浙江大学

本科生实验报告

课程	电磁场与电磁波实验
姓名	
学号	
专业	电子科学与技术
上 验内容	微带传输线负载特性矢网测量

实验一 微波传输线负载特性矢量网络分析仪测量

1. 实验目的

了解基本传输线、微带线的特性,熟悉网络参量测量,掌握矢量网络分析仪的基本使用 方法。

2. 实验原理

考虑一段特征阻抗为 Z_0 的传输线,一端接信号源,另一端接上负载,如图 1 所示。假设此传输线无损耗,且传输系数 $\gamma = i\beta$,则传输线上的电压和电流可用下列二式表示:

$$U(z) = U^{+}e^{-\beta z} + U^{-}e^{\beta z}$$

 $I(z) = I^{+}e^{-\beta z} + U^{-}e^{\beta z}$

1、负载端 (z = 0) 处情况 电压及电流为

$$U = U_L = U^+ + U^-$$

 $I = I_L = I^+ + I^-$

而 $Z_0I^+ = U^+$, $Z_0I^- = U^-$, 上式可改写成:

$$I_L = \frac{1}{Z_0} (U^+ + U^-)$$

可得负载阻抗为:

$$Z_L = \frac{U_L}{I_L} = \frac{Z_0(U^+ + U^-)}{U^+ - U^-}$$

定义归一化负载阻抗为:

$$z_L = \overline{Z_L} = \frac{Z_L}{Z_0} = \frac{1 + \Gamma_L}{1 - \Gamma_L}$$

其中定义 Γ _L为负载端的电压反射系数:

$$\Gamma_L = \frac{U^-}{U^+} = \frac{z_L - 1}{z_L + 1} = |\Gamma_L| e^{j\varphi_L}$$

当 $Z_L=Z_0$ 或为无限长传输线时, $\Gamma_L=0$,无反射波,是行波状态或匹配状态。当 Z_L 为纯电抗元件或处于开路状态时, $|\Gamma_L|=1$,全反射,为驻波状态。当 Z_L 为其他值时, $|\Gamma_L|\leq 1$,为行波驻波状态。

线上任意一点的反射系数为:

$$\Gamma_L = |\Gamma_L| e^{j\varphi_L - j2\beta z}$$

定义驻波比 VSWR 和回波损耗 RL 为:

$$VSWR = \rho = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}$$

$$RL = -20 \lg |\Gamma_L|$$

2、输入端(z = -L)处情况 反射系数 $\Gamma(z)$ 应改成:

$$\Gamma(L) = \frac{U^{-}e^{-j\beta_{L}}}{U^{+}e^{j\varphi\beta_{L}}} = \frac{U^{-}}{U^{+}}e^{-2j\beta_{L}} = \Gamma_{L}e^{-2j\beta_{L}}$$

输入阻抗为:

$$Z_{in} = \frac{Z_0(Z_L + jZ_0 \tan \beta L)}{Z_0 + jZ_L \tan \beta L}$$

由上式可知:

(1) 当 $L \to \infty$ 时, $Z_{in} \to Z_0$

(2)
$$\stackrel{\Delta}{=} L = \frac{\lambda}{2}$$
 H , $Z_{in} = Z_L$

(3)
$$\stackrel{\Delta}{=} L = \frac{\lambda}{4} \text{ ft}, \ Z_{in} = \frac{Z_0^2}{Z_L}$$

3. 实验设备

矢量网络分析仪一台、微带电路一套

4. 实验内容

- (1) 分析微带传输线在不同负载下的反射特性情况,和理论计算的异同。
- (2) 分析天线的驻波比特性曲线。
- (3) 分析测量的微带耦合滤波器的滤波特性,试说明设计优劣情况。

5. 实验过程及数据记录

5.1.微带传输线测量

开启矢量网络分析仪,预热后选择测量内容为 S_{11} ,设定频率范围为 2.3 $GHz\sim2.7GHz$ 并进行校准。校准后分析仪显示如图 2 所示图形,即光标位于史密斯圆图的 0 点。

确认校准无误后接入微带传输模块,测量不同负载情况下的反射特性情况。

(1) 负载开路

将微带线负载端开路,测得的结果如图 3 所示,数据记录如表 1 所示。

频率f(GHz)实电阻R(Ω)虚电抗 $X(\Omega)$ 等效电容/电感 156.40 10.11*nH* 2.46 42.67 85.10 2.50 14.03*nH* 220.47 2.56 527.98 319.13 19.18nH 166.93*fF* 2.61 359.71 -364.67

表格 1 负载开路数据记录

理论上,开路点对应了史密斯圆图的右实轴端点。本实验中微带线的工作频率为 2.5GHz,但 实际结果中 2.5GHz 对应的点并不是右实轴端点,而是位于感性区域(光标 1)。转接头造成的误差、测量时传输光缆的移动和微小形变、微带线本身的误差都有可能导致此结果。

