Попередня підготовка даних не має встановленого переліку операцій; єдина мета полягає в тому, щоб дані після обробки були кориснішими, ніж до неї. На практиці існує три основні задачі, пов'язані з процесом попередньої обробки даних:

- Очищення даних
- Трансформація даних
- Збагачення даних

Основні завдання очищення даних наступні:

- Перейменування
- Сортування та переупорядкування
- Перетворення типів даних
- Обробка повторюваних даних
- Виправлення відсутніх або недійсних даних
- Фільтрація до потрібної підмножини даних

Розглянемо наступні дані про погоду:

	datatype	station	attributes	value
date				
2018-10-01	TAVG	GHCND:USW00014732	H,,S,	21.2
2018-10-01	TMAX	GHCND:USW00014732	,,W,2400	25.6
2018-10-01	TMIN	GHCND:USW00014732	,,W,2400	18.3
2018-10-02	TAVG	GHCND:USW00014732	H,,S,	22.7
2018-10-02	TMAX	GHCND:USW00014732	,,W,2400	26.1

Перейменування:

df.rename(columns={'value': 'temp_C', 'attributes': 'flags'},inplace=True)

	datatype	station	flags	temp_C
date				
2018-10-01	TAVG	GHCND:USW00014732	H,,S,	21.2
2018-10-01	TMAX	GHCND:USW00014732	,,W,2400	25.6
2018-10-01	TMIN	GHCND:USW00014732	,,W,2400	18.3
2018-10-02	TAVG	GHCND:USW00014732	H,,S,	22.7
2018-10-02	TMAX	GHCND:USW00014732	,,W,2400	26.1

df.rename(str.lower, axis='columns').columns

Сортування та переупорядкування: df[df.datatype == 'TMAX'].sort_values(by='temp_C', ascending=False).head(5)

	datatype	station	flags	temp_C
date				
2018-10-07	TMAX	GHCND:USW00014732	,,W,2400	27.8
2018-10-10	TMAX	GHCND:USW00014732	,,W,2400	27.8
2018-10-11	TMAX	GHCND:USW00014732	,,W,2400	26.7
2018-10-04	TMAX	GHCND:USW00014732	,,W,2400	26.1
2018-10-02	TMAX	GHCND:USW00014732	,,W,2400	26.1

df[df.datatype == 'TMAX'].sort_values(by=['temp_C', 'date'], ascending=[False, True]).head(5)

datatype == 'TMAX'].sort_values(by=['temp_C', 'date'], datatype == 'temp_c' station flags temp_c'

date				
2018-10-07	TMAX	GHCND:USW00014732	,,W,2400	27.8
2018-10-10	TMAX	GHCND:USW00014732	,,W,2400	27.8
2018-10-11	TMAX	GHCND:USW00014732	,,W,2400	26.7
2018-10-02	TMAX	GHCND:USW00014732	,,W,2400	26.1
2018-10-04	TMAX	GHCND:USW00014732	,,W,2400	26.1

df[df.datatype == 'TAVG'].nlargest(n=5, columns='temp C') datatype station flags temp_C

date				
2018-10-10	TAVG	GHCND:USW00014732	H,,S,	23.8
2018-10-11	TAVG	GHCND:USW00014732	$H_{,,}S,\\$	23.4
2018-10-07	TAVG	GHCND:USW00014732	H,,S,	22.8
2018-10-02	TAVG	GHCND:USW00014732	H,,S,	22.7
2018-10-03	TAVG	GHCND:USW00014732	HS.	21.8

df[df.datatype == 'TAVG'].nsmallest(n=5, columns='temp C')

	datatype	station	flags	temp_C
date				
2018-10-26	TAVG	GHCND:USW00014732	H,,S,	7.3
2018-10-22	TAVG	GHCND:USW00014732	H,,S,	8.3
2018-10-25	TAVG	GHCND:USW00014732	H,,S,	8.8
2018-10-27	TAVG	GHCND:USW00014732	H,,S,	9.4
2018-10-18	TAVG	GHCND:USW00014732	H,,S,	9.6

df.sample(5, random_state=0)

	datatype	station	flags	temp_C
date				
2018-10-01	TMIN	GHCND:USW00014732	,,W,2400	18.3
2018-10-11	TAVG	GHCND:USW00014732	H,,S,	23.4
2018-10-19	TMAX	GHCND:USW00014732	,,W,2400	17.2
2018-10-06	TMAX	GHCND:USW00014732	,,W,2400	21.1
2018-10-05	TMAX	GHCND:USW00014732	,,W,2400	22.8

df.sample(5, random_state=0).sort_index()

