${\bf Methods}$

Table 1: Simulation mis-specification design matrix. Outer dimensions describe the unique correct models (6) while inner dimensions (18) describe the unique mis-specifications run for each simulation.

Covariance Matrix	Autocorrelation	Matern Correlation	Phylogenetic Correlation
Type	Mis-specification		
	Data Model	Data Model	Data Model
$\mathbf{L}\mathbf{M}\mathbf{M}$	Missing RE	Missing RE	Missing RE
	Mis-specified RE	Mis-specified RE	Mis-specified RE
	Data Model	Data Model	Data Model
\mathbf{GLMM}	Missing RE	Missing RE	Missing RE
	Mis-specified RE	Mis-specified RE	Mis-specified RE

Table 2: Linear Model Simulation: data generating models, parameter values, and mis-specifications.

	Data Generating Model	Parameters	Data Fitting Model
Correct	$X_i \sim N(0, 1)$ $\mu_{i,j} = X_i \beta$ $y_{i,j} \sim N(\mu_{i,j}, \sigma_y)$	$\beta = (4, -5)$ $\sigma_y = 1$	$X_i \sim N(0, 1)$ $\mu_{i,j} = X_i \beta$ $y_{i,j} \sim N(\mu_{i,j}, \sigma_y)$
Mis-specified	$X_{i} \sim N(0, 1)$ $\mu_{i,j} = X_{i}\beta$ $y'_{i,j} \sim N(\mu_{i,j}, exp(\sigma_{y}))$		$X_{i} \sim N(0, 1)$ $\mu_{i,j} = X_{i}\beta$ $y'_{i,j} \sim N(\mu_{i,j}, \sigma_{y})$

Table 3: Temporal Model Simulation: data generating models, parameter values, and mis-specifications.

	Table 3: Ten	nporal Model S	simulation: data genera	ating models, parameter values, an	d mis-specifica	ations.
	Linear Mixed Model			Generalized Linear Mixed M	odel	
	Data Generating Model	Parameters	Data Fitting Model	Data Generating Model	Parameters	Data Fitting Model
Correct	$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$	$a = 2$ $u[1] = 0$ $\sigma_u = 1$ $\sigma_y = 1$	$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y_{i} \sim Gamma(\frac{1}{CV}^{2}, e^{u_{i}}CV^{2})$	$a = .02$ $u[1] = 0$ $\sigma_u = 0.1$ $CV = 0.3$	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y_{i} \sim Gamma(\frac{1}{CV}^{2}, e^{u_{i}}CV^{2})$
cified	Missing Random Effects $\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$ Mis-specified Data Model		$y_i \sim N(a(1:n), \sigma_y)$	Missing Random Effects $\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim Gamma(\frac{1}{CV}^2, e^{u_i}CV^2)$ Misp-specified Data Model		$y_i \sim Gamma(\frac{1}{CV}^2, e^a CV^2)$
Mis-specified	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $\sigma_{y}^{2} = c(rep(35, n/4), rep(0.5, n/4),$ $rep(35, n/4), rep(0.5, n/4)$ $y_{i}^{'} \sim N(u_{i}, \sigma_{y})$		$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y'_{i} \sim N(u_{i}, \sigma_{y})$	$\mu_{i} = u_{i-1} + a$ $u_{i} \sim N(\mu_{i}, \sigma_{u})$ $y_{i} \sim Gamma(\frac{1}{CV}^{2}, e^{u_{i}}CV^{2})$		$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$
	Mis-specifed Random Effects $\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$		$\mu_i = u_{i-1}$ $u_i \sim N(\mu_i, \sigma_u)$ $y_i \sim N(u_i, \sigma_y)$	Mis-specified Random Effects $u_{i}^{'}=u_{i-1}+Gamma(0.5,20)$ $y_{i}^{'}\sim Gamma(\frac{1}{CV}^{2},e^{u_{i}^{'}}CV^{2})$		$\mu_i = u_{i-1} + a$ $u_i \sim N(\mu_i, \sigma_u)$ $y'_i \sim Gamma(\frac{1}{CV}^2, e^{u_i}CV^2)$

Table 4: Spatial Model Simulation: data generating models, parameter values, and mis-specifications.

	Ta	able 4: Spatial	Model Simulation: data	generating models, parameter	values, and n	nis-specifications.
	Linear Mixed Model	D 4	D / E''' M 11	Generalized Linear Mixe		D . F M 11
Correct	Data Generating Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y \sim N(\eta, \sigma_{y})$	$\phi = 50$	Data Fitting Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y \sim N(\eta, \sigma_{y})$		$\beta = 2$	Data Fitting Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y \sim Pois(\eta, \sigma_{y})$
	Missing Random Effects $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y \sim N(\eta, \sigma_{y})$	- ω	$ \eta_i = \beta_0 \\ y \sim N(\eta, \sigma_y) $	Missing Random Effects $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y \sim Pois(\eta)$		$ \eta_i = \exp(\beta_0) \\ y \sim Pois(\eta) $
Mis-specified	Mis-specified Data Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y \sim N(\eta, \sigma_{y})$		$\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $\sigma_{y} = exp(N(0, 1))$ $y \sim N(\eta, \sigma_{y})$	Mis-specified Data Model $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y^{'} \sim B(1, 0.7) * Pois(\eta)$		$\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = exp(\beta_{0} + \omega_{i})$ $y \sim Pois(\eta)$
	Mis-specified Random Effec $\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + exp(\omega_{i})$ $y' \sim N(\eta, \sigma_{y})$	ts Model	$\omega \sim GMRF(Q[\kappa, \sigma_{\omega}^{2}])$ $\eta_{i} = \beta_{0} + \omega_{i}$ $y' \sim N(\eta, \sigma_{y})$	Mis-specified Random Effec	ts Model	

CD 11 F TO 1 1 1 1 1 1 1 1 1 1 1	O: 1	1 /	. 1 1	, 1	1 ' 'C '
Table 5: Phylogenetic Model	Similation	data	generating models	narameter values	and mis-specifications
Table 9. I hylogenede Model	Diminition.	aaaaa	gonoraum modos,	parameter varues,	and mis specifications.

