18-447

Computer Architecture Lecture 5: ISA Wrap-Up and Single-Cycle Microarchitectures

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2012, 1/25/2012

Homework 0

Was due Wednesday!

34 received

Reminder: Homeworks for Next Two Weeks

Homework 1

- Due Monday Jan 28, right before lecture
- Turn in via AFS (hand-in directories)
- MIPS warmup, ISA concepts, basic performance evaluation

Homework 2

Will be assigned next week. Stay tuned...

Reminder: Lab Assignment 1

- Due next Friday (Feb 1), at the end of Friday lab
- A functional C-level simulator for a subset of the MIPS ISA
- Study the MIPS ISA Tutorial
 - □TAs will cover this in Lab Sessions this week

A Note on Lab and Homework Dates

- Intended dates are on your syllabus
 - http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
 a=syllabus-18-447-mutlu-s13.pdf
 - We will try to stick to them.
- Last year's website can provide you a good lookahead into what is coming...
 - http://www.ece.cmu.edu/~ece447/s12/doku.php
 - http://www.ece.cmu.edu/~ece447/s12/doku.php?id=wiki:lect ures

Readings for Next Lecture

- P&P, Revised Appendix C
 - Microarchitecture of the LC-3b
 - Appendix A (LC-3b ISA) will be useful in following this
- P&H, Appendix D
 - Mapping Control to Hardware
- Optional
 - Maurice Wilkes, "The Best Way to Design an Automatic Calculating Machine," Manchester Univ. Computer Inaugural Conf., 1951.

Review of Last Lecture: ISA Tradeoffs

- Complex vs. simple instructions: concept of semantic gap
- Use of translation to change the tradeoffs
- Fixed vs. variable length, uniform vs. non-uniform decode
- Number of registers

- What is the benefit of translating complex instructions to "simple instructions" before executing them?
 - In hardware (a la Intel, AMD)?
 - In software (a la Transmeta)?
- Which ISA is easier to extend: fixed length or variable length?
- How can you have a variable length, uniform decode ISA?

Review: x86 vs. Alpha Instruction Formats

x86:

Alpha:

31 26	25 21	20 16	15	5	4 0	_		
Opcode			PALcode Format					
Opcode	RA		Disp	Branch Format				
Opcode	RA	RB	Disp			Memory Format		
Opcode	RA	RB	Function	Function RC		Operate Format		

Review: ISA-level Tradeoffs: Number of Registers

Affects:

- Number of bits used for encoding register address
- Number of values kept in fast storage (register file)
- (uarch) Size, access time, power consumption of register file

Large number of registers:

- + Enables better register allocation (and optimizations) by compiler → fewer saves/restores
- -- Larger instruction size
- -- Larger register file size

ISA-level Tradeoffs: Addressing Modes

- Addressing mode specifies how to obtain an operand of an instruction
 - Register
 - Immediate
 - Memory (displacement, register indirect, indexed, absolute, memory indirect, autoincrement, autodecrement, ...)

More modes:

- + help better support programming constructs (arrays, pointerbased accesses)
- -- make it harder for the architect to design
- -- too many choices for the compiler?
 - Many ways to do the same thing complicates compiler design
 - Wulf, "Compilers and Computer Architecture," IEEE Computer 1981

x86 vs. Alpha Instruction Formats

x86:

Alpha:

