MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 20th January, 2015 D1 - Lecture 8

Instructions for the Quiz

- Short Quiz for 3 marks will be held on Thursday, 22/01/15 from 8:30 - 8:40 PM.
- You should take the quiz in your assigned tutorial section.
 Not doing so will result in a 0 on the quiz.
- If you are still unaware of your assigned section, please email me.
- No EXTRA time will be given to students who show up late in the Quiz.
- Any such requests, failure to comply with tutors or instructions will result in a 0 on the Quiz.
- Any instances of copying will result in a 0 on the quiz for all the students involved and will be reported to the Academic Disciplinary committee.
- There will be no make ups for the short quizzes.

Linear Independence: Definition

- Recall: 1. We defined subspace of a vector space.
- 2. Span (v_1, \ldots, v_n) = smallest subspace containing v_1, \ldots, v_n .
- Let v and w be vectors in \mathbb{R}^n and $w \neq 0$.
- 1. If v = cw, then $Span\{v, w\} = Span\{w\}$: line through 0.
- 2. If $v \neq cw$ for any c, then Span(v, w): plane through 0.

Definition. The vectors v_1 , v_2 , ..., v_n in a vector space V, are *linearly independent* if

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0 \Rightarrow a_1 = 0, a_2 = 0, \dots, a_n = 0$$

Observe: If $V = \mathbb{R}^m$ and $A = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$ is $m \times n$ matrix, then $Ax = x_1v_1 + \ldots + x_nv_n$. Hence

 v_1, v_2, \dots, v_n are linearly independent $\Leftrightarrow Ax = 0$ has only the trivial solution $\Leftrightarrow N(A) = 0$.

Linear Independence: Examples from \mathbb{R}^m

- **1** The zero vector 0 is not linearly independent. (1.0 = 0)
- ② If $v \neq 0$, then it is linearly independent.
- $\mathbf{0}$ v,w are not linearly independent \Leftrightarrow one is a multiple of the other \Leftrightarrow they lie on the same line through 0.
- More generally, v₁,..., v_n are not linearly independent
 ⇔ c₁v₁ + ... + c_nv_n = 0 with atleast one c_i ≠ 0
 ⇔ v_i is a linear combination of the other v_j's
 ⇔ v_i is in Span{v_j : j = 1,...n, j ≠ i}.
- Let $A = \begin{pmatrix} A_1 & \dots & A_n \end{pmatrix}$ be $m \times n$. Then $\operatorname{rank}(A) = n \Leftrightarrow A$ has n pivots $\Leftrightarrow N(A) = 0$ $\Leftrightarrow A_1, \cdots, A_n$ are linearly independent. In particular, if A is $n \times n$, then A_1, \cdots, A_n are linearly independent $\Leftrightarrow A$ has n pivots $\Leftrightarrow A$ is invertible.

Linear Independence: Examples from \mathbb{R}^m

Definition. The vectors v_1, \ldots, v_n are *linearly dependent* if they are not linearly independent, i.e., if

$$Ax = (v_1 \cdots v_n) x = 0$$
 has non-trivial solutions.

Example: The vectors v_1, v_2, v_3, v_4 are linearly dependent,

where
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$, $v_4 = \begin{pmatrix} 5 \\ 12 \\ 13 \end{pmatrix}$.

Recall: If
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
,

then $N(A) \neq 0$, so v_1, v_2, v_3, v_4 are not independent.

A non-trivial linear combination is $2v_1 + (-1)v_2 + 0v_3 + 0v_4 = 0$.

More generally, if v_1, \ldots, v_n are vectors in \mathbb{R}^m , then $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is $m \times n$.

If n > m, then $\operatorname{rank}(A) \le m < n \Rightarrow N(A) \ne 0$.

If $(x_1, \ldots, x_n)^T \neq 0 \in N(A)$, then $x_1v_1 + \ldots + x_nv_n = 0$. $\Rightarrow v_1, \ldots, v_n$ is linearly dependent.

In \mathbb{R}^m , any set with more than m vectors is linearly dependent.

Examples from other vector spaces

1. Let $V=C([0,1],\mathbb{R})$. Are vectors $\sin x,\cos x\in V$ are linearly independent?

Assume $c_1 \sin x + c_2 \cos x = 0$, where 0 is the zero vector in V.

LHS is zero vector means it takes zero value for all $t \in [0,1]$.

Take t=0, we get $c_2=0$.

Take t = 1 in $c_1 \sin x = 0$, we get $c_1 = 0$.

Hence $\sin x$ and $\cos x$ are linearly independent vectors in V.

- 2. $V_1 = C([-1,1],\mathbb{R})$. Show that vectors x and |x| are linearly independent in V_1 .
- 3. P= vector space of polynomial functions : $\mathbb{R}\to\mathbb{R}$. Show that vectors $1,x,x^2$ are linearly independent in P.

