Table 1. Sets, decision variables and parameters used for the formulation of the linear program.

Notation	Description	Unit
$y \in \mathcal{Y}$	year	
$p \in \mathcal{M}$	product type (incl. passengers)	p/T
$m \in \mathcal{M}$	mode	
$r \in \mathcal{R}$	O-D pair	
$k \in \mathcal{K}$	route	
$v \in \mathcal{V}$	vehicle	
$t \in \mathcal{T}$	drive-train technology	
$l \in \mathcal{L}_t$	fuel supply options for technology t	
$e \in \mathcal{E}$	edge	
$n \in \mathcal{N}$	node	
$a \in \mathcal{A}^p$	trip purpose for the transport of product type p	
$b \in \mathcal{B}_{kmtg}$	subset defined for each route k and technology t for year y	
$g \in \mathcal{G}$	age of vehicle fleet	
\mathcal{V}_k	(e_1,e_2,e_3,\ldots,e_I)	
\mathcal{O}_k	$(n_1, n_2, n_3, \dots, n_I)$	
$\mathcal{U}_k \ \mathcal{Z}_k$	$\{(i, e_i) e_i \in \mathcal{V}_k, 1 \le i \le I\}$	
	$\{(j, n_j) n_j \in \mathcal{O}_k, 1 \le j \le J\}$	
$egin{array}{c} \mathcal{Y}_y \ \mathcal{E}_k \end{array}$	$\{0,\ldots,y\}$	
	edge along route k	
\mathcal{E}_{kmtgb}	subset of edges within the driving range of technology t in	
	year y along route k	
¢.	transport volumes transported using technology t on mode m along route k	TD.
f_{ypkmtg}	in year y	Τ
h_{yprmtg}	vehicle fleet for mode m with technology t	#
h_{yprmtg}^{+}	vehicle fleet growth for mode m with technology t	#
h_{yprmtg}^{-}	vehicle fleet reduction for mode m with technology t	#
gpinteg	fueling demand during annual peak hour covered at edge e of	
$S_{ypkmtle}$	technology t with fuel supplied with supply option l along	kWh
	route k in year y	
	fueling demand during annual peak hour covered at node n of	
Sypkmtln	technology t with fuel supplied with supply option l along	kWh
	route k in year y	
$q_{yet}^{+,mode_infr}$	installed mode infrastructure for technology t along edge e	kW
Yyet	in year y	11 11
$q_{ynt}^{+,mode_infr}$	installed mode infrastructure for technology t along node n	kW
-	in year y	
$q_{yet}^{+,fuel_infr}$	installed fueling infrastructure for technology t along edge e	kW
v .	in year y	
$q_{ynt}^{+,fuel_infr}$	installed fueling infrastructure for technology t along node n	kW
	in year y	
$q_{yle}^{+,supply_infr}$	capacity of supply infrastructure l installed along edge e in	kW
	year y	
$q_{yln}^{+,supply_infr}$	capacity of supply infrastructure l installed along node n in	kW
	year y	
F_{yrp}	transport demand between O-D pair r for product p in year y	Т
	specific energy consumption of drive-train technology t in year	
D_{yt}^{spec}	y	kWh/km
W_{gmt}	average load of a vehicle of technology t bought in year g	T
A_{mt}	maximum age of vehicle	a
L_{gmt}^{mt}	maximum annual mileage of vehicle	km
L_e^{gmi}	length of edge e	km
L_{nh}	distance of path k within node n	km
$Q_{et}^{mode_infr}$ $Q_{et}^{fuel_infr}$ $Q_{et}^{fuel_infr}$ $Q_{le}^{supply_infr}$	initial transport capacity for edge e on mode m	Т
$O_{\perp}^{fuel_infr}$	initial fueling capacity for technology t at edge e	kW
C^{supply_infr}		
Q_{le}	inital capacity for supply l at edge e	kW kWb
Q_{gmt}^{tank}	tank size 2	kWh
δ	maximum substitution rate	
α β	Bass diffusion coefficient Bass diffusion coefficient	
/ 1	Dass unrusion coefficient	

