Cvičení z programování - Python

verze 1.1 Jakub Mazuch

Úvod do programování

Programové vybavení:

- Visual studio Code (https://code.visualstudio.com/)
- Python 3 (https://code.visualstudio.com/docs/python/python-tutorial)
- Rozšíření Visual studio Code Linter

Plán

- 1. Proměnné a datové typy
- 2. Logický výraz, podmínka
- 3. Cyklus
- 4. Pole
- Známé algoritmy Euklidův algoritmus, test prvočíselnost, Eratosthenovo síto
- 6. Funkce, rekurze

- 7. Vícerozměrné pole
- 8. Prohledávání do šířky, prohledávání do hloubky
- 9. Třídící algoritmy, časová a prostorová složitost
- 10. Spojový seznam, fronta, zásobník

Teorie

- Algoritmus, algoritmizace
- Programování programovací paradigmata, programovací jazyk
 - o Zdrojový kód
 - o Překladač mezi člověkem a cílovým (binárním) kódem
 - o Datové typy, dynamické datové typy
 - o Case sensitive $a = 5 \neq A = 5$
 - o Syntaktické vychytávky Pythonu

Cvičení

1. Vytvořte program, který vypíše Hello world

I. Proměnné a datové typy

- Příkaz
 Hodnota int, string, ... desetinná čárka, nebo tečka?
- Syntaxe, rozdíl mezi \equiv a \equiv
- Proměnná
- Parsování

Cvičení

2. Papoušek.

Vytvořte program Papoušek, který bude papouškovat Váš vstup.

3. Druhá mocnina.

Uživatel zadá číslo x. Program vypíše jeho druhou mocninu (x^2) .

4. **n**-tá mocnina.

Uživatel zadá číslo n a x. Program vypíše x^n .

5. Kalkulačka.

Uživatel zadá čísla x a y. Program vypíše x + y, x - y a xy.

6. Obvod a obsah rovinného obrazce.

- (a) **čtverec**: Uživatel zadá délku strany a. Program vypočítá a vypíše obvod a obsah čtverce o straně a.
- (b) **obdélník**: Uživatel zadá délku stran a, b. Program vypočítá a vypíše obvod a obsah obdélníku o stranách a, b.
- (c) **kruh**: Uživatel zadá poloměr kruhu r. Program vypočítá a vypíše obvod a obsah kruhu.

(d) kombinace obrazců: Uživatel zadá číslo a. Program vypočítá obsah šrafované části obrazce níže znázorněného.

Nápověda: |AB| = a

7. Povrch a objem prostorového obrazce.

- (a) **krychle**: Uživatel zadá délku strany a. Program vypočítá a vypíše povrch a objem krychle o straně a.
- (b) **kvádr**: Uživatel zadá délky stran a, b, c. Program vypočítá a vypíše povrch a objem krychle o straně a.
- (c) **polokoule**: Uživatel zadá poloměr polokoule r. Program vypočítá a vypíše povrch a objem polokoule.
- (d) komolý kužel: Uživatel zadá výšku kuželu v a poloměry podstav v_1 a v_2 . Program vypočítá a vypíše V a S.

8. Zbytek po dělení.

Uživatel zadá čísla x a y. Program vypíše zbytek po dělení x číslem y.

$$d = (x \mod y)$$

$$\frac{x}{y} = n + d$$

9. Počet dnů, hodin, minut.

Uživatel zadá počet týdnů. Program vypočítá a vypíše počet dnů, hodin, minut obsahuje zadaný počet týdnů.

10. Doba volného pádu.

Uživatel zadá výšku $h\left[m\right]$. Program vypíše dobu volného pádu.

Pozn. 1: Tíhové zrychlení počítejte $g=9,81\,kg\cdot s^{-2}$

II. Logický výraz, podmínka

Teorie

- Logické operátory AND, OR, >, \geq , =, \geq , <, \neq
- Podmínka úplná a neúplná

Cvičení

11. Číslo větší nebo menší I.

Uživatel zadá číslo a. Program vypíše, zda je číslo a větší nebo menší, než 10.

12. Číslo větší nebo menší II.

