

ARMY RESEARCH LABORATORY

Performance of Sony's Alloy Based Li-ion Battery

by Donald Foster, Jeff Wolfenstine, Jeffrey Read, and Jan L. Allen

ARL-TN-0319

June 2008

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-TN-0319

June 2008

Performance of Sony's Alloy Based Li-ion Battery

Donald Foster, Jeff Wolfenstine, Jeffrey Read, and Jan L. Allen
Sensors and Electron Devices Directorate, ARL

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)		
June 2008					
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER		
Performance of Sony's Alloy Based Li-ion Battery					
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
Donald Foster, Jeff Wolfenstine, Jeffrey Read, and Jan L. Allen					
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
U.S. Army Research Laboratory ATTN: AMSRD-ARL-SE-DC 2800 Powder Mill Road Adelphi, MD 20783-1197			ARL-TN-0319		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
Cells from the new Nixelion battery from Sony Corporation were tested for capacity, low temperature performance, high power capability, high temperature storage, rapid recharge and cycle life on deep discharge. The Nixelion 14430 size cells were found to perform equal or better to conventional size 14430 cells in all areas tested but cycle life. The cycle life tests showed that the Nixelion cells loose capacity slightly faster than the conventional cell with deep cycling. However, because of the additional capacity provided by the Nixelion battery chemistry, the Nixelion cell still had more capacity than the conventional 14430 cell after 220 cycles.					
15. SUBJECT TERMS					
Li-ion, lithium-alloy anode					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 20	19a. NAME OF RESPONSIBLE PERSON Donald Foster
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U			19b. TELEPHONE NUMBER (Include area code) 301-394-0312

Contents

List of Figures	iv
List of Tables	iv
1. Introduction	1
2. Experimental	2
2.1 Cell Discharge	4
2.2 Discharge Rate Capability.....	5
2.3 Low Temperature Performance.....	7
2.4 High Temperature Storage	8
2.5 Rapid Recharge	9
2.6 Cycle Life	10
3. Conclusion	12
4. References	13
Distribution List	14

List of Figures

Figure 1. Sony handyman camcorder battery.....	2
Figure 2. Sony Nixelion cell.....	2
Figure 3. Maccor battery test station.....	3
Figure 4. Tenney environmental chamber.....	4
Figure 5. Discharge curve for conventional cell and Nixelion cell.....	5
Figure 6. Discharge of Nixelion cell at various rates.....	6
Figure 7. Effect of discharge rate on Nixelion cell cycling.....	6
Figure 8. Effect of temperature on discharge capacity for Nixelion and conventional cell.....	7
Figure 9. Effect of low temperature on discharge curve of Nixelion cells.....	8
Figure 10. Effect of 60 °C storage on capacity and cycling of Nixelion cells.....	9
Figure 11. Effect of charge rate on capacity of Nixelion cells.....	10
Figure 12. Capacity versus cycle number for Nixelion cell and conventional cell.....	11
Figure 13. Evaluation of the Nixelion battery for the Army cycle life requirement.....	11

List of Tables

Table 1. Typical dimensions of a 14430 Nixelion and conventional cell.....	2
--	---

1. Introduction

The replacement of the pure lithium anodes of rechargeable lithium batteries by carbonaceous lithium insertion negative electrodes in lithium-ion batteries has led to considerable advances in both safety and rechargeability (1). Lithium alloys have long been considered as promising negative electrode materials due to their much higher lithium content which provides greater energy density than lithium intercalated carbons. Another possible advantage of lithium alloy negative electrodes is safety due to the generally higher potential of the alloys versus lithium as compared to carbon and the high melting point of most lithium alloys (2).

A major problem with lithium alloys as anodes is the very large change in volume on charge and discharge which leads to stresses that cause the alloy to disintegrate and the anode to lose capacity with cycling. Research has established that some improvement in cycle life may be found by starting with nanostructured metal alloy materials to reduce strain and improve cycle life (3). Although advances have been made by this approach, nagging problems with capacity fade on cycling have until now prevented any commercialization on a rechargeable lithium battery with alloy anode (4).

