

CSCE 580: Introduction to Al

Lecture 15: Project Presentation – Sprint 1

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 8TH OCT 2024

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 580, 581 - FALL 2023

1

Organization of Lecture 15

- Introduction Segment
 - Recap of Lecture 14
- Main Segment
 - Student Presentations
- Concluding Segment
 - Course Project Discussion
 - About Next Lecture Lecture 16
 - Ask me anything

Introduction Section

Recap of Lecture 14

- Topics discussed
 - Understood Clustering problem
 - Understood k-means
 - A range of clustering methods
 - Measuring cluster quality
 - Explaining clusters
 - Working with Weka, scikit and python code samples

Where We Are in the Course

CSCE 580/581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification, Clustering
- Week 9: Machine Learning Classification <u>Trust Issues and</u>

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

CSCE 580, 581 - FALL 2023

Main Section

Credit: Retrieved from internet

Course Project

Discussion: Projects

- New: two projects
 - Project 1: model assignment
 - Project 2: single problem/ Ilm based solving / fine-tuning/ presenting result

CSCE 580- FALL 2024 8

Project Discussion

- 1. Go to Google spreadsheet against your name
- Enter model assignment name and link from (http://modelai.gettysburg.edu/)
- 1. Create a private Github repository called "CSCE58x-Fall2024-<studentname>-Repo". Share with Instructor (biplav-s) and TA (vishalpallagani)
- 2. Create Google folder called "CSCE58x-Fall2024-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (vishal.pallagani@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by next class (Sep 5, 2024)

Timeline

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Data need:
- 4. Methods:
- 5. Evaluation:
- 6. Milestones
 - 1. // Create your own
- 7. Oct 3, 2024

Reference: Project 1 Rubric (30% of Course)

Assume total for Project-1 as 100

- Project results 60%
 - Working system ? 30%
 - Evaluation with results superior to baseline? 20%
 - Went through project tasks completely ? 10%
- Project efforts 40%
 - Project report 20%
 - Project presentation (updates, final) 20%

Bonus

- Challenge level of problem 10%
- Instructor discretion 10%

Penalty

 Lack of timeliness as per your milestones policy (right) - up to 30%

Milestones and Penalties

- Project plan due by Sep 5, 2024 [-10%]
- Project deliverables due by Oct 3, 2024 [-10%]
- Project presentation on Oct 8, 2024 [-10%]

Report Format

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Data need:
- 4. Methods:
- 5. Screen shot (as applicable)
- 6. Evaluation:
- 7. Experience: what learnt, anything special to discuss with class

Presentation Format

2 minute video

Screen Shot

- 1. Title:
- 2. Key idea: 1 line summary
- 3. Data need:
- 4. Effort and Result
 - 1. What was done (scope)
 - What was not done (decided not to, couldn't)
 - 3. Result

Experience

Lecture 15: Summary

- Good range of projects
- Gear up for Project 2

Concluding Section

About Next Lecture – Lecture 16

E 580, 581 - FALL 2023 15

Lecture 16: ML- Neural Networks, DL

- Neural Networks NN
- Deep Learning DL

13	Oct 1 (Tu)	Machine Learning –
		Classification – Decision Trees,
		Random Forest, NBC, Gradient
		Boosting, ML-Text
14	Oct 3 (Th)	ML – Unsupervised / Clustering
15	Oct 8 (Tu)	Student presentations - project
16	Oct 10 (Th)	ML – NN, Deep Learning
17	Oct 15 (Tu)	Processing Natural Languages/
		Language Models
	Oct 17 (Th)	
18	Oct 22 (Tu)	Large Language Models
		(LLMs) / Foundation Models
19	Oct 24 (Th)	Using LLMs – how and when?

CSCE 580, 581 - FALL 2023 1