The World is Not Just Integers

- Programming languages support numbers with fraction

 - ♦ Examples:

```
3.14159265...(\pi)
```

2.71828... (*e*)

0.00000001 or 1.0×10^{-9} (seconds in a nanosecond)

86,400,000,000,000 or 8.64×10^{13} (nanoseconds in a day)

last number is a large integer that cannot fit in a 32-bit integer

- We use a scientific notation to represent
 - ♦ Very small numbers (e.g. 1.0 × 10⁻⁹)
 - ♦ Very large numbers (e.g. 8.64 × 10¹³)
 - ightharpoonup Scientific notation: $\pm d \cdot f_1 f_2 f_3 f_4 \dots \times 10^{\pm e_1 e_2 e_3}$

Floating-Point Numbers

- ❖ Examples of floating-point numbers in base 10 ...
 - \diamond 5.341×10³, 0.05341×10⁵, -2.013×10⁻¹, -201.3×10⁻³
- * Examples of floating-point numbers in base 2 ...
 - \Rightarrow 1.00101×2²³, 0.0100101×2²⁵, -1.101101×2⁻³, -1101.101×2⁻⁶

 - \Rightarrow The binary number $(1101.101)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 13.625$
- Floating-point numbers should be normalized
 - - In a decimal number, this digit can be from 1 to 9
 - In a binary number, this digit should be 1
 - ♦ Normalized FP Numbers: 5.341×10³ and -1.101101×2-3
 - ♦ NOT Normalized: 0.05341×10⁵ and –1101.101×2⁻⁶

Floating-Point Representation

- ❖ A floating-point number is represented by the triple
 - ♦ S is the Sign bit (0 is positive and 1 is negative).
 - Representation is called sign and magnitude
 - ★ E is the Exponent field (signed)
 - Very large numbers have large positive exponents
 - Very small close-to-zero numbers have negative exponents
 - More bits in exponent field increases range of values
 - → F is the Fraction field (fraction after binary point)
 - More bits in fraction field improves the precision of FP numbers

S	Exponent	Fraction

Value of a floating-point number = $(-1)^{s} \times val(F) \times 2^{val(E)}$

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

IEEE 754 Floating-Point Standard

- Found in virtually every computer invented since 1980
 - ♦ Simplified porting of floating-point numbers
 - Unified the development of floating-point algorithms
 - ♦ Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)
 - ↑ 1-bit sign + 8-bit exponent + 23-bit fraction

S Exponent ⁸ Fraction ²³
--

- Double Precision Floating Point Numbers (64 bits)
 - ↑ 1-bit sign + 11-bit exponent + 52-bit fraction

S	Exponent ¹¹	Fraction ⁵²								
(continued)										

Normalized Floating Point Numbers

❖ For a normalized floating point number (S, E, F)

S E
$$F = f_1 f_2 f_3 f_4 ...$$

- Significand is equal to $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$
 - ♦ IEEE 754 assumes hidden 1. (not stored) for normalized numbers
 - ♦ Significand is 1 bit longer than fraction
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{\text{val}(E)}$$

$$(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{\text{val}(E)}$$

$$(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{\text{val}(E)}$$

 $(-1)^{S}$ is 1 when S is 0 (positive), and -1 when S is 1 (negative)

Biased Exponent Representation

- How to represent a signed exponent? Choices are ...
 - ♦ Sign + magnitude representation for the exponent
 - → Two's complement representation
 - ♦ Biased representation
- ❖ IEEE 754 uses biased representation for the exponent
 - \Rightarrow Value of exponent = val(E) = E Bias (Bias is a constant)
- Recall that exponent field is 8 bits for single precision
 - ♦ E can be in the range 0 to 255
 - \Rightarrow E = 0 and E = 255 are reserved for special use (discussed later)
 - \Rightarrow E = 1 to 254 are used for normalized floating point numbers
 - ♦ Bias = 127 (half of 254), val(E) = E 127
 - \Rightarrow val(E=1) = -126, val(E=127) = 0, val(E=254) = 127

