STUDENT SUCCESS PREDICTION

TAA - Tópicos de Aprendizagem Automática 24/25

André Alves 113962 Bruno Tavares 113372 Francisco Pinto 113763

TABLE OF CONTENTS

01

OVERVIEW

Introduction and Reflexion of the Project

02

OBJECTIVES

Goals and State of Art

03

MODEL SELECTION

Chosen models and evaluation

RESULTS AND ANALYSIS

Comparison of results between models

CONCLUSION

Final Thoughts

This project represents our first significant experience with machine learning, focusing on the prediction of academic outcomes for higher education students.

OVERVIEW

Dataset: 4,425 Portuguese students with 35 attributes (demographic, socioeconomic, and academic)

Goal: to early identify students at risk of dropping out of school.

DATA CLASSES

49.92% (2209 32.11% (1421

GRADUATED • DROPOUT

17.94% (794)

ENROLLED

02

OBJECTIVES

Goals and State of Art

OBJECTIVES

DETECTION

Transform reactive approaches into proactive ones – early detection of academic risk

ML Analysis

Exploratory analysis, comparison of ML algorithms, identification of influential factors

Evolution from statistical methods to deep learning (78–91% accuracy)

MODEL SELECTION

Chosen models and evaluation

MODEL SELECTION

Logistic Regression

Random Forest

Neural Network

RESULTS (LOGISTIC REGRESSION)

Metric	Train	Test
Accuracy	0.7764	0.7597
F1 Score	0.7764	0.7609
Precision	0.7648	
Recall	0.7597	

- Consistency
- No overfitting

RESULTS (RANDOM FOREST)

Metric	Train	Test
Accuracy	1.0000	0.8250
F1 Score	1.0000	0.8254
Precision	0.8287	
Recall	0.8250	

- Best absolut performance
- Overfitting

RESULTS (NEURAL NETWORKS)

Metric	Train	Test
Accuracy	0.9871	0.7697
F1 Score	0.9871	0.7698
Precision	0.7700	
Recall	0.7697	

- Mid performance
- Overfitting

TOP 15 FEATURES

LOGISTIC REGRESSION

RANDOM FOREST

NEURAL NETWORKS

RESULTS (TOP 10 FEATURES)

Metric	Train	Test
Accuracy	0.7559	0.7446
F1 Score	0.7554	0.7445
Precision	0.7448	
Recall	0.7446	

Accuracy 0.7930 0.7300 F1 Score 0.7933 0.7317 Precision 0.7384 Recall 0.7300

NEURAL NETWORKS

Train

Test

Metric

LOGISTIC REGRESSION

Metric	Train	Test
Accuracy	1.0000	0.7964
F1 Score	1.0000	0.7975
Precision	0.8017	
Recall	0.7964	

RANDOM FOREST

RESULTS (TUNING HYPER-PARAMETERS)

Hyperparameter	Values Tested ['lbfgs', 'saga']		
solver			
max_iter	[5000]		
C	[0.01, 0.1, 1, 10]		
class_weight	[None, 'balanced']		
penalty	['12']		

Metric	Train	Test
Accuracy	0.7768	0.7617
F1 Score	0.7768	0.7628
Precision	0.7664	
Recall	0.7617	

LOGISTIC REGRESSION

Hyperparameter	values Tested	
hidden_layer_sizes	[(50,), (100,), (50,30)]	
activation	['relu', 'tanh']	
alpha	[0.0001, 0.001]	
learning_rate_init	[0.001, 0.01]	

Hyperparameter	Values Tested	
n_estimators [100, 150]		
max_depth	[10, 20, None]	
min_samples_split	[2, 5]	
min_samples_leaf	[1, 2, 4]	

Metric	Train	Test
Accuracy	1.0000	0.8321
F1 Score	1.0000	0.8324
Precision	0.8353	
Recall	0.8321	

RANDOM FOREST

Metric	Train	Test
Accuracy	0.9646	0.7853
F1 Score	0.9646	0.7857
Precision	0.7865	
Recall	0.7853	

NEURAL NETWORKS

RESULTS (TUNING HYPER-PARAMETERS)

RESULTS (BINARY SYSTEM)

Metric	Logistic Regression	Random Forest	MLP Classifier
	T	rain	
Accuracy	0.9196	1.0000	1.0000
F1 Score	0.9196	1.0000	1.0000
		Fest	111 5 11 111
Accuracy	0.9095	0.9061	0.8959
F1 Score	0.9094	0.9059	0.8959
Precision	0.9117	0.9090	0.8962
Recall	0.9095	0.9061	0.8959

