Álgebra I Práctica 4 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16.	21.	26.	31.	36 .
2.	7.	12.	17.	22.	27.	32.	37 .
3.	8.	13.	18.	23 .	28.	33.	38.
4.	9.	14.	19.	24.	29.	34.	39.
5.	10.	15.	20.	25 .	30.	35.	40 .

• Ejercicios Extras

1 .	3 .	5 .	७ 7.	6 9.
2 .	4 .	७ 6.	∆8 .	

Notas teóricas:

Divisibilidad:

• Definición divisibilidad:

$$d$$
 divide a $a \overset{\text{es lo mismo}}{\rightleftharpoons} a$ es un múltiplo entero de d $d \mid a \iff \exists \, k \in \mathbb{Z} \,$ tal que $a = k \cdot d$

• Conjunto de divisores de a:

$$\mathcal{D}(-a) = \{-|a|, \dots, -1, 1, \dots, |a|\}.$$

- $d \mid 0$, dado que $0 = 0 \cdot d$. Se desprende que $\mathcal{D}(0) = \{\mathbb{Z} \{0\}\}\$
- A la hora de divisibilidad los signos no importan:

$$\left\{ \begin{array}{ll} d \mid a & \Longleftrightarrow & -d \mid a \text{ (pues } a = k \cdot d \iff a = (-k) \cdot (-d)) \\ d \mid a & \iff d \mid -a \text{ (pues } a = k \cdot d \iff (-a) = (-k) \cdot d) \end{array} \right. \Rightarrow \boxed{d \mid a \iff |d| \mid |a|}$$

• Propiedades súper útiles para justificar los cálculos en los ejercicios:

$$\left\{ \begin{array}{l} d \mid a \ y \ d \mid b \Rightarrow d \mid a \pm b \\ d \mid a \Rightarrow d \mid c \cdot a, \ \forall c \in \mathbb{Z} \\ d \mid a \stackrel{!!}{\Longleftrightarrow} d^n \mid a^n \ \forall n \in \mathbb{N} \end{array} \right.$$

Error recurrente:
$$d \mid a \cdot b \not\Rightarrow \left\{ \begin{array}{l} d \mid a \\ \text{o} \\ d \mid b \end{array} \right.$$
. Por ejemplo $6 \mid 3 \cdot 4$ pero $\left\{ \begin{array}{l} 6 \not\mid 3 \\ \text{ni} \\ 6 \not\mid 4 \end{array} \right.$

Definición congruencia:

■ Definición congruencia:

$$\begin{cases} \text{ 'a' es congruente a 'b' m\'odulo 'd' si } d \mid a-b. \text{ Notaci\'on } \boxed{a \equiv b \ (d)} \\ a \equiv b \ (d) \iff d \mid a-b \end{cases}$$

■ Sumar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 (d) \\ \vdots \Rightarrow a_1 + \dots + a_n \equiv a_b + \dots + b_n (d) \\ a_n \equiv b_n (d) \end{cases}$$

■ Multiplicar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 \cdots a_n \equiv a_b \cdots b_n \ (d)$$

Un caso particular con un simpático resultado:

$$n \text{ ecuaciones} \begin{cases} a \equiv b \ (d) \\ \vdots \\ a \equiv b \ (d) \end{cases} \Rightarrow \boxed{a^n \equiv b^n \ (d)}$$

Algoritmo de división:

• Dados $a, d \in \mathbb{Z}$ con $d \neq 0$, existen únicos q (cociente), $r(\text{resto}) \in \mathbb{Z}$ tales que:

$$\begin{cases} a = q \cdot d + r, \\ \cos 0 \le r < |d|. \end{cases}$$

- Notación: $r_d(a)$ es el resto de dividir a a entre d
- $0 \le r < |d| \Rightarrow r = r_d(r)$. Un número que cumple condición de resto, <u>es su resto</u>.
- Así es como me gusta pensar a la congruencia. La derecha es el resto de dividir a a entre d:

$$a \equiv r_d(a) (d)$$
.

• Si d divide al número a, entonces el resto de la división es 0:

$$r_d(a) = 0 \iff d \mid a \iff a \equiv 0 \ (d)$$

• El resto es único:

$$a \equiv r \ (d) \ \text{con} \ \underbrace{0 \le r < |d|}_{\text{cumple condición de resto}} \Rightarrow r = r_d(a)$$

$$r_1 \equiv r_2 \ (d) \ \text{con} \ \underbrace{0 \le r_1, r_2 < |d|}_{\text{cumple condición de resto}} \Rightarrow r_1 = r_2$$

• Dos números que son congruentes módulo d entre sí, tienen igual resto al dividirse por d:

$$a \equiv b (d) \iff r_d(a) = r_d(b).$$

• Propiedades útiles para los ejercicios de calcular restos:

$$r_d(a+b) = r_d(r_d(a) + r_d(b))$$
 y $r_d(a \cdot b) = r_d(r_d(a) \cdot r_d(b))$

ya que si,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{sumo}} a + b \equiv r_d(a) + r_d(b) \ (d)$$

y,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \; (d) \\ b \equiv r_d(b) \; (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{multiplico}} a \cdot b \equiv r_d(a) \cdot r_d(b) \; (d)$$

Máximo común divisor:

• Sean $a, b \in \mathbb{Z}$, no ambos nulos. El MCD entre a y b es el mayor de los divisores común entre a y b y se nota:

máximo común divisor:
$$MCD = (a : b)$$

- $(a:b) \in \mathbb{N}$ (pues $(a:b) \ge 1$) siempre existe y es único.
- Propiedades del (a:b), con $a y b \in \mathbb{Z}$, no ambos nulos.

- Los signos no importan: $(a:b) = (\pm a:\pm b)$
- \bullet Es simétrico: (a:b)=(b:a)
- Entre 1 y $a \in \mathbb{Z}$ siempre (a:1)=1
- Entre 0 y a siempre $(a:0) = |a|, \forall a \in \mathbb{Z} \{0\}$
- si $b \mid a \Rightarrow (a : b) = |b| \operatorname{con} b \in \mathbb{Z} \{0\}$
- Útil para ejercicios: $(a:b) = (a:b+na) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: $(a:b) = (a:r_a(b)) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: Sean $a, b \in \mathbb{Z}$ no ambos nulos, y sea $k \in \mathbb{N}$

$$(ka:kb) = k(a:b)$$

- Algoritmo de Euclides: Para encontrar el (a:b) con números feos. Hay que saber hacer esto. Fin. ¡Se usa de acá hasta el final de la materia!.
- Combinacion Entera: Otra herramienta gloriosa que sale de hacer Euclides. ¡Se usa de acá hasta el final de la materia!.

Sean $a, b \in \mathbb{Z}$ no ambos nulos, entonces $\exists s, t \in \mathbb{Z}$ tal que $(a : b) = s \cdot a + t \cdot b$.

♦ Todos los divisores comunes entre a y b dividen al (a:b). Sean $a,b \in \mathbb{Z}$ no ambos nulos, $d \in \mathbb{Z} - \{0\}$. Entonces:

$$d \mid a \ y \ d \mid b \iff d \mid \underbrace{(a:b)}_{s \cdot a + t \cdot b}.$$

- Sea $c \in \mathbb{Z}$ entonces $\exists s', t' \in \mathbb{Z}$ con $c = s'a + t'b \iff (a : b) \mid c$.
- Todos los números múltiplos del MCD se escriben como combinación entera de a y b.
- s Si un número es una combinación entera de a y b entonces es un múltiplo del MCD.