图 2 校准结果

图 3 负载开路情况

计算反射系数Γ,并将实际值与理论值比较,如表 2 所示。

表格 2 负载开路时反射系数情况

频率f(GHz)	Γ 理论值	φ 理论值	Γ 实际值	相角 $\varphi(rad)$	误差 (%)	
2.46		0	0.861	0.581	13.87	
2.50	1		0.863	0.392	13.66	
2.56	1		U	0.870	0.084	12.95
2.61				0.872	-0.139	12.77

结果表明,反射系数的实际值在理论值附近,但误差均在10%数量级。

(2) 负载短路

将微带线负载端接0欧姆的短路电阻,测得的结果如图4所示,数据记录如表3所示。

图 4 负载短路情况

频率f(GHz)实电阻 $R(\Omega)$ 虚电抗 $X(\Omega)$ 等效电容/电感 2.50 5.71 10.44 665.25pH 2.46 5.40 4.91 317.67*pH* 2.39 5.20 -3.78 17.56pF 2.37 -7.40 9.07 pF5.19

表格 3 负载短路数据记录

计算反射系数并同理论值比较,如表 4 所示:

VIII - X4W = X4W = X4W X4W						
频率f(GHz)	Γ 理论值	φ 理论值	Γ 实际值	相角φ(rad)	误差 (%)	
2.50	1		0.80	2.72	19.71	
2.46		π	0.81	2.94	19.32	
2.39			π	0.81	3.30	18.74
2.37			0.82	3.43	18.43	

表格 4 负载短路时反射系数情况

可见短路时相角的误差较小,基本位于史密斯圆图的实轴左端点附近,但模值的误差较大。结合测得的负载实际值,可知引入的转接头产生的阻抗、微带模块的误差、短路电阻放置位置不为半波长的位置产生的误差、短路电阻老化产生的误差等因素均产生了额外的阻抗,使得反射系数的实际值与理论值相差较大。

(3) 负载为 49.9Ω纯电阻

将 49.9Ω 的电阻接入负载端,测得结果如图 5 所示,数据记录如表 5 所示。由于实验中采用的传输电缆的特征阻抗为 50Ω ,故此时接近阻抗匹配情况。从史密斯圆图中可以看出,此时光标均位于靠近中心点的圆弧上,表明阻抗匹配情况较好。

图 5 负载为纯电阻的情况

表格 5 负载为纯电阻时数据记录

频率f(GHz)	实电阻 $R(\Omega)$	虚电抗 $X(\Omega)$	等效电容/电感
2.50	52.79	14.00	891.60 <i>pH</i>
2.46	50.19	13.08	846.96 <i>pH</i>
2.39	46.72	10.78	716.23 <i>pH</i>
2.37	45.64	9.77	657.23pH

表格 6 接纯电阻时反射系数情况

频率f(GHz)	Γ 理论值	φ 理论值	Γ 实际值	相角φ(rad)	误差 (%)	
2.50			0.14	1.23	12.76	
2.46	0.001			0.13	1.42	11.95
2.39	0.001			0.12	-1.38	10.57
2.37			0.11	-1.25	10.12	

(4) 负载为纯电容

将1pF的电容接入负载端,测得结果如图 6 所示,数据记录如表 7 所示:

表格 7 负载为纯电容时的数据记录

频率f(GHz)	实电阻 $R(\Omega)$	虚电抗 $X(\Omega)$	等效电容/电感	
2.50	8.32	-61.02	1.04 <i>pF</i>	
2.46	10.96	-76.33	847.64 <i>fF</i>	
2.39	20.20	-113.47	585.37 <i>fF</i>	
2.37	28.81	-136.40	492.34 <i>fF</i>	

MAIN A SCHWARE BELL ASSESSMENT						
频率f(GHz)	Γ 理论值	φ 理论值	Γ 实际值	相角φ(rad)	误差 (%)	
2.50	1		0.88	-1.36	12.45	
2.46		0.2487	0.88	-1.15	12.23	
2.39			0.2467	0.88	-0.81	12.08
2.37			0.88	-0.68	12.38	

表格 8 负载为纯电容时反射系数情况

图 6 负载为纯电容时的情况

可以观察到此时模值的误差在10%左右,但相角的误差较大,主要原因是上述提到的干扰因素中引入了实电阻,导致相角产生偏移。

(5) 负载为纯电感

将3.3nH的电感接入负载端,测得结果如图 7 所示,数据记录如表 8 所示:

表格 9 负载为纯电感时的数据记录

频率f(GHz)	率 $f(GHz)$ 实电阻 $R(\Omega)$ 虚电抗 $X(\Omega)$		等效电容/电感
2.50	7.99	41.70	2.65nH
2.46	6.69	33.26	2.15 <i>nH</i>
2.39	5.58	22.20	1.47 <i>nH</i>
2.37	5.23	17.99	1.21 <i>nH</i>

