NYCU-ECE DCS-2025

HW01

Design: Simple Data Transfer

Data preparation

1. 從 TA 目錄資料夾解壓縮:

% tar xvf ~dcsTA01/HW01.tar

- 2. 解壓縮資料夾 HW01 包含以下:
 - a. 00_TESTBED/
 - b. 01_RTL/
 - c. 02 SYN/
 - d. 03_GATE/

Block Diagram

Design Desciption

本次作業目標設計多點之間的資料傳輸。

你會接收到來自四個輸入的指令 $\{in_n0, in_n1, in_n2, in_n3\}$,指令內容將在下方內容詳細解釋,你需要將指令解碼並將data傳輸至指定輸出,最後輸出五個輸出指令 $\{out_n0, out_n1, out_n2, out_n3, out_n4\}$ 以及輸出四個ack訊號 $\{ack_n0, ack_n1, ack_n2, ack_n3\}$ 作為傳輸成功或失敗的確認訊號。

首先收到的四個數字{in_n0, in_n1, in_n2, in_n3}是傳輸的指令,詳細欄位如下圖,其中包含了in_valid(1bit,代表是否有值需要傳輸),destination(3bits,代表目標output),以及需要傳輸的data(16bits)等欄位。

output傳輸指令{out_n0, out_n1, out_n2, out_n3, out_n4}詳細欄位則如下圖, 其中包含了condition(2bit,資料傳輸狀態),以及傳輸過來的data(16bits)等欄位。

傳輸結果確認訊號{ack_n0, ack_n1, ack_n2, ack_n3},因為傳輸端必須確認資料是否有順利傳輸,因此須回傳ack訊號給輸入端做確認,如果資料有順利傳輸,則ack為1,若沒有資料傳輸,或是傳輸失敗(順位較低,如上方說明),則ack設為0;ack_n0對應in_n0結果,ack_n1對應in_n1結果,以此類推。

最後將會輸出五個18-bit的指令{out_n0, out_n1, out_n2, out_n3, out_n4}以及四個1-bit的ack訊號{ack_n0, ack_n1, ack_n2, ack_n3}, testbench測試pattern將會在下一組測資進來之前測試這五個18-bit output以及四個ack訊號是否正確。

Examples

• Congestion & not_valid Example

 $in_n0 = 1_001_1010101010101010$

 $in_n1 = 0_000_0101010101010101$

in n2 = 1 001 110011001100

 $in_n3 = 1_010_0011001100110011$

在這個範例下,in_n0和in_n2在out_n1有congestion出現,因順位in_n0 > in_n2,所以in_n0傳遞成功,in_n2傳遞失敗,in_n1則因為in_valid為0,資料無須傳遞,因此ack_n0~ack_n3分別為1/0/0/1,out則如下所示:

out_n0 = 00_0000000000000000 (in_n1的valid為0,沒有資料傳遞)

out_n1 = 10_1010101010101010 (有兩筆輸入, data以順位高為主)

out_n2 = 01_0011001100110011 (一筆輸入, data來自in_n3)

out_n3 = 00_000000000000000 (沒有輸入)

out_n4 = 00_00000000000000000000(沒有輸入)

Inputs

Signal name	Number of bit	Description
in_n0	20 bits	input指令 包含in_valid, destination, data等欄位 詳細請見上方敘述
in_n1	20 bits	
in_n2	20 bits	
in_n3	20 bits	

Outputs

Signal name	Number of bit	Description
out_n0	18 bits	output指令 包含condition, data等欄位 詳細請見上方敘述
out_n1	18 bits	
out_n2	18 bits	
out_n3	18 bits	
out_n4	18 bits	

ack_n0	1 bit
ack_n1	1 bit
ack_n2	1 bit
ack_n3	1 bit

回傳資料傳輸結果給input端確認。

Specifications

- 1. Top module name: **DT**(File name : **DT.sv**)
- 2. 請用 Systemverilog 完成你的作業。
- 3. 請用 combinational circuit 完成你的作業。
- 4. 01_RTL & 03_GATE 模擬必須通過
- 5. 02_SYN result 不能有 error 且不能有任何 latch,同時timing必須是MET。
- 6. Delay time 固定為 6ns,請不要自行修改。

(01_RTL & 03_GATE Pass)

(02_SYN MET)

Example waveform

若要訊號以binary顯示,選取訊號後選擇Waveform > Set Radix > Binary。

File Upload

- 1. 需要繳交的檔案: SystemVerilog Code, Report, 共兩個檔案, 請上傳至new E3。
- 2. Code檔名: DT_dcsxxx.sv, xxx is your server account.。
- 3. Report檔名: report_dcsxxx.pdf, xxx is your server account.。
- 4. 1de請在 3/12 23:59 之前上傳 / 2de 請在 3/19 23:59 之前上傳。

- 5. 2de分數*0.7計算
- 6. 檔名錯誤扣5分。

Grading policy

- 1. Pass the RTL, Synthesis, and GATE level simulation. 70%
- 2. Area 20%
- 3. Report 10%

Note

Template folders and reference commands:

- 1. 01_RTL/ (RTL simulation) \rightarrow **./01_run**
- 2. $02_SYN/(synthesis) \rightarrow J01_run_dc$
- 3. $03_GATE/(GATE \text{ simulation}) \rightarrow ./01_run$

Report

報告請簡單且重點撰寫,不超過兩頁A4,並包括以下內容:

- 1. 描述你的設計方法,包含但不限於如何加速(減少critical path)或降低面積。
- 2. 基於以上,畫出你的架構圖(Block diagram)
- 3. 心得報告,不侷限於此次作業,對於作業或上課內容都可以