ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Endüstri Mühendisliği Bölümü

Kalite İndeksleri Kalite-Verimlilik İlişkisi

Prof. Dr. Ezgi A. Demirtaş

Verilerin Analizi – Kalite İndeksleri

- İşçilik İndeksi
 - * TKM / İşçilik Saati (Maliyeti)
- Maliyet İndeksi
 - * TKM / Atölye Üretim Maliyeti
 - * TKM / Toplam Üretim Maliyeti
- Satışlar İndeksi
 - * TKM / Net Satışlar
- Üretim İndeksi
 - * TKM / Üretilen Birimler

Kalite İndeksleri

- İşçilik İndeksi:
 - Kolay hesaplanabilir,
 - Kolay anlaşılabilir,
 - Teknolojik gelişmelerin işçilik kullanımını azaltması durumunda uzun dönem karşılaştırmalı analizlerde etkin değildir.

Kalite İndeksleri

Maliyet İndeksi:

- Muhasebe kayıtlarından kolay hesaplanır,
- Teknolojik gelişmelerden etkilenmez.

Satışlar İndeksi:

- Kolay hesaplanır,
- Satış fiyatında ve maliyetlerdeki değişikliklerden etkilenir.

Üretim İndeksi:

- Kolay hesaplanır,
- Ürün çeşitleri fazla ise etkin değildir.

Kalite İndeks Örneği

	2005	2006	2007	2008
Kalite maliyetleri				
Önleme	27.000	41.500	74.600	112.300
Ölç-Değerlendirme	155.000	122.500	113.400	107.000
İçsel Bşz	386.400	469.200	347.800	219.100
Dışsal Bşz	242.000	196.000	103.500	106.000
Toplam	810.400	829.200	639.300	544.400
Muhasebe kayıtları				
Satışlar	4.360.000	4.450.000	5.050.000	5.190.000
Üretim maliyetleri	1.760.000	1.810.000	1.880.000	1.890.000

Kalite İndeksi

Toplam Kalite Maliyeti * 100 / i. dönem satışlar 810.400 * 100 / 4.360.000 = 18,58

Yıl	Satışlar	Maliyet
2005	18,58	46,04
2006	18,63	45,18
2007	12,66	34,00
2008	10,49	28,80

TKM'nin Değişimi

TKM'nin Bileşenler Temelinde Dağılımı

TKM Bileşenlerinin Göreli Dağılımı

Kalite ve Verimlilik

Verimlilik = Çıktı / Girdi

Az sayıda kusurlu, çıktıyı arttırır.

• Kalite iyileştirme, girdileri azaltır.

Getiri ve Verimlilik Ölçümü

$$Y = (I)(\%\ddot{U}) + (I)(1-\%\ddot{U})(\%R)$$

Y = Getiri

I = üretilen birimlerin sayısı

% Ü = kusursuz birimlerin yüzdesi

% R = yeniden işlenen kusurlu birimlerin yüzdesi

Ürün Getiri Örneği"

Günde 100 motor üretilsin.

Motorların 80%'i kusursuz

Düşük kalitedeki birimlerin 50%'si yeniden işlenebilmektedir.

$$Y = (I)(\%\ddot{U}) + (I)(1-\%\ddot{U})(\%R)$$

Y = 100 (0.80) + 100 (1 - 0.80) (0.50) = 90 motor

Ürün Maliyeti

$$=\frac{(\mathbf{K}^{\mathrm{d}})(I)+(\mathbf{K}^{\mathrm{r}})(\mathbf{K})}{Y}$$

Kd= Direk üretim maliyeti

Kr= Birim başına yeniden işlem maliyeti

I= Girdi

R= Yeniden işlenen birim sayısı

Y= Çıktı

Ürün Maliyet Örneği

Direk üretim maliyeti = \$30 Yeniden işleme maliyeti = \$12 Üretilen motor sayısı = 100 Kusurlu motor yüzdesi = %20 Kusurlu motorların 50%'si yeniden işlenebiliyor

Ürün maliyeti =
$$\frac{(\$30)(100) + (\$12)(10)}{90} = \$34.67$$

Çok Aşamalı Ürün Getirisi

$$Y = (I) (\%g_1)(\%g_2)...(\%g_n)$$

I = Parti büyüklüğü %g_i = i. aşamadaki kusursuz ürünlerin yüzdesi

Çok Aşamalı Süreç Getiri Örneği

Motorlar 4 aşamalı süreçte üretilmektedir Üretime 100 motorla başlandığında sürecin getirisi ?

<u>Aşama</u>	Kusursuz ürün yüzdesi		
1	0.93		
2	0.95		
3	0.97		
4	0.92		

$$Y = (I) (%g_1)(%g_2)...(%g_n) = (100)(0.93)(0.95)(0.97)(0.92)$$

 $Y = 78.8 \text{ motor}$

100 Kusursuz Ürün Üretimi Çıktısı için Gerekli Girdi Sayısı

$$I = \frac{Y}{(\%g_1)(\%g_2)(\%g_3)(\%g_4)}$$

$$I = \frac{100}{(0.93)(0.95)(0.97)(0.92)}$$

$$= 126.8 \cong 127 \ motor$$

Kalite Verimlilik Oranı (KVO)

- Verimlilik ve kalite maliyetlerini içerir.
- Artar;
 - Eğer işleme veya yeniden işleme maliyetleri azalırsa.
 - Eğer süreç getirisi artarsa.

```
KVO = \frac{\text{Kaliteli Urunler}}{(\text{girdi})(\text{uretim mal.}) + (\text{kusurlu urunler})(\text{yeniden isleme mal.})} (100)
```

KVO Örneği

Direk üretim maliyeti = \$30

Yeniden işleme maliyeti = \$12

Üretilen motor sayısı = 100

Kusurlu motor yüzdesi = %20

Kusurlu motorların 50%'si yeniden işlenebiliyor.

İşletmenin yapabileceklerine ilişkin senaryolar:

- 1 Günlük üretimin 200'e çıkarılması
- 2 Üretim maliyetinin \$26'a, yeniden işleme maliyetinin de \$10'a indirilmesi
- 3 Getirinin 95%'e çıkarılması
- 4 (2) ve (3)' ün karışımı

KVO ÖRNEĞİ

Mevcut durum;

$$KVO = \frac{80+10}{(100)(\$30)+(10)(\$12)}(100) = 2.88$$

Durum 1 – Günlük üretimi artırmanın bir etkisi olmadı...

$$KVO = \frac{160 + 20}{(200)(\$30) + (20)(\$12)}(100) = 2.88$$

Durum 2 – Maliyetlerin azalması KVO'nı artırdı.

$$KVO = \frac{80+10}{(100)(\$26)+(10)(\$10)}(100) = 3.33$$

Durum 3 – Getirinin artması KVO'nı artırdı.

$$KVO = \frac{95 + 2.5}{(100)(\$30) + (2.5)(\$12)}(100) = 3.21$$

Durum 4 – Maliyetlerin düşmesi ve getirinin artması en iyi durumu verdi...

$$KVO = \frac{95 + 2.5}{(100)(\$26) + (2.5)(\$10)}(100) = 3.71$$