Weekly Report NTUA 20/5/2020

George Bakas

Status Report

- LHCtopWG
 - TOP-18-013 presentation
- Analysis:
 - Training with Mass Cut (50,300)GeV @ preselection
 - Larger ttbar contamination vs the previous BDT that has no mass selection criteria
 - Unfolding Techniques
 - Giannis found a way to implement the Minimum Global Correlation method using the TUnfoldDensity class
 - Cross checking results
 - Error propagation with different methods
 - Parton and <u>Particle</u> levels
 - Mass Fit
 - Cannot understand why the k_{slope} is so big when we implement the fit
 - Can it be due to statistics??
 - Simultaneous fit seems to have better results (qcd params are frozen)

New training with mass cut: $50 < m_{top} < 300 \text{ GeV}$

With mass cut

TTbar Contamination TT_{CR} Exp.Yield $_{-}$ QCD $_{_{ m CR}}$ Exp.Yield ratio Red/Blue 250 100 150 200 jetMassSoftDrop0 (GeV)

Without mass cut

Minimum of global Correlation

Trying to solve the inverse problem of $y = Ax \rightarrow x = A^{-1}y$ where:

- x: Extrapolated to Parton
- A is the response matrix
- y: reco input
- V_x is the covariance matrix of x

This method finds the minimum mean value of global correlation coefficients (ρ_j): Where ρ_i is defined as:

$$\rho_j = \sqrt{1 - [(V_x)_{jj} \cdot (V_x^{-1})_{jj}]^{-1}}, \quad where \ 0 \le \rho_j \le 1$$

- The global correlation coefficient is a measure of the total amount of correlation between element j of x and all other elements.
- 2. The arithmetic and the geometric mean of all n global correlation coefficients is determined for a large range of τ -values
- 3. The τ -value with the smallest mean value is accepted.

Unfolding in Particle Level

Unfolded vs Theory jetPt0

Global Corr

Unfolded vs Theory jetPt0

Unfolding in Particle Level

Unfolded vs Theory jetPt1

Global Corr

Unfolded vs Theory jetPt1

<u>Unfolding in Particle - Error Propagation</u>

Simultaneous Mass Fit

O-btag 2-btag

Simultaneous Mass Fit Result

Floating Parameter	FinalValue +/-	Error
btagEff	9.4203e-01 +/-	7.36e-02
kMassResol	9.5275e-01 +/-	2.75e-02
kMassScale	1.0003e+00 +/-	2.02e-03
kQCD_2b	6.8738e-01 +/-	5.82e-01
nFitBkg_0b	7.9304e+01 +/-	1.27e+01
nFitBkg_2b	2.3702e+02 +/-	2.19e+01
nFitQCD_0b	2.0014e+03 +/-	7.22e+01
nFitQCD_2b	2.8167e+03 +/-	1.50e+02
nFitSia	6.1479e+03 +/-	9.94e+02

Ntt expected: 7872.02 Ntt observed: 5476.36

Signal strength r: 0.695675

Singal strength r in 2btag: 0.694978 Singal strength r in 0btag: 0.945919

To be investigated:

• We define btag efficiency such as that:

$$N_{sig}^{(0)} = (1 - e_{btag})^2 N_{sig}$$
 and $N_{sig}^{(2)} = e_{btag}^2 N_{sig}$

- Now we are using two different b-tagging WP's. Should be have different btagEfficiency for every WP?
- $e_{btag}^{(0)}$ and $e_{btag}^{(2)}$??

