

Métodos Estadísticos de Predicción

Material docente en abierto de la Universidad Rey Juan Carlos

Grado en Matemáticas

Depositado en BURJC Digital:

[Pega aquí la URI/handle del depósito]

AUTORES

- Víctor Aceña Gil
- Isaac Martín de Diego

2025-2026

Índice de Contenidos

Guía de Estudio	4
Planificación del curso	
Objetivos de aprendizaje	
Metodología	
• Evaluación	
Recursos recomendados	
Apuntes Teóricos	20
'	
 Introducción a los modelos predictivos 	
Regresión lineal simple	
Regresión múltiple	
Ingeniería de características	
Selección de variables	
Modelos lineales generalizados	
Diapositivas de Clase	252
• Introducción	
Regresión lineal	
Regresión múltiple	
Ingeniería de características	
Selección de variables	
• GLM	

- Ejercicios de regresión simple
- Ejercicios de regresión múltiple
- Ejercicios de ingeniería de características
- Ejercicios de selección y validación
- Ejercicios de GLM
- Ejercicios avanzados

Métodos Estadísticos de Predicción

Guía de la Asignatura

Grado en Matemáticas

AUTORES

- Víctor Aceña Gil
- Isaac Martín de Diego

2025-2026

Material de apoyo para el estudio de Modelos Estadísticos de Predicción.

Índice de Contenidos

Introducción a la asignatura	3
Objetivos de la asignatura	3
Temario de la asignatura	4
Desarrollo de la asignatura	5
Semana 1: Presentación e Introducción a los Modelos de Regresión	5
Semana 2: Regresión Lineal Simple (RLS) - Fundamentos y Estimación	6
Semana 3: RLS - Inferencia y Diagnóstico	6
Semana 4: Regresión Lineal Múltiple (RLM) - Formulación e Interpretación	7
Semana 5: Ingeniería de Características I - Transformaciones	7
Semana 6: Ingeniería de Características II - Interacciones	8
Semana 7: Consolidación y Práctica de Regresión Lineal	9
Semana 8: Evaluación Parcial e Introducción a la Selección de Variables	9
Semana 9: Métodos de Selección de Variables	10
Semana 10: Regularización y Validación de Modelos	10
Semana 11: Modelos Lineales Generalizados (GLM) - Fundamentos	11
Semana 12: GLM - Regresión Logística	11
Semana 13: GLM - Regresión de Poisson	12
	12
Semana 15: Presentación de Proyectos Finales	13
Bibliografía	14
Objetivos de la asignatura Temario de la asignatura Semana 1: Presentación e Introducción a los Modelos de Regresión Semana 2: Regresión Lineal Simple (RLS) - Fundamentos y Estimación Semana 3: RLS - Inferencia y Diagnóstico Semana 4: Regresión Lineal Múltiple (RLM) - Formulación e Interpretación Semana 5: Ingeniería de Características I - Transformaciones Semana 6: Ingeniería de Características II - Interacciones Semana 7: Consolidación y Práctica de Regresión Lineal Semana 8: Evaluación Parcial e Introducción a la Selección de Variables Semana 9: Métodos de Selección de Variables Semana 10: Regularización y Validación de Modelos Semana 11: Modelos Lineales Generalizados (GLM) - Fundamentos Semana 12: GLM - Regresión Logística Semana 13: GLM - Regresión de Poisson Semana 14: Tópicos Avanzados y Repaso	14

Introducción a la asignatura

Los modelos estadísticos han emergido como herramientas fundamentales en la era de la información, donde la capacidad de analizar y predecir comportamientos a partir de datos se ha convertido en una habilidad esencial. En este contexto, los modelos para la predicción juegan un papel crucial al permitirnos describir y cuantificar las relaciones entre variables, así como anticipar resultados futuros. Este libro está diseñado para proporcionar una comprensión profunda y práctica de estas técnicas, basándose en el contenido de la asignatura impartida en el **Grado en Matemáticas**.

El modelado estadístico tiene un propósito dual que exploraremos en profundidad: la **predicción** (la búsqueda de la máxima precisión) y la **inferencia** (la búsqueda de la explicación y la comprensión). Entender esta dicotomía es clave para seleccionar y evaluar los modelos de manera efectiva.

Comenzaremos sentando las bases de la regresión lineal, desde su formulación más simple hasta la complejidad del modelo múltiple. A partir de ahí, aprenderemos a enriquecer nuestros modelos mediante la **ingeniería de características**, a seleccionar las variables más relevantes con técnicas de **selección y regularización**, y finalmente, a extender nuestro alcance más allá de la normalidad con los **Modelos Lineales Generalizados (GLM)**.

Objetivos de la asignatura

- Aprender a formular, estimar e interpretar modelos de regresión, comprendiendo los supuestos teóricos que los sustentan.
- Dominar el diagnóstico de los modelos para verificar su validez y detectar problemas como la multicolinealidad o la heterocedasticidad.
- Saber aplicar técnicas de ingeniería de características, selección de variables y regularización para optimizar el rendimiento y la interpretabilidad de los modelos.
- Extender el conocimiento de los modelos lineales a los GLM para poder modelar diferentes tipos de variables de respuesta (binarias, de conteo, etc.).
- Validar rigurosamente la capacidad predictiva de los modelos para asegurar su generalización a nuevos datos.

Temario de la asignatura

- Tema 1: Introducción a los Modelos de Regresión
- Tema 2: El Modelo de Regresión Lineal Simple
- Tema 3: El Modelo de Regresión Lineal Múltiple
- Tema 4: Ingeniería de Características: Transformaciones e Interacciones
- Tema 5: Selección de Variables, Regularización y Validación
- Tema 6: Modelos de Regresión Generalizada (GLM)
- Tema 7: Tópicos Avanzados en Modelado Predictivo

Desarrollo de la asignatura

El curso se desarrolla a lo largo de 15 semanas, con dos sesiones semanales. La metodología busca integrar la teoría y la práctica de forma fluida: los conceptos teóricos se presentarán junto con su implementación en R, fomentando un aprendizaje aplicado en cada clase.

Semana 1: Presentación e Introducción a los Modelos de Regresión

- Contenidos: Presentación de la asignatura, guía docente y sistema de evaluación. Se abordarán los conceptos fundamentales del modelado estadístico: el propósito dual de predecir vs. explicar y la anatomía de un modelo de regresión.
- Objetivos de Aprendizaje:
 - Diferenciar entre un objetivo de predicción y uno de inferencia.
 - Identificar los componentes clave de un modelo de regresión (respuesta, predictores, error).
 - Comprender el ecosistema de modelos de regresión y el rol de R en el curso.

Materiales Utilizados:

• Apuntes (Tema 1), Diapositivas ("Introducción a los Modelos Estadísticos"), lab0_introduccion.html.

• Actividades Planificadas:

- Discusión sobre los objetivos de la asignatura.
- Sesión práctica introductoria con lab0_introduccion.html para configurar el entorno de R y RStudio.

Trabajo Personal Recomendado:

- Lectura del Tema 1 de los apuntes.
- Asegurar que el entorno de R/RStudio está correctamente instalado y funcionando.

Semana 2: Regresión Lineal Simple (RLS) - Fundamentos y Estimación

■ Contenidos: Formulación del modelo RLS, supuestos teóricos y estimación de parámetros mediante Mínimos Cuadrados Ordinarios (MCO). Interpretación de coeficientes y coeficiente de determinación R².

Objetivos de Aprendizaje:

- Formular matemáticamente el modelo de RLS.
- Estimar los coeficientes β_0 y β_1 usando MCO.
- Interpretar el significado práctico de la pendiente, el intercepto y R^2 .

Materiales Utilizados:

- Apuntes (Secciones 2.1 a 2.3), Diapositivas ("Regresión Lineal Simple"), lab1_regresion_simple.html.
- Ejercicios: Boletín de RLS (Ejercicios 1, 2, 3).

Actividades Planificadas:

- Ajuste de un primer modelo lm() en R.
- Análisis e interpretación de la salida de la función summary().

Trabajo Personal Recomendado:

- Lectura de las secciones 2.1, 2.2 y 2.3 de los apuntes.
- Realización de los ejercicios 1, 2 y 3 de RLS.

Semana 3: RLS - Inferencia y Diagnóstico

- Contenidos: Inferencia sobre los coeficientes (test-t), ANOVA para la significancia global (test F) y diagnóstico completo de los supuestos a través del análisis de residuos.
- Objetivos de Aprendizaje:
 - Realizar e interpretar contrastes de hipótesis para los coeficientes.
 - Evaluar la bondad de ajuste de un modelo mediante ANOVA y R^2 .
 - Diagnosticar la validez de los supuestos del modelo analizando los residuos.

Materiales Utilizados:

- Apuntes (Secciones 2.4 a 2.6), Diapositivas ("Regresión Lineal Simple"), lab1_regresion_simple.html.
- Ejercicios: Boletín de RLS (Ejercicios 4 al 10).

Actividades Planificadas:

- Taller práctico de diagnóstico de modelos, analizando gráficamente los residuos (linealidad, homocedasticidad, normalidad).
- Uso de tests estadísticos (Shapiro-Wilk, Breusch-Pagan) para confirmar el diagnóstico visual.

Trabajo Personal Recomendado:

- Completar el laboratorio lab1_regresion_simple.html.
- Resolver los ejercicios 4 al 10 de RLS.

Semana 4: Regresión Lineal Múltiple (RLM) - Formulación e Interpretación

- Contenidos: Extensión al caso multivariante. Interpretación de coeficientes bajo el principio ceteris paribus. Coeficiente de determinación ajustado (R_{adj}^2) . Diagnóstico e identificación de la multicolinealidad.
- Objetivos de Aprendizaje:
 - Interpretar correctamente los coeficientes de una RLM como efectos parciales.
 - Diagnosticar la presencia de multicolinealidad utilizando el Factor de Inflación de la Varianza (VIF).

Materiales Utilizados:

- Apuntes (Tema 3), Diapositivas ("Regresión Lineal Múltiple"), lab2_regresion_multiple.html.
- Ejercicios: Boletín de RLM (Ejercicios 1 al 6).

Actividades Planificadas:

- Ajuste de un modelo de RLM en R.
- Taller práctico de diagnóstico de multicolinealidad, calculando e interpretando los valores VIF.

Trabajo Personal Recomendado:

- Lectura completa del Tema 3 de los apuntes.
- Resolver los **ejercicios 1 al 6** de RLM.

Semana 5: Ingeniería de Características I - Transformaciones

- Contenidos: Técnicas para mejorar el modelo: transformaciones de variables para linealizar relaciones y estabilizar la varianza (logarítmica, Box-Cox). Codificación de variables categóricas (One-Hot vs. Ordinal).
- Objetivos de Aprendizaje:

- Saber cuándo y cómo aplicar transformaciones para corregir violaciones de supuestos.
- Codificar correctamente variables categóricas según su naturaleza.

Materiales Utilizados:

- Apuntes (Secciones 4.1 a 4.5), Diapositivas ("Ingeniería de Características"), lab3_ingenieria_caracteristicas.html.
- Ejercicios: Boletín de Ing. de Características (Ejercicios 1 al 6).

• Actividades Planificadas:

- Práctica en R sobre diagnóstico de no-linealidad y aplicación de transformaciones.
- Creación de variables *dummy- para predictores categóricos.

Trabajo Personal Recomendado:

- Lectura de las secciones sobre transformaciones en los apuntes (4.1-4.5).
- Resolver los ejercicios 1 al 6 (Tema 4).

Semana 6: Ingeniería de Características II - Interacciones

- Contenidos: Modelado de relaciones complejas mediante la inclusión, visualización e interpretación de términos de interacción entre variables continuas y categóricas.
- Objetivos de Aprendizaje:
 - Identificar la necesidad de incluir un término de interacción.
 - Ajustar, visualizar e interpretar un modelo con interacciones.

Materiales Utilizados:

- Apuntes (Sección 4.6), Diapositivas ("Ingeniería de Características"), lab3_ingenieria_caracteristicas")
- Ejercicios: Boletín de Ing. de Características (Ejercicios 7 al 10).

• Actividades Planificadas:

- Ajuste de modelos con interacciones en R.
- Visualización de interacciones mediante gráficos de efectos para interpretar cómo cambia la pendiente.

Trabajo Personal Recomendado:

- Completar el laboratorio lab3_ingenieria_caracteristicas.html.
- Resolver los **ejercicios 7 al 10** (Tema 4).

Semana 7: Consolidación y Práctica de Regresión Lineal

- Contenidos: Repaso y aplicación conjunta de RLS, RLM e ingeniería de características.
- Objetivos de Aprendizaje:
 - Integrar todos los conceptos de modelado lineal en un único flujo de trabajo.
 - Afrontar un problema de modelado de principio a fin: desde el análisis exploratorio hasta el diagnóstico final.

Materiales Utilizados:

• Todos los materiales de los Temas 2, 3 y 4. Ejercicios de repaso de los boletines correspondientes.

Actividades Planificadas:

- Resolución de un caso de estudio completo en clase.
- Sesión de tutoría y resolución de dudas para el Trabajo 1.

Trabajo Personal Recomendado:

• Finalizar la preparación y entrega del Trabajo 1.

Semana 8: Evaluación Parcial e Introducción a la Selección de Variables

- Contenidos: Defensa oral del Trabajo 1. Introducción a los criterios de información (AIC, BIC, C_p de Mallows) para la comparación de modelos.
- Objetivos de Aprendizaje:
 - Defender y justificar las decisiones tomadas en un proyecto de modelado.
 - Comprender la base teórica del compromiso sesgo-varianza y cómo los criterios de información lo cuantifican.

Materiales Utilizados:

- Apuntes (Sección 5.3), Diapositivas ("Selección de Variables, Regularización y Validación").
- Ejercicios: Boletín de Selección de Variables (Ejercicio 3).

• Actividades Planificadas:

- Presentaciones orales del Trabajo 1.
- Clase teórica sobre criterios de bondad de ajuste.

Trabajo Personal Recomendado:

• Comenzar la lectura del Tema 5 y reflexionar sobre el ejercicio conceptual 3.

Semana 9: Métodos de Selección de Variables

■ Contenidos: Estudio de los métodos automáticos (stepwise) y exhaustivos (best subset), analizando sus ventajas y, sobre todo, sus limitaciones prácticas.

• Objetivos de Aprendizaje:

- Aplicar algoritmos de selección de variables en R.
- Analizar críticamente los resultados de los métodos automáticos, entendiendo su inestabilidad.

Materiales Utilizados:

- Apuntes (Secciones 5.4, 5.5), Diapositivas ("Selección de Variables, Regularización y Validación"), lab4_seleccion_variables.html.
- Ejercicios: Boletín de Selección de Variables (Ejercicios 4, 5, 6).

• Actividades Planificadas:

- Práctica en R con las funciones regsubsets() y step().
- Discusión sobre la invalidez de los p-valores en modelos seleccionados por métodos stepwise.

Trabajo Personal Recomendado:

- Lectura de las secciones 5.4 y 5.5 de los apuntes.
- Resolver los **ejercicios 4, 5 y 6**.

Semana 10: Regularización y Validación de Modelos

- Contenidos: Técnicas de regularización (Ridge, Lasso, Elastic Net) y fundamentos de la validación de modelos, con especial foco en la validación cruzada (Cross-Validation).
- Objetivos de Aprendizaje:
 - Comprender la diferencia fundamental entre la penalización L1 (Lasso) y L2 (Ridge).
 - Aplicar la validación cruzada para seleccionar hiperparámetros y evaluar el rendimiento predictivo del modelo.

Materiales Utilizados:

- Apuntes (Secciones 5.6, 5.7), Diapositivas ("Selección de Variables, Regularización y Validación"), lab4 seleccion variables.html.
- Ejercicios: Boletín de Selección de Variables (Ejercicios 7 al 10).

Actividades Planificadas:

- Ajuste de modelos Lasso y Ridge con glmnet en R.
- Uso de cv.glmnet para encontrar el valor óptimo de lambda.

Trabajo Personal Recomendado:

- Completar el laboratorio lab4_seleccion_variables.html.
- Resolver los **ejercicios 7 al 10**.

Semana 11: Modelos Lineales Generalizados (GLM) - Fundamentos

- Contenidos: Introducción a los componentes clave que extienden el modelo lineal: la familia exponencial, la función de enlace y la estimación por Máxima Verosimilitud (MLE).
- Objetivos de Aprendizaje:
 - Identificar los tres componentes que definen cualquier GLM.
 - Entender por qué se necesita MLE en lugar de MCO para estimar los GLM.

Materiales Utilizados:

- Apuntes (Sección 6.1, 6.2), Diapositivas ("Modelos Lineales Generalizados"), lab5_modelos_generalizados.html.
- Ejercicios: Boletín de GLM (Ejercicios 1, 2, 9).

Actividades Planificadas:

- Clase teórica vinculando la regresión lineal como un caso particular de los GLM.
- Análisis de diferentes tipos de variables respuesta para identificar el GLM apropiado.

Trabajo Personal Recomendado:

• Lectura de las secciones 6.1 a 6.4 de los apuntes y resolución de los **ejercicios** conceptuales 1, 2 y 9.

Semana 12: GLM - Regresión Logística

- Contenidos: Estudio del modelo para respuestas binarias, incluyendo la interpretación de Odds Ratios (OR) y las métricas de validación específicas como la curva ROC y el AUC
- Objetivos de Aprendizaje:
 - Ajustar e interpretar un modelo de regresión logística.
 - Calcular e interpretar los Odds Ratios.
 - Validar un clasificador binario mediante la matriz de confusión y la curva ROC.

Materiales Utilizados:

- Apuntes (Sección 6.5), Diapositivas ("Modelos Lineales Generalizados"), lab5_modelos_generalizados.html.
- Ejercicios: Boletín de GLM (Ejercicios 3, 4, 5).

Actividades Planificadas:

- Ajuste de un modelo glm() con family = binomial.
- Taller práctico de cálculo de métricas de clasificación y visualización de la curva ROC.

Trabajo Personal Recomendado:

• Resolver los ejercicios 3, 4 y 5 sobre regresión logística.

Semana 13: GLM - Regresión de Poisson

- Contenidos: Modelado de datos de conteo, interpretación de Incidence Rate Ratios (IRR), y diagnóstico y solución del problema de la sobredispersión mediante la Regresión Binomial Negativa.
- Objetivos de Aprendizaje:
 - Ajustar e interpretar un modelo de regresión de Poisson.
 - Diagnosticar la sobredispersión y saber cuándo usar un modelo Binomial Negativo.

Materiales Utilizados:

- Apuntes (Sección 6.6), Diapositivas ("Modelos Lineales Generalizados"), lab5_modelos_generalizados.html.
- Ejercicios: Boletín de GLM (Ejercicios 6, 7, 8, 10).

Actividades Planificadas:

- Ajuste de un modelo glm() con family = poisson.
- Cálculo del estadístico de dispersión y comparación con un modelo glm.nb().

Trabajo Personal Recomendado:

- Completar el laboratorio lab5_modelos_generalizados.html.
- Resolver los ejercicios 6, 7, 8 y 10.

Semana 14: Tópicos Avanzados y Repaso

- Contenidos: Breve introducción a extensiones de los modelos vistos, como los Modelos Aditivos Generalizados (GAMs). Repaso general de toda la materia.
- Objetivos de Aprendizaje:

- Reconocer las situaciones en las que un GAM puede ser una alternativa útil.
- Consolidar el conocimiento global de la asignatura y resolver dudas.

Materiales Utilizados:

• Todos los materiales del curso, incluyendo los Ejercicios Avanzados.

• Actividades Planificadas:

- Sesión de repaso general y consultas para el examen final.
- Tutorías para el Trabajo Colectivo 2.

Trabajo Personal Recomendado:

- Estudio para el examen final y desarrollo del trabajo.
- Intentar resolver los Ejercicios Avanzados.

Semana 15: Presentación de Proyectos Finales

- Contenidos: Exposición y defensa del Trabajo Colectivo 2.
- Objetivos de Aprendizaje:
 - Aplicar las técnicas de la asignatura a un problema de modelado real.
 - Comunicar de forma efectiva los resultados de un análisis estadístico.

Materiales Utilizados:

• Proyectos desarrollados por los estudiantes.

Actividades Planificadas:

• Presentaciones orales de los trabajos finales por parte de los grupos.

Trabajo Personal Recomendado:

• N/A.

Bibliografía

A continuación, se presenta la bibliografía utilizada y recomendada para el curso, dividida en textos principales y referencias complementarias.

Bibliografía Principal y Recomendada

- Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley & Sons.
- Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. *Journal of the Royal Statistical Society: Series B*, 26(2), 211-243.
- Draper, N. R. (1998). Applied regression analysis. McGraw-Hill.
- Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Sage publications.
- Harrell, F. E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer.
- Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer.
- Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression.
 John Wiley & Sons.
- Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression. Sage.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning with Applications in R. Springer.
- Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: a practical approach for predictive models. CRC Press.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. McGraw-Hill.
- McCullagh, P. (2019). Generalized linear models. Routledge.
- Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society Series A, 135(3), 370-384.
- Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer.
- Shmueli, G. (2010). To Explain or to Predict?. Statistical Science, 25(3), 289-310.
- Tukey, J. W. (1977). Exploratory data analysis. Reading, MA.
- Weisberg, S. (2005). Applied linear regression. Wiley.
- Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC.

■ Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: principles and techniques for data scientists. O'Reilly Media.

Referencias Adicionales y Tópicos Relacionados

- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using Ime4. Journal of Statistical Software, 67(1), 1-48.
- Bellman, R. E. (1978). Artificial intelligence: can computers think?.
- Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.
- Kelleher, J. D., & Tierney, B. (2018). Data science. MIT Press.
- Kelleher, J. D., Mac Namee, B., & D'arcy, A. (2020). Fundamentals of machine learning for predictive data analytics. MIT press.
- Molnar, C. (2020). Interpretable machine learning. Lulu.com.
- Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
- Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education, Inc.
- Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, 1, 29-39.

Métodos Estadísticos de Predicción

Apuntes de la Asignatura

Grado en Matemáticas

AUTORES

- Víctor Aceña Gil
- Isaac Martín de Diego

2025-2026

En el siguiente enlace se puede encontrar la versión html actualizada de los presentes apuntes: https://urjcdslab.github.io/ModelosEstadisticosPrediccion/

Índice

Ρı	refaci	io	7		
	Filo	osofía pedagógica del volumen	7		
		¿Qué aprenderás con este libro?	7		
1	Intr	Introducción a los modelos de regresión			
	1.1	Predecir vs. explicar	10		
	1.2	Anatomía de un modelo de regresión: los componentes axiomáticos	12		
		1.2.1 La variable de respuesta	12		
		1.2.2 Las variables predictoras	12		
		1.2.3 El término de error aleatorio	12		
	1.3	Un viaje preliminar por el universo de los modelos de regresión	15		
		1.3.1 Modelos lineales (LMs)	15		
		1.3.2 Modelos lineales generalizados (GLMs)	16		
		1.3.3 Modelos de efectos mixtos (Mixed Models)	17		
		1.3.4 Modelos aditivos generalizados (GAMs)	17		
	1.4	Una breve crónica del desarrollo de la regresión	19		
		1.4.1 Los orígenes: Galton y la "regresión a la mediocridad"	19		
		1.4.2 La formalización matemática: Legendre y Gauss	22		
		1.4.3 El desarrollo moderno: la revolución de los GLMs	22		
		1.4.4 La evolución contemporánea	23		
2	El n	nodelo de regresión lineal simple	24		
	2.1	Exploración inicial: visualización y cuantificación de la relación	25		
		2.1.1 Visualización: el gráfico de dispersión	25		
		2.1.2 Cuantificación de la asociación: covarianza y correlación	25		
	2.2	Formulación teórica del modelo	28		
		2.2.1 El modelo poblacional y sus componentes	28		
		2.2.2 Los supuestos del modelo lineal clásico (Gauss-Markov)	29		
	2.3	Estimación de los parámetros	29		
		2.3.1 El criterio de mínimos cuadrados	29		
		2.3.2 Derivación matemática de los estimadores	30		
	2.4	Inferencia y bondad de ajuste	32		
		2.4.1 Propiedades de los estimadores de MCO	33		
		2.4.2 Estimación de la varianza del error	35		
		2.4.3 Análisis de la Varianza (ANOVA) para la significancia de la regresión	36		

		2.4.4	Bondad del ajuste: coeficiente de determinación	37		
		2.4.5	Inferencia sobre los coeficientes	39		
	2.5	Predic	cción de nuevas observaciones	41		
		2.5.1	Intervalo de confianza para la respuesta media	41		
		2.5.2	Intervalo de predicción para una respuesta individual	42		
	2.6	Diagn	óstico del Modelo	45		
		2.6.1	Linealidad	45		
		2.6.2	Homocedasticidad	50		
		2.6.3	Normalidad de los residuos	55		
		2.6.4	Independencia de los residuos	61		
		2.6.5	Media nula de los residuos	66		
		2.6.6	Identificación de observaciones influyentes y atípicas	66		
3	El n	nodelo	de regresión lineal múltiple	78		
	3.1	Formu	ılación teórica del modelo	79		
		3.1.1	El modelo poblacional	79		
		3.1.2	El modelo muestral	79		
		3.1.3	Notación matricial	80		
		3.1.4	Supuestos del modelo lineal múltiple	80		
	3.2	Estim	ación de los parámetros			
		3.2.1	El principio de mínimos cuadrados y la función objetivo	81		
		3.2.2	Derivación de las ecuaciones normales	82		
		3.2.3	La solución MCO y la condición de invertibilidad	83		
		3.2.4	Propiedades de los estimadores de MCO	83		
		3.2.5	Estimación de la varianza del error	84		
	3.3	La int	serpretación de los coeficientes	86		
	3.4	Evalua	ación del modelo y descomposición de la varianza	88		
		3.4.1	Coeficiente de determinación múltiple	89		
		3.4.2	El coeficiente de determinación ajustado	90		
	3.5	Infere	ncia Estadística en el Modelo Múltiple	90		
		3.5.1	Contraste de hipótesis sobre los coeficientes	90		
		3.5.2	Intervalo de confianza para los coeficientes	91		
		3.5.3	Inferencia sobre la significancia global del modelo	91		
	3.6	Predic	cción con el modelo múltiple	92		
		3.6.1	Intervalo de confianza para la respuesta media	93		
		3.6.2	Intervalo de predicción para una observación individual	93		
	3.7	Diagn	óstico del modelo múltiple	94		
		3.7.1	Verificación de los supuestos clásicos	94		
		3.7.2	Diagnóstico de multicolinealidad	96		
		3.7.3	Identificación de observaciones influyentes	100		

4	Inge		103
	4.1	Transformaciones de variables: propósitos y aplicaciones	104
		4.1.1 Diagnóstico: ¿Cuándo transformar?	104
	4.2	Escalado y normalización: preparando variables para el análisis	106
		4.2.1 Estandarización (Z-Score)	106
		4.2.2 Normalización Min-Max	107
		4.2.3 Escalado robusto	108
	4.3	Catálogo de transformaciones según el propósito	111
		4.3.1 Transformaciones para linearizar relaciones	111
		4.3.2 Transformaciones para estabilizar la varianza	113
		4.3.3 Transformaciones para normalizar residuos y controlar outliers	114
	4.4	Transformación de Box-Cox	114
		4.4.1 Definición matemática	115
		4.4.2 Propósito y ventajas	115
		4.4.3 Limitaciones importantes	115
	4.5	Tratamiento de variables categóricas	116
		4.5.1 Principios de codificación categórica	117
		4.5.2 Codificación One-Hot (variables nominales)	117
		4.5.3 Codificación Ordinal (variables ordinales)	
		4.5.4 Comparación directa: Ordinal vs One-Hot Encoding	122
	4.6	Interacciones entre variables	123
		4.6.1 Interacciones entre variables continuas	
		4.6.2 Interacciones entre variables categóricas	
		4.6.3 Interacciones mixtas (continua × categórica)	
		4.6.4 Identificación y detección de interacciones	
		4.6.5 Consideraciones prácticas y limitaciones	
	4.7	Ingeniería de características avanzada: combinaciones, ratios y transformaciones	
		4.7.1 Combinaciones lineales y no lineales	
		4.7.2 Ratios y proporciones como features	
		4.7.3 Tratamiento de variables colineales mediante feature engineering	
	Sele	cción de variables, regularización y validación	14
	5.1	Proceso completo de construcción y optimización del modelo	148
	5.2	Filtrado basado en información básica	151
	5.3	Criterios de Bondad de Ajuste	154
		5.3.1 Criterio de Información de Akaike	
		5.3.2 Criterio de Información Bayesiano	155
		5.3.3 Estadístico Cp de Mallows	
			159
	5.4	-	159
	5.5	Métodos automáticos paso a paso	
		5.5.1 Selección progresiva (Forward Selection)	
		5.5.2 Eliminación regresiva (Backward Elimination)	

		5.5.3 Sele	cción paso a paso (Stepwise Regression)	163
	5.6	Métodos ba	asados en regularización	164
		5.6.1 Ridg	ge regression	165
		5.6.2 Reg	resión Lasso	168
		5.6.3 Elas	stic Net	171
		5.6.4 Con	nparación de los métodos de Regularización	173
	5.7	Validación	del Modelo	174
		5.7.1 Estr	rategias de Validación	175
		5.7.2 Mét	ricas de rendimiento	177
6	Mod	delos de regi	resión generalizada	183
	6.1	Introducció	on a los GLM	183
		6.1.1 ¿Qu	é son los modelos lineales generalizados?	183
		6.1.2 Con	nponentes de un modelo lineal generalizado	184
			erencias clave entre la regresión lineal y los GLM	
	6.2	Estimación	de parámetros en GLM	186
		6.2.1 Mét	odo de máxima verosimilitud	187
	6.3	Bondad de	ajuste en GLMs	193
		6.3.1 La d	deviance como medida de bondad de ajuste	193
		6.3.2 Test	t de la razón de verosimilitudes	194
	6.4	Diagnosis d	le GLMs	196
		6.4.1 Tipe	os de Residuos en GLMs	196
		6.4.2 ¿La	forma del modelo es correcta? (Linealidad y Enlace) $\ \ldots \ \ldots \ \ldots$	197
		6.4.3 ¿La	distribución que elegimos es la correcta? (Varianza y Normalidad) .	197
		6.4.4 ¿На	y observaciones que distorsionan el modelo? (Atípicos e Influyentes)	198
	6.5	Regresión le	ogística	199
		6.5.1 Fun	damentos de la regresión logística	199
		6.5.2 Esti	mación por máxima verosimilitud en regresión logística	200
		6.5.3 Inte	rpretación de coeficientes y odds ratios	204
		6.5.4 Bon	dad de ajuste del modelo logístico	205
		6.5.5 Vali	dación del modelo logístico	206
	6.6	Regresión d	le Poisson	210
			delo de regresión de Poisson	
		6.6.2 Sup	uestos y limitaciones de la regresión de Poisson	211
		6.6.3 Inte	rpretación de los resultados	212
		6.6.4 Esti	mación por máxima verosimilitud en regresión de Poisson	214
		6.6.5 Bon	dad de ajuste en la regresión de Poisson	219
			dación del modelo de Poisson	219
	6.7	Otros GLM	ls	220
			resión binomial negativa	220
		6.7.2 Mod	delos para variables continuas no normales	223

7	Conclusiones							
	7.1	Resumen de los aprendizajes	227					
	7.2	Reflexiones finales	228					
	7.3	Proyección futura: El valor del rigor matemático	229					
Bibliografía								

Prefacio

Los modelos estadísticos han emergido como herramientas fundamentales en la era de la información, donde la capacidad de analizar y predecir comportamientos a partir de datos se ha convertido en una habilidad esencial. En este contexto, los modelos para la predicción juegan un papel crucial al permitirnos describir y cuantificar las relaciones entre variables, así como anticipar resultados futuros. Este libro está diseñado para proporcionar una comprensión profunda y práctica de estas técnicas, basándose en el contenido de la asignatura impartida en el **Grado en Matemáticas**.

A lo largo de los capítulos, encontrarás una combinación de teoría rigurosa y aplicaciones prácticas. Se abordarán temas como la regresión lineal simple y múltiple, métodos de selección de variables y regularización, ingeniería de características y modelos generalizados, entre otros. Además, todos los conceptos se ilustrarán con ejemplos en ${\bf R}$, permitiéndote aplicar lo aprendido a conjuntos de datos reales.

El objetivo de este libro es doble: por un lado, proporcionar herramientas avanzadas para analizar relaciones sujetas a incertidumbre y, por otro, capacitarte para elegir el método más apropiado para resolver problemas de predicción o explicación, analizando la naturaleza de las variables y sus posibles interacciones. Al finalizar, habrás desarrollado una comprensión sólida de los modelos estadísticos y estarás preparado para enfrentar desafíos en el análisis predictivo con confianza y creatividad.

Filosofía pedagógica del volumen

La filosofía que subyace a la obra es un enfoque "teórico-práctico" deliberado y sin concesiones. No nos conformamos con una mera aplicación de "recetas" o una guía de funciones de software. Buscamos fomentar una comprensión profunda del modus operandi de cada modelo y método. Perseguimos un equilibrio entre la técnica estadística y la estrategia de resolución de problemas, bajo la firme convicción de que la labor práctica se desarrolla con mayor fluidez, creatividad y éxito cuando se cimienta en una comprensión robusta de los principios matemáticos y estadísticos subyacentes, tal y como defiende (Harrell 2015) en su influyente obra.

¿Qué aprenderás con este libro?

Al completar este recorrido, habrás desarrollado habilidades clave para:

- Modelar la dependencia entre una variable respuesta y múltiples predictores en conjuntos de datos complejos.
- Resolver problemas con iniciativa y creatividad, eligiendo las técnicas estadísticas más adecuadas para cada caso.
- Evaluar de forma crítica las ventajas e inconvenientes de diferentes alternativas metodológicas
- Implementar estos modelos utilizando software estadístico profesional como R.
- **Interpretar** correctamente los resultados, proponer mejoras y tomar decisiones basadas en datos.
- Adquirir las competencias y la autonomía necesarias para emprender con éxito estudios de posgrado o proyectos profesionales en ciencia de datos.

Agradecemos a los profesores y colegas que han contribuido al desarrollo de esta asignatura y a la elaboración de este libro. Su dedicación y conocimiento han sido fundamentales para la creación de este recurso.

Esperamos que esta guía te resulte útil y enriquecedora.

¡Comenzamos!

I Grado en Matemáticas

Este libro presenta el material de la asignatura de Modelos Estadísticos para la Predicción del Grado en Matemáticas de la Universidad Rey Juan Carlos. Su contenido está fuertemente relacionado con las asignaturas de Estadística Matemática y Minería de Datos.

Conocimientos previos

Es altamente recomendable que los alumnos que cursen esta materia manejen con soltura los conocimientos adquiridos en las asignaturas de Probabilidad y Estadística Matemática, así como herramientas de cálculo univariante, multivariante y álgebra lineal.

Sobre los autores

Víctor Aceña Gil es graduado en Matemáticas por la UNED, máster en Tratamiento Estadístico y Computacional de la Información por la UCM y la UPM, doctor en Tecnologías de la Información y las Comunicaciones por la URJC y profesor del departamento de Informática y Estadística de la URJC. Miembro del grupo de investigación de alto rendimiento en Fundamentos y Aplicaciones de la Ciencia de Datos, DSLAB, de la URJC. Pertenece al grupo de innovación docente, DSLAB-TI.

Isaac Martín de Diego es diplomado en Estadística por la Universidad de Valladolid (UVA), licenciado en Ciencias y Técnicas Estadísticas por la Universidad Carlos III de

Madrid (UC3M), doctor en Ingeniería Matemática por la UC3M, catedrático de Ciencias de la Computación e Inteligencia Artificial del departamento de Informática y Estadística de la URJC. Es fundador y coordinador del DSLAB y del DSLAB-TI.

Esta obra está bajo una licencia de Creative Commons Atribución-Compartir
Igual 4.0 Internacional.

1 Introducción a los modelos de regresión

Este tema inaugural tiene como misión construir el andamiaje conceptual y filosófico sobre el que se asienta el modelado estadístico moderno. A lo largo de estas páginas, contextualizaremos la regresión no solo como una técnica, sino como un marco de pensamiento indispensable en la ciencia de datos y en cualquier disciplina de investigación cuantitativa. Exploraremos en profundidad su propósito dual, desgranaremos sus componentes axiomáticos hasta el último detalle, y ofreceremos una visión panorámica, rica en matices, de la vasta familia de modelos de regresión. El objetivo es preparar al lector, con solidez y sin prisas, para las inmersiones técnicas que seguirán en los capítulos posteriores. Como lectura complementaria que comparte esta filosofía de aprendizaje profundo pero aplicado, recomendamos encarecidamente la obra de (James et al. 2021).

1.1 Predecir vs. explicar

El modelado de regresión constituye una de las herramientas más potentes y flexibles del arsenal estadístico. Ofrece un marco metodológico riguroso para investigar y cuantificar las relaciones entre un conjunto de variables, y su aplicabilidad abarca un espectro extraordinariamente amplio de disciplinas: desde la física de partículas y la ingeniería aeroespacial, donde se usa para modelar sistemas complejos, hasta la econometría, la psicometría, la epidemiología o las finanzas, donde es fundamental para entender mercados y comportamientos.

Aunque en la práctica ambos objetivos a menudo se entrelazan, conceptualmente, el modelado estadístico se orienta hacia uno de dos polos, una dicotomía fundamental articulada brillantemente por (Shmueli 2010): la **predicción** o la **inferencia (explicación)**. Comprender esta distinción es el primer paso para convertirse en un modelador eficaz.

1. **Predicción**: El objetivo principal es la **precisión**. Se busca construir un modelo que pueda estimar con el menor error posible el valor de una variable de interés (la *respuesta*) basándose en la información proporcionada por otras variables (las *predictoras*). En este paradigma, el modelo puede ser tratado como una "caja negra" (*black box*). Su funcionamiento interno o la interpretabilidad de sus componentes son secundarios, siempre y cuando sus predicciones sean consistentemente fiables y robustas en datos no observados previamente.

Ejemplo

Una entidad financiera quiere predecir la probabilidad de que un cliente incurra en impago de un crédito. Utilizan variables como la edad, ingresos, nivel de estudios y historial crediticio. El banco no necesita necesariamente entender la "causa" exacta del impago; su principal interés es tener un modelo que clasifique correctamente a los futuros solicitantes como de alto o bajo riesgo para minimizar pérdidas.

2. Inferencia: El foco se desplaza radicalmente hacia la comprensión y la interpretación. El objetivo no es solo predecir, sino dilucidar la naturaleza de las interdependencias entre las variables. Se busca cuantificar cómo un cambio en una variable predictora influye, ya sea de forma causal o asociativa, en la variable de respuesta. Aquí, la interpretabilidad del modelo es primordial. El interés reside en la magnitud, el signo y, crucialmente, la incertidumbre estadística (expresada mediante errores estándar, intervalos de confianza y p-valores) de los parámetros estimados.

Ejemplo

Una epidemióloga investiga los factores de riesgo de una enfermedad cardíaca. Modela la presión arterial en función de variables como el índice de masa corporal (IMC), el consumo diario de sal y las horas de ejercicio semanales. Su objetivo no es solo predecir la presión arterial de un paciente, sino entender y cuantificar la relación: "¿En cuántos mmHg aumenta la presión arterial, en promedio, por cada gramo adicional de sal consumido al día, manteniendo constantes el IMC y el ejercicio?". La respuesta a esta pregunta tiene implicaciones directas para la salud pública y las recomendaciones dietéticas.

■ Una relación simbiótica

Aunque conceptualmente distintos, ambos objetivos no son mutuamente excluyentes; a menudo se benefician el uno del otro. Un modelo con una base inferencial sólida, que captura relaciones causales o asociativas verdaderas, suele tener un buen rendimiento predictivo. A la inversa, un modelo que demuestra una alta precisión predictiva en datos nuevos nos da confianza en que las relaciones que ha aprendido no son meras casualidades del conjunto de datos de entrenamiento, sino que probablemente reflejen patrones reales y generalizables. La tensión entre interpretabilidad y precisión es uno de los debates más fascinantes en la ciencia de datos moderna.

1.2 Anatomía de un modelo de regresión: los componentes axiomáticos

Todo modelo de regresión, desde el más simple hasta el más sofisticado, se construye sobre tres pilares fundamentales. Estos componentes, definidos en textos clásicos como el de (Kutner et al. 2005), son los ladrillos con los que edificaremos todo nuestro conocimiento.

1.2.1 La variable de respuesta

También designada como variable dependiente, variable de salida, target, variable objetivo o variable explicada. Representa el fenómeno o la característica principal cuyo comportamiento se busca modelar, comprender o predecir. La naturaleza de esta variable es, quizás, el factor más determinante a la hora de elegir el tipo de modelo de regresión. Puede ser:

- Continua: Una variable que puede tomar cualquier valor dentro de un rango. Ej: temperatura, altura, precio de una acción, concentración de un compuesto químico.
- Discreta de Conteo: Una variable que representa un número de eventos. Ej: número de accidentes en una intersección, número de clientes que entran en una tienda, número de mutaciones en un gen.
- Binaria o Dicotómica: Una variable con solo dos resultados posibles. Ej: éxito/fracaso, enfermo/sano, compra/no compra, spam/no spam.
- Categórica: Una variable que representa grupos o categorías. Si no tiene orden, es nominal (ej: tipo de sangre, partido político); si tiene un orden intrínseco, es ordinal (ej: nivel de satisfacción "bajo/medio/alto", estadio de una enfermedad "I/II/III/IV").

1.2.2 Las variables predictoras

Conocidas indistintamente como variables independientes, explicativas, regresoras, covariables o características (features). Son las magnitudes, atributos o factores que se postula que influyen o están asociados con el comportamiento de la variable de respuesta. Al igual que la variable de respuesta, pueden ser de diversa naturaleza (continuas, categóricas, etc.). La selección de estas variables es una de las fases más críticas del modelado, requiriendo una combinación de conocimiento del dominio, análisis exploratorio de datos y técnicas estadísticas formales.

1.2.3 El término de error aleatorio

Este componente, a menudo subestimado, es conceptualmente crucial. Simboliza la variabilidad intrínseca de la variable de respuesta que **no es capturada o explicada** por las variables

predictoras incluidas explícitamente en el modelo. El término de error ϵ no es un simple "error" en el sentido de equivocación; es un componente estocástico que amalgama múltiples fuentes de variabilidad:

- Variables Omitidas: Ningún modelo es perfecto. Siempre habrá factores que influyen en Y pero que no han sido medidos o incluidos en el modelo (variables latentes).
- Error de Medición: Las mediciones de Y (y también de X) pueden no ser perfectamente precisas.
- Aleatoriedad Intrínseca: Muchos fenómenos naturales y sociales tienen un componente de variabilidad irreducible. Dos individuos con idénticos valores en todas las variables predictoras pueden, aun así, tener valores distintos en la variable de respuesta.

Formalmente, la relación fundamental de la regresión se expresa como la descomposición de la variable de respuesta en una parte sistemática y una parte aleatoria:

$$Y = \underbrace{f(X_1, \dots, X_k)}_{\text{Componente Sistemática}} + \underbrace{\epsilon}_{\text{Componente Aleatoria}}$$

donde $f(\cdot)$ denota la **componente sistemática** (o determinística) del modelo, que representa el valor esperado de Y para unos valores dados de las X. La función f es lo que intentamos estimar a partir de los datos. Por su parte, ϵ es la **componente aleatoria**, y gran parte del diagnóstico y la inferencia en regresión se basa en verificar los supuestos que hacemos sobre la distribución de este término (ej: que su media es cero, que su varianza es constante, etc.).

Linealidad en los parámetros, no en las variables

Una característica que define a los modelos de regresión lineal (y que se extiende a muchos otros tipos de modelos) es que la función $f(\cdot)$ mantiene una relación lineal con respecto a sus parámetros desconocidos (los coeficientes beta, β_j). Es crucial enfatizar que esta "linealidad en los parámetros" no impone una restricción de linealidad en las variables predictoras mismas.

Por el contrario, es común y metodológicamente válido incorporar transformaciones no lineales de los predictores o interacciones complejas entre ellos para capturar relaciones más sofisticadas. Por ejemplo, el siguiente modelo es un **modelo de regresión lineal**:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 \log(X_2) + \beta_4 (X_1 \cdot X_2) + \epsilon$$

Aunque la relación entre Y y las variables X_1 y X_2 es claramente no lineal (es cuadrática en X_1 , logarítmica en X_2 e incluye una interacción), el modelo es **lineal en los parámetros** $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$. La función f es una combinación lineal de estos coeficientes. Esta flexibilidad es una de las razones de la enorme potencia de los modelos lineales.

El siguiente bloque de código en R genera un ejemplo visual. Simulamos datos que siguen una relación cuadrática y luego ajustamos un modelo lineal que incluye un término

cuadrático (X^2) . Como se puede observar en la figura, la línea de regresión (azul) captura perfectamente la curvatura de los datos, demostrando que un modelo lineal en sus parámetros puede modelar relaciones no lineales en sus variables.

```
# Cargar la librería necesaria para la visualización
library(ggplot2)
# 1. Simulación de datos
set.seed(42) # Para reproducibilidad
n <- 100 # Número de observaciones
x \leftarrow runif(n, -5, 5)
# La relación verdadera es cuadrática: y = 1.5 + 0.5*x + 0.8*x^2 + error
y \leftarrow 1.5 + 0.5 * x + 0.8 * x^2 + rnorm(n, mean = 0, sd = 5)
datos <- data.frame(x, y)</pre>
# 2. Ajuste del modelo lineal
# Usamos I(x^2) para indicar que tratamos x^2 como una variable
modelo_cuadratico <- lm(y \sim x + I(x^2), data = datos)
# 3. Visualización con ggplot2
ggplot(datos, aes(x = x, y = y)) +
  geom_point(alpha = 0.6, color = "gray40") + # Puntos de los datos originales
  geom_smooth(method = "lm", formula = y \sim x + I(x^2), se = FALSE, color = "#0072B2", size
    title = "Modelo Lineal con Término Cuadrático",
    x = "Variable Predictora (X)",
    y = "Variable de Respuesta (Y)"
  theme_classic(base_size = 14)
```


Figure 1.1: Ejemplo de un modelo lineal en los parámetros que captura una relación no lineal (cuadrática) en los datos.

1.3 Un viaje preliminar por el universo de los modelos de regresión

La regresión lineal clásica, que será el objeto de estudio de los primeros capítulos, es el punto de partida y la piedra angular sobre la cual se erige una prolífica y fascinante gama de metodologías estadísticas avanzadas. Este volumen se dedicará a desentrañar con rigor las siguientes extensiones y especializaciones, que permiten al analista abordar una variedad casi infinita de problemas.

1.3.1 Modelos lineales (LMs)

Constituyen el paradigma fundamental, el alfabeto sobre el que se escribe el lenguaje del modelado estadístico. Son mucho más que una simple técnica para ajustar una recta a una nube de puntos; son el laboratorio donde se forjan y se comprenden los conceptos esenciales que nos acompañarán durante todo nuestro viaje. Es aquí donde aprenderemos a:

• Estimar parámetros e interpretar su significado en el contexto del problema.

- Cuantificar la incertidumbre de nuestras estimaciones mediante errores estándar e intervalos de confianza.
- Realizar contrastes de hipótesis para evaluar si la relación entre nuestras variables es estadísticamente significativa o fruto del azar.
- Diagnosticar la "salud" de un modelo, examinando si los supuestos sobre los que se construye son razonables para nuestros datos.

En su forma más clásica, el modelo lineal asume que la variable de respuesta (y, por consecuencia, el término de error aleatorio) sigue una distribución Normal o Gaussiana. Esta asunción es la clave que desbloquea todo el elegante aparato de la inferencia estadística, permitiéndonos realizar pruebas exactas y derivar propiedades matemáticas bien conocidas. Técnicas tan ubicuas en la ciencia como el Análisis de la Varianza (ANOVA) o el Análisis de la Covarianza (ANCOVA) no son más que casos particulares de la gran familia de los modelos lineales, un hecho que unifica campos de la estadística que históricamente se estudiaban por separado. Dominar los LMs es, sencillamente, un requisito indispensable.

1.3.2 Modelos lineales generalizados (GLMs)

Si los LMs son el alfabeto, los GLMs son la gramática que nos permite construir frases complejas y con significado en una variedad de contextos mucho más amplia. Introducidos en el influyente y verdaderamente revolucionario trabajo de (Nelder and Wedderburn 1972), los GLMs representan un salto conceptual que expande de forma masiva el universo de problemas que podemos abordar. Suponen una generalización elegante que nos permite escapar de la "tiranía" de la distribución Normal y modelar respuestas con una variedad mucho más amplia de naturalezas y escalas.

Esta flexibilidad se logra mediante la combinación de dos ingeniosos mecanismos que son el corazón de la teoría:

- 1. La familia exponencial de distribuciones: Los GLMs no funcionan con cualquier distribución, sino con aquellas que pertenecen a una "familia" matemática con propiedades muy convenientes: la familia exponencial. Este "club" de distribuciones es muy selecto, pero incluye a miembros tan importantes como la Normal, la Poisson (para datos de conteo), la Binomial (para datos de proporciones o binarios), la Gamma (para datos continuos positivos y asimétricos) o la Binomial Negativa. Su estructura matemática común permite desarrollar una teoría unificada para la estimación de parámetros, lo que es un logro teórico de primer orden.
- 2. La función de enlace (link function): Este es el verdadero golpe de genialidad. El predictor lineal de nuestro modelo, $X\beta$, puede tomar cualquier valor en la recta real, desde $-\infty$ hasta $+\infty$. Sin embargo, la media de nuestra variable de respuesta, $E[Y] = \mu$, a menudo está restringida. Por ejemplo, una probabilidad (μ en un modelo binomial) debe estar entre 0 y 1; un conteo (μ en un modelo de Poisson) debe ser positivo.

La función de enlace, $g(\cdot)$, actúa como un "traductor" o un "puente" que conecta estos dos mundos. Transforma la media restringida de la respuesta para que pueda ser modelada por el predictor lineal no restringido. La relación fundamental es, por tanto, $g(E[Y]) = g(\mu) = X\beta$.

- Para datos de **conteo** (Poisson), se usa un **enlace logarítmico** $(g(\mu) = \log(\mu))$. Esto garantiza que, al invertir la función para obtener la media $(\mu = \exp(X\beta))$, el resultado será siempre positivo, como debe ser un conteo.
- Para datos binarios (Binomial), se usa un enlace logit $(g(\mu) = \log(\frac{\mu}{1-\mu}))$. Esta función toma una probabilidad μ en el rango (0, 1) y la proyecta sobre toda la recta real, permitiendo que sea modelada por $X\beta$.

Gracias a los GLMs, podemos usar el mismo marco conceptual de la regresión lineal para modelar una gama de fenómenos increíblemente diversa, desde predecir la cantidad de ciclistas en una ciudad (Poisson) hasta la probabilidad de que un paciente responda a un tratamiento (logística).

1.3.3 Modelos de efectos mixtos (Mixed Models)

Su desarrollo responde a la necesidad crítica de analizar datos que exhiben estructuras de dependencia o correlación, como agrupamientos, anidamientos o jerarquías. En datos estándar, asumimos que las observaciones son independientes, pero esta asunción se viola en casos como: * Medidas repetidas sobre los mismos sujetos (ej: medir la presión arterial de un paciente cada mes). * Datos longitudinales (un tipo de medida repetida a lo largo del tiempo). * Datos agrupados (ej: estudiantes anidados dentro de clases, que a su vez están anidadas dentro de colegios). Estos modelos, detallados en obras como la de (Pinheiro and Bates 2000), introducen explícitamente una estructura de correlación en el término de error mediante la incorporación de efectos aleatorios, que permiten capturar la variabilidad entre los diferentes grupos o individuos, además de los efectos fijos que representan a la población general.

1.3.4 Modelos aditivos generalizados (GAMs)

Representan una extensión natural y altamente flexible de los GLMs que relaja el supuesto de linealidad entre el predictor transformado y las covariables. Los GAMs, cuya implementación moderna se debe en gran parte al trabajo de (Wood 2017), permiten modelar estas relaciones mediante **funciones suaves** no paramétricas (como *splines*), manteniendo al mismo tiempo la estructura aditiva del modelo. La forma general es $g(\mu) = \alpha + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$, donde las $f_i(\cdot)$ son funciones suaves de los predictores estimadas a partir de los datos. Esto permite capturar patrones no lineales complejos sin necesidad de especificar una forma funcional paramétrica a priori, logrando un equilibrio excepcional entre flexibilidad e interpretabilidad.

R como lenguaje del modelado estadístico

Este compendio no es un texto puramente teórico. Fusiona intrínsecamente la exposición de los conceptos con su aplicación computacional directa a través del lenguaje y entorno estadístico **R**. R se ha consolidado como el estándar de facto en la investigación estadística y la ciencia de datos académica por su potencia, flexibilidad y el inmenso ecosistema de paquetes contribuidos por la comunidad científica. Se presupone en el lector una familiaridad operativa básica con R, y se fomenta activamente el desarrollo de una fluidez progresiva mediante la reproducción, modificación y experimentación con los numerosos ejemplos y fragmentos de código presentados.

La capacidad de ejecutar análisis en R es fundamental para todo el ciclo de vida del modelado:

- La exploración de datos y la visualización inicial.
- La estimación de parámetros y el ajuste de los modelos.
- El diagnóstico riguroso de la adecuación del modelo y la validación de sus supuestos.
- La producción de gráficos y tablas de alta calidad para comunicar los resultados.

En R, las herramientas fundamentales para la regresión lineal (lm()) y los modelos lineales generalizados (glm()) están incluidas en el paquete stats, que es uno de los paquetes base y se carga automáticamente con cada sesión. Por lo tanto, no necesitamos instalarlo ni cargarlo.

A lo largo del libro, extenderemos esta funcionalidad base con paquetes especializados que sí requieren instalación y carga. Entre los más importantes que usaremos se encuentran:

- mgcv: La implementación de referencia para GAMs, mantenida por su creador, Simon Wood, y citada en (Wood 2017).
- 1me4 y n1me: Los dos paquetes fundamentales para el ajuste de modelos de efectos mixtos, desarrollados por los pioneros en el campo (Pinheiro and Bates 2000; Bates et al. 2015).
- rms: Un paquete y una filosofía de trabajo para implementar estrategias de modelado de regresión robustas, como se detalla en la obra de (Harrell 2015).
- gamair: Contiene numerosos conjuntos de datos que acompañan al libro de (Wood 2017), ideales para practicar con GAMs.

1.4 Una breve crónica del desarrollo de la regresión

1.4.1 Los orígenes: Galton y la "regresión a la mediocridad"

La gestación de la metodología de regresión se traza hasta las investigaciones pioneras de Sir Francis Galton, un polímata de la era victoriana. A finales del siglo XIX, estudiando la herencia de la estatura, Galton recopiló datos de padres e hijos y notó un fenómeno curioso: los padres muy altos tendían a tener hijos altos, pero, en promedio, no tan altos como ellos. Análogamente, los padres muy bajos tenían hijos bajos, pero no tan bajos como ellos. Acuñó el término "regresión a la mediocridad" (hoy diríamos "regresión a la media") para describir esta tendencia de las características de la descendencia a "regresar" hacia la media de la población, en lugar de perpetuar los extremos de los progenitores (Galton 1886).

💡 Estudios de Galton sobre estatura

Datos recopilados

- Galton recopiló datos sobre las estaturas de 928 hijos y sus respectivos padres.
- Las medidas fueron expresadas en pulgadas (1 pulgada = 2.54 cm).
- En sus análisis, utilizó el promedio de las estaturas de ambos padres, conocido como estatura media parental, para compararlo con la estatura de los hijos.

Principales hallazgos

1. Relación lineal entre padres e hijos:

Galton observó que existe una relación positiva entre la estatura de los padres y la de los hijos. Los padres altos tienden a tener hijos altos, y los padres bajos tienden a tener hijos bajos. Esta relación puede modelarse con una línea recta, lo que inspiró la formulación de la regresión lineal.

2. Regresión a la media:

- Aunque los hijos de padres altos son, en promedio, más altos que el promedio general de la población, también tienden a ser menos altos que sus padres.
- De manera similar, los hijos de padres bajos son más bajos que el promedio general, pero suelen ser menos bajos que sus padres.
- Este fenómeno, que Galton llamó "regresión a la media", ocurre porque las características extremas tienden a suavizarse en la siguiente generación debido a la influencia de múltiples factores genéticos y ambientales.

3. Ecuación de la recta de regresión:

Galton ajustó una recta para describir la relación entre la estatura media parental (X) y la estatura de los hijos (Y):

$$Y = \beta_0 + \beta_1 X$$

Donde:

- β_0 : Intercepto, representa la estatura promedio de los hijos cuando la estatura parental es promedio.
- β_1 : Pendiente, indica cómo cambia la estatura de los hijos por cada unidad de cambio en la estatura media parental.

Importancia en la Estadística

1. Regresión lineal:

Este estudio introdujo el concepto de **recta de regresión**, que describe cómo varía la media de una variable dependiente en función de una variable independiente.

2. Correlación:

Galton también estudió el grado de relación entre variables, precursor del concepto de **coeficiente de correlación** desarrollado posteriormente por Karl Pearson, un discípulo suyo.

3. Regresión a la media:

El término y la idea detrás de "regresión a la media" surgieron de estos estudios y son hoy fundamentales en estadística y genética.

Ejemplo Gráfico

Galton representó sus datos en gráficos de dispersión, mostrando cómo los puntos (pares de estatura media parental y estatura de los hijos) se agrupan alrededor de la recta de regresión, ilustrando la tendencia general de la relación.

```
# Cargar los paquetes necesarios
library(ggplot2)
library(HistData)
# Cargar los datos de Galton
data("GaltonFamilies")
# Crear el modelo de regresión lineal para obtener los coeficientes
modelo <- lm(childHeight ~ midparentHeight, data = GaltonFamilies)</pre>
# Crear la etiqueta para la ecuación de la recta de forma más limpia
# Usamos sprintf() para un formato más controlado y legible
eq label \leftarrow sprintf("y = %.2f + %.2f * x", coef(modelo)[1], coef(modelo)[2])
# --- Gráfico Mejorado ---
# Usamos un tema más limpio y colores más suaves para una apariencia profesional.
# geom_jitter() es mejor que geom_point() para estos datos, ya que evita la superposición o
ggplot(GaltonFamilies, aes(x = midparentHeight, y = childHeight)) +
  # 1. Puntos de datos: Usamos geom_jitter para visualizar mejor los puntos superpuestos
       y añadimos transparencia (alpha) para ver la densidad.
  geom_jitter(alpha = 0.3, color = "gray50", width = 0.1, height = 0.1) +
  # 2. Línea de regresión: En un color azul profesional y más gruesa para que destaque.
  geom_smooth(method = "lm", se = FALSE, color = "#0072B2", size = 1.2) +
  # 3. Anotación: Añadimos la ecuación de la recta de forma elegante,
      usando el mismo color que la línea para crear cohesión visual.
  annotate(
    "text".
    x = 66, y = 74, # Posición ajustada para mejor visibilidad
    label = eq label,
    color = "#0072B2", # Mismo color que la línea
    size = 4.5, # Tamaño de la fuente
    fontface = "italic" # Cursiva para la ecuación
  # 4. Títulos y etiquetas: Mejorados para mayor claridad y contexto.
      Añadimos un subtítulo y una fuente.
  labs(
    title = "Regresión de la Estatura de Hijos vs. Padres",
    x = "Promedio de Estatura de los Padres (pulgadas)",
    y = "Estatura del Hijo/a (pulgadas)",
    caption = "Fuente: Paquete HistData de R"
  ) +
                                     21
  # 5. Tema: Usamos un tema limpio y profesional como base.
  theme_classic(base_size = 14)
```


1.4.2 La formalización matemática: Legendre y Gauss

Aunque Galton sentó las bases conceptuales e introdujo el término, la formalización matemática de la estimación de parámetros en modelos lineales se atribuye a dos de los más grandes matemáticos de la historia. Adrien-Marie Legendre publicó en 1805 el "Método de los mínimos cuadrados" como un procedimiento numérico para ajustar observaciones astronómicas. Pocos años después, Carl Friedrich Gauss no solo publicó que había desarrollado el mismo método de forma independiente años antes, sino que lo dotó de una profundidad teórica mucho mayor, conectándolo con la teoría de la probabilidad y derivándolo bajo el supuesto de errores distribuidos normalmente, convirtiéndolo en la técnica fundamental para la estimación en modelos lineales que sigue siendo hoy.

1.4.3 El desarrollo moderno: la revolución de los GLMs

A lo largo del siglo XX, la regresión experimentó un desarrollo explosivo. Sin embargo, el hito que probablemente más ha influido en la práctica estadística moderna fue la publicación del

artículo sobre Modelos Lineales Generalizados (GLMs) por John Nelder y Robert Wedderburn en 1972 (Nelder and Wedderburn 1972). Esta obra seminal fue revolucionaria porque unificó bajo un mismo paraguas conceptual y computacional diversas clases de modelos que hasta entonces se trataban por separado: la regresión lineal para datos normales, la regresión logística para datos binarios y la regresión de Poisson para datos de conteo. Esto estimuló enormemente el desarrollo de software y la aplicación del modelado estadístico a una nueva y vasta gama de problemas.

1.4.4 La evolución contemporánea

Este legado continúa evolucionando a un ritmo vertiginoso, con la inclusión de modelos jerárquicos y bayesianos, métodos no paramétricos y de *machine learning* como los árboles de regresión, y la adaptación de la regresión al análisis de datos masivos (*big data*). La regresión ha evolucionado desde una observación sobre la herencia biológica hasta convertirse en una de las herramientas más versátiles y poderosas del arsenal analítico moderno.

2 El modelo de regresión lineal simple

La regresión lineal constituye uno de los pilares fundamentales de la modelización estadística. Es, a menudo, el primer y más importante modelo predictivo que se aprende, no solo por su simplicidad e interpretabilidad, sino porque los conceptos que exploraremos aquí son la base sobre la que se construyen técnicas mucho más avanzadas, como el **modelo de regresión** lineal múltiple, los **modelos lineales generalizados (GLM)** o incluso conceptos utilizados en algoritmos de *machine learning* (Draper 1998; Kutner et al. 2005; James et al. 2021).

En este capítulo, daremos el primer y más crucial paso en nuestro viaje por el modelado predictivo: el estudio del **modelo de regresión lineal simple**. Para ello, seguiremos el ciclo de vida completo de un proyecto de modelado: comenzaremos con la exploración visual y cuantitativa de los datos, formalizaremos después nuestras observaciones mediante el lenguaje matemático del modelo y sus supuestos, aprenderemos a estimar sus parámetros, realizaremos inferencias sobre ellos y, finalmente, diagnosticaremos la validez de nuestro modelo (Fox and Weisberg 2018; Harrell 2015).

La comprensión profunda que desarrollaremos aquí es esencial, ya que los principios de estimación, inferencia y diagnóstico que aprenderemos son directamente escalables al **modelo de regresión lineal múltiple**, que exploraremos en el siguiente capítulo.

! Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

- 1. Comprender y aplicar el proceso de modelización estadística para un problema con una única variable predictora.
- 2. **Identificar y medir la correlación lineal** entre dos variables como paso previo al modelado.
- 3. **Describir la formulación matemática** del modelo de regresión lineal simple e interpretar el significado práctico de sus parámetros.
- 4. Estimar los coeficientes del modelo mediante el método de mínimos cuadrados ordinarios (MCO) y entender su derivación matemática y propiedades.
- 5. Realizar inferencias sobre los parámetros del modelo y evaluar su bondad de ajuste mediante el análisis de la varianza y el coeficiente de determinación R².
- 6. Diagnosticar la adecuación del modelo, evaluando visual y analíticamente si se cumplen los supuestos del modelo lineal.

2.1 Exploración inicial: visualización y cuantificación de la relación

Antes de sumergirnos en la teoría de la regresión, debemos hacer lo que todo buen analista hace primero: **observar y cuantificar la relación en los datos**. Este paso exploratorio es fundamental para formular hipótesis y justificar la elección de un modelo lineal.

2.1.1 Visualización: el gráfico de dispersión

La herramienta más potente para examinar la relación entre dos variables continuas es el **gráfico de dispersión** (*scatterplot*). Nos permite intuir visualmente la **forma**, la **dirección** y la **fuerza** de la relación. Una inspección visual es siempre el punto de partida.

2.1.2 Cuantificación de la asociación: covarianza y correlación

Una vez que la visualización sugiere una tendencia, necesitamos métricas para cuantificarla.

2.1.2.1 Covarianza

La **covarianza** es una medida de la variabilidad conjunta de dos variables aleatorias, X e Y. Nos indica la dirección de la relación lineal. La covarianza muestral, calculada a partir de nuestras observaciones (x_i, y_i) , es:

$$\mathrm{Cov}(x,y) = s_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

El principal inconveniente de la covarianza es que su magnitud depende de las unidades de las variables, lo que la hace difícil de interpretar.

2.1.2.2 Coeficiente de correlación de Pearson

Para solucionar el problema de la escala, estandarizamos la covarianza, dividiéndola por el producto de las desviaciones típicas de cada variable. El resultado es el **coeficiente de correlación de Pearson** (r):

$$r = r_{xy} = \frac{s_{xy}}{s_x s_y}$$

Este coeficiente es **adimensional** y siempre varía entre -1 y 1, lo que permite una interpretación universal de la fuerza de la asociación *lineal*.

Piemplo práctico: Horas de estudio vs. Calificaciones

Vamos a plantear un problema que nos acompañará durante todo el capítulo: queremos saber si el tiempo de estudio semanal influye en las calificaciones finales.

```
library(ggplot2)
set.seed(123) # Para reproducibilidad
# Simulación de datos
datos <- data.frame(</pre>
  Tiempo_Estudio = round(runif(100, min = 5, max = 40), 1)
datos$Calificaciones <- round(5 + 0.1 * datos$Tiempo_Estudio + rnorm(100, mean = 0, sd = 0
# Visualización
ggplot(datos, aes(x = Tiempo_Estudio, y = Calificaciones)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
    title = "Relación entre Tiempo de Estudio y Calificaciones",
    x = "Tiempo de Estudio (horas/semana)",
    y = "Calificaciones (promedio)"
  ) +
  theme_classic(base_size = 14)
# Cuantificación (los objetos se guardan para usarlos en el texto)
covarianza <- cov(datos$Tiempo_Estudio, datos$Calificaciones)</pre>
correlacion <- cor(datos$Tiempo_Estudio, datos$Calificaciones)</pre>
```


Figure 2.1: Relación entre tiempo de estudio y calificaciones.

El gráfico muestra una clara tendencia lineal positiva. La covarianza toma un valor de 9.82, y el coeficiente de correlación de Pearson es de 0.9. Ambos valores confirman que la asociación lineal es, además de positiva, muy fuerte. Esta evidencia visual y numérica nos da una base sólida para proponer un modelo de regresión lineal.

🛕 ¡Correlación no implica causalidad!

El haber encontrado una fuerte correlación positiva entre el tiempo de estudio y las calificaciones (0.9) no nos autoriza a concluir que una cosa causa la otra. La regresión lineal puede demostrar que las variables se mueven juntas y nos permite predecir una a partir de la otra, pero no explica el porqué de la relación.

Podría existir una tercera variable oculta (p. ej., el interés del alumno en la materia) que influya tanto en las horas de estudio como en las calificaciones. Establecer causalidad requiere un diseño experimental riguroso (asignando aleatoriamente a los estudiantes a diferentes tiempos de estudio), no solo un análisis observacional.

2.2 Formulación teórica del modelo

Una vez que la exploración sugiere una relación lineal, el siguiente paso es formalizarla matemáticamente. Aquí es donde definimos la estructura teórica del modelo y los supuestos bajo los cuales operará.

2.2.1 El modelo poblacional y sus componentes

El modelo poblacional postula que la relación verdadera entre la variable respuesta Y y la predictora X sigue una línea recta, aunque contaminada por cierta aleatoriedad. Para cualquier individuo i de la población, esta relación se describe como:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

En esta ecuación, β_0 y β_1 son los **parámetros poblacionales** (el intercepto y la pendiente verdaderos pero desconocidos), y ε_i es el **error aleatorio**, un componente fundamental que captura todas las fuentes de variabilidad que el modelo no puede explicar por sí solo. Específicamente, este término incluye:

- Variables omitidas: Factores que también afectan a las calificaciones (como la calidad
 del sueño, la motivación del estudiante o su conocimiento previo) y que no están en el
 modelo.
- Error de medida: Pequeñas imprecisiones al medir las variables (p. ej., un estudiante podría reportar 20 horas de estudio cuando en realidad fueron 19.5).
- Aleatoriedad inherente: La variabilidad puramente estocástica o impredecible en el comportamiento humano.

Como nunca observamos la población entera, nuestro trabajo consiste en usar una muestra para estimar el **modelo muestral**:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Aquí, los "gorros" ($\hat{\cdot}$) denotan **estimaciones** calculadas a partir de la muestra. La diferencia entre el valor real y el predicho, $e_i = y_i - \hat{y}_i$, se conoce como **residuo**.

2.2.2 Los supuestos del modelo lineal clásico (Gauss-Markov)

Para que el puente entre nuestro modelo muestral y la realidad poblacional sea sólido, debemos asumir que los errores teóricos ε_i se comportan de una manera predecible y ordenada. Estos supuestos, conocidos como condiciones de Gauss-Markov (Kutner et al. 2005; Weisberg 2005), son fundamentales para las propiedades óptimas de los estimadores de mínimos cuadrados.

- 1. Linealidad: La relación entre X y el valor esperado de Y es, en promedio, una línea recta: $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$.
- 2. Independencia de los errores: El error de una observación no está correlacionado con el error de ninguna otra: $Cov(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$.
- 3. Homocedasticidad: La varianza del error es constante (σ^2) para todos los valores de X: $Var(\varepsilon_i|X_i) = \sigma^2$. Esto significa que la dispersión de los datos alrededor de la línea de regresión es la misma a lo largo de todos los valores de la variable predictora. La violación de este supuesto se conoce como **heterocedasticidad**, donde la dispersión de los errores cambia (p. ej., aumenta a medida que X crece).

Cuando el objetivo no es sólo estimar la recta, sino inferir con ella, entonces se asume una hipótesis más: la normalidad de la variable respuesta, o lo que es lo mismo, del error aleatorio:

4. Normalidad de los errores: Para la inferencia, se asume que los errores siguen una distribución Normal con media cero y varianza σ^2 : $\varepsilon_i \sim N(0, \sigma^2)$.

Estos supuestos son esenciales para garantizar la validez de las estimaciones y conclusiones derivadas del modelo.

2.3 Estimación de los parámetros

Necesitamos un método para encontrar la "mejor" recta de ajuste. El **Método de Mínimos** Cuadrados Ordinarios (MCO/OLS) nos proporciona este criterio.

2.3.1 El criterio de mínimos cuadrados

MCO busca la recta que minimice la **Suma de los Cuadrados del Error (SSE)**, es decir, la suma de las distancias verticales al cuadrado entre los puntos observados y la recta de regresión:

$$\mathrm{SSE}(\beta_0,\beta_1) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y})^2 = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

2.3.2 Derivación matemática de los estimadores

Para encontrar los valores de β_0 y β_1 que minimizan esta función, recurrimos al cálculo. Tratamos la SSE como una función de dos variables y calculamos sus derivadas parciales, igualándolas a cero para encontrar el mínimo.

$$\frac{\partial \mathrm{SSE}}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial \mathrm{SSE}}{\partial \beta_1} = -2 \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

La resolución de este sistema de dos ecuaciones (conocidas como las **ecuaciones normales**) nos proporciona las fórmulas para los estimadores de MCO:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{s_{xy}}{s_{xx}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

2.3.2.1 Interpretación práctica de los coeficientes

Una vez estimados, los coeficientes tienen una interpretación muy concreta y útil:

- Pendiente $(\hat{\beta}_1)$: Representa el cambio promedio estimado en la variable respuesta Y por cada **aumento de una unidad** en la variable predictora X. En nuestro ejemplo, sería el número de puntos que se espera que aumente la calificación final por cada hora adicional de estudio semanal.
- Intercepto $(\hat{\beta}_0)$: Es el valor promedio estimado de la variable respuesta Y cuando la variable predictora X es igual a cero. La interpretación del intercepto solo tiene sentido práctico si X=0 es un valor plausible y se encuentra dentro del rango de nuestros datos. De lo contrario (como en nuestro ejemplo, donde nadie estudia 0 horas), a menudo se considera simplemente un ancla matemática para la recta de regresión.

i Minimización de SSE

La obtención de los estimadores de mínimos cuadrados para la regresión lineal simple se basa en minimizar la suma de los cuadrados de los residuos (SSE). Este método, desarrollado por Legendre y Gauss a principios del siglo XIX (Galton 1886; Weisberg 2005), es fundamental en la estadística moderna. Aquí está el proceso paso a paso: Para minimizar SSE, derivamos parcialmente con respecto a β_0 y β_1 y resolvemos el

sistema de ecuaciones.

1. Primera derivada con respecto a β_0 :

$$\frac{\partial SSE}{\partial \beta_0} = -2 \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right).$$

Igualando a cero:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0.$$

Reordenando:

$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i.$$
 (1)

2. Primera derivada con respecto a β_1 :

$$\frac{\partial SSE}{\partial \beta_{1}} = -2\sum_{i=1}^{n}x_{i}\left(y_{i}-\left(\beta_{0}+\beta_{1}x_{i}\right)\right).$$

Igualando a cero:

$$\sum_{i=1}^{n}x_{i}\left(y_{i}-\beta_{0}-\beta_{1}x_{i}\right)=0.$$

Reordenando:

$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i.$$
 (2)

Resolución del Sistema de Ecuaciones

El sistema está dado por las ecuaciones (1) y (2):

1.
$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
.

1.
$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
.
2. $\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$.
Resolviendo para β_0 y β_1 :

1. De la primera ecuación, despejamos β_0 :

$$\beta_0 = \frac{\sum_{i=1}^n y_i - \beta_1 \sum_{i=1}^n x_i}{n}.$$
 (3)

2. Sustituimos β_0 en la segunda ecuación:

$$\frac{\sum_{i=1}^{n} y_i - \beta_1 \sum_{i=1}^{n} x_i}{n} \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i.$$

Simplificando:

$$\beta_1 \left(\sum_{i=1}^n x_i^2 - \frac{(\sum_{i=1}^n x_i)^2}{n} \right) = \sum_{i=1}^n x_i y_i - \frac{\sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n}.$$

3. Expresamos β_1 :

$$\beta_1 = \frac{\sum_{i=1}^n x_i y_i - \frac{\sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n}}{\sum_{i=1}^n x_i^2 - \frac{(\sum_{i=1}^n x_i)^2}{n}}.$$

Esta es la fórmula para β_1 , que puede reescribirse como:

$$\beta_1 = \frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)},$$

donde Cov(x, y) y Var(x) son la covarianza y la varianza muestral de x y y.

4. Finalmente, sustituimos β_1 en la ecuación (3) para obtener β_0 :

$$\beta_0 = \bar{y} - \beta_1 \bar{x},$$

donde \bar{x} y \bar{y} son las medias de x y y.

Bajo los supuestos del modelo, el **Teorema de Gauss-Markov** demuestra que estos estimadores son los **Mejores Estimadores Lineales Insesgados (MELI / BLUE)**.

2.4 Inferencia y bondad de ajuste

Una vez hemos estimado los parámetros del modelo, nuestro trabajo apenas ha comenzado. Ahora debemos pasar de la descripción a la inferencia. Necesitamos un conjunto de herramientas que nos permitan responder a preguntas cruciales: ¿Son nuestros coeficientes estimados, $\hat{\beta}_0$ y $\hat{\beta}_1$, meras casualidades de nuestra muestra o reflejan una relación real en la población? ¿Qué

tan bueno es nuestro modelo para explicar la variabilidad de la variable respuesta? Esta sección se dedica a responder estas preguntas.

2.4.1 Propiedades de los estimadores de MCO

Antes de realizar inferencias, es fundamental entender las propiedades teóricas de los estimadores que hemos calculado.

• Insesgadez: Los estimadores de MCO son insesgados. Esto significa que si pudiéramos repetir nuestro muestreo muchísimas veces y calcular los estimadores en cada muestra, el promedio de todas nuestras estimaciones de $\hat{\beta}_0$ y $\hat{\beta}_1$ convergería a los verdaderos valores poblacionales β_0 y β_1 . Matemáticamente:

$$E[\hat{\beta}_0] = \beta_0 \quad \text{y} \quad E[\hat{\beta}_1] = \beta_1$$

• Varianza de los estimadores: Las fórmulas para la varianza de nuestros estimadores cuantifican su precisión. Una varianza pequeña implica que el estimador es más estable a través de diferentes muestras.

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{S_{xx}}$$

$$Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]$$

Donde σ^2 es la varianza (desconocida) del término de error ε .

