

TÓPICOS EM CIÊNCIA DE DADOS PARA O ESPORTE

MACHINE LEARNING: CLASSIFICAÇÃO

DIEGO RODRIGUES DSC

INFNET

CRONOGRAMA

DIA	NÚMERO	ÁREA	AULA	TRABALHOS
30/1/2024	1	Intro	Introdução a Disciplina e Organização do Ambiente	
1/2/2024	2	Dados	Coleta de Dados e Sensoriamento	
6/2/2024	3		Variáveis Aleatórias	Grupos
8/2/2024	4		Análise Exploratória	
15/2/2024	5		Estatísticas para Ranqueamento	
20/02/2024	6	Estatística	Ranqueamento Estatístico : ELO	
22/02/2024	7		Ranqueamento Estatístico : Glicko	
27/2/2024	8		Ranqueamento Estatístico : TrueSkill	
29/2/2024	9		Ranqueamento Estatístico : XELO	Base de Dados
5/3/2024	10		Modelos de Aprendizado de Máquina	
7/3/2024	11		Machine Learning: Classificação	
12/3/2024	12	ML	Machine Learning: Regressão	
14/3/2024	13		Machine Learning: Agrupamento	Pesquisa
19/3/2024	14		Machine Learning: Visão Computacional	
21/3/2024	15		Aplicações & Artigos: Esportes Independentes	Modelo
26/3/2024	16	Esportes	Aplicações & Artigos: Esportes de Objeto	
28/3/2024	17	Esportes	Aplicações & Artigos: Esportes de Combate	
2/4/2024	18		Aplicações & Artigos : Betting	
4/4/2024	19		Workshop	
9/4/2024	20	Workshop	Apresentações de Trabalhos I	Apresentação
11/4/2024	21		Apresentações de Trabalhos II	

AGENDA

- PARTE 1 : TEORIA
 - CONCEITOS
 - REDES NEURAIS
 - TREINANDO UMA REDE NEURAL
 - CASE : CLASSIFICAÇÃO DE JOGADAS DE FUTEBOL AMERICANO

SETUP INICIAL DO AMBIENTE PYTHON

4. Variáveis Aleatórias

5. Visualização

6. Estimação e

7. Machine Learning

1. Editor de Código

2. Gestor de Ambiente

3. Ambiente
Python do Projeto

3. Notebook Dinâmico

CONCEITOS

PARADIGMAS DE MODELAGEM ESTATÍSTICA

SUPERVISIONADO – REGRESSÃO NÃO SUPERVISIONADO

APRENDIZADO POR REFORÇO **GENERATIVO**

PROBLEMA DE NEGÓCIO

Classificação

Um bebê consegue separar e ordenar blocos com diferentes tamanhos, formas e cores. Ele também consegue identificar os tipos diferentes de objetos.

Os diferentes tipos de objetos são chamados de **classes**. As características dos objetos são chamadas de **variáveis** ou **atributos**.

Então, um classificador é um modelo treinado para discriminar objetos pertencentes a duas ou mais classes, baseado em seus atributos.

REPRESENTAÇÃO

Exercício (1): qual representação o cachorro deve escolher para diferenciar ovelhas pretas, cinzas e brancas?

Exercício (2): qual seria uma boa representação para diferenciar alunos e alunas do curso?

MODELAGEM

1) Aprendizado Supervisionado

Tarefas de classificação e regressão pertencem a esta categoria. O treinamento consiste em encontrar parâmetros para o modelo que minimiza uma função de risco/erro para uma amostra de treinamento, baseado na diferença entre os valores previstos e reais, para cada observação.

MODELOS FUNCIONAIS

Algoritmos que dependem da estimação dos parâmetros de uma função que é utilizada como superfície de separação entre as classes.

- 1) Funções Polinomiais
- 2) Regressão Logística
- 3) Máquina de Vetores Suporte
- 4) Neurônio Sigmoide / Tangente Hiperbólica
- 5) Árvores de Decisão

Algoritmos baseados em funções são **mais simples**, usualmente tem um **número menor de parâmetros** e não dependem em armazenar muitos dados para manter uma "memória", como por exemplo K-vizinhos mais próximos.

VALIDAÇÃO

Under-fitting

(too simple to explain the variance)

explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true)

GENERALIZAÇÃO: IDENTIFICANDO OS HIPERPARÂMETROS ÓTIMOS

LEAVE ONE OUT

 Uma única observação é deixada de fora a cada treinamento. N treinamentos são realizados para calcular a estatística de erro.