Coprimos:

• Definición coprimos:

Dados $a, b \in \mathbb{Z}$, no ambos nulos, se dice que son coprimos si (a : b) = 1

$$\begin{array}{lll} a \perp b & \Longleftrightarrow & (a:b) = 1 \\ a \perp b & \Longleftrightarrow & \exists \, s, \, \, t \in \mathbb{Z} \, \text{ tal que } 1 = s \cdot a + t \cdot b \end{array}$$

• Sean $a, b \in \mathbb{Z}$ no ambos nulos. coprimizar los números es dividirlos por su máximos común divisor, para obtener un nuevo par que sea coprimo:

$$(a:b) \neq 1 \xrightarrow{\text{coprimizar}} a' = \frac{a}{(a:b)}, b' = \frac{b}{(a:b)}, \Rightarrow \boxed{(a':b') = 1}$$

• ¡Causa de muchos errores! Sean $a, c, d \in \mathbb{Z}$ con c, d no nulos. Entonces:

$$c \mid a \ y \ d \mid a \ y \ c \perp d \stackrel{!!}{\iff} c \cdot d \mid a$$

Al ser c y d coprimos, pienso a a como un número cuya factorización tiene a c, d y la coprimicidad hace que en la factorización aparezca $c \cdot d$. (no sé, así lo piensa mi 🌓)

• Sean $a, b, d \in \mathbb{Z}$ con $d \neq 0$. Entonces:

$$d \mid a \cdot b \ y \ d \perp a \Rightarrow d \mid b$$

- Primos y Factorización:
 - Sea p primo y sean $a, b \in \mathbb{Z}$. Entonces:

$$p \mid a \cdot b \Rightarrow p \mid a \vee p \mid b$$

- Si p divide a algún producto de números, tiene que dividir a alguno de los factores \rightarrow Sean $a_1, \ldots, a_n \in \mathbb{Z}$:

$$\begin{cases} p \mid a_1 \cdot a_2 \cdots a_n \Rightarrow p \mid a_i \text{ para algún } i \text{ con } 1 \leq i \leq n. \\ p \mid a^n \Rightarrow p \mid a. \end{cases}$$

– Si $a \in \mathbb{Z}$, p primo:

$$\begin{cases} (a:p) = 1 \iff p \nmid a \\ (a:p) = p \iff p \mid a \end{cases}$$

– Sea $n \in \mathbb{Z} - \{0\}$, $n = \underbrace{s}_{\{-1,1\}} \cdot \prod_{i=1}^k p_i^{\alpha_i} = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ su factorización en primos. Entonces todo divisor m positivo de n se escribe como:

$$\begin{cases}
\operatorname{Si} m \mid n \to m = p_1^{\beta_1} \cdots p_k^{\beta_k} \operatorname{con} 0 \leq \beta_i \leq \alpha_i, & \forall i \, 1 \leq i \leq k \\ & \operatorname{y hay} \end{cases}$$

$$(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_k + 1) = \prod_{i=1}^k \alpha_i + 1$$

$$\operatorname{divisores positivos de } n.$$

- Sean $a y b \in \mathbb{Z}$ no nulos, con

$$\begin{cases} a = \pm p_1^{m_1} \cdots p_r^{m_r} \text{ con } m_1, \cdots, m_r \in \mathbb{Z}_0 \\ b = \pm p_1^{n_1} \cdots p_r^{n_r} \text{ con } n_1, \cdots, n_r \in \mathbb{Z}_0 \\ \Rightarrow (a:b) = p_1^{\min\{m_1, n_1\}} \cdots p_r^{\min\{m_r, n_r\}} \\ \Rightarrow [a:b] = p_1^{\max\{m_1, n_1\}} \cdots p_r^{\max\{m_r, n_r\}} \end{cases}$$

- Sean $a, d \in \mathbb{Z}$ con $d \neq 0$ y sea $n \in \mathbb{N}$. Entonces

$$d \mid a \iff d^n \mid a^n$$
.

- Sean $a, b, c \in \mathbb{Z}$ no nulos:
 - $* a \perp b \iff$ no tienen primos en común.
 - $* (a:b) = 1 y (a:c) = 1 \iff (a:bc) = 1$
 - $* (a:b) = 1 \iff (a^m:b^n) = 1, \forall m, n \in \mathbb{N}$
 - $* (a^n : b^n) = (a : b)^n \forall n \in \mathbb{N}$
- Si $a \mid m \land b \mid m$, entonces $[a:b] \mid m$
- $-(a:b)\cdot [a:b] = |a\cdot b|$

Ejercicios de la guía:

Divisibilidad

1. Decidir si las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$

a)
$$a \cdot b \mid c \Rightarrow a \mid c \vee b \mid c$$

f)
$$a \mid c \lor b \mid c \Rightarrow a \cdot b \mid c$$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

g)
$$a \mid b \Rightarrow a < b$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a \circ 2 \mid b$$

h)
$$a \mid b \Rightarrow |a| < |b|$$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a \circ 9 \mid b$$

i)
$$a \mid b + a^2 \Rightarrow a \mid b$$

e)
$$a \mid b + c \Rightarrow a \mid b \circ a \mid c$$

$$j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$$

a)
$$a \cdot b \mid c \Rightarrow a \mid c \text{ y } b \mid c$$

$$\begin{cases} c = k \cdot a \cdot b = \underbrace{b}_{k \cdot b} \cdot a \Rightarrow a \mid c \quad \checkmark \\ c = k \cdot a \cdot b = \underbrace{i}_{k \cdot a} \cdot b \Rightarrow b \mid c \quad \checkmark \end{cases}$$

b)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

$$a^{2} = k \cdot 4 = \underbrace{h}_{k \cdot 2} \cdot 2 \Rightarrow a^{2} \mid 2 \xrightarrow{\text{si } a \cdot b \mid c} a \mid 2 \quad \checkmark$$

c)
$$2 \mid a \cdot b \Rightarrow 2 \mid a$$
 o $2 \mid b$

Si
$$2 \mid a \cdot b \Rightarrow \begin{cases} a \text{ tiene que ser } par \\ \lor \\ b \text{ tiene que ser } par \end{cases} \xrightarrow{\text{para que}} a \cdot b \text{ sea par. Por lo tanto si } 2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b.$$

d)
$$9 \mid a \cdot b \Rightarrow 9 \mid a \text{ o } 9 \mid b$$

Si
$$a = 3 \land b = 3$$
, se tiene que $9 \mid 9$, sin embargo $9 \not\mid 3$

e)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

$$12 \mid 20 + 4 \Rightarrow 12 \not\mid 20 \text{ y } 12 \not\mid 4$$

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

g) _____

2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 5$.

h) _____

❷... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

- i) $a \mid b + a^2 \Rightarrow a \mid b$ $a \mid b + a^2 \Rightarrow b + a^2 = k \cdot a \xrightarrow{\text{acomodo}} b = (k a) \cdot a = h \cdot a \Rightarrow a \mid b \quad \checkmark$ $\xrightarrow{\text{también puedo}} \left\{ \begin{array}{l} a \mid a^2 \\ a \mid b a^2 \end{array} \right\} \xrightarrow{\text{por propiedad}} a \mid (b a^2) + (a^2) = b \Rightarrow a \mid b \quad \checkmark$
- $j) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$

Pruebo por inducción.

$$p(n): a \mid b \Rightarrow a^n \mid b^n$$

Caso base:

$$n = 1 \Rightarrow a \mid b \Rightarrow a^1 \mid b^1 \quad \checkmark$$

p(1) resulta verdadera.

Paso inductivo:

Asumo $p(h): a \mid b \Rightarrow a^h \mid b^h$ verdadera \Rightarrow quiero ver que $p(h+1): a \mid b \Rightarrow a^{h+1} \mid b^{h+1}$

Parto de la hipótesis inductiva y voy llegar a p(k+1). Si:

$$a \mid b \xrightarrow{\text{HI}} a^k \mid b^k \Leftrightarrow a^k \cdot c = b^k \overset{\times b}{\Longleftrightarrow} b \cdot a^k \cdot c = b^{k+1} \overset{a \mid b}{\Longleftrightarrow} a \cdot d \cdot a^k \cdot c = a^{k+1} \cdot (cd) = b^{k+1} \Leftrightarrow a^{k+1} \mid b^{k+1}.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

Este resultado es importante y se va a ver en muchos ejercicios:

$$a \mid b \Rightarrow a^n \mid b^n \iff b \equiv 0 \ (a) \Rightarrow b^n \equiv 0 \ (a^n) \stackrel{\circ \stackrel{(a^n)}{\equiv} a^n}{\Longleftrightarrow} b^n \equiv a^n \ (a^n)$$

$$\boxed{a \mid b \Rightarrow b^n \equiv a^n \ (a^n)}$$

- **2.** Hallar todos los $n \in \mathbb{N}$ tales que:
 - a) 3n-1|n+7

c)
$$2n+1|n^2+5$$

b) 3n-2|5n-8

d)
$$n-2|n^3-8$$

a)
$$3n-1 | n+7$$

Busco eliminar la n del miembro derecho.

