AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1. (Currently Amended) A method, comprising:
 requesting an operating system to place a computer system in a
 hibernation mode;
 gathering a state of the computer system;
 storing the system state to a first non-volatile memory of the computer system,
 and
 storing the system state to a second non-volatile memory of the computer system.
- (Original) The method of claim 1, wherein the state of the computer system is gathered by the operating system.
- 3. (Original) The method of claim 1, wherein the first non-volatile memory has a storage capacity between 50-2000 megabytes, wherein the second non-volatile memory has a greater storage capacity than the first non-volatile memory.
- (Original) The method of claim 3, wherein the first non-volatile memory is logically coupled to a second non-volatile memory.
- (Original) The method of claim 1, further comprising:
 powering off the computer system.
- (Original) The method of claim 5, further comprising:
 powering on the computer system; and
 loading the system state from the first non-volatile memory.

- (Original) The method of claim 1, wherein the system state comprises contents of a central processing unit.
- 8. (Currently Amended) A method, comprising:

 requesting that a computer system be placed in a hibernation mode;

 writing a state of the system to a hard disk drive of the communication system

 having a non-volatile memory cache; and

 storing the state of the system to the hard disk drive cache.
- (Original) The method of claim 8, further comprising:
 requesting data from the cache to restore the state of the system after hibernation.
- 10. (Original) The method of claim 8, wherein the computer system is a mobile computer system.
- 11. (Original) The method of claim 8, wherein the computer system is a desktop computer system.
- 12. (Currently Amended) A method, comprising:

 requesting that a computer system having a hard disk drive and a non-volatile

 memory coupled to [[a]] the hard disk drive be placed in a hibernation mode;

 determining an address location of the non-volatile memory; and

 writing contents of a central processing unit to the non-volatile memory.
- (Original) The method of claim 12, further comprising:
 writing contents of an operating system to the non-volatile memory.
- 14. (Original) The method of claim 12, further comprising:
 writing contents of a random access memory to the non-volatile memory.

PAGE 8/13 * RCVD AT 4/18/2006 12:29:35 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/20 * DNIS:2738300 * CSID:303 740 6962 * DURATION (mm-55):03-48

- 15. (Original) The method of claim 12, further comprising:
 powering off the computer system.
- 16. (Original) The method of claim 15, further comprising:

 awakening the computer system from the hibernation mode; and

 initiating a load sequence from the non-volatile memory to restore the

 system to the contents of the central processing unit.
- 17. (Original) The method of claim 16, further comprising:
 restoring the contents of the operating system.
- 18. (Original) The method of claim 16, further comprising: restoring the contents of the random access memory.
- 19. (Original) The method of claim 12, wherein the non-volatile memory is separately addressable from a secondary memory.
- 20. (Currently Amended) A system, comprising:
 - a central processing unit (CPU);
 - a main memory coupled to the CPU, wherein the main memory stores data to be manipulated by the CPU;
 - a first non-volatile memory coupled to the main memory, wherein the data of the main memory is stored to the first non-volatile memory if the system is placed in a hibernation mode; and
 - a second non-volatile memory coupled to the first non-volatile memory, wherein the second non-volatile memory has a greater storage capacity than the first non-volatile memory, and wherein the first non-volatile memory has the same address configuration as the second non-volatile memory.

PACE 9/13 * RCVD AT 4/18/2006 12:29:20 ** MA 62:29:30 ** DURATION (mm-ss):03-48

- 21. (Original) The system of claim 20, wherein a state of the CPU is stored to the first non-volatile memory if the system is placed in a hibernation mode.
- 22. (Original) The system of claim 21, wherein the state of the CPU is restored from the first non-volatile memory when the system is awoken from the hibernation mode.
- 23. (Original) The system of claim 21, wherein the data of the main memory and the state of the CPU is stored to the second non-volatile memory.
- 24. (Original) The system of claim 20, further comprising:

 a driver coupled to the main memory and the first non-volatile memory,

 wherein the driver writes data of the main memory to the first non-volatile
 memory.
- 25. (Original) The system of claim 20, wherein the system is a mobile computer.
- 26. (Currently Amended) A computer, comprising:

a hard drive;

means for storing a state of the computer to a non-volatile memory before power down; and

means for loading the state of the computer from the non-volatile memory.

- 27. (Original) The computer of claim 26, further comprising:
 means for accessing the non-volatile memory.
- 28. (Original) The computer of claim 26, further comprising:

 means for reducing power up time of the computer after being placed in a hibernation mode.
- 29. (Original) The computer of claim 26, further comprising:

PAGE 10/13 * RCVD AT 4/18/2006 12:29:55 AM [Eastern Daylight Time] * SVR: USPTO-EFXRF-3/20 * DNIS:2738300 * CSID:303 740 6962 * DURATION (mm-ss):03-48

means for reducing power consumption of the computer.

- 30. (Currently Amended) An article comprising a machine readable medium having a plurality of machine readable instructions, wherein when the instructions are executed by a processor, the instructions cause a system to:

 write contents of a central processing unit (CPU) to a non-volatile memory that is coupled to a hard disk drive of a mobile or desktop computer prior to being placed in a hibernation mode; and

 write data from a random access memory to the non-volatile memory prior to being placed in the hibernation mode.
- 31. (Original) The article of claim 30, comprising a machine readable medium having a plurality of machine readable instructions, wherein when the instructions are executed by a processor, the instructions further cause a system to:

 write the contents of the CPU to the hard disk drive using a transparent write-through process.
- 32. (Original) The article of claim 30, comprising a machine readable medium having a plurality of machine readable instructions, wherein when the instructions are executed by a processor, the instructions further cause a system to: initiate a load sequence from the non-volatile memory after being awoken from the hibernation mode.
- 33. (Original) The article of claim 31, comprising a machine readable medium having a plurality of machine readable instructions, wherein when the instructions are executed by a processor, the instructions further cause a system to:

 restore the CPU contents.

6