AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A method of manufacturing a semiconductor device, comprising the steps of:

forming a gate electrode over a substrate;

introducing ions into the substrate to form source/drain regions in the substrate proximate to the gate electrode;

activating a portion of the source/drain regions by laser thermal annealing using a laser; moving the laser and the substrate relative to one another; and

activating another portion of the source/drain regions by laser thermal annealing using the laser, wherein

each pulse from the laser respectively irradiates non-identical portions of the source/drain regions, and

each portion of the source/drain regions receives more than one single pulse of energy from the laser.

Claims 2-4 (Cancelled)

5. (Currently Amended) A The invention according to elaim 1, method of manufacturing a semiconductor device, comprising the steps of:

forming a gate electrode over a substrate;

introducing ions into the substrate to form source/drain regions in the substrate proximate to the gate electrode;

activating a portion of the source/drain regions by laser thermal annealing using a laser; moving the laser and the substrate relative to one another; and

activating another portion of the source/drain regions by laser thermal annealing using the laser, wherein

each pulse from the laser respectively irradiates non-identical portions of the source/drain regions, and

a spot area of the laser on the substrate is less than 50 millimeters².

6. (Original) A method of manufacturing a semiconductor device, comprising the steps of:

forming a gate electrode over a substrate;

introducing ions into the substrate to form source/drain regions in the substrate proximate to the gate electrode;

activating a portion of the source/drain regions by laser thermal annealing using a laser; moving the laser and the substrate relative to one another; and

activating another portion of the source/drain regions by laser thermal annealing using the laser,

wherein a spot area of the laser on the substrate is less than 50 millimeters2.

7. (Original) The invention according to claim 6, wherein each portion of the source/drain regions receives no more than one single pulse of energy from the laser.

- 8. (Original) The invention according to claim 6, wherein each portion of the source/drain regions receives more than one single pulse of energy from the laser.
- 9. (Original) The invention according to claim 8, wherein each pulse from the laser respectively irradiates non-identical portions of the source/drain regions.
- 10. (Original) The invention according to claim 6, wherein the laser and the substrate move relative to one another at a constant velocity.
- 11. (Currently Amended) A method of manufacturing a semiconductor device, comprising the steps of:

forming a gate electrode over a substrate;

introducing ions into the substrate to form source/drain regions in the substrate proximate to the gate electrode;

activating a portion of the source/drain regions by laser thermal annealing using a pulse of laser energy from a laser;

moving the laser and the substrate relative to one another; and

activating another portion of the source/drain regions by laser thermal annualing using another pulse of laser energy from the laser,

wherein the laser and the substrate move relative to one another after each pulse of laser energy and each portion of the source/drain regions receives more than one single pulse of energy from the laser, and

each pulse from the laser respectively irradiates non-identical portions of the source/drain regions.

Claim 12 (Cancelled)

13. (Currently Amended) A method of manufacturing a semiconductor device. The invention according to claim 11, comprising the steps of:

forming a gate electrode over a substrate;

introducing ions into the substrate to form source/drain regions in the substrate proximate to the gate electrode;

activating a portion of the source/drain regions by laser thermal annealing using a pulse of laser energy from a laser;

moving the laser and the substrate relative to one another; and

activating another portion of the source/drain regions by laser thermal annualing using another pulse of laser energy from the laser, wherein

the laser and the substrate move relative to one another after each pulse of laser energy and each portion of the source/drain regions receives more than one single pulse of energy from the laser, and

a spot area of the laser on the substrate is less than 50 millimeters².

Claim 14 (Cancelled)