Resumen de teoremas para el final de Matemática Discreta II

Agustin Curto, agucurto95@gmail.com

2016

Índice general

1.	Part	te A	2
	1.1.	La complejidad de EDMONS-KARP	2
	1.2.	Las distancias de Edmonds-Karp no disminuyen en pasos sucesivos	
	1.3.	La complejidad de DINIC	4
	1.4.	La complejidad de WAVE	5
	1.5.	La distancia entre NA sucesivos aumenta	٠
2.	. Parte B		
	2.1.	2-COLOR es polinomial	6
	2.2.	Teorema Max-Flow Min-Cut	6
	2.3.	Complejidad del Hungaro es $\mathcal{O}(n^4)$	7
	2.4.	Teorema de Hall	8
	2.5.	Teorema del matrimonio	Ć
	2.6.	Si G es bipartito $\Rightarrow \chi'(G) = \Delta \dots \dots \dots \dots \dots \dots$	Ć
	2.7.	Teorema cota de Hamming	Ć
	2.8.	Sea H una matriz de chequeo de un código C, pruebe que:	Ć
		2.8.1. $\delta(C)=$ mínimo número de columnas linealmente dependientes de H	Ć
		2.8.2. Si H no tiene la columna cero ni columnas respetidas \Rightarrow C corrige al	
		menos un error	Ć
	2.9.	Sea C un código cíclico de dimensión k y longitud n y sea $g(x)$ su polinomio	
		generador, probar que:	Ć
		2.9.1. C está formado por los múltiplos de $g(x)$ de grado menor a n	Ć
		2.9.2. El grado de $g(x)$ es $n-k$	Ć
		2.9.3. $g(x)$ divide a $1 + x^n$	Ć
3.	Par		10
	3.1.	4 -COLOR \leq_p SAT	1(
	3.2.	3-SAT es NP-Completo	10
	3.3.	3-COLOR es NP-Completo	1(

Capítulo 1

Parte A

1.1. La complejidad de EDMONS-KARP

Teorema: La complejidad de $\langle E - K \rangle$ con n = |V| y m = |E| es $\mathcal{O}(nm^2)$.

Prueba: Sean: f_0, f_1, f_2, \ldots la sucesión de flujos creados por $\langle E - K \rangle$. Es decir, el paso k crea f_k .

Para cada k definimos funciones:

- $d_k(x)$ = "distancia" entre s y x en el paso k en caso de existir, si no ∞ .
- $b_k(x) = \text{distancia entre } x \ y \ t \ \text{en el paso} \ k \ \text{en caso de existir, si no } \infty.$

"Distancia": longitud del menor camino aumentante entre dos vértices.

Observaciónes:

- 1. $d_k(s) = 0$
 - $b_k(t) = 0$
- 2. Sabemos que las distancias de $\langle E K \rangle$ no disminuyen en pasos sucesivos, como esto será útil en esta demostración llamaremos \circledast a la demostración de:

$$d_k(x) \le d_{k+1}(x)$$

Llamemos <u>crítico</u> a un lado disponible en el paso k pero no disponible en el paso k+1. Es decir, si xy es un lado $\Rightarrow xy$ se satura o yx se vacía en el paso k.

Supongamos que al construir f_k el lado xy se vuelve crítico, el camino: $s \cdots x, y \cdots t$ se usa para construir f_k .

$$d_k(t) = d_k(x) + b_k(x)$$

$$= d_k(x) + b_k(y) + 1$$
(1.1)

Para que xy pueda ser crítico nuevamente debe ser usado en la otra dirección $(i.e \ yx)$. Sea j el paso posterior a k en el cual se usa el lado en la otra dirección, el camino $s \cdots y, x \cdots t$ se usa para construir f_j .

$$d_{j}(t) = d_{j}(x) + b_{j}(x)$$

$$= d_{j}(y) + 1 + b_{j}(x)$$
(1.2)

Es decir:

De ① y ②
$$\Rightarrow$$

$$\begin{cases} d_j(x) = d_j(y) + 1 \\ d_k(y) = d_k(x) + 1 \end{cases}$$

Luego:

$$d_i(t) = d_i(x) + b_i(x) \tag{1.3}$$

$$= d_i(y) + 1 + b_i(x) (1.4)$$

$$\geq d_k(y) + 1 + b_k(x) \tag{1.5}$$

$$= d_k(x) + 1 + 1 + b_k(x) (1.6)$$

$$= d_k(t) + 2 \tag{1.7}$$

$$\Rightarrow d_{\ell}(t) \geq d_{k}(t) + 2 \tag{1.8}$$

Por lo tanto cuando un lado se vuelve crítico recien puede volver a saturarse cuando la distancia de s a t haya aumentado en por lo menos 2. Puede existir $\mathcal{O}(n/t)$ tales aumentos, es decir:

Veces que un lado puede volverse crítico = $\mathcal{O}(n)$.

$$\therefore Complejidad(\langle E - K \rangle) = (\#pasos) * Complej(paso)$$

$$= (\#veces que un lado se vuelve crítico) * (\#lados) * Complej(BFS)$$

$$= \mathcal{O}(n) * \mathcal{O}(m) * \mathcal{O}(m)$$

$$= \mathcal{O}(nm^2)$$

1.2. Las distancias de Edmonds-Karp no disminuyen en pasos sucesivos

<u>Teorema:</u> Sean: f_0, f_1, f_2, \ldots la sucesión de flujos creados por $\langle E - K \rangle$, *i.e* el paso k crea f_k . Para cada k definimos funciones:

- $d_k(x) =$ "distancia" entre s y x en el paso k en caso de existir, si no ∞ .
- $b_k(x) = \text{distancia entre } x y t \text{ en el paso } k \text{ en caso de existir, si no } \infty.$

"Distancia": longitud del menor camino aumentante entre dos vértices.

Queremos probar que:

- 1. $d_k(x) \leq d_{k+1}(x)$
- 2. $b_k(x) \leq b_{k+1}(x)$

<u>Prueba:</u> Lo probaremos por inducción y solo para d_k ya que para b_k la prueba es análoga.

HI:
$$H(i) = \{ \forall_z : d_{k+1}(z) \le i, d_k(z) \le d_{k+1}(z) \}$$

1.
$$H(0) = \{ \forall_z : d_{k+1}(z) \le 0, d_k(z) \le d_{k+1}(z) \}$$

Pero $d_{k+1} \le 0 \Rightarrow$

1.3. La complejidad de DINIC

<u>Teorema:</u> La complejidad del algoritmo de Dinic es $\mathcal{O}(n^2m)$.

<u>Prueba:</u> Como la distancia entre s y t en networks auxiliares consecutivos aumenta y puede ir a lo sumo entre 1 y n-1 entonces hay a lo sumo $\mathcal{O}(n)$ networks auxiliares.

Notación: llamemos PB al proceso de hallar paso bloqueante en un network auxiliar con Dinic.

Luego la complejidad de Dinic es $\mathcal{O}(n)$ compl(PB). Para probar que la complejidad de Dinic es $\mathcal{O}(n^2m)$ debemos probar que compl(PB) = $\mathcal{O}(nm)$.

Para hallar un flujo bloqueante:

- 1. Crear un NA: Como es con BFS es $\mathcal{O}(m)$
- 2. Hallar bloqueante, denotemos:
 - A: avanzar
 - R: retorceder
 - I: inicializar e incrementar

El paso bloqueante de Dinic luce de la forma:

subdiviadmoslo en palabras del tipo:

- AA...AI
- AA...AR.

donde las primeras son todas A pudiendo ser 0 la cantidad de la misma. Debemos determinar:

1. Cual es la complejidad de cada subpalabra.

Recordemos que:

- A: { P[i+1] = algún elemento de $\Gamma^+(P[i])$ i = i+1 \Rightarrow A es $\mathcal{O}(1)$
- R: { borrar P[i-1] del NA i = i - 1⇒ R es $\mathcal{O}(1)$
- I: { Recorre dos veces un camino de longitud d = d(t)⇒ R es $\mathcal{O}(d)$

Por lo tanto:

$$compl(A...AR) = \mathcal{O}(1) + ...\mathcal{O}(1) + \mathcal{O}(1) = \mathcal{O}(j)$$
(1.9)

Pero como cada A hace i = i + 1 y tenemos $0 \le i \le d \Rightarrow j \le d$.