Sony Corporation of Japan has recently begun marketing a new 14430-size lithium (Li)-ion cell known as “Nexelion¹” for use in four cell battery packs specifically for powering the company’s Handyman camcorder products. Press reports from Sony have claimed for these cells significant advantages over the more conventional Li-ion cells that they replaced (5). These included a 30% increase in capacity (910 mAh versus 710 mAh), 20% increase in volumetric energy density (478 Wh/l versus 395 Wh/l) and 10% increase in weight energy density.

In order to determine the new chemistry of the Nexelion cells, the cells were cut open for analysis. The details of the analysis are the subject of an earlier report (6). The results showed that the Nexelion anode consists of an equal by weight mixture of graphite and an amorphous alloy phase consisting mainly of a 1:1 alloy of tin and cobalt. The particle size was found to be less than 1 μm . The Nexelion cathode was found to be a two phase mixture. The majority phase was Li_xCoO_2 and the other phase was $\text{Li}(\text{Co}_y\text{Ni}_{1.7x}\text{Nn}_x)\text{O}_2$. The particle size of both phases is in the micron range with many particles of the range between 10 and 20 μm . The conventional cell chemistry has a carbon anode and a Li_xCoO_2 based cathode (6).

The marketing of an alloy anode Li-ion cell by Sony could be a historic milestone in the history of battery development. This study will detail the performance characteristics of these cells in the areas of rate capability, capacity, quick charge capability, and high temperature storage.

¹Nexelion is a registered trademark of Sony Corporation.

2. Experimental

The Sony handyman camcorder pack is shown in figure 1. The plastic casing of the battery pack was cut open to reveal the cylindrical 14430 Nexelion cells. Figure 2 shows one of the Nexelion cells. The dimensions of the cells is shown in table 1. Similarly, the Nexelion camcorder pack previously used to power the camcorder pack, featuring the conventional LiC₆ anode and Li_xCoO₂ cathode battery chemistry were purchased and used as a control on some tests in order to evaluate the Nexelion technology.

Figure 1. Sony handyman camcorder battery.

Figure 2. Sony Nexelion cell.

Table 1. Typical dimensions of a 14430 Nexelion and conventional cell.

Cell Chemistry	Height (mm)	Diameter (mm)	Weight (g)
Nexelion	43	14	20
conventional	43	14	18

The cells were tested on a MAACOR Series 4000 battery test system. A picture of the MAACOR tester is shown in figure 3. The storage testing and low temperature battery testing was done in a Tenney Jr. controlled temperature chamber. The Tenney Jr. temperature chamber is shown in figure 4.

Figure 3. Maccor battery test station.

Figure 4. Tenney environmental chamber.

2.1 Cell Discharge

Figure 5 shows the discharge of a Nixelion battery compared to the conventional 14430 camcorder cell. The discharge rate is C/6 as this is the rate required to power the camcorder. The figure shows that the Sony claim of 30% increased capacity for Nixelion is accurate with the capacity here increasing from 0.65 Ah to 0.92 Ah. The energy density for Nixelion showed a similar improvement over the conventional 14430 cell.

Nexelion and Conventional Cell at C/6

Figure 5. Discharge curve for conventional cell and Nexelion cell.

2.2 Discharge Rate Capability

In order to determine the performance characteristics at higher power drain, the Nexelion battery was discharged at rates varying from C/6 to 2C. Figure 6 shows the results. It can be seen that even the highest rate of discharge tested, 2C, the Nexelion cell has more capacity 0.8 Ah than the conventional cell 14430 tested in figure 1 at the low C/6 rate. This is an excellent result for a cell designed for a low power device, the Handyman Camcorder. The cell was also tested for ability to recharge at higher rates.

