		T	.1 11	C	1.7		
		Log	gika dla	informat	tyków		
			Kolokwiu	m połówko	we		
			17 gru	ıdnia 2011			
wnoważne W prost	e oraz φ zaw zokąt poniże zczeniem for	viera mniej w ej wpisz form	ystąpień sp ułę w dysju	ójników logie nkcyjnej lub	cznych niż y w koniunk	ψ. cyjnej posta	i obie formuły aci normalnej ł "NIE", jeśli ta
turalnej o		. w prostoką	t pomzej wp	OISZ GOWOG TE	autologii (p)	$(q \Rightarrow r) \Rightarrow f$	$p \Rightarrow r \text{ w system}$
	(1 punkt) łowo "TAK"		l kratek por	niższei tabelk	xi, które odr	owiadaia z	upełnym zbioro
_		W pozostałe l	_	-	-		
コ	\wedge, \vee	\land,\lor,\lnot	\vee,\Rightarrow	\land, \lnot	∨,¬	∨,⇔	$\land, \lor, \lnot, \Rightarrow, \Leftarrow$

Numer indeksu:

Zadanie 4 (1 punkt). W prostokąt poniżej wpisz formułę z trzema zmiennymi wolnymi k, m, n która (interpretowana w zbiorze liczb naturalnych) mówi, że k jest wspólnym dzielnikiem liczb n i n . Wolno używać symboli $+,\cdot,=$, spójników logicznych, nawiasów, zmiennych i kwantyfikatorów.
Zadanie 5 (1 punkt). Jeśli istnieją takie zbiory A, B i $C, \dot{z}e$ $A \setminus B = C$ oraz $A \setminus C \neq B$, to w prostokąt poniżej wpisz dowolny przykład takich zbiorów. W przeciwnym przypadku wpisz słowo "NIE"
Zadanie 6 (1 punkt). Rozważmy funkcję $f: \mathbb{N} \to \mathbb{N}$ zdefiniowaną wzorem $f(n) = 2n$. Jeśli istniej funkcja odwrotna do f , to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. W przeciwnym przypadku wpisz wyjaśnienie, dlaczego funkcja odwrotna nie istnieje.
Zadanie 7 (1 punkt). Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R}$ zdefiniowaną wzorem $f(x) = x^2 + 1$. W prostokąt poniżej wpisz wyliczoną wartość przeciwobrazu odcinka domkniętego $[-1,2]$ przez funkcję f
Zadanie 8 (1 punkt). Rozważmy funkcję sgn : $\mathbb{R} \to \{-1,0,1\}$ zdefiniowaną wzorem
$\operatorname{sgn}(x) = \begin{cases} -1, & \text{jeśli} x < 0, \\ 0, & \text{jeśli} x = 0, \\ 1, & \text{jeśli} x > 0, \end{cases}$
oraz relację równoważności na zbiorze liczb rzeczywistych
$\{\langle x,y\rangle\in\mathbb{R}\times\mathbb{R}\mid \mathrm{sgn}(x)=\mathrm{sgn}(y)\}.$
W prostokąt poniżej wpisz taką formułę φ , że zbiór $\{x\in\mathbb{R}\mid\varphi\}$ jest klasą abstrakcji liczby π . Formuł nie może zawierać symbolu sgn.

Numer indeksu:	
Oddane zadania:	

Logika dla informatyków

Kolokwium połówkowe

17 grudnia 2011

Każde z poniższych zadań będzie oceniane w skali od -2 do podanej przy zadaniu liczby punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 9 (10 punktów). Rozważmy dowolne zbiory A, B, C. Udowodnij, że jeśli $A \times B = A \times C$ to $A = \emptyset$ lub B = C.

Zadanie 10 (12 punktów). Dla dowolnej relacji binarnej $S \subseteq A \times A$ definiujemy $S^0 = I_A$ (gdzie I_A oznacza relację identyczności na zbiorze A) oraz $S^{n+1} = S^n S$ dla wszystkich $n \ge 0$. Rozważmy dowolną relację binarną $R \subseteq A \times A$. Udowodnij, że

$$\bigcup_{i=0}^{\infty} (R \cup R^{-1})^i$$

jest relacją równoważności. Możesz przy tym skorzystać z lematu (którego nie musisz dowodzić) mówiącego że dla dowolnej relacji S oraz dowolnych liczb $i, j \in \mathbb{N}$ zachodzi równość $S^i S^j = S^{i+j}$.

Zadanie 11 (10 punktów). Rozważmy następujący lemat.

Lemat. Niech

$$\mathcal{F} = \{ p \vee \varphi_1, \dots, p \vee \varphi_k, \neg p \vee \psi_1, \dots, \neg p \vee \psi_l, \rho_1, \dots, \rho_m \}$$

będzie takim zbiorem klauzul, że zmienna p nie występuje w klauzulach $\varphi_1, \ldots, \varphi_k$, ψ_1, \ldots, ψ_l , ρ_1, \ldots, ρ_m . Niech \mathcal{F}_R będzie zbiorem wszystkich rezolwent klauzul z \mathcal{F} względem zmiennej p, czyli

$$\mathcal{F}_{R} = \{ \varphi_{i} \lor \psi_{i} \mid i \in \{1, \dots, k\}, j \in \{1, \dots, l\} \}.$$

Jeśli zbiór \mathcal{F} jest sprzeczny, to zbiór $\mathcal{F}_R \cup \{\rho_1, \dots \rho_m\}$ też jest sprzeczny.

Korzystając z tego lematu udowodnij następujące twierdzenie (zwane twierdzeniem o zupełności rezolucji dla rachunku zdań): Jeśli \mathcal{F} jest sprzecznym zbiorem klauzul, to istnieje rezolucyjny dowód sprzeczności zbioru \mathcal{F} .

 $Wskaz \acute{o}wka$: Użyj indukcji względem liczby zmiennych występujących w \mathcal{F}^{1} .

 $^{^1}$ Dla ułatwienia przypominamy tu podstawowe definicje: rezolucyjny dowód sprzeczności zbioru \mathcal{F} to ciąg klauzul kończący się klauzulą pustą, w którym każda klauzula albo pochodzi ze zbioru \mathcal{F} , albo jest rezolwentą klauzul występujących wcześniej w tym ciągu. Klauzule to alternatywy literałów, ale dla uproszczenia rozumowań utożsamiliśmy je ze zbiorami literałów.