Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal beserta hasilnya, ya, semangat!

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X ₁	X ₂	X ₃	α	Threshold	Y _{d,6}
0.7	0.8	0.9	0.1	-1	0

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ ₄	θ ₅	θ_6
0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function

$$\begin{array}{lll} Y_4 & = sigmoid(X_1\,W_{14} + X_2\,W_{24} + x_3\,W_{34} - \pmb{\theta_4}) \\ & = 1/\left[1 + e^{-(0.7^*0.5 + 0.8^*0.3 + 0.9^*(-1) - 0.2)}\right] = 1/\left[1 + e^{-(0.35 + 0.24 + (-0.9) - 0.2)}\right] = 1/\left[1 + e^{-(-0.51)}\right] \\ & = 1/\left[1 + 1.665219\right] = 0.3752 \\ Y_5 & = sigmoid(X_1\,W_{15} + X_2\,W_{25} + x_3\,W_{35} - \pmb{\theta_5}) \\ & = 1/\left[1 + e^{-(0.7^*0.6 + 0.8^*1.1 + 0.9^*0.1 - 0.3)}\right] = 1/\left[1 + e^{-(0.42 + 0.88 + 0.09 - 0.3)}\right] = 1/\left[1 + e^{-(1.09)}\right] \\ & = 1/\left[1 + 0.33621\right] = 0.748385 \\ Y_6 & = sigmoid(Y_4\,W_{46} + Y_5\,W_{56} - \pmb{\theta_6}) \\ & = 1/\left[1 + e^{-(0.3752^*-1.1 + 0.748385^*-0.7 - 0.4)}\right] = 1/\left[1 + e^{-(-0.41272 + 0.5238 - 0.4)}\right] = 1/\left[1 + e^{-(-0.28892)}\right] \\ & = 1/\left[1 + 1.3349\right] = 0.42828 \end{array}$$

e =
$$\mathbf{Y}_{d,6}$$
 - Y_6

= 0 - 0.42828

= -0.42828

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₅	Y ₆	е
0.3752	0.748385	0.42828	-0.42828

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$\delta_6 = Y_6(1-Y_6)e$$

= 0.42828(1-0.42828)(-0.42828)

= -0.1048

$$\nabla_{46}$$
 = $\alpha Y_4 \delta_6$

 $= 0.1 \times 0.3752 \times (-0.1048)$

= -0.003932

$$\nabla_{56} = \alpha Y_5 \delta_6$$

=0.1 x 0.748385 x (-0.1048)

= -0.00784

$$\nabla \theta_6 = \alpha$$
 (-1) δ_6

 $=0.1 \times (-1) \times (-0.1048)$

= 0.01048

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	∇ 46	▽ 56	∇θ ₆
-0.1048	-0.003932	-0.00784	0.01048

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

$$\delta_4$$
 =Y₄(1-Y₄) δ_6 W₄₆
=0.3752 × (1-0.3752) × (-0.1048) × (-1,1)
= -0.2578
 δ_5 =Y₅(1-Y₅) δ_6 W₅₆
=0.748385 × (1 - 0.748385) × (-0.1048) × -0.7

Lalu isi rangkuman hasilnya di tabel ini ya ...

= -0.1381

δ ₄			δ_5			
-0.2578			-0.1381			

Langkah 4: Hitung weight corrections

$$\nabla W_{14} = \alpha X_1 \delta_4$$

$$= 0.1 \times 0.7 \times -0.2578$$

$$= -0.018$$

$$\nabla W_{24} = \alpha X_2 \delta_4$$

$$= 0.1 \times 0.8 \times -0.2578$$

$$= -0.02$$

$$\nabla W_{34} = \alpha X_3 \delta_4$$

$$= 0.1 \times 0.9 \times -0.2578$$

$$= -0.023$$

$$\nabla \theta_4 = \alpha (-1) \delta_4$$

$$= 0.1 \times (-1) \times -0.2578$$

$$= -0.02578$$

$$\nabla W_{15} = \alpha X_1 \delta_5$$

$$= 0.1 \times 0.7 \times (-0.1381)$$

=-0.009667

$$\nabla W_{25} = \alpha X_{2} \delta_{5}$$

$$= 0.1 \times 0.8 \times (-0.1381)$$

$$= -0.011$$

$$\nabla W_{35} = \alpha X_{3} \delta_{5}$$

$$= 0.1 \times 0.9 \times (-0.1381)$$

$$= -0.0124$$

$$\nabla \theta_{5} = \alpha (-1) \delta_{5}$$

$$= 0.1 \times (-1) \times (-0.1381)$$

$$= 0.01381$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇ W ₁₄	∇ w ₂₄	∇ w ₃₄	∇θ₄	∇ w ₁₅	∇ w ₂₅	∇ w ₃₅	∇θ₅
-0.018	-0.02	-0.023	-0.02578	-0.0096 67	-0.011	-0.0124	0.01381

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 👌

<u>Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui</u>

$$w_{14} = w_{14} + \nabla w_{14}$$

$$= 0.5 + -0.018$$

$$= 0.482$$

$$w_{15} = w_{15} + \nabla w_{15}$$

$$= 0.6 + -0.009667$$

$$= 0.590333$$

$$w_{24} = w_{24} + \nabla w_{24}$$

$$= 0.3 + -0.02$$

$$= 0.28$$

$$= W_{25} + \nabla \mathbf{W_{25}}$$

$$= 1.1 + -0.011$$

$$= 1.089$$

$$= W_{34} + \nabla \mathbf{W_{34}}$$

$$= -1 + -0.023$$

$$= -1.023$$

$$W_{35} = W_{35} + \nabla \mathbf{W_{35}}$$

= 0.1 + -0.0124
= 0.0876

$$\theta_4 = \theta_4 + \nabla \theta_4$$
=0.2 + -0.02578
= 0.17422

$$\theta_{5}$$
 = $\theta_{5} + \nabla \theta_{5}$
= 0.3 + 0.01381
= 0.31381

$$\theta_6 = \theta_6 + \nabla \theta_6$$
= 0.4 + 0.01048
= 0.41048

Lalu isi rangkuman hasilnya di tabel ini ya ...

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	θ ₄	θ ₅	θ ₆
0.482	0.5903 33	0.28	1.089	-1.023	0.0876	0.17422	0.31381	0.4104 8

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang-