BÀI TẬP CHƯƠNG "NHIỀU XẠ ÁNH SÁNG"

1. Phương pháp đới cầu Fresnel

- Diện tích mỗi đới cầu: $\Delta S = \frac{\pi R b}{R + b} \lambda$
- Bán kính đới cầu thứ k: $r_{k} = \sqrt{\frac{kRb}{R+b}\lambda}$
- Biên độ của ánh sáng tổng hợp tại M được gửi tới bởi các đới cầu Fresnel:

$$a_{\infty} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots \approx \frac{a_1}{2}$$

2. Nhiễu xạ gây bởi sóng cầu qua lỗ tròn

Giả sử vẽ được n đới cầu Fresnel chứa trong lỗ tròn, từ đó có biên độ ánh sáng tổng hợp tại điểm M là:

$$a_{M} = \frac{a_{1}}{2} + ... + \begin{cases} \frac{a_{n}}{2} & (n = 2k+1) \\ \frac{a_{n-1}}{2} - a_{n} & (n = 2k) \end{cases}$$

Cường độ sáng tại M khi không có lỗ tròn: $n = \infty$, $a_n = 0 \Rightarrow a_M = \frac{a_1}{2} \Rightarrow I_M = \frac{a_1^2}{4} = I_0$

Số đới cầu lẻ:
$$a_{\rm M} = \frac{a_{\rm 1}}{2} + \frac{a_{\rm n}}{2} \Longrightarrow I_{\rm M} = \left(\frac{a_{\rm 1}}{2} + \frac{a_{\rm n}}{2}\right)^2 > I_{\rm 0}$$

Số đới cầu chẵn:
$$a_{_{M}} = \frac{a_{_{1}}}{2} + a_{_{n-1}} - \frac{a_{_{n}}}{2} \Rightarrow I_{_{M}} \approx \left(\frac{a_{_{1}}}{2} - \frac{a_{_{n}}}{2}\right)^{2} < I_{_{0}}$$

3. Nhiễu xạ gây bởi sóng cầu qua đĩa tròn

Gia sử đĩa tròn che mất m đới cầu, khi đó biên độ sáng tổng hợp tại điểm M là:

1

$$a_{M} = a_{m+1} - a_{m+2} + a_{m+3} - a_{m+4} + \dots = \frac{a_{m+1}}{2} + \left(\frac{a_{m+1}}{2} - a_{m+2} + \frac{a_{m+3}}{2}\right) \approx \frac{a_{m+1}}{2}$$

Nếu đĩa che mất nhiều đới thì cường độ sáng tại điểm M gần như bằng 0.

4. Nhiễu xạ gây bởi sóng phẳng qua 1 khe hẹp

- Các tia nhiễu xạ có góc lệch ϕ = 0 so với phương pháp tuyến \Rightarrow CỰC ĐẠI GIỮA

- Các tia nhiễu xạ có góc lệch thỏa mãn: $\sin \phi = \pm k \frac{\lambda}{b}$ (k=1, 2...) \rightarrow Cực tiểu nhiễu xạ

- Các tia nhiễu xạ có góc lệch thốa mãn: $\sin \phi = \pm (k + \frac{1}{2}) \frac{\lambda}{b}$ $(k=1, 2...) \rightarrow$ Cực đại phụ

5. Nhiễu xạ gây bởi sóng phẳng qua nhiều khe hẹp. Cách tử

- b là bề rộng của 1 khe hẹp, d là khoảng cách giữa các khe hẹp (gọi là chu kỳ cách tử).

- Các tia nhiễu xạ có góc lệch thỏa mãn: $\sin \phi = \pm k \frac{\lambda}{b}$ (k=1, 2...) \rightarrow CỰC TIỂU CHÍNH

- Những tia nhiễu xạ có góc lệch thỏa mãn: $\sin \phi = \pm k \frac{\lambda}{d} \quad (k=0,\,1,\,2...)$ \rightarrow CỰC ĐẠI CHÍNH

- Những tia nhiễu xạ có góc lệch thỏa mãn: $\sin \phi = \pm (2k+1) \frac{\lambda}{2d}$ (k=0,1,2...):

+ Nếu số khe N chẵn: → CỰC TIỀU PHỤ

+ Nếu số khe N lẻ: → CỰC ĐẠI PHỤ

Tổng quát: Giữa 2 cực đại chính có N-1 cực tiểu phụ và N-2 cực đại phụ.

