§1. Условие тождественного равенства двух многочленов

Пусть n-3аданное натуральное число, а p_0, p_1, \ldots, p_n-3 аданные комплексные числа, при этом $p_0 \neq 0$. Функция

$$p_0 z^n + p_1 z^{n-1} + ... + p_{n-1} z + p_n$$

где z — любое комплексное число, называется алгебраическим многочленом степени n и обозначается через $P_n(z)$:

$$P_n(z) = p_0 z^n + p_1 z^{n-1} + ... + p_{n-1} z + p_n = \sum_{k=0}^{n} p_k z^{n-k}$$
.

Числа p_k , $k=0,1,\ldots,n$, называются коэффициентами многочлена $P_n(z)$, а p_0- его старшим коэффициентом. Если $p_0=p_1=\ldots=p_{n-1}=0$, то $P_n(z)$ называется многочленом нулевой степени, очевидно, в этом случае $P_n(z)\equiv p_n$ при всех $z\in {\pmb C}$.

Теорема 1.1. Многочлен $P_n(z) = p_0 z^n + p_1 z^{n-1} + \ldots + p_{n-1} z + p_n$ равен нулю для $\forall z \in C$ тогда и только тогда, когда равны нулю все его коэффициенты.

lacktriangle Очевидно, если $p_0 = p_1 = \ldots = p_{n-1} = p_n = 0$, то $P_n(z) \equiv 0$ на C.

Пусть теперь $P_n(z) \equiv 0$ на ${\pmb C}$, тогда $P_n(z) = P'_n(z) = ... = P_n^{(n)}(z) = 0$ для $\forall z \in {\pmb C}$ и в том числе при z = 0. Из формулы Маклорена для многочлена $P_n(z)$ (см. равенство (7.3), глава 1) имеем $p_k = \frac{P_n^{(n-k)}(0)}{(n-k)!}$, поэтому приходим к выводу: $p_k = 0$, k = 0, 1, ..., n.

Теорема 1.2 (о тождественном равенстве двух многочленов). Два многочлена $P_n(z) = p_0 z^n + p_1 z^{n-1} + \ldots + p_{n-1} z + p_n \qquad \text{и}$ $Q_n(z) = q_0 z^n + q_1 z^{n-1} + \ldots + q_{n-1} z + q_n$ равны при $\forall z \in \mathbf{C}$ тогда и только тогда, когда равны все их коэффициенты при соответствующих степенях z, т.е. $p_k = q_k, \ k = 0, 1, \ldots, n$.

lacktriangle Очевидно, если $p_k = q_k, \ k = 0, 1, ..., n$, то $P_n(z) \equiv Q_n(z)$ на C.

Пусть теперь $P_n(z) \equiv Q_n(z)$ на C. Рассмотрим многочлен

$$T_n(z) = P_n(z) - Q_n(z) = (p_0 - q_0)z^n + (p_1 - q_1)z^{n-1} + \dots + (p_{n-1} - q_{n-1})z + (p_n - q_n)z^n + \dots + (p_{n-1} - q_{n-1})z + (p_n - q_n)z^n + \dots + (p_{n-1} - q_{n-1})z + \dots + (p_n - q_n)z^n + \dots + (p_n - q_n)z$$

Так как $T_n(z) \equiv 0$, то $p_k - q_k = 0$, k = 0, 1, ..., n (теорема 1.1), отсюда $p_k = q_k$, k = 0, 1, ..., n.

Теорема 1.2 является теоретической базой для *метода сравнения* коэффициентов, который будет рассмотрен далее.