Esmund Lim Signals Tutorial 11 X(t) = 5 cos (500 t) Wo = 500 rad 15 X(t)Original reconstruction WN = 2 X Wm Nyquist rate = 2 x maximum frequency = 2 x 500 rad/s = 1000 rad 1s Ws = 1200 rad/s y(t) = X(t) · fts(t) = x(t). \(\frac{\infty}{2} \operatorname{S} \tau (t-nTs)\) y(t) = 2 x(t) . \$ (t-nTs) = { y(t)} = = = { x(t). {(t-nTs)} つくい(も)つくとくせ) Y(W) = \$ = = [= {x(t)} * = { s(t-nTs)}] <>> 2/ X, (W) * X2 (W) $\{x(t)\} = x(\omega)$ es convolution in freq \$ { f(t-nTs)} = ws f(w-nWs) = 2th S(w-nws) $\Upsilon(\omega) = \sum_{n=-\infty}^{\infty} \frac{1}{2\pi} \left[\chi(\omega) * \frac{2\pi}{15} \delta(\omega - n\omega_s) \right]$ = \$ Ts [X(W) * S(W-nWs)] Wo = 500 rad 15 = Ts 2 x (w-n Ws) WN = 1000 radls = 600 \$ X (W-1200n) Ws = 1200 radis greater by 1. Oversampling fs > 2 fm (no overlap) more samples are generated X(t) = 5 cos (500t) X(W) = 7 55 cos (500 t) } 2. Critical or Nyquist sampling fs = 2 fm = 5 = { cos (500t) } minimum sampling rate = 5 T [f(w-500) + f(w+500)} 3. Undersampling fs < 2 fm less samples generated, aliasing occurred :. Y(W) = 600 x 5/2 = [& (W-500-1200n) + & (W+500-1200n)] = 3000 = [f(w-500-1200n)+f(w+500-1200n)]

No.:

Date:

	NO		
2)	$\chi(t) = 10 \cos (426\pi t - 60^{\circ}) - 2.5 \sin (1200\pi t - 20^{\circ})$		
mini x -	f ₁ = 213 Hz		
Interest	f2 = 600 Hz		
1918/1915	fm = max { 213 Hz, 600Hz}		
(29)	= 600 Hz		
	$f_N = 2 \times f_M$	An Mile & Bridge	
	= 2 x 600Hz	191-1891	
	= 1200Hz		
	1200 HZ		
11	7 507 00(h) l		
6)	$x[n] = x(t) _{t=nT_s}$	Tr . 1	
		$T_{5} = \frac{1}{f_{5}}$ $= \frac{1}{1000}$	
fs = 2fm	$= 10 \cos \left(2\pi \ln \frac{213}{1000} - 60^{\circ} \right) - 2.5 \sin \left(2\pi \ln \frac{600}{1000} - 20^{\circ} \right)$	1000	
fm= 0.5fs	$= 10\cos\left(\frac{213}{500}\pi\pi - 60^{\circ}\right) - 2.5\sin\left(2\pi\pi\left(1 - \frac{2}{5}\right) - 20^{\circ}\right)$		
William to the second	$= 10\cos\left(\frac{213}{500}n\pi - 60^{\circ}\right) - 2.5\sin\left(2n\pi\left(-\frac{2}{5}\right) - 20^{\circ}\right)$		
	$= 10\cos\left(\frac{213}{500}n\pi - 60^{\circ}\right) + 2.5\sin\left(\frac{4}{5}n\pi + 20^{\circ}\right)$		
	2.2		
c)	First term: 10 cos (27 x 213 x n - 60°)		
	$f_{d1} = \frac{213}{1000} = \frac{f_{d1}}{f_{5}}$		
	nomal zea		
	friguency fai = 213 Hz	$f_d = \frac{f_a}{f_s}$	
	Second term: 2.5 cos (27L X = X n + 20°)		
	$f_{d2}: \frac{2}{5} = \frac{f_{a2}}{f_5}$		
	= 400 1000	at Fallow I	
	faz = 400Hz		
	Thus $\tilde{\chi}(t) = 10 \cos(426 \pi t - 60^\circ) + 2.5 \sin(800 \pi t + 20^\circ)$		
Alberto Acida	≠ x(4)		
	due to the aliasing incurred in the second term	Y SEE STORY	
	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (Tigory St.	

3) X(t) = A cos (2 \(\pi \) fo \(t + \Theta \)

 $\chi([n] = \chi(t)|_{t=nTs}$

= $A\cos(2\pi f_0(\frac{n}{f_0})+\theta)$

= $A\cos\left(2\pi n\left(\frac{fo}{fs}\right) + \theta\right)$

= Acos (271 fan +0) - 0

 $X[n+N_0] = A\cos \left[2\pi f_a(n+N_0) + \theta\right]$ = Acos [2πfan + 2πfa No + θ] - ②

if X[n] is periodic X[n] = X[n+No]

Equate 1 = 2

extra term

Acos [2 Ifdn + 0] = Acos [2 Ifdn + 2 Ifd No + 0]

27 Fed No = 272 x m where m is an integer

 $fd = \frac{m}{N_0} = rational number$

: X[1] is periodic

2 Th follo should be a multiple

of 2元

y go back to original signal

cos 9

= cos(0+2TEn)

