Math 430 Assignment 3

Arnold Jiadong Yu

September 17, 2018

Exercise 2.1 Solution:

(a) It is not a polyhedron. Let us call this set S, then

$$S = {\mathbf{x} \in \mathbb{R}^2 | \mathbf{A}\mathbf{x} \le \mathbf{b} \text{ for } \forall \theta \in [0, \frac{\pi}{2}] \land \mathbf{x} \ge 0}$$

where $\mathbf{A} = [\cos \theta \sin \theta]$ and $\mathbf{b} = 1$. Since $\theta \in [0, \frac{\pi}{2}]$, then $\mathbf{A} \geq 0$. We can write

 $\left[\cos\theta\sin\theta\right] \begin{bmatrix} x \\ y \end{bmatrix} \le 1$

It could be intersection of infinite many halfspaces. By definition of polyhedron, it is intersection of finite many halfspaces. Hence this is not a polyhedron.

(b) It is a polyhedron. Let us call this set S, then

$$S = \{x \in \mathbb{R} | x^2 - 8x + 15 \le 0\}$$

$$\Rightarrow S = \{x \in \mathbb{R} | (x - 3)(x - 5) \le 0$$

$$\Rightarrow S = \{x \in [3, 5]\} \Rightarrow S = [3, 5]$$

In \mathbb{R} , S is an intersection of two halfspaces. S is a polyhedron.

(c) It is a trivial polyhedron. Since it is empty set, we can choose any \mathbf{A}, \mathbf{b} to satisfy the polyhedron definition. For example,

$$P = \{ \mathbf{x} \in \mathbb{R} | \mathbf{A} \mathbf{x} \ge \mathbf{b} \}$$

Let $\mathbf{A} = (-2,2)^T \in \mathbb{R}^2$ and $\mathbf{b} = (3,-3)^T \in \mathbb{R}^2$, then $P = \emptyset$. P follows the definition of polyhedron, therefore P is polyhedron.

Exercise 2.2

Solution: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function, then for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and every $\lambda \in [0, 1]$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Let $\mathbf{z}_1, \mathbf{z}_2$ be any two points in S, want to show $\lambda \mathbf{z}_1 + (1 - \lambda)\mathbf{z}_2 \in S$.

$$f(\lambda \mathbf{z}_1 + (1 - \lambda)\mathbf{z}_2) \le \lambda f(\mathbf{z}_1) + (1 - \lambda)f(\mathbf{z}_2)$$

$$\le \lambda c + (1 - \lambda)c = c$$

That is

$$f(\lambda \mathbf{z}_1 + (1 - \lambda)\mathbf{z}_2) \le c \Rightarrow \lambda \mathbf{z}_1 + (1 - \lambda)\mathbf{z}_2 \in S$$

Therefore, S is convex by definition.

Exercise 2.5

Solution:

(a)Proof by contrapositive. Let \mathbf{x} be a non-extreme point of P, then we can find two vector $\mathbf{s}, \mathbf{t} \in P$ and a scalar $\lambda \in [0, 1]$, s.t.

$$\mathbf{x} = \lambda \mathbf{s} + (1 - \lambda)\mathbf{t}$$

Want to show $f(\mathbf{x})$ is not an extreme point of Q. Since both function f, g is affline, then $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, $g(\mathbf{y}) = \mathbf{B}\mathbf{y} + \mathbf{c}$ where $\mathbf{x} \in P, \mathbf{y} \in Q$, \mathbf{A}, \mathbf{B} are matrix, \mathbf{b}, \mathbf{c} are vector. Therefore,

$$f(\mathbf{x}) = f(\lambda \mathbf{s} + (1 - \lambda)\mathbf{t}) = \mathbf{A}(\lambda \mathbf{s} + (1 - \lambda)\mathbf{t}) + \mathbf{b}$$
$$= \lambda \mathbf{A}\mathbf{s} + (1 - \lambda)\mathbf{A}\mathbf{t} + \mathbf{b} = \lambda \mathbf{A}\mathbf{s} + (1 - \lambda)\mathbf{A}\mathbf{t} + \lambda \mathbf{b} + (1 - \lambda)\mathbf{b}$$
$$= \lambda(\mathbf{A}\mathbf{s} + \mathbf{b}) + (1 - \lambda)(\mathbf{A}\mathbf{t} + \mathbf{b}) = \lambda f(\mathbf{s}) + (1 - \lambda)f(\mathbf{t})$$

That is $f(\mathbf{x})$ is not an extreme point of Q. Therefore, if \mathbf{x} is not an extreme point of P, then $f(\mathbf{x})$ is not an extreme point of Q. That is if $f(\mathbf{x})$ is an extreme point of Q, then \mathbf{x} is an extreme point of P.

The converse is trivial. That is \mathbf{x} is an extreme point of P if and only if $f(\mathbf{x})$

is an extreme point of Q.

