Cyclone Data Analysis

About the data

There are 6 variables and 370k records. Data is recorded once every 5 minutes over a duration of 3 years.

- 1. Cyclone Inlet Gas Temp Temperature of Hot gas entering the cyclone.
- 2. Cyclone_Gas_Outlet_Temp Temperature of Hot gas leaving the cyclone.
- 3. Cyclone Outlet Gas draft Draft (pressure) of gas at outlet of cyclone.
- 4. Cyclone_cone_draft Draft (pressure) of gas at cone section of cyclone.
- 5. Cyclone Inlet Draft Draft (pressure) of gas at inlet of cyclone.
- 6. Cyclone_Material_Temp Temperature of the material at the outlet of the cyclone.

Imports

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
matplotlib inline
```

```
In [2]:
```

```
1 df=pd.read_csv('data.csv')
2 display(df.head(2))
3 display(df.info())
```

	time	Cyclone_Inlet_Gas_Temp	Cyclone_Material_Ter	np Cyclo	ne_Outlet_Gas_draft	Cyclone
0	1/1/2017 0:00	867.63	910	42	-189.54	
1	1/1/2017 0:05	879.23	918	.14	-184.33	
4						•
Rar	ngeIndex	ndas.core.frame.Datal : 377719 entries, 0 † ns (total 7 columns) n	to 377718	Dtype		
0	 time	-	377719 non-null	object		
1		ne_Inlet_Gas_Temp	377719 non-null	object		
2	-	ne_Material_Temp	377719 non-null	object		
3	Cyclo	ne_Outlet_Gas_draft	377719 non-null	object		
4	Cyclo	ne_cone_draft	377719 non-null	object		
5	Cyclo	ne_Gas_Outlet_Temp	377719 non-null	object		
6	-	ne_Inlet_Draft	377719 non-null	object		
-	/pes: ob	• , ,				
mer	nory usa	ge: 20.2+ MB				
Nor	ne					

Data Preprocessing

```
In [3]:
```

```
df["Cyclone_Inlet_Gas_Temp"].value_counts().head(10)
Out[3]:
Not Connect
               723
I/O Timeout
               470
23.53
               309
900.12
               161
879.55
               159
852.95
               146
               116
820
Configure
               108
29.97
                92
32.65
                90
Name: Cyclone_Inlet_Gas_Temp, dtype: int64
```

Observation: There is some unwanted data in the dataset like "Not Connect" so we have impute those data with some other values and the data points are object type so that we also have to convert the data into float type.

```
In [4]:

1 df['time'] = pd.to_datetime(df['time'])
```

```
In [5]:
```

```
1 df.set index("time", inplace = True)
    df.index
Out[5]:
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 00:05:00',
                  '2017-01-01 00:10:00', '2017-01-01 00:15:00',
                  '2017-01-01 00:20:00', '2017-01-01 00:25:00'
                  '2017-01-01 00:30:00', '2017-01-01 00:35:00', '2017-01-01 00:45:00', '2017-01-01 00:45:00',
                  '2020-08-07 11:30:00', '2020-08-07 11:35:00',
                  '2020-08-07 11:40:00', '2020-08-07 11:45:00', '2020-08-07 11:50:00', '2020-08-07 11:55:00',
                  '2020-08-07 12:00:00', '2020-08-07 12:05:00',
                  '2020-08-07 12:10:00', '2020-08-07 12:15:00'],
                dtype='datetime64[ns]', name='time', length=377719, freq=None)
```

So, The data seems to be a Timeseries thats why the index of the data set is changed with the 'time' column

```
In [6]:
```

```
for feature in df.columns:
        df[feature]=pd.to_numeric(df[feature],errors='coerce')
 2
   df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 377719 entries, 2017-01-01 00:00:00 to 2020-08-07 12:15:00
Data columns (total 6 columns):
#
    Column
                              Non-Null Count
                                               Dtype
_ _ _
    _____
                              -----
                                               ----
    Cyclone_Inlet_Gas_Temp
 0
                              376399 non-null float64
 1
    Cyclone Material Temp
                              376128 non-null float64
    Cyclone_Outlet_Gas_draft 376398 non-null float64
 2
 3
    Cyclone_cone_draft
                              376399 non-null float64
 4
    Cyclone_Gas_Outlet_Temp 376398 non-null float64
 5
    Cyclone Inlet Draft
                          376397 non-null float64
dtypes: float64(6)
memory usage: 20.2 MB
In [7]:
```

