

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (1) of (33)

TEST REPORT Part 15 Subpart C 15.247

Equipment under test RECKON-X

Model name GPBW-180CA1GN

FCC ID ZGPRECKONX

Applicant GPI Korea, Inc.

Manufacturer GPI Korea, Inc.

Date of test(s) $2016.12.22 \sim 2016.12.28$

Date of issue 2016.12.29

Issued to GPI Korea, Inc.

10355 B-201, 158, Haneulmaeul-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea Tel: +82-70-4352-6381/ Fax: +82-31-629-7009

Issued by KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
The	
Hyeon-su Jang	Jeff Do
Test engineer	Technical manager

Test report No.: KES-RF-16T0126 Page (2) of (33)

Revision history

Revision	Date of issue	Test report No.	Description
-	2016.12.29	KES-RF-16T0126	Initial

Test report No.: KES-RF-16T0126 Page (3) of (33)

TABLE OF CONTENTS

1.	General	information	4
	1.1.	EUT description	4
	1.2.	Test configuration	
	1.3.	Frequency/channel operations	
	1.4.	Accessory information	
	1.5.	Device modifications	
	1.6.	Derivation model information	5
2.	Summar	y of tests	6
3.	Test resu	lts	7
	3.1.	6 dB bandwidth	
	3.2.	99% occupied bandwidth	9
	3.3.	Peak output power	
	3.4.	Power spectral density	
	3.5.	Radiated restricted band and emissions	14
	3.6.	Conducted spurious emissions & band edge	28
	3.7.	AC conducted emissions	
App	endix A.	Measurement equipment	
		Test setup photos	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (4) of (33)

1. General information

Applicant: GPI Korea, Inc.

Applicant address: 10355 B-201, 158, Haneulmaeul-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea

Test site: KES Co., Ltd.

Test site address: C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

FCC rule part(s): 15.247

FCC ID: ZGPRECKONX

Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test RECKON-X

Frequency range BT: 2402 Mbz ~ 2480 Mbz (LE)

WIFI: 2412 Mbz ~ 2462 Mbz (11b/g/n_HT20)

Model: GPBW-180CA1GN

Modulation technique BT: GFSK

WIFI: DSSS, OFDM

Number of channels BT: 40

WIFI: 11

Antenna specification BT: Chip Antenna, Peak gain: 0.5 dBi

WIFI: PCB Antenna, Peak gain: 2.84 dBi

Power source DC 3.7 V Li-ion Battery

1.2. Test configuration

The <u>GPI Korea, Inc. RECKON-X FCC ID: ZGPRECKONX</u> was tested per the guidance of KDB 558074 D01 v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

Test report No.: KES-RF-16T0126 Page (5) of (33)

Frequency/channel operations 1.3.

Ch.	Frequency (Mbz)	Rate(Mbps)
0	2 402	1
20	2 442	1
39	2 480	1

1.4. **Accessory information**

Applicant	Equipment	Manufacturer	Model	Power source
-	-	-	-	-

1.5. **Device modifications**

N/A

1.6. **Derivation model information**

N/A

Test report No.: KES-RF-16T0126 Page (6) of (33)

2. **Summary of tests**

Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth and 99% occupied bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass
15.205 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass
15.207(a)	AC conducted emissions	Pass

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (7) of (33)

3. Test results

3.1. 6 dB bandwidth

Test procedure

KDB 558074 D01 v03r05 – Section 8.1 or 8.2 Used test method is section 8.1.

Section 8.1

- 1. RBW = 100 kHz.
- 2. $VBW \ge 3 \times RBW$.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 \times RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928\,$ MHz, $2\,400 \sim 2\,483.5\,$ MHz, and $5\,725 \sim 5\,850\,$ MHz bands. The minimum 6 dB bandwidth shall be at least $500\,$ kHz.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (8) of (33)

Test results

Frequency(Mbz)	6 dB bandwidth(MHz)	Limit(Mb)
2 402	0.715	
2 442	0.724	0.5
2 480	0.706	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (9) of (33)

3.2. 99% occupied bandwidth

Test procedure

ANSI C63.10-2013

Limit

None; for reporting purpose only.

