AC-1 August 2014 QE

General Instructions:

- 1. AC-1 has **five** problems and a total of **5 pages**.
- 2. Write all your answers in your answer book(s).
- 3. Use the Math Table at the end of the exam for some of your calculations.
- (I) A general non-unity negative feedback control system as shown in Figure 1(a) can always be converted into a general unity negative feedback control system as shown in Figure 1(b) so that their respective transfer function (i.e., $T(s) = \frac{C(s)}{R(s)}$) remains the same.

Determine $G_1(s)$ in Figure 1(b) in terms of G(s) and H(s) in Figure 1(a) so that their respective transfer function $\left(T(s) = \frac{C(s)}{R(s)}\right)$ remains the same. [20 points]

(II) Given a unity negative feedback control system as shown with [25 points]

If the input to the system is $r(t) = (2t + 3\sin t)u(t)$, where u(t) is a unit step function, determine its steady-state error e(t), where e(t) = r(t) - c(t).

(III) Given a unity negative feedback control system as shown with [25 points total]

$$G(s) = \frac{2}{(s+2)(s+p)}.$$

- (A) Sketch the root locus for p > 0. [10 points]
- (B) Determine the breakaway and/or breakin points, if any. (If none, state none!) [8 points]
- (C) Determine the angle of departure/arrival, if any. (If none, state none!) Some trigonometric function values are given at the end of the exam question. [7 points]
- (IV) G(s) is a minimum-phase system and its Bode plot is shown below. If $20\log|G(j\omega)|$ at $\omega = 0.1$ rad/sec is 0 dB, determine G(s). [15 points]

Bode Diagrams

(\mathbb{V})	The Bode diagram of the open-loop transfer function $G(s)$ of a unity-feedback control system		
	is obtained when the gain K of the system is set at its nominal value $K = K_{nominal}$. The		
	printout of the Bode diagram is shown at the end of the exam paper. As best as you can select		
	from the Bode plot printout without any interpolation between points: [15 points total]		
(A) Find the gain margin, the phase margin, the gain-crossover frequency, and the phase crossover of the system. [5 points]			
	Gain margin (in dB) = Phase margin (in degrees) =		
	ω_c (in rad/sec) = and ω_π (in rad/sec) =		
	Is the system stable (Yes/No)? Justify your answer		
	(B) If the gain K is decreased by 5 times its nominal value, the resultant system has: [10 points]		
	Gain margin (in dB) =Phase margin (in degrees) =		
	ω_c (in rad/sec) = and ω_π (in rad/sec) =		
	Is the system stable (Yes/No)? Justify your answer		

Write in Exam Book Only

AC-1 page 4 of 5

AC-1: Problem V Bode Table

Freq. (r/s)	Mag. (dB)	Angle (deg.)
1.00	21.4116	-118.073
1.05	20.9356	-119.417
1.10	20.4771	-120.753
1.15	20.0344	-122.080
1.20	19.6060	-123.399
1.25	19.1907	-124.708
1.30	18.7872	-126.008
1.35	18.3946	-127.299
1.40	18.0119	-128.580
1.45	17.6385	-129.851
1.50	17.2735	-131.112
1.55	16.9164	-132.363
1.60	16.5666	~133.603
1.65	16.2236	-134.832
1.70	15.8870	-136.051
1.75	15.5562	-137.259
1.80	15.2310	-138.456
1.85	14.9111	-139.641
1.90	14.5960	-140.815
1.95	14.2855	-141.979
2.00	13.9794	-143.130
2.05	13.6774	-144.270
2.10	13.3794	-145.399
2.15	13.0850	-146.516
2.20	12.7942	-147.622
2.25	12.5068	-148.716
2.30	12.2225	-149.798
2.35	11.9414	-150.869
2.40	11.6632	-151.928
2.45	11.3878	-152.975

