0.1 分块矩阵的初等变换与降价公式(打洞原理)

命题 0.1 (打洞原理)

(1) 设

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}_{(n+m)\times(n+m)}$$

是一个方阵,并且 A 为 n 阶可逆子方阵,那么

$$|\boldsymbol{M}| = |\boldsymbol{A}| \cdot |\boldsymbol{D} - \boldsymbol{C} \boldsymbol{A}^{-1} \boldsymbol{B}|.$$

(2) 设

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}_{(n+m)\times(n+m)}$$

是一个方阵,并且D为n阶可逆子方阵,那么

$$|\boldsymbol{M}| = |\boldsymbol{D}| \cdot |\boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}|.$$

笔记 打洞原理是一个重要结论,必须要熟练掌握.但是在实际解题中我们一般不会直接套用打洞原理的结论,而是利用分块矩阵的初等变换书写过程.

记忆打洞原理公式的小技巧: 先记住一个模板 $|\Box| = |\Box| |\Box| - \Box\Box^{-1}\Box|$, 然后从左往右填入子矩阵 (每个子矩阵只能填一次), 第一个 \Box 填相应的可逆子矩阵, 再从主对角线上另外一个子矩阵开始, 按顺时针顺序将子矩阵填入 \Box 即可.

证明 (核心想法:利用分块矩阵的初等变换消去B或C)

(1) 根据分块矩阵的初等变换,对M的第一行左乘 $(-CA^{-1})$ 再加到第二行得到

$$\begin{pmatrix} I_n & O \\ -CA^{-1} & I_m \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ O & D - CA^{-1}B \end{pmatrix}.$$

然后两边同时取行列式就得到

$$|M| = \begin{vmatrix} I_n & O \\ -CA^{-1} & I_m \end{vmatrix} \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} I_n & O \\ -CA^{-1} & I_m \end{vmatrix} \begin{pmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & B \\ O & D - CA^{-1}B \end{vmatrix} = |A| \cdot |D - CA^{-1}B|.$$

(2) 根据分块矩阵的初等变换, 对M 的第二行左乘 $(-BD^{-1})$ 再加到第一行得到

$$\begin{pmatrix} I_n & -BD^{-1} \\ O & I_m \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A - BD^{-1}C & O \\ C & D \end{pmatrix}.$$

然后两边同时取行列式就得到

$$|M| = \begin{vmatrix} I_n & -BD^{-1} \\ O & I_m \end{vmatrix} \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} \left(I_n & -BD^{-1} \\ O & I_m \right) \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{vmatrix} A - BD^{-1}C & O \\ C & D \end{vmatrix} = |D| \cdot |A - BD^{-1}C|.$$

推论 0.1 (打洞原理推论)

设A 是 $n \times m$ 矩阵,B 是 $m \times n$ 矩阵, 则

$$\lambda^m |\lambda \mathbf{I}_n - \mathbf{A}\mathbf{B}| = \lambda^n |\lambda \mathbf{I}_m - \mathbf{B}\mathbf{A}|.$$

 $\stackrel{ extstyle }{ extstyle }$ $\stackrel{ extstyle }{ extstyle }$

注 这是由打洞原理得到的一个重要结论, 也需要熟练掌握. 同样地, 在实际解题中如果不能直接套用打洞原理推论的结论, 就需要利用分块矩阵的初等变换书写过程.

证明 当 $\lambda = 0$ 时,结论显然成立.

