Конспект по математическому анализу

October 7, 2019

1 Скалярное произведение

Определение. Для X — линейного пространства ($\mathit{had}\,\mathbb{R},\mathbb{C}$) $\varphi:X\times X\to\mathbb{R}(\mathbb{C})$ называется скалярным произведением. Обозначается $\varphi(x,y)=\langle x,y\rangle$

1.
$$\langle \alpha_1 x_1 + \alpha_2 x_2 \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$$

2.
$$\langle y, x \rangle = \overline{\langle x, y \rangle}$$

3.
$$\langle x, x \rangle \ge 0$$
 $\langle x, x \rangle \Leftrightarrow x = 0$

Примечание. \overline{x} — комплексное сопряжение, для вещественных чисел $\overline{x} = x$.

1. Над
$$\mathbb{C}$$
: $\langle x, \beta_1 y_1 + \beta_2 y_2 \rangle = \overline{\langle x, \beta_1 y_1 + \beta_2 y_2 \rangle} = \overline{\beta_1 \langle y_1, x \rangle + \beta_2 \langle y_2, x \rangle} = \overline{\beta_1} \langle x, y_1 \rangle + \overline{\beta_2} \langle x, y_2 \rangle$

2. Над
$$\mathbb{R}$$
: $\langle y, x \rangle = \langle x, y \rangle$

Лемма 1. Неравенство КБШ (Коши-...)

Для X — линейного пространства (над \mathbb{R},\mathbb{C})

$$\forall x, y \in X \quad |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Proof. Возьмём $\lambda \in \mathbb{R}(\mathbb{C})$

При y=0 тривиально, пусть $y\neq 0$

$$0 \leq \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$\lambda := -\frac{\langle x, y \rangle}{\langle y, y \rangle}, \overline{\lambda} = -\frac{\langle y, x \rangle}{\langle y, y \rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle - \frac{\langle y, x \rangle}{\langle y, y \rangle} \langle x, y \rangle + \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle}$$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle$$

Пример в \mathbb{R}^m : $\langle x,y \rangle = x_1y_1 + x_2y_2 + \ldots + x_my_m$ — Евклидово скалярное произведение Пример в \mathbb{C}^m : $\langle x,y \rangle = x_1\overline{y}_1 + x_2\overline{y}_2 + \ldots + x_m\overline{y}_m$

Пемма 2. Для лин. пространства X, скалярного произведения $\langle \cdot, \cdot \rangle$

$$ho:X o\mathbb{R}$$
 $ho(x)=\sqrt{\langle x,x
angle}$ — норма

Proof. Докажем, что ρ удовлетворяет всем леммам нормы.

1.
$$\rho(x) \ge 0$$
 $\rho(x) = 0 \Leftrightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0$

2.
$$\rho(\alpha x) = \sqrt{\alpha \overline{\alpha} \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle} = |\alpha| \rho(x)$$

3.
$$\rho(x+y) \le \rho(x) + \rho(y)$$

$$\langle x + y, x + y \rangle \le (\sqrt{\langle x, x \rangle} + \langle y, y \rangle)^2$$

$$\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \le \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

$$2\Re\langle x,y\rangle \le 2\sqrt{\langle x,x\rangle\langle y,y\rangle}$$

$$\Re\langle x,y\rangle \le |\langle x,y\rangle| \le \sqrt{\langle x,x\rangle\langle y,y\rangle}$$

 $||x||=\sqrt{\sum\limits_{i=1}^m x_i^2}$ - норма в \mathbb{R}^m ho(x,y)=||x-y|| - метрика в \mathbb{R}^m

Не все нормы порождены скалярным произведением, например: $||x||=\max_i |x_i|$

Пемма 3. О непрерывности скалярного произведения.

X - лин. пространство со скалярным произведением, $||\cdot||$ — норма, порожденная скалярным произведением.