Uživatel zadá čísla a, b. Program vypíše, které číslo je větší.

13. Číslo větší nebo menší III.

Upravte program z úlohy (11) tak, aby program vypisoval diferenci mezi čísly.

14. Délka čísla.

Uživatel zadá číslo a. Program vypíše, zda je číslo a jednociferné, dvouciferné, tříciferné, čtyřciferné, pěticiferné, šesticiferné nebo více jak šesticiferné.

15. **BMI.**

Uživatel zadá výšku h [cm] a váhu m [kg]. Program vypíše hodnotu BMI [kg/m^2] a příslušnou kategorii (např. ideální váha), viz (Pozn. 2).

$$BMI = \frac{m[kg]}{(h[m])^2}$$

Pozn. 1: Nezapomeňte vyřešit problém, kdy uživatel zadává výšku v centimetrech, ale vzorec předpokládá výšku v metrech.

Pozn. 2: Jednotlivé kategorie BMI:

 podváha:
 BMI < 18,5</td>

 ideální váha:
 18,5-25

 nadváha:
 25-30

 mírná obezita:
 30-35

 střední obezita:
 35-40

 morbidní obezita:
 BMI > 40

16. Zmrzlinový test I.

Uživatel zadá svoji sumu peněz. Program vypíše, zda si může dovolit koupit zmrzlinu, či nikoliv. Uvažujte pevnou částku zmrzliny (20,00 Kč).

17. Zmrzlinový test II.

Uživatel zadá svoji sumu peněz a cenu zmrzliny. Program vypíše, zda si může dovolit koupit zmrzlinu či nikoliv.

18. Kvadratická rovnice.

Uživatel zadá čísla a, b, c. Program vypočítá a vypíše kořeny kvadratické rovnice.

Pozn.: Předpokládejte uživatelovu elementární neznalosti. Upravte program tak, aby dokázal efektivně reagovat na všechny případy, vč. těch speciálních:

$$(a = 0) \lor (b = 0) \lor (c = 0) \lor (b^2 - 4ac) < 0$$

19. Kvadratická rovnice II.

Upravte program z úlohy (17) tak, aby dokázal pracovat i na oboru \mathbb{C} , resp. aby pracoval i s problémem $(b^2-4ac)<0$.

20. Parita I.

Pro zadané číslo n zjistěte, zda se jedná o číslo sudé nebo liché.

21. Pěkná čísla.

Uživatel zadá dvojici libovolných čísel a, b. Čísla jsou pěkná, pokud aspoň jedno z čísel je sudé. Program otestuje a vypíše, zda zadaná dvojice a, b je pěkná.

III. Cyklus

Teorie

- Cyklus se známým počtem opakování
- Cyklus s podmínkou na začátku
- Modulo

Cvičení

22. Řady čísel I

Vytvořte program, který vypíše řadu čísel dle zadání pomocí vhodného cyklu.

a) od 1 od 10 po 1

e) od -10 do +20 po 4

b) od 0 do 8 po 1

f) od 10 do 0 po 1 (resp. -1)

c) od -5 do 12 po 1

g) od 7 do -3 po 1

d) od 1 do 20 po 3

h) od 20 do -20 po 4

23. Řady čísel II

Uživatel zadá a, b a c. Program vypíše řadu čísel od a do b po c.

24. Zmrzlinový test III.

Uživatel zadá svoji sumu peněz, cenu jednoho kopečku zmrzliny a počet kopečků. Program vypíše, zda si může zmrzlinu dovolit či nikoliv.

25. Zmrzlinový test IV (pokladna).

Uživatel nejprve zadává počet jednotek a sortiment.

Následně zadává hotovost, ve které zákazník platí (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000).

Stisknutím specifické klávesy (např. H) se transakce potvrdí a program vypíše kolik uživateli vrací peněz.

26. Hádání čísel I.

Uživatel zadá a a b. Program si myslí náhodné číslo od a do b. Uživatel postupně zadává čísla a v závislosti na zadaném číslu program odpovídá, zda zadané číslo je:

- Větší než číslo, které si program myslí, nebo
- Menší než číslo, které si program myslí, nebo
- Čísla jsou shodná BINGO!

