

Universal Frequency Synthesizer

Product Description

MS5351/MS5351M is a universal frequency synthesizer chip that can be connected via I2C

Configuration, can generate any clock output from 2.5kHz to 200MHz.

Body, crystal oscillator, phase-locked loop, output buffer.

Main Features

 $\ddot{\text{y}}$ 3-channel output, from 2.5kHz to 200MHz clock $\ddot{\text{y}}$ Output frequency

error 0ppm ÿ High resolution, low

output jitter ÿ Can work with 25MHz or

27MHz quartz crystal ÿ Output clock phase adjustable ÿ Output

delay adjustable ÿ Output clock rise/

fall time controllable

ÿ Frequency switching without glitch

ÿ Independent power supply pins

Internal core circuit power supply VDD: 3.0V

Output stage power supply VDDO: 1.8V or 2.5V or 3.3V

ÿ Internal high power supply rejection ratio

ÿ Compatible with HCSL and PCIE Gen 1

application

ÿ HDTV, set-top box ÿ Printer,

scanner, projector ÿ Handheld device ÿ

Network/

communication ÿ

Server ÿ Quartz

crystal/crystal oscillator/phase-locked loop replacement

Product Specifications

product	Package	Silk screen name		
MS5351	eMSOP10	MS5351		
MS5351M	MSOP10	MS5351M		

eMSOP10

MSOP10

2023.11.24

Pin diagram

Pin Description

Pin number Pin name	Pin attribute		Pin Description
i iii iidinber i iii iidine	i iii attiibute		r in Description
1	VDD		Internal core circuit power supply
2	SHAH	l External qua	rtz crystal input
3	ХВ	l External qua	rtz crystal input
4	SCL		I2C clock input, needs to be connected to at least 1kÿ pull-up resistor
5	SDA	I/O	I2C data input/output, need to connect at least 1kÿ pull-up resistor
6	CLK2	O Output clock	
7	VDDO	- Output stage	power supply
8	GND	- Reference g	round
9	CLK1	O Output clock	
10	CLK0	O Output clock	
	EPAD	- Heat sink, gr	ounding recommended

Internal Block Diagram

Limit parameters

When using the chip, any application method that exceeds the limit parameters will cause permanent damage to the device.

The state may affect the reliability of the device. The limit parameters are only obtained by a series of extreme tests and do not mean that the chip can work normally under

Under this limit condition.

parameter	Symbol Te	st Conditions	Parameter range	unit
DC supply voltage	VDD		-0.5 ÿ 3.6	٧
Output stage supply voltage	VDDO		-0.5 ÿ 3.8	V
	VIN_SCL S	CL,SDA pin	-0.5 ÿ 3.8	V
Input voltage	VIN_XA/XB X	A,XB pins	-0.5 ÿ 1.3	٧
Junction harppressure	TJ		-55 ÿ 150	°C
Soldering temperature (lead-free)	TPEAK		260	°C
Duration of soldering at TPEAK temperature (lead-free) tP			10	s
Storage temperature	TSTG		-65 ÿ 150	°C

Recommended operating conditions

parameter	symbol	Minimum	typical	Maximum Unit	
Operating temperature	FACING	-20	25	85	°C
Core circuit voltage	VDD	2.7	3.0	3.3	V
		1.71	1.8	1.89	V
Output stage voltage	VDDO	2.25	2.5	2.75	V
		3.0	3.3	3.6	V

Electrical parameters

Unless otherwise specified, VDD=VDDO=3.0V±10%, TA=-20°Cÿ85°C.							
parameter	symbol	Test conditions	Min Typ Max U	Init			
	T.	DC Characteristics	T		T-		
VDD Current	IDD	3-channel output		31		mA	
Single channel output stage current	DDOx	CL=5pF, less than 100MHz		5		mA	
Input Current	ISCL	Maximum driving capability			10		
		SCL,SDA		50	10	ÿA Oh	
Output Impedance	LINETHS	3.3V VDDO, high drive		50		Oll	
		AC Characteristics					
Power-on time	tRDY	From VDDmin to valid output clock, fCLKn>1MHz		2	10	ms	
When PLL is bypassed		From VDDmin to valid output clock,					
Power-on time	tBYP	fCLKn>1MHz		0.5	1	ms	
Output frequency switching time tFR	EQ	fCLKn>1MHz			20	ÿs	
Output Phase Deviation	PSTEP			333		ps/step	
	SSDEV	Down spread, 0.1% per step	-0.1		-2.5	%	
Spread spectrum range		Center spread spectrum, 0.1% per step	±0.1		±2.5	%	
Spread spectrum modulation rate	SSMOD		30	31.5	33	kHz	
		Crystal Oscillator Specifications					
Quartz crystal frequency	fXTAL		25		27	MHz	
Load Capacitance	CXL		6		12	pF	
Equivalent series resistance	RESR				150	Oh	
Maximum drive level	dL		100			ÿW	
Input voltage	VIN_XA/AB XA	and XB pins	-0.3		1.1	V	
		Output Clock Specifications					
Output frequency	fCLK		0.0025		200	MHz	
Load Capacitance	CL				15	pF	
		fCLK<160MHz	45	50	55	%	
Duty Cycle	DC	fCLK<160MHz	40	50	60	%	
Rise time	tR	20%ÿ80%, CL=5pF maximum drive		0.5	1.2	ns	
Fall time	tF	20%ÿ80%, CL=5pF maximum drive		0.5	1.2	ns	