$$\left\{
\begin{array}{l}
3n - 1 \mid n + 7 \xrightarrow{a \mid c \Rightarrow} 3n - 1 \mid 3 \cdot (n + 7) = 3n + 21 \\
\frac{a \mid b \text{ y } a \mid c}{\Rightarrow a \mid b \pm c} 3n - 1 \mid 3n + 21 - (3n - 1) = 22
\end{array}
\right\} \rightarrow 3n - 1 \mid 22$$

$$\xrightarrow{\text{busco } n \Rightarrow 22 \atop \text{para que}} \frac{22}{3n - 1} \in \mathcal{D}(22) = \{\pm 1, \pm 2, \pm 11, \pm 22\} \xrightarrow{\text{probando}} n \in \{1, 4\} \quad \checkmark$$

- b)
- c)

- d) $n-2 \mid n^3-8$ $\xrightarrow{a\mid b} n-2 \mid \underbrace{(n-2)\cdot (n^2+2n+4)}_{n^3-8} \text{ Esto va a dividir para todo } n \neq 2$
- 3. Sean $a, b \in \mathbb{Z}$.
 - a) Probar que $a-b\mid a^n-b^n$ para todo $n\in\mathbb{N}$ y $a\neq b\in\mathbb{Z}$
 - b) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
 - c) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.
 - a) Inducción:

Proposición:

$$p(n): a-b \mid a^n-b^n \ \forall n \in \mathbb{N} \ y \ a \neq b \in \mathbb{Z}$$

Caso Base:

$$p(1): a-b|a^1-b^1,$$

p(1) es verdadera. \checkmark

Paso inductivo:

Asumo que $p(k): a-b \mid a^k-b^k$ es verdadera \Rightarrow quiero probar que $p(k+1): a-b \mid a^{k+1}-b^{k+1}$ también lo sea.

$$\left\{ \begin{array}{l} a-b \mid a^k-b^k \\ a-b \mid a^k-b^k \end{array} \right. \xrightarrow{\times a \atop \times b} \left\{ \begin{array}{l} a-b \mid a^{k+1}-ab^k \\ a-b \mid ba^k-b^{k+1} \end{array} \right. \xrightarrow{+} \left\{ \begin{array}{l} a-b \mid a^{k+1}-b^{k+1}. \end{array} \right. \checkmark$$

Como p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción p(n) también lo es.

b) Sé que

$$a+b \mid a+b \iff a \equiv -b \ (a+b)$$

Multiplicando la ecuación de congruencia por a sucesivas veces me formo:

$$\begin{cases} a \cdot a = a^2 & \stackrel{(a+b)}{\equiv} & a \cdot (-b) \stackrel{(a+b)}{\equiv} (-1)^2 b \\ \vdots & & \swarrow^1 \\ a^n & \stackrel{(a+b)}{\equiv} & (-1)^n \cdot b^n \to \begin{cases} a^n \equiv b^n \ (a+b) & \text{con n par} \\ a^n \equiv (-1)^n \cdot b^n \ (a+b) & \text{con n impar} \end{cases} \\ \begin{cases} \text{Con } n \text{ par:} & a^n \equiv b^n \ (a+b) & \Rightarrow \ a+b \ |a^n-b^n| \\ \text{Con } n \text{ impar:} & a^n \equiv -b^n \ (a+b) & \Rightarrow \ a+b \ |a^n+b^n| \end{cases}$$

★¹Inducción:

$$p(n): \underline{a} \equiv -\underline{b} (\underline{a} + \underline{b}) \Rightarrow \underline{a}^n \equiv (-1)^n \cdot \underline{b}^n (\underline{a} + \underline{b}) \ \forall n \in \mathbb{N}.$$

Caso base:

$$p(1) : a \equiv -b (a + b) \Rightarrow a^{1} \equiv (-1)^{1} \cdot b^{1} (a + b)$$

p(1) es verdadera.

Paso inductivo:

 $p(k): a \equiv -b \; (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \; (a+b)$ asumo verdadera para algún $k \in \mathbb{Z}$

$$p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b) \text{ asumo verdadera para algún } k \in \mathbb{Z}$$

$$\Rightarrow \text{ quiero probar que}$$

$$p(k+1): a \equiv -b \ (a+b) \Rightarrow a^{k+1} \equiv (-1)^k \cdot b^k \ (a+b)$$

$$a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$$

$$\xrightarrow{\text{multiplico}} \Rightarrow b$$

$$a \cdot a^k = a^{k+1} \equiv (-1)^k \cdot \underbrace{a \cdot b^k}_{(a+b)} \cdot b^k \ (a+b)$$

$$\Rightarrow a^{k+1} \equiv (-1)^{k+1} \cdot b^{k+1} \ (a+b) \iff a+b \ |a^{k+1} - (-1)^{k+1}b^{k+1}$$

Como p(1), p(k) y p(k+1) son verdaderas por principio de inducción lo es también p(n) $\forall n \in \mathbb{N}$

c) Hecho en el anterior

Sea $a \in \mathbb{Z}$ impar. Probar que $2^{n+2} \mid a^{2^n} - 1$ para todo $n \in \mathbb{N}$

Pruebo por inducción:

 $p(n): 2^{n+2} | a^{2^n} - 1$, con $a \in \mathbb{Z}$ e impar. $\forall n \in \mathbb{N}$.

Caso base:

$$p(1) : 2^{3} = 8 \mid a^{2} - 1 = (a - 1) \cdot (a + 1)$$

$$\xrightarrow{a \text{ es impar, si } m \in \mathbb{Z}}$$

$$a = 2m - 1$$

$$(a - 1) \cdot (a + 1) \stackrel{\bigstar}{=} (2m - 2) \cdot (2m) \stackrel{!}{=} 4 \cdot \underbrace{m \cdot (m - 1)}_{par: 2h, h \in \mathbb{Z}} = 4 \cdot 2h = 8 * h$$

$$\xrightarrow{\text{por lo}}_{\text{tanto}}$$

$$8 \mid 8h = (a - 1) \cdot (a + 1) \text{ para algún } h \in \mathbb{Z} \quad \checkmark$$

Por lo tanto p(1) es verdadera.

Paso inductivo:

Asumo que: $p(k): \overbrace{2^{k+2} \mid a^{2^k} - 1}$, es verdadera \Rightarrow Quiero ver que $p(k+1): 2^{k+3} \mid a^{2^{k+1}} - 1$, también lo sea.

$$2^{k+3} \mid a^{2^{k+1}} - 1 \stackrel{!}{\Leftrightarrow} 2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \overbrace{(a^{2^k} + 1)}^{\text{par }!}$$

$$\stackrel{\text{Si } a \mid b \text{ y } c \mid d \Rightarrow ac \mid bd}{\stackrel{\text{hipótesis inductiva}}{\stackrel{\text{hipótesis inductiva}}{\stackrel{\text{par }}{=}}}}$$

$$2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \underbrace{(a^{2^k} + 1)}_{\text{par }}.$$

El! es todo tuyo, hints: diferencia de cuadrados, propiedades de exponentes... En el último paso se comprueba que p(k+1) es vedadera.

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción también lo será $p(n) \ \forall n \in \mathbb{N}$.

5. Some support of the second of the second

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

6.

- a) Probar que el producto de n enteros consecutivos es divisible por n!
- b) Probar que $\binom{2n}{n}$ es divisible por 2.

• hav que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 0$.

