PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-161608

(43)Date of publication of application: 10.06.2004

(51)Int.Cl.

CO1G 49/00 G03G 9/09

(21)Application number: 2003-362589

(71)Applicant: TODA KOGYO CORP

(22)Date of filing:

22.10.2003

(72)Inventor: SHIMO SHINYA

AOKI ISATAKA

SAKURAI HIROMITSU UEMOTO SHINJI

(30)Priority

Priority number : 2002310210

Priority date: 24.10.2002

Priority country: JP

(54) IRON-BASED BLACK PARTICLE POWDER AND BLACK TONER CONTAINING IRON-BASED BLACK PARTICLE POWDER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide iron-based black particle powder having excellent blackness and low magnetization value as much as possible, used as a coloring material for a black pigment, coating material or resin composition and exhibiting excellent blackness particularly in the case of being used for non-magnetic black toner and to provide the black toner having low magnetization.

SOLUTION: The iron-based black particle powder is composed of an FeTiO3-Fe2O3 solid solution or a mixed composition of an FeTiO3-Fe2O3 solid solution and an iron-based oxide having spinel type structure, contains 10.0-40.0 atom% Ti per total Fe expressed in terms of Ti and has 5-40 Am2/kg saturation magnetization value, a blackness L* value of 6-13 and 0.01-0.5 μm average particle diameter.

LEGAL STATUS

[Date of request for examination]

19.07.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許厅(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

テーマコード (参考)

特開2004-161608 (P2004-161608A)

(43) 公開日 平成16年6月10日 (2004.6.10)

(51) Int.C1.7 CO1G 49/00 GO3G 9/09 FΙ

CO1G 49/00 GO3G 9/08 361

H

2H005 4G002

(全 17 頁) 審査請求 未請求 請求項の数 3 〇L

(21) 出願番号 (22) 出願日 (31) 優先権主張番号	特願2003-362589 (P2003-362589) 平成15年10月22日 (2003.10.22) 特願2002-310210 (P2002-310210)	(71) 出願人	000166443 戸田工業株式会社 広島県広島市南区的場町一丁目	12番21号
(32) 優先日	平成14年10月24日 (2002.10.24) 日本国 (JP)	(72) 発明者	志茂 伸哉 広島県大竹市明治新開1番4	戸田工業株
(33) 優先権主張国	口本園 (JI)		式会社大竹創造センター内	,,
		(72) 発明者	青木 功荘	
			広島県大竹市明治新開1番4	戸田工業株
			式会社大竹創造センター内	
		(72) 発明者	桜井 洋光	
			広島県大竹市明治新開1番4	戸田工業株
			式会社大竹創造センター内	
		(72) 発明者	植本 真次	
			広島県大竹市明治新開1番4	戸田工業株
			式会社大竹創造センター内	
			最新	8頁に続く

(54) [発明の名称] 鉄系黒色粒子粉末及び該鉄系黒色粒子粉末を含有する黒色トナー

(57) 【要約】

【課題】 本発明は、黒色度に優れると共に、可及的に磁化値が低い鉄系黒色粒子粉末を 提供するものであり、当該鉄系黒色粒子粉末は、黒色を呈する顔料及び塗料、樹脂組成物 の着色用材料等として使用することができ、殊に、非磁性黒色トナーに用いた場合には、 黒色度に優れ、しかも磁化値が低い黒色トナーを提供することができる。

【解決手段】 FeTiOs — Fe2Os 固溶体又はFeTiOs — Fe2Os 固溶体と スピネル型構造を有する鉄系酸化物との混合組成からなる鉄系黒色粒子粉末であり、該鉄 系黒色粒子粉末のTi含有量が全Feに対してTi換算で10.0~40.0原子%であ り、飽和磁化値が $5\sim40$ Am 2 /kgであり、黒色度 L^* 値が $6\sim13$ であり、平均粒 子径が $0.01\sim0.5\mu$ mである鉄系黒色粒子粉末からなる。

【選択図】 なし

【特許請求の範囲】

【請求項1】

FeTi〇。一Fe2〇。固溶体又はFeTi〇。一Fe2〇。固溶体とスピネル型構造を有する鉄系酸化物との混合組成からなり、Ti含有量が全Feに対してTi換算で10.0~40.0原子%であり、飽和磁化値が $5\sim40\,\mathrm{Am}^2/\mathrm{k}$ gであり、黒色度 L^* 値が6~13であり、平均粒子径が0.01~0.50 μ mであることを特徴とする鉄系黒色粒子粉末。

【請求項2】

(1) FeTiOs-Fe2Os 固溶体又はFeTiOs-Fe2Os 固溶体とスピネル型構造を有する鉄系酸化物との混合組成物80~99.9重量及び(2)青色顔料0.1~20重量からなり、Ti含有量が全Feに対してTi換算で10.0~40.0原子%であり、飽和磁化値が5~40Am²/kgであり、黒色度L*値が6~13であり、平均粒子径が0.01~0.50μmである鉄系黒色粒子粉末。

【請求項3】

請求項1又は請求項2記載の鉄系黒色粒子粉末を用いることを特徴とする黒色トナー。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、黒色度に優れると共に、可及的に磁化値が低い鉄系黒色粒子粉末を提供する

[0002]

本発明に係る非磁性黒色粒子粉末は、黒色を呈する顔料及び塗料、樹脂組成物の着色用材料等として使用することができ、殊に、非磁性黒色トナーに用いた場合には、黒色度に優れ、しかも磁化値が低い黒色トナーを提供することができる。

