5

10

15

20

25

30

Method of Identifying Inhibitors of DHODH

Description

The present invention relates to a polypeptide which comprises the ligand binding domain of human dihydroorotate dehydrogenase (DHODH), the crystalline forms of this polypeptide complexed with new antiproliferative agents and the use of these crystalline forms to determine the three dimensional structure of the ubiquinone binding site of DHODH complexed with the ligands. The invention also refers to the use of the three dimensional structure of the ubiquinone binding site of DHODH in methods of designing and/or identifying potential inhibitors of dihydroorotate dehydrogenase (DHODH), for example, compounds which are inhibitors of the ubiquinone binding site, for example, compounds which inhibit the binding of a native substrate to the ubiquinone binding site of DHODH.

Inhibitors of DHODH, an enzyme of the pyrimidine biosynthesis, and pharmaceutical compositions containing them, are useful, for example, for the treatment of rheumatoid arthritis (RA). Its treatment with usual medications as for example non-steroid anti-inflammatory agents is not satisfactory. In view of the increasing ageing of the population, especially in the developed Western countries or in Japan, the development of new medications for the treatment of RA is urgently required.

The DHODH inhibiting leflunomide (ARAVA) [EP 780128, WO 97/34600] is the first medicament of this class of compounds (leflunomides) for the treatment of RA. Leflunomide has immunomodulatorial as well as anti-inflammatorial properties [EP 217206, DE 2524929].

In the body, DHODH catalyzes the synthesis of pyrimidines, which are necessary for cell growth. An inhibition of DHODH inhibits the growth of (pathologically) fast proliferating cells, whereas cells which grow at normal speed may obtain their required pyrimidine bases from the normal metabolic cycle. The most important types of cells for the immune response, the lymphocytes, use exclusively the synthesis of pyrimidines for their growth and react particularly sensitively to DHODH inhibition. Substances that inhibit the growth of lymphocytes are important medicaments for the treatment of autoimmune diseases.

WO 99/45926 is a further reference that discloses compounds which act as inhibitors of DHODH. A further object of the present invention is to provide alternative

effective agents which can be used for the treatment of diseases which require the inhibition of DHODH.

In Structure, 2000, Vol. 8, No. 1, pages 25-33, the structure of human DHODH in complex with the antiproliferative agents brequinar and leflunomide are described.

In Structure, 2000, Vol. 8, No. 1, pages 1227-1238, crystal structures of DHODH B and its product complex are determined. In Pharmaceutical Reasearch, 1998, Vol. 15, No. 2, pages 286-295, and in Biochemical Pharmacology, 1990, Vol. 40, No. 4, pages 709-714, the structure-activity relationship of leflunomide and quinoline carboxylic acid analogues is analyzed.

In the Journal of Medicinal Chemistry, 1999, Vol. 42, pages 3308-3314, virtual combinatorial syntheses and computational screening of new potential anti-Herpes compounds are described. In Table 3 on page 3313 experimental results regarding IC₅₀ and cytotoxicity are presented for 2-(2,3-difluorophenylcarbamoyl)-1-cyclopentene-1-carboxylic acid, 2-(2,6-difluorophenylcarbamoyl)-1-cyclopentene-1-carboxylic acid and 2-(2,3,4-trifluorophenyl-carbamoyl)-1-cyclopentene-1-carboxylic acid.

Summary of the Invention

5

10

15

20

25

30

In one embodiment, the present invention relates to a polypeptide comprising the ligand binding domain of human dihydroorotate dehydrogenase (DHODH), crystalline forms of this polypeptide complexed with a ligand, and the three dimensional structure of the polypeptide, including the three dimensional structure of the ubiquinone binding site of DHODH.

In another embodiment, the present invention provides a method of determining the three dimensional structure of a crystalline polypeptide comprising the ubiquinone binding site of DHODH complexed with the ligands. The method comprises the steps of (1) obtaining a crystal of the polypeptide comprising the ubiquinone binding site of DHODH complexed with a ligand; (2) obtaining x-ray diffraction data for said crystal; and (3) solving the crystal structure of said crystal by using said x-ray diffraction data and the atomic coordinates for the DHODH complex with the ligand.

The invention further relates to a method of identifying a compound which is a potential inhibitor of DHODH. The method comprises the steps of (1) obtaining a crystal of the polypeptide comprising the ubiquinone binding site of DHODH complexed with a ligand; (2) obtaining the atomic coordinates of the polypeptide in said crystal; (3) using

said atomic coordinates to define the ubiquinone binding site of DHODH complexed with a ligand; and (4) identifying a compound which fits the ubiquinone binding site. The method can further include the steps of obtaining or synthesizing the compound to inhibit at least one biological activity of DHODH, such as enzymatic activity.

In another embodiment, the method of identifying a potential inhibitor of DHODH comprises the step of determining the ability of one or more functional groups and/or moieties of the compound, when present in, or bound to, the ubiquinone binding site of DHODH; to interact with one or more subsites of the ubiquinone binding site of DHODH. Generally, the ubiquinone binding site of DHODH is defined by the atomic coordinates of a polypeptide comprising the ubiquinone binding site of DHODH. If the compound is able to interact with a preselected number or set of subsites, or has a calculated interaction energy with a desired or preselected range, the compound is identified as a potential inhibitor of DHODH.

15 Brief Description of the Invention

5

10

20

25

30

Figure 1 schematically depicts the spatial arrangement of the subsites of DHODH.

Figure 2 shows the minimal grid screen used for crystallization trails.

Detailed Description of the Invention

The human DHODH enzyme is composed of two domains, namely a large C-terminal domain (Met78 to C-terminus) and a small N-terminal domain (Met30 to Leu68), connected by an extended loop. The large C-terminal domain can be described best as an α/β -barrel fold with a central barrel of eight parallel β strands surrounded by eight α helices. The redox site, formed by the substrate binding site and the site of the cofactor flavine mononucleotide (FMN), is located on this large C-terminal domain. The small N-terminal domain, on the other hand, consists of two α helices, α 1 and α 2, connected by a short loop. This small N-terminal domain contains the binding site for the cofactor ubiquinone. The helices α 1 and α 2 span a slot of about 10 x 20 Å in the so-called hydrophobic patch, with the short α 1- α 2 loop at the narrow end of that slot. The slot forms the entrance to a tunnel that ends at the FMN cavity nearby the α 1- α 2 loop. This tunnel is narrowing towards the proximal redox site and ends with several charged or polar sidechains (Gln47, His56, Tyr356, Thr360 and Arg136). It is evident that ubiquinone

which can easily diffuse into the mitochondrial inner membrane uses this tunnel to

approach the FMN cofactor for a redox reaction.

5

10

The structural knowledge mentioned above can be used to design potential inhibitors of the human DHODH activity targeting the tunnel mentioned above and competing with ubiquinone for the ubiquinone binding site. Potential inhibitors were co-crystallized with human DHODH (Met30 to Arg396) and the three dimensional structures were solved by protein X-ray crystallography techniques, ten of the solved structures being three dimensional structures of human DHODH (Met30 to Arg396) in complex with compounds 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. These crystal structures were solved at atomic resolution and the binding modes of the ten compounds were analyzed. The structural formulars of the co-crystallized compounds are given below.

Compound 2

Compound 3

Compound 4

5

Compound 5

Compound 6

Compound 7

Compound 8

Compound 10

Detailed analysis of the three dimensional structure of the DHODH small N-terminal domain as well as the three dimensional structure of DHODH in complex with certain inhibitors designed to target the ubiquinone binding site revealed the presence of a number of subsites. Each subsite includes molecular functional groups or moieties capable of forming stabilizing interactions with complementary functional groups or moieties of an inhibitor.

The found subsites are characterized below according to the properties of functional groups or chemical moieties they are complementary to, or they can interact with in a stabilizing way, for example, groups or moieties capable of hydrogen bond formation or groups or moieties with hydrophobic (= lipophilic) character. A hydrogen bond is formed between a hydrogen atom covalently bond to an electronegative element (proton donor or hydrogen bond donor) and a lonely electron pair of a second electronegative atom (proton acceptor or hydrogen bond acceptor). Hydrogen bonds typically occur when the hydrogen bond donor and the hydrogen bond acceptor are separated by about 2.5 Å and 3.5 Å.

5

10

15

20

25

30

Stabilizing hydrophobic or lipophilic interactions occur if two groups or moieties with hydrophobic/lipophilic character, for example, aliphatic chains or aromatic systems, are separated by distances close to their van der Waals radii.

The method of identifying a potential inhibitor of DHODH comprises the step of determining the ability of one or more functional groups and/or moieties of the compound, when present in the ubiquinone binding site, to interact with one or more subsites of the ubiquinone binding site. Preferably, the ubiquinone binding site is defined by the atomic coordinates of a polypeptide comprising the ubiquinone binding site of DHODH. If the compound is able to interact with a preselected number or set of subsites, the compound is identified as a potential inhibitor of DHODH.

A functional group or moiety of the compound is said to "interact" with a subsite of the ubiquinone binding site if it participates in an energetically favourable, or stabilizing, interaction with one or more complementary moieties within the subsite.

Two chemical moieties are "complementary" if they are capable, when suitably positioned, of participating in an attractive, or stabilizing, interaction, such as an electrostatic or an van der Waals interaction. Typically, the attractive interaction is an ionion, a salt bridge, ion-dipole, dipole-dipole, hydrogen bond, pi-pi or hydrophobic interaction. An extreme case of attractive interaction is the formation of a covalent bond by a chemical reaction between the test compound and the enzyme. For example, a negatively charged moiety and a positively charged moiety are complementary because, if suitably positioned, they can form a salt bridge. Likewise, a hydrogen bond donor and a hydrogen bond acceptor are complementary if suitably positioned.

Preferably, the groups capable of hydrogen bond formation ("HB") are selected from halogen, such as fluorine, chlorine, bromine and iodine, NO₂, haloalkyl, haloalkyloxy, CN, hydroxyl, amino, hydroxylamine, hydroxamic acid, carbonyl, carbonic

acid, sulfonamide, amide, sulfone, sulfonic acid, alkylthio, alkoxy, ester, hydroxyalkylamino group, and other groups including a heteroatom having at least one lone pair of electrons, such as groups containing trivalent phosphorous, di- and tetravalent sulfur, oxygen and nitrogen atoms;

Preferably, hydrophobic groups ("H") are selected from groups, such as linear, branched or cyclic alkyl groups; linear, branched or cyclic alkynyl groups; aryl groups, such as mono- and polycyclic aromatic hydrocarbyl groups and mono- and polycyclic heteroaryl groups;

Preferably, negatively charged groups ("N") are selected from groups, such as carboxylate, sulfonamide, sulfamate, boronate, vanadate, sulfonate, sulfinate and phosphonate groups. A given chemical moiety can contain one or more of these groups.

In the following a detailed description of identified subsites is provided. Residue numbering and atom labeling is identical to the numbering and labeling in Tables 29, 30, and 31.

15

20

25

10

5

Subsite 1: Hydrophobic pocket; interacting chemical moieties: H;

Residues involved: Leu 42; Met 43; Leu 46; Ala 55; Ala 59; Phe 98; Met 111; Leu 359; Pro 364;

Non-hydrogen atoms which interact with H: Leu 42 CB, CG, CD1, CD2; Met 43 SD, CE; Leu 46 CB, CG, CD1, CD2; Ala 55 CB; Ala 59 CA, CB; Phe 98 CG, CD1, CD2, CE1, CE2; Met 111 SD, CE; Leu 359 CA, CB, CG, CD1, CD2; Pro 364 CB, CD, CG;

Preferably for the hydrophobic interacting with subsite 1, the group is selected from aryl groups, such as an aromatic group having five to fifteen carbon atoms, which can optionally be substituted by one or more substituents R'. More preferably the aryl group is a phenyl group, such as $-CH_2Ph$, $-C_2H_4Ph$, -CH=CH-Ph, $-C\equiv C-Ph$, $-o-C_6H_4-R'$, $-m-C_6H_4-R'$, $-m-CH_2-C_6H_4-R'$, $-m-CH_2-C_6H_4-R'$, or a biphenyl group, in which the phenyl rings can optionally be substituted by one or more substituents R', such biphenyl groups are $-C_6H_4-C_6H_5$; $-C_6H_4-C_6H_4-R'$; $-C_6H_3-R'-C_6H_4-R'$;

30 $-C_6H_3-R^*-C_6H_4-R^*$; $-C_6H_4-O-C_6H_5$; $-C_6H_3-R^*-O-C_6H_4-R^*$; $-C_6H_4-O-C_6H_4-R^*$; $-C_6H_3-R^*-O-C_6H_5$; $-C_6H_4-O-CH_2-C_6H_5$; $-C_6H_3-R^*-O-CH_2-C_6H_4-R^*$; $-C_6H_4-R^*$; $-C_6H_3-R^*-O-CH_2-C_6H_5$;

R' is independently H, -CO₂R'', -CONHR'', -CR''O, -SO₂NR'', -NR''-CO-haloalkyl, -NO₂, -NR''-SO₂-haloalkyl, -NR''-SO₂-alkyl, -SO₂-alkyl, -NR''-CO-alkyl, -CN, alkyl, cycloalkyl, aminoalkyl, alkylamino, alkoxy, -OH, -SH, alkylthio, hydroxyalkyl, hydroxyalkylamino, halogen, haloalkyl, haloalkyloxy, aryl, arylalkyl or heteroaryl;

5 R'' is independently hydrogen, haloalkyl, hydroxyalkyl, alkyl, cycloalkyl, aryl, heteroaryl or aminoalkyl;

R' is preferably F, Cl, Br, I, CF₃, OCF₃, or OCH₃;

15

20

30

Subsite 2: First anion binding site; interacting with HB, N, HB and N, HB and HB, or N and N;

Residues involved: Gln 47; Arg 136; one conserved water molecule

Non-hydrogen atoms which interact with HB and N: Glu 47 OE1, NE2; Arg 136 NE, NH1, NH2; conserved water molecule OH2.

preferably for one or two hydrogen bond formations with subsite 2 the group is selected from halogen, such as fluorine, chlorine, bromine and iodine, NO₂, haloalkyl, haloalkyloxy, CN, hydroxyl, amino, hydroxylamine, hydroxamic acids, carbonyl, carbonic acid, sulfonamide, amide, sulfone, sulfonic acid, alkylthio, alkoxy, such as methoxy, ester, hydroxyalkylamino, carboxylate, tetrazole, sulfonamide, sulfamate, boronate, vanadate, sulfonate, sulfinate and phosphonate group, more preferably from a carboxylate, sulfonamide, sulfamate, sulfonate, carbonyl or carbonic acid group.

Subsite 3: Second anion binding site; interacting with HB, N, HB and N, HB and HB, or N and N;

Residues involved: His 56; Tyr 356; Tyr 147 (interacting via a conserved water molecule);

Non-hydrogen atoms which interact with HB and N: His 56 N, ND1; Tyr 356 OH; Tyr 147 OH (interacting via a conserved water molecule);

preferably for one or two hydrogen bond formations with subsite 2 the group is selected from halogen, such as fluorine, chlorine, bromine and iodine, NO₂, haloalkyl, haloalkyloxy, CN, hydroxyl, amino, hydroxylamine, hydroxamic acids, carbonyl, carbonic acid, sulfonamide, amide, sulfone, sulfonic acid, alkylthio, alkoxy, such as methoxy, ester, hydroxyalkylamino, carboxylate, tetrazole, sulfonamide, sulfamate, boronate, vanadate, sulfonate, sulfinate and phosphonate group, more preferably from a carboxylate, sulfonamide, sulfamate, sulfonate, carbonyl or carbonic acid group.

Subsite 4: Remote hydrophobic pocket; interacting chemical moieties: H;

Residues involved: Pro 52; Val 134; Arg 136; Val 143; Thr 360; FMN;

Non-hydrogen atoms which interact with H: Pro 52 CB, CG, CD; Val 134 CB, CG1, CG2;

Val 143 CB, CG1, CG2; Thr 360 CG2; FMN C7M, C8M;

Preferably for the hydrophobic interacting with subsite 4, the group is selected from such as linear, branched or cyclic C_1 - C_6 -alkyl groups; such as methyl, ethyl, propyl, butyl, tert. butyl, linear, branched or cyclic C_1 - C_6 -alkenyl groups; linear, branched or cyclic C_1 - C_6 -alkynyl groups; aryl groups, such as mono- and bi aromatic hydrocarbyl groups, such as – CH_2Ph , $-C_2H_4Ph$, -CH=CH-Ph, $-C\equiv C-Ph$, $-o-C_6H_4-R$, $-m-C_6H_4-R$, $-p-C_6H_4-R$, $-o-C_6H_4-R$, $-m-C_6H_4-R$, $-m-C_6H_4-R$, $-p-C_6H_4-R$, and mono- and bicyclic heteroaryl groups, such as this zol 2 xl., this zol 4 xl., this zol 5 xl., isothis zol-4-xl.

groups, such as thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,5-oxadiazol-3-yl, 1,2,5-oxadiazol-4-yl, 1,2,5-thiadiazol-3-yl, 1-imidazolyl, 2-imidazolyl, 1,2,5-thiadiazol-4-yl, 4-imidazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-furanyl, 3-furanyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridazinyl, 4-pyridyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 2-pyridyl, 1-pyrrolyl, 2-pyridyl, 1-pyrrolyl, 3-pyridinyl, 4-pyridinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrrolyl, 1-pyrimidinyl, 1-pyrimidinyl, 1-pyridinyl, 1-pyridinyl, 1-pyridinyl, 1-pyrimidinyl, 1-pyrimidinyl, 1-pyridinyl, 1-pyridinyl,

pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, indolyl, indolinyl, tetrazolyl, benzo-[b]-furanyl, benzo[b]thiophenyl, benzimidazolyl, benzothiazolyl, quinazolinyl, quinoxazolinyl, or

preferably isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, quinolinyl, tetrahydroquinolinyl, isoquinolinyl, tetrahydroisoquinolinyl; all this groups can optionally be substituted by one or more substituents R, such as H, amino, alkoxy, OH, SH, alkylthio, hydroxyalkyl, haloalkyl, haloalkyloxy hydroxyalkylamino, halogen; R is preferably F, Cl, Br, I, CF₃,

OCF₃, or OCH₃;

25

30

5

10

15

20

Core: chemical moiety connecting the different moieties interacting with Subsite 1, Subsite 2, Subsite 3, and Subsite 4;

Preferably, the core is selected from cyclic alkyl groups; cyclic alkenyl groups; cyclic alkynyl groups; aryl groups, such as mono- and polycyclic aromatic hydrocarbyl groups and mono- and polycyclic heteroaryl groups; more preferably it is selected from mono-, or bicyclic aromatic or non-aromatic ring systems, most preferably from 5-membered mono-, or bicyclic aromatic or non-aromatic ring systems, such as trans-cyclopentan-1,2-diyl, trans-cyclohexan-1,2-diyl, cis-cyclopentan-1,2-diyl, 1-

cyclopenten-1,2-diyl, 2-cyclopenten-1,2-diyl, 3-cyclopenten-1,2-diyl, 4-cyclopenten-1,2divl. 5-cyclopenten-1,2-diyl, 1-cyclopenten-1,3-diyl, 1-cyclopenten-1,4-diyl, 1-cyclohepten-1,2-diyl cyclohexen-1,2-diyl, or 1-cycloocten-1,2-diyl, 2,5dihydrothiophene-3,4-diyl, 2,5-dihydro-furan-3,4-diyl, 2,5-dihydro-1H-pyrrole-3,4-diyl, 2,5-dihydro-1-methyl-pyrrole-3,4-diyl, 2,5-dihydro-1-ethyl-pyrrole-3,4-diyl, 2,5-dihydro-5 1-acetyl-pyrrole-3,4-diyl, 2,5-dihydro-1-methylsulfonyl-pyrrole-3,4-diyl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-oxadiazol-3yl, 1,2,5-oxadiazol-4-yl, 1,2,5-thiadiazol-3-yl, 1-imidazolyl, 2-imidazolyl, 1,2,5-thiadiazol-10 4-yl, 4-imidazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-furanyl, 3-furanyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrazinyl, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, indolyl, indolinyl, tetrazolyl, benzo-[b]-furanyl, benzo[b]thiophenyl, benzothiazolyl, quinazolinyl, quinoxazolinyl, or preferably quinolinyl, tetrahydro-15 quinolinyl, isoquinolinyl, tetrahydroisoquinolinyl or from a group comprising of:

Bridge: chemical moiety connecting the core with Subsite 1;

Preferably, the bridge is selected from -NH; -O; -CO-NH; -NH-CO; -NH-CO-NH; alkyl; -O-CH₂; -CH₂-O; -O-CH₂-CH₂; -CH₂-CH₂-O; -NH-CH₂; -CH₂-NH; -NH-CH₂; -CH₂-CH₂-NH; -CH₂-CO-NH; -CH₂-NH-CO;

Subsite 5: Solvent anchor; interacting chemical moieties: HB

Residues involved: Met 30; Tyr 38; Leu 67;

20

Non-hydrogen atoms which interact with HB: Met 30 O, SD, CE; Tyr 38 OH, CE2, CD2; Leu 67 O;

preferably for the hydrogen bond formation with subsite 5, the group is selected from F, Cl, Br, I, CF₃, OCF₃, or OCH₃

Subsite 6: Solvent anchor; interacting chemical moieties: H;

Residues involved: Leu 68;

15

Non-hydrogen atoms which interact with H: Leu 68 CB, CG, CD1, CD2;

- Preferably for the hydrophobic interacting with subsite 6, the group is selected from such as linear, branched or cyclic C₁-C₆-alkyl groups; such as methyl, ethyl, propyl, butyl, tert. butyl, linear, branched or cyclic C₁-C₆-alkenyl groups; linear, branched or cyclic C₁-C₆-alkynyl groups; aryl groups, such as mono- and bi aromatic hydrocarbyl groups, such as − CH₂Ph, −C₂H₄Ph, −CH=CH−Ph, −C≡C−Ph, −o−C₆H₄− R`, −m−C₆H₄− R, −p−C₆H₄− R, −p−C₆H₄
- 10 $CH_2-C_6H_4-R$, $-m-CH_2-C_6H_4-R$, $-p-CH_2-C_6H_4-R$ and mono- and bicyclic heteroaryl groups.
 - An alkyl group, if not stated otherwise, denotes a linear or branched C_1 - C_6 -alkyl, preferably a linear or branched chain of one to five carbon atoms, a linear or branched C_1 - C_6 -alkenyl or a linear or branched C_1 - C_6 -alkinyl group, which can optionally be substituted by one or more substituents R', preferably by halogen;
 - the C_1 – C_6 –alkyl, C_1 – C_6 –alkenyl and C_1 – C_6 –alkinyl residue may be selected from the group comprising $-CH_3$, $-C_2H_5$, $-CH=CH_2$, -C=CH, $-C_3H_7$, $-CH(CH_3)_2$, $-CH_2$ – $CH=CH_2$, $-C(CH_3)=CH_2$, $-CH=CH-CH_3$, $-C=C-CH_3$, $-CH_2$ –C=CH, $-C_4H_9$, $-CH_2$ – $CH(CH_3)_2$, $-CH(CH_3)$ – C_2H_5 , $-C(CH_3)_3$, $-C_5H_{11}$, $-C_6H_{13}$, $-C(R`)_3$, $-C_2(R`)_5$, $-CH_2$ – $C(R`)_3$, $-C_3(R`)_7$,
- 20 -C₂H₄-C(R')₃, -C₂H₄-CH=CH₂, -CH=CH-C₂H₅, -CH=C(CH₃)₂, -CH₂-CH=CH-CH₃, -CH=CH-CH=CH₂, -C₂H₄-C≡CH, -C≡C-C₂H₅, -CH₂-C≡C-CH₃, -C≡C-CH=CH₂, -CH=CH-C≡CH, -C≡C-C≡CH, -C₂H₄-CH(CH₃)₂, -CH(CH₃)-C₃H₇, -CH₂-CH(CH₃)-C₂H₅, -CH(CH₃)-CH(CH₃)₂, -C(CH₃)₂-C₂H₅, -CH₂-C(CH₃)₃, -C₃H₆-CH=CH₂, -CH=CH-C₃H₇, -C₂H₄-CH=CH-CH₃, -CH₂-CH=CH-C₂H₅, -CH₂-CH=CH-CH=CH₂,

 $C(CH_3)_2-CH(CH_3)_2$, $-C_2H_4-C(CH_3)_3$, $-CH(CH_3)-C(CH_3)_3$, $-C_4H_8-CH=CH_2$, $-CH=CH-CH_3$ C_4H_9 , $-C_3H_6$ -CH=CH-CH₃, $-CH_2$ -CH=CH-C₃H₇, $-C_2H_4$ -CH=CH-C₂H₅, $-CH_2$ - $C(CH_3)=C(CH_3)_2$, $-C_2H_4-CH=C(CH_3)_2$, $-C_4H_8-C\equiv CH$, $-C\equiv C-C_4H_9$, $-C_3H_6-C\equiv C-CH_3$, $-CH_2-C\equiv C-C_3H_7$, $-C_2H_4-C\equiv C-C_2H_5$;

5

R' is independently H, -CO₂R'', -CONHR'', -CR''O, -SO₂NR'', -NR''-CO-haloalkyl, -NO₂, -NR''-SO₂-haloalkyl, -NR''-SO₂-alkyl, -SO₂-alkyl, -NR''-CO-alkyl, -CN, alkyl, cycloalkyl, aminoalkyl, alkylamino, alkoxy, -OH, -SH, alkylthio, hydroxyalkyl, hydroxyalkylamino, halogen, haloalkyl, haloalkyloxy, aryl, arylalkyl or heteroaryl;

10

R' is independently hydrogen, haloalkyl, hydroxyalkyl, alkyl, cycloalkyl, aryl, heteroaryl or aminoalkyl;

15

a cycloalkyl group denotes a non-aromatic ring system containing four to eight carbon atoms, preferably four to eight carbon atoms, wherein one or more of the carbon atoms in the ring can be substituted by a group X, X being as defined above; the C₄–C₈–cycloalkyl residue may be selected from the group comprising -cyclo-C₄H₇, -cyclo-C₅H₉, -cyclo- C_6H_{11} , -cyclo- C_7H_{13} , -cyclo- C_8H_{15}

20

an alkoxy group denotes an O-alkyl group, the alkyl group being as defined above; the alkoxy group is preferably a methoxy, ethoxy, isopropoxy, t-butoxy or pentoxy group;

an alkylthio group denotes an S-alkyl group, the alkyl group being as defined above.

25

an haloalkyl group denotes an alkyl group which is substituted by one to five halogen atoms, the alkyl group being as defined above; the haloalkyl group is preferably a -C(R¹⁰)₃, $-CR^{10}(R^{10'})_2$, $-CR^{10}(R^{10'})R^{10''}$, $-C_2(R^{10})_5$, $-CH_2-C(R^{10})_3$, $-CH_2-CR^{10}(R^{10'})_2$, $-CH_2-CR^{10}(R^{10'})_2$ $CR^{10}(R^{10'})R^{10''}$, $-C_3(R^{10})_7$ or $-C_2H_4-C(R^{10})_3$, wherein R^{10} , $R^{10'}$, $R^{10''}$ represent F, Cl, Br or I, preferably F;

30

a hydroxyalkyl group denotes an HO-alkyl group, the alkyl group being as defined above;

an haloalkyloxy group denotes an alkoxy group which is substituted by one to five halogen atoms, the alkyl group being as defined above; the haloalkyloxy group is preferably a $-OC(R^{10})_3$, $-OCR^{10}(R^{10'})_2$, $-OCR^{10}(R^{10'})R^{10''}$, $-OC_2(R^{10})_5$, $-OCH_2-C(R^{10})_3$, $-OCH_2-C(R^{10})_3$, $-OCH_2-C(R^{10})_3$, $-OCH_2-C(R^{10})_3$, wherein R^{10} , $R^{10'}$, $R^{10''}$ represent F, Cl, Br or I, preferably F;

a hydroxyalkylamino group denotes an (HO-alkyl)₂-N- group or HO-alkyl-NH- group, the alkyl group being as defined above;

an alkylamino group denotes an HN-alkyl or N-dialkyl group, the alkyl group being as defined above;

a halogen group is chlorine, bromine, fluorine or iodine, fluorine being preferred;

an aryl group preferably denotes an aromatic group having five to fifteen carbon atoms, which can optionally be substituted by one or more substituents R', where R' is as defined above; the aryl group is preferably a phenyl group, −CH₂Ph, −C₂H₄Ph, −CH=CH−Ph, − C≡C−Ph, −o−C₆H₄− R', −m−C₆H₄− R', −p−C₆H₄− R', −o−CH₂−C₆H₄− R', −m−CH₂−C₆H₄− R';

20

25

30

5

a heteroaryl group denotes a 5- or 6-membered heterocyclic group which contains at least one heteroatom like O, N, S. This heterocyclic group can be fused to another ring. For example, this group can be selected from a thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,5-oxadiazol-3-yl, 1,2,5-oxadiazol-4-yl, 1,2,5-thiadiazol-3-yl, 1-imidazolyl, 2-imidazolyl, 1,2,5-thiadiazol-4-yl, 4-imidazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-furanyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 4-pyridyl, 4-pyridyl, 4-pyridyl, 1-pyrazolyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrazinyl, 1-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, 1H-tetrazol-2-yl, 1H-tetrazol-3-yl, tetrazolyl, indolyl, indolinyl, benzo-[b]-furanyl, benzo[b]thiophenyl, benzimidazolyl, benzothiazolyl, quinazolinyl, quinoxazolinyl, or preferably quinolinyl, tetrahydroquinolinyl, isoquinolinyl, tetrahydroisoquinolinyl group. This heterocyclic group can optionally be substituted by one or more substituents R', where R' is as defined above.

In another embodiment, the present invention provides DHODH inhibitors, and methods of use thereof, which are capable of binding to the ubiquinone binding site of DHODH, for example, compounds wich are identified as inhibitors of DHODH or which are designed by the methods described above to inhibit DHODH. For example, the invention includes compounds which interact with one or more, preferably two or more, and more preferably, three or more of DHODH subsites 1 to 6.

Preferably an inhibitor of DHODH should have a core-unit and interact with subsite 1, 2, 3 and 5 or an inhibitor of DHODH should have a core-unit and interact with subsite 1, 2 and 5, or an inhibitor of DHODH should have a core-unit and interact with subsite 1, 3 and 5.

More preferably an inhibitor of DHODH should have a core-unit and interact with subsite 1, 2 and 3, or an inhibitor of DHODH should have a core-unit and interact with subsite 1 and 3.

15 In Figure 1, the spatial arrangement of the subsites is depicted schematically.

5

10

20

25

30

The three dimensional structure published by Shenpig et al. shows human DHODH(Met30-Arg396) in complex with brequinar and the leflunomide metabolite A771726, respectively. The main interaction in the binding of brequinar to DHODH is the formation of a salt bridge between the carboxy group of brequinar and the sidechain of Arg136. In particular, the salt bridge is formed between the carboxylic group and the atoms NE, NH1 or NH2. More precisely, the above mentioned subsite 2, the first anion binding site, is addressed in this kind of interaction. In the following, this type of interactioned will be termed "brequinar-like binding mode".

Analysis of the three dimensional structures of human DHODH in complex with ligands presented here clearly shows a new binding mode for inhibitors containing a carboxylic acid group. This binding mode differs from the brequinar-like binding mode in interacting not with subsite 2 but with subsite 3, termed the second anion binding site. In particular this is true for inhibitor compounds 1, 4, 5, 7 and 8 as can be seen from Table 29. This so far unobserved binding mode will be termed "non-brequinar-like" binding mode in the following.

The "non-brequinar-like" binding mode is characterized by a number of hydrogen bonds formed between the ligand and protein residues belonging to subsite 3. In particular this residues are His 56, Tyr 356 and Tyr 147. Non-hydrogen atoms involved in the

formation of hydrogen bonds are N and ND1 of His 56, the oxygen of the hydroxyl group of Tyr 356 and the oxygen of the hydroxyl group of Tyr 147. The latter interaction involves a conserved water molecule bridging the space between the carboxyl function of the ligand molecule and the hydroxyl group of the tyrosine residue 147.

5

10

15

20

25

Similar findings can be seen in the three dimensional structure of human DHODH in complex with the compounds 2, 6 and 10. As can be seen clearly from the electron density map, the compounds 2, 6 and 10 are able to utilize both anion binding sites (subsite 2 and 3) by adopting two alternative conformations. Therefore, both a brequinar-like and a non-brequinar-like binding mode can be utilized. In the brequinar-like binding mode the carboxy group of compounds 2, 6 and 10 forms hydrogen bonds to the sidechains of residues Gln 47 and Arg 136. In the non-brequinar-like binding mode the five membered ring of compounds 2, 6 and 10 containing the carboxy group is rotated by almost 180 degrees and forms hydrogen bonds to residues His 56 and Tyr 356. Non-hydrogen atoms involved in the formation of hydrogen bonds are N and ND1 of His 56 and the oxygen of the hydroxyl group of Tyr 356.

The compounds 2, 3 and 4 are particularly interesting for a structure-activity-relationship (SAR) analysis. These molecules differ only in the degree of ring substitution (see structures above). Clearly, one can observe a correlation between the number of fluorinated positions at the aromatic ring in the middle of the molecules and the corresponding IC₅₀ values. The higher the number of ring substituents the lower the IC₅₀. Interestingly compound 2 and compound 3 display both the brequinar-like and non-brequinar-like binding mode in the crystal structure (see table 27). It is quite reasonable to speculate whether the ring substituents exhibit a steering effect on the five membered ring and by such facilitate the formation of the more favourable brequinar-like binding mode. Therefore, the presence of both binding modes might explain the increased affinity of this compounds.

Table 27: Relation of inhibitor binding mode and degree of ring substitutions. Structures of the compounds are shown above.

Compound	Brequinar-like	Non-Brequinar-like
3	X	X
2	X	X

4 X

5

10

15

20

25

A similar structure-activity-relationship can be deduced from the crystal structures of humann DHODH in complex with compounds 9 and 10. These compounds carry a sulfur atom at an ortho position with respect to the carboxylic group in the five membered ring. Compound 10 is single substituted with fluorine at the biaryl ring system, whereas compound 9 bears two substituents. Interestingly, compound 9 exhibits a pure brequinar-like binding mode whereas compound 10 shows both alternatives. Additionally, the sulfur atom in the ortho position on the five membered ring can favourably interact with the protein's subsite 4 (remote hydrophobic pocket). The activity data correlate to a very high degree with the presence of a particular binding mode (Table 28). Obviously, not only the degree of ring substitution but also ring planarity might contribute to the formation of a particular binding mode.

Table 28: Relation of inhibitor binding mode and degree of ring substitutions. Structures of the compounds are shown above.

Compound	Brequinar-like Non-Brequinar-	
9	X	
10	X	X

From the discussion above several possibilities for further synthesis of compounds emerge. First, one could try to stabilize the Brequinar-like conformation by a more elaborate variation of substitution patterns at the aromatic ring system. A second way to improve on the affinity might comprise the addition of a second functional group, which is able to form hydrogen bonds or salt bridges to the five membered ring opposite to the position of the carboxy group. Thus the molecule should be able to address both anion subsites and utilize brequinar-like as well as non-brequinar-like binding modes at the same time. This is highly supported by the evidence of structural data. Mobility at the site of Gln47 and Arg136 indicates that the protein should be able to exhibit sufficient conformational flexibility to adopt ligand molecules displaying more demanding sterical requirements.

Another interesting finding is that the DHODH binding pocket is able to selectively discriminate between enantiomeres. Compounds 5 and 6 were synthesized as a racemic mixtures caused by the presence of a stereo centre at the five membered ring (see above). The racemic mixtures were used for crystallization experiments. In both cases the refined structures unequivocally showed the inhibitor bound in its R-form. It is not possible to fit the S-enantiomer into the electron density.

5

10

15

20

25

30

The invention further provides a method of designing a compound which is a potential inhibitor of DHODH. The method includes the steps of (1) identifying one or more functional groups capable of interacting with one or more subsites of the ubiquinone binding site of DHODH; and (2) identifying a scaffold which presents the functional group or functional groups identified in step 1 in a suitable orientation for interacting with one or more subsites of the ubiquinone binding site of DHODH. The compound which results from attachment of the identified functional groups or moieties to the identified scaffold is a potential inhibitor of DHODH. The DHODH ubiquinone binding site is, generally, defined by the atomic coordinates of a polypeptide comprising the DHODH ubiquinone binding site.

The present invention also provides several advantages. For example, the invention provides a new three dimensional structure of a crystalline polypeptide comprising the ubiquinone binding site of DHODH complexed with the ligands. This structure enables the rational development of inhibitors of DHODH by permitting the design and/or identification of molecular structures having features which facilitate binding to the ubiquinone binding site of DHODH. The methods of use of this structure disclosed herein, thus, permit more rapid discovery of compounds which are potentially useful for the treatment of conditions which are mediated, at least in part, by DHODH activity.

The polypeptide preferably comprises the ubiquinone binding site of a mammalian DHODH. More preferably the polypeptide comprises the ubiquinone binding site of human DHODH. In a preferred embodiment, the polypeptide is a polypeptide of the present invention, as described above.

The polypeptide can be crystallized using methods known in the art, such as the methods described in Structure, 2000, Vol. 8, No. 1, pages 25-33, to afford polypeptide crystals which are suitable for x-ray diffraction studies. A crystalline polypeptide/ligand complex can be produced by co-crystallizing the polypeptide with a solution including the ligand.

The atomic coordinates of the polypeptide and the ligand can be determined, for example, by x-ray crystallography using methods known in the art. The data obtained from the crystallography can be used to generate atomic coordinates, for example, of the polypeptide and ligand, if present. As is known in the art, solution and refinement of the x-ray crystal structure can result in the determination of coordinates for some or all of the non-hydrogen atoms.

5

10

15

20

25

30

The atomic coordinates of the polypeptide can be used, as is known in the art, to generate a three-dimensional structure of the ubiquinone binding site of DHODH. This structure can then be used to assess the ability of any given compound, preferably using computer-based methods, to fit into the ubiquinone binding site.

The atomic coordinates of the polypeptide/ligand complex can be used, as is known in the art, to generate a three-dimensional structure of the ligand in its binding conformation. This structure can then be used to assess the ability of any given compound, preferably using computer-based methods, to exhibit a similar spatial orientation and electrostatic and/or van der Waals interactions as the ligand and therefore, to fit into the addressed binding site.

A compound fits into the ubiquinone binding site if it is of suitable size and shape to physically reside in the ubiquinone binding site, that is if it has a shape which is complementary to the ubiquinone binding site and can reside in the ubiquinone binding site without significant unfavorable sterical or van der Waals interactions. Preferably, the compound includes one or more functional groups and/or moieties which interact with one or more subsites within the ubiquinone binding site. Computational methods for evaluating the ability of a compound to fit into the ubiquinone binding site, as defined by the atomic coordinates of the polypeptide, are known in the art, and representative examples are provided below.

In another embodiment, the method of identifying a potential inhibitor of DHODH comprises the step of determining the ability of one or more functional groups and/or moieties of the compound, when present in the DHODH ubiquinone binding site, to interact with one or more subsites of the DHODH ubiquinone binding site. Preferably, the DHODH ubiquinone binding site is defined by the atomic coordinates of a polypeptide comprising the DHODH ubiquinone binding site. If the compound is able to interact with a preselected number of subsites, the compound is identified as a potential inhibitor of DHODH.

In yet another embodiment, the method of identifying a potential inhibitor of DHODH comprises the steps of (1) identifying the size and shape of the ligand co-crystallized in the polypeptide/ligand complex and/or identifying functional groups or moieties of the ligand which are capable to form stabilizing interactions with the polypeptide, and (2) by comparison with these, identifying one or more functional groups and/or moieties of any given compound which have similar size and shape as the cocrystallized ligand and/or are capable to form one or more interactions to the polypeptide in a similar manner as the co-crystallized ligand. If a compound exhibits one or more of these features, the compound is identified as a potential inhibitor of DHODH.

5

10

15

20

25

30

A functional group or moiety of the compound is said to "interact" with a subsite of the DHODH ubiquinone binding site if it participates in an energetically favourable, or stabilizing, interaction with one or more complementary moieties within the subsite, as defined above.

A functional group or moiety of the compound is said to interact in a "similar" manner as the co-crystallized ligand if one or more, preferably two or more of its functional groups or moieties capable of forming the attractive interactions mentioned above can be superimposed on those functional groups or moieties of the co-crystallized ligand capable of forming the attractive interactions. The superposition can be performed based on the identity of atoms, and/or the identity or similarity of functional groups, and/or the similarity of molecular shape and/or the identity or similarity of interaction possibilities. For example, an -OH group of a compound and an -NH group of the cocrystallized ligand may interact in the same way, namely as hydrogen bond donors, with a hydrogen bond acceptor atom suitably positioned in the enzyme. Therefore, the -OH group and the -NH group are said to have similar interaction properties, and a molecule containing an -OH group may be superimposed onto a molecule carrying an -NH group at the corresponding position.

Typically, the assessment of interactions between (1) the test compound and the DHODH ubiquinone binding site and (2) the superposition of a test compound and the co-crystallized ligand employ computer-based computational methods, such as those known in the art, in which, for the first case, possible interactions of a compound with the protein, as defined by atomic coordinates, are evaluated with respect to interaction strength by calculating the interaction energy upon binding the compound to the protein. For the second case, the superposition of a test compound and the cocrystallized ligand is

performed according to the identity of atoms, and/or the identity or similarity of functional groups, and/or the similarity of molecular shape and/or the identity or similarity of interaction possibilities in a process termed alignment. Matching atoms / functional groups / shape / interaction possibilities are evaluated and summarized to an alignment score enabling the ranking of the tested molecules.

5

10

15

20

25

30

Compounds which have calculated interaction energies within a preselected range or which otherwise, in the opinion of the computational chemist employing the method, have the greatest potential as DHODH inhibitors, can then be provided, for example, from a compound library or via synthesis, and assayed for the ability to inhibit DHODH. The interaction energy for a given compound generally depends upon the ability of the compound to interact with one or more subsites within the protein catalytic domain.

In one embodiment, the atomic coordinates used in the method are the atomic coordinates set forth in Tables 29, 30, and 31. It is to be understood that the coordinates set forth in Tables 29, 30, and 31 can be transformed, for example, into a different coordinate system, in ways known to those of skill in the art without substantially changing the three dimensional structure represented thereby.

In certain cases a moiety of the compound can interact with a subsite via two or more individual interactions. A moiety of the compound and a subsite can interact if they have complementary properties and are positioned in sufficient proximity and in a suitable orientation for a stabilizing interaction to occur. The possible range of distances for the moiety of the compound and the subsite depends upon the distance dependence of the interaction, as known in the art. For example, a hydrogen bond typically occurs when a hydrogen bond donor atom, which bears a hydrogen atom, and a hydrogen bond acceptor atom are separated by about 2.5 Å and about 3.5 Å. Hydrogen bonds are well known in the art. Generally, the overall interaction, or binding, between the compound and the ubiquinone binding site will depend upon the number and strength of these individual interactions.

The ability of a test compound to interact with one or more subsites of the ubiquinone binding site can be determined by computationally evaluating interactions between functional groups, or moieties, of the test compound and one or more amino acid side chains and/or backbone atoms in the ubiquinone binding site. Typically, a compound which is capable of participating in stabilizing interactions with a preselected number of subsites, preferably without simultaneously participating in significant destabilizing

interactions, is identified as a potential inhibitor of DHODH. Such a compound will interact with one or more subsites, preferably with two or more subsites and, more preferably, with three or more subsites.

The invention further provides methods of designing a compound which is a potential inhibitor of DHODH.

5

10

15

20

25

30

The first method includes the steps of (1) identifying one or more functional groups capable of interacting with one or more subsites of the DHODH ubiquinone binding site; and (2) identifying a scaffold which presents the functional group or functional groups identified in step 1 in a suitable orientation for interacting with one or more subsites of the DHODH ubiquinone binding site. The compound which results from attachment of the identified functional groups or moieties to the identified scaffold is a potential inhibitor of DHODH. The DHODH ubiquinone binding site is, generally, defined by the atomic coordinates of a polypeptide comprising the DHODH ubiquinone binding site, for example, the atomic coordinates set forth in Tables 29, 30, and 31.

The second method comprises the steps of (1) identifying one or more functional groups or moieties capable of interacting in a similar way as one or more functional groups or moieties of the co-crystallized ligand, and (2) identifying a scaffold which presents the functional group or functional groups identified in step 1 in a suitable orientation for interacting in a similar way as one or more functional groups or moieties of the co-crystallized ligand. The compound which results from attachment of the identified functional groups or moieties to the identified scaffold is a potential inhibitor of DHODH. The co-crystallized ligand is, generally, defined by the atomic coordinates of a ligand complexed in the polypeptide comprising the DHODH ubiquinone binding site, for example, the atomic coordinates set forth in Tables 29, 30, and 31.

Suitable methods, as known in the art, can be used to identify chemical moieties, fragments or functional groups which are capable of interacting favorably with a particular subsite or sets of subsites. These methods include, but are not limited to: interactive molecular graphics; molecular mechanics; conformational analysis; energy evaluation; docking; database searching; virtual high-throughput screening (US 422303, DE 10009479, EP 1094415, US 693731, US 885893, US 885517); structural alignment; functional group alignment; interaction-point alignment; pharmacophore modeling; *de novo* design; property estimation and descriptor-based database searching. These methods can also be employed to assemble chemical moieties, fragments or functional groups into a

single inhibitor molecule. These same methods can also be used to determine whether a given chemical moiety, fragment or functional group is able to interact favorably with a particular subsite or sets of subsites.

In one embodiment, the design of potential DHODH inhibitors begins from the general perspective of three-dimensional shape and electrostatic complementarity for the ubiquinone binding site, and subsequently, interactive molecular modeling techniques can be applied by one skilled in the art to visually inspect the quality of the fit of a candidate molecule into the binding site. Suitable visualization programs include SYBYL (Tripos Inc., St. Louis, MO), MOLOC (Gerber Molecular Design, Basel), RASMOL (Sayle et al. Trends Biochem. Sci. 20:374-376 (1995)) and MOE (Chemical Computing Group Inc., Montreal).

5

10

15

20

25

30

A further embodiment of the present invention utilizes a database searching program which is capable of scanning a database of small molecules of known three-dimensional structure for candidates which fit into the target protein site. Suitable software programs include 4SCan[®] (US 422303, DE 10009479, EP 1094415, US 693731, US 885893, US 885517), FLEXX (Rarey et al., J. Mol. Biol. 261:470-489 (1996)), and UNITY (Tripos Inc., St. Louis, MO). Especially 4SCan[®] was developed to scan/screen large virtual databases up to several millions of small molecules in a reasonable time-frame.

A further embodiment of the present invention utilizes a database searching program which is capable of scanning a database of small molecules of known three-dimensional structure for candidates which align properly with the co-crystallized ligand, both in shape and interaction properties. Suitable software programs include 4SCan® (US 422303, DE 10009479, EP 1094415, US 693731, US 885893, US 885517) and FLEXS (Lemmen et al., J. Med. Chem 41:4502-4520 (1998)). Especially 4SCan® is capable of aligning large virtual databases up to several millions of small molecules in a reasonable time-frame.

It is not expected that the molecules found in the search will necessarily be leads themselves, since a complete evaluation of all interactions will necessarily be made during the initial search. Rather, it is anticipated that such candidates might act as the framework for further design, providing molecular skeletons to which appropriate atomic replacements can be made. Of course, the chemical complementarity of these molecules can be evaluated, but it is expected that the scaffold, functional groups, linkers and/or

monomers may be changed to maximize the electrostatic, hydrogen bonding, and hydrophobic interactions with the enzyme.

Goodford (Goodford J. Med. Chem. 28:849-857 (1985)) has produced a computer program, GRID, which seeks to determine regions of high affinity for different chemical groups (termed probes) on the molecular surface of the binding site. GRID hence provides a tool for suggesting modifications to known ligands that might enhance binding.

5

10

15

20

25

30

Consequently, virtual combinatorial libraries covering numerous variations of the addressed scaffold, functional groups, linkers and/or monomers can be build up using suitable software programs including LEGION (Tripos Inc., St. Louis, MO) or ACCORD FOR EXCEL (Accelrys Inc., San Diego, CA), followed by scanning or virtual screening or docking of these libraries using suitable software mentioned above.

A range of factors, including electrostatic interactions, hydrogen bonding, hydrophobic interactions, desolvation effects, conformational strain, ligand flexibility and cooperative motions of ligand and enzyme, all influence the binding effect and should be taken into account in attempts to design bioactive inhibitors.

Yet another embodiment of a computer-assisted molecular design method for identifying inhibitors of DHODH comprises searching for fragments which fit into a binding region subsite and link to a pre-defined scaffold. The scaffold itself may be identified in such a manner. A representative program suitable for the searching of such functional groups and monomers include LUDI (Boehm, J. Comp. Aid. Mol. Des. 6:61-78 (1992)) and MCSS (Miranker et al., Proteins 11: 314-328 (1991)).

Yet another embodiment of a computer-assisted molecular design method for identifying inhibitors of DHODH comprises the *de novo* synthesis of potential inhibitors by algorithmic connection of small molecular fragments that will exhibit the desired structural and electrostatic complementarity with the active site of the enzyme. The methodology employs a large template set of small molecules which are iteratively pierced together in a model of the DHODH ubiquinone binding site. Programs suitable for this task include GROW (Moon et al. Proteins 11:314-328 (1991)) and SPROUT (Gillet et al. J. Comp. Aid. Mol. Des. 7:127 (1993)).

In yet another embodiment, the suitability of inhibitor candidates can be determined using an empirical scoring function, which can rank the binding affinities for a set of inhibitors. For examples of such a method see Muegge et al. and references therein

(Muegge et al., J. Med. Chem. 42:791-804 (1999)) and ScoreDock (Tao et al. J Comp. Aid. Mol. Des. 15: 429-446 (2001)).

Other modeling techniques can be used in accordance with this invention, for example, those described by Stahl (Stahl, in: Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheim, 2000, pp. 229-264), Cohen et al. (J. Med. Chem. 33:883-894 (1990)); Navia et al. (Current Opinions in Structural Biology 2:202-210 (1992)); Baldwin et al. (J. Med. Chem. 32:2510-2513 (1989)); Appelt et al. (J. Med. Chem. 34:1925-1934 (1991)); Ealick et al. (Proc. Nat. Acad. Sci. USA 88:11540-11544 (1991));

A compound which is identified by one of the foregoing methods as a potential inhibitor of DHODH can then be obtained, for example, by synthesis or from a compound library, and assessed for the ability to inhibit DHODH *in vitro*. Such an *in vitro* assay can be performed as is known in the art, for example, by contacting DHODH in solution with the test compound in the presence of the substrate and cofactor of DHODH and ubiquinone. The rate of substrate transformation can be determined in the presence of the test compound and compared with the rate in the absence of the test compound. Suitable assays for DHODH biological activity are described below, the teachings of each of which are hereby incorporated by reference herein in their entity.

An inhibitor identified or designed by a method of the present invention can be a competitive inhibitor, an uncompetitive inhibitor or a noncompetitive inhibitor with respect to ubiquinone.

A screen of thousands of compounds using 4Scan® as described above was performed.Hits were ranked according to consensus score.

In table 25 the structures of the highest ranking compounds of the combinatorial library are shown. The consensus score of each molecule is calculated by the summation of the two predicted 4SCan[®] activity scores for the two different structures of the ubiquinone binding site.

The compounds of the present invention can be used for a variety of human and animal diseases, preferably human diseases, where inhibition of the pyrimidine metabolism is beneficial. Such diseases are:

- fibrosis, uveitis, rhinitis, asthma or arthropathy, in particular, arthrosis
- all forms of rheumatism

5

10

15

20

25

30

- acute immunological events and disorders such as sepsis, septic shock, endotoxic shock, Gram-negative sepsis, toxic shock syndrome, acute respiratory distress

syndrome, stroke, reperfusion injury, CNS injury, serious forms of allergy, graft versus host and host versus graft reactions, alzheimer's disease or pyresis, restenosis, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcosis, bone resorption disease. These immunological events also include a desired modulation and suppression of the immune system;

- all types of autoimmune diseases, in particular rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis, multiple sclerosis, insulin dependent diabetes mellitus and non-insulin dependent diabetes mellitus, and lupus erythematoidis, ulcerative colitis, Morbus Crohn, inflammatory bowel disease, as well as other chronic inflammations, chronic diarrhea;
- dermatological disorders such as psoriasis
- progressive retinal atrophy

5

10

15

20

25

30

- all kinds of infections including opportunistic infections.

The compounds according to the invention and medicaments prepared therewith are generally useful for the treatment of cell proliferation disorders, for the treatment or prophylaxis, immunological diseases and conditions (as for instance inflammatory diseases, neuroimmunological diseases, autoimmune diseases or other).

The compounds of the present invention are also useful for the development of immunomodulatory and anti-inflammatory medicaments or, more generally, for the treatment of diseases where the inhibition of the pyrimidine biosynthesis is beneficial.

The compounds of the present invention are also useful for the treatment of diseases which are caused by malignant cell proliferation, such as all forms of hematological and solid cancer. Therefore the compounds according to the invention and medicaments prepared therewith are generally useful for regulating cell activation, cell proliferation, cell survival, cell differentiation, cell cycle, cell maturation and cell death or to induce systemic changes in metabolism such as changes in sugar, lipid or protein metabolism. They can also be used to support cell generation poiesis, including blood cell growth and generation (prohematopoietic effect) after depletion or destruction of cells, as caused by, for example, toxic agents, radiation, immunotherapy, growth defects, malnutrition, malabsorption, immune dysregulation, anemia and the like or to provide a therapeutic control of tissue generation and degradation, and therapeutic modification of cell and tissue maintenance and blood cell homeostasis.

These diseases and conditions include but are not limited to cancer as hematological (e.g. leukemia, lymphoma, myeloma) or solid tumors (for example breast, prostate, liver, bladder, lung, esophageal, stomach, colorectal, genitourinary, gastrointestinal, skin, pancreatic, brain, uterine, colon, head and neck, ovarian, melanoma, astrocytoma, small cell lung cancer, glioma, basal and squameous cell carcinoma, sarcomas as Kaposi's sarcoma and osteosarcoma), treatment of disorders involving T-cells such as aplastic anemia and DiGeorge syndrome, Graves' disease.

5

10

15

20

25

30

Leflunomide was previously found to inhibit HCMV replication in cell culture. Ocular herpes is the most common cause of infectious blindness in the developed world. There are about 50.000 cases per year in the US alone, of which 90% are recurrences of initial infections. Recurrences are treated with antivirals and corticosteroids. Cytomegalovirus, another herpes virus, is a common cause of retinal damage and blindness in patients with aids. The compounds of the present invention can be used alone or in combination with other antiviral compounds such as ganciclovir and foscarnet to treat such diseases.

The compounds of the present invention can further be used for diseases that are caused by protozoal infestations in humans and animals. Such veterinary and human pathogenic protozoas are preferably intracellular active parasites of the phylum Apicomplexa or Sarcomastigophora, especially Trypanosoma, Plasmodia, Leishmania, Cryptosporidia, Sacrocystida, Amoebia, Coccidia Babesia and Theileria, Trichomonadia. These active substances or corresponding drugs are especially suitable for the treatment of Malaria tropica, caused by *Plasmodium falciparum*, Malaria tertiana, caused by Plasmodium vivax or Plasmodium ovale and for the treatment of Malaria quartana, caused by Plasmodium malariae. They are also suitable for the treatment of Toxoplasmosis, caused by Toxoplasma gondii, Coccidiosis, caused for instance by Isospora belli, intestinal Sarcosporidiosis, caused by Sarcocystis suihominis, dysentery caused by Entamoeba histolytica, Cryptosporidiosis, caused by Cryptosporidium parvum, Chargas' disease, caused by Trypanosoma cruzi, sleeping sickness, caused by Trypanosoma brucei rhodesiense or gambiense, the cutaneous and visceral as well as other forms of Leishmaniosis. They are also suitable for the treatment of animals infected by veterinary pathogenic protozoa, like Theileria parva, the pathogen causing bovine East coast fever, Trypanosoma congolense congolense or Trypanosoma vivax vivax, Trypanosoma brucei brucei, pathogens causing Nagana cattle disease in Africa,

Trypanosoma brucei evansi causing Surra, Babesia bigemina, the pathogen causing Texas fever in cattle and buffalos, Babesia bovis, the pathogen causing european bovine Babesiosis as well as Babesiosis in dogs, cats and sheep, Sarcocystis ovicanis and ovifelis pathogens causing Sarcocystiosis in sheep, cattle and pigs, Cryptosporidia, pathogens causing Cryptosporidioses in cattle and birds, Eimeria and Isospora species, pathogens causing Coccidiosis in rabbits, cattle, sheep, goats, pigs and birds, especially in chickens and turkeys. The use of the compounds of the present invention is preferred in particular for the treatment of Coccidiosis or Malaria infections, or for the preparation of a drug or feed stuff for the treatment of these diseases. This treatment can be prophylactic or curative. In the treatment of malaria, the compounds of the present invention may be combined with other anti-malaria agents.

The compounds of the present invention can further be used for viral infections or other infections caused for instance by *Pneumocystis carinii*.

15 Examples

5

10

20

25

30

1. X-Ray structure determination

Expression and Purification

The cDNA encoding for an N-terminally truncated human DHODH(Met30-Arg396) was amplified by the polymerase chain reaction (PCR) from a human liver cDNA bank (Invitrogen, Groningen). The following primers were used to amplify the DHODH gene form the cDNA bank:

DHODH-V: 5'-GGA ATT C<u>CA T**AT** G</u>GC CAC GGG AGA TGA GCG-3' (SEQ ID NO: 1)

DHODH-R: 5'-GCG CGG ATC CTC ACC TCC GAT GAT CTG C-3' (SEQ ID NO: 2)

The underlined sequence regions encode for the cutting sites of the restriction enzymes NdeI (DHODH-V) and BamHI (DHODH-R), respectively. The primers are designed such that subcloning using the NdeI and BamHI restriction sites into a pET-19b vector is possible. The amplified DNA bands were purified and isolated from an agarose gel (QIAquick PCR purification kit). The band showed the expected length of 1.2 kb. The isolated PCR fragment was subcloned into a TOPO vector (Invitrogen, Groningen) according to the protocol outlined in the TOPT TA Cloning Kit. The TOPO vector

including the ligated PCR fragment was digested with the restriction enzymes NdeI and BamHI (New England Biolabs Inc.) to produce sticky ends. Finally, the fragment was cloned into the NdeI/BamHI sites of a pET-19b vector (Novagen, Madison, WI). This vector produced the human DHODH(Met30-Arg396) as an N-terminal ten histidine fusion protein (his10-hDHODH(Met30-Arg396)). The vector was transformed into chemical competent E.coli BL21(DE3)Gold cells (Stratagene, LaJolla, CA). Cells were stored as glycerol stocks at –80°C until further use.

100 ml LB-medium in 250 ml flasks containing 100 μL freshly prepared ampicilline were inoculated with BL21(DE3)Gold cells hosting the pET-19b/hDHODH(Met30-Arg396) construct. Cells were grown overnight at 25°C and constantly vortexed with 150 rpm.

For the expression cultures four 2 L flasks each were filled with 800 mL rich medium (LB) containing 800 μ L ampicilline . The flasks were inoculated with 40 mL of overnight culture and were grown to an optical density O.D.₆₀₀ of 0.6 – 0.8 at 25 °C. The cells were induced with 80 μ L of a 1 M isopropyl-ß-D-thiogalactoside (IPTG) stock solution and grown for another 20 h at 25°C.

The cells were harvested by centrifugation for 15 min in a JA-10 Beckmann rotor at 5000 rpm at 4°C. The cell pellet was stored until further use at -20°C.

The pellets of 4 x 800 mL expression were thawed on ice and resuspended in 100 mL lysisbuffer containing 50 mM HEPES at pH 7.7, 300 mM NaCl, 10% glycerol, 10% bugbuster (Novagen, 10x), two tablets of protease-inhibitor mix (Complete Tabletes EDTA-free, Roche) and 1% triton X-100. The cell suspension was incubated under gentle rocking for 20 min at room temperature.

Cell lysis was performed via ultra sonification using a Branson sonotrode. The chosen parameters for sonification were the following:

amplitude: 60%

duration: 3 x 3 min

maximal allowed temperature: 37°C

30 pulse duration: 0.5 sec

5

10

15

20

25

duty cycle: 0.1 sec

The resulting suspension was centrifuged in a JA-25.50 rotor (Beckmann) at 25.000 rpm for 1 hour at 4°C.

The supernatant was loaded onto a Ni-NTA-column (resin was from Quiagen, column adapter from Pharmacia). The column had a bed volume of 3 mL and was equilibrated with 5 column volumes (CV) of starting buffer (50 mM HEPES pH 7.7; 300 mM NaCl; 10% glycerol and 10 mM imidazole). The sample was loaded with a flow rate of 1 mL/min at 4°C using a BioRad Econopump. Then the column was mounted on a BioRad BioLogic-LP chromatography system and washed with 5 – 10 CVs of 50 mM HEPES pH 7.7, 300 mM NaCl, 10% glycerol, 10 mM imidazole and 10 mM N,N-dimethylundecylamin-N-oxide (C11DAO) at a rate of 1 mL/min. Another more stringent washing step was performed by applying step gradients consisting of the above washing buffer containing 20 mM and 50 mM imidazole, respectively. At this point, pure DHODH was eluted with 50 mM HEPES pH 7.7, 300 mM NaCl, 10% glycerol, 200 mM imidazole and 10 mM N,N-dimethylundecylamin-N-oxide. Elution was carried out with a flow rate of 0.5 mL/min and the eluate was collected in 4 mL fractions. Fractions containing hDHODH(Met30-Arg396) are characterized by a bright yellow colour and showed full activity in an *in vitro* assay (as described above/below).

Fractions containing hDHODH were combined (approx. 10 mL) and dialysed against 3 L of buffer containing 50 mM HEPES pH 7.7, 400 mM NaCl, 30% glycerol, 1 mM EDTA and 10 mM N,N-dimethylundecylamin-N-oxide overnight at 4°C. The dialysed protein sample was concentrated to a final concentration of 20 mg/mL using an Ultrafree 4/YM-30 device from Millipore. During the concentrating procedure the temperature was kept at 4°C. The protein concentration was determined spectrometrically. The His-tag was not removed for further studies.

Finally, aliquots of 50 μL were flash frozen in liquid nitrogen and stored at $-80^{\circ} C$ until further use.

Crystallization and data collection

5

10

15

20

25

30

Human his10-hDHODH(Met30-Arg396) was co-crystallized with compound 1 and compound 2 at 20°C using the hanging-drop vapour diffusion method. Drops were formed by mixing equal amounts of 20 mg/ml protein in 50 mM HEPES pH 7.7, 400 mM NaCl, 30% glycerol, 1 mM EDTA and 10 mM N,N-dimethylundecylamin-N-oxide (C11DAO)

with a precipitant solution of 0.1 M acetate pH 4.6-5.0, 40 mM C11DAO, 20.8 mM N,N-dimethyldecylamine-N-oxide (DDAO), 2 mM dihydroorotate (DHO), 1.8-2.4 M ammonium sulfate, 1 mM compound 1 or 2. The hanging drops were incubated against 0.5 mL reservoir of 0.1 M acetate pH 4.8, 2.4-2.6 M ammonium sulfate and 30% glycerol. The crystallization conditions were screened by variation of pH versus ammonium sulfate concentration using a small grid screen (see figure 2):

The same procedure was applied to obtain single crystals of DHODH(Met30-Arg396) in complex with compounds 3, 4, 5, 6, 7, 8, 9 and 10. Compounds 5 and 6 were synthesized as racemic mixtures due to the presence of a stereo center at the five membered ring. The racemic mixtures were used for crystallization experiments.

Crystals usually appeared as small cubes within three days. They usually reached a full size of 0.2 x 0.2 x 0.2 mm within three to four weeks. The protein crystallized in the space group P3₂21. Crystals were harvested with pre-mounted loops of size 0.5 mm (Hampton Research) and were flash frozen directly in the cryo stream of the measurement device.

Data were collected at the beamline BW6 at the DESY Hamburg on a MAR-CCD camera. A total of 120 frames (0.5° each) were collected from a human DHODH(Met30-Arg396) crystal co-crystallized with compound 1. For the crystal cocrystallized with compound 2 a total of 85 frames (1° each) was recorded. The crystals were maintained at a temperature of 100 K during data collection. The indexing and integration of the reflection intensities were performed with the program MOSFLM (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Data were scaled and merged with SCALA and reduced to structure factor amplitudes with TRUNCATE, both from the CCP4 program suite (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). At this stage 5% and 10% (the "test set") of unique reflections were flagged for cross validation to calculate the free R-factor (R_{free}) during the refinement process later on for compound 1 and compound 2, respectively. The remaining 95% and 90% of the reflections constituted the "working set" for calculation of the R-factor (R), respectively. The statistics of data collection are shown in table 1 and table 2.

30

5

10

15

20

25

Table 1: Crystal & Data collection statistics for compound 1

A. Crystal data

Spacegroup	P3 ₂ 21
Cell dimensions (Å)	$a = 90.69 \ b = 90.69 \ c = 123.22$
Molecules/asymmetric unit	1
Matthews' constant (V _m)(Å ³ /Da)	4.1
Maximum resolution (Å)	2.35
B. Data Collection	
X-Ray source	DESY BW6
Wavelength (Å)	1.05
Total/unique reflections	91431 / 24977
Completeness (%)	98.2 (99.0)
I / sigma	23.9 (6.5)
R _{merge} (%)	5.7 (20.2)

Table 2: Crystal & Data collection statistics for compound 2	
A. Crystal data	
Spacegroup	P3 ₂ 21
Cell dimensions (Å)	a = 90.65 b = 90.65 c = 123.07
Molecules/asymmetric unit	1
Matthews' constant (V _m)(Å ³ /Da)	4.1
Maximum resolution (Å)	2.4
B. Data Collection	
X-Ray source	DESY BW6
Wavelength (Å)	1.05
Total/unique reflections	101935 / 22253
Completeness (%)	95.8 (97.1)
I / sigma	14.6 (3.8)
R _{merge} (%)	9.1 (38.1)

Datasets for the crystals of human DHODH(Met30-Arg396) co-crystallized with compounds 3, 4, 6, 7, 8, 9 and 10 were also collected at the beamline BW6 at the DESY Hamburg on a MAR-CCD camera. Co-crystals with compound 5 were recorded at an in house generator using $CuK\alpha$ radiation and a MAR-dtb image plate.

5

A total of 55 frames, 65 frames, 96 frames, 62 frames, 120 frames, 60 frames, 100 frames and 100 frames (1° each) were collected from human DHODH(Met30-Arg396)

crystals co-crystallized with compound 3, 4, 5, 6, 7, 8, 9 and 10 respectively. The crystals were maintained at a temperature of 100 K during data collection. The indexing and integration of the reflection intensities were performed with the program MOSFLM (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Data were scaled and merged with SCALA and reduced to structure factor amplitudes with TRUNCATE, both from the CCP4 program suite (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). At this stage 5% or 10% (the "test set") of unique reflections were flagged for cross validation to calculate the free R-factor (R_{free}) during the refinement process. The remaining 95% or 90% of the reflections constituted the "working set" for calculation of the R-factor (R), respectively. The statistics of data collection are shown in tables 5 to 12, respectively.

5

10

Table 5: Crystal & Data collection statistics for compound 3	
A. Crystal data	
Spacegroup	P3 ₂ 21
Cell dimensions (Å)	a = 90.43 $b = 90.43$ $c = 123.00$
Molecules/asymmetric unit	1
Matthews' constant (V _m)(Å ³ /Da)	4.1
Maximum resolution (Å)	1.95
B. Data Collection	
X-Ray source	DESY BW6
Wavelength (Å)	1.05
Total/unique reflections	142628/42908
Completeness (%)	99.8 / 99.9
I / sigma	12.6 / 3.4
R _{merge} (%)	8.2 / 38.3

Table 6: Crystal & Data collection s	tatistics for compound 4
A. Crystal data	
Spacegroup	P3 ₂ 21
Cell dimensions (Å)	$a = 90.65 \ b = 90.65 \ c = 123.21$
Molecules/asymmetric unit	1
Matthews' constant (V _m)(Å ³ /Da)	4.1
Maximum resolution (Å)	2.15

B. Data Collection

X-Ray source DESY BW6

Wavelength (Å) 1.05

Total/unique reflections 124056/32175

Completeness (%) 99.2 / 99.0

I / sigma 14.7 / 5.7

 $R_{\text{merge}}(\%)$ 7.1 / 24.8

Table 7: Crystal & Data collection statistics for compound 5		
A. Crystal data		
Spacegroup	P3 ₂ 21	
Cell dimensions (Å)	$a = 90.30 \ b = 90.30 \ c = 123.09$	
Molecules/asymmetric unit	1	
Matthews' constant (V _m)(Å ³ /Da)	4.1	5
Maximum resolution (Å)	2.2	
B. Data Collection		
X-Ray source	CuKα	
Wavelength (Å)	1.54	
Total/unique reflections	171127/30057	
Completeness (%)	99.9 (99.9)	10
I / sigma	4.0 / 1.9	10
R _{merge} (%)	15.4 / 43.5	

Table 8: Crystal & Data collection statistics for compound 6		
A. Crystal data		15
Spacegroup	P3 ₂ 21	
Cell dimensions (Å)	a = 90.44 $b = 90.44$ $c = 123.20$	
Molecules/asymmetric unit	1	
Matthews' constant (V _m)(Å ³ /Da)	4.1	
Maximum resolution (Å)	1.9	
B. Data Collection		20
X-Ray source	DESY BW 6	
Wavelength (Å)	1.05	
Total/unique reflections	173775/46257	
Completeness (%)	99.4 / 99.9	
I / sigma	13.8 / 2.8	
R _{merge} (%)	8.5 / 46.0	

Table 9: Crystal & Data collection statistics for compound 7		
A. Crystal data		
Spacegroup	P3 ₂ 21	5
Cell dimensions (Å)	a = 90.74 $b = 90.74$ $c = 122.88$	
Molecules/asymmetric unit	1	
Matthews' constant (V _m)(Å ³ /Da)	4.1	
Maximum resolution (Å)	1.9	
B. Data Collection		
X-Ray source	DESY BW 6	1.0
Wavelength (Å)	1.05	10
Total/unique reflections	341319/46198	
Completeness (%)	98.6 / 99.7	
I / sigma	23.5 / 5.1	
R _{merge} (%)	8.2 / 21.8	

A. Crystal data		
Spacegroup	P3 ₂ 21	
Cell dimensions (Å)	$a = 90.56 \ b = 90.56 \ c = 123.06$	
Molecules/asymmetric unit	1	
Matthews' constant (V _m)(Å ³ /Da)	4.1	20
Maximum resolution (Å)	1.8	
B. Data Collection		
X-Ray source	DESY BW 6	
Wavelength (Å)	1.05	
Total/unique reflections	190208/53993	
Completeness (%)	98.8 / 96.7	2.
I / sigma	16.7 / 2.9	25
R _{merge} (%)	6.3 / 38.3	

Table 11: Crystal & Data collection	statistics for compound 9		
A. Crystal data			
Spacegroup	P3 ₂ 21	5	
Cell dimensions (Å)	$a = 90.29 \ b = 90.29 \ c = 122.69$	-	
Molecules/asymmetric unit	1		
Matthews' constant (V _m)(Å ³ /Da)	4.1		
Maximum resolution (Å)	2.0		
B. Data Collection			
X-Ray source	DESY BW 6	4.0	
Wavelength (Å)	1.05	10	
Total/unique reflections	103711/39080		
Completeness (%)	98.6 / 99.0		
I / sigma	14.1 / 3.9		
R _{merge} (%)	6.5 / 24.8		
Table 12: Crystal & Data collection A. Crystal data	n statistics for compound 10	15_	
Spacegroup	P3 ₂ 21		
Cell dimensions (Å)	$a = 90.75 \ b = 90.75 \ c = 122.71$		
Molecules/asymmetric unit	1		
Matthews' constant (V _m)(Å ³ /Da)	4.1		
Maximum resolution (Å)	1.8		
B. Data Collection		20	
X-Ray source	DESY BW 6		
Wavelength (Å)	1.05		
Total/unique reflections	326425/54728		
Completeness (%)	99.9 / 100		
I / sigma	27.5 / 6.0		C .
R _{merge} (%)	6.0 / 30.6		Struct
		25	detern

tion and refinement of DHODH/compound 1 complex

5

10

15

20

25

30

The structure for the human DHODH(Met30-Arg396) in complex with compound 1 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.5 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 35.6 % and a correlation coefficient of 69.4 % for compound 1 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX protocols. Finally, SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of compound 1 could be interpreted unambiguously.

A pdb file for compound 1 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 1 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), two sulfate ions (SO4), one molecule of compound 1 (INH) and 153 water molecules (TIP) (see Table 29). The model is well refined and has very good geometry. The refinement process which included data

from 12.0 - 2.35 Å resulted in an R-factor of 18.5 % and a free R-factor of 21.7%. With the exception of glycine residues, 92.4 % (278) of the residues are located in the most favoured region of the ramachandran plot and 7.6 % (22) cluster in the additional allowed regions. Table 13 summarizes the refinement statistics for the inhibitor compound 1 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 2.50 to 2.35.

The N-terminal His tag could not be detected in the electron density map.

Table 13: Refinement Statistics for DHODH/compound 1 complex		
R-factor (%)	18.5 (19.6)	
R _{free}	21.7 (24.2)	
RMS deviation from ideal valu	es	
bond length (Å)	0.006	
Bond angle (°)	1.2	
Dihedral angles (°)	21.4	
Improper angles (°)	0.83	

10

15

20

5

Structure determination and refinement of DHODH/compound 2 complex

The structure for the human DHODH(Met30-Arg396) in complex with compound 2 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.5 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR

resulted in an R-factor of 33.8 % and a correlation coefficient of 68.2 % for the DHODH/compound 2 complex.

5

10

15

20

25

30

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally a SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 2 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed the presence of two alternative conformations of compound 2. In one conformation (conformation A) the carboxy group interacts with residues Gln 47 and Arg 136, whereas in the second conformation (conformation B) the interaction involves residues His 56 and Tyr 356 (see above). For each conformation a separate DHODH/compound 2 complex was subjected to refinement.

Pdb files for the compound 2 in conformation A and B were created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). Both compounds were energy minimized and built into the electron density manually. Topology and parameter files for compound 2 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol., 273, 371-376). After an additional round of model building and water picking using CNX, another complete round of refinement was performed. The final model included the human DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), four sulfate ions (SO4), one molecule of compound 2 (INH) either in conformation A or conformation B and 250 water molecules (TIP) (see Tables 30 and 31). The models are well refined and show very good geometry. The refinement process which included data from 12.0 - 2.4 Å resulted in an R-factor of 17.5 % and a free R-factor of 21.1% for conformation A complex and an R-factor of 17.6 % and a free R-factor of 21.6% for conformation B complex, respectively. With the exception of glycine residues, 91.7 % (276) of the residues are located in the most favoured region of the ramachandran plot and 8.3 % (24) cluster in the additional allowed regions.. Table 14 summarizes the refinement statistics for compound 2 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 2.55 to 2.40.

Table 14: Refinement Statistics for DHODH/compound 2 complex		
	Conformation A	Conformation B
D factor (%)	17.5 (19.6)	17.6 (19.4)
R-factor (%)	` '	, , ,
R _{free}	21.1 (23.6)	21.6 (23.2)
RMS deviation from ideal values		
bond length (Å)	0.005	0.005
Bond angle (°)	1.2	1.2
Dihedral angles (°)	21.3	21.3
Improper angles (°)	0.81	0.81

Structure determination and refinement of DHODH/compound 3 complex

The structure for the human DHODH(Met30-Arg396) in complex with compound 3 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 33.9 % and a correlation coefficient of 72.5 for the DHODH/compound 3 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed

10

15

20

together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 3 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed the presence of two alternative conformations of compound 3. In one conformation (conformation A) the carboxy group interacts with residues Gln 47 and Arg 136, whereas in the second conformation (conformation B) the interaction involves residues His 56 and Tyr 356 (see above). For each conformation a separate DHODH/compound 3 complex was subjected to refinement.

The pdb files for the compound 3 in conformation A and B were created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). Both compounds were energy minimized and built into the electron density manually. Topology and parameter files for compound 3 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol., 273, 371-376). After an additional round of model building and water picking using CNX, another complete round of refinement was performed. The final model included the human DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), two acetate molecules (ACT), two sulfate ions (SO4), one molecule of compound 3 (INH) either in conformation A or conformation B and 263 water molecules (WAT). Residues which are missing the coordinate file due to very poor electron density are listed in the header of the pdb files.

The models are well refined and show very good geometry. The refinement process which included data from 19.9 - 1.95 Å resulted in an R-factor of 18.5 % and a free R-factor of 20.3% for the complex in conformation A and an R-factor of 18.5 % and a free R-factor of 20.3% for the complex in conformation B, respectively. The almost identical R-factors indicate that non of the conformers A and B represent a preferred conformation. Except for non-glycine and non-proline residues 91.6% are located in the most favoured region of the ramachandran plot and 8 % cluster in the additional allowed regions. There are no residues in the disallowed region. Table 15 summarizes the refinement statistics for compound 3 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 2.07 to 1.95.

Table 15: Refinement Statistics for DHODH/compound 3 complex			
	conformation A	conformation B	
R-factor (%)	18.5 (20.6)	18.5 (20.6)	
R _{free}	20.3 (23.5)	20.2 (23.6)	
RMS deviation from ideal val	ues		
bond length (Å)	0.005	0.005	
Bond angle (°)	1.2	1.2	
Dihedral angles (°)	21.2	21.2	
Improper angles (°)	0.81	0.81	

Structure determination and refinement of DHODH/compound 4 complex

5

10

15

20

The structure for the human DHODH(Met30-Arg396) in complex with compound 4 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 34.6 % and a correlation coefficient of 71.1 for the DHODH/compound 4 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor

compound 4 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed the carboxy group in contact with residues His 56 and Tyr 356 in non-brequinar-like conformation.

5

10

15

20

A pdb file for compound 4 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 4 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), one sulfate ion (SO4), one molecule of compound 4 (INH) and 192 water molecules (TIP).

The model is well refined and shows very good stereochemical geometry. The refinement process which included data from 19.9 - 2.15 Å resulted in an R-factor of 20.1 % and a free R-factor of 22.1%. Except for non-glycine and non-proline residues 91.6% of the residues are located in the most favoured region of the ramachandran plot and 8 % and 0.3 % cluster in the additional allowed or generously allowed regions, respectively. There are no residues in the disallowed region. Table 16 summarizes the refinement statistics for compound 4 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 2.28 to 2.15.

Table 16: Refinement Statistics for DHODH/compound 4 complex		
R-factor (%)	20.1 (19.1)	
R _{free}	22.1 (20.9)	
RMS deviation from ideal value	s	
bond length (Å)	0.005	
Bond angle (°)	1.2	
Dihedral angles (°)	21.5	
Improper angles (°)	0.80	

Structure determination and refinement of DHODH/compound 5 complex

The structure for the human DHODH(Met30-Arg396) in complex with compound 5 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 33.8 % and a correlation coefficient of 71.5 for the DHODH/compound 5 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 5 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed the carboxy group in contact with residues His 56 and Tyr 356 in non-brequinar-like conformation. Interestingly the protein's active site discriminates between the S- and R-enantiomere. Inspection of the corresponding electron density unequivocally shows the presences of the R-enantiomere only.

A pdb file for compound 5 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 5 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN),

one orotate molecule (ORO), one acetate molecule (ACT), two sulfate ions (SO4), one molecule of compound 5 (INH) and 287 water molecules (TIP).

The model is well refined and shows very good stereochemical geometry. The refinement process which included data from 25.5 - 2.2 Å resulted in an R-factor of 18.3 % and a free R-factor of 20.9 %. Except for non-glycine and non-proline residues 92.6 % of the residues are located in the most favoured region of the ramachandran plot and 7 % and 0.3 % cluster in the additional allowed or generously allowed regions, respectively. There are no residues in the disallowed region. Table 17 summarizes the refinement statistics for compound 5 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 2.34 to 2.2.

Table 17: Refinement Statistics for DHODH/compound 5 complex		
R-factor (%)	18.3 (19.4)	
R _{free}	20.9 (22.0)	
RMS deviation from ideal value	s	
bond length (Å)	0.005	
Bond angle (°)	1.2	
Dihedral angles (°)	21.3	
Improper angles (°)	0.83	

5

10

15

20

Structure determination and refinement of DHODH/compound 6 complex

The structure for the human DHODH(Met30-Arg396) in complex with compound 6 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR

resulted in an R-factor of 32.7 % and a correlation coefficient of 74.5 for the DHODH/compound 6 complex.

5

10

15

20

25

30

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 6 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed that the inhibitor molecule adopts both the brequinar and non-brequinar binding mode. The carboxy group is in contact with both anion binding sites. Interestingly the protein's active site discriminates between the S- and R-enantiomere. Inspection of the corresponding electron density unequivocally shows the presences of the R-enantiomere only.

A pdb file for compound 6 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 6 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), one sulfate ion (SO4), one molecule of compound 6 (INH) and 312 water molecules (TIP).

The models are well refined and show very good geometry. The refinement process which included data from 19.3 – 1.9 Å resulted in an R-factor of 18.5 % and a free R-factor of 20.8% for the complex in conformation A and an R-factor of 18.5 % and a free R-factor of 20.7% for the complex in conformation B, respectively. The almost identical R-factors indicate that non of the conformers A and B represent a preferred conformation. Except for non-glycine and non-proline residues 92.6% are located in the most favoured region of the ramachandran plot and 7.4 % cluster in the additional allowed regions. There are no residues in the disallowed region. Table 18 summarizes the refinement statistics for

compound 6 in complex with human DHODH. Values in parentheses give the R-factor and R_{free}-factors, respectively, for the last resolution bin ranging from 2.02 to 1.9.

5

10

15

20

Table 18: Refinement Statistics for DHODH/compound 6 complex		
	conformation A	conformation B
R-factor (%)	18.5 (21.1)	18.5 (21.2)
R_{free}	20.8 (21.5)	20.7 (21.6)
RMS deviation from ideal values		
bond length (Å)	0.005	0.005
Bond angle (°)	1.2	1.2
Dihedral angles (°)	21.3	21.3
Improper angles (°)	0.79	0.79

Structure determination and refinement of DHODH/compound 7 complex

The structure for the human DHODH(Met30-Arg396) in complex with compound 7 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 32.7 % and a correlation coefficient of 73.9 for the DHODH/compound 7 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 7 could be interpreted unambiguously. The electron density around the fivemembered ring carrying the carboxy group clearly showed the carboxy group in contact with residues His 56 and Tyr 356 in non-brequinar-like conformation addressing subsite 3. In compound 7 a hydroxy group at 3-position at the five membered ring was introduced creating a stereo center at this position. The racemic mixture was used for crystallization experiments. Analysis of the electron density reveals the presence of both enantiomeres. Interestingly only the R-enantiomere is able to form additional contacts to the side chains of residues Gln47 and Arg136 and to a conserved water molecule. As is clearly shown from experimental data compound 7 is able to form interactions with both subsite 2 and subsite 3 at the same time. This feature clearly discriminates this compound class from, for example, compounds 2, 6 and 10 which can address both binding sites utilizing alternative conformations but not at the same time.

5

10

15

20

25

30

A pdb file for compound 7 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 7 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), two sulfate ions (SO4), one molecule of compound 7 (INH) and 229 water molecules (TIP).

The model is well refined and shows very good stereochemical geometry. The refinement process which included data from 17.0 - 2.0 Å resulted in an R-factor of 17.5% and a free R-factor of 20.4% for the R-form and S-form. Except for non-glycine and non-proline residues 92.3% of the residues are located in the most favoured region of the ramachandran plot and 7.7% cluster in the additional allowed regions. There are no residues in the disallowed region. Table 19 summarizes the refinement statistics for

compound 7 in complex with human DHODH. Values in parentheses give the R-factor and R_{free}-factors, respectively, for the last resolution bin ranging from 2.13 to 2.0.

Table 19: Refinement Statistics for DHODH/compound 7 complex			
	R-form	S-form	
R-factor (%)	17.5 (17.3)	17.5 (17.3)	
R _{free}	20.4 (21.4)	20.4 (21.4)	
RMS deviation from ideal values			
bond length (Å)	0.005	0.008	
Bond angle (°)	1.2	1.2	
Dihedral angles (°)	21.2	21.2	
Improper angles (°)	0.82	0.81	

5

10

15

20

Structure determination and refinement of DHODH/compound 8 complex

The structure for the human DHODH(Met30-Arg396) in complex with compound 8 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 33.3 % and a correlation coefficient of 73.9 for the DHODH/compound 8 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed

together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 8 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed the carboxy group in contact with residues His 56 and Tyr 356 in non-brequinar-like conformation addressing subsite 3. In compound 8 a hydroxy group at 5-position at the five membered ring was introduced creating a stereo center at this position. The racemic mixture was used for crystallization experiments. Analysis of the electron density reveals that both enantiomeres fit into the electron density. The R-enantiomere appears to be positioned in a more favourable position to form interactions with subsite 3 whereas in the S-enantiomere the hydroxy group protrudes into the direction of subsite 4 (remote hydrophobic pocket) in a less favourable manner.

A pdb file for compound 8 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 8 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), five sulfate ions (SO4), one molecule of compound 8 (INH) and 218 water molecules (TIP).

The model is well refined and shows very good stereochemical geometry. The refinement process which included data from 19.0-1.8 Å resulted in an R-factor of 18.2% and a free R-factor of 19.6% for the R-form and S-form (statistics are given only for R-form). Except for non-glycine and non-proline residues 91.6% of the residues are located in the most favoured region of the ramachandran plot and 8.4% cluster in the additional allowed regions. There are no residues in the disallowed region. Table 20 summarizes the refinement statistics for compound 8 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 1.91 to 1.8.

Table 20: Refinement Statistics for DHODH/compound 8 complex		
R-factor (%)	18.2 (22.1)	
R_{free}	19.6 (24.6)	
RMS deviation from ideal value	s	
bond length (Å)	0.005	
Bond angle (°)	1.2	
Dihedral angles (°)	21.2	
Improper angles (°)	0.83	

Structure determination and refinement of DHODH/compound 9 complex

5

10

15

20

The structure for the human DHODH(Met30-Arg396) in complex with compound 9 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 32.8 % and a correlation coefficient of 73.6 for the DHODH/compound 9 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 9 could be interpreted unambiguously. The electron density around the five-

U.S. 10/736,739 - CLEAN COPY

membered ring carrying the carboxy group clearly showed the carboxy group in contact with residues Gln 47 and Arg 136 and a conserved water molecule in a unique brequinar-like conformation addressing subsite 2 only. In this conformation the sulfur atom of the five membered ring comes into close contact to Val 134 and Val 143 which form in part subsite 4 (remote hydrophobic pocket).

5

10

15

20

A pdb file for compound 9 was created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). After energy minimization the compound was built into the electron density manually. Topology and parameter files for compound 9 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol. 273, 371-376). After an additional round of model building and water picking using CNX another complete round of refinement was performed. The final model included the DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), one acetate molecule (ACT), five sulfate ions (SO4), one molecule of compound 9 (INH) and 291 water molecules (TIP).

The model is well refined and shows very good stereochemical geometry. The refinement process which included data from 17.2 - 2.0 Å resulted in an R-factor of 18.1 % and a free R-factor of 20.0 %. Except for non-glycine and non-proline residues 92.1 % of the residues are located in the most favoured region of the ramachandran plot and 7.9 % cluster in the additional allowed regions. There are no residues in the disallowed region. Table 21 summarizes the refinement statistics for compound 9 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 2.13 to 2.0.

Table 21: Refinement Statistics for DHODH/compound 9 complex		
R-factor (%)	18.1 (19.7)	
R_{free}	20.0 (22.0)	
RMS deviation from ideal values		
bond length (Å)	0.005	
Bond angle (°)	1.2	
Dihedral angles (°)	21.2	
Improper angles (°)	0.80	

Structure determination and refinement of DHODH/compound 10 complex

5

10

15

20

25

30

The structure for the human DHODH(Met30-Arg396) in complex with compound 10 was solved using the method of molecular replacement (MR). The free accessible pdb entry 1D3G.pdb was used as a search model. The ligands brequinar and DDQ as well as all of the water molecules were removed prior to the MR search. The search model included the polypeptide chain of hDHODH(Met30-Arg396), one molecule of orotate, one molecule of the cofactor flavinmononucleotide (FMN) and one acetate molecule which was present under the crystallization conditions. A standard rotational and translational molecular replacement search at 3.0 Å was performed using the program molrep (Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.). Solutions for both the rotational and translational search were well above the next ranking solutions. The MR resulted in an R-factor of 32.8 % and a correlation coefficient of 74.1 for the DHODH/compound 10 complex.

In a first round of refinement the MR model was subjected to rigid body refinement and a slow cooling simulated annealing protocol using a maximum likelihood target to remove model bias (Accelrys Inc. CNX program suite, CNX2002). Additionally, an individual b-factor refinement was carried out using standard CNX-protocols. Finally SIGMAA weighted 2Fo-Fc and Fo-Fc electron density maps were calculated and displayed together with the protein model in the program O (DatOno AB; Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. (1991). Acta Cryst. A47, 110-119.). The resulting experimental electron density was so excellent that the conformation of the inhibitor compound 10 could be interpreted unambiguously. The electron density around the five-membered ring carrying the carboxy group clearly showed the presence of two alternative conformations of compound 10. In one conformation (conformation A) the carboxy group interacts with residues Gln 47 and Arg 136, whereas in the second conformation (conformation B) the interaction involves residues His 56 and Tyr 356 (see above). For each conformation a separate DHODH/compound 10 complex was subjected to refinement.

The pdb files for the compound 10 in conformation A and B were created using the program MOE (Chemical Computing Group Inc., MOE 2002.02). Both compounds were energy minimized and built into the electron density manually. Topology and parameter files for compound 10 were created using the program Xplo2d (Uppsala Software Factory; Kleywegt, G.M.(1997) J. Mol. Biol., 273, 371-376). After an additional round of model

building and water picking using CNX, another complete round of refinement was performed. The final model included the human DHODH(Met30-Arg396) protein, the cofactor flavinmononucleotide (FMN), one orotate molecule (ORO), two acetate molecules (ACT), four sulfate ions (SO4), one molecule of compound 10 (INH) either in conformation A or conformation B and 226 water molecules (TIP). Residues which are missing the coordinate file due to very poor electron density are listed in the header of the pdb files.

The models are well refined and show very good geometry. The refinement process which included data from 19.5-1.8 Å resulted in an R-factor of 19.5% and a free R-factor of 20.5% for the complex in conformation A and for the complex in conformation B, respectively. The identical R-factors indicate that non of the conformers A and B represent a preferred conformation. Except for non-glycine and non-proline residues 91.6% are located in the most favoured region of the ramachandran plot and 8.4% cluster in the additional allowed regions. There are no residues in the disallowed region. Table 22 summarizes the refinement statistics for compound 10 in complex with human DHODH. Values in parentheses give the R-factor and R_{free} -factors, respectively, for the last resolution bin ranging from 1.91 to 1.8.

Table 22: Refinement Statistics for DHODH/compound 10 complex

R-factor (%) R _{free}	conformation A & B 19.5 (20.5) 20.5 (22.7)
RMS deviation from ideal values	
bond length (Å)	0.005
Bond angle (°)	1.2
Dihedral angles (°)	21.9
Improper angles (°)	0.82

20

5

10

15

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various

U.S. 10/736,739 – CLEAN COPY

changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

The following compounds are preferred: 3-(Biphenyl-4-ylcarbamoyl)-thiophene-2-carboxylic acid; 3-(2'-Ethoxy-3,5-difluorobiphenyl-4-ylcarbamoyl)-thiophene-2-carboxylic acid; 3-(3'-Ethoxy-3,5-difluoro-biphenyl-5 4-yl-carbamoyl)-thiophene-2-carboxylic acid; 3-(3,5-Difluoro-2',4'-dimethoxy-biphenyl-4yl-carbamoyl)-thiophene-2-carboxylic acid; 3-(2,3,5,6-Tetrafluoro-2'-methoxy-biphenyl-4yl-carbamoyl)-thiophene-2-carboxylic acid; 3-(2'-Chloro-3,5-difluoro-biphenyl-4ylcarbamoyl)-thiophene-2-carboxylic acid; 3-(3,5,2'-Trifluoro-biphenyl-4-ylcarbamoyl)-10 thiophene-2-carboxylic acid; 3-(2-Chloro-2'-methoxy-biphenyl-4-ylcarbamoyl)-thiophene-2-carboxylic acid; 3-(2,3,5,6-Tetrafluoro-3'-trifluoromethoxy-biphenyl-4-ylcarbamoyl)thiophene-2-carboxylic acid; 3-(3-Fluoro-3'-methoxy-biphenyl-4-ylcarbamoyl)-thiophene-2-carboxylic acid; 3-(3,5-Difluoro-3'-trifluoromethoxy-biphenyl-4-ylcarbamoyl)thiophene-2-carboxylic acid; 3-(Biphenyl-4-ylcarbamoyl)-furan-2-carboxylic acid; 4-15 (Biphenyl-4-ylcarbamoyl)-thiophene-3-carboxylic acid; 4-(2-Chloro-2'-methoxy-biphenyl-4-ylcarbamoyl)-thiophene-3-carboxylic acid; 4-(3,5,2'-Trifluoro-biphenyl-4-ylcarbamoyl)thiophene-3-carboxylic acid; 4-(3'-Ethoxy-3,5-difluoro-biphenyl-4-ylcarbamoyl)thiophene-3-carboxylic acid; 4-(2'-Ethoxy-3,5-difluoro-biphenyl-4-ylcarbamoyl)thiophene-3-carboxylic acid; 4-(3,5-Difluoro-3'-trifluoromethoxy-biphenyl-4ylcarbamoyl)-thiophene-3-carboxylic acid; 4-(3-Fluoro-3'-methoxy-biphenyl-4-20 ylcarbamoyl)-thiophene-3-carboxylic acid; 4-(Biphenyl-4-ylcarbamoyl)-furan-3-carboxylic acid; 2-(Biphenyl-4-ylcarbamoyl)-thiophene-3-carboxylic acid; 2-(Bi-phenyl-4ylcarbamoyl)-furan-3-carboxylic acid; 3-(3-Fluoro-3'-methoxy-biphenyl-4-yl-carbamoyl)cyclopent-2-ene-1,2-dicarboxylic acid; 2-(3-Fluoro-3'-methoxy-biphenyl-4-ylcarbamoyl)-25 cyclopent-1-ene-1,3-dicarboxylic acid; 2-(3-Fluoro-3'-methoxy-biphenyl-4-ylcarbamoyl)cyclopent-1-enecarboxylic acid methyl ester; Cyclopent-1-ene-1,2-dicarboxylic acid 1-[(3fluoro-3'-methoxy-biphenyl-4-yl)-amide] 2-hydroxyamide; 3-Hydroxy-2-(2,3,5,6tetrafluoro-3'-trifluoromethoxy-biphenyl-4-ylcarbamoyl)-cyclopent-1-enecarboxylic acid; 5-Hydroxy-2-(2,3,5,6-tetrafluoro-3'-trifluoromethoxy-biphenyl-4-ylcarbamoyl)-cyclopent-1-enecarboxylic acid; 2-(3'-Ethoxy-3,5-difluoro-biphenyl-4-ylcarbamoyl)-3-hydroxy-30 cyclopent-1-enecarboxylic acid; 2-(3'-Ethoxy-3,5-difluoro-biphenyl-4-ylcarbamoyl)-5hydroxy-cyclo-pent-1-enecarboxylic acid; 2-(1',3'di-methoxy-3,5-difluoro-biphenyl-4-

ylcarbamoyl)-3-hydroxy-cyclopent-1-enecarboxylic acid; 2-(1',3'di-methoxy-3,5-difluoro-

biphenyl-4-yl-carbamoyl)-5-hydroxy-cyclopent-1-enecarboxylic acid; 3-Hydroxy-2-(3,5,2'-trifluoro-biphenyl-4-ylcarbamoyl)-cyclopent-1-enecarboxylic acid; 5-Hydroxy-2-(3,5,2'-trifluoro-biphenyl-4-ylcarbamoyl)-cyclopent-1-enecarboxylic acid; 2-(2-Chloro-2'methoxy-biphenyl-4-ylcarbamoyl)-3-hydroxy-cyclopent-1-enecarboxylic acid; 2-(2-5 Chloro-2'-methoxy-biphenyl-4-ylcarbamoyl)-5-hydroxy-cyclopent-1-enecarboxylic acid; 2-(2'-Chloro-3,5-difluoro-biphenyl-4-ylcarbamoyl)-3-hydroxy-cyclopent-1-enecarboxylic acid; 2-(2'-Chloro-3,5-difluoro-biphenyl-4-ylcarbamoyl)-5-hydroxy-cyclopent-1enecarboxylic acid; 2-(3-Fluoro-3'-methoxy-biphenyl-4-ylcarbamoyl)-3-hydroxycyclopent-1-enecarboxylic acid; 2-(3-Fluoro-3'-methoxy-biphenyl-4-ylcarbamoyl)-5hydroxy-cyclopent-1-enecarboxylic acid; trans 2-(3-Fluoro-3'-methoxy-biphenyl-4-10 ylcarbamoyl)-cyclopentane carboxylic acid; cis-2-(3-Fluoro-3'-methoxy-biphenyl-4ylcarbamoyl)-cyclopentane carboxylic acid; 2-(2'- Chloro-3,5-difluoro-biphenyl-4ylcarbamoyl)-cyclopentane carboxylic acid; 2-(3,5-Difluoro-2',4'-dimethoxy-biphenyl-4ylcarbamoyl)-cyclopentane carboxylic acid; 2-(3'-Ethoxy-3,5-difluoro-biphenyl-4ylcarbamoyl)-cyclopentane carboxylic acid; 2-(2'-Ethoxy-3,5-difluoro-biphenyl-4-15 ylcarbamoyl)-cyclopentane carboxylic acid; 2-(Biphenyl-4-ylcarbamoyl)-cyclopentane carboxylic acid: 2-(2,3,5,6-Tetrafluoro-3'-trifluoro-methoxy-biphenyl-4-ylcarbamoyl)cyclopentane carboxylic acid; 2-(3,5-Difluoro-3'-trifluoro-methoxy-biphenyl-4-ylcarbamoyl)-cyclopentane carboxylic acid

20

Table 25:

F ₃ CO HO ₂ C OH	-61,85
NC O NC CN	-60,26
F_3 CO HO_2 C O N N N N N N N	-59,46
F ₃ CO HO ₂ C N N N N N N N N N N N N N N N N N N N	-58,50
N HO CO ₂ H	-58,21

F ₃ CO CHO	-58,13
F_3 CO	-58,12
F ₃ CO CN	-58,05
HO ₂ C NC	-57,99
F ₃ CO CO ₂ H CO ₂ H CO ₁ H CO ₂ H CO	-57,66

F ₃ CO CO ₂ H SO ₂ CH ₃	-57,60
N CO ₂ H	-57,56
HO ₂ C O H N H NC	-57,55
HO ₂ C O H N H	-57,51

U.S. 10/736,739 – CLEAN COPY

F ₃ CO CO ₂ H SO ₃ H	-57,18
CO ₂ H O=s	-57,14
CO ₂ H	-57,00
H ₃ CO N NN NH	-56,93

CO ₂ H	-56,85
CN	
F ₃ CO	
F	
но	
ÇO₂H	-56,85
F ₃ CO CO ₂ H	
H)	
F HO	
CO ₂ H	-56,72
F ₃ CO OH	
H H	
F HO	
O ₂ CO ₂ H	-56,71
NO ₂	
N H	
HO′ HO₂C	-56,31
CN	
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array}$	
F NC	

,CO₂H	-56,25
CN	
\rightarrow	
HO	
CO₂H	-55,96
F ₃ CO N	
F ₃ CO H	
F NC	
O CO₂H	-55,93
ОН	
N \	
но	
NO ₂	-55,89
F SO ₃ H	
Ö	-55,67
° CO₂H	
N H	
F HO'	I _

O HO₂C O OH	-55,64
NC OH	
CO ₂ H	-55,58
F ₃ CO SO ₃ H	
NO ₂	-55,52
N CO ₂ H	-55,51
$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	-55,29

HO ₂ C NO ₂	-55,14
F_3 CO	-55,10
F ₃ CO CO ₂ H NO ₂	-54,92
F ₃ CO F HO	-54,72

CO_2H O HO_2C	-54,51
CO ₂ CH ₃	-54,49
NO ₂	-54,47
HO' HO2C CHO NC	-54,47

F CO ₂ H	-54,38
NH NH	
O HN	
F CO ₂ H	-54,35
F ₃ CO OH	
$\stackrel{N}{F} \qquad \stackrel{O_2N}{O_2N}$	
ÇN O	-54,35
N N N N N N N N N N N N N N N N N N N	:
F	
\(\frac{10}{0}\) \(\frac{10}{0}\) \(\frac{10}{0}\)	-54,29
NO ₂	
F HO	

О CO ₂ H ОН НО	-54,29
N CO_2H NO_2	-54,28
F ₃ CO CO ₂ H SO ₃ H	-54,16
CO ₂ H OH	-54,10

CO ₂ H	-54,10
НО	
NO ₂	-54,07
NC' CO ₂ H NO ₂	-54,05
F ₃ CO F	-54,04

U.S. 10/736,739 – CLEAN COPY

F CO ₂ H H CO ₂ CH ₃	-53,92
HO ₂ C SO ₃ H	-53,92
O O O O O O O O O O	-53,79
F ₃ CO CO ₂ H	-53,75

F ₃ CO HO ₂ C CN	-53,73
HO ₂ C NO ₂	-53,70
CO_2H SO_3H	-53,56
CO ₂ H SO ₂ CH ₃	-53,54

F ₃ CO CO ₂ H HO ₂ C	-53,21
F_3 CO F_3	-53,20
F ₃ CO F	-53,18
HO' HO2C OH NC	-53,15
NC CO ₂ H	-53,15

O CO ₂ H OCH ₃	-53,08
O O O O O O O O O O	-53,01
F HO OH OH	-53,01
O ₂ N	-53,00

CO ₂ H	-52,99
F_3 C O N	-52,89
CO_2H CO_2H CO_2H	-52,74
CI HO ₂ C SO ₃ H	-52,73
CO ₂ H CN	-52,69

SO ₃ H	-52,65
CO ₂ H	-52,60
F_3CO CO_2H CN HO	-52,58
F_3CO CO_2H CF_3	-52,57

F CO ₂ H	-52,51
H ₃ CO COCH ₃	
HN— HO₂C	-52,49
ОН	
H DO	-
F NC	-52,33
F ₃ C CN	
N N	
F	
Ö HO₂C	-52,30
CI	
O O O O O O O O O O	
F	

C)

CO ₂ H ONH	-52,12
CO ₂ H OCH ₃	-52,08
CI OH	-52,04
F_3C	-51,98
HO NH NH	-51,91

(C)

NC NO ₂	-51,86
F ₃ C O CN OH	-51,76
F_3 C O NO_2 NO_2	-51,76
O ₂ N NO ₂	-51,74

	-51,66
O CO ₂ H	-
ОН	
N H	
H —	
F HO	51.65
CO₂H O	-51,65
F ₃ C SO ₃ H	
H >	
F NC	
CO₂H	-51,55
F ₃ C 0	
F N	
,// O	
CO₂H	-51,54
N N	
F ₃ C OH	
\ N————————————————————————————————————	
F	

F_3C O	-51,45
F_3C	-51,40
F_3C O	-51,37

5

(3)

10

Table 29

	CRYST1	90.6	51 9	0.651	123.072	90.00	90.00	120.00 P	32 2	1 12		
	ORIGX1		1.000	000	0.000000	0.000000	0	0.00000				
5	ORIGX2		0.000	000	1.000000	0.000000	0	0.00000				
	ORIGX3		0.000	000	0.000000	1.000000		0.00000				
	SCALE1	0.011031		.031	0.006369	0.000000		0.00000				
	SCALE2	0.000000		000	0.012738	0.00000	o	0.00000				
	SCALE3		0.000	000	0.000000	0.008125	5	0.00000				
10	ATOM	2779	N1	FMN	398	41.764	36.130	8.647	1.00	13.22		
	ATOM	2780	C2	FMN	398	42.155	35.485	9.782	1.00	16.74		
	ATOM	2781	02	FMN	398	41.551	35.587	10.834	1.00	15.99		
	ATOM	2782	из	FMN	398	43.334	34.654	9.723	1.00	15.64		
	ATOM	2783	C4	FMN	398	44.085	34.461	8.625	1.00	15.45		
15	MOTA	2784	04	FMN	398	45.083	33.724	8.672	1.00	15.51		
	MOTA	2785	C4A	FMN	398	43.662	35.157	7.396	1.00	14.11		
	ATOM	2786	N5	FMN	398	44.352	35.025	6.251	1.00	13.88		
	ATOM	2787	C5A	FMN	398	43.933	35.705	5.122	1.00	11.84		
	MOTA	2788	C6	FMN	398	44.672	35.590	3.867	1.00	10.31		
20	ATOM	2789	С7	FMN	398	44.292	36.270	2.717	1.00	11.40		
	MOTA	2790	C7M	FMN	398	45.109	36.125	1.414	1.00	9.20		
	MOTA	2791	C8	FMN	398	43.119	37.130	2.739	1.00	11.94		
	MOTA	2792	C8M	FMN	398	42.649	37.914	1.520	1.00	13.94		
	ATOM	2793	C9	FMN	398	42.397	37.245	3.923	1.00	11.56		
25	ATOM	2794	C9A	FMN	398	42.767	36.561	5.119	1.00	13.59		
	ATOM	2795	N10	FMN	398	42.048	36.664	6.371	1.00	13.81		
	MOTA	2796	C10	FMN	398	42.448	36.000	7.512	1.00	14.45		
	MOTA	2797	C1*	FMN	398	40.845	37.508	6.453	1.00	12.64		
	MOTA	2798	C2*	FMN	398	41.112	39.002	6.630	1.00	13.30		
30	MOTA	2799	02*	FMN	398	41.776	39.190	7.920	1.00	13.46		
	MOTA	2800	C3*	FMN	398	39.786	39.812	6.672	1.00	12.09		
	MOTA	2801	03*	FMN	398	38.927	39.299	7.749	1.00	12.88		
	MOTA	2802	C4*	FMN	398	38.953	39.699	5.366	1.00	12.40		
	MOTA	2803	04*	FMN	398	39.803	39.461	4.214	1.00	11.71		
35	MOTA	2804	C5*	FMN	398	38.115	40.952	5.105	1.00	9.96		
	MOTA	2805	05*	FMN	398	38.918	42.129	4.957	1.00	13.77		
	MOTA	2806	P	FMN	398	39.368	42.735	3.536	1.00	12.98		

	ATOM	2807	01P	FMN	398	40.420	41.816	2.954	1.00	14.29
	ATOM	2808	02P	FMN	398	39.893	44.111	3.861	1.00	12.03
	ATOM	2809	03P	FMN	398	38.119	42.812	2.647	1.00	13.57
	ATOM	2810	N1	ORO	399	41.668	32.377	4.927	1.00	16.79
5	ATOM	2811	C2	ORO	399	40.653	33.293	5.236	1.00	16.19
	ATOM	2812	02	ORO	399	40.042	33.934	4.385	1.00	20.26
	ATOM	2813	NЗ	ORO	399	40.353	33.457	6.587	1.00	14.42
	MOTA	2814	C4	ORO	399	40.966	32.794	7.654	1.00	14.86
	ATOM	2815	04	ORO	399	40.645	32.999	8.803	1.00	14.43
10	ATOM	2816	C5	ORO	399	42.023	31.842	7.276	1.00	14.27
	ATOM	2817	С6	ORO	399	42.317	31.682	5.968	1.00	16.76
	ATOM	2818	C7	ORO	399	43.403	30.705	5.524	1.00	17.77
	ATOM	2819	071	ORO	399	44.513	30.665	6.039	1.00	19.80
	ATOM	2820	072	ORO	399	42.936	29.994	4.595	1.00	18.75
15	MOTA	2821	S	SO4	400	56.428	40.104	34.632	1.00	33.94
	MOTA	2822	01	SO4	400	56.122	41.420	35.218	1.00	34.17
	MOTA	2823	02	SO4	400	55.206	39.280	34.611	1.00	35.21
	MOTA	2824	03	SO4	400	56.931	40.290	33.260	1.00	35.14
	MOTA	2825	04	SO4	400	57.461	39.431	35.440	1.00	35.91
20	ATOM	2826	С	ACT	401	24.612	49.259	4.963	1.00	34.33
	С									
	MOTA	2827	0	ACT	401	23.428	49.625	4.658	1.00	33.50
	MOTA	2828	OXT	ACT	401	24.926	48.987	6.156	1.00	35.35
	MOTA	2829	СНЗ	ACT	401	24.980	48.156	3.942	1.00	30.98
25	MOTA	2830	S	SO4	402	56.699	36.609	28.290	1.00	39.30
	MOTA	2831	01	SO4	402	55.391	37.270	28.281	1.00	48.45
	MOTA	2832	02	SO4	402	56.512	35.164	28.489	1.00	46.40
	MOTA	2833	03	SO4	402	57.362	36.850	26.997	1.00	48.09
	MOTA	2834	04	SO4	402	57.515	37.166	29.380	1.00	46.88
30	ATOM	2835	S	SO4	403	48.271	43.913	28.816	1.00	92.32
	MOTA	2836	01	SO4	403	49.281	42.998	28.253	1.00	91.75
	MOTA	2837	02	SO4	403	47.936	43.487	30.189	1.00	91.47
	MOTA	2838	03	SO4	403	48.811	45.286	28.848	1.00	91.52
	MOTA	2839	04	SO4	403	47.056	43.882	27.977	1.00	91.67
35	MOTA	2840	S	SO4	404	32.887	23.014	6.481	1.00	79.75
	MOTA	2841	01	SO4	404	32.953	24.098	7.479	1.00	80.39
	ATOM	2842	02	SO4	404	32.083	23.456	5.326	1.00	79.78

	MOTA	2843	03	SO4	404	34.249	22.673	6.029	1.00 79.79
	MOTA	2844	04	SO4	404	32.257	21.829	7.091	1.00 79.81
	MOTA	2845	ОН2	TIP	2	35.590	55.465	-5.472	1.00 26.63
	MOTA	2846	OH2	TIP	3	38.348	45.654	5.431	1.00 10.48
5	MOTA	2847	OH2	TIP	4	26.302	32.577	-2.704	1.00 19.39
	MOTA	2848	OH2	TIP	5	32.739	49.699	5.057	1.00 5.11
	ATOM	2849	ОН2	TIP	6	40.173	36.489	0.177	1.00 9.37
	ATOM	2850	OH2	TIP	7	28.781	46.327	21.174	1.00 10.19
	ATOM	2851	OH2	TIP	8	50.103	40.154	27.008	1.00 11.09
10	ATOM	2852	ОН2	TIP	9	52.699	35.114	39.857	1.00 14.19
	ATOM	2853	ОН2	TIP	10	32.651	48.949	19.281	1.00 9.20
	ATOM	2854	OH2	TIP	11	31.681	31.390	6.490	1.00 17.24
	ATOM	2855	OH2	TIP	12	54.417	36.438	7.903	1.00 15.61
	MOTA	2856	OH2	TIP	13	48.745	30.174	-4.588	1.00 19.16
15	ATOM	2857	OH2	TIP	14	52.941	44.773	24.555	1.00 23.37
	ATOM	2858	OH2	TIP	15	56.887	41.485	19.910	1.00 12.52
	ATOM	2859	OH2	TIP	16	24.269	48.192	0.627	1.00 11.85
	ATOM	2860	OH2	TIP	17	35.611	30.647	-11.558	1.00 19.10
	MOTA	2861	OH2	TIP	19	27.016	52.988	8.586	1.00 12.80
20	ATOM	2862	OH2	TIP	20	33.134	44.858	-12.599	1.00 21.07
	ATOM	2863	OH2	TIP	21	41.811	40.231	11.637	1.00 8.18
	ATOM	2864	ОН2	TIP	22	42.183	27.798	7.499	1.00 16.55
	ATOM	2865	OH2	TIP	23	55.491	43.097	24.315	1.00 20.61
	ATOM	2866	OH2	TIP	24	22.596	45.819	3.212	1.00 20.68
25	MOTA	2867	OH2	TIP	25		46.060	2.081	1.00 12.15
	MOTA	2868		TIP	28	52.896	40.807		1.00 26.75
	ATOM		OH2		29				1.00 16.06
	ATOM	2870		TIP	30	29.722	63.391	4.730	1.00 30.50
20	ATOM	2871		TIP	31	31.088	52.800		1.00 16.24
30	ATOM	2872		TIP	33	48.477	40.642		1.00 18.06
	ATOM	2873		TIP	34	48.151	60.664		1.00 38.87
	ATOM	2874		TIP	35	33.824	25.066	-2.250	1.00 26.85
	ATOM	2875		TIP	36	27.559		-15.409	1.00 20.80
25	ATOM	2876		TIP	37	36.106	58.318	1.505	1.00 17.98
35	ATOM	2877		TIP	38	18.439	32.041	12.105	1.00 33.41
	ATOM	2878		TIP	39	30.083	49.589		1.00 25.73
	ATOM	2879	OH2	TIP	40	22.237	50.945	6.710	1.00 15.44

	ATOM	2880	OH2	TIP	41	25.160	53.838	20.665	1.00	38.02
	ATOM	2881	OH2	TIP	42	28.378	43.059	0.383	1.00	15.63
	ATOM	2882	OH2	TIP	43	48.055	30.902	8.812	1.00	25.12
	ATOM	2883	OH2	TIP	4 4	37.474	35.997	32.369	1.00	32.92
5	ATOM	2884	OH2	TIP	45	36.065	52.338	-1.345	1.00	20.39
	ATOM	2885	OH2	TIP	46	48.124	51.068	24.354	1.00	27.11
	ATOM	2886	OH2	TIP	47	31.748	42.518	-7.963	1.00	13.51
	MOTA	2887	ОН2	TIP	48	60.117	28.753	24.514	1.00	24.03
	ATOM	2888	ОН2	TIP	49	39.433	48.490	-3.629	1.00	30.32
10	ATOM	2889	ОН2	TIP	50	48.317	58.149	0.954	1.00	30.47
	ATOM	2890	OH2	TIP	51	55.691	32.327	25.490	1.00	27.61
	ATOM	2891	OH2	TIP	52	64.195	35.380	20.138	1.00	19.56
	ATOM	2892	OH2	TIP	53	58.833	49.910	15.155	1.00	27.93
	ATOM	2893	OH2	TIP	54	51.798	31.467	11.336	1.00	13.39
15	ATOM	2894	OH2	TIP	55	39.565	45.795	-2.524	1.00	14.64
	ATOM	2895	OH2	TIP	56	24.410	28.634	17.373	1.00	22.71
	ATOM	2896	OH2	TIP	57	51.724	20.261	6.842	1.00	27.61
	ATOM	2897	ОН2	TIP	58	41.381	26.139	-9.718	1.00	20.97
	ATOM	2898	OH2	TIP	59	25.055	40.702	6.956	1.00	19.36
20	ATOM	2899	ОН2	TIP	60	23.993	41.143	9.391	1.00	25.03
	ATOM	2900	ОН2	TIP	61	38.010	29.506	-11.416	1.00	23.41
	ATOM	2901	OH2	TIP	62	36.303	47.966	-1.088	1.00	30.41
	MOTA	2902	OH2	TIP	63	38.481	26.042	1.645	1.00	31.40
	ATOM	2903	OH2	TIP	64	53.281	23.398	20.183	1.00	41.21
25	MOTA	2904	OH2	TIP	65	59.227	43.487	12.586	1.00	16.75
	ATOM	2905	OH2	TIP	66	19.680	42.939	12.681	1.00	37.20
	ATOM	2906	OH2	TIP	67	34.545	51.641	22.341	1.00	33.42
	ATOM	2907	OH2	TIP	68	47.228	63.064	3.669	1.00	42.40
	ATOM	2908	OH2	TIP	69	45.044	42.104	-5.477	1.00	28.59
30	ATOM	2909	ОН2	TIP	70	61.334	39.614	15.105	1.00	33.49
	ATOM	2910	OH2	TIP	71	63.480	33.513	24.510	1.00	29.51
	ATOM	2911	OH2	TIP	72	56.468	35.136	4.213	1.00	43.21
	ATOM	2912	OH2	TIP	73	38.377	59.761	19.196	1.00	29.60
	ATOM	2913	OH2	TIP	74	44.178	24.030	9.805	1.00	20.05
35	ATOM	2914	OH2	TIP	75	59.041	44.570	9.927	1.00	18.74
	ATOM	2915	ОН2	TIP	76	57.140	34.369	26.067	1.00	16.87
	ATOM	2916	OH2	TIP	77	39.600	50.271	27.318	1.00	30.06

	ATOM	2917	OH2	TIP	78	18.395	33.040	20.240	1.00	39.24
	ATOM	2918	OH2	TIP	80	46.253	28.328	18.697	1.00	23.12
	ATOM	2919	OH2	TIP	81	21.439	37.365	21.789	1.00	23.23
	MOTA	2920	ОН2	TIP	82	20.542	32.670	21.994	1.00	27.90
5	ATOM	2921	он2	TIP	83	24.655	41.169	-5.254	1.00	24.02
	ATOM	2922	ОН2	TIP	84	55.024	41.551	26.503	1.00	26.29
	ATOM	2923	ОН2	TIP	85	38.257	32.272	33.898	1.00	23.92
	ATOM	2924	ОН2	TIP	86	44.348	24.278	-3.540	1.00	35.59
	MOTA	2925	ОН2	TIP	87	27.444	36.842	9.754	1.00	30.73
10	MOTA	2926	OH2	TIP	88	31.179	49.190	21.579	1.00	26.24
	MOTA	2927	OH2	TIP	89	47.770	20.871	17.535	1.00	24.51
	ATOM	2928	ОН2	TIP	91	38.465	53.285	-2.768	1.00	34.79
	MOTA	2929	OH2	TIP	92	46.308	60.185	17.231	1.00	28.55
	MOTA	2930	OH2	TIP	93	28.701	66.849	4.531	1.00	40.45
15	ATOM	2931	ОН2	TIP	94	60.902	30.818	9.650	1.00	33.92
	ATOM	2932	ОН2	TIP	96	19.893	46.306	21.698	1.00	30.29
	ATOM	2933	OH2	TIP	97	45.510	23.104	6.071	1.00	28.35
	MOTA	2934	OH2	TIP	98	55.196	41.435	21.940	1.00	16.83
	MOTA	2935	OH2	TIP	99	47.253	53.876	-3.810	1.00	23.52
20	MOTA	2936	OH2	TIP	100	39.089	57.043	-2.142	1.00	24.05
	MOTA	2937	OH2	TIP	101	42.036	65.124	6.183	1.00	24.43
	ATOM	2938	OH2	TIP	102	50.161	38.979	37.857	1.00	34.83
	ATOM	2939	OH2	TIP	103	24.826	38.099	6.266	1.00	52.04
	ATOM	2940	OH2	TIP	104	37.666	19.146	18.942	1.00	44.29
25	ATOM	2941	OH2	TIP	105	34.064	23.132	21.675	1.00	37.52
	ATOM	2942	OH2	TIP	106	50.935	24.631	25.846	1.00	22.54
	ATOM	2943	ОН2	TIP	108	43.565	44.627	28.144	1.00	49.40
	ATOM	2944	OH2	TIP	109	31.117	28.110	31.273	1.00	32.65
	ATOM	2945	OH2	TIP	110	20.805	49.008	19.699	1.00	46.79
30	ATOM	2946	OH2	TIP	111	52.650	36.241	5.934	1.00	27.82
	ATOM	2947	OH2	TIP	112	58.236	26.559	10.967	1.00	36.15
	ATOM	2948	OH2	TIP	113	43.031	36.731	36.240	1.00	44.91
	ATOM	2949	OH2	TIP	114	24.141	50.228	27.710	1.00	47.63
	ATOM	2950	OH2	TIP	115	30.276	30.961	-7.868	1.00	31.47
35	ATOM	2951	OH2	TIP	116	48.292	22.098	6.628	1.00	25.84
	ATOM	2952	OH2	TIP	117	39.234	38.015	-14.279	1.00	31.09
	ATOM	2953	OH2	TIP	119	46.519	32.215	-8.891	1.00	39.56