		5: Phylogenet	ic Model Simulation: data g	generating models, parameter values, and	mis-specificati	ions.
	Linear Mixed Model Data Generating Model	Parameters	Data Fitting Model	Generalized Linear Mixed Model Data Generating Model	Parameters	Data Fitting Model
Correct	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$	$a = 0$ $r = 0$ $\sigma_u^2 = 2$ $\beta = (0, 1)$ $\sigma_y = 1$	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim NegBinom(\mu = \eta, size = \theta)$	$a = 0$ $r = 0$ $\sigma_u^2 = 1$ $\beta_0 = 3$ $\theta = 0.5$	$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim NegBinom(\mu = \eta, size = \theta)$
	Missing Random Effects $tree \sim random Tree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$		$X_{i} \sim Unif(-0.5, 0.5)$ $\eta = X\beta$ $y \sim Normal(\eta, \sigma_{y})$	Missing Random Effects $tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim NegBinom(\mu = \eta, size = \theta)$		$ \eta = exp(\beta_0) $ $ y \sim NegBinom(\mu = \eta, size = \theta) $
Mis-specified	Mis-specified Data Model $tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y \sim Normal(\eta, \sigma_y)$		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = exp(X\beta + u)$ $y \sim Normal(\eta, \sigma_y)$	$\begin{aligned} & \text{Misp-specified Data Model} \\ & tree \sim randomTree(n) \\ & \Sigma = BM(tree, a, r, \sigma_u^2) \\ & u \sim MVNORM(\Sigma) \\ & \eta = exp(\beta_0 + u) \\ & y \sim NegBinom(\mu = \eta, size = \theta) \end{aligned}$		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y \sim Poisson(\mu = \eta)$
	Mis-specifed Random Effects $tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + exp(u)$ $y' \sim Normal(\eta, \sigma_y)$		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a, r, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $X_i \sim Unif(-0.5, 0.5)$ $\eta = X\beta + u$ $y' \sim Normal(\eta, \sigma_y)$	Mis-specified Random Effects		$tree \sim randomTree(n)$ $\Sigma = BM(tree, a = 0, r = 0, \sigma_u^2)$ $u \sim MVNORM(\Sigma)$ $\eta = exp(\beta_0 + u)$ $y' \sim NegBinom(\mu = \eta, size = \theta)$

Results

LM

Table 6: Linear Model. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	Unconditional ecdf, Not	Conditional ecdf, Not
							Rotated	Rotated
Kolmogorov-	theoretical	0.048	0.048	0.048	0.048	0.048	0.041	0.044
Smirnov	estimated	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 7: Linear Model. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	Unconditional ecdf, Not	Conditional ecdf, Not
	<i>J</i> 1						Rotated	Rotated
Kolmogorov-	theoretical	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Smirnov	estimated	0.963	0.963	0.963	0.963	0.963	0.962	0.961

Temporal Correlation - LMM

Table 8: Temporal Correlation - LMM. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not	Conditional ecdf, Rotated	Conditional ecdf, Not
Anderson- Darling	theoretical estimated	$0.061 \\ 0.002$	$0.046 \\ 0.024$	$0.046 \\ 0.022$	$0.046 \\ 0.027$	$0.046 \\ 0.030$	$0.048 \\ 0.053$	$0.335 \\ 0.315$	Rotated 0.993 0.315	$0.352 \\ 0.015$	Rotated 0.228 0.010
Kolmogorov- Smirnov	theoretical estimated	$0.056 \\ 0.129$	0.042 0.000	0.042 0.000	0.042 0.000	0.041 0.000	$0.041 \\ 0.054$	0.060 0.001	0.987 0.996	0.065 0.077	0.057 0.129
Lilliefors	estimated	0.051	0.052	0.053	0.052	0.048	0.050	0.169	0.528	0.047	0.051
Autocorrelation	theoretical estimated	0.047 0.001	$0.052 \\ 0.003$	$0.052 \\ 0.003$	$0.052 \\ 0.003$	0.051 0.003	$0.048 \\ 0.027$	0.043 0.006	1.000 1.000	$0.053 \\ 0.001$	0.049 0.001

Table 9: Temporal Correlation - LMM. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not Rotated	alConditional ecdf, Rotated	Conditional ecdf, Not Rotated
A: Missing RE											
Anderson- Darling	theoretical estimated		1 1	1 1	1 1	1 1	1	1 1	1 1	1 1	1 1
Kolmogorov- Smirnov	theoretical estimated		1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
Lilliefors	estimated	0.13	0.13	0.13	0.13	0.13	0.13	0.204	0.278	0.21	0.289
Autocorrelation	theoretical estimated		1 1	1 1	1 1	1 1	1 1	0.982 1	0.984 1	0.983 1	0.983 1
B: Heterosck.											
Anderson- Darling	theoretical estimated		1 0.016	1 0.014	1 0.022	1 0.016	1 0.117	1 0.912	1 0.453	1 0.78	1 0.672
Kolmogorov- Smirnov	theoretical estimated		0.867 0.365	$0.867 \\ 0.365$	0.867 0.37	0.889 0.362	0.814 0.467	1 0.141	0.96 0.964	1 0.183	1 0.657
Lilliefors	estimated	0.992	0.98	0.98	0.982	0.98	0.87	0.971	0.836	0.98	0.995
Autocorrelation	theoretical estimated	0 0	0 0	0 0	0 0	0	0 0.104	0 0.177	0.923 0.905	0.11 0.043	0 0.048
C: Missing Drift											
Anderson- Darling	theoretical estimated		1 0.995	1 0.996	1 0.997	1 1	0.05 0.051	1 0.999	1 1	1 0	1 0
Kolmogorov- Smirnov	theoretical estimated		1 1	1 1	1 1	1 1	0.047 0.051	1 1	1 1	1 1	1 1
Lilliefors	estimated	0.022	0.036	0.036	0.034	1	0.054	0.14	1	0.083	0.078
Autocorrelation	theoretical estimated		0.104 0	0.1 0	0.1 0	0.1 0.001	0.069 0.059	0.132 0	1 1	0.985 0.045	0.986 0.051