当 λ ≠ 0 时, 根据分块矩阵的初等变换可知

$$\begin{pmatrix} \boldsymbol{I}_{n} & -\boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{I}_{m} \end{pmatrix} \begin{pmatrix} \lambda \boldsymbol{I}_{n} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{I}_{m} \end{pmatrix} = \begin{pmatrix} \lambda \boldsymbol{I}_{n} - \boldsymbol{A}\boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{B} & \boldsymbol{I}_{m} \end{pmatrix},$$

$$\begin{pmatrix} \boldsymbol{I}_{n} & \boldsymbol{O} \\ -\frac{1}{\lambda}\boldsymbol{B} & \boldsymbol{I}_{m} \end{pmatrix} \begin{pmatrix} \lambda \boldsymbol{I}_{n} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{I}_{m} \end{pmatrix} = \begin{pmatrix} \lambda \boldsymbol{I}_{n} & \boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{I}_{m} - \frac{1}{\lambda}\boldsymbol{B}\boldsymbol{A} \end{pmatrix}.$$

再对上式两边分别取行列式得到

$$\begin{vmatrix} \lambda I_{n} & A \\ B & I_{m} \end{vmatrix} = \begin{vmatrix} I_{n} & -A \\ O & I_{m} \end{vmatrix} \begin{vmatrix} \lambda I_{n} & A \\ B & I_{m} \end{vmatrix} = \begin{vmatrix} \left(I_{n} & -A \\ O & I_{m} \right) \begin{pmatrix} \lambda I_{n} & A \\ B & I_{m} \end{pmatrix} = \begin{vmatrix} \lambda I_{n} - AB & O \\ B & I_{m} \end{vmatrix} = |\lambda I_{n} - AB|.$$

$$\begin{vmatrix} \lambda I_{n} & A \\ B & I_{m} \end{vmatrix} = \begin{vmatrix} I_{n} & O \\ -\frac{1}{\lambda}B & I_{m} \end{vmatrix} \begin{vmatrix} \lambda I_{n} & A \\ B & I_{m} \end{vmatrix} = \begin{vmatrix} \left(I_{n} & O \\ -\frac{1}{\lambda}B & I_{m} \right) \begin{pmatrix} \lambda I_{n} & A \\ B & I_{m} \end{pmatrix} = \begin{vmatrix} \lambda I_{n} & A \\ O & I_{m} - \frac{1}{\lambda}BA \end{vmatrix} = \lambda^{n} \begin{vmatrix} I_{m} - \frac{1}{\lambda}BA \end{vmatrix} = \lambda^{n-m} |\lambda I_{m} - BA|.$$

$$\exists \mathbb{R} \begin{vmatrix} \lambda I_{n} & A \\ B & I_{m} \end{vmatrix} = |\lambda I_{n} - AB| = \lambda^{n-m} |\lambda I_{m} - BA|. \quad \text{if } \lambda^{m} |\lambda I_{n} - AB| = \lambda^{n} |\lambda I_{m} - BA|.$$

推论 0.2

设 $A \in \mathbb{F}^{n \times m}$, $B \in \mathbb{F}^{m \times n}$, 则 AB 和 BA 有完全一样的非 0 特征值且重数也相同.

证明 由推论 0.1立得.

例题 0.1

1. 设 $A \in n$ 阶矩阵, $D \in m$ 阶矩阵. $|A| \neq 0, |D - CA^{-1}B| \neq 0$, 计算逆矩阵 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1}$.

2. 设 $A \neq n$ 阶矩阵, $C \neq m$ 阶矩阵. 计算伴随矩阵 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}^*$.

证明

1. 由条件可知 $A, D - CA^{-1}B$ 都非异, 于是由分块矩阵初等变换可得

$$\begin{pmatrix} I_n & O \\ -CA^{-1} & I_m \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I_n & -A^{-1}B \\ O & I_m \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & (D - CA^{-1}B)^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} A & O \\ O & D - CA^{-1}B \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & (D - CA^{-1}B)^{-1} \end{pmatrix} = \begin{pmatrix} I_n & O \\ O & I_m \end{pmatrix}.$$

于是对上式两边同时取逆可得

$$\begin{pmatrix} A^{-1} & O \\ O & \left(D - CA^{-1}B\right)^{-1} \end{pmatrix}^{-1} \begin{pmatrix} I_n & -A^{-1}B \\ O & I_m \end{pmatrix}^{-1} \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} \begin{pmatrix} I_n & O \\ -CA^{-1} & I_m \end{pmatrix}^{-1} = \begin{pmatrix} I_n & O \\ O & I_m \end{pmatrix}.$$

