Функциональный анализ. Определения и формулировки

Васильченко Д.Д., 306 16 января 2024 г.

1 Теория меры

1.1 Кольцо. Минимальное кольцо. Полукольцо. Структура минимального кольца

Def 1. Непустое семейство множеств K из X называется кольцом, если $\forall A, B \in K$

- 1. $A \cap B \in K$
- $2. A \triangle B \in K$

St 1. $A, B \in K \Rightarrow A \cup B \in K$, $A \setminus B \in K$

Def 2. Кольцо называется σ -кольцом, если оно допускает счетное объединение

Def 3. Кольцо называется δ -кольцом, если оно допускает счетное пересечние

Def 4. Если $X \in K$, то кольцо называется алгеброй. X - единица

Def 5. Кольцо, которое содержится в \forall кольце, содержащем S, называется минимальным кольцом K(S)

St 2. Минимальное кольцо существует.

Def 6. Непустое семейств S множеств из X называется полукольцом, если

- 1. $\forall A, B \in S \ A \cap B \in S$
- 2. $\forall A, B \in S \ B \subset A \Rightarrow \exists A_1, \dots, A_n \in S : A_i \cap A_j = \emptyset, i \neq j \Rightarrow A \backslash B = \coprod_{k=1}^n A_k$

Лемма 1. Пусть S - полукольцо. $A, B_1, \ldots, B_n \in S, B_i \cap B_j = \emptyset, i \neq j \Rightarrow \exists A_1, \ldots, A_m \in S: A_i \cap A_j = \emptyset, i \neq j: A \setminus \left(\prod_{k=1}^n B_k\right) = \prod_{l=1}^m A_l$

Th 1. (О структуре минимального кольца) Пусть S - полукольцо. K(S) - минимальное кольцо, порожденное $S \Rightarrow K(S)$ состоит из всевозможных множеств вида $\coprod_{k=1}^m A_K, \ A_i \cap A_j = \varnothing, \ i \neq j$ и

$$A_j \in S, \ j = \overline{1, m}$$

1.2 Общее определение меры

S - полукольцо

Def 7. Мерой множества $A \in S$ называется число $\mu(A)$, удовлетворяющее условиям:

1.
$$\mu(A) \ge 0$$

2.
$$\mu(A_1 | A_2) = \mu(A_1) + \mu(A_2)$$

Если 2 верно для счётного объединения, то мера называется σ -аддитивной.

St 3. S - полукольцо c мерой μ . $A, B \in S, A \subset B \Rightarrow \mu(A) \leq \mu(B)$

Def 8. Мера μ , заданная на кольце K, называется непрерывной, если \forall монотонной последовательности множеств $\bigcup_{n=1}^{\infty} A_n = A \subseteq K$ справедливо $\lim_{n \to \infty} \mu(A_n) = \mu(A)$

Th 2. Мера непрерывна \Leftrightarrow она σ -аддитивна.

Следствие 1. В силу принципа двойственности, если μ , заданная на K, непрерывна, то $\forall \{A_n\}_{n=1}^{\infty}, A_{n+1} \subset A_n, A = \bigcap_{n=1}^{\infty} A_n \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$

Продолжение меры на минимальное кольцо

Пусть S - полукольцо, K - кольцо, $S \subset K$. На S задана мера m, На K задана мера μ .

Def 9. Говорят, что мера μ есть продолжение меры m, если $\forall A \in S \ \mu(A) = m(A)$

Th 3. Если K(S) - минимальное кольцо, порожденное S, то $\exists !$ продолжение меры c полукольца на кольцо. Если m - σ -аддитивна, то и μ σ -аддитивна.

