Linear Algebra & Geometry - Notes

Dom Hutchinson

February 20, 2018

Contents

1	Euclidean Plane, Vectors, Cartesian Co-Ordinates & Complex Numbers	2
	1.1 Vectors	2

1 Euclidean Plane, Vectors, Cartesian Co-Ordinates & Complex Numbers

1.1 Vectors

Definition 1.01 - *Vectors*

Ordered sets of real numbers.

Denoted by
$$\mathbf{v} = (v_1, v_2, v_3, ...) = \begin{pmatrix} x \\ y \end{pmatrix}$$

Definition 1.02 - Euclidean Plane

The set of two dimensional vectors, with real componenets, is called the Euclidean Plane. Denoted by \mathbb{R}^2

Definition 1.03 - Vector Addition

Let
$$\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$$
 such that $\boldsymbol{v} = (v_1, v_2)$ and $\boldsymbol{w} = (w_1, w_2)$.

Then
$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2).$$

Definition 1.03 - Scalar Multiplication of Vectors

Let
$$\mathbf{v} \in \mathbb{R}^2$$
 and $\lambda \in \mathbb{R}$ such that $\mathbf{v} = (v_1, v_2)$.

Then
$$\lambda \mathbf{v} = (\lambda v_1, \lambda v_2)$$
.

Definition 1.04 - Norm of vectors

The norm of a vector is its length from the origin.

Denoted by
$$||\boldsymbol{v}|| = \sqrt{v_1^2 + v_2^2}$$
 for $\boldsymbol{v} \in \mathbb{R}^2$.

Theorem 1.05

Let
$$\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$$
 and $\lambda \in \mathbb{R}$ such that $\boldsymbol{v} = (v_1, v_2)$ and $\boldsymbol{w} = (w_1, w_2)$.

$$||\boldsymbol{v}|| = 0 \text{ iff } \boldsymbol{v} = \boldsymbol{0}$$

2)

$$||\lambda \boldsymbol{v}|| = \sqrt{\lambda^2 v_1^2 + \lambda^2 v_2^2}$$
$$= |\lambda| . ||\boldsymbol{v}||$$

$$||v + w|| \le ||v|| + ||w||$$

Definition 1.06 - *Unit Vector*

A vector can be described by its length & direction.

Let
$$\boldsymbol{v} \in \mathbb{R}^2 \backslash \{\boldsymbol{0}\}.$$

Then
$$v = ||v||u$$
 where u is the unit vector, $u = \begin{pmatrix} cos\theta \\ sin\theta \end{pmatrix}$

Thus
$$\forall \ v \in \mathbb{R}^2 \ v = \begin{pmatrix} \lambda cos\theta \\ \lambda sin\theta \end{pmatrix}$$
 for some $\lambda \in \mathbb{R}$.

Definition 1.07 - Dot Product

Let
$$\mathbf{v} \in \mathbb{R}^2$$
 and $\lambda \in \mathbb{R}$ such that $\mathbf{v} = (v_1, v_2)$.

Then
$$\mathbf{v} \cdot \mathbf{w} = v_1.w_1 + v_2.w_2$$
.

Remark 1.08 - Positivity of Dot Product

Let $\boldsymbol{v} \in \mathbb{R}^2$.

Then $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2 = v_1^2 + v_2^2 \ge 0.$

Remark 1.09 - Angle between vectors in Euclidean Plane

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$.

Set θ to be the angle between $\boldsymbol{v} \ \& \ \boldsymbol{w}$.

Then

$$cos\theta = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{||\boldsymbol{v}|| \; ||\boldsymbol{w}||}$$

Theorem 1.10 - Cauchy-Schwarz Inequality

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$.

Then

$$|oldsymbol{v}\cdotoldsymbol{w}| \leq ||oldsymbol{v}|| \; ||oldsymbol{w}||$$

Proof

$$\begin{split} \frac{v_1w_1}{||\boldsymbol{v}||\ ||\boldsymbol{w}||} + \frac{v_2w_2}{||\boldsymbol{v}||\ ||\boldsymbol{w}||} &\leq \frac{1}{2} \left(\frac{v_1^2}{||\boldsymbol{v}||^2} + \frac{w_1^2}{||\boldsymbol{w}||^2} \right) + \frac{1}{2} \left(\frac{v_2^2}{||\boldsymbol{v}||^2} + \frac{w_2^2}{||\boldsymbol{w}||^2} \right) \\ &\leq \frac{1}{2} \left(\frac{v_1^2 + v_2^2}{||\boldsymbol{v}||^2} + \frac{w_1^2 + w_2^2}{||\boldsymbol{w}||^2} \right) \\ &\leq \frac{1}{2} (1+1) \\ &\leq 1 \\ &=> |v_1w_1 + v_2w_2| \leq ||\boldsymbol{v}||\ ||\boldsymbol{w}|| \\ &|\boldsymbol{v} \cdot \boldsymbol{w}| \leq ||\boldsymbol{v}||\ ||\boldsymbol{w}|| \end{split}$$