$$\therefore compl(A...AR) = \mathcal{O}(d)$$

Similarmente:

$$compl(A...AI) = \mathcal{O}(1) + ...\mathcal{O}(1) + \mathcal{O}(1) = \mathcal{O}(d) + \mathcal{O}(d) = \mathcal{O}(d)$$

$$(1.10)$$

Pero como cada A hace i=i+1 y tenemos $0 \leq i \leq d \Rightarrow j \leq d$.

$$\therefore compl(A...AR) = \mathcal{O}(d)$$

2. Cuantas palabras hay de cada tipo.

1.4. La complejidad de WAVE

1.5. La distancia entre NA sucesivos aumenta

Capítulo 2

Parte B

2.1. 2-COLOR es polinomial

2.2. Teorema Max-Flow Min-Cut

Teorema:

- a) Si f es flujo y S es corte \Rightarrow V $(f) \leq$ Cap(S).
- b) Si V(f) = Cap(S) \Rightarrow f es maximal y S es minimal.
- c) Si f es maximal $\Rightarrow \exists$ S con V(f) = Cap(S).

<u>Prueba:</u> Demostraremos primero que $V(f) = f(S, \overline{S}) - f(\overline{S}, S)$ donde f es un flujo y S un corte. Esto nos ayudará en la demostración del ítem (a).

Observemos que:

- $f(A \cup B, C) = f(A, C) + f(B, C)$: A y B disjuntos.
- $f(A, B \cup C) = f(A, B) + f(A, C)$: B y C disjuntos.
- $f(A,B) = \sum_{\substack{x \in A \\ y \in B}} f(x,y).$

Sea $x \in S \Rightarrow x \neq t$.

$$f(x, V) - f(V, x) = \begin{cases} V(f) & Si \ x = s \\ 0 & Si \ x \neq s \ pues \ t \notin S \end{cases}$$

Luego:

$$\sum_{x \in S} (f(x, V) - f(V, x)) = 0 + 0 \dots + V(f) = V(f)$$
(2.1)

$$V(f) = \sum_{x \in S} f(x, V) - \sum_{x \in S} f(V, x)$$
 (2.2)

$$= f(S, V) - f(V, S) \tag{2.3}$$

$$= f(S, S \cup \overline{S}) - f(S \cup \overline{S}, S) \tag{2.4}$$

$$= f(S,S) + f(S,\overline{S}) - f(S,S) - f(\overline{S},S)$$
(2.5)

a) $V(f) \leq Cap(S)$

2.3. Complejidad del Hungaro es $\mathcal{O}(n^4)$

<u>Teorema:</u> La complejidad del algoritmo Húngaro es $\mathcal{O}(n^4)$. <u>Prueba:</u>

1. La complejidad del matching inicial es $\mathcal{O}(n^2)$, ya que:

Restar mínimo de cada fila:

$$(\mathcal{O}(n^2) + \mathcal{O}(n^2)) * n = \mathcal{O}(n^2)$$
 Idem para las columnas.

2. Llamemos **extender** el matching, a incrementar su número de filas en 1, i.e agregar una fila más al matching.

$$\#$$
 extensiones de matching = $\mathcal{O}(n)$

Resta ver la complejidad de cada extender.

3. En cada extensión vamos a ir revisando filas y columnas, donde escanear una fila es $\mathcal{O}(n)$ y se realizan n escaneos, por lo que sería $\mathcal{O}(n^2)$ sin considerar que se debe realizar un cambio de matriz.

Hacer un cambio de matriz es $\mathcal{O}(n^2)$.

- Buscar $m = \min S \ x \ \overline{\Gamma(S)} \to \mathcal{O}(n^2)$
- Restar m de $S \to \mathcal{O}(n^2)$
- Sumar m a $\Gamma(S) \to \mathcal{O}(n^2)$

Luego la implementación NAIVE lanzaría nuevamente el algoritmo desde cero. La forma correcta es continuar con el matching que teniamos, ya que el mismo no se pierde.

$$\begin{bmatrix} A & A \\ B & C \end{bmatrix}$$

TO DO

Debemos ver cuantos Cambios de matriz hay antes de extender nuevamente un matching **Lema Interno:** Luego de un cambio de matriz, se extiende el matching (i.e se termina el **extender**), o bien se aumenta S.

