

Functional Analysis I

Homework Assignment 12

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 5 Points

Let $T:C[0,1]\to C[0,1]$ be defined by $(Tf)(t)=tf(t), t\in [0,1]$. Compute the spectrum of T.

Exercise 2: 5 Points

Let E be a Banach space and $T \in L(E)$ a Fredholm operator with $\operatorname{ind} E = 0$. Prove that $0 \in \sigma(T)$ if and only if $\ker T \neq \{0\}$, i.e., zero is an eigenvalue of T. Conclude from this that the non-zero spectral points of a compact operator are eigenvalues with finite-dimensional eigenspaces.

The aim of Bonus Exercise 2 is to obtain alternative characterizations of Fredholm operators. The statement of Bonus Exercise 1 is an auxiliary tool for Bonus Exercise 2.

Bonus Exercise 1 +5

Let E be a Banach space, $A \in L(E)$. Show that $\dim(\ker(A)) < \infty$ and $\operatorname{ran}(A)$ is closed in E if and only if each sequence $(x_n)_n \subset E$ such that $||x_n|| \leq 1$ and $Ax_n \to 0$ has a convergent subsequence.

Bonus Exercise 2 +5

Let E be a Banach space, $A \in L(E)$. Use Bonus Exercise 1 to show that the following statements are equivalent:

- 1. A is a Fredholm operator.
- 2. There exists $B \in L(E)$ such that $\mathrm{Id} AB$ and $\mathrm{Id} BA$ are finite-dimensional.
- 3. There exists $B \in L(E)$ such that $\mathrm{Id} AB$ and $\mathrm{Id} BA$ are compact.
- 4. There exist $B, C \in L(E)$ such that $\mathrm{Id} BA$ and $\mathrm{Id} AC$ are compact.

Please submit your homework in the beginning of the LECTURE (!!!) on Tuesday, July 9.