Clase 10 - Evaluación de supuestos pruebas paramétricas

OCE 386 - Introducción al análisis de datos con R..

Dr. José A. Gallardo. jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

12 October 2021

PLAN DE LA CLASE

1.- Introducción

- Supuestos de los análisis paramétricos.
- Consecuencias de la violación de los supuestos.
- Métodos gráficos y análisis de residuos para evaluar supuestos.
- Pruebas de hipótesis para evaluar supuestos.

2.- Práctica con R y Rstudio cloud

- Evaluar supuestos de las pruebas paramétricas.
- Elaborar un reporte dinámico en formato pdf.

SUPUESTO 1: INDEPENDENCIA

Independencia

Cada observación de la muestra no debe estar relacionada con otra observación de la misma muestra.

Si se viola este supuesto la prueba paramétrica NO es válida.

Ejemplo violación del supuesto

- Muestreo de animales de una misma familia.
- Diversidad de especies en una misma muestra de plancton.
- Medidas repetidas en un mismo individuo (antes y después de un tratamiento).

SUPUESTO 2: HOMOGENEIDAD DE VARIANZAS

Homocedasticidad

En el caso de comparación de dos o más muestras éstas deben provenir de poblaciones con la misma varianza.

Alguna heterogeneidad es permitida, particularmente con n > 30.

SUPUESTO 3: NORMALIDAD

Normalidad

Los datos de muestreo se obtienen de una población que tiene distribución normal.

Ejemplos de violación del supuesto

- La distribución no es simétrica.
- La variable no es de tipo continua.
- Tiene límites a la izquierda o derecha como los porcentajes.

VIOLACIÓN DEL SUPUESTO DE NORMALIDAD

¿Cuál es el problema?

Cambia la probabilidad de rechazar la hipótesis nula.

VIOLACIÓN DEL SUPUESTO DE NORMALIDAD 2

¿Cómo afecta que la población no tenga distribución normal a la probabilidad de rechazar?

n	Cola izq.	Cola der.	lphaEmpí rica
5	0,20	0,26	0,46
10	0,24	0,28	0,52
20	0,23	0,26	0,49
30	0,24	0,27	0,51
50	0,24	0,26	0,50
100	0,24	0,26	0,50

En la práctica apróximadamente normal es suficiente, particularmente con n > 30.

ANÁLISIS DE RESIDUALES

¿Qué son los residuos?

Residuo = valor observado - valor predicho e = y - \hat{y}

Residuos en ANOVA

$$\sum_{i=1}^{n} (y - \hat{y})^2$$

Note que la suma de residuos representa la variabilidad no explicada por el modelo.

¿Para qué sirven?

Para someter a prueba los supuestos de muchos análisis paramétricos como **ANOVA**, **ANCOVA** o **REGRESIÓN**.

EVALUACIÓN DE SUPUESTOS

Regla de oro

Primero evalúe independencia, luego homogeneidad de varianzas y finalmente normalidad.

ANOVA

```
lm.aov <- lm(Peso ~ Tratamiento, data = my_data)</pre>
anova(lm.aov)
## Analysis of Variance Table
##
## Response: Peso
##
              Df Sum Sq Mean Sq F value Pr(>F)
## Tratamiento 1 205.4 205.35 3.6683 0.06039 .
## Residuals 58 3246.9 55.98
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

INDEPENDENCIA: ANÁLISIS DE RESIDUALES

INDEPENDENCIA: PRUEBA DE DURBIN-WATSON

Hipótesis

 $\mathbf{H_0}$: Son independientes o no existe autocorrelación. $\mathbf{H_A}$: No son independientes y existe autocorrelación.

```
##
## Durbin-Watson test
##
## data: Peso ~ Tratamiento
## DW = 0.61428, p-value = 1.166e-10
## alternative hypothesis: true autocorrelation is not 0
```

HOMOGENEIDAD DE VARIANZAS: ANÁLISIS DE RESIDUALES

HOMOGENEIDAD DE VARIANZAS: PRUEBA DE LEVENE

```
\begin{aligned} &\textbf{H_0:} \ \sigma_1^2 = \sigma_2^2 \\ &\textbf{H_A:} \ \sigma_1^2 \neq \sigma_2^2 \\ \end{aligned} \\ &\textbf{leveneTest(Peso ~ Tratamiento, data = my_data, \\ & center = "median") \ \# \ library(car)} \\ \\ &\# \ \textbf{Levene's Test for Homogeneity of Variance (center = "median")} \\ &\# \ \textbf{Df F value Pr(>F)} \\ &\# \ \textbf{group} \ 1 \ 1.2136 \ 0.2752 \\ &\# \ 58 \end{aligned}
```

NORMALIDAD: GRÁFICO DE CUANTILES

plot(lm.aov, 2, pch=20, col = "blue")

NORMALIDAD: GRÁFICO DE CUANTILES 2

qqPlot(my_data\$Peso) # library(car)

[1] 23 1

NORMALIDAD: PRUEBA DE SHAPIRO-WILKS

```
H_0: La distribución es normal.
H_{\Delta}: La distribución no es normal.
aov_residuals <- residuals(object = lm.aov)</pre>
shapiro.test(x= aov_residuals)
##
##
    Shapiro-Wilk normality test
##
## data: aov residuals
## W = 0.96949, p-value = 0.1378
```

PRÁCTICA ANÁLISIS DE DATOS

- Guía de trabajo práctico disponible en drive y Rstudio.cloud.
 Clasev10
- ► El trabajo práctico se realiza en Rstudio.cloud. Clase 10 - Evaluación de supuestos

RESUMEN DE LA CLASE

Teoría

- Supuestos de los análisis paramétricos.
- ► Consecuencias de la violación de los supuestos.
- Interpretación de métodos gráficos, análisis de residuos y pruebas de hipótesis para evaluar supuestos.

Evaluación de supuestos

- Independencia.
- Homocedasticidad.
- Normalidad.