• Teorema de Gauss-Markov: Este es uno de los resultados más importantes de la teoría de la regresión. Establece que, bajo los supuestos de linealidad, independencia y homocedasticidad (no se requiere normalidad), los estimadores de MCO son los Mejores Estimadores Lineales Insesgados (MELI, o BLUE en inglés). Esto significa que, de entre toda la clase de estimadores que son lineales e insesgados, los de MCO son los que tienen la menor varianza posible.

Propiedades adicionales para las predicciones y para los residuos

• La suma de los residuos es cero:

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - \hat{y_i}) = 0$$

• La suma de los valores observados es igual a la suma de los valores ajustados:

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y_i}$$

• La suma de los residuos ponderados por los regresores es cero:

$$\sum_{i=1}^{n} x_i e_i = 0$$

• La suma de los residuos ponderados por las predicciones es cero:

$$\sum_{i=1}^{n} \hat{y_i} e_i = 0$$

• La recta de regresión contiene el punto (\bar{x}, \bar{y}) :

$$\hat{\beta_0} + \hat{\beta_1}\bar{x} = \bar{y}$$

Ejemplo

Para los datos de calificaciones y tiempo de estudio, estos son los estimadores de los parámetros del modelo de regresión:

```
# 1. Ajustamos el modelo lineal
modelo_estudio <- lm(Calificaciones ~ Tiempo_Estudio, data = datos)</pre>
# 2. Obtenemos el resumen completo del modelo
summary(modelo_estudio)
Call:
lm(formula = Calificaciones ~ Tiempo_Estudio, data = datos)
Residuals:
               1Q
                    Median
                                  3Q
                                          Max
-1.11465 -0.30262 -0.00942 0.29509
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                5.00118
(Intercept)
                                      41.76
                           0.11977
                                              <2e-16 ***
Tiempo_Estudio 0.09875
                           0.00488
                                      20.23
                                              <2e-16 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4842 on 98 degrees of freedom
                             Adjusted R-squared: 0.8049
Multiple R-squared: 0.8069,
```

F-statistic: 409.5 on 1 and 98 DF, p-value: < 2.2e-16

2.4.2 Estimación de la varianza del error

Las fórmulas de la varianza de los estimadores dependen de σ^2 , la varianza del error poblacional, que es desconocida. Por lo tanto, necesitamos estimarla a partir de nuestros datos. Un estimador insesgado de σ^2 es la **Media Cuadrática del Error (MSE)**:

$$\hat{\sigma}^2 = \text{MSE} = \frac{\text{SSE}}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

Dividimos por n-2, los **grados de libertad del error**, porque hemos "gastado" dos grados de libertad de nuestros datos para estimar los dos parámetros, β_0 y β_1 . La raíz cuadrada de la MSE, $\hat{\sigma}$, se conoce como el **error estándar de los residuos** y es una medida de la dispersión promedio de los puntos alrededor de la recta de regresión.

2.4.2.1 El error estándar de los residuos y el RMSE

La raíz cuadrada de la MSE, $\hat{\sigma}$, se conoce formalmente como el **error estándar de los** residuos (*Residual Standard Error*). Este valor es nuestra estimación de la desviación estándar del error poblacional, σ , y es una medida de la dispersión promedio de los puntos alrededor de la recta de regresión.

$$\hat{\sigma} = \sqrt{\text{MSE}}$$

En el campo del modelado predictivo y el $machine\ learning$, esta misma cantidad se conoce como la Raíz del Error Cuadrático Medio o RMSE ($Root\ Mean\ Squared\ Error$). Aunque la fórmula es idéntica, la interpretación del RMSE se centra en la evaluación del rendimiento predictivo del modelo. El RMSE nos dice, en promedio, cuál es la magnitud del error de predicción de nuestro modelo, y tiene la ventaja de estar en las mismas unidades que la variable respuesta Y. Por ejemplo, si estamos prediciendo precios de viviendas en euros, un RMSE de 5000 significa que nuestras predicciones se desvían, en promedio, unos 5000 $\mathfrak E$ de los precios reales.

2.4.3 Análisis de la Varianza (ANOVA) para la significancia de la regresión

Una vez hemos estimado los coeficientes, necesitamos una prueba formal para determinar si el modelo en su conjunto es útil. Es decir, ¿la variable predictora X explica una porción de la variabilidad de la variable respuesta Y que sea estadísticamente significativa, o la relación que observamos podría deberse simplemente al azar? El **Análisis de la Varianza (ANOVA)** nos proporciona la herramienta para responder a esta pregunta a través del **contraste F de significancia global**.

Las hipótesis de este contraste son:

- $H_0: \beta_1 = 0$: La hipótesis nula postula que no existe una relación lineal entre X e Y. El modelo no tiene poder explicativo y no es mejor que usar simplemente la media, \bar{y} , como predicción para cualquier valor de x.
- $H_1: \beta_1 \neq 0$: La hipótesis alternativa sostiene que sí existe una relación lineal significativa.

Es conveniente repasar el tema de Análisis de la Varianza estudiado en la asignatura de Inferencia, ya que los conceptos son directamente aplicables aquí.

La idea fundamental del ANOVA es comparar la variabilidad que nuestro modelo explica con la variabilidad que no puede explicar (el error residual). Para ello, se descompone la variabilidad total de nuestras observaciones (y_i) en dos partes ortogonales.

1. La Suma Total de Cuadrados (SST) mide la variabilidad total de los datos alrededor de su media. Es nuestra referencia base de la dispersión total que hay que explicar.

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- 2. Esta variabilidad se descompone en:
 - Suma de Cuadrados de la Regresión (SSR): Mide la parte de la variabilidad total que es explicada por nuestro modelo. Cuantifica cuánto se desvían las predicciones del modelo (\hat{y}_i) de la media general (\bar{y}) .

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

• Suma de Cuadrados del Error (SSE): Mide la variabilidad residual, es decir, la parte que el modelo no puede capturar. Cuantifica la dispersión de los puntos reales (y_i) alrededor de la recta de regresión (\hat{y}_i) .

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

La descomposición fundamental de la varianza es, por tanto: SST = SSR + SSE.

Para poder comparar estas sumas de cuadrados de forma justa, las estandarizamos dividiéndolas por sus respectivos grados de libertad, obteniendo así las Medias Cuadráticas (MS):

$$MSR = \frac{SSR}{1} \qquad MSE = \frac{SSE}{n-2}$$

Finalmente, el **estadístico** \mathbf{F} se construye como el cociente entre la variabilidad explicada por el modelo y la variabilidad no explicada:

$$F = \frac{\text{MSR}}{\text{MSE}}$$

Intuitivamente, el estadístico F actúa como una **ratio de señal a ruido**. La MSR (la "señal") representa la variabilidad que nuestro modelo captura sistemáticamente, mientras que la MSE (el "ruido") representa la variabilidad aleatoria o residual. Un valor de F grande nos dice que la señal es mucho más fuerte que el ruido, lo que apoya la hipótesis de que la relación que hemos modelado es real y no fruto del azar.

Toda esta información se organiza de forma estándar en la tabla ANOVA:

Fuente	df	SS	MS = SS/df	Estadístico F
Regresión Error			MSR MSE	F = MSR/MSE
Total	n-1	SST		

Bajo la hipótesis nula $(H_0: \beta_1 = 0)$, el estadístico F sigue una distribución F con 1 y n-2 grados de libertad. Si el p-valor asociado a nuestro estadístico F es suficientemente pequeño $(p < \alpha)$, rechazamos H_0 y concluimos que nuestro modelo tiene un poder explicativo estadísticamente significativo.

2.4.4 Bondad del ajuste: coeficiente de determinación

El coeficiente de determinación (R^2) es una medida clave que cuantifica qué proporción de la variabilidad total observada en la muestra (y_i) es explicada por la relación lineal con X a través del modelo. Su fórmula se deriva de la descomposición de la varianza:

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

Donde las sumas de cuadrados se calculan a partir de los datos muestrales:

- SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$: Suma Total de Cuadrados, mide la variabilidad total de las observaciones.
- SSR = $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$: Suma de Cuadrados de la Regresión, mide la variabilidad explicada por el modelo.
- SSE = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$: Suma de Cuadrados del Error, mide la variabilidad no explicada (residual).

Un \mathbb{R}^2 cercano a 1 indica que el modelo ajusta bien los datos, mientras que un \mathbb{R}^2 cercano a 0 indica un ajuste pobre.

Relación entre R² y el coeficiente de correlación

En el caso específico del modelo de regresión lineal simple, existe una relación directa y simple: el coeficiente de determinación R^2 es literalmente el cuadrado del coeficiente de correlación de Pearson (r) entre X e Y.

$$R^2 = (r_{xy})^2$$

Esto refuerza la idea de que ambos miden la fuerza de la asociación lineal, aunque R^2 lo hace desde la perspectiva de la varianza explicada por el modelo.

Interpretación de R²

El coeficiente de determinación, R^2 , es una métrica muy popular, pero su interpretación requiere cautela. Un valor alto no garantiza un buen modelo, y un valor bajo no siempre implica un modelo inútil. Es fundamental tener en cuenta las siguientes observaciones:

- R^2 no mide la linealidad de la relación. Un modelo puede tener un R^2 muy alto incluso si la relación subyacente entre las variables X e Y no es lineal. Por ello, un R^2 elevado nunca debe sustituir a un análisis gráfico de los residuos para verificar el supuesto de linealidad.
- R^2 es sensible al rango de la variable predictora X. Si el modelo de regresión es adecuado, la magnitud de R^2 aumentará si aumenta la dispersión de las observaciones x_i (es decir, si S_{xx} crece). Esto se debe a que un mayor rango en X tiende a aumentar la Suma Total de Cuadrados (SST), lo que puede inflar el valor de R^2 sin que la precisión del modelo (medida por la MSE) haya mejorado.
- Un rango restringido en X puede producir un R^2 artificialmente bajo. Como consecuencia del punto anterior, si los datos se han recogido en un rango muy estrecho de la variable X, el R^2 puede ser muy pequeño, aunque exista una relación fuerte y significativa entre las variables. Esto podría llevar a la conclusión errónea de que el predictor no es útil.

2.4.5 Inferencia sobre los coeficientes

Además de la prueba F global, podemos realizar inferencias sobre cada parámetro individualmente. Para ello, necesitamos el supuesto de normalidad de los errores.

2.4.5.1 Distribución de los estimadores

Bajo el supuesto de normalidad, se puede demostrar que los estimadores también siguen una distribución Normal:

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right) \qquad \quad \hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]\right)$$

Al estandarizar y reemplazar la desconocida σ^2 por su estimador $\hat{\sigma}^2 = \text{MSE}$, obtenemos un estadístico que sigue una distribución t-Student con n-2 grados de libertad:

$$t = \frac{\hat{\beta}_1 - \beta_1}{\operatorname{SE}(\hat{\beta}_1)} \sim t_{n-2}$$

donde $\mathrm{SE}(\hat{\beta}_1) = \sqrt{\frac{\mathrm{MSE}}{S_{xx}}}$ es el **error estándar** del estimador $\hat{\beta}_1$.

2.4.5.2 Contraste de hipótesis para la pendiente

El contraste más común es el de la significancia de la pendiente: * $H_0: \beta_1 = 0$ * $H_1: \beta_1 \neq 0$ Bajo H_0 , el estadístico de contraste es:

$$t_0 = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$$

Rechazamos H_0 si $|t_0|>t_{\alpha/2,n-2}$ o, equivalentemente, si el p-valor asociado es menor que α .

i Relación entre el contraste F y el contraste t

En el contexto de la **regresión lineal simple** (y solo en este caso), el contraste F para la significancia global del modelo es matemáticamente equivalente al contraste t para la significancia del coeficiente β_1 . Se puede demostrar que $F = t^2$, y el p-valor de ambos contrastes será idéntico.

2.4.5.3 Intervalo de confianza para la pendiente

A partir de la distribución t, podemos construir un intervalo de confianza al $100(1-\alpha)\%$ para el verdadero valor de la pendiente β_1 :

$$\hat{\beta}_1 \pm t_{\alpha/2, n-2} \cdot \text{SE}(\hat{\beta}_1)$$

Este intervalo nos da un rango de valores plausibles para el efecto de X sobre Y. Si el intervalo no contiene el cero, es equivalente a rechazar la hipótesis nula $H_0: \beta_1 = 0$.

Para recordar

En los programas estadísticos se suele proporcionar el p-valor del contraste. Puedes repasar el significado de p-valor proporcionado en la asignatura de Inferencia.

Piemplo: Interpretación del summary

La función summary() en R nos proporciona toda esta información.

```
summary(modelo_estudio)
```

Call:

lm(formula = Calificaciones ~ Tiempo_Estudio, data = datos)

Residuals:

Min 1Q Median 3Q Max -1.11465 -0.30262 -0.00942 0.29509 1.10533

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.00118 0.11977 41.76 <2e-16 ***
Tiempo_Estudio 0.09875 0.00488 20.23 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4842 on 98 degrees of freedom Multiple R-squared: 0.8069, Adjusted R-squared: 0.8049 F-statistic: 409.5 on 1 and 98 DF, p-value: < 2.2e-16

Interpretación:

• Coefficients: El p-valor para Tiempo_Estudio (<0.001) es muy pequeño, por lo que rechazamos H_0 y concluimos que la variable es un predictor significativo.

- R-squared: El valor de R^2 (0.81) nos indica que el 81% de la variabilidad en las calificaciones es explicada por el tiempo de estudio.
- F-statistic: El p-valor del estadístico F
 - (98) confirma que el modelo en su conjunto es estadísticamente significativo.

2.5 Predicción de nuevas observaciones

Una vez que hemos ajustado y validado un modelo de regresión, uno de sus propósitos más importantes es utilizarlo para hacer predicciones. Sin embargo, es fundamental distinguir entre dos tipos de predicción:

- 1. Estimar la respuesta media para un valor dado de X. Por ejemplo: "¿Cuál es la calificación promedio que esperamos para todos los estudiantes que estudian 25 horas semanales?".
- 2. **Predecir una respuesta individual** para un valor dado de X. Por ejemplo: "Si un estudiante *concreto* estudia 25 horas semanales, ¿entre qué valores esperamos que se encuentre su calificación?".

Estos dos objetivos, aunque parecidos, responden a preguntas distintas y manejan diferentes fuentes de incertidumbre, lo que da lugar a dos tipos de intervalos.

2.5.1 Intervalo de confianza para la respuesta media

Este intervalo estima el valor esperado de Y para un valor concreto del regresor, x_0 . Su objetivo es acotar dónde se encuentra la **línea de regresión poblacional verdadera** para ese punto x_0 . La estimación puntual es $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

El intervalo de confianza al 100(1 – $\alpha)\%$ para la respuesta media $E[Y|X=x_0]$ viene dado por:

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot \sqrt{\mathrm{MSE}\left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

La anchura de este intervalo depende de dos fuentes de error: la incertidumbre en la estimación de la recta y la distancia del punto x_0 a la media \bar{x} . El intervalo es más estrecho cerca del centro de los datos y más ancho en los extremos.

2.5.2 Intervalo de predicción para una respuesta individual

Este intervalo es el que debemos usar cuando queremos predecir el valor para una única observación futura, no para la media. Como indicas, este intervalo debe tener en cuenta dos fuentes de variabilidad:

- 1. La incertidumbre sobre la localización de la verdadera recta de regresión (la misma que en el intervalo de confianza).
- 2. La variabilidad inherente de una observación individual alrededor de la recta de regresión (el error aleatorio ε_i , cuya varianza estimamos con la MSE).

Por esta razón, el intervalo de predicción siempre será más ancho que el intervalo de confianza para la respuesta media. El intervalo de predicción al $100(1-\alpha)\%$ para una observación futura y_0 en el punto x_0 es:

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot \sqrt{\mathrm{MSE}\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

La única diferencia matemática es el "+1" dentro de la raíz cuadrada, que representa la varianza σ^2 del error de una sola observación.

2.5.2.1 Predicción para la media de m observaciones futuras

Si se desea un intervalo de predicción para la media de m futuras observaciones en un valor x_0 , la fórmula se modifica ligeramente. Este intervalo será más estrecho que el de una sola observación pero más ancho que el de la respuesta media:

$$\hat{y}_0 \pm t_{\alpha/2, n-2} \cdot \sqrt{\text{MSE}\left(\frac{1}{m} + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Predicción de calificaciones

Vamos a calcular y visualizar los intervalos para nuestro modelo de estudio. Usaremos la función predict() de R, que calcula estos intervalos de forma automática.

```
# 1. Crear una secuencia de nuevos valores de X para predecir
nuevos datos <- data.frame(</pre>
 Tiempo_Estudio = seq(min(datos$Tiempo_Estudio), max(datos$Tiempo_Estudio), length.out = :
# 2. Calcular el intervalo de confianza para la RESPUESTA MEDIA
conf_interval <- predict(</pre>
 modelo_estudio,
 newdata = nuevos_datos,
 interval = "confidence",
  level = 0.95
)
# 3. Calcular el intervalo de predicción para una OBSERVACIÓN INDIVIDUAL
pred_interval <- predict(</pre>
 modelo_estudio,
 newdata = nuevos_datos,
 interval = "prediction",
 level = 0.95
# 4. Unir todo para graficar con ggplot2
colnames(plot_data) <- c("Tiempo_Estudio", "fit_conf", "lwr_conf", "upr_conf", "fit_pred",</pre>
# 5. Visualización
ggplot() +
  # Capa 1: Puntos originales del dataframe 'datos'
  geom_point(data = datos, aes(x = Tiempo_Estudio, y = Calificaciones), color = "#0072B2",
  # Capa 2: Línea de regresión del dataframe 'plot_data'
  geom_line(data = plot_data, aes(x = Tiempo_Estudio, y = fit_conf), color = "black", liner
  # Capa 3: Banda de predicción (roja) del dataframe 'plot_data'
  geom_ribbon(data = plot_data, aes(x = Tiempo_Estudio, ymin = lwr_pred, ymax = upr_pred),
  # Capa 4: Banda de confianza (azul) del dataframe 'plot_data'
  geom_ribbon(data = plot_data, aes(x = Tiempo_Estudio, ymin = lwr_conf, ymax = upr_conf),
  # Etiquetas y tema
   title = "Intervalos de Confianza y Predicción",
   x = "Tiempo de Estudio (horas/semana)",
   y = "Calificaciones (promedio)",
   caption = "La banda azul (más estrecha) es el IC del 95% para la media.\nLa banda roja
                                   43
  theme classic(base size = 14)
```


La banda azul (más estrecha) es el IC del 95% para la media. La banda roja (más ancha) es el IP del 95% para una nueva observación.

Figure 2.2: Comparación visual del intervalo de confianza (azul, más estrecho) y el intervalo de predicción (rojo, más ancho).

El gráfico muestra claramente que la incertidumbre al predecir una calificación individual es mucho mayor que la incertidumbre al estimar la calificación promedio. Ambas bandas se ensanchan al alejarse del centro de los datos.

Si quisiéramos una predicción para un estudiante que estudia 25 horas:

```
dato_nuevo <- data.frame(Tiempo_Estudio = 25)

# Guardamos la predicción para la media en un objeto
pred_media <- predict(modelo_estudio, newdata = dato_nuevo, interval = "confidence")

# Guardamos la predicción para un individuo en un objeto
pred_indiv <- predict(modelo_estudio, newdata = dato_nuevo, interval = "prediction")</pre>
```

Interpretación:

- Con un 95% de confianza, la calificación **promedio** de los estudiantes que estudian 25 horas está entre **7.37** y **7.57**.
- Con un 95% de confianza, la calificación de **un estudiante concreto** que estudia 25 horas estará entre **6.5** y **8.44**.

2.6 Diagnóstico del Modelo

Una vez que hemos ajustado un modelo y evaluado su significancia, el trabajo no ha terminado. Un paso crucial, a menudo subestimado, es el **diagnóstico del modelo** (Fox and Weisberg 2018; Harrell 2015). Este proceso consiste en verificar si se cumplen los supuestos del modelo de regresión lineal clásico. La fiabilidad de nuestras inferencias (los p-valores de los contrastes t y F, y los intervalos de confianza) depende directamente de la validez de estos supuestos.

El diagnóstico se realiza principalmente a través del **análisis de los residuos** del modelo $(e_i = y_i - \hat{y}_i)$. Los residuos son nuestra mejor aproximación empírica de los errores teóricos no observables (ε_i) . A continuación, se detalla cómo verificar cada uno de los supuestos clave.

2.6.1 Linealidad

Este supuesto establece que la relación entre la variable predictora X y el valor esperado de la variable respuesta Y es, en promedio, una línea recta: $E[Y|X] = \beta_0 + \beta_1 X$.

Métodos de diagnóstico:

- 1. Diagnóstico visual: El gráfico de residuos (e_i) frente a los valores ajustados por el modelo (\hat{y}_i) es la herramienta fundamental. La lógica es sencilla pero potente: si el modelo lineal es adecuado, los errores que comete (los residuos) deberían ser completamente aleatorios, sin guardar relación alguna con la magnitud de las predicciones.
- 2. **Test de Ramsey RESET:** Este test estadístico detecta violaciones de la forma funcional mediante la inclusión de términos no lineales $(\hat{y}^2, \hat{y}^3, ...)$ en el modelo.
 - **H**: La forma funcional es correcta (lineal)
 - **H**: La forma funcional es incorrecta (no lineal)
 - Estadístico: Sigue una distribución F bajo H
 - Interpretación: p-valor bajo indica violación de linealidad

En un escenario ideal, el gráfico debería parecer una nube de puntos distribuida horizontalmente y sin estructura aparente, centrada en la línea del cero. Esto nos indica que los errores son, en promedio, nulos para todos los niveles de predicción, cumpliendo así el supuesto de linealidad. La línea roja que R superpone en este gráfico, que suaviza la tendencia de los puntos, debería ser prácticamente plana y pegada al cero, confirmando la ausencia de patrones.

🥊 Ejemplo de un modelo válido

Para nuestro modelo_estudio, podemos generar específicamente el primer gráfico de diagnóstico, que es el de Residuos vs. Valores Ajustados.

```
# Crear un dataframe con los datos para ggplot2
library(ggplot2)
library(broom)
# Extraer residuos y valores ajustados
datos_diagnostico <- data.frame(</pre>
 residuos = residuals(modelo_estudio),
  valores_ajustados = fitted(modelo_estudio)
# Gráfico de Residuos vs. Valores Ajustados con ggplot2
ggplot(datos_diagnostico, aes(x = valores_ajustados, y = residuos)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
  geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y
    title = "Residuos vs. Valores Ajustados",
    x = "Valores Ajustados",
    y = "Residuos"
  ) +
  theme_classic(base_size = 12)
```


Figure 2.3: Gráfico de Residuos vs. Valores Ajustados para el modelo de estudio. No se observan patrones.

Como se puede observar, los puntos se distribuyen de forma aleatoria alrededor de la línea horizontal en cero. La línea roja, que suaviza la tendencia de los residuos, es prácticamente plana. Esto es un claro indicativo de que el supuesto de linealidad se cumple en nuestro modelo.

Por el contrario, la aparición de un **patrón sistemático** en los residuos es la señal de alarma de que algo anda mal. En lo que respecta al supuesto de **linealidad**, la evidencia más clara de una violación es una **tendencia curvilínea** (como una "U" o una parábola). Este patrón nos dice que el modelo es estructuralmente incapaz de capturar la forma de los datos y, por lo tanto, comete errores predecibles. Por ejemplo, puede subestimar la respuesta en los extremos (generando residuos positivos) y sobreestimarla en el centro (residuos negativos), lo que invalida el modelo lineal.

💡 Contraejemplo: Violación del supuesto de linealidad

Ahora, vamos a simular a propósito unos datos que siguen una relación cuadrática (curva) y ajustaremos incorrectamente un modelo lineal para ver cómo se manifiesta el problema en el gráfico de diagnóstico.

```
# 1. Simulación de datos no lineales
set.seed(42) # Nueva semilla para este ejemplo
x_no_lineal <- runif(100, 0, 10)</pre>
# La relación verdadera es cuadrática (y = 10 - (x-5)^2) más un error
y_{no}= (x_{no}= -5)^2 + r_{no}(100, 0, 4)
datos_no_lineal <- data.frame(x = x_no_lineal, y = y_no_lineal)</pre>
# 2. Ajuste de un modelo lineal (incorrecto)
modelo_no_lineal <- lm(y ~ x, data = datos_no_lineal)</pre>
# 3. Gráfico de Residuos vs. Valores Ajustados con ggplot2
datos_diag_no_lineal <- data.frame(</pre>
 residuos = residuals(modelo_no_lineal),
 valores_ajustados = fitted(modelo_no_lineal)
)
ggplot(datos_diag_no_lineal, aes(x = valores_ajustados, y = residuos)) +
  geom_point(color = "#D55E00", alpha = 0.7) +
  geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y
  labs(
   title = "Residuos vs. Valores Ajustados (Violación de Linealidad)",
   x = "Valores Ajustados",
   y = "Residuos"
  theme_classic(base_size = 12)
```


Figure 2.4: Patrón curvo evidente en los residuos, violando el supuesto de linealidad.

El gráfico de diagnóstico es inequívoco. A diferencia del ejemplo anterior, donde los puntos formaban una nube aleatoria, aquí los residuos dibujan un **patrón parabólico** perfecto (una "U" invertida). La línea roja de tendencia, en lugar de ser plana, sigue fielmente esta curva.

Test de Ramsey RESET para Linealidad

Además del diagnóstico visual, podemos usar el test de Ramsey RESET (Regression Equation Specification Error Test) para detectar violaciones de linealidad:

```
suppressPackageStartupMessages(library(lmtest))
# Test RESET para el modelo correcto (horas de estudio)
reset_resultado <- resettest(modelo_estudio, power = 2:3, type = "fitted")
print(reset_resultado)

RESET test

data: modelo_estudio
RESET = 1.0513, df1 = 2, df2 = 96, p-value = 0.3535</pre>
```

```
# Test RESET para el modelo incorrecto (no lineal)
reset_no_lineal <- resettest(modelo_no_lineal, power = 2:3, type = "fitted")
print(reset_no_lineal)

RESET test

data: modelo_no_lineal
RESET = 231.9, df1 = 2, df2 = 96, p-value < 2.2e-16

El test de Ramsey RESET confirma nuestro diagnóstico visual:

• Para el modelo correcto: p-valor = 0.3535 → No rechazamos H (forma funcional correcta)
```

2.6.2 Homocedasticidad

El supuesto de homocedasticidad establece que la varianza de los errores del modelo debe ser constante para todos los niveles de la variable predictora. Es decir, la dispersión de los datos alrededor de la línea de regresión es la misma en todo su recorrido $(Var(\varepsilon_i|X_i)=\sigma^2)$. La violación de este supuesto se conoce como **heterocedasticidad**, y es un problema común en el modelado.

• Para el modelo no lineal: p-valor = $0 \to \text{Rechazamos H}$ (forma funcional incorrecta)

Métodos de diagnóstico:

- 1. **Diagnóstico visual:** El gráfico **Scale-Location** muestra la raíz cuadrada de los residuos estandarizados absolutos frente a los valores ajustados. Una línea horizontal indica homocedasticidad.
- 2. Test de Breusch-Pagan: Test clásico para detectar heterocedasticidad.
 - **H**: Homocedasticidad (varianza constante)
 - H: Heterocedasticidad
 - Estadístico: LM ~ ² bajo H
- 3. **Test de White:** Versión más robusta que no asume una forma específica de heterocedasticidad.
 - **H**: Homocedasticidad
 - **H**: Heterocedasticidad (forma general)
 - Ventaja: No requiere especificar la forma funcional de la heterocedasticidad

¿Por qué es tan importante? Si un modelo es heteroscedástico, los errores estándar de los coeficientes (β_0, β_1) estarán calculados de forma incorrecta. Como consecuencia, los intervalos de confianza y los contrastes de hipótesis (p-valores) no serán fiables, pudiendo llevarnos a conclusiones erróneas sobre la significancia de nuestras variables.

Sobre los residuos estandarizados

Los **residuos simples** $(e_i = y_i - \hat{y}_i)$ no son directamente comparables entre sí porque tienen diferentes varianzas dependiendo de su apalancamiento (leverage). Por eso, en los gráficos de diagnóstico se utilizan **residuos estandarizados** o, mejor aún, **residuos estudentizados**, que ponen todos los residuos en una escala común. Esto facilita la identificación de patrones y valores atípicos. La explicación detallada de estos conceptos se encuentra en la sección de identificación de observaciones influyentes.

La heteroscedasticidad se detecta principalmente buscando patrones en la dispersión de los residuos.

- Gráfico de Residuos vs. Valores Ajustados: Como en la prueba de linealidad, este gráfico es nuestra primera herramienta. Aquí no buscamos patrones en la media de los residuos (que debe ser cero), sino en su dispersión. La señal de alarma inequívoca de heteroscedasticidad es una forma de embudo o megáfono, donde la dispersión de los residuos aumenta o disminuye a medida que cambian los valores ajustados.
- Gráfico Scale-Location: Este gráfico está diseñado específicamente para detectar heteroscedasticidad. Muestra la raíz cuadrada de los residuos estandarizados en el eje Y (sqrt(|Standardized residuals|)) frente a los valores ajustados en el eje X. Al usar la raíz cuadrada, se suaviza la distribución de los residuos, haciendo los patrones de varianza más fáciles de ver. Si la varianza es constante (homocedasticidad), deberíamos ver una nube de puntos aleatoria con una línea de tendencia roja aproximadamente plana. Una pendiente en esta línea roja indica que la varianza cambia con el nivel de la respuesta.
- Prueba de Breusch-Pagan: Es el contraste de hipótesis formal. Su lógica es ingeniosa: realiza una regresión auxiliar donde intenta predecir los residuos al cuadrado a partir de las variables predictoras originales. Si las variables predictoras ayudan a explicar la magnitud de los residuos al cuadrado, significa que la varianza del error depende de los predictores, y por tanto, hay heteroscedasticidad.
 - Hipótesis Nula (H_0): El modelo es homocedástico.
 - Decisión: Un p-valor pequeño (p. ej., < 0.05) es evidencia en contra de la homocedasticidad.

```
🥊 Ejemplo de un modelo válido
Analicemos nuestro modelo_estudio. Nos centraremos en el gráfico Scale-Location
(which = 3) y en la prueba de Breusch-Pagan.
# Crear datos para el gráfico Scale-Location
datos_scale_loc <- data.frame(</pre>
  valores_ajustados = fitted(modelo_estudio),
  residuos_std_sqrt = sqrt(abs(rstandard(modelo_estudio)))
# Gráfico Scale-Location con ggplot2
ggplot(datos_scale_loc, aes(x = valores_ajustados, y = residuos_std_sqrt)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y ~ :
  labs(
   title = "Scale-Location",
   x = "Valores Ajustados",
   y = expression(sqrt("|Residuos Estandarizados|"))
  theme_classic(base_size = 12)
# Prueba de Breusch-Pagan
suppressPackageStartupMessages(library(lmtest))
bp_resultado <- bptest(modelo_estudio)</pre>
print(bp_resultado)
    studentized Breusch-Pagan test
data: modelo_estudio
BP = 0.019638, df = 1, p-value = 0.8886
# Prueba de White (versión robusta)
white_resultado <- bptest(modelo_estudio, ~ fitted(modelo_estudio) + I(fitted(modelo_estudio))</pre>
print(white_resultado)
    studentized Breusch-Pagan test
data: modelo_estudio
BP = 0.12238, df = 2, p-value = 0.9406
```


Figure 2.5: Gráfico Scale-Location para el modelo de estudio. La línea de tendencia es casi plana.

El diagnóstico es positivo. En el gráfico Scale-Location, la línea roja es casi horizontal, lo que indica que la varianza de los residuos es estable a lo largo de los valores ajustados. Esto se confirma con ambas pruebas:

- Breusch-Pagan: p-valor = $0.8886 \rightarrow \text{No rechazamos H (homocedasticidad)}$
- White: p-valor = 0.9406 → No rechazamos H (varianza constante) Nuestro modelo cumple el supuesto.

Contraejemplo: Violación del supuesto de homocedasticidad

Ahora, simularemos datos donde el error aumenta a medida que ${\tt x}$ crece, un caso clásico de heteroscedasticidad.

```
# 1. Simulación de datos heteroscedásticos
set.seed(101)
x_hetero <- 1:100
y_hetero <-10 + 2 * x_hetero + rnorm(100, mean = 0, sd = 0.4 * x_hetero)
datos_hetero <- data.frame(x = x_hetero, y = y_hetero)</pre>
modelo_hetero <- lm(y ~ x, data = datos_hetero)</pre>
# 2. Preparar datos para los gráficos
datos_diag_hetero <- data.frame(</pre>
  residuos = residuals(modelo_hetero),
  valores_ajustados = fitted(modelo_hetero),
  residuos_std_sqrt = sqrt(abs(rstandard(modelo_hetero)))
# 3. Gráfico de Residuos vs. Valores Ajustados
p1 <- ggplot(datos_diag_hetero, aes(x = valores_ajustados, y = residuos)) +
  geom_point(color = "#D55E00", alpha = 0.7) +
  geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y ~ :
  labs(
    title = "Residuos vs. Valores Ajustados",
    x = "Valores Ajustados",
    y = "Residuos"
  theme_classic(base_size = 10)
# 4. Gráfico Scale-Location
p2 <- ggplot(datos_diag_hetero, aes(x = valores_ajustados, y = residuos_std_sqrt)) +
  geom_point(color = "#D55E00", alpha = 0.7) +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y ~ :
  labs(
   title = "Scale-Location",
   x = "Valores Ajustados",
   y = expression(sqrt("|Residuos Estandarizados|"))
  theme_classic(base_size = 10)
# 5. Mostrar ambos gráficos lado a lado
library(gridExtra)
grid.arrange(p1, p2, ncol = 2)
# 6. Prueba de Breusch-Pagan
suppressPackageStartupMessages(library(lmtest))
test_values <- bptest(modelo_hetero)</pre>
```


Figure 2.6: Diagnóstico de heteroscedasticidad. Izquierda: Gráfico de Residuos vs. Ajustados (patrón de embudo). Derecha: Gráfico Scale-Location (tendencia ascendente).

Los resultados son un libro de texto sobre la heteroscedasticidad.

- El gráfico de **Residuos vs. Valores Ajustados** (izquierda) tiene una **forma de embudo** inconfundible: la dispersión de los puntos aumenta drásticamente de izquierda a derecha.
- El gráfico **Scale-Location** (derecha) confirma el problema, mostrando una línea roja con una **clara pendiente ascendente**.
- La **prueba de Breusch-Pagan** arroja un **p-valor 7.43e-07**, dándonos una fuerte evidencia estadística para rechazar la hipótesis nula de homocedasticidad.

Este modelo viola claramente el supuesto, y las inferencias basadas en él (como el p-valor del coeficiente de x) no serían fiables.

2.6.3 Normalidad de los residuos

Este supuesto postula que los residuos del modelo (ε_i) siguen una distribución normal: $\varepsilon_i \sim N(0, \sigma^2)$. Es especialmente importante para la validez de los intervalos de confianza y los

contrastes de hipótesis cuando el tamaño de la muestra es pequeño.

Métodos de diagnóstico:

- 1. Diagnóstico visual:
 - Gráfico Q-Q: Los puntos deben seguir la línea diagonal si hay normalidad
 - Histograma: Debe mostrar forma campaniforme y simétrica
- 2. Test de Shapiro-Wilk: Test más potente para muestras pequeñas y medianas (n < 50).
 - \mathbf{H} : Los residuos siguen distribución normal
 - H: Los residuos no siguen distribución normal
 - Limitación: Muy sensible en muestras grandes
- 3. Test de Jarque-Bera: Basado en medidas de asimetría y curtosis.
 - **H**: Los residuos son normales (asimetría = 0, curtosis = 3)
 - H: Los residuos no son normales
 - Ventaja: Menos sensible al tamaño muestral que Shapiro-Wilk

Para evaluar la normalidad disponemos de estas herramientas visuales y analíticas:

- Gráfico Normal Q-Q (Normal Q-Q Plot): Compara los cuantiles de los residuos estandarizados con los cuantiles de una distribución normal teórica. Los puntos deben caer muy cerca de la línea diagonal de 45 grados.
- Histograma de los Residuos: Un simple histograma de los residuos debe mostrar una forma aproximada de campana de Gauss.
- Prueba de Shapiro-Wilk: Es uno de los contrastes más potentes para la normalidad.
 - Hipótesis Nula (H_0) : Los residuos provienen de una distribución normal.
 - **Decisión:** Un p-valor pequeño (< 0.05) sugiere rechazar H_0 .

Piemplo de normalidad válida

Para nuestro modelo_estudio, examinamos la normalidad mediante el gráfico Q-Q y la prueba de Shapiro-Wilk.

```
# Crear datos para los gráficos
residuos <- residuals(modelo_estudio)</pre>
# 1. Gráfico Q-Q con ggplot2
datos_qq <- data.frame(residuos = residuos)</pre>
p1 <- ggplot(datos_qq, aes(sample = residuos)) +</pre>
  geom_q(color = "#0072B2", alpha = 0.7) +
  geom_qq_line(color = "red", linetype = "dashed") +
  labs(
   title = "Normal Q-Q Plot",
    x = "Cuantiles Teóricos",
   y = "Cuantiles de la Muestra"
  theme_classic(base_size = 10)
# 2. Histograma con ggplot2
datos_hist <- data.frame(residuos = residuos)</pre>
p2 <- ggplot(datos_hist, aes(x = residuos)) +</pre>
  geom_histogram(aes(y = after_stat(density)), bins = 15, fill = "lightblue",
                 color = "black", alpha = 0.7) +
  stat_function(fun = dnorm,
                args = list(mean = mean(residuos), sd = sd(residuos)),
                 color = "red", linewidth = 1) +
  labs(
   title = "Histograma de Residuos",
    x = "Residuos",
    y = "Densidad"
  theme_classic(base_size = 10)
# 3. Mostrar ambos gráficos lado a lado
library(gridExtra)
grid.arrange(p1, p2, ncol = 2)
# Prueba de Shapiro-Wilk
suppressPackageStartupMessages(library(lmtest))
shapiro_resultado <- shapiro.test(residuals(modelo_estudio))</pre>
print(shapiro_resultado)
```

```
Shapiro-Wilk normality test

data: residuals(modelo_estudio)
W = 0.99008, p-value = 0.671

# Prueba de Jarque-Bera
suppressPackageStartupMessages(library(tseries))
jb_resultado <- jarque.bera.test(residuals(modelo_estudio))
print(jb_resultado)
```

Jarque Bera Test

```
data: residuals(modelo_estudio)
X-squared = 0.68515, df = 2, p-value = 0.7099
```


Figure 2.7: Diagnóstico de normalidad del modelo de estudio. Izquierda: Q-Q Plot. Derecha: Histograma de residuos.

El diagnóstico es excelente. En el gráfico Q-Q, los puntos se alinean muy bien con la línea diagonal, indicando normalidad. El histograma muestra una distribución aproximadamente

simétrica que se ajusta bien a la curva normal teórica (línea roja). Ambas pruebas estadísticas confirman la normalidad:

- Shapiro-Wilk: p-valor = $0.671 \rightarrow \text{No rechazamos H (normalidad)}$
- Jarque-Bera: p-valor = $0.7099 \rightarrow \text{No rechazamos H (normalidad)}$

Contraejemplo: Violación del supuesto de normalidad

Ahora simularemos datos donde los residuos siguen una distribución asimétrica (distribución exponencial) para mostrar una violación clara del supuesto de normalidad.

```
# 1. Simulación de datos con errores no normales (exponenciales)
set.seed(456)
x_no_normal <- 1:100</pre>
# Errores exponenciales (muy asimétricos) centrados en 0
errores_exp <- rexp(100, rate = 1) - 1 # Restamos 1 para centrar en 0</pre>
y_no_normal <- 5 + 2 * x_no_normal + errores_exp * 10</pre>
datos_no_normal <- data.frame(x = x_no_normal, y = y_no_normal)</pre>
modelo_no_normal <- lm(y ~ x, data = datos_no_normal)</pre>
# 2. Crear datos para los gráficos
residuos_no_normal <- residuals(modelo_no_normal)
# 3. Gráfico Q-Q con ggplot2
datos_qq_mal <- data.frame(residuos = residuos_no_normal)</pre>
p1_mal <- ggplot(datos_qq_mal, aes(sample = residuos)) +</pre>
  geom_qq(color = "#D55E00", alpha = 0.7) +
  geom_qq_line(color = "red", linetype = "dashed") +
    title = "Normal Q-Q Plot (Violación)",
   x = "Cuantiles Teóricos",
    y = "Cuantiles de la Muestra"
  ) +
  theme_classic(base_size = 10)
# 4. Histograma con ggplot2
datos_hist_mal <- data.frame(residuos = residuos_no_normal)</pre>
p2_mal <- ggplot(datos_hist_mal, aes(x = residuos)) +</pre>
  geom_histogram(aes(y = after_stat(density)), bins = 15, fill = "lightcoral",
                  color = "black", alpha = 0.7) +
  stat_function(fun = dnorm,
                 args = list(mean = mean(residuos_no_normal), sd = sd(residuos_no_normal)),
                 color = "blue", linewidth = 1) +
   title = "Histograma de Residuos (Violación)",
   x = "Residuos",
    y = "Densidad"
  theme_classic(base_size = 10)
# 5. Mostrar ambos gráficos lado a lado
grid.arrange(p1_mal, p2_mal, ncol = 2)
# Prueba de Shapiro-Wilk
shapiro_resultado <- shapiro.test(re\delta\duals(modelo_no_normal))
```


Figure 2.8: Violación del supuesto de normalidad. Izquierda: Q-Q Plot con clara desviación. Derecha: Histograma asimétricamente distribuido.

La violación es evidente. En el gráfico Q-Q, los puntos se desvían sistemáticamente de la línea diagonal, especialmente en los extremos, formando una curva característica de distribuciones asimétricas. El histograma muestra una clara asimetría hacia la derecha que no se ajusta a la curva normal teórica (línea azul). La prueba de Shapiro-Wilk arroja un **p-valor muy pequeño** (1.78e-10), rechazando fuertemente la hipótesis nula de normalidad.

2.6.4 Independencia de los residuos

Este supuesto afirma que el error de una observación no está correlacionado con el de ninguna otra: $Cov(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$. La violación, conocida como **autocorrelación**, es común en datos de series temporales.

Métodos de diagnóstico:

- 1. **Diagnóstico visual:** Gráfico de residuos vs orden de observación. No debe mostrar patrones temporales o secuenciales.
- 2. Test de Durbin-Watson: Test clásico para autocorrelación de primer orden.

- **H**: No hay autocorrelación ($\rho = 0$)
- H: Hay autocorrelación de orden 1
- Estadístico: $DW = \frac{\sum_{i=2}^{n} (e_i e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$
- Interpretación: Valores cerca de $2 \rightarrow$ no autocorrelación; cerca de $0 \rightarrow$ autocorrelación positiva; cerca de $4 \rightarrow$ autocorrelación negativa
- 3. Test de Breusch-Godfrey (LM): Generalización del Durbin-Watson para órdenes superiores y regresores retardados.
 - H: No hay autocorrelación serial hasta el orden especificado
 - H: Hay autocorrelación serial
 - Ventaja: Más general y potente que Durbin-Watson

El estadístico de Durbin-Watson varía entre 0 y 4. Un valor cercano a 2 sugiere no autocorrelación. Valores cercanos a 0 indican autocorrelación positiva, y cercanos a 4, autocorrelación negativa.

Piemplo de independencia válida

Para nuestro modelo_estudio, evaluamos la independencia mediante el gráfico de residuos vs orden y la prueba de Durbin-Watson.

```
# Gráfico de residuos vs orden de observación con ggplot2
datos orden <- data.frame(</pre>
  orden = 1:length(residuals(modelo_estudio)),
  residuos = residuals(modelo estudio)
ggplot(datos_orden, aes(x = orden, y = residuos)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
  geom\_line(color = "#0072B2", alpha = 0.5) +
  geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
    title = "Residuos vs Orden de Observación",
    x = "Orden de observación",
    y = "Residuos"
  ) +
  theme_classic(base_size = 12)
# Prueba de Durbin-Watson
suppressPackageStartupMessages(library(lmtest))
dw_resultado_valido <- dwtest(modelo_estudio)</pre>
print(dw resultado valido)
```

Durbin-Watson test

```
data: modelo_estudio
```

DW = 2.0565, p-value = 0.6104

alternative hypothesis: true autocorrelation is greater than 0

```
# Prueba de Breusch-Godfrey (más general)
bg_resultado <- bgtest(modelo_estudio, order = 2)
print(bg_resultado)</pre>
```

Breusch-Godfrey test for serial correlation of order up to 2

```
data: modelo_estudio
LM test = 0.14002, df = 2, p-value = 0.9324
```


Figure 2.9: Diagnóstico de independencia del modelo de estudio. Los residuos no muestran patrones temporales.

El diagnóstico es satisfactorio. El gráfico de residuos vs orden no muestra ningún patrón sistemático o tendencia temporal. Ambas pruebas estadísticas confirman la independencia:

- Durbin-Watson: DW =2.056, p-valor = $0.6104 \rightarrow \text{No}$ hay autocorrelación de orden 1
- Breusch-Godfrey: LM =0.14, p-valor = $0.9324 \rightarrow \text{No}$ hay autocorrelación de orden 2 fluctúan aleatoriamente alrededor del cero.

La prueba de Durbin-Watson arroja un estadístico de 2.056 (cercano a 2) y un pvalor de 0.61, confirmando que no hay evidencia de autocorrelación. El supuesto de independencia se cumple.

Contraejemplo: Violación del supuesto de independencia

Simularemos datos con autocorrelación positiva, donde cada residuo está correlacionado con el anterior, violando el supuesto de independencia.

```
# 1. Simulación de datos con autocorrelación
set.seed(789)
n <- 100
x autocorr <- 1:n
# Generamos errores autocorrelacionados (AR1 con phi = 0.7)
errores autocorr <- numeric(n)</pre>
errores_autocorr[1] <- rnorm(1)</pre>
for(i in 2:n) {
  errores_autocorr[i] <- 0.7 * errores_autocorr[i-1] + rnorm(1, sd = 0.5)
y_autocorr <- 10 + 1.5 * x_autocorr + errores_autocorr * 3</pre>
datos_autocorr <- data.frame(x = x_autocorr, y = y_autocorr)</pre>
modelo_autocorr <- lm(y ~ x, data = datos_autocorr)</pre>
# 2. Gráfico de residuos vs orden con ggplot2
datos_orden_autocorr <- data.frame(</pre>
  orden = 1:length(residuals(modelo_autocorr)),
  residuos = residuals(modelo_autocorr)
)
ggplot(datos_orden_autocorr, aes(x = orden, y = residuos)) +
  geom_point(color = "#D55E00", alpha = 0.7) +
  geom_line(color = "#D55E00", alpha = 0.5) +
  geom_hline(yintercept = 0, color = "blue", linetype = "dashed") +
  labs(
    title = "Residuos vs Orden de Observación (Violación)",
    x = "Orden de observación",
    y = "Residuos"
  theme_classic(base_size = 12)
# 3. Prueba de Durbin-Watson
dw_resultado <- dwtest(modelo_autocorr)</pre>
```


Figure 2.10: Violación del supuesto de independencia. Los residuos muestran un patrón de autocorrelación positiva.

La violación es clara. El gráfico de residuos vs orden muestra un patrón ondulante característico: los residuos tienden a mantenerse del mismo signo durante varias observaciones consecutivas (rachas de valores positivos seguidas de rachas de valores negativos). Esto indica **autocorrelación positiva**. La prueba de Durbin-Watson confirma esto con un estadístico muy por debajo de 2 ($\rm DW=0.74$) y un **p-valor muy pequeño** ($\rm 5.01e-11$), rechazando fuertemente la hipótesis nula de independencia.

2.6.5 Media nula de los residuos

Un requisito fundamental del modelo es que la media de los residuos debe ser exactamente cero: $E[e_i] = 0$. Esta propiedad se deriva matemáticamente del método de mínimos cuadrados y su verificación sirve como una comprobación de que nuestros cálculos son correctos.

2.6.6 Identificación de observaciones influyentes y atípicas

Algunos puntos pueden tener una influencia desproporcionada en el modelo. Es crucial identificarlos usando diferentes métricas que evalúan aspectos complementarios de la influencia

(Kutner et al. 2005; Fox and Weisberg 2018). Las métricas desarrolladas por Cook, Belsley, Kuh y Welsch proporcionan herramientas robustas para este diagnóstico.

Fundamento teórico: de los residuos simples a los estudentizados

Antes de analizar las métricas de influencia, debemos entender por qué no todos los **residuos simples** $(e_i = y_i - \hat{y}_i)$ son comparables entre sí. El problema fundamental es que **no tienen la misma varianza**, incluso bajo homocedasticidad.

La varianza teórica del residuo e_i depende del **apalancamiento** (leverage) de la observación:

$$Var(e_i) = \sigma^2 (1 - h_{ii})$$

donde el apalancamiento h_{ii} se define como:

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2}$$

Las observaciones con valores de X más alejados de la media tendrán mayor apalancamiento y, paradójicamente, residuos con **menor varianza**. Por esto, un residuo pequeño en una observación de alto leverage puede ser más preocupante que un residuo grande en el centro de los datos.

Los residuos estandarizados solucionan parcialmente este problema:

$$r_i^* = \frac{e_i}{\sqrt{\text{MSE}(1 - h_{ii})}}$$

Pero **los residuos estudentizados** van un paso más allá, eliminando el sesgo de autoinfluencia:

$$r_i = \frac{e_i}{\sqrt{\mathrm{MSE}_{(-i)}(1-h_{ii})}}$$

donde $MSE_{(-i)}$ excluye la observación i del ajuste. Esto evita que un outlier "contamine" su propia evaluación y proporciona una distribución teórica exacta (t de Student con n-k-2 grados de libertad).

¿Por qué son superiores los residuos estudentizados? Por tres razones clave: (1) eliminan el sesgo de autoinfluencia al excluir cada observación de su propia evaluación, (2) evitan la contaminación que un outlier produce en la MSE global, y (3) siguen una distribución conocida (t de Student) que permite umbrales estadísticamente precisos. En la práctica: $|r_i| > 2$ indica posibles outliers (5% en normalidad) y $|r_i| > 3$ outliers muy probables (<1%).

Las métricas fundamentales de influencia para identificar observaciones problemáticas son:

• Apalancamiento (Leverage, h_{ii}): Mide cuán atípico es el valor de la variable predictora X_i de una observación. Un apalancamiento alto significa que el punto tiene el potencial

de ser muy influyente. En regresión simple, se calcula como:

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{j=1}^{n} (x_j - \bar{x})^2}$$

Una regla común es considerar un apalancamiento alto si $h_{ii} > \frac{2(k+1)}{n}$, donde k es el número de predictores (1 en regresión simple).

• Distancia de Cook (D_i) : Mide la influencia global de una observación, combinando su apalancamiento y su residuo. Representa cuánto cambian los coeficientes del modelo si la i-ésima observación es eliminada.

$$D_i = \frac{r_i^2}{k+1} \cdot \frac{h_{ii}}{1 - h_{ii}}$$

Se considera que un punto es influyente si su distancia de Cook es grande, por ejemplo, si $D_i > 1$ o $D_i > 4/(n-k-1)$.

• **DFFITS:** Mide cuánto cambia la predicción \hat{y}_i cuando se elimina la i-ésima observación. Es una medida estandarizada que combina el residuo estudentizado y el apalancamiento.

$$\mathrm{DFFITS}_i = r_i \sqrt{\frac{h_{ii}}{1 - h_{ii}}}$$

Un punto se considera influyente si $|\mathrm{DFFITS}_i| > 2\sqrt{(k+1)/n},$ donde k es el número de predictores.

🥊 Ejemplo: Cálculo y análisis de DFFITS

DFFITS es especialmente útil para evaluar cómo cada observación afecta a su propia predicción. Analicemos esta medida con nuestro modelo_estudio.

```
# Calcular DFFITS y sus componentes
dffits_vals <- dffits(modelo_estudio)</pre>
residuos_stud <- rstudent(modelo_estudio) # Residuos estudentizados
leverage_vals <- hatvalues(modelo_estudio)</pre>
# Crear dataframe para análisis
datos_dffits <- data.frame(</pre>
  observacion = 1:length(dffits_vals),
  dffits = dffits_vals,
 residuo_stud = residuos_stud,
  leverage = leverage_vals
# Umbral de DFFITS
n <- nrow(datos)</pre>
k <- 1 # número de predictores
dffits_threshold \leftarrow 2 * sqrt((k + 1) / n)
# Gráfico de DFFITS
ggplot(datos_dffits, aes(x = observacion, y = dffits)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
  geom_hline(yintercept = 0, color = "gray", linetype = "dashed") +
  geom_hline(yintercept = c(-dffits_threshold, dffits_threshold),
             color = "red", linetype = "dashed", alpha = 0.7) +
  labs(
    title = "DFFITS por Observación",
    x = "Número de Observación",
    y = "DFFITS",
    caption = paste("Lineas rojas: umbrales ±", round(dffits_threshold, 3))
  theme_classic(base_size = 12)
# Análisis cuantitativo
influential dffits <- which(abs(dffits vals) > dffits threshold)
top_indices <- order(abs(dffits_vals), decreasing = TRUE)[1:5]</pre>
```


Figure 2.11: Análisis de DFFITS para identificar observaciones que afectan significativamente a sus propias predicciones.

Análisis de resultados:

El umbral de influencia para DFFITS es 0.283. En nuestro modelo, **7 observaciones superan este umbral**: las observaciones 6, 20, 22, 47, 85, 87, 89, lo que las clasifica como influyentes según este criterio.

Las cinco observaciones con mayor |DFFITS| son las observaciones 20, 85, 89, 47, 6, con valores de 0.446, -0.38, 0.364, 0.325, 0.312 respectivamente. Lo más notable es que todas estas cinco observaciones (20, 85, 89, 47, 6) superan el umbral de DFFITS, confirmando su carácter influyente.

Interpretación clave: La observación 20 es el caso más destacado: tiene un DFFITS de 0.446, superando el umbral de 0.283. Esta combinación de residuo y apalancamiento resulta en un DFFITS significativo que indica cambios sustanciales en su predicción.

Conclusión práctica: Tenemos 7 observaciones influyentes según DFFITS (6, 20, 22, 47, 85, 87, 89) que merecen investigación adicional. Estas observaciones cambian significativamente sus propias predicciones cuando son eliminadas del modelo, sugiriendo que podrían representar casos especiales o errores de medición que deberían ser examinados más detalladamente.

El gráfico Residuals vs. Leverage es la herramienta visual más importante para el diagnóstico de influencia, ya que combina en un solo gráfico el apalancamiento (eje X) y los residuos estudentizados (eje Y), permitiendo identificar simultáneamente observaciones con

alto leverage y outliers. Además, incluye curvas que delimitan regiones de alta ${f Distancia}$ de Cook, facilitando la identificación visual de los puntos más problemáticos.

♀ Ejemplo: Gráfico Residuals vs. Leverage

Vamos a analizar el gráfico más importante para el diagnóstico de influencia usando nuestro modelo_estudio.

```
# Crear datos para el gráfico Residuals vs. Leverage
leverage_vals <- hatvalues(modelo_estudio)</pre>
residuos_stud <- rstudent(modelo_estudio) # Residuos estudentizados
cook_dist <- cooks.distance(modelo_estudio)</pre>
datos_leverage <- data.frame(</pre>
  leverage = leverage_vals,
  residuos_stud = residuos_stud,
  cook = cook_dist,
  observacion = 1:length(leverage_vals)
# Calcular umbrales
n <- nrow(datos)</pre>
k <- 1
leverage_threshold <- 2 * (k + 1) / n
cook\_threshold \leftarrow 4 / (n - k - 1)
# Función para crear curvas de Cook
cook_curve <- function(leverage, cook_value, k) {</pre>
  sqrt(cook_value * (k + 1) * (1 - leverage) / leverage)
# Crear curvas de Cook para diferentes valores
lev_seq <- seq(0.001, max(leverage_vals) * 1.1, length.out = 100)</pre>
cook_05 <- data.frame(</pre>
  leverage = lev_seq,
  pos = cook_curve(lev_seq, 0.5, k),
  neg = -cook_curve(lev_seq, 0.5, k)
cook_1 <- data.frame(</pre>
  leverage = lev_seq,
  pos = cook_curve(lev_seq, 1, k),
 neg = -cook_curve(lev_seq, 1, k)
# Gráfico Residuals vs. Leverage con ggplot2
ggplot(datos_leverage, aes(x = leverage, y = residuos_stud)) +
  # Curvas de Cook
  geom\_line(data = cook\_05, aes(x = leverage, y = pos),
             color = "red", linetype = "dashed", alpha = 0.6, inherit.aes = FALSE) +
  geom_line(data = cook_05, aes(x = leverage, y = neg),
            color = "red", linetype = "dashed", alpha = 0.6, inherit.aes = FALSE) +
  geom_line(data = cook_1, aes(x = leverage, y = pos),
            color = "red", linetype = "solid", alpha = 0.8, inherit.aes = FALSE) +
  geom_line(data = cook_1, aes(x = 1@Perage, y = neg),
            color = "red", linetype = "solid", alpha = 0.8, inherit.aes = FALSE) +
  # Puntos de datos
  geom_point(color = "#0072B2", alpha = 0.7, size = 2) +
  # Líneas de referencia
  geom_hline(yintercept = 0, color = "gray", linetype = "dashed") +
  geom_hline(yintercept = c(-2, 2), color = "orange", linetype = "dotted", alpha = 0.7) +
                                         -1-14
```


0.5 (discontinua) y 1.0 (continua) | Líneas naranjas: ±2 | Línea morada: umbral leverage

Figure 2.12: Gráfico Residuals vs. Leverage para identificar observaciones influyentes.

Análisis del gráfico:

El gráfico revela varios puntos importantes. Tenemos 6 outliers (residuos estudentizados > 2): las observaciones 20, 22, 47, 85, 89, 99. Además, 2 observaciones superan el umbral de leverage (> 0.04): las observaciones 24, 74.

Interpretación por regiones:

- Zona derecha (alto leverage): Las observaciones 24, 74 superan el umbral de leverage, lo que significa que tienen valores de X atípicos y alto potencial influyente
- Zona izquierda superior/inferior: Los 6 outliers (20, 22, 47, 85, 89, 99) están distribuidos aquí, con leverage bajo-moderado pero residuos grandes
- Esquinas críticas: Afortunadamente vacías (alto leverage + outlier sería muy problemático)

Distancia de Cook: Las curvas rojas muestran que aunque ningún punto supera Cook = 1.0 (línea continua), varios puntos se acercan a la curva de Cook = 0.5 (línea discontinua), indicando influencia moderada. Las observaciones con alto leverage están en esta zona de influencia moderada.

Conclusión práctica: El modelo presenta una situación favorable: aunque tenemos outliers (observaciones 20, 22, 47, 85, 89, 99) que son atípicos en Y, y observaciones

de alto leverage (observaciones 24, 74) que son atípicos en X, crucialmente no hay solapamiento entre ambos grupos. Esto significa que no tenemos la situación más problemática (alto leverage + outlier). Aun así, ambos grupos merecen investigación.

2.6.6.1 Interpretación práctica de las medidas de influencia

Cada medida nos proporciona información complementaria sobre diferentes aspectos de la influencia:

- Leverage (Apalancamiento): Identifica observaciones con valores "raros" en las variables predictoras. Alto leverage no es necesariamente problemático, pero indica potencial para ser influyente.
- Distancia de Cook: Es la medida más general de influencia. Valores altos indican que eliminar esa observación cambiaría substancialmente los coeficientes del modelo.
- **DFFITS:** Se enfoca específicamente en cómo cambia la predicción de cada punto cuando se elimina esa observación. Es especialmente útil para evaluar el impacto en las predicciones.

En la práctica, una observación es especialmente preocupante si es problemática según **múltiples criterios** a la vez.

Diagnóstico completo del modelo de estudio

A continuación, realizamos todas las verificaciones de diagnóstico para nuestro modelo_estudio:

```
# Preparar todos los datos necesarios para los gráficos
residuos_completo <- residuals(modelo_estudio)</pre>
valores_ajustados_completo <- fitted(modelo_estudio)</pre>
residuos_std <- rstandard(modelo_estudio)</pre>
leverage_vals <- hatvalues(modelo_estudio)</pre>
# 1. Gráfico Residuos vs. Valores Ajustados
p1_completo <- ggplot(data.frame(x = valores_ajustados_completo, y = residuos_completo),</pre>
                      aes(x = x, y = y)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
  geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y ~ :
  labs(title = "Residuos vs. Valores Ajustados", x = "Valores Ajustados", y |= "Residuos")
  theme_classic(base_size = 10)
# 2. Gráfico Q-Q Normal
datos_qq_completo <- data.frame(residuos = residuos_std)</pre>
p2_completo <- ggplot(datos_qq_completo, aes(sample = residuos)) +</pre>
  geom_qq(color = "#0072B2", alpha = 0.7) +
  geom_qq_line(color = "red", linetype = "dashed") +
  labs(title = "Normal Q-Q Plot", x = "Cuantiles Teóricos", y = "Cuantiles de la Muestra")
  theme_classic(base_size = 10)
# 3. Gráfico Scale-Location
p3_completo <- ggplot(data.frame(x = valores_ajustados_completo,
                                y = sqrt(abs(residuos_std))),
                      aes(x = x, y = y)) +
  geom_point(color = "#0072B2", alpha = 0.7) +
  geom_smooth(method = "loess", se = FALSE, color = "red", linewidth = 0.8, formula = y ~ :
  labs(title = "Scale-Location", x = "Valores Ajustados",
       y = expression(sqrt("|Residuos Estandarizados|"))) +
  theme_classic(base_size = 10)
# 4. Gráfico Residuos vs. Leverage (con curvas de Cook)
p4_completo <- ggplot(datos_leverage, aes(x = leverage, y = residuos_stud)) |+
  # Curvas de Cook
  geom_line(data = cook_05, aes(x = leverage, y = pos),
            color = "red", linetype = "dashed", alpha = 0.6, inherit.aes = FALSE) +
  geom_line(data = cook_05, aes(x = leverage, y = neg),
            color = "red", linetype = "dashed", alpha = 0.6, inherit.aes = FALSE) +
  geom_line(data = cook_1, aes(x = leverage, y = pos),
            color = "red", linetype = "solid", alpha = 0.8, inherit.aes = FALSE) +
  geom_line(data = cook_1, aes(x = leverage, y = neg),
            color = "red", linetype = "solid", alpha = 0.8, inherit.aes = FALSE) +
  # Puntos de datos
  geom_point(color = "#0072B2", alpha = 0.7, size = 1.5) +
  # Líneas de referencia
  geom_hline(yintercept = 0, color = "gray", linetype = "dashed") +
  geom_hline(yintercept = c(-2, 2), color = "orange", linetype = "dotted", alpha = 0.7) +
  geom_vline(xintercept = leverage_threshold, color = "purple", linetype = "dotted", alpha
  labs(title = "Residuals vs. Leverage", x = "Leverage", y = "Residuos Estudentizados") +
```


Figure 2.13: Gráficos de diagnóstico completo del modelo de regresión.

Conclusión del diagnóstico:

Nuestro modelo de estudio pasa exitosamente todas las verificaciones:

Linealidad: Los gráficos de residuos vs valores ajustados no muestran patrones sistemáticos, confirmando que la relación lineal es apropiada.

Homocedasticidad: La prueba de Breusch-Pagan arroja un p-valor de 0.8886, que es mayor a 0.05, por lo que no hay evidencia de heterocedasticidad. La varianza de los errores es constante.

Normalidad: La prueba de Shapiro-Wilk presenta un p-valor de 0.671, superior a 0.05, confirmando que los residuos siguen una distribución normal. Esto se corrobora visualmente en el Q-Q plot.

Independencia: El estadístico de Durbin-Watson es 2.056 con un p-valor de 0.61, indicando ausencia de autocorrelación en los residuos.

Media nula: La media de los residuos es 0, prácticamente cero como se esperaría en un modelo bien especificado.

Se identificaron las siguientes observaciones que requieren atención:

- Alto apalancamiento (> 0.04): 24, 74
- Influyentes según Cook (> 0.041): 6, 20, 47, 85, 87, 89
- Influyentes según DFFITS (> 0.283): 6, 20, 22, 47, 85, 87, 89
- Posibles outliers (|residuo std| > 2): 20, 22, 47, 85, 89, 99

Estas observaciones deberían ser investigadas más detalladamente antes de proceder con las

Esto confirma que nuestras inferencias estadísticas (p-valores, intervalos de confianza) son válidas y confiables (James et al. 2021; Harrell 2015).

3 El modelo de regresión lineal múltiple

El modelo de regresión lineal múltiple constituye la extensión natural y más potente del modelo simple que estudiamos en el capítulo anterior. Mientras que la regresión simple nos permitía examinar la relación entre una variable respuesta y un único predictor, la regresión múltiple nos capacita para modelar simultáneamente el efecto de múltiples variables predictoras, una situación mucho más realista en la mayoría de aplicaciones prácticas (Kutner et al. 2005; James et al. 2021; Fox and Weisberg 2018).

En este capítulo profundizaremos en los aspectos únicos de la regresión múltiple que no están presentes en el caso simple: la **interpretación de coeficientes en presencia de otros predictores**, el **diagnóstico específico** del modelo múltiple, y el problema crucial de la **multicolinealidad**. Estos conceptos son fundamentales para desarrollar modelos predictivos robustos y interpretables (Harrell 2015; Draper 1998).

l Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

- 1. Formular y estimar modelos de regresión lineal múltiple, comprendiendo las diferencias clave respecto al caso simple.
- 2. **Interpretar coeficientes** en el contexto multivariante, entendiendo el concepto de *ceteris paribus* ("manteniendo las demás variables constantes").
- 3. Realizar inferencia estadística construyendo intervalos de confianza y contrastes de hipótesis para los parámetros del modelo múltiple.
- 4. Evaluar la calidad del ajuste usando medidas como \mathbb{R}^2 , \mathbb{R}^2 ajustado y la descomposición ANOVA.
- 5. **Diagnosticar el modelo múltiple**, aplicando técnicas específicas como gráficos CPR y gráficos de regresión parcial.
- 6. **Identificar y tratar la multicolinealidad**, comprendiendo sus causas, consecuencias y usando el VIF como herramienta de diagnóstico.
- 7. Realizar predicciones con el modelo ajustado, distinguiendo entre intervalos de confianza e intervalos de predicción.

3.1 Formulación teórica del modelo

El paso de la regresión simple a la múltiple es más que una simple adición de términos; es un salto conceptual. Nos permite construir modelos que reflejan mejor la complejidad del mundo real, donde los resultados raramente dependen de una única causa. Al controlar simultáneamente por varios factores, podemos aislar con mayor precisión el efecto de una variable de interés, reduciendo el riesgo de llegar a conclusiones sesgadas por variables omitidas.

3.1.1 El modelo poblacional

Para n observaciones y p variables predictoras, el **modelo poblacional** postula que la relación verdadera entre la variable respuesta Y y los predictores X_1, X_2, \dots, X_p sigue una relación lineal:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i, \quad i = 1, \dots, n$$

Donde Y_i es la *i*-ésima variable respuesta aleatoria, X_{ij} es la *i*-ésima variable predictora aleatoria del *j*-ésimo predictor, y ε_i es el término de error aleatorio. Los parámetros $\beta_0, \beta_1, \dots, \beta_p$ son los coeficientes poblacionales verdaderos pero desconocidos.

3.1.2 El modelo muestral

En la práctica, trabajamos con datos observados y estimamos el modelo usando la muestra disponible:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{ip}, \quad i = 1, \dots, n$$

Donde \hat{y}_i es la *i*-ésima predicción, x_{ij} es la *i*-ésima observación del *j*-ésimo predictor, y $\hat{\beta}_j$ son los coeficientes estimados. El coeficiente $\hat{\beta}_j$ representa el cambio estimado en la media de Y ante un cambio de una unidad en el predictor X_j , manteniendo constantes todas las demás variables predictoras del modelo. Este principio, conocido como *ceteris paribus* (del latín, "lo demás constante"), es la piedra angular de la interpretación en regresión múltiple.

3.1.3 Notación matricial

La notación matricial es fundamental para el desarrollo teórico y computacional. Nos permite expresar el sistema de n ecuaciones de forma compacta y elegante.

Modelo poblacional:

$$\mathbf{Y} = \tilde{X}\beta + \varepsilon$$

donde:

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad \tilde{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Donde \tilde{X} contiene variables aleatorias (denotadas con mayúsculas $X_{ij}).$

Modelo muestral:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

donde:

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \quad \hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_p \end{bmatrix}$$

Donde **X** contiene datos observados (denotados con minúsculas x_{ij}).

La matriz **X** (datos observados) y \tilde{X} (variables aleatorias), ambas de dimensión $n \times (p+1)$, se denominan **matriz de diseño** y contienen toda la información de los predictores. La primera columna de unos corresponde al término del intercepto β_0 .

3.1.4 Supuestos del modelo lineal múltiple

Para que nuestros estimadores tengan propiedades deseables (como ser insesgados y eficientes), el modelo debe cumplir una serie de supuestos sobre el comportamiento del término de error, conocidos como las **condiciones de Gauss-Markov** (Kutner et al. 2005; Weisberg 2005).

1. Linealidad en los parámetros: El valor esperado de la respuesta es una función lineal de los parámetros β . El modelo $E[\mathbf{Y}|\tilde{X}] = \tilde{X}\beta$ está bien especificado.

- 2. Exogeneidad (media del error nula): Los errores tienen una media de cero para cualquier valor de los predictores, $E[\varepsilon|\tilde{X}] = \mathbf{0}$. Esto implica que los predictores no contienen información sobre el término de error.
- 3. Homocedasticidad e independencia: Los errores no están correlacionados entre sí y tienen una varianza constante σ^2 para cualquier valor de los predictores. En notación matricial: $\operatorname{Var}(\varepsilon|\tilde{X}) = \sigma^2 \mathbf{I}_n$.
- 4. Ausencia de multicolinealidad perfecta: Ningún predictor es una combinación lineal exacta de los otros. Esto asegura que la matriz X tiene rango completo (p+1), lo cual es necesario para poder estimar de forma única todos los coeficientes.
- 5. Normalidad de los errores (para inferencia): Para poder realizar contrastes de hipótesis e intervalos de confianza, se añade el supuesto de que los errores siguen una distribución Normal: $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$.

3.2 Estimación de los parámetros

Una vez definido el modelo y sus supuestos, el siguiente paso es estimar los parámetros desconocidos del vector β . El método más extendido es el de Mínimos Cuadrados Ordinarios.

3.2.1 El principio de mínimos cuadrados y la función objetivo

La idea de "mejor ajuste" se traduce matemáticamente en minimizar la discrepancia entre los valores observados \mathbf{y} (datos muestrales) y los valores predichos por el modelo, $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$. Esta discrepancia se captura a través de los residuos, $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$.

MCO no minimiza simplemente los residuos (ya que residuos positivos y negativos se cancelarían), sino la **Suma de los Cuadrados de los Residuos** (SCR o *SSR* en inglés). Al elevarlos al cuadrado, nos aseguramos de que todos los errores contribuyan positivamente y, además, penalizamos más fuertemente los errores grandes.

La función objetivo a minimizar, $S(\beta)$, usando datos observados es:

$$S(\beta) = \sum_{i=1}^{n} e_i^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

3.2.2 Derivación de las ecuaciones normales

Para encontrar el vector $\hat{\beta}$ que minimiza esta función, utilizamos cálculo diferencial. Primero, expandimos la expresión cuadrática de $S(\beta)$:

$$\begin{split} S(\beta) &= (\mathbf{y}^T - \beta^T \mathbf{X}^T)(\mathbf{y} - \mathbf{X}\beta) \\ S(\beta) &= \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\beta - \beta^T \mathbf{X}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X}\beta \end{split}$$

Un punto clave aquí es notar que $\beta^T \mathbf{X}^T \mathbf{y}$ es un escalar (una matriz 1×1), por lo que es igual a su transpuesta: $\beta^T \mathbf{X}^T \mathbf{y} = \mathbf{y}^T \mathbf{X} \beta$. 1×1). Por lo tanto, es igual a su propia transpuesta: $(\beta^T \mathbf{X}^T \mathbf{y})^T = \mathbf{y}^T \mathbf{X} \beta$. Esto nos permite simplificar la expresión:

$$S(\beta) = \mathbf{y}^T \mathbf{y} - 2\beta^T \mathbf{X}^T \mathbf{y} + \beta^T (\mathbf{X}^T \mathbf{X}) \beta$$

Ahora, derivamos esta función con respecto al vector β e igualamos el resultado a un vector de ceros para encontrar el mínimo. Usando las reglas de la derivación matricial:

- La derivada de $\mathbf{y}^T \mathbf{y}$ respecto a β es $\mathbf{0}$.
- La derivada de $2\beta^T \mathbf{X}^T \mathbf{y}$ respecto a β es $2\mathbf{X}^T \mathbf{y}$.
- La derivada de la forma cuadrática $\beta^T(\mathbf{X}^T\mathbf{X})\beta$ respecto a β es $2(\mathbf{X}^T\mathbf{X})\beta$.

Aplicando estas reglas, obtenemos el gradiente de la función de pérdida:

$$\frac{\partial S(\beta)}{\partial \beta} = -2\mathbf{X}^T \mathbf{y} + 2(\mathbf{X}^T \mathbf{X})\beta$$

Igualando a cero y sustituyendo β por el estimador $\hat{\beta}$ que cumple esta condición:

$$-2\mathbf{X}^T\mathbf{y} + 2(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{0}$$

Simplificando, llegamos al célebre sistema de p+1 ecuaciones conocido como las **Ecuaciones** Normales:

$$(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^T\mathbf{y}$$

3.2.3 La solución MCO y la condición de invertibilidad

Para resolver este sistema y despejar $\hat{\beta}$, necesitamos multiplicar por la inversa de la matriz $(\mathbf{X}^T\mathbf{X})$. Esta inversa existe si y solo si la matriz es invertible, lo que está directamente garantizado por el supuesto de ausencia de multicolinealidad perfecta.

Si el rango de la matriz de diseño \mathbf{X} es p+1 (sus columnas son linealmente independientes), entonces la matriz $\mathbf{X}^T\mathbf{X}$ (de dimensión $(p+1)\times(p+1)$) será de rango completo, simétrica y definida positiva, y por tanto, invertible.

La solución única para el vector de estimadores MCO es:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Esta compacta y poderosa ecuación es la base de la estimación en regresión lineal y es implementada por todo el software estadístico.

Claro, aquí tienes el texto completo en formato Markdown y con las fórmulas clave sin los recuadros.

3.2.4 Propiedades de los estimadores de MCO

Una vez que hemos obtenido la fórmula para calcular nuestros coeficientes, $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$, la pregunta fundamental es: ¿qué tan buenos son estos estimadores? La teoría estadística nos proporciona una respuesta contundente a través de sus propiedades en el muestreo, que son la base para toda la inferencia estadística posterior.

El **Teorema de Gauss-Markov** es el resultado central. Afirma que, si se cumplen los supuestos del modelo lineal clásico (1-4), los estimadores de Mínimos Cuadrados Ordinarios son los **Mejores Estimadores Lineales Insesgados (MELI o BLUE)**. Desglosemos esto:

- Lineal: $\hat{\beta}$ es una combinación lineal de la variable respuesta y.
- Insesgado (Unbiased): En promedio, a lo largo de infinitas muestras, nuestro estimador acertará al verdadero valor poblacional β. No tiene un sesgo sistemático. La demostración formal es directa:

$$\begin{split} E[\hat{\boldsymbol{\beta}}] &= E[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}] \\ &= E[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon})] \\ &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T E[\boldsymbol{\varepsilon}] \\ &= I \boldsymbol{\beta} + \mathbf{0} = \boldsymbol{\beta} \end{split}$$

• Mejor (Best): "Mejor" significa que tiene la mínima varianza posible dentro de la clase de todos los estimadores lineales e insesgados. No existe otro estimador de este tipo que sea más preciso. La precisión de nuestros estimadores se captura en su matriz de varianzas-covarianzas:

$$\begin{split} \operatorname{Var}(\hat{\boldsymbol{\beta}}) &= \operatorname{Var}[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}] \\ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\operatorname{Var}(\mathbf{y})\left[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\right]^T \\ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\left(\sigma^2\mathbf{I}_n\right)\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1} \end{split}$$

Por tanto, la matriz que define la incertidumbre de nuestro estimador es:

$$\operatorname{Var}(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$

Los elementos de la diagonal de esta matriz nos dan la varianza de cada coeficiente individual, $Var(\hat{\beta}_j)$, mientras que los elementos fuera de la diagonal nos dan la covarianza entre pares de coeficientes, $Cov(\hat{\beta}_j, \hat{\beta}_k)$.