6. Nhiễu xạ trên mạng tinh thể. Công thức Vulf-Bragg

Cực đại nhiễu xạ ứng với: $\delta = 2d \sin \theta = k\lambda \rightarrow \sin \theta = k\frac{\lambda}{2d}$

 $d-l\grave{a}$ khoảng cách hai lớp phẳng nguyên tử cạnh nhau.

 θ - là góc nhiễu xạ theo phương phản xạ gương.

Các bài tập cần làm: 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.12, 2.13, 2.14, 2.17, 2.18, 2.19, 2.21, 2.25, 2.28.

Bài 2.4. Một nguồn sáng điểm chiếu ánh sáng đơn sắc bước sóng $\lambda = 0,5 \mu m$ vào một lỗ tròn bán kính r = 1,0 mm. Khoảng cách từ nguồn sáng tới lỗ tròn R = 1 m. Tìm khoảng cách từ lỗ tròn tới điểm quan sát để lỗ tròn chứa ba đới Fresnel.

$$\lambda = 0, 5.10^{-6} \, \text{m}; r = 10^{-3} \, \text{m}; R = 1 \, \text{m}; b = ?$$

Lỗ tròn chứa 3 đới nên coi như bán kính của lỗ tròn chính bằng bán kính của đới cầu Fresnel thứ 3: Ta có:

$$\mathbf{M} \qquad \mathbf{r} = \mathbf{r}_3 = \sqrt{\frac{3bR\lambda}{R+b}} \rightarrow \mathbf{r}^2 = \frac{3bR\lambda}{R+b} \rightarrow \mathbf{b} = \frac{\mathbf{r}^2 R}{3\lambda R - \mathbf{r}^2}$$

Thay số vào ta có:
$$b = \frac{10^{-6}.1}{3.0, 5.10^{-6}.1 - 10^{-6}} = 2m$$

Mặt khác, ta lại có: $h_k = \frac{bk\lambda}{2(R+b)} \rightarrow h_3 = \frac{2.3.0, 5.10^{-6}}{2(1+2)} = 0, 5.10^{-6} \ll 2m$ nên khoảng cách từ điểm quan sát đến lỗ tròn coi như là b = 2m (thực chất là $b + h_k$)

Bài 2.7. Một màn ảnh được dặt cách một nguồn sáng điểm đơn sắc ($\lambda = 0, 5\mu m$) một khoảng 2m. Chính giữa khoảng ấy có đặt một lỗ tròn đường kính 0,2cm. Hỏi hình nhiễu xạ trên màn ảnh có tâm sáng hay tối?

$$R + b = 2m$$
; $R = b = 1m$; $D = 0.2cm \rightarrow r = 10^{-3} m$

Giả sử lỗ tròn chứa k đới cầu Fresnel → Bán kính đới cầu thứ k chính bằng bán kính lỗ tròn:

$$r = r_k = \sqrt{\frac{Rb\lambda}{R+b}}\sqrt{k} \rightarrow k = \frac{r^2(R+b)}{Rb\lambda} = \frac{10^{-6}.2}{1.1.0.5.10^{-6}} = 4$$

Như vậy tâm của hình nhiễu xạ sẽ là tối vì số đới là chẵn, sẽ vừa đủ để triệt tiêu nhau.

Bài 2.8. Giữa nguồn sáng điểm và màn quan sát người ta đặt một lỗ tròn. Bán kính của lỗ tròn bằng r và có thể thay đổi được trong quá trình thí nghiệm. Khoảng cách giữa lỗ tròn và nguồn sáng R = 100cm, giữa lỗ tròn và màn quan sát b = 125cm.

