KLASSZIUKS FIZIKA LABORATÓRIUM

Mágneses szuszceptibilitás mérése jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.03.29

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.04.17

Tartalomjegyzék:

1	A mérés célja:	2
2	A mérőeszközök:	2
3	A mérés elmélete:	2
4	A mérés menete: 4.1 A Hall-szonda hiteleítése:	3
5	Mérési adatok és kiértékelésük:	3
	5.1 Átlagos menetfelület:	3
	5.2 $U_H - I_H$ függvényében:	4
	5.3 A Fluxus tekercsáram függősége:	1
	5.4 $\frac{R_H}{r}$ meghatározása:	-
	a	3
	5.5 $\frac{R_H}{d}$ értéke állandó B mellet:	
	5.6 Szuszceptibilitás - diamágnes:	
	5.7 Szuszceptibilitás - paramágnes:	7
	5.8 Desztillált víz:	8
	5.9 Üres henger:	8
	5.10 Vízzel töltött henger:	
	5.11 A Hall-feszültség térfüggése:	
6	Diszkusszió:	10

1 A mérés célja:

Az anyagok mágneses tulajdonságainak leírására 3 térmennyiséget használhatunk:

- · B mágneses indukció
- · M mágnesezettség
- H mágneses térerősség

Ezen három mennyiség nem független egymástól:

$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} \tag{1}$$

Egyszerű esetekben a mágnesezettség jó közelítéssel arányos a mágneses térerőséggel:

$$\mathbf{M} = \chi \mathbf{H} \tag{2}$$

A mérés során ezen χ mágneses szuszceptibilitás meghatározása a feladatunk különböző anyagok esetén.

2 A mérőeszközök:

- · Hall-szonda
- Mozgatható Hall-szonda
- · Analitikai mérleg
- Mérőprogram
- Elektromágnes
- Fluxus-mérő
- Mérőtekercs
- Tápegység
- DVM
- 19-es réz minta
- 13-as alumínium minta
- · Plexi minta
- Víz

3 A mérés elmélete:

Kis szuszceptibilitások mérésére a legelterjedtebb az erő-módszer. Ez az inhomogén mágneses térben a testre ható erő mérésén alapul. Az ezen az elven működő berendezéseket mágneses mérlegnek nevezezik. A "a mérés célja" című bekezdésben bevezetett két képlet felhasználásával felírhatjuk, hogy:

$$\mathbf{B} = \mu_0 (1 + \chi) \mathbf{H} = \mu \mu_0 \mathbf{H} \tag{3}$$

ahol a $\mu=(1+\chi)$ kifejezést relatív permeabilitásnak szokás nevezni. Az anyagokat a mágneses tulajdonságaik alapján több különböző csoportba sorolhatjuk:

- · diamágnesek:
 - 1. χ kis negatív szám, tehát **M** és **H** ellentétes irányú.
 - 2. μ értéke kicsit kisebb mint 1
 - 3. A réz például ide sorolható
- · paramágnesek:

- 1. χ pozitív szám, tehát **M** és **H** azonos irányú.
- 2. μ értéke kicsit nagyobb mint 1
- 3. Az alumínium például ide sorolható
- · ferromágneses anyagok:
 - 1. Nincs egyértelmű kapcsolat **M** és **H** között
 - 2. M(H) hiszterézist mutat, azaz a mágnesezettség mágneses tér hiányában is lehet nullától különböző
 - 3. Magas hőmérsékleten paramágnessé válnak

4 A mérés menete:

Mint már "a mérés elmélete" című bekezdésben említettem a mintát inhomogén mágneses térbe helyezzük, ahol a mágneses indukció nagyságát Hall-szondával mérjük, valamint a mintára ható erőt az analitikai mérleg segítségével határozzuk meg. Az általunk használt elrendezésben a minta alső fele kilóg a tekercsből, így ha a minta két végének koordinátáját x_1 és x_0 -nak választjuk, akkor megállapíthatjuk, hogy: $H_y(x_0) << H_y(x_1)$. Ennek következtében a mintára ható erő nagyságát a

$$F_z = \frac{1}{2\mu}(\chi - \chi_0)AB^2 \tag{4}$$

összefüggéssel tudjuk meghatározni, ahol $\chi_0=3.77\cdot 10^{-7}$ a levegő szuszceptibilitása, A a minta keresztmetszete, és B a mágneses indukció.

