Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}_{+\alpha\beta} \ \tau_{1}^{\#1}_{+\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\left \frac{1}{k^2\left(2r_3+r_5\right)}\right $	0	0	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#_2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$\frac{2}{3}t_3\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial_{eta}\omega^{\mu}_{eta}\partial_{\mu}^{\mu}\partial_{\kappa}\omega^{aetaeta}_{\beta}-rac{2}{3}r_2\partial_{eta}\omega^{\kappa}_{eta}\partial_{\kappa}\omega^{etaeta}_{\beta}+$
$rac{1}{2}r_3\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $r_5\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $rac{1}{2}r_3\partial_{ heta}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ +
$r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} +$
$2r_5\partial_\theta\omega_\lambda^{\alpha}{}_{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{2}{3}t_3 \ \omega_{\kappa\alpha}^{\alpha} \ \partial^\kappa f'_{\ \prime} - \frac{2}{3}t_3 \ \omega_{\kappa\lambda}^{\ \lambda} \ \partial^\kappa f'_{\ \prime} - \frac{4}{3}t_3 \partial^\alpha f_{\ \kappa\alpha} \partial^\kappa f'_{\ \prime} +$
$\frac{2}{3}t_3\partial_k f^\lambda_{\ \lambda}\partial^k f'_{\ \prime} + \frac{2}{3}t_3\ \omega_{\prime\alpha}^{\ \alpha}\partial^k f'_{\ \kappa} + \frac{2}{3}t_3\ \omega_{\prime\lambda}^{\ \lambda}\partial^k f'_{\ \kappa} + \frac{2}{3}t_3\partial^\alpha f^\lambda_{\ \alpha}\partial^k f_{\lambda\kappa} +$
$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\alpha \lambda}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} +$
$rac{2}{3} r_2 \partial^{eta} \omega_{,}{}^{\lambda lpha} \partial_{\lambda} \omega_{lpha eta}{}' - 4 r_3 \partial^{eta} \omega_{,}{}^{\lambda lpha} \partial_{\lambda} \omega_{lpha eta}{}' - rac{1}{2} r_3 \partial_{lpha} \omega_{\lambda}{}^{lpha} \partial_{\lambda} \omega_{eta}{}^{lpha} + $
$r_5\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial^{\lambda}\omega^{ heta\kappa}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

					t ₃		
$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{ ext{-}}}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}_{\alpha\beta} f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$^{1}_{+}$ $^{+}$	$\omega_{1}^{\#1} +^{lpha}$	$\nu_1^{\#2} + \alpha$	$_{1}^{#1}+^{\alpha}$	$_{1}^{#2}$ $+^{\alpha}$

		$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\#1} + \alpha \beta - \frac{2}{3 k^2 r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$ 0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$ 0	0	0

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0^{+}}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

00	'L				-		<i>k</i> .	² r ₂		
lauge generators	Multiplicities	1	1	3	3	3	3	5	5	24
Source constraints/gauge generators	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta==0$	$\sigma_{1}^{\#2}\alpha\beta==0$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total constraints:

ω_2^*						
$\omega_{2}^{#1}$ $\omega_{2}^{#1}$ $\alpha_{2}^{#}$ $\omega_{2}^{#}$	0		0	O	0	
$\omega_{2}^{\#1}{}_{lphaeta}$	$\frac{3k^2r_3}{2}$	~ 0	0	c	>	
	$\omega_{2+}^{#1} + \alpha \beta$	ζ^* ζ^* ζ^*	/ ₂ +T '	$\pi_1 + \alpha \beta \chi$	ω ₂ Τ	
$\omega_{0^{\text{-}}}^{\#1}$	0	0	О	,	$0 k^2 r_2$	1
$f_{0}^{#2}$	0	0	0	,	0	
	kt3	'n				I

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$