【背景技術】

[0003]

マグネタイト粒子粉末、イルメナイト粒子粉末、カーボンブラック等の黒色顔料は、塗料用、印刷インク用、化粧品用、ゴム・樹脂組成物用等の着色剤として古くから汎用されている。

[0004]

特に、マグネタイト粒子粉末等の黒色磁性酸化鉄粒子粉末を樹脂中に混合分散させた複合体粒子は、電子写真用現像剤として用いる磁性トナーに多用されている。

[0005]

近時、レーザービームプリンターやデジタル複写機の高速化及び高画質化に伴って、現像剤である黒色トナーの特性向上が強く要求されており、その為には、黒色トナーが十分な黒色度を有していることが強く要求される。

[0006]

更に、近年では、フルカラー化が進められており、対応するプリンターや複写機として は非磁性トナーが用いられている。

[0007]

そこで、黒色トナーにおいても、非磁性又は可及的に磁化値が小さく、現在のシステム に適合できる黒色非磁性トナーが要求されている。

[0008]

上述した通り、黒色非磁性トナーの諸特性の向上は強く要求されているところである。 黒色非磁性トナーは、殊に、トナー中に含有する黒色顔料が、現像特性に大きく影響する ことが知られており、黒色非磁性トナーの諸特性と黒色非磁性トナー中に混合分散されて いる黒色顔料の諸特性とは密接な関係があり、黒色非磁性トナーに用いられる黒色顔料に ついても、更に一層の特性改善が強く望まれている。

[0009]

50

40

30

即ち、黒色度に優れた黒色非磁性トナーを得るためには、黒色粒子粉末が十分な黒色度を有し、分散性がより優れていることが要求されている。さらに、現行の非磁性トナーを用いるシステムに適合させるためには、黒色粒子粉末としても、非磁性又は可及的に磁化値が低い粒子粉末が要求されている。

[0010]

一方、カーボンブラックは非磁性ではあるが、粒子サイズが平均粒子径 0.005~0.05 μ m程度の微粒子粉末であるため、ビヒクル中や樹脂組成物中への分散が困難であり、また、かさ密度が 0.1 g/c m³程度とかさ高い粉末であるため、取り扱いが困難で、作業性が悪いことが知られている。

[0011]

そこで、黒色度に優れるとともに磁化値が可及的に低い黒色粒子粉末が要求されている

[0012]

黒色を呈した鉄系粒子粉末として、水熱処理することによって得られたイルメナイト粒子粉末(特許文献 1)、Fe 2 TiOs とFe 2 Os ーFe TiOs 固溶体との混合組成からなる黒色顔料(特許文献 2)、磁化値 σ 1000 が 20~50 Am² / kg であって全Fe に対して 0.5~10.0原子%のチタンを含有する黒色磁性酸化鉄粒子粉末(特許文献 3)、チタンを含有したマグネタイト粒子(特許文献 4)が知られている。

[0013]

【特許文献1】特開平1-298028号公報

【特許文献2】特開平3-2276号公報

【特許文献3】特開平8-34617号公報

【特許文献4】特開2002-196528号公報

【発明の開示】

【発明が解決しようとする課題】

[0014]

黒色度に優れるとともに、可及的に磁化値が低い鉄系黒色粒子粉末は、現在最も要求されているところであるが、未だ得られていない。

[0015]

即ち、前出特許文献 1 には、T i $^{3+}$ を用いて水熱処理によってイルメナイト粒子粉末を得ることが記載されているが、水熱処理によって製造しており、工業的とは言い難い。

[0016]

前出特許文献2記載の非磁性粒子粉末は、Fe2 TiOsを含有しているので磁化値は低いが、後出比較例に示す通り、着色力が低く、黒色度を満足するものとは言い難いものである。

[0017]

前出特許文献 3 記載の黒色磁性酸化鉄粒子粉末は、T i 含有量が 0. $5\sim1$ 0 原子%であり、また、磁場 7 9. 5 8 k A/m (1 k O e) における磁化値 σ_{1000} が 2 $0\sim5$ 0 A m^2 / k g (2 $0\sim5$ 0 e m u/g) と磁化値が高く、非磁性のシステムに十分適合できるとは言い難いものである。

[0018]

前出特許文献 4 記載には磁化が 4 0 A m^2 / k g (4 0 e m u / g) 以下の金属酸化物 を含有する黒色トナーが記載されているが、実施例にはT i 含有マグネタイト粒子粉末と ともに青色顔料が用いられており、該T i 含有マグネタイト粒子単独では満足する色相を 得難いものである。

[0019]

そこで、本発明は、黒色度に優れると共に、磁化値が低い鉄系黒色粒子粉末を得ること を技術的課題とする。

【課題を解決するための手段】

[0020]

40

10

20

前記技術的課題は、次の通りの本発明によって達成できる。

[0021]

即ち、本発明は、FeTiOs — Fe2Os 固溶体又はFeTiOs — Fe2Os 固溶体とスピネル型構造を有する鉄系酸化物との混合組成からなり、Ti 含有量が全Fe に対してTi 換算で $10.0\sim40.0$ 原子%であり、飽和磁化値が $5\sim40$ Am² /k gであり、黒色度 L^* 値が $6\sim13$ であり、平均粒子径が $0.01\sim0.50$ μ mであることを特徴とする鉄系黒色粒子粉末である(本発明1)。

