30

TROUBLESHOOTING

Now that our scripts become more complex, it's time to look at what happens when things go wrong. In this chapter, we'll look at some of the common kinds of errors that occur in scripts and examine a few useful techniques that can be used to track down and eradicate problems.

Syntactic Errors

One general class of errors is *syntactic*. Syntactic errors involve mistyping some element of shell syntax. The shell will stop executing a script when it encounters this type of error.

In the following discussions, we will use this script to demonstrate common types of errors.

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [\$number = 1]; then
 echo "Number is equal to 1."
else

As written, this script runs successfully.

```
[me@linuxbox ~]$ trouble
```

Number is equal to 1.

Missing Quotes

Let's edit our script and remove the trailing quote from the argument following the first echo command.

```
#!/bin/bash
```

trouble: script to demonstrate common errors

number=1

```
if [ $number = 1 ]; then
    echo "Number is equal to 1.
else
    echo "Number is not equal to 1."
fi
```

Here is what happens:

[me@linuxbox ~]\$ trouble

/home/me/bin/trouble: line 10: unexpected EOF while looking for matching `"'

/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported by the error messages are not where the missing quote was removed but rather much later in the program. If we follow the program after the missing quote, we can see why. bash will continue looking for the closing quote until it finds one, which it does, immediately after the second echo command.

After that, bash becomes very confused. The syntax of the subsequent if command is broken because the fi statement is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an editor with syntax highlighting will help since, in most cases, it will display quoted strings in a distinctive manner from other kinds of shell syntax. If a complete version of vim is installed, syntax highlighting can be enabled by entering this command:

:syntax on

Missing or Unexpected Tokens

Another common mistake is forgetting to complete a compound command, such as if or while. Let's look at what happens if we remove the semicolon after test in the if command:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [\$number = 1] then
 echo "Number is equal to 1."
else
 echo "Number is not equal to 1."

fi

The result is this:

 $[me@linuxbox \, \hbox{$\sim$}]\$ \; \textbf{trouble}$

/home/me/bin/trouble: line 9: syntax error near unexpected token `else' /home/me/bin/trouble: line 9: `else'

Again, the error message points to an error that occurs later than the actual problem. What happens is really pretty interesting. As we recall, if accepts a list of commands and evaluates the exit code of the last command in the list. In our program, we intend this list to consist of a single command, [, a synonym for test. The [command takes what follows it as a list of arguments; in our case, that's four arguments: \$number, 1, =, and]. With the semicolon removed, the word then is added to the list of arguments, which is syntactically legal. The following echo command is legal, too. It's interpreted as another command in the list of commands that if will evaluate for an exit code. The else is encountered next, but it's out of place since the shell recognizes it as a *reserved word* (a word that has special meaning to the shell) and not the name of a command, which is the reason for the error message.

Unanticipated Expansions

It's possible to have errors that occur only intermittently in a script. Sometimes the script will run fine, and other times it will fail because of the results of an expansion. If we return our missing semicolon and change the value of number to an empty variable, we can demonstrate.

```
#!/bin/bash

# trouble: script to demonstrate common errors

number=

if [ $number = 1 ]; then
    echo "Number is equal to 1."

else
    echo "Number is not equal to 1."

fi
```

Running the script with this change results in the following output:

[me@linuxbox ~]\$ trouble

/home/me/bin/trouble: line 7: [: =: unary operator expected Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the second echo command. The problem is the expansion of the number variable within the test command. When the following command:

[\$number = 1]

undergoes expansion with number being empty, the result is this:

[=1]

which is invalid and the error is generated. The = operator is a binary operator (it requires a value on each side), but the first value is missing, so the test command expects a unary operator (such as -z) instead. Further, since the test failed (because of the error), the if command receives a non-zero exit code and acts accordingly, and the second echo command is executed.

This problem can be corrected by adding quotes around the first argument in the test command.

["\$number" = 1]

Then when expansion occurs, the result will be this:

["" = 1]

This yields the correct number of arguments. In addition to empty strings, quotes should be used in cases where a value could expand into multiword strings, as with filenames containing embedded spaces.

