MA331 Intermediate Statistics

Lecture 01 Data, Variables and Distribution ¹

Xiaohu Li

Department of Mathematical Sciences Stevens Institute of Technology Hoboken, New Jersey 07030

Week 01

¹Based on Chapter 1.

1. From sample to big data

- Statisticians find solution for scientific problems through data-crunching.
- - Sample (about 100 obs) from scientific experiments OUR FOCUS.
 - Data set (hundreds of obs for several variables), databases from small business and industry.
 - Big data (several data sets with millions obs of hundreds variables), databases from large business and industry.
- $\ensuremath{\mathscr{S}}$ Statistics aim to extract useful information behind the data, and it gets the following two branches
 - Descriptive statistics on the data.
 - Inferential statistics on the information behind the data.
- This course focuses on ideas and methods, and the concerned computations have to be done with softwares such as R, SAS and SPSS.

2. One example – exercise on cholesterol levels

- & Assess the effect of exercise on cholesterol levels
 - One group exercises and the other does not.
 Is cholesterol reduced in exercise group?
 - People have naturally different cholesterol levels.
 - Response to the same amount of exercise differs (e.g. genetics).
 - The level may vary in adherence to exercise regimen.
 - The diet may have an effect, and exercise may affect other factors (e.g. appetite, energy, schedule).
- & So, we have to collect
 - observations of cholesterol levels of the two groups along with
 - other related covariates such as starting level, amount of exercise, regiment of exercise, diet style etc.

3. Important points on data

- Example: Investigating the body weight of a certain group of students.
- The randomness in the data collecting gives rise to the variability in data.
- Statistics is the science of understanding data and making decisions in the context of variability.
- Methods to reduce the variability:
 - Better experimental design before collecting the data.
 - Employ a reasonable statistic to analyze the data.
 - Proper interpretation of the output of software.
 - An insightful discovering on what data is telling you.

Номеwork 1: (i) Download and install R on your computer. (ii) Download R-studio to convenient interface.

4. Basics of statistics

- Individuals: objects described by a set of data (patients, industrial system-s/elements, animals, things).
- ✓ Variables: related descriptions of an individual, taking different values for different subjects.
- Three questions to ask before data collecting:
 - Why: Purpose of study?
 - Who: Members of the sample, how many?
 - What: What variables should be measured?
- Example: A study on how the party-time-spent impact on GPA, variables like age, student's major, gender etc.
- ✓ We focus on statistical analysis and thus always assume a sample at hand.
- △ Sampling theory handles the sample design and data collecting.

Variable types

- Categorical variables have outcomes falling into finite categories.
- Quantitative variables have numerical outcomes.
 - continuous: height, weight, distance etc. take any value within an interval.
 - discrete: number of phone calls next week, number of students getting A this Fall etc. take all possible integers.
- Example: Information on employees

	Α	В	С	D	E	F
1	Name	Job Type	Age	Gender	Race	Salary
2	Cedillo, Jose	Technical	27	Male	White	52,300
3	Chambers, Tonia	Management	42	Female	Black	112,800
4	Childers, Amanda	Clerical	39	Female	White	27,500
5	Chen, Huabang	Technical	51	Male	Asian	83,600
6						
Read	dy				NUM	

6. Distribution of a variable

- △ Distribution comprises of all possible values a variable may take.
- For a categorical variable, just list count or percentage of individuals in each category.
- Methods to understand the distribution of a quantitative variable:
 - Graphical tools (bar graph, pie chart, histogram) visually display the distribution.
 - Numerical summaries (mean, variance) provide outlines of important characteristics.

Номеwork 3: Refer any R guidance for commands (barplot, pie, table) and practice them by using the built-in data.

7. Examples of graph tools

8. Histogram through an example

TABLE 1.2 Percent of Hispanics in the adult population, by state (2000)

State	Percent	State	Percent	State	Percent
Alabama	1.5	Louisiana	2.4	Ohio	1.6
Alaska	3.6	Maine	0.6	Oklahoma	4.3
Arizona	21.3	Maryland	4.0	Oregon	6.5
Arkansas	2.8	Massachusetts	5.6	Pennsylvania	2.6
California 28.1		Michigan	2.7	2.7 Rhode Island	
Colorado	14.9	Minnesota	2.4	South Carolina	2.2
Connecticut	8.0	Mississippi	1.3	South Dakota	1.2
Delaware	4.0	Missouri	1.8	Tennessee	2.0
Florida	16.1	Montana	1.6	Texas	28.6
Georgia	5.0	Nebraska	4.5	Utah	8.1
Hawaii	5.7	Nevada	16.7	Vermont	0.8
Idaho	6.4	New Hampshire	1.4	Virginia	4.2
Illinois 10.7		New Jersey	12.3	Washington	6.0
Indiana 3.1		New Mexico	38.7	West Virginia	0.6
Iowa 2.3		New York	13.8	Wisconsin	2.9
Kansas 5.8		North Carolina	4.3	Wyoming	5.5
Kentucky	1.3	North Dakota	1.0		

8. Histogram through an example

- Steps to construct a histogram:
 - Arrange the data in the ascending order and determine as Range = Maximum - Minimum.
 - Choose the interval width so as to divide data into 5 to 9 subintervals (classes) of equal width.
 - Count the number of observations in each interval (class) and then plot the frequencies as their heights.

Class	Count	Percent	Class	Count	Percent
0.1-5.0	30	60	20.1-25	1	2
5.1-10.0	10	20	25.1-30	2	4
10.1-15	4	8	30.1-35	0	0
15.1-20	2	4	35.1-40	1	2

9/17

8. Histogram through an example

R command: hist(data, breaks, freq) and hist(data, nclass, freq).

- Specify breaks as a vector for unequal widths or
- specify nclass for equal widths.
- Use counts or percentages through specifying freg=T or F.

9. Examining the distribution of a variable

Determine the pattern through describing shape, center and spread.

Shape: number of modes (peaks), symmetric or skewed in one direction (right/left tail longer).

10. Example: Distribution of Hispanic Adults

- & Shape: Right skewed, unimodal.
- Center: about 5%.
- \$ Spread : 0 40% with only one state (NM) more than 30%.
- Is the extreme observation on the right an outlier?

11. Distribution of quantitative variables

TABLE 1.	1 Newcom	b's measuren	nents of the p	assage time o	of light
28	22	36	26	28	28
26	24	32	30	27	24
33	21	36	32	31	25
24	25	28	36	27	32
34	30	25	26	26	25
-44	23	21	30	33	29
27	29	28	22	26	27
16	31	29	36	32	28
40	19	37	23	32	29
-2	24	25	27	24	16
29	20	28	27	39	23

- 66 observations taken in July-Sept, 1882.
- Variable: passage time, scaled and centered.
- Observations are different due to variation of the environment of every measurement.
- We can further examine the nature of the variation by using graphs.

13 / 17

11. Distribution of quantitative variables - histogram

- Check for recording errors.
- Violation of the experimental condition.
- Discard it only for a valid practical or statistical reason.

11. Distribution of quantitative variables - time series

- - is more variant at the beginning, and then
 - gets stabilized or less variant as time elapsed.

Homework 4: Find R commands to produce scatter plot.

12. Concluding remarks – histogram

Fairly symmetric overall except for 2 states clearly not belonging to the main trend. Alaska and Florida have unusual representation of the elderly in their population.

12. Concluding remarks – time series

- & Plot observations over time (time on the x axis).
- Seasonal variation: a pattern that repeats itself at a regular intervals of time.