[0022]

また、本発明は、 (1) FeTiOs-Fe2Os 固溶体又はFeTiOs-Fe2Os 固溶体とスピネル型構造を有する鉄系酸化物との混合組成物80~99.9重量及び(2) 青色顔料0.1~20重量からなり、Ti含有量が全Feに対してTi換算で10.0~40.0原子%であり、飽和磁化値が5~40Am²/kgであり、黒色度L*値が6~13であり、平均粒子径が0.01~0.50 μ mである鉄系黒色粒子粉末である(本発明2)。

[0023]

また、本発明は、本発明1又は本発明2の鉄系黒色粒子粉末を用いることを特徴とする 黒色トナーである。(本発明3)

【発明の効果】

[0024]

本発明に係る鉄系黒色粒子粉末は、黒色度に優れ、可及的に磁化値が低いので、黒色を 呈する顔料及び塗料、樹脂組成物の着色用材料、充填材等として好適である。

[0025]

本発明に係る鉄系黒色粒子粉末を用いて製造した黒色非磁性トナーは、高い黒色度を有すると共に、磁化値が低いので、非磁性トナーとして好適である。

【発明を実施するための最良の形態】

[0026]

本発明の構成をより詳しく説明すれば次の通りである。

[0027]

先ず、本発明に係る鉄系黒色粒子粉末について述べる。

[0028]

本発明に係る鉄系黒色粒子粉末は、FeTiOs-Fe2Os 固溶体又はFeTiOs-Fe2Os 固溶体とスピネル型構造を有する鉄系酸化物との混合組成からなる。スピネル型構造を有する鉄系酸化物は、例えば、 $FesO4-\gamma-Fe2Os$ 固溶体である。 Fe2Os 単独(FeTiOs を含有しない)の場合には、赤色であって本発明の目的とする黒色度が得られない。FeTiOs 単独(Fe2Os を含有しない)の場合には、より高温での熱処理が必要となり得られる粒子は粒子径が大きくなるため、所望の着色力が得られない。

[0029]

本発明に係る鉄系黒色粒子粉末のFe。〇 $_4$ $-\gamma$ - Fe $_2$ O $_3$ 固溶体の含有量は、後出する X線回折のピーク強度において、FeTi〇 $_3$ - Fe $_2$ O $_3$ の(104)面のピーク強度に対してFe。〇 $_4$ $-\gamma$ - Fe $_2$ O $_3$ の(220)面のピーク強度が1:0.05~1:0.5 が好ましい。0.5 を越える場合には、磁化値が高くなり、現行の非磁性トナーを用いるシステムに適合させることが困難である。より好ましくは1:0.07~1:0.45 である。

[0030]

本発明に係る鉄系黒色粒子粉末のTi含有量は全Feに対して10.0~40.0原子%である。10原子%未満の場合には、磁化値が高くなり、現行の非磁性トナーを用いるシステムに適合させることが困難である。40原子%を越える場合には、未反応のTi化合物が残存するため、所望の黒色度と着色力とが得られない。より好ましくは12~35原子%、更により好ましくは20~33.3原子%である。

<u>- ۸</u>

10

[0031]

本発明に係る鉄系黒色粒子粉末の飽和磁化値は $5\sim40\,\mathrm{Am}^2/\mathrm{k}$ g である。飽和磁化値が $5\,\mathrm{Am}^2/\mathrm{k}$ g 未満の場合には、F e $_2$ T i O $_5$ などの不純物相が生成しやすく所望の黒色度を容易に得ることが困難である。 $40\,\mathrm{Am}^2/\mathrm{k}$ g を越える場合には、現行の非磁性トナーを用いるシステムに適合させることが困難であり、所望の画像濃度を得にくくなり、またカブリの発生が見られるようになる。好ましくは $5\sim30\,\mathrm{Am}^2/\mathrm{k}$ g 、より好ましくは $5\sim25\,\mathrm{Am}^2/\mathrm{k}$ g である。

[0032]

本発明に係る鉄系黒色粒子粉末の黒色度 L^* は $6\sim1$ 3 である。黒色度 L^* が 1 3 を越える場合には、黒色度に優れるとは言い難く黒色顔料として使用することができない。 6 未満の場合には工業的に製造することができない。好ましくは $6\sim1$ 2. 5 、より好ましくは $6\sim1$ 1. 5 である。

[0033]

本発明に係る鉄系黒色粒子粉末の平均粒子径は $0.01\sim0.50\mu$ mである。平均粒子径が 0.01μ m未満の場合には、所望の黒色度が得られない。 0.50μ mを越える場合には、所望の着色力が得られない。好ましくは $0.04\sim0.24\mu$ m、より好ましくは $0.08\sim0.20\mu$ mである。

[0034]

本発明に係る鉄系黒色粒子粉末のBET比表面積値は $3\sim60\,\mathrm{m}^2$ / gが好ましい。BET比表面積値が $3\,\mathrm{m}^2$ / g未満の場合には、非磁性黒色粒子粉末が粗大であったり、粒子及び粒子相互間で焼結が生じた粗大粒子となり着色力が低下する。 $60\,\mathrm{m}^2$ / gを越える場合には、所望の黒色度を得ることが困難となる。好ましくは $6\sim30\,\mathrm{m}^2$ / g、より好ましくは $7\sim20\,\mathrm{m}^2$ / gである。

[0035]

