

## Software Architecture & Design Pattern

# Lecture 10 大数据计算架构



- 一、全球视野下的大数据: 机遇与挑战
- 二、互联网大数据计算平台核心技术
- 三、新一代交互式计算引擎



## 一、全球视野下的大数据: 机遇与挑战

- □ 什么是大数据
- □ 上升到战略高度的大数据计算
- □ 大数据案例
- □ 行业应用与市场分析
- □ 大数据计算光谱



## 全球视野下的大数据: 机遇与挑战



### "黄河之水天上来"

- --- 滔滔海量数据
- ▶ Facebook每天处理80亿条信息
- ➤ Google每天完成10亿次查询
- ▶ 全世界的信息量以每两年翻番 的速度增长
- ▶ 2011年全球数据量为1.8ZB, IDC预测2015年将达到8ZB 2020年更将达到35ZB!







## ■什么是大数据(Big Data)?

• Volume: 数据量异常庞大,一般达到PB量级

• Variety: 数据呈异构化,数据来源呈多样性

• Velocity: 数据处理要求时效性

• Value: 单个数据无价值,但大规模数据

拥有巨大价值





#### Transactions + Interactions + Observations = **BIG DATA**







- 数据种类的多样性:文字、语音、 图片、视频、信息等
- 数据对象的多样性:个人信息、个人数据、商业服务数据、社会公共数据、自然界数据、物质世界的数据
- 数据来源的多样性:在数据层面打破现实世界的界限,多家公司的共享替代一家公司的数据





## ■ 大数据已上升到21世纪国家战略的高度



2012年3月美国奥巴马政府宣布推出

- "*大数据的研究和发展计划*",包括
- 美国国家科学基金(NSF)
- 美国国家卫生研究院(NIH)
- 美国能源部、美国国防部
- 美国国防部高级研究计划局、美国地质 勘探局等6个联邦政府部门
- "大数据战略"上升为国家意志。





- 2011年麦肯锡(McKinsey&Company)发布题为《大数据:创新、竞争和生产力的下一个前沿》的报告,预测大数据可帮助全球个人定位服务提供商增加1000亿美元收入;帮助欧洲公共部门每年提升2500亿美元产值;帮助美国医疗保健行业每年提升3000亿美元产值,帮助美国零售业获得60%以上的净利润增长;
- 2012年初瑞士达沃斯论坛题为《大数据,大影响》(Big Data, Big Impact) 的报告宣称数据已经成为一种新的经济资产类别,就像货币或黄金一样;
- 国际研究机构Gartner不久前发布《2012-2013年技术曲线成熟度报告》,把大数据计算与社交分析、内存驻存数据分析一起列为最值得关注的48项新兴技术。





- 美国2012 Hadoop World行业大会10月23-25在纽约举行,会议主题为 Bridge to Big Data。业界主流公司Google, MicroSoft, IBM, Cloudera, Intel, SAP均到会演讲。大数据计算技术与在金融、电信、医疗卫生、电子商务等领域的应用是热点话题;
- 中国2012 Hadoop与大数据技术大会(HBTC 2012)11/30-12/01将在北京举行,会议主题"大数据共享与开放技术"。除相关部委外,国内互联网公司中国雅虎、eBay、淘宝、百度、腾讯、土豆网、优酷网、CNTV、中国移动等已决定参会。



## ■ 大数据的应用领域

数据挖掘

空间定位

统计分析

社交网络分析

智能电网

文本解析

网络流量

Web语义分析

智慧交通

智慧医疗

智慧城市



## ■大数据应用典型案例



社交媒体监测平台DataSift通过当天Twitter的情感倾向分析准确预测了Facebook IPO当天的股价波动。例如,Facebook开盘前Twitter上的情感转向负面,25分钟后Facebook的股价便开始下跌;而当Twitter上的情感转向正面时,Facebook股价在8分钟之后也开始了回弹。