4 1. Methodology and Data

 $minimize_x z$ (1)

$$z = C^{fueling,total} + C^{vehiclestock,total} + C^{transportactivity,total} + C^{intangiblecosts,total} + C^{paneltycosts,total}$$

$$(2)$$

5

$$C^{fueling,total} = \sum_{t} \sum_{y} \left(\sum_{e} C_{yte}^{fuel_infr} q_{yte}^{+,fuel_infr} + C_{ytn}^{fuel_infr} q_{ytn}^{+,fuel_infr} \right)$$

$$+ \sum_{t} \sum_{y} \left(\sum_{e} \sum_{kmvtl} C_{vtle}^{fuel} s_{ypkmvtle} + \sum_{n} \sum_{kmvtl} C_{vtln}^{fuel} \right)$$

$$+ \sum_{l} \sum_{y} \left(\sum_{e} C_{yle}^{supply_infr} q_{yle}^{+,supply_infr} + C_{yln}^{supply_infr} q_{yln}^{+,supply_infr} \right)$$

$$(3)$$

ಲು

$$C^{vehiclestock,total} = \sum_{y} \sum_{v} \sum_{t} \sum_{g} \left(C_{yvtg}^{CAPEX} h_{yprvtg}^{+} + C_{yvtg}^{OM,fix} h_{yprvtg} + C_{yvtg}^{sell} h_{yprvtg}^{-} + C^{OM,var} L_{k} \sum_{k} f_{y,prkmvtg} \right)$$

$$(4)$$

7

$$C^{transportactivity,total} = \sum_{y} C^{levelized,var}_{mvt} \sum_{k} L_{k} f_{y,prkmvtg}$$

$$\tag{5}$$

8

$$C^{intangible costs, total} = \sum_{y} \sum_{r} \sum_{kvt} LoS_{ykvt} * VoT_{ykvt, ic} * L_k * f_{y, prkmvtg}$$

$$\tag{6}$$

$$C^{paneltycosts,total} = \sum_{y} \sum_{p} \sum_{r} penalty_{pry}^{budget}$$
(7)

$$LoS_k = \frac{L_k}{speed..mt} + fueling_time_{kvmt}$$
(8)

 $C^{transport,total}$... Fuel costs, vehicle purchase, vehicle operation $C^{infr,total}$... Investments and operational costs for fueling and mode infrastructure

$$\sum_{k \in \mathcal{K}_r} \sum_{m \in M} \sum_{t \in \mathcal{T}_m} \sum_{g \in \mathcal{G}} f_{ypakmvtg} = F_{yrp} \quad : \forall y \in \mathcal{Y}, r \in \mathcal{R}, p \in \mathcal{P}$$

$$(9)$$

$$h_{yprmvtg} \ge \sum_{k \in \mathcal{K}_r} \sum_{e \in \mathcal{E}_k} \sum_{n \in \mathcal{N}_k} \sum_{a \in \mathcal{A}^p} \frac{L_e + L_{nk}}{W_{ymvtg} L_{ymvtg}^a} f_{ypakmvtg} : \forall y \in \mathcal{Y}, r \in \mathcal{R}, p \in \mathcal{P}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}, g \in \mathcal{G}$$

$$(10)$$

$$h_{yprmvtg} = h_{(y-1)prmvt(g-1)} + h_{yprmvtg}^{+} - h_{yprmvtg}^{-} : \forall y \in \mathcal{Y}, r \in \mathcal{R}, p \in \mathcal{P}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}, g \in \mathcal{G}$$

