Быстрая оптимизация мультизадачных моделей

Филатов Андрей

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов В.В. Консультант: Меркулов Д.М.

9 Июня, 2021

Мультизадачные модели

Многокритериальная оптимизация

Заданы T функции потерь (задач) \mathscr{L}^t . Требуется их одновременная оптимизации:

$$\min_{\substack{\boldsymbol{\theta}^{sh},\\\boldsymbol{\theta}^{1},...,\boldsymbol{\theta}^{T}}} \mathscr{L}\left(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{1},...,\boldsymbol{\theta}^{T}\right) = \min_{\substack{\boldsymbol{\theta}^{sh},\\\boldsymbol{\theta}^{1},...,\boldsymbol{\theta}^{T}}} \left(\mathscr{L}^{1}\left(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{1}\right),...,\mathscr{L}^{T}\left(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{T}\right)\right)^{\top},$$

где $oldsymbol{ heta}^{sh}$ — параметры общие параметры, а $oldsymbol{ heta}^t$ — отдельные параметры для каждой задачи

Методы решения задачи мультикритериальной оптимизации

1. Взвешивание¹: сводим мультикритериальную оптимизацию к одномерной оптимизации следующим образом:

$$\mathscr{L}(\boldsymbol{\theta}) = \sum_{t=1}^{T} w_t \mathscr{L}^t(\boldsymbol{\theta}).$$

- 2. Методы нулевого порядка: эволюционные алгоритмы и мультикритериальная байесовская оптимизация. 2
- 3. Градиентные методы³: градиентный спуск, метод Ньютона.

 $^{^{1}}$ Chen и др., "Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks".

²Deb и др., "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II".

³Fliege и Svaiter, "Steepest descent methods for multicriteria optimization".

Мотивация

- Для градиентных методов оптимизации мультизадачных моделей теоретически обосновано лишь использование линейного поиска для нахождение шага;
- Линейный поиск неэффективен на практике из высокой вычислительной стоимости;

Цель

Создать вычислительно эффективный метод линейного поиска.

Быстрый линейный поиск

В алгоритме быстрого линейного поиска мы оптимизируем в скрытом пространстве Z.

Градиентные методы

► Multiple-gradient descent algorithm (MGDA)⁴

$$\min_{\alpha^1,...,\alpha^T} \left\{ \left\| \sum_{t=1}^T \alpha^t \nabla_{\boldsymbol{\theta}} \hat{\mathscr{L}}^t(\boldsymbol{\theta}) \right\|_2^2 \mid \sum_{t=1}^T \alpha^t = 1, \alpha^t \geq 0 \quad \forall t \right\},$$

$$oldsymbol{d}^* = \sum_{t=1}^T \widetilde{lpha}^t
abla_{oldsymbol{ heta}} \hat{\mathscr{L}}^t.$$

► Min-max подход⁵

$$\min_{\boldsymbol{d}} \max_{t} (\frac{\partial \mathcal{L}^{t}}{\partial \boldsymbol{\theta}} \boldsymbol{d})_{t} + g^{t}(\boldsymbol{d})$$

Рассматривая $g^t(\boldsymbol{d}) = \|\boldsymbol{d}\|^2$ получаем двойственную к MGDA. Рассматривая $g^t(\boldsymbol{d}) = \frac{1}{2}\boldsymbol{d}^T\boldsymbol{H}^t\boldsymbol{d}$ получаем метод Ньютона $(\boldsymbol{H}^t$ гессиан \mathcal{L}^t).

⁴Désidéri, "Mgda variants for multi-objective optimization".

⁵Fliege и Svaiter, "Steepest descent methods for multicriteria optimization".

Алгоритм линейного поиска

Пусть получено ${\pmb d}$ — направление убывания всех функций: $\forall t \ \nabla_{\pmb \theta} \mathscr{L}^t {\pmb d} < 0.$ Необходимо найти шаг ${\pmb \eta}$, чтобы:

$$\mathscr{L}^{t}(\boldsymbol{\theta} - \eta \, \boldsymbol{d}) < \mathscr{L}^{t}(\boldsymbol{\theta}), \ \forall t \in \{1 \dots T\}.$$
 (*)

Teopeма (Fliege 2000)⁶

Если условие (\star) будет выполнено на каждой итерации, то для любой сходящейся подпоследовательности $\{\boldsymbol{\theta}_{k_j}\}_{j=1}^{\infty}$: $\lim_{j\to\infty}\boldsymbol{\theta}_{k_j}=\hat{\boldsymbol{\theta}}$, созданной градиентным спуском, предел этой последовательности $\hat{\boldsymbol{\theta}}$ —Парето станционарная точка.

⁶Fliege и Svaiter, "Steepest descent methods for multicriteria optimization".