K FOLDS

 Amostra é dividida em K conjuntos. K treinamentos são realizados, mantendo um conjunto como fora-da-amostra.

BOOTSTRAPPING

 O algoritmo itera, amostrando aleatoriamente M observações, para a quantidade Q desejada de treinamentos.

relevant elements false negatives true negatives 0 true positives false positives selected elements How many selected How many relevant items are relevant? items are selected? Recall = -Precision = -

FIGURAS DE MÉRITO

Acurácia

• (TP+TN)/(P+N)

Taxa de Erro

1-Acurácia

Sensibilidade (Recall)

TP/(TP+FN)

Especificidade

TN/(TN+FP)

Precisão

TP/(TP+FP)

Produto Sp

SQRT[SQRT(R1*R2)

$$*(R1 + R2)/2$$

REDES NEURAIS

INSPIRAÇÃO BIOLÓGICA

HISTÓRIAS DAS REDES NEURAIS

Perceptron de Rosenblatt 1954

Backpropagation Rumelhart, Hinton & Williams 1986

LSTM ~ 2003

Tensorflow ~ 2015

O APROXIMADOR UNIVERSAL

$$Y = F(X) + \varepsilon$$

$$Y = X\alpha + \varepsilon$$

$$Y = \varphi(x) + \varepsilon$$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	-
Unit)		Networks	

FUNÇÕES DE ATIVAÇÃO

GOOGLE TENSORFLOW PLAYGROUND

TREINANDO UMA REDE NEURAL

REPRESENTAÇÃO

- Normalização
 - Garantir que as variáveis independentes possuem a mesma escala
- Análise de Componentes Principais
 - Garantir que as variáveis independentes sejam descorrelacionadas

NORMALIZAÇÃO

- Garantir que as variáveis independentes possuem a mesma escala
- Mesmo efeito numérico na otimização independente da escala.

ANÁLISE DE COMPONENTES PRINCIPAIS

- Garantir que as variáveis independentes sejam descorrelacionadas.
- Identificar novas direções com maior concentração de energia / informação.

ENCONTRANDO O ÓTIMO GLOBAL PARA OS PARÂMETROS

$$MSE = \frac{1}{N} \sum_{i} (y - f(w, x))^2$$

Wolfram Global Problem

SUPERFÍCIE DO ERRO MÉDIO QUADRÁTICO EM FUNÇÃO DOS PARÂMETROS

$$MSE = \frac{1}{N} \sum (y - f(w, x))^2$$

ESTIMADOR DE GRADIENTE + TAXA CORRETA

- TREINAMENTO UTILIZANDO 5 PARTIÇÕES, COM DADOS DAS CLASSES BALANCEADOS.
- CADA TREINAMENTO É REALIZADO PARA EXPLORAR UMA
 CONFIGURAÇÃO DA CAMADA OCULTA DA REDE O NÚMERO
 DE NEURÔNIOS DA CAMADA OCULTA.
- 4 PARTIÇÕES SÃO USADAS PARA TREINAR A REDE, 1 PARTIÇÃO É UTILIZADA PARA MENSURAR A ACURÁCIA FORA DA AMOSTRA.
- A ACURÁCIA MÉDIA É USADA COMO FIGURA DE MÉRITO PARA CADA CONFIGURAÇÃO.

Validação & Teste

Treino

Treino

Treino

Treino

- Iteração dos hiperparâmetros
- Seleção da Figura de Mérito
- Seleção da Estatística de Ganho

CRITÉRIOS DE PARADA

- Aumento no Erro de Validação
- Estabilidade da Figura de Mérito no Treino
- Estabilidade de Figura de mérito no Teste

RELEVÂNCIA

- ANÁLISE NÃO-LINEAR DA IMPORTÂNCIA DOS ATRIBUTOS.
- ELIMINA-SE UM ATRIBUTO DA ENTRADA DA REDE, MEDINDO O EFEITO NA CAPACIDADE PREDITIVA.
- A COMPARAÇÃO DAS RELEVÂNCIAS NORMALIZADAS PERMITE IDENTIFICAR OS ATRIBUTOS MAIS IMPORTANTES.

$$R(X_j) = \frac{\sum_{i=1}^{N} \left| |\hat{y}(\mathbf{x_i}) - \hat{y}(\mathbf{x_i}|_{x_{ij} = \bar{x}_j}) \right| |^2}{N}$$

A redução na quantidade de atributos permite simplificar o modelo, salientando os atributos direcionadores da classe.

