MODEL IDENTIFICATION AND KALMAN FILTERING FOR QUADROTOR

Nugraha Setya Ardi — 10714522- 952035

Estimation and learning in aerospace Academic year 2020/2021

Tasks

1. IDENTIFY THE MODEL GIVEN DATASET.

2. USE THE IDENTIFIED MODEL TO ESTIMATE VELOCITY USING DT-DT KALMAN FILTERING.

TASK 1: MODEL IDENTIFICATION

Task 1 - Model Identification

- DATA SET:
- 1. Position setpoint in NED frame as input.
- 2. Position in NED frame as output.
- 3. Acceleration in body frame as output.
- 4. Velocity in NED frame.
- All sampled at 100 Hz.

Task 1 - Model Identification

• DATA SET:

Quaternion body to NED. The first element is the scalar part. Sampled at 100 Hz.

Model Identification Steps

Validation using validation dataset and verify the results (VAF)

Quantify the results using VAF.

DATA PREPARATION: FFT & SMOOTHING

SMOOTHING: <u>BUTTERWORTH 2ND ORDER</u>

DATA PREPARATION: TRAINING SET AND VALIDATION SET

MODEL IDENTIFICATION: SUBSPACE MODEL IDENTIFICATION (SMI)

WHY SUBSPACE IDENTIFICATION?

No need of non-linear optimization techniques, only linear algebra (SVD) + Ricatti

No need to impose onto the system a canonical form

Computationally efficient and robust

This method can be applied equally to MIMO and SISO.

SOME CONS OF SUBSPACE IDENTIFICATION

Statistical analysis is difficult

No physical model representation

SMI:

Normal subspace methods are not consistent if there is feedback so we use a specialized method for closed-loop systems

Existence of correlations between the external unmeasurable noise and the control inputs.

Future inputs dependency on past outputs/noise.

PBSID
PREDICTOR BASED
SUBSPACE
IDENTIFICATION
METHOD

$$\mathcal{S} \left\{ \begin{array}{rcl} x_{k+1} & = Ax_k + Bu_k + Ke_k, \\ y_k & = Cx_k + Du_k + e_k, \end{array} \right.$$

PROBLEM: Given input sequence u_k and output y_k , over time $k = \{0, ..., N-1\}$ find **A, B, C, D**, and **K**.

ASSUMPTIONS:

- System is observable
- Noise sequence e_k is white
- Input sequence u_k has sufficient excitation
- Feedback loop does not have direct feedthrough

No other assumptions on correlation between the input and noise sequence --> Possibility to apply the algorithm in CLOSED LOOP

Rewrite the state-space in Kalman predictor form

$$S \begin{cases} x_{k+1} &= Ax_k + Bu_k + Ke_k \\ y_k &= Cx_k + Du_k + e_k, \end{cases} \longrightarrow \begin{cases} x_{k+1} &= \tilde{A}x_k + \tilde{B}u_k + Ky_k, \\ y_k &= Cx_k + Du_k + e_k, \end{cases}$$
$$\tilde{A} = A - KC \ \tilde{B} = B - KD$$

Introduce the extended controllability and Past window and the future window vectors observability matrix

$$\mathcal{K}^p = \begin{bmatrix} \bar{A}^{p-1} \tilde{B}_0 \ \dots \ \tilde{B} \end{bmatrix} \qquad \Gamma^p = \begin{bmatrix} C \\ C\bar{A} \\ \vdots \\ C\bar{A}^{p-1} \end{bmatrix} \qquad \qquad \bar{y}_{k-p} = \begin{bmatrix} y_{k-p} \\ y_{k-p+1} \\ \vdots \\ y_{k-1} \end{bmatrix}, \quad \bar{y}_k = \begin{bmatrix} y_k \\ y_{k+1} \\ \vdots \\ y_{k+f-1} \end{bmatrix}$$

$$f \leq p \qquad \qquad ----> \text{ Same for } u \text{ and } e$$

Defining $z(k) = \begin{bmatrix} u^T(k) & y^T(k) \end{bmatrix}$

Same for X and E
$$ar{Z}=egin{bmatrix}ar{z}_0,&\cdots,&ar{z}_{N-p}\end{bmatrix}$$
 $Y=egin{bmatrix}y_p,&\cdots,&y_{N-1}\end{bmatrix}$

Rewrite the problem in matrix notation

$$X^{p,f} \simeq \mathcal{K}^p \bar{Z}^{p,f}$$

 $Y^{p,f} \simeq C\mathcal{K}^p \bar{Z}^{p,f} + DU^{p,f} + E^{p,f}$

FOR
$$f = p$$
 $\min_{CK^p, D} ||Y^{p,p} - CK^p \bar{Z}^{p,p} - DU^{p,p}||_F$.

- To estimate the state sequence $X^{p,p}$ and retrieve the order of the system use SVD of the projection $\Gamma^p \mathcal{K}^p ar{Z}^{p,p} = U \Sigma V^T$
- Then estimate matrix C from least squares problem: $\min_{C} \|Y^{p,p} \widehat{D}U^{p,p} C\widehat{X}^{p,p}\|_F$

Estimation of the innovation data matrix

$$E_N^{p,f} = Y^{p,p} - \widehat{C}\widehat{X}^{p,p} - \widehat{D}U^{p,p}$$

A,B and K can be obtained by solving least squares problem

$$\min_{A,B,K} \|\widehat{X}^{p+1,p} - A\widehat{X}^{p,p-1} - BU^{p,p-1} - KE^{p,p-1}\|_{F}.$$

PBSID – VARX and VARMAX model set

VARX

$$\begin{cases} x_{k+1} &= \tilde{A}x_k + \tilde{B}u_k + Ky_k \\ y_k &= Cx_k + Du_k + e_k, \end{cases}$$
$$\epsilon_{k|k-1} = y_k - \hat{y}_{k|k-1}$$

