EE3731C Tutorial - Pattern Recognition 1 Department of Electrical and Computer Engineering

1. First we compute the determinant of the matrix $A - \lambda I = \begin{pmatrix} 5 - \lambda & 3 \\ 1 & 3 - \lambda \end{pmatrix}$ and solve for λ .

$$\det\begin{pmatrix} 5 - \lambda & 3\\ 1 & 3 - \lambda \end{pmatrix} = 0$$
$$(5 - \lambda)(3 - \lambda) - 3 = 0$$
$$\lambda^2 - 8\lambda + 12 = 0$$
$$(\lambda - 4)^2 - 4 = 0$$
$$\lambda = 4 \pm 2$$

Therefore the matrix A has two eigenvalues 2 and 6. Next, we solve for $\lambda = 2$,

$$(A - \lambda I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Therefore $x_1 + x_2 = 0$ or $x_1 = -x_2$. A vector that satisfies the equation is $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, which we can normalize to unit length as $\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$. We can also solve for $\lambda = 6$,

$$(A - \lambda I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 3 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Therefore $-x_1 + 3x_2 = 0$ or $x_1 = 3x_2$. A vector that satisfies the equation is $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, which we can normalize to unit length as $\begin{pmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{pmatrix}$.

To summarize, the eigenvalues of A are 2 and 6 with corresponding unit eigenvectors $\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$ and $\begin{pmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{pmatrix}$.

2.

$$\det \begin{pmatrix} 2 - \lambda & a \\ a & 2 - \lambda \end{pmatrix} = 0$$
$$(2 - \lambda)^2 - a^2 = 0$$
$$\lambda = 2 \pm a$$

The necessary and sufficient conditions for a covariance matrix is symmetry and positive semidefinite. Therefore $-2 \le a \le 2$, so that the eigenvalues are guaranteed to be at least 0 (positive semidefinite).

To see why the necessary conditions for a covariance matrix is symmetry and positive semidefinite, let x be a d-dimensional random vector with 0 mean. Then the covariance matrix of x is $E(xx^T)$, which is symmetric. In addition, let y be any non-zero vector of length d. Then $y^T E(xx^T)y = E(y^T x x^T y) = E((y^T x)^2) \ge 0$, and therefore $E(xx^T)$ is positive semidefinite. Therefore any covariance matrix must be symmetric and positive semidefinite.

To see why the sufficient conditions for a covariance matrix is symmetry and positive semidefinite, let M be a symmetric and positive semidefinite matrix. Since M is symmetric and positive semidefinite, by the eigendecomposition of such matrices, there is a symmetric square root matrix $M^{1/2}$, where $M^{1/2}M^{1/2}=M$. Let y be a d-dimensional random vector with 0 mean and whose covariance matrix is the identity matrix, i.e., $E(yy^T)=I$. Let x be a random vector, where $x=M^{1/2}y$. Then $E(xx^T)=E(M^{1/2}yy^TM^{1/2})=M^{1/2}E(yy^T)M^{1/2}=M^{1/2}IM^{1/2}=M$. In other words, M is the covariance matrix of x. Therefore any symmetric and positive semidefinite matrix can be a covariance matrix of some random vector.

3. (a) The original data are

$$\left(\begin{array}{c} -2\\3 \end{array}\right) \left(\begin{array}{c} 1\\2 \end{array}\right) \left(\begin{array}{c} 2\\-1 \end{array}\right) \left(\begin{array}{c} -1\\0 \end{array}\right)$$

First we compute the mean vector

$$\mu = \frac{1}{4} \left[\left(\begin{array}{c} -2 \\ 3 \end{array} \right) + \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \left(\begin{array}{c} 2 \\ -1 \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \right] = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

Subtracting the mean vector, we denote the four data points as

$$X = \left[\left(\begin{array}{c} -2\\2 \end{array} \right) \ \left(\begin{array}{c} 1\\1 \end{array} \right) \ \left(\begin{array}{c} 2\\-2 \end{array} \right) \ \left(\begin{array}{c} -1\\-1 \end{array} \right) \right]$$

The empirical covariance matrix is

$$C = \frac{1}{4}XX^T = \begin{pmatrix} 2.5 & -1.5 \\ -1.5 & 2.5 \end{pmatrix},$$

Solving for the eigenvalues, we have

$$\det \begin{pmatrix} 2.5 - \lambda & -1.5 \\ -1.5 & 2.5 - \lambda \end{pmatrix} = 0$$
$$(2.5 - \lambda)^2 - 1.5^2 = 0$$
$$\lambda = 2.5 \pm 1.5$$

The largest eigenvalue is 4 with corresponding eigenvector:

$$(C - \lambda I) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1.5 & -1.5 \\ -1.5 & -1.5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Therefore $x_1 = -x_2$, and the largest unit length principal axis $v_1 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$

(b) First principal component of x is equal to $v_1^T(x-\mu)$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 2\\1 \end{pmatrix} - \begin{pmatrix} 0\\1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{pmatrix} 2\\0 \end{pmatrix} = \sqrt{2}$$

(c) The representation error is given by

$$\left\|x - \left(\mu + \sqrt{2}v_1\right)\right\|^2 = \left\| \begin{pmatrix} 2\\1 \end{pmatrix} - \left[\begin{pmatrix} 0\\1 \end{pmatrix} + \sqrt{2} \begin{pmatrix} 1/\sqrt{2}\\-1/\sqrt{2} \end{pmatrix} \right] \right\|^2$$
$$= \left\| \begin{pmatrix} 1\\1 \end{pmatrix} \right\|^2 = 1^2 + 1^2 = 2$$

4.
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 16 & 20 & 24 \\ 50 & 61 & 72 \end{pmatrix}$$
. On the other hand,

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} (1 \ 2 \ 3) + \begin{pmatrix} 2 \\ 5 \end{pmatrix} (4 \ 5 \ 6) + \begin{pmatrix} 1 \\ 4 \end{pmatrix} (7 \ 8 \ 9)$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix} + \begin{pmatrix} 8 & 10 & 12 \\ 20 & 25 & 30 \end{pmatrix} + \begin{pmatrix} 7 & 8 & 9 \\ 28 & 32 & 36 \end{pmatrix}$$

$$= \begin{pmatrix} 16 & 20 & 24 \\ 50 & 61 & 72 \end{pmatrix}$$