Stats 21: Homework 2

Menh Phuong Nguyen

The questions have been entered into this document. You will modify the document by entering your code.

Make sure you run the cell so the requested output is visible. Download the finished document as a PDF file. If you are unable to convert it to a PDF, you can download it as an HTML file and then print to PDF.

Homework is an opportunity to practice coding and to practice problem solving. Doing exercises is where you will do most of your learning.

Copying someone else's solutions takes away your learning opportunities. It is also academic dishonesty.

Reading

• Think Python: Chapters 6 through 10

Reading is important! Keep up with the reading. I recommend alternating between reading a chapter and then working on exercises.

Additional recommended reading:

 String methods documentation https://docs.python.org/3/library/stdtypes.html#stringmethods

Textbook Chapter 5 Problems

Exercise 5.1

```
In [1]: import time
In [2]: time.time()
Out[2]: 1698272697.6530635
```

Write a function now() that reads the current time and prints out the time of day in hours, minutes, and seconds, plus the number of days since the epoch. The function does not need to return a value, just print output to the screen.

The result should look like:

"Current time is: 15:25:47. It has been 18370 days since the epoch."

Use int() to drop decimal values. You do not need to try to find the date with years and months.

Tip: build your function incrementally. Start by finding how many days have passed since the epoch. (check your answer at the bottom of the page:

https://www.epochconverter.com/seconds-days-since-y0) From there find how many hours, etc. Keep in mind the hours will be UTC time.

```
In [3]: def now():
    seconds_in_a_day = 86400
    seconds_in_a_min = 3600
    seconds_in_a_min = 60

    days = time.time() // seconds_in_a_day
    remainder = time.time() % seconds_in_a_day

    hours = remainder // seconds_in_an_hour
    remainder %= seconds_in_an_hour

    mins = remainder // seconds_in_a_min
    secs = remainder % seconds_in_a_min
    print(f"Current time is: {int(hours)}:{int(mins)}:{int(secs)}. It has been {int(days)}.
```

In [4]: now()

Current time is: 22:24:57. It has been 19655 days since the epoch.

Textbook Chapter 6 Problems

Exercise 6.2

The Ackermann function, A(m, n), is defined:

$$A(m,n) = egin{cases} n+1 & ext{if } m=0 \ A(m-1,1) & ext{if } m>0 ext{ and } n=0 \ A(m-1,A(m,n-1)) & ext{if } m>0 ext{ and } n>0 \end{cases}$$

See http://en.wikipedia.org/wiki/Ackermann_function . Write a function named <code>ack</code> that evaluates the Ackermann function. Use your function to evaluate a few test cases. Don't test with $m \geq 4$ as it grows very fast very quickly.

```
In [5]:
    def ack(m,n):
        if m == 0:
            return n + 1
        elif m > 0 and n == 0:
            return ack(m - 1, 1)
```

```
elif m > 0 and n > 0:
    return ack(m - 1, ack(m, n - 1))

In [6]: # test case, should be 61
    ack(3, 3)

Out[6]: # test case, should be 125
    ack(3, 4)
Out[7]: 125
```

Exercise 6.4

A number, a , is a power of b if it is divisible by b and a/b is a power of b . Write a function called is_power that takes parameters a and b and returns True if a is a power of b. Note: you will have to think about the base case.

```
def is_power(a, b):
 In [8]:
              if a == b:
                  return True
              if a % b == 0 and is_power(a / b, b):
                  return True
              return False
          is_power(1024, 2)
 In [9]:
          True
 Out[9]:
In [10]:
          is_power(6561, 3)
          True
Out[10]:
In [11]:
          is_power(4374, 3)
          False
Out[11]:
          is_power(768, 2)
In [12]:
          False
Out[12]:
```

Exercise 6.5

The greatest common divisor (GCD) of a and b is the largest number that divides both of them with no remainder.

One way to find the GCD of two numbers is based on the observation that if r is the remainder when a is divided by b, then gcd(a, b) = gcd(b, r).

As a base case, we can use gcd(a, 0) = a.

Write a function called gcd that takes parameters a and b and returns their greatest common divisor.

```
In [13]: def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)

In [14]: gcd(21, 7)
Out[14]: 7

In [15]: gcd(42, 28)
Out[15]: 14

In [16]: gcd(105, 140)
Out[16]: 35
```

Textbook Chapter 7 Problems

Exercise 7.1

Copy the loop from Section 7.5 on square roots and encapsulate it into a function called mysqrt() that takes a as a parameter. For a starting value x use a/2. It then iterates through the code to estimate the square root of a value.

