$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{(1 + 2 k^2)^2 (2 r_3 + r_5) t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{+}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + \alpha$

_	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{$ #1}	$\omega_{1-lpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u> </u>
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{\it l}\it k\it t_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

_	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

$\sigma_{2^{-}}^{\#1} \alpha eta \chi$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	
	$\sigma_{2}^{#1} + \alpha^{\beta}$	$\tau_{2+}^{\#1} + \alpha \beta$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$	

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{#1}$ †	$f_{0}^{#2} +$	$\omega_{0^{\text{-}}}^{\#1}\dagger$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_{0}^{#2} == 0$	$\tau_{0}^{#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2 i k o_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0	Total #:

Lagrangian density	$-\frac{1}{3}t_1\;\omega_{\lambda}^{\alpha\prime}\;\omega_{\kappa\alpha}^{\;$	$r_5 \partial_i \omega^{\kappa \lambda}_{\ \kappa} \partial^i \omega_{\lambda \ \alpha}^{\ \alpha} + \frac{2}{3} r_2 \partial^\beta \omega^{\theta \alpha}_{\ \kappa} \partial_\theta \omega_{\alpha \beta}^{\ \kappa} - \frac{1}{3} r_2 \partial_\theta \omega_{\alpha \beta}^{\ \kappa} \partial_\kappa \omega^{\alpha \beta \theta} -$	$\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta}+2r_3\partial_\alpha\omega_{\lambda}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ - $r_5\partial_\alpha\omega_{\lambda}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ -	$2 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 2 r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} -$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 4 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} -$	$\frac{1}{2}t_1\partial^\alpha f_{\theta_K}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\alpha\lambda} +$	$\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;}+\frac{2}{3}t_{1}\;\partial^{\alpha}f_{\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;}-\frac{1}{3}t_{1}\;\partial_{\kappa}f^{\;\lambda}_{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;}+$	$2t_{1} \omega_{,\kappa\theta} \partial^{\kappa} f^{'\theta} - \tfrac{1}{3} t_{1} \omega_{,\alpha}^{\ \alpha} \partial^{\kappa} f^{'}_{\ \kappa} - \tfrac{1}{3} t_{1} \omega_{,\lambda}^{\ \lambda} \partial^{\kappa} f^{'}_{\ \kappa} + \tfrac{1}{2} t_{1} \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\lambda\alpha} +$	$\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa}^{} +$	$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} +$	$rac{2}{3} r_2 \partial^{eta} \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$r_5\partial_{lpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa} + 2r_3\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa} - r_5\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}$	Added source term: $\left f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} \right $
--------------------	---	---	--	--	--	---	---	---	--	---	---	---	---

	Unitarity conditions
--	----------------------