Fluid Dynamics Equation Sheet

Chapter 1: Introduction	2
Newtonian Fluid Shear Stress	2
Chapter 2: Fluid Statics	2
Equation of Pressure Gradient	2
Buoyancy Force	3
Line of constant pressure	3
Chapter 3: The Bernoulli Equation	4
Bernoulli's Equation	4
Steady State flow definition	4
Volumetric flow rate	4
Mass flow rate	4
Chapter 4:Fluid Kinematics	4
Equation for Streamlines	4
Acceleration	5
Material Derivative	5
Chapter 5: Finite Control Volume Analysis	6
Mass Conservation	6
Momentum Conservation	6
External Forces x direction (typically)	6
External Forces y direction (typically)	6
Chapter 6: Differential Analysis of Fluid Flow	6
Volumetric Dilation	6
Vorticity	6
Gradient Tensor	7
Mass conservation	7
Naviar Stokes	7
2D Navier Stokes	8
Potential functions	8
Stream functions (x,y)	8
Velocity potential	8
Basic flows	8
Dimensional Analysis	9

	1
Buckingham-pi theorem	9
Reynolds number	9
Drag coefficient	9
Boundary layer	9
Skin friction	9
Viscous Flow in a Smooth Laminar Circular Pipe	10
Assumptions	10
After boundary conditions	10
Volumetric flow rate	10
Viscous Flow in a Rough Circular Pipe	10
Friction factor	10

- Chapter 1: Introduction
 - Gage Pressure

$$\qquad P_{gage} = P_{abs} - P_{ambient}$$

- p_{abs} = absolute pressure
- $p_{ambient} = local pressure$
- p_{gage} = what engineers measure
- Specific weight

$$\mathbf{v} = \rho g$$

Specific Gravity

$$SG = \frac{\rho}{\rho_{H_2O@4^{\circ}C}}$$

Ideal Gas Law

$$\rho = \frac{p}{RT}$$

- p = absolute pressure
- R =a substance specific gas constant
- T= absolute temperature
- **Shear Stress**

$$\tau = \frac{F}{A}$$

Newtonian Fluid Shear Stress

$$\bullet \quad \tau = \mu \frac{\partial u}{\partial y}$$

- μ = dynamic viscosity
 u = fluid velocity
- y =the y direction

$$\circ \quad \frac{\partial}{\partial t} \left(Momentum \right) = \nabla \cdot \tau + "other stuff"$$

■ Divide by density on both sides

$$\circ \quad \frac{\partial}{\partial t} (Velocity) = \nabla \cdot \frac{\tau}{\rho}$$

- Where τ is stress
- Chapter 2: Fluid Statics
 - o Equation of Pressure Gradient

•
$$\vec{\nabla} p = \frac{\partial p}{\partial x} \hat{i} + \frac{\partial p}{\partial y} \hat{j} + \frac{\partial p}{\partial z} \hat{k}$$

•
$$\vec{a}_t$$
 =acceleration

- Special Pressure Equation Cases 1a:
 - No motion and incompressible

$$\bullet \quad \vec{a}_{t,ext} = 0$$

- External forces are 0 and fluid is incompressible
- \blacksquare ρg is from gravity
- Special Pressure Equation Cases 1b:
 - No motion and compressible

$$\circ \frac{\partial p}{\partial z} = - \rho(z)g$$

- Most gasses are this way
- Density is a function of position
- Special Pressure Equation Cases 2a:
 - Constant acceleration and incompressible

Buoyancy Force

$$F_b = \rho gV = \gamma V$$

- ρ =the density of the fluid
- V = the volume that is submerged
- $\gamma = \rho g = \text{specific weight}$
- Line of constant pressure
 - Multivariable Calculus review:

•
$$dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz = 0$$

- \circ For constant pressure, derivative dp = 0
- This come from the 2d equation:

$$y - y_0 = \frac{dy}{dx} (x - x_0)$$

$$dy = \frac{dy}{dx} dx$$

- Chapter 3: The Bernoulli Equation
 - o Bernoulli's Equation

$$p + \frac{1}{2}\rho V^2 + \rho gz = \text{Constant}$$

- p = pressure
 ρ = fluids density
 V = Velocity magnitude

$$V = \sqrt{x^2 + y^2 + z^2}$$

- z = height
- Assumptions
 - No Viscosity
 - o Steady flow
 - Incompressible
 - Only along streamlines
- Steady State flow definition

$$\frac{\partial \vec{V}}{\partial t} = \vec{0}$$

Conservation of mass flow

- V = Velocity A = Pipe area
- Volumetric flow rate

$$Q = VA$$

- Q =volumetric flow rate
- Mass flow rate

■
$$\dot{M} = \rho VA = \rho Q$$

• $\dot{M} = \text{mass flow rate}$

- Chapter 4:Fluid Kinematics
 - Equation for Streamlines

• For two dimensions:

o Because stream line is always tangent to velocity field

Acceleration

$$\vec{a} = \frac{\partial \vec{V}}{\partial t} + u \frac{\partial \vec{V}}{\partial x} + v \frac{\partial \vec{V}}{\partial y} + w \frac{\partial \vec{V}}{\partial z}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} W$$

$$\vec{V} = u \hat{i} + v \hat{j} + w \hat{k}$$

Material Derivative

$$\frac{D()}{Dt} = \frac{\partial()}{\partial t} + (\vec{V} \cdot \vec{\nabla})()$$
• Acceleration $\vec{a} = \frac{D\vec{V}}{Dt}$

Extensive/Intensive relationship

Amount of B in V

■
$$B = \int_{\forall} \rho b d \forall$$

• \forall =Volume
• b =intensive property
• B =extensive property

Flux of extensive property

■
$$\vec{B} = \int_{S} \rho b \vec{V} \cdot \vec{n} dS$$

● S =a surface
● b =intensive property
● B =extensive property
● \vec{V} =velocity vector
● \vec{n} =unit vector normal to the surface

Reynolds Transport Theorem

■
$$\frac{\partial B_{cv}}{\partial t} + \dot{B}_{cs} = 0$$

• $\frac{\partial B_{cv}}{\partial t} = \text{the unsteady term. It should be zero in steady flow}$

• $\dot{B} = \text{the fluid flux flowing through the surface}$

- Chapter 5: Finite Control Volume Analysis
 - Mass Conservation

- The first term is the unsteady term
- $c \forall$ = is the control Volume
- cs = control surface
- You can split the control surface into multiple flat plans and add it together
- Momentum Conservation

- F_{ext} is all external forces
- Like pressure and stress and such
- External Forces x direction (typically)
 - Since F = pA

•
$$\sum F_{ext} = p_{left} A_{left} - p_{right} A_{right} + F_{x}$$

■ External Forces y direction (typically)

•
$$\sum F_{ext} = p_{bottom} A_{bottom} - p_{top} A_{top} + F_{y}$$

- Chapter 6: Differential Analysis of Fluid Flow
 - Volumetric Dilation
 - $div(\vec{V})$
 - $div(\vec{V}) = \vec{\nabla} \cdot \vec{V}$ watch your coordinate system tho
 - \circ Rotation Vector $\vec{\omega}$
 - - $curl(\vec{V}) = \vec{\nabla} \times \vec{V}$ watch your coordinate system tho
 - \circ Vorticity $\vec{\zeta}$
 - $curl(\overrightarrow{V})$ or $2\overrightarrow{\omega}$

Gradient Tensor

■
$$\overrightarrow{\nabla V} = S_{ij} + \Omega_{ij}$$

• $S = \frac{1}{2} (\overrightarrow{\nabla V} + (\overrightarrow{\nabla V})^T)$
• the rate of stress tensor
• $\Omega = \frac{1}{2} (\overrightarrow{\nabla V} - (\overrightarrow{\nabla V})^T)$

$$\bullet \quad \Omega = \frac{1}{2} \left(\vec{\nabla} \vec{V} - \left(\vec{\nabla} \vec{V} \right)^T \right)$$

Rotation tensor

$$\circ trace(\overrightarrow{\nabla V}) = div(\overrightarrow{V})$$

- trace is the sum of the diagonal components of a square matrix
- Mass conservation

$$\overrightarrow{\nabla} \cdot \overrightarrow{V} = 0$$

"Newton's Second Law"

$$\blacksquare$$
 $ma = \sum F$

•
$$ma = \rho \frac{\overrightarrow{DV}}{Dt}$$

$$\bullet \quad F_{int} = \overset{\rightarrow}{\nabla} \cdot T_{ij}$$

•
$$F_{ext} = \rho g$$

- Stress tensor
 - T_{ij} = isotropic tensor + deviatoric stress tensor

• isotropic tensor =
$$-pI_{33}$$

• Where
$$I_{ij}$$
 is an $i \times j$ identity matrix

- deviatoric stress tensor = τ_{ij} the typical stress tensor from mechanics of materials
- Deviatoric Stress Tensor

$$\bullet \quad \tau_{ij} = \frac{-2}{3} \mu (\overrightarrow{\nabla} \cdot \overrightarrow{V}) I_{ij} + 2 \mu S_{ij}$$