Finalmente, si añadimos el **supuesto de normalidad de los errores** ($\varepsilon_i \sim N(0, \sigma^2)$), las propiedades del estimador se completan. Dado que $\hat{\beta}$ es una combinación lineal de **y** (que ahora es normal), el propio estimador seguirá una distribución normal:

$$\hat{\beta} \sim N(\beta, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Esto implica que cada coeficiente individual también se distribuye normalmente:

$$\hat{\beta}_j \sim N\left(\beta_j, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}\right)$$

donde $[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}$ es el j-ésimo elemento de la diagonal de la matriz inversa. Este resultado es la puerta de entrada a la inferencia, permitiéndonos construir intervalos de confianza y realizar contrastes de hipótesis (como los test-t).

3.2.5 Estimación de la varianza del error

La matriz de varianzas-covarianzas de $\hat{\beta}$ depende de σ^2 , la varianza de los errores poblacionales, que es desconocida. Por lo tanto, el siguiente paso lógico es encontrar un buen estimador para ella a partir de nuestros datos.

El punto de partida natural son los residuos del modelo, $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$, que son la contraparte muestral de los errores teóricos ε . La suma de los cuadrados de los residuos (SSE) es la base de nuestro estimador:

$$SSE = \mathbf{e}^T\mathbf{e} = \mathbf{y}^T(\mathbf{I}_n - \mathbf{H})^T(\mathbf{I}_n - \mathbf{H})\mathbf{y} = \mathbf{y}^T(\mathbf{I}_n - \mathbf{H})\mathbf{y}$$

(usando las propiedades de simetría e idempotencia de la matriz de proyección H).

Para encontrar un estimador insesgado, calculamos el valor esperado de la SSE. Utilizando el lema $E[\mathbf{z}^T \mathbf{A} \mathbf{z}] = \text{traza}(\mathbf{A} \Sigma) + \mu^T \mathbf{A} \mu \text{ con } \mathbf{z} = \mathbf{y}, \ \mathbf{A} = \mathbf{I}_n - \mathbf{H}, \ \mu = \mathbf{X} \beta \text{ y } \Sigma = \sigma^2 \mathbf{I}_n$:

$$E[SSE] = \text{traza}[(\mathbf{I}_n - \mathbf{H})\sigma^2 \mathbf{I}_n] + \beta^T \mathbf{X}^T (\mathbf{I}_n - \mathbf{H}) \mathbf{X}\beta$$

El segundo término se anula porque $(\mathbf{I}_n - \mathbf{H})\mathbf{X} = \mathbf{X} - \mathbf{H}\mathbf{X} = \mathbf{X} - \mathbf{X} = \mathbf{0}$. Nos queda:

$$\begin{split} E[SSE] &= \sigma^2 \mathrm{traza}(\mathbf{I}_n - \mathbf{H}) \\ &= \sigma^2 (\mathrm{traza}(\mathbf{I}_n) - \mathrm{traza}(\mathbf{H})) \\ &= \sigma^2 (n - (p+1)) \end{split}$$

El valor esperado de la SSE no es σ^2 , sino un múltiplo de ella. Esto nos lleva directamente a un estimador insesgado para σ^2 dividiendo la SSE por sus **grados de libertad**, n-p-1:

$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n - p - 1} = \frac{\mathbf{e}^T \mathbf{e}}{n - p - 1}$$

Intuitivamente, perdemos un grado de libertad por cada parámetro que hemos estimado en el modelo (los p coeficientes de las pendientes y el intercepto). La raíz cuadrada de este valor, $\hat{\sigma}$, se conoce como el Error Estándar de la Regresión y representa la magnitud de un error de predicción típico.

Con este estimador, podemos calcular el error estándar de cada coeficiente, que mide la incertidumbre de nuestra estimación para β_i :

$$\mathrm{se}(\hat{\beta}_j) = \sqrt{\hat{\sigma}^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}$$

Bajo normalidad, se puede demostrar además que la cantidad $\frac{SSE}{\sigma^2}$ sigue una distribución **Chi-cuadrado** con n-p-1 grados de libertad, un resultado clave para la inferencia formal.

Piemplo: Estimación de un modelo múltiple

Para ilustrar estos conceptos, usemos un ejemplo con datos de precios de viviendas. Supongamos que queremos predecir el precio de una vivienda basándonos en su superficie, número de habitaciones, antigüedad, distancia al centro y si tiene garaje.

Call:

lm(formula = precio ~ superficie + habitaciones + antiguedad + distancia_centro + garaje, data = viviendas)

Residuals:

Min 1Q Median 3Q Max

```
-38847 -11074
                 867
                       9898
                             38486
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 53750.97
                             6666.71
                                       8.063 7.53e-14 ***
                               47.28 24.783 < 2e-16 ***
superficie
                 1171.78
                             1303.42 11.564
habitaciones
                 15072.31
                                             < 2e-16 ***
antiguedad
                 -744.59
                               75.42 -9.872
                                             < 2e-16 ***
distancia_centro -2028.27
                              164.88 -12.302 < 2e-16 ***
                 25829.43
                             2349.44 10.994 < 2e-16 ***
garajeSí
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15950 on 194 degrees of freedom
Multiple R-squared: 0.9094,
                                Adjusted R-squared:
```

Multiple R-squared: 0.9094, Adjusted R-squared: 0.9071 F-statistic: 389.4 on 5 and 194 DF, p-value: < 2.2e-16

Este output nos muestra:

- Coeficientes estimados $(\hat{\beta})$ y sus errores estándar
- Estadísticos t y p-valores para cada coeficiente
- Error estándar residual ($\hat{\sigma} = 1.5952 \times 10^4 \text{ euros}$)
- ${f R^2}$ múltiple (0.9094) proporción de varianza explicada
- Estadístico F global para contrastar la significancia del modelo

3.3 La interpretación de los coeficientes

Estimar los coeficientes y sus errores estándar es solo la mitad del trabajo. La otra mitad, y a menudo la más importante, es interpretarlos correctamente.

El concepto fundamental en regresión múltiple es el de **ceteris paribus** ("lo demás constante"). Cada coeficiente β_j representa el cambio esperado en Y por un cambio de una unidad en X_j , **manteniendo todas las demás variables predictoras del modelo fijas**. Es el efecto "puro" o "aislado" de X_j sobre Y, después de haber controlado por la influencia de las otras variables incluidas en el modelo. Matemáticamente, es la derivada parcial del valor esperado de Y con respecto a X_j :

$$\beta_j = \frac{\partial E[Y|\tilde{X}]}{\partial X_j}$$

Esta interpretación es crucialmente diferente de la que se obtiene en una regresión simple. El coeficiente de una regresión simple de Y sobre X_j captura no solo el efecto directo de X_j , sino

también los efectos indirectos de cualquier otra variable omitida que esté correlacionada tanto con Y como con X_i . Por ello, el valor de $\hat{\beta}_i$ en una regresión múltiple casi nunca es igual al de una regresión simple.

La forma más precisa de entender \hat{eta}_j es a través del concepto de **regresión parcial**. El coeficiente $\hat{\beta}_j$ de la regresión múltiple es idéntico al coeficiente de una regresión simple entre dos conjuntos de residuos:

- 1. Los residuos de una regresión de y sobre todas las demás variables predictoras (excepto
- 2. Los residuos de una regresión de $\mathbf{x_i}$ sobre todas las demás variables predictoras.

En otras palabras, $\hat{\beta}_i$ mide la relación entre la parte de Y que no puede ser explicada por las otras variables y la parte de X_i que tampoco puede ser explicada por las otras variables. Es la asociación entre Y y X_i después de haber "limpiado" o "netado" la influencia de todos los demás predictores de ambas. Este concepto se visualiza en los gráficos de regresión parcial (o added-variable plots), que son una herramienta de diagnóstico fundamental.

Interpretación práctica de los coeficientes

Volviendo a nuestro ejemplo de viviendas, interpretemos cada coeficiente aplicando el principio ceteris paribus:

- Superficie (1172 €/m²): Por cada metro cuadrado adicional, el precio aumenta en promedio 1172 euros, manteniendo constantes el número de habitaciones, antigüedad, distancia al centro y presencia de garaje.
- 1.5072×10^4 euros en promedio, **controlando por** la superficie y demás variables.
- Antigüedad (-745 €/año): Por cada año de antigüedad, el precio disminuye en 745 euros en promedio, ceteris paribus.
- Distancia al centro (-2028 €/km): Cada kilómetro adicional de distancia reduce el precio en 2028 euros en promedio, manteniendo todo lo demás constante.
- Garaje $(2.5829 \times 10^4 \text{ } \text{€})$: Las viviendas con garaje cuestan 2.5829×10^4 euros más que las que no tienen, en promedio y controlando por las demás variables.

Punto clave: Estos efectos son diferentes de los que obtendríamos con regresiones simples, ya que aquí hemos "limpiado" la influencia de las otras variables.

La perspectiva geométrica de mínimos cuadrados

La estimación por mínimos cuadrados tiene una interpretación geométrica elegante y potente que nos ayuda a comprender qué está ocurriendo.

Podemos pensar en el vector de observaciones \mathbf{y} como un punto en un espacio de n dimensiones. Las columnas de la matriz de diseño \mathbf{X} generan un subespacio vectorial dentro de \mathbb{R}^n , conocido como el **espacio columna** de \mathbf{X} , denotado $C(\mathbf{X})$. Este subespacio contiene todas las posibles combinaciones lineales de nuestros predictores.

El método MCO encuentra el vector de valores ajustados $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ que está "más cerca" de \mathbf{y} . Geométricamente, este punto no es otro que la **proyección ortogonal** del vector \mathbf{y} sobre el subespacio $C(\mathbf{X})$.

Esta proyección se realiza a través de una matriz especial llamada **matriz de proyección** o **matriz sombrero** (*hat matrix*), denotada por **H**:

$$\hat{\mathbf{y}} = \operatorname{Proj}_{C(\mathbf{X})} \mathbf{y} = \mathbf{H} \, \mathbf{y}, \qquad \text{donde} \quad \mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

Esta operación induce la **descomposición ortogonal fundamental** del vector de respuesta:

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{e}$$

El hecho de que la proyección sea ortogonal implica que el vector de residuos \mathbf{e} es ortogonal (perpendicular) al vector de valores ajustados $\hat{\mathbf{y}}$ y, de hecho, a todo el subespacio $C(\mathbf{X})$. Esta ortogonalidad, $\hat{\mathbf{y}}^T\mathbf{e} = 0$, es la base del **Teorema de Pitágoras para la regresión**, que permite la descomposición de la variabilidad total en una parte explicada y una no explicada.

3.4 Evaluación del modelo y descomposición de la varianza

Una vez estimado el modelo, el siguiente paso es evaluar su desempeño. ¿Qué tan bien se ajustan nuestras predicciones a los datos reales? Aunque ya vimos la perspectiva geométrica y el Teorema de Pitágoras en regresión simple, es importante revisitar estos conceptos porque en regresión múltiple la interpretación y el cálculo de la descomposición de varianza presenta matices adicionales que debemos entender claramente.

En regresión múltiple, la **Descomposición de la Varianza** o **ANOVA** (*Analysis of Variance*) cobra especial relevancia porque ahora tenemos múltiples variables explicativas y necesitamos evaluar el aporte conjunto de todas ellas, así como su significancia global.

La idea fundamental es que la variabilidad total de la variable respuesta (Y) puede descomponerse en dos partes: una parte que es explicada por nuestro modelo de regresión (ahora con múltiples variables) y otra parte que queda sin explicar, atribuida al error aleatorio.

Partimos de la identidad: $(y_i - \bar{y}) = (\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i) = (\hat{y}_i - \bar{y}) + e_i$.

Elevando al cuadrado y sumando para todas las observaciones (y gracias a la propiedad de ortogonalidad $\hat{\mathbf{y}}^T\mathbf{e} = 0$, que hace que los productos cruzados se anulen), llegamos a la descomposición fundamental de las sumas de cuadrados:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} e_i^2$$

Esto se conoce como la ecuación de ANOVA:

$$SST = SSR + SSE$$

Donde:

- SST (Suma de Cuadrados Total): Es la variabilidad total de Y. Mide la dispersión de los datos observados alrededor de su media.
- SSR (Suma de Cuadrados de la Regresión): Es la variabilidad explicada por el modelo. Mide la dispersión de los valores predichos alrededor de la media.
- SSE (Suma de Cuadrados del Error): Es la variabilidad no explicada o residual. Mide la dispersión de los datos observados alrededor de la línea de regresión.

Esta tabla no es solo un resumen; es el motor de las principales herramientas de evaluación e inferencia del modelo.

3.4.1 Coeficiente de determinación múltiple

El **coeficiente de determinación**, R^2 , es la medida de ajuste más popular. Responde a la pregunta: ¿Qué proporción de la variabilidad total de Y es explicada por las variables predictoras del modelo?

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Propiedades clave:

- Su valor siempre está entre 0 (el modelo no explica nada) y 1 (el modelo explica toda la variabilidad).
- Puede interpretarse como el cuadrado de la correlación entre los valores observados y los valores predichos, $R^2 = \text{corr}^2(\mathbf{y}, \hat{\mathbf{y}})$.
- Problema: R^2 nunca decrece al añadir una nueva variable predictora al modelo, incluso si esta es completamente irrelevante. Esto lo convierte en una métrica engañosa para comparar modelos con distinto número de predictores.

3.4.2 El coeficiente de determinación ajustado

Para solucionar el problema de R^2 , utilizamos el R^2 ajustado, que introduce una penalización por cada variable añadida. Lo hace comparando las varianzas (sumas de cuadrados divididas por sus grados de libertad) en lugar de solo las sumas de cuadrados:

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)} = 1 - \frac{\hat{\sigma}^2}{s_V^2}$$

Donde s_Y^2 es la varianza muestral de Y. El $R_{ajustado}^2$ solo aumentará si la nueva variable mejora el modelo más de lo que se esperaría por puro azar. Es, por tanto, la métrica preferida para comparar la calidad de ajuste de modelos anidados.

¡Excelente observación! Tienes toda la razón. En la sección de "Inferencia" me centré en los contrastes de hipótesis (el test t y el test F) pero omití una parte igualmente importante que sí estaba en tu Tema 1: la construcción de intervalos de confianza para los parámetros.

Un contraste de hipótesis te da una respuesta de "sí/no" sobre la significancia, pero un intervalo de confianza te ofrece un rango de valores plausibles para el efecto, lo cual es mucho más informativo.

Aquí tienes una versión revisada y ampliada de la sección "Inferencia estadística en el modelo múltiple" que incluye explícitamente los intervalos de confianza, manteniendo el flujo que hemos construido. Puedes reemplazar la sección anterior por esta.

3.5 Inferencia Estadística en el Modelo Múltiple

La estimación nos da los valores de los coeficientes para nuestra muestra, pero la inferencia nos permite usar esos valores para sacar conclusiones sobre los parámetros de la población. ¿Son estos coeficientes "reales" o podrían ser fruto del azar muestral? Para responder, nos basamos en las propiedades distributivas de nuestros estimadores.

3.5.1 Contraste de hipótesis sobre los coeficientes

El **test t** nos permite decidir si una variable predictora X_j tiene una relación estadísticamente significativa con Y, después de controlar por el efecto de todas las demás variables en el modelo.

• **Hipótesis**: La hipótesis nula es que el coeficiente es cero en la población $(H_0: \beta_j = 0)$, lo que implicaría que X_j no tiene un efecto lineal sobre Y una vez que se consideran los otros predictores. La alternativa es que el coeficiente es distinto de cero $(H_1: \beta_j \neq 0)$.

• Estadístico de contraste: Construimos el estadístico t, que mide cuántos errores estándar separan nuestro coeficiente estimado del valor nulo (cero).

$$\frac{\hat{\beta}_j - \beta_j}{\operatorname{se}(\hat{\beta}_j)} \sim t_{n-p-1}$$

Bajo la hipótesis nula, el estadístico que calculamos con nuestra muestra es $t_{obs}=\hat{\beta}_i/\text{se}(\hat{\beta}_i).$

• Decisión: Comparamos el valor observado t_{obs} con la distribución t de Student con n-p-1 grados de libertad. Si el **p-valor** asociado es suficientemente pequeño (normalmente < 0.05), rechazamos la hipótesis nula y concluimos que la variable es un predictor estadísticamente significativo.

3.5.2 Intervalo de confianza para los coeficientes

Mientras que el test t nos da una decisión binaria, el **intervalo de confianza** nos proporciona un **rango de valores plausibles** para el verdadero parámetro poblacional β_j . Es una herramienta de estimación más informativa.

La estructura del intervalo se basa en la distribución t que acabamos de ver:

Estimación puntual
$$\pm$$
 (Valor crítico) \times (Error estándar)

Para un nivel de confianza del $100(1-\alpha)\%$, el intervalo para β_i es:

$$\hat{\beta}_i \pm t_{\alpha/2, n-p-1} \cdot \operatorname{se}(\hat{\beta}_i)$$

- Interpretación: Tenemos una confianza del $100(1-\alpha)\%$ de que el verdadero valor del parámetro poblacional β_i se encuentra dentro de este rango.
- Dualidad con el Contraste de Hipótesis: Existe una relación directa entre el intervalo de confianza y el test t. Si el valor 0 no está incluido en el intervalo de confianza del 95% para $\hat{\beta}_j$, es matemáticamente equivalente a rechazar la hipótesis nula $H_0: \beta_j = 0$ con un nivel de significancia $\alpha = 0.05$. Esto nos da dos formas de llegar a la misma conclusión sobre la significancia de un predictor.

3.5.3 Inferencia sobre la significancia global del modelo

El **test F** evalúa si el modelo en su conjunto tiene poder predictivo. Es decir, contrasta si **al menos uno** de los predictores tiene una relación significativa con Y.

- Hipótesis: La hipótesis nula es que todos los coeficientes de las pendientes son simultáneamente cero $(H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0)$, frente a la alternativa de que al menos uno es distinto de cero $(H_1: Algún \beta_i \neq 0)$.
- Estadístico de contraste: El estadístico F se construye a partir de la tabla ANOVA, comparando la varianza explicada por el modelo con la varianza residual, ajustando por sus respectivos grados de libertad.

$$F = \frac{\text{Varianza Explicada}}{\text{Varianza No Explicada}} = \frac{SSR/p}{SSE/(n-p-1)}$$

• Decisión: Comparamos el valor del estadístico F con una distribución F de Snedecor con p y n-p-1 grados de libertad. Un p-valor pequeño indica que el modelo es globalmente significativo y que, como conjunto, nuestros predictores explican una parte de la variabilidad de Y que no es atribuible al azar.

El test F es una herramienta fundamental, ya que representa el primer paso en la validación de cualquier modelo de regresión múltiple.

Interpretación de las pruebas estadísticas

En nuestro ejemplo de viviendas:

Prueba F global:

- F(5, 194) = 389.45, p < 0.001
- Conclusión: El modelo es globalmente significativo. Al menos una variable predictora tiene una relación real con el precio.

Pruebas t individuales (ejemplos):

- Superficie: t = 24.78, $p < 0.001 \rightarrow Significativa$
- Garaje: t = 10.99, $p < 0.001 \rightarrow Significativa$

Intervalos de confianza (95%):

- **Superficie**: [1079, 1265] euros/m²
- No incluye el 0, confirma la significancia estadística

Interpretación práctica: Estamos 95% confiados de que el verdadero efecto de la superficie está entre 1079 y 1265 euros por m², controlando por las demás variables.

3.6 Predicción con el modelo múltiple

Una vez que hemos ajustado y validado nuestro modelo, podemos utilizarlo para uno de sus propósitos más poderosos: hacer predicciones para nuevas observaciones. Es fundamental distinguir entre dos objetivos de predicción diferentes, ya que cada uno conlleva un nivel de incertidumbre distinto.

Supongamos que tenemos un nuevo conjunto de valores para las variables predictoras, representado por el vector $\mathbf{x}_0^T = [1, x_{01}, x_{02}, \dots, x_{0p}]$. La **predicción puntual** en ambos casos es la misma:

$$\hat{y}_0 = \mathbf{x}_0^T \hat{\boldsymbol{\beta}}$$

Sin embargo, esta estimación puntual está sujeta a error. Para cuantificar esta incertidumbre, construimos dos tipos de intervalos.

3.6.1 Intervalo de confianza para la respuesta media

Este intervalo responde a la pregunta: ¿cuál es el valor **promedio** de Y para todas las observaciones con las características \mathbf{x}_0 ? Su objetivo es acotar la posición de la verdadera (pero desconocida) superficie de regresión poblacional en el punto \mathbf{x}_0 .

La incertidumbre aquí proviene únicamente de la estimación de los coeficientes $\hat{\beta}$. La varianza de esta predicción media es:

$$\operatorname{Var}(\hat{y}_0) = \operatorname{Var}(\mathbf{x}_0^T \hat{\beta}) = \mathbf{x}_0^T \operatorname{Var}(\hat{\beta}) \mathbf{x}_0 = \sigma^2 \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0$$

Reemplazando σ^2 por su estimador insesgado $\hat{\sigma}^2$, el **intervalo de confianza al** $100(1-\alpha)\%$ para la respuesta media $E[Y|\mathbf{X}=\mathbf{x}_0]$ es:

$$\hat{y}_0 \pm t_{\alpha/2,n-p-1} \cdot \sqrt{\hat{\sigma}^2 \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0}$$

3.6.2 Intervalo de predicción para una observación individual

Este intervalo responde a una pregunta más ambiciosa: ¿entre qué valores se encontrará la respuesta de una **única y nueva** observación con las características \mathbf{x}_0 ?

Este intervalo debe considerar dos fuentes de incertidumbre:

- 1. La incertidumbre sobre la localización de la verdadera superficie de regresión (la misma que en el intervalo de confianza).
- 2. La variabilidad aleatoria inherente a una sola observación, que se desvía de la media poblacional (el error ε_0 , cuya varianza es σ^2).

Por esta razón, un intervalo de predicción **siempre será más ancho** que un intervalo de confianza para el mismo nivel de significancia. La varianza del error de predicción es la suma de las dos fuentes de varianza:

$$\operatorname{Var}(y_0 - \hat{y}_0) = \operatorname{Var}(\varepsilon_0) + \operatorname{Var}(\hat{y}_0) = \sigma^2 + \sigma^2 \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0$$

El intervalo de predicción al $100(1-\alpha)\%$ para una observación individual y_0 es:

$$\hat{y}_0 \pm t_{\alpha/2,n-p-1} \cdot \sqrt{\hat{\sigma}^2 \left(1 + \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0\right)}$$

La diferencia clave es el "+1" dentro de la raíz cuadrada, que representa la varianza de la nueva observación. Visualmente, tanto la banda de confianza como la de predicción son más estrechas cerca del "centroide" de los datos (la media multivariante de los predictores) y se ensanchan a medida que nos alejamos hacia valores más extremos de los predictores.

3.7 Diagnóstico del modelo múltiple

Al igual que en la regresión simple, una vez ajustado el modelo es fundamental realizar un diagnóstico exhaustivo para verificar que los supuestos del modelo lineal se cumplen. La fiabilidad de todas nuestras inferencias (p-valores e intervalos de confianza) descansa sobre la validez de estos supuestos. El proceso sigue basándose en el **análisis de los residuos**, nuestra ventana a los errores teóricos no observables (Fox and Weisberg 2018; Harrell 2015).

3.7.1 Verificación de los supuestos clásicos

Los supuestos de linealidad, homocedasticidad, normalidad e independencia se verifican con herramientas muy similares a las vistas en el capítulo anterior, por lo que aquí las resumiremos y presentaremos una herramienta adicional para la linealidad.

- Normalidad: El gráfico Q-Q de los residuos estudentizados y el test de Shapiro-Wilk siguen siendo las herramientas principales para comprobar que los errores se distribuyen de forma Normal.
- Independencia: Para datos de series temporales, el gráfico de residuos contra el tiempo y el test de Durbin-Watson se utilizan de la misma manera para detectar autocorrelación.
- Homocedasticidad (Varianza Constante): El gráfico Scale-Location y el test de Breusch-Pagan siguen siendo los métodos de referencia para detectar heterocedasticidad (patrones de embudo en la dispersión de los residuos).

Para la **linealidad**, el gráfico de **Residuos vs. Valores Ajustados** sigue siendo la primera herramienta a inspeccionar. Una nube de puntos sin patrones alrededor del cero sugiere que la forma funcional del modelo es globalmente correcta. Sin embargo, en el contexto múltiple, este gráfico podría ocultar una relación no lineal con *una variable específica*. Para ello, disponemos de una herramienta más precisa.

3.7.1.1 Gráficos de componente más residuo

El gráfico de Componente más Residuo (CPR o Partial Residual Plots) nos permite visualizar la relación entre la variable respuesta y **un único predictor** X_j , ajustando por el efecto de todos los demás predictores. Para cada predictor X_j , el gráfico muestra:

Residuo Parcial =
$$e_i + \hat{\beta}_j x_{ij}$$
 vs. x_{ij}

La pendiente de una línea ajustada a estos puntos es exactamente $\hat{\beta}_j$. Si la relación es lineal, los puntos deben seguir la línea de regresión. Una desviación sistemática (una curva) sugiere que la relación con esa variable específica no es lineal y que podría necesitar una transformación (p.ej., logarítmica o cuadrática).

₱ Ejemplo práctico: Gráficos de componente + residuo

Los gráficos CPR nos permiten visualizar si la relación de cada predictor con la respuesta es verdaderamente lineal:

```
# Cargar librerías necesarias
suppressPackageStartupMessages(library(car))

# Gráficos de Componente más Residuo (CPR)
crPlots(modelo, main = "Gráficos de Componente + Residuo")
```


Interpretación:

- Línea sólida: Muestra la relación lineal esperada (pendiente = coeficiente de regresión)
- Línea punteada: Suavizado no paramétrico de los puntos
- Coincidencia de líneas: Sugiere linealidad adecuada
- Divergencia significativa: Indica posible no-linealidad que requiere transformación

Si vemos curvas sistemáticas en algún gráfico CPR, es señal de que esa variable podría necesitar una transformación (log, cuadrática, etc.).

3.7.2 Diagnóstico de multicolinealidad

La **multicolinealidad** es un problema que solo existe en la regresión múltiple. Ocurre cuando dos o más variables predictoras están fuertemente correlacionadas entre sí.

3.7.2.1 Consecuencias de la multicolinealidad

La multicolinealidad no viola los supuestos de Gauss-Markov (los estimadores siguen siendo insesgados y eficientes), pero puede arruinar la interpretación práctica de un modelo:

- 1. Varianza de los estimadores inflada: Los errores estándar de los coeficientes de las variables colineales se vuelven muy grandes. Esto dificulta o imposibilita declarar un predictor como estadísticamente significativo, incluso si lo es.
- 2. Inestabilidad de los coeficientes: Pequeños cambios en los datos (o añadir/quitar una variable) pueden provocar cambios drásticos en las estimaciones de los coeficientes, incluso cambiando su signo, lo que hace que la interpretación sea poco fiable.
- 3. Contradicciones en los contrastes: Se puede dar la paradoja de tener un modelo globalmente significativo (test F con p-valor bajo y R² alto) pero con ningún predictor individual significativo (tests t con p-valores altos).

3.7.2.2 Detección de la multicolinealidad

- 1. Matriz de correlaciones: Un primer paso es examinar la matriz de correlaciones entre los predictores. Coeficientes de correlación altos (p. ej., > 0.8) son una señal de alerta. Sin embargo, este método no detecta la colinealidad que involucra a tres o más variables.
- 2. Factor de Inflación de la Varianza (VIF): Es la herramienta de diagnóstico definitiva. Para cada predictor X_i , se calcula su VIF de la siguiente manera:
 - 1. Se ajusta una regresión lineal de X_j en función de todas las demás variables predictoras: $X_j \sim X_1 + \dots + X_{j-1} + X_{j+1} + \dots + X_p$. 2. Se obtiene el R^2 de este modelo auxiliar, que llamamos R_j^2 . Este valor nos dice qué
 - proporción de la varianza de X_j es explicada por los otros predictores.
 - 3. El VIF se calcula como:

$$VIF_j = \frac{1}{1 - R_j^2}$$

• Interpretación: El VIF nos dice por qué factor se infla la varianza del estimador $\hat{\beta}_i$ debido a su relación con los otros predictores.

Reglas prácticas para interpretar VIF

- VIF = 1: Ausencia de colinealidad (ideal)
- VIF > 5: Valores preocupantes que requieren atención
- VIF > 10: Multicolinealidad seria que debe ser tratada

Recordar: El VIF indica por qué factor se multiplica la varianza del coeficiente debido a la multicolinealidad.

```
💡 Ejemplo: Diagnóstico de multicolinealidad
Caso 1: Sin problemas de multicolinealidad (nuestro modelo actual)
# Calculamos VIF para nuestro modelo de viviendas
vif_values <- vif(modelo)</pre>
cat("VIF en nuestro modelo:\n")
VIF en nuestro modelo:
round(vif_values, 2)
                      habitaciones
                                          antiguedad distancia_centro
      superficie
            1.40
                              1.40
                                                1.01
          garaje
             1.01
Como todos los VIF < 5, no hay problemas de multicolinealidad.
Caso 2: Ejemplo con multicolinealidad problemática
# Simulamos un caso con multicolinealidad
set.seed(456)
n <- 100
# Creamos variables altamente correlacionadas
superficie <- runif(n, 50, 200)</pre>
habitaciones_sim <- round(superficie/25 + rnorm(n, 0, 0.5)) # Muy correlacionada con super
metros_cuadrados <- superficie + rnorm(n, 0, 5) # Esencialmente la misma que superficie
precio_sim <- 1000*superficie + 5000*habitaciones_sim + rnorm(n, 0, 10000)</pre>
# Modelo con multicolinealidad
modelo_colineal <- lm(precio_sim ~ superficie + habitaciones_sim + metros_cuadrados)</pre>
# VIF del modelo problemático
vif_problematico <- vif(modelo_colineal)</pre>
cat("\nVIF en modelo con multicolinealidad:\n")
VIF en modelo con multicolinealidad:
```

round(vif_problematico, 2)

```
superficie habitaciones_sim metros_cuadrados 90.96 10.55 76.57
```

```
# Matriz de correlaciones para explicar el problema
datos_problema <- data.frame(superficie, habitaciones_sim, metros_cuadrados)
cor_problema <- cor(datos_problema)
cat("\nMatriz de correlaciones:\n")</pre>
```

Matriz de correlaciones:

```
round(cor_problema, 3)
```

superficie habitaciones_sim metros_cuadrados superficie 1.000 0.951 0.993 habitaciones_sim 0.951 1.000 0.942 metros_cuadrados 0.993 0.942 1.000

Interpretación: - VIF > 10: Problema serio de multicolinealidad - La correlación superficie-metros_cuadrados 1 explica el problema

Soluciones a los problemas de multicolinealidad

Enfrentar la multicolinealidad no siempre significa que debamos alterar el modelo. La solución adecuada depende de la severidad del problema (medido con el VIF) y, sobre todo, del **objetivo de nuestro análisis**.

- 1. No hacer nada: Si el objetivo principal del modelo es la **predicción** y no la interpretación de los coeficientes individuales, la multicolinealidad no es un problema grave. El modelo en su conjunto puede tener un buen poder predictivo, aunque los efectos individuales de las variables colineales sean inestables. Además, si las variables colineales no son las variables de interés de nuestra investigación, podemos ignorar su multicolinealidad.
- 2. Eliminar una de las variables correlacionadas: Esta es la solución más simple y común. Si dos o más variables miden esencialmente el mismo concepto (p. ej., "educación en años" y "nivel educativo alcanzado"), una de ellas es redundante. Se puede eliminar la que tenga menor relevancia teórica o la que, individualmente, tenga una menor correlación con la variable respuesta.
- 3. Combinar las variables colineales: En lugar de eliminar información, podemos combinar las variables colineales en un único predictor compuesto. Por ejemplo,

si tenemos gasto_en_publicidad_tv y gasto_en_publicidad_radio, podríamos crear una nueva variable gasto_total_en_medios. Para casos más complejos, se pueden utilizar técnicas de reducción de dimensionalidad como el Análisis de Componentes Principales (PCA) para crear un índice que capture la información conjunta de las variables correlacionadas.

- 4. Utilizar métodos de estimación alternativos: Si no es posible o deseable modificar los predictores, se pueden usar técnicas de regresión penalizada que están diseñadas para manejar la multicolinealidad.
 - Regresión Ridge: Es el método por excelencia para este problema. Añade un pequeño sesgo a las estimaciones de los coeficientes para reducir drásticamente su varianza, produciendo un modelo mucho más estable y fiable.
 - Lasso y Elastic Net: Son otras técnicas de regresión penalizada que también manejan bien la colinealidad y, además, pueden realizar selección de variables al hacer que algunos coeficientes sean exactamente cero.
- 5. Aumentar el tamaño de la muestra: En algunos casos, la multicolinealidad puede ser un artefacto de una muestra pequeña. Recolectar más datos puede, en ocasiones, reducir la correlación entre los predictores y disminuir la varianza de los coeficientes.

La elección de la estrategia debe ser una decisión meditada, sopesando la simplicidad, la interpretabilidad y la robustez del modelo final.

3.7.3 Identificación de observaciones influyentes

Los conceptos de *outlier* (residuo grande), *leverage* (valor atípico en los predictores) e *influencia* (impacto en el modelo) son los mismos que en regresión simple. Sin embargo, el caso múltiple nos ofrece herramientas de diagnóstico más específicas.

3.7.3.1 DFBETAS: Influencia sobre coeficientes individuales

Mientras que la Distancia de Cook mide la influencia global de una observación sobre todos los coeficientes a la vez, los **DFBETAS** miden el impacto que tiene eliminar la observación i sobre cada coeficiente β_i individualmente.

$$\text{DFBETA}_{j,i} = \frac{\hat{\beta}_j - \hat{\beta}_{j(-i)}}{\text{se}(\hat{\beta}_{j(-i)})}$$

Un DFBETA grande para el coeficiente β_i indica que la observación i tiene un fuerte poder de atracción sobre la estimación de ese coeficiente en particular. Una regla común es considerar problemáticos los puntos con $|DFBETA_{j,i}| > \frac{2}{\sqrt{n}}$.

3.7.3.2 Gráficos de regresión parcial

Estos gráficos son una de las herramientas visuales más potentes y elegantes de la regresión múltiple. Un gráfico de regresión parcial para un predictor X_i nos permite ver su relación con la respuesta Y después de haber eliminado el efecto lineal de todos los demás predictores.

Se construye de la siguiente forma: 1. Se calculan los residuos de la regresión de Y en función de todos los predictores excepto X_j . Llamemos a estos residuos $e_{Y|X_{-j}}$. 2. Se calculan los residuos de la regresión de X_j en función de todos los demás predictores. Llamemos a estos residuos $e_{X_j|X_{-j}}$. 3. Se grafica $e_{Y|X_{-j}}$ (eje Y) contra $e_{X_j|X_{-j}}$ (eje X).

A Propiedad clave de los gráficos de regresión parcial

La magia de este gráfico: La pendiente de la línea de regresión ajustada a estos puntos es **exactamente** el coeficiente de regresión múltiple β_i .

Esta equivalencia matemática es lo que hace que estos gráficos sean tan poderosos para entender la interpretación de los coeficientes en regresión múltiple.

Estos gráficos son útiles para:

- Visualizar la magnitud y significancia del efecto de una variable "ajustada".
- Detectar no-linealidades en la relación parcial de una variable.
- Identificar observaciones que son influyentes para la estimación de un coeficiente específico (puntos con alto leverage o residuos grandes en este gráfico parcial).

Ejemplo: Gráficos de Regresión Parcial

Los gráficos de regresión parcial nos permiten visualizar la relación "limpia" entre cada predictor y la variable respuesta:

Gráficos de regresión parcial para todas las variables avPlots(modelo, main = "Gráficos de regresión parcial")

¿Qué vemos en cada gráfico?

- Eje X: Residuos de la regresión de X_j vs. todos los demás predictores
- Eje Y: Residuos de la regresión de Y vs. todos los demás predictores (excepto X_j)
- Pendiente: Es exactamente el coeficiente $\hat{\beta}_j$ del modelo múltiple
- Puntos alejados: Observaciones influyentes para ese coeficiente específico

Interpretación práctica: - Una relación lineal clara confirma la validez del modelo - Puntos muy alejados de la línea pueden ser observaciones influyentes - Patrones curvos sugieren no-linealidad en esa variable específica

4 Ingeniería de características: transformaciones de variables e interacciones

En la práctica del análisis de datos, los datos en su estado bruto raramente están en la forma óptima para el modelado estadístico. La **ingeniería de características** es el proceso fundamental que transforma, combina y crea variables para maximizar la capacidad predictiva y la interpretabilidad de nuestros modelos (Kuhn and Johnson 2019; Zheng and Casari 2018).

Este proceso abarca tres áreas principales que exploraremos en profundidad:

Transformaciones de variables: Las transformaciones matemáticas nos permiten abordar múltiples problemas simultaneamente: linearizar relaciones no lineales, estabilizar la varianza (heterocedasticidad), aproximar la distribución de los errores a la normalidad, y reducir la influencia de valores atípicos. Dominar cuándo y cómo aplicar transformaciones logarítmicas, potenciales, Box-Cox o Yeo-Johnson es fundamental para optimizar nuestros modelos (Box and Cox 1964; Yeo and Johnson 2000).

Tratamiento de variables categóricas: Las variables categóricas requieren estrategias específicas de codificación que preserven la información relevante sin introducir supuestos erróneos. La elección entre codificación ordinal, one-hot encoding, o técnicas más avanzadas puede impactar significativamente el rendimiento del modelo (Potdar, Pardawala, and Pai 2017).

Interacciones entre variables: Las interacciones capturan cómo el efecto de una variable puede cambiar según el nivel de otra variable, revelando patrones que los efectos principales por sí solos no pueden detectar. Comprender los diferentes tipos de interacciones y sus aplicaciones es clave para modelar relaciones complejas en el mundo real (Jaccard and Turrisi 2003).

! Objetivos de aprendizaje

Al finalizar este capítulo, serás capaz de:

- 1. **Identificar cuándo aplicar transformaciones** específicas según el problema: linearización, heterocedasticidad, normalidad, o atípicos.
- 2. Aplicar transformaciones clásicas (logarítmica, potencial, inversa) y avanzadas (Box-Cox, Yeo-Johnson) de manera apropiada.
- 3. Interpretar modelos transformados, comprendiendo cómo cambia el significado de los coeficientes después de la transformación.

- 4. Codificar variables categóricas using ordinal encoding y one-hot encoding según la naturaleza de las categorías.
- 5. Crear e interpretar términos de interacción entre variables continuas, categóricas, y mixtas.
- 6. **Aplicar ingeniería de características** para crear nuevas variables predictivas mediante combinaciones, ratios y transformaciones.

4.1 Transformaciones de variables: propósitos y aplicaciones

En el análisis de datos y la construcción de modelos estadísticos, los datos en su forma original no siempre están preparados para obtener el máximo rendimiento de nuestros modelos. Las **transformaciones de variables** son herramientas fundamentales que nos permiten modificar la estructura matemática de nuestros datos para abordar problemas específicos y mejorar significativamente el ajuste del modelo (Box and Cox 1964; Carroll and Ruppert 1988).

La clave del éxito en las transformaciones está en diagnosticar correctamente el problema que enfrentamos y seleccionar la transformación apropiada. Cada transformación tiene propósitos específicos y consecuencias interpretativas que debemos comprender profundamente.

4.1.1 Diagnóstico: ¿Cuándo transformar?

El arte de las transformaciones no está en aplicarlas indiscriminadamente, sino en diagnosticar correctamente cuál es el problema que enfrentamos y seleccionar la transformación más apropiada para resolverlo. Un diagnóstico erróneo puede llevarnos a aplicar una transformación innecesaria o, peor aún, contraproducente que distorsione las relaciones reales en los datos.

La práctica común de "probar transformaciones hasta que mejore el ajuste" es metodológicamente peligrosa. Este enfoque de transformación por ensayo y error puede llevarnos a:

- Sobreajuste: Optimizar el modelo para los datos específicos que tenemos, perdiendo capacidad de generalización.
- Pérdida de interpretabilidad: Aplicar transformaciones complejas sin comprender su significado teórico.
- Violación de supuestos: Resolver un problema creando otros nuevos (ej. transformar para normalidad pero introducir heterocedasticidad).
- Sesgo de selección: Elegir la transformación que da los "mejores" resultados sin justificación teórica.

El proceso de diagnóstico debe ser sistemático y basado en evidencia visual y estadística. No basta con aplicar transformaciones porque "mejoran el R²"; debemos entender qué problema

específico estamos resolviendo y cómo la transformación aborda ese problema desde una perspectiva teórica sólida.

Un enfoque metodológicamente sólido sigue estos principios:

- 1. **Diagnóstico previo**: Identificar problemas específicos mediante análisis visual y tests estadísticos antes de decidir transformar.
- 2. **Justificación teórica**: Cada transformación debe tener una base conceptual sólida. Por ejemplo, usar logaritmos para relaciones multiplicativas o raíz cuadrada para estabilizar varianza Poisson.
- 3. Evaluación integral: No solo considerar el ajuste estadístico, sino también la interpretabilidad, robustez y generalización del modelo transformado.
- 4. Validación posterior: Verificar que la transformación realmente resuelve el problema identificado sin crear nuevos problemas.
- 5. **Parsimonia**: Preferir la transformación más simple que resuelva efectivamente el problema (principio de Occam aplicado a transformaciones).

Recordatorio: Diagnóstico de problemas en regresión lineal

Identificación de no linealidad: La no linealidad es uno de los problemas más comunes que enfrentamos en el modelado. *Diagnóstico visual:* gráficos de dispersión (Y vs. X), gráficos de componente + residuo (CPR plots), análisis de residuos vs. valores ajustados. *Diagnóstico estadístico:* Test de Ramsey RESET que evalúa si potencias de los valores ajustados mejoran significativamente el modelo.

Detección de heterocedasticidad: La heterocedasticidad (varianza no constante) viola supuestos fundamentales de la regresión lineal y sesga las inferencias estadísticas. *Diagnóstico visual:* gráfico de residuos vs. valores ajustados (patrón "embudo"), gráfico Scale-Location, residuos vs. variables predictoras individuales. *Diagnóstico estadístico:* Test de Breusch-Pagan (el más utilizado) y Test de White (más general).

Evaluación de normalidad de residuos: Aunque la normalidad no es crítica para estimación de coeficientes, sí es importante para inferencia estadística. *Diagnóstico visual:* histograma de residuos, QQ-plot de residuos. *Diagnóstico estadístico:* Test de Shapiro-Wilk (muestras pequeñas n<50) y Test de Jarque-Bera.

Detección de outliers y observaciones influyentes: Es fundamental distinguir entre outliers (valores extremos en Y) y observaciones influyentes (impacto en coeficientes). Outliers: boxplot de variable respuesta, residuos estudentizados, criterios $|\mathbf{t}_i| > 2$. Observaciones influyentes: análisis de leverage, distancia de Cook, DFBETAS, DFFITS, con criterios específicos como $\mathbf{h}_i > 2\mathbf{p}/\mathbf{n}$ y $\mathbf{D}_i > 4/\mathbf{n}$. Las observaciones se clasifican en: normales, outliers no influyentes, influyentes sin ser outliers, y outliers influyentes.

4.2 Escalado y normalización: preparando variables para el análisis

Antes de aplicar transformaciones complejas, es fundamental asegurar que nuestras variables estén en escalas comparables. Aunque la regresión lineal ordinaria no requiere estrictamente el escalado de variables para obtener estimadores insesgados, el escalado se vuelve crítico para la interpretación y esencial en métodos avanzados de modelado.

En regresión múltiple, los coeficientes representan el cambio en Y por unidad de cambio en cada variable predictora. Cuando las variables tienen escalas muy diferentes, los coeficientes pierden comparabilidad directa. Una variable medida en miles de euros tendrá coeficientes numéricamente pequeños, mientras que una variable medida en porcentajes tendrá coeficientes grandes, independientemente de su importancia real en el modelo.

Esta disparidad de escalas genera problemas interpretativos fundamentales: comparar la "importancia" relativa de las variables se vuelve imposible basándose únicamente en la magnitud de los coeficientes. El escalado resuelve este problema permitiendo que los coeficientes estandarizados (beta coefficients) representen cambios en desviaciones estándar, facilitando comparaciones directas entre predictores y proporcionando una base sólida para evaluar la importancia relativa de cada variable.

i Escalado en métodos de regularización

En regresión con regularización (Ridge, Lasso), el problema se agrava dramáticamente. Las penalizaciones L1 y L2 afectan desproporcionadamente a variables con escalas grandes, llevando a regularización injusta donde variables con unidades grandes son penalizadas más severamente que variables con unidades pequeñas, independientemente de su relevancia predictiva. Esto puede resultar en selección de variables sesgada y estimadores subóptimos. Este tema se desarrollará en profundidad en el siguiente capítulo sobre métodos de regularización.

El escalado no es solo una cuestión técnica, sino una decisión metodológica que afecta directamente la interpretación y validez de nuestros resultados. La elección entre estandarización, normalización min-max, o escalado robusto debe basarse en las características de los datos y los objetivos del análisis, considerando siempre el impacto en la interpretabilidad de los resultados finales.

4.2.1 Estandarización (Z-Score)

La **estandarización** es la técnica de escalado más utilizada en estadística. Transforma cada variable para que tenga media cero y desviación estándar uno, preservando la forma de la distribución original.

$$X_{\rm estandarizado} = \frac{X - \bar{X}}{\sigma_X}$$

Propiedades de la estandarización:

- Preserva la forma de la distribución: Si X era normal, X estandarizado también lo será.
- Facilita la comparación: Los coeficientes en regresión múltiple se vuelven comparables.
- Robusta ante outliers moderados: La media y desviación estándar son menos sensibles que min-max a valores extremos.

Cuándo usar estandarización:

- Variables con distribuciones aproximadamente normales.
- Cuando necesitamos preservar la información sobre la variabilidad relativa.
- En regresión múltiple para comparar la importancia relativa de las variables.
- Como paso previo a técnicas multivariantes (PCA, análisis discriminante).

4.2.2 Normalización Min-Max

La **normalización Min-Max** escala las variables a un rango específico, típicamente [0,1], preservando las relaciones relativas entre los valores.

$$X_{\text{normalizado}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}}$$

Propiedades de la normalización Min-Max:

- Rango acotado: Todas las variables transformadas tienen el mismo rango [0,1].
- Preserva relaciones: Las distancias relativas entre observaciones se mantienen.
- Interpretación intuitiva: 0 representa el mínimo observado, 1 el máximo observado.

Cuándo usar normalización Min-Max:

- Cuando necesitamos un rango específico (ej. entradas de redes neuronales).
- Variables con distribuciones uniformes o sin outliers extremos.
- Cuando la interpretación en términos de mínimo-máximo es relevante.
- En algoritmos que requieren entradas en [0,1] (algunos métodos de ensemble).

Limitaciones:

- Muy sensible a outliers: Un solo valor extremo puede comprimir toda la distribución.
- No preserva la normalidad: Una distribución normal se vuelve uniforme tras Min-Max.

4.2.3 Escalado robusto

Para datos con outliers significativos, el escalado robusto utiliza la mediana y el rango intercuartílico (IQR) en lugar de la media y desviación estándar:

$$X_{\text{robusto}} = \frac{X - \text{mediana}(X)}{\text{IQR}(X)}$$

Este método es menos sensible a valores extremos y preserva mejor la estructura de los datos en presencia de outliers.

```
n < -100
# Variable de ejemplo: Ingresos en miles de euros
ingresos \leftarrow rnorm(n, mean = 50, sd = 15)
# Aplicar diferentes transformaciones
ingresos_std <- scale(ingresos)[,1] # Estandarización</pre>
ingresos_norm <- (ingresos - min(ingresos)) / (max(ingresos) - min(ingresos))</pre>
                                                                                 # Min-Max
ingresos_robust <- (ingresos - median(ingresos)) / IQR(ingresos) # Robusto
# Crear tabla comparativa
library(knitr)
tabla_escalado <- data.frame(</pre>
  Método = c("Original", "Estandarización", "Min-Max", "Escalado Robusto"),
  Media = round(c(mean(ingresos), mean(ingresos_std), mean(ingresos_norm), median(ingresos_
  Desviación = round(c(sd(ingresos), sd(ingresos_std), sd(ingresos_norm), mad(ingresos_robo
  Mínimo = round(c(min(ingresos), min(ingresos_std), min(ingresos_norm), min(ingresos_robus
  Máximo = round(c(max(ingresos), max(ingresos_std), max(ingresos_norm), max(ingresos_robus
  Rango = round(c(
    max(ingresos) - min(ingresos),
    max(ingresos_std) - min(ingresos_std),
    max(ingresos_norm) - min(ingresos_norm),
    max(ingresos_robust) - min(ingresos_robust)
  ), 3)
kable(tabla_escalado, caption = "Comparación de métodos de escalado en variable Ingresos")
```

Table 4.1: Comparación de métodos de escalado en variable Ingresos

Ejemplo comparativo: Escalado de variables

set.seed(123)

Generar datos de ejemplo con diferentes escalas

Método	Media	Desviación	Mínimo	Máximo	Rango
Original	51.356	13.692	15.362	82.810	67.448
Estandarización	0.000	1.000	-2.629	2.297	4.926
Min-Max	0.534	0.203	0.000	1.000	1.000
Escalado Robusto	0.000	0.750	-2.000	1.793	3.792

Interpretación de los resultados:

- Original: Ingresos en miles de euros con gran variabilidad (SD 15)
- Estandarización: Media = 0, SD = 1, preservando la forma de la distribución
- Min-Max: Valores acotados entre [0,1], comprimiendo toda la variabilidad en este rango
- Escalado Robusto: Centrado en la mediana, menos sensible a valores extremos

Cada método transforma los datos de manera diferente según el objetivo: comparabilidad (estandarización), rango específico (min-max), o robustez ante outliers (robusto).

```
💡 Ejemplo con outliers: Escalado robusto
# Datos con outliers
set.seed(456)
datos_normales <- rnorm(95, 10, 2)
outliers < c(25, 30, 35, 40, 45)
datos_outliers <- c(datos_normales, outliers)</pre>
# Aplicar diferentes métodos de escalado
std_clasica <- scale(datos_outliers)[,1]</pre>
norm_minmax <- (datos_outliers - min(datos_outliers)) / (max(datos_outliers) - min(datos_outliers)
escalado_robusto <- (datos_outliers - median(datos_outliers)) / IQR(datos_outliers)
# Crear tabla comparativa
library(knitr)
tabla_outliers <- data.frame(</pre>
  Método = c("Original", "Estandarización", "Min-Max", "Escalado Robusto"),
  Media_Mediana = round(c(mean(datos_outliers), mean(std_clasica), mean(norm_minmax), media
  Desviación = round(c(sd(datos_outliers), sd(std_clasica), sd(norm_minmax), mad(escalado_
  Mínimo = round(c(min(datos_outliers), min(std_clasica), min(norm_minmax), min(escalado_ro
  Máximo = round(c(max(datos_outliers), max(std_clasica), max(norm_minmax), max(escalado_ro
  Q25_Q75 = c(
    paste(round(quantile(datos_outliers, c(0.25, 0.75)), 2), collapse = " - |"),
    paste(round(quantile(std_clasica, c(0.25, 0.75)), 2), collapse = " - "),
    paste(round(quantile(norm_minmax, c(0.25, 0.75)), 2), collapse = " - ")
    paste(round(quantile(escalado_robusto, c(0.25, 0.75)), 2), collapse = " |- ")
kable(tabla outliers, caption = "Comparación de métodos de escalado con outliers presentes
```

Table 4.2: Comparación de métodos de escalado con outliers presentes

	Media_Medi-			Máx-	
Método	ana	Desviación	Mínimo	imo	$Q25_Q75$
Original	11.447	5.996	5.491	45.000	8.93 - 11.81
Estandarización	0.000	1.000	-0.993	5.595	-0.42 - 0.06
Min-Max	0.151	0.152	0.000	1.000	0.09 - 0.16
Escalado Robusto	0.000	0.778	-1.654	12.108	-0.45 - 0.55

Análisis del impacto de outliers:

- Datos originales: Los outliers extienden el rango de \sim 6-14 a 6-45, distorsionando las medidas centrales
- Estandarización: Afectada por outliers en media y desviación estándar, resultando en distribución asimétrica
- Min-Max: Extremadamente sensible. Los datos normales quedan comprimidos en un rango muy pequeño (~0.0-0.2)
- Escalado robusto: Mantiene mejor las proporciones de la distribución central, minimizando la influencia de valores extremos

Conclusión: El escalado robusto es superior cuando hay outliers, preservando la estructura de la mayoría de observaciones.

4.3 Catálogo de transformaciones según el propósito

Una vez realizado el diagnóstico, debemos seleccionar la transformación más apropiada. Cada transformación tiene propósitos específicos y efectos secundarios que debemos considerar. La clave está en entender no solo qué transformación aplicar, sino por qué esa transformación específica resuelve nuestro problema.

4.3.1 Transformaciones para linearizar relaciones

Muchas relaciones en el mundo real no son lineales, pero pueden linearizarse mediante transformaciones apropiadas. La linearización no solo mejora el ajuste del modelo, sino que también facilita la interpretación y cumple con los supuestos de la regresión lineal.

4.3.1.1 Transformación logarítmica

La transformación logarítmica es probablemente la más utilizada en estadística aplicada debido a su versatilidad y propiedades interpretativas únicas.

Cuándo utilizarla:

- Relaciones exponenciales: Cuando Y crece exponencialmente respecto a X, $Y=ae^{bX}$ se lineariza como $\log(Y)=\log(a)+bX$
- Relaciones multiplicativas: En modelos donde los efectos se combinan multiplicativamente
- Procesos de crecimiento proporcional: Donde la tasa de cambio es proporcional al nivel actual
- Variables con crecimiento acelerado: Ingresos, precios, donde cada unidad adicional tiene impacto decreciente

Patrones de identificación:

- Curva cóncava que se aplana hacia la derecha (rendimientos decrecientes)
- Relación donde duplicar X no duplica Y, sino que el efecto se atenúa
- Heterocedasticidad donde la varianza aumenta con el nivel de Y

Aplicaciones matemáticas:

- $Y' = \log(Y)$: Lineariza relaciones exponenciales en Y
- $X' = \log(X)$: Lineariza relaciones de potencia en X
- $\log(Y) = a + b \log(X)$: Modelo log-log que produce elasticidades constantes

Interpretación especial: En modelos log-lineales y log-log, los coeficientes tienen interpretaciones económicas directas. En el modelo log-lineal $\log(Y) = a + bX$, el coeficiente b representa el cambio porcentual en Y por unidad de cambio en X. En el modelo log-log $\log(Y) = a + b\log(X)$, b es la elasticidad.

Casos típicos: Economía (relaciones ingreso-consumo, funciones de producción), biología (crecimiento poblacional, relaciones alométricas), finanzas (rendimientos de inversión).

4.3.1.2 Transformación de potencia

Las transformaciones de potencia son fundamentales cuando trabajamos con leyes físicas o relaciones alométricas donde esperamos relaciones del tipo $Y=aX^b$.

Identificación y aplicación:

- Relaciones curvilíneas que en escala log-log se vuelven lineales
- Método de linearización: tomar logaritmo de ambas variables $\log(Y) = \log(a) + b \log(X)$

• El exponente b representa la elasticidad o exponente de escalamiento

Ejemplos clásicos: Ley de Stevens en psicofísica, relaciones masa-metabolismo (Ley de Kleiber), economía urbana donde PIB de ciudades escala con población elevada a una potencia.

4.3.2 Transformaciones para estabilizar la varianza

La heterocedasticidad no solo viola supuestos del modelo, sino que también indica que diferentes observaciones tienen diferentes niveles de información. Las transformaciones de varianza estabilizan esta heterogeneidad.

4.3.2.1 Transformación de raíz cuadrada

La transformación $Y' = \sqrt{Y}$ es especialmente útil para datos de conteo donde la varianza es proporcional a la media, característica típica de la distribución de Poisson.

Fundamento teórico: En una distribución de Poisson con parámetro λ , tanto la media como la varianza son iguales a λ . La transformación de raíz cuadrada estabiliza la varianza porque $\operatorname{Var}(\sqrt{Y}) \approx \frac{1}{4}$ (constante).

Cuándo aplicarla:

- Conteos de eventos: número de defectos, llamadas telefónicas, accidentes, ventas por período
- Datos de frecuencia: número de visitas, clicks, transacciones
- Variables discretas con varianza creciente proporcional al nivel

Patrón de diagnóstico: Gráfico de residuos con forma de embudo donde la dispersión aumenta linealmente con la media, y gráfico de varianza vs. media de grupos muestra relación lineal.

Limitaciones: Solo apropiada para valores no negativos, interpretación complicada (unidades en raíz cuadrada), y para conteos con muchos ceros puede requerir $\sqrt{Y+c}$.

4.3.2.2 Transformación logarítmica para heterocedasticidad multiplicativa

Cuando la varianza es proporcional al cuadrado de la media (heterocedasticidad multiplicativa), la transformación logarítmica es la solución natural.

Características típicas:

- Variables monetarias: ingresos, precios, costos donde el error relativo es constante
- Porcentajes de crecimiento: donde el error de medición es proporcional al nivel
- Procesos multiplicativos: donde los errores se acumulan multiplicativamente

Efectos múltiples: La transformación logarítmica frecuentemente resuelve múltiples problemas simultáneamente: lineariza relaciones exponenciales, estabiliza varianza multiplicativa, reduce el impacto de outliers extremos, y aproxima distribuciones asimétricas a la normalidad.

4.3.3 Transformaciones para normalizar residuos y controlar outliers

Algunas transformaciones son especialmente efectivas para aproximar distribuciones a la normalidad y reducir la influencia de valores extremos.

4.3.3.1 Transformación inversa

La transformación inversa $Y' = \frac{1}{Y}$ o $X' = \frac{1}{X}$ es útil para relaciones hiperbólicas y distribuciones con colas pesadas hacia la derecha

Identificación matemática:

- Relación hiperbólica: $Y=\frac{a}{X}+b$ se lineariza como $Y=a\cdot\frac{1}{X}+b$ Asíntota horizontal: la relación se aproxima a un valor límite cuando X aumenta

Aplicaciones específicas: Tiempo hasta el evento (con asíntota natural), tasas de decaimiento, relaciones dosis-respuesta en farmacología, curvas de demanda con elasticidad precio variable.

Efecto en outliers: La transformación inversa invierte la escala, comprimiendo fuertemente los valores grandes y expandiendo los pequeños. Útil para reducir influencia de outliers extremos, pero debe usarse con precaución ya que amplifica errores en valores pequeños.

Consideraciones prácticas: Solo aplicable a valores estrictamente positivos (o negativos), los coeficientes representan el impacto en la escala inversa, y requiere tratamiento especial para valores cercanos a cero.

4.4 Transformación de Box-Cox

La transformación de Box-Cox es un método que optimiza automáticamente el parámetro de transformación para maximizar la normalidad y homocedasticidad de los residuos (Box and Cox 1964). En lugar de elegir manualmente entre transformación logarítmica, raíz cuadrada o inversa, Box-Cox encuentra el valor λ (lambda) que mejor normaliza los datos.

4.4.1 Definición matemática

$$Y(\lambda) = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda}, & \lambda \neq 0\\ \log(Y), & \lambda = 0 \end{cases}$$

Los valores especiales de λ corresponden a transformaciones clásicas:

- $\lambda = 1$: Sin transformación (identidad)
- $\lambda = 0.5$: Transformación de raíz cuadrada
- $\lambda = 0$: Transformación logarítmica
- $\lambda = -1$: Transformación inversa

4.4.2 Propósito y ventajas

Para qué sirve Box-Cox:

- Encuentra automáticamente la transformación óptima sin prueba y error
- Maximiza la verosimilitud del modelo, mejorando simultáneamente normalidad y homocedasticidad
- Proporciona un método objetivo para seleccionar la transformación apropiada
- Incluye intervalos de confianza para λ , permitiendo evaluar la incertidumbre de la estimación

Procedimiento de aplicación:

- 1. Se ajusta el modelo original y se calculan los residuos
- 2. Se evalúa la función de verosimilitud para diferentes valores de λ
- 3. Se selecciona el λ que maximiza la verosimilitud
- 4. Se aplica la transformación con el λ óptimo encontrado

4.4.3 Limitaciones importantes

Restricción de dominio: Box-Cox requiere que todos los valores de Y sean estrictamente positivos. Esta es su limitación más importante, ya que muchos conjuntos de datos reales incluyen ceros o valores negativos.

Aplicación tradicional: Se aplica principalmente a la variable dependiente Y, no a las variables predictoras. Aunque técnicamente es posible aplicarla a X, la interpretación se complica considerablemente.

Interpretación compleja: Cuando λ no corresponde a valores "simples" (como 0, 0.5, o 1), la interpretación de los coeficientes se vuelve difícil. Por ejemplo, si $\lambda = 0.37$, ¿cómo interpretar un coeficiente en la escala transformada?

Dependencia del modelo: El λ óptimo depende del modelo específico (predictores incluidos), por lo que cambiar el modelo puede requerir recalcular la transformación.

Extensión: Transformación de Yeo-Johnson

La transformación de Yeo-Johnson (Yeo and Johnson 2000) fue desarrollada específicamente para superar la limitación principal de Box-Cox: la restricción a valores positivos. Ventajas de Yeo-Johnson sobre Box-Cox:

- Sin restricción de dominio: Acepta cualquier valor real, incluyendo negativos y cero
- Preserva el signo: Los valores negativos permanecen negativos tras la transformación
- Continuidad: La transformación es continua en Y = 0, evitando discontinuidades
- Casos especiales familiares: Incluye como casos especiales todas las transformaciones comunes

Cuándo usar cada una:

- Box-Cox: Para datos estrictamente positivos, especialmente cuando se busca comparabilidad con literatura existente
- Yeo-Johnson: Cuando los datos incluyen valores negativos o cero, o cuando se necesita mayor flexibilidad

La elección entre ambas depende fundamentalmente de las características de sus datos y los objetivos del análisis.

4.5 Tratamiento de variables categóricas

Las variables categóricas son fundamentales en el modelado estadístico, pero requieren una preparación especial antes de ser utilizadas en algoritmos que esperan entradas numéricas (Potdar, Pardawala, and Pai 2017). La elección del método de codificación puede impactar significativamente tanto la interpretabilidad como el rendimiento del modelo.

4.5.1 Principios de codificación categórica

¿Por qué codificar? La mayoría de algoritmos de machine learning y modelos estadísticos requieren entradas numéricas. Las variables categóricas deben transformarse preservando su información semántica sin introducir supuestos erróneos sobre relaciones entre categorías.

Criterios de selección del método:

- Naturaleza de la variable: ¿Existe orden inherente entre categorías?
- Número de categorías: Variables con muchas categorías requieren consideraciones especiales
- Interpretabilidad: ¿Qué método facilita la interpretación de resultados?
- Eficiencia computacional: Balance entre precisión y complejidad

4.5.2 Codificación One-Hot (variables nominales)

El One-Hot Encoding transforma variables categóricas nominales en un conjunto de variables binarias (0/1), donde cada nueva variable representa la presencia o ausencia de una categoría específica. Esta técnica es fundamental cuando trabajamos con variables categóricas que no tienen orden inherente, como color, género, región geográfica, o tipo de producto.

La transformación convierte una variable categórica con k categorías en k nuevas columnas binarias (o k-1 para evitar colinealidad). Cada fila tendrá exactamente un "1" en la columna correspondiente a su categoría y "0" en todas las demás.

🛕 Dummy Variable Trap

Cuando se crean todas las columnas (k para k categorías), una puede expresarse como combinación lineal de las demás, causando colinealidad perfecta en modelos lineales.

Solución: Eliminar una categoría de referencia (usar k-1 columnas).

¿Por qué es necesario? La mayoría de algoritmos de machine learning requieren entradas numéricas y no pueden procesar directamente texto categórico. Más importante aún, el One-Hot Encoding no impone orden artificial entre categorías, tratando cada una como completamente independiente.

Ejemplo práctico: Consideremos una variable "Color" con valores [Rojo, Verde, Azul]. La codificación One-Hot creará tres columnas:

ID	Color	${f Color}_{f Rojo}$	${f Color_Verde}$	Color_Azul
1	Rojo	1	0	0
2	Verde	0	1	0
3	Azul	0	0	1

ID	Color	Color_Rojo	${f Color_Verde}$	Color_Azul
4	Rojo	1	0	0

Cada observación queda representada por un vector binario que identifica unívocamente su categoría sin asumir relaciones ordinales entre colores.

Interpretación en regresión: En un modelo de regresión lineal, cada variable binaria creada tendrá su propio coeficiente que representa la diferencia en la variable respuesta entre esa categoría específica y la categoría de referencia (la omitida). Por ejemplo, si omitimos "Azul", el coeficiente de "Color_Rojo" indicará cuánto mayor (o menor) es el valor esperado de Y cuando el color es Rojo comparado con cuando es Azul.

```
¶ Implementación práctica
# Crear datos de ejemplo
suppressPackageStartupMessages(library(caret))
datos <- data.frame(</pre>
  ID = 1:5,
  Color = c("Rojo", "Verde", "Azul", "Rojo", "Verde")
Método 1: usando model.matrix (incluye todas las categorías)
one_hot_completo <- model.matrix(~ Color - 1, data = datos)</pre>
one_hot_completo
  ColorAzul ColorRojo ColorVerde
1
                     1
                     0
          0
                                  1
3
                     0
                                  0
          1
4
                     1
                                 0
                                  1
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Color
[1] "contr.treatment"
Método 2: eliminando categoría de referencia (evita colinealidad)
one_hot_referencia <- model.matrix(~ Color, data = datos)[, -1]</pre>
one_hot_referencia
```

```
ColorRojo ColorVerde
1
           1
2
                        1
3
           0
                        0
4
           1
                        0
5
           0
                        1
Método 3: usando caret::dummyVars con fullRank para evitar colinealidad
dummy_vars <- dummyVars(~ Color, data = datos, fullRank = TRUE)</pre>
one_hot_caret <- predict(dummy_vars, newdata = datos)</pre>
one_hot_caret
  ColorRojo ColorVerde
1
           1
2
           0
                        1
3
                        0
4
                        0
5
                        1
```

i Ventajas y desventajas

Ventajas del One-Hot Encoding:

- No asume orden: Trata cada categoría como independiente
- Interpretabilidad: Cada coeficiente representa el efecto específico de esa categoría
- Compatibilidad: Funciona con todos los algoritmos numéricos

Desventajas:

- **Dimensionalidad**: Crea k columnas para k categorías (o k-1 con categoría de referencia)
- Dispersión: Matrices resultantes son muy dispersas (muchos ceros)
- Colinealidad: Riesgo de "dummy variable trap" sin categoría de referencia

4.5.3 Codificación Ordinal (variables ordinales)

La **codificación ordinal** transforma variables categóricas ordinales en números enteros que preservan el orden jerárquico natural de las categorías. Esta técnica es fundamental cuando trabajamos with variables categóricas que tienen un orden inherente y significativo, como nivel educativo, satisfacción del cliente, grado de severidad, o calificaciones de crédito.

La transformación asigna números enteros consecutivos que reflejan la jerarquía natural de las categorías, preservando tanto la información categórica como el orden relativo entre ellas.

🛕 Cuándo usar codificación ordinal

La codificación ordinal es apropiada cuando las categorías tienen un orden natural claro y este orden es relevante para el fenómeno que estamos modelando. El modelo puede aprovechar esta información ordinal para capturar tendencias o patrones relacionados con la jerarquía de las categorías.

¿Por qué preservar el orden? Los algoritmos de machine learning pueden aprovechar la información ordinal para identificar tendencias y patrones que se perderían con one-hot encoding. Cuando el orden es significativo, la codificación ordinal es más eficiente y puede mejorar el rendimiento del modelo.

Ejemplo práctico: Consideremos una variable "Satisfacción" con valores ordenados [Muy Insatisfecho, Insatisfecho, Neutral, Satisfecho, Muy Satisfecho]. La codificación ordinal asignará:

$\overline{\mathrm{ID}}$	Satisfacción	Satisfacción_Codificada
1	Muy Insatisfecho	1
2	Insatisfecho	2
3	Neutral	3
4	Satisfecho	4
5	Muy Satisfecho	5

Cada observación queda representada por un número entero que preserva el orden jerárquico de las categorías originales.

Interpretación en regresión: En un modelo de regresión lineal, el coeficiente de la variable ordinal codificada representa el cambio promedio en la variable respuesta por cada incremento de una unidad en el nivel ordinal. Por ejemplo, si el coeficiente es 2.5, esto significa que pasar del nivel 1 al 2, o del 3 al 4, se asocia en promedio con un aumento de 2.5 unidades en la variable respuesta, asumiendo intervalos uniformes entre niveles.

```
💡 Implementación práctica
# Crear datos de ejemplo
datos <- data.frame(</pre>
      ID = 1:5,
      Satisfaccion = c("Muy Insatisfecho", "Insatisfecho", "Neutral", "Satisfecho", "Muy Satisfecho", "Muy Satisfecho", "Satisfecho", 
# Convertir en factor ordenado
datos$Satisfaccion factor <- factor(datos$Satisfaccion,</pre>
                                                                                                         levels = c("Muy Insatisfecho", "Insatisfecho", "Neutra
                                                                                                          ordered = TRUE)
# Codificación ordinal manual
datos$Satisfaccion_codificada <- as.numeric(datos$Satisfaccion_factor)</pre>
# Verificar la codificación
datos
                          Satisfaccion_Satisfaccion_factor_Satisfaccion_codificada
1 1 Muy Insatisfecho Muy Insatisfecho
                                                                                                                                                                                        1
                    Insatisfecho
                                                                                                                                                                                        2
                                                                                   Insatisfecho
3 3
                                        Neutral
                                                                                                 Neutral
                                                                                                                                                                                        3
                               Satisfecho
4 4
                                                                                         Satisfecho
5 5 Muy Satisfecho
                                                                        Muy Satisfecho
Ejemplo de uso en regresión:
# Simular variable respuesta correlacionada con el orden
set.seed(123)
datosPuntuacion \leftarrow c(2, 4, 6, 8, 10) + rnorm(5, mean = 0, sd = 0.5)
# Modelo de regresión
modelo <- lm(Puntuacion ~ Satisfaccion_codificada, data = datos)</pre>
summary(modelo)
Call:
lm(formula = Puntuacion ~ Satisfaccion_codificada, data = datos)
Residuals:
                                        2
                                                              3
                                                                                    4
                  1
                                                                                                             5
```

i Ventajas y desventajas

Ventajas de la codificación ordinal:

- Preserva la jerarquía: Mantiene el orden natural entre categorías
- Eficiencia dimensional: Una sola columna independiente del número de categorías
- Interpretabilidad: Coeficientes representan cambios por unidad de nivel ordinal
- Eficiencia computacional: Menor uso de memoria y procesamiento

Desventajas:

- Supuesto de intervalos uniformes: Asume que las diferencias entre niveles consecutivos son iguales
- Riesgo con variables no-ordinales: Puede imponer orden artificial en variables nominales
- **Pérdida de flexibilidad**: No puede capturar relaciones no-lineales entre niveles ordinales

4.5.4 Comparación directa: Ordinal vs One-Hot Encoding

La elección entre codificación ordinal y one-hot encoding depende fundamentalmente de la naturaleza de la variable categórica y los objetivos del análisis. Una decisión incorrecta puede llevar a interpretaciones erróneas y modelos subóptimos.

Característica	Codificación Ordinal	One-Hot Encoding
Preserva el orden	Sí, refleja la jerarquía entre categorías	No, trata cada categoría como independiente
Dimensionalidad	Una sola columna	k columnas (o k-1)

Característica	Codificación Ordinal	One-Hot Encoding
Adecuado para	Variables con orden natural (educación, satisfacción)	Variables nominales (color, género, región)
Interpretación	Cambio por unidad de nivel	Diferencia vs. categoría de referencia
Eficiencia computacional	Alta (menos parámetros)	Menor (más parámetros)
Riesgo principal	Orden artificial en variables nominales	Dimensionalidad excesiva

4.6 Interacciones entre variables

Las interacciones entre variables representan uno de los conceptos más poderosos y subestimados en el modelado estadístico. Mientras que los efectos principales capturan el impacto promedio de cada variable por separado, las interacciones revelan cómo el efecto de una variable cambia según el nivel de otra variable. Este fenómeno es omnipresente en el mundo real: el efecto del precio en las ventas depende del nivel de publicidad, el impacto de la experiencia en el salario varía según la educación, o la efectividad de un tratamiento médico puede diferir entre grupos demográficos.

- Principios para feature engineering efectivo
 - 1. **Justificación teórica**: Cada nueva variable debe tener sentido conceptual en el dominio
 - 2. Validación rigurosa: Evaluar el poder predictivo real en datos no vistos
 - 3. Simplicidad primero: Preferir transformaciones simples e interpretables
 - 4. **Documentación exhaustiva**: Registrar el proceso de creación y la lógica detrás de cada feature
 - 5. Monitoreo continuo: Verificar que las relaciones se mantienen en producción

Ignorar las interacciones relevantes puede llevar a conclusiones erróneas y pérdida significativa de poder predictivo. Por otro lado, incluir interacciones irrelevantes incrementa la complejidad del modelo sin beneficios, violando el principio de parsimonia. La clave está en identificar, interpretar y validar interacciones de manera sistemática y teoricamente fundamentada.

4.6.1 Interacciones entre variables continuas

El caso más directo es la interacción entre dos variables continuas:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Interpretación del coeficiente de interacción (β_3):

- Si $\beta_3 > 0$: El efecto de X_1 se amplifica cuando X_2 aumenta
- Si \$ _3 < 0: El efecto de X_1 se atenúa cuando X_2 aumenta
- Si $\beta_3=0$: No hay interacción (efectos aditivos)

```
Piemplo: Interacción precio-publicidad en ventas
# Simulación: efecto de precio y publicidad en ventas
# con interacción (mayor publicidad reduce sensibilidad al precio)
set.seed(789)
n <- 200
precio <- runif(n, 50, 150) # precio en euros
publicidad <- runif(n, 0, 10) # gasto en publicidad (miles €)
# Efecto principal negativo del precio, positivo de publicidad
# Interacción: mayor publicidad reduce sensibilidad negativa al precio
ventas <- 1000 - 5*precio + 50*publicidad + 0.8*precio*publicidad/10 +
         rnorm(n, 0, 50)
datos_inter <- data.frame(precio, publicidad, ventas)</pre>
# Modelo con interacción
modelo_interaccion <- lm(ventas ~ precio * publicidad, data = datos_inter)</pre>
summary(modelo_interaccion)
Call:
lm(formula = ventas ~ precio * publicidad, data = datos_inter)
Residuals:
    Min
               1Q Median
                                 3Q
                                         Max
-158.256 -35.577
                    0.296 37.460 118.605
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 968.37048 27.53011 35.175
                                                 <2e-16 ***
precio
                 -4.74324
                              0.26860 -17.659
                                                <2e-16 ***
publicidad
                  55.77675 4.48175 12.445 <2e-16 ***
```

```
precio:publicidad
                    0.03470
                                0.04432 0.783
                                                   0.435
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 50.87 on 196 degrees of freedom
Multiple R-squared: 0.9518,
                                 Adjusted R-squared: 0.9511
F-statistic: 1291 on 3 and 196 DF, p-value: < 2.2e-16
Interpretación numérica de los coeficientes:
# Extraer coeficientes y p-valores para interpretación
coef_int <- coef(modelo_interaccion)</pre>
summary_model <- summary(modelo_interaccion)</pre>
p_valores <- summary_model$coefficients[, "Pr(>|t|)"]
# Crear tabla de interpretación de efectos
tabla_efectos <- data.frame(</pre>
  Nivel_Publicidad = c("0 (sin publicidad)", "5 (media)", "10 (alta)"),
  Efecto Precio = c(
   round(coef_int[2], 2),
    round(coef_int[2] + 5*coef_int[4], 2),
    round(coef_int[2] + 10*coef_int[4], 2)
)
kable(tabla_efectos,
      caption = "Efecto del precio según el nivel de publicidad (hipotético)",
      col.names = c("Nivel de Publicidad", "Efecto del Precio (€/unidad)"))
        Table 4.6: Efecto del precio según el nivel de publicidad (hipotético)
                Nivel de Publicidad Efecto del Precio (€/unidad)
                0 (sin publicidad)
                                                        -4.74
                                                        -4.57
                5 (media)
                10 (alta)
                                                        -4.40
```

Evidencia estadística: La interacción tiene un coeficiente de 0.035 con un p-valor de 0.435. Dado que p > 0.05, no hay evidencia estadística de interacción entre precio y publicidad.

Interpretación del gráfico: El primer gráfico (scatter plot con líneas de tendencia por grupos de publicidad) muestra líneas prácticamente paralelas, confirmando la ausencia de interacción. Aunque visualmente las pendientes parecen ligeramente diferentes, esta variación está dentro del rango esperado por el ruido aleatorio.

Implicaciones prácticas:

- El efecto del precio sobre las ventas es **constante** (-€5 por unidad) independientemente del nivel de publicidad
- Los efectos son **aditivos**: cada €1000 adicional en publicidad aumenta las ventas base en ~50 unidades, sin modificar la sensibilidad al precio
- Modelo recomendado: ventas ~ precio + publicidad (sin término de interacción)

Lección metodológica: Este caso demuestra la importancia de confiar en la evidencia estadística formal sobre las impresiones visuales cuando hay variabilidad muestral significativa.