	ATOM	2954	OH2	TIP	121	20.107	49.247	17.242	1.00 29.89
	ATOM	2955	ОН2	TIP	122	35.093	44.434	26.730	1.00 43.37
	ATOM	2956	OH2	TIP	124	49.192	64.685	7.996	1.00 51.57
	ATOM	2957	OH2	TIP	125	37.926	56.308	22.575	1.00 45.89
5	ATOM	2958	ОН2	TIP	126	35.206	25.843	8.170	1.00 43.48
	ATOM	2959	OH2	TIP	128	53.408	48.397	27.188	1.00 32.97
	ATOM	2960	OH2	TIP	130	31.779	41.307	27.403	1.00 51.72
	MOTA	2961	он2	TIP	133	45.206	19.827	20.469	1.00 48.38
	ATOM	2962	OH2	TIP	135	62.104	49.309	13.802	1.00 52.21
10	ATOM	2963	OH2	TIP	136	36.380	24.415	5.240	1.00 39.20
	MOTA	2964	OH2	TIP	137	37.147	47.795	25.950	1.00 44.17
	MOTA	2965	OH2	TIP	139	33.823	32.635	6.973	1.00 21.67
	MOTA	2966	OH2	TIP	140	37.744	20.754	21.527	1.00 35.36
	ATOM	2967	OH2	TIP	141	27.926	24.074	16.116	1.00 35.24
15	MOTA	2968	OH2	TIP	142	28.721	24.539	25.917	1.00 43.93
	MOTA	2969	OH2	TIP	143	29.978	30.667	9.311	1.00 26.87
	MOTA	2970	OH2	TIP	145	32.683	65.958	1.323	1.00 39.30
	MOTA	2971	OH2	TIP	146	43.026	23.254	7.640	1.00 42.61
	MOTA	2972	OH2	TIP	149	45.148	45.063	12.836	1.00 30.97
20	MOTA	2973	OH2	TIP	150	56.809	54.243	24.922	1.00 36.26
	MOTA	2974	OH2	TIP	154	28.303	35.710	-8.702	1.00 36.61
	MOTA	2975	OH2	TIP	157	49.266	20.617	1.054	1.00 39.92
	MOTA	2976	OH2	TIP	161	35.433	24.497	28.823	1.00 31.77
	MOTA	2977	OH2	TIP	162	48.071	19.322	10.918	1.00 50.89
25	MOTA	2978	OH2	TIP	170	52.214	41.890	26.882	1.00 29.94
	ATOM	2979	OH2		171	43.481	68.261	20.226	1.00 50.24
2	MOTA	2980	OH2	TIP	173				1.00 44.94
	MOTA	2981		TIP	177	49.192	23.653	29.887	1.00 45.14
••	MOTA	2982	OH2		179	34.894	68.176	14.392	1.00 41.94
30	ATOM	2983		TIP	180	34.153	33.362	32.215	1.00 41.27
	ATOM	2984		TIP	183	23.367	59.922	15.715	1.00 40.54
	ATOM	2985		TIP	184	37.180	22.990	-4.060	1.00 29.83
	MOTA	2986		TIP	186	59.902	32.926	5.795	1.00 48.68
2 E ^l	ATOM	2987		TIP	187	38.635	46.185	-0.225	1.00 14.36
35	ATOM	2988		TIP	188	52.924	26.976	2.822	1.00 20.37
	ATOM	2989		TIP	189	56.875	26.651	15.240	1.00 18.86
	MOTA	2990	OH2	TIP	190	55.306	25.358	16.983	1.00 13.37

	ATOM	2991	OH2 TI	P 191	51.595	53.593	12.466	1.00 17.70
	ATOM	2992	OH2 TI	P 192	27.679	24.004	18.956	1.00 35.95
	ATOM	2993	OH2 TI	P 193	28.677	32.820	-8.974	1.00 32.62
	MOTA	2994	OH2 TI	P 194	20.577	38.735	10.813	1.00 31.02
5	ATOM	2995	OH2 TI	P 195	24.128	43.401	2.958	1.00 26.14
	ATOM	2996	OH2 TI	P 196	21.872	27.301	26.191	1.00 44.90
	ATOM	2997	OH2 TI	P 197	63.765	33.808	21.998	1.00 36.70
	ATOM	2998	OH2 TI	P 198	32.846	49.810	23.746	1.00 37.36
	ATOM	2999	OH2 TI	P 199	58.905	40.769	13.020	1.00 30.69
10	ATOM	3000	OH2 TI	P 200	22.377	49.968	21.592	1.00 39.90
	ATOM	3001	OH2 TI	P 201	49.605	32.015	-6.500	1.00 33.85
	ATOM	3002	OH2 TI	P 202	19.520	32.689	24.514	1.00 40.34
	ATOM	3003	OH2 TI	P 203	18.186	43.942	25.261	1.00 37.04
	ATOM	3004	OH2 TI	P 204	31.924	23.419	9.913	1.00 41.07
15	ATOM	3005	OH2 TI	P 205	59.551	39.040	29.664	1.00 48.01
	ATOM	3006	OH2 TI	P 206	24.747	35.005	-2.252	1.00 38.50
	MOTA	3007	OH2 TI	P 207	51.726	24.271	23.364	1.00 45.92
	ATOM	3008	OH2 TI	P 208	41.227	63.077	0.564	1.00 52.88
	ATOM	3009	OH2 TI	P 209	45.043	24.853	-7.064	1.00 63.99
20	ATOM	3010	OH2 TI	P 210	60.297	33.503	0.872	1.00.44.71
	MOTA	3011	OH2 TI		55.354	57.898	-5.181	1.00 67.46
	MOTA	3012	OH2 TI		26.342	34.721	3.607	1.00 43.97
	MOTA	3013	OH2 TI		57.229	58.636	2.147	1.00 56.52
	MOTA	3014	OH2 TI		48.952	19.413	7.794	1.00 36.39
25	MOTA	3015	OH2 TI		18.698	34.346	22.436	1.00 40.47
	MOTA	3016	OH2 TI		50.056	55.688	3.654	1.00 41.15
	MOTA		OH2 TI		23.808	39.359		1.00 38.56
	ATOM	3018	OH2 TI		30.490	25.063		1.00 52.43
20	MOTA	3019	OH2 TI		26.031			1.00 35.58
30	MOTA	3020	OH2 TI		54.897		2.961	1.00 48.36
	ATOM	3021	OH2 TI		59.398		-2.805	1.00 58.38
	MOTA	3022	OH2 TI		51.436	23.394	27.949	1.00 42.69
	MOTA	3023	OH2 TI		37.497	39.534	29.612	1.00 29.55
25	ATOM	3024	OH2 TI					1.00 59.58
35	ATOM	3025	OH2 TI		38.073			1.00 45.26
	ATOM	3026	OH2 TI		52.416		0.869	1.00 58.50
	ATOM	3027	OH2 TI	P 229	58.152	50.912	12.884	1.00 32.92

	ATOM	3028	ОН2	TIP	230	56.059	24.385	3.859	1.00	54.19
	ATOM	3029	ОН2	TIP	231	51.657	20.142	23.177	1.00	49.92
	ATOM	3030	он2	TIP	232	48.247	18.532	16.124	1.00	47.86
	ATOM	3031	ОН2	TIP	233	49.710	20.786	19.715	1.00	37.69
5	ATOM	3032	ОН2	TIP	234	61.171	40.499	27.294	1.00	41.21
	ATOM	3033	OH2	TIP	235	60.229	28.450	9.873	1.00	39.53
	ATOM	3034	ОН2	TIP	236	39.482	20.654	25.665	1.00	40.24
	ATOM	3035	OH2	TIP	237	21.898	39.040	23.981	1.00	49.44
	ATOM	3036	OH2	TIP	238	41.482	40.544	-15.377	1.00	41.34
10	ATOM	3037	OH2	TIP	239	53.795	60.848	4.850	1.00	53.61
	ATOM	3038	OH2	TIP	240	34.935	52.929	-3.681	1.00	35.26
	MOTA	3039	OH2	TIP	241	55.320	34.524	-10.024	1.00	38.15
	ATOM	3040	ОН2	TIP	243	26.335	37.508	-0.149	1.00	39.86
	MOTA	3041	ОН2	TIP	244	50.998	60.568	3.880	1.00	65.48
15	ATOM	3042	ОН2	TIP	246	30.232	56.037	21.276	1.00	50.32
	ATOM	3043	OH2	TIP	247	25.549	38.311	8.586	1.00	39.52
	ATOM	3044	он2	TIP	248	56.414	42.750	28.581	1.00	44.10
	ATOM	3045	ОН2	TIP	249	50.755	57.649	7.886	1.00	35.64
	ATOM	3046	ОН2	TIP	250	41.230	43.187	29.095	1.00	43.86
20	ATOM	3047	OH2	TIP	251	44.998	22.901	28.299	1.00	53.89
	MOTA	3048	OH2	TIP	252	20.352	42.557	15.132	1.00	52.49
	ATOM	3049	OH2	TIP	253	26.184	65.798	8.905	1.00	43.68
	ATOM	3050	OH2	TIP	254	45.893	38.490	-11.594	1.00	51.24
	ATOM	3051	OH2	TIP	255	42.710	41.577	34.594	1.00	40.69
25	MOTA	3052	OH2	TIP	256	48.240	52.727	26.492	1.00	43.49
	ATOM	3053	OH2	TIP	257	39.554	58.190	23.447	1.00	49.04
	ATOM	3054	OH2	TIP	258	37.575	57.178	25.056	1.00	45.47
	ATOM	3055	OH2	TIP	259	50.664	56.391	11.881	1.00	31.43
	ATOM	3056	OH2	TIP	260	59.974	24.777	12.397	1.00	37.68
30	MOTA	3057	OH2	TIP	261	23.885	35.887	6.227	1.00	46.04
	MOTA	3058	OH2	TIP	262	64.702	52.392	26.765	1.00	59.22
	MOTA	3059	OH2	TIP	263	35.576	61.522	20.195	1.00	49.81
	ATOM	3060	OH2	TIP	264	43.682	65.275	-7.504	1.00	43.86
	MOTA	3061	OH2	TIP	266	60.870	47.912	27.467	1.00	53.93
35	ATOM	3062	OH2	TIP	268	51.707	34.577	42.346	1.00	45.87
	MOTA	3063	OH2	TIP	269	29.465	40.196	30.722	1.00	38.31
	ATOM	3064	OH2	TIP	270	22.879	53.243	8.461	1.00	43.09

	MOTA	3065	OH2	TIP	272	42.793	30.638	35.734	1.00	54.91
	ATOM	3066	OH2	TIP	273	39.878	24.302	0.355	1.00	42.81
	ATOM	3067	OH2	TIP	274	45.874	43.477	32.353	1.00	44.64
	ATOM	3068	OH2	TIP	276	60.439	26.457	22.587	1.00	58.50
5	ATOM	3069	OH2	TIP	277	33.501	19.630	7.711	1.00	40.97
	ATOM	3070	ОН2	TIP	278	31.136	37.255	33.009	1.00	49.32
	MOTA	3071	ОН2	TIP	279	54.504	24.817	21.938	1.00	49.97
	MOTA	3072	OH2	TIP	280	47.280	60.101	19.796	1.00	43.35
	ATOM	3073	ОН2	TIP	282	54.430	30.932	0.309	1.00	63.58
10	MOTA	3074	OH2	TIP	283	61.848	32.266	15.111	1.00	38.33
	MOTA	3075	OH2	TIP	284	24.901	34.423	-6.980	1.00	40.77
	MOTA	3076	OH2	TIP	285	24.740	32.154	26.786	1.00	43.19
	ATOM	3077	ОН2	TIP	286	32.495	60.380	1.080	1.00	46.07
	ATOM	3078	OH2	TIP	287	55.139	56.211	24.904	1.00	43.70
15	MOTA	3079	OH2	TIP	288	43.595	38.488	39.052	1.00	50.51
	ATOM	3080	OH2	TIP	292	20.724	36.629	8.924	1.00	43.74
	MOTA	3081	OH2	TIP	293	46.686	64.930	9.425	1.00	50.38
	ATOM	3082	OH2	TIP	294	17.201	60.221	10.522	1.00	43.72
	MOTA	3083	OH2	TIP	295	17.500	28.964	19.499	1.00	38.98
20	MOTA	3084	ОН2	TIP	297	36.397	31.380	32.306	1.00	41.95
	MOTA	3085	ОН2	TIP	300	46.747	59.180	-13.611	1.00	47.00
	ATOM	3086	OH2	TIP	301	29.632	25.523	9.658	1.00	45.27
	MOTA	3087	OH2	TIP	302	50.813	58.467	0.387	1.00	40.01
	MOTA	3088	OH2	TIP	303	29.510	51.948	22.195	1.00	37.26
25	ATOM	3089	OH2	TIP	304	34.546	62.038	23.290	1.00	43.28
	ATOM	3090	OH2	TIP	305	28.994	20.945	23.473	1.00	43.57
	MOTA	3091	OH2	TIP	306	50.928	49.942	27.992	1.00	49.74
	MOTA	3092	OH2	TIP	307	18.603	51.462	16.940	1.00	45.75
	MOTA	3093	OH2	TIP	309	42.013	36.897	-13.981	1.00	47.94
30	MOTA	3094	OH2	TIP	310	45.087	42.847	-9.324	1.00	47.04
	MOTA	3095	C1	INH	1	55.236	47.264	0.315	0.00	19.32
	MOTA	3096	C2	INH	1	55.731	48.195	-0.664	0.00	19.20
	MOTA	3097	C3	INH	1	55.258	48.140	-2.050	0.00	19.12
	MOTA	3098	C4	INH	1	54.265	47.124	-2.434		19.23
35	MOTA	3099	C5	INH	1	53.756	46.171	-1.432		19.43
	MOTA	3100	С6	INH	1	52.787	45.139	-1.726		19.40
	MOTA	3101	C7	INH	1	54.267	46.267	-0.057	0.00	19.29

	ATOM	3102	C8	INH		1	53.065	44.157	-2.777	0.00	19.48
	ATOM	3103	С9	INH		1	52.120	43.114	-3.081	0.00	19.61
	MOTA	3104	F10	INH		1	52.396	42.242	-4.029	0.00	19.47
	ATOM	3105	C11	INH		1	50.854	43.001	-2.347	0.00	19.73
5	ATOM	3106	N12	INH		1	49.946	41.963	-2.657	0.00	19.81
	ATOM	3107	C13	INH		1	50.566	43.971	-1.304	0.00	19.50
	ATOM	3108	F14	INH		1	49.438	43.905	-0.620	0.00	19.51
	ATOM	3109	C15	INH		1	51.512	45.029	-0.990	0.00	19.42
	ATOM	3110	C16	INH		1	49.182	41.562	-3.767	0.00	20.05
10	MOTA	3111	C17	INH		1	48.294	40.370	-3.753	0.00	20.24
	MOTA	3112	018	INH		1	49.255	42.235	-4.804	0.00	20.11
	MOTA	3113	C19	INH		1	47.993	39.496	-2.733	0.00	20.33
	MOTA	3114	C20	INH		1	47.042	38.465	-3.244	0.00	20.37
	MOTA	3115	C21	INH		1	46.405	39.116	-4.465	0.00	20.37
15	MOTA	3116	C22	INH		1	47.561	39.964	-4.990	0.00	20.30
	MOTA	3117	C23	INH		1	48.435	39.426	-1.307	0.00	20.38
	MOTA	3118	024	INH		1	49.215	40.225	-0.791	0.00	20.42
	ATOM	3119	025	INH		1 .	47.969	38.433	-0.500	0.00	20.42
	MOTA	3120	026	INH		1	55.745	49.052	-2.996	0.00	19.20
20	MOTA	3121	C27	INH		1	57.043	48.675	-3.568	0.00	19.22
	MOTA	3122	F28	INH		1	57.052	47.408	-3.962	0.00	18.96
	MOTA	3123	F29	INH		1	57.283	49.439	-4.611	0.00	18.96
	MOTA	3124	F30	INH		1	58.012	48.867	-2.686	0.00	18.96
	TER	1		INH		1					
25	MOTA	1	СВ	MET	A	30	59.689	55.188	-5.634	1.00	78.93
	MOTA	2	CG	MET	A	30	59.846	54.459	-6.959	1.00	79.24
	MOTA	3	SD	MET	A	30	59.231	52.765	-6.869	1.00	79.21
	MOTA	4	CE	MET	A	30	60.653	51.913	-6.175	1.00	79.18
	MOTA	5	С	MET	A	30	58.206	55.626	-3.674	1.00	77.77
30	MOTA	6	0	MET	A	30	57.247	55.273	-2.989	1.00	77.07
	MOTA	7	N	MET	A	30	57.559	56.411	-5.965	1.00	78.11
	ATOM	8	CA	MET	A	30	58.237	55.344	-5.173	1.00	78.21
	ATOM	9	N	ALA	A	31	59.261	56.261	-3.170		77.18
	MOTA	10	CA	ALA	A	31	59.357	56.584	-1.750		75.83
35	MOTA	11	СВ	ALA		31	60.804	56.889	-1.382		76.33
	MOTA	12	С	ALA		31	58.466	57.766	-1.386		74.57
	MOTA	13	0	ALA	A	31	58.120	57.955	-0.220	1.00	74.68

	ATOM	14	N	THR A		32	58.098	58.559	-2.388	1.00	73.02
	MOTA	15	CA	THR A		32	57.247	59.724	-2.172	1.00	70.94
	ATOM	16	СВ	THR A		32	57.070	60.531	-3.474	1.00	71.72
	ATOM	17	OG1	THR A		32	58.350	60.991	-3.929	1.00	71.26
5	ATOM	18	CG2	THR A		32	56.155	61.727	-3.242	1.00	71.64
	ATOM	19	С	THR A		32	55.872	59.303	-1.660	1.00	68.92
	ATOM	20	0	THR A		32	55.231	60.029	-0.897	1.00	69.22
	MOTA	21	N	GLY A		33	55.423	58.127	-2.086	1.00	65.85
	MOTA	22	CA	GLY A		33	54.133	57.627	-1.650	1.00	61.62
10	MOTA	23	С	GLY A		33	52.950	58.306	-2.308	1.00	58.54
	ATOM	24	0	GLY A		33	52.111	58.899	-1.630	1.00	59.44
	ATOM	25	N	ASP A		34	52.875	58.220	-3.631	1.00	53.96
	ATOM	26	CA	ASP A		34	51.773	58.831	-4.358	1.00	48.74
	ATOM	27	СВ	ASP A		34	52.285	59.470	-5.648	1.00	48.47
15	ATOM	28	CG	ASP A		34	51.171	60.046	-6.488	1.00	48.19
	ATOM	29	OD1	ASP A		34	50.675	59.329	-7.383	1.00	47.90
	ATOM	30	OD2	ASP A		34	50.783	61.210	-6.245	1.00	48.88
	MOTA	31	С	ASP A		34	50.687	57.803	-4.663	1.00	45.54
	ATOM	32	0	ASP A		34	50.947	56.760	-5.266	1.00	42.96
20	ATOM	33	N	GLU A		35	49.467	58.115	-4.237	1.00	42.40
	ATOM	34	CA	GLU A		35	48.319	57.236	-4.420	1.00	39.88
	ATOM	35	СВ	GLU A		35	47.072	57.897	-3.824	1.00	39.71
	ATOM	36	CG	GLU A		35	47.055	57.882	-2.298	1.00	41.04
	ATOM	37	CD	GLU A		35	46.065	58.866	-1.695	1.00	42.39
25	ATOM	38	OE1	GLU A		35	44.959	59.028	-2.254	1.00	43.92
	ATOM	39	OE2	GLU A		35	46.391	59.468	-0.649	1.00	40.71
	ATOM	40	С	GLU A		35	48.058	56.800	-5.859	1.00	38.11
	ATOM	41	0	GLU A		35	47.820	55.618	-6.109	1.00	36.81
	ATOM	42	N	ARG A		36	48.107	57.738	-6.804	1.00	36.86
30	ATOM	43	CA	ARG A		36	47.867	57.397	-8.205	1.00	36.42
	ATOM	44	СВ	ARG A		36	47.761	58.650	-9.077	1.00	39.87
	ATOM	45	CG	ARG A		36	46.462	59.421	-8.961	1.00	44.23
	ATOM	46	CD	ARG A		36	46.287	60.321	-10.176	1.00	46.52
	ATOM	47	NE	ARG A		36	45.492	61.506	-9.878	1.00	50.65
35	ATOM	48	CZ	ARG A		36	45.852	62.445	-9.008	1.00	52.47
	ATOM	49	NH1	ARG A		36	46.997	62.336	-8.346	1.00	52.64
	MOTA	50	NH2	ARG A	L	36	45.073	63.500	-8.804	1.00	53.33

	MOTA	51	С	ARG	Α	36	48.950	56.509	-8.791	1.00	34.75
	ATOM	52	0	ARG	А	36	48.657	55.559	-9.513	1.00	34.22
	ATOM	53	N	PHE	A	37	50.204	56.826	-8.488	1.00	33.66
	ATOM	54	CA	PHE	A	37	51.316	56.048	-9.014	1.00	33.12
5	ATOM	55	СВ	PHE	A	37	52.653	56.602	-8.521	1.00	34.20
	MOTA	56	CG	PHE	А	37	53.836	55.879	-9.088	1.00	36.60
	MOTA	57	CD1	PHE	A	37	54.115	55.945	-10.444	1.00	36.51
	MOTA	58	CD2	PHE	Α	37	54.647	55.101	-8.277	1.00	38.02
	MOTA	59	CE1	PHE	A	37	55.180	55.247	-10.980	1.00	38.42
10	ATOM	60	CE2	PHE	A	37	55.714	54.398	-8.808	1.00	38.15
	MOTA	61	CZ	PHE	A	37	55.980	54.471	-10.161	1.00	38.74
	ATOM	62	С	PHE	Α	37	51.217	54.577	-8.639	1.00	31.06
	MOTA	63	0	PHE	A	37	51.387	53.702	-9.485	1.00	30.53
	MOTA	64	N	TYR	A	38	50.949	54.304	-7.368	1.00	30.51
15	MOTA	65	CA	TYR	Α	38	50.833	52.924	-6.919	1.00	31.07
	MOTA	66	СВ	TYR	A	38	50.801	52.852	-5.392	1.00	29.44
	ATOM	67	CG	TYR	A	38	52.169	52.881	-4.759	1.00	29.09
	MOTA	68	CD1	TYR	A	38	52.904	54.060	-4.694	1.00	29.44
	ATOM	69	CE1	TYR	A	38	54.167	54.082	-4.129	1.00	28.77
20	ATOM	70	CD2	TYR	A	38	52.738	51.721	-4.242	1.00	26.55
	ATOM	71	CE2	TYR	Α	38	53.996	51.731	-3.680	1.00	26.62
	ATOM	72	CZ	TYR	A	38	54.706	52.912	-3.626	1.00	28.87
	ATOM	73	ОН	TYR	A	38	55.963	52.921	-3.078	1.00	29.87
	ATOM	74	С	TYR	A	38	49.596	52.252	-7.486	1.00	31.66
25	ATOM	75	0	TYR	A	38	49.656	51.117	-7.954	1.00	30.99
	ATOM	76	N	ALA	A	39	48.476	52.965	-7.454	1.00	33.37
	ATOM	77	CA	ALA	A	39	47.215	52.433	-7.952	1.00	35.76
	ATOM	78	СВ	ALA	A	39	46.076	53.365	-7.562	1.00	35.92
	ATOM	79	С	ALA	A	39	47.203	52.212	-9.460	1.00	37.51
30	MOTA	80	0	ALA	A	39	46.769	51.161	-9.939	1.00	37.40
	MOTA	81	N	GLU	A	40	47.692	53.199	-10.203	1.00	39.90
	MOTA	82	CA	GLU	A	40	47.697	53.129	-11.660	1.00	41.43
	MOTA	83	СВ	GLU	A	40	47.505	54.531	-12.247	1.00	43.66
	ATOM	84	CG	GLU	A	40	46.253	55.250	-11.764	1.00	47.51
35	ATOM	85	CD	GLU	A	40	46.103	56.633	-12.372	1.00	50.59
	MOTA	86	OE1	GLU	A	40	46.046	56.728	-13.618	1.00	53.22
	ATOM	87	OE2	GLU	Α	40	46.041	57.623	-11.609	1.00	51.67

	ATOM	88	С	GLU	Α	40	48.920	52.493	-12.311	1.00	40.64
	ATOM	89	0	GLU	А	40	48.804	51.910	-13.387	1.00	41.18
	ATOM	90	N	HIS	А	41	50.085	52.585	-11.678	1.00	39.76
	ATOM	91	CA	HIS	А	41	51.282	52.028	-12.303	1.00	38.73
5	ATOM	92	СВ	HIS	A	41	52.275	53.153	-12.616	1.00	40.77
	MOTA	93	CG	HIS	A	41	51.702	54.239	-13.470	1.00	44.26
	ATOM	94	CD2	HIS	A	41	51.815	54.482	-14.797	1.00	45.53
	ATOM	95	ND1	HIS	A	41	50.869	55.218	-12.971	1.00	46.11
	ATOM	96	CE1	HIS	А	41	50.494	56.018	-13.954	1.00	46.63
10	ATOM	97	NE2	HIS	A	41	51.054	55.593	-15.072	1.00	47.73
	MOTA	98	С	HIS	A	41	52.034	50.903	-11.605	1.00	35.82
	ATOM	99	0	HIS	A	41	52.166	49.809	-12.153	1.00	36.05
	ATOM	100	N	LEU	A	42	52.537	51.168	-10.407	1.00	33.50
	ATOM	101	CA	LEU	A	42	53.317	50.166	-9.688	1.00	32.13
15	ATOM	102	СВ	LEU	A	42	53.872	50.770	-8.393	1.00	30.83
	ATOM	103	CG	LEU	A	42	54.988	49.962	-7.723	1.00	33.78
	MOTA	104	CD1	LEU	A	42	55.923	50.904	-6.983	1.00	32.87
	MOTA	105	CD2	LEU	A	42	54.391	48.919	-6.784	1.00	33.61
	ATOM	106	С	LEU	A	42	52.589	48.852	-9.394	1.00	30.33
20	ATOM	107	0	LEU	A	42	52.988	47.801	-9.893	1.00	31.41
	ATOM	108	N	MET	A	43	51.530	48.907	-8.593	1.00	28.07
	MOTA	109	CA	MET	A	43	50.781	47.701	-8.243	1.00	28.07
	ATOM	110	СВ	MET	Α	43	49.559	48.057	-7.389	1.00	24.63
	ATOM	111	CG	MET	A	43	49.917	48.620	-6.024	1.00	24.00
25	MOTA	112	SD	MET	A	43	51.097	47.580	-5.115	1.00	25.98
	ATOM	113	CE	MET	A	43	50.029	46.223	-4.620	1.00	22.82
	MOTA	114	С	MET	A	43	50.350	46.873	-9.451	1.00	28.45
	MOTA	115	0	MET	Α	43	50.534	45.657	-9.470		27.65
	MOTA	116	N	PRO	A	44	49.759	47.517	-10.471		30.19
30	MOTA	117	CD	PRO	A	44	49.318	48.922	-10.520		28.99
	MOTA	118	CA	PRO	A	44	49.320		-11.670		30.48
	ATOM	119	СВ	PRO	A	44	48.748		-12.545		30.20
	MOTA	120	CG	PRO		44	48.214		-11.543		30.28
2.5	ATOM	121	С	PRO		44	50.481		-12.352		32.32
35	ATOM	122	0	PRO		44	50.348		-12.767		32.75
	MOTA	123	N	THR		45	51.616		-12.468		33.19
	ATOM	124	CA	THR	A	45	52.796	46.170	-13.099	1.00	34.66

	ATOM	125	СВ	THR	Α	45	53.930	47.214 -13.231	1.00 35.79
	ATOM	126	OG1	THR	Α	45	53.475	48.321 -14.019	1.00 33.62
	ATOM	127	CG2	THR	A	45	55.155	46.591 -13.896	1.00 35.42
	ATOM	128	С	THR	А	45	53.301	45.003 -12.261	1.00 36.33
5	ATOM	129	0	THR	A	45	53.666	43.951 -12.787	1.00 36.54
	ATOM	130	N	LEU	A	46	53.317	45.201 -10.949	1.00 37.72
	ATOM	131	CA	LEU	А	46	53.770	44.173 -10.022	1.00 38.02
	ATOM	132	СВ	LEU	А	46	53.686	44.700 -8.590	1.00 38.12
	ATOM	133	CG	LEU	А	46	54.340	43.856 -7.500	1.00 39.50
10	MOTA	134	CD1	LEU	A	46	55.808	43.642 -7.839	1.00 41.34
	ATOM	135	CD2	LEU	A	46	54.202	44.562 -6.161	1.00 38.74
	ATOM	136	С	LEU	A	46	52.912	42.920 -10.164	1.00 38.63
	ATOM	137	0	LEU	A	46	53.430	41.806 -10.244	1.00 38.89
	ATOM	138	N	GLN	Α	47	51.596	43.108 -10.203	1.00 38.81
15	ATOM	139	CA	GLN	A	47	50.669	41.990 -10.329	1.00 40.49
	ATOM	140	СВ	GLN	A	47	49.254	42.446 -9.957	1.00 40.67
	ATOM	141	CG	GLN	A	47	49.138	42.901 -8.503	1.00 42.61
	MOTA	142	CD	GLN	Α	47	47.756	43.414 -8.147	1.00 44.18
	ATOM	143	OE1	GLN	A	47	47.259	44.366 -8.750	1.00 46.67
20	ATOM	144	NE2	GLN	A	47	47.127	42.787 -7.159	1.00 43.17
	ATOM	145	С	GLN	Α	47	50.688	41.377 -11.729	1.00 39.96
	MOTA	146	0	GLN	A	47	50.273	40.234 -11.923	1.00 39.12
	MOTA	147	N	GLY	Α	48	51.182	42.137 -12.701	1.00 40.79
	MOTA	148	CA	GLY	A	48	51.260	41.634 -14.061	1.00 39.68
25	ATOM	149	С	GLY	A	48	52.515	40.806 -14.283	1.00 39.30
	ATOM	150	0	GLY	A	48	52.687	40.200 -15.339	1.00 40.84
	ATOM	151	N	LEU	A	49	53.391	40.772 -13.283	1.00 37.80
	ATOM	152	CA	LEU	A	49	54.636	40.017 -13.377	1.00 37.34
	ATOM	153	СВ	LEU	A	49	55.836	40.947 -13.175	1.00 38.41
30	ATOM	154	CG	LEU	A	49	56.089	42.039 -14.217	1.00 38.40
	ATOM	155	CD1	LEU	A	49	57.229	42.929 -13.751	1.00 38.36
	MOTA	156	CD2	LEU	A	49	56.414	41.402 -15.558	1.00 38.65
	ATOM	157	С	LEU	A	49	54.717	38.886 -12.359	1.00 36.86
	MOTA	158	0	LEU	A	49	55.440	37.913 -12.564	1.00 36.92
35	MOTA	159	N	LEU	A	50	53.978	39.016 -11.263	1.00 36.23
	ATOM	160	CA	LEU	A	50	53.992	38.009 -10.207	1.00 35.06
	ATOM	161	СВ	LEU	A	50	54.594	38.605 -8.929	1.00 35.63

	MOTA	162	CG	LEU	A	50	56.039	39.102	-8.996	1.00	36.84
	ATOM	163	CD1	LEU	А	50	56.382	39.831	-7.707	1.00	36.77
	ATOM	164	CD2	LEU	А	50	56.982	37.925	-9.220	1.00	36.09
	ATOM	165	C	LEU	Α	50	52.608	37.460	-9.886	1.00	34.37
5	ATOM	166	0	LEU	A	50	51.627	38.206	-9.843	1.00	34.32
	ATOM	167	N	ASP	A	51	52.530	36.152	-9.655	1.00	33.01
	ATOM	168	CA	ASP	A	51	51.258	35.534	-9.309	1.00	33.05
	ATOM	169	СВ	ASP	A	51	51.365	34.008	-9.370	1.00	34.40
	ATOM	170	CG	ASP	A	51	52.309	33.450	-8.331	1.00	37.10
10	ATOM	171	OD1	ASP	A	51	53.510	33.791	-8.377	1.00	39.23
	ATOM	172	OD2	ASP	Α	51	51.850	32.670	-7.469	1.00	38.47
	ATOM	173	С	ASP	A	51	50.917	35.999	-7.890	1.00	30.99
	ATOM	174	0	ASP	A	51	51.801	36.411	-7.135	1.00	30.97
	ATOM	175	N	PRO	A	52	49.633	35.935	-7.510	1.00	28.90
15	MOTA	176	CD	PRO	A	52	48.538	35.321	-8.280	1.00	27.63
	ATOM	177	CA	PRO	Α	52	49.161	36.357	-6.185	1.00	27.61
	ATOM	178	СВ	PRO	A	52	47.781	35.715	-6.097	1.00	28.92
	ATOM	179	CG	PRO	A	52	47.313	35.772	-7.514	1.00	27.88
	MOTA	180	С	PRO	A	52	50.054	35.993	-4.996	1.00	25.59
20	ATOM	181	0	PRO	A	52	50.463	36.864	-4.237	1.00	25.26
	MOTA	182	N	GLU	A	53	50.363	34.713	-4.836	1.00	24.82
	MOTA	183	CA	GLU	A	53	51.189	34.290	-3.714	1.00	25.88
	ATOM	184	СВ	GLU	A	53	51.229	32.761	-3.632	1.00	26.19
	MOTA	185	CG	GLU	A	53	51.892	32.254	-2.366	1.00	27.45
25	MOTA	186	CD	GLU	A	53	51.418	30.874	-1.956	1.00	28.77
	MOTA	187	OE1	GLU	A	53	51.973	30.337	-0.977	1.00	32.06
	MOTA	188	OE2	GLU	A	53	50.496	30.328	-2.600	1.00	27.91
	MOTA	189	С	GLU	A	53	52.612	34.863	-3.730	1.00	25.94
	ATOM	190	0	GLU	A	53	53.103	35.326	-2.698	1.00	24.19
30	MOTA	191	N	SER	A	54	53.273	34.835	-4.887	1.00	24.50
	ATOM	192	CA	SER	A	54	54.625	35.380	-4.990	1.00	24.72
	MOTA	193	СВ	SER	A	54	55.195	35.170	-6.395	1.00	26.25
	ATOM	194	OG	SER	A	54	55.432	33.797	-6.656	1.00	29.09
	MOTA	195	С	SER	A	54	54.610	36.871	-4.676	1.00	25.01
35	ATOM	196	0	SER	A	54	55.537	37.395	-4.059		24.88
	ATOM	197	N	ALA	A	55	53.550	37.549	-5.111		23.57
	ATOM	198	CA	ALA	A	55	53.404	38.977	-4.876	1.00	22.63

	ATOM	199	СВ	ALA	A	55	52.163	39.500	-5.602	1.00	21.92
	ATOM	200	С	ALA	Α	55	53.285	39.221	-3.371	1.00	22.63
	ATOM	201	0	ALA	Α	55	53.909	40.127	-2.822	1.00	22.32
	ATOM	202	N	HIS	Α	56	52.481	38.402	-2.706	1.00	22.16
5	ATOM	203	CA	HIS	А	56	52.304	38.533	-1.267	1.00	23.00
	ATOM	204	СВ	HIS	Α	56	51.295	37.507	-0.757	1.00	18.21
	ATOM	205	CG	HIS	Α	56	51.244	37.422	0.734	1.00	18.62
	ATOM	206	CD2	HIS	А	56	51.508	36.398	1.580	1.00	16.96
	ATOM	207	ND1	HIS	A	56	50.926	38.503	1.527	1.00	18.90
10	ATOM	208	CE1	HIS	A	56	50.996	38.149	2.797	1.00	19.09
	ATOM	209	NE2	HIS	Α	56	51.349	36.878	2.857	1.00	18.86
	ATOM	210	С	HIS	A	56	53.620	38.348	-0.508	1.00	24.69
	ATOM	211	0	HIS	A	56	53.945	39.127	0.394	1.00	24.05
	ATOM	212	N	ARG	A	57	54.368	37.310	-0.873	1.00	25.73
15	ATOM	213	CA	ARG	A	57	55.638	37.015	-0.224	1.00	28.93
	ATOM	214	СВ	ARG	A	57	56.230	35.724	-0.792	1.00	32.78
	ATOM	215	CG	ARG	A	57	55.243	34.565	-0.760	1.00	40.35
	ATOM	216	CD	ARG	A	57	55.890	33.236	-1.119	1.00	45.50
	ATOM	217	NE	ARG	A	57	56.855	32.813	-0.110	1.00	51.35
20	ATOM	218	CZ	ARG	A	57	57.402	31.603	-0.063	1.00	54.26
	ATOM	219	NH1	ARG	A	57	57.078	30.691	-0.971	1.00	54.88
	ATOM	220	NH2	ARG	A	57	58.270	31.303	0.896	1.00	56.37
	ATOM	221	С	ARG	A	57	56.625	38.163	-0.382	1.00	27.70
	ATOM	222	0	ARG	A	57	57.345	38.500	0.554	1.00	28.64
25	ATOM	223	N	LEU	A	58	56.653	38.763	-1.567	1.00	26.64
	ATOM	224	CA	LEU	A	58	57.543	39.887	-1.828	1.00	26.14
	ATOM	225	СВ	LEU	A	58	57.484	40.268	-3.310	1.00	29.02
	ATOM	226	CG	LEU	A	58	58.480	41.323	-3.798	1.00	31.41
	ATOM	227	CD1	LEU	A	58	59.896	40.765	-3.693	1.00	32.43
30	ATOM	228	CD2	LEU	A	58	58.167	41.709	-5.237	1.00	32.16
	ATOM	229	С	LEU	A	58	57.086	41.070	-0.971	1.00	25.90
	ATOM	230	0	LEU	A	58	57.903	41.836	-0.454	1.00	24.40
	ATOM	231	N	ALA	A	59	55.769	41.205	-0.832	1.00	24.36
	ATOM	232	CA	ALA	A	59	55.166	42.275	-0.042	1.00	23.05
35	ATOM	233	СВ	ALA	A	59	53.641	42.159	-0.074	1.00	20.54
	ATOM	234	С	ALA	A	59	55.651	42.188	1.391		20.64
	ATOM	235	0	ALA	Α	59	56.037	43.190	1.992	1.00	21.25

	ATOM	236	N	VAL	Α	60	55.612	40.982	1.941	1.00	20.09
	ATOM	237	CA	·VAL	A	60	56.056	40.766	3.308	1.00	19.99
	MOTA	238	СВ	VAL	A	60	55.817	39.300	3.741	1.00	18.43
	ATOM	239	CG1	VAL	А	60	56.407	39.054	5.129	1.00	17.76
5	ATOM	240	CG2	VAL	A	60	54.324	39.003	3.742	1.00	14.72
	ATOM	241	С	VAL	A	60	57.541	41.111	3.425	1.00	21.05
	ATOM	242	0	VAL	Α	60	57.951	41.785	4.365	1.00	21.13
	ATOM	243	N	ARG	Α	61	58.340	40.664	2.459	1.00	23.89
	MOTA	244	CA	ARG	Α	61	59.776	40.944	2.471	1.00	27.66
10	MOTA	245	СВ	ARG	Α	61	60.469	40.352	1.239	1.00	29.95
	ATOM	246	CG	ARG	A	61	60.426	38.838	1.122	1.00	38.36
	ATOM	247	CD	ARG	Α	61	61.548	38.355	0.196	1.00	44.69
	ATOM	248	NE	ARG	A	61	61.477	36.926	-0.101	1.00	50.18
	ATOM	249	CZ	ARG	Α	61	60.671	36.388	-1.014	1.00	51.97
15	ATOM	250	NH1	ARG	A	61	59.863	37.159	-1.729	1.00	51.92
	ATOM	251	NH2	ARG	A	61	60.674	35.076	-1.212	1.00	53.20
	ATOM	252	С	ARG	A	61	60.065	42.443	2.510	1.00	27.16
	ATOM	253	0	ARG	A	61	60.778	42.925	3.392	1.00	25.78
	ATOM	254	N	PHE	A	62	59.514	43.175	1.546	1.00	26.45
20	ATOM	255	CA	PHE	Α	62	59.737	44.611	1.470	1.00	28.86
	ATOM	256	CB	PHE	A	62	59.039	45.194	0.239	1.00	31.67
	ATOM	257	CG	PHE	A	62	59.842	45.074	-1.024	1.00	35.37
	ATOM	258	CD1	PHE	A	62	60.354	43.852	-1.424	1.00	36.62
	MOTA	259	CD2	PHE	A	62	60.081	46.186	-1.816	1.00	38.91
25	MOTA	260	CE1	PHE	A	62	61.089	43.739	-2.591	1.00	38.37
	MOTA	261	CE2	PHE	A	62	60.816	46.079	-2.986	1.00	40.05
	MOTA	262	CZ	PHE	A	62	61.320	44.853	-3.373	1.00	39.06
	MOTA	263	С	PHE	A	62	59.277	45.345	2.717	1.00	28.84
	MOTA	264	0	PHE	A	62	59.950	46.265	3.184	1.00	28.63
30	ATOM	265	N	THR	A	63	58.131	44.941	3.252	1.00	28.32
	MOTA	266	CA	THR	A	63	57.598	45.576	4.446	1.00	27.37
	ATOM	267	СВ	THR	A	63	56.196	45.023	4.798	1.00	26.41
	MOTA	268	OG1	THR	A	63	55.298	45.267	3.709	1.00	24.23
	ATOM	269	CG2	THR	A	63	55.653	45.700	6.044	1.00	25.26
35	ATOM	270	С	THR	A	63	58.537	45.351	5.626	1.00	28.52
	MOTA	271	0	THR	A	63	58.851	46.284	6.369	1.00	27.19
	ATOM	272	N	SER	Α	64	58.991	44.112	5.793	1.00	28.48

	ATOM	273	CA	SER	Α	64	59.890	43.790	6.895	1.00	30.95
	ATOM	274	СВ	SER	A	64	60.206	42.291	6.909	1.00	30.12
	MOTA	275	OG	SER	Α	64	60.986	41.918	5.787	1.00	34.09
	ATOM	276	С	SER	A	64	61.186	44.592	6.791	1.00	31.50
5	MOTA	277	0	SER	Α	64	61.789	44.940	7.803	1.00	31.30
	ATOM	278	N	LEU	A	65	61.603	44.893	5.565	1.00	33.16
	ATOM	279	CA	LEU	A	65	62.830	45.654	5.343	1.00	34.16
	ATOM	280	СВ	LEU	A	65	63.497	45.212	4.035	1.00	33.74
	ATOM	281	CG	LEU	A	65	63.989	43.762	3.999	1.00	36.53
10	ATOM	282	CD1	LEU	A	65	64.580	43.449	2.636	1.00	34.22
	ATOM	283	CD2	LEU	A	65	65.026	43.543	5.098	1.00	36.82
	ATOM	284	С	LEU	A	65	62.599	47.165	5.320	1.00	34.01
	ATOM	285	0	LEU	A	65	63.543	47.939	5.177	1.00	34.34
	ATOM	286	N	GLY	A	66	61.345	47.582	5.457	1.00	33.51
15	ATOM	287	CA	GLY	A	66	61.041	49.002	5.463	1.00	34.57
	ATOM	288	С	GLY	A	66	61.063	49.698	4.110	1.00	35.92
	ATOM	289	0	GLY	A	66	61.089	50.930	4.044	1.00	35.49
	ATOM	290	N	LEU	A	67	61.056	48.924	3.030	1.00	36.20
	ATOM	291	CA	LEU	A	67	61.062	49.500	1.689	1.00	37.47
20	ATOM	292	СВ	LEU	A	67	61.477	48.439	0.665	1.00	39.14
	ATOM	293	CG	LEU	A	67	62.785	47.701	0.982	1.00	41.61
	ATOM	294	CD1	LEU	A	67	63.070	46.664	-0.092	1.00	4.1.43
	ATOM	295	CD2	LEU	A	67	63.931	48.701	1.077	1.00	43.31
	ATOM	296	С	LEU	A	67	59.647	49.992	1.400	1.00	36.88
25	MOTA	297	0	LEU	A	67	58.908	49.377	0.635	1.00	36.23
	MOTA	298	N	LEU	A	68	59.281	51.106	2.024	1.00	37.29
	ATOM	299	CA	LEU	A	68	57.947	51.677	1.881	1.00	38.19
	ATOM	300	СВ	LEU	A	68	57.206	51.575	3.215	1.00	38.57
	ATOM	301	CG	LEU	A	68	57.206	50.198	3.878	1.00	39.38
30	MOTA	302	CD1	LEU	A	68	56.690	50.310	5.299	1.00	39.44
	ATOM	303	CD2	LEU	A	68	56.356	49.244	3.059	1.00	40.05
	ATOM	304	С	LEU	A	68	57.983	53.137	1.449	1.00	38.35
	ATOM	305	0	LEU	A	68	58.922	53.865	1.764	1.00	38.77
	ATOM	306	N	PRO	A	69	56.945	53.583	0.726	1.00	38.45
35	ATOM	307	CD	PRO	A	69	55.780	52.778	0.323	1.00	37.87
	ATOM	308	CA	PRO	A	69	56.819	54.956	0.232	1.00	39.07
	ATOM	309	СВ	PRO	А	69	55.580	54.885	-0.657	1.00	38.36

	ATOM	310	CG	PRO	A	69	54.754	53.842	0.012	1.00	38.12
	ATOM	311	С	PRO	A	69	56.666	55.976	1.358	1.00	39.55
	MOTA	312	0	PRO	Α	69	56.798	55.640	2.535	1.00	40.34
	ATOM	313	N	PHE	Α	73	51.509	61.626	6.239	1.00	57.41
5	ATOM	314	CA	PHE	Α	73	50.304	61.905	7.014	1.00	57.56
	ATOM	315	СВ	PHE	Α	73	49.146	61.013	6.554	1.00	57.94
	ATOM	316	CG	PHE	A	73	47.896	61.178	7.376	1.00	57.97
	ATOM	317	CD1	PHE	A	73	47.046	62.252	7.167	1.00	58.09
	MOTA	318	CD2	PHE	A	73	47.592	60.279	8.388	1.00	58.00
10	ATOM	319	CE1	PHE	A	73	45.918	62.427	7.950	1.00	57.86
	MOTA	320	CE2	PHE	A	73	46.465	60.451	9.175	1.00	56.97
	ATOM	321	CZ	PHE	A	73	45.628	61.525	8.956	1.00	56.70
	ATOM	322	С	PHE	A	73	50.519	61.683	8.506	1.00	56.61
	ATOM	323	0	PHE	A	73	50.884	60.586	8.932	1.00	56.50
15	ATOM	324	N	GLN	A	74	50.289	62.727	9.295	1.00	55.80
	ATOM	325	CA	GLN	A	74	50.434	62.632	10.743	1.00	54.27
	ATOM	326	CB	GLN	A	74	51.067	63.902	11.316	1.00	55.72
	ATOM	327	CG	GLN	A	74	52.551	64.063	11.029	1.00	58.53
	MOTA	328	CD	GLN	A	74	53.176	65.195	11.835	1.00	60.58
20	ATOM	329	OE1	GLN	A	74	52.868	66.371	11.625	1.00	60.54
	ATOM	330	NE2	GLN	A	74	54.050	64.839	12.770	1.00	60.75
	ATOM	331	С	GLN	A	74	49.061	62.429	11.366	1.00	51.91
	ATOM	332	0	GLN	A	74	48.107	63.128	11.029	1.00	51.26
	ATOM	333	N	ASP	A	75	48.965	61.464	12.271	1.00	49.71
25	ATOM	334	CA	ASP	A	75	47.705	61.173	12.940	1.00	47.29
	ATOM	335	СВ	ASP	A	75	47.826	59.868	13.733	1.00	46.43
	ATOM	336	CG	ASP	A	75	48.173	58.681	12.853	1.00	44.45
	ATOM	337	OD1	ASP	A	75	48.650	57.657	13.391	1.00	41.73
	ATOM	338	OD2	ASP	A	75	47.960	58.771	11.626	1.00	44.21
30	ATOM	339	С	ASP	A	75	47.359	62.319	13.884	1.00	46.48
	ATOM	340	0	ASP	A	75	48.217	62.803	14.622	1.00	46.43
	MOTA	341	N	SER	A	76	46.106	62.757	13.853		45.52
	ATOM	342	CA	SER	A	76	45.666	63.839	14.726	1.00	43.83
	ATOM	343	СВ	SER		76	44.732	64.791	13.976		43.83
35	MOTA	344	OG	SER		76	43.519	64.147	13.630		45.56
	MOTA	345	С	SER	A	76	44.935	63.239	15.916	1.00	42.06
	MOTA	346	0	SER	A	76	44.492	62.094	15.866	1.00	42.96

	ATOM	347	N	ASP	А	77	44.814	64.014	16.985	1.00	40.79
	ATOM	348	CA	ASP	А	77	44.131	63.558	18.188	1.00	40.57
	ATOM	349	СВ	ASP	A	77	43.969	64.725	19.167	1.00	42.86
	ATOM	350	CG	ASP	Α	77	45.303	65.296	19.620	1.00	46.39
5	ATOM	351	OD1	ASP	Α	77	45.301	66.339	20.307	1.00	48.20
	MOTA	352	OD2	ASP	А	77	46.354	64.702	19.294	1.00	47.94
	ATOM	353	С	ASP	A	77	42.761	62.959	17.866	1.00	38.52
	ATOM	354	0	ASP	A	77	42.285	62.070	18.568	1.00	37.86
	ATOM	355	N	MET	A	78	42.137	63.451	16.799	1.00	37.07
10	ATOM	356	CA	MET	A	78	40.819	62.976	16.376	1.00	35.68
	ATOM	357	CB	MET	A	78	40.371	63.700	15.105	1.00	36.68
	ATOM	358	CG	MET	A	78	40.022	65.154	15.279	1.00	38.98
	ATOM	359	SD	MET	A	78	39.373	65.811	13.731	1.00	43.55
	ATOM	360	CE	MET	A	78	37.673	65.195	13.798	1.00	40.05
15	ATOM	361	С	MET	A	78	40.758	61.476	16.104	1.00	33.08
	ATOM	362	0	MET	A	78	39.758	60.823	16.405	1.00	32.55
	ATOM	363	N	LEU	A	79	41.823	60.937	15.521	1.00	29.66
	ATOM	364	CA	LEU	A	79	41.861	59.523	15.186	1.00	28.85
	ATOM	365	CB	LEU	A	79	42.852	59.286	14.043	1.00	26.36
20	ATOM	366	CG	LEU	A	79	42.531	60.008	12.728	1.00	27.00
	ATOM	367	CD1	LEU	A	79	43.494	59.545	11.640	1.00	24.52
	ATOM	368	CD2	LEU	Α	79	41.090	59.723	12.316	1.00	23.83
	ATOM	369	С	LEU	A	79	42.197	58.611	16.359	1.00	28.62
	ATOM	370	0	LEU	A	79	42.120	57.387	16.237	1.00	27.51
25	ATOM	371	N	GLU	A	80	42.558	59.199	17.495		27.92
	ATOM	372	CA	GLU	Α	80	42.905	58.408	18.666	1.00	28.74
	MOTA	373	CB	GLU	Α	80	43.609		19.717		
	ATOM	374	CG	GLU		80	43.731	58.592	21.078		36.88
	ATOM	375	CD	GLU	A	80	44.634	59.344	22.045		40.61
30	ATOM	376		GLU		80	44.556	59.070	23.262		40.98
	ATOM	377		GLU		80	45.427	60.199	21.591		43.20
	ATOM	378	С	GLU		80	41.686	57.743	19.286		28.29
	ATOM	379	0	GLU		80	40.633	58.357	19.432		29.91
2.5	MOTA	380	N	VAL		81	41.841	56.478	19.649		26.82
35	MOTA	381	CA	VAL		81	40.762	55.717	20.255		27.29
	ATOM	382	CB	VAL		81	40.157	54.697	19.253		27.96
	ATOM	383	CG1	VAL	A	81	38.975	53.978	19.891	1.00	26.13

	ATOM	384	CG2	VAL	А	81	39.736	55.401	17.976	1.00	27.50
	ATOM	385	С	VAL	A	81	41.306	54.939	21.441	1.00	27.37
	ATOM	386	0	VAL	A	81	42.470	54.529	21.445	1.00	27.61
	ATOM	387	N	ARG	A	82	40.468	54.738	22.450	1.00	27.98
5	ATOM	388	CA	ARG	A	82	40.887	53.977	23.615	1.00	29.54
	ATOM	389	СВ	ARG	A	82	40.957	54.860	24.862	1.00	32.27
	ATOM	390	CG	ARG	Α	82	42.033	54.387	25.823	1.00	39.97
	ATOM	391	CD	ARG	A	82	41.640	54.494	27.289	1.00	45.20
	ATOM	392	NE	ARG	A	82	42.662	53.886	28.145	1.00	48.67
10	ATOM	393	CZ	ARG	A	82	43.059	52.618	28.050	1.00	48.74
	ATOM	394	NH1	ARG	A	82	42.523	51.816	27.139	1.00	49.38
	ATOM	395	NH2	ARG	A	82	43.999	52.153	28.859	1.00	50.09
	ATOM	396	С	ARG	Α	82	39.912	52.836	23.853	1.00	28.48
	ATOM	397	0	ARG	Α	82	38.738	53.064	24.133	1.00	29.58
15	ATOM	398	N	VAL	A	83	40.408	51.609	23.729	1.00	28.50
	ATOM	399	CA	VAL	A	83	39.604	50.406	23.930	1.00	28.91
	ATOM	400	СВ	VAL	A	83	38.780	50.041	22.673	1.00	29.46
	ATOM	401	CG1	VAL	A	83	37.530	50.896	22.597	1.00	31.26
	ATOM	402	CG2	VAL	A	83	39.633	50.220	21.423	1.00	25.10
20	ATOM	403	С	VAL	A	83	40.493	49.216	24.245	1.00	29.96
	ATOM	404	0	VAL	A	83	41.710	49.284	24.086	1.00	29.44
	MOTA	405	N	LEU	A	84	39.873	48.124	24.688	1.00	31.71
	ATOM	406	CA	LEU	Α	84	40.596	46.896	25.005	1.00	32.74
	ATOM	407	СВ	LEU	A	84	41.132	46.263	23.712	1.00	31.47
25	ATOM	408	CG	LEU	A	84	40.080	46.012	22.622	1.00	31.62
	ATOM	409	CD1	LEU	A	84	40.753	45.558	21.343	1.00	31.18
	MOTA	410	CD2	LEU	A	84	39.079	44.976	23.103	1.00	27.96
	ATOM	411	С	LEU	A	84	41.752	47.136	25.973	1.00	33.44
	MOTA	412	0	LEU	Α	84	42.748	46.413	25.946	1.00	35.00
30	ATOM	413	N	GLY	A	85	41.613	48.151	26.824		33.39
	ATOM	414	CA	GLY		85	42.654	48.466	27.790		31.80
	ATOM	415	С	GLY	A	85	43.896	49.059	27.148		31.85
	ATOM	416	0	GLY	Α	85	44.998	48.962	27.694	1.00	30.17
	MOTA	417	N	HIS		86	43.718	49.683	25.988		31.24
35	ATOM	418	CA	HIS		86	44.836	50.281	25.271		31.52
	ATOM	419	СВ	HIS		86	45.423	49.271	24.275		33.75
	MOTA	420	CG	HIS	A	86	45.969	48.034	24.915	1.00	36.55

	ATOM	421	CD2	HIS	A	86	45.508	46.760	24.931	1.00	37.53
	MOTA	422	ND1	HIS	A	86	47.121	48.033	25.672	1.00	37.68
	MOTA	423	CE1	HIS	A	86	47.346	46.814	26.128	1.00	37.36
	MOTA	424	NE2	HIS	A	86	46.381	46.022	25.693	1.00	39.46
5	MOTA	425	С	HIS	A	86	44.453	51.546	24.511	1.00	30.30
	MOTA	426	0	HIS	A	86	43.280	51.835	24.280	1.00	29.95
	ATOM	427	N	LYS	A	87	45.471	52.297	24.122	1.00	29.57
	ATOM	428	CA	LYS	Α	87	45.272	53.512	23.357	1.00	28.75
	ATOM	429	СВ	LYS	A	87	46.130	54.643	23.928	1.00	31.29
10	ATOM	430	CG	LYS	Α	87	46.065	55.930	23.131	1.00	36.25
	ATOM	431	CD	LYS	A	87	46.998	56.986	23.704	1.00	39.73
	MOTA	432	CE	LYS	Α	87	48.452	56.557	23.603	1.00	41.38
	MOTA	433	NZ	LYS	Α	87	49.372	57.604	24.134	1.00	43.32
	MOTA	434	С	LYS	Α	87	45.710	53.199	21.931	1.00	26.30
15	ATOM	435	0	LYS	Α	87	46.724	52.525	21.724	1.00	24.62
	ATOM	436	N	PHE	A	88	44.928	53.657	20.958	1.00	22.40
	ATOM	437	CA	PHE	A	88	45.251	53.453	19.549	1.00	21.04
	ATOM	438	СВ	PHE	A	88	44.151	52.648	18.845	1.00	17.91
	ATOM	439	CG	PHE	Α	88	43.990	51.239	19.358	1.00	16.58
20	ATOM	440	CD1	PHE	Α	88	43.489	50.995	20.628	1.00	15.22
	ATOM	441	CD2	PHE	Α	88	44.321	50.157	18.555	1.00	13.45
	ATOM	442	CE1	PHE	Α	88	43.317	49.703	21.087	1.00	15.04
	ATOM	443	CE2	PHE	A	88	44.153	48.866	19.007	1.00	13.65
	ATOM	444	CZ	PHE	A	88	43.650	48.636	20.275	1.00	15.42
25	ATOM	445	С	PHE	A	88	45.350	54.841	18.917	1.00	21.32
	ATOM	446	0	PHE	A	88	44.363	55.578	18.900	1.00	21.11
	ATOM	447	N	ARG	A	89	46.524	55.203	18.399	1.00	21.70
	MOTA	448	CA	ARG	A	89	46.681	56.526	17.797	1.00	23.91
	MOTA	449	СВ	ARG	A	89	48.142	56.803	17.422	1.00	27.51
30	ATOM	450	CG	ARG	A	89	48.735	55.905	16.369	1.00	34.45
50	ATOM	451	CD	ARG	A	89	50.095	56.441	15.949	1.00	39.63
	ATOM	452	NE	ARG	A	89	50.942	56.726	17.103	1.00	43.01
	ATOM	453	CZ	ARG	A	89	52.223	57.073	17.025	1.00	45.72
	MOTA	454	NH1	ARG	A	89	52.814	57.180	15.840	1.00	45.78
35	MOTA	455	NH2	ARG	A	89	52.915	57.309	18.133	1.00	46.24
	MOTA	456	С	ARG	A	89	45.764	56.722	16.593	1.00	21.40
	ATOM	457	0	ARG	A	89	45.350	57.839	16.308	1.00	20.59

	ATOM	458	N	ASN	Α	90	45.467	55.643	15.877	1.00	19.60
	ATOM	459	CA	ASN	Α	90	44.525	55.708	14.759	1.00	19.44
	ATOM	460	СВ	ASN	Α	90	45.218	56.045	13.418	1.00	17.27
	ATOM	461	CG	ASN	А	90	45.918	54.870	12.782	1.00	17.47
5	ATOM	462	OD1	ASN	Α	90	45.286	53.885	12.404	1.00	18.85
	ATOM	463	ND2	ASN	A	90	47.236	54.977	12.635	1.00	17.61
	MOTA	464	С	ASN	Α	90	43.814	54.357	14.762	1.00	19.17
	MOTA	465	0	ASN	A	90	44.377	53.351	15.199	1.00	20.42
	ATOM	466	N	PRO	A	91	42.555	54.325	14.307	1.00	17.95
10	ATOM	467	CD	PRO	A	91	41.802	55.495	13.815	1.00	18.80
	ATOM	468	CA	PRO	A	91	41.721	53.123	14.259	1.00	17.08
	ATOM	469	СВ	PRO	A	91	40.319	53.708	14.339	1.00	17.82
	MOTA	470	CG	PRO	A	91	40.444	54.896	13.443	1.00	15.11
	MOTA	471	С	PRO	A	91	41.872	52.197	13.059	1.00	17.57
15	ATOM	472	0	PRO	A	91	41.071	51.277	12.889	1.00	17.10
	MOTA	473	N	VAL	A	92	42.889	52.425	12.236	1.00	17.30
	MOTA	474	CA	VAL	A	92	43.086	51.607	11.040	1.00	17.64
	ATOM	475	СВ	VAL	Α	92	43.391	52.504	9.816	1.00	17.72
	ATOM	476	CG1	VAL	A	92	43.497	51.666	8.555	1.00	14.42
20	ATOM	477	CG2	VAL	A	92	42.310	53.560	9.678	1.00	16.61
	ATOM	478	С	VAL	A	92	44.206	50.588	11.201	1.00	18.02
	ATOM	479	0	VAL	A	92	45.377	50.948	11.280	1.00	18.29
	ATOM	480	N	GLY	A	93	43.840	49.311	11.242	1.00	17.60
	ATOM	481	CA	GLY	A	93	44.839	48.274	11.394	1.00	16.36
25	ATOM	482	С	GLY	A	93	44.907	47.332	10.212	1.00	16.58
	ATOM	483	0	GLY	Α	93	44.043	47.352	9.336	1.00	17.37
	ATOM	484	N	ILE	Α	94	45.956	46.517	10.174	1.00	16.03
	ATOM	485	CA	ILE	A	94	46.123	45.541	9.106		14.28
	ATOM	486	CB	ILE	A	94	47.621		8.772		15.21
30	ATOM	487	CG2	ILE	A	94	48.409	45.008	10.035		14.14
	MOTA	488		ILE		94	47.766	44.197	7.740		15.27
	ATOM	489	CD1	ILE		94	47.288	44.580	6.347		15.14
	ATOM	490	С	ILE	A	94	45.494	44.236	9.595		14.89
2.5	ATOM	491	0	ILE		94	45.868	43.707	10.639		14.26
35	ATOM	492	N	ALA		95	44.521	43.729	8.847		14.41
	ATOM	493	CA	ALA		95	43.837	42.501	9.228		14.87
	ATOM	494	CB	ALA	А	95	42.665	42.244	8.282	1.00	14.00

	ATOM	495	С	ALA	A	95	44.770	41.292	9.248	1.00	14.88
	ATOM	496	0	ALA	Α	95	45.877	41.338	8.715	1.00	13.34
	ATOM	497	N	ALA	Α	96	44.314	40.215	9.878	1.00	14.32
	MOTA	498	CA	ALA	Α	96	45.092	38.989	9.952	1.00	17.35
5	ATOM	499	СВ	ALA	Α	96	44.392	37.976	10.856	1.00	16.42
	ATOM	500	С	ALA	Α	96	45.240	38.419	8.546	1.00	17.48
	ATOM	501	0	ALA	Α	96	44.386	38.641	7.686	1.00	19.61
	MOTA	502	N	GLY	A	97	46.326	37.691	8.309	1.00	18.20
	MOTA	503	CA	GLY	A	97	46.534	37.106	6.997	1.00	16.78
10	MOTA	504	С	GLY	A	97	47.697	37.681	6.214	1.00	15.75
	MOTA	505	0	GLY	A	97	48.411	36.937	5.551	1.00	16.02
	MOTA	506	N	PHE	A	98	47.894	38.995	6.266	1.00	15.54
	ATOM	507	CA	PHE	A	98	49.006	39.586	5.533	1.00	16.58
	ATOM	508	СВ	PHE	A	98	48.955	41.115	5.550	1.00	16.83
15	ATOM	509	CG	PHE	A	98	50.097	41.747	4.815	1.00	18.26
	ATOM	510	CD1	PHE	A	98	50.166	41.680	3.429	1.00	19.90
	ATOM	511	CD2	PHE	A	98	51.139	42.346	5.505	1.00	19.00
	MOTA	512	CE1	PHE	A	98	51.254	42.193	2.748	1.00	19.02
	ATOM	513	CE2	PHE	A	98	52.233	42.863	4.831	1.00	18.84
20	MOTA	514	CZ	PHE	A	98	52.291	42.786	3.451	1.00	20.99
	ATOM	515	С	PHE	A	98	50.315	39.127	6.164	1.00	15.86
	ATOM	516	0	PHE	A	98	51.200	38.620	5.482	1.00	15.58
	MOTA	517	N	ASP	A	99	50.433	39.322	7.472	1.00	16.10
	ATOM	518	CA	ASP	A	99	51.626	38.905	8.203	1.00	15.76
25	ATOM	519	СВ	ASP	A	99	52.158	40.070	9.040	1.00	15.13
	ATOM	520	CG	ASP	A	99	53.540	39.802	9.610	1.00	18.19
	MOTA	521	OD1	ASP	A	99	54.167	38.794	9.224	1.00	17.29
	ATOM	522	OD2	ASP	A	99	54.006	40.612	10.439	1.00	19.53
	MOTA	523	С	ASP	A	99	51.228	37.729	9.101	1.00	16.25
30	ATOM	524	0	ASP	A	99	50.995	37.894	10.300	1.00	14.46
	MOTA	525	N	LYS	A	100	51.134	36.546	8.499	1.00	16.78
	MOTA	526	CA	LYS	A	100	50.750	35.335	9.215	1.00	17.78
	ATOM	527	СВ	LYS	A	100	50.484	34.194	8.222	1.00	19.95
	MOTA	528	CG	LYS	A	100	49.149	34.250	7.478	1.00	21.28
35	MOTA	529	CD	LYS	A	100	49.084	33.139	6.426	1.00	24.43
	ATOM	530	CE	LYS	A	100	47.727	33.060	5.714	1.00	25.79
	ATOM	531	NZ	LYS	A	100	46.644	32.486	6.578	1.00	23.81

	ATOM	532	С	LYS	Α	100	51.767	34.849	10.247	1.00	18.87
	ATOM	533	0	LYS	Α	100	51.389	34.269	11.267	1.00	19.75
	ATOM	534	N	HIS	A	101	53.050	35.083	9.993	1.00	18.22
	ATOM	535	CA	HIS	Α	101	54.088	34.601	10.902	1.00	20.19
5	ATOM	536	СВ	HIS	A	101	55.109	33.779	10.106	1.00	17.78
	ATOM	537	CG	HIS	A	101	54.507	33.029	8.959	1.00	18.92
	ATOM	538	CD2	HIS	A	101	54.760	33.081	7.629	1.00	17.74
	ATOM	539	ND1	HIS	A	101	53.491	32.110	9.120	1.00	18.19
	ATOM	540	CE1	HIS	Α	101	53.145	31.629	7.938	1.00	17.82
10	ATOM	541	NE2	HIS	Α	101	53.899	32.202	7.017	1.00	17.25
	ATOM	542	С	HIS	Α	101	54.818	35.677	11.705	1.00	20.40
	ATOM	543	0	HIS	A	101	55.859	35.403	12.299	1.00	22.15
	ATOM	544	N	GLY	A	102	54.277	36.892	11.718	1.00	21.38
	ATOM	545	CA	GLY	A	102	54.896	37.979	12.460	1.00	21.06
15	ATOM	546	С	GLY	Α	102	56.275	38.379	11.969	1.00	20.98
	ATOM	547	0	GLY	A	102	57.179	38.593	12.768	1.00	22.33
	ATOM	548	N	GLU	A	103	56.435	38.503	10.656	1.00	22.97
	ATOM	549	CA	GLU	A	103	57.723	38.867	10.062	1.00	22.35
	ATOM	550	CB	GLU	Α	103	57.952	38.059	8.787	1.00	21.09
20	ATOM	551	CG	GLU	Α	103	58.004	36.564	8.992	1.00	24.78
	ATOM	552	CD	GLU	Α	103	58.049	35.808	7.683	1.00	26.81
	ATOM	553	OE1	GLU	Α	103	57.014	35.763	6.980	1.00	26.94
	MOTA	554	OE2	GLU	A	103	59.125	35.266	7.353		29.11
	ATOM	555	С	GLU	A	103	57.883	40.342	9.713	1.00	21.88
25	ATOM	556	0	GLU	Α	103	58.999	40.806	9.500	1.00	22.98
	ATOM	557	N	ALA	A	104	56.784	41.084	9.651		21.38
	ATOM	558	CA	ALA			56.870	42.491	9.269		20.31
	ATOM	559	СВ	ALA			56.378	42.650	7.841		17.37
20	ATOM	560	С	ALA			56.116	43.451	10.175		19.53
30	MOTA	561	0	ALA			55.704	44.523	9.738		18.99
	ATOM	562	N	VAL			55.945	43.079	11.436		19.90
	ATOM	563	CA	VAL			55.216	43.924	12.375		19.69
	ATOM	564	CB	VAL			55.345	43.387	13.808		19.43
35	ATOM	565		VAL			54.673	44.339	14.779		17.75
35	ATOM	566		VAL			54.725	41.997	13.892		17.02 20.42
	ATOM	567	С	VAL			55.660	45.386	12.361		
	ATOM	568	0	VAL	А	103	54.831	46.293	12.260	1.00	21.86

	ATOM /	569	N	ASP	Α	106	56.965	45.615	12.454	1.00	18.26
	ATOM	570	CA	ASP	Α	106	57.489	46.975	12.472	1.00	19.05
	ATOM	571	СВ	ASP	A	106	58.962	46.960	12.888	1.00	18.62
	MOTA	572	CG	ASP	Α	106	59.144	46.470	14.308	1.00	19.89
5	MOTA	573	OD1	ASP	A	106	59.732	45.383	14.502	1.00	21.15
	ATOM	574	OD2	ASP	Α	106	58.677	47.171	15.231	1.00	19.02
	ATOM	575	С	ASP	Α	106	57.315	47.721	11.158	1.00	18.20
	MOTA	576	0	ASP	A	106	57.043	48.924	11.154	1.00	18.32
	ATOM	577	N	GLY	Α	107	57.474	47.013	10.048	1.00	15.97
10	ATOM	578	CA	GLY	Α	107	57.300	47.645	8.756	1.00	16.89
	ATOM	579	С	GLY	Α	107	55.847	48.039	8.558	1.00	18.68
	ATOM	580	0	GLY	Α	107	55.542	48.944	7.781	1.00	20.07
	ATOM	581	N	LEU	Α	108	54.945	47.361	9.265	1.00	17.60
	ATOM	582	CA	LEU	A	108	53.519	47.655	9.163	1.00	17.75
15	ATOM	583	CB	LEU	A	108	52.694	46.456	9.649	1.00	18.20
	ATOM	584	CG	LEU	A	108	52.741	45.283	8.662	1.00	17.32
	ATOM	585	CD1	LEU	Α	108	52.194	44.020	9.297	1.00	15.87
	ATOM	586	CD2	LEU	Α	108	51.954	45.655	7.415	1.00	18.07
	MOTA	587	С	LEU	Α	108	53.150	48.923	9.931	1.00	17.52
20	ATOM	588	0	LEU	A	108	52.326	49.706	9.465	1.00	17.59
	MOTA	589	N	TYR	A	109	53.747	49.132	11.103	1.00	17.99
	ATOM	590	CA	TYR	A	109	53.475	50.356	11.863	1.00	19.57
	ATOM	591	СВ	TYR	Ą	109	54.181	50.346	13.231	1.00	17.67
	ATOM	592	CG	TYR	A	109	53.572	49.412	14.257	1.00	15.68
25	MOTA	593	CD1	TYR	A	109	54.319	48.386	14.818	1.00	15.06
	ATOM	594	CE1	TYR	A	109	53.761	47.514	15.739		16.14
	ATOM	595	CD2	TYR	A	109	52.244	49.546	14.649	1.00	14.34
	ATOM	596	CE2	TYR	Α	109	51.677	48.681	15.571	1.00	14.45
	ATOM	597	CZ	TYR	Α	109	52.439	47.665	16.110	1.00	16.08
30	ATOM	598	ОН	TYR	Α	109	51.877	46.785	17.006	1.00	15.83
	MOTA	599	С	TYR	A	109	54.017	51.522	11.039	1.00	20.38
	ATOM	600	0	TYR	A	109	53.438	52.610	11.014	1.00	20.47
	ATOM	601	N	LYS	A	110	55.138	51.285	10.365		20.32
	ATOM	602	CA	LYS	A	110	55.761	52.310	9.542		22.38
35	ATOM	603	СВ			110	57.145	51.851	9.077		22.88
	ATOM	604	CG			110	57.824	52.849	8.162		26.65
	MOTA	605	CD	LYS	A	110	59.186	52.374	7.706	1.00	30.71

	MOTA	606	CE	LYS A	110	59.848	53.417	6.812	1.00 3	33.71
	ATOM	607	NZ	LYS A	110	61.216	53.007	6.386	1.00 3	37.17
	MOTA	608	С	LYS A	110	54.900	52.651	8.327	1.00 2	22.82
	ATOM	609	0	LYS A	110	55.035	53.729	7.742	1.00 2	21.86
5	ATOM	610	N	MET A	111	54.020	51.726	7.953	1.00 2	22.62
	ATOM	611	CA	MET A	111	53.134	51.921	6.810	1.00 2	21.33
	ATOM	612	СВ	MET A	111	52.596	50.568	6.330	1.00 2	22.37
	MOTA	613	CG	MET A	111	52.116	50.555	4.883	1.00 2	23.26
	ATOM	614	SD	MET A	111	51.647	48.908	4.295	1.00 2	22.91
10	ATOM	615	CE	MET A	111	53.239	48.159	4.039	1.00 2	22.34
	MOTA	616	С	MET A	111	51.979	52.849	7.198	1.00 2	21.50
	ATOM	617	0	MET A	111	51.237	53.332	6.341	1.00 2	21.61
	ATOM	618	N	GLY A	112	51.829	53.095	8.497	1.00 2	20.35
	ATOM	619	CA	GLY A	112	50.774	53.981	8.954	1.00	18.20
15	ATOM	620	С	GLY A	112	49.652	53.346	9.754	1.00	17.70
	ATOM	621	0	GLY A	112	48.757	54.049	10.222	1.00	18.34
	ATOM	622	N	PHE A	113	49.687	52.027	9.922	1.00	15.93
	ATOM	623	CA	PHE A	113	48.640	51.340	10.676	1.00	15.61
	MOTA	624	СВ	PHE A	113	48.761	49.824	10.503	1.00	15.10
20	MOTA	625	CG	PHE A	113	48.390	49.340	9.132	1.00	15.46
	MOTA	626	CD1	PHE A	113	49.361	48.889	8.254	1.00	15.32
	MOTA	627	CD2	PHE A	113	47.064	49.328	8.724	1.00	15.07
	MOTA	628	CE1	PHE A	113	49.017	48.428	6.991	1.00	17.40
	MOTA	629	CE2	PHE A	113	46.710	48.870	7.464	1.00	15.20
25	MOTA	630	CZ	PHE A	113	47.687	48.418	6.596	1.00	16.29
	ATOM	631	С	PHE A	113	48.664	51.686	12.157	1.00	
	ATOM	632	0	PHE A	113	49.726	51.750	12.768		
	ATOM	633	N	GLY A	114	47.482	51.908	12.726	1.00	13.85
	ATOM	634	CA	GLY A	114	47.372	52.246	14.136	1.00	13.80
30	ATOM	635	С	GLY A	114	47.582	51.040	15.032	1.00	15.27
	ATOM	636	0	GLY A	114	47.808	51.175	16.232	1.00	
	ATOM	637	N	PHE A	115	47.479	49.850	14.452	1.00	
	MOTA	638	CA	PHE A		47.692	48.623	15.199	1.00	
	ATOM	639	СВ	PHE A		46.548	48.373	16.197	1.00	
35	ATOM	640	CG	PHE A		45.216	48.075	15.568	1.00	
	ATOM	641		PHE A		44.723	46.781	15.547	1.00	
	ATOM	642	CD2	PHE A	115	44.431	49.096	15.050	1.00	14.85

	ATOM	643	CE1	PHE A	115	43.468	46.505	15.026	1.00 13.	14
	ATOM	644	CE2	PHE A	115	43.174	48.828	14.526	1.00 14.9	58
	ATOM	645	CZ	PHE A	115	42.694	47.528	14.516	1.00 14.3	33
	MOTA	646	С	PHE A	115	47.865	47.457	14.240	1.00 15.	74
5	ATOM	647	0	PHE A	115	47.335	47.467	13.132	1.00 15.0	07
	MOTA	648	N	VAL A	116	48.636	46.463	14.668	1.00 16.	41
	ATOM	649	CA	VAL A	116	48.926	45.301	13.844	1.00 15.0	02
	MOTA	650	СВ	VAL A	116	50.460	45.168	13.617	1.00 15.	50
	MOTA	651	CG1	VAL A	116	50.778	43.903	12.810	1.00 11.	14
10	MOTA	652	CG2	VAL A	116	50.992	46.415	12.911	1.00 13.	00
	ATOM	653	С	VAL A	116	48.422	43.998	14.450	1.00 16.	38
	ATOM	654	0	VAL A	116	48.447	43.815	15.669	1.00 16.	18
	ATOM	655	N	GLU A	117	47.957	43.100	13.585	1.00 16.	09
	ATOM	656	CA	GLU A	117	47.487	41.786	14.007	1.00 17.	47
15	MOTA	657	СВ	GLU A	117	45.975	41.659	13.838	1.00 15.	90
	ATOM	658	CG	GLU A	117	45.431	40.316	14.303	1.00 16.	28
	ATOM	659	CD	GLU A	117	43.919	40.264	14.271	1.00 17.	25
	ATOM	660	OE1	GLU A	117	43.365	39.320	13.664	1.00 15.	76
	ATOM	661	OE2	GLU A	117	43.291	41.171	14.856	1.00 14.	09
20	ATOM	662	С	GLU A	117	48.188	40.778	13.109	1.00 17.	93
	ATOM	663	0	GLU A	117	48.071	40.850	11.886	1.00 19.	54
	ATOM	664	N	ILE A	118	48.921	39.840	13.697	1.00 17.	75
	ATOM	665	CA	ILE A	118	49.626	38.874	12.873	1.00 20.	53
	ATOM	666	СВ	ILE A	118	50.982	38.474	13.503	1.00 18.	57
25	MOTA	667	CG2	ILE A	118	51.865	39.707	13.612	1.00 20.	32
	ATOM	668	CG1	ILE A	118	50.790	37.870	14.887	1.00 18.	39
	MOTA	669	CD1	ILE A	118	52.086	37.427	15.508	1.00 18.	60
	MOTA	670	С	ILE A	118	48.782	37.649	12.554	1.00 21.	57
	ATOM	671	0	ILE A	118	48.186	37.040	13.441	1.00 19.	31
30	ATOM	672	N	GLY A	119	48.730	37.343	11.255	1.00 26.	73
	ATOM	673	CA	GLY A	119	47.954	36.242	10.701	1.00 23.	17
	ATOM	674	С	GLY A	119	47.786	35.075	11.630	1.00 24.	76
	ATOM	675	0	GLY A	119	48.553	34.929	12.584	1.00 25.	45
	ATOM	676	N	SER A	120	46.791	34.236	11.348	1.00 22.	80
35	ATOM	677	CA	SER A	120	46.528	33.078	12.191	1.00 20.	62
	ATOM	678	СВ	SER A	120	45.364		11.634	1.00 20.	16
	ATOM	679	OG	SER A	120	44.124	32.899	11.883	1.00 19.	34

	ATOM	680	С	SER	Α	120	47.746	32.192	12.354	1.00	19.19
	ATOM	681	0	SER	A	120	48.446	31.888	11.389	1.00	19.88
	ATOM	682	N	VAL	Α	121	47.990	31.786	13.593	1.00	18.69
	ATOM	683	CA	VAL	Α	121	49.112	30.922	13.930	1.00	15.40
5	ATOM	684	СВ	VAL	Α	121	50.010	31.571	15.016	1.00	15.21
	ATOM	685	CG1	VAL	Α	121	51.319	30.784	15.169	1.00	9.68
	ATOM	686	CG2	VAL	Α	121	50.281	33.032	14.663	1.00	12.28
	MOTA	687	С	VAL	A	121	48.534	29.624	14.485	1.00	16.35
	ATOM	688	0	VAL	A	121	47.607	29.646	15.300	1.00	15.33
10	MOTA	689	N	THR	A	122	49.067	28.497	14.028	1.00	15.14
	ATOM	690	CA	THR	A	122	48.617	27.194	14.495	1.00	16.81
	MOTA	691	СВ	THR	A	122	48.447	26.210	13.308	1.00	16.39
	MOTA	692	OG1	THR	A	122	49.671	26.118	12.572	1.00	16.99
	MOTA	693	CG2	THR	A	122	47.351	26.701	12.372	1.00	16.20
15	ATOM	694	С	THR	A	122	49.668	26.680	15.480	1.00	16.05
	ATOM	695	0	THR	Α	122	50.811	27.120	15.446	1.00	17.14
	ATOM	696	N	PRO	Α	123	49.289	25.768	16.390	1.00	17.33
	ATOM	697	CD	PRO	Α	123	47.925	25.295	16.685	1.00	16.88
	ATOM	698	CA	PRO	A	123	50.249	25.234	17.369	1.00	18.81
20	MOTA	699	СВ	PRO	A	123	49.423	24.203	18.128	1.00	17.77
	ATOM	700	CG	PRO	A	123	48.054	24.837	18.126	1.00	17.60
	MOTA	701	С	PRO	A	123	51.500	24.634	16.732	1.00	20.92
	MOTA	702	0	PRO	A	123	52.625	25.008	17.074	1.00	21.41
	ATOM	703	N	LYS	A	124	51.300	23.700	15.810	1.00	21.70
25	ATOM	704	CA	LYS	Α	124	52.413	23.074	15.113	1.00	23.21
	ATOM	705	СВ	LYS	Α	124	52.190	21.561	14.967	1.00	26.03
	MOTA	706	CG	LYS	A	124	51.885	20.840	16.270	1.00	30.90
	MOTA	707	CD	LYS	A	124	52.954	21.122	17.314	1.00	36.86
	ATOM	708	CE	LYS	A	124	52.546	20.585	18.679	1.00	41.85
30	ATOM	709	NZ	LYS	A	124	53.576	20.858	19.723	1.00	43.99
	ATOM	710	С	LYS	Α	124	52.482	23.701	13.732	1.00	23.17
	ATOM	711	0	LYS	A	124	51.500	24.267	13.245		23.15
	ATOM	712	N	PRO	A	125	53.651	23.629	13.087	1.00	21.56
	ATOM	713	CD	PRO	A	125	54.955	23.187	13.617		21.14
35	ATOM	714	CA	PRO	A	125	53.785	24.204	11.748		20.21
	ATOM	715	СВ	PRO	Α	125	55.288	24.096	11.470		20.65
	ATOM	716	CG	PRO	Α	125	55.917	24.036	12.842	1.00	19.52

	ATOM	717	С	PRO	Α	125	52.972	23.351	10.766	1.00	19.97
	ATOM	718	0	PRO	Α	125	52.731	22.172	11.016	1.00	18.81
	ATOM	719	N	GLN	Α	126	52.539	23.951	9.664	1.00	19.59
	ATOM	720	CA	GLN	Α	126	51.802	23.224	8.634	1.00	20.28
5	ATOM	721	СВ	GLN	A	126	50.354	22.921	9.064	1.00	21.32
	ATOM	722	CG	GLN	Α	126	49.449	24.115	9.324	1.00	20.84
	ATOM	723	CD	GLN	A	126 .	47.998	23.694	9.555	1.00	22.01
	MOTA	724	OE1	GLN	A	126	47.718	22.753	10.309	1.00	19.72
	ATOM	725	NE2	GLN	A	126	47.070	24.398	8.914	1.00	20.71
10	ATOM	726	С	GLN	Α	126	51.840	24.032	7.343	1.00	20.63
	MOTA	727	0	GLN	Α	126	51.800	25.260	7.366	1.00	20.52
	ATOM	728	N	GLU	Α	127	51.932	23.332	6.220	1.00	23.02
	MOTA	729	CA	GLU	Α	127	52.034	23.978	4.917	1.00	26.27
	ATOM	730	СВ	GLU	A	127	52.620	22.989	3.903	1.00	30.03
15	MOTA	731	CG	GLU	A	127	53.967	22.418	4.329	1.00	37.96
	ATOM	732	CD	GLÜ	A	127	54.686	21.687	3.208	1.00	43.29
	MOTA	733	OE1	GLU	Α	127	54.069	20.799	2.577	1.00	46.06
	ATOM	734	OE2	GLU	A	127	55.873	21.998	2.963	1.00	45.91
	ATOM	735	С	GLU	Α	127	50.764	24.596	4.345	1.00	24.39
20	MOTA	736	0	GLU	A	127	50.839	25.493	3.508	1.00	22.88
	ATOM	737	N	GLY	Α	128	49.604	24.131	4.791	1.00	23.27
	ATOM	738	CA	GLY	A	128	48.365	24.667	4.263	1.00	23.54
	ATOM	739	С	GLY	A	128	48.014	23.952	2.971	1.00	25.46
	ATOM	740	0	GLY	A	128	48.638	22.943	2.631	1.00	24.72
25	ATOM	741	N	ASN	A	129	47.021	24.462	2.246	1.00	25.50
	ATOM	742	CA	ASN	A	129	46.608	23.841	0.992	1.00	25.75
	ATOM	743	CB	ASN	A	129	45.268	24.412	0.524	1.00	24.81
	ATOM	744	CG	ASN	A	129	44.126	24.050	1.447	1.00	25.93
	ATOM	745	OD1	ASN	Α	129	44.056	22.927	1.948	1.00	26.55
30	ATOM	746	ND2	ASN	A	129	43.214	24.993	1.666	1.00	21.27
	MOTA	747	С	ASN	A	129	47.642	24.024	-0.113	1.00	26.24
	ATOM	748	0	ASN	A	129	48.488	24.915	-0.050	1.00	25.50
	ATOM	749	N	PRO	Α	130	47.587	23.165	-1.140	1.00	26.81
	ATOM	750	CD	PRO	A	130	46.723	21.973	-1.221	1.00	25.39
35	ATOM	751	CA	PRO	A	130	48.515	23.226	-2.274	1.00	26.99
	ATOM	752	СВ	PRO	A	130	48.284	21.887	-2.978	1.00	26.46
	ATOM	753	CG	PRO	A	130	46.849	21.581	-2.671	1.00	25.27

	ATOM	754	С	PRO .	A	130	48.227	24.424	-3.180	1.00	28.67
	ATOM	755	0	PRO .	A	130	47.087	24.880	-3.263	1.00	29.58
	ATOM	756	N	ARG	A	131	49.262	24.931	-3.846	1.00	29.41
	ATOM	757	CA	ARG .	A	131	49.124	26.075	-4.746	1.00	31.07
5	ATOM	758	СВ	ARG	A	131	50.482	26.732	-4.998	1.00	32.70
	ATOM	759	CG	ARG .	A	131	51.180	27.354	-3.797	1.00	34.79
	ATOM	760	CD	ARG .	A	131	52.260	28.298	-4.315	1.00	40.39
	MOTA	761	NE	ARG	A	131	53.147	28.840	-3.287	1.00	45.17
	ATOM	762	CZ	ARG .	A	131	54.017	29.827	-3.508	1.00	45.61
10	ATOM	763	NH1	ARG .	A	131	54.107	30.376	-4.714	1.00	44.09
	ATOM	764	NH2	ARG	A	131	54.802	30.261	-2.529	1.00	45.19
	ATOM	765	С	ARG .	A	131	48.543	25.652	-6.096	1.00	32.15
	ATOM	766	0	ARG	A	131	48.760	24.530	-6.548	1.00	33.75
	ATOM	767	N	PRO	A	132	47.800	26.552	-6.764	1.00	30.94
15	ATOM	768	CD	PRO	A	132	47.331	26.344	-8.145	1.00	31.60
	ATOM	769	CA	PRO	A	132	47.488	27.913	-6.316	1.00	28.61
	ATOM	770	СВ	PRO	A	132	47.078	28.607	-7.612	1.00	29.31
	MOTA	771	CG	PRO	A	132	46.386	27.513	-8.350	1.00	30.17
	MOTA	772	С	PRO	A	132	46.375	27.914	-5.268	1.00	25.00
20	ATOM	773	0	PRO	A	132	45.484	27.068	-5.296	1.00	23.59
	ATOM	774	N	ARG	A	133	46.431	28.869	-4.347	1.00	21.85
	ATOM	775	CA	ARG	A	133	45.438	28.952	-3.290	1.00	19.55
	ATOM	776	СВ	ARG	A	133	46.013	28.323	-2.017	1.00	21.24
	ATOM	777	CG	ARG	A	133	47.422	28.794	-1.688	1.00	18.90
25	ATOM	778	CD	ARG	A	133	48.095	27.880	-0.678	1.00	16.85
	ATOM	779	NE	ARG	A	133	49.426	28.373	-0.334	1.00	17.49
	ATOM	780	CZ	ARG	A	133	50.196	27.856	0.617	1.00	15.57
	ATOM	781	NH1	ARG	A		51.389	28.377			13.29
	ATOM	782	NH2	ARG	A	133	49.775	26.818			15.73
30	ATOM	783	С	ARG	A	133	44.954	30.376			19.32
	ATOM	784	0	ARG			44.233	30.627	-2.056		19.05
	ATOM	785	N	VAL			45.357	31.307			18.51
	ATOM	786	CA	VAL			44.937	32.700	-3.763		18.75
2.5	ATOM	787	CB	VAL			46.058	33.613	-3.222		18.82
35	ATOM	788		VAL			45.451	34.900			15.57
	ATOM	789		VAL			46.848	32.896			18.29
	ATOM	790	С	VAL	A	134	44.600	33.157	-5.173	1.00	18.69

	MOTA	791	0	VAL	A	134	45.294	32.800	-6.119	1.00	20.02
	MOTA	792	N	PHE	A	135	43.542	33.944	-5.320	1.00	19.00
	MOTA	793	CA	PHE	A	135	43.146	34.398	-6.643	1.00	17.47
	ATOM	794	СВ	PHE	A	135	42.059	33.476	-7.198	1.00	17.16
5	ATOM	795	CG	PHE	A	135	42.387	32.011	-7.067	1.00	17.50
	ATOM	796	CD1	PHE	A	135	42.102	31.325	-5.894	1.00	16.24
	ATOM	797	CD2	PHE	A	135	43.029	31.334	-8.097	1.00	18.52
	ATOM	798	CE1	PHE	A	135	42.453	29.988	-5.749	1.00	17.65
	ATOM	799	CE2	PHE	A	135	43.384	29.998	-7.960	1.00	16.80
10	ATOM	800	CZ	PHE	A	135	43.096	29.325	-6.784	1.00	16.83
	ATOM	801	С	PHE	A	135	42.664	35.841	-6.657	1.00	18.35
	ATOM	802	0	PHE	A	135	41.996	36.303	-5.729	1.00	17.26
	MOTA	803	N	ARG	A	136	43.026	36.554	-7.717	1.00	17.14
	ATOM	804	CA	ARG	A	136	42.628	37.939	-7.874	1.00	17.83
15	ATOM	805	СВ	ARG	A	136	43.726	38.754	-8.567	1.00	19.09
	ATOM	806	CG	ARG	A	136	45.089	38.802	-7.892	1.00	21.68
	ATOM	807	CD	ARG	A	136	45.990	39.767	-8.661	1.00	23.63
	ATOM	808	NE	ARG	A	136	47.345	39.863	-8.121	1.00	29.57
	ATOM	809	CZ	ARG	A	136	48.412	39.256	-8.638	1.00	31.45
20	MOTA	810	NH1	ARG	A	136	49.600	39.408	-8.070	1.00	31.05
	MOTA	811	NH2	ARG	A	136	48.297	38.504	-9.726	1.00	31.93
	MOTA	812	С	ARG	Α	136	41.375	38.029	-8.739	1.00	17.93
	ATOM	813	0	ARG	A	136	41.218	37.266	-9.699	1.00	17.19
	MOTA	814	N	LEU	A	137	40.488	38.953	-8.377	1.00	15.76
25	ATOM	815	CA	LEU	A	137	39.268	39.241	-9.132	1.00	14.78
	MOTA	816	СВ	LEU	A	137	38.006	38.849	-8.359	1.00	15.58
	ATOM	817	CG	LEU	A	137			-8.285	1.00	17.50
	ATOM	818		LEU			38.617		-7.540		17.15
• •	ATOM	819				137					12.95
30	ATOM	820	С	LEU			39.324				15.42
	ATOM	821	0	LEU			38.583		-8.608		14.16
	ATOM	822	N	PRO			40.233		-10.126		15.71
	ATOM	823	CD	PRO			41.193		-10.941		15.13
25	ATOM	824	CA	PRO			40.389		-10.338		16.47
35	ATOM	825	CB	PRO			41.537				15.41
	ATOM	826	CG	PRO			41.515				15.79
	MOTA	827	С	PRO	A	138	39.132	43.456	-10.773	1.00	16.15

	ATOM	828	0	PRO A	138	38.948	44.611	-10.399	1.00	16.79
	ATOM	829	N	GLU A	139	38.263	42.814	-11.545	1.00	16.16
	ATOM	830	CA	GLU A	139	37.037	43.479	-11.981	1.00	17.26
	ATOM	831	СВ	GLU A	139	36.310	42.648	-13.046	1.00	18.03
5	ATOM	832	CG	GLU A	139	37.059	42.477	-14.367	1.00	21.85
	ATOM	833	CD	GLU A	139	38.073	41.340	-14.348	1.00	24.50
	ATOM	834	OE1	GLU A	139	38.713	41.115	-15.397	1.00	27.97
	ATOM	835	OE2	GLU A	139	38.234	40.671	-13.300	1.00	23.28
	ATOM	836	С	GLU A	139	36.083	43.714	-10.807	1.00	17.84
10	MOTA	837	0	GLU A	139	35.157	44.522	-10.902	1.00	17.94
	ATOM	838	N	ASP A	140	36.308	43.008	-9.702	1.00	14.82
	ATOM	839	CA	ASP A	. 140	35.448	43.132	-8.531	1.00	12.95
	ATOM	840	СВ	ASP A	. 140	34.943	41.749	-8.100	1.00	10.76
	ATOM	841	CG	ASP A	. 140	34.317	40.968	-9.245	1.00	13.87
15	ATOM	842	OD1	ASP A	140	33.260	41.395	-9.756	1.00	12.48
	MOTA	843	OD2	ASP A	. 140	34.882	39.922	-9.635	1.00	14.76
	ATOM	844	С	ASP A	. 140	36.187	43.761	-7.362	1.00	13.94
	ATOM	845	0	ASP A	140	35.609	43.956	-6.287	1.00	12.55
	ATOM	846	N	GLN A	141	37.460	44.084	-7.574	1.00	14.25
20	ATOM	847	CA	GLN A	141	38.279	44.639	-6.508	1.00	14.42
	ATOM	848	СВ	GLN A	141	37.791	46.038	-6.125	1.00	15.62
	ATOM	849	CG	GLN A	. 141	38.168	47.096	-7.160	1.00	22.74
	ATOM	850	CD	GLN A	. 141	37.666	48.493	-6.819	1.00	25.08
	ATOM	851	OE1	GLN A	. 141	37.883	48.998	-5.713	1.00	28.72
25	ATOM	852	NE2	GLN A	. 141	37.002	49.130	-7.779	1.00	25.38
	ATOM	853	С	GLN A	. 141	38.157	43.669	-5.336	1.00	14.40
	ATOM	854	0	GLN A	141	37.979	44.067	-4.182	1.00	15.04
	ATOM	855	N	ALA A	142	38.244	42.380	-5.661	1.00	13.51
	ATOM	856	CA	ALA A	142	38.138	41.322	-4.669	1.00	13.56
30	MOTA	857	CB	ALA A	142	36.775	40.644	-4.780	1.00	11.87
	ATOM	858	С	ALA A	142	39.245	40.278	-4.801	1.00	13.69
	MOTA	859	0	ALA A	142	39.996	40.255	-5.779	1.00	12.41
	ATOM	860	N	VAL A	143	39.328	39.414	-3.795	1.00	13.04
	MOTA	861	CA	VAL A	143	40.302	38.337	-3.753	1.00	11.89
35	ATOM	862	СВ	VAL A	. 143	41.527	38.696	-2.852	1.00	13.64
	ATOM	863	CG1	VAL A	143	42.349	37.439	-2.551	1.00	9.11
	MOTA	864	CG2	VAL A	143	42.410	39.735	-3.541	1.00	8.79

	ATOM	865	С	VAL A	143	39.615	37.112	-3.163	1.00 14.15
	ATOM	866	0	VAL A	143	38.687	37.234	-2.364	1.00 16.13
	ATOM	867	N	ILE A	144	40.052	35.933	-3.585	1.00 14.22
	ATOM	868	CA	ILE A	144	39.522	34.685	-3.057	1.00 13.02
5	ATOM	869	СВ	ILE A	144	38.737	33.883	-4.121	1.00 13.56
	ATOM	870	CG2	ILE A	144	38.571	32.429	-3.673	1.00 10.97
	ATOM	871	CG1	ILE A	144	37.362	34.519	-4.339	1.00 11.41
	ATOM	872	CD1	ILE A	144	36.502	33.760	-5.312	1.00 14.19
	ATOM	873	С	ILE A	144	40.744	33.895	-2.630	1.00 13.99
10	MOTA	874	0	ILE A	144	41.722	33.807	-3.378	1.00 14.68
	ATOM	875	N	ASN A	145	40.706	33.334	-1.428	1.00 13.97
	ATOM	876	CA	ASN A	145	41.846	32.571	-0.942	1.00 13.60
	ATOM	877	СВ	ASN A	145	42.716	33.455	-0.040	1.00 13.33
	ATOM	878	CG	ASN A	145	42.255	33.447	1.412	1.00 16.34
15	MOTA	879	OD1	ASN A	145	42.556	32.518	2.163	1.00 14.09
	ATOM	880	ND2	ASN A	145	41.510	34.478	1.809	1.00 15.79
	ATOM	881	С	ASN A	145	41.426	31.328	-0.170	1.00 14.55
	ATOM	882	0	ASN A	145	40.380	31.308	0.485	1.00 13.20
	ATOM	883	N	ARG A	146	42.249	30.289	-0.262	1.00 14.22
20	ATOM	884	CA	ARG A	146	42.011	29.047	0.458	1.00 15.92
	MOTA	885	СВ	ARG A	146	41.327	28.007	-0.440	1.00 14.93
	ATOM	886	CG	ARG A	146	41.972	27.778	-1.797	1.00 14.62
	ATOM	887	CD	ARG A	146	41.403	26.513	-2.428	1.00 15.20
	ATOM	888	NE	ARG A		41.958	26.231	-3.751	1.00 15.82
25	ATOM	889	CZ	ARG A	146	41.423	26.632	-4.903	1.00 16.69
	ATOM	890	NH1	ARG A	146	40.305	27.344		1.00 16.41
	MOTA	891	NH2	ARG A	146	42.008		-6.050	1.00 18.44
	MOTA	892	С	ARG A		43.352	28.519		1.00 18.18
• •	ATOM	893	0	ARG A		43.697			1.00 18.08
30	ATOM	894	N	TYR A		44.104			1.00 18.01
	ATOM	895	CA	TYR A		45.410	29.039	2.171	1.00 19.04
	ATOM	896	СВ	TYR A		45.993	30.199	2.979	1.00 18.66
	ATOM	897	CG	TYR A		46.860	31.121	2.166	1.00 18.81
25	ATOM	898		TYR A		46.405		1.774	1.00 19.25
35	ATOM	899		TYR A		47.196			1.00 22.14
	ATOM	900		TYR A		48.135			1.00 20.06
	ATOM	901	CE2	TYR A	147	48.933	31.555	1.000	1.00 21.49

	ATOM	902	CZ	TYR	A	147	48.458	32.793	0.624	1.00	22.84
	ATOM	903	ОН	TYR	A	147	49.244	33.617	-0.147	1.00	28.55
	ATOM	904	С	TYR	A	147	45.381	27.795	3.042	1.00	19.59
	ATOM	905	0	TYR	Α	147	46.232	26.917	2.903	1.00	21.39
5	ATOM	906	N	GLY	Α	148	44.409	27.732	3.946	1.00	19.48
	ATOM	907	CA	GLY	A	148	44.288	26.589	4.830	1.00	17.98
	ATOM	908	С	GLY	A	148	45.183	26.683	6.052	1.00	19.49
	ATOM	909	0	GLY	A	148	45.692	25.671	6.534	1.00	20.15
	ATOM	910	N	PHE	A	149	45.389	27.897	6.551	1.00	19.05
10	MOTA	911	CA	PHE	A	149	46.218	28.097	7.738	1.00	19.22
	ATOM	912	СВ	PHE	A	149	45.632	27.334	8.935	1.00	18.23
	ATOM	913	CG	PHE	Α	149	44.456	28.009	9.586	1.00	19.24
	ATOM	914	CD1	PHE	A	149	43.609	27.289	10.423	1.00	20.94
	ATOM	915	CD2	PHE	A	149	44.203	29.354	9.386	1.00	20.56
15	MOTA	916	CE1	PHE	Α	149	42.529	27.903	11.046	1.00	22.07
	ATOM	917	CE2	PHE	Α	149	43.124	29.976	10.007	1.00	21.74
	ATOM	918	CZ	PHE	A	149	42.286	29.251	10.836	1.00	21.98
	ATOM	919	С	PHE	A	149	47.678	27.673	7.569	1.00	19.04
	ATOM	920	0	PHE	A	149	48.191	26.895	8.370	1.00	20.36
20	ATOM	921	N	ASN	A	150	48.346	28.150	6.527	1.00	17.55
	ATOM	922	CA	ASN	Α	150	49.753	27.821	6.369	1.00	18.25
	ATOM	923	СВ	ASN	A	150	50.277	28.309	5.013	1.00	16.65
	ATOM	924	CG	ASN	Α	150	49.959	29.768	4.752	1.00	18.63
	MOTA	925	OD1	ASN	Α	150	48.805	30.191	4.846	1.00	18.40
25	ATOM	926	ND2	ASN	A	150	50.981	30.544	4.409	1.00	17.11
	ATOM	927	С	ASN	A	150	50.389	28.597	7.524	1.00	19.71
	ATOM	928	0	ASN	A	150	50.140	29.793	7.676	1.00	20.26
	ATOM	929	N	SER	A	151	51.188	27.925	8.346	1.00	18.09
	ATOM	930	CA	SER	A	151	51.781	28.589	9.498	1.00	18.68
30	ATOM	931	СВ	SER	A	151	50.775	28.556	10.655	1.00	17.80
	MOTA	932	OG	SER	A	151	51.372	28.931	11.883	1.00	16.50
	ATOM	933	С	SER	A	151	53.117	28.017	9.974	1.00	19.15
	ATOM	934	0	SER	A	151	53.339	26.802	9.931	1.00	18.28
	ATOM	935	N	HIS	A	152	53.992	28.911	10.438	1.00	18.31
35	ATOM	936	CA	HIS	Α	152	55.307	28.532	10.956	1.00	18.93
	MOTA	937	СВ	HIS	A	152	56.217	29.762	11.083	1.00	18.91
	MOTA	938	CG	HIS	Α	152	56.661	30.333	9.771	1.00	21.17

	ATOM	939	CD2	HIS A	A	152	56.387	29.964	8.496	1.00	21.16
	ATOM	940	ND1	HIS A	A	152	57.499	31.424	9.681	1.00	22.49
	MOTA	941	CE1	HIS A	A	152	57.721	31.704	8.409	1.00	20.95
	MOTA	942	NE2	HIS	A	152	57.058	30.833	7.669	1.00	22.06
5	MOTA	943	С	HIS 2	A	152	55.165	27.877	12.329	1.00	18.38
	MOTA	944	0	HIS A	A	152	56.096	27.235	12.818	1.00	17.60
	MOTA	945	N	GLY A	A	153	54.001	28.053	12.953	1.00	17.75
	ATOM	946	CA	GLY .	Α	153	53.774	27.460	14.259	1.00	16.61
	MOTA	947	С	GLY .	A	153	54.052	28.398	15.419	1.00	15.59
10	MOTA	948	0	GLY .	A	153	54.717	29.419	15.262	1.00	13.71
	MOTA	949	N	LEU .	A	154	53.546	28.035	16.592	1.00	15.84
	ATOM	950	CA	LEU .	A	154	53.713	28.837	17.799	1.00	16.70
	ATOM	951	СВ	LEU .	A	154	52.984	28.164	18.970	1.00	13.15
	ATOM	952	CG	LEU .	A	154	51.456	28.175	18.853	1.00	14.44
15	ATOM	953	CD1	LEU .	A	154	50.819	27.344	19.964	1.00	9.83
	MOTA	954	CD2	LEU .	A	154	50.969	29.622	18.911	1.00	12.21
	ATOM	955	С	LEU .	A	154	55.167	29.127	18.189	1.00	17.86
	ATOM	956	0	LEU .	A	154	55.521	30.286	18.426	1.00	18.59
	ATOM	957	N	SER .	A	155	56.001	28.088	18.264	1.00	17.56
20	ATOM	958	CA	SER .	A	155	57.410	28.262	18.638	1.00	19.51
	ATOM	959	СВ	SER .	A	155	58.181	26.944	18.510	1.00	17.58
	ATOM	960	OG	SER .	A	155	57.825	26.045	19.536	1.00	26.25
	ATOM	961	С	SER .	A	155	58.139	29.320	17.816	1.00	19.49
	ATOM	962	0	SER .	A	155	58.681	30.283	18.366	1.00	19.42
25	MOTA	963	N	VAL	A	156	58.171	29.131	16.500	1.00	17.97
	ATOM	964	CA	VAL	A	156	58.856	30.081	15.640	1.00	19.36
	MOTA	965	CB	VAL	A	156	58.746	29.679	14.152	1.00	19.76
	MOTA	966	CG1	VAL	A	156	59.197	30.834	13.270	1.00	18.20
	MOTA	967	CG2	VAL	A	156	59.616	28.452	13.884	1.00	15.89
30	ATOM	968	С	VAL	Α	156	58.346	31.509	15.821	1.00	19.10
	MOTA	969	0	VAL	Α	156	59.141	32.440	15.945	1.00	21.48
	ATOM	970	N	VAL	A	157	57.029	31.686	15.846	1.00	17.35
	ATOM	971	CA	VAL	A	157	56.465	33.021	16.013	1.00	17.52
	MOTA	972	СВ	VAL	Α	157	54.927	33.012	15.806		18.44
35	ATOM	973	CG1	VAL	A	157	54.354	34.404	16.046	1.00	15.23
	MOTA	974	CG2	VAL	A	157	54.600	32.545	14.393	1.00	16.29
	MOTA	975	С	VAL	Α	157	56.792	33.557	17.404	1.00	17.04

	ATOM	976	0	VAL	Α	157	57.067	34.742	17.576	1.00	16.81
	MOTA	977	N	GLU	Α	158	56.770	32.668	18.393	1.00	18.06
	ATOM	978	CA	GLU	Α	158	57.073	33.031	19.772	1.00	17.48
	ATOM	979	СВ	GLU	A	158	57.027	31.784	20.657	1.00	18.28
5	ATOM	980	CG	GLU	Α	158	57.403	32.037	22.108	1.00	20.80
	ATOM	981	CD	GLU	Α	158	57.983	30.802	22.777	1.00	22.98
	ATOM	982	OE1	GLU	A	158	57.303	29.760	22.803	1.00	27.17
	ATOM	983	OE2	GLU	Α	158	59.123	30.871	23.276	1.00	24.43
	ATOM	984	С	GLU	Α	158	58.456	33.679	19.877	1.00	16.66
10	ATOM	985	0	GLU	Α	158	58.604	34.773	20.423	1.00	15.53
	ATOM	986	N	HIS	Α	159	59.467	32.999	19.350	1.00	16.18
	MOTA	987	CA	HIS	A	159	60.831	33.515	19.395	1.00	18.93
	ATOM	988	СВ	HIS	A	159	61.809	32.435	18.925	1.00	20.44
	MOTA	989	CG	HIS	Α	159	61.858	31.248	19.833	1.00	25.76
15	ATOM	990	CD2	HIS	A	159	62.038	31.161	21.173	1.00	26.46
	ATOM	991	ND1	HIS	A	159	61.666	29.957	19.388	1.00	29.18
	MOTA	992	CE1	HIS	A	159	61.723	29.127	20.414	1.00	29.23
	ATOM	993	NE2	HIS	A	159	61.947	29.832	21.508	1.00	30.03
	ATOM	994	С	HIS	Α	159	60.986	34.772	18.555	1.00	17.73
20	ATOM	995	0	HIS	A	159	61.760	35.664	18.892	1.00	18.91
	MOTA	996	N	ARG	Α	160	60.237	34.840	17.465	1.00	17.89
	ATOM	997	CA	ARG	A	160	60.281	35.990	16.574	1.00	19.60
	ATOM	998	СВ	ARG	A	160	59.516	35.652	15.293	1.00	20.86
	ATOM	999	CG	ARG	A	160	59.537	36.703	14.206	1.00	21.57
25	ATOM	1000	CD	ARG	A	160	58.928	36.111	12.933	1.00	24.64
	ATOM	1001	NE	ARG			59.805	35.113	12.323		23.48
	MOTA	1002	CZ	ARG			59.388	34.084	11.587		
	MOTA	1003		ARG			58.092	33.895	11.365		22.08
	ATOM	1004	NH2	ARG			60.273	33.250	11.056		21.93
30	ATOM	1005	С	ARG			59.693	37.227	17.269		20.13
	ATOM	1006	0	ARG			60.167	38.346	17.069		20.73
	MOTA	1007	N	LEU	A	161	58.669	37.030	18.093		19.56
	ATOM	1008	CA	LEU			58.073	38.154	18.812		19.51
2.5	ATOM	1009	СВ	LEU			56.632	37.833	19.226		19.35
35	ATOM	1010	CG	LEU			55.606	37.704	18.092		20.03
	ATOM	1011		LEU			54.225	37.460	18.685		18.09
	MOTA	1012	CD2	LEU	Α	161	55.599	38.974	17.248	1.00	16.90

	ATOM	1013	С	LEU A	161	58.911	38.497	20.048	1.00	18.36
•	MOTA	1014	0	LEU A	161	58.990	39.654	20.454	1.00	17.75
	ATOM	1015	N	ARG A	162	59.545	37.489	20.640	1.00	17.94
	MOTA	1016	CA	ARG A	162	60.385	37.717	21.814	1.00	17.80
5	ATOM	1017	СВ	ARG A	162	60.853	36.392	22.412	1.00	16.66
	ATOM	1018	CG	ARG A	162	59.814	35.688	23.264	1.00	17.05
	ATOM	1019	CD	ARG A	162	60.431	34.482	23.946	1.00	16.29
	ATOM	1020	NE	ARG A	162	59.503	33.831	24.862	1.00	15.68
	ATOM	1021	CZ	ARG A	162	59.806	32.758	25.584	1.00	16.71
10	MOTA	1022	NH1	ARG A	162	61.018	32.219	25.493	1.00	15.01
	MOTA	1023	NH2	ARG A	162	58.900	32.220	26.391	1.00	16.25
	ATOM	1024	С	ARG A	162	61.605	38.566	21.482	1.00	17.51
	MOTA	1025	0	ARG A	162	62.080	39.329	22.320	1.00	17.44
	MOTA	1026	N	ALA A	163	62.106	38.431	20.258	1.00	17.07
15	ATOM	1027	CA	ALA A	163	63.275	39.188	19.825	1.00	16.71
	MOTA	1028	СВ	ALA A	163	63.727	38.711	18.450	1.00	15.44
	MOTA	1029	С	ALA A	163	62.998	40.688	19.786	1.00	16.78
	ATOM	1030	0	ALA A	163	63.927	41.489	19.687	1.00	14.49
	MOTA	1031	N	ARG A	164	61.723	41.062	19.867	1.00	17.00
20	MOTA	1032	CA	ARG A	164	61.334	42.468	19.834	1.00	18.86
	ATOM	1033	СВ	ARG A	164	60.782	42.836	18.451	1.00	19.13
	MOTA	1034	CG	ARG A	164	59.511	42.079	18.068	1.00	19.61
	ATOM	1035	CD	ARG A	164	59.029	42.462	16.674	1.00	17.87
	ATOM	1036	NE	ARG A	164	58.541	43.837	16.610	1.00	17.41
25	ATOM	1037	CZ	ARG A	164	57.361	44.237	17.074	1.00	19.05
	ATOM	1038	NH1	ARG A	. 164	56.533	43.364	17.639	1.00	17.96
	ATOM	1039	NH2	ARG A	164	57.004	45.511	16.970	1.00	18.08
	ATOM	1040	С	ARG A	164	60.278	42.776	20.882	1.00	19.19
	MOTA	1041	0	ARG A	164	59.597	43.797	20.795	1.00	19.50
30	ATOM	1042	N	GLN A	165	60.152	41.900	21.874	1.00	20.49
	ATOM	1043	CA	GLN A	165	59.155	42.073	22.924	1.00	20.58
	ATOM	1044	СВ	GLN A	. 165	59.274	40.936	23.954	1.00	20.12
	MOTA	1045	CG	GLN A	165	58.313	41.046	25.145	1.00	21.82
	MOTA	1046	CD	GLN A	. 165	58.141	39.729	25.904	1.00	22.47
35	ATOM	1047	OE1	GLN A	. 165	59.064	38.921	25.994	1.00	22.27
	MOTA	1048	NE2	GLN A	165	56.954	39.520	26.464	1.00	21.18
	MOTA	1049	С	GLN A	165	59.205	43.433	23.623	1.00	21.76

	ATOM	1050	0	GLN A	Ą	165	58.161	44.037	23.888	1.00	22.56
	ATOM	1051	N	GLN A	Ą	166	60.405	43.926	23.914	1.00	21.90
	ATOM	1052	CA	GLN A	Ą	166	60.533	45.209	24.595	1.00	22.73
	ATOM	1053	СВ	GLN A	A	166	61.931	45.366	25.194	1.00	25.53
5	ATOM	1054	CG	GLN A	A	166	62.185	44.389	26.321	1.00	27.06
	ATOM	1055	CD	GLN A	A	166	61.005	44.313	27.268	1.00	28.22
	MOTA	1056	OE1	GLN A	A	166	60.585	45.321	27.834	1.00	28.38
	ATOM	1057	NE2	GLN A	Ą	166	60.456	43.116	27.437	1.00	29.05
	ATOM	1058	С	GLN A	A	166	60.218	46.382	23.693	1.00	22.07
10	ATOM	1059	0	GLN A	A	166	59.645	47.378	24.138	1.00	20.88
	ATOM	1060	N	LYS A	A	167	60.597	46.271	22.425	1.00	21.93
	ATOM	1061	CA	LYS Z	A	167	60.307	47.334	21.478	1.00	21.45
	ATOM	1062	СВ	LYS A	A	167	60.884	47.006	20.101	1.00	21.05
	ATOM	1063	CG	LYS 2	A	167	60.402	47.954	19.027	1.00	25.54
15	ATOM	1064	CD	LYS A	A	167	60.905	47.574	17.648	1.00	30.01
	ATOM	1065	CE	LYS A	A	167	62.375	47.894	17.486	1.00	33.62
	ATOM	1066	NZ	LYS A	A	167	62.788	47.798	16.057	1.00	36.58
	ATOM	1067	С	LYS A	A	167	58.787	47.467	21.379	1.00	20.51
	MOTA	1068	0	LYS	A	167	58.248	48.574	21.405		20.50
20	MOTA	1069	N	GLN A	A	168	58.102	46.330	21.274	1.00	19.09
	MOTA	1070	CA	GLN A	A	168	56.646	46.330	21.172	1.00	18.76
	MOTA	1071	СВ	GLN .	A	168	56.114	44.906	20.982	1.00	17.10
	MOTA	1072	CG	GLN .	A	168	54.593	44.830	20.823	1.00	17.73
	MOTA	1073	CD	GLN .	A	168	54.072	45.640	19.636		18.32
25	MOTA	1074	OE1	GLN .	A	168	54.439	45.390	18.483	1.00	17.02
	MOTA	1075	NE2	GLN .	A	168	53.210	46.615	19.918		16.42
	MOTA	1076	С	GLN .	A	168		46.954			
	MOTA	1077	0	GLN .	A	168	55.049	47.689	22.315		17.66
	ATOM	1078	N	ALA .	A	169	56.608	46.678	23.579		17.93
30	ATOM	1079	CA	ALA .	A	169	56.089	47.243	24.824		18.74
	MOTA	1080	СВ	ALA .			56.957	46.817	26.005		18.28
	MOTA	1081	С	ALA .			56.042	48.766	24.728		18.92
	ATOM	1082	0	ALA .			55.083	49.394	25.177		19.50
	ATOM	1083	N	LYS			57.078	49.359	24.143		19.73
35	ATOM	1084	CA	LYS			57.122	50.809	23.992		22.09
	ATOM	1085	CB	LYS			58.536	51.278	23.637		23.45
	MOTA	1086	CG	LYS	A	170	59.524	51.155	24.791	1.00	28.29

	ATOM	1087	CD	LYS	A	170	60.839	51.866	24.492	1.00	30.12
	ATOM	1088	CE	LYS	Α	170	61.786	51.792	25.680	1.00	30.79
	ATOM	1089	NZ	LYS	A	170	62.112	50.377	26.041	1.00	34.64
	ATOM	1090	С	LYS	A	170	56.138	51.275	22.925	1.00	20.81
5	MOTA	1091	0	LYS	A	170	55.509	52.321	23.072	1.00	20.80
	MOTA	1092	N	LEU	A	171	56.010	50.499	21.852	1.00	19.17
	MOTA	1093	CA	LEU	A	171	55.082	50.839	20.778	1.00	18.67
	ATOM	1094	СВ	LEU	Α	171	55.199	49.823	19.639	1.00	17.59
	ATOM	1095	CG	LEU	Α	171	56.489	49.947	18.823	1.00	16.99
10	MOTA	1096	CD1	LEU	Α	171	56.702	48.707	17.965	1.00	12.77
	MOTA	1097	CD2	LEU	Α	171	56.411	51.210	17.968	1.00	14.39
	MOTA	1098	С	LEU	A	171	53.651	50.867	21.315	1.00	18.05
	MOTA	1099	0	LEU	A	171	52.890	51.797	21.040	1.00	15.95
	ATOM	1100	N	THR	A	172	53.295	49.845	22.088	1.00	18.35
15	MOTA	1101	CA	THR	A	172	51.964	49.756	22.677	1.00	19.52
	MOTA	1102	СВ	THR	A	172	51.801	48.442	23.473	1.00	17.84
	MOTA	1103	OG1	THR	A	172	51.889	47.330	22.572	1.00	16.09
	ATOM	1104	CG2	THR	A	172	50.456	48.409	24.186	1.00	14.72
	ATOM	1105	С	THR	A	172	51.708	50.956	23.595	1.00	21.19
20	ATOM	1106	0	THR	A	172	50.658	51.596	23.517	1.00	19.87
	MOTA	1107	N	GLU	A	173	52.675	51.263	24.454	1.00	23.39
	ATOM	1108	CA	GLU	A	173	52.553	52.398	25.362	1.00	26.67
	ATOM	1109	СВ	GLU	A	173	53.799	52.506	26.246	1.00	30.55
	ATOM	1110	CG	GLU	A	173	53.745	53.637	27.265	1.00	38.76
25	MOTA	1111	CD	GLU	A	173	52.656	53.438	28.317	1.00	43.68
	MOTA	1112	OE1	GLU	A	173	52.394	54.389	29.089	1.00	44.95
	MOTA	1113	OE2	GLU	A	173	52.067	52.333	28.378	1.00	45.55
	ATOM	1114	С	GLU	A	173	52.396	53.673	24.533	1.00	26.37
	MOTA	1115	0	GLU	Α	173	51.811	54.657	24.982	1.00	25.62
30	MOTA	1116	N	ASP	Α	174	52.918	53.637	23.313	1.00	27.07
	MOTA	1117	CA	ASP	Α	174	52.845	54.772	22.405	1.00	28.13
	MOTA	1118	СВ	ASP	A	174	54.059	54.770	21.481	1.00	32.94
	MOTA	1119	CG	ASP	A	174	54.971	55.946	21.724	1.00	38.63
	MOTA	1120	OD1	ASP	Α	174	54.537	57.094	21.468	1.00	40.07
35	MOTA	1121	OD2	ASP	A	174	56.117	55.722	22.176		40.59
	MOTA	1122	С	ASP	A	174	51.570	54.793	21.560	1.00	27.18
	ATOM	1123	0	ASP	A	174	51.445	55.610	20.649	1.00	27.16

	ATOM	1124	N	GLY	A	175	50.636	53.892	21.851	1.00	24.85
	ATOM	1125	CA	GLY	Α	175	49.393	53.856	21.100	1.00	24.01
	ATOM	1126	С	GLY	A	175	49.405	52.977	19.860	1.00	23.65
	ATOM	1127	0	GLY	Α	175	48.579	53.159	18.965	1.00	23.96
5	ATOM	1128	N	LEU	A	176	50.330	52.021	19.804	1.00	22.56
	ATOM	1129	CA	LEU	A	176	50.439	51.117	18.658	1.00	20.60
	ATOM	1130	СВ	LEU	A	176	51.726	51.419	17.887	1.00	19.76
	ATOM	1131	CG	LEU	A	176	51.773	52.805	17.236	1.00	20.88
	ATOM	1132	CD1	LEU	A	176	53.156	53.073	16.645	1.00	20.36
10	ATOM	1133	CD2	LEU	A	176	50.698	52.885	16.155	1.00	21.58
	ATOM	1134	С	LEU	Α	176	50.422	49.654	19.107	1.00	19.32
	ATOM	1135	0	LEU	A	176	51.444	48.968	19.071	1.00	19.23
	ATOM	1136	N	PRO	Α	177	49.241	49.160	19.520	1.00	17.22
	ATOM	1137	CD	PRO	A	177	48.007	49.957	19.601	1.00	14.81
15	ATOM	1138	CA	PRO	A	177	49.000	47.795	19.998	1.00	16.26
	ATOM	1139	СВ	PRO	A	177	47.534	47.831	20.437	1.00	16.17
	ATOM	1140	CG	PRO	A	177	47.281	49.277	20.721	1.00	15.79
	ATOM	1141	С	PRO	A	177	49.264	46.660	19.003	1.00	15.92
	ATOM	1142	0	PRO	A	177	49.265	46.851	17.784	1.00	15.28
20	ATOM	1143	N	LEU	A	178	49.467	45.470	19.557	1.00	14.24
	ATOM	1144	CA	LEU	A	178	49.728	44.268	18.779	1.00	15.03
	ATOM	1145	СВ	LEU	Α	178	51.130	43.738	19.087	1.00	12.96
	ATOM	1146	CG	LEU	A	178	51.516	42.404	18.444	1.00	14.74
	ATOM	1147	CD1	LEU	A	178	51.571	42.573	16.932	1.00	14.67
25	ATOM	1148	CD2	LEU	A	178	52.869	41.938	18.976	1.00	11.17
	ATOM	1149	С	LEU	A	178	48.702	43.190	19.116	1.00	14.20
	MOTA	1150	0	LEU	A	178	48.456	42.897	20.283	1.00	15.66
	ATOM	1151	N	GLY	A	179	48.096	42.609	18.090	1.00	14.51
	MOTA	1152	CA	GLY	A	179	47.131	41.552	18.309	1.00	11.48
30	MOTA	1153	С	GLY	A.	179	47.674	40.287	17.677	1.00	12.92
	ATOM	1154	0	GLY	Α	179	48.433	40.355	16.706	1.00	11.41
	ATOM	1155	N	VAL	A	180	47.312	39.137	18.235	1.00	12.74
	MOTA	1156	CA	VAL	A	180	47.754	37.857	17.700	1.00	12.66
	MOTA	1157	СВ	VAL	Α	180	48.702	37.135	18.670	1.00	13.16
35	MOTA	1158	CG1	VAL	A	180	49.025	35.746	18.135	1.00	11.92
	MOTA	1159	CG2	VAL	A	180	49.981	37.946	18.838	1.00	14.00
	ATOM	1160	С	VAL	Α	180	46.535	36.981	17.437	1.00	14.54

