

JP05030977A

MicroPatent Report

GENE DNA CODING ASPARTASE AND UTILIZATION THEREOF

[71] Applicant: MITSUBISHI
PETROCHEM CO LTD

[72] Inventors: KURUSU YASUROU;
ASAI YOKO;
KOBAYASHI MIKI;
YUGAWA HIDEAKI

[21] Application No.: JP03208489

[22] Filed: 19910725

[43] Published: 19930209

[Go to Fulltext](#)

[57] Abstract:

PURPOSE: To provide a gene DNA used for efficiently producing Laspatic acid.
CONSTITUTION: A gene DNA coding aspartase (EC, 4, 3, 1, 1) originated from a Coryne type bacterium, such as a basic sequence of the formula. The gene DNA is isolated from e.g. *Brevibacterium flavum* MJ-233 strain.
COPYRIGHT: (C)1993, JPO&Japio

[51] Int'l Class: C12N01560 C12N00120 C12P01320 C12N00988
C12N01560 C12R00113 C12N00120 C12R00113 C12P01320 C12R00113

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-30977

(43)公開日 平成5年(1993)2月9日

(51)Int.Cl. ⁵	識別記号	序内整理番号	F I	技術表示箇所
C 12 N 15/60	ZNA			
1/20		A 7236-4B		
C 12 P 13/20		6977-4B		
// C 12 N 9/88		7823-4B		
		8828-4B	C 12 N 15/00	A
			審査請求 未請求 請求項の数 8(全 17 頁)	最終頁に続く

(21)出願番号	特願平3-208489	(71)出願人	000006057 三菱油化株式会社 東京都千代田区丸の内二丁目5番2号
(22)出願日	平成3年(1991)7月25日	(72)発明者	久留主 泰朗 茨城県稻敷郡阿見町中央8丁目3番1号三 菱油化株式会社筑波総合研究所内
		(72)発明者	浅井 陽子 茨城県稻敷郡阿見町中央8丁目3番1号三 菱油化株式会社筑波総合研究所内
		(72)発明者	小林 幹 茨城県稻敷郡阿見町中央8丁目3番1号三 菱油化株式会社筑波総合研究所内
		(74)代理人	弁理士 小田島 平吉 (外1名) 最終頁に続く

(54)【発明の名称】 アスパルターゼをコードする遺伝子DNA及びその利用

(57)【要約】

【構成】 プレビバクテリウム・フラバムMJ-233
株からアスパルターゼをコードする遺伝子DNAを単離
し、この遺伝子の塩基配列を決定した。

【効果】 このアスパルターゼをコードする遺伝子DN
Aを導入したコリネ型細菌内で複製増殖可能なプラスミ
ドで形質転換されたプレビバクテリウム・フラバムMJ
-233はL-アスパラギン酸を高産生した。

【特許請求の範囲】

【請求項1】 コリネ型細菌由来のアスパルターゼ (E.C. 4.3.1.1) をコードする遺伝子DNA。

【請求項2】 コリネ型細菌がブレビバクテリウム・フラバム (*Brevibacterium flavum*) MJ-233 である

請求項1記載の遺伝子DNA。

【請求項3】 次のDNA塩基配列で表されるアスパルターゼを (E.C. 4.3.1.1) コードする遺伝子DNA。

ATGTCTAAGA CGAGCAACAA GTCTTCAGCA GACTCAAAGA ATGACGAAA AGCGGAAGAC 60
ATTGTAACG CCGAGAACCA AATCGCACC AATGACTCGC AGTCTTCAGA CAGCGCTGCA 120
GTTTCGGAAAC GTGTGCTCG ACCAAAAACCC ACGGTTTCAGA AAAAGTTCCG AATCGAATCG 180
GATCTGCTTG GTGAACTTCAG GATCCCATCC CACCGATATT ACGCGCTGCA CACCCCTTGT 240
GGGGTGGACCA ACTTCCAAAT CTCACGAACC ACCATCAACCC ACCTCCAGA TTTCATTGCC 300
GGCATGGTCC AGGTGAAAAA GCCCCCACCT TTAGCAAACCC GCGCACTACA CACACTCCA 360
GCACAAAAAG CAGAACCAAT TGTCTGGGCT TGTGATCAGA TCTTCATTGA GGGACGCTGT 420
ATGGATCACT TCCCCATCGA TGTGTTCCAG GGTGGCCAG GTACCTCACT GAACATGAAC 480
ACCAACGAAG TTGTGTCGAA CCTTGCACCT GAGTTCTTAG GCCATGAAAAA GGGCGACTAC 540
CACATCCTGC ACCCCATGGAA TGATGTCACAT ATGTCCTCAGT CCACCAACGA TTCCCTACCCA 600
ACTGTTTTC GCCTGGGCAT TTACGGTGGGA CTGGCAGACCC TCATCGCTGA AATTGATGAG 660
CTTCAGGTTG CGTTCCGCAAA CAAGGGCAAT GAGTTGTCG ACATCATCAA GATGGGCCGC 720
ACCCAGTTGC AGGATGCTGT TCCCAGTGGC TTGGGGCAAG AGTTCGGAGC ATTGGCGCAC 780
AACCTGGAG AAGACCAGAC CGTGCTGGTGA AAAGCTGCCA ACCGTCCTCT CGAGGTCAAC 840
CTTGGTGCAGA CGGCAATCGG TACTGGTGTG AACACTCCAG CAGGCTACCC CCACCAAGGTT 900
GTCGCTGCTC TGTCTGAGGT CACCCGACTG GAACATAAGT CCCACCGTGA TCTCATTGAG 960
GCTACCTCTG ACACCGGTGC ATATGTTCAT GCGCACTCCG CAATCAAGGG TGCGGCCATG 1120
AAACTGTCGA AGATCTGAA CGATCTACCT CTGCTCTCTT CTGGCTCTCG TGCTGGCTTG 1180
AACGAAATCA ATCTGCCACC ACCGCCAGGCT GGTTCCCTCA TCATGCCAGC CAAGGTCAAC 1240
CCACTGATCC CAGAAGTGGT CAACCAAGTC TGCTTCAGG TCTTCGGTAA CGATCTCACC 1300
GTCACCATGG CTGGCGAACG TGGCCAGTTG CAGCTCAACG TCATGGAGGC AGTCATTGGC 1360
GAATCOCTCT TCCAGTCACT GGGCATCCTG GCGCAATGCAG CCAAGACTTT GCGTGAGAAG 1420
TGGCTGGTAG GAATCACCGC CAACCGTGTG TTGGGGTGTG CTIACGGTGA TAACTCCATT 1480
GGCATTATCA CTTACCTGAA CCCATTCCTG GGGCACGACA TTGGAGATCA GATCGGTAAG 1540
GAAGCAGCGG AAACTGGTGG ACCACTGGCT GAACTCATCC TGGAAAAGAA GCTCATGGAT 1600
GAAAAGACGC TCGAGGGAGT CCTATCCAAG GAGAACCTCA TGCACCCAA GTTCGGCGGA 1660
AGGCTCTACT TGGAGAACTA A 1681
//

【請求項4】 次のアミノ酸配列で表されるアスパルターゼを (E.C. 4.3.1.1) コードする遺伝子DNA。

Met Ser Lys Thr Ser Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala
1 5 10 15
Lys Ala Glu Asp Ile Val Asn Gly Glu Asn Gln Ile Ala Thr Asn Glu
20 25 30
Ser Gln Ser Ser Asp Ser Ala Ala Val Ser Glu Arg Val Val Glu Pro
35 40 45
Lys Thr Thr Val Gln Lys Lys Phe Arg Ile Glu Ser Asp Leu Leu Gly
50 55 60
Glu Leu Gln Ile Pro Ser His Ala Tyr Tyr Gly Val His Thr Leu Arg
65 70 75 80
Ala Val Asp Asn Phe Gln Ile Ser Arg Thr Thr Ile Asn His Val Pro
85 90 95
Asp Phe Ile Arg Gly Met Val Gln Val Lys Lys Ala Ala Ala Leu Ala
100 105 110
Asn Arg Arg Leu His Thr Leu Pro Ala Gln Lys Ala Glu Ala Ile Val
115 120 125

