Unitary friezes and frieze vectors

Emily Gunawan and Ralf Schiffler

University of Connecticut

University of Ljubljana, Slovenia
The 31st International Conference on Formal Power Series and
Algebraic Combinatorics (FPSAC)

5 July 2019

Frieze

A *frieze* is an image that repeats itself along one direction. In architecture, a frieze is a decoration running horizontally below a ceiling or roof.

Conway and Coxeter, 1970s

Definition

A **Conway – Coxeter frieze pattern** is an array of positive integers such that:

- 1 it is bounded above and below by a row of 1s
- every diamond

satisfies the diamond rule ad - bc = 1.

Table 1.

Conway and Coxeter, 1970s

Theorem

A Conway – Coxeter frieze with n nontrivial rows \longleftrightarrow a triangulation of an (n+3)-gon

Fomin and Zelevinsky, 2001

Start with a quiver (directed graph) Q on n vertices with no loops and no 2-cycles.

Example: type $\widetilde{\mathbb{A}}_{p,q}$

An acyclic quiver Q is of type $\widetilde{\mathbb{A}}_{p,q}$ if and only if

- its underlying graph is a circular graph with n = p + q vertices,
- the quiver Q has p counterclockwise arrows and q clockwise arrows

For example, this is a quiver of type $\widetilde{\mathbb{A}}_{1,2}$ \to

Annulus with P+9 marked points on the boundary (Fomin-Shapiro-Thurston, 2006)

- An arc is an internal curve between marked points
- A triangulation is a maximal collection of non-crossing arcs
- · A flip Mk replaces

with

Def (Fomin – Zelevinsky, 2001)

• { cluster variables } =

 $\bigcup_{\text{all clusters } \mathbf{x}} \{ \text{ elements of } \mathbf{x} \}$

• The **cluster algebra** A(Q) is the \mathbb{Z} -algebra of $Q(x_1, \ldots, x_n)$ generated by all cluster variables.

Friezes

Definition

Let Q be a quiver and A(Q) the cluster algebra from Q.

- A **frieze** of type Q is a ring homomorphism $\mathcal{F}:\mathcal{A}(Q)\to R$
- We say that \mathcal{F} is **positive integral** if $R = \mathbb{Z}$ and \mathcal{F} maps every cluster variable to a positive integer
- We say that \mathcal{F} is **unitary** if there exists a cluster \mathbf{x} in $\mathcal{A}(Q)$ such that F maps every cluster variable in \mathbf{x} to 1

Examples:

- The identity frieze $Id: \mathcal{A}(Q) \to \mathcal{A}(Q)$.
- A frieze $\mathcal{F}: \mathcal{A}(Q) \to \mathbb{Z}$ defined by fixing a cluster \mathbf{x} and sending each cluster variable in \mathbf{x} to 1.

Friezes examples

Figure: The identity frieze $Id: \mathcal{A}(Q) \to \mathcal{A}(Q)$ for the type \mathbb{A}_3 quiver $Q = 1 \to 2 \leftarrow 3$.

Figure: Setting $x_1 = x_2 = x_3 = 1$ produces a Conway – Coxeter frieze pattern.

Unitary friezes

Definition

We say that a frieze \mathcal{F} is **unitary** if there exists a cluster \mathbf{x} in $\mathcal{A}(Q)$ such that \mathcal{F} maps every cluster variable in \mathbf{x} to 1.

Proposition 1 (G – Schiffler)

Let \mathcal{F} be a positive unitary integral frieze, i.e., there is a cluster \mathbf{x} such that $\mathcal{F}(u)=1$ for all $u\in\mathbf{x}$. Then \mathbf{x} is unique.

Sketch of Proof: If u is a cluster variable not in a cluster \mathbf{x} , then the Laurent expansion of u in \mathbf{x} has two or more terms.

Unitary friezes

Definition

We say that a frieze \mathcal{F} is **unitary** if there exists a cluster \mathbf{x} in $\mathcal{A}(Q)$ such that \mathcal{F} maps every cluster variable in \mathbf{x} to 1.

Proposition 1 (G – Schiffler)

Let \mathcal{F} be a positive unitary integral frieze, i.e., there is a cluster \mathbf{x} such that $\mathcal{F}(u)=1$ for all $u\in\mathbf{x}$. Then \mathbf{x} is unique.

Sketch of Proof: If u is a cluster variable not in a cluster x, then the Laurent expansion of u in x has two or more terms.

Remark

All positive integral friezes of type $\mathbb A$ are unitary (due to Conway and Coxeter), but there are non-unitary positive integral friezes of type $\mathbb D$, $\widetilde{\mathbb D}$, $\mathbb E$, and $\widetilde{\mathbb E}$ (due to Fontaine and Plamondon).

Theorem 2 (G – Schiffler)

All positive integral friezes of type $\widetilde{\mathbb{A}}_{p,q}$ are unitary.

Example: There are the two friezes of type $\widetilde{\mathbb{A}}_{1,2}$, up to translation.

Figure: An $\mathbb{A}_{1,2}$ frieze obtained by specializing the cluster variables of an acyclic seed to 1. The peripheral arcs have frieze values 2 and 3.

Figure: An $\widetilde{\mathbb{A}}_{1,2}$ frieze obtained by specializing the cluster variables of a non-acyclic seed to 1. The peripheral arcs have frieze values 1 and 5.

