Pràctica

Es demana:

(a) Aproximeu aquests punts per polinomis de grau 11 fins a 1010 sota el criteri de mínims quadrats. Estudieu l'error que es produeix avaluant els polinomis de punts intermedis i comparant el resultat amb el seu valor exacte.

```
%inicialitzacions
t=@(i)(i-1)/10;
n = (1:11)';
t2 = [t(n)];
y=erf(t2);
plot(y)
```



```
intermedis = zeros(11);
error = zeros(11);
for x=1:11;
    x;
    coefficients = polyfit(n,y,x);
    plot(coefficients);
    curve = polyval(coefficients,n);
    for i=1:11;
        intermedis(i,x) = curve(i);
        errorA(i,x) = abs(y(i)-curve(i));
end
    plot(curve)
```

Warning: Polynomial is not unique; degree >= number of data points.

(b) Com que () és una funció senar, sembla raonable d'aproximar les mateixes dades per una combinació lineal de potències senars de

```
A = [t2 t2.^3 t2.^5 t2.^7 t2.^9];
b = [erf(t2)];
x=linsolve(A,b);
sol = A*x;
Rb=[y sol];
plot(sol)
```



```
format long
errorb=abs(y-sol);
xdcb = zeros(11,1);
for i=1:11;
    decimal = 0;
    while errorb(i) < 0.5*10^-decimal;
        decimal = decimal + 1;
    end
    xdcb(i) = decimal;
end</pre>
```

(c) Els polinomis no són una bona base per aproximar a la funció d'error, ja que no estant fitats per a valors grans de i, en canvi, () tendeix a 1 per a valors grans de . Utilitzant el mateix conjunt de punts aproximeu de la forma seguent:

```
for i=1:11
    if i == 1
        R1 = [exp(-t2(i).^2)'*(1/1+t2(i))];
        R2 = [exp(-t2(i).^2)'*(1/1+t2(i)).^2];
        R3 = [exp(-t2(i).^2)'*(1/1+t2(i)).^3];
    else
        R1 = [R1;exp(-t2(i).^2)'*(1/1+t2(i))];
        R2 = [R2;exp(-t2(i).^2)'*(1/1+t2(i)).^2];
        R3 = [R3;exp(-t2(i).^2)'*(1/1+t2(i)).^3];
    end
end
```

```
C1 = [1 1 1 1 1 1 1 1 1 1 1]';
R0 = exp(-t2.^2);
A = [C1 R0 R1 R2 R3];
b = [erf(t2)];
x=linsolve(A,b);
sol = A*x;
Rc=[y sol];
plot(sol)
```



```
format long
errorc =abs(y-sol);
xdcc = zeros(11,1);
for i=1:11;
   decimal = 0;
   while errorc(i) < 0.5*10^-decimal;
        decimal = decimal + 1;
   end
   xdcc(i) = decimal;
end</pre>
```

d) Presenteu els resultats de cada apartat en una taula. Comenteu i argumenteu els resultats obtinguts.

Resultats de l'apartat a

```
%valors intermedis dels polinomis 1..11
Ta=array2table(intermedis)
```

. . .

	intermedis1	intermedis2	intermedis3	intermedis4	intermedis5
1	0.0531277556	-0.006345450	-0.001171209	0.0000187578	0.0000075096
2	0.1384304181	0.1146411356	0.1136062873	0.1124163203	0.1124388166
3	0.2237330807	0.2276979611	0.2239035173	0.2227135503	0.2227172997
4	0.3090357432	0.3328250257	0.3288581072	0.3286597794	0.3286447818
5	0.3943384058	0.4300223296	0.4276076835	0.4284009948	0.4283859973
6	0.4796410683	0.5192898725	0.5192898725	0.5204798395	0.5204798395
7	0.5649437309	0.6006276547	0.6030423007	0.6038356121	0.6038506097
8	0.6502463935	0.6740356760	0.6780025945	0.6778042667	0.6778192642
9	0.7355490560	0.7395139364	0.7433083802	0.7421184132	0.7421146638
10	0.8208517186	0.7970624361	0.7980972844	0.7969073174	0.7968848210
11	0.9061543811	0.8466811748	0.8415069333	0.8426969003	0.8427081485

%error absoluts
array2table(errorA)

ans = 11×11 table

. . .