Biased Exponent - Cont'd

- ❖ For double precision, exponent field is 11 bits
 - \Leftrightarrow *E* can be in the range 0 to 2047
 - \Rightarrow *E* = 0 and *E* = 2047 are reserved for special use
 - \Rightarrow E = 1 to 2046 are used for normalized floating point numbers
 - ♦ Bias = 1023 (half of 2046), val(E) = E 1023
 - \Rightarrow val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1.F)_{2} \times 2^{E-Bias}$$

 $(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{E-Bias}$
 $(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{E-Bias}$

Examples of Single Precision Float

- What is the decimal value of this Single Precision float?
 - 101111100010000000000000000000000

Solution:

- ♦ Sign = 1 is negative
- \Rightarrow Exponent = $(011111100)_2 = 124$, E bias = 124 127 = -3
- \Rightarrow Significand = $(1.0100 ... 0)_2 = 1 + 2^{-2} = 1.25 (1. is implicit)$
- \Rightarrow Value in decimal = -1.25 × 2⁻³ = -0.15625
- What is the decimal value of?
- Solution:

 \Rightarrow Value in decimal = +(1.01001100 ... 0)₂ × 2¹³⁰⁻¹²⁷ = (1.01001100 ... 0)₂ × 2³ = (1010.01100 ... 0)₂ = 10.375

Examples of Double Precision Float

What is the decimal value of this Double Precision float?

Solution:

- \Rightarrow Value of exponent = $(10000000101)_2$ Bias = 1029 1023 = 6
- \Rightarrow Value of double float = (1.00101010 ... 0)₂ × 2⁶ (1. is implicit) = (1001010.10 ... 0)₂ = 74.5
- What is the decimal value of?
- ❖ Do it yourself! (answer should be $-1.5 \times 2^{-7} = -0.01171875$)

Converting FP Decimal to Binary

- ❖ Convert –0.8125 to binary in single and double precision
- Solution:
 - → Fraction bits can be obtained using multiplication by 2

```
• 0.8125 \times 2 = 1.625

• 0.625 \times 2 = 1.25

• 0.25 \times 2 = 0.5

• 0.5 \times 2 = 1.0

• 0.5 \times 2 = 1.0
```

- Stop when fractional part is 0
- \Rightarrow Fraction = $(0.1101)_2$ = $(1.101)_2 \times 2^{-1}$ (Normalized)
- \Rightarrow Exponent = (-1)+ Bias = 126 (single precision) and 1022 (double)

1		0	1	1	1	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1		0	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Single Precision

Double Precision

Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

- \Rightarrow Exponent bias = 254 127 = 127 (largest exponent for SP)
- \Rightarrow Significand = $(1.111 ... 1)_2$ = almost 2
- ♦ Value in decimal $\approx 2 \times 2^{127} \approx 2^{128} \approx 3.4028 \dots \times 10^{38}$
- Solution for Double Precision:

- ♦ Value in decimal $\approx 2 \times 2^{1023} \approx 2^{1024} \approx 1.79769 \dots \times 10^{308}$
- Overflow: exponent is too large to fit in the exponent field

Smallest Normalized Float

- What is the smallest (in absolute value) normalized float?
- Solution for Single Precision:

 - \Rightarrow Exponent bias = 1 127 = –126 (smallest exponent for SP)
 - ♦ Significand = $(1.000 ... 0)_2 = 1$
 - \Rightarrow Value in decimal = 1 × 2⁻¹²⁶ = 1.17549 ... × 10⁻³⁸
- Solution for Double Precision:

- \Rightarrow Value in decimal = 1 × 2⁻¹⁰²² = 2.22507 ... × 10⁻³⁰⁸
- Underflow: exponent is too small to fit in exponent field

Zero, Infinity, and NaN

Zero

- \Rightarrow Exponent field E = 0 and fraction F = 0
- → +0 and –0 are possible according to sign bit S

Infinity

- \Rightarrow Infinity is a special value represented with maximum E and F = 0
 - For single precision with 8-bit exponent: maximum E = 255
 - For double precision with 11-bit exponent: maximum E = 2047
- ♦ Infinity can result from overflow or division by zero
- → +∞ and -∞ are possible according to sign bit S

NaN (Not a Number)

- \diamond NaN is a special value represented with maximum E and $F \neq 0$
- ♦ Result from exceptional situations, such as 0/0 or sqrt(negative)
- ♦ Operation on a NaN results is NaN: Op(X, NaN) = NaN

