预备知识

- A. 模型在noisy dataset学的是noisy label posterior 不是 clean label posterior
- B. 噪声分instance independent(又分为symmetric,asymmetric,pair noise); instance dependent
- C. 一些非基于深度学习的噪声处理方法
 - 1. data cleaning: 直接在数据集中应用bagging, K means, outlier detection等处理掉错误标签
 - 2. surrogate loss: 尝试解决0-1分类损失函数的非凸性和计算硬度,只能在2分类中有较好表现
 - 3. probablistic method: 生成式模型学习特征分布, 但是参数量很大
 - 4. model-based method: 魔改某个模型,如SVM使得其noise-tolerant
- D. DNN更易受噪声影响,关于这个话题的研究使得现在通过深度学习解决noise 的算法鲁棒性更高
- E. 也讨论了关于noisy label的回归问题

标签噪声算法分类

Fig. 2. Categorization of recent deep learning methods for overcomming noisy labels.

衡量label noise learning算法的指标

• flexibility: 是否可以快速适应新的框架

• no pre-training: 需不需要预训练

• full exploration: 每个样本是否都用了,有没有生硬的把一些错误样本排除掉

• no supervision: 数据集没有人工干预,如噪声率、clean validation set等

• heavy noise: 是否可以对抗heavy noise

• complex noise: 对标签的先验假设的强弱

TABLE III

COMPARISON OF ROBUST DEEP LEARNING CATEGORIES FOR OVERCOMING NOISY LABELS.

COMPARISON OF ROBOST DELI LEARNING CATEGORIES FOR OVERCOMING NOIST EADELS.										
Category		P1 Flexibility	P2 No Pre-train	P3 Full Exploration	P4 No Supervision	P5 Heavy Noise	P6 Complex Noise			
Robust Architecture	Noise Adaptation Layer Dedicated Architecture	×	O	0	O Δ	×	×			
Robust Regularization (§III-B)	Implicit Regularization Explicit Regularization	0	0	0	0	×	Δ			
Robust Loss Function (\$III-C)		0				×	×			
Loss Adjustment	Loss Correction Loss Reweighting Label Refurbishment Meta Learning	0 0 0	X 0 0	0 0) × () () () () () () () () () () () () ()	Х Х Д	× Δ Δ			
Sample Selection (\$\frac{\sqrt{\pirity}}{\pirity}}	Multi-Network Learning Multi-Round Learning Hybrid Approach	0	0	×	× 0 0	0	Δ Δ Δ			

预测噪声率的方法

统计noise transition matrix后通过计算得出

通过GMM来建模true label和noisy label 的两个高斯分布

通过干净的验证集交叉验证

噪声数据集

 $\label{total constraints} TABLE\ IV$ Summary of publicly available datasets used for studying label noise.

	Dataset	# Training	# Validation	# Testing	# Classes	Noise Rate (%)
Clean Data	MNIST [154] ⁵⁰	60K	N/A	10K	10	≈ 0.0
	Fashion-MNIST [155] ⁵¹	60K	N/A	10K	10	≈ 0.0
	CIFAR-10 [156] 52	50K	N/A	10K	10	≈ 0.0
	CIFAR-100 [156] ⁵²	50K	N/A	10K	100	≈ 0.0
	SVHN [157] 53	73K	N/A	26K	10	≈ 0.0
	Tiny-ImageNet [158] ⁵⁵	100K	10K	10K	200	≈ 0.0
	ImageNet [1] ⁵⁴	1.3M	50K	50K	1000	≈ 0.0
Real-world Noisy Data	ANIMAL-10N [19] ⁵⁶	50K	N/A	5K	10	≈ 8.0
	CIFAR-10N [159] ⁵⁷	50K	N/A	10K	10	$\approx 9.0/18.0/40.2$
	CIFAR-100N [159] ⁵⁷	50K	N/A	10K	100	$\approx 25.6/40.2$
	Food-101N [18] ⁵⁸	310K	5K	25K	101	≈ 18.4
	Clothing1M [16] ⁵⁹	1M	14K	10K	14	≈ 38.5
	WebVision [17] ⁶⁰	2.4M	50K	50K	1000	≈ 20.0

其他

如何评估模型的泛化性?

未来研究方向?

♡ ♡ 具体分类的具体内容还没看! 之后补充