	errorA1	errorA2	errorA3	errorA4	errorA5	errorA6	errorA7
1	0.0531277	0.0063454	0.0011712	1.8757872725	7.5096872860	6.4029688134	1.3168645160
2	0.0259675	0.0021782	0.0011433	4.6595696234	2.4099325354	2.7322104134	8.1891291262
3	0.0010304	0.0049953	0.0012009	1.0961109263	1.4710504409	3.1556638699	1.9394261213
4	0.0195910	0.0041982	0.0002313	3.3019971295	1.8022390708	1.5281247384	1.8369180720
5	0.0340539	0.0016299	0.0007846	8.6398413011	6.3577392853	4.0121320715	3.1097458830
6	0.0408588	0.0012100	0.0012100	2.0038217538	2.0038217538	1.8313061100	1.8313061089
7	0.0389123	0.0032284	0.0008137	2.0478722511	5.4811419247	4.7538415348	4.3073487665
8	0.0275548	0.0037655	0.0002014	3.0728818988	1.8070462485	2.0088425045	1.7000491714
9	0.0065519	0.0025870	0.0012074	1.7448580433	1.3699185287	6.9575273542	1.8624373632
10	0.0239435	0.0001542	0.0011890	8.9501095767	2.3391381837	4.3472247590	7.9610143144
11	0.0634535	0.0039803	0.0011938	3.8926096767	7.3555757632	9.0081834436	1.2883501598

%número de xifres decimal correctes
array2table(xdca)

ans = 11×11 table

٠.

	xdca1	xdca2	xdca3	xdca4	xdca5	xdca6	xdca7	xdca8
1	1	2	3	5	5	7	8	10

	xdca1	xdca2	xdca3	xdca4	xdca5	xdca6	xdca7	xdca8
2	2	3	3	5	5	7	7	9
3	3	3	3	5	5	7	7	9
4	2	3	4	5	5	7	7	8
5	2	3	3	5	5	7	8	8
6	2	3	3	5	5	7	7	9
7	2	3	3	5	5	7	8	8
8	2	3	4	6	5	7	7	8
9	2	3	3	5	5	6	7	9
10	2	4	3	6	5	7	7	9
11	1	3	3	6	5	7	8	10

Segons els resultats obtinguts, amb aquest mètode, s'aconsegueixen millors resultats amb graus de polinomis grans.

Resultats de l'apartat b

Tb=array2table(Rb,'VariableNames',{'y','curve'})

 $Tb = 11 \times 2 \text{ table}$

	У	curve
1	0	0
2	0.112462	0.112462
3	0.222702	0.222702
4	0.328626	0.328626
5	0.428392	0.428392
6	0.520499	0.520499
7	0.603856	0.603855
8	0.677801	0.677801
9	0.742100	0.742101
10	0.796908	0.796907
11	0.842700	0.842700

array2table(errorb)

ans = 11×1 table
errorb

1 0

2 3.603529076...

	errorb
3	2.821309975
4	1.587428641
5	4.077840280
6	7.799801526
7	4.153534315
8	1.864757868
9	5.450194364
10	2.962305586
11	5.306307626

array2table(xdcb)

ans	= 11×1	table
	xd	cb
1		324
2		7
3		7
4		7
5		7
6		7
7		7
8		7
9		6
10		7
11		7

Segons els resultats obtinguts, amb aquest mètode, s'aconsegueixen bons resultats però tenen un menor nombre de xifres decimals correctes que en l'apartat anterior amb polinomis de graus alts.

Resultats de l'apartat c

Tc=array2table(Rc,'VariableNames',{'y','curve'})

 Tc = 11×2 table

 y
 curve

 1
 0
 0.000147...

 2
 0.112462...
 0.112160...

 3
 0.222702...
 0.222688...

	У	curve
4	0.328626	0.328837
5	0.428392	0.428546
6	0.520499	0.520441
7	0.603856	0.603657
8	0.677801	0.677674
9	0.742100	0.742205
10	0.796908	0.797141
11	0.842700	0.842551

array2table(errorc)

ans	= 11×1 table
	errorc
1	1.471815113
2	3.027542956
3	1.426125276
4	2.109160116
5	1.541111264
6	5.864534769
7	1.989115797
8	1.265197636
9	1.047238486
10	2.332126468
11	1.490529053

array2table(xdcc)

ans = 11×1 table

	xdcc	
1		4
2		4
3		5
4		4
5		4
6		4
7		4
8		4

	xdcc	
9		4
10		4
11		4

Segons els resultats obtinguts, amb aquest mètode, s'aconsegueixen resultats relativament pitjors que en els apratats anteriors.