MATH 355: HOMEWORK 5

ALEXANDER LEE

- **Exercise 1** (2.5.1). (a) Impossible. Let (a_n) be a sequence with a subsequence (a_{n_k}) , where (a_{n_k}) is bounded. By the Bolzano-Weierstrass Theorem, (a_{n_k}) contains a convergent subsequence. Note that this convergent subsequence of (a_{n_k}) is also a subsequence of (a_n) . Thus, (a_n) contains a convergent subsequence.
 - (b) Consider the sequences $a_n = \frac{1}{n}$ and $b_n = 1 + \frac{1}{n}$. Now, define the sequence $(c_n) = (a_1, b_1, a_2, b_2, a_3, b_3, \ldots)$. Notice that (a_n) and (b_n) are both subsequences of (c)n. Further notice that (c_n) does not contain 0 or 1 as terms but $(a_n) \to 0$ and $(b_n) \to 1$.
 - (c) Consider the following sequences.

$$(a_n^1) = (1 + 1/1, 1 + 1/2, 1 + 1/3, \dots)$$

$$(a_n^2) = (1/2 + 1/1, 1/2 + 1/2, 1/2 + 1/3, \dots)$$

$$(a_n^3) = (1/3 + 1/1, 1/3 + 1/2, 1/3 + 1/3, \dots)$$

$$\vdots$$

Notice that $(a_n^1) \to 1$, $(a_n^2) \to 1/2$, $(a_n^3) \to 1/3$, and so on. Now consider the sequence (a_n) constructed with the top right to bottom left diagonals across the sequences above. That is, $(a_n) = (1+1/1, 1+1/2, 1/2+1/1, 1+1/3, 1/2+1/2, 1/3+1/1, \ldots)$. By construction, (a_n) contains subsequences converging to every point in the infinite set $\{1, 1/2, 1/3, \ldots\}$.

- (d) Impossible. Let (a_n) be a sequence that contains subsequences converging to every point in the infinite set $\{1,1/2,1/3,1/4,1/5,\ldots\}$. Thus, the subsequence $(a_{n_k}) \to \frac{1}{M}$ for all $M \in \mathbb{N}$. For all $M \in \mathbb{N}$, let $x_M \in V_{\epsilon}(\frac{1}{M})$. Since $0 \le x_M \le \frac{1}{M}$, we have that $(x_M) \to 0$ by the Squeeze Theorem. Notice that (x_M) is also a subsequence of (a_n) and 0 is not in the infinite set.
- **Exercise 2** (2.5.2). (a) True. Since $(x_2, x_3, x_4, ...)$ converges and is a proper subsequence of (x_n) , (x_n) also converges.
 - (b) True. Suppose towards a contradiction that (x_n) converges. Thus, we know that subsequences of (x_n) are convergent, which contradicts the assumption that (x_n) contains a divergent subsequence. Therefore, (x_n) diverges.
 - (c) True. Suppose that (x_n) is bounded and diverges. By the Bolzano-Weierstrass Theorem, since (x_n) is bounded, it contains a convergent subsequence $(x_{n_k}) \to x$. Since (x_n) diverges, there exists an $\epsilon > 0$ such that for all $N \in \mathbb{N}$, there exists an $n \geq N$ such that $|x_n x| \geq \epsilon$ There are infinitely many such x_n 's, so throw them into a subsequence (x_{m_k}) . Since (x_{m_k}) is also bounded, $(x_{m_k}) \to y$ also converges. $x \neq y$ since the terms in (x_{m_k}) are all greater than or equal to an ϵ distance away from x by construction.

(d) True. Suppose (x_n) is monotone and contains a convergent subsequence $(x_{n_k}) \to x$. Without loss of generality, suppose that (x_n) is increasing. Since $(x_{n_k}) \to x$, we have that for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n_k \geq N$, it follows that $|x_{n_k} - x| < \epsilon$. Take $n_k = N$ such that $|x_N - x| < \epsilon$. Next take $n_k = M \geq N$ such that $|x_M - x| < \epsilon$. There exists a term x_n in (x_n) such that $x_N \leq x_n \leq x_M$ because (x_n) is increasing. Thus, we have that

$$\epsilon > x - x_N > x - x_n > x - x_M > -\epsilon$$

Therefore, $|x - x_n| < \epsilon$ and (x_n) converges.