	datatype	station	flags	temp_C
date				
2018-10-01	TMIN	GHCND:USW00014732	,,W,2400	18.3
2018-10-05	TMAX	GHCND:USW00014732	,,W,2400	22.8
2018-10-06	TMAX	GHCND:USW00014732	,,W,2400	21.1
2018-10-11	TAVG	GHCND:USW00014732	H,,S,	23.4
2018-10-19	TMAX	GHCND:USW00014732	,,W,2400	17.2

df.sort_index(axis=1).head()

	datatype	flags	station	temp_C
date				
2018-10-01	TAVG	H,,S,	GHCND:USW00014732	21.2
2018-10-01	TMAX	,,W,2400	GHCND:USW00014732	25.6
2018-10-01	TMIN	,,W,2400	GHCND:USW00014732	18.3
2018-10-02	TAVG	H,,S,	GHCND:USW00014732	22.7
2018-10-02	TMAX	,,W,2400	GHCND:USW00014732	26.1

Методи sort_index() та sort_values() повертають новий DataFrame, коли потрібно саме замінити старий, то використовують параметр inplace=True

Перетворення типів даних:

df.dtypes

```
datatype object station object flags object temp_C float64 dtype: object
```

df.tz localize('EST') – вказуємо часовий пояс

	datatype	station	flags	temp_C
date				
2018-10-01 00:00:00-05:00	TAVG	GHCND:USW00014732	H,,S,	21.2
2018-10-01 00:00:00-05:00	TMAX	GHCND:USW00014732	,,W,2400	25.6

df.tz_convert('UTC')

	datatype	station	flags	temp_C
date				
2018-10-01 05:00:00+00:00	TAVG	GHCND:USW00014732	H,,S,	21.2
^{2018-10-01 05:00:00+00:00} df.tz_convert('El	TMAX E T')	GHCND:USW00014732	,,W,2400	25.6
	datatype	station	flags	temp_C
date				
2018-10-01 08:00:00+03:00	TAVG	GHCND:USW00014732	H,,S,	21.2

df.tz_localize(None).to_period('M')

	datatype	station	flags	temp_C
date				
2018-10	TAVG	GHCND:USW00014732	H,,S,	21.2
2018-10	TMAX	GHCND:USW00014732	,,W,2400	25.6
2018-10	TMIN	GHCND:USW00014732	,,W,2400	18.3
2018-10	TAVG	GHCND:USW00014732	H,,S,	22.7
2018-10	TMAX	GHCND:USW00014732	,,W,2400	26.1

df_F = df.assign(date=pd.to_datetime(df.date),temp_F=(df.temp_C *
9/5) + 32)

	date	datatype	station	flags	temp_C	temp_F
0	2018-10-01	TAVG	GHCND:USW00014732	H,,S,	21.2	70.16
1	2018-10-01	TMAX	GHCND:USW00014732	,,W,2400	25.6	78.08
2	2018-10-01	TMIN	GHCND:USW00014732	,,W,2400	18.3	64.94
3	2018-10-02	TAVG	GHCND:USW00014732	H,,S,	22.7	72.86
4	2018-10-02	TMAX	GHCND:USW00014732	,,W,2400	26.1	78.98

date	datetime64[ns]
datatype	object
station	object
flags	object
temp_C	float64
temp_F	float64
dtype: objec	t

df = df.assign(temp_C_int=lambda x: x.temp_C.astype('int'))

datatype		station	station flags		temp_C_int	
date						
2018-10-01	TAVG	GHCND:USW00014732	H,,S,	21.2	21	
2018-10-01	TMAX	GHCND:USW00014732	,,W,2400	25.6	25	

В цілому, для перетворення даних в числові існує функція pd.to_numeric().

Можливо також перетворити дані на категоріальний (тобто якісний) тип даних.

df.assign(station=df.station.astype('category'),datatype=df.datatype.ast

ype('category'))

datatype category station category flags object temp_C float64 temp_C_int int32 dtype: object

df.describe()

df.describe(include='category')

	datatype	station
count	93	93
unique	3	1
top	TAVG	GHCND:USW00014732
freq	31	93

	temp_C	temp_C_int
count	93.000000	93.000000
mean	15.408602	14.956989
std	6.133703	6.084396
min	5.600000	5.000000
25%	10.200000	10.000000
50%	14.400000	14.000000
75%	21.100000	21.000000
max	27.800000	27.000000

Трансформація даних зосереджується на зміні структури даних, щоб полегшити подальший аналіз; це зазвичай передбачає зміну того, які дані йдуть в рядках, а які — в стовпцях. Більшість даних мають широкий або довгий формат; кожен з цих форматів має свої переваги, і важливо знати, який з них знадобиться для аналізу. Широкий формат:

Дата	Температура	Вологість	Вітер
2021-10-11	7	70%	1
2021-10-12	8	80%	2

Довгий формат:

Параметр	Значення
Температура	7
Вологість	70%
Вітер	1
Температура	8
Вологість	80%
Вітер	2
	Температура Вологість Вітер Температура Вологість

Транспонувати дані можна за допомогою методу Т: df.head().T

date	2018-10-01	2018-10-01	2018-10-01	2018-10-02	2018-10-02
datatype	TAVG	TMAX	TMIN	TAVG	TMAX
station	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732
flags	H,,,S,	,,W,2400	,,W,2400	H,,,S,	,,W,2400
temp_C	21.2	25.6	18.3	22.7	26.1
temp_F	70.16	78.08	64.94	72.86	78.98

wide_df = df.pivot(columns='datatype', values=['temp_C', 'temp_F'])

	temp_0	C		temp_l	F	
datatype	TAVG	TMAX	TMIN	TAVG	TMAX	TMIN
date						
2018-10-01	21.2	25.6	18.3	70.16	78.08	64.94
2018-10-02	22.7	26.1	19.4	72.86	78.98	66.92
2018-10-03	21.8	25.0	18.9	71.24	77.00	66.02
2018-10-04	21.3	26.1	17.8	70.34	78.98	64.04
2018-10-05	20.3	22.8	16.1	68.54	73.04	60.98

wide_df = df.pivot(columns='datatype')

	station			flags			temp_0	С		temp_F	=	
datatype	TAVG	TMAX	TMIN	TAVG	TMAX	TMIN	TAVG	TMAX	TMIN	TAVG	TMAX	TMIN
date												
2018-10-01	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	H,,S,	,,W,2400	,,W,2400	21.2	25.6	18.3	70.16	78.08	64.94
2018-10-02	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	H,,S,	,,W,2400	,,W,2400	22.7	26.1	19.4	72.86	78.98	66.92
2018-10-03	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	H,,S,	,,W,2400	,,W,2400	21.8	25.0	18.9	71.24	77.00	66.02
2018-10-04	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	H,,S,	,,W,2400	,,W,2400	21.3	26.1	17.8	70.34	78.98	64.04
2018-10-05	GHCND:USW00014732	GHCND:USW00014732	GHCND:USW00014732	H,,S,	,,W,2400	,,W,2400	20.3	22.8	16.1	68.54	73.04	60.98

Для переходу від широкого формату до довгого використовується метод melt() або stack().

datatype TAVG TMAX TMIN

date			
2018-10-01	21.2	25.6	18.3
2018-10-02	22.7	26.1	19.4
2018-10-03	21.8	25.0	18.9
2018-10-04	21.3	26.1	17.8
2018-10-05	20.3	22.8	16.1

0	TMAX	25.6
1	TMAX	26.1
2	TMAX	25.0

wide_df.stack().to_frame('temp_C')

temp_C

date	datatype	
2018-10-01	TAVG	21.2
	TMAX	25.6
	TMIN	18.3
2018-10-02	TAVG	22.7
	TMAX	26.1

Виявлення проблем в даних. Візьмемо наступні дані про погоду за рік:

	date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
0	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
1	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
3	2018-01-02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
4	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False

PRCP – опади в міліметрах

SNWD – глибина снігу в міліметрах

TOBS – значення температури під час спостереження

WESF — висота води в міліметрах, що відповідає глибині снігу Inclement_weather — наявність некомфортних погодних умов

df.describe()

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF
count	765.000000	577.000000	577.0	765.000000	765.000000	398.000000	11.000000
mean	5.360392	4.202773	NaN	2649.175294	-15.914379	8.632161	16.290909
std	10.002138	25.086077	NaN	2744.156281	24.242849	9.815054	9.489832
min	0.000000	0.000000	-inf	-11.700000	-40.000000	-16.100000	1.800000
25%	0.000000	0.000000	NaN	13.300000	-40.000000	0.150000	8.600000
50%	0.000000	0.000000	NaN	32.800000	-11.100000	8.300000	19.300000
75%	5.800000	0.000000	NaN	5505.000000	6.700000	18.300000	24.900000
max	61.700000	229.000000	inf	5505.000000	23.900000	26.100000	28.700000