Make it a rule to always enclose variables and command substitutions in double quotes unless word splitting is needed.

Logical Errors

Unlike syntactic errors, *logical errors* do not prevent a script from running. The script will run, but it will not produce the desired result because of a problem with its logic. There are countless numbers of possible logical errors, but here are a few of the most common kinds found in scripts:

- Incorrect conditional expressions. It's easy to incorrectly code an if/then/else expression and have the wrong logic carried out. Sometimes the logic will be reversed, or it will be incomplete.
- "Off by one" errors. When coding loops that employ counters, it is possible to overlook that the loop may require that the counting start with zero, rather than one, for the count to conclude at the correct point. These kinds of errors result in either a loop "going off the end" by counting too far or a loop missing the last iteration by terminating one iteration too soon.
- Unanticipated situations. Most logic errors result from a program encountering data or situations that were unforeseen by the programmer. As we have seen, this can also include unanticipated expansions, such as a filename that contains embedded spaces that expands into multiple command arguments rather than a single filename.

Defensive Programming

It is important to verify assumptions when programming. This means a careful evaluation of the exit status of programs and commands that are used by a script. Here is an example, based on a true story. An unfortunate system administrator wrote a script to perform a maintenance task on an important server. The script contained the following two lines of code:

```
cd $dir_name rm *
```

There is nothing intrinsically wrong with these two lines, as long as the directory named in the variable, <code>dir_name</code>, exists. But what happens if it does not? In that case, the <code>cd</code> command fails, and the script continues to the next line and deletes the files in the current working directory. Not the desired outcome at all! The hapless administrator destroyed an important part of the server because of this design decision.

Let's look at some ways this design could be improved. First, it might be wise to ensure that the dir_name variable expands into only one word by quoting it and make the execution of rm contingent on the success of cd.

```
cd "$dir_name" && rm *
```

This way, if the cd command fails, the rm command is not carried out. This is better but still leaves open the possibility that the variable, dir_name, is unset or empty, which would result in the files in the user's home directory being deleted. This could also be avoided by checking to see that dir_name actually contains the name of an existing directory.

```
[[ -d "$dir_name" ]] && cd "$dir_name" && rm *
```

Often, it is best to include logic to terminate the script and report an error when a situation such as the one shown previously occurs.

```
# Delete files in directory $dir_name
if [[ ! -d "$dir_name" ]]; then
    echo "No such directory: '$dir_name'" >&2
    exit 1
fi
if ! cd "$dir_name"; then
    echo "Cannot cd to '$dir_name'" >&2
    exit 1
```

```
if!rm *; then
  echo "File deletion failed. Check results" >&2
  exit 1
fi
```

Here, we check both the name, to see that it is an existing directory, and the success of the cd command. If either fails, a descriptive error message is sent to standard error, and the script terminates with an exit status of one to indicate a failure.

Watch Out for Filenames

There is another problem with this file deletion script that is more obscure but could be very dangerous. Unix (and Unix-like operating systems) has, in the opinion of many, a serious design flaw when it comes to filenames. Unix is extremely permissive about them. In fact, there are only two characters that cannot be included in a filename. The first is the / character since it is used to separate elements of a pathname, and the second is the null character (a zero byte), which is used internally to mark the ends of strings. Everything else is legal including spaces, tabs, line feeds, leading hyphens, carriage returns, and so on.

Of particular concern are leading hyphens. For example, it's perfectly legal to have a file named $-rf \sim$. Consider for a moment what happens when that filename is passed to rm.

To defend against this problem, we want to change our rm command in the file deletion script from this:

rm *

to the following:

rm ./*

This will prevent a filename starting with a hyphen from being interpreted as a command option. As a general rule, always precede wildcards (such as * and ?) with ./ to prevent misinterpretation by commands. This includes things like *.pdf and ???.mp3, for example.

