François Leroy

Science des données (apprentissage machine et profond), Modélisation statistique, Analyses géospatiales

466 W 2nd Av. Columbus, OH 43201, USA # +420737642193 nttps://github.com/FrsLry

Expérience

2024-En cours Chercheur postdoctoral - Utilisation de l'IA pour comprendre les changements spatio-temporels de la biodiversité, The Ohio State University, département d'évolution, d'écologie et de biologie des organismes,

- O Développement de réseaux neuronaux hiérarchiques à partir d'un cadre bayésien
- Personnalisation des fonctions de perte pour l'inférence des paramètres de distribution
- Génération de données simulées pour tester les modèles
- o Projet réalisé dans le cadre du ABC Global Center, en collaboration avec le MIT, McGill University, et l'institut Mila (Montréal)

2020-2024 Doctorat - Échelles spatiales et décomposition des changements macroécologiques, Faculté des sciences de l'environnement, CZU, département de sciences spatiales, Prague.

- Modélisation des changements de biodiversité à l'aide de grandes bases de données spatialisées
- o Optimisation et sélection de modèles (forêts aléatoires, BRT, XGBoost, modèles linéaires...)
- Thèse disponible ici

Projets

- 2020-2025 Modèles hiérarchiques et mixtes avec inférence bayésienne pour des séries temporelles, GAMs, Modèles de Markov cachés (article)
 - o Comparaison des performances de modèles (RF, BRT, XGBoost, GLM) avec validation croisée répétée (article)
 - o Importance des variables et dépendances partielles pour expliquer les erreurs de mesure du satellite ICESat-2 de la NASA (article)
 - o Liste complète des publications : ici

Enseignement

- 2021-2024 Écologie statistique et macroécologie
 - Gestion de versions avec Git et Github
 - SIG et analyses spatiales

Formation

2021 Apprentissage machine, Faculté de mathématiques et physique, UFAL, Université Charles, Prague.

(1 semestre) Etude de tous les algorithmes d'apprentissage machine, des SVMs aux réseaux de neurones

2020-2024 Doctorat - Échelles spatiales et décomposition des changements macroécologiques, Prague.

2018-2020 SCIENCES SORBONNE UNIVERSITÉ

Master Sciences de la mer, Sorbonne Université, Paris.

Écologie numérique, modélisation, géostatistique, SIG, océanographie, écologie marine, biogéochimie, gestion de bases

2015-2018 Licence Sciences de la vie, Université Bretagne Sud, Vannes.

Spécialisation en écosystèmes côtiers et gestion, SIG

Compétences en modélisation

Deep Learning Perceptron multicouche, réseaux convolutifs/récurrents/hiérarchiques

Machine Arbres de décision (RF, BRT, GBM, XGBoost), SVM, KNN, Naive Bayes, modèles linéaires (GLM, modèles **Learning** mixtes, régressions polynomiales...), modélisation hiérarchique

Autres GAMs, inférence bayésienne avec MCMC, réseaux bayésiens, modèles de Markov cachés, ingénierie de variables, modèles spatiaux, séries temporelles, analyse multivariée, multi-échelles, clustering, ordination, optimisation et prédiction de modèles

Compétences en programmation et logiciels

Avancé **P**ython, **R**, **O**Git, **Q**GIS, **A**RCGIS, **A**TEXLaTEX

Intermédiaire Shell, Musa MySQL

Îfremer

พื้นระิบพุ

Débutant ♣Julia, ♣MATLAB, ᠍ HTML5, ICSS

Stages et autres

2024 Deep Learning, Faculté de mathématiques et physique, Université Charles, Prague.

(1 semestre) • Parcours complet des algorithmes de Deep Learning

2022 **HMSC**, École d'été de Jyväskylä, Jyväskylä, Finlande.

(1 semaine) • Modélisation hiérarchique des communautés d'espèces

2020 Modélisation des communautés, DYNECO-LEBCO, IFREMER, Brest (France).

(6 mois) • **Objectifs:** Développer des outils de simulations pour évaluer la dynamique des communautés accompagnant les récifs à *Sabellaria alveolata*

• Explorer la topologie de la communauté à l'aide d'une modélisation qualitative

o Inférerences de réseaux bayésiens dynamiques à partir de grandes bases de données (REEHAB project)

2019 **Ecologie Numérique**, *UMR BOREA - MNHN - LOCEAN*, Paris (France).

(2 mois) • Objective: Variabilité spatio-temporelle du recrutement de Sicyopterus lagocephalus

o Analyse statistique pour observer les différences spatiales (rivières) et temporelles (saison/année)

 Modélisation de la dispersion des larves à l'aide du modèle lagrangien Ichthyop en amont pour évaluer la provenance des larves

2018 **Etude géographique**, *Laboratoire Géoarchitecture*, Vannes (France).

(2 mois) • Objective: utiliser la caractéristique opportuniste du cormoran huppé pour évaluer la biodiversité sous-marine

2017 Cartographie, Photogrammétrie, Laboratoire Géosciences Océans, Vannes (France).

(5 mois) o Objective: étudier la dynamique côtière d'une plage afin de répartir les sédiments à l'endroit le plus pertinent

o Modélisation tridimensionnelle de plages Guyannaises pour observer leurs évolutions

o Production de DEM (i.e. Digital Elevation Model) à exploiter par SIG

Conférences et présentations sélectionnées

Conférencier Introduction to Reproducible Science: Version Control using Git and Github, Ecoinformatics IAVS, invité Online, Slides.

2024-02-16

Conférence Decomposing abundance change to recruitment and loss: analysis of the North-American avifauna,

2023-08-10 Ecological Society of America, Portland, OR, Slides.

Conférence Untangling biodiversity changes across a continuum of spatial scales, International Biogeography

2022-06-05 Society conference, Vancouver, BC, Slides.

Référents Scientifiques

Dr. Marta Jarzyna, Ohio State University, ☎+1 (978) 587-5938, jarzyna.1@osu.edu

Dr. Petr Keil, Czech University of Life Sicences, 2+420 224382659, keil@fzp.czu.cz

Dr. Martin Marzloff, Ifremer, ☎+332 98224327, Martin.Marzloff@ifremer.fr

Dr. Vítězslav Moudrý, Czech University of Life Sicences, 2+420 224382653, moudry@fzp.czu.cz