Table 10: Temporal Correlation - LMM. Type I error rates at the 0.10 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	one-step	full	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	$_{\mathrm{type}}$		Generic	Gaussian	Gaussian			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
									Rotated		Rotated
Anderson-	theoretical	0.107	0.094	0.094	0.094	0.094	0.090	0.371	0.997	0.384	0.268
Darling	estimated	0.008	0.053	0.061	0.056	0.070	0.099	0.352	0.411	0.022	0.015
Kolmogorov-	theoretical	0.103	0.084	0.084	0.084	0.084	0.080	0.105	0.992	0.113	0.100
Smirnov	estimated	0.245	0.001	0.001	0.001	0.001	0.095	0.002	0.997	0.143	0.233
Lilliefors	estimated	0.105	0.101	0.101	0.101	0.101	0.096	0.261	0.628	0.107	0.099
Autocorrelation	theoretical	0.099	0.098	0.098	0.098	0.099	0.085	0.098	1.000	0.111	0.116
Autocorrelation	estimated	0.001	0.007	0.007	0.007	0.006	0.073	0.016	1.000	0.001	0.001

Table 11: Temporal Correlation - LMM. Power at the 0.90 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	one-step Gaussian	full Gaussian	cdf	MCMC	Unconditional ecdf, Rotated	Unconditiona ecdf, Not Rotated	alConditional ecdf, Rotated	Conditional ecdf, Not Rotated
A: Missing RE											
Anderson-	theoretical		1	1	1	1	1	1	1	1	1
Darling	estimated	1	1	1	1	1	1	1	1	1	1
Kolmogorov-	theoretical		1	1	1	1	1	1	1	1	1
Smirnov	estimated	1	1	1	1	1	1	1	1	1	1
Lilliefors	estimated	0.32	0.32	0.32	0.32	0.32	0.32	0.399	0.563	0.411	0.545
Autocorrelation	theoretical	1	1	1	1	1	1	0.984	0.985	0.986	0.988
Autocorrelation	estimated	1	1	1	1	1	1	1	1	1	1
B: Heterosck.											
Anderson-	theoretical	1	1	1	1	1	1	1	1	1	1
Darling	estimated	0.023	0.035	0.031	0.045	0.036	0.15	0.914	0.522	0.786	0.676
Kolmogorov-	theoretical	1	0.998	0.998	0.998	1	0.953	1	0.973	1	1
Smirnov	estimated	0.861	0.602	0.602	0.604	0.598	0.628	0.217	0.983	0.364	0.83
Lilliefors	estimated	0.997	0.997	0.997	0.998	0.997	0.941	0.981	0.902	0.991	0.997
Autocorrelation	theoretical	0	0	0	0	0	0	0	0.958	0.284	0.791
Autocorrelation	estimated	0.004	0.007	0.007	0.007	0.007	0.128	0.359	0.955	0.096	0.106
C: Missing Drift											
Anderson-	theoretical	1	1	1	1	1	0.093	1	1	1	1
Darling	estimated	0	0.999	1	1	1	0.105	1	1	0	0
Kolmogorov-	theoretical		1	1	1	1	0.086	1	1	1	1
Smirnov	estimated	1	1	1	1	1	0.104	1	1	1	1
Lilliefors	estimated	0.062	0.083	0.084	0.088	1	0.102	0.183	1	0.155	0.138
Autocorrelation	theoretical	1	0.17	0.168	0.167	0.164	0.14	0.234	1	0.988	0.986
Autocorrelation	estimated	0	0	0	0	0.001	0.105	0	1	0.086	0.106

Temporal Correlation - GLMM

Table 12: Temporal Correlation - GLMM. Type I error rates at the 0.05 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not	Conditional ecdf, Rotated	Conditional ecdf, Not
							Rotated		Rotated
Anderson-	theoretical	0.976	0.041	0.097	0.048	0.819	0.994	0.318	0.227
Darling	estimated	0.619	0.039	0.115	0.043	0.148	0.307	0.001	0.000
Kolmogorov-	theoretical	0.875	0.033	0.077	0.056	0.724	0.990	0.071	0.049
Smirnov	estimated	0.878	0.000	0.115	0.037	0.658	0.995	0.878	0.924
Lilliefors	estimated	0.993	0.049	0.184	0.036	0.596	0.651	0.053	0.051
Autocorrelation	theoretical estimated	$0.217 \\ 0.005$	0.053 0.000	$0.054 \\ 0.001$	0.048 0.045	0.486 0.400	1.000 1.000	0.045 0.000	0.051 0.000

