

David Silva Ábrego 552999 Aline Rivera Mata 552977

Base de datos "SMOKE"

Variable dependiente

• cigs

Variables explicativas

- educ
- cigpric
- white
- age
- income
- restaurn
- lincome
- agesq
- Icigpric

¿Por qué escogimos este tema?

A pesar de saber que es dañino para el cuerpo las personas siguen fumando.

Escogimos este tema principalmente porque se nos hizo interesante ver qué factores tienen un mayor impacto para que una persona fume más o fume menos.

¿Por qué es importante?

Desafortunadamente, la supervivencia de varios fumadores hoy en día está sujeta a que abandonen este hábito o que por lo menos lo reduzcan. Con este trabajo se pueden sentar las bases para identificar por medio de qué factores pueden logralo así como para identificar qué factores pueden ser un impedimento para ello.

- **educ**: Conforme aumentan los años de escolaridad de una persona se espera que disminuya la cantidad de cigarros consumidos por día. Frecuentemente el nivel de educación depende del nivel socioeconómico de las personas por lo que *educ*, *income* y *lincome* podrían estar correlacionadas entre sí.
- cigpric y lcigpric: La elasticidad precio de los cigarros oscila alrededor de 0.85.
- white: Se ha comprobado que las personas caucásicas tienden a fumar más que las personas afroamericanas, hispanas y asiático americanas.
- **age y agesq**: La proporción de mayor de fumadores se encuentra en los rangos de edad adulta avanzada. Sin embargo, el consumo de tabaco suele ser más intensivo entre aquellos fumadores de la edad joven adulta.
- **income y lincome:** Debido a que la nicotina es una sustancia adictiva y se crea una dependencia hacia ella, los fumadores son propensos a intentar satisfacer esta adicción independientemente de su nivel de ingresos.
- restaurn: Se ha comprobado que políticas antitabaquismo frecuentemente son efectivas para reducir el consumo de cigarros.

Frecuencias y porcentajes

Educ	Freq.	Percent	
6	43	5.33	
8	54	6.69	
10	126	15.61	
12	259	32.09	
13.5	128	15.86	
15	32	3.97	
16	86	10.66	
18	79	9.79	
Total	807	100	

Cigpric	Freq.	Percent	
44-49	39	4.75	
50-59	276	33.88	
60-70	492	60.51	
Total	807	100	

White	Freq.	Percent	
0	98	12.14	
1	709	87.86	
Total	807	100	

Age	Freq.	Percent	
17-29	253	31.33	
30-59	407	50.41	
60-88	147	18.19	
Total	807	100	

Agesq	Freq.	Percent	
289-2500	563	69.73	
2601-4900	199	24.64	
5041-7744	45	5.56	
Total	807	100	

Income	Freq.	Percent	
500	5	0.62	
1500	10	1.24	
2500	10	1.24	
3500	19	2.35	
4500	13	1.61	
5500	15	1.86	
6500	32	3.97	
8500	61	7.56	
12500	125	15.49	
20000	247	30.61	
30000	270	33.46	
Total	807	100	

Restaurn	n Freq. Percen		
0	608	75.34	
1	199	24.66	
Total	807	100.	

Agesq	Freq.	Percent	
289-2500	563	69.73	
2601-4900	199	24.64	
5041-7744	45	5.56	
Total	807	100	

Leigprie	Freq.	Percent	
3.70-3.99	87	10.61	
4.00-4.25	720	88.53	
Total	807	100	

Lincome	Freq.	Percent	
6.214.608	5	0.62	
7.313.221	10	1.24	
7.824.046	10	1.24	
8.160.519	19	2.35	
8.411.833	13	1.61	
8.612.503	15	1.86	
8.779.557	32	3.97	
9.047.821	61	7.56	
9.433.484	125	15.49	
9.903.487	247	30.61	
1.030.895	270	33.46	
Total	807	100	

Estadisticos descriptivos

La **media** es el promedio de los valores de una variable.

La desviación estándar muestra la dispersión de los datos de acuerdo a la media.

