Intermediate Value Theorem: If f(x) is a continuous function on a closed interval [a,b], and k is a value between f(a) and f(b), then there exists a c, where a < c < b such that f(c) = k

Hypothesis:

- I. f(x) is a continuous function on [a,b]
- II. k is a value between f(a) and f(b)

Conclusion:

III. There exists a c, where a < c < b such that f(c) = k.

Mean Value Theorem: If f(x) is a continuous function on a closed interval [a,b] and differentiable on the open interval (a,b), then there exists a c where a < c < b and $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Hypothesis:

- I. f(x) is a continuous function on a closed interval [a,b]
- II. f(x) differentiable on the open interval (a,b)

Conclusion:

III. There exists a c where a < c < b and $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Existence Theorem Failures

Page 1 of 2

Rolle's Theorem: If f(x) is a continuous function on a closed interval [a,b], differentiable on the open interval (a,b), and f(a) = f(b), then there exists a c where a < c < b and f'(c) = 0.

Hypothesis:

- I. f(x) is a continuous function on a closed interval [a,b]
- II. f(x) is differentiable on the open interval (a,b)
- III. f(a) = f(b)

Conclusion:

IV. There exists a c where a < c < b and f'(c) = 0.

