

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Integer Multiplikation

- Problem: Multipliziere zwei n-Bit Integer
- Eingabe: Zwei n-Bit Integer X, Y
- Ausgabe: 2n-Bit Integer Z mit Z = XY

Annahmen:

- Wir können n-Bit Integer in $\Theta(n)$ (worst case) Zeit addieren
- Wir können n-Bit Integer in $\Theta(n+k)$ (worst case) Zeit mit 2^k multiplizieren

Laufzeit Schulmethode

- n Multiplikationen mit 2^k für ein $k \le n$
- n-1 Additionen im worst-case:

11...111 · 11...111

$$n$$
-Bit n -Bit

- Jede Addition $\Theta(n)$ Zeit
- Insgesamt $\Theta(n^2)$ Laufzeit

Laufzeit Schulmethode

- n Multiplikationen mit 2^k für ein $k \le n$
- n-1 Additionen im worst-case:

- Jede Addition $\Theta(n)$ Zeit
- Insgesamt $\Theta(n^2)$ Laufzeit

Bessere Laufzeit mit Teile & Herrsche?

Integer Multiplikation

A B • C D

Beispiel Multiplikation Schulmethode

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

• (und T(1) = const)

(n Zweierpotenz)

Laufzeit einfaches Teile & Herrsche

$$T(n) \le \begin{cases} 4 T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \end{cases}$$

c geeignete Konstante

Welche bestmögliche Laufzeit ergibt sich?

- A) O(n)
- B) $\mathbf{O}(n \log n)$
- C) $O(n^2)$
- D) $O(n^2 \log n)$

Laufzeit einfaches Teile & Herrsche

$$T(n) \le \begin{cases} 4 \ T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \end{cases}$$
 c geeignete Konstante

n

cn

Laufzeit einfaches Teile & Herrsche

$$T(n) \le egin{cases} 4 \ T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 & \text{c geeignete Konstante} \end{cases}$$

Laufzeit einfaches Teile & Herrsche

$$T(n) \le egin{cases} 4 \ T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 & \text{c geeignete Konstante} \end{cases}$$

Laufzeit einfaches Teile & Herrsche

$$T(n) \leq \begin{cases} 4 \ T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \ \text{ c geeignete Konstante} \end{cases}$$

Höhe des Baums: $h = \log n$

Laufzeit einfaches Teile & Herrsche

$$T(n) \leq \begin{cases} 4 \ T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \ \text{ c geeignete Konstante} \end{cases}$$

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis

• Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. Wir zeigen $T(n) \leq cn^2$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. Wir zeigen $T(n) \leq cn^2$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 1-Bit Zahlen ist höchstens c.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. Wir zeigen $T(n) \leq cn^2$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 1-Bit Zahlen ist h\u00f6chstens c.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $c \cdot m^2$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. Wir zeigen $T(n) \leq cn^2$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 1-Bit Zahlen ist h\u00f6chstens c.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $c \cdot m^2$.
- (I.S.) Betrachte eine Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz). Es gilt $T(n) \le 4 T(n/2) + cn$. Nach (I.V.) gilt dann $T(n) \le 4c(n/2)^2 + cn = cn^2 + cn$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. Wir zeigen $T(n) \leq cn^2$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 1-Bit Zahlen ist h\u00f6chstens c.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $c \cdot m^2$.
- (I.S.) Betrachte eine Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz). Es gilt $T(n) \le 4 T(n/2) + cn$. Nach (I.V.) gilt dann $T(n) \le 4c(n/2)^2 + cn$

Funktioniert nicht!!!!!

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis (neuer Versuch)

• Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. O.b.d.A. sei $c \ge T(2)$. Wir zeigen $T(n) \le cn^2 - cn$.

Trick: Die Funktion etwas verkleinern!!

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. O.b.d.A. sei $c \ge T(2)$. Wir zeigen $T(n) \le cn^2 cn$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 2-Bit Zahlen ist höchstens $T(2) \le c \le 2c$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. O.b.d.A. sei $c \ge T(2)$. Wir zeigen $T(n) \le cn^2 cn$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 2-Bit Zahlen ist höchstens $T(2) \le c \le 2c$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $cm^2 cm$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. O.b.d.A. sei $c \ge T(2)$. Wir zeigen $T(n) \le cn^2 cn$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 2-Bit Zahlen ist höchstens $T(2) \le c \le 2c$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $cm^2 cm$.
- (I.S.) Betrachte eine Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz). Es gilt $T(n) \le 4T(n/2) + cn$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

Beweis (neuer Versuch)

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. O.b.d.A. sei $c \ge T(2)$. Wir zeigen $T(n) \le cn^2 cn$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 2-Bit Zahlen ist höchstens $T(2) \le c \le 2c$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $cm^2 cm$.
- (I.S.) Betrachte eine Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz). Es gilt $T(n) \le 4T(n/2) + cn$.

