Actuators (active joints)

The DC Motor

The Direct Current (DC) Motor

the basic principle:

a current flowing through a looped wire in a magnetic field

Commutation

- changes the direction of the current
- mechanical
 - stator
 - rotor with commutator
 - brushes

The real thing

DC-motor: Resistor and Inductance

$$V = V_{bat} + V_{ind}$$

$$= I \cdot R + c' \cdot \omega$$

- induction proportional to change in current, i.e., commutation
- torque proportional to current and magnetic flux

conservation
$$P_m = P_e - P_h$$
 of energy $\iff T \cdot \omega = V \cdot I - I^2 \cdot R$ $\iff c'' \cdot I \cdot \omega = (I \cdot R + c' \cdot \omega) \cdot I - I^2 \cdot R$ $\iff c'' \cdot I \cdot \omega = I^2 \cdot R + c' \cdot \omega \cdot I - I^2 \cdot R$ $\implies c'' = c'$

$$V = V_{bat} + V_{ind}$$

$$= I \cdot R + c' \cdot \omega$$

$$= T/c'' \cdot R + c' \cdot \omega$$

- induction proportional to change in current, i.e., commutation
- torque proportional to current and magnetic flux

conservation
$$P_m = P_e - P_h$$
 of energy $\iff T \cdot \omega = V \cdot I - I^2 \cdot R$ $\iff c'' \cdot I \cdot \omega = (I \cdot R + c' \cdot \omega) \cdot I - I^2 \cdot R$ $\iff c'' \cdot I \cdot \omega = I^2 \cdot R + c' \cdot \omega \cdot I - I^2 \cdot R$ $\implies c'' = c'$

Maximum Torque and Speed

single constant c

$$\omega = -\frac{R}{c^2} \cdot T + \frac{V}{c}$$

$$P_m = \omega \cdot T$$

$$= -\frac{R}{c^2} \cdot T^2 + \frac{V}{c} \cdot T$$

$$\omega = 0$$
 : $T_{max} = \frac{c \cdot V}{R}$

no load speed
$$T=0$$
 : $\omega_{max}=\frac{V}{c}$

Maximum Mechanical Power

$$-\frac{2 \cdot R}{c^2} \cdot T_{P_m^{max}} + \frac{V}{c} = 0$$

$$\iff \frac{2 \cdot R}{c^2} \cdot T_{P_m^{max}} = \frac{V}{c}$$

$$\iff T_{P_m^{max}} = \frac{1}{2} \cdot \frac{c \cdot V}{R}$$

$$\iff T_{P_m^{max}} = \frac{1}{2} \cdot T_{max}$$

mechanical power

- as function in T
- find zero-value of the1st derivative
- get the related T

$$\omega_{P_m^{max}} = -\frac{R}{c^2} \cdot \frac{1}{2} \cdot \frac{c \cdot V}{R} + \frac{V}{c}$$

$$\iff \omega_{P_m^{max}} = \frac{V}{c} - \frac{1}{2} \cdot \frac{V}{c}$$

$$\iff \omega_{P_m^{max}} = \frac{1}{2} \cdot \frac{V}{c}$$

$$\iff \omega_{P_m^{max}} = \frac{1}{2} \cdot \omega_{max}$$

- use the according T
- to find the related ω

$$P_m^{max} = rac{1}{4} \cdot T_{max} \cdot \omega_{max}$$

Maximum Efficiency

current is linear in the torque $I = I_0 + T \cdot \frac{I_S - I_0}{T_0}$

$$I = I_0 + T \cdot \frac{I_S - I_0}{T_{max}}$$

$$\eta = \frac{P_m}{P_e}$$

$$\iff \eta = \frac{-\frac{R}{c^2} \cdot T^2 + \frac{V}{c} \cdot T}{V \cdot (I_0 + T \cdot \frac{I_S - I_0}{T_{max}})}$$

$$\iff \eta = \frac{\frac{V}{c} \cdot T - \frac{R}{c^2} \cdot T^2}{V \cdot (\frac{I_S - I_0}{T_{max}} \cdot T + I_0)}$$

$$\eta = \frac{a \cdot T - b \cdot T^2}{c \cdot T + d}$$

maximum efficiency

$$\eta_{max} = (1 - \sqrt{rac{I_0}{I_S}})^2$$

Motor Data Graph

DC-motor Technology

old principle but many recent advances

- integration
- efficiency
- combination with electronics
 - mechatronics
 - brushless motors

