Adaptive Hyper-box Matching for Interpretable Individualized Treatment Effect Estimation

Marco Morucci*, Vittorio Orlandi*, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky

Adaptive Hyper-Box (AHB) Matching

Causal inference: $Y_i(1) - Y_i(0)$

Confounding in observational studies can bias results

Matching similar units reduces bias

We match units to others falling within an axis-aligned hyper-box

The resulting matches are case-based and interpretable

Why Should Boxes Be Adaptive?

Two examples:

Why Should Boxes Be Adaptive?

Two examples:

Should not be matched,
 but are → biased estimates.

Why Should Boxes Be Adaptive?

Two examples:

- Should *not* be matched,
 but are → biased estimates.
- Should be matched, but aren't → variable estimates.

Good boxes should have:

Low variability

match

Smaller potential Larger potential outcome outcome

Good boxes should have:

1. Low variability

Bad Box

Good boxes should have:

- 1. Low variability
- 2. Low error

Bad Box

Good boxes should have:

- Low variability
- Low error

Bad Box

Bad Box

Smaller potential

outcome

Larger potential outcome

Good boxes should have:

- Low variability
- Low error

match

Good boxes should have:

- 1. Low variability
- 2. Low error

Black Box + Separate Training Set → **Honest** learning about outcome variability

Good boxes should have:

- 1. Low variability
- 2. Low error

Black Box + Separate Training Set → **Honest** learning about outcome variability

Optimization solved by MIP solver or fast approximation

Simulations

Y = confounder + (TE modifier) * treatment + error

Various forms of confounder, treatment effect modifier:

- Constant
- Linear
- Quadratic
- Constant within Box

Goal: estimate ITE of treated units

Simulations

Y = confounder + (TE modifier) * treatment + error

Various forms of confounder, treatment effect modifier

- Constant
- Linear
- Quadratic
- Constant within Box

Goal: estimate ITE of treated units

Compare to:

- BART
- Propensity Score Matching
- Prognostic Score Matching
- Genetic Matching
- Coarsened Exact Matching
- Full Matching
- Prognostic Score Matching w/ True Counterfactuals
- Mahalanobis Distance Matching

Results

Estimation of ITE of treated units: mean absolute error normalized by ATT

		AHB		Black Box	Benchmark	Matching					
p	Method g / h	MIP	Fast	BART	Best CF	CEM	Full Matching	GenMatch	Mahal	Nearest Neighbor	Prognostic
(0, 0, 2)	None / Const	0.09	0.05	0.04	0.25	1.01	0.32	0.36	0.34	0.37	0.25
(2, 0, 0)	Box / Const	0.11	0.16	0.24	0.24	0.24	3.03	0.66	0.62	3.05	0.29
(2, 0, 0)	Linear / Const	0.17	0.22	0.14	0.26	0.23	0.82	0.38	0.36	0.91	0.28
(2, 0, 0)	Quad / Const	0.10	0.04	0.08	0.25	0.22	0.42	0.38	0.37	0.45	0.27
(2, 0, 4)	Quad / Const	0.02	0.02	0.02	0.16	NA	0.21	0.12	0.11	0.24	0.04
(1, 1, 0)	Box / Box	0.30	0.45	0.65	0.73	0.58	2.59	2.37	1.02	2.30	0.94
(1, 0, 1)	Binary / Const	0.02	0.02	0.02	0.09	0.02	0.12	0.49	0.10	0.10	0.09
(1, 1, 6)	Binary / Binary	0.06	0.06	0.09	0.17	0.20	0.71	0.97	0.27	0.61	0.18
(2, 0, 0)	Mixed / Const	0.07	0.12	0.06	0.09	0.12	0.48	0.15	0.15	0.55	0.10

Summary

AHB constructs boxes to match units that are:

- 1. Large where the treatment effect is near-constant
- 2. Small where the treatment effect is highly variable

The resulting matches are case-based and interpretable

1)11Ke EXACTLY LAB

ALMOST MATCHING

Thank You!

almostmatchingexactly.github.io Marco, Vittorio, Sudeepa, Cynthia, Alex