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

	Table 2-2	. 32-l	BIT Add	ressing	g Form	s with	tne M	OOK/M	Byte		
•	r8(/r) r16(/r) r32(/r) r32(/r) xmm(/r) xmm(/r) (In decimal) /digit (Opcode) (In binary) REG =			AL AX EAX MMO XMMO 0 0	CL CX ECX MM1 XMM1 1 001	DL DX EDX MM2 XMM2 2 010	BL BX EBX MM3 XMM3 3 011	AH SP ESP MM4 XMM4 4 100	CH BP EBP MM5 XMM5 5 101	DH SI ESI MM6 XMM6 5 110	BH DI EDI MM7 XMM7 7 111
	Effective Address	Mod	R/M		Value	of Mod	R/M By	/te (in l	lexade	cimal)	
<u></u>	[EAX] (EDX) (EBX) (-)[-] ¹ disp32 ² (ESI) (EDI)	00	000 001 010 011 100 101 110 111	00 01 02 03 04 05 06 07	08 09 0A 0B 0C 0D 0F	10 11 12 13 14 15 16	18 19 1A 1B 1C 1D 1E 1F	20 21 22 23 24 25 26 27	28 29 2A 2B 2C 2D 2E 2F	30 31 32 33 34 35 36 37	38 39 38 38 30 35 35 35
<u> </u>	[EAX]+disp8 ³ [ECX]+disp8 [EDX]+disp8 [EBX]+disp8 [-][-]+disp8 [ESI]+disp8 [EDI]+disp8	01	000 001 010 011 100 101 110 111	40 41 42 43 44 45 46 47	48 49 4A 4B 4C 4D 4F 4F	50 55 55 55 55 55 55 55 55 55 55 55 55	58 59 5B 5C 5D 5E 5F	60 61 62 63 64 65 66 67	68 69 68 60 60 66 6F	70 71 72 73 74 75 76 77	78 79 7A 7B 7C 7D 7E 7F
	[EAX]+disp32 [ECX]+disp32 [EDX]+disp32 [EBX]+disp32 [](]+disp32 [EBP]+disp32 [ESI]+disp32 [EDI]+disp32	10	000 001 010 011 100 101 110 111	80 81 82 83 84 85 86 87	88 89 8A 8B 8C 8D 8E 8F	90 91 92 93 94 95 96 97	98 99 9A 9B 9C 9D 9E 9F	A0 A1 A2 A3 A4 A5 A6 A7	A8 A9 AB AC AD AF AF	B0 B1 B2 B3 B4 B5 B6 B7	B8 B9 BA BB BC BD BE BF
	EAX/AX/AL/MM0/XMM0 ECX/CX/CL/MM/XMM1 EDX/DX/DL/MM2/XMM2 EBX/BX/BL/MM3/XMM3 ESP/SP/AH/MM4/XMM4 EBP/BP/CH/MM5/XMM5 ESI/SI/DH/MM6/XMM6 EDI/DI/BH/MM7/XMM7	11	000 001 010 011 100 101 110 111	85888585	89588888	D0 D1 D2 D3 D4 D5 D6	D8 D9 DA DB DC DD DE DF	81284567	89686666	F0 F1 F2 F3 F4 F5 F6 F7	F8 F9 FA FB FC FD FF FF

NOTES:

x86

register

indirect

absolute

register +

displacement

register

- The [--][--] nomenclature means a SIB follows the ModR/M byte.
- The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is added to the index.
- The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).

x86

indexed

(base +

index)

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

		Idule 2	5. 52	-DIL AU	niessiii	g roini	s with	tile 31b	byte		
	r32 (In decimal) Base = (In binary) Base =			EAX 0 000	ECX 1 001	EDX 2 010	EBX 3 011	ESP 4 100	[*] 5 101	ESI 6 110	EDI 7 111
•	Scaled Index	SS	Index Value of SIB Byte (in Hexadecimal)								
7	[EAX] [ECX] [EDX] [EBX] none [EBP] [ESI] [EDI]	00	000 001 010 011 100 101 110	00 08 10 18 20 28 30 38	01 09 11 19 21 29 31 39	02 0A 12 1A 22 2A 32 3A	03 0B 13 1B 23 2B 33 3B	04 0C 14 1C 24 2C 34 3C	05 0D 15 1D 25 2D 35 3D	06 0E 16 1E 26 2E 36 3E	07 0F 17 1F 27 2F 37 3F
	[EAX*2] [ECX*2] [EDX*2] [EBX*2] none [EBP*2] [ESI*2] [EDI*2]	01	000 001 010 011 100 101 110 111	40 48 50 58 60 68 70 78	41 49 51 59 61 69 71 79	42 4A 52 5A 62 6A 72 7A	43 4B 53 5B 63 6B 73 7B	44 40 54 50 64 60 74 70	45 4D 55 5D 65 6D 75 7D	46 4E 56 5E 66 6E 76 7E	47 4F 57 5F 67 6F 77 7F
7	[EAX*4] [ECX*4] [EDX*4] [EBX*4] none [EBP*4] [ESI*4] [EDI*4]	10	000 001 010 011 100 101 110 111	80 88 90 98 A0 A8 B0 B8	81 89 91 89 A1 A9 B1 B9	82 8A 92 9A A2 AA B2 BA	83 8B 93 9B A3 AB B3 BB	84 80 94 90 84 80 84 80	85 8D 95 9D A5 AD B5 BD	86 8E 96 9E A6 AE B6 BE	87 8F 97 9F A7 AF B7 BF
	[EAX*8] ECX*8] [EDX*8] [EBX*8] none [EBP*8] [ESI*8] [EDI*8]	11	000 001 010 011 100 101 110 111	080808C8	C1 C9 D1 E1 E9 F1 F9	C2 CA D2 DA E2 EA FA	CB C	404 64 64 64 64 64 64 64 64 64 64 64 64 64	56565656	66.00 66.00	77 CF D7 GF F7 FF

