Where to from here?

Gabriel Field

17/Oct/2025

Outline

- 1 Categorical Duality
- 2 Why cohomology?
- 3 Why homotopy theory?
- 4 Outroduction

Outline

- 1 Categorical Duality
- 2 Why cohomology?
- 3 Why homotopy theory?
- 4 Outroduction

Refresher: Categories

Definition: Categories

Examples:

Refresher: Functors

Definition: Functors

Examples:

Duality: The opposite category

Definition: Opposite category

Examples:

Working in $\mathcal{C}^{\mathrm{op}}$ rather than \mathcal{C} is called dualising.

Duality: The logical view

Principle: Categorical duality

In any statement of the form "for all categories \mathcal{C},\ldots ", we can replace \mathcal{C} with $\mathcal{C}^{\mathrm{op}}$, and re-interpret the statement in \mathcal{C} .

Example: Initial and terminal objects

Duality: Examples

Definition: Isomorphism. For all categories $\mathfrak C$ and objects $x,y\in \mathfrak C$, an isomorphism $x\simeq_{\mathfrak C} y$ in $\mathfrak C$ is...

Question: What is the dual concept to isomorphisms?

Duality: Examples

Result: Essential uniqueness of initial objects.

Dual result:

Contravariant functors

Definition: Functor. For all categories $\mathfrak{C}, \mathfrak{D}$, a functor $\mathfrak{C} \to \mathfrak{D}$ is

Dual definition: Contravariant functor¹.

Key example: Representable functors.

¹To self: cod

Contravariant functors

Result: Functors preserve isomorphisms.

Dual result:

Contravariant functors

Example application of result:

Outline

- 1 Categorical Duality
- 2 Why cohomology?
- 3 Why homotopy theory?
- 4 Outroduction

Axioms for homology. A (reduced) homology theory \tilde{h} consists of:

Gabriel Field Where to from he

 $^{^2}$ The LHS and RHS are functors from the category of CW pairs (A,X); the left is a composite of the "take the quotient" functor with \tilde{h}_n , and the right is a composite of the "forget X" functor with \tilde{h}_{n-1} .

Axioms for homology. A (reduced) homology theory \tilde{h} consists of:

• For each $n \in \mathbb{Z}$, a functor $\tilde{h}_n : \mathrm{CWCmplx} \to \mathrm{Ab}$,

Gabriel Field Where to from her

²The LHS and RHS are functors from the category of CW pairs (A, X); the left is a composite of the "take the quotient" functor with \tilde{h}_n , and the right is a composite of the "forget X" functor with \tilde{h}_{n-1} .

Axioms for homology. A (reduced) homology theory h consists of:

- For each $n \in \mathbb{Z}$, a functor $h_n : \mathrm{CWCmplx} \to \mathrm{Ab}$,
- For each $n \in \mathbb{Z}$, an natural transformation $\partial_n : \tilde{h}_n(X/A) \to \tilde{h}_{n-1}(A)$ (natural in CW pairs (X,A))²,

Gabriel Field

 $^{^2}$ The LHS and RHS are functors from the category of CW pairs (A,X); the left is a composite of the "take the quotient" functor with \tilde{h}_n , and the right is a composite of the "forget X" functor with \tilde{h}_{n-1} .

Axioms for homology. A (reduced) homology theory h consists of:

- For each $n \in \mathbb{Z}$, a functor $h_n : \mathrm{CWCmplx} \to \mathrm{Ab}$,
- For each $n\in\mathbb{Z}$, an natural transformation $\partial_n:\tilde{h}_n(X/A)\to\tilde{h}_{n-1}(A)$ (natural in CW pairs (X,A))², subject to:
 - $f \simeq_{\mathsf{htpy}} g$ implies $\tilde{h}_n(f) = \tilde{h}_n(g)$,

Gabriel Field Where to from her

 $^{^2}$ The LHS and RHS are functors from the category of CW pairs (A,X); the left is a composite of the "take the quotient" functor with \tilde{h}_n , and the right is a composite of the "forget X" functor with \tilde{h}_{n-1} .

Axioms for homology. A (reduced) homology theory \tilde{h} consists of:

- For each $n \in \mathbb{Z}$, a functor $h_n : \mathrm{CWCmplx} \to \mathrm{Ab}$,
- For each $n\in\mathbb{Z}$, an natural transformation $\partial_n:\tilde{h}_n(X/A)\to\tilde{h}_{n-1}(A)$ (natural in CW pairs (X,A))², subject to:
 - ullet $f \simeq_{\mathsf{htpy}} g \text{ implies } \tilde{h}_n(f) = \tilde{h}_n(g)$,
 - ullet For each CW pair (X,A), we have an exact sequence

$$\cdots \xrightarrow{\partial_{n+1}} \tilde{h}_n(A) \xrightarrow{\tilde{h}_n(\text{in.})} \tilde{h}_n(X) \xrightarrow{\tilde{h}_n(\text{qt.})} \tilde{h}_n(X/A) \xrightarrow{\partial_n} \cdots$$

Gabriel Field Where to from her

²The LHS and RHS are functors from the category of CW pairs (A, X); the left is a composite of the "take the quotient" functor with \tilde{h}_n , and the right is a composite of the "forget X" functor with \tilde{h}_{n-1} .