Test results

Frequency(Mb)	99% occupied bandwidth(贴)	Limit(Mb)
2 402	1.062	
2 442	1.062	-
2 480	1.068	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (10) of (33)

3.3. Peak output power

Test procedure

KDB 558074 D01 v03r05 – section 9.1.1 or 9.1.2 Used test method is section 9.1.1.

Section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set $VBW \ge 3 \times RBW$.
- 3. Set span \geq 3 \times RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.2

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (11) of (33)

Test results

Frequency(Mz)	Peak output power(dBm)	Limit(dBm)
2 402	-5.45	
2 442	-4.93	30
2 480	-5.19	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (12) of (33)

3.4. Power spectral density

Test procedure

KDB 558074 D01 v03r05 - section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW(no less than 3 klz) and repeat.

Limit

According to §15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (13) of (33)

Test results

Frequency(Mz)	PSD (dBm)	Limit(dBm)
2 402	-15.93	
2 442	-15.22	8
2 480	-15.60	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (14) of (33)

3.5. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\text{kHz}$ to 30 $\,\text{Mz}$ Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (15) of (33)

Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mb

- 1. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - ② RBW = 100 kHz
 - $3 \text{ VBW} \geq \text{RBW}$
 - 4 Detector = quasi peak
 - ⑤ Sweep time = auto
 - \bigcirc Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mb
 - \bigcirc VBW \geq 3 Mz
 - 4 Detector = peak
 - ⑤ Sweep time = auto
 - \bigcirc Trace = max hold
 - 7 Trace was allowed to stabilize

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (16) of (33)

- 3. Spectrum analyzer settings for $f \ge 1$ (Hz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mbz
 - \bigcirc VBW $\geq 3 \times RBW$
 - ① Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak. Detector function = peak
 - ⑤ Averaging type = power (i.e., RMS).
 - 6 Sweep time = auto.
 - 7 Perform a trace average of at least 100 traces.
 - A correction factor shall be added to the measurement results prior to comparing to the emission limit.

Note.

- 1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40 log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20 log(D_m/Ds)$ Where:
 - F_d = Distance factor in dB
 - D_m = Measurement distance in meters
 - D_s = Specification distance in meters
- 2. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)
- 3. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 4. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 6. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that **X orientation** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **X orientation**.
- 7. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (17) of (33)

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2 400 / F(klz)
0.490 ~ 1.705	30	24 000 / F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72\,$ Mb, $76 \sim 88\,$ Mb, $174 \sim 216\,$ Mb or $470 \sim 806\,$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections $15.231\,$ and $15.241.\,$

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea $Tel: +82\text{-}31\text{-}425\text{-}6200 \, / \, Fax: \, +82\text{-}31\text{-}424\text{-}0450$ www.kes.co.kr

Test report No.: KES-RF-16T0126 Page (18) of (33)

Duty cycle

Regarding to KDB 558074 D01_v03r05, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Ton time	Period	Duty cycle	Duty cycle	Duty cycle correction factor
(ms)	(ms)	(Linear)	(%)	(dB)
3.13	10.00	0.313	31.3	5.04

Note.

- 1. Duty cycle (Linear) = T_{on} time/Period
- 2. Duty cycle(%) = (Tx on time / Tx on + off time) x 100
- 3. DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

Middle channel Offset 10.80 dB @ RBW 1 MHz

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (19) of (33)

Test results (Below 30 Mb)

Mode: BLE

Distance of measurement: 3 meter

Channel: 20 (Worst case)

Frequency (MHz)	Level (dBµV)	Ant. Pol. (H/V)	CF (dB)	F _d (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
(MLL)	(uDµ1)	(11/ 1)	(ub)	(ub)	$(uD\mu VIII)$	$(uD\mu VIII)$	(ub)		
	No enurious emissions were detected within 20 dB of the limit								

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (20) of (33)

Test results (Below 1 000 Mb)

Mode: BLE

Distance of measurement: 3 meter

Channel: 20 (Worst case)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (21) of (33)

Test results (Above 1 000 贮)

