Causal Compatibility Inequalities Admitting of Quantum Violations in the Triangle Scenario

T. C. Fraser¹

¹Perimeter Institute for Theoretical Physics Ontario, Canada

Quantum Networks, 2016

References I

Todo (TC Fraser): Figure out how to get references at the end

- [1] K. F. Pál and T. Vértesi. Maximal violation of a bipartite three-setting, two-outcome bell inequality using infinite-dimensional quantum systems. *Phys. Rev. A*, 82(2), aug 2010.
- [2] C. Spengler, M. Huber, and B. C. Hiesmayr. A composite parameterization of unitary groups, density matrices and subspaces. 2010.
- [3] E. Wolfe, R. W. Spekkens, and T. Fritz.

 The inflation technique for causal inference with latent variables, 2016.

Table of Contents

Tools

Symmetries

Searching for New Distributions

Introduction

1. Todo (TC Fraser):

2016-11-10

Introduction

Notation

Complete set of random variables are the joint random variables

$$\mathcal{J} = \{v_1, \cdots, v_n\}$$

- ▶ A subset of $V \subset \mathcal{J}$ is a marginal context
- Marginal scenario M

$$\mathcal{M} = \{V_1, \dots, V_k \mid V_i \subset \mathcal{J}\} \quad \mathcal{J} = \bigcup_i V_i$$

Marginal scenario forms a simplicial complex

$$V \in \mathcal{M}, V' \subseteq V \implies V' \in \mathcal{M}$$

 Restrict focus to maximal marginal scenario where only the largest contexts are present

$$\forall V_i, V_j \in \mathcal{M} : V_i \not\subset V_j$$

Notation Cont'd

lacktriangle Marginal model $P^{\mathcal{M}}$ is collection of probability distributions

$$P^{\mathcal{M}} = \{P_{V_1}, \dots, P_{V_k}\}$$

- ▶ Causal Structure $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is a directed acyclic graph (DAG)
- lacktriangle Nodes classified into latent nodes \mathcal{N}_L and observed nodes \mathcal{N}_O

Todo (TC Fraser): Insert generic causal structure

Graph Theory [Optional Slide]

Let $n, m \in \mathcal{N}$ be nodes of the graph \mathcal{G} .

- ▶ parents of n: $Pa_{\mathcal{G}}(n) \equiv \{m \mid m \to n\}$
- ▶ children of n: $\mathsf{Ch}_{\mathcal{G}}(n) \equiv \{m \mid n \to m\}$
- ▶ ancestry of n: An_{\mathcal{G}} $(n) \equiv \bigcup_{i \in \mathbb{W}} \mathsf{Pa}_{\mathcal{G}}^{i}(n)$

$$\mathsf{Pa}^0_{\mathcal{G}}(n) = n \qquad \mathsf{Pa}^i_{\mathcal{G}}(n) \equiv \mathsf{Pa}_{\mathcal{G}}\Big(\mathsf{Pa}^{i-1}_{\mathcal{G}}(n)\Big)$$

Notation extends to sets of nodes $N \subseteq \mathcal{N}$,

- ▶ parents of N: $Pa_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} Pa_{\mathcal{G}}(n)$
- \blacktriangleright children of $N\colon\operatorname{Ch}_{\mathcal{G}}(N)\equiv\bigcup_{n\in N}\operatorname{Ch}_{\mathcal{G}}(n)$
- ▶ ancestry of N: $An_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} An_{\mathcal{G}}(n)$

An induced subgraph of $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ due to $N \subseteq \mathcal{N}$

$$\mathsf{Sub}_{\mathcal{G}}(N) = (N, \{e \in \mathcal{E} \mid e \subseteq N\})$$

Causal Compatibility

Question: Is a marginal model $P^{\mathcal{M}}$ compatible with a causal structure \mathcal{G} ?

$$\mathcal{M} = \{V_1, \dots, V_k \mid V_i \subset \mathcal{N}_O\}$$

Answer: $P^{\mathcal{M}}$ is compatible with \mathcal{G} if there exists a set of casual parameters

$$\left\{ P_{n|\mathsf{Pa}_{\mathcal{G}}(n)} \mid n \in \mathcal{N} \right\}$$

Such that for each $V \in \mathcal{M}$, P_V can be recovered:

- 1. $P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$
- 2. $P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$

A casual compatibility inequality is an inequality over $P^{\mathcal{M}}$ that is satisfied by all compatible $P^{\mathcal{M}}$

Triangle Inequalities

Tools

Causal Compatibility

Causal Compatibility

Causal Compatibility $\begin{array}{c}
(P_{m,n,n}) = (x, P) \\
(P_{m,n}) = (P_{m,n}) \\
(P_$

Causal Compatibility

structure G?

 ${\bf Question:}$ is a marginal model $P^{\cal M}$ compatible with a causal

 $\mathcal{M} = \{V_1, \dots, V_k \mid V_i \subset \mathcal{N}_O\}$ Answer: P^M is compatible with \mathcal{G} if there exists a set of casual

1

Triangle Scenario

- ▶ Three parties $\mathcal{N}_O = \{A, B, C\}$
- Pair-wise sharing three latent variables $\mathcal{N}_L = \{X, Y, Z\}$
- ► Todo (TC Fraser): Inject info about existing work
- ▶ There exists quantum-accessible distributions P_{ABC} that are incompatible with the triangle scenario

Fritz Distribution

The Fritz Distribution P_F :

- ▶ three-party $P_F = P_{ABC}$
- each party has four outcomes

Inflation Technique

Developed by Wolfe, Spekkens, and Fritz [3]

Definition

An inflation of a causal structure \mathcal{G} is another causal structure \mathcal{G}' such that:

$$\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$$

Where $\mathsf{AnSub}_{\mathcal{G}}(n)$ denotes the ancestral sub-graph of n in \mathcal{G}

$$\mathsf{AnSub}_{\mathcal{G}}(n) = \mathsf{Sub}_{\mathcal{G}}\big(\mathsf{An}_{\mathcal{G}}(n)\big)$$

And '∼' is a copy-index equivalence relation

$$A_1 \sim A_2 \sim A \nsim B_1 \sim B_2 \sim B$$

Inflations of the Triangle Scenario

Inflation Lemma

If one has obtained \mathcal{G} , inflation \mathcal{G}' and *compatible* marginal distribution P_N where $N \subseteq \mathcal{N}$, then:

1. There exists causal parameters $\left\{P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$ such that

$$P_N = \prod_{n \in N} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

- $\text{2. } \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n) \implies \mathsf{Pa}_{\mathcal{G}'}(n') \sim \mathsf{Pa}_{\mathcal{G}}(n)$
- 3. Construct inflated causal parameters

$$\forall n' \in \mathcal{N}' : P_{n'|\mathsf{Pa}_{\mathcal{C}'}(n')} \equiv P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

4. Obtain *compatible* marginal distributions over any $N' \subseteq \mathcal{N}'$

$$P_{N'} = \prod_{n' \in N'} P_{n'|\mathsf{Pa}_{\mathcal{G}'}(n')}$$

Inflation Lemma Cont'd

- Inflation procedure holds for any $N\in\mathcal{N},N'\in\mathcal{N}'$ where $N\sim N'$
- lacktriangle Define injectable sets of \mathcal{G}' and images of the injectable of \mathcal{G}

$$\begin{aligned} & \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') \equiv \left\{ N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : N \sim N' \right\} \\ & \operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}') \equiv \left\{ N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : N \sim N' \right\} \end{aligned}$$

- ▶ For $N' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$ there is a unique $N \subseteq \mathcal{N}$ such that $N \sim N'$
- ▶ For $N \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G})$ there can *exist many* $N' \subseteq \mathcal{N}'$ such that $N \sim N'$

Inflation Lemma Cont'd

Lemma

The Inflation Lemma: [3, lemma 3] Given a particular inflation \mathcal{G}' of \mathcal{G} , if a marginal model $\{P_N \mid N \in \mathrm{ImInj}_{\mathcal{G}}(\mathcal{G}')\}$ is compatible with \mathcal{G} then all marginal models $\{P_{N'} \mid N' \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G}')\}$ are compatible with \mathcal{G}' provided that $P_N = P_{N'}$ for all instances where $N \sim N'$.

