«УТВЕРЖДАЮ» Директор ФГБНУ «Федеральный институт из аторынеских измерений»

> 0.А. Решетникова 1/1.2___ 2024 г.

«СОГЛАСОВАНО» Председатель Научно-методического совета ФГБНУ «ФИЛИ» по физике

В.И. Шевченко Од » нозбия 2024 г.

Единый государственный экзамен по ФИЗИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2025 года по ФИЗИКЕ

подготовлен федеральным государственным бюджетным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2025 г.

Единый государственный экзамен по ФИЗИКЕ

ФИЗИКА, 11 класс. 2/40

Пояснения к демонстрационному варианту контрольных измерительных материалов единого государственного экзамена 2025 года по ФИЗИКЕ

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов (КИМ) единого государственного экзамена (ЕГЭ) 2025 г. следует иметь в виду, что задания, включённые в него, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2025 г. Полный перечень элементов содержания, которые могут контролироваться на едином государственном экзамене 2025 г., приведён в кодификаторе проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена по физике.

В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, об их форме и уровне сложности.

В демонстрационном варианте представлено три примера заданий на позиции 26 экзаменационной работы. В реальных вариантах экзаменационной работы на данной позиции будет предложено только одно задание.

Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения позволят выпускникам выработать стратегию подготовки к ЕГЭ в 2025 г.

© 2025 Федеральная служба по надзору в сфере образования и науки

КИМ

КИМ

КИМ

Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2025 года по ФИЗИКЕ

ФИЗИКА, 11 класс. 3 / 40

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 26 заданий.

В заданиях 1–4, 7, 8, 11–13 и 16 ответом является целое число или конечная десятичная дробь. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответа № 1. Единицы измерения физических величин писать не нужно.

Other: -2.5 $_{\rm M}/{\rm c}^2$. -2.5

Ответом к заданиям 5, 6, 9, 10, 14, 15, 17, 18 и 20 является последовательность цифр. В заданиях 5, 9, 14 и 18 предполагается два или три верных ответа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже образцу без пробелов, запятых и других дополнительных символов в бланк ответов N_2 1.

Ответом к заданию 19 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u>, не разделяя числа пробелом, в бланк ответов № 1.

Ответ к заданиям 21–26 включает в себя подробное описание всего хода выполнения задания. В бланке ответов № 2 укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначе-	Множитель	Наимено-	Обозначе-	Множитель
вание	ние		вание	ние	
гига	Γ	109	санти	с	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	МК	10^{-6}
гекто	Γ	10^{2}	нано	Н	10 ⁻⁹
деци	д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
универсальная газовая постоянная	$R = 8.31 \; \text{Дж/(моль K)}$
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{\rm A} = 6 \cdot 10^{23} \ { m моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2/\text{K} \pi^2$
модуль заряда электрона	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
(элементарный электрический заряд)	
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

Соотношения между различными единицами						
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$					
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг					
1 атомная единица массы эквивалентна	931,5 МэВ					
1 электронвольт	$1 \text{ эB} = 1.6 \cdot 10^{-19} \text{ Лж}$					

Масса частиц	
электрона	$9,1\cdot10^{-31}$ кг $\approx 5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27}$ кг $\approx 1,007$ а.е.м.
нейтрона	$1,675 \cdot 10^{-27}$ кг $\approx 1,008$ а.е.м.

Плотность		подсолнечного масла	900 кг/м ³
воды	1000 кг/м^3	алюминия	2700кг/м^3
древесины (сосна) 400 kg/m^3	железа	7800 кг/м ³
керосина	800 кг/м ³	ртути	13 600 кг/м ³

Удельн о		емкость			
воды		Дж/(кг-К)	алюминия	900	Дж/(кг·К)
льда	$2,1\cdot10^{3}$	Дж/(кг·К)	меди	380	Дж/(кг·К)
железа	460	Дж/(кг-К)	чугуна	500	Дж/(кг·К)
свинца	130	Дж/(кг-К)			

Удельная теплота

парообразования воды $2,3\cdot 10^6$ Дж/кг плавления свинца $2,5\cdot 10^4$ Дж/кг плавления льда $3,3\cdot 10^5$ Дж/кг

Нормальные условия: давление -10^5 Па, температура -0 °C

Hopimustonoic	yenoonn	, давление	10 ma, remneparypa	0 0	
Молярная м					
азота		кг/моль	гелия		кг/моль
аргона	40.10^{-3}	кг/моль	кислорода		кг/моль
водорода	$2 \cdot 10^{-3}$	кг/моль	лития	6.10^{-3}	кг/моль
воздуха		кг/моль	неона		кг/моль
воды	18.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль

ФИЗИКА, 11 класс. 5 / 40

Часть 1

Ответами к заданиям 1–20 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

На рисунке представлен график зависимости модуля скорости υ тела от времени t. Найдите путь, пройденный телом за время от 0 до 12 с.

Ответ: м.

2 При исследовании зависимости модуля силы трения скольжения $\vec{F}_{\rm rp}$ от модуля нормальной составляющей силы реакции опоры \vec{N} были получены следующие данные.

$F_{\rm Tp}$, H	0,8	1,6	2,4	3,2
N, H	2,0	4,0	6,0	8,0

Определите по результатам исследования коэффициент трения скольжения.

Ответ: ______.

Тело движется в инерциальной системе отсчёта по прямой в одном направлении. При этом равнодействующая всех сил, действующих на тело, постоянна и равна по модулю 8 Н. Каков модуль изменения импульса тела за 4 с?

Ответ: кг·м/с.

4

Медный кубик, подвешенный на нити, полностью погружён в воду и не касается дна сосуда. Ребро кубика равно 3 см. Определите силу Архимеда, действующую на кубик.

