On Free Monoids Partially Ordered by Embedding*

LEONARD H. HAINES

Department of Electrical Engineering and Computer Sciences and Electronics Research Laboratory, University of California, Berkeley, California 94720

Communicated by Michael O. Rabin

Received September 3, 1967

ABSTRACT

A combinatorial theorem about finitely generated free monoids is proved and used to show that the set of all subsequences (or supersequences) of any set of words in a finite alphabet is a regular event.

INTRODUCTION

Let Σ^* be the free monoid with null word ϵ generated by a finite alphabet Σ . Let \leq partially order Σ^* by embedding (i.e., $x \leq y$ iff $x = x_1x_2 \cdots x_n$ and $y = y_1x_1y_2x_2 \cdots y_nx_ny_{n+1}$ for some integer n where x_i and y_i are in Σ^* for $1 \leq i < j \leq n+1$).

Theorem 1. Each set of pairwise incomparable elements of Σ^* is finite.¹

For any $A \subseteq \Sigma^*$ define

$$\tilde{A} = \{x \text{ in } \Sigma^* : y \leqslant x \text{ for some } y \text{ in } A\}$$

and

$$A = \{x \text{ in } \Sigma^* : x \leq y \text{ for some } y \text{ in } A\}.$$

THEOREM 2. Let $A \subset \Sigma^*$. Then there exist finite subsets F and G of Σ^* such that $\tilde{A} = \tilde{F}$ and $A = \Sigma^* - \tilde{G}$.

^{*} The research reported herein was supported wholly by the National Science Foundation under Grant GP-6945.

¹ Theorem 1 can be reformulated as an amusing combinatorial property of real numbers: no matter how one partitions an infinite *n*-ary expansion of any real number into blocks of finite length one block is necessarily a subsequence of another.

THEOREM 3. \tilde{A} and \tilde{A} are regular sets for any $A \subseteq \Sigma^*$.

In Section 2 we will show that Theorem $1 \Rightarrow$ Theorem $2 \Rightarrow$ Theorem 3. For ease of reading the proof of Theorem 1 is deferred until Section 3.

An easy corollary of Theorem 1 is a well-known result of König [2].

COROLLARY (König). Each set of pairwise incomparable elements of (N^k, \leq) is finite (where N^k , the set of k-tuples over the non-negative integers N, is partially ordered so that $(u_1, u_2, ..., u_k) \leq (v_1, v_2, ..., v_k)$ iff $u_i \leq v_i$ for $1 \leq i \leq k$).

Note that Theorem 1 fails if Σ^* is partially ordered by subwords, i.e., if \leq_1 is defined so that $x \leq_1 y$ iff $y = y_1 x y_2$ for some y_1 and y_2 in Σ^* then, for a and b in Σ , $\{ab^na: n \geq 1\}$ is an infinite set of pairwise incomparable elements of (Σ^*, \leq_1) . Similar counterexamples exist for (Σ^*, \leq_k) , where $x \leq_k y$ iff $x = x_1 x_2 \cdots x_k$ and $y = y_1 x_1 y_2 x_2 \cdots y_k x_k y_{k+1}$ for some x_i and y_i in Σ^* $(1 \leq i < j \leq k+1)$. Any necessary and sufficient conditions on partial orderings which ensure Theorem 1 must exclude (Σ^*, \leq_k) , which shares many formal properties with (Σ^*, \leq) .

Theorem 3 is unexpected. One might suppose that \mathcal{A} can be non-recursive for suitably chosen A (e.g., A the domain of a partial recursive function defined by a Turing Machine which accepts an input word w iff every subsequence of w satisfies an appropriate predicate; evidently no such predicate exists).

The proof of Theorem 3 (and therefore Theorem 2) is necessarily nonconstructive for recursively enumerable A. This is clear since A is empty iff \tilde{A} is empty iff A is empty but the question of whether a set is empty is undecidable for arbitrary recursively enumerable sets and decidable for arbitrary regular sets.2 Indeed, for the very same reason, given a contextsensitive grammar G one cannot effectively construct the regular events which represent $\widetilde{L(G)}$ and L(G). Given a context-free grammar G, it is a simple exercise to construct context-free grammars G_1 and G_2 such that $L(G_1) = \widetilde{L(G)}$ and $L(G_2) = L(G)$. Whether G_1 and G_2 can be effectively transformed into the regular events (or finite automata or right linear grammars) which specify $\widetilde{L(G)}$ and L(G) is an interesting open problem. Ullian [3] has shown that one cannot effectively transform a connext-free grammar G which generates a regular language into a regular event which represents L(G). In fact, one cannot effectively determine whether L(G) is Σ^* or $\Sigma^* - \{w\}$ for some non- ϵ word w even when these are known to be the only possibilities.

² See Ginsberg [1] for the definition and properties of regular sets, regular events, context-free and context-sensitive grammars.

96 HAINES

PROOF OF THEOREMS 2 AND 3

Theorem 2a. Let $A \subseteq \Sigma^*$. Then there exists a finite subset F of Σ^* such that $\tilde{A} = \tilde{F}$.

PROOF: Let F be the set of all minimal elements of A. Clearly $\tilde{A} = \tilde{F}$. By Theorem 1, F must be finite.

THEOREM 2b. Let $A \subseteq \Sigma^*$. Then there exists a finite subset G of Σ^* such that $A = \Sigma^* - \tilde{G}$.