Corollary

Any causal compatibility inequality I' constraining the injectable sets $\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ can be deflated into a causal compatibility inequality I constraining the images of the injectable sets $\operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}')$.

Inflation Lemma Cont'd

Lemma

The Inflation Lemma: [3, lemma 3] Given a particular inflation \mathcal{G}' of \mathcal{G} , if a marginal model $\{P_N \mid N \in \mathrm{ImInj}_{\mathcal{G}}(\mathcal{G}')\}$ is compatible with \mathcal{G} then all marginal models $\{P_{N'} \mid N' \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G}')\}$ are compatible with \mathcal{G}' provided that $P_N = P_{N'}$ for all instances where $N \sim N'$.

Corollary

Any causal compatibility inequality I' constraining the injectable sets $\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ can be deflated into a causal compatibility inequality I constraining the images of the injectable sets $\operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}')$.

Inflation Pipeline

1. Walk through how the inflation pipeline works

Outcomes and Events

- ightharpoonup Set of outcomes O_v for each variable v
- Set of events for a set of variables V

$$\mathcal{E}(V) \equiv \{s : V \to O_V \mid \forall v \in V, s(v) \in O_v\}$$

Definition

The set of events over the joint variables $\mathcal{E}(\mathcal{J})$ are termed the joint events.

Definition

The set of events over the marginal contexts are the marginal events

$$\mathcal{E}(\mathcal{M}) \equiv \coprod_{V \in \mathcal{M}} \mathcal{E}(V)$$

Incidence Matrix

- ightharpoonup Incidence matrix M is a bit-wise matrix
- ▶ Row-indexed by marginal events $m \in \mathcal{E}(\mathcal{M})$
- $lackbox{ Column-indexed by joint events } j \in \mathcal{E}(\mathcal{J})$

$$M_{m,j} = \begin{cases} 1 & m \text{ compatible with } j \\ 0 & \text{otherwise} \end{cases}$$

Application to Large Inflation

- ► Tackling Large inflation
- ▶ 12 pre-injectable sets (to follow)

Large Inflation Pre-injectable Sets

Maximal Pre-injectable Sets

$$\{A_1, B_1, C_1, A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3, A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1, A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3, A_3, B_1, C_2\}$$

$$\{A_1, B_3, C_4\}$$

$$\{A_1, B_4, C_2\}$$

$$\{A_2, B_1, C_4\}$$

$$\{A_2, B_2, C_2\}$$

$$\{A_3, B_3, C_3\}$$

$$\{A_3, B_4, C_1\}$$

$$\{A_4, B_1, C_3\}$$

$$\{A_4, B_2, C_1\}$$

Ancestral Independences

$$\{A_1, B_1, C_1\} \perp \{A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3\} \perp \{A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1\} \perp \{A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3\} \perp \{A_3, B_1, C_2\}$$

$$\{A_1\} \perp \{B_3\} \perp \{C_4\}$$

$$\{A_1\} \perp \{B_4\} \perp \{C_2\}$$

$$\{A_2\} \perp \{B_1\} \perp \{C_4\}$$

$$\{A_2\} \perp \{B_2\} \perp \{C_2\}$$

$$\{A_3\} \perp \{B_3\} \perp \{C_3\}$$

$$\{A_3\} \perp \{B_4\} \perp \{C_1\}$$

$$\{A_4\} \perp \{B_1\} \perp \{C_3\}$$

$$\{A_4\} \perp \{B_2\} \perp \{C_1\}$$

Large Inflation Incidence

lacksquare Joint variables are all of the observable nodes $\mathcal{N}_O'=\mathcal{J}$

$$\mathcal{J} = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4, C_1, C_2, C_3, C_4\}$$