Trp Ala Cys Asp Gln Ile Leu Ile Glu Gly Arg Cys Met Asp Gln Phe
 130 135 140
 Pro Ile Asp Val Phe Gln Gly Gly Ala Gly Thr Ser Leu Asn Met Asn
 145 150 155 160
 Thr Asn Glu Val Val Ala Asn Leu Ala Leu Glu Phe Leu Gly His Glu
 165 170 175
 Lys Gly Glu Tyr His Ile Leu His Pro Met Asp Asp Val Asn Met Ser
 180 185 190
 Gln Ser Thr Asn Asp Ser Tyr Pro Thr Gly Phe Arg Leu Gly Ile Tyr
 195 200 205
 Ala Gly Leu Gln Thr Leu Ile Ala Glu Ile Asp Glu Leu Gln Val Ala
 210 215 220
 Phe Arg His Lys Gly Asn Glu Phe Val Asp Ile Ile Lys Met Gly Arg
 225 230 235 240
 Thr Gln Leu Gln Asp Ala Val Pro Met Ser Leu Gly Glu Glu Phe Arg
 245 250 255
 Ala Phe Ala His Asn Leu Ala Glu Glu Gln Thr Val Leu Arg Glu Ala
 260 265 270
 Ala Asn Arg Leu Leu Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr
 275 280 285
 Gly Val Asn Thr Pro Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu
 290 295 300
 Ser Glu Val Thr Gly Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu
 305 310 315 320
 Ala Thr Ser Asp Thr Gly Ala Tyr Val His Ala His Ser Ala Ile Lys
 325 330 335
 Arg Ala Ala Met Lys Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu
 340 345 350
 Ser Ser Gly Pro Arg Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg
 355 360 365
 Gln Ala Gly Ser Ser Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro
 370 375 380
 Glu Val Val Asn Gln Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr
 385 390 395 400
 Val Thr Met Ala Ala Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu
 405 410 415
 Pro Val Ile Gly Glu Ser Leu Phe Gln Ser Leu Arg Ile Leu Gly Asn
 420 425 430
 Ala Ala Lys Thr Leu Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn
 435 440 445
 Ala Asp Val Cys Arg Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr
 450 455 460
 Tyr Leu Asn Pro Phe Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys
 465 470 475 480
 Glu Ala Ala Glu Thr Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys
 485 490 495
 Lys Leu Met Asp Glu Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn
 500 505 510
 Leu Met His Pro Met Phe Arg Gly Arg Leu Tyr Leu Glu Asn
 515 520 525

【請求項5】 請求項1～4のいずれかに記載の遺伝子DNAが導入された組換えプラスミド。

【請求項6】 請求項1～4のいずれかに記載の遺伝子DNAと、コリネ型細菌内で複製増殖機能を司る遺伝子を含むDNAを保有する組換えプラスミド。

【請求項7】 請求項6～7のいずれかに記載の組換えプラスミドで形質転換されたコリネ型細菌。

【請求項8】 請求項7記載のコリネ型細菌の培養菌体又は菌体処理物の存在下に、フマル酸またはその塩と、アンモニアまたはアンモニウム塩を反応せしめることを特徴とするL-アスパラギン酸の製造法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、アスバルターゼ(E.C. 4.3.1.1)をコードする遺伝子を含むコリネ型細菌由来の遺伝子DNA、該遺伝子DNAを含む組換えプラスミド、該組換えプラスミドで形質転換されたコリネ型細菌、及び該コリネ型細菌を用いるL-アスパラギン酸の製造法に関する。

【0002】L-アスパラギン酸は、必須アミノ酸の一つとして蛋白質中にその存在が知られ、医薬や食品添加物として用いられている。

【0003】

【従来の技術】従来、L-アスパラギン酸の工業的製造法としては、フマル酸とアンモニアを出発原料として、アスバルターゼ活性を有する微生物を用いて製造する方法が数多く提案されている〔例えば、I. Chibata et al., Appl. Microbiol., 27, 878 (1974); 特公昭61-29718号公報; 特開昭60-120983号公報等参照〕。しかしながら、これら従来提案されているL-アスパラギン酸の製造法には改良に限界があり、新たな観点から、遺伝子工学的手法による菌株の改良等による、より効率的なL-アスパラギン酸の工業的製造法の確立が望まれている。

【0004】一方、アスバルターゼをコードする遺伝子としては、エシエリヒア・コリ(*Escherichia coli*)由来の遺伝子(*Journal of General Microbiology*, 130, p1271-1278, 1984 参照)及びシードモナス・フルオロエスセンス(*Pseudomonas fluorescens*)由来の遺伝子(*Journal of Biochemistry*, 100, p697-705, 1986 参照)がよく研究されている。このうちエシエリヒア・コリ由来のアスバルターゼは、蛋白分子量が17万から19.3万で4量体を形成していることが知られている(*Archives of Biochemistry and Biophysics*, 147, p563-570, 1979 参照)。しかしながら、コリネ型細菌由来のアスバルターゼをコードする遺伝子については従来報告例がない。

【0005】

【発明が解決しようとする課題】本発明の目的は、コリネ型細菌由来のアスバルターゼをコードする遺伝子を単

離し、該遺伝子を同種であるコリネ型細菌に導入し、該コリネ型細菌を用いて新たな観点から効率的にL-アスパラギン酸を製造することである。

【0006】

【課題を解決するための手段】本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、コリネ型細菌染色体よりアスバルターゼ遺伝子を単離し、該遺伝子を適当なベクタープラスミドに導入して、コリネ型細菌を形質転換し、該形質転換されたコリネ型細菌を用いれば効率的にL-アスパラギン酸を製造しうることを見い出し本発明を完成するに至った。かくして本発明によれば、

(1) コリネ型細菌由来のアスバルターゼをコードする遺伝子DNA;

(2) 該遺伝子DNAが導入された組換えプラスミド;

(3) 該組換えプラスミドで形質転換されたコリネ型細菌; 及び

(4) 該形質転換されたコリネ型細菌を用いフマル酸またはその塩とアンモニアまたはアンモニウム塩とからL-アスパラギン酸を製造する方法、が提供される。

【0007】以下、本発明についてさらに詳細に説明する。

【0008】本発明の「アスバルターゼをコードする遺伝子DNA」は、フマル酸とアンモニアからL-アスパラギン酸への変換反応を触媒する酵素、すなわちアスバルターゼ(E.C. 4.3.1.1)をコードする遺伝子DNAである。アスバルターゼをコードする遺伝子は多数の微生物が保有しているが、本発明では殊にコリネ型細菌由来のものが好適である。

【0009】アスバルターゼをコードする遺伝子を含むDNA断片(以下、これを「A断片」と略称することがある)の供給源となる微生物は、コリネ型細菌であれば特に限定されるものではないが、一般的には、ブレビバクテリウム・フラバムMJ-233(FERM BP-1497)およびその由来株; ブレビバクテリウム・アンモニアゲネス(*Brevibacterium ammoniagenes*)ATCC6871、同ATCC13745、同ATCC13746; ブレビバクテリウム・デバリカタム(*Brevibacterium divaricatum*)ATCC14020; ブレビバクテリウム・ラクトファーメンタム(*Brevibacterium lactofermentum*)ATCC13869; コリネバクテリウム・グルタミカム(*Corynebacterium glutamicum*)ATCC31831等が有利に使用される。

【0010】これらの供給源微生物からA断片を調整するための基本的操作の一例を述べれば次のとおりである。

【0011】すなわち、A断片は、上記コリネ型細菌、例えばブレビバクテリウム・フラバム(*Brevibacterium flavum*)MJ-233(FERM BP-1497)株の染色体上に存在し、この染色体を適当な制限酵素で切断することにより生ずる切断断片の中から以下に述べ

る方法で分離、取得することができる。

【0012】先ず、プレビバクテリウム・フラバムMJ-233株の培養物から染色体DNAを抽出する。この染色体DNAを適当な制限酵素、例えばSau3A1を用いて、DNA断片の大きさが約20~30kbになるよう部分分解する。

【0013】得られたDNA断片をコスミドベクター、例えばpWE15に挿入し、このコスミドを λ DNA in vitro Packaging Kitを用いる形質導入により、アスバルターゼ遺伝子が欠損した大腸菌変異株(*Journal of General Microbiology*, 130, p1271-1278, 1984参照)に導入する。この大腸菌変異株をL-グルタミン酸を単一炭素源とする培地に塗沫する。

【0014】得られる形質転換株よりコスミドDNAを抽出し、制限酵素で解析することにより挿入されたプレビバクテリウム・フラバムMJ-233株染色体由來のA断片を確認、取得することができる。

【0015】かくして得られるA断片は、大きさが約20~30kbと大きく、実用的でないので、さらに短かい断片に特定化することが望ましい。

【0016】そこで、上記で得られるA断片を含むコスミドを適当な制限酵素を用いて切断し、得られるDNA断片を、大腸菌で複製可能なベクターブラスミドに挿入しこのベクターブラスミドを通常用いられる形質転換法、例えば、塩化カルシウム法、電気パルス法による形質転換により、前記アスバルターゼが欠損した大腸菌変異株に導入し、この大腸菌変異株をL-グルタミン酸を単一炭素源とする培地に塗沫する。