本発明に係る鉄系黒色粒子粉末の着色力は、後述する評価法の展色で示した場合、35~45が好ましい。着色力が45を越える場合には、該非磁性黒色粒子粉末を用いた非磁性黒色トナーの使用した場合に、十分な画像濃度を得ることが困難である。着色力が35未満の非磁性黒色粒子粉末は工業的に製造することができない。より好ましくは35~44である。

[0036]

本発明2に係る鉄系黒色粒子粉末は、FeTiOsーFe2Os固溶体又はFeTiOsーFe2Os固溶体とスピネル型構造を有する鉄系酸化物との混合組成に、青色顔料を含有することが好ましい。青色顔料を含有させることによって、黒色度と着色力がより向上する。

[0037]

本発明2に係る鉄系黒色粒子粉末の青色顔料の含有量は0.1~20重量%である。0.1重量%未満では黒色度に与える影響が小さい。20重量%を越えるとその青色顔料の色相に近くなる。好ましくは1~10重量%である。

[0038]

本発明 2 に係る鉄系黒色粒子粉末は、組成、平均粒子径、磁化値は前記とほぼ同程度であり、黒色度 L^* は $6\sim1$ 2 が好ましく、より好ましくは $6\sim1$ 1 であり、着色力は、後述する評価法の展色で示した場合、 3 $0\sim4$ 3 .5 が好ましい。

[0039]

本発明における青色顔料は公知のもので良く、例えばアルカリブルー、フタロシアニンブルー、コバルトブルー、ウルトラマリンブルー等が挙げられる。

[0040]

なお、本発明に係る鉄系黒色粒子粉末は、鉄、チタン以外にMg、Al、Si、P、Mn、Co、Ni、Cu 及び <math>Zn から選ばれる 1 種又 2 種以上の元素を鉄とチタンの全量に対して 0 \sim 1 0 原子%含んでも良い。

[0041]

次に、本発明に係る鉄系黒色粒子粉末の製造法について述べる。

[0042]

本発明に係る鉄系黒色粒子粉末は、Fe $^{2+}$ 含有量がFeO換算で $1.7 \sim 2.8$ 重量%のマグネタイト粒子を用い、該粒子表面をチタン化合物で被覆し、次いで、非酸化性雰囲気下で $6.5.0 \sim 8.8.0$ での温度範囲で加熱焼成した後、粉砕して得ることができる。

[0043]

本発明におけるマグネタイト粒子の Fe^{2+} 含有量がFeO換算で17重量%未満の場合には、不要な相が生成するため黒色度が低下する。28重量%を越えるマグネタイトは工業的に製造することが困難である。より好ましくは $18\sim27$ 重量%である。

[0044]

本発明におけるマグネタイト粒子粉末は、平均粒子径 $0.007\sim0.4\mu$ mが好ましく、より好ましくは $0.02\sim0.20\mu$ mであり、BET比表面積値 $3\sim80$ m $^2/$ gが好ましく、より好ましくは $6\sim30$ m $^2/$ gである。

[0045]

前記マグネタイト粒子粉末は、常法によって得ることができるが、例えば、第一鉄塩水溶液とアルカリ水溶液とを反応して得られた水酸化第一鉄塩コロイドを含む第一鉄塩反応溶液に酸素含有ガスを通気することによって得ることができる。

[0046]

本発明に用いるチタン化合物としては、硫酸チタニル、四塩化チタン、三酸化チタンを 挙げることができる。

[0047]

前記チタン化合物の添加量は、Feに対して10~40原子%が好ましい。より好ましくは20~33. 3原子%である。

[0048]

マグネタイト粒子粉末に対するチタン化合物の被覆は、マグネタイト粒子を含有する水 懸濁液に前記チタン化合物を添加し、水酸化アルカリ水溶液、炭酸アルカリ水溶液等を用 いて、マグネタイト粒子の粒子表面にチタン化合物を被覆させる。なお、被覆反応では反 応溶液のpH値を低下させないで、チタン化合物の添加直後の反応pHを維持させること が好ましい。

[0049]

なお、前記異種金属元素を含有させる場合には、予めマグネタイト粒子中に含有させておいても良く、又はマグネタイト粒子の表面にチタン化合物を被覆させた水溶液に各種金属元素からなる塩、又は各種金属元素を含有する溶液を添加しても良い。

[0050]

本発明における加熱焼成の雰囲気は非酸化性雰囲気下が好ましく、酸化性雰囲気下では、高い黒色度を有する鉄系黒色粒子粉末を得ることが困難である。

[0051]

本発明における加熱焼成の温度範囲は $650\sim880$ ℃が好ましく、650℃未満の場合には、マグネタイト粒子とTi 化合物の固相反応が不十分となり、目的とする鉄系黒色粒子粉末を得ることが困難であり、880℃を越える場合には、不要な相が生成するため好ましくない。より好ましくは $700\sim850$ ℃である。

[0052]

本発明2に係る鉄系黒色粒子粉末は、前記粉砕時に青色顔料を添加して混合・粉砕して 得ることができる。

[0053]

本発明2に係る青色顔料を含有する鉄系黒色粒子粉末は、FeTiOsーFe2Os固溶体又はFeTiOsーFe2Os固溶体とスピネル型構造を有する鉄系酸化物との混合組成物と青色顔料とが混在していても良く、又は、FeTiOsーFe2Os固溶体又はFeTiOsーFe2Os固溶体とスピネル型構造を有する鉄系酸化物の粒子表面に付着していてもよい。更に、鉄系黒色粒子粉末の粒子表面に糊剤を付着させ、該付着糊剤を介