4.1 A Hall-szonda hiteleítése:

A különböző minták vizsgálata előtt hitelesíteni kell. A Hall-szondán mért feszültséget a következő képlet adja:

$$U_H = \frac{R_H}{d} I_H B + U_P \tag{5}$$

ahol R_H a Hall állandó, d a félvezető lapka vastagsága, I_H a szondán átfolyó áram és B a mágneses indukció nagysága. A hitelesítéshez elegendő, hogy egyértelmű függvénykapcsolat legyen U_H és B között, melyen az $U_P = I_H R_P$ parazita feszültség léte nem változtat, pusztán a $B(U_H)$ hitelesítési egyenes tengelymetszete lesz véges.

Hitelesítéshez az n menetszámú tekercset a mágneses térbe helyezzük úgy, hogy annak felülete az erővonalakra merőlegesen álljon be. Ezt követően kihúzzuk a térből, olyan távolságra, ahol a térerősség már nullának tekinthető. A mozdulatsor elvégzése alatt a tekercsen áthaladó mágneses fluxus folyamatosan változik, és az indukciótörvénynek megfelelően egy $U=\frac{d\phi}{dt}$ feszültséget indukál. Vegyük ezen fluxusváltozás integrálját a teljes folyamatra, hogy megkapjuk a teljes fluxusváltozást, melyet a fluxusmérővel mérünk. Ezt követően B indukció értéke már kiszámolható:

$$B = \frac{\Delta \phi}{n\overline{E}} \tag{6}$$

ahol n a tekercs menetszáma és \overline{F} az átlagos menetfelület.

5 Mérési adatok és kiértékelésük:

5.1 Átlagos menetfelület:

A mérésemet a 2. számú mérőhelyen végeztem, a tekercs adatai a jegyzet alapján így:

paraméter menetszám [db]		külső sugár $r_k[m]$	belső sugár $r_b[m]$	
érték	194	$0.0048 \pm 5 \cdot 10^{-5}$	$0.00315 \pm 5 \cdot 10^{-5}$	

Az átlagos menetfelület értéke:

$$\overline{F} = \frac{\pi}{3} \left(r_k^2 + r_k r_b + r_b^2 \right) = (5.04 \pm 0.26) \cdot 10^{-5} \ m^2$$

A hibát a

$$\Delta \overline{F} = \overline{F} \cdot \left(2 \frac{\Delta r_k}{r_k} + 2 \frac{\Delta r_b}{r_b} \right)$$

képlet alapján számoltam.

5.2 $U_H - I_H$ függvényében:

$I_H[mA]$	$U_H [mV]$
1.583	167.228
2.072	217.676
2.604	277.081
3.087	332.472
3.566	387.433
4.047	442.445
4.531	497.827
5.014	554.122

Az illesztés paraméterei:

	meredekség $[\Omega]$	tengelymetszet $[mV]$
illesztett érték	113.313	-15.9
hiba	0.658	2.3

5.3 A Fluxus tekercsáram függősége:

I [A]	$U_H[mV]$	$\Delta \phi [mV \cdot s]$	B [mT]
0.479 ± 0.01	115.94 ± 0.1	-0.558 ± 0.01	57.124 ± 3.014
0.727 ± 0.01	157.05 ± 0.1	-0.769 ± 0.01	78.726 ± 4.149
0.973 ± 0.01	200.06 ± 0.1	-0.963 ± 0.01	98.623 ± 5.196
1.221 ± 0.01	243.84 ± 0.1	-1.201 ± 0.01	122.922 ± 6.473
1.715 ± 0.01	332.62 ± 0.1	-1.621 ± 0.01	165.992 ± 8.738

Ahol I a tekercsáram, U_H a Hall-szonda feszültsége, $\Delta\phi$ a fluxus megváltozása, és B a számolt mágneses indukció. A mágneses indukció értékét a (6) - képlet alapján számoltam ki. A hibát pedig a következőképpen kaptam:

$$\Delta B = B \left(\frac{\Delta \phi}{\phi} + \frac{\Delta \overline{F}}{\overline{F}} \right)$$

	meredekség $[\Omega \cdot s]$	tengelymetszet $[mV]$
illesztett érték	-0.8629	-0.1396
hiba	0.0115	0.0127

