Advancing Quantitative Science With Monte Carlo Simulation

PsyPag & MSCP-Section Simulation Summer School

Hok Chio (Mark) Lai, Winnie Wing-Yee Tse, & Yichi Zhang

2021/06/16

Overview

What is Monte Carlo (MC) simulation?

Simulating Data From a Normal Distribution

Properties of Statistical Methods

Monte Carlo Simulation Study/Experiment

Monte Carlo Methods

- 1930s-1940s: Nuclear physics (the Manhattan Project)
 - Key figures:
 - Stanislaw Ulam
 - John von Neumann
 - Nicholas Metropolis
 - Naming: Casino in Monaco

Image credit: sam garza from Los Angeles, USA, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

Why Do We Do Statistics?

- To study some target quantity in the population
 - Based on a limited sample
- How do we know that a statistics/statistical method gets us to a reasonable answer?
 - Analytic method
 - Simulation

MC is one way to understand the properties of one or more statistical procedures

What is MC (in Statistics)?

A statistical technique that uses (psuedorandom) sampling to get numerical results

- Simulate the process of repeated random sampling
 - E.g., repeatedly drawing sample of IQ scores of size 10 from a population
- Approximate sampling distributions
 - Using pseudorandom samples
- Study properties of statistical methods
 - regression coefficients, fit index
 - compare multiple estimators or modeling approaches

Simulating Random Data From a Normal Distribution

Generating Random Data in R

With MC, one simulates the process of generating the data with an assumed **data generating model/mechanism**

```
rnorm(5, mean = 0, sd = 1)
## [1] 0.1185515 -1.0909555 -1.0258400 0.1501688 1.3313129
rnorm(5, mean = 0, sd = 1) # numbers changed
## [1] -0.53826642 2.00587115 -0.73160714 -0.37485398 -0.04361177
```

Setting the Seed

- Most programs use algorithms to generate numbers that look like random, i.e., *pseudorandom*
 - Completely determined by the **state** of the random number generator, which can be set by the seed
 - For replicability, set the seed explicitly

```
state1 <- .Random.seed # state of RNG
 rnorm(5, mean = 0, sd = 1)
## [1] 0.049911283 -0.799108882 -0.791406078 1.481268818 -0.005218739
 set.seed(1)
 state2 <- .Random.seed # state of RNG changed</pre>
 identical(state1, state2)
## [1] FALSE
 rnorm(5, mean = 0, sd = 1)
## [1] -0.6264538   0.1836433   -0.8356286   1.5952808   0.3295078
 set.seed(1)
 state3 <- .Random.seed # state of RNG unchanged with the same seed
 identical(state2, state3)
## [1] TRUE
 rnorm(5, mean = 0, sd = 1) # same seed, same numbers
## [1] -0.6264538   0.1836433   -0.8356286   1.5952808   0.3295078
```

Generating Data From Univariate Distributions

```
rnorm(n, mean, sd)  # Normal distribution (mean and SD)
runif(n, min, max)  # Uniform distribution (minimum and maximum)
rchisq(n, df)  # Chi-squared distribution (degrees of freedom)
rbinom(n, size, prob)  # Binomial distribution
```

MC Approximation of N(0,1)

```
library(tibble)
library(ggplot2)
set.seed(123)
nsim <- 20 # 20 samples
sam <- rnorm(nsim) # default is mean = 0 and sd = 1
ggplot(tibble(x = sam), aes(x = x)) +
   geom_density(bw = "SJ") +
   stat_function(fun = dnorm, col = "red") # overlay normal curve in red</pre>
```


Exercise

Try increasing nsim to 100, then 1,000

Exercise

Evaluating Properties of Statistical Methods

Some Types of Methods Studied by Simulations

Adapted from Table 3 of Morris, et al. (2019)

Task	Statistical Method	Properties
Estimation	Estimator	Bias, efficiency, consistency
Uncertainty	Standard error, confidence interval	SE bias, coverage
Inference	Hypothesis testing	Type I error rate, power
Model Selection	Model selection index	Correct model rate

One additional property: **Robustness**---resilience against outliers and assumption violations

Estimation: Parameter vs Estimator

- **Estimator**/statistic: $T(\mathbf{X})$, or simply T
 - \circ How good does it estimate the population parameter, θ ?
- Examples:

$$\circ \ T = ar{X}$$
 estimates $heta = \mu$

$$\circ \ T = rac{\sum_i (X_i - ar{X})^2}{N-1} ext{ estimates } heta = \sigma^2$$

What is a Good Estimator?