Proba que las siguientes afirmaciones son vedaderas para todo $n \in \mathbb{N}$.

a)
$$99 \mid 10^{2n} + 197$$

c)
$$56 \mid 13^{2n} + 28n^2 - 84n - 1$$

b)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$$

d)
$$256 \mid 7^{2n} + 208n - 1$$

a) $99 \mid 10^{2n} + 197 \iff 10^{2n} + 197 \equiv 0 \ (99) \to 10^{2n} + 198 \equiv 1 \ (99) \to 10^{2n} + \underbrace{198}_{(\underline{99})_{0}} \equiv 1 \ (99) \to 100^{n} \equiv 10^{2n} + 198 = 1$

$$\begin{cases} 1 & (99) \to \\ \frac{\text{sé}}{\text{que}} & 100 \equiv 1 & (99) \iff 100^2 \equiv \underbrace{100}_{\stackrel{(99)}{\equiv} 1} & (99) \to 100^2 \equiv 1 & (99) \iff \dots \iff 100^n \equiv 1 & (99) \end{cases}$$

Se concluye que $99 | 10^{2n} + 197 \iff 99 | \underbrace{100 - 1}_{99}$

b) $9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \stackrel{\text{def}}{\iff} 7 \cdot 5^{2n} + 2^{4n+1} \equiv 0 \ (9) \xrightarrow{\text{sumo } 2 \cdot 5^{2n} \atop \text{M.A.M}} \underbrace{9 \cdot 5^{2n}}_{(9)} + 2 \cdot 2^{4n} \equiv 2 \cdot 5^{2n} \ (9)$

c) **2...** hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

d) • ... hav que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\mathbb{A} \to \bigcirc$.

Algoritmo de División:

Calcular el cociente y el resto de la división de a por b en los casos:

a)
$$a = 133$$
, $b = -14$.

d)
$$a = b^2 - 6$$
, $b \neq 0$.

b)
$$a = 13$$
, $b = 111$.

e)
$$a = n^2 + 5$$
, $b = n + 2 \ (n \in \mathbb{N})$.

c)
$$a = 3b + 7, b \neq 0.$$

f)
$$a = n + 3$$
, $= n^2 + 1 \ (n \in \mathbb{N})$.

a)
$$133: (-14) \Rightarrow 133 = (-9) \cdot (-14) + 7$$

b)

$$c) \ \ a = 3b + 7 \to \text{me interesa:} \ \ \to \left\{ \begin{array}{l} |b| \leq |a| \ \ \checkmark \\ 0 \leq r < |b| \ \ \checkmark \end{array} \right\} \to \\ \\ \to \left\{ \begin{array}{l} \text{Si:} \ |b| > 7 \to (q,r) = (3,7) \\ \text{Si:} \ |b| \leq 7 \to (q,r) = (3,7) \\ \hline (a,b) \ |(-14,-7) \ |(-11,-6) \ |(-8,-5) \ |(-5,-4) \ |(4,-1) \ |\dots |\\ \hline (q,r) \ |(2,0) \ |(2,1) \ |(2,2) \ |(2,3) \ |(4,0) \ |\dots | \end{array} \right.$$

d) $a = b^2 - 6$, $b \neq 0$. Θ ... hay que hacerlo! Θ

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

- 9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:
 - a) la división de $a^2 3a + 11$ por 18.
 - b) la división de a por 3.
 - c) la división de 4a + 1 por 9.
 - d) la división de $7a^2 + 12$ por 28.

a)
$$r_{18}(a) = r_{18}(\underbrace{r_{18}(a)^2}_{5^2} - \underbrace{r_{18}(3)}_{3} \cdot \underbrace{r_{18}(a)}_{5} + \underbrace{r_{18}(11)}_{11}) = r_{18}(21) = 3$$

b)
$$\begin{cases} a = 3 \cdot q + r_3(a) \\ 6 \cdot a = 18 \cdot q + \underbrace{6 \cdot r_3(a)}_{r_{18}(6a)} \end{cases} \rightarrow r_{18}(6a) = r_{18}(r_{18}(6) \cdot r_{18}(a)) = r_{18}(30) = 12$$
$$\Rightarrow 6 \cdot r_3(a) = r_{18}(6a) \rightarrow r_3(a) = 2$$

c)
$$r_9(4a+1) = \underbrace{r_9(4 \cdot r_9(a)+1)}_{*1} \rightarrow a = 18 \cdot q + 5 = 9 \cdot \underbrace{(9 \cdot q)}_{g'} + \underbrace{5}_{r_9(a)} \xrightarrow{*1} r_9(a) = r_9(21) = 3$$

d)
$$r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) \xrightarrow{\text{iqu\'e es}} r_{28}(a)$$

$$\begin{cases}
a = 18 \cdot q + 5 \xrightarrow{\text{busco algo}} \\
14 \cdot a = \underbrace{252 \cdot q}_{\text{28} \cdot 9 \cdot q} + 70 \xrightarrow{\text{corrijo seg\'un}} \\
\underbrace{28 \cdot 9 \cdot q}_{\text{condici\'on resto}} + \underbrace{28 \cdot 9 \cdot q}_{\text{70}} + \underbrace{2 \cdot 28 + 14}_{\text{70}} = 28 \cdot (9 \cdot q + 2) + 14 \quad \checkmark \\
\underbrace{\frac{\text{por lo}}{\text{tanto}}}_{\text{tanto}} + 14a = 28 \cdot q' + 14 \Rightarrow 14 \cdot a \equiv 14 \quad (28) \iff a \equiv 1 \quad (28)
\end{cases}$$
Ahora que sé que $r_{28}(a) = 1$ sale que $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) = r_{28}(19) = 19 \quad \checkmark$

10.

- a) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7.
- b) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- c) Hallar, para cada $n \in \mathbb{N},$ el resto de la división de $\sum_{i=1}^{n} (-1)^i \cdot i!$ por 12

a)
$$\begin{cases} a \equiv 22 \ (14) \to a = 14 \cdot q + \underbrace{22}_{14+8} = 14 \cdot (q+1) + 8 \xrightarrow{\text{el resto}} r_{14}(a) = 8 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{2 \cdot (7 \cdot q)} + \underbrace{22}_{2 \cdot 11} = 2 \cdot (7q+11) + 0 \xrightarrow{\text{el resto}} r_{2}(a) = 0 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{7 \cdot (2 \cdot q)} + \underbrace{22}_{1+7 \cdot 3} = 7 \cdot (2q+3) + 1 \xrightarrow{\text{el resto}} r_{7}(a) = 1 \quad \checkmark \end{cases}$$

- b) Dos números congruentes tienen el mismo resto. $a \equiv 13 \ (5) \iff a \equiv 3 \ (5) \ r_5(33a^3 + 3a^2 197a + 2) = r_5(3 \cdot r_5(a)^3 + 3 \cdot r_5(a)^2 2 \cdot r_5(a) + 2)$ $\xrightarrow{\text{como } a \equiv 13 \ (5)}{r_5(a) = 3} r_5(33a^3 + 3a^2 197a + 2) = 4$
- c) ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

11.

- a) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) $\lor a \equiv 3$ (5)
- b) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)
- c) Probar que $a^7 \equiv a$ (7) $\forall a \in \mathbb{Z}$
- d) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \land 7 \mid b$.
- e) Probar que 5 | $a^2 + b^2 + 1 \Rightarrow 5$ | a o 5 | b. ¿Vale la implicación recíproca?
- a) Me piden que pruebe una congruencia es válida solo para ciertos $a \in \mathbb{Z}$. Pensado en términos de restos quiero que el resto al poner los a en cuestión cumplan la congruencia.

$$\begin{cases} a^{2} \equiv -1 \ (5) \Leftrightarrow a^{2} \equiv 4 \ (5) \Leftrightarrow a^{2} - 4 \equiv 0 \ (5) \Leftrightarrow (a-2) \cdot (a+2) \equiv 0 \ (5) \\ \xrightarrow{\text{quiero}} r_{5}(a^{2}+1) = r_{5}(a^{2}-4) = r_{5}(r_{5}(a-2) \cdot r_{5}(a+2)) = \underbrace{r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2))}_{\bigstar^{1}} = 0 \\ r_{5}(a^{2}+1) = 0 \Leftrightarrow r_{5}((r_{5}(a)-2) \cdot (r_{5}(a)+2)) = 0 \end{cases} \begin{cases} r_{5}(a) = 2 \Leftrightarrow a \equiv 2 \ (5) \checkmark \\ r_{5}(a) = -2 \Leftrightarrow a \equiv 3 \ (5) \checkmark \end{cases}$$

Más aún:

