PRISONER'S DILEMMA

ARVID LUNNEMARK

Definition 1. The *prisoner's dilemma* is a symmetric two-player game with two actions, cooperate (C) and defect (D), where, if player 1 plays a and player 2 plays b, player 1 gets payoff

$$p(a,b) = \begin{cases} R & \text{if } a = C, b = C \\ T & \text{if } a = D, b = C \\ S & \text{if } a = C, b = D \\ P & \text{if } a = D, b = D \end{cases}$$

We have T > R > P > S, and typically, we have the concrete values T = 5, R = 3, P = 1 and S = 0.

Definition 2. A strategy is a Moore machine (finite automaton with outputs) over the input and output alphabet $\{C, D\}$, with probability 1 - p of following the correct transition and probability p of following the incorrect transition.

Note: this models an error probability in *perception*. One could also think of an error probability in *outcome*, but it is easy to see that the two are equivalent up to a change of the values of R, S, T, P.

Definition 3. Suppose strategy s_1 plays against strategy s_2 . This defines an s_1 - s_2 graph which is a Markov chain where each node represents a pair of states (c_1, c_2) where c_1 is a state in s_1 and c_2 is a state in s_2 . The transition probabilities are defined in the obvious way.

Definition 4. Let π be the stationary distribution achieved by starting in the start state of the s_1 - s_2 graph. The payoff of strategy s_1 when played against strategy s_2 is

$$v_{s_1}(s_2) = \sum \pi_{c_1,c_2} \cdot p(c_1,c_2).$$

Note: The graph might be periodic in which case we we will not get a stationary distribution — in that case, however, because of the linearity of the payoffs, we can replace the see that the periodic distribution gets the same time-average value as the stationary distribution that is the mean of the distributions of the periodic end state.

Definition 5. A population of strategies P = (S, f) is a set S of strategies and a function $f: S \to (0, 1]$ such that $\sum_{s \in S} f(s) = 1$, representing the frequency of each strategy in the population.

Figure 1. TFT.

Figure 2. Pavlov.

Definition 6. The *fitness* of a strategy s in a population P = (S, f) is

$$F(s) = \sum_{s' \in S} f(s')v_s(s').$$

Definition 7. A strategy s_1 is ϵ -invadable if there exists a strategy s_2 such that in all populations P with $S = \{s_1, s_2\}$ and $f(s_2) \ge \epsilon$, we have

$$(1) F(s_2) > F(s_1)$$

Definition 8. A strategy s_1 is evolutionarily stable if there exists parameters p_0 and α , both in (0,1), such that for all $p < p_0$, and all $\epsilon < \alpha$, s_1 is not ϵ -invadable.

Note: it is easy to see that this is just equivalent to saying that for all $p < p_0$, there exists some ϵ for which s_1 is not ϵ -invadable.

Theorem 1. Suppose s_1 is evolutionarily stable. Then $\lim_{p\to 0} v_{s_1}(s_1) = R$.

Theorem 2. The Pavlov strategy, displayed in ??, is evolutionarily stable.

Remark. TFT, displayed in ?? , is not evolutionarily stable. It has the stationary distribution (1/4, 1/4, 1/4, 1/4) which is smaller than R.

Proof of theorem 1. Suppose s_1 is such that it is not true that

$$\lim_{p \to 0} v_{s_1}(s_1) = R$$

Formally prove this!

Formally prove this!

Note first that $v_{s_1}(s_1)$ is a polynomial in p, so the limit exists. Also, by the symmetry of the game, we know that $v_{s_1}(s_1) \leq R$ is always true, so this must mean that $\lim_{p\to 0} v_{s_1}(s_1) < R$. In particular, then, there exists some $\beta > 0$ such that $v_{s_1}(s_1) = R - \beta$.

We want to prove that s_1 is not evolutionarily stable, and to do that, we want to prove that for any sufficiently small ϵ , there exists a strategy s_2 that can invade s_1 .

We create the strategy s_2 as follows. First, copy the entire s_1 machine into s_2 . Suppose the state corresponding to the start state of s_1 is c_s . Let the output at c_s be $G(c_s)$. Let the node it goes to upon perceiving the opponent move $G(c_s)$ be $T(c_s, G(c_s))$. Then, create a new state c_0 that outputs $\neg G(c_s)$ and has transition $T(c_0, G(c_s)) = T(c_s, G(c_s))$. Create another new state c_1 . Let $T(c_0, \neg G(c_s)) = c_1$. Let $T(c_2, \cdot) = c_2$. Let $G(c_2) = C$. This completely describes s_2 .

Now, we claim that the payoffs are as follows.

(2)
$$v_{s_2}(s_1) = (1-p)\gamma + pS$$

(3)
$$v_{s_2}(s_2) = (1-p)^2 R + 2(1-p)p(\frac{S+T}{2}) + p^2 \gamma$$

$$(4) v_{s_1}(s_1) = \gamma$$

(5)
$$v_{s_1}(s_2) = (1-p)\gamma + pT$$

Now, we simply compute $F(s_2) - F(s_1)$, and want to show that it is greater than 0 for all α that are sufficiently small.

$$F(s_2) - F(s_1) =$$

$$= (1 - \alpha) \cdot v_{s_2}(s_1) + \alpha \cdot v_{s_2}(s_2) - (1 - \alpha) \cdot v_{s_1}(s_1) - \alpha \cdot v_{s_1}(s_2)$$

$$= (1 - \alpha) \cdot v_{s_2}(s_1) + \alpha \cdot v_{s_2}(s_2) - (1 - \alpha) \cdot v_{s_1}(s_1) - \alpha \cdot v_{s_1}(s_2)$$

We can easily see that this works for some small p.

Proof of theorem 2.