

Redes de Computadores

Desempenho em Redes

Prof. Me. Ricardo Girnis Tombi

Redes de Computadores

Sistema de comunicação de dados interconectando dois ou mais computadores e/ou outros dispositivos, através de um conjunto de regras (protocolo), possibilitando o compartilhamento de recursos (disco, impressora, etc) e informações (arquivos, dados, etc).

Desempenho em Redes

Fontes de Atraso

Fonte: Redes de Computadores e a Internet. Ed. Pearson J. F Kurose e K. W. Ross

Processamento nodal

Verificação de erros de bit Determinação do enlace de saída

Ou seja ... pipeline de processamento dos pacotes

Tecnologias: ASIC, NPU, QFP, plano de controle e plano de encaminhamento, implementação no hardware

Transmissão

Serialização dos bits e entrega ao meio de transmissão

R = largura de banda do enlace (bps)

L = tamanho do pacote (bits)

Tempo para enviar bits no enlace = L/R

Bits por segundo:

Ethernet (10Mbps), FastEthernet (100Mbps), GigabitEthernet (1Gbps) ...

Pacotes por segundo:

Ethernet (14.880pps), FastEthernet (148.800pps), GigabitEthernet (1,4Mbps) ...

Propagação

Tempo para o bit atravessar o enlace, do ponto de origem ao ponto de destino

D = distância do enlace físico (m)

S = velocidade de propagação do meio (~ 2,8x108 m/s)

Atraso de propagação = D/S (seg)

1 bit leva $10.000 / 2.8 \times 10^8 = 0.036 \text{ms}$ para atravessar o enlace da topologia acima

RTT – Round Trip Time

Tempo de ida e volta de um pacote em um enlace

Fila

Tempo de espera por transmissão em determinado enlace de saída Depende do nível de congestionamento no equipamento Intensidade do tráfego dado por (La / R)

Onde:

R = largura de banda do enlace (bps)

L = tamanho do pacote (bits)

a = taxa média de chegada de pacote

La/R ~ 0: pequeno atraso de enfileiramento médio

La/R -> 1: atrasos tornam-se grandes

La/R > 1: mais "trabalho" chegando do que pode ser atendido, atraso médio infinito!

Fonte:

Perda de Pacote

- Fila (ou buffer) antes do enlace no buffer tem capacidade finita
- Pacote chegando à fila cheia descartado (ou perdido)
- Último pacote pode ser retransmitido pelo nó anterior, pela origem ou de forma nenhuma

Atraso Total

$$d_{\text{total}} = d_{proc} + d_{fila} + d_{trans} + d_{prop}$$

- d_{proc} = atraso de processamento
 - normalmente, poucos microssegundos ou menos
- d_{fila} = atraso de enfileiramento
 - depende do congestionamento
- d_{trans} = atraso de transmissão
 - (L/R): significativo para enlaces de baixa velocidade
- d_{prop} = atraso de propagação
 - alguns microssegundos a centenas de ms

Analogia da Caravana

Hipóteses:

- Carros se "propagam" a 100 km/h
- Cabines de pedágio levam 12 s para atender cada carro (tempo de transmissão)
- Carro ~ bit; caravana ~ pacote
- Quanto tempo para a caravana formar fila antes da 2ª cabine?

Analogia da Caravana

Hipóteses:

- Carros se "propagam" agora a 1000 km/h
- Cabines de pedágio levam 1min para atender cada carro (tempo de transmissão)
- Os carros chegarão à 2ª cabine antes que todos os carros sejam atendidos na 1ª cabine?

Exercícios

- Dadas as seguintes condições:
 - Comprimento do link: 10km
 - Velocidade de transmissão: 512kbps
 - Velocidade de propagação: 2,8.10⁸ m/s
 - Tamanho do pacote: 100bytes
 - Qual o atraso total para este pacote chegar no destino ?

Exercícios

- Dadas as seguintes condições:
 - Comprimento do link: 100km
 - Velocidade de transmissão: 1Mbps
 - Velocidade de propagação: 2,8.108 m/s
 - Tamanho do pacote: 500bytes
 - Qual o atraso total para este pacote chegar no destino ?

 Atraso (latência de propagação) ou Largura de Banda (vel de transmissão)

Qual o mais importante?

