EDA With Red Wine Data

Data Set Information:

The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine.

Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

These datasets can be viewed as classification or regression tasks.

The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones).

Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.

Attribute Information:

Input variables (based on physicochemical tests): 1 - fixed acidity

- 2 volatile acidity
- 3 citric acid
- 4 residual sugar
- 5 chlorides
- 6 free sulfur dioxide
- 7 total sulfur dioxide
- 8 density
- 9 pH

10 - sulphates

11 - alcohol

Output variable (based on sensory data):

12 - quality (score between 0 and 10)

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: df=pd.read_csv('/content/sample_data/winequality-red.csv')

In [3]: df.head()

Out[3]: fixed volatile residual free sulfur total sulfur citric chlorides density pH sulphates alcohol quality dioxide acidity acidity sugar acid dioxide 0 7.4 0.00 1.9 0.076 0.9978 3.51 9.4 5 0.70 11.0 34.0 0.56 1 7.8 0.88 0.00 2.6 0.098 25.0 0.9968 3.20 9.8 5 67.0 0.68 7.8 2 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5 11.2 0.9980 3.16 3 0.28 0.56 1.9 0.075 17.0 60.0 0.58 9.8 6 4 7.4 0.70 0.00 0.076 0.9978 3.51 0.56 5 1.9 11.0 34.0 9.4

In [4]: ## Summary of the dataset
 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
```

	•	•	
#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [5]: ## descriptive summary of the dataset
 df.describe()

()	1.1	+	1 5		4
\cup	и	L	ーノ	- 1	٠

:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000

In [6]: df.ndim

```
Out[6]:
        df.shape
        (1599, 12)
Out[7]:
        df.size
In [8]:
        19188
Out[8]:
In [9]: ## List down all the columns names
        df.columns
        Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
Out[9]:
                'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
               'pH', 'sulphates', 'alcohol', 'quality'],
              dtype='object')
        df.nunique() # unique value in every column
```

```
Out[10]:
                                0
                 fixed acidity
                              96
               volatile acidity 143
                   citric acid
                              80
               residual sugar
                              91
                    chlorides 153
           free sulfur dioxide
                              60
           total sulfur dioxide 144
                      density 436
                               89
                   sulphates
                               96
                      alcohol
                               65
                      quality
                                6
```

dtype: int64

Out[12]:

•		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	False	False	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False False False		False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False	False
	•••												
	1594	False	False	False	False	False	False	False	False	False	False	False	False
	1595	False	False	False	False	False	False	False	False	False	False	False	False
	1596	False	False	False	False	False	False	False	False	False	False	False	False
	1597	False	False	False	False	False	False	False	False	False	False	False	False
	1598	False	False	False	False	False	False	False	False	False	False	False	False

1599 rows × 12 columns

In [13]: df.isnull().sum()

fixed acidity 0
volatile acidity 0
citric acid 0
residual sugar 0
chlorides 0
free sulfur dioxide 0
total sulfur dioxide 0
pH 0
sulphates 0
alcohol 0
quality 0

dtype: int64

In [14]: ## Duplicate records

df[df.duplicated()]

141						rted_vviile_EB/t						
4]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
4	7.4	0.700	0.00	1.90	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
11	7.5	0.500	0.36	6.10	0.071	17.0	102.0	0.99780	3.35	0.80	10.5	5
27	7.9	0.430	0.21	1.60	0.106	10.0	37.0	0.99660	3.17	0.91	9.5	5
40	7.3	0.450	0.36	5.90	0.074	12.0	87.0	0.99780	3.33	0.83	10.5	5
65	7.2	0.725	0.05	4.65	0.086	4.0	11.0	0.99620	3.41	0.39	10.9	5
•••												
1563	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
1564	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
1567	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
1581	6.2	0.560	0.09	1.70	0.053	24.0	32.0	0.99402	3.54	0.60	11.3	5
1596	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6

240 rows × 12 columns

```
In [16]: df.duplicated().sum()
Out[16]: 240

In [17]: ## Remove the duplicates
    df.drop_duplicates(inplace=True)

In [18]: df.shape
Out[18]: (1359, 12)

In [19]: ## Correlation
    df.corr()
```

Out[19]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.255124	0.667437	0.111025	0.085886	-0.140580	-0.103777	0.670195	-0.686685	0.190269	-0.061596	0.119024
volatile acidity	-0.255124	1.000000	-0.551248	-0.002449	0.055154	-0.020945	0.071701	0.023943	0.247111	-0.256948	-0.197812	-0.395214
citric acid	0.667437	-0.551248	1.000000	0.143892	0.210195	-0.048004	0.047358	0.357962	-0.550310	0.326062	0.105108	0.228057
residual sugar	0.111025	-0.002449	0.143892	1.000000	0.026656	0.160527	0.201038	0.324522	-0.083143	-0.011837	0.063281	0.013640
chlorides	0.085886	0.055154	0.210195	0.026656	1.000000	0.000749	0.045773	0.193592	-0.270893	0.394557	-0.223824	-0.130988
free sulfur dioxide	-0.140580	-0.020945	-0.048004	0.160527	0.000749	1.000000	0.667246	-0.018071	0.056631	0.054126	-0.080125	-0.050463
total sulfur dioxide	-0.103777	0.071701	0.047358	0.201038	0.045773	0.667246	1.000000	0.078141	-0.079257	0.035291	-0.217829	-0.177855
density	0.670195	0.023943	0.357962	0.324522	0.193592	-0.018071	0.078141	1.000000	-0.355617	0.146036	-0.504995	-0.184252
рН	-0.686685	0.247111	-0.550310	-0.083143	-0.270893	0.056631	-0.079257	-0.355617	1.000000	-0.214134	0.213418	-0.055245
sulphates	0.190269	-0.256948	0.326062	-0.011837	0.394557	0.054126	0.035291	0.146036	-0.214134	1.000000	0.091621	0.248835
alcohol	-0.061596	-0.197812	0.105108	0.063281	-0.223824	-0.080125	-0.217829	-0.504995	0.213418	0.091621	1.000000	0.480343
quality	0.119024	-0.395214	0.228057	0.013640	-0.130988	-0.050463	-0.177855	-0.184252	-0.055245	0.248835	0.480343	1.000000

```
In [20]: plt.figure(figsize=(10,6))
    sns.heatmap(df.corr(),annot=True)
```

Out[20]: <Axes: >

Visualization

```
In [21]: df.quality.value_counts().plot(kind="bar")
    plt.xlabel("Wine Quality")
    plt.ylabel("Count")
    plt.show()
```



```
In [22]: for column in df.columns:
    sns.histplot(df[column],kde=True)
```



```
In [23]: sns.histplot(df['alcohol'])
Out[23]: <Axes: xlabel='alcohol', ylabel='Count'>
```


In [25]: #univariate, bivariate, multivariate analysis
 plt.figure(dpi=70)
 sns.pairplot(df)

Out[25]: <seaborn.axisgrid.PairGrid at 0x7d70c811e9e0> <Figure size 448x336 with 0 Axes>

In [27]: df.head()

Out[27]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5

In [28]: sns.scatterplot(x='alcohol',y='pH',hue='quality',data=df)

Out[28]: <Axes: xlabel='alcohol', ylabel='pH'>

Conclusion:

- Alcohol content, volatile acidity, and sulfur dioxide levels were the most significant factors impacting wine quality.
- Sweetness (residual sugar) and pH were not as crucial in determining the quality score, based on this dataset.
- Wines with higher alcohol content, lower volatile acidity, and balanced sulfur dioxide levels generally received better ratings.