Nach (I.V.) gilt dann $T(n) \le 4c(n/2)^2 - 4c(n/2) + cn = cn^2 - cn$.

Satz 8

Die Multiplikation zweier n-Bit Zahlen mit dem einfachen Teile & Herrsche Verfahren hat Laufzeit $\mathbf{O}(n^2)$.

- Wir nehmen an, dass n eine Zweierpotenz ist. Induktion über n. O.b.d.A. sei $c \ge T(2)$. Wir zeigen $T(n) \le cn^2 cn$.
- (I.A.) Die Laufzeit zur Multiplikation von zwei 2-Bit Zahlen ist höchstens $T(2) \le c \le 2c$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit zur Multiplikation von zwei m-Bit Zahlen $cm^2 cm$.
- (I.S.) Betrachte eine Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz).
 Es gilt T(n) ≤ 4T(n/2) + cn.
 Nach (I.V.) gilt dann T(n) ≤ 4c(n/2)² 4c(n/2) + cn = cn² cn.

Verbesserte Integer Multiplikation

Verbesserte Integer Multiplikation

Verbesserte Integer Multiplikation

Beispiel Schnelle Multiplikation

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

• (und T(1) = const)

(n Zweierpotenz)

Aufwand verbesserte Integer Multiplikation

- 3 Multiplikationen der Länge n/2
- [AC, BD, (A+B) (C+D)]
- Konstant viele Additionen und Multiplikationen mit Zweierpotenzen

Laufzeit

$$T(n) = \begin{cases} 3T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \end{cases}$$
, falls $n = 1$ c geeignete Konstante

Aufwand verbesserte Integer Multiplikation

- 3 Multiplikationen der Länge n/2
- [AC, BD, (A+B) (C+D)]
- Konstant viele Additionen und Multiplikation

Die Multiplikation (A+B)(C+D) ist eigentlich eine Multiplikation zweier Zahlen mit n/2 + 1 Bits. Diese kann aber in $\mathbf{O}(n)$ Zeit auf eine Multiplikation von zwei Zahlen mit n/2 Bits zurückgeführt werden.

Laufzeit

$$T(n) = \begin{cases} 3T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \end{cases}$$
, falls $n = 1$ c geeignete Konstante

Laufzeit verbesserte Integer Multiplikation

$$T(n) = \begin{cases} 3T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \end{cases}$$
, falls $n = 1$ c geeignete Konstante

Höhe des Baums: $h = \log n$

Laufzeit verbesserte Integer Multiplikation

$$T(n) = \begin{cases} 3T(n/2) + cn & \text{, falls } n > 1 \\ c & \text{, falls } n = 1 \end{cases}$$
, falls $n = 1$ c geeignete Konstante

Satz 9

Die Laufzeit der verbesserten Integer Multiplikation ist $O(3^{\log n}) = O(n^{\log 3})$.

Beweis

Wir zeigen den Satz nur, wenn n eine Zweierpotenz ist.

Satz 9

Die Laufzeit der verbesserten Integer Multiplikation ist $O(3^{\log n}) = O(n^{\log 3})$.

- Wir zeigen den Satz nur, wenn n eine Zweierpotenz ist.
- Induktion über n. Sei $T(4) \le c$. Wir zeigen $T(n) \le c \cdot 3^{\log n} 2cn$.

Satz 9

Die Laufzeit der verbesserten Integer Multiplikation ist $O(3^{\log n}) = O(n^{\log 3})$.

- Wir zeigen den Satz nur, wenn n eine Zweierpotenz ist.
- Induktion über n. Sei $T(4) \le c$. Wir zeigen $T(n) \le c \cdot 3^{\log n} 2cn$.
- (I.A.) Es gilt $T(4) \le c = c \cdot 3^{\log 4} 2 \cdot c \cdot 4$.

Satz 9

Die Laufzeit der verbesserten Integer Multiplikation ist $O(3^{\log n}) = O(n^{\log 3})$.