PORTABLE FILENAMES

To ensure that a filename is portable between multiple platforms (i.e., different types of computers and operating systems), care must be taken to limit which characters are included in a filename. There is a standard called the POSIX Portable Filename Character Set that can be used to maximize the chances that a filename will work across different systems. The standard is pretty simple. The only characters allowed are the uppercase letters *A*–*Z*, the lowercase letters *a*–*z*, the numerals 0–9, period (.), hyphen (-), and underscore (_). The standard further suggests that filenames not begin with a hyphen.

Verifying Input

A general rule of good programming is that if a program accepts input, it must be able to deal with anything it receives. This usually means that input must be carefully screened to ensure that only valid input is accepted for further processing. We saw an example of this in the previous chapter when we studied the read command. One script contained the following test to verify a menu selection:

$[[\$REPLY = \sim \land [0-3]\$]]$

This test is very specific. It will return a zero exit status only if the string entered by the user is a numeral in the range of zero to three. Nothing else will be accepted. Sometimes these kinds of tests can be challenging to write, but the effort is necessary to produce a high-quality script.

When I was a college student studying industrial design, a wise professor stated that the amount of design on a project was determined by the amount of time given to the designer. If you were given five minutes to design a device "that kills flies," you designed a flyswatter. If you were given five months, you might come up with a laser-guided "antifly system" instead.

The same principle applies to programming. Sometimes a "quick-and-dirty" script will do if it's going to be used once and only by the programmer. That kind of script is common and should be developed quickly to make the effort economical. Such scripts don't need a lot of comments and defensive checks. On the other hand, if a script is intended for *production use*, that is, a script that will be used over and over for an important task or by multiple users, it needs much more careful development.

Testing

Testing is an important step in every kind of software development, including scripts. There is a saying in the open source world, "release early, release often," that reflects this fact. By releasing early and often, software gets more exposure to use and testing. Experience has shown that bugs are much easier to find, and much less expensive to fix, if they are found early in the development cycle.

In Chapter 26, we saw how stubs can be used to verify program flow. From the earliest stages of script development, they are a valuable technique to check the progress of our work.

Let's look at the file-deletion problem shown previously and see how this could be coded for easy testing. Testing the original fragment of code would be dangerous since its purpose is to delete files, but we could modify the code to make the test safe.

echo rm * # TESTING

```
else
echo "cannot cd to '$dir_name'" >&2
exit 1
fi
else
echo "no such directory: '$dir_name'" >&2
exit 1
fi
```

exit # TESTING

Because the error conditions already output useful messages, we don't have to add any. The most important change is placing an echo command just before the rm command to allow the command and its expanded argument list to be displayed, rather than the command actually being executed. This change allows safe execution of the code. At the end of the code fragment, we place an exit command to conclude the test and prevent any other part of the script from being carried out. The need for this will vary according to the design of the script.

We also include some comments that act as "markers" for our test-related changes. These can be used to help find and remove the changes when testing is complete.

Test Cases

To perform useful testing, it's important to develop and apply good *test cases*. This is done by carefully choosing input data or operating conditions that reflect *edge* and *corner* cases. In our code fragment (which is simple), we want to know how the code performs under three specific conditions.

- dir_name contains the name of an existing directory.
- dir_name contains the name of a nonexistent directory.
- dir_name is empty.

By performing the test with each of these conditions, good *test coverage* is achieved.

Just as with design, testing is a function of time, as well. Not every script feature needs to be extensively tested. It's really a matter of determining what is most important. Since it could be so potentially destructive if it malfunctioned, our code fragment deserves careful consideration during both its design and testing.

Debugging

If testing reveals a problem with a script, the next step is debugging. "A problem" usually means that the script is, in some way, not performing to the programmer's expectations. If this is the case, we need to carefully determine exactly what the script is actually doing and why. Finding bugs can sometimes involve a lot of detective work.

A well-designed script will try to help. It should be programmed defensively to detect abnormal conditions and provide useful feedback to the user. Sometimes, however, problems are quite strange and unexpected, and more involved techniques are required.