Biased but Efficient

Unbiased but Inefficient

Biased and Inefficient

Unbiased and Efficient

Sampling Distribution

• What is it?

Example I

Simulating Means and Medians

Monte Carlo Simulation Study

Examples in the Literature

- Curran, West, & Finch (1996, Psych Methods) studied the performance of the χ^2 test for nonnormal data in CFA
- Kim & Millsap (2014, MBR) studied the performance of the Bollen-Stine Bootstrapping method for evaluating SEM fit indices
- MacCallum, Widaman, Zhang, & Hong (1999, Psych Methods) studied sample size requirement for getting stable EFA results
- Maas & Hox (2005, Methodology) studied the sample size requirement for multilevel models

A Simulation Study is an Experiment

Experiment	Simulation
Independent variables	Design factors
Experimental conditions	Simulation conditions
Controlled variables	Other parameters
Procedure/Manipulation	Data generating model
Dependent variables	Evaluation measures
Substantive theory	Statistical theory
Participants	Replications

Framework

(Sigal, et al., 2016; Chalmers, et al., 2020; Morris, et al., 2019)

- Research questions
 - What is the effect of ignoring random slopes in a growth model?
- Design
 - \circ 3 (N = 50, 100, 200) \times 2 (slope variance = 0.1, 0.5) design
 - Constant: 4 time points, maximum likelihood estimation, etc
 - 500 replications
- Date-generating model (fixed and random components)
 - linear growth model with normally distributed errors

Framework (cont'd)

- Statistical methods
 - 1. slope estimate and standard error under correctly specified latent growth model with lavaan
 - 2. slope estimate and standard error under misspecified model
- Evaluative measures
 - convergence, bias, SE bias, relative efficiency
- Summary and reporting
 - Table, plot

Design

Like experimental designs, conditions should be carefully chosen

- What to manipulate? Sample size? Effect size? Why?
 - Based on statistical theory and reasoning
 - E.g., Gauss-Markov theorem: regression coefficients are unbiased with violations of distributional assumptions
- What levels? Why?
 - Needs to be realistic for empirical research
 - Maybe based on previous systematic reviews,
 - o Or a small review of your own

Full Factorial designs are most commonly used

Fractional factorial may sometimes be beneficial (Skrondal, 2000)

Data Generation

• Starts with a statistical data generating model

$$\circ$$
 E.g., $Y_i = eta_0 + eta_1 X_i + e_i, \quad e_i \overset{ ext{i.i.d.}}{\sim} N(0, \sigma^2)$

- ullet Systematic (deterministic) component: X_i
- ullet Random (stochastic) component: e_i
- Constants (parameters): β_0 , β_1
- $\circ \ Y_i$ completely determined by X_i, e_i, eta_0, eta_1

Model-Based Simulation

Statistical Methods

- Analyze each simulated data set with one or more approaches/models
- Obtain statistics of interest (e.g., estimate, SE, CI, p value)

Evaluative Measures

Some definitions:

Mean estimate	$ar{\hat{ heta}} = \sum_{i=1}^R \hat{ heta}_i / R$
Average estimated SE	$ar{ ext{SE}}(\hat{ heta}) = \sum_{i=1}^R \hat{ ext{SE}}(\hat{ heta}_i)/R$
Empirical SE	$\hat{SD}(\hat{ heta}) = \sqrt{\frac{\sum_{i=1}^{R}(\theta_i - \overline{\hat{ heta}})^2}{R}}$