	MOTA	1161	0	VAL	Α	180	45.723	36.733	18.334	1.00	15.05
	MOTA	1162	N	ASN	Α	181	46.411	36.523	16.197	1.00	14.43
	MOTA	1163	CA	ASN	Α	181	45.285	35.701	15.774	1.00	16.18
	ATOM	1164	СВ	ASN	Α	181	44.913	36.081	14.337	1.00	16.86
5	ATOM	1165	CG	ASN	Α	181	43.622	35.450	13.872	1.00	18.28
	MOTA	1166	OD1	ASN	A	181	43.439	34.233	13.961	1.00	16.72
	MOTA	1167	ND2	ASN	A	181	42.717	36.278	13.353	1.00	17.72
	MOTA	1168	С	ASN	Α	181	45.657	34.217	15.867	1.00	16.98
	MOTA	1169	0	ASN	Α	181	46.650	33.781	15.281	1.00	17.21
10	MOTA	1170	N	LEU	A	182	44.843	33.452	16.593	1.00	15.71
	MOTA	1171	CA	LEU	Α	182	45.079	32.029	16.804	1.00	16.75
	ATOM	1172	СВ	LEU	Α	182	44.890	31.691	18.283	1.00	15.56
	ATOM	1173	CG	LEU	Α	182	45.709	32.502	19.285	1.00	16.48
	ATOM	1174	CD1	LEU	Α	182	45.285	32.136	20.703	1.00	14.81
15	MOTA	1175	CD2	LEU	A	182	47.190	32.233	19.068	1.00	14.85
	ATOM	1176	С	LEU	A	182	44.187	31.105	15.980	1.00	17.41
	ATOM	1177	0	LEU	A	182	42.981	31.309	15.876	1.00	18.39
	ATOM	1178	N	GLY	A	183	44.800	30.078	15.406	1.00	17.73
	ATOM	1179	CA	GLY	A	183	44.066	29.113	14.613	1.00	18.55
20	ATOM	1180	С	GLY	Α	183	44.348	27.733	15.176	1.00	20.03
	ATOM	1181	0	GLY	A	183	44.939	27.602	16.250	1.00	18.94
	ATOM	1182	N	LYS	A	184	43.931	26.695	14.465	1.00	20.89
	ATOM	1183	CA	LYS	A	184	44.172	25.346	14.943	1.00	22.37
	ATOM	1184	СВ	LYS	A	184	42.898	24.755	15.553	1.00	24.26
25	ATOM	1185	CG	LYS	A	184	41.916	24.217	14.540	1.00	28.42
	ATOM	1186	CD	LYS	A	184	40.864	23.363	15.221		32.20
	MOTA	1187	CE	LYS	A	184	40.116	22.506	14.210	1.00	35.25
	ATOM	1188	NZ	LYS	A		41.029		13.531		35.90
	ATOM	1189	С	LYS	A		44.672		13.808	1.00	20.68
30	ATOM	1190	0	LYS	A		44.369		12.644		21.35
	ATOM	1191	N	ASN			45.449	23.452	14.157		21.49
	ATOM	1192	CA	ASN			45.997		13.161		22.53
	ATOM	1193	СВ	ASN			47.052	21.645	13.801		20.30
2.5	ATOM	1194	CG	ASN			48.371		14.025		20.21
35	ATOM	1195		ASN			48.812		15.161		20.64
	ATOM	1196		ASN			49.010	22.773	12.938		19.38
	MOTA	1197	С	ASN	A	185	44.940	21.692	12.469	1.00	24.32

	ATOM	1198	0	ASN A	1	185	43.929	21.307	13.063	1.00	22.56
	ATOM	1199	N	LYS A	A 1	186	45.200	21.392	11.201	1.00	27.23
	ATOM	1200	CA	LYS A	A 1	186	44.305	20.582	10.390	1.00	30.05
	ATOM	1201	СВ	LYS A	1	186	44.886	20.441	8.982	1.00	30.82
5	ATOM	1202	CG	LYS A	A 1	186	44.054	19.581	8.047	1.00	33.61
	MOTA	1203	CD	LYS A	1	186	44.711	19.487	6.685	1.00	35.69
	MOTA	1204	CE	LYS A	1	186	43.865	18.692	5.710	1.00	37.08
	ATOM	1205	NZ	LYS A	A 1	186	44.525	18.604	4.374	1.00	39.36
	MOTA	1206	C	LYS A	A 1	186	44.051	19.190	10.981	1.00	31.18
10	MOTA	1207	0	LYS A	A 1	186	42.914	18.726	11.013	1.00	30.53
	MOTA	1208	N	THR A	A 1	187	45.107	18.530	11.449	1.00	33.43
	ATOM	1209	CA	THR A	A 1	L87	44.973	17.187	12.011	1.00	36.34
	ATOM	1210	СВ	THR A	A 1	187	46.204	16.314	11.685	1.00	36.53
	MOTA	1211	OG1	THR A	A 1	L87	47.348	16.819	12.389	1.00	35.83
15	MOTA	1212	CG2	THR A	A 1	L87	46.480	16.323	10.184	1.00	35.68
	MOTA	1213	С	THR A	A 1	187	44.776	17.175	13.524	1.00	38.23
	ATOM	1214	0	THR A	A 1	187	44.924	16.134	14.169	1.00	39.65
	MOTA	1215	N	SER A	1	188	44.449	18.330	14.091	1.00	38.70
	MOTA	1216	CA	SER A	A 1	L88	44.225	18.424	15.524	1.00	38.55
20	ATOM	1217	СВ	SER A	A 1	188	44.078	19.886	15.940	1.00	38.64
	ATOM	1218	OG	SER A	A 1	188	43.782	19.988	17.320	1.00	40.20
	ATOM	1219	С	SER A	A 1	188	42.964	17.654	15.904	1.00	39.15
	MOTA	1220	0	SER A	A 1	L88	42.006	17.601	15.134	1.00	38.68
	MOTA	1221	N	VAL A	A 1	189	42.971	17.061	17.094	1.00	39.48
25	MOTA	1222	CA	VAL A	A 1	189	41.829	16.296	17.583		41.01
	MOTA	1223	СВ	VAL A			42.284	14.984	18.260		41.97
	ATOM	1224	CG1	VAL A	A 1	189		14.309			
	MOTA	1225	CG2	VAL A	A 1	189	42.910	14.052	17.230		41.86
	MOTA	1226	С	VAL A	1	189	41.015	17.101	18.595		41.66
30	MOTA	1227	0	VAL A	A 1	189	39.789	16.980	18.660		43.36
	ATOM	1228	N	ASP A			41.704	17.925	19.379		40.34
	ATOM	1229	CA	ASP A			41.055	18.748	20.394		38.77
	MOTA	1230	СВ	ASP A			41.708	18.502	21.755		41.42
2.5	ATOM	1231	CG	ASP A			40.907	19.084	22.900		43.96
35	MOTA	1232		ASP A			40.362	20.197	22.746		44.17
	MOTA	1233		ASP A			40.831	18.431	23.961		48.33
	ATOM	1234	С	ASP A	A 1	190	41.176	20.228	20.031	1.00	36.65

	MOTA	1235	0	ASP.	A	190	42.153	20.886	20.396	1.00	36.03
	MOTA	1236	N	ALA .	A	191	40.178	20.749	19.322	1.00	33.62
	MOTA	1237	CA	ALA	Α	191	40.181	22.147	18.902	1.00	30.36
	MOTA	1238	СВ	ALA	Α	191	38.860	22.493	18.232	1.00	30.25
5	MOTA	1239	С	ALA	A	191	40.433	23.101	20.060	1.00	28.52
	MOTA	1240	0	ALA	A	191	41.192	24.058	19.930	1.00	26.66
	MOTA	1241	N	ALA	A	192	39.793	22.835	21.193	1.00	26.87
	MOTA	1242	CA	ALA	A	192	39.942	23.685	22.367	1.00	25.59
	MOTA	1243	СВ	ALA	A	192	39.013	23.205	23.479	1.00	23.07
10	MOTA	1244	С	ALA	A	192	41.382	23.740	22.871	1.00	25.06
	MOTA	1245	0	ALA	A	192	41.863	24.804	23.248	1.00	26.91
	MOTA	1246	N	GLU	A	193	42.067	22.600	22.881	1.00	24.69
	MOTA	1247	CA	GLU	A	193	43.449	22.553	23.348	1.00	25.36
	MOTA	1248	СВ	GLU	A	193	43.941	21.104	23.430	1.00	28.55
15	MOTA	1249	CG	GLU	A	193	45.386	20.980	23.892	1.00	33.86
	MOTA	1250	CD	GLU	A	193	45.625	21.605	25.259	1.00	38.09
	ATOM	1251	OE1	GLU	A	193	46.803	21.800	25.628	1.00	40.81
	ATOM	1252	OE2	GLU	A	193	44.637	21.895	25.969	1.00	40.22
	MOTA	1253	С	GLU	A	193	44.373	23.373	22.444	1.00	23.89
20	MOTA	1254	0	GLU	A	193	45.281	24.050	22.929	1.00	23.13
	ATOM	1255	N	ASP	A	194	44.137	23.309	21.136	1.00	21.11
	ATOM	1256	CA	ASP	A	194	44.925	24.071	20.171	1.00	21.43
	ATOM	1257	СВ	ASP	A	194	44.373	23.875	18.755	1.00	22.24
	ATOM	1258	CG	ASP	A	194	45.043	22.736	18.017	1.00	22.08
25	ATOM	1259	OD1	ASP	A	194	45.526	21.802	18.679	1.00	25.23
	MOTA	1260		ASP			45.080	22.768	16.769	1.00	23.80
	MOTA	1261	С	ASP	A	194		25.561	20.520		
	ATOM	1262	0	ASP	A	194	45.962	26.207	20.552		22.27
	ATOM	1263	N	TYR		•	43.723	26.110	20.771		19.34
30	ATOM	1264	CA	TYR	A	195	43.618	27.522	21.119		19.62
	ATOM	1265	СВ	TYR			42.159	27.999	21.080		18.69
	ATOM	1266	CG	TYR			41.558	28.005	19.693		19.61
	ATOM	1267		TYR			40.769	26.953	19.250		19.06
	ATOM	1268		TYR			40.262	26.930	17.968		19.80
35	ATOM	1269		TYR			41.819	29.043	18.809		19.96
	ATOM	1270		TYR			41.316	29.030	17.520		20.62
	MOTA	1271	CZ	TYR	A	195	40.539	27.970	17.106	1.00	21.15

	ATOM	1272	ОН	TYR	Α	195	40.043	27.943	15.822	1.00	22.18
	MOTA	1273	С	TYR	Α	195	44.199	27.762	22.504	1.00	19.30
	MOTA	1274	0	TYR	Α	195	44.812	28.799	22.755	1.00	19.17
	ATOM	1275	N	ALA	Α	196	44.006	26.800	23.401	1.00	19.01
5	MOTA	1276	CA	ALA	Α	196	44.530	26.918	24.756	1.00	19.63
	MOTA	1277	СВ	ALA	A	196	44.143	25.697	25.578	1.00	19.27
	MOTA	1278	С	ALA	A	196	46.051	27.058	24.699	1.00	19.64
	ATOM	1279	0	ALA	Α	196	46.634	27.865	25.426	1.00	19.80
	MOTA	1280	N	GLU	Α	197	46.685	26.274	23.828	1.00	18.51
10	MOTA	1281	CA	GLU	Α	197	48.136	26.320	23.667	1.00	21.13
	MOTA	1282	СВ	GLU	Α	197	48.615	25.222	22.708	1.00	24.77
	MOTA	1283	CG	GLU	A	197	48.308	23.810	23.169	1.00	34.07
	MOTA	1284	CD	GLU	A	197	49.001	22.761	22.321	1.00	38.95
	MOTA	1285	OE1	GLU	A	197	48.692	21.560	22.478	1.00	40.42
15	ATOM	1286	OE2	GLU	A	197	49.863	23.141	21.501	1.00	43.50
	MOTA	1287	С	GLU	A	197	48.564	27.679	23.125	1.00	19.10
	MOTA	1288	0	GLU	Α	197	49.540	28.264	23.598	1.00	17.04
	MOTA	1289	N	GLY	A	198	47.830	28.168	22.128	1.00	16.78
	MOTA	1290	CA	GLY	A	198	48.136	29.460	21.545	1.00	15.98
20	MOTA	1291	С	GLY	A	198	48.061	30.564	22.582	1.00	14.72
	MOTA	1292	0	GLY	A	198	48.887	31.476	22.595		14.32
	MOTA	1293	N	VAL	A	199	47.061	30.483	23.453	1.00	15.12
	MOTA	1294	CA	VAL	A	199	46.887	31.471	24.508	1.00	15.39
	MOTA	1295	CB	VAL	A	199	45.619	31.187	25.345	1.00	15.96
25	MOTA	1296	CG1	VAL	A	199	45.617	32.059	26.599	1.00	12.02
	MOTA	1297	CG2	VAL	A	199	44.371	31.445	24.505	1.00	15.82
	MOTA	1298	С	VAL	A	199	48.084	31.458	25.452	1.00	17.58
	MOTA	1299	0	VAL	A		48.561	32.511			18.81
	MOTA	1300	N	ARG	A			30.263			16.78
30	ATOM	1301	CA	ARG	A		49.709				19.56
	MOTA	1302	СВ	ARG			49.822	28.693	27.193		21.47
	MOTA	1303	CG	ARG			48.759		28.205		24.99
	MOTA	1304	CD	ARG			49.163	27.043	28.944		26.41
2.5	MOTA	1305	NE	ARG			49.109		28.092		28.52
35	MOTA	1306	CZ	ARG			48.004		27.861		30.32
	ATOM	1307		ARG			46.865		28.425		31.74
	MOTA	1308	NH2	ARG	A	200	48.037	24.102	27.069	1.00	31.33

	ATOM	1309	С	ARG A	A	200	51.052	30.549	26.098	1.00	18.41
	ATOM	1310	0	ARG A	A	200	51.892	31.109	26.805	1.00	18.76
	MOTA	1311	N	VAL A	A	201	51.258	30.281	24.815	1.00	16.94
	ATOM	1312	CA	VAL 2	A	201	52.525	30.610	24.181	1.00	14.62
5	ATOM	1313	СВ	VAL A	Α	201	52.843	29.618	23.035	1.00	15.42
	ATOM	1314	CG1	VAL 2	A	201	54.164	30.004	22.367	1.00	13.35
	MOTA	1315	CG2	VAL 3	A	201	52.919	28.188	23.585	1.00	8.55
	ATOM	1316	С	VAL 2	A	201	52.627	32.037	23.643	1.00	16.13
	ATOM	1317	0	VAL 2	A	201	53.659	32.691	23.816	1.00	13.21
10	MOTA	1318	N	LEU Z	Ą	202	51.565	32.529	23.006	1.00	15.76
	MOTA	1319	CA	LEU Z	A	202	51.598	33.875	22.445	1.00	14.49
	ATOM	1320	СВ	LEU .	A	202	51.104	33.852	20.999	1.00	15.50
	MOTA	1321	CG	LEU .	A	202	51.984	33.075	20.017	1.00	16.36
	ATOM	1322	CD1	LEU .	A	202	51.499	33.329	18.595	1.00	15.07
15	ATOM	1323	CD2	LEU .	Α	202	53.439	33.511	20.170	1.00	15.62
	ATOM	1324	С	LEU .	A	202	50.828	34.931	23.233	1.00	15.05
	ATOM	1325	0	LEU .	A	202	51.067	36.125	23.068	1.00	14.28
	MOTA	1326	N	GLY .	A	203	49.906	34.498	24.086	1.00	15.24
	MOTA	1327	CA	GLY .	A	203	49.143	35.444	24.878	1.00	16.41
20	MOTA	1328	С	GLY .	A	203	50.007	36.412	25.675	1.00	16.95
	MOTA	1329	0	GLY .	A	203	49.647	37.582	25.841	1.00	13.97
	ATOM	1330	N	PRO .	A	204	51.155	35.953	26.195	1.00	17.99
	ATOM	1331	CD	PRO .	A	204	51.561	34.543	26.328	1.00	17.43
	MOTA	1332	CA	PRO .	A	204	52.045	36.824	26.976	1.00	18.92
25	ATOM	1333	СВ	PRO	A	204	53.032	35.835	27.605	1.00	16.96
	ATOM	1334	CG	PRO .	A	204	52.254	34.545	27.658		17.45
	ATOM	1335	С	PRO .	A	204	52.761	37.885	26.132	1.00	19.12
	ATOM	1336	0	PRO .	A	204	53.361	38.820	26.672	1.00	20.34
	MOTA	1337	N	LEU	A	205	52.693	37.740	24.812	1.00	17.62
30	MOTA	1338	CA	LEU	A	205	53.355	38.676	23.901	1.00	16.92
	MOTA	1339	СВ	LEU	A	205	54.234	37.896	22.918	1.00	16.82
	MOTA	1340	CG	LEU	A	205	55.406	37.112	23.519	1.00	18.96
	MOTA	1341	CD1	LEU	A	205	55.752	35.918	22.646	1.00	16.58
	MOTA	1342	CD2	LEU	A	205	56.599	38.040	23.679	1.00	17.87
35	MOTA	1343	C	LEU	A	205	52.388	39.558	23.110	1.00	17.18
	MOTA	1344	0	LEU	A	205	52.810	40.324	22.241	1.00	16.67
	ATOM	1345	N	ALA	Α	206	51.099	39.469	23.417	1.00	16.36

	MOTA	1346	CA	ALA A	206	50.108	40.243	22.686	1.00 1	6.19
	MOTA	1347	СВ	ALA A	206	49.216	39.295	21.900	1.00 1	.6.04
	ATOM	1348	С	ALA A	. 206	49.245	41.166	23.532	1.00 1	.7.13
	ATOM	1349	0	ALA A	206	48.995	40.912	24.708	1.00 1	.8.07
5	ATOM	1350	N	ASP A	. 207	48.788	42.251	22.924	1.00 1	.7.38
	ATOM	1351	CA	ASP A	207	47.913	43.169	23.627	1.00 1	.8.09
	ATOM	1352	СВ	ASP A	207	47.941	44.542	22.964	1.00 1	.7.76
	ATOM	1353	CG	ASP A	207	49.253	45.267	23.216	1.00 2	20.83
	ATOM	1354	OD1	ASP A	207	49.628	45.409	24.400	1.00 2	22.34
10	ATOM	1355	OD2	ASP A	207	49.912	45.691	22.245	1.00 1	19.95
	ATOM	1356	С	ASP F	207	46.519	42.547	23.600	1.00 1	16.94
	MOTA	1357	0	ASP F	207	45.740	42.702	24.534	1.00 1	16.96
	MOTA	1358	N	TYR F	208	46.217	41.825	22.526	1.00 1	16.01
	MOTA	1359	CA	TYR F	208	44.941	41.136	22.420	1.00 1	16.14
15	MOTA	1360	СВ	TYR A	208	43.843	42.043	21.830	1.00 1	16.24
	ATOM	1361	CG	TYR A	208	43.913	42.321	20.340	1.00 1	16.53
	MOTA	1362	CD1	TYR A	208	44.391	43.540	19.861	1.00 1	17.20
	ATOM	1363	CE1	TYR A	208	44.403	43.824	18.504	1.00	16.56
	MOTA	1364	CD2	TYR A	208	43.454	41.388	19.414	1.00	15.47
20	MOTA	1365	CE2	TYR A	208	43.465	41.659	18.055	1.00	14.96
	ATOM	1366	CZ	TYR A	208	43.939	42.878	17.605	1.00 1	18.58
	ATOM	1367	ОН	TYR A	A 208	43.955	43.148	16.254	1.00 1	L8.48
*	MOTA	1368	С	TYR A	A 208	45.102	39.879	21.579	1.00	16.18
	MOTA	1369	0	TYR A	A 208	45.899	39.842	20.640	1.00	15.69
25	MOTA	1370	N	LEU A			38.842		1.00	16.49
	MOTA	1371	CA	LEU A	A 209	44.385			1.00	
	MOTA	1372	СВ	LEU A	A 209	44.519	36.407	22.226		
	MOTA	1373	CG	LEU A	A 209	45.850	36.202	22.939	1.00	
	MOTA	1374		LEU A		45.708	35.059	23.936	1.00	
30	MOTA	1375	CD2	LEU A	A 209	46.940	35.901	21.916	1.00	
	ATOM	1376	С	LEU A		43.082	37.413	20.479	1.00	
	MOTA	1377	0	LEU A		42.036	37.885	20.919	1.00	
	MOTA	1378	N	VAL A		43.148	36.742	19.336	1.00	
	ATOM	1379	CA	VAL A		41.962	36.525	18.525	1.00	
35	ATOM	1380	СВ	VAL A		42.105	37.155	17.122	1.00	
	ATOM	1381		VAL A		40.819	36.931	16.314	1.00	
	ATOM	1382	CG2	VAL A	A 210	42.424	38.633	17.242	1.00	13.97

	ATOM	1383	С	VAL	Α	210	41.688	35.045	18.334	1.00	18.13
	ATOM	1384	0	VAL	A	210	42.503	34.323	17.767	1.00	18.42
	ATOM	1385	N	VAL	A	211	40.545	34.589	18.826	1.00	18.92
	ATOM	1386	CA	VAL	A	211	40.168	33.198	18.638	1.00	18.84
5	ATOM	1387	СВ	VAL	A	211	39.141	32.732	19.691	1.00	17.39
	ATOM	1388	CG1	VAL	A	211	38.712	31.309	19.395	1.00	14.12
	ATOM	1389	CG2	VAL	A	211	39.741	32.826	21.086	1.00	17.05
	MOTA	1390	С	VAL	Α	211	39.514	33.164	17.256	1.00	19.52
	MOTA	1391	0	VAL	A	211	38.355	33.554	17.100	1.00	18.05
10	MOTA	1392	N	ASN	A	212	40.265	32.728	16.250	1.00	19.73
	ATOM	1393	CA	ASN	A	212	39.725	32.665	14.904	1.00	20.91
	ATOM	1394	СВ	ASN	A	212	40.835	32.725	13.858	1.00	19.36
	MOTA	1395	CG	ASN	A	212	40.287	32.677	12.448	1.00	18.94
	MOTA	1396	OD1	ASN	A	212	39.074	32.682	12.253	1.00	19.73
15	ATOM	1397	ND2	ASN	A	212	41.169	32.632	11.461	1.00	18.71
	ATOM	1398	С	AȘN	A	212	38.924	31.388	14.714	1.00	22.66
	ATOM	1399	0	ASN	A	212	39.479	30.291	14.606	1.00	23.56
	ATOM	1400	N	VAL	A	213	37.610	31.538	14.660	1.00	21.24
	ATOM	1401	CA	VAL	A	213	36.744	30.387	14.499	1.00	22.82
20	MOTA	1402	СВ	VAL	A	213	35.893	30.196	15.768	1.00	23.98
	ATOM	1403	CG1	VAL	A	213	34.778	31.242	15.822	1.00	23.80
	ATOM	1404	CG2	VAL	A	213	35.343	28.811	15.800	1.00	27.23
	ATOM	1405	С	VAL	A	213	35.838	30.579	13.282	1.00	21.82
	MOTA	1406	0	VAL	A	213	34.813	29.904	13.134	1.00	21.63
25	ATOM	1407	N	SER	A	214	36.243	31.492	12.402	1.00	21.12
	ATOM	1408	CA	SER	A	214	35.468	31.811	11.211	1.00	19.76
	ATOM	1409	СВ	SER	A	214	35.010	33.270	11.273	1.00	19.69
	ATOM	1410	OG	SER	A	214	36.100	34.142	11.527	1.00	15.15
	ATOM	1411	С	SER	A	214	36.181	31.556	9.887	1.00	20.87
30	MOTA	1412	0	SER	Α	214	35.712	31.995	8.837	1.00	18.78
	MOTA	1413	N	SER	A	215	37.311	30.859	9.921	1.00	22.57
	MOTA	1414	CA	SER	A	215	38.012	30.570	8.678	1.00	23.58
	MOTA	1415	СВ	SER	A	215	39.388	29.976	8.951		25.79
_	ATOM	1416	OG	SER	Α	215	40.016	29.608	7.732		25.68
35	MOTA	1417	С	SER	A	215	37.187	29.571	7.874	1.00	24.56
	MOTA	1418	0	SER	A	215	36.750	28.544	8.393	1.00	24.98
	ATOM	1419	N	PRO	A	216	36.955	29.866	6.591	1.00	26.27

	MOTA	1420	CD	PRO P	A :	216	37.219	31.148	5.908	1.00	24.27
	ATOM	1421	CA	PRO A	Α :	216	36.174	28.969	5.737	1.00	27.15
	MOTA	1422	СВ	PRO P	Α.	216	35.594	29.921	4.703	1.00	26.46
	MOTA	1423	CG	PRO P	A .	216	36.739	30.875	4.492	1.00	24.79
5	MOTA	1424	С	PRO P	Α.	216	37.035	27.897	5.084	1.00	28.49
	MOTA	1425	0	PRO F	4	216	36.519	27.019	4.398	1.00	30.31
	MOTA	1426	N	ASN A	Ā	217	38.345	27.966	5.308	1.00	30.00
	MOTA	1427	CA	ASN A	Ą	217	39.270	27.026	4.686	1.00	31.48
	MOTA	1428	СВ	ASN A	A	217	40.438	27.803	4.080	1.00	31.24
10	MOTA	1429	CG	ASN A	Ą	217	39.969	28.926	3.176	1.00	32.97
	ATOM	1430	OD1	ASN A	Ą	217	39.213	28.699	2.230	1.00	33.41
	ATOM	1431	ND2	ASN A	Ą	217	40.410	30.147	3.465	1.00	32.16
	ATOM	1432	С	ASN A	Ą	217	39.792	25.889	5.554	1.00	32.38
	MOTA	1433	0	ASN A	Ą	217	40.776	25.234	5.204	1.00	31.80
15	MOTA	1434	N	THR A	Ą	218	39.135	25.658	6.685	1.00	33.60
	ATOM	1435	CA	THR A	Ą	218	39.507	24.567	7.581	1.00	34.67
	MOTA	1436	СВ	THR A	Ą	218	40.182	25.079	8.875	1.00	35.71
	MOTA	1437	OG1	THR A	A	218	41.502	25.553	8.574	1.00	34.15
	MOTA	1438	CG2	THR A	Ą	218	40.276	23.961	9.902	1.00	34.11
20	ATOM	1439	С	THR A	Ą	218	38.231	23.809	7.933	1.00	35.34
	ATOM	1440	0	THR A	Ą	218	37.313	24.365	8.539	1.00	35.59
	MOTA	1441	N	ALA A	Ą	219	38.182	22.541	7.531	1.00	35.68
	MOTA	1442	CA	ALA A	Ą	219	37.027	21.677	7.761	1.00	35.27
	MOTA	1443	СВ	ALA A	Ą	219	37.366	20.243	7.356	1.00	33.44
25	MOTA	1444	С	ALA A	4	219	36.482	21.693	9.185	1.00	35.21
	MOTA	1445	0	ALA A	Ą	219	37.205	21.424	10.145	1.00	35.80
	ATOM	1446	N	GLY A	Ą	220	35.196	22.013	9.304	1.00	35.33
	ATOM	1447	CA	GLY A	Ą	220	34.533	22.038	10.598	1.00	35.53
	ATOM	1448	С	GLY A	A	220	34.909	23.125	11.589	1.00	35.22
30	ATOM	1449	0	GLY A	A	220	34.434	23.102	12.723	1.00	35.56
	ATOM	1450	N	LEU A	Ą	221	35.743	24.079	11.183	1.00	34.69
	ATOM	1451	CA	LEU A	A	221	36.157	25.148	12.088	1.00	34.37
	ATOM	1452	СВ	LEU A	Ą	221	37.303	25.961	11.478	1.00	34.53
	ATOM	1453	CG	LEU A	A	221	37.918	26.976	12.450	1.00	34.35
35	ATOM	1454	CD1	LEU A	A.	221	38.857	26.238	13.396	1.00	35.01
	ATOM	1455	CD2	LEU A	A	221	38.671	28.060	11.695	1.00	33.25
	MOTA	1456	С	LEU A	Ą	221	35.012	26.095	12.443	1.00	34.00

	ATOM	1457	0	LEU	Α	221	34.831	26.462	13.605	1.00	34.07
	ATOM	1458	N	ARG	Α	222	34.240	26.491	11.438	1.00	34.48
	ATOM	1459	CA	ARG	Α	222	33.124	27.404	11.650	1.00	34.48
	ATOM	1460	СВ	ARG	A	222	32.544	27.837	10.304	1.00	34.91
5	ATOM	1461	CG	ARG	A	222	33.445	28.786	9.525	1.00	35.80
	ATOM	1462	CD	ARG	A	222	32.870	29.056	8.148	1.00	38.02
	ATOM	1463	NE	ARG	A	222	32.938	27.873	7.293	1.00	38.82
	MOTA	1464	CZ	ARG	Α	222	32.210	27.700	6.195	1.00	39.23
	MOTA	1465	NH1	ARG	A	222	31.349	28.635	5.812	1.00	37.27
10	MOTA	1466	NH2	ARG	Α	222	32.348	26.593	5.476	1.00	38.53
	ATOM	1467	С	ARG	A	222	32.018	26.836	12.536	1.00	34.30
	ATOM	1468	0	ARG	A	222	31.224	27.592	13.100	1.00	33.00
	ATOM	1469	N	SER	A	223	31.963	25.514	12.665	1.00	34.10
	MOTA	1470	CA	SER	Α	223	30.940	24.892	13.498	1.00	33.94
15	ATOM	1471	СВ	SER	Α	223	30.930	23.371	13.311	1.00	32.71
	MOTA	1472	OG	SER	A	223	32.106	22.778	13.831	1.00	36.35
	MOTA	1473	С	SER	A	223	31.212	25.236	14.959	1.00	33.63
	MOTA	1474	0	SER	A	223	30.335	25.103	15.814	1.00	32.92
	ATOM	1475	N	LEU	A	224	32.433	25.683	15.240	1.00	33.63
20	MOTA	1476	CA	LEU	A	224	32.806	26.062	16.598	1.00	34.04
	MOTA	1477	СВ	LEU	A	224	34.328	26.196	16.721	1.00	33.19
	MOTA	1478	CG	LEU	A	224	35.192	24.950	16.506	1.00	34.59
	MOTA	1479	CD1	LEU	A	224	36.664	25.336	16.506	1.00	31.62
	MOTA	1480	CD2	LEU	A	224	34.900	23.932	17.599	1.00	31.62
25	MOTA	1481	С	LEU	Α	224	32.135	27.384	16.974		33.88
	MOTA	1482	0	LEU			32.244	27.845	18.110		33.46
	MOTA	1483	N	GLN	A	225	31.452		16.011		
	MOTA	1484	CA	GLN			30.751	29.251	16.270		35.35
•	MOTA	1485	СВ	GLN			30.539	30.046	14.970		34.80
30	ATOM	1486	CG	GLN			31.825	30.373	14.212		35.04
	MOTA	1487	CD	GLN			31.583	31.194	12.951		34.62
	ATOM	1488		GLN			31.541	32.428	12.991		32.02
	ATOM	1489		GLN			31.410	30.508	11.824		32.11
2.5	ATOM	1490	С	GLN			29.402	28.920	16.910		34.70
35	ATOM	1491	0	GLN			28.696	29.809	17.386		34.24
	ATOM	1492	N	GLY			29.055	27.634	16.917		34.70
	ATOM	1493	CA	GLY	A	226	27.802	27.198	17.516	1.00	34.95

	ATOM	1494	С	GLY	Α	226	27.786	27.497	19.005	1.00	35.26
	ATOM	1495	0	GLY	Α	226	28.831	27.463	19.654	1.00	36.21
	ATOM	1496	N	LYS	Α	227	26.604	27.772	19.549	1.00	34.42
	ATOM	1497	CA	LYS	Α	227	26.453	28.116	20.964	1.00	34.17
5	ATOM	1498	СВ	LYS	Α	227	24.968	28.234	21.321	1.00	32.71
	ATOM	1499	CG	LYS	Α	227	24.712	28.922	22.658	1.00	32.69
	MOTA	1500	CD	LYS	Α	227	23.236	29.227	22.852	1.00	32.86
	ATOM	1501	CE	LYS	Α	2:27	22.974	29.932	24.175	1.00	34.60
	ATOM	1502	NZ	LYS	Α	227	23.622	31.274	24.244	1.00	37.35
10	ATOM	1503	С	LYS	A	227	27.142	27.193	21.968	1.00	34.30
	ATOM	1504	0	LYS	A	227	27.965	27.648	22.764	1.00	33.44
	MOTA	1505	N	ALA	A	228	26.807	25.906	21.942	1.00	34.25
	ATOM	1506	CA	ALA	A	228	27.403	24.950	22.877	1.00	35.39
	MOTA	1507	СВ	ALA	Α	228	26.742	23.585	22.722	1.00	33.05
15	MOTA	1508	С	ALA	A	228	28.912	24.822	22.681	1.00	35.36
	MOTA	1509	0	ALA	A	228	29.685	24.947	23.629	1.00	34.05
	MOTA	1510	N	GLU	A	229	29.322	24.566	21.443	1.00	36.97
	MOTA	1511	CA	GLU	A	229	30.733	24.424	21.108	1.00	38.17
	MOTA	1512	СВ	GLU	Α	229	30.885	24.141	19.608	1.00	42.08
20	MOTA	1513	CG	GLU	A	229	31.463	22.771	19.271	1.00	48.40
	MOTA	1514	CD	GLU	Α	229	31.399	22.459	17.782	1.00	51.77
	ATOM	1515	OE1	GLU	A	229	30.279	22.273	17.258	1.00	54.82
	ATOM	1516	OE2	GLU	A	229	32.467	22.402	17.133	1.00	53.10
	MOTA	1517	С	GLU	A	229	31.506	25.691	21.470	1.00	35.95
25	MOTA	1518	0	GLU	A	229	32.587	25.627	22.052	1.00	36.51
	MOTA	1519	N	LEU	Α	230	30.935	26.842	21.133	1.00	33.64
	ATOM	1520	CA	LEU	A	230	31.573	28.123	21.399	1.00	30.71
	MOTA	1521	СВ	LEU	Α	230	30.768	29.265	20.763	1.00	28.43
	MOTA	1522	CG	LEU	A	230	31.388	30.665	20.836	1.00	26.75
30	MOTA	1523 -	CD1	LEU	A	230	32.723	30.679	20.096	1.00	24.08
	ATOM	1524	CD2	LEU	A	230	30.438	31.680	20.223	1.00	26.42
	ATOM	1525	С	LEU	A	230	31.751	28.401	22.884	1.00	29.09
	ATOM	1526	0	LEU	A	230	32.787	28.918	23.300	1.00	28.84
	ATOM	1527	N	ARG	A	231	30.745	28.065	23.684	1.00	28.50
35	ATOM	1528	CA	ARG	A	231	30.820	28.312	25.118	1.00	28.34
	ATOM	1529	СВ	ARG	A	231	29.473	28.016	25.787	1.00	29.52
	ATOM	1530	CG	ARG	Α	231	29.427	28.407	27.260	1.00	32.29

	ATOM	1531	CD	ARG A	231	28.148	27.937	27.936	1.00 36.19
	ATOM	1532	NE	ARG A	231	26.969	28.685	27.506	1.00 38.72
	ATOM	1533	CZ	ARG A	231	25.885	28.128	26.974	1.00 39.27
	ATOM	1534	NH1	ARG A	231	25.833	26.815	26.799	1.00 40.30
5	ATOM	1535	NH2	ARG A	231	24.848	28.881	26.632	1.00 38.91
	ATOM	1536	С	ARG A	231	31.925	27.492	25.788	1.00 27.28
	ATOM	1537	0	ARG A	231	32.681	28.015	26.601	1.00 25.62
	ATOM	1538	N	ARG A	232	32.014	26.210	25.448	1.00 27.02
	ATOM	1539	CA	ARG A	232	33.035	25.343	26.026	1.00 28.51
10	ATOM	1540	СВ	ARG A	232	32.813	23.887	25.603	1.00 31.69
	ATOM	1541	CG	ARG A	232	33.898	22.937	26.103	1.00 37.81
	MOTA	1542	CD	ARG A	232	33.653	21.483	25.692	1.00 42.26
	MOTA	1543	NE	ARG A	232	32.323	21.016	26.081	1.00 46.87
	MOTA	1544	CZ	ARG A	232	31.239	21.131	25.318	1.00 49.45
15	ATOM	1545	NH1	ARG A	232	31.329	21.691	24.118	1.00 49.90
	ATOM	1546	NH2	ARG A	232	30.064	20.697	25.758	1.00 49.90
	ATOM	1547	С	ARG A	. 232	34.421	25.793	25.584	1.00 26.98
	MOTA	1548	0	ARG A	. 232	35.372	25.776	26.363	1.00 26.34
	ATOM	1549	N	LEU A	233	34.529	26.196	24.324	1.00 25.27
20	ATOM	1550	CA	LEU A	. 233	35.796	26.657	23.782	1.00 24.87
	ATOM	1551	СВ	LEU A	233	35.655	26.912	22.282	1.00 25.82
	ATOM	1552	CG	LEU A	. 233	36.829	27.628	21.615	1.00 26.85
	MOTA	1553	CD1	LEU A	233	38.077	26.783	21.734	1.00 28.70
	ATOM	1554	CD2	LEU F	233	36.500	27.896	20.161	1.00 28.50
25	MOTA	1555	С	LEU F	233	36.285	27.932	24.475	1.00 24.30
	MOTA	1556	0	LEU F	233	37.423	27.995	24.943	1.00 22.17
	MOTA	1557	N	LEU F	234	35.417	28.939		1.00 22.83
	MOTA	1558	CA	LEU F	234	35.767	30.222	25.153	1.00 22.68
	MOTA	1559	CB	LEU F	234	34.721	31.278	24.782	1.00 23.83
30	MOTA	1560	CG	LEU F	234	34.666	31.550	23.275	1.00 26.75
	ATOM	1561	CD1	LEU A	234	33.574	32.559	22.952	1.00 28.02
	MOTA	1562	CD2	LEU A	234	36.025	32.053	22.815	1.00 26.81
	MOTA	1563	С	LEU F	234	35.956	30.183	26.665	1.00 21.66
	MOTA	1564	0	LEU F	234	36.697	30.991	27.221	1.00 20.64
35	MOTA	1565	N	THR A	235	35.286	29.257	27.336	1.00 21.48
	MOTA	1566	CA	THR A	235	35.447	29.143	28.779	1.00 22.71
	MOTA	1567	СВ	THR A	235	34.468	28.115	29.378	1.00 23.15

	ATOM	1568	OG1	THR A	235	33.136	28.640	29.321	1.00	24.32
	ATOM	1569	CG2	THR A	235	34.833	27.812	30.824	1.00	20.23
	ATOM	1570	С	THR A	235	36.882	28.701	29.075	1.00	21.92
	ATOM	1571	0	THR A	235	37.530	29.227	29.980	1.00	22.20
5	ATOM	1572	N	LYS A	236	37.371	27.743	28.293	1.00	19.41
	ATOM	1573	CA	LYS A	236	38.724	27.233	28.456	1.00	21.47
	ATOM	1574	СВ	LYS F	236	38.906	25.956	27.634	1.00	23.11
	ATOM	1575	CG	LYS A	236	40.249	25.277	27.855	1.00	30.29
	ATOM	1576	CD	LYS A	236	40.274	23.875	27.258	1.00	32.54
10	ATOM	1577	CE	LYS A	236	41.569	23.162	27.600	1.00	35.14
	ATOM	1578	NZ	LYS A	236	41.531	21.727	27.194	1.00	38.21
	ATOM	1579	С	LYS A	236	39.766	28.276	28.043	1.00	20.48
	ATOM	1580	0	LYS A	236	40.778	28.455	28.720	1.00	19.24
	ATOM	1581	N	VAL A	237	39.512	28.966	26.937	1.00	19.58
15	ATOM	1582	CA	VAL A	237	40.425	29.997	26.456	1.00	19.48
	ATOM	1583	СВ	VAL A	237	39.911	30.614	25.138	1.00	19.06
	ATOM	1584	CG1	VAL A	237	40.647	31.918	24.836	1.00	15.24
	ATOM	1585	CG2	VAL A	237	40.104	29.621	24.003	1.00	17.14
	ATOM	1586	С	VAL A	237	40.587	31.104	27.495	1.00	20.14
20	MOTA	1587	0	VAL A	237	41.708	31.499	27.826	1.00	20.24
	MOTA	1588	N	LEU A	238	39.462	31.594	28.010	1.00	20.89
	ATOM	1589	CA	LEU P	238	39.462	32.657	29.013	1.00	21.10
	ATOM	1590	CB	LEU P	238	38.032	33.116	29.296	1.00	19.72
	ATOM	1591	CG	LEU F	238	37.359	33.891	28.159	1.00	21.61
25	ATOM	1592	CD1	LEU P	238	35.889	34.122	28.486	1.00	21.43
	ATOM	1593	CD2	LEU P	238	38.079	35.218	27.956		21.42
	MOTA	1594	С	LEU F	238	40.132	32.228			
	MOTA	1595	0	LEU F		40.772	33.041	30.989		20.34
	MOTA	1596	N	GLN A		39.986	30.954	30.669		21.87
30	MOTA	1597	CA	GLN A		40.601	30.446	31.888		22.65
	MOTA	1598	СВ	GLN A		40.119	29.023	32.185		24.73
	MOTA	1599	CG	GLN A		40.644	28.468	33.500		29.71
	ATOM	1600	CD	GLN A		40.120	27.073	33.799		36.85
2.5	MOTA	1601		GLN A		38.906	26.850	33.859		40.00
35	MOTA	1602		GLN A		41.033	26.126	33.991		35.90
	MOTA	1603	С	GLN A		42.122	30.460	31.739		20.03
	ATOM	1604	0	GLN A	239	42.839	30.880	32.645	1.00	20.49

	ATOM	1605	N	GLU	Α	240	42.611	29.996	30.596	1.00	19.71
	ATOM	1606	CA	GLU	A	240	44.049	29.985	30.344	1.00	20.04
	ATOM	1607	СВ	GLU	Α	240	44.346	29.343	28.989	1.00	21.58
	ATOM	1608	CG	GLU	A	240	44.001	27.864	28.918	1.00	28.50
5	ATOM	1609	CD	GLU	Α	240	44.957	26.990	29.720	1.00	32.28
	ATOM	1610	OE1	GLU	Α	240	44.689	25.775	29.834	1.00	36.62
	ATOM	1611	OE2	GLU	Α	240	45.980	27.504	30.225	1.00	32.81
	ATOM	1612	С	GLU	A	240	44.566	31.424	30.358	1.00	19.32
	ATOM	1613	0	GLU	A	240	45.654	31.697	30.860	1.00	20.01
10	MOTA	1614	N	ARG	Α	241	43.767	32.337	29.811	1.00	17.04
	MOTA	1615	CA	ARG	A	241	44.120	33.750	29.754	1.00	17.15
	ATOM	1616	СВ	ARG	A	241	43.081	34.504	28.914	1.00	15.66
	ATOM	1617	CG	ARG	Α	241	43.402	35.966	28.629	1.00	15.53
	ATOM	1618	CD	ARG	A	241	43.191	36.870	29.840	1.00	13.45
15	ATOM	1619	NE	ARG	Α	241	41.804	36.911	30.299	1.00	15.41
	MOTA	1620	CZ	ARG	Α	241	40.832	37.624	29.731	1.00	16.80
	ATOM	1621	NH1	ARG	Α	241	39.605	37.584	30.236	1.00	14.85
	ATOM	1622	NH2	ARG	A	241	41.077	38.384	28.669	1.00	13.90
	MOTA	1623	С	ARG	A	241	44.218	34.369	31.149	1.00	18.11
20	ATOM	1624	0	ARG	A	241	45.172	35.090	31.445	1.00	16.96
	ATOM	1625	N	ASP	A	242	43.234	34.093	32.004	1.00	18.89
	MOTA	1626	CA	ASP	A	242	43.233	34.643	33.358	1.00	18.99
	ATOM	1627	СВ	ASP	A	242	41.902	34.352	34.071	1.00	18.23
	MOTA	1628	CG	ASP	A	242	40.708	35.016	33.391	1.00	20.88
25	MOTA	1629	OD1	ASP	Α	242	40.884	36.078	32.759	1.00	20.84
	MOTA	1630	OD2	ASP	A	242	39.583	34.484	33.506	1.00	20.07
	MOTA	1631	С	ASP	A	242	44.393	34.097	34.196	1.00	18.74
	MOTA	1632	0	ASP	Α	242	44.788	34.709	35.188	1.00	18.25
	MOTA	1633	N	GLY	A	243	44.939	32.955	33.789	1.00	17.54
30	MOTA	1634	CA	GLY	A	243	46.050	32.365	34.517	1.00	17.70
	MOTA	1635	С	GLY	A	243	47.396	33.010	34.212		18.91
	MOTA	1636	0	GLY	A	243	48.415	32.658	34.813		18.37
	ATOM	1637	N	LEU	A	244	47.417	33.954	33.277		18.18
	ATOM	1638	CA	LEU			48.665	34.629	32.930		19.11
35	MOTA	1639	СВ	LEU	A	244	48.623	35.130	31.481		16.84
	MOTA	1640	CG	LEU	A	244	48.395	34.083	30.391		17.33
	ATOM	1641	CD1	LEU	A	244	48.265	34.771	29.046	1.00	16.03

	ATOM	1642	CD2	LEU A	244	49.545	33.085	30.388	1.00 18.05
	ATOM	1643	С	LEU A	244	48.908	35.810	33.864	1.00 19.01
	ATOM	1644	0	LEU A	244	47.964	36.402	34.387	1.00 18.42
	ATOM	1645	N	ARG A	245	50.176	36.147	34.073	1.00 19.39
5	ATOM	1646	CA	ARG A	245	50.523	37.272	34.930	1.00 20.56
	ATOM	1647	СВ	ARG A	245	52.046	37.354	35.091	1.00 19.53
	MOTA	1648	CG	ARG A	245	52.602	36.290	36.052	1.00 19.09
	ATOM	1649	CD	ARG A	245	54.072	35.987	35.813	1.00 18.19
	ATOM	1650	NE	ARG A	245	54.973	37.051	36.252	1.00 19.29
10	ATOM	1651	CZ	ARG A	245	55.412	37.201	37.499	1.00 19.63
	MOTA	1652	NH1	ARG A	245	56.233	38.201	37.796	1.00 15.65
	MOTA	1653	NH2	ARG A	245	55.036	36.350	38.449	1.00 17.09
	ATOM	1654	С	ARG A	245	49.951	38.569	34.353	1.00 22.53
	MOTA	1655	0	ARG A	245	49.890	38.748	33.133	1.00 21.12
15	MOTA	1656	N	ARG A	246	49.525	39.456	35.250	1.00 25.32
	MOTA	1657	CA	ARG A	246	48.920	40.747	34.914	1.00 27.15
	MOTA	1658	СВ	ARG A	246	49.004	41.683	36.124	1.00 30.54
	ATOM	1659	CG	ARG A	246	48.337	41.129	37.369	1.00 37.47
	MOTA	1660	CD	ARG A	246	46.817	41.284	37.328	1.00 41.51
20	MOTA	1661	NE	ARG A	246	46.136	40.393	38.270	1.00 41.54
	ATOM	1662	CZ	ARG A	246	46.497	40.210	39.536	1.00 40.36
	MOTA	1663	NH1	ARG A	246	47.545	40.851	40.037	1.00 39.56
	ATOM	1664	NH2	ARG A	246	45.806	39.382	40.305	1.00 41.42
	ATOM	1665	С	ARG A	246	49.442	41.490	33.687	1.00 26.72
25	MOTA	1666	0	ARG A	246	48.677	41.765	32.762	1.00 26.83
	MOTA	1667	N	VAL A	247	50.730	41.829	33.672	1.00 24.53
	ATOM	1668	CA	VAL A	247	51.277	42.569	32.538	1.00 24.80
	ATOM	1669	СВ	VAL A	247	52.717	43.100	32.833	1.00 26.08
	ATOM	1670	CG1	VAL A	247	52.681	44.081	34.000	1.00 23.05
30	ATOM	1671	CG2	VAL A	247	53.653	41.955	33.144	1.00 26.28
	ATOM	1672	С	VAL A	247	51.285	41.778	31.233	1.00 24.65
	ATOM	1673	0	VAL A	247	51.421	42.354	30.155	1.00 26.53
	ATOM	1674	N	HIS A	248	51.117	40.463	31.331	1.00 23.77
	ATOM	1675	CA	HIS A	248	51.114	39.592	30.156	1.00 22.18
35	ATOM	1676	СВ	HIS A	248	52.113	38.451	30.365	1.00 21.01
	ATOM	1677	CG	HIS A	248	53.530	38.911	30.488	1.00 21.43
	ATOM	1678	CD2	HIS A	248	54.309	39.116	31.576	1.00 21.00

	ATOM	1679	ND1	HIS A	248	54.285	39.292	29.399	1.00	20.19
	MOTA	1680	CE1	HIS A	248	55.466	39.715	29.812	1.00	21.23
	ATOM	1681	NE2	HIS A	248	55.506	39.619	31.129	1.00	21.42
	ATOM	1682	С	HIS A	248	49.730	39.011	29.877	1.00	21.79
5	ATOM	1683	0	HIS A	248	49.606	37.986	29.205	1.00	20.09
	ATOM	1684	N	ARG A	249	48.697	39.677	30.384	1.00	20.02
	MOTA	1685	CA	ARG A	249	47.321	39.218	30.215	1.00	21.28
	ATOM	1686	СВ	ARG A	249	46.593	39.354	31.553	1.00	21.65
	ATOM	1687	CG	ARG A	249	45.352	38.510	31.701	1.00	23.99
10	MOTA	1688	CD	ARG A	249	44.761	38.702	33.092	1.00	25.10
	MOTA	1689	NE	ARG A	249	45.644	38.192	34.136	1.00	25.46
	MOTA	1690	CZ	ARG A	249	45.657	38.631	35.390	1.00	26.82
	MOTA	1691	NH1	ARG A	249	44.838	39.601	35.769	1.00	26.65
	MOTA	1692	NH2	ARG A	. 249	46.487	38.092	36.272	1.00	28.01
15	MOTA	1693	С	ARG A	249	46.585	40.002	29.115	1.00	21.29
	MOTA	1694	0	ARG A	249	46.166	41.144	29.315	1.00	20.84
	MOTA	1695	N	PRO P	250	46.405	39.382	27.938	1.00	19.97
	MOTA	1696	CD	PRO F	250	46.882	38.037	27.565	1.00	19.93
	MOTA	1697	CA	PRO F	250	45.728	40.015	26.805	1.00	19.36
20	ATOM	1698	СВ	PRO F	250	46.268	39.231	25.621	1.00	17.55
	MOTA	1699	CG	PRO F	250	46.266	37.837	26.173	1.00	18.15
	ATOM	1700	С	PRO F	250	44.202	39.976	26.834	1.00	19.85
	ATOM	1701	0	PRO F	250	43.586	39.166	27.541	1.00	18.01
	ATOM	1702	N	ALA A	251	43.603	40.868	26.052	1.00	18.13
25	ATOM	1703	CA	ALA A	251	42.158	40.914	25.916	1.00	17.04
	ATOM	1704	СВ	ALA A	251	41.730	42.233	25.293	1.00	15.49
	ATOM	1705	С	ALA A	251	41.862	39.761	24.958	1.00	16.50
	ATOM	1706	0	ALA A	251	42.714	39.395	24.142		15.91
	ATOM	1707	N	VAL A	252	40.675	39.178	25.059	1.00	15.16
30	ATOM	1708	CA	VAL A		40.318	38.081	24.174	1.00	16.05
	MOTA	1709	СВ	VAL A	252	39.994	36.794	24.971		17.17
	ATOM	1710	CG1	VAL A	252	39.431	35.727	24.033		13.39
	ATOM	1711	CG2	VAL A	252	41.260	36.279	25.668		14.93
	MOTA	1712	С	VAL A		39.121	38.436	23.296		17.27
35	ATOM	1713	0	VAL A		38.048		23.791		17.33
	ATOM	1714	N	LEU A		39.322		21.984		17.39
	MOTA	1715	CA	LEU A	A 253	38.261	38.659	21.030	1.00	16.46

	ATOM	1716	СВ	LEU A	253	38.670	39.792	20.082	1.00	16.40
	ATOM	1717	CG	LEU A	253	38.850	41.201	20.660	1.00	17.88
	ATOM	1718	CD1	LEU A	253	40.172	41.298	21.409	1.00	18.95
	ATOM	1719	CD2	LEU A	253	38.818	42.212	19.530	1.00	17.21
5	MOTA	1720	С	LEU A	253	37.987	37.397	20.224	1.00	16.20
	MOTA	1721	0	LEU A	253	38.817	36.489	20.186	1.00	15.34
	MOTA	1722	N	VAL A	254	36.817	37.345	19.595	1.00	15.06
	MOTA	1723	CA	VAL A	254	36.424	36.212	18.768	1.00	15.95
	MOTA	1724	СВ	VAL A	254	35.152	35.510	19.335	1.00	17.77
10	ATOM	1725	CG1	VAL A	254	34.647	34.452	18.363	1.00	18.39
	ATOM	1726	CG2	VAL A	254	35.471	34.858	20.671	1.00	17.11
	MOTA	1727	С	VAL A	254	36.136	36.737	17.363	1.00	15.21
	MOTA	1728	0	VAL A	254	35.395	37.697	17.197	1.00	16.49
	MOTA	1729	N	LYS A	255	36.739	36.120	16.355	1.00	15.79
15	MOTA	1730	CA	LYS A	255	36.526	36.546	14.978	1.00	15.67
	MOTA	1731	СВ	LYS A	255	37.831	36.464	14.181	1.00	14.99
	MOTA	1732	CG	LYS A	255	37.716	36.986	12.763	1.00	16.27
	ATOM	1733	CD	LYS A	255	39.091	37.270	12.164	1.00	17.90
	MOTA	1734	CE	LYS A	255	38.977	37.918	10.785	1.00	16.12
20	MOTA	1735	NZ	LYS A	255	40.306	38.385	10.305	1.00	17.24
	MOTA	1736	С	LYS A	255	35.464	35.660	14.343	1.00	17.11
	ATOM	1737	0	LYS A	255	35.618	34.437	14.262	1.00	15.75
	ATOM	1738	N	ILE A	256	34.389	36.288	13.883	1.00	15.78
	ATOM	1739	CA	ILE A	256	33.284	35.555	13.294	1.00	15.09
25	ATOM	1740	СВ	ILE A	256	31.970	35.932	13.992	1.00	14.37
	ATOM	1741	CG2	ILE A	256	32.129	35.743	15.489	1.00	14.88
	ATOM	1742	CG1	ILE A	256	31.611	37.391	13.687	1.00	13.35
	ATOM	1743	CD1	ILE A	256	30.324	37.871	14.348	1.00	10.32
	ATOM	1744	С	ILE A	256	33.119	35.753	11.794	1.00	15.04
30	ATOM	1745	0	ILE A	256	33.681	36.678	11.203	1.00	12.31
	ATOM	1746	N	ALA A	257	32.335	34.869	11.189	1.00	14.83
	ATOM	1747	CA	ALA A	257	32.074	34.922	9.758	1.00	18.10
	ATOM	1748	СВ	ALA A	257	31.756	33.517	9.236	1.00	19.52
	ATOM	1749	С	ALA A	257	30.922	35.868	9.426	1.00	18.66
35	ATOM	1750	0	ALA A	257	30.195	36.328	10.310	1.00	18.10
	ATOM	1751	N	PRO A	258	30.771	36.194	8.135	1.00	18.73
	MOTA	1752	CD	PRO A	258	31.860	36.055	7.148	1.00	17.46

	ATOM	1753	CA	PRO A	258	29.722	37.075	7.621	1.00 19.04
	ATOM	1754	СВ	PRO A	258	30.441	37.839	6.524	1.00 17.64
	MOTA	1755	CG	PRO A	258	31.295	36.767	5.926	1.00 16.87
	MOTA	1756	С	PRO A	258	28.571	36.234	7.059	1.00 21.92
5	MOTA	1757	0	PRO A	258	27.612	36.769	6.500	1.00 22.89
	ATOM	1758	N	ASP A	259	28.677	34.915	7.214	1.00 21.14
	MOTA	1759	CA	ASP A	259	27.668	33.995	6.699	1.00 22.52
	MOTA	1760	СВ	ASP A	259	28.346	32.914	5.849	1.00 20.83
	MOTA	1761	CG	ASP A	259	29.371	33.489	4.889	1.00 22.44
10	MOTA	1762	OD1	ASP A	259	29.029	34.444	4.159	1.00 19.29
	MOTA	1763	OD2	ASP A	259	30.518	32.985	4.861	1.00 22.71
	MOTA	1764	С	ASP A	. 259	26.849	33.333	7.803	1.00 23.56
	MOTA	1765	0	ASP A	. 259	26.277	32.265	7.605	1.00 24.81
	MOTA	1766	N	LEU A	260	26.790	33.975	8.963	1.00 23.55
15	ATOM	1767	CA	LEU A	260	26.048	33.440	10.097	1.00 22.28
	MOTA	1768	CB	LEU P	260	26.566	34.064	11.397	1.00 22.44
	MOTA	1769	CG	LEU F	260	28.031	33.801	11.760	1.00 24.01
	MOTA	1770	CD1	LEU P	260	28.439	34.667	12.947	1.00 25.25
	ATOM	1771	CD2	LEU F	260	28.215	32.329	12.079	1.00 22.47
20	ATOM	1772	С	LEU F	260	24.552	33.705	9.978	1.00 21.83
	ATOM	1773	0	LEU F	2 6,0	24.140	34.741	9.461	1.00 23.40
	ATOM	1774	N	THR F	261	23.742	32.764	10.453	1.00 20.47
	ATOM	1775	CA	THR A	261	22.291	32.925	10.433	1.00 19.70
	ATOM	1776	СВ	THR F	261	21.558	31.590	10.712	1.00 18.67
25	ATOM	1777	OG1	THR A	261	21.930	31.106	12.011	1.00 18.39
	ATOM	1778	CG2	THR A	261	21.908	30.545	9.665	1.00 12.17
	ATOM	1779	С	THR A	261	21.951	33.882	11.576	1.00 21.78
	ATOM	1780	0	THR A	261	22.805	34.185	12.411	1.00 22.78
	MOTA	1781	N	SER A	262	20.714	34.361	11.619	1.00 21.77
30	ATOM	1782	CA	SER A	262	20.312	35.256	12.696	1.00 22.54
	ATOM	1783	СВ	SER A	262	18.882	35.748	12.474	1.00 23.02
	MOTA	1784	OG	SER A	262	18.810	36.562	11.322	1.00 26.73
	ATOM	1785	С	SER A	1 262	20.403	34.525	14.038	1.00 22.61
	ATOM	1786	0	SER A	262	20.634	35.143	15.076	1.00 21.53
35	MOTA	1787	N	GLN A	263	20.222	33.208	14.007	1.00 21.94
	ATOM	1788	CA	GLN A	263	20.291	32.400	15.219	1.00 22.83
	MOTA	1789	CB	GLN A	263	19.786	30.981	14.944	1.00 23.57

	ATOM	1790	CG	GLN	A	263	19.863	30.049	16.148	1.00	30.01
	ATOM	1791	CD	GLN	Α	263	18.723	30.250	17.133	1.00	31.49
	ATOM	1792	OE1	GLN	A	263	17.588	29.856	16.870	1.00	32.99
	MOTA	1793	NE2	GLN	A	263	19.022	30.868	18.269	1.00	32.25
5	MOTA	1794	С	GLN	Α	263	21.723	32.338	15.756	1.00	21.26
	ATOM	1795	0	GLN	Α	263	21.947	32.488	16.959	1.00	20.81
	ATOM	1796	N	ASP	A	264	22.688	32.119	14.865	1.00	21.06
	ATOM	1797	CA	ASP	A	264	24.088	32.042	15.270	1.00	19.84
	ATOM	1798	СВ	ASP	A	264	25.000	31.772	14.069	1.00	22.89
10	MOTA	1799	CG	ASP	A	264	24.752	30.414	13.431	1.00	25.22
	ATOM	1800	OD1	ASP	A	264	24.372	29.471	14.158	1.00	22.28
	ATOM	1801	OD2	ASP	A	264	24.954	30.293	12.201	1.00	26.91
	ATOM	1802	С	ASP	A	264	24.530	33.334	15.937	1.00	19.05
	ATOM	1803	0	ASP	Α	264	25.200	33.315	16.970	1.00	19.15
15	ATOM	1804	N	LYS	A	265	24.154	34.459	15.340	1.00	17.89
	MOTA	1805	CA	LYS	A	265	24.518	35.759	15.877	1.00	19.66
	MOTA	1806	СВ	LYS	A	265	24.060	36.864	14.925	1.00	19.31
	ATOM	1807	CG	LYS	A	265	24.763	36.821	13.580	1.00	19.49
	MOTA	1808	CD	LYS	A	265	24.098	37.754	12.586	1.00	23.63
20	MOTA	1809	CE	LYS	A	265	24.453	37.370	11.162	1.00	24.49
	MOTA	1810	NZ	LYS	A	265	23.506	37.954	10.171	1.00	27.62
	ATOM	1811	С	LYS	A	265	23.931	35.968	17.263	1.00	20.65
	ATOM	1812	0	LYS	A	265	24.612	36.470	18.157	1.00	21.98
	ATOM	1813	N	GLU	A	266	22.667	35.590	17.442	1.00	21.27
25	MOTA	1814	CA	GLU	A	266	22.024	35.721	18.743	1.00	20.98
	MOTA	1815	СВ	GLU	A	266	20.566	35.239	18.683	1.00	20.85
	MOTA	1816	CG	GLU	A	266	19.657	36.112	17.833	1.00	25.52
	MOTA	1817	CD	GLU	A	266	18.228	35.590	17.739	1.00	26.89
	MOTA	1818	OE1	GLU	A	266	17.438	36.187	16.983	1.00	29.13
30	MOTA	1819	OE2	GLU	A	266	17.889	34.592	18.414	1.00	27.61
	MOTA	1820	С	GLU	A	266	22.798	34.886	19.766	1.00	19.97
	MOTA	1821	0	GLU	A	266	23.099	35.358	20.860	1.00	18.00
	MOTA	1822	N	ASP	A	267	23.126	33.647	19.402	1.00	20.17
	MOTA	1823	CA	ASP	A	267	23.860	32.769	20.310	1.00	21.48
35	MOTA	1824	СВ	ASP	A	267	24.015	31.365	19.714	1.00	21.94
	MOTA	1825	CG	ASP	A	267	22.695	30.622	19.619	1.00	25.04
	MOTA	1826	OD1	ASP	A	267	21.762	30.968	20.376	1.00	23.89

	ATOM	1827	OD2	ASP .	A	267	22.592	29.685	18.797	1.00	27.05
	ATOM	1828	С	ASP .	A	267	25.232	33.336	20.648	1.00	21.55
	ATOM	1829	0	ASP .	A	267	25.619	33.386	21.816	1.00	22.82
	ATOM	1830	N	ILE .	Α	268	25.967	33.765	19.628	1.00	19.94
5	ATOM	1831	CA	ILE .	Α	268	27.287	34.329	19.856	1.00	19.42
	ATOM	1832	СВ	ILE .	Α	268	27.954	34.753	18.531	1.00	19.50
	MOTA	1833	CG2	ILE .	Α	268	29.181	35.611	18.815	1.00	16.97
	MOTA	1834	CG1	ILE .	Α	268	28.324	33.505	17.726	1.00	20.05
	MOTA	1835	CD1	ILE .	Α	268	28.914	33.798	16.367	1.00	21.73
10	MOTA	1836	С	ILE .	Α	268	27.201	35.532	20.784	1.00	18.16
	MOTA	1837	0	ILE .	A	268	28.025	35.688	21.683	1.00	18.08
	MOTA	1838	N	ALA .	A	269	26.197	36.376	20.573	1.00	17.88
	MOTA	1839	CA	ALA	A	269	26.023	37.563	21.405	1.00	19.04
	MOTA	1840	СВ	ALA	A	269	24.885	38.414	20.872	1.00	17.94
15	ATOM	1841	С	ALA	A	269	25.739	37.151	22.845	1.00	20.04
	ATOM	1842	0	ALA	A	269	26.225	37.769	23.791	1.00	19.17
	ATOM	1843	N	SER	A	270	24.951	36.094	22.999	1.00	20.63
	ATOM	1844	CA	SER	A	270	24.598	35.590	24.317	1.00	20.97
	ATOM	1845	СВ	SER	A	270	23.517	34.514	24.182	1.00	20.46
20	ATOM	1846	OG	SER	A	270	23.269	33.883	25.423	1.00	23.18
	MOTA	1847	С	SER	A	270	25.823	35.024	25.042	1.00	20.72
	MOTA	1848	0	SER	A	270	26.067	35.351	26.200	1.00	22.09
	MOTA	1849	N	VAL	A	271	26.590	34.177	24.361	1.00	20.12
	MOTA	1850	CA	VAL	A	271	27.782	33.582	24.958	1.00	20.78
25	MOTA	1851	СВ	VAL	A	271	28.432	32.561	24.004	1.00	19.82
	MOTA	1852	CG1	VAL	A	271	29.748	32.060	24.592	1.00	20.03
	MOTA	1853	CG2	VAL	A	271	27.487	31.398	23.773	1.00	16.90
	MOTA	1854	С	VAL	A	271	28.820	34.647	25.315	1.00	23.07
	ATOM	1855	0	VAL	A	271	29.419	34.614	26.389		21.64
30	MOTA	1856	N	VAL	A	272	29.023	35.595	24.406	1.00	25.16
	MOTA	1857	CA	VAL	A	272	29.981	36.670	24.620		27.00
	ATOM	1858	СВ	VAL	A	272	29.977	37.649	23.421		27.76
	MOTA	1859	CG1	VAL	A	272	30.548	38.995	23.834		27.78
	MOTA	1860	CG2	VAL	A	272	30.798	37.058	22.275		25.76
35	MOTA	1861	С	VAL	A	272	29.710	37.439	25.911		28.67
	ATOM	1862	0	VAL			30.631	37.722	26.682		29.19
	ATOM	1863	N	LYS	A	273	28.447	37.767	26.154	1.00	29.06

	ATOM	1864	CA	LYS A	273	28.086	38.510	27.356	1.00 31.31
	ATOM	1865	СВ	LYS A	273	26.736	39.211	27.152	1.00 31.93
•	ATOM	1866	CG	LYS A	. 273	26.814	40.342	26.115	1.00 34.44
	ATOM	1867	CD	LYS A	273	25.516	41.133	26.008	1.00 36.38
5	ATOM	1868	CE	LYS A	273	24.367	40.261	25.534	1.00 35.40
	MOTA	1869	NZ	LYS A	273	23.122	41.050	25.352	1.00 36.63
	ATOM	1870	С	LYS A	273	28.065	37.636	28.607	1.00 30.65
	ATOM	1871	0	LYS A	273	28.303	38.115	29.714	1.00 30.52
	ATOM	1872	N	GLU A	274	27.793	36.350	28.426	1.00 29.82
10	ATOM	1873	CA	GLU A	274	27.765	35.416	29.542	1.00 29.43
	ATOM	1874	CB	GLU A	274	27.191	34.074	29.083	1.00 30.26
	ATOM	1875	CG	GLU A	274	27.098	33.026	30.176	1.00 35.07
	ATOM	1876	CD	GLU A	274	27.060	31.611	29.623	1.00 38.26
	MOTA	1877	OE1	GLU A	274	26.381	31.388	28.599	1.00 39.06
15	MOTA	1878	OE2	GLU A	274	27.706	30.717	30.215	1.00 41.36
	MOTA	1879	С	GLU A	274	29.179	35.188	30.094	1.00 29.77
	MOTA	1880	0	GLU A	274	29.387	35.174	31.309	1.00 29.55
	ATOM	1881	N	LEU A	275	30.145	35.021	29.191	1.00 27.28
	MOTA	1882	CA	LEU A	275	31.531	34.754	29.574	1.00 24.61
20	ATOM	1883	СВ	LEU A	275	32.184	33.835	28.542	1.00 22.55
	ATOM	1884	CG	LEU A	275	31.489	32.496	28.298	1.00 22.58
	ATOM	1885	CD1	LEU A	275	32.236	31.717	27.224	1.00 20.96
	MOTA	1886	CD2	LEU A	275	31.435	31.711	29.600	1.00 22.06
	MOTA	1887	С	LEU F	275	32.412	35.979	29.764	1.00 23.92
25	ATOM	1888	0	LEU A	275	33.511	35.873	30.300	1.00 24.92
	ATOM	1889	N	GLY A	276	31.943	37.138	29.322	1.00 23.96
	ATOM	1890	CA	GLY F	276	32.743	38.340	29.466	1.00 22.49
	MOTA	1891	С	GLY F	276	33.783	38.516	28.368	1.00 24.06
	ATOM	1892	0	GLY F	276	34.834	39.115	28.597	1.00 23.35
30	ATOM	1893	N	ILE F	277	33.504	37.991	27.176	1.00 24.12
	ATOM	1894	CA	ILE P	277	34.426	38.138	26.051	1.00 22.72
	MOTA	1895	СВ	ILE F	277	33.814	37.595	24.744	1.00 23.36
	MOTA	1896	CG2	ILE A	277	34.734	37.891	23.570	1.00 22.55
	MOTA	1897	CG1	ILE F	277	33.609	36.086	24.863	1.00 23.90
35	MOTA	1898	CD1	ILE P	277	34.891		25.133	1.00 27.10
	MOTA	1899	С	ILE P	277	34.724		25.885	1.00 22.38
	MOTA	1900	0	ILE F	277	33.817	40.461	25.921	1.00 20.66

	ATOM	1901	N	ASP A	. 278	35.997	39.954	25.702	1.00	21.22
	ATOM	1902	CA	ASP A	. 278	36.426	41.340	25.578	1.00	19.68
	ATOM	1903	СВ	ASP A	. 278	37.940	41.420	25.751	1.00	19.24
	ATOM	1904	CG	ASP A	. 278	38.389	40.902	27.093	1.00	18.89
5	ATOM	1905	OD1	ASP A	278	37.973	41.489	28.114	1.00	20.89
	ATOM	1906	OD2	ASP A	. 278	39.145	39.909	27.130	1.00	18.95
	MOTA	1907	С	ASP A	. 278	36.027	42.056	24.300	1.00	19.50
	ATOM	1908	0	ASP A	. 278	35.888	43.277	24.294	1.00	20.84
	MOTA	1909	N	GLY A	279	35.844	41.312	23.216	1.00	17.90
10	MOTA	1910	CA	GLY A	279	35.473	41.961	21.977	1.00	17.02
	ATOM	1911	С	GLY A	279	35.240	41.031	20.809	1.00	16.34
	MOTA	1912	0	GLY A	279	35.461	39.825	20.896	1.00	16.62
	MOTA	1913	N	LEU A	280	34.794	41.609	19.702	1.00	16.08
	MOTA	1914	CA	LEU F	280	34.511	40.843	18.501	1.00	16.76
15	MOTA	1915	СВ	LEU F	280	32.999	40.798	18.239	1.00	14.21
	MOTA	1916	CG	LEU F	280	32.073	40.052	19.205	1.00	16.52
	ATOM	1917	CD1	LEU F	280	30.617	40.361	18.865	1.00	14.62
	ATOM	1918	CD2	LEU F	280	32.335	38.555	19.123	1.00	14.09
	ATOM	1919	С	LEU A	280	35.190	41.450	17.284	1.00	15.76
20	MOTA	1920	0	LEU A	280	35.264	42.673	17.142	1.00	15.21
	MOTA	1921	N	ILE F	281	35.714	40.586	16.425	1.00	13.97
	ATOM	1922	CA	ILE A	281	36.316	41.040	15.188	1.00	14.74
	MOTA	1923	СВ	ILE A	281	37.668	40.375	14.910	1.00	12.59
	MOTA	1924	CG2	ILE A	281	38.237	40.914	13.603	1.00	13.24
25	ATOM	1925	CG1	ILE A	281	38.637	40.691	16.057	1.00	11.42
	ATOM	1926	CD1	ILE A	281	40.099	40.695	15.650	1.00	9.11
	ATOM	1927	С	ILE A	281	35.255	40.567	14.218	1.00	16.53
	ATOM	1928	0	ILE A	281	35.042	39.362	14.036	1.00	15.17
	MOTA	1929	N	VAL A	282	34.561	41.513	13.603	1.00	18.83
30	ATOM	1930	CA	VAL A	282	33.469	41.111	12.753	1.00	20.72
	MOTA	1931	СВ	VAL A	A 282	32.257	42.012	13.007	1.00	20.08
	MOTA	1932	CG1	VAL A	A 282	31.069	41.563	12.177	1.00	15.79
	MOTA	1933	CG2	VAL A	A 282	31.914	41.941	14.486	1.00	15.44
	ATOM	1934	С	VAL A	A 282	33.702	40.896	11.274	1.00	23.98
35	MOTA	1935	0	VAL A	A 282	34.040	41.793	10.498	1.00	22.59
	ATOM	1936	N	THR A	A 283	33.464	39.629	10.953	1.00	26.57
	ATOM	1937	CA	THR A	A 283	33.562	38.963	9.669	1.00	24.80

	ATOM	1938	СВ	THR A	283	32.550	39.499	8.604	1.00	22.20
	MOTA	1939	OG1	THR A	283	33.258	39.909	7.430	1.00	20.11
	ATOM	1940	CG2	THR A	283	31.692	40.619	9.158	1.00	25.27
	MOTA	1941	С	THR A	283	34.915	38.764	9.022	1.00	23.47
5	MOTA	1942	0	THR A	283	35.729	39.672	8.824	1.00	22.34
	MOTA	1943	N	ASN A	284	35.117	37.490	8.739	1.00	20.14
	MOTA	1944	CA	ASN A	284	36.271	36.955	8.080	1.00	17.94
	ATOM	1945	СВ	ASN A	284	36.427	35.498	8.507	1.00	16.23
	MOTA	1946	CG	ASN A	284	37.822	34.989	8.327	1.00	15.24
10	MOTA	1947	OD1	ASN A	284	38.370	35.042	7.234	1.00	16.87
	MOTA	1948	ND2	ASN A	284	38.411	34.484	9.406	1.00	15.85
	MOTA	1949	С	ASN A	284	35.793	37.038	6.633	1.00	17.29
	MOTA	1950	0	ASN A	284	34.912	37.843	6.314	1.00	17.42
	MOTA	1951	N	THR A	285	36.346	36.208	5.762	1.00	15.65
15	MOTA	1952	CA	THR A	285	35.920	36.215	4.371	1.00	14.49
	MOTA	1953	CB	THR A	285	36.970	35.548	3.469	1.00	13.54
	ATOM	1954	OG1	THR A	285	37.344	34.284	4.030	1.00	11.73
	ATOM	1955	CG2	THR A	285	38.205	36.435	3.348	1.00	11.58
	ATOM	1956	С	THR A	285	34.600	35.454	4.268	1.00	14.94
20	ATOM	1957	0	THR A	285	34.250	34.681	5.164	1.00	13.05
	ATOM	1958	N	THR A	286	33.872	35.679	3.177	1.00	13.81
	ATOM	1959	CA	THR A	286	32.585	35.020	2.961	1.00	12.17
	ATOM	1960	СВ	THR A	286	31.535	36.022	2.419	1.00	10.38
	ATOM	1961	OG1	THR A	286	30.296	35.346	2.200		13.59
25	MOTA	1962	CG2	THR A	286	31.996	36.620	1.096		9.39
	ATOM	1963	С	THR A	286	32.679	33.864	1.965		12.82
	ATOM	1964	0	THR A	286		33.953			
	ATOM	1965	N	VAL A	287	31.945	32.785	2.234		12.56
	MOTA	1966	CA	VAL A		31.926	31.639	1.330		15.17
30	ATOM	1967	СВ	VAL A		31.700	30.290	2.067		15.85
	MOTA	1968		VAL A		32.817	30.045	3.059		16.20
	MOTA	1969	CG2	VAL A		30.347	30.285	2.764		16.12
	MOTA	1970	С	VAL A		30.783	31.846	0.337		16.66
0.5	ATOM	1971	0	VAL A		30.541	31.013	-0.536		16.82
35	ATOM	1972	N	SER A		30.073	32.959	0.483		15.63
	ATOM	1973	CA	SER A		28.985	33.266	-0.432		15.70
	MOTA	1974	CB	SER A	288	28.001	34.259	0.197	1.00	14.48

	ATOM	1975	OG	SER .	A	288	28.554	35.568	0.229	1.00	13.23
	ATOM	1976	С	SER .	Α	288	29.611	33.903	-1.665	1.00	16.39
	ATOM	1977	0	SER .	A	288	30.764	34.334	-1.635	1.00	15.81
	ATOM	1978	N	ARG .	A	289	28.847	33.960	-2.747	1.00	17.38
5	ATOM	1979	CA	ARG .	Α	289	29.318	34.563	-3.985	1.00	18.89
	ATOM	1980	СВ	ARG .	A	289	29.629	33.480	-5.019	1.00	18.09
	ATOM	1981	CG	ARG .	A	289	30.839	32.628	-4.671	1.00	18.05
	ATOM	1982	CD	ARG .	Α	289	32.125	33.435	-4.745	1.00	16.68
	MOTA	1983	NE	ARG .	A	289	33.299	32.594	-4.532	1.00	15.91
10	MOTA	1984	CZ	ARG .	Α	289	33.787	32.261	-3.340	1.00	16.31
	MOTA	1985	NH1	ARG .	Α	289	34.858	31.477	-3.261	1.00	13.06
	MOTA	1986	NH2	ARG	A	289	33.220	32.721	-2.229	1.00	13.64
	MOTA	1987	С	ARG	A	289	28.206	35.475	-4.480	1.00	20.53
	MOTA	1988	0	ARG	A	289	27.368	35.079	-5.296	1.00	21.36
15	ATOM	1989	N	PRO	A	290	28.182	36.715	-3.975	1.00	19.53
	MOTA	1990	CD	PRO	A	290	29.209	37.305	-3.100	1.00	17.95
	MOTA	1991	CA	PRO	A	290	27.176	37.710	-4.343	1.00	18.26
	MOTA	1992	СВ	PRO	A	290	27.763	39.008	-3.793	1.00	18.04
	MOTA	1993	CG	PRO	A	290	28.515	38.546	-2.589	1.00	17.02
20	MOTA	1994	С	PRO	A	290	26.964	37.767	-5.845	1.00	18.99
	MOTA	1995	0	PRO	A	290	27.921	37.684	-6.617	1.00	19.64
	MOTA	1996	N	ALA	A	291	25.707	37.889	-6.262	1.00	18.82
	MOTA	1997	CA	ALA	A	291	25.405	37.987	-7.685	1.00	16.85
	MOTA	1998	СВ	ALA	Α	291	23.901	38.084	-7.899	1.00	14.77
25	MOTA	1999	С	ALA	Α	291	26.090	39.255	-8.189	1.00	14.94
	ATOM	2000	0	ALA	Α	291	26.138	40.258	-7.482		15.17
	MOTA	2001	N	GLY	Α	292	26.636	39.206	-9.398	1.00	13.56
	ATOM	2002	CA	GLY	A	292	27.295	40.377	-9.939	1.00	14.88
	MOTA	2003	С	GLY	A	292	28.797	40.238	-10.102	1.00	15.80
30	ATOM	2004	0	GLY	Α	292	29.403	41.002	-10.852	1.00	17.47
	ATOM	2005	N	LEU	A	293	29.406	39.286	-9.398	1.00	15.22
	ATOM	2006	CA	LEU	A	293	30.846	39.074	-9.520	1.00	15.55
	ATOM	2007	CB	LEU	A	293	31.282	37.831	-8.739	1.00	15.69
	ATOM	2008	CG	LEU	A	293	31.174	37.866	-7.210	1.00	14.60
35	ATOM	2009	CD1	LEU	A	293	31.673	36.545	-6.650		14.40
	ATOM	2010	CD2	LEU	A	293	31.995	39.020	-6.647		12.10
	ATOM	2011	С	LEU	Α	293	31.185	38.891	-10.991	1.00	15.60

	ATOM	2012	0	LEU	A	293	30.510	38.147	-11.702	1.00	16.58
	ATOM	2013	N	GLN	Α	294	32.230	39.576	-11.444	1.00	16.80
	ATOM	2014	CA	GLN	A	294	32.653	39.503	-12.835	1.00	17.11
	MOTA	2015	СВ	GLN	A	294	32.859	40.913	-13.390	1.00	18.48
5	MOTA	2016	CG	GLN	A	294	31.589	41.728	-13.450	1.00	19.20
	MOTA	2017	CD	GLN	Α	294	30.512	41.030	-14.249	1.00	19.74
	MOTA	2018	OE1	GLN	A	294	30.709	40.716	-15.420	1.00	20.35
	MOTA	2019	NE2	GLN	A	294	29.366	40.780	-13.620	1.00	17.29
	MOTA	2020	С	GLN	Α	294	33.929	38.701	-13.029	1.00	18.33
10	MOTA	2021	0	GLN	A	294	34.145	38.122	-14.097	1.00	19.34
	MOTA	2022	N	GLY	A	295	34.772	38.678	-11.999	1.00	16.78
	MOTA	2023	CA	GLY	Α	295	36.029	37.960	-12.076	1.00	14.58
	ATOM	2024	С	GLY	A	295	35.915	36.580	-12.693	1.00	17.14
	ATOM	2025	0	GLY	A	295	34.976	35.828	-12.413	1.00	15.75
15	MOTA	2026	N	ALA	Α	296	36.878	36.244	-13.541	1.00	16.27
	MOTA	2027	CA	ALA	A	296	36.890	34.942	-14.195	1.00	16.90
	MOTA	2028	СВ	ALA	A	296	38.039	34.880	-15.206	1.00	14.08
	MOTA	2029	С	ALA	Α	296	37.030	33.812	-13.175	1.00	16.05
	MOTA	2030	0	ALA	A	296	36.515	32.712	-13.381	1.00	16.89
20	MOTA	2031	N	LEU	A	297	37.712	34.101	-12.068	1.00	15.74
	MOTA	2032	CA	LEU	A	297	37.967	33.112	-11.019	1.00	15.01
	MOTA	2033	СВ	LEU	A	297	39.379	33.327	-10.467	1.00	12.31
	MOTA	2034	CG	LEU	A	297	40.468	33.402	-11.544	1.00	14.81
	MOTA	2035	CD1	LEU	A	297	41.783	33.870	-10.927	1.00	14.19
25	MOTA	2036	CD2	LEU	A	297	40.627	32.039	-12.214	1.00	12.20
	MOTA	2037	С	LĒU	A	297	36.965	33.148	-9.867	1.00	14.73
	MOTA	2038	0	LEU	A	297	37.250	32.650	-8.774	1.00	14.27
	MOTA	2039	N	ARG	A	298	35.793	33.724	-10.123	1.00	15.51
	ATOM	2040	CA	ARG	A	298	34.743	33.865	-9.112	1.00	15.51
30	ATOM	2041	CB	ARG	A	298	33.558	34.641	-9.699	1.00	14.80
	ATOM	2042	CG	ARG	A	298	32.734	33.858	-10.711	1.00	14.58
	MOTA	2043	CD	ARG	A	298	31.673	34.741	-11.370	1.00	15.06
	ATOM	2044	NE	ARG	A	298	30.782	33.966	-12.229	1.00	14.79
	ATOM	2045	CZ	ARG	A	298	29.917	34.491	-13.093	1.00	15.35
35	ATOM	2046	NH1	ARG	A	298	29.151	33.695	-13.828	1.00	8.68
	ATOM	2047	NH2	ARG	A	298	29.822	35.812	-13.233	1.00	14.16
	ATOM	2048	С	ARG	A	298	34.233	32.553	-8.519	1.00	16.08

	ATOM	2049	0	ARG	Α	298	33.719	32.537	- 7.398	1.00	16.02
	ATOM	2050	N	SER	A	299	34.371	31.458	-9.261	1.00	15.60
	ATOM	2051	CA	SER	Α	299	33.899	30.168	-8.780	1.00	16.40
	ATOM	2052	СВ	SER	Α	299	33.206	29.409	-9.910	1.00	15.38
5	ATOM	2053	OG	SER	A	299	31.920	29.958	-10.140	1.00	14.75
	ATOM	2054	С	SER	Α	299	34.958	29.285	-8.124	1.00	17.70
	ATOM	2055	0	SER	Α	299	34.742	28.088	-7.934	1.00	19.57
	ATOM	2056	N	GLU	Α	300	36.099	29.873	-7.782	1.00	15.48
	ATOM	2057	CA	GLU	A	300	37.153	29.135	-7.096	1.00	16.69
10	ATOM	2058	СВ	GLU	A	300	38.473	29.921	-7.109	1.00	15.70
	ATOM	2059	CG	GLU	A	300	39.177	29.968	-8.460	1.00	19.09
	ATOM	2060	CD	GLU	Α	300	39.894	28.668	-8.796	1.00	19.66
	ATOM	2061	OE1	GLU	Α	300	40.293	28.485	-9.965	1.00	21.52
	MOTA	2062	OE2	GLU	Α	300	40.069	27.831	-7.887	1.00	20.79
15	ATOM	2063	С	GLU	Α	300	36.698	28.957	-5.644	1.00	17.50
	MOTA	2064	0	GLU	A	300	36.012	29.818	-5.085	1.00	18.25
	MOTA	2065	N	THR	A	301	37.075	27.837	-5.043	1.00	16.77
	MOTA	2066	CA	THR	Α	301	36.733	27.560	-3.657	1.00	15.87
	ATOM	2067	СВ	THR	A	301	37.035	26.089	-3.302	1.00	16.02
20	ATOM	2068	OG1	THR	A	301	36.030	25.245	-3.873	1.00	19.42
	MOTA	2069	CG2	THR	A	301	37.077	25.894	-1.798	1.00	14.14
	MOTA	2070	С	THR	A	301	37.564	28.465	-2.747	1.00	14.56
	MOTA	2071	0	THR	A	301	38.729	28.745	-3.037	1.00	13.06
	MOTA	2072	N	GLY	A	302	36.968	28.923	-1.651	1.00	14.25
25	MOTA	2073	CA	GLY	A	302	37.697	29.778	-0.732	1.00	13.34
	MOTA	2074	С	GLY	A	302	36.874	30.924	-0.184	1.00	14.22
	ATOM	2075	0	GLY	A	302	35.682	31.042	-0.471	1.00	13.86
	ATOM	2076	N	GLY	A	303	37.514	31.769	0.619	1.00	14.41
	MOTA	2077	CA	GLY	A	303	36.829	32.906	1.199	1.00	12.84
30	MOTA	2078	С	GLY	A	303	37.005	34.138	0.337		12.25
	MOTA	2079	0	GLY	A	303	38.109	34.439	-0.115		12.09
	MOTA	2080	N	LEU	Α	304	35.906	34.850	0.109		12.88
	MOTA	2081	CA	LEU	A	304	35.912	36.057	-0.709	1.00	12.21
	MOTA	2082	СВ	LEU	A	304	34.588	36.171	-1.470	1.00	13.65
35	MOTA	2083	CG	LEU	A	304	34.314	37.450	-2.269		15.74
	MOTA	2084	CD1	LEU	A	304	35.287	37.566	-3.428		16.08
	ATOM	2085	CD2	LEU	Α	304	32.881	37.412	-2.792	1.00	20.89

	MOTA	2086	С	LEU	Α	304	36.120	37.301	0.147	1.00	12.48
	MOTA	2087	0	LEU	Α	304	35.517	37.447	1.211	1.00	14.13
	ATOM	2088	N	SER	A	305	36.970	38.201	-0.326	1.00	12.36
	ATOM	2089	CA	SER	A	305	37.253	39.432	0.396	1.00	13.71
5	ATOM	2090	СВ	SER	A	305	38.636	39.348	1.042	1.00	13.43
	ATOM	2091	OG	SER	Α	305	39.640	39.207	0.051	1.00	13.79
	MOTA	2092	С	SER	A	305	37.205	40.615	-0.566	1.00	13.39
	MOTA	2093	0	SER	A	305	37.120	40.428	-1.778	1.00	14.42
	ATOM	2094	N	GLY	A	306	37.262	41.830	-0.029	1.00	13.29
10	ATOM	2095	CA	GLY	A	306	37.230	43.002	-0.887	1.00	12.97
	MOTA	2096	С	GLY	A	306	35.877	43.690	-0.938	1.00	14.84
	MOTA	2097	0	GLY	A	306	35.009	43.444	-0.096	1.00	14.46
	MOTA	2098	N	LYS	A	307	35.686	44.539	-1.945	1.00	16.17
	MOTA	2099	CA	LYS	A	307	34.444	45.290	-2.088	1.00	16.52
15	ATOM	2100	СВ	LYS	A	307	34.460	46.120	-3.385	1.00	18.40
	ATOM	2101	CG	LYS	A	307	33.422	47.261	-3.379	1.00	25.17
	ATOM	2102	CD	LYS	A	307	33.336	48.025	-4.705	1.00	27.88
	ATOM	2103	CE	LYS	A	307	34.621	48.787	-5.010	1.00	29.73
	ATOM	2104	NZ	LYS	A	307	34.986	49.758	-3.934	1.00	29.23
20	ATOM	2105	С	LYS	A	307	33.157	44.466	-2.012	1.00	15.26
	ATOM	2106	0	LYS	A	307	32.194	44.881	-1.367	1.00	16.38
	ATOM	2107	N	PRO	A	308	33.114	43.292	-2.663	1.00	14.54
	ATOM	2108	CD	PRO	A	308	34.114	42.680	-3.556	1.00	14.56
	ATOM	2109	CA	PRO	A	308	31.894	42.475	-2.613	1.00	14.08
25	ATOM	2110	СВ	PRO	Α	308	32.255	41.259	-3.465	1.00	14.39
	ATOM	2111	CG	PRO	A	308	33.248	41.818	-4.448	1.00	15.27
	ATOM	2112	С	PRO	A	308	31.478	42.074	-1.196	1.00	15.08
	ATOM	2113	0	PRO	A	308	30.313	41.764	-0.945	1.00	16.18
	ATOM	2114	N	LEU	A	309	32.436	42.079	-0.276	1.00	15.24
30	ATOM	2115	CA	LEU	A	309	32.182	41.709	1.114	1.00	15.60
	ATOM	2116	СВ	LEU	A	309	33.405	40.979	1.679	1.00	14.32
	ATOM	2117	CG	LEU	A	309	33.524	40.802	3.201	1.00	13.34
	ATOM	2118		LEU			32.452	39.850	3.714	1.00	12.74
	ATOM	2119	CD2	LEU	A	309	34.903	40.251	3.532		12.50
35	ATOM	2120	С	LEU	A	309	31.854	42.890	2.032		16.28
	ATOM	2121	0	LEU			31.229	42.710	3.076		17.72
	MOTA	2122	N	ARG	A	310	32.264	44.090	1.633	1.00	14.78

	ATOM	2123	CA	ARG	Α	310	32.084	45.286	2.453	1.00	15.52
	ATOM	2124	СВ	ARG	Α	310	32.340	46.553	1.623	1.00	12.86
	ATOM	2125	CG	ARG	Α	310	32.388	47.832	2.468	1.00	14.96
	ATOM	2126	CD	ARG	A	310	32.520	49.072	1.597	1.00	12.65
5	ATOM	2127	NE	ARG	Α	310	31.446	49.104	0.611	1.00	14.57
	ATOM	2128	CZ	ARG	Α	310	31.450	49.852	-0.485	1.00	13.39
	ATOM	2129	NH1	ARG	Α	310	30.422	49.793	-1.320	1.00	11.24
	ATOM	2130	NH2	ARG	A	310	32.479	50.652	-0.747	1.00	12.51
	ATOM	2131	С	ARG	Α	310	30.772	45.455	3.215	1.00	16.19
10	ATOM	2132	0	ARG	Α	310	30.757	45.412	4.445	1.00	16.77
	ATOM	2133	N	ASP	Α	311	29.675	45.659	2.496	1.00	17.50
	ATOM	2134	CA	ASP	A	311	28.391	45.878	3.147	1.00	17.75
	ATOM	2135	СВ	ASP	Α	311	27.381	46.369	2.109	1.00	19.42
	ATOM	2136	CG	ASP	Α	311	27.661	47.809	1.676	1.00	21.08
15	ATOM	2137	OD1	ASP	Α	311	28.771	48.309	1.974	1.00	20.69
	ATOM	2138	OD2	ASP	A	311	26.787	48.441	1.046	1.00	20.67
	ATOM	2139	С	ASP	A	311	27.864	44.687	3.942	1.00	18.47
	ATOM	2140	0	ASP	A	311	27.205	44.862	4.969	1.00	17.98
	ATOM	2141	N	LEU	Α	312	28.162	43.478	3.483	1.00	17.76
20	ATOM	2142	CA	LEU	Α	312	27.741	42.289	4.207	1.00	17.86
	ATOM	2143	СВ	LEU	A	312	28.179	41.027	3.459	1.00	18.99
	ATOM	2144	CG	LEU	A	312	27.783	39.686	4.084	1.00	23.39
	ATOM	2145	CD1	LEU	Α	312	26.265	39.602	4.207	1.00	22.84
	ATOM	2146	CD2	LEU	A	312	28.308	38.538	3.217	1.00	23.42
25	ATOM	2147	С	LEU	A	312	28.410	42.346	5.585	1.00	17.48
	ATOM	2148	0	LEU	A	312	27.812	41.959	6.592		16.53
	ATOM	2149	N	SER				42.840			
	ATOM	2150	CA	SER			30.397	42.971	6.873		17.10
	MOTA	2151	СВ	SER			31.873	43.309	6.610		17.49
30	ATOM	2152	OG	SER			32.612	42.163	6.244		23.70
	MOTA	2153	С	SER			29.808	44.067	7.749		15.96
	MOTA	2154	0	SER			29.607	43.875	8.949		16.85
	ATOM	2155	N	THR			29.549	45.221	7.143		13.84
	ATOM	2156	CA	THR			28.993	46.353	7.869		14.33
35	MOTA	2157	СВ	THR			28.745	47.551	6.934		13.64
	ATOM	2158		THR			29.981	47.935	6.321		13.07
	MOTA	2159	CG2	THR	A	314	28.190	48.731	7.715	1.00	12.00

	ATOM	2160	С	THR	A	314	27.686	45.969	8.541	1.00	14.80
	ATOM	2161	0	THR	A	314	27.470	46.292	9.707	1.00	16.48
	ATOM	2162	N	GLN	A	315	26.820	45.269	7.811	1.00	15.30
	ATOM	2163	CA	GLN	Α	315	25.544	44.848	8.370	1.00	14.88
5	ATOM	2164	СВ	GLN	Α	315	24.658	44.219	7.288	1.00	13.95
	ATOM	2165	CG	GLN	Α	315	24.136	45.209	6.245	1.00	15.23
	MOTA	2166	CD	GLN	A	315	23.176	46.250	6.828	1.00	15.21
	ATOM	2167	OE1	GLN	A	315	23.529	46.999	7.735	0.50	14.28
	MOTA	2168	NE2	GLN	A	315	21.963	46.297	6.297	0.50	12.79
10	MOTA	2169	С	GLN	A	315	25.743	43.869	9.523	1.00	14.34
	MOTA	2170	0	GLN	A	315	24.981	43.887	10.487	1.00	15.66
	ATOM	2171	N	THR	Α	316	26.765	43.019	9.439	1.00	14.94
	ATOM	2172	CA	THR	A	316	27.021	42.062	10.521	1.00	13.97
	ATOM	2173	СВ	THR	A	316	28.103	41.018	10.130	1.00	13.18
15	MOTA	2174	OG1	THR	A	316	27.681	40.314	8.958	1.00	14.58
	ATOM	2175	CG2	THR	Α	316	28.306	40.000	11.255	1.00	11.68
	ATOM	2176	С	THR	A	316	27.479	42.839	11.752	1.00	13.29
	ATOM	2177	0	THR	Α	316	27.133	42.498	12.881	1.00	13.77
	ATOM	2178	N	ILE	A	317	28.247	43.897	11.522	1.00	13.34
20	ATOM	2179	CA	ILE	A	317	28.728	44.738	12.609	1.00	13.60
	MOTA	2180	СВ	ILE	A	317	29.711	45.803	12.095	1.00	12.88
	MOTA	2181	CG2	ILE	Α	317	29.990	46.820	13.199	1.00	12.51
	ATOM	2182	CG1	ILE	A	317	30.998	45.132	11.609	1.00	8.92
	ATOM	2183	CD1	ILE	A	317	31.890	46.038	10.782	1.00	8.20
25	ATOM	2184	С	ILE	A	317	27.548	45.450	13.256	1.00	15.33
	ATOM	2185	0	ILE	A	317	27.442	45.508	14.482	1.00	14.07
	ATOM	2186	N	ARG	A	318	26.664	45.985	12.415	1.00	15.26
	ATOM	2187	CA	ARG	A	318	25.482	46.704	12.876	1.00	16.00
	MOTA	2188	CB	ARG	A	318	24.653	47.163	11.664	1.00	16.04
30	ATOM	2189	CG	ARG	Α	318	23.632	48.262	11.957	1.00	16.53
	ATOM	2190	CD	ARG	A	318	22.865	48.683	10.697		15.60
	MOTA	2191	NE	ARG	A	318	23.731	49.237	9.655	1.00	13.88
	MOTA	2192	CZ	ARG	Α	318	24.404	50.379	9.759	1.00	13.49
	MOTA	2193	NH1	ARG	A	318	24.316	51.104	10.862		12.45
35	MOTA	2194	NH2	ARG	A	318	25.178	50.792	8.762		11.39
	MOTA	2195	С	ARG	A	318	24.647	45.790	13.781		17.91
	ATOM	2196	0	ARG	Α	318	24.223	46.179	14.874	1.00	17.43

	ATOM	2197	N	GLU	A	319	24.438	44.562	13.326	1.00	17.86
	ATOM	2198	CA	GLU	A	319	23.659	43.589	14.072	1.00	17.86
	ATOM	2199	СВ	GLU	A	319	23.380	42.377	13.176	1.00	20.79
	ATOM	2200	CG	GLU	A	319	22.533	41.286	13.802	1.00	27.72
5	ATOM	2201	CD	GLU	A	319	21.855	40.408	12.757	1.00	32.40
	ATOM	2202	OE1	GLU	Α	319	22.456	40.189	11.684	1.00	34.24
	ATOM	2203	OE2	GLU	Α	319	20.725	39.929	13.009	1.00	36.06
	ATOM	2204	C	GLU	Α	319	24.317	43.156	15.388	1.00	17.83
	ATOM	2205	0	GLU	A	319	23.662	43.149	16.431	1.00	16.48
10	ATOM	2206	N	MET	Α	320	25.603	42.806	15.359	1.00	17.34
	ATOM	2207	CA	MET	Α	320	26.273	42.379	16.590	1.00	16.86
	ATOM	2208	СВ	MET	Α	320	27.683	41.857	16.291	1.00	16.42
	MOTA	2209	CG	MET	Α	320	27.732	40.636	15.371	1.00	13.96
	MOTA	2210	SD	MET	Α	320	26.645	39.265	15.876	1.00	18.68
15	ATOM	2211	CE	MET	A	320	27.333	38.814	17.496	1.00	14.45
	ATOM	2212	С	MET	A	320	26.340	43.509	17.627	1.00	17.09
	MOTA	2213	0	MET	A	320	26.256	43.267	18.833	1.00	16.35
	ATOM	2214	N	TYR	A	321	26.480	44.741	17.151	1.00	17.09
	MOTA	2215	CA	TYR	A	321	26.542	45.901	18.036	1.00	17.65
20	MOTA	2216	СВ	TYR	A	321	26.738	47.172	17.211	1.00	17.64
	MOTA	2217	CG	TYR	A	321	26.925	48.429	18.032	1.00	18.64
	ATOM	2218	CD1	TYR	A	321	28.145	48.716	18.637	1.00	17.99
	ATOM	2219	CE1	TYR	A	321	28.323	49.875	19.369	1.00	17.38
	ATOM	2220	CD2	TYR	A	321	25.886	49.339	18.187	1.00	16.94
25	ATOM	2221	CE2	TYR	A	321	26.052	50.497	18.916	1.00	15.57
	MOTA	2222	CZ	TYR	A	321	27.272	50.761	19.504	1.00	17.79
	ATOM	2223	ОН	TYR	A	321	27.439	51.917	20.228	1.00	18.99
	ATOM	2224	С	TYR	A	321	25.245	46.012	18.844	1.00	18.22
	ATOM	2225	0	TYR	A	321	25.272	46.221	20.058	1.00	16.92
30	ATOM	2226	N	ALA	Α	322	24.115	45.871	18.154	1.00	18.07
	ATOM	2227	CA	ALA	A	322	22.798	45.951	18.779	1.00	18.52
	ATOM	2228	СВ	ALA	Α	322	21.708	46.022	17.698	1.00	15.28
	ATOM	2229	С	ALA	A	322	22.539	44.764	19.714	1.00	18.01
	ATOM	2230	0	ALA	A	322	21.979	44.929	20.793	1.00	19.87
35	ATOM	2231	N	LEU	A	323	22.945	43.570	19.301	1.00	17.20
	MOTA	2232	CA	LEU	A	323	22.752	42.382	20.128	1.00	18.74
	ATOM	2233	СВ	LEU	A	323	23.129	41.124	19.343	1.00	17.37

	ATOM	2234	CG	LEU A	323	22.147	40.738	18.232	1.00	18.08
	ATOM	2235	CD1	LEU A	323	22.713	39.592	17.407	1.00	15.53
	ATOM	2236	CD2	LEU A	323	20.807	40.352	18.854	1.00	16.70
	ATOM	2237	С	LEU A	323	23.565	42.446	21.422	1.00	19.90
5	MOTA	2238	0	LEU A	323	23.201	41.822	22.419	1.00	21.10
	ATOM	2239	N	THR A	324	24.664	43.199	21.404	1.00	19.51
	ATOM	2240	CA	THR A	324	25.509	43.334	22.585	1.00	19.82
	ATOM	2241	СВ	THR A	324	27.016	43.159	22.226	1.00	19.33
	MOTA	2242	OG1	THR A	324	27.408	44.134	21.250	1.00	17.08
10	ATOM	2243	CG2	THR A	324	27.269	41.768	21.662	1.00	18.20
	ATOM	2244	С	THR A	324	25.304	44.679	23.291	1.00	21.29
	MOTA	2245	0	THR A	324	26.094	45.066	24.151	1.00	21.80
	MOTA	2246	N	GLN A	325	24.242	45.388	22.920	1.00	22.83
	MOTA	2247	CA	GLN A	325	23.925	46.679	23.525	1.00	24.26
15	ATOM	2248	СВ	GLN A	325	23.529	46.502	24.995	1.00	27.36
	MOTA	2249	CG	GLN A	325	22.185	45.830	25.223	1.00	30.52
	ATOM	2250	CD	GLN A	325	22.121	44.440	24.633	1.00	35.25
	ATOM	2251	OE1	GLN A	325	22.909	43.563	24.991	1.00	38.03
	MOTA	2252	NE2	GLN A	325	21.178	44.227	23.721	1.00	37.42
20	MOTA	2253	С	GLN A	325	25.073	47.671	23.446	1.00	23.75
	MOTA	2254	0	GLN A	325	25.188	48.557	24.293	1.00	23.87
	ATOM	2255	N	GLY A	326	25.916	47.526	22.430	1.00	23.08
	MOTA	2256	CA	GLY A	326	27.043	48.428	22.275	1.00	23.27
	MOTA	2257	С	GLY A	326	28.025	48.394	23.435	1.00	22.83
25	MOTA	2258	0	GLY A	326	28.797	49.327	23.621	1.00	21.36
	MOTA	2259	N	ARG A	327	28.006	47.317	24.213	1.00	24.94
	MOTA	2260	CA	ARG A	327	28.900	47.192	25.361	1.00	27.26
	MOTA	2261	СВ	ARG A	327	28.134	46.627	26.559	1.00	29.79
	ATOM	2262	CG	ARG A	327	27.058	47.569	27.075	1.00	36.59
30	ATOM	2263	CD	ARG A	327	26.163	46.918	28.119	1.00	41.47
	MOTA	2264	NE	ARG A	327	25.082	47.821	28.508	1.00	48.27
	MOTA	2265	CZ	ARG A	327	24.011	47.459	29.208	1.00	50.35
	ATOM	2266	NH1	ARG A	327	23.869	46.201	29.606	1.00	52.09
	MOTA	2267	NH2	ARG A	327	23.076	48.354	29.499	1.00	50.26
35	MOTA	2268	С	ARG A	. 327	30.115	46.320	25.068	1.00	26.50
	ATOM	2269	0	ARG A	327	31.016	46.196	25.897	1.00	27.91
	MOTA	2270	N	VAL A	328	30.137	45.716	23.887	1.00	24.28

	ATOM	2271	CA	VAL	A	328	31.244	44.860	23.497	1.00 21.4	7
	ATOM	2272	СВ	VAL	A	328	30.749	43.465	23.088	1.00 20.2	4
	ATOM	2273	CG1	VAL	Α	328	31.923	42.598	22.686	1.00 18.3	7
	ATOM	2274	CG2	VAL	A	328	29.973	42.833	24.236	1.00 18.9	5
5	ATOM	2275	С	VAL	Α	328	31.992	45.476	22.325	1.00 20.9	7
	ATOM	2276	0	VAL	A	328	31.440	45.624	21.237	1.00 21.4	9
	ATOM	2277	N	PRO	A	329	33.260	45.854	22.543	1.00 18.8	4
	ATOM	2278	CD	PRO	A	329	33.969	45.768	23.831	1.00 19.1	1
	ATOM	2279	CA	PRO	A	329	34.113	46.461	21.518	1.00 18.4	6
10	ATOM	2280	СВ	PRO	Α	329	35.471	46.552	22.211	1.00 17.6	6
	ATOM	2281	CG	PRO	Α	329	35.095	46.754	23.641	1.00 18.8	7
	ATOM	2282	С	PRO	Α	329	34.168	45.612	20.246	1.00 18.0	0
	MOTA	2283	0	PRO	Α	329	34.356	44.390	20.296	1.00 15.4	8
	ATOM	2284	N	ILE	Α	330	34.001	46.268	19.107	1.00 15.1	4
15	ATOM	2285	CA	ILE	Α	330	34.038	45.571	17.835	1.00 15.7	9
	ATOM	2286	СВ	ILE	A	330	32.662	45.635	17.129	1.00 15.1	8
	ATOM	2287	CG2	ILE	A	330	32.770	45.067	15.733	1.00 13.7	9
	ATOM	2288	CG1	ILE	Α	330	31.614	44.869	17.941	1.00 15.9	7
	ATOM	2289	CD1	ILE	A	330	30.211	44.945	17.348	1.00 16.1	1
20	ATOM	2290	С	ILE	Α	330	35.086	46.148	16.888	1.00 14.8	2
	ATOM	2291	0	ILE	A	330	35.266	47.369	16.796	1.00 13.0	7
	ATOM	2292	N	ILE	A	331	35.789	45.257	16.200	1.00 13.5	2
	ATOM	2293	CA	ILE	A	331	36.780	45.662	15.209	1.00 13.2	9
	ATOM	2294	СВ	ILE	A	331	38.114	44.896	15.371	1.00 12.0	4
25	ATOM	2295	CG2	ILE	A	331	39.082	45.301	14.267	1.00 9.0	1
	MOTA	2296	CG1	ILE	A	331	38.722	45.191	16.748	1.00 12.7	4
	MOTA	2297	CD1	ILE	Α	331	40.103	44.564	16.970	1.00 9.6	9
	ATOM	2298	С	ILE	A	331	36.154	45.300	13.863	1.00 13.5	3
	MOTA	2299	0	ILE	A	331	35.952	44.120	13.568	1.00 14.0	3
30	MOTA	2300	N	GLY	A	332	35.825	46.317	13.069	1.00 12.7	9
	MOTA	2301	CA	GLY	A	332	35.209	46.097	11.770	1.00 11.2	3
	ATOM	2302	С	GLY	A	332	36.199	45.784	10.670	1.00 12.1	7
	ATOM	2303	0	GLY	A	332	37.187	46.495	10.498	1.00 15.2	9
	ATOM	2304	N	VAL	A	333	35.920	44.726	9.912	1.00 14.1	7
35	ATOM	2305	CA	VAL	A	333	36.789	44.275	8.825	1.00 13.3	7
	ATOM	2306	СВ	VAL	A	333	37.667	43.082	9.268	1.00 14.0	7
	ATOM	2307	CG1	VAL	Α	333	38.941	43.040	8.443	1.00 12.3	9

	MOTA	2308	CG2	VAL A	333	37.936	43.148	10.749	1.00	16.53
	ATOM	2309	С	VAL A	333	35.962	43.767	7.646	1.00	12.46
	ATOM	2310	0	VAL A	333	34.982	43.053	7.836	1.00	11.94
	ATOM	2311	N	GLY A	334	36.376	44.104	6.431	1.00	12.77
5	ATOM	2312	CA	GLY A	334	35.651	43.639	5.264	1.00	13.14
	MOTA	2313	С	GLY A	334	35.402	44.690	4.197	1.00	15.69
	ATOM	2314	0	GLY A	334	34.449	45.473	4.287	1.00	14.19
	ATOM	2315	N	GLY A	. 335	36.265	44.708	3.184	1.00	14.95
	MOTA	2316	CA	GLY A	. 335	36.111	45.651	2.093	1.00	15.32
10	MOTA	2317	С	GLY A	. 335	36.332	47.119	2.412	1.00	16.47
	MOTA	2318	0	GLY A	. 335	35.742	47.983	1.766	1.00	18.02
	MOTA	2319	N	VAL A	. 336	37.162	47.422	3.403	1.00	16.45
	MOTA	2320	CA	VAL A	. 336	37.434	48.817	3.721	1.00	15.37
	MOTA	2321	СВ	VAL A	. 336	37.868	48.994	5.185	1.00	16.95
15	MOTA	2322	CG1	VAL A	336	38.430	50.402	5.396	1.00	17.10
	ATOM	2323	CG2	VAL A	336	36.681	48.757	6.104	1.00	15.58
	ATOM	2324	С	VAL A	336	38.547	49.313	2.798	1.00	15.63
	ATOM	2325	0	VAL A	336	39.664	48.788	2.808	1.00	12.87
	ATOM	2326	N	SER A	337	38.235	50.323	1.994	1.00	15.71
20	ATOM	2327	CA	SER F	337	39.210	50.861	1.054	1.00	17.36
	ATOM	2328	СВ	SER F	337	38.909	50.320	-0.348	1.00	19.55
	ATOM	2329	OG	SER F	337	39.881	50.746	-1.281	1.00	26.27
	ATOM	2330	С	SER F	337	39.225	52.391	1.026	1.00	16.87
	ATOM	2331	0	SER A	337	39.985	52.995	0.270	1.00	16.56
25	MOTA	2332	N	SER F	338	38.392	53.013	1.856	1.00	15.02
	ATOM	2333	CA	SER A	338	38.311	54.466	1.895	1.00	14.94
	ATOM	2334	СВ	SER A	338	37.337	54.958	0.816	1.00	15.62
	ATOM	2335	OG	SER A	338	35.993	54.649	1.163	1.00	12.43
	ATOM	2336	С	SER A	338	37.836	54.972	3.257	1.00	14.83
30	ATOM	2337	0	SER A	338	37.402	54.193	4.108	1.00	15.32
	ATOM	2338	N	GLY A	339	37.913	56.283	3.451	1.00	13.85
	ATOM	2339	CA	GLY A	339	37.466	56.867	4.700	1.00	13.96
	MOTA	2340	С	GLY A	339	35.992	56.577	4.911	1.00	14.77
	MOTA	2341	0	GLY A	339	35.568	56.266	6.024	1.00	15.11
35	MOTA	2342	N	GLN A	A 340	35.205	56.675	3.840	1.00	13.56
	ATOM	2343	CA	GLN A	A 340	33.775	56.410	3.929	1.00	14.73
	ATOM	2344	СВ	GLN A	A 340	33.075	56.650	2.583	1.00	14.84

	ATOM	2345	CG	GLN .	Α	340	31.606	56.231	2.606	1.00	16.68
	MOTA	2346	CD	GLN	A	340	30.869	56.527	1.309	1.00	17.07
	MOTA	2347	OE1	GLN	Α	340	30.787	57.678	0.873	1.00	17.10
	ATOM	2348	NE2	GLN	Α	340	30.322	55.487	0.691	1.00	15.72
5	ATOM	2349	С	GLN	A	340	33.521	54.976	4.376	1.00	14.91
	ATOM	2350	0	GLN	A	340	32.690	54.736	5.258	1.00	15.89
	ATOM	2351	N	ASP	A	341	34.231	54.027	3.766	1.00	11.85
	ATOM	2352	CA	ASP	A	341	34.072	52.622	4.129	1.00	12.88
	MOTA	2353	СВ	ASP	Α	341	35.014	51.723	3.311	1.00	12.35
10	ATOM	2354	CG	ASP	Α	341	34.759	51.806	1.813	1.00	14.51
	MOTA	2355	OD1	ASP	A	341	33.624	52.149	1.416	1.00	15.79
	MOTA	2356	OD2	ASP	Α	341	35.690	51.512	1.031	1.00	13.03
	MOTA	2357	С	ASP	A	341	34.385	52.458	5.613	1.00	11.93
	MOTA	2358	0	ASP	A	341	33.689	51.748	6.336	1.00	11.87
15	MOTA	2359	N	ALA	Α	342	35.441	53.124	6.064	1.00	11.66
	MOTA	2360	CA	ALA	A	342	35.843	53.046	7.460	1.00	11.86
	ATOM	2361	СВ	ALA	Α	342	37.183	53.751	7.657	1.00	11.31
	ATOM	2362	С	ALA	A	342	34.788	53.652	8.381	1.00	12.51
	MOTA	2363	0	ALA	A	342	34.421	53.052	9.390	1.00	13.16
20	ATOM	2364	N	LEU	A	343	34.295	54.835	8.026	1.00	11.81
	ATOM	2365	CA	LEU	A	343	33.296	55.518	8.841	1.00	12.88
	MOTA	2366	СВ	LEU	A	343	33.117	56.960	8.355	1.00	12.38
	MOTA	2367	CG	LEU	A	343	32.210	57.840	9.220	1.00	12.11
	MOTA	2368	CD1	LEU	A	343	32.755	57.858	10.646	1.00	12.07
25	MOTA	2369	CD2	LEU	A	343	32.137	59.262	8.644	1.00	9.24
	MOTA	2370	С	LEU	A	343	31.935	54.816	8.893	1.00	13.84
	MOTA	2371	0	LEU	A	343	31.257	54.864	9.916	1.00	16.26
	MOTA	2372	N	GLU	A	344	31.517	54.178	7.802	1.00	14.81
	MOTA	2373	CA	GLU	A	344	30.234	53.483	7.821	1.00	14.29
30	MOTA	2374	СВ	GLU	Α	344	29.892	52.902	6.447	1.00	15.56
	MOTA	2375	CG	GLU	Α	344	29.631	53.943	5.363	1.00	16.52
	ATOM	2376	CD	GLU	A	344	29.003	53.345	4.105	1.00	17.36
	MOTA	2377	OE1	GLU	A	344	29.284	52.169	3.793	1.00	17.77
35	ATOM	2378	OE2	GLU	A	344	28.240	54.056	3.417	1.00	15.41
	ATOM	2379	С	GLU	A	344	30.291	52.366	8.862	1.00	14.33
	ATOM	2380	0	GLU	A	344	29.335	52.147	9.608	1.00	14.20
	MOTA	2381	N	LYS	Α	345	31.423	51.669	8.921	1.00	14.34

<!)