- Wir zeigen den Satz nur, wenn n eine Zweierpotenz ist.
- Induktion über n. Sei $T(4) \le c$. Wir zeigen $T(n) \le c \cdot 3^{\log n} 2cn$.
- (I.A.) Es gilt $T(4) \le c = c \cdot 3^{\log 4} 2 \cdot c \cdot 4$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit für die Multiplikation zweier m-Bit Zahlen höchstens c $3^{\log m} 2cm$.

Satz 9

Die Laufzeit der verbesserten Integer Multiplikation ist $\mathbf{0}(3^{\log n}) = \mathbf{0}(n^{\log 3})$.

- Wir zeigen den Satz nur, wenn n eine Zweierpotenz ist.
- Induktion über n. Sei $T(4) \le c$. Wir zeigen $T(n) \le c \cdot 3^{\log n} 2cn$.
- (I.A.) Es gilt $T(4) \le c = c \cdot 3^{\log 4} 2 \cdot c \cdot 4$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit für die Multiplikation zweier m-Bit Zahlen höchstens c $3^{\log m} 2cm$.
- (I.S.) Betrachte die Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz). Es gilt $T(n) = 3T(n/2) + cn \le c \cdot 3^{\log n} 6c (n/2) + cn = c \cdot 3^{\log n} 2cn$.

Satz 9

Die Laufzeit der verbesserten Integer Multiplikation ist $O(3^{\log n}) = O(n^{\log 3})$.

- Wir zeigen den Satz nur, wenn n eine Zweierpotenz ist.
- Induktion über n. Sei $T(4) \le c$. Wir zeigen $T(n) \le c \cdot 3^{\log n} 2cn$.
- (I.A.) Es gilt $T(4) \le c = c \cdot 3^{\log 4} 2 \cdot c \cdot 4$.
- (I.V.) Für jedes m < n, m Zweierpotenz, ist die Laufzeit für die Multiplikation zweier m-Bit Zahlen höchstens c $3^{\log m} 2cm$.
- (I.S.) Betrachte die Multiplikation von zwei n-Bit Zahlen (n Zweierpotenz). Es gilt $T(n) = 3T(n/2) + cn \le c \cdot 3^{\log n} 6c (n/2) + cn = c \cdot 3^{\log n} 2cn$.

Satz 10

Zwei n-Bit Integer Zahlen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{1.59})$ worst case Laufzeit multipliziert werden.

Beweis

■ Die Laufzeit folgt aus Satz 9 wegen $1.59 \ge \log 3$. Korrektheit zeigen wir per Induktion über n.

Satz 10

• Zwei n-Bit Integer Zahlen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{1.59})$ worst case Laufzeit multipliziert werden.

- Die Laufzeit folgt aus Satz 9 wegen $1.59 \ge \log 3$. Korrektheit zeigen wir per Induktion über n.
- (I.A.) Die Multiplikation zweier 1-Bit Zahlen wird vom Rechner korrekt ausgeführt.

Satz 10

Zwei n-Bit Integer Zahlen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{1.59})$ worst case Laufzeit multipliziert werden.

- Die Laufzeit folgt aus Satz 9 wegen $1.59 \ge \log 3$. Korrektheit zeigen wir per Induktion über n.
- (I.A.) Die Multiplikation zweier 1-Bit Zahlen wird vom Rechner korrekt ausgeführt.
- (I.V.) Die Multiplikation zweier m-Bit Zahlen für m < n ist korrekt.

Satz 10

• Zwei n-Bit Integer Zahlen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{1.59})$ worst case Laufzeit multipliziert werden.

- Die Laufzeit folgt aus Satz 9 wegen $1.59 \ge \log 3$. Korrektheit zeigen wir per Induktion über n.
- (I.A.) Die Multiplikation zweier 1-Bit Zahlen wird vom Rechner korrekt ausgeführt.
- (I.V.) Die Multiplikation zweier m-Bit Zahlen für m < n ist korrekt.
- (I.S.) Nach (I.V.) werden die Produkte AC, BD, (A + B)(C + D) korrekt berechnet.

Satz 10

Zwei n-Bit Integer Zahlen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{1.59})$ worst case Laufzeit multipliziert werden.

