Les exercices de base avant le partiel

- 1. Utiliser v_p pour montrer qu'un nombre de la forme α^{β} n'est pas rationnel où $\alpha, \beta \in \mathbb{Q}$:
 - a. (TD1 Ex10) $\sqrt{2} \notin \mathbb{Q}$.
 - b. (Partiel nov 2018) $\sqrt[3]{5/3} \notin \mathbb{Q}$.
 - c. (Examen juin 2019) $(4/7)^{4/7} \notin \mathbb{Q}$.

Variante:

- a. **(TD2 Ex4)** $(2+\sqrt[3]{20})/3 \notin \mathbb{Q}$.
- b. (Partiel nov 2019) $(\sqrt[3]{40} 3)/7 \notin \mathbb{Q}$.
- 2. Utiliser v_p pour (dé)montrer que $a^m \mid b^n \Longrightarrow a^s \mid b^t$ où $m, n, s, t \in \mathbb{N}$ sont les entiers donnés.
 - a. (TD1 Ex3.4 & Partiel 2019) $a^3 | b^2 \Longrightarrow a | b$.
 - b. **(TD1 Ex3.5)** $a^3 | b^3 \Longrightarrow a | b$.
 - c. (Partiel 2018 & Examen 2019) $a^2 \mid b^2 \Longrightarrow a \mid b$.

Variant (Partiel 2019, vrai ou faux):

- a. si $a^3 \mid b^2$ et $b \mid c^2$, alors $a \mid c$ (Indication: c'est faux, pourquoi)?
- b. si $a^3 \mid b^2$ et $b^3 \mid c^4$, alors $a \mid c$ (Indication: c'est vrai, pourquoi)?
- 3. Utiliser l'algorithme d'Euclide pour calculer pgcd.
- 4. Utiliser l'algorithme d'Euclide pour trouver une relation de Bézout $a\,x+b\,y=\mathrm{pgcd}(a,b)$. Voir §2.4.3 du polycopié, ou page 14 du tableau.
- 5. (Utiliser l'algorithme d'Euclide pour) résoudre $a\,x+b\,y=c$. Voir §2.5.1 et §2.5.2 du polycopié.
 - a. (TD2, Ex9)
 - b. (Partiel nov 2018) 10x + 16y = 18.
 - c. (Examen juil 2020) Expliciter l'ensemble $\{n \in \mathbb{Z} \mid 20x + ny = 14 \text{ admet une solution } x, y \in \mathbb{Z}\}.$
- 6. Utiliser l'algorithme d'Euclide pour résoudre une équation $a x \equiv b \pmod{m}$. Voir §3.4.7 du polycopié.
 - a. **(TD3, Ex4.b)** $10 x \equiv 6 \pmod{14}$
 - b. (Examen jan 2019) $10 x \equiv 18 \pmod{24}$
 - c. (Partiel nov 2019) $64 x \equiv 14 \pmod{100}$
 - d. (Partiel nov 2019) $65 x \equiv 15 \pmod{100}$
- 7. Utiliser l'algorithme d'Euclide pour résoudre un système $\left\{\begin{array}{ll}x\equiv a\pmod m\\x\equiv b\pmod n\end{array}\right.$. Voir §3.3.4, §3.3.5, §3.4.9 du polycopié.
- 8. En combinant les méthodes précédentes, résoudre un système $\left\{ \begin{array}{l} a\,x\equiv b\pmod m\\ c\,x\equiv d\pmod n \end{array} \right.$
 - a. (TD3, Ex4.c)
 - b. (Partiel nov 2018, Ex5.bc)
 - c. (Examen juin 2019, Ex5.b)
 - d. (Partiel nov 2019, Ex6)
 - e. (Examen jan 2020, Ex1)