Xác định bước sóng ánh sáng dùng trong thí nghiệm nếu tâm của hình nhiễu xạ có độ sáng cực đại khi bán kính của lỗ $r_1 = 1 mm \ và$ có độ sáng cực đại tiếp theo khi bán kính của lỗ $r_2 = 1,29 mm$.

R = 1m; b = 1,25m

$$r_1 = 10^{-3} \text{ m}; r_2 = 1,29.10^{-3} \text{ m}$$

 $\lambda = ?$

Vì trong cả 2 thí nghiệm tâm của hình nhiễu xạ có độ sáng cực đại nên 2 lỗ tròn trong 2 trường hợp này phải chứa số đới cầu là lẻ (để không triệt tiêu hết), vì lại là 2 cực đại liên tiếp nên 2 số lẻ này cũng là liên tiếp.

Ta có:

$$r_{1} = \sqrt{\frac{Rb\lambda}{R+b}} \sqrt{k_{1}}$$

$$r_{2} = \sqrt{\frac{Rb\lambda}{R+b}} \sqrt{k_{1}+2}$$

$$r_{2}^{2} = \frac{Rb\lambda k_{1}}{R+b}$$

$$r_{2}^{2} = \frac{Rb\lambda (k_{1}+2)}{R+b}$$

$$r_{2}^{2} = \frac{2Rb\lambda}{R+b} \lambda = \frac{(R+b)(r_{2}^{2} - r_{1}^{2})}{2Rb}$$

Thay số vào ta có:
$$\lambda = \frac{(1+1,25)(1,29^2-1).10^{-6}}{2.1.1,25} = 0,6.10^{-6} \text{ m}$$

Bài 2.13. Chiếu một chùm tia sáng đơn sắc song song vuông góc với một khe hẹp. Bước sóng ánh sáng tới bằng $\frac{1}{6}$ bề rộng của khe. Hỏi cực tiểu nhiễu xạ thứ ba được quan sát dưới góc lệch bằng bao nhiêu?

Điều kiện cực tiểu: $\sin \varphi = \pm \frac{k\lambda}{k}$

Cực tiểu nhiễu xạ thứ 3:
$$\sin \varphi_3 = \pm \frac{3\lambda}{b} = \pm \frac{3\frac{b}{6}}{b} = \pm \frac{1}{2} \rightarrow \varphi_3 = \pm 30^\circ$$

Bài 2.14. Một chùm tia sáng đơn sắc song song ($\lambda = 5.10^{-5}$ cm) được rọi thẳng góc với một khe hẹp có bề rông $b = 2.10^{-3}$ cm. Tính bề rông của ảnh của khe trên một màn quan sát đặt cách khe một khoảng d = 1m (bề rộng của ảnh là khoảng cách giữa hai cực tiểu đầu tiên ở hai bên cực đại giữa).

Bề rộng của ảnh là khoảng cách giữa 2 cực tiểu đầu tiên ở 2 bên cực đại giữa

Điều kiện cực tiểu: $\sin \varphi = \pm \frac{k\lambda}{h}$, 2 cực tiểu đầu tiền ở 2 bên cực đại giữa ứng với: $\sin \varphi_1 = \pm \frac{\lambda}{h}$

Từ hình vẽ:

Bề rộng cần tìm là:
$$2x = 2d \tan \phi \approx 2d \sin \phi = \frac{2d\lambda}{b}$$

Thay số vào ta có:

$$\frac{\mathbf{X}}{\mathbf{X}}$$
 2x = $\frac{2d\lambda}{b}$ = $\frac{2.1.0, 5.10^{-6}}{2.10^{-3}}$ = 5.10⁻² m = 5cm

Bài 2.19. Một chùm tia sáng phát ra từ một ống phóng điện chứa đầy khí hydro tới đập vuông góc với một cách tử nhiễu xạ. Theo phương $φ = 41^0$ người ta quan sát thấy có hai vạch $λ_1 = 0,6563μm$ và $λ_2 = 0,4102μm$ ứng với bậc quang phổ bé nhất trùng nhau. Hãy xác định chu kỳ của cách tử.