【0017】得られる形質転換株よりブラスミドDNAを抽出し、制限酵素で解析することにより挿入されたプレビバクテリウム・フラバムMJ-233株染色体由來のA断片を確認、取得することができる。

【0018】このようにして得られるA断片の一つは、上記プレビバクテリウム・フラバムMJ-233株の染色体DNAを制限酵素Sau3A1の部分分解により切り

出し、さらにそれを制限酵素EcoR Iで切り出すことによって得られる大きさが約2.4kbのDNA断片を擧げることができる。

【0019】この約2.4kbのアスバルターゼをコードする遺伝子を含むDNA断片を、各種の制限酵素で切断したときの認識部位数及び切断断片の大きさを下記表1に示す。

【0020】なお、本明細書において、制限酵素による「認識部位数」は、DNA断片又はブラスミドを、制限酵素の存在下で完全分解し、それらの分解物をそれ自体既知の方法に従い1%アガロースゲル電気泳動および5%ポリアクリルアミドゲル電気泳動に供し、分離可能な断片の数から決定した値を採用した。

【0021】また、「切断断片の大きさ」及びブラスミドの大きさは、アガロースゲル電気泳動を用いる場合には、エシェリヒア・コリのラムダファージ(λ phage)のDNAを制限酵素Hind IIIで切断して得られる分子量既知のDNA断片の同一アガロースゲル上での泳動距離で描かれる標準線に基づき、また、ポリアクリルアミドゲル電気泳動を用いる場合には、エシェリヒア・コリのファイ・エックス174ファージ($\phi \times 174$ phage)のDNAを制限酵素Hae IIIで切断して得られる分子量既知のDNA断片の同一ポリアクリルアミドゲル上での泳動距離で描かれる標準線に基づき、切断DNA断片又はブラスミドの各DNA断片の大きさを算出する。ブラスミドの大きさは、切断断片それぞれの大きさを加算して求める。なお、各DNA断片の大きさの決定において、1kb以上の断片の大きさについては、1%アガロースゲル電気泳動によって得られる結果を採用し、約0.1kbから1kb未満の断片の大きさについては4%ポリアクリルアミドゲル電気泳動によって得られる結果を採用した。

【0022】

【表1】

表 1

制限酵素	認識部位数	切断断片の大きさ(kb)	
Ava I	1	1.7,	0.7
Cla I	1	1.3,	1.1
Hind III	2	1.7,	0.35, 0.35

一方、上記したプレビバクテリウム・フラバムMJ-233の染色体DNAを制限酵素EcoR Iで切り出すことにより得られる大きさが約2.4kbのDNA断片については、その塩基配列をブラスミドpUC18またはpUC19を用いるジデオキシヌクレオチド酵素法(dideoxy chain termination法)(Sanger, F. et al., Proc. Natl Acad. Sci. USA 74, 5463, 1977)に
(配列)

ATG TCT AAG ACG AGC AAC AAG TCT TCA GCA GAC TCA AAG AAT GAC GCA 48
Met Ser Lys Thr Ser Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala

1	5	10	15													
AAA	GCC	GAA	GAC	ATT	GTG	AAC	GGC	GAG	AAC	CAA	ATC	GCC	ACG	AAT	GAG	96
Lys	Ala	Glu	Asp	Ile	Val	Asn	Gly	Glu	Asn	Gln	Ile	Ala	Thr	Asn	Glu	
				20				25					30			
TCG	CAG	TCT	TCA	GAC	AGC	GCT	GCA	GTT	TCG	GAA	CGT	GTC	GTC	GAA	CCA	144
Ser	Gln	Ser	Ser	Asp	Ser	Ala	Ala	Val	Ser	Glu	Arg	Val	Val	Glu	Pro	
				35				40					45			
AAA	ACC	ACC	GTT	CAG	AAA	AAG	TTC	CGA	ATC	GAA	TCG	GAT	CTG	CTT	GGT	192
Lys	Thr	Thr	Val	Gln	Lys	Lys	Phe	Arg	Ile	Glu	Ser	Asp	Leu	Leu	Gly	
				50				55				60				
GAA	CTT	CAG	ATC	CCA	TOC	CAC	GCA	TAT	TAC	GGC	GTG	CAC	ACC	CTT	CCT	240
Glu	Leu	Gln	Ile	Pro	Ser	His	Ala	Tyr	Tyr	Gly	Val	His	Thr	Leu	Arg	
				65				70				75			80	
GCG	GTG	GAC	AAC	TTC	CAA	ATC	TCA	CGA	ACC	ACC	ATC	AAC	CAC	GTC	CCA	288
Ala	Val	Asp	Asn	Phe	Gln	Ile	Ser	Arg	Thr	Thr	Ile	Asn	His	Val	Pro	
				85				90				95				
GAT	TTC	ATT	CGC	GCC	ATG	GTC	CAG	GTG	AAA	AAG	GCC	GCA	GCT	TTA	GCA	336
Asp	Phe	Ile	Arg	Gly	Met	Val	Gln	Val	Lys	Lys	Ala	Ala	Ala	Leu	Ala	
				100				105				110				
AAC	CGC	CGA	CTA	CAC	ACA	CTT	CCA	GCA	CAA	AAA	GCA	GAA	GCA	ATT	GTC	384
Asn	Arg	Arg	Leu	His	Thr	Leu	Pro	Ala	Gln	Lys	Ala	Glu	Ala	Ile	Val	
				115				120				125				
TGG	GCT	TGT	GAT	CAG	ATC	CTC	ATT	GAG	GGA	CCC	TGT	ATG	GAT	CAG	TTC	432
Trp	Ala	Cys	Asp	Gln	Ile	Leu	Ile	Glu	Gly	Arg	Cys	Met	Asp	Gln	Phe	
				130				135				140				
CCC	ATC	GAT	GTG	TTC	CAG	GCT	GGC	GCA	GGT	ACC	TCA	CTG	AAC	ATG	AAC	480
Pro	Ile	Asp	Val	Phe	Gln	Gly	Gly	Ala	Gly	Thr	Ser	Leu	Asn	Met	Asn	
				145				150				155			160	
AAC	AAC	GAA	GTT	GTT	GCC	AAC	CTT	GCA	CTT	GAG	TTC	TTA	GCC	CAT	GAA	528
Thr	Asn	Glu	Val	Val	Ala	Asn	Leu	Ala	Leu	Glu	Phe	Leu	Gly	His	Glu	
				165				170				175				
AAG	GCC	GAG	TAC	CAC	ATC	CTG	CAC	CCC	ATG	GAT	GAT	GTG	AAC	ATG	TCC	576
Lys	Gly	Glu	Tyr	His	Ile	Leu	His	Pro	Met	Asp	Asp	Val	Asn	Met	Ser	
				180				185				190				
CAG	TCC	ACC	AAC	GAT	TCC	TAC	CCA	ACT	GGT	TTC	CCC	CTG	GCC	ATT	TAC	624
Gln	Ser	Thr	Asn	Asp	Ser	Tyr	Pro	Thr	Gly	Phe	Arg	Leu	Gly	Ile	Tyr	
				195				200				205				
GCT	GGA	CTG	CAG	ACC	CTC	ATC	GCT	GAA	ATT	GAT	GAG	CTT	CAG	GTT	GCG	672
Ala	Gly	Leu	Gln	Thr	Leu	Ile	Ala	Glu	Ile	Asp	Glu	Leu	Gln	Val	Ala	
				210				215				220				
TTC	CGC	CAC	AAG	GGC	AAT	GAG	TTT	GTC	GAC	ATC	ATC	AAG	ATG	GGC	CGC	720
Phe	Arg	His	Lys	Gly	Asn	Glu	Phe	Val	Asp	Ile	Ile	Lys	Met	Gly	Arg	
				225				230				235			240	
ACC	CAG	TTC	CAG	GAT	GCT	GTT	CCC	ATG	ACC	TTG	GGC	GAA	GAG	TTC	CCA	768
Thr	Gln	Leu	Gln	Asp	Ala	Val	Pro	Met	Ser	Leu	Gly	Glu	Glu	Phe	Arg	
				245				250				255				
GCA	TTC	GGC	CAC	AAC	CTC	GCA	GAA	GAG	CAG	ACC	GTG	CTG	CGT	GAA	GCT	816
Ala	Phe	Ala	His	Asn	Leu	Ala	Glu	Glu	Gln	Thr	Val	Leu	Arg	Glu	Ala	
				260				265				270				
CCC	AAC	CGT	CTC	CTC	GAG	GTC	AAC	CTT	GGT	GCA	ACC	GCA	ATC	GGT	ACT	864