Variable	Media	Desv. Estándar	
Educ	12.47088	3.057161	
Cigpric	60.30041	4.738469	
White	.8785626	.3268375	
Age	41.23792	17.02729	
Income	19304.83	9142.958	
Cigs	8.686493	13.72152	
Restaurn	.2465923	.4312946	
Lincome	9.687315	.7126952	
Agesq	1990.135	1577.166	
Leigprie	4.096032	.0829194	

Buscamos un modelo que explique el comportamiento del consumo de cigarros por día de la siguiente forma:

cigs = $\beta_0 + \beta_1$ educ+ β_2 cigpric+ β_3 white+ β_4 age+ β_5 income+ β_6 restaurn+ β_7 lincome+ β_8 agesq+ β_9 lcigpric

Regresión Múltiple con Todas las Variables

Source	SS	df	MS
Model	8369.80824	9	929.978693
Residual	143383.875	797	179.904485
Total	151753.683	806	188.280003

Number of obs	=	807
F(3, 803)	=	5.17
Prob > F	=	0
R-squared	=	0.0552
Adj R-squared	=	0.0445
Root MSE	=	13.413

cigs	Coef.	Std. Err.	t	P>t	[95% Conf. I	interval]
educ	-0.4947807	0.1681802	-2.94	0.003	-0.8249092	-0.1646522
cigpric	2.002239	1.492834	1.34	0.18	-0.9281119	4.932589
white	-0.5310485	1.460722	-0.36	0.716	-3.398365	2.336268
age	0.7783598	0.1605556	4.85	0	0.4631979	1.093522
income	-0.0000462	0.0001335	-0.35	0.729	-0.0003082	0.0002158
restaurn	-2.644241	1.129999	-2.34	0.02	-4.862367	-0.4261154
lincome	1.404058	1.708164	0.82	0.411	-1.948974	4.75709
agesq	-0.0091504	0.0017493	-5.23	0	-0.0183007	-0.0057166
lcigpric	-115.2718	85.42447	-1.35	0.178	-282.9553	52.41172
_cons	340.7993	260.016	1.31	0.19	-169.5978	851.1965

Modelo Restringido y Prueba F

Source	SS	df	MS
Model	7739.48459	4	1934.87115
Residual	144014.198	802	179.568826
Total	151753.683	806	188.280003

Number of obs	=	807
F(4, 802)	=	10.78
Prob > F	=	0
R-squared	=	0.051
Adj R-squared	=	0.0463
Root MSE	=	13.4

cigs	Coef.	Std. Err.	t	P>t	[95% Conf.	Interval]
educ	-0.4504	0.1614857	-2.79	0.005	-0.7673845	-0.1334156
age	0.822327	0.1541866	5.33	0.000	0.51967	1.124984
restaurn	-2.746372	1.09685	-2.5	0.012	-4.899408	-0.5933367
agesq	-0.0095886	0.0016779	-5.71	0.000	-0.0128822	-0.006295
_cons	0.1521404	3.503322	0.04	0.965	-6.724623	7.028904

Ho =
$$\hat{\beta}_{cigpric} = \hat{\beta}_{white} = \hat{\beta}_{income} = \hat{\beta}_{lincome} = \hat{\beta}_{lcigpric} = 0$$
 Ha = Algún estimador es diferente de cero.

gl = 807-9-1 = 797
$$R_{nr}^2 = 0.0552$$

q = 5
c = 2.21 $R_r^2 = 0.0510$

$$F = \frac{(R_{nr}^2 - R_r^2)/q}{(1 - R_{nr}^2)/(n - k - 1)} = \frac{(0.0552 - 0.0510)/5}{(1 - 0.0552)/(807 - 9 - 1)} = 0.708594$$

 0.708594 < 2.21 por lo tanto no se rechaza Ho

 Las variables cigpric, white, income, lincome y lcigpric no son conjuntamente significativas.