For estimators

Raw bias	$ar{\hat{ heta}} - heta$
Relative bias	Bias / $ heta$
Standardized bias	Bias / $\hat{SD}(\hat{ heta})$
Relative efficiency (RE; for unbiased estimators)	$ ext{RE}(\hat{ heta}, \tilde{ heta}) = rac{\hat{SD}^2(\tilde{ heta})}{\hat{SD}^2(\hat{ heta})}$
Mean squared error (MSE)	$\mathrm{Bias}^2 + \hat{\mathrm{Var}}(\hat{\theta})$
Root Mean squared error (RMSE)	$\sqrt{ m MSE}$

For uncertainty

SE bias	$ar{SE}(\hat{ heta}) - \hat{SD}(\hat{ heta})$
Relative SE bias	SE bias / $\hat{SD}(\hat{ heta})$
Coverage	proportion of sample CIs containing $\boldsymbol{\theta}$

For statistical inferences:

Power/Empirical Type I error rates	proportion with $p<\alpha$ (usually α = .05)

Summary and Reporting

Same as analyzing real data

- Plots, figures
- ANOVA, regression
 - E.g., 3 (sample size) × 4 (parameter values) 2 (models) design: 2
 between factors and 1 within factor

Example II

Simulation Example on Structural Equation Modeling

Number of Replications

MC requires large number of replications. But how large?

- Monte Carlo (MC) Error
 - Like standard error (SE) for a point estimate
- For expectations (e.g., bias)
 - MC Error = $\hat{SD}(\hat{\theta})/\sqrt{R}$

E.g., if one wants the MC error to be \leq 2.5% of the sampling variability, R needs to be 1 / $.025^2$ = 1,600

For power/Type I error/CI coverage,

• MC Error =
$$\sqrt{\frac{p(1-p)}{R}}$$

E.g., with R = 250, and empirical Type I error = 5%, MC Error = 1.38%

Further Readings

Carsey, et al. (2014); Morris, et al. (2019) for a gentle introduction

Chalmers, et al. (2020) and Sigal, et al. (2016) for using the R package SimDesign

Harwell, et al. (2018) for a review of design and reporting practices

Skrondal (2000), Serlin (2000), and Bandalos, et al. (2013) for additional topics

Thanks!

Slides created via the R package xaringan.

Contact:

Mark Lai (hokchiol@usc.edu)

Winnie Wing-Yee Tse (wingyeet@usc.edu)

Yichi Zhang (yzhang97@usc.edu)

References

Bandalos, D. L. et al. (2013). "Use of Monte Carlo studies in structural equation modeling research". In: *Structural equation modeling. A second course*. Ed. by G. R. Hancock and R. O. Mueller. 2nd ed. Charlotte, NC: Information Age, pp. 625-666.

Boomsma, A. (2013). "Reporting Monte Carlo studies in structural equation modeling". In: *Structural Equation Modeling*. A *Multidisciplinary Journal* 20, pp. 518-540. DOI: 10.1080/10705511.2013.797839.

Bradley, J. V. (1978). "Robustness?" In: *British Journal of Mathematical and Statistical Psychology* 31, pp. 144-152. DOI: 10.1111/j.2044-8317.1978.tb00581.x.

Carsey, T. M. et al. (2014). *Monte Carlo simulation and resampling methods for social science*. Thousand Oaks, CA: Sage.

Chalmers, R. P. et al. (2020). "Writing Effective and Reliable Monte Carlo Simulations with the SimDesign Package". In: *The Quantitative Methods for Psychology* 16.4, pp. 248-280. DOI: 10.20982/tqmp.16.4.p248.

References (cont'd)

Collins, L. M. et al. (2001). "A comparison of inclusive and restrictive strategies in modern missing data procedures". In: *Psychological Methods* 6, pp. 330-351. DOI: 10.1037//1082-989X.6.4.330.

Harwell, M. et al. (2018). "A survey of reporting practices of computer simulation studies in statistical research". In: *The American Statistician* 72, pp. 321-327. DOI: 10.1080/00031305.2017.1342692.

Hoogland, J. J. et al. (1998). "Robustness studies in covariance structure modeling". In: *Sociological Methods & Research* 26, pp. 329-367. DOI: 10.1177/0049124198026003003.