Национальный исследовательский университет Московский Энергетический Институт Кафедра радиотехнических систем

Курсовая работа

по дисциплине

Аппаратура потребителей спутниковых радионавигационных систем

Γ	руппа: ЭР-15-16
	Вариант №: 26
Дата:_	
Подпись:_	
ФИО преподавателя:	<u>Корогодин И.В.</u>
Оценка:	

ФИО СТУДЕНТА: ХВАТОВ М.М.

ВВЕДЕНИЕ

В данной работе мы знакомимся с рядом инструментов и техник, используемых при разработке навигационных приемников.

Цель проекта - получить библиотеку функций на Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам. На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах)

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юнит-тестирование в Check.

Этапы курсовой работы отличаются осваиваемыми инструментами.

ЭТАП 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1.1 Описание работы

Конечная цель всего курсового проекта - получить библиотеку функций на Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам. На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах).

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Нагхоп НХ-СSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилительподключена к трем навигационным приемникам: Javad Lexon LGDD, SwiftNavigation Piksi Multi, Clonicus разработки ЛНС МЭИ. Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников.

Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года, доступны в рабочем репозитории (директория logs) в нескольких форматах.

В моём варианты работы используется спутник С26.

Приведем параметры эфемерид системы в таблице 1.

Таблица 1 – Параметры эфемерид системы

Параметр	Описание					
t _{oe}	Опорная эпоха эфемерид					
\sqrt{A}	Корень из большой полуоси орбиты					
e	Эксцентриситет орбиты					
ω	Аргумент перигея					
Δη	Поправка в среднее движение					
M0	Средняя аномалия на опорную эпоху					
Ω0	Долгота восходящего угла орбиты на опорную эпоху					
Ω	Скорость прямого восхождения					
i0	Угол наклона орбиты на опорную эпоху					
IDOT	Скорость изменения наклона орбиты					
Cuc	Амплитуда косинусной поправки к аргументу широты					
Cus	Амплитуда синусной поправки к аргументу широты					
Crc	Амплитуда косинусной поправки к радиусу орбиты					
Crs	Амплитуда синусной поправки к радиусу орбиты					
Cic	Амплитуда косинусной поправки к углу наклона					
Cis	Амплитуда синусной поправки к углу наклона					

1.2 Использование входных данных и определение номера спутника

Данные спутника берутся из текстового файла, полученного из дампа бинарного потока данных от приемника в формате NVS BINR. Воспользуемся данными для конкретного варианта и сведём их в таблицу 2.

Таблица 2 – Значения эфемерид спутника С26

Параметр	Значение
Satnum	26
toe (MC)	219600000.000
Стѕ (рад)	7.02187500000000000e+01
Dn (рад/мс)	4.31196528136168489e-12
М0 (рад)	5.78014959386014437e-01
Сис (рад)	3.61073762178421021e-06
е	7.86192365922033787e-04
Cus (рад)	6.01261854171752930e-06
sqrtA (m ^{1/2})	5.28262158584594727e+03
Сіс (рад)	4.28408384323120117e-08
Omega0 (рад)	1.79943690961005953e+00
Cis (рад)	-5.54136931896209717e-08
і0 (рад)	9.51213294811811605e-01
Стс (рад)	2.30484375000000000e+02
Omega (рад)	3.87711120604409931e-01
OmegaDot (рад/мс)	-7.17315593359416561e-12
iDot (рад/сек)	-1.67149819603767644e-13
Tgd (MC)	9.75000000000000000e+05
Toc (Mc)	2.19600000000000000e+08
$af2 (mc/mc^2)$	1.48307593848345250e-22
af1 (мс/мс)	5.06794606280891458e-12
af0 (мc)	3.53220045566558838e-01
URA	0
IODE	257
IODC	1
codeL2	0
L2P	0
WN	789

Сравним эти данные с данными, приведёнными с сайта из альманаха спутников Бейдоу. На рисунке 2 покажем скриншот таблицы эфемерид с сайта glonass-iac.

Рисунок 2 – Таблицы эфемерид с сайта glonass-iac

Как видно, что данные предоставленные преподавателем действительно сходятся со спутником C26.

С помощью «Информационно-аналитического центра координатновременного и навигационного обеспечения» определим номер НОРАД:

PRN	НОРАД	Тип КА	Тип системы	Дата запуска	Факт. сущ. (дней)	Примечание
C01	44231	GEO-8	BDS-2	17.05.19	657	Используется по ЦН
C13	41434	IGSO-6	BDS-2	30.03.16	1800	Используется по ЦН
C14	38775	MEO-6	BDS-2	19.09.12	3088	Используется по ЦН
C16	43539	IGSO-7	BDS-2	10.07.18	968	Используется по ЦН
C19	43001	MEO-1	BDS-3	05.11.17	1215	Используется по ЦН
C20	43002	ME0-2	BDS-3	05.11.17	1215	Используется по ЦН
C21	43208	MEO-3	BDS-3	12.02.18	1116	Используется по ЦН
C22	43207	MEO-4	BDS-3	12.02.18	1116	Используется по ЦН
C23	43581	MEO-5	BDS-3	29.07.18	949	Используется по ЦН
C24	43582	MEO-6	BDS-3	29.07.18	949	Используется по ЦН
C25	43603	MEO-11	BDS-3	25.08.18	922	Используется по ЦН
C26	43602	ME0-12	BDS-3	25.08.18	922	Используется по ЦН

Рисунок 3 - Состав и состояние системы BEIDOU с «Информационноаналитического центра координатно-временного и навигационного обеспечения»