Ala Asn Arg Leu Leu Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr
 275 280 285
 GGT GTG AAC ACT CCA GCA CGC TAC CGC CAC CAG GTT GTC GCT GCT CTG 912
 Gly Val Asn Thr Pro Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu
 290 295 300
 TCT GAG GTC ACC CGA CTG GAA CTA AAG TCC GCA CGT GAT CTC ATT GAG 960
 Ser Glu Val Thr Gly Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu
 305 310 315 320
 GCT ACC TCT GAC ACC GGT GCA TAT GTT CAT CGG CAC TCC GCA ATC AAG 1008
 Ala Thr Ser Asp Thr Gly Ala Tyr Val His Ala His Ser Ala Ile Lys
 325 330 335
 CGT GCA GCC ATG AAA CTG TCC AAG ATC TGT AAC GAT CTA CGT CTG CTG 1056
 Arg Ala Ala Met Lys Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu
 340 345 350
 TCT TCT GGT CCT CGT GCT CGC TTG AAC GAA ATC AAT CTG CCA CCA CGC 1104
 Ser Ser Gly Pro Arg Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg
 355 360 365
 CAG CCT CGT TCC TCC ATC ATG CCA GCC AAG GTC AAC CCA CTG ATC CCA 1152
 Gln Ala Gly Ser Ser Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro
 370 375 380
 GAA GTG GTC AAC CAG GTC TGC TTC AAG GTC TTC GGT AAC GAT CTC ACC 1200
 Glu Val Val Asn Gln Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr
 385 390 395 400
 GTC ACC ATG GCT GCG GAA GCT GGC CAG TTG CAG CTC AAC GTC ATG GAG 1248
 Val Thr Met Ala Ala Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu
 405 410 415
 CCA GTC ATT GCC GAA TCC CTC TTC CAG TCA CTG CGC ATC CTG GGC AAT 1296
 Pro Val Ile Gly Glu Ser Leu Phe Gln Ser Leu Arg Ile Leu Gly Asn
 420 425 430
 GCA GCC AAG ACT TTG CGT GAG AAG TGC GTC GTA GGA ATC ACC GCC AAC 1344
 Ala Ala Lys Thr Leu Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn
 435 440 445
 CCT GAT GTT TGC CGT GCT TAC GTT GAT AAC TCC ATT GGC ATT ATC ACT 1392
 Ala Asp Val Cys Arg Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr
 450 455 460
 TAC CTG AAC CCA TTC CTG CGC CAC GAC ATT GGA GAT CAG ATC GGT AAG 1440
 Tyr Leu Asn Pro Phe Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys
 465 470 475 480
 GAA GCA GCC GAA ACT GGT CGA CCA GTG CGT GAA CTC ATC CTG GAA AAG 1488
 Glu Ala Ala Glu Thr Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys
 485 490 495
 AAG CTC ATG GAT GAA AAG ACG CTC GAG GCA GTC CTA TCC AAG GAG AAC 1536
 Lys Leu Met Asp Glu Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn
 500 505 510
 CTC ATG CAC CCA ATG TTC CGC GGA AGG CTC TAC TTG GAG AAC TAA 1581
 Leu Met His Pro Met Phe Arg Gly Arg Leu Tyr Leu Glu Asn
 515 520 525

上記の塩基配列を包含して成る本発明のアスパルターゼをコードする遺伝子を含むDNA断片は、天然のコリ

ネ型細菌染色体DNAから分離されたもののみならず、通常用いられるDNA合成装置、例えばベックマン社製

System-1 Plusを用いて合成されたものであってよい。

【0023】また、前記の如くブレビバクテリウム・フラバムMJ-233の染色体DNAから取得される本発明のDNA断片は、アスパルターゼをコードする機能を実質的に損なうことがない限り、塩基配列の一部の塩基が他の塩基と置換されていてもよく又は削除されていてもよく、或いは新たに塩基が挿入されていてもよく、さらに塩基配列の一部が転位されているものであってもよく、これらの誘導体のいずれもが、本発明のアスパルターゼをコードする遺伝子を含むDNA断片に包含されるものである。

【0024】以上に詳述した大きさが約2.4kbのDNA断片の制限酵素による切断点地図を図1に示す。

【0025】本発明のアスパルターゼをコードする遺伝子を含むDNA断片（A断片）は、コリネ型細菌内でプラスミドの複製増殖機能を司る遺伝子を少くとも含むプラスミドベクターに導入することにより、コリネ型細菌内でアスパルターゼの高発現可能な組換えプラスミドを得ることができる。

【0026】また、本発明のアスパルターゼをコードする遺伝子を発現させるためのプロモーターは、コリネ型細菌が保有する該遺伝子自身のプロモーターであることができ、またはアスパルターゼ遺伝子の転写を開始させるための原核生物由来の塩基配列である限りいかなるプロモーターであってよい。

【0027】本発明のA断片を導入することができる、コリネ型細菌内の複製増殖機能を司る遺伝子を少くとも含むプラスミドベクターとしては、例えば、特願平2-4212号明細書に記載のプラスミドpCRY30；特開平2-276575号公報に記載のプラスミドpCRY21、pCRY2KE、pCRY2KX、pCRY3K7、pCRY3KE及びpCRY3KX；特開平1-191686号公報に記載のプラスミドpCRY2及びpCRY3；特開昭58-67679号公報に記載のpAM330；特開昭58-77895号公報に記載のpHM1519；特開昭58-192900号公報に記載のpAJ655、pAJ611及びpAJ1844；特開昭57-134500号に記載のpCG1；特開昭58-35197号公報に記載のpCG2；特開昭57-183799号公報に記載のpCG4及びpCG11等を挙げることができる。

【0028】中でもコリネ型細菌の宿主ベクター系で用いられるプラスミドベクターとしては、コリネ型細菌内でプラスミドの複製増殖機能を司る遺伝子とコリネ型細菌内でプラスミドの安定化機能を司る遺伝子とをもつものが好ましく、例えばプラスミドpCRY30、pCRY21、pCRY2KE、pCRY2KE、pCRY2KX、pCRY3K7、pCRY3KE及びpCRY3KX等が好適に使用される。

【0029】上記プラスミドベクターpCRY30を調製する方法としては、ブレビバクテリウム・スタチオニス(Brevibacterium stationis)IFO12144(FERM BP-2515)からプラスミドpBY503(このプラスミドの詳細については特開平1-95785号公報参照)DNAを抽出し、制限酵素XbaIで大きさが約4.0kbのプラスミドの複製増殖機能を司る遺伝子を含むDNA断片を切り出し、制限酵素EcoRIおよびKpnIで大きさが約2.1kbのプラスミドの安定化機能を司る遺伝子を含むDNA断片を切り出す。これらの両断片をプラスミドpHSG298(宝酒造製)のEcoRI、KpnI部位及びSalI部に組み込むことにより、プラスミドベクターpCRY30を調製することができる。

【0030】次に、上記プラスミドベクターへの本発明のA断片の導入は、例えばプラスミドベクター中に1個所だけ存在する制限酵素部位を、該制限酵素で開裂し、そこに前記A断片および開裂したプラスミドベクターを必要に応じてS1ヌクレアーゼで処理して平滑末端とするか、または適当なアダプター-DNAの存在下にDNAリガーゼ処理で連結させることにより行うことができる。

【0031】プラスミドpCRY30への本発明のA断片の導入は、プラスミドpCRY30を制限酵素EcoRIで開裂させ、そこに前記アスパルターゼをコードする遺伝子を含むDNA断片（A断片）をDNAリガーゼで連結させることにより行うことができる。

【0032】このようにして造成されるプラスミドpCRY30に本発明の大きさが約2.4kbのA断片を導入した組換えプラスミドは、L-アスパラギン酸の製造に好適に用いることができる組換えプラスミドの一つであり、本発明者らはこれをプラスミドpCRY30-AspBと命名した。プラスミドpCRY30-AspBの作成方法の詳細については、後記実施例4で説明する。

【0033】このプラスミドpCRY30-AspBの制限酵素切断点地図を図2に示す。このようにして造成されるアスパルターゼ遺伝子を含むコリネ型細菌内で複製増殖可能なプラスミドを、宿主微生物に導入し、該微生物の培養物を用いてL-アスパラギン酸を安定に効率よく生産することが可能となる。

