# Sberbank Presentation

John, Jason, Fouad, Chris

### Outline

- Data Quality
  - From bad and missing data to imputation
- Exploratory data analysis
  - Feature Selection
- Modeling
  - Feature engineering
  - Multiple Linear Regression
  - Random Forest
  - Stacking
- Future Direction

### Correcting bad data

- Outliers either became NAs or more realistic values
  - o floor = 77
  - state = 33 became 3, since state only ranges from 1 to 4
- Some values were entered for the wrong variable
  - $\circ$  kitch\_sq = 2014 became the build\_year value, since state min = 0, q1 = 1, median = 6, q3 = 9
- Some values were hard to interpret
  - These include life\_sq, full\_sq at 0 and 1 which became NAs
  - Life\_sq > full\_sq or kitch\_sq > full\_sq
  - Num\_room = 0
- Corrected unusable variables names
  - Demographic variables such as 0\_6\_all

### Types of missingness, imputation

- Different types of missingness:
  - Missing Comp. at Random (MCAR): missingness is not dependent on another variable
  - \*Missing at Random (MAR): missingness <u>may be</u> dependent on another variable
  - \*Missing Not at Random (MNAR): missingness is dependent on another variable
- Missingness in Sberbank dataset
  - Missingness that could be imputed by sub\_area
    - 18 of the 51 variables with missing values shared the same values within their sub\_area
      - All of these begin with build\_count\_\* (building material, span of years)
    - na.aggregate() in R used to impute missing values by sub\_area
  - Missingness related to time
    - 8 building chars: build\_year, floor, kitch\_sq, life\_sq, material, max\_floor, num\_room, state
    - 6 of the 8 were missing 100% of their data from Q3 2011 to Q1 2013
    - These values were imputed by their sub\_area median or through KNN
      - KNN: more robust method as it considered numerous variables in imputation

| 00 |                |                   |         |  |  |
|----|----------------|-------------------|---------|--|--|
|    | sub_area ‡     | build_count_block | count ÷ |  |  |
| 1  | Ajeroport      | 31                | 123     |  |  |
| 2  | Akademicheskoe | 81                | 211     |  |  |
| 3  | Alekseevskoe   | 72                | 100     |  |  |
| 4  | Altuf'evskoe   | 24                | 68      |  |  |
| 5  | Arbat          | 3                 | 15      |  |  |
| 6  | Babushkinskoe  | 49                | 123     |  |  |

## Missingness by quarter (2011 Q3 to 2015 Q2)



### Understanding Types of Features

Apartment Location Transportation Characteristics **Property Population** Education Price Demographics Life Style **Environment** Healthcare

### Basic Variable Importance

- Evaluate Direct Correlation
- Remove obvious multicollinearity
  - o i.e. Multiple cafe features
  - O Which ones stay?
    - Variance
    - Hold more information
- Further Subgrouping
- Features that work within Linear Regression Model
- Noticeably missing features
  - Healthcare, education

| Var1 |                      | Var2 value                             |
|------|----------------------|----------------------------------------|
| 1    | price_doc            | <pre>price_doc 1.000000000</pre>       |
| 2    | price_doc            | full_sq 0.564983378                    |
| 3    | price_doc            | life_sq 0.455794263                    |
| 4    | <pre>price_doc</pre> | num_room 0.414936989                   |
| 5    | <pre>price_doc</pre> | sport_count_5000 0.294967357           |
| 7    | <pre>price_doc</pre> | trc_count_5000 0.289433023             |
| 8    | <pre>price_doc</pre> | zd_vokzaly_avto_km -0.284149955        |
| 9    | price_doc            | sadovoe_km -0.283710223                |
| 10   | <pre>price_doc</pre> | kremlin_km -0.279332230                |
| 11   | <pre>price_doc</pre> | bulvar_ring_km -0.279246594            |
| 13   | price_doc            | ttk_km -0.272680878                    |
| 14   | price_doc            | office_sqm_5000 0.270148536            |
| 17   | price_doc            | nuclear_reactor_km -0.257918995        |
| 18   | price_doc            | sport_objects_raion 0.252875408        |
| 20   | <pre>price_doc</pre> | cafe_count_5000_price_1000 0.240610222 |
| 21   | price_doc            | stadium_km -0.236996602                |
| 29   | price_doc            | basketball_km -0.223498087             |
| 32   | <pre>price_doc</pre> | kitch_sq 0.221740810                   |
| 34   | price_doc            | university_km -0.218596932             |
| 36   | price_doc            | theater_km -0.216094427                |
| 39   | price_doc            | swim_pool_km -0.211775178              |
| 40   | price_doc            | catering_km -0.210849909               |
| 42   | price_doc            | thermal_power_plant_km -0.210460129    |
| 43   | price_doc            | workplaces_km -0.209341663             |

