Lecture 8

Rigid body kinematics: Rate of change of orientation in 2D and 3D; Angular velocity.

25 - 31 August, 2021

2D versus 3D

I. Rotational motion of a rigid body in 2D?

- 1. In 2D, material points move in <u>parallel</u> <u>planes</u> \mathscr{P} . (Let \mathscr{P} be normal to $\hat{\mathbf{e}}_3$.)
- 2. *Orientation*: Angle $\theta(t)$ of a material line in \mathcal{P} from a reference axis in \mathcal{P} .
- 3. Angular velocity: $\omega \hat{\mathbf{e}}_3 = \mathrm{d}\theta/\mathrm{d}t$.
 - i. Same for any material line, ref. axis.

II. Does this approach work in 3D? NO!

- 1. Material line and reference axis do *not* meet at all times $\Longrightarrow \theta(t)$ *not* defined.
- 2. *Different* material lines and reference axis may give *different* orientations.

III. Why not use rotation tensor R(t)? HARD!

- 1. Rotation tensors can<u>not</u> be added.
- 2. Rotation tensors do <u>not</u> commute.
- 3. Rate of change dR(t)/dt is a tensor!

Angular velocity

- I. **Aim**: Consider a rigid body in motion. Find its *rate of change* of *orientation*.
- II. Rigid body ⇔ BFCS (for orientation)
 - 1. BFCS *changes* with time: $\{\mathscr{E}(t), G, \hat{\mathbf{e}}_i(t)\}$.
 - 2. Need to compute $\dot{\hat{\mathbf{e}}}_i(t) := d\hat{\mathbf{e}}_i(t) / dt$.
 - 3. $\hat{\mathbf{e}}_i(t) = \lim_{\delta t \to 0} \left\{ \hat{\mathbf{e}}_i(t + \delta t) \hat{\mathbf{e}}_i(t) \right\} / \delta t$
 - 4. BFCS at $t + \delta t$: { $\mathscr{E}(t + \delta t)$, G, $\hat{\mathbf{e}}_i(t + \delta t)$ }.
 - 5. Can find rotation tensor R $(\hat{\mathbf{n}}(t), \delta \varphi(t))$: $\hat{\mathbf{e}}_i(t + \delta t) = R(\hat{\mathbf{n}}(t), \delta \varphi(t)) \cdot \hat{\mathbf{e}}_i(t),$ where, with N = asym $(\hat{\mathbf{n}})$, R $(\hat{\mathbf{n}}, \delta \varphi) = 1 + \sin \delta \varphi \, \text{N} + (1 - \cos \delta \varphi) \, \text{N}^2$
 - 6. We find $\dot{\hat{\mathbf{e}}}_i(t) = \dot{\varphi} \, \hat{\mathbf{n}}(t) \times \hat{\mathbf{e}}(t)$.
- III. Define angular velocity $\mathbf{\omega}(t) = \dot{\varphi} \hat{\mathbf{n}}(t)$.
 - 1. As in 2D, but rotation axis changes!
 - 2. $\hat{\mathbf{e}}_i(t) = \mathbf{\omega}(t) \times \hat{\mathbf{e}}(t)$.

Angular velocity

Rigid body's 3D angular velocity: $\mathbf{\omega}(t) = \dot{\varphi}\hat{\mathbf{n}}(t)$

- I. Question: How to compute $\dot{\phi}$ and $\hat{\mathbf{n}}$?
- II. Compute $\hat{\mathbf{e}}_i(t)$ for BFCS $\{\mathcal{E}(t), G, \hat{\mathbf{e}}_i(t)\}$
 - 1. Time-varying BFCS: $\mathscr{E}(t) \xrightarrow{\mathsf{R}(t)} \mathscr{E}(t + \delta t)$.
 - 2. Found: $\dot{\hat{\mathbf{e}}}_i(t) = \lim_{\delta t \to 0} \frac{1}{\delta t} \left\{ \left(\mathbf{R}(t) 1 \right) \cdot \hat{\mathbf{e}}_i(t) \right\}.$
- III. Let motion be <u>observed</u> from $\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\}$:
- IV. Get $R_0(t)$: $\mathcal{E}_0 \xrightarrow{R_0(t)} \mathcal{E}(t)$; $\mathcal{E}_0 \xrightarrow{R_0(t+\delta t)} \mathcal{E}(t+\delta t)$ Then, $\hat{\mathbf{e}}_i(t) = R_0 \left(\hat{\mathbf{n}}_0(t), \varphi_0(t) \right) \cdot \hat{\mathbf{E}}_i$, $\hat{\mathbf{e}}_i(t+\delta t) = R_0 \left(\hat{\mathbf{n}}_0(t+\delta t), \varphi_0(t+\delta t) \right) \cdot \hat{\mathbf{E}}_i$
- V. Find: $R(t) 1 = \dot{R}_0(t) \cdot R_0^T(t) =: \Omega(t)$
 - 1. Angular velocity tensor: $\Omega(t) = -\Omega^T(t)$
 - 2. Define angular velocity $\omega(t) = ax(\Omega(t))$
 - 3. Can show that this $\mathbf{\omega}(t) = \dot{\varphi} \hat{\mathbf{n}}(t)$.
- VI. **Ans.** Get $\dot{\varphi}$ and $\hat{\mathbf{n}}$ from $\mathbf{\omega}(t) = \operatorname{ax}(\dot{\mathbf{R}}_0 \cdot \mathbf{R}_0^T)$

HOW TO LEARN ORBITAL MECHANICS

