סיבוכיות- תרגול 4

. אם R לא ניתן לרדוקציה עצמית. $S_R \in P$. אם יחס כך ש- $S_R \in P$. אזי

הוכחה: נראה כי אם R ניתן לרדוקציה עצמית אזי P. נניח ש-R ניתן לרדוקציה עצמית. כלומר, קיים $S_R \in S_R$. נניח ש-R ניתן לרדוקציה עצמית. כלומר, קיים אלגוריתם פולינומי A שפותר את בעית החיפוש R בעזרת שימוש בקופסה שחורה המכריעה את בעית החיפוש R ללא R, ולכן קיים אלגוריתם פולינומי R המכריע את R, ובכל קריאה לקופסה השחורה עבור שאלה מהצורה " $R \in S_R$, יפעל בדיוק כמו R, ובכל קריאה לקופסה השחורה עבור שאלה מהצורה $R \in S_R$, וישתמש בתשובה שלו. $R \in PF$ אלגוריתם פולינומי הפותר את R ולכן $R \in R$.

<u>דוגמא ליחס קונקרטי שלא ניתן לרדוקציה עצמית:</u>

נגדיר את היחס $\{N,Q\}$ מחלק לא טריוויאלי של $N = \{(N,Q) \mid N \mid N \}$, כי בהנתן זוג $\{N,Q\}$ ניתן לבדוק בזמן פולינומי אם $\{N,Q\}$ מריע אם $\{N,Q\}$ כי קיים אלגוריתם פולינומי שבהנתן מספר טבעי $\{N,Q\}$, מכריע אם $\{N,Q\}$ אבל משערים כי $\{N,Q\}$, ולכן $\{N,Q\}$ לא ניתן לרדוקציה עצמית.

. המקיימים V אם קיימים פולינום $p(\cdot)$ ואלגוריתם פולינומי $S \in NP$ אם קיימים פולינום

$$V(x,y) = 1$$
- כך ש- $|y| \le p(|x|), y$ קיים $x \in S$

 $.\bar{S} \in NP$ אם $S \in coNP$. תזכורת

: אם קיימים V אם פולינום אלגוריתם פולינום אם $S \in coNP$ המקיימים אגדרה שקולה:

$$V(x,y) = 1, |y| \le p(|x|), y$$
 לכל $\Leftrightarrow x \in S$

לא פורמליי: המחלקה NP מכילה בעיות שעבור קלטים בשפה קיימת הוכחה קצרה, ו-coNP מכילה בעיות שעבור קלטים בשפה אין הפרכה קצרה.

<u>דוגמאות:</u>

- .VC = $\{(G,k)\mid k\geq S$ כיסוי קודקודים בגודל פיסוי קודקודים בגודל אם .VC $\{(G,k)\mid k\geq S$ כיסוי ממודא מקבל זוג בא ותת-קבוצה של קודקודים ומחזיר 1 אם ורק אם $|S|\leq S$ כיסוי $|S|\leq S$ המוודא מקבל זוג ב-G.
- . $\overline{
 m VC}$ = $\{(G,k)\mid k<$ בגודל ב-G בגודל ביסוי קודקודים ב-S ביסוי קודקודים ב-S ומחזיר 1 אם ורק אם ביסוי S או S לא כיסוי S ותת-קבוצה של קודקודים ב-S ומחזיר 1 המוודא מקבל זוג

שאלה: לאיזו מחלקה שייכת הבעיה הבאה:

.MIN-VC = $\{(G, k) \mid k$ כיסוי הקודקודים המינימלי ב-G בגודל

: מקיימים V בעית הכרעה. נאמר כי $S \in \Sigma_2$ אם קיים פולינום $p(\cdot)$ ואלגוריתם פולינומי

$$V(x,y_1,y_2)=1$$
 מתקיים $|y_2|\leq p(|x|)$, כך שלכל $|y_1|\leq p(|x|)$ מתקיים $y_1\leq p(|x|)$

.MIN-VC ∈ Σ_2 :טענה

באופן הבא: V באופן הבא:

מקבל כקלט זוג S' ומחזיר 1 אם ורק אם S, ותת-קבוצה של קודקודים S' ומחזיר 1 אם ורק אם V מתקיים:

- |S| = k .1
- G-ביסוי קודקודים ב-S .2
- G-או S' או $S' \geq k$.3

ים: ומתקיים: פולינומי בזמן פולינומי הבדיקות מתבצעות כל ומתקיים: |S'|ו-|S|

$$V((G,k),S,S')=1$$
 מתקיים $S'\subseteq V(G)$ כך שלכל $S\subseteq V(G)$ מתקיים $S\subseteq V(G)$

: אם אוימים פולינומי און המקיימים פולינום או או קיימים פולינומי או או המקיימים פולינומי או או אוריתם פולינומי או המקיימים: $\Gamma_2=co\Sigma_2$

$$V(x,y_1,y_2)=1$$
- כך ש $|y_2|\leq p(|x|)$, קיים $|y_2|\leq p(|x|)$ כך ש $|y_2|\leq p(|x|)$

 Π_2 -ויכת ל-בעיה הבאה שייכת ל-

.MIN-CNF = $\{\phi \mid \phi$ השקולה ל-CNF, ולא קיימת נוסחה קצרה יותר בצורת CNF, ולא קיימת נוסחה לוחה ל-CNF, ולא קיימת נוסחה לא בצורת

באופן הבא: V באופן הבא:

מקבל כקלט נוסחה ϕ' , נוסחה ϕ' והשמת אמת v ומחזיר 1 אם ורק אם מתקיים: V

- .CNF בצורת ϕ .1
- $\phi(v) \neq \phi'(v)$ אזי CNF ובצורת | ϕ' | ϕ' | אזי | ϕ'

:פולינומי ומתקיים, כל הבדיקות מתבצעות פולינומי ומתקיים, און פולינומי ו $|\phi'|$

 $V(\phi,\phi',v)=1$ - לכל ϕ קיים ϕ לכל $\phi\in \mathsf{MIN-CNF}$