

Introduction

Chapter 1

 $\textbf{Copyright} \circledcirc \textbf{The McGraw-Hill Companies, Inc.} \ \ \textbf{Permission required for reproduction or display}.$

A *law* is a concise statement of a relationship between phenomena that is always the same under the same conditions.

Force = mass x acceleration

A **theory** is a unifying principle that explains a body of facts and/or those laws that are based on them.

Atomic Theory

O₂

Chemistry is the study of matter and the changes it undergoes

Matter is anything that occupies space and has mass.

A **substance** is a form of matter that has a definite composition and distinct properties.

liquid nitrogen

gold ingots

silicon crystals

5

A *mixture* is a combination of two or more substances in which the substances retain their distinct identities.

Homogenous mixture – composition of the mixture is the same throughout.

soft drink, milk, solder

2. *Heterogeneous mixture* – composition is not uniform throughout.

cement, iron filings in sand

Physical means can be used to separate a mixture into its pure components.

magnet

distillation

7

An *element* is a substance that cannot be separated into simpler substances by *chemical means*.

- 117 elements have been identified
 - 82 elements occur naturally on Earth gold, aluminum, lead, oxygen, carbon, sulfur

• 35 elements have been created by scientists technetium, americium, seaborgium

Name	Symbol	Name	Symbol	Name	Symbo
Aluminum	Al	Fluorine	F	Oxygen	O
Arsenic	As	Gold	Au	Phosphorus	P
Barium	Ba	Hydrogen	H	Platinum	Pt
Bismuth	Bi	Iodine	I	Potassium	K
Bromine	Br	Iron	Fe	Silicon	Si
Calcium	Ca	Lead	Pb	Silver	Ag
Carbon	C	Magnesium	Mg	Sodium	Na
Chlorine	Cl	Manganese	Mn	Sulfur	S
Chromium	Cr	Mercury	Hg	Tin	Sn
Cobalt	Co	Nickel	Ni	Tungsten	W
Copper	Cu	Nitrogen	N	Zinc	Zn

A **compound** is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by *chemical* means.

lithium fluoride

quartz

dry ice – carbon dioxide

The Three States of Matter: Effect of a Hot Poker on a Block of Ice

13

Types of Changes

A *physical change* does not alter the composition or identity of a substance.

ice melting

sugar dissolving in water

A **chemical change** alters the composition or identity of the substance(s) involved.

hydrogen burns in air to form water

Extensive and Intensive Properties

An **extensive property** of a material depends upon how much matter is is being considered.

- mass
- length
- volume

An *intensive property* of a material does not depend upon how much matter is being considered.

- density
- temperature
- color

15

Matter - anything that occupies space and has *mass*.

mass – measure of the quantity of matter

SI unit of mass is the *kilogram* (kg)

$$1 \text{ kg} = 1000 \text{ g} = 1 \text{ x } 10^3 \text{ g}$$

weight – force that gravity exerts on an object

weight = $c \times mass$

on earth, c = 1.0

on moon, $c \sim 0.1$

A 1 kg bar will weigh

1 kg on earth

0.1 kg on moon

International System of Units (SI)

TABLE 10	CI Doco Unito

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

17

TABLE 4.0	Duefives Head with Cl Heite

Prefix	Symbol	Meaning	Example
tera-	T	$1,000,000,000,000$, or 10^{12}	1 terameter (Tm) = 1×10^{12} m
giga-	G	1,000,000,000, or 10 ⁹	1 gigameter (Gm) = 1×10^9 m
mega-	M	$1,000,000, \text{ or } 10^6$	1 megameter (Mm) = 1×10^6 m
kilo-	k	$1,000, \text{ or } 10^3$	1 kilometer (km) = 1×10^3 m
deci-	d	1/10, or 10 ⁻¹	1 decimeter (dm) = 0.1 m
centi-	c	$1/100$, or 10^{-2}	1 centimeter (cm) = 0.01 m
milli-	m	$1/1,000$, or 10^{-3}	1 millimeter (mm) = 0.001 m
micro-	μ	$1/1,000,000, \text{ or } 10^{-6}$	1 micrometer (μ m) = 1 × 10 ⁻⁶ m
nano-	n	$1/1,000,000,000$, or 10^{-9}	1 nanometer (nm) = 1×10^{-9} m
pico-	p	$1/1,000,000,000,000$, or 10^{-12}	1 picometer (pm) = 1×10^{-12} m

$$1 \text{ cm}^3 = (1 \text{ x } 10^{-2} \text{ m})^3 = 1 \text{ x } 10^{-6} \text{ m}^3$$

$$1 \text{ dm}^3 = (1 \text{ x } 10^{-1} \text{ m})^3 = 1 \text{ x } 10^{-3} \text{ m}^3$$

$$1 L = 1000 mL = 1000 cm^3 = 1 dm^3$$

$$1 \text{ mL} = 1 \text{ cm}^3$$

Density – SI derived unit for density is kg/m³

$$1 \text{ g/cm}^3 = 1 \text{ g/mL} = 1000 \text{ kg/m}^3$$

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$d = \frac{m}{V}$$

A piece of platinum metal with a density of 21.5 g/cm³ has a volume of 4.49 cm³. What is its mass?