Axioms for homology. A (reduced) homology theory h consists of:

- For each $n \in \mathbb{Z}$, a functor $\tilde{h}_n : \mathrm{CWCmplx} \to \mathrm{Ab}$,
- For each $n\in\mathbb{Z}$, an natural transformation $\partial_n:\tilde{h}_n(X/A)\to \tilde{h}_{n-1}(A)$ (natural in CW pairs (X,A))², subject to:
 - ullet $f \simeq_{\mathsf{htpy}} g$ implies $\tilde{h}_n(f) = \tilde{h}_n(g)$,
 - ullet For each CW pair (X,A), we have an exact sequence

$$\cdots \xrightarrow{\partial_{n+1}} \tilde{h}_n(A) \xrightarrow{\tilde{h}_n(\text{in.})} \tilde{h}_n(X) \xrightarrow{\tilde{h}_n(\text{qt.})} \tilde{h}_n(X/A) \xrightarrow{\partial_n} \cdots$$

ullet For any $\{X_{lpha}\}_{lpha\in\mathcal{A}}$, the inclusions $X_{lpha}\hookrightarrow\bigvee_{lpha\in\mathcal{A}}X_{lpha}$ give

$$\bigoplus_{\alpha \in \mathcal{A}} \tilde{h}_n(X_\alpha) \simeq_{\mathrm{Ab}} \tilde{h}_n \left(\bigvee_{\alpha \in \mathcal{A}} X_\alpha \right)$$

Gabriel Field Where to from here

²The LHS and RHS are functors from the category of CW pairs (\overline{A},X) ; the left is a composite of the "take the quotient" functor with \tilde{h}_n , and the right is a composite of the "forget X" functor with \tilde{h}_{n-1} .

Going to cohomology

"Taking the homology" yields functors $H_n : \operatorname{ChCmplx} \to \operatorname{Ab}$.

³See [2, p. 202]. Admittedly, I haven't checked. Life busy :/

Going to cohomology

"Taking the homology" yields functors $H_n : ChCmplx \to Ab$.

What if we replace Ab with Ab^{op}?

³See [2, p. 202]. Admittedly, I haven't checked. Life busy :/

Going to cohomology

"Taking the homology" yields functors $H_n : \operatorname{ChCmplx} \to \operatorname{Ab}$.

What if we replace Ab with Ab^{op}?

- "Cohomology functors" $H^n: \operatorname{ChCmplx} \to \operatorname{Ab^{op}}$.
- Axiom list with Ab replaced by Ab^{op} should be satisfied³.

³See [2, p. 202]. Admittedly, I haven't checked. Life busy:/

Fix $G \in Ab$.

Fix $G \in Ab$.

Cochain group functor

 $ChCmplx \longrightarrow ChCmplx$

(devolves to applying Ab(-,G))

Fix $G \in Ab$.

Cochain group functor

$$ChCmplx \longrightarrow ChCmplx$$

(devolves to applying $\mathrm{Ab}(-,G)$)

Cohomology group functors

$$ChCmplx \longrightarrow ChCmplx \longrightarrow Ab$$

Fix $G \in Ab$.

Cochain group functor

$$ChCmplx \longrightarrow ChCmplx$$

(devolves to applying Ab(-,G))

Cohomology group functors

$$ChCmplx \longrightarrow ChCmplx \longrightarrow Ab$$

ullet Cohomology group functors $H^n(-;G)$

$$Top \longrightarrow ChCmplx \longrightarrow ChCmplx \longrightarrow Ab$$

We recover [2, pp. 199-204]:

- Reduced groups
- Relative groups
- LES of a pair
- Homotopy invariance
- Excision
- Simplicial cohomology
- Cellular cohomology
- Mayer-Vietoris sequences

But also...

But also...

We gain ring structure on $H^{st}(X;G)$

But also...

We gain ring structure on $H^*(X;G)$

This is a "graded ring" $H^*(X;G) = \bigoplus_{n \geq 0} H^n(X;G)$ with product

$$H^i(X;G) \times H^j(X;G) \to H^{i+j}(X;G)$$

This product is called the cup product [2, p. 206].

Outline

- 1 Categorical Duality
- 2 Why cohomology?
- 3 Why homotopy theory?
- 4 Outroduction

The idea

Fix $X \in \operatorname{Top}_*^4$.

The fundamental group $\pi_1(X)$ analyses maps of the form

$$\mathbb{I} \longrightarrow X$$

$$\partial \mathbb{I} \longrightarrow \{*\}$$

up to homotopy.

Gabriel Field Where to from her

⁴Basepoint always named * and often omitted.

The idea

Fix $X \in \operatorname{Top}_*^4$.