Ответ: Н.

5

Небольшой груз, покоящийся на гладком горизонтальном столе, соединён пружиной со стенкой. Груз немного смещают от положения равновесия вдоль оси пружины и отпускают из состояния покоя, после чего он начинает колебаться, двигаясь вдоль оси пружины, совпадающей с направлением оси Ox. В таблице приведены значения координаты груза x в различные моменты времени t.

Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.

<i>t</i> , c	0,0	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6
х, см	4,0	2,8	0,0	-2,8	-4,0	-2,8	0,0	2,8	4,0

- 1) В момент времени 0,8 с модуль ускорения груза минимален.
- 2) Период колебаний груза равен 1,6 с.
- 3) Частота колебаний груза равна 0,25 Гц.
- 4) В момент времени 0,4 с кинетическая энергия груза максимальна.
- 5) Модули сил, с которыми пружина действует на груз, в момент времени 0,2 с и в момент времени 0,8 с равны.

Ответ:				

После удара в момент времени t = 0 шайба начала y скользить вверх по гладкой наклонной плоскости с начальной скоростью \vec{v}_0 , как показано на рисунке.

В момент времени t_0 шайба вернулась в исходное положение. Графики A и Б отображают изменение с течением времени физических величин, характеризующих движение шайбы.

Установите соответствие между графиками и физическими величинами, изменение которых со временем эти графики могут отображать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) проекция скорости v_x
- 2) проекция ускорения a_v
- 3) кинетическая энергия E_{κ}
- 4) полная механическая энергия E_{mex}

В сосуде содержится разреженный аргон, абсолютная температура которого равна 150 К. Концентрацию аргона уменьшили в 2 раза, при этом его давление увеличилось в 3 раза. Определите абсолютную температуру газа в конечном равновесном состоянии.

Ответ:	k

Газ в сосуде сжали, совершив работу, равную 500 Дж. Внутренняя энергия газа при этом увеличилась на 350 Дж. Какое количество теплоты отдал газ окружающей среде?

ФИЗИКА, 11 класс. 9 / 40

Ответ: _____ Дж

9

На рисунке представлены графики зависимости температуры t двух тел одинаковой массы от отданного ими при остывании количества теплоты Q. Первоначально тела находились в жидком агрегатном состоянии.

Используя данные графиков, выберите из предложенного перечня все верные утверждения.

- 1) Удельная теплота плавления второго тела в 2 раза меньше удельной теплоты плавления первого тела.
- 2) Температура плавления второго тела в 1,5 раза выше, чем температура плавления первого тела.
- 3) В твёрдом агрегатном состоянии удельная теплоёмкость второго тела больше, чем первого.
- 4) Удельная теплоёмкость первого тела в твёрдом агрегатном состоянии равна удельной теплоёмкости второго тела в жидком агрегатном состоянии.
- 5) В жидком агрегатном состоянии удельная теплоёмкость второго тела в 1,5 раза больше, чем первого.

Один моль идеального газа участвует в процессе p 1–2–3, график которого изображён на рисунке в координатах p–V, где p – давление газа, V – объём газа. Как изменяются абсолютная температура газа T в ходе процесса 1–2 и концентрация молекул газа n в ходе процесса 2–3? Масса газа остаётся постоянной.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Абсолютная температура газа в ходе процесса 1–2	Концентрация молекул газа в ходе процесса 2–3

11 На фотографии изображена электрическая цепь. Показания вольтметра даны в вольтах.

Какое напряжение будет показывать вольтметр, если его подсоединить к резистору сопротивлением 3 Ом? Вольтметр считать идеальным.

Ответ:	_ E
--------	-----

Две частицы с зарядами $q_1 = q$ и $q_2 = 2q$ влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции со скоростями $v_1 = v$ и $v_2 = 2v$ соответственно. Определите отношение модулей сил $\frac{F_1}{F_2}$, действующих на них со стороны магнитного поля.

При переводе ключа К из положения 1 в положение 2 (см. рисунок) период собственных электромагнитных колебаний в идеальном колебательном контуре увеличился в 1,5 раза. Во сколько раз индуктивность $L_{\rm x}$ катушки в колебательном контуре больше L?

Ответ: в	эаз(a).
----------	------	---	----

Две маленькие бусинки, закреплённые в точках А и В, несут на себе заряды -3q и +1,5q > 0 соответственно (см. рисунок).

$$-3q$$
 $+1,5q$

$$\bullet - - - \bullet$$
 A C B

Из приведённого ниже списка выберите все верные утверждения относительно этой ситуации.

- 1) Если бусинки соединить незаряженной стеклянной палочкой, их заряды станут равными.
- 2) Если бусинки соединить тонкой медной проволокой, то они будут притягивать друг друга.
- 3) Модуль силы Кулона, действующей на бусинку В, равен модулю силы Кулона, действующей на бусинку A.
- 4) На бусинку A со стороны бусинки B действует сила Кулона, направленная горизонтально вправо.
- 5) Напряжённость результирующего электростатического поля в точке Cнаправлена горизонтально вправо.

