Semidefinite Relaxation for Detection of 16-QAM Signaling in MIMO Channels

Betegón García, Miguel¹ mbg51@alumnos.unican.es

Sierra Menéndez, Sergio¹ ssm86@alumnos.unican.es

¹Master's Degree in Telecommunication Engineering

OUTLINE 2/22

Introduction

Intuition

Semidefinite relaxation detector

16-QAM ML Detection

MIMO system

ML detector

SDR via rank relaxation

Approximation techniques

Approximation techniques

Quantiz function

Simulation results

Conclusions & Closing Remarks

INTUITION I 3/2

MIMO¹ detection is one of the fundamental problems in state-of-the-art communication systems

- ► The optimal algorithm is the maximum likelihood (ML) detector
- ► The most common suboptimal detectors are the linear receivers:
 - (I) Matched filter (MF)
 - (II) Zero forcing (ZF)
 - (III) Minimum mean-squared error (MMSE)
- ▶ One of the most promising suboptimal detection strategies is the *semidefinite relaxation (SDR)* detector

ML detector is a non convex optimization problem

► SDR is an attempt to approximate it using a convex program that can be efficiently solved in polynomial time

Two approaches for deriving the SDR

Formulate the ML problem in a higher dimension and then relax the nonconvex constraints

The Lagrange bidual of the ML optimization problem, i.e., the dual program of the dual of the ML problem

The resulting SDR is a semidefinite program (SDP)

- ➤ SDR was proposed for detection of binary/quadratic phase shift keying (BPSK/QPSK) constellations
 - ► Simulation results show that the SDR provides near-ML performance
 - ▶ At high signal-to-noise ratios (SNRs), there is a high probability that SDR will yield the true ML decision
- ▶ [1] Extended these works to the detection of other constellations used in digital communications

$$\mathbf{\bar{y}}=\mathbf{\bar{H}}\mathbf{\bar{s}}+\mathbf{\bar{w}}$$

Where:

 $\bar{\boldsymbol{y}}$ – Received signal of length N

 $\bar{\boldsymbol{H}} - N \times N$ channel matrix

 \bar{s} – Length K vector of transmitted symbols

 $\bar{\boldsymbol{w}}$ – Length N complex normal zero-mean noise vector with covariance $\sigma^2 \mathbf{I}$

N – Number of transmit and receive antennas

In order to avoid the need to handle complex-valued variables, it is customary to use the following decoupled model:

$$y = Hs + w$$

$$\mathbf{y} = \begin{bmatrix} \Re(\bar{\mathbf{y}}) \\ \Im(\bar{\mathbf{y}}) \end{bmatrix}; \quad \mathbf{s} = \begin{bmatrix} \Re(\bar{\mathbf{s}}) \\ \Im(\bar{\mathbf{s}}) \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} \Re(\bar{\mathbf{w}}) \\ \Im(\bar{\mathbf{w}}) \end{bmatrix};$$

$$\mathbf{H} = \begin{bmatrix} \Re(\bar{\mathbf{H}}) & -\Im(\bar{\mathbf{H}}) \\ \Im(\bar{\mathbf{H}}) & \Re(\bar{\mathbf{H}}) \end{bmatrix};$$

ML:
$$\begin{cases} \min_{s} ||\mathbf{y} - \mathbf{H}\mathbf{s}||^2 \\ \text{s.t.} \quad s_i \in \{\pm 1, \pm 3\}, \quad i = 1, \dots, 2K \end{cases}$$

- ► It is a combinatorial problem
- ▶ It can be solved in a brute-force fashion by searching over all of the 16^K possibilities
- \triangleright as K increases, this option becomes impractical

1. Replace the finite alphabet constraint by a polynomial constraint. So being $s_i \in \{\pm 1 \pm 3\}$:

$$(s_i + 1)(s_i - 1)(s_i + 3)(s_i - 3) = 0,$$
 $i = 1, \dots, 2K$

2. Introduce slack variables $t_i = s_i^2$ for i = 1, ..., 2K to replace the high-order polynomial constraint by multiple quadratic constraints:

$$\begin{cases} \min_{s,t} ||\mathbf{y} - \mathbf{H}\mathbf{s}||^2 \\ \mathbf{s.t.} \quad s_i^2 - t_i = 0, \quad i = 1, \dots, 2K \\ t_i^2 - 10t_i + 9 = 0, \quad i = 1, \dots, 2K \end{cases}$$

- 3. The constraints must be convexified, reformulating them in a higher dimension and relaxing.
 - (I) Replace the vectors \mathbf{s} and \mathbf{t} with a rank-one semidefinite matrix:

$$\mathbf{W} = \mathbf{w}\mathbf{w}^T$$
, where $\mathbf{w}^T = [\mathbf{s}^T \quad \mathbf{t}^T \quad 1]$

