1 Outline

Suppose:

- $(\Omega, \mathcal{A}, \mu)$ is a probability space.
- $n \in \mathbb{N}$ is an natural number (positive integer).
- $T_1, T_2, \dots, T_n : \Omega \longrightarrow [0, \infty]$ are independent identically distributed extended \mathbb{R} -valued random variables.
- $U_1, U_2, \dots, U_n : \Omega \longrightarrow [0, \infty]$ are independent identically distributed extended \mathbb{R} -valued random variables.
- For each i = 1, 2, ..., n, let $X_i := \min\{T_i, U_i\}$, and $C_i := I_{\{T_i \le U_i\}}$.

For each subject i = 1, 2, ..., n, the random variable T_i is interpreted to be the "survival time" of subject i, while U_i is interpreted to be the "censoring time" of subject i.

We wish to make inference about the (common) survival function

$$S(t) \ := \ P(\,T > t\,) \ = \ \mu \Big(\Big\{\, \omega \in \Omega \, \, \Big| \, \, T(\omega) > t \,\, \Big\} \Big)$$

of T_1, T_2, \ldots, T_n . However, in survival analysis, the inference about S(t) is made based on the right-censored survival time data $\{X_i, C_i\}, i = 1, 2, \ldots, n$ (rather than on the T_i 's directly).

The hazard function:

$$\lambda(t) \ := \ \lim_{h \to 0^+} \frac{1}{h} \cdot P\Big(\, t \le T < t + h \,\,\Big|\,\, t \le T\,\Big)$$

The cumulative hazard function:

$$\Lambda(t) := \int_0^t \lambda(t) \, \mathrm{d}t$$

The Nelson-Aalen estimator for the cumulative hazard function $\Lambda(t)$:

$$\widehat{\Lambda}(\omega, t) := \sum_{\substack{C_i(\omega) = 1 \\ T_i(\omega) \le t}} \frac{1}{Y(\omega, T_i(\omega))},$$

where

$$Y_i(\omega, t) := \begin{cases} 1, & t - h < X_i(\omega), \text{ for each } h > 0 \\ 0, & \text{otherwise} \end{cases}$$

and

$$Y(\omega,t) := \sum_{i=1}^{n} Y_i(\omega,t)$$

The aggregated counting process for subject i:

$$N_i(\omega, t) := I_{\{X_i(\omega) \le t\}}$$

The aggregated counting process:

$$N(\omega, t) := \sum_{i=1}^{n} N_i(\omega, t) = \sum_{i=1}^{n} I_{\{X_i(\omega) \le t\}}$$

January 2, 2016

The aggregated intensity process:

$$\alpha(\omega,t) \ := \ \lim_{h \to 0^+} \frac{1}{h} \cdot P\bigg(N(\omega,t+h) - N(\omega,t) = 1 \ \bigg| \ \mathcal{F}_t \, \bigg) \ = \ \lim_{h \to 0^+} \frac{1}{h} \cdot E\bigg[N(\omega,t+h) - N(\omega,t) \ \bigg| \ \mathcal{F}_t \, \bigg]$$

The aggregated cumulative intensity process:

$$A(\omega,t) := \int_0^t \alpha(\omega,t) dt$$

Then, the process

$$M(\omega, t) := N(\omega, t) - A(\omega, t) = N(\omega, t) - \int_0^t \alpha(\omega, t) dt$$

is a martingale process. In particular, $M(\,\cdot\,,t)$ satisfies

$$E \left[\ M(\,\cdot\,,t+h) - M(\,\cdot\,,t) \ \middle| \ \mathcal{F}_t \ \middle] (\omega) \ = \ M(\omega,t) \right.$$

Survival Analysis

Study Notes January 2, 2016 Kenneth Chu

References

- [1] ALIPRANTIS, C. D., AND BURKINSHAW, O. Principles of Real Analysis, third ed. Academic Press, 1998.
- [2] BILLINGSLEY, P. Probability and Measure, third ed. John Wiley & Sons, 1995.
- [3] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.
- [4] FERGUSON, T. S. A Course in Large Sample Theory, first ed. Texts in Statistical Science. CRC Press, 1996.
- [5] Shao, J. Mathematical Statistics, second ed. Springer, 2003.