Egzamin Fortran

Spis treści

1	Opr	Opracowanie zagadnień				
	$1.\bar{1}$	Reguły zapisu instrukcji w Fortranie77	3			
	1.2	Postacie stałej rzeczywistej. Podać przykłady	3			
	1.3	Postać stałej podwójnej precyzji. Podać przykłady	3			
	1.4	Na czym polega reguła pierwszej litery	3			
	1.5	Podać przykład zastosowania dyrektywy IMPLICIT	3			
	1.6	Co musi wystąpić po dyrektywie IMPLICIT NONE?	3			
	1.7	Sposoby deklaracji wymiaru i rozmiaru tablicy (zmiennej indeksowanej).				
		Jaki jest maksymalny wymiar tablicy?	4			
	1.8	Jaka jest różnica między funkcjami wewnętrznymi ATAN i ATAN2?	4			
	1.9	Wymień operatory arytmetyczne i kolejność ich wykonywania	4			
	1.10	Wymień operatory relacji	4			
	1.11	Wymień operatory logiczne	4			
	1.12	Podaj typ wyniku i jego wartość: $2/4$, $2./4$, $2d0/4$, $5/2$, $2./5$	5			
		Podaj postać bezwarunkowej instrukcji skoku	5			
	1.14	Podaj postać instrukcji warunkowej prostej	5			
	1.15	Podaj postać blokowej instrukcji warunkowej	5			
		Podaj postać instrukcji warunkowej złożonej	5			
	1.17	Podaj postać arytmetycznej instrukcji warunkowej	6			
	1.18	Podaj postać instrukcji cyklu	6			
	1.19	Co to jest urządzenie standardowe? Podaj postać instrukcji czytania da-				
		nych z urządzenia standardowego	6			
	1.20	Podaj postać instrukcji pisania wartości tablicy jednowymiarowej z wyko-				
		rzystaniem listy cyklu (DO implikowanego)	6			
	1.21	Podaj postać arytmetycznej instrukcji warunkowej	6			
	1.22	W jaki sposób przekazywane są parametry wejściowe do segmentu function	7			
	1.23	Ile watrości może być wyznaczonych w segmencie function i jak są zwracane				
		do modułu nadrzędnego	7			
	1.24	W jaki sposób przekazywane są parametry wejściowe do procedury subroutine	7			
	1.25	Ile wartości może być wyznaczonych w procedurze subroutine i jak są zwra-				
		cane do modułu nadrzędnego	8			
	1.26	W jaki sposób wartości zmiennych określone w jednym segmencie mogą				
		być dostępne w innym module	8			
	1.27	Podaj postać deklaracji COMMON	8			
	1.28	W różnych segmentach może wystąpić deklaracja COMMON o tej samej				
		nazwie. Co można powiedzieć o zmiennych wyszczególnionych w tych de-				
		klaracjach	8			
	1.29	Jaki jest cel stosowania segmentu BLOCK DATA	9			
	1.30	Podać postać i cel stosowania instrukcji INCLUDE	9			

1 Opracowanie zagadnień

1.1 Reguły zapisu instrukcji w Fortranie77

- Kolumna 1 : znak C, c lub * oznacza linię komentarza i nie mają wpływu na wykonanie programu. Komentarze można umieszczać także po 72 kolumnie lub na prawo od znaku!
- Kolumny 1-5 : etykieta (ciąg maksymalnie pięciu cyfr, co najmniej jedna niezerowa; umożliwia odwołanie się do etykietowanej linii w programie)
- Kolumna 6 : dowolny znak (różny od zera i spacji) oznacza kontynuację poprzedniej linii. jedna instrukcja może składać się maksymalnie z 20. linii (wierszy)
- Kolumny 7-72 : instrukcje FORTRANu

1.2 Postacie stałej rzeczywistej. Podać przykłady

```
<sup>1</sup> REAL :: x ! 12.0, -.3, 1.35E-1
```

Listing 1: dyrektywa implicit

1.3 Postać stałej podwójnej precyzji. Podać przykłady

```
double precision :: foo !3.54D0, 35.4D-1
Listing 2: dyrektywa implicit
```

1.4 Na czym polega reguła pierwszej litery

Jeśli zmienna nie zostanie zadeklarowana to Fortran
77 przyjmie regułę pierwszej litery w nazwie.

