```
from google.colab import files
uploaded=files.upload()
Choose Files pima.csv

    pima.csv(text/csv) - 23279 bytes, last modified: 7/8/2025 - 100% done

     Saving pima.csv to pima (1).csv
import pandas
import numpy
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
from sklearn import model_selection
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
url="pima.csv"
names=['preg','plas','pres','skin','test','mass','pedi','age','class']
data=pandas.read_csv(url,names=names)
print(data)
₹
          preg
                plas
                      pres skin test mass
                                              pedi age
                                                         class
                148
                       72
                             35
                                    0 33.6 0.627
                                                              1
     1
            1
                 85
                        66
                              29
                                    0 26.6 0.351
                                                      31
                                                              0
     2
                183
                        64
                              0
                                    0 23.3 0.672
            8
                                                      32
                                                              1
     3
            1
                 89
                        66
                             23
                                   94 28.1 0.167
                                                      21
                                                              a
                137
                       40
                             35
                                  168 43.1 2.288
     4
            0
                                                     33
                                                             1
                       . . .
                                   . . .
                                  180 32.9 0.171
     763
           10
                 101
                        76
                             48
                                                     63
                                                              a
     764
            2
                 122
                        70
                              27
                                    0
                                       36.8 0.340
                                                      27
                                                              0
                121
                                 112 26.2 0.245
                                                     30
                             23
     766
            1
                126
                        60
                              a
                                    0 30.1 0.349
                                                      47
                                                              1
     767
                  93
                        70
                             31
                                    0 30.4 0.315
                                                              0
     [768 rows x 9 columns]
print(data.dtypes)
print(data.shape)
                int64
    preg
                int64
     plas
     pres
                int64
     skin
                int64
     test
               int64
     mass
              float64
              float64
     pedi
                int64
     age
     class
                int64
     dtype: object
     (768, 9)
```

#checking for null values
data.apply(lambda x:sum(x.isnull()),axis=0)

```
\overline{\Rightarrow}
              0
             0
       preg
       plas
              0
              0
       pres
       skin
              0
             0
       test
      mass 0
       pedi 0
       age
              0
      class 0
```

dtype: int64

pandas.set_option('display.precision',2)
print(data.describe())

$\overrightarrow{\exists}$		preg	plas	pres	skin	test	mass	pedi	age	class
	count	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00
	mean	3.85	120.89	69.11	20.54	79.80	31.99	0.47	33.24	0.35
	std	3.37	31.97	19.36	15.95	115.24	7.88	0.33	11.76	0.48
	min	0.00	0.00	0.00	0.00	0.00	0.00	0.08	21.00	0.00
	25%	1.00	99.00	62.00	0.00	0.00	27.30	0.24	24.00	0.00
	50%	3.00	117.00	72.00	23.00	30.50	32.00	0.37	29.00	0.00
	75%	6.00	140.25	80.00	32.00	127.25	36.60	0.63	41.00	1.00
	max	17.00	199.00	122.00	99.00	846.00	67.10	2.42	81.00	1.00

print("class size",data.groupby('class').size())

```
class size class 0 500 1 268 dtype: int64
```

data.hist()
plt.show()

data.plot(kind='density',subplots=True,layout=(3,5))
plt.show()

data.plot(kind='box',subplots=True,layout=(3,3))
plt.show()

scatter_matrix(data)
plt.show()

fig=plt.figure()
ax=fig.add_subplot(111)
cax=ax.matshow(data.corr(),vmin=-1,vmax=1)
fig.colorbar(cax)
plt.show()


```
array=data.values
X=array[:,0:8]
Y=array[:,8]
models=[]
models.append(('LR',LogisticRegression()))
models.append(('LDA',LinearDiscriminantAnalysis()))
models.append(('SVM',SVC()))
models.append(('CART',DecisionTreeClassifier()))
models.append(('KNN',KNeighborsClassifier()))
models.append(('NB',GaussianNB()))
results=[]
names=[]
scoring='accuracy'
test_size=0.33
seed=8
for name, model in models:
                          kfold=model_selection.ShuffleSplit(n_splits=10,test_size=test_size,random_state=seed)
                          cv_results=model_selection.cross_val_score(model,X, Y,cv=kfold,scoring=scoring)
                          results.append(cv_results)
                          names.append(name)
                          msg="%s:%f(%f)"%(name,cv_results.mean()*100,cv_results.std())
                          print(msg)
```