Ответ:			

Световой пучок переходит из воздуха в бензин 15 (см. рисунок). Что происходит при этом с частотой электромагнитных колебаний в световой волне и скоростью её распространения?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Частота	Скорость

16 CK	лько электронов содержится в нейтральном атоме изотопа тория $^{234}_{90}$ Th ?
	er:

17

Во время лабораторной работы ученики изучают явление фотоэффекта. Частоту падающего света немного увеличивают. Как при этом изменяются энергия фотонов падающего света и работа выхода электронов из материала фотокатода?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Энергия фотонов падающего света	Работа выхода электронов

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

- 1) Период гармонических колебаний колебательной системы обратно пропорционален частоте её колебаний.
- 2) Внутренняя энергия постоянной массы идеального газа увеличивается при понижении абсолютной температуры газа.
- 3) Изначально незаряженные тела в процессе электризации трением приобретают равные по модулю и одинаковые по знаку заряды.
- 4) Индукционный ток возникает в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.
- 5) В планетарной модели атома число протонов в ядре равно числу электронов в нейтральном атоме.

Ответ:		

19

Запишите показания вольтметра с учётом абсолютной погрешности измерений. Абсолютная погрешность прямого измерения напряжения равна цене деления вольтметра.

Ответ: <u>(</u> ± <u></u> <u>)</u> В.

В БЛАНК ОТВЕТОВ № 1 перенесите только числа, не разделяя их пробелом или другим знаком.

Ученику необходимо на опыте обнаружить зависимость давления газа, находящегося в сосуде, от массы газа. У него имеются пять различных сосудов с манометрами. Сосуды наполнены аргоном разной массы при различных температурах (см. таблицу). Какие два сосуда необходимо взять ученику, чтобы провести исследование?

№	Объём	Температура газа	Масса газа
сосуда	сосуда, л	в сосуде, К	в сосуде, г
1	6	320	10
2	4	350	6
3	6	320	8
4	4	340	6
5	5	300	10

Запишите в таблицу номера выбранных сосудов.

Ответ:		
--------	--	--

20

Не забудьте перенести все ответы в БЛАНК ОТВЕТОВ № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером

соответствующего задания.

Часть 2

Для записи ответов на задания 21–26 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (21, 22 и т.д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

На рис. 1 приведена зависимость концентрации п идеального одноатомного газа от его давления p в процессе 1-2-3. Количество вещества газа постоянно. Постройте график этого процесса в координатах p-V (V – объём газа). Точка, соответствующая состоянию 1, уже отмечена на рис. 2. Построение объясните, опираясь на законы молекулярной физики.

ФИЗИКА, 11 класс. 15 / 40

Полное правильное решение каждой из задач 22–26 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

Автомобиль массой 1750 кг движется 22 по прямолинейному участку дороги. Ось Ох направлена вдоль участка дороги автомобиля. сторону движения Координата автомобиля изменяется с течением времени согласно графику, приведённому на рисунке. Определите максимальную кинетическую энергию автомобиля на этом участке дороги.

По двум горизонтально расположенным 23 параллельным проводящим рельсам с пренебрежимо малым сопротивлением, замкнутым на конденсатор электроёмкостью $C = 100 \text{ мк}\Phi$, поступательно и равномерно скользит проводящий стержень. Расстояние между рельсами l = 1 м. Рельсы со стержнем находятся в вертикальном однородном

магнитном поле с индукцией B = 1 Тл (см. рисунок, вид сверху). Через достаточно большой промежуток времени от начала движения энергия электрического поля конденсатора $W = 50 \,\mathrm{mk} \,\mathrm{Дж}$. Какова скорость движения стержня? Рельсы закреплены на диэлектрической подложке.

Сосуд разделён тонкой перегородкой на две части, отношение объёмов которых $\frac{v_2}{V_1}$ = 3. В первой и второй частях сосуда находится воздух с относительной влажностью $\phi_1 = 60 \%$ и $\phi_2 = 70 \%$ соответственно. Какой будет относительная влажность воздуха в сосуде, если перегородку убрать? Считать, что температура воздуха в частях сосуда одинакова и не меняется до и после снятия перегородки.

25 К изолированному заряженному конденсатору с электроёмкостью C=1 нФ и зарядом q = 12 нКл параллельно подключили незаряженный конденсатор электроёмкостью 2С. Найдите установившееся напряжение на первом конденсаторе.

26 Пластилиновый шарик в момент t = 0 бросают с горизонтальной поверхности Земли под углом а к горизонту. Одновременно с некоторой высоты над поверхностью Земли начинает падать из состояния покоя другой такой же шарик. Шарики сталкиваются в воздухе. Сразу после столкновения скорость шариков направлена горизонтально. Время от столкновения шариков до их падения на Землю равно т. Считая удар абсолютно неупругим, определите, с какой начальной скоростью v_0 был брошен первый шарик. Сопротивлением воздуха пренебречь.

Обоснуйте применимость законов, используемых для решения задачи.

или

На горизонтальном столе находится брусок массой M = 1 кг, соединённый невесомой нерастяжимой нитью, перекинутой через гладкий невесомый $m = 500 \, \Gamma$. блок, с грузом массой На брусок действует сила \vec{F} . $\alpha = 30^{\circ}$ направленная под углом (см. рисунок), F = 9 Hк горизонту В момент начала движения груз находится

на расстоянии L=32 см от края стола. Какую скорость V будет иметь груз в тот момент, когда он поднимется до края стола, если коэффициент трения между бруском и столом $\mu=0,3$? Сделайте схематический рисунок с указанием сил, действующих на брусок и груз.

Обоснуйте применимость законов, используемых для решения задачи.

или

Невесомый стержень АВ с двумя малыми грузиками массами $m_1 = 100 \, \Gamma$ и $m_2 = 200 \, \Gamma$, расположенными в точках C и Bсоответственно, шарнирно закреплён в точке A. $M = 200 \; \Gamma$ Груз массой подвешен блоку за к идеальному невесомую и нерастяжимую нить, другой конец которой соединён с нижним концом стержня, как показано на рисунке. Вся система находится в равновесии, если стержень отклонён от вертикали на угол $\alpha = 45^{\circ}$, а нить составляет угол с вертикалью, равный

 β = 15°. Расстояние AC = b = 25 см. Определите длину l стержня AB, пренебрегая трением в шарнире. Сделайте рисунок с указанием сил, действующих на груз M и стержень.

