Complimentary Material to "A Guaranteed Cost Approach to Robust Model Predictive Control of Uncertain Linear Systems"

Carlos Massera Filho, Marco H. Terra and Denis F. Wolf May 10, 2016

Abstract

This complimentary material discusses the independence of K_k and \widetilde{K} controllers used at Equation (45) of the paper and presents the proof of Lemma 3.

1 Independence of controllers

Consider the system

$$\bar{x}_{k+1} = F\bar{x}_k + Gu_k + Hw_k,\tag{1}$$

and its deterministic ($w_k \equiv 0$) counterpart

$$x_{k+1} = Fx_k + Gu_k. (2)$$

Consider a nil-potent controller \widetilde{K} and let $u_k = -\widetilde{K}\overline{x}_k + p_k$, then the relation between the systems can be expressed as

$$\bar{x}_k = x_k + \sum_{i=0}^{k-1} (F - G\tilde{K})^{k-i-1} H w_i$$
 (3)

and the closed loop deterministic system is

$$x_{k+1} = (F - G\widetilde{K})x_k + Gp_k. \tag{4}$$

Note that the control law \widetilde{K} is used w.r.t. the uncertain state \bar{x}_k in Equation (3).

Consider now the Guaranteed Cost Controller K_k at timestep k and let $p_k = -(K_k - \tilde{K})x_k + v_k$, then the closed loop deterministic system becomes

$$\begin{aligned}
 x_{k+1} &= (F - G\widetilde{K})x_k - G(K_k - \widetilde{K})x_k + Gv_k \\
 &= (F - GK_k)x_k + Gv_k.
 \end{aligned}
 (5)$$

It is possible to observe that the independence of controller guaranteed cost controller K_k and nil-potent controller \widetilde{K} comes from the fact that the nil-potent controller is used to stabilize the uncertain system dynamics while the guaranteed cost controller is used to stabilize the deterministic system.

2 Proof of Lemma 3

Lemma 3. Let $\phi_k(x,v) = ||\widetilde{E}_{1,k}x + E_2v||_2$ and $\rho_{i,k} = ||\widetilde{E}_{1,k}\widetilde{F}^iH||_2$. Then,

$$||w_k|| \le \phi_k(\bar{x}_k, v_k) \le \phi_k(x_k, v_k) + \sum_{i=0}^{k-1} c(k, i)\phi_i(x_i, v_i)$$
 (6)

where

$$\forall i < k. \ c(k, i) = \rho_{k-i-1, k} + \sum_{j=0}^{k-i-2} \rho_{j, k} c(k-j-1, i)$$
 (7)

Proof. Consider the case k = 1 and $\phi_0(\bar{x}_0, v_0) = \phi_0(x_0, v_0)$, then

$$\phi_{1}(\bar{x}_{1}, v_{1}) = ||\widetilde{E}_{1,1}\bar{x}_{1} + E_{2}v_{1}||_{2}
= ||\widetilde{E}_{1,1}x_{1} + E_{2}v_{1} + \widetilde{E}_{1,1}Hw_{0}||_{2}
\leq \phi_{1}(x_{1}, v_{1}) + ||\widetilde{E}_{1,1}Hw_{0}||_{2}
\leq \phi_{1}(x_{1}, v_{1}) + ||\widetilde{E}_{1,1}H||_{2}||w_{0}||_{2}
\leq \phi_{1}(x_{1}, v_{1}) + \rho_{0,1}\phi_{0}(x_{0}, v_{0})$$
(8)

therefore, (6) is valid for k = 1.

Assuming that $\forall i \in [0, k-1]$ (6) is holds, it is possible to represent $\phi_k(\bar{x}_k, v_k)$

$$\phi_{k}(\bar{x}_{k}, v_{k}) = \left\| \widetilde{E}_{1,k} x_{k} + E_{2} v_{k} + \sum_{i=0}^{k-1} \widetilde{E}_{1,k} \widetilde{F}^{k-i-1} H w_{i} \right\|_{2} \\
\leq \|\widetilde{E}_{1,k} x_{k} + E_{2} v_{k}\|_{2} + \sum_{i=0}^{k-1} \|\widetilde{E}_{1,k} \widetilde{F}^{k-i-1} H w_{i}\|_{2} \\
\leq \phi_{k}(x_{k}, v_{k}) + \sum_{i=0}^{k-1} \rho_{k-i-1,k} \phi_{i}(\bar{x}_{i}, v_{i}) \tag{9}$$

Substituting (6) and (7) on (9) yields

$$\phi_k(\bar{x}_k, v_k) \le \phi_k(x_k, v_k) + \sum_{i=0}^{k-1} \rho_{k-i-1,k} \left(\phi_i(x_i, v_i) + \sum_{j=0}^{i-1} c(i, j) \phi_j(x_j, v_j) \right), (10)$$

which can be rearranged to

$$\phi_k(\bar{x}_k, v_k) \le \phi_k(x_k, v_k) + \rho_{0,1}\phi_k(x_{k-1}, v_{k-1}) + \sum_{i=0}^{k-2} \left(\rho_{k-i-1,k} + \sum_{j=0}^{k-i-2} \rho_{j,k}c(k-j-1, i)\right) \phi_i(x_i, v_i).$$
(11)

Thus, substituting (7) to (11) results

$$\phi_k(\bar{x}_k, v_k) \le \phi_k(x_k, v_k) + \sum_{i=0}^{k-1} c(k, i)\phi_i(x_i, v_i)$$
(12)

concluding this proof by induction.