	MOTA	2382	CA	LYS A	345	31.599	50.591	9.888	1.00	15.17
	ATOM	2383	СВ	LYS A	345	32.865	49.790	9.576	1.00	13.40
	MOTA	2384	CG	LYS A	345	32.673	48.774	8.460	1.00	13.33
	MOTA	2385	CD	LYS A	345	33.934	47.958	8.217	1.00	10.82
5	MOTA	2386	CE	LYS A	345	33.622	46.670	7.470	1.00	11.36
	MOTA	2387	NZ	LYS A	345	32.935	46.896	6.170	1.00	11.03
	ATOM	2388	С	LYS A	345	31.658	51.143	11.308	1.00	15.43
	MOTA	2389	0	LYS A	345	31.113	50.547	12.237	1.00	15.78
	MOTA	2390	N	ILE A	346	32.312	52.286	11.478	1.00	15.51
10	MOTA	2391	CA	ILE A	346	32.396	52.903	12.796	1.00	16.19
	MOTA	2392	СВ	ILE A	346	33.364	54.115	12.787	1.00	16.23
	ATOM	2393	CG2	ILE A	346	33.293	54.866	14.117	1.00	14.17
	ATOM	2394	CG1	ILE A	346	34.791	53.618	12.528	1.00	15.33
	MOTA	2395	CD1	ILE A	346	35.816	54.718	12.423	1.00	16.06
15	MOTA	2396	С	ILE A	346	30.995	53.344	13.234	1.00	16.44
	ATOM	2397	0	ILE A	346	30.582	53.075	14.362	1.00	16.11
	ATOM	2398	N	ARG A	347	30.256	54.002	12.343	1.00	15.77
	ATOM	2399	CA	ARG A	347	28.899	54.435	12.679	1.00	16.90
	ATOM	2400	СВ	ARG A	347	28.298	55.277	11.548	1.00	17.76
20	ATOM	2401	CG	ARG A	347	28.955	56.649	11.348	1.00	18.67
	ATOM	2402	CD	ARG A	347	28.227	57.437	10.259	1.00	19.78
	ATOM	2403	NE	ARG A	347	26.818	57.633	10.594	1.00	22.78
	ATOM	2404	CZ	ARG A	347	26.283	58.796	10.962	1.00	26.59
	ATOM	2405	NH1	ARG A	347	27.037	59.889	11.038	1.00	26.85
25	ATOM	2406	NH2	ARG A	347	24.994	58.864	11.273	1.00	24.22
	ATOM	2407	С	ARG A	347	28.007	53.220	12.948	1.00	15.86
	ATOM	2408	0	ARG A	347	27.079	53.283	13.748	1.00	15.48
	ATOM	2409	N	ALA A	348	28.296	52.109	12.278	1.00	15.92
	ATOM	2410	CA	ALA A	348	27.521	50.892	12.471	1.00	15.49
30	ATOM	2411	СВ	ALA A	348	27.792	49.902	11.333	1.00	15.25
	ATOM	2412	С	ALA A	348	27.848	50.252	13.820	1.00	15.76
	MOTA	2413	0	ALA A	348	27.095	49.401	14.301	1.00	16.58
	ATOM	2414	N	GLY A	349	28.966	50.653	14.431	1.00	13.86
	ATOM	2415	CA	GLY A	349	29.315	50.098	15.730	1.00	13.25
35	ATOM	2416	С	GLY A	349	30.759	49.684	15.979	1.00	14.61
	ATOM	2417	0	GLY A	349	31.097	49.268	17.088	1.00	15.21
	ATOM	2418	N	ALA A	350	31.617	49.797	14.972	1.00	14.16

	ATOM	2419	CA	ALA .	A	350	33.014	49.418	15.134	1.00	16.29
	ATOM	2420	СВ	ALA .	A	350	33.637	49.115	13.774	1.00	16.52
	ATOM	2421	С	ALA .	A	350	33.836	50.485	15.843	1.00	17.09
	MOTA	2422	0	ALA .	A	350	33.737	51.674	15.531	1.00	17.36
5	ATOM	2423	N	SER .	A	351	34.646	50.051	16.805	1.00	17.54
	ATOM	2424	CA	SER .	A	351	35.515	50.963	17.540	1.00	16.20
	ATOM	2425	СВ	SER .	A	351	35.821	50.411	18.932	1.00	15.23
	MOTA	2426	OG	SER .	A	351	34.684	50.491	19.767	1.00	18.04
	ATOM	2427	С	SER .	Ą	351	36.812	51.112	16.754	1.00	16.11
10	MOTA	2428	0	SER .	A	351	37.503	52.131	16.851	1.00	15.72
	MOTA	2429	N	LEU .	Α	352	37.127	50.078	15.977	1.00	14.13
	ATOM	2430	CA	LEU .	Α	352	38.328	50.046	15.149	1.00	15.05
	ATOM	2431	СВ	LEU .	A	352	39.457	49.286	15.859	1.00	13.12
	MOTA	2432	CG	LEU .	A	352	39.909	49.717	17.254	1.00	14.84
15	MOTA	2433	CD1	LEU .	A	352	40.771	48.610	17.869	1.00	11.84
	MOTA	2434	CD2	LEU	A	352	40.674	51.033	17.171	1.00	13.14
	MOTA	2435	С	LEU	A	352	37.999	49.308	13.857	1.00	13.72
	MOTA	2436	0	LEU	A	352	37.021	48.565	13.795	1.00	11.22
	MOTA	2437	N	VAL .	A	353	38.820	49.514	12.831	1.00	12.75
20	MOTA	2438	CA	VAL	A	353	38.626	48.828	11.564	1.00	13.86
	ATOM	2439	СВ	VAL	A	353	38.055	49.761	10.470	1.00	15.70
	MOTA	2440	CG1	VAL	A	353	36.770	50.417	10.960	1.00	14.25
	MOTA	2441	CG2	VAL	A	353	39.090	50.799	10.071	1.00	13.83
	MOTA	2442	С	VAL	A	353	39.962	48.281	11.081	1.00	14.67
25	ATOM	2443	0	VAL	A	353	41.024	48.711	11.536	1.00	12.91
	ATOM	2444	N	GLN	A	354	39.897	47.316	10.172	1.00	14.28
	MOTA	2445	CA	GLN	A	354	41.089	46.710	9.596	1.00	14.04
	MOTA	2446	CB	GLN	A	354	41.347	45.307	10.175	1.00	14.77
	MOTA	2447	CG	GLN	A	354	41.594	45.223	11.678	1.00	15.51
30	MOTA	2448	CD	GLN	A	354	41.763	43.774	12.147	1.00	18.24
	MOTA	2449	OE1	GLN	A	354	41.005	42.888	11.745	1.00	16.59
	MOTA	2450	NE2	GLN	A	354	42.756	43.534	13.000	1.00	16.98
	MOTA	2451	С	GLN	A	354	40.852	46.574	8.100	1.00	14.33
	MOTA	2452	0	GLN	A	354	39.715	46.634	7.626		13.37
35	MOTA	2453	N	LEU	A	355	41.931	46.394	7.354		14.18
	MOTA	2454	CA	LEU	A	355	41.822	46.213	5.919	1.00	15.51
	MOTA	2455	СВ	LEU	A	355	41.899	47.561	5.188	1.00	13.52

	ATOM	2456	CG	LEU .	A	355	43.166	48.417	5.312	1.00	13.61
	ATOM	2457	CD1	LEU .	Α	355	44.262	47.879	4.399	1.00	13.33
	ATOM	2458	CD2	LEU .	A	355	42.838	49.854	4.943	1.00	10.85
	ATOM	2459	С	LEU	A	355	42.955	45.306	5.482	1.00	16.16
5	ATOM	2460	0	LEU	Α	355	43.963	45.176	6.179	1.00	15.14
	MOTA	2461	N	TYR	Α	356	42.775	44.657	4.340	1.00	17.37
	MOTA	2462	CA	TYR	A	356	43.805	43.785	3.804	1.00	17.28
	ATOM	2463	СВ	TYR	A	356	43.639	42.352	4.333	1.00	16.02
	MOTA	2464	CG	TYR	A	356	44.703	41.377	3.852	1.00	15.51
10	MOTA	2465	CD1	TYR	A	356	44.774	40.087	4.363	1.00	16.04
	ATOM	2466	CE1	TYR	A	356	45.714	39.182	3.897	1.00	14.34
	MOTA	2467	CD2	TYR	A	356	45.611	41.735	2.862	1.00	16.62
	MOTA	2468	CE2	TYR	A	356	46.551	40.838	2.387	1.00	16.21
	MOTA	2469	CZ	TYR	A	356	46.597	39.565	2.905	1.00	16.13
15	MOTA	2470	ОН	TYR	A	356	47.518	38.669	2.414	1.00	17.60
	MOTA	2471	С	TYR	A	356	43.739	43.803	2.287	1.00	17.12
	ATOM	2472	0	TYR	Α	356	44.671	44.261	1.629	1.00	18.15
	ATOM	2473	N	THR	Α	357	42.637	43.308	1.738	1.00	16.53
	ATOM	2474	CA	THR	Α	357	42.472	43.250	0.292	1.00	16.40
20	ATOM	2475	СВ	THR	Α	357	41.059	42.753	-0.080	1.00	16.96
	ATOM	2476	OG1	THR	Α	357	40.868	41.429	0.439	1.00	13.18
	ATOM	2477	CG2	THR	Α	357	40.886	42.727	-1.589	1.00	16.23
	ATOM	2478	С	THR	A	357	42.731	44.590	-0.401	1.00	15.65
	ATOM	2479	0	THR	A	357	43.312	44.633	-1.484	1.00	15.49
25	ATOM	2480	N	ALA	A	358	42.307	45.683	0.223	1.00	15.19
	MOTA	2481	CA	ALA	A	358	42.507	47.002	-0.367	1.00	15.24
	ATOM	2482	СВ	ALA	A	358	41.921	48.070	0.534	1.00	11.12
	ATOM	2483	С	ALA	A	358	43.995	47.255	-0.584	1.00	16.21
	ATOM	2484	0	ALA	A	358	44.394	47.872	-1.572	1.00	15.43
30	ATOM	2485	N	LEU	A	359	44.810	46.770	0.348	1.00	16.24
	ATOM	2486	CA	LEU	A	359	46.255	46.943	0.273	1.00	16.57
	ATOM	2487	СВ	LEU	A	359	46.916	46.409	1.548	1.00	17.72
	ATOM	2488	CG	LEU	A	359	48.442	46.485	1.620	1.00	17.63
	ATOM	2489	CD1	LEU	A	359	48.894	47.933	1.559	1.00	17.25
35	ATOM	2490	CD2	LEU	A	359	48.919	45.829	2.908	1.00	18.09
	MOTA	2491	С	LEU	A	359	46.846	46.239	-0.942	1.00	15.68
	ATOM	2492	0	LEU	Α	359	47.800	46.725	-1.541	1.00	14.17

	ATOM	2493	N	THR	A	360	46.270	45.099	-1.309	1.00	15.77
	ATOM	2494	CA	THR	Α	360	46.762	44.336	-2.450	1.00	16.61
	ATOM	2495	СВ	THR	Α	360	46.189	42.906	-2.454	1.00	16.18
	ATOM	2496	OG1	THR	A	360	44.804	42.943	-2.829	1.00	17.30
5	ATOM	2497	CG2	THR	Α	360	46.331	42.280	-1.068	1.00	10.83
	MOTA	2498	С	THR	A	360	46.444	44.986	-3.795	1.00	18.77
	ATOM	2499	0	THR	A	360	47.034	44.628	-4.813	1.00	21.01
	MOTA	2500	N	PHE	A	361	45.516	45.937	-3.810	1.00	18.81
	ATOM	2501	CA	PHE	A	361	45.165	46.606	-5.060	1.00	20.17
10	MOTA	2502	СВ	PHE	A	361	43.644	46.760	-5.197	1.00	21.09
	MOTA	2503	CG	PHE	A	361	42.922	45.482	-5.517	1.00	22.40
	MOTA	2504	CD1	PHE	A	361	42.189	44.821	-4.547	1.00	19.17
	MOTA	2505	CD2	PHE	A	361	42.988	44.935	-6.791	1.00	24.26
	MOTA	2506	CE1	PHE	A	361	41.537	43.641	-4.838	1.00	22.16
15	MOTA	2507	CE2	PHE	Α	361	42.335	43.748	-7.089	1.00	23.23
	MOTA	2508	CZ	PHE	A	361	41.609	43.102	-6.109	1.00	22.64
	ATOM	2509	С	PHE	A	361	45.796	47.988	-5.195	1.00	20.92
	MOTA	2510	0	PHE	A	361	46.302	48.344	-6.255	1.00	22.01
	MOTA	2511	N	TRP	A	362	45.769	48.761	-4.116	1.00	22.57
20	MOTA	2512	CA	TRP	A	362	46.286	50.122	-4.144	1.00	23.30
	MOTA	2513	СВ	TRP	Α	362	45.259	51.043	-3.480	1.00	24.63
	MOTA	2514	CG	TRP	Α	362	43.846	50.707	-3.893	1.00	28.77
	MOTA	2515	CD2	TRP	Α	362	43.360	50.512	-5.232	1.00	30.31
	MOTA	2516	CE2	TRP	A	362	42.000	50.158	-5.134	1.00	30.43
25	MOTA	2517	CE3	TRP	A	362	43.945	50.600	-6.501	1.00	30.78
	MOTA	2518		TRP			42.785	50.474	-3.068	1.00	28.42
	MOTA	2519	NE1	TRP	Α	362	41.674	50.141	-3.804	1.00	28.43
	MOTA	2520					41.213				32.37
	MOTA	2521	CZ3	TRP	Α	362					31.79
30	MOTA	2522	CH2	TRP	A		41.812				32.17
	MOTA	2523	С				47.667	50.312	-3.514		22.63
	MOTA	2524	0			362	48.320	51.334			22.22
	MOTA	2525	N				48.107	49.329	-2.736		21.03
	MOTA		CA				49.408	49.416	-2.098		19.14
35	MOTA	2527	С				49.417		-0.817		19.51
	MOTA	2528	0	GLY			48.372	50.693	-0.359		20.28
	ATOM	2529	N	PRO	A	364	50.601	50.418	-0.214	1.00	19.32

	MOTA	2530	CD	PRO A	364	51.869	49.874	-0.739	1.00 19.56
	MOTA	2531	CA	PRO A	364	50.831	51.169	1.026	1.00 19.42
	MOTA	2532	СВ	PRO A	364	52.349	51.331	1.051	1.00 18.75
	MOTA	2533	CG	PRO A	364	52.816	50.041	0.441	1.00 18.97
5	ATOM	2534	С	PRO A	364	50.110	52.514	1.150	1.00 20.15
	MOTA	2535	0	PRO A	364	49.578	52.837	2.210	1.00 21.62
	ATOM	2536	N	PRO A	365	50.082	53.317	0.072	1.00 20.37
	ATOM	2537	CD	PRO A	365	50.657	53.076	-1.263	1.00 19.69
	MOTA	2538	CA	PRO P	365	49.415	54.624	0.118	1.00 19.12
10	ATOM	2539	СВ	PRO P	365	49.567	55.143	-1.311	1.00 19.93
	MOTA	2540	CG	PRO P	365	50.829	54.477	-1.787	1.00 20.52
	MOTA	2541	С	PRO P	365	47.950	54.588	0.551	1.00 18.92
	MOTA	2542	0	PRO P	365	47.412	55.593	1.011	1.00 19.97
	MOTA	2543	N	VAL A	366	47.302	53.437	0.411	1.00 18.53
15	MOTA	2544	CA	VAL A	366	45.895	53.343	0.779	1.00 18.39
	MOTA	2545	СВ	VAL A	366	45.306	51.950	0.449	1.00 18.99
	ATOM	2546	CG1	VAL A	366	45.762	50.925	1.473	1.00 17.14
	MOTA	2547	CG2	VAL A	366	43.793	52.032	0.403	1.00 18.85
	MOTA	2548	С	VAL A	366	45.680	53.635	2.257	1.00 18.00
20	MOTA	2549	0	VAL A	366	44.627	54.130	2.653	1.00 19.45
	ATOM	2550	N	VAL A	367	46.689	53.341	3.069	1.00 17.67
	MOTA	2551	CA	VAL A	367	46.599	53.568	4.506	1.00 17.92
	ATOM	2552	СВ	VAL A	367	47.845	53.038	5.224	1.00 17.49
	ATOM	2553	CG1	VAL A	367	47.685	53.213	6.717	1.00 15.94
25	MOTA	2554	CG2	VAL A	367	48.069	51.566	4.858	1.00 18.38
	MOTA	2555	С	VAL A	367	46.429	55.050	4.844	1.00 18.04
	ATOM	2556	0	VAL A	367	45.555	55.418	5.628	1.00 16.97
	ATOM	2557	N	GLY F	368	47.269	55.894	4.254	1.00 19.26
	MOTA	2558	CA	GLY F	368	47.179	57.320	4.507	1.00 19.38
30	MOTA	2559	С	GLY F	368	45.899	57.881	3.924	1.00 21.58
	ATOM	2560	0	GLY F	368	45.281	58.782	4.500	1.00 20.55
	MOTA	2561	N	LYS A	369	45.491	57.331	2.781	1.00 22.53
	MOTA	2562	CA	LYS A	369	44.271	57.773	2.110	1.00 22.83
	ATOM	2563	СВ	LYS A	369	44.059	56.997	0.804	1.00 22.47
35	MOTA	2564	CG	LYS A	369	43.053	57.659	-0.123	1.00 24.45
	ATOM	2565	CD	LYS A	369	42.550	56.727	-1.215	1.00 23.16
	ATOM	2566	CE	LYS A	369	41.613	55.684	-0.638	1.00 24.02

	MOTA	2567	NZ	LYS A	A	369	40.829	54.997	-1.695	1.00	24.58
	ATOM	2568	С	LYS 2	A	369	43.062	57.564	3.016	1.00	21.99
	MOTA	2569	0	LYS 2	A	369	42.264	58.481	3.231	1.00	22.20
	MOTA	2570	N	VAL A	A	370	42.933	56.354	3.549	1.00	19.95
5	ATOM	2571	CA	VAL 2	A	370	41.814	56.036	4.424	1.00	18.95
	ATOM	2572	СВ	VAL A	A	370	41.853	54.559	4.876	1.00	16.89
	MOTA	2573	CG1	VAL 2	A	370	40.745	54.297	5.883	1.00	14.26
	MOTA	2574	CG2	VAL A	A	370	41.692	53.643	3.668	1.00	15.62
	MOTA	2575	С	VAL 2	A	370	41.795	56.936	5.655	1.00	19.62
10	ATOM	2576	0	VAL A	Α	370	40.743	57.447	6.041	1.00	18.54
	ATOM	2577	N	LYS	A	371	42.957	57.134	6.268	1.00	19.57
	ATOM	2578	CA	LYS	A	371	43.036	57.982	7.449	1.00	20.77
	ATOM	2579	СВ	LYS .	A	371	44.437	57.906	8.068	1.00	20.80
	ATOM	2580	CG	LYS A	A	371	44.714	56.573	8.755	1.00	20.84
15	ATOM	2581	CD	LYS A	Α	371	46.007	56.598	9.547	1.00	20.94
	ATOM	2582	CE	LYS .	A	371	47.211	56.772	8.643	1.00	20.99
	ATOM	2583	NZ	LYS	A	371	48.475	56.737	9.422	1.00	21.34
	ATOM	2584	С	LYS	A	371	42.675	59.433	7.142	1.00	20.94
	ATOM	2585	0	LYS .	A	371	41.944	60.067	7.901	1.00	20.23
20	ATOM	2586	N	ARG .	A	372	43.181	59.954	6.029	1.00	22.39
	ATOM	2587	CA	ARG .	Α	372	42.899	61.332	5.635	1.00	24.04
	ATOM	2588	СВ	ARG .	A	372	43.711	61.711	4.392	1.00	25.41
	ATOM	2589	CG	ARG .	A	372	43.497	63.151	3.942	1.00	30.23
	ATOM	2590	CD	ARG .	A	372	44.290	63.505	2.680	1.00	32.89
25	ATOM	2591	NE	ARG .	A	372	43.774	62.832	1.487	1.00	37.10
	ATOM	2592	CZ	ARG .	A	372	44.382	61.822	0.871	1.00	36.84
	ATOM	2593	NH1	ARG .	A	372	45.538	61.362	1.331	1.00	37.88
	ATOM	2594	NH2	ARG .	A	372	43.830	61.272	-0.204	1.00	35.98
	ATOM	2595	С	ARG .	A	372	41.410	61.554	5.351	1.00	23.65
30	ATOM	2596	0	ARG .	A	372	40.832	62.551	5.785	1.00	23.32
	ATOM	2597	N	GLU .	A	373	40.793	60.626	4.624	1.00	22.04
	ATOM	2598	CA	GLU .	A	373	39.377	60.748	4.290	1.00	21.15
	ATOM	2599	СВ	GLU .	A	373	38.990	59.724	3.214	1.00	21.21
	ATOM	2600	CG	GLU .	A	373	39.790	59.861	1.919	1.00	21.35
35	ATOM	2601	CD	GLU .	A	373	39.474	58.770	0.908	1.00	24.25
	ATOM	2602	OE1	GLU .	A	373	39.337	57.600	1.318	1.00	27.16
	ATOM	2603	OE2	GLU .	A	373	39.376	59.074	-0.299	1.00	24.09

	ATOM	2604	С	GLU Z	A	373	38.517	60.559	5.530	1.00	20.97
	ATOM	2605	0	GLU A	A	373	37.475	61.196	5.675	1.00	23.42
	ATOM	2606	N	LEU A	A	374	38.954	59.684	6.428	1.00	19.50
	MOTA	2607	CA	LEU 2	A	374	38.213	59.442	7.655	1.00	19.13
5	ATOM	2608	СВ	LEU A	A	374	38.885	58.340	8.479	1.00	16.43
	MOTA	2609	CG	LEU A	A	374	38.240	58.031	9.837	1.00	15.24
	ATOM	2610	CD1	LEU Z	A	374	36.785	57.640	9.636	1.00	12.59
	ATOM	2611	CD2	LEU A	A	374	39.005	56.911	10.534	1.00	13.82
	MOTA	2612	С	LEU A	A	374	38.157	60.729	8.472	1.00	20.52
10	MOTA	2613	0	LEU .	A	374	37.091	61.132	8.939	1.00	22.71
	ATOM	2614	N	GLU	A	375	39.310	61.367	8.641	1.00	20.39
	MOTA	2615	CA	GLU	A	375	39.403	62.609	9.399	1.00	23.59
	ATOM	2616	СВ	GLU .	A	375	40.846	63.119	9.404	1.00	26.05
	ATOM	2617	CG	GLU .	A	375	41.083	64.272	10.360	1.00	33.07
15	ATOM	2618	CD	GLU .	A	375	42.508	64.792	10.310	1.00	37.24
	MOTA	2619	OE1	GLU .	A	375	43.445	63.966	10.363	1.00	39.09
	MOTA	2620	OE2	GLU .	Α	375	42.689	66.027	10.229	1.00	41.20
	MOTA	2621	С	GLU .	A	375	38.485	63.679	8.815	1.00	22.79
	ATOM	2622	0	GLU .	A	375	37.710	64.302	9.537	1.00	22.67
20	ATOM	2623	N	ALA .	A	376	38.571	63.881	7.503	1.00	22.58
	ATOM	2624	CA	ALA .	A	376	37.740	64.871	6.827	1.00	22.81
	ATOM	2625	СВ	ALA .	A	376	38.087	64.926	5.330	1.00	20.94
	ATOM	2626	С	ALA .	A	376	36.260	64.557	7.010	1.00	23.09
	ATOM	2627	0	ALA .	Α	376	35.464	65.454	7.283	1.00	25.43
25	ATOM	2628	N	LEU .	A	377	35.890	63.286	6.859	1.00	22.26
	MOTA	2629	CA	LEU .	Α	377	34.495	62.881	7.016	1.00	21.07
	MOTA	2630	СВ	LEU .	A	377	34.316	61.403	6.661	1.00	18.38
	ATOM	2631	CG	LEU .	A	377	34.395	61.099	5.166	1.00	19.86
	MOTA	2632	CD1	LEU .	A	377	34.336	59.603	4.947	1.00	17.99
30	ATOM	2633	CD2	LEU .	A	377	33.257	61.809	4.438	1.00	15.21
	MOTA	2634	С	LEU .	A	377	33.982	63.126	8.427	1.00	21.76
	MOTA	2635	0	LEU	A	377	32.835	63.529	8.610	1.00	20.90
	ATOM	2636	N	LEU .	A	378	34.828	62.872	9.423	1.00	22.73
	MOTA	2637	CA	LEU .	A	378	34.442	63.086	10.814	1.00	23.95
35	MOTA	2638	СВ	LEU	A	378	35.567	62.642	11.757	1.00	19.58
	MOTA	2639	CG	LEU	A	378	35.806	61.133	11.865	1.00	18.89
	ATOM	2640	CD1	LEU	A	378	37.114	60.854	12.585	1.00	16.40

	ATOM	2641	CD2	LEU	A	378	34.638	60.484	12.594	1.00	16.69
	ATOM	2642	С	LEU	Α	378	34.114	64.563	11.048	1.00	24.69
	ATOM	2643	0	LEU	Α	378	33.081	64.888	11.633	1.00	24.07
	ATOM	2644	N	LYS	Α	379	34.994	65.449	10.588	1.00	25.59
5	ATOM	2645	CA	LYS	A	379	34.783	66.885	10.747	1.00	29.22
	ATOM	2646	СВ	LYS	Α	379	35.977	67.667	10.197	1.00	30.45
	ATOM	2647	CG	LYS	A	379	37.288	67.406	10.926	1.00	34.68
	ATOM	2648	CD	LYS	Α	379	38.436	68.182	10.296	1.00	36.27
	MOTA	2649	CE	LYS	A	379	39.747	67.898	11.010	1.00	40.47
10	MOTA	2650	NZ	LYS	Α	379	40.904	68.609	10.389	1.00	42.09
	ATOM	2651	С	LYS	A	379	33.528	67.294	9.993	1.00	30.46
	ATOM	2652	0	LYS	A	379	32.638	67.951	10.533	1.00	29.89
	ATOM	2653	N	GLU	A	380	33.475	66.888	8.732	1.00	31.45
	ATOM	2654	CA	GLU	A	380	32.358	67.186	7.853	1.00	33.02
15	MOTA	2655	СВ	GLU	Α	380	32.606	66.511	6.502	1.00	34.90
	ATOM	2656	CG	GLU	A	380	31.467	66.591	5.519	1.00	41.07
	ATOM	2657	CD	GLU	A	380	31.820	65.940	4.195	1.00	44.70
	ATOM	2658	OE1	GLU	A	380	30.909	65.725	3.367	1.00	47.15
	ATOM	2659	OE2	GLU	A	380	33.016	65.649	3.982	1.00	46.06
20	MOTA	2660	С	GLU	A	380	31.013	66.748	8.433	1.00	32.34
	MOTA	2661	0	GLU	A	380	29.979	67.353	8.144	1.00	31.13
	MOTA	2662	N	GLN	A	381	31.023	65.708	9.260	1.00	31.07
	MOTA	2663	CA	GLN	Α	381	29.780	65.218	9.846	1.00	31.01
	MOTA	2664	СВ	GLN	A	381	29.695	63.693	9.688	1.00	30.16
25	MOTA	2665	CG	GLN	A	381	29.351	63.272	8.256	1.00	29.66
	MOTA	2666	CD	GLN	A	381	29.445	61.774	8.025		30.22
	MOTA	2667	OE1	GLN	A	381	29.049	60.975	8.872	1.00	29.82
	MOTA	2668	NE2	GLN	A	381	29.953	61.388	6.858	1.00	30.17
	MOTA	2669	С	GLN	A	381	29.546	65.632	11.301		30.95
30	MOTA	2670	0	GLN	A	381	28.634	65.131	11.959		30.74
	MOTA	2671	N	GLY	Α	382	30.375	66.546	11.796		30.35
	MOTA	2672	CA	GLY	A	382	30.210	67.043	13.150		30.34
	MOTA	2673	С	GLY	A	382	30.737	66.225	14.311		30.42
	ATOM	2674	0	GLY			30.443	66.539	15.463		30.46
35	MOTA	2675	N	PHE			31.507	65.181	14.037		29.60
	MOTA	2676	CA	PHE			32.053	64.371	15.119		28.66
	ATOM	2677	CB	PHE	A	383	32.309	62.941	14.644	1.00	26.51

	ATOM	2678	CG	PHE	Α	383	31.065	62.205	14.243	1.00	24.25
	ATOM	2679	CD1	PHE	Α	383	30.798	61.945	12.910	1.00	23.46
	ATOM	2680	CD2	PHE	Α	383	30.163	61.774	15.200	1.00	21.40
	ATOM	2681	CE1	PHE	Α	383	29.654	61.264	12.536	1.00	22.91
5	ATOM	2682	CE2	PHE	A	383	29.021	61.096	14.833	1.00	22.41
	ATOM	2683	CZ	PHE	Α	383	28.765	60.839	13.498	1.00	22.25
	ATOM	2684	С	PHE	A	383	33.352	64.975	15.641	1.00	29.41
	ATOM	2685	0	PHE	A	383	34.237	65.332	14.864	1.00	30.63
	ATOM	2686	N	GLY	Α	384	33.460	65.094	16.960	1.00	29.35
10	ATOM	2687	CA	GLY	Α	384	34.666	65.646	17.548	1.00	29.12
	ATOM	2688	С	GLY	Α	384	35.834	64.700	17.353	1.00	29.26
	ATOM	2689	0	GLY	Α	384	36.994	65.111	17.356	1.00	30.18
	MOTA	2690	N	GLY	A	385	35.518	63.422	17.179	1.00	28.99
	ATOM	2691	CA	GLY	Α	385	36.546	62.419	16.978	1.00	27.13
15	ATOM	2692	С	GLY	A	385	35.935	61.062	16.695	1.00	26.35
	ATOM	2693	0	GLY	Α	385	34.713	60.913	16.712	1.00	26.39
	ATOM	2694	N	VAL	A	386	36.787	60.075	16.435	1.00	25.90
	ATOM	2695	CA	VAL	Α	386	36.348	58.715	16.145	1.00	23.97
	MOTA	2696	СВ	VAL	A	386	37.558	57.756	16.023	1.00	24.97
20	ATOM	2697	CG1	VAL	Α	386	37.078	56.317	15.893	1.00	23.00
	MOTA	2698	CG2	VAL	A	386	38.414	58.143	14.826	1.00	24.99
	MOTA	2699	С	VAL	A	386	35.431	58.187	17.241	1.00	24.14
	ATOM	2700	0	VAL	A	386	34.377	57.614	16.961	1.00	23.65
	MOTA	2701	N	THR	Α	387	35.844	58.389	18.488		24.08
25	MOTA	2702	CA	THR	A	387	35.090	57.929	19.649	1.00	25.04
	ATOM	2703	СВ	THR	A	387	35.730	58.441	20.955	1.00	26.36
	MOTA	2704	OG1	THR	Α	387	37.126	58.116	20.960	1.00	29.95
	MOTA	2705	CG2	THR	Α	387	35.066		22.161	1.00	24.13
	MOTA	2706	С	THR	A	387	33.634	58.377	19.624		24.22
30	ATOM	2707	0	THR	A	387	32.746	57.651	20.062		24.33
	MOTA	2708	N	ASP			33.400	59.577	19.106		24.01
	MOTA	2709	CA	ASP	A	388	32.058	60.142	19.034		23.47
	ATOM	2710	CB	ASP	A	388	32.150	61.642	18.747		27.09
	MOTA	2711	CG	ASP	A	388	32.861	62.399	19.842		30.40
35	MOTA	2712		ASP			33.719	63.251	19.515		33.28
	MOTA	2713		ASP			32.557		21.028		32.49
	ATOM	2714	С	ASP	A	388	31.195	59.487	17.965	1.00	21.54

	ATOM	2715	0	ASP	Α	388	29.975	59.459	18.079	1.00	20.53
	ATOM	2716	N	ALA	A	389	31.835	58.969	16.924	1.00	21.30
	ATOM	2717	CA	ALA	A	389	31.123	58.341	15.821	1.00	19.74
	ATOM	2718	СВ	ALA	Α	389	31.935	58.498	14.536	1.00	20.68
5	ATOM	2719	С	ALA	Α	389	30.770	56.873	16.035	1.00	18.26
	ATOM	2720	0	ALA	Α	389	29.862	56.356	15.386	1.00	19.21
	MOTA	2721	N	ILE	A	390	31.485	56.196	16.930	1.00	17.78
	ATOM	2722	CA	ILE	Α	390	31.225	54.778	17.193	1.00	15.62
	ATOM	2723	СВ	ILE	A	390	32.106	54.253	18.358	1.00	15.31
10	ATOM	2724	CG2	ILE	A	390	31.813	52.784	18.613	1.00	12.29
	ATOM	2725	CG1	ILE	A	390	33.588	54.424	18.013	1.00	15.83
	ATOM	2726	CD1	ILE	A	390	34.527	54.138	19.169	1.00	14.86
	ATOM	2727	С	ILE	A	390	29.754	54.510	17.529	1.00	15.04
	ATOM	2728	0	ILE	Α	390	29.250	54.962	18.554	1.00	16.25
15	ATOM	2729	N	GLY	A	391	29.071	53.782	16.651	1.00	15.63
	ATOM	2730	CA	GLY	A	391	27.671	53.453	16.872	1.00	15.37
	ATOM	2731	С	GLY	A	391	26.652	54.560	16.631	1.00	15.79
	ATOM	2732	0	GLY	A	391	25.466	54.374	16.893	1.00	15.96
	ATOM	2733	N	ALA	A	392	27.097	55.699	16.114	1.00	16.55
20	ATOM	2734	CA	ALA	A	392	26.207	56.836	15.867	1.00	18.78
	ATOM	2735	СВ	ALA	A	392	26.968	57.944	15.133	1.00	16.54
	ATOM	2736	С	ALA	A	392	24.918	56.504	15.112	1.00	19.86
	ATOM	2737	0	ALA	A	392	23.880	57.119	15.361	1.00	19.15
	ATOM	2738	N	ASP	Α	393	24.972	55.543	14.191	1.00	20.27
25	ATOM	2739	CA	ASP	Α	393	23.777	55.182	13.426	1.00	21.17
	ATOM	2740	СВ	ASP	A	393	24.092	54.124	12.360	1.00	21.34
	ATOM	2741	CG	ASP	A	393	24.905	54.671	11.196	1.00	25.41
	ATOM	2742	OD1	ASP	Α	393	24.915	55.904	10.981		24.65
	ATOM	2743	OD2	ASP	Α	393	25.520	53.851	10.479	1.00	26.65
30	ATOM	2744	С	ASP	A	393	22.670	54.642	14.328	1.00	22.02
	ATOM	2745	0	ASP	A	393	21.487	54.823	14.046		22.08
	ATOM	2746	N	HIS	Α	394	23.062	53.976	15.410		22.05
	ATOM	2747	CA	HIS			22.107	53.383	16.342		23.30
	ATOM	2748	СВ	HIS	A	394	22.818	52.342	17.212		18.42
35	ATOM	2749	CG	HIS			23.430	51.219	16.431		18.64
	ATOM	2750		HIS			24.557	51.165	15.680		15.81
	MOTA	2751	ND1	HIS	A	394	22.855	49.968	16.347	1.00	15.16

	MOTA	2752	CE1	HIS A	394	23.600	49.193	15.580	1.00 15.16
	ATOM	2753	NE2	HIS A	394	24.639	49.895	15.163	1.00 16.24
	ATOM	2754	С	HIS A	394	21.415	54.406	17.237	1.00 25.83
	ATOM	2755	0	HIS A	394	20.373	54.121	17.821	1.00 26.50
5	ATOM	2756	N	ARG A	395	21.994	55.595	17.344	1.00 28.78
	MOTA	2757	CA	ARG A	395	21.428	56.635	18.188	1.00 33.50
	ATOM	2758	СВ	ARG A	395	22.550	57.376	18.926	1.00 33.09
	ATOM	2759	CG	ARG A	395	23.384	56.469	19.829	1.00 34.73
	ATOM	2760	CD	ARG A	395	24.289	57.266	20.759	1.00 35.29
10	ATOM	2761	NE	ARG A	395	25.446	57.851	20.083	1.00 36.20
	ATOM	2762	CZ	ARG A	395	26.557	57.184	19.781	1.00 36.50
	ATOM	2763	NH1	ARG A	395	27.557	57.804	19.165	1.00 35.10
	ATOM	2764	NH2	ARG A	395	26.674	55.900	20.100	1.00 35.17
	ATOM	2765	С	ARG A	395	20.568	57.623	17.408	1.00 37.62
15	MOTA	2766	0	ARG A	395	19.865	58.441	17.996	1.00 39.11
	ATOM	2767	N.	ARG A	396	20.619	57.543	16.083	1.00 41.81
	ATOM	2768	CA	ARG A	396	19.828	58.434	15.245	1.00 45.90
	ATOM	2769	СВ	ARG A	396	20.541	58.683	13.908	1.00 48.15
	ATOM	2770	CG	ARG A	396	20.571	57.500	12.955	1.00 50.79
20	ATOM	2771	CD	ARG A	396	21.552	57.745	11.810	1.00 52.97
	MOTA	2772	NE	ARG A	396	21.368	59.062	11.207	1.00 54.80
	MOTA	2773	CZ	ARG A	396	20.262	59.449	10.582	1.00 56.47
	ATOM	2774	NH1	ARG A	396	20.179	60.669	10.065	1.00 57.12
	ATOM	2775	NH2	ARG A	396	19.240	58.614	10.466	1.00 57.75
25	ATOM	2776	С	ARG A	396	18.439	57.842	15.007	1.00 47.29
	ATOM	2777	0	ARG A	396	17.445	58.588	15.139	1.00 47.81
	ATOM	2778	OXT	ARG A	396	18.361	56.637	14.688	1.00 49.38
	TER	1		ARG A	396				
	END								

Table 30

	ORIGX1		1.000	0000	0.000000	0.000000)	0.00000		
	ORIGX2		0.000	000	1.000000	0.000000)	0.00000		
5	ORIGX3		0.000	000	0.000000	1.00000)	0.00000		
	SCALE1		0.011	.031	0.006369	0.000000)	0.00000		
	SCALE2		0.000	0000	0.012738	0.000000)	0.00000		
	SCALE3		0.000	000	0.000000	0.008129	ō	0.00000		
	MOTA	2779	N1	FMN	398	41.768	36.138	8.642	1.00	13.07
10.	MOTA	2780	C2	FMN	398	42.156	35.495	9.777	1.00	16.23
	MOTA	2781	02	FMN	398	41.553	35.602	10.828	1.00	15.63
	MOTA	2782	N3	FMN	398	43.332	34.661	9.720	1.00	15.17
	MOTA	2783	C4	FMN	398	44.083	34.463	8.624	1.00	14.98
	MOTA	2784	04	FMN	398	45.078	33.724	8.673	1.00	15.42
15	MOTA	2785	C4A	FMN	398	43.663	35.157	7.395	1.00	13.75
	MOTA	2786	N5	FMN	398	44.353	35.021	6.251	1.00	13.73
	ATOM	2787	C5A	FMN	398	43.937	35.699	5.122	1.00	11.46
	MOTA	2788	С6	FMN	398	44.677	35.580	3.868	1.00	10.75
	ATOM	2789	C7	FMN	398	44.299	36.258	2.716	1.00	11.50
20	MOTA	2790	C7M	FMN	398	45.115	36.107	1.416	1.00	9.29
	MOTA	2791	C8	FMN	398	43.129	37.121	2.736	1.00	11.87
	ATOM	2792	C8M	FMN	398	42.661	37.903	1.514	1.00	14.22
	ATOM	2793	С9	FMN	398	42.407	37.240	3.918	1.00	11.46
	ATOM	2794	C9A	FMN	398	42.774	36.557	5.116	1.00	13.45
25	MOTA	2795	N10	FMN	398	42.055	36.664	6.366	1.00	13.69
	MOTA	2796	C10	FMN	398	42.452	36.003	7.508	1.00	14.43
	MOTA	2797	C1*	FMN	398	40.854	37.510	6.446	1.00	12.50
	MOTA	2798	C2*	FMN	398	41.120	39.004	6.623	1.00	13.52
	MOTA	2799	02*	FMN	398	41.785	39.192	7.913	1.00	13.74
30	MOTA	2800	C3*	FMN	398	39.791	39.809	6.666	1.00	12.06
	ATOM	2801	03*	FMN	398	38.934	39.288	7.740	1.00	12.59
	MOTA	2802	C4*	FMN	398	38.960	39.696	5.359	1.00	12.31
	MOTA	2803	04*	FMN	398	39.810	39.464	4.208	1.00	11.80
	MOTA	2804	C5*	FMN	398	38.118	40.946	5.100	1.00	10.70
35	MOTA	2805	05*	FMN	398	38.915	42.126	4.951	1.00	14.11
	MOTA	2806	P	FMN	398	39.371	42.728	3.527	1.00	13.60
	ATOM	2807	01P	FMN	398	40.438	41.814	2.959	1.00	14.55

	ATOM	2808	02P	FMN	398	39.878	44.114	3.849	1.00	12.57
	MOTA	2809	03P	FMN	398	38.126	42.785	2.627	1.00	14.12
	MOTA	2810	N1	ORO	399	41.674	32.379	4.935	1.00	16.78
	MOTA	2811	C2	ORO	399	40.657	33.292	5.240	1.00	16.40
5	MOTA	2812	02	ORO	399	40.049	33.934	4.386	1.00	20.50
	ATOM	2813	из	ORO	399	40.350	33.452	6.592	1.00	14.80
	MOTA	2814	C4	ORO	399	40.960	32.786	7.660	1.00	15.08
	MOTA	2815	04	ORO	399	40.634	32.987	8.809	1.00	14.56
	MOTA	2816	C5	ORO	399	42.020	31.838	7.284	1.00	14.43
10	MOTA	2817	С6	ORO	399	42.319	31.684	5.976	1.00	16.70
	MOTA	2818	C7	ORO	399	43.405	30.715	5.533	1.00	17.56
	MOTA	2819	071	ORO	399	44.524	30.703	6.023	1.00	19.26
	MOTA	2820	072	ORO	399	42.925	29.978	4.631	1.00	18.83
	MOTA	2821	s	SO4	400	56.424	40.112	34.639	1.00	35.18
15	ATOM	2822	01	SO4	400	56.120	41.429	35.225	1.00	35.51
	MOTA	2823	02	SO4	400	55.199	39.292	34.609	1.00	36.32
	MOTA	2824	03	SO4	400	56.937	40.294	33.270	1.00	36.60
	MOTA	2825	04	SO4	400	57.452	39.437	35.452	1.00	37.26
	ATOM	2826	С	ACT	401	24.652	49.256	4.973	1.00	33.65
20	MOTA	2827	0	ACT	401	23.471	49.645	4.685	1.00	32.94
	MOTA	2828	OXT	ACT	401	24.974	48.967	6.159	1.00	34.73
	MOTA	2829	СНЗ	ACT	401	24.990	48.159	3.937	1.00	30.22
	MOTA	2830	S	SO4	402	56.685	36.631	28.249	1.00	42.93
	MOTA	2831	01	SO4	402	55.412	37.351	28.128	1.00	51.57
25	MOTA	2832	02	SO4	402	56.420	35.196	28.444	1.00	49.22
	MOTA	2833	03	SO4	402	57.455	36.828	27.009	1.00	51.20
	MOTA	2834	04	SO4	402	57.439	37.165	29.395	1.00	49.80
	MOTA	2835	S	SO4	403	48.265	43.940	28.781	1.00	91.18
	MOTA	2836	01	SO4	403	49.259	43.050	28.152	1.00	90.53
30	MOTA	2837	02	SO4	403	47.958	43.450	30.139	1.00	90.33
	MOTA	2838	03	SO4	403	48.812	45.308	28.869	1.00	90.28
	MOTA	2839	04	SO4	403	47.033	43.952	27.967	1.00	90.50
	MOTA	2840	S	SO4	404	32.854	23.140	6.523	1.00	78.69
	MOTA	2841	01	SO4	404	32.858	24.227	7.521	1.00	79.26
35	MOTA	2842	02	SO4	404	31.949	23.493	5.413	1.00	78.75
	MOTA	2843	03	SO4	404	34.218	22.943	6.001	1.00	78.59
	ATOM	2844	04	SO4	404	32.383	21.897	7.160	1.00	78.61

	ATOM	2845	C1	INH	1	55.156	47.244	0.347	1.00	30.61
	ATOM	2846	C2	INH	1	55.673	48.190	-0.610	1.00	30.81
	MOTA	2847	С3	INH	1	55.194	48.186	-2.013	1.00	31.97
	ATOM	2848	C4	INH	1 .	54.168	47.203	-2.451	1.00	30.44
5	ATOM	2849	C5	INH	1	53.641	46.233	-1.459	1.00	27.61
	ATOM	2850	С6	INH	1	52.670	45.202	-1.696	1.00	26.48
	ATOM	2851	С7	INH	1	54.170	46.288	-0.060	1.00	27.48
	ATOM	2852	C8	INH	1	51.525	45.016	-0.763	1.00	23.90
	ATOM	2853	С9	INH	1	50.573	43.949	-0.981	1.00	23.42
10	ATOM	2854	F10	INH	1	49.575	43.791	-0.145	1.00	23.87
	ATOM	2855	C11	INH	1	50.717	43.023	-2.127	1.00	25.29
	ATOM	2856	N12	INH	1	49.793	41.980	-2.283	1.00	23.77
	ATOM	2857	C13	INH	1	51.835	43.209	-3.060	1.00	26.41
	ATOM	2858	F14	INH	1	52.000	42.413	-4.092	1.00	28.14
15	ATOM	2859	C15	INH	1	52.801	44.276	-2.856	1.00	25.96
	ATOM	2860	C16	INH	1	49.489	40.832	-1.506	1.00	28.49
	ATOM	2861	C17	INH	1	48.466	39.833	-1.867	1.00	27.98
	ATOM	2862	018	INH	1	50.135	40.651	-0.448	1.00	29.29
	ATOM	2863	C19	INH	1	47.901	39.565	-3.090	1.00	29.14
20	MOTA	2864	C20	INH	1	46.915	38.457	-2.940	1.00	28.65
	MOTA	2865	C21	INH	1	47.316	37.772	-1.629	1.00	30.35
	MOTA	2866	C22	INH	1	47.906	38.930	-0.821	1.00	26.78
	ATOM	2867	C23	INH	1	48.115	40.176	-4.438	1.00	31.81
	ATOM	2868	024	INH	1	48.914	41.107	-4.671	1.00	35.53
25	MOTA	2869	025	INH	1	47.417	39.721	-5.498	1.00	35.32
	MOTA	2870	026	INH	1	55.734	49.119	-2.892		38.75
	MOTA	2871	C27	INH	1	57.015	48.727	-3.548	1.00	41.33
	MOTA	2872	F28	INH	1	56.944	47.600			44.03
	MOTA	2873	F29	INH	1	57.367		-4.345		41.94
30	ATOM	2874	F30	INH	1	57.952				42.63
	MOTA	2875	OH2	INH	1	55.935	42.939	-3.322		73.19
	MOTA	2876	OH2	TIP	2	35.544		-5.436		27.04
	MOTA	2877	OH2	TIP	3	38.368	45.691	5.463	1.00	9.92
	ATOM	2878		TIP	4	26.254		-2.682		18.84
35	MOTA	2879		TIP	5	32.726			1.00	4.99
	ATOM	2880		TIP	6	40.177		0.169	1.00	8.72
	ATOM	2881	OH2	TIP	7	28.792	46.338	21.197	1.00	9.84

	ATOM	2882	OH2	TIP	8	50.114	40.162	27.019	1.00 11.00
	ATOM	2883	OH2	TIP	9	52.707	35.109	39.872	1.00 13.09
	ATOM	2884	OH2	TIP	10	32.631	48.935	19.270	1.00 8.68
	ATOM	2885	ОН2	TIP	11	31.665	31.398	6.495	1.00 16.03
5	ATOM	2886	OH2	TIP	12	54.419	36.452	7.881	1.00 14.67
	MOTA	2887	ОН2	TIP	13	48.765	30.201	-4.577	1.00 18.66
	ATOM	2888	OH2	TIP	14	52.910	44.774	24.574	1.00 22.00
	MOTA	2889	OH2	TIP	15	56.888	41.478	19.935	1.00 12.09
	MOTA	2890	OH2	TIP	16	24.269	48.184	0.615	1.00 10.81
10	MOTA	2891	OH2	TIP	17	35.600	30.673	-11.563	1.00 18.80
	MOTA	2892	OH2	TIP	19	27.032	52.989	8.555	1.00 13.56
	MOTA	2893	OH2	TIP	20	33.133	44.845	-12.581	1.00 21.06
	MOTA	2894	OH2	TIP	21	41.790	40.235	11.640	1.00 9.31
	ATOM	2895	OH2	TIP	22	42.183	27.776	7.444	1.00 15.77
15	MOTA	2896	OH2	TIP	23	55.486	43.118	24.318	1.00 20.63
	MOTA	2897	OH2	TIP	24	22.597	45.848	3.191	1.00 20.55
	ATOM	2898	OH2	TIP	25	40.155	46.055	2.091	1.00 11.51
	MOTA	2899	OH2	TIP	28	52.870	40.844	35.692	1.00 26.47
	ATOM	2900	OH2	TIP	29	39.343	36.863	-11.603	1.00 15.79
20	ATOM	2901	OH2	TIP	30	29.725	63.303	4.807	1.00 30.86
	ATOM	2902	OH2	TIP	31	31.090	52.803	1.908	1.00 16.92
	MOTA	2903	OH2	TIP	33	48.470	40.672	9.314	1.00 16.35
	ATOM	2904	ОН2	TIP	34	48.163	60.787	-5.517	1.00 35.72
	ATOM	2905	ОН2	TIP	35	33.797	25.032	-2.216	1.00 28.04
25	ATOM	2906	OH2	TIP	36	27.528	36.090	-15.399	1.00 19.76
	MOTA	2907	OH2	TIP	37	36.123	58.320	1.544	1.00 18.50
	ATOM	2908	OH2	TIP	38	18.456	32.031	12.116	1.00 32.11
	MOTA	2909	OH2	TIP	39	30.093	49.596	4.396	1.00 26.44
	MOTA	2910	OH2	TIP	40	22.244	50.960	6.710	1.00 14.55
30	MOTA	2911	OH2	TIP	41	25.186	53.850	20.632	1.00 36.61
	MOTA	2912	OH2	TIP	42	28.377	43.052	0.368	1.00 16.28
	MOTA	2913	OH2	TIP	43	48.044	30.947	8.834	1.00 23.93
	ATOM	2914	OH2	TIP	44	37.358	35.976	32.382	1.00 31.38
	ATOM	2915	OH2	TIP	45	36.077	52.311	-1.386	1.00 20.23
35	ATOM	2916	OH2	TIP	46	48.137	51.093	24.342	1.00 27.05
	ATOM	2917	OH2	TIP	47	31.755	42.556	-7.956	1.00 13.30
	ATOM	2918	OH2	TIP	48	60.161	28.707	24.481	1.00 22.24

	MOTA	2919	OH2 TIP	49	39.447	48.502	-3.656	1.00 28.66
	MOTA	2920	OH2 TIP	50	48.327	58.128	0.959	1.00 30.23
	MOTA	2921	OH2 TIP	51	55.679	32.342	25.492	1.00 27.36
	ATOM	2922	OH2 TIP	52	64.173	35.374	20.180	1.00 20.52
5	ATOM	2923	OH2 TIP	53	58.849	49.917	15.132	1.00 26.47
	ATOM	2924	OH2 TIP	54	51.767	31.449	11.360	1.00 14.19
	ATOM	2925	OH2 TIP	55	39.550	45.797	-2.540	1.00 15.41
	ATOM	2926	OH2 TIP	56	24.397	28.632	17.367	1.00 22.23
	ATOM	2927	OH2 TIP	57	51.705	20.271	6.838	1.00 27.23
10	MOTA	2928	OH2 TIP	58	41.383	26.162	-9.699	1.00 21.02
	MOTA	2929	OH2 TIP	59	25.050	40.672	6.953	1.00 20.47
	MOTA	2930	OH2 TIP	60	23.999	41.157	9.453	1.00 26.17
	MOTA	2931	OH2 TIP	61	37.989	29.525	-11.423	1.00 22.38
	MOTA	2932	OH2 TIP	62	36.293	47.969	-1.074	1.00 31.20
15	MOTA	2933	OH2 TIP	63	38.463	26.067	1.663	1.00 29.91
	ATOM	2934	OH2 TIP	64	53.273	23.516	20.214	1.00 39.87
	ATOM	2935	OH2 TIP	65	59.232	43.479	12.582	1.00 16.61
	ATOM	2936	OH2 TIP	66	19.667	42.932	12.630	1.00 37.55
	ATOM	2937	OH2 TIP	67	34.515	51.648	22.411	1.00 33.64
20	ATOM	2938	OH2 TIP	68	47.217	63.075	3.678	1.00 40.93
	ATOM	2939	OH2 TIP	69	44.997	42.094	-5.482	1.00 31.45
	MOTA	2940	OH2 TIP	70	61.350	39.669	15.129	1.00 33.76
	ATOM	2941	OH2 TIP	71	63.503	33.512	24.526	1.00 30.64
	MOTA	2942	OH2 TIP	72	56.502	35.138	4.193	1.00 40.13
25	ATOM	2943	OH2 TIP	73	38.388	59.732	19.181	1.00 28.57
	MOTA	2944	OH2 TIP	74	44.184	24.050	9.776	1.00 20.28
	MOTA	2945	OH2 TIP	75	59.066	44.574	9.932	1.00 18.52
	ATOM	2946	OH2 TIP	76	57.161	34.373	26.054	1.00 15.82
	MOTA	2947	OH2 TIP	77	39.582	50.272	27.336	1.00 30.32
30	ATOM	2948	OH2 TIP	78	18.410	33.056	20.307	1.00 38.31
	ATOM	2949	OH2 TIP	80	46.234	28.316	18.714	1.00 22.78
	MOTA	2950	OH2 TIP	81	21.447	37.332	21.766	1.00 21.05
	MOTA	2951	OH2 TIP	82	20.551	32.666	22.014	1.00 27.65
	MOTA	2952	OH2 TIP	83	24.658	41.207	-5.227	1.00 22.79
35	MOTA	2953	OH2 TIP	84	55.011	41.531	26.497	1.00 25.92
	ATOM	2954	OH2 TIP	85	38.296	32.264	33.902	1.00 23.13
	ATOM	2955	OH2 TIP	86	44.369	24.267	-3.546	1.00 35.96

	MOTA	2956	OH2	TIP	87	27.475	36.860	9.747	1.00	32.20
	MOTA	2957	OH2	TIP	88	31.150	49.186	21.566	1.00	26.94
	MOTA	2958	OH2	TIP	89	47.779	20.892	17.543	1.00	25.36
	MOTA	2959	OH2	TIP	91	38.494	53.244	-2.751	1.00	35.05
5	MOTA	2960	OH2	TIP	92	46.323	60.192	17.190	1.00	27.65
	MOTA	2961	OH2	TIP	93	28.667	66.884	4.567	1.00	40.54
	MOTA	2962	OH2	TIP	94	60.846	30.830	9.609	1.00	32.28
	MOTA	2963	OH2	TIP	96	19.909	46.368	21.678	1.00	28.96
	MOTA	2964	OH2	TIP	97	45.477	23.130	6.094	1.00	27.25
10	MOTA	2965	OH2	TIP	98	55.212	41.460	21.964	1.00	16.08
	ATOM	2966	OH2	TIP	99	47.327	53.836	-3.806	1.00	22.48
	ATOM	2967	OH2	TIP	100	39.042	57.052	-2.132	1.00	23.68
	ATOM	2968	он2	TIP	101	42.080	65.105	6.196	1.00	23.98
	ATOM	2969	OH2	TIP	102	50.195	38.982	37.861	1.00	33.16
15	ATOM	2970	OH2	TIP	103	24.816	38.106	6.274	1.00	46.68
	ATOM	2971	OH2	TIP	104	37.606	19.200	18.942	1.00	40.91
	ATOM	2972	OH2	TIP	105	34.078	23.126	21.682	1.00	37.32
	ATOM	2973	ОН2	TIP	106	50.938	24.646	25.853	1.00	23.41
	ATOM	2974	OH2	TIP	108	43.762	44.620	28.111	1.00	46.21
20	ATOM	2975	OH2	TIP	109	31.113	28.188	31.316	1.00	32.77
	ATOM	2976	OH2	TIP	110	20.949	49.041	19.756	1.00	45.06
	ATOM	2977	OH2	TIP	111	52.664	36.212	5.983	1.00	26.36
	ATOM	2978	OH2	TIP	112	58.238	26.573	11.032	1.00	36.46
	ATOM	2979	ОН2	TIP	113	43.014	36.746	36.299	1.00	43.53
25	ATOM	2980	OH2	TIP	114	24.151	50.266	27.793	1.00	47.09
	ATOM	2981	OH2	TIP	115	30.305	30.980	-7.851	1.00	30.68
	ATOM	2982	ОН2	TIP	116	48.285	22.108	6.645	1.00	25.39
	ATOM	2983	OH2	TIP	117	39.224	37.972	-14.257	1.00	30.69
	MOTA	2984	OH2	TIP	119	46.568	32.155	-8.891	1.00	39.93
30	ATOM	2985	OH2	TIP	121	20.118	49.260	17.291		30.89
	ATOM	2986	OH2	TIP	122	35.058	44.421	26.773	1.00	41.84
	ATOM	2987	OH2	TIP	124	49.192	64.702	8.137	1.00	52.76
	MOTA	2988	OH2	TIP	125	37.968	56.298	22.605	1.00	44.63
	MOTA	2989	OH2	TIP	126	35.175	25.867	8.190	1.00	40.87
35	MOTA	2990	OH2	TIP	128	53.373	48.412	27.185		34.68
	MOTA	2991	OH2	TIP	130	31.753		27.331	1.00	50.15
	ATOM	2992	OH2	TIP	133	45.057	19.603	20.174	1.00	49.23

	ATOM	2993	ОН2	TIP	135	62.120	49.293	13.816	1.00	51.24
	ATOM	2994	ОН2	TIP	136	36.392	24.415	5.232	1.00	36.40
	ATOM	2995	OH2	TIP	137	37.190	47.914	25.973	1.00	42.47
	ATOM	2996	OH2	TIP	139	33.803	32.622	6.980	1.00	20.75
5	ATOM	2997	OH2	TIP	140	37.790	20.683	21.494	1.00	33.84
	ATOM	2998	OH2	TIP	141	27.946	24.070	16.098	1.00	35.29
	ATOM	2999	OH2	TIP	142	28.752	24.561	25.979	1.00	42.61
	MOTA	3000	OH2	TIP	143	29.987	30.644	9.290	1.00	24.83
	ATOM	3001	OH2	TIP	145	32.739	65.991	1.259	1.00	38.09
10	ATOM	3002	OH2	TIP	146	43.015	23.319	7.628	1.00	40.80
	MOTA	3003	OH2	TIP	149	45.126	45.040	12.866	1.00	30.92
	ATOM	3004	OH2	TIP	150	56.775	54.277	24.966	1.00	36.42
	ATOM	3005	OH2	TIP	154	28.318	35.749	-8.783	1.00	35.84
	ATOM	3006	OH2	TIP	157	49.259	20.639	1.116	1.00	39.43
15	ATOM	3007	OH2	TIP	161	35.449	24.493	28.851	1.00	31.87
	ATOM	3008	OH2	TIP	162	48.248	19.447	10.858	1.00	50.81
	ATOM	3009	OH2	TIP	170	52.224	41.827	26.920	1.00	30.09
	ATOM	3010	ОН2	TIP	171	43.427	68.248	20.208	1.00	50.00
	ATOM	3011	OH2	TIP	173	30.664	59.693	2.724	1.00	43.97
20	ATOM	3012	OH2	TIP	177	49.139	23.639	29.923	1.00	44.34
	MOTA	3013	ОН2	TIP	179	34.884	68.231	14.420	1.00	40.57
	ATOM	3014	OH2	TIP	180	34.202	33.407	32.184	1.00	40.76
	ATOM	3015	OH2	TIP	183	23.453	59.860	15.855	1.00	39.15
	ATOM	3016	OH2	TIP	184	37.128	22.982	-4.060	1.00	31.12
25	MOTA	3017	OH2	TIP	186	59.884	32.942	5.715	1.00	48.15
	MOTA	3018	OH2	TIP	187	38.634	46.165	-0.230	1.00	13.80
	MOTA	3019	ОН2	TIP	188	52.932	26.954	2.812	1.00	21.19
	MOTA	3020	ОН2	TIP	189	56.883	26.650	15.220	1.00	17.90
	MOTA	3021	ОН2	TIP	190	55.314	25.380	16.994	1.00	13.14
30	MOTA	3022	ОН2	TIP	191	51.598	53.602	12.473	1.00	17.75
	MOTA	3023	OH2	TIP	192	27.662	23.982	18.954	1.00	34.96
	MOTA	3024	ОН2	TIP	193	28.692	32.840	-8.937	1.00	31.39
	ATOM	3025	OH2	TIP	194	20.591	38.731	10.804	1.00	31.46
	MOTA	3026	OH2	TIP	195	24.147	43.407	2.885	1.00	28.20
35	MOTA	3027	OH2	TIP	196	21.907	27.234	26.192	1.00	42.64
	MOTA	3028	OH2	TIP	197	63.736	33.840	22.009	1.00	35.07
	ATOM	3029	OH2	TIP	198	32.794	49.844	23.701	1.00	37.84

	MOTA	3030	OH2	TIP	199	58.947	40.782	13.015	1.00	31.28
	MOTA	3031	OH2	TIP	200	22.450	49.976	21.694	1.00	38.42
	MOTA	3032	ОН2	TIP	201	49.606	32.017	-6.528	1.00	33.11
	MOTA	3033	OH2	TIP	202	19.479	32.757	24.557	1.00	42.15
5	MOTA	3034	OH2	TIP	203	18.243	43.892	25.199	1.00	34.82
	MOTA	3035	OH2	TIP	204	31.973	23.449	9.946	1.00	40.37
	MOTA	3036	OH2	TIP	205	59.437	39.072	29.736	1.00	46.69
	MOTA	3037	OH2	TIP	206	24.737	35.038	-2.305	1.00	38.20
	MOTA	3038	OH2	TIP	207	51.798	24.226	23.337	1.00	43.38
10	MOTA	3039	OH2	TIP	208	41.169	63.155	0.607	1.00	47.72
	MOTA	3040	OH2	TIP	209	44.987	24.799	-6.919	1.00	58.95
	MOTA	3041	OH2	TIP	210	60.282	33.507	0.942	1.00	44.42
	ATOM	3042	OH2	TIP	211	55.312	57.953	-5.133	1.00	61.46
	MOTA	3043	OH2	TIP	212	26.359	34.821	3.588	1.00	40.79
15	ATOM	3044	OH2	TIP	213	57.280	58.607	2.155	1.00	54.60
	ATOM	3045	OH2	TIP	214	48.954	19.470	7.776	1.00	37.71
	ATOM	3046	OH2	TIP	215	18.783	34.339	22.498	1.00	38.96
	ATOM	3047	OH2	TIP	216	50.074	55.671	3.640	1.00	42.87
	ATOM	3048	ОН2	TIP	217	23.725	39.251	-3.750	1.00	39.29
20	ATOM	3049	OH2	TIP	219	30.541	25.110	28.408	1.00	47.74
	ATOM	3050	ОН2	TIP	220	26.037	30.541	16.867	1.00	34.87
	ATOM	3051	ОН2	TIP	222	54.963	58.119	2.970	1.00	48.85
	ATOM	3052	OH2	TIP	223	59.416	53.101	-2.816	1.00	55.72
	ATOM	3053	ОН2	TIP	224	51.466	23.460	28.005	1.00	42.28
25	ATOM	3054	OH2	TIP	225	37.482	39.527	29.584	1.00	30.27
	ATOM	3055	OH2	TIP	226	20.502	42.025	22.632	1.00	58.53
	ATOM	3056	OH2	TIP	227	38.047	51.915	-4.933	1.00	42.64
	ATOM	3057	OH2	TIP	228	52.324	32.574	0.838	1.00	56.08
	ATOM	3058	OH2	TIP	229	58.093	50.903	12.906	1.00	32.98
30	ATOM	3059	OH2	TIP	230	56.078	24.544	3.822	1.00	52.30
	ATOM	3060	OH2	TIP	231	51.692	20.080	23.166	1.00	44.78
	ATOM	3061	OH2	TIP	232	48.112	18.431	16.203	1.00	49.60
	ATOM	3062	OH2	TIP	233	49.693	20.764	19.679	1.00	38.77
	ATOM	3063	OH2	TIP	234	61.205	40.496	27.215	1.00	39.59
35	MOTA	3064	OH2	TIP	235	60.244	28.451	9.868	1.00	37.16
	ATOM	3065	OH2	TIP	236	39.531	20.627	25.697	1.00	40.03
	ATOM	3066	OH2	TIP	237	21.925	38.965	24.059	1.00	48.68

	MOTA	3067	OH2	TIP	238	41.611	40.577	-15.266	1.00	43.37
	ATOM	3068	ОН2	TIP	239	53.812	60.797	4.864	1.00	52.56
	ATOM	3069	ОН2	TIP	240	34.937	52.939	-3.717	1.00	35.04
	ATOM	3070	OH2	TIP	241	55.261	34.522	-10.080	1.00	38.74
5	ATOM	3071	OH2	TIP	243	26.373	37.574	-0.254	1.00	36.58
	ATOM	3072	ОН2	TIP	244	51.004	60.496	4.046	1.00	64.83
	ATOM	3073	OH2	TIP	246	30.279	56.190	21.218	1.00	46.59
	MOTA	3074	OH2	TIP	247	25.538	38.352	8.582	1.00	38.19
	ATOM	3075	OH2	TIP	248	56.454	42.725	28.580	1.00	44.75
10	ATOM	3076	OH2	TIP	249	50.714	57.646	7.941	1.00	34.81
	ATOM	3077	OH2	TIP	250	41.382	43.205	29.087	1.00	39.12
	ATOM	3078	OH2	TIP	251	45.042	22.868	28.329	1.00	54.10
	ATOM	3079	OH2	TIP	252	20.370	42.693	15.093	1.00	54.24
	ATOM	3080	OH2	TIP	253	26.348	66.037	8.706	1.00	45.05
15	ATOM	3081	OH2	TIP	254	45.856	38.418	-11.622	1.00	53.29
	ATOM	3082	OH2	TIP	255	42.753	41.622	34.537	1.00	39.32
	ATOM	3083	OH2	TIP	256	48.240	52.734	26.556	1.00	43.67
	ATOM	3084	OH2	TIP	257	39.530	58.162	23.453	1.00	48.05
	ATOM	3085	OH2	TIP	258	37.524	57.192	25.020	1.00	42.73
20	ATOM	3086	OH2	TIP	259	50.658	56.406	11.908	1.00	31.97
	ATOM	3087	OH2	TIP	260	59.957	24.763	12.383	1.00	36.65
	ATOM	3088	OH2	TIP	261	23.929	35.872	6.187	1.00	42.26
	ATOM	3089	OH2	TIP	262	64.700	52.165	26.674	1.00	64.00
	ATOM	3090	OH2	TIP	263	35.594	61.606	20.210	1.00	48.50
25	ATOM	3091	OH2	TIP	264	43.651	65.314	-7.509	1.00	43.95
	MOTA	3092	OH2	TIP	266	60.950	47.871	27.401	1.00	52.99
	MOTA	3093	OH2	TIP	268	51.791	34.626	42.320	1.00	47.15
•	ATOM	3094	OH2	TIP	269	29.427	40.210	30.677	1.00	39.59
	MOTA	3095	OH2	TIP	270	22.940	53.289	8.458		42.16
30	MOTA	3096	OH2	TIP	272	42.734	30.666	35.715		52.70
	MOTA	3097	OH2	TIP	273	39.864	24.360	0.437		45.07
	MOTA	3098	OH2	TIP	274	45.910	43.449	32.324		44.86
	MOTA	3099	OH2	TIP	276	60.434	26.488	22.662		54.68
	ATOM	3100		TIP	277	33.494	19.625	7.705		40.02
35	MOTA	3101		TIP	278	31.089	37.331	32.964		52.04
	MOTA	3102		TIP	279	54.523	24.762	22.058		49.06
	MOTA	3103	OH2	TIP	280	47.202	60.156	19.785	1.00	46.35

	ATOM	3104	ОН2	TIP		282	54.383	30.983	0.296	1.00	60.14
	ATOM	3105	OH2	TIP		283	61.892	32.292	15.089	1.00	36.30
	ATOM	3106	OH2	TIP		284	24.888	34.429	-6.950	1.00	41.74
	MOTA	3107	ОН2	TIP		285	24.688	32.139	26.844	1.00	41.60
5	ATOM	3108	OH2	TIP		286	32.645	60.472	1.036	1.00	46.38
	MOTA	3109	OH2	TIP		287	55.123	56.214	24.983	1.00	43.87
	MOTA	3110	OH2	TIP		288	43.629	38.590	39.015	1.00	50.94
	MOTA	3111	OH2	TIP		292	20.728	36.639	8.936	1.00	42.54
	MOTA	3112	OH2	TIP		293	46.563	64.900	9.456	1.00	50.04
10	MOTA	3113	OH2	TIP		294	17.012	60.160	10.502	1.00	48.90
	MOTA	3114	ОН2	TIP		295	17.480	28.871	19.492	1.00	42.05
	MOTA	3115	он2	TIP		297	36.366	31.406	32.340	1.00	42.47
	MOTA	3116	ОН2	TIP		300	46.719	59.238	-13.542	1.00	50.25
	MOTA	3117	OH2	TIP		301	29.641	25.448	9.713	1.00	41.77
15	MOTA	3118	OH2	TIP		302	50.828	58.438	0.448	1.00	42.42
	MOTA	3119	OH2	TIP		303	29.614	52.009	22.188	1.00	37.94
	MOTA	3120	OH2	TIP		304	34.557	62.012	23.304	1.00	43.17
	MOTA	3121	OH2	TIP		305	28.994	20.961	23.471	1.00	43.02
	MOTA	3122	OH2	TIP		306	50.941	49.902	28.007	1.00	48.48
20	ATOM	3123	OH2	TIP		307	18.496	51.343	16.991	1.00	44.97
	MOTA	3124	OH2	TIP		309	42.051	36.930	-13.933	1.00	44.70
	ATOM	3125	ОН2	TIP		310	45.128	42.750	-9.449	1.00	47.67
	TER	1		TIP		310					
	ATOM	1	СВ	MET	A	30	59.712	55.163	-5.647	1.00	80.31
25	ATOM	2	CG	MET	A	30	59.865	54.409	-6.958	1.00	80.66
	ATOM	3	SD	MET	A	30	59.205	52.733	-6.845	1.00	80.85
	ATOM	4	CE	MET	A	30	60.589	51.860	-6.102	1.00	80.82
	MOTA	5	С	MET	A	30	58.219	55.645	-3.704	1.00	79.00
	ATOM	6	0	MET	Α	30	57.240	55.324	-3.032	1.00	78.32
30	ATOM	7	N	MET	Α	30	57.620	56.445	-6.003	1.00	79.37
	MOTA	8	CA	MET	A	30	58.259	55.360	-5.203	1.00	79.50
	ATOM	9	N	ALA	A	31	59.288	56.244	-3.187	1.00	78.38
	MOTA	10	CA	ALA	A	31	59.378	56.571	-1.767	1.00	76.94
	ATOM	11	СВ	ALA	A	31	60.826	56.867	-1.390		77.21
35	ATOM	12	С	ALA	A	31	58.492	57.763	-1.419		75.64
	MOTA	13	0	ALA	A	31	58.167	57.987	-0.252	1.00	75.52
	ATOM	14	N	THR	A	32	58.104	58.523	-2.438	1.00	74.06

	ATOM	15	CA	THR	Α	32	57.254	59.694	-2.249	1.00	71.96
	ATOM	16	СВ	THR	A	32	57.059	60.455	-3.576	1.00	72.87
	ATOM	17	OG1	THR	A	32	58.330	60.918	-4.054	1.00	72.48
	ATOM	18	CG2	THR	A	32	56.124	61.644	-3.379	1.00	72.82
5	ATOM	19	С	THR	A	32	55.887	59.290	-1.703	1.00	69.77
	ATOM	20	0	THR	A	32	55.268	60.030	-0.935	1.00	70.16
	ATOM	21	N	GLY	A	33	55.419	58.114	-2.107	1.00	66.46
	ATOM	22	CA	GLY	A	33	54.136	57.630	-1.637	1.00	61.99
	ATOM	23	С	GLY	Α	33	52.945	58.292	-2.296	1.00	58.74
10	ATOM	24	0	GLY	А	33	52.090	58.860	-1.617	1.00	59.57
	ATOM	25	N	ASP	А	34	52.881	58.221	-3.621	1.00	54.17
	ATOM	26	CA	ASP	Α	34	51.772	58.820	-4.347	1.00	49.04
	ATOM	27	СВ	ASP	A	34	52.274	59.467	-5.635	1.00	48.74
	ATOM	28	CG	ASP	Α	34	51.157	60.059	-6.457	1.00	48.55
15	ATOM	29	OD1	ASP	Α	34	50.669	59.367	-7.375	1.00	48.93
	MOTA	30	OD2	ASP	Α	34	50.757	61.211	-6.178	1.00	49.18
	ATOM	31	С	ASP	A	34	50.692	57.784	-4.652	1.00	46.02
	ATOM	32	0	ASP	A	34	50.959	56.738	-5.248	1.00	43.47
	ATOM	33	N	GLU	A	35	49.469	58.095	-4.232	1.00	43.20
20	ATOM	34	CA	GLU	A	35	48.325	57.211	-4.415	1.00	40.89
	ATOM	35	СВ	GLU	A	35	47.077	57.866	-3.811	1.00	40.86
	ATOM	36	CG	GLU	A	35	47.070	57.852	-2.283	1.00	42.25
	ATOM	37	CD	GLU	A	35	46.082	58.836	-1.674	1.00	43.75
	ATOM	38	OE1	GLU	A	35	44.971	58.997	-2.224	1.00	45.16
25	ATOM	39	OE2	GLU	A	35	46.416	59.439	-0.631	1.00	41.85
	ATOM	40	С	GLU	A	35	48.063	56.784	-5.858	1.00	39.00
	ATOM	41	0	GLU	A	35	47.816	55.606	-6.114	1.00	37.91
	ATOM	42	N	ARG	A	36	48.122	57.726	-6.799	1.00	37.60
	MOTA	43	CA	ARG	A	36	47.883	57.394	-8.201	1.00	36.88
30	ATOM	44	СВ	ARG	A	36	47.776	58.651	-9.066	1.00	40.39
	MOTA	45	CG	ARG	A	36	46.472	59.413	-8.956	1.00	45.00
	MOTA	46	CD	ARG	A	36	46.295	60.312	-10.173	1.00	47.46
	ATOM	47	NE	ARG	A	36	45.485	61.487	-9.880	1.00	51.68
	MOTA	48	CZ	ARG	A	36	45.837	62.440	-9.020		53.65
35	MOTA	49	NH1	ARG	A	36	46.988	62.355	-8.367		54.00
	MOTA	50	NH2	ARG	A	36	45.041	63.482	-8.817	1.00	54.73
	MOTA	51	С	ARG	A	36	48.965	56.510	-8.795	1.00	35.07

	MOTA	52	0	ARG	A	36	48.669	55.565	-9.524	1.00	34.58
	ATOM	53	N	PHE	Α	37	50.221	56.822	-8.494	1.00	33.78
	ATOM	54	CA	PHE	А	37	51.325	56.042	-9.030	1.00	33.03
	ATOM	55	СВ	PHE	A	37	52.671	56.593	-8.558	1.00	33.86
5	ATOM	56	CG	PHE	A	37	53.846	55.870	-9.146	1.00	36.09
	ATOM	57	CD1	PHE	A	37	54.113	55.953	-10.503	1.00	36.07
	ATOM	58	CD2	PHE	A	37	54.660	55.077	-8.353	1.00	37.36
	ATOM	59	CE1	PHE	Α	37	55.171	55.256	-11.059	1.00	38.02
	ATOM	60	CE2	PHE	А	37	55.720	54.376	-8.903	1.00	37.55
10	ATOM	61	CZ	PHĒ	Α	37	55.975	54.466	-10.257	1.00	38.09
	ATOM	62	С	PHE	Α	37	51.228	54.575	-8.643	1.00	30.97
	ATOM	63	0	PHE	Α	37	51.393	53.693	-9.484	1.00	30.44
	ATOM	64	N	TYR	А	38	50.969	54.311	-7.368	1.00	30.50
	ATOM	65	CA	TYR	A	38	50.856	52.933	-6.910	1.00	31.45
15	ATOM	66	СВ	TYR	Α	38	50.826	52.873	-5.381	1.00	30.08
	MOTA	67	CG	TYR	A	38	52.197	52.901	-4.749	1.00	29.63
	MOTA	68	CD1	TYR	Α	38	52.936	54.078	-4.693	1.00	29.71
	ATOM	69	CE1	TYR	Α	38	54.202	54.099	-4.132	1.00	29.16
	MOTA	70	CD2	TYR	A	38	52.764	51.742	-4.226	1.00	26.96
20	MOTA	71	CE2	TYR	A	38	54.026	51.751	-3.668	1.00	27.02
	MOTA	72	CZ	TYR	A	38	54.740	52.931	-3.624	1.00	29.27
	ATOM	73	ОН	TYR	A	38	56.001	52.940	-3.086	1.00	30.40
	MOTA	74	С	TYR	A	38	49.619	52.256	-7.474	1.00	32.16
	MOTA	75	0	TYR	А	38	49.684	51.126	-7.953	1.00	31.25
25	ATOM	76	N	ALA	A	39	48.494	52.960	-7.425	1.00	33.95
	ATOM	77	CA	ALA	А	39	47.234	52.425	-7.918	1.00	36.26
	ATOM	78	СВ	ALA	A	39	46.094	53.349	-7.517	1.00	36.53
	ATOM	79	С	ALA	A	39	47.215	52.209	-9.428	1.00	37.90
	ATOM	80	0	ALA	A	39	46.781	51.158	-9.909	1.00	37.48
30	ATOM	81	N	GLU	A	40	47.696	53.201	-10.171	1.00	40.13
	MOTA	82	CA	GLU	A	40	47.696	53.134	-11.629	1.00	41.55
	MOTA	83	СВ	GLU	A	40	47.512	54.540	-12.215	1.00	43.53
	MOTA	84	CG	GLU	A	40	46.262	55.264	-11.735	1.00	47.12
	MOTA	85	CD	GLU	A	40	46.122	56.651	-12.340	1.00	49.89
35	MOTA	86	OE1	GLU	A	40	46.081	56.751	-13.585	1.00	52.64
	MOTA	87	OE2	GLU	A	40	46.051		-11.574	1.00	50.61
	ATOM	88	С	GLU	A	40	48.911	52.489	-12.286	1.00	40.57

	ATOM	89	0	GLÜ	Α	40	48.785	51.894	-13.354	1.00	40.85
	ATOM	90	N	HIS	A	41	50.083	52.587	-11.664	1.00	39.75
	MOTA	91	CA	HIS	A	41	51.275	52.024	-12.293	1.00	38.62
	ATOM	92	СВ	HIS	A	41	52.266	53.146	-12.621	1.00	40.78
5	ATOM	93	CG	HIS	A	41	51.689	54.227	-13.479	1.00	44.09
	ATOM	94	CD2	HIS	A	41	51.777	54.451	-14.811	1.00	45.23
	ATOM	95	ND1	HIS	Α	41	50.876	55.222	-12.977	1.00	46.21
	MOTA	96	CE1	HIS	Α	41	50.488	56.011	-13.963	1.00	46.60
	MOTA	97	NE2	HIS	А	41	51.021	55.565	-15.086	1.00	47.61
10	MOTA	98	С	HIS	А	41	52.032	50.903	-11.594	1.00	35.71
	MOTA	99	0	HIS	A	41	52.177	49.812	-12.146	1.00	35.85
	ATOM	100	N	LEU	A	42	52.525	51.165	-10.392	1.00	33.29
	MOTA	101	CA	LEU	A	42	53.311	50.161	-9.682	1.00	32.13
	MOTA	1.02	СВ	LEU	A	42	53.883	50.761	-8.393	1.00	31.28
15	ATOM	103	CG	LEU	A	42	55.057	49.987	-7.781	1.00	34.33
	ATOM	104	CD1	LEU	A	42	55.897	50.923	-6.925	1.00	33.63
	ATOM	105	CD2	LEU	A	42 .	54.542	48.804	-6.967	1.00	34.74
	ATOM	106	С	LEU	A	42	52.581	48.850	-9.382	1.00	30.26
	ATOM	107	0	LEU	A	42	52.981	47.794	-9.871	1.00	31.23
20	ATOM	108	N	MET	A	43	51.519	48.911	-8.586	1.00	27.76
	ATOM	109	CA	MET	A	43	50.772	47.706	-8.232	1.00	27.76
	ATOM	110	CB	MET	A	43	49.552	48.066	-7.379	1.00	24.10
	ATOM	111	CG	MET	A	43	49.918	48.634	-6.022	1.00	23.32
	ATOM	112	SD	MET	A	43	51.075	47.574	-5.113	1.00	25.43
25	MOTA	113	CE	MET	A	43	49.970	46.252	-4.615	1.00	21.95
	MOTA	114	С	MET	A	43	50.343	46.878	-9.440	1.00	28.21
	ATOM	115	0	MET	A	43	50.517	45.661	-9.454	1.00	27.46
	MOTA	116	N	PRO	A	4 4	49.766	47.524	-10.466	1.00	29.90
	MOTA	117	CD	PRO	A	4 4	49.323	48.929	-10.518		28.73
30	MOTA	118	CA	PRO	A	44	49.333	46.797	-11.664		30.50
	ATOM	119	CB	PRO	A	44	48.757	47.902	-12.542	1.00	30.16
	ATOM	120	CG	PRO	A	44	48.222		-11.541		30.35
	ATOM	121	С	PRO	A	44	50.499		-12.343		32.56
	ATOM	122	0	PRO		44	50.369		-12.770		33.27
35	MOTA	123	N	THR		45	51.637		-12.442		33.42
	MOTA	124	CA	THR		45	52.821		-13.071		34.86
	ATOM	125	CB	THR	Α	45	53.950	47.225	-13.197	1.00	36.09

	ATOM	126	OG1	THR	A	45	53.499	48.323	-14.001	1.00	33.74
	ATOM	127	CG2	THR	A	45	55.187	46.599	-13.837	1.00	35.67
	ATOM	128	С	THR	A	45	53.335	45.012	-12.242	1.00	36.57
	ATOM	129	0	THR	A	45	53.717	43.970	-12.774	1.00	36.59
5	ATOM	130	N	LEU	A	46	53.342	45.199	-10.928	1.00	38.25
	ATOM	131	CA	LEU	А	46	53.801	44.170	-10.008	1.00	38.66
	ATOM	132	СВ	LEU	A	46	53.726	44.694	-8.575	1.00	39.21
	ATOM	133	CG	LEU	A	46	54.329	43.815	-7.483	1.00	41.10
	ATOM	134	CD1	LEU	A	46	55.784	43.519	-7.815	1.00	43.25
10	ATOM	135	CD2	LEU	A	46	54.222	44.528	-6.144	1.00	41.41
	ATOM	136	С	LEU	Α	46	52.946	42.914	-10.144	1.00	38.98
	ATOM	137	0	LEU	A	46	53.466	41.800	-10.187	1.00	39.35
	ATOM	138	N	GLN	A	47	51.633	43.102	-10.219	1.00	38.99
	ATOM	139	CA	GLN	A	47	50.709	41.981	-10.339	1.00	40.71
15	ATOM	140	СВ	GLN	A	47	49.300	42.425	-9.929	1.00	40.91
	ATOM	141	CG	GLN	A	47	49.228	42.899	-8.478	1.00	42.99
	ATOM	142	CD	GLN	Α	47	47.833	43.314	-8.052	1.00	45.00
	ATOM	143	OE1	GLN	A	47	47.222	44.195	-8.657	1.00	47.02
	ATOM	144	NE2	GLN	A	47	47.323	42.683	-7.001	1.00	45.03
20	ATOM	145	С	GLN	Α	47	50.701	41.373	-11.741	1.00	39.99
	ATOM	146	0	GLN	A	47	50.246	40.246	-11.937	1.00	39.01
	ATOM	147	N	GLY	A	48	51.216	42.119	-12.712	1.00	40.83
	ATOM	148	CA	GLY	A	48	51.276	41.616	-14.073	1.00	39.56
	ATOM	149	С	GLY	A	48	52.526	40.780	-14.291	1.00	39.27
25	ATOM	150	0	GLY	A	48	52.678	40.135	-15.327	1.00	40.98
	ATOM	151	N	LEU	A	49	53.422	40.784	-13.308	1.00	37.67
	MOTA	152	CA	LEU	A	49	54.667	40.027	-13.396	1.00	37.43
	ATOM	153	СВ	LEU	A	49	55.867	40.954	-13.186	1.00	38.73
	ATOM	154	CG	LEU	A	49	56.105	42.068	-14.208	1.00	38.96
30	ATOM	155	CD1	LEU	A	49	57.270	42.932	-13.755	1.00	38.41
	ATOM	156	CD2	LEU	A	49	56.384		-15.571	1.00	39.54
	ATOM	157	С	LEU		49	54.741	38.899	-12.376		36.89
	MOTA	158	0	LEU	A	49	55.451		-12.582	1.00	37.19
	MOTA	159	N	LEU	Α	50	54.010		-11.275		36.34
35	ATOM	160	CA	LEU	Α	50	54.019		-10.214		34.90
	ATOM	161	СВ	LEU		50	54.607	38.644	-8.935	1.00	35.62
	ATOM	162	CG	LEU	Α	50	56.057	39.128	-8.994	1.00	36.46

	MOTA	163	CD1	LEU	A	50	56.396	39.878	-7.717	1.00	36.33
	ATOM	164	CD2	LEU	А	50	56.988	37.937	-9.185	1.00	35.82
	ATOM	165	С	LEU	Α	50	52.635	37.484	-9.904	1.00	34.02
	ATOM	166	0	LEU	Α	50	51.647	38.219	-9.902	1.00	34.02
5	ATOM	167	N	ASP	A	51	52.566	36.183	-9.637	1.00	32.65
	ATOM	168	CA	ASP	A	51	51.294	35.563	-9.299	1.00	32.66
	ATOM	169	СВ	ASP	A	51	51.403	34.036	-9.364	1.00	33.88
	ATOM	170	CG	ASP	A	51	52.350	33.476	-8.329	1.00	36.45
	ATOM	171	OD1	ASP	Α	51	53.554	33.802	-8.389	1.00	38.39
10	ATOM	172	OD2	ASP	Α	51	51.889	32.709	-7.456	1.00	37.67
	ATOM	173	С	ASP	A	51	50.939	36.026	-7.882	1.00	30.84
	MOTA	174	0	ASP	Α	51	51.812	36.467	- 7.130	1.00	30.91
	ATOM	175	N	PRO	Α	52	49.656	35.931	-7.502	1.00	28.67
	MOTA	176	CD	PRO	Α	52	48.574	35.295	-8.273	1.00	27.32
15	ATOM	177	CA	PRO	A	52	49.174	36.347	-6.179	1.00	27.35
	MOTA	178	СВ	PRO	A	52	47.804	35.684	-6.094	1.00	28.92
	MOTA	179	CG	PRO	A	52	47.339	35.728	-7.514	1.00	27.85
	ATOM	180	С	PRO	A	52	50.072	35.989	-4.994	1.00	25.30
	ATOM	181	0	PRO	A	52	50.509	36.867	-4.255	1.00	25.37
20	ATOM	182	N	GLU	A	53	50.357	34.707	-4.814	1.00	24.59
	ATOM	183	CA	GLU	A	53	51.190	34.285	-3.696	1.00	25.59
	ATOM	184	СВ	GLU	A	53	51.233	32.758	-3.614	1.00	25.66
	ATOM	185	CG	GLU	A	53	51.907	32.257	-2.353	1.00	27.24
	ATOM	186	CD	GLU	A	53	51.431	30.882	-1.929	1.00	28.48
25	ATOM	187	OE1	GLU	Α	53	51.979	30.357	-0.940	1.00	31.42
	ATOM	188	OE2	GLU	A	53	50.512	30.329	-2.574		27.49
	ATOM	189	С	GLU	A	53	52.614	34.856	-3.722	1.00	25.68
	ATOM	190	0	GLU	A	53	53.119	35.298	-2.688	1.00	24.08
	ATOM	191	N	SER	A	54	53.259	34.850	-4.887	1.00	24.37
30	ATOM	192	CA	SER	A	54	54.609	35.396	-4.996		24.85
	ATOM	193	CB	SER	A	54	55.175	35.184	-6.404	1.00	25.94
	ATOM	194	OG	SER	A	54	55.400	33.810	-6.667		28.92
	ATOM	195	С	SER	A	54	54.592	36.887	-4.683		25.02
	ATOM	196	0	SER	A	54	55.511	37.408	-4.048	1.00	25.15
35	ATOM	197	N	ALA	A	55	53.545	37.570	-5.140		23.67
	ATOM	198	CA	ALA		55	53.401	38.999	-4.904		22.81
	ATOM	199	CB	ALA	Α	55	52.155	39.525	-5.617	1.00	21.78

	ATOM	200	С	ALA	A	55	53.290	39.236	-3.400	1.00	22.62
	ATOM	201	0	ALA	A	55	53.913	40.143	-2.850	1.00	22.65
	ATOM	202	N	HIS	Α	56	52.492	38.410	-2.737	1.00	22.22
	MOTA	203	CA	HIS	A	56	52.316	38.538	-1.300	1.00	23.60
5	MOTA	204	СВ	HIS	Α	56	51.296	37.523	-0.792	1.00	19.67
	MOTA	205	CG	HIS	A	56	51.232	37.449	0.699	1.00	19.95
	ATOM	206	CD2	HIS	A	56	51.489	36.432	1.554	1.00	17.66
	ATOM	207	ND1	HIS	A	56	50.908	38.537	1.482	1.00	20.51
	ATOM	208	CE1	HIS	A	56	50.969	38.192	2.754	1.00	19.63
10	ATOM	209	NE2	HIS	A	56	51.321	36.921	2.826	1.00	18.97
	MOTA	210	С	HIS	A	56	53.627	38.344	-0.539	1.00	25.30
	ATOM	211	0	HIS	A	56	53.952	39.119	0.367	1.00	24.97
	ATOM	212	N	ARG	Α	57	54.373	37.306	-0.906	1.00	26.20
	ATOM	213	CA	ARG	Α	57	55.641	37.006	-0.253	1.00	29.31
15	ATOM	214	СВ	ARG	A	57	56.233	35.715	-0.822	1.00	32.99
	MOTA	215	CG	ARG	A	57	55.250	34.553	-0.767	1.00	40.69
	ATOM	216	CD	ARG	A	57	55.893	33.223	-1.118	1.00	45.69
	MOTA	217	NE	ARG	A	57	56.865	32.810	-0.111	1.00	51.83
	MOTA	218	CZ	ARG	A	57	57.386	31.591	-0.034	1.00	54.55
20	ATOM	219	NH1	ARG	A	57	57.027	30.657	-0.907	1.00	55.29
	ATOM	220	NH2	ARG	A	57	58.264	31.302	0.920	1.00	56.65
	ATOM	221	С	ARG	Α	57	56.630	38.152	-0.400	1.00	27.88
	ATOM	222	0	ARG	A	57	57.344	38.483	0.543	1.00	28.70
	ATOM	223	N	LEU	A	58	56.665	38.762	-1.579	1.00	27.01
25	ATOM	224	CA	LEU	Α	58	57.561	39.886	-1.823	1.00	27.01
	ATOM	225	СВ	LEU	A	58	57.540	40.266	-3.306	1.00	29.93
	ATOM	226	CG	LEU	A	58	58.560	41.316	-3.754	1.00	32.39
	ATOM	227	CD1	LEU	A	58	59.969	40.741	-3.628	1.00	33.40
	ATOM	228	CD2	LEU	A	58	58.280	41.729	-5.193	1.00	33.62
30	ATOM	229	С	LEU	A	58	57.095	41.074	-0.979	1.00	26.41
	ATOM	230	0	LEU	A	58	57.906	41.846	-0.462	1.00	25.09
	ATOM	231	N	ALA	A	59	55.777	41.211	-0.851	1.00	24.78
	ATOM	232	CA	ALA	A	59	55.177	42.286	-0.069	1.00	22.97
	MOTA	233	СВ	ALA	A	59	53.657	42.189	-0.125	1.00	21.53
35	MOTA	234	С	ALA	A	59	55.645	42.196	1.373	1.00	20.70
	MOTA	235	0	ALA	Α	59	56.011	43.199	1.982	1.00	20.94
	ATOM	236	N	VAL	Α	60	55.621	40.987	1.919	1.00	19.75

	ATOM	237	CA	VAL	A	60	56.053	40.776	3.292	1.00	19.54
	ATOM	238	СВ	VAL	A	60	55.804	39.312	3.732	1.00	18.51
	MOTA	239	CG1	VAL	A	60	56.381	39.070	5.125	1.00	16.83
	ATOM	240	CG2	VAL	A	60	54.308	39.022	3.722	1.00	14.84
5	MOTA	241	С	VAL	Α	60	57.540	41.117	3.421	1.00	20.80
	ATOM	242	0	VAL	A	60	57.945	41.783	4.372	1.00	20.78
	ATOM	243	N	ARG	Α	61	58.346	40.674	2.458	1.00	23.54
	ATOM	244	CA	ARG	A	61	59.782	40.954	2.477	1.00	27.19
	ATOM	245	СВ	ARG	A	61	60.483	40.362	1.249	1.00	29.60
10	MOTA	246	CG	ARG	A	61	60.452	38.847	1.135	1.00	38.29
	ATOM	247	CD	ARG	A	61	61.547	38.376	0.170	1.00	44.72
	ATOM	248	NE	ARG	A	61	61.507	36.938	-0.097	1.00	50.19
	ATOM	249	CZ	ARG	A	61	60.690	36.356	-0.972	1.00	51.81
	ATOM	250	NH1	ARG	A	61	59.836	37.086	-1.678	1.00	51.44
15	ATOM	251	NH2	ARG	A	61	60.728	35.040	-1.143	1.00	52.85
	ATOM	252	С	ARG	A	61	60.056	42.456	2.503	1.00	26.67
	ATOM	253	0	ARG	A	61	60.766	42.951	3.380	1.00	25.34
	ATOM	254	N	PHE	Α	62	59.496	43.174	1.534	1.00	26.17
	ATOM	255	CA	PHE	A	62	59.704	44.613	1.447	1.00	28.72
20	ATOM	256	СВ	PHE	A	62	58.977	45.187	0.229	1.00	31.46
	MOTA	257	CG	PHE	A	62	59.783	45.127	-1.035		35.66
	ATOM	258	CD1	PHE	Α	62	60.279	43.921	-1.501	1.00	36.94
	MOTA	259	CD2	PHE	Α	62	60.052	46.279	-1.756	1.00	39.16
	ATOM	260	CE1	PHE	A	62	61.029	43.865	-2.663	1.00	38.76
25	ATOM	261	CE2	PHE	A	62	60.803	46.231	-2.919	1.00	40.51
	ATOM	262	CZ	PHE	А	62	61.291	45.020	-3.373		39.34
	ATOM	263	С	PHE	Α	62		45.347			28.83
	ATOM	264	0	PHE		62	59.946	46.260	3.166		28.57
	ATOM	265	N	THR	Α	63	58.117	44.948	3.244		28.55
30	ATOM	266	CA	THR	A	63	57.594	45.580	4.444		27.95
	ATOM	267	CB	THR		63	56.193	45.030	4.800		26.73
	ATOM	268		THR		63	55.292	45.280	3.715		25.39
	ATOM	269		THR		63	55.656	45.706	6.048		26.61
	ATOM	270	С	THR		63	58.538	45.346	5.619		28.75
35	MOTA	271	0	THR		63	58.847	46.272	6.372		27.36
	ATOM	272	N	SER		64	59.003	44.109	5.769		28.81
	ATOM	273	CA	SER	A	64	59.905	43.783	6.867	1.00	31.26

	MOTA	274	СВ	SER	А	64	60.234	42.287	6.866	1.00	30.34
	ATOM	275	OG	SER	Α	64	61.025	41.938	5.744	1.00	34.64
	ATOM	276	С	SER	A	64	61.193	44.596	6.771	1.00	31.63
	ATOM	277	0	SER	A	64	61.794	44.939	7.785	1.00	31.52
5	ATOM	278	N	LEU	A	65	61.606	44.914	5.547	1.00	33.19
	ATOM	279	CA	LEU	A	65	62.828	45.686	5.332	1.00	34.17
	MOTA	280	СВ	LEU	A	65	63.500	45.257	4.026	1.00	33.79
	MOTA	281	CG	LEU	A	65	63.988	43.807	3.993	1.00	36.63
	ATOM	282	CD1	LEU	Α	65	64.621	43.507	2.646	1.00	34.56
10	ATOM	283	CD2	LEU	A	65	64.990	43.579	5.124	1.00	37.33
	MOTA	284	С	LEU	A	65	62.596	47.196	5.316	1.00	33.85
	ATOM	285	0	LEU	A	65	63.542	47.969	5.195	1.00	34.26
	ATOM	286	N	GLY	A	66	61.341	47.614	5.430	1.00	33.45
	ATOM	287	CA	GLY	A	66	61.040	49.035	5.437	1.00	34.55
15	ATOM	288	С	GLY	A	66	61.062	49.729	4.083	1.00	35.86
	ATOM	289	0	GLY	A	66	61.103	50.961	4.016	1.00	35.51
	ATOM	290	N	LEU	A	67	61.036	48.953	3.003		36.35
	ATOM	291	CA	LEU	A	67	61.043	49.522	1.658		37.31
	ATOM	292	СВ	LEU	A	67	61.467	48.456	0.640		38.96
20	ATOM	293	CG	LEU	Α	67	62.781	47.731	0.967		41.48
	ATOM	294	CD1	LEU	A	67	63.077	46.689	-0.099		41.55
	ATOM	295	CD2	LEU	A	67	63.922	48.739	1.059		42.89
	ATOM	296	С	LEU	A	67	59.628	50.012	1.361		36.64
	ATOM	297	0	LEU		67	58.894	49.406	0.583		35.87
25	ATOM	298	N	LEU		68	59.259	51.119	1.996		37.15
	ATOM	299	CA	LEU		68	57.927	51.693	1.858		38.24
	ATOM			LEU		68	57.184		3.188		
	ATOM	301	CG	LEU		68	57.210	50.196	3.851		39.70
20	ATOM	302		LEU		68	56.699	50.303	5.275		39.82
30	ATOM	303		LEU		68	56.373	49.226	3.037		40.12
	ATOM	304	С	LEU		68	57.967	53.160	1.450		38.59
	ATOM	305	0	LEU		68	58.903	53.884	1.782		39.27
	ATOM	306	N	PRO		69	56.932	53.616 52.813	0.729		38.61 37.91
35	ATOM	307	CD	PRO		69 69	55.779	54.997	0.291 0.257		39.04
55	ATOM	308 309	CA CB	PRO PRO		69	56.807 55.590	54.932	-0.660		38.47
	ATOM						54.754	53.878	-0.023		38.21
	MOTA	310	CG	PRO	А	69	54.754	55.070	0.023	1.00	JU.ZI

	ATOM	311	С	PRO	A	69	56.620	55.991	1.400	1.00	39.37
	ATOM	312	0	PRO	A	69	56.828	55.657	2.566	1.00	39.95
	ATOM	313	N	PHE	A	73	51.580	61.610	6.291	1.00	57.27
	ATOM	314	CA	PHE	A	73	50.360	61.873	7.047	1.00	57.38
5	ATOM	315	СВ	PHE	A	73	49.221	60.966	6.569	1.00	57.90
	ATOM	316	CG	PHE	A	73	47.951	61.126	7.361	1.00	58.13
	ATOM	317	CD1	PHE	A	73	47.092	62.186	7.116	1.00	58.39
	ATOM	318	CD2	PHE	A	73	47.638	60.241	8.381	1.00	58.13
	ATOM	319	CE1	PHE	A	73	45.947	62.362	7.876	1.00	58.24
10	ATOM	320	CE2	PHE	A	73	46.495	60.412	9.144	1.00	57.41
	MOTA	321	CZ	PHE	Α	73	45.649	61.473	8.891	1.00	57.23
	MOTA	322	С	PHE	A	73	50.553	61.656	8.543	1.00	56.41
	ATOM	323	0	PHE	A	73	50.901	60.557	8.979	1.00	56.28
	ATOM	324	N	GLN	A	74	50.320	62.705	9.326	1.00	55.49
15	ATOM	325	CA	GLN	A	74	50.443	62.615	10.776	1.00	53.88
	ATOM	326	СВ	GLN	A	74	51.072	63.883	11.356	1.00	55.26
,	ATOM	327	CG	GLN	Α	74	52.570	64.009	11.142	1.00	57.78
	ATOM	328	CD	GLN	A	74	53.176	65.133	11.970	1.00	59.54
	ATOM	329	OE1	GLN	A	74	52.910	66.314	11.733	1.00	59.29
20	ATOM	330	NE2	GLN	A	74	53.988	64.767	12.957	1.00	59.59
	ATOM	331	С	GLN	A	74	49.061	62.421	11.384	1.00	51.65
	ATOM	332	0	GLN	A	74	48.124	63.149	11.063	1.00	50.88
	ATOM	333	N	ASP	A	75	48.941	61.430	12.257	1.00	49.61
	ATOM	334	CA	ASP	A	75	47.673	61.140	12.912	1.00	47.33
25	MOTA	335	СВ	ASP	A	75	47.786	59.839	13.712	1.00	46.31
	ATOM	336	CG	ASP	A	75	48.187	58.657	12.849	1.00	44.20
	ATOM	337	OD1	ASP	A	75	48.706	57.661	13.399	1.00	41.48
	MOTA	338	OD2	ASP	A	75	47.974	58.724	11.621	1.00	44.07
	ATOM	339	С	ASP	A	75	47.329	62.291	13.851	1.00	46.57
30	MOTA	340	0	ASP	A	75	48.192	62.785	14.576	1.00	46.45
	ATOM	341	N	SER	A	76	46.073	62.724	13.833	1.00	45.69
	MOTA	342	CA	SER	A	76	45.645	63.809	14.706	1.00	44.11
	MOTA	343	СВ	SER	A	76	44.700	64.758	13.965	1.00	44.07
	MOTA	344	OG	SER	A	76	43.480	64.113	13.647	1.00	46.09
35	MOTA	345	С	SER	A	76	44.931	63.210	15.905	1.00	42.29
	ATOM	346	0	SER	A	76	44.517	62.054	15.872	1.00	43.18
	ATOM	347	N	ASP	A	77	44.793	63.997	16.964	1.00	41.16

	MOTA	348	CA	ASP	Α	77	44.122	63.541	18.174	1.00 41.04
	ATOM	349	СВ	ASP	A	77	43.962	64.709	19.150	1.00 43.43
	ATOM	350	CG	ASP	A	77	45.296	65.278	19.605	1.00 47.07
	ATOM	351	OD1	ASP	Α	77	45.294	66.321	20.293	1.00 48.75
5 ·	ATOM	352	OD2	ASP	Α	77	46.347	64.682	19.281	1.00 48.82
	ATOM	353	С	ASP	Α	77	42.753	62.939	17.861	1.00 39.12
	MOTA	354	0	ASP	A	77	42.286	62.045	18.564	1.00 38.74
	MOTA	355	N	MET	A	78	42.118	63.435	16.802	1.00 37.74
	ATOM	356	CA	MET	A	78	40.797	62.961	16.385	1.00 36.19
10	ATOM	357	СВ	MET	A	78	40.349	63.676	15.109	1.00 37.19
	ATOM	358	CG	MET	A	78	40.014	65.135	15.267	1.00 39.81
	MOTA	359	SD	MET	A	78	39.364	65.773	13.711	1.00 44.22
	ATOM	360	CE	MET	A	78	37.676	65.136	13.771	1.00 41.40
	ATOM	361	С	MET	A	78	40.737	61.460	16.118	1.00 33.43
15	MOTA	362	0	MET	A	78	39.739	60.807	16.423	1.00 32.83
	MOTA	363	N	LEU	A	79	41.803	60.923	15.534	1.00 29.93
	MOTA	364	CA	LEU	A	79	41.847	59.508	15.201	1.00 28.79
	ATOM	365	СВ	LEU	Α	79	42.839	59.273	14.059	1.00 26.98
	ATOM	366	CG	LEU	A	79	42.524	60.001	12.745	1.00 28.06
20	ATOM	367	CD1	LEU	A	79	43.498	59.551	11.662	1.00 25.66
	ATOM	368	CD2	LEU	A	79	41.085	59.712	12.321	1.00 25.01
	ATOM	369	С	LEU	A	79	42.186	58.599	16.375	1.00 28.13
	MOTA	370	0	LEU	Α	79	42.097	57.377	16.258	1.00 27.01
	ATOM	371	N	GLU	A	80	42.562	59.187	17.505	1.00 27.26
25	ATOM	372	CA	GLU	A	80	42.909	58.392	18.672	1.00 28.24
	ATOM	373	СВ	GLU		80	43.622	59.248	19.724	1.00 30.41
	ATOM		CG	GLU	A	80				1.00 36.61
	ATOM	375	CD	GLU		80	44.624	59.320	22.067	1.00 40.69
20	ATOM	376		GLU		80	44.508	59.059	23.284	1.00 41.38
30	ATOM	377		GLU		80	45.432	60.171	21.630	1.00 43.40
	ATOM	378	С	GLU		80	41.686	57.735	19.291	1.00 27.76
	ATOM	379	0	GLU		80	40.636	58.356	19.437	1.00 29.08
	ATOM	380	N	VAL		81	41.831	56.469	19.652	1.00 26.18
25	ATOM	381	CA	VAL		81	40.747	55.717	20.258	1.00 26.74
35	ATOM	382	CB	VAL		81	40.134	54.702	19.259	1.00 27.51
	ATOM	383		VAL		81	38.943	53.996	19.895	1.00 26.14
	ATOM	384	CG2	VAL	A	81	39.723	55.407	17.981	1.00 27.18

	ATOM	385	С	VAL	Α	81	41.292	54.936	21.441	1.00	26.74
	MOTA	386	0	VAL	Α	81	42.455	54.525	21.441	1.00	27.00
	MOTA	387	N	ARG	Α	82	40.457	54.735	22.452	1.00	27.63
	MOTA	388	CA	ARG	A	82	40.878	53.971	23.613	1.00	29.47
5	ATOM	389	СВ	ARG	Α	82	40.960	54.852	24.862	1.00	32.41
	ATOM	390	CG	ARG	A	82	42.027	54.360	25.826	1.00	40.18
	ATOM	391	CD	ARG	A	82	41.648	54.500	27.294	1.00	45.31
	MOTA	392	NE	ARG	A	82	42.675	53.907	28.156	1.00	48.83
	MOTA	393	CZ	ARG	A	82	43.075	52.639	28.082	1.00	48.91
10	MOTA	394	NH1	ARG	Α	82	42.538	51.818	27.188	1.00	49.58
•	MOTA	395	NH2	ARG	A	82	44.021	52.192	28.895	1.00	50.35
	ATOM	396	С	ARG	A	82	39.898	52.835	23.855	1.00	28.41
	ATOM	397	0	ARG	A	82	38.730	53.070	24.154	1.00	29.65
	MOTA	398	N	VAL	A	83	40.382	51.604	23.713	1.00	28.37
15	MOTA	399	CA	VAL	A	83	39.570	50.407	23.918	1.00	28.82
	MOTA	400	СВ	VAL	A	83	38.745	50.038	22.662	1.00	29.44
	MOTA	401	CG1	VAL	A	83	37.511	50.915	22.570	1.00	30.89
	MOTA	402	CG2	VAL	A	83	39.608	50.181	21.413	1.00	25.04
	MOTA	403	С	VAL	A	83	40.457	49.217	24.235	1.00	29.77
20	MOTA	404	0	VAL	A	83	41.673	49.281	24.066	1.00	29.28
	MOTA	405	N	LEU	Α	84	39.836	48.130	24.688	1.00	31.31
	ATOM	406	CA	LEU	A	84	40.559	46.902	25.009	1.00	32.35
	ATOM	407	СВ	LEU	A	84	41.071	46.250	23.714	1.00	31.07
	ATOM	408	CG	LEU	A	84	40.002	45.965	22.649	1.00	31.01
25	ATOM	4.09	CD1	LEU	A	84	40.659	45.510	21.363	1.00	30.37
	ATOM	410	CD2	LEU	A	84	39.028	44.917	23.160	1.00	26.83
	MOTA	411	С	LEU	A	84	41.731	47.144	25.961	1.00	33.06
	ATOM	412	0	LEU	A	84	42.730	46.424	25.914	1.00	34.52
	ATOM	413	N	GLY	A	85	41.602	48.154	26.819	1.00	33.14
30	ATOM	414	CA	GLY	A	85	42.655	48.469	27.774	1.00	31.49
	ATOM	415	С	GLY	Α	85	43.893	49.069	27.133	1.00	31.37
	ATOM	416	0	GLY	A	85	44.996	48.980	27.680	1.00	29.38
	ATOM	417	N	HIS	A	86	43.713	49.691	25.972	1.00	30.74
	ATOM	418	CA	HIS	A	86	44.827	50.294	25.255	1.00	31.19
35	ATOM	419	CB	HIS	A	86	45.421	49.287	24.261	1.00	33.63
	ATOM	420	CG	HIS	A	86	45.956	48.046	24.903	1.00	36.97
	ATOM	421	CD2	HIS	A	86	45.488	46.775	24.913	1.00	38.23

	ATOM	422	ND1	HIS	А	86	47.100	48.039	25.672	1.00	38.35
	ATOM	423	CE1	HIS	Α	86	47.313	46.817	26.130	1.00	38.39
	ATOM	424	NE2	HIS	А	86	46.349	46.031	25.685	1.00	40.10
	ATOM	425	С	HIS	А	86	44.442	51.556	24.493	1.00	30.01
5	ATOM	426	0	HIS	A	86	43.268	51.837	24.249	1.00	29.30
	MOTA	427	N	LYS	A	87	45.459	52.315	24.116	1.00	29.25
	MOTA	428	CA	LYS	Α	87	45.266	53.528	23.350	1.00	28.62
	ATOM	429	CB	LYS	A	87	46.126	54.656	23.921	1.00	31.36
	ATOM	430	CG	LYS	A	87	46.098	55.934	23.105	1.00	36.49
10	ATOM	431	CD	LYS	A	87	47.040	56.982	23.680	1.00	40.20
	ATOM	432	CE	LYS	A	87	48.488	56.523	23.617	1.00	42.08
	ATOM	433	NZ	LYS	A	87	49.419	57.556	24.157	1.00	44.04
	ATOM	434	С	LYS	A	87	45.710	53.205	21.928	1.00	26.31
	ATOM	435	0	LYS	A	87	46.727	52.532	21.729	1.00	25.00
15	ATOM	436	N	PHE	A	88	44.932	53.655	20.948	1.00	22.41
	MOTA	437	CA	PHE	A	88	45.260	53.440	19.543	1.00	21.20
	MOTA	438	СВ	PHE	A	88	44.160	52.635	18.839	1.00	18.24
	MOTA	439	CG	PHE	A	88	43.981	51.235	19.369	1.00	17.32
	MOTA	440	CD1	PHE	A	88	43.462	51.014	20.637	1.00	15.98
20	MOTA	441	CD2	PHE	A	88	44.315	50.139	18.588	1.00	14.22
	MOTA	442	CE1	PHE	A	88	43.277	49.730	21.114	1.00	15.75
	MOTA	443	CE2	PHE	A	88	44.134	48.857	19.057	1.00	14.62
	ATOM	444	CZ	PHE	A	88	43.614	48.649	20.321	1.00	16.23
	MOTA	445	С	PHE	A	88	45.359	54.828	18.912	1.00	21.47
25	ATOM	446	0	PHE	A	88	44.371	55.563	18.897	1.00	21.28
	ATOM	447	N	ARG	A	89	46.531	55.195	18.395		21.89
	ATOM	448	CA	ARG	A	89	46.683		17.797		
	ATOM	449	СВ	ARG	A	89	48.145	56.814	17.437	1.00	27.64
	ATOM	450	CG	ARG	A ·	89	48.743	55.954	16.360		34.35
30	ATOM	451	CD	ARG	A	89	50.110	56.502	15.978		39.78
	ATOM	452	NE	ARG		89	50.936	56.747	17.157		43.12
	ATOM	453	CZ	ARG		89	52.226	57.066	17.115		45.70
	ATOM	454		ARG		89	52.846	57.180	15.946		46.09
	ATOM	455		ARG		89	52.898	57.264	18.242		46.23
35	ATOM	456	С	ARG		89	45.774	56.724	16.586		21.57
	ATOM	457	0	ARG		89	45.382	57.846	16.289		20.90
	ATOM	458	N	ASN	A	90	45.461	55.644	15.878	1.00	19.52

	ATOM	459	CA	ASN	Α	90	44.525	55.712	14.756	1.00	19.26
	ATOM	460	СВ	ASN	Α	90	45.227	56.049	13.419	1.00	17.47
	ATOM	461	CG	ASN	A	90	45.921	54.873	12.783	1.00	17.14
	ATOM	462	OD1	ASN	A	90	45.286	53.893	12.402	1.00	19.02
5	ATOM	463	ND2	ASN	Α	90	47.239	54.973	12.641	1.00	18.11
	ATOM	464	С	ASN	A	90	43.816	54.359	14.759	1.00	18.80
	MOTA	465	0	ASN	A	90	44.381	53.354	15.198	1.00	20.27
	MOTA	466	N	PRO	A	91	42.558	54.323	14.304	1.00	17.37
	ATOM	467	CD	PRO	Α	91	41.808	55.489	13.797	1.00	17.95
10	ATOM	468	CA	PRO	Α	91	41.725	53.119	14.258	1.00	16.60
	MOTA	469	СВ	PRO	A	91	40.323	53.702	14.336	1.00	17.12
	ATOM	470	CG	PRO	Α	91	40.447	54.890	13.434	1.00	14.17
	ATOM	471	С	PRO	A	91	41.876	52.188	13.062	1.00	17.11
	MOTA	472	0	PRO	A	91	41.084	51.260	12.903	1.00	16.80
15	ATOM	473	N	VAL	Α	92	42.885	52.423	12.230	1.00	17.06
	ATOM	474	CA	VAL	A	92	43.085	51.606	11.034	1.00	17.33
	ATOM	475	СВ	VAL	A	92	43.397	52.506	9.813	1.00	17.14
	ATOM	476	CG1	VAL	A	92	43.517	51.672	8.551	1.00	13.98
	ATOM	477	CG2	VAL	A	92	42.314	53.559	9.666	1.00	16.18
20	ATOM	478	С	VAL	A	92	44.204	50.584	11.201	1.00	17.94
	ATOM	479	0	VAL	A	92	45.376	50.942	11.278	1.00	18.09
	ATOM	480	N	GLY	A	93	43.836	49.308	11.251	1.00	17.48
	MOTA	481	CA	GLY	A	93	44.833	48.270	11.410	1.00	16.24
	ATOM	482	С	GLY	A	93	44.900	47.330	10.227	1.00	16.29
25	ATOM	483	0	GLY	Α	93	44.035	47.356	9.355	1.00	17.30
	ATOM	484	N	ILE	A	94	45.947	46.512	10.185	1.00	15.88
	ATOM	485	CA	ILE	Α	94	46.113	45.536	9.114	1.00	13.94
	MOTA	486	СВ	ILE	A	94	47.612	45.320	8.770	1.00	14.90
	ATOM	487	CG2	ILE	A	94	48.408	44.996	10.024		13.27
30	ATOM	488	CG1	ILE	Α	94	47.756	44.209	7.726		14.95
	ATOM	489	CD1	ILE	A	94	47.281	44.608	6.336	1.00	14.84
	ATOM	490	С	ILE	A	94	45.492	44.227	9.603	1.00	14.64
	ATOM	491	0	ILE	A	94	45.872	43.698	10.647	1.00	14.21
	ATOM	492	N	ALA	A	95	44.520	43.717	8.856	1.00	14.20
35	MOTA	493	CA	ALA	A	95	43.840	42.487	9.233	1.00	1,4.41
	ATOM	494	СВ	ALA	A	95	42.675	42.227	8.279	1.00	14.00
	ATOM	495	С	ALA	A	95	44.778	41.282	9.255	1.00	14.74

	MOTA	496	0	ALA	Α	95	45.885	41.333	8.724	1.00	13.48
	ATOM	497	N	ALA	A	96	44.327	40.204	9.887	1.00	13.92
	ATOM	498	CA	ALA	A	96	45.111	38.982	9.964	1.00	16.74
	ATOM	499	СВ	ALA	Α	96	44.417	37.967	10.867	1.00	15.50
5	ATOM	500	С	ALA	Α	96	45.254	38.415	8.557	1.00	17.13
	ATOM	501	0	ALA	Α	96	44.393	38.634	7.703	1.00	18.95
	MOTA	502	N	GLY	A	97	46.343	37.695	8.312	1.00	17.82
	ATOM	503	CA	GLY	A	97	46.546	37.112	6.999	1.00	16.65
	ATOM	504	С	GLY	A	97	47.708	37.683	6.212	1.00	15.52
10	ATOM	505	0	GLY	A	97	48.423	36.936	5.553	1.00	16.01
	ATOM	506	N	PHE	A	98	47.903	38.998	6.255	1.00	15.36
	ATOM	507	CA	PHE	A	98	49.014	39.583	5.515	1.00	16.42
	ATOM	508	СВ	PHE	A	98	48.962	41.112	5.519	1.00	16.50
	ATOM	509	CG	PHE	A	98	50.095	41.739	4.761	1.00	18.21
15	MOTA	510	CD1	PHE	A	98	50.149	41.650	3.376	1.00	19.68
	MOTA	511	CD2	PHE	A	98	51.140	42.355	5.431	1.00	18.88
	ATOM	512	CE1	PHE	A	98	51.225	42.159	2.674	1.00	19.14
	ATOM	513	CE2	PHE	A	98	52.223	42.868	4.735	1.00	19.22
	ATOM	514	CZ	PHE	A	98	52.266	42.770	3.355	1.00	20.69
20	ATOM	515	С	PHE	A	98	50.325	39.129	6.149	1.00	15.73
	MOTA	516	0	PHE	A	98	51.219	38.636	5.467	1.00	15.56
	MOTA	517	N	ASP	A	99	50.434	39.312	7.459	1.00	15.88
	MOTA	518	CA	ASP	A	99	51.627	38.898	8.193	1.00	15.70
	ATOM	519	СВ	ASP	A	99	52.156	40.068	9.025	1.00	15.27
25	ATOM	520	CG	ASP	A	99	53.534	39.800	9.607	1.00	17.99
	ATOM	521	OD1	ASP	A	99	54.160	38.786	9.234		16.77
	ATOM	522	OD2	ASP	A	99	53.996	40.616	10.432	1.00	19.28
	ATOM	523	С	ASP		99	51.233	37.723	9.096		16.32
	ATOM	524	0	ASP	A	99	51.003	37.891	10.295		14.93
30	ATOM	525	N	LYS	A	100	51.138	36.538	8.498	1.00	16.61
	ATOM	526	CA	LYS	A	100	50.756	35.330	9.220		17.25
	ATOM	527	СВ	LYS	A	100	50.490	34.187	8.231		19.41
	ATOM	528	CG	LYS	A	100	49.159	34.247	7.483		20.97
	ATOM	529	CD	LYS	A	100	49.092	33.131	6.437		23.93
35	ATOM	530	CE	LYS			47.732	33.042	5.730		25.43
	ATOM	531	NZ	LYS			46.656	32.457	6.595		22.86
	ATOM	532	С	LYS	A	100	51.774	34.848	10.253	1.00	18.16

	ATOM	533	0	LYS A	Ą	100	51.398	34.268	11.274	1.00	18.89
	ATOM	534	N	HIS A	4	101	53.058	35.084	10.000	1.00	17.48
	ATOM	535	CA	HIS A	4	101	54.095	34.603	10.911	1.00	19.25
	ATOM	536	СВ	HIS A	4	101	55.114	33.779	10.118	1.00	16.89
5	ATOM	537	CG	HIS A	Ą	101	54.516	33.041	8.961	1.00	18.72
	ATOM	538	CD2	HIS A	Ą	101	54.771	33.111	7.632	1.00	17.76
	ATOM	539	ND1	HIS A	Ą	101	53.504	32.115	9.108	1.00	18.28
	ATOM	540	CE1	HIS A	Ą	101	53.162	31.648	7.920	1.00	17.69
	ATOM	541	NE2	HIS A	Ą	101	53.916	32.235	7.007	1.00	16.65
10	ATOM	542	С	HIS A	Ą	101	54.826	35.679	11.712	1.00	19.41
	ATOM	543	0	HIS A	Ą	101	55.871	35.407	12.296	1.00	21.11
	ATOM	544	N	GLY A	A	102	54.281	36.892	11.736	1.00	20.30
	ATOM	545	CA	GLY Z	Ą	102	54.904	37.977	12.478	1.00	20.25
	ATOM	546	С	GLY A	Ą	102	56.284	38.376	11.984	1.00	20.48
15	MOTA	547	0	GLY A	A	102	57.188	38.599	12.781	1.00	21.67
	ATOM	548	N	GLU A	A	103	56.445	38.491	10.670	1.00	22.35
	ATOM	549	CA	GLU A	A	103	57.732	38.855	10.076	1.00	21.64
	ATOM	550	CB	GLU A	A	103	57.964	38.041	8.804	1.00	20.45
	ATOM	551	CG	GLU Z	A	103	58.008	36.546	9.009	1.00	23.87
20	ATOM	552	CD	GLU Z	A	103	58.054	35.792	7.697	1.00	26.38
	ATOM	553	OE1	GLU Z	Ą	103	57.019	35.749	6.993	1.00	26.70
	ATOM	554	OE2	GLU Z	A	103	59.130	35.251	7.365	1.00	28.54
	MOTA	555	С	GLU A	A	103	57.884	40.329	9.719	1.00	21.18
	MOTA	556	0	GLU Z	A	103	58.997	40.797	9.493		22.35
25	MOTA	557	N	ALA A	A	104	56.782	41.067	9.665	1.00	20.64
	ATOM	558	CA	ALA A			56.858	42.471	9.274		19.54
	ATOM	559	СВ	ALA A	A	104			7.851		
	ATOM	560	С	ALA A	A	104	56.111	43.435	10.181		19.23
	ATOM	561	0	ALA A			55.690	44.502	9.741		18.91
30	ATOM	562	N	VAL A	A	105	55.955	43.074	11.446		19.88
	ATOM	563	CA	VAL 2			55.231	43.924	12.384		19.66
	MOTA	564	СВ	VAL Z			55.361	43.389	13.814		19.24
	MOTA	565		VAL Z			54.667	44.328	14.781		18.21
	MOTA	566	CG2	VAL Z			54.767	41.990	13.892		17.39
35	ATOM	567	С	VAL			55.669	45.389	12.372		20.45
	ATOM	568	0	VAL Z			54.836	46.294	12.292		21.75
	ATOM	569	N	ASP .	A	106	56.974	45.622	12.444	1.00	18.45

	ATOM	570	CA	ASP	Α	106	57.493	46.984	12.467	1.00	19.17
	ATOM	571	СВ	ASP	Α	106	58.967	46.970	12.880	1.00	18.60
	ATOM	572	CG	ASP	A	106	59.154	46.476	14.297	1.00	19.83
	ATOM	573	OD1	ASP	A	106	59.731	45.382	14.485	1.00	21.21
5	ATOM	574	OD2	ASP	A	106	58.701	47.179	15.225	1.00	19.11
	ATOM	575	С	ASP	Α	106	57.313	47.739	11.159	1.00	18.26
	ATOM	576	0	ASP	Α	106	57.040	48.941	11.164	1.00	18.22
	ATOM	577	N	GLY	Α	107	57.468	47.039	10.043	1.00	16.23
	ATOM	578	CA	GLY	Α	107	57.288	47.677	8.755	1.00	17.23
10	ATOM	579	С	GLY	A	107	55.832	48.061	8.554	1.00	18.78
	ATOM	580	0	GLY	A	107	55.521	48.958	7.770	1.00	20.34
	ATOM	581	N	LEU	A	108	54.934	47.383	9.267	1.00	17.72
	ATOM	582	CA	LEU	Α	108	53.507	47.668	9.166	1.00	17.68
	ATOM	583	СВ	LEU	Α	108	52.690	46.463	9.650	1.00	18.56
15	ATOM	584	CG	LEU	A	108	52.748	45.288	8.665	1.00	17.20
	MOTA	585	CD1	LEU	A	108	52.205	44.023	9.300	1.00	15.49
	MOTA	586	CD2	LEU	Α	108	51.964	45.654	7.413	1.00	18.33
	ATOM	587	С	LEU	Α	108	53.140	48.930	9.943	1.00	17.62
	ATOM	588	0	LEU	Α	108	52.320	49.718	9.482	1.00	17.86
20	MOTA	589	N	TYR	A	109	53.734	49.127	11.118	1.00	17.88
	MOTA	590	CA	TYR	Α	109	53.464	50.347	11.883	1.00	19.37
	MOTA	591	СВ	TYR	Α	109	54.179	50.335	13.246	1.00	17.43
	MOTA	592	CG	TYR	A	109	53.573	49.401	14.273	1.00	15.80
	MOTA	593	CD1	TYR	Α	109	54.324	48.381	14.840	1.00	14.92
25	ATOM	594	CE1	TYR	A	109	53.767	47.507	15.760	1.00	16.08
	ATOM	595	CD2	TYR	Α	109	52.243	49.529	14.660	1.00	14.37
	ATOM	596	CE2	TYR	Α	109	51.677	48.663	15.580	1.00	14.70
	ATOM	597	CZ	TYR	Α	109	52.443	47.651	16.125	1.00	15.77
	ATOM	598	ОН	TYR	A	109	51.880	46.769	17.019	1.00	15.33
30	ATOM	599	С	TYR	Α	109	54.006	51.509	11.053	1.00	20.25
	ATOM	600	0	TYR	A	109	53.430	52.598	11.023	1.00	20.30
	ATOM	601	N	LYS	A	110	55.125	51.265	10.378	1.00	20.12
	ATOM	602	CA	LYS	A	110	55.747	52.287	9.551	1.00	22.39
	ATOM	603	СВ	LYS	Α	110	57.123	51.821	9.074	1.00	23.00
35	ATOM	604	CG	LYS	A	110	57.804	52.825	8.169	1.00	26.93
	MOTA	605	CD	LYS	A	110	59.140	52.328	7.667	1.00	31.08
	ATOM	606	CE	LYS	A	110	59.795	53.371	6.769	1.00	33.97

