Quiz, 10 questions

Congratulations! You passed!

Next Item

1/1 point

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\bigcirc \quad x^{< i > (j)}$
- $igg(x^{(j) < i >} igg)$
- $\bigcirc \quad x^{< j > (i)}$

1/1 point

2.

Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x = T_y$$

Correc

It is appropriate when every input should be matched to an output.

- $igcap T_x < T_y$
- $T_x > T_y$
- $T_x = 1$

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply). Quiz, 10 questions	
Speech recognition (input an audio clip and output a transcript)	
Un-selected is correct	
Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)	
Correct!	
Image classification (input an image and output a label)	
Un-selected is correct	
Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)	
Correct Correct!	
1/1 point	
4. You are training this RNN language model.	
At the t^{th} time step, what is the RNN doing? Choose the best answer.	
$igcap ext{Estimating } P(y^{<1>}, y^{<2>}, \dots, y^{< t-1>})$	
$igcup$ Estimating $P(y^{< t>})$	
Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$	
Correct Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.	
Consisting $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$	

You Rechisted training and age work RNN and are using it to sample random sentences, as follows: Quiz, 10 questions							
Wh	at are you doing at each time step t ?						
	(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.						
	(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.						
	his should not be selected The ground-truth word from the training set is not the input to the next time-step.						
	(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.						
	(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.						
~	1/1 point						
	are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of se is the most likely cause of this problem?						
	Vanishing gradient problem.						
	Exploding gradient problem.						
c	orrect						
	ReLU activation function g(.) used to compute g(z), where z is too large.						
	Sigmoid activation function g(.) used to compute g(z), where z is too large.						
×	0/1 point						
	pose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $^>$. What is the dimension of Γ_u at each time step?						
) 1						
	100						
	300						
	10000						

ThRecultrents Networks

(

No, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM. Quiz, 10 questions

_	s
	ı
	٦

1/1 point

8.

Here're the update equations for the GRU.

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1/1 point

9

Here are the equations for the GRU and the LSTM:

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 Γ_u and $1-\Gamma_u$

Correct

Yes, correct!

- \bigcap Γ_u and Γ_r
- $1-\Gamma_u$ and Γ_u
- $igcap \Gamma_r$ and Γ_u

10. Quiz, 10 questions

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

	Bidirectional RNN,	, because this allows the	prediction of mood	l on day t to take into acc	ount more information.
--	--------------------	---------------------------	--------------------	-----------------------------	------------------------

Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

	_			
Unidirectional RNN, because the value of $y^{< t}$	$^>$ depends only on $x^{<10}$	\rightarrow r $< t >$	but not on $r^{< t+1>}$	r<365>
ornan ectional Kiviv, because the value of g	ucpchas only on u	$,\ldots,\omega$, but not on w	$, \dots, \omega$

Correct

Yes!

S P