Finding the Problem Area

In some scripts, particularly long ones, it is sometimes useful to isolate the area of the script that is related to the problem. This won't always be the actual error, but isolation will often provide insights into the actual cause. One technique that can be used to isolate code is "commenting out" sections of a script. For example, our file deletion fragment could be modified to determine whether the removed section was related to an error.

```
if [[ -d $dir_name ]]; then
   if cd $dir_name; then
     rm *
   else
     echo "cannot cd to '$dir_name'" >&2
     exit 1
```

```
fi
# else
# echo "no such directory: '$dir_name'" >&2
# exit 1
fi
```

By placing comment symbols at the beginning of each line in a logical section of a script, we prevent that section from being executed. Testing can then be performed again to see whether the removal of the code has any impact on the behavior of the bug.

Tracing

Bugs are often cases of unexpected logical flow within a script. That is, portions of the script either are never being executed or are being executed in the wrong order or at the wrong time. To view the actual flow of the program, we use a technique called *tracing*.

One tracing method involves placing informative messages in a script that display the location of execution. We can add messages to our code fragment.

```
echo "preparing to delete files" >&2

if [[-d $dir_name]]; then
    if cd $dir_name; then

echo "deleting files" >&2
        rm *
    else
        echo "cannot cd to '$dir_name'" >&2
        exit 1
    fi

else
    echo "no such directory: '$dir_name'" >&2
    exit 1

fi
echo "file deletion complete" >&2
```

We send the messages to standard error to separate them from normal output. We also do not indent the lines containing the messages, so it is easier to find when it's time to remove them.

Now when the script is executed, it's possible to see that the file deletion has been performed.

```
[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files
file deletion complete
[me@linuxbox ~]$
```

bash also provides a method of tracing, implemented by the -x option and the set command with the -x option. Using our earlier trouble script, we can activate tracing for the entire script by adding the -x option to the first line.

```
#!/bin/bash -x

# trouble: script to demonstrate common errors

number=1

if [ $number = 1 ]; then
    echo "Number is equal to 1."

else
    echo "Number is not equal to 1."
```

When executed, the results look like this:

```
[me@linuxbox ~]$ trouble
+ number=1
+ '[' 1 = 1 ']'
```

fi

```
+ echo 'Number is equal to 1.'
Number is equal to 1.
```

With tracing enabled, we see the commands performed with expansions applied. The leading plus signs indicate the display of the trace to distinguish them from lines of regular output. The plus sign is the default character for trace output. It is contained in the PS4 (prompt string 4) shell variable. The contents of this variable can be adjusted to make the prompt more useful. Here, we modify the contents of the variable to include the current line number in the script where the trace is performed. Note that single quotes are required to prevent expansion until the prompt is actually used.

```
[me@linuxbox ~]$ export PS4='$LINENO + '
[me@linuxbox ~]$ trouble
5 + number=1
7 + '[' 1 = 1 ']'
8 + echo 'Number is equal to 1.'
Number is equal to 1.
```

To perform a trace on a selected portion of a script, rather than the entire script, we can use the set command with the -x option.

```
#!/bin/bash

# trouble: script to demonstrate common errors

number=1

set -x # Turn on tracing

if [ $number = 1 ]; then
        echo "Number is equal to 1."

else
        echo "Number is not equal to 1."

fi

set +x # Turn off tracing
```

We use the set command with the -x option to activate tracing and the +x option to deactivate tracing. This technique can be used to examine multiple portions of a troublesome script.

Examining Values During Execution

It is often useful, along with tracing, to display the content of variables to see the internal workings of a script while it is being executed. Applying additional echo statements will usually do the trick.

In this trivial example, we simply display the value of the variable number and mark the added line with a comment to facilitate its later identification and removal. This technique is particularly useful when watching the behavior of loops and arithmetic within scripts.

Summing Up

In this chapter, we looked at just a few of the problems that can crop up during script development. Of course, there are many more. The techniques described here will enable finding most common bugs. Debugging is a fine art that is developed through experience, both in knowing how to

avoid bugs (testing constantly throughout development) and in finding bugs (effective use of tracing). $_{\mbox{\scriptsize Support}}$ $_{\mbox{\scriptsize Sign Out}}$

©2022 O'REILLY MEDIA, INC. <u>TERMS OF SERVICE</u> <u>PRIVACY POLICY</u>