Direction Control

H-Bridge

- discrete
 - power-transistors
- integrated
 - wide range available
 - including additional features
 - stall detect
 - heat protection

Speed Control

Pulse Width Modulation (PWM)

- base-frequency
- duty-cycle

Gears

Basics

gears

- converting speed to torque
- changing the direction of motion

The Gear Wheel

- metric system
 - module m
 - pitch diameter (mm) / #teeth
 - common: 0.5 10 *m*

- occasionally (esp. US)
 - diametrical pitch p_d
 - #teeth / pitch diameter (inch)
 - $p_d = 25.4 / m$

Important Formulas

z teeth

- pitch diameter $D = m \cdot z$
- outer diameter $D_o = D + 2 \cdot m = m \cdot (z+2)$
- base diameter $D_b = D 2.5 \cdot m = m \cdot (z 2.25)$

distance d_{AB} between two gears A & B

$$d_{AB} = \frac{D_A + D_B}{2} = \frac{m}{2}(z_A + z_B)$$

Gear Ratio

- 1 rotation of A
 - pitch line of A travels the circumference C_A of its pitch line
 - i.e., $D_A = m \cdot z_A \Rightarrow C_A = \pi D_A = \pi \cdot m \cdot z_A$
- B is driven the same distance
 - i.e., the pitch line of B moves by C_A
- i.e., B rotates by the fraction of C_A over its pitch line C_B
 - but in the opposite direction

$$\omega_{B} = -\frac{C_{A}}{C_{B}}\omega_{A} = -\frac{\pi \cdot m \cdot z_{A}}{\pi \cdot m \cdot z_{B}}\omega_{A}$$

$$= -\frac{z_{A}}{z_{B}}\omega_{A}$$
and the formula of the formula z_{B}

speed <-> torque
conversion

$$T_{B}=-\frac{z_{B}}{z_{A}}T_{A}$$

Simple Gear-Train

3 axes:

- axis a1 with gear g1
- axis a2 with gears g2a, g2b
- axis a3 with gear g3

 Z_x = #teeth of gear g_x $\omega(a)$ = angular velocity of axis aT(a) = torque at axis a

$$\omega(a_2) = -\frac{Z_1}{Z_{2a}} \cdot \omega(a_1)$$

$$\omega(a_3) = -\frac{Z_{2b}}{Z_3} \cdot \omega(a_2)$$
$$= -\frac{Z_{2b}}{Z_3} \cdot -\frac{Z_1}{Z_{2a}} \cdot \omega(a_1)$$

$$T(a_2) = -\frac{Z_1}{Z_{2a}} \cdot T(a_1)$$

$$T(a_3) = -\frac{Z_3}{Z_{2b}} \cdot T(a_2)$$

= $-\frac{Z_3}{Z_{2b}} \cdot -\frac{Z_{2a}}{Z_1} \cdot T(a_1)$

Backlash

spare room

- source of error
 - hysteresis
- but needed
 - otherwise jamming

- small backlash only possible with
 - very precise manufacturing
 - small wear-out, i.e., no changes of the teeth

Idler

single gear on one axis

- reverses direction
- displacement
- mediator
- gear-ratio unaffected

External & Internal Spur

- external
 - convex shape
- internal
 - concave shape
 - different sense of rotation than external

$$\omega_B = -\frac{z_A}{z_B}\omega_A$$

1 ext. & 1 int.:
$$\omega_B = \frac{z_A}{z_B} \omega_A$$
 (no minus)