【0034】本発明によるプラスミドで形質転換しうる宿主微生物としては、コリネ型細菌、例えばブレビバクテリウム・フラバムMJ-233(FERM BP-1497)、ブレビバクテリウム・フラバムMJ-233-AB-41(FERM BP-1498)、ブレビバクテリウム・フラバムMJ-233-ABT-11(FERM BP-1500)、ブレビバクテリウム・フラバムMJ-233-ABD-21(FERM BP-1499)等が挙げられる。

【0035】なお、上記のFERM BP-1498の菌株は、FERM BP-1497の菌株を親株としてDL- α -アミノ酪酸耐性を積極的に付与されたエタノール活性化微生物である（特公昭59-28398号公報第3~4欄参照）。また、FERM BP-1500の菌株は、FERM BP-1497の菌株を親株としたL- α -アミノ酪酸トランスアミナーゼ高活性変異株である（特開昭62-51998号公報参照）。さらに、FERM BP-1499の菌株はFERM BP-1497の菌株を親株としたD- α -アミノ酪酸デアミナーゼ高活性変異株である（特開昭61-177993号公報参照）。

【0036】これらの微生物の他に、ブレビバクテリウム・アンモニアゲネス(*Brevibacterium ammoniagenes*) ATCC 6871、同ATCC 13745、同ATCC 13746；ブレビバクテリウム・ディバリカタム(*Brevibacterium davaricatum*) ATCC 14020；ブレビバクテリウム・ラクトファーメンタム(*Brevibacterium lactofermentum*) ATCC 13869；コリネバクテリウム・グルタミカム(*Corynebacterium glutamicum*) ATCC 31831等を宿主微生物として用いることもできる。

【0037】なお宿主としてブレビバクテリウム・フラバムMJ-233由来の菌株を用いる場合、本菌株が保有するプラスミドpBY502（特開昭63-36787号公報参照）のため、形質転換が困難である場合があるので、そのような場合には、本菌株よりプラスミドpBY502を除去することが望ましい。そのようなプラスミドpBY502を除去する方法としては、例えば、継代培養を繰り返すことにより、自然に欠失させることも可能であるし、人為的に除去することも可能である[Bact. Rev. 36 p. 361~405 (1972) 参照]。上記プラスミドpBY502を人為的に除去する方法の一例を示せば次のとおりである。

【0038】宿主ブレビバクテリウム・フラバムMJ-233の生育を不完全に阻害する濃度のアクリジンオレンジ（濃度：0.2~50 μ g/m1）もしくはエチジウムプロミド（濃度：0.2~50 μ g/m1）等を含む培地に、1m1当り約10細胞になるように植菌し、生育を不完全に阻害しながら、約24時間約35℃で培養する。培養液を希釈後寒天培地に塗布し、約35℃で約2日培養する。出現したコロニーから各々独立にプラスミド抽出操作を行い、プラスミドpBY502が除去されている株を選択する。この操作によりプラスミドpBY502が除去されたブレビバクテリウム・フラバムMJ-233由来菌株が得られる。

【0039】このようにして得られるブレビバクテリウム・フラバムMJ-233由来菌株への前記プラスミドの形質転換法としては、エシリヒア・コリ及びエルビニア・カロトボラについて知られているよう ([Calvin, N.M. and Hanawalt, P.C., Journal of Bacteriology

y, 170, 2796 (1988); Ito, K., Nishida, T. and Izaki, K., Agricultural and Biological Chemistry, 52, 293 (1988) 参照]、DNA受容菌へのパルス波通電[Satoh, Y. et al., Journal of Industrial Microbiology, 5, 159 (1990) 参照]等によりプラスミドを導入することが可能である。

【0040】上記の方法で形質転換して得られるアスペルギルバクテリウム・フラバムMJ-233由来株の培養方法を以下に述べる。

【0041】培養は炭素源、窒素源、無機塩等を含む通常の栄養培地で行うことができ、炭素源としては、例えばグルコース、エタノール、メタノール、醜糖蜜等が、そして窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、尿素等がそれぞれ単独もしくは混合して用いられる。また、無機塩としては、例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム等が用いられる。この他にペプトン、肉エキス、酵母エキス、コーンスティーブリカ、カザミノ酸、ビオチン等の各種ビタミン等の栄養素を培地に添加することができる。

【0042】培養は、通常、通気搅拌、振盪等の好気的条件下に、約20~40℃、好ましくは25~35℃の温度で行うことができる。培養途中のpHは5~10、好ましくは7~8付近と/or することができ、培養中のpHの調整は酸又はアルカリを添加して行うことができる。

【0043】培養開始時の炭素源濃度は、好ましくは1~5容量%、更に好ましくは2~3容量%である。また、培養期間は通常1~7日間と/or ことができ、最適期間は3日間である。

【0044】このようにして得られる培養物から各々菌体を集め、水又は適当な緩衝液で洗浄し、L-アスパラギン酸生成反応に使用することができる。

【0045】L-アスパラギン酸生成反応においては、これらの菌体をそのまま用いることができ、あるいは超音波処理等を加えた菌体破碎物として、あるいは適当な担体に固定化して用いることができる。さらに好ましくは、該菌体もしくはその破碎物または固定化物をあらかじめL-アスパラギン酸及びアンモニウムイオンの存在下且つpHのアルカリ域において約40~60℃の温度で加熱処理した処理物を用いることができる。

【0046】以上に述べた如き菌体の破碎物、固定化物及び加熱処理物等を本明細書ではまとめて「菌体処理物」という。

【0047】しかして本発明に従えば、上記培養菌体又は菌体処理物の存在下に、フマール酸又はその塩とアンモニア又はアンモニウム塩を反応せしめることからなるL-アスパラギン酸の製造法が提供される。

【0048】フマール酸又はその塩とアンモニア又はアンモニウム塩との間の酵素反応は、水性媒体中で、約0

～60℃の範囲内で行なうことができるが、アスパルターゼの安定性を考慮して20～50℃の範囲内で実施するのが好ましい。また、フマール酸又はその塩とアンモニア又はアンモニウム塩との使用モル比は通常1：1～1：5の範囲内が適当である。

【0049】

【実施例】以上に本発明を説明してきたが、下記の実施例によりさらに具体的に説明する。

【0050】実施例1

プレビバクテリウム・フラバムMJ-233由来のアスパルターゼをコードする遺伝子を含むDNA断片（A断片）のクローニング

(A) プレビバクテリウム・フラバムMJ-233の全DNAの抽出

半合成培地A培地【組成：尿素2g、(NH₄)₂SO₄ 7g、K₂HPO₄ 0.5g、KH₂PO₄ 0.5g、Mg SO₄ 0.5g、Fe SO₄·7H₂O 6mg、Mn SO₄ 4～6H₂O 6mg、酵母エキス2.5g、カザミノ酸5g、ピチオン200μg、塩酸チアミン200μg、グルコース20g、蒸留水1L】1Lに、プレビバクテリウム・フラバムMJ-233(FERM BP-1497)を対数増殖期後期まで培養し、菌体を集め。得られた菌体を10mg/mlの濃度にリゾチームを含む10mM NaCl-20mMトリス緩衝液(pH8.0)-1mM EDTA-2Na溶液1.5mlに懸濁した。次にプロテナーゼKを、最終濃度が100μg/mlになるように添加し、37℃で1時間保温した。さらにドデシル硫酸ナトリウムを最終濃度が0.5%になるように添加し、50℃で6時間保温して溶菌した。この溶菌液に、等量のフェノール／クロロホルム溶液を添加し、室温で10分間ゆるやかに振盪した後、全量を遠心分離(5,000×g、20分間、10～12℃)し、上清画分を分取し、酢酸ナトリウムを0.3Mとなるように添加した後、2倍量のエタノールをゆっくりと加えた。水層とエタノール層の間に存在するDNAをガラス棒でまきとり、70%エタノールで洗浄した後、風乾した。得られたDNAに10mMトリス緩衝液(pH7.5)-1mM EDTA-2Na溶液5mlを加え、4℃で一晩静置し、以後の実験に用いた。

【0051】(B) 組換え体の創製

上記(A)項で得たプレビバクテリウム・フラバムMJ-233の全DNA溶液の90μlを制限酵素Sau3AI 1unitを用い、37℃で20分間反応させ部分分解した。この部分分解DNAにコスミドpWE15(ストラダジーン社製)を制限酵素BamHIで切断した後、脱リン酸化処理したものを混合し、50mMトリス緩衝液(pH7.6)、10mMジチオスレイトール、1mM ATP、10mM MgCl₂及びT4DNAリガーゼ1unitの各成分を添加し(各成分の濃度は最終濃度である)、4℃で15時間反応させ、結合させた。