## **EDA** of Building Characteristics





### **EDA** of Location Characteristics





## **EDA** of Lifestyle Characteristics



### EDA of Education / Cultural Characteristics



### **EDA** of Macro Dataset

| Var1                    | Var2                          | value         |
|-------------------------|-------------------------------|---------------|
| <pre>1 price_doc</pre>  | price_doc                     | 1.0000000000  |
| <pre>2 price_doc</pre>  | labor_force                   | 0.1031398753  |
| <pre>3 price_doc</pre>  | unprofitable_enterpr_share    | 0.1027078295  |
| <pre>4 price_doc</pre>  | profitable_enterpr_share      | -0.1027078295 |
| <pre>5 price_doc</pre>  | retail_trade_turnover_per_cap | 0.1022785834  |
| <pre>6 price_doc</pre>  | gdp_annual_growth             | -0.1022061047 |
| <pre>7 price_doc</pre>  | retail_trade_turnover         | 0.1021741366  |
| <pre>8 price_doc</pre>  | fin_res_per_cap               | -0.1013108991 |
| <pre>9 price_doc</pre>  | construction_value            | 0.1011695026  |
| <pre>10 price_doc</pre> | grp                           | 0.1010008240  |
| <pre>11 price_doc</pre> | salary                        | 0.1009771114  |
| <pre>12 price_doc</pre> | employment                    | 0.1009067241  |
| <pre>13 price_doc</pre> | cpi                           | 0.1001319260  |
| <pre>14 price_doc</pre> | fixed_basket                  | 0.0997143889  |
| <pre>15 price_doc</pre> | deposits_value                | 0.0963939738  |
| <pre>16 price_doc</pre> | gdp_deflator                  | 0.0957839678  |
| <pre>17 price_doc</pre> | invest_fixed_assets           | 0.0953011545  |



### Price, density, and count by Moscow administrative region



## Feature Selection/Engineering

- Subgroup
  - o Grouping variables (e.g., cafe or schools)
- Feature Engineering
  - High correlation
    - PCA (distance to transportation)
  - Large number of features
    - Clustering



### Clustering - Negative Exposure

#### Hierarchical Clustering

- Underlying patterns with presence of negative risk factors in the neighborhood
- Euclidean Distance
- Average Linkage

| Cluster | Name                               | Oil_Chem<br>(dirty industry) | Radioactive<br>Waste | Nuclear<br>Reactors | Thermal<br>Power | Incinerators |
|---------|------------------------------------|------------------------------|----------------------|---------------------|------------------|--------------|
| 1       | Safe Environment                   | 0                            | 0                    | 0                   | 0                | 0            |
| 2       | Nuclear reactor/ radioactive waste | 0                            | 1                    | 1                   | 0                | 0            |
| 3       | Dangerous Industrial Area          | 1                            | 1                    | 0                   | 1                | 0            |

## Multiple Linear Regression



## **Assumptions - Normality**





### Tree Model - Random Forest

Why we use random Forest?

- 1. Identify moderately strong predictor
- 2. Investigate nonlinear pattern from the data set.
- 3. Feature Selection

### Random Forest - R vs Python

Variables: full\_sq, life\_sq, floor ,num\_room,

product\_type, sub area

10 fold Cross-Validated with 500 trees

Processing time > 6 hr

RMSLE: 0.34587

### Random Forest Model: Sub\_Area

- Sub\_Area plays an important role in the linear model.
- Is sub\_area also important in Random Forest?

