Math 119A Homework 4

Rad Mallari

July 28, 2023

1 Problem 1

Prove or disprove that matrix E given by

$$\begin{bmatrix} 0 & -\sqrt{2} \\ \sqrt{2} & 0 \end{bmatrix}$$

with basis $(0, -\sqrt{2}, \sqrt{2})$, and (1, -1, -1) is a two-dimensional matrix $E \subset \mathbb{R}^2$ that satisfies T|E of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Proof.

2 Problem 2

Prove or disprove that

$$x_{1} = Ce^{t} - B\cos(\sqrt{2}t) + A\sin(\sqrt{2}t)$$

$$x_{2} = (2B - A\sqrt{2})\cos(\sqrt{2}t) - B(\sqrt{2} + 2A)\sin(\sqrt{2}t)$$

$$x_{3} = (B + A\sqrt{2})\cos(\sqrt{2}t) + (B\sqrt{2} - A)\sin(\sqrt{2}t)$$
(1)

is the solution to x' = Tx for the operator T given in Problem 1. **Proof.**

3 Problem 3

Prove or disprove that $A=1,\ B=\sqrt{n}$ satisfies the largest A>0 and smallest B>0 such that

$$A|x| \le |x|_{sum} \le B|x|$$

for all $x \in \mathbb{R}^n$.

Proof.

4 Problem 4

Prove or disprove that the following

- (a) $\sqrt{2}$
- (b) $\frac{1}{2}$
- (c) 1
- (d) $\frac{1}{2}$

are norms to the vector $(1,1) \in \mathbb{R}^2$ under following

- (a) The Eucledian norm;
- (b) The Eucledian B-norm, where B, is the basis $\{(1,2),(2,2)\}$;
- (c) The max norm;
- (d) The B-max norm

Proof.

(a)

5 Problem 5

Prove or disprove that $(x^2 + xy + y^2)^{\frac{1}{2}}$ and $\frac{1}{2}(|x| + |y|) + \frac{2}{3}(x^2 + y^2)^{\frac{1}{2}}$ are norms defined in \mathbb{R}^2 .

Proof.

2

6 Problem 6

Prove or disprove that 1 is the uniform norm of the following operator in \mathbb{R}^2

$$\begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$$

Proof.

7 Problem 7

In the vector space $L(\mathbb{R}^2)$, let T be the transformation defined by

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c - 3a & d - 3b \end{bmatrix}$$

- (a) is T linear?
- (b) Does there exist a 2×2 matrix A such that AB = T(B) for all 2×2 matrices B?
- (c) Does there exist a 2×2 matrix A such that BA = T(B) for all 2×2 matrices B?

Proof.

(a)

8 Problem 8

Show that

$$||T||\cdot||T^{-1}|| \ge 1$$

for every invertible operator T.

Proof.

9 Problem 9

Let $A: \mathbb{R}^2 \to \mathbb{R}^2$ be an operator that leaves a subspace $E \subset \mathbb{R}^2$ invariant. Let $x: \mathbb{R} \to \mathbb{R}^2$ be a solution of x' = Ax. If $x(t_0) \in E$ for some $t_0 \in \mathbb{R}$, show that $x(t) \in E$ for all $t \in \mathbb{R}$.

Proof.

10 Problem 10

Suppose $A \in L(\mathbb{R}^2)$ has a real eigenvalue $\lambda < 0$. Then the equation x' = Ax has at least one nontrivial solution x(t) such that

$$\lim_{t \to \infty} x(t) = 0$$

Proof. Is this a question?