Mode: BLE

Distance of measurement: 3 meter

Channel: 0

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1198.30	63.30	Peak	V	-15.93	-	47.37	74.00	26.63
1201.20	60.12	Peak	Н	-15.92	-	44.20	74.00	29.80
1276.40	58.38	Peak	V	-15.64	-	42.74	74.00	31.26
1499.30	51.43	Peak	Н	-14.85	-	36.58	74.00	37.42
1991.30	54.80	Peak	Н	-11.29	-	43.51	74.00	30.49
1991.30	63.14	Peak	V	-11.29	-	51.85	74.00	22.15
2345.93	43.38	Peak	Н	-9.90	-	33.48	74.00	40.52
2389.54	49.33	Peak	V	-9.77	-	39.56	74.00	34.44
3163.00	53.97	Peak	Н	-8.00	-	45.97	74.00	28.03
6310.00	48.02	Peak	V	-0.93	-	47.09	74.00	26.91

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (22) of (33)

Note.

1. Average test was not performed because peak result is lower than the the average limit.

Test report No.: KES-RF-16T0126 Page (23) of (33)

Mode: **BLE**

3 meter Distance of measurement:

Channel: 20

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1198.30	58.57	Peak	Н	-15.93	-	42.64	74.00	31.36
1198.30	60.09	Peak	V	-15.93	-	44.16	74.00	29.84
1348.80	50.42	Peak	Н	-15.38	-	35.04	74.00	38.96
1594.80	56.86	Peak	V	-14.18	-	42.68	74.00	31.32
1997.10	51.71	Peak	Н	-11.25	-	40.46	74.00	33.54
1997.10	57.71	Peak	V	-11.25	-	46.46	74.00	27.54

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (24) of (33)

Note.

1. Average test was not performed because peak result is lower than the the average limit.

Test report No.: KES-RF-16T0126 Page (25) of (33)

Mode: **BLE**

3 meter Distance of measurement:

Channel: 39

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1198.30	58.10	Peak	Н	-15.93	-	42.17	74.00	31.83
1198.30	57.09	Peak	V	-15.93	-	41.16	74.00	32.84
1496.40	50.34	Peak	Н	-14.86	-	35.48	74.00	38.52
1496.40	53.20	Peak	V	-14.86	-	38.34	74.00	35.66
1994.20	52.11	Peak	Н	-11.27	-	40.84	74.00	33.16
2002.90	61.71	Peak	V	-11.22	-	50.49	74.00	23.51
2483.50	47.83	Peak	Н	-9.41	-	38.42	74.00	35.58
2483.50	51.11	Peak	V	-9.41	-	41.70	74.00	32.30
3597.00	48.67	Peak	Н	-6.87	-	41.80	74.00	32.20

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (26) of (33)

Note.

1. Average test was not performed because peak result is lower than the the average limit.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (27) of (33)

Test results (18 GHz to 30 GHz)

Mode: BLE

Distance of measurement: 3 meter

Channel: 20 (Worst case)

Frequency (MHz)	Level (dBµV)	Ant. Pol. (H/V)	CF (dB)	F _d (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	No spurious emissions were detected within 20dB of the limit									

Note.

1. No spurious emission were detected above 18 Glz.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (28) of (33)

3.6. Conducted spurious emissions & band edge

Test procedure

Band edge

KDB 558074 D01 v03r05 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100 kHz
- 4. VBW = 300 kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto
- 9. The trace was allowed to stabilize

Out of band emissions

KDB 558074 D01 v03r05 - Section 11.3

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies (separated into two plots per channel)
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea $Tel: +82\text{-}31\text{-}425\text{-}6200 \, / \, Fax: \, +82\text{-}31\text{-}424\text{-}0450$ www.kes.co.kr

Test report No.: KES-RF-16T0126 Page (29) of (33)

Test results

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-16T0126 Page (30) of (33)

3.7. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Engagement of Emission (Mg)	Conducted li	mit (dBµV/m)
Frequency of Emission (Mb)	Quasi-peak	Average
0.15 – 0.50	66 - 56*	56 - 46*
0.50 - 5.00	56	46
5.00 – 30.0	60	50

Note:

- 1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.
- 3. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

Test report No.: KES-RF-16T0126 Page (31) of (33)

