Section 7.3: Trigonometric substitution

Objective: In this lesson, you learn

☐ How to evaluate integrals of certain forms using trigonometric substitutions.

I. Trigonometric Substitution.

Problem: Find the area of a circle or an ellipse. i.e.

$$\int \sqrt{a^2 - x^2} \, dx \text{ where } a > 0?$$

Note that the difference between the substitution $u=a^2-x^2$ and $x=a\sin\theta$ is

- $u = a^2 x^2$, u (new) is a function of (old) x.
- $x = a \sin \theta$, x (old) is a function of (new) θ .

In general, to integrate $\int f(x)dx$, we can make a substitution of the form x=g(t) by using the Substitution Rule in reverse, called an **inverse substitution**. To make the calculations simpler, assume that g has an **inverse function**, that is, x=g(t) is a one-to-one function. So if x=g(t), then

$$\int f(x) dx = \int f(g(t)) g'(t) dt.$$

Example 1: Integrate $\int \sqrt{a^2 - x^2} dx$

Trigonometric substitution:

Here are trigonometric substitutions:

- a. For the expression $\sqrt{a^2-x^2}$, make a substitution $x=a\sin\theta$ defined on $[-\pi/2,\ \pi/2]$, and use the identity $1-\sin^2\theta=\cos^2\theta$.
- b. For the expression $\sqrt{a^2+x^2}$, make a substitution $x=a\tan\theta$ defined on $(-\pi/2,\ \pi/2)$, and use the identity $1+\tan^2\theta=\sec^2\theta$.
- c. For the expression $\sqrt{x^2 a^2}$, make a substitution $x = a \sec \theta$ defined on $[0, \pi/2)$ or $[\pi, 3\pi/2)$, and use the identity $\sec^2 \theta 1 = \tan^2 \theta$.

Example 2: Evaluate $\int_0^1 x^3 \sqrt{1-x^2} dx$.

Example 3: Evaluate $\int \frac{1}{1+x^2} dx$.

Example 4: Evaluate $\int \frac{1}{x^2 \sqrt{x^2 + 4}}$

Example 5: Evaluate $\int \frac{x^2 + 1}{(x^2 - 2x + 2)^2} dx$.

Example 6: Evaluate $\int \frac{1}{x^2 (x^2 - 9)^{1/2}} dx$.