Обоснуйте применимость законов, используемых для решения задачи.

Проверьте, чтобы каждый ответ был записан рядом с правильным номером задания.

Система оценивания экзаменационной работы по физике

Задания 1-20

Правильное выполнение каждого из заданий 1–4, 7, 8, 11–13, 16, 19 и 20 оценивается 1 баллом. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпадает с эталоном ответа. В ответе на задание 20 порядок записи символов значения не имеет.

Правильное выполнение каждого из заданий 6, 10, 15 и 17 оценивается 2 баллами. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпадает с эталоном ответа: каждый символ в ответе стоит на своём месте, лишние символы в ответе отсутствуют. Выставляется 1 балл, если на любой одной позиции ответа записан не тот символ, который представлен в эталоне ответа. Во всех других случаях выставляется 0 баллов. Если количество символов в ответе больше требуемого, выставляется 0 баллов вне зависимости от того, были ли указаны все необходимые символы.

Правильное выполнение каждого из заданий 5, 9, 14 и 18 оценивается 2 баллами. В этих заданиях предполагается два или три верных ответа. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, каждый символ присутствует в ответе, в ответе отсутствуют лишние символы. Порядок записи символов в ответе значения не имеет. Выставляется 1 балл, если только один из символов, указанных в ответе, не соответствует эталону (в том числе есть один лишний символ наряду с остальными верными) или только один символ отсутствует; во всех других случаях выставляется 0 баллов.

Номер	Правильный	Номер	Правильный
задания	ответ	задания	ответ
1	150	11	2,4
2	0,4	12	0,25
3	32	13	2,25
4	0,27	14	34
5	24	15	32
6	32	16	90
7	900	17	13
8	150	18	145
9	24	19	3,00,2
10	23	20	13

Критерии оценивания выполнения заданий с развёрнутым ответом

Выполнение заданий 21–26 (с развёрнутым ответом) оценивается предметной комиссией. На основе критериев, представленных в приведённых ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного экзаменуемым ответа выставляется от 0 до максимального балла.

Выполнение заданий оценивается на основании описания полного правильного ответа, за который выставляется максимальный балл, а наличие тех или иных недостатков или ошибок приводит к снижению оценки. В схеме оценивания учтены наиболее типичные ошибки или недочёты, допускаемые участниками экзамена, и определено их влияние на оценивание.

Для каждого задания 21–26 приводится авторский способ решения. Предлагаемый способ (метод) решения не является образцом решения и определяющим для построения шкалы оценивания работ экзаменуемых. Решение экзаменуемого может иметь логику, отличную от авторской логики решения (альтернативное решение). В этом случае эксперт оценивает возможность решения конкретной задачи тем способом, который выбрал экзаменуемый. Если ход решения экзаменуемого допустим, то эксперт оценивает полноту и правильность этого решения на основании того списка основных законов, формул или утверждений, которые соответствуют выбранному способу решения.

Для заданий 22–26 в схеме оценивания используются единые требования к полному правильному ответу.

На рис. 1 приведена зависимость концентрации n идеального одноатомного газа от его давления p в процессе 1-2-3. Количество вещества газа постоянно. Постройте график этого процесса в координатах p-V (V — объём газа). Точка, соответствующая состоянию 1, уже отмечена на рис. 2. Построение объясните, опираясь на законы молекулярной физики.

Возможное решение

1. График процесса в координатах p-V имеет следующий вид.

- 2. Концентрация газа обратно пропорциональна его объёму: $n = \frac{N}{V}$, где N- число молекул газа. На участке 1–2 давление прямо пропорционально концентрации газа ($\frac{p}{n} = \mathrm{const}$), а так как p = nkT, то $T = \mathrm{const}$, то есть процесс изотермический. В этом случае при $N = \mathrm{const}$ выполняется закон Бойля –Мариотта: $pV = \mathrm{const}$. Так как концентрация увеличивается в 2 раза, то объём газа в 2 раза уменьшается, а давление в 2 раза увеличивается. В координатах p-V график является гиперболой.
- 3. На участке 2–3 концентрация постоянна, значит, при N= const объём газа не меняется, процесс является изохорным нагреванием, в котором давление увеличивается в 2 раза (см. рисунок в условии). В координатах p-V график представляет отрезок вертикальной прямой

Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее правильный	3
ответ (в данном случае: приведён схематический рисунок,	
изображающий график процесса, п. 1), и полное верное объяснение	
(в данном случае: п. 2, 3) с указанием наблюдаемых явлений	
и законов (в данном случае: связь между концентрацией газа и его	
объёмом, зависимость давления газа от его концентрации и температуры, закон Бойля – Мариотта)	
Дан правильный ответ, и приведено объяснение, но в решении	2.
имеется один или несколько из следующих недостатков.	2
В объяснении не указано или не используется одно из физических явлений, свойств, определений или один из законов (формул), необходимых для полного верного объяснения. (Утверждение, лежащее в основе объяснения, не подкреплено соответствующим законом, свойством, явлением, определением и т.п.) И (ИЛИ) Указаны все необходимые для объяснения явления и законы, закономерности, но в них содержится один логический недочёт.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В решении имеется неточность в указании на одно из физических явлений, свойств, определений, законов (формул), необходимых для полного верного объяснения	
кинэнэкаоо отонуон	

Представлено решение, соответствующее одному из следующих случаев.	1
Дан правильный ответ на вопрос задания, и приведено объяснение,	
но в нём не указаны два явления или физических закона, необходимых для полного верного объяснения. ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, направленные	
на получение ответа на вопрос задания, не доведены до конца. ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, приводящие	
к ответу, содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы,	
закономерности, но имеются верные рассуждения, направленные	
на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

Автомобиль массой $1750 \, \mathrm{kr}$ движется по прямолинейному участку дороги. Ось Ox направлена вдоль участка дороги в сторону движения автомобиля. Координата автомобиля изменяется с течением времени согласно графику, приведённому на рисунке. Определите максимальную кинетическую энергию автомобиля на этом участке дороги.

Возможное решение

1. Скорость тела определяется изменением его координаты с течением времени. Анализируя график зависимости координаты автомобиля от времени x(t), видим, что в промежутке от 2 до 3 мин. его координата изменяется линейно и быстрее всего. Следовательно, в этот промежуток времени автомобиль движется равномерно с максимальной скоростью. Определим максимальную скорость автомобиля:

$$v_{\text{max}} = \frac{x(3) - x(2)}{\Delta t} = \frac{900 - 300}{60} = 10 \text{ m/c}.$$

2. Таким образом, максимальная кинетическая энергия автомобиля

$$E_{\text{Kmax}} = \frac{mv_{\text{max}}^2}{2} = \frac{1750 \cdot 10^2}{2} = 87,5 \cdot 10^3 \text{ Дж} = 87,5 \text{ кДж}.$$

Ответ: $E_{\mathrm{Kmax}} = 87,5$ кДж

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	2
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула	
кинетической энергии, определение скорости по графику	
зависимости координаты от времени);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин ² , используемых при	
написании физических законов);	

¹ В качестве исходных принимаются формулы, указанные в кодификаторе проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена по физике. В случае использования формул, не входящих в кодификатор (например, правила Кирхгофа, момент инерции и т.п.), работа оценивается ведущим экспертом исходя из особенностей предложенного альтернативного способа решения и схемы оценивания.

III) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	
Правильно записаны все необходимые положения теории,	1
физические законы, закономерности, и проведены преобразования,	
направленные на решение задачи, но имеется один или несколько	
из следующих недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1 или 2 балла	
Максимальный балл	2

² Стандартными считаются обозначения физических величин, принятые в кодификаторе проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена по физике.

По двум горизонтально расположенным параллельным проводящим рельсам с пренебрежимо малым сопротивлением, замкнутым на конденсатор электроёмкостью $C=100~{\rm Mk\Phi},$ поступательно и равномерно скользит проводящий стержень. Расстояние между рельсами $l=1~{\rm M}.$ Рельсы со стержнем находятся в вертикальном однородном

магнитном поле с индукцией $B=1\,\mathrm{Tm}$ (см. рисунок, вид сверху). Через достаточно большой промежуток времени от начала движения энергия электрического поля конденсатора $W=50\,\mathrm{mk}$ Дж. Какова скорость движения стержня? Рельсы закреплены на диэлектрической подложке.

Возможное решение

1. Модуль ЭДС индукции, возникающей в контуре при движении стержня: $|\mathcal{E}| = Bvl,$

где B — модуль вектора магнитной индукции, υ — скорость движения стержня, l — длина стержня.

2. Так как напряжение на конденсаторе U_c равно модулю ЭДС индукции, то энергия электрического поля конденсатора определяется по формуле:

$$W = \frac{CU_c^2}{2} = \frac{CB^2v^2l^2}{2}.$$

В итоге скорость стержня равна:

$$v = \sqrt{\frac{2W}{CB^2l^2}} = \sqrt{\frac{2 \cdot 50 \cdot 10^{-6}}{100 \cdot 10^{-6} \cdot 1^2 \cdot 1^2}} = 1 \text{ m/c}.$$

Otbet: v = 1 m/c

Критерии оценивания выполнения задания Баллы Приведено полное решение, включающее следующие элементы: I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: формула ЭДС индукции в движущемся в магнитном поле проводнике, формула энергии конденсатора); II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); III) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины

физические законы, закономерности, и проведены преобразования,	
направленные на решение задачи, но имеется один или несколько	
из следующих недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1 или 2 балла	
Максимальный балл	2
·	·

Правильно записаны все необходимые положения теории,

Лемонстрационный вариант ЕГЭ 2025 г.

Сосуд разделён тонкой перегородкой на две части, отношение объёмов которых $\frac{V_2}{V_1}$ = 3. В первой и второй частях сосуда находится воздух с относительной влажностью ϕ_1 = 60 % и ϕ_2 = 70 % соответственно. Какой будет относительная влажность воздуха в сосуде, если перегородку убрать? Считать, что температура воздуха в частях сосуда одинакова и не меняется до и после снятия перегородки.

Возможное решение

1. После снятия перегородки суммарная масса паров воды остаётся прежней:

$$\rho_1 V_1 + \rho_2 V_2 = \rho(V_1 + V_2), \tag{1}$$

где ρ_1 и ρ_2 — плотность паров воды в объёмах V_1 и V_2 соответственно до снятия перегородки, ρ — плотность паров воды после устранения перегородки. Поделим все части уравнения (1) на плотность насыщенных паров воды $\rho_{\rm H}$ при температуре воздуха в сосуде:

$$\frac{\rho_1}{\rho_H} V_1 + \frac{\rho_2}{\rho_H} V_2 = \frac{\rho}{\rho_H} (V_1 + V_2). \tag{2}$$

2. Согласно определению относительной влажности воздуха

$$\varphi_1 = \frac{\rho_1}{\rho_H}, \quad \varphi_2 = \frac{\rho_2}{\rho_H}, \quad \varphi = \frac{\rho}{\rho_H},$$