Table 13: Temporal Correlation - GLMM. Power at the 0.95 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not Rotated	Conditional ecdf, Rotated	Conditional ecdf, Not Rotated
A: Missing RE									
Anderson- Darling	theoretical estimated	1 0.911	$\frac{1}{0.886}$	$\frac{1}{0.83}$	$\frac{1}{0.841}$	1 0.89	1 0.869	1 0.909	1 0.861
Kolmogorov- Smirnov	theoretical estimated	1 0.986	$\frac{1}{0.965}$	1 0.958	$\frac{1}{0.958}$	1 0.945	1 0.954	1 0.95	1 0.951
Lilliefors	estimated	0.983	0.779	0.779	0.779	0.791	0.865	0.8	0.87
Autocorrelation	theoretical estimated		0.993 1	0.995 1	1 1	0.92 0.882	0.976 0.999	0.933 0.88	0.975 0.999
B: Gamma - Normal									
Anderson- Darling	theoretical estimated	1 0.001	0.959 0.02	0.961 0.289	$0.684 \\ 0.057$	0.997 0.974	1 0.457	1 0.238	1 0.226
Kolmogorov- Smirnov	theoretical estimated	1 0.982	0.88 0.795	0.874 0.797	0.581 0.086	0.852 0.608	1 0.999	1 0.977	1 0.979
Lilliefors	estimated	0.966	0.961	0.956	0.162	0.983	0.957	0.697	0.696
Autocorrelation	theoretical estimated		0.092 0.122	0.331 0.107	0.027 0.087	0.091 0.18	0.992 1	0.585 0.035	1 0.036
D: Misp RE									
Anderson- Darling	theoretical estimated		$\frac{1}{0.02}$	$\frac{1}{0.025}$	$0.063 \\ 0.051$	$0.741 \\ 0.353$	1 0.366	$\frac{1}{0.073}$	$\frac{1}{0.041}$
Kolmogorov- Smirnov	theoretical estimated		1 0.002	1 0.002	$0.055 \\ 0.047$	$0.553 \\ 0.316$	1 0.99	1 0.022	1 0.04
Lilliefors	estimated	1	0.123	0.126	0.048	0.148	0.529	0.115	0.075
Autocorrelation	theoretical estimated		0 0.005	0 0.004	0.12 0.033	0.1 0.041	1 0.997	0.903 0	0.986 0

Table 14: Temporal Correlation - GLMM. Type I error rates at the 0.10 significance level evaluated for each method for theoretical and estimated residuals.

test	residual	Pearson	one-step	cdf	MCMC	Unconditional	Unconditional	Conditional	Conditional
	$_{\mathrm{type}}$		Generic			ecdf, Rotated	ecdf, Not	ecdf, Rotated	ecdf, Not
							Rotated		Rotated
Anderson-	theoretical	0.986	0.093	0.184	0.093	0.891	0.998	0.370	0.269
Darling	estimated	0.630	0.079	0.168	0.087	0.198	0.399	0.001	0.001
Kolmogorov-	theoretical	0.908	0.077	0.146	0.086	0.809	0.994	0.123	0.092
Smirnov	estimated	0.919	0.000	0.139	0.084	0.747	0.998	0.926	0.958
Lilliefors	estimated	0.996	0.123	0.259	0.074	0.704	0.750	0.099	0.106
Autocorrelation	theoretical	0.286	0.114	0.112	0.099	0.578	1.000	0.102	0.102
Autocorrelation	estimated	0.006	0.004	0.005	0.085	0.479	1.000	0.001	0.001

Table 15: Temporal Correlation - GLMM. Power at the 0.90 significance level evaluated for each method for theoretical and estimated residuals.

test	residual type	Pearson	one-step Generic	cdf	MCMC	Unconditional ecdf, Rotated	Unconditional ecdf, Not Rotated	Conditional ecdf, Rotated	Conditional ecdf, Not Rotated
A: Missing RE									
Anderson- Darling	theoretical estimated		$\frac{1}{0.918}$	$\frac{1}{0.885}$	$\frac{1}{0.886}$	$\frac{1}{0.922}$	1 0.902	$\frac{1}{0.932}$	$\frac{1}{0.907}$
Kolmogorov- Smirnov	theoretical estimated	1 0.991	$\frac{1}{0.978}$	1 0.966	$\frac{1}{0.966}$	1 0.961	1 0.968	1 0.963	1 0.969
Lilliefors	estimated	0.988	0.845	0.843	0.843	0.83	0.903	0.836	0.907
Autocorrelation	theoretical estimated		0.995 1	0.997 1	1 1	0.939 0.892	0.98 0.999	0.947 0.894	0.98 0.999
B: Gamma - Normal									
Anderson- Darling	theoretical estimated	1 0.003	0.973 0.053	0.973 0.335	0.72 0.103	0.997 0.975	1 0.54	1 0.238	1 0.226
Kolmogorov- Smirnov	theoretical estimated	1 0.985	0.906 0.872	0.907 0.849	0.634 0.14	0.886 0.686	1 1	1 0.979	1 0.985
Lilliefors	estimated	0.982	0.977	0.971	0.236	0.99	0.973	0.732	0.734
Autocorrelation	theoretical estimated		0.15 0.162	0.418 0.148	$0.04 \\ 0.137$	0.168 0.285	0.993 1	0.599 0.042	1 0.052
D: Misp RE									
Anderson- Darling	theoretical estimated		1 0.05	1 0.06	$0.131 \\ 0.094$	$0.862 \\ 0.403$	$\frac{1}{0.437}$	1 0.093	1 0.049
Kolmogorov- Smirnov	theoretical estimated		1 0.008	1 0.008	0.121 0.078	0.671 0.407	1 0.996	1 0.057	1 0.089
Lilliefors	estimated	1	0.205	0.217	0.1	0.226	0.623	0.166	0.132
Autocorrelation	theoretical estimated	1 0.056	0 0.019	0 0.017	$0.225 \\ 0.069$	0.154 0.094	1 0.999	0.926 0.001	0.989 0.001