- ▶ Marginal scenario is composed of pre-injectable sets $\mathcal{M} = \mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')$
- Inequalities Violated by Fritz distribution are inherently 4-outcome
- Incidence matrix M is very large $\sim 2.25 {\rm Gb}$

$$\# \text{Columns} = \prod_{v \in \mathcal{J}} O_v = 4^{12} = 16,777,216$$

#Rows =
$$\sum_{V \in \mathcal{M}} \prod_{v \in V} O_v = 4 \times 4^6 + 8 \times 4^3 = 16,896$$

Inequalities Found

Causal Symmetry

Symmetric Incidence

Symmetric Inequalities

Numerical Optimization

Parameterizing Quantum Distributions

For our purposes, we need to parameterize the space of quantum-accessible distributions that are *realized* on the Triangle Scenario

$$P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$$

Parameterizing Unitary Group

▶ Spengler, Huber and Heismayr [2] demonstrate a parameterization of $\mathcal{U}(d)$ where the parameters are organized in a $d \times d$ -matrix of real values $\lambda_{n,m}$

$$U = \left[\prod_{m=1}^{d-1} \left(\prod_{n=m+1}^{d} R_{m,n} R P_{n,m}\right)\right] \left[\prod_{l=1}^{d} G P_{l}\right]$$

- ▶ Global Phase Terms: $GP_l = \exp(iP_l\lambda_{l,l})$
- ▶ Relative Phase Terms: $RP_{m,n} = \exp(iP_n\lambda_{n,m})$
- ▶ Rotation Terms: $R_{n,m} = \exp(i\sigma_{m,n}\lambda_{m,n})$
- Projection Operators: $P_l = |l\rangle\langle l|$
- Anti-symmetric σ -matrices: $\sigma_{m,n} = -i|m\rangle\langle n| + i|n\rangle\langle m|$

Parameterizing Unitary Group Cont'd

- lacktriangle Each parameter $\lambda_{n,m}$ has physical interpretation
- Degeneracies are easily eliminated such as global phase

$$\forall l = 1, \dots, d : \lambda_{l,l} = 0 \implies GP_l = 1$$

- ▶ Parameterize $U \in \mathcal{U}(d)$ up to global phase denoted $\tilde{U} \in \mathcal{U}(d)$
- Computationally efficient

$$GP_{l} = \mathbb{1} + P_{l} \left(e^{i\lambda_{l,l}} - 1 \right)$$

$$RP_{m,n} = \mathbb{1} + P_{n} \left(e^{i\lambda_{n,m}} - 1 \right)$$

$$R_{n,m} = \mathbb{1} + (|m\rangle\langle m| + |n\rangle\langle n|)(\cos\lambda_{n,m} - 1)$$

$$+ (|m\rangle\langle n| - |n\rangle\langle m|)\sin\lambda_{n,m}$$

Parameterizing States

- ▶ Each latent resource $\rho \in (\rho_{AB}, \rho_{BC}, \rho_{CA})$ modeled as bipartite qubit state acting on $\mathcal{H}^{d/2} \otimes \mathcal{H}^{d/2}$
- $d \times d$ positive semi-definite (PSD) hermitian matrices with unitary trace
- ▶ Cholesky Parametrization allows one to write any hermitian PSD as $\rho = T^{\dagger}T$
- ▶ For d = 4:

$$T = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ \lambda_2 + i\lambda_3 & \lambda_4 & 0 & 0 \\ \lambda_5 + i\lambda_6 & \lambda_7 + i\lambda_8 & \lambda_9 & 0 \\ \lambda_{10} + i\lambda_{11} & \lambda_{12} + i\lambda_{13} & \lambda_{14} + i\lambda_{15} & \lambda_{16} \end{bmatrix}$$

- ▶ d² real-valued parameters
- ▶ Normalized $\rho = T^\dagger T/\mathrm{Tr} \Big(T^\dagger T\Big)$ adds degeneracy

Parameterizing States Cont'd

▶ SHH parameterization [2] exploits spectral decomposition; for rank $k \le d$ density matrix

$$\rho = \sum_{i=1}^{k} p_i |\psi_i\rangle\langle\psi_i| \qquad p_i \ge 0, \sum_i p_i = 1$$