Алгоритм линейного поиска

Правило Армихо

На каждом шаге градиентного спуска нам найти шаг η , чтобы выполнялось следующее правило Армихо $\forall t \in \{1 \dots T\}$:

$$\mathscr{L}^t(\boldsymbol{\theta}^{sh} - \eta \, \boldsymbol{d}_{sh}, \boldsymbol{\theta}^t - \eta \nabla_{\boldsymbol{\theta}^t} \mathscr{L}^t) \leq \mathscr{L}^t - \eta \beta \left\| \frac{\partial \mathscr{L}^t}{\partial \boldsymbol{\theta}^t} \right\|^2 - \eta \beta \left(\frac{\partial \mathscr{L}^t}{\partial \boldsymbol{\theta}^{sh}} \right)^{\top} \boldsymbol{d}_{sh}.$$

Модифицированное правило Армихо

На каждом шаге градиентного спуска нам найти шаг η , чтобы выполнялось следующее правило Армихо $\forall t \in \{1\dots T\}$:

$$\mathscr{L}^{t}(\boldsymbol{z} - \eta \, \boldsymbol{d}_{\boldsymbol{z}}, \boldsymbol{\theta}^{t} - \eta \nabla_{\boldsymbol{\theta}^{t}} \mathscr{L}^{t}) \leq \mathscr{L}^{t} - \eta \beta \left\| \frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{\theta}^{t}} \right\|^{2} - \eta \beta \left(\frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{z}} \right)^{\top} \boldsymbol{d}_{\boldsymbol{z}}.$$

Основной результат

Модифицированное правило Армихо

На каждом шаге градиентного спуска нам найти шаг η , чтобы выполнялось следующее правило Армихо :

$$\mathscr{L}^{t}(\boldsymbol{z} - \eta \, \boldsymbol{d}_{\boldsymbol{z}}, \boldsymbol{\theta}^{t} - \eta \nabla_{\boldsymbol{\theta}^{t}} \mathscr{L}^{t}) \leq \mathscr{L}^{t} - \eta \beta \left\| \frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{\theta}^{t}} \right\|^{2} - \eta \beta \left(\frac{\partial \mathscr{L}^{t}}{\partial \boldsymbol{z}} \right)^{\top} \boldsymbol{d}_{\boldsymbol{z}}$$

Теорема (Филатов 2021)

Каждый частичный предел последовательности, созданной градиентным спуском с модифицированным правилом Армихо, является Парето станционарной точкой.

Базовый⁷ и быстрый алгоритмы

Algorithm 1: Backtracking(γ , I_{rub})

Algorithm 2: Fast backtracking (γ, Ir_{ub})

Ensure: Learning rate
$$\eta = lr_{ub}/\gamma$$

3:
$$\tilde{\boldsymbol{\theta}}^{sh} \leftarrow \boldsymbol{\theta}^{sh} - \eta \cdot \boldsymbol{d}_{sh}$$

4: for
$$t \leftarrow 1$$
 to T do

5:
$$\tilde{\boldsymbol{\theta}}^t \leftarrow \boldsymbol{\theta}^t - \eta \cdot \nabla_{\boldsymbol{\theta}^t} \mathcal{L}^t$$

8: **for**
$$t \leftarrow 1$$
 to T **do**
9: $\boldsymbol{\theta}_{new}^t \leftarrow \tilde{\boldsymbol{\theta}}^t$

11:
$$\boldsymbol{\theta}_{new}^{sh} \leftarrow \tilde{\boldsymbol{\theta}}^{sh}$$

Ensure: Learning rate $\eta = lr_{\mu b}/\gamma$

2:
$$\eta \leftarrow \gamma \cdot \eta$$

2:
$$\eta \leftarrow \gamma \cdot \eta$$

3: $z \leftarrow z - \eta \cdot d_z$

4: **for**
$$t \leftarrow 1$$
 to T **do**
5: $\tilde{\boldsymbol{\theta}}^t \leftarrow \boldsymbol{\theta}^t - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}^t} \mathcal{L}^t$

8: for
$$t \leftarrow 1$$
 to T do
9: $\boldsymbol{\theta}_{new}^t \leftarrow \tilde{\boldsymbol{\theta}}^t$

11:
$$\boldsymbol{\theta}_{new}^{sh} \leftarrow \boldsymbol{\theta}^{sh} - \eta \cdot \frac{\partial \boldsymbol{\theta}^{sh}}{\partial z} \boldsymbol{d}_z$$

⁷Armijo, "Minimization of functions having Lipschitz continuous first partial derivatives".

Сравнение предложенного метода с градиентным спуском на MultiMNIST

Сравнение предложенного метода с базовым линейным поиском на MultiMNIST

Сравнение предложенного метода с градиентным спуском на CIFAR-10

Сравнение времени работы алгоритмов

$MNIST\downarrow$	CIFAR-10 ↓	Cityscapes \downarrow
1.05 (143)	0.15 (85)	1.28 (76800)
1.37 (195)	1.18 (650)	-
1.0 (143)	1.0 (550)	1.0 (60000)
0.95 (136)	0.14 (80)	-
	1.05 (143) 1.37 (195) 1.0 (143)	1.05 (143)

Результаты, выносимые на защиту

- 1. Предложен алгоритм быстрого линейного поиска для мультизадачных моделей.
- 2. Подтверждена теоретическая сходимость быстрого линейного поиска к Парето станционарной точке.
- 3. Проверена практическая эффективность метода на задачах MultiMNIST, CIFAR-10, Cityscapes.