Spatial

Table 16: LMM Spatial Model. Type I error rates and Power evaluated for each analytical and simulation method for theoretical residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.044	0.999	1.000	1.000
Anderson-Darling	one-step Generic	0.011	0.999	1.000	0.778
Anderson-Darling	one-step Gaussian	0.011	0.999	1.000	0.889
Anderson-Darling	full Gaussian	0.011	0.999	1.000	0.889
Anderson-Darling	cdf	0.009	0.999	1.000	0.883
Anderson-Darling	MCMC	0.050	0.999	1.000	0.761
Anderson-Darling	Unconditional ecdf, Rotated	0.225	1.000	1.000	0.974
Anderson-Darling	Unconditional ecdf, Not Rotated	0.762	1.000	1.000	1.000
Anderson-Darling	Conditional ecdf, Rotated	0.338	1.000	1.000	1.000
Anderson-Darling	Conditional ecdf, Not Rotated	0.216	1.000	1.000	1.000
Kolmogorov- Smirnov	Pearson	0.046	0.992	0.977	1.000
Kolmogorov- Smirnov	one-step Generic	0.012	0.992	0.973	0.538
Kolmogorov- Smirnov	one-step Gaussian	0.012	0.992	0.973	0.538
Kolmogorov- Smirnov	full Gaussian	0.012	0.992	0.973	0.538
Kolmogorov- Smirnov	cdf	0.012	0.992	0.978	0.536
Kolmogorov- Smirnov	MCMC	0.038	0.992	0.948	0.487
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.016	0.996	0.992	0.649
Kolmogorov- Smirnov	Unconditional ecdf, Not Rotated	0.687	0.992	0.901	1.000
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.050	0.998	0.998	1.000
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.039	0.992	0.980	1.000
Autocorrelation	Pearson	0.059	0.998	0.148	0.958
Autocorrelation	one-step Generic	0.050	0.998	0.012	0.334
Autocorrelation	one-step Gaussian	0.050	0.998	0.011	0.314
Autocorrelation	full Gaussian	0.050	0.998	0.011	0.314
Autocorrelation	cdf	0.050	0.998	0.027	0.175
Autocorrelation	MCMC	0.043	0.998	0.001	0.147
Autocorrelation	Unconditional ecdf, Rotated	0.045	0.996	0.013	0.130
Autocorrelation	Unconditional ecdf, Not Rotated	0.999	0.998	0.923	0.982
Autocorrelation	Conditional ecdf, Rotated	0.062	0.995	0.055	0.363
Autocorrelation	Conditional ecdf, Not Rotated	0.054	0.998	0.057	0.515

Table 17: LMM Spatial Model. Type I error rates and Power evaluated for each analytical and simulation method for estimated residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.002	0.033	0.054	0.197
Anderson-Darling	one-step Generic	0.043	0.037	NA	NA
Anderson-Darling	one-step Gaussian	0.041	0.033	0.055	0.189
Anderson-Darling	full Gaussian	0.042	0.040	0.055	0.188
Anderson-Darling	cdf	0.038	0.021	0.055	0.181
Anderson-Darling	MCMC	0.053	0.035	0.062	0.222
Anderson-Darling	Unconditional ecdf, Rotated	0.304	0.256	0.999	0.976
Anderson-Darling	Unconditional ecdf, Not Rotated	0.111	0.137	0.992	0.965
Anderson-Darling	Conditional ecdf, Rotated	0.025	0.253	0.995	0.880
Anderson-Darling	Conditional ecdf, Not Rotated	0.016	0.154	0.993	0.874
Kolmogorov- Smirnov	Pearson	0.139	0.004	0.985	0.935
Kolmogorov- Smirnov	one-step Generic	0.013	0.004	NA	NA
Kolmogorov- Smirnov	one-step Gaussian	0.013	0.004	0.982	0.868
Kolmogorov- Smirnov	full Gaussian	0.013	0.004	0.981	0.896
Kolmogorov- Smirnov	cdf	0.019	0.004	0.982	0.871
Kolmogorov-Smirnov	MCMC	0.039	0.004	0.983	0.846
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.026	0.002	0.931	0.851
Kolmogorov- Smirnov	Unconditional eddf, Not Rotated	0.329	0.004	0.983	0.939
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.090	0.007	0.925	0.925
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.146	0.002	0.986	0.940
Lilliefors	Pearson	0.054	0.124	0.999	0.916
Lilliefors	one-step Generic	0.048	0.122	NA	NA
Lilliefors	one-step Gaussian	0.048	0.124	0.999	0.947
Lilliefors	full Gaussian	0.048	0.124	0.998	0.954
Lilliefors	cdf	0.054	0.124	0.999	0.943
Lilliefors	MCMC	0.067	0.124	0.999	0.860
Lilliefors	Unconditional ecdf, Rotated	0.145	0.191	1.000	0.971
Lilliefors	Unconditional ecdf, Not Rotated	0.153	0.168	1.000	0.982
Lilliefors	Conditional ecdf, Rotated	0.076	0.184	1.000	0.925
Lilliefors	Conditional ecdf, Not Rotated	0.064	0.172	0.999	0.927
Autocorrelation	Pearson	0.004	0.998	0.753	0.854
Autocorrelation	one-step Generic	0.046	0.998	NA	NA
Autocorrelation	one-step Gaussian	0.046	0.998	0.738	0.861
Autocorrelation	full Gaussian	0.046	0.998	0.758	0.880
Autocorrelation	cdf	0.045	0.998	0.737	0.859
Autocorrelation	MCMC	0.038	0.998	0.753	0.864
Autocorrelation	Unconditional ecdf, Rotated	0.039	0.998	0.826	0.851
Autocorrelation	Unconditional ecdf, Not Rotated	0.998	0.998	0.864	0.982
Autocorrelation	Conditional ecdf, Rotated	0.004	0.998	0.826	0.849
Autocorrelation	Conditional ecdf, Not Rotated	0.004	0.998	0.860	0.850

