Листок №АС1

Плоские алгебраические кривые -1

11-й "Д" КЛАСС 2012 г

Определение 1. Одночленом от двух переменных x и y (над \mathbb{R}) называется выражение вида ax^my^n , где $a \in \mathbb{R}$, $m, n \in \mathbb{Z}^+$. Сумма нескольких одночленов такого вида (с приведенными подобными) называется многочленом от двух переменных x и y. Сумма и произведение многочленов от двух переменных определяются аналогично сумме и произведению многочленов от одной переменной. Множество всех многочленов от x, y (над \mathbb{R}) обозначают $\mathbb{R}[x, y]$.

Задача 1. Дайте определение степени многочлена $A \in \mathbb{R}[x,y]$ (обозначается deg A).

Задача 2. Пусть A(x,y), B(x,y) — ненулевые многочлены.

а) Докажите, что $\deg AB = \deg A + \deg B$. **б)** Что можно сказать о величине $\deg(A+B)$?

Задача 3. Дайте определение деления с остатком для многочленов от двух переменных. Всегда ли такое деление возможно?

Задача 4. Дайте определение неприводимого (над \mathbb{R}) многочлена из $\mathbb{R}[x,y]$.

Задача 5. Докажите неприводимость многочленов: **a)** $x^2 + y^2 - 1$; **б)** $y^2 - x$; **в)** xy - 1.

Задача 6. Рассмотрим окружность $x^2 + y^2 = 1$ и прямые проходящие через точку A(0;1), не параллельные оси абсцисс. Пусть C — точка пересечения одной из таких прямых с осью абсцисс, а B — точка пересечения этой прямой с окружностью.

- а) Докажите, что сопоставляя точку B точке C, мы задаем взаимно-однозначное соответствие между точками прямой Ox и точками окружности;
- **б)** Докажите, что точка B имеет рациональные координаты тогда и только тогда, когда точка C имеет рациональные координаты.

Задача 7. Найдите все целочисленные решения уравнения $x^2 + y^2 = z^2$.

Определение 2. Плоской алгебраической кривой называется множество точек плоскости, координаты которых удовлетворяют уравнению f(x,y) = 0, где $f(x,y) \in \mathbb{R}[x,y]$.

Итак, в задаче 7 мы нашли все рациональные точки на алгебраической кривой, заданной многочленом второй степени $x^2 + y^2 = 1$.

Априори не очевидно, есть ли хотя бы одна рациональная точка на кривой $ax^2 + by^2 = c$, где числа a, b, c — целые. Но если хотя бы одна точка есть, то метод из задачи 6 обобщается.

Задача 8. Найдите все целочисленные решения уравнения

a)
$$x^2 + 2y^2 = 3z^2$$
; 6) $x^2 - y^2 = z^2$.

Задача 9. Нарисуйте плоские кривые, задающиеся следующими многочленами:

а) x-y; б) x^2-y^2 ; в) $y-x^2$; г) x^2+y^2-1 ; д) xy-1; е) x^2y-xy^2+y-x ; ж) ax^2+by^2-1 , где a,b- такие числа, что a>b>0; з) ax^2-by^2-1 , где a,b- такие числа, что a>b>0; и) y^2-x^3 ; к) $y-1-x^3$; л) y^2-1-x^3 ; м) y^2-x-x^3 ; н) $y^2-x^2-x^3$.

Определение 3. Точка $A(x_0;y_0)$ на кривой f(x,y)=0 называется неособой, если существует прямая $\begin{cases} x=x_0+at, \\ y=y_0+bt. \end{cases}$ проходящая через точку A, такая, что t=0 — корень уравнения $f(x_0+at,y_0+bt)=0$

кратности ровно 1. В противном случае, точка А называется особой.

Задача 10. Найдите (какие-нибудь) особые точки на кривых

a)
$$x^2 + x^3 - y^3 = 0$$
; 6) $x^2 + x^3 - y^2 = 0$.

Задача 11. Сколько особых точек может быть на кривой

а) второй степени; б) третьей степени.

Задача 12. Найдите все решения в рациональных числах уравнения

a)
$$x^2 + x^3 = y^3$$
; 6) $x^2 + x^3 = y^2$.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 5 5 6 а б в а	$ \begin{array}{c c c c c c} 6 & 6 & 7 & 8 & 8 \\ a & 6 & a & 6 \end{array} $	9 9 9 9 9 9 8 а б в г д е ж	9 10 10 11 11 12 12 н а б а б а б