Denormalized Numbers

- IEEE standard uses denormalized numbers to ...
 - → Fill the gap between 0 and the smallest normalized float
 - ♦ Provide gradual underflow to zero
- **Denormalized:** exponent field E is 0 and fraction $F \neq 0$
 - ♦ Implicit 1. before the fraction now becomes 0. (not normalized)
- ❖ Value of denormalized number (S, 0, F)

Single precision: $(-1)^S \times (0.F)_2 \times 2^{-126}$

Double precision: (-1) $^{\circ}$ \times $(0.F)_2$ \times 2^{-1022}

Summary of IEEE 754 Encoding

Single-Precision	Exponent = 8	Fraction = 23	Value				
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$				
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-126}$				
Zero	0	0	± 0				
Infinity	255	0	± 8				
NaN	255	nonzero	NaN				

Double-Precision	Exponent = 11	Fraction = 52	Value				
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$				
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-1022}$				
Zero	0	0	± 0				
Infinity	2047	0	± 8				
NaN	2047	nonzero	NaN				

Floating-Point Comparison

- ❖ IEEE 754 floating point numbers are ordered
 - ♦ Because exponent uses a biased representation ...
 - Exponent value and its binary representation have same ordering
 - ♦ Placing exponent before the fraction field orders the magnitude
 - Larger exponent ⇒ larger magnitude
 - For equal exponents, Larger fraction ⇒ larger magnitude
 - $0 < (0.F)_2 \times 2^{E_{min}} < (1.F)_2 \times 2^{E_{-Bias}} < \infty (E_{min} = 1 Bias)$
 - ♦ Because sign bit is most significant ⇒ quick test of signed <</p>
- Integer comparator can compare magnitudes

$$X = (E_X, F_X)$$
 Integer $X < Y$
 $Y = (E_Y, F_Y)$ Comparator $X < Y$
 $X = Y$

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

Floating Point Addition Example

- Consider Adding (Single-Precision Floating-Point):

 - $+ 1.1000000000000110000101_2 \times 2^2$
- Cannot add significands ... Why?
 - ♦ Because exponents are not equal
- How to make exponents equal?
 - ♦ Shift the significand of the lesser exponent right
 - \Rightarrow Difference between the two exponents = 4 2 = 2
 - ♦ So, shift right second number by 2 bits and increment exponent
 - $1.1000000000000110000101_2 \times 2^2$
 - $= 0.0110000000000001100001 01_2 \times 2^4$

Floating-Point Addition - cont'd

- ❖ Now, ADD the Significands:
- $+ 1.1000000000000110000101 \times 2^{2}$
- + 0.01100000000000001100001 01 × 2⁴ (shift right)
- $+10.0100010000000001100011 01 \times 2^{4}$ (result)
- Addition produces a carry bit, result is NOT normalized
- Normalize Result (shift right and increment exponent):
 - + 10.0100010000000001100011 01 \times 24
- $= + 1.0010001000000000110001 101 \times 2^{5}$

Rounding

- Single-precision requires only 23 fraction bits
- However, Normalized result can contain additional bits
 - 1.0010001000000000110001 | $(1)(01) \times 2^5$ Round Bit: R = 1 - 1 Sticky Bit: S = 1
- Two extra bits are needed for rounding
 - ♦ Round bit: appears just after the normalized result
 - ♦ Sticky bit: appears after the round bit (OR of all additional bits)
- ❖ Since RS = 11, increment fraction to round to nearest
 - $1.0010001000000000110001 \times 2^{5}$

+1

 $1.00100010000000000110010 \times 2^{5}$ (Rounded)

Floating-Point Subtraction Example

- Sometimes, addition is converted into subtraction
 - ♦ If the sign bits of the operands are different
- Consider Adding:

❖ 2's complement of result is required if result is negative

Floating-Point Subtraction - cont'd

- + 1.0000000101100010001101 × 2⁻⁶
- $-1.0000000000000010011010 \times 2^{-1}$
- 0.11110111111110111010101 10011 \times 2⁻¹ (result is negative)
- Result should be normalized
 - For subtraction, we can have leading zeros. To normalize, count the number of leading zeros, then shift result left and decrement the exponent accordingly.
 Guard bit
 - 0.111101111111110111010101 \bigcirc 0011 \times 2⁻¹
- Guard bit: guards against loss of a fraction bit
 - Needed for subtraction, when result has a leading zero and should be normalized.