最终的结论是: Twitter上每一次情感倾向的转向都会影响 Facebook股价的波动,延迟情况只有几分钟到20多分钟。





Google Trend http://www.google.com/trends/

百度指数 http://zhishu.baidu.com/





## ■大数据应用典型案例: *面对个人的互联网服务(续)*





## ■大数据应用典型案例: *面对个人的互联网服务(续)*





## ■大数据应用典型案例: 面对个人的互联网服务(续)





## ■大数据应用的典型案例



传统美国银行依靠FICO信用卡记录的15到20个参数做贷款与否的决策。

而硅谷创业公司ZestCash则是通过 对顾客的数千个信息源的大数据分析来 决定是否给予其贷款,找到了自己的市 场生存之路。







淘宝高级架构师透露: 08-09年期间, 阿里巴巴根据国内中小企业与国外商户 的贸易额下降及其他交易数据分析,准 确大胆地预测了中国在2010-2011年的 经济形势会明显走低,股市会下跌。这 一根据大数据分析作出的预测的可靠性 和准确性超过了大多数的国家研究机构 和政府部门。



## ■大数据应用典型案例

#### Analytics based on Hadoop/Hive



- 3000-node Hadoop cluster
- Copier/Loader: Map-Reduce hides machine failures
- Pipeline Jobs: Hive allows SQL-like syntax
- Good scalability, but poor latency! 24-48 hours

Facebook平台上每天发送的消息 (message)达到80亿条,要执行750亿次以上的读写,用于支持这样规模数据的Hadoop集群达到3000台机器。

但计算速度不理想,延迟时间达到24<sup>~</sup>48小时。

Facebook的实时在线分析之路在哪里?



## ■ 大数据市场分析

### 海量数据可以在各个部门创造重大财物价值

#### 美国医疗服务业

- •每年价值3000亿美元
- •大约0.7%的年生产率增长

#### 美国零售业

- 可能的净利润增长水平为 60%或以上
- •0.5~1.0%的年生产率增长

#### 欧洲公共部门管理

- 毎年价值2500亿欧元 (约3500亿美元)
- •大约0.5%的年生产率增长

#### 制造业

- •产品开发、组装成本降低达50%
- •运营资本降低达7%

#### 全球个人位置数据

- 服务提供商收入1000亿美元或以上
- •最终用户价值达7000亿美元

资料来源:麦肯锡全球研究院





IDC发布的关于中国大数据技术和服务市场2012-2016年预测与分析报告显示:

- ✓ 大数据技术与服务市场的规模将会从2011年的7760万美元 增长到2016年的6.17亿美元;
- ✔ 未来5年的复合增长率达51.4%,市场规模增长近7倍;
- ✔ 全球大数据潜在市场规模在2015年会达到169亿美元。





工信部电子科技情报所的报告认为: 2012年中国大数据市场规模将达到4.7亿元, 2013年大数据市场将迎来增速为138.3%的飞跃, 到2016年,整个市场规模逼近百亿。







大数据行业分布情况:

2012年政府、互联网、 电信、金融的大数据市 场规模较大,四个行业 将占据一半市场份额。





## ■ 国内大数据市场分析(续)

中国500强企业日数据生成量

中国500强企业数据年增长率







目前企业的数据系统架构存在问题

目前企业数据分析处理面临的问题









- ✓ 互联网行业对数据实时分析 要求高,例如广告监测、B2C 业务,往往要求在数秒内返回 上亿行数据的分析,从而达到 不影响用户体验和快速准确营 销的目的;
- ✔ 目前互联网企业面对大数据, 普遍感觉到实时分析能力差、 海量数据处理效率低、缺少分 析软件等问题。















## ■大数据光谱: 从非实时批处理到实时在线智能分析

|      | 离线批处理计算                     | 在线交互式计算                                               | 大内存计算            |
|------|-----------------------------|-------------------------------------------------------|------------------|
| 数据规模 | PB以上                        | TB~PB                                                 | GB∼TB            |
| 时延性  | 离线计算(分钟~小时)                 | 在线分析(秒~分钟)                                            | 实时计算(秒级)         |
| 计算模型 | MapReduce<br>Pregel<br>HAMA | Dremel Drill PowerDrill                               | MemCloud<br>HANA |
| 系统结构 | 分布式体系                       | 分布式体系                                                 | 集中式结构            |
| 采用技术 | 大数据迭代循环硬盘读写次数多              | 提高数据内存存驻率<br>data locality<br>columnar data structure | 内存一次加载<br>硬件成本高  |



