ELEC 522 Assignment 5

Student: Sixu Li (S01435077)

1. Description of QRD design architecture

Here we adopted the design show in the slide. But with another row for easier control.

Each element can perform in either vectoring mode or rotating mode.

There will be additional unload input fed into the array for unloading.

2. Model Composer model using the Vitis HLS block and testing results.

The screenshot shows the architecture of the QRD Array.

The following figure shows the test result on the example matrix. We can see that the result from the Simulink modules matched with theoretical results.

>> simQ				>> simR			
simQ =				simR =			
0.7163 0.2767 0.3079 0.5617	-0.4033 0.9129 0.0051 0.0618	0.4011 0.1902 -0.8882 -0.1184	0.4041 0.2319 0.3411 -0.8165	1.2285 0 0	0.8255 0.6741 0	1.1174 -0.2952 0.1523 0	0.6787 0.3774 -0.5098 -0.1099
>> Q_gt				>> R_gt			
Q_gt =				R_gt =			
-0.7162 -0.2768 -0.3080 -0.5617	0.4035 -0.9129 -0.0050 -0.0618	0.4008 0.1900 -0.8885 -0.1175	-0.4044 -0.2322 -0.3401 0.8166	-1.2285 0 0	-0.8256 -0.6740 0	-1.1173 0.2953 0.1524 0	-0.6788 -0.3773 -0.5096 0.1105

3. Generate IP block from Model Composer and integrate with ARM processor using Vivado. Generate hardware and XSA for Vitis

The following two figure shows the Block Design Diagram in Vivado, and the compiled XSA in Vitis.

4. Vitis C++ control of QRD Model Composer accelerator with testing results of at least 2 test matrices

Note that the Q output by the program is the Q Transpose, so the results are correct. And in QR decomposition, the sign (+ / -) of Q and R are not important considering one flip in one row will be flipped back in another row during rotation, so we only need to compare the absolute value.

The following 4 screenshots show two test cases. The latter one may have a bit larger error, but that is due to the CORDIC iteration number and the cost brought by fixed point. The error is larger in the last row of Q in test case 2 compared to others, that is cost by the last row of R, we can see that R[4,4] in test case 2 is 0.006, which is very small. The last row of Q is generated by the last row of R, so the error will be larger too.

Test Case 1

>> A1				Start of the Program
A1 =				Current done: 2
0.8799 0.3401 0.3784 0.6900	0.3194 0.8438 0.2577 0.5054	0.9805 0.0687 0.2073 0.5914	0.0850 0.4099 0.6262 0.5547	Matrix R: 1.2285, 0.8260, 1.1166, 0.6788
>> r1				0.0000, 0.6731, -0.2964, 0.3761
r1 =				0.0000, 0.0000, 0.1530, -0.5087 0.0000, 0.0000, 0.0000, 0.1158
-1.2285 0 0	-0.8256 -0.6740 0	-1.1173 0.2953 0.1524	-0.3773 -0.5096	Matrix Q: 0.7159, 0.2778, 0.3084, 0.5608
0	0	0	0.1105	-0.4046, 0.9121, 0.0033, 0.0622
>> q1				0.3971, 0.1868, -0.8916, -0.1094
q1 =				-0.4069, -0.2351, -0.3307, 0.8175
-0.7162 0.4035 0.4008 -0.4044	-0.2768 -0.9129 0.1900 -0.2322	-0.3080 -0.0050 -0.8885 -0.3401		1.0000, 2.0000 End of the Program

Test Case 2

>> A2					Start of the Program Current done: 2
A2 =					
0. 0.	.7241 .5470 .2991 .5388	0.5470 0.4991 0.1706 0.4716	0.2991 0.1706 0.1898 0.1337	0.5388 0.4716 0.1337 0.5239	Matrix R: 1.0970, 0.8877, 0.3997, 0.8842 0.0000, 0.1062, -0.1040, 0.1365
>> r2					0.0000, 0.0000, 0.0412, -0.0630
r2 =					0.0000, 0.0000, 0.0000, 0.0023
-1.	.0969 0 0 0	-0.8881 -0.1052 0	-0.3999 0.1045 -0.0400 0	-0.8846 -0.1363 0.0628 0.0006	Matrix Q: 0.6594, 0.4973, 0.2738, 0.4921 -0.3667, 0.5385, -0.6842, 0.3275
>> q2					-0.0667, 0.6664, 0.2215, -0.7081
q2 =					0.5730, -0.1242, -0.5587, -0.3306
-0.	6601	-0.4987	-0.2727	-0.4912	
	3729	-0.5344			1.0000, 2.0000
0.	0966	-0.6751	-0.2424	0.6901	Ford of the December
-0.	6449	0.1002	0.6360	0.4118	End of the Program

5. Synthesis and place and route implementation report from Vivado.

The following two figures are the area & timing report after synthesis.

Name ^1	Slice LUTs (53200)	Slice Registers (106400)	F7 Muxes (26600)	F8 Muxes (13300)	DSPs (220)	Bonded IOPADs (130)	BUFGCTRL (32)
∨ N design_1_wrapper	15361	13315	197	18	48	130	1
✓ ■ design_1_i (design_1)	15361	13315	197	18	48	0	1
> I processing_system7_	24	0	0	0	0	0	1
> I ps7_0_axi_periph (de	421	562	0	0	0	0	0
> I qr_0 (design_1_qr_0_	14897	12713	197	18	48	0	0
> I rst_ps7_0_100M (des	19	40	0	0	0	0	0

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	1.665 ns	Worst Hold Slack (WHS):	0.045 ns	Worst Pulse Width Slack (WPWS):	3.750 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	29777	Total Number of Endpoints:	29777	Total Number of Endpoints:	14075

The following two figures are the area & timing report after P&R.

Design Timing Summary

Slack (WHS): 0.008 Black (THS): 0.000		Black (WPWS):	3.750 ns
Black (THS): 0.000	00 ns Total Pulse Width Ne	egative Slack (TPWS):	0 000 ns
		- 3	0.000 110
Failing Endpoints: 0	Number of Failing En	indpoints:	0
er of Endpoints: 2952	Total Number of End	dpoints:	13946
		· ·	

6. Turning in files including Model Composer file, screen capture of Vivado block diagram, Vitis C++ file, and screen capture of Vitis terminal results

All the screenshots are attached in this report.

- A5V3FIX > Vitis HLS files
- A5V3_HDL > Vivado HDL project
- BareMetal > Vitis arm programs
- MATLAB > Model Composer files