Visualisation de transformations sur la sphère de Riemann

Samuel Leblanc

Université de Sherbrooke

21 mars 2024

Partout dans cette présentation, K désignera le corps des nombres complexes ou le corps des nombres réels. Notons $K^* := K \setminus \{0\}$.

Partout dans cette présentation, K désignera le corps des nombres complexes ou le corps des nombres réels. Notons $K^* := K \setminus \{0\}$.

Définition 1.1

Soit V un K-espace vectoriel. L'**espace projectif** associé à V est l'ensemble quotient $(V \setminus \{0\})/\sim$, où \sim est la relation d'équivalence définie par :

 $x \sim y$ si et seulement s'il existe $\lambda \in K^*$ tel que $x = \lambda y$.

Partout dans cette présentation, K désignera le corps des nombres complexes ou le corps des nombres réels. Notons $K^* := K \setminus \{0\}$.

Définition 1.1

Soit V un K-espace vectoriel. L'**espace projectif** associé à V est l'ensemble quotient $(V \setminus \{0\})/\sim$, où \sim est la relation d'équivalence définie par :

 $x \sim y$ si et seulement s'il existe $\lambda \in K^*$ tel que $x = \lambda y$.

Définition 1.2

La **droite projective complexe**, notée \mathbb{CP}^1 , est l'espace projectif associé à \mathbb{C}^2 .

Les éléments de \mathbb{CP}^1 sont les classes d'équivalences [z], pour $z=(z_1,z_2)\in\mathbb{C}^2\setminus\{0\}$, que nous noterons $[z_1:z_2]$.

Définition 1.3

La **sphère de Riemann**, notée $\hat{\mathbb{C}}$, est le plan complexe augmenté du point à l'infini, c'est-à-dire $\mathbb{C} \cup \{\infty\}$.

Définition 1.3

La sphère de Riemann, notée $\hat{\mathbb{C}}$, est le plan complexe augmenté du point à l'infini, c'est-à-dire $\mathbb{C} \cup \{\infty\}$.

Théorème 1.4

Les espaces $\hat{\mathbb{C}}$ et \mathbb{CP}^1 sont homéomorphes.

Définition 1.5

Une transformation de Möbius M est une fonction

$$M: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$
$$z \mapsto \frac{az+b}{cz+d}$$

avec $a, b, c, d \in \mathbb{C}$ tels que $ad - bc \neq 0$.

Définition 1.5

Une transformation de Möbius M est une fonction

$$M: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$
$$z \mapsto \frac{az+b}{cz+d}$$

avec $a, b, c, d \in \mathbb{C}$ tels que $ad - bc \neq 0$.

Proposition 1.6

Les transformations de Möbius forment un groupe pour la composition de fonctions, que nous noterons \mathcal{M} .

Définition 1.5

Une **transformation de Möbius** *M* est une fonction

$$M: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$
$$z \mapsto \frac{az+b}{cz+d}$$

avec $a, b, c, d \in \mathbb{C}$ tels que $ad - bc \neq 0$.

Proposition 1.6

Les transformations de Möbius forment un groupe pour la composition de fonctions, que nous noterons \mathcal{M} .

Lemme 1.7

Soient (z_1, z_2, z_3) , (w_1, w_2, w_3) deux triplets composés d'éléments distincts dans $\hat{\mathbb{C}}$. Il existe une unique transformation de Möbius M telle que $M(z_i) = w_i$ pour i = 1, 2, 3.

Définition 1.8

Le **groupe spécial linéaire** sur K, noté SL(n, K), est le groupe des matrices de $M_n(K)$ avec un déterminant de 1.

Définition 1.9

Le groupe projectif spécial linéaire est le groupe

$$\mathrm{PSL}(n,K) := \mathrm{SL}(n,K)/\{-I,I\}.$$

Définition 1.8

Le **groupe spécial linéaire** sur K, noté SL(n, K), est le groupe des matrices de $M_n(K)$ avec un déterminant de 1.