Prueba:

$$\begin{bmatrix} A & A \\ B & C \end{bmatrix}$$

Al restar $m = \min S \Gamma(S)$ de las filas de S, habrá un nuevo cero en alguna fila $i \in S$ y columna $j \in \Gamma(S)$ entonces la columna se etiquetará con i y se revisará. Tenemos dos resultados posible:

a) j está libre (i.e no forma parte del matching) \Rightarrow extendemos el matching.

7

b) j forma parte de matching $\Rightarrow \exists$ fila k matcheada con j. En este caso, la fila k se etiquetará con j, por lo que el "nuevo" $S \geq S \cup \{k\}$.

Entonces se termina con una extensión o se produce un nuevo S de cardinalidad, al menos |S| + 1.

Fin lema interno

Luego como |S| solo puede crecer $\mathcal{O}(n)$ veces, tenemos que hay a lo sumo n cambios de matriz antes de extender el matching. Entonces:

$$\text{Complejidad}(1 \text{ Extensión}) = \underbrace{\mathcal{O}(n)}_{\#CM} * \underbrace{\mathcal{O}(n^2)}_{Compl(CM)} + \underbrace{\mathcal{O}(n^2)}_{Busqueda\ n\ filas\ x\ n\ columnas}$$

$$\therefore \text{ Complejidad(H\'ungaro)} = \underbrace{\mathcal{O}(n^2)}_{\textit{Matchinginicial}} + \underbrace{\mathcal{O}(n)}_{\textit{\#extensiones}} * \underbrace{\mathcal{O}(n^3)}_{\textit{Compl(extension)}}$$

2.4. Teorema de Hall

<u>Teorema:</u> Sea $G = (x \cup y, E)$ grafo bipartito $\Rightarrow \exists$ matching completo de X a $Y \Leftrightarrow |S| = |\Gamma(S)| \forall S \subseteq X$.

Prueba:

⇒) Si M es matching comple de X a Y entonces oberservemos que M induce una función invectiva de X a Y.

$$f(x) = \text{único y} : xy \in M.$$

1. Si
$$S \subseteq X \Rightarrow |S| = |\Gamma(S)|$$
.

Además por definición de f, $f(x) \in \Gamma(x)$.

2. Si
$$x \in S \Rightarrow f(x) \in \Gamma(S) \Rightarrow f(S) \subseteq \Gamma(S)$$
.

De ① y ②
$$\Rightarrow$$
 $|S| \leq |\Gamma(S)|$.

 \Leftarrow) Supongamos que no es cierto, entonces G es bipartito con $|S| \leq |\Gamma| \, \forall \, S \subseteq X$ pero no tiene matching completo de X a Y. Es equivalente a ver que: Si \nexists un matching completo $\Rightarrow \exists \, S \subseteq X : |S| > |\Gamma(S)|$.

Corramos el algoritmo para hallar matching. Al finalizar habrá filas sin matcher (las de s). Sean:

- 2.5. Teorema del matrimonio
- **2.6.** Si G es bipartito $\Rightarrow \chi'(G) = \Delta$
- 2.7. Teorema cota de Hamming
- 2.8. Sea H una matriz de chequeo de un código C, pruebe que:
- 2.8.1. $\delta(C) =$ mínimo número de columnas linealmente dependientes de H
- 2.8.2. Si H no tiene la columna cero ni columnas respetidas \Rightarrow C corrige al menos un error
- 2.9. Sea C un código cíclico de dimensión k y longitud n y sea g(x) su polinomio generador, probar que:
- 2.9.1. C está formado por los múltiplos de g(x) de grado menor a n
- **2.9.2.** El grado de g(x) es n k
- **2.9.3.** g(x) divide a $1 + x^n$

Capítulo 3

Parte C

- 3.1. 4-COLOR $\leq_p SAT$
- 3.2. 3-SAT es NP-Completo
- 3.3. 3-COLOR es NP-Completo

Bibliografía

- $[1]\ {\rm Curto}\ {\rm Agust\'in}$, «Matemática Discreta II, apuntes de clase», ${\it FaMAF},\ {\it UNC}.$
- [2] MAXIMILIANO ILLBELE, «Resumen de Discreta II, 16 de agosto de 2012», FaMAF, UNC.