20

10

して青色顔料を付着又は被覆させても良い。なお、糊剤としては、アルコキシシランから 生成するオルガノシラン化合物又はポリシロキサンを使用することができる。

[0054]

次に、本発明に係る鉄系黒色粒子粉末を配合した非磁性トナーについて述べる。

[0055]

本発明における黒色磁性トナーは、本発明に係る鉄系黒色粒子及び結着剤樹脂からなり 、必要に応じて離型剤、着色剤、荷電制御剤、その他の添加剤等を含有してもよい。

[0056]

黒色非磁性トナーは、平均粒子径が通常 $3\sim15\,\mu\,\mathrm{m}$ 、好ましくは $5\sim12\,\mu\,\mathrm{m}$ であり 、磁化値(飽和磁化値)が、可及的に低く、例えば、通常30Am²/kg以下、好まし くは20Am²/kg以下ある。

[0057]

結着剤樹脂と鉄系黒色粒子との割合は、結着剤樹脂100重量部に対して鉄系黒色粒子 粉末通常0.1~900重量部、好ましくは17~185重量部である。

[0058]

結着剤樹脂としては、ポリエステル樹脂やスチレンーアクリル共重合樹脂、スチレン、 アクリル酸アルキルエステル及びメタクリル酸アルキルエステル等のビニル系単量体を重 合又は共重合したビニル系重合体が使用できる。上記スチレン単量体としては、例えばス チレン及びその置換体がある。上記アクリル酸アルキルエステル単量体としては、例えば アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等がある。上記共 重合体は、スチレン系成分を50~95重量%含むことが好ましい。

[0059]

結着剤樹脂は、必要により、上記ビニル系重合体とともに、ポリエステル系樹脂、エポ キシ系樹脂、ポリウレタン系樹脂等を併用することができる。

[0060]

次に、本発明における黒色非磁性トナーの製造法について述べる。

[0061]

本発明における黒色非磁性トナーは、所定量の結着剤樹脂と所定量の非磁性黒色粒子と を混合、加熱、混練、粉砕による公知の方法によって行うことができる。具体的には、非 磁性黒色粒子と結着剤樹脂とを、必要により更に離型剤、着色剤、荷電制御剤、その他の 添加剤等を添加した混合物を混合機により十分に混合した後、加熱混練機によって結着剤 樹脂中に非磁性黒色粒子等を分散させ、次いで、冷却固化して樹脂混練物を得、該樹脂混 練物を粉砕及び分級を行って所望の粒子サイズとすることにより得られる。

[0062]

前記混合機としては、ヘンシェルミキサー、ボールミル等を使用することが出来る。前 記加熱混練機としては、ロールミル、ニーダー、二軸エクストルーダー等を使用すること が出来る。前記粉砕は、カッターミル、ジェットミル等の粉砕機によって行うことができ 、公知の風力分級等により行うことが出来る。

[0063]

黒色磁性トナーを得る他の方法として、懸濁重合法又は乳化重合法がある。懸濁重合法 においては、重合性単量体と黒色磁性酸化鉄粒子とを、必要により更に、着色剤、重合開 始剤、架橋剤、荷電制御剤、その他の添加剤を添加した混合物を溶解又は分散させた単量 体組成物を、懸濁安定剤を含む水相中に攪拌しながら添加して造粒し、重合させて所望の 粒子サイズとすることにより得られる。乳化重合法においては、単量体と非磁性黒色粒子 とを、必要により更に着色剤、重合開始剤などを水中に分散させて重合を行う過程に乳化 剤を添加することによって所望の粒子サイズとすることにより得られる。

[0064]

<作用>

本発明に係る鉄系黒色粒子粉末が黒色度に優れるのは、Fe²⁺ の多いマグネタイトを 用いたことによって、加熱処理を行っても黒色度を阻害する不要な相が生成しないことに

よるものと推定している。

[0065]

本発明に係る鉄系黒色粒子粉末が黒色度に優れるとともに、磁化値が低い理由として、 マグネタイトの存在量を可及的に少なくしたことによるものと推定している。

[0066]

更に、本発明においては、青色顔料を混在させることによって、黒色度と着色力がより 向上するものである、

【実施例】

[0067]

本発明の代表的な実施の形態は、次の通りである。

[0068]

粒子の平均粒子径は、いずれも電子顕微鏡写真に示される粒子350個の粒子径をそれぞれ測定し、その平均値で示した。

[0069]

粒子の構成相は、X線回折(管球: Cu)によって同定した。また、FeTiOsーFe2Os 固溶体とFesO4ー γ -Fe2Os 固溶体のピーク強度比は、FeTiOsーFe2Os 固溶体の(104)面のピーク強度に対するFesO4ー γ -Fe2Os 固溶体の(220)面のピーク強度から計算して求めた。

[0070]

比表面積値は、「Mono Sorb MS-II」(湯浅アイオニックス(株)製)を用いてBET法により測定した値で示した。

[0071]

鉄系黒色粒子粉末の磁気特性は「振動試料型磁力計VSM-3S-15」(東英工業 (株)製)を用いて磁場796kA/m(10kOe)下で測定した値である。

[0072]

鉄系黒色粒子粉末のTi及びAl、Si、Cu等の異種金属元素の含有量は、「蛍光X線分析装置 RIX-2100型」(理学電機工業(株)製)を用い検量線法により、測定した。

