A Bayesian Parametric Approach to Handle Missing Longitudinal Outcome Data in Trial-Based Health Economic Evaluations

Andrea Gabrio, ¹ Michael J. Daniels ² and Gianluca Baio ¹

Department of Statistical Science, University College London (UCL), Department of Biostatistics, University of Florida (UF)

ucakgab@.ucl.ac.uk

http://www.ucl.ac.uk/statistics/research/statistics-health-economics/

5th International Clinical Trials Methodology Conference, PS1C - O4

Brighton, 07 October 2019

"Standard" Statistical modelling

Individual level data

		Demographics			HRQL data			Resource use data			Clinical outcome					
ID	Trt	Sex	Age		<i>u</i> ₀	u_1		uj	c ₀	c ₁		cj	<i>y</i> ₀	<i>y</i> 1		УЈ
1	1	М	23		0.32	0.66		0.44	103	241		80	<i>y</i> 10	<i>y</i> 11		<i>Y</i> 1. <i>J</i>
2	1	М	21		0.12	0.16		0.38	1 204	1808		877	<i>y</i> 20	<i>y</i> 21		<i>Y</i> 2 <i>J</i>
3	2	F	19		0.49	0.55		0.88	16	12		22	<i>y</i> 30	<i>y</i> 31		<i>y</i> 3. <i>J</i>

Compute individual QALYs and total costs as

$$e_i = \sum_{i=1}^J \left(u_{ij} + u_{ij-1}\right) rac{\delta_j}{2}$$
 and $c_i = \sum_{i=1}^J c_{ij},$ $\left[ext{with: } \delta_j = rac{ ext{Time}_j - ext{Time}_{j-1}}{ ext{Unit of time}}
ight]$

		Demographics			HRQL data			Resource use data			Clinical outcome					
ID	Trt	Sex	Age		<i>u</i> ₀	u_1		u_J	c ₀	c_1		сј	<i>y</i> ₀	<i>y</i> 1		Ул
1	1	М	23		0.32	0.66		0.44	103	241		80	<i>y</i> 10	<i>y</i> ₁₁		<i>Y</i> 1 <i>J</i>
2	1	M	21		0.12	0.16		0.38	1 204	1 808		877	<i>y</i> 20	<i>y</i> 21		<i>Y</i> 2. <i>J</i>
3	2	F	19		0.49	0.55		0.88	16	12		22	<i>y</i> 30	<i>y</i> ₃₁		<i>y</i> 3. <i>J</i>

Compute individual QALYs and total costs as

$$e_i = \sum_{i=1}^J \left(u_{ij} + u_{ij-1}\right) rac{\delta_j}{2}$$
 and $c_i = \sum_{i=1}^J c_{ij},$ $\left[\text{with: } \delta_j = rac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}
ight]$

(Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$e_i = \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\text{Trt}_i + \varepsilon_{ei} [+ \dots], \qquad \varepsilon_{ei} \sim \text{Normal}(0, \sigma_e)$$
 $c_i = \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\text{Trt}_i + \varepsilon_{ci} [+ \dots], \qquad \varepsilon_{ci} \sim \text{Normal}(0, \sigma_c)$

Estimate mean differentials and use bootstrap to quantify uncertainty

- Potential correlation between costs & utilities
 - Ignoring a strong correlation may inflate variability in the estimates
- Asymmetric empirical distributions
 - Costs are defined on $[0, +\infty)$ and utilities are typically bounded in [0, 1]
 - Spikes at one for utilities and at zero for costs may occur
- ... and of course missing data
 - Missingness may occur in either or both utilities/costs
 - Modelling (e_i, c_i) is inefficient as partially-observed (u_{ij}, c_{ij}) are ignored
 - Inference often based on the observed data alone Missing At Random untestable
 - Plausible Missing Not At Random departures should be explored in sensitivity analysis

A Bayesian longitudinal missing data model

• Key features:

- Jointly model $y_{ij} = (u_{ij}, c_{ij})$ to account for correlation
- Use parametric distributions to deal with skewness (e.g. Beta and LogNormal) with an hurdle approach to handle spikes at one and zero
- Use all data in each missingness pattern $\mathbf{r}_{ij} = (r_{ii}^u, r_{ii}^c)$ to fit the model

A Bayesian longitudinal missing data model

• Key features:

- Jointly model $y_{ii} = (u_{ii}, c_{ii})$ to account for correlation
- Use parametric distributions to deal with skewness (e.g. Beta and LogNormal) with an hurdle approach to handle spikes at one and zero
- Use all data in each missingness pattern $\mathbf{r}_{ij} = (r_{ii}^u, r_{ii}^c)$ to fit the model
- Conduct sensitivity analysis to MNAR using a pattern mixture model for p(y, r):
 - Integrate out $\mathbf{y}^{\mathbf{r}}_{mis}$ from $p(\mathbf{y}, \mathbf{r})$ to estimate $\mathbf{E}[\mathbf{y}^{\mathbf{r}}_{obs} | \mathbf{r}]$
 - Use sensitivity parameters to identify $\mathsf{E}[\mathbf{y^r}_{mis} \mid \mathbf{y^r}_{obs}, \mathbf{r}] = \mathsf{E}[\mathbf{y^r}_{obs} \mid \mathbf{r}] + \Delta$
 - Assess the robustness of the results to plausible MNAR assumptions using different informative priors on $\Delta = (\Delta^u, \Delta^c)$