scaled (base + index*4)

NOTES:

MOD bits Effective Address

- 00 [scaled index] + disp32
- 01 [scaled index] + disp8 + [EBP]
- 10 [scaled index] + disp32 + [EBP]

The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:

X86 SIB-D Addressing Mode

Figure 3-11. Offset (or Effective Address) Computation

x86 Manual Vol. 1, page 3-22 -- see course resources on website Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

The following addressing modes suggest uses for common combinations of address components.

- Displacement A displacement alone represents a direct (uncomputed) offset to the operand. Because the
 displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
 address. It is commonly used to access a statically allocated scalar operand.
- Base A base alone represents an indirect offset to the operand. Since the value in the base register can
 change, it can be used for dynamic storage of variables and data structures.
- Base + Displacement A base register and a displacement can be used together for two distinct purposes:
 - As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component
 encodes the static offset to the beginning of the array. The base register holds the results of a calculation to
 determine the offset to a specific element within the array.
 - To access a field of a record: the base register holds the address of the beginning of the record, while the
 displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is the best choice for the base register, because it automatically selects the stack segment. This is a compact encoding for this common function.

x86 Manual Vol. 1, page 3-22 -- see course resources on website Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

- (Index * Scale) + Displacement This address mode offers an efficient way
 to index into a static array when the element size is 2, 4, or 8 bytes. The
 displacement locates the beginning of the array, the index register holds the
 subscript of the desired array element, and the processor automatically converts
 the subscript into an index by applying the scaling factor.
- Base + Index + Displacement Using two registers together supports either
 a two-dimensional array (the displacement holds the address of the beginning of
 the array) or one of several instances of an array of records (the displacement is
 an offset to a field within the record).
- Base + (Index * Scale) + Displacement Using all the addressing components together allows efficient indexing of a two-dimensional array when the elements of the array are 2, 4, or 8 bytes in size.

x86 Manual Vol. 1, page 3-22 -- see course resources on website Also, see Section 3.7.3 and 3.7.5

Other Example ISA-level Tradeoffs

- Condition codes vs. not
- VLIW vs. single instruction
- Precise vs. imprecise exceptions
- Virtual memory vs. not
- Unaligned access vs. not
- Hardware interlocks vs. software-guaranteed interlocking
- Software vs. hardware managed page fault handling
- Cache coherence (hardware vs. software)
- **...**

Back to Programmer vs. (Micro)architect

- Many ISA features designed to aid programmers
- But, complicate the hardware designer's job
- Virtual memory
 - vs. overlay programming
 - Should the programmer be concerned about the size of code blocks fitting physical memory?
- Addressing modes
- Unaligned memory access
 - Compile/programmer needs to align data

MIPS: Aligned Access

MSB	byte-3	byte-2	byte-1	byte-0	LSB
	byte-7	byte-6	byte-5	byte-4	

- LW/SW alignment restriction: 4-byte word-alignment
 - not designed to fetch memory bytes not within a word boundary
 - not designed to rotate unaligned bytes into registers
- Provide separate opcodes for the "infrequent" case

- LWL/LWR is slower
- Note LWL and LWR still fetch within word boundary

X86: Unaligned Access

- LD/ST instructions automatically align data that spans a "word" boundary
- Programmer/compiler does not need to worry about where data is stored (whether or not in a word-aligned location)

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural boundaries. The natural boundaries for words, double words, and quadwords are even-numbered addresses, addresses evenly divisible by four, and addresses evenly divisible by eight, respectively. However, to improve the performance of programs, data structures (especially stacks) should be aligned on natural boundaries when ever possible. The reason for this is that the processor requires two memory accesses to make an unaligned memory access; aligned accesses require only one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword operand that crosses an 8-byte boundary is considered unaligned and requires two separate memory bus cycles for access.