Floating-Point Subtraction - cont'd

Next, normalized result should be rounded

❖ Since R = 0, it is more accurate to truncate the result even if S = 1. We simply discard the extra bits.

❖ IEEE 754 Representation of Result

```
1011110111011111111110111010101011
```

Rounding to Nearest Even

- ❖ Normalized result has the form: 1. f₁ f₂ ... f₁ R S
 - ♦ The round bit R appears after the last fraction bit f₁
 - ♦ The sticky bit S is the OR of all remaining additional bits
- Round to Nearest Even: default rounding mode
- Four cases for RS:
 - ♦ RS = 00 → Result is Exact, no need for rounding
 - ♦ RS = 01 → Truncate result by discarding RS
 - ♦ RS = 11 → Increment result: ADD 1 to last fraction bit
 - ♦ RS = 10 → Tie Case (either truncate or increment result)
 - Check Last fraction bit f_1 (f_{23} for single-precision or f_{52} for double)
 - If f_i is 0 then truncate result to keep fraction even
 - If f_i is 1 then increment result to make fraction even

Additional Rounding Modes

- ❖ IEEE 754 standard specifies four rounding modes:
- 1. Round to Nearest Even: described in previous slide
- Round toward +Infinity: result is rounded up
 Increment result if sign is positive and R or S = 1
- Round toward -Infinity: result is rounded down
 Increment result if sign is negative and R or S = 1
- 4. Round toward 0: always truncate result
- Rounding or Incrementing result might generate a carry
 - ♦ This occurs when all fraction bits are 1
 - ♦ Re-Normalize after Rounding step is required only in this case

Example on Rounding

- Round following result using IEEE 754 rounding modes:
- ❖ Round to Nearest Even:
 Round Bit → Land Sticky Bit
 - ♦ Increment result since RS = 10 and f₂₃ = 1

 - → Renormalize and increment exponent (because of carry)
- ❖ Round towards +∞: Truncate result since negative
 - ♦ Truncated Result: -1.11111111111111111111 x 2⁻⁷
- Round towards -∞: Increment since negative and R = 1
- * Round towards 0: Truncate always

Floating Point Addition / Subtraction

- 1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent.
- 2. Add / Subtract the significands according to the sign bits.
- 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Shift significand right by $d = |E_X - E_Y|$

Add significands when signs of X and Y are identical, Subtract when different X-Y becomes X+(-Y)

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Floating Point Adder Block Diagram

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

Floating Point Multiplication Example

- Consider multiplying:
 - $-1.110\ 1000\ 0100\ 0000\ 1010\ 0001_2\ \times\ 2^{-4}$
- \times 1.100 0000 0001 0000 0000 0000₂ \times 2⁻²
- Unlike addition, we add the exponents of the operands
 - \Rightarrow Result exponent value = (-4) + (-2) = -6
- ❖ Using the biased representation: $E_Z = E_X + E_Y Bias$
 - $\Rightarrow E_X = (-4) + 127 = 123$ (*Bias* = 127 for single precision)
 - $\Rightarrow E_{Y} = (-2) + 127 = 125$
 - $\Leftrightarrow E_7 = 123 + 125 127 = 121 \text{ (value = -6)}$
- Sign bit of product can be computed independently
- ❖ Sign bit of product = Sign_X XOR Sign_Y = 1 (negative)

Floating-Point Multiplication, cont'd

Now multiply the significands:

111010000100000010100001

111010000100000010100001

1.11010000100000010100001

- ❖ 24 bits × 24 bits → 48 bits (double number of bits)
- ❖ Multiplicand × 0 = 0
 Zero rows are eliminated
- Multiplicand × 1 = Multiplicand (shifted left)

Floating-Point Multiplication, cont'd

Normalize Product

```
-10.101110001111110111111001100... × 2<sup>-6</sup>
```

Shift right and increment exponent because of carry bit

```
= -1.0101110001111110111111001100... \times 2^{-5}
```

* Round to Nearest Even: (keep only 23 fraction bits)

```
1.010111000111111011111100 | (1)(100...) \times 2^{-5}
```