- Die Laufzeit folgt aus Satz 9 wegen $1.59 \ge \log 3$. Korrektheit zeigen wir per Induktion über n.
- (I.A.) Die Multiplikation zweier 1-Bit Zahlen wird vom Rechner korrekt ausgeführt.
- (I.V.) Die Multiplikation zweier m-Bit Zahlen für m < n ist korrekt.
- (I.S.) Nach (I.V.) werden die Produkte AC, BD, (A + B)(C + D) korrekt berechnet. Damit folgt die Korrektheit des Algorithmus wegen (A + B)(C + D) AC BD = BC + AD und aufgrund unserer Vorüberlegungen.

Satz 10

Zwei n-Bit Integer Zahlen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{1.59})$ worst case Laufzeit multipliziert werden.

- Die Laufzeit folgt aus Satz 9 wegen $1.59 \ge \log 3$. Korrektheit zeigen wir per Induktion über n.
- (I.A.) Die Multiplikation zweier 1-Bit Zahlen wird vom Rechner korrekt ausgeführt.
- (I.V.) Die Multiplikation zweier m-Bit Zahlen für m < n ist korrekt.
- (I.S.) Nach (I.V.) werden die Produkte AC, BD, (A + B)(C + D) korrekt berechnet. Damit folgt die Korrektheit des Algorithmus wegen (A + B)(C + D) AC BD = BC + AD und aufgrund unserer Vorüberlegungen.

Matrixmultiplikation

5	0	0	3
1	1	1	1
2	3	0	4
0	0	1	1

Zeile x Spalte

$$5 \cdot 1 + 0 \cdot 7 + 0 \cdot 0 + 3 \cdot 2 = 11$$

Matrixmultiplikation

			_
5	0	0	3
1	1	1	1
2	3	0	4
0	0	1	1
_			

Zeile x Spalte

$$5 \cdot 2 + 0 \cdot 2 + 0 \cdot 1 + 3 \cdot 0 = 10$$

5	0	0	3
1	1	1	1
2	3	0	4
0	0	1	1

5	0	0	3
1	1	1	1
2	3	0	4
0	0	1	1

Matrixmultiplikation

• Problem: Berechne das Produkt zweier $n \times n$ -Matrizen

Eingabe: Matrizen X, Y

• Ausgabe: Matrix $Z = X \cdot Y$

$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\ x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\ x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\ x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} \end{pmatrix} \bullet \begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} & y_{1,4} \\ y_{2,1} & y_{2,2} & y_{2,3} & y_{2,4} \\ y_{3,1} & y_{3,2} & y_{3,3} & y_{3,4} \\ y_{4,1} & y_{4,2} & y_{4,3} & y_{4,4} \end{pmatrix} = \begin{pmatrix} z_{1,1} & z_{1,2} & z_{1,3} & z_{1,4} \\ z_{2,1} & z_{2,2} & z_{2,3} & z_{2,4} \\ z_{3,1} & z_{3,2} & z_{3,3} & z_{3,4} \\ z_{4,1} & z_{4,2} & z_{4,3} & z_{4,4} \end{pmatrix}$$

```
1. \boxed{\text{new array } Z[1..n][1..n]}
2. \boxed{\text{for } i \leftarrow 1 \text{ to } n \text{ do}}
```

- 3. **for** $j \leftarrow 1$ **to** n **do**
- 4. $Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

MatrixMultiplikation(Array X, Y, n)

```
1. new array Z[1..n][1..n]
```

```
2. for i \leftarrow 1 to n do
```

3. **for**
$$j \leftarrow 1$$
 to n **do**

4.
$$Z[i][j] \leftarrow 0$$

5. **for**
$$k \leftarrow 1$$
 to n **do**

6.
$$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$$

7. return Z

- 1. **new** array Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- $4. Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

- 1. **new** array Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- $4. |Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

- 1. **new** array Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- 4. $Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

- 1. **new** array Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- 4. $Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

- 1. **new** array Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- 4. $Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. $| \mathbf{return} Z |$

MatrixMultiplikation(Array X, Y, n)

Laufzeit

- 1. **new array** Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- 4. $Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

MatrixMultiplikation(Array X, Y, n)

- 1. **new** array Z[1..n][1..n]
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. **for** $j \leftarrow 1$ **to** n **do**
- 4. $Z[i][j] \leftarrow 0$
- 5. **for** $k \leftarrow 1$ **to** n **do**
- 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$
- 7. return Z

Laufzeit

 $0(n^2)$

Ausnahme (Rechenmodell):