计算反射系数,

农们 10 贝科列地电影引动及别尔兹					
频率 $f(GHz)$	Γ 理论值	φ 理论值	Γ 实际值	相角φ(rad)	误差 (%)
2.50	1		0.83	-1.41	17.13
2.46		-0.33	0.83	-1.19	16.92
2.39			-0.33	0.83	-0.84
2.37			0.83	-0.70	16.93

表格 10 负载为纯电感时的反射系数

图 7 负载为纯电感时的情况

可以看到此时反射系数的相角误差较小,但模值误差较大。从数据上看出,中心频率附近接入的等效电感为2.65nH,与3.3nH相差较大,说明接入的实际位置与探头的距离不是半波长的整数倍,且引入的实电阻也加大了误差。

5.2.天线测量

对设备进行校准后,接入天线模块,获得史密斯圆图如图 9。

图 8 天线史密斯圆图

可以看到大约在 2.3GHz~2.6GHz 的频段内,该天线阻抗匹配结果较好,处于最佳工作状态。根据幅频特性曲线(图 9),可以看到两个最佳的工作频段分别 2.19GHz 和 2.62GHz,对应的 S_{11} 衰减分别为-21.19dB 和-23.15dB。

图 9 天线幅频特性

观察天线驻波比曲线,发现在工作频率为 2.35GHz、2.52GHz 左右时驻波系数接近于 1,约为 1.33(其他峰值处时对应的幅频衰减接近于 0dB,反射系数较大,不予考虑)。理论分析可知,天线的反射系数越小,即对反射波的衰减越大时,信号能够较好地通过天线进行发射和接收。此时驻波比接近于 1。理想情况下,反射系数为 0,驻波比为 1。

图 10 天线驻波比曲线(光标 2 的峰值会抖动, 其真实值在 1.2 左右)

5.3.微带滤波器测量

选择\$21模式测量微带滤波器的频域特性。校准结果如图 11。

图 11 校准结果

图 12 滤波器的频域响应特性曲线|S21|~w

根据获得的频域相应特性曲线(即 $|S_{21}|\sim\omega$ 曲线),得出滤波器的中心工作频率 $f_0=2.392GHz$,3dB 带宽为 $\Delta=2.484-2.284=0.2GHz$,插入损耗L=-9.25dB。

选择中心工作频率 $\pm 300MHz$ 的区域,如图 13,得出阻带衰减为-43.37 \sim -50.23dB,移动光标至中心频率附近的位置,读出带内文波为1dB。

切换显示模式,得出 $\arg(S_{21})\sim\omega$ 的关系曲线如图 14 所示。可以看到当滤波器工作在频率为 2.3GHz 附近时,相角接近 0° 。且相角与频率的关系曲线在通频带可近似看作周期函数。

图 13 阻带衰减和带内文波

图 14 滤波器相位关系曲线

滤波器的史密斯圆图、驻波比特性曲线如图 15、16 所示。用手指作为干扰,得到新的幅频曲线、驻波比曲线和史密斯圆图如 17~19 所示。由于人体可看作大阻抗的干扰,故受干扰后滤波器不再正常工作。

图 15 滤波器史密斯圆图

图 16 滤波器驻波比曲线

图 17 引入干扰后滤波器的幅频曲线

图 18 引入干扰后滤波器的驻波比曲线

图 19 引入干扰后滤波器的史密斯圆图

6. 思考题

6.1.什么是 S 参数?

S 参数,也就是散射参数,是微波传输中的一个重要参数。以二端口网络为例, S_{12} 为反向传输系数,也就是隔离; S_{21} 为正向传输系数,也就是增益; S_{11} 为输入反射系数,也就是输入回波损耗; S_{22} 为输出反射系数,也就是输出回波损耗。

6.2. 如果不校准,直接接入射频电缆和电路模块测量会对结果有什么影响?

电缆本身、转接头等部分存在阻抗干扰,如果不校准会对测量结果造成影响,使史密斯 圆图及其他测量结果不准确。

6.3. 如何测量转接头对测试曲线的影响?

校准矢量网络分析仪,选择完全阻抗匹配的微带模块进行测试,在史密斯圆图上显示的测量点即为转接头对测试曲线产生的影响。

6.4. 利用实验内容 2 中已知的设计参数, 计算 50 欧半波长微带线的长度和宽度。

长度: 6cm; 宽度: 2.768mm

7. 实验收获与体会

通过本次实验,我了解了矢网分析仪的用法,体会到了理论课上学习的传输线理论在实际工程应用时的作用,特别是反射系数、驻波比、阻抗匹配等概念在微带传输线、天线、滤波器等实际模块中的具体体现。在实际操作的过程中,我对电磁场和电磁波的相关理论有了更深的理解。

8. 建议与意见

无