df.info()

```
RangeIndex: 765 entries, 0 to 764
Data columns (total 10 columns):
                      Non-Null Count Dtype
    Column
                                   object
    date
                      765 non-null
 0
    station
                      765 non-null
                                    object
                      765 non-null
                                      float64
    PRCP
                                    float64
    SNOW
                      577 non-null
                      577 non-null
                                    float64
    SNWD
                                    float64
                      765 non-null
    TMAX
    TMIN
                      765 non-null
                                    float64
                      398 non-null
                                    float64
    TOBS
    WESF
                      11 non-null
                                    float64
    inclement weather 408 non-null
                                      object
dtypes: float64(7), object(3)
memory usage: 59.9+ KB
```

df[df.inclement_weather.isna()].shape[0]
357
df[df.SNWD.isin([-np.inf, np.inf])].shape[0]
577

contain_nulls = df[df.SNOW.isna() | df.SNWD.isna() | df.TOBS.isna() |
df.WESF.isna() | df.inclement_weather.isna()]
contain_nulls.head()

	date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
0	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
1	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
3	2018-01-02T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
4	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False

contain_nulls.shape[0] 765

pd.DataFrame({'np.inf Snow Depth':df[df.SNWD ==
np.inf].SNOW.describe(),'-np.inf Snow Depth':df[df.SNWD == np.inf].SNOW.describe()}).T

	count	mean	std	min	25%	50%	75%	max
np.inf Snow Depth	24.0	101.041667	74.498018	13.0	25.0	120.5	152.0	229.0
-np.inf Snow Depth	553.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0

df.describe(include='object')

	date	station	inclement_weather
count	765	765	408
unique	324	2	2
top	2018-07-05T00:00:00	GHCND:USC00280907	False
freq	8	398	384

Виявимо, чи наявні однакові рядки: Рахує тільки перші рядки: df[df.duplicated()].shape[0] 284

Bci рядки: df[df.duplicated(keep=False)].shape[0] 482

За заданими стовпцями: df[df.duplicated(['date', 'station'])].shape[0] 284

df[df.duplicated()].head()

	date	station	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
1	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2	2018-01-01T00:00:00	?	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
5	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
6	2018-01-03T00:00:00	GHCND:USC00280907	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
8	2018-01-04T00:00:00	?	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True

Виправлення помилок.

Виділяємо дані для невідомої станції в окремий об'єкт wesf_df = df[df.station == '?'].drop duplicates('date').set index('date').WESF

```
date
2018-01-01T00:00:00 NaN
2018-01-04T00:00:00 19.3
2018-01-05T00:00:00 NaN
2018-01-07T00:00:00 NaN
2018-01-08T00:00:00 NaN
```

df.sort_values('station', ascending=False, inplace=True)

Видаляємо продубльовані дати: df_new = df.drop_duplicates('date') df_new.shape[0] 324

Видаляємо стовпець з назвою станції: df_new.drop(columns='station').set_index('date').sort_index()

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2018-01-02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
2018-01-03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
2018-01-04T00:00:00	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
2018-01-05T00:00:00	0.3	NaN	NaN	5505.0	-40.0	NaN	NaN	NaN

df_new = df_new.assign(WESF=lambda x: x.WESF.combine_first(wesf_df))

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	-inf	5505.0	-40.0	NaN	NaN	NaN
2018-01-02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	NaN	False
2018-01-03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	NaN	False
2018-01-04T00:00:00	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
2018-01-05T00:00:00	0.3	NaN	NaN	5505.0	-40.0	NaN	NaN	NaN

```
df_new.shape
(324,8)
df_ new.dropna().shape
(4,8)
df_new.dropna(how='all').shape
(324,8)
```

df_new.dropna(axis='columns',thresh=df_new.shape[0] * .75).columns

```
Index(['PRCP', 'SNOW', 'SNWD', 'TMAX', 'TMIN', 'TOBS', 'inclement_weather'], dtype='object')
```

Оскільки відсутніх значень забагато краще замість відкидання заповнити їх:

df_new.loc[:,'WESF'].fillna(0, inplace=True)

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	-inf	5505.0	-40.0	NaN	0.0	NaN
2018-01-02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	0.0	False
2018-01-03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	0.0	False
2018-01-04T00:00:00	20.6	229.0	inf	5505.0	-40.0	NaN	19.3	True
2018-01-05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	0.0	True

Замінюємо надвисокі та наднизькі значення температури на відсутні значення:

df_new.assign(TMAX=lambda x: x.TMAX.replace(5505, np.nan),TMIN=lambda x: x.TMIN.replace(-40, np.nan))

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	-inf	NaN	NaN	NaN	0.0	NaN
2018-01-02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	0.0	False
2018-01-03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	0.0	False
2018-01-04T00:00:00	20.6	229.0	inf	NaN	NaN	NaN	19.3	True
2018-01-05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	0.0	True