PROOF: Let $B = \Sigma^* - A$. By definition $B \subset \tilde{B}$. Now suppose that $\tilde{B} \not\subset B$, i.e., suppose that there is a word x in $\tilde{B} \cap A$. Then since x is in \tilde{B} , $x \geqslant y$ for some y in B. On the other hand, since x is also in A, Y is also in $A = A = \Sigma^* - B$, which is absurd. Hence $B = \tilde{B}$ and therefore, by Theorem 2a, $B = \tilde{G}$ for some finite set G so that $A = \Sigma^* - \tilde{G}$.

PROOF OF THEOREM 3: For any word w in Σ^* , \tilde{w} is obviously regular since

$$\tilde{w} = \Sigma^* w_1 \Sigma^* w_2 \cdots \Sigma^* w_n \Sigma^*,$$

where $w=w_1w_2\cdots w_n$ for w_i in $\Sigma\cup\{\epsilon\}$, $1\leqslant i\leqslant n$. Since a finite union of regular sets is regular, $\tilde{W}=\cup\{\tilde{w}:w\text{ in }W\}$ is regular for any finite subset W of Σ^* . Now if F and G are as in Theorem 2 then $\tilde{A}=\tilde{F}$ and \tilde{G} are regular, as is $A=\Sigma^*-\tilde{G}$, since the complement of a regular set is regular.

PROOF OF THEOREM 13

Lemma. If Theorem 1 holds for an alphabet Σ then every infinite subset of Σ^* possesses an infinite chain.

PROOF: Let A be an infinite subset of Σ^* and suppose that every chain in A is finite. The totality of maximum elements of maximal chains in A is identical with the maximum elements of A and is therefore, by hypothesis, finite. Since A is infinite, infinitely many distinct chains have the same maximum element u. But then infinitely many and therefore arbitrarily long elements of Σ^* precede u, contradicting the definition of \leq .

The proof of Theorem 1 is by induction on the size of Σ . For 1-letter

⁹ I am indebted to Robert Solovay for his help in extending a previous proof of Theorem 1 beyond the special case of 3-letter alphabets.

alphabets the theorem is trivial. Suppose that Theorem 1 holds for all n-letter alphabets and fails for an n+1 letter alphabet Σ .

For each infinite set of pairwise incomparable elements $Y = \{y_1, y_2, ...\}$ of Σ^* there is a shortest x in Σ^* such that $x \leqslant y_i$ holds for all i. Without loss of generality we may suppose that Y is chosen so that x is of minimal length. Clearly $x \neq \epsilon$.

Let

$$x = x_1 x_2 \cdots x_k, x_j \text{ in } \Sigma, \qquad 1 \leqslant j \leqslant k.$$

If k = 1 then y_i is in $(\Sigma - x_1)^*$ for all $i \ge 1$, which contradicts the induction hypothesis. Because of the choice of x,

$$x_1x_2\cdots x_{k-1}\leqslant y_i$$

holds for all but finitely many i and therefore by relabeling subscripts we may assume it holds for all $i \ge 1$. Hence for each $i \ge 1$ there exist unique words y_{i1} , y_{i2} ,..., y_{ik} such that

$$y_i = y_{i1}x_1y_{i2}x_2 \cdots y_{ik-1}x_{k-1}y_{ik}$$

and $x_j \leqslant y_{ij}$ holds for $1 \leqslant j < k$. Furthermore the choice of x guarantees that $x_k \leqslant y_{ik}$ holds for all $i \geqslant 1$.

We now assert that there are infinite index sets N_1 , N_2 ,..., N_k such that $N_j \supset N_{j+1}$ $(1 \le j < k)$ and $y_{pj} \le y_{qj}$ whenever p and q are in N_j $(1 \le j \le k)$ and p < q. Let $N_0 = \{i : i \ge 1\}$. We will establish the existence of N_j from the existence of N_{j-1} , $1 \le j \le k$.

Let

$$Y_i = \{y_{ij} : i \text{ in } N_{i-1}\}.$$

If Y_j is finite then at least one of the sets $\{i \text{ in } N_{j-1}: y_{ij} = w\}$ is infinite for some fixed word w and we may choose N_j to be any such infinite set. Alternatively, if Y_j is infinite, the induction hypothesis (applicable since $Y_j \subset (\sum -x_j)^*$) and the lemma imply that Y_j possesses an infinite chain $y_{s_ij} < y_{s_2j} < \cdots$. Now if t_1 , t_2 ,... is any infinite strictly increasing subsequence of s_1 , s_2 ,... then we may choose $N_j = \{t_i : i \ge 1\}$. Hence the assertion is valid.

But, if p < q are in N_k , then p and q are also in N_j $(1 \le j \le k)$ so that $y_{pj} \le y_{qj}$ $(1 \le j \le k)$ and therefore

$$y_p = y_{p1} x_1 y_{p2} x_2 \cdots y_{pk-1} x_{k-1} y_{pk}$$

$$\leq y_{q1} x_1 y_{q2} x_2 \cdots y_{qk-1} x_{k-1} y_{qk} = y_q,$$

a contradiction which establishes the theorem.

98 HAINES

REFERENCES

- 1. S. GINSBURG, Mathematical Theory of Context-free Languages, McGraw-Hill, New York, 1966.
- D. KÖNIG, Theorie der endlichen und unendlichen Graphen, reprinted by Chelsea, New York, 1950.
- 3. J. Ullian, Partial Algorithm Problems for Context Free Languages, System Development Corporation, Report TM-738/027/00, October 10, 1966.