Hra končí tehdy, uhádne-li uživatel číslo.

Kód pro generování náhodného čísla:

```
from random import randint
nahodne_cislo = randint(a, b)
print(nahodne cislo)
```

27. Hádání čísel II.

Upravte program z úlohy (26) tak, aby

- a. dokázala v případě uživatelské chyby (b > a) obrátit hranice.
- b. uživatel mohl po ukončení hry (uhádnutí čísla) nadále
 - (1) pokračovat se stejnými hranicemi
 - (2) pokračovat s jinými hranicemi
 - (3) ukončit hru
- c. *počítala uživatelovi skóre (tj. počet nutných tahů pro uhádnutí čísla) v každém kole a po skončení určila nejvyšší skóre

28. Parita II.

Upravte program z úlohy (19) tak, aby uživatel mohl číslo zadávat opakovaně.

29. Faktoriál.

Uživatel zadá číslo n. Program vypočítá a vypíše n! pomocí cyklu se známým počtem opakování.

IV. Seznamy (pole)

Teorie

— Pole, index

Cvičení

30. Mocniny I.

Uživatel zadá číslo n. Program vypíše všechny mocniny dvojky, menší než n.

31. Mocniny II.

Upravte program z úlohy (21) tak, aby program vypsal součet všech mocnin dvojky menších, než n.

32. Převod z desítkové soustavy do binární.

Uživatel zadá dekadické číslo a. Program převede toto číslo do binární soustavy a vypíše.

33. Převod z binární soustavy do desítkové.

Uživatel zadá binární číslo a. Program převede toto číslo do desítkové soustavy a vypíše.

Pozn.: Zabezpečte (ošetřete) program tak, nevypisoval žádné chybné hlášky ani nepravdivé výsledky při chybném vstupu (tj. jiná čísla než 0 nebo 1).

V. Známé algoritmy (Euklidův algoritmus, test prvočíselnosti, Eratosthenovo síto)

Teorie

- Prvočíslo
- Euklidův algoritmus

Eratosthenovo¹ síto

https://cs.wikipedia.org/wiki/Eratosthenovo s%C3%ADto

Cvičení

34. Převod z desítkové soustavy do soustavy o libovolného základu.

Uživatel zadá dekadické číslo x a soustavu z. Program vypíše číslo $(x)_z$, resp. číslo x v soustavě o základu z.

Nápověda: Využijte tzv. Euklidův algoritmus, ověřte zadání přirozeného základu z.

35. Výpočet nsn a NSD.

Uživatel zadá čísla x a y. Program vypočítá a vypíše nejmenší společný násobek a největší společný dělitel čísel x, y.

36. Test prvočíselnosti.

Uživatel zadá číslo x. Program vypíše, zda je číslo x prvočíslo, či nikoliv.

37. Eratosthenovo síto.

Uživatel zadá číslo n. Program vypíše všechna prvočísla.

¹ Eratosthenés z Kyrény (řecky Ἐρατοσθένης, mezi 276-272 v Kyréně – 194 př. n. l. v Alexandrii) byl matematik, astronom a zřejmě největší geograf antického Řecka. Působil též jako správce alexandrijské knihovny. Věnoval se také literární činnosti jako básník. Bylo po něm pojmenováno tzv. Eratosthenovo síto a kráter Eratosthenes na Měsíci.

VI. Funkce, Rekurze

Teorie

\mathbf{T}		1	
 H)	111	nl	kce

— Rekurze

Cvičení

38. Ověření rodného čísla.

Uživatel zadá rodné číslo. Program vyhodnotí, zda je zadané rodné číslo validní.

Pozn.:

Pozor! Obecná pravidla jsou trochu složitější, než pouhá dělitelnost 11.

Do roku 1985 bylo vydáno asi 1 000 čísel, která dělitelnost 11 nesplňují. Váš skript by je ovšem měl vyhodnotit jako správná.

Tato pravidla jsou platná pro rodná čísla vydaná po 1. lednu 1954.