The homotopy groups $\pi_n(X)$ analyse maps of the form

$$\mathbb{I}^n \longrightarrow X$$
$$\partial \mathbb{I}^n \longrightarrow \{*\}$$

up to homotopy.

⁴Basepoint always named * and often omitted.

The higher homotopy groups

 $\operatorname{Fix} X \overline{\in \operatorname{Top}_*} \text{ and } n \overline{\in \mathbb{Z}_{\geq 0}}.$

Definition: The homotopy "group" $\pi_n(X)$

The higher homotopy groups

Fix $X \in \text{Top}_*$. Example: $\pi_0(X)$

The higher homotopy groups

Fix $X \in \operatorname{Top}_*$ and $n \in \mathbb{Z}$. Assume $n \geq 1$.

Definition: Group structure on $\pi_n(X)$

Why didn't we see these earlier?

Why didn't we see these earlier?

 $\pi_n(X)$ is hard to calculate.

Why didn't we see these earlier?

$$\pi_n(X)$$
 is hard to calculate.

Example: Homotopy groups $\pi_n(\mathbb{S}^2)$ for $n \in \{1, \dots, 12\}$:

0

 \mathbb{Z}

 \mathbb{Z}

 \mathbb{Z}_2

 \mathbb{Z}_2

 \mathbb{Z}_{12}

 \mathbb{Z}_2

 \mathbb{Z}_2

 \mathbb{Z}_3

 \mathbb{Z}_{15}

 \mathbb{Z}_2

 $\mathbb{Z}_2 \times \mathbb{Z}_2$

This mess is part of the motivation for homology theory.

Slight peeks of regularity

Earlier, we saw $\pi_n(\mathbb{S}^2)$ was Abelian for $n \geq 2$.

Result: For all $X \in \text{Top}_*$ and $n \ge 2$, $\pi_n(X)$ is Abelian.

Proof coming soon (rest of this talk)...

The higher homotopy groups are Abelian

Fix $X \in \text{Top}_*$ and $n \in \mathbb{Z}_{\geq 2}$.

Observation: There are multiple group structures⁵ on $\pi_n(X)$

Gabriel Field Where to from he

⁵To self: interchange

The higher homotopy groups are Abelian

Fix $X \in \operatorname{Top}_*$ and $n \in \mathbb{Z}_{\geq 2}$.

Our group structures fit together by

$$(a +1 b) +2 (x +1 y) = (a +2 x) +1 (b +2 y)$$

Result: Eckmann-Hilton

Corollary: $\pi_n(X)$ is Abelian.

The Eckmann-Hilton argument

Result: Eckmann-Hilton. Suppose monoids $(A, \bullet, 1)$ and $(A, \circ, 1)$ defined on the same set A satisfy the interchange law

$$(a \bullet b) \circ (x \bullet y) = (a \circ x) \bullet (b \circ y)$$

Then, $(\bullet, 1) = (\circ, 1)$ and the monoid is Abelian. Proof: (1/3)

The Eckmann-Hilton argument

Result: Eckmann-Hilton. Suppose monoids $(A, \bullet, 1)$ and $(A, \circ, 1)$ defined on the same set A satisfy the interchange law

$$(a \bullet b) \circ (x \bullet y) = (a \circ x) \bullet (b \circ y)$$

Then, $(\bullet, 1) = (\circ, 1)$ and the monoid is Abelian. Proof: (2/3)

The Eckmann-Hilton argument

Result: Eckmann-Hilton. Suppose monoids $(A, \bullet, 1)$ and $(A, \circ, 1)$ defined on the same set A satisfy the interchange law

$$(a \bullet b) \circ (x \bullet y) = (a \circ x) \bullet (b \circ y)$$

Then, $(\bullet, 1) = (\circ, 1)$ and the monoid is Abelian. Proof: (3/3)

Outline

- 1 Categorical Duality
- 2 Why cohomology?
- Why homotopy theory
- 4 Outroduction

What have we learned?

- Categorical duality
 - o Theorems for free!
 - o Definitions for free!

What have we learned?

- Categorical duality
 - o Theorems for free!
 - Definitions for free!
- Basic idea of cohomology theory
 - "Dualise homology"
 - Maps pointing in the correct direction for a graded ring

What have we learned?

- Categorical duality
 - o Theorems for free!
 - Definitions for free!
- Basic idea of cohomology theory
 - "Dualise homology"
 - Maps pointing in the correct direction for a graded ring
- Basic idea of higher homotopy theory
 - Higher homotopy groups
 - They're Abelian

Thanks for watching!

Good luck with final talks!

- [1] nLab Authors. Category Theory in Context. Literally just to look up citation year of the book! URL: https://ncatlab.org/nlab/show/Category+Theory+in+Context.
- [2] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401. URL: https: //books.google.com.au/books?id=BjKs86kosqgC.
- [3] E. Riehl. Category Theory in Context. 2017. URL: https://emilyriehl.github.io/files/context.pdf.