Тогда
$$\forall (x_n)x_n \to x, \forall (y_n)y_n \to y, \quad \langle x_n, y_m \rangle \to \langle x, y \rangle$$

Proof.

$$\begin{aligned} |\langle x_n, y_m \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle \le \\ &\le |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \le ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y|| \to 0 \end{aligned}$$

По теореме о двух городовых чтд.

Лемма 4. О покоординатной сходимости в \mathbb{R}^m

 $(x^{(n)})$ — последовательность векторов в \mathbb{R}^m

Тогда
$$(x^{(n)}) \to x \Leftrightarrow \forall i \in \{1, 2, \dots m\} \ x_i^{(n)} \underset{n \to +\infty}{\to} x_i$$

Примечание. В \mathbb{R}^{∞} не выполняется

Proof. Модуль координаты \leq нормы всего вектора:

$$|x_i^{(n)} - x_i| \le ||x^{(n)} - x|| \le \sqrt{m} \max_{1 \le i \le m} |x_i^n - x_i|$$

Первое неравенство доказывает \Rightarrow , второе неравенство доказывает \Leftarrow

Определение. Параллелепипед в \mathbb{R}^m

$$[a,b] = \{x \in \mathbb{R}^m : \forall i \in \{1\dots m\} \ a_i \le x_i \le b_i\} = [a_1b_1] \times [a_2b_2] \times \dots \times [a_mb_m]$$

Определение. Куб в \mathbb{R}^m

$$[(a_1-R,a_2-R,\ldots a_m-R),(a_1+R,a_2+R,\ldots a_m+R)]$$

$$\overline{B(a,R)}\subset \mathrm{Kyd}(a,R)\subset \overline{B(a,\sqrt{m}R)}$$

Proof. Докажем 1: $\overline{B(a,R)} \subset \text{Куб}(a,R)$

$$x \in \overline{B(a,R)}$$

$$\forall i \quad |x_i - a_i| \le ||x - a|| \le R \Rightarrow x \in \mathsf{Kyd}(a, R)$$

Докажем 2: \subset Куб $(a,R)\subset \overline{B(a,\sqrt{m}R)}$

$$x \in \mathrm{Kyd}(a,R) \quad ||x-a|| \le \sqrt{m} \max_{1 \le i \le m} |x_i - a_i| \le \sqrt{m}R$$

2 Точки и множества в метрическом пространстве

В этом параграфе (X,ρ) - метрическое пространство, $a\in X,D\subset X.$

Определение. a — внутренняя точка множества D, если $\exists U(a): U(a) \subset D$ $\exists r>0: B(a,r) \subset D$

Определение. D - открытое множество $\forall a \in D : a$ — внутренняя точка D.

Пример:

- 1. X откр.
- 2. ∅ откр.
- 3. B(a, r) откр.

3

Proof. Докажем 3.

$$x \in B(a,r)$$
, доказать: x - внутр. точка Возьмём $R < r - \rho(a,x)$. Докажем, что $B(x,R) \subset B(a,r)$ $y \in B(x,R)$. Докажем, что $y \in B(a,r)$ $\rho(y,a) \le \rho(y,x) + \rho(x,a) < R + \rho(x,a) < r$

Теорема 1. О свойствах открытых множеств.

- 1. $(G_{\alpha})_{\alpha\in A}$ семейство открытых множеств в (X,ρ) Тогда $\bigcup_{\alpha\in A}G_{\alpha}$ открыто в X.
- 2. $G_1,G_2,\ldots G_n$ открыто в X. Тогда $\bigcap_{i=1}^n G_i$ - открыто в X.