Figure 6. Discharge of Nexelion cell at various rates.

Figure 7 shows the discharge capacity for 5 charge discharge cycles at discharge rates up to 4C. The cells cycled well at all rates tested. In fact the capacity improves slightly with cycle number for the highest rate tested probably due to the cell heating from the very high 4C current discharge.

Figure 7. Effect of discharge rate on Nexelion cell cycling.

2.3 Low Temperature Performance

Figure 8 shows the low temperature performance of the Nixelion battery at low temperature. The Nixelion battery has some useful capacity -40°C at the C/6 rate and is superior to the conventional cell at temperature down to -30°C . Considering that the low temperature performance can probably be improved through electrolyte selection and cell design, these results suggest that Army low temperature requirements could be met by the new Nixelion battery chemistry.

Figure 8. Effect of temperature on discharge capacity for Nixelion and conventional cell.

Figure 9 shows the shape of the discharge curves for all temperatures tested in the low temperature performance study.

Figure 9. Effect of low temperature on discharge curve of Nexelion cells.

2.4 High Temperature Storage

The high temperature storage characteristics were demonstrated by storing the cells at 60 °C and then cycling the cells at C/6, C/2, C, and 2C. The results shown in figure 10 indicate that even after 3 weeks storage at 60 °C, the Nexelion cell when discharged at C/6 has more capacity than the control cell that was discharged fresh without high temperature storage. This test also shows that the high temperature charge does not prevent the cell from being recharged.

Figure 10. Effect of 60 °C storage on capacity and cycling of Nexelion cells.

2.5 Rapid Recharge

For many applications, to be able to recharge the cell quickly is a very important benefit. However, with carbon electrodes, rapid recharge frequently results in plating of dendritic lithium on the anode surface which can eventually result in cell shorting internally and an unsafe condition, especially if the cell becomes too hot and the lithium melts. Figure 11 shows the results for recharge rates as high as 4C. The cell does not lose capacity over the large variation of charge rates from C/6 to 4C.

Discharge C/6, Charge at Various Rates C, 2C, 3C 4C

Figure II. Effect of charge rate on capacity of Nexelion cells.

2.6 Cycle Life

The cycle life has long been known to be the main problem with alloy anode cells. Figure 12 shows the capacity versus cycle number curve for the Nexelion cell and for the control cell. Capacity of the Nexelion cell falls with cycling faster than the carbon anode control cell, but because the Nexelion cell has a high initial capacity, the capacity of the Nexelion cell remains higher than the control throughout the test which was 200 cycles. The Army requirement for rechargeable batteries is no more than 10% capacity loss over 220 cycles.

Figure 12. Capacity versus cycle number for Nixelion cell and conventional cell.

Figure 13 shows that the Nixelion cell does not meet this requirement, crossing the 10% capacity loss marker after 100 cycles.

Figure 13. Evaluation of the Nixelion battery for the Army cycle life requirement.

3. Conclusion

The Sony NEXELION battery which uses a negative electrode based on a composite of amorphous phase of a tin and cobalt alloy with carbon has shown remarkably good performance in all areas of our test. Sony's claims of 30% improved capacity, 20% improved volumetric energy density, and 10% increased weight energy density were shown to be true. Our results have also shown that the cell has good storage characteristics at 60 °C, comparable low temperature performance to –30 °C to the conventional cell, and can withstand rapid charge and discharge at up to 4C rate for at least 5 cycles. Although we did not investigate high rate performance over many cycles, the 14430 cell is designed for the low power camcorder device. Therefore, further improvements in rate could be achieved with a high power cell design with this cell chemistry.

The NEXELION cycle life does not meet the Army mil Spec of less than 10% capacity loss after 220 charge-discharge cycles. However, because the NEXELION has higher capacity initially than the conventional cell, the NEXELION is able to complete the 220 cycles with more capacity than the initial capacity of the conventional cell. For this reason the NEXELION could be considered for Army applications requiring long cycle life.