[0073]

Fe²⁺ 含有量は、下記の化学分析法により求めた値で示した。

[0074]

即ち、不活性ガス雰囲気下において、黒色磁性酸化鉄粒子又は鉄系黒色粒子粉末0.5gに対しリン酸と硫酸を2:1の割合で含む混合溶液25ccを添加し、前記黒色磁性酸化鉄粒子又は鉄系黒色粒子粉末を溶解する。この溶解水溶液の希釈液に指示薬としてジフェニルアミンスルホン酸を数滴加えた後、重クロム酸カリウム水溶液を用いた酸化還元滴定を行った。上記希釈液が紫色を呈した時を終点とし、該終点に至るまでに使用した重クロム酸水溶液の量から計算して求めた。

[0075]

鉄系黒色粒子粉末の黒色度は、試料 0.5 g E と E マシ油 0.5 m E をフーバー式マーラーで練ってペースト状とし、このペーストにクリアラッカー E のアプリケーターを用いて塗布としてキャストコート紙上に E E の E

[0076]

・ 鉄系黒色粒子粉末の着色力は、試料 0. 5 g、ヒマシ油 0. 5 m l 及び二酸化チタン 1. 5 gをフーバー式マーラーで練ってペースト状とし、このペーストにクリアラッカー 4. 5 gを加え、混練、塗料化してキャストコート紙上に 150μ m (6 m i l)のアプリケーターを用いて塗布した塗布片(塗膜厚み:約 30μ m)を作製し、該塗布片について、分光色彩計カラーガイド(B Y K - G a r d n e r G m b H 製)を用いて測色し、J

10

30

20

Εn

IS Z 8929に定めるところに従って表色指数 $(L^*$ 値) で示した。

[0077]

黒色トナーを用いた画像濃度は、製造した黒色トナーを電子写真プリンター(沖電気工業製 MICROLINE600CL)を用いてベタ黒(A4)を印刷したものを用いて、そのベタ黒の画像濃度をRD914(商品名、MACBETH社製)により測定した。数値が高い方がより画像濃度に優れることを示し、実用上1.30以上が求められる。

[0078]

黒色トナーを用いたカブリは、上述の電子写真用トナーの黒色度の測定に使用したベタ 黒(A4)を用い、カブリの有無を目視により観察し、下記4段階で評価した。

- ◎:非常に良好(未発生)
- ○:良好(ほとんど発生せず)
- △:実用可(軽微な発生が見られる)
- ×: 実用不可

[0079]

<鉄系黒色粒子粉末の製造>

実施例1

球状マグネタイト粒子粉末(平均粒子径 $0.15\mu m$ 、BET比表面積 $10.8m^2/g$ 、FeO含有量 25.6 重量%)10kg を含有する水懸濁液に、硫酸チタニル 38.9mol を含有する水溶液(マグネタイト粒子粉末の全Feに対してTi 換算で 30 原子%に相当する。)を添加する。尚、添加時に反応溶液のpHが低下しないように該混合液中にNaOHを添加した。次いで、混合溶液のpH値を 8.0 に調整してマグネタイト粒子の粒子表面にチタンの含水酸化物を沈着させた後、濾別、水洗、乾燥して粒子表面がチタンの含水酸化物で被覆されている球状黒色磁性酸化鉄粒子粉末を得た。

[0080]

[0081]

[0082]

実施例2~10、比較例2~7

マグネタイトの種類、チタン化合物の添加量、加熱焼成処理の温度を種々変化させた以 外は前記実施例1と同様にして鉄系黒色粒子粉末を得た。

[0083]

このときの製造条件を表1に、得られた非磁性黒色粒子粉末の諸特性を表2に示す。

[0084]

比較例1 (特開平3-2276号公報の実施例1の追試実験)

粒状マグネタイト粒子粉末(平均粒子径 $0.2\mu m$ 、磁化値 85.0emu/g) 100geTiOSO4e0.26mol含有する水溶液中(<math>Ti/Fe=20.0原子%に相当する。)に分散混合し、次いで、該混合液中にNaOHe添加して中和し、pH8において粒子表面にTiO水酸化物を沈着させた後、濾別、乾燥した。得られた粒子表面がTiO水酸化物で被覆されている粒状マグネタイト粒子粉末のTi(IV)量は、蛍光X線分析の結果、Fe(II)及びFe(III)に対し21.0原子%であった。

10

[0085]

上記粒子表面がTiの水酸化物で被覆されている粒状マグネタイト粒子粉末50gをN2ガス流下750℃で120分間加熱焼成した後、粉砕して黒色粒子粉末を得た。

[0086]

得られた黒色粒子粉末のT i 量は全F e に対して2 1. 0 原子%であった。また飽和磁化値 σ s が 0. 6 A m^2 / k g であり、黒色度を表す L^* 値が 1 4. 1 であり、着色力は 4 6. 9 であった。平均粒子径は0. 2 5 μ m であり、図 3 の X 線回折図に示す通り、 F e 2 O 3 一 F e T i O 3 固溶体と F e 2 T i O 3 との混合物であった。

[0087]

このときの製造条件を表1に、得られた鉄系黒色粒子粉末の諸特性を表2に示す。

[0088]

