19 Фільтри

Окрім збіжності напрямленостей, існує ще один вид узагальненої збіжності — збіжність фільтрів. Ця ідея базується на альтернативному означенні збіжної послідовності: послідовність x_n називається збіжною до точки x_0 , якщо для будь-якого околу U цієї точки доповнення до прообразу $f^{-1}(U)$ є скінченною підмножиною з \mathbb{N} , де $f: \mathbb{N} \to X$ — відображення, що задає послідовність. Якщо множину \mathbb{N} замінити абстрактною множиною E, в якому виділено сім'ю підмножин F, що має певні загальні властивості, то можна дати розумне означення узагальненої збіжності.

§19.1 Фільтри

Означення 19.1. Сім'я підмножин \mathfrak{F} множини X називається фільтром на X, якшо:

- 1. Сім'я \mathfrak{F} непорожня.
- 2. $\emptyset \notin \mathfrak{F}$.
- 3. Якщо $A, B \in \mathfrak{F}$, то $A \cap B \in \mathfrak{F}$.
- 4. Якщо $A \in \mathfrak{F}$, $A \subset B \subset X$, то $B \in \mathfrak{F}$.

Наслідок 19.1

 $X \in \mathfrak{F}$.

Наслідок 19.2

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \in \mathfrak{F}.$$

Наслідок 19.3

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \neq \varnothing.$$

Приклад 19.1

Система Ω_x усіх околів точки x в топологічному просторі X є фільтром.

§19.2 Бази фільтрів

Означення 19.2. Непорожня сім'я підмножин $\mathfrak D$ множини X називається базою фільтра, якщо:

- 1. $\varnothing \notin \mathfrak{D}$;
- 2. $\forall A, B \in \mathfrak{D} \ \exists C \in \mathfrak{D} : C \subset A \cap B$.

Означення 19.3. Нехай \mathfrak{D} — база фільтра. Фільтром, що **породжений** базою \mathfrak{D} , називається сім'я \mathfrak{F} усіх множин $A \subset X$, що містять як підмножину хоча б один елемент бази \mathfrak{D} .

Вправа 19.1. Довести, що фільтр, породжений базою, дійсно є фільтром.

Приклад 19.2

Якщо X — топологічний простір, $x_0 \in X$, \mathfrak{D} — сукупність усіх відкритих множин, що містять x_0 , то фільтр, породжений базою \mathfrak{D} , є фільтром \mathfrak{M}_{x_0} , що складається з усіх околів точки x_0 .

Означення 19.4. Нехай $\{x_n\}_{n=1}^{\infty}$ — послідовність елементів множини X. Тоді сім'я $\mathfrak{D}_{\{x_n\}}$ "хвостів" послідовності $\{x_n\}_{n=N}^{\infty}$ є базою фільтра. Фільтр $\mathfrak{F}_{\{x_n\}}$, породжений базою $\mathfrak{D}_{\{x_n\}}$, називається фільтром, **асоційованим** з послідовністю $\{x_n\}_{n=1}^{\infty}$.

§19.3 Образи фільтрів і баз фільтрів

Теорема 19.1

Нехай X, Y — множини, $f: X \to Y$ — функція, \mathfrak{D} — база фільтра в X. Тоді сім'я $f(\mathfrak{D})$ усіх множин виду $f(A), A \in \mathfrak{D}$ є базою фільтра в Y.

Доведення. Виконання першої аксіоми бази фільтра є очевидним, адже образ непорожньої множини — непорожня множина. Нехай f(A), f(B) — довільні елементи сім'ї $f(\mathfrak{D}), A, B \in D$. За другою аксіомою існує таке $C \in \mathfrak{D}$, що $C \subset A \cap B$. Тоді $f(C) \subset f(A) \cap f(B)$. Отже друга аксіома виконується і для сім'ї $f(\mathfrak{D})$.

Наслідок 19.4

 \mathfrak{F} — фільтр на X, то $f(\mathfrak{F})$ — база фільтра в Y.

Означення 19.5. Образом фільтра $\mathfrak F$ при відображенні f називається фільтр $f[\mathfrak F]$, породжений базою $f(\mathfrak F)$, тобто

$$A \in f[\mathfrak{F}] \iff f^{-1}(A) \in \mathfrak{F}.$$

Теорема 19.2

Нехай $\mathfrak{C} \subset 2^X$ — непорожня сім'я множин. Для того щоб існував фільтр $\mathfrak{F} \supset \mathfrak{C}$ (тобто такий, що усі елементи сім'ї \mathfrak{C} є елементами фільтра \mathfrak{F}) необхідно і достатньо, щоб \mathfrak{C} була центрованою.

