Modèle à un Facteur

P. Hénaff

Version: 07 févr. 2024

Risque d'un titre individuel: un paradoxe!

Rappel: Frontière Efficiente

Figure 1: Droite de Marché des Capitaux

Relation Rendement/Risque

Portefeuille efficient:

$$\mu_P = r + \left(\frac{\mu_T - r}{\sigma_T}\right)\sigma_P$$

Titre individuel (CAPM/MEDAF):

$$\mu_i - r_f = \beta_i (\mu_M - r_f) \tag{1}$$

Derivation de la formule CAPM.

Decomposition du risque

$$r_i = r_f + \beta_i (r_M - r_f) + \epsilon_i$$

$$cov(\epsilon_i, r_M) = 0$$

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma_\epsilon^2$$

- ► Risque de marché $\beta_i^2 \sigma_M^2$
- ightharpoonup Risque spécifique σ_{ϵ}^2

Decomposition du risque d'un portefeuille

$$r_P = \sum_i w_i r_i$$

$$\beta_P = \sum_i w_i \beta_i$$

- Risque de marché $\beta_P^2 \sigma_M^2$
- Risque spécifique $\sum_{i} w_{i}^{2} \sigma_{\epsilon}^{2}$

Modèle statistique (Sharpe) et droite de marché des titres

$$R_i(t) = \alpha_i + \beta_i R_M(t) + e_i(t)$$

Données

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	ко
Observations	205.0000	205.0000	205.0000	205.0000	205.0000	205.0000	205.0000	205.0000	205.0000	205.0000	205.0000
NAs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Minimum	-0.3296	-0.2540	-0.1634	-0.5788	-0.1652	-0.1558	-0.2619	-0.1498	-0.1652	-0.1161	-0.1668
Quartile 1	-0.0305	-0.0429	-0.0284	-0.0500	-0.0167	-0.0190	-0.0272	-0.0290	-0.0251	-0.0213	-0.0198
Median	0.0287	0.0255	0.0201	-0.0013	0.0151	0.0192	0.0029	0.0106	0.0157	0.0074	0.0107
Arithmetic Mean	0.0251	0.0263	0.0166	0.0143	0.0087	0.0133	0.0067	0.0053	0.0148	0.0078	0.0080
Geometric Mean	0.0211	0.0216	0.0143	0.0047	0.0076	0.0118	0.0045	0.0034	0.0127	0.0068	0.0069
Quartile 3	0.0838	0.0821	0.0592	0.0557	0.0369	0.0496	0.0453	0.0451	0.0615	0.0377	0.0397
Maximum	0.2377	0.5413	0.2495	1.2738	0.1270	0.1497	0.2692	0.1734	0.1890	0.1314	0.1419
SE Mean	0.0062	0.0070	0.0047	0.0103	0.0032	0.0038	0.0047	0.0043	0.0045	0.0032	0.0033
LCL Mean (0.95)	0.0129	0.0126	0.0073	-0.0060	0.0024	0.0058	-0.0025	-0.0031	0.0058	0.0015	0.0016
UCL Mean (0.95)	0.0374	0.0401	0.0258	0.0347	0.0150	0.0208	0.0160	0.0137	0.0237	0.0142	0.0145
Variance	0.0079	0.0099	0.0045	0.0218	0.0021	0.0030	0.0045	0.0037	0.0042	0.0021	0.0022
Stdev	0.0890	0.0997	0.0672	0.1477	0.0457	0.0547	0.0673	0.0611	0.0650	0.0460	0.0468
Skewness	-0.4785	0.6524	0.1045	2.8996	-0.5549	-0.4430	0.3389	-0.2727	-0.1381	-0.0780	-0.4822
Kurtosis	1.2512	3.1559	0.5505	25.7567	0.8687	0.3971	2.9693	0.0720	0.2214	-0.0754	1.2419

MSFT & SPY

monthly.ret[, c("MSFT", "SPY")]

2007-01-31 / 2024-01-31

Calcul de β

beta_roll <- na.omit(rollapply(data=monthly.ret\$MSFT, Rb=monthly.ret\$MSFT, Rb=monthly.ret\$MSF

Calcul de α

alpha_roll <- na.omit(rollapply(data=monthly.ret\$MSFT, Rb=rFUN=CAPM.alpha, width=36,

Mesures de performance

Prendre en compte à la fois la rentabilité moyenne et le risque subi.

- Ratio de Sharpe, fondé sur σ , adapté à l'évaluation d'un portefeuille bien diversifié
- ▶ Alpha de Jensen, fondé sur β , adapté aux titres individuels.

Ratio de Sharpe

$$S_P = \frac{\overline{r_P} - \overline{r_f}}{\sigma_P}$$

Permet de visualiser la performance par rapport à la CML sur a graphique rendement/risque.

Ratio de Treynor

$$S_P = \frac{\overline{r_P} - \overline{r_f}}{\beta_P}$$

Permet de visualiser la performance du portefeuille par rapport à la droite des actifs risqués (Security Market Line: SML)

Ratio M^2 (Modigliani & Miller)

$$M_P^2 = \overline{r_f} + \frac{\sigma_B}{\sigma_P} (\overline{r_P} - \overline{r_f})$$

Une mesure de performance ajustée pour le risque, à comparer avec le rendement moyen d'un portefeuille de référence ${\cal B}$.

Alpha de Jensen

$$\overline{R_p} - r_f = \alpha_p + \beta_p (\overline{R_M} - r_f) + \epsilon_p$$

Visuellement, le terme α_p représente la distance verticale entre le portefeuille et la SML dans un diagramme rendement/beta.

Division du travail en Gestion de Portefeuille

Espérance de rendement (analyse financière)

$$E(R_i(t)) = \alpha_i + \beta_i E(R_M(t))$$

Variance (gestion du risque)

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma(e_i)^2$$