•
$$S_{ii} = 0$$
 in incompressible fluids

- μ =dynamic viscosity
- Naviar Stokes

$$\nabla \cdot \vec{V} = 0$$

- $v = \frac{\mu}{\rho}$ kinematic viscosity
- 2D Navier Stokes
 - Euler Equations
 - Naviar stokes without viscous terms

$$\circ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\circ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{-1}{\rho} \frac{\partial p}{\partial x}$$

$$\circ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \frac{-1}{\rho} \frac{\partial p}{\partial y}$$

- Potential functions
 - Linearity applies
 - Assumptions incompressible
 - Inviscious
 - Irrotational
 - Stream functions $\psi(x, y)$

•
$$u(x,y) = \frac{\partial \psi(x,y)}{\partial y}$$

•
$$v(x, y) = \frac{-\partial \psi(x, y)}{\partial x}$$

- In 2D, \(\psi\) is a scalar that can generate a vector field
 - Wis constant along streamlines
 - \circ $\Delta \psi$ is volumetric flow rate
- Velocity potential φ

•
$$\vec{V} = \vec{\nabla} \Phi$$

$$\circ u = \frac{\partial \Phi}{\partial x}$$

$$\circ v = \frac{\partial \Phi}{\partial y}$$

$$\circ w = \frac{\partial \phi}{\partial z}$$

- Basic flows
 - Uniform flow magnitude U and angle α

$$\circ \ \ \varphi = Uxcos(\alpha) + Uysin(\alpha)$$

$$\circ \ \ \psi = Uycos(\alpha) + Uxsin(\alpha)$$

• Source/Sink

$$\circ \quad \varphi = \frac{m}{2\pi} ln(r)$$

$$\circ \psi = \frac{m}{2\pi} \theta$$

• Free vortex

$$\circ \ \phi = \frac{\Gamma}{2\pi} \theta$$

$$\circ \ \psi = \frac{\Gamma}{2\pi} ln(r)$$

Doublet

■ Converting from cartesian to cylindrical

•
$$r = \sqrt{(x - h)^2 + (y - k)^2}$$

• $\theta = tan^{-1}(\frac{y - k}{x - h})$

■ Recall:

•
$$u = \frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y}$$

$$\bullet \quad v = \frac{\partial \Phi}{\partial y} = \frac{-\partial \Psi}{\partial x}$$

•
$$u_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$

•
$$u_{\theta} = \frac{1}{r} \frac{\partial \Phi}{\partial \theta} = \frac{-\partial \Psi}{\partial r}$$

• Where u_r and u_θ are the velocities in those given directions

o Circulation

$$\Gamma = \oint_{cs} \vec{V} \cdot \vec{ds}$$

- Dimensional Analysis
 - Buckingham-pi theorem
 - A problem can be reduced to k r nondimensional groups
 - k: Number of variables
 - r: Number of dimensions (units) used
 - Reynolds number

$$\blacksquare Re = \frac{\rho dV}{\mu} = \frac{dV}{\nu}$$

Drag coefficient

$$C_d = \frac{F_d}{\rho V^2 d^2} \text{ or } \frac{F_d}{\frac{1}{2}\rho V^2 A_c}$$

Mach number

$$\blacksquare \quad \frac{V}{\sqrt{\gamma RT}}$$

• γ : Ratio of specific heats = 1.17 for air

- Boundary layer
 - Skin friction

$$F = \tau A = \mu \frac{\partial u}{\partial y} A$$

• From Newtonian shear stress

- Viscous Flow in a Smooth Laminar Circular Pipe
 - Assumptions
 - Steady flow: $\frac{d}{dt} = 0$
 - Straight lines along pipe: $u_r = 0$

 - Axisymmetric flow: $\frac{\partial}{\partial \theta} = 0$
 - Laminar flow: Re < 1000
 - o After Navier-Stokes with simplifications

 - $z \text{component: } \frac{\mu}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) = \frac{\partial p}{\partial z}$
 - o After boundary conditions
 - $u_z(r) = \frac{1}{4\mu} \frac{\partial p}{\partial z} (r^2 R^2)$
 - Where *R* is the radius of the pipe
 - $u_z(r) = \frac{1}{4\mu} \frac{\Delta p}{l} (R^2 r^2)$
 - Pressure drop: $\Delta p = p_1 p_2$
 - Volumetric flow rate
 - $Q = V_{mean} A = \int u_z dA = \frac{\pi R^4}{8\mu} \frac{\Delta p}{l}$
 - Where Δp is pressure drop $(p_1 p_2)$
- Viscous Flow in a Rough Circular Pipe
 - Friction factor

$$f = \frac{\Delta p}{\frac{1}{2} \rho V_{mean}^2} \cdot \frac{D}{l}$$

Moody diagram

- Shows f as a function of Re and $\frac{\epsilon}{D}$
 - ϵ is the roughness of the pipe
 - If Laminer, $f = \frac{64}{Re}$