Свойтва σ -аддитивной меры

Th 4. Пусть K - кольцо c мерой μ , $A, A_1, \dots \in K \Rightarrow$

1. если
$$A_i\cap A_j=\varnothing,\ i\neq j,\ mor \partial a\coprod_{k=1}^\infty A_k\subset A\Rightarrow \sum_{k=1}^\infty \mu(A_k)\leq \mu(A)$$

2. если мера
$$\mu$$
 σ - аддитивная и $A\subset \cup_{k=1}^\infty A_k\Rightarrow \mu(A)\leq \sum\limits_{k=1}^\infty \mu(A_k)$

Th 5. Длина счетно аддитивна на $S = \{[a,b)\}$

1.3 Мера Лебега

K-алгебра элементарных множеств со счётно аддитивной мерой m. X - единица, $m(X) < \infty$

Def 10. Верхней мерой множества $A \subset X$ назыается

$$\mu^*(A) = \inf_{B_1, \dots, B_n, \dots \in K} \sum_{A \subset \bigcup_{k=1}^{\infty} B_k} \sum_{k=1}^{\infty} m(B_k)$$

Th 6. Ecnu $A \in K \Rightarrow \mu^*(A) = m(A)$

Def 11. Множество $A\subset X$ называется измеримым по Лебегу, если $\mu^*(A)+\mu^*(x\backslash A)=m(X)$

Def 12. Нижней мерой множества $A\subset X$ называется $\mu_*(A)=m(X)-\mu^*(X\backslash A)$

Th 7. $\Pi y cm b A, A_1, A_2, \dots \subset X, A \subset \bigcup_{k=1}^{\infty} A_k \Rightarrow \mu^*(A) \leq \sum_{k=1}^{\infty} \mu^*(A_k)$

Следствие 2. $\mu_*(A) \leq \mu^*(A)$

Следствие 3. $\mu_*(A) \geq 0$

Следствие 4. $\forall A, B \subset X \Rightarrow |\mu^*(A) - \mu^*(B)| < \mu^*(A \triangle B)$

Лемма 2. Если $\mu^*(A) = 0 \implies A$ измеримо и $\mu(A) = 0$

Def 13. Мера называется полной, если \forall подмножество множества меры ноль измеримо и имеет меру нуль.

Th 8. Множество $A\subset X$ измеримо $\Leftrightarrow \forall \varepsilon>0 \exists B\in K\mu^*(A\triangle B)<\varepsilon$

Следствие 5. A - измеримо, если $\forall \varepsilon > 0 \; \exists \;$ измеримое: $\mu^*(A \triangle C) < \varepsilon$

Th 9. μ^* - мера на измеримых множествах

Следствие 6. μ^* - счётно аддитивная мера на измеримых множествах

Тһ 10. Счётное объединение измеримых множеств - измеримо

Следствие 7. Cчётное пересечение измеримых множеств - измеримо Случай $m(x)=\infty$

Def 14. Мера μ называется σ -конечной, если $\exists X_1, X_2, \dots \in K: \ \mu(X_i) < \infty, \ i=1,2,\dots \Rightarrow X=\coprod_{i=1}^\infty X_i$

Def 15. Множество A называется измеримым, если измеримы все $A\cap X_i$, $i=1,2,\ldots$ при этом мерой A называется $\mu(A)=\sum\limits_{i=1}^\infty \mu(A\cap X_i)$

1.4 Измеримые множества на R

X = R, обычная мера Лебега на прямой.

St 4. ∀

Th 11. Всякое открытое множество на прямой представимо ввиде не более, чем счётного объединения попарно непересекающихся интервалов.

1.5 Канторово множество

Канторово множество имеет меру нуль.

1.6 Борелевские множества

Def 16. Борелевскими называются множества, получающиеся в результате счётного объединения или пересечения открытых множеств

St 5. Борелевская мера не полна.

St 6. \forall измеримое множество можно заключить в борелевском множестве той же меры.

1.7 Многомерный случай R^n

Th 12. Всякое открытое множество в R^m измеримо по Лебегу.

1.8 Мера Жордана

 $m(X) < \infty$

Def 17. Верхняя мера Жордана: $\mu_J^*(A) = \inf_{A \subset \cap_{i=1}^n B_i} \sum_{i=1}^n m(B_i)$

Def 18. Нижняя мера Жордана: $\mu_{*J} = m(X) - \mu_J^*(x A)$

1.9 Мера Лебега-Стилтьеса

F(t) - неубывающая функция, $t \in R. \ X = R, \ S = \{[a,b)\} \Rightarrow m_F([a,b)) = F(b) - F(a).$

Th 13. m_F - σ -аддитивная $\Leftrightarrow F(t)$ непрервыная слева.