Para una congruencia módulo 5 habrá solo 5 posibles restos, por lo tanto se pueden ver todos los casos haciendo una table de restos.

	a	0	1	2	3	4	
7	$r_5(a)$	0	1	2	3	4	\rightarrow La tabla muestra que para un dado a
	$r_5(a^2)$						
\rightarrow	$r_5(a)$	=	$\left\{\begin{array}{c} 2\\ 3 \end{array}\right.$	2 ¢	\Rightarrow	a	

b) 2... hay que hacerlo! 6

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

c) Me piden que exista una dada congruencia para todo $a \in \mathbb{Z}$. Eso equivale a probar a que al dividir el lado izquierdo entre el divisor, el resto sea lo que está en el lado derecho de la congruencia.

$$a^7 - a \equiv 0 \ (7) \iff a \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos con sus propiedades lineales}} \xrightarrow{(a^3 - 1) \cdot (a^3 + 1)}$$

a	0	1	2	3	4	5	6	
$r_7(a)$	0	1	2	3	4	5	6	\rightarrow Cómo para todos los a , alguno de los factores del resto siempre
$r_7(a^3-1)$	6	0	0	5	0	5	5	7 Como para todos los a, alguno de los factores del resto siempre
$r_7(a^3+1)$	1	2	2	0	2	0	0	
	1	· · · · ·						

se anula, es decir:

$$r_7(a^7 - a) = r_7(r_7(a) \cdot r_7(a^3 - 1) \cdot r_7(a^3 + 1)) = 0 \ \forall a \in \mathbb{Z}$$

- d
- e

... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $AT_{FX} \rightarrow \bigcirc$.

Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$: 13.

$$a_1 = 3$$
, $a_2 = -5$ y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$, para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

La infumabilidad de esos números me obliga a atacar a esto con el resto e inducción.

$$r_{7}(a_{n+2}) = r_{7}(r_{7}(a_{n+1}) - \underbrace{r_{7}(36)^{n}}_{\stackrel{?}{\equiv} 1} \cdot r_{7}(a_{n}) + \underbrace{r_{7}(21)^{n}}_{\stackrel{?}{\equiv} 0} \cdot r_{7}(n)^{21}) = \underbrace{r_{7}(a_{n+2}) = r_{7}(a_{n+1}) - r_{7}(a_{n})}_{\stackrel{?}{\equiv} 1}$$
Puesto de otra forma $a_{n+2} \equiv a_{n+1} - a_{n}$ (7) $\rightarrow \begin{cases} a_{1} \equiv 3^{1} \ (7) \iff a_{1} \equiv 3 \ (7) \iff a_{2} \equiv 2 \ (7) \iff a_{3} \equiv 3^{3} \ (7) \iff a_{3} \equiv 6 \ (7) \end{cases}$

Quiero probar que $a_n \equiv 3^n \pmod{7} \rightarrow \text{inducción completa:}$

- $p(n): a_n \equiv 3^n \pmod{7} \ \forall n \in \mathbb{N}$
- **2** ¿Errores? Mandá tu solución, entendible y coqueta, así corregimos.

Casos base:
$$\begin{cases} p(1): a_1 \equiv 3^1 \ (7) \quad \checkmark, \quad p(1) \text{ es verdadera} \\ p(2): a_2 \equiv 3^2 \ (7) \stackrel{(7)}{\equiv} 2 \stackrel{(7)}{\equiv} -5 \quad \checkmark, \quad p(2) \text{ es verdadera} \\ p(k): a_k \equiv 3^k \ (\text{mod } 7) \quad \checkmark, \quad p(k) \text{ la asumo verdadera} \\ p(k+1): a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \quad \checkmark, \quad p(k+1) \text{ también asumo verdadera} \\ p(k+2): a_{k+2} \equiv 3^{k+2} \ (\text{mod } 7) \text{ quiero probar que es verdadera} \\ a_k \equiv 3^k \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \end{cases}$$
Hipótesis inductiva:
$$\begin{cases} a_k \equiv 3^k \ (\text{mod } 7) \\ a_{k+1} \equiv 3^{k+1} \ (\text{mod } 7) \\ a_{k+2} = a_{k+1} - a_k \equiv 3^{k+1} - 3^k = 2 \cdot 3^k \stackrel{(7)}{\equiv} 9 \cdot 3^k = 3^{k+2} \ (7) \quad \checkmark \\ p(k+2) \text{ resultó ser verdadera}. \end{cases}$$
Concluyendo como $p(1)$ $p(2)$ $p(k)$ $p(k+1)$ y $p(k+2)$ resultaron verdaderas por el principio de inductiva de la pr

Concluyendo como p(1), p(2), p(k), p(k+1) y p(k+2) resultaron verdaderas por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

14.

- (a) Hallar el desarrollo en base 2 de
 - i. 1365

ii. 2800

- iii. $3 \cdot 2^{12}$
- iv. $13 \cdot 2^n + 5 \cdot 2^{n-1}$

(b) Hallar el desarrollo en base 16 de 2800.

9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

15. S... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

16. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

17. S... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Máximo común divisor:

- 18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:
 - i) a = 2532, b = 63.
 - ii) a = 131, b = 23.
 - iii) $a = n^4 3$, $b = n^2 + 2$ $(n \in \mathbb{N})$.

Hacer!

19. ②... hay que hacerlo! 🈚

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en LATEX $\to \bigcirc$.

🎧 ¡Aportá! Correcciones, subiendo ejercicios, 📩 al repo, críticas, todo sirve.

20. Sea $a \in \mathbb{Z}$.

- a) Probar que (5a + 8 : 7a + 3) = 1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 23 da 41.
- b) Probar que $(2a^2 + 3a : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 43
- c) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ o 4, y exhibir un valor de a para cada caso. (Para este item es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).
- i) 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

ii) 🖭 ... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\mathbb{A} \to \bigcirc$.

iii)
$$(a^{2} - 3a + 2 : 3a^{3} - 5a^{2}) \xrightarrow{\text{Euclides}} (\underbrace{a^{2} - 3a + 2}_{par} : \underbrace{6a - 8}_{par})$$

$$\xrightarrow{\text{busco}} \left\{ \begin{array}{c} d \mid a^{2} - 3a + 2 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\times 6} \left\{ \begin{array}{c} d \mid 8 \end{array} \right\} \rightarrow \mathcal{D}_{+}(8) = \{1, 2, 4, 8\} \stackrel{\bigstar}{\bigstar}^{1} = \{2, 4, 8\}$$

$$\left\{ \begin{array}{c} a = 1 \quad (0: -2) = 2 \\ a = 2 \quad (0: 4) = 4 \end{array} \right\}$$
Paracida al backs are sleep

Parecido al hecho en clase.

¿Qué onda el 8? Hice mal cuentas? Si no, cómo lo descarto?

Sean $a, b \in \mathbb{Z}$ coprimes. Probar que 7a - 3b y 2a - b son coprimes.

$$\begin{cases}
d \mid 7a - 3b \xrightarrow{\frac{\cdot 2}{\rightarrow}} d \mid b \rightarrow d \mid b \\
d \mid 2a - b \xrightarrow{\frac{\cdot 7}{\rightarrow}} d \mid 2a - b \rightarrow d \mid a
\end{cases}
\xrightarrow{\text{propiedad}} d \mid (a:b) \xrightarrow{(a:b)} d \mid 1$$
Por lo tanto $(7a - 3b: 2a - b) = 1$ son coprimos como se quería mostrar.

22. • hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

23.

- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
- ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
- iii) Determinar todos los $a,b\in\mathbb{Z}$ tales que $\frac{2a+3}{a+1}+\frac{a+2}{4}\in\mathbb{Z}$.

i)
$$\frac{b+4}{a} + \frac{5}{b} = \underbrace{\frac{b^2+4b+5a}{ab}} \xrightarrow{\text{quiero que}} ab \mid b^2 + 4b + 5a$$

$$\xrightarrow{\text{coprimitusibilidad}} \begin{cases} a \mid b^2 + 4b + 5a \\ b \mid b^2 + 4b + 5a \end{cases} \rightarrow \begin{cases} a \mid b^2 + 4b \\ b \mid 5a \end{cases} \xrightarrow{\text{debe dividr a 5}} \begin{cases} a \mid b \cdot (b+4) \\ b \mid 5 \end{cases}$$

Seguro tengo que $b \in \{\pm 1, \pm 5\}$ \rightarrow pruebo valores de b y veo que valor de a queda:

$$\begin{cases} b = 1 \to (a \mid 5, 1) \to \{(\pm 1, 1).(\pm 5, 1)\} \\ b = -1 \to (a \mid -3, 1) \to \{(\pm 1, -1).(\pm 3, 1)\} \\ b = 5 \to (a \mid 45, 5) \xrightarrow[(a:b)=1]{\text{atención que}} \{(\pm 1, 5), (\pm 3, 5).(\pm 9, 5)\} \\ b = -5 \to (a \mid 5, -5) \xrightarrow[(a:b)=1]{\text{atención que}} \{(\pm 1, -5)\} \end{cases}$$

- ii) Hacer!
- iii) ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Primos y factorización:

24. _____

- **25.** Sea p primo positivo.
 - i) Probar que si $0 < k < p \mid \binom{p}{k}$.
 - ii) Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p$ (p).
- 26. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

27. Some supplied that the same of the sam

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

28. 29... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

29. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \mathbf{0}$, o mejor aún si querés subirlo en $\mathbb{A}T_{\mathbb{P}}X \rightarrow \mathbf{0}$.

30. 2... hav que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

31. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

32. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

33. . . hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

• Aportá! Correcciones, subiendo ejercicios, * al repo, críticas, todo sirve.

34. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

35. Some suppose that the same of the same suppose that the same suppose the same suppose that the same suppose the same suppose that the same suppose the same

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

36. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

37. e... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

38. 🖭... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

39. Omna hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

40. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

Ejercicios extras:

4400 ¿Cuántos divisores distintos tiene? ¿Cuánto vale la suma de sus divisores.

$$4400 \xrightarrow{\text{factorizo}} 4400 = 2^4 \cdot 5^2 \cdot 11 \xrightarrow{\text{los divisores } m \mid 4400} m = \pm 2^{\alpha} \cdot 2^{\beta} \cdot 2^{\gamma}, \text{ con } \begin{cases} 0 \le \alpha \le 4 \\ 0 \le \beta \le 2 \\ 0 \le \gamma \le 1 \end{cases}$$

Hay entonces un total de $5 \cdot 3 \cdot 2 = 30$ divisores positivos y 60 enteros.

Ahora busco la suma de esos divisores:
$$\sum_{i=0}^{4} \sum_{j=0}^{2} \sum_{k=0}^{1} 2^{i} \cdot 5^{j} \cdot 11^{k} = \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{2} 5^{j}\right) \cdot \left(\sum_{k=0}^{1} 11^{k}\right)$$

$$\xrightarrow{\text{sumas}} \xrightarrow{2^{4+1}-1} \cdot \frac{5^{2+1}-1}{5-1} \cdot \frac{11^{1+1}-1}{11-1} = 11532.$$

$$\xrightarrow{\text{geométricas}} \underbrace{\frac{2^{4+1}-1}{2-1}}_{31} \cdot \underbrace{\frac{5^{2+1}-1}{5-1}}_{31} \cdot \underbrace{\frac{11^{1+1}-1}{11-1}}_{12} = 11532.$$

- Hallar el menor $n \in \mathbb{N}$ tal que:
 - i) (n:2528) = 316
 - ii) n tiene exáctamente 48 divisores positivos
 - iii) 27 ∦ n

$$\begin{cases} \frac{\text{factorizo}}{2528} 2528 = 2^5 \cdot 79 \quad \checkmark \\ \frac{\text{factorizo}}{316} 316 = 2^2 \cdot 79 \quad \checkmark \\ \frac{\text{reescribo}}{\text{condición}} (n:2^5 \cdot 79) = 2^2 \cdot 79 \end{cases}$$

$$\frac{\stackrel{\text{reescribo}}{\text{condición}} (n:2^5 \cdot 79) = 2^2 \cdot 79}{\stackrel{\text{quiero}}{\text{encontrar}}} n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdots 79^{\alpha_7 9} \cdots$$

$$\stackrel{\text{como}}{\text{encontrar}} (n:2^5 \cdot 79) = 2^2 \cdot 79 \xrightarrow{\text{tengo}} \begin{cases} \alpha_2 = 2, & \text{dado que } 2^2 \cdot 79 \mid n. \text{ Recordar que busco el menor } n!. \\ \alpha_{79} \ge 1, & \text{Al igual que antes.} \\ \frac{\text{notar}}{\text{que}} \alpha_3 < 3 & \text{si no } 3^3 = 27 \mid n \end{cases}$$

$$48 = \underbrace{(\alpha_2 + 1)}_{2+1} \cdot (\alpha_3 + 1) \cdots$$

$$\frac{1 \text{a estrategia sigue con}}{\text{el primo más chico que haya}} \begin{cases}
48 = \underbrace{(\alpha_2 + 1) \cdot (\alpha_3 + 1) \cdots}_{2+1} \\
48 = 3 \cdot (\alpha_3 + 1) \cdot \cdots \\
16 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \underbrace{(\alpha_{79} + 1) \cdots}_{=2 \text{ quiero el menor}}
\end{cases}$$
El n que cumple lo pedido
$$8 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \\
8 = \underbrace{(\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots}_{=2}$$

$$8 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots 1$$

Sabiendo que (a:b)=5. Probar que $(3ab:a^2+b^2)=25$

Coprimizar:
$$\begin{cases} c = \frac{a}{5} \\ d = \frac{b}{5} \end{cases} \rightarrow (a:b) = 5 \cdot \underbrace{(c:d)}_{1} = 5$$

$$\rightarrow \begin{cases} \frac{\text{según}}{\text{enunciado}} 25 = (3ab:a^{2} + b^{2}) \xrightarrow{\text{reemplazo}} 25 = 25 \cdot \underbrace{(3cd:c^{2} + d^{2})}_{1} \end{cases}$$

$$\xrightarrow{\text{Ove a probar}} (3cd: c^2 + d) = 1.$$

$$\underbrace{\frac{\text{Supongo que}}{\text{no lo fuera}}}_{\text{no lo fuera}} \exists p \rightarrow \left\{ \begin{array}{l} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}} \\ p \mid 3 cd \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}} \\ \neq 0 \text{ si otro caso} \\ \end{array} \right. \left\{ \begin{array}{l} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}} \\ \neq 0 \text{ si otro caso} \\ \end{array} \right. \left\{ \begin{array}{l} p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ \end{array} \right\} \right\} \left\{ \begin{array}{l} como \\ \end{array} \right. \left\{ \begin{array}{l} como \\ \end{array} \right\} \left\{ \begin{array}{l} como \\$$

4.

- i) Calcular los posibles valores de: $(7^{n-1} + 5^{n+2} : 5 \cdot 7^n 5^{n+1})$.
- ii) Encontrar n tales que el mcd para ese n tome 3 valores distintos.