так что вместо (2) имеем:

$$\varphi_1 V_1 + \varphi_2 V_2 = \varphi(V_1 + V_2).$$

Отсюда:

$$\varphi = \frac{\varphi_1 V_1 + \varphi_2 V_2}{V_1 + V_2} = \frac{\varphi_1 + \varphi_2 \frac{V_2}{V_1}}{1 + \frac{V_2}{V_1}} = \frac{0.6 + 0.7 \cdot 3}{1 + 3} = 0.675 = 67.5 \%.$$

Otbet: $\varphi = 0,675 = 67,5 \%$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: условие	
постоянства массы водяных паров, формулы для плотности	
вещества и для относительной влажности воздуха);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов);	

Демонстрационный вариант ЕГЭ 2025 г. ФИЗИКА, 11 класс.	28 / 40
III) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования, но имеется один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и достаточно	
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи.	
у ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

К изолированному заряженному конденсатору с электроёмкостью C=1 н Φ и зарядом q = 12 нКл параллельно подключили незаряженный конденсатор электроёмкостью 2С. Найдите установившееся напряжение на первом конденсаторе.

ФИЗИКА, 11 класс. 29 / 40

Возможное решение

- 1. При соединении заряженного конденсатора с незаряженным происходит перераспределение электрического заряда до тех пор, пока напряжение на конденсаторах не станет одинаковым: $U_1 = U_2 = U'$.
- 2. Согласно закону сохранения электрического заряда $q = q_1 + q_2$, где q = CU — начальный заряд заряженного конденсатора, $q_1 = CU^T$ и $q_2 = 2CU'$ – заряды конденсаторов после перераспределения зарядов. Таким образом, $CU = CU^{\dagger} + 2CU^{\dagger} = 3CU^{\dagger}$.
- 3. Окончательно получим установившееся напряжение на первом конденсаторе: $U_1 = U' = \frac{U}{3} = \frac{q}{3C} = \frac{12 \cdot 10^{-9}}{3 \cdot 1 \cdot 10^{-9}} = 4 \text{ B}.$

Ответ: $U_1 = 4 \, \text{B}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула	
электроёмкости конденсатора, закон сохранения электрического	
заряда, равенство напряжения как условие прекращения	
перераспределения зарядов);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) проведены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования, но имеется один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	
Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для решения	
данной задачи, без каких-либо преобразований с их использованием,	
направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи.	
имеющимися формулами, направленные на решение задачи. ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
вадачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3
-	

Пластилиновый шарик в момент t = 0 бросают с горизонтальной поверхности Земли под углом а к горизонту. Одновременно с некоторой высоты над поверхностью Земли начинает падать из состояния покоя другой такой же шарик. Шарики сталкиваются в воздухе. Сразу после столкновения скорость шариков направлена горизонтально. Время от столкновения шариков до их падения на Землю равно т. Считая удар абсолютно неупругим, определите, с какой начальной скоростью v_0 был брошен первый шарик. Сопротивлением воздуха пренебречь.

Обоснуйте применимость законов, используемых для решения задачи.

Возможное решение

Обоснование

- 1. Выберем инерциальную систему отсчёта, связанную с Землёй. За начало отсчёта координат примем первоначальное положение первого шарика.
- 2. Шарики будем считать материальными точками.
- 3. Так как сопротивлением воздуха можно пренебречь, то движение шариков можно

Решение

1. Первый шарик начинает движение из начала координат, а второй – из точки A. До и после столкновения (происходящего в точке B) шарики свободно падают. Поэтому до столкновения для первого шарика

$$y_1(t) = v_{0y}t - \frac{gt^2}{2} = v_0 \sin \alpha \cdot t - \frac{gt^2}{2},$$

 $v_{1y}(t) = v_0 \sin \alpha - gt,$

а для второго шарика

$$v_{2y}(t) = -gt$$
.

2. Шарики сталкиваются в момент t_1 , при этом импульс системы двух шариков сохраняется: $m\vec{v}_1 + m\vec{v}_2 = 2m\vec{u}_0$, а скорость \vec{u}_0 шариков после удара согласно условию горизонтальна. Поэтому $v_{1y}(t_1) + v_{2y}(t_1) = 0$, или

$$\left(\upsilon_0\sinlpha-gt_1
ight)+\left(-gt_1
ight)=0\,,$$
 откуда $t_1=rac{\upsilon_0\sinlpha}{2g}\,.$

3. Столкновение шариков происходит на высоте

$$h = y_1(t_1) = v_0 \sin \alpha \cdot t_1 - \frac{gt_1^2}{2} = \frac{v_0^2 \sin^2 \alpha}{2g} - \frac{v_0^2 \sin^2 \alpha}{8g} = \frac{3}{8} \cdot \frac{v_0^2 \sin^2 \alpha}{g}.$$

© 2025 Федеральная служба по надзору в сфере образования и науки

4. Поскольку скорость \vec{u}_0 шариков после удара горизонтальна, интервал времени т от столкновения шариков до их падения на Землю находится из условия $h=\frac{g\tau^2}{2}$, откуда $\tau=\sqrt{\frac{2h}{g}}=\sqrt{3}\cdot\frac{\upsilon_0\sin\alpha}{2g}$. Отсюда: $\upsilon_0=\frac{2g\tau}{\sqrt{3}\cdot\sin\alpha}$.

Ответ: v	1)	_	$2g\tau$		
Ответ.	$\boldsymbol{\nu}_0$		$\sqrt{3}$.	$\sin \alpha$	

Демонстрационный вариант ЕГЭ 2025 г.

Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов (закономерностей). В данном случае: выбор ИСО, материальная точка, условия применения закона сохранения импульса	1
В обосновании отсутствует один или несколько из элементов. ИЛИ	0
В обосновании допущена ошибка. ИЛИ	
Обоснование отсутствует	
Критерий 2	T
І) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: закон сохранения импульса, формулы кинематики); II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); III) представлены необходимые математические преобразования, приводящие к правильному ответу; IV) представлен правильный ответ	3
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном	2
объёме или отсутствуют. И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/	

Демонстрационный вариант ЕГЭ 2025 г. ФИЗИКА, 11 кла	icc.	33 / 40
вычислениях пропущены логически важные шаги.		
И (ИЛИ)		
Отсутствует пункт IV, или в нём допущена ошибка		
Представлены записи, соответствующие <u>одному</u> из следующи случаев.	X	1
Представлены только положения и формулы, выражающи	e	
физические законы, применение которых необходимо для решени	R	
данной задачи, без каких-либо преобразований с и	X	
использованием, направленных на решение задачи.		
ИЛИ		
В решении отсутствует ОДНА из исходных формул, необходима	R.	
для решения данной задачи (или утверждение, лежащее в основ	e	
решения), но присутствуют логически верные преобразовани	Я	
с имеющимися формулами, направленные на решение задачи.		
ИЛИ		
В ОДНОЙ из исходных формул, необходимых для решения данно	й	
задачи (или в утверждении, лежащем в основе решения), допущен		
ошибка, но присутствуют логически верные преобразовани	R	

или

с имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным

На горизонтальном столе находится брусок массой M=1 кг, соединённый невесомой нерастяжимой нитью, перекинутой через гладкий невесомый блок, с грузом массой m=500 г. На брусок действует сила \vec{F} , направленная под углом $\alpha=30^\circ$ к горизонту (см. рисунок), F=9 Н. В момент начала движения груз

критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

находится на расстоянии L=32 см от края стола. Какую скорость V будет иметь груз в тот момент, когда он поднимется до края стола, если коэффициент трения между бруском и столом $\mu=0,3$? Сделайте схематический рисунок с указанием сил, действующих на брусок и груз.

Обоснуйте применимость законов, используемых для решения задачи.

Возможное решение

Обоснование

1. Задачу будем решать в инерциальной системе отсчёта, связанной со столом. При нахождении ускорений тел будем применять второй закон Ньютона, сформулированный для материальных точек, поскольку тела движутся поступательно. Трением в оси блока и о воздух пренебрежём; блок будем считать невесомым.

На рисунке показаны силы, действующие на брусок и груз.

2. Так как нить нерастяжима, ускорения бруска и груза равны по модулю:

$$|\vec{a}_1| = |\vec{a}_2| = a. \tag{1}$$

3. Так как блок и нить невесомы и трения в блоке нет, то силы натяжения нити, действующие на груз и брусок, одинаковы по модулю:

$$|\vec{T}_1| = |\vec{T}_2| = T. \tag{2}$$

Решение

1. Запишем второй закон Ньютона в проекциях на оси Ox и Oy выбранной системы координат. Учитывая (1) и (2), получим:

$$F\cos\alpha - T - F_{\text{rp}} = Ma,$$

$$N + F\sin\alpha = Mg,$$

$$T - mg = ma.$$

Сила трения, действующая на брусок, $F_{\rm TD} = \mu N$.

Решив полученную систему уравнений, найдём ускорение тел:

$$a = \frac{F(\cos\alpha + \mu\sin\alpha) - mg - \mu Mg}{M + m}.$$

- 2. Так как начальная скорость груза равна нулю, $L = \frac{V^2}{2a}$.
- 3. Окончательно получим:

$$V = \sqrt{2aL} = \sqrt{2L\left(\frac{F(\cos\alpha + \mu\sin\alpha) - mg - \mu Mg}{M + m}\right)} =$$

$$= \sqrt{2 \cdot 0.32 \cdot \left(\frac{9 \cdot (\sqrt{3}/2 + 0.3 \cdot 0.5) - 0.5 \cdot 10 - 0.3 \cdot 1 \cdot 10}{1 + 0.5}\right)} \approx 0.7 \text{ m/c}.$$

Otbet: $V \approx 0.7 \text{ m/c}$

Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов (закономерностей). В данном случае: выбор ИСО, модель материальной точки, равенство модулей сил натяжения нитей и модулей ускорений брусков	1
В обосновании отсутствует один или несколько из элементов.	0
ИЛИ В обосновании допущена ошибка. ИЛИ Обоснование отсутствует	U
Критерий 2	
Приведено полное решение, включающее следующие элементы: I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: второй закон Ньютона, выражение для силы трения скольжения, кинематические соотношения); II) сделан правильный рисунок с указанием сил, действующих на тела; III) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); IV) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); V) представлен правильный ответ с указанием единиц измерения физической величины	3
правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков. Записи, соответствующие пунктам II и III, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты. И (ИЛИ)	2

ФИЗИКА, 11 класс. 35 / 40

Acmonorpaquomism supram Er 3 2023 1. This indee.	307 10
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт V, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	
Представлены записи, соответствующие <u>одному</u> из следующих случаев.	1
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для решения	
данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	4

или

26

Невесомый стержень АВ с двумя малыми грузиками массами $m_1 = 100 \, \Gamma$ и $m_2 = 200 \, \Gamma$, расположенными в точках C и Bсоответственно, шарнирно закреплён в точке A. Груз массой $M = 200 \; \Gamma$ подвешен к идеальному блоку за невесомую и нерастяжимую нить, другой конец которой соединён с нижним концом стержня, как показано на рисунке. Вся система находится в равновесии, если стержень отклонён от вертикали на угол $\alpha = 45^{\circ}$, а нить составляет угол с вертикалью, равный

 $\beta = 15^{\circ}$. Расстояние AC = b = 25 см. Определите длину l стержня AB, пренебрегая трением в шарнире. Сделайте рисунок с указанием сил, действующих на груз М и стержень.