- $\bullet\,$ Zmienna o nazwie zaczynające się od i, j, k, l, m, n
 zostaje automatycznie przypisana do typu INTEGER
- pozostałe do typu REAL.

1.5 Podać przykład zastosowania dyrektywy IMPLICIT

```
program test
implicit none
integer :: a, b, c

...
end program
```

Listing 3: dyrektywa implicit

1.6 Co musi wystąpić po dyrektywie IMPLICIT NONE?

Deklaracja stałych (anuluje regułę pierwszej litery (1.4))

1.7 Sposoby deklaracji wymiaru i rozmiaru tablicy (zmiennej indeksowanej). Jaki jest maksymalny wymiar tablicy?

Maksymalny 7-wymiarowa tablica.

- TYP <nazwa> DIMENSION <nazwa>(n1:m1,n2:m2)
- TYP <nazwa>(n1:m1,n2:m2)

1.8 Jaka jest różnica między funkcjami wewnętrznymi ATAN i ATAN2?

- ATAN(x) arctg w radianach
- ATAN2(x,y) x,y-wspł. wektora, wynik w radianach

1.9 Wymień operatory arytmetyczne i kolejność ich wykonywania

Zgodnie z priorytetem(jeśli równoważne to od prawej strony):

- potęgowanie A**B"
- mnożenie A*B", dzielenie A/B"
- dodawanie, odejmowanie

1.10 Wymień operatory relacji

- .LT.
- .LE.
- .EQ.
- .NE.
- .GE.
- .GT.

1.11 Wymień operatory logiczne

- .NOT.
- .AND.
- .OR.
- .EQV.

- .EQV. rownoważność
- .NEQV.

a	b	.NOT.a	a.AND.b	a.OR.b	a.EQV.b	a.NEQV.b
T	T	F	Т	Т	T	F
T	F	F	F	Т	F	T
F	Т	Т	F	Т	F	T
F	F	Т	F	F	T	F

1.12 Podaj typ wyniku i jego wartość: 2/4, 2./4, 2d0/4, 5/2, 2./5

2/4=0, 2./4=0.500000000, d20/4=0.500000000000000, 5/2=2, 2.5=0.400000006

1.13 Podaj postać bezwarunkowej instrukcji skoku

GO TO <etykieta>

Listing 4: cos

1.14 Podaj postać instrukcji warunkowej prostej

IF (wyrazenie logicze) instrukcja

```
if (foo.LE.2) bar=2
```

Listing 5: cos

1.15 Podaj postać blokowej instrukcji warunkowej

```
1 IF ( wyrazenie logiczne ) THEN
2 ...
3 ...
4 END IF
```

Listing 6: cos

1.16 Podaj postać instrukcji warunkowej złożonej

```
IF ( wyrazenie logiczne ) THEN

LUSE IF (warunek) THEN

LUSE

ELSE

...
```

7 END IF

Listing 7: cos

1.17 Podaj postać arytmetycznej instrukcji warunkowej

Listing 8: cos

1.18 Podaj postać instrukcji cyklu

```
1 DO iterator=start, stop, step
2 ...
3 ...
4 END DO
```

Listing 9: cos

1.19 Co to jest urządzenie standardowe? Podaj postać instrukcji czytania danych z urządzenia standardowego

urzadzenie wejscia-wyjscia umozliwiające komunikację między programem a srodowiskiem zewnętrznym(dysk, ekran ...)

```
open(10, file="cache.txt", status="old")
read(10,*) foo
close(10)
```

Listing 10: cos

1.20 Podaj postać instrukcji pisania wartości tablicy jednowymiarowej z wykorzystaniem listy cyklu (DO implikowanego)

```
program X
dimension T(3)
do j=1,3
T(j) = float(j**2)
write(*,*) T(j)
do i=1,2
end do
end program
```

