

电工电子实验报告

课程名称:	电工电子基础实验
实验项目:	<u>传输网络的幅频和相频特性</u>

学院: 自动化学院、人工智能学院

班 级: <u>B210416</u>

学 号: B21080526

姓 名: <u>单家俊</u>

指导教师: _____陈建飞______

学 期: __2022-2023 _____学年第____学期

传输网络的幅频和相频特性

一、实验目的

- 1、 掌握传输网络在输入信号频率不断变化时,网络所 显现的固有特征。
- 2、 了解电路参数对 RLC 串联电路选频特性的影响。
- 3、 使用 Multisim 仿真软件对高通、低通、带通及带阻 电路的传输特性作初步的研究。

二、 主要仪器设备及软件

硬件: 计算机、万用表、信号发生器、示波器、实验箱

软件: Multisim

三、 实验原理(或设计过程)

在电路分析中,电路响应随激励频率而变的特性称为电路的频率特性或频率响应。电路的频率特性用正弦稳态电路的网络函数来描述,定义为响应向量与激励向量之比,即

$$extit{H(j\omega)} = rac{rac{lpha ar{c} \cap ar{d}}{ar{m} ar{m} \cap ar{d}} = | extit{H(j\omega)}| \ e^{j heta(\omega)}$$

由上式可知,网络函数是频率的函数,其中网络函数的模 $H(j\omega)$ 与频率的关系称为幅频特性,网络函数的相角 $\theta(\omega)$ 与频率的关系称为相频特性。幅频特性和相频特性总称电路的频率特性。习惯上常把 $H(j\omega)$ 和 $\theta(\omega)$ 随 ω 变化的情况用曲线来表示,分别称为幅频特性曲线和相频特性曲线。

四、 实验电路图

图 1. RC 电路

图 2. RL 电路

图 3. RLC 电路

图 4. 双 T 电路

五、 实验数据分析和实验结果

实验内容:

- ①使用 Multisim 软件,对电路进行仿真。
- ②调用合适的元器件并选择合适的参数分别画出 4 种电路(RC 电路、RL 电路、RLC 电路、X 电路、X 电路、X 电路、X 电路、X 电路、X 电路、X 电路)。
 - ③测量 RC 电路的半功率点频率、电压比和相位差。
 - ④测量 RL 电路的半功率点频率、电压比和相位差。
 - ⑤测量 RLC 电路的两个半功率点频率、谐振频率、电压比和相位差。
 - ⑥测量双 T 电路的两个半功率点频率、固有频率、电压比和相位差。

RC 电路的幅频特性曲线和相频特性曲线

实验数据表格

	频率/kHz	电压比	相位差/Deg
半功率点	3. 385	0. 707	45. 011

RL 电路的幅频特性曲线和相频特性曲线

实验数据表格

	频率/Hz	电压比	相位差/Deg
半功率点	796. 024	0.707	-45.008

RLC 电路的幅频特性曲线和相频特性曲线

实验数据表格

	频率/kHz	电压比	相位差/Deg
半功率点1	6.447	0.707	45.024
简谐频率	6.729	0.999	-0.701
半功率点 2	7.016	0.707	-045.022

双T电路的幅频特性曲线和相频特性曲线

实验数据表格

> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	频率/Hz	电压比	相位差/Deg
半功率点1	187. 91	0. 707	-45.009
固有频率	794	0	-89.936

半功率点 2	3370	0.707	45.009

实验小结

- 1. 用波特图仪测量幅频特性、相频特性时要注意水平坐标、垂直坐标的坐标类型是线性还是对数,否则将无法得到正确图像。
- 2. 在生成波形图时数据范围选择应合适恰当, 否则生成的波形图不能准确 直观地表示出两个变量的关系, 因此需要多次调试数据范围。

六、 附录

RC 电路

RL 电路

RLC 电路

双T电路