故

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} I_n & -A^{-1}B \\ O & I_m \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & (D - CA^{-1}B)^{-1} \end{pmatrix} \begin{pmatrix} I_n & O \\ -CA^{-1} & I_m \end{pmatrix}$$
$$= \begin{pmatrix} A^{-1} + A^{-1}B (D - CA^{-1}B)^{-1} CA^{-1} & -A^{-1}B (D - CA^{-1}B)^{-1} \\ - (D - CA^{-1}B)^{-1} CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}.$$

2. 若
$$A, C$$
 非异, 则 $\begin{vmatrix} A & B \\ O & C \end{vmatrix} = |A| |C| \neq 0$, 进而 $\begin{pmatrix} A & B \\ O & C \end{pmatrix}$ 非异. 利用分块矩阵初等变换可得
$$\begin{pmatrix} A & B \\ O & C \end{pmatrix} \begin{pmatrix} I_n & -A^{-1}B \\ O & I_m \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & C^{-1} \end{pmatrix} = \begin{pmatrix} I_n & O \\ O & I_m \end{pmatrix}.$$

故此时就有

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}^{-1} = \begin{pmatrix} I_n & -A^{-1}B \\ O & I_m \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & C^{-1} \end{pmatrix} = \begin{pmatrix} A^{-1} & -A^{-1}BC^{-1} \\ O & C^{-1} \end{pmatrix}.$$

于是

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}^* = \begin{vmatrix} A & B \\ O & C \end{vmatrix} \begin{pmatrix} A & B \\ O & C \end{vmatrix}^{-1} = \begin{pmatrix} |A| |C| A^{-1} & -|A| |C| A^{-1} BC^{-1} \\ O & |A| |C| C^{-1} \end{pmatrix} = \begin{pmatrix} |C| A^* & -A^* BC^* \\ O & |A| C^* \end{pmatrix}.$$

对于一般的方阵 A, C, 存在一列有理数 $t_k \rightarrow 0$, 使得 $t_k I_n + A, t_k I_m + C$ 都是非异阵. 于是由上述非异的情形

$$\begin{pmatrix} t_k I_n + A & B \\ O & t_k I_n + C \end{pmatrix}^* = \begin{pmatrix} |t_k I_n + A| \ |t_k I_n + C| \ (t_k I_n + A)^{-1} & -|t_k I_n + A| \ |t_k I_n + C| \ (t_k I_n + A)^{-1} \ B \ (t_k I_n + C)^{-1} \end{pmatrix} .$$
 上式两边的矩阵中的元素都是 t_k 的多项式,从而都关于 t_k 连续. 于是令 $k \to \infty$,得

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix}^* = \begin{pmatrix} |A| \, |C| \, A^{-1} & -|A| \, |C| \, A^{-1} B C^{-1} \\ O & |A| \, |C| \, C^{-1} \end{pmatrix} = \begin{pmatrix} |C| \, A^* & -A^* B C^* \\ O & |A| \, C^* \end{pmatrix}.$$

例题 0.2 求下列矩阵的行列式的值:

$$A = \begin{pmatrix} a_1^2 & a_1 a_2 + 1 & \cdots & a_1 a_n + 1 \\ a_2 a_1 + 1 & a_2^2 & \cdots & a_2 a_n + 1 \\ \vdots & \vdots & & \vdots \\ a_n a_1 + 1 & a_n a_2 + 1 & \cdots & a_n^2 \end{pmatrix}.$$

$$\mathbf{R}$$
 令 $\mathbf{\Lambda} = \begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix}$, 则由降价公式 (打洞原理) 我们有

