Google Reactor Calibration Model

Jin Liu

March 21, 2017

This note is to describe the parameters and formula Google IPB Reactor Calibration Model.

The proposed equivalent circuit model is described in Figure 1.

Figure 1: Circuit Model

The governing equations are:

$$\frac{dT_a(t)}{dt} = \frac{P_{in} - k_{as}(T_a - T_s) - k_{ab}(T_a - T_b)}{c_a}$$
 (1)

$$\frac{dT_b(t)}{dt} = \frac{P_{in} - k_{ab}(T_a - T_s) - k_{bs}(T_b - T_s)}{c_b}$$
 (2)

The parameters in the equations are:

$$k_{as} = (k_{as0} + k_{as1}T_a + k_{as2}T_a^2) (3)$$

$$k_{ab} = (k_{ab0} + k_{ab1}T_a + k_{ab2}T_a^2) (4)$$

$$k_{bs} = (k_{bs0} + k_{bs1}T_b + k_{bs2}T_b^2) (5)$$

$$c_a = (c_{a0} + c_{a1}T_a + c_{a2}T_a^2) (6)$$

$$c_b = (c_{b0} + c_{b1}T_b + c_{b2}T_b^2) (7)$$

$$P_{in}(t) = (a_{10} + a_{11}T_a + a_{12}T_a^2)P_{heaterpower} + (a_{20} + a_{21}T_a + a_{22}T_a^2)P_{core-Q}$$
(8)

in $DC P_{core-Q}$ is P_{DC}

 T_a is the core temperature

 T_b is the inner block temperature

 T_s is the outer block temperature

$$P_{out}(t) = k_{as}[T_a(t) - T_s(t)] + k_{bs}[T_b(t) - T_s(t)]$$
(9)

$$P_{stored}(t) = c_a \frac{dT_a(t)}{dt} + c_b \frac{dT_b(t)}{dt}$$
(10)

The Energy COP defined as

$$COP_{energy}(t) = \frac{\int_0^t \left[P_{out}(t) + P_{stored}(t) \right] dt}{\int_0^t P_{in}(t) dt}$$
(11)

The Power COP defined as

$$COP_{power}(t) = \frac{P_{out}(t) + P_{stored}(t)}{P_{in}(t)}$$
(12)

The Google Team has done four calibration models, the table 1. lists all the parameters in the calibration models.

Table 1: Parameters in Google Model

Paras	ipb1-30-he	ipb1-30-h2	sri-ipb2-27-h2	sri-ipb2-33-he	sri-ipb2-33-h2	ipb1-40-he
ca0	10.58	52.91	17.19	20.59	18.381	22.708
ca1	4.30E-01	2.20E-01	-6.77E-01	8.57E-02	1.52E-01	1.89E-02
ca2	-9.39E-04	-2.66E-04	8.59E-03	1.22E-05	-3.49E-05	1.71E-05
cb0	601.10	579.90	883.48	675.09	666.22	777.96
cb1	0.46692	0.38258	-2.75100	0.12088	0.11378	-0.18899
cb2	0	0	0	0	0	0
kas0	2.92E-02	2.66E-02	5.15E-05	1.72E-03	5.14E-03	-8.13E-03
kas1	-5.31E-05	-2.70E-05	2.35E-04	4.62E-05	3.99E-05	2.49E-05
kas2	0	0	0	0	0	0
kab0	0.65350	0.61924	0.82998	0.56864	0.54634	0.78189
kab1	-4.87E-04	7.96E-04	-2.40E-03	8.19E-04	7.95E-04	9.41E-04
kab2	3.66E-06	1.00E-06	1.75E-06	-4.38E-07	-2.63E-07	-3.23E-07
kbs0	0.03301	0.03681	0.07530	0.06369	0.06328	0.06637
kbs1	1.57E-04	1.21E-04	-2.66E-04	5.80E-05	4.04E-05	7.85E-05
kbs2	6.54E-08	7.53E-08	2.74E-07	2.50E-08	7.29E-08	4.11E-08
a10	1	1	1	1	1	1
a11	0	0	0	0	0	0
a12	0	0	0	0	0	0
a20	0.367580	0.359820	0.425000	0.050546	0.28613	0.049953
a21	1.01E-03	6.65E-04	-9.20E-04	3.12E-03	1.46E-03	3.92E-03
a22	-9.89E-07	-9.54E-08	4.49E-06	-4.38E-06	-1.54E-06	-5.81E-06