

Automotive-grade N-channel 100 V, 7 mΩ typ., 80 A, STripFET™ F7 Power MOSFET in an H²PAK-2 package

Features

Order code	V _{DS}	R _{DS(on)} max.	l _D	P _{TOT}
STH80N10LF7-2AG	100 V	10 mΩ	80 A	110 W

- AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- · High avalanche ruggedness

Applications

· Switching applications

Description

DTG1S23NZ

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Product status link STH80N10LF7-2AG

Product summary				
Order code	STH80N10LF7-2AG			
Marking	80N10LF7			
Package	H²PAK-2			
Packing	Tape and reel			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	100	V
V _{GS}	Gate-source voltage	±20	V
I_	Drain current (continuous) at T _{case} = 25 °C	80	Α
I _D	Drain current (continuous) at T _{case} = 100 °C	54	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	320	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	110	W
E _{AS} (2)	Single pulse avalanche energy	108	mJ
T _{stg}	Storage temperature range	-55 to 175	°C
Tj	Operating junction temperature range	-55 (0 175	

^{1.} Pulse width is limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.36	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb	35	C/VV

1. When mounted on a 1-inch² FR-4 board, 2oz Cu.

DS11708 - Rev 2 page 2/14

^{2.} $T_j \le 25$ °C, $I_D = 80$ A, $V_{DD} = 60$ V

2 Electrical characteristics

 $(T_{case} = 25 \, ^{\circ}C \text{ unless otherwise specified}).$

Table 3. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	100			V	
V _{(BR)DSS} I _{DSS} I _{GSS} V _{GS(th)}		V _{GS} = 0 V, V _{DS} = 100 V			1		
	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$ $V_{j} = 125 \text{ °C}$			10	μA	
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	V	
R _{DS(on)}	Static drain course on registance	V _{GS} = 10 V, I _D = 40 A		7	10	m0	
	Static drain-source on-resistance	$V_{GS} = 4.5 \text{ V}, I_D = 40 \text{ A}$		9	16	mΩ	

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2900	-	
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	1077	-	pF
C _{rss}	Reverse transfer capacitance			99	-	•
Qg	Total gate charge	V _{DD} = 50 V, I _D = 80 A, V _{GS} = 4.5 V (see Figure 13. Test circuit for gate charge behavior)	-	28.3	-	
Q _{gs}	Gate-source charge		-	10.4	-	nC
Q_{gd}	Gate-drain charge		-	14.3	-	

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 50 V, I_{D} = 40 A R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 12. Test circuit for resistive load switching times)	-	14.7	-	
t _r	Rise time		-	33	-	
t _{d(off)}	Turn-off delay time		-	69.3	-	ns
t _f	Fall time		-	21	-	

DS11708 - Rev 2 page 3/14

Table 6. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		80	Α
I _{SDM} (1)	Source-drain current (pulsed)		-		320	А
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 80 A	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 80 A, di/dt = 100 A/μs, V _{DD} = 80 V (see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	55.7		ns
Q _{rr}	Reverse recovery charge		-	79.6		nC
I _{RRM}	Reverse recovery current	circuit for inductive load switching and diode recovery times)		2.9		Α

^{1.} Pulse width limited by safe operating area.

DS11708 - Rev 2 page 4/14

^{2.} Pulse test: pulse duration = $300 \mu s$, duty cycle 1.5%.

2.1 Electrical characteristics curves

Figure 3. Output characteristics

I D GIPG3005201610100CH

(A) V GS = 6, 7, 8, 9, 10 V

250

V GS = 5 V

200

V GS = 3.5 V

50

V GS = 3 V

0

1 2 3 4 5 V DS (V)

DS11708 - Rev 2 page 5/14

C GIPG300520161010CVR C ISS

10 3

f = 1 MHz

C OSS

40

60

80

100

C RSS

V _{DS} (V)

Figure 8. Normalized gate threshold voltage vs temperature

V _{GS(th)} GIPG300520160945VTH
(norm.)

1.2

I _D = 250 μA

1.0

0.8

0.6

0.4

0.2

-75 -25 25 75 125 175 T_j (°C)

Figure 9. Normalized on-resistance vs temperature R _{DS(on)} (norm.) GIPG300520160944RON 2.2 $V_{GS} = 10 V$ $I_D = 40 A$ 1.8 1.4 1.0 0.2 -75 25 75 -25 125 175 T_j (°C)

Figure 11. Source-drain diode forward characteristics

DS11708 - Rev 2 page 6/14

3 Test circuits

Figure 12. Test circuit for resistive load switching times

Figure 13. Test circuit for gate charge behavior

Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclamped inductive load test circuit

Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform

DS11708 - Rev 2 page 7/14

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 H²PAK-2 shallow gullwing package information

Figure 18. H²PAK-2 shallow gullwing package outline

DS11708 - Rev 2 page 8/14

Table 7. H²PAK-2 shallow gullwing mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	4.30	-	4.70
A1	-0.05	-	0.08
С	1.17	-	1.37
е	4.98	-	5.18
Е	0.50	-	0.90
F	0.78	-	0.85
Н	10.00	-	10.40
H1	7.40	-	7.80
L	15.30	-	15.80
L1	1.27	-	1.40
L2	4.93	-	5.23
L3	6.85	-	7.25
L4	1.50	-	1.70
M	2.60	-	2.90
R	0.20	-	0.60
V	0°	-	8°

Figure 19. H²PAK-2 recommended footprint (dimensions are in mm)

DS11708 - Rev 2 page 9/14

4.2 Packing information

Figure 20. Tape outline

AM08852v2

DS11708 - Rev 2 page 10/14

Figure 21. Reel outline

Table 8. Tape and reel mechanical data

	Таре			Reel		
Dim.	mm		Dim.	mm		
Dim.	Min.	Max.	Diiii.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base q	uantity	1000	
P2	1.9	2.1	Bulk qu	uantity	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

DS11708 - Rev 2 page 11/14

Revision history

Table 9. Document revision history

Date	Version	Changes
13-Jun-2016	1	First release
14-Jan-2019	2	Updated description title and Section Features.

DS11708 - Rev 2 page 12/14

Contents

1	Elec	trical ratings	2		
2		trical characteristics			
		Electrical characteristics curves			
3	Test	circuits	7		
4					
		H ² PAK-2 shallow gullwing package information			
	4.2	Packing information	9		
Rev	ision	history	12		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS11708 - Rev 2 page 14/14