Matriz de Confusão

 Comparação entre o resultado do classificador para as diferentes classes.

VALIDAÇÃO

Curva ROC

Calibra a saída do modelo,
 ajudando a configurar o ponto de operação entre Precisão / Recall / Acurácia.

CLASSIFICAÇÃO DE JOGADAS DE FUTEBOL AMERICANO

FUTEBOL AMERICANO

Campo com 54x120 jardas.

Partida disputada em 2 tempos.

Cada tempo é dividido em dois quartos de 15 minutos.

Objetivo: conquistar território e chegar a endzone adversária, para marcar um touchdown ou field goal.

ANÁLISE DE ATRIBUTOS DIRECIONADORES

Representação

- Dados da temporada de 2016 do Indianapolis Colts.
- Quarterback Payton Manning
- Atributos extraídos do Play-by-Play.

Treinamento

- Ensemble de Redes Neurais Multicamadas.
- Treinamento Jacknife.
- Análise de Relevância
- Figura de Mérito: Acurácia

ATRIBUTOS COLETADOS DO PLAY-BY-PLAY

N	Atributo	Tipo
1	Distância para o First Down	Contínuo
2	Posição no Campo	Contínuo
3	Diferença no Placar	Contínuo
4	Quarto de Jogo	Discreto
5	Tempo	Contínuo
6	Dois Minutos Finais	Binário
7	Última Jogada - Passe	Binário
8	Última Jogada - Corrida	Binário
9	Última Jogada - Times Especiais	Binário
10	Última Jogada - Jardas	Contínuo
11	Tipo de Joagada (Corrida/Passe)	Classe

11	Tipo de Joagada (Corrida/Passe)	Classe
10	Última Jogada - Jardas	Contínuo
	Ultima Jogada - Times Espe⊕is	(Bi) SIIO

- REDE NEURAL DO TIPO MULTILAYER PERCEPTRON (MLP) COM UMA CAMADA ESCONDIDA.
 - UMA REDE FOI TREINADA PARA OS DADOS DE CADA DOWN (COMITÊ).
- TREINAMENTO USANDO O ALGORITMO RPROP.
- TREINAMENTO JACKNIFE USANDO ACURÁCIA COMO FIGURA DE MÉRITO – VALIDAÇÃO CRUZADA COM 5 PARTIÇÕES.
 - FASE 1 EXTRAÇÃO DOS DIRECIONADORES.
 - FASE 2 VALIDAÇÃO.

RESULTADOS

REDES NEURAIS: TREINAMENTO FASE 1

Tentativa	Passe	Corrida
Primeiro down	113	135
Segundo down	100	86
Terceiro down	85	12
Total	298	233

Total	298	233

Tentativa	NE	μ (%)	$\sigma(\%)$	Melhor(%)
10 down	20	61	6	71
20 down	9	67	6	78
3o down	8	94	5	97

RESULTADOS DA RELEVÂNCIA

Atributo	1D	2D	3D
Distância	21	76	52
Posição	95	75	98
Placar	6	34	41
Quarto	100	11	100
Tempo	81	15	63
2 Minutos	17	7	17
U.J. Corrida	49	82	4
U.J. Passe	53	100	31
U.J. Especial	17	-	-
U.J. Jardas	-	18	10

U.J. Passe, U.J. Corrida, Distância

Quarto, Posição, Tempo

Quarto, Posição, Tempo, Distância

TREINAMENTO 2 – RESULTADO FINAL

Modelo	NE	μ (%)	$\sigma(\%)$	Melhor (%)
NN-1D	7	61	5	74
NN-2D	9	73	5	81
NN-3D	8	94	5	97
NN	10	73	-	73
See5	-	69	-	69
ID3	-	64	-	64

5/10 atributos selecionados como direcionadores para o primeiro down e segundo down.

Eficiência dos direcionadores selecionados confirmado por 80% de acurácia.

DESAFIO: ANÁLISE EXPLORATÓRIA DOS DADOS DO P. MANNING

PRÓXIMA AULA LEITURA: REGRESSÃO