Modelo Seleccionado

Source	SS	df	MS
Model	7739.48459	4	1934.87115
Residual	144014.198	802	179.568826
Total	151753.683	806	188.280003

Number of obs	=	807
F(4, 802)	=	10.78
Prob > F	=	0
R-squared	=	0.051
Adj R-squared	=	0.0463
Root MSE	=	13.4

cigs	Coef.	Std. Err.	t	P>t	[95% Conf.	Interval]
educ	-0.4504	0.1614857	-2.79	0.005	-0.7673845	-0.1334156
age	0.822327	0.1541866	5.33	0.000	0.51967	1.124984
restaurn	-2.746372	1.09685	-2.5	0.012	-4.899408	-0.5933367
agesq	-0.0095886	0.0016779	-5.71	0.000	-0.0128822	-0.006295
_cons	0.1521404	3.503322	0.04	0.965	-6.724623	7.028904

cigs = 0.1521404-0.4504educ+0.822327age-2.746327restaurn-0.0095886agesq

Multicolinealidad

Factor de Inflación de la Varianza

Variable	VIF	1/VIF
agesq	31.43	0.031813
age	30.94	0.032323
educ	1.09	0.914095
restaurn	1	0.995528
Mean VIF	16.12	

Debido que el promedio de los factores de inflación de las varianzas de las 4 variables independientes es mayor a 10, se tiene presencia de multicolinealidad

Correlaciones de las Variables Independientes

	educ	age	restaurn	agesq
educ	1			
age	-0.1806	1		
restaurn	0.0605	-0.0389	1	
agesq	-0.2188	0.9831	-0.0408	1

- A excepción de las variables age y agesq, las correlaciones entre las variables independientes caen dentro del marco de lo normal.
- Era esperado que age y agesq tuvieran una alta correlación muy cercana a 1 puesto que agesq es simplemente age².
- Una opción para controlar la multicolinealidad sería eliminar una de estas dos variables.

Regresión si se elimina age:

Source	SS	df	MS
Model	2631.76906	3	877.256353
Residual	149121.914	803	185.705995
Total	151753.683	806	188.280003

Number of obs	=	807
F(3, 803)	=	4.72
Prob > F	=	0.0028
R-squared	=	0.0173
Adj R-squared	=	0.0137
Root MSE	=	13.627

cigs	Coef.	Std. Err.	t	P>t	[95% Conf	f. Interval]
educ	-0.2841778	0.1611345	-1.76	0.078	-0.6004723	0.0321167
restaurn	-2.7682	1.115428	-2.48	0.013	-4.9577	-0.5787002
agesq	-0.0007907	0.000312	-2.53	0.011	-0.00140403	-0.0001782
_cons	14.48664	2.285165	6.34	0.000	10.00104	18.97225

- R² disminuye de 0.0510 a 0.0173.
- Ninguna variable se convierte en no estadísticamente significativa.

Regresión si se elimina agesq:

Source	SS	df	MS
Model	1875.3028	3	625.100932
Residual	149878.38	803	186.648045
Total	151753.683	806	188.280003

Number of obs	=	807
F(3, 803)	=	3.35
Prob > F	=	0.0186
R-squared	=	0.0124
Adj R-squared	=	0.0087
Root MSE	=	13.662

cigs	Coef.	Std. Err.	t	P>t	[95% Conf. Interval]	
educ	-0.2393804	0.160276	-1.49	0.136	-0.5539898	0.0752289
age	-0.0439352	0.0287458	-1.53	0.127	-0.100361	0.0124905
restaurn	-2.736921	1.118261	-2.45	0.015	-4.93198	-0.5418624
_cons	14.15848	2.552075	5.55	0.000	9.148954	19.16801

- R² disminuye de 0.0510 a 0.0124.
- Dos de las variables restantes se vuelven no estadísticamente significativas (incluyendo *age*).

Prueba F de age y agesq

- 14.2399 > 3.00 por lo tanto se rechaza Ho
- Las variables age y agesq son conjuntamente significativas.
- Conclusión de Multicolinealidad: Lo más conveniente es no actuar ante la presencia de multicolinealidad en nuestro modelo.

Heterocedasticidad

Resultados de Prueba de Heterocedasticidad de Breusch-Pagan

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance Variables: fitted values of cigs

chi2(1) = 53.50Prob > chi2 = 0.0000

Debido a que Prob > chi2 es menor a un valor de significancia de 0.05, se rechaza Ho por lo que existe presencia de heterocedasticidad en el modelo.

