

CSCE 580: Introduction to Al

Lecture 4: Formal Represention and Logic

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 29TH AUG 2024

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 580 - FALL 2024

1

Organization of Lecture 4

- Introduction Segment
 - Recap of Lecture 3
 - Clarification on Class Logistics
 - Programming exercise: resume
- Main Segment
 - Representing World Knowledge
 - Logic (Propositional)
 - Inferencing (Propositional)
 - Code setup for AIMA examples
- Concluding Segment
 - Course Project Discussion
 - About Next Lecture Lecture 5
 - Ask me anything

Introduction Section

Recap of Lecture 3

- Data preparation
- Knowledge representation/ graph
- Ontology

Class Logistics

Where to look for information

a) instructor personal website: course description, schedule

b) Course Github: for code; slides is a courtesy

c) **Blackboard**: for posting grades. Video recorded and shared as a courtesy.

Resume Exercise – Programming: Word Processing

- 1. Read your resume in text and get list of words, call resume_words
- 2. Plot a histogram of top 100 words, i.e., bar graph of words and counts
- 3. Have a list of common words stop words
 - 1. Articles: a, an, the
 - 2. Propositions, determiners
- 4. Remove stop words from resume_words
- 5. Plot a histogram of top 100 words, i.e., bar graph of words and counts
- 6. Observation: Notice any difference?

Resume Exercise – Programming: Word Tag Cloud

- Task 1
 - Take your resume
 - · Create word tag cloud for your resume
- Task 2
 - Take all resumes in folder
 - Create word tag cloud for multiple (5 or more, even all) resumes
 - Inspect and compare images of tasks 1 and 2
- Observation: Notice any difference?

Sample Code for Reference:

https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l1-wordcloud/FirstLook_ClassSyllabusData.ipynb

Resume Exercise - Report

- T1: Put the code in your Github in sub-folder: "resume-exercise"
- T2: Document the finding on Github or Google drive as .pdf (.docx optional) (Create a Google doc in your Google drive called "Resume-Exercise". In it,)
 - Show the two histograms
 - (top 100 and top-100 after stop words)
 - · Comment on any difference you see
 - Show the two word tag clouds
 - (your resume and of the class)
 - Comment on any difference you see
- Do it by next Thursday Sep 5, 2024

Intelligent Agent Model

Relationship Between Main Al Topics

Where We Are in the Course

CSCE 580/581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification
- Week 9: Machine Learning Classification <u>Trust Issues and</u>

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

Main Section

Intelligent Agent – Simple Knowledge Based

Logic – Basic Idea

- Starting with true assumptions, a knowledge-based system (automaton) to draw true conclusions
- Logic consists of three components
 - Syntax -- allowable sentences
 - Semantics -- determining truth of sentence given a model (assignment of values to sentences)
 - Inference Procedure -- rules to draw conclusion given a set of sentences

Formal Logic -1/3

- An automaton for manipulating symbols and drawing conclusions
- Consists of a knowledge base with:
 - a set of true statements (sentences).
 Sentences have
 - Syntax
 - Semantics compositional property
 - Proof theory: a set of rules for deducing the entailments / interpretations of the sentences

- Properties of sentences
 - Valid: A sentence is valid or necessarily true if and only if it is true under all possible interpretations in all possible worlds. Also called a tautology
 - **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Propositional Logic

- Sentences: assertions about the world
 - Atomic sentence: propositional symbol
 - ClassToday whether there is a class today: Yes, No
 - A -- any fact of interest: Yes, No
 - True -- always true
 - False -- always false

Propositional Logic - Syntax

```
Sentence — AtomicSentence ComplexSentence
```

Connective $- A \mid V \mid \Leftrightarrow \mid \Rightarrow$

BNF (Backus-Naur Form) grammar of sentences in propositional logic

Source: Russell & Norvig, AI: A Modern Approach

Propositional Logic - Semantics

Model of sentence: Any world in which a sentence is true (under a particular interpretation)

α	β	7	$\alpha \lor \beta$	$\neg \beta \mathbf{V} 7$	a V 7
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	True	· <u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

Truth table to prove soundness of inference

Source: Russell & Norvig, AI: A Modern Approach

Inference Procedure

- \bullet Given a knowledge base (KB), generate new sentences $\,\alpha$ that are entailed by KB
 - KB |= α
- Given KB and α , report whether or not α is entailed by KB
 - KB |- α

•

Propositional Logic

Inference Procedures

Source: Russell & Norvig, AI: A Modern Approach

♦ Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{a \Rightarrow \beta, \qquad a}{\beta}$$

♦ **And-Elimination**: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 A \alpha_2 A \dots A \alpha_n}{\alpha_i}$$

♦ **And-Introduction**: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 A \alpha_2 A \dots A \alpha_n}$$

0 Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$\frac{\neg \neg a}{\alpha}$$

♦ **Unit Resolution:** (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{a \vee \beta, \quad \neg \beta}{a}$$

 \diamondsuit **Resolution:** (This is the most difficult. Because θ cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{a \vee \beta, \quad \neg \beta \vee 7}{a \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

KB Agent Procedure

function KB-AGENT(*percept*) **returns** an *action* static: *KB*, a knowledge base *t*, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action - ASK(KB, MAKE-ACTION-QUERY(t)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action

Source: Russell & Norvig, AI: A Modern Approach

Formal Logic -2/3

- Levels at which sentences are encoded
 - Epistemic (also called knowledge): what agents knows or believes
 - Logical: how sentences are encoded to allow inferencing. E.g., symbols
 - Executional: how sentences are encoded during execution. E.g., vectors, symbols

- Valid: A sentence is valid or necessarily true
 if and only if it is true under all possible
 interpretations in all possible worlds. Also called a tautology
- **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Formal Logic – 3/3

- Properties of Logic System
 - **Soundness**: if it produces only true statements
 - **Completeness**: if it produces all true statements
 - Consistency: if it does not produce a sentence and its negation

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Example: Course Selection

Example Situation – Course Selection

- A person wants to pass an academic program in two majors: A and B
- There are three subjects available: A, B and C, each with three levels (*1, *2, *3). There are thus 9 courses: A1, A2, A3, B1, B2, B3, C1, C2, C3
- To graduate, at least one course at beginner (*1) level is needed in major(s) of choice(s), and two courses at intermediate levels (*2) are needed
- Answer questions
 - Q1: How many minimum courses does the person have to take?
 - Q2: Can a person graduate in 2 majors studying 3 courses only?
 - ...

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has_studied_courseA1: yes student has taken course; no student has not taken
 - has studied courseA2
 - has_studied_courseA3
 - has_studied_courseB1
 - has_studied_courseB2
 - has_studied_courseB3
 - has studied courseC1
 - has studied courseC2
 - has_studied_courseC3

Issue: What about hierarchy among courses?

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has studied courseA1: yes student has taken course; no student has not taken
 - has_studied_courseA2
 - has studied courseA3
 - has_studied_courseB1
 - has studied courseB2
 - has_studied_courseB3
 - has studied courseC1
 - has_studied_courseC2
 - has_studied_courseC3

LowerThan_Course_A1_CourseA2
LowerThan_Course_A2_CourseA3
LowerThan_Course_B1_CourseB2
LowerThan_Course_B2_CourseB3
LowerThan_Course_C1_CourseC2
LowerThan_Course_AC_CourseC3

• Previous statements set did not capture hierarchy between levels; new sentences would not have followed the reality in the world. Need more statements – LowerThan as shown.

How to Tackle Course Selection Problem?

- Represent the world as sentences in KB
 - Update KB based on scenarios
- Solve problems about courses selection scenarios
 - Pose problems as queries to KB
 - Interpret answers // reason with the world

function KB-AGENT(percept) **returns** an action static: KB, a knowledge base t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t)) action — Ask(KB, Make-Action-Query(t)) Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t + 1$ **return** action

Source: Russell & Norvig, AI: A Modern Approach

Major Types of Reasoning

- Inference: From premises to conclusions
 - Major types
 - Deduction: deriving logical conclusions from premises known or assumed to be true
 - Induction: deriving from particular premises to a universal conclusion.
 - Abduction: from an observation, find the most likely conclusion from the observations

Usage

- Deduction is useful to build knowledge bases from parts
- Induction: to generalize
- · Abduction is a good source for hypothesis / priors in Bayesian learning

Setting Up for AIMA Code

- Al resources https://github.com/biplav-s/course-ai-tai-f23/blob/main/sample-code/Al-Resources.md
- Setting up for Python code from AIMA book https://github.com/biplav-s/course-ai-tai-f23/tree/main/sample-code/ai-book-samples

Exercise and Code

- Logical Reasoning
 - From Book: AI A Modern Approach, https://github.com/aimacode/aima-python/blob/master/logic.ipynb

1,4		2,4	3,4	4,4
1,3	W!	2,3	3,3	4,3
		4	-	
1		1		ì
1,2	2-1	2,2	3,2	4,2
1,2		2,2	3,2	4,2
1,2	S OK	2,2 OK	3,2	4,2
1,2	OK	OK	3.1	4,2
	OK	ОК		
	OK	ОК 2,1 В	3.1	

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

Source: Russell & Norvig, AI: A Modern Approach

Examples of Agents

Agent Type	Percepts	Actions	Goals	Environment
Medical diagnosis	Symptoms, findings,	Questions, tests,	Healthy patient,	
system	patient's answers	treatments	minimize costs	Patient, hospital
Satellite image analysis	Pixels of varying	Print a categorization of	Correct	Images from
system	intensity, color	scene	categorization	orbiting satellite
	Pixels of varying	Pick up parts and sort	Place parts in	Conveyor belt
Part-picking robot	intensity	into bins	correct bins	with parts
	Temperature,	Open, close valves;	Maximize purity,	
Refinery controller	pressure readings	adjust temperature	yield, safety	Refinery
			Maximize	
Interactive English		Print exercises,	student's score	
tutor	Typed words	suggestions, corrections	on test	Set of students

Source: Russell & Norvig, AI: A Modern Approach

Lecture 4: Summary

- We talked about
 - Knowledge-based agents
 - Logic (Propositional)
 - Inferencing (Propositional)

Concluding Section

Course Project

Discussion: Projects

- New: two projects, or
 - Project 1: model assignment
 - Project 2: single problem/ Ilm based solving / fine-tuning/ presenting result
- Old
 - Single problem of choice
 - Three sprints; solution to problem available via a chatbot that is built
 - Compare result with ChatGPT

CSCE 580- FALL 2024 36

Project Discussion

- 1. Go to Google spreadsheet against your name
- Enter model assignment name and link from (http://modelai.gettysburg.edu/)
- 1. Create a private Github repository called "CSCE58x-Fall2024-<studentname>-Repo". Share with Instructor (biplav-s) and TA (vishalpallagani)
- Create Google folder called "CSCE58x-Fall2024-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (vishal.pallagani@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by next class (Sep 5, 2024)

Timeline

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Data need:
- 4. Methods:
- 5. Evaluation:
- 6. Milestones
 - 1. // Create your own
- 7. Oct 3, 2024

About Next Lecture – Lecture 5

Lecture 5: Representing Knowledge

- Logic First Order
- Inferencing