### 2023

## Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University



## Outline



### **Two Pumping Lemmas**



Closure Properties and Decision Algorithms for CFLs

## The Pumping Lemma for Context-Free Languages

Consider now an infinite context-free language  $\boldsymbol{L}$ 

Let 
$$G$$
 be the grammar of  $L-\{\lambda\}$ 

Take G so that L has no unit-productions no  $\lambda$ -productions

Let 
$$P = (Number of production)$$
 (Largest right side of a production)

与最长的 production > f

Let 
$$m = p + 1$$
 (Largest number of states in NPDA)

Example : 
$$G$$
  $S \to AB$   $p = 4 \times 3 = 12$   $A \to aBb$   $B \to Sb$   $m = p + 1 = 13$   $B \to b$ 

Take a string  $w \in L(G)$  with length  $|w| \ge m$  与我一個長度 n m 且  $\epsilon$  L(4) 的 string  $\Rightarrow$  必有 $L_{op}$ 

#### We will show:

in the derivation of  $\mathcal{W}$  a variable (production) of G is repeated

$$S \Longrightarrow w$$

$$v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$$

$$S = v_1$$

$$v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$$



maximum right hand side of any production

$$m \le |w| < k \cdot f$$



$$p < k \cdot f$$

$$v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$$

$$p < k \cdot f$$

$$k > \frac{p}{f}$$
Number of productions in grammar

$$v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$$

k > Number of productions in grammar



Some production must be repeated

$$v_1 \Rightarrow \cdots \Rightarrow a_1 A a_2 \Rightarrow \cdots \Rightarrow a_3 A a_4 \Rightarrow \cdots \Rightarrow w$$
Repeated  $A \rightarrow r_2$  variable  $B \rightarrow r_2$ 

$$w \in L(G)$$
  $|w| \ge m$ 

Derivation of string W

$$S \Rightarrow \cdots \Rightarrow a_1 A a_2 \Rightarrow \cdots \Rightarrow a_3 A a_4 \Rightarrow \cdots \Rightarrow w$$

Some variable is repeated

## Derivation tree of string





$$w = uvxyz$$

u, v, x, y, z:

Strings of terminals



Possible derivations:



 $A \Longrightarrow vAy$ 

 $A \Longrightarrow x$ 



$$S \Longrightarrow uAz \qquad \qquad * \qquad * \qquad * \qquad A \Longrightarrow x$$

This string is also generated:

$$s \Rightarrow uAz \Rightarrow uxz$$

$$uv^0xy^0z$$

The original 
$$w = uv^1xy^1z$$

$$uv^2xy^2z$$

$$S \Rightarrow uAz \qquad \qquad * \qquad * \qquad \qquad * \\ A \Rightarrow vAy \qquad \qquad A \Rightarrow x$$

This string is also generated:

$$\begin{array}{c}
* \\
S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow \\
* \\
\Rightarrow uvvVAyyyz \Rightarrow uvvvxyyyz \\
uv^3xy^3z
\end{array}$$

$$S \Rightarrow uAz \qquad \qquad * \qquad \qquad * \qquad \qquad * \qquad \qquad A \Rightarrow x$$

This string is also generated:

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvVAyyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV\cdots vAy\cdots yyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV\cdots vxy\cdots yyyz$$

$$uv^i xy^i z$$

## Therefore, any string of the form

$$uv^i x y^i z$$
  $i \ge 0$ 

is generated by the grammar *G* 

Therefore,

knowing that 
$$uvxyz \in L(G)$$

we also know that

$$uv^i x y^i z \in L(G)$$

$$L(G) = L - \{\lambda\}$$

$$uv^{i}xy^{i}z \in L$$



Observation:  $|vxy| \le m$  沒有重覆

Since A is the last repeated variable



Observation:  $|vy| \ge 1$ 

Since there are no unit or  $\lambda$ -productions

## Proof of the Pumping Lemma

- $\bullet$ Start with a CNF grammar for L  $\{\epsilon\}$ .
- Let the grammar have m variables.
- $\bullet$  Pick  $n = 2^m$ .
- ♦ Let  $|z| \ge n$ . ♦ We claim ("Lemma 1") that a parse tree with yield z must have a path of length m+2 or more.

