Assessment Schedule - 2012

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding involves describing, identifying, naming, drawing, calculating, or giving an account of bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the use of chemistry vocabulary, symbols and conventions.	Demonstrate in-depth understanding involves making and explaining links between the bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires explanations that use chemistry vocabulary, symbols and conventions.	Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing links between bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the consistent use of chemistry vocabulary, symbols and conventions.

Evidence Statement

One	Expected Cove	erage		Achievement		Merit	:		Excellen	ce
(a) (b)	Lewis diagrams One). The central ator regions of elect clouds around it electrons are ampossible from eminimise repulsiplanar shape. The central ator regions of electrons are boolding so the electrons of electrons of electrons are angle of 120°. A of electrons are arrangement of shape is trigonal planar is angle of shape is trigonal planar arrangement arrangement	m in SO ₂ has the ron density/elect. The regions ranged as far a ach other (in o sion) making a his gives a borrof these region of these region of these region of the mathematical the mathematical the side of the mathematical the side of the mathematical the side of the mathematical three of the bonding so the the bonds/molecular transfer of the side	hree ectron of part as order to trigonal and angle of as is non- colecule is as three bund it. ang a a bond as regions e	 In (b) ONE s correct. States that 12 means there three regions electron dens around the coatom. States shape molecule is determined by regions of electron dens 	 In (b) the arrangement of electrons around the central atom is used to explain the shape of olecule is etermined by gions of eetron density ound the central atom is used to explain the shape of both molecules. In (b) the arrangement of electrons around the central atom is used to explain the electrons around the central atom is used to explain the bond angle of both molecules. 		nd m is n the f nd m is n the	• In (b) the arrangement of the electron density around the central atom is used to explain the shapes and angles of the molecules. Includes a comparison of the different shape but same bond angle.		
(c)	The CBr ₄ molec The CH ₃ Br mole of electrons aro atom. These are regions (clouds molecules is tet The C-Br bond difference in ele C and Br. In CH ₃ Br, the C polar than the C electronegativit than the electro H. Although the symmetrically a the lower polari means that the l cancel so the m In CBr ₄ , all bon same (C-Br). The symmetrically a atom and becau- cancel, the mole	lecule is polar. CH ₃ Br have found the central all bonding et all bonding et all bonding et all bonding et all bond and are certonegativity. C-Br bonds are C-H bond as the ground the C-H bond dipoles dolecule is polar are polar are around the central around t	our regions I carbon lectron of both the between more e greater he C and anged bon atom, bond o not ir. and are the tranged tral C poles	 In (c) C-Br be is polar. Predicts one polarity correwith one pieces supporting evidence Polarity deposition of the symmetry of molecule. 	ect ce of ends	in electory are that polar OR In (a bon can ove	c) the difference etronegativities ween C and Br used to explain t C-Br bonds are ar. c) links the ad dipoles celling to the erall molecule arity.		molecu explain justifie	ed and d in terms of ions of bond v and try /
NØ	N1	N2	A3	A4	M	15	M6		E7	E8
No response or no relevant evidence	;	2a	3a	4a	21	with er omi add		2e n minor rror / ission / litional rmation.	2e	

Appendix One: Question One (a)

Molecule	Lewis structure
	:C: :C: :C: :
PCl ₃	or :C̈́I – P̈ – C̈́I: :C̤I:
CO ₂	Ö = C = Ö
H ₂ S	H: S: H or H – S – H

 π

Two	Expected Coverage		Achievement	Merit	Excellence
(a)	Type of particle molecule atom / cations and electrons atom	Attractive forces between particles intermolecular metallic covalent	ONE row or TWO from one column correct. Silicon dioxide has strong covalent bonds. High melting point because a lot of energy is required to break the covalent bonds.	a In (b) the high	
(b)		valent bonds are ge number of juires a lot of energy and therefore the	 Zinc chloride is made up of zinc ions OR it is held together by ionic bonds. For something to conduct there must be free moving charged 	Explains why zinc conducts and why zinc chloride does not as a solid OR Explains why zinc is insoluble	• In (b) the high melting point of silicon dioxide is explained and justified by the type of bonding.
(c)	of neighbouring atom Zinc chloride is made ions and negative chl together by electrosta D lattice. Conductivity Zinc chloride does no as a solid as these ion around. (When dissol are free to move and zinc chloride solution In zinc metal the delo	anding in which attracted to the nuclei as. The up of positive zinc oride ions held attractions in a 3— The conduct electricity as are not free to move are to the charge so a conducts electricity.) The conducts electricity are able to the are able to the allic lattice. The polar water the ions in the salt attracted to the are to the ions. The experience of the oxygen ends of the attracted to the dather the positive water molecules are	particles. Zinc conducts, because it has free moving electrons. Zinc chloride does not conduct as a solid, as the ions are fixed in position. Zinc chloride conducts when aqueous or molten, as the ions are free to move. Zinc is not soluble, it is a metallic substance. Zinc chloride does dissolve in water, as it is an ionic substance.		Contrasts with reference to bonding and structure why zinc conducts and why zinc chloride will not conduct as a solid. Contrasts with reference to bonding and structure why zinc is insoluble but zinc chloride is soluble.

NCEA Level 2 Chemistry (91164) 2012 — page 5 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	1a	2a	4a	6a	m from part (a) or (b) AND m from part (c)	3m	e from part (b) and e from part (c)	3e

Three	Expected Covera	nge		Achievem	ent	Merit		Excellence		
(a)	Bonds broken: C-Bonds formed: C-			• Has TW bonds ou • In (b) on	ut of four.	Has ALL four correct bonds		Explains that the bonds being broken are weak		
(b)	128 g/16.0 g mol 8.00 mol × 889 k.		.kJ	correct.	· ·		intermolecular forces and that energy is			
(c)	The reaction is en positive and beca absorbing energy During this reacti intermolecular for molecules are bro Energy is needed forces so the reactions.	use the water i from the flam on the weak rees between v ken to break these	s e. vater attractive	is positive. OR Because water is	the value ve.	• In (d) two steps of calculation correct.			required to break these bonds, so therefore the reaction is endothermic. Calculation correct in (b)	
(d)	72.0 g/18.0 g mobeing boiled. Energy required t 4.00 mol × 40.7 k This is the amount combustion of merequired to product 162.8 kJ/889 kJ methane to be considered in the second mass of methane 16.0 g mol ⁻¹ = 2.9	o do this J mol ⁻¹ = 162. It of energy that ethane in the B ce. mol ⁻¹ = 0.183 mol mbusted.	8 kJ at the sunsen is mol of	 absorbing energy from the flame. In (d) ONE step of the calculation is correct. 				согге	ct in (d).	
NØ	N1	N2	A3	A4	M5	M6		E7	E8	
No response or no relevant evidence.	Some appropriate writing but does not fulfil any statement from the Achievement criteria column.	1a	2a	3a	2m	3m	(c) fro	om part AND e m part or (d)	3e	

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 8	9 – 14	15 – 19	20 – 24	