X86: Unaligned Access

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory

Aligned vs. Unaligned Access

Pros of having no restrictions on alignment

Cons of having no restrictions on alignment

Filling in the above: an exercise for you...

Implementing the ISA: Microarchitecture Basics

How Does a Machine Process Instructions?

- What does processing an instruction mean?
- Remember the von Neumann model

A = Architectural (programmer visible) state before an instruction is processed

Process instruction

A' = Architectural (programmer visible) state after an

 Processing an instruction: Transforming A to A' according to the ISA specification of the instruction

instruction is processed

The "Process instruction" Step

- ISA specifies abstractly what A' should be, given an instruction and A
 - It defines an abstract finite state machine where
 - State = programmer-visible state
 - Next-state logic = instruction execution specification
 - From ISA point of view, there are no "intermediate states" between A and A' during instruction execution
 - One state transition per instruction
- Microarchitecture implements how A is transformed to A'
 - There are many choices in implementation
 - We can have programmer-invisible state to optimize the speed of instruction execution: multiple state transitions per instruction
 - Choice 1: $A \rightarrow A'$ (transform A to A' in a single clock cycle)
 - Choice 2: A → A+MS1 → A+MS2 → A+MS3 → A' (take multiple clock cycles to transform A to A')

A Very Basic Instruction Processing Engine

- Each instruction takes a single clock cycle to execute
- Only combinational logic is used to implement instruction execution
 - No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state at the beginning of a clock cycle

Process instruction in one clock cycle

A' = Architectural (programmer visible) state at the end of a clock cycle

A Very Basic Instruction Processing Engine

Single-cycle machine

- What is the clock cycle time determined by?
- What is the *critical path* of the combinational logic determined by?

Remember: Programmer Visible (Architectural) State

M[0]
M[1]
M[2]
M[3]
M[4]
M[N-1]

Registers

- given special names in the ISA (as opposed to addresses)
- general vs. special purpose

Memory

array of storage locations indexed by an address

Program Counter

memory address
of the current instruction

Instructions (and programs) specify how to transform the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

Single-cycle machines

- Each instruction takes a single clock cycle
- All state updates made at the end of an instruction's execution
- Big disadvantage: The slowest instruction determines cycle time → long clock cycle time

Multi-cycle machines

- Instruction processing broken into multiple cycles/stages
- State updates can be made during an instruction's execution
- Architectural state updates made only at the end of an instruction's execution
- Advantage over single-cycle: The slowest "stage" determines cycle time
- Both single-cycle and multi-cycle machines literally follow the von Neumann model at the microarchitecture level

Instruction Processing "Cycle"

- Instructions are processed under the direction of a "control unit" step by step.
- Instruction cycle: Sequence of steps to process an instruction
- Fundamentally, there are six phases:
- Fetch
- Decode
- Evaluate Address
- Fetch Operands
- Execute
- Store Result
- Not all instructions require all six stages (see P&P Ch. 4)

Instruction Processing "Cycle" vs. Machine Clock Cycle

- Single-cycle machine:
 - All six phases of the instruction processing cycle take a single machine clock cycle to complete
- Multi-cycle machine:
 - All six phases of the instruction processing cycle can take multiple machine clock cycles to complete
 - In fact, each phase can take multiple clock cycles to complete

Instruction Processing Viewed Another Way

- Instructions transform Data (AS) to Data' (AS')
- This transformation is done by functional units
 - Units that "operate" on data
- These units need to be told what to do to the data
- An instruction processing engine consists of two components
 - Datapath: Consists of hardware elements that deal with and transform data signals
 - functional units that operate on data
 - hardware structures (e.g. wires and muxes) that enable the flow of data into the functional units and registers
 - storage units that store data (e.g., registers)
 - Control logic: Consists of hardware elements that determine control signals, i.e., signals that specify what the datapath elements should do to the data