Table 18: GLMM Spatial Model. Type I error rates and Power evaluated for each analytical and simulation method for theoretical residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.099	0.995	1.000	0.099
Anderson-Darling	one-step Generic	0.037	0.991	1.000	0.130
Anderson-Darling	cdf	0.040	0.991	1.000	0.140
Anderson-Darling	MCMC	0.060	0.991	1.000	0.082
Anderson-Darling	Unconditional ecdf, Rotated	0.197	1.000	0.966	0.392
Anderson-Darling	Unconditional ecdf, Not Rotated	0.541	0.998	1.000	0.550
Anderson-Darling	Conditional ecdf, Rotated	0.325	1.000	1.000	0.344
Anderson-Darling	Conditional ecdf, Not Rotated	0.139	0.997	1.000	0.129
Kolmogorov- Smirnov	Pearson	0.085	0.979	1.000	0.085
Kolmogorov- Smirnov	one-step Generic	0.037	0.916	1.000	0.083
Kolmogorov- Smirnov	cdf	0.040	0.916	1.000	0.084
Kolmogorov- Smirnov	MCMC	0.044	0.912	0.986	0.061
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.062	0.944	0.812	0.128
Kolmogorov- Smirnov	Unconditional ecdf, Not Rotated	0.469	0.911	1.000	0.467
Kolmogorov-Smirnov	Conditional ecdf, Rotated	0.064	0.938	1.000	0.074
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.052	0.912	1.000	0.057
disp	Pearson	0.065	1.000	1.000	0.065
disp	Unconditional ecdf, Rotated	0.033	0.994	0.071	0.039
disp	Unconditional ecdf, Not Rotated	0.033	0.993	0.066	0.035
disp	Conditional ecdf, Rotated	0.030	0.994	0.586	0.029
disp	Conditional ecdf, Not Rotated	0.027	0.993	0.586	0.029
Autocorrelation	Pearson	0.064	0.988	0.094	0.064
Autocorrelation	one-step Generic	0.055	0.989	0.001	0.618
Autocorrelation	cdf	0.055	0.990	0.000	0.620
Autocorrelation	MCMC	0.071	0.988	0.000	0.265
Autocorrelation	Unconditional eddf, Rotated	0.020	0.975	0.003	0.518
Autocorrelation	Unconditional ecdf, Not Rotated	0.986	0.984	0.588	0.988
Autocorrelation	Conditional ecdf, Rotated	0.053	0.978	0.047	0.064
Autocorrelation	Conditional ecdf, Not Rotated	0.063	0.985	0.060	0.062

Table 19: GLMM Spatial Model. Type I error rates and Power evaluated for each analytical and simulation method for estimated residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.005	0.829	0.007	0.003
Anderson-Darling	one-step Generic	0.036	0.759	0.129	0.038
Anderson-Darling	cdf	0.027	0.751	0.221	0.049
Anderson-Darling	MCMC	0.049	0.753	0.096	0.045
Anderson-Darling	Unconditional ecdf, Rotated	0.237	0.996	0.041	0.301
Anderson-Darling	Unconditional ecdf, Not Rotated	0.094	0.981	0.145	0.079
Anderson-Darling	Conditional ecdf, Rotated	0.047	0.990	0.008	0.047
Anderson-Darling	Conditional ecdf, Not Rotated	0.009	0.970	0.005	0.006
Kolmogorov- Smirnov	Pearson	0.253	0.984	1.000	0.555
Kolmogorov- Smirnov	one-step Generic	0.007	0.820	0.745	0.001
Kolmogorov- Smirnov	cdf	0.006	0.820	0.931	0.001
Kolmogorov- Smirnov	MCMC	0.038	0.820	0.089	0.022
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.018	0.872	0.131	0.002
Kolmogorov- Smirnov	Unconditional ecdf, Not Rotated	0.063	0.814	0.807	0.010
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.086	0.880	0.999	0.366
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.144	0.813	1.000	0.473
Lilliefors	Pearson	0.062	0.972	1.000	0.129
Lilliefors	one-step Generic	0.047	0.270	0.994	0.039
Lilliefors	cdf	0.047	0.309	0.996	0.044
Lilliefors	MCMC	0.046	0.318	0.074	0.042
Lilliefors	Unconditional ecdf, Rotated	0.124	0.822	0.746	0.147
Lilliefors	Unconditional ecdf, Not Rotated	0.096	0.694	0.998	0.081
Lilliefors	Conditional ecdf, Rotated	0.172	0.840	1.000	0.267
Lilliefors	Conditional ecdf, Not Rotated	0.153	0.696	1.000	0.292
disp	Pearson	0.000	1.000	0.000	0.000
disp	Unconditional ecdf, Rotated	0.002	1.000	0.000	0.001
disp	Unconditional ecdf, Not Rotated	0.001	1.000	0.000	0.001
disp	Conditional ecdf, Rotated	0.053	1.000	0.000	0.396
disp	Conditional ecdf, Not Rotated	0.054	1.000	0.000	0.395
Autocorrelation	Pearson	0.001	0.988	0.001	0.348
Autocorrelation	one-step Generic	0.079	0.989	0.008	0.824
Autocorrelation	cdf	0.079	0.990	0.009	0.829
Autocorrelation	MCMC	0.062	0.989	0.024	0.298
Autocorrelation	Unconditional ecdf, Rotated	0.050	0.984	0.081	0.744
Autocorrelation	Unconditional ecdf, Not Rotated	0.990	0.990	0.234	0.990
Autocorrelation	Conditional ecdf, Rotated	0.001	0.986	0.003	0.317
Autocorrelation	Conditional ecdf, Not Rotated	0.001	0.989	0.004	0.335