Write another function called test_square_root(start, end) that will print out a table as shown in the textbook.

```
import sys, math
In [17]:
         def mysqrt(a):
             x = a / 2
             while True:
                 y = (x + a / x) / 2
                 if abs(y - x) < sys.float_info.epsilon:</pre>
                     return x
                 x = y
         def test square root(start, end):
             print("a\tmysqrt(a)\tmath.sqrt(a)\tdiff")
             print("-\t----\t----\t----")
             for a in range(int(start), int(end + 1)):
                 mysqrt a, mathsqrt a = mysqrt(a), math.sqrt(a)
                 diff = math.sqrt(a) - mysqrt(a)
                 if abs(mysqrt(a) - int(mysqrt(a))) < sys.float_info.epsilon:</pre>
                     mysqrt_a = f"{mysqrt_a:.1f}\t"
                     mathsqrt_a = f"{mathsqrt_a:.1f}\t"
                 else:
```

```
mysqrt_a = f"{mysqrt_a:.11f}"
                mathsqrt_a = f"{mathsqrt_a:.11f} "
             print(f"{a:.1f}\t{mysqrt_a}\t{mathsqrt_a}\t{diff}")
In [18]: # test code, do not modify:
       test_square_root(1.0, 9.0)
             mysqrt(a)
                         math.sqrt(a) diff
                         -----
             -----
                                      0.0
       1.0
             1.0
                         1.0
       2.0
             1.73205080757 1.73205080757 0.0
       3.0
                                      0.0
       4.0
            2.0
                        2.0
            2.23606797750 2.23606797750 0.0
       5.0
       6.0
            2.44948974278 2.44948974278 0.0
       7.0
            2.64575131106 2.64575131106 0.0
             8.0
       9.0
             3.0
                         3.0
                                      0.0
In [19]: test_square_root(30, 35)
             mysqrt(a) math.sqrt(a)
                                    diff
                                      ____
                         -----
           5.47722557505 5.47722557505
       30.0
                                      0.0
       31.0 5.56776436283 5.56776436283 -8.881784197001252e-16
       32.0 5.65685424949 5.65685424949 8.881784197001252e-16
           5.74456264654 5.74456264654 0.0
       33.0
       34.0 5.83095189485 5.83095189485 0.0
       35.0 5.91607978310 5.91607978310 0.0
```

Textbook Chapter 9 Problems

Exercise 9.1

Download this list of words: http://thinkpython2.com/code/words.txt

Write and run a script that reads words.txt and prints out only the words with more than 20 characters (after stripping whitespace).

```
In [20]: fin = open("words.txt")
for line in fin:
    if len(line.replace(" ", "")) > 20:
        print(line)
```

```
counterdemonstration
counterdemonstrations
counterdemonstrators
hyperaggressivenesses
hypersensitivenesses
microminiaturization
microminiaturizations
representativenesses
```

Exercise 9.2

Write a function called has_no_e that returns True if the word doesn't have the letter e. You can use any of Pythons available string methods.

```
In [21]: def has_no_e(text):
    return "e" not in text

In [22]: has_no_e("hello")
Out[22]: False
In [23]: has_no_e("quit")
Out[23]: True
```

With your function, write a script. The script should read the list of words (words.txt), print out the number of words that do not have the letter 'e' and the proportion of words that do not have the letter 'e'

```
In [24]: fin = open("words.txt")
    count = 0
    count_no_e = 0
    for line in fin:
        if has_no_e(line):
            count_no_e += 1
            count += 1
        print(f"Number of words that do not have the letter 'e': {count_no_e}")
    print(f"Proportion of words that do not have the letter 'e': {count_no_e} / count:.2f}'

Number of words that do not have the letter 'e': 37641
    Proportion of words that do not have the letter 'e': 0.33
```

Textbook Chapter 10 Problems

Exercise 10.1

Write a function called nested_sum that takes a list of lists of integers and adds up the elements from all of the nested lists. For example:

```
t = [[1, 2], [3], [4, 5, 6]]
nested_sum(t)
21
```

You may want to build the function recursively in case there are many levels of nested lists.

