Linear Dependence

Quick Example

$$[2,3,4] = [1,1,1] + [1,2,3]$$

$$v_1 \rightarrow = \lambda_2 v_2 \rightarrow + \lambda_3 v_3 \rightarrow$$

Then v_{1} is linearly dependent on v_{2} and v_{3}

Definition of Linear Independence

 $[v_1; \dots v_k]$

If
$$a_1 v_1 + \ldots + a_k v_k = 0 \implies a_1 = \ldots = a_k = 0$$

Then $[v_1, \dots v_k]$ is linearly independent

Quickly Finding Linear Independence

Vectors = v_1 ; v_2 ; ..., v_k

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

$$V = \begin{bmatrix} V_2 \\ V_k \end{bmatrix}$$

EROs to REF

Every column has a pivot \Rightarrow linearly independent Otherwise \Rightarrow linearly dependent

Example

$$\operatorname{span}\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \end{bmatrix}\right\} = \operatorname{span}\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right\}$$

Since the last two can be expressed as a combination of the first two

Linear Dependence