	ATOM	607	NZ	LYS A	Ą	110	61.123	52.922	6.263	1.00	37.79
	ATOM	608	С	LYS A	Ą	110	54.880	52.635	8.342	1.00	22.91
	MOTA	609	0	LYS A	A	110	55.002	53.722	7.772	1.00	21.83
	ATOM	610	N	MET A	A	111	54.009	51.706	7.955	1.00	22.68
5	ATOM	611	CA	MET A	Ą	111	53.123	51.912	6.814	1.00	21.52
	ATOM	612	СВ	MET A	A	111	52.576	50.565	6.331	1.00	22.57
	ATOM	613	CG	MET A	A	111	52.097	50.560	4.885	1.00	23.41
	ATOM	614	SD	MET A	Ą	111	51.657	48.907	4.289	1.00	22.54
	ATOM	615	CE	MET A	Ą	111	53.262	48.165	4.105	1.00	21.48
10	MOTA	616	С	MET A	Ą	111	51.976	52.850	7.201	1.00	21.63
	MOTA	617	0	MET A	Ą	111	51.250	53.352	6.341	1.00	21.82
	ATOM	618	N	GLY A	Ą	112	51.817	53.084	8.500	1.00	20.62
	ATOM	619	CA	GLY A	Ą	112	50.768	53.980	8.955	1.00	18.24
	ATOM	620	С	GLY A	A	112	49.644	53.347	9.752	1.00	17.64
15	ATOM	621	0	GLY A	A	112	48.736	54.048	10.198	1.00	18.17
	ATOM	622	N	PHE A	A	113	49.691	52.032	9.941	1.00	16.29
	ATOM	623	CA	PHE A	A	113	48.644	51.344	10.693	1.00	15.85
	ATOM	624	СВ	PHE A	A	113	48.769	49.829	10.520	1.00	15.16
	ATOM	625	CG	PHE A	Ą	113	48.390	49.346	9.153	1.00	15.73
20	ATOM	626	CD1	PHE 2	A	113	49.355	48.898	8.269	1.00	15.73
	ATOM	627	CD2	PHE A	A	113	47.062	49.334	8.755	1.00	15.52
	ATOM	628	CE1	PHE A	A	113	49.003	48.442	7.007	1.00	18.04
	ATOM	629	CE2	PHE A	A	113	46.699	48.881	7.498	1.00	15.62
	ATOM	630	CZ	PHE A	A	113	47.669	48.433	6.621	1.00	17.05
25	ATOM	631	С	PHE A	A	113	48.662	51.690	12.175	1.00	14.70
	MOTA	632	0	PHE A	A	113	49.722		12.788		15.50
	MOTA	633	N	GLY A	A	114	47.477	51.911	12.738	1.00	13.84
	MOTA	634	CA	GLY A	A	114	47.361	52.248	14.148	1.00	13.69
	ATOM	635	С	GLY A	A	114	47.578	51.041	15.042	1.00	14.92
30	MOTA	636	0	GLY Z	A	114	47.813	51.174	16.240	1.00	16.13
	ATOM	637	N	PHE 2	A	115	47.470	49.852	14.463	1.00	15.20
	ATOM	638	CA	PHE A	A	115	47.690	48.624	15.209	1.00	15.32
	ATOM	639	СВ	PHE A	A	115	46.547	48.364	16.206	1.00	15.74
	ATOM	640	CG	PHE A	A	115	45.214	48.071	15.575		14.70
35	MOTA	641	CD1	PHE I	A	115	44.715	46.778	15.553		14.33
	ATOM	642	CD2	PHE A	A	115	44.430	49.095	15.061		14.87
	ATOM	643	CE1	PHE	A	115	43.456	46.507	15.034	1.00	13.48

	ATOM	644	CE2	PHE	A	115	43.170	48.831	14.539	1.00	15.39
	ATOM	645	CZ	PHE	A	115	42.684	47.533	14.528	1.00	14.35
	ATOM	646	С	PHE	Α	115	47.871	47.464	14.247	1.00	15.52
	ATOM	647	0	PHE	A	115	47.350	47.481	13.136	1.00	15.04
5	ATOM	648	N	VAL	A	116	48.638	46.468	14.675	1.00	16.15
	ATOM	649	CA	VAL	Α	116	48.931	45.311	13.845	1.00	14.61
	ATOM	650	СВ	VAL	A	116	50.464	45.183	13.615	1.00	15.46
	ATOM	651	CG1	VAL	Α	116	50.782	43.920	12.803	1.00	10.90
	ATOM	652	CG2	VAL	A	116	50.991	46.434	12.912	1.00	12.53
10	ATOM	653	С	VAL	A	116	48.431	44.006	14.448	1.00	15.98
	ATOM	654	0	VAL	Α	116	48.469	43.817	15.664	1.00	16.18
	ATOM	655	N	GLU	A	117	47.955	43.113	13.584	1.00	15.89
	MOTA	656	CA	GLU	A	117	47.490	41.796	14.009	1.00	17.58
	MOTA	657	СВ	GLU	A	117	45.977	41.668	13.845	1.00	16.28
15	MOTA	658	CG	GLU	A	117	45.442	40.307	14.263	1.00	16.44
	MOTA	659	CD	GLU	A	117	43.929	40.257	14.255	1.00	17.58
	MOTA	660	OE1	GLU	A	117	43.366	39.304	13.671	1.00	16.31
	MOTA	661	OE2	GLU	A	117	43.309	41.173	14.837	1.00	14.25
	ATOM	662	С	GLU	Α	117	48.190	40.782	13.115	1.00	17.75
20	ATOM	663	0	GLU	A	117	48.077	40.853	11.892	1.00	19.22
	ATOM	664	N	ILE	A	118	48.917	39.840	13.706	1.00	17.57
	ATOM	665	CA	ILE	A	118	49.619	38.870	12.882	1.00	20.33
	MOTA	666	СВ	ILE	A	118	50.981	38.473	13.503	1.00	18.22
	MOTA	667	CG2	ILE	A	118	51.869	39.704	13.594	1.00	20.47
25	MOTA	668	CG1	ILE	A	118	50.801	37.879	14.893	1.00	18.20
	MOTA	669	CD1	ILE	Α	118	52.101	37.437	15.500	1.00	18.29
	MOTA	670	С	ILE	Α	118	48.777	37.643	12.566	1.00	21.46
	ATOM	671	0	ILE	A	118	48.183	37.032	13.453	1.00	18.99
	ATOM	672	N	GLY	A	119	48.729		11.266	1.00	26.74
30	MOTA	673	CA	GLY	Α	119	47.955	36.234	10.707	1.00	23.10
	ATOM	674	С	GLY	A	119	47.785	35.068	11.633		24.55
	ATOM	675	0	GLY	Α	119	48.548	34.923	12.591	1.00	25.31
	ATOM	676	N	SER	A	120	46.793	34.229	11.345		21.80
	ATOM	677	CA	SER	A	120	46.529	33.069	12.185	1.00	20.39
35	MOTA	678	СВ	SER	Α		45.371		11.623		19.81
	ATOM	679	OG				44.128	32.878	11.874		18.88
	MOTA	680	С	SER	A	120	47.750	32.187	12.352	1.00	19.19

	ATOM	681	0	SER Z	A	120	48.453	31.881	11.389	1.00	19.54
	ATOM	682	N	VAL A	A	121	47.992	31.785	13.594	1.00	18.84
	ATOM	683	CA	VAL 2	A	121	49.115	30.924	13.936	1.00	15.63
	ATOM	684	СВ	VAL 2	A	121	50.007	31.580	15.023	1.00	15.71
5	ATOM	685	CG1	VAL	A	121	51.322	30.801	15.174	1.00	10.48
	ATOM	686	CG2	VAL 2	Α	121	50.268	33.045	14.670	1.00	12.14
	ATOM	687	С	VAL	Α	121	48.538	29.622	14.488	1.00	16.66
	ATOM	688	0	VAL 2	Ą	121	47.610	29.641	15.302	1.00	15.77
	MOTA	689	N	THR .	A	122	49.071	28.496	14.028	1.00	15.22
10	ATOM	690	CA	THR .	Α	122	48.619	27.192	14.493	1.00	16.76
	MOTA	691	СВ	THR .	A	122	48.448	26.211	13.304	1.00	15.90
	ATOM	692	OG1	THR .	Α	122	49.666	26.132	12.557	1.00	16.51
	MOTA	693	CG2	THR .	A	122	47.343	26.693	12.378	1.00	16.10
	MOTA	694	С	THR .	A	122	49.668	26.677	15.480	1.00	16.25
15	MOTA	695	0	THR .	A	122	50.814	27.112	15.443	1.00	17.59
	ATOM	696	N	PRO .	A	123	49.285	25.770	16.393	1.00	17.47
	ATOM	697	CD	PRO .	A	123	47.920	25.301	16.691	1.00	16.85
	ATOM	698	CA	PRO .	A	123	50.244	25.236	17.373	1.00	18.92
	ATOM	699	СВ	PRO .	A	123	49.420	24.203	18.128	1.00	17.69
20	ATOM	700	CG	PRO .	A	123	48.052	24.841	18.132	1.00	17.76
	ATOM	701	С	PRO .	A	123	51.499	24.642	16.736	1.00	20.99
	ATOM	702	0	PRO .	A	123	52.621	25.028	17.074	1.00	21.78
	ATOM	703	N	LYS .	A	124	51.305	23.701	15.819	1.00	21.75
	ATOM	704	CA	LYS .	A	124	52.420	23.079	15.119	1.00	23.14
25	ATOM	705	СВ	LYS .	A	124	52.202	21.563	14.973	1.00	25.62
	ATOM	706	CG	LYS .	A	124	51.920	20.840	16.279	1.00	30.22
	ATOM	707	CD	LYS .	A	124	52.985	21.160	17.320	1.00	36.14
	MOTA	708	CE	LYS .	A	124	52.562	20.694	18.707	1.00	40.67
	MOTA	709	NZ	LYS .	A	124	53.568	21.045	19.751	1.00	42.17
30	ATOM	710	С	LYS .	A	124	52.488	23.707	13.736	1.00	23.21
	ATOM	711	0	LYS .	A	124	51.504	24.267	13.245	1.00	23.64
	MOTA	712	N	PRO .	A	125	53.660	23.644	13.095	1.00	21.67
	ATOM	713	CD	PRO .	A	125	54.966	23.207	13.623	1.00	21.13
	ATOM	714	CA	PRO .	A	125	53.790	24.220	11.756	1.00	20.12
35	ATOM	715	СВ	PRO .	A	125	55.292	24.112	11.473	1.00	20.06
	ATOM	716	CG	PRO .	A	125	55.924	24.057	12.844	1.00	19.41
	ATOM	717	С	PRO .	A	125	52.976	23.368	10.775	1.00	20.04

	ATOM	718	0	PRO A	A 1	.25	52.738	22.187	11.024	1.00	19.30
	ATOM	719	N	GLN A	A 1	.26	52.536	23.965	9.674	1.00	19.35
	ATOM	720	CA	GLN A	A 1	.26	51.801	23.229	8.650	1.00	20.20
	ATOM	721	СВ	GLN A	A 1	.26	50.352	22.926	9.078	1.00	21.37
5	ATOM	722	CG	GLN A	A 1	.26	49.441	24.118	9.337	1.00	20.47
	ATOM	723	CD	GLN A	A 1	.26	47.993	23.689	9.578	1.00	21.76
	ATOM	724	OE1	GLN A	A 1	.26	47.725	22.742	10.330	1.00	19.13
	ATOM	725	NE2	GLN A	1	.26	47.056	24.391	8.949	1.00	19.73
	ATOM	726	С	GLN A	A 1	.26	51.844	24.027	7.357	1.00	20.40
10	ATOM	727	0	GLN A	A 1	.26	51.827	25.255	7.375	1.00	20.14
	MOTA	728	N	GLU A	1	.27	51.914	23.323	6.234	1.00	22.71
	MOTA	729	CA	GLU A	1	.27	52.018	23.970	4.933	1.00	26.01
	MOTA	730	СВ	GLU A	A 1	.27	52.622	22.989	3.922	1.00	29.64
	ATOM	731	CG	GLU A	A 1	.27	53.987	22.463	4.345	1.00	37.72
15	ATOM	732	CD	GLU A	A 1	.27	54.735	21.770	3.220	1.00	43.15
	ATOM	733	OE1	GLU A	A 1	.27	54.150	20.871	2.574	1.00	46.06
	ATOM	734	OE2	GLU A	A 1	.27	55.914	22.120	2.986	1.00	45.97
	ATOM	735	С	GLU A	A 1	.27	50.752	24.584	4.352	1.00	24.16
	MOTA	736	0	GLU A	A 1	.27	50.832	25.468	3.503	1.00	22.80
20	ATOM	737	N	GLY A	A 1	.28	49.589	24.133	4.805	1.00	23.12
	ATOM	738	CA	GLY A	A 1	.28	48.353	24.669	4.267	1.00	23.32
	MOTA	739	С	GLY A	A 1	.28	48.007	23.957	2.972	1.00	25.32
	ATOM	740	0	GLY A	A 1	.28	48.637	22.951	2.629	1.00	24.84
	MOTA	741	N	ASN A	A 1	.29	47.013	24.465	2.247	1.00	25.42
25	ATOM	742	CA	ASN A	A 1	.29	46.602	23.847	0.992	1.00	25.80
	ATOM	743	CB	ASN A	A 1	.29	45.256	24.411	0.530		24.97
	ATOM	744	CG	ASN A	A 1	.29	44.122	24.051	1.466	1.00	25.95
	ATOM	745	OD1	ASN A	A 1	.29	44.069	22.938	1.988	1.00	27.09
	ATOM	746	ND2	ASN A	A 1	.29	43.198	24.985	1.670	1.00	21.37
30	ATOM	747	С	ASN A	A 1	.29	47.631	24.031	-0.118		26.37
	MOTA	748	0	ASN A	A 1	.29	48.474	24.927	-0.065		25.71
	ATOM	749	N	PRO Z	A 1	.30	47.577	23.167	-1.141		26.97
	ATOM	750	CD	PRO I	A 1	130	46.708	21.978	-1.222		25.53
	ATOM	751	CA	PRO Z	A 1	.30	48.501	23.228	-2.279		27.02
35	ATOM	752	СВ	PRO A	A 1	.30	48.271	21.888	-2.979		26.16
	MOTA	753	CG	PRO I	A 1	L30	46.835	21.584	-2.672		25.45
	ATOM	754	С	PRO 2	A 1	130	48.213	24.422	-3.188	1.00	28.78

	ATOM	755	0	PRO	A	130	47.072	24.874	-3.278	1.00	29.43
	ATOM	756	N	ARG	Α	131	49.250	24.933	-3.849	1.00	29.59
	ATOM	757	CA	ARG	Α	131	49.113	26.073	-4.754	1.00	31.09
	ATOM	758	СВ	ARG	Α	131	50.475	26.715	-5.026	1.00	32.79
5	ATOM	759	CG	ARG	Α	131	51.191	27.347	-3.841	1.00	35.14
	ATOM	760	CD	ARG	A	131	52.247	28.306	-4.389	1.00	40.85
	MOTA	761	NE	ARG	A	131	53.156	28.865	-3.389	1.00	45.50
	ATOM	762	CZ	ARG	Α	131	53.991	29.877	-3.630	1.00	45.91
	ATOM	763	NH1	ARG	A	131	54.024	30.440	-4.834	1.00	44.20
10	ATOM	764	NH2	ARG	A	131	54.801	30.322	-2.676	1.00	45.31
	ATOM	765	С	ARG	A	131	48.517	25.640	-6.096	1.00	31.92
	ATOM	766	0	ARG	Α	131	48.732	24.516	-6.542	1.00	33.62
	ATOM	767	N	PRO	A	132	47.764	26.533	-6.762	1.00	30.70
	MOTA	768	CD	PRO	A	132	47.273	26.311	-8.134	1.00	31.37
15	ATOM	769	CA	PRO	A	132	47.455	27.896	-6.321	1.00	28.34
	ATOM	770	СВ	PRO	A	132	47.035	28.583	-7.617	1.00	28.99
	ATOM	771	CG	PRO	A	132	46.335	27.486	-8.341	1.00	30.32
	ATOM	772	С	PRO	A	132	46.350	27.900	-5.265	1.00	24.58
	ATOM	773	0	PRO	A	132	45.461	27.052	-5.282	1.00	22.71
20	ATOM	774	N	ARG	A	133	46.411	28.860	-4.350	1.00	21.45
	ATOM	775	CA	ARG	A	133	45.426	28.948	-3.288	1.00	19.40
	ATOM	776	СВ	ARG	A	133	46.003	28.314	-2.020	1.00	20.88
	ATOM	777	CG	ARG	A	133	47.407	28.788	-1.693	1.00	18.79
	MOTA	778	CD	ARG	Ą	133	48.079	27.880	-0.680	1.00	16.96
25	ATOM	779	NE	ARG	A	133	49.405	28.380	-0.333	1.00	17.39
	ATOM	780	CZ	ARG	A	133	50.178	27.861	0.614	1.00	15.76
	ATOM	781	NH1	ARG	A	133	51.367	28.387	0.862	1.00	13.75
	ATOM	782	NH2	ARG	A	133	49.761	26.816	1.311	1.00	15.94
	ATOM	783	С	ARG	A	133	44.959	30.377	-3.019	1.00	19.15
30	ATOM	784	0	ARG	A	133	44.253	30.634	-2.044	1.00	18.90
	MOTA	785	N	VAL	A	134	45.360	31.304	-3.884	1.00	18.67
	ATOM	786	CA	VAL	A	134	44.954	32.702	-3.768	1.00	19.00
	ATOM	787	СВ	VAL	A	134	46.082	33.609	-3.230	1.00	19.66
	ATOM	788	CG1	VAL	A	134	45.482	34.904	-2.693	1.00	16.74
35	ATOM	789	CG2	VAL	A	134	46.868	32.889	-2.168	1.00	19.63
	ATOM	790	С	VAL	A	134	44.621	33.162	-5.178	1.00	19.08
	MOTA	791	0	VAL	A	134	45.318	32.807	-6.124	1.00	19.65

	ATOM	792	N	PHE A	135	43.565	33.951	-5.324	1.00	19.21
	ATOM	793	CA	PHE A	135	43.165	34.409	-6.645	1.00	17.86
	ATOM	794	СВ	PHE A	135	42.074	33.489	-7.198	1.00	17.21
	ATOM	795	CG	PHE A	135	42.393	32.023	-7.056	1.00	17.38
5	ATOM	796	CD1	PHE A	135	42.116	31.349	-5.876	1.00	15.76
	MOTA	797	CD2	PHE A	135	43.022	31.332	-8.087	1.00	18.52
	MOTA	798	CE1	PHE A	135	42.462	30.012	-5.721	1.00	17.54
	MOTA	799	CE2	PHE A	135	43.372	29.995	-7.941	1.00	16.71
	ATOM	800	CZ	PHE A	135	43.091	29.335	-6.756	1.00	16.55
10	ATOM	801	С	PHE A	135	42.680	35.852	-6.650	1.00	18.55
	ATOM	802	0	PHE A	135	42.010	36.302	-5.718	1.00	17.50
	ATOM	803	N	ARG A	136	43.038	36.575	-7.705	1.00	17.21
	ATOM	804	CA	ARG A	136	42.634	37.960	-7.852	1.00	17.96
	MOTA	805	СВ	ARG A	136	43.732	38.785	-8.532	1.00	19.09
15	MOTA	806	CG	ARG A	136	45.099	38.812	-7.862	1.00	21.38
	ATOM	807	CD	ARG A	136	46.005	39.773	-8.631	1.00	23.13
	ATOM	808	NE	ARG A	136	47.367	39.847	-8.108	1.00	28.99
	MOTA	809	CZ	ARG A	136	48.424	39.246	-8.653	1.00	30.96
	ATOM	810	NH1	ARG A	136	49.621	39.379	-8.097	1.00	30.96
20	ATOM	811	NH2	ARG A	136	48.291	38.516	-9.754	1.00	31.45
	ATOM	812	С	ARG A	136	41.382	38.045	-8.724	1.00	18.26
	ATOM	813	0	ARG A	136	41.231	37.280	-9.684	1.00	18.07
	ATOM	814	N	LEU A	137	40.487	38.965	-8.366	1.00	16.02
	ATOM	815	CA	LEU A	137	39.264	39.245	-9.124		14.64
25	ATOM	816	СВ	LEU A		38.005	38.850	-8.348		14.99
	MOTA	817	CG	LEU A		37.568	37.381	-8.289		16.86
	ATOM	818		LEU A				-7.567		
	ATOM	819	CD2	LEU A		36.234	37.302	-7.572		12.39
•	MOTA	820	С	LEU A		39.312	40.762	-9.270		15.43
30	MOTA	821	0	LEU A		38.557	41.487	-8.619		13.75
	ATOM	822	N	PRO A		40.230	41.261			15.66
	ATOM	823	CD	PRO A		41.182	40.481			15.43
	ATOM	824	CA	PRO A		40.389	42.701			16.74
2.5	ATOM	825	СВ	PRO A		41.536	42.776			16.03
35	ATOM	826	CG	PRO A		41.505	41.426			16.02
	ATOM	827	С	PRO A		39.133	43.455			16.37
	ATOM	828	0	PRO A	138	38.947	44.611	-10.40/	1.00	17.51

	ATOM	829	N	GLU	A	139	38.267	42.812	-11.551	1.00	16.27
	ATOM	830	CA	GLU	Α	139	37.044	43.478 -	-11.988	1.00	17.29
	ATOM	831	СВ	GLU	Α	139	36.312	42.646	-13.049	1.00	17.90
	ATOM	832	CG	GLU	A	139	37.056	42.476	-14.371	1.00	21.52
5	ATOM	833	CD	GLU	Α	139	38.072	41.341	-14.353	1.00	24.56
	ATOM	834	OE1	GLU	Α	139	38.733	41.139 -	-15.393	1.00	28.04
	ATOM	835	OE2	GLU	A	139	38.211	40.652 -	-13.314	1.00	23.31
	ATOM	836	С	GLU	A	139	36.097	43.717 -	-10.811	1.00	17.97
	ATOM	837	0	GLU	A	139	35.181	44.538	-10.899	1.00	18.18
10	ATOM	838	N	ASP	A	140	36.317	43.000	-9.712	1.00	15.32
	ATOM	839	CA	ASP	A	140	35.462	43.125	-8.535	1.00	13.52
	ATOM	840	СВ	ASP	A	140	34.958	41.745	-8.099	1.00	11.56
	ATOM	841	CG	ASP	A	140	34.317	40.965	-9.235	1.00	14.42
	MOTA	842	OD1	ASP	A	140	33.256	41.394	-9.737	1.00	12.89
15	ATOM	843	OD2	ASP	A	140	34.875	39.916	-9.626	1.00	14.92
	ATOM	844	С	ASP	Α	140	36.205	43.756	-7.368	1.00	14.63
	ATOM	845	0	ASP	A	140	35.629	43.958	-6.292	1.00	13.69
	ATOM	846	N	GLN	A	141	37.480	44.071	-7.580	1.00	15.16
	ATOM	847	CA	GLN	A	141	38.302	44.629	-6.516	1.00	15.06
20	ATOM	848	СВ	GLN	A	141	37.812	46.028	-6.139	1.00	16.60
	ATOM	849	CG	GLN	A	141	38.184	47.085	-7.174	1.00	23.33
	ATOM	850	CD	GLN	A	141	37.655	48.473	-6.843	1.00	25.68
	ATOM	851	OE1	GLN	A	141	37.850	48.983	-5.734	1.00	29.01
	ATOM	852	NE2	GLN	A	141	36.991	49.098	-7.812	1.00	26.01
25	ATOM	853	С	GLN	A	141	38.179	43.665	-5.340	1.00	14.75
	ATOM	854	0	GLN	Α	141	38.013	44.069	-4.187	1.00	15.25
	ATOM	855	N	ALA	A	142	38.250	42.376	-5.660	1.00	13.65
	ATOM	856	CA	ALA	Α	142	38.140	41.322	-4.663	1.00	13.75
	ATOM	857	СВ	ALA	A	142	36.773	40.647	-4.773	1.00	11.94
30	ATOM	858	С	ALA	A	142	39.246	40.274	-4.793	1.00	13.78
	ATOM	859	0	ALA	A	142	39.999	40.248	-5.769	1.00	12.61
	ATOM	860	N	VAL	A	143	39.326	39.411	-3.786	1.00	13.55
	ATOM	861	CA	VAL	A	143	40.298	38.333	-3.743	1.00	12.13
	MOTA	862	СВ	VAL	Α	143	41.522	38.688	-2.836	1.00	13.66
35	ATOM	863	CG1	VAL	A	143	42.332	37.430	-2.521	1.00	9.03
	MOTA	864	CG2	VAL	A	143	42.419	39.713	-3.528	1.00	8.76
	MOTA	865	С	VAL	Α	143	39.604	37.110	-3.156	1.00	14.44

	ATOM	866	0	VAL A	143	38.669	37.234	-2.365	1.00 16.13
	ATOM	867	N	ILE A	144	40.041	35.930	-3.574	1.00 14.55
	MOTA	868	CA	ILE A	144	39.507	34.683	-3.050	1.00 13.21
	MOTA	869	СВ	ILE A	144	38.725	33.884	-4.116	1.00 13.83
5	ATOM	870	CG2	ILE A	144	38.563	32.426	-3.673	1.00 10.86
	ATOM	871	CG1	ILE A	144	37.348	34.514	-4.329	1.00 11.70
	ATOM	872	CD1	ILE A	144	36.505	33.768	-5.324	1.00 14.85
	MOTA	873	С	ILE A	144	40.729	33.893	-2.627	1.00 14.02
	MOTA	874	0	ILE A	144	41.700	33.795	-3.382	1.00 14.77
10	ATOM	875	N	ASN A	145	40.700	33.341	-1.421	1.00 14.01
	ATOM	876	CA	ASN A	145	41.841	32.575	-0.945	1.00 13.47
	ATOM	877	СВ	ASN A	145	42.717	33.455	-0.046	1.00 13.34
	ATOM	878	CG	ASN A	145	42.256	33.451	1.407	1.00 16.62
	MOTA	879	OD1	ASN A	145	42.562	32.525	2.161	1.00 14.82
15	MOTA	880	ND2	ASN A	145	41.507	34.481	1.801	1.00 15.48
	ATOM	881	С	ASN A	145	41.423	31.330	-0.176	1.00 14.78
	MOTA	882	0	ASN A	145	40.369	31.299	0.468	1.00 13.11
	ATOM	883	N	ARG A	146	42.258	30.300	-0.257	1.00 14.90
	ATOM	884	CA	ARG A	146	42.025	29.057	0.461	1.00 16.46
20	ATOM	885	СВ	ARG A	146	41.335	28.021	-0.435	1.00 15.83
	MOTA	886	CG	ARG A	146	41.964	27.806	-1.803	1.00 15.41
	MOTA	887	CD	ARG A	146	41.394	26.539	-2.428	1.00 16.11
	MOTA	888	NE	ARG A	146	41.950	26.245	-3.747	1.00 16.55
	MOTA	889	CZ	ARG A	146	41.419	26.640	-4.902	1.00 17.12
25	ATOM	890	NH1	ARG A	146	40.303	27.357	-4.922	1.00 16.98
	MOTA	891	NH2	ARG A	146	42.004	26.308		1.00 19.03
	ATOM	892	С	ARG A	146	43.368	28.527	0.963	1.00 18.74
	ATOM	893	0	ARG A	146 .	43.712	27.363	0.752	1.00 18.99
	MOTA	894	N	TYR A	147	44.122	29.401	1.630	1.00 18.17
30	ATOM	895	CA	TYR A	147	45.429	29.043	2.165	1.00 18.86
	MOTA	896	СВ	TYR A	147	46.020	30.205	2.964	1.00 18.76
	MOTA	897	CG	TYR A	147	46.884	31.127	2.146	1.00 18.93
	ATOM	898	CD1	TYR A	147	46.428	32.377	1.754	1.00 19.69
	ATOM	899	CE1	TYR A	147	47.220	33.216	0.987	1.00 22.27
35	ATOM	900		TYR A		48.160	30.736	1.748	1.00 20.18
	ATOM	901		TYR A		48.958	31.565	0.981	1.00 21.33
	ATOM	902	CZ	TYR A	147	48.483	32.802	0.604	1.00 22.73

	ATOM	903	ОН	TYR .	A	147	49.271	33.626	-0.164	1.00	28.16
	ATOM	904	С	TYR .	Α	147	45.393	27.806	3.047	1.00	19.56
	ATOM	905	0	TYR .	A	147	46.249	26.930	2.928	1.00	21.06
	ATOM	906	N	GLY .	A	148	44.408	27.746	3.937	1.00	19.63
5	ATOM	907	CA	GLY .	A	148	44.280	26.611	4.831	1.00	17.88
	ATOM	908	С	GLY .	A	148	45.174	26.702	6.055	1.00	19.35
	ATOM	909	0	GLY .	Α	148	45.677	25.687	6.538	1.00	20.24
	ATOM	910	N	PHE .	A	149	45.385	27.913	6.558	1.00	19.11
	ATOM	911	CA	PHE .	Α	149	46.216	28.106	7.746	1.00	19.25
10	ATOM	912	СВ	PHE .	A	149	45.629	27.343	8.942	1.00	18.52
	ATOM	913	CG	PHE .	A	149	44.462	28.026	9.603	1.00	19.93
	ATOM	914	CD1	PHE .	A	149	43.605	27.308	10.431	1.00	21.48
	ATOM	915	CD2	PHE	A	149	44.224	29.377	9.415	1.00	20.70
	ATOM	916	CE1	PHE .	A	149	42.530	27.928	11.058	1.00	22.80
15	ATOM	917	CE2	PHE	A	149	43.151	30.005	10.039	1.00	21.90
	MOTA	918	CZ	PHE .	A	149	42.303	29.281	10.860	1.00	22.32
	MOTA	919	С	PHE .	A	149	47.674	27.677	7.577	1.00	19.22
	ATOM	920	0	PHE	A	149	48.185	26.895	8.376	1.00	20.27
	ATOM	921	N	ASN	A	150	48.343	28.155	6.536		17.52
20	ATOM	922	CA	ASN .	A	150	49.748	27.822	6.375	1.00	18.34
	ATOM	923	СВ	ASN .	A	150	50.269	28.307	5.018	1.00	16.68
	ATOM	924	CG	ASN	A	150	49.967	29.769	4.765	1.00	18.37
	ATOM	925	OD1	ASN	A	150	48.819	30.205	4.866	1.00	18.33
	MOTA	926	ND2	ASN			50.996	30.536	4.423		17.29
25	ATOM	927	С	ASN	A	150	50.385	28.604	7.525		19.77
	ATOM	928	0	ASN			50.135	29.800	7.673		20.24
	ATOM	929	N	SER			51.185		8.349		
	MOTA	930	CA	SER			51.779	28.604	9.497		18.67
20	ATOM	931	СВ	SER			50.774	28.580	10.654		17.61
30	ATOM	932	OG	SER			51.380	28.930	11.884		16.00
	ATOM	933	C	SER			53.111	28.029	9.977		19.35
	ATOM	934	0	SER			53.329	26.812	9.940		18.88
	ATOM	935	N	HIS			53.987	28.920	10.440		18.69
25	MOTA	936	CA	HIS			55.300	28.539	10.960		18.85
35	ATOM	937	CB	HIS			56.208	29.770	11.094		18.68
	ATOM	938	CG	HIS			56.662	30.341	9.785		20.96
	ATOM	939	CD2	HIS	Α	152	56.389	29.978	8.508	1.00	20.68

	ATOM	940	ND1	HIS A	152	57.513	31.422	9.701	1.00 22.15
	ATOM	941	CE1	HIS A	152	57.746	31.700	8.430	1.00 20.45
	ATOM	942	NE2	HIS A	152	57.075	30.839	7.686	1.00 21.40
	ATOM	943	С	HIS A	152	55.154	27.875	12.329	1.00 18.49
5	MOTA	944	0	HIS A	. 152	56.082	27.224	12.815	1.00 17.98
	MOTA	945	N	GLY A	. 153	53.991	28.050	12.954	1.00 17.52
	MOTA	946	CA	GLY A	153	53.764	27.451	14.256	1.00 16.27
	ATOM	947	С	GLY A	153	54.047	28.392	15.412	1.00 15.14
	ATOM	948	0	GLY A	153	54.711	29.411	15.248	1.00 13.16
10	MOTA	949	N	LEU A	154	53.546	28.035	16.589	1.00 15.48
	ATOM	950	CA	LEU A	154	53.717	28.845	17.791	1.00 16.27
	ATOM	951	СВ	LEU A	154	52.982	28.184	18.966	1.00 12.85
	ATOM	952	CG	LEU A	. 154	51.455	28.194	18.838	1.00 14.19
	ATOM	953	CD1	LEU A	. 154	50.811	27.354	19.940	1.00 9.42
15	ATOM	954	CD2	LEU A	. 154	50.965	29.638	18.898	1.00 11.87
	MOTA	955	С	LEU A	. 154	55.168	29.136	18.187	1.00 17.92
	MOTA	956	0	LEU A	154	55.520	30.295	18.425	1.00 18.40
	MOTA	957	N	SER A	155	56.001	28.096	18.266	1.00 18.05
	MOTA	958	CA	SER A	155	57.408	28.268	18.647	1.00 19.71
20	MOTA	959	CB	SER A	155	58.173	26.946	18.528	1.00 18.07
	ATOM	960	OG	SER A	155	57.775	26.035	19.528	1.00 26.58
	ATOM	961	С	SER P	155	58.143	29.319	17.820	1.00 19.87
	ATOM	962	0	SER P	155	58.706	30.272	18.368	1.00 19.91
	MOTA	963	N	VAL A	156	58.158	29.134	16.503	1.00 18.27
25	ATOM	964	CA	VAL A	156	58.846	30.077	15.637	1.00 19.17
	ATOM	965	СВ	VAL A		58.723	29.672	14.153	1.00 19.48
	ATOM	966	CG1	VAL A	156				1.00 18.32
	MOTA	967	CG2	VAL A		59.597	28.452	13.880	1.00 15.72
	ATOM	968	С	VAL A		58.346	31.508	15.817	1.00 18.93
30	MOTA	969	0	VAL A		59.146	32.435	15.936	1.00 21.37
	MOTA	970	N	VAL A		57.030	31.691	15.848	1.00 17.16
	MOTA	971	CA	VAL A		56.470	33.027	16.013	1.00 17.31
	ATOM	972	СВ	VAL A		54.936	33.021	15.790	1.00 18.26
	MOTA	973		VAL A		54.368	34.417	16.001	1.00 15.69
35	MOTA	974		VAL A		54.620	32.532	14.380	1.00 15.91
	ATOM	975	С	VAL A		56.785	33.562	17.408	1.00 16.86
	ATOM	976	0	VAL A	157	57.047	34.750	17.584	1.00 16.79

	MOTA	977	N	GLU	Α	158	56.771	32.670	18.394	1.00	17.65
	ATOM	978	CA	GLU	A	158	57.065	33.034	19.774	1.00	16.94
	ATOM	979	СВ	GLU	Α	158	57.009	31.790	20.661	1.00	17.93
	MOTA	980	CG	GLU	A	158	57.397	32.041	22.110	1.00	20.56
5	MOTA	981	CD	GLU	Α	158	57.966	30.802	22.779	1.00	22.55
	ATOM	982	OE1	GLU	Α	158	57.274	29.769	22.816	1.00	26.93
	MOTA	983	OE2	GLU	A	158	59.110	30.857	23.269	1.00	24.61
	MOTA	984	С	GLU	Α	158	58.449	33.675	19.887	1.00	16.25
	ATOM	985	0	GLU	Α	158	58.600	34.760	20.450	1.00	14.87
10	ATOM	986	N	HIS	A	159	59.458	33.000	19.350	1.00	15.71
	ATOM	987	CA	HIS	A	159	60.823	33.515	19.402	1.00	18.49
	MOTA	988	СВ	HIS	Α	159	61.808	32.435	18.945	1.00	20.42
	MOTA	989	CG	HIS	Α	159	61.867	31.260	19.868	1.00	25.61
	MOTA	990	CD2	HIS	Α	159	62.134	31.183	21.193	1.00	26.32
15	MOTA	991	ND1	HIS	A	159	61.582	29.974	19.460	1.00	28.74
	ATOM	992	CE1	HIS	A	159	61.669	29.156	20.494	1.00	28.74
	MOTA	993	NE2	HIS	A	159	62.002	29.865	21.558	1.00	29.76
	ATOM	994	С	HIS	A	159	60.988	34.768	18.557	1.00	17.35
	ATOM	995	0	HIS	A	159	61.779	35.648	18.884	1.00	18.51
20	ATOM	996	N	ARG	A	160	60.227	34.846	17.474	1.00	17.65
	ATOM	997	CA	ARG	A	160	60.278	35.992	16.579	1.00	19.47
	MOTA	998	CB	ARG	A	160	59.514	35.655	15.297	1.00	20.64
	MOTA	999	CG	ARG	Α	160	59.535	36.710	14.214	1.00	21.36
	ATOM	1000	CD	ARG	A	160	58.908	36.135	12.943	1.00	24.65
25	ATOM	1001	NE	ARG	A	160	59.770	35.132	12.317	1.00	24.10
	MOTA	1002	CZ	ARG	Α	160	59.334	34.096	11.602	1.00	24.79
	ATOM	1003	NH1	ARG	A	160	58.034	33.901	11.420	1.00	21.67
	ATOM	1004	NH2	ARG	A	160	60.206	33.260	11.051		22.81
	ATOM	1005	С	ARG	A	160	59.696	37.235	17.266	1.00	20.02
30	ATOM	1006	0	ARG	A	160	60.174	38.351	17.057		21.08
	ATOM	1007	N	LEU	Α	161	58.673	37.046	18.093		19.43
	ATOM	1008	CA	LEU	Α	161	58.079	38.172	18.812		19.27
	ATOM	1009	CB	LEU			56.638	37.853	19.224		19.24
	ATOM	1010	CG	LEU	A	161	55.611	37.741	18.090		19.93
35	ATOM	1011		LEU			54.227	37.519	18.685		18.11
	ATOM	1012	CD2	LEU	Α	161	55.626	39.012	17.245		16.76
	ATOM	1013	С	LEU	Α	161	58.912	38.510	20.051	1.00	18.22

	ATOM	1014	0	LEU A	161	58.995	39.667	20.457	1.00 17.78
	ATOM	1015	N	ARG A	162	59.533	37.497	20.648	1.00 17.88
	ATOM	1016	CA	ARG A	162	60.370	37.715	21.826	1.00 17.59
	ATOM	1017	СВ	ARG A	162	60.843	36.385	22.412	1.00 16.52
5	MOTA	1018	CG	ARG A	162	59.806	35.670	23.257	1.00 16.27
	ATOM	1019	CD	ARG A	162	60.424	34.465	23.941	1.00 15.33
	MOTA	1020	NE	ARG A	162	59.500	33.825	24.871	1.00 15.04
	MOTA	1021	CZ	ARG A	162	59.804	32.759	25.602	1.00 15.93
	ATOM	1022	NH1	ARG A	162	61.013	32.217	25.508	1.00 14.79
10	MOTA	1023	NH2	ARG A	162	58.902	32.231	26.422	1.00 14.97
	MOTA	1024	С	ARG A	. 162	61.586	38.566	21.490	1.00 17.29
	MOTA	1025	0	ARG A	. 162	62.058	39.338	22.322	1.00 16.65
	ATOM	1026	N	ALA A	. 163	62.084	38.423	20.265	1.00 16.93
	ATOM	1027	CA	ALA A	. 163	63.250	39.175	19.816	1.00 16.63
15	ATOM	1028	СВ	ALA A	163	63.685	38.689	18.440	1.00 15.17
	MOTA	1029	С	ALA A	163	62.983	40.677	19.775	1.00 17.05
	MOTA	1030	0	ALA A	. 163	63.917	41.470	19.668	1.00 14.83
	MOTA	1031	N	ARG A	. 164	61.709	41.061	19.860	1.00 17.20
	MOTA	1032	CA	ARG A	164	61.329	42.471	19.827	1.00 18.88
20	MOTA	1033	CB	ARG A	. 164	60.772	42.841	18.446	1.00 18.87
	MOTA	1034	CG	ARG A	. 164	59.504	42.079	18.063	1.00 19.81
	MOTA	1035	CD	ARG A	. 164	59.017	42.460	16.670	1.00 17.62
	ATOM	1036	NE	ARG A	164	58.529	43.835	16.611	1.00 17.21
	MOTA	1037	CZ	ARG A	. 164	57.354	44.237	17.087	1.00 18.36
25	MOTA	1038	NH1	ARG A	. 164	56.532	43.366	17.663	1.00 17.29
	MOTA	1039	NH2	ARG A	. 164	56.995	45.511	16.984	1.00 16.99
	MOTA	1040	С	ARG A	164	60.279	42.785	20.878	1.00 19.51
	MOTA	1041	0	ARG A	. 164	59.604	43.812	20.796	1.00 19.66
	MOTA	1042	N	GLN A	. 165	60.151	41.907	21.870	1.00 20.83
30	MOTA	1043	CA	GLN A		59.158	42.079	22.924	1.00 20.81
	MOTA	1044	СВ	GLN A		59.280	40.942	23.952	1.00 20.22
	MOTA	1045	CG	GLN A	. 165	58.312	41.047	25.136	1.00 22.04
	MOTA	1046	CD	GLN A		58.155	39.735	25.903	1.00 22.82
	MOTA	1047	OE1	GLN A	165	59.083	38.932	25.987	1.00 22.86
35	MOTA	1048	NE2	GLN A		56.975	39.523	26.476	1.00 21.38
	MOTA	1049	С	GLN A		59.208	43.437	23.626	1.00 22.14
	ATOM	1050	0	GLN A	165	58.164	44.037	23.897	1.00 22.79

	MOTA	1051	N	GLN	Α	166	60.409	43.930	23.914	1.00	22.12
	MOTA	1052	CA	GLN	A	166	60.537	45.212	24.598	1.00	22.70
	MOTA	1053	СВ	GLN	Α	166	61.937	45.371	25.188	1.00	25.51
	MOTA	1054	CG	GLN	A	166	62.201	44.385	26.301	1.00	27.11
5	ATOM	1055	CD	GLN	Α	166	61.020	44.285	27.244	1.00	28.49
	ATOM	1056	OE1	GLN	A	166	60.591	45.282	27.823	1.00	28.75
	MOTA	1057	NE2	GLN	A	166	60.480	43.081	27.394	1.00	29.17
	MOTA	1058	С	GLN	A	166	60.217	46.381	23.696	1.00	21.88
	ATOM	1059	0	GLN	A	166	59.636	47.372	24.140	1.00	20.81
10	ATOM	1060	N	LYS	A	167	60.601	46.272	22.429	1.00	21.75
	MOTA	1061	CA	LYS	A	167	60.308	47.331	21.480	1.00	21.20
	MOTA	1062	CB	LYS	A	167	60.888	47.002	20.105	1.00	20.78
	MOTA	1063	CG	LYS	A	167	60.386	47.931	19.023	1.00	25.29
	MOTA	1064	CD	LYS	A	167	60.917	47.567	17.651	1.00	29.48
15	MOTA	1065	CE	LYS	A	167	62.372	47.952	17.502	1.00	33.26
	MOTA	1066	NZ	LYS	A	167	62.806	47.876	16.078	1.00	36.00
	ATOM	1067	С	LYS	A	167	58.788	47.459	21.380	1.00	20.64
	MOTA	1068	0	LYS	A	167	58.246	48.565	21.406	1.00	20.50
	MOTA	1069	N	GLN	A	168	58.105	46.320	21.278	1.00	19.29
20	MOTA	1070	CA	GLN	Α	168	56.649	46.318	21.175	1.00	18.72
	MOTA	1071	СВ	GLN	A	168	56.117	44.894	20.986	1.00	17.31
	MOTA	1072	CG	GLN	A	168	54.598	44.820	20.821	1.00	17.69
	MOTA	1073	CD	GLN	A	168	54.086	45.620	19.624	1.00	18.27
	MOTA	1074	OE1	GLN	A	168	54.449	45.349	18.474	1.00	16.59
25	ATOM	1075	NE2	GLN	A	168	53.239	46.610	19.894	1.00	16.80
	MOTA	1076	С	GLN	A	168	56.028	46.944	22.416	1.00	17.89
	MOTA	1077	0	GLN	A	168	55.043	47.669	22.318	1.00	17.45
	MOTA	1078	N	ALA	A	169	56.615	46.680	23.581	1.00	17.92
	MOTA	1079	CA	ALA	A	169	56.098	47.247	24.825	1.00	18.33
30	MOTA	1080	СВ	ALA	A	169	56.972	46.831	26.006	1.00	17.47
	MOTA	1081	С	ALA	A	169	56.043	48.770	24.722	1.00	18.61
	MOTA	1082	0	ALA	Α	169	55.075	49.394	25.159	1.00	19.23
	MOTA	1083	N	LYS	A	170	57.082	49.368	24.146	1.00	19.44
	MOTA	1084	CA	LYS	A	170	57.121	50.818	23.986	1.00	21.87
35	MOTA	1085	СВ	LYS	A	170	58.535	51.290	23.629	1.00	23.58
	ATOM	1086	CG	LYS	A	170	59.517	51.205	24.793	1.00	28.39
	MOTA	1087	CD	LYS	A	170	60.837	51.900	24.472	1.00	30.60

	ATOM	1088	CE	LYS A	A 170	61.785	51.860	25.663	1.00 31.30
	ATOM	1089	NZ	LYS A	A 170	62.110	50.456	26.065	1.00 35.39
	ATOM	1090	С	LYS A	A 170	56.136	51.284	22.919	1.00 20.75
	ATOM	1091	0	LYS A	A 170	55.505	52.328	23.068	1.00 21.15
5	MOTA	1092	N	LEU A	A 171	56.011	50.511	21.844	1.00 19.14
	MOTA	1093	CA	LEU A	A 171	55.078	50.851	20.771	1.00 18.56
	ATOM	1094	СВ	LEU A	A 171	55.186	49.835	19.633	1.00 17.57
	MOTA	1095	CG	LEU A	A 171	56.467	49.956	18.807	1.00 17.13
	MOTA	1096	CD1	LEU A	A 171	56.664	48.719	17.947	1.00 13.91
10	ATOM	1097	CD2	LEU A	A 171	56.385	51.217	17.954	1.00 14.77
	ATOM	1098	С	LEU A	A 171	53.650	50.878	21.311	1.00 17.89
	ATOM	1099	0	LEU A	A 171	52.891	51.810	21.041	1.00 15.97
	ATOM	1100	N	THR A	A 172	53.294	49.850	22.078	1.00 18.22
	MOTA	1101	CA	THR A	A 172	51.965	49.758	22.669	1.00 19.38
15	MOTA	1102	СВ	THR A	A 172	51.805	48.444	23.467	1.00 17.92
	MOTA	1103	OG1	THR A	A 172	51.885	47.330	22.566	1.00 16.29
	MOTA	1104	CG2	THR A	A 172	50.465	48.412	24.188	1.00 14.36
	MOTA	1105	С	THR A	A 172	51.708	50.956	23.587	1.00 21.01
	ATOM	1106	0	THR A	A 172	50.659	51.598	23.507	1.00 19.74
20	MOTA	1107	N	GLU A	173	52.674	51.261	24.447	1.00 23.19
	MOTA	1108	CA	GLU A	A 173	52.551	52.395	25.356	1.00 26.29
	ATOM	1109	CB	GLU A	A 173	53.800	52.506	26.235	1.00 30.21
	MOTA	1110	CG	GLU A	A 173	53.738	53.624	27.267	1.00 38.62
	MOTA	1111	CD	GLU A	A 173	52.659	53.398	28.323	1.00 43.67
25	MOTA	1112	OE1	GLU A	A 173	52.386	54.338	29.103	1.00 44.97
	MOTA	1113		GLU A		52.089	52.283	28.380	1.00 45.74
	MOTA	1114	С	GLU A	A 173	52.387			1.00 26.14
	MOTA	1115	0	GLU A		51.782	54.643	24.964	1.00 25.40
• •	MOTA	1116	N	ASP A		52.926	53.636	23.311	1.00 26.93
30	MOTA	1117	CA	ASP A		52.855	54.766	22.395	1.00 27.97
	MOTA	1118	СВ	ASP A		54.062	54.748	21.462	1.00 32.88
	MOTA	1119	CG	ASP A		54.992	55.914	21.696	1.00 38.17
	ATOM	1120		ASP A		54.577	57.066	21.429	1.00 39.41
٥	ATOM	1121		ASP A		56.133	55.675	22.150	1.00 40.28
35	MOTA	1122	С	ASP A		51.576	54.795	21.556	1.00 26.80
	MOTA	1123	0	ASP A		51.448	55.620	20.653	1.00 26.81
	MOTA	1124	N	GLY A	A 175	50.642	53.891	21.841	1.00 24.53

	ATOM	1125	CA	GLY	Α	175	49.397	53.864	21.092	1.00	23.66
	ATOM	1126	С	GLY	Ą	175	49.402	52.979	19.856	1.00	23.36
	ATOM	1127	0	GLY	Α	175	48.568	53.153	18.967	1.00	23.88
	ATOM	1128	N	LEU	Α	176	50.332	52.026	19.799	1.00	22.36
5	ATOM	1129	CA	LEU	A	176	50.440	51.116	18.657	1.00	20.26
	ATOM	1130	СВ	LEU	Α	176	51.730	51.411	17.886	1.00	19.38
	ATOM	1131	CG	LEU	A	176	51.783	52.791	17.220	1.00	20.05
	MOTA	1132	CD1	LEU	Α	176	53.163	53.045	16.621	1.00	19.87
	ATOM	1133	CD2	LEU	Α	176	50.706	52.866	16.142	1.00	20.92
10	ATOM	1134	С	LEU	A	176	50.419	49.654	19.110	1.00	19.21
	ATOM	1135	0	LEU	Α	176	51.443	48.967	19.083	1.00	18.80
	ATOM	1136	N	PRO	Α	177	49.235	49.160	19.515	1.00	17.06
	ATOM	1137	CD	PRO	A	177	48.000	49.955	19.595	1.00	14.58
	ATOM	1138	CA	PRO	A	177	48.994	47.795	19.995	1.00	16.17
15	ATOM	1139	СВ	PRO	A	177	47.529	47.834	20.437	1.00	16.09
	ATOM	1140	CG	PRO	A	177	47.276	49.277	20.718	1.00	15.02
	MOTA	1141	С	PRO	Α	177	49.252	46.660	18.998	1.00	16.11
	ATOM	1142	0	PRO	A	177	49.238	46.851	17.780	1.00	15.91
	ATOM	1143	N	LEU	A	178	49.469	45.471	19.549	1.00	14.60
20	ATOM	1144	CA	LEU	A	178	49.725	44.272	18.768	1.00	15.30
	ATOM	1145	СВ	LEU	Α	178	51.126	43.735	19.072	1.00	13.15
	ATOM	1146	CG	LEU	A	178	51.497	42.403	18.417	1.00	14.53
	ATOM	1147	CD1	LEU	Α	178	51.552	42.587	16.908	1.00	13.70
	ATOM	1148	CD2	LEU	Α	178	52.843	41.914	18.945	1.00	10.81
25	ATOM	1149	С	LEU	Α	178	48.700	43.197	19.109	1.00	14.34
	ATOM	1150	0	LEU	A	178	48.451	42.913	20.277	1.00	16.02
	ATOM	1151	N	GLY	A	179	48.100	42.606	18.086	1.00	14.80
	ATOM	1152	CA	GLY	A	179	47.134	41.551	18.312	1.00	11.92
	ATOM	1153	С	GLY	A	179	47.677	40.287	17.677	1.00	13.13
30	ATOM	1154	0	GLY	A	179	48.431	40.358	16.703	1.00	11.81
	ATOM	1155	N	VAL	Α	180	47.320	39.136	18.237	1.00	12.90
	ATOM	1156	CA	VAL	A	180	47.758	37.855	17.701	1.00	12.61
	MOTA	1157	СВ	VAL	Α	180	48.702	37.128	18.671	1.00	13.26
	ATOM	1158	CG1	VAL	Α	180	49.023	35.738	18.132	1.00	11.53
35	MOTA	1159	CG2	VAL	A	180	49.983	37.938	18.846	1.00	14.43
	ATOM	1160	С	VAL	A	180	46.534	36.986	17.436	1.00	14.18
	ATOM	1161	0	VAL	A	180	45.710	36.758	18.326	1.00	14.98

	ATOM	1162	N	ASN	Α	181	46.421	36.513	16.200	1.00	14.07
	ATOM	1163	CA	ASN	Α	181	45.293	35.696	15.774	1.00	15.82
	ATOM	1164	СВ	ASN	Α	181	44.929	36.081	14.335	1.00	16.86
	ATOM	1165	CG	ASN	A	181	43.629	35.469	13.868	1.00	18.54
5	ATOM	1166	OD1	ASN	Α	181	43.430	34.254	13.948	1.00	16.81
	ATOM	1167	ND2	ASN	Α	181	42.734	36.313	13.356	1.00	18.07
	ATOM	1168	С	ASN	Α	181	45.656	34.209	15.870	1.00	16.41
	MOTA	1169	0	ASN	Α	181	46.649	33.767	15.290	1.00	16.63
	ATOM	1170	N	LEU	A	182	44.838	33.448	16.595	1.00	15.13
10	MOTA	1171	CA	LEU	A	182	45.070	32.023	16.807	1.00	16.25
	ATOM	1172	СВ	LEU	Α	182	44.865	31.684	18.284	1.00	15.13
	MOTA	1173	CG	LEU	Α	182	45.680	32.500	19.285	1.00	16.55
	MOTA	1174	CD1	LEU	Α	182	45.267	32.128	20.704	1.00	14.83
	MOTA	1175	CD2	LEU	A	182	47.163	32.246	19.060	1.00	15.51
15	MOTA	1176	С	LEU	Α	182	44.185	31.102	15.970	1.00	16.80
	ATOM	1177	0	LEU	A	182	42.981	31.307	15.857	1.00	18.12
	MOTA	1178	N	GLY	A	183	44.802	30.078	15.397	1.00	17.17
	ATOM	1179	CA	GLY	A	183	44.073	29.118	14.594	1.00	17.88
	ATOM	1180	С	GLY	A	183	44.345	27.738	15.160	1.00	19.65
20	ATOM	1181	0	GLY	A	183	44.918	27.605	16.244	1.00	18.50
	MOTA	1182	N	LYS	A	184	43.939	26.702	14.441	1.00	20.40
	ATOM	1183	CA	LYS	A	184	44.174	25.353	14.921	1.00	22.00
	ATOM	1184	СВ	LYS	A	184	42.895	24.767	15.529	1.00	23.77
	ATOM	1185	CG	LYS	Α	184	41.908	24.238	14.518	1.00	27.06
25	MOTA	1186	CD	LYS	Α	184	40.885	23.350	15.198	1.00	31.45
	ATOM	1187	CE	LYS	A	184	40.161	22.473	14.186	1.00	34.64
	ATOM	1188	NZ	LYS	A	184	41.100	21.535	13.509	1.00	34.99
	MOTA	1189	С	LYS	A	184	44.677	24.470	13.791	1.00	20.60
	MOTA	1190	0	LYS	A	184	44.382	24.705	12.624	1.00	21.08
30	MOTA	1191	N	ASN	A	185	45.449	23.454	14.146	1.00	21.53
	ATOM	1192	CA	ASN	A	185	46.000	22.545	13.157	1.00	22.66
	MOTA	1193	CB	ASN	A	185	47.050	21.643	13.804	1.00	20.05
	MOTA	1194	CG	ASN	A	185	48.367	22.358	14.035	1.00	19.87
	MOTA	1195	OD1	ASN	A	185	48.806	22.523	15.172	1.00	20.27
35	MOTA	1196	ND2	ASN	A	185	49.006	22.781	12.952	1.00	18.79
	MOTA	1197	С	ASN	A	185	44.945	21.689	12.464	1.00	24.39
	MOTA	1198	0	ASN	A	185	43.932	21.308	13.058	1.00	23.03

	MOTA	1199	N	LYS 2	A	186	45.209	21.385	11.198	1.00	27.14
	MOTA	1200	CA	LYS 2	A	186	44.319	20.572	10.385	1.00	29.82
	MOTA	1201	СВ	LYS	A	186	44.908	20.425	8.982	1.00	30.42
	MOTA	1202	CG	LYS 2	A	186	44.080	19.567	8.044	1.00	33.06
5	MOTA	1203	CD	LYS A	A	186	44.744	19.470	6.687	1.00	35.37
	ATOM	1204	CE	LYS	A	186	43.899	18.682	5.706	1.00	36.58
	ATOM	1205	NZ	LYS 2	A	186	44.566	18.585	4.374	1.00	38.37
	MOTA	1206	С	LYS	A	186	44.061	19.184	10.980	1.00	31.17
	ATOM	1207	0	LYS 2	A	186	42.924	18.719	11.006	1.00	31.03
10	ATOM	1208	N	THR	Α	187	45.113	18.527	11.460	1.00	33.25
	ATOM	1209	CA	THR	A	187	44.974	17.186	12.027	1.00	36.04
	ATOM	1210	СВ	THR .	A	187	46.211	16.316	11.719	1.00	36.38
	ATOM	1211	OG1	THR .	A	187	47.351	16.838	12.416	1.00	35.74
	ATOM	1212	CG2	THR .	A	187	46.489	16.300	10.216	1.00	35.36
15	ATOM	1213	С	THR .	A	187	44.755	17.181	13.537	1.00	37.75
	ATOM	1214	0	THR .	A	187	44.844	16.134	14.182	1.00	39.15
	ATOM	1215	N	SER .	A	188	44.474	18.349	14.100	1.00	38.10
	MOTA	1216	CA	SER .	A	188	44.233	18.451	15.530	1.00	37.99
	ATOM	1217	СВ	SER .	A	188	44.062	19.915	15.929	1.00	37.74
20	ATOM	1218	OG	SER .	A	188	43.772	20.028	17.309	1.00	39.67
	ATOM	1219	С	SER .	A	188	42.977	17.666	15.899	1.00	38.60
	ATOM	1220	0	SER .	A	188	42.034	17.586	15.113	1.00	37.87
	ATOM	1221	N	VAL .	A	189	42.971	17.088	17.097	1.00	39.17
	ATOM	1222	CA	VAL .	A	189	41.830	16.313	17.576	1.00	40.90
25	ATOM	1223	СВ	VAL .	A	189	42.290	14.987	18.225	1.00	42.04
	ATOM	1224	CG1	VAL .	A	189	41.117	14.308	18.903		42.79
	ATOM	1225	CG2	VAL .	A	189	42.890	14.068	17.168	1.00	41.83
	ATOM	1226	С	VAL .	A	189	41.024	17.101	18.607	1.00	41.62
	ATOM	1227	0	VAL .	A	189	39.803	16.950	18.708		43.26
30	ATOM	1228	N	ASP .	A	190	41.714	17.947	19.366		40.63
	ATOM	1229	CA	ASP.			41.078	18.761	20.396		39.16
	ATOM	1230	СВ	ASP .			41.755	18.507	21.745		41.81
	ATOM	1231	CG	ASP			40.974	19.080	22.907		44.27
	MOTA	1232		ASP .			40.345	20.147	22.741		44.15
35	ATOM	1233		ASP			41.000	18.468	23.995		48.15
	ATOM	1234	С	ASP			41.201	20.242	20.036		37.02
	ATOM	1235	0	ASP	A	190	42.176	20.899	20.409	1.00	36.48

	ATOM	1236	N	ALA A	191	40.210	20.763	19.318	1.00 33.89
	ATOM	1237	CA	ALA A	A 191	40.214	22.162	18.899	1.00 30.62
	ATOM	1238	СВ	ALA A	A 191	38.896	22.505	18.218	1.00 30.65
	MOTA	1239	С	ALA A	A 191	40.458	23.120	20.055	1.00 28.69
5	ATOM	1240	0	ALA A	A 191	41.217	24.077	19.926	1.00 26.95
	MOTA	1241	N	ALA A	A 192	39.809	22.860	21.185	1.00 27.16
	MOTA	1242	CA	ALA A	A 192	39.952	23.713	22.359	1.00 25.90
	MOTA	1243	СВ	ALA A	A 192	39.019	23.237	23.467	1.00 23.51
	MOTA	1244	С	ALA A	A 192	41.389	23.758	22.866	1.00 25.40
10	ATOM	1245	0	ALA A	A 192	41.880	24.821	23.231	1.00 27.26
	MOTA	1246	N	GLU A	193	42.062	22.610	22.890	1.00 25.06
	MOTA	1247	CA	GLU A	A 193	43.442	22.555	23.359	1.00 25.56
	MOTA	1248	СВ	GLU A	A 193	43.925	21.103	23.449	1.00 28.82
	MOTA	1249	CG	GLU A	193	45.366	20.970	23.923	1.00 33.91
15	MOTA	1250	CD	GLU A	193	45.599	21.600	25.290	1.00 38.03
	MOTA	1251	OE1	GLU A	A 193	46.776	21.781	25.672	1.00 40.48
	ATOM	1252	OE2	GLU A	193	44.607	21.909	25.986	1.00 40.31
	MOTA	1253	С	GLU A	A 193	44.371	23.363	22.451	1.00 24.11
	MOTA	1254	0	GLU A	A 193	45.293	24.025	22.931	1.00 23.27
20	ATOM	1255	N	ASP A	A 194	44.124	23.308	21.145	1.00 21.29
	MOTA	1256	CA	ASP A	A 194	44.919	24.062	20.179	1.00 21.47
	MOTA	1257	CB	ASP A	A 194	44.370	23.860	18.762	1.00 22.50
	MOŢA	1258	CG	ASP A	A 194	45.052	22.725	18.025	1.00 22.41
	MOTA	1259	OD1	ASP A	A 194	45.566	21.806	18.686	1.00 25.90
25	MOTA	1260	OD2	ASP A	A 194	45.068	22.746	16.776	1.00 24.02
	MOTA	1261	С	ASP A	A 194	44.905	25.554	20.523	1.00 21.24
	MOTA	1262	0	ASP A	A 194	45.957	26.199	20.556	1.00 21.63
	MOTA	1263	N	TYR A	195	43.718	26.104	20.773	1.00 19.11
	MOTA	1264	CA	TYR A	195	43.615	27.517	21.118	1.00 19.37
30	MOTA	1265	СВ	TYR A	A 195	42.157	27.996	21.078	1.00 18.34
	MOTA	1266	CG	TYR A	A 195	41.555	27.995	19.692	1.00 19.08
	MOTA	1267	CD1	TYR A	A 195	40.775	26.935	19.252	1.00 18.54
	ATOM	1268		TYR A		40.267	26.906	17.972	1.00 19.33
	MOTA	1269		TYR A		41.808	29.034	18.806	1.00 19.55
35	MOTA	1270		TYR A		41.303	29.013	17.518	1.00 19.90
	MOTA	1271	CZ		A 195	40.535	27.946	17.108	1.00 20.74
	ATOM	1272	ОН	TYR A	A 195	40.041	27.910	15.823	1.00 21.90

	ATOM	1273	С	TYR	Α	195	44.197	27.759	22.500	1.00	18.97
	ATOM	1274	0	TYR	A	195	44.819	28.791	22.745	1.00	19.13
	ATOM	1275	N	ALA	A	196	43.993	26.806	23.404	1.00	18.98
	ATOM	1276	CA	ALA	Α	196	44.518	26.925	24.759	1.00	19.56
5	ATOM	1277	СВ	ALA	Α	196	44.132	25.705	25.581	1.00	19.04
	ATOM	1278	С	ALA	A	196	46.040	27.062	24.699	1.00	19.48
	ATOM	1279	0	ALA	Α	196	46.625	27.874	25.419	1.00	19.62
	ATOM	1280	N	GLU	Α	197	46.670	26.271	23.834	1.00	18.28
	ATOM	1281	CA	GLU	Α	197	48.120	26.312	23.671	1.00	21.11
10	ATOM	1282	СВ	GLU	A	197	48.592	25.208	22.716	1.00	25.12
	ATOM	1283	CG	GLU	A	197	48.254	23.800	23.169	1.00	34.80
	ATOM	1284	CD	GLU	Α	197	48.965	22.741	22.346	1.00	40.02
	MOTA	1285	OE1	GLU	A	197	48.613	21.546	22.466	1.00	41.16
	ATOM	1286	OE2	GLU	Α	197	49.885	23.106	21.583	1.00	44.59
15	MOTA	1287	С	GLU	A	197	48.557	27.668	23.129	1.00	19.25
	ATOM	1288	0	GLU	Α	197	49.545	28.242	23.595	1.00	17.18
	ATOM	1289	N	GLY	Α	198	47.819	28.170	22.141	1.00	16.72
	ATOM	1290	CA	GLY	Α	198	48.136	29.461	21.560	1.00	16.16
	ATOM	1291	С	GLY	Α	198	48.061	30.570	22.594	1.00	15.20
20	ATOM	1292	0	GLY	A	198	48.885	31.485	22.603	1.00	14.79
	ATOM	1293	N	VAL	Α	199	47.063	30.489	23.466	1.00	15.52
	ATOM	1294	CA	VAL	Α	199	46.884	31.477	24.520	1.00	15.90
	MOTA	1295	СВ	VAL	A	199	45.622	31.184	25.361	1.00	16.38
	ATOM	1296	CG1	VAL	A	199	45.625	32.046	26.619	1.00	12.29
25	ATOM	1297	CG2	VAL	Α	199	44.368	31.442	24.530	1.00	16.31
	MOTA	1298	С	VAL	A	199	48.085	31.465	25.458	1.00	18.10
	MOTA	1299	0	VAL	Α	199	48.575	32.519	25.867	1.00	19.32
	MOTA	1300	N	ARG	Α	200	48.564	30.269	25.786	1.00	17.75
	ATOM	1301	CA	ARG	A	200	49.699	30.129	26.691	1.00	20.29
30	MOTA	1302	СВ	ARG	A	200	49.814	28.683	27.186	1.00	22.43
	MOTA	1303	CG	ARG	Α	200	48.752	28.276	28.191	1.00	25.39
	MOTA	1304	CD	ARG	Α	200	49.160	27.005	28.914	1.00	26.71
	ATOM	1305	NE	ARG	Α	200	49.080	25.828	28.060	1.00	28.79
	ATOM	1306	CZ	ARG	A	200	47.967	25.134	27.859	1.00	30.88
35	ATOM	1307	NH1	ARG	A	200	46.846	25.505	28.457		32.47
	ATOM	1308	NH2	ARG	A	200	47.973	24.071	27.063		31.75
	MOTA	1309	С	ARG	A	200	51.039	30.551	26.106	1.00	19.06

	ATOM	1310	0	ARG	Α	200	51.873	31.128	26.805	1.00	19.67
	ATOM	1311	N	VAL	A	201	51.249	30.267	24.826	1.00	17.35
	ATOM	1312	CA	VAL	Α	201	52.514	30.599	24.189	1.00	14.77
	ATOM	1313	СВ	VAL	Α	201	52.828	29.606	23.044	1.00	15.43
5	ATOM	1314	CG1	VAL	Α	201	54.145	29.990	22.369	1.00	13.31
	ATOM	1315	CG2	VAL	Α	201	52.906	28.177	23.596	1.00	9.07
	ATOM	1316	С	VAL	A	201	52.618	32.027	23.652	1.00	16.34
	ATOM	1317	0	VAL	A	201	53.651	32.680	23.826	1.00	13.79
	ATOM	1318	N	LEU	Α	202	51.556	32.520	23.016	1.00	16.01
10	ATOM	1319	CA	LEU	A	202	51.590	33.867	22.453	1.00	14.71
	ATOM	1320	СВ	LEU	A	202	51.104	33.840	21.003	1.00	15.87
	ATOM	1321	CG	LEU	Α	202	51.994	33.063	20.029	1.00	16.57
	ATOM	1322	CD1	LEU	A	202	51.515	33.304	18.603	1.00	15.39
	ATOM	1323	CD2	LEU	A	202	53.444	33.510	20.185	1.00	15.53
15	ATOM	1324	С	LEU	A	202	50.815	34.924	23.235	1.00	15.25
	ATOM	1325	0	LEU	Α	202	51.056	36.117	23.070	1.00	14.50
	ATOM	1326	N	GLY	Α	203	49.890	34.492	24.084	1.00	15.32
	ATOM	1327	CA	GLY	Α	203	49.128	35.441	24.873	1.00	16.45
	ATOM	1328	С	GLY	A	203	49.993	36.407	25.672	1.00	16.99
20	ATOM	1329	0	GLY	Α	203	49.628	37.574	25.838	1.00	14.26
	ATOM	1330	N	PRO	Α	204	51.145	35.954	26.193	1.00	18.28
	MOTA	1331	CD	PRO	A	204	51.566	34.547	26.321		17.79
	ATOM	1332	CA	PRO	A	204	52.029	36.831	26.975	1.00	18.93
	ATOM	1333	СВ	PRO	Α	204	53.021	35.849	27.608		16.96
25	ATOM	1334	CG	PRO			52.257	34.552	27.654		17.70
	MOTA	1335	С	PRO			52.744	37.892	26.132		18.89
	ATOM	1336	0	PRO				38.836			
	ATOM	1337	N	LEU			52.689	37.736	24.812		17.55
20	ATOM	1338	CA	LEU			53.351	38.669	23.898		16.80
30	ATOM	1339	СВ	LEU			54.220	37.883	22.910		16.30
	ATOM	1340	CG	LEU			55.394	37.098	23.508		18.10
	ATOM	1341		LEU			55.731	35.902	22.640		15.74
	ATOM	1342		LEU			56.589	38.023	23.657		17.13
2.5	ATOM	1343	С	LEU			52.389	39.562	23.113		17.23
35	ATOM	1344	0	LEU			52.815	40.337	22.256		16.66
	ATOM	1345	N	ALA			51.097	39.471	23.413		16.47
	ATOM	1346	CA	ALA	A	206	50.111	40.254	22.684	1.00	16.01

	ATOM	1347	СВ	ALA	Α	206	49.215	39.315	21.890	1.00	16.02
	ATOM	1348	С	ALA	Α	206	49.253	41.173	23.536	1.00	16.71
	MOTA	1349	0	ALA	Α	206	49.019	40.921	24.715	1.00	17.69
	ATOM	1350	N	ASP	Α	207	48.782	42.253	22.928	1.00	17.04
5	ATOM	1351	CA	ASP	Α	207	47.909	43.171	23.635	1.00	17.84
	ATOM	1352	СВ	ASP	Α	207	47.940	44.546	22.977	1.00	17.96
	ATOM	1353	CG	ASP	Α	207	49.256	45.264	23.222	1.00	20.68
	MOTA	1354	OD1	ASP	Α	207	49.642	45.391	24.403	1.00	22.88
	MOTA	1355	OD2	ASP	Α	207	49.907	45.698	22.250	1.00	20.09
10	MOTA	1356	С	ASP	Α	207	46.515	42.552	23.601	1.00	16.42
	ATOM	1357	0	ASP	A	207	45.732	42.708	24.530	1.00	16.76
	ATOM	1358	N	TYR	Α	208	46.217	41.833	22.525	1.00	15.49
	MOTA	1359	CA	TYR	A	208	44.941	41.145	22.412	1.00	15.74
	ATOM	1360	СВ	TYR	A	208	43.844	42.052	21.815	1.00	15.84
15	MOTA	1361	CG	TYR	A	208	43.919	42.333	20.326	1.00	16.08
	MOTA	1362	CD1	TYR	A	208	44.387	43.558	19.852	1.00	16.67
	MOTA	1363	CE1	TYR	Α	208	44.400	43.846	18.496	1.00	16.45
	MOTA	1364	CD2	TYR	Α	208	43.471	41.399	19.396	1.00	15.39
	ATOM	1365	CE2	TYR	A	208	43.483	41.675	18.037	1.00	14.91
20	ATOM	1366	CZ	TYR	A	208	43.947	42.900	17.593	1.00	18.55
	ATOM	1367	ОН	TYR	A	208	43.966	43.179	16.243	1.00	18.49
	MOTA	1368	С	TYR	A	208	45.106	39.887	21.575	1.00	15.90
	ATOM	1369	0	TYR	A	208	45.915	39.845	20.646	1.00	15.17
	ATOM	1370	N	LEU	A	209	44.355	38.853	21.940	1.00	16.34
25	ATOM	1371	CA	LEU	A	209	44.382	37.580	21.235	1.00	17.24
	ATOM	1372	СВ	LEU	A	209	44.520	36.418	22.217	1.00	16.47
	ATOM	1373	CG	LEU	Α	209	45.855	36.203	22.920	1.00	17.92
	MOTA	1374	CD1	LEU	A	209	45.716	35.042	23.899	1.00	18.62
	ATOM	1375	CD2	LEU	A	209	46.942	35.917	21.889	1.00	15.83
30	MOTA	1376	С	LEU	Α	209	43.077	37.420	20.472		16.93
	MOTA	1377	0	LEU	A	209	42.031	37.890	20.914		16.94
	ATOM	1378	N			210	43.142	36.749	19.330		18.06
	MOTA	1379	CA	VAL	A	210	41.955	36.527	18.523		16.88
	ATOM	1380	CB	VAL	Α	210	42.096	37.153	17.119		16.81
35	ATOM	1381		VAL			40.811	36.928	16.310		14.14
	ATOM	1382		VAL			42.414	38.631	17.239		12.93
	MOTA	1383	С	VAL	A	210	41.683	35.045	18.338	1.00	17.75

	ATOM	1384	0	VAL A	210	42.509	34.318	17.794	1.00	18.14
	ATOM	1385	N	VAL A	211	40.531	34.592	18.813	1.00	18.47
	MOTA	1386	CA	VAL A	211	40.155	33.199	18.629	1.00	18.41
	MOTA	1387	СВ	VAL A	211	39.128	32.731	19.682	1.00	16.92
5	ATOM	1388	CG1	VAL A	211	38.707	31.304	19.389	1.00	13.30
	ATOM	1389	CG2	VAL A	211	39.725	32.832	21.079	1.00	16.37
	ATOM	1390	С	VAL A	211	39.501	33.158	17.247	1.00	19.20
	ATOM	1391	0	VAL A	211	38.338	33.534	17.090	1.00	17.95
	ATOM	1392	N	ASN A	212	40.258	32.729	16.243	1.00	19.49
10	ATOM	1393	CA	ASN A	212	39.721	32.661	14.896	1.00	20.70
	ATOM	1394	СВ	ASN A	212	40.834	32.722	13.854	1.00	19.05
	ATOM	1395	CG	ASN A	212	40.291	32.666	12.444	1.00	18.45
	ATOM	1396	OD1	ASN A	212	39.081	32.697	12.243	1.00	19.17
	ATOM	1397	ND2	ASN A	212	41.177	32.585	11.463	1.00	18.72
15	ATOM	1398	С	ASN A	212	38.925	31.381	14.712	1.00	22.66
	ATOM	1399	0	ASN A	212	39.484	30.282	14.621	1.00	23.43
	ATOM	1400	N	VAL A	213	37.611	31.529	14.646	1.00	21.15
	ATOM	1401	CA	VAL A	213	36.745	30.379	14.489	1.00	22.75
	ATOM	1402	СВ	VAL A	213	35.893	30.194	15.760	1.00	23.97
20	ATOM	1403	CG1	VAL A	213	34.781	31.241	15.810	1.00	23.80
	ATOM	1404	CG2	VAL A	213	35.341	28.810	15.799	1.00	27.69
	ATOM	1405	С	VAL A	213	35.841	30.572	13.272	1.00	21.59
	ATOM	1406	0	VAL A	213	34.820	29.893	13.120	1.00	21.53
	ATOM	1407	N	SER A	214	36.242	31.492	12.397	1.00	20.91
25	ATOM	1408	CA	SER A	214	35.469	31.813	11.206	1.00	19.69
	ATOM	1409	СВ	SER A	214	35.015	33.275	11.267	1.00	19.18
	ATOM	1410	OG	SER A	214	36.110	34.144	11.508	1.00	14.56
	ATOM	1411	С	SER A	214	36.180	31.556	9.881	1.00	20.92
	ATOM	1412	0	SER A	214	35.712	31.996	8.832	1.00	19.05
30	ATOM	1413	N	SER A	215	37.309	30.856	9.914	1.00	22.56
	ATOM	1414	CA	SER A	215	38.010	30.563	8.672	1.00	23.82
	ATOM	1415	СВ	SER A	215	39.385	29.968	8.945	1.00	25.73
	ATOM	1416	OG	SER A	215	40.010	29.597	7.726	1.00	25.27
	ATOM	1417	С	SER A	215	37.186	29.564	7.867	1.00	24.98
35	ATOM	1418	0	SER A	215	36.744	28.539	8.387	1.00	25.15
	ATOM	1419	N	PRO A	216	36.961	29.857	6.582	1.00	26.90
	ATOM	1420	CD	PRO A	216	37.238	31.138	5.900	1.00	24.99

	ATOM	1421	CA	PRO	A	216	36.182	28.963	5.721	1.00	27.74
	ATOM	1422	СВ	PRO	Α	216	35.606	29.920	4.690	1.00	27.00
	ATOM	1423	CG	PRO	A	216	36.755	30.872	4.482	1.00	25.45
	ATOM	1424	С	PRO	A	216	37.045	27.895	5.066	1.00	29.18
5	ATOM	1425	0	PRO	A	216	36.531	27.026	4.368	1.00	30.98
	ATOM	1426	N	ASN	A	217	38.353	27.958	5.302	1.00	30.72
	MOTA	1427	CA	ASN	A	217	39.283	27.022	4.679	1.00	32.10
	MOTA	1428	СВ	ASN	Α	217	40.446	27.804	4.072	1.00	31.89
	MOTA	1429	CG	ASN	A	217	39.971	28.926	3.170	1.00	33.35
10	MOTA	1430	OD1	ASN	Α	217	39.220	28.696	2.220	1.00	33.84
	MOTA	1431	ND2	ASN	Α	217	40.400	30.149	3.465	1.00	32.31
	ATOM	1432	С	ASN	A	217	39.814	25.889	5.548	1.00	33.08
	MOTA	1433	0	ASN	Α	217	40.812	25.250	5.204	1.00	32.64
	MOTA	1434	N	THR	Α	218	39.149	25.644	6.671	1.00	34.23
15	MOTA	1435	CA	THR	Α	218	39.523	24.556	7.570	1.00	35.11
	MOTA	1436	СВ	THR	Α	218	40.191	25.073	8.867	1.00	35.66
	MOTA	1437	OG1	THR	A	218	41.508	25.556	8.568	1.00	34.06
	MOTA	1438	CG2	THR	Α	218	40.293	23.956	9.895	1.00	33.99
	MOTA	1439	С	THR	A	218	38.243	23.801	7.915	1.00	35.83
20	MOTA	1440	0	THR	A	218	37.315	24.367	8.497	1.00	36.15
	MOTA	1441	N	ALA	A	219	38.200	22.526	7.532	1.00	36.11
	MOTA	1442	CA	ALA	A	219	37.041	21.666	7.760	1.00	35.60
	ATOM	1443	СВ	ALA	A	219	37.372	20.234	7.347	1.00	33.81
	MOTA	1444	С	ALA	Α	219	36.502	21.678	9.187	1.00	35.62
25	ATOM	1445	0	ALA	A	219	37.232	21.414	10.143	1.00	36.09
	ATOM	1446	N	GLY	A	220	35.214	21.992	9.313	1.00	35.71
	ATOM	1447	CA	GLY	A	220	34.556	22.014	10.609	1.00	35.84
	ATOM	1448	С	GLY	Α	220	34.916	23.111	11.596	1.00	35.60
	ATOM	1449	0	GLY	A	220	34.418	23.100	12.720	1.00	36.18
30	ATOM	1450	N	LEU	A	221	35.759	24.058	11.197	1.00	34.93
	ATOM	1451	CA	LEU	A	221	36.162	25.135	12.099	1.00	34.46
	ATOM	1452	СВ	LEU	A	221	37.307	25.951	11.489	1.00	34.46
	ATOM	1453	CG	LEU	A	221	37.951	26.938	12.470	1.00	34.17
	ATOM	1454	CD1	LEU	Α	221	38.908	26.171	13.375	1.00	35.09
35	ATOM	1455	CD2	LEU	A	221	38.693	28.035	11.725	1.00	33.10
	ATOM	1456	С	LEU	Α	221	35.013	26.080	12.451	1.00	34.14
	ATOM	1457	0	LEU	A	221	34.823	26.438	13.615	1.00	34.17

	MOTA	1458	N	ARG	Α	222	34.248	26.483	11.444	1.00	34.57
	MOTA	1459	CA	ARG	Α	222	33.130	27.395	11.654	1.00	34.52
	MOTA	1460	СВ	ARG	A	222	32.554	27.826	10.307	1.00	35.12
	MOTA	1461	CG	ARG	Α	222	33.462	28.768	9.529	1.00	36.10
5	ATOM	1462	CD	ARG	Α	222	32.904	29.017	8.143	1.00	38.44
	MOTA	1463	NE	ARG	A	222	32.993	27.822	7.306	1.00	39.22
	MOTA	1464	CZ	ARG	Α	222	32.290	27.634	6.194	1.00	39.46
	MOTA	1465	NH1	ARG	A	222	31.435	28.564	5.784	1.00	37.86
	MOTA	1466	NH2	ARG	A	222	32.447	26.521	5.490	1.00	38.60
10	MOTA	1467	С	ARG	Α	222	32.019	26.831	12.538	1.00	34.35
	MOTA	1468	0	ARG	Α	222	31.231	27.589	13.108	1.00	32.92
	ATOM	1469	N	SER	A	223	31.953	25.507	12.658	1.00	34.08
	MOTA	1470	CA	SER	A	223	30.928	24.888	13.490	1.00	33.94
	MOTA	1471	СВ	SER	A	223	30.913	23.366	13.304	1.00	32.78
15	MOTA	1472	OG	SER	A	223	32.095	22.769	13.808	1.00	35.71
	MOTA	1473	С	SER	A	223	31.206	25.234	14.949	1.00	33.87
	MOTA	1474	0	SER	A	223	30.325	25.123	15.803	1.00	33.34
	MOTA	1475	N	LEU	A	224	32.435	25.660	15.227	1.00	33.97
	ATOM	1476	CA	LEU	A	224	32.817	26.038	16.584	1.00	34.45
20	MOTA	1477	CB	LEU	Α	224	34.340	26.172	16.697	1.00	33.66
	ATOM	1478	CG	LEU	А	224	35.194	24.915	16.507		34.95
	ATOM	1479	CD1	LEU	Α	224	36.670	25.288	16.515		31.91
	ATOM	1480	CD2	LEU	A	224	34.883	23.913	17.612		31.97
	ATOM	1481	С	LEU			32.146	27.358	16.967		34.39
25	ATOM	1482	0	LEU			32.243	27.807	18.109		33.98
	ATOM	1483	N	GLN			31.474	27.984	16.004		35.00
	MOTA	1484		GLN			30.774		16.271		
	ATOM	1485	СВ	GLN			30.571	30.043	14.976		34.95
20	ATOM	1486	CG	GLN			31.863	30.374	14.230		35.29
30	ATOM	1487	CD	GLN			31.628	31.191	12.966		34.79
	ATOM	1488		GLN			31.617	32.425	12.997		32.25
	ATOM	1489		GLN			31.427	30.501	11.846		32.30
	ATOM	1490	C	GLN			29.421	28.905	16.904		34.76
35	ATOM	1491	0	GLN			28.710	29.793	17.371		34.05
55	ATOM	1492	N CA	GLY			29.076	27.618	16.916 17.512		34.83
	ATOM	1493	CA	GLY			27.822	27.183 27.504	18.997		35.53
	ATOM	1494	С	GLY	А	220	27.803	21.304	10.331	1.00	36.05

	ATOM	1495	0	GLY A	A	226	28.852	27.509	19.641	1.00	37.13
	ATOM	1496	N	LYS A	Α	227	26.616	27.754	19.546	1.00	35.45
	ATOM	1497	CA	LYS A	A	227	26.465	28.116	20.957	1.00	34.81
	ATOM	1498	СВ	LYS A	A	227	24.980	28.242	21.313	1.00	33.35
5	ATOM	1499	CG	LYS A	Ą	227	24.723	28.929	22.652	1.00	32.92
	ATOM	1500	CD	LYS A	A	227	23.244	29.219	22.853	1.00	32.63
	ATOM	1501	CE	LYS A	Α	227	22.980	29.911	24.182	1.00	34.34
	ATOM	1502	NZ	LYS A	Α	227	23.617	31.256	24.261	1.00	36.79
	ATOM	1503	С	LYS A	A	227	27.150	27.204	21.974	1.00	35.00
10	MOTA	1504	0	LYS A	Α	227	27.985	27.663	22.755	1.00	33.88
	MOTA	1505	N	ALA A	A	228	26.797	25.922	21.975	1.00	34.83
	ATOM	1506	CA	ALA A	A	228	27.390	24.978	22.924	1.00	35.86
	MOTA	1507	СВ	ALA A	A	228	26.719	23.615	22.795	1.00	33.42
	ATOM	1508	С	ALA A	A	228	28.897	24.837	22.723	1.00	35.90
15	ATOM	1509	0	ALA A	A	228	29.674	24.941	23.671	1.00	34.64
	ATOM	1510	N	GLU Z	A	229	29.301	24.597	21.481	1.00	37.47
	ATOM	1511	CA	GLU Z	A	229	30.711	24.443	21.141	1.00	38.72
	ATOM	1512	СВ	GLU Z	A	229	30.852	24.145	19.644	1.00	42.88
	MOTA	1513	CG	GLU Z	A	229	31.409	22.766	19.319	1.00	49.61
20	MOTA	1514	CD	GLU A	A	229	31.311	22.429	17.838	1.00	53.45
	MOTA	1515	OE1	GLU A	A	229	30.180	22.205	17.350	1.00	56.34
	MOTA	1516	OE2	GLU Z	A	229	32.361	22.393	17.159	1.00	55.01
	ATOM	1517	С	GLU Z	A	229	31.498	25.704	21.490	1.00	36.50
	MOTA	1518	0	GLU Z	A	229	32.584	25.632	22.061	1.00	37.17
25	ATOM	1519	N	LEU A	A	230	30.935	26.860	21.152	1.00	33.85
	ATOM	1520	CA	LEU A	A	230	31.588	28.135	21.409	1.00	30.53
	ATOM	1521	СВ	LEU A	A	230	30.795	29.281	20.766		28.19
	ATOM	1522	CG	LEU A	A	230	31.417	30.680	20.851	1.00	26.88
	ATOM	1523		LEU A			32.750	30.701	20.106		24.02
30	ATOM	1524	CD2	LEU A	A	230	30.466	31.701	20.253		26.26
	MOTA	1525	С	LEU	A	230	31.761	28.414	22.895		29.06
	ATOM	1526	0	LEU 1	A	230	32.795	28.935	23.312		28.63
	ATOM	1527	N	ARG	A	231	30.753	28.076	23.693		28.59
	ATOM	1528	CA	ARG	A	231	30.826	28.324	25.128		28.19
35	ATOM	1529	CB	ARG .			29.484	28.021	25.803		29.46
	ATOM	1530	CG	ARG .			29.462	28.385	27.285		32.38
	MOTA	1531	CD	ARG .	A	231	28.201	27.903	27.986	1.00	36.36

	MOTA	1532	NE	ARG	Α	231	27.009	28.660	27.608	1.00	39.08
	ATOM	1533	CZ	ARG	A	231	25.952	28.134	26.995	1.00	39.48
	ATOM	1534	NH1	ARG	Α	231	25.938	26.845	26.684	1.00	40.17
	ATOM	1535	NH2	ARG	A	231	24.901	28.893	26.710	1.00	39.24
5	MOTA	1536	С	ARG	A	231	31.931	27.503	25.793	1.00	27.19
	MOTA	1537	0	ARG	Α	231	32.689	28.024	26.605	1.00	25.57
	ATOM	1538	N	ARG	A	232	32.018	26.222	25.450	1.00	27.04
	ATOM	1539	CA	ARG	Α	232	33.042	25.355	26.022	1.00	28.55
	MOTA	1540	СВ	ARG	Α	232	32.820	23.900	25.598	1.00	31.40
10	ATOM	1541	CG	ARG	A	232	33.906	22.951	26.097	1.00	37.46
	MOTA	1542	CD	ARG	A	232	33.651	21.497	25.697	1.00	41.98
	MOTA	1543	NE	ARG	A	232	32.314	21.050	26.084	1.00	46.56
	ATOM	1544	CZ	ARG	A	232	31.240	21.146	25.305	1.00	49.01
	ATOM	1545	NH1	ARG	Α	232	31.345	21.669	24.089	1.00	49.17
15	ATOM	1546	NH2	ARG	A	232	30.057	20.732	25.746	1.00	49.45
	ATOM	1547	С	ARG	A	232	34.428	25.807	25.579	1.00	27.29
	ATOM	1548	0	ARG	A	232	35.377	25.795	26.361	1.00	26.97
	ATOM	1549	N	LEU	A	233	34.538	26.203	24.318	1.00	25.58
	ATOM	1550	CA	LEU	A	233	35.806	26.664	23.777	1.00	25.13
20	ATOM	1551	СВ	LEU	A	233	35.669	26.912	22.275	1.00	26.34
	ATOM	1552	CG	LEU	A	233	36.840	27.630	21.604	1.00	27.27
	ATOM	1553	CD1	LEU	A	233	38.097	26.800	21.736	1.00	29.09
	ATOM	1554	CD2	LEU	A	233	36.514	27.875	20.146	1.00	29.53
	ATOM	1555	С	LEU	A	233	36.295	27.942	24.467	1.00	24.39
25	ATOM	1556	0	LEU	A	233	37.436	28.010	24.927	1.00	22.15
	ATOM	1557	N	LEU	A	234	35.424	28.945	24.547	1.00	22.75
	ATOM	1558	CA	LEU	A	234	35.774	30.228	25.154	1.00	22.29
	ATOM	1559	CB	LEU	A	234	34.725	31.283	24.788		23.57
	ATOM	1560	CG	LEU	A	234	34.647	31.536	23.280		26.28
30	ATOM	1561	CD1	LEU	Α	234	33.539	32.528	22.960		27.43
	ATOM	1562	CD2	LEU	A	234	35.995	32.047	22.794		26.22
	ATOM	1563	С	LEU	A	234	35.963	30.180	26.663		21.30
	ATOM	1564	0	LEU	A	234	36.710	30.980	27.223		20.43
	ATOM	1565	N	THR			35.285	29.256	27.330		21.31
35	ATOM	1566	CA	THR			35.444	29.135	28.772		22.40
	ATOM	1567	СВ	THR			34.468	28.104	29.367		22.83
	ATOM	1568	OG1	THR	A	235	33.137	28.632	29.324	1.00	23.92

	MOTA	1569	CG2	THR .	Α	235	34.842	27.789	30.809	1.00	20.20
	ATOM	1570	С	THR .	A	235	36.877	28.691	29.069	1.00	21.59
	ATOM	1571	0	THR .	A	235	37.524	29.213	29.977	1.00	21.97
	ATOM	1572	N	LYS .	Α	236	37.367	27.735	28.285	1.00	18.98
5	ATOM	1573	CA	LYS	Α	236	38.720	27.227	28.451	1.00	20.97
	ATOM	1574	СВ	LYS	Α	236	38.905	25.951	27.632	1.00	22.57
	ATOM	1575	CG	LYS	A	236	40.256	25.283	27.844	1.00	29.29
	ATOM	1576	CD	LYS	A	236	40.284	23.874	27.266	1.00	31.20
	ATOM	1577	CE	LYS	A	236	41.588	23.177	27.602	1.00	34.02
10	MOTA	1578	NZ	LYS	A	236	41.554	21.739	27.212	1.00	37.66
	ATOM	1579	С	LYS	A	236	39.758	28.273	28.036	1.00	20.11
	ATOM	1580	0	LYS	A	236	40.773	28.454	28.710	1.00	18.99
	MOTA	1581	N	VAL	A	237	39.500	28.963	26.931	1.00	19.39
	ATOM	1582	CA	VAL	A	237	40.410	29.995	26.449	1.00	19.41
15	ATOM	1583	СВ	VAL	A	237	39.892	30.619	25.137	1.00	19.28
	ATOM	1584	CG1	VAL	A	237	40.631	31.923	24.840	1.00	15.51
	MOTA	1585	CG2	VAL	A	237	40.078	29.630	23.997	1.00	17.43
	MOTA	1586	С	VAL	A	237	40.582	31.098	27.489	1.00	20.27
	ATOM	1587	0	VAL	A	237	41.705	31.484	27.817	1.00	20.76
20	MOTA	1588	N	LEU	A	238	39.462	31.597	28.007	1.00	21.31
	MOTA	1589	CA	LEU	A	238	39.470	32.660	29.010	1.00	21.14
	MOTA	1590	СВ	LEU	A	238	38.042	33.127	29.295	1.00	19.77
	MOTA	1591	CG	LEU	A	238	37.364	33.913	28.168	1.00	22.01
	MOTA	1592	CD1	LEU	A	238	35.894	34.143	28.506	1.00	21.78
25	MOTA	1593	CD2	LEU	A	238	38.083	35.244	27.974	1.00	21.85
	MOTA	1594	С	LEU	A	238	40.138	32.233	30.314		21.63
	MOTA	1595	0	LEU	A	238			30.989		
	MOTA	1596	N	GLN	A	239	39.993	30.960	30.670		21.99
	MOTA	1597	CA	GLN			40.609	30.458	31.891		22.84
30	ATOM	1598	СВ	GLN			40.126	29.039	32.200		25.02
	MOTA	1599	CG	GLN	A	239	40.681	28.489	33.504		29.97
	ATOM	1600	CD	GLN			40.153	27.103	33.828		37.06
	ATOM	1601		GLN			38.940	26.895	33.941		40.00
35	MOTA	1602		GLN			41.063	26.145	33.982		36.33
	ATOM	1603	С	GLN			42.129	30.468	31.743		20.31
	ATOM	1604	0	GLN			42.847	30.888	32.648		20.83
	ATOM	1605	N	GLU	A	240	42.617	29.999	30.601	1.00	19.91

	ATOM	1606	CA	GLU	Α	240	44.054	29.985	30.348	1.00	20.13
	ATOM	1607	СВ	GLU	Α	240	44.348	29.345	28.992	1.00	21.91
	ATOM	1608	CG	GLU	Α	240	44.002	27.868	28.918	1.00	28.96
	ATOM	1609	CD	GLU	Α	240	44.945	26.992	29.735	1.00	33.18
5	ATOM	1610	OE1	GLU	Α	240	44.662	25.782	29.865	1.00	37.45
	ATOM	1611	OE2	GLU	A	240	45.973	27.501	30.237	1.00	33.72
	ATOM	1612	С	GLU	A	240	44.570	31.423	30.363	1.00	19.32
	ATOM	1613	0	GLU	A	240	45.656	31.695	30.871	1.00	20.24
	ATOM	1614	N	ARG	A	241	43.775	32.337	29.812	1.00	17.22
10	ATOM	1615	CA	ARG	A	241	44.131	33.751	29.755	1.00	17.57
	ATOM	1616	СВ	ARG	Α	241	43.094	34.509	28.915	1.00	15.94
	ATOM	1617	CG	ARG	Α	241	43.423	35.971	28.625	1.00	16.24
	ATOM	1618	CD	ARG	Α	241	43.210	36.882	29.829	1.00	13.73
	ATOM	1619	NE	ARG	A	241	41.826	36.914	30.293	1.00	15.88
15	MOTA	1620	CZ	ARG	Α	241	40.845	37.616	29.726	1.00	17.28
	ATOM	1621	NH1	ARG	Α	241	39.620	37.568	30.235	1.00	15.42
	ATOM	1622	NH2	ARG	A	241	41.082	38.374	28.661	1.00	14.65
	MOTA	1623	С	ARG	Α	241	44.227	34.371	31.150	1.00	18.35
	MOTA	1624	0	ARG	A	241	45.174	35.102	31.442	1.00	17.69
20	MOTA	1625	N	ASP	A	242	43.248	34.082	32.007	1.00	19.04
	MOTA	1626	CA	ASP	Α	242	43.247	34.631	33.362	1.00	19.06
	ATOM	1627	СВ	ASP	Α	242	41.914	34.344	34.073	1.00	18.23
	ATOM	1628	CG	ASP	Α	242	40.726	35.019	33.397	1.00	20.68
	MOTA	1629	OD1	ASP	Α	242	40.913	36.078	32.761	1.00	20.74
25	MOTA	1630	OD2	ASP	Α	242	39.596	34.499	33.516	1.00	19.78
	ATOM	1631	С	ASP	A	242	44.404	34.085	34.201	1.00	18.63
	ATOM	1632	0	ASP	Α	242		34.695	35.195	1.00	18.12
	ATOM	1633	N	GLY	Α	243	44.952	32.944	33.794		17.67
	MOTA	1634	CA	GLY			46.061	32.353	34.526		17.88
30	ATOM	1635	С	GLY			47.407	32.997	34.216		18.89
	MOTA	1636	0	GLY			48.429	32.641	34.807		18.71
	MOTA	1637	N	LEU	A	244	47.421	33.945	33.286		18.25
	ATOM	1638	CA	LEU			48.666	34.622	32.933		19.00
2.5	MOTA	1639	СВ	LEU			48.613	35.126	31.485		17.15
35	ATOM	1640	CG	LEU			48.385	34.081	30.392		17.74
	ATOM	1641		LEU			48.274	34.772	29.044		16.09
	MOTA	1642	CD2	LEU	A	244	49.526	33.074	30.400	1.00	18.11

	ATOM	1643	С	LEU Z	Α	244	48.912	35.801	33.868	1.00	18.91
	ATOM	1644	0	LEU Z	Ą	244	47.970	36.388	34.401	1.00	18.13
	ATOM	1645	N	ARG	A	245	50.180	36.143	34.067	1.00	19.32
	ATOM	1646	CA	ARG 2	Α	245	50.529	37.269	34.924	1.00	20.36
5	ATOM	1647	СВ	ARG .	A	245	52.051	37.346	35.085	1.00	19.37
	ATOM	1648	CG	ARG	A	245	52.601	36.269	36.035	1.00	19.13
	MOTA	1649	CD	ARG .	A	245	54.072	35.967	35.805	1.00	18.27
	ATOM	1650	NE	ARG .	A	245	54.965	37.032	36.254	1.00	19.00
	ATOM	1651	CZ	ARG .	A	245	55.396	37.178	37.504	1.00	19.64
10	ATOM	1652	NH1	ARG .	A	245	56.211	38.181	37.811	1.00	16.23
	MOTA	1653	NH2	ARG .	A	245	55.021	36.318	38.447	1.00	17.19
	ATOM	1654	С	ARG .	A	245	49.958	38.569	34.349	1.00	22.32
	MOTA	1655	0	ARG .	A	245	49.910	38.758	33.130	1.00	20.59
	ATOM	1656	N	ARG .	A	246	49.517	39.446	35.249	1.00	25.41
15	MOTA	1657	CA	ARG .	A	246	48.906	40.737	34.920	1.00	26.97
	ATOM	1658	СВ	ARG .	Α	246	48.979	41.664	36.137	1.00	30.43
	MOTA	1659	CG	ARG .	A	246	48.315	41.093	37.380	1.00	37.76
	ATOM	1660	CD	ARG .	A	246	46.792	41.252	37.353	1.00	41.81
	ATOM	1661	NE	ARG .	A	246	46.113	40.366	38.302	1.00	42.05
20	MOTA	1662	CZ	ARG .	A	246	46.468	40.202	39.573	1.00	40.82
	MOTA	1663	NH1	ARG .	A	246	47.505	40.859	40.073	1.00	40.20
	ATOM	1664	NH2	ARG	A	246	45.779	39.377	40.348	1.00	41.81
	ATOM	1665	С	ARG	A	246	49.429	41.490	33.698	1.00	26.71
	ATOM	1666	0	ARG .	A	246	48.659	41.784	32.781	1.00	26.44
25	ATOM	1667	N	VAL	A	247	50.720	41.816	33.678	1.00	24.35
	MOTA	1668	CA	VAL	A	247	51.268	42.561	32.548	1.00	24.81
	MOTA	1669	СВ	VAL	A	247	52.703	43.101	32.853	1.00	26.12
	MOTA	1670	CG1	VAL	A	247	52.655	44.084	34.018	1.00	23.20
	MOTA	1671	CG2	VAL	A	247	53.644	41.962	33.171	1.00	26.44
30	MOTA	1672	С	VAL	A	247	51.290	41.768	31.244	1.00	24.54
	MOTA	1673	0	VAL	A	247	51.443	42.341	30.167	1.00	26.25
	ATOM	1674	N	HIS	Α	248	51.116	40.453	31.342	1.00	23.59
	MOTA	1675	CA	HIS	A	248	51.123	39.580	30.169	1.00	21.97
	MOTA	1676	СВ	HIS	A	248	52.118	38.438	30.387	1.00	20.64
35	ATOM	1677	CG	HIS	Α	248	53.536	38.897	30.510	1.00	21.01
	MOTA	1678	CD2	HIS	A	248	54.312	39.108	31.598	1.00	20.81
	MOTA	1679	ND1	HIS	A	248	54.293	39.270	29.421	1.00	20.08

	ATOM	1680	CE1	HIS	Α	248	55.474	39.696	29.833	1.00	20.69
	MOTA	1681	NE2	HIS	Α	248	55.510	39.608	31.150	1.00	21.17
	ATOM	1682	С	HIS	A	248	49.741	38.999	29.884	1.00	21.65
	ATOM	1683	0	HIS	A	248	49.620	37.980	29.205	1.00	19.83
5	ATOM	1684	N	ARG	Α	249	48.705	39.658	30.395	1.00	20.25
	MOTA	1685	CA	ARG	Α	249	47.332	39.196	30.219	1.00	21.40
	ATOM	1686	СВ	ARG	Α	249	46.598	39.334	31.553	1.00	21.77
	MOTA	1687	CG	ARG	Α	249	45.363	38.482	31.700	1.00	24.08
	MOTA	1688	CD	ARG	A	249	44.769	38.681	33.090	1.00	25.21
10	MOTA	1689	NE	ARG	Α	249	45.655	38.177	34.132	1.00	25.36
	MOTA	1690	CZ	ARG	Α	249	45.674	38.624	35.384	1.00	26.64
	MOTA	1691	NH1	ARG	Α	249	44.858	39.598	35.760	1.00	26.33
	ATOM	1692	NH2	ARG	A	249	46.507	38.087	36.265	1.00	27.83
	MOTA	1693	С	ARG	A	249	46.600	39.975	29.113	1.00	21.27
15	MOTA	1694	0	ARG	A	249	46.192	41.122	29.304	1.00	21.00
	MOTA	1695	N	PRO	Α	250	46.410	39.345	27.941	1.00	19.96
	ATOM	1696	CD	PRO	A	250	46.878	37.994	27.575	1.00	19.81
	MOTA	1697	CA	PRO	A	250	45.735	39.977	26.807	1.00	19.13
	MOTA	1698	СВ	PRO	Α	250	46.266	39.185	25.625	1.00	17.18
20	MOTA	1699	CG	PRO	A	250	46.263	37.792	26.184	1.00	18.21
	MOTA	1700	С	PRO	A	250	44.208	39.953	26.837	1.00	19.62
	MOTA	1701	0	PRO	Α	250	43.587	39.152	27.546	1.00	17.65
	MOTA	1702	N	ALA	Α	251	43.616	40.850	26.054	1.00	18.39
	MOTA	1703	CA	ALA	Α	251	42.171	40.904	25.918	1.00	17.20
25	MOTA	1704	CB	ALA	Α	251	41.747	42.226	25.296	1.00	15.99
	MOTA	1705	С	ALA	A	251	41.874	39.756	24.957	1.00	16.57
	ATOM	1706	0	ALA	Α	251	42.723	39.398	24.133	1.00	16.08
	ATOM	1707	N	VAL	Α	252	40.691	39.167	25.063	1.00	15.31
	MOTA	1708	CA	VAL	A	252	40.332	38.073	24.176	1.00	15.76
30	MOTA	1709	CB	VAL	Α	252	40.008	36.787	24.972		16.54
	MOTA	1710		VAL			39.416	35.731	24.040		13.14
	MOTA	1711		VAL			41.279	36.254	25.644		14.05
	ATOM	1712	С	VAL			39.135	38.434	23.297		17.13
	ATOM	1713	0	VAL	A	252	38.062	38.774	23.793		17.25
35	MOTA	1714	N			253	39.337	38.376	21.985		17.15
	MOTA	1715	CA	LEU			38.275	38.667	21.033		16.03
	ATOM	1716	CB	LEU	A	253	38.682	39.802	20.086	1.00	16.00

	ATOM	1717	CG	LEU	Α	253	38.871	41.205	20.673	1.00	17.12
	ATOM	1718	CD1	LEU	Α	253	40.194	41.292	21.418	1.00	18.46
	MOTA	1719	CD2	LEU	Α	253	38.840	42.222	19.550	1.00	16.89
	MOTA	1720	С	LEU	Α	253	37.999	37.406	20.225	1.00	15.90
5	ATOM	1721	0	LEU	Α	253	38.829	36.497	20.182	1.00	14.68
	ATOM	1722	N	VAL	Α	254	36.827	37.355	19.600	1.00	15.02
	ATOM	1723	CA	VAL	Α	254 .	36.428	36.222	18.775	1.00	15.71
	MOTA	1724	СВ	VAL	A	254	35.158	35.531	19.351	1.00	17.13
	ATOM	1725	CG1	VAL	Α	254	34.663	34.449	18.404	1.00	17.46
10	MOTA	1726	CG2	VAL	A	254	35.473	34.915	20.706	1.00	16.81
	ATOM	1727	С	VAL	A	254	36.142	36.741	17.367	1.00	15.10
	ATOM	1728	0	VAL	Α	254	35.406	37.704	17.195	1.00	16.08
	MOTA	1729	N	LYS	A	255	36.738	36.116	16.361	1.00	15.28
	ATOM	1730	CA	LYS	Α	255	36.521	36.541	14.985	1.00	15.28
15	ATOM	1731	СВ	LYS	Α	255	37.826	36.463	14.186	1.00	14.88
	ATOM	1732	CG	LYS	Α	255	37.714	36.994	12.770	1.00	15.89
	ATOM	1733	CD	LYS	Α	255	39.092	37.270	12.172	1.00	16.96
	ATOM	1734	CE	LYS	A	255	38.985	37.946	10.804	1.00	15.29
	ATOM	1735	NZ	LYS	A	255	40.316	38.399	10.320	1.00	15.29
20	ATOM	1736	С	LYS	Α	255	35.458	35.656	14.349	1.00	16.78
	ATOM	1737	0	LYS	Α	255	35.611	34.433	14.269	1.00	15.57
	ATOM	1738	N	ILE	Α	256	34.384	36.284	13.888	1.00	15.73
	ATOM	1739	CA	ILE	A	256	33.280	35.553	13.295	1.00	15.18
	ATOM	1740	СВ	ILE	A	256	31.963	35.924	13.993	1.00	14.40
25	ATOM	1741	CG2	ILE	Α	256	32.115	35.716	15.485	1.00	14.47
	ATOM	1742	CG1	ILE	A	256	31.607	37.387	13.703	1.00	13.65
	ATOM	1743	CD1	ILE	A	256	30.305	37.857	14.348	1.00	10.70
	MOTA	1744	С	ILE	A	256	33.118	35.758	11.795	1.00	15.17
	ATOM	1745	0	ILE	A	256	33.677	36.688	11.210	1.00	12.59
30	ATOM	1746	N	ALA	A	257	32.340	34.873	11.181	1.00	15.08
	ATOM	1747	CA	ALA	A	257	32.084	34.934	9.750	1.00	18.08
	ATOM	1748	СВ	ALA	A	257	31.766	33.533	9.221	1.00	19.52
	ATOM	1749	С	ALA	Α	257	30.934	35.881	9.418	1.00	18.32
	MOTA	1750	0	ALA	Α	257	30.208	36.344	10.303	1.00	17.66
35	ATOM	1751	N	PRO	Α	258	30.781	36.206	8.128	1.00	18.01
	ATOM	1752	CD	PRO	Α	258	31.867	36.066	7.138	1.00	16.50
	MOTA	1753	CA	PRO	Α	258	29.732	37.089	7.615	1.00	18.62

	MOTA	1754	СВ	PRO	Α	258	30.449	37.850	6.515	1.00	16.96
	MOTA	1755	CG	PRO	A	258	31.298	36.776	5.918	1.00	16.10
	MOTA	1756	С	PRO	Α	258	28.578	36.248	7.057	1.00	21.75
	MOTA	1757	0	PRO	A	258	27.619	36.785	6.498	1.00	23.00
5	ATOM	1758	N	ASP	Α	259	28.682	34.930	7.218	1.00	20.77
	ATOM	1759	CA	ASP	A	259	27.675	34.007	6.705	1.00	22.20
	MOTA	1760	СВ	ASP	A	259	28.355	32.919	5.867	1.00	20.49
	MOTA	1761	CG	ASP	A	259	29.382	33.485	4.900	1.00	22.19
	MOTA	1762	OD1	ASP	A	259	29.043	34.442	4.170	1.00	19.06
10	MOTA	1763	OD2	ASP	A	259	30.524	32.970	4.868	1.00	21.62
	MOTA	1764	С	ASP	A	259	26.849	33.351	7.808	1.00	23.62
	MOTA	1765	0	ASP	Α	259	26.272	32.286	7.606	1.00	25.15
•	ATOM	1766	N	LEU	Α	260	26.787	33.991	8.969	1.00	23.63
	ATOM	1767	CA	LEU	A	260	26.039	33.454	10.097	1.00	22.23
15	ATOM	1768	СВ	LEU	Α	260	26.549	34.075	11.400	1.00	22.52
	ATOM	1769	CG	LEU	A	260	28.015	33.815	11.761	1.00	23.59
	MOTA	1770	CD1	LEU	Α	260	28.418	34.668	12.958	1.00	25.06
	ATOM	1771	CD2	LEU	A	260	28.205	32.341	12.063	1.00	21.98
	ATOM	1772	C	LEU	A	260	24.544	33.715	9.973	1.00	22.15
20	ATOM	1773	0	LEU	Α	260	24.131	34.749	9.454	1.00	23.71
	ATOM	1774	N	THR	Α	261	23.736	32.769	10.444	1.00	20.79
	ATOM	1775	CA	THR	Α	261	22.285	32.926	10.419	1.00	19.86
	ATOM	1776	СВ	THR	Α	261	21.556	31.590	10.694	1.00	19.22
	ATOM	1777	OG1	THR	A	261	21.909	31.118	12.003	1.00	18.63
25	ATOM	1778	CG2	THR	Α	261	21.933	30.539	9.661	1.00	12.85
	ATOM	1779	С	THR	Α	261	21.946	33.876	11.567	1.00	22.13
	ATOM	1780	0	THR	Α	261	22.800	34.166	12.407	1.00	23.22
	ATOM	1781	N	SER	A	262	20.712	34.364	11.611	1.00	22.17
	ATOM	1782	CA	SER	Α	262	20.316	35.256	12.696	1.00	22.97
30	MOTA	1783	СВ	SER	A	262	18.886	35.748	12.484	1.00	22.97
	ATOM	1784	OG	SER	A	262	18.791	36.509	11.298	1.00	26.68
	ATOM	1785	С	SER	A	262	20.413	34.521	14.036	1.00	23.06
	ATOM	1786	0	SER	A	262	20.653	35.136	15.075		22.02
	MOTA	1787	N	GLN	A	263	20.227	33.204	14.004		22.11
35	ATOM	1788	CA	GLN	A	263	20.297	32.393	15.215		23.04
	ATOM	1789	СВ	GLN	A	263	19.794	30.974	14.935		24.15
	ATOM	1790	CG	GLN	A	263	19.870	30.039	16.136	1.00	30.55

	ATOM	1791	CD	GLN	A	263	18.717	30.225	17.108	1.00	32.21
	ATOM	1792	OE1	GLN	Α	263	17.581	29.856	16.815	1.00	33.90
	ATOM	1793	NE2	GLN	Α	263	19.005	30.805	18.267	1.00	33.03
	ATOM	1794	С	GLN	A	263	21.727	32.331	15.753	1.00	21.52
5	ATOM	1795	0	GLN	A	263	21.951	32.483	16.956	1.00	21.15
	ATOM	1796	N	ASP	A	264	22.692	32.109	14.863	1.00	20.97
	ATOM	1797	CA	ASP	Α	264	24.090	32.034	15.272	1.00	19.77
	ATOM	1798	СВ	ASP	Α	264	25.007	31.755	14.076	1.00	22.91
	ATOM	1799	CG	ASP	Α	264	24.750	30.398	13.437	1.00	25.44
10	MOTA	1800	OD1	ASP	Α	264	24.364	29.457	14.163	1.00	23.04
	MOTA	1801	OD2	ASP	A	264	24.952	30.276	12.206	1.00	26.99
	MOTA	1802	С	ASP	A	264	24.530	33.330	15.931	1.00	18.65
	MOTA	1803	0	ASP	A	264	25.201	33.315	16.962	1.00	18.71
	MOTA	1804	N	LYS	Α	265	24.149	34.453	15.333	1.00	17.32
15	MOTA	1805	CA	LYS	A	265	24.514	35.754	15.868	1.00	19.13
	ATOM	1806	СВ	LYS	A	265	24.063	36.860	14.915	1.00	19.32
	ATOM	1807	CG	LYS	Α	265	24.772	36.820	13.573	1.00	19.57
	ATOM	1808	CD	LYS	Α	265	24.127	37.779	12.589	1.00	23.29
	ATOM	1809	CE	LYS	A	265	24.425	37.366	11.160	1.00	24.36
20	ATOM	1810	NZ	LYS	A	265	23.497	38.006	10.187	1.00	27.53
	ATOM	1811	С	LYS	A	265	23.927	35.971	17.253	1.00	20.16
	ATOM	1812	0	LYS	A	265	24.611	36.473	18.144	1.00	21.28
	ATOM	1813	N	GLU	Α	266	22.661	35.598	17.434	1.00	20.98
	ATOM	1814	CA	GLU	A	266	22.014	35.734	18.736	1.00	20.75
25	ATOM	1815	СВ	GLU	A	266	20.558	35.247	18.677	1.00	20.43
	ATOM	1816	CG	GLU	A	266	19.640	36.121	17.839	1.00	25.19
	MOTA	1817	CD	GLU	A	266	18.213	35.587	17.743	1.00	26.74
	MOTA	1818	OE1	GLU	A	266	17.414	36.194	17.003	1.00	28.84
	MOTA	1819	OE2	GLU	Α	266	17.886	34.573	18.399	1.00	27.22
30	MOTA	1820	С	GLU	A	266	22.787	34.905	19.763	1.00	19.77
	MOTA	1821	0	GLU	A	266	23.080	35.378	20.858	1.00	17.93
	MOTA	1822	N	ASP	A	267	23.120	33.668	19.400	1.00	20.25
	MOTA	1823	CA	ASP	A	267	23.854	32.790	20.305	1.00	21.56
	MOTA	1824	СВ	ASP	A	267	24.000	31.385	19.707	1.00	22.05
35	MOTA	1825	CG	ASP	A	267	22.674	30.651	19.611	1.00	25.11
	MOTA	1826	OD1	ASP	A	267	21.737	31.015	20.353	1.00	24.11
	MOTA	1827	OD2	ASP	Α	267	22.570	29.701	18.803	1.00	26.91

	MOTA	1828	С	ASP	Α	267	25.229	33.352	20.640	1.00	21.65
	ATOM	1829	0	ASP	Α	267	25.618	33.404	21.808	1.00	22.61
	ATOM	1830	N	ILE	Α	268	25.965	33.776	19.619	1.00	20.24
	MOTA	1831	CA	ILE	Α	268	27.287	34.336	19.843	1.00	19.65
5	MOTA	1832	СВ	ILE	A	268	27.949	34.762	18.517	1.00	19.77
	MOTA	1833	CG2	ILE	Α	268	29.181	35.615	18.796	1.00	18.25
	ATOM	1834	CG1	ILE	Α	268	28.312	33.516	17.706	1.00	20.48
	ATOM	1835	CD1	ILE	A	268	28.903	33.813	16.347	1.00	21.71
	ATOM	1836	С	ILE	Α	268	27.209	35.538	20.774	1.00	18.66
10	ATOM	1837	0	ILE	Α	268	28.037	35.689	21.671	1.00	18.66
	ATOM	1838	N	ALA	Α	269	26.208	36.386	20.567	1.00	18.12
	ATOM	1839	CA	ALA	A	269	26.042	37.573	21.401	1.00	19.02
	MOTA	1840	СВ	ALA	A	269	24.906	38.429	20.872	1.00	17.83
	MOTA	1841	С	ALA	A	269	25.760	37.165	22.842	1.00	19.92
15	ATOM	1842	0	ALA	A	269	26.246	37.785	23.786	1.00	19.07
	ATOM	1843	N	SER	A	270	24.971	36.108	22.998	1.00	20.50
	ATOM	1844	CA	SER	Α	270	24.616	35.604	24.314	1.00	20.79
	ATOM	1845	СВ	SER	A	270	23.528	34.536	24.175	1.00	20.34
	ATOM	1846	OG	SER	A	270	23.261	33.914	25.417	1.00	22.74
20	ATOM	1847	С	SER	A	270	25.837	35.031	25.039	1.00	20.69
	MOTA	1848	0	SER	A		26.084	35.356	26.198		22.32
	ATOM	1849	N	VAL	A		26.596	34.178	24.358		20.01
	ATOM	1850	CA	VAL	A	271	27.786	33.578	24.955		20.35
	ATOM	1851	СВ	VAL	A	271	28.435	32.556	23.998		19.34
25	ATOM	1852		VAL			29.753	32.056	24.584		19.49
	ATOM	1853		VAL			27.491	31.390	23.767		15.58
	ATOM	1854	С	VAL	A	271		34.649			
	ATOM	1855	0	VAL			29.420	34.621	26.382		21.15
	ATOM	1856	N	VAL			29.015	35.597	24.398		24.64
30	ATOM	1857	CA	VAL			29.968	36.677	24.609		26.34
	ATOM	1858	СВ	VAL			29.957	37.656	23.411		27.45
	ATOM	1859		VAL			30.522	39.005	23.824		27.55
	ATOM	1860		VAL			30.780	37.070	22.264		25.36
25	ATOM	1861	C	VAL			29.691	37.446	25.897		27.85
35	ATOM	1862	0	VAL			30.610	37.748	26.662		28.31
	ATOM	1863	N	LYS			28.424	37.750	26.146		28.61
	ATOM	1864	CA	LYS	A	273	28.054	38.491	27.345	1.00	30.76

	ATOM	1865	СВ	LYS	Α	273	26.695	39.173	27.137	1.00	31.43
	ATOM	1866	CG	LYS	A	273	26.759	40.293	26.087	1.00	34.55
	ATOM	1867	CD	LYS	A	273	25.463	41.089	25.987	1.00	36.45
	ATOM	1868	CE	LYS	A	273	24.312	40.229	25.501	1.00	36.17
5	ATOM	1869	NZ	LYS	Α	273	23.073	41.031	25.320	1.00	38.03
	ATOM	1870	С	LYS	Α	273	28.042	37.615	28.595	1.00	30.26
	ATOM	1871	0	LYS	Α	273	28.295	38.091	29.701	1.00	30.38
	ATOM	1872	N	GLU	A	274	27.765	36.331	28.414	1.00	29.22
	MOTA	1873	CA	GLU	A	274	27.745	35.396	29.527	1.00	28.71
10	ATOM	1874	СВ	GLU	A	274	27.184	34.051	29.064	1.00	29.65
	MOTA	1875	CG	GLU	A	274	27.100	32.996	30.152	1.00	34.63
	MOTA	1876	CD	GLU	Α	274	27.077	31.583	29.590	1.00	37.55
	MOTA	1877	OE1	GLU	Α	274	26.405	31.360	28.562	1.00	38.36
	MOTA	1878	OE2	GLU	A	274	27.727	30.691	30.180	1.00	40.62
15	MOTA	1879	С	GLU	A	274	29.159	35.179	30.084	1.00	29.15
	MOTA	1880	0	GLU	Α	274	29.361	35.158	31.300	1.00	28.97
	MOTA	1881	N	LEU	Α	275	30.135	35.032	29.185	1.00	26.95
	MOTA	1882	CA	LEU	Α	275	31.522	34.772	29.575	1.00	24.76
	MOTA	1883	СВ	LEU	Α	275	32.181	33.842	28.556	1.00	22.52
20	MOTA	1884	CG	LEU	Α	275	31.494	32.500	28.313	1.00	22.79
	MOTA	1885	CD1	LEU	Α	275	32.250	31.719	27.247	1.00	21.36
	MOTA	1886	CD2	LEU	Α	275	31.436	31.721	29.617	1.00	22.41
	ATOM	1887	С	LEU	A	275	32.413	35.992	29.761	1.00	24.23
	MOTA	1888	0	LEU	Α	275	33.522	35.874	30.276	1.00	25.42
25	ATOM	1889	N	GLY	A	276	31.944	37.158	29.338	1.00	24.12
	MOTA	1890	CA	GLY	Α	276	32.758	38.351	29.479	1.00	22.44
	MOTA	1891	С	GLY	Α	276	33.796	38.517	28.378	1.00	23.67
	ATOM	1892	0	GLY	Ą	276	34.851	39.110	28.605	1.00	23.44
	ATOM	1893	N	ILE	A	277	33.515	37.992	27.186	1.00	23.83
30	MOTA	1894	CA	ILE	A	277	34.440	38.134	26.062	1.00	22.17
	MOTA	1895	СВ	ILE	Α	277	33.829	37.586	24.754	1.00	22.72
	ATOM	1896	CG2	ILE	A	277	34.746	37.888	23.577	1.00	21.72
	MOTA	1897	CG1	ILE	A	277	33.635	36.077	24.871	1.00	22.65
	MOTA	1898	CD1	ILE	A	277	34.926	35.332	25.123	1.00	26.25
35	MOTA	1899	С	ILE	Α	277	34.735	39.623	25.899	1.00	22.15
	MOTA	1900	0	ILE	A	277	33.828	40.456	25.949	1.00	20.17
	ATOM	1901	N	ASP	Α	278	36.006	39.953	25.701	1.00	20.80

