

AMENDMENT TO THE CLAIMS

Please amend the presently pending claims as follows:

1 - 19. (Cancelled)

20. (Previously Presented) A computer implemented process comprising:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i = 1, \dots, m$ is such that $G_i \equiv g_i^2 \pmod{n}$, wherein g_i for $i = 1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a commitment R from a demonstrator, the commitment R having a value computed such that: $R = r^v \pmod{n}$, wherein r is an integer randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D having a value computed

such that: $D = r \bullet Q_1^{d_1} \bullet Q_2^{d_2} \bullet \dots \bullet Q_m^{d_m} \pmod{n}$; and

determining that the demonstrator is authentic if the response D has a value such that: $D^v \bullet G_1^{\varepsilon_1 d_1} \bullet G_2^{\varepsilon_2 d_2} \bullet \dots \bullet G_m^{\varepsilon_m d_m} \pmod{n}$ is equal to the commitment R , wherein, for $i=1,\dots,m$, $\varepsilon_i = +1$ in the case $G_i \bullet Q_i^v = 1 \pmod{n}$ and $\varepsilon_i = -1$ in the case $G_i = Q_i^v \pmod{n}$.

21. (Previously Presented) A computer implemented process comprising:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i=1,\dots,m$ is such that $G_i \equiv g_i^2 \pmod{n}$, wherein g_i for $i=1,\dots,m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a commitment R from a demonstrator, the commitment R having a value computed using the Chinese remainder method from a series of commitment components R_j , the commitment components R_j having a value such that: $R_j = r_j^v \pmod{p_j}$ for $j=1,\dots,f$, wherein r_1, \dots, r_f is a series of integers randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D being computed from a series of response components D_j using the Chinese remainder method, the response components D_j having a value such that: $D_j = r_j \bullet Q_{1,j}^{d_1} \bullet Q_{2,j}^{d_2} \bullet \dots \bullet Q_{m,j}^{d_m} \pmod{p_j}$ for $j=1,\dots,f$, wherein $Q_{i,j} = Q_i \pmod{p_j}$ for $i=1,\dots,m$ and $j=1,\dots,f$; and

determining that the demonstrator is authentic if the response D has a value such that: $D^v \bullet G_1^{\varepsilon_1 d_1} \bullet G_2^{\varepsilon_2 d_2} \bullet \dots \bullet G_m^{\varepsilon_m d_m} \pmod{n}$ is equal to the commitment R , wherein, for $i=1,\dots,m$, $\varepsilon_i = +1$ in the case $G_i \bullet Q_i^v = 1 \pmod{n}$ and $\varepsilon_i = -1$ in the case $G_i = Q_i^v \pmod{n}$.

22. (Previously Presented) A computer implemented process comprising:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i=1,\dots,m$ is such that $G_i \equiv g_i^2 \pmod{n}$, wherein g_i for $i=1,\dots,m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a token T from a demonstrator, the token T having a value such that $T = h(M, R)$, wherein h is a hash function, M is a message received from the demonstrator, and R is a commitment having a value computed such that: $R = r^v \pmod{n}$, wherein r is an integer randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D having a value such that:

$$D = r \bullet Q_1^{d_1} \bullet Q_2^{d_2} \bullet \dots \bullet Q_m^{d_m} \bmod n; \text{ and}$$

determining that the message M is authentic if the response D has a value such that:

$h(M, D^v \bullet Q_1^{\varepsilon_1 d_1} \bullet Q_2^{\varepsilon_2 d_2} \bullet \dots \bullet Q_m^{\varepsilon_m d_m} \bmod n)$ is equal to the token T , wherein, for $i=1, \dots, m$, $\varepsilon_i = +1$ in the case $Q_i \bullet Q_i^v = 1 \bmod n$ and $\varepsilon_i = -1$ in the case $Q_i = Q_i^v \bmod n$.