- **Exercise 3** (2.6.2). (a) Consider the sequence $a_n = (-1)^n \frac{1}{n}$. (a_n) clearly converges to 0, so it is a Cauchy sequence by the Cauchy Criterion. Notice that (a_n) is not monotone as well.
 - (b) Impossible. Suppose (a_n) is a Cauchy sequence. Thus, (a_n) is bounded by Lemma 2.6.3. As such, every subsequence of (a_n) must be bounded as well.
 - (c) Impossible. A divergent monotone sequence is unbounded. Thus, any subsequence must also be unbounded. Since the subsequence is unbounded, it cannot converge and so it is not a Cauchy subsequence.
 - (d) Consider the sequence $(a_n) = (0, 1, 0, 2, 0, 3, \ldots)$. Clearly, (a_n) is unbounded. However, $(0, 0, 0, \ldots)$ is a subsequence of (a_n) that is Cauchy.
- **Exercise 4** (2.6.4). (a) Let $\epsilon > 0$ be arbitrary. Since (a_n) is a Cauchy sequence, there exists an $N_1 \in \mathbb{N}$ such that whenever $m, n \geq N_1$, it follows that $|a_n a_m| < \epsilon/2$. Similarly, since (b_n) is a Cauchy sequence, there exists an $N_2 \in \mathbb{N}$ such that whenever $m, n \geq N_2$, it follows that $|b_n b_m| < \epsilon/2$. Let $N = \max\{N_1, N_2\}$ and suppose $m, n \geq N$. Then,

$$\begin{aligned} |c_n - c_m| &= ||a_n - b_n| - |a_m - b_m|| \\ &\leq ||(a_n - b_n) - (a_m - b_m)|| \text{ (by the Triangle Inequality)} \\ &= |(a_n - a_m) + (b_m - b_n)| \\ &\leq |a_n - a_m| + |b_m - b_n| \text{ (by the Triangle Inequality)} \\ &< \epsilon/2 + \epsilon/2 \\ &= \epsilon. \end{aligned}$$

Therefore, (c_n) is a Cauchy sequence.

- (b) Let $a_n = 1$. (a_n) is a Cauchy sequence, but $c_n = (-1)^n$ is divergent and thus not a Cauchy sequence.
- thus not a Cauchy sequence. (c) Let $a_n = (-1)^n \frac{1}{n+1}$. Then,

$$c_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases},$$

which is divergent and thus not a Cauchy sequence.

Exercise 5 (2.7.1). (a) Let $\epsilon > 0$ be arbitrary. Since $(a_n) \to 0$, there exists an $N \in \mathbb{N}$ such that whenever $m \geq N$, it follows that $|a_m| < \epsilon$. Then,

$$|s_n - s_m| = |a_{m+1} - a_{m+2} - \dots \pm a_n|$$

$$\leq |a_{m+1}| \text{ (since } (a_n) \text{ is decreasing)}$$

$$\leq |a_m|$$

$$< \epsilon$$

whenever $n > m \ge N$.

Exercise 6 (2.7.2). (a) Converges. $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges because it is geometric. Also, $0 \le \frac{1}{2^n+n} \le \frac{1}{2^n}$ for all $n \in \mathbb{N}$, so by the Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ converges.

- (b) Converges. We know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. Furthermore, since $0 \le \frac{|\sin(n)|}{n^2} \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$, we have that $\sum_{n=1}^{\infty} \frac{|\sin(n)|}{n^2}$ converges by the Comparison Test. As such, $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$ converges as well by the Absolute Convergence Test.
- (c) Diverges. The series can be expressed as $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{2n}$. Because $\lim_{n \to \infty} \left| (-1)^{n+1} \frac{n+1}{2n} \right| = \lim_{n \to \infty} \frac{n+1}{2n} \neq 0 = |0|$, we have that $\lim_{n \to \infty} (-1)^{n+1} \frac{n+1}{2n} \neq 0$ by the contrapositive of Exercise 2.3.10 (b). As such, by Theorem 2.7.3, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{2n}$ diverges.
- (d) Diverges.
- (e) Diverges.

Exercise 7 (2.7.4). (a) Consider $x_n = \frac{1}{n}$ and $y_n = (-1)^n$. Since $\sum x_n$ is the harmonic series, it diverges. Since $(y_n) \not\to 0$, $\sum y_k$ diverges. However, $\sum x_n y_n = \sum (-1)^n \frac{1}{n}$ converges by the Alternating Series Test.

- (b) Consider $x_n = (-1)^n \frac{1}{n}$ and $y_n = (-1)^n$. $\sum x_n$ converges by the Alternating Series Test. Clearly, (y_n) is bounded. However, $\sum x_n y_n = \sum \frac{1}{n}$ diverges since it is the harmonic series.
- (c) Impossible. Since $\sum x_n$ and $\sum (x_n + y_n)$ both converge, we have that $\sum y_n = \sum (x_n + y_n) x_n$ converges as well by the Algebraic Limit Theorem for Series.
- (d) Consider

$$x_n = \begin{cases} 1/n & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

 $\sum_{n=0}^{\infty} (-1)^n x_n = 1/2 + 1/4 + 1/6 + \dots = \sum_{n=0}^{\infty} \frac{1}{2n}.$ Since $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=0}^{\infty} \frac{1}{2n} = 2\sum_{n=0}^{\infty} \frac{1}{n}$ also diverges.