Теперь посмотрим номер НОРАД в Википедии:

Nº ≑	Спутник +	PRN ÷	Дата (UTC)	Ракета ≑	NSSDC ID \$	SCN ÷	Орбита ♦	Статус 💠	Система 🗢
33	Бэйдоу-3 М9	C23	29.07.2018 01:48	CZ-3B/YZ-1	2018-062A₺	43581 ₺	СОО, ~21 500 км	действующий	
34	Бэйдоу-3 М10	C24		29.07.2010 01.40	CZ-3B/1Z-1	2018-062B₽	43582₺	СОО, ~21 500 км	действующий
35	Бэйдоу-3 М11	C26	24.08.2018, 23:37	CZ-3B/YZ-1	2018-067A₽	43602₺	СОО, ~21 500 км	действующий	
36	Бэйдоу-3 М12	C25		24.08.2018, 23.37	CZ-3B/1Z-1	2018-067B&	43603₺	СОО, ~21 500 км	действующий
37	Бэйдоу-3 М13	C32	19.09.2018, 14:07	CZ-3B/YZ-1	2018-072A₽	43622₺	СОО, ~21 500 км	действующий	
38	Бэйдоу-3 М14	C33		19.09.2018, 14.07	CZ-3B/1Z-1	2018-072B₽	43623₺	СОО, ~21 500 км	действующий
39	Бэйдоу-3 М15	C35	15.10.2018, 04:23	CZ-3B/YZ-1	2018-078A₽	43647₺	<u>СОО</u> , ~21 500 км	действующий	Бэйдоу-3
40	Бэйдоу-3 М16	C34		15.10.2016, 04.23	CZ-3B/YZ-1	2018-078B&	43648 &	СОО, ~21 500 км	действующий
41	Бэйдоу-3 G1Q	C59	01.11.2018, 15:57	CZ-3B/E	2018-085A₽	43683 🗗	ГСО, 144.5° в. д.	действующий	
42	Бэйдоу-3 М17	йдоу-3 M17 C36	18.11.2018, 17:49	07.000/7.4	2018-093A₽	43706률	<u>СОО</u> , ~21 500 км	действующий	
43	Бэйдоу-3 М18	C37			CZ-3B/YZ-1	2018-093B₽	43707 🗗	СОО, ~21 500 км	действующий
44	Бэйдоу-3 IGSO-1	C38	20.04.2019, 14:41	CZ-3B/G2	2019-023A₽	44204 ₺	Геосинхронная, накл. 55°;	действующий	

Рисунок 4 - Состав и состояние системы BEIDOU с сайта "Википедия" Номера спутника совпадают и равны 43602, название спутника - «ВЕIDOU-3 M11». Спутнику с PRN C26 соответствует спутник №35 - это нужно учитывать при выполнении следующих пунктов задания.

1.3 Определение формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени по данным сервиса CelesTrak

Зайдем на сайт CelesTrak (https://celestrak.com) для выполнения этого пункта. Значение времени выставим 15:00, 16 февраля 2021 по UTC(0). Введем наше название спутника, сравним НОРАД и, убедившись, что он совпадает, запустим моделирование, результаты которого видим на 5-м рисунке:

Рисунок 5 – Результат моделирования на CelesTrak. Общий вид+положение спутника.

Мы устанавливаем время 15:00, потому что нам по заданию требуется построить модель на момент времени 18:00 по Московскому времени. А в программе устанавливается время по часовому поясу UTC(0).

1.4 Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Заходим на сайт https://www.gnssplanning.com и устанавливаем координаты в соответствии с расположением антенны, т.е. координаты корпуса Е МЭИ, потому что на крыше этого здания установлена антенна. Начальное время 18:00 при часовом поясе UTC(+3) – это Московское время.

Рисунок 6 – Настройка Trimble GNSS Planning для дальнейшего моделирования.

Уберём все спутники кроме того, который дан в задании в моём варианте:

Рисунок 7 – единственный спутник, который нам нужен.

Теперь снимем график угла места для нашего спутника Beidou для времени 18:00 16 февраля 2021 года. Для этого откроем вкладку (Charts)

Рисунок 8 - График угла места собственного спутника от времени

В указанном интервале график видно 3 раза. Первый раз с 18:00 до 19:00. Второй раз с 02:30 до 04:40. Третий раз с 15:30 до 18:00.

1.5 Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Теперь, для того, чтобы получить карту небосвода, перейдём во вкладку SkyPlot, оставив все предыдущие настройки. Моделирование проводим в том же временном интервале. Поскольку спутник у нас появлялся 3 раза, то и моделирование тоже проводим 3 раза.

- 16 февраля в 18:00 по UTC +3

Рисунок 9 – SkyView спутника Beidou C26 16.02.21 18:00

- 17 февраля в 4:00 по UTC +3

Рисунок 10 — SkyView спутника Beidou C26 17.02.21 4:00 - 17 февраля в 18:00 по UTC +3

Рисунок 11 – SkyView спутника Beidou C26 17.02.21 18:00

СПИСОК ЛИТЕРАТУРЫ

- 1. Электронный ресурс: <u>www.glonass-iac.ru</u> инфомационноаналитический центр коррдинатно-временного и навигационного обеспечения.
- 2. Сайт: https://www.celestrak.com определение формы орбиты и положения спутника на ней.
- 3. Интернет-сервис: https://www.gnssplanningonline.com программа, моделирующая положение спутников и их характеристики над заданной точкой земной поверхности.