23. (Previously Presented) A computer implemented process comprising:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \bmod n$ or the equation $G_i \equiv Q_i^v \bmod n$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i=1, \dots, m$ is such that $G_i \equiv g_i^2 \bmod n$, wherein g_i for $i=1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a token T from a demonstrator, the token T having a value such that $T = h(M, R)$, wherein h is a hash function, M is a message received from the demonstrator, and R is a commitment having a value computed out of commitment components R_j by using

the Chinese remainder method, the commitment components R_j having a value such that:

$R_j = r_j^v \bmod p_j$ for $j=1,\dots,f$, wherein r_1,\dots,r_f is a series of integers randomly chosen by the demonstrator;

choosing m challenges d_1,d_2,\dots,d_m randomly;

sending the challenges d_1,d_2,\dots,d_m to the demonstrator;

receiving a response D from the demonstrator, the response D being computed from a series of response components D_j using the Chinese remainder method, the response components D_j having a value such that: $D_j = r_j \bullet Q_{1,j}^{d_1} \bullet Q_{2,j}^{d_2} \bullet \dots \bullet Q_{m,j}^{d_m} \bmod p_j$ for $j=1,\dots,f$, wherein $Q_{i,j} = Q_i \bmod p_j$ for $i=1,\dots,m$ and $j=1,\dots,f$; and

determining that the message M is authentic if the response D has a value such that: $h(M, D^v \bullet G_1^{\varepsilon_1 d_1} \bullet G_2^{\varepsilon_2 d_2} \bullet \dots \bullet G_m^{\varepsilon_m d_m} \bmod n)$ is equal to the token T , wherein, for $i=1,\dots,m$, $\varepsilon_i = +1$ in the case $G_i \bullet Q_i^v = 1 \bmod n$ and $\varepsilon_i = -1$ in the case $G_i \bullet Q_i^v \bmod n$.

24. (Previously Presented) The computer implemented process according to claim 20, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i=1,\dots,m$.

25. (Currently Amended) A computer implemented process comprising:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \bmod n$ or the equation $G_i \equiv Q_i^v \bmod n$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each

other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i = 1, \dots, m$ is such that $G_i \equiv g_i^v \pmod{n}$, wherein g_i for $i = 1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

recording a message M to be signed;

choosing m integers r_i randomly, wherein i is an integer between 1 and m ;

computing commitments R_i having a value such that: $R_i = r_i^v \pmod{n}$ for $i = 1, \dots, m$;

computing a token T having a value such that $T = h(M, R_1, R_2, \dots, R_m)$, wherein h is a hash function producing a binary train consisting of m bits;

identifying the bits d_1, d_2, \dots, d_m of the token T ;

computing responses $D_i = r_i \cdot Q_i^{d_i} \pmod{n}$ for $i = 1, \dots, m$; and

~~making the token T and the responses Di available to at least one of a public or a verifying entity~~

performing at least one of transmitting the token T and the response Di to at least one verifying entity, or storing the token T and the response Di on a database accessible to the public or to at least one verifying entity.

26. (Currently Amended) The computer implemented process according to claim 25, further comprising:

collecting the token T and the responses D_i for $i = 1, \dots, m$; and

determining that the message M is authentic if the responses D has D_i have a value such that: $h(M, D^v \cdot G_1^{\varepsilon_1 d_1} \cdot G_2^{\varepsilon_2 d_2} \cdot \dots \cdot G_m^{\varepsilon_m d_m} \bmod n)$

$$h(M, D_i^v \cdot G_i^{\varepsilon_i d_i} \bmod n, D_2^v \cdot G_2^{\varepsilon_2 d_2} \bmod n, \dots, D_m^v \cdot G_m^{\varepsilon_m d_m} \bmod n)$$

is equal to the token T , wherein, for $i = 1, \dots, m$, $\varepsilon_i = +1$ in the case $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ and $\varepsilon_i = -1$ in the case $G_i \cdot Q_i^v \not\equiv 1 \pmod{n}$.

27-28. (Cancelled)

29. (Previously Presented) The computer implemented process according to claim 21, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i = 1, \dots, m$.

30. (Previously Presented) The computer implemented process according to claim 22, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i = 1, \dots, m$.

31. (Previously Presented) The computer implemented process according to claim 23, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i = 1, \dots, m$.