5.4 $\frac{R_H}{d}$ meghatározása:

Mivel I_H Hall-feszültséget állandó értéken tarottuk a fluxus mérése során, így a (5) képletet felhasználva láthajtuk, hogy az $\frac{R_H}{d}$ meghatározható mint a $B-U_H$ függvény meredeksége osztva I_H -val.

	meredekség $\left[\frac{V}{T}\right]$	tengelymetszet $[mV]$
illesztett érték	1.988	1.8013
hiba	0.025	2.739

Továbbá $I_H=5.0024\pm0.0019mA$. I_H értékének az értékek átlagát válaszottam, míg hibáját az értékek szórásából kaptam.

 $\frac{R_H}{d}$ értéke így:

$$\frac{R_H}{d} = 397.409 \pm 5.149 \; \frac{V}{AT}$$

A hiba:

$$\Delta \frac{R_H}{d} = \frac{R_H}{d} \left(\frac{\Delta meredekseg}{meredekseg} + \frac{\Delta I_H}{I_H} \right) = 5.149$$

5.5 $\frac{R_H}{d}$ értéke állandó B mellet:

B értékének az 5.3 -as bekezdésben található táblázat értékeinek az átlagát vettem, míg a hiba az adatok szórása:

$$B = 104.677 \pm 37.587 \ mT$$

Szintén a (5) -ös képletet alkalmazva a $\frac{R_H}{d}$ értéke:

$$\frac{R_H}{d} = 108.257 \pm 38.195 \ \frac{V}{AT}$$

$$\Delta \frac{R_H}{d} = \frac{R_H}{d} \left(\frac{\Delta meredekseg}{meredekseg} + \frac{\Delta B}{B} \right) = 38.195$$

A parazitafeszültség értéke:

$$U_P = -15.9 \pm 2.3 mV$$

5.6 Szuszceptibilitás - diamágnes:

A diamágneses anyag szuszceptibilitásának megvizsgálásához a 19-es számú réz mintát használtam.

mérés sorszáma	d [mm]
1.	7.89
2.	7.84
3.	7.86
4.	7.88
5.	7.85

Vettem a mérések átlagát, hibának pedig a csavarmikrométer pontosságának a felét adtam meg:

$$d = 7.864 \pm 0.005 \ mm$$

Keresztmetszet:

$$A = \frac{d^2}{4}\pi = (4.857 \pm 0.01) \cdot 10^{-5} \ m^2$$

I[A]	$U_H[mV]$	$\frac{F}{g}[g]$	B[T]	$B[T^2]$	F[N]
0.479	115.205	-0.0102	0.056	0.032	-0.0001
0.974	200.604	-0.051	0.099	0.0098	-0.0005
1.468	289.357	-0.1121	0.144	0.0207	-0.0011
1.961	378.235	-0.2141	0.188	0.0355	-0.0021
2.456	467.761	-0.3466	0.233	0.0545	-0.0034
2.950	553.544	-0.4995	0.277	0.0765	-0.0049
3.443	634.588	-0.6728	0.317	0.1007	-0.0066
3.938	709.173	-0.8563	0.355	0.1261	-0.0084

	merdekség $\left[\frac{N}{T^2}\right]$	tengelymetszet [N]
illesztés értéke	-0.0679	0.00023
hiba	$7.366 \cdot 10^{-4}$	$4.9763 \cdot 10^{-5}$

A (4) -es képlet alapján a réz minta szuszceptibilitása:

$$\chi_{Cu} = (4.248 \pm 0.046) \cdot 10^{-3} \tag{7}$$

Hiba:

$$\Delta\chi = \chi \left(\frac{\Delta m}{m} + \frac{\Delta A}{A}\right)$$

5.7 Szuszceptibilitás - paramágnes:

A paramágses anyag szuszceptibilitásának megvizsgálásához a 13-as számú alumínium mintát használtam.

