MATH 8000

Exam 2

Problem 1. Survival analysis: The Gamma-frailty PH model is commonly used to analyze correlated survival data. This problem will be aimed at investigating an interesting characteristic of this model. Let the random variables T_1 and T_2 denote two, correlated, failure times of interest; e.g., time until the onset of two different types of cancer. Under the Gamma-frailty PH model the conditional cumulative distribution function (CDF) for T_i is given by

$$F_j(t|\mathbf{X}, \eta) = 1 - \exp\{-\Lambda_{0j}(t)\exp(\mathbf{X}'\boldsymbol{\beta}_j)\eta\}, \text{ for } j = 1, 2,$$

where $\Lambda_0(t)$ is an unknown differentiable function, $\mathbf{X} = (X_1, ..., X_p)'$ is a p-dimensional vector or predictor variables (e.g., age, ethnicity, gender, etc.), $\boldsymbol{\beta}_j$ is the corresponding vector of regression parameters, and η is a frailty term that is assumed to be distributed as $\operatorname{Gamma}(\nu, 1/\nu)$. It is assumed that conditional on the frailty term that the failure terms are independent; i.e., $T_1|\eta \perp T_2|\eta$, where \perp denotes statistical independence.

- (a) State conditions on $\Lambda_{0j}(t)$ that ensure that $F_j(t|\mathbf{X},\eta)$ is a proper CDF.
- (b) Derive the marginal survival functions for T_1 and T_2 . Note, in survival analysis the survival function for T_j is defined to be

$$S_i(t|\mathbf{X}) = \operatorname{pr}(T_i > t|\mathbf{X}).$$

(c) Derive the joint survival function of T_1 and T_2 . Note, the joint survival function is defined as

$$S(t_1, t_2 | \mathbf{X}) = \text{pr}(T_1 > t_1, T_2 > t_2 | \mathbf{X}).$$

(d) Calculating the correlation between T_1 and T_2 in this context poses many issues, especially since the form of $\Lambda_{0j}(t)$ is unknown. A surrogate can be proposed in terms of Kendall's τ , which is given by

$$\tau = E[sign\{(T_{i1} - T_{j1})(T_{i2} - T_{j2})\}]$$

where (T_{i1}, T_{i2}) and (T_{j1}, T_{j2}) are independent and identically distributed copies of (T_1, T_2) and $sign(\cdot)$ is the usual sign function; i.e., it takes values -1, 0, and 1 when the argument is negative, zero, and positive, respectively. Show that for the Gamma-frailty PH model

$$\tau = (1 + 2\nu)^{-1}.$$

Note, if done properly you may assume an arbitrary joint distribution for the predictor variables.

Problem 2. Gamma distribution:

(a) Suppose that $X \sim \text{Gamma}(\alpha, \beta)$. Show that

$$Y = \frac{2X}{\beta} \sim \chi_{2\alpha}^2.$$

- (b) Suppose $X_1 \sim \text{Gamma}(\alpha_1, \beta_1)$, $X_2 \sim \text{Gamma}(\alpha_2, \beta_2)$, and that X_1 and X_2 are independent. Find a function of X_1 and X_2 that has an F-distribution, be sure to identify the degrees of freedom.
- (c) Suppose that $X_i \sim \text{Exponential}(\beta_1)$, for i = 1, ..., n, and $Y_j \sim \text{Exponential}(\beta_2)$, for j = 1, ..., m. Further, assume that $X_1, ..., X_n, Y_1, ..., Y_m$ are mutually independent. Under the assumption that $\beta_1 = \beta_2$, find a function of \overline{X} and \overline{Y} that has an F-distribution, be sure to identify the degrees of freedom. Note, $\overline{X} = n^{-1} \sum_{i=1}^n X_i$ and $\overline{Y} = m^{-1} \sum_{j=1}^m Y_j$.