Définition 1.9

Le groupe projectif spécial linéaire est le groupe

$$\mathrm{PSL}(n,K) := \mathrm{SL}(n,K)/\{-I,I\}.$$

Lemme 1.10

Le groupe des transformations de Möbius \mathcal{M} est isomorphe à $\mathrm{PSL}(2,\mathbb{C})$.

Transformation de Möbius

Définition 2.1

Soit V un K-espace vectoriel. Une **forme symplectique** sur V est une application bilinéaire $\omega: V \times V \to K$ telle que ω est

- i. Alternée : $\omega(u,u)=0$ pour tout $u\in V$;
- ii. Non dégénérée : $\omega(u, v) = 0$ pour tout $v \in V$ implique que u = 0.

Un **espace vectoriel symplectique** est un espace vectoriel muni d'une forme symplectique.

Remarque 2.2

En fixant une base, il est possible de représenter ω par une matrice Ω , où $\omega(u,v)=u^T\Omega v$. Nous dirons que Ω est une forme symplectique matricielle.

Définition 2.3

Soient V un espace vectoriel symplectique de forme symplectique ω et $W\subseteq V$ un sous-espace vectoriel. Alors,

$$W^{\perp} := \{ v \in V \mid \omega(u, v) = 0 \, \forall u \in W \}$$

est appelé l'orthogonal de W.

Définition 2.4

Soient V un espace vectoriel symplectique et $W\subseteq V$ un sous-espace vectoriel. Alors, W est un **lagrangien** si $W=W^{\perp}$.

À partir de maintenant, nous nous intéresserons à l'espace vectoriel symplectique \mathbb{R}^4 avec la forme symplectique matricielle

$$\Omega := egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & -1 & 0 & 0 \ -1 & 0 & 0 & 0 \end{pmatrix}.$$

L'ensemble des lagrangiens dans \mathbb{R}^4 sera noté $\operatorname{Lag}(\mathbb{R}^4)$.

Proposition 2.5

Soit $L \in Lag(\mathbb{R}^4)$. Alors, dim L = 2.

Soit $L \in \text{Lag}(\mathbb{R}^4)$ et notons $L^* := L \setminus \{0\}$. Définissons l'application $P := \rho \circ j : L^* \to \mathbb{CP}^1$, où

$$\begin{array}{cccc}
L^* & \stackrel{j}{\longmapsto} & \mathbb{C}^2 & \stackrel{\rho}{\longrightarrow} & \mathbb{CP}^1 \\
\begin{pmatrix} l_1 \\ l_2 \\ l_3 \\ l_4 \end{pmatrix} & \longmapsto & \begin{pmatrix} l_1 + il_2 \\ l_3 + il_4 \end{pmatrix} & \longmapsto & [l_1 + il_2 : l_3 + il_4].
\end{array}$$

Proposition 2.6

Soit $L \in \operatorname{Lag}(\mathbb{R}^4)$ vu comme un sous-ensemble de \mathbb{R}^4 . Alors,

$$L \cap \left\{ \begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} \middle| x, y \in \mathbb{R} \right\} = 0 \iff L = \begin{pmatrix} a & -b+c \\ b+c & a \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

pour $a, b, c \in \mathbb{R}$ et dans ce cas, P(L), l'image de L par P, est un cercle de centre a + ib et de rayon |c|.

Remarque 2.7

Nous dirons qu'un point est un cercle de rayon nul.

On assigne à chaque point du cercle un vecteur pointant vers l'extérieur ou vers le centre du cercle.

Proposition 2.8

Soient $L \in \operatorname{Lag}(\mathbb{R}^4)$ où P(L) est un cercle de rayon non nul et $l \in L^*$. Si $l = \begin{pmatrix} l_1 & l_2 & l_3 & l_4 \end{pmatrix}^T$, alors le vecteur associé à P(l) est de direction $\operatorname{sgn}(c)i\frac{l_3-il_4}{l_3+il_4}$.