Bevel and Miter Gear

bevel

- for non-parallel axes
- inclined teeth

miter

• bevel with GR 1:1

Helical Gear

- teeth cut in angles
 - increased contact surface
 - higher forces
- screw gear
 - helix angle 45°
 - 90° transmission

Worm Gear

- can lock position
- 90° intersection
- worm #teeth = 1
- => high gear ratio

Planetary Gears

- compact
- high gear ratio
- stackable on motor axis

Example

gear-ratio:

$$GR = \frac{N_C}{N_S} = \left(\frac{N_S}{N_C}\right)^{-1} = \frac{z_S}{z_I + z_S}$$
 (sun: input, carrier: output)

number of teeth

- internal:
- sun: z_s
- sun: z_S planet: $z_{P=}=(z_I z_S)/2$

note:

- #teeth proportional to radii
- hence z_P determined by z_i and z_s

Proof:

rotate sun once:

$$N_S = 1, \ N_P = \frac{-z_S}{z_P}, \ N_I = \frac{-z_S}{z_I}, \ N_C = 0$$

compensate rotation of the housing:

$$N_S = 1 + \frac{z_S}{z_I}, \ N_P = \frac{-z_S}{z_P} + \frac{z_S}{z_I}, \ N_I = 0, \ N_C = \frac{z_S}{z_I}$$

sun over carrier rotations:

$$\frac{N_S}{N_C} = \left(1 + \frac{z_S}{z_I}\right) \cdot \left(\frac{z_S}{z_I}\right)^{-1} = \left(1 + \frac{z_S}{z_I}\right) \cdot \left(\frac{z_I}{z_S}\right) = \frac{z_I}{z_S} + 1 \implies GR = \left(\frac{N_S}{N_C}\right)^{-1} = \left(\frac{z_I + z_S}{z_S}\right)^{-1}$$

start:

$$N_S = 0$$
 $N_P = 0$
 $N_I = 0$
 $N_C = 0$

rotate sun once:

$$N_{S} = 1$$

$$N_{P} = \frac{-z_{S}}{z_{P}}$$

$$N_{I} = \frac{-z_{S}}{z_{P}} \frac{z_{P}}{z_{I}} = \frac{-z_{S}}{z_{I}}$$

$$N_{C} = 0$$

rotate sun once:

$$N_{S} = 1$$

$$N_{P} = \frac{-z_{S}}{z_{P}}$$

$$N_{I} = \frac{-z_{S}}{z_{I}}$$

$$N_{C} = 0$$

compensate rotation of the housing:

$$N_{S} = 1 - \frac{-z_{S}}{z_{I}}$$

$$N_{P} = \frac{-z_{S}}{z_{P}} + \frac{z_{S}}{z_{I}}$$

$$N_{I} = \frac{-z_{S}}{z_{I}} + \frac{z_{S}}{z_{I}} = 0$$

$$N_{C} = \frac{z_{S}}{z_{I}}$$

Harmonic Gear

aka harmonic drive

Harmonic Gear

Harmonic Gear

- wave generator
 - rigid, eliptical
- flexible spline
 - $-z_f$ teeth
- rigid spline
 - $-z_r$ teeth

$$-z_r = z_f + d$$

$$GR_{hg} = \frac{-d}{z_r} = -\frac{z_r}{z_f} + 1$$

(typical) example

$$- d = 2$$
 $- z_r = 202$

$$-z_f = 200$$

$$-GR = 1:100$$

Harmonic Gear

image source: Mitsubishi (joints in the PA-10 robot arm are driven by harmonic gears)

Active Translation

linear actuator

DC motor with (ball)screw and (ball)nut

Active Translation

e.g., metric (MX) coarse thread i.e., standard thread (there is also fine thread)