- The one-step ahead predictor is linear in the Markov parameters (Computational better)
- One-step ahead prediction error has truncation error and noise error.
- If past window is small, the truncation error leads to biased estimation of state sequence
- Optimal solution for noise is when p-> ∞ because $\bar{G}_p \to \bar{G}$ and $\bar{H}_p \to \bar{H}$ and truncation becomes small

VARMAX

$$\begin{cases} x_{k+1} = \bar{A}x_k + \bar{B}u_k + My_k + \bar{K}e_k \\ y_k = Cx_k + Du_k + e_k, \end{cases}$$
$$y_k = G(z)u_k + H(z)e_k.$$

- Introduces another observer matrix to create additional freedom for the optimizer.
- The one-step ahead predictor is no longer linear but extended least squares still gives efficient solution.
- For finite case error now only contains noise term, therefore for p>n $\bar{G}_p=\bar{G}$ and $\bar{H}_p=\bar{H}$ no approximation is needed without truncation error.
- Lower past window for asymptotical consistent estimates. Beneficial when p is restricted.

RESULTS: VARX

VARX WITH P = F = 30

RESULTS: VARX

RESULTS: VARMAX

RESULTS: VARMAX

VARMAX with order = 5

RESULT: POSITION, VARX vs VARMAX

RESULT: ACCELERATION, VARX vs VARMAX

POLES OF IDENTIFIED MATRICE A:

BODEMAG: INPUT TO POSITION (order 5, p = f = 15)

BODEMAG: INPUT TO ACCELERATION (order 5, p = f = 15)

VARX & VARMAX, order 5, p = f = 15 (position)

VARX & VARMAX, order 5, p = f = 15 (acceleration)

TASK 2: KALMAN FILTERING USING THE IDENTIFIED MODEL

DT-DT PREDICTOR/CORRECTOR FORM

Motion model:

$$\mathbf{x}_k = \mathbf{F}_{k-1} \mathbf{x}_{k-1} + \mathbf{G}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$$

noise

Measurement model:

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k \qquad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$$

$$\mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$$

 $\mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_k)$

noise

Measurement Noise

Process or Motion Noise

Prediction

$$\check{\mathbf{x}}_k = \mathbf{F}_{k-1} \mathbf{x}_{k-1} + \mathbf{G}_{k-1} \mathbf{u}_{k-1}$$

$$\check{\mathbf{P}}_k = \mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^T + \mathbf{Q}_{k-1}$$

Optimal Gain

$$\mathbf{K}_k = \check{\mathbf{P}}_k \mathbf{H}_k^T (\mathbf{H}_k \check{\mathbf{P}}_k \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$$

2b Correction

$$\hat{\mathbf{x}}_k = \check{\mathbf{x}}_k + \mathbf{K}_k (\mathbf{y}_k - \mathbf{H}_k \check{\mathbf{x}}_k)$$

$$\hat{\mathbf{P}}_k = (\mathbf{1} - \mathbf{K}_k \mathbf{H}_k) \check{\mathbf{P}}_k$$

DT-DT PREDICTOR/CORRECTOR FORM

Where ${m F}={m I}+{m A}$. Δt and ${m A}$, ${m B}$, and ${m C}$ are the identified model

$$G = B$$

$$H = C$$

Since state estimates do not have any physical representations (because of PBSID), then we cannot recover velocity directly from state estimates. Therefore, we build it from measurement estimates and using a simple formula to obtain velocity.

$$\widehat{\boldsymbol{y}} = \boldsymbol{H}\widehat{\boldsymbol{x}} + \boldsymbol{D}\boldsymbol{u} = \begin{bmatrix} \widehat{r} \\ \widehat{a} \end{bmatrix} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \hat{v}_t = \frac{\widehat{r}_{t+1} - \widehat{r}_t}{\Delta t}$$

DATA FOR KALMAN FILTERING

```
• x0 = zeros(order, 1);
                      % initial state
• P = eye(order);
                              % initial state covariance
• dt = 0.01;
                              % time step
• F = eye(order) + A*dt;
• G = B;
• H = C;
• Q = 0.1 * eye (order);
                              % process noise
• R = [1 0; 0 1000];
                           % measurement noise
```

LOOPING PROCESS

```
• for i=2:length(tspan)
     xhat(:,1) = x0; % initial state
     %prediction
     xmin = F*xhat(:,i-1) + Bi*u(i);
     P = F*P*F'+0;
     %correction
     K = P*H'*inv(H*P*H'+R);
     xhat(:,i) = xmin + K*(ym(i,:)'-H*xmin);
     P = (eye(order) - K*H)*P;
     %output estimate
     yhat(:,i) = H*xhat(:,i) + Di*u(i);
     %lateral velocity ned
     velocity(i-1) = (yhat(1,i)-yhat(1,i-1))/dt;
• end
```

RESULT: POSITION ESTIMATES

RESULT: ACCELERATION ESTIMATES

RESULT: VELOCITY ESTIMATES

REFERENCES

- Chiuso A. (2006). The role of autoregressive modelling in predictor-based subspace identification.

 Automatica 43 (2007) 1034-1048
- Chiuso A., Picci G. (2004). Consistency Analysis of some closed-loop subspace identification methods. Automatica 41 (2005) 377-391
- Wingerden J.W., Verhaegen, M. (2010). VARMAX-based closed-loop subspace model identification.
 IEEE Conference on Decision and Control.
- Del Cont, D., Giurato, M., Riccardi, F., and Lovera, M. (2017). Ground effect analysis for a quadrotor platform. In 4th CEAS Specialist Conference on Guidance, Navigation & Control.
- Katayama T. (2005). Subspace Methods for System Identification. Springer