Обоснуйте применимость законов, используемых для решения задачи.

Возможное решение

Обоснование

- 1. Рассмотрим задачу в системе отсчёта, связанной с Землёй. Будем считать эту систему отсчёта инерциальной (ИСО).
- 2. Опишем стержень моделью твёрдого тела (форма и размеры тела неизменны, расстояние между любыми двумя точками тела остаётся неизменным).
- 3. Стержень находится в равновесии относительно вращательного движения, поэтому сумма моментов сил относительно оси, проходящей перпендикулярно плоскости рисунка через точку A, равна нулю.
- 4. Груз опишем моделью материальной точки.
- 5. Нить нерастяжима, поэтому, если покоится груз, то покоится и стержень.
- 6. Груз находится в покое относительно поступательного движения, следовательно, сумма сил, действующих на него, равна нулю.
- 7. Нить невесома, блок идеален (масса блока ничтожна, трения нет), поэтому модуль силы натяжения нити в любой её точке один и тот же.

Решение

1. Введём декартову систему координат xOy, как показано на рисунке. Поскольку груз находится в равновесии, согласно второму закону Ньютона

$$T_1 - Mg = 0. (1)$$

ФИЗИКА, 11 класс. 37 / 40

2. На стержень с грузами m_1 и m_2 действуют силы $m_1 \vec{g}$ и $m_2 \vec{g}$, а также сила натяжения нити \vec{T}_2 , $\left|\vec{T}_1\right| = \left|\vec{T}_2\right| = |T|$. Кроме того, на стержень действует сила \vec{F} со стороны шарнира. Запишем условие равенства нулю суммы моментов этих сил относительно оси вращения, проходящей через точку A — точку шарнирного закрепления стержня:

$$m_1 g \cdot b \sin \alpha + m_2 g \cdot l \sin \alpha - T \cdot AD = 0.$$
 (2)

3. Решив систему уравнений (1) и (2), с учётом

$$AD = l \sin \varphi = l \sin (\alpha + \beta),$$

получим:

$$l = \frac{m_1 \cdot b \sin \alpha}{M \sin (\alpha + \beta) - m_2 \sin \alpha} = \frac{100 \cdot 25 \frac{\sqrt{2}}{2}}{200 \frac{\sqrt{3}}{2} - 200 \frac{\sqrt{2}}{2}} \approx 55,6 \text{ cm}.$$

Ответ: $l \approx 55,6$ см

Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов	1
(закономерностей). В данном случае: выбор ИСО, модель твёрдого	
тела, условие равновесия твёрдого тела относительно	
вращательного движения, модель материальной точки, условие	
равновесия материальной точки	
В обосновании отсутствует один или несколько из элементов.	0
ИЛИ	
В обосновании допущена ошибка.	
ИЛИ	
Обоснование отсутствует	
Критерий 2	
I) записаны положения теории и физические законы,	3
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: условия равновесия:	
равенство нулю суммы внешних сил, действующих на тело,	
и моментов внешних сил относительно выбранной оси вращения);	
II) сделан верный рисунок с указанием сил, действующих на тела;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов);	
IV) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
физической величины	

Правильно записаны все необходимые положения теории. физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков. Записи, соответствующие пунктам II и III, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты. И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины) Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи Все случаи решения, которые не соответствуют вышеуказанным 0 критериям выставления оценок в 1, 2, 3 балла

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минпросвещения России и Рособрнадзора от 04.04.2023 № 233/552, зарегистрирован Минюстом России 15.05.2023 № 73314)

«81. Проверка экзаменационных работ включает в себя:

1) проверку и оценивание предметными комиссиями ответов на задания КИМ для проведения ЕГЭ с развёрнутым ответом <...>, в том числе устных ответов, в соответствии с критериями оценивания по соответствующему учебному предмету, разработка которых организуется $\operatorname{Pocoбphad3opom}^3.<...>$

По результатам первой и второй проверок эксперты независимо друг от друга выставляют первичные баллы за каждый ответ на задания КИМ для проведения ЕГЭ с развёрнутым ответом. <...>

В случае существенного расхождения в первичных баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в первичных баллах определено в критериях оценивания по соответствующему учебному предмету, разработка которых организуется Рособрнадзором.

Эксперту, осуществляющему третью проверку, предоставляется информация о первичных баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенными считаются следующие расхождения.

- 1. Расхождение между баллами, выставленными двумя экспертами за выполнение любого из заданий 21–25 и за выполнение задания 26 по критерию К2, в 2 или более балла. В этом случае третий эксперт проверяет только те ответы на задания, которые вызвали столь существенное расхождение.
- 2. Расхождение в результатах оценивания двумя экспертами ответа на одно из заданий 21–26 заключается в том, что один эксперт указал на отсутствие ответа на задание, а другой выставил за выполнение этого задания ненулевой балл. В этом случае третий эксперт проверяет только ответы на задания, которые были оценены со столь существенным расхождением.
- 3. Ситуации, в которых один эксперт указал на отсутствие ответа в экзаменационной работе, а второй эксперт выставил нулевой балл за выполнение этого задания, не являются ситуациями существенного расхождения в оценивании.

Максимальный балл

 $^{^3}$ Часть 14 статьи 59 Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».