Evaluating Performance I

Lecture 06

Choose 2

Modeling Tradeoffs

Interpretability

Computational Efficiency

Accuracy

Computational Efficiency

Supervised Learning Performance Evaluation

Regression

Classification

Binary

Multiclass

Receiver Operating Characteristic (ROC) curves

Confusion matrices

- Mean squared error (MSE)
- Mean absolute error (MAE)
- R², coefficient of determination
- Adjusted R²
- Explained variance

Common Metrics

- Classification accuracy
- False alarm rate
- Recall
- Precision
- F₁ Score
- Area under the ROC curve (AUC)

- Classification accuracy
- Micro-averaged F₁ Score
- Macro-averaged F₁ Score

Regression: Mean Squared Error

The mean squared error (MSE)

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Absolute measure of performance

One of the most widely used loss / cost functions

Regression: Mean Absolute Error

The mean absolute error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Absolute measure of performance

R² Coefficient of determination

Proportion of the response variable variation explained by the model

Residual sum of squares (variation in the residuals)

$$SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Total sum of squares (variation in the data)

$$SS_{tot} = \sum_{i=1}^{N} (y_i - \bar{y})^2$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

R-squared

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Relative measure of performance

R² Coefficient of determination

R² increases with more predictor variables

Adjusted R squared:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{N - 1}{N - p - 1}$$

Adjusts R squared to account for the number of predictor variables

This value is always less than or equal to the unadjusted R squared

Explained Variance

Proportion of the response variable variation explained by the model

Explained Variance =
$$1 - \frac{Var(y - \hat{y})}{Var(y)}$$

This will equal R² when the mean of $y - \hat{y}$ is zero

Relative measure of performance

Types of error

False Positive

(Type I error)

False Negative

(Type II error)

Binary Classification

True Class, y

Class 0

Binary Classification Predicted Class, \hat{y}

True positive rate Probability of detection, p_D Sensitivity Recall

How many targets (Class 1) were correctly classified as targets?

Binary Classif

Classification Predicted Class, \hat{y}

False positive rate Probability of false alarm, p_{FA}

How many non-targets (Class 0) were incorrectly classified as targets?

Binary Classification Predicted Class, \hat{y}

How many of the predicted targets are targets?

Estimate (\hat{y})	True Class Label (y)	Classifier Confidence	
0	1	1.40	
0	1	0.95	
0	0	0.80	
0	1	0.60	
0	0	-0.10	

$$AUC = \left(\frac{2}{3}\right)\left(\frac{1}{2}\right) + (1)$$

ROC Curves

false

positive

Total Positives = 3

Total Negatives = 2

ROC Curves: how do they compare?

ROC Curves: where do we operate?

			1
Estimate	True Class	Classifier	
$(\widehat{\mathbf{y}})$	Label (y)	Confidence	
•	1	1.40	
0	1	0.95	
0	0	0.80	
0	1	0.60	
0	0	-0.10	

Classifier decision rule:

$$\hat{y} = \begin{cases} 1, & x > thresh \\ 0, & x \le thresh \end{cases}$$

Total Positives = 3

Total Negatives = 2

Threshold	# True Positives	Recall,	P_{D}	# Predicted Positive	Precision	
-----------	---------------------	---------	---------	-------------------------	-----------	--

i	y_i	\widehat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	0
8	0	1
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study 1

Overall classification accuracy = 13/15 = 0.87

A False positive rate =

- 1/8 = **0.13**
- B True positive rate (Recall) = 6/7 = 0.86

PR Curves measure the tradeoff between...

- B True positive rate (Recall) =
- 6/7 = 0.86

Precision=

$$6/7 = 0.86$$

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	0
4	1	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study II

false + true negative

Overall classification accuracy = 13/15 = 0.87

ROC Curves measure the tradeoff between...

A False positive rate =

- 0/11 = 0
- B True positive rate (Recall) = 2/4 = 0.5

B

true

positive

PR Curves measure the tradeoff between...

- B True positive rate (Recall) = 2/4 = 0.5
 - C Precision= 2/2 = 1

C

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	1
3 4	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1
10	1	1
11	1	1
12	1	1
13	1	1
14	0	1
15	0	1

Case study III

Overall classification accuracy = 13/15 = 0.87

ROC Curves measure the tradeoff between...

False positive rate =

- 2/2 = 1
- True positive rate (Recall) = 13/13 = 1

PR Curves measure the tradeoff between...

- 13/13 = **1** True positive rate (Recall) =

$$13/15 = 0.87$$

Multiclass Classification: Confusion Matrix

confusion matrix with number of samples

confusion matrix with probabilities

F₁-score

$$F_1 = 2 \frac{1}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$$

Harmonic mean of precision and recall

$$= 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Generally:

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}$$

 β controls the relative weight of precision/recall

Multiclass F₁

Micro-average: Calculate metrics globally by counting the total true positives, false negatives, and false positives

Macro-average: Use the average precision and recall for each class label