2.50	11.1152	-154.011
2.55	10.8452	-155.035
2.60	10.5777	-156.048
2.65	10.3126	-157.049
2.70	10.0499	-158.039
2.75	9.7895	-159.017
2.80	9.5313	-159.984
2.85	9.2753	-160.940
2.90	9.0213	-161.884
2.95	8.7693	-162.818
3.00	8.5194	-163.740
3.05	8.2713	-164.651
3.10	8.0252	-165.551
3.15	7.7809	-166.441
3.20	7.5383	-167.320
3.25	7.2976	-168.188
3.30	7.0585	-169.045
3.35	6.8211	-169.892
3.40	6.5854	-170.729
3.45	6.3514	-171.556
3.50	6.1189	-172.372
3.55	5.8880	-173.178
3.60	5.6586	-173.974
3.65	5.4307	-174.761
3.70	5.2044	-175.538
3.75	4.9795	-176.305
3.80	4.7560	-177.062
3.85	4.5340	-177.811
3.90	4.3134	-178.550
3.95	4.0942	-179.279
4.00	3.8764	-180.000

p		
4.05	3.6599	-180.712
4.10	3.4448	-181.415
4.15	3.2310	-182.109
4.20	3.0185	-182 .7 94
4.25	2.8073	-183.471
4.30	2.5974	-184.140
4.35	2.3887	-184.800
4.40	2.1813	-185.453
4.45	1.9751	-186.097
4.50	1.7702	-186.733
4.55	1.5665	-187.361
4.60	1.3639	-187.982
4.65	1.1626	-188.595
4.70	0.9624	-189.200
4.75	0.7634	-189.798
4.80	0.5656	-190.389
4.85	0.3689	-190.972
4.90	0.1733	-191.549
4.95	-0.0211	-192.118
5.00	-0.2145	-192.680
5.05	-0.4067	-193.236
5.10	-0.5979	-193.785
5.15	-0.7879	-194.327
5.20	-0.9769	-194.863
5.25	-1.1648	-195.392
5.30	-1.3517	-195.915
5.35	-1.5376	-196.432
5.40	-1.7224	-196.942
5.45	-1.9061	-197.447
5.50	-2.0889	-197.945
5.55	-2.2706	-198.438

5.60 5.65 5.70 5.75 5.80 5.85	-2.4514 -2.6312 -2.8099 -2.9878 -3.1646 -3.3405 -3.5154	-198.925 -199.406 -199.881 -200.351 -200.815 -201.274
5.70 5.75 5.80	-2.8099 -2.9878 -3.1646 -3.3405 -3.5154	-199.881 -200.351 -200.815 -201.274
5.75 5.80	-2.9878 -3.1646 -3.3405 -3.5154	-200.351 -200.815 -201.274
5.80	-3.1646 -3.3405 -3.5154	-200.815 -201.274
	-3.3405 -3.5154	-201.274
5.85	-3.5154	
		204 720
5.90	2.6004	-201.728
5.95	-3.6894	-202.177
6.00	-3.8625	-202.620
6.05	-4.0346	-203.058
6.10	-4.2059	-203.491
6.15	-4.3762	-203.920
. 6.20	-4.5456	-204.343
6.25	-4.7141	-204.762
6.30	-4.8818	-205.175
6.35	-5.0485	-205.585
6.40	-5.2144	-205.989
6.45	-5.3794	-206.389
6.50	-5.5436	-206.785
6.55	-5.7069	-207.176
6.60	-5.8694	-207.563
6.65	-6.0310	-207.946
6.70	-6.1918	-208.324
6.75	-6.3518	-208.699
6.80	-6.5110	-209.069
6.85	-6.6693	-209.435
6.90	-6.8269	-209.797
6.95	-6.9837	-210.156
7.00	-7.1396	-210.510
7.05	-7.2948	-210.861
7.10	-7.4492	-211.208

7.15	-7.6029	-211.551
7.20	-7.7558	-211.891
7.25	-7.9079	-212.227
7.30	-8.0593	-212.559
7.35	-8.2099	-212.888
7.40	-8.3598	-213.214
7.45	-8.5090	-213.536
7.50	-8.6574	-213.855
7.55	-8.8051	-214.171
7.60	-8.9521	-214.483
7.65	-9.0984	-214.792
7.70	-9.2440	-215.098
7.75	-9.3888	-215.401
7.80	-9 <i>.</i> 5330	-215.701
7.85	-9.6765	-215.997
7.90	-9.8194	-216.291
7.95	-9.9615	-216.582
8.00	-10.1030	-216.870
8.05	-10.2438	-217.155
8.10	-10.3840	-217.437
8.15	-10.5235	-217.717
8.20	-10.6623	-217.993
8.25	-10.8005	-218.267
8.30	-10.9381	-218.539
8.35	-11.0750	-218.807
8.40	-11.2113	-219.073
8.45	-11.3470	-219.337
8.50	-11.4821	-219.598
8.55	-11.6165	-219.856
8.60	-11.7504	-220.112
8.65	-11.8836	-220.366