(b) Let f be a map, and g be a map such that

$$f: \mathbf{x} \mapsto (\mathbf{x}, \mathbf{z}) \text{ for } \forall \mathbf{x} \in P$$

Let $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{c}$ where \mathbf{A} is $(n+k) \times n$ matrix and \mathbf{c} is a vector in \mathbb{R}^{n+k}

$$f(\mathbf{x}) = \begin{bmatrix} \mathbf{I}_{n \times n} \\ - - - \\ \mathbf{B}_{k \times n} \end{bmatrix} \mathbf{x}_{n \times 1} + \begin{bmatrix} \mathbf{0}_{n \times 1} \\ - - - \\ - \mathbf{b}_{k \times 1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{n \times 1} \\ - - - \\ \mathbf{z}_{k \times 1} \end{bmatrix}$$

where $\mathbf{I}_{n\times n}$ is identity matrix $n\times n, \mathbf{0}_{n\times 1}$ is zero vector in \mathbb{R}^n ,

 $\mathbf{B}_{k\times n}$ is a matrix and **b** is a vector in \mathbb{R}^k

then $\mathbf{B}_{k \times n} \mathbf{x} - \mathbf{b} = \mathbf{z} \Rightarrow f(\mathbf{x}) \in Q$ for $\forall \mathbf{x} \in P, f$ is both affine and injective map.

$$g: (\mathbf{x}, \mathbf{z}) \mapsto \mathbf{x} \text{ for } \forall (\mathbf{x}, \mathbf{z}) \in Q$$

By assumption there are some matrix \mathbf{C} and vector \mathbf{d} , s.t. $\mathbf{C}\mathbf{x} - \mathbf{z} = \mathbf{d}$ Let $g((\mathbf{x}, \mathbf{z})) = \mathbf{D}(\mathbf{x}, \mathbf{z}) + \mathbf{e}$, where \mathbf{D} is $n \times (n+k)$ matrix and \mathbf{e} is a vector in \mathbb{R}^n

$$g((\mathbf{x}, \mathbf{z})) = \begin{bmatrix} \mathbf{I}_{n \times n} & | & \mathbf{0}_{n \times k} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{n \times 1} \\ - - - \\ \mathbf{z}_{k \times 1} \end{bmatrix} + \mathbf{0}_{n \times 1} = \mathbf{x}_{n \times 1}$$

then $g((\mathbf{x}, \mathbf{z})) \in P$ for $\forall (\mathbf{x}, \mathbf{z}) \in Q$. i.e. g is affine and injective map. By construction, both f, g are affine. Moreover, $g(f(\mathbf{x})) = \mathbf{x}$ for $\forall \mathbf{x} \in P$, $f(g(\mathbf{y})) = \mathbf{y}$ for $\forall \mathbf{y} \in Q$. These imply f, g is inverse map and P and Q are isomorphic.

Exercise 2.6

Solution:

(a) Case 1: When $n \leq m$, it is trivial. It is at most m of the coefficients λ_i being nonzero.

Case 2: When n > m, assume there are k linear independent vectors in \mathbf{R}^m . WLOG, denoted them as $\mathbf{A}_1, ..., \mathbf{A}_k$, where $k \leq m < n$. Let $\mathbf{A} \in C$, then

$$A = \sum_{i=1}^{n} \lambda_i \mathbf{A}_i$$
, where $\lambda_i \ge 0$ for $1 \le i \le n$

Consider the polyhedron,

$$\Lambda = \{(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n | \sum_{i=1}^n \lambda_i \mathbf{A}_i = \mathbf{y}.\lambda_1, ..., \lambda_n \ge 0 \}$$

By definition of basic solution and basic feasible solution, a basic solution $x \in \Lambda$ must satisfy all equality constraints and active for at least n linear independent constraints of Λ , but $\sum_{i=1}^n \lambda_i \mathbf{A}_i = \mathbf{y}$ are only k linear independent constraints since \mathbf{A}_i is in \mathbb{R}^m . Therefore, we need (n-k) more linear independent constraints to consider a basic solution is active. By linear algebra, in order to find a basic solution, we need to reduce the matrix to $k \times k$ square matrix. That is the other (n-k) linear independent constraints must be zeros. Hence there are only k linear independent constraints are nonzero. Since $k \leq m$, then at most m of λ_i being nonzero.

(b) Consider a polyhedron,

$$\Lambda = \{(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n | \sum_{i=1}^n \lambda_i \mathbf{A}_i = \mathbf{y}, \sum_{i=1}^n \lambda_i = 1, \lambda_1, ..., \lambda_n \ge 0 \}$$

same argument as part a, both $\sum_{i=1}^{n} \lambda_i \mathbf{A}_i = \mathbf{y}$, $\sum_{i=1}^{n} \lambda_i = 1$ will provide only k+1 equality. In order to get a basic solution, there must be n-k-1 linear independent constraints are zeros. Therefore, matrix can be reduced to $(k+1) \times (k+1)$ square matrix. Since $k \leq m$, when k=m there are m+1 linear independent constraints are nonzero. That is at most m+1 of the coefficients λ_i being nonzero.