## Proof of Lemma 1

◆If all paths in the parse tree of a CNF grammar are of length < m+1, then the longest yield has length 2<sup>m-1</sup>, as in:



## The Pumping Lemma I:

For infinite context-free language *L* 

there exists an integer m such that

for any string 
$$w \in L$$
,  $|w| \ge m$ 

we can write 
$$w = uvxyz$$

with lengths 
$$|vxy| \le m$$
 and  $|vy| \ge 1$ 

and it must be:

$$uv^i x y^i z \in L$$
, for all  $i \ge 0$ 

# Applications of The Pumping Lemma

#### Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

Context-free languages

$$\{a^nb^n: n \ge 0\}$$

## **Example 8.1:** The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

**Proof:** 

Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free backs where free , N=0 (5  $\rightarrow$   $\wedge$ )

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number *m* such that:

Pick any string  $w \in L$  with length  $|w| \ge m$ 

We pick: 
$$w = a^m b^m c^m$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write: 
$$w = uvxyz$$

with lengths 
$$|vxy| \le m$$
 and  $|vy| \ge 1$ 

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz | vxy | \le m | vy | \ge 1$$

## Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all  $i \ge 0$ 

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$b^m c^m$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w i

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

m m m
aaa...aaa bbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: v and y consist from only a

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: Repeating v and y

$$k \ge 1$$

$$m+k^{\frac{n}{2}+10}$$
  $m$   $m$ 

aaaaaa...aaaaaaa bbb...bbb ccc...ccc

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma:  $uv^2xy^2z \in L$ 

$$k \ge 1$$

$$m+k$$

m

m

aaaaaa...aaaaaaa bbb...bbb ccc...ccc

$$v^2xy^2$$

Z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

# Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However: 
$$uv^2xy^2z = \underline{a^{m+k}b^mc^m} \notin \underline{L}$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz | vxy | \le m | vy | \ge 1$$

Case 2: vxy is within  $b^m$ 

 $\mathcal{U}$ 

m m m aaa...aaa bbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

## Case 2: Similar analysis with case 1 = fucuse1问理

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 3: vxy is within c<sup>m</sup>

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: Similar analysis with case 1 → 1 \( \infty \) \( \text{LASO} \) \( \text{LASO} \)

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: vxy overlaps  $a^m$  and  $b^m$ 

ら在のら裡面

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1: v contains only a

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1: v contains only a  $k_1 + k_2 \ge 1$  y contains only b

$$m+k_1$$

$$m+k_2$$

m

aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc

$$\mathcal{U}$$

$$v^2 xy^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma:  $uv^2xy^2z \in L$ 

$$k_1 + k_2 \ge 1$$

$$m+k_1$$

$$m+k_2$$

m

aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc

$$\mathcal{U}$$

$$v^2 xy^2$$

Z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma:  $uv^2xy^2z \in L$  $k_1 + k_2 \ge 1$ 

However: 
$$uv^2xy^2z = \underline{a}^{m+k_1}\underline{b}^{m+k_2}\underline{c}^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4: Possibility 2: v contains a and b v h b y h b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

**Case 4:** Possibility 2: v contains a and b  $k_1 + k_2 + k \ge 1$  y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma:  $uv^2xy^2z \in L$  $k_1 + k_2 + k \ge 1$ 

50

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

# Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:

$$k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

**Contradiction!!!** 

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

Similar analysis with Possibility 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5: vxy overlaps  $b^m$  and  $c^m$ 

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

#### Case 5: Similar analysis with case 4

#### There are no other cases to consider

(since  $|vxy| \le m$ , string vxy cannot overlap  $a^m$ ,  $b^m$  and  $c^m$  at the same time)

#### In all cases we obtained a contradiction

Therefore:

The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

**Conclusion:** 

is not context-free

#### Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

$$\{ww:w\in\{a,b\}\}$$

$$\{a^{n^2}b^n: n \ge 0\}$$

$$\{a^{n!}: n \ge 0\}$$

Context-free languages

$$\{a^nb^n: n \ge 0\}$$

$$\{a^n b^n : n \ge 0\}$$
  $\{ww^R : w \in \{a, b\}^*\}$ 

#### The Pumping Lemma II:

For infinite linear language L there exists an integer m such that

for any string 
$$w \in L$$
,  $|w| \ge m$ 

we can write 
$$w = uvxyz$$

with lengths 
$$|uvyz| \le m$$
 and  $|vy| \ge 1$ 

and it must be:

$$uv^i x y^i z \in L$$
, for all  $i \ge 0$ 

### Example 8.6

Show the following language

$$L = \{w : n_a(w) = n_b(w)\}$$
 is not linear

$$S \rightarrow SS$$

$$S \to \lambda$$

$$S \rightarrow aSb$$

$$S \rightarrow bSa$$

- Given m
- S Picks  $w = a^m b^{2m} a^m$
- Picks any *uvyz* s.t.  $uv=a^k$ ,  $yz=a^l$  and k,  $l \ge 1$
- Picks  $i = 2 \rightarrow w_2 = a^{m+k}b^{2m}a^{m+l}$  is not in L