Test results

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.190000	49.79		64.04	14.25	1000.0	9.000	L1	9.7
0.190000		34.62	54.04	19.42	1000.0	9.000	L1	9.7
0.380000		30.13	48.28	18.15	1000.0	9.000	L1	9.8
0.380000	40.95		58.28	17.33	1000.0	9.000	L1	9.8
0.470000		37.81	46.51	8.70	1000.0	9.000	L1	9.8
0.470000	44.61		56.51	11.90	1000.0	9.000	L1	9.8
0.480000		31.53	46.34	14.81	1000.0	9.000	L1	9.8
0.480000	43.90		56.34	12.44	1000.0	9.000	L1	9.8
1.305000		24.80	46.00	21.20	1000.0	9.000	L1	10.1
1.305000	34.34		56.00	21.66	1000.0	9.000	L1	10.1
3.885000	34.39		56.00	21.61	1000.0	9.000	L1	10.1
3.885000		24.82	46.00	21.18	1000.0	9.000	L1	10.1
7.835000		29.62	50.00	20.38	1000.0	9.000	L1	9.9
7.835000	38.83		60.00	21.17	1000.0	9.000	L1	9.9
7.895000		29.32	50.00	20.68	1000.0	9.000	L1	9.9
7.895000	38.65		60.00	21.35	1000.0	9,000	L1	9.9

Neutral Line

Frequency (MHz)	QuasiPeak (dBµV)	(dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.180000	47.21		64.49	17.28	1000.0	9.000	N	9.7
0.180000		31.14	54.49	23.35	1000.0	9.000	N	9.7
0.375000		34.71	48.39	13.68	1000.0	9.000	N	9.7
0.375000	40.51		58.39	17.88	1000.0	9.000	N	9.7
0.475000		32.91	46.43	13.52	1000.0	9.000	N	9.8
0.475000	43.44		56.43	12.99	1000.0	9.000	N	9.8
1.760000		26.33	46.00	19.67	1000.0	9.000	N	10.1
1.760000	35.84		56.00	20.16	1000.0	9.000	N	10.1
3.640000		26.44	46.00	19.56	1000.0	9.000	N	10.1
3.640000	35.82		56.00	20.18	1000.0	9.000	N	10.1
8.165000	38.83		60.00	21.17	1000.0	9.000	N	9.9
8.165000		30.46	50.00	19.54	1000.0	9.000	N	9.9
8.315000	39.03		60.00	20.97	1000.0	9.000	N	9.9
8.315000		29.71	50.00	20.29	1000.0	9.000	N	9.9

Test report No.: KES-RF-16T0126 Page (32) of (33)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV40	101002	1 year	2017.07.06
Spectrum Analyzer	R&S	FSV30	10076	1 year	2017.07.06
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2017.01.25
PSG Analog Signal Generator	AGILENT	E8257C	US42340237	1 year	2017.07.05
Attenuator	HP	8494B	2630A12857	1 year	2017.01.21
Wideband Power Sensor	R&S	NRP-Z81	101886	1 year	2017.01.22
Power Meter	Anritsu	ML2495A	1438001	1 year	2017.01.25
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2017.01.25
Loop Antenna	R&S	HFH2- Z2.335.4711.52	826532	2 years	2017.03.03
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-713	2 years	2017.05.15
Horn Antenna	A.H.	SAS-571	781	2 years	2017.05.07
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2017.04.30
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2017.07.04
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2017.07.04
Preamplifier	SCHWARZBECK	BBV-9718	9718-246	1 year	2017.10.14
Broadband Amplifier	SCHWARZBECK	BBV-9721	PS9721-003	1 year	2017.01.25
EMI Test Receiver	R&S	ESR3	101781	1 year	2017.05.03
EMI Test Receiver	R&S	ESU26	100552	1 year	2017.04.24
EMI Test Receiver	R&S	ESR3	101783	1 year	2017.05.03
LISN	R&S	ENV216	101137	1 year	2017.02.04

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook Computer	Samsung Electronics Co., Ltd.	NT-R519	ZKPA93ES900086Z
AC/DC Adapter	AC/DC Adapter SIMSUKIAN		164101000007
Test Board	N/A	N/A	N/A