```
df sample=df.copy()
```

In [8]:

```
1 df_sample.head()
```

Out[8]:

Cyclone_Inlet_Gas_Temp Cyclone_Material_Temp Cyclone_Outlet_Gas_draft Cyclone_c

time			
2017-01- 01 00:00:00	867.63	910.42	-189.54
2017-01- 01 00:05:00	879.23	918.14	-184.33
2017-01- 01 00:10:00	875.67	924.18	-181.26
2017-01- 01 00:15:00	875.28	923.15	-179.15
2017-01- 01 00:20:00	891.66	934.26	-178.32
4			•

In [9]:

1 df_sample.isnull().sum()

Out[9]:

Cyclone_Inlet_Gas_Temp 1320
Cyclone_Material_Temp 1591
Cyclone_Outlet_Gas_draft 1321
Cyclone_cone_draft 1320
Cyclone_Gas_Outlet_Temp 1321
Cyclone_Inlet_Draft 1322
dtype: int64

Observation: It seems that there are some null values in the dataset so here 'bfill' method is used to fill up those missing data points

In [10]:

```
1 df_sample=df_sample.fillna(method="bfill")
```

```
In [11]:
```

```
1 df_sample.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 377719 entries, 2017-01-01 00:00:00 to 2020-08-07 12:15:00
Data columns (total 6 columns):
    Column
                              Non-Null Count
                                              Dtype
    _____
                              -----
                                              ----
    Cyclone_Inlet_Gas_Temp
0
                              377719 non-null float64
    Cyclone_Material_Temp
 1
                              377719 non-null float64
 2
    Cyclone_Outlet_Gas_draft 377719 non-null float64
 3
    Cyclone cone draft
                             377719 non-null float64
    Cyclone_Gas_Outlet_Temp
                             377719 non-null float64
 5
    Cyclone_Inlet_Draft
                              377719 non-null float64
dtypes: float64(6)
memory usage: 20.2 MB
```

There is no null values in the dataset so the data is now ready.

```
In [12]:
```

```
1 df_sample.describe()
```

Out[12]:

	Cyclone_Inlet_Gas_Temp	Cyclone_Material_Temp	Cyclone_Outlet_Gas_draft	Cyclone_con
count	377719.000000	377719.000000	377719.000000	377719.0
mean	726.001091	749.380080	-177.444841	-164.:
std	329.761473	352.103577	99.393401	90.:
min	0.000000	-185.000000	-456.660000	-459.:
25%	855.880000	867.060000	-247.150000	-226.
50%	882.290000	913.200000	-215.080000	-198.4
75%	901.070000	943.570000	-169.290000	-142.:
max	1157.630000	1375.000000	40.270000	488.
4				•

Ploting the last month data

In [13]:

```
1 # ploting the last month data
2
3 df_sample.plot(xlim=('2020-07-07','2020-08-07'),figsize=(20,6))
```

Out[13]:

<AxesSubplot:xlabel='time'>

Resampling the data for different observations

Resampling data based on Avarage values per year

```
In [14]:
```

```
1 df_sample.resample(rule='A').min()
```

Out[14]:

	Cyclone_Inlet_Gas_Temp	Cyclone_Material_Temp	Cyclone_Outlet_Gas_draft	Cyclone_cone
time				
2017- 12-31	23.16	-185.0	-372.23	-
2018- 12-31	0.00	-185.0	-456.66	-
2019- 12-31	14.38	-185.0	-401.52	-
2020- 12-31	29.32	0.0	-361.48	-
4				•

In [15]:

df_sample.resample(rule='A').min().plot(figsize=(14,5))

Out[15]:

<AxesSubplot:xlabel='time'>

Quarterly observation of the data