$$\mathbf{A} = -\mathbf{I}_{n} + \begin{pmatrix} a_{1} & 1 \\ a_{2} & 1 \\ \vdots & \vdots \\ a_{n} & 1 \end{pmatrix} \mathbf{I}_{2}^{-1} \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ 1 & 1 & \cdots & 1 \end{pmatrix} = (-1)^{n} |\mathbf{I}_{2}| \mathbf{I}_{n} - \begin{pmatrix} a_{1} & 1 \\ a_{2} & 1 \\ \vdots & \vdots \\ a_{n} & 1 \end{pmatrix} \mathbf{I}_{2}^{-1} \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$= (-1)^n \begin{vmatrix} \mathbf{I}_2 & \mathbf{\Lambda}' \\ \mathbf{\Lambda} & \mathbf{I}_n \end{vmatrix} = (-1)^n |\mathbf{I}_n| \mathbf{I}_2 - \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix} \mathbf{I}_n^{-1} \begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix}$$

$$= (-1)^n \left| \mathbf{I}_2 - \left(\sum_{i=1}^n a_i^2 \sum_{i=1}^n a_i \\ \sum_{i=1}^n a_i = n \right) \right| = (-1)^n \left[(1-n) \left(1 - \sum_{i=1}^n a_i^2 \right) - \left(\sum_{i=1}^n a_i \right)^2 \right].$$

例题 0.3 计算矩阵 A 的行列式的值:

$$A = \begin{pmatrix} 1 + a_1^2 & a_1 a_2 & \cdots & a_1 a_n \\ a_2 a_1 & 1 + a_2^2 & \cdots & a_2 a_n \\ \vdots & \vdots & & \vdots \\ a_n a_1 & a_n a_2 & \cdots & 1 + a_n^2 \end{pmatrix}.$$

解 注意到

$$A - I_n = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}.$$

从而由降价公式可得

$$|A| = \begin{vmatrix} I_n + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{vmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} = |I_n| \begin{vmatrix} 1 + (a_1 & a_2 & \cdots & a_n) I_n^{-1} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{vmatrix} = 1 + \sum_{i=1}^n a_i^2.$$

例题 0.4 计算矩阵 A 的行列式的值:

$$A = \begin{pmatrix} a_1 - b_1 & a_1 - b_2 & \cdots & a_1 - b_n \\ a_2 - b_1 & a_2 - b_2 & \cdots & a_2 - b_n \\ \vdots & \vdots & & \vdots \\ a_n - b_1 & a_n - b_2 & \cdots & a_n - b_n \end{pmatrix}.$$

解 注意到

$$A = \begin{pmatrix} a_1 - b_1 & a_1 - b_2 & \cdots & a_1 - b_n \\ a_2 - b_1 & a_2 - b_2 & \cdots & a_2 - b_n \\ \vdots & \vdots & & \vdots \\ a_n - b_1 & a_n - b_2 & \cdots & a_n - b_n \end{pmatrix} = \begin{pmatrix} a_1 & -1 \\ a_2 & -1 \\ \vdots & \vdots \\ a_n & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}.$$

当 n > 2 时, 由 Cauchy-Binet 公式可知 |A| = 0. 当 n = 2 时, $|A| = a_1b_1 + a_2b_2 - a_1b_2 - b_1a_2$. 当 n = 1 时, $|A| = a_1 - b_1$.

例题 0.5 求下列矩阵的行列式的值:

$$A = \begin{pmatrix} 0 & 2 & 3 & \cdots & n \\ 1 & 0 & 3 & \cdots & n \\ 1 & 2 & 0 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2 & 3 & \cdots & 0 \end{pmatrix}.$$

解将A化为

$$A = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & -2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -n \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} (1, 2, \cdots, n),$$

利用降阶公式容易求得 $|A| = (-1)^n n!(1-n)$.