Busco independencia de n en algún lado del (a:b). Si d=0

$$\begin{cases} d \mid 7^{n-1} + 5^{n+2} \\ d \mid 5 \cdot 7^n - 5^{n+1} \end{cases} \rightarrow \begin{cases} d \mid \underbrace{7^{n-1} + 5^{n+2}}_{\stackrel{(5)}{=} 2^n} & \xrightarrow{p \nmid d \land d \mid p \cdot k} \\ d \mid 5 \cdot (7^n - 5^n) \end{cases} \xrightarrow{p \nmid d \land d \mid p \cdot k} \begin{cases} d \mid 7^{n-1} + 5^{n+2} \\ d \mid 7^n - 5^n \end{cases}$$

$$\rightarrow \begin{cases} d \mid 176 \cdot 5^n & \xrightarrow{p \nmid d \land d \mid p \cdot k} \\ d \mid 7^n - 5^n & \xrightarrow{\Rightarrow p \mid k} \end{cases} \begin{cases} d \mid 176 \\ d \mid 7^n - 5^n & \rightarrow d = (176 : 7^n - 5^n) \end{cases} \checkmark$$
Exertorize: 176 = 2⁴ · 11 \(\to \mathcal{P} \cdot (176) = \frac{1}{2} \, 4 \, 8 \, 11 \, 16 \, 22 \, 44 \, 88 \, 176 \)

$$\rightarrow \left\{ \begin{array}{ll} d \mid 176 \cdot 5^n & \xrightarrow{p \not\mid d \wedge d \mid p \cdot k} \\ d \mid 7^n - 5^n & \xrightarrow{\Rightarrow p \mid k} \end{array} \right. \left\{ \begin{array}{ll} d \mid 176 \\ d \mid 7^n - 5^n \end{array} \right. \rightarrow d = (176 : 7^n - 5^n) \quad \checkmark \right.$$

Factorizo: $176 = 2^4 \cdot 11 \rightarrow \mathcal{D}_{+}(176) = \{1, 2, 4, 8, 11, 16, 22, 44, 88, 176\}.$ Descarto $\rightarrow \begin{cases} 1 \rightarrow 7^n - 5^n \equiv 2^n \ (5) \rightarrow d \text{ tiene que ser par y } 2 > 1 \\ 11 \rightarrow 7^n - 5^n \equiv 2^n \ (5) \rightarrow d \text{ tiene que ser par} \end{cases}$

$$\mathcal{D}_{+}(d) = \{2, 4, 8, 16, 22, 44, 88, 176\}$$

Estudio congruencia de los pares e impares: $\begin{cases} 7^{2k} - 5^{2k} \equiv 1^k - 25^k \ (8) \rightarrow 1 - \underbrace{1}_{\stackrel{(8)}{\equiv} 25} \equiv 0 \ (8) \end{cases}$ $7^{2k+1} - 5^{2k+1} = 3 - 1 \ (4) \stackrel{(4)}{\equiv} 2$

Puedo descartar a los múltiplos de 4 que no sean múltiplos de 8. $\rightarrow \mathcal{D}_{+}(d) = \{2, 8, 16, 22, 88, 176\}$ No lo terminé, no entiendo bien este paso y como descartar algún otro.

Estudiar los valores parar **todos** los $a \in \mathbb{Z}$ de $(a^3 + 1 : a^2 - a + 1)$

Primero hay que notar que el lado $a^2 - a + 1$ es siempre impar ya que:

$$\left\{
\begin{array}{l}
(2k-1)^2 - (2k-1) + 1 \stackrel{(2)}{\equiv} (-1)^2 - 1 + 1 \stackrel{(2)}{\equiv} 1 \\
(2k)^2 - (2k) + 1 \stackrel{(2)}{\equiv} (0)^2 - 0 + 1 \stackrel{(2)}{\equiv} 1.
\end{array}
\right\}$$
 Por lo tanto 2 no puede ser un divisor de ambas expresiones y si $2 \not\mid A \Rightarrow 2 \cdot k \not\mid A$ tampoco.

Se ve fácil contrarecíproco: 2k $|A \Rightarrow 2|A$. Porque existe un k tal que $2 \cdot c \cdot k = A \Rightarrow 2 \cdot (c \cdot k) = A$. Ahora cuentas para simplificar la expresión y encontrar número del lado derecho.

$$\begin{cases} d \mid a^3 + 1 \\ d \mid a^2 - a + 1 \end{cases} \rightarrow d \mid 30 \rightarrow \mathcal{D}_+(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_+(d) = \{1, 3, 5, 15\}$$

$$\begin{cases}
d \mid a^{3} + 1 \\
d \mid a^{2} - a + 1
\end{cases}
\rightarrow d \mid 30 \rightarrow \mathcal{D}_{+}(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_{+}(d) = \{1, 3, 5, 15\}$$

$$\xrightarrow{\text{hacer tabla de restos}}
\begin{cases}
r_{3}(a^{3} + 1) = 0 & \text{si} \quad a \equiv 2 \text{ (3)} \\
\land \\
r_{3}(a^{2} - a + 1) = 0 & \text{si} \quad a \equiv 2 \text{ (3)}
\end{cases}
\rightarrow \begin{cases}
r_{5}(a^{3} + 1) \neq 0 & \forall a \in \mathbb{Z} \}.$$

Luego si 5 /
$$(a^3 + 1 : a^2 - a + 1) \Rightarrow \underbrace{15}_{5\cdot 3}$$
 / $(a^3 + 1 : a^2 - a + 1) \xrightarrow{\text{se achica el } \atop \text{conjunto de divisores}} \mathcal{D}_+(d) = \{1, 3\}$

$$d = \begin{cases} 3 & \text{si} \quad a \equiv 2 \ (3) \\ 1 & \text{si} \quad a \equiv 1 \lor 2 \ (3) \end{cases}$$

♦6. Sean $a, b \in \mathbb{Z}$ tal que (a : b) = 6. Hallar todos los d = (2a+b : 3a-2b) y dar un ejemplo en cada caso.

Conviene coprimizar:
$$(a:b) = 6 \iff \begin{cases} a = 6A \\ b = 6B \end{cases}$$
 con $(A:B)^{\bigstar^1} = 1$

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot \underbrace{(2A + B : 3A - 2B)}_{D}$$

$$\rightarrow d^{\bigstar^2} = 6D \xrightarrow{\text{busco divisores}}_{\text{comunes}} \begin{cases} D \mid 2A + B \\ D \mid 3A - 2B \xrightarrow{\dots} \end{cases} \begin{cases} D \mid 7B \\ D \mid 7A \end{cases} \Rightarrow D = (7A : 7B) = 7 \cdot (A : B)^{\bigstar^1} = 7$$
Por lo tanto $D \in \mathcal{D}_+(7) = \{1, 7\}$, pero yo quiero encontrar ejemplos de a y b :
$$\begin{cases} Si: & A = 2 \rightarrow a = 12 \\ B = 3 \rightarrow b = 18 \\ (7 : 0) \Rightarrow D = 7 \rightarrow d = (42 : 0) = \underbrace{42}_{6 \cdot D} \end{cases}$$

$$\downarrow^{\bigstar^2} \Rightarrow \begin{cases} Si: & A = 0 \rightarrow a = 0 \\ B = 1 \rightarrow b = 6 \\ (1 : -2) \Rightarrow D = 1 \rightarrow d = (6 : -12) = \underbrace{6}_{6 \cdot D} \end{cases}$$

♦7. Sea $a \in \mathbb{Z}$ tal que $32a \equiv 17$ (9). Calcular $(a^3 + 4a + 1 : a^2 + 2)$

$$32a \equiv 17 \ (9) \rightarrow 5a \equiv 8 \ (9) \xrightarrow{\text{multiplico}} a \equiv 7 \ (9) \quad \checkmark$$

$$d = (a^3 + 4a + 1 : a^2 + 2) \xrightarrow{\text{Euclides}} \left\{ \begin{array}{c} a^3 + 4a + 1 & a^2 + 2 \\ -a^3 - 2a & a \end{array} \right\} \rightarrow d = (a^2 + 2 : 2a + 1) \quad \checkmark$$

$$\xrightarrow{\text{buscar}} \left\{ \begin{array}{c} d \mid a^2 + 2 & 2F_1 - aF_2 \\ d \mid 2a + 1 & \end{array} \right\} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 2a + 1 & \end{array} \right\} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 9 & \end{array} \right\}$$

$$\rightarrow d = (-a + 4 : 9) \xrightarrow{\text{divisores}} \left\{ \begin{array}{c} 1, 3, 9 \\ 1, 3, 9 \end{array} \right\} \quad \checkmark$$

$$\text{However this where the formula and the sum of the content of$$

Hago tabla de restos 9 y 3, para ver si las expresiones $(a^2 + 2 : 2a + 1)$ son divisibles por mis potenciales MCDs.

$r_9(a)$	0	1	2	3	4	5	6	7	8	$a \to a \equiv 4$ (9), valores de a candidatos para obtener MCD.
$r_9(-a+4)$	4	3	2	1	0	-1	-2	-3	-4	$\rightarrow u \equiv 4$ (9), valores de <i>u</i> candidatos para obtener MCD.
$r_3(a)$ 0 1 2 $\rightarrow a \equiv 1$ (3), valores de a candidatos para obtener MCD.										
$r_3(-a+4)$	2	0	2] ′	<i>u</i> -	- I (e), va	10105	uc u	candidates para obtener MCD.

