

Wyznaczenie przedziału czasowego powstania budynków na podstawie ortofotomapy z użyciem narzędzi głębokiego uczenia

PRACA DYPLOMOWA MAGISTERSKA
Promotor: dr inż. Adam Inglot
Autor: inż. Kamil Rakowski

Plan prezentacji Część pierwsza

Wstęp
Automatyczna detekcja zabudowań
Wyznaczenie przedziału czasowego
Wyniki
Wnioski

W pracy dyplomowej przedstawiono metodę pozyskania danych wektorowych, zawierających informacje o kształcie i położeniu budynków, na podstawie ortofotomapy

Celem pracy jest wyznaczenie przedziału czasowego powstawania budynków na podstawnie ortofotomapy wykorzystując do tego narzędzia głębokiego uczenia.

Przed przystąpieniem do opracowania wyników wykonano:

- 1. Przegląd literatury
- 2. Pozyskanie danych z Geoportalu Krajowego
- 3. Przygotowanie oprogramowania do wykonania koniecznych analiz

Wybór obszaru do opracowania dobrano biorąc pod uwagę cztery główne czynniki:

- 1. Dostępność danych w kolejnych latach.
- 2. Jakość danych (rozdzielczość terenowa piksela).
- 3. Zauważalność zmian w ilości i układzie zabudowań na przestrzeni lat.
- 4. Rodzaj zabudowań występujących na obszarze.

WSTĘP

W pracy wykorzystano obszar obejmujący 3 arkusze ortofotomapy dla miasta Gdynia

WSTĘP

Arkusz N-34-49-B-d-2-3 znajduje się w północno-zachodniej części powiatu Gdynia, obręby ewidencyjne, które zawiera to Chylonia, Cisowa, Pogórze.

WSTEP

Arkusz N-34-50-C-a-1-2 znajduje się w południowo-wschodniej części powiatu Gdynia, w pobliżu Zatoki Gdańskiej, obręby ewidencyjne, które zawiera to Redłowo, Orłowo, Wzgórze Św. Maksymiliana i Mały Kack.

WSTĘP

Arkusz N-34-49-D-b-1-2 znajduje się w południowo-zachodniej części powiatu Gdynia, obręby ewidencyjne, które zawiera to Chwarzno-Wiczlino

Zakres czasowy opracowania:

- Dla wybranego obszaru możliwe do pobrania były ortofotomapy dla roczników 2004, 2010, 2013, 2016, 2017, 2019, 2020, 2021.
- Wytycznych nie spełniały dane dla lat 2004, 2010 oraz 2016, które posiadały zbyt małą rozdzielczość a dodatkowo w 2004 roku nie było kompozycji RGB.

Arkusze ortofotomapy wykorzystane w opracowaniu:

Numer	Godło ortofotomapy	Rocznik	Pixel Depth	Rozdzielczość terenowa
1	N-34-49-B-d-2-3	2013	8 Bit	0,10m
		2017*	8 Bit	0,05m
2	N-34-50-C-a-1-2	2019	8 Bit	0,25m
		2020	8 Bit	0,25m
3	N-34-49-D-b-1-2	2021	8 Bit	0,25m

^{*} Ortofotomapa z roku 2017 została pobrana w czterech mniejszych arkuszach

Narzędzia geoprzetwarzania "Detect Objects Using Deep Learning" w oprogramowaniu ArcGIS umożliwia przeprowadzanie analiz metodami głębokiego uczenia.

Przed przystąpieniem do pracy z danymi, należało skonfigurować środowisko. W tym celu niezbędne było:

- Sprawdzenie specyfikacji i kompatybilność procesora graficznego (GPU),
- Instalacja CUDA (Compute Unified Device Architecture),
- Instalacja ArcGIS Pro wraz z bibliotekami Python dla uczenia głębokiego.

Plan prezentacji Część druga

Wstęp
Automatyczna detekcja zabudowań
Wyznaczenie przedziału czasowego
Wyniki
Wnioski

- Narzędzie "Detect Objects Using Deep Learning"
 wykorzystujące algorytmy oparte na
 konwolucyjnych sieciach neuronowych oraz modelu
 uczącym dostępnym na stronie producenta,
 pozwala na wykrywanie obiektów klasyfikowanych
 przez algorytm jako budynki.
- Wyznacza ich obwiednie tworząc poligony odpowiadające obrysom dachów i zapisuje je do nowej warstwy wektorowej.

Przed rozpoczęciem właściwego opracowania wykonano testy pracy narzędzia, które pozwoliły na wybór ustawień oraz modelu uczącego najlepiej przystosowanych do wybranego obszaru.

Porównanie modeli uczących

USA Afryka Australia

Po wykonaniu 115 prób na 3 różnych arkuszach ortofotmapy wybrano parametry narzędzia dające najlepsze wyniki

Model Definition	usa_building_footprints
padding	2
batch_size	3
threshold	0,75
return_bboxes	False
tile_size	768
Non Maximum Suppression	Yes

Porównanie wyników uzyskiwanych z różnymi ustawieniami parametrów

- Wykrywane budynki zapisywane były jako poligony o nieregularnych kształtach
- Do celów analizy przekształcono je w obiekty lepiej odpowiadające graficznej reprezentacji budynków tj. z prostopadłymi bokami.

