全射

写像 $f:A\to B$ が全射であるとは、「任意の $b\in B$ に対して b=f(a) となる $a\in A$ が存在する」ということである。

fは写像であれば次のどちらかを満たす。

- $f(A) \subseteq B$
- f(A) = B

全射であれば f(A) = B である。

V をベクトル空間とし、 $f:V\to V$ を線形写像とする。このとき、次が成り立つ。

よって、全射であれば $f \circ f(V) = f(f(V)) = V$ となる。

$$V \xrightarrow{f} V \xrightarrow{f} V \tag{2}$$

 $f \circ f = 0$ とは、 $f \circ f(V) = \{0\}$ という意味である。

V よりも $\{0\}$ が真に小さい集合であれば、写像 f により、f(V) の次元は V より低くなっているということになり、 $f(V) \subsetneq V$ であるから全射にはならない。