$$(11)$$

$$h_{yprmvtq}^{-} = h_{(y-A_{mvt})prmvt(g=0)} : \forall y - A_{mvt} > 0$$

$$(12)$$

$$\sum_{l \in \mathcal{L}_{t}} \left(\sum_{e \in \mathcal{E}_{kmvtbg}} s_{ypkmvtle} + \sum_{n \in \mathcal{N}_{kmvtbg}} s_{ypkmvtln} \right) \ge \sum_{g \in \mathcal{G}} \sum_{e \in \mathcal{E}_{pkmvtbg}} \sum_{n \in \mathcal{N}_{pkmvtbg}} \gamma \frac{D_{gmt}^{spec}}{W_{gmvt}(L_{e} + L_{nk})} f_{ypkmvtg}
: \forall y \in \mathcal{Y}, p \in \mathcal{P}, k \in \mathcal{K}, m \in \mathcal{M}, t \in \mathcal{T}_{m}, b \in \mathcal{B}_{kmvtg}$$
(13)

$$\sum_{l \in \mathcal{L}_t} \left(\sum_{e \in \mathcal{E}_k} s_{ypkmvtle} + \sum_{n \in \mathcal{N}_k} s_{ypkmvtln} \right) = \sum_{g \in \mathcal{G}} \sum_{a \in \mathcal{A}^p} \sum_{e \in \mathcal{E}_k} \sum_{n \in \mathcal{N}_k} \gamma \frac{D_{yt}^{spec}}{W_{ymvt}(L_e + L_{nk})} f_{ypakmvtg} : \forall y \in \mathcal{Y}, p \in \mathcal{P}, k \in \mathcal{K}, m \in \mathcal{M}, t \in \mathcal{T}_m \quad (14)$$

$$\sum_{l \in \mathcal{L}_t} \left(\sum_{e \in \mathcal{U}_{ke}} s_{ypkmvtle} + \sum_{e \in \mathcal{Z}_{ke}} s_{ypkmvtln} \right) \le \gamma \sum_{g \in \mathcal{G}} \frac{1}{W_{gmvt}} f_{ypkmvtg} * Q_{gmvt}^{tank} : \forall y, p, k, m, t, (i, e_i) \in \mathcal{V}_k, (j, n_j) \in \mathcal{Z}_k$$

$$(15)$$

$$Q_{me}^{mode_infr} + \sum_{y \in \mathcal{Y}_y} q_{yme}^{+,mode_infr} \ge \gamma \sum_{e \in \mathcal{K}_e} \sum_{p \in \mathcal{P}} \sum_{t \in T_m} f_{ypkmtg} : \forall y \in \mathcal{Y}, m \in \mathcal{M}, e \in \mathcal{E}$$

$$(16)$$

$$Q_{mn}^{mode_infr} + \sum_{y \in \mathcal{Y}_y} q_{ymn}^{+,mode_infr} \ge \gamma \sum_{n \in \mathcal{K}_n} \sum_{p \in \mathcal{P}} \sum_{t \in T_m} f_{ypkmtg} : \forall y \in \mathcal{Y}, m \in \mathcal{M}, n \in \mathcal{N}$$

$$(17)$$

$$Q_{te}^{fuel_infr} + \sum_{y \in \mathcal{Y}_y} q_{yte}^{+,fuel_infr} \ge \sum_{k \in \mathcal{K}_e} \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{l \in \mathcal{L}_t} s_{ypkmtle} : \forall y \in \mathcal{Y}, t \in \mathcal{T}, e \in \mathcal{E}$$

$$(18)$$

$$Q_{tn}^{fuel_infr} + \sum_{y \in \mathcal{Y}_y} q_{ytn}^{+,fuel_infr} \ge \sum_{k \in \mathcal{K}_n} \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{l \in \mathcal{L}_t} s_{ypkmtln} : \forall y \in \mathcal{Y}, t \in \mathcal{T}, n \in \mathcal{N}$$

$$(19)$$

$$Q_{le}^{supply_infr} + \sum_{y \in \mathcal{Y}_y} q_{yle}^{+, supply_infr} \ge \sum_{e \in \mathcal{K}_e} \sum_{p \in \mathcal{P}} \sum_{m \in M} \sum_{t \in \mathcal{T}_l} s_{ypkmtle} : \forall y \in \mathcal{Y}, l \in \mathcal{L}, e \in \mathcal{E}$$

