Densely Connected Graph Convolutional Networks for Graph-to-Sequence Learning

Zhijiang Guo

Joint work with Yan Zhang, Zhiyang Teng, Wei Lu

Graph-to-Sequence Learning

AMR-to-Text Generation

Syntax-Based Machine Translation

AMR-to-Text Generation

Sequence Encoder

(Konstas et al. 2017)

Recurrent Graph Encoder

Graph State LSTM (Song et al., 2018) Gated Graph Neural Networks (Beck et al., 2018)

GCNs

Empirically, the best performance of GCNs is achieved with a **2-layer** model (Li et al., 2018, Xu et al., 2018)

GCNs

first convolutional layer captures **first-order proximity** (immediate neighbors) information

GCNs

second convolutional layer captures second-order proximity information

Convolutional Graph Encoder

Motivation

Is it possible to build a more expressive GCN model to learn a better graph representation without relying on additional LSTM?

Densely Connected Graph
Convolutional Networks (DCGCNs)

Dense Connectivity

one layer takes inputs from **all preceding layers** rather than the previous layer only (Huang et al., 2017)

Densely Connected GCNs

Stack Identical Blocks

- Densely Connected Sub-Block
- Linear Combination Layer

Both sub-blocks are densely connected graph convolutional layers with different numbers (**m** and **n**) of layers.

Sub-blocks with different number of layers capture structural information at **different abstract levels**, similar to different filters.

For parameter efficiency, the output dimension of each layer in the sub-block is designed to be **small.**

Input dimension: 300

Sub-block layers: 3

Hidden dimension of each layer:

100 = 300 / 3 (proportional to #layers)

Output dimension: 300

(concatenate output from all 3 layers)

Linear Combination Layer

This layer assigns **different weights** to outputs of different
layers. Initial inputs of the subblock are also incorporate by
the residual connection.

Graph-to-Sequence Model

Experiments

AMR-to-Text Generation

- AMR 2015
- AMR 2017

Syntax-Based Machine Translation

- English-Czech (WMT 16)
- English-German (WMT 16)

Data Statistics

Dataset	Train	Dev	Test
AMR 2015	16,833	1,368	1,371
AMR 2017	36,521	1,368	1,371
En-Cs	181,112	2,656	2,999
En-De	226,822	2,169	2,999

AMR 2015

Sequential Encoder: LSTM (Konstas et al., 2017)

Graph Encoder: GS LSTM (Song et al., 2018)

GCN + LSTM (Damonte and Cohen, 2019)

Model	External Data	BLEU
LSTM	No	22.0
GS LSTM	No	23.3
GCN + LSTM	No	24.4
DCGCN	No	25.7

AMR 2015

Using External Training Data (0.2M)

External Data	BLEU
0.2M	27.4
0.2M	28.2
0.1M	29.0
0.2M	31.6
	0.2M 0.2M 0.1M

AMR 2015

Using External Training Data (0.3M)

Model	External Data	BLEU
LSTM	2M	32.3
LSTM	20M	33.8
GS LSTM	2M	33.6
DCGCN (Single)	0.3M	33.2
DCGCN (Ensemble)	0.3M	35.3

AMR 2017 (Single)

Sequential Encoder: LSTM (Beck et al., 2017)

Graph Encoder: GGNNs (Beck et al., 2018)

GCN + LSTM (Damonte and Cohen, 2019)

Model	#Parameters	BLEU	CHRF++
LSTM	28.4M	21.7	49.1
GGNNs	28.3M	23.3	50.4
GCN + LSTM	N/A	24.5	N/A
DCGCN	18.5M	27.6	57.3

AMR 2017 (Ensemble)

Sequential Encoder: LSTM (Beck et al., 2017)

Graph Encoder: GGNNs (Beck et al., 2018)

Model	#Parameters	BLEU	CHRF++
LSTM	142.0M	26.6	52.5
GGNNs	141.0M	27.5	53.5
DCGCN	92.5M	30.4	59.6

English-German

Sequential Encoder: LSTM (Konstas et al., 2017)

Graph Encoder: GGNNs(Beck et al., 2018)

BoW/CNN/RNN + GCN (Bastings et al., 2017)

Model	Туре	#Param	BLEU	CHRF++
BoW + GCN	Single	N/A	12.2	N/A
CNN + GCN	Single	N/A	13.7	N/A
BiRNN + GCN	Single	N/A	16.1	N/A
Seq2Seq	Single	41.4M	15.5	40.8
GGNNs	Single	41.2M	16.7	42.4
Our DCGCN	Single	29.7M	19.0	44.1

English-Gzech

Sequential Encoder: LSTM (Konstas et al., 2017)

Graph Encoder: GGNNs(Beck et al., 2018)

BoW/CNN/RNN + GCN (Bastings et al., 2017)

Model	Туре	#Param	BLEU	CHRF++
BoW + GCN	Single	N/A	7.5	N/A
CNN + GCN	Single	N/A	8.7	N/A
BiRNN + GCN	Single	N/A	9.6	N/A
Seq2Seq	Single	41.4M	8.9	33.8
GGNNs	Single	41.2M	9.8	33.3
Our DCGCN	Single	29.7M	12.1	37.1

Density of Connection

Model	BLEU
DCGCN	25.5
- {4} dense block	24.8
- {3, 4} dense block	23.8
- {2, 3, 4} dense blocks	23.2

Ablation Test

Model	BLEU
DCGCN	25.5
- Global Node (GN)	24.2
- Linear Combination (LC)	23.7
- GN, LC	22.9

Conclusion

 DCGCNs allow the encoder to better capture the rich structural information of a graph, especially when it is large.

• Future: investigate how other NLP applications can potentially benefit from our proposed approach.

Thank You

Code available:

http://www.statnlp.org/research/machine-learning