1.10 Сравнение мер. Абсолютная непрерывность

Def 19. Пусть σ - аддитивные меры μ и v заданы на σ - алгебры \sum . Мера v называется абсолютно непрерыной относительно норм μ , если из $\mu(A)=0$ $\Rightarrow v(A)=0, \ \forall A\in \sum$.

Th 14. Пусть σ -аддитивные меры μ , v заданы на σ -алгебре $\Sigma \Rightarrow$ мера v абсолютно непреревына относительна $\mu \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; \mu(A) < \delta \Rightarrow v(A) < \varepsilon \; \forall A \in \Sigma$

1.11 Канторова лестница

Def 20. Функция f(t) называется абсолютно непрерывной, если $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall (a_k,b_k), k = \overline{1,N}, \; (a_k,b_k) \cap (a_j,b_j) =, k \neq j, \; \sum\limits_{k=1}^{N} (b_k-a_k) < \delta \Rightarrow \sum\limits_{k=1}^{N} |F(b_k) - F(a_k)| < \varepsilon$

Th 15. Пусть мера μ порожденная длиной, и мера v - функцией $f \Rightarrow v$ абсолютно непрерывна относительно $\mu \Leftrightarrow f(t)$ - абослютно непрерывна.

Канторова лестинца:

Хз как здесь написать, картинки нужны)

1.12 Взаимно сингулярные меры

Def 21. Две σ -аддитивные меры μ и v заданные на общей σ -алгебре \sum , называются взаимно сингулярными, если $\exists A \in \sum : \mu(A) = v(X \backslash A) = 0$

2 Измеримые функции

Триплет: $\{X, \Sigma, \mu\}$.

Def 22. Функция f(x), $x \in X$ называется измеримой, если $\forall c \in R$ множество $\{x \in X: f(x) < c\}$ измеримо. (далее сокращенно $\{f < c\}$)

Th 16. Следующие 4 утверждения эквиваленты:

- 1. $\forall c \in R$ измеримо $\{f < c\}$
- 2. $\forall c \in R$ измеримо $\{f \leq c\}$
- 3. $\forall c \in R$ измеримо $\{f > c\}$
- 4. $\forall c \in R$ измеримо $\{f \geq c\}$

Лемма 3. f - измерима $\Rightarrow f + c$ - измерима, c = const

Лемма 4. f - измерима $\Rightarrow c*f$ - измерима, c=const

Лемма 5. f, g - измеримы $\Rightarrow \{f < g\}$ - измерима

Th 17. f, g - измеримы $\Rightarrow f \pm g$ - измерима

Тһ 18. Линейная комибнация измеримых функций измерима

Лемма 6. f - измерима $\Rightarrow |f|$ - измерима

Лемма 7. f - измерима $\Rightarrow f^2$ - измерима

Th 19. f, g - $uзмерими \Rightarrow f * g$ - uзмерима

Th 20. f, g - измеримы $u g \neq 0 \Rightarrow \frac{f}{g}$ - измерима

- **Def 23.** Если какое-либо свойство выполнено во всех точках, за исключением точек множества меры ноль, то свойство выполнено почти всюду
- **Def 24.** Функции f и g называются эквивалентными, если f=g почти всюду
- **Th 21.** Если g -измерима $u \ f \sim g$, то f измерима
- **Th 22.** Если $f_k(x)$ измеримы при $k \in N$ и $f_k(x) \to f(x),$ то f(x) измерима
- Th 23. Пусть $f_k(x)$ измеримы при $k \in N$, тогда $\max(f_1(x), \dots, f_n(x)), \min(f_1(x), \dots, f_n(x)), \overline{f}(x) = \sup_{k \geq 1} f_k(x), \underline{f}(x) = \inf_{k \geq 1} f_k(x)$ измеримы
- **Th 24.** Пусть $f_k(x)$, $k \in N$ измеримы $\Rightarrow \overline{\lim} f_k$ и $\underline{\lim} f_k$ при условии их конечности почти всюду измеримы
- **Th 25.** Если f(x) измерима и дифференцируема, то f'(x) измерима

2.1 Сходимость по мере

Пусть $\mu(X) < \infty$.