Điều kiện cực đại chính:
$$\sin \phi = k_1 \frac{\lambda_1}{d} = k_2 \frac{\lambda_2}{d} \Rightarrow k_1 \lambda_1 = k_2 \lambda_2 \Rightarrow \frac{k_1}{k_2} = \frac{\lambda_2}{\lambda_1} = \frac{0.4102}{0.6563} = 0.625$$

Với
$$k_1 \& k_2 \in Z; (k_1 \& k_2)_{min} \rightarrow k_1 = 5 \& k_2 = 8$$

Thay ngược lại ta có:
$$\sin \phi = k_1 \frac{\lambda_1}{d} \rightarrow d = \frac{k_1 \lambda_1}{\sin \phi} = \frac{5.0,6563.10^{-6}}{\sin 41^0} = 5.10^{-6} m$$

Bài 2.25. Cho một cách tử phẳng phản chiếu, chu kỳ d = 1mm, chiếu một chùm tia sáng đơn sắc song song vào cách tử với góc tới $\theta = 89^{\circ}$. Với góc nhiễu xạ $\phi = 87^{\circ}$, người ta quan sát được vạch cực đại bâc 2.

Hãy xác định bước sóng của ánh sáng tới.

Xét 2 tia tới, hiệu quang lộ là: $\Delta L_{\rm t} = L_{\rm t2} - L_{\rm t1} = d\sin\theta$

Xét 2 tia phản xạ, hiệu quang lộ là:

$$\Delta L_{px} = L_{px2} - L_{px1} = -d\sin\phi$$

Vậy hiệu quang lộ giữa 2 tia 1 và 2 là:

$$\Delta L = \Delta L_{t} + \Delta L_{px} = d(\sin \theta - \sin \phi)$$

Điều kiện cực đại: $\Delta L = d(\sin \theta - \sin \phi) = k\lambda$

Suy ra:

$$\lambda = \frac{d(\sin \theta - \sin \phi)}{k} = \frac{10^{-3}(\sin 89^{0} - \sin 87^{0})}{2} = 0,6.10^{-6} \text{m}$$

Bài 2.28. Chiếu sáng vuông góc với một mặt phẳng của một cách tử nhiễu xạ bằng 1 thị kính. Khi quay thị kính một góc ϕ nào đó, người ta quan sát thấy vạch quang phổ ba bậc ứng với bước sóng $\lambda = 4,4.10^{-4}\,\mathrm{mm}$. Hỏi dưới cùng góc ϕ người ta có thể quan sát thấy vạch quang phổ ứng với bước sóng nào nằm trong giới hạn từ $\lambda_1 = 4.10^{-4}\,\mathrm{mm}$ đến $\lambda_2 = 7.10^{-4}\,\mathrm{mm}$. Vạch đó thuộc quang phổ bậc mấy?

Góc lệch ϕ ứng với vạch cực đại sáng có bước sóng $\lambda = 4, 4.10^{-4}$ mm được xác định bởi điều kiện: $\sin \phi = \pm 3 \frac{\lambda}{d}; k = 0, 1, 2, 3...$

Với bước sóng λ' trong khoảng từ $\lambda_1 = 4.10^{-4} \, \text{mm}$ đến $\lambda_2 = 7.10^{-4} \, \text{mm}$:

$$\sin \varphi = \pm k \frac{\lambda'}{d}$$

So sánh 2 biểu thức:
$$3\frac{\lambda}{d} = k\frac{\lambda'}{d} \to \lambda' = \frac{3\lambda}{k} = \frac{3.4, 4.10^{-4}}{k} = \frac{0,00132}{k}$$

Ta có:
$$4.10^{-4} \le \lambda' \le 7.10^{-4} \to 4.10^{-4} \le \frac{0,00132}{k} \le 7.10^{-4} \to 1,9 \le k \le 3,3$$

Vậy
$$k = 2$$
 hoặc $k = 3$:

Trường hợp k=3 chính là bước sóng $\,\lambda=4,4.10^{-4} mm$ ban đầu.

Trường hợp
$$k=2$$
: $\rightarrow \lambda' = \frac{0,00132}{2} = 6,6.10^{-4} \, \text{mm} = 0,66 \mu \text{m}$