8.70	-12.0162	-220.617
8.75	-12.1483	-220.866
8.80	-12.2797	-221.112
8.85	-12.4106	-221.356
8.90	-12.5409	-221.598
8.95	-12.6706	-221.838
9.00	-12.7997	-222.075
9.05	-12.9282	-222.310
9.10	-13.0562	-222.543
9.15	-13.1837	-222.774
9.20	-13.3106	-223.003
9.25	-13.4369	-223.230
9.30	-13.5627	-223.454
9.35	-13.6879	-223.677
9.40	-13.8126	-223.897
9.45	-13.9368	-224.116
9.50	-14.0605	-224.333
9.55	-14.1836	-224.547
9.60	-14.3062	-224.760
9.65	-14.4282	-224.971
9.70	-14.5498	-225.180
9.75	-14.6708	-225.388
9.80	-14.7914	-225.593
9.85	-14.9114	-225.797
9.90	-15.0310	-225.999
9.95	-15.1500	-226.199
10.00	-15.2686	-226.397

Some Calculated Values

Trigonometric Function Values	Other Function Values
$\tan^{-1}(\frac{1}{4}) = 14.04^{\circ}$	$\sqrt{2} = 1.41$
$\tan^{-1}(\frac{1}{3}) = 18.43^{\circ}$	$\sqrt{3} = 1.73$
$\tan^{-1}(\frac{1}{2}) = 26.57^{\circ}$	$\sqrt{5} = 2.24$
$\tan^{-1}(\frac{2}{3}) = 33.69^{\circ}$	$\sqrt{6} = 2.45$
$\tan^{-1}(\frac{3}{4}) = 36.87^{\circ}$	$\sqrt{7} = 2.65$
$\tan^{-1}(1) = 45^{\circ}$	$\sqrt{8} = 2.83$
$\tan^{-1}(2) = 63.43^{\circ}$	$\sqrt{10} = 3.16$
$\tan^{-1}(3) = 71.57^{\circ}$	$\sqrt{11} = 3.32$
$\tan^{-1}(4) = 75.96^{\circ}$	$\sqrt{12} = 3.46$
$\tan^{-1}(5) = 78.69^{\circ}$	$\sqrt{13} = 3.61$
$\tan^{-1}(6) = 80.54^{\circ}$	$\sqrt{14} = 3.74$
$\tan^{-1}(7) = 81.87^{\circ}$	$\log_{10}(2) = 0.301$
$\tan^{-1}(8) = 82.87^{\circ}$	$\log_{10}(3) = 0.4771$
$\tan^{-1}(9) = 83.66^{\circ}$	$\log_{10}(4) = 0.6021$
$\tan^{-1}(10) = 84.29^{\circ}$	$\log_{10}(5) = 0.69897$
$\tan^{-1}(15) = 86.19^{\circ}$	$\log_{10}(6) = 0.7782$
$\tan^{-1}(20) = 87.14^{\circ}$	$\log_{10}(7) = 0.8451$
$\tan^{-1}(30) = 88.09^{\circ}$	$\log_{10}(8) = 0.9031$
$\tan(10^\circ) = 0.1763$	$\tan(15^\circ) = 0.2679$
$\tan(20^\circ) = 0.3640$	$\tan(25^\circ) = 0.4663$
$\tan(30^\circ) = 0.5774$	$\tan(35^\circ) = 0.7002$
$\tan(40^\circ) = 0.8391$	$\tan(45^\circ) = 1.0000$
$\tan(50^\circ) = 1.1918$	$\tan(55^\circ) = 1.4281$
$\tan(60^{\circ}) = 1.7321$	$\tan(65^\circ) = 2.1445$
$\tan(70^\circ) = 2.7475$	$\tan(75^\circ) = 3.73205$
$\tan(80^\circ) = 5.6713$	$\tan(85^\circ) = 11.4300$