【0052】(C) アスパルターゼをコードする遺伝子を含むコスミドの選抜上記遺伝子の選抜に用いたアスパルターゼ欠損大腸菌変異株は、エシエリヒア・コリK-12JRG1114(aspa23)である[()内はアスパルターゼ遺伝子型(Genotype)を示す、またこの菌株の詳細および取得方法については、Journal of General Microbiology, 130, 1271-1278(1984)参照]。

【0053】上記(B)項で得たコスミド混液を用い、前記エシエリヒア・コリJRG1174株を形質導入し、アンビシリン50mgを含む選択培地[K₂HPO₄ 7g、KH₂PO₄ 2g、(NH₄)₂SO₄ 1g、Mg SO₄·7H₂O 0.1g、L-グルタミン酸ナトリウム塩30mM及び寒天16gを蒸留水1Lに溶解]に塗沫した。なお形質導入には、宝酒造より販売されているλDNA in vitro Packaging Kitを用いて行った。培地上の生育株を常法により、液体培養し、培養液よりコスミドDNAを抽出し、該コスミドを制限酵素により切断し、アガロースゲル電気泳動を用いて調べたところ、コスミドpWE15の長さ8.8kbのDNA断片に加え、長さ約30kbのDNA断片が認められた。本コスミドをpWE15-Aspと命名した。

【0054】(D) アスパルターゼをコードする遺伝子を含むDNA断片(A、断片)のプラスミドpHSG399へのサブクローニング

上記(C)項で得たコスミドpWE15-Aspに含まれるDNA挿入断片は約30kbと大きく、実用的でないので、得られた断片のうち必要な部分だけに小型化するために、プラスミドpHSG399(宝酒造より市販)へアスパルターゼをコードする遺伝子を含むDNA断片を下記のとおりサブクローニングした。

【0055】上記(C)項で得たコスミドpWE15-Aspを制限酵素EcoRIで切断したものと、プラスミドpHSG399を制限酵素EcoRIで切断したものを混合し、50mMトリス緩衝液(pH7.6)、10mMジチオスレイトール、1mM ATP、10mM MgCl₂及びT4DNAリガーゼ1unitの各成分を添加し(各成分の濃度は最終濃度である)、12℃で15時間反応させ、結合させた。

【0056】得られたプラスミド混液を用い、塩化カルシウム法(Journal of Molecular Biology, 53, 159, 1970)によりエシエリヒア・コリK-12JRG1114(aspa23)株を形質転換し、クロラムフェニコール50mgを含む選択培地[K₂HPO₄ 7g、KH₂PO₄ 2g、(NH₄)₂SO₄ 1g、Mg SO₄·7H₂O 0.1g、L-グルタミン酸ナトリウム30mM及び寒天16gを蒸留水1Lに溶解]に塗沫した。

【0057】この培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、該プラスミ

ドを制限酵素により切断し、アガロースゲル電気泳動を用いて調べたところ、プラスミドpHSG399の長さ2.2 kbのDNA断片に加え、長さ約2.4 kbの挿入DNA断片が認められた。各種の制限で切断したときの、長さ約2.4 kbのDNA断片の制限酵素認識部位数および切断断片の大きさは前記表1に示したとおりであった。このDNA断片の制限酵素切断点地図を図1に

示す。

【0058】また上記で得たプラスミドを各種制限酵素で切断して、切断断片の大きさを測定した。その結果を下記の表2に示す。

【0059】

【表2】

表2
プラスミドpHSG399-Asp

制限酵素	認識部位数	切断断片の大きさ(kb)
Ava I	2	3.6, 1.0
Cla I	1	4.6
Eco RI	2	2.4, 2.2

上記の制限酵素により特徴づけられるプラスミドをpHSG399-Aspと命名した。

【0060】以上により、アスバルターゼをコードする遺伝子を含む大きさが約2.4 kbのDNA断片(Eco RI断片)を得ることができた。

【0061】実施例2

アスバルターゼをコードする遺伝子の塩基配列の決定

実施例1の(D)項で得られたアスバルターゼをコードする遺伝子を含む長さが約2.4 kbのDNA断片について、その塩基配列をプラスミドpUC18またはpUC19を用いるジデオキシヌクレオチド酵素法(dideoxy chain termination法)(Sanger, F. et al., Proc. Nat. Acad. Sci. USA 74, 5463, 1977)により図2に示した戦略図に従って決定した。その塩基配列中のオープンリーディングフレームの存在から、アスバルターゼをコードする遺伝子は、後記配列表に示した塩基配列を有する526のアミノ酸をコードする1578の塩基対より構成されていることが判明した。

【0062】実施例3

コリネ型細菌内で複製し安定なプラスミドベクターpCRY30の作成

(A) プラスミドpBY503の調製

プラスミドpBY503は、プレビパクテリウム・スタチオニスIFO12144(FERM BP-2515)から分離された分子量約10メガダルトンのプラスミドであり、特開平1-95785号公報に記載のようにして調製した。半合成培地A培地[尿素2g、(NH₄)₂SO₄ 7g、K₂HPO₄ 0.5g、KH₂PO₄ 0.5g、MgSO₄ 0.5g、FeSO₄·7H₂O 6mg、MnSO₄·4~6H₂O 6mg、酵母エキス2.5g、カザミノ酸5g、ビチオン200μg、塩酸チアミン200μg、グルコース20g及び蒸留水1l]1lに、プレビパクテリウム・スタチオニスIFO12144を対数増殖期後期まで培養し、菌体を集めた。得られた菌体を10mg/mlの濃度にリゾチームを含む緩衝液[25mMトリス(ヒドロキシメチル)アミノメタン、10mMのEDTA、50mMグルコース]20ml

1に懸濁し、37℃で1時間反応させた。反応液にアルカリ-SDS液[0.2N NaOH、1% (w/v) SDS]40mlを添加し、緩やかに混和して室温にて15分間静置した。次に、この反応液に酢酸カリウム溶液[5M酢酸カリウム・溶液60ml、酢酸11.5ml、蒸留水28.5mlの混合液]30mlを添加し、充分混和してから氷水中に15分間静置した。

【0063】溶菌物全量を遠心管に移し、4℃で10分間、15,000×gの遠心分離にかけ、上澄液を得た。

【0064】これに等量のフェノール-クロロホルム液(フェノール:クロロホルム=1:1混和液)を加え懸濁した後、遠心管に移し、室温下で5分間15,000×gの遠心分離にかけ、水層を回収した。水層に2倍量のエタノールを加え、-20℃で1時間静置後、4℃で10分間、15,000×gの遠心分離にかけ、沈殿を回収した。

【0065】沈殿を減圧乾燥後、TE緩衝液[トリス10mM、EDTA 1mM; HC1にてpH8.0に調整]2mlに溶解した。溶解液に塩化セシウム溶液[5倍濃度のTE緩衝液100mlに塩化セシウム170gを溶解させた液]15mlと10mg/mlエチジウムプロマイド溶液1mlを加えて、密度を1.392g/mlに合わせた。この溶液を12℃で42時間、116,000×gの遠心分離を行った。

【0066】プラスミドpBY503は紫外線照射により遠心管内で下方のバンドとして見い出される。このバンドを注射器で遠心管の側面から抜きとることにより、プラスミドpBY503を含む分画液を得た。

【0067】次いでこの分画液を等量のイソアミルアルコールで4回処理してエチジウムプロマイドを抽出除去し、その後にTE緩衝液に体して透析を行った。このようにして得られたプラスミドpBY503を含む透析液に3M酢酸ナトリウム溶液を最終濃度30mMに添加した後、2倍量エタノールを加え、-20℃1時間静置した。この溶液を15,000×gの遠心分離にかけてDNAを沈降させ、プラスミドpBY503を50μg得

た。

【0068】(B) プラスミドベクター-pCRY30の作成

プラスミドpHSG298(宝酒造製)0.5μgに制限酵素Sall(5units)を37℃1時間反応させ、プラスミドDNAを完全に分解した。

【0069】前記(A)項で調製したプラスミドpBY503の2μgに制限酵素XbaI(1unit)を37℃で30分間反応させ、プラスミドDNAを部分分解した。

【0070】両者のプラスミドDNA分解物を混合し、制限酵素を不活性化するために65℃で10分間加熱処理した後、該失活溶液中の成分が最終濃度として各々50mMトリス緩衝液pH7.6、10mM MgCl₂、10mMジチオスレイトール、1mM ATP及びT4DNAリガーゼ1unitになるように各成分を強化し、16℃で15時間保温した。この溶液を用いてエシェリヒア・コリJM109コンピテントセル(宝酒造)を形質転換した。

