HOUSE PRICE PREDICTION

Date: 08/05/2023 COURSE : IA 651 Shradha Reddy Pulla

INTRODUCTION

- ☐ Accurately estimating the value of real estate is an important problem for many stakeholders.
- ☐ It is common knowledge that factors such as the size, number of rooms and location affect the price, there are many other things at play.

<u>Overview</u>

- □ Data Exploration
- Data visualization
- □ Data cleaning/pre-processing
- **☐** Feature engineering
- ☐ Model building
- ☐ Model evaluation

GETTING FAMILIAR WITH THE DATA

- \Box The data is taken from the kaggle with 20,640 rows and 10 columns.
- ☐ Feature standardization was performed on some numeric data variables.
- ☐ Attributes like latitude and longitude were used during exploratory analysis not used in further model building.
- ☐ The dataset was split into train-validate-test samples using train-test-split from sklearn module.

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income(\$10,000)	median_house_value	ocean_proximity
0	-122.23	37.86	41	880	129	322	126	8.3252	452600	NEAR BAY
1	-122.22	37.86	21	7099	1106	2401	1138	8.3014	358500	NEAR BAY
2	-122.24	37.85	52	1467	190	496	177	7.2574	352100	NEAR BAY
3	-122.25	37.85	52	1274	235	558	219	5.6431	341300	NEAR BAY
4	-122.25	37.85	52	1627	280	565	259	3.8462	342200	NEAR BAY

Visualization of the dataset

Correlation of predictors and output variable

EARTH MAP OF CALIFORNIA

GEOGRAPHICAL HOUSE PRICE FLUCTUATION.

DATA PRE-PROCESSING

☐ Removing null values.

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	median_house_value	20640 non-null	float64
9	ocean_proximity	20640 non-null	object

- □ Standardizing total rooms, total bedrooms, population
- □ Converting categorical data into numerical data.

```
<1H OCEAN 7219
INLAND 5195
NEAR OCEAN 2115
NEAR BAY 1815
ISLAND 2
Name: ocean_proximity, dtype: int64</pre>
```

Feature engineering

- I) feature : Bedroom_ratio = total_bedrooms/Total_rooms
- II) feature : Household_rooms = total_rooms/households

															Housell
	longitud		housing_m	total_ro	total_be	populati	househ	median_inco	median_ho	<1H		NEAR	NEAR	bedroo	old_roo
	е	latitude	edian_age	oms	drooms	on	olds	me(\$10,000)	use_value	OCEAN	INLAND	BAY	OCEAN	m_ratio	m
														0.76536	
0	-122.23	37.86	41	880	129	322	126	8.3252	452600	0	0	0	1	3	1.3159
														0.76383	
1	-122.22	37.86	21	7099	1106	2401	1138	8.3014	358500	1	0	0	0	9	1.3108
														0.77169	
2	-122.24	37.85	52	1467	190	496	177	7.2574	352100	0	1	0	0	6	1.2882
														0.80289	
3	-122.25	37.85	52	1274	235	558	219	5.6431	341300	1	0	0	0	9	112826

Regression model building

(Linear Regression)

from sklearn.linear model import LinearRegression from sklearn import metrics OLS = LinearRegression() OLS.fit(X train, y train) ✓ 0.0s * LinearRegression LinearRegression() v pred=OLS.predict(X test) print(" The intercept is " + str(OLS, intercept)) print(" The coefficients are " + str(OLS.coef)) print(" The R squured value is " + str(OLS.score(X test, y test))) print("MAE is:", metrics.mean absolute error(v test.v pred)) print("MSE is:", metrics.mean squared error(v test.v pred)) ✓ 0.0s The intercept is -2146719.495872446 The coeffiients are [-2.72191872e+04 -2.61224400e+04 1.03631750e+03 -6.39771322e+00 9.97707401e+01 -3.73545857e+01 4.99035484e+01 3.93656164e+04 -1.49036788e+05 -1.87787533e+05 -1.51883617e+05 -1.45673607e+051 The R sqaured value is 0.6576677709626819 MAE is: 49715.183929114246 MSE is: 4740761051.434472

Model accuracy evaluation

	PREDICTIONS	ACTUAL VALUES	error	
15175	315646.7385	328200	12553.26153	
15424	235926.1562	156900	-79026.1562	
16212	157003.3256	87200	-69803.32561	
15356	172404.3402	141000	-31404.34025	
1899	82931.27063	100800	17868.72937	

Drawbacks of OLS

- □ Non-linearity
- ☐ Feature Interactions
- □ Robustness to outliers and noise
- □ Ensemble nature

Regression model building

(Random Forest Regression)

from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor() reg.fit(X_train, y_train) 15.9s RandomForestRegressor RandomForestRegressor() v pred r = reg.predict(X test) acc rf = metrics.r2 score(y test,y pred r) print("R^2 values is :", acc rf) print("MAE is:", metrics.mean_absolute_error(y_test, y_pred_r)) print("MSE is:", metrics.mean_squared_error(y_test, y_pred_r)) print("RMSE is:", np.sqrt(metrics.mean_squared_error(y_test, y_pred_r))) ✓ 0.3s 0.8266384101819658 R^2 values is : 0.8266384101819658 MAE is: 31180.032596036213 MSE is: 2400784393.3809185 RMSE is: 48997.799883065345

Model accuracy evaluation

	PREDICTIONS	ACTUAL VALUES	error		
15175	306784.03	328200	21415.97		
15424	309734.27	156900	-152834.27		
16212	111365	87200	-24165		
15356	182558	141000	-41558		
1899	123728	100800	-22928		
1					

THANK YOU!