Saeed Hedayatian

Notes on Topology and Analysis

Notes on Topology and Analysis

Topology

Metric Spaces

Multivariable Calculus

References

Topology

A **topology** on a set X is a collection τ of subsets of X having the following properties:

- 1. \varnothing and X are in τ .
- 2. The union of the elements of any subcollection of τ is in τ .

$$\{U_i: i \in I\} \subseteq au \implies igcup_{i \in I} U_i \in au$$

3. The intersection of the elements of any finite subcollection of τ is in τ .

$$U_1, \dots, U_n \in \tau \implies U_1 \cap \dots \cap U_n \in \tau$$

A set X for which a topology τ has been specified is called a **topological space**.

If (X, τ) is a topological space, a subset U of X is an **open set** of X if $U \in \tau$.

If X is a set, a **basis** for a topology on X is a collection $\mathfrak B$ of subsets of X (called **basis elements**) such that

- 1. For each $x \in X$, there is at least one basis element B containing x.
- 2. If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If $\mathfrak B$ is a basis for a topology on X, the **topology** τ **generated by** $\mathfrak B$ is described as follows: A subset U of X is said to be open in X (that is, $U \in \tau$) if for each $x \in U$, there is a basis element $B \in \mathfrak B$ such that $x \in B$ and $B \subset U$.

A subset A of a topological space (X,τ) is said to be **closed** if X-A is open. It can be shown that:

- 1. \emptyset and X are closed.
- 2. Arbitrary intersection of closed sets are closed.
- 3. Finite unions of closed sets are closed.

If (X, τ) is a topological space and p is a point in X, a **neighborhood** of p is a subset V of X that includes an open set U containing $p, p \in U \subseteq V \subseteq X$.

Metric Spaces

A **metric space** is an ordered pair (M,d) where M is a set and d is a **metric** defined on M, that is, $d: M \times M \to \mathbb{R}$ is a function such that for any $x,y,z \in M$, the following holds:

1.
$$d(x,y) = 0 \iff x = y$$

2.
$$d(x, y) = d(y, x)$$

3.
$$d(x,z) \leqslant d(x,y) + d(y,z)$$

It can also be shown that any metric must also satisfy $d(x,y)\geqslant 0$.

Some examples of metric spaces are given below:

- 1. \mathbb{R}^n along with the Euclidean distance $d(x,y) = \sqrt{(x-y)^T(x-y)}$ is a *complete* metric space.
- 2. Any **normed vector space** is a metric space by defining $d(x,y) = \|y-x\|$

About any point x in a metric space M we define the **open ball** of radius r>0 (where r is a real number) about x as the set $B(x;r)=\{y\in M: d(x,y)< r\}$

The collection of these open balls form a basis for a topology on M, making every metric space a topological space as well in a natural manner.

A subset U of M is called **open** if for every $x \in U$, there exists a real number r > 0 such that B(x; r) is contained in U.

A **neighborhood** of a point x is any subset of M that contains an open ball about x as a subset.

A sequence $\{x_n\}$ in a metric space M is said to *converge* to the limit $x \in M$ if and only if for every $\varepsilon > 0$ there exists a natural number N such that $d(x_n, x) < \varepsilon$ for all n > N.

If U is an open set in \mathbb{R}^n and we *remove a finite number of points* from it, the resulting set is still open.

Multivariable Calculus

Derivative: Suppose E is an open set in \mathbb{R}^n , \mathbf{f} maps E into \mathbb{R}^m , and $\mathbf{x} \in E$. If there exists a *linear transformation* A of \mathbb{R}^n into \mathbb{R}^m such that

$$\lim_{\mathbf{h} o \mathbf{0}} rac{|\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x}) - A\mathbf{h}|}{|\mathbf{h}|} = 0,$$

then we say that \mathbf{f} is **differentiable** at \mathbf{x} , and we write $\mathbf{f}'(\mathbf{x}) = A$. If \mathbf{f} is differentiable at every $\mathbf{x} \in E$, we say that \mathbf{f} is differentiable in E.