32. (Previously Presented) A computer readable medium storing instructions which when executed cause a processor to execute the following method:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime

factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i = 1, \dots, m$ is such that $G_i \equiv g_i^2 \pmod{n}$, wherein g_i for $i = 1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a commitment R from a demonstrator, the commitment R having a value computed such that: $R = r^v \pmod{n}$, wherein r is an integer randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D having a value computed such that: $D = r \cdot Q_1^{d_1} \cdot Q_2^{d_2} \cdot \dots \cdot Q_m^{d_m} \pmod{n}$; and

determining that the demonstrator is authentic if the response D has a value such that: $D^v \cdot G_1^{\varepsilon_1 d_1} \cdot G_2^{\varepsilon_2 d_2} \cdot \dots \cdot G_m^{\varepsilon_m d_m} \pmod{n}$ is equal to the commitment R , wherein, for $i = 1, \dots, m$, $\varepsilon_i = +1$ in the case $G_i \cdot Q_i^v = 1 \pmod{n}$ and $\varepsilon_i = -1$ in the case $G_i = Q_i^v \pmod{n}$.

33. (Previously Presented) A computer readable medium storing instructions which when executed cause a processor to execute the following method:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the

equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i=1, \dots, m$ is such that $G_i \equiv g_i^2 \pmod{n}$, wherein g_i for $i=1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a commitment R from a demonstrator, the commitment R having a value computed using the Chinese remainder method from a series of commitment components R_j , the commitment components R_j having a value such that: $R_j = r_j^v \pmod{p_j}$ for $j=1, \dots, f$, wherein r_1, \dots, r_f is a series of integers randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D being computed from a series of response components D_j using the Chinese remainder method, the response components D_j having a value such that: $D_j = r_j \cdot Q_{1,j}^{d_1} \cdot Q_{2,j}^{d_2} \cdots Q_{m,j}^{d_m} \pmod{p_j}$ for $j=1, \dots, f$, wherein $Q_{i,j} = Q_i \pmod{p_j}$ for $i=1, \dots, m$ and $j=1, \dots, f$; and

determining that the demonstrator is authentic if the response D has a value such that: $D^v \cdot G_1^{e_1 d_1} \cdot G_2^{e_2 d_2} \cdots G_m^{e_m d_m} \pmod{n}$ is equal to the commitment R , wherein, for $i=1, \dots, m$, $e_i = +1$ in the case $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ and $e_i = -1$ in the case $G_i \equiv Q_i^v \pmod{n}$.

34. (Previously Presented) A computer readable medium storing instructions which when executed cause a processor to execute the following method:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i = 1, \dots, m$ is such that $G_i \equiv g_i^2 \pmod{n}$, wherein g_i for $i = 1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a token T from a demonstrator, the token T having a value such that $T = h(M, R)$, wherein h is a hash function, M is a message received from the demonstrator, and R is a commitment having a value computed such that: $R = r^v \pmod{n}$, wherein r is an integer randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D having a value such that: $D = r \cdot Q_1^{d_1} \cdot Q_2^{d_2} \cdot \dots \cdot Q_m^{d_m} \pmod{n}$; and

determining that the message M is authentic if the response D has a value such that: $h(M, D^v \cdot G_1^{e_1 d_1} \cdot G_2^{e_2 d_2} \cdot \dots \cdot G_m^{e_m d_m} \pmod{n})$ is equal to the token T , wherein, for $i = 1, \dots, m$,

$\varepsilon_i = +1$ in the case $G_i \cdot Q_i^v = 1 \bmod n$ and $\varepsilon_i = -1$ in the case $G_i = Q_i^v \bmod n$.

35. (Previously Presented) A computer readable medium storing instructions which when executed cause a processor to execute the following method:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \bmod n$ or the equation $G_i \equiv Q_i^v \bmod n$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i=1, \dots, m$ is such that $G_i \equiv g_i^2 \bmod n$, wherein g_i for $i=1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

receiving a token T from a demonstrator, the token T having a value such that $T = h(M, R)$, wherein h is a hash function, M is a message received from the demonstrator, and R is a commitment having a value computed out of commitment components R_j by using the Chinese remainder method, the commitment components R_j having a value such that: $R_j = r_j^v \bmod p_j$ for $j=1, \dots, f$, wherein r_1, \dots, r_f is a series of integers randomly chosen by the demonstrator;

choosing m challenges d_1, d_2, \dots, d_m randomly;

sending the challenges d_1, d_2, \dots, d_m to the demonstrator;

receiving a response D from the demonstrator, the response D being computed from a