Corrigiendo con "robust" (Método de White)

Linear regression	Number of obs =	807
	F(4,802)=	15.78
	Prob > F=	0
	R-squared=	0.051
	Root MSE=	13.4

cigs	Coef.	Robust Std. Err.	t	P>t	[95% Conf.	Interval]
educ	-0.4504	0.1559712	-2.89	0.004	0.7565601	-0.14424
age	0.822327	0.1359125	6.05	0	0.5555408	1.089113
restaurn	-2.746372	0.9915171	-2.77	0.006	4.692647	-0.8000975
agesq	-0.0095886	0.0014409	-6.65	0	0.0124169	-0.0067603
_cons	0.1521404	3.18116	0.05	0.962	6.092242	6.396523

Ahora contamos con la estimación menos eficiente pero insesgada de Mínimos Comunes Ordinarios. Asimismo, la matriz de las varianzas y covarianzas de los estimadores está estimada correctamente.

Comparación de los Modelos

Variable	SW	CW	
educ	-0.450***	-0.450***	
age	0.822***	0.822***	
restaurn	-2.746**	-2.746***	
agesq	-0.010***	-0.010***	
_cons	0.152	0.152	

legend: * p<.1; ** p<.05; *** p<.01

Al aplicar el Método de White con STATA, *restaurn* aumentó su nivel de significancia pues pasó del 5% al 1%.

Conclusiones

De acuerdo a nuestro modelo:

- Se espera que el incremento de un año de escolaridad disminuya en aproximadamente 0.45 unidades el número de cigarros consumidos en un día por una persona.
- Se espera que el aumento de un año de edad aumente en aproximadamente 0.34 unidades el número de cigarros consumidos en un día por una persona.

 Se espera que si hay restricciones a fumar en restaurantes, el número de cigarros consumidos en un día por una persona disminuya en promedio 2.75 unidades aproximadamente.

$$\widehat{\Delta cigs} = -0.4504 \Delta e duc$$

$$\widehat{\Delta cigs} = -0.4504(1)$$

$$\widehat{\Delta cigs} = -0.4504$$

$$\widehat{\Delta cigs} = (\widehat{\beta_{age}} + 2\widehat{\beta_{agesq}} age) \Delta age$$

$$\widehat{\Delta cigs} = (0.822327 + (2)(-0.0095886)(25))(1))$$

$$\widehat{\Delta cigs} = 0.342897$$

$$\widehat{\Delta cigs} = -2.746372 restaurn$$

$$\widehat{\Delta cigs} = -2.746372(1)$$

$$\widehat{\Delta cigs} = -2.746372$$

Conclusiones generales

- A pesar que se cuenta con 9 variables explicativas solamente 4 son significativas para el modelo.
- A pesar de eliminar 5 variables del modelo original la R-cuadrada en el modelo restringido varió muy poco.
- El modelo tiene multicolinealidad debido a la alta correlación entre age y agesq, sin embargo el modelo es más certero con dichas variables.
- Al arreglar el problema de la heterocedasticidad la variable restaurn aumentó su significancia de al menos 5% a al menos 1%.
- No se sospecha que haya endogeneidad en el modelo.

- Azevedo, G., Gonçalvez, J., de Almeida, L., de Moura, E. & Carvalho, D. (2009). Tobacco smoking and level of education in Brazil, 2006. Rev Saúde Pública. 43 (Supl. 2), 1-9.
- Baker, T., Brandon, T. & Chassin, L. (2004). Motivational influences on cigarette smoking. Rev psichol. 55, 463-491.
- Blanco, M., Cifuentes, T., Rodríguez, C. & Suárez, C. (2009). Factores que Influyen en el Consumo de Tabaco. Recuperado de:
 https://intellectum.unisabana.edu.co/bitstream/handle/10818/2600/121974.pdf?sequence=1
- Chávez, R. (2016). Elasticidad precio de la demanda de cigarrillos y alcohol en Ecuador con datos de hogares. Revista Panamericana de Salud Pública. 40, n. 4, 222-228.
- Martí, P. (2016). Cuando el tabaco era bueno para la salud. Recuperado de: https://www.lavanguardia.com/vida/20160210/302057569916/tabaco-bueno-salud.html
- Pampel, F., Mollborn, S., y Lawrence, E. (2015). Life Course Transitions in Early Adulthood and SES Disparities in Tobacco Use. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840392/#

Código de Honor

Damos nuestra palabra que hemos realizado esta actividad con Integridad Académica.