Доведення. **Необхідність.** Якщо \mathfrak{F} — фільтр і $\mathfrak{F} \supset \mathfrak{C}$, то будь-який скінчений набір A_1, A_2, \ldots, A_n елементів сім'ї \mathfrak{C} буде складатися з елементів фільтра \mathfrak{F} . Отже,

$$\bigcap_{i=1}^{n} A_i \neq \emptyset.$$

19 Фільтри

Достатність. Нехай \mathfrak{C} — центрована сім'я. Тоді сім'я \mathfrak{D} усіх множин виду

$$\bigcap_{i=1}^{n} A_i, \quad n \in \mathbb{N}, \quad A_1, A_2, \dots, A_n \in \mathfrak{C}$$

буде базою фільтра. Як фільтр $\mathfrak F$ треба взяти фільтр, породжений базою $\mathfrak D$. \square

§19.4 Фільтри, породжені базою

Означення 19.6. Нехай \mathfrak{F} — фільтр на X. Сім'я множин \mathfrak{D} називається базою фільтра \mathfrak{F} , якщо \mathfrak{D} база фільтра і фільтр, породжений базою \mathfrak{D} , збігається з \mathfrak{F} .

Теорема 19.3

Для того щоб $\mathfrak D$ була базою фільтра $\mathfrak F$, необхідно і достатнью, щоб виконувалися дві умови:

- 1. $\mathfrak{D} \subset \mathfrak{F}$;
- 2. $\forall A \in \mathfrak{F} \ \exists B \in \mathfrak{D} : B \subset A$.

Вправа 19.2. Доведіть цю теорему.

Означення 19.7. Нехай F — фільтр на X і $A \subset X$. Слідом фільтра \mathfrak{F} на A називається сім'я підмножин $\mathfrak{F}_A = \{A \cap B \mid B \in \mathfrak{F}\}.$

Теорема 19.4

Для того щоб сім'я \mathfrak{F}_A була фільтром на A, необхідно і достатнью, щоб усі перетини $A \cap B$, $B \in \mathfrak{F}$ були непорожніми.

Вправа 19.3. Доведіть цю теорему.

Наслідок 19.5

 \mathfrak{F}_A — фільтр, якщо $A \in \mathfrak{F}$.

§19.5 Границі і граничні точки фільтрів

Означення 19.8. Нехай на множині X задані фільтри \mathfrak{F}_1 і \mathfrak{F}_2 . Говорять, що \mathfrak{F}_1 мажорує \mathfrak{F}_2 , якщо $\mathfrak{F}_2 \subset \mathfrak{F}_1$, тобто кожний елемент фільтра \mathfrak{F}_2 є водночас і елементом фільтра \mathfrak{F}_1 .

Приклад 19.3

Нехай $\{x_n\}_{n\in\mathbb{N}}$ — послідовність в X, а $\{x_{n_k}\}_{k\in\mathbb{N}}$ — її підпослідовність. Тоді фільтр $\mathfrak{F}_{\{x_{n_k}\}}$ асоційований з підпослідовністю, мажорує фільтр $\mathfrak{F}_{\{x_n\}}$, асоційований з самою послідовністю.

Дійсно, нехай $A \in \mathfrak{F}_{\{x_n\}}$. Тоді існує таке $N \in \mathbb{N}$, що $\{x_n\}_{n=N}^{\infty} \subset A$. Але тоді й $\{x_{n_k}\}_{k=N}^{\infty} \subset A$, тобто $A \in \mathfrak{F}_{\{x_{n_k}\}}$.

Означення 19.9. Нехай X — топологічний простір, \mathfrak{F} — фільтр на X. Точка $x \in X$ називається **границею** фільтра \mathfrak{F} (цей факт позначається як $x = \lim \mathfrak{F}$), якщо \mathfrak{F} мажорує фільтр околів точки x. Іншими словами, $x = \lim \mathfrak{F}$, якщо кожний окіл точки x належить фільтру \mathfrak{F} .

Означення 19.10. Точка $x \in X$ називається **граничною точкою** фільтра \mathfrak{F} , якщо кожний окіл точки x перетинається з усіма елементами фільтра \mathfrak{F} . Множина усіх граничних точок фільтра називається LIM \mathfrak{F} .

Приклад 19.4

Нехай $\{x_n\}_{n\in\mathbb{N}}$ — послідовність в топологічному просторі X. Тоді $x=\lim\mathfrak{F}_{\{x_n\}}=\lim_{n\to\infty}x_n$, а $x\in\mathrm{LIM}\,\mathfrak{F}_{\{x_n\}}$ збігається з множиною граничних точок послідовності $\{x_n\}_{n\in\mathbb{N}}$.