Here are a few remarks on the definition presented above:

- 1. Note that since E is open, if $|\mathbf{h}|$ is small enough, then $\mathbf{x}+\mathbf{h}\in E$. Hence, $\mathbf{f}(\mathbf{x}+\mathbf{h})\in\mathbb{R}^m$ is defined.
- 2. It can be shown that if **f** is differentiable at **x**, then $\mathbf{f}'(\mathbf{x}) = A$ is unique.
- 3. The aforementioned relation can be rewritten as

$$f(x + h) - f(x) = f'(x)h + r(h)$$
(1)

where the remainder $\mathbf{r}(\mathbf{h})$ satisfies

$$\lim_{\mathbf{h} o \mathbf{0}} rac{|\mathbf{r}(\mathbf{h})|}{|\mathbf{h}|} = 0.$$

This may be interpreted by saying that for fixed \mathbf{x} and small \mathbf{h} , the left side of (1) is approximately equal to $\mathbf{f}'(x)\mathbf{h}$, that is, to the value of a linear transformation applied to \mathbf{h} .

- 4. If **f** is differentiable in E, then for every $\mathbf{x} \in E$, $\mathbf{f}'(\mathbf{x})$ is a function, namely, a linear transformation of \mathbb{R}^n into \mathbb{R}^m . But \mathbf{f}' itself is also a function: it maps E into the space of linear transformation from \mathbb{R}^n to \mathbb{R}^m , denoted by $L(\mathbb{R}^n, \mathbb{R}^m)$.
- 5. \mathbf{f} is continuous at any point at which it is differentiable.
- 6. The derivative that is defined here is often called the **differential** or the **total derivative** of **f** at **x**, to distinguish it from partial derivatives that will come later.

Chain rule: Suppose E is an open set in \mathbb{R}^n , \mathbf{f} maps E into \mathbb{R}^m and is differentiable at $\mathbf{x}_0 \in E$, \mathbf{g} maps an open set containing $\mathbf{f}(E)$ into \mathbb{R}^k and is differentiable at $\mathbf{f}(\mathbf{x}_0)$. Then the mapping \mathbf{F} of E into \mathbb{R}^k defined by $\mathbf{F}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$ is differentiable at \mathbf{x}_0 , and

$$\mathbf{F}'(\mathbf{x}_0) = \mathbf{g}'(\mathbf{f}(\mathbf{x}_0))\mathbf{f}'(\mathbf{x}_0),$$

where on the right side, we have the product of two linear transformations.

Partial Derivatives: Consider a function $\mathbf{f}: E \to \mathbb{R}^m$, where $E \subset \mathbb{R}^n$ is an open set. Let $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ and $\{\mathbf{u}_1, \cdots, \mathbf{u}_m\}$ be the standard basis of \mathbb{R}^n and \mathbb{R}^m . The *components of* \mathbf{f} are the real functions $f_1, \cdots f_m$ defined by

$$\mathbf{f}(\mathbf{x}) = \sum_{i=1}^m f_i(\mathbf{x}) \mathbf{u}_i \qquad (\mathbf{x} \in E),$$

or, equivalently, by $f_i(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \cdot \mathbf{u}_i, \ 1 \leqslant i \leqslant m.$

For $\mathbf{x} \in E$, $1 \leqslant i \leqslant m$, $1 \leqslant j \leqslant n$, we define

$$(D_j f_i)(\mathbf{x}) = \lim_{t o 0} rac{f_i(\mathbf{x} + t\mathbf{e}_j) - f_i(\mathbf{x})}{t},$$

provided the limit exists. It can be seen that D_jf_i is the derivative of f_i with respect to x_j , keeping other variables fixed. The notation

$$\frac{\partial f_i}{\partial x_j}$$

is therefore often used in place of $D_j f_i$, which is called a partial derivative.

It must be noted that even for continuous functions, the existence of all partial derivatives <u>does not</u> imply differentiability. However, if \mathbf{f} is known to be differentiable at a point \mathbf{x} , then its partial derivatives exist at \mathbf{x} , and they completely determine the linear transformation $\mathbf{f}'(\mathbf{x})$. See the following theorem for more details.