命题 0.2

设A,B是n阶矩阵,求证:

$$\begin{vmatrix} A & B \\ B & A \end{vmatrix} = |A + B||A - B|.$$

证明 将分块矩阵的第二行加到第一行上,再将第二列减去第一列,可得

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} \rightarrow \begin{pmatrix} A+B & A+B \\ B & A \end{pmatrix} \rightarrow \begin{pmatrix} A+B & O \\ B & A-B \end{pmatrix}.$$

第三类分块初等变换不改变行列式的值,因此可得

$$\begin{vmatrix} A & B \\ B & A \end{vmatrix} = \begin{vmatrix} A+B & O \\ B & A-B \end{vmatrix} = |A+B||A-B|.$$

例题 0.6 计算:

$$|A| = \begin{vmatrix} x & y & z & w \\ y & x & w & z \\ z & w & x & y \\ w & z & y & x \end{vmatrix}.$$

解解法一:令

$$B = \begin{pmatrix} x & y \\ y & x \end{pmatrix}, C = \begin{pmatrix} z & w \\ w & z \end{pmatrix},$$

则
$$|A| = \begin{vmatrix} B & C \\ C & B \end{vmatrix}$$
. 由命题 0.2 可得

$$|A| = |B + C||B - C| = \begin{vmatrix} x + z & y + w \\ y + w & x + z \end{vmatrix} \begin{vmatrix} x - z & y - w \\ y - w & x - z \end{vmatrix}$$
$$= (x + y + z + w)(x + z - y - w)(x + y - z - w)(x + w - y - z).$$

解法二(求根法):

命题 0.3

设 A.B 是 n 阶复矩阵, 求证:

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} = |A + iB||A - iB|.$$

证明 将分块矩阵的第二行乘以 i 加到第一行上, 再将第一列乘以 -i 加到第二列上, 可得

$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix} \rightarrow \begin{pmatrix} A + iB & iA - B \\ B & A \end{pmatrix} \rightarrow \begin{pmatrix} A + iB & O \\ B & A - iB \end{pmatrix}.$$

第三类分块初等变换不改变行列式的值,因此可得

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} = \begin{vmatrix} A + iB & O \\ B & A - iB \end{vmatrix} = |A + iB||A - iB|.$$

例题 0.7 设 A, B, C, D 都是 n 阶矩阵, 求证:

$$|M| = \begin{vmatrix} A & B & C & D \\ B & A & D & C \\ C & D & A & B \\ D & C & B & A \end{vmatrix} = |A + B + C + D||A + B - C - D||A - B + C - D||A - B - C + D|.$$

解 反复利用命题 0.2的结论可得

$$|M| = \begin{vmatrix} A & B \\ B & A \end{vmatrix} + \begin{pmatrix} C & D \\ D & C \end{vmatrix} \cdot \begin{vmatrix} A & B \\ B & A \end{vmatrix} - \begin{pmatrix} C & D \\ D & C \end{vmatrix} = \begin{vmatrix} A+C & B+D \\ B+D & A+C \end{vmatrix} \cdot \begin{vmatrix} A-C & B-D \\ B-D & A-C \end{vmatrix}$$
$$= |A+B+C+D||A-B+C-D||A+B-C-D||A-B-C+D|.$$

例题 0.8 设 $A, B \in n$ 阶矩阵且 AB = BA, 求证:

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} = |A^2 + B^2|.$$

证明 由命题 0.3的结论可得

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} = |A + iB| \cdot |A - iB| = |(A + iB)(A - iB)| = |A^2 + B^2 - i(AB - BA)| = |A^2 + B^2|.$$

例题 0.9 设 A, B 是 n 阶实矩阵, 求证:

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} \ge 0.$$

证明 注意到 A,B 都是实矩阵, 故 $\overline{|A+iB|}=|\overline{A+iB}|=|A-iB|$, 再由命题 0.3的结论可得

$$\begin{vmatrix} A & -B \\ B & A \end{vmatrix} = |A + iB| \cdot |A - iB| = |A + iB| \cdot \overline{|A + iB|} \ge 0.$$