- 1. 140020006 PATEL FENIL PRAMODBHAI
- 2. 140020017 RAHUL AGARWAL
- 3. 140020031 ASHWIN GOHTE
- 4. 140020051 AMAN VIJAY
- 5. 140020073 APRAJIT
- 140020084 SAGAR VARSHNEY
- 7. 140020092 SATYENDRA SINGH RAJPOOT
- 8. 140020118 ARNESH SUKUMAR
- 9. 140050004 YOGESH KUMAR MEENA
- 10. 140050013 NAVEEN KUMAR
- 11. 140050018 SHREY RAJESH
- 12. 140050030 KONKYANA SAHIL
- 13. 140050042 MALLELA SAI ARAVIND
- 14. 140050055 NAVULURI SRI SURYA
- 15. 140050063 THALLAPALLY SAHITH
- 16. 140050075 SURENDER SINGH LAMBA
- 17. 140050078 KARNATI VENKATA NAGA

Basis: Example

Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$, $v_4 = \begin{pmatrix} 5 \\ 12 \\ 13 \end{pmatrix}$.

Then $v_2=2v_1$, and $v_4=2v_1+v_3\Rightarrow$ $\operatorname{Span}\{v_1,v_2,v_3,v_4\}=\operatorname{Span}\{v_1,v_3\}\Rightarrow$ we only need v_1 and v_3 to $\operatorname{span}\ C(A)$, v_2 and v_4 are unnecessary.

Observe:

- Span (v_1) or Span (v_3) is a line, and C(A) is a plane \Rightarrow both v_1 and v_3 are necessary to span C(A), i.e., $\{v_1,v_3\}$ is a minimal spanning set for C(A).
- ② v_1 and v_3 are linearly independent and span C(A).
- $\textbf{ If } v \in \mathsf{Span}\{v_1,v_3\}, \text{ then } v = c_1v_1 + c_3v_3 \text{ for } c_1,c_3 \in \mathbb{R}. \\ \mathsf{Hence} \ v_1,\ v_3,\ v \text{ are linearly dependent, i.e.,} \\ \{v_1,v_3\} \text{ is a } \textit{maximal linearly independent set in } C(A).$

This is an example of a *basis* of C(A).

Basis: Definition

A subset $B = \{v_1, \dots, v_n\}$, of a vector space V, is basis of V, if (1) it is linearly independent and (2) Span(B) = V.

Equivalent conditions for a basis:

A subset B of V is a basis of V

- $\Leftrightarrow B$ is a maximal linearly independent set in V
- $\Leftrightarrow B$ is a minimal spanning set of V.

Remarks/Examples:

- ullet Every vector space V has a basis.
- By convention, the empty set is a basis for $V = \{0\}$.
- $\left\{ \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^2 .
- $\{e_1, \ldots, e_n\}$ is a basis for \mathbb{R}^n , called the *standard basis*.

Basis: Properties

Basis depends on scalars chosen!

A basis for real vector space \mathbb{C} is $\{1, i\}$ and a basis for a complex vector space \mathbb{C} is $\{1\}$.

• Let $B = \{v_1, \dots, v_n\}$: basis for V and $v \in V$.

$$\mathsf{Span}(B) = V \Rightarrow v = a_1v_1 + \cdots + a_nv_n \text{ for scalars } a_1, \dots, a_n.$$

This expression for v is unique.

Assume
$$a_1v_1 + \ldots + a_nv_n = c_1v_1 + \ldots + c_nv_n$$

$$\implies (a_1 - c_1)v_1 + \ldots + (a_n - c_n)v_n = 0.$$

Linear independence of v_1, \ldots, v_n

$$\implies a_i - c_i = 0 \text{ for all } i$$

$$\implies a_i = c_i \text{ for all } i.$$

Let
$$B = \{v_1, \dots, v_n\}$$
: basis for V

Every v in V can be uniquely written

as a linear combination of $\{v_1, \ldots, v_n\}$.

Q: Is a basis itself unique? A: No.

e.g., The columns of any $n \times n$ invertible matrix form a basis for \mathbb{R}^n .

e.g.
$$\{e_1, e_2\}$$
 is a basis for \mathbb{R}^2 , so is $\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.

Find three other examples.

The number of vectors in each basis of \mathbb{R}^2 is 2. Not a coincidence!

It will be done in next class without proof

If v_1, \ldots, v_m and w_1, \ldots, w_n are both basis of V, then m = n. This is called the *dimension* of V.

Proof. Assume n>m. Since $\mathrm{Span}(w_1,\ldots,w_m)=V$, $v_1=c_1w_1+\ldots+c_nw_n$ with atleast one $c_i\neq 0$. After renaming w_i 's, we may assume $c_1\neq 0$.

 $\begin{array}{l} \operatorname{Span}(v_1,w_2,\ldots,w_n)=V \text{, since it contains } w_1. \text{ Claim:} \\ v_1,w_2,\ldots,w_n \text{ is a basis. To see this, assume} \\ a_1v_1+a_2w_2+\ldots+a_nw_n=0 \text{ with some } a_i\neq 0. \text{ If } a_1=0 \Longrightarrow \\ w_2,\ldots,w_n \text{ is not linearly independent. If } a_1\neq 0 \text{ implies} \\ \operatorname{Span}(w_2,\ldots,w_n)=V \text{, a contradiction.} \end{array}$

Since v_1, w_2, \ldots, w_n : basis of V, $v_2 = c_1v_1 + c_2w_2 + \ldots + c_nw_n$. Since $v_2 \neq c_1v_1$, $c_i \neq 0$ for some i > 1. We may assume $c_2 \neq 0$ (after renaming w_i 's). Then $v_1, v_2, w_3, \ldots, w_n$ is a basis of V.

Proceed as above, we get $v_1, \ldots, v_m, w_{m+1}, \ldots, w_n$ is a basis of V. This is a contradiction.