Visualización para verificar ausencia de interacción:

Pendientes similares confirman ausencia de interacción

Interpretación crítica: Visual vs Estadística

Observando el gráfico, las líneas parecen tener pendientes diferentes, lo que visualmente sugeriría la presencia de interacción. Sin embargo, el análisis estadístico formal nos indica que esta diferencia no es estadísticamente significativa (p = 0.435).

¿Por qué esta aparente contradicción?

- Variabilidad aleatoria: Las diferencias observadas pueden deberse al ruido aleatorio en los datos
- Tamaño de muestra: Puede no ser suficiente para detectar una interacción débil si realmente existe
- Poder estadístico: El test puede no tener suficiente poder para detectar efectos pequeños
- Agrupación artificial: Los grupos de publicidad se crearon artificialmente para visualización, no reflejan la variable continua real

Decisión metodológica correcta:

- Confiar en la estadística formal: El p-valor > 0.05 indica no significancia
- Modelo parsimonioso: Eliminar el término de interacción no significativo
- Interpretación conservadora: Los efectos son aditivos hasta que se demuestre lo contrario

Lección crucial:

Este ejemplo demuestra por qué la inspección visual nunca debe ser el único criterio para decidir sobre la inclusión de términos de interacción. La estadística inferencial formal debe prevalecer sobre las impresiones visuales, especialmente cuando hay incertidumbre debido a la variabilidad muestral.

Modelo final recomendado: ventas ~ precio + publicidad (sin interacción)

4.6.2 Interacciones entre variables categóricas

Cuando ambas variables son categóricas, las interacciones representan efectos específicos de combinaciones de categorías que no pueden explicarse por los efectos principales por separado.

Para dos variables categóricas A (con niveles i) y B (con niveles j), el modelo incluye:

$$Y = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon$$

Donde $(\alpha\beta)_{ij}$ representa la interacción específica entre el nivel i de A y el nivel j de B.

La interacción $(\alpha\beta)_{ij}$ indica cuánto la combinación específica (i,j) se desvía del efecto que esperaríamos si solo sumáramos los efectos principales $\alpha_i + \beta_j$.

```
PEjemplo: Interacción género-departamento en salarios
# Simulación: salarios por género y departamento con interacción
# (brecha salarial varía según departamento)
set.seed(456)
n <- 300
# Variables categóricas
genero <- sample(c("Masculino", "Femenino"), n, replace = TRUE)</pre>
departamento <- sample(c("Ventas", "IT", "RRHH"), n, replace = TRUE)</pre>
# Efectos principales y de interacción simulados
efecto_base <- 40000 # salario base
efecto_masculino <- ifelse(genero == "Masculino", 2000, 0)
efecto_it <- ifelse(departamento == "IT", 8000, 0)</pre>
efecto_rrhh <- ifelse(departamento == "RRHH", 3000, 0)</pre>
# Interacción: brecha de género mayor en IT
interaccion <- ifelse(genero == "Masculino" & departamento == "IT", 4000, 0)
salario <- efecto_base + efecto_masculino + efecto_it + efecto_rrhh +</pre>
           interaccion + rnorm(n, 0, 3000)
datos_cat <- data.frame(genero, departamento, salario)</pre>
# Modelo con interacción
modelo_cat <- lm(salario ~ genero * departamento, data = datos_cat)</pre>
summary(modelo_cat)
Call:
lm(formula = salario ~ genero * departamento, data = datos_cat)
Residuals:
    Min
             1Q Median
                              ЗQ
                                     Max
                   48.4 1968.1 7486.9
-8037.9 -1930.7
Coefficients:
                                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                     47627.4
                                                  461.2 103.270 < 2e-
16 ***
generoMasculino
                                      6166.3 593.4 10.391 < 2e-
```

```
16 ***
departamentoRRHH
                                   -4433.3
                                                633.9 -6.994 1.80e-
11 ***
departamentoVentas
                                    -7744.7
                                                597.4 -12.964 < 2e-
16 ***
generoMasculino:departamentoRRHH
                                   -4007.2
                                                857.1 -4.675 4.48e-
generoMasculino:departamentoVentas -3793.8
                                                814.4 -4.659 4.83e-
06 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2917 on 294 degrees of freedom
Multiple R-squared: 0.7372, Adjusted R-squared: 0.7327
F-statistic: 164.9 on 5 and 294 DF, p-value: < 2.2e-16
# Medias por grupo para interpretar la interacción
medias_grupo <- aggregate(salario ~ genero + departamento, data = datos_cat, FUN = mean)</pre>
medias_grupo <- medias_grupo[order(medias_grupo$departamento, medias_grupo$genero), ]</pre>
kable(medias_grupo, caption = "Salario promedio por género y departamento")
```

Table 4.7: Salario promedio por género y departamento

genero	departamento	salario
Femenino	IT	47627.44
Masculino	IT	53793.71
Femenino	RRHH	43194.15
Masculino	RRHH	45353.23
Femenino	Ventas	39882.76
Masculino	Ventas	42255.23

Interacción Género-Departamento en Salarios

Evidencia visual clara: El segundo gráfico (boxplots por género y departamento) revela patrones de interacción marcados que se manifiestan de forma diferente en cada departamento.

Patrones específicos por departamento:

- IT: La brecha de género es **máxima** (~€8,000). Los hombres tienen salarios significativamente superiores y mayor variabilidad salarial
- RRHH: Brecha moderada (~€3,000) con distribuciones más similares entre géneros
- Ventas: Menor brecha de género (~€1,500), con salarios más homogéneos entre grupos

Interpretación de la interacción: Las líneas no paralelas en el patrón de medias confirman que el efecto del género sobre el salario varía significativamente según el departamento. Esto sugiere:

- Diferencias en culturas departamentales respecto a equidad salarial
- Estructuras de compensación variables entre departamentos
- Posibles diferencias en poder de negociación o demanda de talento

Implicaciones organizacionales: La interacción indica que las políticas salariales no son uniformes y que intervenciones de equidad deberían ser diferenciadas por departamento.

Gráfico de interacción clásico:

```
# Calcular medias y errores estándar por grupo para el gráfico
suppressPackageStartupMessages(library(dplyr))
medias_se <- datos_cat %>%
    group_by(genero, departamento) %>%
    summarise(
        media = mean(salario),
        se = sd(salario) / sqrt(n()),
        .groups = "drop"
    )

# Mostrar los datos calculados
kable(medias_se, caption = "Medias y errores estándar por grupo")
```

Table 4.8: Medias y errores estándar por grupo

genero	departamento	media	se
Femenino	IT	47627.44	463.4703
Femenino	RRHH	43194.15	443.9292
Femenino	Ventas	39882.76	378.5932
Masculino	IT	53793.71	371.1923
Masculino	RRHH	45353.23	425.9146
Masculino	Ventas	42255.23	414.4745

Interpretación del gráfico: Las líneas no son paralelas, confirmando la presencia de interacción significativa. La brecha salarial de género varía considerablemente: mayor en IT, moderada en RRHH, y menor en Ventas.

4.6.3 Interacciones mixtas (continua × categórica)

Las interacciones mixtas son especialmente útiles para modelar cómo el efecto de una variable continua varía entre grupos categóricos. Esto es fundamental cuando sospechamos que la relación funcional cambia según el contexto definido por la variable categórica.

Formulación matemática:

$$Y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 X \cdot D + \varepsilon$$

Donde D es una variable dummy (0/1) que representa la variable categórica.

Interpretación geométrica: La interacción permite que cada grupo categórico tenga:

- Intercepto diferente: β_0 (grupo de referencia) vs. $\beta_0 + \beta_2$ (otro grupo)
- Pendiente diferente: β_1 (grupo de referencia) vs. $\beta_1 + \beta_3$ (otro grupo)

```
Ejemplo: Interacción experiencia-género en salarios
# Simulación: efecto de experiencia en salario varía según género
set.seed(789)
n <- 250
experiencia <- runif(n, 0, 20) # años de experiencia
genero <- sample(c("Femenino", "Masculino"), n, replace = TRUE)</pre>
# Efecto diferencial: pendiente de experiencia menor para mujeres
salario_base <- 35000
efecto_experiencia_hombres <- 2000  # €2000 por año para hombres
efecto_experiencia_mujeres <- 1200 # €1200 por año para mujeres (brecha creciente)
efecto_genero_base <- ifelse(genero == "Masculino", 3000, 0)
# Crear variable dummy para interacción
dummy_masculino <- ifelse(genero == "Masculino", 1, 0)</pre>
# Salario con interacción
salario <- salario base +
           efecto_experiencia_mujeres * experiencia + # pendiente base (mujeres)
           efecto_genero_base * dummy_masculino + # diferencia intercepto
           (efecto_experiencia_hombres - efecto_experiencia_mujeres) * experiencia * dummy
           rnorm(n, 0, 4000)
datos_mixta <- data.frame(experiencia, genero, salario, dummy_masculino)</pre>
# Modelo con interacción
modelo_mixta <- lm(salario ~ experiencia * genero, data = datos_mixta)</pre>
summary(modelo_mixta)
```

Call:

lm(formula = salario ~ experiencia * genero, data = datos_mixta)

Residuals:

Min 1Q Median 3Q Max -12340.2 -2742.7 162.8 2586.6 9293.8

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 35650.27 765.04 46.599 <2e-16 ***
experiencia 1123.03 69.74 16.103 <2e-16 ***
generoMasculino 2613.33 1038.08 2.517 0.0125 *
experiencia:generoMasculino 905.46 92.44 9.795 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3995 on 246 degrees of freedom Multiple R-squared: 0.8889, Adjusted R-squared: 0.8876 F-statistic: 656.2 on 3 and 246 DF, p-value: < 2.2e-16

Interpretación detallada de los coeficientes:

```
# Extraer coeficientes para interpretación
coef_mixta <- coef(modelo_mixta)</pre>
# Crear tabla de interpretación por género
tabla_genero <- data.frame(</pre>
  Parámetro = c("Intercepto (salario inicial)", "Pendiente (€ por año experiencia)"),
  Mujeres = c(
    paste0("€", format(round(coef_mixta[1], 0), big.mark = ",")),
    paste0("€", round(coef_mixta[2], 0))
  ),
  Hombres = c(
    paste0("€", format(round(coef_mixta[1] + coef_mixta[3], 0), big.mark = ",")),
    paste0("€", round(coef_mixta[2] + coef_mixta[4], 0))
  Diferencia = c(
    paste0("€", format(round(coef_mixta[3], 0), big.mark = ",")),
    paste0("€", round(coef_mixta[4], 0), " adicionales")
)
kable(tabla_genero,
      caption = "Comparación de parámetros del modelo por género")
```

Table 4.9: Comparación de parámetros del modelo por género

Parámetro	Mujeres	Hombres	Diferencia
Intercepto (salario inicial)	€35,650	€38,264	€2,613
Pendiente (€ por año experiencia)	€1123	€2028	€905 adicionales

Implicaciones de la interacción:

El coeficiente de interacción (905) indica que cada año adicional de experiencia aumenta el salario masculino en $\mathbf{\xi}905$ más que el salario femenino. Esto crea una **brecha creciente**: inicialmente la diferencia es de $\mathbf{\xi}2,613$, pero después de 20 años de experiencia, la brecha total alcanza $\mathbf{\xi}20,722$.

Visualización de la divergencia salarial:

```
# Visualización de líneas de regresión por grupo
ggplot(datos_mixta, aes(x = experiencia, y = salario, color = genero)) +
    geom_point(alpha = 0.6) +
    geom_smooth(method = "lm", formula = y ~ x, se = TRUE, linewidth = 1.2) +
    labs(title = "Interacción Experiencia-Género: Brechas Crecientes",
        subtitle = "La brecha salarial se amplía con la experiencia",
        x = "Años de experiencia", y = "Salario (€)", color = "Género") +
    theme_minimal() +
    scale_color_manual(values = c("Femenino" = "#E69F00", "Masculino" = "#0072B2")) +
    scale_y_continuous(labels = scales::comma_format(suffix = "€"))
```

Interacción Experiencia-Género: Brechas Crecientes La brecha salarial se amplía con la experiencia

Evidencia de brechas crecientes: El tercer gráfico (scatter plot con líneas de regresión) demuestra claramente el patrón de interacción experiencia-género mediante líneas divergentes con pendientes notablemente diferentes.

Interpretación cuantitativa de la divergencia:

• Punto de inicio (0 años): Brecha inicial de €2,613 a favor de los hombres

- Pendientes diferenciadas: Los hombres ganan €2028 adicionales por año vs. €1123 para las mujeres
- Brecha acumulativa: Cada año adicional de experiencia amplía la brecha en €905 adicionales

Implicaciones del patrón de interacción: La divergencia progresiva visible en las líneas revela que:

- El **retorno a la experiencia** es sistemáticamente **mayor para hombres** que para mujeres
- A los 20 años de experiencia, la brecha total alcanza €20,722 (inicial + acumulativa)
- Este patrón sugiere barreras estructurales que impiden que las mujeres capitalicen plenamente su experiencia

Significancia social: Esta interacción documenta un fenómeno preocupante donde la inequidad salarial se agrava con el tiempo, indicando que las brechas de género no son meramente diferencias de entrada sino desventajas acumulativas a lo largo de la carrera profesional.

4.6.4 Identificación y detección de interacciones

La detección sistemática de interacciones requiere combinar justificación teórica, exploración visual y validación estadística. No debemos buscar interacciones aleatoriamente, sino guiados por el conocimiento del dominio y patrones observables en los datos.

La justificación teórica previa es fundamental: la teoría del dominio debe sugerir dónde pueden existir interacciones. Por ejemplo, en economía esperamos efectos precio-publicidad o educación-experiencia; en medicina son comunes las interacciones dosis-edad o tratamiento-comorbilidad; en marketing encontramos interacciones producto-canal o temporada-promoción.

La exploración visual sistemática complementa la teoría con evidencia empírica. Para variables continuas utilizamos gráficos de dispersión coloreados por grupos categóricos; para variables categóricas empleamos gráficos de interacción (interaction plots); para interacciones mixtas analizamos líneas de regresión por grupo.

Los tests estadísticos formales proporcionan validación objetiva: el test F para interacciones compara modelos con y sin términos de interacción, el test de significancia individual evalúa coeficientes específicos mediante t-test, y los criterios de información (AIC/BIC) guían la selección entre modelos alternativos.

i Estrategia de modelado jerárquico

Principio de jerarquía: Si incluimos una interacción A×B, siempre debemos incluir los efectos principales A y B, incluso si no son significativos individualmente. Esto preserva la interpretabilidad y evita sesgos en los coeficientes de interacción.

Proceso de construcción del modelo:

- 1. Modelo base: Solo efectos principales
- 2. Modelo con interacciones: Agregar términos de interacción teoricamente justifi-
- 3. Comparación: Test F para evaluar mejora significativa
- 4. Selección: Usar criterios estadísticos y de parsimonia
- 5. Validación: Verificar supuestos y estabilidad en datos de prueba

4.6.5 Consideraciones prácticas y limitaciones

Las interacciones incrementan exponencialmente la complejidad interpretativa del modelo. Un modelo con k efectos principales puede tener hasta k(k-1)/2 interacciones de segundo orden, y el número crece exponencialmente con interacciones de orden superior. Esta explosión combinatorial hace que incluso modelos aparentemente simples se vuelvan rápidamente inmaneiables desde el punto de vista interpretativo. Como reglas prácticas para la complejidad, recomendamos limitar a máximo 2-3 interacciones de segundo orden en modelos explicativos, evitar interacciones de tercer orden salvo justificación teórica muy sólida, y priorizar interacciones con efectos grandes sobre mera significancia estadística.

Advertencia sobre interpretación

Cuidado con la interpretación automática. Las interacciones en escalas transformadas tienen significados diferentes que en escalas originales. Siempre verificar la interpretación en el contexto de la transformación aplicada y considerar la retransformación para comunicación con audiencias no técnicas.

Un problema adicional surge cuando las interacciones crean multicolinealidad severa, especialmente cuando las variables principales están correlacionadas, se incluyen múltiples interacciones con variables comunes, o se usan variables categóricas con muchos niveles. Esta multicolinealidad puede hacer que los coeficientes individuales sean inestables y difíciles de interpretar, incluso cuando el modelo en conjunto funcione bien predictivamente. Las estrategias de mitigación incluyen el centrado de variables continuas para reducir la correlación entre X y X×Z, la selección cuidadosa de interacciones sin incluir todas las combinaciones posibles, y el uso de métodos de regularización como Ridge o Lasso cuando hay múltiples interacciones.

La situación se complica aún más cuando las variables están transformadas (logarítmica, Box-

Cox). En estos casos, la interpretación de las interacciones adquiere significados completamente diferentes que en escalas originales. Por ejemplo, en un modelo como $\log(Y) = \beta_0 + \beta_1 \log(X_1) + \beta_2 X_2 + \beta_3 \log(X_1) \cdot X_2 + \varepsilon$, el coeficiente β_3 representa cómo cambia la elasticidad de Y respecto a X cuando X aumenta en una unidad, lo que requiere una interpretación mucho más sofisticada que una interacción en escalas lineales.

Principios para el uso de interacciones

- 1. Justificación teórica primero: No buscar interacciones sin base conceptual
- 2. **Principio de jerarquía**: Mantener efectos principales cuando se incluyen interacciones
- 3. Parsimonia: Preferir modelos simples que expliquen bien sobre modelos complejos
- 4. Validación robusta: Verificar estabilidad en múltiples contextos
- 5. Interpretación cuidadosa: Asegurar comprensión completa antes de conclusiones
- 6. Comunicación efectiva: Usar visualizaciones para explicar efectos complejos

Las interacciones son herramientas poderosas que pueden revelar patrones importantes ocultos en los efectos principales. Sin embargo, su uso requiere disciplina metodológica, justificación teórica sólida, y validación rigurosa para evitar conclusiones espurias y modelos sobreajustados.

4.7 Ingeniería de características avanzada: combinaciones, ratios y transformaciones

Más allá de las transformaciones individuales e interacciones, la ingeniería de características avanzada implica crear nuevas variables predictivas mediante combinaciones matemáticas, ratios y transformaciones compuestas que capturen relaciones complejas no evidentes en las variables originales (Kuhn and Johnson 2019). Esta aproximación es fundamental cuando las variables individuales contienen información parcial que, al combinarse, revelan patrones predictivos más potentes.

4.7.1 Combinaciones lineales y no lineales

Las combinaciones lineales crean nuevas variables mediante sumas ponderadas de variables existentes, útiles especialmente cuando trabajamos con variables que miden aspectos relacionados del mismo fenómeno pero con diferentes escalas o unidades.

Ejemplos de combinaciones lineales efectivas:

- Índices compuestos: Combinan múltiples indicadores en un score único que captura un constructo multidimensional. Por ejemplo, un índice de riesgo cardiovascular podría definirse como índice_salud = 0.4×presión_arterial_normalizada + 0.3×colesterol_normalizada + 0.3×IMC_normalizado. Los pesos (0.4, 0.3, 0.3) reflejan la importancia relativa establecida por evidencia médica, creando una métrica integrada que es más informativa que cualquier indicador individual. Este tipo de índices son especialmente valiosos en dominios donde múltiples factores contribuyen conjuntamente al outcome de interés.
- Scores balanceados: Representan equilibrios o trade-offs entre dimensiones competitivas. Un ejemplo típico es balance_trabajo_vida = horas_trabajo / (tiempo_personal + tiempo_familia + tiempo_descanso). Esta métrica captura no solo la intensidad laboral, sino también su contexto relativo dentro del estilo de vida completo. Valores altos indican desbalance hacia el trabajo, mientras que valores cercanos a 1.0 sugieren equilibrio saludable. Los scores balanceados son fundamentales para capturar dinámicas de compensación que no son evidentes en variables absolutas.
- Factores sintéticos: Cuando múltiples variables correlacionadas miden aspectos del mismo constructo subyacente, pueden condensarse en un factor común que preserve la información esencial eliminando redundancia. Por ejemplo, si tenemos variables ingresos, educación, y prestigio_ocupacional (todas correlacionadas), podemos crear un factor estatus_socioeconomico que capture la varianza común. Esto es especialmente útil cuando la colinealidad entre predictores compromete la estabilidad del modelo, pero cada variable aporta información valiosa.

Las combinaciones no lineales van más allá de las sumas ponderadas para capturar interacciones multiplicativas, sinergias y compensaciones entre variables mediante productos, cocientes, potencias y funciones más complejas:

- Productos de eficiencia: Capturan sinergias multiplicativas donde el rendimiento depende de la combinación simultánea de múltiples factores. Por ejemplo, rendimiento_efectivo = capacidad_instalada × utilización_porcentual × factor_calidad. Esta métrica reconoce que el rendimiento real no es aditivo: tener alta capacidad pero baja utilización, o alta utilización con problemas de calidad, resulta en rendimiento subóptimo. Los productos de eficiencia son esenciales en contextos operacionales donde el desempeño emerge de la coordinación entre recursos.
- Ratios de rendimiento ajustado por riesgo: Normalizan beneficios por su costo o riesgo asociado, creando métricas comparables entre contextos diferentes. Un ejemplo financiero sería eficiencia_ajustada = (rendimiento_esperado tasa_libre_riesgo) / (volatilidad + costos_transaccion). Esta formulación reconoce que los rendimientos absolutos son engañosos sin considerar el riesgo asumido y los costos incurridos. Los ratios ajustados son cruciales para decisiones de optimización donde debemos comparar alternativas con perfiles de riesgo-retorno heterogéneos.

• Funciones de utilidad: Capturan percepciones subjetivas o valores no lineales mediante transformaciones que reflejan preferencias reales. Por ejemplo, valor_percibido = √(calidad_producto) × precio · reconoce que la utilidad del consumidor tiene rendimientos decrecientes tanto en calidad como en ahorro de precio. La raíz cuadrada de la calidad refleja que mejoras incrementales tienen menor impacto en niveles altos, mientras que el exponente negativo del precio captura la sensibilidad decreciente a cambios de precio en productos caros.

4.7.2 Ratios y proporciones como features

Los ratios son especialmente poderosos porque normalizan automáticamente las diferencias de escala y pueden revelar relaciones proporcionales fundamentales que permanecen ocultas en variables absolutas. A diferencia de las medidas absolutas, los ratios capturan relaciones estructurales que son invariantes bajo cambios de escala y contexto, lo que los convierte en herramientas fundamentales para crear features robustos y comparables.

La potencia de los ratios radica en su capacidad para transformar información absoluta en información relativa. Por ejemplo, una empresa con $\in 1M$ en ventas y $\in 100K$ en marketing tiene un ratio ventas/marketing de 10, igual que una empresa con $\in 10M$ en ventas y $\in 1M$ en marketing. Esta normalización automática permite comparaciones directas y elimina sesgos de tamaño que podrían distorsionar el análisis.

Categorización detallada de ratios efectivos:

- 1. Ratios de eficiencia: Miden qué tan efectivamente se convierten los inputs en outputs, revelando productividad y optimización operacional. Ejemplos fundamentales incluyen:
 - ROI_marketing = (ventas_generadas gasto_marketing) / gasto_marketing: Captura el retorno neto por euro invertido
 - eficiencia_produccion = unidades_producidas / (horas_trabajo + costo_materiales): Normaliza productividad por recursos consumidos
 - conversion_rate = ventas_completadas / visitantes_web: Revela la efectividad del funnel de conversión

Estos ratios son especialmente valiosos porque eliminan el efecto escala y permiten comparar unidades de diferentes tamaños en términos de eficiencia pura.

- 2. Ratios de riesgo ajustado: Normalizan retornos o beneficios por la incertidumbre o costo asociado, proporcionando métricas de valor ajustado por riesgo:
 - sharpe_ratio = (rendimiento_promedio tasa_libre_riesgo) / volatilidad: Mide retorno por unidad de riesgo asumido
 - stability_score = beneficio_promedio / desviacion_estandar_beneficios: Indica consistencia en el desempeño

• risk_adjusted_growth = crecimiento_promedio / max_drawdown: Captura crecimiento sostenible

Estos ratios son cruciales en análisis financiero y gestión de riesgos, donde los valores absolutos pueden ser engañosos sin considerar la variabilidad subyacente.

- 3. Ratios temporales: Capturan dinámicas y tendencias mediante comparaciones entre períodos, revelando momentum y patrones estacionales:
 - momentum_growth = crecimiento_último_trimestre / crecimiento_promedio_histórico: Identifica aceleración o desaceleración
 - estacionalidad = ventas_período_actual / media_móvil_12_meses: Captura variaciones cíclicas
 - trend_strength = (valor_actual valor_hace_12_meses) / volatilidad_histórica: Mide significancia de cambios

Estos ratios son especialmente útiles en análisis de series temporales donde necesitamos distinguir entre variación normal y cambios estructurales significativos.

- 4. Ratios de composición: Revelan la estructura interna de agregados mediante proporciones parte-todo, fundamentales para análisis de portafolios y segmentación:
 - concentracion_cliente = ventas_top3_clientes / ventas_totales: Mide dependencia y riesgo de concentración
 - diversificacion_producto = 1 suma(proportion_i²): Índice de Herfindahl para medir dispersión
 - market_share = ventas_empresa / ventas_mercado_total: Posición relativa competitiva

Los ratios de composición son esenciales para gestión de riesgos y análisis estratégico, revelando vulnerabilidades y fortalezas estructurales.

Ventajas metodológicas profundizadas:

- Normalización automática: Los ratios eliminan efectos de escala absoluta, haciendo comparables entidades de diferentes tamaños. Una startup con €10K en ventas y €2K en marketing tiene el mismo ratio ventas/marketing (5.0) que una multinacional con €100M v €20M respectivamente, permitiendo benchmarking directo de eficiencia.
- Interpretación intuitiva: Los ratios tienen significados naturales que facilitan la comunicación con stakeholders. Un ratio deuda/patrimonio de 0.3 es inmediatamente comprensible como "30 céntimos de deuda por cada euro de patrimonio", mientras que valores absolutos requieren más contexto.

- Robustez ante outliers: Los ratios suelen ser menos sensibles a valores extremos que las variables absolutas. Si una empresa tiene ventas anómalamente altas pero también marketing proporcionalmente alto, el ratio ventas/marketing permanece estable, mientras que ambas variables individuales serían outliers.
- Invarianza bajo transformaciones: Los ratios mantienen sus relaciones bajo cambios de unidades o inflación. El ratio precio/ingresos de una acción es el mismo si se mide en euros o dólares, proporcionando estabilidad interpretativa a lo largo del tiempo y contextos.

Consideraciones para construcción robusta de ratios:

Los ratios requieren cuidado especial en su construcción para evitar interpretaciones erróneas o inestabilidad numérica. Es fundamental evitar denominadores cercanos a cero, considerar transformaciones logarítmicas para ratios con rangos amplios, y validar que el ratio tenga significado conceptual en el dominio de aplicación.

4.7.3 Tratamiento de variables colineales mediante feature engineering

Cuando enfrentamos multicolinealidad entre predictores informativos, la ingeniería de características ofrece alternativas más sofisticadas que simplemente eliminar variables o usar interacciones sin efectos principales. Este escenario es común en la práctica: tenemos múltiples variables que aportan información valiosa individualmente, pero están suficientemente correlacionadas como para crear problemas de estabilidad e interpretación en el modelo.

El enfoque tradicional de "eliminar variables correlacionadas" es problemático porque puede resultar en pérdida significativa de información predictiva. Si variable_A y variable_B tienen correlación r=0.75, ambas comparten 56% de varianza, pero cada una retiene 44% de información única. Eliminar cualquiera de ellas descarta información potencialmente valiosa que podría mejorar el poder predictivo del modelo.

La ingeniería de características para colinealidad busca condensar la información redundante mientras preserva la información única, creando nuevas variables que capturen la esencia predictiva de las variables originales sin los problemas de multicolinealidad. Esta aproximación es especialmente valiosa cuando la correlación entre variables tiene significado teórico: por ejemplo, diferentes medidas de solvencia financiera que capturan aspectos relacionados pero distintos del riesgo crediticio.

Estrategias avanzadas de condensación de información:

1. Componentes principales (PCA): Extraen direcciones de máxima varianza común, creando variables ortogonales que preservan la mayor cantidad de información con la menor dimensionalidad:

```
# Ejemplo: Variables financieras correlacionadas
pc_financiero <- prcomp(~ ingresos + patrimonio + crédito + liquidez, scale = TRUE)
score_financiero <- pc_financiero$x[,1] # Primer componente (mayor varianza)
score_diversificacion <- pc_financiero$x[,2] # Segundo componente (varianza residual)</pre>
```

Ventajas del PCA: Elimina completamente la multicolinealidad, preserva máxima varianza, proporciona interpretación de "factores latentes". Desventajas: Pérdida de interpretabilidad directa, todos los componentes dependen de todas las variables originales, sensible a outliers.

2. Ratios informativos: Crean cocientes que preservan la información relativa más relevante, eliminando efectos de escala común:

```
# Ratios que capturan relaciones estructurales fundamentales
ratio_debt_income <- deuda_total / ingresos_anuales # Capacidad de endeudamiento
ratio_assets_equity <- activos / patrimonio_neto # Apalancamiento
ratio_liquidity <- activos_liquidos / pasivos_corrientes # Solvencia a corto plazo</pre>
```

Ventajas de los ratios: Mantienen interpretabilidad económica directa, eliminan efectos de escala, capturan relaciones estructurales clave. Aplicabilidad: Especialmente efectivos cuando las variables correlacionadas miden aspectos del mismo fenómeno subyacente (ej. diferentes medidas de tamaño empresarial).

3. **Índices ponderados**: Combinan variables usando pesos derivados de conocimiento teórico o empírico, creando métricas compuestas más robustas que sus componentes individuales:

```
# Índice de solvencia con pesos basados en evidencia empírica
indice_solvencia <- 0.4 * (ingresos/gastos) + 0.3 * (activos/deudas) + 0.3 * score_cred:
# Índice de crecimiento balanceado
indice_crecimiento <- 0.5 * crecimiento_ventas + 0.3 * crecimiento_beneficios + 0.2 * crecimiento_beneficios + 0.2 * crecimiento_ventas + 0.3 * crecimiento_
```

Determinación de pesos: Pueden derivarse de análisis factorial confirmatorio, regresión ridge, conocimiento experto, o optimización empírica. Los pesos deben justificarse teóricamente y validarse en datos independientes.

4. **Diferencias y cambios relativos**: Capturan dinámicas temporales y patrones de co-movimiento que revelan información única no presente en niveles absolutos:

```
# Dinámicas de crecimiento relativo
crecimiento_relativo <- (valor_actual - valor_anterior) / valor_anterior
aceleracion <- (crecimiento_t - crecimiento_t_1) / crecimiento_t_1
# Medidas de estabilidad y volatilidad</pre>
```

```
volatilidad <- sd(ultimos_12_meses) / mean(ultimos_12_meses)
consistencia <- 1 / (1 + cv(ultimos_periodos)) # Coeficiente de variación invertido</pre>
```

Aplicabilidad temporal: Especialmente útiles para series temporales donde variables están correlacionadas en niveles pero divergen en tasas de cambio, revelando dinámicas diferenciales ocultas en análisis de niveles.

i Criterios de selección de estrategia

- **PCA**: Cuando la interpretabilidad no es crítica y maximizar la retención de varianza es prioritario
- Ratios: Cuando existe significado teórico claro en las relaciones proporcionales entre variables
- Índices ponderados: Cuando hay conocimiento previo sobre la importancia relativa de cada componente
- Cambios relativos: Cuando las dinámicas temporales son más informativas que los niveles absolutos

La ingeniería de características es tanto arte como ciencia: requiere creatividad para identificar combinaciones útiles, pero también rigor metodológico para validar que las nuevas variables realmente aportan valor predictivo estable y generalizable.

5 Selección de variables, regularización y validación

En los modelos de regresión, especialmente cuando se trabaja con conjuntos de datos que incluyen un gran número de variables predictoras, es común enfrentarse al desafío ntficar qué variables son realmente relevantes para explicar la variable respuesta. La inclusión de demasiadas variables en un modelo puede llevar a problemas como el sobreajuste, pérdida de interpretabilidad y complejidad innecesaria, mientras que la exclusión de variables importantes puede resultar en modelos subóptimos.

Este tema aborda uno de los aspectos más críticos en la construcción de modelos de regresión: cómo seleccionar el subconjunto óptimo de variables predictoras y cómo validar la calidad del modelo resultante. Una vez realizado el análisis exploratorio y el ajuste inicial del modelo, surge la necesidad crítica de optimizar la selección de variables. Cuando se dispone de p variables explicativas, es posible construir hasta 2^p modelos diferentes considerando todas las combinaciones posibles. Sin embargo, explorar de manera exhaustiva todos estos modelos puede ser computacionalmente inviable cuando p es grande.

Para superar este desafío, en este tema nos enfocaremos en cinco enfoques principales:

- 1. **Filtrado basado en información básica**: Eliminación preliminar de variables irrelevantes mediante criterios básicos (variabilidad, correlación, VIF)
- 2. Criterios de bondad de ajuste: Métricas para comparar modelos con diferente número de variables (AIC, BIC, Cp de Mallows)
- 3. **Métodos de selección exhaustiva**: Evaluación sistemática de todas las combinaciones posibles (Best Subset Selection)
- 4. **Métodos automáticos paso a paso**: Selección iterativa mediante algoritmos forward, backward y stepwise
- 5. **Métodos basados en regularización**: Técnicas que penalizan la complejidad del modelo (Ridge, Lasso, Elastic Net)
- 6. Validación del modelo: Evaluación rigurosa de la capacidad predictiva mediante división train/test y validación cruzada

Cada enfoque tiene sus propias ventajas y limitaciones, siendo apropiados para diferentes situaciones según el tamaño del dataset, el número de variables y los objetivos del análisis. El objetivo es presentar las técnicas más relevantes para la selección de variables y regularización, entender sus fundamentos teóricos, y aplicarlas a casos prácticos, culminando con métodos robustos de validación que aseguren la calidad y generalización del modelo final.

5.1 Proceso completo de construcción y optimización del modelo

La construcción de un modelo de regresión múltiple es un proceso sistemático que busca explicar la relación entre una variable respuesta (Y) y múltiples variables predictoras (X_1, X_2, \dots, X_k) . Este proceso consta de varias etapas clave (Kutner et al. 2005), que en este tema nos enfocaremos particularmente en las etapas de reducción de variables y validación:

1. Definición del problema y variables de interés:

- Identificar claramente el objetivo del análisis, ya sea realizar predicciones, evaluar relaciones o controlar por efectos de variables confusoras.
- Seleccionar las variables predictoras potenciales en función de su relevancia teórica, conocimiento previo o exploración inicial de los datos.

2. Recogida de datos:

- La calidad de los datos recogidos influye directamente en la validez de los resultados y conclusiones obtenidas. El proceso de recogida de datos consiste en recopilar información de manera organizada y sistemática para responder a las preguntas de investigación planteadas. Dependiendo del diseño del estudio y los objetivos del análisis, se pueden emplear diferentes tipos de experimentos o métodos de recogida de datos.
- Debemos asegurar las siguientes características sobre los datos.
 - Fiabilidad: Asegurar que los datos sean consistentes y puedan reproducirse bajo condiciones similares.
 - Validez: Garantizar que los datos recojan realmente la información necesaria para responder a las preguntas de investigación.
 - Ética: Asegurar la privacidad y el consentimiento informado de los participantes.
 - Control de Sesgos: Diseñar el estudio de manera que se minimicen los sesgos que puedan distorsionar los resultados.

i Tipos de experimentos

La elección del tipo de experimento o método de recogida de datos dependerá de la naturaleza del problema a investigar, los recursos disponibles y las limitaciones del estudio. Una correcta planificación y ejecución de esta etapa sienta las bases para un análisis robusto y confiable.

1. Experimentos controlados:

- Los experimentos controlados son diseñados de manera que los investigadores manipulan deliberadamente una o más variables independientes (llamadas factores o variables controladas) para observar su efecto en la variable dependiente.
- Incluyen la aleatorización de sujetos entre grupos (por ejemplo, grupos de control y tratamiento) para minimizar sesgos y asegurar comparabilidad.
- En muchas ocasiones la información suplementaria no se puede incorporar en el diseño del experimento. A esas variables, no controladas, se les suel llamar covariables.
- **Ejemplo:** Un estudio clínico donde se prueba un nuevo medicamento y se compara su efecto con un placebo.

2. Estudios observacionales exploratorios:

- En este enfoque, los datos se recogen sin intervenir ni manipular las condiciones. Los investigadores observan y registran los fenómenos tal como ocurren en la naturaleza.
- Pueden clasificarse en:
 - Estudios transversales: Los datos se recogen en un único punto temporal.
 - Estudios longitudinales: Los datos se recogen durante un periodo para analizar cambios a lo largo del tiempo.
- **Ejemplo:** Investigar los hábitos alimenticios y su asociación con enfermedades cardiovasculares en una población.

3. Estudios observacionales confirmatorios:

- En este enfoque, los datos se recogen para testear (confirmar o no) hipótesis derivadas de estudios previos o de ideas que pueden tener los investigadores.
- En este contexto, las variables que aparecen involucradas en la hipótesis que se quiere confirmar se denominan variables primarias, y las variables explicativas que se sabe inluyen en la respuesta se llaman variables de control (en Epidemiología nos referimos a ellas como factores de riesgo)
- Ejemplo: Un equipo de investigadores, basándose en estudios previos, plantea la hipótesis de que existe una relación positiva entre el hábito de fumar (variable explicativa principal) y la incidencia de cáncer de pulmón (variable respuesta). Para confirmar esta hipótesis, realizan un estudio observacional en el que recopilan datos de una población durante un periodo determinado. Dado que no es ético inducir a las personas a fumar para realizar un experimento controlado, este estudio se realiza de forma observacional. Los datos se analizan para evaluar la asociación entre las variables, permitiendo confirmar (o refutar)

la hipótesis planteada con un diseño adecuado y controlando los posibles factores de confusión.

4. Encuestas y cuestionarios:

- Las encuestas son una técnica común para recoger datos de manera estructurada sobre actitudes, opiniones, comportamientos o características demográficas.
- Pueden aplicarse en formato presencial, en línea, por teléfono o mediante correo
- **Ejemplo:** Una encuesta para medir el grado de satisfacción de los clientes con un servicio.

5. Experimentos naturales:

- Se producen cuando un fenómeno natural o social actúa como una intervención en un entorno sin que los investigadores tengan control sobre el experimento.
- Este tipo de estudio aprovecha eventos únicos para analizar sus impactos.
- **Ejemplo:** Estudiar los efectos económicos de una nueva política fiscal aplicada en una región específica.

6. Estudios de simulación:

- Los datos se generan a través de modelos matemáticos o computacionales que representan un sistema real o hipotético.
- Este método se usa cuando es difícil o costoso realizar experimentos reales.
- **Ejemplo:** Simular el comportamiento de un mercado financiero bajo diferentes escenarios económicos.

7. Recogida de datos secundarios:

- En lugar de recoger datos nuevos, se utilizan datos ya existentes recopilados por terceros, como censos, registros administrativos o bases de datos públicas.
- Aunque es eficiente en tiempo y costos, el investigador tiene menor control sobre la calidad y las características de los datos.
- **Ejemplo:** Analizar datos de encuestas nacionales para estudiar tendencias sociales.

3. Análisis Exploratorio de Datos (EDA):

- Inspeccionar los datos mediante análisis descriptivo y visual para identificar posibles problemas como valores atípicos, datos faltantes y multicolinealidad.
- Escalar o transformar las variables si es necesario, especialmente si están en diferentes escalas o presentan distribuciones no lineales.

4. Ajuste del modelo:

• Especificar el modelo de regresión múltiple en su forma general:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \varepsilon,$$

donde ε representa los errores aleatorios.

• Estimar los coeficientes del modelo $(\beta_0, \beta_1, \dots, \beta_p)$ utilizando el método de mínimos cuadrados, que minimiza la suma de los errores al cuadrado.

5. Evaluación del modelo:

- Analizar el ajuste general del modelo utilizando métricas como \mathbb{R}^2 y \mathbb{R}^2 ajustado, que miden la proporción de la variabilidad explicada.
- Examinar la tabla ANOVA para evaluar la significancia global del modelo.
- Realizar pruebas de hipótesis para los coeficientes individuales, verificando si las variables predictoras tienen un efecto significativo en la variable respuesta.

6. Diagnóstico del modelo:

- Examinar los residuos para evaluar supuestos como la linealidad, homocedasticidad, normalidad de los errores y ausencia de autocorrelación.
- Identificar observaciones atípicas, leverage y puntos de influencia utilizando herramientas como la distancia de Cook, DFBETAS y DFFITS.

7. Reducción de variables:

• En análisis de regresión, especialmente cuando se trabaja con conjuntos de datos de alta dimensionalidad, es común enfrentar situaciones en las que el número de variables explicativas es muy grande. Esto puede llevar a problemas como el sobreajuste, dificultades en la interpretación del modelo y una mayor complejidad computacional. Por ello, reducir el número de variables explicativas, sin perder información relevante, se convierte en un paso crucial para construir modelos más eficientes y robustos.

8. Validación del modelo:

 Evaluar el rendimientodel modelo con datos de validación o mediante técnicas como validación cruzada para garantizar su capacidad predictiva en nuevos conjuntos de datos.

5.2 Filtrado basado en información básica

Antes de aplicar métodos sofisticados de selección de variables, es fundamental realizar un filtrado preliminar basado en información básica. Este primer paso consiste en identificar y descartar variables que claramente no aportan información relevante al modelo, reduciendo significativamente el espacio de búsqueda y mejorando la eficiencia de los métodos posteriores (James et al. 2013).

Los criterios principales para este filtrado incluyen:

1. Variabilidad de las variables predictoras

Variables con varianza muy baja o constantes proporcionan poca información discriminatoria. Se descartan variables donde:

$$Var(X_j) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 < \epsilon$$

para algún umbral pequeño ϵ (típicamente $\epsilon = 0.01$).

2. Correlación con la variable respuesta

Variables con correlación muy baja con Y pueden ser candidatas a eliminación. Se calcula:

$$r_{X_j,Y} = \frac{\sum_{i=1}^n (x_{ij} - \bar{x}_j)(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2 \sum_{i=1}^n (y_i - \bar{y})^2}}$$

y típicamente se establece un umbral mínimo $|r_{X_i,Y}| > \delta$ (ej: $\delta = 0.1$).

3. Multicolinealidad extrema

Variables altamente correlacionadas entre sí pueden ser redundantes. Se calcula:

$$r_{X_j,X_k} = \frac{\operatorname{Cov}(X_j,X_k)}{\sqrt{\operatorname{Var}(X_j)\operatorname{Var}(X_k)}}$$

Si $|r_{X_i,X_k}| > 0.95$, se considera eliminar una de las dos variables.

4. Factor de Inflación de la Varianza (VIF)

Para detectar multicolinealidad más compleja se calcula:

$$VIF_j = \frac{1}{1 - R_i^2}$$

donde R_j^2 es el coeficiente de determinación de la regresión de X_j sobre las demás variables predictoras. Valores $VIF_j > 10$ indican multicolinealidad problemática.

💡 Ejemplo de filtrado inicial

En este ejemplo aplicamos el proceso completo de filtrado basado en información a un conjunto de datos simulado con diferentes características.

```
# Configuración y generación de datos
set.seed(123)
n < -100
p <- 15
# Generar datos con diferentes características
X \leftarrow matrix(rnorm(n * p), n, p)
colnames(X) <- paste0("X", 1:p)</pre>
# Variable constante (sin variabilidad)
X[, 1] < -5
# Variable con muy baja variabilidad
X[, 2] \leftarrow 5 + rnorm(n, 0, 0.01)
# Variables moderadamente correlacionadas
X[, 4] \leftarrow X[, 3] + rnorm(n, 0, 0.5)
X[, 5] \leftarrow 0.7 * X[, 3] + rnorm(n, 0, 0.6)
# Variable respuesta con coeficientes conocidos
beta \leftarrow c(0, 0, 2, 1.5, 1.2, -1, 0.8, rep(0, 8))
y <- X %*% beta + rnorm(n)
datos \leftarrow data.frame(y = y, X)
suppressPackageStartupMessages(library(car))
# 1. Análisis de variabilidad
varianzas <- apply(X, 2, var)</pre>
vars_baja_var <- which(varianzas < 0.01)</pre>
# 2. Filtrar por correlación con Y
X_filtrada <- if(length(vars_baja_var) > 0) X[, -vars_baja_var] else X
correlaciones <- cor(X filtrada, y)</pre>
vars_baja_corr_idx <- which(abs(correlaciones) < 0.1)</pre>
vars_baja_corr <- if(length(vars_baja_corr_idx) > 0) {
  as.numeric(gsub("X", "", colnames(X_filtrada)[vars_baja_corr_idx]))
} else {
  c()
}
# 3. Identificar correlaciones altas entre predictores
cor_matrix <- cor(X_filtrada)</pre>
high_cor <- which(abs(cor_matrix) > 0.8 & abs(cor_matrix) < 1, arr.ind = TRUE)
# 4. Calcular VIF para variables restantes
vars_eliminar <- unique(c(vars_baja_var, vars_baja_corr))</pre>
datos_final <- if(length(vars_eliminar) > 0) {
  datos[, -(vars_eliminar + 1)] # +1 porque datos incluye y en primera columna
} else {
  datos
}
```

Resultados del filtrado basado en información:

- 1. Variables eliminadas por baja variabilidad: X 1, X 2
- 2. Variables eliminadas por baja correlación con Y: X 8, X 9, X 10, X 11, X 12, X 13, X 14
- 3. Correlaciones altas entre predictores (|r| > 0.8): X4 y X3 : 0.846 , X3 y X4 : 0.846
- 4. Variables restantes: 6 de 15 originales
- **5. Factores VIF de variables finales:** X3:4.87, X4:3.56, X5:2.26, X6:1.06, X7:1.03, X15:1.07

Este proceso de filtrado redujo el conjunto original de 15 variables a 6 variables, eliminando efectivamente las variables con problemas de variabilidad y correlación identificados.

El proceso de filtrado se implementa secuencialmente: (1) eliminar variables constantes o con varianza cercana a cero, (2) eliminar variables con correlación muy baja con la variable respuesta, (3) identificar grupos de variables multicolineales y retener solo la más relevante de cada grupo, y (4) calcular VIF y eliminar variables con valores muy altos. Este filtrado inicial típicamente reduce el conjunto de variables candidatas, facilitando significativamente los pasos posteriores de selección.

Es importante considerar que este filtrado no es definitivo, ya que variables eliminadas en esta etapa pueden ser importantes en combinaciones específicas. Además, está basado en relaciones lineales y puede omitir relaciones no lineales importantes. Por tanto, requiere validación posterior del modelo resultante y los umbrales deben ajustarse según el dominio de aplicación específico.

¡Claro! El contenido que tienes es excelente y muy completo. Para hacerlo menos esquemático, lo he reescrito en un formato más narrativo, conectando las ideas en párrafos fluidos. La idea es transformar las listas y tablas en una explicación discursiva, como si lo estuvieras contando en una clase, lo que se adapta mejor al formato de un libro.

Aquí tienes la propuesta:

5.3 Criterios de Bondad de Ajuste

Una vez completado el filtrado preliminar de variables, nos enfrentamos a una de las tareas más importantes del modelado: seleccionar la combinación óptima de predictores. El objetivo es encontrar un equilibrio delicado. Un modelo con muy pocas variables puede ser demasiado simple y no capturar la relación real (**subajuste** o *underfitting*), mientras que un modelo con demasiadas variables puede ajustarse al ruido de la muestra y no generalizar bien a nuevos datos (**sobreajuste** u *overfitting*).

Para navegar este compromiso, utilizamos criterios de información que cuantifican la calidad de un modelo, equilibrando su capacidad explicativa con su complejidad. Estos nos permiten

comparar modelos con diferente número de predictores de forma rigurosa y objetiva. Los tres criterios más influyentes en la estadística clásica son el Criterio de Información de Akaike (AIC), el Criterio de Información Bayesiano (BIC) y el estadístico Cp de Mallows.

5.3.1 Criterio de Información de Akaike

El Criterio de Información de Akaike (AIC), desarrollado por Hirotugu Akaike, es una métrica fundamentada en la teoría de la información (James et al. 2013). Su propósito es estimar la pérdida de información que ocurre cuando usamos un modelo para representar la realidad. El modelo que minimice esta pérdida de información será considerado el mejor.

La fórmula del AIC para un modelo de regresión lineal es:

$$AIC = n \ln \left(\frac{SSE}{n} \right) + 2(p+1)$$

En esta ecuación, n es el tamaño de la muestra, SSE es la Suma de Cuadrados del Error y p es el número de variables predictoras. La fórmula equilibra dos fuerzas opuestas:

- 1. Bondad de ajuste: El primer término, $n \ln(SSE/n)$, está directamente relacionado con la función de log-verosimilitud del modelo. Disminuye a medida que el modelo se ajusta mejor a los datos (es decir, a medida que el SSE se reduce).
- 2. Penalización por complejidad: El segundo término, 2(p+1), actúa como un castigo. Aumenta en 2 unidades por cada parámetro adicional que se incluye en el modelo (p pendientes + 1 intercepto).

En la práctica, calculamos el AIC para varios modelos candidatos y **seleccionamos aquel con el valor de AIC más bajo**. Este criterio es asintóticamente eficiente, lo que significa que, con muestras suficientemente grandes, tiende a seleccionar el modelo que minimiza el error de predicción esperado en nuevos datos.

5.3.2 Criterio de Información Bayesiano

El Criterio de Información Bayesiano (BIC), propuesto por Gideon Schwarz, es un competidor directo del AIC, pero con fundamentos en la estadística bayesiana (Hastie et al. 2009). Mientras que el AIC busca el mejor modelo para la predicción, el BIC está diseñado para encontrar el modelo más probable de ser el "verdadero" generador de los datos.

Su fórmula es muy similar a la del AIC, pero la penalización por complejidad es diferente y más severa:

$$BIC = n \ln \left(\frac{SSE}{n} \right) + (p+1) \ln(n)$$

La diferencia clave reside en el término de penalización. En lugar de 2(p+1), el BIC utiliza $(p+1)\ln(n)$. Dado que el logaritmo natural de n es mayor que 2 para cualquier muestra con más de 7 observaciones $(e^2 \approx 7.4)$, la penalización del BIC es casi siempre más fuerte que la del AIC. Esta penalización más estricta le confiere al BIC una tendencia hacia la **parsimonia**, favoreciendo modelos más simples. Una de sus propiedades teóricas más importantes es la **consistencia**: si el modelo verdadero se encuentra entre los candidatos, la probabilidad de que el BIC lo seleccione tiende a 1 a medida que el tamaño de la muestra crece.

5.3.3 Estadístico Cp de Mallows

A diferencia del AIC y el BIC, el **estadístico Cp de Mallows** no se basa en la teoría de la información ni en la estadística bayesiana, sino que aborda directamente el **error cuadrático medio de predicción** del modelo (James et al. 2013). Su objetivo es encontrar un modelo que tenga un bajo sesgo y una baja varianza.

La fórmula para el estadístico Cp es:

$$C_p = \frac{SSE_p}{MSE_{full}} - n + 2(p+1)$$

Aquí, SSE_p es la suma de cuadrados del error del modelo candidato con p variables, y MSE_{full} es el error cuadrático medio del **modelo completo** (el que incluye todas las variables predictoras disponibles), que se utiliza como una estimación insesgada de la varianza del error poblacional, σ^2 .

La interpretación del Cp es particularmente intuitiva. Si un modelo está bien especificado (es decir, no incluye un sesgo significativo), se espera que su valor de C_p sea cercano al número de parámetros, p+1.

Por lo tanto, la estrategia de selección consiste en **elegir el modelo que tenga el valor de Cp más bajo**. Este modelo representa el mejor equilibrio entre el sesgo y la varianza. Generalmente, observaremos dos cosas en un gráfico de Cp vs. p:

- Los modelos con pocas variables y C_p muy por encima de la línea p+1 sufren de un sesgo elevado (subajuste).
- El modelo con el C_p más bajo es el preferido. Normalmente, este valor mínimo también estará cerca de la línea p+1, confirmando su buen ajuste.

💡 Visualización del Cp de Mallows

Una de las aplicaciones más útiles del Cp de Mallows es su visualización gráfica para identificar el modelo óptimo. El siguiente ejemplo muestra cómo crear un gráfico de Cp que facilita la interpretación y selección del mejor modelo.

```
# Cargar librerías necesarias
suppressPackageStartupMessages({
  library(leaps)  # Para best subset selection
  library(ggplot2) # Para gráficos
  library(dplyr)
                 # Para manipulación de datos
})
# Usar el dataset mtcars para el ejemplo
data(mtcars)
# 1. Realizar best subset selection
best_subset <- regsubsets(mpg ~ ., data = mtcars, nvmax = 10)</pre>
subset_summary <- summary(best_subset)</pre>
# 2. Extraer información relevante para el gráfico
plot_data <- data.frame(</pre>
 n_variables = 1:length(subset_summary$cp),
  Cp = subset_summary$cp
# 3. Identificar el mejor modelo según el criterio Cp
   La regla es simple: escoger el modelo con el menor valor de Cp.
mejor_cp_idx <- which.min(subset_summary$cp)</pre>
mejor_cp_valor <- subset_summary$cp[mejor_cp_idx]</pre>
# 4. Crear el gráfico del Cp de Mallows
ggplot(plot_data, aes(x = n_variables, y = Cp)) +
  # Linea de referencia ideal (Cp = p+1)
  geom_abline(intercept = 1, slope = 1, color = "red", linetype = "dashed", linewidth = 1)
  # Puntos y línea de los valores Cp de los modelos
  geom_point(color = "#0072B2", size = 3) +
  geom_line(color = "#0072B2") +
  # Resaltar el mejor punto (el que tiene el Cp mínimo)
  geom_point(aes(x = mejor_cp_idx, y = mejor_cp_valor), color = "red", size = 5, shape = 1
  # Etiqueta para el mejor punto
  annotate("text", x = mejor_cp_idx, y = mejor_cp_valor + 1.5,
           label = paste("Optimo Cp\n(", mejor_cp_idx, "variables)"), color = "red", size =
  labs(
    title = "Criterio Cp de Mallows para Selección de Variables (mtcars)",
    subtitle = "Se busca el modelo con el valor de Cp más bajo",
    x = "Número de Variables Predictoras (p)",
    y = "Valor de Cp"
  ) +
  theme_minimal(base_size = 14) +
  theme(plot.title = element text(face = "bold")) +
  scale_x_continuous(breaks = 1:10) 157
```

Warning in geom_point(aes(x = mejor_cp_idx, y = mejor_cp_valor), color = "red", : All aest!
i Please consider using `annotate()` or provide this layer with data containing
a single row.

Criterio Cp de Mallows para Selección de Va

Se busca el modelo con el valor de Cp más bajo

5. Mostrar las variables del modelo seleccionado
variables_mejor_modelo_cp <- names(which(subset_summary\$which[mejor_cp_idx, -1]))</pre>

El gráfico resultante nos permite diagnosticar visualmente la calidad de los modelos candidatos. La línea discontinua roja representa la referencia para un modelo sin sesgo $(C_p = p + 1)$.

La estrategia de selección es clara: **identificar el modelo que minimice el estadístico Cp**. Este punto representa el mejor equilibrio teórico entre el sesgo del modelo (subajuste) y su varianza (sobreajuste). La línea roja nos ayuda a confirmar visualmente que el modelo elegido, además de ser el de menor Cp, tiene un sesgo bajo.

Como se observa, el estadístico Cp disminuye drásticamente al pasar de uno a dos predictores. El modelo con **3 variables** es el seleccionado como óptimo porque alcanza el valor de Cp más bajo de todos los candidatos, con un valor de **0.1**.

El análisis sugiere que el modelo más parsimonioso y con el mejor rendimiento predictivo se compone de las siguientes variables: **wt, qsec, am**. Añadir más predictores más allá de este punto óptimo no mejora el modelo; de hecho, el valor de Cp comienza a aumentar, lo que indica que estamos añadiendo una complejidad innecesaria y empezando a sobreajustar los datos.

5.3.4 ¿Cuándo Usar Cada Criterio?

La existencia de varios criterios plantea una pregunta natural: ¿cuál debemos usar? La respuesta depende en gran medida del objetivo final de nuestro análisis.

Si el **objetivo principal es la predicción**, el **AIC** suele ser la opción preferida. Su diseño para minimizar el error de predicción lo hace ideal en contextos de pronóstico, donde el rendimiento en datos nuevos es lo más importante. Su penalización más moderada permite incluir variables que, aunque no sean "verdaderas" en un sentido causal, ayudan a mejorar la precisión de las predicciones.

Por otro lado, si el **objetivo es la explicación o la inferencia** —es decir, identificar el modelo más parsimonioso que probablemente representa el verdadero proceso generador de los datos—, el **BIC** es la elección más sólida. Su penalización más fuerte protege de forma más robusta contra el sobreajuste y, en muestras grandes, su propiedad de consistencia le da una base teórica más fuerte para la selección del "modelo verdadero".

El \mathbf{Cp} de Mallows es especialmente valioso en un contexto más exploratorio, cuando queremos entender explícitamente el compromiso entre el sesgo y la varianza. Al graficar C_p frente a p+1 para diferentes subconjuntos de modelos, podemos visualizar claramente el punto en el que añadir más variables deja de reducir el sesgo y solo empieza a inflar la varianza, ofreciendo una visión muy clara del "codo" de complejidad óptima.

Es común que estos criterios no coincidan en su selección. Cuando esto ocurre, no debe verse como un fracaso, sino como una indicación de que no existe un único modelo "mejor" de forma inequívoca. En tales casos, el juicio del analista es clave, y se pueden usar herramientas adicionales como la **validación cruzada** (*cross-validation*) para comparar el rendimiento predictivo de los modelos finalistas y tomar una decisión informada.

ll El Principio de Parsimonia en la Selección de Modelos

El **principio de parsimonia**, también conocido como la "navaja de Occam", es un concepto fundamental que subyace a todos los criterios de bondad de ajuste. Este principio establece que, entre modelos que explican igualmente bien un fenómeno, **se debe preferir el más simple**.

5.4 Métodos de selección exhaustiva

Los métodos de selección exhaustiva son un enfoque fundamental en la búsqueda de un subconjunto óptimo de variables predictoras en modelos de regresión. Este enfoque evalúa de manera sistemática diferentes combinaciones de variables para identificar cuál de ellas proporciona el mejor ajuste al modelo en función de un criterio predefinido, como el coeficiente de determinación ajustado (R^2 ajustado) o criterios de información como AIC o BIC.

A diferencia de los métodos automáticos, los métodos de selección exhaustiva no dependen de un proceso iterativo de adición o eliminación de variables. En cambio, buscan exhaustivamente (o mediante aproximaciones computacionalmente más eficientes) entre todas las posibles combinaciones de variables, lo que garantiza un análisis completo de las interacciones y relevancias potenciales.

El método más conocido dentro de este enfoque es la **selección del mejor subconjunto** (**Best Subset Selection**), que evalúa todos los subconjuntos posibles de variables y selecciona el mejor para cada tamaño específico. Es el enfoque más completo pero también el más exigente computacionalmente. Para un conjunto de p variables predictoras, este método construye todos los modelos posibles que incluyen k variables, donde k=1,2,...,p, seleccionando el mejor modelo de cada tamaño según el criterio elegido.

Ejemplo de Best Subset Selection maximizando R² ajustado suppressPackageStartupMessages(library(leaps)) # Usando el dataset mtcars data(mtcars) # Realizar best subset selection best_subset <- regsubsets(mpg ~ ., data = mtcars, nvmax = 10) # Obtener estadísticas del mejor modelo según R² ajustado subset_summary <- summary(best_subset) mejor_modelo_idx <- which.max(subset_summary\$adjr2) mejor_r2_adj <- max(subset_summary\$adjr2) total_variables <- ncol(mtcars) - 1 # Excluir variable respuesta variables_seleccionadas <- mejor_modelo_idx

El método de selección exhaustiva aplicado al conjunto de datos mtcars identifica el modelo óptimo que maximiza el R² ajustado. Este modelo alcanza un R² ajustado de 0.8375, utilizando 5 variables del total de 10 variables predictoras disponibles. Esta selección representa un equilibrio óptimo entre la capacidad explicativa del modelo y la penalización por complejidad, demostrando cómo la evaluación exhaustiva puede identificar el subconjunto de variables que mejor explica la variabilidad en el consumo de combustible.

Esta aproximación presenta importantes **ventajas**: garantiza encontrar el mejor subconjunto según el criterio elegido (optimalidad garantizada), examina todas las posibles combinaciones de variables ofreciendo una evaluación completa, y proporciona un estándar sólido para comparar otros métodos de selección. Sin embargo, también tiene **limitaciones** significativas:

la complejidad computacional crece exponencialmente ya que con p variables se generan 2^p modelos posibles, lo que hace que sea impracticable para p grande (típicamente p > 15 - 20). Además, sin una validación cruzada adecuada, puede seleccionar modelos sobreajustados.

Estos métodos son especialmente útiles cuando el número de predictores no es demasiado grande, ya que el esfuerzo computacional crece exponencialmente con el número de variables. Aunque el costo computacional puede ser elevado en datasets amplios, los métodos de selección exhaustiva proporcionan una referencia sólida y transparente para evaluar qué variables son fundamentales en el modelo, siendo particularmente valiosos en estudios donde la interpretabilidad y la certeza sobre la selección de variables son prioritarias.

¡Perfecto! El texto que tienes es una excelente introducción. Ahora vamos a expandir cada uno de esos puntos para darles la profundidad teórica y práctica que necesitan en el libro, explicando el algoritmo de cada método, sus criterios de decisión y sus ventajas y limitaciones.

Aquí tienes una propuesta para desarrollar esa sección.

5.5 Métodos automáticos paso a paso

Los métodos automáticos de selección de variables, a menudo llamados métodos secuenciales o por pasos (stepwise), son algoritmos diseñados para explorar el espacio de posibles modelos de una manera computacionalmente eficiente. A diferencia del método de mejores subconjuntos (best subset selection), que evalúa todos los modelos posibles, estos enfoques siguen un camino restringido, añadiendo o quitando predictores de uno en uno.

El principio clave es construir un modelo de forma iterativa, tomando en cada paso una decisión "localmente óptima" basada en un criterio estadístico. Los criterios más comunes son el p-valor de un predictor, o el cambio que este produce en un indicador global como el \mathbf{AIC} , el \mathbf{BIC} o el R^2 ajustado.

5.5.1 Selección progresiva (Forward Selection)

Esta estrategia es la más intuitiva: parte de la nada y construye el modelo pieza por pieza, añadiendo en cada paso el predictor que aporta la mayor mejora.

El Algoritmo

- 1. Inicio: Se comienza con el modelo nulo, que solo contiene el intercepto $(Y \sim 1)$.
- 2. **Primer Paso**: Se ajustan *p* modelos de regresión simple, uno para cada una de las *p* variables predictoras disponibles. Se elige la variable que mejor explica la respuesta (la que tiene el p-valor más bajo en su test t, o la que produce el AIC/BIC más bajo). Esta variable se convierte en el primer predictor del modelo.

- 3. Pasos Siguientes: Se ajustan p-1 nuevos modelos, cada uno de los cuales contiene la(s) variable(s) ya seleccionada(s) más una de las variables restantes. De nuevo, se selecciona y se añade la variable que produce la mayor mejora en el criterio elegido.
- 4. **Finalización**: El proceso se repite y se detiene cuando ninguna de las variables restantes mejora el modelo de forma significativa al ser añadida (por ejemplo, ninguna tiene un p-valor por debajo de un umbral predefinido, o el AIC/BIC del modelo deja de disminuir).

Ventajas y Limitaciones

- Ventaja: Es computacionalmente muy eficiente. Puede aplicarse en situaciones con un número de predictores muy grande, incluso cuando hay más predictores que observaciones (p > n).
- Limitación: Su principal debilidad es su "miopía". Una variable seleccionada en una etapa temprana se queda en el modelo para siempre. Sin embargo, es posible que esa variable se vuelva redundante una vez que se añadan otros predictores. El método forward no puede rectificar decisiones pasadas, por lo que no garantiza encontrar el mejor modelo posible.

5.5.2 Eliminación regresiva (Backward Elimination)

Esta estrategia adopta el enfoque opuesto: empieza con todo y va eliminando lo que no es útil, como un escultor que retira el mármol sobrante.

El Algoritmo

- 1. **Inicio**: Se comienza con el **modelo completo**, que incluye todas las p variables predictoras disponibles $(Y \sim X_1 + X_2 + \dots + X_p)$.
- 2. **Primer Paso**: Se ajusta el modelo completo y se examina la significancia de cada predictor. Se identifica la variable **menos significativa**, es decir, aquella con el p-valor más alto en su test t (o la que, al ser eliminada, produce la menor disminución en la calidad del modelo según AIC/BIC).
- 3. Pasos Siguientes: Si el p-valor de esa variable supera un umbral de permanencia (p. ej., $\alpha_{out} = 0.10$), se elimina del modelo. A continuación, se vuelve a ajustar el modelo con las p-1 variables restantes.
- 4. **Finalización**: El proceso de identificar y eliminar la variable menos significativa se repite hasta que todas las variables que quedan en el modelo son estadísticamente significativas (es decir, todas tienen un p-valor por debajo del umbral de permanencia).

Ventajas y Limitaciones

• Ventaja: Generalmente se considera superior al método forward porque empieza evaluando el efecto de cada variable en presencia de todas las demás. Esto proporciona un contexto inicial más completo.

• Limitación: No se puede utilizar si el número de predictores es mayor que el número de observaciones (p > n), ya que es imposible ajustar el modelo completo inicial. Además, al igual que el método forward, una vez que una variable es eliminada, no puede volver a entrar, lo que podría llevar a eliminar por error una variable que es importante en combinación con un subconjunto más pequeño de predictores.

5.5.3 Selección paso a paso (Stepwise Regression)

Este método es un híbrido que intenta combinar lo mejor de las dos estrategias anteriores, permitiendo un proceso de "prueba y error" más flexible.

El Algoritmo

La selección stepwise es esencialmente una selección forward con un añadido crucial: en cada paso, después de añadir una nueva variable, se realiza una verificación hacia atrás para comprobar si alguna de las variables que ya estaban en el modelo se ha vuelto redundante.

- 1. Paso Adelante (Forward): Al igual que en la selección progresiva, se añade la variable que más mejora el modelo.
- 2. Paso Atrás (Backward): Después de añadir esa variable, se examinan todas las variables ya incluidas en el modelo. Si alguna de ellas ha perdido su significancia (su p-valor ha aumentado por encima de un umbral de eliminación), se elimina.
- 3. Repetición: El proceso continúa, alternando pasos hacia adelante y hacia atrás, hasta que se alcanza un punto de equilibrio en el que ninguna variable puede ser añadida ni eliminada según los umbrales establecidos.

Ventajas y Limitaciones

- Ventaja: Es más robusto que los métodos forward o backward puros, ya que puede corregir decisiones anteriores. Una variable que fue importante al principio puede ser eliminada más tarde si otra la hace redundante.
- Limitación: A pesar de su flexibilidad, sigue siendo un algoritmo "codicioso" (qreedy) que no explora todo el espacio de modelos. Por tanto, tampoco garantiza encontrar el mejor modelo global.

Advertencia sobre los métodos automáticos

Aunque estos métodos son herramientas útiles para un primer cribado de variables, deben usarse con extrema cautela. Su naturaleza automática puede llevar a conclusiones erróneas si no se supervisan con criterio.

- 1. No garantizan el mejor modelo: Al seguir un camino fijo, pueden pasar por alto el subconjunto de variables verdaderamente óptimo.
- 2. Invalidez de los p-valores: Los p-valores, errores estándar e intervalos de confianza

- del modelo final están **sesgados** y son excesivamente optimistas. El proceso de selección ha "elegido a los ganadores" de antemano, y la teoría de la inferencia estándar no se aplica a un modelo que ha sido seleccionado de esta manera.
- 3. **Inestabilidad**: Los resultados pueden ser muy sensibles a pequeñas variaciones en los datos. Añadir o quitar unas pocas observaciones puede cambiar drásticamente el modelo seleccionado.

Por estas razones, los métodos automáticos deben considerarse como **herramientas exploratorias** para generar modelos candidatos, no como un procedimiento definitivo. La selección final siempre debe estar guiada por el conocimiento del dominio, la teoría subyacente y un diagnóstico riguroso.

5.6 Métodos basados en regularización

En los modelos de regresión, especialmente cuando se trabaja con un gran número de variables predictoras o con datos multicolineales, los métodos tradicionales de selección de variables pueden resultar ineficaces o inestables. En estos casos, los métodos basados en regularización surgen como una alternativa poderosa que no solo selecciona variables, sino que también mejora la estabilidad y la precisión del modelo.

La regularización consiste en introducir una penalización en la función de ajuste del modelo, lo que tiene dos efectos principales: controlar el sobreajuste al reducir la complejidad del modelo y forzar la selección de un subconjunto más parsimonioso de predictores. Estas penalizaciones ajustan los coeficientes de las variables predictoras, favoreciendo soluciones más simples y robustas (James et al. 2013).

Entre los métodos de regularización más destacados se encuentran:

- Ridge Regression: Aplica una penalización proporcional al cuadrado de los coeficientes, lo que permite manejar problemas de multicolinealidad pero no conduce a la eliminación completa de variables.
- Lasso (Least Absolute Shrinkage and Selection Operator): Introduce una penalización basada en el valor absoluto de los coeficientes, lo que no solo reduce su magnitud, sino que también puede anularlos completamente, realizando una selección automática de variables.
- Elastic Net: Combina las penalizaciones de Ridge y Lasso, ofreciendo mayor flexibilidad en situaciones donde hay una gran correlación entre los predictores.

Estos métodos son especialmente útiles en problemas donde el número de variables predictoras excede el número de observaciones, o cuando se desea un modelo más interpretable. En esta sección, exploraremos en detalle los fundamentos teóricos, la implementación práctica y las

aplicaciones de cada uno de estos métodos, destacando sus ventajas en escenarios complejos y desafiantes.

5.6.1 Ridge regression

La regresión Ridge introduce una penalización en la estimación de los coeficientes de regresión, lo que ayuda a reducir la varianza del modelo y mejora su capacidad predictiva en presencia de datos altamente correlacionados o con muchas variables (Marquardt and Snee 1975). El modelo de regresión Ridge es una extensión de la regresión lineal estándar. Con datos observados, escribimos:

$$\mathbf{y} = \mathbf{X} \, \beta + \varepsilon$$

donde:

- y es el vector de respuesta observado de dimensión $n \times 1$.
- X es la matriz de diseño observada de dimensión $n \times (p+1)$ (la primera columna suele ser de unos para el intercepto).
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ es el vector de coeficientes.
- ε es el vector de errores.

En mínimos cuadrados ordinarios (OLS), los coeficientes se estiman minimizando la suma de los errores al cuadrado:

$$SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2.$$

Sin embargo, cuando hay multicolinealidad, la matriz $\mathbf{X}^T\mathbf{X}$ puede ser casi singular, generando coeficientes inestables. Para evitar esto, la regresión Ridge añade un **término de penalización** λ , de la siguiente manera (sin penalizar el intercepto β_0):

$$SSE_{ridge} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p \beta_j^2.$$

Este término adicional, es un **término de penalización** $(L_2 = \sum \beta_j^2)$ impone una restricción sobre los coeficientes, evitando que tomen valores excesivamente grandes. La estimación de β en Ridge se obtiene resolviendo:

$$\hat{\boldsymbol{\beta}}_{\mathrm{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda\,\mathbf{P})^{-1}\mathbf{X}^T\mathbf{y}.$$

donde **P** es diagonal con $P_{11}=0$ (no penalizamos el intercepto) y $P_{jj}=1$ para $j=2,\ldots,p+1,$ y $\lambda \geq 0$ controla la cantidad de penalización aplicada. (Cuando no hay intercepto o se reparametriza, a menudo se escribe con I para simplificar.)

Interpretación del parámetro λ

- Si $\lambda = 0$, el modelo Ridge es equivalente a la regresión lineal tradicional (OLS).
- A medida que λ aumenta, los coeficientes β_i (pendientes) se reducen en magnitud, lo que ayuda a controlar la varianza del modelo y a prevenir el sobreajuste.
- Si λ es demasiado grande, los coeficientes se acercan a cero y el modelo puede perder interpretabilidad.

La elección óptima de λ se determina generalmente mediante validación cruzada.

Aviso

Los detalles de la validación cruzada son tratados en la asignatura de Minería de Datos.

i Propiedades Clave

- Manejo de la multicolinealidad: La regularización reduce la sensibilidad del modelo cuando los predictores están altamente correlacionados.
- Menor varianza en las predicciones: El modelo Ridge tiende a ser más estable en comparación con OLS, lo que mejora la capacidad de generalización en conjuntos de datos nuevos.
- No realiza selección de variables: A diferencia de Lasso, Ridge no anula coeficientes, sino que reduce su magnitud. Esto es útil cuando se sospecha que todas las variables tienen algún grado de importancia en el modelo.

```
    Ejemplo

# Cargar librerías
suppressPackageStartupMessages(library(glmnet))
# Datos simulados
set.seed(123)
X <- matrix(rnorm(100 * 10), 100, 10) # 100 observaciones, 10 predictores
Y <- X %*% rnorm(10) + rnorm(100) # Variable de respuesta con ruido
# Ajustar modelo Ridge
modelo_ridge <- glmnet(X, Y, alpha = 0) # alpha = 0 indica regresión Ridge</pre>
# Seleccionar lambda óptimo con validación cruzada
cv_ridge <- cv.glmnet(X, Y, alpha = 0)</pre>
lambda_optimo <- cv_ridge$lambda.min # Mejor valor de lambda</pre>
print(lambda_optimo)
[1] 0.2583753
# Ajustar modelo final con lambda óptimo
modelo_ridge_final <- glmnet(X, Y, alpha = 0, lambda = lambda_optimo)</pre>
modelo_ridge_final
Call: glmnet(x = X, y = Y, alpha = 0, lambda = lambda_optimo)
  Df %Dev Lambda
1 10 93.55 0.2584
```

```
# Comparación modelo clásico
modelo_lm <- lm(Y~X)</pre>
# Mostrar coeficientes
output=cbind(round(coef(modelo_ridge_final),3),
            round(coef(modelo_lm),3))
colnames(output)=c("RIDGE","OLS")
output
11 x 2 sparse Matrix of class "dgCMatrix"
             RIDGE
                       OLS
(Intercept)
             0.118 0.132
            -0.874 -0.995
V1
V2
            -1.019 -1.131
             0.040 0.039
٧3
             0.002 0.001
۷4
V5
            -2.500 - 2.703
V6
             1.001 1.104
۷7
             0.247 0.274
             2.125 2.244
87
۷9
             0.635 0.658
            -0.390 -0.427
V10
```

La regresión Ridge es una técnica poderosa para mejorar la estabilidad de los modelos de regresión en presencia de multicolinealidad. A diferencia de OLS, que puede generar coeficientes inestables, Ridge introduce una penalización que reduce la magnitud de los coeficientes, evitando valores extremos. Aunque Ridge no realiza selección de variables, su capacidad para reducir la varianza y mejorar la capacidad predictiva lo convierte en una herramienta esencial en el análisis de datos modernos.

En la siguiente sección, exploraremos la **regresión Lasso**, que extiende este concepto permitiendo la eliminación de variables irrelevantes del modelo.

5.6.2 Regresión Lasso

Cuando se tiene un conjunto de predictores con posibles redundancias o ruido, Lasso permite identificar cuáles son las variables más relevantes para el modelo, lo que facilita la interpretación y reduce la complejidad del análisis.

Al igual que en Ridge, el modelo de regresión Lasso se define sobre datos observados mediante la minimización (Ranstam and Cook 2018):

$$SSE_{\rm lasso} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p |\boldsymbol{\beta}_j|$$

donde el **término de penalización** $(L_1 = \sum |\beta_j|)$ no penaliza el intercepto β_0 y hace que algunos coeficientes de pendiente se reduzcan exactamente a **cero**, eliminando variables del modelo.

La diferencia clave con **Ridge Regressión**, visto anteriormente, es que Ridge reduce la magnitud de los coeficientes pero no los anula, mientras que **Lasso puede eliminar variables** por completo.

Interpretación del parámetro λ

- Si $\lambda = 0$, el modelo es equivalente a la regresión lineal tradicional (OLS).
- A medida que λ aumenta, más coeficientes de pendiente se reducen a cero, lo que equivale a realizar selección de variables.
- Si λ es demasiado grande, se eliminan demasiadas variables, lo que puede resultar en un modelo subóptimo.

