Lab 1 Exploratory Analysis - Problems

January 26, 2024

1 Exploratory Analysis

1.1 Problems:

Load the NYC AirBnB Truncated Dataset. This dataset is a mirror of the full NYC AirBnB dataset found at Kaggle, but only contains the first 10,000 entries.

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

For the numerical features,

- 1) Display histograms for the numerical features.
- 2) Construct the scatter plots of price with each of the numerical features.
- 3) Display the correlation histogram.
- 4) Which numerical feature appears to be most predictive of the price?
- 5) Using numerical features to predict the renting price with linear model. Write down the predict function.
- 6) Calculate the RSS cost.

2 Solutions

2.1 Set-Up

```
[1]: using Pkg
Pkg.activate("../.")
```

Activating project at `~/School/machine_learning_1`

```
[2]: using CairoMakie
using CSV
using DataFrames
using Downloads
using MLJ
using MLJLinearModels
using Statistics
```

[2]: "train.csv"

...

...

...

[3]: df = CSV.read("train.csv", DataFrame)
df = df[completecases(df), :]

df = df[!, (<:).(eltype.(eachcol(df)), Union{Number, Missing})] |>
x -> x[!, Not(:host_id, :latitude, :longitude)]

[3]: price minimum_nights number_of_reviews reviews_per_month calculated_host_listings_count Int64 Int64 Int64 Float64? Int64 0.21 0.38 4.64 0.10.59 0.43.47 0.99 1.33 0.431.51.34 0.91 0.221.2 1.72 2.12 4.44 0.07 1.09 0.370.610.731.37 0.491.11 0.242.04 1.42 1.65

...

...

...

2.2 Problem 1

Display histograms for the numerical features.

[4]:

Histogram of Numerical Features (Bin Size: 75)

2.3 Problem 2

Construct the scatter plots of price with each of the numerical features.

```
[5]: fig = Figure(; size = (1200, 800));
     labels = filter(n -> n != "price", names(df))
     row_counter = 1
     column_counter = 1
     for label in labels
         ax = Axis(fig[row_counter, column_counter])
         scatter!(ax, df[:, label], df.price)
         ax.xlabel = replace(label, "_" => " ") |> titlecase
         ax.ylabel = "Price"
         if column_counter < 3</pre>
           column_counter += 1
           row_counter += 1
           column_counter = 1
         end
     end
     supertitle = Label(fig[0, :], "Scatterplots of Numerical Features versus⊔
      →Price", fontsize = 30)
     fig
```

[5]:

Scatterplots of Numerical Features versus Price

2.4 Problem 3

Display the correlation histogram.

```
[6]: M = cor(Matrix(df))
    (n,m) = size(M)
     labels = replace.(names(df), "_" => " ") . |> titlecase
     fig = Figure(; size = (700, 500));
     ax = Axis(fig[1, 1])
     Makie.heatmap!(ax, M; colormap = :magma, colorrange = (-1,1))
     ax.xticks = (1:m, labels)
     ax.yticks = (1:m, labels)
     ax.yreversed = true
     ax.xticklabelrotation = /2
     Makie.Colorbar(fig[1, 2], colormap = :magma);
     for i in 1:n
      for j in 1:m
        Makie.text!(ax,
                     "$(round(M[i,j],digits=3))",
                     position = (i,j),
                     align = (:center, :center),
                     fontsize=14,
                     color = :black)
       end
     end
     supertitle = Label(fig[0, :], "Correlation Histogram", fontsize = 30)
     fig
```

[6]:

Correlation Histogram

Bonus: Show the correlation matrix

[7]: M

[7]: 6×6 Matrix{Float64}:

1.0	0.0174106	-0.0481667	-0.0519647	-0.00557913	0.036689
0.0174106	1.0	-0.084284	-0.0920755	0.149947	0.0928448
-0.0481667	-0.084284	1.0	0.90899	-0.0730831	0.257172
-0.0519647	-0.0920755	0.90899	1.0	-0.0742808	0.229506
-0.00557913	0.149947	-0.0730831	-0.0742808	1.0	0.230261
0.036689	0.0928448	0.257172	0.229506	0.230261	1.0

2.5 Problem 4

Which numerical feature appears to be most predictive of the price?

Based on the correlation plot, it would appear that the **Price** is correlated with **Availability 365** with the highest correlation being ≈ 0.037 .

2.6 Problem 5

Using numerical features, predict the renting price using a linear model. Write down the prediction function.

```
[8]: @load LinearRegressor pkg=MLJLinearModels verbosity=0
                df.reviews_per_month = float.(df.reviews_per_month)
                X = df[:, Not(:price)]
                y = df[:, :price]
                mach = fit!(machine(LinearRegressor(), X, y; scitype_check_level=0));
               [ Info: Training
              machine(LinearRegressor(fit_intercept = true, ...), ...).
                  Info: Solver: Analytical
                       iterative: Bool false
                       max_inner: Int64 200
              Here is the general prediction function:
              h_{\theta}(x) = \theta_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4 + \theta_5 x_5 + \theta_6 x_6
              and this is the computed prediction function with its intercept (rounded to 5 significant digits):
              h_{\theta}(x) = 153.65 + 0.09719x_2 + -0.07571x_3 + -9.63866x_4 + -0.90427x_5 + 0.10260x_6
  [9]: fitted_params(mach).coefs
  [9]: 5-element Vector{Pair{Symbol, Float64}}:
                                                             :minimum_nights => 0.09718591955220802
                                                      :number_of_reviews => -0.07571175774498533
                                                      :reviews_per_month => -9.638658287035668
                   :calculated_host_listings_count => -0.9042657259325844
                                                        :availability_365 => 0.10260201438121613
[10]: fitted_params(mach).intercept
[10]: 153.65304935840274
[11]: X = hcat(ones(length(y)), Matrix(X));
[12]: h(X, ) = [1]*X[:, 1] .+ [2]*X[:, 2] .+ [3]*X[:, 3] .+ [4]*X[:, 4] .+ [5]*X[:, 4] .+ [5]*
                   \rightarrow, 5] .+ [6] *X[:, 6];
[13]: = (X' * X)^{-1} * X' * y;
              2.7 Problem 6
              Calculate the RSS cost.
              Using the RSS cost function:
              \sum_{i=1}^{n} (h_{\theta}(\vec{x}^{(i)}) - y^{(i)})^2
              Using the computation from earlier, we get:
[14]: sum((predict(mach, X[:, 2:end]) .- y).^2)
```

[14]: 5.049697970319e8