【0071】形質転換株は30μg/ml(最終濃度)のカナマイシン、100μg/ml(最終濃度)のIP-TG(イソイプロビル-β-D-チオガラクトビラノシド)100μg/ml(最終濃度)のX-gal(5-ブロモ-4-クロロ-3-インドリル-β-D-ガラクトビラノシド)を含むL培地(トリプトン10g、酵母エキス5g、NaCl 5g及び純水1l、pH7.2)で37℃にて24時間培養し、生育株として得られた。これらの生育株のうち、白いコロニーで生育してきたものを選択し、各々プラスミドをアルカリ-SDS法

[T. Maniatis E. F. Fritsch, J. Sambrook, "Molecular cloning" (1982) p 90~91参照]により抽出した。

【0072】その結果、プラスミドpHSG298のSalI部位にプラスミドpBY503由来の約4.0kbの断片が挿入されたプラスミドpHSG298 oriが得られた。

【0073】次に同様の方法を用い、前記(A)項で得られたプラスミドpBY503DNAを制限酵素KpnI及びEcoRIにて処理して得られる約2.1kbのDNA断片を上記プラスミドpHSG298-oriのKpnI及びEcoRI部位にクローニングし、プラスミドベクター-pCRY30を調製した。

【0074】実施例4

プラスミドpCRY30-AspBの作成及びコリネ型細菌への導入

実施例1の(D)項で得られたプラスミドpHSG399-Asp5μgを制限酵素EcoRIを5unit用い、

37℃で1時間反応させ分解したものと、実施例3の(B)項で得られたプラスミドpCRY301μgを制限酵素EcoRI1unitを用い、37℃で1時間反応させ分解したものとを混合し、50mMトリス緩衝液(pH7.6)、10mMジチオスレイトール、1mM ATP、10mM MgCl₂およびT4DNAリガーゼ1unitの各成分を添加し(各成分の濃度は最終濃度である)、12℃で15時間反応させ結合させた。このプラスミドを用いて、前記方法に従いエシェリヒア・コリK-12JRG1114(aspa₂₃)株を形質転換し、カナマイシン50μg/mlを含む選択培地[K₂HPo₄ 7g、KH₂PO₄ 2g、(NH₄)₂SO₄ 1g、MgSO₄·7H₂O 1g、L-グルタミン酸+ナトリウム30mM及び寒天16gを蒸留水1lに溶解]に塗抹した。

【0075】この培地上の生育株を常法により液体培養し、培養液よりプラスミドDNAを抽出し、該プラスミドを制限酵素により切断し、アガロースゲル電気泳動を用いて調べたところ、プラスミドpCRY30の長さ8.6kbのDNA断片に加え、大きさ2.4kbの挿入DNA断片が認められた。

【0076】上記の如く調製されたプラスミドDNAを、コリネ型細菌へ形質転換した。

【0077】形質転換は、電気パルス法を用いて次のとおり行った。

【0078】プレビバクテリウム・フラバムMJ-233(FERM BP-1497)プラスミドpBY502除去株を100mlの前記A培地で対数増殖初期まで培養し、ペニシリンGを1ユニット/mlになるように添加して、さらに2時間振盪培養し、遠心分離により菌体を集め、菌体を20mlのパルス用溶液(272mM Sucrose、7mM KH₂PO₄、1mM MgCl₂; pH7.4)にて洗浄した。さらに菌体を遠心分離して集め、5mlのパルス用溶液に懸濁し、0.75mlの細胞と、前記で得られたプラスミドDNA溶液50μlとを混合し、水中にて20分間静置した。ジーンバルサー(バイオラド社製)を用いて、2500ボルト、25μFDに設定し、パルスを印加後氷中に20分間静置した。全量を3mlの前記A培地に移し30℃にて1時間培養後、カナマイシン15μg/ml(最終濃度)を含む前記A寒天培地に植菌し30℃で2~3日間培養した。出現したカナマイシン耐性株より、前記実施例3(A)項に記載の方法を用いてプラスミドを得た。このプラスミドを各種制限酵素で切断して、切断断片の大きさを測定した。その結果を下記の表3に示す。

【0079】

【表3】

プラスミドpCRY30-AspB		
制限酵素	認識部位数	切断断片の大きさ(kb)
EcoRI	2	8.6、2.4

BamH 1 1

上記制限酵素により特徴づけられるプラスミドをpCR Y30-AspBと命名した。このプラスミドpCRY30-AspBの制限酵素地図を図3に示す。

【0080】なお、プラスミドpCRY30-AspBにより形質転換されたプレビバクテリウム・フラバムMJ-233-AspBにより形質転換されたプレビバクテリウム・フラバムMJ-233-AspBは、茨城県つくば市東1丁目1番3号の工業技術院微生物工業技術研究所に、平成3年5月9日付で：微工研寄第12228号(FERM P-12228)として寄託されている。

【0081】実施例5

プラスミドpCRY30-AspBの安定性

前記のA培地100mlを500ml容三角フラスコに分注し、120℃で15分間滅菌処理したものに、実施例4で得た形質転換株プレビバクテリウム・フラバムMJ-233-AspBを植菌し、30℃にて24時間振盪培養を行った後、同様にして調製したA培地100mlを500ml容三角フラスコに分注し、120℃で15分間滅菌したものに、1ml当たり50cellsの割合になるように植継し、同じく30℃にて24時間振盪培養を行った。次に遠心分離して集菌し、菌体を洗净後、カナマイシンを15μg/mlの割合で添加したA培地及び無添加のA培地を用いて調製した平板培地に一定量塗沫し、30℃にて1日培養後生育コロニーをカウントした。

【0082】この結果、カナマイシン添加および無添加培地に生育したコロニーは同数であること、さらにA培地生育コロニーは全てカナマイシン添加培地に生育すること、すなわち該プラスミドの高度の安定性を確認した。

【0083】実施例6

L-アスパラギン酸の生産

【0089】

11.0

前記A培地100mlを500ml容三角フラスコに分注し、滅菌(滅菌後pH7.0)した後、プレビバクテリウム・フラバム(Brevibacterium fravum) MJ-233-AspBを植菌し、無菌的にグルコースを5g/lの濃度になるように加え、33℃にて2日間振盪培養を行った。

【0084】次に、本培養培地(グルコース5%、硫酸アンモニウム2.3%、KH₂PO₄0.05%、K₂HPO₄0.05%、MgSO₄·7H₂O 0.05%、FeSO₄·7H₂O 20ppm、MnSO₄·nH₂O 20ppm、ピチオン200μg/l、チアミン·HCl 100μg/l、カザミノ酸0.3%、酵母エキス0.3%)の1000mlを2l容通気搅拌槽に仕込み、滅菌(120℃、20分間)後、前記培養物の20mlを添加して、回転数1000rpm、通気量1vvm、温度33℃、pH7.6にて24時間培養を行った。

【0085】培養終了後、これらの培養液を遠心分離(4000rpm、15分間)したのち集菌体を蒸留水に懸濁し、O.D. (光学密度、波長610nmでの吸光度) 値50の菌体懸濁液を調製し、該菌体懸濁液を供試液とした。

【0086】L-アスパラギン酸の生成は、下記表4に示す反応液の50mlにて45℃5時間反応を行い該反応終了液を遠心分離(4000rpm、15分間)し、その上清液中のアスパラギン酸生成量をロイコノストック・メセンテロイデスATCC8042による微生物定量法により生成アスパラギン酸量を求めた。

【0087】その結果をFERM BP-1497株による生成量を1とする相対値として表5に示す。

【0088】

【表4】

表 4

フマル酸	5 g
MgSO ₄ ·7H ₂ O	0.1 g
ポリオキシエチレン(20)ソルビタン	
モノラウレート	0.05 ml
アンモニア(28%濃度)	14 ml
供試液	10 ml
全量	50 ml (pH 9.4)

【表5】

表 5

菌 株	アスパラギン酸生成量
	(相対値)
FERM BP-1497	1
FERM P-12228	7

表5に示した結果から明らかのように、本発明の微生物を用いることにより、フマル酸又はその塩とアンモニア又はアンモニウム塩から効率よくL-アスパラギン酸を生成せしめることができた。

【0090】

【発明の効果】本発明の新規な遺伝子DNAは、コリネ型細菌由来のアスパルターゼをコードする遺伝子DNAであり、該遺伝子DNAを含む本発明のプラスミドを導入したコリネ型細菌を用い、効率的にフマル酸とアンモニアからL-アスパラギン酸を製造することが可能となる。

