## Examen final de Sistemas de Control - 6 de abril de 2009

## Tema 1

Compensar el sistema de lazo cerrado de la figura mediante compensador en la realimentación, para obtener dos polos complejos conjugados dominantes que presenten una respuesta con coeficiente de amortiguación  $\zeta$  = 0.5, y  $\omega_n$  = 1,4142, manteniendo el error de estado permanente nulo para una entrada escalón unitario.





## Tema 2

Dada la función de transferencia de lazo cerrado:

$$F(s) = \frac{10}{(s+1)(s+5)s}$$

- a) Representar mediante Variables de Estado (Ecuación de estado y salida), siendo R(s) la entrada y C(s) la salida.
- b) Realizar el diagrama de bloques y de flujo de señal, indicando en cada caso la ubicación de las variables de estado.
- c) Indicar si el sistema es totalmente controlable y observable.
- d) Determinar la matriz de realimentación de estado K, para obtener un sistema que ubique los polos de lazo cerrado en  $s_1$  = -4.6,  $s_2$ = -0.707-1.224j y  $s_3$ =-0.707+1.224j, sin que exista  $e_{ss}$  para una entrada escalón unitario.

## Tema 3

Compensar utilizando método de respuesta en frecuencia para obtener un sistema con margen de fase =  $50^{\circ}$  y  $e_{ss}$  = 0.3 para una entrada escalón unitario.