**离线批处理模型:** GFS/HDFS/NoSQL/MapReduce,业界主流模式,技术成熟,数据规模大,但时效性差

大内存计算模型: Hana, MemCloud, 计算速度快, 但需要大规模 集中式内存结构支持(若为分布式则受制于 网络传输速度), 技术成熟度不够

交互式计算模型: Google有Dremel, PowerDrill, Apache有Drill 通过data locality/in-memory buffer/columnar data structure等技术来提高计算速度,以现有计算架构和软件技术为基础,具可行性;但目前技术分散,缺乏一个集成平台





- □ 互联网大数据已成为云计算、物联网之后的又一新技术热点, 已上升到国家战略高度,具有巨大市场价值;
- □ 企业对大数据的需求重点在实时在线计算能力,以支持智能 商务应用。现有的迭代批处理MapReduce算法时效性差,难以 满足海量数据的实时在线分析;
- □ 互联网大数据计算目前尚未有业界认可的主流产品,技术成熟度不到30%,交互式计算和大内存计算是值得关注的技术。



## 二、大数据计算平台核心技术

- □ 业界大数据解决方案
- □ Google及开源社区大数据核心技术
- □ 交互式计算核心技术



## 2.1 业界大数据解决方案



#### InfoSphere BigInsights

Hadoop-based low latency analytics for variety and volume

#### Hadoop



### InfoSphere Information Server

High volume data integration and transformation





## Stream Computing



InfoSphere Streams Low Latency Analytics for

streaming data

#### MPP Data Warehouse



#### IBM InfoSphere Warehouse

Large volume structured data analytics



IBM Netezza High Capacity Appliance

Queryable Archive Structured
Data



IBM Netezza 1000

BI+Ad Hoc Analytics on Structured Data



IBM Smart

Analytics System
Operational Analytics on
Structured Data



IBM Informix Timeseries

Time-structured analytics
© 2012 IBM Corporation



IBM大数据解决方案

## InfoSphere BigInsights



强大的功能

- 增强的Hadoop方案
- 文本分析 & 工具集
- 机器学习与预测分析
- Web Console
- 集成式安装
- 可视化工具
- 大数据分析的apps
- 企业存储,安全,集群管理
- 可方便的连接DB2, JDBC 数据库等



## **InfoSphere Streams**



• 一种处理流数据的低延迟平台

• 一个可高度扩展的,用于实时分析的高性能平台

• 一个灵活的、动态的平台





**Streams and BigInsights** 





## **Oracle Big Data Appliance**

- 硬件部分
- 18 Sun X4270 M2 服务器
- 每台2 CPUs \* 6核
- 每台48 GB内存(可扩展至144GB)
- 每台12块3TB SAS盘
- 网络部分
- 40Gb InfiniBand
- 10Gb 以太网

Raw Storage: 648T / 4倍压缩2.6P

Core Count: 216核

Mem Count: 864G - 2592G



- 软件部分
- Oracle Linux / Oracle JDK
- Cloudera Hadoop Distribution
- Cloudera Manager
- Oracle NoSQL Database
- Open-source R distribution
- Oracle Big Data Connector
  - ODI Adapter for Hadoop
  - Oracle Loader for Hadoop
  - Oracle Direct Connector for HDFS
  - Oracle R Conenctor for Hadoop



## 软硬一体优化集成的Oracle大数据综合解决方案











## 2.1 业界大数据解决方案



基于Azure云平台的Hadoop服务



与Vertica 6实现高级集成的大数据应用平台 HP AppSystem for Apache Hadoop



SAP HANA 基于内存的计算平台





| Google           | Description | Open Source      |
|------------------|-------------|------------------|
| Google Cluster   | 集群架构        | Hadoop Cluster   |
| GFS              | 分布式文件系统     | HDFS             |
| MapReduce        | 分布式编程模型     | Hadoop MapReduce |
| BigTable         | 分布式数据库      | Hbase, Cassandra |
| Pregel           | 大规模图处理系统    | Hama, Giraph     |
| Dremel           | 大规模数据集交互式分析 | Drill            |
| PowerDrill       | 大数据交互式分析    |                  |
| Protocol Buffers | 大数据交换协议     | Avro, Thrift     |

