

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formuła 2023

MATEMATYKA Poziom rozszerzony

Symbol arkusza **M**MAP-R0-**100**-2506

DATA: 6 czerwca 2025 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- Jeżeli przekazano Ci niewłaściwy arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 29 stron (zadania 1–12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z *Wybranych wzorów matematycznych*, z cyrkla i linijki oraz z kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. (0-3)

Sklep AGD prowadzi sprzedaż wysyłkową pralek. Prawdopodobieństwo uszkodzenia podczas transportu pralki wysłanej przez ten sklep do klienta jest równe 0,02.

Oblicz prawdopodobieństwo zdarzenia $\it A$ polegającego na tym, że spośród $10\,$ pralek wysłanych dziesięciu klientom przez ten sklep co najwyżej jedna ulegnie uszkodzeniu podczas transportu. Wynik zapisz w postaci ułamka dziesiętnego w zaokrągleniu do części tysięcznych. Zapisz obliczenia.

Zadanie 2. (0-3)

Wykaż, że jeżeli $a=\log_2 14$ oraz $b=\log_{\sqrt{2}} 27$, to $\log_7 54=\frac{b+2}{2a-2}$.

Zadanie 3. (0-3)

Rozważamy wszystkie liczby naturalne sześciocyfrowe, w których zapisie dziesiętnym iloczyn cyfr jest liczbą parzystą mniejszą od 5.

Oblicz, ile jest wszystkich takich liczb sześciocyfrowych. Zapisz obliczenia.

Kolejne zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 4. (0-3)

Dany jest prostokąt ABCD, w którym $|AB|=2\cdot |AD|$. Na bokach AB,BC,CD oraz DA tego prostokąta obrano punkty – odpowiednio – K,L,M oraz N (przy czym każdy z tych punktów leży na dokładnie jednym boku prostokąta ABCD). Czworokąt KLMN jest trapezem prostokątnym (zobacz rysunek), a wysokość LM tego trapezu jest równoległa do przekątnej BD prostokąta.

Wykaż, że stosunek pola trójkąta MDN do pola trójkąta KBL jest równy 16.

Zadanie 5. (0-4)

Wyznacz wszystkie wartości parametru $\, m, \, {\rm dla} \, \, {\rm których} \, \, {\rm równanie} \,$

$$x^2 + 2mx + 2m - 1 = 0$$

ma dwa różne rozwiązania rzeczywiste $\ x_1$, x_2 spełniające warunek

$$m(x_1^2 + x_2^2) = 3m \cdot x_1 \cdot x_2 + 2$$

Zapisz obliczenia.

Zadanie 6. (0-4)

Rozwiąż równanie

$$\cos(2x) + 2\cos^2(3x) + \cos(4x) = 0$$

w przedziale $\,[0,\pi].$ Zapisz obliczenia.

Zadanie 7. (0-4)

Na czworokącie wypukłym ABCD o bokach długości: |AB|=3, |BC|=3, |CD|=5 oraz |DA|=8, opisano okrąg.

Oblicz promień tego okręgu. Zapisz obliczenia.

Zadanie 8. (0-4)

Wielomian f zmiennej rzeczywistej x jest określony wzorem $f(x) = x^3 + ax^2 + bx + c$, gdzie $a, b, c \in \mathbb{R}$. Liczba (-2) jest miejscem zerowym tego wielomianu. W kartezjańskim układzie współrzędnych (x,y) styczna do wykresu wielomianu f w punkcie A o pierwszej współrzędnej równej (-2) przecina ten wykres w punkcie P = (1,9).

Wyznacz wzór wielomianu f. Zapisz obliczenia.

Zadanie 9. (0-5)

Ciąg (a_n) , określony dla każdej liczby naturalnej $n\geq 1$, jest arytmetyczny i rosnący. W tym ciągu $a_6=15$ oraz $a_{15}=a_3\cdot (a_8-6)$.

Ciąg (b_n) , określony dla każdej liczby naturalnej $n\geq 1$, jest geometryczny i $b_1=a_{11}$ oraz $b_2=a_6.$

Oblicz sumę wszystkich wyrazów ciągu (b_n) . Zapisz obliczenia.

Zadanie 10. (0-5)

Dany jest ostrosłup prawidłowy trójkątny ABCD o podstawie ABC. Płaszczyzna zawierająca krawędź AB podstawy i prostopadła do krawędzi bocznej CD przecina tę krawędź w punkcie E, przy czym $\frac{|CE|}{|DE|} = \frac{3}{11}$.

Oblicz stosunek pola powierzchni całkowitej tego ostrosłupa do pola podstawy $\,ABC$. Zapisz obliczenia.

Zadanie 11. (0-6)

W kartezjańskim układzie współrzędnych (x,y) dany jest równoległobok ABCD o wierzchołkach A=(-8,-1) i D=(-13,9) oraz środku symetrii $M=\left(-\frac{9}{2},1\right)$. Okrąg $\mathcal O$ przechodzi przez początek tego układu i jest styczny do prostych zawierających boki AB i BC tego równoległoboku. Druga współrzędna środka okręgu $\mathcal O$ jest liczbą ujemną.

Wyznacz równanie okręgu O. Zapisz obliczenia.

Zadanie 12.

Rozważamy wszystkie graniastosłupy prawidłowe trójkątne o polu powierzchni całkowitej równym $24\sqrt{3}$.

Zadanie 12.1. (0-2)

Wykaż, że objętość $\it V$ graniastosłupa w zależności od długości $\it a$ krawędzi podstawy jest określona wzorem

$$V(a)=6a-\frac{1}{8}a^3$$

Zadanie 12.2. (0-4)

Objętość $\it V$ graniastosłupa w zależności od długości $\it a$ krawędzi podstawy jest określona wzorem

$$V(a) = 6a - \frac{1}{8}a^3$$

dla $a \in (0, 4\sqrt{3})$.

Wyznacz długość krawędzi podstawy tego z rozważanych graniastosłupów, którego objętość jest największa. Oblicz tę największą objętość. Zapisz obliczenia.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom rozszerzony

Formula 2023

MATEMATYKA Poziom rozszerzony

Formula 2023

MATEMATYKA Poziom rozszerzony

Formula 2023