Round bit = 1, Sticky bit = 1, so increment fraction

❖ IEEE 754 Representation

```
101110100010111000111110111101
```

Floating Point Multiplication

- 1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent
- 2. Multiply the significands. Set the result sign to positive if operands have same sign, and negative otherwise
- 3. Normalize the product if necessary, shifting its significand right and incrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Biased Exponent Addition $E_z = E_x + E_y - Bias$

Result sign $S_Z = S_X \mathbf{xor} S_Y \mathbf{can}$ be computed independently

Since the operand significands $1.F_X$ and $1.F_Y$ are ≥ 1 and < 2, their product is ≥ 1 and < 4.

To normalize product, we need to shift right at most by 1 bit and increment exponent

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Extra Bits to Maintain Precision

- Floating-point numbers are approximations for ...
 - ♦ Real numbers that they cannot represent
- ❖ Infinite variety of real numbers exist between 1.0 and 2.0
 - ♦ However, exactly 2²³ fractions represented in Single Precision
- * Extra bits are generated in intermediate results when ...
 - ♦ Shifting and adding/subtracting a p-bit significand
 - ♦ Multiplying two p-bit significands (product is 2p bits)
- But when packing result fraction, extra bits are discarded
- Few extra bits are needed: guard, round, and sticky bits
- Minimize hardware but without compromising accuracy

Advantages of IEEE 754 Standard

- Used predominantly by the industry
- Encoding of exponent and fraction simplifies comparison
 - ♦ Integer comparator used to compare magnitude of FP numbers
- ❖ Includes special exceptional values: NaN and ±∞
 - ♦ Special rules are used such as:
 - 0/0 is NaN, sqrt(-1) is NaN, 1/0 is ∞, and 1/∞ is 0
 - ♦ Computation may continue in the face of exceptional conditions
- Denormalized numbers to fill the gap
 - ♦ Between smallest normalized number $1.0 \times 2^{E_{min}}$ and zero
 - \Rightarrow Denormalized numbers, values $0.F \times 2^{E_{min}}$, are closer to zero
 - ♦ Gradual underflow to zero

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow we can have underflow
- Accuracy can be a big problem
 - ♦ Extra bits to maintain precision: guard, round, and sticky
 - → Four rounding modes
 - → Division by zero yields Infinity

 - ♦ Other complexities
- Implementing the standard can be tricky
 - ♦ See text for description of 80x86 and Pentium bug!
- Not using the standard can be even worse

Accuracy can be a Big Problem

Value1	Value2	Value3	Value4	Sum
1.0E+30	-1.0E+30	9.5	-2.3	7.2
1.0E+30	9.5	-1.0E+30	-2.3	-2.3
1.0E+30	9.5	-2.3	-1.0E+30	0

- Adding double-precision floating-point numbers (Excel)
- Floating-Point addition is NOT associative
- Produces different sums for the same data values
- Rounding errors when the difference in exponent is large

Next...

- Floating-Point Numbers
- ❖ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

MIPS Floating Point Coprocessor

- Called Coprocessor 1 or the Floating Point Unit (FPU)
- ❖ 32 separate floating point registers: \$f0, \$f1, ..., \$f31
- FP registers are 32 bits for single precision numbers
- Even-odd register pair form a double precision register
- Separate FP instructions for single/double precision
 - ♦ Single precision: add.s, sub.s, mul.s, div.s (.s extension)
 - ♦ Double precision: add.d, sub.d, mul.d, div.d (.d extension)
- FP instructions are more complex than the integer ones

FP Arithmetic Instructions

Instruction	Meaning	Format					
add.s fd, fs, ft	(fd) = (fs) + (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	0
add.d fd, fs, ft	(fd) = (fs) + (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	0
sub.s fd, fs, ft	(fd) = (fs) - (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	1
sub.d fd, fs, ft	(fd) = (fs) - (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	1
mul.s fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	0	ft ⁵	fs ⁵	fd ⁵	2
mul.d fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	1	ft ⁵	fs ⁵	fd ⁵	2
div.s fd, fs, ft	(fd) = (fs) / (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	3
div.d fd, fs, ft	(fd) = (fs) / (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	3
sqrt.s fd, fs	(fd) = sqrt (fs)	0x11	0	0	fs ⁵	fd ⁵	4
sqrt.d fd, fs	(fd) = sqrt (fs)	0x11	1	0	fs ⁵	fd ⁵	4
abs.s fd, fs	(fd) = abs (fs)	0x11	0	0	fs ⁵	fd ⁵	5
abs.d fd, fs	(fd) = abs (fs)	0x11	1	0	fs ⁵	fd ⁵	5
neg.s fd, fs	(fd) = - (fs)	0x11	0	0	fs ⁵	fd ⁵	7
neg.d fd, fs	(fd) = - (fs)	0x11	1	0	fs ⁵	fd ⁵	7