	ATOM	1902	CA	ASP A	278	36.431	41.340	25.578	1.00 19.25
	ATOM	1903	СВ	ASP A	278	37.945	41.421	25.753	1.00 18.89
	ATOM	1904	CG	ASP A	278	38.392	40.898	27.094	1.00 18.41
	ATOM	1905	OD1	ASP A	278	37.974	41.485	28.115	1.00 20.16
5	ATOM	1906	OD2	ASP A	278	39.147	39.903	27.131	1.00 17.97
	ATOM	1907	С	ASP A	278	36.029	42.062	24.303	1.00 19.25
	ATOM	1908	0	ASP A	278	35.907	43.286	24.299	1.00 20.39
	ATOM	1909	N	GLY A	279	35.825	41.320	23.221	1.00 17.95
	ATOM	1910	CA	GLY A	279	35.451	41.970	21.981	1.00 16.99
10	MOTA	1911	С	GLY A	279	35.229	41.038	20.812	1.00 16.55
	MOTA	1912	0	GLY A	279	35.455	39.833	20.902	1.00 16.99
	ATOM	1913	N	LEU A	280	34.788	41.613	19.700	1.00 16.23
	MOTA	1914	CA	LEU A	280	34.515	40.848	18.495	1.00 16.29
	MOTA	1915	СВ	LEU A	280	33.006	40.804	18.222	1.00 14.21
15	MOTA	1916	CG	LEU A	280	32.071	40.069	19.187	1.00 16.53
	MOTA	1917	CD1	LEU A	280	30.623	40.395	18.840	1.00 14.51
	ATOM	1918	CD2	LEU A	280	32.315	38.568	19.110	1.00 14.28
	MOTA	1919	С	LEU A	280	35.197	41.457	17.283	1.00 15.25
	MOTA	1920	0	LEU A	280	35.274	42.681	17.145	1.00 14.60
20	MOTA	1921	N	ILE A	281	35.718	40.596	16.420	1.00 13.70
	ATOM	1922	CA	ILE A	281	36.325	41.051	15.186	1.00 14.56
	MOTA	1923	СВ	ILE A	281	37.675	40.382	14.911	1.00 12.34
	ATOM	1924	CG2	ILE A	281	38.259	40.937	13.619	1.00 12.73
	MOTA	1925	CG1	ILE A	281	38.640	40.684	16.065	1.00 11.34
25	MOTA	1926	CD1	ILE A	281	40.103	40.703	15.660	1.00 9.52
	MOTA	1927	С	ILE A	281	35.264		14.213	1.00 16.31
	MOTA	1928	0	ILE A	281	35.038	39.382	14.036	1.00 15.34
	MOTA	1929	N	VAL A	282	34.584	41.535	13.590	1.00 18.61
	MOTA	1930	CA	VAL A	282	33.493	41.138	12.738	1.00 20.29
30	MOTA	1931	CB	VAL A	282	32.273	42.022	13.010	1.00 19.32
	ATOM	1932		VAL A		31.089	41.577	12.175	1.00 15.46
	MOTA	1933	CG2	VAL A		31.931	41.917	14.484	1.00 14.77
	MOTA	1934	С	VAL A		33.718	40.940	11.257	1.00 23.76
2.5	MOTA	1935	0	VAL A		34.031	41.849	10.483	1.00 21.79
35	MOTA	1936	N	THR A		33.500	39.669	10.937	1.00 26.44
	MOTA	1937	CA	THR A		33.591	38.994	9.657	1.00 24.63
	ATOM	1938	СВ	THR A	283	32.573	39.520	8.593	1.00 22.04

	MOTA	1939	OG1	THR A	283	33.276	39.969	7.431	1.00	20.72
	MOTA	1940	CG2	THR A	. 283	31.680	40.606	9.165	1.00	24.57
	MOTA	1941	С	THR A	. 283	34.939	38.783	9.006	1.00	23.16
	MOTA	1942	0	THR A	. 283	35.758	39.683	8.794	1.00	22.01
5	MOTA	1943	N	ASN A	284	35.133	37.504	8.741	1.00	19.80
	MOTA	1944	CA	ASN A	284	36.279	36.955	8.085	1.00	17.61
	ATOM	1945	СВ	ASN A	284	36.417	35.497	8.515	1.00	15.52
	MOTA	1946	CG	ASN A	. 284	37.812	34.981	8.365	1.00	14.49
	MOTA	1947	OD1	ASN A	284	38.384	35.036	7.285	1.00	15.69
10	MOTA	1948	ND2	ASN A	284	38.375	34.467	9.453	1.00	14.96
	MOTA	1949	С	ASN A	284	35.796	37.043	6.641	1.00	16.90
	MOTA	1950	0	ASN A	284	34.917	37.850	6.326	1.00	17.24
	MOTA	1951	N	THR A	285	36.344	36.214	5.766	1.00	15.67
	MOTA	1952	CA	THR A	285	35.914	36.225	4.377	1.00	14.29
15	MOTA	1953	СВ	THR A	285	36.971	35.569	3.468	1.00	13.61
	MOTA	1954	OG1	THR A	285	37.347	34.296	4.012	1.00	11.23
	MOTA	1955	CG2	THR A	285	38.206	36.462	3.366	1.00	10.88
	ATOM	1956	С	THR A	285	34.593	35.461	4.274	1.00	14.86
	ATOM	1957	0	THR A	285	34.238	34.697	5.176	1.00	12.89
20	ATOM	1958	N	THR A	286	33.868	35.676	3.179	1.00	14.02
	ATOM	1959	CA	THR A	286	32.582	35.016	2.960	1.00	11.85
	ATOM	1960	СВ	THR F	286	31.533	36.015	2.411	1.00	9.54
	MOTA	1961	OG1	THR F	286	30.298	35.335	2.179	1.00	12.88
	ATOM	1962	CG2	THR F	286	32.000	36.614	1.091	1.00	8.80
25	ATOM	1963	С	THR F	286	32.682	33.861	1.964	1.00	12.60
	ATOM	1964	0	THR A	286	33.413	33.953	0.970	1.00	11.62
	ATOM	1965	N	VAL A	A 287	31.951	32.778	2.230	1.00	12.37
	ATOM	1966	CA	VAL A	A 287	31.939	31.636	1.320	1.00	14.81
	ATOM	1967	СВ	VAL A	A 287	31.725	30.281	2.047	1.00	15.55
30	ATOM	1968	CG1	VAL A	A 287	32.846	30.035	3.035	1.00	16.38
	ATOM	1969	CG2	VAL A	A 287	30.372	30.261	2.748	1.00	16.45
	ATOM	1970	С	VAL A	A 287	30.789	31.844	0.336	1.00	16.38
	ATOM	1971	0	VAL A	A 287	30.525	31.001	-0.521	1.00	16.63
	ATOM	1972	N	SER A	A 288	30.096	32.969	0.473	1.00	15.25
35	ATOM	1973	CA	SER A	A 288	29.001	33.278	-0.433	1.00	15.37
	ATOM	1974	СВ	SER A	A 288	28.026	34.275	0.202	1.00	14.24
	ATOM	1975	OG	SER A	A 288	28.580	35.583	0.215	1.00	13.66

di

	ATOM	1976	С	SER	Α	288	29.620	33.910	-1.672	1.00	15.99
	ATOM	1977	0	SER	A	288	30.772	34.339	-1.653	1.00	15.45
	ATOM	1978	N	ARG	A	289	28.848	33.965	-2.749	1.00	17.27
	ATOM	1979	CA	ARG	A	289	29.312	34.562	-3.992	1.00	19.15
5	ATOM	1980	СВ	ARG	A	289	29.620	33.473	-5.022	1.00	18.24
	ATOM	1981	CG	ARG	A	289	30.830	32.621	-4.669	1.00	18.25
	ATOM	1982	CD	ARG	A	289	32.121	33.425	-4.740	1.00	16.51
	ATOM	1983	NE	ARG	A	289	33.291	32.580	-4.521	1.00	15.70
	ATOM	1984	CZ	ARG	Α	289	33.785	32.259	-3.328	1.00	15.56
10	ATOM	1985	NH1	ARG	A	289	34.850	31.469	-3.246	1.00	12.48
	ATOM	1986	NH2	ARG	Α	289	33.230	32.736	-2.219	1.00	13.20
	ATOM	1987	С	ARG	A	289	28.198	35.472	-4.488	1.00	20.73
	ATOM	1988	0	ARG	A	289	27.361	35.073	-5.305	1.00	21.86
	ATOM	1989	N	PRO	A	290	28.172	36.714	-3.985	1.00	19.73
15	MOTA	1990	CD	PRO	Α	290	29.204	37.305	-3.117	1.00	17.99
	MOTA	1991	CA	PRO	A	290	27.165	37.710	-4.349	1.00	18.33
	MOTA	1992	СВ	PRO	Α	290	27.754	39.008	-3.799	1.00	18.12
	MOTA	1993	CG	PRO	Α	290	28.512	38.545	-2.599	1.00	16.66
	ATOM	1994	С	PRO	A	290	26.952	37.769	-5.850	1.00	18.94
20	ATOM	1995	0	PRO	A	290	27.910	37.702	-6.623	1.00	19.73
	MOTA	1996	N	ALA	A	291	25.694	37.876	-6.267	1.00	18.87
	MOTA	1997	CA	ALA	Α	291	25.392	37.974	-7.691	1.00	16.81
	MOTA	1998	СВ	ALA	A	291	23.890	38.075	-7.905	1.00	14.68
	ATOM	1999	С	ALA	A	291	26.082	39.244	-8.191	1.00	15.05
25	MOTA	2000	0	ALA	A	291	26.121	40.247	-7.484	1.00	15.36
	ATOM	2001	N	GLY	A	292	26.640	39.196	-9.394	1.00	13:71
	ATOM	2002	CA	GLY	A	292	27.302	40.370	-9.925	1.00	14.53
	ATOM	2003	С	GLY	A	292	28.803	40.235	-10.097	1.00	15.49
	ATOM	2004	0	GLY	A	292	29.400	40.997	-10.857	1.00	17.37
30	ATOM	2005	N	LEU	Α	293	29.422	39.291	-9.392	1.00	14.91
	ATOM	2006	CA	LEU	Α	293	30.862	39.082	-9.521	1.00	15.19
	MOTA	2007	СВ	LEU	A	293	31.304	37.838	-8.746	1.00	15.22
	MOTA	2008	CG	LEU	Α	293	31.184	37.854	-7.218	1.00	13.79
	MOTA	2009	CD1	LEU	Α	293	31.680	36.528	-6.668	1.00	13.53
35	MOTA	2010	CD2	LEU	Α	293	31.997	39.001	-6.637	1.00	11.50
	ATOM	2011	С	LEU	Α	293	31.199	38.904	-10.994	1.00	15.17
	MOTA	2012	0	LEU	Α	293	30.523	38.162	-11.708	1.00	16.42

	MOTA	2013	N	GLN A	A	294	32.243	39.589	-11.446	1.00	16.27
	ATOM	2014	CA	GLN A	A	294	32.660	39.517	-12.838	1.00	16.80
	ATOM	2015	СВ	GLN A	A	294	32.865	40.929	-13.391	1.00	17.50
	MOTA	2016	CG	GLN A	A	294	31.593	41.745	-13.445	1.00	18.23
5	MOTA	2017	CD	GLN A	Α	294	30.511	41.048	-14.238	1.00	18.91
	MOTA	2018	OE1	GLN	A	294	30.707	40.720	-15.404	1.00	20.05
	MOTA	2019	NE2	GLN A	Α	294	29.362	40.812	-13.607	1.00	16.51
	MOTA	2020	С	GLN	A	294	33.936	38.712	-13.038	1.00	18.25
	ATOM	2021	0	GLN	Α	294	34.154	38.143	-14.111	1.00	18.99
10	MOTA	2022	N	GLY A	Α	295	34.774	38.675	-12.004	1.00	16.83
	ATOM	2023	CA	GLY .	Α	295	36.029	37.954	-12.083	1.00	15.09
	ATOM	2024	С	GLY .	A	295	35.916	36.574	-12.704	1.00	17.40
	ATOM	2025	0	GLY .	A	295	34.975	35.823	-12.431	1.00	15.89
	ATOM	2026	N	ALA .	A	296	36.884	36.238	-13.546	1.00	16.27
15	MOTA	2027	CA	ALA .	A	296	36.894	34.936	-14.201	1.00	17.04
	MOTA	2028	СВ	ALA .	A	296	38.046	34.870	-15.208	1.00	14.05
	MOTA	2029	С	ALA .	A	296	37.030	33.808	-13.179	1.00	16.37
	MOTA	2030	0	ALA .	Α	296	36.512	32.709	-13.383	1.00	17.15
	MOTA	2031	N	LEU .	A	297	37.710	34.098	-12.072	1.00	16.31
20	ATOM	2032	CA	LEU .	Α	297	37.964	33.113	-11.019	1.00	14.92
	ATOM	2033	СВ	LEU .	A	297	39.375	33.333	-10.467	1.00	12.34
	ATOM	2034	CG	LEU .	A	297	40.466	33.409	-11.544	1.00	14.84
	ATOM	2035	CD1	LEU .	A	297	41.782	33.872	-10.924	1.00	14.02
	ATOM	2036	CD2	LEU .	Α	297	40.625	32.047	-12.216	1.00	12.49
25	MOTA	2037	С	LEU .	A	297	36.962	33.148	-9.867	1.00	14.64
	MOTA	2038	0	LEU .	A	297	37.247	32.650	-8.774	1.00	14.34
	MOTA	2039	N	ARG .	Α	298	35.789	33.722	-10.122	1.00	15.32
	ATOM	2040	CA	ARG .	A	298	34.742	33.858	-9.109	1.00	15.13
	ATOM	2041	СВ	ARG	A	298	33.557	34.642	-9.687	1.00	14.29
30	MOTA	2042	CG	ARG .	Α	298	32.751	33.880	-10.727	1.00	14.22
	MOTA	2043	CD	ARG	Α	298	31.674	34.763	-11.358	1.00	14.90
	ATOM	2044	NE	ARG	A	298	30.796	33.992	-12.234	1.00	14.82
	ATOM	2045	CZ	ARG	Α	298	29.930	34.523	-13.094	1.00	15.76
	ATOM	2046	NH1	ARG	A	298	29.177	33.731	-13.845	1.00	9.49
35	MOTA	2047	NH2	ARG	Α	298	29.823	35.844	-13.213	1.00	14.55
	MOTA	2048	С	ARG	A	298	34.230	32.544	-8.517	1.00	15.68
	MOTA	2049	0	ARG	Α	298	33.714	32.527	-7.397	1.00	15.39

	MOTA	2050	N	SER	A	299	34.367	31.448	-9.259	1.00	15.50
	MOTA	2051	CA	SER	A	299	33.893	30.160	-8.773	1.00	16.47
	ATOM	2052	СВ	SER	A	299	33.196	29.397	-9.898	1.00	15.50
	MOTA	2053	OG	SER	A	299	31.911	29.949 -	-10.126	1.00	15.72
5	MOTA	2054	С	SER	A	299	34.951	29.280	-8.117	1.00	17.56
	MOTA	2055	0	SER	A	299	34.733	28.085	-7.916	1.00	19.41
	ATOM	2056	N	GLU	Α	300	36.095	29.869	-7.786	1.00	15.71
	ATOM	2057	CA	GLU	A	300	37.151	29.135	-7.100	1.00	16.76
	MOTA	2058	СВ	GLU	A	300	38.469	29.926	-7.116	1.00	15.74
10	MOTA	2059	CG	GLU	Α	300	39.165	29.978	-8.471	1.00	18.89
	MOTA	2060	CD	GLU	Α	300	39.888	28.684	-8.808	1.00	19.42
	ATOM	2061	OE1	GLU	Α	300	40.297	28.509	-9.975	1.00	21.22
	ATOM	2062	OE2	GLU	Α	300	40.057	27.844	-7.902	1.00	20.90
	MOTA	2063	С	GLU	Α	300	36.700	28.958	-5.648	1.00	17.51
15	ATOM	2064	0	GLU	Α	300	36.012	29.818	-5.087	1.00	18.05
	ATOM	2065	N	THR	Α	301	37.080	27.838	-5.050	1.00	16.82
	ATOM	2066	CA	THR	Α	301	36.744	27.556	-3.664	1.00	15.60
	ATOM	2067	СВ	THR	Α	301	37.055	26.084	-3.318	1.00	15.47
	ATOM	2068	OG1	THR	Α	301	36.037	25.241	-3.867	1.00	18.75
20	ATOM	2069	CG2	THR	Α	301	37.132	25.886	-1.816	1.00	13.34
	MOTA	2070	С	THR	A	301	37.571	28.462	-2.753	1.00	14.33
	ATOM	2071	0	THR	Α	301	38.739	28.735	-3.034	1.00	13.01
	MOTA	2072	N	GLY	Α	302	36.968	28.929	-1.663	1.00	14.07
	ATOM	2073	CA	GLY	Α	302	37.697	29.783	-0.743	1.00	13.12
25	ATOM	2074	С	GLY	Α	302	36.880	30.929	-0.186	1.00	14.13
	ATOM	2075	0	GLY	Α	302	35.687	31.054	-0.468	1.00	13.77
	MOTA	2076	N	GLY	Α	303	37.529	31.764	0.619	1.00	14.37
	ATOM	2077	CA	GLY	Α	303	36.855	32.902	1.210	1.00	12.82
	ATOM	2078	С	GLY	Α	303	37.024	34.135	0.347	1.00	12.16
30	ATOM	2079	0	GLY	Α	303	38.127	34.440	-0.105	1.00	12.51
	ATOM	2080	N	LEU	Α	304	35.921	34.842	0.122	1.00	12.72
	ATOM	2081	CA	LEU	Α	304	35.916	36.049	-0.694	1.00	11.93
	ATOM	2082	СВ	LEU	A	304	34.591	36.149	-1.457	1.00	13.90
	ATOM	2083	CG	LEU	Α	304	34.302	37.429	-2.248	1.00	16.01
35	MOTA	2084	CD1	LEU	Α	304	35.263	37.557	-3.414	1.00	16.08
	MOTA	2085	CD2	LEU	Α	304	32.865	37.382	-2.756	1.00	20.99
	MOTA	2086	С	LEU	Α	304	36.110	37.295	0.162	1.00	12.47

	ATOM	2087	0	LEU	A	304	35.500	37.438	1.225	1.00	13.78
	ATOM	2088	N	SER	A	305	36.957	38.199	-0.313	1.00	12.54
	MOTA	2089	CA	SER	A	305	37.239	39.434	0.402	1.00	13.57
	ATOM	2090	СВ	SER	A	305	38.617	39.349	1.056	1.00	13.12
5	ATOM	2091	OG	SER	Α	305	39.626	39.209	0.068	1.00	13.73
	ATOM	2092	С	SER	A	305	37.201	40.615	-0.563	1.00	13.51
	ATOM	2093	0	SER	Α	305	37.114	40.428	-1.775	1.00	14.24
	ATOM	2094	N	GLY	A	306	37.273	41.829	-0.026	1.00	13.39
	ATOM	2095	CA	GLY	A	306	37.250	43.002	-0.884	1.00	13.15
10	ATOM	2096	С	GLY	A	306	35.896	43.685	-0.937	1.00	15.03
	ATOM	2097	0	GLY	A	306	35.028	43.435	-0.096	1.00	14.92
	ATOM	2098	N	LYS	A	307	35.704	44.532	-1.944	1.00	16.11
	ATOM	2099	CA	LYS	A	307	34.461	45.281	-2.089	1.00	16.67
	ATOM	2100	CB	LYS	A	307	34.479	46.114	-3.385	1.00	18.76
15	ATOM	2101	CG	LYS	A	307	33.436	47.248	-3.381	1.00	25.21
	ATOM	2102	CD	LYS	A	307	33.375	48.040	-4.692	1.00	28.15
	ATOM	2103	CE	LYS	A	307	34.659	48.824	-4.944	1.00	29.58
	ATOM	2104	NZ	LYS	A	307	35.009	49.744	-3.819	1.00	29.15
	ATOM	2105	С	LYS	A	307	33.173	44.458	-2.014	1.00	15.62
20	ATOM	2106	0	LYS	A	307	32.211	44.872	-1.365	1.00	16.68
	ATOM	2107	N	PRO	A	308	33.129	43.285	-2.670	1.00	14.78
	ATOM	2108	CD	PRO	Α	308	34.126	42.668	-3.562	1.00	14.76
	ATOM	2109	CA	PRO	A	308	31.905	42.473	-2.617	1.00	14.19
	ATOM	2110	СВ	PRO	A	308	32.261	41.252	-3.466	1.00	14.85
25	MOTA	2111	CG	PRO	A	308	33.257	41.804	-4.452	1.00	15.81
	MOTA	2112	С	PRO	A	308	31.492	42.079	-1.198	1.00	15.30
	ATOM	2113	0	PRO	A	308	30.324	41.786	-0.941	1.00	16.37
	MOTA	2114	N	LEU	A	309	32.454	42.072	-0.281	1.00	15.32
	ATOM	2115	CA	LEU	Α	309	32.202	41.706	1.111	1.00	15.37
30	ATOM	2116	СВ	LEU	A	309	33.434	40.995	1.682	1.00	13.97
	ATOM	2117	CG	LEU	A	309	33.538	40.793	3.201	1.00	12.70
	ATOM	2118	CD1	LEU	A	309	32.468	39.821	3.683	1.00	12.47
	ATOM	2119	CD2	LEU	A	309	34.920	40.250	3.541	1.00	11.41
	MOTA	2120	С	LEU	A	309	31.855	42.887	2.023	1.00	16.22
35	MOTA	2121	0	LEU	A	309	31.211	42.707	3.056		17.60
	ATOM	2122	N	ARG	A	310	32.269	44.087	1.632		14.52
	ATOM	2123	CA	ARG	A	310	32.076	45.283	2.448	1.00	15.17

	ATOM	2124	СВ	ARG 2	A	310	32.323	46.548	1.614	1.00	12.82
	ATOM	2125	CG	ARG 2	Α	310	32.391	47.825	2.458	1.00	14.88
	ATOM	2126	CD	ARG Z	A	310	32.530	49.062	1.582	1.00	12.41
	ATOM	2127	NE	ARG A	Α	310	31.453	49.099	0.600	1.00	14.40
5	ATOM	2128	CZ	ARG A	A	310	31.454	49.851	-0.492	1.00	12.91
	ATOM	2129	NH1	ARG A	A	310	30.422	49.797	-1.323	1.00	10.64
	ATOM	2130	NH2	ARG 2	A	310	32.482	50.652	-0.753	1.00	12.19
	ATOM	2131	С	ARG Z	A	310	30.766	45.448	3.214	1.00	16.11
	ATOM	2132	0	ARG A	A	310	30.753	45.395	4.444	1.00	17.04
10	ATOM	2133	N	ASP 2	Α	311	29.668	45.663	2.499	1.00	17.60
	ATOM	2134	CA	ASP A	A	311	28.385	45.880	3.153	1.00	17.43
	ATOM	2135	СВ	ASP A	Α	311	27.374	46.374	2.117	1.00	18.97
	ATOM	2136	CG	ASP A	A	311	27.651	47.817	1.689	1.00	20.40
	ATOM	2137	OD1	ASP 2	A	311	28.760	48.320	1.985	1.00	19.94
15	ATOM	2138	OD2	ASP .	A	311	26.774	48.447	1.060	1.00	19.67
	ATOM	2139	C ·	ASP .	A	311	27.855	44.688	3.945	1.00	18.29
	ATOM	2140	0	ASP .	Α	311	27.188	44.862	4.969	1.00	17.82
	ATOM	2141	N	LEU .	A	312	28.156	43.480	3.485	1.00	17.49
	ATOM	2142	CA	LEU .	A	312	27.734	42.290	4.204	1.00	17.70
20	ATOM	2143	CB	LEU .	A	312	28.172	41.033	3.451	1.00	18.87
	ATOM	2144	CG	LEU .	A	312	27.778	39.688	4.066	1.00	23.26
	ATOM	2145	CD1	LEU .	A	312	26.260	39.596	4.183	1.00	22.82
	MOTA	2146	CD2	LEU .	A	312	28.312	38.549	3.193	1.00	23.37
	ATOM	2147	С	LEU .	A	312	28.409	42.349	5.578	1.00	17.59
25	MOTA	2148	0	LEU .	A	312	27.818	41.959	6.588	1.00	16.95
	ATOM	2149	N	SER .	A	313	29.646	42.851	5.607	1.00	16.39
	ATOM	2150	CA	SER .	A	313	30.405	42.992	6.853	1.00	16.85
	ATOM	2151	CB	SER .	A	313	31.869	43.359	6.575	1.00	17.49
	ATOM	2152	OG	SER .	A	313	32.646	42.218	6.280	1.00	23.42
30	ATOM	2153	С	SER .	A	313	29.811	44.079	7.736	1.00	15.83
	ATOM	2154	0	SER .	A	313	29.612	43.878	8.936	1.00	16.72
	ATOM	2155	N	THR .	A	314	29.549	45.236	7.136	1.00	13.67
	ATOM	2156	CA	THR .	A	314	28.989	46.362	7.866	1.00	13.92
	ATOM	2157	СВ	THR .	A	314	28.752	47.567	6.938	1.00	13.42
35	ATOM	2158	OG1	THR .	A	314	29.990	47.938	6.323	1.00	13.10
	MOTA	2159	CG2	THR .	Α	314	28.215	48.748	7.726	1.00	11.72
	ATOM	2160	C .	THR .	A	314	27.678	45.978	8.534	1.00	14.57

	ATOM	2161	0	THR	л	214	27.453	46.317	9.693	1 00	16.40
	ATOM	2162	N	GLN			26.823	45.259	7.811		14.98
	ATOM	2163	CA	GLN			25.546	44.836	8.371		14.55
	ATOM	2164	CB	GLN			24.656	44.215	7.288		13.68
5	ATOM	2165	CG	GLN			24.143	45.209	6.244		14.38
J	ATOM	2166	CD	GLN			23.178	46.249	6.821		14.67
	ATOM	2167		GLN			23.518	46.986	7.743		13.22
	ATOM	2168		GLN			21.975	46.310	6.268		11.94
	ATOM	2169	C	GLN			25.741	43.852	9.522		13.89
10	ATOM	2170	0	GLN			24.962	43.853	10.472		15.26
10	ATOM	2171	N	THR			26.777	43.017	9.451		14.65
	ATOM	2172	CA	THR			27.032	42.059	10.534		14.00
	ATOM	2173	СВ	THR			28.114	41.012	10.150		13.24
	ATOM	2174	OG1				27.691	40.295	8.986		14.44
15	ATOM	2175	CG2	THR			28.321	40.005	11.284		11.52
10	ATOM	2176	C	THR			27.489	42.835	11.767		13.16
	ATOM	2177	0	THR			27.143	42.492	12.896		13.83
	ATOM	2178	N	ILE			28.255	43.895	11.537		13.37
	ATOM	2179	CA	ILE			28.736	44.741	12.622		13.69
20	ATOM	2180	СВ	ILE			29.716	45.810	12.103		12.91
	ATOM	2181	CG2	ILE			30.004	46.824	13.206		11.97
	ATOM	2182	CG1	ILE			31.001	45.141	11.605	1.00	9.12
	ATOM	2183	CD1				31.901	46.053	10.797	1.00	7.71
	ATOM	2184	С	ILE	Α	317	27.554	45.452	13.268	1.00	15.49
25	ATOM	2185	0	ILE	A	317	27.451	45.522	14.494	1.00	14.24
	ATOM	2186	N	ARG	Α	318	26.662	45.971	12.424	1.00	15.63
	ATOM	2187	CA	ARG	А	318	25.477	46.689	12.880	1.00	16.16
	ATOM	2188	СВ	ARG	Α	318	24.657	47.153	11.664	1.00	16.16
	ATOM	2189	CG	ARG	Α	318	23.631	48.248	11.955	1.00	16.61
30	ATOM	2190	CD	ARG	Α	318	22.868	48.675	10.694	1.00	15.44
	ATOM	2191	NE	ARG	A	318	23.738	49.227	9.653	1.00	13.75
	ATOM	2192	CZ	ARG	Α	318	24.409	50.371	9.753	1.00	13.69
	MOTA	2193	NH1	ARG	Α	318	24.318	51.105	10.851	1.00	12.53
	MOTA	2194	NH2	ARG	A	318	25.184	50.780	8.755	1.00	11.64
35	MOTA	2195	С	ARG	A	318	24.636	45.776	13.782	1.00	17.52
	ATOM	2196	0	ARG	A	318	24.204	46.167	14.869	1.00	17.25
	ATOM	2197	N	GLU	A	319	24.432	44.546	13.331	1.00	17.44

	ATOM	2198	CA	GLU	Α	319	23.651	43.577	14.081	1.00	17.47
	ATOM	2199	СВ	GLU	A	319	23.373	42.360	13.190	1.00	20.17
	ATOM	2200	CG	GLU	Α	319	22.491	41.289	13.803	1.00	26.82
	ATOM	2201	CD	GLU	A	319	21.819	40.419	12.747	1.00	31.60
5	ATOM	2202	OE1	GLU	A	319	22.427	40.206	11.677	1.00	33.28
	ATOM	2203	OE2	GLU	Α	319	20.686	39.940	12.988	1.00	35.27
	ATOM	2204	С	GLU	A	319	24.311	43.153	15.398	1.00	17.42
	ATOM	2205	0	GLU	Α	319	23.662	43.160	16.443	1.00	16.52
	ATOM	2206	N	MET	A	320	25.596	42.797	15.368	1.00	17.15
10	ATOM	2207	CA	MET	A	320	26.272	42.378	16.599	1.00	16.53
	ATOM	2208	СВ	MET	A	320	27.685	41.865	16.298	1.00	16.03
	MOTA	2209	CG	MET	A	320	27.739	40.641	15.383	1.00	13.63
	MOTA	2210	SD	MET	A	320	26.655	39.271	15.894	1.00	18.40
	MOTA	2211	CE	MET	A	320	27.359	38.810	17.506	1.00	13.96
15	ATOM	2212	С	MET	Α	320	26.338	43.509	17.632	1.00	16.54
	ATOM	2213	0	MET	A	320	26.255	43.270	18.838	1.00	16.13
	ATOM	2214	N	TYR	A	321	26.478	44.740	17.153	1.00	16.60
	ATOM	2215	CA	TYR	A	321	26.541	45.901	18.034	1.00	17.25
	ATOM	2216	СВ	TYR	A	321	26.734	47.171	17.207	1.00	16.92
20	ATOM	2217	CG	TYR	Α	321	26.919	48.428	18.029	1.00	18.08
	ATOM	2218	CD1	TYR	A	321	28.139	48.716	18.633	1.00	17.27
	ATOM	2219	CE1	TYR	A	321	28.313	49.874	19.368	1.00	17.13
	ATOM	2220	CD2	TYR	Α	321	25.877	49.334	18.189	1.00	16.65
	ATOM	2221	CE2	TYR	A	321	26.039	50.491	18.922	1.00	14.99
25	ATOM	2222	CZ	TYR	A	321	27.260	50.756	19.508	1.00	17.32
	ATOM	2223	ОН	TYR	A	321	27.429	51.912	20.232	1.00	18.90
	ATOM	2224	С	TYR	A	321	25.247	46.013	18.845	1.00	17.69
	ATOM	2225	0	TYR	A	321	25.279	46.220	20.059	1.00	16.80
	ATOM	2226	N	ALA	A	322	24.115	45.872	18.159	1.00	17.52
30	MOTA	2227	CA	ALA	A	322	22.800	45.951	18.787	1.00	18.13
	ATOM	2228	СВ	ALA	A	322	21.708	46.037	17.709	1.00	14.74
	MOTA	2229	С	ALA	A	322	22.537	44.757	19.713	1.00	18.09
	ATOM	2230	0	ALA	A	322	21.958	44.914	20.783	1.00	20.05
	ATOM	2231	N	LEU	A	323	22.957	43.566	19.303	1.00	17.18
35	ATOM	2232	CA	LEU	A	323	22.759	42.377	20.128	1.00	18.68
	ATOM	2233	CB	LEU	A	323	23.137	41.117	19.344	1.00	17.23
	MOTA	2234	CG	LEU	A	323	22.151	40.724	18.239	1.00	17.86

	ATOM	2235	CD1	LEU A	323	22.725	39.591	17.402	1.00 15.10
	ATOM	2236	CD2	LEU A	323	20.821	40.316	18.869	1.00 16.30
	ATOM	2237	С	LEU A	323	23.571	42.441	21.422	1.00 19.74
	ATOM	2238	0	LEU A	323	23.206	41.819	22.419	1.00 20.81
5	ATOM	2239	N	THR A	324	24.669	43.194	21.404	1.00 19.53
	ATOM	2240	CA	THR A	324	25.515	43.330	22.584	1.00 20.06
	ATOM	2241	СВ	THR A	324	27.023	43.166	22.223	1.00 19.26
	ATOM	2242	OG1	THR A	324	27.408	44.147	21.249	1.00 17.20
	ATOM	2243	CG2	THR A	324	27.285	41.778	21.654	1.00 17.70
10	ATOM	2244	С	THR A	324	25.302	44.672	23.295	1.00 21.64
	MOTA	2245	0	THR A	324	26.085	45.055	24.163	1.00 22.12
	MOTA	2246	N	GLN A	325	24.241	45.381	22.921	1.00 22.94
	ATOM	2247	CA	GLN A	325	23.919	46.670	23.528	1.00 24.57
	ATOM	2248	СВ	GLN A	325	23.522	46.491	24.999	1.00 27.95
15	ATOM	2249	CG	GLN A	325	22.175	45.828	25.230	1.00 30.78
	ATOM	2250	CD	GLN A	325	22.100	44.441	24.636	1.00 35.70
	MOTA	2251	OE1	GLN A	325	22.901	43.565	24.967	1.00 38.45
	MOTA	2252	NE2	GLN A	325	21.131	44.229	23.751	1.00 38.29
	MOTA	2253	С	GLN A	325	25.063	47.668	23.453	1.00 23.94
20	MOTA	2254	0	GLN A	. 325	25.177	48.548	24.306	1.00 23.91
	MOTA	2255	N	GLY A	326	25.904	47.534	22.434	1.00 23.24
	MOTA	2256	CA	GLY A	326	27.027	48.443	22.282	1.00 23.28
	MOTA	2257	С	GLY A	326	28.016	48.409	23.436	1.00 22.96
	MOTA	2258	0	GLY A	. 326	28.793	49.339	23.614	1.00 21.52
25	MOTA	2259	N	ARG A	. 327	27.999	47.334	24.217	1.00 25.30
	MOTA	2260	CA	ARG A	. 327	28.899	47.206	25.361	1.00 27.57
	MOTA	2261	СВ	ARG A	. 327	28.138	46.638	26.562	1.00 30.57
	MOTA	2262	CG	ARG A	. 327	27.083	47.587	27.105	1.00 37.38
	MOTA	2263	CD	ARG A	. 327	26.178	46.924	28.131	1.00 42.63
30	MOTA	2264	NE	ARG A	. 327	25.129	47.846	28.565	1.00 49.69
	MOTA	2265	CZ	ARG A	. 327	24.028	47.483	29.217	1.00 51.85
	MOTA	2266	NH1	ARG A	327	23.823	46.207	29.521	1.00 53.56
	MOTA	2267	NH2	ARG A	327	23.126	48.397	29.554	1.00 52.17
	MOTA	2268	С	ARG A	327	30.116	46.335	25.068	1.00 26.53
35	ATOM	2269	0	ARG A	327	31.021	46.222	25.893	1.00 27.60
	ATOM	2270	N	VAL A	328	30.133	45.720	23.892	1.00 24.01
	ATOM	2271	CA	VAL A	328	31.240	44.864	23.504	1.00 21.11

	ATOM	2272	СВ	VAL A	328	30.744	43.469	23.096	1.00 19.81
	ATOM	2273	CG1	VAL A	328	31.914	42.606	22.672	1.00 17.59
	ATOM	2274	CG2	VAL A	328	29.987	42.831	24.255	1.00 17.80
	ATOM	2275	С	VAL A	328	31.991	45.481	22.334	1.00 20.87
5	ATOM	2276	0	VAL A	328	31.442	45.632	21.246	1.00 21.52
	ATOM	2277	N	PRO A	329	33.258	45.856	22.553	1.00 18.86
	ATOM	2278	CD	PRO A	329	33.971	45.781	23.840	1.00 19.19
	ATOM	2279	CA	PRO A	329	34.105	46.463	21.524	1.00 18.28
	ATOM	2280	СВ	PRO A	329	35.465	46.562	22.212	1.00 17.54
10	ATOM	2281	CG	PRO A	329	35.091	46.773	23.641	1.00 18.63
	ATOM	2282	С	PRO A	329	34.160	45.615	20.250	1.00 17.72
	ATOM	2283	0	PRO A	329	34.349	44.392	20.298	1.00 15.04
	ATOM	2284	N	ILE A	330	33.990	46.273	19.112	1.00 14.63
	ATOM	2285	CA	ILE A	330	34.029	45.580	17.838	1.00 15.12
15	ATOM	2286	СВ	ILE A	330	32.657	45.651	17.123	1.00 14.81
	ATOM	2287	CG2	ILE A	330	32.768	45.073	15.732	1.00 13.87
	ATOM	2288	CG1	ILE A	330	31.598	44.895	17.928	1.00 15.39
	ATOM	2289	CD1	ILE A	330	30.206	44.971	17.315	1.00 15.21
	MOTA	2290	С	ILE A	330	35.085	46.158	16.898	1.00 14.12
20	ATOM	2291	0	ILE A	330	35.274	47.377	16.816	1.00 12.39
	ATOM	2292	N	ILE A	331	35.786	45.267	16.207	1.00 13.16
	ATOM	2293	CA	ILE A	331	36.781	45.671	15.220	1.00 12.79
	ATOM	2294	СВ	ILE A	331	38.109	44.896	15.382	1.00 11.95
	ATOM	2295	CG2	ILE A	331	39.078	45.288	14.274	1.00 8.71
25	ATOM	2296	CG1	ILE A	331	38.723	45.190	16.755	1.00 12.47
	ATOM	2297	CD1	ILE A	331	40.105	44.566	16.970	1.00 10.17
	MOTA	2298	С	ILE A	331	36.153	45.306	13.875	1.00 13.43
	ATOM	2299	0	ILE A	-331	35.949	44.125	13.584	1.00 14.21
	ATOM	2300	N	GLY A	332	35.824	46.319	13.077	1.00 12.41
30	MOTA	2301	CA	GLY A	332	35.206	46.086	11.782	1.00 11.36
	MOTA	2302	С	GLY A	332	36.193	45.783	10.675	1.00 12.22
	MOTA	2303	0	GLY A	332	37.166	46.510	10.493	1.00 15.34
	MOTA	2304	N	VAL A	333	35.925	44.718	9.921	1.00 14.28
	MOTA	2305	CA	VAL A	333	36.793	44.280	8.826	1.00 13.45
35	MOTA	2306	СВ	VAL A	333	37.684	43.091	9.256	1.00 14.21
	MOTA	2307	CG1	VAL A	333	38.950	43.057	8.412	1.00 12.25
	MOTA	2308	CG2	VAL A	333	37.971	43.157	10.734	1.00 16.51

	ATOM	2309	С	VAL A	333	35.961	43.770	7.649	1.00 12.59	
	ATOM	2310	0	VAL A	333	34.980	43.058	7.845	1.00 12.06	
	ATOM	2311	N	GLY A	334	36.373	44.103	6.431	1.00 12.29	
	MOTA	2312	CA	GLY A	334	35.643	43.639	5.266	1.00 12.70	
5	ATOM	2313	С	GLY A	334	35.389	44.687	4.198	1.00 15.26	
	MOTA	2314	0	GLY A	334	34.428	45.458	4.284	1.00 13.77	
	MOTA	2315	N	GLY A	335	36.256	44.715	3.187	1.00 14.74	
	MOTA	2316	CA	GLY A	335	36.098	45.658	2.095	1.00 15.16	
	MOTA	2317	С	GLY A	335	36.323	47.127	2.409	1.00 16.18	
10	MOTA	2318	0 ,	GLY A	335	35.736	47.992	1.760	1.00 17.52	
	MOTA	2319	N	VAL A	336	37.154	47.429	3.400	1.00 16.08	
	MOTA	2320	CA	VAL A	336	37.434	48.822	3.723	1.00 14.99	
	MOTA	2321	СВ	VAL A	336	37.869	48.991	5.187	1.00 16.76	
	MOTA	2322	CG1	VAL A	336	38.404	50.408	5.411	1.00 16.87	
15	MOTA	2323	CG2	VAL A	336	36.690	48.720	6.107	1.00 15.70	
	MOTA	2324	С	VAL A	336	38.547	49.319	2.801	1.00 15.40	
	ATOM	2325	0	VAL A	336	39.670	48.805	2.821	1.00 12.42	
	MOTA	2326	N	SER A	337	38.230	50.321	1.990	1.00 15.42	
	ATOM	2327	CA	SER A	337	39.204	50.859	1.051	1.00 17.10	
20	ATOM	2328	СВ	SER A	337	38.895	50.322	-0.351	1.00 19.36	
	ATOM	2329	OG	SER A	337	39.848	50.768	-1.295	1.00 25.95	
	ATOM	2330	С	SER A	337	39.225	52.388	1.030	1.00 16.56	
	ATOM	2331	0	SER A	337	39.991	52.992	0.280	1.00 16.38	
	ATOM	2332	N	SER A	338	38.393	53.012	1.860	1.00 14.64	
25	ATOM	2333	CA	SER A	338	38.320	54.465	1.899	1.00 14.67	
	ATOM	2334	СВ	SER A	338	37.349	54.961	0.819	1.00 14.99	
	ATOM	2335	OG	SER A	338	36.003	54.656	1.164	1.00 12.44	
	ATOM	2336	С	SER A	338	37.848	54.977	3.258	1.00 14.59	
	MOTA	2337	0	SER A	338	37.415	54.201	4.112	1.00 15.42	
30	ATOM	2338	N	GLY A	339	37.922	56.289	3.446	1.00 13.82	
	ATOM	2339	CA	GLY A	339	37.478	56.877	4.694	1.00 13.48	
	MOTA	2340	С	GLY A	339	36.003	56.588	4.906	1.00 14.71	
	ATOM	2341	0	GLY A	339	35.578	56.290	6.023	1.00 15.22	
	ATOM	2342	N	GLN A	340	35.217	56.674	3.834	1.00 13.41	
35	ATOM	2343	CA	GLN A	340	33.786	56.410	3.925	1.00 14.35	
	ATOM	2344	СВ	GLN A	340	33.085	56.650	2.581	1.00 14.35	
	ATOM	2345	CG	GLN A	340	31.618	56.236	2.611	1.00 16.02	

	ATOM	2346	CD	GLN .	A	340	30.880	56.527	1.314	1.00	16.82
	MOTA	2347	OE1	GLN .	Α	340	30.797	57.676	0.873	1.00	16.80
	ATOM	2348	NE2	GLN .	A	340	30.333	55.484	0.701	1.00	15.54
	MOTA	2349	С	GLN .	A	340	33.529	54.978	4.372	1.00	14.64
5	ATOM	2350	0	GLN .	A	340	32.696	54.741	5.253	1.00	16.30
	MOTA	2351	N	ASP .	A	341	34.237	54.028	3.763	1.00	11.52
	ATOM	2352	CA	ASP .	A	341	34.078	52.623	4.127	1.00	12.53
	MOTA	2353	СВ	ASP .	A	341	35.023	51.726	3.310	1.00	11.88
	ATOM	2354	CG	ASP .	A	341	34.767	51.803	1.813	1.00	13.90
10	MOTA	2355	OD1	ASP .	A	341	33.638	52.168	1.416	1.00	15.59
	MOTA	2356	OD2	ASP	A	341	35.689	51.483	1.029	1.00	12.73
	MOTA	2357	С	ASP .	A	341	34.388	52.456	5.611	1.00	11.81
	MOTA	2358	0	ASP	A	341	33.694	51.742	6.332	1.00	11.96
	MOTA	2359	N	ALA	A	342	35.439	53.126	6.067	1.00	11.76
15	MOTA	2360	CA	ALA	A	342	35.833	53.044	7.465	1.00	11.81
	MOTA	2361	СВ	ALA	A	342	37.176	53.738	7.667	1.00	11.59
	MOTA	2362	С	ALA	A	342	34.780	53.655	8.385	1.00	12.36
	MOTA	2363	0	ALA	A	342	34.412	53.057	9.396	1.00	12.99
	MOTA	2364	N	LEU	A	343	34.288	54.840	8.029	1.00	11.54
20	ATOM	2365	CA	LEU	A	343	33.291	55.524	8.845	1.00	12.58
	ATOM	2366	СВ	LEU	A	343	33.119	56.971	8.367	1.00	12.32
	ATOM	2367	CG	LEU	A	343	32.194	57.846	9.219	1.00	11.92
	ATOM	2368	CD1	LEU	A	343	32.722	57.868	10.649	1.00	12.03
	ATOM	2369	CD2	LEU	A	343	32.115	59.269	8.648	1.00	8.59
25	ATOM	2370	С	LEU	A	343	31.928	54.829	8.891	1.00	13.74
	ATOM	2371	0	LEU	A	343	31.238	54.894	9.905	1.00	16.00
	MOTA	2372	N	GLU	A	344	31.521	54.178	7.803	1.00	14.78
	MOTA	2373	CA	GLU	A	344	30.237	53.485	7.817	1.00	14.04
	MOTA	2374	СВ	GLU	A	344	29.900	52.905	6.440	1.00	15.85
30	MOTA	2375	CG	GLU	A	344	29.651	53.948	5.354	1.00	17.05
	MOTA	2376	CD	GLU	A	344	29.008	53.356	4.101	1.00	17.77
	ATOM	2377	OE1	GLU	A	344	29.281	52.178	3.784	1.00	18.22
	MOTA	2378	OE2	GLU	Α	344	28.239	54.071	3.423	1.00	15.65
	ATOM	2379	С	GLU	A	344	30.291	52.365	8.855		14.33
35	ATOM	2380	0	GLU	A	344	29.325	52.135	9.589		14.32
	ATOM	2381	N	LYS	A	345	31.429	51.678	8.925	1.00	14.23
	ATOM	2382	CA	LYS	A	345	31.607	50.597	9.891	1.00	14.82

	MOTA	2383	СВ	LYS A	345	32.874	49.798	9.577	1.00 13.09
	ATOM	2384	CG	LYS A	345	32.684	48.787	8.455	1.00 13.42
	ATOM	2385	CD	LYS A	345	33.950	47.983	8.198	1.00 11.05
	ATOM	2386	CE	LYS A	345	33.644	46.692	7.449	1.00 11.82
5	ATOM	2387	NZ	LYS A	345	32.954	46.910	6.149	1.00 11.61
	ATOM	2388	С	LYS A	345	31.668	51.150	11.310	1.00 14.91
	MOTA	2389	0	LYS A	345	31.127	50.554	12.240	1.00 15.66
	ATOM	2390	N	ILE A	346	32.320	52.295	11.478	1.00 14.92
	ATOM	2391	CA	ILE A	346	32.402	52.911	12.796	1.00 15.79
10	ATOM	2392	CB	ILE A	346	33.369	54.121	12.789	1.00 16.10
	MOTA	2393	CG2	ILE A	346	33.290	54.875	14.116	1.00 14.25
	ATOM	2394	CG1	ILE A	346	34.797	53.623	12.538	1.00 14.97
	ATOM	2395	CD1	ILE A	346	35.817	54.721	12.416	1.00 16.00
	ATOM	2396	С	ILE A	346	31.001	53.350	13.234	1.00 16.25
15	ATOM	2397	0	ILE A	346	30.591	53.083	14.363	1.00 16.13
	ATOM	2398	N	ARG A	347	30.260	54.007	12.342	1.00 15.62
	ATOM	2399	CA	ARG A	347	28.902	54.438	12.679	1.00 16.59
	ATOM	2400	CB	ARG A	347	28.295	55.277	11.548	1.00 17.49
	ATOM	2401	CG	ARG A	347	28.941	56.653	11.343	1.00 18.28
20	ATOM	2402	CD	ARG A	347	28.202	57.433	10.253	1.00 19.60
	ATOM	2403	NE	ARG A	347	26.798	57.641	10.603	1.00 22.54
	ATOM	2404	CZ	ARG A	347	26.277	58.810	10.972	1.00 26.53
	ATOM	2405	NH1	ARG A	347	27.041	59.897	11.035	1.00 26.79
	ATOM	2406	NH2	ARG A	347	24.991	58.890	11.298	1.00 24.26
25	ATOM	2407	С	ARG A	347	28.012	53.219	12.946	1.00 15.67
	ATOM	2408	0	ARG A	347	27.085	53.279	13.747	1.00 15.54
	ATOM	2409	N	ALA A	348	28.301			1.00 15.61
	ATOM	2410	CA	ALA A		27.526		12.464	1.00 15.15
••	ATOM	2411	СВ	ALA A		27.797		11.325	1.00 14.45
30	ATOM	2412	С	ALA A		27.850		13.813	1.00 15.53
	ATOM	2413	0	ALA A		27.090		14.295	1.00 16.19
	ATOM	2414	N	GLY A		28.973		14.423	1.00 13.70
	ATOM	2415	CA	GLY A		29.320		15.722	1.00 12.86
25	ATOM	2416	C	GLY A		30.763		15.980	1.00 14.30
35	ATOM	2417	0	GLY A		31.101		17.096	1.00 14.51
	ATOM	2418	N	ALA A		31.621		14.971	1.00 13.70
	MOTA	2419	CA	ALA A	350	33.019	49.392	15.136	1.00 15.96

	MOTA	2420	СВ	ALA A	A	350	33.643	49.085	13.777	1.00	16.02
	ATOM	2421	С	ALA A	A	350	33.836	50.463	15.841	1.00	16.80
	ATOM	2422	0	ALA A	Ą	350	33.729	51.652	15.527	1.00	17.12
	ATOM	2423	N	SER A	A	351	34.651	50.034	16.801	1.00	17.39
5	ATOM	2424	CA	SER A	A	351	35.520	50.950	17.534	1.00	16.33
	ATOM	2425	СВ	SER A	A	351	35.833	50.400	18.926	1.00	15.21
	ATOM	2426	OG	SER A	A	351	34.706	50.492	19.773	1.00	17.81
	ATOM	2427	С	SER A	A	351	36.817	51.109	16.748	1.00	16.42
	ATOM	2428	0	SER A	A	351	37.501	52.131	16.847	1.00	16.42
10	ATOM	2429	N	LEU A	A	352	37.141	50.076	15.971	1.00	14.86
	ATOM	2430	CA	LEU A	A	352	38.343	50.051	15.142	1.00	15.16
	ATOM	2431	СВ	LEU A	Α	352	39.475	49.292	15.849	1.00	12.61
	ATOM	2432	CG	LEU A	A	352	39.911	49.711	17.252	1.00	14.17
	ATOM	2433	CD1	LEU A	A	352	40.762	48.598	17.870	1.00	10.97
15	ATOM	2434	CD2	LEU Z	A	352	40.676	51.026	17.187	1.00	12.18
	ATOM	2435	С	LEU Z	A	352	38.013	49.313	13.851	1.00	13.91
	ATOM	2436	0	LEU Z	A	352	37.037	48.564	13.792	1.00	11.65
	ATOM	2437	N	VAL A	A	353	38.829	49.523	12.823	1.00	13.16
	ATOM	2438	CA	VAL I	A	353	38.631	48.835	11.558	1.00	14.12
20	ATOM	2439	СВ	VAL A	A	353	38.062	49.767	10.463	1.00	15.89
	MOTA	2440	CG1	VAL 2	A	353	36.764	50.405	10.946	1.00	14.47
	ATOM	2441	CG2	VAL Z	A	353	39.090	50.819	10.078	1.00	13.72
	MOTA	2442	С	VAL Z	A	353	39.966	48.288	11.082	1.00	14.87
	MOTA	2443	0	VAL 2	A	353	41.026	48.706	11.554	1.00	13.31
25	MOTA	2444	N	GLN A	A	354	39.902	47.336	10.158	1.00	14.46
	ATOM	2445	CA	GLN I	A	354	41.092	46.725	9.586		14.10
	ATOM	2446	СВ	GLN	A	354	41.343	45.324	10.168		
	ATOM	2447	CG	GLN I	A	354	41.579	45.243	11.671		15.41
	MOTA	2448	CD	GLN A			41.760	43.796	12.139		18.05
30	MOTA	2449		GLN .			41.012	42.904	11.732		16.89
	ATOM	2450		GLN .	A	354	42.750	43.564	12.997		17.31
	ATOM	2451	С	GLN .	A	354	40.861	46.586	8.088		14.25
	ATOM	2452	0	GLN .			39.726	46.651	7.608		13.09
	ATOM	2453	N	LEU .			41.942	46.395	7.349		14.08
35	ATOM	2454	CA	LEU .			41.835	46.209	5.914		15.37
	MOTA	2455	СВ	LEU .			41.910	47.555	5.180		13.53
	MOTA	2456	CG	LEU .	A	355	43.170	48.420	5.302	1.00	13.38

	ATOM	2457	CD1	LEU A	355	44.270	47.896	4.383	1.00	13.17
	ATOM	2458	CD2	LEU A	355	42.825	49.855	4.938	1.00	10.64
	MOTA	2459	С	LEU A	355	42.965	45.302	5.478	1.00	15.97
	MOTA	2460	0	LEU A	355	43.971	45.169	6.175	1.00	15.47
5	MOTA	2461	N	TYR A	356	42.786	44.656	4.334	1.00	16.99
	ATOM	2462	CA	TYR A	356	43.815	43.784	3.802	1.00	16.94
	MOTA	2463	СВ	TYR A	356	43.645	42.351	4.334	1.00	15.18
	MOTA	2464	CG	TYR A	356	44.707	41.373	3.857	1.00	14.99
	MOTA	2465	CD1	TYR A	356	44.767	40.080	4.362	1.00	15.31
10	ATOM	2466	CE1	TYR A	356	45.700	39.171	3.893	1.00	13.63
	MOTA	2467	CD2	TYR A	356	45.620	41.728	2.869	1.00	15.99
	MOTA	2468	CE2	TYR A	356	46.553	40.826	2.391	1.00	15.09
	MOTA	2469	CZ	TYR A	356	46.588	39.551	2.904	1.00	15.51
	MOTA	2470	ОН	TYR A	356	47.502	38.651	2.408	1.00	17.24
15	ATOM	2471	С	TYR A	356	43.747	43.805	2.285	1.00	16.84
	MOTA	2472	0	TYR A	356	44.675	44.272	1.628	1.00	17.11
	MOTA	2473	N	THR A	357	42.646	43.305	1.735	1.00	16.44
	MOTA	2474	CA	THR A	357	42.478	43.251	0.289	1.00	16.13
	MOTA	2475	СВ	THR A	. 357	41.066	42.747	-0.080	1.00	16.57
20	MOTA	2476	OG1	THR A	. 357	40.874	41.433	0.460	1.00	13.38
	MOTA	2477	CG2	THR A	357	40.899	42.689	-1.588	1.00	16.25
	ATOM	2478	С	THR A	357	42.727	44.596	-0.400	1.00	15.53
	MOTA	2479	0	THR A	357	43.292	44.640	-1.491	1.00	15.19
	ATOM	2480	N	ALA A	358	42.314	45.689	0.233	1.00	14.89
25	MOTA	2481	CA	ALA A	358	42.508	47.012	-0.356	1.00	15.09
	MOTA	2482	СВ	ALA A	. 358	41.917	48.075	0.546	1.00	11.21
	MOTA	2483	С	ALA A	358	43.993	47.277	-0.572	1.00	16.40
	MOTA	2484	0	ALA A	. 358	44.389	47.910	-1.551	1.00	15.75
	MOTA	2485	N	LEU A	359	44.810	46.786	0.355	1.00	16.78
30	ATOM	2486	CA	LEU A	359	46.254	46.967	0.284	1.00	17.50
	MOTA	2487	СВ	LEU A	359	46.912	46.440	1.566	1.00	18.55
	MOTA	2488	CG	LEU A	. 359	48.438	46.517	1.659	1.00	19.27
	MOTA	2489	CD1	LEU A	. 359	48.888	47.968	1.604	1.00	17.73
	MOTA	2490	CD2	LEU A	359	48.897	45.862	2.955	1.00	18.92
35	ATOM	2491	С	LEU A	359	46.844	46.258	-0.932	1.00	16.82
	ATOM	2492	0	LEU F	359	47.773	46.762	-1.558	1.00	15.67
	MOTA	2493	N	THR F	360	46.293	45.096	-1.269	1.00	16.87

	ATOM	2494	CA	THR A	360	46.783	44.325	-2.406	1.00 17.52
	MOTA	2495	СВ	THR A	360	46.203	42.896	-2.402	1.00 17.31
	ATOM	2496	OG1	THR A	360	44.839	42.927	-2.843	1.00 16.95
	MOTA	2497	CG2	THR A	. 360	46.262	42.310	-0.993	1.00 13.68
5	ATOM	2498	С	THR A	360	46.474	44.971	-3.757	1.00 19.33
	ATOM	2499	0	THR A	360	47.081	44.616	-4.768	1.00 21.20
	ATOM	2500	N	PHE F	361	45.538	45.916	-3.783	1.00 19.66
	ATOM	2501	CA	PHE F	361	45.186	46.590	-5.034	1.00 20.68
	ATOM	2502	СВ	PHE P	361	43.663	46.753	-5.171	1.00 21.37
10	MOTA	2503	CG	PHE P	. 361	42.933	45.484	-5.510	1.00 22.02
	MOTA	2504	CD1	PHE P	361	42.179	44.825	-4.554	1.00 18.66
	MOTA	2505	CD2	PHE F	361	43.012	44.944	-6.786	1.00 23.48
	MOTA	2506	CE1	PHE P	361	41.520	43.653	-4.861	1.00 21.36
	MOTA	2507	CE2	PHE A	361	42.353	43.764	-7.099	1.00 22.19
15	MOTA	2508	CZ	PHE P	361	41.607	43.119	-6.134	1.00 21.74
	MOTA	2509	С	PHE A	361	45.814	47.973	-5.168	1.00 21.60
	MOTA	2510	0	PHE F	361	46.323	48.330	-6.226	1.00 23.15
	MOTA	2511	N	TRP F	362	45.777	48.750	-4.091	1.00 23.22
	MOTA	2512	CA	TRP F	362	46.291	50.113	-4.118	1.00 23.91
20	MOTA	2513	СВ	TRP F	362	45.264	51.031	-3.449	1.00 25.18
	ATOM	2514	CG	TRP F	362	43.854	50.699	-3.871	1.00 29.81
	MOTA	2515	CD2	TRP F	362	43.375	50.514	-5.214	1.00 31.67
	MOTA	2516	CE2	TRP F	362	42.015	50.155	-5.126	1.00 31.90
	MOTA	2517	CE3	TRP F	362	43.966	50.614	-6.480	1.00 32.33
25	MOTA	2518	CD1	TRP A	362	42.789	50.457	-3.053	1.00 29.44
	MOTA	2519	NE1	TRP F	362	41.683	50.128		1.00 29.93
	MOTA	2520	CZ2	TRP F	362		49.895	-6.257	
	ATOM	2521		TRP F		43.190	50.355	-7.601	1.00 33.08
•	MOTA	2522	CH2	TRP A		41.839		-7.481	1.00 33.33
30	ATOM	2523	С	TRP P		47.671	50.307		1.00 22.99
	ATOM	2524	0	TRP P		48.318	51.334	-3.713	1.00 22.54
	MOTA	2525	N	GLY A		48.119	49.321	-2.725	1.00 21.66
	ATOM	2526	CA	GLY F		49.422	49.408	-2.094	1.00 20.23
2.5	ATOM	2527	С	GLY P		49.423	50.222	-0.815	1.00 20.57
35	AT.OM	2528	0	GLY A		48.373		-0.358	1.00 20.51
	ATOM	2529	N	PRO A		50.606	50.428	-0.215	1.00 20.18
	ATOM	2530	CD	PRO A	364	51.880	49.909	-0.750	1.00 20.17

	ATOM	2531	CA	PRO A	A	364	50.833	51.183	1.024	1.00	20.20
	ATOM	2532	СВ	PRO A	A	364	52.353	51.338	1.057	1.00	19.15
	ATOM	2533	CG	PRO A	A	364	52.820	50.058	0.437	1.00	19.46
	MOTA	2534	С	PRO A	A	364	50.118	52.533	1.143	1.00	20.39
5	MOTA	2535	0	PRO A	Α	364	49.604	52.870	2.209	1.00	22.16
	MOTA	2536	N	PRO A	A	365	50.079	53.327	0.058	1.00	20.34
	MOTA	2537	CD	PRO A	A	365	50.655	53.090	-1.277	1.00	19.58
	MOTA	2538	CA	PRO A	A	365	49.414	54.635	0.110	1.00	18.92
	MOTA	2539	СВ	PRO Z	A	365	49.568	55.161	-1.318	1.00	19.47
10	MOTA	2540	CG	PRO A	A	365	50.826	54.495	-1.798	1.00	20.15
	MOTA	2541	С	PRO A	A	365	47.950	54.601	0.542	1.00	18.73
	MOTA	2542	0	PRO Z	A	365	47.409	55.610	0.994	1.00	20.00
	ATOM	2543	N	VAL Z	A	366	47.304	53.447	0.411	1.00	18.05
	MOTA	2544	CA	VAL A	A	366	45.898	53.351	0.779	1.00	18.28
15	MOTA	2545	СВ	VAL A	A	366	45.315	51.954	0.450	1.00	18.78
	MOTA	2546	CG1	VAL 2	A	366	45.801	50.926	1.455	1.00	16.44
	MOTA	2547	CG2	VAL 2	A	366	43.800	52.024	0.432	1.00	18.48
	MOTA	2548	С	VAL 2	A	366	45.674	53.645	2.257	1.00	17.96
	ATOM	2549	0	VAL	A	366	44.621	54.152	2.645	1.00	19.15
20	ATOM	2550	N	VAL .	A	367	46.673	53.340	3.076	1.00	17.52
	MOTA	2551	CA	VAL .	A	367	46.576	53.566	4.512	1.00	17.49
	ATOM	2552	СВ	VAL .	Α	367	47.814	53.021	5.234	1.00	16.98
	ATOM	2553	CG1	VAL .	A	367	47.646	53.187	6.728	1.00	14.72
	ATOM	2554	CG2	VAL .	A	367	48.028	51.551	4.857	1.00	17.23
25	ATOM	2555	С	VAL .	A	367	46.415	55.046	4.859	1.00	17.78
	ATOM	2556	0	VAL .	A	367	45.553	55.413	5.655	1.00	17.04
	ATOM	2557	N	GLY .	A	368	47.252	55.891	4.264	1.00	19.06
	ATOM	2558	CA	GLY .	A	368	47.169	57.316	4.525	1.00	19.05
	ATOM	2559	С	GLY .	A	368	45.890	57.877	3.942	1.00	21.25
30	ATOM	2560	0	GLY .	A	368	45.269	58.774	4.522	1.00	20.35
	ATOM	2561	N	LYS .	A	369	45.488	57.332	2.795	1.00	22.08
	ATOM	2562	CA	LYS .	A	369	44.270	57.771	2.118		22.27
	ATOM	2563	СВ	LYS	A	369	44.063	56.989	0.813		21.63
	ATOM	2564	CG	LYS	A	369	43.072	57.652	-0.132	1.00	23.91
35	MOTA	2565	CD	LYS	A	369	42.558	56.712	-1.216		22.29
	ATOM	2566	CE	LYS	A	369	41.611	55.682	-0.630		23.00
	ATOM	2567	ΝZ	LYS	A	369	40.826	54.976	-1.675	1.00	23.30

	ATOM	2568	С	LYS	A	369	43.060	57.561	3.022	1.00	21.33
	MOTA	2569	0	LYS	Α	369	42.255	58.474	3.228	1.00	21.31
	MOTA	2570	N	VAL	A	370	42.936	56.353	3.563	1.00	19.60
	ATOM	2571	CA	VAL	A	370	41.816	56.032	4.436	1.00	18.55
5	ATOM	2572	СВ	VAL	A	370	41.855	54.555	4.889	1.00	16.90
	ATOM	2573	CG1	VAL	A	370	40.748	54.295	5.897	1.00	14.02
	MOTA	2574	CG2	VAL	A	370	41.693	53.636	3.682	1.00	15.42
	MOTA	2575	С	VAL	Α	370	41.794	56.930	5.667	1.00	19.20
	MOTA	2576	0	VAL	A	370	40.740	57.439	6.054	1.00	18.26
10	ATOM	2577	N	LYS	A	371	42.956	57.128	6.280	1.00	19.20
	ATOM	2578	CA	LYS	A	371	43.040	57.974	7.462	1.00	20.21
	MOTA	2579	СВ	LYS	A	371	44.444	57.897	8.075	1.00	20.24
	ATOM	2580	CG	LYS	A	371	44.726	56.563	8.759	1.00	19.89
	ATOM	2581	CD	LYS	A	371	46.018	56.590	9.551	1.00	19.73
15	MOTA	2582	CE	LYS	A	371	47.218	56.781	8.647	1.00	20.14
	ATOM	2583	NZ	LYS	A	371	48.488	56.743	9.416	1.00	20.57
	MOTA	2584	С	LYS	Α	371	42.678	59.426	7.155	1.00	20.46
	ATOM	2585	0	LYS	Α	371	41.956	60.063	7.917	1.00	19.82
	MOTA	2586	N	ARG	A	372	43.177	59.943	6.036	1.00	21.92
20	MOTA	2587	CA	ARG	A	372	42.895	61.319	5.639	1.00	23.46
	MOTA	2588	СВ	ARG	A	372	43.702	61.689	4.390	1.00	24.84
	MOTA	2589	CG	ARG	Α	372	43.493	63.125	3.930	1.00	29.50
	ATOM	2590	CD	ARG	Α	372	44.269	63.452	2.649	1.00	32.37
	ATOM	2591	NE	ARG	A	372	43.723	62.769	1.475	1.00	36.28
25	MOTA	2592	CZ	ARG	A	372	44.333	61.781	0.829	1.00	36.09
	MOTA	2593	NH1	ARG	A	372	45.519	61.352	1.240	1.00	36.80
	ATOM	2594	ин2	ARG	A	372	43.755	61.220	-0.227	1.00	35.12
	MOTA	2595	С	ARG	A	372	41.405	61.541	5.360	1.00	23.29
	ATOM	2596	0	ARG	A	372	40.823	62.530	5.809	1.00	22.86
30	ATOM	2597	N	GLU	A	373	40.791	60.622	4.619	1.00	21.51
	ATOM	2598	CA	GLU	Α	373	39.376	60.744	4.288	1.00	20.70
	ATOM	2599	СВ	GLU	Α	373	38.987	59.727	3.206	1.00	21.22
	ATOM	2600	CG	GLU	Α	373	39.796	59.863	1.918	1.00	21.34
	ATOM	2601	CD	GLU	A	373	39.475	58.778	0.904	1.00	24.10
35	ATOM	2602	OE1	GLU	Α	373	39.326	57.609	1.313	1.00	26.50
	ATOM	2603	OE2	GLU	A	373	39.385	59.085	-0.302	1.00	24.10
	ATOM	2604	С	GLU	Α	373	38.516	60.548	5.525	1.00	20.60

	ATOM	2605	0	GLU	Α	373	37.472	61.181	5.671	1.00	23.32
	ATOM	2606	N	LEU	Α	374	38.951	59.671	6.420	1.00	19.33
	ATOM	2607	CA	LEU	Α	374	38.203	59.429	7.643	1.00	19.28
	ATOM	2608	СВ	LEU	A	374	38.860	58.314	8.462	1.00	16.56
5	ATOM	2609	CG	LEU	Α	374	38.206	58.007	9.816	1.00	15.77
	MOTA	2610	CD1	LEU	Α	374	36.750	57.618	9.607	1.00	12.63
	ATOM	2611	CD2	LEU	Α	374	38.968	56.885	10.520	1.00	14.15
	ATOM	2612	С	LEU	Α	374	38.153	60.713	8.468	1.00	20.85
	ATOM	2613	0	LEU	Α	374	37.091	61.114	8.943	1.00	23.22
10	ATOM	2614	N	GLU	Α	375	39.306	61.353	8.635	1.00	20.32
	MOTA	2615	CA	GLU	A	375	39.398	62.592	9.399	1.00	23.08
	MOTA	2616	СВ	GLU	Α	375	40.840	63.099	9.412	1.00	25.75
	MOTA	2617	CG	GLU	A	375	41.075	64.247	10.371	1.00	32.67
	MOTA	2618	CD	GLU	Α	375	42.494	64.777	10.308	1.00	37.01
15	MOTA	2619	OE1	GLU	A	375	43.438	63.960	10.365	1.00	39.17
	ATOM .	2620	OE2	GLU	A	375	42.664	66.012	10.209	1.00	41.03
	ATOM	2621	С	GLU	A	375	38.487	63.667	8.813	1.00	22.51
	MOTA	2622	0	GLU	A	375	37.720	64.300	9.536	1.00	22.31
	MOTA	2623	N	ALA	A	376	38.571	63.865	7.501	1.00	22.41
20	MOTA	2624	CA	ALA	A	376	37.746	64.859	6.822	1.00	22.75
	MOTA	2625	СВ	ALA	A	376	38.096	64.910	5.325	1.00	21.03
	MOTA	2626	С	ALA	A	376	36.262	64.556	7.003	1.00	23.07
	MOTA	2627	0	ALA	Α	376	35.470	65.461	7.258	1.00	25.45
	MOTA	2628	N	LEU	A	377	35.885	63.285	6.868	1.00	22.11
25	ATOM	2629	CA	LEU	Α	377	34.487	62.890	7.022	1.00	20.80
	MOTA	2630	СВ	LEU	Α	377	34.298	61.417	6.655	1.00	18.44
	ATOM	2631	CG	LEU	A	377	34.362	61.131	5.155	1.00	19.93
	MOTA	2632	CD1	LEU	A	377	34.310	59.637	4.918	1.00	18.66
	MOTA	2633	CD2	LEU	A	377	33.212	61.842	4.449	1.00	15.51
30	MOTA	2634	С	LEU	A	377	33.973	63.131	8.433	1.00	21.64
	MOTA	2635	0	LEU	A	377	32.826	63.536	8.615	1.00	20.67
	MOTA	2636	N	LEU	Α	378	34.816	62.870	9.430	1.00	22.64
	MOTA	2637	CA	LEU	A	378	34.429	63.081	10.822	1.00	23.81
	MOTA	2638	СВ	LEU	A	378	35.555	62.637	11.764	1.00	19.85
35	MOTA	2639	CG	LEU	A	378	35.811	61.131	11.866		18.67
	MOTA	2640	CD1	LEU	A	378	37.123	60.867	12.585	1.00	16.23
	MOTA	2641	CD2	LEU	A	378	34.650	60.466	12.592	1.00	16.80

	ATOM	2642	С	LEU A	378	34.104	64.558	11.059	1.00	24.84
	ATOM	2643	0	LEU A	378	33.079	64.884	11.658	1.00	24.64
	ATOM	2644	N	LYS A	379	34.979	65.443	10.587	1.00	25.82
	ATOM	2645	CA	LYS A	379	34 ⁻ .775	66.880	10.745	1.00	29.39
5	ATOM	2646	СВ	LYS A	379	35.972	67.656	10.191	1.00	30.69
	ATOM	2647	CG	LYS A	379	37.283	67.388	10.916	1.00	34.84
	ATOM	2648	CD	LYS A	379	38.430	68.176	10.299	1.00	36.48
	ATOM	2649	CE	LYS A	379	39.740	67.884	11.014	1.00	40.34
	ATOM	2650	NZ	LYS A	379	40.898	68.607	10.410	1.00	42.08
10	ATOM	2651	С	LYS A	379	33.524	67.295	9.991	1.00	30.60
	ATOM	2652	0	LYS A	379	32.634	67.950	10.531	1.00	30.06
	ATOM	2653	N	GLU A	380	33.476	66.892	8.729	1.00	31.82
	ATOM	2654	CA	GLU A	380	32.365	67.193	7.845	1.00	33.48
	ATOM	2655	CB	GLU A	380	32.618	66.512	6.499	1.00	35.73
15	MOTA	2656	CG	GLU A	380	31.528	66.676	5.475	1.00	42.73
	MOTA	2657	CD	GLU A	380	31.886	66.003	4.164	1.00	46.67
	MOTA	2658	OE1	GLU A	380	31.007	65.891	3.284	1.00	49.93
	MOTA	2659	OE2	GLU A	380	33.055	65.588	4.016	1.00	48.55
	MOTA	2660	С	GLU A	380	31.020	66.757	8.424	1.00	32.66
20	MOTA	2661	0	GLU A	. 380	29.984	67.357	8.131	1.00	31.37
	MOTA	2662	N	GLN A	381	31.032	65.721	9.256	1.00	31.27
	MOTA	2663	CA	GLN A	. 381	29.790	65.231	9.844	1.00	30.92
	MOTA	2664	СВ	GLN A	381	29.709	63.706	9.693	1.00	30.23
	MOTA	2665	CG	GLN A	. 381	29.397	63.274	8.258	1.00	29.83
25	MOTA	2666	CD	GLN A	. 381	29.461	61.772	8.047	1.00	30.64
	MOTA	2667		GLN A		29.032	60.993	8.897		30.52
	MOTA	2668	NE2	GLN A	. 381	29.982	61.359	6.894		
	MOTA	2669	С	GLN A	. 381	29.561	65.652	11.296		30.74
	MOTA	2670	0	GLN A		28.644	65.164	11.956		30.23
30	MOTA	2671	N	GLY A		30.401	66.559	11.786		30.20
	MOTA	2672	CA	GLY A		30.244	67.065	13.138		30.10
	MOTA	2673	С	GLY A		30.755	66.241	14.302		30.25
	MOTA	2674	0	GLY A		30.454	66.554	15.452		30.34
	ATOM	2675	N	PHE A		31.520	65.192	14.033		29.37
35	MOTA	2676	CA	PHE A		32.051	64.377	15.118		28.29
	MOTA	2677	СВ	PHE A		32.310	62.948	14.641		26.27
	ATOM	2678	CG	PHE A	. 383	31.068	62.210	14.240	1.00	24.23

	ATOM	2679	CD1	PHE A	383	30.803	61.945	12.908	1.00	23.49
	ATOM	2680	CD2	PHE A	383	30.164	61.784	15.197	1.00	21.41
	MOTA	2681	CE1	PHE A	383	29.658	61.264	12.535	1.00	22.95
	MOTA	2682	CE2	PHE A	383	29.021	61.106	14.830	1.00	22.42
5	ATOM	2683	CZ	PHE A	383	28.767	60.845	13.496	1.00	22.22
	ATOM	2684	С	PHE A	383	33.346	64.978	15.652	1.00	29.12
	ATOM	2685	0	PHE A	383	34.229	65.354	14.882	1.00	30.28
	ATOM	2686	N	GLY A	384	33.452	65.073	16.973	1.00	28.98
	ATOM	2687	CA	GLY A	384	34.655	65.619	17.573	1.00	29.01
10	ATOM	2688	С	GLY A	384	35.827	64.681	17.363	1.00	29.23
	ATOM	2689	0	GLY A	384	36.983	65.101	17.345	1.00	30.19
	MOTA	2690	N	GLY A	385	35.518	63.399	17.198	1.00	28.93
	MOTA	2691	CA	GLY A	385	36.548	62.402	16.983	1.00	27.17
	ATOM	2692	С	GLY A	385	35.933	61.048	16.690	1.00	26.43
15	ATOM	2693	0	GLY A	385	34.712	60.903	16.701	1.00	26.73
	ATOM	2694	N	VAL A	386	36.781	60.057	16.430	1.00	25.91
	ATOM	2695	CA	VAL A	386	36.336	58.700	16.132	1.00	23.85
	ATOM	2696	СВ	VAL A	386	37.545	57.736	16.010	1.00	24.56
	MOTA	2697	CG1	VAL A	386	37.061	56.300	15.881	1.00	22.43
20	MOTA	2698	CG2	VAL A	386	38.400	58.119	14.812	1.00	24.35
	ATOM	2699	С	VAL A	386	35.413	58.174	17.224	1.00	24.03
	ATOM	2700	0	VAL A	386	34.355	57.608	16.940	1.00	23.33
	MOTA	2701	N	THR A	387	35.825	58.368	18.473	1.00	23.99
	ATOM	2702	CA	THR A	387	35.068	57.909	19.632	1.00	24.92
25	MOTA	2703	СВ	THR A	387	35.716	58.406	20.939	1.00	26.36
	MOTA	2704	OG1	THR A	387	37.104	58.047	20.950	1.00	30.29
	ATOM	2705	CG2	THR A	387	35.034	57.782	22.144	1.00	24.51
	ATOM	2706	С	THR A	387	33.616	58.369	19.612	1.00	24.16
	ATOM	2707	0	THR A	387	32.723	57.652	20.057	1.00	24.55
30	MOTA	2708	N	ASP A	388	33.389	59.570	19.094	1.00	23.85
	MOTA	2709	CA	ASP A	388	32.052	60.144	19.024	1.00	23.14
	MOTA	2710	СВ	ASP A	388	32.154	61.640	18.724	1.00	26.77
	MOTA	2711	CG	ASP A	388	32.878	62.399	19.806	1.00	30.24
	MOTA	2712	OD1	ASP A	388	33.722	63.260	19.469	1.00	33.20
35	MOTA	2713	OD2	ASP A	388	32.597	62.138	20.996	1.00	33.14
	MOTA	2714	С	ASP A	388	31.187	59.486	17.960	1.00	21.34
	ATOM	2715	0	ASP A	388	29.968	59.454	18.077	1.00	19.97

	ATOM	2716	N	ALA A	389	31.828	58.968	16.918	1.00	20.96
	MOTA	2717	CA	ALA A	389	31.122	58.335	15.815	1.00	19.43
	MOTA	2718	СВ	ALA A	389	31.944	58.481	14.536	1.00	20.22
	MOTA	2719	С	ALA A	389	30.762	56.870	16.036	1.00	18.17
5	MOTA	2720	0	ALA A	389	29.841	56.357	15.399	1.00	19.04
	MOTA	2721	N	ILE A	390	31.485	56.191	16.923	1.00	17.77
	MOTA	2722	CA	ILE A	390	31.222	54.774	17.193	1.00	15.58
	ATOM	2723	СВ	ILE A	390	32.105	54.251	18.355	1.00	15.12
	MOTA	2724	CG2	ILE A	390	31.802	52.784	18.617	1.00	12.26
10	ATOM	2725	CG1	ILE A	390	33.589	54.412	18.005	1.00	15.87
	ATOM	2726	CD1	ILE A	390	34.530	54.143	19.163	1.00	13.96
	ATOM	2727	С	ILE A	390	29.753	54.514	17.539	1.00	15.15
	ATOM	2728	0	ILE A	390	29.254	54.982	18.561	1.00	16.23
	ATOM	2729	N	GLY A	391	29.066	53.774	16.676	1.00	15.83
15	ATOM	2730	CA	GLY A	391	27.665	53.450	16.907	1.00	15.35
	ATOM	2731	С	GLY A	391	26.649	54.555	16.651	1.00	15.84
	ATOM	2732	0	GLY A	391	25.460	54.366	16.896	1.00	15.88
	ATOM	2733	N	ALA A	392	27.100	55.695	16.139	1.00	16.70
	ATOM	2734	CA	ALA A	392	26.214	56.832	15.877	1.00	18.63
20	ATOM	2735	СВ	ALA A	392	26.985	57.936	15.145	1.00	16.34
	ATOM	2736	С	ALA A	392	24.928	56.505	15.114	1.00	19.71
	ATOM	2737	0	ALA A	392	23.893	57.130	15.355		19.45
	ATOM	2738	N	ASP A	393	24.980	55.541	14.196		20.17
	ATOM	2739	CA	ASP A		23.786	55.187	13.424		20.89
25	ATOM	2740	СВ	ASP A	393	24.099		12.356	1.00	21.04
	ATOM	2741	CG	ASP A		24.899	54.680	11.185		25.12
	ATOM			ASP A				10.973		
	ATOM	2743	OD2	ASP A		25.505	53.860	10.459		26.24
•	ATOM	2744	С	ASP A		22.678	54.646	14.321		21.66
30	ATOM	2745	0	ASP A		21.495	54.824	14.034		21.79
	ATOM	2746	N	HIS A		23.068	53.980	15.404		21.55
	ATOM	2747	CA	HIS A		22.113	53.388	16.334		22.75
	ATOM	2748	СВ	HIS A		22.825	52.353	17.208		17.96
2.5	ATOM	2749	CG	HIS A		23.439	51.228	16.430		18.66
35	ATOM	2750		HIS A		24.567	51.172	15.683		15.93
	ATOM	2751		HIS A		22.860	49.979	16.342		15.56
	ATOM	2752	CE1	HIS A	394	23.605	49.204	15.576	1.00	15.23

	ATOM	2753	NE2	HIS	A	394	24.647	49.903	15.163	1.00	16.20
	ATOM	2754	С	HIS	A	394	21.415	54.414	17.222	1.00	25.26
	MOTA	2755	0	HIS	Α	394	20.369	54.132	17.798	1.00	26.08
	ATOM	2756	N	ARG	Α	395	21.996	55.602	17.332	1.00	28.23
5	ATOM	2757	CA	ARG	Α	395	21.426	56.647	18.170	1.00	32.93
	MOTA	2758	СВ	ARG	Α	395	22.545	57.387	18.911	1.00	32.49
	MOTA	2759	CG	ARG	Α	395	23.385	56.481	19.809	1.00	34.34
	ATOM	2760	CD	ARG	Α	395	24.306	57.282	20.723	1.00	34.96
	MOTA	2761	NE	ARG	A	395	25.452	57.866	20.029	1.00	36.24
10	ATOM	2762	CZ	ARG	Α	395	26.561	57.199	19.715	1.00	36.79
	MOTA	2763	NH1	ARG	A	395	27.552	57.817	19.083	1.00	35.26
	MOTA	2764	NH2	ARG	Α	395	26.684	55.916	20.038	1.00	35.52
	ATOM	2765	С	ARG	Α	395	20.577	57.637	17.377	1.00	36.89
	MOTA	2766	0	ARG	Α	395	19.863	58.453	17.956	1.00	38.27
15	MOTA	2767	N	ARG	Α	396	20.650	57.561	16.053	1.00	41.09
	ATOM	2768	CA	ARG	Α	396	19.876	58.454	15.202	1.00	45.29
	ATOM	2769	СВ	ARG	Α	396	20.594	58.671	13.862	1.00	47.75
	ATOM	2770	CG	ARG	A	396	20.593	57.476	12.923	1.00	50.83
	ATOM	2771	CD	ARG	A	396	21.562	57.692	11.761	1.00	53.11
20	ATOM	2772	NE	ARG	A	396	21.411	59.015	11.162	1.00	55.40
	ATOM	2773	CZ	ARG	Α	396	20.296	59.453	10.587	1.00	57.11
	ATOM	2774	NH1	ARG	Α	396	20.246	60.674	10.069	1.00	57.93
	ATOM	2775	NH2	ARG	A	396	19.231	58.668	10.524	1.00	58.62
	ATOM	2776	С	ARG	Α	396	18.478	57.885	14.970	1.00	46.68
25	ATOM	2777	0	ARG	A	396	17.498	58.657	15.061	1.00	47.16
	ATOM	2778	OXT	ARG	Α	396	18.379	56.671	14.696	1.00	48.86
	TER	1		ARG	A	396					
	END										

Table 31

	CRYST1	90.6	92 9	0.692	123.221	90.00	90.00	120.00 P	32 2	1 12
5	ORIGX1		1.000	000	0.000000	0.00000	0	0.00000		
	ORIGX2		0.000	000	1.000000	0.00000	0	0.00000		
	ORIGX3		0.000	000	0.000000	1.00000	0	0.00000		
	SCALE1		0.011	026	0.006366	0.00000	0	0.00000		
	SCALE2		0.000	000	0.012732	0.00000	0	0.00000		
10	SCALE3		0.000	000	0.000000	0.00811	5	0.00000		
	ATOM	2779	N1	FMN	398	48.982	36.086	32.351	1.00	13.65
	ATOM	2780	C2	FMN	398	48.621	35.465	31.196	1.00	15.79
	ATOM	2781	02	FMN	398	49.207	35.572	30.149	1.00	16.16
	ATOM	2782	N3	FMN	398	47.453	34.623	31.236	1.00	15.84
15	ATOM	2783	C4	FMN	398	46.691	34.411	32.352	1.00	15.69
	ATOM	2784	04	FMN	398	45.690	33.661	32.297	1.00	18.13
	ATOM	2785	C4A	FMN	398	47.084	35.083	33.587	1.00	14.70
	ATOM	2786	N5	FMN	398	46.390	34.934	34.726	1.00	16.27
	ATOM	2787	C5A	FMN	398	46.793	35.607	35.867	1.00	13.36
20	ATOM	2788	С6	FMN	398	46.064	35.496	37.124	1.00	10.34
	ATOM	2789	C7	FMN	398	46.419	36.162	38.280	1.00	11.27
	ATOM	2790	C7M	FMN	398	45.627	36.037	39.591	1.00	12.50
	ATOM	2791	C8	FMN	398	47.597	37.031	38.258	1.00	12.24
	MOTA	2792	C8M	FMN	398	48.067	37.811	39.455	1.00	12.12
25	ATOM	2793	С9	FMN	398	48.309	37.142	37.069	1.00	11.89
	ATOM	2794	C9A	FMN	398	47.965	36.475	35.873	1.00	13.80
	ATOM	2795	N10	FMN	398	48.680	36.591	34.639	1.00	15.34
	ATOM	2796	C10	FMN	398	48.300	35.943	33.489	1.00	15.60
	ATOM	2797	C1*	FMN	398	49.889	37.455	34.581	1.00	13.44
30	ATOM	2798	C2*	FMN	398	49.650	38.935	34.357	1.00	13.38
	ATOM	2799	02*	FMN	398	49.014	39.163	33.083	1.00	14.11
	MOTA	2800	C3*	FMN	398	50.988	39.727	34.356	1.00	12.71
	ATOM	2801	03*	FMN	398	51.831	39.225	33.274	1.00	11.59
	MOTA	2802	C4*	FMN	398	51.799	39.592	35.655	1.00	12.19
35	ATOM	2803	04*	FMN	398	50.908	39.382	36.778	1.00	9.70
	ATOM	2804	C5*	FMN	398	52.667	40.790	35.978	1.00	13.16
	ATOM	2805	05*	FMN	398	51.923	42.012	36.092	1.00	14.37

	ATOM	2806	P	FMN	398	51.422	42.666	37.461	1.00 15.94
	ATOM	2807	01P	FMN	398	50.317	41.745	37.973	1.00 15.70
	ATOM	2808	02P	FMN	398	50.895	44.013	37.089	1.00 15.09
	ATOM	2809	03P	FMN	398	52.652	42.679	38.391	1.00 16.83
5	ATOM	2810	N1	ORO	399	49.032	32.288	36.152	1.00 18.25
	ATOM	2811	C2	ORO	399	50.025	33.225	35.839	1.00 17.42
	ATOM	2812	03	ORO	399	50.604	33.882	36.700	1.00 19.91
	MOTA	2813	N4	ORO	399	50.326	33.372	34.500	1.00 15.40
	MOTA	2814	C5	ORO	399	49.749	32.688	33.445	1.00 16.04
10	MOTA	2815	06	ORO	399	50.091	32.895	32.302	1.00 15.47
	MOTA	2816	C7	ORO	399	48.718	31.722	33.822	1.00 15.22
	ATOM	2817	C8	ORO	399	48.415	31.571	35.132	1.00 18.83
	MOTA	2818	С9	ORO	399	47.365	30.573	35.616	1.00 19.59
	MOTA	2819	010	ORO	399	47.594	29.817	36.545	1.00 21.79
15	MOTA	2820	011	ORO	399	46.323	30.677	34.919	1.00 21.84
	MOTA	2821	C1	INH	400	35.607	47.222	40.518	1.00 24.78
	MOTA	2822	C2	INH	400	35.062	48.080	41.508	1.00 23.86
	MOTA	2823	C3	INH	400	35.535	48.013	42.863	1.00 24.02
	MOTA	2824	C4	INH	400	36.569	47.072	43.218	1.00 24.44
20	MOTA	2825	C5	INH	400	37.128	46.196	42.209	1.00 22.48
	MOTA	2826	C6	INH	400	38.133	45.216	42.490	1.00 22.48
	MOTA	2827	C7	INH	400	36.623	46.291	40.860	1.00 22.67
	MOTA	2828	C8	INH	400	38.032	44.391	43.667	1.00 20.92
	MOTA	2829	C9	INH	400	38.992	43.378	43.923	1.00 22.05
25	MOTA	2830	C10	INH	400	40.088	43.146	43.018	1.00 21.93
	ATOM	2831		INH	400	40.994	42.107	43.283	1.00 19.47
	ATOM		C12		400				1.00 20.67
	ATOM	2833		INH	400	41.192	43.777	40.999	1.00 23.37
20	ATOM	2834		INH	400	39.242	44.990	41.586	1.00 21.17
30	ATOM	2835		INH	400	41.311	41.338	44.410	1.00 21.10
	ATOM	2836		INH	400	42.300	40.258	44.384	1.00 18.97
	ATOM	2837		INH	400	40.713	41.559	45.466	1.00 24.88
	ATOM	2838		INH	400	42.725	39.520	43.331	1.00 18.81
25	ATOM	2839		INH	400	43.719	38.514	43.792	1.00 18.57
35	ATOM	2840		INH	400	44.202	39.048	45.143	1.00 18.27
	ATOM	2841		INH	400	42.981	39.825	45.638	1.00 16.93
	MOTA	2842	C22	INH	400	42.339	39.571	41.901	1.00 19.11

	MOTA	2843	023	INH	400	41.535	40.384	41.444	1.00	20.87
	MOTA	2844	024	INH	400	42.882	38.689	41.022	1.00	19.27
	MOTA	2845	025	INH	400	34.997	48.846	43.813	1.00	26.96
	MOTA	2846	C26	INH	400	33.649	48.435	44.070	1.00	28.19
5	ATOM	2847	C	ACT	401	66.322	48.953	35.993	1.00	31.77
	MOTA	2848	0	ACT	401	67.328	49.644	36.341	1.00	30.18
	MOTA	2849	OXT	ACT	401	65.833	48.910	34.832	1.00	32.50
	MOTA	2850	СНЗ	ACT	401	65.696	48.119	37.112	1.00	30.07
	MOTA	2851	S	SO4	402	34.333	40.203	6.362	1.00	35.89
10	MOTA	2852	01	SO4	402	34.721	41.545	5.893	1.00	38.88
	MOTA	2853	02	SO4	402	35.521	39.335	6.395	1.00	37.76
	MOTA	2854	03	SO4	402	33.760	40.298	7.717	1.00	39.48
	MOTA	2855	04	SO4	402	33.326	39.642	5.444	1.00	38.73
	MOTA	2856	S	SO4	403	36.080	30.092	37.260	1.00	59.73
15	MOTA	2857	01	SO4	403	36.357	31.501	36.909	1.00	59.29
	MOTA	2858	02	SO4	403	37.023	29.206	36.551	1.00	57.64
	ATOM	2859	03	SO4	403	36.237	29.908	38.718	1.00	59.62
	ATOM	2860	04	SO4	403	34.697	29.758	36.868	1.00	59.77
	MOTA	2861	OH2	TIP	1	60.060	30.725	53.700	1.00	3.85
20	MOTA	2862	OH2	TIP	2	52.367	45.630	35.605	1.00	9.31
	ATOM	2863	OH2	TIP	3	58.030	49.528	35.970	1.00	11.67
	MOTA	2864	OH2	TIP	4	50.550	36.383	40.910	1.00	9.15
	ATOM	2865	OH2	TIP	5	58.035	48.907	21.969	1.00	15.13
	ATOM	2866	OH2	TIP	6	49.097	40.172	29.373	1.00	13.46
25	ATOM	2867	OH2	TIP	7	56.666	28.089	42.316	1.00	12.52
	ATOM	2868	OH2	TIP	8	37.855	27.076	38.255	1.00	22.25
	ATOM	2869	OH2	TIP	9	59.045	31.393	34.498	1.00	17.43
	ATOM	2870	OH2	TIP	10	61.985	46.199	19.869	1.00	20.90
	ATOM	2871	OH2	TIP	11	33.724	41.447	21.286	1.00	16.51
30	ATOM	2872	OH2	TIP	12	64.454	32.508	43.713	1.00	25.03
	MOTA	2873	OH2	TIP	13	35.247	43.126	16.686	1.00	22.09
	ATOM	2874	OH2	TIP	14	58.994	42.404	49.027	1.00	12.52
	ATOM	2875	OH2	TIP	15	57.581	44.787	53.944	1.00	22.80
	ATOM	2876	OH2	TIP	16	39.067	31.534	29.620	1.00	16.07
35	ATOM	2877	OH2	TIP	17	42.346	60.681	46.719	1.00	34.08
	ATOM	2878	OH2	TIP	18	36.301	36.571	33.168	1.00	15.41
	ATOM	2879	OH2	TIP	19	41.935	30.030	45.729	1.00	19.39

	MOTA	2880	OH2	TIP	20	42.353	40.596	31.923	1.00	13.54
	MOTA	2881	ОН2	TIP	21	40.520	40.057	13.943	1.00	15.83
	MOTA	2882	OH2	TIP	22	39.285	53.585	28.554	1.00	17.52
	MOTA	2883	ОН2	TIP	23	35.343	25.302	23.916	1.00	17.49
5	MOTA	2884	ОН2	TIP	24	60.804	49.477	36.760	1.00	18.25
	ATOM	2885	ОН2	TIP	25	39.416	24.528	14.376	1.00	27.09
	MOTA	2886	OH2	TIP	26	50.670	45.964	38.922	1.00	12.31
	MOTA	2887	ОН2	TIP	27	51.502	36.631	52.577	1.00	18.23
	ATOM	2888	OH2	TIP	28	54.818	52.146	42.516	1.00	22.73
10	MOTA	2889	OH2	TIP	29	33.864	26.690	25.789	1.00	19.94
	ATOM	2890	ОН2	TIP	30	65.696	40.626	33.942	1.00	21.89
	MOTA	2891	OH2	TIP	31	56.168	51.708	18.745	1.00	29.01
	MOTA	2892	OH2	TIP	32	54.982	30.599	52.611	1.00	18.21
	MOTA	2893	OH2	TIP	33	38.144	40.983	5.331	1.00	31.87
15	MOTA	2894	OH2	TIP	34	33.676	34.519	15.071	1.00	23.56
	MOTA	2895	OH2	TIP	35	62.221	42.445	44.141	1.00	20.83
	MOTA	2896	OH2	TIP	36	59.679	52.708	39.168	1.00	20.48
	MOTA	2897	OH2	TIP	37	51.513	48.458	44.581	1.00	28.15
	ATOM	2898	OH2	TIP	38	51.079	45.614	43.529	1.00	16.70
20	MOTA	2899	OH2	TIP	39	32.029	49.946	26.001	1.00	26.17
	MOTA	2900	OH2	TIP	40	35.203	32.402	15.435	1.00	26.10
	MOTA	2901	ОН2	TIP	41	68.467	50.979	34.362	1.00	21.55
	MOTA	2902	OH2	TIP	42	52.544	29.461	52.556	1.00	23.72
	MOTA	2903	ОН2	TIP	43	48.533	27.810	33.536	1.00	19.98
25	MOTA	2904	OH2	TIP	44	63.782	52.953	32.497	1.00	19.82
	ATOM	2905	OH2	TIP	45	66.426	48.144	40.544	1.00	15.64
	MOTA	2906	OH2	TIP	46	63.396	36.742	31.190	1.00	34.59
	ATOM	2907	OH2	TIP	47	65.569	53.618	20.355	1.00	33.40
	ATOM	2908	OH2	TIP	48	43.542	29.587	9.732	1.00	24.10
30	ATOM	2909	OH2	TIP	49	72.437	31.865	28.980	1.00	27.82
	ATOM	2910	OH2	TIP	50	38.905	23.141	44.956	1.00	37.59
	MOTA	2911	OH2	TIP	51	42.809	30.953	32.234	1.00	27.21
	ATOM	2912	OH2	TIP	52	43.248	53.783	44.946	1.00	21.23
	ATOM	2913	OH2	TIP	53	53.351	36.194	8.506	1.00	36.32
35	ATOM	2914	OH2	TIP	54	56.693	24.667	43.143		39.40
	MOTA	2915	OH2	TIP	55	66.806	41.088	31.475		30.36
	MOTA	2916	OH2	TIP	56	37.574	23.750	20.244	1.00	41.77

	ATOM	2917	OH2	TIP	57	70.299	32.603	18.834	1.00	32.10
	ATOM	2918	OH2	TIP	58	54.515	58.147	39.651	1.00	28.68
	ATOM	2919	OH2	TIP	59	51.721	56.894	43.342	1.00	19.99
	MOTA	2920	OH2	TIP	60	38.442	41.829	13.935	1.00	25.07
5	ATOM	2921	OH2	TIP	61	43.655	62.897	37.603	1.00	43.03
	ATOM	2922	OH2	TIP	62	45.750	42.115	46.652	1.00	26.72
	ATOM	2923	OH2	TIP	63	69.417	37.196	19.214	1.00	23.58
	ATOM	2924	OH2	TIP	64	31.743	44.583	31.047	1.00	22.02
	ATOM	2925	OH2	TIP	65	31.729	43.466	28.354	1.00	20.77
10	ATOM	2926	OH2	TIP	66	49.885	61.184	42.216	1.00	36.18
	MOTA	2927	OH2	TIP	67	34.384	35.165	36.872	1.00	40.36
	MOTA	2928	OH2	TIP	68	51.653	37.967	55.085	1.00	22.01
	ATOM	2929	OH2	TIP	69	29.355	39.640	25.875	1.00	26.40
	ATOM	2930	OH2	TIP	70	42.464	21.852	34.480	1.00	28.86
15	MOTA	2931	OH2	TIP	71	45.229	22.919	34.845	1.00	31.09
	ATOM	2932	OH2	TIP	72	42.964	20.824	23.475	1.00	27.79
	ATOM	2933	OH2	TIP	73	60.952	63.544	36.337	1.00	27.14
	ATOM	2934	OH2	TIP	74	63.312	23.939	22.011	1.00	37.06
	MOTA	2935	OH2	TIP	75	66.301	28.555	23.465	1.00	28.01
20	ATOM	2936	OH2	TIP	76	60.676	38.163	57.470	1.00	34.78
	ATOM	2937	OH2	TIP	77	52.460	26.054	39.635	1.00	40.06
	MOTA	2938	OH2	TIP	78	62.406	35.903	49.759	1.00	27.79
	MOTA	2939	OH2	TIP	79	52.178	53.523	44.125	1.00	35.13
	MOTA	2940	OH2	TIP	80	42.554	58.098	40.280	1.00	33.38
25	ATOM	2941	OH2	TIP	81	58.030	41.857	58.164	1.00	30.26
	MOTA	2942	OH2	TIP	82	59.733	49.051	19.405	1.00	27.97
	MOTA	2943	OH2	TIP	83	36.034	27.617	34.567	1.00	34.15
	ATOM	2944	OH2	TIP	84	26.557	35.421	20.896	1.00	29.67
	ATOM	2945	OH2	TIP	85	55.473	51.440	48.459	1.00	33.01
30	MOTA	2946	OH2	TIP	86	42.649	50.960	16.828	1.00	31.38
	ATOM	2947	OH2	TIP	87	66.170	32.041	14.438	1.00	35.56
	ATOM	2948	OH2	TIP	88	70.923	46.419	19.569	1.00	29.27
	MOTA	2949	OH2	TIP	89	56.751	32.577	34.130	1.00	25.63
	MOTA	2950	OH2	TIP	90	42.493	35.941	41.050	1.00	33.08
35	ATOM	2951	OH2	TIP	91	30.681	28.816	16.556	1.00	27.33
	ATOM	2952	OH2	TIP	92	46.460	24.293	44.169	1.00	34.16
	ATOM	2953	OH2	TIP	93	48.432	24.353	11.034	1.00	34.69

	ATOM	2954	ОН2	TIP	94	52.557	59.642	21.794	1.00	25.61
	ATOM	2955	OH2	TIP	95	41.084	32.123	47.677	1.00	29.77
	ATOM	2956	ОН2	TIP	96	46.793	44.614	13.529	1.00	44.70
	ATOM	2957	ОН2	TIP	97	53.521	22.830	45.046	1.00	29.14
5	ATOM	2958	OH2	TIP	98	29.812	30.485	31.098	1.00	33.09
	ATOM	2959	ОН2	TIP	99	32.089	40.898	27.978	1.00	25.82
	ATOM	2960	OH2	TIP	100	52.375	32.327	7.043	1.00	32.25
	ATOM	2961	OH2	TIP	101	62.327	42.900	40.662	1.00	22.77
	ATOM	2962	ОН2	TIP	102	64.175	37.371	41.404	1.00	35.08
10	ATOM	2963	OH2	TIP	103	59.638	59.791	38.765	1.00	31.48
	MOTA	2964	OH2	TIP	104	32.709	26.673	29.792	1.00	28.88
	MOTA	2965	OH2	TIP	105	51.017	50.179	13.353	1.00	42.02
	MOTA	2966	OH2	TIP	106	44.398	28.252	22.452	1.00	27.78
	ATOM	2967	ОН2	TIP	107	47.749	23.069	33.446	1.00	41.42
15	ATOM	2968	OH2	TIP	108	45.086	48.695	49.919	1.00	43.00
	MOTA	2969	OH2	TIP	109	44.998	67.007	24.798	1.00	47.56
	ATOM	2970	OH2	TIP	110	54.365	45.236	14.693	1.00	40.44
	MOTA	2971	OH2	TIP	111	53.518	47.725	14.954	1.00	35.35
	MOTA	2972	OH2	TIP	112	59.581	28.126	10.019	1.00	33.27
20	MOTA	2973	OH2	TIP	113	64.379	34.664	37.556	1.00	37.42
	MOTA	2974	OH2	TIP	114	35.688	41.444	14.660		30.13
	MOTA	2975	OH2	TIP	115	37.327	48.122	13.936		33.07
	MOTA	2976	OH2	TIP	116	39.099	24.372	17.130		44.61
	MOTA	2977	OH2	TIP	117	66.062	41.012	46.358		29.39
25	ATOM	2978	OH2	TIP	118	47.642	36.763	4.574		35.65
	MOTA	2979	OH2	TIP	119	65.270	38.095	32.836		41.52
	MOTA	2980		TIP	120	48.628	65.085	34.950		37.26
	ATOM	2981		TIP	121	25.753	46.099	24.755		44.46
20	MOTA	2982		TIP	122	37.685	32.073	40.100		37.09
30	MOTA	2983		TIP	123	63.723	66.856	33.778		37.70
	MOTA	2984		TIP	124	61.504	51.786	18.568		41.55
	ATOM	2985		TIP	125	46.476	24.073	31.375		23.40
	ATOM	2986		TIP	126	60.304	30.723	48.847		32.91
25	ATOM	2987		TIP	127	54.304	24.230	35.850		41.67
35	ATOM	2988		TIP	129	66.979	38.849	45.036		41.82
	ATOM	2989		TIP	130	42.233	35.385	38.170		27.93
	MOTA	2990	OH2	TIP	131	60.719	30.545	31.856	1.00	38.36

	ATOM	2991	ОН2	TIP		132		40.738	39.057	2.892	1.00	32.59
	ATOM	2992	ОН2	TIP		133		62.708	23.986	25.043	1.00	42.43
	ATOM	2993	ОН2	TIP		134		35.497	41.399	19.114	1.00	25.27
	ATOM	2994	ОН2	TIP		135		53.296	39.609	11.264	1.00	38.06
5	ATOM	2995	ОН2	TIP		136		32.634	36.735	38.827	1.00	45.72
	ATOM	2996	ОН2	TIP		137		51.884	57.784	17.735	1.00	44.09
	ATOM	2997	ОН2	TIP		138		52.590	51.257	45.492	1.00	41.96
	ATOM	2998	OH2	TIP		139		69.561	35.796	14.477	1.00	45.47
	ATOM	2999	OH2	TIP		140		43.069	52.778	14.466	1.00	38.58
10	ATOM	3000	OH2	TIP		141		44.350	60.071	23.707	1.00	34.18
	ATOM	3001	OH2	TIP		142		40.145	56.197	29.092	1.00	32.21
	ATOM	3002	OH2	TIP		143		68.741	38.750	17.070	1.00	47.07
	ATOM	3003	OH2	TIP		144		42.642	19.568	29.836	1.00	36.77
	MOTA	3004	ОН2	TIP		145		40.366	33.392	37.870	1.00	31.48
15	MOTA	3005	OH2	TIP		146		71.730	51.850	23.663	1.00	42.26
	MOTA	3006	OH2	TIP		147		49.116	40.579	56.678	1.00	46.10
	MOTA	3007	OH2	TIP		148		47.913	30.808	5.178	1.00	46.45
	MOTA	3008	OH2	TIP		149		38.099	34.045	36.957	1.00	42.98
	MOTA	3009	OH2	TIP		150		64.592	30.466	24.304	1.00	40.67
20	ATOM	3010	OH2	TIP		151		28.792	49.500	27.018	1.00	47.07
	MOTA	3011	OH2	TIP		152		38.062	36.480	35.087	1.00	34.16
	ATOM	3012	OH2	TIP		153		55.920	46.433	49.521	1.00	45.73
	MOTA	3013	OH2	TIP		154		44.328	37.046	1.316	1.00	46.31
	TER	1		TIP		154						
25	MOTA	1	СВ	MET	A	30	•	31.574	53.310	46.169	1.00	84.87
	MOTA	2	CG	MET	A	30		31.623	52.655	47.538	1.00	86.03
	ATOM	3	SD	MET	A	30		30.794	51.051	47.554	1.00	88.57
	ATOM	4	CE	MET	A	30		29.099	51.544	47.904	1.00	88.24
	ATOM	5	С	MET	A	30		32.230	55.176	44.652	1.00	83.28
30	MOTA	6	0	MET	A	30		33.176	55.117	43.866	1.00	82.94
	MOTA	7	N	MET	Α	30		31.862	55.601	47.078	1.00	84.20
	MOTA	8	CA	MET	Α	30		32.359	54.621	46.067	1.00	84.06
	ATOM	9	N	ALA	Α	31		31.054	55.713	44.336	1.00	82.18
	ATOM	10	CA	ALA	A	31		30.785	56.279	43.017	1.00	80.47
35	ATOM	11	СВ	ALA	A	31		29.325	56.713	42.925		80.79
	ATOM	12	С	ALA	A	31		31.701	57.461	42.704	1.00	79.07
	MOTA	13	0	ALA	Α	31		32.146	57.628	41.567	1.00	78.92

	ATOM	14	N	THR A	32	31.976	58.280	43.716	1.00 77.24
	MOTA	15	CA	THR A	32	32.841	59.446	43.550	1.00 74.71
	MOTA	16	СВ	THR A	32	33.148	60.116	44.908	1.00 75.25
	ATOM	17	OG1	THR A	32	31.953	60.706	45.435	1.00 74.93
5	MOTA	18	CG2	THR A	32	34.216	61.190	44.743	1.00 75.54
	MOTA	19	С	THR A	32	34.163	59.066	42.892	1.00 71.95
	MOTA	20	0	THR A	32	34.569	59.666	41.896	1.00 72.33
	ATOM	21	N	GLY A	33	34.831	58.065	43.457	1.00 68.40
	MOTA	22	CA	GLY A	33	36.100	57.626	42.908	1.00 63.03
10	MOTA	23	С	GLY A	33	37.268	58.373	43.508	1.00 58.58
	MOTA	24	0	GLY A	33 ·	37.724	59.370	42.951	1.00 59.69
	MOTA	25	N	ASP A	34	37.758	57.889	44.643	1.00 53.42
	MOTA	26	CA	ASP A	34	38.876	58.532	45.315	1.00 47.16
	MOTA	27	СВ	ASP A	34	38.365	59.272	46.551	1.00 46.88
15	ATOM	28	CG	ASP A	34	39.476	59.876	47.365	1.00 45.83
	ATOM	29	OD1	ASP A	34	40.058	59.148	48.193	1.00 46.55
	ATOM	30	OD2	ASP A	34	39.772	61.075	47.172	1.00 46.46
	MOTA	31	С	ASP A	34	39.979	57.542	45.687	1.00 44.21
	MOTA	32	0	ASP A	34	39.731	56.508	46.310	1.00 40.97
20	ATOM	33	N	GLU A	35	41.202	57.878	45.290	1.00 41.79
	ATOM	34	CA	GLU A	35	42.369	57.041	45.536	1.00 39.52
	ATOM	35	СВ	GLU A	35	43.618	57.733	44.988	1.00 39.60
	ATOM	36	CG	GLU A	35	43.639	57.855	43.471	1.00 41.54
	ATOM	37	CD	GLU A	35	44.721	58.798	42.973	1.00 43.04
25	ATOM	38	OE1	GLU A	35	45.780	58.884	43.631	1.00 44.35
	ATOM	39	OE2	GLU A	35	44.519	59.441	41.919	1.00 42.18
	ATOM	40	С	GLU A	35	42.587	56.669	46.998	1.00 37.40
	ATOM	41	0	GLU A	35	42.891	55.518	47.308	1.00 36.91
	ATOM	42	N	ARG A	36	42.428	57.634	47.896	1.00 36.05
30	ATOM	43	CA	ARG A	36	42.636	57.377	49.315	1.00 34.31
	ATOM	44	СВ	ARG A	36	42.756	58.699	50.077	1.00 38.49
	ATOM	45	CG	ARG A	36	44.042	58.824	50.893	1.00 43.28
	ATOM	46	CD	ARG A	36	44.289	60.252	51.356	1.00 47.33
	ATOM	47	NE	ARG A	36	44.557	61.139	50.225	1.00 52.51
35	ATOM	48	CZ	ARG A	36	44.701	62.459	50.316	1.00 54.87
	ATOM	49	NH1	ARG A	36	44.603	63.067	51.492	1.00 56.47
	MOTA	50	NH2	ARG A	36	44.948	63.173	49.225	1.00 55.27

	ATOM	51	С	ARG	A	36	41.534	56.517	49.920	1.00	31.92
	MOTA	52	0	ARG	Α	36	41.799	55.667	50.771	1.00	31.50
	ATOM	53	N	PHE	A	37	40.301	56.721	49.472	1.00	29.13
	ATOM	54	CA	PHE	A	37	39.185	55.945	49.996	1.00	27.89
5	ATOM	55	СВ	PHE	A	37	37.853	56.469	49.451	1.00	28.59
	ATOM	56	CG	PHE	A	37	36.673	55.643	49.867	1.00	30.69
	MOTA	57	CD1	PHE	A	37	36.289	55.582	51.197	1.00	32.45
	MOTA	58	CD2	PHE	A	37	35.977	54.885	48.938	1.00	31.58
	MOTA	59	CE1	PHE	A	37	35.234	54.778	51.594	1.00	32.16
10	MOTA	60	CE2	PHE	A	37	34.921	54.078	49.329	1.00	32.49
	ATOM	61	CZ	PHE	А	37	34.551	54.025	50.659	1.00	31.20
	MOTA	62	С	PHE	Α	37	39.314	54.463	49.660	1.00	26.36
	ATOM	63	0	PHE	A	37	39.115	53.603	50.516	1.00	25.18
	ATOM	64	N	TYR	A	38	39.638	54.164	48.408	1.00	25.54
15	ATOM	65	CA	TYR	A	38	39.778	52.777	47.992	1.00	25.07
	ATOM	66	СВ	TYR	A	38	39.877	52.682	46.471	1.00	24.76
	MOTA	67	CG	TYR	A	38	38.533	52.662	45.790	1.00	23.78
	ATOM	68	CD1	TYR	A	38	37.778	53.820	45.660	1.00	22.64
	ATOM	69	CE1	TYR	A	38	36.536	53.792	45.061	1.00	23.66
20	MOTA	70	CD2	TYR	A	38	38.007	51.473	45.301	1.00	20.64
	ATOM	71	CE2	TYR	A	38	36.771	51.433	44.706	1.00	21.87
	ATOM	72	CZ	TYR	A	38	36.039	52.591	44.588	1.00	23.46
	ATOM	73	ОН	TYR	A	38	34.804	52.542	44.000	1.00	25.38
	ATOM	74	С	TYR	A	38	40.982	52.105	48.622	1.00	25.60
25	ATOM	75	0	TYR	Α	38	40.892	50.976	49.105		23.56
	ATOM	76	N	ALA	A	39	42.106	52.814	48.617		27.30
	ATOM	77	CA	ALA	Α	39	43.350	52.299			29.38
	ATOM	78	СВ	ALA	A	39	44.489	53.265	48.860		29.11
• •	ATOM	79	С	ALA		39	43.288	52.045	50.673		31.61
30	ATOM	80	0	ALA		39	43.717	50.992	51.153		31.66
	ATOM	81	N	GLU		40	42.745	53.006	51.414		34.51
	ATOM	82	CA	GLU		40	42.670	52.889	52.867		36.59
	ATOM	83	СВ	GLU		40	42.856	54.268	53.511		37.79
25	ATOM	84	CG	GLU		40	44.205	54.910	53.224		40.73
35	ATOM	85	CD	GLU		40	44.332	56.299	53.821		43.21
	ATOM	86		GLU		40	44.189	56.439	55.057		44.07
	MOTA	87	OE2	GLU	A	40	44.579	57.252	53.055	1.00	42.96

	ATOM	88	С	GLU	Α	40	41.415	52.246	53.443	1.00 36.74
	ATOM	89	0	GLU	A	40	41.452	51.743	54.567	1.00 37.63
	ATOM	90	N	HIS	А	41	40.310	52.242	52.700	1.00 35.29
	MOTA	91	CA	HIS	A	41	39.088	51.664	53.253	1.00 33.66
5	ATOM	92	СВ	HIS	A	41	38.084	52.777	53.566	1.00 34.87
	ATOM	93	CG	HIS	A	41	38.580	53.754	54.581	1.00 36.99
	ATOM	94	CD2	HIS	Α	41	38.568	53.714	55.934	1.00 37.45
	ATOM	95	ND1	HIS	A	41	39.253	54.907	54.237	1.00 38.03
	ATOM	96	CE1	HIS	Α	41	39.636	55.534	55.334	1.00 38.68
10	ATOM	97	NE2	HIS	A	41	39.234	54.831	56.378	1.00 39.29
	ATOM	98	С	HIS	A	41	38.372	50.557	52.497	1.00 31.54
	ATOM	99	0	HIS	A	41	38.222	49.450	53.016	1.00 31.30
	ATOM	100	N	LEU	A	42	37.917	50.843	51.285	1.00 29.85
	ATOM	101	CA	LEU	A	42	37.186	49.839	50.533	1.00 28.77
15	ATOM	102	CB	LEU	Α	42	36.677	50.426	49.208	1.00 28.98
	ATOM	103	CG	LEU	A	42	35.637	49.562	48.477	1.00 29.95
	ATOM	104	CD1	LEU	A	42	34.785	50.431	47.569	1.00 29.75
	MOTA	105	CD2	LEU	A	42	36.336	48.459	47.687	1.00 29.98
	ATOM	106	С	LEU	A	42	37.970	48.552	50.278	1.00 27.67
20	ATOM	107	0	LEU	A	42	37.522	47.470	50.662	1.00 28.28
	ATOM	108	N	MET	Α	43	39.133	48.655	49.643	1.00 25.24
	ATOM	109	CA	MET	Α	43	39.919	47.457	49.347	1.00 24.82
	ATOM	110	СВ	MET	A	43	41.166	47.820	48.535	1.00 22.03
	ATOM	111	CG	MET	A	43	40.856	48.385	47.150	1.00 20.76
25	ATOM	112	SD	MET	A	43	39.792	47.312	46.142	1.00 22.83
	ATOM	113	CE	MET	Α	43	40.970	46.112	45.560	1.00 16.61
	ATOM	114	С	MET	Α	43	40.311	46.660	50.593	1.00 24.94
	ATOM	115	0	MET	A	43	40.160	45.441	50.627	1.00 24.63
	ATOM	116	N	PRO	A	44	40.822	47.335	51.632	1.00 26.27
30	ATOM	117	CD	PRO	A	44	41.271	48.738	51.698	1.00 25.74
	ATOM	118	CA	PRO	A	44	41.204	46.603	52.844	1.00 27.11
	ATOM	119	СВ	PRO	A	44	41.767	47.700	53.742	1.00 27.91
	ATOM	120	CG	PRO	A	44	42.352	48.671	52.747	1.00 27.46
	ATOM	121	С	PRO	A	44	40.016	45.877	53.483	1.00 28.57
35	MOTA	122	0	PRO	A	44	40.156	44.762	53.984	1.00 29.09
	MOTA	123	N	THR	A	45	38.848	46.510	53.463	1.00 29.17
	ATOM	124	CA	THR	A	45	37.651	45.903	54.038	1.00 30.69

	ATOM	125	СВ	THR	Α	45	36.456	46.884	54.021	1.00	31.67
	ATOM	126	OG1	THR	A	45	36.729	47.984	54.897	1.00	32.25
	ATOM	127	CG2	THR	A	45	35.180	46.182	54.469	1.00	29.83
	ATOM	128	С	THR	A	45	37.270	44.660	53.244	1.00	30.58
5	ATOM	129	0	THR	Α	45	36.945	43.617	53.808	1.00	31.05
	ATOM	130	N	LEU	A	46	37.316	44.782	51.925	1.00	30.78
	MOTA	131	CA	LEU	Α	46	36.982	43.677	51.041	1.00	31.05
	ATOM	132	СВ	LEU	А	46	37.128	44.127	49.587	1.00	30.41
	ATOM	133	CG	LEU	A	46	36.837	43.103	48.493	1.00	32.94
10	ATOM	134	CD1	LEU	A	46	35.421	42.563	48.647	1.00	33.88
	ATOM	135	CD2	LEU	A	46	37.010	43.761	47.133	1.00	33.97
	ATOM	136	С	LEU	A	46	37.878	42.466	51.305	1.00	31.41
	ATOM	137	0	LEU	A	46	37.402	41.332	51.363	1.00	31.43
	ATOM	138	N	GLN	A	47	39.175	42.711	51.472	1.00	31.41
15	ATOM	139	CA	GLN	A	47	40.133	41.635	51.717	1.00	33.75
	ATOM	140	СВ	GLN	A	47	41.565	42.151	51.542	1.00	34.91
	MOTA	141	CG	GLN	A	47	41.812	42.791	50.186	1.00	38.32
	MOTA	142	CD	GLN	A	47	41.505	41.859	49.019	1.00	39.37
	MOTA	143	OE1	GLN	A	47	41.452	42.296	47.870	1.00	41.29
20	MOTA	144	NE2	GLN	A	47	41.311	40.573	49.307		37.71
	ATOM	145	С	GLN	A	47	39.981	40.999	53.094		33.50
	ATOM	146	0	GLN	A	47	40.391	39.861	53.306		32.66
	ATOM	147	N	GLY	A	48	39.393	41.739	54.027		34.33
	ATOM	148	CA	GLY	A	48	39.193	41.209	55.361		34.12
25	ATOM	149	С	GLY	A	48	37.925	40.379	55.422		34.95
	MOTA	150	0	GLY		48	37.744	39.576	56.336		36.30
	ATOM	151	N	LEU		49		40.562			
	MOTA	152	CA	LEU		49	35.785	39.829	54.399		33.94
•	ATOM	153	СВ	LEU		49	34.644	40.762	53.979		34.56
30	ATOM	154	CG	LEU		49	34.289	41.903	54.934		35.63
	MOTA	155		LEU		49	33.179	42.746	54.335		33.76
	MOTA	156		LEU		49	33.862	41.324	56.277		35.21
	ATOM	157		LEU		49	35.794	38.627	53.469		32.93
2.5	ATOM	158	0	LEU		49	35.129	37.629	53.734		34.79
35	MOTA	159	N CA	LEU		50	36.542	38.719 37.633	52.377 51.405		31.80
	MOTA	160	CA	LEU		50	36.590				
	MOTA	161	СВ	LEU	А	50	35.997	38.106	50.074	1.00	31.09