Теорема 19.5

Нехай \mathfrak{F} — фільтр на топологічному просторі $X,\,\mathfrak{D}$ — деяка база фільтра \mathfrak{F} . Толі

- 1. $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \; \exists A \in \mathfrak{D} : A \subset U;$
- 2. $x = \lim \mathfrak{F} \implies x \in \text{LIM }\mathfrak{F}$. Якщо до того ж X хаусдорфів простір, то у фільтра \mathfrak{F} немає інших граничних точок. Зокрема, якщо у фільтра в хаусдорфовому просторі є границя, то ця границя є єдиною;
- 3. множина LIM \mathfrak{F} збігається з перетином замикань усіх елементів фільтра \mathfrak{F} .

Доведення.

- 1. $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \ U \in \mathfrak{F} \iff \forall U \in \mathfrak{F} \ \exists A \in \mathfrak{D} : A \subset U.$
- 2. $x = \lim \mathfrak{F}, U \in \Omega_x \implies U \in \mathfrak{F} \implies \forall A \in \mathfrak{F} \ A \cap U \neq \varnothing \implies x \in \text{LIM} \mathfrak{F};$ $x \in \text{LIM} \mathfrak{F} \implies \forall U \in \mathfrak{F}, V \in \Omega_y \ U \cap V \neq \varnothing \implies x = y \text{ (оскільки простір хаусдорфів)}.$
- 3. $x = \text{LIM } \mathfrak{F} \iff \forall A \in \mathfrak{F}, U \in \Omega_x \ A \cap U \neq \emptyset \iff \forall A \in \mathfrak{F} \ x \in \overline{A}.$

Теорема 19.6

Нехай \mathfrak{F}_1 , \mathfrak{F}_2 — фільтри на топологічному просторі X і $\mathfrak{F}_1 \subset \mathfrak{F}_2$. Тоді

- 1. $x = \lim \mathfrak{F}_1 \implies x = \lim \mathfrak{F}_2$;
- 2. $x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1;$
- 3. $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$.

Доведення.

- 1. \mathfrak{F}_1 мажорує фільтр \mathfrak{M}_x околів точки $x, \mathfrak{F}_1 \subset \mathfrak{F}_2 \implies \mathfrak{M}_x \subset \mathfrak{F}_2$.
- 2. Оскільки при збільшенні сім'я множин її перетин зменшується, то

$$LIM \mathfrak{F}_2 = \bigcap_{A \in \mathfrak{F}_2} \overline{A} \subset \bigcap_{A \in \mathfrak{F}_1} \overline{A} = LIM \mathfrak{F}_1. \tag{19.1}$$

3. $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$.

19 Фільтри

§19.6 Границя функції по фільтру

Означення 19.11. Нехай X — множина, Y — топологічний простір, \mathfrak{F} — фільтр на X. Точка $y \in Y$ називається **границею** функції $f: X \to Y$ по фільтру \mathfrak{F} (цей факт позначається як $y = \lim_{\mathfrak{F}} f$, якщо $y = \lim f[\mathfrak{F}]$. Іншими словами, $y = \lim f[\mathfrak{F}]$, якщо для довільного околу U точки y існує такий елемент $A \in \mathfrak{F}$, що $f(A) \subset U$.

Означення 19.12. Точка $y \in Y$ називається **граничною** точкою функції $f: X \to Y$ по фільтру \mathfrak{F} , якщо $y \in \text{LIM } f[\mathfrak{F}]$, тобто якщо довільний окіл точки y перетинається з образами усіх елементів фільтра \mathfrak{F} .

Приклад 19.5

Нехай X — топологічний простір, $f: \mathbb{N} \to X$ і F — фільтр Фреше на \mathbb{N} . Тоді $\lim_{\mathfrak{F}} f = \lim_{n \to \infty} f(n)$.

Теорема 19.7

Нехай X і Y — топологічні простори, F — фільтр на $X, x = \lim \mathfrak{F}$ і $f: X \to Y$ — неперервна функція. Тоді $f(x) = \lim_{\mathfrak{F}} f$.

Доведення. Нехай U — довільний окіл точки f(x). Тоді існує окіл V точки X, для якого $f(V) \subset U$. Умова $x = \lim \mathfrak{F}$ означає, що $V \in \mathfrak{F}$. Інакше кажучи, для довільного околу U точки f(x) ми знайшли шуканий елемент $V \in \mathfrak{F}$: $f(V) \subset U$.

§19.7 Література

- [1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 99–102).
- [2] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 481–488).