anyt/global//global/global nobblfile

Kolorowania węzłów i niezmienniki homologiczne

Praca napisana pod kierunkiem prof. dr hab. Tadeusza Januszkiewicza

Weronika Jakimowicz

06.12.2024

Instytut Matematyczny Uniwersytetu Wrocławskiego

Węzeł i jego grupa

Definicja	
Węzeł to gładkie	
zanurzenie $S^1 \hookrightarrow S^3$	

Definicja

Niech $K \subseteq S^3$ będzie węzłem. Wtedy grupa $\pi_1(S^3 - K)$ jest nazywana **grupą węzła** K.

Rzutowanie $D:S^1\hookrightarrow\mathbb{R}^2$ węzła nazywa się diagramem.

Niezmienniki węzłów

- Grupa węzła jest skomplikowana do wyliczenia.
- Wielomian Alexandera liczymy m.in. z diagramu, ale nie zawsze jest pomocny, np:

K11n164

$$-t^3 + 5t^2 - 10t + 13 - 10t^{-1} + 5t^{-2} - t^{-3}$$

Poszukiwania niezmienników

W wyliczaniu wielomianu Alexandera tworzymy macierz $n \times n$, której kolumny odpowiadają segmentom, a wiersze skrzyżowaniom. Wielomian Alexandera to minory $(n-1) \times (n-1)$.

Czy tak stworzona macierz kryje inne, delikatniejsze niezmienniki?

Grupa węzła ma prezentację Wirtingera, która przychodzi z diagramu.

Czy przejście z grupy homotopii do modułów homologii ułatwia zrozumienie niezmiennika?

Kolorowanie diagramu węzła

- Interesują nas diagramy zorientowane.
- Kolorowanie diagramu to przypisanie segmentom elementów M z uwzględnieniem skrzyżowań.
- Paleta to czwórka (R, M, C_{\pm}) , gdzie
 - R to pierścień przemienny z jedynką,
 - M to R-moduł
 - i $C_{\pm}\subseteq M^3$ to dwa moduły dające tzw. *regułę kolorowania*.
- Mając moduł C_{\pm} umiemy napisać $\phi_{\pm}: M^3 \to M^3/C_{\pm}$.
- Mając paletę (R, M, C_{\pm}) umiemy diagramowi D przypisać homomorfizm

$$D\phi: M^n \to M^n$$

Paleta Alexandera

Ciekawy jest przypadek, gdy paleta (R,M,C_{\pm}) to tzw. paleta Alexandera, czyli

- $R = \mathbb{Z}[\mathbb{Z}]$
- $M = \mathbb{Z}[\mathbb{Z}]$
- ϕ_{\pm} to odwzorowania

$$\phi_{+}(u, i, o) = (1 - t)u + ti - o$$

$$\phi_{-}(u, i, o) = (1 - t^{-1})u + t^{-1}i - o$$

Moduł Alexandera

Definicja

Nakrycie cykliczne przestrzeni X to przestrzeń ilorazowa

$$\overline{X} = \widetilde{X}/[\pi_1(X), \pi_1(X)].$$

- Gdy $X = S^3 K$, to na \overline{X} działa pierścień $\mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[t, t^{-1}]$ (konstrukcja przy pomocy powierzchni Seiferta).
- $H_1(\overline{X}, \mathbb{Z}) = [\pi_1(X), \pi_1(X)]^{ab} = K_G^{ab}$ interpretowana jako $\mathbb{Z}[\mathbb{Z}]$ -moduł to **moduł Alexandera**.

Macierz Alexandera

Prezentacja Wirtingera $\pi_1(X)$ daje nieskończoną prezentacje K_G , której abelianizacja K_G^{ab} jako $\mathbb{Z}[\mathbb{Z}]$ -moduł jest generowana przez (n-1) elementów.

$$0 \longrightarrow \ker(A_D) \longrightarrow \mathbb{Z}[\mathbb{Z}]^n \stackrel{A_D}{\longrightarrow} \mathbb{Z}[\mathbb{Z}]^{n-1} \longrightarrow K_G^{ab} \longrightarrow 0$$

Definicja

Macierz przekształcenia A_D nazywamy macierzą Alexandera modułu K_G^{ab} powiązanego z diagramem D.

Bibliografia

test

Postać normalna Smitha (SNF)

Postać normalna Smitha macierzy o wyrazach w pierścieniu PID to macierz postaci

$$\begin{bmatrix} a_1 & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & a_2 & 0 & & & & & \vdots \\ 0 & 0 & \ddots & & \vdots & & \vdots & \vdots \\ \vdots & & & a_r & & & & \\ 0 & & \dots & & 0 & \dots & 0 \\ \vdots & & & & \vdots & & \vdots \\ 0 & & \dots & & 0 & \dots & 0 \end{bmatrix}$$

gdzie $a_i|a_{i+1}$ dla każdego i.

Zredukowana postać normalna Smitha macierzy odwzorowania $D\phi$ przychodzącego z kolorowania diagramu D paletą Alexandera jest niezmiennikiem węzła.

Co więcej, macierz ta niesie tę samą informację, co macierz Alexandera A_D , tzn.

$$\ker(A_D) \cong \ker(D\phi)$$

oraz

$$\operatorname{coker}(A_D) \oplus \mathbb{Z}[\mathbb{Z}] \cong \operatorname{coker}(D\phi).$$