Al igual que en el método Ridge, la selección óptima de λ se realiza generalmente mediante validación cruzada.

i Propiedades Clave

- Selección de variables automática: Lasso no solo regulariza, sino que también selecciona las variables más importantes eliminando aquellas menos relevantes.
- Manejo de la multicolinealidad: Puede mejorar la interpretación del modelo cuando hay muchas variables correlacionadas.
- Simplicidad y interpretabilidad: Un modelo con menos variables es más fácil de interpretar y aplicar en la práctica.
- Reduce el sobreajuste: La penalización L_1 evita que el modelo se ajuste demasiado a los datos de entrenamiento, mejorando su capacidad predictiva en datos nuevos.

```
    Ejemplo

# Ajustar modelo Lasso
modelo_lasso <- glmnet(X, Y, alpha = 1) # alpha = 1 indica regresión Lasso
# Seleccionar lambda óptimo con validación cruzada
cv_lasso <- cv.glmnet(X, Y, alpha = 1)</pre>
lambda_optimo <- cv_lasso$lambda.min # Mejor valor de lambda
print(lambda_optimo)
[1] 0.03260326
# Ajustar modelo final con lambda óptimo
modelo_lasso_final <- glmnet(X, Y, alpha = 1, lambda = lambda_optimo)</pre>
# Mostrar coeficientes
output=cbind(round(coef(modelo_lasso_final),3),output)
colnames(output)=c("LASSO", "RIDGE", "OLS")
output
11 x 3 sparse Matrix of class "dgCMatrix"
             LASSO RIDGE
                             OLS
(Intercept) 0.131 0.118 0.132
V1
            -0.950 -0.874 -0.995
٧2
            -1.078 -1.019 -1.131
V3
             0.006 0.040 0.039
۷4
                    0.002 0.001
۷5
            -2.652 -2.500 -2.703
۷6
             1.058 1.001 1.104
۷7
             0.235 0.247 0.274
٧8
             2.213 2.125 2.244
۷9
             0.629 0.635 0.658
V10
            -0.392 -0.390 -0.427
```

Consideraciones Importantes

La regresión Lasso es una poderosa técnica de regularización que no solo mejora la estabilidad del modelo en presencia de muchas variables predictoras, sino que también realiza una selección

automática de las más relevantes. Su capacidad para reducir coeficientes a cero la convierte en una herramienta esencial en el análisis de datos de alta dimensión.

- Lasso puede eliminar demasiadas variables si λ es demasiado grande, lo que puede llevar a la pérdida de información importante.
- No maneja bien grupos de predictores altamente correlacionados, ya que selecciona solo uno de ellos y elimina los demás.
- Elastic Net, que combina Ridge y Lasso, puede ser una mejor opción cuando hay multicolinealidad fuerte en los datos.

En la siguiente sección, exploraremos **Elastic Net**, una técnica híbrida que combina las ventajas de Ridge y Lasso para mejorar la selección de variables en presencia de predictores altamente correlacionados.

5.6.3 Elastic Net

La regresión **Elastic Net** es una técnica de regularización que combina las propiedades de **Ridge** y **Lasso**, abordando algunas de sus limitaciones individuales (Zou and Hastie 2005). Mientras que Ridge es útil para manejar la multicolinealidad sin eliminar variables y Lasso selecciona un subconjunto de predictores, Elastic Net equilibra ambos enfoques permitiendo la selección de variables en presencia de alta correlación entre los predictores.

Este método es particularmente efectivo cuando el número de predictores es grande y existe multicolinealidad, ya que permite controlar simultáneamente la reducción de la magnitud de los coeficientes y la eliminación de variables irrelevantes.

Elastic Net introduce una penalización que combina los términos de Ridge (L_2) y Lasso (L_1) , sobre datos observados:

$$SSE_{\text{Elastic Net}} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda_1 \sum_{j=1}^p |\beta_j| + \lambda_2 \sum_{j=1}^p \beta_j^2$$

donde:

- λ_1 (asociado a Lasso) controla la cantidad de coeficientes que se reducen a **cero**.
- λ_2 (asociado a Ridge) controla la **reducción de magnitud** de los coeficientes sin anularlos.
- α es un parámetro adicional que pondera la combinación entre Lasso y Ridge, con:
 - $-\alpha = 1 \rightarrow$ Elastic Net se comporta como Lasso.
 - $-\alpha = 0 \rightarrow$ Elastic Net se comporta como Ridge.
 - $-0 < \alpha < 1 \rightarrow$ Elastic Net combina ambos métodos.

La estimación de los coeficientes en Elastic Net se obtiene resolviendo (habitualmente sin penalizar el intercepto):

$$\hat{\boldsymbol{\beta}}_{\mathrm{EN}} = \arg\min_{\boldsymbol{\beta}} \left(\|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \left(\alpha \sum_{j=1}^p |\beta_j| + (1-\alpha) \sum_{j=1}^p \beta_j^2 \right) \right)$$

i Propiedades Clave

- Manejo de la Multicolinealidad: A diferencia de Lasso, que selecciona solo una de las variables correlacionadas y elimina las demás, Elastic Net distribuye la penalización entre todas las variables correlacionadas, evitando una selección arbitraria.
- Selección de variables más estable: La combinación de Lasso y Ridge permite una selección más robusta, manteniendo información relevante del modelo sin eliminar predictores clave.
- Mejora del rendimiento predictivo: Al utilizar validación cruzada para seleccionar los hiperparámetros λ_1 , λ_2 y α , se optimiza la capacidad del modelo para generalizar a nuevos datos.

```
# Ajustar modelo Elastic Net
modelo_elastic_net <- glmnet(X, Y, alpha = 0.5) # Alpha = 0.5 (50% Ridge, 50% Lasso)
# Seleccionar lambda óptimo con validación cruzada
cv_elastic_net <- cv.glmnet(X, Y, alpha = 0.5)
lambda_optimo <- cv_elastic_net$lambda.min # Mejor valor de lambda
print(lambda_optimo)
[1] 0.0213522</pre>
```

```
# Ajustar modelo final con lambda óptimo
modelo elastic final <- glmnet(X, Y, alpha = 0.5, lambda = lambda optimo)
# Mostrar coeficientes
output=cbind(round(coef(modelo_elastic_final),3),output)
colnames(output)=c("ELASTIC","LASSO","RIDGE","OLS")
output
11 x 4 sparse Matrix of class "dgCMatrix"
           ELASTIC LASSO RIDGE
                                     OLS
(Intercept)
              0.131 0.131 0.118 0.132
V1
             -0.975 -0.950 -0.874 -0.995
V2
            -1.108 -1.078 -1.019 -1.131
VЗ
              0.028 0.006 0.040 0.039
۷4
                            0.002 0.001
             -2.677 -2.652 -2.500 -2.703
۷5
              1.084 1.058 1.001
۷6
V7
              0.260 0.235 0.247
                                  0.274
              2.229
                    2.213 2.125
V8
                                  2.244
۷9
              0.647 0.629 0.635 0.658
V10
             -0.414 -0.392 -0.390 -0.427
```

Para determinar el mejor valor de α , se usa **validación cruzada** probando distintos valores entre 0 y 1. Algunas estrategias comunes incluyen:

- Si hay muchas variables irrelevantes, se recomienda α cercano a 1 (Lasso).
- Si hay fuerte multicolinealidad, se recomienda α cercano a 0 (Ridge).
- Si se desea un balance entre selección y estabilidad, se suele usar $\alpha = 0.5$.

La regresión Elastic Net combina lo mejor de Ridge y Lasso, ofreciendo un método de regularización robusto para modelos con muchas variables predictoras y posible multicolinealidad. Su capacidad para seleccionar variables sin eliminar información clave lo convierte en una opción ideal para modelos complejos y de alta dimensionalidad.

5.6.4 Comparación de los métodos de Regularización

Método	Penalización	Efecto sobre los coeficientes
OLS	Ninguna	Sin restricción, puede haber multicolinealidad
Ridge	L_2	Reduce la magnitud de los coeficientes, pero no los anula
Lasso	L_1	Puede anular coeficientes, permitiendo selección de variables
Elastic Net	$L_1 + L_2$	Combinación de Ridge y Lasso

Lasso es especialmente útil cuando se sospecha que muchas variables son irrelevantes, mientras que Ridge es preferido cuando se espera que todas las variables aporten información al modelo.

Elastic Net es ideal cuando hay **muchas variables correlacionadas** y se desea un modelo **estable y parsimonioso**.

- Elastic Net mejora la estabilidad del modelo en comparación con Lasso, especialmente cuando hay variables predictoras altamente correlacionadas.
- Es más flexible que Ridge y Lasso individualmente, permitiendo un ajuste más fino a distintos tipos de problemas.
- Requiere la selección de hiperparámetros $(\lambda \ y \ \alpha)$, por lo que debe usarse validación cruzada para encontrar la combinación óptima.

5.7 Validación del Modelo

Hemos ajustado un modelo, interpretado sus coeficientes y evaluado su significancia estadística. Pero, ¿cómo podemos estar seguros de que funcionará bien en el futuro, con datos que nunca ha visto? Esta es la pregunta fundamental que la **validación del modelo** busca responder.

Imagina que estás preparando un examen. Si solo memorizas las respuestas de los exámenes de años anteriores (tus **datos de entrenamiento**), puede que saques una nota perfecta en ellos. Sin embargo, cuando te enfrentes al examen real con preguntas nuevas (los **datos de prueba**), es probable que tu rendimiento sea decepcionante. Esto, en esencia, es el **sobreajuste** (*overfitting*): un modelo que se aprende los datos de entrenamiento "de memoria", incluyendo su ruido y peculiaridades, pero que pierde su capacidad de **generalizar** a nuevas observaciones.

La validación es el proceso de simular este "examen final" para obtener una estimación honesta del rendimiento predictivo de nuestro modelo en el mundo real (James et al. 2013). Se compone de dos elementos clave: las estrategias de validación, que nos dicen cómo simular el examen, y las **métricas de evaluación**, que nos dicen cómo calificarlo.

5.7.1 Estrategias de Validación

Para evaluar la capacidad de generalización, necesitamos probar el modelo en datos que no se usaron para entrenarlo. Las siguientes estrategias nos permiten hacer precisamente eso.

A El primer paso no negociable: La partición inicial

Antes de escribir una sola línea de código para ajustar un modelo, seleccionar variables o ejecutar una validación cruzada, el procedimiento siempre debe comenzar con una única acción:

Dividir el conjunto de datos completo en dos partes y guardar una de ellas bajo llave.

- 1. Datos de modelado (p. ej., 80% del total): Este es el conjunto de datos con el que trabajarás. Lo usarás para todas tus tareas de construcción y evaluación de modelos: entrenar, comparar diferentes conjuntos de variables, y ejecutar estrategias como la validación cruzada.
- 2. Conjunto de prueba Final (p. ej., 20% restante): Este conjunto de datos debe ser guardado y **no ser utilizado bajo ninguna circunstancia** durante el proceso de modelado. Es tu "examen final sorpresa", tu única oportunidad de obtener una estimación verdaderamente honesta y no sesgada del rendimiento del modelo que has seleccionado como el campeón definitivo.

La validación cruzada y la división simple train/test que veremos a continuación son técnicas que se aplican dentro de los "datos de modelado".

5.7.1.1 El Conjunto de entrenamiento y test (Train/Test Split)

La estrategia más directa es tomar nuestros "Datos de Modelado" (el 80% inicial) y volver a dividirlos, creando un único "examen" para el proceso de construcción del modelo (Hastie et al. 2009):

1. Conjunto de entrenamiento (Training Set): Usualmente, el 70-80% de los datos. El modelo se construye y se ajusta usando únicamente esta porción. Es aquí donde el modelo "aprende".

2. Conjunto de test (*Test Set*): El 20-30% restante. Estos datos se mantienen "ocultos" durante el entrenamiento. Una vez que el modelo está finalizado, lo usamos para predecir la variable respuesta en este conjunto. La comparación entre las predicciones (\hat{y}) y los valores reales (y) nos da una medida no sesgada de su rendimiento.

Aunque es simple y computacionalmente barata, esta técnica tiene una debilidad importante: los resultados pueden depender mucho de la división aleatoria específica que se haya hecho. Si por mala suerte en el conjunto de prueba caen observaciones muy atípicas, nuestra evaluación del modelo será excesivamente pesimista. Si caen puntos muy fáciles de predecir, será demasiado optimista. Esta alta variabilidad es un problema, especialmente con muestras de datos pequeñas.

5.7.1.2 Validación cruzada (Cross-Validation)

La validación cruzada es la solución a la variabilidad de la división simple y se aplica, de nuevo, sobre el conjunto total de "datos de modelado". En lugar de hacer un único "examen final", la validación cruzada promedia los resultados de múltiples mini-exámenes, proporcionando una estimación del error mucho más estable y fiable (James et al. 2013).

El método más común es la validación cruzada de k-particiones (k-fold cross-validation). Su nombre describe el proceso: los datos se dividen en k particiones y se "cruzan" los roles de entrenamiento y validación.

El resultado final de este procedimiento es el **error de validación cruzada**, que se calcula promediando los errores obtenidos en cada una de las k particiones. Esto nos da una única métrica de rendimiento para el modelo.

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{M\'etrica}_i$$

donde Métrica $_i$ es la métrica de error (como RMSE o MAE) calculada en la i-ésima iteración. La elección de k suele ser 5 o 10, ya que se ha demostrado que estos valores ofrecen un buen equilibrio entre el sesgo y la varianza de la estimación del error.

i Procedimiento de k-particiones

- 1. División: Dividir aleatoriamente los datos en k particiones de tamaño similar.
- 2. **Iteración**: Para cada partición i = 1, 2, ..., k:
 - Usar la partición i como conjunto de test.
 - Usar las restantes k-1 particiones como conjunto de entrenamiento.
 - Ajustar el modelo y calcular las métricas de desempeño en el conjunto de test.
- 3. **Promedio**: Calcular el promedio de las métricas a través de las k iteraciones.

Un caso extremo de este método es la validación cruzada "dejando uno fuera" (LOOCV), donde k es igual al número de observaciones, n. En cada iteración, se entrena el modelo con n-1 datos y se prueba en el único punto restante. Aunque es computacionalmente muy costoso, en regresión lineal existe una afortunada fórmula matemática que nos permite calcular el error LOOCV con la misma rapidez que un solo ajuste:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$$

donde h_{ii} es el apalancamiento (leverage) de la i-ésima observación.

Guía para seleccionar estrategia de validación

Usa Train/Test cuando:

- El dataset es grande (n > 1000)
- Los recursos computacionales son limitados
- Se requiere una evaluación rápida

Usa validación cruzada k-fold cuando:

- El dataset es de tamaño moderado (n < 1000)
- Se requiere una estimación más estable del desempeño
- Se dispone de recursos computacionales adecuados

Usa LOOCV cuando:

- El dataset es pequeño (n < 100)
- Se requiere la estimación menos sesgada posible
- El tiempo computacional no es una restricción crítica

5.7.2 Métricas de rendimiento

Una vez que usamos una estrategia de validación para generar predicciones sobre datos no vistos, necesitamos una "nota" para cuantificar qué tan buenos fueron esos pronósticos. Aquí es donde entran las métricas de error.

5.7.2.1 Raíz del error cuadrático medio

La métrica más utilizada es la **raíz del error cuadrático medio (RMSE)**. Es como una desviación típica de los residuos, y nos da una idea de la magnitud promedio de los errores de predicción.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

La característica clave del RMSE es que, al elevar los errores al cuadrado, **penaliza de forma desproporcionada los errores grandes**. Un solo error de predicción de 10 unidades contribuye al RMSE mucho más que 10 errores de 1 unidad. Esto lo hace muy sensible a valores atípicos. Su gran ventaja es que se expresa en las mismas unidades que la variable respuesta, facilitando su interpretación.

5.7.2.2 Error absoluto medio

Una alternativa popular es el **error absoluto medio (MAE)**, que simplemente promedia el valor absoluto de los errores.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

A diferencia del RMSE, el MAE no eleva los errores al cuadrado, por lo que **trata todos los errores de forma proporcional a su magnitud**. Un error de 10 unidades es simplemente el doble de malo que un error de 5. Esto hace que el MAE sea **más robusto frente a valores atípicos** y, para muchos, más fácil de interpretar como "el error promedio" que cometemos en nuestras predicciones.

En resumen, la validación nos obliga a confrontar nuestro modelo con la realidad de datos nuevos. Usando una estrategia robusta como la **validación cruzada** para calcular una métrica interpretable como el **RMSE** o el **MAE**, podemos obtener una estimación fiable de su rendimiento predictivo y construir modelos en los que realmente podamos confiar. Claro, aquí tienes ese contenido reorganizado y resumido dentro de un recuadro (callout), ideal para destacar esta idea clave en tu libro.

Interpretando el Error

La comparación entre el error del modelo en los datos que ha visto (entrenamiento) y en datos que no ha visto (validación) es la herramienta de diagnóstico más importante para entender el ajuste del modelo.

La regla general es que el error de entrenamiento siempre será más bajo (más optimista) que el de test. La clave está en analizar la **diferencia** entre ambos.

Sobreajuste (Overfitting)

- Síntoma: Error de entrenamiento bajo + Error de test mucho más alto.
- **Diagnóstico**: El modelo ha "memorizado" el ruido de los datos de entrenamiento y no es capaz de generalizar a nuevos datos.
- Solución: Simplificar el modelo (usar menos variables, aplicar regularización como Ridge o Lasso).

Subajuste (Underfitting)

- Síntoma: Error de entrenamiento alto + Error de test alto y similar.
- **Diagnóstico**: El modelo es demasiado simple y no tiene la capacidad de capturar la estructura subvacente de los datos.
- Solución: Aumentar la complejidad del modelo (añadir más variables, incluir interacciones o términos no lineales).

💡 La maldición del sobreajuste

Para ilustrar por qué la validación es indispensable, realizaremos un experimento controlado. Crearemos un conjunto de datos donde **conocemos la verdad**: sabemos exactamente qué variables influyen en la respuesta y cuáles son puro ruido. Luego, compararemos dos modelos:

- 1. **Modelo Completo**: Un modelo que incluye todas las variables disponibles, tanto las útiles como las de ruido.
- 2. **Modelo Correcto**: Un modelo que incluye únicamente las variables que realmente tienen un efecto sobre la respuesta.

El objetivo es ver cuál de los dos modelos predice mejor en datos "no vistos", utilizando la validación cruzada para simular este escenario.

1. Simulación de Datos

Creamos un dataset con 100 observaciones. La variable y dependerá de X1, X2 y X3. Las variables X4 a X10 no tendrán ninguna relación real con y; serán **predictores de ruido**.

```
# Cargar la librería 'caret', que simplifica enormemente el proceso de validación
suppressPackageStartupMessages(library(caret))
# Para reproducibilidad
set.seed(42)
# Crear datos de ejemplo
n <- 100
# 3 predictores verdaderos y 7 de ruido
X \leftarrow matrix(rnorm(n * 10), n, 10)
colnames(X) <- paste0("X", 1:10)</pre>
# La respuesta 'y' depende SOLO de X1, X2 y X3
beta_true <- c(2.5, -1.5, 3, 0, 0, 0, 0, 0, 0, 0)
y \leftarrow X \%*\% beta_true + rnorm(n, sd = 2)
# Combinar en un data frame
datos <- data.frame(y = y, X)</pre>
indices_modelado <- createDataPartition(datos$y, p = 0.8, list = FALSE)</pre>
datos_modelado <- datos[indices_modelado, ]</pre>
datos_prueba_final <- datos[-indices_modelado, ]</pre>
```

2. Ajuste y Evaluación de Modelos con Validación Cruzada

Usaremos la función train() del paquete caret, que es una herramienta increíblemente potente para ajustar y validar modelos. Configuraremos una validación cruzada de 10 particiones (10-fold CV) para estimar el error de predicción (RMSE) de nuestros dos modelos.

```
# Configurar el método de validación cruzada de 10 particiones
control_cv <- trainControl(method = "cv", number = 10)</pre>
# Ajustar y validar el MODELO COMPLETO (incluye predictores de ruido)
modelo_completo <- train(</pre>
  y ~ .,
  data = datos_modelado,
 method = "lm",
 trControl = control_cv
# Ajustar y validar el MODELO CORRECTO (solo los predictores relevantes)
modelo_correcto <- train(</pre>
  y \sim X1 + X2 + X3,
 data = datos modelado,
 method = "lm",
 trControl = control_cv
# Comparar los resultados de la validación cruzada de ambos modelos
resultados_cv <- resamples(list(COMPLETO = modelo_completo, CORRECTO = modelo_correcto))</pre>
resumen_cv <- summary(resultados_cv)</pre>
resumen_cv
Call:
summary.resamples(object = resultados_cv)
Models: COMPLETO, CORRECTO
Number of resamples: 10
MAE
              Min. 1st Qu.
                               Median
                                          Mean 3rd Qu.
COMPLETO 0.8638906 1.284897 1.585880 1.685953 1.895840 2.783321
CORRECTO 0.7192667 1.279226 1.602489 1.687326 2.283342 2.477780
RMSE
              Min. 1st Qu.
                               Median
                                          Mean 3rd Qu.
                                                             Max. NA's
COMPLETO 1.0722692 1.592663 2.105678 2.116903 2.523848 3.119017
CORRECTO 0.9052294 1.474694 1.934304 2.020464 2.480041 3.124041
```

Rsquared

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's COMPLETO 0.5917775 0.7793610 0.8556182 0.8189137 0.8882997 0.9505874 0 CORRECTO 0.5019737 0.7988599 0.8513481 0.8017851 0.9048191 0.9385882 0
```

```
# Extraer métricas RMSE para uso en el texto
rmse_correcto <- round(resumen_cv$statistics$RMSE["CORRECTO", "Mean"], 3)
rmse_completo <- round(resumen_cv$statistics$RMSE["COMPLETO", "Mean"], 3)</pre>
```

3. Análisis de Resultados

Al comparar el **RMSE** promedio obtenido en la validación cruzada, la conclusión es clara: el **Modelo Correcto** (2.02) es consistentemente **mejor** (menor error) que el **Modelo Completo** (2.117).

El Modelo Completo sufre de sobreajuste. Al incluir las 7 variables de ruido, se esfuerza por encontrar patrones en datos puramente aleatorios. "Aprende" estas relaciones falsas en los datos de entrenamiento, pero falla al predecir en datos nuevos. El Modelo Correcto, al ser más parsimonioso, captura la estructura fundamental y generaliza mejor. Este ejemplo demuestra la lección más importante del modelado: un buen ajuste en los datos de entrenamiento no garantiza un buen rendimiento predictivo. La validación es el único método fiable para estimar la verdadera calidad de un modelo.

4. El Veredicto Final en el Conjunto de Prueba

La validación cruzada nos ha servido como un juez imparcial para comparar nuestros modelos candidatos y seleccionar el Modelo Correcto como el claro ganador. Ahora, para obtener una estimación final y no sesgada de su rendimiento en el mundo real, tomamos ese modelo elegido y lo enfrentamos a los datos_prueba_final, el conjunto de datos que ha permanecido intacto durante todo el proceso.

```
# Usamos el modelo ganador (modelo_correcto) para predecir sobre los datos de prueba
predicciones_finales <- predict(modelo_correcto, newdata = datos_prueba_final)

# Calculamos el RMSE final comparando las predicciones con los valores reales de prueba
rmse_final <- RMSE(predicciones finales, datos_prueba_final$y)</pre>
```

Al evaluar nuestro modelo final, obtenemos un RMSE en el conjunto de prueba de 1.966. Este valor es nuestra estimación más honesta del error de predicción que podemos esperar de nuestro modelo al enfrentarse a nuevos datos. Es crucial compararlo con el error que estimamos durante la validación cruzada (2.02). El hecho de que ambos valores sean muy similares confirma que nuestro proceso de validación fue robusto y que no hemos sobreajustado el modelo al conjunto de datos de modelado. Este RMSE final es el que reportaríamos como la medida definitiva del rendimiento predictivo de nuestro modelo.

6 Modelos de regresión generalizada

Hasta ahora hemos estuadiado la regresión lineal como una herramienta poderosa para modelar la relación entre una variable dependiente continua y un conjunto de variables independientes. Sin embargo, en muchos contextos del mundo real, las suposiciones de la regresión lineal tradicional no son adecuadas. ¿Qué sucede si la variable dependiente es binaria, como en un diagnóstico médico (enfermo/sano)? ¿O si estás modelando el número de accidentes en una intersección o la cantidad de compras realizadas por un cliente?

Para abordar estos desafíos, se utilizan los llamados **Modelos Lineales Generalizados** (**GLM**). Esta clase de modelos amplía la regresión lineal al permitir que la variable dependiente tenga distribuciones diferentes a la normal, como la binomial o la de Poisson. Además, los GLM utilizan funciones de enlace que transforman la relación entre la variable dependiente y los predictores, permitiendo una mayor flexibilidad en el modelado.

Algunos de los modelos más comunes dentro de los GLM son:

- Regresión Logística: Ideal para variables dependientes binarias (sí/no, éxito/fracaso).
- Regresión de Poisson: Utilizada para modelar datos de conteo (número de eventos).
- Regresión Binomial Negativa: Una extensión de la regresión de Poisson para datos de conteo con sobredispersión.
- Modelos de Gamma y Inverso Gaussiano: Utilizados para modelar variables continuas positivas y sesgadas, como tiempos de espera o costos.

En este tema, exploraremos cómo utilizar estos modelos para resolver problemas del mundo real, interpretar sus resultados y evaluar su ajuste.

6.1 Introducción a los GLM

6.1.1 ¿ Qué son los modelos lineales generalizados?

Los Modelos Lineales Generalizados (GLM) son una extensión de los modelos de regresión lineal que permiten manejar una mayor variedad de tipos de datos y relaciones entre variables (Nelder and Wedderburn 1972). Mientras que la regresión lineal tradicional asume que la variable dependiente es continua y sigue una distribución normal, los GLM permiten trabajar con variables dependientes que:

- Son binarias (como éxito/fracaso o sí/no).
- Representan conteos de eventos (número de llamadas, accidentes, etc.).
- Son continuas positivas y no siguen una distribución normal (como tiempos o costos).

Los GLM proporcionan una estructura flexible para modelar la relación entre una o más variables independientes y una variable dependiente que sigue alguna distribución de la **familia exponencial** (binomial, Poisson, gamma, entre otras).

6.1.2 Componentes de un modelo lineal generalizado

Un GLM se define por tres componentes clave:

1. Componente Aleatorio:

Este componente describe la distribución de la variable dependiente. En la regresión lineal, la variable dependiente sigue una distribución normal. En los GLM, puede seguir otras distribuciones de la **familia exponencial**, como:

- **Distribución Binomial:** Para variables categóricas binarias (0/1, éxito/fracaso).
- Distribución de Poisson: Para datos de conteo (número de eventos).
- **Distribución Gamma:** Para variables continuas y positivas (como costos o tiempos).

2. Componente Sistemático:

Este componente describe cómo las variables independientes se combinan linealmente en el modelo. Se define como:

$$\eta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Donde η es el **predictor lineal** y β representa los coeficientes del modelo.

3. Función de Enlace:

La función de enlace conecta el componente sistemático con la media de la variable dependiente. Mientras que en la regresión lineal la relación es directa $(y=\eta)$, en los GLM se utiliza una función de enlace $g(\mu)$ para transformar la media μ y ajustar diferentes tipos de datos.

$$g(\mu) = \eta$$

Ejemplos de funciones de enlace:

• Logística (Logit): Para la regresión logística, que modela la probabilidad de un evento.

$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$$

• Logarítmica: Para la regresión de Poisson, que modela tasas de eventos.

$$g(\mu) = \log(\mu)$$

• Identidad: Para la regresión lineal estándar.

$$g(\mu) = \mu$$

i Aplicaciones

Los GLM se utilizan en una amplia variedad de disciplinas para resolver problemas del mundo real:

Regresión Logística (para variables binarias):

- **Medicina:** Predicción de la presencia o ausencia de una enfermedad basada en factores de riesgo.
- Marketing: Determinación de la probabilidad de que un cliente compre un producto.
- Finanzas: Evaluación de la probabilidad de incumplimiento de pago de un préstamo.

Regresión de Poisson (para datos de conteo):

- Transporte: Modelado del número de accidentes en una carretera en un período de tiempo.
- Ecología: Conteo de especies en un área determinada.
- Telecomunicaciones: Número de llamadas recibidas por un centro de atención.

Regresión Binomial Negativa (para conteos con sobredispersión):

• Salud Pública: Modelado del número de visitas al médico o incidentes de una enfermedad en una población.

Modelos Gamma (para variables continuas positivas):

- Seguros: Estimación de los costos de reclamos de seguros.
- Ingeniería: Modelado de tiempos de falla en procesos industriales.

6.1.3 Diferencias clave entre la regresión lineal y los GLM

Característica	Regresión Lineal	Modelos Lineales Generalizados (GLM)
Distribución de la variable dependiente	Normal	Familia exponencial (binomial, Poisson, gamma, etc.)
Tipo de variable dependiente	Continua	Binaria, de conteo, continua positiva
Relación entre las variables	Lineal directa	Relación transformada mediante una función de enlace
Función de Enlace	Identidad $(g(\mu) = \mu)$	Logit, logarítmica, inversa, etc.

Las ventajas principales de los GLM son:

- Flexibilidad: Los GLM permiten modelar diferentes tipos de variables dependientes, lo que amplía significativamente el rango de problemas que se pueden abordar.
- Interpretación Coherente: Aunque se utilizan funciones de enlace, los coeficientes de los GLM pueden interpretarse de manera similar a los modelos lineales, proporcionando información sobre el impacto de cada variable independiente.
- Evaluación Estadística Robusta: Los GLM permiten la realización de pruebas de hipótesis, la construcción de intervalos de confianza y la evaluación de la bondad del ajuste mediante medidas ya conocidas como el AIC o el BIC.

Los Modelos Lineales Generalizados amplían el alcance de la regresión lineal clásica, proporcionando herramientas para modelar una amplia variedad de tipos de datos, desde variables binarias hasta datos de conteo y variables continuas no normales. A través del uso de funciones de enlace y distribuciones flexibles, los GLM permiten resolver problemas complejos del mundo real en campos tan diversos como la medicina, el marketing, la ingeniería y las ciencias sociales.

En las próximas secciones, exploraremos en detalle cómo aplicar estos modelos específicos, como la **regresión logística** y la **regresión de Poisson**, y cómo interpretar sus resultados en diferentes contextos.

6.2 Estimación de parámetros en GLM

La estimación de parámetros en los Modelos Lineales Generalizados representa un aspecto fundamental que diferencia estos modelos de la regresión lineal clásica. Mientras que en la regresión lineal utilizamos mínimos cuadrados ordinarios para obtener estimadores con

propiedades óptimas, en los GLM necesitamos métodos más sofisticados debido a la naturaleza no normal de las distribuciones involucradas y las funciones de enlace no lineales.

La estimación en GLM se basa en el **principio de máxima verosimilitud**, que proporciona un marco teórico unificado para todos los modelos de la familia exponencial. Este enfoque no solo garantiza propiedades estadísticas deseables de los estimadores, sino que también permite el desarrollo de algoritmos computacionales eficientes para encontrar las soluciones.

En esta sección exploraremos los fundamentos teóricos de la estimación por máxima verosimilitud, el algoritmo iterativo IRLS (Iteratively Reweighted Least Squares) que implementan los software estadísticos, y los problemas prácticos que pueden surgir durante el proceso de estimación. Comprender estos aspectos es crucial para interpretar correctamente los resultados y diagnosticar posibles problemas en el ajuste de los modelos.

6.2.1 Método de máxima verosimilitud

A diferencia de la regresión lineal que utiliza el método de **mínimos cuadrados**, los GLM emplean el **método de máxima verosimilitud** para estimar los parámetros del modelo. Este cambio metodológico es necesario debido a que las distribuciones de la familia exponencial no siempre tienen una relación lineal directa con los predictores, y además porque la varianza de la variable respuesta depende de su media, violando el supuesto de homocedasticidad que requieren los mínimos cuadrados.

El principio de máxima verosimilitud consiste en encontrar los valores de los parámetros β que hacen más probable observar los datos que tenemos. Para una muestra de n observaciones independientes y_1, y_2, \dots, y_n , la **función de verosimilitud** se define como la probabilidad conjunta de observar estos datos dado un conjunto de parámetros:

$$L(\beta) = \prod_{i=1}^n f(y_i; \theta_i, \phi)$$

donde $f(y_i; \theta_i, \phi)$ es la función de densidad (o masa) de probabilidad de la observación i. En la práctica, es más conveniente trabajar con el logaritmo de esta función, conocida como **log-verosimilitud**:

$$\ell(\beta) = \sum_{i=1}^{n} \log f(y_i; \theta_i, \phi)$$

La ventaja de usar el logaritmo es que convierte productos en sumas, simplificando considerablemente los cálculos matemáticos y numéricos.

La clave para entender los GLM radica en reconocer que todas las distribuciones que podemos usar (binomial, Poisson, gamma, etc.) pertenecen a la **familia exponencial**. Estas distribuciones pueden expresarse en una forma matemática unificada:

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

donde θ es el **parámetro natural** o canónico que está relacionado directamente con la media de la distribución, ϕ es el **parámetro de dispersión** que controla la variabilidad, y $b(\theta)$, $a(\phi)$ y $c(y,\phi)$ son funciones específicas de cada distribución que determinan sus propiedades particulares.

Esta forma unificada tiene propiedades matemáticas muy convenientes que hacen que los GLM sean tanto elegantes teóricamente como computacionalmente eficientes. La esperanza de Y se obtiene como $E(Y) = \mu = b'(\theta)$ (la derivada de b respecto a θ), y la varianza como $Var(Y) = a(\phi)b''(\theta) = a(\phi)V(\mu)$, donde $V(\mu)$ es la **función de varianza** que caracteriza cómo la varianza depende de la media en cada tipo de distribución.

La Familia Exponencial: Un Vistazo General

La elegancia de los GLM reside en que muchas distribuciones aparentemente distintas comparten una estructura matemática común. Esto permite una teoría unificada. Aquí están los miembros más importantes:

Distribución	Uso Típico	Función de Varianza $V(\mu)$	Enlace Canónico $g(\mu)$
Normal	Datos continuos simétricos	1	Identidad: μ
Binomial	Proporciones, datos binarios (éxito/fracaso)	$\mu(1-\mu)$	Logit: $\log(\frac{\mu}{1-\mu})$
Poisson	Conteos de eventos	μ	Log: $\log(\mu)$
Gamma	Datos continuos positivos y asimétricos (tiempos, costos)	μ^2	Inverso: $1/\mu$
Inversa Gaussiana	Tiempos hasta un evento, datos muy asimétricos	μ^3	Inverso al cuadrado: $1/\mu^2$

La función de varianza $V(\mu)$ es la "firma" de cada distribución, ya que define la relación teórica entre la media y la varianza de la respuesta. El **enlace canónico** es la función de enlace que surge de forma natural de la estructura matemática de la distribución, aunque en la práctica se pueden usar otros enlaces.

Esta relación entre media y varianza es fundamental para entender las diferencias entre los diversos GLM. En la regresión lineal clásica, la varianza es constante $(V(\mu) = 1)$, pero en otros GLM la función de varianza toma formas específicas:

- Distribución binomial: $V(\mu) = \mu(1-\mu)$ la varianza es máxima cuando $\mu = 0.5$ y mínima en los extremos.
- Distribución de Poisson: $V(\mu) = \mu$ la varianza aumenta linealmente con la media.
- **Distribución gamma**: $V(\mu) = \mu^2$ la varianza aumenta cuadráticamente con la media.

Estas funciones de varianza no solo determinan la heterocedasticidad inherente de cada distribución, sino que también influyen directamente en los pesos del algoritmo IRLS y en la precisión de las estimaciones. Por ejemplo, en regresión logística, las observaciones con probabilidades cercanas a 0.5 tienen mayor varianza y, por tanto, menor peso en la estimación, mientras que en regresión de Poisson, las observaciones con conteos más altos contribuyen con mayor peso al ajuste del modelo.

6.2.1.1 Algoritmo de Newton-Raphson (IRLS)

Para encontrar los valores de β que maximizan la log-verosimilitud, los GLM utilizan un algoritmo iterativo conocido como Iteratively Reweighted Least Squares (IRLS), que es una implementación especializada del método de Newton-Raphson. La necesidad de un algoritmo iterativo surge porque, a diferencia de la regresión lineal donde existe una solución analítica cerrada, en los GLM las ecuaciones de verosimilitud no tienen solución directa debido a la presencia de funciones no lineales.

El algoritmo IRLS se basa en la idea de que podemos aproximar la función de enlace y la varianza de la distribución en torno a un valor central (la media) y luego aplicar mínimos cuadrados de manera iterativa para ajustar los parámetros del modelo. Los pasos básicos del algoritmo son:

- 1. **Inicialización:** Establecer valores iniciales para los parámetros $\beta^{(0)}$.
- 2. Iteración t:

 - $\begin{array}{l} \bullet \quad \text{Calcular el predictor lineal: } \eta_i^{(t)} = \mathbf{x}_i^T \boldsymbol{\beta}^{(t)}. \\ \bullet \quad \text{Calcular la media estimada: } \mu_i^{(t)} = g^{-1}(\eta_i^{(t)}). \\ \bullet \quad \text{Calcular los pesos: } w_i^{(t)} = \frac{1}{\text{Var}(\mu_i^{(t)})} \left(\frac{d\mu_i}{d\eta_i}\right)^2. \end{array}$
 - Calcular la variable dependiente ajustada: $z_i^{(t)} = \eta_i^{(t)} + (y_i \mu_i^{(t)}) \frac{d\eta_i}{du}$.
- 3. Actualización: Actualizar los parámetros del modelo:

$$\boldsymbol{\beta}^{(t+1)} = (\mathbf{X}^T\mathbf{W}^{(t)}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{W}^{(t)}\mathbf{z}^{(t)}$$

4. Convergencia: Repetir el proceso hasta que la diferencia entre iteraciones sucesivas sea menor que un umbral predefinido.

```
💡 Ejemplo: Convergencia del algoritmo IRLS
# Ejemplo de seguimiento de la convergencia en regresión logística
library(MASS)
data(Pima.tr)
# Función para mostrar el proceso iterativo
mostrar_convergencia <- function() {</pre>
  # Ajustar modelo con seguimiento de iteraciones
  modelo <- glm(type ~ glu + bmi, data = Pima.tr, family = binomial,</pre>
                control = glm.control(trace = TRUE, maxit = 10))
  cat("Número de iteraciones necesarias:", modelo$iter, "\n")
  cat("¿Convergió?", modelo$converged, "\n")
  cat("Log-likelihood final:", logLik(modelo), "\n")
  return(modelo)
}
# Ejecutar y mostrar convergencia
modelo_ejemplo <- mostrar_convergencia()</pre>
Deviance = 199.36 Iterations - 1
Deviance = 198.4772 Iterations - 2
Deviance = 198.4704 Iterations - 3
Deviance = 198.4704 Iterations - 4
Número de iteraciones necesarias: 4
¿Convergió? TRUE
Log-likelihood final: -99.23522
```

6.2.1.2 Propiedades de los estimadores de máxima verosimilitud

Los estimadores de máxima verosimilitud en GLM poseen propiedades estadísticas muy atractivas que los convierten en la elección preferida para la estimación de parámetros. Estas propiedades son **asintóticas**, lo que significa que se cumplen cuando el tamaño de la muestra tiende a infinito, pero en la práctica proporcionan una excelente aproximación para muestras moderadamente grandes.

1. Consistencia:

$$\hat{\beta} \xrightarrow{p} \beta$$
 cuando $n \to \infty$

La **consistencia** garantiza que a medida que aumentamos el tamaño de la muestra, nuestros estimadores se acercan cada vez más al valor verdadero de los parámetros. Esto significa que con suficientes datos, los estimadores de máxima verosimilitud convergerán al valor real de β , eliminando el sesgo de estimación. Esta propiedad es fundamental porque nos asegura que no estamos introduciendo errores sistemáticos en nuestras estimaciones.

2. Normalidad asintótica:

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{d} N(\mathbf{0}, \mathbf{I}^{-1}(\boldsymbol{\beta}))$$

La **normalidad asintótica** establece que la distribución de los estimadores, apropiadamente escalada, se aproxima a una distribución normal multivariada cuando el tamaño de la muestra es grande. Esta propiedad es crucial porque:

- Permite construir intervalos de confianza para los parámetros usando la distribución normal
- Facilita la realización de **pruebas de hipótesis** sobre los coeficientes
- Proporciona la base teórica para los **estadísticos de Wald** utilizados en las pruebas de significancia

La matriz de covarianza asintótica $\mathbf{I}^{-1}(\beta)$ nos permite calcular los errores estándar de nuestras estimaciones, que son esenciales para la inferencia estadística.

3. Eficiencia:

Los estimadores MV alcanzan la **cota de Cramér-Rao**, siendo asintóticamente eficientes. Esto significa que:

- Entre todos los estimadores insesgados posibles, los de máxima verosimilitud tienen la menor varianza asintótica
- No existe otro método de estimación que, bajo las mismas condiciones, produzca estimadores con menor incertidumbre
- Utilizan la información disponible en los datos de manera óptima

En términos prácticos, esta eficiencia se traduce en intervalos de confianza más estrechos y pruebas de hipótesis más poderosas comparado con otros métodos de estimación.

6.2.1.3 Matriz de información y errores estándar

La implementación práctica de estas propiedades teóricas requiere el cálculo de la **matriz de información**, que cuantifica la cantidad de información que contienen los datos sobre los parámetros del modelo.

La matriz de información de Fisher se define teóricamente como:

$$\mathbf{I}(\beta) = E \left[-\frac{\partial^2 \ell}{\partial \beta \partial \beta^T} \right]$$

Sin embargo, en la práctica utilizamos la **matriz de información observada**, que se calcula directamente de nuestros datos:

$$\mathbf{I}(\hat{\boldsymbol{\beta}}) = -\frac{\partial^2 \boldsymbol{\ell}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} \bigg|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}}$$

Esta matriz representa las segundas derivadas de la log-verosimilitud evaluadas en nuestras estimaciones. Intuitivamente, mide qué tan "puntiaguda" es la función de verosimilitud alrededor del máximo: una función más puntiaguda indica mayor información y, por tanto, menor incertidumbre en la estimación.

Para los GLM, el algoritmo IRLS proporciona una aproximación computacionalmente eficiente:

$$\mathbf{I}(\hat{\boldsymbol{\beta}}) \approx \mathbf{X}^T \mathbf{W} \mathbf{X}$$

donde W es la matriz diagonal de pesos calculada en la última iteración del algoritmo. Esta aproximación es exacta para la distribución normal y muy buena para otras distribuciones de la familia exponencial.

Los **errores estándar** de los coeficientes individuales se obtienen como las raíces cuadradas de los elementos diagonales de la matriz de covarianza:

$$\mathrm{SE}(\hat{\beta}_j) = \sqrt{[\mathbf{I}^{-1}(\hat{\beta})]_{jj}}$$

Estos errores estándar son fundamentales para:

- Intervalos de confianza: $\hat{\beta}_j \pm z_{\alpha/2} \cdot \mathrm{SE}(\hat{\beta}_j)$
- Estadísticos de prueba: $z_j = \frac{\hat{eta}_j}{\operatorname{SE}(\hat{eta}_j)}$
- Evaluación de la precisión de nuestras estimaciones

Es importante recordar que estos errores estándar son válidos bajo los supuestos del modelo GLM y que violaciones serias de estos supuestos (como sobredispersión en modelos de Poisson) pueden hacer que sean inadecuados.

6.3 Bondad de ajuste en GLMs

Los Modelos Lineales Generalizados requieren métodos específicos para evaluar la calidad del ajuste que van más allá de las métricas tradicionales de la regresión lineal. Mientras que en la regresión lineal clásica utilizamos el coeficiente de determinación (R^2) y la suma de cuadrados residuales como medidas principales de bondad de ajuste, en los GLMs estas métricas no son apropiadas debido a las diferentes distribuciones subyacentes y las funciones de enlace no lineales.

La evaluación de la bondad de ajuste en GLMs se basa fundamentalmente en conceptos de **verosimilitud** y **deviance**, que proporcionan una base teórica sólida para comparar modelos y evaluar su calidad de ajuste. Esta aproximacion basada en la verosimilitud es coherente con el método de estimación utilizado en estos modelos.

6.3.1 La deviance como medida de bondad de ajuste

La deviance (o desviación) es la medida principal de bondad de ajuste en los Modelos Lineales Generalizados. Conceptualmente, representa una generalización de la suma de cuadrados residuales de la regresión lineal para distribuciones no normales, pero su interpretación y cálculo son fundamentalmente diferentes.

La deviance se basa en el principio de **máxima verosimilitud** y mide qué tan bien el modelo propuesto se ajusta a los datos comparado con el mejor ajuste posible. Para entender este concepto, es importante distinguir entre dos tipos de modelos:

- 1. **Modelo Saturado**: Un modelo hipotético que tiene tantos parámetros como observaciones, por lo que puede predecir perfectamente cada valor observado. Este modelo representa el "ajuste perfecto" teórico.
- 2. **Modelo Propuesto**: El modelo que estamos evaluando, con un número limitado de parámetros basado en nuestras variables predictoras.

La deviance mide la diferencia en log-verosimilitud entre estos dos modelos:

$$D=2\sum_{i=1}^n \left[\ell(y_i;y_i)-\ell(y_i;\hat{\mu}_i)\right]$$

donde:

- $\ell(y_i; y_i) = \text{Log-verosimilitud del modelo saturado para la observación } i$.
- $\ell(y_i; \hat{\mu}_i) = \text{Log-verosimilitud del modelo propuesto para la observación } i$.
- El factor 2 se incluye para que la deviance siga aproximadamente una distribución chi-cuadrado bajo ciertas condiciones.

Interpretación práctica:

- Deviance = 0: Modelo perfecto que ajusta exactamente todos los datos observados
- Deviance baja: Buen ajuste del modelo a los datos
- Deviance alta: Mal ajuste del modelo, sugiere que el modelo no captura adecuadamente los patrones en los datos

Comparación relativa: La deviance es más útil para comparar modelos que para evaluación absoluta. Un modelo con menor deviance indica mejor ajuste, pero el valor absoluto depende del tamaño de la muestra y la naturaleza de los datos.

Deviance residual vs. deviance nula:

- Deviance nula: Deviance del modelo que solo incluye el intercepto (sin predictores)
- Deviance residual: Deviance del modelo con todos los predictores incluidos
- La diferencia entre ambas indica cuánto mejora el modelo al incluir las variables predictoras

6.3.2 Test de la razón de verosimilitudes

El test de la razón de verosimilitudes es la herramienta principal para comparar modelos anidados en GLMs y para evaluar la significancia global del modelo. Se basa en el principio de que si un modelo más complejo no mejora significativamente el ajuste, debemos preferir el modelo más simple por parsimonia.

Cuando comparamos dos modelos anidados (donde uno es un caso especial del otro), la diferencia en sus deviances sigue aproximadamente una distribución chi-cuadrado:

$$LRT = D_{\rm modelo\ reducido} - D_{\rm modelo\ completo} \sim \chi_{df}^2$$

donde df es la diferencia en grados de libertad (número de parámetros) entre los modelos.

Interpretación del test:

- **Hipótesis nula** (H_0) : El modelo reducido es adecuado (los parámetros adicionales no son necesarios)
- Hipótesis alternativa (H_1) : El modelo completo es significativamente mejor
- **Decisión**: Si p-valor $< \alpha$ (típicamente 0.05), rechazamos H_0 y preferimos el modelo completo

Aplicaciones principales:

- 1. Significancia global del modelo: Comparar el modelo completo con el modelo nulo (solo intercepto) para determinar si las variables predictoras aportan información significativa.
- 2. **Selección de variables:** Evaluar si la inclusión o exclusión de variables específicas mejora significativamente el ajuste del modelo.
- 3. Comparación de especificaciones: Decidir entre diferentes formas funcionales o distribuciones para el mismo conjunto de datos.

Piemplo: Comparando Modelos con el Test de Razón de Verosimilitudes

Supongamos que queremos determinar si añadir la variable disp (cilindrada) a un modelo de regresión logística que ya contiene wt (peso) mejora significativamente la predicción de si un coche tiene transmisión automática (am).

```
# Usaremos el dataset mtcars
data(mtcars)

# Modelo Reducido: solo contiene 'wt'
modelo_reducido <- glm(am ~ wt, data = mtcars, family = binomial)

# Modelo Completo: contiene 'wt' y 'disp'
modelo_completo <- glm(am ~ wt + disp, data = mtcars, family = binomial)

# Realizamos el Test de Razón de Verosimilitudes (LRT)

# En R, esto se hace con la función anova() especificando el test
lrt_resultado <- anova(modelo_reducido, modelo_completo, test = "LRT")

# Mostramos los resultados
print(lrt_resultado)</pre>
```

Analysis of Deviance Table

```
Model 1: am ~ wt

Model 2: am ~ wt + disp

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 30 19.176

2 29 17.785 1 1.3913 0.2382
```

Interpretación del resultado:

El test compara la **Deviance** de ambos modelos. La hipótesis nula (H_0) es que el modelo reducido es suficiente (es decir,

```
beta\_disp = 0).
```

- La diferencia en deviance es de 1.391 con 1 grado de libertad (el parámetro adicional).
- El p-valor asociado es 0.238.

Dado que el p-valor es mayor que 0.05, no rechazamos la hipótesis nula. Esto significa que, una vez que tenemos en cuenta el peso del coche (wt), añadir la cilindrada (disp) no aporta una mejora estadísticamente significativa al modelo. Nos quedaríamos con el modelo reducido por el principio de parsimonia.

6.4 Diagnosis de GLMs

La diagnosis de GLMs implica evaluar los supuestos del modelo y detectar problemas potenciales que puedan afectar la validez de las inferencias. A diferencia de la regresión lineal, donde los residuos ordinarios proporcionan información diagnóstica directa, los GLMs requieren herramientas especializadas debido a la heterocedasticidad inherente y las diferentes distribuciones subyacentes.

En lugar de una simple lista de comprobación, abordaremos el diagnóstico respondiendo a tres preguntas clave que un analista se haría, utilizando diferentes tipos de **residuos** para obtener las respuestas.

6.4.1 Tipos de Residuos en GLMs

La elección del tipo de residuo apropiado es crucial. Los residuos "crudos" $(y_i - \hat{\mu}_i)$ no son homocedásticos, por lo que se utilizan versiones estandarizadas. Los más importantes son:

 Residuos Pearson: Estandarizan el residuo crudo dividiendo por la desviación estándar predicha por el modelo. Son un análogo directo a los residuos estandarizados en regresión lineal.

$$r_i = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

• Residuos Estudentizados: Son una mejora de los residuos Pearson que también tienen en cuenta el leverage (h_i) de cada observación. Son más fiables para la detección de outliers.

$$r_{S_i} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)(1-h_i)}}$$

• Residuos deviance: Son los más recomendados para la inspección visual en gráficos diagnósticos. Su construcción, basada en la contribución de cada punto a la deviance

total, les confiere propiedades muy deseables: su distribución se aproxima mejor a la normalidad y su varianza es más estable que la de otros residuos.

$$d_i = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{2[l_i(y_i) - l_i(\hat{\mu}_i)]}$$

6.4.2 ¿La forma del modelo es correcta? (Linealidad y Enlace)

Esta primera pregunta evalúa si la estructura básica del modelo, $g(\mu) = X\beta$, es adecuada para los datos. Para ello, utilizamos varias herramientas de diagnóstico:

- El gráfico de residuos vs. valores ajustados es la herramienta fundamental. Se grafican los residuos (idealmente, deviance) contra los valores predichos en la escala del predictor lineal $(\hat{\eta}_i)$. Si la forma del modelo es correcta, no deberíamos ver ningún patrón sistemático. Una tendencia curvilínea es una señal clara de que la forma funcional o la función de enlace son incorrectas.
- Los gráficos de residuos parciales son esenciales para evaluar si la función de enlace es apropiada para cada predictor individualmente. Un patrón no lineal en este gráfico sugiere que la relación de esa variable específica con la respuesta no es la que asume el modelo.
- El test de especificación de enlace (como el *Linktest* de Pregibon) ofrece una prueba formal. La idea es ajustar un segundo modelo que incluye el predictor lineal al cuadrado $(\hat{\eta}^2)$ como una variable adicional. Si este término cuadrático resulta significativo, es una fuerte evidencia de que la función de enlace está mal especificada.

Si estos diagnósticos revelan problemas, las estrategias de corrección incluyen aplicar transformaciones a los predictores (ej. logaritmo, términos polinómicos), incluir términos de interacción para capturar relaciones no aditivas, o directamente cambiar la función de enlace a una que se ajuste mejor a los datos.

6.4.3 ¿La distribución que elegimos es la correcta? (Varianza y Normalidad)

Esta pregunta evalúa si la elección de la familia de distribución (Poisson, Binomial, etc.) fue acertada, lo que implica verificar la relación entre la media y la varianza, así como la forma general de los errores.

Un primer aspecto clave al verificar la distribución es la **sobredispersión**. Imagina que tu modelo es como una regla estricta sobre el comportamiento de los datos. El modelo de Poisson, por ejemplo, impone que la varianza de los conteos debe ser igual a su media $(Var(Y) = \mu)$. La sobredispersión ocurre cuando tus datos reales son más "desordenados" o variables de lo que esta regla permite.

Para detectar este problema de forma objetiva, calculamos el **Estadístico de dispersión** $(\hat{\phi})$, que compara la varianza observada (a través de los residuos Pearson) con la esperada:

$$\hat{\phi} = \frac{X_{\text{Pearson}}^2}{n-p} = \frac{\sum r_i^2}{n-p}$$

La interpretación es directa:

- Si φ̂ ≈ 1: ¡Perfecto! La dispersión de los datos es la que el modelo esperaba.
 Si φ̂ > 1: Tienes sobredispersión. El modelo está subestimando la variabilidad real de los datos, lo que invalida las inferencias (errores estándar, p-valores).

La estrategia para corregirlo no es forzar los datos, sino cambiar a un modelo más flexible. El caso clásico es pasar del modelo de **Poisson** al modelo **Binomial Negativo**. Este último funciona porque su fórmula para la varianza incluye un parámetro de dispersión adicional (α) que le permite modelar esa variabilidad extra que el modelo de Poisson no puede capturar:

$$Var(Y) = \mu + \alpha \mu^2$$

Este término adicional se ajusta a la variabilidad de los datos, proporcionando estimaciones y errores estándar mucho más fiables.

Un segundo aspecto es la forma general de la distribución, que se evalúa con el Gráfico Q-Q de residuos deviance. Aunque los errores de un GLM no son estrictamente normales, los residuos deviance sí deberían tener una distribución aproximadamente normal si el modelo está bien especificado. Desviaciones sistemáticas de la línea diagonal en el gráfico Q-Q pueden indicar que la distribución asumida para los datos es incorrecta.

6.4.4 ; Hay observaciones que distorsionan el modelo? (Atípicos e Influyentes)

Finalmente, buscamos identificar puntos individuales que tienen una influencia desproporcionada en el modelo. Las herramientas matemáticas para ello son generalizaciones de las vistas en regresión lineal:

• Leverage generalizado (h_i): Mide el potencial de una observación para ser influyente debido a su posición en el espacio de los predictores.

$$h_i = w_i \mathbf{x}_i^T (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{x}_i$$

donde w_i y W son el peso y la matriz de pesos de la última iteración del algoritmo IRLS.

• Distancia de Cook para GLMs (D_i): Mide la influencia global de una observación en todos los coeficientes. Utiliza el residuo Pearson (r_i) .

$$D_i = \frac{r_i^2 h_i}{p(1 - h_i)^2}$$

• **DFBETAS:** Mide la influencia de la observación i en cada coeficiente individual β_j . Es útil para ver si un punto influyente está afectando a una variable de interés particular.

$$\mathrm{DFBETA}_{j,i} = \frac{\hat{\beta}_j - \hat{\beta}_{j(-i)}}{\mathrm{SE}(\hat{\beta}_{j(-i)})} \approx \frac{(\mathbf{X}^T\mathbf{W}\mathbf{X})_{jj}^{-1}x_{ij}(y_i - \hat{\mu}_i)}{\mathrm{SE}(\hat{\beta}_j)\sqrt{1 - h_i}}$$

La herramienta visual que consolida esta información es el **gráfico de residuos vs. leverage**. La estrategia ante estas observaciones no es eliminarlas automáticamente, sino **investigarlas** para entender su naturaleza.

6.5 Regresión logística

La **regresión logística** es una herramienta fundamental para modelar la probabilidad de eventos binarios en una variedad de contextos, desde la medicina hasta la economía y el marketing (Hosmer Jr, Lemeshow, and Sturdivant 2013). La correcta interpretación de los coeficientes mediante **odds ratios**, así como la evaluación del ajuste del modelo mediante curvas **ROC** y matrices de confusión, son esenciales para extraer conclusiones válidas de los datos.

6.5.1 Fundamentos de la regresión logística

La **regresión logística** es una técnica estadística utilizada para modelar la probabilidad de ocurrencia de un evento binario, es decir, cuando la variable dependiente toma solo dos posibles valores (por ejemplo, **éxito/fracaso**, **sí/no**, **enfermo/sano**). A diferencia de la regresión lineal, que modela una relación lineal entre variables, la regresión logística utiliza una **función logística** para asegurar que las predicciones estén en el rango [0,1], lo cual es necesario para interpretar los resultados como probabilidades.

La función Logística (Sigmoide)

La función logística transforma cualquier valor real en un valor comprendido entre 0 y 1. La forma matemática de la función logística es:

$$P(Y=1|X_1,\dots,X_p) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}}$$

Donde:

- $P(Y=1|X_1,\ldots,X_n)$ es la probabilidad de que el evento ocurra.
- β_0 es el intercepto y $\beta_1, \beta_2, \dots, \beta_p$ son los coeficientes asociados a las variables independientes X_1, X_2, \dots, X_p .

La **curva sigmoide** que representa esta función tiene forma de "S", lo que refleja que para valores muy pequeños o muy grandes del predictor, la probabilidad se aplana hacia 0 o 1, respectivamente.

Función de enlace Logit

En la regresión logística, la relación entre el predictor lineal y la probabilidad se establece mediante la **función de enlace logit**. El logit de una probabilidad p se define como:

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

Esta transformación convierte una probabilidad en una escala que va de $-\infty$ a $+\infty$, lo que permite ajustar un modelo lineal a los datos. El modelo logístico puede expresarse como:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

6.5.2 Estimación por máxima verosimilitud en regresión logística

La estimación de los parámetros en regresión logística se basa en el método de máxima verosimilitud, adaptado específicamente para la distribución binomial con función de enlace logit.

Para una muestra de n observaciones independientes, donde $y_i \in \{0, 1\}$ representa el resultado binario para la observación i, la **función de verosimilitud** se define como:

$$L(\beta) = \prod_{i=1}^n p_i^{y_i} (1 - p_i)^{1 - y_i}$$

donde $p_i = P(Y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i^T \beta}}$ es la probabilidad estimada para la observación i.

La log-verosimilitud correspondiente es:

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right]$$

Sustituyendo la expresión de p_i y simplificando:

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^T \beta - \log(1 + e^{\mathbf{x}_i^T \beta}) \right]$$

Para encontrar los valores de β que maximizan la log-vero similitud, derivamos respecto a cada parámetro:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n x_{ij} (y_i - p_i) = 0$$

donde x_{ij} es el valor de la variable j para la observación i.

Esta ecuación tiene una interpretación intuitiva: los estimadores de máxima verosimilitud se obtienen cuando la suma de los residuos ponderados por cada variable predictora es igual a cero.

6.5.2.1 Implementación del algoritmo IRLS

Dado que las ecuaciones de verosimilitud no tienen solución analítica cerrada, se utiliza el algoritmo IRLS. Para regresión logística, los elementos específicos son:

Pesos:

$$w_i = p_i(1 - p_i)$$

Variable dependiente ajustada:

$$z_i = \mathbf{x}_i^T \beta^{(t)} + \frac{y_i - p_i^{(t)}}{p_i^{(t)} (1 - p_i^{(t)})}$$

Actualización de parámetros:

$$\boldsymbol{\beta}^{(t+1)} = (\mathbf{X}^T\mathbf{W}^{(t)}\mathbf{X})^{-1}\mathbf{X}^T\mathbf{W}^{(t)}\mathbf{z}^{(t)}$$

```
Piemplo: Estimación paso a paso en regresión logística
# Demostración del proceso de estimación por máxima verosimilitud
library (MASS)
data(Pima.tr)
# Función para calcular log-verosimilitud manualmente
log_likelihood_logistic <- function(beta, X, y) {</pre>
  eta <- X %*% beta
  p <-1 / (1 + exp(-eta))
  # Evitar problemas numéricos
  p \leftarrow pmax(pmin(p, 1-1e-15), 1e-15)
  sum(y * log(p) + (1-y) * log(1-p))
# Preparar datos
X <- model.matrix(type ~ glu + bmi, data = Pima.tr)</pre>
y <- as.numeric(Pima.tr$type == "Yes")
# Ajuste con glm para comparación
modelo_glm <- glm(type ~ glu + bmi, data = Pima.tr, family = binomial)</pre>
beta_glm <- coef(modelo_glm)</pre>
cat("=== ESTIMACIÓN POR MÁXIMA VEROSIMILITUD ===\n")
=== ESTIMACIÓN POR MÁXIMA VEROSIMILITUD ===
cat("Coeficientes estimados por glm():\n")
Coeficientes estimados por glm():
print(beta_glm)
(Intercept)
                     glu
                                 bmi
-8.21610630 0.03571601 0.09001639
# Verificar que estos coeficientes maximizan la log-verosimilitud
ll_optimo <- log_likelihood_logistic(beta_glm, X, y)</pre>
cat("\nLog-verosimilitud en el óptimo:", round(ll_optimo, 4), "\n")
Log-verosimilitud en el óptimo: -99.2352
```

```
# Comparar con valores ligeramente diferentes
beta_test <- beta_glm + c(0.1, 0, 0)
ll_test <- log_likelihood_logistic(beta_test, X, y)</pre>
cat("Log-verosimilitud con perturbación:", round(ll_test, 4), "\n")
Log-verosimilitud con perturbación: -99.3995
cat("Diferencia:", round(ll_optimo - ll_test, 4), "\n")
Diferencia: 0.1643
# Mostrar información de convergencia
cat("\nInformación del algoritmo IRLS:\n")
Información del algoritmo IRLS:
cat("Iteraciones necesarias:", modelo_glm$iter, "\n")
Iteraciones necesarias: 4
cat(";Convergió?", modelo_glm$converged, "\n")
¿Convergió? TRUE
# Matriz de información y errores estándar
vcov_matrix <- vcov(modelo_glm)</pre>
cat("\nErrores estándar de los coeficientes:\n")
Errores estándar de los coeficientes:
print(sqrt(diag(vcov_matrix)))
(Intercept)
                    glu
1.346965130 0.006311023 0.031268458
```

6.5.3 Interpretación de coeficientes y odds ratios

Uno de los aspectos más importantes de la regresión logística es la interpretación de los coeficientes. Dado que los coeficientes están en la escala del logit, su interpretación directa no es tan intuitiva como en la regresión lineal. Sin embargo, podemos interpretarlos utilizando odds y odds ratios.

El **odds** o razón de probabilidades de que ocurra un evento es el cociente entre la probabilidad de que ocurra el evento y la probabilidad de que no ocurra:

$$odds = \frac{p}{1 - p}$$

Por ejemplo, si la probabilidad de éxito es 0.8, el odds sería:

odds =
$$\frac{0.8}{1 - 0.8} = 4$$

Esto significa que el evento es 4 veces más probable que no ocurra.

El **odds ratio** (**OR**) mide el cambio en los odds cuando una variable independiente aumenta en una unidad. Se calcula como el exponencial del coeficiente de la regresión logística:

$$OR = e^{\beta}$$

Interpretación de OR:

- Si **OR** > 1, el evento es más probable a medida que aumenta la variable independiente.
- Si OR < 1, el evento es menos probable a medida que aumenta la variable independiente.
- Si OR = 1, no hay efecto.

Supongamos que ajustamos un modelo de regresión logística para predecir la probabilidad de tener diabetes en función del índice de masa corporal (BMI). El coeficiente asociado a **BMI** es 0.08.

$$OR = e^{0.08} \approx 1.083$$

Esto significa que por cada incremento de 1 unidad en el BMI, la **odds** de tener diabetes aumentan en un **8.3**%.

6.5.4 Bondad de ajuste del modelo logístico

La evaluación de la bondad de ajuste en regresión logística presenta desafíos únicos debido a la naturaleza binaria de la variable dependiente. A diferencia de la regresión lineal, donde el \mathbb{R}^2 tradicional proporciona una medida directa de la varianza explicada, en la regresión logística necesitamos adoptar enfoques alternativos que se basen en la verosimilitud del modelo y que sean apropiados para datos categóricos.

La bondad de ajuste en regresión logística se evalúa principalmente a través de dos enfoques complementarios: la **deviance** y los **pseudo** \mathbb{R}^2 . Ambos métodos nos permiten cuantificar qué tan bien nuestro modelo captura los patrones subyacentes en los datos binarios.

La **deviance** en regresión logística se calcula utilizando la distribución binomial subyacente. Para cada observación, comparamos la probabilidad que predice nuestro modelo con la "probabilidad perfecta" que asignaría un modelo saturado. Matemáticamente, esto se expresa como:

$$D = 2\sum_{i=1}^n \left[y_i \log \left(\frac{y_i}{\hat{p}_i} \right) + (1-y_i) \log \left(\frac{1-y_i}{1-\hat{p}_i} \right) \right]$$

donde $y_i \in \{0,1\}$ representa el resultado observado y \hat{p}_i es la probabilidad estimada por nuestro modelo. Es importante notar que cuando $y_i = 0$ o $y_i = 1$, algunos términos en esta expresión se anulan automáticamente, lo que refleja la naturaleza discreta de los datos binarios.

La interpretación de la deviance sigue principios similares a los discutidos anteriormente, pero es crucial recordar que ahora estamos tratando con datos binarios. La deviance nos ayuda a entender qué tan bien nuestro modelo logístico se ajusta a los datos de respuesta binaria en comparación con un modelo que simplemente predice la media.

Los **pseudo** \mathbb{R}^2 son medidas alternativas que intentan capturar la proporción de variabilidad explicada por el modelo, similar al \mathbb{R}^2 en regresión lineal, pero adaptadas a la naturaleza de los datos binarios y la verosimilitud del modelo. Estas medidas son útiles para evaluar y comparar modelos, aunque su interpretación no es tan directa como el \mathbb{R}^2 tradicional.

El McFadden's R² es quizás el más utilizado y se define como:

$$R_{\text{McFadden}}^2 = 1 - \frac{\log L_{\text{modelo}}}{\log L_{\text{modelo nulo}}}$$

Este pseudo R^2 compara la log-verosimilitud de nuestro modelo con la de un modelo que solo incluye el intercepto. Los valores típicamente oscilan entre 0 y 1, aunque raramente alcanzan valores tan altos como el R^2 en regresión lineal. En contextos aplicados, valores de McFadden entre 0.2 y 0.4 se consideran indicativos de un buen ajuste.

El **Nagelkerke** \mathbb{R}^2 representa una versión normalizada que garantiza que el valor máximo sea 1:

$$R_{\text{Nagelkerke}}^2 = \frac{1 - \left(\frac{L_{\text{nulo}}}{L_{\text{modelo}}}\right)^{2/n}}{1 - (L_{\text{nulo}})^{2/n}}$$

Finalmente, el Cox-Snell \mathbb{R}^2 se define como:

$$R_{ ext{Cox-Snell}}^2 = 1 - \left(\frac{L_{ ext{nulo}}}{L_{ ext{modelo}}}\right)^{2/n}$$

Aunque este último tiene la limitación de que su valor máximo teórico es menor que 1, razón por la cual Nagelkerke propuso su corrección.

Es crucial entender que estos pseudo R^2 no deben interpretarse exactamente como el R^2 tradicional. Mientras que en regresión lineal el R^2 representa la proporción de varianza explicada, en regresión logística estos índices reflejan más bien la mejora en la verosimilitud que aporta nuestro modelo comparado con el modelo nulo. Sin embargo, proporcionan una herramienta valiosa para evaluar y comparar diferentes especificaciones de modelo.

La evaluación integral de la bondad de ajuste en regresión logística requiere considerar tanto la deviance como los pseudo R² en conjunto, complementando esta información con pruebas de significancia global del modelo mediante tests de razón de verosimilitudes, que permiten determinar si la inclusión de las variables predictoras mejora significativamente el ajuste comparado con el modelo nulo.

6.5.5 Validación del modelo logístico

Una vez evaluada la bondad de ajuste del modelo logístico, el siguiente paso fundamental es validar su capacidad predictiva y su rendimiento en la clasificación de nuevas observaciones. La validación en regresión logística presenta características particulares debido a la naturaleza categórica de la variable dependiente, lo que requiere métricas y enfoques específicos que van más allá de las medidas tradicionales de error de predicción.

La validación del modelo logístico se centra en dos aspectos complementarios: la **capacidad** discriminativa del modelo (qué tan bien puede distinguir entre las dos clases) y la **precisión** de clasificación (qué proporción de predicciones son correctas). Estas evaluaciones se realizan típicamente mediante la construcción de una **matriz de confusión** y el análisis de curvas **ROC**.

La matriz de confusión constituye la herramienta fundamental para evaluar el rendimiento de clasificación en regresión logística. Esta matriz organiza las predicciones del modelo en una tabla de contingencia 2×2 que compara los resultados predichos con los valores reales

observados. Para construir esta matriz, primero debemos convertir las probabilidades estimadas por el modelo en predicciones de clase mediante un umbral de decisión, típicamente 0.5.

La clasificación de cada observación resulta en una de cuatro categorías:

- Verdaderos Positivos (VP): Predijo positivo y es positivo.
- Falsos Positivos (FP): Predijo positivo pero es negativo.
- Verdaderos Negativos (VN): Predijo negativo y es negativo.
- Falsos Negativos (FN): Predijo negativo pero es positivo.

A partir de esta clasificación, podemos calcular métricas fundamentales de rendimiento:

- Precisión (Accuracy): $\frac{VP+VN}{\text{Total}}$ representa la proporción total de predicciones correctas Sensibilidad: $\frac{VP}{VP+FN}$ mide la capacidad del modelo para identificar correctamente los casos positivos
- Especificidad: $\frac{VN}{VN+FP}$ evalúa la capacidad para identificar correctamente los casos negativos

Es importante reconocer que estas métricas pueden verse influenciadas por el umbral de decisión elegido y por el balance de clases en los datos. Un modelo puede tener alta precisión global pero pobre capacidad para detectar la clase minoritaria, especialmente en datasets desbalanceados.

La Curva ROC (Receiver Operating Characteristic) proporciona una evaluación más comprehensiva del rendimiento del modelo al examinar la relación entre la sensibilidad y la especificidad a través de todos los posibles umbrales de decisión. Esta curva grafica la tasa de verdaderos positivos contra la tasa de falsos positivos (1 - especificidad) para cada umbral posible.

Un modelo perfecto produciría una curva ROC que pasaría por la esquina superior izquierda del gráfico (100% sensibilidad, 0% falsos positivos), mientras que un modelo sin capacidad discriminativa produciría una línea diagonal de 45 grados. La AUC (Área Bajo la Curva ROC) cuantifica esta capacidad discriminativa en un solo número que varía entre 0.5 (sin capacidad discriminativa) y 1.0 (discriminación perfecta).

La interpretación de la AUC sigue convenciones establecidas:

- 0.9 1.0: Excelente discriminación
- 0.8 0.9: Buena discriminación
- 0.7 0.8: Discriminación aceptable
- 0.6 0.7: Discriminación pobre
- 0.5 0.6: Sin capacidad discriminativa útil

La validación efectiva del modelo logístico requiere considerar tanto las métricas puntuales derivadas de la matriz de confusión como la capacidad discriminativa global capturada por la curva ROC y la AUC. Además, es crucial evaluar estas métricas tanto en los datos de entrenamiento como en conjuntos de validación independientes para detectar posibles problemas de sobreajuste y asegurar que el modelo generalizará adecuadamente a nuevos datos.


```
# Predicciones de probabilidad
predicciones_prob <- predict(modelo_logistico, type = "response")</pre>
# Clasificación con un umbral de 0.5
predicciones_clase <- ifelse(predicciones_prob > 0.5, "Yes", "No")
# Crear matriz de confusión
tabla_confusion <- table(Predicted = predicciones_clase, Actual = Pima.tr$type)
print(tabla_confusion)
         Actual
Predicted No Yes
      No 114 29
      Yes 18 39
# Calcular precisión
accuracy <- sum(diag(tabla_confusion)) / sum(tabla_confusion)</pre>
print(paste("Precisión:", round(accuracy, 3)))
[1] "Precisión: 0.765"
# Cargar librería para curvas ROC
library(pROC)
Type 'citation("pROC")' for a citation.
Attaching package: 'pROC'
The following objects are masked from 'package:stats':
    cov, smooth, var
# Curva ROC
roc_obj <- roc(Pima.tr$type, predicciones_prob)</pre>
Setting levels: control = No, case = Yes
Setting direction: controls < cases
```


6.6 Regresión de Poisson

La **regresión de Poisson** es una técnica estadística utilizada para modelar **datos de conteo**, es decir, situaciones en las que la variable dependiente representa el número de veces que ocurre un evento en un período de tiempo o espacio específico (Coxe, West, and Aiken 2009). Este tipo de modelo es adecuado cuando la variable dependiente toma valores enteros no negativos (0,1,2,...) y sigue una distribución de **Poisson**.

La distribución de Poisson describe la probabilidad de que ocurra un número determinado de eventos en un intervalo fijo, dado que estos eventos ocurren de forma independiente y a una tasa constante.

La función de probabilidad de la distribución de Poisson es:

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}$$

Donde:

- Y es la variable aleatoria que representa el número de eventos.
- λ es la tasa media de ocurrencia de los eventos (esperanza de Y).
- y es el número de eventos observados (y = 0, 1, 2, ...).

6.6.1 Modelo de regresión de Poisson

En la regresión de Poisson, el objetivo es modelar la relación entre la tasa de ocurrencia de los eventos (λ) y un conjunto de variables predictoras X_1, X_2, \dots, X_p .

La **forma funcional** del modelo de Poisson es:

$$\log(\lambda) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Donde:

- $\log(\lambda)$ es la función de enlace logarítmica que asegura que la tasa λ sea siempre positiva.
- $\beta_0, \beta_1, \dots, \beta_p$ son los coeficientes del modelo que describen la influencia de cada predictor sobre la tasa de eventos.

El modelo puede expresarse en términos de la tasa esperada de eventos como:

$$\lambda = e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}$$

6.6.2 Supuestos y limitaciones de la regresión de Poisson

Tal y como ocurre en el modelo de regresión lineal, para que la regresión de Poisson sea adecuada, se deben cumplir ciertos **supuestos**:

- Independencia de los eventos: Los eventos deben ocurrir de manera independiente unos de otros.
- Distribución de Poisson de la variable dependiente: La variable de respuesta debe seguir una distribución de Poisson, donde la media y la varianza son iguales:

$$E(Y) = Var(Y) = \lambda$$

- No sobredispersión: Uno de los problemas comunes en los datos de conteo es la sobredispersión, que ocurre cuando la varianza de los datos es mayor que la media (Var(Y) > E(Y)). La presencia de sobredispersión indica que el modelo de Poisson puede no ser adecuado, y puede ser necesario considerar modelos alternativos como la regresión binomial negativa.
- No exceso de ceros: Si hay demasiados ceros en los datos (por ejemplo, en el número de accidentes en diferentes localidades donde muchas tienen cero accidentes), puede ser necesario utilizar modelos de Poisson inflados en ceros (ZIP) (Lambert 1992).

6.6.3 Interpretación de los resultados

La interpretación de los coeficientes en la regresión de Poisson difiere de la regresión lineal debido al uso de la función de enlace logarítmica.

Los coeficientes β representan el **logaritmo de la tasa** de eventos asociados con un cambio en la variable independiente. Para interpretar en términos de la tasa de ocurrencia, se utiliza el **exponencial de los coeficientes**:

$$e^{\beta_i}$$

Esto representa el factor de cambio multiplicativo en la tasa de eventos por cada unidad adicional en la variable X_i .

Interpretando el coeficiente de Poisson: Incidence Rate Ratio (IRR)

En la regresión de Poisson, el coeficiente β_j está en la escala logarítmica de la tasa. Para una interpretación práctica, lo exponenciamos para obtener el **Incidence Rate Ratio** (IRR):

IRR =
$$e^{\beta_j}$$

El IRR es un factor multiplicativo que nos dice cuánto cambia la tasa de eventos esperada por cada incremento de una unidad en el predictor X_j .

- Si IRR > 1: Un incremento en X_j se asocia con un aumento en la tasa de eventos. Un IRR de 1.25 significa que por cada unidad que aumenta X_j , la tasa de eventos esperada se multiplica por 1.25 (es decir, aumenta un 25%).
- Si IRR < 1: Un incremento en X_j se asocia con una disminución en la tasa de eventos. Un IRR de 0.80 significa que por cada unidad que aumenta X_j , la tasa de eventos esperada se multiplica por 0.80 (es decir, disminuye un 20%).
- Si IRR = 1: La variable X_i no tiene efecto sobre la tasa de eventos.

Ejemplo

Vamos a utilizar R para ajustar un modelo de regresión de Poisson. Supongamos que tenemos datos sobre el **número de accidentes de tráfico** en diferentes intersecciones de una ciudad, junto con variables como el volumen de tráfico y la visibilidad.