```
In [16]:
```

```
#Quterly data
df_sample.resample(rule='QS').max()
```

Out[16]:

	Cyclone_Inlet_Gas_Temp	Cyclone_Material_Temp	Cyclone_Outlet_Gas_draft	Cyclone_cone
time				
2017- 01-01	1097.00	1263.91	26.45	_
2017- 04-01	1157.63	1358.76	31.35	
2017- 07-01	1102.02	1297.69	38.11	
2017- 10-01	1128.94	1375.00	24.47	
2018- 01-01	1095.63	1375.00	31.87	
2018- 04-01	1082.22	1252.58	27.14	
2018- 07-01	1110.69	1375.00	29.19	
2018- 10-01	1081.03	1265.86	33.68	
2019- 01-01	1081.69	1368.98	28.38	
2019- 04-01	1078.94	1291.52	38.66	
2019- 07-01	1135.63	1314.44	34.14	
2019- 10-01	1116.06	1089.03	40.27	
2020- 01-01	1066.29	1227.06	34.27	
2020- 04-01	1059.31	1085.57	30.92	
2020- 07-01	1123.07	1139.22	34.13	
4				•

Plotting the maximum quarterly values of the data points.

In [17]:

df_sample.resample(rule='QS').max().plot(figsize=(14,5))

Out[17]:

<AxesSubplot:xlabel='time'>

Monthly avarage data

In [18]:

1 df_sample.resample(rule='M').mean()

Out[18]:

	Cyclone_Inlet_Gas_Temp	Cyclone_Material_Temp	Cyclone_Outlet_Gas_draft	Cyclone_cone
time				
2017- 01-31	886.048201	922.470292	-183.781008	-171.4
2017- 02-28	885.739420	911.682018	-193.667455	-184.0
2017- 03-31	806.085026	843.912717	-164.045861	-157.5
2017- 04-30	852.450715	889.300667	-181.646800	-185.
2017- 05-31	580.704478	602.554288	-110.857515	-110.1
2017- 06-30	877.398731	906.937297	-180.562260	-203.8
2017- 07-31	877.574540	903.563404	-202.322410	-225.8
2017- 08-31	881.609334	902.123772	-195.772772	-204.§
2017- 09-30	533.168457	538.598795	-97.426693	-109.1
2017- 10-31	396.315532	414.013174	-70.829617	-72.1
2017- 11-30	817.006612	849.990214	-197.156979	-186.3
2017- 12-31	675.519918	685.078653	-149.155572	-154.8
2018- 01-31	885.747397	913.128757	-222.292848	-222.1
2018- 02-28	838.761214	863.714621	-200.698839	-187.1
2018- 03-31	898.865691	938.677730	-232.441020	-220.7
2018- 04-30	797.442910	815.458822	-214.021387	-193.7
2018- 05-31	881.721221	908.762399	-236.042674	-215.1
2018- 06-30	840.970834	866.831113	-232.788508	-220.€
2018- 07-31	781.563918	803.896718	-203.752121	-200.9
2018- 08-31	818.945095	852.909004	-223.213373	-209.4
2018- 09-30	641.210595	711.132155	-153.605407	-151.2

	Cyclone_Inlet_Gas_Temp	Cyclone_Material_Temp	Cyclone_Outlet_Gas_draft	Cyclone_cone
time				
2018- 10-31	421.681108	450.617516	-94.012836	-89.4
2018- 11-30	812.600793	828.024087	-210.284034	-198.1
2018- 12-31	869.284226	893.831732	-213.828371	-202.4
2019- 01-31	888.583247	915.227903	-231.463572	-207.5
2019- 02-28	893.876138	928.290856	-212.432026	-192.4
2019- 03-31	665.877214	699.783301	-160.964574	-143.1
2019- 04-30	858.241594	870.551072	-217.103397	-174.(
2019- 05-31	666.275366	691.193905	-151.089311	-129.€
2019- 06-30	369.334275	388.935422	-75.310036	-62.5
2019- 07-31	886.153292	921.525250	-215.786336	-169.7
2019- 08-31	554.465114	570.508461	-132.682137	-105.0
2019- 09-30	421.916277	468.923071	-106.450605	-90.9
2019- 10-31	200.800585	197.544944	-32.042142	-29.2
2019- 11-30	853.648869	875.228802	-225.228355	-178.5
2019- 12-31	218.463456	219.970095	-44.577606	-36.′
2020- 01-31	905.268843	928.639494	-256.167953	-233.4
2020- 02-29	881.121920	897.768344	-249.791505	-204.8
2020- 03-31	660.767640	655.922084	-190.704961	-168.5
2020- 04-30	35.534472	44.449779	0.077049	0.4
2020- 05-31	889.257560	910.219983	-236.304097	-190.4
2020- 06-30	904.589568	909.896869	-262.467972	-236.8
2020- 07-31	892.572208	901.082843	-257.193309	-226.5
2020- 08-31	890.104067	904.933310	-234.077617	-206.€
4				•

In [19]:

```
# Monthly infomation about 'Cyclone_Outlet_Gas_draft'
df_sample.resample(rule='M').mean().plot(kind='bar', figsize=(25,6))
```

Out[19]:

<AxesSubplot:xlabel='time'>

In [21]:

1 features=df_sample.columns

Ploting the data based on their day basis mean and Standard deviation

In [25]:

```
# Resample the entire dataset by daily average
   rollmean = df_sample.resample(rule='D').mean()
 2
   rollstd = df_sample.resample(rule='D').std()
 4
   # Plot time series for each sensor with its mean and standard deviation
 5
 6
   for name in features:
 7
        plt.figure(figsize=(18,3))
        plt.plot(df_sample[name], color='green', label='Original')
 8
 9
        plt.plot(rollmean[name], color='red', label='Rolling Mean')
        plt.plot(rollstd[name], color='magenta', label='Rolling Std' )
10
        plt.legend(loc='best')
11
        plt.title(name)
12
13
        plt.show()
                                   Cyclone Inlet Gas Temp
```


Simple moving avarage

This basically helps used to smoothing our data

In [26]:

```
# Simple moving avarage
df_sample['Cyclone_Outlet_Gas_draft 10 days rolling']=df_sample['Cyclone_Outlet_Gas_draft 10 days rolling']=df_sample['Cyclone_
```

In [27]:

```
df_sample[['Cyclone_Outlet_Gas_draft','Cyclone_Outlet_Gas_draft 10 days rolling']].plot
```

Out[27]:

<AxesSubplot:xlabel='time'>

In [28]:

```
# Cumelative Moving avarage
df_sample.expanding().mean().plot(figsize=(15,6))
```

Out[28]:

<AxesSubplot:xlabel='time'>

PCA

Principle Component Analysis is used basically for feature selection and dimensionality reduction

```
In [29]:
```

```
df_sample.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 377719 entries, 2017-01-01 00:00:00 to 2020-08-07 12:15:00
Data columns (total 7 columns):
 #
    Column
                                              Non-Null Count
                                                               Dtype
                                               _____
 0
    Cyclone_Inlet_Gas_Temp
                                              377719 non-null float64
 1
    Cyclone_Material_Temp
                                              377719 non-null float64
                                              377719 non-null float64
 2
    Cyclone_Outlet_Gas_draft
                                              377719 non-null float64
 3
    Cyclone_cone_draft
 4
    Cyclone_Gas_Outlet_Temp
                                              377719 non-null float64
 5
    Cyclone_Inlet_Draft
                                              377719 non-null float64
    Cyclone_Outlet_Gas_draft 10 days rolling 377719 non-null float64
dtypes: float64(7)
memory usage: 23.1 MB
```

Though the data set contains data for every 5 minutes thats why to reduce the computation here the data is converted into hourly manner

In [26]:

```
1 df_sample=df_sample.resample(rule='H').mean()
2
```

In [27]:

```
1 df_sample.head()
```

Out[27]:

time

Cyclone_Inlet_Gas_Temp Cyclone_Material_Temp Cyclone_Outlet_Gas_draft Cyclone_c

ume				
2017-01- 01 00:00:00	883.713333	933.111667	-182.855000	-17
2017-01- 01 01:00:00	875.574167	926.837500	-179.320000	-17
2017-01- 01 02:00:00	876.804167	933.455000	-177.724167	-16
2017-01- 01 03:00:00	877.250000	933.257500	-178.219167	-16
2017-01- 01 04:00:00	874.260833	936.023333	-178.020000	-1{
▲				•

5

Cyclone Inlet Draft

dtypes: float64(6)
memory usage: 1.7 MB