|                                | Estimate   | Std. Error | t value | Pr(> t ) |     |
|--------------------------------|------------|------------|---------|----------|-----|
| (Intercept)                    | 15.1280582 | 0.0465972  | 324.656 | < 2e-16  | *** |
| full_sq                        | 0.0089520  | 0.0001613  | 55.491  | < 2e-16  | *** |
| sub_areaAkademicheskoe         | -0.0769393 | 0.0551126  | -1.396  | 0.162713 |     |
| sub_areaAlekseevskoe           | -0.1358809 | 0.0654612  | -2.076  | 0.037926 | *   |
| sub_areaAltuf'evskoe           | -0.4746849 | 0.0734004  | -6.467  | 1.01e-10 | *** |
| sub_areaArbat                  | 0.4317588  | 0.1378805  | 3.131   | 0.001741 | **  |
| sub_areaBabushkinskoe          | -0.2320874 | 0.0620333  | -3.741  | 0.000183 | *** |
| sub_areaBasmannoe              | 0.0706176  | 0.0671457  | 1.052   | 0.292942 |     |
| sub_areaBegovoe                | 0.0432474  | 0.0764597  | 0.566   | 0.571654 |     |
| sub_areaBeskudnikovskoe        | -0.3907625 | 0.0580224  | -6.735  | 1.67e-11 | *** |
| sub_areaBibirevo               | -0.2036914 | 0.0546441  | -3.728  | 0.000194 | *** |
| sub_areaBirjulevo Vostochnoe   | -0.3765963 | 0.0533200  | -7.063  | 1.67e-12 | *** |
| sub_areaBirjulevo Zapadnoe     | -0.4093570 | 0.0630870  | -6.489  | 8.79e-11 | *** |
| sub_areaBogorodskoe            | -0.3208415 | 0.0518880  | -6.183  | 6.36e-10 | *** |
| sub_areaBrateevo               | -0.2597758 | 0.0569880  | -4.558  | 5.17e-06 | *** |
| sub_areaButyrskoe              | -0.2529606 | 0.0652785  | -3.875  | 0.000107 | *** |
| sub_areaCaricyno               | -0.3117460 | 0.0548726  | -5.681  | 1.35e-08 | *** |
| sub_areaCheremushki            | 0.0242696  | 0.0587077  | 0.413   | 0.679319 |     |
| sub_areaChertanovo Central'noe | -0.2523700 | 0.0560234  | -4.505  | 6.67e-06 | *** |
| sub_areaChertanovo Juzhnoe     | -0.2947973 | 0.0530845  | -5.553  | 2.83e-08 | *** |
| sub_areaChertanovo Severnoe    | -0.1401899 | 0.0558157  | -2.512  | 0.012022 | *   |
| sub_areaDanilovskoe            | -0.0850491 | 0.0556942  | -1.527  | 0.126753 |     |
| sub_areaDmitrovskoe            | -0.3329230 | 0.0572245  | -5.818  | 6.02e-09 | *** |
|                                |            |            |         |          |     |

### Random Forest: Sub\_Area

#### Modeling:

- 1. Using grid search and 10 fold cross validation to find the best parameter for max features and number of trees.
- 2. Number of variables: 177 (dummy coded 146 for sub area)

#### Result:

- 1. Best parameter: 400 trees, 20 variables.
- 2. Testing Score: 0.3769
- 3. Training Score: 0.4901
- 4. RMSLE 0.3432
- 5. Sub\_Area is not as important as in linear



### Random Forest: Sub\_area Feature Importance



## Random Forest: OKRUG (Admin. Region)

#### Modeling:

- Using grid search and cross validation to find the best parameter for max features and number of trees.
- Number of variables: 57 (dummy coded 12 Region)

#### Result:

- 1. Best esitmator: 400 trees & 12 features.
- 2. Test Score: 0.3849
- 3. Training Score: 0.5272
- 4. Slightly improve RMSLE to 0.34206



### Random Forest: Feature Importance OKRUG (Admin. Region)



## Stacking



#### Conclusion and Future Direction

- Conclusion (based on Random Forest):
  - Apartment Characteristics (e.g., full\_sq, life\_sq, no\_rooms, and kitch\_sq)
  - Neighborhood Characteristics (e.g., cafes, railroad, nuclear\_reactor\*, metro\_dist, and office)
- Future Direction
  - Time Dependency
  - Further analysis of subareas
  - More Industry Knowledge

### Thank You!

Any Questions?



## RF and MLR Residual Comparison (optional)