Proof. 1. Пусть $x \in \bigcup_{\alpha \in A} G_{\alpha}$

Тогда
$$\exists \alpha_0 \quad x \in G_{\alpha_0}$$
 — откр. $\exists r_0 : B(x,r_0) \subset G_{\alpha_0} \Rightarrow B(x,r_0) \subset \bigcup_{\alpha \in A} G_\alpha$

2.
$$x \in \prod_{i=1}^n G_i \Rightarrow \forall i \in \{1 \dots n\}$$
 $x \in G_i \Rightarrow \exists r_i > 0 : B(x, r_i) \subset G_i$ $r := min(r_1 \dots r_n)$ $\forall i \ B(x, r) \subset G_i$, r.e. $B(x, r) \subset \bigcap G_i$

Примечание. Для $n=\infty$ не выполняется: $(-\frac1n,\frac1n)$ - откр. в $\mathbb R$ $\bigcup_{n=1}^{+\infty}(-\frac1n,\frac1n)=\{0\}$ не откр. в $\mathbb R$

Определение. Внутренность D $Int(D) = \{x \in D : x - \text{внутр. точка } D\}$

Примечание. 1. IntD - откр. множество

2.
$$IntD = \bigcap_{\substack{G:\\D>G\\G-\text{ otkp.}}} G$$

3. D — откр. в $X \Leftrightarrow D = IntD$

Определение. a — предельная точка множества D

$$\forall \dot{U}(a) \quad \dot{U}(a) \cap D \neq \emptyset$$

Пример:
$$D=(0,1), X=\mathbb{R}$$

$$\frac{a \qquad \text{Пред. точка?}}{-1 \qquad \text{Нет, } B(-1,\frac{1}{2})\cap D=\emptyset}$$

$$\frac{\frac{1}{2} \qquad \text{Да, } B(\frac{1}{2},\frac{1}{2})\subset D}{0 \qquad \text{Да, } B(0,\frac{1}{2})\cap D=(0,\frac{1}{2})}$$

 Π римечание. a - пред. точка D

- 1. $\forall U(a) \quad U(a) \cap D$ бесконечное
- 2. $\exists (x_n)$ последовательность точек $D, x_n \underset{n \to +\infty}{\rightarrow} a$

Определение. a - изолированная точка D, если $a \in D$ и a — не предельная.

$$\exists U(a) \quad U(a) \cap D = \{a\}$$

Пример — \mathbb{N}

Определение. D - замкнутое множество, если оно содержит все свои предельные точки.

Пример:
$$X$$
, Ø, $[0,1]$, $\overline{B(a,R)}$, $\{a\}$ — замкнутые

Пример: (0,1) — в \mathbb{R} незамкнутое

Теорема 2. D – замкнуто $\Leftrightarrow D^c = X \setminus D$ (дополнение) – открыто.

Proof. Докажем ⇒: D — замкн. ⇒? $X \setminus D$

$$x\in X\setminus D\Rightarrow x$$
— не пред. точка D , т.к. D содержит все свои пред. точки и $x\not\in D$ $\Rightarrow \exists r: B(x,r)\subset X\setminus D$

Докажем
$$\Leftarrow: X \setminus D$$
 — откр., D — замкн.?, т.е. $\forall x \in \{$ пр.точки $D\}$ $?x \in D$

Если $x \in D$ — тривиально.

$$x \notin D \quad x \in X \setminus D$$

$$\exists U(x) \subset X \setminus D \Rightarrow x$$
 - не пред. точка

Примечание. Если D — не замкнуто, то это НЕ значит, что D — открыто, например (0,1] — не замкнуто и не открыто.

Теорема 3. О свойствах замкнутых множеств.

1.
$$(F_{\alpha})_{\alpha \in A}$$
 — замкн. в X

Тогда
$$\bigcap F_{\alpha}$$
 — замкн.

2.
$$F_1 \dots F_n$$
 — замкн.

Тогда
$$\bigcap F_i$$
 — замкн.

Proof.
$$F_{\alpha}$$
 — замкн. $\Leftrightarrow F_{\alpha}^{c}$ — откр. \Rightarrow $\bigcup F_{\alpha}^{c}$ — откр. \Rightarrow $(\bigcup F_{\alpha}^{c})^{c}$ — замкн. $□$