10

20

30

40

【表1】

	マグネタイ	マグネタイト粒子の特性			口化合物に。	TI化合物による被覆処理	エ	異種金属	熱処理	町	
種類	平均粒子径	BET	FeO	飽和磁化值σs	H.	TI/全Fe	種類	添加量	温度	時間	
	(mm)	(m ² /g)	(wt%)	(Am²/kg)	種類	(原子%)		(原子%)	(%)	(分)	
球状マグネタイト	0.15	10.8	25.6	82	Tioso₄	30	I		750	90	
球状マグネタイト	0.18	9.7	26.0	83	TiCl₄	30			750	60	
球状マグネタイト	0.15	10.8	25.6	82	Tioso₄	21	-	-	750	09	
球状マグネタイト	0.10	14.8	25.1	82	TICI	26	experie Prophet	-	750	09	
球状マグネタイト	0.10	14.8	25.1	82	TiOSO₄	12	-	*****	750	09	
球状マグネタイト	0.04	29.7	18.2	80	TiOl⁴	35	-	-	750	09	
球状マグネタイト	0.10	14.8	25.1	82	TiOl₄	30	S	_	750	09	
球状マグネタイト	0.15	10.8	25.6	82	Tioso4	30	ng C	5	750	60	
球状マグネタイト	0.15	10.8	25.6	82	TiOSO₄	24	₹	8	750	09	
八面体マグネタイト	0.17	8.1	26.7	85	TiCl₄	30	-	1	750	09	
粒状マグネタイト	0.20	7.9	16.5	85	TiOSO₄	20	COLUMN NOTICE	week states	750	120	
球状マグネタイト	0.10	14.7	13.4	80	TiCl₄	30	1	-	750	09	
球状マグネタイト	0.02	52.3	10.7	75	Tioso₄	30	1	NAMES AND ADDRESS OF THE PERSONS	750	90	
球状マグネタイト	0.15	10.8	25.6	82	Tioso₄	8		l	750	09	
球状マグネタイト	0.15	10.8	25.6	82	Tioso₄	20	l I		750	09	
比較例 6 球状マグネタイト	0.15	10.8	25.6	82	TICI4	30	I	months despited	009	60	
球状マグネタイト	0.15	10.8	25.6	82	TICI⁴	30	l		006	60	

[0089]

【表2】

			鉄系黒1	鉄系黒色粒子粉末の諸特性	諸特性				
	平均和子径	組成	ピーク 乗	TI/全Fe	異種元素	BET 比表面積	飽和 磁化値	黑色庭	着色力
	E.		知及几	原子%	原子%	m²/g	(Am²/kg)	*	
実施例 1	0.17	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\textit{r} \) - Fe ₂ O ₃	1:0.09	29.9	1	9.0	10.5	2'6	40.4
実施例 2	0.20	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\cdot \) - Fe ₂ O ₃	1:0.12	29.8	OZIZIA PRECES	7.1	14.9	9.2	41.3
実施例3	0.16	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - γ - Fe ₂ O ₃	1:0.29	21.8	######################################	10.2	32.0	9.3	38.7
実施例 4	0.12	Fe ₂ O ₃ FeTiO ₃ +Fe ₃ O ₄ \(\cdot \) - Fe ₂ O ₃	1:0.22	25.7	manual annual	11.8	21.8	6.6	39.6
実施例5	0.11	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\cdot \) - Fe ₂ O ₃	1:0.40	12.0		13.2	38.8	10.7	38.9
実施例6	0.08	Fe ₂ O ₃ -FeTiO ₃	\$2	34.6	danda some	18.7	5.8	12.3	40.9
実施例7	0.11	Fe ₂ O ₃ —FeTiO ₃ +Fe ₃ O ₄ — \(\gamma \) - Fe ₂ O ₃	1:0.08	29.6	Si:1.0	13.0	11.2	10.3	39.8
実施例8	0.17	Fe ₂ O ₃ —FeTiO ₃ +Fe ₃ O ₄ — γ - Fe ₂ O ₃	1:0.07	29.8	Cu:4.8	8.8	9.1	8.9	39.0
実施例 9	0.18	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\textit{7} \) - Fe ₂ O ₃	1:0.07	23.9	AI:7.9	8.1	9.3		41.2
実施例 10	0.19	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\gamma \) - Fe ₂ O ₃	1:0.15	29.9	the state of the s	7.6	16.6	9.5	41.0
比較例 1	0.25	Fe ₂ O ₃ -FeTiO ₃ +Fe ₂ TiO ₅	1	21.0	Grand Statement	5.8	9.0	14.1	46.9
比較例2	0.12	Fe ₂ O ₃ -FeTiO ₃ +Fe ₂ TiO ₅		29.8	-	12.6	0.2	14.3	46.2
比較例3	0.15	Fe ₂ O ₃ -FeTiO ₃ +Fe ₂ TiO ₅	,	29.9	tions towns	10.1	0.4	16.5	44.4
比較例 4	0.11	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\chi \) - Fe ₂ O ₃	1:0.41	7.9		14.0	42.4	11.0	41.9
比較例 5	0.18	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\chi \) - Fe ₂ O ₃	1:0.20	49.3		12.2	4.6	15,2	48.1
比較例 6	0.12	Fe ₂ O ₃ -FeTiO ₃ +Fe ₃ O ₄ - \(\chi \) - Fe ₂ O ₃	1:0.47	30.0		14.1	46.9	16.0	51.2
比較例7	0.25	Fe ₂ O ₃ -FeTiO ₃ +Fe ₂ TiO ₅	4	29.8	-	5.6	1.8	13.8	46.8
	A contract of the contract of								
		3		2			1		
40		30		09			0		