```
In [28]:
 1 df_sample.isnull().sum()
Out[28]:
Cyclone Inlet Gas Temp
                            69
Cyclone_Material_Temp
                            69
Cyclone_Outlet_Gas_draft
                            69
Cyclone_cone_draft
                            69
Cyclone_Gas_Outlet_Temp
                            69
Cyclone_Inlet_Draft
                            69
dtype: int64
In [29]:
   df sample=df sample.fillna(method="bfill")
In [30]:
   df_sample.isnull().sum()
Out[30]:
Cyclone_Inlet_Gas_Temp
                            0
Cyclone_Material_Temp
                            0
Cyclone_Outlet_Gas_draft
                            0
Cyclone_cone_draft
                            0
Cyclone_Gas_Outlet_Temp
                            0
Cyclone_Inlet_Draft
                            0
dtype: int64
In [31]:
    df_sample.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 31549 entries, 2017-01-01 00:00:00 to 2020-08-07 12:00:00
Freq: H
Data columns (total 6 columns):
 #
     Column
                               Non-Null Count
                                               Dtype
                               -----
 0
     Cyclone Inlet Gas Temp
                               31549 non-null
                                               float64
 1
     Cyclone_Material_Temp
                               31549 non-null float64
 2
     Cyclone_Outlet_Gas_draft
                               31549 non-null
                                               float64
 3
     Cyclone cone draft
                               31549 non-null
                                               float64
 4
     Cyclone Gas Outlet Temp
                               31549 non-null
                                               float64
```

31549 non-null float64

In [32]:

```
1 # Standardize/scale the dataset and apply PCA
  from sklearn.preprocessing import StandardScaler
   from sklearn.decomposition import PCA
   from sklearn.pipeline import make_pipeline
 5
 6
   x = df_sample
7
8 scaler = StandardScaler()
9
   pca = PCA()
   pipeline = make pipeline(scaler, pca)
11 pipeline.fit(x)
12
13 features = range(pca.n_components_)
   plt.figure(figsize=(15, 5))
plt.bar(features, pca.explained_variance_)
16 plt.xlabel('PCA feature')
17 plt.ylabel('Variance')
18 plt.xticks(features)
19 plt.title("Importance of the Principal Components based on inertia")
20 plt.show()
```


it seems that first two features have some effects

In [33]:

```
# Calculate PCA with 2 components
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['pc1', 'pc2'])
```

In [34]:

1 pca.explained_variance_ratio_

Out[34]:

array([0.97411138, 0.01287452])

In [35]:

1 # principalDf.variace()

In [36]:

```
1 # Plot ACF
```

2 from statsmodels.graphics.tsaplots import plot_acf

3 N, M = 12, 6

4 fig, ax = plt.subplots(figsize=(N, M))

5 | plot_acf(principalDf["pc1"].dropna(), lags=22, alpha=0.05,ax=ax)

Out[36]:

Observation:

Here we can observe that the spike has a value that is significantly different from zero. If a spike is significantly different from zero, that is evidence of autocorrelation.

Dickey Fuller Test

In [37]:

```
from statsmodels.tsa.stattools import adfuller

# Run Augmented Dickey Fuller Test
result = adfuller(principalDf['pc1'])

# Print p-value
print(result[1])
```

1.7454803621358068e-11

In [38]:

```
from statsmodels.tsa.stattools import adfuller
result = adfuller(principalDf['pc2'])
# Print p-value
print(result[1])
```

4.336166959889649e-30

Observation:

Here we can observe tha running the Dickey Fuller test on the 1st principal component, I got a p-value of 1.754711962303802e-11 which is very small number (much smaller than 0.05). Thus, It will reject the Null Hypothesis and say the data is stationary. here we can say same thing in case of 2nd feature.

IsolationForest

In [39]:

```
# Import IsolationForest
   from sklearn.ensemble import IsolationForest
 2
   # Assume that 13% of the entire data set are anomalies
 5
   outliers_fraction = 0.13
 6
   model = IsolationForest(contamination=outliers_fraction)
   model.fit(principalDf.values)
 7
   principalDf['anomaly'] = pd.Series(model.predict(principalDf.values))
 8
 9
   # plotting
   df sample['anomaly'] = pd.Series(principalDf['anomaly'].values, index=df sample.index)
10
11
   a = df_sample.loc[df_sample['anomaly'] == -1] #anomaly
12
   plt.figure(figsize=(18,6))
   plt.plot(df_sample.iloc[:,1], color='blue', label='Normal')
13
   plt.plot(a[df_sample.columns[0]], linestyle='none', marker='X', color='red', markersize
   plt.xlabel('Date and Time')
15
16
   plt.ylabel('Cyclone_Inlet_Gas_Temp ')
   plt.title('Anomalies')
17
   plt.legend(loc='best')
18
19
   plt.show();
```



```
In [40]:
```

```
1 df_sample['anomaly'].value_counts()
```

Out[40]:

1 27447 -1 4102

Name: anomaly, dtype: int64

Observation: From the final result we can conclude that there are 4102 anomaly data point based on IsolationForest

```
In [ ]:
```

1