FP Load/Store Instructions

Separate floating point load/store instructions

♦ lwc1: load word coprocessor 1

♦ Idc1: load double coprocessor 1

General purpose register is used as the base register

Instruction		Meaning	Format			at
lwc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x31	\$t0	\$f2	$im^{16} = 40$
ldc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x35	\$t0	\$f2	$im^{16} = 40$
swc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x39	\$t0	\$f2	$im^{16} = 40$
sdc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x3d	\$t0	\$f2	$im^{16} = 40$

Better names can be used for the above instructions

 \diamond I.s = Iwc1 (load FP single), I.d = Idc1 (load FP double)

 \Rightarrow s.s = swc1 (store FP single), s.d = sdc1 (store FP double)

FP Data Movement Instructions

Moving data between general purpose and FP registers

♦ mfc1: move from coprocessor 1 (to general purpose register)

Moving data between FP registers

→ mov.d: move double precision float = even/odd pair of registers

Instruction M		Meaning	Format					
mfc1	\$t0, \$f2	(\$t0) = (\$f2)	0x11	0	\$t0	\$f2	0	0
mtc1	\$t0, \$f2	(\$f2) = (\$t0)	0x11	4	\$t0	\$f2	0	0
mov.s	\$f4, \$f2	(\$f4) = (\$f2)	0x11	0	0	\$f2	\$f4	6
mov.d	\$f4, \$f2	(\$f4) = (\$f2)	0x11	1	0	\$f2	\$f4	6

FP Convert Instructions

- Convert instruction: cvt.x.y
 - ♦ Convert to destination format x from source format y

Supported formats

- ♦ Single precision float = .s (single precision float in FP register)
- ♦ Double precision float = .d (double float in even-odd FP register)
- ⇒ Signed integer word = .w (signed integer in FP register)

Instruction	Meaning	Format					
cvt.s.w fd, fs	to single from integer	0x11	0	0	fs ⁵	fd ⁵	0x20
cvt.s.d fd, fs	to single from double	0x11	1	0	fs ⁵	fd ⁵	0x20
cvt.d.w fd, fs	to double from integer	0x11	0	0	fs ⁵	fd ⁵	0x21
cvt.d.s fd, fs	to double from single	0x11	1	0	fs ⁵	fd ⁵	0x21
cvt.w.s fd, fs	to integer from single	0x11	0	0	fs ⁵	fd ⁵	0x24
cvt.w.d fd, fs	to integer from double	0x11	1	0	fs ⁵	fd ⁵	0x24

FP Compare and Branch Instructions

- ❖ FP unit (co-processor 1) has a condition flag
 - ♦ Set to 0 (false) or 1 (true) by any comparison instruction
- Three comparisons: equal, less than, less than or equal
- Two branch instructions based on the condition flag

Instruc	ction	Meaning	Format					
c.eq.s	fs, ft	cflag = ((fs) == (ft))	0x11	0	ft ⁵	fs ⁵	0	0x32
c.eq.d	fs, ft	cflag = ((fs) == (ft))	0x11	1	ft ⁵	fs ⁵	0	0x32
c.lt.s	fs, ft	cflag = ((fs) < (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3c
c.lt.d	fs, ft	cflag = ((fs) < (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3c
c.le.s	fs, ft	cflag = ((fs) <= (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3e
c.le.d	fs, ft	cflag = ((fs) <= (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3e
bc1f	Label	branch if (cflag == 0)	0x11	8	0	im ¹⁶		
bc1t	Label	branch if (cflag == 1)	0x11	8	1	im ¹⁶		

