PHY305 Tutorial 1

Noel Jonathan Jobu

2nd September, 2022

Q1

Determine the spherical harmonic function which are joint eigenfunction of L^2 and L_z . Consider the state $|l,l\rangle$ and $Y_l^l(\theta,\phi)=<\theta,\phi|l,l\rangle$. We know that $L_+|l,l\rangle=0$.

Use the spherical coordinate form of L_+ to determine the wave-function $Y_l^l(\theta, \phi)$ (in position space). Use the explicitly known dependence on $m_l = l$.

HINT: Assume

$$<\theta,\phi|l,l>=c_lf(\theta)e^{il\phi}$$
 (1)

and determine $f(\theta)$ and c_l .

Then verify that $L_{-}Y_{1}^{1}(\theta,\phi) = h\sqrt{2}Y_{0}^{1}(\theta,\phi)$

$\mathbf{Q2}$

The wavefunction of an electron in a hydrogen like atom is $\psi(r) = Ce^{-r/a}$, where $a = a_0/Z$; $a_0 \sim 0.5 \mathring{A}$ is the Bohr radius,

- (a) Compute the normalization constant.
- (b) If the nucleus number is A=173 and Z=70, what is the probability that the electron is in the nucleus? assume the radius of the nucleus is $1.2 \times A^{1/3} fm$.
- (c) What is the probability that the electron is in the region x, y, z > 0?

Q3

Write the Schrodinger equation for two-dimensional hydrogen atom. Suppose that the potential energy is $-e^2/r$, where $r=\sqrt{x^2+y^2}$. Using separation of variables, find the radial and the angular equations. Solve the angular equation. Describe the quantum numbers that characterise the bound states and the degeneracies of the system.