DAT630

Classification

Basic Concepts, Decision Trees, and Model Evaluation

Introduction to Data Mining, Chapter 4

30/08/2016

Krisztian Balog | University of Stavanger

Basic Concepts

Classification

- Classification is the task of assigning objects to one of several predefined categories
- Examples
 - Credit card transactions: legitimate or fraudulent?
 - Emails: SPAM or not?
 - Patients: high or low risk?
 - Astronomy: star, galaxy, nebula, etc.
 - News stories: finance, weather, entertainment, sports, etc.

Why?

- Descriptive modeling
 - Explanatory tool to distinguish between objects of different classes
- Predictive modeling
 - Predict the class label of previously unseen records
 - Automatically assign a class label when presented with the attributes of the record

The task

- Input is a collection of records (instances)
- Each record is characterized by a tuple (x,y)
 - x is the attribute set
 - y is the class label (category or target attribute)
- Classification is the task of learning a target function f (classification model) that maps each attribute set x to one of the predefined class labels y

General approach

General approach

Objectives for Learning Alg.

Learning Algorithms

- Decision trees
- Rule-based
- Naive Bayes
- Support Vector Machines
- Random forests
- k-nearest neighbors
- ...

Machine Learning vs. Data Mining

- Similar techniques, but different goal
- Machine learning is focused on developing and designing learning algorithms
 - More abstract, e.g., features are given
- Data Mining is applied Machine Learning
 - Performed by a person who has a goal in mind and uses Machine Learning techniques on a specific dataset
 - Much of the work is concerned with data (pre)processing and feature engineering

Today

- Decision trees
- Binary class labels
 - Positive or Negative

Objectives for Learning Alg.

Evaluation

- Measuring the performance of a classifier
- Based on the number of records correctly and incorrectly predicted by the model
- Counts are tabulated in a table called the confusion matrix
- Compute various **performance metrics** based on this matrix

Confusion Matrix

		Predicted class	
		Positive	Negative
Actual	Positive	True Positives (TP)	False Negatives (FN)
class	Negative	False Positives (FP)	True Negatives (TN)

Confusion Matrix

Predicted class Positive Negative Type II Error True Positives False Negatives Positive failing to Actual raise an alarm class True Negatives (TN) False Positives Negative

Type I Error raising a false alarm

Example"Is the man innocent?"

Evaluation Metrics

- Summarizing performance in a single number

 $\frac{\text{Number of correct predictions}}{\text{Number of predictions}} = \frac{TP + TN}{TP + FP + TN + FN}$

- Error rate

 $\frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{FP + FN}{TP + FP + TN + FN}$

- We seek high accuracy, or equivalently, low error rate

Decision Trees

Motivational Example

How does it work?

- Asking a series of questions about the attributes of the test record
- Each time we receive an answer, a follow-up question is asked until we reach a conclusion about the class label of the record

Decision Tree Model

Decision Tree

Figure 4.4. A decision tree for the mammal classification problem.

Body Temperature Root node no incoming edges zero or more outgoing edges Root node Root node

Figure 4.4. A decision tree for the mammal classification problem.

Decision Tree

Figure 4.4. A decision tree for the mammal classification problem.

Decision Tree

Figure 4.4. A decision tree for the mammal classification problem.

Example Decision Tree

Another Example

Apply Model to Test Data

Visual explanation

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Decision Tree Induction

Tree Induction

- There are exponentially many decision trees that can be constructed from a given set of attributes
- Finding the optimal tree is computationally infeasible (NP-hard)
- Greedy strategies are used
 - Grow a decision tree by making a series of locally optimum decisions about which attribute to use for splitting the data

Hunt's algorithm

- Let D_t be the set of training records that reach a node t and y={y₁,...y_c} the class labels
- General Procedure
 - If D_t contains records that belong the same class y_t , then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

- **Multi-way split**: use as many partitions as distinct values

 Binary split: divide values into two subsets; need to find optimal partitioning

Splitting Based on Ordinal Attributes

Multi-way split: use as many partitions as distinct values

- **Binary split**: divides values into two subsets; need to find optimal partitioning

OI

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?