Suppose \mathbf{f} maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and \mathbf{f} is differentiable at a point $\mathbf{x} \in E$. Then the partial derivatives $\frac{\partial f_i}{\partial x_i}$ exist, and

$$\mathbf{f}'(\mathbf{x})\mathbf{e}_j = \sum_{i=1}^m (rac{\partial f_i}{\partial x_j})(\mathbf{x})\mathbf{u}_i \quad (1\leqslant j\leqslant n),$$

where $\{{\bf e}_1,\cdots,{\bf e}_n\}$ and $\{{\bf u}_1,\cdots,{\bf u}_m\}$ are the standard bases of \mathbb{R}^n and \mathbb{R}^m respectively.

As a consequence of the above theorem, if $[\mathbf{f}'(\mathbf{x})]$ is the matrix that represents $\mathbf{f}'(\mathbf{x})$ with respect to our standard bases, then $\mathbf{f}'(\mathbf{x})\mathbf{e}_j$ is the jth column of that matrix. Therefore, $\frac{\partial f_i}{\partial x_j}$ is the number at ith row and jth column of $[\mathbf{f}'(\mathbf{x})]$:

Saeed Hedayatian

$$[\mathbf{f}'(\mathbf{x})] = egin{bmatrix} (D_1f_1)(\mathbf{x}) & \cdots & (D_nf_1)(\mathbf{x}) \ dots & \ddots & dots \ (D_1f_m)(\mathbf{x}) & \cdots & (D_nf_m)(\mathbf{x}) \end{bmatrix}$$

This matrix is often regarded as the Jacobian matrix.

Gradient: Let f be a <u>real valued</u> differentiable function with its domain $E \subseteq \mathbb{R}^n$ being an open set. Associate with each $\mathbf{x} \in E$ a vector, the so-called *gradient* of f at \mathbf{x} , defined by

$$(\mathbf{
abla} f)(\mathbf{x}) = \sum_{i=1}^n \left(D_i f\right)(\mathbf{x}) \mathbf{e}_i$$

One can represent this vector (with respect to the standard basis) as $\left[\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right]^T$.

Some points regarding the gradient:

- 1. The gradient defines a vector field, over the domain of a real valued function, that is, if $f: \mathbb{R}^n \to \mathbb{R}$ then the gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ assigns a vector to each point in \mathbb{R}^n .
- 2. The gradient vector can be interpreted as *the direction and rate of fastest increase*. If the gradient of a function is non-zero at a point \mathbf{x} , its direction is the one moving along which and away from \mathbf{x} increases the function most quickly. The magnitude of gradient is the *rate of change* in that direction.
- 3. The gradient is the **dual to the total derivative** Df: The value of the gradient at any point is a **tangent vector**, while the value of the derivative at any point is a **cotangent vector** 1 , that is, a linear function on vectors.
- 4. If $f: \mathbb{R}^n \to \mathbb{R}^{-2}$ is differentiable at a point \mathbf{x} and \mathbf{v} is a vector, then the dot product of the gradient of f at \mathbf{x} with \mathbf{v} is equal to the directional derivative of f at \mathbf{x} along \mathbf{v} . Thus,

$$(\mathbf{
abla} f)(\mathbf{x}) \cdot \mathbf{v} = rac{\partial f}{\partial \mathbf{v}}(\mathbf{x}) = D_{\mathbf{v}} f(\mathbf{x})$$

5. TODO: Gradient of a vector field is the transpose of Jacobian, Einstien notaion

TODO: Multi variable Taylor expansion

TODO: Manifolds

References

Topology, a first course by Munkres

Principles of mathematical analysis by Rudin

Wikipedia

(By: Saeed Hedayatian)

Saeed Hedayatian

- 1. For any smooth manifold $\mathcal M$ and a point x on it, the *cotangent space* is a vector space denoted by $T_x^*\mathcal M$ and defined to be the dual space of the tangent space at x, $T_x\mathcal M$. The elements of this space are called *cotangent vectors* or *tangent covectors*. $\boldsymbol{\omega}$
- 2. More generally, the domain of f can be any smooth manifold. In this case, the vector \mathbf{v} must be a tangent vector at point \mathbf{x} . $\boldsymbol{\leftrightarrow}$