【0091】

【配列表】配列番号：1

配列

ATG TCT AAG ACG ACC AAC AAG TCT TCA GCA GAC TCA AAG AAT GAC GCA	48
Met Ser Lys Thr Ser Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala	
1 5 10 15	
AAA GCC GAA GAC ATT GTG AAC GCC GAG AAC CAA ATC GCC ACG AAT GAG	96
Lys Ala Glu Asp Ile Val Asn Gly Glu Asn Gln Ile Ala Thr Asn Glu	
20 25 30	
TCG CAG TCT TCA GAC AGC GCT GCA GTT TCG GAA CGT GTC GTC GAA CCA	144
Ser Gln Ser Ser Asp Ser Ala Ala Val Ser Glu Arg Val Val Glu Pro	
35 40 45	
AAA ACC ACG GTT CAG AAA AAG TTC CGA ATC GAA TCG GAT CTG CTT GGT	192
Lys Thr Thr Val Gln Lys Lys Phe Arg Ile Glu Ser Asp Leu Leu Gly	
50 55 60	
GAA CTT CAG ATC CCA TCC CAC GCA TAT TAC GGC GTG CAC ACC CTT CGT	240
Glu Leu Gln Ile Pro Ser His Ala Tyr Tyr Gly Val His Thr Leu Arg	
65 70 75 80	
CCG CTG GAC AAC TTC CAA ATC TCA CGA ACC ACC ATC AAC CAC GTC CCA	288
Ala Val Asp Asn Phe Gln Ile Ser Arg Thr Thr Ile Asn His Val Pro	
85 90 95	
GAT TTC ATT CGC GGC ATG GTC CAG GTG AAA AAG GGC GCA GCT TTA GCA	336
Asp Phe Ile Arg Gly Met Val Gln Val Lys Lys Ala Ala Leu Ala	
100 105 110	
AAC CGC CGA CTA CAC ACA CTT CCA GCA CAA AAA GCA GAA GCA ATT GTC	384
Asn Arg Arg Leu His Thr Leu Pro Ala Gln Lys Ala Glu Ala Ile Val	
115 120 125	
TGG GCT TGT GAT CAG ATC CTC ATT GAG GCA CGC TGT ATG GAT CAG TTC	432
Trp Ala Cys Asp Gln Ile Leu Ile Glu Gly Arg Cys Met Asp Gln Phe	
130 135 140	

配列の長さ：1581

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：Genomic DNA

起源

生物名：ブレビバクテリウム フラバム

株名：MJ-233

配列の特徴

特徴を表す記号：peptide

存在位置：1-1581

特徴を決定した方法：P

CCC ATC GAT GTG TTC CAG GGT GCC GCA CGT ACC TCA CTG AAC ATG AAC 480
 Pro Ile Asp Val Phe Gln Gly Gly Ala Gly Thr Ser Leu Asn Met Asn
 145 150 155 160
 ACC AAC GAA GTT CTT GCC AAC CTT GCA CTT GAG TTC TTA CGC CAT GAA 528
 Thr Asn Glu Val Val Ala Asn Leu Ala Leu Glu Phe Leu Gly His Glu
 165 170 175
 AAG GCC GAG TAC CAC ATC CTG CAC CCC ATG GAT GAT GTG AAC ATG TCC 576
 Lys Gly Glu Tyr His Ile Leu His Pro Met Asp Asp Val Asn Met Ser
 180 185 190
 CAG TCC ACC AAC GAT TCC TAC CCA ACT GGT TTC CGC CTG GGC ATT TAC 624
 Gln Ser Thr Asn Asp Ser Tyr Pro Thr Gly Phe Arg Leu Gly Ile Tyr
 195 200 205
 GCT GGA CTG CAG ACC CTC ATC GCT GAA ATT GAT GAG CTT CAG GTT GCG 672
 Ala Gly Leu Gln Thr Leu Ile Ala Glu Ile Asp Glu Leu Gln Val Ala
 210 215 220
 TTC CGC CAC AAG GGC AAT GAG TTT GTC GAC ATC ATC AAG ATG GGC CGC 720
 Phe Arg His Lys Gly Asn Glu Phe Val Asp Ile Ile Lys Met Gly Arg
 225 230 235 240
 ACC CAG TTG CAG GAT GCT GTT CCC ATG AGC TTG GGC GAA GAG TTC CGA 768
 Thr Gln Leu Gln Asp Ala Val Pro Met Ser Leu Gly Glu Glu Phe Arg
 245 250 255
 GCA TTC GCG CAC AAC CTC GCA GAA GAG CAG ACC GTG CTG CGT GAA GCT 816
 Ala Phe Ala His Asn Leu Ala Glu Glu Gln Thr Val Leu Arg Glu Ala
 260 265 270
 GCC AAC CGT CTC CTC GAG GTC AAC CTT CGT GCA ACC GCA ATC GGT ACT 864
 Ala Asn Arg Leu Leu Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr
 275 280 285
 GGT GTG AAC ACT CCA GCA GGC TAC CGC CAC CAG GTT GTC GCT GCT CTG 912
 Gly Val Asn Thr Pro Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu
 290 295 300
 TCT GAG GTC ACC GGA CTG GAA CTA AAG TCC GCA CGT GAT CTC ATT GAG 960
 Ser Glu Val Thr Gly Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu
 305 310 315 320
 GCT ACC TCT GAC ACC GGT GCA TAT GTT CAT CGG CAC TCC GCA ATC AAG 1008
 Ala Thr Ser Asp Thr Gly Ala Tyr Val His Ala His Ser Ala Ile Lys
 325 330 335
 CGT GCA GCC ATG AAA CTG TCC AAG ATC TGT AAC GAT CTA CGT CTG CTG 1056
 Arg Ala Ala Met Lys Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu
 340 345 350
 TCT TCT CGT CCT CGT GCT GGC TTG AAC GAA ATC AAT CTG CCA CCA CGC 1104
 Ser Ser Gly Pro Arg Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg
 355 360 365
 CAG CCT GGT TCC TCC ATC ATG CCA GCC AAG GTC AAC CCA GTG ATC CCA 1152
 Gln Ala Gly Ser Ser Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro
 370 375 380
 GAA GTG GTC AAC CAG GTC TGC TTC AAG GTC TTC GGT AAC GAT CTC ACC 1200
 Glu Val Val Asn Gln Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr
 385 390 395 400
 GTC ACC ATG GCT GCG GAA GCT CGC CAG TTG CAG CTC AAC GTC ATG GAG 1248
 Val Thr Met Ala Ala Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu

405 410 415
 CCA GTC ATT GGC GAA TCC CTC TTC CAG TCA CTG CGC ATC CTG GCC AAT 1296
 Pro Val Ile Gly Glu Ser Leu Phe Glu Ser Leu Arg Ile Leu Gly Asn
 420 425 430
 GCA GCC AAG ACT TTG CGT GAG AAG TGC GTC GTA GGA ATC ACC GCC AAC 1344
 Ala Ala Lys Thr Leu Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn
 435 440 445
 GCT GAT GTT TGC CGT GCT TAC GAT AAC TCC ATT GGC ATT ATC ACT 1392
 Ala Asp Val Cys Arg Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr
 450 455 460
 TAC CTG AAC CCA TTC CTG CGC CAC GAC ATT GGA GAT CAG ATC CGT AAG 1440
 Tyr Leu Asn Pro Phe Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys
 465 470 475 480
 GAA GCA GCC GAA ACT GGT CGA CCA GTG CGT GAA CTC ATC CTG GAA AAG 1488
 Glu Ala Ala Glu Thr Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys
 485 490 495
 AAG CTC ATG GAT GAA AAG ACG CTC GAG GCA GTC CTA TCC AAG GAG AAC 1536
 Lys Leu Met Asp Glu Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn
 500 505 510
 CTC ATG CAC CCA ATG TTC CGC GGA AGG CTC TAC TTG GAG AAC TAA 1581
 Leu Met His Pro Met Phe Arg Gly Arg Leu Tyr Leu Glu Asn
 515 520 525

【図面の簡単な説明】

【図1】 本発明のアスパルターゼをコードする遺伝子を含むDNA断片の制限酵素による切断点地図。

【図2】 大きさが約2.4 kbの本発明DNA断片の

塩基配列決定のための戦略図。

【図3】 本発明のプラスミドpCRY30-AspBの制限酵素切断点地図。

【図1】

【図2】

【図3】

フロントページの続き

(51) Int. Cl. 5 識別記号 庁内整理番号 F I 技術表示箇所
(C 1 2 N 15/60
(C 1 2 R 1:13)
(C 1 2 N 1/20
(C 1 2 R 1:13)
(C 1 2 P 13/20
(C 1 2 R 1:13)

(72)発明者 湯川 英明
茨城県稻敷郡阿見町中央8丁目3番1号三
菱油化株式会社筑波総合研究所内