	ATOM	162	ÇG	LEU	Α	50	34.525	38.517	50.048	1.00	32.47
	ATOM	163	CD1	LEU	А	50	34.219	39.247	48.745	1.00	32.88
	ATOM	164	CD2	LEU	Α	50	33.651	37.283	50.193	1.00	30.73
	ATOM	165	С	LEU	А	50	37.991	37.107	51.146	1.00	29.49
5	ATOM	166	0	LEU	Α	50	38.979	37.818	51.326	1.00	29.57
	MOTA	167	N	ASP	А	51	38.068	35.852	50.717	1.00	28.16
	ATOM	168	CA	ASP	Α	51	39.346	35.250	50.384	1.00	27.52
	ATOM	169	СВ	ASP	Α	51	39.212	33.727	50.313	1.00	29.07
	ATOM	170	CG	ASP	А	51	38.180	33.279	49.300	1.00	33.09
10	ATOM	171	OD1	ASP	A	51	36.984	33.589	49.495	1.00	35.70
	ATOM	172	OD2	ASP	Α	51	38.565	32.621	48.308	1.00	33.73
	ATOM	173	С	ASP	Α	51	39.723	35.833	49.015	1.00	26.45
	ATOM	174	0	ASP	A	51	38.863	36.344	48.292	1.00	25.84
	ATOM	175	N	PRO	A	52	41.009	35.764	48.643	1.00	24.56
15	ATOM	176	CD	PRO	A	52	42.083	35.090	49.390	1.00	22.91
	MOTA	177	CA	PRO	A	52	41.519	36.286	47.371	1.00	23.09
	ATOM	178	СВ	PRO	A	52	42.928	35.707	47.308	1.00	23.93
	ATOM	179	CG	PRO	A	52	43.319	35.645	48.731	1.00	23.45
	ATOM	180 -	С	PRO	A	52	40.698	35.940	46.129	1.00	21.14
20	ATOM	181	0	PRO	A	52	40.314	36.828	45.370	1.00	20.30
	MOTA	182	N	GLU	A	53	40.424	34.658	45.918		19.62
	ATOM	183	CA	GLU	Α	53	39.664	34.265	44.739		20.75
	ATOM	184	СВ	GLU	A	53	39.626	32.741	44.597		20.17
	MOTA	185	CG	GLU	A	53	38.933	32.290	43.320		21.25
25	ATOM	186	CD	GLU		53	39.243	30.855	42.944		22.83
	ATOM	187		GLU		53	38.632	30.361	41.975		25.63
	ATOM			GLU		53	40.093				
	ATOM	189	С	GLU		53	38.245	34.833	44.734		21.37
20	ATOM	190	0	GLU		53	37.789	35.355	43.712		20.91
30	ATOM	191	N	SER		54	37.552	34.745	45.867		20.10
	ATOM	192	CA	SER		54	36.196	35.274	45.951		20.81
	ATOM	193	СВ	SER		54	35.588	34.995	47.327		21.56
	ATOM	194	OG	SER		54	35.420	33.606	47.532		23.22
25	ATOM	195	С	SER		54	36.208	36.776	45.698		20.03
35	MOTA	196	0	SER		54	35.305	37.314	45.055		19.91
	ATOM	197	N	ALA		55	37.237	37.448	46.206		18.25
	ATOM	198	CA	ALA	А	55	37.363	38.887	46.027	1.00	17.25

	ATOM	199	СВ	ALA	A	55	38.584	39.404	46.781	1.00	18.23
	ATOM	200	С	ALA	A	55	37.491	39.191	44.540	1.00	17.58
	ATOM	201	0	ALA	A	55	36.888	40.136	44.038	1.00	18.04
	ATOM	202	N	HIS	Α	56	38.279	38.382	43.837	1.00	17.22
5	ATOM	203	CA	HIS	Α	56	38.466	38.563	42.404	1.00	18.71
	MOTA	204	СВ	HIS	Α	56	39.509	37.575	41.875	1.00	17.37
	ATOM	205	CG	HIS	Α	56	39.537	37.479	40.383	1.00	16.55
	MOTA	206	CD2	HIS	A	56	39.262	36.449	39.551	1.00	17.62
	ATOM	207	ND1	HIS	Α	56	39.827	38.558	39.575	1.00	20.55
10	ATOM	208	CE1	HIS	Α	56	39.729	38.196	38.309	1.00	17.33
	ATOM	209	NE2	HIS	Α	56	39.387	36.921	38.267	1.00	19.33
	ATOM	210	С	HIS	Α	56	37.146	38.368	41.646	1.00	20.76
	MOTA	211	0	HIS	Α	56	36.775	39.196	40.806	1.00	20.87
	MOTA	212	N	ARG	Α	57	36.444	37.275	41.943	1.00	21.25
15	ATOM	213	CA	ARG	А	57	35.172	36.988	41.287	1.00	23.72
	ATOM	214	СВ	ARG	А	57	34.548	35.704	41.846	1.00	27.11
	MOTA	215	CG	ARG	А	57	35.395	34.453	41.619	1.00	33.78
	ATOM	216	CD	ARG	A	57	34.691	33.191	42.119	1.00	38.40
	ATOM	217	NE	ARG	A	57	33.504	32.870	41.328	1.00	44.51
20	ATOM	218	CZ	ARG	A	57	33.536	32.421	40.074	1.00	47.98
	ATOM	219	NH1	ARG	A	57	34.699	32.231	39.460	1.00	48.55
	ATOM	220	NH2	ARG	A	57	32.404	32.169	39.426	1.00	49.25
	MOTA	221	С	ARG	A	57	34.198	38.148	41.458	1.00	22.08
	ATOM	222	0	ARG	Α	57	33.547	38.561	40.503	1.00	22.37
25	ATOM	223	N	LEU	A	58	34.103	38.676	42.674	1.00	22.22
	ATOM	224	CA	LEU	A	58	33.206	39.798	42.941	1.00	21.56
	ATOM	225	СВ	LEU	A	58	33.211	40.140	44.434	1.00	22.30
	ATOM	226	CG	LEU	A	58	32.224	41.206	44.926	1.00	23.79
	ATOM	227	CD1	LEU	A	58	30.798	40.778	44.615	1.00	21.41
30	ATOM	228	CD2	LEU	Α	58	32.400	41.405	46.430	1.00	24.56
	ATOM	229	С	LEU	Α	58	33.660	41.006	42.121	1.00	21.85
	MOTA	230	0	LEU	Α	58	32.839	41.785	41.636	1.00	21.96
	MOTA	231	N	ALA	Α	59	34.973	41.150	41.964	1.00	21.62
	MOTA	232	CA	ALA	A	59	35.548	42.251	41.191	1.00	21.13
35	MOTA	233	СВ	ALA	A	59	37.063	42.195	41.256	1.00	19.47
	ATOM	234	С	ALA	A	59	35.097	42.166	39.738	1.00	20.15
	MOTA	235	0	ALA	A	59	34.778	43.178	39.110	1.00	20.52

	ATOM	236	N	VAL	Α	60	35.090	40.952	39.202	1.00	19.14
	ATOM	237	CA	VAL	А	60	34.674	40.742	37.826	1.00	19.94
	MOTA	238	СВ	VAL	Α	60	34.888	39.266	37.395	1.00	20.28
	ATOM	239	CG1	VAL	A	60	34.306	39.029	35.995	1.00	17.45
5	ATOM	240	CG2	VAL	А	60	36.377	38.941	37.401	1.00	16.77
	ATOM	241	С	VAL	Α	60	33.206	41.118	37.678	1.00	21.14
	ATOM	242	0	VAL	A	60	32.827	41.770	36.709	1.00	21.64
	ATOM	243	N	ARG	А	61	32.386	40.718	38.646	1.00	23.53
	MOTA	244	CA	ARG	Α	61	30.958	41.024	38.614	1.00	26.90
10	ATOM	245	СВ	ARG	A	61	30.233	40.410	39.821	1.00	28.84
	ATOM	246	CG	ARG	A	61	30.228	38.890	39.867	1.00	37.63
	MOTA	247	CD	ARG	A	61	29.007	38.376	40.646	1.00	43.68
	ATOM	248	NE	ARG	A	61	28.948	36.915	40.714	1.00	48.20
	ATOM	249	CZ	ARG	A	61	29.617	36.174	41.595	1.00	50.86
15	ATOM	250	NH1	ARG	A	61	30.401	36.753	42.500	1.00	50.24
	ATOM	251	NH2	ARG	A	61	29.503	34.850	41.568	1.00	51.48
	ATOM	252	С	ARG	A	61	30.698	42.530	38.605	1.00	26.52
	ATOM	253	0	ARG	Α	61	30.004	43.043	37.727	1.00	25.59
	ATOM	254	N	PHE	Α	62	31.250	43.230	39.592	1.00	26.34
20	ATOM	255	CA	PHE	Α	62	31.061	44.670	39.697	1.00	28.44
	ATOM	256	СВ	PHE	A	62	31.812	45.227	40.910	1.00	29.57
	ATOM	257	CG	PHE	Α	62	31.012	45.197	42.182	1.00	33.68
	ATOM	258	CD1	PHE	Α	62	30.562	43.997	42.709	1.00	34.80
	ATOM	259	CD2	PHE	A	62	30.699	46.373	42.844	1.00	35.83
25	ATOM	260	CE1	PHE	A	62	29.813	43.970	43.876	1.00	35.32
	ATOM	261	CE2	PHE	A	62	29.950	46.353	44.011	1.00	38.21
	MOTA	262	CZ	PHE	A	62	29.507	45.146	44.526	1.00	36.55
	ATOM	263	С	PHE	A	62	31.523	45.388	38.445	1.00	28.73
	ATOM	264	0	PHE	A	62	30.866	46.318	37.974	1.00	29.92
30	ATOM	265	N	THR	A	63	32.657	44.952	37.908	1.00	27.65
	ATOM	266	CA	THR	A	63	33.205	45.569	36.715	1.00	26.81
	ATOM	267	СВ	THR	A	63	34.612	45.017	36.408	1.00	26.29
	ATOM	268	OG1	THR	A	63	35.493	45.331	37.494	1.00	23.98
35	ATOM	269	CG2	THR	A	63	35.154	45.626	35.129	1.00	23.92
	MOTA	270	С	THR	A	63	32.296	45.342	35.513	1.00	27.15
	ATOM	271	0	THR	A	63	32.031	46.268	34.750	1.00	26.07
	ATOM	272	N	SER	Α	64	31.812	44.116	35.350	1.00	27.56

	ATOM	273	CA	SER	Α	64	30.938	43.802	34.224	1.00	30.29
	ATOM	274	СВ	SÉR	A	64	30.608	42.311	34.204	1.00	29.40
	ATOM	275	OG	SER	A	64	29.850	41.959	35.345	1.00	32.57
	MOTA	276	С	SER	A	64	29.646	44.606	34.312	1.00	31.20
5	ATOM	277	0	SER	A	64	29.007	44.880	33.297	1.00	30.61
	MOTA	278	N	LEU	A	65	29.273	44.984	35.532	1.00	31.93
	ATOM	279	CA	LEU	A	65	28.057	45.756	35.766	1.00	33.43
	MOTA	280	СВ	LEU	A	65	27.416	45.335	37.093	1.00	32.99
	MOTA	281	CG	LEU	A	65	26.891	43.899	37.148	1.00	35.43
10	MOTA	282	CD1	LEU	Α	65	26.483	43.545	38.573	1.00	33.63
	MOTA	283	CD2	LEU	A	65	25.712	43.756	36.189	1.00	34.95
	ATOM	284	С	LEU	A	65	28.318	47.263	35.781	1.00	33.55
	MOTA	285	0	LEU	A	65	27.397	48.057	35.964	1.00	34.23
	MOTA	286	N	GLY	A	66	29.573	47.654	35.599	1.00	32.60
15	ATOM	287	CA	GLY	A	66	29.901	49.068	35.592	1.00	33.27
	MOTA	288	С	GLY	A	66	29.833	49.755	36.948	1.00	34.31
	MOTA	289	0	GLY	A	66	29.785	50.983	37.017	1.00	34.03
	ATOM	290	N	LEU	A	67	29.823	48.975	38.027	1.00	33.85
	ATOM	291	CA	LEU	A	67	29.776	49.542	39.372	1.00	34.20
20	ATOM	292	СВ	LEU	A	67	29.338	48.476	40.383	1.00	35.31
	ATOM	293	CG	LEU	A	67	27.989	47.797	40.101	1.00	37.76
	ATOM	294	CD1	LEU	A	67	27.648	46.833	41.231	1.00	37.88
	ATOM	295	CD2	LEU	A	67	26.894	48.850	39.959	1.00	37.81
	ATOM	296	С	LEU	A	67	31.181	50.044	39.699	1.00	33.76
25	ATOM	297	0	LEU	A	67	31.889	49.467	40.527	1.00	31.48
	ATOM	298	N	LEU	A	68	31.568	51.128	39.035		34.01
	ATOM	299	CA	LEU	A	68	32.894	51.713	39.189	1.00	34.57
	ATOM	300	СВ	LEU	A	68	33.635	51.632	37.856	1.00	33.46
	ATOM	301	CG	LEU	A	68	33.665	50.257	37.193	1.00	33.94
30	ATOM	302	CD1	LEU	Α	68	34.112	50.389	35.752	1.00	35.15
	MOTA	303	CD2	LEU	Α	68	34.596	49.347	37.966		32.93
	ATOM	304	С	LEU	A	68	32.858	53.166	39.641	1.00	35.27
	ATOM	305	0	LEU	A	68	31.884	53.880	39.411	1.00	36.69
	ATOM	306	N	PRO	Α	69	33.937	53.622	40.291		35.09
35	ATOM	307	CD	PRO	A	69	35.096	52.799	40.678		35.32
	ATOM	308	CA	PRO	A	69	34.084	54.987	40.795		35.10
	ATOM	309	СВ	PRO	A	69	35.296	54.876	41.711	1.00	35.36

	MOTA	310	CG	PRO	А	69	36.126	53.847	41.031	1.00	35.57
	ATOM	311	С	PRO	Α	69	34.298	55.987	39.664	1.00	34.95
	ATOM	312	0	PRO	A	69	34.206	55.632	38.488	1.00	35.36
	ATOM	313	N	PHE	Α	73	39.366	61.866	34.983	1.00	57.11
5	ATOM	314	CA	PHE	A	73	40.556	62.093	34.169	1.00	56.79
	ATOM	315	СВ	PHE	Α	73	41.700	61.180	34.627	1.00	57.43
	ATOM	316	CG	PHE	A	73	42.919	61.254	33.747	1.00	58.50
	ATOM	317	CD1	PHE	A	73	43.795	62.325	33.837	1.00	59.04
	MOTA	318	CD2	PHE	Α	73	43.162	60.276	32.793	1.00	58.27
10	ATOM	319	CE1	PHE	А	73	44.891	62.421	32.990	1.00	58.38
	ATOM	320	CE2	PHE	Α	73	44.254	60.368	31.944	1.00	58.17
	ATOM	321	CZ	PHE	Α	73	45.119	61.442	32.042	1.00	57.71
	MOTA	322	С	PHE	A	73	40.302	61.851	32.681	1.00	55.94
	ATOM	323	0	PHE	A	73	39.909	60.755	32.279	1.00	55.31
15	MOTA	324	N	GLN	A	74	40.534	62.875	31.866	1.00	54.83
	MOTA	325	CA	GLN	A	74	40.352	62.752	30.425	1.00	53.34
	MOTA	326	СВ	GLN	A	74	39.707	64.013	29.848	1.00	55.61
	MOTA	327	CG	GLN	A	74	38.222	64.153	30.133	1.00	57.81
	ATOM	328	CD	GLN	A	74	37.578	65.243	29.291	1.00	59.81
20	ATOM	329	OE1	GLN	A	74	37.852	66.432	29.472	1.00	60.73
	ATOM	330	NE2	GLN	A	74	36.725	64.840	28.353	1.00	59.42
	MOTA	331	С	GLN	A	74	41.698	62.517	29.749	1.00	51.28
	MOTA	332	0	GLN	A	74	42.650	63.267	29.964	1.00	50.95
	ATOM	333	N	ASP	A	75	41.774	61.471	28.935	1.00	48.79
25	MOTA	334	CA	ASP	A	75	43.006	61.145	28.229	1.00	46.68
	MOTA	335	СВ	ASP	A	75	42.824	59.856	27.421	1.00	45.00
	MOTA	336	CG	ASP	Α	75	42.570	58.642	28.299	1.00	43.45
	MOTA	337	OD1	ASP	Α	75	42.067	57.627	27.770	1.00	41.56
	MOTA	338	OD2	ASP	A	75	42.881	58.696	29.508	1.00	41.80
30	MOTA	339	С	ASP	A	75	43.378	62.286	27.288	1.00	46.07
	MOTA	340	0	ASP	A	75	42.529	62.798	26.558	1.00	45.66
	ATOM	341	N	SER	A	76	44.645	62.688	27.308	1.00	45.37
	ATOM	342	CA	SER	A	76	45.105	63.763	26.437	1.00	44.09
	ATOM	343	СВ	SER	A	76	46.045	64.706	27.193	1.00	44.35
35	ATOM	344	OG	SER	A	76	47.276	64.074	27.492	1.00	45.29
	ATOM	345	С	SER	A	76	45.830	63.171	25.236	1.00	42.66
	ATOM	346	0	SER	Α	76	46.194	61.997	25.240	1.00	42.40

	ATOM	347	N	ASP	A	77	46.033	63.987	24.209	1.00	42.12
	ATOM	348	CA	ASP	A	77	46.719	63.545	23.001	1.00	41.76
	ATOM	349	СВ	ASP	A	77	46.909	64.727	22.047	1.00	44.71
	MOTA	350	CG	ASP	A	77	45.595	65.295	21.551	1.00	47.31
5	MOTA	351	OD1	ASP	Α	77	45.623	66.334	20.859	1.00	50.25
	ATOM	352	OD2	ASP	Α	77	44.535	64.702	21.846	1.00	48.62
	ATOM	353	С	ASP	Α	77	48.080	62.931	23.318	1.00	40.11
	ATOM	354	0	ASP	A	77	48.532	62.019	22.627	1.00	39.81
	MOTA	355	N	MET	Α	78	48.728	63.440	24.361	1.00	37.97
10	MOTA	356	CA	MET	Α	78	50.044	62.949	24.769	1.00	36.17
	ATOM	357	СВ	MET	A	78	50.517	63.660	26.036	1.00	37.17
	ATOM	358	CG	MET	A	78	50.848	65.124	25.881	1.00	39.57
	ATOM	359	SD	MET	Α	78	51.536	65.736	27.440	1.00	42.24
	ATOM	360	CE	MET	A	78	53.252	65.210	27.264	1.00	41.08
15	ATOM	361	С	MET	A	78	50.067	61.452	25.044	1.00	32.99
	ATOM	362	0	MET	Α	78	51.070	60.786	24.799	1.00	31.46
	MOTA	363	N	LEU	A	79	48.965	60.927	25.567	1.00	30.29
	ATOM	364	CA	LEU	A	79	48.899	59.512	25.893	1.00	29.12
	MOTA	365	СВ	LEU	A	79	47.916	59.285	27.045	1.00	27.76
20	ATOM	366	CG	LEU	A	79	48.297	59.972	28.363	1.00	27.32
	ATOM	367	CD1	LEU	A	79	47.400	59.469	29.489	1.00	25.53
	MOTA	368	CD2	LEU	A	79	49.756	59.681	28.687	1.00	23.95
	ATOM	369	С	LEU	A	79	48.545	58.604	24.721	1.00	28.57
	MOTA	370	0	LEU	A	79	48.563	57.379	24.863	1.00	28.17
25	MOTA	371	N	GLU	A	80	48.238	59.188	23.567	1.00	26.89
	ATOM	372	CA	GLU	A	80	47.890	58.382	22.407	1.00	27.84
	ATOM	373	СВ	GLU	A	80	47.230	59.221	21.309	1.00	29.86
	ATOM	374	CG	GLU	A	80	46.633	58.344	20.206	1.00	36.28
	ATOM	375	CD	GLU	A	80	46.323	59.094	18.918	1.00	39.58
30	ATOM	376	OE1	GLU	A	80	47.270	59.411	18.165	1.00	40.87
	ATOM	377	OE2	GLU	A	80	45.129	59.362	18.659	1.00	41.08
	ATOM	378	С	GLU	A	80	49.118	57.705	21.822	1.00	27.25
	ATOM	379	0	GLU	A	80	50.192	58.298	21.748	1.00	26.76
	ATOM	380	N	VAL	A	81	48.949	56.461	21.395	1.00	26.60
35	MOTA	381	CA	VAL	A	81	50.040	55.701	20.810	1.00	26.88
	ATOM	382	СВ	VAL	A	81	50.640	54.702	21.830	1.00	27.64
	MOTA	383	CG1	VAL	A	81	51.781	53.927	21.190	1.00	27.14

	ATOM	384	CG2	VAL	А	81	51.114	55.435	23.066	1.00	27.80
	ATOM	385	С	VAL	A	81	49.515	54.900	19.634	1.00	27.49
	ATOM	386	0	VAL	А	81	48.376	54.442	19.651	1.00	29.86
	ATOM	387	N	ARG	A	82	50.337	54.741	18.605	1.00	28.74
5	ATOM	388	CA	ARG	А	82	49.936	53.947	17.453	1.00	30.33
	ATOM	389	СВ	ARG	Α	82	49.821	54.804	16.186	1.00	32.47
	MOTA	390	CG	ARG	A	82	49.899	53.969	14.905	1.00	38.74
	ATOM	391	CD	ARG	Α	82	49.248	54.638	13.697	1.00	44.42
	ATOM	392	NE	ARG	А	82	47.836	54.269	13.548	1.00	48.91
10	ATOM	393	CZ	ARG	A	82	47.397	53.029	13.330	1.00	48.71
	ATOM	394	NH1	ARG	A	82	48.252	52.018	13.233	1.00	47.85
	ATOM	395	NH2	ARG	Α	82	46.096	52.799	13.205	1.00	50.04
	ATOM	396	С	ARG	A	82	50.939	52.822	17.228	1.00	29.93
	MOTA	397	0	ARG	A	82	52.115	53.068	16.972	1.00	29.16
15	ATOM	398	N	VAL	A	83	50.461	51.587	17.347	1.00	29.81
	ATOM	399	CA	VAL	A	83	51.281	50.394	17.157	1.00	31.73
	ATOM	400	СВ	VAL	A	83	52.080	50.023	18.432	1.00	32.09
	ATOM	401	CG1	VAL	A	83	53.222	50.992	18.638	1.00	34.42
	ATOM	402	CG2	VAL	Α	83	51.154	50.021	19.640	1.00	30.34
20	ATOM	403	С	VAL	A	83	50.370	49.218	16.838	1.00	32.50
	MOTA	404	0	VAL	A	83	49.155	49.307	17.005	1.00	31.46
	ATOM	405	N	LEU	A	84	50.968	48.119	16.384	1.00	33.48
	ATOM	406	CA	LEU	A	84	50.223	46.906	16.062		33.72
	ATOM	407	СВ	LEU	A	84	49.674	46.274	17.350		32.58
25	ATOM	408	CG	LEU		84	50.683	45.955	18.458		32.62
	MOTA	409		LEU		84	49.948	45.447	19.680		31.27
	MOTA	410		LEU		84		44.926			
	MOTA	411	С	LEU		84	49.072	47.158	15.089		33.95
•	MOTA	412	0	LEU		84	48.077	46.429	15.097		34.81
30	ATOM	413	N	GLY		85	49.210	48.191	14.259		34.10
	ATOM	414	CA	GLY		85	48.177	48.517	13.286		33.41
	ATOM	415	С	GLY		85	46.908	49.089	13.895		34.00
	ATOM	416	0	GLY		85	45.814	48.929	13.346		32.49
2.5	ATOM	417	N	HIS		86	47.056	49.765	15.032		33.02
35	ATOM	418	CA	HIS		86	45.922	50.356	15.729		32.41
	ATOM	419	СВ	HIS		86	45.284	49.323	16.669		35.18
	ATOM	420	CG	HIS	Α	86	44.707	48.131	15.968	1.00	37.48

	ATOM	421	CD2	HIS	А	86	45.181	46.872	15.816	1.00	38.23
	ATOM	422	ND1	HIS	A	86	43.504	48.171	15.298	1.00	38.86
	ATOM	423	CE1	HIS	A	86	43.260	46.988	14.763	1.00	38.09
	ATOM	424	NE2	HIS	A	86	44.263	46.182	15.062	1.00	39.89
5	ATOM	425	С	HIS	А	86	46.331	51.577	16.552	1.00	31.23
	ATOM	426	0	HIS	Α	86	47.505	51.788	16.854	1.00	29.77
	ATOM	427	N	LYS	A	87	45.343	52.383	16.912	1.00	30.25
	MOTA	428	CA	LYS	A	87	45.586	53.554	17.734	1.00	29.97
	MOTA	429	СВ	LYS	Α	87	44.787	54.748	17.211	1.00	32.13
10	MOTA	430	CG	LYS	A	87	44.628	55.873	18.224	1.00	36.96
	ATOM	431	CD	LYS	A	87	43.748	56.993	17.684	1.00	41.35
	ATOM	432	CE	LYS	A	87	42.362	56.487	17.312	1.00	43.33
	ATOM	433	NZ	LYS	A	87	41.497	57.581	16.779	1.00	46.62
	MOTA	434	С	LYS	A	87	45.135	53.214	19.154	1.00	28.11
15	MOTA	435	0	LYS	A	87	44.115	52.545	19.342	1.00	27.33
	MOTA	436	N	PHE	A	88	45.909	53.650	20.144	1.00	23.77
	ATOM	437	CA	PHE	A	88	45.573	53.423	21.544	1.00	22.55
	ATOM	438	СВ	PHE	A	88	46.655	52.587	22.239	1.00	20.08
	ATOM	439	CG	PHE	A	88	46.807	51.192	21.687	1.00	19.53
20	ATOM	440	CD1	PHE	A	88	47.346	50.981	20.426	1.00	18.13
	MOTA	441	CD2	PHE	A	88	46.427	50.090	22.442	1.00	16.88
	ATOM	442	CE1	PHE	A	88	47.506	49.698	19.929		17.99
	ATOM	443	CE2	PHE	A	88	46.583	48.806	21.953	1.00	16.38
	MOTA	444	CZ	PHE	A	88	47.122	48.608	20.696		17.99
25	ATOM	445	С	PHE	A	88	45.497	54.804	22.185		22.18
	ATOM	446	0	PHE		88	46.494	55.520	22.225		21.05
	ATOM	447	N	ARG			44.324				23.63
	ATOM	448	CA	ARG		89	44.175	56.506	23.284		25.47
20	ATOM	449	СВ	ARG		89	42.700	56.800	23.577		28.55
30	ATOM	450	CG	ARG		89	42.038	55.912	24.596		35.93
	ATOM	451	CD	ARG		89	40.528	56.029	24.444		41.44
	ATOM	452	NE	ARG		89	40.131	57.382	24.066		44.82
	ATOM	453	CZ	ARG		89	38.899	57.725	23.701		47.58
25	ATOM	454		ARG		89	37.934	56.813	23.666		46.73
35	ATOM	455		ARG		89	38.635	58.981	23.358		48.84
	ATOM	456	C	ARG		89	45.049	56.721	24.522		23.67
	ATOM	457	0	ARG	А	89	45.374	57.854	24.859	1.00	22.06

	ATOM	458	N	ASN	A	90	45.413	55.637	25.204	1.00	21.74
	ATOM	459	CA	ASN	A	90	46.322	55.709	26.348	1.00	20.23
	ATOM	460	СВ	ASN	Α	90	45.590	56.038	27.671	1.00	20.14
	ATOM	461	CG	ASN	A	90	44.945	54.836	28.327	1.00	20.24
5	ATOM	462	OD1	ASN	Α	90	45.623	53.893	28.744	1.00	20.28
	ATOM	463	ND2	ASN	А	90	43.621	54.877	28.449	1.00	19.47
	ATOM	464	С	ASN	Α	90	47.025	54.356	26.353	1.00	20.03
	ATOM	465	0	ASN	Α	90	46.446	53.348	25.943	1.00	21.07
	ATOM	466	N	PRO	A	91	48.293	54.323	26.783	1.00	19.07
10	ATOM	467	CD	PRO	A	91	49.025	55.490	27.309	1.00	19.27
	ATOM	468	CA	PRO	A	91	49.137	53.127	26.837	1.00	17.79
	MOTA	469	СВ	PRO	A	91	50.532	53.720	26.810	1.00	18.33
	ATOM	470	CG	PRO	A	91	50.367	54.889	27.730	1.00	17.60
	MOTA	471	С	PRO	A	91	48.966	52.189	28.014	1.00	17.38
15	MOTA	472	0	PRO	A	91	49.753	51.252	28.170	1.00	16.67
	MOTA	473	N	VAL	A	92	47.953	52.430	28.838	1.00	16.23
	MOTA	474	CA	VAL	Α	92	47.736	51.601	30.019	1.00	16.20
	ATOM	475	СВ	VAL	A	92	47.444	52.487	31.249	1.00	15.65
	ATOM	476	CG1	VAL	A	92	47.342	51.635	32.500	1.00	14.38
20	ATOM	477	CG2	VAL	A	92	48.538	53.535	31.394	1.00	14.11
	ATOM	478	С	VAL	A	92	46.602	50.591	29.852	1.00	16.68
	MOTA	479	0	VAL	A	92	45.433	50.966	29.778	1.00	16.63
	ATOM	480	N	GLY	A	93	46.955	49.309	29.800	1.00	15.93
	MOTA	481	CA	GLY	A	93	45.945	48.276	29.645	1.00	13.68
25	ATOM	482	С	GLY	A	93	45.845	47.336	30.833	1.00	14.71
	ATOM	483	0	GLY	A	93	46.692	47.349	31.721	1.00	15.24
	ATOM	484	N	ILE	A	94	44.788	46.532	30.865	1.00	15.38
	ATOM	485	CA	ILE	A	94	44.606	45.560	31.937	1.00	15.09
	ATOM	486	СВ	ILE	A	94	43.103	45.352	32.267	1.00	15.86
30	ATOM	487	CG2	ILE	A	94	42.326	44.977	31.008	1.00	15.73
	MOTA	488	CG1	ILE	A	94	42.945	44.275	33.341	1.00	16.69
	MOTA	489	CD1	ILE	A	94	43.321	44.733	34.740	1.00	15.99
	MOTA	490	С	ILE	A	94	45.218	44.251	31.436	1.00	15.45
	ATOM	491	0	ILE	A	94	44.815	43.724	30.397	1.00	16.68
35	ATOM	492	N	ALA	A	95	46.207	43.744	32.166	1.00	15.14
	MOTA	493	CA	ALA	А	95	46.894	42.508	31.802	1.00	14.33
	MOTA	494	СВ	ALA	А	95	48.074	42.274	32.746	1.00	11.97

	ATOM	495	С	ALA	A	95	45.986	41.282	31.807	1.00	15.28
	ATOM	496	0	ALA	A	95	44.927	41.275	32.437	1.00	14.75
	MOTA	497	N	ALA	A	96	46.418	40.245	31.097	1.00	14.38
	MOTA	498	CA	ALA	A	96	45.673	38.996	31.022	1.00	15.14
5	ATOM	499	СВ	ALA	A	96	46.389	38.014	30.096	1.00	12.19
	ATOM	500	С	ALA	Α	96	45.556	38.399	32.417	1.00	16.35
	ATOM	501	0	ALA	A	96	46.460	38.549	33.250	1.00	16.20
	MOTA	502	N	GLY	A	97	44.441	37.723	32.675	1.00	16.89
	MOTA	503	CA	GLY	A	97	44.250	37.110	33.977	1.00	16.58
10	MOTA	504	С	GLY	A	97	43.097	37.675	34.780	1.00	16.24
	MOTA	505	0	GLY	Α	97 -	42.389	36.925	35.445	1.00	18.73
	ATOM	506	N	PHE	A	98	42.903	38.989	34.741	1.00	15.41
	MOTA	507	CA	PHE	A	98	41.805	39.573	35.490	1.00	14.93
	MOTA	508	СВ	PHE	A	98	41.879	41.098	35.501	1.00	15.74
15	MOTA	509	CG	PHE	A	98	40.754	41.736	36.260	1.00	17.64
	MOTA	510	CD1	PHE	A	98	40.677	41.611	37.642	1.00	16.91
	MOTA	511	CD2	PHE	A	98	39.736	42.402	35.592	1.00	17.91
	ATOM	512	CE1	PHE	Α	98	39.607	42.134	38.344	1.00	16.70
	MOTA	513	CE2	PHE	A	98	38.656	42.930	36.290	1.00	17.89
20	ATOM	514	CZ	PHE	A	98	38.592	42.794	37.667	1.00	17.68
	ATOM	515	С	PHE	A	98	40.483	39.145	34.867	1.00	15.52
	ATOM	516	0	PHE	A	98	39.554	38.756	35.572		16.20
	ATOM	517	N	ASP	A	99	40.398	39.232	33.543		15.16
	ATOM	518	CA	ASP	A	99	39.187	38.834	32.827		15.45
25	MOTA	519	СВ	ASP	A	99	38.647	40.008	31.990		14.91
	MOTA	520	CG	ASP		99	37.235	39.753	31.452		18.47
	ATOM	521		ASP		99		38.706			
	ATOM	522	OD2	ASP		99	36.712	40.604	30.692		17.82
• •	ATOM	523	С	ASP		99	39.553	37.654	31.926		15.19
30	MOTA	524	0	ASP		99	39.735	37.811	30.720		14.17
	ATOM	525	N			100	39.671	36.474	32.527		14.99
	ATOM	526	CA			100	40.030	35.269	31.793		15.35
	ATOM	527	СВ	-		100	40.278	34.113	32.772		17.26
	MOTA	528	CG			100	41.615	34.153	33.517		18.99
35	ATOM	529	CD			100	41.680	33.041	34.571		22.00
	ATOM	530	CE			100	43.053	32.945	35.250		22.40
	MOTA	531	NZ	LYS	A	100	44.125	32.441	34.326	1.00	21.47

	MOTA	532	С	LYS	Α	100	39.012	34.813	30.743	1.00	16.92
	MOTA	533	0	LYS	Α	100	39.394	34.243	29.716	1.00	15.83
	MOTA	534	N	HIS	Α	101	37.729	35.075	30.981	1.00	16.62
	ATOM	535	CA	HIS	Α	101	36.684	34.616	30.060	1.00	19.07
5	ATOM	536	СВ	HIS	Α	101	35.668	33.777	30.842	1.00	16.73
	MOTA	537	CG	HIS	Α	101	36.265	33.037	32.000	1.00	17.69
	ATOM	538	CD2	HIS	Α	101	36.040	33.138	33.333	1.00	17.45
	ATOM	539	ND1	HIS	Α	101	37.242	32.075	31.849	1.00	18.04
	ATOM	540	CE1	HIS	A	101	37.592	31.615	33.038	1.00	17.28
10	ATOM	541	NE2	HIS	Α	101	36.878	32.244	33.956	1.00	16.78
	ATOM	542	С	HIS	Α	101	35.945	35.698	29.265	1.00	20.21
	ATOM	543	0	HIS	Α	101	34.887	35.434	28.686	1.00	20.90
	ATOM	544	N	GLY	Α	102	36.497	36.908	29.240	1.00	21.33
	ATOM	545	CA	GLY	Α	102	35.878	37.998	28.505	1.00	20.61
15	ATOM	546	С	GLY	A	102	34.498	38.398	28.997	1.00	21.28
	ATOM	547	0	GLY	A	102	33.588	38.595	28.201	1.00	21.11
	ATOM	548	N	GLU	A	103	34.341	38.545	30.307	1.00	22.37
	ATOM	549	CA	GLU	Α	103	33.046	38.913	30.874	1.00	22.31
	MOTA	550	СВ	GLU	Α	103	32.763	38.062	32.112	1.00	21.38
20	ATOM	551	CG	GLU	A	103	32.758	36.577	31.849	1.00	23.32
	ATOM	552	CD	GLU	A	103	32.669	35.773	33.124	1.00	23.87
	ATOM	553	OE1	GLU	A	103	33.622	35.821	33.929	1.00	23.22
	ATOM	554	OE2	GLU	A	103	31.642	35.094	33.323	1.00	27.00
	ATOM	555	С	GLU	A	103	32.914	40.377	31.270	1.00	21.22
25	ATOM	556	0	GLU	A	103	31.805	40.870	31.462	1.00	22.46
	MOTA	557	N	ALA	A	104	34.033	41.078	31.388	1.00	20.39
	MOTA	558	CA	ALA	A	104	33.983	42.468	31.828	1.00	19.96
	MOTA	559	СВ	ALA	A	104	34.494	42.554	33.259	1.00	17.08
	MOTA	560	С	ALA	A	104	34.734	43.458	30.955	1.00	18.70
30	ATOM	561	0	ALA	A	104	35.166	44.505	31.432	1.00	18.68
	MOTA	562	N	VAL	Α	105	34.869	43.139	29.675	1.00	19.67
	MOTA	563	CA	VAL	Α	105	35.585	44.004	28.747	1.00	18.98
	MOTA	564	СВ	VAL	A	105	35.482	43.473	27.309	1.00	18.35
	ATOM	565	CG1	VAL	A	105	36.203	44.413	26.361	1.00	17.12
35	MOTA	566	CG2	VAL	A	105	36.077	42.076	27.230		17.81
	MOTA	567	С	VAL	A	105	35.113	45.458	28.753		20.21
	ATOM	568	0	VAL	A	105	35.927	46.384	28.840	1.00	21.83

	ATOM	569	N	ASP A	A	106	33.805	45.667	28.654	1.00	17.79
	MOTA	570	CA	ASP A	Ą	106	33.286	47.024	28.633	1.00	19.14
	ATOM	571	СВ	ASP A	A	106	31.800	47.026	28.256	1.00	18.51
	MOTA	572	CG	ASP A	A	106	31.569	46.509	26.853	1.00	21.68
5	ATOM	573	OD1	ASP A	A	106	31.007	45.402	26.704	1.00	23.82
	MOTA	574	OD2	ASP A	A	106	31.968	47.204	25.894	1.00	21.96
	MOTA	575	С	ASP A	A	106	33.511	47.737	29.960	1.00	17.72
	MOTA	576	0	ASP A	A	106	33.881	48.907	29.981	1.00	17.97
	MOTA	577	N	GLY A	A	107	33.301	47.035	31.065	1.00	16.46
10	MOTA	578	CA	GLY A	A	107	33.526	47.656	32.359	1.00	17.38
	MOTA	579	С	GLY A	A	107	34.971	48.111	32.495	1.00	17.35
	ATOM	580	0	GLY A	A	107	35.255	49.153	33.084	1.00	19.25
	MOTA	581	N	LEU A	A	108	35.890	47.326	31.942	1.00	16.97
	ATOM	582	CA	LEU Z	A	108	37.309	47.650	31.996	1.00	17.36
15	ATOM	583	СВ	LEU A	A	108	38.125	46.437	31.529	1.00	17.86
	ATOM	584	CG	LEU A	A	108	38.062	45.272	32.526	1.00	17.10
	ATOM	585	CD1	LEU Z	A	108	38.470	43.978	31.867	1.00	15.95
	ATOM	586	CD2	LEU A	A	108	38.968	45.584	33.715	1.00	18.93
	MOTA	587	С	LEU A	A	108	37.660	48.912	31.184	1.00	17.60
20	ATOM	588	0	LEU A	A	108	38.488	49.713	31.617		17.54
	ATOM	589	N	TYR A	A	109	37.049	49.091	30.014		17.36
	ATOM	590	CA	TYR Z	A	109	37.308	50.300	29.226		18.50
	ATOM	591	СВ	TYR A	A	109	36.579	50.270	27.873		16.29
	ATOM	592	CG	TYR Z	A	109	37.220	49.373	26.842		15.60
25	ATOM	593	CD1	TYR .	A	109	36.483	48.389	26.196		13.47
	ATOM	594		TYR .			37.074	47.542	25.273		14.70
	MOTA			TYR .				49.494			15.56
	MOTA	596		TYR .			39.169	48.657	25.605		15.08
20	ATOM	597	CZ	TYR .			38.416	47.682	24.982		15.11
30	ATOM	598	ОН	TYR .			39.008	46.842	24.073		14.37
	ATOM	599	С	TYR .			36.781	51.476	30.038		19.94
	ATOM	600	0	TYR .			37.402	52.538	30.099		19.20
	ATOM	601	N	LYS .			35.627	51.274	30.665		19.60
25	ATOM	602	CA	LYS .			35.026	52.316	31.478		22.98
35	ATOM	603	CB	LYS .			33.652	51.869	31.984	•	22.64
	ATOM	604	CG	LYS			32.978	52.883	32.884		25.49
	ATOM	605	CD	LYS	A	110	31.614	52.398	33.349	1.00	28.43

	ATOM	606	CE	LYS A	110	30.978	53.387	34.316	1.00	29.85
	ATOM	607	NZ	LYS A	110	29.639	52.924	34.779	1.00	32.33
	ATOM	608	С	LYS A	110	35.931	52.656	32.660	1.00	23.71
	ATOM	609	0	LYS A	110	35.911	53.779	33.159	1.00	24.86
5	ATOM	610	N	MET A	111	36.724	51.683	33.105	1.00	23.14
	ATOM	611	CA	MET A	111	37.635	51.896	34.227	1.00	22.28
	ATOM	612	СВ	MET A	111	38.200	50.556	34.710	1.00	23.75
	ATOM	613	CG	MET A	111	38.638	50.548	36.169	1.00	22.53
	MOTA	614	SD	MET A	111	39.196	48.918	36.741	1.00	22.26
10	MOTA	615	CE	MET A	111	37.667	48.079	37.039	1.00	21.23
	MOTA	616	С	MET A	111	38.775	52.825	33.802	1.00	22.11
	MOTA	617	0	MET A	111	39.489	53.375	34.641	1.00	22.69
	MOTA	618	N	GLY A	112	38.949.	52.995	32.496	1.00	20.34
	MOTA	619	CA	GLY A	112	39.991	53.883	32.015	1.00	18.15
15	MOTA	620	C .	GLY A	112	41.119	53.247	31.226	1.00	18.34
	ATOM	621	0	GLY A	112	42.003	53.956	30.741	1.00	18.29
	ATOM	622	N	PHE A	113	41.105	51.924	31.083	1.00	16.38
	MOTA	623	CA	PHE A	113	42.169	51.256	30.341	1.00	16.66
	MOTA	624	СВ	PHE A	113	42.085	49.736	30.519	1.00	15.73
20	MOTA	625	CG	PHE A	113	42.439	49.268	31.907	1.00	15.86
	ATOM	626	CD1	PHE A	113	41.461	48.785	32.763	1.00	13.52
	ATOM	627	CD2	PHE A	113	43.750	49.325	32.358	1.00	15.66
	ATOM	628	CE1	PHE A	113	41.783	48.366	34.049	1.00	16.31
	ATOM	629	CE2	PHE A	113	44.082	48.911	33.640	1.00	15.91
25	ATOM	630	CZ	PHE A	113	43.097	48.430	34.488		17.25
	ATOM	631	С	PHE A		42.123	51.613	28.860		17.48
	ATOM	632	0	PHE A	113	41.050	51.697			
	ATOM	633	N	GLY A		43.298	51.833	28.280		17.21
••	ATOM	634	CA	GLY A		43.387	52.183	26.875		17.10
30	ATOM	635	С	GLY A		43.185	50.974	25.983		17.43
	ATOM	636	0	GLY A		42.940	51.105	24.781		18.13
	ATOM	637	N	PHE A		43.321	49.790	26.567		15.88
	ATOM	638	CA	PHE A		43.118	48.554	25.827		15.94
2.5	ATOM	639	СВ	PHE A		44.278	48.279	24.855		14.80
35	ATOM	640	CG	PHE A		45.594	47.961	25.516		15.10
	ATOM	641		PHE A		46.118	46.678	25.455		13.34
	MOTA	642	CD2	PHE A	115	46.352	48.960	26.114	1.00	15.38

	MOTA	643	CE1	PHE A	115	47.375	46.391	25.968	1.00 13.45
	ATOM	644	CE2	PHE A	115	47.613	48.684	26.631	1.00 15.60
	ATOM	645	CZ	PHE A	115	48.126	47.394	26.556	1.00 16.23
	ATOM	646	С	PHE A	115	42.924	47.404	26.797	1.00 15.57
5	ATOM	647	0	PHE A	115	43.407	47.441	27.925	1.00 15.80
	MOTA	648	N	VAL A	116	42.195	46.391	26.350	1.00 14.53
	ATOM	649	CA	VAL A	116	41.886	45.245	27.184	1.00 13.55
	ATOM	650	СВ	VAL A	116	40.352	45.155	27.428	1.00 12.30
	ATOM	651	CG1	VAL A	116	39.999	43.863	28.178	1.00 11.26
10	ATOM	652	CG2	VAL A	116	39.888	46.366	28.199	1.00 9.84
	ATOM	653	С	VAL A	116	42.342	43.936	26.573	1.00 13.19
	ATOM	654	0	VAL A	116	42.195	43.716	25.371	1.00 13.44
	ATOM	655	N	GLU A	117	42.896	43.070	27.411	1.00 13.85
	ATOM	656	CA	GLU A	117	43.342	41.752	26.972	1.00 15.89
15	ATOM	657	СВ	GLU A	117	44.856	41.608	27.145	1.00 15.80
	MOTA	658	CG	GLU A	117	45.399	40.231	26.767	1.00 16.39
	ATOM	659	CD	GLU A	117	46.916	40.177	26.798	1.00 18.77
	ATOM	660	OE1	GLU A	. 117	47.467	39.207	27.369	1.00 16.54
	ATOM	661	OE2	GLU A	. 117	47.553	41.101	26.245	1.00 15.23
20	MOTA	662	С	GLU A	. 117	42.611	40.759	27.867	1.00 16.46
	ATOM	663	0	GLU A	. 117	42.710	40.840	29.088	1.00 17.95
	ATOM	664	N	ILE A	. 118	41.864	39.831	27.283	1.00 18.07
	ATOM	665	CA	ILE A	. 118	41.139	38.885	28.117	1.00 19.92
	ATOM	666	СВ	ILE A	. 118	39.789	38.483	27.484	1.00 18.14
25	ATOM	667	CG2	ILE A	. 118	38.863	39.685	27.481	1.00 16.23
	ATOM	668	CG1	ILE A	. 118	39.990	37.954		1.00 18.31
	ATOM	669	CD1	ILE A	. 118	38.708	37.447		1.00 19.68
	ATOM	670	С	ILE A	. 118	41.964	37.656	28.465	1.00 21.94
	MOTA	671	0	ILE A	. 118	42.582	37.044	27.597	1.00 20.77
30	ATOM	672	N	GLY A		41.971	37.348	29.766	1.00 26.52
	ATOM	673	CA	GLY A	. 119	42.725	36.240	30.343	1.00 23.76
	MOTA	674	С	GLY A	. 119	42.913	35.080	29.411	1.00 24.45
	MOTA	675	0	GLY A		42.145	34.933	28.455	1.00 22.92
	MOTA	676	N	SER A	120	43.921	34.254	29.691	1.00 21.74
35	ATOM	677	CA	SER A		44.207	33.102	28.843	1.00 20.99
	ATOM	678	СВ	SER A		45.383	32.290	29.396	1.00 21.02
	ATOM	679	OG	SER A	120	46.621	32.902	29.074	1.00 21.19

	ATOM	680	С	SER A	120	43.004	32.195	28.669	1.00 19.92
	ATOM	681	0	SER A	120	42.319	31.853	29.637	1.00 19.73
	ATOM	682	N	VAL A	121	42.761	31.817	27.420	1.00 18.41
	ATOM	683	CA	VAL A	121	41.652	30.945	27.064	1.00 17.15
5	ATOM	684	СВ	VAL A	121	40.762	31.588	25.973	1.00 17.17
	ATOM	685	CG1	VAL A	121	39.474	30.770	25.791	1.00 15.03
	ATOM	686	CG2	VAL A	121	40.451	33.036	26.337	1.00 15.07
	ATOM	687	С	VAL A	121	42.216	29.637	26.510	1.00 17.36
	ATOM	688	0	VAL A	121	43.129	29.649	25.685	1.00 17.64
10	MOTA	689	N	THR A	122	41.679	28.516	26.977	1.00 15.93
	MOTA	690	CA	THR A	122	42.112	27.204	26.513	1.00 18.45
	MOTA	691	СВ	THR A	122	42.255	26.209	27.692	1.00 18.19
	ATOM	692	OG1	THR A	122	41.041	26.182	28.446	1.00 20.07
	ATOM	693	CG2	THR A	122	43.385	26.624	28.607	1.00 17.93
15	ATOM	694	С	THR A	122	41.056	26.694	25.532	1.00 19.33
	ATOM	695	0	THR A	122	39.897	27.099	25.595	1.00 20.13
	ATOM	696	N	PRO A	123	41.447	25.817	24.599	1.00 19.88
	ATOM	697	CD	PRO A	123	42.813	25.347	24.312	1.00 20.45
	ATOM	698	CA	PRO A	123	40.495	25.283	23.618	1.00 21.16
20	ATOM	699	СВ	PRO A	123	41.326	24.252	22.864	1.00 20.64
	ATOM	700	CG	PRO A	123	42.693	24.893	22.870	1.00 20.94
	ATOM	701	С	PRO A	123	39.244	24.684	24.259	1.00 22.19
	ATOM	702	0	PRO A	123	38.122	25.084	23.948	1.00 21.78
	ATOM	703	N	LYS A	124	39.439	23.727	25.155	1.00 22.48
25	ATOM	704	CA	LYS A	124	38.314	23.107	25.834	1.00 24.61
	ATOM	705	CB	LYS A	. 124	38.518	21.589	25.943	1.00 26.75
	ATOM	706	CG	LYS A	124	38.853	20.915	24.624	1.00 31.52
	ATOM	707	CD	LYS A	124	37.838	21.287	23.548	1.00 36.94
	ATOM	708	CE	LYS A	124	38.268	20.790	22.173	1.00 39.83
30	ATOM	709	NZ	LYS A	. 124	37.347	21.270	21.104	1.00 41.97
	ATOM	710	С	LYS A	. 124	38.214	23.710	27.226	1.00 24.06
	ATOM	711	0	LYS A	. 124	39.197	24.224	27.760	1.00 24.29
	ATOM	712	N	PRO A	. 125	37.016	23.679	27.823	1.00 23.56
	ATOM	713	CD	PRO A	125	35.731	23.209	27.272	1.00 22.50
35	MOTA	714	CA	PRO A	. 125	36.849	24.235	29.169	1.00 22.94
	MOTA	715	СВ	PRO A	. 125	35.345	24.099	29.424	1.00 23.90
	ATOM	716	CG	PRO A	125	34.736	24.031	28.039	1.00 23.27

	ATOM	717	С	PRO A	125	37.652	23.386	30.156	1.00	23.04
	ATOM	718	0	PRO A	125	37.809	22.183	29.955	1.00	22.12
	ATOM	719	N	GLN A	126	38.173	24.012	31.204	1.00	22.29
	ATOM	720	CA	GLN A	126	38.908	23.286	32.235	1.00	22.14
5	MOTA	721	СВ	GLN A	126	40.345	22.953	31.794	1.00	23.41
	ATOM	722	CG	GLN A	126	41.271	24.132	31.558	1.00	21.69
	ATOM	723	CD	GLN A	126	42.719	23.691	31.384	1.00	21.50
	ATOM	724	OE1	GLN A	126	43.012	22.748	30.640	1.00	17.39
	MOTA	725	NE2	GLN A	126	43.633	24.376	32.067	1.00	19.78
10	ATOM	726	С	GLN A	126	38.907	24.109	33.516	1.00	22.34
	ATOM	727	0	GLN A	126	39.050	25.329	33.485	1.00	21.16
	ATOM	728	N	GLU A	127	38.742	23.421	34.640	1.00	23.72
	ATOM	729	CA	GLU A	127	38.657	24.053	35.950	1.00	26.48
	ATOM	730	СВ	GLU A	127	38.023	23.071	36.940	1.00	30.25
15	ATOM	731	CG	GLU A	127	36.718	22.476	36.444	1.00	38.37
	ATOM	732	CD	GLU A	127	35.966	21.732	37.527	1.00	43.74
	ATOM	733	OE1	GLU A	127	36.591	20.898	38.223	1.00	46.79
	MOTA	734	OE2	GLU A	127	34.748	21.979	37.678	1.00	45.76
	ATOM	735	С	GLU A	127	39.936	24.614	36.559	1.00	24.46
20	MOTA	736	0	GLU A	127	39.874	25.515	37.395	1.00	21.80
	ATOM	737	N	GLY A	128	41.085	24.083	36.158	1.00	23.10
	MOTA	738	CA	GLY A	128	42.337	24.559	36.715	1.00	23.08
	MOTA	739	С	GLY A	128	42.681	23.831	38.005	1.00	24.88
	ATOM	740	0	GLY A	128	42.088	22.794	38.317	1.00	22.39
25	MOTA	741	N	ASN A	129	43.635	24.371	38.761	1.00	25.51
	MOTA	742	CA	ASN A	129	44.060	23.752	40.013	1.00	26.86
	ATOM	743	СВ	ASN A	129	45.401	24.333	40.475	1.00	26.95
	ATOM	744	CG	ASN A	129	46.545	23.948	39.564	1.00	29.42
	ATOM	745	OD1	ASN A	129	46.684	22.784	39.191	1.00	29.57
30	ATOM	746	ND2	ASN A	129	47.379	24.922	39.206	1.00	27.28
	ATOM	747	С	ASN A	129	43.044	23.916	41.130	1.00	27.75
	MOTA	748	0	ASN A	129	42.222	24.832	41.112	1.00	28.72
	ATOM	749	N	PRO A	130	43.090	23.016	42.123		28.29
	ATOM	750	CD	PRO A	130	43.976	21.840	42.196	1.00	28.29
35	MOTA	751	CA	PRO A	130	42.176	23.057	43.266	1.00	28.70
	MOTA	752	СВ	PRO A		42.415	21.708	43.943		28.73
	MOTA	753	CG	PRO A	130	43.849	21.432	43.648	1.00	28.52

	MOTA	754	С	PRO A	130	42.519	24.238	44.170	1.00 30.37
	ATOM	755	0	PRO A	130	43.658	24.703	44.181	1.00 30.70
	ATOM	756	N	ARG A	131	41.535	24.728	44.916	1.00 31.62
	MOTA	757	CA	ARG A	131	41.753	25.857	45.813	1.00 33.50
5	MOTA	758	СВ	ARG A	131	40.420	26.515	46.178	1.00 35.74
	ATOM	759	CG	ARG A	131	39.613	27.089	45.017	1.00 38.80
	ATOM	760	CD	ARG A	131	38.514	27.985	45.580	1.00 42.56
	MOTA	761	NE	ARG A	131	37.622	28.555	44.573	1.00 47.82
	ATOM	762	CZ	ARG A	131	36.761	29.545	44.818	1.00 49.92
10	MOTA	763	NH1	ARG A	131	36.682	30.074	46.035	1.00 48.66
	ATOM	764	NH2	ARG A	131	35.974	30.006	43.853	1.00 49.91
	ATOM	765	С	ARG A	131	42.461	25.422	47.103	1.00 33.57
	ATOM	766	0	ARG A	131	42.376	24.265	47.515	1.00 34.25
	ATOM	767	N	PRO A	132	43.194	26.345	47.743	1.00 31.72
15	ATOM	768	CD	PRO A	132	43.813	26.140	49.065	1.00 32.80
	ATOM	769	CA	PRO A	132	43.370	27.730	47.297	1.00 29.67
	ATOM	770	СВ	PRO A	132	43.810	28.437	48.572	1.00 30.49
	ATOM	771	CG	PRO A	132	44.655	27.389	49.233	1.00 31.39
	ATOM	772	С	PRO A	132	44.432	27.774	46.198	1.00 26.70
20	ATOM	773	0	PRO A	132	45.304	26.907	46.143	1.00 25.75
	ATOM	774	N	ARG A	133	44.363	28.779	45.329	1.00 23.15
	ATOM	775	CA	ARG A	133	45.315	28.882	44.232	1.00 20.71
	ATOM	776	СВ	ARG A	133	44.701	28.268	42.972	1.00 20.72
	ATOM	777	CG	ARG A	133	43.273	28.731	42.700	1.00 19.27
25	ATOM	778	CD	ARG A	133	42.596	27.848	41.651	1.00 19.00
	ATOM	779	NE	ARG A	133	41.216	28.261	41.400	1.00 17.68
	ATOM	780	CZ	ARG A	133	40.462	27.779	40.418	1.00 16.01
	ATOM	781	NH1	ARG A	133	39.221	28.209	40.258	1.00 13.83
	ATOM	782	NH2	ARG A	133	40.952	26.866	39.592	1.00 16.14
30	ATOM	783	С	ARG A	133	45.789	30.303	43.952	1.00 20.50
	MOTA	784	0	ARG A	133	46.444	30.562	42.941	1.00 20.67
	ATOM	785	N	VAL A	134	45.447	31.225	44.842	1.00 19.19
	ATOM	786	CA	VAL A	134	45.876	32.609	44.702	1.00 18.94
	ATOM	787	СВ	VAL A	134	44.805	33.483	43.977	1.00 18.31
35	ATOM	788	CG1	VAL A	134	43.524	33.555	44.790	1.00 17.25
	ATOM	789	CG2	VAL A	134	45.366	34.876	43.720	1.00 16.42
	MOTA	790	С	VAL A	134	46.136	33.109	46.121	1.00 19.93

	ATOM	791	0	VAL A	134	45.393	32.784	47.044	1.00 21.00
	ATOM	792	N	PHE A	135	47.208	33.870	46.303	1.00 19.43
	ATOM	793	CA	PHE A	135	47.558	34.352	47.630	1.00 18.68
	ATOM	794	СВ	PHE A	135	48.619	33.437	48.244	1.00 18.25
5	ATOM	795	CG	PHE A	135	48.311	31.968	48.099	1.00 17.64
	ATOM	796	CD1	PHE A	135	48.567	31.305	46.909	1.00 17.96
	ATOM	797	CD2	PHE A	135	47.730	31.262	49.142	1.00 18.54
	ATOM	798	CE1	PHE A	135	48.248	29.963	46.758	1.00 17.71
	ATOM	799	CE2	PHE A	135	47.407	29.921	49.001	1.00 17.69
10	MOTA	800	CZ	PHE A	135	47.667	29.272	47.804	1.00 18.64
	ATOM	801	С	PHE A	135	48.060	35.791	47.635	1.00 19.58
	MOTA	802	0	PHE A	135	48.769	36.227	46.724	1.00 19.26
	MOTA	803	N.	ARG A	136	47.684	36.522	48.676	1.00 18.78
	ATOM	804	CA	ARG A	136	48.087	37.907	48.821	1.00 18.85
15	ATOM	805	CB	ARG A	136	46.945	38.734	49.440	1.00 18.08
	ATOM	806	CG	ARG A	136	45.648	38.704	48.639	1.00 21.63
	ATOM	807	CD	ARG A	A 136	44.493	39.450	49.317	1.00 22.90
	ATOM	808	NE	ARG A	A 136	44.669	40.900	49.298	1.00 31.55
	ATOM	809	CZ	ARG A	136	45.236	41.604	50.277	1.00 34.11
20	MOTA	810	NH1	ARG A	136	45.358	42.922	50.170	1.00 33.96
	ATOM	811	NH2	ARG A	136	45.663	40.995	51.374	1.00 36.33
	ATOM	812	С	ARG A	136	49.319	37.991	49.714	1.00 18.61
	ATOM	813	0	ARG A	136	49.460	37.220	50.663	1.00 16.80
	ATOM	814	N	LEU A	A 137	50.214	38.918	49,376	1.00 17.15
25	ATOM	815	CA	LEU A	A 137	51.432	39.182	50.141	1.00 15.58
	MOTA	816	СВ	LEU A	A 137	52.685	38.735	49.383	1.00 14.90
	ATOM	817	CG	LEU A	A 137	53.070	37.252	49.326	1.00 16.15
	ATOM	818	CD1	LEU A	A 137	52.002	36.449	48.591	1.00 14.54
	ATOM	819	CD2	LEU A	A 137	54.416	37.119	48.613	1.00 14.08
30	ATOM	820	С	LEU A	137	51.442	40.700	50.288	1.00 16.26
	MOTA	821	0	LEU A	A 137	52.240	41.396	49.653	1.00 14.07
	ATOM	822	N	PRO A	138	50.524	41.229	51.113	1.00 15.45
	ATOM	823	CD	PRO A	A 138	49.555	40.439	51.895	1.00 15.39
	ATOM	824	CA	PRO A	A 138	50.371	42.661	51.379	1.00 15.67
35	ATOM	825	СВ	PRO A	A 138	49.263	42.711	52.442	1.00 16.12
	ATOM	826	CG	PRO A	A 138	49.300	41.332	53.076	1.00 16.29
	ATOM	827	С	PRO A	A 138	51.642	43.386	51.806	1.00 16.69

	ATOM	828	0	PRO	A	138	51.878	44.518	51.382	1.00	16.05
	MOTA	829	N	GLU	A	139	52.460	42.750	52.638	1.00	16.00
	ATOM	830	CA	GLU	A	139	53.694	43.391	53.072	1.00	18.28
	ATOM	831	СВ	GLU	A	139	54.414	42.551	54.135	1.00	19.48
5	ATOM	832	CG	GLU	Α	139	53.660	42.377	55.455	1.00	21.64
	ATOM	833	CD	GLU	A	139	52.648	41.240	55.418	1.00	23.74
	MOTA	834	OE1	GLU	A	139	51.996	41.000	56.460	1.00	24.15
	MOTA	835	OE2	GLU	A	139	52.504	40.589	54.356	1.00	21.93
	ATOM	836	С	GLU	A	139	54.640	43.610	51.890	1.00	19.58
10	ATOM	837	0	GLU	A	139	55.566	44.423	51.974	1.00	20.31
	ATOM	838	N	ASP	A	140	54.406	42.892	50.792	1.00	16.14
	ATOM	839	CA	ASP	Α	140	55.256	43.010	49.608	1.00	15.71
	ATOM	840	CB	ASP	A	140	55.743	41.628	49.155	1.00	14.25
	ATOM	841	CG	ASP	A	140	56.369	40.833	50.277	1.00	16.28
15	ATOM	842	OD1	ASP	Α	140	57.398	41.284	50.819	1.00	15.84
	ATOM	843	OD2	ASP	A	140	55.829	39.755	50.618	1.00	17.81
	ATOM	844	С	ASP	A	140	54.522	43.649	48.448	1.00	15.94
	ATOM	845	0	ASP	A	140	55.112	43.886	47.387	1.00	15.41
	MOTA	846	N	GLN	A	141	53.237	43.928	48.645	1.00	16.39
20	MOTA	847	CA	GLN	A	141	52.424	44.492	47.576	1.00	16.60
	ATOM	848	СВ	GLN	Α	141	52.891	45.907	47.239	1.00	17.74
	ATOM	849	CG	GLN	Α	141	52.463	46.925	48.283	1.00	21.42
	MOTA	850	CD	GLN	A	141	52.966	48.321	47.992	1.00	22.86
	MOTA	851	OE1	GLN	A	141	52.811	48.829	46.879	1.00	25.58
25	ATOM	852	NE2	GLN	A	141	53.560	48.961	48.999	1.00	20.82
	ATOM	853	С	GLN	Α	141	52.584	43.563	46.379	1.00	16.15
	ATOM	854	0	GLN	Α	141	52.779	44.000	45.243	1.00	16.04
	ATOM	855	N	ALA	Α	142	52.502	42.265	46.664	1.00	15.11
	ATOM	856	CA	ALA	A	142	52.639	41.230	45.655	1.00	16.24
30	ATOM	857	СВ	ALA	A	142	54.011	40.566	45.776	1.00	14.95
	ATOM	858	С	ALA	A	142	51.543	40.173	45.790		16.14
	ATOM	859	0	ALA	Α	142	50.822	40.128	46.786	1.00	16.05
	ATOM	860	N	VAL	A	143	51.434	39.327	44.770		14.61
	ATOM	861	CA	VAL	Α	143	50.463	38.248	44.751		13.30
35	MOTA	862	CB	VAL	Α	143	49.232	38.585	43.848		15.01
	ATOM	863	CG1	VAL	A	143	48.372	37.345	43.658		12.24
	ATOM	864	CG2	VAL	Α	143	48.392	39.705	44.469	1.00	12.72

	ATOM	865	С	VAL A	143	51.153	37.022	44.169	1.00	15.22
	ATOM	866	0	VAL A	143	52.098	37.140	43.386	1.00	17.23
	MOTA	867	N	ILE A	144	50.702	35.845	44.581	1.00	15.07
	ATOM	868	CA	ILE A	144	51.228	34.597	44.050	1.00	14.14
5	ATOM	869	СВ	ILE A	144	51.994	33.783	45.113	1.00	15.13
	ATOM	870	CG2	ILE A	144	52.184	32.340	44.627	1.00	12.58
	MOTA	871	CG1	ILE A	144	53.357	34.429	45.382	1.00	14.50
	ATOM	872	CD1	ILE A	144	54.167	33.719	46.437	1.00	15.10
	ATOM	873	С	ILE A	144	50.007	33.812	43.597	1.00	15.18
10	ATOM	874	0	ILE A	144	49.014	33.728	44.325	1.00	14.61
	ATOM	875	N	ASN A	145	50.063	33.247	42.397	1.00	14.87
	MOTA	876	CA	ASN A	145	48.926	32.492	41.896	1.00	14.98
	MOTA	877	СВ	ASN A	145	48.079	33.381	40.981	1.00	14.70
	MOTA	878	CG	ASN A	145	48.613	33.431	39.558	1.00	16.21
15	ATOM	879	OD1	ASN A	145	48.327	32.549	38.747	1.00	15.94
	ATOM	880	ND2	ASN A	145	49.404	34.457	39.253	1.00	15.29
	ATOM	881	С	ASN A	145	49.326	31.228	41.139	1.00	16.34
	ATOM	882	0	ASN A	145	50.392	31.163	40.515	1.00	14.81
	ATOM	883	N	ARG A	146	48.457	30.224	41.207	1.00	15.88
20	ATOM	884	CA	ARG A	146	48.667	28.965	40.512	1.00	16.71
	ATOM	885	СВ	ARG A	146	49.355	27.941	41.429	1.00	17.60
	ATOM	886	CG	ARG A	146	48.672	27.686	42.775	1.00	16.03
	ATOM	887	CD	ARG A	146	49.242	26.427	43.427	1.00	16.96
	ATOM	888	NE	ARG A	146	48.682	26.156	44.751	1.00	18.10
25	MOTA	889	CZ	ARG A	146	49.201	26.585	45.900	1.00	18.95
	MOTA	890		ARG A		50.311	27.316	45.910		16.91
	ATOM	891	NH2	ARG A			26.275	47.048		18.90
	ATOM	892	С	ARG A		47.317	28.429	40.026		17.77
20	ATOM	893	0	ARG A		46.987	27.260	40.226		18.14
30	ATOM	894	N	TYR A		46.540	29.296	39.381		16.93
	ATOM	895	CA	TYR A		45.232	28.913	38.866		17.10
	ATOM	896	СВ	TYR A		44.583	30.088	38.131		16.67
	ATOM	897	CG	TYR A		43.797	31.015	39.033		16.52
25	ATOM	898		TYR A		44.347	32.200	39.502		15.84
35	ATOM	899	CE1			43.618	33.051	40.323		17.11
	ATOM	900		TYR A		42.496	30.699	39.413		17.14
	ATOM	901	CE2	TYR A	147	41.761	31.540	40.233	1.00	17.07

	ATOM	902	CZ	TYR	Α	147	42.326	32.714	40.681	1.00	16.99
	ATOM	903	ОН	TYR .	Α	147	41.586	33.557	41.475	1.00	19.36
	ATOM	904	С	TYR	Α	147	45.289	27.704	37.937	1.00	18.90
	ATOM	905	0	TYR	Α	147	44.454	26.799	38.030	1.00	19.56
5	ATOM	906	N	GLY	Α	148	46.272	27.693	37.040	1.00	17.53
	ATOM	907	CA	GLY	A	148	46.418	26.586	36.114	1.00	18.26
	ATOM	908	С	GLY	A	148	45.518	26.661	34.892	1.00	18.89
	ATOM	909	0	GLY	Α	148	45.036	25.635	34.409	1.00	18.59
	ATOM	910	N	PHE	A	149	45.292	27.869	34.387	1.00	18.08
10	ATOM	911	CA	PHE	A	149	44.454	28.060	33.209	1.00	18.01
	ATOM	912	СВ	PHE	A	149	45.024	27.286	32.012	1.00	17.90
	MOTA	913	CG	PHE	A	149	46.184	27.962	31.334	1.00	19.93
	ATOM	914	CD1	PHE	A	149	47.006	27.250	30.469	1.00	20.61
	ATOM	915	CD2	PHE	A	149	46.450	29.307	31.545	1.00	19.87
15	ATOM	916	CE1	PHE	A	149	48.074	27.868	29.829	1.00	21.56
	ATOM	917	CE2	PHE	A	149	47.511	29.929	30.912	1.00	20.39
	ATOM	918	CZ	PHE	A	149	48,326	29.211	30.053	1.00	21.63
	ATOM	919	С	PHE	A	149	42.989	27.658	33.393	1.00	18.19
	ATOM	920	0	PHE	A	149	42.459	26.885	32.598	1.00	16.88
20	ATOM	921	N	ASN	A	150	42.338	28.154	34.440	1.00	17.39
	ATOM	922	CA	ASN	A	150	40.921	27.859	34.617	1.00	18.20
	ATOM	923	СВ	ASN	A	150	40.426	28.360	35.978		16.86
	ATOM	924	CG	ASN	A	150	40.861	29.778	36.272	1.00	19.11
	ATOM	925	OD1	ASN	A	150	42.042	30.119	36.151	1.00	18.63
25	ATOM	926	ND2	ASN	A	150	39.913	30.612	36.679	1.00	18.23
	ATOM	927	С	ASN			40.296	28.653	33.469		18.25
	ATOM	928	0	ASN	A	150	40.556	29.849	33.329		
	MOTA	929	N	SER	A	151	39.495	27.994	32.636		17.60
	ATOM	930	CA	SER			38.924	28.669	31.479		17.42
30	ATOM	931	СВ	SER			39.948	28.625	30.337		16.39
	ATOM	932	OG	SER			39.383	29.008	29.094		16.77
	MOTA	933	С	SER			37.589	28.125	30.981		18.29
	ATOM	934	0	SER			37.367	26.912	30.950		19.11
2.5	ATOM	935	N	HIS			36.706	29.036	30.580		17.96
35	ATOM	936	CA	HIS			35.399	28.655	30.051		18.60
	ATOM	937	CB	HIS			34.502	29.887	29.899		18.50
	ATOM	938	CG	HIS	Α	152	34.020	30.450	31.200	1.00	20.25

	ATOM	939	CD2	HIS A	152	34.271	30.083	32.480	1.00 21.79
	ATOM	940	ND1	HIS A	152	33.157	31.523	31.271	1.00 21.65
	ATOM	941	CE1	HIS A	152	32.896	31.791	32.538	1.00 20.98
	ATOM	942	NE2	HIS A	152	33.559	30.932	33.292	1.00 21.39
5	ATOM	943	С	HIS A	152	35.557	27.974	28.687	1.00 18.05
	ATOM	944	0	HIS A	152	34.641	27.302	28.207	1.00 16.86
	ATOM	945	N	GLY A	153	36.721	28.149	28.064	1.00 16.67
	ATOM	946	CA	GLY A	153	36.953	27.536	26.766	1.00 15.79
	ATOM	947	С	GLY A	153	36.671	28.464	25.599	1.00 14.76
10	MOTA	948	0	GLY A	153	35.935	29.442	25.727	1.00 13.73
	ATOM	949	N	LEU A	154	37.254	28.147	24.450	1.00 16.63
	ATOM	950	CA	LEU A	154	37.095	28.958	23.246	1.00 18.43
	ATOM	951	СВ	LEU A	154	37.831	28.297	22.074	1.00 15.94
	ATOM	952	CG	LEU A	154	39.356	28.283	22.137	1.00 16.17
15	MOTA	953	CD1	LEU A	154	39.925	27.439	21.003	1.00 11.50
	MOTA	954	CD2	LEU A	154	39.863	29.713	22.061	1.00 15.25
	MOTA	955	C	LEU A	154	35.640	29.198	22.847	1.00 20.28
	MOTA	956	0	LEU A	154	35.227	30.337	22.613	1.00 20.49
	ATOM	957	N	SER A	155	34.872	28.118	22.768	1.00 20.71
20	MOTA	958	CA	SER A	155	33.473	28.194	22.369	1.00 23.17
	ATOM	959	СВ	SER A		32.824	26.818	22.520	1.00 24.18
	MOTA	960	OG	SER A	155	31.494	26.838	22.053	1.00 31.05
	MOTA	961	С	SER A		32.674	29.240	23.147	1.00 22.07
	MOTA	962	0	SER A	155	32.091	30.153	22.562	1.00 21.98
25	MOTA	963	N	VAL A		32.648	29.110	24.468	1.00 22.13
	ATOM	964	CA	VAL A		.31.915	30.054	25.297	1.00 20.80
	ATOM	965		VAL A					1.00 22.11
	MOTA	966		VAL A		31.467	30.777	27.661	1.00 21.20
20	ATOM	967		VAL A		31.137	28.386	26.993	1.00 18.95
30	ATOM	968	С	VAL A		32.433	31.486	25.136	1.00 20.60
	ATOM	969	0	VAL A		31.647	32.424	25.025	1.00 20.47
	ATOM	970	N	VAL A		33.751	31.655	25.106	1.00 17.60
	ATOM	971	CA	VAL A		34.325	32.983	24.955	1.00 16.63
25	ATOM	972	CB	VAL A		35.854	32.953	25.181	1.00 16.62
35	ATOM	973		VAL A		36.459	34.308	24.880	1.00 14.21
	ATOM	974		VAL A		36.149	32.556	26.616	1.00 16.01
	ATOM	975	С	VAL A	. 13/	34.015	33.539	23.564	1.00 16.34

	MOTA	976	0	VAL A	. 157	33.786	34.738	23.401	1.00	15.07
	ATOM	977	N	GLU A	. 158	34.001	32.658	22.568	1.00	17.68
	MOTA	978	CA	GLU A	. 158	33.703	33.050	21.194	1.00	18.02
	MOTA	979	СВ	GLU A	. 158	33.724	31.823	20.278	1.00	18.61
5	MOTA	980	CG	GLU A	158	33.372	32.118	18.826	1.00	20.67
	ATOM	981	CD	GLU A	158	32.777	30.909	18.115	1.00	24.47
	MOTA	982	OE1	GLU F	158	33.444	29.860	18.042	1.00	29.63
	ATOM	983	OE2	GLU A	158	31.633	31.003	17.629	1.00	26.66
	MOTA	984	С	GLU P	158	32.323	33.708	21.121	1.00	18.60
10	MOTA	985	0	GLU A	158	32.176	34.816	20.602	1.00	18.32
	ATOM	986	N	HIS A	159	31.315	33.022	21.648	1.00	18.17
	ATOM	987	CA	HIS A	159	29.951	33.543	21.621	1.00	21.55
	MOTA	988	СВ	HIS A	159	28.970	32.459	22.078	1.00	21.45
	MOTA	989	CG	HIS F	159	28.883	31.307	21.127	1.00	26.95
15	ATOM	990	CD2	HIS A	159	28.642	31.271	19.794	1.00	25.37
	ATOM	991	ND1	HIS A	159	29.117	30.002	21.509	1.00	29.08
	ATOM	992	CE1	HIS A	159	29.027	29.214	20.452	1.00	28.39
	ATOM	993	NE2	HIS A	159	28.741	29.960	19.399	1.00	27.32
	MOTA	994	С	HIS A	159	29.791	34.796	22.464	1.00	21.09
20	ATOM	995	0	HIS A	159	28.996	35.679	22.141	1.00	20.90
	MOTA	996	N	ARG A	160	30.565	34.874	23.538	1.00	21.00
	MOTA	997	CA	ARG A	160	30.519	36.020	24.429	1.00	22.35
	MOTA	998	СВ	ARG A	160	31.346	35.714	25.684	1.00	22.67
	ATOM	999	CG	ARG A	160	31.199	36.704	26.824	1.00	23.49
25	ATOM	1000	CD	ARG A	160	31.778	36.108	28.107	1.00	24.33
	MOTA	1001	NE	ARG A	160	30.914	35.082	28.688	1.00	22.62
	ATOM	1002	CZ	ARG A	160	31.348	34.044	29.399	1.00	24.90
	ATOM	1003	NH1	ARG A	160	32.648	33.878	29.615	1.00	23.96
	ATOM	1004	NH2	ARG A	160	30.480	33.183	29.921	1.00	23.86
30	ATOM	1005	С	ARG A	160	31.056	37.256	23.701		21.87
	MOTA	1006	0	ARG A	1.60	30.532	38.357	23.861		22.45
	MOTA	1007	N	LEU A	161	32.096	37.073	22.892		20.79
	ATOM	1008	CA	LEU A	161	32.665	38.195	22.153		20.55
	ATOM	1009	CB	LEU A	161	34.105	37.890	21.726		19.07
35	ATOM	1010	CG	LEU A	161	35.109	37.731	22.873		20.07
	ATOM	1011	CD1	LEU A	161	36.506	37.526	22.299		17.41
	MOTA	1012	CD2	LEU A	161	35.074	38.967	23.773	1.00	14.84

	ATOM	1013	С	LEU A	161	31.815	38.538	20.932	1.00	19.72
	MOTA	1014	0	LEU A	161	31.718	39.702	20.543	1.00	18.72
	ATOM	1015	N	ARG A	162	31.192	37.530	20.329	1.00	18.38
	MOTA	1016	CA	ARG A	162	30.345	37.781	19.166	1.00	19.35
5	MOTA	1017	СВ	ARG A	162	29.871	36.469	18.543	1.00	17.39
	MOTA	1018	CG	ARG A	. 162	30.917	35.783	17.676	1.00	18.97
	ATOM	1019	CD	ARG A	. 162	30.314	34.562	17.002	1.00	19.54
	MOTA	1020	NE	ARG A	. 162	31.228	33.917	16.068	1.00	19.77
	MOTA	1021	CZ	ARG A	162	30.929	32.814	15.395	1.00	20.70
10	MOTA	1022	NH1	ARG A	162	29.741	32.248	15.564	1.00	21.29
	MOTA	1023	NH2	ARG A	162	31.808	32.277	14.560	1.00	19.65
	MOTA	1024	С	ARG A	162	29.133	38.631	19.535	1.00	18.62
	MOTA	1025	0	ARG A	162	28.631	39.396	18.716	1.00	18.15
	MOTA	1026	N	ALA A	163	28.675	38.498	20.773	1.00	18.36
15	MOTA	1027	CA	ALA A	163	27.518	39.251	21.248	1.00	19.15
	MOTA	1028	СВ	ALA A	163	27.121	38.765	22.644	1.00	17.76
	MOTA	1029	С	ALA A	163	27.770	40.758	21.275	1.00	19.03
	ATOM	1030	0	ALA A	163	26.829	41.544	21.340	1.00	17.57
	MOTA	1031	N	ARG A	. 164	29.041	41.152	21.221	1.00	19.26
20	MOTA	1032	CA	ARG A	164	29.414	42.565	21.254	1.00	20.90
	ATOM	1033	СВ	ARG A	164	29.975	42.924	22.637	1.00	21.75
	ATOM	1034	CG	ARG A	164	31.237	42.143	23.013	1.00	20.72
	MOTA	1035	CD	ARG A	164	31.734	42.494	24.411	1.00	18.57
	ATOM	1036	NE	ARG A	164	32.268	43.851	24.502	1.00	16.65
25	MOTA	1037	CZ	ARG A	164	33.417	44.250	23.962	1.00	17.53
	MOTA	1038	NH1	ARG A	164	34.174	43.398	23.281	1.00	15.56
	MOTA	1039	NH2	ARG A	164	33.819	45.506	24.115	1.00	17.21
	ATOM	1040	С	ARG A	164	30.462	42.885	20.194	1.00	21.89
	MOTA	1041	0	ARG F	164	31.128	43.919	20.260	1.00	21.63
30	MOTA	1042	N	GLN F	165	30.595	41.995	19.216	1.00	22.72
	MOTA	1043	CA	GLN F	165	31.576	42.151	18.157	1.00	23.14
	MOTA	1044	СВ	GLN A	165	31.411	41.026	17.128	1.00	24.10
	MOTA	1045	CG	GLN A	165	32.334	41.139	15.926		26.13
	MOTA	1046	CD	GLN A	165	32.461	39.833	15.158		27.06
35	ATOM	1047		GLN A		31.513	39.057	15.068		27.74
	ATOM	1048		GLN A		33.637	39.593	14.590		29.00
	MOTA	1049	С	GLN A	165	31.538	43.507	17.462	1.00	24.15

	ATOM	1050	0	GLN A	Ą	165	32.587	44.092	17.189	1.00	23.74
	MOTA	1051	N	GLN A	Ą	166	30.343	44.013	17.178	1.00	23.33
	ATOM	1052	CA	GLN A	Ą	166	30.239	45.298	16.505	1.00	24.01
	ATOM	1053	СВ	GLN A	Ą	166	28.863	45.464	15.855	1.00	25.30
5	ATOM	1054	CG	GLN A	A	166	28.623	44.498	14.703	1.00	26.42
	ATOM	1055	CD	GLN A	Ą	166	29.765	44.486	13.703	1.00	28.04
	ATOM	1056	OE1	GLN A	Ą	166	30.215	45.538	13.241	1.00	29.98
	ATOM	1057	NE2	GLN A	Ą	166	30.234	43.291	13.356	1.00	28.88
	ATOM	1058	С	GLN A	A	166	30.522	46.450	17.451	1.00	22.96
10	ATOM	1059	0	GLN A	Ą	166	31.075	47.471	17.042	1.00	22.74
	ATOM	1060	N	LYS A	A	167	30.147	46.298	18.715	1.00	22.13
	ATOM	1061	CA	LYS A	A	167	30.432	47.347	19.681	1.00	21.57
	ATOM	1062	СВ	LYS A	A	167	29.868	47.004	21.060	1.00	21.33
	ATOM	1063	CG	LYS A	A	167	30.360	47.954	22.141	1.00	26.86
15	ATOM	1064	CD	LYS A	A	167	29.860	47.587	23.528	1.00	30.91
	ATOM	1065	CE	LYS A	A	167	28.377	47.871	23.681	1.00	34.06
	MOTA	1066	NZ	LYS A	A	167	27.936	47.697	25.092	1.00	36.77
	ATOM	1067	С	LYS A	A	167	31.951	47.478	19.773	1.00	21.05
	ATOM	1068	0	LYS A	A	167	32.486	48.586	19.789	1.00	22.09
20	ATOM	1069	N	GLN A	A	168	32.642	46.340	19.818	1.00	19.71
	ATOM	1070	CA	GLN A	A	168	34.100	46.339	19.909	1.00	18.61
	ATOM	1071	СВ	GLN A	A	168	34.630	44.914	20.104	1.00	17.41
	ATOM	1072	CG	GLN A	A	168	36.150	44.837	20.262	1.00	16.23
	ATOM	1073	CD	GLN A	A	168	36.658	45.632	21.465	1.00	17.12
25	ATOM	1074	OE1	GLN A	A	168	36.286	45.356	22.609	1.00	16.33
	MOTA	1075	NE2	GLN A	A	168	37.505	46.624	21.208	1.00	15.46
	MOTA	1076	С	GLN A	Ą	168	34.732	46.957	18.669	1.00	18.91
	MOTA	1077	0	GLN A	A	168	35.774	47.600	18.755	1.00	18.77
	MOTA	1078	N	ALA A	A	169	34.102	46.771	17.514	1.00	19.76
30	MOTA	1079	CA	ALA A	A	169	34.643	47.341	16.282	1.00	20.87
	MOTA	1080	СВ	ALA	A	169	33.802	46.913	15.083	1.00	20.96
	MOTA	1081	С	ALA A	A	169	34.691	48.867	16.378	1.00	21.41
	MOTA	1082	0	ALA	A	169	35.629	49.498	15.890	1.00	21.80
	MOTA	1083	N	LYS	A	170	33.682	49.459	17.009	1.00	22.29
35	MOTA	1084	CA	LYS	A	170	33.642	50.909	17.158	1.00	23.95
	MOTA	1085	CB	LYS .	A	170	32.227	51.382	17.512		24.74
	MOTA	1086	CG	LYS .	A	170	31.236	51.279	16.347	1.00	29.74

	MOTA	1087	CD	LYS A	170	29.874	51.874	16.705	1.00	30.85
	ATOM	1088	CE	LYS A	170	28.915	51.843	15.512	1.00	33.49
	MOTA	1089	NZ	LYS A	170	28.547	50.458	15.087	1.00	32.56
	MOTA	1090	С	LYS A	170	34.629	51.372	18.223	1.00	23.26
5	ATOM	1091	0	LYS A	170	35.224	52.441	18.099	1.00	23.47
	ATOM	1092	N	LEU A	171	34.802	50.570	19.268	1.00	22.26
	ATOM	1093	CA	LEU A	171	35.742	50.921	20.328	1.00	22.16
	ATOM	1094	СВ	LEU, A	171	35.634	49.925	21.485	1.00	20.03
	ATOM	1095	CG	LEU A	171	34.340	50.039	22.300	1.00	20.45
10	ATOM	1096	CD1	LEU A	171	34.112	48.782	23.127	1.00	15.47
	ATOM	1097	CD2	LEU A	171	34.418	51.280	23.188	1.00	20.39
	ATOM	1098	С	LEU A	171	37.161	50.926	19.757	1.00	21.88
	ATOM	1099	0	LEU A	171	37.925	51.867	19.977	1.00	19.98
	ATOM	1100	N	THR A	172	37.500	49.877	19.013	1.00	22.29
15	ATOM	1101	CA	THR A	172	38.821	49.763	18.396	1.00	22.96
	ATOM	1102	СВ	THR A	172	38.940	48.457	17.581	1.00	21.62
	ATOM	1103	OG1	THR A	172	38.883	47.335	18.474	1.00	21.62
	ATOM	1104	CG2	THR A	172	40.249	48.424	16.799	1.00	19.50
	ATOM	1105	С	THR A	172	39.076	50.955	17.473	1.00	23.87
20	ATOM	1106	0	THR A	172	40.133	51.588	17.528	1.00	23.14
	ATOM	1107	N	GLU A	173	38.100	51.257	16,628	1.00	24.87
	ATOM	1108	CA	GLU A	173	38.215	52.382	15.710	1.00	27.68
	ATOM	1109	СВ	GLU A	173	36.962	52.477	14.835	1.00	31.02
	ATOM	1110	CG	GLU A	173	37.047	53.531	13.743	1.00	39.64
25	ATOM	1111	CD	GLU A	173	38.105	53.207	12.696	1.00	43.67
	ATOM	1112	OE1	GLU A	173	38.366	54.069	11.828	1.00	45.72
	MOTA	1113	OE2	GLU A	173	38.669	52.089	12.736	1.00	46.35
	MOTA	1114	С	GLU A	173	38.371	53.666	16.528	1.00	27.22
	ATOM	1115	0	GLU A	173	38.926	54.655	16.057	1.00	27.62
30	ATOM	1116	N	ASP A	174	37.884	53.633	17.762	1.00	26.71
	ATOM	1117	CA	ASP A	174	37.959	54.781	18.652	1.00	27.64
	ATOM	1118	СВ	ASP A	174	36.736	54.803	19.564	1.00	32.56
	ATOM	1119	CG	ASP A	174	35.901	56.045	19.380	1.00	38.04
	ATOM	1120	OD1	ASP A	174	36.428	57.159	19.615	1.00	39.70
35	ATOM	1121	OD2	ASP A	174	34.718	55.907	18.997	1.00	41.14
	ATOM	1122	С	ASP A	174	39.224	54.814	19.512	1.00	26.26
	ATOM	1123	0	ASP A	174	39.353	55.667	20.382	1.00	25.02

	ATOM	1124	N	GLY A	175	40.143	53.879	19.281	1.00	24.50
	MOTA	1125	CA	GLY A	175	41.377	53.854	20.052	1.00	23.56
	MOTA	1126	С	GLY A	175	41.362	52.979	21.297	1.00	22.22
	MOTA	1127	0	GLY A	175	42.154	53.190	22.210	1.00	22.02
5	MOTA	1128	N	LEU A	176	40.469	51.996	21.332	1.00	21.00
	MOTA	1129	CA	LEU A	176	40.355	51.089	22.474	1.00	19.94
	MOTA	1130	СВ	LEU A	176	39.066	51.392	23.245	1.00	17.55
	MOTA	1131	CG	LEU A	176	39.050	52.786	23.882	1.00	16.90
	MOTA	1132	CD1	LEU A	176	37.707	53.069	24.539	1.00	16.22
10	MOTA	1133	CD2	LEU A	176	40.170	52.863	24.913	1.00	17.20
	MOTA	1134	С	LEU A	176	40.351	49.641	21.979	1.00	19.32
	ATOM	1135	0	LEU A	176	39.322	48.964	22.011	1.00	20.05
	ATOM	1136	N	PRO A	177	41.517	49.152	21.522	1.00	16.90
	MOTA	1137	CD	PRO A	177	42.774	49.917	21.486	1.00	15.26
15	MOTA	1138	CA	PRO A	177	41.722	47.797	20.997	1.00	16.11
	ATOM	1139	СВ	PRO A	177	43.185	47.814	20.534	1.00	16.45
	ATOM	1140	CG	PRO A	177	43.491	49.272	20.340	1.00	15.90
	ATOM	1141	С	PRO A	177	41.466	46.673	21.995	1.00	16.18
	ATOM	1142	0	PRO A	177	41.512	46.870	23.211	1.00	16.44
20	ATOM	1143	N	LEU A	178	41.216	45.485	21.459	1.00	15.12
	ATOM	1144	CA	LEU A	178	40.958	44.303	22.268	1.00	15.59
	ATOM	1145	СВ	LEU A	178	39.567	43.744	21.957	1.00	15.24
	ATOM	1146	CG	LEU A	178	39.190	42.414	22.620	1.00	15.95
	ATOM	1147	CD1	LEU A	178	39.216	42.567	24.138	1.00	14.48
25	MOTA	1148	CD2	LEU A	178	37.804	41.986	22.152	1.00	14.88
	ATOM	1149	С	LEU A	178	42.006	43.239	21.965	1.00	14.93
	ATOM	1150	0	LEU A	178	42.315	42.977	20.804	1.00	14.69
	ATOM	1151	N	GLY A	179	42.559	42.639	23.013	1.00	15.57
	ATOM	1152	CA	GLY A	179	43.546	41.592	22.832	1.00	13.53
30	ATOM	1153	С	GLY A	179	43.036	40.292	23.430	1.00	13.94
	ATOM	1154	0	GLY A	179	42.314	40.313	24.427	1.00	12.42
	ATOM	1155	N	VAL A	180	43.391	39.164	22.818	1.00	13.58
	MOTA	1156	CA	VAL A	180	42.985	37.856	23.326	1.00	13.10
	ATOM	1157	CB	VAL A	180	42.060	37.114	22.348	1.00	12.34
35	MOTA	1158	CG1	VAL A	180	41.785	35.713	22.872	1.00	10.35
	ATOM	1159	CG2	VAL A	180	40.762	37.880	22.176	1.00	13.73
	MOTA	1160	С	VAL A	180	44.223	36.995	23.566	1.00	13.99

	ATOM	1161	0	VAL	A	180	45.028	36.769	22.658	1.00	14.16
	ATOM	1162	N	ASN	Α	181	44.360	36.519	24.797	1.00	14.29
	ATOM	1163	CA	ASN	Α	181	45.494	35.701	25.204	1.00	15.91
	ATOM	1164	СВ	ASN	Α	181	45.891	36.089	26.632	1.00	16.63
5	MOTA	1165	CG	ASN	Α	181	47.170	35.433	27.086	1.00	17.72
	MOTA	1166	OD1	ASN	Α	181	47.332	34.214	26.986	1.00	16.04
	MOTA	1167	ND2	ASN	Α	181	48.092	36.241	27.606	1.00	18.08
	MOTA	1168	С	ASN	Α	181	45.118	34.215	25.126	1.00	16.42
	MOTA	1169	0	ASN	A	181	44.143	33.775	25.744	1.00	14.66
10	MOTA	1170	N	LEU	A	182	45.903	33.456	24.366	1.00	16.83
	MOTA	1171	CA	LEU	A	182	45.665	32.030	24.158	1.00	17.66
	MOTA	1172	СВ	LEU	A	182	45.895	31.683	22.688	1.00	16.07
	MOTA	1173	CG	LEU	A	182	45.063	32.452	21.667	1.00	17.09
	MOTA	1174	CD1	LEU	A	182	45.506	32.068	20.259	1.00	15.57
15	ATOM	1175	CD2	LEU	A	182	43.585	32.135	21.876	1.00	16.09
	ATOM	1176	С	LEU	A	182	46.536	31.112	25.007	1.00	17.78
	MOTA	1177	0	LEU	Α	182	47.742	31.310	25.121	1.00	19.45
	ATOM	1178	N	GLY	A	183	45.913	30.091	25.581	1.00	19.38
	ATOM	1179	CA	GLY	Α	183	46.636	29.132	26.395		20.04
20	ATOM	1180	С	GLY	Α	183	46.373	27.736	25.863	1.00	21.64
	ATOM	1181	0	GLY	A	183	45.763	27.580	24.805	1.00	20.21
	ATOM	1182	N	LYS	Α	184	46.823	26.716	26.584		22.24
	ATOM	1183	CA	LYS	Α	184	46.608	25.345	26.141		23.65
	ATOM	1184	СВ	LYS			47.910	24.746	25.599		25.57
25	ATOM	1185	CG	LYS			48.874		26.670		28.71
	ATOM	1186	CD	LYS			49.505	22.955	26.300		32.25
	MOTA	1187	CE	LYS	A	184	50.079		27.534		35.22
	ATOM	1188	NZ			184			27.229		37.42
,	MOTA	1189	С			184			27.266		23.40
30	ATOM	1190	0			184	46.339		28.443		23.34
	ATOM	1191	N			185	45.293	23.455	26.893		24.12
	ATOM	1192	CA	ASN			44.712	22.542	27.866		24.81
	ATOM	1193	СВ			185	43.674	21.640	27.194		22.02
	MOTA	1194	CG			185	42.349	22.341	26.979		21.04
35	MOTA	1195		ASN			41.860	22.442	25.853		18.81
	MOTA	1196		ASN			41.758	22.830	28.064		19.40
	MOTA	1197	С	ASN	A	185	45.758	21.684	28.567	1.00	26.33

	ATOM	1198	0	ASN	Α	185	46.753	21.271	27.970	1.00	26.09
	MOTA	1199	N	LYS	Α	186	45.502	21.411	29.841	1.00	28.32
	ATOM	1200	CA	LYS	Α	186	46.389	20.610	30.672	1.00	31.00
	MOTA	1201	СВ	LYS	Α	186	45.758	20.442	32.057	1.00	31.57
5	ATOM	1202	CG	LYS	A	186	46.588	19.640	33.039	1.00	34.30
	MOTA	1203	CD	LYS	A	186	45.932	19.624	34.412	1.00	36.90
	MOTA	1204	CE	LYS	Α	186	46.830	18.965	35.444	1.00	38.54
	MOTA	1205	NZ	LYS	Α	186	46.265	19.074	36.824	1.00	42.77
	ATOM	1206	С	LYS	A	186	46.707	19.236	30.080	1.00	31.61
10	ATOM	1207	0	LYS	A	186	47.846	18.781	30.131	1.00	30.28
	MOTA	1208	N	THR	A	187	45.696	18.584	29.516	1.00	33.93
	MOTA	1209	CA	THR	A	187	45.868	17.253	28.944	1.00	36.41
	ATOM	1210	СВ	THR	A	187	44.687	16.339	29.318	1.00	36.67
	ATOM	1211	OG1	THR	A	187	43.495	16.815	28.678	1.00	35.00
15	MOTA	1212	CG2	THR	A	187	44.479	16.335	30.830	1.00	36.74
	MOTA	1213	С	THR	A	187	46.005	17.243	27.427	1.00	37.64
	MOTA	1214	0	THR	A	187	45.789	16.214	26.788	1.00	38.91
	MOTA	1215	N	SER	A	188	46.359	18.382	26.847	1.00	38.56
	ATOM	1216	CA	SER	A	188	46.524	18.457	25.402	1.00	38.88
20	MOTA	1217	СВ	SER	Α	188	46.703	19.908	24.962	1.00	39.09
	MOTA	1218	OG	SER	A	188	46.982	19.984	23.576	1.00	39.52
	MOTA	1219	С	SER	A	188	47.738	17.639	24.971	1.00	39.36
	MOTA	1220	0	SER	A	188	48.759	17.621	25.655		39.30
	MOTA	1221	N	VAL	Α	189	47.619	16.967	23.832	1.00	39.91
25	ATOM	1222	CA	VAL	Α	189	48.702	16.146	23.302		41.03
	MOTA	1223	СВ	VAL	A	189	48.152	14.828	22.714	1.00	42.23
	MOTA	1224	CG1	VAL	A	189	49.287	14.003	22.127		43.91
	MOTA	1225		VAL			47.421		23.794		42.66
• •	MOTA	1226	С	VAL			49.466		22.203		40.93
30	MOTA	1227	0	VAL			50.556		21.807		42.30
	MOTA	1228	N	ASP			48.891	17.979	21.721		39.41
	ATOM	1229	CA	ASP			49.493	18.764	20.649		36.64
	ATOM	1230	СВ	ASP			48.748	18.467	19.344		38.93
25	MOTA	1231	CG	ASP			49.462	19.001	18.120		40.37
35	ATOM	1232		ASP			50.152	20.038	18.225		40.59
	ATOM	1233		ASP			49.314	18.382	17.045		42.48
	ATOM	1234	С	ASP	A	190	49.392	20.258	20.981	1.00	34.58

	ATOM	1235	0	ASP A	A	190	48.405	20.913	20.639	1.00	33.67
	ATOM	1236	N	ALA A	A	191	50.416	20.792	21.642	1.00	31.42
	ATOM	1237	CA	ALA A	Ą	191	50.432	22.200	22.033	1.00	27.87
	MOTA	1238	СВ	ALA A	A	191	51.759	22.539	22.708	1.00	27.00
5	ATOM	1239	С	ALA A	A	191	50.199	23.138	20.857	1.00	26.64
	MOTA	1240	0	ALA A	A	191	49.386	24.059	20.932	1.00	24.74
	MOTA	1241	N	ALA A	A	192	50.925	22.906	19.772	1.00	25.42
	MOTA	1242	CA	ALA A	A	192	50.796	23.739	18.590	1.00	25.28
	MOTA	1243	СВ	ALA A	A	192	51.725	23.233	17.487	1.00	24.03
10	ATOM	1244	С	ALA A	A.	192	49.356	23.769	18.096	1.00	24.83
	MOTA	1245	0	ALA A	A	192	48.840	24.829	17.761	1.00	25.43
	ATOM	1246	N	GLU A	A	193	48.704	22.611	18.052	1.00	24.14
	ATOM	1247	CA	GLU A	A	193	47.325	22.565	17.587	1.00	24.59
	ATOM	1248	СВ	GLU A	A	193	46.840	21.117	17.459	1.00	27.03
15	ATOM	1249	CG	GLU A	A	193	45.429	20.999	16.885	1.00	31.53
	ATOM	1250	CD	GLU A	A	193	45.284	21.623	15.496	1.00	35.25
	MOTA	1251	OE1	GLU A	A	193	44.134	21.818	15.051	1.00	36.27
	MOTA	1252	OE2	GLU A	A	193	46.312	21.911	14.842	1.00	37.72
	ATOM	1253	С	GLU A	A	193	46.407	23.356	18.522	1.00	24.21
20	MOTA	1254	0	GLU A	A	193	45.480	24.022	18.059	1.00	23.61
	ATOM	1255	N	ASP A	A	194	46.664	23.292	19.828	1.00	21.48
	MOTA	1256	CA	ASP A	A	194	45.861	24.047	20.791	1.00	22.74
	ATOM	1257	СВ	ASP A	A	194	46.396	23.855	22.214	1.00	21.86
	ATOM	1258	CG	ASP A	A	194	45.696	22.732	22.952	1.00	23.25
25	ATOM	1259	OD1	ASP A	A	194	45.166	21.826	22.282	1.00	26.44
	ATOM	1260	OD2	ASP A	A	194	45.680	22.747	24.203	1.00	23.07
	ATOM	1261	С	ASP A	A	194	45.876	25.537	20.430	1.00	23.39
	MOTA	1262	0	ASP A	A	194	44.822	26.167	20.304	1.00	24.67
	MOTA	1263	N	TYR A	A	195	47.066	26.102	20.255	1.00	20.91
30	ATOM	1264	CA	TYR A	A	195	47.154	27.507	19.900	1.00	21.95
	MOTA	1265	СВ	TYR A	A	195	48.609	27.981	19.918	1.00	22.02
	MOTA	1266	CG	TYR A	A	195	49.211	27.972	21.304	1.00	22.80
	ATOM	1267	CD1	TYR A	A	195	50.009	26.921	21.732	1.00	25.25
	ATOM	1268	CE1	TYR A	A	195	50.518	26.887	23.020	1.00	24.25
35	ATOM	1269	CD2	TYR A	A	195	48.939	28.992	22.202	1.00	22.50
	MOTA	1270	CE2	TYR A	A	195	49.442	28.968	23.491	1.00	23.44
	ATOM	1271	CZ	TYR A	A	195	50.229	27.913	23.895	1.00	23.86

	ATOM	1272	ОН	TYR A	195	50.721	27.882	25.181	1.00	26.06
	ATOM	1273	С	TYR A	195	46.531	27.748	18.532	1.00	21.73
	ATOM	1274	0	TYR A	195	45.922	28.788	18.300	1.00	20.92
	ATOM	1275	N	ALA A	196	46.676	26.776	17.635	1.00	22.63
5	ATOM	1276	CA	ALA A	196	46.114	26.882	16.291	1.00	22.46
	ATOM	1277	СВ	ALA A	196	46.454	25.641	15.477	1.00	21.74
	ATOM	1278	С	ALA A	196	44.599	27.057	16.366	1.00	22.46
	ATOM	1279	0	ALA A	196	44.031	27.903	15.672	1.00	22.82
	ATOM	1280	N	GLU A	197	43.950	26.252	17.204	1.00	21.69
10	ATOM	1281	CA	GLU A	197	42.501	26.342	17.364	1.00	23.49
	ATOM	1282	СВ	GLU A	197	41.985	25.303	18.370	1.00	26.37
	ATOM	1283	CG	GLU A	197	42.357	23.863	18.050	1.00	35.55
	ATOM	1284	CD	GLU A	197	41.608	22.855	18.917	1.00	40.35
	ATOM	1285	OE1	GLU A	197	42.041	21.682	18.981	1.00	40.76
15	ATOM	1286	OE2	GLU A	197	40.579	23.235	19.524	1.00	43.83
	ATOM	1287	С	GLU A	197	42.162	27.737	17.869	1.00	21.55
	ATOM	1288	0	GLU A	197	41.214	28.368	17.396	1.00	20.17
	ATOM	1289	N	GLY A	198	42.955	28.208	18.831	1.00	19.05
	ATOM	1290	CA	GLY A	198	42.744	29.522	19.401	1.00	16.82
20	ATOM	1291	С	GLY A	198	42.790	30.622	18.362	1.00	16.04
	ATOM	1292	0	GLY A	198	41.967	31.538	18.381	1.00	13.85
	ATOM	1293	N	VAL A	199	43.757	30.538	17.455	1.00	16.13
	ATOM	1294	CA	VAL A	199	43.894	31.534	16.403	1.00	15.39
	ATOM	1295	СВ	VAL A	199	45.144	31.268	15.543	1.00	15.53
25	MOTA	1296	CG1	VAL A	199	45.175	32.225	14.351	1.00	12.07
	ATOM	1297	CG2	VAL A	199	46.400	31.424	16.393	1.00	14.66
	ATOM	1298	С	VAL A	199	42.666	31.502	15.500	1.00	16.99
	ATOM	1299	0	VAL A	199	42.127	32.544	15.126	1.00	15.25
	ATOM	1300	N	ARG A	200	42.219	30.296	15.167	1.00	18.08
30	ATOM	1301	CA	ARG A	200	41.062	30.119	14.296	1.00	20.59
	ATOM	1302	CB	ARG A	200	40.949	28.656	13.851	1.00	21.75
	ATOM	1303	CG	ARG A	200	42.052	28.201	12.911	1.00	25.45
	ATOM	1304	CD	ARG A	200	41.661	26.913	12.209	1.00	26.76
	ATOM	1305	NE	ARG A	200	41.756	25.748	13.079	1.00	27.81
35	ATOM	1306	CZ	ARG A	200	42.857	25.022	13.229	1.00	31.77
	ATOM	1307	NH1	ARG A	200	43.957	25.343	12.562	1.00	32.51
	ATOM	1308	NH2	ARG A	200	42.861	23.974	14.045	1.00	32.64

	ATOM	1309	С	ARG	Α	200	39.730	30.546	14.900	1.00	19.16
	ATOM	1310	0	ARG	Α	200	38.882	31.105	14.207	1.00	19.15
	ATOM	1311	N	VAL	Α	201	39.541	30.288	16.188	1.00	18.46
	MOTA	1312	CA	VAL	Α	201	38.276	30.624	16.825	1.00	16.58
5	MOTA	1313	СВ	VAL	Α	201	37.964	29.635	17.981	1.00	16.58
	MOTA	1314	CG1	VAL	Α	201	36.661	30.031	18.685	1.00	13.59
	MOTA	1315	CG2	VAL	Α	201	37.853	28.212	17.424	1.00	12.80
	ATOM	1316	С	VAL	Α	201	38.161	32.053	17.342	1.00	17.72
	ATOM	1317	0	VAL	A	201	37.132	32.702	17.138	1.00	17.43
10	MOTA	1318	N	LEU	Α	202	39.208	32.555	17.994	1.00	16.85
	ATOM	1319	CA	LEU	Α	202	39.156	33.906	18.544	1.00	16.20
	ATOM	1320	СВ	LEU	Α	202	39.657	33.895	19.990	1.00	16.83
	ATOM	1321	CG	LEU	A	202	38.747	33.119	20.947	1.00	18.98
	MOTA	1322	CD1	LEU	A	202	39.256	33.246	22.379	1.00	16.76
15	MOTA	1323	CD2	LEU	A	202	37.325	33.664	20.831	1.00	16.77
	MOTA	1324	С	LEU	A	202	39.903	34.962	17.741	1.00	16.51
	MOTA	1325	0	LEU	A	202 .	39.632	36.157	17.872	1.00	15.03
	MOTA	1326	N	GLY	A	203	40.839	34.521	16.909	1.00	16.09
	MOTA	1327	CA	GLY	A	203	41.597	35.453	16.100	1.00	16.71
20	ATOM	1328	С	GLY	A	203	40.737	36.446	15.338	1.00	16.82
	MOTA	1329	0	GLY	A	203	41.079	37.626	15.261	1.00	15.75
	MOTA	1330	N	PRO	A	204	39.611	36.003	14.760	1.00	17.04
	MOTA	1331	CD	PRO	A	204	39.177	34.601	14.618	1.00	17.18
	MOTA	1332	CA	PRO	A	204	38.729	36.900	14.003	1.00	17.32
25	MOTA	1333	СВ	PRO	A	204	37.713	35.941	13.371	1.00	16.93
	MOTA	1334	CG	PRO	A	204	38.451	34.630	13.306	1.00	17.12
	MOTA	1335	С	PRO	A	204	38.043	37.955	14.869	1.00	17.63
	MOTA	1336	0	PRO	A	204	37.494	38.928	14.354	1.00	17.99
	ATOM	1337	N	LEU	A	205	38.079	37.759	16.184		17.45
30	MOTA	1338	CA	LEU	A	205	37.433	38.682	17.116		16.83
	MOTA	1339	СВ	LEU	A	205	36.565	37.888	18.101		16.28
	ATOM	1340	CG	LEU			35.394	37.106	17.488		20.11
	MOTA	1341		LEU			35.041	35.896	18.335		17.62
	MOTA	1342	CD2	LEU			34.203	38.035	17.350		20.89
35	ATOM	1343	С	LEU			38.420	39.546	17.900		17.46
	ATOM	1344	0	LEU			38.015	40.316	18.772		16.55
	ATOM	1345	N	ALA	A	206	39.706	39.443	17.580	1.00	15.70

	ATOM	1346	CA	ALA A	Ą	206	40.707	40.200	18.318	1.00	16.71
	ATOM	1347	СВ	ALA A	Ą	206	41.608	39.229	19.077	1.00	17.67
	MOTA	1348	С	ALA A	Ą	206	41.563	41.150	17.494	1.00	18.08
	MOTA	1349	0	ALA A	Ą	206	41.810	40.926	16.313	1.00	20.90
5	MOTA	1350	N	ASP F	A	207	42.015	42.225	18.123	1.00	17.59
	MOTA	1351	CA	ASP F	Ą	207	42.877	43.159	17.431	1.00	18.07
	MOTA	1352	СВ	ASP F	Ą	207	42.816	44.532	18.090	1.00	17.18
	MOTA	1353	CG	ASP A	Ą	207	41.508	45.246	17.787	1.00	18.63
	MOTA	1354	OD1	ASP A	A	207	41.170	45.360	16.594	1.00	19.40
10	MOTA	1355	OD2	ASP A	Ą	207	40.813	45.684	18.725	1.00	19.83
	MOTA	1356	С	ASP A	A	207	44.270	42.553	17.470	1.00	18.03
	MOTA	1357	0	ASP A	Ą	207	45.050	42.708	16.533	1.00	17.72
	MOTA	1358	N	TYR A	Ą	208	44.572	41.843	18.554	1.00	17.96
	ATOM	1359	CA	TYR A	Ą	208	45.850	41.150	18.662	1.00	17.00
15	MOTA	1360	СВ	TYR A	Ą	208	46.946	42.049	19.267	1.00	17.79
	MOTA	1361	CG	TYR A	Ą	208	46.848	42.358	20.750	1.00	17.93
	ATOM	1362	CD1	TYR A	Ą	208	46.344	43.577	21.197	1.00	18.65
	MOTA	1363	CE1	TYR A	4	208	46.324	43.897	22.546	1.00	17.54
	MOTA	1364	CD2	TYR A	Ą	208	47.324	41.461	21.699	1.00	16.58
20	MOTA	1365	CE2	TYR A	Ą	208	47.306	41.768	23.052	1.00	18.19
	MOTA	1366	CZ	TYR A	4	208	46.806	42.986	23.471	1.00	19.57
	ATOM	1367	ОН	TYR A	A	208	46.776	43.286	24.817	1.00	18.19
	MOTA	1368	С	TYR A	Ą	208	45.691	39.866	19.475	1.00	16.78
	MOTA	1369	0	TYR A	A	208	44.864	39.790	20.389	1.00	15.50
25	ATOM	1370	N	LEU A	A	209	46.460	38.849	19.101	1.00	15.49
	ATOM	1371	CA	LEU A	4	209	46.437	37.562	19.783	1.00	17.52
	ATOM	1372	СВ	LEU A	4	209	46.324	36.413	18.778	1.00	17.27
	ATOM	1373	CG	LEU A	4	209	44.998	36.199	18.047	1.00	18.45
	ATOM	1374	CD1	LEU A	4	209	45.167	35.096	17.003	1.00	18.80
30	ATOM	1375	CD2	LEU A	Ą	209	43.916	35.825	19.044	1.00	16.66
	ATOM	1376	С	LEU A	A	209	47.729	37.400	20.570	1.00	17.91
	ATOM	1377	0	LEU A	A	209	48.780	37.893	20.160	1.00	17.96
	ATOM	1378	N	VAL A	Ą	210	47.653	36.701	21.695	1.00	17.39
	ATOM	1379	CA	VAL A	Ą	210	48.833	36.483	22.518	1.00	17.32
35	ATOM	1380	СВ	VAL A	Ą	210	48.673	37.088	23.933	1.00	17.21
	ATOM	1381	CG1	VAL A	Ą	210	49.973	36.919	24.714	1.00	15.24
	ATOM	1382	CG2	VAL A	Ą	210	48.279	38.559	23.840	1.00	16.48

	ATOM	1383	С	VAL A	210	49.109	35.003	22.695	1.00	17.74
	ATOM	1384	0	VAL A	210	48.290	34.276	23.257	1.00	18.14
	ATOM	1385	N	VAL A	211	50.256	34.552	22.204	1.00	18.02
	MOTA	1386	CA	VAL A	211	50.630	33.159	22.373	1.00	18.15
5	MOTA	1387	СВ	VAL A	211	51.608	32.682	21.271	1.00	17.93
	MOTA	1388	CG1	VAL A	211	51.994	31.226	21.508	1.00	17.07
	MOTA	1389	CG2	VAL A	211	50.953	32.819	19.905	1.00	17.85
	MOTA	1390	С	VAL A	211	51.318	33.115	23.734	1.00	18.99
	MOTA	1391	0	VAL A	211	52.486	33.486	23.868	1.00	18.16
10	MOTA	1392	N	ASN A	212	50.569	32.695	24.750	1.00	19.69
	MOTA	1393	CA	ASN A	212	51.100	32.615	26.098	1.00	19.88
	ATOM	1394	СВ	ASN A	212	49.972	32.681	27.128	1.00	20.27
	ATOM	1395	CG	ASN A	212	50.492	32.616	28.547	1.00	18.89
	MOTA	1396	OD1	ASN A	212	51.694	32.723	28.770	1.00	21.39
15	ATOM	1397	ND2	ASN A	212	49.597	32.444	29.511	1.00	17.08
	MOTA	1398	С	ASN A	212	51.899	31.333	26.279	1.00	21.25
	MOTA	1399	0	ASN A	212	51.346	30.238	26.408	1.00	21.20
	MOTA	1400	N	VAL A	213	53.214	31.489	26.305	1.00	20.47
	MOTA	1401	CA	VAL A	213	54.113	30.362	26.442	1.00	21.67
20	ATOM	1402	СВ	VAL A	213	55.010	30.280	25.182	1.00	23.71
	MOTA	1403	CG1	VAL A	213	55.981	31.460	25.150	1.00	23.82
	MOTA	1404	CG2	VAL A	213	55.748	28.982	25.152	1.00	27.31
	MOTA	1405	С	VAL A	213	54.975	30.539	27.698	1.00	21.91
	MOTA	1406	0	VAL A	213	56.029	29.908	27.843	1.00	22.46
25	MOTA	1407	N	SER A	214	54.506	31.384	28.614	1.00	20.82
	MOTA	1408	CA	SER A	214	55.255	31.684	29.829		20.65
	MOTA	1409	СВ	SER A	214	55.741	33.136	29.782		
	MOTA	1410	OG	SER A	214	54.666	34.034	29.547	1.00	15.52
	MOTA	1411	С	SER A	214	54.531	31.442	31.150		22.40
30	MOTA	1412	0	SER A		54.998	31.881	32.207		19.56
	MOTA	1413	N	SER A	215	53.390	30.763	31.106		22.46
	MOTA	1414	CA	SER A	215	52.683	30.482	32.344		23.77
	ATOM	1415	СВ	SER A		51.326	29.839	32.071		25.30
	ATOM	1416	OG	SER A	215	50.707	29.476	33.296		24.25
35	ATOM	1417	С	SER A		53.531	29.518	33.168		23.82
	ATOM	1418	0	SER A		53.986	28.488	32.673		23.43
	ATOM	1419	N	PRO A	216	53.763	29.845	34.438	1.00	24.01

	MOTA	1420	CD	PRO F	A :	216	53.529	31.120	35.142	1.00	22.46
	MOTA	1421	CA	PRO F	<i>A</i>	216	54.572	28.931	35.244	1.00	25.17
	MOTA	1422	СВ	PRO A	4	216	55.177	29.857	36.287	1.00	24.52
	MOTA	1423	CG	PRO A	Α.	216	54.042	30.826	36.538	1.00	23.00
5	MOTA	1424	С	PRO A	4	216	53.712	27.841	35.881	1.00	26.39
	MOTA	1425	0	PRO A	4	216	54.233	26.928	36.518	1.00	26.20
	ATOM	1426	N	ASN A	A.	217	52.397	27.923	35.685	1.00	27.51
	ATOM	1427	CA	ASN A	Ą	217	51.485	26.964	36.304	1.00	29.22
	MOTA	1428	СВ	ASN A	Ą	217	50.343	27.732	36.966	1.00	28.29
10	MOTA	1429	CG	ASN A	Ą	217	50.851	28.799	37.913	1.00	29.28
	ATOM	1430	OD1	ASN A	Ŧ	217	51.615	28.507	38.836	1.00	29.47
	MOTA	1431	ND2	ASN A	Ą	217	50.440	30.046	37.686	1.00	27.94
	ATOM	1432	С	ASN A	Ą	217	50.931	25.825	35.452	1.00	30.25
	ATOM	1433	0	ASN A	Į.	217	49.928	25.204	35.808	1.00	29.74
15	ATOM	1434	N	THR A	A	218	51.584	25.550	34.331	1.00	31.98
	ATOM	1435	CA	THR A	A	218	51.178	24.451	33.462	1.00	33.25
	ATOM	1436	СВ	THR A	A	218	50.484	24.949	32.177	1.00	33.36
	ATOM	1437	OG1	THR A	Ą	218	49.194	25.481	32.507	1.00	31.23
	ATOM	1438	CG2	THR A	A	218	50.317	23.800	31.187	1.00	31.71
20	ATOM	1439	С	THR A	Ą	218	52.440	23.680	33.096	1.00	33.78
	ATOM	1440	0	THR A	Ą	218	53.319	24.198	32.406	1.00	35.20
	ATOM	1441	N	ALA A	A	219	52.522	22.445	33.579	1.00	34.20
	ATOM	1442	CA	ALA A	A	219	53.675	21.578	33.353	1.00	34.19
	ATOM	1443	СВ	ALA A	Ą	219	53.323	20.146	33.750	1.00	33.41
25	MOTA	1444	С	ALA A	A	219	54.256	21.593	31.939	1.00	34.71
	ATOM	1445	0	ALA A	Ą	219	53.581	21.240	30.970	1.00	34.13
	ATOM	1446	N	GLY A	A	220	55.517	22.010	31.839	1.00	34.72
	ATOM	1447	CA	GLY A	A	220	56.212	22.041	30.562	1.00	35.48
	ATOM	1448	С	GLY A	F.	220	55.842	23.107	29.544	1.00	35.40
30	ATOM	1449	0	GLY A	A	220	56.396	23.117	28.446	1.00	35.16
	ATOM	1450	N	LEU A	4	221	54.924	24.005	29.888	1.00	35.62
	ATOM	1451	CA	LEU A	4	221	54.518	25.049	28.949	1.00	36.17
	ATOM	1452	СВ	LEU A	Ą	221	53.333	25.845	29.506	1.00	37.59
	ATOM	1453	CG	LEU A	Ą	221	52.702	26.794	28.481	1.00	37.81
35	ATOM	1454	CD1	LEU A	A	221	51.886	25.973	27.495	1.00	38.01
	MOTA	1455	CD2	LEU A	Ą	221	51.822	27.822	29.167	1.00	37.63
	ATOM	1456	С	LEU A	Ą	221	55.652	26.019	28.614	1.00	36.27

	ATOM	1457	0	LEU A	221	55.829	26.407	27.457	1.00 36.24	
	ATOM	1458	N	ARG A	222	56.415	26.410	29.630	1.00 35.57	
	ATOM	1459	CA	ARG A	222	57.516	27.350	29.441	1.00 35.99	
	MOTA	1460	СВ	ARG A	222	58.064	27.787	30.801	1.00 35.50	
5	MOTA	1461	CG	ARG A	222	57.107	28.675	31.588	1.00 35.37	
	ATOM	1462	CD	ARG A	222	57.621	28.891	32.997	1.00 37.33	
	ATOM	1463	NE	ARG A	222	57.660	27.637	33.746	1.00 37.02	
	ATOM	1464	CZ	ARG A	222	58.429	27.427	34.808	1.00 37.78	
	ATOM	1465	NH1	ARG A	222	59.228	28.391	35.246	1.00 37.31	
10	ATOM	1466	ин2	ARG A	222	58.401	26.255	35.430	1.00 36.46	
	ATOM	1467	С	ARG A	222	58.650	26.820	28.565	1.00 35.63	ı
	MOTA	1468	0	ARG A	222	59.436	27.599	28.021	1.00 34.70	1
	ATOM	1469	N	SER A	223	58.732	25.501	28.419	1.00 35.11	
	MOTA	1470	CA	SER A	223	59.775	24.910	27.591	1.00 34.96	,
15	MOTA	1471	СВ	SER A	223	59.838	23.393	27.797	1.00 34.78	
	MOTA	1472	OG	SER A	223	58.724	22.749	27.205	1.00 35.91	
	MOTA	1473	С	SER A	223	59.491	25.222	26.123	1.00 34.64	
	MOTA	1474	0	SER A	223	60.346	25.025	25.261	1.00 34.71	
	ATOM	1475	N	LEU A	224	58.286	25.709	25.839	1.00 34.48	į
20	ATOM	1476	CA	LEU A	224	57.922	·26.060	24.468	1.00 34.31	
	ATOM	1477	СВ	LEU A	224	56.401	26.201	24.328	1.00 33.45	,
	MOTA	1478	CG	LEU A	224	55.538	24.957	24.545	1.00 34.69	,
	ATOM	1479	CD1	LEU A	224	54.063	25.342	24.517	1.00 33.25)
	ATOM	1480	CD2	LEU A	224	55.852	23.923	23.469	1.00 33.41	
25	ATOM	1481	С	LEU A	224	58.611	27.363	24.060	1.00 32.98	í
	ATOM	1482	0	LEU A	224	58.511	27.800	22.914	1.00 32.26	;
	ATOM	1483	N	GLN A	. 225	59.302	27.987	25.012	1.00 33.62	
	ATOM	1484	CA	GLN A	. 225	60.037	29.223	24.740	1.00 33.44	Į
	ATOM	1485	СВ	GLN A	225	60.248	30.028	26.034	1.00 32.87	1
30	ATOM	1486	CG	GLN A	. 225	58.958	30.580	26.637	1.00 32.65	
	ATOM	1487	CD	GLN A	. 225	59.166	31.235	27.994	1.00 31.96	;
	ATOM	1488	OE1	GLN A	. 225	59.017	32.450	28.142	1.00 30.99	j
	ATOM	1489	NE2	GLN A	. 225	59.513	30.428	28.993	1.00 30.44	ŀ
	ATOM	1490	С	GLN A	. 225	61.390	28.869	24.110	1.00 32.02	
35	ATOM	1491	0	GLN A	. 225	62.107	29.746	23.630	1.00 30.91	
	ATOM	1492	N	GLY A	. 226	61.725	27.578	24.119	1.00 31.76	
	ATOM	1493	CA	GLY F	. 226	62.973	27.117	23.528	1.00 32.16	;