[0090]

なお、比較例 5 及び 6 では、F e $_2$ O $_3$ -F e T i O $_3$ と F e $_3$ O $_4$ $-\gamma$ -F e $_2$ O $_3$ との混合組成以外に、未反応のT i 化合物が残存していた。

[0091]

実施例11~15

前記実施例2乃至6の粉砕処理時に各青色顔料を添加した以外は前記実施例2乃至6と 同様にして非磁性黒色粒子粉末を得た。 [0092]

-このときの製造条件及び得られた鉄系黒色粒子粉末の諸特性を表3に示す。

[0093]

【表3】

	鉄チタン複合酸化物	青色顔料	並	含有状態	BET比表面積	飽和磁化值	黑色度	着色力
		種類	添加量(wt%)		(m ² /g)	(Am²/kg)	*	
実施例 11	実施例 2	Cuフタロシアニン	5	表面コート	7.4	13.8	7.7	39.7
実施例 12	実施例3	アルカリブルー	10	混在	16.3	28.9	6.8	35.2
実施例 13	実施例 4	アルカリブルー	0.5	表面コート	11.7	21.7	9.4	38.9
実施例 14	実施例5	Cuフタロシアニン	10	表面コート	13.8	35.0	8.2	36.5
実施例 15	実施例 6	Cuフタロシアニン	ю	混在	19.9	5.6	10.8	40.6

[0094]

<電子写真用トナーの製造>

実施例16

実施例1で得た鉄系黒色粒子粉末を用いて、下記混合割合でヘンシェルミキサーにより 混合した組成物を、二軸押し出し混練機(栗本鉄鋼社製 商品名:S-1)を用いて溶融 50

10

20

30

混練し、混練物を冷却後、微粉砕した。これを体積平均粒子径 8 ~ $10 \mu m$ (コールカウンター社製 商品名: Multisizerで測定)に分級し、さらに得られたトナー粉 <math>100重量部に対して、疎水性シリカ微粉末(日本アエロジル社製 商品名: RX-200) 0.5重量部を外添処理し、電子写真用トナーを得た。

[0095]

スチレンーアクリル系共重合樹脂

100重量部、

(ハイマーSB-308:三洋化成工業株式会社製)

鉄系黒色粒子粉末

25重量部、

負荷電制御剤0.5重量部、(BONTRON E-84:オリエント化学工業株式会社製)

低分子量ワックス

5重量部。

(ビスコール550-P:三洋化成工業株式会社製)

[0096]

- 得られた電子写真用トナーは、初期画像濃度は1.45で、カブリの発生は無かった(4段階のうち◎)。

[0097]

実施例17~30、比較例9~15

非磁性黒色粒子粉末の種類を種々変化させた以外は、前記実施例16と同様にして非磁性トナーを得た。

[0098]

このときの処理条件及び得られた非磁性黒色トナーの諸特性を表4に示す。

[0099]

20

【表4】

			トナーの諸特性			
	用いた鉄系黒 色粒子	飽和磁化値	初期画像濃度	カブリ		
	<u> </u>	(Am²/kg)				
実施例 16	実施例 1	2.0	1.45	0		
実施例 17	実施例 2	2.9	1.40	©		
実施例 18	実施例3	6.1	1.50	0		
実施例 19	実施例 4	4.2	1.45	0		
実施例 20	実施例 5	7.4	1.50	0		
実施例 21	実施例 6	1.1	1.45	0		
実施例 22	実施例7	2.1	1.45	©		
実施例 23	実施例8	1.7	1.50	0		
実施例 24	実施例 9	1.8	1.40	0		
実施例 25	実施例 10	3.2	1.40	©		
実施例 26	実施例 11	2.6	1.45	0		
実施例 27	実施例 12	5.5	1.60	0		
実施例 28	実施例 13	4.2	1.50	0		
実施例 29	実施例 14	6.7	1.60	0		
実施例 30	実施例 15	1.1	1.40	0		
比較例 9	比較例 1	0.1	1.15	©		
比較例 10	比較例 2	0.0	1.15	0		
比較例 11	比較例3	0.1	1.25	0		
比較例 12	比較例 5	8.1	1.20	Δ		
比較例 13	比較例 6	0.9	1.10	0		
比較例 14	比較例7	9.0	1.00	×		
比較例 15	比較例8	0.3	1.15	0		

10

20

30

【産業上の利用可能性】

[0100]

本発明に係る鉄系黒色粒子粉末は、黒色度に優れ、可及的に磁化値が低いので、黒色を 呈する顔料及び塗料、樹脂組成物の着色用材料、充填材等として好適である。

[0101]

本発明に係る鉄系黒色粒子粉末を用いて製造した黒色非磁性トナーは、高い黒色度を有 すると共に、磁化値が低いので、非磁性トナーとして好適である。

【図面の簡単な説明】

[0102]40 【図1】発明の実施の形態で得られた非磁性黒色粒子粉末の電子顕微鏡写真である。(倍

率20000)

【図2】発明の実施の形態で得られた非磁性黒色粒子粉末のX線回折パターンである。

【図3】比較例1で得られた非磁性黒色粒子粉末のX線回折パターンである。

【図1】

【図2】

[図3]

フロントページの続き

Fターム(参考) 2H005 AA02 CA21 CB03 CB07 DA04 EA02 EA05 EA07 FA06 4G002 AA06 AB04 AB05 AE01