https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

```
7/8/25, 1:26 PM
                                                           NeerajaGoli_Project2_PimeDataset_26_6.ipynb - Colab
         increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
         /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status=1)
         STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
         /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status=1)
         STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
         LR:76.456693(0.021906)
         LDA:76.614173(0.018144)
         SVM:74.448819(0.018836)
         CART:67.401575(0.029399)
         KNN:71.850394(0.019307)
         NR: 75.039370(0.019935)
    fig=plt.figure()
    fig.suptitle('Algorithm Comparision')
    ax=fig.add_subplot(111)
    plt.boxplot(results)
    ax.set_xticklabels(names)
    plt.show()
    ₹
                                    Algorithm Comparision
           0.800
           0.775
           0.750
```



```
pipelines.append(('ScaledLR',Pipeline([('Scaler',StandardScaler()),('LR',LogisticRegression())])))
pipelines.append(('ScaledLDA',Pipeline([('Scaler',StandardScaler()),('LDA',LinearDiscriminantAnalysis())])))\\
pipelines.append(('ScaledSVM',Pipeline([('Scaler',StandardScaler()),('SVM',SVC())])))
pipelines.append(('ScaledKNN',Pipeline([('Scaler',StandardScaler()),('KNN',KNeighborsClassifier())])))\\
pipelines.append(('ScaledCART',Pipeline([('Scaler',StandardScaler()),('CART',DecisionTreeClassifier())])))
pipelines.append(('ScaledNB',Pipeline([('Scaler',StandardScaler()),('NB',GaussianNB())])))
results=[]
names=[]
scoring='accuracy'
test_size=0.33
seed=8
for name, model in pipelines:
               kfold=model_selection.ShuffleSplit(n_splits=10,test_size=test_size,random_state=seed)
               cv_results=model_selection.cross_val_score(model,X, Y,cv=kfold,scoring=scoring)
               results.append(cv_results)
               names.append(name)
```

₹

Scaled Algorithm Comparision


```
Scaler=StandardScaler().fit(X)
rescaledX=Scaler.transform(X)
neighbors=[1,3,5,7,9,11,13,15,17,19,21]
model=KNeighborsClassifier()
param_grid=dict(n_neighbors=neighbors)
kfold=model_selection.ShuffleSplit(n_splits=10,test_size=test_size,random_state=seed)
grid=GridSearchCV(estimator=model,param_grid=param_grid,scoring=scoring,cv=kfold)
grid_result=grid.fit(rescaledX,Y)
print("Best:%f using %s"%(grid_result.best_score_,grid_result.best_params_))
→ Best:0.743701 using {'n_neighbors': 17}
Scaler=StandardScaler().fit(X)
rescaledX=Scaler.transform(X)
c_values=[0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,3.0]
kernel_values=['linear','poly','rbf','sigmoid']
param_grid=dict(C=c_values,kernel=kernel_values)
kfold=model_selection.ShuffleSplit(n_splits=10,test_size=test_size,random_state=seed)
grid=GridSearchCV(estimator=model,param_grid=param_grid,scoring=scoring,cv=kfold)
grid_result=grid.fit(rescaledX,Y)
print("Best%f using %s:"%(grid_result.best_score_,grid_result.best_params_))
→ Best0.768110 using {'C': 0.3, 'kernel': 'linear'}:
ensembles=[]
ensembles.append(('AB',AdaBoostClassifier()))
ensembles.append(('GBM',GradientBoostingClassifier()))
ensembles.append(('RF',RandomForestClassifier()))
ensembles.append(('ET',ExtraTreesClassifier()))
results=[]
names=[]
scoring='accuracy'
```

```
test_size=0.33
seed=8
for name, model in ensembles:
                          k fold=model\_selection. Shuffle Split (n\_splits=10, test\_size=test\_size, random\_state=seed)
                          cv_results=model_selection.cross_val_score(model,X, Y,cv=kfold,scoring=scoring)
                          results.append(cv_results)
                          names.append(name)
                          msg="%s:%f(%f)"%(name,cv_results.mean()*100,cv_results.std())
                          print(msg)
→ AB:74.842520(0.025481)
     GBM:75.000000(0.013892)
     RF:75.039370(0.016156)
     ET:74.803150(0.021420)
fig=plt.figure()
fig.suptitle("Ensemble Algorithm Comparision")
ax=fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
<del>_</del>_
```


GBM

RF

ET

Ensemble Algorithm Comparision

Scaler=StandardScaler().fit(X)
rescaledX=Scaler.transform(X)
model=LogisticRegression()
model.fit(rescaledX,Y)

rescaledValidationX=Scaler.transform(X)
predictions=model.predict(rescaledValidationX)

print(classification_report(Y,predictions))

→	precision	recall	f1-score	support
0.0	0.80	0.89	0.84	500
1.0	0.74	0.58	0.65	268
accuracy			0.78	768
macro avg weighted avg	0.77 0.78	0.74 0.78	0.75 0.78	768 768
weighted avg	0.78	0.78	0.78	/08

print(accuracy_score(Y,predictions))

→ 0.783854166666666

print(confusion_matrix(Y,predictions))

[[446 54] [112 156]]