	ATOM	1494	С	GLY	Α	226	62.982	27.411	22.037	1.00	32.87
	ATOM	1495	0	GLY	Α	226	61.932	27.372	21.390	1.00	33.10
	ATOM	1496	N	LYS	Α	227	64.161	27.685	21.483	1.00	31.88
	ATOM	1497	CA	LYS	Α	227	64.279	28.027	20.069	1.00	31.63
5	ATOM	1498	СВ	LYS	Α	227	65.750	28.190	19.673	1.00	29.76
	ATOM	1499	CG	LYS	Α	227	65.909	28.842	18.309	1.00	30.36
	ATOM	1500	CD	LYS	Α	227	67.320	29.337	18.047	1.00	31.75
	ATOM	1501	CE	LYS	Α	227	67.360	30.139	16.750	1.00	33.43
	ATOM	1502	NZ	LYS	A	227	68.702	30.723	16.462	1.00	35.16
10	ATOM	1503	С	LYS	Α	227	63.593	27.099	19.068	1.00	31.84
	ATOM	1504	0	LYS	A	227	62.752	27.549	18.287	1.00	31.56
	ATOM	1505	N	ALA	A	228	63.945	25.818	19.081	1.00	31.83
	ATOM	1506	CA	ALA	A	228	63.357	24.862	18.141	1.00	33.57
	MOTA	1507	СВ	ALA	Α	228	63.962	23.479	18.353	1.00	32.38
15	ATOM	1508	С	ALA	A	228	61.832	24.776	18.218	1.00	34.39
	MOTA	1509	0	ALA	A	228	61.149	24.865	17.197	1.00	34.34
	ATOM	1510	N	GLU	A	229	61.305	24.598	19.426	1.00	35.55
	ATOM	1511	CA	GLU	A	229	59.861	24.496	19.617	1.00	37.25
	ATOM	1512	СВ	GLU	A	229	59.540	23.960	21.017	1.00	40.77
20	ATOM	1513	CG	GLU	A	229	59.922	22.501	21.212	1.00	46.52
	ATOM	1514	CD	GLU	Α	229	59.367	21.915	22.496	1.00	51.23
	MOTA	1515	OE1	GLU	A	229	59.608	20.712	22.748	1.00	53.05
	ATOM	1516	OE2	GLU	A	229	58.692	22.652	23.251	1.00	52.90
	MOTA	1517	С	GLU	A	229	59.123	25.812	19.399	1.00	35.01
25	ATOM	1518	0	GLU	A	229	57.995	25.817	18.911	1.00	35.28
	ATOM	1519	N	LEU	Α	230	59.749	26.926	19.759	1.00	31.93
	MOTA	1520	CA	LEU	A	230	59.105	28.214	19.578	1.00	29.21
	MOTA	1521	СВ	LEU	A	230	59.935	29.341	20.210	1.00	27.50
	MOTA	1522	CG	LEU	Α	230	59.254	30.717	20.189	1.00	25.31
30	ATOM	1523	CD1	LEU	A	230	57.949	30.639	20.966		22.54
	ATOM	1524	CD2	LEU	A	230	60.166	31.775	20.791	1.00	25.43
	ATOM	1525	С	LEU	A	230	58.939	28.473	18.087	1.00	28.35
	ATOM	1526	0	LEU	A	230	57.897	28.959	17.645		28.45
	ATOM	1527	N	ARG	A	231	59.966	28.139	17.313	1.00	26.82
35	ATOM	1528	CA	ARG			59.923	28.349	15.875		26.87
	MOTA	1529	СВ	ARG			61.260	27.965	15.232		27.39
	MOTA	1530	CG	ARG	A	231	61.280	28.158	13.722	1.00	29.23

	ATOM	1531	CD	ARG	Α	231	62.568	27.648	13.079	1.00	32.62
	ATOM	1532	NE	ARG	A	231	63.730	28.479	13.388	1.00	35.22
	ATOM	1533	CZ	ARG	Α	231	64.755	28.084	14.139	1.00	35.71
	ATOM	1534	NH1	ARG	Α	231	64.764	26.866	14.665	1.00	35.83
5	ATOM	1535	NH2	ARG	Α	231	65.777	28.902	14.355	1.00	35.67
	MOTA	1536	С	ARG	Α	231	58.796	27.547	15.230	1.00	26.27
	ATOM	1537	0	ARG	Α	231	58.007	28.083	14.452	1.00	24.54
	ATOM	1538	N	ARG	A	232	58.723	26.264	15.563	1.00	26.74
	ATOM	1539	CA	ARG	A	232	57.701	25.386	15.010	1.00	28.61
10	ATOM	1540	СВ	ARG	A	232	57.938	23.948	15.481	1.00	31.33
	ATOM	1541	CG	ARG	A	232	56.989	22.931	14.872	1.00	36.52
	ATOM	1542	CD	ARG	Α	232	57.345	21.497	15.274	1.00	40.85
	ATOM	1543	NE	ARG	Α	232	58.727	21.154	14.936	1.00	45.04
	ATOM	1544	CZ	ARG	A	232	59.747	21.220	15.788	1.00	46.48
15	MOTA	1545	NH1	ARG	A	232	59.548	21.611	17.041	1.00	47.37
	MOTA	1546	NH2	ARG	A	232	60.971	20.899	15.387	1.00	45.94
	MOTA	1547	С	ARG	A	232	56.311	25.860	15.426	1.00	28.53
	ATOM	1548	0	ARG	A	232	55.395	25.942	14.603	1.00	29.20
	MOTA	1549	N	LEU	A	233	56.162	26.184	16.706	1.00	26.18
20	MOTA	1550	CA	LEU	A	233	54.891	26.659	17.229	1.00	24.46
	MOTA	1551	СВ	LEU	Α	233	55.008	26.890	18.737	1.00	23.72
	MOTA	1552	CG	LEU	Α	233	53.841	27.633	19.387	1.00	25.00
	MOTA	1553	CD1	LEU	Α	233	52.574	26.806	19.272	1.00	26.45
	ATOM	1554	CD2	LEU	A	233	54.168	27.907	20.842	1.00	27.05
25	ATOM	1555	С	LEU	Α	233	54.409	27.948	16.544	1.00	24.04
	MOTA	1556	0	LEU	A	233	53.270	28.024	16.083		22.35
	MOTA	1557	N	LEU	A	234	55.279	28.952	16.470		23.30
	ATOM	1558	CA	LEU	Α	234	54.911	30.231	15.864		24.03
	MOTA	1559	СВ	LEU	Α	234	55.935	31.308	16.235	1.00	24.63
30	ATOM	1560	CG	LEU	Α	234	56.001	31.602	17.736		27.77
	MOTA	1561	CD1	LEU	Α	234	56.990	32.737	18.006		29.67
	MOTA	1562	CD2	LEU	Α	234	54.612	31.965	18.237	1.00	26.11
	MOTA	1563	С	LEU	Α	234	54.731	30.183	14.352		23.42
	MOTA	1564	0	LEU	A	234	53.975	30.974	13.790	1.00	24.20
35	MOTA	1565	N	THR	A	235	55.427	29.269	13.688		23.68
	MOTA	1566	CA	THR	A	235	55.285	29.139	12.242		23.60
	MOTA	1567	СВ	THR	A	235	56.254	28.084	11.671	1.00	22.71

	MOTA	1568	OG1	THR	A	235	57.600	28.546	11.819	1.00	24.30
	ATOM	1569	CG2	THR	Α	235	55.966	27.833	10.196	1.00	21.44
	ATOM	1570	С	THR	A	235	53.846	28.699	11.959	1.00	23.27
	ATOM	1571	0	THR	Α	235	53.188	29.221	11.060	1.00	22.47
5	MOTA	1572	N	LYS	A	236	53.364	27.745	12.750	1.00	21.09
	ATOM	1573	CA	LYS	Α	236	52.011	27.235	12.597	1.00	22.24
	MOTA	1574	СВ	LYS	Α	236	51.827	25.988	13.468	1.00	23.70
	MOTA	1575	CG	LYS	A	236	50.541	25.236	13.196	1.00	30.31
	ATOM	1576	CD	LYS	A	236	50.512	23.894	13.916	1.00	33.61
10	ATOM	1577	CE	LYS	Α	236	49.235	23.136	13.588	1.00	34.03
	MOTA	1578	NZ	LYS	Α	236	49.184	21.805	14.253	1.00	39.23
	MOTA	1579	С	LYS	Α	236	50.980	28.309	12.966	1.00	21.56
	MOTA	1580	0	LYS	A	236	49.988	28.500	12.258	1.00	20.17
	MOTA	1581	N	VAL	Α	237	51.223	29.015	14.068	1.00	19.27
15	MOTA	1582	CA	VAL	A	237	50.320	30.075	14.502	1.00	19.15
	MOTA	1583	СВ	VAL	A	237	50.792	30.714	15.829	1.00	18.47
	MOTA	1584	CG1	VAL	Α	237	50.037	32.014	16.080	1.00	13.34
	MOTA	1585	CG2	VAL	A	237	50.562	29.741	16.981	1.00	15.49
	ATOM	1586	С	VAL	Α	237	50.199	31.176	13.454	1.00	20.61
20	ATOM	1587	0	VAL	A	237	49.091	31.571	13.089	1.00	21.34
	ATOM	1588	N	LEU	A	238	51.336	31.671	12.970	1.00	22.56
	ATOM	1589	CA	LEU	A	238	51.337	32.729	11.960	1.00	23.63
	ATOM	1590	СВ	LEU	A	238	52.771	33.179	11.658	1.00	23.97
	ATOM	1591	CG	LEU	Α	238	53.528	33.907	12.780	1.00	26.60
25	ATOM	1592	CD1	LEU	Α	238	54.919	34.302	12.291	1.00	25.27
	ATOM	1593	CD2	LEU	A	238	52.757	35.147	13.205	1.00	24.92
	ATOM	1594	С	LEU	A	238	50.656	32.270	10.668	1.00	23.77
	ATOM	1595	0	LEU	A	238	50.020	33.066	9.967	1.00	22.47
	ATOM	1596	N	GLN	A	239	50.785	30.983	10.363	1.00	23.65
30	ATOM	1597	CA	GLN	A	239	50.181	30.415	9.163	1.00	25.14
	ATOM	1598	СВ	GLN	A	239	50.674	28.981	8.971	1.00	28.29
	ATOM	1599	CG	GLN	A	239	50.626	28.477	7.541		35.77
	ATOM	1600	CD	GLN	A	239	51.286	27.113	7.398	1.00	41.56
	MOTA	1601	OE1	GLN	Α	239	52.403	26.895	7.886	1.00	42.96
35	ATOM	1602	NE2	GLN	A	239	50.601	26.187	6.726	1.00	40.56
	MOTA	1603	С	GLN	A	239	48.657	30.441	9.305	1.00	23.70
	MOTA	1604	0	GLN	A	239	47.941	30.845	8.385	1.00	23.65

	ATOM	1605	N	GLU A	Ą	240	48.167	30.013	10.465	1.00	21.97
	ATOM	1606	CA	GLU A	A	240	46.734	30.010	10.730	1.00	20.44
	ATOM	1607	СВ	GLU A	Ą	240	46.448	29.386	12.095	1.00	22.95
	ATOM	1608	CG	GLU A	A	240	46.828	27.919	12.198	1.00	29.40
5	ATOM	1609	CD	GLU A	Ą	240	45.887	26.998	11.430	1.00	33.44
	MOTA	1610	OE1	GLU A	J.	240	46.180	25.782	11.370	1.00	35.38
	MOTA	1611	OE2	GLU A	Ą	240	44.855	27.476	10.900	1.00	32.33
	MOTA	1612	С	GLU A	Ą	240	46.221	31.447	10.701	1.00	19.08
	MOTA	1613	0	GLU A	A	240	45.164	31.725	10.139	1.00	19.25
10	MOTA	1614	N	ARG A	Ą	241	46.983	32.357	11.302	1.00	16.60
	MOTA	1615	CA	ARG A	Ą	241	46.618	33.770	11.342	1.00	16.03
	MOTA	1616	CB	ARG A	4	241	47.645	34.546	12.184	1.00	14.90
	MOTA	1617	CG	ARG A	Ą	241	47.330	36.025	12.422	1.00	14.73
	MOTA	1618	CD	ARG A	A	241	47.582	36.887	11.187	1.00	14.81
15	MOTA	1619	NE	ARG A	A	241	48.978	36.867	10.751	1.00	16.28
	ATOM	1620	CZ	ARG A	A	241	49.961	37.579	11.303	1.00	18.91
	MOTA	1621	NH1	ARG A	Ą	241	51.195	37.478	10.824	1.00	19.86
	MOTA	1622	NH2	ARG A	Ą	241	49.719	38.400	12.321	1.00	15.94
	MOTA	1623	С	ARG A	Ą	241	46.529	34.366	9.934	1.00	16.63
20	ATOM	1624	0	ARG A	Ą	241	45.598	35.116	9.631	1.00	15.25
	ATOM	1625	N	ASP A	Ą	242	47.492	34.037	9.074	1.00	18.61
	ATOM	1626	CA	ASP A	A	242	47.494	34.565	7.708	1.00	19.30
	ATOM	1627	СВ	ASP A	A	242	48.831	34.274	7.012	1.00	19.94
	ATOM	1628	CG	ASP A	A	242	49.997	35.047	7.626	1.00	22.29
25	ATOM	1629	OD1	ASP Z	Ą	242	49.753	36.079	8.285	1.00	22.41
	ATOM	1630	OD2	ASP A	Ą	242	51.158	34.631	7.438		21.78
	ATOM	1631	С	ASP A	Ą	242	46.344		6.860		
	ATOM	1632	0	ASP I	Ą	242	45.960	34.630	5.860		19.11
	ATOM	1633	N	GLY Z			45.792	32.879	7.261		18.88
30	ATOM	1634	CA	GLY Z			44.690	32.299	6.516		18.95
	ATOM	1635	С	GLY A			43.362	32.995	6.781		20.52
	ATOM	1636	0	GLY A			42.352	32.681	6.145		20.72
	ATOM	1637	N	LEU			43.354	33.943	7.714		18.75
2.5	ATOM	1638	CA	LEU A			42.127	34.665	8.044		20.57
35	ATOM	1639	CB	LEU .			42.165	35.141	9.504		18.57
	ATOM	1640	CG	LEU .			42.365	34.061	10.570		20.12
	MOTA	1641	CD1	LEU .	A	244	42.432	34.710	11.947	1.00	17.77

	MOTA	1642	CD2	LEU	A	244	41.228	33.051	10.500	1.00	17.79
	ATOM	1643	С	LEU	Α	244	41.893	35.870	7.131	1.00	20.23
	ATOM	1644	0	LEU	Α	244	42.840	36.505	6.673	1.00	19.19
	MOTA	1645	N	ARG	Α	245	40.626	36.180	6.872	1.00	20.66
5	MOTA	1646	CA	ARG	Α	245	40.283	37.325	6.036	1.00	21.47
	MOTA	1647	СВ	ARG	Α	245	38.759	37.419	5.884	1.00	20.91
	MOTA	1648	CG	ARG	A	245	38.193	36.330	4.950	1.00	20.87
	MOTA	1649	CD	ARG	Α	245	36.720	36.044	5.198	1.00	21.09
	MOTA	1650	NE	ARG	A	245	35.835	37.118	4.758	1.00	22.13
10	MOTA	1651	CZ	ARG	A	245	35.416	37.283	3.506	1.00	23.36
	ATOM	1652	NH1	ARG	A	245	34.606	38.293	3.208	1.00	21.07
	MOTA	1653	NH2	ARG	Α	245	35.798	36.438	2.553	1.00	20.90
	MOTA	1654	С	ARG	Α	245	40.875	38.593	6.662	1.00	23.84
	MOTA	1655	0	ARG	Α	245	40.956	38.720	7.893	1.00	20.34
15	MOTA	1656	N	ARG	A	246	41.291	39.523	5.803	1.00	25.07
	MOTA	1657	CA	ARG	Α	246	41.939	40.756	6.232	1.00	26.56
	MOTA	1658	CB	ARG	A	246	42.161	41.672	5.025	1.00	29.73
	MOTA	1659	CG	ARG	Α	246	43.280	41.141	4.145	1.00	37.20
	MOTA	1660	CD	ARG	A	246	43.693	42.065	3.006	1.00	41.04
20	ATOM	1661	NE	ARG	A	246	44.801	41.472	2.258	1.00	40.54
	MOTA	1662	CZ	ARG	A	246	44.727	40.307	1.624	1.00	40.16
	ATOM	1663	NH1	ARG	A	246	43.599	39.615	1.640	1.00	40.31
	MOTA	1664	NH2	ARG	A	246	45.787	39.821	0.996	1.00	41.87
	ATOM	1665	С	ARG	A	246	41.371	41.555	7.394	1.00	25.25
25	MOTA	1666	0	ARG	Α	246	42.111	41.875	8.323	1.00	23.36
	MOTA	1667	N	VAL	A	247	40.083	41.881	7.370	1.00	24.09
	MOTA	1668	CA	VAL	A	247	39.527	42.654	8.473	1.00	24.28
	ATOM	1669	СВ	VAL	Α	247	38.099	43.170	8.149	1.00	26.35
	MOTA	1670	CG1	VAL	Α	247	38.126	43.983	6.861	1.00	25.68
30	MOTA	1671	CG2	VAL	A	247	37.130	42.017	8.029	1.00	27.49
	MOTA	1672	С	VAL	A	247	39.509	41.850	9.775	1.00	24.03
	MOTA	1673	0	VAL	A	247	39.357	42.413	10.857	1.00	23.84
	MOTA	1674	N	HIS	Α	248	39.695	40.536	9.665	1.00	23.16
	MOTA	1675	CA	HIS	A	248	39.696	39.653	10.829	1.00	22.42
35	MOTA	1676	СВ	HIS	Α	248	38.703	38.506	10.606	1.00	23.50
	ATOM	1677	CG	HIS	A	248	37.275	38.950	10.536	1.00	25.02
	ATOM	1678	CD2	HIS	Α	248	36.461	39.171	9.476	1.00	25.76

	MOTA	1679	ND1	HIS A	248	36.541	39.273	11.657	1.00	24.47
	ATOM	1680	CE1	HIS A	248	35.337	39.675	11.291	1.00	25.12
	ATOM	1681	NE2	HIS A	248	35.263	39.624	9.973	1.00	25.47
	ATOM	1682	С	HIS A	248	41.083	39.076	11.113	1.00	20.89
5	ATOM	1683	0	HIS A	248	41.216	38.084	11.831	1.00	18.62
	MOTA	1684	N	ARG A	249	42.110	39.708	10.559	1.00	19.69
	ATOM	1685	CA	ARG A	249	43.484	39.242	10.730	1.00	20.69
	MOTA	1686	СВ	ARG A	249	44.226	39.385	9.399	1.00	20.68
	MOTA	1687	CG	ARG A	249	45.425	38.475	9.227	1.00	24.73
10	ATOM	1688	CD	ARG A	249	46.029	38.640	7.830	1.00	24.81
	MOTA	1689	NE	ARG A	249	45.120	38.193	6.778	1.00	24.85
	ATOM	1690	CZ	ARG A	249	45.081	38.707	5.553	1.00	26.85
	ATOM	1691	NH1	ARG A	249	45.899	39.695	5.220	1.00	27.97
	ATOM	1692	NH2	ARG A	249	44.226	38.230	4.654	1.00	26.76
15	ATOM	1693	С	ARG A	249	44.193	40.043	11.830	1.00	19.79
	MOTA	1694	0	ARG A	249	44.579	41.194	11.626	1.00	19.90
	ATOM	1695	N	PRO A	250	44.371	39.437	13.014	1.00	18.06
	MOTA	1696	CD	PRO A	250	43.843	38.125	13.435	1.00	16.95
	ATOM	1697	CA	PRO A	250	45.029	40.112	14.136	1.00	18.31
20	ATOM	1698	СВ	PRO A	250	44.465	39.376	15.343	1.00	16.97
	MOTA	1699	CG	PRO A	250	44.438	37.960	14.837	1.00	17.39
	ATOM	1700	С	PRO A	250	46.551	40.055	14.125	1.00	18.15
	MOTA	1701	0	PRO A	250	47.160	39.265	13.396	1.00	18.56
	MOTA	1702	N	ALA A	251	47.155	40.911	14.940	1.00	17.21
25	ATOM	1703	CA	ALA A	251	48.600	40.928	15.092	1.00	16.57
	MOTA	1704	СВ	ALA A	251	49.050	42.240	15.712		15.93
	MOTA	1705	С	ALA A	251	48.861	39.775	16.056	1.00	15.37
	ATOM	1706	0	ALA A	251	47.978	39.414	16.839	1.00	13.89
	MOTA	1707	N	VAL A	252	50.051	39.185	15.986	1.00	15.17
30	MOTA	1708	CA	VAL A	252	50.405	38.076	16.864	1.00	15.31
	ATOM	1709	СВ	VAL A	252	50.732	36.796	16.060	1.00	16.18
	MOTA	1710	CG1	VAL A	252	51.332	35.733	16.983	1.00	13.26
	MOTA	1711	CG2	VAL A	252	49.455	36.255	15.397	1.00	15.46
	MOTA	1712	С	VAL A	252	51.601	38.422	17.747	1.00	17.46
35	MOTA	1713	0	VAL A	252	52.667	38.806	17.258	1.00	16.99
	MOTA	1714	N	LEU A	253	51.407	38.287	19.054	1.00	17.27
	MOTA	1715	CA	LEU A	253	52.454	38.569	20.020	1.00	17.95

	ATOM	1716	СВ	LEU Z	A	253	52.044	39.727	20.936	1.00	18.28
	ATOM	1717	CG	LEU Z	A	253	51.981	41.133	20.330	1.00	19.28
	MOTA	1718	CD1	LEU Z	A	253	50.743	41.285	19.464	1.00	20.31
	ATOM	1719	CD2	LEU Z	Α	253	51.956	42.153	21.448	1.00	20.44
5	ATOM	1720	С	LEU A	A	253	52.738	37.332	20.865	1.00	19.31
	MOTA	1721	0	LEU A	Α	253	51.900	36.439	20.985	1.00	18.01
	MOTA	1722	N	VAL	Α	254	53.932	37.283	21.440	1.00	19.14
	ATOM	1723	CA	VAL	Α	254	54.319	36.171	22.290	1.00	19.38
	ATOM	1724	СВ	VAL .	A	254	55.595	35.473	21.753	1.00	19.88
10	ATOM	1725	CG1	VAL	A	254	56.036	34.380	22.708	1.00	20.19
	ATOM	1726	CG2	VAL	A	254	55.326	34.893	20.377	1.00	19.39
	ATOM	1727	С	VAL	A	254	54.592	36.723	23.686	1.00	17.52
	ATOM	1728	0	VAL	A	254	55.307	37.706	23.835	1.00	16.58
	ATOM	1729	N	LYS	A	255	54.001	36.104	24.700	1.00	18.56
15	ATOM	1730	CA	LYS	A	255	54.204	36.539	26.078	1.00	17.98
	MOTA	1731	CB	LYS .	A	255	52.890	36.476	26.861	1.00	16.57
	MOTA	1732	CG	LYS .	A	255	52.994	37.018	28.277	1.00	17.78
	MOTA	1733	CD	LYS .	A	255	51.616	37.306	28.861	1.00	18.41
	ATOM	1734	CE	LYS .	A	255	51.713	37.881	30.270	1.00	18.09
20	ATOM	1735	NZ	LYS .	A	255	50.374	38.287	30.777	1.00	17.48
	ATOM	1736	С	LYS .	A	255	55.250	35.630	26.716	1.00	18.74
	ATOM	1737	0	LYS .	A	255	55.067	34.412	26.799	1.00	18.62
	ATOM	1738	N	ILE .	A	256	56.339	36.239	27.176	1.00	17.14
	ATOM	1739	CA	ILE .	A	256	57.446	35.504	27.765	1.00	16.56
25	ATOM	1740	СВ	ILE .			58.769	35.898	27.080	1.00	16.85
	ATOM	1741		ILE .			58.633	35.744	25.573		16.06
	MOTA	1742					59.122		27.422		
	MOTA	1743	CD1	ILE .			60.404	37.844	26.774		14.24
20	ATOM	1744	С	ILE .			57.629	35.668	29.268		17.29
30	ATOM	1745	0	ILE .			57.076	36.579	29.895		15.74
	ATOM	1746	N	ALA .			58.433	34.778	29.835		16.30
	ATOM	1747	CA	ALA			58.715	34.795	31.263		18.80
	ATOM	1748	СВ	ALA			59.079	33.381	31.740		17.75
25	ATOM	1749	C	ALA .			59.846	35.765	31.605		18.13
35	ATOM	1750	0	ALA			60.594	36.211	30.733		17.13
	ATOM	1751	N	PRO			59.963	36.122	32.890		17.72
	ATOM	1752	CD	PRO .	A	258	58.899	35.989	33.904	1.00	16.97

	MOTA	1753	CA	PRO A	258	61.006	37.036	33.354	1.00	16.91
	MOTA	1754	СВ	PRO A	258	60.299	37.815	34.446	1.00	16.77
	MOTA	1755	CG	PRO A	258	59.484	36.739	35.100	1.00	15.59
	MOTA	1756	С	PRO A	258	62.171	36.218	33.907	1.00	18.80
5	MOTA	1757	0	PRO A	258	63.165	36.768	34.377	1.00	18.56
	MOTA	1758	N	ASP A	259	62.041	34.897	33.840	1.00	18.60
	MOTA	1759	CA	ASP A	259	63.068	34.003	34.362	1.00	20.43
	MOTA	1760	СВ	ASP A	259	62.405	32.914	35.217	1.00	18.43
	MOTA	1761	CG	ASP A	259	61.400	33.482	36.218	1.00	20.36
10	MOTA	1762	OD1	ASP A	259	61.745	34.445	36.937	1.00	18.40
	MOTA	1763	OD2	ASP A	259	60.263	32.963	36.288	1.00	19.98
	MOTA	1764	С	ASP A	259	63.921	33.356	33.269	1.00	21.61
	MOTA	1765	0	ASP A	259	64.562	32.335	33.497	1.00	24.74
	MOTA	1766	N	LEU A	260	63.933	33.954	32.086	1.00	21.80
15	MOTA	1767	CA	LEU A	260	64.705	33.419	30.969	1.00	21.12
	MOTA	1768	СВ	LEU A	260	64.196	34.018	29.652	1.00	20.21
	ATOM	1769	CG	LEU A	260	62.714	33.826	29.301	1.00	20.54
	ATOM	1770	CD1	LEU A	260	62.370	34.651	28.068	1.00	20.36
	MOTA	1771	CD2	LEU A	260	62.421	32.355	29.064	1.00	17.51
20	ATOM	1772	С	LEU A	260	66.203	33.699	31.096	1.00	21.45
	ATOM	1773	0	LEU A	260	66.612	34.727	31.638	1.00	22.50
	ATOM	1774	N	THR A	261	67.018	32.780	30.589	1.00	21.53
	ATOM	1775	CA	THR A	261	68.470	32.947	30.606	1.00	21.15
	ATOM	1776	СВ	THR A	261	69.198	31.616	30.348	1.00	20.05
25	ATOM	1777	OG1	THR A	261	68.858	31.140	29.040	1.00	20.20
	ATOM	1778	CG2	THR A	261	68.802	30.569	31.384	1.00	16.57
	ATOM	1779	С	THR A	261	68.816	33.882	29.452	1.00	22,22
	ATOM	1780	0	THR A	261	67.957	34.197	28.629	1.00	21.75
	ATOM	1781	N	SER A	262	70.068	34.321	29.383	1.00	22.31
30	ATOM	1782	CA	SER A	262	70.486	35.202	28.300	1.00	24.10
	ATOM	1783	СВ	SER A	262	71.940	35.639	28.488	1.00	25.21
	ATOM	1784	OG	SER A	262	72.070	36.517	29.589	1.00	30.65
	ATOM	1785	С	SER A	262	70.346	34.475	26.967	1.00	23.76
	ATOM	1786	0	SER A	262	70.027	35.087	25.944	1.00	23.73
35	ATOM	1787	N	GLN A	263	70.586	33.167	26.992	1.00	22.66
	ATOM	1788	CA	GLN A	263	70.488	32.338	25.799	1.00	22.80
	ATOM	1789	CB	GLN A	263	70.984	30.919	26.099	1.00	23.32

	ATOM	1790	CG	GLN	Α	263	70.906	29.971	24.911	1.00	28.22
	ATOM	1791	CD	GLN	Α	263	71.986	30.228	23.870	1.00	30.88
	MOTA	1792	OE1	GLN	Α	263	73.154	29.893	24.077	1.00	31.95
	ATOM	1793	NE2	GLN	A	263	71.599	30.829	22.749	1.00	30.56
5	ATOM	1794	С	GLN	A	263	69.043	32.293	25.308	1.00	21.39
	MOTA	1795	0	GLN	A	263	68.781	32.465	24.113	1.00	20.07
	MOTA	1796	N	ASP	A	264	68.108	32.064	26.231	1.00	21.04
	ATOM	1797	CA	ASP	A	264	66.689	32.010	25.882	1.00	20.35
	MOTA	1798	СВ	ASP	Α	264	65.806	31.813	27.125	1.00	23.87
10	MOTA	1799	CG	ASP	A	264	66.025	30.473	27.813	1.00	25.55
	ATOM	1800	OD1	ASP	A	264	66.306	29.475	27.122	1.00	24.81
	MOTA	1801	OD2	ASP	A	264	65.890	30.423	29.057	1.00	28.84
	MOTA	1802	С	ASP	A	264	66.253	33.304	25.204	1.00	19.30
	ATOM	1803	0	ASP	A	264	65.540	33.282	24.205	1.00	19.20
15	MOTA	1804	N	LYS	Α	265	66.681	34.435	25.753	1.00	19.99
	MOTA	1805	CA	LYS	A	265	66.305	35.728	25.198	1.00	20.75
	ATOM	1806	СВ	LYS	Α	265	66.742	36.851	26.139	1.00	21.01
	MOTA	1807	CG	LYS	A	265	66.049	36.790	27.489	1.00	23.04
	MOTA	1808	CD	LYS	A	265	66.718	37.703	28.504	1.00	25.84
20	ATOM	1809	CE	LYS	A	265	66.395	37.261	29.924	1.00	25.41
	MOTA	1810	ΝZ	LYS	A	265	67.246	37.944	30.933	1.00	25.82
	MOTA	1811	С	LYS	Α	265	66.867	35.944	23.802	1.00	20.04
	MOTA	1812	0	LYS	Α	265	66.161	36.443	22.924	1.00	21.04
	MOTA	1813	N	GLU	A	266	68.127	35.568	23.594	1.00	19.65
25	MOTA	1814	CA	GLU	Α	266	68.751	35.709	22.278	1.00	20.20
	MOTA	1815	СВ	GLU	A	266	70.208	35.228	22.304		18.79
	MOTA	1816	CG	GLU	A	266	71.131	36.087	23.139		
	MOTA	1817	CD	GLU	A	266	72.540	35.514	23.258		28.06
	MOTA	1818	OE1	GLU	A	266	73.312	36.035	24.090		28.12
30	MOTA	1819	OE2	GLU	Α	266	72.875	34.554	22.525		29.89
	MOTA	1820	С	GLU	Α	266	67.977	34.881	21.255		19.59
	MOTA	1821	0	GLU	A	266	67.668	35.363	20.168		19.33
	MOTA	1822	N	ASP			67.670	33.634	21.609		19.65
	MOTA	1823	CA	ASP			66.937	32.746	20.709		21.97
35	MOTA	1824	СВ	ASP			66.802	31.344	21.314		22.01
	MOTA	1825	CG	ASP			68.137	30.637	21.456		24.73
	MOTA	1826	OD1	ASP	A	267	69.129	31.106	20.851	1.00	24.83

•	ATOM	1827	OD2	ASP .	A	267	68.193	29.606	22.166	1.00	23.73
	ATOM	1828	С	ASP .	A	267	65.553	33.292	20.381	1.00	21.47
	ATOM	1829	0	ASP .	A	267	65.145	33.313	19.216	1.00	22.04
	ATOM	1830	N	ILE .	A	268	64.834	33.732	21.408	1.00	19.95
5	ATOM	1831	CA	ILE .	A	268	63.503	34.275	21.211	1.00	19.17
	ATOM	1832	СВ	ILE .	A	268	62.888	34.744	22.542	1.00	18.87
	ATOM	1833	CG2	ILE .	A	268	61.705	35.656	22.274	1.00	16.95
	ATOM	1834	CG1	ILE .	A	268	62.485	33.528	23.375	1.00	18.97
	ATOM	1835	CD1	ILE .	A	268	61.948	33.877	24.746	1.00	23.19
10	MOTA	1836	С	ILE .	A	268	63.552	35.450	20.248	1.00	20.01
	ATOM	1837	0	ILE .	A	268	62.743	35.538	19.320	1.00	19.24
	ATOM	1838	N	ALA	A	269	64.509	36.348	20.463	1.00	20.09
	ATOM	1839	CA	ALA	A	269	64.651	37.515	19.601	1.00	21.80
	ATOM	1840	СВ	ALA	A	269	65.779	38.409	20.111	1.00	21.97
15	ATOM	1841	С	ALA	A	269	64.941	37.065	18.171	1.00	22.48
	ATOM	1842	0	ALA	A	269	64.396	37.613	17.212	1.00	21.58
	ATOM	1843	N	SER	A	270	65.801	36.059	18.040	1.00	21.92
	ATOM	1844	CA	SER	A	270	66.168	35.531	16.733	1.00	22.88
	ATOM	1845	СВ	SER	A	270	67.242	34.452	16.891	1.00	22.22
20	MOTA	1846	OG	SER	A	270	67.580	33.882	15.642	1.00	23.76
	ATOM	1847	С	SER	A	270	64.949	34.957	16.006	1.00	23.52
	ATOM	1848	0	SER	A	270	64.714	35.262	14.837	1.00	24.62
	ATOM	1849	N	VAL	A	271	64.176	34.124	16.694	1.00	22.03
	ATOM	1850	CA	VAL	A	271	62.987	33.537	16.088	1.00	23.28
25	ATOM	1851	СВ	VAL	A	271	62.319	32.533	17.050	1.00	22.08
	ATOM	1852	CG1	VAL	A	271	60.977	32.082	16.500	1.00	21.17
	MOTA	1853	CG2	VAL	A	271	63.232	31.339	17.252	1.00	20.02
	ATOM	1854	С	VAL	A	271	61.987	34.632	15.707	1.00	24.31
	MOTA	1855	0	VAL	A	271	61.430	34.624	14.611	1.00	23.98
30	MOTA	1856	N	VAL	A	272	61.781	35.583	16.612	1.00	26.58
	ATOM	1857	CA	VAL	A	272	60.859	36.689	16.379	1.00	27.45
	ATOM	1858	СВ	VAL	A	272	60.911	37.701	17.551	1.00	27.39
	ATOM	1859	CG1	VAL	A	272	60.486	39.084	17.076	1.00	25.91
	MOTA	1860	CG2	VAL	A	272	59.999	37.229	18.675	1.00	26.08
35	ATOM	1861	С	VAL	A	272	61.150	37.423	15.070	1.00	29.27
	MOTA	1862	0	VAL	A	272	60.241	37.702	14.285	1.00	28.76
	ATOM	1863	N	LYS	A	273	62.418	37.730	14.829	1.00	30.44

	ATOM	1864	CA	LYS	Α	273	62.790	38.438	13.612	1.00	33.44
	ATOM	1865	СВ	LYS	A	273	64.132	39.147	13.817	1.00	35.26
	ATOM	1866	CG	LYS	Α	273	64.046	40.267	14.863	1.00	39.31
	ATOM	1867	CD	LYS	Α	273	65.346	41.039	15.002	1.00	41.83
5	ATOM	1868	CE	LYS	A	273	66.453	40.165	15.559	1.00	42.89
	ATOM	1869	NZ	LYS	A	273	67.722	40.927	15.709	1.00	43.88
	MOTA	1870	С	LYS	Α	273	62.832	37.524	12.391	1.00	32.97
	MOTA	1871	0	LYS	A	273	62.728	37.986	11.258	1.00	33.61
	MOTA	1872	N	GLU	Α	274	62.959	36.225	12.628	1.00	32.69
10	MOTA	1873	CA	GLU	A	274	63.000	35.244	11.550	1.00	32.33
	MOTA	1874	СВ	GLU	A	274	63.595	33.932	12.064	1.00	34.02
	MOTA	1875	CG	GLU	A	274	63.777	32.860	11.005	1.00	38.20
	ATOM	1876	CD	GLU	A	274	63.910	31.468	11.606	1.00	41.49
	MOTA	1877	OE1	GLU	A	274	64.611	31.326	12.631	1.00	43.83
15	ATOM	1878	OE2	GLU	A	274	63.321	30.513	11.051	1.00	42.59
	MOTA	1879	С	GLU	A	274	61.597	34.971	10.995	1.00	32.28
	MOTA	1880	0	GLU	A	274	61.427	34.748	9.796	1.00	32.54
	MOTA	1881	N	LEU	Α	275	60.594	34.991	11.871	1.00	29.68
	MOTA	1882	CA	LEU	A	275	59.218	34.715	11.463	1.00	27.61
20	MOTA	1883	СВ	LEU	A	275	58.547	33.794	12.482	1.00	26.94
	MOTA	1884	CG	LEU	A	275	59.253	32.467	12.760	1.00	26.89
	MOTA	1885	CD1	LEU	A	275	58.481	31.695	13.822		26.39
	ATOM	1886	CD2	LEU	A	275	59.357	31.663	11.468		25.26
	MOTA	1887	С			275 .	58.353	35.952	11.272		26.91
25	MOTA	1888	0	LEU	A	275	57.278	35.873	10.685		27.65
	MOTA	1889	N	GLY	A	276	58.808	37.091	11.772		26.85
	MOTA	1890	CA	GLY			58.024	38.305	11.627		25.44
	MOTA	1891	С	GLY			56.956	38.486	12.697		26.13
20	MOTA	1892	0	GLY			55.893	39.050	12.427		26.58
30	ATOM	1893	N			277	57.224	38.001	13.907		24.15
	ATOM	1894	CA			277	56.282	38.151	15.008		23.32
	ATOM	1895	CB			277	56.870	37.596	16.322		23.73
	ATOM	1896		ILE			55.978	37.967	17.500		22.70
25	ATOM	1897		ILE			57.002	36.078	16.217		22.63
35	ATOM	1898		ILE			55.695	35.400	15.862		25.70
	ATOM	1899	С			277	55.990	39.641	15.167		23.51
	ATOM	1900	0	TTT	А	277	56.900	40.464	15.133	1.00	24.00

	ATOM	1901	N	ASP 2	A	278	54.721	39.984	15.347	1.00	22.59
	ATOM	1902	CA	ASP 2	A	278	54.313	41.378	15.468	1.00	21.70
	ATOM	1903	СВ	ASP A	A	278	52.800	41.478	15.291	1.00	20.81
	ATOM	1904	CG	ASP A	A	278	52.337	40.895	13.973	1.00	21.70
5	ATOM	1905	OD1	ASP A	A	278	52.800	41.381	12.921	1.00	23.06
	ATOM	1906	OD2	ASP A	A	278	51.519	39.951	13.985	1.00	21.16
	ATOM	1907	С	ASP A	A	278	54.725	42.090	16.753	1.00	22.21
	ATOM	1908	0	ASP A	A	278	54.861	43.317	16.767	1.00	22.86
	ATOM	1909	N	GLY A	A	279	54.922	41.335	17.828	1.00	20.59
10	ATOM	1910	CA	GLY A	A	279	55.305	41.960	19.080	1.00	19.11
	ATOM	1911	С	GLY .	A	279	55.495	41.006	20.241	1.00	19.37
	ATOM	1912	0	GLY .	A	279	55.215	39.810	20.149	1.00	20.05
	ATOM	1913	N	LEU .	A	280	55.965	41.554	21.354	1.00	19.59
	ATOM	1914	CA	LEU .	A	280	56.219	40.770	22.548	1.00	19.01
15	ATOM	1915	СВ	LEU .	A	280	57.727	40.701	22.819	1.00	16.13
	ATOM	1916	CG	LEU .	A	280	58.636	39.942	21.852	1.00	18.39
	ATOM	1917	CD1	LEU .	A	280.	60.090	40.186	22.215	1.00	17.15
	ATOM	1918	CD2	LEU .	A	2,80	58.322	38.453	21.907	1.00	17.74
	ATOM	1919	С	LEU .	A	280	55.537	41.384	23.759	1.00	18.66
20	ATOM	1920	0	LEU .	A	280	55.483	42.607	23.899	1.00	19.48
	ATOM	1921	N	ILE .	A	281	54.992	40.533	24.620	1.00	16.58
	ATOM	1922	CA	ILE .	A	281	54.381	41.008	25.850	1.00	16.94
	ATOM	1923	СВ	ILE .	A	281	53.028	40.345	26.138	1.00	13.57
	ATOM	1924	CG2	ILE	Α	281	52.571	40.719	27.537	1.00	12.68
25	ATOM	1925	CG1	ILE	A	281	51.998	40.805	25.094	1.00	13.42
	ATOM	1926	CD1	ILE .	A	281	50.543	40.631	25.526	1.00	9.50
	ATOM	1927	С	ILE .	A	281	55.433	40.543	26.832	1.00	19.04
	ATOM	1928	0	ILE .	A	281	55.630	39.339	27.039	1.00	20.47
	ATOM	1929	N	VAL .	A	282	56.127	41.495	27.436	1.00	20.25
30	ATOM	1930	CA	VAL .	A	282	57.222	41.107	28.288	1.00	20.82
	ATOM	1931	СВ	VAL .	A	282	58.449	41.986	27.990	1.00	20.22
	ATOM	1932	CG1	VAL .	Α	282	59.658	41.516	28.781	1.00	15.02
	ATOM	1933	CG2	VAL .	A	282	58.750	41.897	26.493	1.00	16.68
	ATOM	1934	С	VAL .	A	282	57.004	40.935	29.768	1.00	24.85
35	ATOM	1935	0	VAL .	A	282	56.667	41.850	30.525	1.00	23.91
	ATOM	1936	N	THR .	A	283	57.250	39.676	30.110	1.00	27.60
	MOTA	1937	CA	THR .	A	283	57.170	39.027	31.399	1.00	24.79

	ATOM	1938	СВ	THR A	283	58.151	39.615	32.454	1.00 24.20
	MOTA	1939	OG1	THR A	283	57.456	39.821	33.690	1.00 20.26
	ATOM	1940	CG2	THR A	283	58.814	40.891	31.960	1.00 27.48
	MOTA	1941	С	THR A	283	55.823	38.783	32.033	1.00 23.31
5	ATOM	1942	0	THR A	A 283	54.988	39.665	32.254	1.00 21.75
	MOTA	1943	N	ASN A	284	55.652	37.496	32.279	1.00 20.32
	MOTA	1944	CA	ASN A	A 284	54.513	36.914	32.923	1.00 16.76
	MOTA	1945	СВ	ASN A	A 284	54.398	35.463	32.467	1.00 13.23
	MOTA	1946	CG	ASN A	A 284	53.008	34.918	32.624	1.00 13.70
10	MOTA	1947	OD1	ASN A	A 284	52.432	34.975	33.708	1.00 12.58
	ATOM	1948	ND2	ASN A	A 284	52.454	34.384	31.537	1.00 11.64
	ATOM	1949	С	ASN A	A 284	54.967	36.982	34.383	1.00 15.03
	ATOM	1950	0	ASN A	A 284	55.833	37.789	34.728	1.00 14.08
	MOTA	1951	N	THR A	A 285	54.405	36.143	35.239	1.00 14.23
15	MOTA	1952	CA	THR A	A 285	54.809	36.143	36.638	1.00 14.14
	MOTA	1953	СВ	THR A	A 285	53.748	35.471	37.520	1.00 13.30
	MOTA	1954	OG1	THR A	A 285	53.423	34.190	36.974	1.00 15.78
	ATOM	1955	CG2	THR A	A 285	52.490	36.323	37.587	1.00 14.21
	MOTA	1956	С	THR A	A 285	56.128	35.378	36.757	1.00 14.83
20	ATOM	1957	0	THR A	A 285	56.488	34.613	35.863	1.00 13.04
	ATOM	1958	N	THR A	A 286	56.845	35.585	37.858	1.00 14.34
	MOTA	1959	CA	THR A	A 286	58.123	34.910	38.067	1.00 13.36
	MOTA	1960	СВ	THR A	A 286	59.184	35.889	38.605	1.00 10.54
	ATOM	1961	OG1	THR A	A 286	60.378	35.168	38.925	1.00 14.37
25	MOTA	1962	CG2	THR A	A 286	58.689	36.580	39.868	1.00 12.42
	MOTA	1963	С	THR A	A 286	58.030	33.739	39.047	1.00 13.96
	ATOM	1964	0	THR A	A 286	57.276	33.794	40.020	1.00 14.35
	ATOM	1965	N	VAL A	A 287	58.790	32.678	38.784	1.00 14.22
	ATOM	1966	CA	VAL A	A 287	58.801	31.530	39.681	1.00 16.50
30	ATOM	1967	СВ	VAL A	A 287	59.043	30.187	38.945	1.00 17.45
	MOTA	1968	CG1	VAL A	A 287	57.928	29.930	37.950	1.00 16.54
	MOTA	1969	CG2	VAL A	A 287	60.413	30.192	38.264	1.00 17.41
	MOTA	1970	С	VAL A	A 287	59.924	31.732	40.692	1.00 16.94
	MOTA	1971	0	VAL A	A 287	60.149	30.892	41.557	1.00 17.91
35	MOTA	1972	N	SER A	A 288	60.642	32.844	40.571	1.00 15.98
	ATOM	1973	CA	SER A	A 288	61.713	33.128	41.517	1.00 16.76
	ATOM	1974	СВ	SER A	A 288	62.718	34.123	40.930	1.00 16.69

	ATOM	1975	OG	SER	Α	288	62.166	35.432	40.901	1.00 17.63
	ATOM	1976	С	SER	Α	288	61.060	33.756	42.743	1.00 17.52
	ATOM	1977	0	SER	Α	288	59.885	34.135	42.712	1.00 16.42
	ATOM	1978	N	ARG	A	289	61.826	33.862	43.821	1.00 17.88
5	ATOM	1979	CA	ARG	Α	289	61.333	34.466	45.047	1.00 18.33
	MOTA	1980	СВ	ARG	Α	289	61.026	33.388	46.091	1.00 18.54
	MOTA	1981	CG	ARG	A	289	59.832	32.501	45.744	1.00 18.01
	MOTA	1982	CD	ARG	A	289	58.509	33.273	45.794	1.00 16.90
	ATOM	1983	NE	ARG	A	289	57.360	32.413	45.506	1.00 15.93
10	ATOM	1984	CZ	ARG	Α	289	56.922	32.112	44.284	1.00 17.27
	ATOM	1985	NH1	ARG	Α	289	55.874	31.311	44.134	1.00 16.11
	MOTA	1986	NH2	ARG	Α	289	57.515	32.620	43.209	1.00 13.70
	ATOM	1987	С	ARG	Α	289	62.425	35.398	45.541	1.00 18.67
	ATOM	1988	0	ARG	Α	289	63.272	35.012	46.344	1.00 19.04
15	MOTA	1989	N	PRO	Α	290	62.425	36.642	45.044	1.00 18.96
	ATOM	1990	CD	PRO	Α	290	61.414	37.188	44.118	1.00 19.15
	ATOM	1991	CA	PRO	A	290	63.403	37.668	45.407	1.00 18.97
	MOTA	1992	СВ	PRO	Α	290	62.753	38.952	44.897	1.00 18.09
	ATOM	1993	CG	PRO	A	290	62.050	38.488	43.665	1.00 17.63
20	MOTA	1994	С	PRO	A	290	63.676	37.713	46.904	1.00 20.35
	MOTA	1995	0	PRO	A	290	62.759	37.579	47.717	1.00 20.48
	MOTA	1996	N	ALA	Α	291	64.942	37.886	47.267	1.00 20.76
	ATOM	1997	CA	ALA	A	291	65.306	37.975	48.676	1.00 19.97
	ATOM	1998	СВ	ALA	Α	291	66.820	38.117	48.825	1.00 18.35
25	ATOM	1999	С	ALA	A	291	64.607	39.214	49.231	1.00 18.32
	ATOM	2000	0	ALA	A	291	64.572	40.256	48.574	1.00 18.54
	ATOM	2001	N	GLY	Α	292	64.036	39.100	50.423	1.00 16.06
	ATOM	2002	CA	GLY	A	292	63.367	40.247	51.011	1.00 15.84
	ATOM	2003	С	GLY	A	292	61.861	40.134	51.148	1.00 15.05
30	ATOM	2004	0	GLY	A	292	61.256	40.922	51.865	1.00 17.29
	ATOM	2005	N	LEU	A	293	61.244	39.177	50.461	1.00 16.21
	ATOM	2006	CA	LEU	Α	293	59.794	39.002	50.567	1.00 15.09
	MOTA	2007	CB	LEU	Α	293	59.333	37.772	49.784	1.00 14.95
	MOTA	2008	CG	LEU			59.498	37.772	48.261	1.00 15.03
35	MOTA	2009		LEU			58.985	36.443	47.710	1.00 15.13
	MOTA	2010		LEU			58.726	38.944	47.644	1.00 14.56
	MOTA	2011	С	LEU	A	293	59.457	38.813	52.034	1.00 14.63

	ATOM	2012	0	LEU	Α	293	60.110	38.035	52.722	1.00 13.78
	ATOM	2013	N	GLN	Α	294	58.442	39.527	52.508	1.00 15.71
	ATOM	2014	CA	GLN	A	294	58.025	39.444	53.902	1.00 17.52
	ATOM	2015	СВ	GLN	Α	294	57.812	40.851	54.474	1.00 18.01
5	ATOM	2016	CG	GLN	Α	294	59.072	41.680	54.535	1.00 19.97
	ATOM	2017	CD	GLN	Α	294	60.177	40.954	55.264	1.00 20.66
	ATOM	2018	OE1	GLN	A	294	60.000	40.540	56.404	1.00 22.11
	ATOM	2019	NE2	GLN	A	294	61.322	40.790	54.607	1.00 18.57
	ATOM	2020	С	GLN	A	294	56.747	38.641	54.086	1.00 18.13
10	ATOM	2021	0	GLN	Α	294	56.514	38.075	55.158	1.00 18.69
	ATOM	2022	N	GLY	A	295	55.920	38.607	53.043	1.00 17.25
	ATOM	2023	CA	GLY	Α	295	54.657	37.891	53.106	1.00 15.78
	ATOM	2024	С	GLY	Α	295	54.750	36.505	53.712	1.00 15.71
	ATOM	2025	0	GLY	Α	295	55.653	35.738	53.394	1.00 15.57
15	ATOM	2026	N	ALA	A	296	53.809	36.183	54.590	1.00 15.03
	ATOM	2027	CA	ALA	A	296	53.784	34.873	55.233	1.00 17.37
	ATOM	2028	СВ	ALA	Α	296	52.668	34.826	56.279	1.00 13.26
	ATOM	2029	С	ALA	Α	296	53.581	33.749	54.217	1.00 17.38
	ATOM	2030	0	ALA	A	296	53.942	32.599	54.472	1.00 19.30
20	ATOM	2031	N	LEU	A	297	53.020	34.087	53.061	1.00 16.13
	ATOM	2032	CA	LEU	A	297	52.733	33.091	52.034	1.00 16.03
	ATOM	2033	СВ	LEU	Α	297	51.318	33.331	51.501	1.00 14.34
	ATOM	2034	CG	LEU	A	297	50.289	33.400	52.634	1.00 15.64
	ATOM	2035	CD1	LEU	A	297	48.928	33.906	52.125	1.00 14.34
25	ATOM	2036	CD2	LEU	A	297	50.173	32.014	53.261	1.00 14.99
	ATOM	2037	С	LEU	A	297	53.734	33.105	50.886	1.00 15.69
	MOTA	2038	0	LEU	Α	297	53.458	32.593	49.805	1.00 15.52
	MOTA	2039	N	ARG	Α	298	54.903	33.682	51.140	1.00 18.00
	MOTA	2040	CA	ARG	A	298	55.955	33.799	50.134	1.00 17.07
30	MOTA	2041	СВ	ARG	Α	298	57.142	34.567	50.715	1.00 17.89
	MOTA	2042	CG	ARG	A	298	57.956	33.765	51.710	1.00 19.96
	MOTA	2043	CD	ARG	A	298	59.024	34.625	52.374	1.00 19.70
	MOTA	2044	NE	ARG	A	298	59.866	33.837	53.271	1.00 19.62
	MOTA	2045	CZ	ARG	Α	298	60.717	34.362	54.146	1.00 19.91
35	MOTA	2046	NH1	ARG	A	298	61.445	33.570	54.925	1.00 16.38
	ATOM	2047	NH2	ARG	A	298	60.832	35.683	54.248	1.00 19.27
	ATOM	2048	С	ARG	A	298	56.454	32.478	49.560	1.00 16.46

	MOTA	2049	0	ARG	Α	298	56.963	32.447	48.441	1.00	16.84
	MOTA	2050	N	SER	Α	299	56.323	31.387	50.307	1.00	15.46
	MOTA	2051	CA	SER	Α	299	56.795	30.104	49.799	1.00	16.47
	MOTA	2052	СВ	SER	A	299	57.508	29.315	50.900	1.00	16.12
5	ATOM	2053	OG	SER	A	299	58.770	29.897	51.192	1.00	17.77
	MOTA	2054	С	SER	A	299	55.724	29.239	49.146	1.00	15.87
	MOTA	2055	0	SER	A	299	55.937	28.047	48.927	1.00	16.82
	MOTA	2056	N	GLU	A	300	54.575	29.835	48.842	1.00	14.59
	MOTA	2057	CA	GLU	A	300	53.506	29.113	48.153	1.00	15.91
10	ATOM	2058	СВ	GLU	A	300	52.201	29.925	48.155	1.00	14.89
	MOTA	2059	CG	GLU	A	300	51.489	30.000	49.499	1.00	19.34
	MOTA	2060	CD	GLU	A	300	50.803	28.695	49.870	1.00	20.55
	MOTA	2061	OE1	GLU	A	300	50.331	28.570	51.018	1.00	23.41
	MOTA	2062	OE2	GLU	A	300	50.728	27.796	49.008	1.00	22.41
15	MOTA	2063	С	GLU	A	300	53.968	28.926	46.703	1.00	16.00
	MOTA	2064	0	GLU	A	300	54.659	29.780	46.142	1.00	15.73
	MOTA	2065	N	THR	A	301	53.597	27.802	46.105	1.00	16.98
	MOTA	2066	CA	THR	A	301	53.949	27.518	44.724		15.65
	MOTA	2067	СВ	THR	A	301	53.642	26.055	44.372		18.57
20	MOTA	2068	OG1	THR	A	301	54.617	25.200	44.985	1.00	18.86
	ATOM	2069	CG2	THR	A	301	53.638	25.854	42.852		16.16
	MOTA	2070	С	THR	A	301	53.138	28.408	43.786	1.00	15.99
	MOTA	2071	0	THR	A	301	51.956	28.672	44.030	1.00	14.76
	ATOM	2072	N	GLY	A	302	53.769	28.867	42.711		14.89
25	MOTA	2073	CA	GLY			53.057	29.696	41.758		14.82
	MOTA	2074	С	GLY			53.882	30.841	41.215		16.15
	MOTA	2075	Ο.	GLY				30.950			
	ATOM	2076	N	GLY			53.235	31.694	40.429		16.40
20	ATOM	2077	CA	GLY			53.916	32.836	39.852		14.72
30	ATOM	2078	С	GLY			53.739	34.053	40.735		14.35
	ATOM	2079	0	GLY			52.634	34.327	41.212		13.54
	MOTA	2080	N	LEU			54.831	34.776	40.962		13.61
	ATOM	2081	CA	LEU			54.807	35.975	41.795		14.28
25	ATOM	2082	CB	LEU			56.132	36.096	42.558		15.31
35	ATOM	2083	CG	LEU			56.432	37.328	43.419		16.52
	ATOM	2084		LEU			55.427	37.462	44.552		18.84
	ATOM	2085	CD2	LEU	A	304	57.832	37.182	43.991	1.00	19.39

	ATOM	2086	С	LEU A	304	54.586	37.208	40.918	1.00 14.66
	ATOM	2087	0	LEU A	304	55.164	37.316	39.830	1.00 14.61
	ATOM	2088	N	SER A	305	53.743	38.127	41.387	1.00 12.97
	ATOM	2089	CA	SER A	305	53.449	39.353	40.646	1.00 13.05
5	ATOM	2090	СВ	SER A	305	52.061	39.272	40.001	1.00 11.51
	ATOM	2091	OG	SER A	305	51.044	39.187	40.991	1.00 11.71
	MOTA	2092	С	SER A	305	53.503	40.559	41.579	1.00 13.60
	MOTA	2093	0	SER A	. 305	53.588	40.404	42.799	1.00 14.71
	MOTA	2094	N	GLY A	. 306	53.458	41.762	41.013	1.00 12.19
10	MOTA	2095	CA	GLY A	306	53.493	42.946	41.853	1.00 13.31
	ATOM	2096	С	GLY A	306	54.853	43.605	41.953	1.00 14.74
	MOTA	2097	0	GLY A	. 306	55.739	43.350	41.133	1.00 15.44
	ATOM	2098	N	LYS A	307	55.034	44.432	42.979	1.00 15.30
	MOTA	2099	CA	LYS A	. 307	56.285	45.172	43.147	1.00 17.60
15	MOTA	2100	CB	LYS A	. 307	56.244	46.009	44.439	1.00 19.20
	MOTA	2101	CG	LYS A	. 307	57.248	47.177	44.435	1.00 24.22
	MOTA	2102	CD	LYS A	. 307	57.307	47.949	45.766	1.00 28.95
	MOTA	2103	CE	LYS A	. 307	56.028	48.754	46.030	1.00 30.49
	MOTA	2104	NZ	LYS A	. 307	55.713	49.722	44.926	1.00 31.16
20	MOTA	2105	С	LYS A	307	57.590	44.368	43.088	1.00 16.74
	MOTA	2106	0	LYS A	307	58.560	44.810	42.474	1.00 17.98
	MOTA	2107	N	PRO A	308	57.640	43.184	43.720	1.00 15.79
	MOTA	2108	CD	PRO A	308	56.652	42.578	44.632	1.00 15.73
	MOTA	2109	CA	PRO A	308	58.879	42.392	43.684	1.00 14.87
25	MOTA	2110	CB	PRO A	308	58.552	41.196	44.579	1.00 15.23
	MOTA	2111	CG	PRO A	308	57.529	41.759	45.549	1.00 14.01
	MOTA	2112	С	PRO A	. 308	59.310	41.953	42.279	1.00 15.73
	MOTA	2113	0	PRO A	308	60.468	41.595	42.056	1.00 16.91
	MOTA	2114	N	LEU A	309	58.371	41.982	41.339	1.00 14.07
30	MOTA	2115	CA	LEU A		58.632	41.581	39.963	1.00 14.46
	MOTA	2116	CB	LEU A		57.406	40.847	39.404	1.00 14.21
	MOTA	2117	CG	LEU A		57.307	40.671	37.880	1.00 13.52
	MOTA	2118		LEU A		58.420	39.763	37.397	1.00 14.58
	MOTA	2119	CD2	LEU A		55.948	40.080	37.504	1.00 12.51
35	MOTA	2120	С	LEU A		58.961	42.760	39.041	1.00 16.10
	ATOM	2121	0	LEU A		59.589	42.579	37.994	1.00 15.89
	ATOM	2122	N	ARG A	310	58.549	43.958	39.445	1.00 14.15

	MOTA	2123	CA	ARG A	310	58.731	45.160	38.639	1.00 15.63
	ATOM	2124	СВ	ARG A	310	58.485	46.415	39.485	1.00 14.41
	ATOM	2125	CG	ARG A	310	58.504	47.711	38.662	1.00 17.37
	ATOM	2126	CD	ARG A	310	58.331	48.936	39.539	1.00 16.00
5	ATOM	2127	NE	ARG A	310	59.378	48.988	40.556	1.00 16.92
	ATOM	2128	CZ	ARG A	310	59.328	49.752	41.641	1.00 15.82
	ATOM	2129	NH1	ARG A	310	60.328	49.723	42.511	1.00 12.25
	MOTA	2130	NH2	ARG A	310	58.277	50.538	41.857	1.00 11.34
	ATOM	2131	С	ARG A	310	60.039	45.340	37.868	1.00 16.73
10	ATOM	2132	0	ARG A	310	60.049	45.314	36.635	1.00 16.19
	ATOM	2133	N	ASP A	311	61.141	45.534	38.583	1.00 17.13
	ATOM	2134	CA	ASP A	311	62.415	45.768	37.917	1.00 17.51
	ATOM	2135	СВ	ASP A	311	63.413	46.309	38.941	1.00 16.83
	ATOM	2136	CG	ASP A	311	63.066	47.741	39.368	1.00 19.40
15	ATOM	2137	OD1	ASP A	311	61.901	48.154	39.159	1.00 17.25
	ATOM	2138	ÓD2	ASP A	311	63.938	48.454	39.904	1.00 18.54
	ATOM	2139	С	ASP A	311	62.954	44.576	37.130	1.00 17.90
	ATOM	2140	0	ASP A	311	63.648	44.748	36.125	1.00 17.56
	ATOM	2141	N	LEU A	312	62.623	43.368	37.567	1.00 17.93
20	ATOM	2142	CA	LEU A	312	63.042	42.183	36.834	1.00 18.46
	ATOM	2143	СВ	LEU A	312	62.583	40.921	37.564	1.00 19.59
	ATOM	2144	CG	LEU A	312	62.919	39.572	36.924	1.00 23.20
	ATOM	2145	CD1	LEU A	312	64.430	39.435	36.725	1.00 24.90
	ATOM	2146	CD2	LEU A	312	62.399	38.457	37.830	1.00 23.93
25	ATOM	2147	С	LEU A	312	62.386	42.270	35.445	1.00 17.74
	ATOM	2148	0	LEU A		63.006	41.930	34.432	1.00 15.60
	ATOM	2149	N	SER A	313		42.744		1.00 16.62
	ATOM	2150	CA	SER A		60.408	42.898	34.136	1.00 18.24
••	ATOM	2151	СВ	SER A		58.923	43.211	34.372	1.00 19.90
30	MOTA	2152	OG	SER A		58.194	42.044	34.702	1.00 27.76
	MOTA	2153	С	SER A		61.004	44.020	33.296	1.00 16.66
	MOTA	2154	0	SER A		61.262	43.846	32.105	1.00 16.80
	ATOM	2155	N	THR A		61.206	45.174	33.922	1.00 15.56
	ATOM	2156	CA	THR A		61.770	46.322	33.231	1.00 15.84
35	ATOM	2157	СВ	THR A		62.014	47.496	34.202	1.00 15.11
	MOTA	2158		THR A		60.768	47.899	34.784	1.00 14.85
	MOTA	2159	CG2	THR A	314	62.626	48.677	33.466	1.00 13.49

	ATOM	2160	С	THR Z	A	314	63.085	45.932	32.564	1.00	16.33
	ATOM	2161	0	THR A	A	314	63.317	46.264	31.399	1.00	18.25
	MOTA	2162	N	GLN Z	A	315	63.935	45.210	33.290	1.00	15.30
	ATOM	2163	CA	GLN A	A	315	65.214	44.786	32.725	1.00	14.23
5	ATOM	2164	СВ	GLN A	A	315	66.093	44.140	33.804	1.00	12.18
	ATOM	2165	CG	GLN Z	A	315	66.574	45.115	34.889	1.00	15.16
	ATOM	2166	CD	GLN A	A	315	67.541	46.186	34.362	1.00	18.05
	ATOM	2167	OE1	GLN A	A	315	67.240	46.904	33.406	0.50	13.54
	MOTA	2168	NE2	GLN A	A	315	68.699	46.297	34.999	0.50	15.47
10	MOTA	2169	С	GLN	A	315	65.018	43.822	31.551	1.00	14.24
	ATOM	2170	0	GLN .	A	315	65.779	43.860	30.584	1.00	15.73
	ATOM	2171	N	THR .	A	316	64.001	42.966	31.625	1.00	14.27
	ATOM	2172	CA	THR .	A	316	63.737	42.014	30.546	1.00	14.28
	ATOM	2173	СВ	THR .	A	316	62.649	40.967	30.937	1.00	15.87
15	ATOM	2174	OG1	THR .	A	316	63.020	40.306	32.156	1.00	15.52
	ATOM	2175	CG2	THR .	A	316	62.506	39.915	29.838	1.00	13.35
	ATOM	2176	С	THR .	A,	316	63.260	42.782	29.315	1.00	14.86
	ATOM	2177	0	THR .	A	316	63.586	42.433	28.181	1.00	13.99
	ATOM	2178	N	ILE .	A	317	62.484	43.833	29.546	1.00	14.52
20	ATOM	2179	CA	ILE .	A	317	61.987	44.654	28.451	1.00	14.79
	ATOM	2180	СВ	ILE .	A	317	61.030	45.741	28.965	1.00	14.10
	MOTA	2181	CG2	ILE .	A	317	60.796	46.788	27.883	1.00	13.16
	MOTA	2182	CG1	ILE .	A	317	59.719	45.097	29.420	1.00	11.47
	ATOM	2183	CD1	ILE .	A	317	58.834	46.020	30.221	1.00	9.53
25	MOTA	2184	С	ILE .	A	317	63.175	45.333	27.794	1.00	16.65
	MOTA	2185	0	ILE	A	317	63.290	45.380	26.565	1.00	16.75
	MOTA	2186	N	ARG .	A	318	64.062	45.850	28.640	1.00	16.88
	MOTA	2187	CA	ARG	A	318	65.257	46.548	28.197	1.00	17.27
	ATOM	2188	СВ	ARG .	A	318	66.049	47.026	29.422	1.00	16.80
30	MOTA	2189	CG	ARG	A	318	66.993	48.183	29.157	1.00	16.19
	MOTA	2190	CD	ARG	A	318	67.763	48.572	30.420	1.00	15.62
	ATOM	2191	NE	ARG	A	318	66.912	49.093	31.491	1.00	12.95
	MOTA	2192	CZ	ARG	A	318	66.287	50.267	31.457	1.00	13.25
	MOTA	2193	NH1	ARG	A	318	66.406	51.058	30.402	1.00	12.39
35	MOTA	2194	NH2	ARG	A	318	65.548	50.656	32.487		11.89
	MOTA	2195	С	ARG	A	318	66.123	45.645	27.314		18.16
	MOTA	2196	0	ARG	A	318	66.580	46.063	26.248	1.00	18.08

	ATOM	2197	N	GLU	Α	319	66.330	44.402	27.742	1.00	18.16
	ATOM	2198	CA	GLU	Α	319	67.150	43.477	26.965	1.00	19.04
	ATOM	2199	СВ	GLU	A	319	67.505	42.228	27.793	1.00	21.85
	ATOM	2200	CG	GLU	Α	319	68.788	41.525	27.319	1.00	30.49
5	ATOM	2201	CD	GLU	A	319	69.140	40.265	28.118	1.00	36.16
	ATOM	2202	OE1	GLU	A	319	69.040	40.276	29.368	1.00	36.36
	ATOM	2203	OE2	GLU	A	319	69.538	39.261	27.487	1.00	39.86
	ATOM	2204	С	GLU	Α	319	66.479	43.052	25.657	1.00	18.06
	ATOM	2205	0	GLU	A	319	67.143	42.957	24.632	1.00	18.69
10	ATOM	2206	N	MET	A	320	65.172	42.797	25.680	1.00	18.33
	ATOM	2207	CA	MET	Α	320	64.480	42.377	24.460	1.00	18.60
	ATOM	2208	СВ	MET	Α	320	63.066	41.881	24.781	1.00	17.12
	ATOM	2209	CG	MET	A	320	63.015	40.651	25.697	1.00	16.85
	MOTA	2210	SD	MET	A	320	64.127	39.287	25.203	1.00	19.70
15	MOTA	2211	CE	MET	Α	320	63.525	38.893	23.541	1.00	13.82
	MOTA	2212	С	MET	Α	320	64.419	43.497	23.415	1.00	18.70
	ATOM	2213	0	MET	Α	320	64.518	43.245	22.214	1.00	18.14
	ATOM	2214	N	TYR	A	321	64.267	44.732	23.879		19.06
	ATOM	2215	CA	TYR	A	321	64.208	45.885	22.990		19.32
20	ATOM	2216	CB	TYR			64.026	47.167	23.804		17.79
	ATOM	2217	CG	TYR			63.837	48.414	22.964		19.03
	ATOM	2218		TYR			62.629	48.666	22.319		18.88
	ATOM	2219	CE1				62.445	49.814	21.568		18.27
25	ATOM	2220		TYR			64.861	49.348	22.828		18.63
25	ATOM	2221		TYR			64.688	50.501	22.075		17.09
	ATOM	2222	CZ	TYR			63.479	50.729	21.450		19.28
	ATOM	2223	ОН	TYR			63.295	51.874	20.710		20.77
	ATOM	2224	С			321	65.506	45.982	22.189		19.97 18.20
30	ATOM	2225	0			321	65.487	46.184 45.839	22.889		20.65
30	ATOM	2226 2227	N CA	ALA			66.629 67.952	45.910	22.277		20.61
	ATOM ATOM	2228	СВ	ALA			69.024	46.001	23.370		18.34
	ATOM	2229	СВ	ALA			68.226	44.710	21.365		20.54
	ATOM	2230	0	ALA			68.820	44.853	20.303		19.72
35	ATOM	2231	N	LEU			67.794	43.528	21.782		21.03
55	ATOM	2232	CA			323	68.003	42.334	20.972		22.34
	ATOM	2233	СВ			323	67.595	41.087	21.756		22.34
							2				

	ATOM	2234	CG	LEU	A	323	68.535	40.722	22.908	1.00	23.73
	ATOM	2235	CD1	LEU	A	323	67.953	39.568	23.727	1.00	23.66
	ATOM	2236	CD2	LEU	Α	323	69.893	40.342	22.332	1.00	24.68
	ATOM	2237	С	LEU	Α	323	67.218	42.410	19.664	1.00	22.79
5	ATOM	2238	0	LEU	Α	323	67.639	41.860	18.649	1.00	24.20
	ATOM	2239	N	THR	Α	324	66.079	43.096	19.688	1.00	22.20
	MOTA	2240	CA	THR	Α	324	65.261	43.232	18.489	1.00	20.96
	ATOM	2241	СВ	THR	Α	324	63.755	43.053	18.811	1.00	19.95
	ATOM	2242	OG1	THR	Α	324	63.345	44.007	19.801	1.00	17.13
10	MOTA	2243	CG2	THR	Α	324	63.495	41.646	19.326	1.00	17.79
	ATOM	2244	С	THR	Α	324	65.489	44.581	17.808	1.00	21.51
	ATOM	2245	0	THR	A	324	64.767	44.951	16.886	1.00	21.72
	ATOM	2246	N	GLN	A	325	66.506	45.304	18.272	1.00	22.07
	ATOM	2247	CA	GLN	A	325	66.872	46.605	17.718	1.00	22.99
15.	MOTA	2248	СВ	GLN	A	325	67.391	46.454	16.278	1.00	26.13
	MOTA	2249	CG .	GLN	A	325	68.721	45.719	16.143	1.00	30.04
	MOTA	2250	CD	GLN	Α	325	68.592	44.225	16.351	1.00	35.44
	ATOM	2251	OE1	GLN	Α	325	67.920	43.539	15.580	1.00	40.43
	MOTA	2252	NE2	GLN	A	325	69.235	43.709	17.395	1.00	37.40
20	ATOM	2253	C	GLN	A	325	65.741	47.622	17.732	1.00	22.90
	MOTA	2254	0	GLN	A	325	65.660	48.479	16.851	1.00	23.32
	ATOM	2255	N	GLY	A	326	64.875	47.534	18.734	1.00	22.53
	ATOM	2256	CA	GLY	A	326	63.768	48.465	18.832	1.00	22.38
	ATOM	2257	С	GLY	A	326	62.810	48.420	17.654	1.00	22.83
25	ATOM	2258	0	GLY	A	326	62.076	49.378	17.419		21.73
	ATOM	2259	N	ARG	A	327	62.804	47.310	16.919		23.29
	ATOM	2260	CA	ARG			61.927	47.166	15.758		25.92
	ATOM	2261	СВ	ARG			62.728	46.639	14.561		28.46
20	MOTA	2262	CG	ARG			63.821	47.598	14.096		33.87
30	ATOM	2263	CD	ARG			64.739	46.980	13.050		38.29
	ATOM	2264	NE	ARG			65.816	47.898	12.674		43.49
	ATOM	2265	CZ	ARG			66.892	47.549	11.970		45.02
	ATOM	2266		ARG			67.043	46.296	11.555		45.41
25	ATOM	2267		ARG			67.828	48.451	11.693		43.95
35	ATOM	2268	C	ARG			60.734	46.250	16.032		25.90
	ATOM	2269	0	ARG			59.890	46.037	15.164		26.33
	ATOM	2270	N	VAL	A	328	60.671	45.702	17.240	1.00	24.56

	ATOM	2271	CA	VAL A	328	59.568	44.828	17.609	1.00 22.68
	ATOM	2272	СВ	VAL A	328	60.068	43.433	18.031	1.00 22.99
	ATOM	2273	CG1	VAL A	328	58.908	42.603	18.552	1.00 21.00
	ATOM	2274	CG2	VAL A	328	60.723	42.737	16.842	1.00 21.97
5	ATOM	2275	С	VAL A	328	58.809	45.454	18.767	1.00 21.90
	MOTA	2276	0	VAL A	328	59.358	45.640	19.851	1.00 23.29
	MOTA	2277	N	PRO F	329	57.537	45.805	18.543	1.00 20.29
	MOTA	2278	CD	PRO P	329	56.804	45.685	17.271	1.00 19.73
	MOTA	2279	CA	PRO A	329	56.694	46.418	19.575	1.00 18.81
10	MOTA	2280	СВ	PRO F	329	55.329	46.509	18.895	1.00 18.78
	ATOM	2281	CG	PRO A	329	55.687	46.689	17.448	1.00 17.49
	MOTA	2282	С	PRO A	329	56.651	45.575	20.853	1.00 18.50
	ATOM	2283	0	PRO A	329	56.452	44.354	20.810	1.00 16.92
	MOTA	2284	N	ILE A	330	56.833	46.231	21.991	1.00 15.45
15	MOTA	2285	CA	ILE A	330	56.804	45.528	23.257	1.00 15.61
	MOTA	2286	СВ	ILE A	330	58.176	45.604	23.968	1.00 15.68
	MOTA	2287	CG2	ILE A	330	58.062	45.057	25.379	1.00 14.36
	MOTA	2288	CG1	ILE A	330	59.224	44.823	23.178	1.00 14.42
	MOTA	2289	CD1	ILE A	330	60.631	44.968	23.735	1.00 15.43
20	MOTA	2290	С	ILE A	330	55.754	46.078	24.212	1.00 16.03
	MOTA	2291	0	ILE A	330	55.612	47.298	24.375	1.00 15.26
	MOTA	2292	N	ILE A	331	55.004	45.170	24.828	1.00 15.71
	MOTA	2293	CA	ILE A	331	54.016	45.559	25.824	1.00 15.25
	ATOM	2294	СВ	ILE A	331	52.689	44.779	25.681	1.00 15.14
25	ATOM	2295	CG2	ILE A	331	51.736	45.170	26.810	1.00 12.02
	MOTA	2296	CG1	ILE A	331	52.044	45.082	24.324	1.00 15.56
	MOTA	2297	CD1	ILE A	331	50.696	44.422	24.124	1.00 13.64
	MOTA	2298	С	ILE A	331	54.670	45.189	27.153	1.00 16.63
	MOTA	2299	0	ILE A	331	54.932	44.006	27.417	1.00 15.95
30	MOTA	2300	N	GLY A	332	54.959	46.202	27.968	1.00 15.10
	MOTA	2301	CA	GLY A	332	55.592	45.975	29.259	1.00 14.50
	ATOM	2302	С	GLY A	332	54.609	45.654	30.371	1.00 14.08
	MOTA	2303	0	GLY A	332	53.618	46.357	30.560	1.00 16.41
	MOTA	2304	N	VAL A	333	54.899	44.602	31.128	1.00 14.35
35	MOTA	2305	CA	VAL A	333	54.021	44.170	32.209	1.00 13.53
	ATOM	2306	СВ	VAL A	333	53.091	43.023	31.750	1.00 14.02
	ATOM	2307	CG1	VAL A	333	51.850	42.971	32.637	1.00 13.16

	ATOM	2308	CG2	VAL A	333	52.739	43.188	30.296	1.00 16.07
	ATOM	2309	С	VAL A	333	54.829	43.634	33.378	1.00 12.62
	ATOM	2310	0	VAL A	333	55.777	42.875	33.189	1.00 12.37
	ATOM	2311	N	GLY A	334	54.435	44.010	34.589	1.00 13.68
5	ATOM	2312	CA	GLY A	334	55.139	43.536	35.765	1.00 12.74
	ATOM	2313	С	GLY A	334	55.392	44.600	36.812	1.00 12.69
	ATOM	2314	0	GLY A	334	56.300	45.422	36.666	1.00 12.36
	ATOM	2315	N	GLY A	335	54.576	44.591	37.864	1.00 13.87
	MOTA	2316	CA	GLY A	335	54.735	45.542	38.953	1.00 13.62
10	MOTA	2317	С	GLY A	335	54.524	47.013	38.636	1.00 14.82
	MOTA	2318	0	GLY A	335	55.149	47.877	39.253	1.00 16.20
	MOTA	2319	N	VAL A	336	53.667	47.317	37.673	1.00 15.48
	ATOM	2320	CA	VAL A	336	53.401	48.714	37.354	1.00 16.86
	MOTA	2321	СВ	VAL A	. 336	52.932	48.892	35.899	1.00 17.58
15	MOTA	2322	CG1	VAL A	336	52.416	50.312	35.690	1.00 17.86
	ATOM	2323	CG2	VAL A	. 336	54.080	48.611	34.949	1.00 17.23
	ATOM	2324	С	VAL A	336	52.299	49.189	38.292	1.00 17.67
	MOTA	2325	0	VAL A	. 336	51.202	48.626	38.316	1.00 18.02
	MOTA	2326	N	SER A	. 337	52.589	50.225	39.066	1.00 17.73
20	MOTA	2327	CA	SER A	. 337	51.608	50.732	40.007	1.00 19.15
	MOTA	2328	CB	SER A	. 337	51.932	50.195	41.405	1.00 19.61
	MOTA	2329	OG	SER A	. 337	50.979	50.643	42.353	1.00 27.71
	ATOM	2330	С	SER A	. 337	51.534	52.258	40.037	1.00 18.75
	MOTA	2331	0	SER A	. 337	50.711	52.829	40.750	1.00 19.78
25	MOTA	2332	N	SER A	. 338	52.383	52.913	39.253	1.00 17.88
	MOTA	2333	CA	SER A	. 338	52.415	54.369	39.217	1.00 15.56
	MOTA	2334	CB	SER A	. 338	53.340			1.00 15.85
	MOTA	2335	OG	SER A	. 338	54.696	54.624	39.992	1.00 12.85
	MOTA	2336	С	SER A	. 338	52.925	54.887	37.875	1.00 14.63
30	ATOM	2337	0	SER A		53.390	54.116	37.033	1.00 15.49
	ATOM	2338	N	GLY A		52.850	56.202	37.697	1.00 13.08
	ATOM	2339	CA	GLY A		53.324	56.818	36.474	1.00 12.66
	ATOM	2340	С	GLY A		54.793	56.514	36.241	1.00 13.17
2.5	ATOM	2341	0	GLY A		55.203	56.222	35.118	1.00 12.67
35	ATOM	2342	N	GLN A		55.591	56.579	37.301	1.00 13.06
	ATOM	2343	CA	GLN A		57.016	56.295	37.177	1.00 14.17
	ATOM	2344	СВ	GLN A	340	57.741	56.523	38.508	1.00 14.21

	ATOM	2345	CG	GLN	Α	340	59.226	56.203	38.444	1.00	13.71
	MOTA	2346	CD	GLN	Α	340	59.936	56.441	39.761	1.00	14.67
	ATOM	2347	OE1	GLN	A	340	59.940	57.557	40.280	1.00	14.48
	ATOM	2348	NE2	GLN	Α	340	60.542	55.391	40.310	1.00	11.42
5	ATOM	2349	С	GLN	A	340	57.252	54.859	36.708	1.00	14.11
	ATOM	2350	0	GLN	A	340	58.096	54.622	35.836	1.00	14.42
	ATOM	2351	N	ASP	Α	341	56.514	53.906	37.279	1.00	11.49
	MOTA	2352	CA	ASP	A	341	56.663	52.502	36.884	1.00	12.60
	MOTA	2353	СВ	ASP	Α	341	55.719	51.591	37.684	1.00	12.24
10	MOTA	2354	CG	ASP	A	341	55.960	51.665	39.189	1.00	16.04
	MOTA	2355	OD1	ASP	A	341	57.082	52.047	39.591	1.00	15.13
	MOTA	2356	OD2	ASP	A	341	55.031	51.327	39.965	1.00	13.13
	ATOM	2357	С	ASP	Α	341	56.365	52.343	35.395	1.00	13.28
	ATOM	2358	0	ASP	Α	341	57.066	51.629	34.676	1.00	13.43
15	ATOM	2359	N	ALA	A	342	55.316	53.014	34.937	1.00	13.11
	ATOM	2360	CA	ALA	Α	342	54.934	52.953	33.537	1.00	12.86
	ATOM	2361	СВ	ALA	Α	342	53.596	53.667	33.333	1.00	12.58
	ATOM	2362	С	ALA	Α	342	56.009	53.592	32.659	1.00	14.10
	ATOM	2363	0	ALA	Α	342	56.454	52.997	31.667	1.00	14.84
20	MOTA	2364	N	LEU	A	343	56.432	54.796	33.031	1.00	12.15
	MOTA	2365	CA	LEU	A	343	57.439	55.510	32.258	1.00	13.26
	MOTA	2366	CB	LEU	Α	343	57.654	56.922	32.816	1.00	12.73
	MOTA	2367	CG	LEU	A	343	58.567	57.798	31.949	1.00	16.01
	ATOM	2368	CD1	LEU	Α	343	58.063	57.773	30.503	1.00	12.43
25	ATOM	2369	CD2	LEU	Α	343	58.609	59.226	32.491	1.00	12.05
	ATOM	2370	С	LEU	A	343	58.772	54.774	32.191	1.00	13.16
	ATOM	2371	0	LEU	A	343	59.443	54.810	31.164	1.00	15.02
	ATOM	2372	N	GLU	A	344	59.165	54.110	33.275	1.00	13.69
	ATOM	2373	CA	GLU	Α	344	60.426	53.378	33.263	1.00	13.68
30	ATOM	2374	СВ	GLU	A	344	60.756	52.814	34.650		15.25
	MOTA	2375	CG	GLU			61.171	53.877	35.661		16.62
	MOTA	2376	CD	GLU	A	344	61.776	53.285	36.929		18.34
	ATOM	2377		GLU			61.446	52.128	37.263		20.22
	MOTA	2378	OE2	GLU			62.569	53.980	37.601		16.51
35	MOTA	2379	С	GLU			60.389	52.250	32.237		14.20
	MOTA	2380	0	GLU			61.382	51.994	31.553		14.32
	MOTA	2381	N	LYS	A	345	59.246	51.577	32.121	1.00	13.49

	MOTA	2382	CA	LYS A	345	59.122	50.498	31.146	1.00 14.71
	ATOM	2383	СВ	LYS A	345	57.874	49.658	31.438	1.00 14.57
	ATOM	2384	CG	LYS A	345	58.094	48.647	32.550	1.00 14.32
	ATOM	2385	CD	LYS A	345	56.844	47.839	32.832	1.00 15.62
5	ATOM	2386	CE	LYS A	345	57.177	46.571	33.599	1.00 16.36
	MOTA	2387	NZ	LYS A	345	57.899	46.844	34.871	1.00 15.43
	ATOM	2388	С	LYS A	345	59.076	51.074	29.732	1.00 14.36
	MOTA	2389	0	LYS A	345	59.661	50.518	28.802	1.00 13.74
	ATOM	2390	N	ILE A	346	58.386	52.195	29.571	1.00 14.93
10	MOTA	2391	CA	ILE A	346	58.313	52.839	28.268	1.00 16.11
	MOTA	2392	СВ	ILE A	346	57.371	54.069	28.305	1.00 16.07
	MOTA	2393	CG2	ILE A	346	57.469	54.856	26.990	1.00 14.19
	MOTA	2394	CG1	ILE A	346	55.933	53.591	28.544	1.00 15.01
	MOTA	2395	CD1	ILE A	346	54.929	54.691	28.737	1.00 15.20
15	MOTA	2396	С	ILE A	346	59.720	53.259	27.828	1.00 16.73
	MOTA	2397	0	ILE A	346	60.143	52.946	26.717	1.00 16.30
	MOTA	2398	N	ARG A	. 347	60.449	53.949	28.704	1.00 16.86
	MOTA	2399	CA	ARG A	347	61.809	54.382	28.378	1.00 16.55
	MOTA	2400	СВ	ARG A	347	62.406	55.217	29.517	1.00 17.95
20	MOTA	2401	CG	ARG A	. 347	61.684	56.539	29.803	1.00 20.16
	MOTA	2402	CD	ARG A	. 347	62.472	57.388	30.800	1.00 21.27
	MOTA	2403	NE	ARG A	. 347	63.840	57.588	30.338	1.00 25.93
	MOTA	2404	CZ	ARG A	347	64.480	58.754	30.349	1.00 29.53
	MOTA	2405	NH1	ARG A	. 347	63.877	59.846	30.810	1.00 29.00
25	MOTA	2406	NH2	ARG A	347	65.719	58.832	29.874	1.00 26.21
	MOTA	2407	С	ARG A	. 347	62.713	53.177	28.118	1.00 16.64
	MOTA	2408	0	ARG A	. 347	63.668	53.257	27.343	1.00 16.63
	MOTA	2409	N	ALA A	. 348	62.411	52.062	28.775	1.00 14.46
	MOTA	2410	CA	ALA A	. 348	63.197	50.851	28.603	1.00 14.27
30	MOTA	2411	СВ	ALA A	. 348	62.926	49.869	29.752	1.00 11.73
	MOTA	2412	С	ALA A	. 348	62.881	50.201	27.258	1.00 14.91
	ATOM	2413	0	ALA A	. 348	63.626	49.326	26.799	1.00 16.61
	MOTA	2414	N	GLY A		61.781	50.617	26.626	1.00 12.73
	ATOM	2415	CA	GLY A	. 349	61.445	50.054	25.328	1.00 12.91
35	ATOM	2416	С	GLY A		60.010	49.614	25.091	1.00 14.02
	ATOM	2417	0	GLY A		59.671	49.197	23.988	1.00 13.81
	MOTA	2418	N	ALA A	350	59.163	49.702	26.109	1.00 13.85

	ATOM	2419	CA	ALA	Α	350	57.771	49.303	25.955	1.00	16.14
	ATOM	2420	СВ	ALA	A	350	57.159	49.002	27.320	1.00	15.86
	ATOM	2421	С	ALA	Α	350	56.961	50.389	25.255	1.00	17.71
	ATOM	2422	0	ALA	Α	350	57.080	51.572	25.585	1.00	16.71
5	ATOM	2423	N	SER	Α	351	56.147	49.983	24.285	1.00	16.76
	ATOM	2424	CA	SER	A	351	55.297	50.918	23.559	1.00	17.15
	MOTA	2425	СВ	SER	Α	351	55.016	50.403	22.146	1.00	16.62
	MOTA	2426	OG	SER	A	351	56.181	50.446	21.345	1.00	20.56
	ATOM	2427	С	SER	A	351	53.980	51.058	24.323	1.00	16.46
10	MOTA	2428	0	SER	Α	351	53.284	52.068	24.213	1.00	16.26
	MOTA	2429	N	LEU	A	352	53.658	50.022	25.091	1.00	15.13
	ATOM	2430	CA	LEU	A	352	52.446	49.970	25.904	1.00	15.38
	ATOM	2431	СВ	LEU	A	352	51.334	49.216	25.169	1.00	12.70
	ATOM	2432	CG	LEU	Α	352	50.889	49.651	23.773	1.00	15.23
15	ATOM	2433	CD1	LEU	A	352	50.006	48.557	23.165	1.00	11.58
	ATOM	2434	CD2	LEU	Α	352	50.138	50.984	23.853	1.00	13.14
	ATOM	2435	С	LEU	A	352	52.761	49.208	27.192	1.00	13.73
	ATOM	2436	0	LEU	A	352	53.703	48.415	27.237	1.00	12.90
	ATOM	2437	N	VAL	Α	353	51.976	49.450	28.235	1.00	13.10
20	ATOM	2438	CA	VAL	A	353	52.166	48.739	29.490	1.00	14.60
	ATOM	2439	СВ	VAL	Α	353	52.772	49.632	30.608	1.00	15.22
	ATOM	2440	CG1	VAL	A	353	54.074	50.246	30.131	1.00	15.03
	ATOM	2441	CG2	VAL	Α	353	51.778	50.702	31.036	1.00	14.13
	ATOM	2442	С	VAL	A	353	50.822	48.231	29.971	1.00	15.79
25	ATOM	2443	0	VAL	A	353	49.771	48.707	29.529	1.00	15.51
	ATOM	2444	N	GLN	A	354	50.869	47.249	30.863		15.70
	ATOM	2445	CA	GLN	Α	354		46.667	31.447		
	ATOM	2446	СВ	GLN	Α	354	49.376	45.274	30.875		15.87
	MOTA	2447	CG	GLN	A	354	49.121	45.206	29.378	1.00	17.93
30	ATOM	2448	CD	GLN	A	354	48.967	43.766	28.899		18.91
	MOTA	2449	OE1	GLN	Α	354	49.736	42.887	29.294		18.78
	ATOM	2450	NE2	GLN			47.981	43.521	28.042		17.21
	ATOM	2451	С	GLN			49.927	46.517	32.934		15.00
	MOTA	2452	0	GLN			51.072	46.529	33.381		15.73
35	ATOM	2453	N	LEU			48.859	46.375	33.700		14.64
	MOTA	2454	CA	LEU			48.997	46.176	35.130		15.27
	MOTA	2455	CB	LEU	A	355	48.939	47.514	35.875	1.00	13.69

	ATOM	2456	CG	LEU	A	355	47.681	48.387	35.758	1.00	13.82
	ATOM	2457	CD1	LEU	A	355	46.594	47.877	36.703	1.00	13.24
	ATOM	2458	CD2	LEU	A	355	48.044	49.828	36.101	1.00	12.06
	ATOM	2459	С	LEU	A	355	47.867	45.270	35.575	1.00	16.12
5	ATOM	2460	0	LEU	A	355	46.827	45.184	34.913	1.00	15.56
	ATOM	2461	N	TYR	A	356	48.084	44.566	36.677	1.00	16.25
	ATOM	2462	CA	TYR	A	356	47.053	43.699	37.216	1.00	16.45
	ATOM	2463	CB	TYR	A	356	47.214	42.258	36.696	1.00	14.66
	ATOM	2464	CG	TYR	A	356	46.143	41.280	37.173	1.00	14.33
10	ATOM	2465	CD1	TYR	Α	356	46.053	40.004	36.630	1.00	13.71
	ATOM	2466	CE1	TYR	A	356	45.110	39.093	37.082	1.00	11.25
	ATOM	2467	CD2	TYR	A	356	45.248	41.618	38.188	1.00	13.31
	ATOM	2468	CE2	TYR	A	356	44.301	40.711	38.647	1.00	12.21
	ATOM	2469	CZ	TYR	A	356	44.238	39.451	38.091	1.00	12.75
15	ATOM	2470	ОН	TYR	A	356	43.300	38.542	38.540	1.00	11.10
	MOTA	2471	С	TYR	A	356	47.121	43.739	38.733	1.00	16.00
	MOTA	2472	0	TYR	A	356	46.185	44.200	39.386	1.00	17.57
	ATOM	2473	N	THR	A	357	48.237	43.284	39.289	1.00	16.04
	ATOM	2474	CA	THR	A	357	48.396	43.236	40.740	1.00	15.39
20	ATOM	2475	СВ	THR	A	357	49.803	42.738	41.115	1.00	14.82
	MOTA	2476	OG1	THR	A	357	50.003	41.441	40.544	1.00	11.74
	MOTA	2477	CG2	THR	A	357	49.953	42.641	42.630	1.00	13.55
	MOTA	2478	С	THR	A	357	48.111	44.551	41.462	1.00	15.12
	ATOM	2479	0	THR	Α	357	47.484	44.552	42.523	1.00	14.91
25	MOTA	2480	N	ALA	A	358	48.564	45.665	40.896	1.00	13.89
	MOTA	2481	CA	ALA	A	358	48.332	46.966	41.513	1.00	13.56
	ATOM	2482	СВ	ALA	A	358	48.952	48.062	40.674	1.00	12.26
	ATOM	2483	С	ALA	A	358	46.838	47.218	41.677	1.00	15.00
	MOTA	2484	0	ALA	A	358	46.410	47.833	42.654	1.00	15.57
30	ATOM	2485	N	LEU	Α	359	46.045	46.745	40.718	1.00	15.00
	ATOM	2486	CA	LEU	Α	359	44.596	46.914	40.779		14.68
	MOTA	2487	CB	LEU	Α	359	43.950	46.429	39.479	1.00	16.11
	MOTA	2488	CG	LEU	A	359	42.418	46.354	39.441		17.58
	MOTA	2489	CD1	LEU	A	359	41.818	47.752	39.545		15.57
35	MOTA	2490		LEU			41.978	45.680	38.148		16.77
	MOTA	2491	С	LEU			44.003	46.140	41.962		14.70
	MOTA	2492	0	LEU	A	359	43.009	46.562	42.548	1.00	14.02

	ATOM	2493	N	THR A	A	360	44.618	45.013	42.313	1.00	14.46
	ATOM	2494	CA	THR 2	A	360	44.125	44.195	43.423	1.00	15.22
	MOTA	2495	СВ	THR 2	A	360	44.750	42.781	43.416	1.00	14.92
	ATOM	2496	OG1	THR	Α	360	46.117	42.854	43.844	1.00	13.82
5	ATOM	2497	CG2	THR .	Α	360	44.699	42.189	42.014	1.00	15.29
	ATOM	2498	С	THR 2	A	360	44.384	44.820	44.793	1.00	16.37
	ATOM	2499	0	THR .	A	360	43.793	44.400	45.785	1.00	18.61
	MOTA	2500	N	PHE .	Α	361	45.267	45.812	44.855	1.00	16.42
	MOTA	2501	CA	PHE .	A	361	45.558	46.475	46.127	1.00	17.90
10	MOTA	2502	CB	PHE .	A	361	47.071	46.634	46.335	1.00	17.58
	MOTA	2503	CG	PHE .	A	361	47.786	45.347	46.637	1.00	18.37
	MOTA	2504	CD1	PHE .	A	361	48.595	44.748	45.686	1.00	14.59
	MOTA	2505	CD2	PHE .	A	361	47.640	44.733	47.874	1.00	17.75
	MOTA	2506	CE1	PHE .	Α	361	49.246	43.566	45.959	1.00	16.05
15	ATOM	2507	CE2	PHE .	Α	361	48.290	43.544	48.153	1.00	16.55
	ATOM	2508	CZ	PHE	A	361	49.095	42.961	47.191	1.00	17.17
	ATOM	2509	С	PHE .	A	361	44.915	47.854	46.253	1.00	19.13
	ATOM	2510	0	PHE	A	361	44.343	48.182	47.285	1.00	21.10
	ATOM	2511	N	TRP	A	362	45.003	48.651	45.190	1.00	20.60
20	ATOM	2512	CA	TRP	A	362	44.486	50.013	45.195	1.00	21.41
	ATOM	2513	СВ	TRP	Α	362	45.496	50.920	44.490	1.00	22.91
	ATOM	2514	CG	TRP	A	362	46.898	50.632	44.933	1.00	26.83
	ATOM	2515	CD2	TRP	A	362	47.349	50.422	46.281	1.00	28.83
	ATOM	2516	CE2	TRP	A	362	48.720	50.113	46.218	1.00	29.25
25	ATOM	2517	CE3	TRP	A	362	46.724	50.464	47.534	1.00	30.95
	ATOM	2518	CD1	TRP	Α	362	47.985	50.452	44.136	1.00	26.57
	ATOM	2519	NE1	TRP	A	362	49.084	50.137	44.898	1.00	28.79
	ATOM	2520	CZ2	TRP	Α	362	49.481	49.845	47.360	1.00	31.64
	ATOM	2521	CZ3	TRP	A	362	47.483	50.196	48.670	1.00	31.33
30	ATOM	2522	CH2	TRP	A	362	48.844	49.891	48.574	1.00	31.06
	ATOM	2523	С	TRP	Α	362	43.103	50.207	44.591	1.00	21.32
	ATOM	2524	0	TRP	A	362	42.443	51.213	44.856	1.00	21.63
	ATOM	2525	N	GLY	A	363	42.665	49.251	43.782	1.00	20.14
	ATOM	2526	CA	GLY	A	363	41.356	49.364	43.170	1.00	19.06
35	ATOM	2527	С	GLY	A	363	41.365	50.224	41.923	1.00	19.91
	MOTA	2528	0	GLY	Α	363	42.398	50.776	41.545	1.00	20.15
	ATOM	2529	N	PRO	A	364	40.209	50.361	41.262	1.00	19.64

	ATOM	2530	CD	PRO A	364	38.936	49.783	41.731	1.00 19.35
	ATOM	2531	CA	PRO A	364	40.006	51.145	40.040	1.00 19.08
	MOTA	2532	СВ	PRO A	364	38.489	51.295	39.980	1.00 18.78
	ATOM	2533	CG	PRO A	364	38.019	49.989	40.535	1.00 19.83
5	MOTA	2534	С	PRO A	364	40.715	52.497	39.979	1.00 18.77
	ATOM	2535	0	PRO A	364	41.272	52.859	38.951	1.00 21.11
	MOTA	2536	N	PRO A	365	40.703	53.265	41.079	1.00 20.00
	ATOM	2537	CD	PRO A	365	40.089	53.024	42.398	1.00 18.27
	MOTA	2538	CA	PRO A	365	41.370	54.571	41.048	1.00 18.58
10	MOTA	2539	СВ	PRO A	365	41.237	55.060	42.491	1.00 19.56
	MOTA	2540	CG	PRO A	365	39.955	54.429	42.946	1.00 18.79
	MOTA	2541	С	PRO A	365	42.828	54.538	40.588	1.00 18.76
	ATOM	2542	0	PRO A	365	43.366	55.557	40.149	1.00 19.39
	ATOM	2543	N	VAL A	366	43.472	53.378	40.680	1.00 16.81
15	ATOM	2544	CA	VAL A	366	44.870	53.284	40.278	1.00 15.69
	MOTA	2545	CB	VAL A	366	45.471	51.900	40.632	1.00 17.04
	MOTA	2546	CG1	VAL A	366	45.032	50.854	39.620	1.00 14.83
	ATOM	2547	CG2	VAL A	366	46.983	51.999	40.703	1.00 15.11
	MOTA	2548	С	VAL A	366	45.062	53.549	38.786	1.00 15.92
20	MOTA	2549	0	VAL A	366	46.099	54.056	38.369	1.00 15.23
	ATOM	2550	N	VAL A	367	44.061	53.218	37.977	1.00 17.40
	ATOM	2551	CA	VAL A	367	44.173	53.437	36.539	1.00 18.65
	ATOM	2552	СВ	VAL A	367	42.922	52.944	35.798	1.00 18.77
	MOTA	2553	CG1	VAL A	367	43.078	53.191	34.309	1.00 18.70
25	ATOM	2554	CG2	VAL A	367	42.704	51.462	36.081	1.00 18.63
	MOTA	2555	С	VAL A	367	44.379	54.918	36.227	1.00 18.80
	MOTA	2556	0	VAL A	367	45.329	55.292	35.542	1.00 18.91
	MOTA	2557	N	GLY A	368	43.488	55.759	36.737	1.00 19.35
	ATOM	2558	CA	GLY A	368	43.609	57.184	36.501	1.00 19.40
30	MOTA	2559	С	GLY A	368	44.870	57.742	37.131	1.00 20.84
	MOTA	2560	0	GLY A	368	45.485	58.671	36.595	1.00 18.86
	ATOM	2561	N	LYS A	369	45.265	57.169	38.267	1.00 21.29
	ATOM	2562	CA	LYS A	369	46.463	57.626	38.966	1.00 22.15
	ATOM	2563	СВ	LYS A	369	46.666	56.856	40.276	1.00 22.26
35	ATOM	2564	CG	LYS A	369	47.657	57.537	41.213	1.00 24.45
	ATOM	2565	CD	LYS A	369	48.206	56.605	42.288	1.00 25.07
	ATOM	2566	CE	LYS A	369	49.237	55.649	41.706	1.00 25.57

	ATOM	2567	NZ	LYS A	369	49.956	54.891	42.763	1.00	24.73
	ATOM	2568	С	LYS A	369	47.688	57.436	38.085	1.00	21.35
	MOTA	2569	0	LYS A	369	48.510	58.344	37.937	1.00	21.02
	MOTA	2570	N	VAL A	370	47.806	56.249	37.499	1.00	20.37
5	MOTA	2571	CA	VAL A	370	48.935	55.945	36.632	1.00	19.21
	ATOM	2572	СВ	VAL A	370	48.886	54.478	36.144	1.00	18.24
	MOTA	2573	CG1	VAL A	370	49.994	54.231	35.133	1.00	15.06
	MOTA	2574	CG2	VAL A	370	49.030	53.529	37.336	1.00	15.86
	ATOM	2575	С	VAL A	370	48.968	56.875	35.425	1.00	20.39
10	ATOM	2576	0	VAL A	370	50.022	57.409	35.073	1.00	20.38
	ATOM	2577	N	LYS A	371	47.815	57.078	34.794	1.00	19.77
	ATOM	2578	CA	LYS A	371	47.754	57.951	33.625	1.00	20.81
	ATOM	2579	СВ	LYS A	371	46.371	57.868	32.963	1.00	20.10
	ATOM	2580	CG	LYS A	371	46.123	56.531	32.267	1.00	20.41
15	ATOM	2581	CD	LYS A	371	44.848	56.533	31.451	1.00	20.06
	ATOM	2582	CE	LYS A	371	43.618	56.701	32.328	1.00	19.96
	ATOM	2583	NZ	LYS A	371	42.374	56.688	31.510	1.00	18.17
	MOTA	2584	С	LYS A	371	48.098	59.404	33.944	1.00	21.10
	ATOM	2585	0	LYS A	371	48.805	60.055	33.176	1.00	20.91
20	ATOM	2586	N	ARG A	372	47.603	59.910	35.071	1.00	21.53
	ATOM	2587	CA	ARG A	372	47.879	61.288	35.465	1.00	23.57
	ATOM	2588	СВ	ARG A	372	47.065	61.667	36.710	1.00	25.05
	ATOM	2589	CG	ARG A	372	47.244	63.119	37.135	1.00	29.47
	ATOM	2590	CD	ARG A	372	46.456	63.480	38.403	1.00	32.48
25	ATOM	2591	NE	ARG A	372	46.958	62.807	39.604	1.00	37.06
	ATOM	2592	CZ	ARG A	372	46.379	61.755	40.179	1.00	37.86
	ATOM	2593	NH1	ARG A	372	45.265	61.242	39.665	1.00	37.52
	ATOM	2594	NH2	ARG A	372	46.916	61.215	41.269	1.00	35.72
	ATOM	2595	С	ARG A	372	49.370	61.503	35.744	1.00	23.58
30	ATOM	2596	0	ARG A	372	49.954	62.486	35.284	1.00	23.18
	ATOM	2597	N	GLU A	373	49.983	60.584	36.490	1.00	22.43
	ATOM	2598	CA	GLU A	373	51.406	60.694	36.818	1.00	22.21
	ATOM	2599	СВ	GLU A	373	51.798	59.655	37.879	1.00	22.58
	ATOM	2600	CG	GLU A	373	51.049	59.816	39.203	1.00	21.57
35	ATOM	2601	CD	GLU A	373	51.332	58.689	40.183	1.00	25.08
	ATOM	2602	OE1	GLU A	373	51.542	57.547	39.722	1.00	25.29
	ATOM	2603	OE2	GLU A	373	51.327	58.936	41.412	1.00	23.49

	ATOM	2604	С	GLU .	A	373	52.265	60.509	35.576	1.00	21.94
	ATOM	2605	0	GLU .	A	373	53.284	61.178	35.407	1.00	23.16
	ATOM	2606	N	LEU .	A	374	51.853	59.601	34.702	1.00	20.39
	ATOM	2607	CA	LEU .	Α	374	52.601	59.363	33.481	1.00	20.47
5	ATOM	2608	СВ	LEU .	A	374	51.928	58.270	32.648	1.00	18.16
	ATOM	2609	CG	LEU .	A	374	52.562	57.989	31.285	1.00	17.79
	ATOM	2610	CD1	LEU	A	374	54.043	57.696	31.467	1.00	15.43
	ATOM	2611	CD2	LEU	A	374	51.851	56.817	30.607	1.00	17.19
	ATOM	2612	С	LEU .	Α	374	52.648	60.661	32.685	1.00	21.91
10	ATOM	2613	0	LEU	A	374	53.711	61.102	32.253	1.00	21.82
	MOTA	2614	N	GLU .	Α	375	51.482	61.270	32.505	1.00	22.52
	MOTA	2615	CA	GLU	A	375	51.368	62.516	31.760	1.00	25.37
	MOTA	2616	СВ	GLU	A	375	49.916	62.995	31.777	1.00	27.60
	ATOM	2617	CG	GLU	Α	375	49.635	64.139	30.831	1.00	34.21
15	MOTA	2618	CD	GLU	A	375	48.194	64.599	30.906	1.00	37.55
	ATOM	2619	OE1	GLU	A	375	47.291	63.739	30.809	1.00	39.84
	ATOM	2620	OE2	GLU	A	375	47.967	65.818	31.056	1.00	39.87
	ATOM	2621	С	GLU	A	375	52.278	63.598	32.339	1.00	23.91
	MOTA	2622	0	GLU	A	375	53.038	64.232	31.609	1.00	22.96
20	ATOM	2623	N	ALA	A	376	52.204	63.798	33.651	1.00	22.62
	MOTA	2624	CA	ALA	A	376	53.030	64.803	34.314	1.00	22.53
	MOTA	2625	СВ	ALA	A	376	52.687	64.872	35.811	1.00	17.94
	ATOM	2626	С	ALA	A	376	54.518	64.499	34.121	1.00	22.35
	MOTA	2627	0	ALA	A	376	55.301	65.400	33.820	1.00	23.58
25	ATOM	2628	N	LEU	A	377	54.902	63.232	34.285	1.00	21.82
	ATOM	2629	CA	LEU	A	377	56.298	62.834	34.116	1.00	21.73
	MOTA	2630	СВ	LEU	A	377	56.501	61.371	34.528	1.00	19.85
	ATOM	2631	CG	LEU	A	377	56.432	61.109	36.038	1.00	22.75
	MOTA	2632	CD1	LEU	A	377	56.466	59.608	36.303	1.00	21.26
30	MOTA	2633	CD2	LEU	A	377	57.593	61.816	36.741	1.00	16.51
	MOTA	2634	С	LEU	A	377	56.791	63.041	32.687	1.00	22.19
	MOTA	2635	0	LEU	A	377	57.945	63.415	32.475	1.00	22.40
	MOTA	2636	N	LEU	A	378	55.934	62.793	31.702	1.00	22.32
	MOTA	2637	CA	LEU	A	378	56.343	62.999	30.315	1.00	22.98
35	MOTA	2638	СВ	LEU	A	378	55.248	62.525	29.355	1.00	19.93
	MOTA	2639	CG	LEU	A	378	55.048	61.011	29.213	1.00	19.44
	ATOM	2640	CD1	LEU	A	378	53.777	60.727	28.423	1.00	17.32

	ATOM	2641	CD2	LEU	Α	378	56.256	60.393	28.528	1.00	15.65
	ATOM	2642	С	LEU	Α	378	56.637	64.490	30.090	1.00	24.90
	ATOM	2643	0	LEU	Α	378	57.625	64.846	29.446	1.00	24.47
	ATOM	2644	N	LYS	Α	379	55.781	65.355	30.630	1.00	26.23
5	ATOM	2645	CA	LYS	Α	379	55.962	66.798	30.491	1.00	30.27
	ATOM	2646	СВ	LYS	Α	379	54.801	67.558	31.140	1.00	32.19
	ATOM	2647	CG	LYS	Α	379	53.431	67.329	30.517	1.00	36.01
	ATOM	2648	CD	LYS	A	379	52.365	68.055	31.337	1.00	38.83
	ATOM	2649	CE	LYS	A	379	50.981	67.944	30.717	1.00	40.37
10	ATOM	2650	NZ	LYS	A	379	50.901	68.651	29.410	1.00	42.67
	MOTA	2651	С	LYS	A	379	57.253	67.215	31.182	1.00	30.76
	MOTA	2652	0	LYS	A	379	58.109	67.876	30.600	1.00	31.75
	ATOM	2653	N	GLU	A	380	57.374	66.809	32.438	1.00	31.41
	MOTA	2654	CA	GLU	A	380	58.529	67.125	33.258	1.00	32.37
15	MOTA	2655	СВ	GLU	Α	380	58.332	66.516	34.646	1.00	33.86
	MOTA	2656	CG	GLU	Α	380	59.501	66.700	35.586	1.00	40.81
	MOTA	2657	CD	GLU	Α	380	59.276	66.017	36.924	1.00	44.51
	MOTA	2658	OE1	GLU	A	380	60.208	66.025	37.759	1.00	47.77
	MOTA	2659	OE2	GLU	Α	380	58.167	65.476	37.139	1.00	43.32
20	MOTA	2660	С	GLU	A	380	59.859	66.658	32.670	1.00	32.10
	MOTA	2661	0	GLU	Α	380	60.904	67.240	32.957	1.00	31.86
	ATOM	2662	N	GLN	A	381	59.830	65.617	31.844		31.04
	ATOM	2663	CA	GLN	A	381	61.068	65.109	31.265	1.00	30.66
	ATOM	2664	СВ	GLN	Α	381	61.147	63.588	31.448	1.00	30.50
25	MOTA	2665	CG	GLN	A	381	61.526	63.191	32.880		29.05
	MOTA	2666	CD			381	61.349	61.711	33.165		30.02
	MOTA	2667	OE1	GLN	A	381			32.331		
	MOTA	2668	NE2	GLN			60.855	61.393	34.359		27.15
• •	ATOM	2669	С			381	61.299	65.494	29.810		30.65
30	ATOM	2670	0			381	62.152	64.918	29.135		30.89
	ATOM	2671	N			382	60.534	66.472	29.336		29.73
	MOTA	2672	CA			382	60.695	66.958	27.976		29.28
	ATOM	2673	С			382	60.160	66.145	26.812		29.75
2.5	ATOM	2674	0			382	60.547	66.396	25.669		29.78
35	ATOM	2675	N			383	59.281	65.183	27.066		28.22
	ATOM	2676	CA			383	58.740	64.390	25.968		28.21
	MOTA	2677	СВ	PHE	A	383	58.480	62.949	26.410	1.00	26.99

	ATOM	2678	CG	PHE	A	383	59.718	62.209	26.827	1.00	25.43
	ATOM	2679	CD1	PHE	Α	383	60.001	62.005	28.167	1.00	23.15
	ATOM	2680	CD2	PHE	Α	383	60.592	61.709	25.879	1.00	21.77
	MOTA	2681	CE1	PHE	Α	383	61.131	61.311	28.552	1.00	22.73
5	ATOM	2682	CE2	PHE	Α	383	61.722	61.019	26.258	1.00	22.44
	MOTA	2683	CZ	PHE	Α	383	61.991	60.818	27.598	1.00	23.36
	MOTA	2684	С	PHE	Α	383	57.450	64.988	25.427	1.00	28.57
	MOTA	2685	0	PHE	Α	383	56.561	65.365	26.189	1.00	29.14
	ATOM	2686	N	GLY	Α	384	57.356	65.081	24.104	1.00	28.87
10	MOTA	2687	CA	GLY	A	384	56.154	65.620	23.497	1.00	29.02
	MOTA	2688	С	GLY	A	384	54.977	64.714	23.799	1.00	29.17
	ATOM	2689	0	GLY	A	384	53.846	65.173	23.949	1.00	30.43
	ATOM	2690	N	GLY	A	385	55.255	63.418	23.895	1.00	28.68
	ATOM	2691	CA	GLY	A	385	54.220	62.444	24.189	1.00	27.39
15	MOTA	2692	С	GLY	A	385	54.822	61.072	24.428	1.00	27.16
	MOTA	2693	0	GLY	A	385	56.034	60.891	24.312	1.00	27.57
	MOTA	2694	N `	VAL	A	386	53.975	60.104	24.757	1.00	25.93
	MOTA	2695	CA	VAL	A	386	54.416	58.738	25.018	1.00	25.76
	MOTA	2696	СВ	VAL	A	386	53.208	57.784	25.135	1.00	26.31
20	MOTA	2697	CG1	VAL	A	386	53.683	56.337	25.139	1.00	26.62
	MOTA	2698	CG2	VAL	A	386	52.426	58.093	26.396	1.00	26.19
	MOTA	2699	С	VAL	A	386	55.338	58.198	23.930	1.00	25.24
	MOTA	2700	0	VAL	Α	386	56.382	57.612	24.216	1.00	24.74
	ATOM	2701	N	THR	A	387	54.938	58.403	22.680	1.00	25.11
25	ATOM	2702	CA	THR	Α	387	55.698	57.930	21.530	1.00	24.97
	ATOM	2703	СВ	THR			55.054	58.417	20.211		26.77
	ATOM	2704	OG1	THR	A	387	53.687	57.988			
	ATOM	2705	CG2	THR			55.800	57.856	19.006		23.16
• •	MOTA	2706	С	THR			57.166	58.348	21.542		24.24
30	ATOM	2707	0	THR			58.040	57.566	21.171		24.21
	ATOM	2708	N	ASP			57.446	59.573	21.970		24.13
	ATOM	2709	CA	ASP			58.828	60.049	21.989		24.01
	ATOM	2710	СВ	ASP			58.872	61.572	22.140		28.08
2.5	ATOM	2711	CG	ASP			57.979	62.282	21.152		31.47
35	ATOM	2712		ASP			56.834	62.614	21.531		35.57
	ATOM	2713		ASP			58.416	62.498	19.999		32.91
	MOTA	2714	С	ASP	A	388	59.671	59.428	23.096	1.00	21.44

	MOTA	2715	0	ASP A	Α	388	60.894	59.431	23.018	1.00	20.73
	MOTA	2716	N	ALA A	Ą	389	59.020	58.904	24.128	1.00	19.41
	ATOM	2717	CA	ALA A	A	389	59.735	58.305	25.249	1.00	18.82
	ATOM	2718	СВ	ALA A	Α	389	58.946	58.528	26.548	1.00	17.68
5	ATOM	2719	С	ALA A	A	389	60.024	56.816	25.059	1.00	17.88
	ATOM	2720	0	ALA A	A	389	60.871	56.253	25.749	1.00	18.18
	ATOM	2721	N	ILE A	A	390	59.320	56.179	24.130	1.00	17.83
	MOTA	2722	CA	ILE A	A	390	59.516	54.753	23.875	1.00	16.78
	MOTA	2723	СВ	ILE A	Α	390	58.612	54.264	22.716	1.00	16.58
10	MOTA	2724	CG2	ILE A	A	390	58.915	52.808	22.398	1.00	13.38
	ATOM	2725	CG1	ILE A	A	390	57.134	54.435	23.097	1.00	16.11
	MOTA	2726	CD1	ILE A	A	390	56.171	54.247	21.933	1.00	14.39
	MOTA	2727	С	ILE A	A	390	60.968	54.425	23.533	1.00	16.91
	ATOM	2728	0	ILE	A	390	61.451	54.751	22.452	1.00	18.16
15	MOTA	2729	N	GLY Z	A	391	61.661	53.785	24.467	1.00	17.39
	MOTA	2730	CA	GLY	A	391	63.048	53.409	24.242	1.00	16.81
	ATOM	2731	С	GLY .	A	391	64.078	54.510	24.445	1.00	16.75
	ATOM	2732	0	GLY .	A	391	65.248	54.322	24.118	1.00	16.88
	ATOM	2733	N	ALA .	A	392	63.663	55.641	25.007	1.00	16.78
20	ATOM	2734	CA	ALA .	A	392	64.573	56.766	25.222	1.00	19.33
	ATOM	2735	СВ	ALA .	Α	392	63.842	57.901	25.930	1.00	17.91
	MOTA	2736	С	ALA .	A	392	65.862	56.421	25.977	1.00	19.71
	MOTA	2737	0	ALA .	Α	392	66.906	57.011	25.713	1.00	20.84
	ATOM	2738	N	ASP .	A	393	65.795	55.475	26.911	1.00	20.21
25	ATOM	2739	CA	ASP .	A	393	66.982	55.083	27.679	1.00	19.61
	ATOM	2740	СВ	ASP .	A	393	66.640	53.993	28.700	1.00	18.27
	ATOM	2741	CG	ASP .	A	393	65.886	54.521	29.904	1.00	20.38
	ATOM	2742	OD1	ASP .	A	393	65.702	55.753	30.020	1.00	21.42
	ATOM	2743	OD2	ASP .	A	393	65.483	53.690	30.744	1.00	20.13
30	ATOM	2744	С	ASP .	A	393	68.096	54.551	26.776	1.00	21.69
	ATOM	2745	0	ASP .	A	393	69.277	54.689	27.091	1.00	20.91
	ATOM	2746	N	HIS.	A	394	67.712	53.939	25.659	1.00	22.48
	ATOM	2747	CA	HIS	A	394	68.676	53.360	24.730	1.00	24.97
	ATOM	2748	СВ	HIS	A	394	67.991	52.297	23.864	1.00	21.33
35	ATOM	2749	CG	HIS	A	394	67.382	51.177	24.650	1.00	20.93
	MOTA	2750	CD2	HIS	A	394	66.226	51.107	25.354	1.00	19.80
	ATOM	2751	ND1	HIS	A	394	67.985	49.945	24.782	1.00	18.59

	ATOM	2752	CE1	HIS A	394	67.226	49.164	25.531	1.00	18.75
	MOTA	2753	NE2	HIS A	394	66.153	49.845	25.891	1.00	18.96
	ATOM	2754	С	HIS A	394	69.339	54.391	23.825	1.00	27.88
	ATOM	2755	0	HIS A	394	70.392	54.130	23.253	1.00	28.20
5	ATOM	2756	N	ARG A	395	68.725	55.560	23.699	1.00	32.23
	ATOM	2757	CA	ARG A	395	69.262	56.599	22.832	1.00	37.69
	ATOM	2758	СВ	ARG A	395	68.110	57.372	22.176	1.00	36.52
	ATOM	2759	CG	ARG A	395	67.250	56.510	21.253	1.00	37.79
	ATOM	2760	CD	ARG A	395	66.316	57.351	20.384	1.00	38.73
10	ATOM	2761	NE	ARG A	395	65.140	57.850	21.097	1.00	39.62
	ATOM	2762	CZ	ARG A	395	64.091	57.101	21.430	1.00	40.14
	ATOM	2763	NH1	ARG A	395	63.064	57.643	22.077	1.00	38.94
	MOTA	2764	NH2	ARG A	395	64.064	55.810	21.114	1.00	38.68
	ATOM	2765	С	ARG A	395	70.222	57.566	23.521	1.00	41.10
15	ATOM	2766	0	ARG A	395	71.015	58.231	22.861	1.00	42.39
	ATOM	2767	N	ARG A	396	70.163	57.644	24.844	1.00	46.02
	ATOM	2768	CA	ARG A	396	71.053	58.543	25.568	1.00	50.86
	ATOM	2769	СВ	ARG A	396	70.511	58.820	26.975	1.00	53.12
	ATOM	2770	CG	ARG A	396	70.485	57.618	27.900	1.00	54.92
20	ATOM	2771	CD	ARG A	396	70.063	58.038	29.297	1.00	58.19
	ATOM	2772	NE	ARG A	396	70.847	59.180	29.757	1.00	60.28
	ATOM	2773	CZ	ARG A	396	70.773	59.698	30.978	1.00	61.40
	ATOM	2774	NH1	ARG A	396	71.525	60.742	31.302	1.00	61.39
	ATOM	2775	NH2	ARG A	396	69.954	59.167	31.876	1.00	62.88
25	ATOM	2776	С	ARG A	396	72.467	57.968	25.661	1.00	52.71
	ATOM	2777	0	ARG A	396	73.403	58.630	25.164	1.00	54.67
	ATOM	2778	OXT	ARG A	396	72.626	56.864	26.225	1.00	54.59
	TER	1		ARG A	396					
	END									