La condición $a \equiv 7$ (9) no es compatible con el resultado de la tabla de r_9 , pero sí con r_3 . Notar que $a = 9k + 7 \stackrel{(3)}{\equiv} 1$.

El MCD
$$(a^3 + 4a + 1 : a^2 + 2) = \begin{cases} 3 & \text{si} \quad a \equiv 7 \ (9) \\ 1 & \text{si} \quad a \not\equiv 7 \ (9) \end{cases}$$

§8. Sea
$$(a_n)_{n \in \mathbb{N}_0}$$
 con
$$\begin{cases} a_0 = 1 \\ a_1 = 3 \\ a_n = a_{n-1} - a_{n-2} & \forall n \ge 2 \end{cases}$$

a) Probar que $a_{n+6} = a_n$

- b) Calcular $\sum_{k=0}^{255} a_k$
- (a) Por inducción: $p(n): a_{n+6} = a_n \ \forall n \geq \mathbb{N}_0$ Verdadero?

$$\left\{ \begin{array}{l} \textit{Caso Base: Primero notar que,} \\ a_0 = 1 \\ a_1 = 3 \\ a_2 \stackrel{\text{def}}{=} 2 \\ a_3 \stackrel{\text{def}}{=} -1 \\ a_4 \stackrel{\text{def}}{=} -3 \\ a_5 \stackrel{\text{def}}{=} -2 \end{array} \right\} \rightarrow \left\{ \begin{array}{l} a_6 \stackrel{\text{def}}{=} 1 \\ a_7 \stackrel{\text{def}}{=} 3 \\ a_8 \stackrel{\text{def}}{=} 2 \\ a_9 \stackrel{\text{def}}{=} -1 \\ a_{10} \stackrel{\text{def}}{=} -3 \\ a_{11} \stackrel{\text{def}}{=} -2 \end{array} \right\} \rightarrow \cdots \text{ Se ve que tiene un período de 6 elementos.}$$

Paso inductivo: Supongo
$$p(k)$$
 Verdadero? $\Rightarrow p(k+1)$ Verdadero? ?

Hipótesis inductiva: Supongo $a_{k+6} = a_k \ \forall k \in \mathbb{N}_0$ Verdadero? , quiero ver que $a_{k+7} = a_{k+1}$

$$a_{k+7} \stackrel{\text{def}}{=} a_{k+6} - a_{k+5} \stackrel{\text{HI}}{=} a_k - a_{k+5} \stackrel{\text{def}}{=} a_k - \underbrace{(a_k + a_{k+4})}_{a_{k+5}} = -a_{k+4}$$

$$\rightarrow a_{k+7} = -a_{k+4} \stackrel{\text{def}}{=} -(a_{k+3} - a_{k+2}) \stackrel{\text{def}}{=} -(a_{k+2} - a_{k+1} - a_{k+2}) = a_{k+1} \quad \checkmark$$

Como $p(0) \wedge p(1) \wedge \cdots p(5)$ son verdaderas y p(k) es verdadera así como p(k+1) también lo es, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}_0$

(b) $\sum_{k=0}^{255} a_k = \underbrace{a_0 + a_1 + a_2 + a_3 + a_4 + a_5}_{=0} + \underbrace{a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11}}_{=0} + \dots + a_{252} + a_{253} + a_{254} + a_{255}$ En la sumatoria hay 256 términos. $256 = 42 \cdot 6 + 4 \text{ por lo tanto van a haber 42 bloques que}$ dan 0 y sobreviven los últimos 4 términos. $\sum_{k=0}^{255} a_k = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + \underbrace{0 + 0 + \dots + 0}_{42 \text$

$$a_{252} + a_{253} + a_{254} + a_{255} = a_{253} + a_{254} = 5$$

$$1 \quad \text{si} \quad n \mod 6 = 0$$

$$3 \quad \text{si} \quad n \mod 6 = 1$$

$$2 \quad \text{si} \quad n \mod 6 = 2$$

$$-1 \quad \text{si} \quad n \mod 6 = 3$$

$$-3 \quad \text{si} \quad n \mod 6 = 4$$

$$-2 \quad \text{si} \quad n \mod 6 = 5$$

$$\sum_{k=0}^{255} a_k = 5$$

Determinar todos los $a \in \mathbb{Z}$ que cumplen que

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} \in \mathbb{Z}.$$

Busco una fracción. Para que esa fracción $en \mathbb{Z}$ es necesario que el denominador divida al numerador. Fin.

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} = \frac{4a^2-13a+8}{10a-15}$$
 \checkmark

$$\begin{array}{c|c} \bigstar^{1} \left\{ \begin{array}{c} 10a - 15 \mid 4a^{2} - 13a + 8 \\ 10a - 15 \mid 10a - 15 \end{array} \right. \xrightarrow{\text{operaciones}} \left\{ \begin{array}{c} 10a - 15 \mid -25 \bigstar^{2} \\ 10a - 15 \mid 10a - 15 \end{array} \right. \end{array}$$

Para que ocurra \bigstar^1 , debe ocurrir \bigstar^2 .

$$10a - 15 \mid -25 \iff 10a - 25 \in \{\pm 1, \pm 5, \pm 25\} \stackrel{*}{\bigstar}$$
 para algún $a \in \mathbb{Z}$.

De paso observo que $|10a - 25| \le 25$. Busco a:

Caso:
$$d = 10a - 15 = 1$$
 \iff $a = \frac{8}{5}$
Caso: $d = 10a - 15 = -1$ \iff $a = \frac{8}{5}$
Caso: $d = 10a - 15 = 5$ \iff $a = 2$ \checkmark
Caso: $d = 10a - 15 = -5$ \iff $a = 1$ \checkmark
Caso: $d = 10a - 15 = 25$ \iff $a = 4$ \checkmark
Caso: $d = 10a - 15 = -25$ \iff $a = -1$ \checkmark

Los valores de $a \in \mathbb{Z}$ que cumplen \bigstar^2 son $\{-1, 1, 2, 4\}$. Voy a evaluar y así encontrar para cual de ellos se cumple \bigstar^1 , es decir que el númerador sea un múltiplo del denominador para el valor de a usado.

$$\begin{cases} d = 5 & a = 2 \\ d = -5 & a = 1 \end{cases} \Rightarrow 4 \cdot 2^2 - 13 \cdot 2 + 8 = -2 \qquad \rightarrow 5 \not \mid -2 \end{cases}$$

$$\begin{cases} d = 5 & a = 1 \\ d = -5 & a = 1 \end{cases} \Rightarrow 4 \cdot 1^2 - 13 \cdot 1 + 8 = 1 \qquad \rightarrow -5 \not \mid 1 \end{cases}$$

$$\begin{cases} d = 25 & a = 4 \\ d = 25 & a = 4 \end{cases} \Rightarrow 4 \cdot 4^2 - 13 \cdot 4 + 8 = 4 \qquad \rightarrow 25 \not \mid 4 \end{cases}$$

$$\begin{cases} d = 25 & a = 4 \\ d = -25 & a = -1 \end{cases} \Rightarrow 4 \cdot (-1)^2 - 13 \cdot (-1) + 8 = 25 \rightarrow -25 \mid 25 \end{cases}$$

El único valor de $a \in \mathbb{Z}$ que cumple lo pedido es a = -1

Notas extras sobre el ejercicio:

Para a = -1 se obtiene $\frac{2a-1}{5} - \frac{a-1}{2a-3} = -1$. Más aún, si hubiese encarado el ejercicio con tablas de restos para ver si lo de arriba es divisible por los divisores en \star^3 , calcularía:

$$r_5(4a^2 - 13a + 8)$$
 y $r_{25}(4a^2 - 13a + 8)$

$$r_5(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 3 \ (5) \\ a \equiv 4 \equiv -1 \ (5) \end{cases} \quad \text{y} \quad r_{25}(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 23 \ (25) \\ a \equiv 24 \equiv -1 \ (25) \end{cases}$$

Se puede ver también así que el único valor de $a \in \mathbb{Z}$, que cumple \bigstar^1 es a = -1