Algorithm for finding the triangulation where all arcs have weight one:

Pick some acyclic cluster $\mathbf{x_0} = \{x_1, \dots, x_n\}$. If not all cluster variables of $\mathbf{x_0}$ have weight 1, we mutate $\mathbf{x_0}$ at x_k with maximal frieze value. Then:

- $frieze(x'_k) < \mathcal{F}(x_k)$
- Furthermore, if the vertex k is not a sink/source, then $F(x_k) = 1$ If not every cluster variable in \mathbf{x}_1 has weight 1, repeat this procedure, and so on. Since \mathcal{F} is positive integral, this process must stop.

Lemma (for the algorithm)

Let \mathcal{F} be a positive frieze of type $\widetilde{\mathbb{A}}_{p,q}$. Let $\mathbf{x}=(x_1,\ldots,x_n)$ be a cluster such that $\mathcal{F}(x)=1$ for each regular (i.e. peripheral) cluster variable. Let k be such that $\mathcal{F}(x_k)\geq \mathcal{F}(x_j)$ for all j, and suppose that $\mathcal{F}(x_k)>1$. Then $\mathcal{F}(\mu_k(x_k))<\mathcal{F}(x_k)$ and if $\mu_k(x_k)$ a regular cluster variable then $\mathcal{F}(\mu_k(x_k))=1$.

Every acyclic shape, for example, values of a cluster.

and tells us the frieze

Example (A possible step in the algorithm)

Figure: An $\widetilde{\mathbb{A}}_{1,2}$ frieze obtained by specializing the cluster variables of an acyclic seed to 1. The peripheral arcs have frieze values 2 and 3.

Mutating at the position with frieze value 11 produces a new frieze value $\frac{3\times 7+1}{11}=2<11.$

and o

Every acyclic shape, for example, values of a cluster.

tells us the frieze

Example (A possible step in the algorithm)

Figure: An $\tilde{\mathbb{A}}_{1,2}$ frieze obtained by specializing the cluster variables of a non-acyclic seed to 1. The peripheral arcs have frieze values 1 and 5.

Mutating at the position with frieze value 18 (which is not a sink/source) produces a new frieze value $\frac{5+13}{18}=1$.

Frieze vectors

Definition

Fix a cluster $\mathbf{x} = (x_1, \dots, x_n)$.

- A vector $(a_1, \ldots, a_n) \in \mathbb{Z}_{>0}^n$ can be used to define a frieze $\mathcal{F} : \mathcal{A}(Q) \to \mathbb{Q}$ by defining $\mathcal{F}(x_i) = a_i$ for all $i = 1, \ldots, n$.
- We say that (a_1, \ldots, a_n) is a **positive integral frieze vector** relative to \mathbf{x} if \mathcal{F} maps every cluster variable to a positive integer (as opposed to \mathbb{Q}).
- If (a_1, \ldots, a_n) determines a unitary frieze, we say that (a_1, \ldots, a_n) is a **unitary** frieze vector.

The slices display the frieze vectors

..., (233,89), (34,13), (5,2), (1,1), (2,5), (13,34), (89,233), (610,1597), ... relative to a cluster with the quiver $1 \Rightarrow 2$.

Frieze vectors algorithm

Proposition 3

A vector $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ is a frieze vector relative to an acyclic Q iff a_k divides

$$\prod_{k \to j \text{ in } Q} x_j + \prod_{k \leftarrow j \text{ in } Q} x_j$$
for all $k = 1, \dots, n$.

Example

A vector $(a_1, a_2, a_3) \in \mathbb{Z}_{>0}^3$ is a positive frieze vector relative to $1 \to 2 \leftarrow 3$ iff $\frac{a_2+1}{a_1}, \frac{a_1a_3+1}{a_2}, \frac{a_2+1}{a_3}$ are integers.

Frieze vectors

Theorem 4 (G – Schiffler)

Fix $\mathcal{A}(Q)$ and fix an arbitrary cluster $\mathbf{x}=(x_1,\ldots,x_n)$. Then there is a bijection between clusters in $\mathcal{A}(Q)$ and unitary frieze vectors relative to \mathbf{x} .

Sketch of Proof: Define

$$\phi: \{ \text{ clusters in } \mathcal{A}(Q) \} \to \{ \text{ unitary frieze vectors } \}$$

$$\mathbf{x}' = \{x_1', \dots, x_n'\} \mapsto \phi(\mathbf{x}') = \mathcal{F}(\mathbf{x}) = (a_1, \dots, a_n)$$

where $\mathcal F$ is the frieze defined by specializing the cluster variables in $\mathbf x'$ to 1. Then ϕ is a bijection. Injectivity follows from Proposition 1. Surjectivity follows from the construction of ϕ .

Comments and questions

Thank you! Hvala!

Friezahedron (current work)

In type \mathbb{A}_n , \mathbb{D}_n , and \mathbb{E}_6 , it is known that there are finitely many positive integral frieze vectors.

Take the convex hull of these points in \mathbb{R}^n .

sage: V = [[1, 1, 1], [1,
1, 2], [1, 2, 1], [1, 2, 3], [1, 3,
2], [2, 1, 1], [2, 1, 2], [2, 3, 1],
[2, 3, 4], [2, 5, 2], [3, 2, 1], [3,
2, 3], [3, 5, 3], [4, 3, 2]]
sage: P = Polyhedron(V)