Problem 3. A Bayesian approach: Consider the situation in which $X_i|\mu,\sigma^2 \sim N(\mu,\sigma^2)$, for i=1,...,n, and further that the X_i are mutually independent. Note, in this model we are treating the parameters μ and σ^2 as random variables. Moreover we assume due to "conjugacy" (more on this later) that $\mu|\sigma^2 \sim N(\mu_0,\sigma^2/n_0)$ and $\sigma^2 \sim InverseGamma(\nu_0/2,\nu_0\sigma_0^2/2)$, in the Bayesian paradigm we refer to these distributions as "priors." Note, if $Z \sim InverseGamma(a,b)$ then the probability density function of Z is given by

$$f_Z(z) = \frac{b^a}{\Gamma(a)} z^{-a-1} e^{-\frac{b}{z}}.$$

- (a) Calculate the $E(X_1)$ and $V(X_1)$.
- (b) Find the distribution of $\mu | \mathbf{X}, \sigma^2$, where $\mathbf{X} = (X_1, ..., X_n)'$; i.e., if we view $X_1, ..., X_n$ as observed data we are finding the updated prior distribution of μ , which is referred to as the "posterior" distribution of μ . If done correctly, one will notice that the posterior distribution of μ is in the same family as its prior, this is why we say that the proposed prior distribution is conjugate.
- (c) Find the distribution of $\sigma^2|\mathbf{X}$. Using this distribution provide your "best" guess at what value of σ^2 was used to generate $X_1, ..., X_n$, you should justify how you obtained your guess.
- (d) Combining the above results, find the distribution of $\mu|\mathbf{X}$. Using this distribution provide your "best" guess at what value of μ was used to generate $X_1, ..., X_n$, you should justify how you obtained your guess.

Problem 4. Consider the situation in which $X \sim Bernoulli(p_1)$ and $Y \sim Bernoulli(p_2)$. In this problem we will investigate the bounds on the correlation that can exist between these two random variables.

- (a) Note the correlation (ρ) between these two random variables does not necessarily exist between [-1,1]. The restriction on ρ is required to ensure that the joint probability mass function of X and Y are non-negative for all outcomes. Derive the upper and lower bounds for ρ .
- (b) Under what special case can ρ be exactly 1 and -1.

Problem 5. Let $X_1, ..., X_n$ be mutually independent random variables all arising from a common distribution. If pr $(\sum_{i=1}^n X_i = 0) = 0$, find the following expectation

$$E\left(\frac{X_1}{\sum_{i=1}^n X_i}\right).$$

Problem 6. Let X be any non-negative integer-valued random variable with positive expectation. Prove the following inequality,

$$\frac{E(X)^2}{E(X^2)} \le \operatorname{pr}(X \ne 0) \le E(X).$$

Problem 7. Consider the random vector $\mathbf{X} = (X_1, ..., X_n)'$ which is distributed $\mathbf{X} \sim MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$; i.e., $\mathbf{X} = (X_1, ..., X_n)'$ follows a Multivariate Normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Note, $\boldsymbol{\mu} = (E(X_1), ..., E(X_n))'$ and the ijth entry in $\boldsymbol{\Sigma}$ is given by $\boldsymbol{\Sigma}_{ij} = \text{Cov}(X_i, X_j)$. The joint PDF of \mathbf{X} can be expressed as

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}.$$

The MGF of X can be expressed as

$$M_{\mathbf{X}}(\mathbf{t}) = \exp\left\{\mathbf{t}'\boldsymbol{\mu} + \frac{\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}}{2}\right\}$$

where $\mathbf{t} = (t_1, ..., t_n)' \in \mathbb{R}^n$.

- (a) Derive the MGF of X. Hint: You will need to also argue that Σ is symmetric.
- (b) Find the distribution of $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, where \mathbf{A} is a $q \times p$ matrix and \mathbf{b} is a $q \times 1$ vector.
- (c) Consider $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2')'$, where $\mathbf{X}_1 = (X_1, ..., X_p)$ and $\mathbf{X}_2 = (X_{p+1}, ..., X_n)$. Find the marginal distribution of \mathbf{X}_1 and the conditional distribution of \mathbf{X}_2 given \mathbf{X}_1 .

(d) Let $Z_1, ..., Z_n$ be mutually independent random variables each following a standard normal distribution; i.e., $Z_i \sim N(0, 1)$, for i = 1, ..., n. Using the above results find the joint distribution of the following random variables

$$Y_1 = \sum_{i=1}^{n} a_i Z_i$$
 $Y_2 = \sum_{i=1}^{n} b_i Z_i$

where $\sum_{i=1}^{n} a_i b_i = 0$. State, and justify your assertion, whether Y_1 and Y_2 are independent.