Przed przekształceniem:

Po przekształceniu:

PLAN PREZENTACJI CZĘŚĆ TRZECIA

Wstęp
Automatyczna detekcja zabudowań
Wyznaczenie przedziału czasowego
Wyniki
Wnioski

- Do porównanie danych użyto narzędzia "Detect Feature Changes", które działa wyłącznie z obiektami liniowymi
- Obiekty powierzchniowe przekonwertowano w liniowe
- Porównano, czy w roku poprzednim w sprawdzanym miejscu występował budynek.

Przed konwersją:

Po konwersji:

WYZNACZENIE PRZEDZIAŁU CZASOWEGO

Działanie narzędzia "Detect Feature Changes"

Wykryte zmiany w latach 2013 - 2017

Wykryte zmiany w latach 2017 - 2019

Wykryte zmiany w latach 2019 - 2020

Wykryte zmiany w latach 2020 - 2021

WYZNACZENIE PRZEDZIAŁU CZASOWEGO

Do zoptymalizowania metody napisano skrypt w języku Python, który pozwala na przeprowadzenie procesu porównawczego w sposób półautomatyczny.

Wykorzystane moduły biblioteki arcpy:

- 1. arcpy.ia.DetectObjectsUsingDeepLearning
- 2. arcpy.RegularizeBuildingFootprint_3d
- 3. arcpy.PolygonToLine_management
- 4. arcpy.DetectFeatureChanges_management
- 5. arcpy.MakeFeatureLayer_management
- 6. arcpy.SaveToLayerFile_management

- Dane wektorowe pozyskane z ortofotmapy dla roku 2021 porównano również z danymi BDOT10k,
- Warstwa BUBD_A zawiera informacje o budynkach,
- Jest to warstwa poligonowa, dlatego wykonano przekształcenie do warstwy liniowej

Jako wynik porównania otrzymano warstwę liniową zawierającą atrybuty:

- S dla budynków, które były w BDOT10k, ale nie zostały wykryte na ortofotomapie,
- NC dla budynków, które były w obu porównywanych warstwach,
- N dla budynków wykrytych w procesie detekcji, których nie ma ich BDOT10k.

- Wszystkich warstwy zawierające wyniki wyeksportowano do plików CSV,
- Tabela wynikowa zawiera informację o roczniku powstania, położeniu i powierzchni obiektu, ufności z jaką został znaleziony na bazie ortofotomapy.

WYZNACZENIE PRZEDZIAŁU CZASOWEGO

Wygląd tabeli wynikowej

OBSZAR 1 - N-34-49-B-d-2-3					
	Year of	Area	Centroid X	Centroid	Confidence
ID	const.	[m2]	[m]	Y [m]	[%]
1824	2014-2017	182	465155	742093	79.1949
1812	2014-2017	189	464837	742098	80.0523
1811	2014-2017	167	464936	742103	80.4152
1819	2014-2017	110	464969	742108	81.7551
1820	2014-2017	20	464997	742114	78.7755
1818	2014-2017	22	465036	742122	86.4826
1810	2014-2017	30	464844	742127	84.2765
1809	2014-2017	31	464924	742139	86.3467
1825	2014-2017	467	465373	742130	99.3388
1710	2014-2017	33	464823	742163	77.8611
1706	2014-2017	32	464822	742174	82.9204
1705	2014-2017	64	464878	742178	89.9507
1795	2014-2017	82	465560	742179	84.2571
16	2014-2017	921	465280	744436	78.0872
58	2014-2017	677	465383	744436	76.5911
69	2014-2017	1064	465598	744436	84.8692
STATYSTYKI					
				Srednia	
Ilość:	221	Rok:	2014-2017	ufność:	87.8132
1445	2018-2019	49	465454	742121	76.1730

	OBSZ	ZAR 2	- N-34-5	0-C-a-1	-2
	Year of	Area	Centroid	Centroid	Confidence
ID	const.	[m2]	X [m]	Y [m]	[%]
2166	2014-2017	23	471318	735122	85.3712
2155	2014-2017	397	471064	735117	97.0878
2169	2014-2017	106	471543	735130	84.8355
2153	2014-2017	38	470852	735136	85.7767
2157	2014-2017	153	471073	735138	92.8099
2141	2014-2017	73	470676	735143	97.9761
2173	2014-2017	564	471675	735131	86.7729
2168	2014-2017	884	471428	735131	96.4367
2116	2014-2017	88	471512	735155	76.5362
1986	2014-2017	96	470223	735156	89.4055
2030	2014-2017	75	470674	735178	92.4812
1968	2014-2017	306	470222	735189	99.4632
1994	2014-2017	696	470425	735181	98.0235
174	2014-2017	599	471021	737440	84.9156
175	2014-2017	596	471212	737440	88.8752
173	2014-2017	974	470855	737440	90.3427
STATYSTYKI					
				Srednia	
llość:	209	Rok:	2014-2017	ufność:	88.9124
1864	2018-2019	111	470679	735110	76.4785