Définition 2.9

Deux lagrangiens $L_1, L_2 \in \operatorname{Lag}(\mathbb{R}^4)$ sont dits **tangents** si $\dim(L_1 \cap L_2) = 1$.

En outre, si $P(L_1)$ et $P(L_2)$ sont des cercles de rayon non nul, alors $P(L_1)$ et $P(L_2)$ ont un unique point en commun et la direction à ce point est la même.

Définition 2.10

Le **groupe symplectique**, noté $\operatorname{Sp}(n, K)$, est le groupe des transformations linéaires d'un K-espace vectoriel symplectique de dimension n préservant la forme symplectique.

Définition 2.11

Le groupe projectif symplectique, noté PSp(n, K), est le groupe $Sp(n, K)/\{-I, I\}$.

Dans notre cas, nous nous intéresserons au groupe

$$\mathrm{PSp}(4,\mathbb{R}) := \{ A \in M_4(\mathbb{R}) \mid A^T \Omega A = \Omega \} / \{ -I,I \}.$$

Proposition 2.12

Soient $[A] \in \operatorname{PSp}(4,\mathbb{R})$ et $L \in \operatorname{Lag}(\mathbb{R}^4)$. Alors, $[A] \cdot L \coloneqq AL$ est une action de $\operatorname{PSp}(4,\mathbb{R})$ sur $\operatorname{Lag}(\mathbb{R}^4)$.

Plus généralement, définissons

$$\mathrm{PSp}^{\pm}(4,\mathbb{R}) \coloneqq \{A \in M_4(\mathbb{R}) \mid A^T \Omega A = \pm \Omega\} / \{-I,I\}.$$

Soient $[A] \in \operatorname{PSp}^{\pm}(4,\mathbb{R})$ et $L \in \operatorname{Lag}(\mathbb{R}^4)$. Alors, $[A] \cdot L := AL$ est une action de $\operatorname{PSp}^{\pm}(4,\mathbb{R})$ sur $\operatorname{Lag}(\mathbb{R}^4)$.

Plus généralement, définissons

$$\mathrm{PSp}^{\pm}(4,\mathbb{R}) \coloneqq \{A \in M_4(\mathbb{R}) \mid A^T \Omega A = \pm \Omega\} / \{-I,I\}.$$

Soient $[A] \in \operatorname{PSp}^{\pm}(4,\mathbb{R})$ et $L \in \operatorname{Lag}(\mathbb{R}^4)$. Alors, $[A] \cdot L := AL$ est une action de $\operatorname{PSp}^{\pm}(4,\mathbb{R})$ sur $\operatorname{Lag}(\mathbb{R}^4)$.

Théorème 2.13

L'action de $\mathrm{PSp}^\pm(4,\mathbb{R})$ sur $\mathrm{Lag}(\mathbb{R}^4)$ donne toutes les transformations linéaires préservant la tangence.

Plus généralement, définissons

$$\mathrm{PSp}^{\pm}(4,\mathbb{R}) \coloneqq \{A \in M_4(\mathbb{R}) \mid A^T \Omega A = \pm \Omega\} / \{-I,I\}.$$

Soient $[A] \in \operatorname{PSp}^{\pm}(4,\mathbb{R})$ et $L \in \operatorname{Lag}(\mathbb{R}^4)$. Alors, $[A] \cdot L := AL$ est une action de $\operatorname{PSp}^{\pm}(4,\mathbb{R})$ sur $\operatorname{Lag}(\mathbb{R}^4)$.

Théorème 2.13

L'action de $\mathrm{PSp}^{\pm}(4,\mathbb{R})$ sur $\mathrm{Lag}(\mathbb{R}^4)$ donne toutes les transformations linéaires préservant la tangence.

