D-4-	_	
Date		

NO.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

MATHEMATICS CLASSROOM TEST

2022-23

Under the guidance of K. Venkanna

MATHEMATICS

NUMERICAL ANALYSIS CLASS TEST

Date: 29 Jan. 2022

Time: 03:00 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. Write your Name & Name of the Test Centre in the appropriate space provided on the right side.
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- 3. Candidates should attempt All Question.
- 4. The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 5. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 6. All questions carry equal marks.
- 7. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 8. All rough work should be done in the space provided and scored out finally.
- 9. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	IONS (ON THE
LEFT	SIDE	ΟF	THIS	PAGE
CAREI	FULLY			

	Name:
	Mobile No.
	Test Centre
г	
	Email.:
_	
	I have read all the instructions and shall abide by them
	Signature of the Candidate
	I have verified the information filled by the candidate above
	Signature of the invigilator

2 of 34

INDEX TABLE

Question	Page No.	Max. Marks	Marks Obtained
1.		15	
2.		10	
3.		15	
4.		15	
5.		10	
6.		15	
7.		10	
8.		07	
9.		12	
10.		15	
11.		10	
12.		15	
13.		12	
14.		15	
15.		10	
16.		12	
17.		15	
18.		12	
19.		15	
20.		10	

Total Marks

1.	By the fourth order Runge–Kutta method tabulate the solution of the differential
	equation $\frac{dy}{dx} = \frac{xy+1}{10y^2+4}$, $y(0) = 0$ in [0, 0.4] with step length 0.1 correct to five places
	of decimals. [15]

A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's $\frac{1}{3}$ rd rule, find the velocity of the rocket at t = 80 seconds.

t(sec):									
$f(cm/sec^2)$:	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

[10]

3.	Provide a computer algorithm to solve an ordinary differential equation $\frac{dy}{dx} = f(x, y)$
	in the interval [a, b] for n number of discrete points, where the initial value is $y(a) = \alpha$, using Euler's method. [15]

4.	Evaluate th	ne integrals
----	-------------	--------------

(i)
$$I = \int_0^2 \frac{dx}{3+4x}$$
, (ii) $\int_0^2 \frac{dx}{x^2+2x+10}$

by Gauss-Legendre two-point and three-point formulas. [15]

5.	The current i in an electric circuit is given by $i = 10e^{-t} \sin 2\pi t$ where t is in seconds. Using Newton's method, find the value of t correct to 3 decimal places for $i = 2$
	amp.
	[10]

Write the three point Lagrangian interpolating polynomial relative to the points x_0 , $x_0 + \varepsilon$ and x_1 . Then by taking the limit $\varepsilon \to 0$, establish the relation.

$$f(x) = \frac{(x_1 - x)(x + x_1 - 2x_0)}{(x_1 - x_0)^2} f(x_0) + \frac{(x - x_0)(x_1 - x)}{(x_1 - x_0)} f'(x_0) + \frac{(x - x_0)^2}{(x_1 - x_0)} f(x_1) + E(x)$$

where $E(x) = \frac{1}{6}(x - x_0)^2(x - x_1)f'''(\xi)$ is the error function and min.

$$(x_0, x_0 + \varepsilon, x_1) < \xi < \max. (x_0, x_0 + \varepsilon, x_1).$$
 [15]

7.	Apply Lagrange's interpolation formula to find $f(5)$ and $f(6)$ given that $f(1) = 2$, $f(2) = 4$, $f(3) = 8$, $f(7) = 128$.

8.	Explain the main steps of the Gauss-Jordan method and apply this method	od to
	find the inverse of the matrix $\begin{bmatrix} 2 & 6 & 6 \\ 2 & 8 & 6 \\ 2 & 6 & 8 \end{bmatrix}$.	
	find the inverse of the matrix $\begin{bmatrix} 2 & 8 & 6 \\ 2 & 6 & 6 \end{bmatrix}$.	[07]