A Bayesian longitudinal missing data model

• Key features:

- Jointly model $y_{ii} = (u_{ii}, c_{ii})$ to account for correlation
- Use parametric distributions to deal with skewness (e.g. Beta and LogNormal) with an hurdle approach to handle spikes at one and zero
- Use all data in each missingness pattern $\mathbf{r}_{ij} = (r_{ii}^u, r_{ii}^c)$ to fit the model
- Conduct sensitivity analysis to MNAR using a pattern mixture model for p(y, r):
 - Integrate out $\mathbf{y}^{\mathbf{r}}_{mis}$ from $p(\mathbf{y}, \mathbf{r})$ to estimate $\mathbf{E}[\mathbf{y}^{\mathbf{r}}_{obs} | \mathbf{r}]$
 - Use sensitivity parameters to identify $E[\mathbf{y}^{\mathbf{r}}_{mis} | \mathbf{y}^{\mathbf{r}}_{obs}, \mathbf{r}] = E[\mathbf{y}^{\mathbf{r}}_{obs} | \mathbf{r}] + \Delta$
 - Assess the robustness of the results to plausible MNAR assumptions using different informative priors on $\Delta = (\Delta^u, \Delta^c)$
- Focus in decision-making, not inference Bayesian approach particularly suited
 - Uncertainty about unobserved quantities is fully characterised using MCMC
 - Priors can be used to incorporate external evidence

The PBS study

Hassiotis et al., Br J Psychiatry 2018; 212(3)

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to the control for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed

Time	Contro	I(t=1)	Intervention $(t=2)$				
	observ	red (%)	observed (%)				
	utilities	costs	utilities	costs			
Baseline $(j=0)$	127 (93%)	136 (100%)	103 (95%)	108 (100%)			
6 months $(j=1)$	119 (86%)	128 (94%)	102 (94%)	103 (95%)			
12 months $(j=2)$	125 (92%)	130 (96%)	103 (95%) 104 (96%)				
complete cases	108	(79%)	96 (89%)				

The PBS study

utility distributions

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to the control for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed

The PBS study

cost distributions

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to the control for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed
 Control

• Fit the model to the completers and the set of all other patterns separately for t=1,2

Capture correlation between variables through a series of conditional distributions

- $p(c_{ij} \mid c_{ij-1}, u_{ij-1})$ and $p(u_{ij} \mid c_{ij}, u_{ij-1})$ using regressions on the log and logit scale
- ullet Account for skewness using **Beta** distributions for u_{ij} and **LogNormal** distributions for c_{ij}
- Allow for ones in u_{ij} and zeros in c_{ij} using a hurdle form, i.e. modelling the indicators $d^u_{ij} := \mathbb{I}(u_{ij} = 1)$ and $d^c_{ij} := \mathbb{I}(c_{ij} = 0)$ using logistic regressions

Model structure

Gabrio et al. (2019). https://arxiv.org/abs/1805.07147

• At j = 0

Model structure

Gabrio et al. (2019). https://arxiv.org/abs/1805.07147

• At j = 0

• At i = 0

Model structure

Gabrio et al. (2019). https://arxiv.org/abs/1805.07147

• At i = 0

- Use Monte Carlo integration to derive $E[y^r_{obs} | r]$
- ullet Add sensitivity parameters to identify $\mathsf{E}[\mathbf{y^r}_{mis} \mid \mathbf{r}] = \mathsf{E}[\mathbf{y^r}_{obs} \mid \mathbf{r}] + oldsymbol{\Delta}_j$
- ullet Compute weighted averages over $m{r}$ to obtain the mean estimates $m{\mu}_{jt}=(\mu^u_{jt},\mu^c_{jt})$
- ullet Set $oldsymbol{\Delta}_i = oldsymbol{0}$ as benchmark assumption ($pprox \mathsf{MAR}$)
- Specify three MNAR priors on $\Delta_j = (\Delta_j^u, \Delta_j^c)$, calibrated on the variability in the observed data at each time j

Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- $oldsymbol{\Delta}^{\text{flat}}$: Flat between 0 and twice the observed standard deviation

- Priors on sensitivity parameters
 - Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
 - $oldsymbol{\Delta}$ Skewed towards values closer to 0 on the same range as $oldsymbol{\Delta}^{\mathsf{flat}}$

- - Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
 - $oldsymbol{\Delta}^{\mathsf{skew1}}$: Skewed towards values far from 0 on the same range as $oldsymbol{\Delta}^{\mathsf{flat}}$

Utilities

Costs (£)

Discussion

Bayesian approach for missing data in HEE

- Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model
 - Uses a modular structure to account for data complexities in a relatively easy way
 - Exploit all available evidence using a longitudinal approach
- Extension of standard "imputation methods"
 - Performs the estimation and imputation tasks simultaneously
 - Fitting joint models for missing data straightforward with MCMC
 - Can be implemented in standard software (e.g. OpenBUGS or JAGS)
- Principled incorporation of external evidence through priors
 - Crucial for conducting sensitivity analysis to MNAR
 - Useful in small/pilot trials where there is limited evidence