```
# Simulación de datos para el número de accidentes
set.seed(456) # Seed diferente para evitar duplicación
n <- 100 # Número de observaciones
# Variables predictoras
trafico_nuevo <- rnorm(n, mean = 1000, sd = 300) # Volumen de tráfico en vehículos por día
visibilidad_nueva <- rnorm(n, mean = 5, sd = 2) # Visibilidad en kilómetros
# Generar la tasa de accidentes (lambda) usando un modelo logarítmico
lambda_nuevo <- exp(0.01 * trafico_nuevo - 0.2 * visibilidad_nueva)
# Generar el número de accidentes como una variable de Poisson
accidentes_nuevo <- rpois(n, lambda = lambda_nuevo)</pre>
# Crear el data frame
datos_ejemplo <- data.frame(accidentes = accidentes_nuevo, trafico = trafico_nuevo, visibil
head(datos_ejemplo)
  accidentes trafico visibilidad
1
         140 596.9436
                         5.236303
2
       37153 1186.5327 6.739805
       92909 1240.2624 4.816128
3
         117 583.3323 5.137798
5
        1793 785.6929 1.635146
        1935 902.7817
                         7.233911
# Ajustar el modelo de regresión de Poisson
modelo_ejemplo <- glm(accidentes ~ trafico + visibilidad, data = datos_ejemplo, family = po
# Resumen del modelo
summary(modelo_ejemplo)
Call:
glm(formula = accidentes ~ trafico + visibilidad, family = poisson,
```

```
data = datos_ejemplo)
```

Coefficients:

```
Estimate Std. Error
                                   z value Pr(>|z|)
(Intercept) 9.607e-04
                       2.316e-03
                                     0.415
                                              0.678
            9.999e-03 1.360e-06 7350.127
                                             <2e-16 ***
visibilidad -2.000e-01 1.012e-04 -1976.897
                                             <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.6856e+08 on 99 degrees of freedom Residual deviance: 8.9300e+01 on 97 degrees of freedom

AIC: 1220.4

Number of Fisher Scoring iterations: 3

El coeficiente asociado a trafico indica cómo el volumen de tráfico afecta la tasa de accidentes.

El coeficiente asociado a visibilidad muestra cómo la visibilidad afecta la frecuencia de accidentes.

6.6.4 Estimación por máxima verosimilitud en regresión de Poisson

La estimación de parámetros en regresión de Poisson utiliza también el método de máxima verosimilitud, pero adaptado específicamente para la distribución de Poisson con función de enlace logarítmica. Este enfoque garantiza que las estimaciones aprovechen de manera óptima la información contenida en los datos de conteo.

Para una muestra de n observaciones independientes, donde y_i representa el conteo de eventos para la observación i, la función de verosimilitud se define como:

$$L(\beta) = \prod_{i=1}^{n} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}$$

donde $\lambda_i = e^{\mathbf{x}_i^T \beta}$ es la tasa esperada para la observación i.

La log-verosimilitud correspondiente es:

$$\ell(\beta) = \sum_{i=1}^n \left[y_i \log(\lambda_i) - \lambda_i - \log(y_i!) \right]$$

Sustituyendo $\lambda_i = e^{\mathbf{x}_i^T \beta}$:

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^T \beta - e^{\mathbf{x}_i^T \beta} - \log(y_i!) \right]$$

Para encontrar los valores de β que maximizan la log-vero similitud, derivamos respecto a cada parámetro:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n x_{ij} (y_i - \lambda_i) = 0$$

Esta ecuación indica que los estimadores de máxima verosimilitud se obtienen cuando la suma de los residuos (observado menos esperado) ponderados por cada variable predictora es cero.

6.6.4.1 Implementación del algoritmo IRLS

Dado que las ecuaciones de verosimilitud no tienen solución analítica cerrada, se utiliza el algoritmo IRLS adaptado para regresión de Poisson. Los elementos específicos son:

Pesos:

$$w_i = \lambda_i$$

Variable dependiente ajustada:

$$z_i = \log(\lambda_i^{(t)}) + \frac{y_i - \lambda_i^{(t)}}{\lambda_i^{(t)}}$$

Actualización de parámetros:

$$\beta^{(t+1)} = (\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}$$

6.6.4.2 Propiedades específicas de la estimación Poisson

La estimación por máxima verosimilitud en regresión de Poisson tiene características particulares que la distinguen de otros GLMs:

- 1. **Equidispersión**: El modelo asume que $E(Y_i) = \text{Var}(Y_i) = \lambda_i$, lo que significa que la varianza aumenta linealmente con la media.
- 2. Convergencia: Generalmente requiere menos iteraciones que la regresión logística debido a la naturaleza más estable de la función de enlace logarítmica.

- 3. Estabilidad numérica: La función de enlace logarítmica garantiza automáticamente que $\lambda_i > 0$, evitando problemas de valores negativos en las tasas estimadas.
- 4. **Interpretación multiplicativa**: Los coeficientes se interpretan como efectos multiplicativos sobre la tasa, lo que es natural para datos de conteo.

```
Piemplo: Estimación paso a paso en regresión de Poisson
# Demostración del proceso de estimación por máxima verosimilitud
# Usar los datos simulados anteriores
set.seed(123)
n <- 100
trafico \leftarrow rnorm(n, mean = 1000, sd = 300)
visibilidad \leftarrow rnorm(n, mean = 5, sd = 2)
lambda \leftarrow \exp(-2 + 0.001*trafico - 0.2*visibilidad)
accidentes <- rpois(n, lambda)
datos_accidentes <- data.frame(accidentes, trafico, visibilidad)</pre>
# Función para calcular log-verosimilitud manualmente
log_likelihood_poisson <- function(beta, X, y) {</pre>
  eta <- X %*% beta
  lambda <- exp(eta)</pre>
  sum(y * log(lambda) - lambda - lgamma(y + 1))
# Preparar datos
X <- model.matrix(accidentes ~ trafico + visibilidad, data = datos_accidentes)</pre>
y <- datos_accidentes$accidentes
# Ajuste con glm
modelo_glm_pois <- glm(accidentes ~ trafico + visibilidad,</pre>
                        data = datos_accidentes, family = poisson)
beta_glm_pois <- coef(modelo_glm_pois)</pre>
cat("=== ESTIMACIÓN POR MÁXIMA VEROSIMILITUD - POISSON ===\n")
=== ESTIMACIÓN POR MÁXIMA VEROSIMILITUD - POISSON ===
cat("Coeficientes estimados por glm():\n")
Coeficientes estimados por glm():
```

```
print(beta_glm_pois)
(Intercept)
              trafico visibilidad
-5.75588458 0.00284373 0.13082078
# Verificar optimización
ll_optimo_pois <- log_likelihood_poisson(beta_glm_pois, X, y)</pre>
cat("\nLog-verosimilitud en el óptimo:", round(ll_optimo_pois, 4), "\n")
Log-verosimilitud en el óptimo: -39.65
# Interpretación multiplicativa
cat("\nInterpretación multiplicativa (exp(coeficientes)):\n")
Interpretación multiplicativa (exp(coeficientes)):
exp_coefs <- exp(beta_glm_pois)</pre>
print(exp_coefs)
(Intercept)
                trafico visibilidad
0.003164106 1.002847777 1.139763495
cat("\nInterpretación:\n")
Interpretación:
cat("- Intercepto: Tasa base =", round(exp_coefs[1], 4), "accidentes\n")
- Intercepto: Tasa base = 0.0032 accidentes
cat("- Tráfico: Por cada vehículo adicional, la tasa se multiplica por", round(exp_coefs[2]
- Tráfico: Por cada vehículo adicional, la tasa se multiplica por 1.002848
cat("- Visibilidad: Por cada km adicional de visibilidad, la tasa se multiplica por", round
```

```
- Visibilidad: Por cada km adicional de visibilidad, la tasa se multiplica por 1.1398
# Información de convergencia
cat("\nInformación del algoritmo IRLS:\n")
Información del algoritmo IRLS:
cat("Iteraciones necesarias:", modelo_glm_pois$iter, "\n")
Iteraciones necesarias: 6
cat(";Convergió?", modelo_glm_pois$converged, "\n")
¿Convergió? TRUE
# Verificar supuesto de equidispersión
media_y <- mean(y)</pre>
var_y <- var(y)</pre>
cat("\nVerificación de equidispersión:\n")
Verificación de equidispersión:
cat("Media observada:", round(media_y, 3), "\n")
Media observada: 0.15
cat("Varianza observada:", round(var_y, 3), "\n")
Varianza observada: 0.149
cat("Razón varianza/media:", round(var_y/media_y, 3), "\n")
Razón varianza/media: 0.993
```

6.6.5 Bondad de ajuste en la regresión de Poisson

Al igual que en la regresión logística, la bondad de ajuste en los modelos de Poisson se aleja del \mathbb{R}^2 tradicional y se centra en medidas basadas en la verosimilitud. El objetivo es cuantificar si el modelo captura adecuadamente la estructura de los datos de conteo.

La **deviance** sigue siendo la métrica fundamental. Para la regresión de Poisson, se calcula comparando la log-verosimilitud del modelo ajustado con la de un modelo saturado (donde $\hat{\mu}_i = y_i$). La fórmula específica es:

$$D = 2\sum_{i=1}^{n} \left[y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right]$$

Donde el término $y_i \log(y_i)$ se considera cero si $y_i = 0$. Al igual que en otros GLMs, la deviance es clave para comparar modelos anidados mediante el **Test de la Razón de Verosimilitudes** (LRT).

Sin embargo, para los modelos de Poisson, la prueba de bondad de ajuste más importante en la práctica es la evaluación de la **sobredispersión**. Un buen ajuste del modelo de Poisson implica que se cumple el supuesto de equidispersión $(Var(Y) = \mu)$. Por lo tanto, el **estadístico de dispersión** $(\hat{\phi})$ se convierte en una medida de facto de la bondad de ajuste:

$$\hat{\phi} = \frac{X_{\text{Pearson}}^2}{n - p}$$

Un valor de $\hat{\phi}$ cercano a 1 indica que el supuesto de la distribución de Poisson se cumple y que el ajuste del modelo es adecuado. Si $\hat{\phi}$ es significativamente mayor que 1, el modelo no se ajusta bien a la variabilidad de los datos, y este es el principal indicador para buscar alternativas como la regresión binomial negativa.

Aunque los **pseudo** \mathbb{R}^2 (como el de McFadden) pueden calcularse, son menos utilizados e informativos en el contexto de la regresión de Poisson en comparación con el análisis de la dispersión.

6.6.6 Validación del modelo de Poisson

A diferencia de la regresión logística, donde la validación se centra en la capacidad de *clasificación*, la validación de un modelo de Poisson se enfoca en su **capacidad de predicción**: ¿qué tan cerca están los conteos predichos por el modelo de los conteos reales observados?

El proceso de validación suele implicar la división de los datos en un conjunto de **entrenamiento** (**train**) y uno de **prueba** (**test**). El modelo se ajusta con los datos de entrenamiento y su rendimiento predictivo se evalúa sobre los datos de prueba, que el modelo no ha visto antes. Esto nos da una estimación honesta de cómo generalizará el modelo a nuevos datos.

Las métricas de validación principales para modelos de conteo son:

• Raíz del Error Cuadrático Medio (RMSE): Es una de las métricas más comunes y mide la desviación estándar de los residuos. Penaliza más los errores grandes.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2}$$

• Error Absoluto Medio (MAE): Mide la magnitud promedio de los errores, siendo menos sensible a valores atípicos que el RMSE.

$$\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{\mu}_i|$$

Ambas métricas se expresan en las mismas unidades que la variable de respuesta (por ejemplo, "accidentes", "compras"), lo que facilita su interpretación. Un modelo con valores de RMSE y MAE más bajos en el conjunto de prueba se considera que tiene un mejor rendimiento predictivo.

Una herramienta visual clave para la validación es el **gráfico de valores predichos vs. valores reales** en el conjunto de prueba. En un modelo con buena capacidad predictiva, los puntos deberían agruparse cerca de la línea diagonal y=x, indicando que las predicciones $(\hat{\mu}_i)$ son cercanas a los valores observados (y_i) .

6.7 Otros GLMs

La regresión binomial negativa y los modelos basados en distribuciones como Gamma e Inversa Gaussiana amplían la capacidad de los Modelos Lineales Generalizados (GLM) para adaptarse a una amplia variedad de situaciones del mundo real. Estos modelos son especialmente útiles cuando los datos presentan características como sobredispersión, sesgo o restricciones en el dominio (por ejemplo, solo valores positivos). La elección adecuada del modelo y la función de enlace garantiza predicciones precisas y válidas, contribuyendo a la toma de decisiones informadas en campos como la salud, la ingeniería y la economía.

6.7.1 Regresión binomial negativa

Tal y como hemos visto en apartados anteriores, la **sobredispersión** ocurre cuando la varianza de los datos de conteo es **mayor que la media**, lo cual viola uno de los supuestos clave de la regresión de Poisson, que asume que la media y la varianza son iguales $(E(Y) = Var(Y) = \lambda)$. La sobredispersión puede surgir por varias razones:

• **Heterogeneidad no modelada:** Existen factores que afectan la variable dependiente pero no han sido incluidos en el modelo.

- Dependencia entre eventos: Los eventos no ocurren de forma independiente.
- Exceso de ceros: Hay más ceros en los datos de los que predice la distribución de Poisson.

Cuando la sobredispersión está presente, la regresión de Poisson subestima los errores estándar, lo que puede llevar a conclusiones incorrectas sobre la significancia de los predictores.

La **regresión binomial negativa** es una extensión de la regresión de Poisson que introduce un parámetro adicional para manejar la sobredispersión. Este modelo permite que la varianza sea mayor que la media:

$$Var(Y) = \lambda + \alpha \lambda^2$$

Donde α es el parámetro de dispersión. Si $\alpha=0,$ el modelo se reduce a la regresión de Poisson.

La forma funcional del modelo binomial negativo es similar al de Poisson:

$$\log(\lambda) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Pero la varianza ahora incluye el término adicional α para capturar la sobredispersión.

```
# Instalar y cargar la librería MASS que contiene la función glm.nb library(MASS)

# Usar los datos de accidentes del ejemplo anterior

# Ajuste de un modelo binomial negativo modelo_binom_neg <- glm.nb(accidentes ~ trafico + visibilidad, data = datos_accidentes)

Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > : iteration limit reached

Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > : iteration limit reached

# Resumen del modelo summary(modelo_binom_neg)

Call:
glm.nb(formula = accidentes ~ trafico + visibilidad, data = datos_accidentes,
```

```
init.theta = 2158.536301, link = log)
Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
 (Intercept) -5.7560791 1.5223127 -3.781 0.000156 ***
                                   0.0028439 0.0009831 2.893 0.003818 **
visibilidad 0.1308306 0.1402185 0.933 0.350795
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(2158.536) family taken to be 1)
          Null deviance: 59.679 on 99 degrees of freedom
Residual deviance: 50.680 on 97 degrees of freedom
AIC: 87.301
Number of Fisher Scoring iterations: 1
                                      Theta: 2159
                           Std. Err.: 49427
Warning while fitting theta: iteration limit reached
   2 x log-likelihood: -79.301
# Comparar la dispersión con el modelo de Poisson
cat("Dispersión en Poisson (deviance/df.residual):", round(modelo_glm_pois$deviance / modelo_glm_pois$deviance / modelo_glm_pois$
Dispersión en Poisson (deviance/df.residual): 0.523
cat("Parametro theta en Binomial Negativa:", round(modelo_binom_neg$theta, 3), "\n")
Parámetro theta en Binomial Negativa: 2158.536
# Comparar AIC
cat("AIC Poisson:", round(AIC(modelo_glm_pois), 2), "\n")
AIC Poisson: 85.3
cat("AIC Binomial Negativa:", round(AIC(modelo_binom_neg), 2), "\n")
AIC Binomial Negativa: 87.3
```

Interpretación del parámetro θ en binomial negativa:

- El parámetro θ controla el grado de sobredispersión en el modelo
- Valores altos de θ (ej: $\theta > 100$): Poca sobredispersión, el modelo se aproxima a Poisson
- Valores bajos de θ (ej: $\theta < 10$): Mucha sobredispersión, diferencia significativa respecto a Poisson
- Regla práctica: Si θ es pequeño, confirma que había sobredispersión y que el modelo binomial negativa es más apropiado que Poisson

Comparación de modelos: - Si AIC de binomial negativa < AIC de Poisson \rightarrow preferir binomial negativa - El modelo binomial negativa corrige la subestimación de errores estándar que ocurre en Poisson con sobredispersión

6.7.2 Modelos para variables continuas no normales

Existen situaciones en las que la variable dependiente es continua, pero no sigue una distribución normal. En estos casos, los Modelos Lineales Generalizados (GLM) permiten utilizar distribuciones alternativas como Gamma o Inversa Gaussiana, junto con funciones de enlace específicas.

6.7.2.1 Regresión gamma para datos positivos y sesgados

La **regresión Gamma** es adecuada para modelar variables continuas que son **positivas** y tienen una distribución **sesgada a la derecha**. Ejemplos típicos incluyen tiempos de espera, costos médicos o duración de procesos.

- La distribución Gamma asume que la variable dependiente es continua y positiva.
- La varianza de la variable dependiente aumenta proporcionalmente al cuadrado de la media.

Función de Enlace Común:

$$\log(\mu) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

```
    Ejemplo

# Simulación de costos médicos
set.seed(123)
n <- 100
ingresos <- rnorm(n, mean = 50000, sd = 10000)
edad \leftarrow rnorm(n, mean = 45, sd = 10)
costos \leftarrow rgamma(n, shape = 2, rate = 0.00005 * ingresos + 0.01 * edad)
# Ajuste del modelo Gamma
modelo_gamma <- glm(costos ~ ingresos + edad, family = Gamma(link = "log"))</pre>
# Resumen del modelo
summary(modelo_gamma)
Call:
glm(formula = costos ~ ingresos + edad, family = Gamma(link = "log"))
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.440e-01 5.294e-01 0.650
                                            0.5173
           -1.807e-05 7.804e-06 -2.316
ingresos
                                            0.0227 *
edad
             3.584e-03 7.366e-03 0.487
                                            0.6277
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.5010938)
    Null deviance: 60.771 on 99 degrees of freedom
Residual deviance: 58.345 on 97 degrees of freedom
AIC: 105.47
Number of Fisher Scoring iterations: 5
  • Los coeficientes muestran cómo los ingresos y la edad afectan los costos médicos
```

- esperados.
- El enlace logarítmico asegura que las predicciones sean siempre positivas.

6.7.2.2 Regresión inversa gaussiana

La **regresión Inversa Gaussiana** es útil para modelar tiempos de respuesta o variables donde la varianza disminuye rápidamente a medida que la media aumenta. Este modelo se aplica en campos como la ingeniería, donde se analizan tiempos hasta fallas de sistemas.

Función de Enlace Común:

$$\frac{1}{\mu^2} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

```
    Ejemplo

# Instalar y cargar la librería correcta
library(statmod)
# Simulación de datos
set.seed(123)
n <- 100
carga_trabajo <- rnorm(n, mean = 50, sd = 10)</pre>
# Generar tiempos hasta el fallo usando la distribución inversa gaussiana
# Aseguramos que los valores de carga_trabajo sean positivos para evitar problemas numérico
carga_trabajo[carga_trabajo <= 0] <- 1</pre>
tiempo fallo <- rinvgauss(n, mean = 100 / carga trabajo, dispersion = 1)
# Ajuste del modelo Inversa Gaussiana con enlace logarítmico
modelo_inversa_gauss <- glm(tiempo_fallo ~ carga_trabajo, family = inverse.gaussian(link =
Warning in sqrt(eta): NaNs produced
Warning: step size truncated due to divergence
# Resumen del modelo
summary(modelo_inversa_gauss)
Call:
glm(formula = tiempo_fallo ~ carga_trabajo, family = inverse.gaussian(link = "1/mu^2"),
    start = c(0.01, 0.01))
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept)
             -0.106143
                         0.462230 -0.230
                                             0.819
carga trabajo 0.008261
                         0.009623
                                    0.859
                                             0.393
```

(Dispersion parameter for inverse.gaussian family taken to be 1.348442)

```
Null deviance: 94.085
                          on 99
                                 degrees of freedom
Residual deviance: 93.171
                          on 98 degrees of freedom
```

AIC: 294.2

Number of Fisher Scoring iterations: 5

🔔 ¿Qué GLM debo usar?

La elección del modelo correcto depende casi exclusivamente de la naturaleza de tu variable respuesta (Y). Aquí tienes una guía rápida:

- ¿Tu variable respuesta es binaria (Sí/No, 0/1, Éxito/Fracaso)?
 - Usa Regresión Logística.
- ¿Tu variable respuesta es un conteo de eventos (n^{o} de accidentes, n^{o} de clientes, nº de fallos)?
 - Empieza con una Regresión de Poisson.
 - Importante: Después de ajustar el modelo, comprueba si hay sobredispersión.
 - Si la hay (estadístico de dispersión $\hat{\phi} > 1.5$ o la teoría lo sugiere), cambia a una Regresión Binomial Negativa.
- ¿Tu variable respuesta es continua y estrictamente positiva, con una distribución asimétrica hacia la derecha (ej. tiempos, costos, reclamaciones de seguros)?
 - Usa **Regresión Gamma**. Es una excelente alternativa a transformar la variable con logaritmos y usar un modelo lineal.
- ¿Tu variable respuesta es un tiempo hasta un evento y tiene una asimetría muy pronunciada?
 - Considera una Regresión Inversa Gaussiana.

7 Conclusiones

A lo largo de seis capítulos hemos presentado el material de la asignatura de Modelos Estadísticos para la Predicción del Grado en Matemáticas.

En este capítulo final, te invitamos a reflexionar sobre las principales lecciones aprendidas durante el curso y a destacar cómo el rigor matemático que caracteriza vuestra formación se convierte en una herramienta indispensable para dominar el modelado estadístico. Además, animamos a los estudiantes a continuar explorando y ampliando sus conocimientos en cursos posteriores, consolidando así una base sólida para afrontar los desafíos de la ciencia de datos moderna desde una perspectiva analítica y fundamentada.

Al finalizar este recorrido, queda patente que el modelado estadístico es mucho más que una colección de técnicas; es un marco de pensamiento estructurado para comprender la incertidumbre y extraer conocimiento a partir de los datos. Hemos transitado desde los axiomas teóricos de la regresión hasta su aplicación computacional, equipando a los futuros matemáticos con las herramientas para construir, validar e interpretar modelos robustos.

7.1 Resumen de los aprendizajes

A lo largo de este manual, hemos construido un conocimiento progresivo sobre el modelado predictivo, cubriendo los siguientes pilares:

- 1. Fundamentos del modelado lineal: simple y múltiple: Hemos partido de la formulación teórica del modelo lineal, estableciendo sus componentes axiomáticos y los supuestos de Gauss-Markov que garantizan las propiedades óptimas de los estimadores de Mínimos Cuadrados Ordinarios (MCO). Se ha hecho hincapié en la transición del modelo simple al múltiple, destacando el principio de ceteris paribus para la interpretación de coeficientes, el diagnóstico de la multicolinealidad mediante el VIF y la evaluación de la bondad de ajuste a través de la descomposición ANOVA y el R² ajustado.
- 2. Ingeniería de características y flexibilidad del modelo: Exploramos cómo superar las limitaciones de un modelo estrictamente lineal. Aprendimos a diagnosticar y corregir violaciones de los supuestos mediante transformaciones de variables (logarítmica, Box-Cox), a incorporar predictores no numéricos a través de la codificación de variables categóricas, y, fundamentalmente, a modelar relaciones complejas mediante la inclusión

de **términos de interacción**, entendiendo cómo el efecto de un predictor puede depender del valor de otro.

- 3. Selección de variables, regularización y validación: Abordamos el crucial dilema sesgo-varianza y la necesidad de construir modelos parsimoniosos que generalicen bien a datos no observados. Se presentaron los criterios de información (AIC, BIC) y los métodos por pasos (stepwise) como herramientas para comparar y seleccionar modelos. Profundizamos en los métodos de regularización (Ridge, Lasso y Elastic Net), que ofrecen una alternativa moderna y robusta para manejar la multicolinealidad y realizar selección de variables de forma simultánea, especialmente en contextos de alta dimensionalidad. Finalmente, se consolidó la importancia de la validación cruzada como el estándar para una evaluación honesta del rendimiento predictivo del modelo.
- 4. Modelos lineales generalizados (GLM): Expandimos el marco de la regresión más allá de la asunción de normalidad en la variable respuesta. A través de la introducción de la familia exponencial de distribuciones y las funciones de enlace, entendimos cómo adaptar el modelo lineal a diferentes tipos de datos. Nos centramos en dos de los GLM más importantes: la Regresión Logística para modelar resultados binarios y la Regresión de Poisson para datos de conteo, aprendiendo a interpretar sus coeficientes en términos de odds ratios y tasas de eventos, respectivamente.

7.2 Reflexiones finales

El estudio de los **Modelos Estadísticos para la Predicción** dota al matemático de un puente entre la teoría abstracta y la resolución de problemas del mundo real. A lo largo de este curso, hemos visto cómo conceptos rigurosos —espacios vectoriales en la geometría de MCO, optimización en la estimación de parámetros, y teoría de la probabilidad en la inferencia— se materializan en herramientas prácticas para la toma de decisiones bajo incertidumbre.

Hemos aprendido que construir un modelo no es un acto mecánico, sino un proceso iterativo de diagnóstico, crítica y refinamiento. La capacidad para evaluar la validez de los supuestos, interpretar los resultados con cautela y comunicar tanto las fortalezas como las limitaciones de un modelo es lo que distingue a un analista competente. La interpretabilidad y la validación rigurosa no son meros pasos finales, sino el núcleo de una práctica estadística honesta y efectiva.

En un mundo saturado de datos, la habilidad para construir modelos que no solo predicen, sino que también explican y ofrecen certidumbre cuantificable, es más valiosa que nunca.

7.3 Proyección futura: El valor del rigor matemático

Las competencias adquiridas en esta asignatura son la culminación de vuestra carrera, el punto donde el álgebra lineal, el cálculo y la optimización se convierten en el motor de la modelización estadística aplicada. Vuestra formación matemática os proporciona una ventaja fundamental: la capacidad de ir más allá de la aplicación mecánica de un algoritmo para comprender en profundidad los supuestos que lo sustentan, la geometría de su funcionamiento y la incertidumbre inherente a sus conclusiones.

Conceptos como la regularización y la validación cruzada son el lenguaje compartido con el **Aprendizaje Automático**. Mientras que el Aprendizaje Automático a menudo se centra en la potencia predictiva de algoritmos complejos, este curso os ha proporcionado la "gramática" estadística para construir modelos interpretables, diagnosticar su validez y cuantificar la fiabilidad de sus resultados. Esta base teórica es indispensable para aplicar, y en un futuro desarrollar, cualquier técnica de modelado de forma rigurosa y responsable.

Esta habilidad para analizar críticamente los modelos es precisamente lo que el mercado y el mundo académico demandan. Os posiciona de manera ideal para roles avanzados como Científico de Datos, Analista Cuantitativo ('Quant') en el sector financiero, o Bioestadístico, así como para continuar vuestra formación con estudios de postgrado (Máster o Doctorado) donde la investigación y el desarrollo de nuevos métodos es primordial.

En definitiva, habéis adquirido un conjunto de herramientas analíticas que os permitirá traducir problemas complejos en modelos manejables y basados en evidencia.

¡Mucha suerte en vuestra trayectoria profesional!

Bibliografía

- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. "Fitting Linear Mixed-Effects Models Using Lme4." *Journal of Statistical Software* 67 (1): 1–48.
- Box, George EP, and David R Cox. 1964. "An Analysis of Transformations." *Journal of the Royal Statistical Society: Series B (Methodological)* 26 (2): 211–43.
- Carroll, Raymond J, and David Ruppert. 1988. "Transformation and Weighting in Regression."

 Monographs on Statistics and Applied Probability.
- Coxe, Stefany, Stephen G West, and Leona S Aiken. 2009. "The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives." *Journal of Personality Assessment* 91 (2): 121–36.
- Draper, NR. 1998. Applied Regression Analysis. McGraw-Hill. Inc.
- Fox, John, and Sanford Weisberg. 2018. An r Companion to Applied Regression. Sage publications.
- Galton, Francis. 1886. "Regression Towards Mediocrity in Hereditary Stature." The Journal of the Anthropological Institute of Great Britain and Ireland 15: 246–63.
- Harrell, Frank E., Jr. 2015. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Second. Springer.
- Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2. Springer.
- Hosmer Jr, David W, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied Logistic Regression. John Wiley & Sons.
- Jaccard, James, and Robert Turrisi. 2003. Interaction Effects in Multiple Regression. Sage.
- James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. 2013. An Introduction to Statistical Learning. Vol. 112. Springer.
- James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to Statistical Learning with Applications in r. Second. Springer.
- Kuhn, Max, and Kjell Johnson. 2019. Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC Press.
- Kutner, Michael H, Christopher J Nachtsheim, John Neter, and William Li. 2005. Applied Linear Statistical Models. McGraw-hill.
- Lambert, Diane. 1992. "Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing." *Technometrics* 34 (1): 1–14.
- Marquardt, Donald W, and Ronald D Snee. 1975. "Ridge Regression in Practice." *The American Statistician* 29 (1): 3–20.
- Nelder, John Ashworth, and Robert WM Wedderburn. 1972. "Generalized Linear Models." Journal of the Royal Statistical Society Series A: Statistics in Society 135 (3): 370–84.

- Pinheiro, José C., and Douglas M. Bates. 2000. *Mixed-Effects Models in s and s-PLUS*. New York: Springer.
- Potdar, Kedar, Taher S Pardawala, and Chinmay D Pai. 2017. "A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers." *International Journal of Computer Applications* 175 (4): 7–9.
- Ranstam, Jonas, and Jonathan A Cook. 2018. "LASSO Regression." *Journal of British Surgery* 105 (10): 1348–48.
- Shmueli, Galit. 2010. "To Explain or to Predict?" Statistical Science 25 (3): 289–310.
- Weisberg, S. 2005. "Applied Linear Regression." Wiley.
- Wood, Simon N. 2017. Generalized Additive Models: An Introduction with r. Second. Chapman; Hall/CRC.
- Yeo, In-Kwon, and Richard A Johnson. 2000. "A New Family of Power Transformations to Improve Normality or Symmetry." *Biometrika* 87 (4): 954–59.
- Zheng, Alice, and Amanda Casari. 2018. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media.
- Zou, Hui, and Trevor Hastie. 2005. "Regularization and Variable Selection via the Elastic Net." Journal of the Royal Statistical Society Series B: Statistical Methodology 67 (2): 301–20.

Métodos Estadísticos de Predicción

Diapositivas de la Asignatura

Grado en Matemáticas

AUTORES

- Víctor Aceña Gil
- Isaac Martín de Diego

2025-2026

Índice de diapositivas

- Introducción a los Modelos Estadísticos para la Predicción
- Regresión Lineal Simple
- Regresión Lineal Múltiple
- Ingeniería de Características
- Selección de Variables, Regularización y Validación
- Modelos Lineales Generalizados (GLM)

Introducción a los Modelos Estadísticos para la Predicción

Víctor Aceña - Isaac Martín

DSLAB

2025-09-10

El Modelado de Regresión: Una Herramienta Universal

El modelado de regresión constituye una de las herramientas más potentes y flexibles del arsenal estadístico. Su aplicabilidad abarca un espectro extraordinariamente amplio de disciplinas:

- Ciencias Físicas: Física de partículas, ingeniería aeroespacial para modelar sistemas complejos.
- Ciencias Sociales: Econometría, psicometría para entender comportamientos.
- Ciencias de la Salud: Epidemiología para identificar factores de riesgo.
- Finanzas: Para entender mercados y comportamientos económicos.

El Propósito de Este Curso

Este curso tiene como misión construir el andamiaje conceptual y filosófico sobre el que se asienta el modelado estadístico moderno

Objetivos:

pensamiento indispensable.

Contextualizar la regresión no solo como una técnica, sino como un marco de

- Explorar en profundidad el propósito dual de la regresión (predicción vs. inferencia).
- Desgranar los componentes axiomáticos hasta el último detalle.
- Ofrecer una visión panorámica de la vasta familia de modelos de regresión.

El objetivo es prepararte, con solidez y sin prisas, para las inmersiones técnicas posteriores.

Predecir vs. Explicar

El modelado de regresión ofrece un marco para investigar y cuantificar las relaciones entre variables.

Conceptualmente, el modelado estadístico se orienta hacia uno de dos polos (Shmueli, 2010):

- Predicción: Enfoque orientado a la precisión en la estimación de valores futuros o no observados.
- Explicación/Inferencia: Enfoque orientado a la comprensión de las relaciones entre las variables.

Ambos paradigmas tienen objetivos, métodos y criterios de evaluación distintos.

Predicción: El Paradigma de la Precisión

Objetivo Principal: La **precisión**. Se busca construir un modelo que pueda estimar con el menor error posible el valor de una variable de interés (la *respuesta*).

Características Clave:

- El modelo puede ser tratado como una "caja negra" (black box).
- El funcionamiento interno o la interpretabilidad son secundarios.
- Lo importante es que las predicciones sean consistentemente fiables y robustas en datos no observados previamente.

Inferencia: El Paradigma de la Comprensión

Objetivo Principal: La **comprensión** e **interpretación**. No solo predecir, sino dilucidar la naturaleza de las interdependencias.

Características Clave:

- Se busca cuantificar cómo un cambio en una variable predictora influye en la respuesta.
- La interpretabilidad del modelo es primordial.
- El interés reside en la **magnitud**, **signo e incertidumbre estadística** de los parámetros (errores estándar, intervalos de confianza, p-valores).

Predecir vs. Explicar: Ejemplos

Ejemplo de Predicción

Una entidad financiera quiere predecir la probabilidad de que un cliente incurra en impago. Su principal interés es tener un modelo que clasifique correctamente a los futuros solicitantes como de alto o bajo riesgo para minimizar pérdidas.

Ejemplo de Inferencia

Una epidemióloga investiga los factores de riesgo de una enfermedad cardíaca. Su objetivo es entender y cuantificar la relación: ¿En cuántos mmHg aumenta la presión arterial, en promedio, por cada gramo adicional de sal consumido al día?

Una Relación Simbiótica

Aunque conceptualmente distintos, ambos objetivos no son mutuamente excluyentes; a menudo se benefician el uno del otro.

- Un modelo con una base inferencial sólida, que captura relaciones causales o asociativas verdaderas, suele tener un buen rendimiento predictivo.
- A la inversa, un modelo que demuestra una alta precisión predictiva en datos nuevos nos da confianza en que las relaciones que ha aprendido no son meras casualidades, sino que probablemente reflejen patrones reales y generalizables.
- La tensión entre **interpretabilidad** y **precisión** es uno de los debates más fascinantes en la ciencia de datos moderna.

El Primer Paso: Convertirse en un Modelador Eficaz

Comprender la distinción entre predicción e inferencia es fundamental para el desarrollo como estadístico.

- En la Práctica: Ambos objetivos a menudo se entrelazan y se complementan mutuamente.
- Decisión Estratégica: La elección del enfoque determina el tipo de modelo, las métricas de evaluación y la interpretación de resultados.
- Contexto del Problema: El dominio de aplicación y las preguntas de investigación guían esta decisión fundamental.

Anatomía de un Modelo de Regresión

Todo modelo de regresión se construye sobre tres pilares fundamentales (Kutner et al., 2005):

- 1. La variable de respuesta
- 2. Las variables predictoras
- 3. El término de error aleatorio

Estos componentes son los ladrillos con los que edificaremos todo nuestro conocimiento.

La Variable de Respuesta (Dependiente)

Representa el fenómeno cuyo comportamiento se busca modelar, comprender o predecir. Su naturaleza determina el tipo de modelo a elegir.

- Continua: Cualquier valor en un rango (temperatura, precio).
- **Discreta de Conteo**: Número de eventos (nº de accidentes, nº de clientes).
- Binaria o Dicotómica: Dos resultados posibles (éxito/fracaso, enfermo/sano).
- Categórica: Grupos o categorías.
 - Nominal (sin orden): tipo de sangre, partido político.
 - Ordinal (con orden): nivel de satisfacción "bajo/medio/alto".

La Variable de Respuesta: Ejemplos Detallados

La naturaleza de la variable de respuesta es el factor más determinante para elegir el tipo de modelo:

- Continuas: Temperatura ambiente, altura de una persona, precio de una acción, concentración de un compuesto químico.
- **Discretas de Conteo**: Número de accidentes en una intersección, número de clientes que entran en una tienda, número de mutaciones en un gen.
- **Binarias**: Éxito/fracaso en un tratamiento, enfermo/sano, compra/no compra, correo spam/no spam.
- Categóricas:
 - Nominales: Tipo de sangre (A, B, AB, O), partido político preferido.
 - Ordinales: Estadio de una enfermedad (I/II/III/IV), nivel educativo.

Las Variables Predictoras

También llamadas independientes, explicativas, regresoras, covariables o features.

Son las magnitudes, atributos o factores que se postula que influyen o están asociados con el comportamiento de la variable de respuesta.

- Pueden ser de diversa naturaleza (continuas, categóricas, etc.).
- Su selección es una fase crítica del modelado que requiere:
 - Conocimiento del dominio.
 - Análisis exploratorio de datos.
 - Técnicas estadísticas formales.

La Selección de Variables: Una Fase Crítica

La selección de variables predictoras es una de las fases más críticas del modelado estadístico:

Requiere una Combinación de:

- Conocimiento del Dominio: Comprensión profunda del fenómeno que se está modelando.
- Análisis Exploratorio: Visualización y exploración inicial de los datos para identificar patrones.
- **Técnicas Estadísticas Formales**: Métodos como selección hacia adelante, hacia atrás, o criterios de información.

Consideraciones:

- Las variables pueden ser de diversa naturaleza (continuas, categóricas, etc.).
- No todas las variables disponibles deben incluirse en el modelo.

El Término de Error Aleatorio (ϵ)

Este componente, a menudo subestimado, es conceptualmente crucial. Simboliza la variabilidad de la respuesta **no capturada** por los predictores.

No es un simple "error" en el sentido de equivocación, sino un componente estocástico que amalgama:

- Variables Omitidas: Factores que influyen en Y pero no han sido medidos o incluidos.
- Error de Medición: Imprecisiones en la medición de las variables.
- Aleatoriedad Intrínseca: Variabilidad irreducible inherente a muchos fenómenos.

Los Supuestos sobre el Error Aleatorio

El término de error ϵ es la clave del diagnóstico en regresión. Gran parte de la inferencia se basa en verificar los supuestos sobre su distribución:

Supuestos Fundamentales:

- Media cero: $E[\epsilon] = 0$
- Varianza constante (homocedasticidad): $Var[\epsilon] = \sigma^2$
- Independencia: Los errores no están correlacionados
- Normalidad: $\epsilon \sim N(0,\sigma^2)$ (para inferencia exacta)

Dos individuos con idénticos valores en las variables predictoras pueden tener valores distintos en la respuesta debido a este componente irreducible.

La Ecuación Fundamental de la Regresión

La relación se expresa como la descomposición de la variable de respuesta en una parte sistemática y una parte aleatoria:

$$Y = \underbrace{f(X_1, \dots, X_k)}_{\text{Componente Sistemática}} + \underbrace{\epsilon}_{\text{Componente Aleatoria}}$$

- $f(\cdot)$ es la **componente sistemática**, que representa el valor esperado de Y para unos valores dados de las X. Es lo que intentamos estimar.
- ϵ es la **componente aleatoria**. El diagnóstico en regresión se basa en verificar los supuestos sobre su distribución.

Linealidad en los Parámetros

Una característica clave de los modelos de regresión lineal es que son **lineales en los** parámetros (β_i) , no necesariamente en las variables.

Este modelo es lineal, aunque la relación con las variables no lo sea:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 \log(X_2) + \beta_4 (X_1 \cdot X_2) + \epsilon$$

La función f es una combinación lineal de los coeficientes β . Esta flexibilidad es una de las razones de la enorme potencia de los modelos lineales.

Ejemplo: Modelo Lineal con Término Cuadrático

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$$

; Es "lineal" este modelo?

- **SÍ**: Lineal en los parámetros $\beta_0, \beta_1, \beta_2$
- **NO**: No lineal en la variable X

La "linealidad" se refiere a los coeficientes, no a la forma de la curva.

Una parábola que encaja perfectamente en el marco de regresión lineal clásica.

Universo de los Modelos de Regresión

La regresión lineal clásica es el punto de partida para una gama prolífica de metodologías avanzadas:

- Modelos Lineales (LMs)
- Modelos Lineales Generalizados (GLMs)
- Modelos de Efectos Mixtos (Mixed Models)
- Modelos Aditivos Generalizados (GAMs)

Modelos Lineales (LMs)

Constituyen el paradigma fundamental. Es el laboratorio donde se forjan los conceptos esenciales:

- Estimar parámetros e interpretar su significado.
- Cuantificar la incertidumbre (errores estándar, intervalos de confianza).
- Realizar contrastes de hipótesis para evaluar la significancia estadística.
- Diagnosticar la "salud" de un modelo examinando sus supuestos.

Asumen que la variable de respuesta sigue una distribución Normal.

Modelos Lineales: La Base Unificadora

Los Modelos Lineales no son solo una técnica más, sino el fundamento que unifica toda la estadística clásica:

- ANOVA (Análisis de la Varianza): Es un caso particular de los LMs cuando todas las variables predictoras son categóricas.
- ANCOVA (Análisis de la Covarianza): Combina variables categóricas (factores) con variables continuas (covariables).
- **Unificación Histórica**: Técnicas que se estudiaban por separado ahora se entienden como manifestaciones del mismo principio matemático.

Esta perspectiva unificadora revolucionó la enseñanza y comprensión de la estadística.

Modelos Lineales Generalizados (GLMs)

Si los LMs son el alfabeto, los GLMs son la gramática que nos permite construir frases complejas y con significado en contextos mucho más amplios.

Representan un salto conceptual que expande masivamente el universo de problemas que podemos abordar (Nelder & Wedderburn, 1972).

Permiten escapar de la "tiranía" de la distribución Normal para modelar respuestas con otras naturalezas y escalas.

Se logra mediante dos mecanismos:

- 1. La familia exponencial de distribuciones.
- 2. La función de enlace (link function).

GLMs: Una Revolución Conceptual

Los GLMs representan uno de los avances más significativos en la estadística del siglo XX:

- **Unificación**: Por primera vez, se unificaron bajo un mismo marco conceptual diversas clases de modelos que antes se trataban por separado.
- **Flexibilidad**: Permitieron abordar una gama masivamente amplia de problemas que antes requerían técnicas especializadas.
- Impacto: Estimularon enormemente el desarrollo de software estadístico y la aplicación del modelado a nuevos dominios.

Gracias a los GLMs, podemos usar el mismo marco conceptual para modelar desde la cantidad de ciclistas en una ciudad (Poisson) hasta la probabilidad de respuesta a un tratamiento (logística).

GLMs: La Familia Exponencial de Distribuciones

Los GLMs funcionan con distribuciones que pertenecen a la **familia exponencial**, un "club" con propiedades matemáticas convenientes que permiten una teoría unificada.

- Miembros Notables: Normal, Poisson (conteo), Binomial (proporciones/binarios), Gamma (positivos asimétricos), Binomial Negativa.
- Estructura Común: Su forma matemática compartida es la clave que permite unificar la estimación de parámetros para todos estos modelos.

GLMs: La Función de Enlace - El "Traductor"

El verdadero golpe de genialidad: La función de enlace $g(\cdot)$ actúa como un "traductor" o "puente" entre dos mundos:

- El predictor lineal $X\beta$: Puede tomar cualquier valor real $(-\infty \text{ a } +\infty)$
- La media de la respuesta $\mu = E[Y]$: A menudo está restringida

La Relación Fundamental: $g(E[Y]) = g(\mu) = X\beta$

Ejemplos Clave:

- Enlace Logarítmico (Poisson): $g(\mu) = \log(\mu) \rightarrow \mu = \exp(X\beta)$ (siempre positivo)
- Enlace Logit (Binomial): $g(\mu) = \log(\frac{\mu}{1-\mu})$ (proyecta probabilidades al rango completo)

Modelos de Efectos Mixtos

Su desarrollo responde a la **necesidad crítica** de analizar datos que exhiben estructuras de dependencia o correlación.

Violación del Supuesto de Independencia:

- Medidas repetidas: Medir la presión arterial de un paciente cada mes.
- Datos longitudinales: Un tipo especial de medida repetida a lo largo del tiempo.
- Datos agrupados: Estudiantes anidados dentro de clases, clases dentro de colegios.

La Solución: Introducir efectos aleatorios para capturar la variabilidad específica entre grupos/individuos, además de los efectos fijos que representan a la población general.

GAMs: Flexibilidad sin Perder Interpretabilidad

Los **Modelos Aditivos Generalizados** representan una extensión natural y altamente flexible de los GLMs.

Innovación Clave: Relajan el supuesto de linealidad entre el predictor transformado y las covariables.

Metodología:

- Modelan relaciones mediante funciones suaves no paramétricas (splines).
- Mantienen la estructura aditiva: $g(\mu) = \alpha + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$
- Las funciones $f_i(\cdot)$ se **estiman a partir de los datos**.

Ventaja: Capturan patrones no lineales complejos sin especificar una forma funcional a priori, logrando un equilibrio excepcional entre **flexibilidad** e **interpretabilidad**.

R y el Ecosistema de Paquetes

Este curso fusiona la teoría con la aplicación computacional directa a través de R.

¿Por qué R?

- Estándar de facto en la investigación estadística y ciencia de datos académica.
- Potencia y flexibilidad incomparables.
- Inmenso ecosistema de paquetes contribuidos por la comunidad científica.

Capacidades Fundamentales: Exploración de datos, estimación de parámetros, diagnóstico riguroso, producción de gráficos de alta calidad.

Paquetes Especializados para el Modelado

Funciones Base (paquete stats):

- lm() para regresión lineal
- glm() para modelos lineales generalizados
- Se cargan automáticamente (no requieren instalación)

Paquetes Especializados:

- mgcv: Implementación de referencia para GAMs (Simon Wood)
- lme4 y nlme: Modelos de efectos mixtos
- rms: Estrategias robustas de modelado
- gamair: Conjuntos de datos para practicar con GAMs

Breve Crónica de la Regresión: Orígenes

La gestación de la regresión se traza hasta Sir Francis Galton (S. XIX).

Estudiando la herencia de la estatura, notó que los padres muy altos tendían a tener hijos que, en promedio, no eran tan altos como ellos (y viceversa).

Acuñó el término **"regresión a la mediocridad"** (hoy "regresión a la media") para describir esta tendencia de las características a "regresar" hacia la media de la población.

Los Estudios de Galton: Los Datos Históricos

Los Estudios de Galton: Hallazgos e Importancia

Datos y Hallazgos Principales

- Galton recopiló datos de 928 hijos y sus padres.
- Observó una relación lineal: padres altos tenían hijos altos (y viceversa).
- "Regresión a la mediocridad": Las estaturas extremas de los padres no se perpetuaban completamente.
- Los hijos tendían a "regresar" hacia la media poblacional.

Importancia Histórica

- Regresión Lineal: Introdujo el concepto de la recta de regresión para modelar relaciones.
- Correlación: Precursor del coeficiente de correlación (desarrollado por Karl Pearson).
- Terminología: Acuñó el término "regresión" que usamos hoy.
- Método Estadístico: Fundó las bases del análisis de regresión moderno.

Breve Crónica: La Formalización Matemática

Aunque Galton sentó las bases conceptuales, la formalización matemática se debe a dos gigantes:

Adrien-Marie Legendre

- En 1805 publicó el "Método de los mínimos cuadrados".
- Lo concibió como un procedimiento numérico para ajustar observaciones astronómicas.

Carl Friedrich Gauss

- Desarrolló el método de forma independiente.
- Lo dotó de una profunda base teórica, conectándolo con la teoría de la probabilidad.
- Lo derivó bajo el supuesto de errores normales, convirtiéndolo en la técnica fundamental que es hoy.

Breve Crónica: El Desarrollo Moderno

El siglo XX fue testigo de un desarrollo explosivo, con dos hitos clave:

La Revolución de los GLMs (1972)

- John Nelder y Robert Wedderburn publicaron su trabajo sobre Modelos Lineales Generalizados.
- Unificaron la regresión lineal, logística y de Poisson bajo un mismo marco conceptual y computacional.
- Esto estimuló enormemente la aplicación del modelado a una nueva y vasta gama de problemas.

La Evolución Contemporánea

- El legado continúa evolucionando a un ritmo vertiginoso.
- Inclusión de modelos jerárquicos y bayesianos.
- Integración con métodos de machine learning (ej: árboles de regresión).
- Adaptación al análisis de datos masivos (big data).

De la Herencia Biológica al Big Data

La regresión ha evolucionado de manera extraordinaria desde sus orígenes:

- Origen Modesto: Una simple observación sobre la herencia de la estatura por Sir Francis Galton.
- Desarrollo Matemático: La formalización rigurosa por Legendre y Gauss en el siglo XIX.
- Revolución Conceptual: Los GLMs unificaron múltiples técnicas bajo un marco común.
- Era Contemporánea: Adaptación a machine learning, métodos bayesianos y big data.

La regresión se ha convertido en una de las herramientas más versátiles y poderosas del arsenal analítico moderno, presente en prácticamente todas las disciplinas cuantitativas.

Preparándonos para el Viaje Técnico

Lo que hemos construido:

- Marco conceptual sólido: Predicción vs. inferencia
- Fundamentos axiomáticos: Los tres pilares de la regresión
- Perspectiva histórica: De Galton al big data
- Visión panorámica: El universo de modelos disponibles

Lo que sigue:

Con este **andamiaje conceptual y filosófico**, estamos preparados para las inmersiones técnicas que seguirán. Cada concepto avanzado se construirá sobre estos cimientos sólidos.

Referencias

- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). *Applied linear statistical models* (5th ed.). McGraw-Hill/Irwin.
- Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370-384.
- Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289-310.

Regresión Lineal Simple

Víctor Aceña - Isaac Martín

DSLAB

2025-09-10

Fundamento del Modelado Estadístico

La regresión lineal constituye uno de los pilares fundamentales de la modelización estadística.

¿Por qué es tan importante?

- Es el **primer modelo predictivo** que se aprende por su simplicidad e interpretabilidad
- Los conceptos aquí desarrollados son la base para técnicas avanzadas: regresión múltiple, GLMs, machine learning
- Proporciona el marco conceptual para toda la inferencia estadística en modelos lineales

Nuestro enfoque:

Seguiremos el **ciclo completo** de un proyecto de modelado: exploración \to formalización \to estimación \to inferencia \to diagnóstico

Objetivos de Aprendizaje

- 1. Comprender y aplicar el proceso de modelización estadística para problemas con una variable predictora
- 2. Identificar y medir la correlación lineal entre dos variables como paso previo al modelado
- Describir la formulación matemática del modelo de regresión lineal simple e interpretar sus parámetros
- Estimar los coeficientes mediante mínimos cuadrados ordinarios (MCO) y entender sus propiedades
- 5. Realizar inferencias sobre los parámetros del modelo y evaluar su bondad de ajuste
- 6. Diagnosticar la adecuación del modelo verificando si se cumplen los supuestos

Ejemplo Motivador: Los Datos

Pregunta de investigación: ¿Influye el tiempo de estudio semanal en las calificaciones finales?

Simulación de datos realista:

- 100 estudiantes universitarios
- Tiempo de estudio: entre 5 y 40 horas/semana
- Calificaciones: escala de 0 a 10 puntos

Pregunta: ¿Qué patrón observas en los datos?

Ejemplo Motivador: Primera Observación

- Tendencia clara: A más tiempo de estudio, mejores calificaciones
- Relación lineal: Los puntos siguen aproximadamente una línea recta
- Dirección positiva:
 Pendiente ascendente

Conclusión: La tendencia lineal positiva justifica un modelo de regresión lineal.

Paso 1: Exploración Visual - El Gráfico de Dispersión

El **gráfico de dispersión** (scatterplot) es la herramienta más potente para examinar la relación entre dos variables continuas.

¿Qué nos permite evaluar?

Características de la relación:

- Forma: ¿Es lineal, curva, o sin patrón?
- **Dirección**: ¿Positiva o negativa?
- Fuerza: ¿Qué tan estrecha es la relación?
- Valores atípicos: ¿Hay observaciones extremas?

Criterios para regresión lineal:

- Linealidad: Los puntos siguen una tendencia recta
- Variabilidad constante: La dispersión es similar en todo el rango
- Sin valores atípicos extremos: No hay puntos que distorsionen la relación

Principio: La visualización SIEMPRE precede a la cuantificación

Paso 2: Cuantificación - Covarianza y Correlación

Una vez que la visualización sugiere una tendencia, necesitamos métricas para cuantificarla.

Covarianza muestral:

$$\mathrm{Cov}(x,y) = s_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

• Problema: Su magnitud depende de las unidades de las variables

Coeficiente de correlación de Pearson:

$$r = r_{xy} = \frac{s_{xy}}{s_x s_y}$$

- Ventajas: Adimensional, siempre entre -1 y 1
- Interpretación: Fuerza de la asociación lineal

Cuantificación en Nuestro Ejemplo

Resultados del análisis:

- Covarianza: 9.82 (difícil de interpretar por las unidades)
- Correlación: 0.898

 (asociación lineal muy fuerte y positiva)

La línea roja muestra la **tendencia lineal** de los datos.

Correlación NO Implica Causalidad

Encontrar una **correlación fuerte** (0.898) entre tiempo de estudio y calificaciones **NO** nos autoriza a concluir que *una causa la otra*.

¿Por qué?

Posibles explicaciones alternativas:

- Variable oculta: El interés del estudiante influye tanto en las horas de estudio como en las calificaciones
- Causalidad inversa: Los estudiantes con mejores calificaciones se motivan a estudiar más
- Terceras variables: Calidad del sueño, técnicas de estudio, etc.

La regresión lineal puede:

Demostrar que las variables se mueven juntas Permitirnos predecir una a partir de la otra Cuantificar la fuerza de la asociación

NO puede:

Explicar el porqué de la relación Establecer causalidad sin diseño experimental

El Modelo Poblacional

Una vez confirmada la relación lineal, **formalizamos** matemáticamente nuestra observación.

El modelo poblacional postula que la relación verdadera sigue una línea recta con aleatoriedad:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Componentes:

Parte sistemática:

- β_0 : **Intercepto** (parámetro poblacional desconocido)
- β₁: Pendiente (parámetro poblacional desconocido)

Parte aleatoria:

- ε_i : **Error aleatorio** que incluye:
 - Variables omitidas
 - Error de medición
 - Aleatoriedad intrínseca

Nunca observamos la población ightarrow Usamos la muestra para estimar el modelo muestral

Del Modelo Poblacional al Modelo Muestral

Modelo poblacional (desconocido):

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Modelo muestral (estimado):

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Terminología clave:

- Los "gorros" (•) indican estimaciones calculadas de la muestra
- La diferencia $e_i = y_i \hat{y}_i$ es el **residuo** (aproximación empírica del error ε_i)
- \hat{y}_i es el **valor predicho** por el modelo

Objetivo: Usar la muestra para encontrar la "mejor" recta de ajuste

Los Supuestos del Modelo

Para que nuestras estimaciones e inferencias sean válidas, asumimos que los errores ε_i se comportan ordenadamente:

- 1. Linealidad: $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$
- 2. Independencia: $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$
- 3. Homocedasticidad: $Var(\varepsilon_i|X_i)=\sigma^2$ (varianza constante)
- 4. Normalidad (para inferencia): $\varepsilon_i \sim N(0,\sigma^2)$

Importancia: Estos supuestos garantizan las **propiedades óptimas** de los estimadores de mínimos cuadrados y la **validez** de la inferencia estadística.

El Método de Mínimos Cuadrados Ordinarios (MCO)

Criterio: Encontrar la recta que **minimice** la suma de los cuadrados de los errores.

$$\mathrm{SSE}(\beta_0,\beta_1) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

¿Por qué este criterio?

- Los errores positivos y negativos no se cancelan
- Penaliza más los errores grandes
- Tiene solución analítica única
- Proporciona estimadores con propiedades óptimas

Interpretación geométrica:

Minimizamos la suma de las **distancias verticales al cuadrado** entre los puntos observados y la recta de regresión.

Derivación de las Fórmulas de MCO

Para encontrar β_0 y β_1 que minimizan SSE, usamos cálculo:

Derivadas parciales:

$$\frac{\partial \mathrm{SSE}}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial \mathrm{SSE}}{\partial \beta_1} = -2 \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

Resolviendo el sistema (ecuaciones normales):

Al resolver estas ecuaciones simultáneamente, obtenemos las fórmulas de MCO.

Fórmulas Finales de MCO

Fórmula para la pendiente:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$= \frac{s_{xy}}{s_{xx}} = \frac{\text{Covarianza muestral}}{\text{Varianza muestral de } X}$$

Fórmula para el intercepto:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Notación:

- $s_{xy} = \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$ (suma de productos cruzados)
- $s_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2$ (suma de cuadrados de X)

Interpretación intuitiva:

La pendiente es la razón entre la covariación de X e Y y la variación de X.

Propiedades de las Predicciones

Las estimaciones MCO generan predicciones ($\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$) con **propiedades matemáticas** específicas:

1. La recta pasa por el centro de los datos: (\bar{x}, \bar{y})

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{x} = \bar{y}$$

Demostración: Sumando la ecuación de predicción para todas las observaciones:

$$\frac{1}{n}\sum_{i=1}^{n} \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \frac{1}{n}\sum_{i=1}^{n} x_i = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

2. Promedio de predicciones = Promedio observado:

$$\frac{1}{n}\sum_{i=1}^{n}\hat{y}_{i} = \bar{y}$$

Importancia: La recta de regresión siempre pasa por el punto central de los datos

Propiedades de los Residuos

Los residuos MCO $(e_i = y_i - \hat{y}_i)$ tienen **propiedades fundamentales**:

3. Suma de residuos = 0:

$$\sum_{i=1}^{n} e_i = 0$$

4. Residuos no correlacionados con X:

$$\sum_{i=1}^{n} x_i e_i = 0$$

5. Residuos no correlacionados con predicciones:

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0$$

Implicación: Estas propiedades garantizan que MCO es insesgado y óptimo

Interpretación de los Coeficientes

Una vez estimados, los coeficientes tienen interpretación concreta y práctica:

Pendiente $(\hat{\beta}_1)$:

- ullet Representa el **cambio promedio esperado** en Y por cada **aumento de una unidad** en X
- En nuestro ejemplo: puntos que aumenta la calificación por cada hora adicional de estudio

Intercepto $(\hat{\beta}_0)$:

- ullet Valor promedio esperado de Y cuando X=0
- ullet Solo tiene sentido práctico si X=0 es plausible y está en el rango de los datos
- A menudo es solo un "ancla matemática" para la recta

Nota importante: La interpretación siempre debe considerar el contexto del problema y la plausibilidad de los valores.

Aplicación: Ajuste del Modelo en Nuestro Ejemplo

Ecuación del modelo:

Calificaciones = $5.001+0.099\times$ Tiempo_Est

Interpretación de coeficientes:

- Intercepto ($\hat{\beta}_0 = 5.001$): Calificación esperada con 0 horas de estudio
- Pendiente $(\hat{\beta}_1 = 0.099)$: Por cada hora adicional de estudio, la calificación aumenta en promedio 0.099 puntos

Conclusión: Relación positiva y significativa entre tiempo de estudio y calificaciones.

Propiedades de los Estimadores de MCO

Bajo los supuestos de Gauss-Markov, los estimadores MCO son **MELI** (Mejores Estimadores Lineales Insesgados):

1. Insesgadez:

$$E[\hat{\beta}_0] = \beta_0 \quad \text{y} \quad E[\hat{\beta}_1] = \beta_1$$

Los estimadores MCO son correctos en promedio - no tienen sesgo sistemático.

2. Varianza mínima:

Entre todos los estimadores lineales insesgados, los MCO tienen la menor varianza posible.

3. Varianzas conocidas:

Las varianzas de los estimadores tienen formas matemáticas específicas y conocidas.

Varianzas de los Estimadores de MCO

Para la pendiente:

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{S_{xx}}$$

donde
$$S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$$

Interpretación:

- $Var(\hat{\beta}_1)$ disminuye con mayor dispersión en X (mayor S_{xx})
- Más datos esparcidos \rightarrow mejor estimación de la pendiente

Para el intercepto:

$$Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]$$

Interpretación:

- $Var(\hat{eta}_0)$ aumenta cuando \bar{x} está lejos de cero
- El intercepto se estima mejor cuando \bar{x} está cerca de cero
- Mayor tamaño de muestra (n) reduce la varianza

Estimación de la Varianza del Error

Las fórmulas de varianza dependen de σ^2 (desconocida). La estimamos con:

Media Cuadrática del Error (MSE):

$$\hat{\sigma}^2 = \mathsf{MSE} = \frac{\mathsf{SSE}}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

¿Por qué n-2?

- Son los grados de libertad del error
- \bullet Hemos "gastado" 2 grados de libertad estimando eta_0 y eta_1

Error estándar de los residuos:

$$\hat{\sigma} = \sqrt{\mathsf{MSE}}$$

También llamado **RMSE** en $machine\ learning o Mide\ la dispersión\ promedio\ alrededor\ de\ la recta$

Análisis de la Varianza (ANOVA) para la Regresión

Pregunta clave: ¿Es el modelo útil o la relación observada es casualidad?

Contraste de hipótesis:

- $H_0: \beta_1 = 0$ (no hay relación lineal)
- $H_1: \beta_1 \neq 0$ (sí hay relación lineal)

Descomposición de la variabilidad total:

$$SST = SSR + SSE$$

Esta ecuación es fundamental: Toda la variabilidad se divide en explicada y no explicada

Suma Total de Cuadrados (SST)

Definición:

$$\mathsf{SST} = \sum_{i=1}^n (y_i - \bar{y})^2$$

¿Qué mide?

- ullet La **variabilidad total** de Y respecto a su media $ar{y}$
- ullet Es la varianza muestral de Y multiplicada por (n-1)
- Representa toda la dispersión que queremos explicar con nuestro modelo

Interpretación:

Si no tuviéramos ningún modelo y solo usáramos \bar{y} para predecir, SST sería el **error total** que cometeríamos.

Suma de Cuadrados de la Regresión (SSR)

Definición:

$$\mathrm{SSR} = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$$

¿Qué mide?

- La variabilidad que explica nuestro modelo de regresión
- ullet Es la variabilidad de las predicciones \hat{y}_i respecto a la media $ar{y}$
- Representa la señal que nuestro modelo logra captar

Interpretación:

Mide cuánto **mejor** es nuestro modelo comparado con simplemente usar \bar{y} como predicción.

Suma de Cuadrados del Error (SSE)

Definición:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

¿Qué mide?

- La variabilidad no explicada por nuestro modelo
- Es la suma de los cuadrados de los residuos
- Representa el ruido que nuestro modelo no puede captar

Interpretación:

Es exactamente lo que **minimiza el método MCO** para encontrar la mejor recta.

La Descomposición Fundamental de la Variabilidad

La ecuación clave:

$$SST = SSR + SSE$$

Interpretación intuitiva:

En palabras:

- SST: "¿Cuánta variabilidad hay que explicar?"
- SSR: "¿Cuánta variabilidad explica mi modelo?"
- SSE: "¿Cuánta variabilidad queda sin explicar?"

En porcentajes:

- SST: 100% de la variabilidad
- SSR: % explicado por el modelo
- SSE: % no explicado (error)

Consecuencia: Si SSR es grande comparado con SSE \rightarrow El modelo es útil

El Estadístico F

Estadístico F:

$$F = \frac{\mathrm{MSR}}{\mathrm{MSE}} = \frac{\mathrm{SSR}/1}{\mathrm{SSE}/(n-2)}$$

Interpretación:

- MSR: Variabilidad explicada por grado de libertad
- MSE: Variabilidad no explicada por grado de libertad
- F: Ratio entre variabilidad explicada vs no explicada

La Lógica del Contraste F (I): Si No Hay Relación

Si $H_0: \beta_1 = 0$ fuera cierta (no hay relación lineal):

- ullet El modelo lineal sería **inútil** para explicar Y
- \bullet Todas las predicciones \hat{y}_i serían iguales a \bar{y}
- \bullet Por tanto: ${\sf SSR} = \sum_{i=1}^n (\hat{y}_i \bar{y})^2 \approx 0$ (muy pequeña)

Consecuencia matemática:

$$F = \frac{\mathsf{SSR}/1}{\mathsf{SSE}/(n-2)} pprox \frac{0}{\mathsf{MSE}} pprox 0$$

En palabras: Si no hay relación, F debería ser cercano a **cero**

La Lógica del Contraste F (II): Si Hay Relación

Si $H_1: \beta_1 \neq 0$ fuera cierta (sí hay relación lineal):

- ullet El modelo **captura** la relación entre X e Y
- \bullet Las predicciones \hat{y}_i varían siguiendo el patrón de los datos
- Por tanto: SSR sería grande (el modelo explica mucha variabilidad)

Consecuencia matemática:

$$F = \frac{\mathsf{SSR} \; \mathsf{grande}}{\mathsf{MSE}} >> 1$$

Decisión estadística:

- ullet ${f F}pprox{f 0} o{f No}$ rechazamos $H_0 o{f El}$ modelo no es útil
- ullet F » ${f 1}
 ightarrow$ Rechazamos $H_0
 ightarrow$ El modelo sí es útil

Tabla ANOVA: Resumen de la Descomposición

Fuente	df	SS	MS = SS/df	Estadístico ${\cal F}$
Regresión Error			MSR MSE	F = MSR/MSE
Total	n-2 $n-1$		WISE	

¿Cómo leer esta tabla?

- Fila "Regresión": Cuantifica lo que el modelo explica
- Fila "Error": Cuantifica lo que el modelo no explica
- Fila "Total": La variabilidad total que queremos explicar

El estadístico F resume todo:

$$F = \frac{\text{Variabilidad explicada por df}}{\text{Variabilidad no explicada por df}} = \frac{MSR}{MSE}$$

En regresión simple, $F=t^2$ donde t es el estadístico para contrastar $\beta_1=0$

Bondad del Ajuste: Coeficiente de Determinación (R^2)

El \mathbb{R}^2 cuantifica **qué proporción** de la variabilidad total es explicada por el modelo:

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

Interpretación:

- $R^2=0$: El modelo no explica nada (tan malo como usar \bar{y})
- $R^2 = 1$: El modelo explica toda la variabilidad (ajuste perfecto)
- $R^2=0.7$: El modelo explica el 70% de la variabilidad

En regresión simple: $R^2=r^2$ (cuadrado de la correlación)

Precaución: Un \mathbb{R}^2 alto no garantiza un buen modelo ni implica causalidad

Inferencia sobre los Coeficientes

Para realizar inferencias necesitamos el supuesto de **normalidad** de los errores.

Distribución de los estimadores:

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right) \qquad \hat{\beta}_0 \sim N\left(\beta_0, \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]\right)$$

Estadístico t para la pendiente:

$$t = \frac{\hat{\beta}_1 - \beta_1}{\mathsf{SE}(\hat{\beta}_1)} \sim t_{n-2}$$

donde
$$\mathrm{SE}(\hat{\beta}_1) = \sqrt{\frac{\mathrm{MSE}}{S_{xx}}}$$

Contraste de Hipótesis y Intervalos de Confianza

Contraste para la pendiente:

- $\bullet \ H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$
- Estadístico: $t_0 = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$
- ullet Decisión: Rechazar H_0 si $|t_0|>t_{lpha/2,n-2}$

Intervalo de confianza al $(1-\alpha)100\%$ para β_1 :

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot \mathrm{SE}(\hat{\beta}_1)$$

Interpretación: Si el IC no contiene el cero $\rightarrow \beta_1$ es significativo

Resultados del Modelo en Nuestro Ejemplo


```
Call:
lm(formula = Calificaciones ~ Tiempo_Estudio, data = datos)
Residuals:
    Min
              1Q Median
                              30
                                      Max
-1.11465 -0.30262 -0.00942 0.29509 1.10533
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.00118
                         0.11977 41.76 <2e-16 ***
Tiempo_Estudio 0.09875 0.00488 20.23 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4842 on 98 degrees of freedom
Multiple R-squared: 0.8069, Adjusted R-squared: 0.8049
F-statistic: 409.5 on 1 and 98 DF, p-value: < 2.2e-16
```

Interpretación de los Resultados

Coeficientes:

- Intercepto: $5.001 \rightarrow \text{Calificación esperada cuando el tiempo de estudio es 0 horas}$
- **Pendiente:** $0.0987 \rightarrow Por$ cada hora adicional de estudio, la calificación aumenta en promedio 0.0987 puntos

Bondad de ajuste: R-cuadrado: $0.8069 \rightarrow \text{El modelo explica el } \textbf{80.7\%}$ de la variabilidad en las calificaciones

Significancia:

- Coeficientes: Ambos son altamente significativos (p < 2e-16)
- Modelo global: F = 409.5 con p < 2.2e-16 \rightarrow El modelo es estadísticamente útil

Error estándar residual: 0.484 o Dispersión típica alrededor de la recta de regresión

Predicción con el Modelo

Una vez validado, usamos el modelo para hacer predicciones. Hay dos tipos:

1. Intervalo de confianza para la respuesta media:

- Pregunta: ¿Cuál es la calificación *promedio* esperada para todos los estudiantes que estudian x_0 horas?
- Estima dónde se encuentra la línea de regresión verdadera

2. Intervalo de predicción para una respuesta individual:

- Pregunta: ¿Entre qué valores esperamos la calificación de un estudiante específico que estudia x_0 horas?
- Considera tanto la incertidumbre del modelo como la variabilidad individual

Diferencia clave: El intervalo de predicción siempre es **más ancho** porque incluye la variabilidad σ^2 del error individual.

Fórmulas para Predicción

Intervalo de confianza para la respuesta media:

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot \sqrt{\mathrm{MSE}\left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Intervalo de predicción para respuesta individual:

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot \sqrt{\text{MSE}\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Observaciones importantes:

- Ambos intervalos son más estrechos cerca del **centro** de los datos (\bar{x})
- La diferencia entre ambos es el término "+1" que representa σ^2
- Nunca extrapolar más allá del rango de los datos observados

Visualización de los Intervalos de Predicción

IC 95% para la media (azul) vs IP 95% para nueva observación (rojo)

Interpretación gráfica:

- Banda azul (IC): Incertidumbre sobre la media poblacional
- Banda roja (IP): Incertidumbre para nueva observación
- **Diferencia clave**: IP incluye variabilidad individual (σ^2)
- Patrón: Ambos intervalos se estrechan cerca de \bar{x}
- Aplicación: Usar IC para estimar tendencia, IP para predicciones individuales

El Diagnóstico del Modelo: Fundamento Teórico

¿Por qué es crucial el diagnóstico?

El diagnóstico **NO** es opcional. Las inferencias estadísticas (p-valores, intervalos de confianza, predicciones) solo son válidas si se cumplen los supuestos del modelo.

Consecuencias de ignorar el diagnóstico:

- Estimadores sesgados \rightarrow Conclusiones erróneas
- Errores estándar incorrectos → Intervalos de confianza y p-valores inválidos
- Predicciones poco fiables → Pérdida de poder predictivo

Filosofía del diagnóstico: Los residuos son la "ventana" hacia los errores verdaderos $arepsilon_i$

Los Cuatro Pilares del Diagnóstico

Recordatorio de supuestos:

- 1. Linealidad: $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$
- **2.** Independencia: $Cov(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$
- 3. Homocedasticidad: $Var(\varepsilon_i|X_i)=\sigma^2$ (varianza constante)
- 4. Normalidad: $\varepsilon_i \sim N(0,\sigma^2)$ (para inferencia)

Herramienta fundamental: Análisis de residuos $(e_i = y_i - \hat{y}_i)$

Principio clave: Si los supuestos se cumplen, los residuos deben comportarse como **ruido aleatorio** sin patrones sistemáticos

Diagnóstico: Linealidad

Supuesto: $E[Y|X] = \beta_0 + \beta_1 X$ (relación promedio es lineal)

Métodos de Diagnóstico:

- Gráfico: Residuos vs Valores Ajustados
- Test estadístico: Test de Ramsey RESET (Regression Equation Specification Error Test)

¿Qué buscamos?

- Patrón ideal: Nube aleatoria de puntos centrada en cero
- Violación: Patrón curvilíneo (forma de "U" o parábola)

Test de Ramsey RESET:

- H₀: La forma funcional es correcta (lineal)
- H₁: La forma funcional es incorrecta (no lineal)
- Añade términos $\hat{y}^2, \hat{y}^3, \dots$ al modelo y testa su significancia

Violación del supuesto: NO Linealidad

Problema detectado:

Ajustar un modelo **lineal** a datos con relación **cuadrática**

¿Qué observamos?

- Patrón curvo en los residuos
- Los residuos no están aleatoriamente dispersos
- La línea suavizada (roja) no es horizontal

Diagnóstico:

Patrón sistemático en residuos \rightarrow

Verificación de linealidad

¿Qué evaluar?

Si la relación es verdaderamente lineal

Resultados:

- **Gráfico:** Línea roja prácticamente plana \rightarrow Linealidad
- Test RESET: F = 1.051, $p = 0.353 \rightarrow Forma funcional correcta$

Diagnóstico: Homocedasticidad

Supuesto: $Var(\varepsilon_i|X_i) = \sigma^2$ (varianza constante)

Métodos de Diagnóstico:

- Gráficos: Scale-Location, Residuos vs Valores Ajustados
- Tests estadísticos: Test de Breusch-Pagan, Test de Goldfeld-Quandt, Test de White

¿Qué buscamos?

- Patrón ideal: Dispersión constante a lo largo del rango
- Violación: Forma de "embudo" (dispersión creciente o decreciente)

Tests de Heterocedasticidad:

- **Breusch-Pagan:** H₀: Homocedasticidad, H₁: Heterocedasticidad
- White: Versión robusta que no asume forma específica de heterocedasticidad

Violación del Supuesto: NO Homocedasticidad

La línea roja ascendente indica heterocedasticidad

Problema: Varianza de los errores que aumenta con los valores predichos (heterocedasticidad)

¿Qué observamos?

- Línea roja ascendente:
 Claro patrón de aumento de varianza
- Dispersión creciente: Los residuos se dispersan más para valores altos
- Violación: Supuesto de varianza constante NO se cumple

Diagnóstico: Tendencia creciente → **Heterocedasticidad**

Verficación de homocedasticidad

Tests estadísticos:

Breusch-Pagan:

- LM = 0.02
- p = 0.889
- Conclusión: Homocedasticidad

White:

- LM = 0.122
- p = 0.941
- Conclusión: Varianza constante

Interpretación gráfica:

- Línea roja horizontal → Varianza constante
- Sin patrones sistemáticos \rightarrow Supuesto cumplido

Diagnóstico: Normalidad

Supuesto: $\varepsilon_i \sim N(0, \sigma^2)$ (errores normalmente distribuidos)

Métodos de Diagnóstico:

Gráficos:

- Normal Q-Q Plot
- Histograma de residuos

Tests estadísticos:

- Test de Shapiro-Wilk
- Test de Jarque-Bera
- Test de Anderson-Darling

¿Qué buscamos en Q-Q Plot?

- Ideal: Puntos sobre la línea diagonal
- Problema: Desviaciones sistemáticas

Detalles de los Tests:

Shapiro-Wilk:

- H₀: Los residuos siguen distribución normal
- Más potente para muestras pequeñas (n < 50)

Jarque-Bera:

- Basado en asimetría y curtosis
- Asintóticamente válido para muestras grandes

Anderson-Darling:

- Más sensible en las colas de la distribución
- Mejor detección de desviaciones extremas

Violación del Supuesto: NO Normalidad

Puntos se desvían de la línea -> No normalidad

Problema: Errores con distribución asimétrica o con colas pesadas

¿Qué observamos?

- Desviación sistemática: Los puntos no siguen la línea diagonal
- Curvatura: Patrón curvo indica distribución sesgada
- Violación: Supuesto de normalidad NO se cumple

Diagnóstico: Puntos se alejan sistemáticamente de la línea \rightarrow

NO normalidad

Violación del Supuesto: Histograma NO Normal

Azul: normal teórica vs Naranja: datos reales sesgados

Problema: Distribución asimétrica de los residuos (histograma sesgado)

¿ Qué observamos?

