 の措置を講ずることができ手術に支障を来たすことがない。

本考案は以上の如く構成されるものであるから 交流結合型の耐極板の安全性を高め手術に対する 信頼性を確保しうるものであり、極めて有用であ る。

4. 図面の簡単な説明

第1図は、本考案が適用される交流結合型の電気メス用対極板を示す説明図、第2図は本考案に係る電気メス用対極板の断面拡大図である。

1 … 電極部、 2 , 3 … 絶縁被膜、 6 … 電源、 8 … 電気メスの刃先、 1 1 … モニタ電極部。

公開実用 昭和57 — 154409

第 1 図

第 2 図

154409

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.