Intro to Jarvis

Scott Krieder & Eduardo Berrocal

Outline

- Intro to Jarvis
- How to request an account
- Using the cluster
 - login
 - submitting jobs
- Linux Basics
 - o cs, ls, mkdir, touch, ...
 - Makefile
 - o emacs, vim
- Version Control

The Jarvis cluster

The Jarvis cluster

- Rocks 6.1 cluster (19 nodes)
- Linux CentOS 6.3
- home mounted through NFS, accessible everywhere in the cluster (2TB)
- Each node:
 - 8-cores CPU
 - 16/32 GB RAM
 - HOME: /export/home/username 2TB total
 - SCRATCH: /export/scratch/username 2TB total (deleted once a week) For now only accessible through login node
 - 2TB HDD (local to each node at /state/partition1).
 - Nvidia GPU
 - 4+1 Nvidia GTX 480
 - 3 Nvidia GTX 650
 - 9 Nvidia GTX 640
 - 2 Nvidia Tesla K20

Compilers available at jarvis

- C/C++/OpenMP
 - o gcc 4.4.6
- Java
 - o JRE 1.7.0_13
- MPI
 - OpenMPI
 - MPICH2 1.4.1p1
- perl
 - o v 5.10.1
- python
 - o v 2.6.6
- CUDA

Request an account

- https://bluesky.cs.iit.edu/jarvis
 - o user: iit
 - password: iit2014

Jarvis account request

	Last name		
	First name		
	CWID*		
	Course*		(e.g., CS101)
	Email		
	User name		
I AM DAY WE	Comments:		
	8		
		Request	

* If you are not affiliated with IIT, or your account is not part of a particular course, please enter "N/A" and explain in Comments why you are requesting an account for Jarvis.

If you have questions, please send an email to eberroca@iit.edu

Login to jarvis cluster

- ssh username@jarvis.cs.iit.edu
- Linux & MacOS

Add the following to ~/.ssh/config:

```
Host jarvis
HostName jarvis.cs.iit.edu
User username
IdentityFile ~/.ssh/id rsa
```

- Login: ssh jarvis
- CP Files: scp <file> jarvis:~/
- Windows
 - PuTTY: http://www.putty.org/
 - WinSCP: http://winscp.net/eng/download.php

Login to jarvis (windows)

Login to jarvis (windows)


```
eberroca@jarvis ~ ] $
[eberroca@jarvis ~ ] $
[eberroca@jarvis ~ ] $
[eberroca@jarvis ~ ] $
```

Copying files to jarvis (windows)

Copying files to jarvis (windows)

SGE (How to submit jobs)

- Login node for programming, compiling and small programs "hello world" only
- We will kill any process that takes too much time/too many resources (CPU, MEM,...)
- To run jobs, you need to use SGE
- Open source scheduler for clusters
- In SGE, you create job submission scripts with all the desired configurations
- The job is submitted to a specific queue, where it will run when the scheduler so decides

SGE (How to submit jobs)

Example (MPI)

For more information please check "man qsub". Read about SGE (http://gridscheduler.sourceforge.net/htmlman/manuals.html)

Simple MPI code (test.c)

```
#include <stdio.h>
#include <mpi.h>
int main (argc, argv)
    int argc;
    char *argv[];
 int rank, size;
 MPI Init (&argc, &argv); /* starts MPI */
 MPI Comm rank (MPI COMM WORLD, &rank); /* get current process id */
 MPI Comm size (MPI COMM WORLD, &size); /* get number of processes */
 printf( "Hello world from process %d of %d\n", rank, size );
 MPI Finalize();
 return 0;
```

Compile: \$ mpicc test.c

job submission script (testrun.sh)

Using only 4 process per node. Nodes in the cluster have 8 CPUs, but you can also run more than 8 processes in each node

Submit job

Parallel environment. This script will be run on two nodes using the MPI mpich implementation.

job submission script (testrun.sh) nodes with a specific nvidia card

Running on nodes with nvidia GTX 650 cards only. The same way, you can specify 480.q, 640.q or k20.q

Checking job in queue (jobid = 91)

Output files

- e91: Standard error for job 91
 - o91: Standard output for job 91
 - pe91: Standard error for parallel environment in job 91
 - po91: Standard output for parallel environment in job 91

Output

\$ cat testrun.sh.o91 Hello world from process 0 of 8 Hello world from process 1 of 8 Hello world from process 2 of 8 Hello world from process 3 of 8 Hello world from process 6 of 8 Hello world from process 7 of 8 Hello world from process 5 of 8 Hello world from process 4 of 8

Nodes are assigned to you when they are available

```
[test_user@jarvis ~]$ ssh gpu-compute-1-1
NO LOGIN PERMITTED FOR USERS! SUBMIT YOUR JOB USING THE SCHEDULER!
Permission denied (publickey,gssapi-keyex,gssapi-with-mic).
[test user@jarvis ~]$
```

You need to use the interactive queue.

```
[test_user@jarvis ~]$ qlogin -q interactive.q
Your job 97 ("QLOGIN") has been submitted
waiting for interactive job to be scheduled ...
Your interactive job 97 has been successfully scheduled.
Establishing builtin session to host gpu-compute-1-1.local ...
[test_user@gpu-compute-1-1 ~]$
```

- We have limited (although enough) slots. If you can't login, wait for 5 or 10 minutes and try again.
- If you don't use a login session anymore, please close the terminal (with exit).

You can request more than one node when running an interactive job

```
[test user@jarvis ~] $ qlogin -q interactive.q -pe mpich 2
```

- The good news is that you don't need to know which nodes (the names) you have requested when running MPI (the parallel environment is ready for you)
- Don't use this option to interactively use more than one node. For that, open multiple terminals and do qlogin one node at a time

If you want to know which nodes you have in your interactive job, run the following:

```
[test_user@gpu-compute-1-0 ~]$ qstat -f
```

This command will output a lot of information regarding all the nodes. You can search for your username:

Interactive jobs nodes with a specific nvidia card

Running on nodes with nvidia GTX 650 cards only. The same way, you can specify interactive. 480.q, interactive.640.q or interactive.k20.q

\$ qlogin -q interactive.650.q

SGE (How to run MPI+CUDA)

- Compile CUDA code

 Include *.o objects, library paths, and include paths when compiling normal C MPI code

- Compile final MPI executable

- Submit to cluster as normal MPI code

SGE (How to run MPI+CUDA)

\$ nvcc -c cuda_code.cu

\$ mpicc -l/usr/local/cuda/include -L/usr/local/cuda/lib64 - lcudart -o mpi_executable mpi_code.c cuda_code.o

```
mpi_code.h
myFunc();

cuda_code.cu

__global__ my_kernel() {
    ....
}
mpi_code.c
main () {
    myFunc () {
    myFunc();
}
myFunc();
}
```

Linux Basics

- Is list a directory
- cd move directories
- emacs/vim command line file editing
- mkdir create a directory
- touch touches a file
- Makefile automating build process

Emacs basics

new file - emacs hello.c save - ctrl + x, ctrl + s close - ctrl + x, crtl + c

Version Control

- Create an account on (GitHub or Bitbucket)
- Initialize with a readme
- Clone the repo on Jarvis
- add a file
- write a commit message
- push to the repo
- view changes in browser

For all info check the wiki

https://sites.google.com/site/iitcuda/home