- Asimetría: Distribución. sesgada hacia la derecha
- Desajuste: Curva normal (azul) no coincide con histograma
- Test Shapiro-Wilk: p = 0 < 0.05

Diagnóstico: Distribución sesgada curva normal \rightarrow **NO** normalidad

Verificación de normalidad

Tests estadísticos:

Shapiro-Wilk:

- W = 0.99
- p = 0.671
- Conclusión: Normalidad

Jarque-Bera:

- JB = 0.685
- p = 0.71
- Conclusión: Normalidad

Interpretación gráfica:

- Puntos siguen la línea diagonal
 - $\rightarrow \, \mathsf{Normalidad} \,\, \mathsf{cumplida}$

Diagnóstico: Normalidad (Histograma)

Línea roja: distribución normal teórica

Complemento visual:

Histograma de residuos con curva normal superpuesta

¿Qué buscamos?

- Patrón ideal: Distribución simétrica y campaniforme
- Violación: Asimetría marcada o múltiples modas

Resultado: Distribución simétrica y campaniforme → Normalidad confirmada

Diagnóstico: Independencia

Supuesto: $Cov(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$ (errores independientes)

Métodos de Diagnóstico:

- Gráfico: Residuos vs Orden de observación
- Tests estadísticos: Test de Durbin-Watson, Test de Breusch-Godfrey (LM), Ljung-Box

¿Qué buscamos?

- Patrón ideal: Residuos sin patrones temporales o secuenciales
- Violación: Tendencias, ciclos, o correlaciones entre residuos consecutivos

Tests de Autocorrelación:

- **Durbin-Watson:** H_0 : No hay autocorrelación de primer orden $(\rho = 0)$
- Breusch-Godfrey: Generaliza DW para órdenes superiores y regresores retardados
- Ljung-Box: Testa autocorrelación conjunta en múltiples retardos

Violación del Supuesto: NO Independencia

Patrones y tendencias indican falta de independencia

Problema: Residuos con autocorrelación (típico en series temporales)

¿Qué observamos?

- Patrones sistemáticos: Los residuos muestran tendencias claras
- Conexiones: Residuos consecutivos están correlacionados
- Violación: Supuesto de independencia NO se cumple

Diagnóstico: Patrones sistemáticos y tendencias \rightarrow **NO independencia**

Verificación de Independencia

Tests estadísticos:

Durbin-Watson:

- DW = 2.056
- p = 0.61
- Conclusión: Sin autocorrelación orden 1

Breusch-Godfrey:

- LM = 0.14
- p = 0.932
- Conclusión: Sin autocorrelación orden 2

Interpretación gráfica:

• Sin patrones temporales ightarrow Independencia cumplida

Diagnóstico 5: Observaciones Influyentes

Objetivo: Identificar puntos que tienen influencia desproporcionada en el modelo

Métricas Principales:

- Leverage (h_{ii}) : Distancia en el espacio X (valores atípicos en X)
- Residuos Estudentizados: Outliers en Y ajustado por su varianza
- Distancia de Cook (D_i) : Influencia global en los coeficientes

Umbrales de Referencia:

- Leverage: $h_{ii} > \frac{2(k+1)}{n}$ (k = número de predictores)
- Cook: $D_i > \frac{4}{n-k-1}$ (regla conservadora)
- Residuos: $|t_i| > 2$ (fuera de 2 desviaciones estándar)

Combinaciones Problemáticas:

- Alto leverage + alto residuo = Muy influyente
- Alto leverage + bajo residuo = **Punto de anclaje** (puede ser bueno)
- Bajo leverage + alto residuo = **Outlier sin influencia**

Diagnóstico: Observaciones Influyentes

Curvas rojas: Cook 0.5 (discontinua) y 1.0 (continua)

Resultados:

- Leverage máximo: 0.041 (umbral: 0.04)
- Cook máximo: 0.095 (umbral: 0.041)
- Outliers (|t| > 2): 6 observaciones
- Conclusión: Revisar observaciones: 24, 74, 6, 20, 47, 85, 87, 89

Interpretación por zonas:

- **Derecha:** Alto leverage \rightarrow Potencial influencia
- Arriba/Abajo: Outliers ightarrow Residuos grandes
- Esquinas: ¡Vacías!

Análisis de Puntos Influyentes

Identificación:

- Outliers: observaciones 20, 22, 47, 85, 89, 99
- Alto leverage: observaciones 24, 74

Interpretación por regiones:

- Zona derecha: Alto leverage (X atípicos) \rightarrow Potencial influyente
- $\bullet \ \textbf{Zona izquierda:} \ \mathsf{Outliers} \ (\mathsf{Y} \ \mathsf{at\'ipicos}) \to \mathsf{Residuos} \ \mathsf{grandes}$
- Esquinas críticas: ¡Vacías! (Situación favorable)
- Distancia de Cook: Influencia moderada (< 1.0)

Conclusión: No hay solapamiento leverage + outlier \rightarrow Situación manejable

Diagnóstico DFFITS

DFFITS: Evalúa cómo cada observación afecta a su propia predicción

Resultados cuantitativos:

- **Umbral:** 0.283
- **Influyentes:** 7 observaciones (6, 20, 22, 47, 85, 87, 89)
- **Top 5** |**DFFITS**|: obs. 20, 85, 89, 47, 6
- Valores: 0.446, -0.38, 0.364, 0.325, 0.312 Interpretación:
- **Obs. 20:** DFFITS = 0.446 (más influyente)
- Conclusión: 7 observaciones cambían significativamente sus propias predicciones

Análisis de Resultados DFFITS

DFFITS: Evalúa cómo cada observación afecta a su propia predicción

Resultados cuantitativos:

- Umbral de influencia: 0.283
- Observaciones influyentes: 7 observaciones (6, 20, 22, 47, 85, 87, 89)
- Top 5 |DFFITS|: observaciones 20, 85, 89, 47, 6
- Valores: 0.446, -0.38, 0.364, 0.325, 0.312

Interpretación:

- **Observación 20:** DFFITS = 0.446 (la más influyente)
- Conclusión: 7 observaciones cambian significativamente sus propias predicciones \rightarrow Investigar casos especiales

Diagnóstico Completo: Supuestos Básicos

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

- 1. LINEALIDAD: [OK] CUMPLIDO
 - Gráfico: Línea loess prácticamente plana en Residuos vs Ajustados
 - Test RESET: F = 1.051, $p = 0.353 \rightarrow Forma$ funcional correcta
- 2. HOMOCEDASTICIDAD: [OK] CUMPLIDO
 - Scale-Location: Línea horizontal, dispersión constante
 - ullet Breusch-Pagan: LM = 0.02, p = 0.889 ightarrow Varianza constante
 - White: LM = 0.122, p = $0.941 \rightarrow Confirmado$

Diagnóstico Completo: Supuestos Distribucionales

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

- 3. NORMALIDAD: [OK] CUMPLIDO
 - Q-Q Plot: Puntos siguen línea diagonal perfectamente
 - Shapiro-Wilk: W = 0.99, $p = 0.671 \rightarrow Normalidad confirmada$
 - ullet Jarque-Bera: JB = 0.685, p = 0.71
 ightarrow Distribución normal
- 4. INDEPENDENCIA: [OK] CUMPLIDO
 - Residuos vs Orden: Sin patrones temporales o secuenciales
 - **Durbin-Watson:** DW = 2.056, p = $0.61 \rightarrow Sin$ autocorrelación
 - Breusch-Godfrey: LM = 0.14, p = $0.932 \rightarrow$ Independencia confirmada

Diagnóstico Completo: Observaciones Influyentes

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

DETECCIÓN DE PUNTOS PROBLEMÁTICOS:

- Outliers: 6 observaciones con |t| > 2
- Alto Leverage: 2 observaciones de alta palanca
- **DFFITS** influyentes: 7 observaciones que cambian sus predicciones
- Cook influyentes: 6 observaciones con alta influencia global

EVALUACIÓN DE RIESGO:

- **Situación:** [OK] Favorable Sin solapamiento crítico leverage + outlier
- Acción: Revisar 9 observaciones específicas

Veredicto Final del Diagnóstico

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

Interpretación completa:

- Por cada hora adicional de estudio, la calificación aumenta en promedio 0.099 puntos
- El modelo explica el 80.7% de la variabilidad en las calificaciones
- La relación es altamente significativa (p < 0.001)
- ullet Todos los **supuestos se cumplen** o Las inferencias son válidas
- Existen obsrevaciones influyentes que requieren atención

Conclusiones y Próximos Pasos

Lo que hemos aprendido:

Proceso completo de modelado: exploración o formalización o estimación o inferencia o diagnóstico

Interpretación de coeficientes y medidas de bondad de ajuste

Validación mediante diagnóstico de supuestos

Limitaciones de la correlación vs. causalidad

Próximo tema: Regresión Lineal Múltiple

- Múltiples variables predictoras
- Control de variables confusas
- Interacciones entre predictores
- Selección de variables

 $\textbf{La regresi\'on simple es el fundamento} \rightarrow \mathsf{Todos} \ \mathsf{estos} \ \mathsf{conceptos} \ \mathsf{escalan} \ \mathsf{directamente}$

Referencias

- Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). Wiley.
- Fox, J., & Weisberg, S. (2018). An R companion to applied regression (3rd ed.). Sage.
- Harrell Jr, F. E. (2015). Regression modeling strategies (2nd ed.). Springer.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning (2nd ed.). Springer.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). McGraw-Hill/Irwin.

Regresión Lineal Múltiple

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

El Modelo de Regresión Lineal Múltiple

El modelo de regresión lineal múltiple constituye la **extensión natural y más potente** del modelo simple.

Diferencias clave:

Regresión Simple:

- Una variable respuesta
- Un único predictor
- Relación bivariada

Capacidades únicas:

Regresión Múltiple:

- Una variable respuesta
- Múltiples predictores
- Relación multivariada
- Modelar simultáneamente el efecto de múltiples variables predictoras
- Interpretación de coeficientes en presencia de otros predictores
- Diagnóstico específico del modelo múltiple
- Manejo de la multicolinealidad

Objetivos de Aprendizaje

- 1. Formular y estimar modelos de regresión lineal múltiple, comprendiendo las diferencias clave respecto al caso simple
- 2. **Interpretar coeficientes** en el contexto multivariante, entendiendo el concepto de *ceteris* paribus
- Realizar inferencia estadística construyendo intervalos de confianza y contrastes de hipótesis
- **4. Evaluar la calidad del ajuste** usando medidas como R², R² ajustado y descomposición ANOVA
- 5. Diagnosticar el modelo múltiple aplicando técnicas específicas como gráficos CPR
- 6. Identificar y tratar la multicolinealidad usando el VIF como herramienta de diagnóstico
- 7. Realizar predicciones distinguiendo entre intervalos de confianza e intervalos de predicción

Formulación del Modelo Poblacional

Para n observaciones y p variables predictoras, el **modelo poblacional** postula:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i, \quad i = 1, \dots, n$$

Componentes:

- Y_i : *i*-ésima variable respuesta aleatoria
- ullet X_{ij} : i-ésima variable predictora aleatoria del j-ésimo predictor
- ε_i : término de error aleatorio
- $\beta_0,\beta_1,\dots,\beta_p$: coeficientes poblacionales verdaderos pero desconocidos

Características clave:

- Relación lineal en los parámetros
- Los errores son no observables
- Los parámetros son constantes poblacionales

Formulación del Modelo Muestral

En la práctica, trabajamos con datos observados y estimamos el modelo:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{ip}, \quad i = 1, \dots, n$$

Componentes:

- \hat{y}_i : *i*-ésima predicción
- x_{ij} : *i*-ésima observación del *j*-ésimo predictor
- $\hat{\beta}_j$: coeficientes estimados

Interpretación clave de $\hat{\beta}_{j}$:

El cambio estimado en la media de Y ante un cambio de una unidad en X_j , manteniendo constantes todas las demás variables predictoras.

Este principio se conoce como *ceteris paribus* ("lo demás constante")

Notación Matricial: Modelo Poblacional

Modelo poblacional:

$$\mathbf{Y} = \tilde{X}\beta + \varepsilon$$

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad \tilde{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Nota: \tilde{X} contiene variables aleatorias (mayúsculas X_{ij})

Notación Matricial: Modelo Muestral

Modelo muestral:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \quad \hat{\beta} = \begin{bmatrix} \beta_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_p \end{bmatrix}$$

Observaciones:

- X contiene datos observados (minúsculas x_{ij})
- ullet X y \tilde{X} son matrices de dimensión n imes (p+1)
- \bullet La primera columna de unos corresponde al intercepto β_0

Supuestos del Modelo Lineal Múltiple

Condiciones de Gauss-Markov:

- 1. Linealidad en los parámetros: El modelo $E[\mathbf{Y}|\tilde{X}] = \tilde{X}\beta$ está bien especificado
- 2. Exogeneidad: Los errores tienen media cero: $E[arepsilon|\tilde{X}]=\mathbf{0}$
- 3. Homocedasticidad e independencia: $\mathrm{Var}(\varepsilon|\tilde{X}) = \sigma^2\mathbf{I}_n$
- 4. Ausencia de multicolinealidad perfecta: ${f X}$ tiene rango completo (p+1)
- 5. Normalidad (para inferencia): $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

Implicación: Estos supuestos garantizan que los estimadores MCO sean **insesgados**, **consistentes y eficientes**

Estimación por Mínimos Cuadrados: Función Objetivo

Principio: Minimizar la discrepancia entre valores observados y predichos

Función objetivo:

$$S(\beta) = \sum_{i=1}^{n} e_i^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

¿Por qué cuadrados?

- Los residuos positivos y negativos no se cancelan
- Se penalizan más fuertemente los errores grandes
- Facilita el tratamiento matemático

Resultado: MCO minimiza la Suma de los Cuadrados de los Residuos (SSR)

Derivación de las Ecuaciones Normales

Expandiendo la función objetivo:

$$S(\beta) = \mathbf{y}^T\mathbf{y} - 2\beta^T\mathbf{X}^T\mathbf{y} + \beta^T(\mathbf{X}^T\mathbf{X})\beta$$

Derivando respecto a β :

$$\frac{\partial S(\beta)}{\partial \beta} = -2\mathbf{X}^T\mathbf{y} + 2(\mathbf{X}^T\mathbf{X})\beta$$

Igualando a cero:

$$-2\mathbf{X}^T\mathbf{y} + 2(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{0}$$

Ecuaciones Normales:

$$(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^T\mathbf{y}$$

Solución MCO y Condición de Invertibilidad

Solución única:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Condición necesaria: La matriz $(\mathbf{X}^T\mathbf{X})$ debe ser invertible

¿Cuándo es invertible?

- Cuando X tiene rango completo (p+1)
- Cuando las columnas de X son linealmente independientes
- Cuando no hay multicolinealidad perfecta

Propiedades de $(\mathbf{X}^T\mathbf{X})$:

- Dimensión: $(p+1) \times (p+1)$
- Simétrica
- Definida positiva (si es invertible)

Propiedades de los Estimadores MCO

Bajo los supuestos de Gauss-Markov:

- **1.** Insesgados: $E[\hat{\beta}] = \beta$
- 2. Eficientes: Varianza mínima entre todos los estimadores lineales insesgados
- **3. Consistentes:** $\hat{\beta} \stackrel{p}{\rightarrow} \beta$ cuando $n \rightarrow \infty$

Matriz de varianza-covarianza:

$$\mathsf{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$

Bajo normalidad adicional:

$$\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\right)$$

Estimación de la Varianza del Error

Estimador insesgado de σ^2 :

$$\hat{\sigma}^2 = \frac{\mathsf{SSE}}{n-p-1} = \frac{\sum_{i=1}^n e_i^2}{n-p-1} = \frac{\mathbf{e}^T \mathbf{e}}{n-p-1}$$

Grados de libertad: n-p-1

- n: número de observaciones
- p+1: número de parámetros estimados

Distribución:

$$\frac{(n-p-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-p-1}^2$$

Error estándar de los coeficientes:

$$\hat{\sigma}_{\beta_j} = \hat{\sigma} \sqrt{(\mathbf{X}^T \mathbf{X})_{jj}^{-1}}$$

Ejemplo: Modelo de Precios de Viviendas

Datos: Precios de viviendas basados en características

Variables predictoras:

- superficie: Metros cuadrados
- habitaciones: Número de habitaciones
- antiguedad: Años de antigüedad
- distancia_centro: Distancia al centro (km)
- garaje: Presencia de garaje (Sí/No)

Interpretación de los Coeficientes

Coeficiente de regresión parcial:

$$\beta_j = \frac{\partial E[Y|\tilde{X}]}{\partial X_j}$$

Interpretación: β_j representa el cambio esperado en Y por una unidad de cambio en X_j , manteniendo todas las demás variables constantes

Diferencia crucial:

Regresión Simple:

- Efecto total (directo + indirecto)
- Puede estar confundido
- $\hat{\beta}_i$ captura toda la asociación

Regresión Múltiple:

- Efecto puro o parcial
- Controla por otras variables
- Interpretación más causal

Concepto clave: El coeficiente proviene de una regresión entre residuos

Ejemplo: Interpretación Ceteris Paribus


```
Estimate Std. Error (Intercept) 53750.9705 6666.70624 superficie 1171.7780 47.28087 habitaciones 15072.3104 1303.41715 antiguedad -744.5896 75.42075 distancia_centro -2028.2715 164.87756 garajeSí 25829.4317 2349.44285
```

Interpretación ceteris paribus:

- Superficie (+1,172 €/m²): Cada m² adicional incrementa el precio
- Habitaciones $(+15,072 \ \hbox{\Large e})$: Cada habitación adicional aumenta el precio
- Antigüedad (-745 €/año): Cada año de antigüedad reduce el precio
- Distancia centro (-2,028 €/km): Cada km más lejos del centro reduce el precio
- **Garaje** (+25,829 €): Tener garaje incrementa el precio

Evaluación del Modelo: Descomposición de la Varianza

Descomposición ANOVA:

$$SST = SSR + SSE$$

Donde:

- SST (Sum of Squares Total): $\sum_{i=1}^{n} (y_i \bar{y})^2$
- SSR (Sum of Squares Regression): $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
- SSE (Sum of Squares Error): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$

Interpretación:

- SST: Variabilidad total en los datos
- SSR: Variabilidad explicada por el modelo
- SSE: Variabilidad no explicada (residual)

Coeficiente de Determinación Múltiple

R-cuadrado:

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

Interpretación:

- ullet Proporción de la variabilidad en Y explicada por el modelo
- Rango: $0 \le R^2 \le 1$
- $R^2 = 0$: El modelo no explica nada
- $R^2=1$: El modelo explica toda la variabilidad

Problema: R^2 siempre aumenta al añadir variables (incluso irrelevantes)

En regresión múltiple: R^2 es el cuadrado de la correlación entre ${f y}$ y $\hat{{f y}}$

El Coeficiente de Determinación Ajustado

R-cuadrado ajustado:

$$R_{\rm adj}^2 = 1 - \frac{{\rm SSE}/(n-p-1)}{{\rm SST}/(n-1)} = 1 - (1-R^2)\frac{n-1}{n-p-1}$$

Ventajas:

- Penaliza la inclusión de variables irrelevantes
- Puede decrecer si una variable no aporta información suficiente
- Mejor para comparar modelos con diferente número de predictores

Criterio de decisión:

- ullet Si $R^2_{
 m adi}$ aumenta al añadir una variable o la variable es útil
- ullet Si $R^2_{
 m adj}$ disminuye ightarrow la variable no aporta información suficiente

Inferencia: Contraste de Hipótesis Individual

Hipótesis sobre un coeficiente:

$$H_0:\beta_j=0\quad \text{vs}\quad H_1:\beta_j\neq 0$$

Estadístico de contraste:

$$t = \frac{\hat{\beta}_j - 0}{\hat{\sigma}_{\beta_j}} = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{(\mathbf{X}^T\mathbf{X})_{jj}^{-1}}} \sim t_{n-p-1}$$

Interpretación:

- Rechazar H_0 : La variable X_i es estadísticamente significativa
- No rechazar H_0 : No hay evidencia de efecto lineal de X_i sobre Y

Valor p: Probabilidad de observar un estadístico t tan extremo o más, bajo ${\cal H}_0$

Intervalo de Confianza para los Coeficientes

Intervalo de confianza al $(1-\alpha)\%$:

$$\hat{\beta}_j \pm t_{\alpha/2,n-p-1} \cdot \hat{\sigma}_{\beta_j}$$

Interpretación:

- ullet Con (1-lpha)% de confianza, el verdadero valor de eta_i está en este intervalo
- ullet Si el intervalo **no contiene cero** o eta_i es significativo
- ullet Si el intervalo **contiene cero** $o eta_j$ no es significativo

Relación con el test de hipótesis:

- Intervalo de confianza del 95% \equiv Test de hipótesis con lpha=0.05
- ullet Si 0 está en el IC del 95% o No se rechaza H_0 al 5%

Inferencia Global: Test F

Hipótesis global:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0 \quad \text{vs} \quad H_1: \text{Al menos un } \beta_j \neq 0$$

Estadístico F:

$$F = \frac{{\rm SSR}/p}{{\rm SSE}/(n-p-1)} = \frac{R^2/p}{(1-R^2)/(n-p-1)} \sim F_{p,n-p-1}$$

Interpretación:

- Rechazar H_0 : El modelo es globalmente significativo
- ullet No rechazar H_0 : El modelo no explica variabilidad significativa

Relación con \mathbb{R}^2 : El test F evalúa si \mathbb{R}^2 es significativamente diferente de cero

Ejemplo: Inferencia en el Modelo de Viviendas


```
Call:
lm(formula = precio ~ superficie + habitaciones + antiguedad +
   distancia centro + garaje, data = viviendas)
Residuals:
  Min
          10 Median
                      30
                            Max
-38847 -11074
               867
                     9898
                          38486
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               53750.97
                          6666.71
                                   8.063 7.53e-14 ***
superficie
                1171.78
                            47.28 24.783 < 2e-16 ***
habitaciones
               15072.31
                          1303.42 11.564 < 2e-16 ***
antiguedad
                -744.59
                            75.42 -9.872 < 2e-16 ***
garajeSí
               25829.43
                          2349.44 10.994
                                         < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15950 on 194 degrees of freedom
Multiple R-squared: 0.9094.
                             Adjusted R-squared: 0.9071
F-statistic: 389.4 on 5 and 194 DF. p-value: < 2.2e-16
```

Predicción con el Modelo Múltiple

Predicción puntual: Para un nuevo vector \mathbf{x}_0 :

$$\hat{y}_0 = \mathbf{x}_0^T \hat{\boldsymbol{\beta}}$$

Dos tipos de intervalos:

Intervalo de Confianza:

- ullet Para la **respuesta media** $E[Y|\mathbf{x}_0]$
- Incertidumbre en la estimación
- Más estrecho

Intervalo de Predicción:

- ullet Para una **observación individual** Y_0
- Incertidumbre + variabilidad natural
- Más amplio

Fórmulas: Ambos dependen de $\hat{\sigma}^2$ y de la matriz $(\mathbf{X}^T\mathbf{X})^{-1}$

Intervalos de Confianza y Predicción

Intervalo de confianza para la respuesta media:

$$\hat{y}_0 \pm t_{\alpha/2,n-p-1} \cdot \hat{\sigma} \sqrt{\mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0}$$

Intervalo de predicción para una observación individual:

$$\hat{y}_0 \pm t_{\alpha/2, n-p-1} \cdot \hat{\sigma} \sqrt{1 + \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0}$$

Diferencia clave: El +1 en el intervalo de predicción refleja la variabilidad adicional de una observación individual

Amplitud: Intervalo de predicción > Intervalo de confianza

Diagnóstico del Modelo Múltiple

Una vez ajustado el modelo, es **fundamental realizar un diagnóstico exhaustivo** para verificar que los supuestos se cumplen.

Base del diagnóstico: Análisis de los residuos - nuestra ventana a los errores teóricos no observables

Supuestos a verificar:

- 1. Normalidad
 - Gráfico Q-Q de residuos
 - Test de Shapiro-Wilk
- 2. Independencia
 - Residuos vs tiempo
 - Test de Durbin-Watson

3. Homocedasticidad

- Gráfico Scale-Location
- Test de Breusch-Pagan
- 4. Linealidad
 - Residuos vs valores ajustados
 - **Gráficos CPR** (específicos de múltiple)

Gráficos de Componente más Residuo

Problema: El gráfico residuos vs ajustados puede ocultar una relación no lineal con **una** variable específica

Solución: Gráficos CPR para cada predictor X_j :

$$\mbox{Residuo Parcial} = e_i + \hat{\beta}_j x_{ij} \quad \mbox{vs.} \quad x_{ij}$$

Interpretación:

- ullet **Línea sólida**: Relación lineal esperada (pendiente $= \hat{eta}_j$)
- Línea punteada: Suavizado no paramétrico
- Coincidencia: Linealidad adecuada
- **Divergencia**: Posible no-linealidad \rightarrow necesita transformación

Ventaja: Permite detectar no-linealidades específicas de cada variable

Ejemplo: Diagnóstico con Gráficos CPR

Interpretación de los Gráficos CPR

¿Qué observamos en las 5 variables?

Superficie y Habitaciones:

- Líneas sólida y punteada coinciden
- Conclusión: Relación lineal adecuada

Garaje:

- Separación clara entre grupos (No/Sí)
- Conclusión: Efecto categórico apropiado

Antigüedad y Distancia:

- Líneas coinciden bien
- Conclusión: Linealidad confirmada

Interpretación general:

- Relaciones lineales apropiadas
- No se necesitan transformaciones

Clave: Si las líneas divergen significativamente \rightarrow considerar transformaciones

Multicolinealidad

¿Qué es? Correlación alta entre variables predictoras

Consecuencias:

- 1. Varianza inflada: Errores estándar muy grandes
- 2. Inestabilidad: Pequeños cambios en datos \rightarrow grandes cambios en coeficientes
- Contradicciones: Modelo globalmente significativo pero ningún predictor individual significativo

Nota importante: La multicolinealidad **NO viola** los supuestos de Gauss-Markov, pero **arruina** la interpretación práctica

Detección:

- Matriz de correlaciones: Correlaciones > 0.8 son señal de alerta
- VIF: Herramienta definitiva de diagnóstico

Factor de Inflación de la Varianza

Proceso de cálculo del VIF para X_j :

- 1. Regresar X_j sobre todas las demás variables predictoras
- 2. Obtener el R_j^2 de este modelo auxiliar
- 3. Calcular:

$$VIF_j = \frac{1}{1 - R_j^2}$$

Interpretación: Factor por el cual se infla la varianza de \hat{eta}_j debido a multicolinealidad

Reglas prácticas:

- **VIF** = **1**: Ausencia de colinealidad (ideal)
- VIF > 5: Valores preocupantes que requieren atención
- VIF > 10: Multicolinealidad seria que debe ser tratada

Ejemplo: Diagnóstico de Multicolinealidad

Caso 1: Sin problemas de multicolinealidad

superficie habitaciones antiguedad 1.40 1.40 1.01

distancia_centro garaje
1.01 1.01

Caso 2: Con multicolinealidad problemática

superficie_sim habitaciones_sim metros_cuadrados 86.4 8.5 81.2

Correlación superficie-metros_cuadrados: 0.994

Soluciones a la Multicolinealidad

La estrategia depende del objetivo del análisis:

1. No hacer nada

- Si el objetivo es predicción
- Si variables colineales no son de interés

2. Eliminar variables

- Quitar la menos relevante teóricamente
- Mantener la más correlacionada con Y

3. Combinar variables

- Crear índices compuestos
- Análisis de Componentes Principales

4. Métodos alternativos

- Ridge regression: Reduce varianza añadiendo sesgo
- Lasso/Elastic Net: Regresión penalizada

5. Aumentar muestra

- Más datos pueden reducir correlaciones
- No siempre factible

Observaciones Influyentes en Regresión Múltiple

Conceptos básicos (como en regresión simple):

• Outlier: Residuo grande

• Leverage: Valor atípico en predictores

• Influencia: Impacto en el modelo

Herramientas específicas de regresión múltiple:

DFBETAS: Influencia sobre coeficientes individuales

$$\mathsf{DFBETA}_{j,i} = \frac{\hat{\beta}_j - \hat{\beta}_{j(-i)}}{\mathsf{se}(\hat{\beta}_{j(-i)})}$$

Criterio: $|extDFBETA_{j,i}| > \frac{2}{\sqrt{n}}$ es problemático

Ventaja: Permite identificar qué observaciones afectan a qué coeficientes específicos

Gráficos de Regresión Parcial

Objetivo: Visualizar la relación entre Y y X_j después de eliminar el efecto lineal de todos los demás predictores

Construcción:

- 1. Residuos de Y regresado sobre todos los predictores excepto X_j : $e_{Y\mid X_{-j}}$
- 2. Residuos de X_j regresado sobre todos los demás predictores: $e_{X_j\mid X_{-j}}$
- 3. Graficar: $e_{Y\mid X_{-j}}$ vs $e_{X_j\mid X_{-j}}$

Propiedad mágica: La pendiente de la línea ajustada es exactamente \hat{eta}_j

Utilidades:

- Visualizar magnitud y significancia del efecto "ajustado"
- Detectar no-linealidades en relaciones parciales
- Identificar observaciones influyentes para coeficientes específicos

Ejemplo: Gráficos de Regresión Parcial

precio | others

precio | others

-20

Interpretación de los Gráficos de Regresión Parcial

¿Qué vemos en cada gráfico?

- ullet Eje X: Residuos de X_j vs. todos los demás predictores
- ullet Eje ullet: Residuos de Y vs. todos los demás predictores (excepto X_j)
- **Pendiente**: Es exactamente el coeficiente \hat{eta}_{j} del modelo múltiple

Interpretación por variable:

- Superficie: Relación lineal clara, pendiente positiva
- Habitaciones: Relación positiva, algunos puntos influyentes
- Antigüedad: Relación negativa evidente
- Distancia: Relación negativa clara
- Garaje: Separación clara entre grupos (No/Sí)

Resumen y Conceptos Clave

La regresión múltiple permite:

- 1. Efectos parciales: Aislar el impacto de cada variable predictora
- 2. Control de confusores: Reducir sesgos por variables omitidas
- 3. Mejores predicciones: Incorporar múltiples fuentes de información
- 4. Relaciones complejas: Modelar fenómenos multifactoriales

Aspectos críticos:

- Interpretación condicional: Los coeficientes son efectos parciales (ceteris paribus)
- Notación matricial: Fundamental para la comprensión y computación
- Supuestos: Base para las propiedades de los estimadores
- R^2 ajustado: Mejor que R^2 para comparar modelos
- Inferencia: Tests individuales (t) y global (F)

Próximo paso: Diagnóstico del modelo y tratamiento de problemas específicos

Ingeniería de Características

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

La Ingeniería de Características como Arte y Ciencia

La **ingeniería de características** es el proceso fundamental que transforma y crea variables para maximizar la capacidad predictiva y la interpretabilidad de los modelos.

El problema:

- Los datos raramente están en forma óptima
- Relaciones no lineales ocultas
- Variables categóricas sin procesar
- Efectos de interacción ignorados

La solución:

- Transformaciones matemáticas precisas
- Codificación inteligente de categorías
- Creación de interacciones significativas
- Combinaciones y ratios informativos

Principio clave: "Los datos y la preparación de características determinan el límite superior del rendimiento; los modelos solo se aproximan a ese límite" - *Andrew Ng*

Objetivos de Aprendizaje

- 1. Identificar cuándo aplicar transformaciones específicas según el problema detectado
- 2. Aplicar transformaciones clásicas y avanzadas (logarítmica, Box-Cox, Yeo-Johnson) apropiadamente
- 3. Interpretar modelos transformados comprendiendo cómo cambian los coeficientes
- Codificar variables categóricas usando ordinal encoding y one-hot encoding según su naturaleza
- 5. Crear e interpretar interacciones entre variables continuas, categóricas y mixtas
- **6. Aplicar ingeniería avanzada** mediante combinaciones, ratios y transformaciones compuestas

Diagnóstico: ¿Cuándo Transformar?

- **Principio Clave:** Diagnosticar antes de transformar.
- Riesgos de una Mala Práctica:
 - **Sobreajuste:** Se pierde capacidad de generalización.
 - Pérdida de Interpretabilidad: Se aplican transformaciones sin base teórica.
 - Violación de Supuestos: Solucionar un problema creando otro.
 - Sesgo de Selección: Elegir por "mejor resultado" sin justificación.

Regla de oro: No transformes sin un diagnóstico previo. Cada cambio debe estar justificado.

El Enfoque Metodológico

- Clave: Proceso sistemático basado en evidencia, no solo en métricas de ajuste (como el R²).
- Principios de Actuación:
 - 1. Diagnóstico Previo: Análisis visual y estadístico.
 - 2. Justificación Teórica: Base conceptual para cada transformación.
 - **3. Evaluación Integral:** Medir ajuste, interpretabilidad y robustez.
 - 4. Validación Posterior: Verificar la solución sin crear nuevos problemas.
 - **5. Parsimonia:** Preferir siempre la solución más simple.

Escalado y Normalización

¿Por qué escalar?

- Comparabilidad: Coeficientes en misma escala
- Regularización: Penalización justa en Ridge/Lasso
- Convergencia: Optimización más eficiente
- Interpretación: Efectos estandarizados

Problema común:

Variables con escalas muy diferentes pueden dominar el modelo y hacer que los coeficientes no sean comparables entre sí.

Estandarización (Z-Score)

$$X_{std} = \frac{X - \bar{X}}{\sigma_X}$$

Es la técnica más común. Transforma los datos para que tengan una **media de 0** y una **desviación estándar de 1**, pero **preserva la forma** de la distribución original.

Propiedades Clave

- Preserva la forma: Una distribución normal seguirá siendo normal.
- Comparación fácil: Permite evaluar el peso de variables con distintas unidades.
- Robustez moderada: Es menos sensible a outliers que la normalización Min-Max.

Aplicaciones Comunes

- En regresión, para comparar la importancia de los coeficientes.
- Como paso previo a PCA o análisis discriminante.
- Cuando las variables tienen distribuciones aproximadamente simétricas.

Normalización Min-Max

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Esta técnica escala los datos a un rango fijo, comúnmente [0, 1], donde 0 es el mínimo valor observado y 1 es el máximo.

Cuándo Usarlo:

- Algoritmos que requieren entradas en un rango específico, como las redes neuronales.
- o Cuando la interpretación en términos de mínimo y máximo es útil para el problema.
- En datos con distribuciones uniformes o sin *outliers* extremos.

Limitación Principal:

 Es muy sensible a outliers. Un solo valor extremo puede comprimir el resto de los datos en un rango muy pequeño, perdiendo información sobre su variabilidad.

Escalado Robusto

$$X_{robust} = \frac{X - \mathsf{mediana}(X)}{\mathsf{IQR}(X)}$$

Diseñado específicamente para datos con *outliers*. Utiliza la **mediana** y el **rango intercuartílico** (IQR), que son medidas estadísticas no afectadas por valores extremos.

Principio Clave:

 Al no usar la media ni la desviación estándar, los outliers no distorsionan el resultado del escalado.

Cuándo Usarlo:

- Es la opción preferida cuando se sabe o se sospecha que los datos contienen outliers significativos.
- Cuando se quiere preservar la estructura de la mayor parte de los datos sin la influencia de los valores extremos.

Comparación de Métodos de Escalado

Observación: El escalado robusto mantiene mejor la estructura central ante outliers

Catálogo de Transformaciones según el Propósito

Una vez realizado el diagnóstico, debemos seleccionar la transformación más apropiada. La clave no está en *qué* transformación aplicar, sino en entender *por qué* esa transformación específica resuelve nuestro problema.

Exploraremos tres familias de transformaciones:

- 1. Para linearizar relaciones no lineales.
- Para estabilizar la varianza (heterocedasticidad).
- 3. Para normalizar residuos y controlar *outliers*.

Transformación Logarítmica (Linearizar)

Es la transformación más versátil, ideal para linearizar relaciones de crecimiento exponencial o donde los efectos son multiplicativos.

Cuándo Usarla

- Relaciones exponenciales o multiplicativas.
- Procesos de crecimiento proporcional.
- Variables con rendimientos decrecientes (ingresos, precios).
- Casos Típicos: Economía, biología, finanzas.

Diagnóstico y Aplicación

- Diagnóstico: Curva cóncava que se aplana o varianza que aumenta con Y.
- Aplicación: log(Y) ~ X, Y ~ log(X) o log(Y) ~ log(X).
- Interpretación: Los coeficientes se leen como cambios porcentuales o elasticidades.

Transformación de Potencia (Linealizar)

Fundamental para relaciones curvilíneas que siguen una ley de potencia del tipo Y = a * X^b.

- Diagnóstico: La relación entre las variables se vuelve lineal al graficarla en una escala log-log.
 Aplicación: Se toman logaritmos en ambas variables para linearizar el modelo: log(Y)
- Aplicación: Se toman logaritmos en ambas variables para linearizar el modelo: log(Y)
 = log(a) + b * log(X).
- Interpretación: El exponente b representa la elasticidad o el exponente de escalamiento.
- **Ejemplos Clásicos:** Ley de Kleiber (relación masa-metabolismo), economía urbana (población-PIB).

Transformación Raíz Cuadrada (Estabilizar Varianza)

Especialmente útil para datos de conteo (típicamente de una distribución de Poisson), donde la varianza es proporcional a la media.

Cuándo Aplicarla

- Conteos de eventos: número de defectos, llamadas, ventas por período.
- Datos de frecuencia: visitas, clics, transacciones.
- Para conteos con muchos ceros puede requerir sqrt(Y + 0.5).

Diagnóstico y Limitaciones

- Diagnóstico: Gráfico de residuos en forma de embudo donde la dispersión crece linealmente con la media.
- Limitaciones: La interpretación es menos directa y solo es apropiada para valores no negativos.

Transformación Logarítmica (Estabilizar Varianza)

Es la solución natural cuando la **varianza es proporcional al cuadrado de la media**, lo que se conoce como heterocedasticidad multiplicativa.

Cuándo Aplicarla:

- Variables monetarias (ingresos, precios, costos), donde el error relativo tiende a ser constante.
- Porcentajes de crecimiento o procesos donde los errores se acumulan multiplicativamente.

La Gran Ventaja (Efectos Múltiples):

 Con frecuencia, esta única transformación resuelve varios problemas a la vez: lineariza la relación, estabiliza la varianza, normaliza la distribución y reduce el impacto de outliers.

Transformación Inversa (Controlar Outliers)

Útil para relaciones **hiperbólicas** (del tipo Y = 1/X) y para distribuciones con colas muy pesadas a la derecha.

Cuándo Usarla

- Relaciones que se aproximan a una asíntota horizontal.
- Tasas de decaimiento o relaciones dosis-respuesta en farmacología.
- Tiempo hasta un evento.

Efecto y Precauciones

- Efecto en Outliers: Comprime fuertemente los valores grandes y expande los pequeños.
- Precaución: Amplifica errores en valores pequeños y requiere tratamiento especial para datos cercanos a cero.
- Solo aplicable a valores no nulos.

Transformación de Box-Cox: La Teoría

Es un método que **optimiza automáticamente** el parámetro de transformación λ (lambda) para maximizar la normalidad y homocedasticidad de los residuos. En lugar de elegir manualmente, Box-Cox encuentra el valor λ que mejor normaliza los datos.

Definición Matemática:

$$Y(\lambda) = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda}, & \lambda \neq 0\\ \log(Y), & \lambda = 0 \end{cases}$$

Casos Especiales de λ :

- $\lambda = 1$: Sin transformación (identidad).
- $\lambda = 0.5$: Transformación de raíz cuadrada.
- $\lambda = 0$: Transformación logarítmica.
- $\lambda = -1$: Transformación inversa.

Box-Cox: Propósito y Limitaciones

Propósito y Ventajas

- Encuentra la transformación óptima sin necesidad de prueba y error.
- Maximiza la verosimilitud del modelo, mejorando simultáneamente la normalidad y la homocedasticidad.
- Proporciona un método objetivo para seleccionar la transformación más apropiada.

Limitaciones Importantes

- Requiere que los datos (Y) sean estrictamente positivos. Esta es su principal restricción.
- La **interpretación** es compleja si λ no es un valor simple (0, 0.5, 1).
- El λ óptimo depende del modelo específico, por lo que puede cambiar si se modifican los predictores.

Ejemplo Práctico: Aplicando Box-Cox

A continuación, se visualiza cómo la transformación Box-Cox corrige la asimetría de una distribución original.

La Extensión: Transformación de Yeo-Johnson

Fue desarrollada para superar la principal limitación de Box-Cox: acepta cualquier valor real (positivo, negativo o cero).

Cuándo Usar Box-Cox

- Cuando los datos son estrictamente positivos.
- Si se busca comparabilidad con literatura existente que la utilice.

Cuándo Usar Yeo-Johnson

- Cuando los datos incluyen valores negativos o cero.
- Si se necesita mayor flexibilidad y no hay restricciones de dominio.

Ejemplo Práctico: Yeo-Johnson con Datos Negativos

Este ejemplo muestra cómo Yeo-Johnson maneja un conjunto de datos que incluye valores negativos, algo que Box-Cox no podría hacer.

Variables Categóricas: Principios de Codificación

La mayoría de los algoritmos estadísticos requieren entradas numéricas. El objetivo de la codificación es transformar las categorías de texto en números, **preservando su información semántica sin introducir supuestos erróneos**.

Criterios para Seleccionar el Método de Codificación:

- Naturaleza de la variable: ¿Existe un orden inherente entre las categorías? Esta es la pregunta más importante.
 - Nominal: Sin orden (ej. color, país).
 - Ordinal: Con orden (ej. nivel educativo, satisfacción).
- **Número de categorías:** Variables con muchas categorías ("alta cardinalidad") pueden requerir técnicas especiales.
- Interpretabilidad del modelo: ¿Qué método facilita una explicación clara de los resultados?

One-Hot Encoding (Variables Nominales)

Transforma una variable con k categorías sin orden (ej. color, región) en k-1 variables binarias (0/1), también conocidas como variables dummy.

La "Dummy Variable Trap":

- **Problema:** Usar k columnas (una para cada categoría) crea colinealidad perfecta en modelos lineales, ya que una columna es una combinación lineal de las otras.
- **Solución:** Siempre se omite una categoría, que se convierte en la **categoría de referencia** del modelo.

Ventajas

- No asume un orden entre categorías.
- Cada nueva variable tiene un coeficiente directamente interpretable (la diferencia con la categoría de referencia).

Desventajas

- Aumenta mucho la dimensionalidad si hay muchas categorías.
- Genera matrices de datos con muchos ceros (dispersas).

Ejemplo Práctico: One-Hot Encoding

Imaginemos una variable Region con 4 categorías. Al codificarla, elegimos "Norte" como categoría de referencia.

Resultado:

- Se crean 3 variables binarias (k-1)
- Cada observación tiene un 1 en su región correspondiente
- "Norte" no aparece (categoría de referencia)

Interpretación:

El coeficiente de Region_Sur se interpretaría como la diferencia promedio en la variable respuesta al estar en la región "Sur" en comparación con la región "Norte".

Codificación Ordinal (Variables Ordinales)

Asigna números enteros consecutivos a las categorías, **respetando su orden o jerarquía natural**.

Ejemplo Práctico:

- Variable: Nivel_Satisfaccion con categorías ["Bajo", "Medio", "Alto"].
- Codificación: Se asignan los valores [1, 2, 3].

Ventajas

- Preserva la información jerárquica de la variable.
- Es muy eficiente: crea una sola columna, sin importar el número de categorías.

Desventajas

- Supone que la "distancia" entre niveles es uniforme (asume que el cambio de "Bajo" a "Medio" es igual que de "Medio" a "Alto").
- Puede imponer un orden artificial si se aplica por error a una variable nominal.

Comparación: Ordinal vs. One-Hot Encoding

La elección incorrecta del método puede llevar a modelos con menor rendimiento e interpretaciones erróneas.

Usar Codificación Ordinal

- Cuándo: Para variables con un orden natural y significativo (ej. nivel educativo, satisfacción del cliente, grado de severidad).
- Resultado: Una sola columna numérica (1, 2, 3, ...).
- Riesgo Principal: Asumir que los intervalos entre categorías son iguales.

Usar One-Hot Encoding

- Cuándo: Para variables nominales, sin un orden inherente (ej. color, género, país).
- **Resultado:** k-1 columnas binarias (0 o 1).
- Riesgo Principal: Aumento excesivo del número de variables si la cardinalidad es alta.

¿Qué es una Interacción?

Mientras los efectos principales miden el impacto promedio de una variable, las **interacciones** revelan cómo el efecto de una variable **cambia según el nivel de otra**.

Modelo con Interacción:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 \times X_2 + \varepsilon$$

Interpretación de β_3 :

- Si $\beta_3 > 0$: Los efectos se **potencian** (sinergia).
- Si β_3 < 0: Los efectos se **atenúan** (compensación).

Ejemplo Visual: Interacción Experiencia × Género

Un ejemplo clásico es cómo la relación entre experiencia y salario no es la misma para todos los grupos.

¿Qué observamos?

- Pendientes diferentes: Cada género tiene una relación distinta entre experiencia y salario
- Interacción presente: El efecto de la experiencia depende del género

Interpretación:

La interacción permite que la pendiente de la experiencia sea diferente para cada género, revelando patrones que el análisis por separado no detectaría.

Tipos de Interacciones: Continua × Continua

Este tipo de interacción ocurre cuando el efecto de una variable continua sobre el resultado depende del valor de otra variable continua.

- Concepto: El efecto de una variable se amplifica o atenúa a medida que otra variable cambia.
- Modelo: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 \times X_2$. El coeficiente β_3 captura la interacción.

Sintaxis en R:

```
modelo <- lm(ventas ~ precio * publicidad, data = datos)
# Interpretación: El efecto del precio sobre las ventas varía
# según el nivel de inversión en publicidad.
```

Tipos de Interacciones: Categórica × Categórica

Ocurre cuando el efecto de pertenecer a una categoría depende de la pertenencia a otra categoría.

- Concepto: Existe un efecto específico para una combinación de categorías que no se puede explicar sumando los efectos individuales.
- **Ejemplo:** El efecto del género en el salario puede ser diferente en cada departamento de una empresa.

Sintaxis en R:

```
modelo <- lm(salario ~ genero * departamento, data = datos)
# Interpretación: La brecha salarial de género es diferente
# en cada departamento.
```

Tipos de Interacciones: Continua × Categórica (Mixta)

Este es uno de los tipos más comunes e intuitivos. Permite que la relación entre una variable continua y el resultado sea diferente para distintos grupos.

- Concepto: La pendiente de la variable continua es diferente para cada nivel de la variable categórica.
- **Ejemplo:** La relación entre los años de experiencia y el salario puede tener una pendiente más pronunciada para un grupo que para otro.

Sintaxis en R:

```
modelo <- lm(rendimiento ~ horas_estudio * metodo, data = datos)

# Interpretación: La efectividad de las horas de estudio

# (la pendiente)

# sobre el rendimiento varía según el método de estudio

# utilizado.
```

Caso Práctico: Visualizando una Interacción Categórica

Los *interaction plots* son la mejor herramienta para entender interacciones entre variables categóricas. Las líneas no paralelas son una señal visual clara de una posible interacción.

¿Qué buscamos?

- Líneas paralelas: Sin interacción
- Líneas no paralelas: Interacción presente
- Líneas que se cruzan: Interacción fuerte

Interpretación:

La Droga B es especialmente efectiva en el grupo de "Mayor", un efecto que no se podría ver analizando las variables por separado.

Detección y Estrategia de Modelado

No debemos buscar interacciones al azar. El enfoque correcto combina la teoría con la evidencia de los datos.

¿Cómo Detectarlas?

- Justificación Teórica: El conocimiento del dominio es la guía principal para saber dónde buscar.
- Exploración Visual: Usar gráficos de dispersión por grupos o interaction plots.
- Tests Estadísticos: Utilizar el Test F para comparar formalmente un modelo con y sin la interacción.

El Principio de Jerarquía

- Regla de Oro: Si incluyes una interacción
 A × B, siempre debes incluir los efectos
 principales A y B por separado.
- Justificación: Preserva la interpretabilidad del modelo y evita sesgos en los coeficientes.

Riesgos y Consideraciones Prácticas

Las interacciones son poderosas, pero su uso requiere cuidado para no complicar el modelo innecesariamente.

Riesgo de Complejidad:

- El número de interacciones posibles crece exponencialmente.
- **Recomendación:** Limitar el modelo a las 2 o 3 interacciones más importantes y con justificación teórica.

Riesgo de Multicolinealidad:

- Las interacciones pueden hacer que los coeficientes sean inestables.
- Mitigación: Centrar las variables continuas antes de crear el término de interacción.

Interpretación con Transformaciones:

• Advertencia: Una interacción en una escala log no significa lo mismo que en una escala lineal y requiere una interpretación mucho más cuidadosa.

Ingeniería Avanzada

Consiste en crear nuevas variables mediante **combinaciones**, **ratios y transformaciones compuestas**. El objetivo es capturar relaciones complejas que no son evidentes en las variables originales.

A menudo, las variables individuales contienen información parcial. Al combinarlas de forma inteligente, podemos revelar **patrones predictivos mucho más potentes**.

Técnicas Clave que Exploraremos:

- **Combinaciones:** Creación de nuevas variables a partir de sumas o productos de las existentes.
- Ratios y Proporciones: Normalización de variables para revelar relaciones estructurales.
- Manejo de Colinealidad: Estrategias para condensar información de predictores correlacionados.

Creación de Features por Combinación

Combinaciones Lineales

- Concepto: Sumas ponderadas de variables que miden aspectos de un mismo fenómeno.
- Ejemplo (Índice Compuesto): Un índice de riesgo cardiovascular. Índice_Riesgo = 0.4*Presión + 0.3*Colesterol + 0.3*IMC
- Aplicación: Crear un score único a partir de múltiples indicadores para capturar un constructo multidimensional.

Combinaciones No Lineales

- Concepto: Productos, cocientes o funciones complejas que capturan sinergias o efectos multiplicativos.
- Ejemplo (Producto de Eficiencia):
 Rendimiento = Capacidad ×
 Utilización × Calidad
- Aplicación: Modelar efectos donde el resultado depende de la combinación simultánea de varios factores.

El Poder de los Ratios

Los ratios son muy potentes porque **normalizan automáticamente las diferencias de escala** y revelan relaciones estructurales que las variables absolutas ocultan.

Ventajas Principales:

- Normalización Automática: Permiten comparar entidades de diferentes tamaños (ej. una startup vs. una multinacional).
- Interpretación Intuitiva: Tienen significados claros y directos (ej. Deuda / Patrimonio).
- Robustez: Suelen ser menos sensibles a valores atípicos (outliers).

Ejemplo Práctico: Retorno de Inversión (ROI)

Un ratio clásico en negocio es el ROI, que mide la eficiencia de una inversión normalizando el beneficio obtenido por el coste de la misma.

Manejo de Colinealidad con Features

El Problema: Simplemente eliminar variables correlacionadas es una mala práctica, ya que se pierde información predictiva valiosa.

La Solución: Condensar la información redundante en nuevas variables, preservando la información única de cada predictor original.

Estrategias Principales

- Componentes Principales (PCA): Extrae la máxima varianza común en componentes ortogonales. Su principal desventaja es que pierde interpretabilidad directa.
- Ratios Informativos: Capturan la relación estructural entre dos variables (ej. Deuda / Patrimonio). Preservan la interpretabilidad económica.
- Índices Ponderados: Crean un *score* único a partir de varias variables, usando pesos teóricos o empíricos.

El Trade-Off: Complejidad vs. Interpretabilidad

A medida que aumenta la complejidad de la técnica, generalmente se gana poder predictivo pero se pierde facilidad de interpretación.

Técnicas Más Simples

- Estandarización: La pérdida de interpretación es mínima (solo cambia la escala).
- Transformación Logarítmica: La pérdida es baja, ya que se puede interpretar como cambios porcentuales.

Técnicas Más Potentes

- **Box-Cox (con** λ **complejo)**: La escala transformada no es intuitiva, dificultando la interpretación.
- PCA (Componentes Principales): La pérdida es muy alta, ya que los componentes son constructos abstractos.
- Interacciones Múltiples: La interpretación se complica al haber efectos condicionales.
- Si buscas EXPLICAR → Prioriza la Interpretabilidad.
- Si buscas PREDECIR → Prioriza el Rendimiento.

Errores Comunes a Evitar

1. Transformar sin Diagnóstico Previo

Aplicar log() "por si acaso" en lugar de identificar un problema específico que lo justifique.

2. Ignorar el Dominio del Problema

Usar transformaciones que no tienen sentido teórico (ej. log(edad)).

3. Caer en la "Dummy Variable Trap"

o Incluir k columnas para k categorías en lugar de k-1 (categoría de referencia).

4. Usar Interacciones sin Efectos Principales

Modelar Y ~ A:B en lugar de la forma correcta y jerárquica Y ~ A + B + A:B.

5. Sobreingeniería (*Over-engineering*)

o Crear cientos de features automáticamente sin una justificación clara y validada para cada uno.

Flujo de Trabajo Recomendado

Un proceso sistemático garantiza resultados robustos y reproducibles.

1. Análisis Exploratorio

Visualizar distribuciones, patrones y outliers.

2. Diagnóstico de Problemas

Buscar no linealidad, heterocedasticidad, asimetría, etc., en los datos.

3. Selección de Transformaciones

• Elegir la técnica adecuada para el problema diagnosticado.

4. Aplicación y Validación

Transformar las variables y verificar si el problema original se ha resuelto.

5. Comparación de Modelos

• Usar métricas (R², RMSE, AIC) y validación cruzada para evaluar la mejora.

6. Interpretación Final

Traducir los resultados del modelo final al contexto del negocio o la investigación.

Mejores Prácticas en Feature Engineering

1. Documentación Rigurosa

• Registrar cada transformación y su justificación para mantener la trazabilidad.

2. Validación en Datos Nuevos

 Guardar los parámetros de transformación del set de entrenamiento (ej. media, sd, lambda) y aplicarlos al de test.

3. Evitar Data Leakage

 Calcular todos los parámetros de las transformaciones únicamente con los datos de entrenamiento.

4. Considerar el Contexto

Asegurarse de que las nuevas variables creadas son interpretables.

5. Parsimonia

 Preferir siempre el modelo más simple que funcione adecuadamente. No añadir complejidad por mejoras marginales.

Resumen y Conceptos Clave

¿Por Qué es Fundamental?

- Resuelve problemas específicos de los datos (no linealidad, etc.).
- **Mejora el rendimiento** del modelo significativamente.
- Revela relaciones ocultas mediante interacciones y combinaciones.
- Adapta los datos a los requisitos de los algoritmos.

Principios Clave

- **Diagnóstico** antes que transformación.
- Justificación teórica o empírica.
- Validación rigurosa.
- Balance entre complejidad e interpretabilidad.
- Documentación exhaustiva.

Próximo tema: Selección de variables, regularización y validación para manejar la complejidad agregada.

Selección de Variables, Regularización y Validación

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

El Problema de la Selección de Variables

En modelos de regresión con gran número de variables predictoras enfrentamos el desafío crítico de identificar qué variables son realmente relevantes

Los problemas principales:

- Inclusión de demasiadas variables → sobreajuste, pérdida de interpretabilidad, complejidad innecesaria
- Exclusión de variables importantes \rightarrow modelos subóptimos
- Con p variables explicativas: 2^p modelos diferentes posibles
- \bullet Exploración exhaustiva computacionalmente inviable cuando p es grande

El objetivo del tema: Seleccionar el subconjunto óptimo de variables predictoras y validar la calidad del modelo resultante

Enfoques Principales del Tema

Seis enfoques sistemáticos:

- 1. Filtrado basado en información básica
 - Eliminación preliminar de variables irrelevantes
 - Criterios: variabilidad, correlación, VIF
- 2. Criterios de bondad de ajuste
 - Métricas para comparar modelos: AIC, BIC, Cp de Mallows
- 3. Métodos de selección exhaustiva
 - Evaluación sistemática: Best Subset Selection
- 4. Métodos automáticos paso a paso
 - Selección iterativa: forward, backward, stepwise
- 5. Métodos basados en regularización
 - Penalización de complejidad: Ridge, Lasso, Elastic Net
- 6. Validación del modelo
 - División train/test y validación cruzada

Proceso Completo de Construcción del Modelo

Etapas del proceso sistemático:

- 1. Definición del problema y variables de interés
- 2. Recogida de datos (fiabilidad, validez, ética, control de sesgos)
- 3. Análisis Exploratorio de Datos (EDA)
- 4. Ajuste del modelo inicial
- **5. Evaluación del modelo** (R², ANOVA, significancia)
- 6. Diagnóstico del modelo (residuos, observaciones atípicas)
- 7. Reducción de variables ← Enfoque principal del tema
- 8. Validación del modelo ← Enfoque principal del tema

Este tema se centra en las etapas 7 y 8

Tipos de Experimentos para Recogida de Datos

Clasificación según el diseño:

- Experimentos controlados: Manipulación deliberada de variables independientes
- Estudios observacionales exploratorios: Sin intervención, registro natural
 - Transversales (un momento temporal)
 - Longitudinales (seguimiento temporal)
- Estudios observacionales confirmatorios: Testear hipótesis específicas
- Encuestas y cuestionarios: Datos estructurados sobre actitudes/comportamientos
- Experimentos naturales: Fenómenos naturales como intervención
- Estudios de simulación: Modelos matemáticos/computacionales
- Datos secundarios: Bases de datos existentes

Filtrado Basado en Información Básica

Objetivo: Filtrado preliminar antes de métodos sofisticados

Criterios de eliminación básicos:

1. Variabilidad de las variables predictoras

$$\operatorname{Var}(X_j) = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2 < \epsilon$$

(típicamente $\epsilon = 0.01$)

2. Correlación con la variable respuesta

$$r_{X_j,Y} = \frac{\sum_{i=1}^n (x_{ij} - \bar{x}_j)(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2 \sum_{i=1}^n (y_i - \bar{y})^2}}$$

Umbral mínimo: $|r_{X_{\cdot},Y}| > \delta$ (ej: $\delta = 0.1$)

Filtrado por Multicolinealidad

Detectar y eliminar variables redundantes:

- 3. Multicolinealidad extrema Si $|r_{X_s,X_b}|>0.95 o$ eliminar una variable
- 4. Factor de Inflación de la Varianza (VIF)

$$VIF_j = \frac{1}{1 - R_j^2}$$

Valores $VIF_j > 10$ indican multicolinealidad problemática

Estrategia: Eliminar variables con mayor VIF iterativamente hasta que todos los VIF sean aceptables

Visualización: Matriz de Correlación

Visualización: Diagnóstico de Multicolinealidad

Criterios de Bondad de Ajuste

Problema: Equilibrar capacidad explicativa vs complejidad del modelo

Subajuste vs Sobreajuste: - Muy pocas variables \rightarrow subajuste (underfitting) - Demasiadas variables \rightarrow sobreajuste (overfitting)

Tres criterios principales:

- 1. Criterio de Información de Akaike (AIC)
- 2. Criterio de Información Bayesiano (BIC)
- 3. Estadístico Cp de Mallows

Estrategia: Seleccionar el modelo que minimice el criterio elegido

Criterio de Información de Akaike (AIC)

Fundamento: Teoría de la información de Hirotugu Akaike

Objetivo: Estimar la pérdida de información del modelo

Fórmula:

$$AIC = n \ln \left(\frac{SSE}{n} \right) + 2(p+1)$$

Componentes:

- $n \ln(SSE/n)$: Bondad de ajuste (relacionado con log-verosimilitud)
- ullet 2(p+1): Penalización por complejidad (aumenta 2 unidades por parámetro)

Interpretación:

- Menor AIC = mejor modelo
- Asintóticamente eficiente
- Orientado a predicción

Criterio de Información Bayesiano (BIC)

Fundamento: Estadística bayesiana (Gideon Schwarz)

Objetivo: Encontrar el modelo más probable de ser el "verdadero"

Fórmula:

$$BIC = n \ln \left(\frac{SSE}{n} \right) + (p+1) \ln(n)$$

Diferencia clave con AIC:

- Penalización: $(p+1)\ln(n)$ en lugar de 2(p+1)
- Más restrictivo cuando n>7 (ya que $\ln(n)>2$)

Características:

- ullet Consistencia: Si el modelo verdadero está entre candidatos, P(selección) o 1
- Orientado a explicación
- Favorece modelos más simples (parsimonia)

Estadístico Cp de Mallows

Fundamento: Error cuadrático medio de predicción

Objetivo: Modelo con bajo sesgo y baja varianza

Fórmula:

$$C_p = \frac{SSE_p}{MSE_{full}} - n + 2(p+1)$$

donde MSE_{full} es el error cuadrático medio del modelo completo

Interpretación:

- Modelo bien especificado: $C_p \approx p+1$
- ullet $C_p>p+1$: modelo sesgado (variable importante omitida)
- $C_p \leq p+1$: buen ajuste

Estrategia: Buscar modelos donde $C_p \approx p+1$, elegir el menor entre ellos

¿Cuándo Usar Cada Criterio?

Si el objetivo principal es la predicción:

- AIC es la opción preferida
- Diseñado para minimizar error de predicción
- Penalización más moderada
- Ideal en contextos de pronóstico

Si el objetivo es la explicación/inferencia:

- BIC es la elección más sólida
- Identifica el modelo más parsimonioso
- Penalización más fuerte contra sobreajuste
- Propiedad de consistencia en muestras grandes

Para análisis exploratorio:

- Cp de Mallows es especialmente valioso
- Compromiso explícito entre sesgo y varianza
- Visualización clara del "codo" de complejidad óptima

Resumen práctico:

- Predicción → AIC (menos restrictivo)
- ullet Explicación o BIC (más parsimonioso)
- Exploración → Cp de Mallows (balance visual)
- Muestras grandes → BIC preferible
- Muestras pequeñas → AIC o Cp

Visualización: Criterios de Información (AIC vs BIC)

Visualización: Selección con Cp de Mallows

Buscamos modelos donde Cp es pequeño y cercano al número de parámetros (p+1)

Métodos de Selección Exhaustiva

Best Subset Selection: Evalúa todos los subconjuntos posibles

Proceso:

- Para k = 1, 2, ..., p variables
- Construir todos los modelos posibles con k variables
- Seleccionar el mejor modelo de cada tamaño según criterio elegido

Ventajas:

- Garantiza encontrar el modelo óptimo según el criterio
- Evaluación completa de todas las combinaciones
- Estándar para comparar otros métodos

Limitaciones:

- Complejidad computacional: 2^p modelos posibles
- Impracticable para p > 15 20
- Puede seleccionar modelos sobreajustados sin validación cruzada

Métodos Automáticos Paso a Paso

Principio: Construir modelo iterativamente, añadiendo o quitando predictores uno a uno

Forward Selection:

- 1. Comenzar con modelo nulo (solo intercepto)
- 2. Añadir variable que más mejora el criterio
- 3. Repetir hasta que ninguna variable mejore significativamente
- 4. Problema: No puede eliminar variables una vez incluidas

Backward Elimination:

- 1. Comenzar con modelo completo (todas las variables)
- 2. Eliminar variable menos significativa
- 3. Repetir hasta que todas las variables sean significativas
- **4. Problema:** Requiere n > p

Métodos Automáticos Paso a Paso

Stepwise Regression:

- 1. Combina forward + backward
- 2. Puede añadir y eliminar variables
- 3. Problema: Solo encuentra óptimo local

Limitaciones importantes de métodos automáticos:

- Inestabilidad: Pequeños cambios en datos pueden alterar el modelo
- Invalidez de p-valores: Múltiples comparaciones sesgan la inferencia
- Óptimo local: No garantizan la mejor combinación
- Inflación del error tipo I: Sin corrección para comparaciones múltiples

Uso recomendado: Como herramientas exploratorias, no para inferencia final

Métodos Basados en Regularización

Principio: Introducir penalización en la función de ajuste del modelo

Objetivos:

- Controlar el sobreajuste reduciendo complejidad
- Forzar selección de subconjunto más parsimonioso
- Mejorar estabilidad y precisión del modelo

Tres métodos principales:

- Ridge Regression: Penalización $L_2 = \lambda \sum \beta_j^2$
- Lasso: Penalización $L_1 = \lambda \sum |\beta_j|$
- ullet Elastic Net: Combina L_1+L_2

Ventaja clave: Control automático del balance sesgo-varianza

Ridge Regression

Fundamento: Penalización L_2 en la estimación de coeficientes

Formulación:

$$SSE_{ridge} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p \beta_j^2$$

Estimación:

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda\,\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

Interpretación del parámetro λ :

- $\lambda = 0$: equivalente a regresión lineal tradicional (OLS)
- λ aumenta: coeficientes se reducen en magnitud
- λ muy grande: coeficientes se acercan a cero

Propiedades:

- Manejo de multicolinealidad
- Menor varianza en predicciones
- No realiza selección de variables (no anula coeficientes)

Regresión Lasso

Fundamento: Penalización L_1 que permite eliminación de variables

Formulación:

$$SSE_{\mathsf{lasso}} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p |\beta_j|$$

Diferencia clave con Ridge:

- Ridge reduce magnitud de coeficientes
- Lasso puede eliminar variables por completo (coeficientes = 0)

Interpretación del parámetro λ :

- $\lambda = 0$: regresión lineal tradicional
- ullet λ aumenta: más coeficientes o 0
- λ muy grande: elimina demasiadas variables

Propiedades:

- Selección automática de variables
- Manejo de multicolinealidad
- Simplicidad e interpretabilidad
- Reduce sobreajuste

Elastic Net: Combinando lo Mejor de Ridge y Lasso

Fundamento: Combinación de penalizaciones Ridge (L_2) y Lasso (L_1)

Formulación:

$$SSE_{\mathsf{Elastic Net}} = \|\mathbf{y} - \mathbf{X}\,\beta\|^2 + \lambda \left[\alpha \sum_{j=1}^p |\beta_j| + (1-\alpha) \sum_{j=1}^p \beta_j^2\right]$$

Parámetro α controla la mezcla:

- $\alpha = 1 \rightarrow$ Comportamiento como Lasso
- $\alpha = 0 \rightarrow$ Comportamiento como Ridge
- $0 < \alpha < 1 \rightarrow$ Combinación de ambos métodos

Ventajas principales:

- Manejo superior de multicolinealidad
- Selección de variables más estable
- Evita selección arbitraria cuando hay grupos correlacionados

Cuándo Usar Cada Método de Regularización

Ridge Regression:

- Todas las variables aportan información
- Fuerte multicolinealidad presente
- Objetivo: reducir varianza sin eliminar variables

Lasso:

- Muchas variables irrelevantes esperadas
- Selección sparse deseable
- Interpretabilidad prioritaria

Elastic Net:

- Variables correlacionadas en grupos
- Balance entre selección y estabilidad
- Rendimiento predictivo como objetivo principal

Estrategia práctica: Optimizar lpha mediante validación cruzada junto con λ

Selección del Parámetro de Regularización

El problema: ¿Cómo elegir el valor óptimo de lambda?

La solución: Validación cruzada

Proceso:

- 1. Definir secuencia de valores lambda candidatos
- 2. Para cada lambda, calcular error de validación cruzada
- 3. Seleccionar lambda que minimiza el error

Dos criterios principales:

- lambda_min: Valor que minimiza el error de CV
- lambda_1SE: Valor más grande cuyo error está dentro de 1 error estándar del mínimo

Regla 1-SE: Preferir modelo más simple (mayor lambda) si su error es comparable al mínimo

Estrategias de Validación: Visión General

Partición inicial (paso obligatorio):

Antes de cualquier análisis, dividir datos originales en:

- 1. Datos de modelado (80%): Para todo el proceso de construcción
- 2. Conjunto de prueba final (20%): Guardado para evaluación final

Dentro de los datos de modelado, tres estrategias principales:

- 1. División Train/Test simple
- 2. Validación cruzada k-fold
- 3. Leave-One-Out Cross-Validation (LOOCV)

Cada estrategia tiene sus ventajas e inconvenientes según el contexto del problema

División Train/Test Simple

Concepto: División única de los datos de modelado

Proceso:

- Conjunto de entrenamiento (70-80%): Ajustar el modelo
- Conjunto de test (20-30%): Evaluar rendimiento

Ventajas:

- Computacionalmente muy eficiente
- Fácil de implementar y entender
- Apropiado para datasets grandes

Desventajas:

- Alta variabilidad: Resultados dependen de la división específica
- Puede ser optimista o pesimista según qué observaciones caigan en test
- Menos datos disponibles para entrenamiento

Cuándo usar: Datasets grandes (n > 1000), recursos limitados, evaluación rápida

Validación Cruzada k-fold

Concepto: Múltiples evaluaciones para obtener estimación más estable

Proceso de k-fold CV:

- 1. Dividir datos en k particiones de tamaño similar
- **2.** Para cada partición i = 1, 2, ..., k:
 - \circ Usar partición i como conjunto de test
 - Usar las k-1 particiones restantes como entrenamiento
 - Calcular métrica de error
- 3. Error de CV: $CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Error}_{i}$

Valores típicos: k = 5 o k = 10

Ventajas:

- Estimación más estable y menos sesgada
- Todos los datos se usan para entrenamiento y test
- Reduce variabilidad de la estimación

Esquema del Proceso de Validación Cruzada (k=5)

Proceso de Validación Cruzada con k=5 Folds

En cada iteración, un 'fold' se usa para test y el resto para entrenamiento

Leave-One-Out Cross-Validation (LOOCV)

Concepto: Caso extremo donde k = n (número de observaciones)

Proceso:

- Para cada observación *i*:
 - \circ Entrenar modelo con n-1 observaciones
 - Predecir la observación i excluida
 - Calcular error de predicción
- Error LOOCV: $CV_{(n)} = \frac{1}{n} \sum_{i=1}^n (\frac{y_i \hat{y}_i}{1 h_{ii}})^2$

Ventajas:

- Estimación prácticamente insesgada
- Determinística (no depende de divisiones aleatorias)
- Máximo uso de datos para entrenamiento

Desventajas:

- Computacionalmente costoso
- Alta varianza en la estimación

Cuándo Usar Cada Estrategia de Validación

Train/Test Split:

- Dataset grande (n > 1000)
- Recursos computacionales limitados
- Necesidad de evaluación rápida
- Primera aproximación al problema

Validación Cruzada k-fold:

- Dataset de tamaño moderado (100 < n < 1000)
- Balance entre eficiencia y precisión
- Estimación robusta del rendimiento
- Más recomendado en general

LOOCV:

- Dataset pequeño (n < 100)
- Necesidad de estimación menos sesgada
- Recursos computacionales abundantes
- Regresión lineal (fórmula rápida disponible)

Guía de decisión rápida:

- ullet $\mathbf{n} > \mathbf{1000}
 ightarrow \mathsf{Train}/\mathsf{Test} \; \mathsf{Split}$
- ullet 100 < n < 1000 o k-fold CV
- ullet n < 100
 ightarrow LOOCV
- Tiempo limitado → Train/Test Split
- Máxima precisión \rightarrow k-fold CV

Métricas de Rendimiento en Validación

Una vez obtenidas las predicciones, necesitamos "calificar" el modelo Raíz del Error Cuadrático Medio (RMSE):

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

Características del RMSE:

- Penaliza desproporcionadamente errores grandes
- Sensible a valores atípicos
- Mismas unidades que la variable respuesta
- Interpretación: "desviación típica de los residuos"

Métricas de Rendimiento en Validación

Error Absoluto Medio:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Características del MAE:

- Trata todos los errores proporcionalmente
- Más robusto frente a valores atípicos
- Interpretación directa: "error promedio en valor absoluto"

¿Cuándo usar cada métrica?

- RMSE: Cuando errores grandes son especialmente problemáticos
- MAE: Cuando se prefiere robustez frente a valores atípicos
- Ambas: Para análisis completo del rendimiento predictivo

Interpretación de Errores: Diagnóstico del Ajuste

La comparación clave: Error en entrenamiento vs Error en validación

Sobreajuste (Overfitting):

- **Síntoma:** Error entrenamiento bajo + Error validación mucho más alto
- Causa: Modelo memoriza ruido específico de los datos de entrenamiento
- Solución: Simplificar modelo, usar regularización, más datos

Subajuste (Underfitting):

- Síntoma: Error entrenamiento alto + Error validación alto y similar
- Causa: Modelo demasiado simple, no captura estructura subyacente
- Solución: Aumentar complejidad, añadir variables, términos de interacción

Modelo bien calibrado:

- Síntoma: Error entrenamiento y validación similares y bajos
- Interpretación: Buen equilibrio entre sesgo y varianza

Resultado esperado: El modelo correcto tendrá mejor rendimiento en validación cruzada, demostrando la importancia de la selección de variables.

Error de Entrenamiento vs Validación

El Conjunto de Prueba Final: La Evaluación Definitiva

Después de todo el proceso de modelado:

- 1. Filtrado de variables
- 2. Selección del mejor método
- 3. Optimización de hiperparámetros
- 4. Validación cruzada para elegir modelo final

El paso final: Evaluar el modelo seleccionado en el conjunto de prueba final

¿Por qué es necesario?

- La validación cruzada se usó para tomar decisiones sobre el modelo
- Existe riesgo de sobreajuste al proceso de validación mismo
- Necesitamos una evaluación completamente independiente

Interpretación:

- ullet Error similar a validación cruzada o modelo robusto
- ullet Error mucho mayor o posible sobreajuste al proceso de modelado

Advertencias Importantes

Los métodos stepwise (forward, backward, stepwise) requieren precaución especial

Problemas fundamentales:

- 1. Invalidez de p-valores: Los p-valores y errores estándar están sesgados
- 2. Inestabilidad: Pequeños cambios en datos pueden cambiar radicalmente el modelo
- 3. Óptimo local: No garantizan encontrar la mejor combinación de variables
- 4. Inflación del error tipo I: Múltiples comparaciones sin corrección

Uso recomendado:

- Como herramientas exploratorias únicamente
- Generar modelos candidatos para evaluación posterior
- Siempre validar con técnicas robustas
- No reportar p-valores del modelo final como definitivos

Proceso Completo de Selección y Validación

Flujo de trabajo recomendado:

- 1. Partición inicial: Separar conjunto de prueba final (20%)
- 2. En datos de modelado (80%):
 - Filtrado básico de variables
 - Aplicar métodos de selección (exhaustivos, stepwise, regularización)
 - Comparar modelos con validación cruzada
 - Seleccionar modelo final.
- 3. Evaluación final: Probar modelo seleccionado en conjunto de prueba
- 4. Reportar: Error de validación cruzada Y error en conjunto de prueba

Criterios de decisión:

- Número de variables vs tamaño de muestra → método de selección.
- Objetivo (predicción vs explicación) → criterio de información
- Multicolinealidad → regularización vs selección clásica

Curso 2025-2026

Consideraciones Prácticas

Antes del modelado:

- EDA completo para entender los datos
- Conocimiento del dominio para variables importantes
- Objetivo claro: ¿predicción o explicación?
- Relación entre tamaño muestral y número de variables

Durante la selección:

- Usar validación cruzada para todos los hiperparámetros
- Comparar múltiples métodos de selección
- No guiarse solo por métricas: considerar interpretabilidad
- Documentar todas las decisiones tomadas

Después de la selección:

- Diagnóstico completo de residuos del modelo final
- Análisis de sensibilidad a observaciones influyentes
- Intervalos de confianza para coeficientes importantes
- Validación en el conjunto de prueba final

Checklist de buenas prácticas:

- Datos → EDA + conocimiento del dominio
- Método → Múltiples enfoques + validación cruzada
- Selección → Criterios objetivos + interpretabilidad
- Validación o Diagnóstico + evaluación

Conclusiones

Lo aprendido en este tema:

- 1. Filtrado inicial: Elimina problemas básicos de forma eficiente
- 2. Criterios de información: Guían comparación objetiva de modelos
- 3. Métodos exhaustivos: Garantizan óptimo pero son computacionalmente costosos
- 4. Regularización: Controla sobreajuste y realiza selección automáticamente
- 5. Validación: Indispensable para evaluar capacidad de generalización

Recomendaciones principales:

- Combinar métodos: Ningún método es perfecto en todas las situaciones
- Validar siempre: Con datos que el modelo no ha visto
- Preferir simplicidad: Cuando el rendimiento es comparable
- Incorporar conocimiento del dominio: Los datos no lo dicen todo

El mejor modelo es aquel que resuelve el problema con la mayor simplicidad.

Modelos Lineales Generalizados (GLM)

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

Modelos de Regresión Generalizada

Punto de Partida: La Regresión Lineal

- Es una herramienta potente para modelar una variable dependiente continua.
- Sin embargo, sus supuestos (normalidad, homocedasticidad) no siempre se cumplen.

El Desafío: Datos No Normales

- ¿Cómo modelamos una variable de respuesta binaria (ej. enfermo/sano)?
- ¿O datos de **conteo** (ej. n^{o} de accidentes en una intersección)?

La Solución: Modelos Lineales Generalizados (GLM)

 Son una extensión de la regresión lineal que permite modelar respuestas con distribuciones como la Binomial o la de Poisson, utilizando funciones de enlace para mayor flexibilidad.

Definición de GLM

Los Modelos Lineales Generalizados (GLM) son una extensión de los modelos de regresión lineal que permiten manejar una mayor variedad de tipos de datos y relaciones entre variables.