series of response components D_j using the Chinese remainder method, the response components D_j having a value such that: $D_j = r_j \cdot Q_{1,j}^{d_1} \cdot Q_{2,j}^{d_2} \cdots \cdot Q_{m,j}^{d_m} \pmod{p_j}$ for $j=1,\dots,f$, wherein $Q_{i,j} = Q_i \pmod{p_j}$ for $i=1,\dots,m$ and $j=1,\dots,f$; and

determining that the message M is authentic if the response D has a value such that: $h(M, D^v \cdot G_1^{\epsilon_1 d_1} \cdot G_2^{\epsilon_2 d_2} \cdots \cdot G_m^{\epsilon_m d_m} \pmod{n})$ is equal to the token T , wherein, for $i=1,\dots,m$, $\epsilon_i = +1$ in the case $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ and $\epsilon_i = -1$ in the case $G_i \cdot Q_i^v \not\equiv 1 \pmod{n}$.

36. (Previously Presented) The computer readable medium according to claim 32, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i=1,\dots,m$.

37. (Previously Presented) The computer readable medium according to claim 33, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i=1,\dots,m$.

38. (Previously Presented) The computer readable medium according to claim 34, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i=1,\dots,m$.

39. (Previously Presented) The computer readable medium according to claim 35, wherein the challenges are such that $0 \leq d_i \leq 2^k - 1$ for $i=1,\dots,m$.

40. (Currently Amended) A computer readable medium storing instructions which when executed cause a processor to execute the following method:

obtaining a set of one or more private values Q_1, Q_2, \dots, Q_m and respective public values G_1, G_2, \dots, G_m , each pair of values Q_i, G_i verifying either the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ or the equation $G_i \equiv Q_i^v \pmod{n}$, wherein m is an integer greater than or equal to 1, i is an integer between 1 and m , and wherein n is a public integer equal to the product of f private prime factors designated by p_1, \dots, p_f , at least two of these prime factors being different from each

other, wherein f is an integer greater than 1, and wherein v is a public exponent such that $v = 2^k$, and wherein k is a security parameter having an integer value greater than 1, and wherein each public value G_i for $i = 1, \dots, m$ is such that $G_i \equiv g_i^v \pmod{n}$, wherein g_i for $i = 1, \dots, m$ is a base number having an integer value greater than 1 and smaller than each of the prime factors p_1, \dots, p_f , and g_i is a non-quadratic residue of the ring of integers modulo n ;

recording a message M to be signed;

choosing m integers r_i randomly, wherein i is an integer between 1 and m ;

computing commitments R_i having a value such that: $R_i = r_i^v \pmod{n}$ for $i = 1, \dots, m$;

computing a token T having a value such that $T = h(M, R_1, R_2, \dots, R_m)$, wherein h is a hash function producing a binary train consisting of m bits;

identifying the bits d_1, d_2, \dots, d_m of the token T ;

computing responses $D_i = r_i \cdot Q_i^{d_i} \pmod{n}$ for $i = 1, \dots, m$; and

~~making the token T and the responses Di available to at least one of a public or a verifying entity~~

performing at least one of transmitting the token T and the response Di to at least one verifying entity, or storing the token T and the response Di on a database accessible to the public or to at least one verifying entity.

41. (Currently Amended) The computer readable medium according to claim 40, the method further comprising:

collecting the token T and the responses D_i for $i = 1, \dots, m$; and

determining that the message M is authentic if the responses D_i have a value such that: $\#(M, D^v \cdot G_1^{\varepsilon_1 d_1} \cdot G_2^{\varepsilon_2 d_2} \cdots \cdot G_m^{\varepsilon_m d_m} \bmod n)$

$$h(M, D_i^v \cdot G_1^{\varepsilon_1 d_1} \bmod n, D_2^v \cdot G_2^{\varepsilon_2 d_2} \bmod n, \dots, D_m^v \cdot G_m^{\varepsilon_m d_m} \bmod n)$$

is equal to the token T , wherein, for $i = 1, \dots, m$, $\varepsilon_i = +1$ in the case $G_i \cdot Q_i^v = 1 \bmod n$ and $\varepsilon_i = -1$ in the case $G_i = Q_i^v \bmod n$.