Single-cycle vs. Multi-cycle: Control & Data

- Single-cycle machine:
 - Control signals are generated in the same clock cycle as data signals are operated on
 - Everything related to an instruction happens in one clock cycle
- Multi-cycle machine:
 - Control signals needed in the next cycle can be generated in the previous cycle
 - Latency of control processing can be overlapped with latency of datapath operation
- We will see the difference clearly in microprogrammed multi-cycle microarchitecture

Many Ways of Datapath and Control Design

- There are many ways of designing the data path and control logic
- Single-cycle, multi-cycle, pipelined datapath and control
- Single-bus vs. multi-bus datapaths
 - See your homework 2 question
- Hardwired/combinational vs. microcoded/microprogrammed control
 - Control signals generated by combinational logic versus
 - Control signals stored in a memory structure
- Control signals and structure depend on the datapath design

Flash-Forward: Performance Analysis

- Execution time of an instruction
 - □ {CPI} x {clock cycle time}
- Execution time of a program
 - Sum over all instructions [{CPI} x {clock cycle time}]
 - {# of instructions} x {Average CPI} x {clock cycle time}
- Single cycle microarchitecture performance
 - \Box CPI = 1
 - Clock cycle time = long
- Multi-cycle microarchitecture performance
 - CPI = different for each instruction
 - Average CPI → hopefully small
 - Clock cycle time = short

Now, we have two degrees of freedom to optimize independently

A Single-Cycle Microarchitecture A Closer Look

Remember...

Single-cycle machine

Let's Start with the State Elements

Data and control inputs

For Now, We Will Assume

- "Magic" memory and register file
- Combinational read
 - output of the read data port is a combinational function of the register file contents and the corresponding read select port
- Synchronous write
 - the selected register is updated on the positive edge clock transition when write enable is asserted
 - Cannot affect read output in between clock edges
 - Can affect read output at clock edges (but who cares?)
- Single-cycle, synchronous memory
 - Contrast this with memory that tells when the data is ready
 - i.e., Ready bit: indicating the read or write is done

Instruction Processing

- 5 generic steps (P&H)
 - Instruction fetch (IF)
 - Instruction decode and register operand fetch (ID/RF)
 - Execute/Evaluate memory address (EX/AG)
 - Memory operand fetch (MEM)
 - Store/writeback result (WB)

What Is To Come: The Full Datapath

Single-Cycle Datapath for Arithmetic and Logical Instructions

R-Type ALU Instructions

- Assembly (e.g., register-register signed addition)
 ADD rd_{req} rs_{req} rt_{req}
- Machine encoding

0	rs	rt	rd	0	ADD	R-type
6-bit	5-bit	5-bit	5-bit	5-bit	6-bit	

Semantics

if MEM[PC] == ADD rd rs rt
$$GPR[rd] \leftarrow GPR[rs] + GPR[rt]$$

$$PC \leftarrow PC + 4$$

ALU Datapath

I-Type ALU Instructions

- Assembly (e.g., register-immediate signed additions)
 ADDI rt_{reg} rs_{reg} immediate₁₆
- Machine encoding

ADDI	rs	rt	immediate	I-type
6-bit	5-bit	5-bit	16-bit	

Semantics

if MEM[PC] == ADDI rt rs immediate
GPR[rt]
$$\leftarrow$$
 GPR[rs] + sign-extend (immediate)
PC \leftarrow PC + 4

Datapath for R and I-Type ALU Insts.

if MEM[PC] == ADDI rt rs immediate GPR[rt] \leftarrow GPR[rs] + sign-extend (immediate) PC \leftarrow PC + 4 IF ID EX MEM WB

Combinational state update logic 46

Single-Cycle Datapath for Data Movement Instructions

Load Instructions

- Assembly (e.g., load 4-byte word)
 LW rt_{req} offset₁₆ (base_{req})
- Machine encoding

LW	base	rt	offset	l-type
6-bit	5-bit	5-bit	16-bit	

Semantics

LW Datapath

if MEM[PC]==LW rt offset₁₆ (base)

EA = sign-extend(offset) + GPR[base]

GPR[rt] \leftarrow MEM[translate(EA)]

