Mayank Mishra

Third year student Email: mayank31398@gmail.com

Department of Electrical Engineering Institute mail: Mayank.Mishra.ee316@ee.iitd.ac.in

Indian Institute of Technology Delhi (IIT Delhi) Phone: +91-9910888002

Github repository: https://github.com/mayank31398

Academic Qualifications

Year	Degree/Certificate	Institute	CGPA / %
2016 - Present	B.Tech in Electrical Engineering (Power & Automation)	Indian Institute of Technology Delhi	8.302/10.0
2016	CBSE (XII)	Delhi Public School Indirapuram	94.0%
2014	CBSE (X)	Delhi Public School Indirapuram	10.0/10.0

Scholastic Achievements

- Secured All India Rank 921 in JEE Advanced 2016
- Secured All India Rank 682 in JEE Mains 2016
- Secured Department rank 3 at the end of first year B.Tech

Internship

- Currently an intern at SAMSUNG Research Institute Noida
- Working on automatic code porting across operating systems for faster code porting and minimizing the need for human involvement as much as possible.

Academic Projects

1. Adversarial approximate inference for speech to laryngograph conversion (*Prof. Prathosh AP*) [Sep, 2018 - present]

- Optimized the speech to laryngograph encoder using adversarial training for the network.
- Created a cosine based loss function for enforcing amplitude invariance between ground truth and network output.
- Used a variational inference approach for learning optimal representations for the speech signal.
- Utilized continuous wavelet transforms using Ricker wavelets for robust peak picking.

To be submitted to IEEE TASLP (IEEE Transactions on Audio, Speech and Language Processing)

2. Touch-Point Prediction using Deep Learning (Professor Brejesh Lall) [May, 2018 - present]

- Working on improving touch-screen latency in collaboration with SAMSUNG on SAMSUNG Flip device.
- Trained fully-connected, Recurrent Neural Networks (RNNs) and Long-Short Term Memory (LSTM) networks, analyzed the performance of these algorithms.
- Proved that touch point prediction using the said algorithms worked better than simple extrapolation.
- Performed an extensive literature survey of various algorithms and implemented the algorithms with data augmentation.
- Trained the models using Tensorflow framework.

3. Braille Tutoring Application (Professor M. Balakrishnan)

[Jan, 2018 - May, 2018]

- Implemented tutorials and games using Python for visually challenged students to learn Braille.
- Created Linux based secondary software to add customized exercises or games in the application.
- Application runs on a Beaglebone based Refreshable Braille Device.
- Worked on providing tactile output, sound and an external Arduino based serial LCD display through the RBD.
- Received appreciation in Open House 2018 at IIT Delhi.

4. Recognizing Numbers in Sign Language

[Mar, 2018]

- Trained deep learning model to recognize the number represented by hand gestures in sign language.
- Trained residual network (ResNet50) and non-residual (CNN) for the problem.
- Trained the model using Tensorflow on the Sign Language Digits Dataset from Kaggle.

5. First Person Shooter Game

[Dec, 2017 - Jan, 2018]

- Created a single-player shooter game using Unreal Engine 4 with C++ and graphical scripting.
- Modelling and animations done on Autodesk 3ds Max.
- Implemented as a self project for Microsoft code.fun.do.

6. Identifying the Diabetic Neuropathic Patients using Machine Learning (*Professor Tapan Gandhi*)

[Nov, 2017 - Dec, 2017]

- Implemented a machine learning SVM classifier using foot-pressure data on labeled training set.
- Implemented k-means clustering algorithm on unlabeled training set.
- Implemented a WPF software in C# to record data using an Arduino based pressure mat.

7. BTree with Duplicate keys (Professor Mausam)

[Oct, 2017]

- Implemented the BTree data structure used for indexing of large databases.
- Modified the search, insert and delete algorithms for compatibility with duplicate keys in the tree.

8. Greyscale Image Compression (Professor Mausam)

[Sept, 2017]

- Implemented sparse matrix representation for greyscale images using doubly-linked lists for compression.
- Implemented the INVERT, AND, OR and XOR without uncompressing the images.

9. Crystal Ball Interface to View 3D Objects (Professor Subodh Kumar)

[Sept. 2016 - Nov. 2016]

 Implemented a crystal ball interface using OpenGL in C++ for viewing 3D objects saved in .obj file format.

Courses completed

Computer Science:

- Machine learning (ongoing) & Computer architecture (ongoing)
- > Data structures and algorithms
- Embedded systems design project
- Machine learning
- Advanced machine learning
- Computer architecture
- Mathematics: Linear algebra and differential equations, Calculus, Probability and stochastic processes

- Electrical: Signals and systems, Digital electronics
- Online Certification:
 - Machine learning (Stanford)
 - > 5-course deep learning specialization (deeplearning.ai)
 - ➤ 4-course machine learning specialization (University of Washington)

Technical Skills

- **Deep Learning Frameworks:** Pytorch, Tensorflow
- **Programming Languages:** Python, Java, C#, C++
- **Softwares:** Visual Studio, Android Studio, Eclipse, MATLAB, Simulink, Vivado, Autodesk 3ds Max, Unreal Engine 4
- Others: Verilog, Git, Linux, LATEX

Extra-curricular Activities

• Hobbies: Reading Research Papers, playing Video Games, Swimming, Reading Books