Nominal size	Major diameter	Pitch	Minor diameter	Tap drill size
M ₆	6.00	1.00	4.92	5.00
M8	8.00	1.25	6.65	6.75
M10	10.00	1.50	8.38	8.50
M12 1 Metric thr	12.00 read	1.75 N	10.11 Llinor diamete	10.00 er ≈ Tap drill size

Active Translation

linear actuator

DC motor with (ball)screw and (ball)nut

bearings circulating in the nut

- minimize friction
- and distribute forces

Axis Bearings

- support vertical load on an axis
 - minimize friction
 - maximize support
- sliding & ball bearing

Basic Formulas

$$f_{p_1} = f_{load} \cdot \frac{b}{a+b}$$

$$f_{p_2} = f_{load} \cdot \frac{a}{a+b}$$

$$f_{p_4} = f_{load} \cdot \frac{d}{c}$$

$$f_{p_4} = f_{load} \cdot \frac{d}{c}$$

$$f_{p_5} = f_{load} \cdot \frac{c+d}{c}$$

Motor-Units

- motor
- gear-box
- position-feedback
 - shaft encoder
 - optical / hall-effect
 - incremental / absolute
 - extreme point

Motion: Incremental Shaft-Encoder

- often 3 channels
- 1x calibration (1 pulse per rotation)
- 2x n pulses, 90° phase shift, quadrature encoder

Motion: Incremental Shaft-Encoder

quadrature encoder

Absolute Shaft-Encoder

to measure

- the absolute orientation
- of a rotational joint

	Gray Codo					
	Gray Code					
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	1		
3	0	0	1	0		
4	0	1	1	0		
5	0	1	1	1		
6	0	1	0	1		
7	0	1	0	0		
8	1	1	0	0		
9	1	1	0	1		
10	1	1	1	1		
11	1	1	1	0		
12	1	0	1	0		
13	1	0	1	1		
14	1	0	0	1		
15	1	0	0	0		

= 1 bit "flips", $0 \rightarrow 1 \lor 1 \rightarrow 0$

- Gray encoding
- to minimize Hamming distance
- less ambiguity when the marker sensors are between two sectors

Absolute Shaft-Encoder

degrees	binary				Gr	ay		
0.0/360.0	0	0	0	0	0	0	0	0
22.5	0	0	0	1	0	0	0	1
45.0	0	0	1	0	0	0	1	1
67.5	0	0	1	1	0	0	1	0
90.0	0	1	0	0	0	1	1	0
112.5	0	1	0	1	0	1	1	1
135.0	0	1	1	0	0	1	0	1
157.5	0	1	1	1	0	1	0	0
180.0	1	0	0	0	1	1	0	0
202.5	1	0	0	1	1	1	0	1
225.0	1	0	1	0	1	1	1	1
247.5	1	0	1	1	1	1	1	0
270.0	1	1	0	0	1	0	1	0
292.5	1	1	0	1	1	0	1	1
315.0	1	1	1	0	1	0	0	1
337.5	1	1	1	1	1	0	0	0
0.0/360.0	0	0	0	0	0	0	0	0

sensors in between two sectors

=>

possible reading of "left"/"right" sector for every bit

degrees	Gray			
•••	•••			
157.5	0	1	0	0
180.0	1	1	0	0
•••	•••			

2 possible readings:

- 0100
- 1100

degrees	binary				
•••	•••				
157.5	0	1,	1	1_	
180.0	1	0	0	0	
•••		•	•		

16 possible readings:

- 0000
- ...
- 1111

Encoder Implementation

optical

slits reflective disk Light source Photo detector Photo detector detector

magnetic

(or magnetic ink dots on disk)

Servo

- DC-motor
- gear-box
- electronics
 - feedback loop
 - via potentiometer (analog)
 - Pulse Code Modulation (PCM)

Servo

Pulse Code Modulation (PCM)

- on time
 - neutral: 1.5 msec
 - min angle: ca. 1 msec
 - max angle: ca. 2 msec
- command repetition rate
 - to hold position
 - <20-30 msec
- slew rate
 - angular speed

