TP PROJET: RECETTE DE BIÈRE

FATIH EYILI, GILLIAN CATIL, MIKAEL LE DEVEHAT

19/09/2023

TABLE DES MATIÈRES

- CONTEXTE
 - BREW
 - PROBLÉMATIQUE
- Les données
 - Données fournis
 - NETTOYAGE
 - ANALYSE EXPLORATOIRE
- COMMENT PRÉDIRE ABV ?
 - OG ET ABV
 - SÉPARATION DES DONNÉES
 - RÉGRESSION LINÉAIRE
 - MSE/MAE
- COMMENT PRÉDIRE IBU ?
 - LES ESSAIS
 - RANDOM FOREST CLASSIFIER
 - HALVING GRID SEARCH
 - Précision
- L'APPLICATION WEB
 - CRÉATION DU FORMULAIRE
 - Présentation
- Conclusion

19/09/2023 - Table des matière 2

CONTEXTE

19/09/2023 - Le contexte 3

BREW

19/09/2023 - Contexte

PROBLÉMATIQUE

19/09/2023 - Contexte

LES DONNÉES

DONNÉES FOURNIS

- DEUX FICHIERS CSV
- KAGGLE
- Sans donnée sur les ingrédients

NETTOYAGE

VALEURS MANQUANTES

COLONNES PERTINENTES

BoilGravity has 2990 (4.0%) missing values

MashThickness has 29864 (40.4%) missing values

PitchRate has 39252 (53.1%) missing values

PrimaryTemp has 22662 (30.7%) missing values

PrimingMethod has 67095 (90.8%) missing values

PrimingAmount has 69087 (93.5%) missing values

UserId has 50490 (68.4%) missing values

BeerID is uniformly distributed

BeerID has unique values

URL has unique values

NETTOYAGE

• GESTION DES OUTLIERS

Extreme values

Minimum	1
Maximum	9200
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	577.2 KiB

Toggle details

Gestion des Outliers ++
<pre>df = df[df["Size(L)"] <= df["Size(L)"].quantile(0.95)]</pre>
df = df[df["06"] <= df["06"].quantile(0.95)]
<pre>df = df[df["FG"] <= df["FG"].quantile(0.95)]</pre>
<pre>df = df[df["BoilSize"] <= df["BoilSize"].quantile(0.95)]</pre>
df = df[(df["IBU"] <= 150) & (df["IBU"] > 0)]

e statistics

Histogram

Minimum	1
5-th percentile	9.46
Q1	18.93
median	20.82
Q3	23.66
95-th percentile	58
Maximum	9200
Range	9199
Interquartile range (IQR)	4.73

Common values

		4 41 41
Descri	ptive	statistics

180.3734922
4.10595078
397.6875128
43.92977458
1.89
15.87306732
3244697.08
32534.59669
Not monotonic

NETTOYAGE

GESTION DES ZÉROS POUR IBU

IBU

Real number (ℝ_{≥0})

ZEROS

Distinct	10707
Distinct (%)	18.7%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	41.23892535

Minimum	0
Maximum	149.94
Zeros	2147
Zeros (%)	3.8%
Negative	0
Negative (%)	0.0%
Memory size	447.3 KiB

Toggle details

ANALYSE EXPLORATOIRE

ANALYSE EXPLORATOIRE

COMMENT PRÉDIRE ABV ?

OG ET ABV

RÉGRESSION LINÉAIRE

RL = LinearRegression()

- Technique d'analyse
- Y = aX + b
- Définir un maximum de point
- Ecart minimal
- Prédire une valeur inconnue

SÉPARATIONS DES DONNÉES

SCIKIT-LEARN: TRAIN_TEST_SPLIT

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Données

Données d'entrainement 80%

Données de Test 20%

MSE/MAE

• MEAN SQUARE VALUE:

$$MSE(y, \widehat{y}) = \frac{1}{N} \sum_{i}^{N} (\widehat{y}_i - y_i)^2$$

MSE = 0.129432

MEAN ABSOLUTE VALUE:

$$MAE(y, \widehat{y}) = \frac{1}{N} \sum_{i}^{N} |\widehat{y_i} - y_i|$$

MAE = 0.281369

N le nombre d'exemples du jeu d'entraînement

yi la vraie valeur

 $\hat{y_i}$ la valeur prédite = $f(x_i)$

N le nombre d'exemples du jeu d'entraînement

yi la vraie valeur

 \hat{y}_i la valeur prédite = $f(x_i)$

COMMENT PRÉDIRE IBU ?

ESSAI

Donnée de IBU

LOW [0-30) MEDIUM [30-60) HIGH [60-150)

ESSAI

RANDOM FOREST

• STYLEID, EFFICIENCY, OG, BOILGRAVITY, ABV

HALVING GRID SEARCH

- OPTIMISATION DES HYPERSPARAMETRES
- MAX_DEPTH,
 MIN_SAMPLES_LEAF, MIN_SAMPLES_SPLIT,
 MAX_FEATURES
- LA RESSOURCE EST: N_ESTIMATORS

PRÉCISION

• Précision obtenue (en %):

Accuracy: 64.40

EXPORT DES DEUX MODÈLES
 VIA JOBLIB

```
dump(RL, 'model_Linear_Regression.joblib')
dump(rf_best, 'model_Random_Forest.joblib')
```

L'APPLICATION WEB

CRÉATION DU SERVEUR

```
Lr = load('../model_Linear_Regression.joblib')
Rf = load('../model_Random_Forest.joblib')
```

- FRAMEWORK UTILISÉ: FLASK
- MODÈLES CHARGÉS AVEC
 JOBLIB

```
@app.route('/')
def index():
    return render_template('form.html',columns=columns)

@app.route('/query', methods=['POST'])
def traiter_requete_ajax():...
```

CRÉATION DU FORMULAIRE

• HTML, CSS, JS NATIF

GESTION D'ERREURS

Projet IA - Mikael, Gillian, Fatih Formulaire de prédiction pour ABV et IBU OG: 1.07 StyleID: 1 Efficiency: 70 BoilGravity: 1.07 Prédire Le serveur a rencontré une erreur lors du traitement des données!

Projet IA - Mikael, Gillian, Fatih Formulaire de prédiction pour ABV et IBU OG: m StyleID: Efficiency: BoilGravity: Les informations entrées ne sont pas correctes!

- REGEX POUR LES CHAMPS
- CODE 400

AFFICHAGE DES RÉSULTATS

- ABV et IBU affichés
- LÉGENDE
 CORRESPONDANTE
- AJAX, DONC DYNAMIQUE

CONCLUSION

19/09/2023 - Conclusion 29

MERCIDE VOTRE ATTENTION

19/09/2023 30