1 Stochastic integral

Goal: Define $\int_0^\infty f(s)dB(s)$ where f is potentially random.

Review

Fix t and consider partition $0 \le t_0^{(n)} \le \dots \le t_{k(n)}^{(n)}$, where k(n) = t.

Construct the stochastic integral. Traditionally people define $\int_0^\infty f(s)dg(s)$ using Lebesgue-Stieltjes integration if g is of bounded variation. If g is monotone $(g:R\to R)$ then g induces a measure on R. $B_G([S,T]):=g(t)-g(s)$. then we define

$$\int_0^\infty f(s)dg(s) := \int_0^\infty fdB_g$$

If g is bounded variation, then we can find $g = g_1 - g_2$ where both are monotone, then

$$\int_0^\infty f(s)dg(s) := \int_0^\infty fddg_1 - \int_0^\infty fddg_2$$

If we want to define stochastic integral, we need to specify a reasonable class of integrals.

Definition 1.1. $\{X(t,w)\}$ is progressively measurable if for each fixed t, $x:[0,t]\times\Omega\to R$ is measurable w.r.t. $B([0,t])\times F(t)$

Lemma 1.1. Any adapted process that is left or right continuous is p.m.

We can define p.m. step process H_n and we define

$$\int_0^\infty H(S)dB(S) = n \underset{lim}{\to} \infty \int_0^\infty H_n(S)dB(S)$$

in L2 sense.

Theorem 1.1. Suppose $\{H_n\}$ is a step p.m. process s.t.

$$||H_n - H||_2 \to 0,$$

then

$$\int_0^\infty H(S)dB(S) := n \mathop{\to}_{lim} \infty \int_0^\infty H_n(S)dB(S)$$

exists in the L^2 sense and is independent of the choice of $\{H_n\}$ mean while

$$E[(\int_0^\infty H(S)dB(S))^2] = E[(\int_0^\infty H^2(S)dB(S))]$$