(II) Therefore, problem stated in 2. is equivalent to:

$$\begin{cases} \min_{\mathbf{W}} \mathbf{Tr} \begin{cases} \mathbf{W} \begin{bmatrix} \mathbf{H}^T \mathbf{H} & \mathbf{0} & -\mathbf{H}^T \mathbf{y} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -\mathbf{y}^T \mathbf{H} & \mathbf{0} & \mathbf{y}^T \mathbf{y} \end{bmatrix} \\ \mathbf{s.t.} & diag\{\mathbf{W}_{1,1}\} - \mathbf{W}_{2,3} = \mathbf{0} \\ & diag\{\mathbf{W}_{2,2}\} - 10\mathbf{W}_{2,3} + 9\mathbf{1} = \mathbf{0} \\ & \mathbf{W} \succeq \mathbf{0} \\ & \mathbf{W}_{3,3} = 1 \\ & rank(\mathbf{W}) = 1 \end{cases}$$

(III) The program (II) is not convex because of the rank-one constraint. Dropping this constraint **results in the SDR**:

$$\begin{cases} \min_{\mathbf{W}} \mathbf{Tr} \begin{cases} \mathbf{W} \begin{bmatrix} \mathbf{H}^T \mathbf{H} & \mathbf{0} & -\mathbf{H}^T \mathbf{y} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -\mathbf{y}^T \mathbf{H} & \mathbf{0} & \mathbf{y}^T \mathbf{y} \end{bmatrix} \\ \mathbf{s.t.} & diag\{\mathbf{W}_{1,1}\} - \mathbf{W}_{2,3} = \mathbf{0} \\ & diag\{\mathbf{W}_{2,2}\} - 10\mathbf{W}_{2,3} + 9\mathbf{1} = \mathbf{0} \\ & \mathbf{W} \succeq \mathbf{0} \\ & \mathbf{W}_{3,3} = \mathbf{1} \end{cases}$$

- ▶ As the SDR algorithm is an approximation of the ML algorithm, there is a strict relationship between **W** and the transmitted symbols.
- ▶ According to the standard, there are three techniques for approximation of symbols sent from W. All of then are based on the following quantiz function.

Quantiz function

```
def quantiz (entry, symbols):
      result = np.empty((len(entry),1))
2
      for i in range(len(entry)):
3
          minimum = float("inf")
4
          for val in symbols:
5
               if abs(val - entry[i]) < minimum:</pre>
6
                   result[i,0] = val
7
                   minimum = abs(val - entry[i])
8
      return result
9
```

- ▶ Simple quantization: $\hat{s}_i = quantiz(\mathbf{W}_i; 4N + 1)$.
- **Eigenvalue decomposition**: Where **u** are the eigenvalues of $\widetilde{\mathbf{W}}$, being $\widetilde{\mathbf{W}}$:

$$\widetilde{\mathbf{W}} = egin{pmatrix} \mathbf{W}_{1,1} & \mathbf{W}_{1,3} \ \mathbf{W}_{3,1} & 1 \end{pmatrix}$$

$$\hat{s}_i = quantiz(\frac{\mathbf{u}_i}{\mathbf{u}_{2K+1}})$$

▶ Randomization: It is based on the Cholesky factorization of $\widetilde{\mathbf{W}} = \mathbf{V}^T \mathbf{V}$, being \mathbf{r} a random evenly distributed vector of length 2N+1. We denote the columns of \mathbf{V} by \mathbf{v}_i

$$\hat{s}_i = quantiz(\frac{\mathbf{v}_i^T \mathbf{r}}{\mathbf{v}_{2K+1}^T \mathbf{r}})$$

```
Valor de los símbolos de entrada
 [[1]
 [-3]
 [3]]
Valor simple quantization
[[ 1.]
 [-1.]
 [-3.]
 [3.]]
Valor eigenvalue descomposition
[[ 1.]
 [-3.]
Valor randomization
 [[ 1.]
 [ 3.]]
```


- ▶ Our approach shows that other digital constellations, can also be addressed using SDR by formulating the constraints set.
- ▶ As we can see in the graphics in some of our results simple quantization and eigenvalue decomposition has similar results in the plots, even being the same with K=2 and K=6.
- ▶ We find the computationally efficient SDR detector as a competitive detector in comparison to other suboptimal methods.

A. Wiesel, Y. C. Eldar, S. Shamai

Semidefinite Relaxation for Detection of 16-QAM Signaling in MIMO Channels.

IEEE, Signal Processing Letters, vol. 12, no. 9, pp. 653-656, Sept. 2005.

S. Diamond, S. Boyd

CVXPY: A Python-embedded Modeling Language for Convex Optimization Journal of Machine Learning Research, vol. 17, no. 83, pp. 1-5, 2016.

- M. Betegón, S. Sierra.

 16-QAM Detection MIMO, 2019.

 https://github.com/betegon/16-QAM-Detection-MIMO
- Mosek Linear, Quadratic, Semidefinite and Mixed Integer problems solver, 2019.
 - https://www.mosek.com/
- Google Google colaboratory, 2019. https://colab.research.google.com/