Pravidla:

- 1. spočti zbytek po dělení prvních devíti číslic a čísla 11
- 2. je-li zbytek 10, musí být poslední číslice 0
- 3. jinak poslední číslice musí být rovna zbytku

<u>Úvahy</u>:

- Co když bude číslo jen 9místné?
- Co může být na pozici měsíců?

Vyzkoušejte na číslech:

- 935405 / 0728 (ano)
- 935106 / 0410 (ne)
- 80123 / 3540 (ano)

39. Ověření čísla účtu.

Uživatel zadá číslo bankovního účtu. Program ověří, zda je číslo účtu validní. *Pozn.*:

3.2. Zajištění čísel účtů modulo 11

Čísla účtů jsou zajištěna podle následujícího algoritmu v souladu s vyhláškou.

Algoritmus kontroly čísla ABCDEFGHIJ na modulo 11:

Číslice	A	В	C	D	E	F	G	Н	I	J
Váhy*)	6	3	7	9	10	5	8	4	2	1

^{*)}Pozn.: Váhy jsou získány jako rozdíl n-té mocniny 2 a nejbližšího nižšího násobku 11.

Váhy se k číslicím na jednotlivých pozicích čísla účtu přiřazují zprava. Číslo **ABCDEFGHIJ** je zajištěno modulo 11, pokud je součet **S** beze zbytku dělitelný 11, přičemž

$$S = J*1 + I*2 + H*4 + G*8 + F*5 + E*10 + D*9 + C*7 + B*3 + A*6$$

40. Aritmetická posloupnost I.

Uživatel zadá první člen (a_1) posloupnosti $(a_n)_{n=1}^{\infty}$, její diferenci d a počet členů n. Program vypíše všechny členy posloupnosti $a_1, a_2, a_3, \dots, a_n$.

$$a_n = a_{n-1} + d$$

41. Aritmetická posloupnost II.

Upravte program z úlohy () tak, aby program vypsal součet všech členů posloupnosti.

$$\sum_{n=1}^{n} (a_n) = a_1 + a_2 + \dots + a_n$$

42. Geometrická posloupnost I.

Uživatel zadá první člen (a_1) posloupnosti $(a_n)_{n=1}^{\infty}$, její kvocient q a počet členů n. Program vypíše všechny členy posloupnosti $a_1, a_2, a_3, ..., a_n$.

$$a_n = q \cdot a_{n-1}$$

43. Geometrická posloupnost II.

Upravte program z úlohy () tak, aby program vypsal součet všech členů posloupnosti.

$$\sum_{n=1}^{n} (a_n) = a_1 + a_2 + \dots + a_n$$

44. *Pascalův trojúhelník.

Uživatel zadá číslo n. Program vypíše n řádků Pascalova trojúhleníku.

 $P\check{r}$.: n = 6:

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
```

45. Fibonacciho posloupnost.

V program definujte funkce odpovídající následujícím podúlohám. Pro úvod programu vytvořte menu – možnosti pro odpovídající volbu možností.

- i) Uživatel zadá číslo n. Program vypíše n členů Fibonacciho posloupnosti
- j) Program vypíše 10 členů Fibonacciho posloupnosti.
- k) Uživatel zadá číslo n. Program vypíše součet n členů Fibonacciho posloupnosti.
- l) *Uživatel zadá číslo n a k. Program vypíše k členů Fibonacciho posloupnosti od n-tého členu dále.

Rekurze

46. Faktoriál.

Uživatel zadá číslo n. Program vypočítá a vypíše n! pomocí rekurze.

47. Výpočet a^b .

Uživatel zadá a, b. Pomocí rekurze program vypočítá a^b .

Nápověda 1:
$$x^m \cdot x^n = x^{m+n}$$

Nápověda 2:
$$b = b + 1 - 1 = 1 + b - 1$$

$$\Rightarrow a^b = a^{1+b-1} = a \cdot a^{b-1}$$

48. Fibonacciho posloupnost I.

Uživatel zadá číslo n. Program vypíše n-tý člen Fibonacciho posloupnosti pomocí rekurze.

$$Nlpha pov \check{e}da$$
:
$$F(n) = \left\{ egin{array}{ll} 0 \ , & \operatorname{pro} n = 0 \ ; \\ 1, & \operatorname{pro} n = 1 ; \\ F(n-1) + F(n-2) & \operatorname{jinak}. \end{array} \right.$$

VII. Vícerozměrné pole

Teorie

- Pole opakování
- Dvourozměrné pole
- Vícerozměrné pole

Cvičení

49. Šachovnice.

Pomocí dvourozměrného pole reprezentujte šachovnici 8×8. Prázdné pole šachovnice bude označeno symbolem ♣. Dále bude moci uživatel na libovolné pole šachovnice umístit věž (pole bude označeno symbolem ☑). Program následně označí symbolem ☑ všechna pole šachovnice, která tato věž ohrožuje.

50. *Ověření symetrie matice.

Uživatel zadá velikost n čtvercové matice $n \times n$, Dále postupně naplňuje všechny členy matice. Program ověří, zda se jedná o symetrickou matici.

Pozn.: Matice $A=(a_{ij})$ stupně n se nazývá symetrická právě tehdy, když pro všechna $i,j=1,2,\ldots,n$ platí:

$$a_{ij} = a_{ji}$$
.

 $Např.: Nechť B = (b_{ij}) stupně 3$

$$B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Pak B je symetrická, pokud

$$a_{21} = a_{12} \wedge a_{31} = a_{13} \wedge a_{32} = a_{23}$$

51. **Problém osmi dam na šachovnici. (významný matematický problém)
Umístěte na šachovnici 8 dam tak, aby se podle pravidel šachu vzájemně

neohrožovali.

52. ***Problém *n* dam na šachovnici.

Zobecněte úlohu (49) na n dam na šachovnici. Číslo n zadá uživatel.

Pozn.: Počet řešení se asymptoticky chová asi jako $\frac{n!}{2,54^n}$.

Nápověda: Zamyslete se nad počtem řešení pro n=1,2,3.

VIII. Prohledávání do šířky (BFS), prohledávání do hloubky (DFS)

Teorie

- Úvod do teorie grafů
- Typy grafů: cesta, kružnice, strom
- Úplný graf, podgraf, bipartitiní graf
- Orientovaný graf, neorientovaný graf
- Reprezentace grafů: Matice sousednosti, matice incidence, reprezentace polem
- Průchod stromem do hloubky (DFS) + časová složitost
- Průchod stromem do šířky (BFS) + časová složitost
- *Hledání nejkratší cesty (Dijkstrův algoritmus)

Cvičení

53.****Jezdcova procházka (super multi hardcore!)

Jezdec se pohybuje v souladu s šachovými pravidly po prázdné šachovnici a jeho úkolem je, aby každé pole navštívil právě jednou.

Nápověda 1: Pro vizualizaci problému je vhodné sestrojit (orientovaný) graf.

Nápověda 2: Nejjednodušším algoritmem pro nalezení řešení problému jezdcovy procházky je tzv. backtracking (prohledávání do hloubky). Při něm jezdec skáče zcela libovolně na zatím neobsazená pole, dokud se neocitne v situaci, kde již nemůže táhnout dále. V takovém případě se vrátí o jeden tah zpět a pokračuje jinou cestou. Tento algoritmus je ale vzhledem k poměrně časté nutnosti vracet se ze "slepých uliček" dosti pomalý.

IX. Řadící algoritmy, časová a prostorová složitost

Teorie

- Selection-sort
 Bubble-sort
 Insertion-sort
 Heapsort
 Merge sort
 Quicksort
- Časová složitost algoritmu
- Prostorová složitost algortimu

Cvičení

54. Řazení algoritmů I.

Uživatel zadá velikost pole n. Následně pole naplní a seřadí sestupně algoritmem dle zadání.

- a. Selection-sort
- b. Bubble-sort
- c. Insertion-sort
- d. Heapsort
- e. Merge sort
- f. Quicksort

55. Razení algoritmů II.

Upravte úlohu (54) tak, aby si uživatel mohl vybrat z možnosti sestupné řazení a vzestupné řazení.

X. Lineární spojový seznam, fronta a zásobník

Teorie

- Lineární spojový seznam
- Fronta
- Zásobník

Cvičení

(přemýšlím)