You can assume that all elements in any of the nested lists are numeric.

```
def nested_sum(t):
In [25]:
             total_sum = 0
             for item in t:
                  if isinstance(item, list):
                     total_sum += nested_sum(item)
                  else:
                      total sum += item
              return total_sum
In [26]: t = [1, 2]
         nested_sum(t)
Out[26]:
In [27]: t = [[1, 2], [3], [4, 5, 6]]
         nested_sum(t)
         21
Out[27]:
In [28]: x = [[1, 2, [3]], 4, 5, 6, [7], 8]
         nested_sum(x)
         36
Out[28]:
In [29]: t = [[[1, 2, [3]], [4, [5, 6, [7]], 8]]]
         nested sum(t)
Out[29]:
```

Exercise 10.2

Write a function called cumsum that takes a list of numbers and returns the cumulative sum; that is, a new list where the ith element is the sum of the first i + 1 elements from the original list.

For example:

```
t = [1, 2, 3]
cumsum(t)
[1, 3, 6]
```

You can assume that all elements in the lists are numeric and the list does not contain nested lists.

```
In [30]:     def cumsum(t):
        if len(t) == 1:
            return t[0]
        return t[0] + cumsum(t[1:])

In [31]:     cumsum([1, 2, 3, 4])

Out[31]:     cumsum(range(12))

Out[32]:     66
```

Exercise 10.6

Two words are anagrams if you can rearrange the letters from one to spell the other. Write a function called is_anagram that takes two strings and returns True if they are anagrams.

You can remove spaces and convert to lowercase using string.replace(" ","").lower()

```
def is_anagram(word1, word2):
In [33]:
             word1 = sorted(word1.replace(" ", "").lower())
             word2 = sorted(word2.replace(" ", "").lower())
             if len(word1) != len(word2):
                  return False
             for index in range(len(word1)):
                  if word1[index] != word2[index]:
                      return False
              return True
         is_anagram("hello", "o hell")
In [34]:
         True
Out[34]:
         is_anagram("dormitory" , "dirty room")
In [35]:
         True
Out[35]:
         is_anagram("dormitory" , "dirty rooms")
In [36]:
         False
Out[36]:
         is_anagram("astronomers" , "moon starers")
In [37]:
         True
Out[37]:
```

Exercise 10.7

Write a function called has_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list.

You can assume that the list will not have nested lists.

```
In [38]:
          def has duplicates(t):
              for item in (item for item in t if t.count(item) > 1):
                  return True
              return False
          has_duplicates(['a','b','c'])
In [39]:
          False
Out[39]:
          has_duplicates(['a','b','b','c'])
In [40]:
          True
Out[40]:
          has_duplicates(['a','b','c','a'])
In [41]:
          True
Out[41]:
```

Exercise 10.10

To check whether a word is in the word list, you could use the in operator, but it would be slow because it searches through the words in order.

Because the words are in alphabetical order, we can speed things up with a bisection search (also known as binary search). You start in the middle and check to see whether the word you are looking for comes before the word in the middle of the list. If so, you search the first half of the list the same way (perform a bisection search on the first half). Otherwise you search the second half.

Either way, you cut the remaining search space in half. If the word list has 113,809 words, it will take about 17 steps to find the word or conclude that it's not there.

Write a function called in_bisect that takes a sorted list and a target word and will returns

True if the word is in the list and False if it's not.

Hint: it's a recursive function.

```
In [42]:

def make_word_list():
    """Reads lines from a file and builds a list."""
    t = []
    fin = open('words.txt')
    for line in fin:
        word = line.strip()
        t.append(word)
    return t
```

```
t = make_word_list()
In [43]: def in_bisect(word_list, word):
              mid = len(word_list) // 2
              if word == word_list[mid]:
                  return True
              elif len(word_list) == 1:
                  return False
              if word < word_list[mid]:</pre>
                  return in_bisect(word_list[:mid], word)
              else:
                  return in_bisect(word_list[mid:], word)
          in_bisect(t, "hello")
In [44]:
          True
Out[44]:
          in_bisect(t, "xyz")
In [45]:
          False
Out[45]:
```

Exercise 10.11

Two words are a "reverse pair" if each is the reverse of the other.

Now that you have the <code>in_bisect</code> search, write a script that finds all the reverse pairs in the word list that are 6 letters or longer. (It takes a little bit of time to run.)

```
for word in (word for word in t if len(word) > 6 and in_bisect(t, word[::-1])):
In [46]:
              print(word)
          deified
          deifier
         deliver
          dessert
          desserts
          halalah
          redrawer
          reified
          reifier
          reknits
          repaper
          reviled
          reviver
          rewarder
          rotator
          sallets
          sememes
          stellas
          stinker
          stressed
          tressed
```