Orthogonal Projections

Learning Objectives:

- 1. Calculate the orthogonal projection of a vector onto a subspace.
- 2. Interpret the orthogonal projection geometrically.

1 Orthogonal projections to lines

Take-away: Given vectors \mathbf{y} and \mathbf{u} , the projection of \mathbf{y} onto \mathbf{u} is the point on the line spanned by \mathbf{u} , called L, that is closest to \mathbf{y} . We have

$$\hat{\mathbf{y}} = \text{proj}_L(\mathbf{y}) = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u},$$

and the orthogonal component \mathbf{z} is $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Example 1. Let $\mathbf{y} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$. Find the projection of \mathbf{y} onto \mathbf{u} and the orthogonal component $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

2 Orthogonal projection to more general subspaces

Our previous discussion can generalize quite nicely to other subspaces!

Example 2. Suppose that W is a plane in \mathbb{R}^3 spanned by the orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$. If $\mathbf{y} \in \mathbb{R}^3$, then write the orthogonal projection of \mathbf{y} onto the space W.

Theorem: (The Orthogonal Decomposition Theorem) Let W be a subspace of \mathbb{R}^n . Then each $\mathbf{y} \in \mathbb{R}^n$ can be written

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$. In fact, letting $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be any orthogonal basis of W then

$$\hat{\mathbf{y}} =$$

and z =

Example 3. Let $\mathbf{u}_1 = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Then, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. Letting $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, find the distance from \mathbf{y} to W.

Example 4. T/F: If W has orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ and \mathbf{z} is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2 , then $\mathbf{z} \in W^{\perp}$.

Example 5. Confirm that if $W \subseteq \mathbb{R}^n$ has orthogonal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ and $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ with $\hat{\mathbf{y}} \in W$ the orthogonal projection, then $\mathbf{z} \in W^{\perp}$.