Exercise 8 (2.7.5). By the Cauchy Condensation Test, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if $\sum_{n=0}^{\infty} 2^n \frac{1}{(2^n)^p}$ converges. Notice that $2^n \frac{1}{(2^n)^p} = \left(\frac{2}{2^p}\right)^n$. Thus, $\sum_{n=0}^{\infty} 2^n \frac{1}{(2^n)^p}$ converges if and only if $\left|\frac{2}{2^p}\right| < 1$ by the Geometric Series Test. It

follows that

$$\left|\frac{2}{2^{p}}\right| < 1 \iff \frac{2}{2^{p}} < 1$$

$$\iff 2 < 2^{p}$$

$$\iff 1 < 2^{p-1}$$

$$\iff \log_{2}(1)
$$\iff 0
$$\iff 1 < p.$$$$$$

Thus, we must have that p > 1.

- **Exercise 9** (2.7.9). (a) By assumption, we know that for all $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, it follows that $\left| \left| \frac{a_{n+1}}{a_n} \right| r \right| < \epsilon$. Since r < r' < 1, we can let $\epsilon = r' r$. Thus, we have $-r' + r < \left| \frac{a_{n+1}}{a_n} \right| r < r' r \implies \left| \frac{a_{n+1}}{a_n} \right| < r' \implies \frac{|a_{n+1}|}{|a_n|} < r' \implies |a_{n+1}| < |a_n|r' \implies |a_{n+1}| \leq |a_n|r'$.
 - (b) Since $\lim \left| \frac{a_{n+1}}{a_n} \right| = r$ and $\left| \frac{a_{n+1}}{a_n} \right| \ge 0$, we have that $0 \le r < r' < 1$ by the Order Limit Theorem. Thus, |r'| < 1. By the Geometric Series Test, we hence know that $|a_N| \sum (r')^n$ converges.
 - (c) Suppose $N \in \mathbb{N}$ and $n \geq N$. Then, notice that

$$\frac{|a_{N+n}|}{(r')^{n-1}} \le \dots \le \frac{|a_{N+3}|}{(r')^2} \le \frac{|a_{N+2}|}{(r')} \le |a_{N+1}| \le |a_N|r'.$$

Thus, we have that $0 \le |a_{N+n}| \le |a_N| (r')^n$. Since we know that $\sum |a_N| (r')^n$ converges from part (b), $\sum |a_n| = \sum |a_{N+n}|$ converges by the Comparison Test. Therefore, $\sum a_n$ converges too.

- **Exercise 10** (3.2.3). (a) \mathbb{Q} is not open. For example, no $V_{\epsilon}(0)$ is contained in \mathbb{Q} since we can always find an irrational number in $V_{\epsilon}(0)$. \mathbb{Q} is not closed. For example, $\sqrt{2}$ is a limit point of \mathbb{Q} but $\sqrt{2} \notin \mathbb{Q}$.
 - (b) \mathbb{N} is not open. For example, no $V_{\epsilon}(1)$ is contained in \mathbb{N} since we can always find a non-natural (e.g., rational) number in $V_{\epsilon}(1)$. \mathbb{N} is closed since it has no limit points.
 - (c) $\{x \in \mathbb{R} : x \neq 0\}$ is open since it is the union of two open sets $(-\infty, 0)$ and $(0, \infty)$. $\{x \in \mathbb{R} : x \neq 0\}$ is closed since it contains its limit points.
 - (d) $\{1+1/4+1/9+\cdots+1/n^2:n\in\mathbb{N}\}$ is not open. For example, no $V_{\epsilon}(1)$ is contained in the set since we can always find an irrational number in $V_{\epsilon}(1)$. $\{1+1/4+1/9+\cdots+1/n^2:n\in\mathbb{N}\}$ is not closed since $\pi^2/6$ is a limit point that is not in the set.
 - (e) $\{1+1/2+1/3+\cdots+1/n:n\in\mathbb{N}\}$ is not open. For example, no $V_{\epsilon}(1)$ is contained in the set since we can always find an irrational number in $V_{\epsilon}(1)$. $\{1+1/2+1/3+\cdots+1/n:n\in\mathbb{N}\}$ is closed since it does not contain any limit points.