Phylogenetic

Table 20: LMM Phylogenetic Model. Type I error rates and Power evaluated for each analytical and simulation method for theoretical residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.055	1.000	1.000	1.000
Anderson-Darling	one-step Generic	0.047	1.000	0.924	0.937
Anderson-Darling	one-step Gaussian	0.047	1.000	0.986	0.994
Anderson-Darling	full Gaussian	0.047	1.000	0.986	0.994
Anderson-Darling	cdf	0.052	1.000	0.980	0.989
Anderson-Darling	MCMC	0.042	1.000	0.916	0.905
Anderson-Darling	Unconditional ecdf, Rotated	0.335	1.000	0.997	0.999
Anderson-Darling	Unconditional ecdf, Not Rotated	0.759	1.000	1.000	1.000
Anderson-Darling	Conditional ecdf, Rotated	0.327	1.000	1.000	1.000
Anderson-Darling	Conditional ecdf, Not Rotated	0.229	1.000	1.000	1.000
Kolmogorov- Smirnov	Pearson	0.047	1.000	1.000	1.000
Kolmogorov-Smirnov	one-step Generic	0.042	1.000	0.739	0.752
Kolmogorov-Smirnov	one-step Gaussian	0.042	1.000	0.740	0.752
Kolmogorov-Smirnov	full Gaussian	0.042	1.000	0.740	0.752
Kolmogorov- Smirnov	cdf	0.043	1.000	0.738	0.750
Kolmogorov- Smirnov	MCMC	0.042	1.000	0.758	0.737
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.052	1.000	0.835	0.840
Kolmogorov-Smirnov	Unconditional ecdf, Not Rotated	0.679	1.000	1.000	1.000
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.058	1.000	1.000	1.000
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.043	1.000	1.000	1.000
Autocorrelation	Pearson	0.045	0.999	0.850	0.872
Autocorrelation	one-step Generic	0.042	0.999	0.321	0.326
Autocorrelation	one-step Gaussian	0.042	0.999	0.434	0.442
Autocorrelation	full Gaussian	0.042	0.999	0.434	0.442
Autocorrelation	cdf	0.041	0.999	0.622	0.621
Autocorrelation	MCMC	0.051	0.999	0.337	0.329
Autocorrelation	Unconditional ecdf, Rotated	0.045	0.992	0.093	0.087
Autocorrelation	Unconditional ecdf, Not Rotated	0.999	0.997	0.979	0.983
Autocorrelation	Conditional ecdf, Rotated	0.049	0.996	0.408	0.400
Autocorrelation	Conditional ecdf, Not Rotated	0.051	0.997	0.354	0.363

Table 21: LMM Phylogenetic Model. Type I error rates and Power evaluated for each analytical and simulation method for estimated residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.000	0.034	0.221	0.201
Anderson-Darling	one-step Generic	0.037	0.034	0.016	0.006
Anderson-Darling	one-step Gaussian	0.029	0.029	0.447	0.430
Anderson-Darling	full Gaussian	0.028	0.028	0.451	0.436
Anderson-Darling	cdf	0.068	0.038	0.610	0.610
Anderson-Darling	MCMC	0.038	0.038	0.216	0.215
Anderson-Darling	Unconditional ecdf, Rotated	0.290	0.293	0.999	1.000
Anderson-Darling	Unconditional ecdf, Not Rotated	0.261	0.165	0.967	0.963
Anderson-Darling	Conditional ecdf, Rotated	0.004	0.293	0.538	0.504
Anderson-Darling	Conditional ecdf, Not Rotated	0.003	0.151	0.530	0.496
Kolmogorov- Smirnov	Pearson	0.638	0.005	0.991	0.993
Kolmogorov- Smirnov	one-step Generic	0.013	0.005	0.987	0.981
Kolmogorov- Smirnov	one-step Gaussian	0.013	0.005	0.987	0.981
Kolmogorov- Smirnov	full Gaussian	0.013	0.005	0.986	0.980
Kolmogorov- Smirnov	cdf	0.046	0.005	0.979	0.972
Kolmogorov- Smirnov	MCMC	0.043	0.005	0.446	0.416
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.014	0.007	0.973	0.969
Kolmogorov- Smirnov	Unconditional ecdf, Not Rotated	0.536	0.004	0.996	0.995
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.538	0.006	0.989	0.986
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.629	0.005	0.992	0.992
Lilliefors	Pearson	0.049	0.122	0.995	0.994
Lilliefors	one-step Generic	0.042	0.122	0.993	0.991
Lilliefors	one-step Gaussian	0.042	0.122	0.997	0.995
Lilliefors	full Gaussian	0.042	0.122	0.997	0.995
Lilliefors	cdf	0.075	0.122	0.987	0.987
Lilliefors	MCMC	0.044	0.122	0.524	0.474
Lilliefors	Unconditional ecdf, Rotated	0.154	0.220	0.998	0.999
Lilliefors	Unconditional ecdf, Not Rotated	0.172	0.206	0.998	1.000
Lilliefors	Conditional ecdf, Rotated	0.059	0.230	0.595	0.577
Lilliefors	Conditional ecdf, Not Rotated	0.048	0.201	0.605	0.578
Autocorrelation	Pearson	0.935	0.999	0.798	0.805
Autocorrelation	one-step Generic	0.021	0.999	0.473	0.478
Autocorrelation	one-step Gaussian	0.021	0.999	0.484	0.488
Autocorrelation	full Gaussian	0.021	0.999	0.484	0.485
Autocorrelation	cdf	0.019	0.999	0.391	0.387
Autocorrelation	MCMC	0.035	0.999	0.292	0.278
Autocorrelation	Unconditional ecdf, Rotated	0.021	0.999	0.357	0.344
Autocorrelation	Unconditional ecdf, Not Rotated	1.000	0.999	0.972	0.977
Autocorrelation	Conditional ecdf, Rotated	0.883	0.999	0.369	0.339
Autocorrelation	Conditional ecdf, Not Rotated	0.902	0.999	0.424	0.407

