3ª Lista de Cálculo de Várias Variáveis (gradiente – plano tangente – reta normal)

1 – Determine o gradiente de f em cada ponto P_o indicado:

a)
$$f(x,y) = 5xy^2 - 4x^3y$$
 em $P_o(1,2)$ b) $f(x,y) = y \ln x$ em $P_o(1,-3)$ c) $f(x,y,z) = xe^{2xyz}$ com $P_o(3,0,2)$

d)
$$f(x, y, z) = \sqrt{x + yz} \text{ com } P_o(1,3,1)$$

2 – Determinar as equações do plano tangente e da reta normal à superfície dada no ponto indicado:

a)
$$2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10 \text{ em } P_0(3,3,5)$$
 b) $y = x^2 - z^2 \text{ em } P_0(4,7,3)$

c)
$$x^2 - 2y^2 + z^2 + yz = 2$$
 em $P_0(2,1,-1)$ d) $x - y = 4$ arctg (yz) em $P_0(1 + \pi, 1,1)$

e)
$$z + 1 = xe^y \cos z$$
 em $P_o(1,0,0)$ f) $yz = \ln(x+z)$ em $P_o(0,0,1)$

3 – Mostre que a equação do plano tangente ao elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ em $P_o(x_o, y_o, z_o)$ pode ser escrita na forma $\frac{xx_o}{a^2} + \frac{yy_o}{b^2} + \frac{zz_o}{c^2} = 1$.

4 – Determine a equação do plano tangente ao hiperboloide $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ em $P_o(x_o, y_o, z_o)$ e expresse-a na forma do exercício anterior.

5 – Mostre que a equação do plano tangente ao paraboloide elíptico $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ no ponto $P_o(x_o, y_o, z_o)$ pode ser escrita na como $\frac{2xx_o}{a^2} + \frac{2yy_o}{b^2} = \frac{z-z_o}{c}$.

6 – Em qual ponto do paraboloide $y = x^2 + z^2$ o plano tangente é paralelo ao plano x + 2y + 3z = 1.

7 – Existem pontos no hiperboloide $x^2 - y^2 - z^2 = 1$ nos quais o plano tangente é paralelo ao plano z = x + y?

8 – Mostre que o elipsoide $3x^2 + 2y^2 + z^2 = 9$ e a esfera $x^2 + y^2 + z^2 - 8x - 6y - 8z + 24 = 0$ se tangenciam no ponto P(1,1,2). (Isso significa que eles têm um plano tangente comum nesse ponto.)

9 – Mostre que todo plano que é tangente ao cone $x^2 + y^2 = z^2$ passa pela origem.

10- Mostre que toda reta normal à esfera $x^2+y^2+z^2=r^2$ passa pelo centro da esfera.