MS5351/MS5351M

parameter	symbol	Test conditions	Min Typ Max U	nit		
Output high level voltage	VOH	CL=5pF	VDDO-0.6			٧
Output low level voltage	VOL	CL=5pF			0.6	V
Period Jitter	JPER	3 channels simultaneous output		60	180	ps,pk
Adjacent clock jitter	JCC	3 channels simultaneous output		60	180	ps,pk

I2C Specifications (SCL , SDA)

			Standard mode 100kbps Fast mdde 400kbps				
parameter	Symbol T	est Conditions	Min Max Min	Max			unit
Input low level voltage VILI2C			-0.5	0.3×VDDI2C	-0.5	0.3×VDDI2C V	i.
Input high level voltage VIHI2	O		0.7×VDDI2C	3.6	0.7×VDDI2C	3.6	V
Schmitt hysteresis voltage VH	YS				0.1		V
Output low level voltage VOL	2C	VOLI2C=2.5/3.3Vÿ Open drain,	0	0.4	0	0.4	V
		3mA current sink					
Input Current	III2C		-10	10	-10	10	ÿA
Pin capacitance	CI2C V	IN=-0.1ÿVDDI2C		4		4	pF
I2C bus pause time tTO paus	e enable		25	35	25	35	ms

Typical application diagram

MS53

Title

A4

Date: 2023/9/20 D:

File: \Luo Yinlong\..\A

Package outline drawing

	Dimensions (mm)					
symbol	Minimum	typical	maximum			
A		·	1.10			
A1	0.05		0.15			
A2	0.75	0.85	0.95			
A3	0.30	0.35	0.40			
b	0.18		0.26			
b1	0.17	0.20	0.23			
С	0.15	·	0.19			
c1	0.14	0.15	0.16			
D	2.90	3.00	3.10			
D2		1.80 REF				
AND	4.70	4.90	5.10			
E1	2.90	3.00	3.10			
E2		1.55 REF				
and	0.50 BSC					
L	0.40	·	0.70			
L1	0.95 REF					
i	0		8 ^{ths}			
L/F (mil)	71×71					

MSOP10

	Dimensio	ns (mm)	Dimension	s (inches)
symbol	Minimum	maximum	Minimum	maximum
А	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.180	0.280	0.007	0.011
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
and	0.50 [BSC	0.020 BSC	
AND	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
L	0.400	0.800	0.016	0.031
i	O that	6 ^{tru}	O ^{tha}	6 ^{tha}

Seal and packaging specifications

1. Introduction to the content of the seal

Product model: MS5351, MS5351M

Production batch number: XXXXXX

2. Seal Standard Requirements

Laser printed, centered throughout and in Arial font.

3. Packaging Specifications

model	Packaging type: only	r/reel	Roll/Box	Piece/box	Box/Carton	Piece/box
MS5351	eMSOP10	3000	1	3000	8	24000
MS5351M	MSOP10	3000	1	3000	8	24000

MS5351/MS5351M

statement

ÿ Ruimeng reserves the right to change the instructions without prior notice! Customers should obtain the latest version of the information and verify the relevant information before placing an order.

Is it complete?

ÿ When using Ruimeng products for system design and whole machine manufacturing, the buyer is responsible for complying with safety standards and taking corresponding safety measures.

Version number: V1.4

To avoid personal injury or property loss caused by potential failure risks!

 $\ddot{y} There \ is \ no \ end \ to \ product \ improvement, \ our \ company \ will \ wholeheartedly \ provide \ customers \ with \ better \ products!$

MOS circuit operation precautions

Static electricity can be generated in many places. Taking the following precautions can effectively prevent MOS circuits from being

Damage caused by electrostatic discharge:

- 1. Operators must be grounded using an anti-static wrist strap.
- 2. The equipment casing must be grounded.
- 3. Tools used during the assembly process must be grounded.
- 4. Conductive packaging or antistatic materials must be used for packaging or transportation.