[14-34]						
9.	For given equidistant values u_{-1} , u_0 , u_1 and u_2 , a value is interpolated formula. Show that it may be written in the form	by Lagrange's				
	$u_x = yu_0 + xu_1 + \frac{y(y^2 - 1)}{3!} \Delta^2 u_{-1} + \frac{x(x^2 - 1)}{3!} \Delta^2 u_0$, where $x + y = 1$.	[12]				

10. Derive the formula

$$\int_{a}^{b} y dx = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3}) \right].$$

Is there any restriction on n? State that condition. What is the error bound in the case of Simpson's $\frac{3}{8}$ rule? [15]

11.	Find a positive root of the equation $3x = 1 + \cos x$ by a numerical technique using			
	initial values $0, \frac{\pi}{2}$; and further improve the result using Newton-Raphson met	- 1		
	2			
	correct to 8 significant figures.	[0]		

12. Solve the system of equations
--

$$3x_1 + 9x_2 - 2x_3 = 11$$

$$4x_1 + 2x_2 + 13x_3 = 24$$

$$4x_1 - 2x_2 + x_3 = -8$$

correct up to 4 significant figures by using Gauss-Seidel method after verifying whether the method is applicable in your transformed form of the system.

[15]

13.	Find the equivalent of numbers given in a specified number system to the system
	mentioned against them.
	(i) (41.6875) ₁₀ to binary number
	(ii) (10111011001.101110) ₂ to octal
	(iii) (1000111110000.00101100) ₂ to hexadecimal system
	(iv) (C4F2) ₁₆ to decimal system
	[12]

14.	Develop an algorithm for Regula – Falsi method to find a root of $f(x) = 0$ starting with two initial iterates x_0 and x_1 to the root such that $sign(f(x_0)) \neq sign(f(x_1))$.
	Take n as the maximum number of iterations allowed and eps be prescribed error. [15]

15.	Find the positive root of the equation $10 \int_{0}^{x} e^{-x^{2}} dt - 1 = 0$ correct up to 6 decimal
	places by using Newton-Raphson method. Carry out computations only for three iterations. [10]

16. Solve the equations :

$$10x_{1} - 2x_{2} - x_{3} - x_{4} = 3$$

$$-2x_{1} + 10x_{2} - x_{3} - x_{4} = 15$$

$$-x_{1} - x_{2} + 10x_{3} - 2x_{4} = 27$$

$$-x_{1} - x_{2} - 2x_{3} + 10x_{4} = -9$$

by Gauss-Seidal iteration method.

[12]

Use Euler's modified method to compute y for $x = 0.05$ and $x = 0.1$. Given the $\frac{dy}{dx} = x + y$ with the initial condition $x_0 = 0$, $y_0 = 1$. Give the correct result upto for				
dx decimal places.				[1
decimal places.				ι-

18.	A reservoir discharging water through sluices at a depth h below the water surf has a surface area A for various values of h as given below: h (ft.) 10 11 12 13 14 A (sq. ft.) 950 1070 1200 1350 1530 If t denotes time in minutes, the rate of fall of the surface is given by	ace
	$\frac{dh}{dt} = -48\sqrt{h} / A$. Estimate the time taken for the water level to fall from 14 to 10 above the sluices.) ft. . 2]

19.	The equation $x^2 + ax + b = 0$ has two real roots α and β show that the iter	ration
	method $x_{k+1} = -\frac{(ax_k + b)}{x_k}$ is convergent near $x = \alpha$ if $ \alpha > \beta $ and that $x_{k+1} = \frac{1}{2}$	$\frac{-b}{x_k + a}$
	is convergent near $x = \alpha$ if $ \alpha < \beta $. Show also that iteration method $x_{k+1} = -\frac{(x_1)^2}{(x_1)^2}$	$\frac{a^2+b}{a}$
	is convergent near $x = \alpha$ if $2 \alpha < \alpha + \beta $.	[15]

20. Using Newton's forward formula find the number of men getting wages between Rs. 10 and 15 from the following data:

Wages in Rs.:	0-10	10 - 20	20-30	30 – 40
Frequency:	9	30	35	42

[10]

No. 1 INSTITUTE FOR IAS/IFoS EXAMINATIONS

OUR ACHIEVEMENTS IN IAS (FROM 2008 TO 2020)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152