- **Def 25.** Говорят, что последовательность измеримых функций $f_k(x)$, $x \in X$, $k \in N$ сходится по мере к измеримой функции f(x), если $\forall \varepsilon > 0$ $\lim_{n \to \infty} \mu\left(\{|f_n f| \ge \varepsilon\}\right) = 0$. $(f_n \xrightarrow{\mu} f)$
- **Th 26.** Если f и g пределы f_k по мере, то $f \sim g$
- Th 27. (Pucca)

Из последовательности измеримых функций, сходящейся по мере к измеримой функции можно выбрать подпоследовательность, которая сходится к этой функции почти всюду.

Th 28. (Егорова)

Пусть $f_n \to f$ почти всюду на X, все f_n измеримы и $\mu(X) < \infty \Rightarrow \forall \delta > 0 \; \exists X_\delta \subset X \; \mu(X \backslash X_\delta) < \delta \; u \; f_n \Rightarrow f \;$ на X_δ

3 Интеграл Лебега

3.1 Ограниченные функции

- **Def 26.** Функция называется простой, если она измерима и принимает конечное число значений. $f(x) = \sum_{k=1}^n f_k \mathbb{1}_{A_k}(x)$, где $X = \coprod_{k=1}^n A_k, \ A_k \in \Sigma$.
- **Def 27.** Интеграл Лебега от простой функции: $(L)\int\limits_X f d\mu = \sum\limits_{k=1}^n f_k \mu(A_k)$

Свойства такого интеграла:

1.
$$\int\limits_X C*fd\mu = C*\int\limits_X fd\mu$$

2.
$$\int\limits_X (f\pm g) d\mu = \int\limits_X f d\mu \pm \int\limits_X g d\mu$$

3. Линейность

4.
$$|\int_{X} f d\mu| \le \max |f_1|, \dots, |f_n|\mu(X)$$

Лемма 8. Пусть $f_n(x)$ - последовательность простых функций и $f_n \rightrightarrows f$ на X, тогда $\int\limits_X f_n d\mu$ - сходится как числовая последовательность.

Def 28. Пусть f(x) - равномерный предел простых функий $f_n(x)$, тогда интегралом Лебега от функции f(x) называется $(L)\int\limits_X f d\mu = \lim\limits_{n \to \infty}\int\limits_X f_n d\mu$

Лемма 9. Для \forall ограниченой измеримой функции $f \exists$ существует последовательность f_n простых функций, такая что $f_n \rightrightarrows f$.

Th 29. \forall измеримая ограниченая функция f(x) интегрируема по Лебегу, причём $\int\limits_X f d\mu$ может быть найден, как предел $\int\limits_X f d\mu = \lim_{n \to \infty} \sum_{k=1}^n \frac{k}{n} \mu(A_{k,n}) = \lim_{n \to \infty} \sum_{k=1}^N \frac{k}{n} \mu(\{\frac{k}{n} \le f < \frac{k+1}{n}\})$

3.2 Неограниченные функции

Def 29. Функция f(x) называется простой со счётным числом значений, если $f(x) = \sum_{k=1}^{\infty} f_k \mathbb{1}_{A_k}(x)$, где $\coprod_{k=1}^{\infty} A_k = X, \ A_k \in \Sigma$.

Def 30. Интегралом от простой функции со счётным числом значение при условии его существования $(\sum\limits_{k=1}^{\infty}|f_k|\mu(A_k)$ - сходящийся) называется

$$(L)\int_{T} f d\mu = \sum_{k=1}^{\infty} f_k \mu(A_k)$$

Свойства такого интеграла:

1.
$$\int_X C * f d\mu = C * \int_X f d\mu$$

2.
$$\int_X (f \pm g) d\mu = \int_X f d\mu \pm \int_X g d\mu$$

3. Линейность

4.
$$\left| \int\limits_X f d\mu \right| \le \sup\limits_X |f_k| \mu(X)$$

- 5. Если $|f| \leq g$ и g интегрируема, то f интегрируема и $|\int\limits_X f d\mu| \leq \int\limits_X g d\mu$
- **Пемма 10.** Пусть f_n последовательность интегрируемых простых функций со счётным числом значений, равномерно сходящаяся κ f $(f_n \Rightarrow f)$, тогда $\int\limits_X f_n d\mu$ сходится, как числовая последовательность.
- **Def 31.** Функция f называется интегрируемой по Лебегу, если существует последовательность f_n простых функций со счётным числом значений, равномерно сходящаяся к f ($f_n \rightrightarrows f$ на X). В этом случае интеграл Лебега от f: $(L)\int\limits_X f d\mu = \lim\limits_{n \to \infty}\int\limits_X f_n d\mu$.
- Лемма 11. Пусть f_n , \overline{f}_n последовательности простых функций со счётным числом значений и $f_n \rightrightarrows f$, $\overline{f}_n \rightrightarrows f$, тогда $\lim_{n \to \infty} \int\limits_X f_n d\mu = \lim_{n \to \infty} \int\limits_X \overline{f}_n d\mu$
- **Лемма 12.** Пусть f(x) инетгрируема на X и f_n последовательность простых функций со счётным числом значений, такая что $f_n \rightrightarrows f$ на X, тогда начиная c некоторого номера N функции f_n интегрируемы.

Свойства интеграла Лебега

- 1. $\int_X C * f d\mu = C * \int_X f d\mu$
- 2. $\int_{\mathbf{X}} (f \pm g) d\mu = \int_{\mathbf{X}} f d\mu \pm \int_{\mathbf{X}} g d\mu$
- 3. Если $f(x) \ge 0$ п.в. $\Rightarrow \int\limits_{Y} f d\mu \ge 0$
- 4. Если $f(x) \leq g(x)$ п.в. $\Rightarrow \int\limits_{\mathbf{v}} f d\mu \leq \int\limits_{\mathbf{v}} g d\mu$
- 5. Если f(x) интегрируема, то и |f(x)| интегрируема, обратное неверно.
- 6. Если f(x) измерима, а g(x) интегрируема и $|f(x)| \leq g(x)$, то f(x) интегрируема и $|\int\limits_X f d\mu| \leq \int\limits_X g d\mu$
- 7. Если f(x) интегрируема, а g(x) измерима и ораничена, то f * g интегрируема
- 8. (Аддитивность по множеству интегрирования) Пусть $X=A\coprod B,\ f$ интегрируема $\Rightarrow\int\limits_X fd\mu=\int\limits_A fd\mu+\int\limits_B fd\mu$
- 9. Если f измерима и $\mu(A)=0\Rightarrow\int\limits_A fd\mu=0.$
- 10. Если f=0 п.в, то $\int\limits_{\mathbf{X}}fd\mu=0$
- 11. Если f- интегрируема и $f \geq 0$, но $\int\limits_X f d\mu = 0 \Rightarrow f = 0$ п.в.

Th 30. (Абсолютная непрерывность интеграла Лебега) Пусть f - интегрируема на $X\Rightarrow \forall \varepsilon>0 \; \exists \delta>0: \forall A\in \Sigma: \mu(A)<\delta\Rightarrow |\int\limits_A f d\mu|\leq \varepsilon$

Th 31. (Счётная аддитивность интеграла Лебега) Пусть f(x) - интегрируема на X и $X=\coprod_{k=1}^\infty A_k,\ A_k\in\Sigma\Rightarrow\int\limits_X fd\mu=\sum_{k=1}^\infty \int\limits_{A_k} fd\mu.$

Th 32. Пусть дана f(x), $x \in X$ и $X = \coprod_{k=1}^{\infty} A_k$, все A_k - измеримы, f(x) интегрируема на A_k и сходится ряд $\sum_{k=1}^{\infty} \int_{A_k} |f| d\mu$. Тогда f(x) интегрируема на X.

3.3 Предельные переходы

Th 33. Пусть f_n - интегрируемые на X функции и $f_n \rightrightarrows f$, тогда f - интегрируема на X и $\int\limits_X f d\mu = \lim_{n \to \infty} \int\limits_X f_n d\mu$.

