EPITA

Mathématiques

Examen S1B1-LE

durée: 1 heure

Octobre 2023

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 20 points
Consignes:
 Lire le sujet en entier avant de commencer. Il y a en tout 4 exercices. La rigueur de votre rédaction sera prise en compte dans la note. Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1: équation du second degré (2 points)

1. Résoudre dans $\mathbb C$ l'é	equation $2z^2 + 2\sqrt{3}z + 2 = 0$. On notera z_1 et z_2 les deux solutions trouvées.
2. Donner la forme exp	ponentielle de z_1 et de z_2 .
Exercice 2 : logiq	que (6 points)
Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$.	
1. Traduire les phrases	s suivantes en syntaxe mathématique (avec les quantificateurs)
(a) « La fonction f s	s'annule au moins une fois »
(b) « La fonction f	est constante »
(c) « La fonction f «	est majorée »
2. On considère les ass	sertions:
$P: \ll \forall x \in \mathbb{R}, f(x) :$	=0
(a) Donner la négati	ion de P , de Q et de R .
(b) Cocher dans le t	ableau suivant les implications vraies :
$P \Longrightarrow Q \mid Q =$	$\Rightarrow P \mid Q \Longrightarrow R \mid \neg(Q) \Longrightarrow \neg(P) \mid \neg(P) \Longrightarrow \neg(R)$

Exercice 3: ensembles et fonctions (8 points)

	Soient E et F deux ensembles, $f: E \longrightarrow F$, $A \subset E$ et $B \subset F$. Rappeler la définition mathématique des ensemble $f(A)$ et $f^{-1}(B)$.
	Dessiner (graphe, patate) une fonction $f: \{a, b, c, d\} \longrightarrow \llbracket 1, 5 \rrbracket$ qui vérifie à la fois $f(\{a, b\}) = \{1, 2\}, f^{-1}(\{5\}) = \emptyset$ e $f^{-1}(\{2\}) = \{b, c\}.$
3.	Soit $g: \left\{ egin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x-1 \end{array} \right.$
(a) Dessiner le graphe de g .
(b) Donner $g(\{-1,2\}), g([-1,3]), g^{-1}(\{1\})$ et $g^{-1}([0,1])$.
`	
(c) g est-elle injective? Justifier. Si non, proposer deux intervalles I_1 et J_1 pour lesquels $g:I_1\longrightarrow J_1$ soit injective.
`	
(d) g est-elle surjective? Justifier. Si non, proposer deux intervalles I_2 et J_2 pour lesquels $g: I_2 \longrightarrow J_2$ soit surjective.
`	

Exercice 4: relations (4 points)

	ire si \mathcal{R} est réflexive. Justifier.
•	
• •	
• •	
• •	
• •	
• •	
• •	
• •	
. Di	ire si \mathcal{R} est symétrique. Justifier.
• •	
• •	
• •	
• •	
~	pit $(a,b) \in E^2$ tels que $a\mathcal{R}b$ et $b\mathcal{R}a$.
Sc	
	Montrer qu'il existe $(n, p) \in \mathbb{N}^2$ tel que $b = b^{np}$.
	Montrer qu'il existe $(n,p) \in \mathbb{N}^2$ tel que $b=b^{np}$.
	Montrer qu'il existe $(n,p) \in \mathbb{N}^2$ tel que $b=b^{np}$.
	Montrer qu'il existe $(n,p) \in \mathbb{N}^2$ tel que $b=b^{np}$.
	Montrer qu'il existe $(n,p) \in \mathbb{N}^2$ tel que $b=b^{np}$.
(a)	Montrer qu'il existe $(n,p)\in\mathbb{N}^2$ tel que $b=b^{np}$. En déduire que $b=1$ ou que $n=p=1$. Qu'avez-vous finalement démontré ?
(a)	
(a)	
(a)	