Dynamische Initialisierung
eines Feldes benötigt Zeit
proportional zur Größe des
Feldes

MatrixMultiplikation(Array X, Y, n)

1. $\mathbf{new} \ \mathbf{array} \ Z[1..n][1..n]$ 2. $\mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do}$ 3. $\mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do}$ 4. $Z[i][j] \leftarrow 0$ 5. $\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do}$ 6. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$ 7. $\mathbf{return} \ Z$

MatrixMultiplikation(Array X, Y, n)		Laufzeit
1.	new array $Z[1n][1n]$	$O(n^2)$
2.	for $i \leftarrow 1$ to n do	$\mathbf{O}(n)$
3.	for $j \leftarrow 1$ to n do	$O(n^2)$
4.	$Z[i][j] \leftarrow 0$	
5.	for $k \leftarrow 1$ to n do	
6.	$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$	
7.	return Z	

MatrixMultiplikation(Array X, Y, n)		Laufzeit
1.	new array $Z[1n][1n]$	$O(n^2)$
2.	for $i \leftarrow 1$ to n do	$\mathbf{O}(n)$
3.	for $j \leftarrow 1$ to n do	$O(n^2)$
4.	$Z[i][j] \leftarrow 0$	$O(n^2)$
5.	for $k \leftarrow 1$ to n do	
6.	$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$	
7.	return Z	

MatrixMultiplikation(Array X, Y, n)		Laufzeit
1.	new array $Z[1n][1n]$	$O(n^2)$
2.	for $i \leftarrow 1$ to n do	$\mathbf{O}(n)$
3.	for $j \leftarrow 1$ to n do	$O(n^2)$
4.	$Z[i][j] \leftarrow 0$	$O(n^2)$
5.	for $k \leftarrow 1$ to n do	$O(n^3)$
6.	$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$	
7.	return Z	

MatrixMultiplikation(Array X, Y, n)		Laufzeit
1.	new array $Z[1n][1n]$	$O(n^2)$
2.	for $i \leftarrow 1$ to n do	$\mathbf{O}(n)$
3.	for $j \leftarrow 1$ to n do	$O(n^2)$
4.	$Z[i][j] \leftarrow 0$	$O(n^2)$
5 .	for $k \leftarrow 1$ to n do	$O(n^3)$
6.	$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$	$O(n^3)$
7.	return Z	

MatrixMultiplikation(Array X, Y, n)		Laufzeit
1.	new array $Z[1n][1n]$	$0(n^{2})$
2.	for $i \leftarrow 1$ to n do	O (n)
3.	for $j \leftarrow 1$ to n do	$0(n^{2})$
4.	$Z[i][j] \leftarrow 0$	$0(n^2)$
5.	for $k \leftarrow 1$ to n do	$0(n^3)$
6.	$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$	$0(n^3)$
7.	return Z	O (1)

MatrixMultiplikation(Array X, Y, n)		Laufzeit
1.	new array $Z[1n][1n]$	$O(n^2)$
2.	for $i \leftarrow 1$ to n do	$\mathbf{O}(n)$
3.	for $j \leftarrow 1$ to n do	$O(n^2)$
4.	$Z[i][j] \leftarrow 0$	$O(n^2)$
5.	for $k \leftarrow 1$ to n do	$O(n^3)$
6.	$Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$	$O(n^3)$
7.	$\operatorname{return} Z$	O (1)
		$0(n^3)$

Matrixmultiplikation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \bullet \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Aufwand

- 8 Multiplikationen von $n/2 \times n/2$ Matrizen
- 4 Additionen von $n/2 \times n/2$ Matrizen

Matrixmultiplikation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \bullet \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Aufwand

- 8 Multiplikationen von $n/2 \times n/2$ Matrizen
- 4 Additionen von $n/2 \times n/2$ Matrizen
- Laufzeit

$$T(n) = \begin{cases} 8T(n/2) + cn^2 & \text{, für } n > 1 \\ c & \text{, für } n = 1 \end{cases}$$

Welche bestmögliche Laufzeit ergibt sich?

