Validating overbuilding of shopping centers in Shanghai and identifying which with investment potential

01 Data summary analysis

Background

Shopping centers area per capital in Shanghai is 3 times of the U.S.

This year the number of shopping centers opened or to be opened in Shanghai will be as high as 419. For 2020, The area of shopping centers per person is 0.97 sqm. Both count and area of malls are dramatically increasing since 2009. Considering the consumption capabilities, the supply area of shopping centers in Shanghai is almost 3 times of that in the United States. Overbuilt may cause severe energy waste and disturb the social economics.

Goals and values

From the perspective of researchers, government and investors

Validate if overbuilding exists

 A tool to identify surplus malls with investment potential

Researchers: Fill a research gap

Government: Land use planning and market interfering

Investors: Acquire commercial assets with lower price

Data

Multivariate data resources are involved to build the model

Categories	Data Sources	Columns	Туре		
		road	geometry		
		parks	geometry		
Urban environment	Purchased from third party	subway_station	geometry		
		POIs	geometry		
		building_outlines	geometry		

Data
Multivariate data resources are involved to build the model

Categories		Columns	Туре			
		building_area	float			
Channing contars	Wrangled from Yingshang.com	rentable_area	float			
Shopping centers		built_year	integer			
	Baidu Map API	coordinate	geometry			
		population	integer			
Socioeconomics	Chinese socioeconomical year book of 2020	disposable_income	integer			
	500 K G / 2020	consumption expense	integer			
Social Media	Dianping.com	customer_gradings	integer			

Data exploration

Use gravity model to analyze the customer coverage rates of each mall

Gravity model: a spatial model calculating the potential number of customers in each neighborhood

Gravity model results

	1	10	100	101	102	104	105	106	107	108	 93	94	95	96	97
0	0.001741	0.000152	0.000580	0.001578	0.004740	0.003061	0.000196	0.001601	0.015114	0.006493	 0.000623	0.005329	0.003351	0.002660	0.002303
1	0.001761	0.000157	0.000597	0.001542	0.004887	0.003114	0.000203	0.001729	0.010063	0.006131	 0.000623	0.005482	0.003378	0.002697	0.002285
2	0.001002	0.000065	0.000298	0.002049	0.002515	0.001983	0.000095	0.000426	0.000705	0.029481	 0.000518	0.002707	0.002420	0.001757	0.002317
3	0.001527	0.000129	0.000496	0.001464	0.004037	0.002662	0.000166	0.001272	0.026363	0.006388	 0.000557	0.004555	0.002957	0.002327	0.002085
4	0.001128	0.000089	0.000367	0.001402	0.003102	0.002153	0.000125	0.000774	0.015585	0.007256	 0.000483	0.003354	0.002479	0.001908	0.001869
5	0.001081	0.000068	0.000315	0.003505	0.002893	0.002159	0.000113	0.000421	0.000518	0.055122	 0.000727	0.002863	0.003234	0.002280	0.002715
6	0.000562	0.000046	0.000192	0.000641	0.001636	0.001085	0.000067	0.000448	0.202322	0.002845	 0.000237	0.001756	0.001244	0.000972	0.000874
7	0.000541	0.000039	0.000173	0.000755	0.001462	0.001055	0.000057	0.000314	0.001833	0.004872	 0.000241	0.001579	0.001206	0.000913	0.000997
8	0.001935	0.000135	0.000574	0.002055	0.004850	0.003710	0.000179	0.000922	0.001823	0.022705	 0.000773	0.005226	0.003800	0.002817	0.004014
9	0.001616	0.000146	0.000554	0.001371	0.004534	0.002858	0.000189	0.001669	0.004567	0.005319	 0.000564	0.005094	0.003076	0.002467	0.002057

Note: Columns represents each neighborhood, row index is the ID of each shopping center

Data exploration

Use supply & demand model to find out surplus shopping malls

Supply & demand estimation model:

- N = count of customers in market area
- I = average consumption expense
- R = market penetration rate

- A = rentable area
- S= minimum sales income per sqm to pay off the building and operation fees within 40 years mortgage(assuming 10,000 RMB/sqm/year)

Surplus malls accounts for 15% area

Low graded and median-scale malls are identified

Data exploration

Surplus malls locate at suburban neighborhoods where consumption capacity is small

Open question

Model improvement and result validation

- Gravity model improvement
 Straight line distance VS Driving distance
- Model validation Significancy test

Next steps

Identify shopping centers with investment value

- Entropy weight method Quantify location value
- Regression model
 Identify outliers with high location value but low customer grades