Mientras que la regresión lineal clásica asume que la variable dependiente (Y) es continua y sigue una distribución Normal, los GLM permiten que Y sea:

- Binaria: Éxito/Fracaso, Sí/No (ej. Regresión Logística).
- **De Conteo:** Nº de eventos (ej. Regresión de Poisson).
- Continua y Positiva con sesgo (ej. tiempos, costos).

El marco teórico unificador de los GLM es que la distribución de la variable dependiente siempre pertenece a la **familia exponencial**.

Los 3 Componentes de un GLM

Todo Modelo Lineal Generalizado se define por la interacción de tres componentes clave:

1. Componente Aleatorio:

- Qué es: La distribución de probabilidad que se asume para la variable dependiente (Y).
- Proviene de la familia exponencial.

2. Componente Sistemático:

• Qué es: La combinación lineal de las variables predictoras (X), que forma el predictor lineal (η) .

3. Función de Enlace (Link Function):

• **Qué es:** El **puente matemático** que conecta el predictor lineal (η) con la media de la variable respuesta (μ) .

Componentes en Detalle: Aleatorio y Sistemático

1. Componente Aleatorio (La Distribución)

Define el tipo de datos que estamos modelando. A diferencia de la regresión lineal (solo Normal), en los GLM podemos usar otras distribuciones:

- **Distribución Binomial:** Para variables categóricas binarias (0/1, éxito/fracaso).
- Distribución de Poisson: Para datos de conteo (número de eventos).
- Distribución Gamma: Para datos continuos y positivos (como costos o tiempos).

2. Componente Sistemático (El Predictor Lineal)

Describe cómo las variables independientes se combinan linealmente. Su forma es idéntica a la de la regresión lineal:

$$\eta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Donde η es el predictor lineal y β son los coeficientes del modelo.

Componentes en Detalle: La Función de Enlace

La función de enlace (g) conecta el predictor lineal (η) con la media de la variable dependiente (μ) . Es la clave de la flexibilidad del modelo.

Relación Fundamental:

$$g(\mu) = \eta$$

Esta función transforma la media de Y para que la relación con los predictores se vuelva lineal.

Logística (Logit): Para Regresión Logística.

$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$$

Logarítmica: Para Regresión de Poisson.

$$g(\mu) = \log(\mu)$$

Identidad: Para Regresión Lineal estándar (el GLM más simple).

$$g(\mu) = \mu$$

Diferencias Clave: Regresión Lineal vs. GLM

Regresión Lineal Clásica

- Distribución: Normal.
- Tipo de Respuesta: Continua.
- Relación: Lineal y directa.
- Función de Enlace: Identidad.

Modelos Lineales Generalizados

- **Distribución:** Familia Exponencial.
- **Tipo de Respuesta:** Flexible (binaria, conteo...).
- Relación: Transformada por una función de enlace.
- Función de Enlace: Flexible (Logit, Log...).

Ventajas Principales de los GLM:

- Flexibilidad: Permiten modelar muchos más tipos de variables dependientes.
- Interpretación Coherente: Los coeficientes siguen siendo interpretables de forma rigurosa.
- Evaluación Robusta: Se pueden usar las mismas herramientas de evaluación (AIC, BIC, tests de hipótesis).

Estimación de Parámetros en GLM

La estimación en GLM representa un cambio fundamental respecto a la regresión lineal clásica.

- Regresión Lineal: Utiliza Mínimos Cuadrados Ordinarios (MCO), un método que funciona bajo supuestos de normalidad y homocedasticidad.
- **GLM:** Necesita métodos más sofisticados debido a las distribuciones no normales y las funciones de enlace no lineales.

El enfoque para los GLM se basa en un principio unificador:

- El Principio: La Máxima Verosimilitud (MLE), que proporciona un marco teórico coherente para toda la familia exponencial.
- El Algoritmo: IRLS (*Iteratively Reweighted Least Squares*), el método computacional para encontrar la solución de máxima verosimilitud.

El Método de Máxima Verosimilitud (MLE)

A diferencia de Mínimos Cuadrados, el método de **Máxima Verosimilitud** se emplea para estimar los parámetros en un GLM.

¿Por qué es necesario?

- Las distribuciones de la familia exponencial no siempre tienen una relación lineal directa con los predictores.
- La varianza de la respuesta a menudo depende de su media $(Var(Y) = V(\mu))$, violando el supuesto de homocedasticidad que requiere MCO.

Principio Fundamental de MLE

Consiste en encontrar los valores de los parámetros β que hacen **más probable** observar los datos que tenemos.

La Función de Verosimilitud $(L(\beta))$

Para aplicar el principio de Máxima Verosimilitud, primero definimos la **función de verosimilitud**.

- **Definición:** Es la probabilidad conjunta de observar la totalidad de nuestra (y_1, \ldots, y_n) dado un conjunto de parámetros β .
- Fórmula:

$$L(\beta) = \prod_{i=1}^{n} f(y_i; \theta_i, \phi)$$

donde $f(y_i; \theta_i, \phi)$ es la función de densidad o masa de probabilidad de cada observación.

• El Problema Práctico: Maximizar una función que es un producto de muchos términos es computacionalmente complejo y puede ser numéricamente inestable.

La Función de Log-Verosimilitud ($\ell(\beta)$)

Para solucionar el problema de los productos, en la práctica se trabaja con el **logaritmo** de la verosimilitud.

- **Definición:** La función de log-verosimilitud es simplemente el logaritmo de la función de verosimilitud.
- Fórmula:

$$\ell(\beta) = \log(L(\beta)) = \sum_{i=1}^{n} \log f(y_i; \theta_i, \phi)$$

 Ventaja Clave: El logaritmo convierte los productos en sumas, lo que simplifica enormemente los cálculos matemáticos y numéricos necesarios para encontrar el máximo de la función.

La Teoría Unificadora: La Familia Exponencial

La clave de los GLM es que todas sus distribuciones (Binomial, Poisson, Gamma...) pertenecen a la familia exponencial.

Esto significa que todas se pueden escribir con una forma matemática unificada:

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

donde θ es el parámetro natural y ϕ es el parámetro de dispersión.

Propiedades Derivadas de esta Forma: Esta estructura unificada permite derivar propiedades generales para todos los GLM de forma elegante:

- Esperanza (Media): $E(Y) = \mu = b'(\theta)$.
- Varianza: $Var(Y) = a(\phi)b''(\theta) = a(\phi)V(\mu)$, donde $V(\mu)$ es la función de varianza que caracteriza la relación media-varianza de cada distribución.

Distribuciones Comunes

Estas son las distribuciones más frecuentes en la práctica.

Normal

- Uso Típico: Datos continuos simétricos (es el GLM equivalente a la regresión lineal).
- Función de Varianza: $V(\mu) = 1$ (varianza constante).
- **Enlace Canónico:** Identidad $(g(\mu) = \mu)$.

Binomial

- Uso Típico: Proporciones, datos binarios (éxito/fracaso).
- Función de Varianza: $V(\mu) = \mu(1-\mu)$.
- Enlace Canónico: Logit $(g(\mu) = \log(\frac{\mu}{1-\mu}))$.

Poisson

- Uso Típico: Conteos de eventos.
- Función de Varianza: $V(\mu) = \mu$.
- Enlace Canónico: Log $(g(\mu) = \log(\mu))$.

Distribuciones para Datos Asimétricos

Para datos continuos que son estrictamente positivos y tienen sesgo a la derecha.

Gamma

- Uso Típico: Tiempos, costos, o cualquier dato continuo positivo y asimétrico.
- Función de Varianza: $V(\mu) = \mu^2$.
- Enlace Canónico: Inverso $(g(\mu) = 1/\mu)$.

Inversa Gaussiana

- Uso Típico: Tiempos hasta un evento, o datos con una asimetría aún más pronunciada que la Gamma.
- Función de Varianza: $V(\mu) = \mu^3$.
- **Enlace Canónico:** Inverso al cuadrado $(g(\mu) = 1/\mu^2)$.

Conceptos Clave de la Familia Exponencial

Para entender y comparar los diferentes GLM, dos conceptos derivados de la familia exponencial son fundamentales:

- 1. La Función de Varianza: $V(\mu)$
- **Definición:** Es la "firma" de cada distribución, ya que define la relación teórica entre la media (μ) y la varianza.
- Implicación Práctica: Determina la heterocedasticidad inherente de los datos (ej. $V(\mu)=\mu$ en Poisson) y, por tanto, influye directamente en los **pesos** que el algoritmo IRLS asigna a cada observación durante la estimación.
- **2.** El Enlace Canónico: $g(\mu)$
- **Definición:** Es la función de enlace que surge de forma "natural" de la estructura matemática de cada distribución.
- Implicación Práctica: Aunque en la práctica se pueden probar otros enlaces, el canónico suele garantizar las mejores propiedades estadísticas y una estimación computacionalmente más eficiente.

La Función de Varianza

La relación entre media y varianza es fundamental en los GLM. La función de varianza $V(\mu)$ determina la **heterocedasticidad inherente** de cada distribución e influye en la estimación del modelo.

- Distribución Binomial: $V(\mu)=\mu(1-\mu)$. La varianza es máxima cuando la probabilidad $\mu=0.5$.
- Distribución de Poisson: $V(\mu)=\mu$. La varianza aumenta linealmente con la media.
- Distribución Gamma: $V(\mu)=\mu^2$. La varianza aumenta cuadráticamente con la media.

Implicación Práctica: Esta función influye directamente en los pesos del algoritmo IRLS. En regresión logística, por ejemplo, las observaciones con probabilidades cercanas a 0.5 tienen mayor varianza y, por tanto, reciben **menor peso** en la estimación.

El Algoritmo de Estimación: IRLS

Las ecuaciones de máxima verosimilitud de los GLM no tienen una solución matemática directa como en la regresión lineal. Por ello, se necesita un **algoritmo iterativo** para encontrar los coeficientes.

El método estándar es **IRLS** (*Iteratively Reweighted Least Squares*), que es una aplicación del método de Newton-Raphson.

¿Cómo funciona conceptualmente? El algoritmo aproxima el problema no lineal del GLM a una serie de regresiones lineales ponderadas que se resuelven de forma sucesiva.

- 1. Se empieza con una estimación inicial de los coeficientes β .
- 2. En cada paso, se calculan unos **pesos** (w_i) para cada observación. Estos pesos reflejan la "fiabilidad" de cada punto según el modelo actual.
- 3. Se resuelve una regresión por mínimos cuadrados ponderada para obtener una nueva y mejor estimación de β .
- **4.** Se repite el proceso hasta que las estimaciones de β se estabilizan (convergen).

Propiedades de los Estimadores

Los estimadores MLE poseen propiedades **asintóticas** (se cumplen cuando $n \to \infty$) muy deseables, que los validan como el método de estimación preferido.

1. Consistencia: A medida que aumenta el tamaño de la muestra, los estimadores convergen al valor verdadero del parámetro.

$$\hat{\beta} \xrightarrow{p} \beta$$
 cuando $n \to \infty$.

2. Normalidad Asintótica: Para muestras grandes, la distribución de los estimadores se aproxima a una Normal multivariada.

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(\mathbf{0}, \mathbf{I}^{-1}(\beta))$$

Permite construir intervalos de confianza y realizar tests de hipótesis.

3. Eficiencia: Los estimadores MLE alcanzan la cota de Cramér-Rao, lo que significa que tienen la **menor varianza asintótica posible** entre todos los estimadores insesgados.

La Matriz de Información: ¿Cuánta Certeza Tenemos?

La matriz de información $(I(\beta))$ es un concepto clave que cuantifica la certeza de las estimaciones de nuestros coeficientes.

Interpretación Intuitiva:

- Mide la "curvatura" de la función de verosimilitud en su punto máximo.
- Una función muy "puntiaguda" (alta curvatura) significa **mucha información** y, por tanto, estimaciones más precisas y fiables.
- Una función más plana (baja curvatura) significa **poca información** y mayor incertidumbre.

Cálculo en la Práctica (GLM): Aunque existen definiciones teóricas basadas en las segundas derivadas de la log-verosimilitud, el algoritmo IRLS nos proporciona una aproximación computacionalmente eficiente y directa:

$$\mathbf{I}(\hat{\boldsymbol{\beta}}) \approx \mathbf{X}^T \mathbf{W} \mathbf{X}$$

donde W es la matriz diagonal de pesos calculada en la última iteración del algoritmo.

Cálculo de los Errores Estándar

Los **errores estándar** de los coeficientes individuales se obtienen a partir de la matriz de información.

Proceso de Cálculo:

- 1. Matriz de Covarianza: Se calcula como la inversa de la matriz de información.
- Errores Estándar: Se obtienen como las raíces cuadradas de los elementos diagonales de esa matriz de covarianza.

Fórmula:

$$\mathsf{SE}(\hat{\beta}_j) = \sqrt{[\mathbf{I}^{-1}(\hat{\beta})]_{jj}}$$

Uso de los Errores Estándar en Inferencia

Estos errores estándar son fundamentales para la inferencia estadística.

Aplicaciones Principales:

Intervalos de Confianza:

$$\hat{\beta}_j \pm z_{\alpha/2} \cdot \mathrm{SE}(\hat{\beta}_j)$$

• Estadísticos de Prueba (de Wald):

$$z_j = \frac{\hat{\beta}_j}{\mathsf{SE}(\hat{\beta}_j)}$$

• Evaluación de la Precisión de nuestras estimaciones.

Advertencia Importante:

- Estos errores estándar son válidos bajo los supuestos del modelo GLM.
- Violaciones serias de estos supuestos (como **sobredispersión** en modelos de Poisson) pueden hacer que sean inadecuados.

La Deviance: Definición y Cálculo

La **deviance** es la medida principal de ajuste en GLM; es una generalización de la suma de cuadrados residuales.

Idea Fundamental: Mide la discrepancia entre la verosimilitud de nuestro **modelo propuesto** y la de un **modelo saturado** (un modelo teóricamente perfecto que ajusta cada dato).

$$D = 2\sum_{i=1}^n \left[\ell(\mathsf{modelo\ saturado}) - \ell(\mathsf{modelo\ propuesto})\right]$$

Interpretación práctica:

- Deviance = 0: Modelo perfecto que ajusta exactamente todos los datos observados
- Deviance baja: Buen ajuste del modelo a los datos
- Deviance alta: Mal ajuste del modelo, sugiere que el modelo no captura adecuadamente los patrones en los datos

Interpretando la Deviance: Una Comparación Clave

La clave para interpretar la deviance es comparar la de tu modelo con la de un modelo base.

- 1. El Punto de Partida: La Deviance Nula
- ¿Qué es? La deviance de un modelo simple, solo con intercepto (que ignora todos tus predictores).
- Analogía: Es el "error máximo" que sirve como punto de comparación.
- 2. El Resultado: La Deviance Residual
- ¿Qué es? La deviance de tu modelo final, con todos los predictores incluidos.
- Analogía: Es el "error restante" después de que tus predictores han hecho su trabajo.

La reducción de la deviance (Deviance Nula - Deviance Residual) representa la mejora en el ajuste que se debe a tus predictores.

El Test de la Razón de Verosimilitudes (LRT)

Es la herramienta principal para **comparar modelos anidados**, basándose en el principio de parsimonia.

Estadístico de Prueba: La diferencia en las deviances sigue una distribución chi-cuadrado:

$$LRT = D_{\rm reducido} - D_{\rm completo} \sim \chi_{df}^2$$

(donde df es la diferencia en el número de parámetros).

Regla de Decisión:

- H_0 : El modelo reducido es suficiente.
- Si el **p-valor** $< \alpha$, se rechaza H_0 . La mejora del modelo completo es **estadísticamente** significativa.

LRT en la Práctica: Ejemplo con R

Objetivo: Determinar si añadir la variable disp (cilindrada) a un modelo que ya contiene wt (peso) mejora significativamente la predicción.

Salida del Test en R

Model 1: am ~ wt

```
Analysis of Deviance Table
```

LRT en la Práctica: Ejemplo con R

Interpretación del Resultado

El test compara la **Deviance** de ambos modelos. La hipótesis nula (H_0) es que el modelo reducido es suficiente.

- La diferencia en deviance es de 1.391 con 1 grado de libertad.
- El p-valor asociado es 0.238.

Dado que el p-valor es mayor que 0.05, no rechazamos la hipótesis nula.

Conclusión: Añadir disp no aporta una mejora significativa. Nos quedamos con el **modelo** reducido por parsimonia.

Diagnosis de GLMs

La diagnosis de GLMs es el proceso de evaluar los supuestos del modelo y detectar problemas que puedan afectar la validez de las inferencias.

¿Por qué es diferente de la Regresión Lineal?

- A diferencia de la regresión lineal, los residuos ordinarios no son suficientes.
- Los GLM requieren herramientas especializadas debido a la heterocedasticidad inherente y a las diferentes distribuciones subyacentes (Poisson, Binomial, etc.).

Nuestro Enfoque: Abordaremos el diagnóstico respondiendo a tres preguntas clave, utilizando diferentes tipos de **residuos** para obtener las respuestas.

Tipos de Residuos en GLMs

Los residuos "crudos" $(y_i-\hat{\mu}_i)$ no son homocedásticos, por lo que se utilizan versiones estandarizadas. Los más importantes son:

Residuos Pearson:

 Son un análogo directo a los residuos estandarizados en regresión lineal. Estandarizan el residuo crudo dividiendo por la desviación estándar predicha por el modelo.

$$r_i = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

Residuos Deviance:

- Son los más recomendados para la inspección visual en gráficos diagnósticos.
- Su distribución se aproxima mejor a la normalidad y su varianza es más estable que la de otros residuos.

$$d_i = \mathrm{sign}(y_i - \hat{\mu}_i) \sqrt{2[l_i(y_i) - l_i(\hat{\mu}_i)]}$$

¿La Forma del Modelo es Correcta?

Se evalúa si la estructura básica del modelo, $g(\mu) = X\beta$, es adecuada para los datos.

Herramientas de Diagnóstico:

- Gráfico de Residuos vs. Valores Ajustados:
 - Es la herramienta fundamental. Se grafican los residuos (idealmente, deviance) contra el predictor lineal $(\hat{\eta}_i)$.
 - **Un patrón curvilíneo** es una señal clara de que la forma funcional o la función de enlace son incorrectas.
- Gráficos de Residuos Parciales: Evalúan si la relación es apropiada para cada predictor individualmente.
- Test de Especificación de Enlace (Linktest): Es una prueba formal. Si el predictor lineal al cuadrado $(\hat{\eta}^2)$ resulta significativo al añadirlo al modelo, es evidencia de que la función de enlace está mal especificada.

¿La Distribución es Correcta?

Se evalúa si la elección de la familia de distribución (Poisson, Binomial, etc.) fue acertada, empezando por la relación entre la media y la varianza.

Sobredispersión: Ocurre cuando la varianza real de los datos es **mayor** que la media, violando el supuesto de modelos como el de Poisson $(Var(Y) = \mu)$.

- Consecuencia: Invalida las inferencias (errores estándar demasiado pequeños, p-valores incorrectos).
- Detección: Se calcula el Estadístico de dispersión ($\hat{\phi}$). Si $\hat{\phi}$ es significativamente mayor que 1, hay sobredispersión.

$$\hat{\phi} = \frac{\sum r_i^2}{n-p}$$

• Solución: Cambiar a un modelo más flexible. El caso clásico es pasar de Poisson a Binomial Negativo, ya que este último incluye un parámetro (α) para modelar la variabilidad extra: $Var(Y) = \mu + \alpha \mu^2$.

¿La Distribución es Correcta?

Un segundo aspecto para verificar la distribución es la forma general de los errores.

Herramienta: El Gráfico Q-Q de residuos deviance.

 Concepto: Aunque los errores de un GLM no son estrictamente normales, los residuos deviance sí deberían tener una distribución aproximadamente normal si el modelo está bien especificado.

Interpretación:

- Se grafican los cuantiles de los residuos deviance contra los cuantiles teóricos de una distribución normal.
- Los puntos deberían seguir de cerca la línea diagonal.
- Desviaciones sistemáticas de la línea pueden indicar que la familia de distribución asumida (Poisson, Binomial, etc.) es incorrecta.

¿Hay Observaciones que Distorsionan el Modelo?

Finalmente, buscamos identificar puntos individuales que tienen una influencia desproporcionada en los coeficientes del modelo.

Herramientas Matemáticas Clave:

- Leverage Generalizado (h_i): Mide el potencial de una observación para ser influyente debido a su posición en el espacio de los predictores.
- Distancia de Cook para GLMs (D_i): Mide la influencia global de una observación en todos los coeficientes.

$$D_i = \frac{r_i^2 h_i}{p(1 - h_i)^2}$$

• DFBETAS: Mide la influencia de una observación en cada coeficiente individual.

Estrategia:

- La herramienta visual principal es el **gráfico de residuos vs. leverage**.
- La estrategia ante estas observaciones no es eliminarlas automáticamente, sino **investigarlas** para entender su naturaleza.

Regresión Logística: Modelando Eventos Binarios

La **regresión logística** es la herramienta fundamental de los GLM para modelar la probabilidad de ocurrencia de un **evento binario**.

Objetivo:

Modelar una variable dependiente que solo toma dos valores:

- Éxito / Fracaso
- Sí / No
- Enfermo / Sano

Pilares del Tema:

- 1. Fundamentos: La función sigmoide y el enlace Logit.
- 2. Estimación: Máxima Verosimilitud (MLE) y el algoritmo IRLS.
- 3. Interpretación: El concepto clave de los Odds Ratios.
- **4. Evaluación:** Bondad de ajuste (Deviance, Pseudo R²) y validación (Matriz de Confusión, Curva ROC).

Fundamentos: El Problema y la Función Sigmoide

El Problema: La regresión lineal puede predecir valores fuera del rango [0,1], lo cual no tiene sentido para modelar una probabilidad.

La Solución: La función logística (o sigmoide) transforma cualquier valor real del predictor lineal (η) en una probabilidad entre 0 y 1.

Fórmula de la Probabilidad:

$$P(Y=1|X) = \frac{1}{1+e^{-\eta}} = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+\dots)}}$$

La curva en forma de "S" asegura que las predicciones se aplanen hacia 0 y 1 en los extremos.

Fundamentos: La Función de Enlace Logit

Para poder usar un modelo lineal $(X\beta)$, necesitamos transformar la probabilidad (que está en la escala [0,1]) a una escala que vaya de $-\infty$ a $+\infty$.

La Herramienta: Esto se logra con la función de enlace logit.

Definición del Logit: El logit de una probabilidad p es el logaritmo de los odds (razón de probabilidades):

$$\mathsf{logit}(p) = \log\left(\frac{p}{1-p}\right)$$

El Modelo Logístico Linealizado: Esta transformación nos permite expresar el modelo de forma lineal:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Estimación por Máxima Verosimilitud (MLE)

Función de Verosimilitud ($L(\beta)$): Para un resultado binario $y_i \in \{0,1\}$, la verosimilitud se define como:

$$L(\beta) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

Función de Log-Verosimilitud ($\ell(\beta)$): Maximizamos el logaritmo de la función anterior:

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^T \beta - \log(1 + e^{\mathbf{x}_i^T \beta}) \right]$$

Ecuaciones de Puntuación (*Score Equations*): Para encontrar el máximo, se deriva la log-verosimilitud respecto a cada β_j y se iguala a cero:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n x_{ij} (y_i - p_i) = 0$$

Esto significa que la solución se encuentra cuando la suma de los residuos (y_i-p_i) ponderados por cada predictor es cero.

Implementación del Algoritmo IRLS

Como las ecuaciones de verosimilitud no tienen solución analítica cerrada, se utiliza el algoritmo IRLS. Para la regresión logística, los componentes específicos son:

Pesos (w_i): El peso de cada observación es la varianza de una distribución Bernoulli, que es máxima cuando la probabilidad es 0.5.

$$w_i = p_i(1 - p_i)$$

Variable Dependiente Ajustada (z_i): Es la versión linealizada de la respuesta en cada iteración.

$$z_i = \eta_i^{(t)} + \frac{y_i - p_i^{(t)}}{w_i^{(t)}}$$

Estos componentes se utilizan en cada paso de la actualización de los coeficientes: $\beta^{(t+1)} = (\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}.$

Ejemplo: Verificación de la Estimación MLE en R

Podemos verificar que los coeficientes encontrados por glm() son, en efecto, los que maximizan la función de log-verosimilitud. A continuación se muestra la salida del código R:

Salida del Análisis:

Conclusión: La salida confirma que el algoritmo convergió en 4 iteraciones para encontrar los coeficientes que maximizan la verosimilitud del modelo.

Interpretación: Probabilidad vs. Odds

Los coeficientes β están en la escala del logit, por lo que no son directamente interpretables en términos de probabilidad. Para interpretarlos, primero necesitamos entender el concepto de **odds**.

Definición de Odds:

• El **odds** es la razón entre la probabilidad de que un evento ocurra y la de que no ocurra.

$$\mathsf{odds} = \frac{p}{1-p}$$

• El modelo logístico es, en esencia, un modelo lineal para el **logaritmo de los odds**: $\log(\mathsf{odds}) = X\beta$.

Ejemplo:

- Si la probabilidad de éxito p = 0.8.
- El odds es $\frac{0.8}{0.2} = 4$.
- Interpretación: El evento es 4 veces más probable que ocurra a que no ocurra.

Interpretación: El Odds Ratio (OR)

El **Odds Ratio (OR)** es la herramienta principal para interpretar los coeficientes de una regresión logística.

- Concepto: Mide el cambio multiplicativo en los odds por cada incremento de una unidad en un predictor X_i , manteniendo el resto de variables constantes.
- Cálculo: Se obtiene exponenciando el coeficiente:

$$\mathsf{OR} = e^{\beta_j}$$

- Interpretación:
 - \circ **OR** > **1**: El odds aumenta (el evento se vuelve más probable).
 - \circ OR < 1: El odds disminuye (el evento se vuelve menos probable).
 - **OR** = **1**: No hay efecto.

Ejemplo: Si $\beta_{BMI}=0.08$, entonces $OR=e^{0.08}\approx 1.083$. Por cada unidad que aumenta el BMI, el odds de tener diabetes se multiplica por 1.083 (es decir, aumenta un **8.3%**).

Bondad de Ajuste: Deviance y Pseudo R²

El \mathbb{R}^2 tradicional no es aplicable en este contexto. La bondad de ajuste en regresión logística se evalúa con métricas basadas en la verosimilitud.

1. Deviance

• Compara la log-verosimilitud de nuestro modelo con la de un modelo saturado. La fórmula específica para la distribución binomial es:

$$D = 2\sum_{i=1}^{n} \left[y_i \log \left(\frac{y_i}{\hat{p}_i} \right) + (1 - y_i) \log \left(\frac{1 - y_i}{1 - \hat{p}_i} \right) \right]$$

2. Pseudo R²

- Son análogos al \mathbb{R}^2 que miden la mejora en la verosimilitud del modelo en comparación con un modelo nulo (solo con intercepto).
- No representan la "proporción de varianza explicada", sino la mejora en el ajuste del modelo.

Bondad de Ajuste: Tipos de Pseudo R²

Existen varias formulaciones para el Pseudo R². Las más comunes son:

• McFadden's R²: Es el más utilizado.

$$R_{\rm McFadden}^2 = 1 - \frac{\ell_{\rm modelo}}{\ell_{\rm nulo}}$$

- Valores entre 0.2 y 0.4 se consideran indicativos de un buen ajuste.
- Cox-Snell R2:

$$R_{\text{Cox-Snell}}^2 = 1 - \left(\frac{L_{\text{nulo}}}{L_{\text{modelo}}}\right)^{2/n}$$

• Nagelkerke R^2 : Es una corrección del Cox-Snell para que su valor máximo sea 1, haciéndolo más comparable al R^2 tradicional.

$$R_{\mathsf{Nagelkerke}}^2 = rac{R_{\mathsf{Cox-Snell}}^2}{1 - (L_{\mathsf{nulo}})^{2/n}}$$

Validación: La Matriz de Confusión

La validación de un modelo logístico se centra en su capacidad de clasificación.

La Matriz de Confusión

- Es la herramienta fundamental. Compara las clases predichas por el modelo con las clases reales.
- **Proceso:** Se convierten las probabilidades predichas (\hat{p}_i) en clases ("Sí" / "No") usando un **umbral de decisión** (típicamente 0.5).

Esto genera cuatro posibles resultados:

- Verdaderos Positivos (VP): Predijo "Sí" y era "Sí".
- Falsos Positivos (FP): Predijo "Sí" pero era "No" (Error Tipo I).
- Verdaderos Negativos (VN): Predijo "No" y era "No".
- Falsos Negativos (FN): Predijo "No" pero era "Sí" (Error Tipo II).

Validación: Métricas de Clasificación

A partir de la matriz de confusión, se calculan las métricas de rendimiento clave:

• Precisión (Accuracy):

- $\circ \frac{VP+VN}{\mathsf{Total}}$
- Proporción total de predicciones correctas. Cuidado: puede ser engañosa en datasets desbalanceados.

Sensibilidad (Recall o Tasa de VP):

- $\circ \quad \frac{VP}{VP + FN}$
- De todos los positivos reales, ¿qué proporción clasificamos correctamente? Mide la capacidad para identificar los casos positivos.

Especificidad:

- $\frac{VN}{VN+FF}$
- De todos los negativos reales, ¿qué proporción clasificamos correctamente? Mide la capacidad para identificar los casos negativos.

Validación: Curva ROC y AUC

La Curva ROC (Receiver Operating Characteristic)

- Es una evaluación global del rendimiento del modelo, independiente del umbral de decisión.
- Grafica la **Sensibilidad** (Tasa de VP) en el eje Y frente a **1 Especificidad** (Tasa de FP) en el eje X para todos los umbrales posibles.

AUC (Área Bajo la Curva ROC)

- Cuantifica la capacidad discriminativa del modelo en un solo número (de 0.5 a 1.0).
 - **AUC** = **1.0**: Clasificador perfecto.
 - **AUC** = 0.5: Clasificador inútil (equivalente al azar).
 - \circ **Típicamente, AUC** > **0.8** se considera una buena discriminación.

Sí, es una idea excelente. Integrar los ejemplos prácticos es fundamental para conectar la teoría con la aplicación en R.

Caso Práctico: Resultados del Modelo Logístico

Ajustamos un modelo para predecir la diabetes en el dataset Pima.tr. Los resultados clave de la validación del modelo son los siguientes:

Resultados Numéricos Matriz de Confusión:

Actual

Predicted No Yes

No 114 29

Yes 18 39 Métricas Clave:

• Exactitud: 0.785

AUC: 0.831

Evaluación Visual: Curva ROC

Regresión de Poisson: Modelando Datos de Conteo

Es la técnica de GLM utilizada para modelar **datos de conteo**: una variable que representa el número de veces que ocurre un evento en un intervalo.

- **Tipo de Variable:** La respuesta toma valores enteros no negativos (0, 1, 2, ...) y se asume que sigue una **distribución de Poisson**.
- Función de Probabilidad de Poisson:

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}$$

donde λ es la **tasa media de ocurrencia** del evento.

El Modelo de Regresión de Poisson

El objetivo del modelo es explicar la relación entre la tasa de ocurrencia de los eventos (λ) y un conjunto de variables predictoras X.

• Forma Funcional: Se utiliza una función de enlace logarítmica para asegurar que la tasa λ sea siempre positiva.

$$\log(\lambda) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

 Tasa Esperada: El modelo puede expresarse en términos de la tasa esperada de eventos como:

$$\lambda = e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}$$

Supuestos y Limitaciones Clave

Para que el modelo sea adecuado, se deben cumplir ciertos supuestos:

- Independencia de los eventos.
- Equidispersión: El supuesto fundamental de la distribución de Poisson es que la media es igual a la varianza:

$$E(Y) = Var(Y) = \lambda$$

Limitaciones Comunes (Violación de Supuestos):

- Sobredispersión: Ocurre cuando la varianza es mayor que la media (Var(Y) > E(Y)). La solución es usar una Regresión Binomial Negativa.
- Exceso de Ceros: Si hay más ceros en los datos de los que predice el modelo. La solución es usar modelos ZIP (Zero-Inflated Poisson).

Interpretación de Coeficientes

Los coeficientes β están en la escala logarítmica de la tasa, por lo que para una interpretación práctica, los exponenciamos.

• Incidence Rate Ratio (IRR):

$$IRR = e^{\beta_j}$$

- Interpretación: El IRR es un factor multiplicativo que nos dice cuánto cambia la tasa de eventos esperada por cada incremento de una unidad en el predictor X_i .
 - IRR > 1: La tasa de eventos aumenta. Un IRR de 1.25 es un aumento del 25%.
 - \circ IRR < 1: La tasa de eventos disminuye. Un IRR de 0.80 es una disminución del 20%.
 - **IRR** = 1: No hay efecto.

Estimación por Máxima Verosimilitud

La estimación se adapta a la distribución de Poisson con enlace logarítmico.

• Función de Verosimilitud ($L(\beta)$):

$$L(\beta) = \prod_{i=1}^{n} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}$$

donde $\lambda_i = e^{\mathbf{x}_i^T \beta}$.

• Función de Log-Verosimilitud ($\ell(\beta)$):

$$\ell(\beta) = \sum_{i=1}^n \left[y_i \mathbf{x}_i^T \beta - e^{\mathbf{x}_i^T \beta} - \log(y_i!) \right]$$

• Ecuaciones de Puntuación: La solución de máxima verosimilitud se encuentra cuando:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n x_{ij} (y_i - \lambda_i) = 0$$

Ejemplo Práctico: Salida del Modelo Poisson

Objetivo: Ajustamos un modelo para predecir el número de accidentes en función del tráfico y la visibilidad.

Salida de Coeficientes (summary)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 9.607e-04 2.316e-03 0.415 0.678 trafico 9.999e-03 1.360e-06 < 2e-16 *** visibilidad -2.000e-01 1.012e-04 < 2e-16 ***
```

Métricas Globales del Modelo

- Null deviance: 1.68e+08 (con 99 g.l.)
 Residual deviance: 89.3 (con 97 g.l.)
- AIC: 1220.4

Ejemplo Práctico: Interpretación de Resultados

Significancia de los Predictores

Basado en los p-valores (Pr(>|z|)) de la diapositiva anterior:

 Tanto trafico como visibilidad son predictores altamente significativos (sus p-valores son prácticamente cero).

Interpretación de los Coeficientes (vía IRR)

Para interpretar el efecto práctico, exponenciamos los coeficientes (IRR $=e^{eta}$):

- IRR (tráfico): $e^{0.01} \approx 1.01$.
 - Un aumento de 1 unidad en trafico incrementa la tasa de accidentes esperada en un 1%.
- IRR (visibilidad): $e^{-0.20} \approx 0.82$.
 - Un aumento de 1 km en visibilidad reduce la tasa de accidentes esperada en un 18%.

Implementación del Algoritmo IRLS para Poisson

Como no hay solución analítica cerrada, se utiliza el algoritmo IRLS con componentes específicos para Poisson.

• **Pesos** (w_i) : El peso de cada observación es simplemente la tasa esperada.

$$w_i = \lambda_i$$

• Variable Dependiente Ajustada (z_i) :

$$z_i = \log(\lambda_i^{(t)}) + \frac{y_i - \lambda_i^{(t)}}{\lambda_i^{(t)}}$$

Actualización de parámetros:

$$\boldsymbol{\beta}^{(t+1)} = (\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}$$

Propiedades Específicas de la Estimación Poisson

La estimación MLE en el modelo de Poisson tiene características particulares:

 $(E(Y_i) = \mathsf{Var}(Y_i) = \lambda_i).$

1. Equidispersión: El modelo asume que la varianza aumenta linealmente con la media

- 2. Convergencia Rápida: Generalmente requiere menos iteraciones que la regresión logística.
- 3. Estabilidad Numérica: El enlace logarítmico garantiza automáticamente que las tasas estimadas λ_i sean siempre positivas.
- **4. Interpretación Multiplicativa:** Los coeficientes se interpretan naturalmente como efectos multiplicativos sobre la tasa.

Bondad de Ajuste en Regresión de Poisson

La métrica teórica fundamental sigue siendo la **deviance**, pero en la práctica, la prueba de bondad de ajuste más importante es la **evaluación de la sobredispersión**.

• Herramienta de Diagnóstico: El estadístico de dispersión $(\hat{\phi})$ se convierte en la medida de facto del ajuste.

$$\hat{\phi} = \frac{X_{\text{Pearson}}^2}{n-p}$$

- Interpretación:
 - Si $\hat{\phi} \approx 1$: El supuesto de equidispersión se cumple y el ajuste es adecuado.
 - Si $\hat{\phi}\gg 1$: Hay **sobredispersión**. El modelo no se ajusta bien a la variabilidad de los datos, y se debe considerar una **Regresión Binomial Negativa**.

Validación del Modelo de Poisson

La validación se enfoca en la **capacidad de predicción**: ¿qué tan cerca están los conteos predichos de los conteos reales?

- **Proceso:** Se ajusta el modelo en un conjunto de **entrenamiento** y se evalúa su rendimiento en un conjunto de **prueba**.
- Métricas de Validación Principales:
 - Raíz del Error Cuadrático Medio (RMSE): Mide la desviación estándar de los residuos.
 Penaliza más los errores grandes.

$$\mathrm{RMSE} = \sqrt{\frac{1}{n} \sum (y_i - \hat{\mu}_i)^2}$$

 Error Absoluto Medio (MAE): Mide la magnitud promedio de los errores. Es menos sensible a outliers.

$$\mathsf{MAE} = \frac{1}{n} \sum |y_i - \hat{\mu}_i|$$

• Herramienta Visual: Gráfico de valores predichos vs. valores reales. En un buen modelo, los puntos deben agruparse cerca de la línea diagonal y=x.

Ejemplo Práctico: Diagnóstico del Modelo Poisson

Este segundo ejemplo se centra en verificar dos aspectos clave de la estimación: la convergencia del algoritmo y el supuesto de equidispersión.

Comprobamos si se cumple el supuesto clave de Poisson ($media \approx varianza$).

Verificación de Equidispersión:

Media observada: 0.15 Varianza observada: 0.149 Razón varianza/media: 0.993

• Conclusión: La razón es muy cercana a 1, por lo que se cumple el supuesto. No hay evidencia de sobredispersión y el modelo de Poisson es adecuado.

Otros GLMs: Adaptándose a la Realidad de los Datos

Más allá de la regresión logística y de Poisson, existen otros GLM para manejar situaciones más complejas.

Estos modelos son especialmente útiles cuando los datos presentan características como:

- Sobredispersión: La varianza es mayor de lo esperado.
- Sesgo: La distribución de los datos es asimétrica.
- Restricciones en el dominio: La variable respuesta solo puede tomar valores positivos.

Exploraremos los tres modelos más importantes para estos casos:

- Regresión Binomial Negativa
- Regresión Gamma
- Regresión Inversa Gaussiana

Regresión Binomial Negativa

El Problema: Sobredispersión

- Ocurre en datos de conteo cuando la **varianza es mayor que la media**, violando el supuesto clave de la regresión de Poisson $(Var(Y) = \mu)$.
- Causas comunes: Heterogeneidad no modelada, dependencia entre eventos o exceso de ceros.
- Consecuencia: La regresión de Poisson subestima los errores estándar, llevando a conclusiones incorrectas sobre la significancia de los predictores.

La Solución: El Modelo Binomial Negativo

• Es una extensión del modelo de Poisson que introduce un **parámetro de dispersión** (α) para permitir que la varianza sea mayor que la media:

$$Var(Y) = \mu + \alpha \mu^2$$

• Si $\alpha = 0$, el modelo se reduce a la regresión de Poisson.

Interpretación y Comparación

La forma funcional del modelo es la misma que la de Poisson (con enlace logarítmico), pero debemos interpretar el nuevo parámetro de dispersión y comparar ambos modelos.

Interpretación del Parámetro de Dispersión (θ)

- El software (como la función glm.nb en R) estima un parámetro θ , donde $\alpha = 1/\theta$.
- Valores altos de θ (ej. > 100): Poca sobredispersión. El modelo es similar a Poisson.
- Valores bajos de θ (ej. < 10): Mucha sobredispersión. El modelo Binomial Negativo es claramente más apropiado.

Comparación de Modelos (Poisson vs. Binomial Negativa)

- Se utiliza el Criterio de Información de Akaike (AIC).
- Si el AIC de la Binomial Negativa es menor que el AIC de Poisson, debemos preferir el modelo Binomial Negativo.

Modelos para Variables Continuas No Normales

Cuando la variable dependiente (Y) es **continua**, pero **no sigue una distribución normal**, la regresión lineal clásica no es adecuada.

Este escenario es común en variables que son:

- Estrictamente positivas (ej. costos, tiempos).
- Tienen una distribución sesgada a la derecha.

Los GLM nos ofrecen alternativas como la **Regresión Gamma** y la **Regresión Inversa Gaussiana**.

Comparación: Regresión Gamma vs. Inversa Gaussiana

Regresión Gamma

- Uso Típico: Para variables continuas positivas y con sesgo a la derecha (tiempos, costos, reclamos de seguros).
- Varianza: Aumenta proporcionalmente al cuadrado de la media $(V(\mu) = \mu^2)$.
- Enlace Común: Logarítmico $(\log(\mu) = X\beta)$.

Regresión Inversa Gaussiana

- Uso Típico: Para tiempos de respuesta o variables con un sesgo aún más pronunciado que la Gamma.
- Varianza: Aumenta proporcionalmente al cubo de la media $(V(\mu) = \mu^3)$.
- Enlace Común: Inverso al cuadrado $(1/\mu^2 = X\beta)$.

Guía de Decisión: ¿Qué GLM Debo Usar?

La elección del modelo depende casi exclusivamente de la naturaleza de tu variable respuesta (Y).

- ¿Es Y binaria (0/1, Éxito/Fracaso)? Usa Regresión Logística.
- ¿Es Y un conteo de eventos (n^{ϱ} de accidentes, n^{ϱ} de clientes)?

Empieza con una Regresión de Poisson.

- Importante: Después, comprueba si hay sobredispersión. Si la hay $(\hat{\phi}>1.5)$, cambia a una Regresión Binomial Negativa.
- ¿Es Y continua, positiva y con sesgo a la derecha (tiempos, costos)? Usa Regresión Gamma. Es una excelente alternativa a transformar la variable con logaritmos y usar un modelo lineal.
- ¿Es Y un tiempo hasta un evento con una asimetría muy pronunciada? Considera una Regresión Inversa Gaussiana.

Métodos Estadísticos de Predicción

Ejercicios de la Asignatura

Grado en Matemáticas

AUTORES

- Víctor Aceña Gil
- Isaac Martín de Diego

2025-2026

Índice de Ejercicios

ntroducción	4
Estructura de los Ejercicios	. 4
Requisitos Previos	. 4
Regresión Lineal Simple	5
Ejercicio 1: Fundamentos Conceptuales	. 5
Ejercicio 2: Interpretación de Coeficientes	
Ejercicio 3: Aplicación Práctica con R (Ajuste e Inferencia)	
Ejercicio 4: Intervalos de Confianza y Predicción	
Ejercicio 5: Supuestos del Modelo	. 6
Ejercicio 6: Diagnóstico de Linealidad y Homocedasticidad	
Ejercicio 7: Diagnóstico de Normalidad	
Ejercicio 8: Descomposición de la Varianza (ANOVA)	
Ejercicio 9: Observaciones Influyentes	
Ejercicio 10: Relación entre Pruebas de Hipótesis	
Regresión Lineal Múltiple	8
Ejercicio 1: Conceptual (Interpretación Ceteris Paribus)	. 8
Ejercicio 2: Práctico (Ajuste e Interpretación de un Modelo Múltiple)	. 8
Ejercicio 3: Conceptual (R ² vs. R ² Ajustado)	. 8
Ejercicio 4: Interpretación de Salidas de R	. 9
Ejercicio 5: Conceptual (Multicolinealidad)	. 9
Ejercicio 6: Práctico (Diagnóstico de Multicolinealidad)	
Ejercicio 7: Teórico (Notación Matricial)	. 10
Ejercicio 8: Práctico (Gráficos de Regresión Parcial)	
Ejercicio 9: Inferencia (F-test vs. t-tests)	
Ejercicio 10: Práctico (Comparación de Modelos Anidados)	. 10
ngeniería de Características	11
Ejercicio 1: Conceptual (Diagnóstico antes de Transformar)	. 11
Ejercicio 2: Práctico (Escalado de Variables)	. 11
Ejercicio 3: Conceptual (Elección del Método de Escalado)	. 11
Ejercicio 4: Práctico (Transformación para Linealizar)	. 12
Ejercicio 5: Práctico (Transformación de Box-Cox)	. 12
Ejercicio 6: Conceptual (Codificación de Variables Categóricas)	. 12

Ejercicio 7: Práctico (Interacción entre Variables Continuas)	13
Ejercicio 8: Interpretación de una Interacción (Continua x Categórica)	13
Ejercicio 9: Conceptual (Principio de Jerarquía)	13
Ejercicio 10: Conceptual (Ingeniería de Características Avanzada)	13
Selección de variables, Regularización y Validación	14
Ejercicio 1: Conceptual (Sobreajuste vs. Subajuste)	14
Ejercicio 2: Práctico (Filtrado Básico)	14
Ejercicio 3: Conceptual (AIC vs. BIC)	14
Ejercicio 4: Práctico (Best Subset y Criterios de Información)	14
Ejercicio 5: Conceptual (Métodos Stepwise)	15
Ejercicio 6: Práctico (Selección Backward Stepwise)	15
Ejercicio 7: Conceptual (Ridge vs. Lasso)	15
Ejercicio 8: Práctico (Regresión Lasso)	15
Ejercicio 9: Conceptual (Validación)	16
Ejercicio 10: Práctico (Validación Cruzada)	16
Modelos de Regresión Generalizada	17
Ejercicio 1: Conceptual (Fundamentos de GLM)	17
Ejercicio 2: Conceptual (Función de Enlace)	17
Ejercicio 3: Práctico (Ajuste de un Modelo Logístico)	17
Ejercicio 4: Interpretación (Odds Ratios)	17
Ejercicio 5: Práctico (Validación del Modelo Logístico)	18
Ejercicio 6: Conceptual (Regresión de Poisson)	18
Ejercicio 7: Práctico (Ajuste de un Modelo de Poisson)	18
Ejercicio 8: Diagnóstico (Sobredispersión)	18
Ejercicio 9: Conceptual (Deviance)	19
Ejercicio 10: Elección del Modelo Adecuado	19
Ejercicios Avanzados	20
Ejercicio 1: Derivación de Estimadores	20
Ejercicio 2: El Impacto de la Multicolinealidad	20
Ejercicio 3: Interpretación de Coeficientes en Modelos Transformados	20
Ejercicio 4: Fundamentos de la Regularización	20
Ejercicio 5: La Familia Exponencial y los GLM	21
Ejercicio 6: El Problema de la Inferencia en Métodos Stepwise	21
Ejercicio 7: Propiedades de los Estimadores MCO	21
Ejercicio 8: Intervalos de Confianza vs. Predicción	21
Ejercicio 9: Estimación por Máxima Verosimilitud	22
Ejercicio 10: El Coeficiente de Regresión Parcial	22

Introducción

Este documento recopila una serie de ejercicios prácticos y teóricos diseñados para complementar la asignatura "Modelos Estadísticos de Predicción" del Grado en Matemáticas. El objetivo de esta colección es afianzar los conocimientos adquiridos en cada tema, fomentando tanto la comprensión de los fundamentos teóricos como la habilidad para implementar y diagnosticar modelos en R.

Estructura de los Ejercicios

Los ejercicios están organizados por temas, siguiendo la estructura del curso. Para cada tema, encontrarás una mezcla de:

- Preguntas Conceptuales: Diseñadas para reforzar la comprensión de la teoría subyacente.
- Problemas Prácticos con R: Enfocados en la aplicación de las técnicas a conjuntos de datos reales o simulados.
- Ejercicios de Interpretación: Centrados en la habilidad crítica de interpretar correctamente las salidas de los modelos estadísticos.

Requisitos Previos

Para abordar estos ejercicios, se asume que el estudiante ha estudiado el contenido teórico del tema correspondiente y posee un manejo básico del entorno de programación R y RStudio.

Regresión Lineal Simple

Ejercicio 1: Fundamentos Conceptuales

Basándote en el texto, explica con tus propias palabras por qué un coeficiente de correlación de Pearson (r) alto no es suficiente para modelar una relación y por qué la regresión lineal es un paso más allá. Menciona al menos dos cosas que el modelo de regresión proporciona y que la correlación por sí sola no ofrece.

Ejercicio 2: Interpretación de Coeficientes

Un analista ajusta un modelo para predecir el gasto anual en compras online (gasto, en euros) basándose en la edad del cliente (edad). El modelo ajustado es:

$$gasto = 1500 + 12 * edad$$

- a) ¿Cuál es el gasto predicho para un cliente de 30 años?
- b) Interpreta el significado de la pendiente (12) en el contexto específico de este problema.
- c) Interpreta el significado del intercepto (1500). ¿Crees que esta interpretación tiene sentido práctico en el mundo real? ¿Por qué?

Ejercicio 3: Aplicación Práctica con R (Ajuste e Inferencia)

Utiliza el conjunto de datos pressure de R, que contiene mediciones de temperatura y presión de vapor de mercurio.

- a) Ajusta un modelo de regresión lineal simple para predecir la presión (pressure) en función de la temperatura (temperature). Guarda el modelo en un objeto.
- b) Utiliza la función summary() sobre el objeto del modelo.
- c) Interpreta el valor del **coeficiente de determinación R²**. ¿Qué porcentaje de la variabilidad de la presión es explicado por la temperatura?
- d) Interpreta el p-valor del estadístico F. ¿Es el modelo útil en su conjunto?
- e) ¿Es el coeficiente de la temperatura estadísticamente significativo a un nivel de $\alpha = 0.05$? Justifica tu respuesta basándote en el p-valor del test t.

Ejercicio 4: Intervalos de Confianza y Predicción

Usando el modelo del ejercicio anterior (lm(pressure ~ temperature, data = pressure)):

- a) Calcula el **intervalo de confianza al 95**% para la *presión media* esperada cuando la temperatura es de 250 grados.
- b) Calcula el **intervalo de predicción al 95%** para la presión de una *única y nueva* medición realizada a 250 grados.
- c) ¿Cuál de los dos intervalos es más ancho? Explica la razón teórica de esta diferencia.

Ejercicio 5: Supuestos del Modelo

Enumera los cuatro supuestos del modelo de regresión lineal clásico (también conocidos como supuestos de Gauss-Markov) y explica brevemente la importancia de cada uno.

Ejercicio 6: Diagnóstico de Linealidad y Homocedasticidad

Para el modelo del ejercicio 3:

- a) Genera y muestra el gráfico de **Residuos vs. Valores Ajustados**. Basándote en este gráfico, ¿se cumple el supuesto de **linealidad**? Explica en qué te basas.
- b) Genera y muestra el gráfico **Scale-Location**. Basándote en este gráfico, ¿se cumple el supuesto de **homocedasticidad**? Describe el patrón que indicaría un problema de heterocedasticidad.

Ejercicio 7: Diagnóstico de Normalidad

Para el modelo del ejercicio 3:

- a) Genera un gráfico **Normal Q-Q** de los residuos. ¿Parecen seguir los residuos una distribución normal?
- b) Realiza un **test de Shapiro-Wilk** sobre los residuos del modelo. ¿Qué concluyes a partir del p-valor?

Ejercicio 8: Descomposición de la Varianza (ANOVA)

Explica qué representan la Suma de Cuadrados Total (SST), la Suma de Cuadrados de la Regresión (SSR) y la Suma de Cuadrados del Error (SSE). ¿Cuál es la ecuación fundamental que las relaciona?

Ejercicio 9: Observaciones Influyentes

Basado en la teoría de los apuntes:

- a) Explica la diferencia entre un residuo simple (e_i) , un residuo estandarizado y un residuo estudentizado. ¿Por qué se prefieren los estudentizados para el diagnóstico?
- b) ¿Qué mide el **leverage** (h_{ii}) ? ¿Y la **distancia de Cook** (D_i) ? ¿Puede una observación tener un leverage alto y no ser influyente?

Ejercicio 10: Relación entre Pruebas de Hipótesis

En el contexto **exclusivo** de la regresión lineal simple, ¿qué relación matemática existe entre el estadístico \mathbf{F} del test ANOVA y el estadístico \mathbf{t} del test para la pendiente β_1 ? ¿Qué implica esto para sus respectivos p-valores?

Regresión Lineal Múltiple

Ejercicio 1: Conceptual (Interpretación Ceteris Paribus)

Un analista ajusta dos modelos para predecir el consumo de un coche (mpg):

- 1. lm(mpg ~ wt) obtiene un coeficiente para wt de -5.3.
- 2. lm(mpg ~ wt + hp) obtiene un coeficiente para wt de -3.8.

Explica detalladamente por qué el coeficiente para la variable wt (peso) cambia al añadir la variable hp (caballos de fuerza). ¿Cuál de los dos coeficientes representa el efecto "puro" o "aislado" del peso? Fundamenta tu respuesta en el principio de *ceteris paribus*.

Ejercicio 2: Práctico (Ajuste e Interpretación de un Modelo Múltiple)

Usa el conjunto de datos iris de R. Queremos modelar la anchura del pétalo (Petal.Width) en función de la longitud del pétalo (Petal.Length) y la anchura del sépalo (Sepal.Width).

- a) Ajusta un modelo de regresión lineal múltiple: lm(Petal.Width ~ Petal.Length + Sepal.Width, data = iris).
- b) Interpreta el coeficiente estimado para Petal.Length.
- c) Interpreta el coeficiente estimado para Sepal. Width.
- d) Interpreta el intercepto del modelo. ¿Tiene un significado práctico en este contexto biológico?

Ejercicio 3: Conceptual (R² vs. R² Ajustado)

Cuando pasamos de un modelo simple a uno múltiple, introducimos el \mathbb{R}^2 ajustado como medida de bondad de ajuste.

- a) ¿Cuál es el principal problema de usar el R² tradicional para comparar modelos con diferente número de predictores?
- b) ¿Cómo soluciona el R² ajustado este problema? Explica qué "penalización" introduce en su fórmula.

Ejercicio 4: Interpretación de Salidas de R

Te presentan el siguiente resumen de un modelo que predice el prestigio de una ocupación (prestige) en función de los ingresos (income) y el nivel educativo (education).

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) -6.0647 4.2750 -1.419 0.1595 income 0.0013 0.0003 4.524 1.9e-05 *** education 4.1832 0.3887 10.762 < 2e-16 ***
```

Multiple R-squared: 0.79, Adjusted R-squared: 0.785 F-statistic: 185.6 on 2 and 99 DF, p-value: < 2.2e-16

- a) ¿Es el modelo globalmente significativo? ¿En qué te basas?
- b) ¿Son los predictores income y education individualmente significativos, después de controlar por el efecto del otro? Justifica tu respuesta.
- c) Explica la diferencia conceptual entre lo que evalúa el **test F global** y lo que evalúan los **tests t individuales** en este modelo.

Ejercicio 5: Conceptual (Multicolinealidad)

Describe con tus propias palabras qué es la **multicolinealidad**. Menciona tres consecuencias negativas que puede tener la multicolinealidad severa en un modelo de regresión y si afecta más a la **predicción** o a la **inferencia**.

Ejercicio 6: Práctico (Diagnóstico de Multicolinealidad)

Usa el dataset mtcars. Ajusta un modelo para predecir el consumo (mpg) usando como predictores el número de cilindros (cyl), la cilindrada (disp), los caballos de fuerza (hp) y el peso (wt).

- a) Observa el summary() del modelo. ¿Hay alguna variable que, a pesar de tener una alta correlación simple con mpg, no resulte significativa en el modelo múltiple?
- b) Carga la librería car y calcula el Factor de Inflación de la Varianza (VIF) para cada predictor.
- c) Basándote en los valores del VIF, ¿qué variables presentan un problema de multicolinealidad? ¿Cuál es tu recomendación para simplificar el modelo?

Ejercicio 7: Teórico (Notación Matricial)

- a) Escribe la fórmula del estimador de Mínimos Cuadrados Ordinarios () en notación matricial.
- b) ¿Qué supuesto fundamental del modelo de regresión múltiple garantiza que la matriz $(\mathbf{X}^T\mathbf{X})$ sea invertible?

Ejercicio 8: Práctico (Gráficos de Regresión Parcial)

Usa el dataset Prestige de la librería car.

- a) Ajusta el modelo lm(prestige ~ income + education + women, data = Prestige).
- b) Genera los gráficos de regresión parcial (o "added-variable plots") para este modelo usando la función avPlots(tu modelo).
- c) Explica qué representa el gráfico para la variable education. ¿Qué significan los ejes X e Y de ese gráfico específico? ¿A qué corresponde la pendiente de la línea en ese gráfico?

Ejercicio 9: Inferencia (F-test vs. t-tests)

Describe un escenario hipotético en el que el **test F global** de un modelo de regresión múltiple sea altamente significativo (p < 0.001), pero **ninguno de los tests t individuales** para los coeficientes sea significativo. ¿Cuál es la causa estadística más probable de este fenómeno?

Ejercicio 10: Práctico (Comparación de Modelos Anidados)

Usa el dataset swiss.

- a) Ajusta un **modelo reducido** para predecir Fertility usando solo Agriculture y Education.
- b) Ajusta un modelo completo que, además de las variables anteriores, incluya Catholic y Infant.Mortality.
- c) Utiliza la función anova() para comparar formalmente los dos modelos. ¿Aportan las variables Catholic y Infant.Mortality una mejora estadísticamente significativa al modelo? Interpreta el p-valor del test F resultante.

Ingeniería de Características

Ejercicio 1: Conceptual (Diagnóstico antes de Transformar)

El texto desaconseja fuertemente el enfoque de "ensayo y error" al aplicar transformaciones. Explica con tus propias palabras por qué la práctica de probar transformaciones hasta que mejore el \mathbb{R}^2 es metodológicamente peligrosa. Menciona al menos tres de los riesgos específicos discutidos en los apuntes.

Ejercicio 2: Práctico (Escalado de Variables)

Utiliza el dataset iris de R y céntrate en las cuatro variables predictoras continuas (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width).

- a) Calcula la media y la desviación estándar de estas cuatro variables en su escala original. ¿Son sus escalas directamente comparables?
- b) Crea un nuevo data frame donde hayas aplicado la estandarización Z-Score a estas cuatro variables. Verifica que las nuevas variables tienen una media cercana a 0 y una desviación estándar de 1.
- c) ¿Por qué este paso de escalado es crucial antes de aplicar métodos de regularización como Ridge o Lasso, tal y como se menciona en el texto?

Ejercicio 3: Conceptual (Elección del Método de Escalado)

Describe un escenario hipotético para cada uno de los siguientes casos, explicando por qué el método de escalado elegido sería el más apropiado:

- a) Un escenario donde la **estandarización Z-Score** es preferible.
- b) Un escenario donde la normalización Min-Max es preferible.
- c) Un escenario donde el escalado robusto (usando mediana y IQR) es necesario.

Ejercicio 4: Práctico (Transformación para Linealizar)

En el tema anterior vimos que la relación en el dataset cars (entre speed y dist) no era perfectamente lineal.

- a) Ajusta el modelo lm(dist ~ speed, data = cars) y genera el gráfico de residuos vs. valores ajustados para confirmar visualmente la no linealidad (patrón curvo).
- b) Los apuntes sugieren que la transformación logarítmica es útil para relaciones con "rendimientos decrecientes". Propón y aplica una transformación (ej. sobre el predictor, la respuesta, o ambos) para intentar linealizar la relación. Por ejemplo, ajusta lm(log(dist) ~ speed, data = cars).
- c) Genera de nuevo el gráfico de residuos vs. valores ajustados para el nuevo modelo. Compara ambos diagnósticos. ¿Ha mejorado la linealidad?

Ejercicio 5: Práctico (Transformación de Box-Cox)

Usa el dataset Boston de la librería MASS. La variable respuesta medv (valor mediano de la vivienda) es estrictamente positiva y tiene cierta asimetría.

- a) Carga la librería MASS y utiliza la función boxcox() para encontrar el valor de λ óptimo para la variable medv en un modelo simple frente a lstat. La fórmula sería boxcox(medv ~ lstat, data = Boston).
- b) Observando el gráfico que se genera, ¿a qué valor "simple" (como -1, 0, 0.5, 1) se aproxima el λ óptimo?
- c) Basándote en este resultado, ¿cuál de las transformaciones clásicas (logarítmica, raíz cuadrada, inversa, etc.) sería la más recomendable para la variable medv?

Ejercicio 6: Conceptual (Codificación de Variables Categóricas)

Explica la diferencia fundamental entre la Codificación Ordinal y la Codificación One-Hot. Para cada una de las siguientes variables, indica qué método de codificación usarías y justifica tu elección:

- mes: ("Enero", "Febrero", "Marzo", ...)
- nivel_riesgo: ("Bajo", "Medio", "Alto", "Crítico")
- pais_origen: ("España", "Francia", "Alemania", "Italia")

Ejercicio 7: Práctico (Interacción entre Variables Continuas)

Usa el dataset mtcars para investigar si el efecto del peso de un coche (wt) sobre su consumo (mpg) depende de su potencia (hp).

- a) Ajusta un modelo que incluya un término de interacción entre wt y hp. Escribe la fórmula en R.
- b) Observa el summary() del modelo. ¿Es el término de interacción (wt:hp) estadísticamente significativo a un nivel de $\alpha = 0.05$?
- c) Basándote en el signo del coeficiente de la interacción, ¿cómo cambia el efecto del peso sobre el consumo a medida que aumenta la potencia? (Es decir, ¿el efecto negativo del peso se hace más fuerte o más débil en los coches más potentes?).

Ejercicio 8: Interpretación de una Interacción (Continua x Categórica)

Un investigador modela el salario (salario, en euros) en función de los años de experiencia (experiencia) y si el empleado tiene o no un máster (master, con "No" como categoría de referencia). El modelo ajustado es:

salario = 30000 + 1200*experiencia + 8000*masterSi + 300*experiencia:masterSi

- a) Escribe la ecuación de regresión específica para los empleados que no tienen un máster.
- b) Escribe la ecuación de regresión específica para los empleados que sí tienen un máster.
- c) Interpreta el coeficiente de la interacción (300). ¿Qué nos dice sobre el retorno económico de la experiencia para ambos grupos?

Ejercicio 9: Conceptual (Principio de Jerarquía)

Explica el **principio de jerarquía** en el contexto de los modelos de regresión con interacciones. Si un modelo incluye el término de interacción A:B, ¿por qué es una buena práctica incluir siempre los efectos principales A y B, incluso si sus tests t individuales no son significativos?

Ejercicio 10: Conceptual (Ingeniería de Características Avanzada)

Los apuntes discuten la creación de nuevas variables mediante **ratios** y **combinaciones**. Para cada uno de los siguientes escenarios, propón una nueva variable (feature) que podrías crear y explica qué relación podría capturar mejor que las variables originales por sí solas.

- a) Para predecir la rentabilidad de una tienda, tienes las variables ventas_totales y numero_de_empleados.
- b) Para predecir el riesgo de impago de un solicitante de préstamo, tienes las variables ingresos_anuales y deuda_total.

Selección de variables, Regularización y Validación

Ejercicio 1: Conceptual (Sobreajuste vs. Subajuste)

Explica con tus propias palabras qué es el **sobreajuste (overfitting)** y el **subajuste (underfitting)**. Describe los síntomas de cada uno comparando el error de entrenamiento con el error de validación (o de test), y menciona la solución principal para cada problema.

Ejercicio 2: Práctico (Filtrado Básico)

Imagina que recibes un nuevo conjunto de datos con 50 predictores para un modelo de regresión. Antes de aplicar métodos computacionalmente costosos, decides hacer un filtrado inicial. Describe los **cuatro criterios básicos** que aplicarías para descartar variables de forma preliminar, según lo explicado en los apuntes.

Ejercicio 3: Conceptual (AIC vs. BIC)

Tanto el AIC como el BIC son criterios para comparar modelos, pero se basan en filosofías distintas y tienen penalizaciones diferentes.

- a) Escribe la fórmula de la penalización por complejidad para el AIC y para el BIC.
- b) ¿Cuál de los dos criterios tenderá a seleccionar modelos más simples (más parsimoniosos)? ¿Por qué?
- c) Si tu objetivo principal es la **precisión predictiva**, ¿cuál de los dos criterios es generalmente preferido?

Ejercicio 4: Práctico (Best Subset y Criterios de Información)

Usa el conjunto de datos mtcars y la librería leaps.

a) Utiliza la función regsubsets() para realizar una selección del mejor subconjunto (best subset selection) para predecir mpg usando el resto de variables.

- b) Obtén el summary() de los resultados. ¿Qué modelo (cuántas variables) es el mejor según el criterio Cp de Mallows?
- c) ¿Y cuál es el mejor modelo según el R² ajustado?
- d) ¿Coinciden ambos criterios en el número de variables del modelo óptimo?

Ejercicio 5: Conceptual (Métodos Stepwise)

Los métodos automáticos paso a paso (forward, backward, stepwise) son computacionalmente eficientes, pero el texto advierte sobre su uso. Menciona y explica brevemente **tres de las principales limitaciones o problemas** de estos métodos.

Ejercicio 6: Práctico (Selección Backward Stepwise)

Utiliza el conjunto de datos swiss para predecir Fertility.

- a) Ajusta el modelo completo: modelo_completo <- lm(Fertility ~ ., data = swiss).
- b) Utiliza la función step() para realizar una selección regresiva (backward) basada en el criterio AIC.
- c) Reporta la fórmula del modelo final que selecciona el algoritmo y su valor de AIC.

Ejercicio 7: Conceptual (Ridge vs. Lasso)

La regresión Ridge y Lasso son dos métodos de regularización muy populares, pero tienen un efecto fundamentalmente diferente sobre los coeficientes del modelo.

- a) ¿Qué tipo de penalización utiliza cada método $(L_1 \circ L_2)$?
- b) ¿Cuál de los dos métodos puede realizar selección de variables (es decir, anular coeficientes por completo)?
- c) Describe un escenario en el que preferirías usar Ridge sobre Lasso.

Ejercicio 8: Práctico (Regresión Lasso)

Utiliza el paquete glmnet y el conjunto de datos mtcars para predecir mpg.

- a) Prepara los datos: crea una matriz x para los predictores y un vector y para la respuesta.
- b) Utiliza la función cv.glmnet() para realizar una validación cruzada y encontrar el valor de lambda óptimo para una regresión Lasso (alpha = 1).
- c) Extrae y muestra los coeficientes del modelo Lasso ajustado con el lambda.min.
- d) ¿Qué variables ha eliminado el modelo (coeficientes iguales a cero)?

Ejercicio 9: Conceptual (Validación)

Explica la diferencia entre la estrategia de validación **Train/Test Split simple** y la **Validación Cruzada k-fold**. ¿Cuál es la principal ventaja de la validación cruzada sobre la división simple? ¿En qué situación (tamaño del dataset) recomendarías usar cada una?

Ejercicio 10: Práctico (Validación Cruzada)

Imagina que has ajustado dos modelos para predecir mpg en el dataset mtcars: 1. Un modelo simple: mpg ~ wt + hp 2. Un modelo complejo: mpg ~ . (todas las variables)

Utilizando la librería caret y la función train(), como se muestra en el callout-tip "La maldición del sobreajuste", configura y ejecuta una validación cruzada de 10 particiones para estimar el RMSE de ambos modelos. ¿Cuál de los dos modelos generaliza mejor a nuevos datos según esta estimación?

Modelos de Regresión Generalizada

Ejercicio 1: Conceptual (Fundamentos de GLM)

Explica los **tres componentes clave** que definen a cualquier Modelo Lineal Generalizado (GLM) y describe brevemente la función de cada uno.

Ejercicio 2: Conceptual (Función de Enlace)

¿Cuál es el propósito fundamental de la **función de enlace** en un GLM? ¿Por qué la regresión lineal clásica es considerada un caso particular de un GLM? (Pista: piensa en su función de enlace).

Ejercicio 3: Práctico (Ajuste de un Modelo Logístico)

Usa el conjunto de datos mtcars de R. La variable am indica si la transmisión de un coche es automática (0) o manual (1).

- a) Ajusta un modelo de regresión logística para predecir la probabilidad de que una transmisión sea manual (am) en función del peso del coche (wt) y los caballos de fuerza (hp).
- b) Utiliza la función summary() para examinar el modelo. ¿Qué variables parecen ser significativas?
- c) Obtén los coeficientes del modelo. ¿Cómo interpretarías el signo del coeficiente para la variable wt?

Ejercicio 4: Interpretación (Odds Ratios)

Basado en el modelo del ejercicio anterior:

- a) Calcula el Odds Ratio (OR) para el coeficiente de la variable hp.
- b) Interpreta este Odds Ratio en el contexto del problema. Específicamente, ¿cómo cambian las "odds" (la razón de probabilidad) de tener una transmisión manual por cada caballo de fuerza adicional, manteniendo el peso constante?

Ejercicio 5: Práctico (Validación del Modelo Logístico)

Continuando con el modelo logístico de mtcars:

- a) Genera las predicciones de probabilidad del modelo para los datos.
- b) Convierte estas probabilidades en clases ("0" o "1") usando un umbral de decisión de 0.5.
- c) Crea la matriz de confusión comparando las predicciones con los valores reales.
- d) Calcula la **precisión (accuracy)** global del modelo.
- e) (Bonus) Utiliza el paquete pROC para calcular y visualizar la curva ROC y obtener el valor del AUC. ¿Qué tan buena es la capacidad discriminativa del modelo?

Ejercicio 6: Conceptual (Regresión de Poisson)

- a) ¿Qué tipo de variable respuesta está diseñada para modelar la regresión de Poisson?
- b) ¿Cuál es el supuesto fundamental de la distribución de Poisson respecto a la relación entre la media y la varianza?
- c) ¿Cómo se llama el problema que surge cuando este supuesto se viola y la varianza es mayor que la media?

Ejercicio 7: Práctico (Ajuste de un Modelo de Poisson)

El dataset discoveries de R es una serie temporal que cuenta el número de "grandes inventos" por año.

- a) Crea un gráfico de la serie temporal. ¿Parece la media del conteo constante a lo largo del tiempo?
- b) Ajusta un modelo de regresión de Poisson simple donde discoveries es la respuesta y el tiempo (time(discoveries)) es el predictor.
- c) Interpreta el coeficiente del tiempo. (Pista: recuerda exponenciarlo para obtener el Incidence Rate Ratio IRR).

Ejercicio 8: Diagnóstico (Sobredispersión)

- a) Para el modelo de Poisson del ejercicio anterior, calcula el **estadístico de dispersión** $(\hat{\phi})$. (Pista: $\hat{\phi} = \frac{\sum r_i^2}{n-p}$, donde los r_i son los residuos Pearson).
- b) Basándote en el valor de $\hat{\phi}$, hay evidencia de sobredispersión?
- c) Si encuentras sobredispersión, ¿cuál es el modelo alternativo que proponen los apuntes? ¿Qué ventaja teórica ofrece este modelo alternativo?

Ejercicio 9: Conceptual (Deviance)

La **deviance** es la medida principal de bondad de ajuste en los GLM. Explica conceptualmente qué mide. ¿Cómo se utiliza la diferencia en deviance entre dos modelos anidados para decidir cuál es mejor?

Ejercicio 10: Elección del Modelo Adecuado

Para cada uno de los siguientes escenarios, indica qué tipo de GLM (Logístico, Poisson, Binomial Negativo, Gamma...) sería el más apropiado y por qué.

- a) Quieres modelar el **tiempo (en minutos)** que tarda un cliente en resolver una consulta en un centro de atención telefónica. El tiempo es siempre positivo y muchos valores se agrupan en tiempos cortos, con una cola larga de tiempos muy largos.
- b) Quieres predecir la **presencia o ausencia** de una especie de planta en diferentes parcelas de un bosque.
- c) Quieres modelar el **número de visitas** que cada usuario hace a una página web en un mes. Observas que la varianza del número de visitas es mucho mayor que la media.

Ejercicios Avanzados

Ejercicio 1: Derivación de Estimadores

Considera el modelo de regresión lineal simple $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$. Partiendo de la función objetivo de Mínimos Cuadrados Ordinarios (MCO), $S(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$, realiza la derivación matemática completa para obtener las expresiones de los estimadores $\hat{\beta}_0$ y $\hat{\beta}_1$. Muestra todos los pasos, desde el cálculo de las derivadas parciales hasta la resolución de las ecuaciones normales.

Ejercicio 2: El Impacto de la Multicolinealidad

En un modelo de regresión múltiple con dos predictores estandarizados (X_1, X_2) , la varianza del estimador $\hat{\beta}_1$ viene dada por $\text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{n(1-r_{12}^2)}$, donde r_{12} es la correlación entre X_1 y X_2 .

- a) Explica matemáticamente qué le ocurre a la varianza de $\hat{\beta}_1$ cuando la correlación entre los predictores (r_{12}) se aproxima a 1 (multicolinealidad perfecta).
- b) Relaciona esta fórmula con la del Factor de Inflación de la Varianza (VIF). ¿Cómo demuestra esta expresión que la multicolinealidad "infla" la varianza de los estimadores de los coeficientes?

Ejercicio 3: Interpretación de Coeficientes en Modelos Transformados

Considera un modelo de regresión \log - \log : $\log(Y_i) = \beta_0 + \beta_1 \log(X_i) + \varepsilon_i$. Demuestra matemáticamente que el coeficiente β_1 puede interpretarse como una **elasticidad**, es decir, el cambio porcentual en Y ante un cambio del 1% en X. (Pista: utiliza la derivada de $\log(Y)$ con respecto a $\log(X)$).

Ejercicio 4: Fundamentos de la Regularización

Explica desde una perspectiva geométrica por qué la regularización Lasso (penalización L1) es capaz de reducir los coeficientes exactamente a cero, realizando así selección de variables, mientras que la regularización Ridge (penalización L2) solo puede encoger los coeficientes

hacia cero sin anularlos por completo. Apoya tu explicación con un dibujo o descripción de las "regiones de restricción" de ambos métodos en un espacio de dos coeficientes (β_1, β_2) .

Ejercicio 5: La Familia Exponencial y los GLM

La teoría de los Modelos Lineales Generalizados (GLM) se basa en que distribuciones como la Normal, Binomial o Poisson pertenecen a la **familia exponencial**. La forma canónica de esta familia establece una relación directa entre la media y la varianza a través de la **función de varianza** $V(\mu)$. Explica cuál es la función de varianza para un modelo de **Poisson** y para un modelo **Binomial**. ¿Qué implicaciones tiene la forma de $V(\mu)$ en cada caso sobre el comportamiento de los datos y los supuestos del modelo?

Ejercicio 6: El Problema de la Inferencia en Métodos Stepwise

Los apuntes advierten que los p-valores de un modelo final obtenido mediante selección por pasos (stepwise) están **sesgados y son excesivamente optimistas**. Explica el razonamiento estadístico detrás de esta advertencia. ¿Por qué el proceso iterativo de "buscar y seleccionar" la variable más significativa en cada paso invalida los supuestos teóricos del test t estándar?

Ejercicio 7: Propiedades de los Estimadores MCO

El **Teorema de Gauss-Markov** establece que, bajo ciertos supuestos, los estimadores de Mínimos Cuadrados Ordinarios (MCO) son **MELI** (**Mejores Estimadores Lineales Insesgados**). Demuestra la propiedad de **insesgadez** para el estimador $\hat{\beta}$ en notación matricial. Es decir, demuestra que $E[\hat{\beta}] = \beta$. Muestra todos los pasos y menciona qué supuestos del modelo estás utilizando en cada paso.

Ejercicio 8: Intervalos de Confianza vs. Predicción

La fórmula para el intervalo de predicción para una nueva observación en regresión lineal simple es:

$$\hat{y}_0 \pm t_{\alpha/2, n-2} \cdot \sqrt{\text{MSE}\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Explica el origen y el significado de cada uno de los **tres términos** que se encuentran dentro del paréntesis bajo la raíz cuadrada. ¿Qué fuente de incertidumbre representa cada término y por qué la suma de los tres es necesaria para un intervalo de predicción?

Ejercicio 9: Estimación por Máxima Verosimilitud

Para un modelo de regresión logística, la función de log-verosimilitud es:

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right]$$

donde $p_i = \frac{1}{1+e^{-\mathbf{x}_i^T\beta}}$. Deriva la **ecuación de puntuación (score equation)** para un coeficiente β_j (es decir, calcula $\frac{\partial \ell}{\partial \beta_j}$) y demuestra que se iguala a cero cuando $\sum_{i=1}^n x_{ij}(y_i-p_i)=0$. Interpreta el significado de esta condición final.

Ejercicio 10: El Coeficiente de Regresión Parcial

El texto afirma que el coeficiente $\hat{\beta}_j$ de una regresión múltiple puede entenderse como el coeficiente de una regresión simple entre dos conjuntos de residuos. Explica con detalle este concepto de **regresión parcial**. ¿Qué se está "parcializando" o "eliminando" de la variable respuesta Y y del predictor X_j antes de calcular su relación? ¿Por qué este concepto es fundamental para entender la interpretación ceteris paribus?