OBSZAR 3 - N-34-49-D-b-1-2						
	Year of	Area	Centroid	Centroid	Confidence	
ID	const.	[m2]	X [m]	Y [m]	[%]	
1146	2014-2017	21	463151	735172	76.6926	
1143	2014-2017	27	463135	735173	85.8599	
1123	2014-2017	890	462523	735169	95.9398	
1132	2014-2017	28	462983	735176	85.3592	
1156	2014-2017	19	463408	735178	76.1042	
1130	2014-2017	28	463061	735179	89.9972	
1154	2014-2017	24	463349	735180	86.9045	
1133	2014-2017	28	463030	735180	85.2874	
1128	2014-2017	24	462943	735183	91.4163	
1155	2014-2017	25	463373	735183	80.1650	
1139	2014-2017	36	463196	735184	96.0504	
1153	2014-2017	28	463420	735186	88.6939	
1131	2014-2017	32	462974	735187	88.5625	
49	2014-2017	39	462886	737487	92.8988	
32	2014-2017	16	462155	737499	84.3955	
11	2014-2017	1518	461544	737421	87.6688	
STATYSTYKI						
				Średnia		
Ilość:	203	Rok:	2014-2017	ufność:	90.8991	
833	2018-2019	46	463283	735301	84.5579	

Plan prezentacji Część czwarta

Wstęp
Automatyczna detekcja zabudowań
Wyznaczenie przedziału czasowego
Wyniki
Wnioski

Porównując dane z roku 2021 z danymi BDOT10k dla tego samego obszaru otrzymano:

- N-34-49-B-d-2-3: 1281 obiektów wykrytych przy 1518 obiektach w bazie danych wektorowych, tj. 237 obiektów więcej w BDOT10k
- N-34-50-C-a-1-2: 1735 obiektów wykrytych przy 1900 obiektach w bazie danych wektorowych, tj. 165 obiektów więcej w BDOT10k
- N-34-50-D-b-1-2: 926 obiektów wykrytych przy 934 obiektach w bazie danych wektorowych, tj. 8 obiektów więcej w BDOT10k

Średnia ufność wyznaczenia budynków w porównaniu z BDOT10k

Obszar / Typ zmiany	N-34-49-B-d-2-3	N-34-50-C-a-1-2	N-34-50-D-b-1-2	
Wykryte obiekty	1281	1735	926	
N	141	97	46	
NC	993	1422	685	
s	147	228	195	
Dokładność	77,5%	82,0%	74,0%	

- Średni wynik ufności wykrycia dla wszystkich analizowanych obszarów wyniósł 77,8%.
- Jako parametr wejściowy w procesie detekcji, niepewność wyznaczania budynków przyjęto na poziomie 75%.
- Liczby te różnią się o niecałe 3 punkty procentowe. Jest to zadowalający dokładnościowy wynik całego procesu.

Wykorzystując narzędzie "Detect Objects Using Deep Learning" wykryto łącznie 22081 zabudowań

WYDZIAŁ INŻYNIERII LĄDOWEJ I SRODOWISKA

Budynki klasyfikowane jako nowopowstałe

Średnia ufność wyznaczenia nowych budynków

Rocznik/Obszar	N-34-49-B-d-2-3	N-34-50-C-a-1-2	N-34-50-D-b-1-2	Średnia:
2014-2017	87,8%	88,9%	90,9%	89,2%
2018-2019	91,7%	89,0%	93,1%	91,3%
2020	91,7%	88,0%	86,5%	88,7%
2021	88,5%	87,7%	84,8%	87,0%
Średnia:	89,9%	88,4%	88,8%	89,0%

PLAN PREZENTACJI CZĘŚĆ PIĄTA

Wstęp
Automatyczna detekcja zabudowań
Wyznaczenie przedziału czasowego
Wyniki
Wnioski

Niniejsza praca udowodniła, że wykorzystanie narzędzi głębokiego uczenia na ortofotomapach umożliwia wyznaczanie przedziałów czasowych powstawania budynków.

Przy kilku modyfikacjach procesu można uzyskać dodatkowe dane dotyczące wyburzeń, braku zmian lub innych zależnościach pomiędzy danymi wektorowymi.

W celu wykorzystywania przedstawionej metody do aktualizacji baz danych wektorowych:

- Ortofotomapy powinny być aktualizowane jak najczęściej,
- Istotna jest rozdzielczość terenowa,
- Dane powinny być ogólnodostępne i darmowe.

Możliwości rozwoju metody:

- Wykorzystanie danych LiDAR do efektywniejszego rozróżniania budynków,
- Wykrywanie innych elementów terenu i infrastruktury np. dróg, drzew, parceli

HISTORIA MĄDROŚCIĄ PRZYSZŁOŚĆ WYZWANIEM