- A) $\mathbf{0}(n^2)$
- B) $\mathbf{O}(n^2 \log n)$
- C) $\mathbf{0}(n^3)$
- D) $\mathbf{O}(n^3 \log n)$

Laufzeit einfache Matrixmultiplikation

$$T(n) = \begin{cases} 8T(n/2) + cn^2 & , n > 1 \\ c & , n = 1 \end{cases}$$
 c geeignete Konstante

Laufzeit einfache Matrixmultiplikation

$$T(n) = \begin{cases} 8T(n/2) + cn^2 & , n > 1 \\ c & , n = 1 \end{cases}$$
 c geeignete Konstante

Matrixmultiplikation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \bullet \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Trick (wie bei Integer Multiplikation)

•
$$P_1 = A \cdot (F - H)$$
 $P_5 = (A + D) \cdot (E + H)$

•
$$P_2 = (A + B) \cdot H$$
 $P_6 = (B - D) \cdot (G + H)$

•
$$P_3 = (C + D) \cdot E$$
 $P_7 = (A - C) \cdot (E + F)$

$$P_4 = D \cdot (G - E)$$

Matrixmultiplikation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \bullet \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Trick (wie bei Integer Multiplikation)

•
$$P_1 = A \cdot (F - H)$$
 $P_5 = (A + D) \cdot (E + H)$

•
$$P_2 = (A + B) \cdot H$$
 $P_6 = (B - D) \cdot (G + H)$

•
$$P_3 = (C + D) \cdot E$$
 $P_7 = (A - C) \cdot (E + F)$

$$P_4 = D \cdot (G - E)$$

$$AE + BG = P_4 + P_5 + P_6 - P_2$$

 $AF + BH = P_1 + P_2$
 $CE + DG = P_3 + P_4$
 $CF + DH = P_1 + P_5 - P_3 - P_7$

Matrixmultiplikation

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \bullet \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Trick (wie bei Integer Multiplikation)

•
$$P_1 = A \cdot (F - H)$$
 $P_5 = (A + D) \cdot (E + H)$

•
$$P_2 = (A + B) \cdot H$$
 $P_6 = (B - D) \cdot (G + H)$

•
$$P_3 = (C + D) \cdot E$$
 $P_7 = (A - C) \cdot (E + F)$

$$P_4 = D \cdot (G - E)$$

$$AE + BG = P_4 + P_5 + P_6 - P_2$$

 $AF + BH = P_1 + P_2$
 $CE + DG = P_3 + P_4$
 $CF + DH = P_1 + P_5 - P_3 - P_7$

Laufzeit schnelle Matrixmultiplikation

$$T(n) = \begin{cases} 7T(n/2) + cn^2 & , n > 1 \\ c & , n = 1 \end{cases}$$
 c geeignete Konstante

Laufzeit schnelle Matrixmultiplikation

$$T(n) = \begin{cases} 7T(n/2) + cn^2 & , n > 1 \\ c & , n = 1 \end{cases}$$
 c geeignete Konstante

Satz 11

Zwei $n \times n$ -Matrizen können mit Hilfe des Teile & Herrsche Verfahrens in $\mathbf{O}(n^{2.81})$ worst case Laufzeit multipliziert werden.

Beweis

Laufzeit und Korrektheit können einfach per Induktion gezeigt werden.

Zusammenfassung

- Multiplikation und Matrizenmultiplikation sind weitere Beispiel für Teile & Herrsche Algorithmen
- Faustregel: Je weniger rekursive Aufrufe desto schneller
- Trick bei Laufzeitbeweisen: Abziehen von Termen niedriger Ordnung

Laufzeit der Form

Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

wobei T(1) konstant ist

Laufzeit der Form

$$T(n) = \begin{cases} a T(n/b) + f(n) & , n > 1 \\ 1 & , n = 1 \end{cases}$$

$$f(n) = \mathbf{0}(n^k)$$
 für Konstante k .

Laufzeit der Form

• Setze $\gamma \cdot f(n) = a \cdot f(n/b)$

$$f(n) = \mathbf{0}(n^k)$$
 für Konstante k .

Laufzeit der Form

• Setze $\gamma \cdot f(n) = a \cdot f(n/b)$

$$f(n) = \mathbf{0}(n^k)$$
 für Konstante k .

Fall 1: $\gamma < 1$

Laufzeit der Form

• Setze $\gamma \cdot f(n) = a \cdot f(n/b)$

$$f(n) = \mathbf{0}(n^k)$$
 für Konstante k .

Fall 2: $\gamma > 1$

Laufzeit der Form

• Setze $\gamma \cdot f(n) = a \cdot f(n/b)$

$$f(n) = \mathbf{0}(n^k)$$
 für Konstante k .

Fall 3: $\gamma = 1$