Listing 11: cos

1.21 Podaj postać arytmetycznej instrukcji warunkowej

IF(wyrażenie arytmetyczne) etyk1, etyk2, etyk3

```
Przekierowanie obliczeń do instrukcji oznaczonej odpowiednią etykietą następuje, gdy: wyrażenie arytmetyczne<0 -> etyk1 wyrażenie arytmetyczne=0 -> etyk2 wyrażenie arytmetyczne>0 -> etyk3
```

przykład:

```
if(delta) 10,20,30
10 print *,'brak rozwiazań'
go to 100
20 print*,'jedno rozwiązanie'
go to 100
30 print *,'dwa rozwiązania'
go to 100
100 continue
```

1.22 W jaki sposób przekazywane są parametry wejściowe do segmentu function

-podprogram może być wykonywany z danej jednostki programowej wielokrotnie z różnym zestawem danych.

-funkcja jest wywoływana poprzez podanie jej nazwy wraz z listą parametrów aktualnych ujętych w nawiasy okrągłe.

```
postac:
```

zmienna=nazwa(lista parametrów aktualnych)

1.23 Ile watrości może być wyznaczonych w segmencie function i jak są zwracane do modułu nadrzędnego

-w segmencie function może być wyznaczony jeden element.

postać:

```
typ function nazwa (lista parametrów formalnych) deklaracje część wykonawcza nazwa=zwracana wartość return end
```

-instrukcja return powoduje zakończenie wykonywania programu i przekazania sterowania do segmentu z, którego następuje jej wywołanie.

1.24 W jaki sposób przekazywane są parametry wejściowe do procedury subroutine

Procedura wywoływana jest w następujący sposób: call nazwa(lista parametrów aktualnych) gdzie parametry aktualne to parametry wejściowe.

1.25 Ile wartości może być wyznaczonych w procedurze subroutine i jak są zwracane do modułu nadrzędnego

-procedura pozwala na zwracanie większej liczby wartości niż jedna.

-procedura nie ma określonego typu.

ogólna postać: subroutine nazwa (lista parametrów formalnych) deklaracje część wykonawcza return end

instrukcja return powoduje zakończenie wykonywania programu i przekazania sterowania do segmentu z, którego następuje jej wywołanie.

1.26 W jaki sposób wartości zmiennych określone w jednym segmencie mogą być dostępne w innym module

-takie zmienne można uwspólnić poprzez umieszczenie ich na liście obszarów wspólnych.

-obszar ten musi pojawić się w części deklaracyjnej segmentów, pomiędzy którymi są uwspólnione umieszczane w nim zmienne.

1.27 Podaj postać deklaracji COMMON

common /nazwa/ zmienna1, zmienna2

-zmienne mogą być proste lub tablicowe.

jeden obszar może być bez nazwy.

nazwy zmiennych mogą być inne taka sama musi być naza obszaru wspólnego i jego długość.

1.28 W różnych segmentach może wystąpić deklaracja COM-MON o tej samej nazwie. Co można powiedzieć o zmiennych wyszczególnionych w tych deklaracjach

- Jeżeli nazwy zmiennych są inne ale nazwa obszaru wspólnego i jego długość jest taka sama, to zmienne o tej samej liczbie porządkowej są sobie równoważne.

1.29 Jaki jest cel stosowania segmentu BLOCK DATA

-Poprzez segment block data mogą być wprowadzane dane do programu.

-segment ten służy do nadawania wartości początkowych zmiennym umieszczonym w obszarach wspólnych.

struktura:

BLOCK DATA nazwa common /nazwa obszaru/ X,Y,I(10) data x,y,I /0.0,5.92,4*3,6*0/ end

1.30 Podać postać i cel stosowania instrukcji INCLUDE

postać: include 'nazwa pliku'

cel: służy do dołączenia do pliku fortranowskiego innego pliku zawierającego procedury, funkcję czy bloki danych.

Spis rysunków

Kod źródłowy

1	dyrektywa implicit	3
2	dyrektywa implicit	3
3	dyrektywa implicit	3
4	cos	5
5	cos	5
6	cos	5
7	cos	5
8	cos	6
9	cos	6
10	cos	6
11	30S	6