- How to determine the best split?

- Determine when to stop splitting

Determining the Best Split

Before Splitting: 10 records of class C0 10 records of class C1

Which test condition is the best?

Determining the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are
- Need a measure of node impurity:

C0: 5 C1: 5

C1: 1

Non-homogeneous. High degree of impurity Homogeneous. Low degree of impurity

Impurity Measures

- Measuring the impurity of a node
 - **P(i/t)** = fraction of records belonging to class i at a

Entropy(t) =
$$-\sum_{i=0}^{c-1} P(i|t)log_2P(i|t)$$

$$Gini(t) = 1 - \sum_{i=0}^{c-1} P(i|t)^2$$

Classification error(t) = $1 - \max P(i|t)$

Entropy

$$Entropy(t) = -\sum_{i=0}^{c-1} P(i|t)log_2 P(i|t)$$

- Maximum (log n_c) when records are equally distributed among all classes implying least
- Minimum (0.0) when all records belong to one class, implying most information

Exercise Entropy
$$(t) = -\sum_{i=0}^{c-1} P(i|t)log_2P(i|t)$$

C1	0
C2	6

Exercise Entropy
$$(t) = -\sum_{i=0}^{c-1} P(i|t)log_2P(i|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Entropy = - (2/6) log_2 (2/6) - (4/6) log_2 (4/6) = 0.92

GINI

$$Gini(t) = 1 - \sum_{i=0}^{c-1} P(i|t)^2$$

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Exercise

$$Gini(t) = 1 - \sum_{i=0}^{c-1} P(i|t)^2$$

C1	0
C2	6

C1	1
C2	5

C1	2
C2	4

Exercise

$$Gini(t) = 1 - \sum_{i=0}^{c-1} P(i|t)^2$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Gini = 1 - $P(C1)^2$ - $P(C2)^2$ = 1 - 0 - 1 = 0

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Classification Error

Classification error(t) = 1 - max P(i|t)

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Exercise Classification error(t) = 1 - max P(i|t)

C1	0
C2	6

C1	1
C2	5

Exercise Classification error(t) = $1 - \max P(i|t)$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Error = 1 - max (0, 1) = 1 - 1 = 0

Comparison of Impurity Measures

For a 2-class problem:

Gain = goodness of a split

Split on A or on B? M12 Gain = M0 - M12 vs M0 - M34

Gain = goodness of a split

Gain = goodness of a split

Gain = goodness of a split

Information Gain

- When Entropy is used as the impurity measure, it's called **information gain**
- Measures how much we gain by splitting a parent node number of attribute values number of records

$$\Delta_{info} = \mathrm{Entropy}(p) - \sum_{j=1}^k \frac{N(v_j)}{N} \mathrm{Entropy}(v_j)$$
 total number of records at the parent node

Determining the Best Split

Before Splitting: 10 records of class C0 10 records of class C1

Which test condition is the best?

Gain Ratio

- Can be used instead of information gain

Gain ratio =
$$\frac{\Delta_{info}}{\text{Split info}}$$

Split info = $-\sum_{i=1}^{k} P(v_i) \log_2 P(v_i)$

- It the attribute produces a large number of splits, its split info will also be large, which in turn reduces its gain ratio

Tree Induction Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination
 - See details in a few slides

Summary Decision Trees

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Practical Issues of Classification

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule): stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same (i.e., belong to the same split)
 - More restrictive conditions
 - Stop if number of instances is less than some userspecified threshold
 - Stop if class distribution of instances are independent of the available features
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain)

How to Address Overfitting

- **Post-pruning**: grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Methods for estimating performance

- Holdout
- Reserve 2/3 for training and 1/3 for testing (validation set)
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Expressivity

Expressivity

Exercise	Assignment 1 https://github.com/kbalog/uis-dat630-fall2016/tree/ master/assignment-1
----------	--