Depende da aplicação

Exemplo:

Arquivos pequenos (1byte – toque de uma tecla)

Enlace:

Rede Local: latência =1ms

Intercontinental: latência = 100ms

Relevante para esta aplicação

Atraso (latência de propagação) ou Largura de Banda (vel de transmissão)

Entretanto:

Taxa de transmissão: 1Mbps, temos atraso de transmissão = 8µseg

Taxa de transmissão: 100Mbps, temos atraso de transmissão =

0,08µseg

Relativamente insignificante para a aplicação

Atraso (latência de propagação) ou Largura de Banda (vel de transmissão)

Exemplo:

Arquivos grandes (25Mbytes – imagem)

Taxa de transmissão: 10Mbs, temos atraso de transmissão = 20seg

Enlace:

Rede Local: latência = 1ms → Atraso total: 20,001seg

Intercontinental: latência = 100ms → Atraso total: 20,1seg

• Qual o throughput

App cliente solicita o envio de um arquivo de 1MB em um link com velocidade nominal de 100Mbps, e com RTT de 120ms.

Calcule a vazão real desta transferência.

1MB / 100Mbps + 120ms = 200ms

80ms transmitindo de um total de 200ms = 40% Ou seja, em 200ms x 100Mbps => poderia transmitir 2,5MB

Vazão

J. F Kurose e K. W. Ross

- vazão: taxa (bits/unidade de tempo) em que os bits são transferidos entre emissor/receptor
 - instantânea: taxa em determinado ponto no tempo
 - média: taxa por período de tempo maior

Vazão

• $R_s < R_c$ Qual é a vazão média de fim a fim?

 $R_s > R_c$ Qual é a vazão média de fim a fim?

enlace de gargalo

enlace no caminho de fim a fim que restringe a vazão de fim a fim

Vazão

- na prática: R_c ou R_s
 normalmente é gargalo
- vazão de fim a fim por conexão: min(R_c,R_s,R/10)

10 conexões (aproximadamente) compartilham enlace de gargalo do backbone a R bits/s

Produto: Atraso de propagação x Largura de Banda

Determina a quantidade de bits máximo em um enlace

Exemplo:

Transmissão: 10Mbps

Enlace de 1km ; vel propagação de 2,8.10^8 m/s

Qtde de bits no enlace: 35bits

Exemplo 2:

Suponha que um link tem largura de banda de 1bps e o atraso do link é de 5s.

O produto 1 x 5 é o número máximo de bits que podem preencher o link.

Pode haver cerca de 5 bits a qualquer momento no link.

Considerações

O produto da largura de banda e do atraso é o número de bits que podem preencher o link.

Essa estimativa é significativa no caso de termos que enviar dados em bursts e aguardar o reconhecimento de cada burst antes de enviar o seguinte.

Para utilizar a capacidade máxima do link, temos que fazer com que o tamanho de nosso burst seja o dobro do produto da largura de banda e do atraso.

O remetente deve enviar uma rajada de dados de (2 * largura de banda * atraso) bits.

Nesse ponto, o remetente aguarda o reconhecimento do receptor por parte do burst antes de enviar outro burst.

Transmissão TCP

Estudo de caso

Uma empresa possui dois datacenters. São realizados backups periódicos dos dados críticos de negócio da empresa.

O backup admin relatou que não pode terminar o backup dentro do seu prazo devido à lentidão da rede. Como engenheiro da rede, você é solicitado a investigar a suposta lentidão da rede afirmada pelo backup admin.

Estudo de caso

Você conhece as seguintes variáveis:

- 'Os dois datacenters são separados por 1000KM
- 'Os datacenters são interconectados através do link 1Gbps
- 'Há bastante largura de banda disponível.
- Não há nenhum problema aparente de hardware de rede ou de software.
- O aplicativo de backup usa o TCP para transferir dados
- 'A janela de transferência do TCP (RWIN) é de 17.520 bytes (sistema operacional i.e Windows Server)

Estudo de caso

Análise:

Tempo de propagação: $1000x10^3 / 1,5x10^8 = 0,65ms$

RTT ~ 13ms

Se RWIN =17.520 bytes = 140.160bits

(limita a qtde de bits que a origem pode enviar)

Utilização da banda = $140.160 / 13x10^{-3} = 10,8Mbps$

O aplicativo de backup utiliza somente 10,8Mbps de largura de banda, mesmo que o resto da largura de banda 989,2Mbps está livre.

Qual a janela de transmissão do Windows que poderia garantir a largura de banda total do link?

Exemplo de Atrasos nas Redes

- Como são os atrasos e perdas "reais" da Internet?
- A ferramenta Traceroute fornece medida do atraso da origem ao roteador ao longo do caminho de fim a fim da Internet para o destino. Para todo *i*:
 - envia três pacotes que alcançarão roteador i no caminho para o destino
 - roteador i retornará pacotes ao emissor
 - emissor temporiza intervalo entre transmissão e resposta.

PERGUNTAS?