PC \leftarrow PC + 4

Combinational
state update logic 49

Store Instructions

- Assembly (e.g., store 4-byte word)
 SW rt_{req} offset₁₆ (base_{req})
- Machine encoding

SW	base	rt	offset	I-type
6-bit	5-bit	5-bit	16-bit	

Semantics

if MEM[PC]==SW rt offset₁₆ (base)
EA = sign-extend(offset) + GPR[base]
MEM[translate(EA)]
$$\leftarrow$$
 GPR[rt]
PC \leftarrow PC + 4

SW Datapath

if MEM[PC]==SW rt offset₁₆ (base)

EA = sign-extend(offset) + GPR[base]

MEM[translate(EA)] \leftarrow GPR[rt]

PC \leftarrow PC + 4

Combinational

state update logic 51

Load-Store Datapath

Datapath for Non-Control-Flow Insts.

Single-Cycle Datapath for Control Flow Instructions

Unconditional Jump Instructions

- AssemblyJ immediate₂₆
- Machine encoding

```
J immediate J-type
```

Semantics

```
if MEM[PC]==J immediate<sub>26</sub>
target = { PC[31:28], immediate<sub>26</sub>, 2' b00 }
PC ← target
```

Unconditional Jump Datapath

Conditional Branch Instructions

- Assembly (e.g., branch if equal)
 BEQ rs_{reg} rt_{reg} immediate₁₆
- Machine encoding

BEQ	rs	rt	immediate	I-type
6-bit	5-bit	5-bit	16-bit	

Semantics (assuming no branch delay slot)
 if MEM[PC]==BEQ rs rt immediate₁₆
 target = PC + 4 + sign-extend(immediate) x 4

if
$$GPR[rs] = = GPR[rt]$$
 then $PC \leftarrow target$
else $PC \leftarrow PC + 4$

Conditional Branch Datapath (For You to Fix)

How to uphold the delayed branch semanties?

Putting It All Together

We did not cover the following slides in lecture. These are for your preparation for the next lecture.

Single-Cycle Control Logic

Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

- Consider
 - All R-type and I-type ALU instructions
 - LW and SW
 - BEQ, BNE, BLEZ, BGTZ
 - J, JR, JAL, JALR

Single-Bit Control Signals

	When De-asserted	When asserted	Equation
RegDest	GPR write select according to rt, i.e., inst[20:16]	GPR write select according to rd, i.e., inst[15:11]	opcode==0
ALUSrc	2 nd ALU input from 2 nd GPR read port	2 nd ALU input from sign- extended 16-bit immediate	(opcode!=0) && (opcode!=BEQ) && (opcode!=BNE)
MemtoReg	Steer ALU result to GPR write port	steer memory load to GPR wr. port	opcode==LW
RegWrite	GPR write disabled	GPR write enabled	(opcode!=SW) && (opcode!=Bxx) && (opcode!=J) && (opcode!=JR))

Single-Bit Control Signals

	When De-asserted	When asserted	Equation
MemRead	Memory read disabled	Memory read port return load value	opcode==LW
MemWrite	Memory write disabled	Memory write enabled	opcode==SW
PCSrc ₁	According to PCSrc ₂	next PC is based on 26- bit immediate jump target	(opcode==J) (opcode==JAL)
PCSrc ₂	next PC = PC + 4	next PC is based on 16- bit immediate branch target	(opcode==Bxx) && "bcond is satisfied"

ALU Control

case opcode

- '0' ⇒ select operation according to funct
 'ALUi' ⇒ selection operation according to opcode
 'LW' ⇒ select addition
 'SW' ⇒ select addition
 'Bxx' ⇒ select bcond generation function
 ⇒ don't care
- Example ALU operations
 - ADD, SUB, AND, OR, XOR, NOR, etc.
 - bcond on equal, not equal, LE zero, GT zero, etc.

R-Type ALU

I-Type ALU

Branch Not Taken

Branch Taken

What is in That Control Box?

- Combinational Logic → Hardwired Control
 - Idea: Control signals generated combinationally based on instruction
- Sequential Logic → Sequential/Microprogrammed Control
 - Control Store
 - Idea: A memory structure contains the control signals associated with an instruction