

Revisiting batch normalization in quantization of super-resolution networks

Myungjun Son, Dongjea Kang, Hongjae Lee, Jun-Sang Yoo and Seung-Won Jung

(submitted to IEIE AISP)

Figure 2: Channel-wise feature map distributions of two distinct images (red and blue) in pre-trained (a) ResNet [20] on image classification task and (b) EDSR [32] on image SR task. In SR networks, channels present diverse non-zero distributions that also vary upon the input image.

Hong, Cheeun, et al.

PAMS: Quantized Super-Resolution via Parameterized Max Scale

Huixia Li^{1†}, Chenqian Yan^{1†}, Shaohui Lin², Xiawu Zheng¹, Baochang Zhang³, Fan Yang⁴, Rongrong Ji¹⁵*

Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution Networks

Yunshan Zhong^{1,2}, Mingbao Lin³, Xunchao Li², Ke Li³, Yunhang Shen³, Fei Chao^{1,2}, Yongjian Wu³, Rongrong Ji^{1,2*}

CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution

ECCV 2022 Cheeun Hong¹, Sungyong Baik³, Heewon Kim¹, Seungjun Nah^{1,4}, and Kyoung Mu Lee^{1,2}

CABM: Content-Aware Bit Mapping for Single Image Super-Resolution Network with Large Input

Quantization unfitness

Red line : quantization level

Blue dotted line : quantization edge Green bar : min / Max of activation

Quantization unfitness

Red line : quantization level

Blue dotted line : quantization edge Green bar : min / Max of activation

Quantization range

Red line : quantization level

Blue dotted line : quantization edge Green bar : min / Max of activation

Quantization range

레이어	α 설정 기준	양자화 간격
blook11 conv2	Max	75.90
block11.conv2	Min	57.72
•	Max	9.73
block11.conv2	Min	8.38
11, 112, 2	Max	96.43
block13.conv2	Min	91.52
- -	Max	12.19
block13.conv2 [†]	Min	11.94
blook15 oonv2	Max	153.34
block15.conv2	Min	161.82
•	Max	21.81
block15.conv2	Min	20.01

PAMS

	Precision	Urban100	Test2k	Test4k
EDSR	-	26.02	27.59	28.99
EDSR [†]	-	25.84	27.54	28.92
EDSR+PAMS	8bits	26.03	27.59	28.98
+ w/ BN (ours)	8bits	25.85	27.54	28.92
EDSR+PAMS	4bits	25.30	27.40	28.73
+ w/ BN (ours)	4bits	25.40	27.39	28.73
EDSR+PAMS	3bits	23.50	26.59	27.69
+ w/ BN (ours)	3bits	25.00	27.31	28.60
IDN	-	25.50	27.40	28.74
IDN [†]	-	25.53	27.42	28.76
IDN+PAMS	8bits	25.46	27.39	28.73
+ w/ BN (ours)	8bits	25.50	27.41	28.75
IDN+PAMS	4bits	24.35	26.91	28.11
+ w/ BN (ours)	4bits	24.64	27.03	28.27
IDN+PAMS	3bits	23.24	26.36	27.44
+ w/ BN (ours)	3bits	23.99	26.71	27.89

DDTB

	Precision	Urban100	Test2k	Test4k
EDSR	-	26.02	27.59	28.99
EDSR [†]	-	25.84	27.54	28.92
EDSR+PAMS	8bits	26.03	27.60	28.99
+ w/BN (ours)	8bits	25.81	27.54	28.92
EDSR+PAMS	4bits	25.66	27.51	28.86
+ w/ BN (ours)	4bits	25.55	28.49	28.85
EDSR+PAMS	3bits	25.34	27.41	28.72
+ w/ BN (ours)	3bits	25.31	27.42	28.75
IDN	-	25.50	27.40	28.74
IDN [†]	-	25.53	27.42	28.76
IDN+PAMS	8bits	25.02	27.26	28.53
+ w/BN (ours)	8bits	25.03	27.27	28.54
IDN+PAMS	4bits	24.73	27.12	28.34
+ w/ BN (ours)	4bits	24.74	27.13	28.37
IDN+PAMS	3bits	23.73	26.66	27.81
+ w/ BN (ours)	3bits	24.24	26.90	28.09

- 1. DCNN 기반 SR 모델 연구는 **BN을 제거**하여 모델의 성능을 높이는 흐름으로 진행됨
- 2. 4bit 이하의 **낮은 비트 정밀도**에서 BN을 추가하면 양자화 오류가 **감소**함
- 3. BN을 포함하는 과정에서 **메모리 요구량 증가**와 **고주파 요소의 손실** 등의 문제가 발생함
- 4. BN에 의해 발생하는 문제를 줄이는 **양자화에 특화**된 **새로운 정규화 알고리즘**의 연구가 필요할 것으로 보임

Q&A