Заповнюємо ці значення сусідніми: df_new.assign(TMAX=lambda x: x.TMAX.fillna(method='ffill'),TMIN=lambda x: x.TMIN.fillna(method='ffill'))

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	-inf	NaN	NaN	NaN	0.0	NaN
2018-01-02T00:00:00	0.0	0.0	-inf	-8.3	-16.1	-12.2	0.0	False
2018-01-03T00:00:00	0.0	0.0	-inf	-4.4	-13.9	-13.3	0.0	False
2018-01-04T00:00:00	20.6	229.0	inf	-4.4	-13.9	NaN	19.3	True
2018-01-05T00:00:00	14.2	127.0	inf	-4.4	-13.9	-13.9	0.0	True

Замінюємо нескінченні значення на великі числа для того, щоб до цих даних можна було застосовувати алгоритми машинного навчання:

df_new.assign(SNWD=lambda x: np.nan_to_num(x.SNWD)).head()

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	-1.797693e+308	NaN	NaN	NaN	0.0	NaN
2018-01-02T00:00:00	0.0	0.0	-1.797693e+308	-8.3	-16.1	-12.2	0.0	False
2018-01-03T00:00:00	0.0	0.0	-1.797693e+308	-4.4	-13.9	-13.3	0.0	False
2018-01-04T00:00:00	20.6	229.0	1.797693e+308	-4.4	-13.9	NaN	19.3	True
2018-01-05T00:00:00	14.2	127.0	1.797693e+308	-4.4	-13.9	-13.9	0.0	True

Або обмежити значення: df_new.assign(SNWD=lambda x: x.SNWD.clip(0, x.SNOW)).head()

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01T00:00:00	0.0	0.0	0.0	-8.3	-16.1	NaN	0.0	NaN
2018-01-02T00:00:00	0.0	0.0	0.0	-8.3	-16.1	-12.2	0.0	False
2018-01-03T00:00:00	0.0	0.0	0.0	-4.4	-13.9	-13.3	0.0	False
2018-01-04T00:00:00	20.6	229.0	229.0	-4.4	-13.9	NaN	19.3	True
2018-01-05T00:00:00	14.2	127.0	127.0	-4.4	-13.9	-13.9	0.0	True

df_new.assign(TMAX=lambda x:
x.TMAX.fillna(x.TMAX.median()),TMIN=lambda x:
x.TMIN.fillna(x.TMIN.median()),TOBS=lambda x: x.TOBS.fillna((x.TMAX + x.TMIN) / 2))

	PRCP	SNOW	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01	0.0	0.0	0.0	14.4	5.6	10.0	0.0	NaN
2018-01-02	0.0	0.0	0.0	-8.3	-16.1	-12.2	0.0	False
2018-01-03	0.0	0.0	0.0	-4.4	-13.9	-13.3	0.0	False
2018-01-04	20.6	229.0	229.0	14.4	5.6	10.0	19.3	True
2018-01-05	14.2	127.0	127.0	-4.4	-13.9	-13.9	0.0	True

df_new.apply(lambda x: x.fillna(x.rolling(7,
min_periods=0).median())).head(8)

	PRCP	snow	SNWD	TMAX	TMIN	TOBS	WESF	inclement_weather
date								
2018-01-01	0.0	0.0	0.0	NaN	NaN	NaN	0.0	NaN
2018-01-02	0.0	0.0	0.0	-8.30	-16.1	-12.20	0.0	False
2018-01-03	0.0	0.0	0.0	-4.40	-13.9	-13.30	0.0	False
2018-01-04	20.6	229.0	229.0	-6.35	-15.0	-12.75	19.3	True
2018-01-05	14.2	127.0	127.0	-4.40	-13.9	-13.90	0.0	True
2018-01-06	0.0	0.0	0.0	-10.00	-15.6	-15.00	0.0	False
2018-01-07	0.0	0.0	0.0	-11.70	-17.2	-16.10	0.0	False
2018-01-08	0.0	0.0	0.0	-7.80	-16.7	-8.30	0.0	False

Збагачення даних відбувається через або об'єднання нових даних з вихідними даними (додаючи нові рядки або стовпці), або використання вихідних даних для створення нових даних. Основні способи збагачення даних:

- Додавання нових стовпців: використання функціональних перетворень над даними з наявних стовпців для створення нових значень.
- Групування: перетворення неперервних даних або дискретних даних з багатьма різними значеннями в сегменти. Таким чином стовпець стає дискретним, що дозволяє контролювати кількість можливих значень у стовпці.
- Агрегація: згортання даних та їх узагальнення.
- Повторна вибірка: агрегування даних часових рядів через певні проміжки часу.