4. References

1. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Nov'ak, P. *Adv. Mater.* **1998**, *10*, 725.
2. Huggins, R. A. *Solid State Ionics* **1998**, *57*, 113–115.
3. Wolfenstine, J.; Sakamoto, J.; Huang, C.-K. *J. Power Sources* **1998**, *75*, 181.
4. Courtney, I. A.; McKinnon, W. R.; Dahn, J. R. *J. Electrochem. Soc.* **1999**, *146*, 59.
5. <http://www.bytecamera.com/content/view/372/2>
6. Wolfenstine, J.; Allen, J. L.; Read, J.; Foster, D. *Chemistry and Structure of Sony's NEXELION Li-ion Electrode Materials*; ARL-TN-0257; U.S. Army Research Laboratory: Adelphi, MD, 2006.

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1 ELEC	ADMNSTR DEFNS TECHL INFO CTR ATTN DTIC OCP 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	1	US ARMY NATICK RDEC ACTING TECHL DIR ATTN SBCN TP P BRANDLER KANSAS STREET BLDG 78 NATICK MA 01760-5056
1	DARPA ATTN IXO S WELBY 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	1	COMMANDER US ARMY RDECOM ATTN AMSRD AMR W C MCCORKLE 5400 FOWLER RD REDSTONE ARSENAL AL 35898-5000
1 CD	OFC OF THE SECY OF DEFNS ATTN ODDRE (R&AT) THE PENTAGON WASHINGTON DC 20301-3080	1	US ARMY RSRCH LAB ATTN AMSRD ARL CI OK TP TECHL LIB T LANDFRIED BLDG 4600 ABERDEEN PROVING GROUND MD 21005-5066
1	US ARMY TRADOC BATTLE LAB INTEGRATION & TECHL DIRCRT ATTN ATCD B 10 WHISTLER LANE FT MONROE VA 23651-5850	1	NAV RSRCH LAB ATTN CODE 2627 WASHINGTON DC 20375-5000
1	CECOM NVESD ATTN AMSEL RD NV D FT BELVOIR VA 22060-5806	1	USAFA ROME LAB TECH ATTN CORRIDOR W STE 262 RL SUL 26 ELECTR PKWY BLDG 106 GRIFFISS AFB NY 13441-4514
1	COMMANDER CERDEC ATTN AMSEL IM BM I L R TECHL LIB FT MONMOUTH NJ 07703-5703	29	US ARMY RSRCH LAB ATTN AMSRD ARL CI OK T TECHL PUB ATTN AMSRD ARL CI OK TL TECHL LIB ATTN AMSRD ARL SE DC D FOSTER (10 COPIES) ATTN AMSRD ARL SE DC S GILMAN ATTN AMSRD ARL SE DE C LINDGREN ATTN AMSRD ARL SE DE J ALLEN (5 COPIES) ATTN AMSRD ARL SE DE J READ ATTN AMSRD ARL SE DE J WOLFENSTINE (5 COPIES) ATTN AMSRD ARL SE DE R JOW ATTN AMSRD ARL SE DE S BAYNE ATTN AMSRD ARL SE DP J HOPKINS ATTN IMNE ALC IMS MAIL & RECORDS MGMT
1	COMMANDER US ARMY CECOM RDEC ATTN AMSRD CER C2 AP BA E PLICHTA FT MONMOUTH NJ 07703-5703		
3	US ARMY CERDEC ATTN AMSEL RD C2 AP ATTN AMSEL RD C2 AP BA G AU ATTN AMSRD CER C2 AP BA T ATWATER FT MONMOUTH NJ 07703		
1	US ARMY INFO SYS ENGRG CMND ATTN AMSEL IE TD F JENIA FT HUACHUCA AZ 85613-5300		

TOTAL: 45 (1 ELECT, 43 HC, 1 CD)