KAY SUN, PH.D.

ATLANTA. GA kaysunphd@gmail.com kaysunphd.github.io

SUMMARY OF QUALIFICATIONS

- Experience in deep learning of medical images, data science and machine learning of medical data, data analysis and visualization, cloud data solution, computational modeling and software development.
- Proficient in Python, C++, PyData stack, Azure, Tensorflow, Keras, OpenCV.
- Success in securing grants from Department of Defense and Food & Drug Administration.

EXPERIENCE

(self-employed) Studio Vodels, Madison, WI | Atlanta, GA

2019 - now

Principal Data Scientist - Independent Contractor

- Using data analytics to understand, explain, and problem solve clinical data anomalies
- Developed machine learning models to predict patient treatment outcomes after medical therapies (scikit-learn/AutoGluon/Python)

2019 - 2022

Principal Deep Learning Engineer - Independent Contractor

- Developed deep learning algorithms to automate segmentation of nerves from ultrasound images for US-guided regional anesthesia (OpenCV/Keras/Tensorflow/Python)
- Developed deep learning model and framework to predict 3D dose distribution for radiation therapy planning (OpenCV/Keras/Tensorflow/Python)
- Developed a deep learning-based decision support tool for rapid analysis of fundus retina images to detect retinal abnormalities (OpenCV/Keras/Tensorflow/Python)

2021 - now

Principal Data Architect - Independent Contractor

- Designing a web application and IoT gateway solution to connect a medical device for remote data collection (Azure/Flask/Docker)
- Designed data models, developed ETL processes, and built data warehouses and dashboards for medical data (Postgresql/AWS/Python)

HealthMyne, Madison, WI

2018 - 2019

Senior Scientist

Developed and deployed machine learning models (OpenCV/Keras/Tensorflow/DL4J) to

- Classify exam groups of MR images
- Segment brain tumors in MR images and liver organs in CT images

CFD Research Corporation, Huntsville, AL

2016 - 2018

Principal Scientist

2013 - 2016

Senior Research Scientist

- Developed a burn injury assessment tool with morphable 3D human body models (OSG/Qt/Android | Phase I/II)
- Developed software tool to perform respirator mask sizing and predict protective fit using 2D images (OSG/Qt/C++/Android | Phase I/II)
- Developed ocular models for drug delivery simulations (FDA U01)

EDUCATION

UdacityNanodegreeCloud Developer with Azure

UdacityNanodegreeData ScientistUdacityNanodegreeData Engineering

Udacity Nanodegree Front-End Web Developer

Rice University, Houston, TX Ph.D. Bioengineering

Thesis: A Finite Element Approach Towards Biomechanical Optimization of Prophylactic Vertebroplasty.

Georgia Institute of Technology, Atlanta, GA B.Sc. Chemical Engineering

SKILLS

Languages: Python, C++, Unix/Linux Shell, SQL

Web Application: HTML/CSS, Flask, Plotly

IDE: PyCharm, Jupyter Lab, VS Code, IntelliJ

Cloud Computing: Azure

Machine Learning: Keras, Tensorflow, scikit-learn, AutoGluon, DL4J

Visualization Tools: ImageJ, Meshlab, Paraview, OpenCV, OpenSceneGraph

Project Management: Asana, Jira, Confluence, Git

GRANTS AND CONTRACTS

U.S. Department of Defense, Chemical and Biological Defense

Protective Mask Sizing App

DoD SBIR 2016.1 CBD16-005 Phase I, Option, Phase II Kay Sun (PI)

U.S. Department of Defense, Department of the Army

Burn Injury Assessment Tool with Morphable 3D Human Body Models

DoD SBIR 2015.1 A15-055 Phase I, Option, Phase II Kay Sun (PI)

Food and Drug Administration (FDA)

An integrated multiscale-multiphysics modeling and simulation of ocular drug delivery with whole-body pharmacokinetic response.

1U01FD005219 (2014 – 2017) Kay Sun (PI)

PUBLICATIONS (out of 25 total)

1. Pak, J., Chen, Z., <u>Sun, K.</u>, et.al. "Computational Modeling of Drug Transport Across the In Vitro Cornea." *Computers in Biology and Medicine*, 2018 vol 92(1); 139-146.

CONFERENCE PAPERS (out of 33 total)

- 1. Babier, A., Zhang, B., ..., <u>Sun, K.</u>, et al. "An international validation of knowledge-based planning," *Medical Physics*, 2021, Vol. 48, p. e422.
- Gering D., <u>Sun, K.</u>, Avery, A., et. al. "Semi-automatic Brain Tumor Segmentation by Drawing Long Axes on Multi-plane" Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science, vol 11384.
- 3. <u>Sun, K.</u>, Rossi, M., Zhou, X., et al. "Burn Injury Assessment Tool with Morphable 3D Human Body Models" Transactions of MHSRS: Military Health System Research Symposium, August 15th 18th 2016, Orlando, FL.