

دانشگاه تهران

پردیس دانشکدههای فنی

دانشکده مهندسی برق و کامپیوتر

تركيب داده /اطلاعات

تمرین سری دوم

موعد تحویل: ۲۴ فروردین ۱۴۰۰ لطفا در حل و ارسال تمرینها به نکات زیر توجه فرمایید:

۱) در صورت تایپ پاسخ تمرینها در word، از فونت B Nazanin برای فارسی و Times New Roman برای انگلیسی و اندازه فونت ۱۲ استفاده کنید.

۲) تمامی کدها در پوشهای با عنوان Codes ذخیره شوند.

۳) پاسخ تمرینها به صورت pdf و به همراه کدها در یک فایل zip با عنوان نام و شماره دانشجویی شما ارسال شوند.

۴) به تمرین های مشابه نمرهای تعلق نمیگیرد.

۵) استفاده از قالب لاتک جهت پاسخ به تمرینها نمره مثبت دارد.

۶) عکسها و جدولها باید شامل کپشن و با فونت ۱۰ باشند.

۷) به هیچ عنوان در گزارش خود کد قرار ندهید.

 ۸) لطفا گزارش خود را تایپ کرده و صرفا جهت فرمول نویسی میتوانید از عکس نوشته خود استفاده بفرمایید.

فهرست مطالب

																								_			تمري
٣								 							 			بر	۰شه	ر-	ىپست	ده	ری	تئور	- 1	ن '	تمري

تمرین ۱ – تئوری بیزین دادههای جدول زیر را در نظر بگیرید. سه سنسور در محلی که در آن نوعی گاز وجود دارد قرار گرفتهاند.

Gas Type	Sensor 1	Sensor 2	Sensor 3
Clean	40%	25%	25%
Hazardous (Level 1)	30%	15%	25%
Hazardous (Level 2)	15%	30%	25%
Hazardous (Level 3)	15%	30%	25%

الف) با توجه به دادههای جدول و نتایج نشان داده شده از سنسورها و با استفاده از قضیه Bayesian داده های سه سنسور را ترکیب کرده و نتیجه بدست آمده از میزان سمی بودن گاز را گزارش دهید.

ب) به جای ترکیب دادههای سه سنسور، فقط دادهها را دو به دو با هم ترکیب کرده و نتیجه را با حالت الف مقایسه کنید. مشاهدات و نتیجه گیری خود را توضیح دهید.

تمرین ۲ – تئوری دمپستر –شفر

فرض کنید میخواهیم برای یک سیستم نیروگاهی هنگامی که دچار عیب میشود. در رابطه با نوع عیب اظهار نظر کنیم. به همین منظور فرض کنید که عیبهایی که می توانند در این سیستم رخ دهند به صورت زیر هستند:

$$\Omega = \{h_1, h_2, h_3\}$$

الف) تمام حالات ممکنی که ممکن است سیستم دارای عیب باشد را مشخص کنید.

فرض کنید در این نیروگاه دو اپراتور با نامهای اپراتور اول و اپراتور دوم در حال بررسی خطاها هستند. اپراتور اول در تشخیص خطاهای h_1 و h_2 متخصص هستند. بنابراین از دیدگاه هر یک از اپراتورها هنگامی که سیستم دچار عیب می شود، یکی از h_1 سناریو به صورت جدول زیر رخ می دهد:

Operator	Failure	Fault(s)
1 st	ev_1	h_1
	ev_2	h_2
	ev_3	h_1, h_2
	ev_4	h_1, h_2, h_3
2^{nd}	ev_1	h_1
	ev_2	h_3
	ev_3	h_1, h_3
	ev_4	h_1, h_2, h_3

بر این اساس هر یک از دو اپراتور با توجه به تجربه خود وزنهایی به صورت جدول زیر ارائه میدهند:

1st operator	2^{Ω}	2 nd operator
$m(A_1) = 0.2$	$\{h_1\}$	$m(B_1) = 0.2$
$m(A_2) = 0.1$	$\{h_2\}$	$m(B_2) = 0.0$
$m(A_3) = 0.0$	$\{h_3\}$	$m(B_3) = 0.2$
$m(A_4) = 0.6$	$\{h_1,h_2\}$	$m(B_4) = 0.0$
$m(A_5) = 0.0$	$\{h_1,h_3\}$	$m(B_5) = 0.4$
$m(A_6) = 0.0$	$\{h_2,h_3\}$	$m(B_6) = 0.0$
$m(A_7) = 0.1$	$\left\{h_1, h_2, h_3\right\}$	$m(B_7) = 0.2$

ب) ابتدا دو پارامتر belief و plausibility را تعریف کرده و رابطه آن را با احتمال بیان کنید. ج) با توجه به روابط مربوط به belief و plausibility جدول زیر را تکمیل کنید:

$m(A_k)$	$bel(A_k)$	$pl(A_k)$	2^{Ω}	$m(B_k)$	$bel(B_k)$	$pl(B_k)$
0.2			$\{h_1\}$	0.2		
0.1			$\{h_2\}$	0.0		
0.0			$\{h_3\}$	0.2		
0.6			$\{h_1,h_2\}$	0.0		
0.0			$\{h_1,h_3\}$	0.4		
0.0			$\{h_2,h_3\}$	0.0		
0.1			$ \{h_1, h_2, h_3\}$	0.2		

د) جدول ترکیب حالات ممکن به صورت جدول زیر را تکمیل کنید. (راهنمایی: توجه کنید که ستون اول این جدول تکمیل شده است)

\bigcap	A_1	A_2	A_3	A_4	A_5	A_6	A_7
B_1	h_1						
B_1 B_2 B_3 B_4 B_5 B_6 B_7	Ø						
B_3	Ø						
B_4	h_1						
B_5	h_1						
B_6	Ø						
B_7	h_1						

ه) برای کاهش محاسبات با توجه به اینکه وزن برخی از رویدادها توسط هر یک از اپراتورها صفر تشخیص داده شده است، سطرها و ستونهای مربوطه را از جدول بخش "د" حذف کنید و جدول کاهش یافته را بدست آورید. (راهنمایی: به عنوان مثال رویداد A_3 توسط اپراتور اول و رویداد B_2 توسط اپراتور دوم دارای وزن صفر هستند. بنابراین ستون سوم و سطر دوم از جدول بخش "د" حذف خواهند شد)

و) با توجه به رابطه ترکیب دمپستر-شفر به صورت زیر، وزن مربوط به هر رویداد جدول بخش "ه" را که ناشی از ترکیب وزنهای اپراتور اول و دوم در رابطه با آن رویداد هستند را بدست آورید.

$$m(Z) = \frac{\sum_{A \cap B = Z \neq \emptyset} m(A).m(B)}{\sum_{A \cap B \neq \emptyset} m(A).m(B)}$$

ز) با بدست آوردن دو پارامتر belief و plausibility برای هر یک از وزنهای بخش "و" استدلال کنید کدام یک از حالات عیب دارای اهمیت بیشتری هستند و باید بیشتر مورد توجه قرار گیرند؟ در صورتی که دید احتمالی (روش بیزین) به مساله داشتیم کدام حالت عیب باید بیشتر مورد توجه قرار گیرد؟ بر این اساس مقایسهای در رابطه با عملکرد دو روش بیزین و دمپستر-شفر برای ترکیب اطلاعات داشته باشید.