Example 1: Area of a Circle

```
.data
 pi: .double
                        3.1415926535897924
 msg: .asciiz
                        "Circle Area = "
.text
main:
                 # $f2,3 = pi
  ldc1 $f2, pi
  li $v0, 7
                        # read double (radius)
                        # $f0,1 = radius
  syscall
                        # $f12,13 = radius*radius
  mul.d $f12, $f0, $f0
  mul.d $f12, $f2, $f12 # $f12,13 = area
  la $a0, msg
  li $v0, 4
                        # print string (msg)
  syscall
  li $v0, 3
                        # print double (area)
                        # print $f12,13
  syscall
```

Example 2: Matrix Multiplication

```
void mm (int n, double x[n][n], y[n][n], z[n][n]) {
  for (int i=0; i!=n; i=i+1)
    for (int j=0; j!=n; j=j+1) {
      double sum = 0.0;
      for (int k=0; k!=n; k=k+1)
         sum = sum + y[i][k] * z[k][j];
      x[i][j] = sum;
    }
}
```

- ❖ Matrices x, y, and z are n×n double precision float
- ❖ Matrix size is passed in \$a0 = n
- Array addresses are passed in \$a1, \$a2, and \$a3
- What is the MIPS assembly code for the procedure?

Address Calculation for 2D Arrays

- Row-Major Order: 2D arrays are stored as rows
- ❖ Calculate Address of: X[i][j]
 - = Address of $X + (i \times n + j) \times 8$ (8 bytes per element)

- $Address of Y[i][k] = Address of Y + (i \times n + k) \times 8$
- Address of Z[k][j] = Address of Z + (k×n+j)×8

Matrix Multiplication Procedure - 1/3

Initialize Loop Variables

```
mm: addu $t1, $0, $0  # $t1 = i = 0; for 1<sup>st</sup> loop
L1: addu $t2, $0, $0  # $t2 = j = 0; for 2<sup>nd</sup> loop
L2: addu $t3, $0, $0  # $t3 = k = 0; for 3<sup>rd</sup> loop
sub.d $f0, $f0, $f0 # $f0 = sum = 0.0
```

- Calculate address of y[i][k] and load it into \$f2,\$f3
- ❖ Skip i rows (i×n) and add k elements

```
L3: mul $t4, $t1, $a0 # $t4 = i*size(row) = i*n addu $t4, $t4, $t3 # $t4 = i*n + k sll $t4, $t4, 3 # $t4 = (i*n + k)*8 addu $t4, $a2, $t4 # $t4 = address of y[i][k] l.d $f2, 0($t4) # $f2 = y[i][k]
```

Matrix Multiplication Procedure - 2/3

- ❖ Similarly, calculate address and load value of z [k] [j]
- ❖ Skip k rows (k×n) and add j elements

```
mul $t5, $t3, $a0 # $t5 = k*size(row) = k*n
addu $t5, $t5, $t2 # $t5 = k*n + j
sll $t5, $t5, 3 # $t5 = (k*n + j)*8
addu $t5, $a3, $t5 # $t5 = address of z[k][j]
l.d $f4, 0($t5) # $f4 = z[k][j]
```

❖ Now, multiply y[i][k] by z[k][j] and add it to \$f0

```
mul.d $f6, $f2, $f4  # $f6 = y[i][k]*z[k][j]
add.d $f0, $f0, $f6  # $f0 = sum
addiu $t3, $t3, 1  # k = k + 1
bne $t3, $a0, L3  # loop back if (k != n)
```

Matrix Multiplication Procedure - 3/3

❖ Calculate address of x[i][j] and store sum

```
mul $t6, $t1, $a0 # $t6 = i*size(row) = i*n
    addu $t6, $t6, $t2 # $t6 = i*n + j
    $11 $t6, $t6, 3 # $t6 = (i*n + j)*8
    addu $t6, $a1, $t6 # $t6 = address of x[i][j]
    ❖ Repeat outer loops: L2 (for j = ...) and L1 (for i = ...)
    addiu $t2, $t2, 1 # j = j + 1
    bne $t2, $a0, L2 # loop L2 if (j != n)
    addiu $t1, $t1, 1 # i = i + 1
    bne $t1, $a0, L1 # loop L1 if (i != n)
```

* Return:

```
jr $ra # return
```