mérés sorszáma	d [mm]
1.	7.51
2.	7.49
3.	7.48
4.	7.51
5.	7.48

$$d = 7.494 \pm 0.005 \; mm$$

Keresztmetszet:

$$A = \frac{d^2}{4}\pi = (4.411 \pm 0.01) \cdot 10^{-5} \ m^2$$

I [A]	$U_H[mV]$	$\frac{F}{g}[g]$	B[T]	$B[T^2]$	F[N]
0.480	115.440	0.0306	0.056	0.032	0.0003
0.974	199.438	0.1631	0.099	0.0097	0.0016
1.468	288.893	0.4077	0.144	0.0206	0.0040
1.962	377.911	0.7136	0.188	0.0355	0.0070
2.456	467.234	1.1009	0.233	0.0545	0.0108
2.950	553.476	1.5392	0.277	0.0765	0.0151
3.444	634.589	2.0183	0.317	0.1007	0.0198
3.937	709.124	2.4975	0.355	0.126	0.0245

	merdekség $\left[\frac{N}{T^2}\right]$	tengelymetszet [N]
illesztés értéke	0.198	-0.0002
hiba	0.002	0.0001

A (4) -es képlet alapján az alumínium minta szuszceptibilitása:

$$\chi_{Al} = (1.8 \pm 0.018) \cdot 10^{-2} \tag{8}$$

5.8 Desztillált víz:

A plexi tömege üresen $m_0=6.8059~g$ volt, és vízzel töltve: $m_1=8.5734~g$. A fiola hossza nagyjából 73.85 mm volt. A víz sűrűsége: $\rho_v=998.2~\frac{kg}{m^3}$. A sűrűség képlete:

$$\rho = \frac{m}{A \cdot h}$$

így a víz tömegének és a plexi magasságának ismeretében a plexi keresztmetszete:

$$A = \frac{m_1 - m_0}{\rho_v \cdot h} = 2.398 \cdot 10^{-5} \ m^2$$

5.9 Üres henger:

I [A]	$U_H[mV]$	$\frac{F}{g}[g]$	B[T]	$B[T^2]$	F[N]
0.479	117.743	0.0	0.057	0.033	0.0000
0.974	200.585	-0.0204	0.099	0.0098	-0.0002
1.468	289.236	-0.051	0.144	0.0206	-0.0005
1.961	377.874	-0.1121	0.189	0.0356	-0.0011
2.456	467.629	-0.1937	0.233	0.0545	-0.0019
2.950	553.395	-0.2854	0.277	0.0765	-0.0028
3.443	634.428	-0.3874	0.317	0.1007	-0.0038
3.937	708.867	-0.4995	0.355	0.1259	-0.0049

	meredekség $\left\lfloor \frac{N}{T^2} \right\rfloor$	tengelymetszet [N]
illesztett paraméter	-0.0408	0.00029
hiba	0.0005	0.00005

I [A]	$U_H[mV]$	$\frac{F}{g}[g]$	B[T]	$B[T^2]$	F[N]
0.478	114.813	-0.408	0.056	0.031	-0.0004
0.973	200.691	-0.1223	0.099	0.0098	-0.0012
1.468	289.435	-0.2039	0.144	0.0207	-0.0020
1.962	378.093	-0.3568	0.188	0.0355	-0.0035
2.456	467.795	-0.5403	0.234	0.0545	-0.0053
2.950	553.448	-0.8155	0.277	0.0765	-0.0080
3.444	634.433	-1.0194	0.317	0.1007	-0.0100
3.937	708.935	-1.2232	0.355	0.1259	-0.0120

	meredekség $\left[\frac{N}{T^2}\right]$	tengelymetszet [N]
illesztett paraméter	-0.04078	0.00029
hiba	0.00005	0.00004

5.10 Vízzel töltött henger:

A szuszceptibilitás kiszámolását a két illesztés meredekségének különbségével végezzük el. A víz szuszceptibilitása így:

$$\chi_{viz} = (7.76 \pm 0.025) \cdot 10^{-3}$$

5.11 A Hall-feszültség térfüggése:

A mozgatható Hall-szonda segítségével feltérképeztem a mágneses teret.

6 Diszkusszió:

A mérési adatim jól követték az elméletben elvárt görbéket, így az illesztések kis hibahatárral megadták a számolandó értékeket. Ennek következtebében mind az alumínium, a réz és a vízzel teli plexi esetén is sikeresnek mondhatom a mérést. Legvégül a mágneses tér erősségének helyfüggése is követte az elvárt alakot. Összeségében a mérést sikeresnek mondhatom.