Table 22: GLMM Phylogenetic Model. Type I error rates and Power evaluated for each analytical and simulation method for theoretical residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	1.000	1.000	1.000	1.000
Anderson-Darling	one-step Generic	0.035	0.985	0.999	0.330
Anderson-Darling	cdf	0.053	0.991	1.000	0.339
Anderson-Darling	MCMC	0.067	0.989	0.748	0.149
Anderson-Darling	Unconditional ecdf, Rotated	0.671	0.999	0.711	0.561
Anderson-Darling	Unconditional ecdf, Not Rotated	0.603	0.999	0.925	0.945
Anderson-Darling	Conditional ecdf, Rotated	0.351	0.999	1.000	1.000
Anderson-Darling	Conditional ecdf, Not Rotated	0.131	0.999	1.000	1.000
Kolmogorov- Smirnov	Pearson	1.000	1.000	1.000	1.000
Kolmogorov- Smirnov	one-step Generic	0.037	0.844	0.986	0.330
Kolmogorov- Smirnov	cdf	0.049	0.849	0.992	0.339
Kolmogorov-Smirnov	MCMC	0.055	0.848	0.545	0.158
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.588	0.972	0.644	0.489
Kolmogorov-Smirnov	Unconditional ecdf, Not Rotated	0.549	0.843	0.844	0.925
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.161	0.975	1.000	0.992
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.035	0.855	1.000	0.931
Autocorrelation	Pearson	0.211	0.670	0.211	0.622
Autocorrelation	one-step Generic	0.054	0.903	0.428	0.222
Autocorrelation	cdf	0.063	0.895	0.436	0.208
Autocorrelation	MCMC	0.044	0.904	0.315	0.054
Autocorrelation	Unconditional ecdf, Rotated	0.070	0.460	0.090	0.071
Autocorrelation	Unconditional ecdf, Not Rotated	0.874	0.880	0.891	0.205
Autocorrelation	Conditional ecdf, Rotated	0.042	0.460	0.060	0.188
Autocorrelation	Conditional ecdf, Not Rotated	0.038	0.878	0.054	0.680

Table 23: GLMM Phylogenetic Model. Type I error rates and Power evaluated for each analytical and simulation method for estimated residuals. Results are partitioned out by model mis-specification (from left to right) and residual type (top to bottom).

		Type I Error		Power	
test	method	Correct	A: Missing RE	B: Misp Data	C: Misp RE
Anderson-Darling	Pearson	0.999	1.000	0.000	1.000
Anderson-Darling	one-step Generic	0.027	0.011	0.053	0.031
Anderson-Darling	cdf	0.043	0.013	0.422	0.025
Anderson-Darling	MCMC	0.030	0.011	0.076	0.044
Anderson-Darling	Unconditional ecdf, Rotated	0.260	0.835	0.005	0.259
Anderson-Darling	Unconditional ecdf, Not Rotated	0.179	0.633	0.048	0.121
Anderson-Darling	Conditional ecdf, Rotated	0.045	0.811	0.008	0.181
Anderson-Darling	Conditional ecdf, Not Rotated	0.024	0.634	0.004	0.060
Kolmogorov-Smirnov	Pearson	1.000	1.000	1.000	1.000
Kolmogorov- Smirnov	one-step Generic	0.005	0.524	0.006	0.008
Kolmogorov- Smirnov	cdf	0.002	0.330	0.814	0.000
Kolmogorov-Smirnov	MCMC	0.024	0.328	0.051	0.009
Kolmogorov- Smirnov	Unconditional ecdf, Rotated	0.397	0.528	0.863	0.097
Kolmogorov- Smirnov	Unconditional ecdf, Not Rotated	0.275	0.322	0.907	0.060
Kolmogorov- Smirnov	Conditional ecdf, Rotated	0.055	0.513	1.000	0.012
Kolmogorov- Smirnov	Conditional ecdf, Not Rotated	0.156	0.319	1.000	0.001
Lilliefors	Pearson	1.000	1.000	0.992	1.000
Lilliefors	one-step Generic	0.039	0.647	0.121	0.059
Lilliefors	cdf	0.037	0.623	0.620	0.038
Lilliefors	MCMC	0.053	0.634	0.051	0.046
Lilliefors	Unconditional eddf, Rotated	0.443	0.792	0.267	0.185
Lilliefors	Unconditional ecdf, Not Rotated	0.087	0.772	0.699	0.075
Lilliefors	Conditional ecdf, Rotated	0.132	0.776	0.989	0.112
Lilliefors	Conditional ecdf, Not Rotated	0.216	0.780	1.000	0.062
Autocorrelation	Pearson	0.214	0.670	0.899	0.057
Autocorrelation	one-step Generic	0.044	0.884	0.514	0.024
Autocorrelation	cdf	0.047	0.890	0.498	0.029
Autocorrelation	MCMC	0.038	0.884	0.077	0.040
Autocorrelation	Unconditional ecdf, Rotated	0.067	0.573	0.320	0.039
Autocorrelation	Unconditional ecdf, Not Rotated	0.885	0.889	0.833	0.253
Autocorrelation	Conditional ecdf, Rotated	0.100	0.566	0.832	0.042
Autocorrelation	Conditional ecdf, Not Rotated	0.132	0.888	0.585	0.036

Table 24: Overview of issues and recommendations for common classes of models. Correlation and distributions refer to predicted data from a fitted model, against which observed points are compared. A linear rotation refers to a multiplication of the simulated and observed data by a Cholesky decomposition of the estimated covariance matrix of the observed data, z'=Lz, as available in DHARMa.

Model class	Case studies	Issues and causes	Recommendation
Linear model	Linear model	No issues	Pearson residuals
Generalized linear	Skewed Gamma	Non-normality resulting from response	Quantile residual
model (GLM)		variable. Quantile residuals are needed if	
		not approximately normal.	
Linear mixed model	Random walk, Spatial	Linear correlations caused by non-	Use a method that linearly decorrela
(LMM), Multivariate	LMM, Multinomial	independence in observations.	order to transform to a unit iid no
model			OSA Full Gaussian, OSA one-step
			sian, or simulation residuals with rot
Generalized linear	Spatial Poisson, Re-	Non-normality and non-linear correlations	Needs non-linear decorrelation and
mixed model (GLMM)	peated measures	caused by response variable and non-	tiles. Needs non-linear decorrelation
	Tweedie	independence in observations.	quantiles. Best approach depends or
			study and sample size.