Brute-Force Reductions Between DOMINATING-SET and the Continuous Min–Max *p*-Center Problem (Group-9)

Apporv Bankey

Herik Patel

Krish Jetly

Abstract—We give transparent, exponential-time algorithms and many-to-one reductions that convert any instance of DOMINATING-SET (DS) into an equivalent instance of the continuous Min—Max p-Center (multicenter) problem, and vice versa. Although classical textbooks already prove polynomial-time equivalence via gadget constructions, our goal is a minimal, easily auditable Python prototype suitable for teaching and ground-truth generation on graphs with at most fifteen vertices. We describe formal problem definitions, present brute-force pseudocode, prove the correctness of both reductions, and report empirical runtimes on paths, cycles, stars, cliques and disconnected graphs. All source code and datasets are publicly available.

I. Introduction

The decision version of DOMINATING-SET is NP-complete even on bipartite graphs [1]. The Min–Max p-Center problem—a continuous facility-location variant where centres may lie on edges—generalises DS by choosing a covering radius R instead of fixing it to 1. Reductions between the two problems appear in the literature but rarely in executable form. We contribute a *pure brute-force* reference implementation that:

- enumerates every subset of at most k vertices for DS,
- enumerates every subset of at most p centres chosen from vertices and edge midpoints for p-Center,
- outputs explicit witnesses for each "yes" instance, and
- verifies yes-to-yes / no-to-no correspondence for both reductions

The code is 50 LOC per algorithm and thus ideal for classroom demonstrations or benchmarking heuristics.

II. PRELIMINARIES

[Dominating Set] Given an undirected graph G=(V,E) and integer k, decide whether there exists $D\subseteq V$ with $|D|\le k$ such that every $v\in V$ is either in D or adjacent to a vertex in D.

[Continuous Min–Max p-Center] Given G, an integer p and radius $R \in \mathbb{R}_{>0}$, decide whether one can place at most p centres on vertices or anywhere along edges so that every vertex is within graph-distance R of some centre.

Notation. Distances are shortest-path lengths; all edges are unit-length in our experiments.

Algorithm 1 Brute Dominating-Set

```
Require: Graph G = (V, E), integer k

1: for r \leftarrow 1 to k do

2: for all subsets S \subseteq V of size r do

3: D \leftarrow S \cup \bigcup_{u \in S} N(u)

4: if |D| = |V| then

5: return S {Witness set}

6: end if

7: end for

8: end for

9: return None {No dominating set}
```

Algorithm 2 Brute Continuous *p*-Center Feasibility

```
Require: Graph G, integer p, radius R

1: C \leftarrow \{(\mathsf{node}, v) \mid v \in V\} \cup \{(\mathsf{edge}, (u, v), 0.5) \mid (u, v) \in E\}

2: Precompute all-pairs distances d(u, v) by Floyd–Warshall
```

```
3: for r \leftarrow 1 to p do

4: for all subsets S \subseteq C of size r do

5: if \forall x \in V : \min_{c \in S} d(x, c) \leq R then

6: return (true, S)

7: end if

8: end for

9: end for

10: return (false, NONE)
```

III. BRUTE-FORCE ALGORITHMS

A. Dominating-Set Search

Algorithm 1 enumerates every subset of size $\leq k$; its time complexity is $\Theta(\sum_{r < k} \binom{n}{r} (n+m))$.

B. p-Center Feasibility

Algorithm 2 discretises centre locations to vertices plus edge midpoints; this suffices for unweighted graphs.

IV. BIDIRECTIONAL REDUCTIONS

```
A. DS \rightarrow p-Center
```

Copy G unchanged, assign unit weight to every edge, set p=k and R=1. If D is a dominating set, placing centres at every $v \in D$ covers each vertex within distance 1. Conversely,

¹https://github.com/example/brute-ds-pcenter

any feasible p-center solution with R=1 yields a dominating set of equal size.

B. p-Center \rightarrow DS

Build $H = (V, E_H)$ where $(u, v) \in E_H$ iff $\operatorname{dist}_G(u, v) \leq R$. A size-p dominating set in H corresponds to p centres of radius R in G, and vice versa. Our brute routine explicitly enumerates candidate subsets of vertices+midpoints until it finds a covering witness (YES) or exhausts the search (NO).

V. INPUT FORMAT

The program takes as input:

- 1) An edge-list CSV file (e.g. edges.csv) describing an undirected, unweighted graph G=(V,E). Each row contains two non-negative integers separated by a comma, representing an edge (u,v) with $u,v\in V$. Vertex labels may be arbitrary integers but must be consistent throughout.
- 2) A positive integer k, specifying
 - the maximum size of the dominating set to search for, and
 - the number of centers in the p-center problem.

$\begin{array}{c} \text{TABLE I} \\ \text{A sample input CSV file} \end{array}$

1	2
2	1
3	1

VI. OUTPUT FORMAT

Running the notebooks produces two kinds of output, both in-memory:

1) **Console / Notebook Log** Each code cell prints diagnostic information to stdout. A typical run emits lines in the following order:

```
Dominating set k: \{0, 2\}
Distance to nearest dominating node
for each node:
  Node 0: 0.000
  Node 1: 1.000
  Node 2: 0.000
 Node 3: 1.000
  Node 4: 1.000
Min{Max multicenter ( k):
(('node', 0),('node', 2))
radius 1.000
Distance to nearest center
for each node:
  Node 0: 0.000
  Node 1: 1.000
  Node 2: 0.000
  Node 3: 1.000
  Node 4: 1.000
```

DS→Multicenter reduction feasible? True Multicenter→DS reduction dominating set: {0, 2}

- 2) **Inline Figures** Two Matplotlib drawings are displayed directly below the cell that invokes them:
 - *Dominating-set plot* the input graph with vertices in the dominating set coloured red.
 - Min-max p-center plot the same graph with the chosen centres highlighted (red circles for nodecentres, red "X" at any edge-midpoint centres) and dashed coverage circles of radius R.

VII. EXPERIMENTAL EVALUATION

All tests were run in Python 3.11. Graphs up to n=15 keep runtimes below 2s.

Graph	n	DS?	pC?	Both agree
Path ₄	4	Y	Y	✓
Cycle ₅	5	Y	Y	\checkmark
Star ₅	5	Y	Y	\checkmark
Clique ₄	4	Y	Y	\checkmark
Disconnected ₆	6	N	N	✓

Figure 1 shows a Path₄ instance with its dominating set and covering circles for the corresponding *p*-center solution.

Fig. 1. Path₄: dominating set (left) and 2-centre cover (right).

VIII. DISCUSSION AND FUTURE WORK

The exhaustive algorithms explode once k>7; pruning rules or a branch-and-bound scheme could extend the practical range. Handling *weighted* graphs would require a finer discretisation of candidate centres. Replacing brute search by state-of-the-art DS solvers (e.g. MaxSAT encoding) and p-center heuristics will scale to hundreds of vertices while preserving reduction-based correctness.

IX. CONCLUSION

We provided compact, auditable Python code that realises the classical equivalence between DOMINATING-SET and the continuous Min–Max *p*-Center. Though exponential, the routines generate ground-truth solutions for graphs with up to fifteen vertices and serve as a didactic reference for courses in algorithms and complexity.

REFERENCES

[1] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.