- ▶ Orthonormal k-element sub-basis $\{|\psi_i\rangle\}$ of \mathcal{H}^d can be transformed into computational basis $\{|i\rangle\}$ by unitary $U \in \mathcal{U}(d)$ such that $|\psi_i\rangle = U|i\rangle$
- Freedom to choice k
- lacktriangle Parameterize ho through $\{p_i\}$ and \tilde{U}_k

$$\tilde{U}_k = \prod_{m=1}^k \left(\prod_{n=m+1}^d R_{m,n} R P_{n,m} \right)$$

▶ $d^2 - (d-k)^2 - k + (k-1) = 2dk - k^2 - 1$ real-valued parameters (no-degeneracy)

Parameterizing POVMs

▶ Each party (A,B,C) is assigned a projective-operator valued measure (POVM) (M_A,M_B,M_C)

$$\forall |\psi\rangle \in \mathcal{H}^d : \langle \psi | M_\chi | \psi \rangle \ge 0 \quad M_\chi = M_\chi^\dagger$$

n-outcome measurement

$$M_{\chi} = \{M_{\chi,1}, \dots, M_{\chi,n}\} \quad \sum_{i=1}^{n} M_{\chi,i} = 1$$

- For n=2 outcomes, a parameterization exists by constraining the eigenvalues of $M_{\chi,i}$; for n>2 not aware of anything
- Warrants consideration of projective-valued measures (PVMs) (for n=d this is without loss of generality)

Triangle Inequalities Searching for New Distributions

Parameterizing POVMs

Parameterizing POVMs

► Each party (A, B, C) is assigned a projective-operator valued measure (POVM) (MA, MB, MC)

 $\forall |\psi\rangle \in \mathcal{H}^d: \langle \psi|M_\chi|\psi\rangle \geq 0 \quad M_\chi = M_\chi^\dagger$ > n-outcome measurement

 $M_\chi=\{M_{\chi,1},\dots,M_{\chi,n}\}\quad \sum_{i=1}^n M_{\chi,i}=1$ > For n=2 outcomes, a parameterization exists by constraining

- the eigenvalues of $M_{\chi,i}$; for n>2 not aware of anything \blacktriangleright Warrants consideration of projective-valued measures (PVMs)
- Warrants consideration of projective-valued measures (PVN (for n = d this is without loss of generality)

1. Naimark's Dilation Theorem

Parameterizing PVMs

▶ Each party (A,B,C) is assigned n-outcome (M_A,M_B,M_C) such that,

$$M_{\chi,i}M_{\chi,j}=\delta_{ij}M_{\chi,i}\quad M_{\chi,i}=|m_{\chi,i}\rangle\langle m_{\chi,i}|$$

- ▶ Inspired by [1], parameterizing PVMs means parameterizing a n-element sub-basis $\{|m_{\chi,i}\rangle\}$
- Use unitary transformation again

$$\{|m_{\chi,1}\rangle,\ldots,|m_{\chi,n}\rangle\}=\{U|1\rangle,\ldots,U|n\rangle\}$$

- ▶ Global phase and remaining basis irrelevant: \tilde{U}_n requires $2dn-n^2-1$ real-valued parameters
- ▶ PVMs are computationally more efficient

$$P_{ABC}(abc) = \langle m_{A,a} m_{B,b} m_{C,c} | \Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi | m_{A,a} m_{B,b} m_{C,c} \rangle$$

Network Permutation Matrix

- States and measurements in the Triangle Scenario are not aligned
- Without Π , P_{ABC} would be separable
- ▶ Required to align B's measurement over $\operatorname{Tr}_{A,C}(\rho_{AB}\otimes\rho_{BC})$
- $ightharpoonup \Pi$ is a $2^6 imes 2^6$ matrix
 - Shifts one qubit to the left

$$\Pi \equiv \sum_{|q_i\rangle \in \{|0\rangle, |1\rangle\}} |q_2 q_3 q_4 q_5 q_6 q_1\rangle \langle q_1 q_2 q_3 q_4 q_5 q_6|$$

Maximally Violating Distributions

Non-Trivial Inequalities For Large Inflation

Conclusions

Post-doc Opportunities At Perimeter