Lemme 2.14

 $\mathrm{PSp}(4,\mathbb{R})$ est un sous-groupe d'indice 2 de $\mathrm{PSp}^\pm(4,\mathbb{R})$.

Considérons l'application

$$f: M_2(\mathbb{C}) o M_4(\mathbb{R}) \ egin{pmatrix} a_1 + ia_2 & b_1 + ib_2 \ c_1 + ic_2 & d_1 + id_2 \end{pmatrix} \mapsto egin{pmatrix} a_1 & -a_2 & b_1 & -b_2 \ a_2 & a_1 & b_2 & b_1 \ c_1 & -c_2 & d_1 & -d_2 \ c_2 & c_1 & d_2 & d_1 \end{pmatrix}.$$

Considérons l'application

$$f: M_2(\mathbb{C}) o M_4(\mathbb{R}) \ egin{pmatrix} a_1 + ia_2 & b_1 + ib_2 \ c_1 + ic_2 & d_1 + id_2 \end{pmatrix} \mapsto egin{pmatrix} a_1 & -a_2 & b_1 & -b_2 \ a_2 & a_1 & b_2 & b_1 \ c_1 & -c_2 & d_1 & -d_2 \ c_2 & c_1 & d_2 & d_1 \end{pmatrix}.$$

Proposition 2.15

L'ensemble $f(SL(2,\mathbb{C}))/\{-I,I\}$ est un groupe pour la multiplication matricielle et ce groupe est isomorphe à $PSL(2,\mathbb{C})$.

Proposition 2.16

Le groupe $f(SL(2,\mathbb{C}))/\{-I,I\}$ est un sous-groupe de $PSp(4,\mathbb{R})$.

Proposition 2.17

Posons

$$\mathcal{E}_{4,\mathbb{R}} := \left\{ \begin{bmatrix} e^A \end{bmatrix} \middle| A = \begin{pmatrix} a & b & 0 & c \\ b & -a & c & 0 \\ 0 & d & a & -b \\ d & 0 & -b & -a \end{pmatrix}, \text{ pour } a,b,c,d \in \mathbb{R} \right\},$$

où $[e^A] = \{-e^A, e^A\}$. Alors, $\mathcal{E}_{4,\mathbb{R}}$ est un sous-ensemble de $\mathrm{PSp}(4,\mathbb{R})$.

Action de $PSp(4, \mathbb{R})$

Théorème 2.18 Les groupes $\langle f(\mathrm{SL}(2,\mathbb{C}))/\{-I,I\}, \mathcal{E}_{4,\mathbb{R}} \rangle$ et $\mathrm{PSp}(4,\mathbb{R})$ sont égaux.

$\mathrm{PSp}(4,\mathbb{R})$ agit aussi sur la courbe de Veronese

Références

James W. Anderson. Hyperbolic Geometry. 2e éd. Springer Undergraduate Mathematics Series. Springer London, 2005

Jean-Philippe Burelle et Ryan Kirk. Piecewise circular curves and positivity. 2021. arXiv: 2108.08680 [math.DG]

Ved Prakash Gupta et Mukund Madhav Mishra. On the topology of certain matrix groups. https://www.jnu.ac.in/Faculty/vedgupta/matrix-gps-gupta-mishra.pdf. 2010

Brian C. Hall. Lie Groups, Lie Algebras, and Representations. 2e éd. Graduate Texts in Mathematics. Springer Cham, 2015

Références

Samuel LEBLANC. *riemannsphere*. https://github.com/samueleblancriemannsphere. 2023

Sophus LIE. "On complexes - in particular, line and sphere complexes - with applications to the theory of partial differential equations". Trad. par D. H. DELPHENICH. In: *Mathematische Annalen* 5 (1872), p. 145-208

Kevin Thouin. "Géométrie hyperbolique : le demi-plan de Poincaré" . In : *Cahiers Mathématiques de l'Université de Sherbrooke* (CaMUS) 6 (2017), p. 29-44