

SEQUENCE LISTING

1

<110> BOUREL, DOMINIQUE
 GLACET, ARNAUD
 JORIEUX, SYLVIE
 STURA, ENRICO
 DUCANCEL, FREDERIC
 TEILLAUD, JEAN-LUC

<120> USE OF METALLIC CATIONS TO IMPROVE FUNCTIONAL ACTIVITY OF ANTIBODIES

<130> 096183-0104

<140> 10/576,440

<141> 2007-03-23

<150> PCT/FR2004/002687

<151> 2004-10-20

<150> FR 0312228

<151> 2003-10-20

<160> 2

<170> PatentIn version 3.5

<210> 1

<211> 1428

<212> DNA

<213> Homo sapiens

<220>

<223> cDNA sequence of double mutant His310-435Lys

400> 1

atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag 60 gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tqtacaqcct ctqqattcac cttcaaaaac tatgctatgc attgggtccg ccaggctcca 180 qccaaggggc tggagtgggt ggcaactata tcatatgatg gaaggaatat acaatatgca 240 300 gactccgtga agggccgatg caccttctcc agagacaatt ctcaggacac cctgtatctg 360 caactqaaca qcctcagacc ggaggacacg gctgtgtatt actgtgcgag acccgtaaga agccgatggc tgcaattagg tcttgaagat gcttttcata tctggggcca ggggacaatg 420 480 gtcaccgtct cttcagcctc caccaagggc ccatcggtct tccccctggc accctcctcc 540 aagagcacct ctgggggcac agcggccctg ggctgcctgg tcaaggacta cttccccgaa ccggtgacgg tgtcgtggaa ctcaggcgcc ctgaccagcg gcgtgcacac cttcccggct 600 qtcctacaqt cctcaggact ctactccctc agcagcgtgg tgaccgtgcc ctccagcagc 660

ttgggcaccc	agacctacat	ctgcaacgtg	aatcacaagc	ccagcaacac	caaggtggac	720
aagaaagttg	agcccaaatc	ttgtgacaaa	actcacacat	gcccaccgtg	cccagcacct	780
gaactcctgg	ggggaccgtc	agtcttcctc	ttccccccaa	aacccaagga	caccctcatg	840
atctcccgga	cccctgaggt	cacatgcgtg	gtggtggacg	tgagccacga	agaccctgag	900
gtcaagttca	actggtacgt	ggacggcgtg	gaggtgcata	atgccaagac	aaagccgcgg	960
gaggagcagt	acaacagcac	gtaccgtgtg	gtcagcgtcc	tcaccgtcct	gaagcaggac	1020
tggctgaatg	gcaaggagta	caagtgcaag	gtctccaaca	aagccctccc	agcccccatc	1080
gagaaaacca	tctccaaagc	caaagggcag	ccccgagaac	cacaggtgta	caccctgccc	1140
ccatcccggg	atgagctgac	caagaaccag	gtcagcctga	cctgcctggt	caaaggcttc	1200
tatcccagcg	acatcgccgt	ggagtgggag	agcaatgggc	agccggagaa	caactacaag	1260
accacgcctc	ccgtgctgga	ctccgacggc	tccttcttcc	tctacagcaa	gctcaccgtg	1320
gacaagagca	ggtggcagca	ggggaacgtc	ttctcatgct	ccgtgatgca	tgaggctctg	1380
cacaacaagt	acacgcagaa	gagcctctcc	ctgtctccgg	gtaaatag		1428

<210> 2

<211> 475

<212> PRT

<213> Homo sapiens

<220>

<223> Peptide sequence of double mutant His310-H435Lys.

<400> 2

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
1 5 10 15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln 20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe 35 40 45

Lys Asn Tyr Ala Met His Trp Val Arg Gln Ala Pro Ala Lys Gly Leu 50 55 60

Glu Trp Val Ala Thr Ile Ser Tyr Asp Gly Arg Asn Ile Gln Tyr Ala 65 70 75 80

Asp Ser Val Lys Gly Arg Cys Thr Phe Ser Arg Asp Asn Ser Gln Asp 85 90 95

Thr Leu Tyr Leu Gln Leu Asn Ser Leu Arg Pro Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Pro Val Arg Ser Arg Trp Leu Gln Leu Gly Leu 115 120 125

Glu Asp Ala Phe His Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser 130 135 140

Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser 145 150 155 160

Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 165 170 175

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 180 185 190

Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 195 200 205

Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 210 215 220

Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 225 230 235 240

Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro 245 250 255

Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 260 265 270

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 275 280 285

Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 290 295 300

Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 305 310 315 320

- Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 325 330 335
- Leu Lys Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 340 345 350
- Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 355 360 365
- Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 370 375 380
- Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 385 390 395 400
- Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 405 410 415
- Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 420 425 430
- Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 435 440 445
- Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Lys Tyr 450 455 460
- Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 465 470 475