$$(20)$$

$$Q_{ln}^{supply_infr} + \sum_{y \in \mathcal{Y}_y} q_{yln}^{+,supply_infr} \ge \sum_{e \in \mathcal{K}_n} \sum_{p \in \mathcal{P}} \sum_{m \in M} \sum_{t \in \mathcal{T}_l} s_{ypkmtln} : \forall y \in \mathcal{Y}, l \in \mathcal{L}, n \in \mathcal{N}$$

$$(21)$$

In addition, constraints for limiting the maximum technology substitution between time steps are introduced:

$$\pm \left(h_{yprmvt} - h_{(y-1)prmvt}\right) \le \alpha F_{yrp} + \beta h_{(y-1)prmvt} : \forall y \in \mathcal{Y}, r \in \mathcal{R}, m \in \mathcal{M}, v \in \mathcal{V}, t \in \mathcal{T}_m$$
(22)

Limitations for capacity expansions:

6

$$Q_{me}^{mode_infr} + \sum_{y \in \mathcal{Y}_y} q_{ymn}^{+,mode_infr} \le Q_{me}^{max,mode_infr} : \forall y, m, e$$

$$(23)$$

$$Q_{mn}^{mode_infr} + \sum_{y \in \mathcal{Y}_y} q_{ymn}^{+,mode_infr} \le Q_{mn}^{max,mode_infr} : \forall y, m, n$$
(24)

$$Q_{te}^{fuel_infr} + \sum_{y \in \mathcal{V}_{u}} q_{yte}^{+,fuel_infr} \le Q_{yte}^{max,fuel_infr} : \forall y, t, e$$

$$(25)$$

$$Q_{tn}^{fuel_infr} + \sum_{y \in \mathcal{Y}_y} q_{ytn}^{+,fuel_infr} \le Q_{ytn}^{max,fuel_infr} : \forall y, t, n$$
(26)

$$Q_{le}^{supply_infr} + \sum_{y \in \mathcal{Y}_y} q_{yle}^{+,supply_infr} \le Q_{yte}^{max,supply_infr} : \forall y, t, e$$

$$(27)$$

$$Q_{ln}^{supply_infr} + \sum_{y \in \mathcal{Y}_y} q_{yln}^{+,supply_infr} \le Q_{ytn}^{max,exp,supply_infr} : \forall y, t, n$$
(28)

$$\sum_{y \in \mathcal{Y}_{y}} q_{ymn}^{+,mode_infr} \le Q_{me}^{max,exp,mode_infr} : \forall y, m, e$$
(29)

$$\sum_{y \in \mathcal{Y}_y} q_{ymn}^{+,mode_infr} \le Q_{mn}^{max,exp,mode_infr} : \forall y, m, n$$
(30)

$$\sum_{y \in \mathcal{Y}_y} q_{yte}^{+,fuel_infr} \le Q_{yte}^{max,exp,fuel_infr} : \forall y, t, e$$
(31)

$$\sum_{y \in \mathcal{Y}_y} q_{ytn}^{+,fuel_infr} \le Q_{ytn}^{max,exp.fuel_infr} : \forall y, t, n$$
(32)

$$\sum_{y \in \mathcal{Y}_y} q_{yle}^{+,supply_infr} \le Q_{yte}^{max,+,supply_infr} : \forall y, t, e$$
(33)

$$\sum_{y \in \mathcal{Y}_y} q_{yln}^{+,supply_infr} \le Q_{ytn}^{max,exp,supply_infr} : \forall y, t, n$$
(34)

Monetary budget constraint:

 ∞

$$\sum_{y} C_{yvtg}^{CAPEX} * h_{yr}^{+} \leq Budget_{ic} + penalty^{+,invbudget}$$
(35)

(36)

$$\sum_{y} C_{yvtg}^{CAPEX} * h_{yr}^{+} \ge Budget_{ic} - penalty^{-,invbudget}$$