$$d = \frac{m}{V}$$

$$m = d \times V = 21.5 \text{ g/cm}^3 \times 4.49 \text{ cm}^3 = 96.5 \text{ g}$$

TABLE 1.4		
	Densities of Some Substances at 25°C	
Substance	Density (g/cm³)	
Air*	0.001	
Ethanol	0.79	
Water	1.00	
Mercury	13.6	
Table salt	2.2	
Iron	7.9	
Gold	19.3	
Osmium [†]	22.6	
*Measured at 1 atmosp †Osmium (Os) is the d known.	phere. ensest element	

Convert 172.9 °F to degrees Celsius.

$${}^{\circ}F = \frac{9}{5} \times {}^{\circ}C + 32$$

$${}^{\circ}F - 32 = \frac{9}{5} \times {}^{\circ}C$$

$$\frac{5}{9} \times ({}^{\circ}F - 32) = {}^{\circ}C$$

$${}^{\circ}C = \frac{5}{9} \times ({}^{\circ}F - 32)$$

$${}^{\circ}C = \frac{5}{9} \times (172.9 - 32) = 78.3$$

23

Scientific Notation

The number of atoms in 12 g of carbon:

602,200,000,000,000,000,000,000

The mass of a single carbon atom in grams:

0.000000000000000000000199

N x 10ⁿ

N is a number between 1 and 10

n is a positive or negative integer

Scientific Notation

568.762

← move decimal left

n > 0

568.762 = 5.68762 x 10²

0.00000772

move decimal right

n < 0

 $0.00000772 = 7.72 \times 10^{-6}$

Addition or Subtraction

- 1. Write each quantity with the same exponent *n*
- 2. Combine N₁ and N₂
- 3. The exponent, *n*, remains the same

$$4.31 \times 10^4 + 3.9 \times 10^3 =$$

$$4.31 \times 10^4 + 0.39 \times 10^4 =$$

4.70 x 10⁴

25

Scientific Notation

Multiplication

- 1. Multiply N_1 and N_2
- 2. Add exponents n_1 and n_2

$$(4.0 \times 10^{-5}) \times (7.0 \times 10^{3}) =$$

$$(4.0 \times 7.0) \times (10^{-5+3}) =$$

$$28 \times 10^{-2} =$$

Division

- 1. Divide N_1 and N_2
- 2. Subtract exponents n_1 and n_2

$$8.5 \times 10^4 \div 5.0 \times 10^9 =$$

$$(8.5 \div 5.0) \times 10^{4-9} =$$

1.7 x 10⁻⁵

Significant Figures

Any digit that is not zero is significant

1.234 kg 4 significant figures

· Zeros between nonzero digits are significant

606 m 3 significant figures

• Zeros to the left of the first nonzero digit are **not** significant

0.08 L 1 significant figure

• If a number is greater than 1, then all zeros to the right of the decimal point are significant

2.0 mg 2 significant figures

• If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant

0.00420 g 3 significant figures

27

How many significant figures are in each of the following measurements?

24 mL 2 significant figures

3001 g 4 significant figures

0.0320 m³ 3 significant figures

6.4 x 10⁴ molecules 2 significant figures

560 kg 2 significant figures

Significant Figures

Addition or Subtraction

The answer cannot have more digits to the right of the decimal point than any of the original numbers.

29

Significant Figures

Multiplication or Division

The number of significant figures in the result is set by the original number that has the *smallest* number of significant figures

Significant Figures

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures

The average of three measured lengths: 6.64, 6.68 and 6.70?

$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333 = 6.67 = 7$$

Because 3 is an exact number

Dimensional Analysis Method of Solving Problems

- 1. Determine which unit conversion factor(s) are needed
- 2. Carry units through calculation
- 3. If all units cancel except for the **desired unit(s)**, then the problem was solved correctly.

given quantity x conversion factor = desired quantity

given unit x
$$\frac{\text{desired unit}}{\text{given unit}}$$
 = desired unit

33

Dimensional Analysis Method of Solving Problems

How many mL are in 1.63 L?

Conversion Unit 1 L = 1000 mL

1.63
$$L \times \frac{1000 \text{ mL}}{1 L} = 1630 \text{ mL}$$

1.63 $L \times \frac{1}{1000 \text{ mL}} = 0.001630 \frac{L^2}{\text{mL}}$

The speed of sound in air is about 343 m/s. What is this speed in miles per hour?

conversion units

meters to miles

seconds to hours

