Recognizing Pseudo-Anosov Braids in $\operatorname{Out}(W_n)$

Rylee Lyman, Tufts University

Tech Topology IX, Dec 7 2019

What is $Out(W_n)$?

The free Coxeter group of rank n:

$$W_n = (\mathbb{Z}/2\mathbb{Z})^{*n} = \langle a_1, \dots, a_n \mid a_i^2 = 1 \rangle.$$

What is $Out(W_n)$?

The free Coxeter group of rank *n*:

$$W_n = (\mathbb{Z}/2\mathbb{Z})^{*n} = \langle a_1, \dots, a_n \mid a_i^2 = 1 \rangle.$$

As usual,

$$\operatorname{Out}(W_n) = \operatorname{Aut}(W_n) / \operatorname{Inn}(W_n).$$

What is $Out(W_n)$?

The free Coxeter group of rank n:

$$W_n = (\mathbb{Z}/2\mathbb{Z})^{*n} = \langle a_1, \dots, a_n \mid a_i^2 = 1 \rangle.$$

As usual,

$$\operatorname{Out}(W_n) = \operatorname{Aut}(W_n) / \operatorname{Inn}(W_n).$$

"Nielsen-like" generators:

$$\tau_{ij} \begin{cases} a_i \mapsto a_j \\ a_j \mapsto a_i \\ a_k \mapsto a_k \quad k \neq i, j \end{cases} \qquad \chi_{ij} \begin{cases} a_j \mapsto a_i a_j a_i \\ a_k \mapsto a_k \quad k \neq j. \end{cases}$$

A Classification Theorem

Theorem (L, '19)

Every outer automorphism $\varphi \in \operatorname{Out}(W_n)$ may be represented by a homotopy equivalence $f\colon G \to G$ of a W_n -orbigraph with special properties called a **relative train track map**. If φ is (fully) **irreducible**, the special homotopy equivalence is nicer and is called a **train track map**.

A Classification Theorem

Theorem (L, '19)

Every outer automorphism $\varphi \in \operatorname{Out}(W_n)$ may be represented by a homotopy equivalence $f\colon G \to G$ of a W_n -orbigraph with special properties called a **relative train track map**. If φ is (fully) **irreducible**, the special homotopy equivalence is nicer and is called a **train track map**.

Builds on work of Bestvina, Feighn and Handel for $Out(F_n)$.

A Train Track Map

A homotopy equivalence $f\colon G\to G$ is a **train track map** when for each edge $e\in G$, the kth iterate $f^k|_e$ is an immersion for all $k\geq 1$.

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

Theorem (Bestvina-Handel '92, Brinkmann '99)

If $\varphi \in \operatorname{Out}(F_n)$ is fully irreducible, it is either **hyperbolic** or φ^k can be represented as a pseudo-Anosov homeomorphism of a surface with one boundary component for some $k \geq 1$.

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

Theorem (Bestvina-Handel '92, Brinkmann '99)

If $\varphi \in \operatorname{Out}(F_n)$ is fully irreducible, it is either **hyperbolic** or φ^k can be represented as a pseudo-Anosov homeomorphism of a surface with one boundary component for some $k \geq 1$.

Braid group is to mapping class group as $\operatorname{Out}(W_n)$ is to $\operatorname{Out}(F_n)$.

Pseudo-Anosov mapping class is to Pseudo-Anosov homeomorphism as fully irreducible outer automorphism is to train track map.

Theorem (Bestvina-Handel '92, Brinkmann '99)

If $\varphi \in \operatorname{Out}(F_n)$ is fully irreducible, it is either **hyperbolic** or φ^k can be represented as a pseudo-Anosov homeomorphism of a surface with one boundary component for some $k \geq 1$.

Braid group is to mapping class group as $\operatorname{Out}(W_n)$ is to $\operatorname{Out}(F_n)$.

Theorem (L, In Progress)

If $\varphi \in \operatorname{Out}(W_n)$ is fully irreducible, it is either **hyperbolic** or φ^k can be represented as a pseudo-Anosov braid on an orbifold with one boundary component with orbifold fundamental group W_n for some $k \geq 1$.

Braids As Mapping Classes

Following A Curve

The Example