Th 34. (Лебега)

Пусть f_n последовательность измеримых функций и $f_n \stackrel{\mu}{\to} f$ и $\exists F$ - интегрируемая, такая что $|f_n| \leq F$ п.в. $\Rightarrow f, f_n$ - интегрируемы на X и $\int\limits_X f d\mu = \lim_{n \to \infty} \int\limits_X f_n d\mu$

Th 35. (Леви)

Пусть f_n - последовательность интегруемых на X функций u $f_n \leq f_{n+1}$ n.e. u $\exists c: \int\limits_X f_n d\mu \leq C \Rightarrow f(x) = \lim_{n \to \infty} f_n(x)$ (конечный или бесконечный) u f - интегрируема на X, $\int\limits_X f d\mu \leq C$ u возможен переход κ пределу $(\int\limits_X f d\mu = \lim_{n \to \infty} \int\limits_X f_n d\mu)$.

Следствие 8. Пусть f_n - последовательность неотрицательных интегрируемых на X функций и $\sum\limits_{n=1}^{\infty}\int\limits_X f_n d\mu<+\infty\Rightarrow F(x)=\sum\limits_{k=1}^{+\infty}f_n(x)$ интегрируема на X и $\int\limits_X F d\mu=\sum\limits_{n=1}^{\infty}\int\limits_X f_n d\mu$.

Th 36. $(\varPhi amy)$ $f_n(x) \geq 0$ - интегрируемы на X u \exists : $\int\limits_X f_n d\mu \leq c \Rightarrow f(x) = \lim_{n \to \infty} f_n(x)$ - интегрируема на X u $\int\limits_X f d\mu \leq c$.

Сравнение интеграла Лебега и Римана 4

Th 37. Пусть f(x) интегрируема по Риману на $X \Rightarrow f(x)$ интегрируема по Лебегу на Х

Тһ 38. (критерий интегрируемости по Риману) f(x) интегрируема по Риману на $X \rightrightarrows f(x)$ почти всюду непрерывна на X.

5 Пространство суммируемых функций L1

 X, μ (полная)

Def 32. $L_1(X,\mu)$ -пространство функций, для которых существует и конечен интеграл $\int\limits_X |f| d\mu$. $||f||_{L_1} = \int\limits_T |f| d\mu$.

Th 39. Пространство L_1 - полное.

Пемма 13. Пусть $f(x) \in L_1(X,\mu)$, тогда $\exists \{f_n(x)\}$ - простые функции со счётным числом значений: $\|f_n - f\|_{L_1} o 0$

Пемма 14. Пусть $f(x) \in L_1(X,\mu)$, тогда $\exists \{f_n(x)\}$ - простые функции с конечным числом значений: $||f_n - f||_{L_1} \to 0$

Th 40.
$$d\mu = dx \ f \in L_1(0,1) \Rightarrow \exists \{\phi_n\}_{n=1}^{\infty}, \ \phi_n \in C(0,1): \|f - \phi_n\|_{L_1} \to 0$$

Th 41. (О непрерывности в интегральной метричке) $d\mu = dx, \ f \in L_1(0,1) \Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \Delta : |\Delta| < \delta \Rightarrow \int\limits_{(0,1)} |f(x+\Delta) - g(x)|^2 dx$ $f(x)|dx < \varepsilon$. Вне (0,1) f доопределяется 0.

Пространство Ір 6

Def 33. Пространство $L_p(X,\mu)$ - пространство функций, для которых существует и конечен интеграл $\int\limits_X |f|^p d\mu$. Норма $\|f\|_{L_p} = \left(\int\limits_{\mathcal{C}} |f|^p d\mu\right)^{1/p}$

Th 42. (Неравенство Юнга)
$$\frac{1}{p} + \frac{1}{q} = 1, \ a, b > 0 \Rightarrow ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

Th 43. (Неравенство Гёльдера)

$$\frac{1}{p} + \frac{1}{q} = 1, \ f \in L_p(X, \mu), \ g \in L_q(X, \mu), \ fg \in L_1(X, \mu) \Rightarrow \|fg\|_{L_1} \le \|f\|_{L_p} \|g\|_{L_q}$$

Th 44. (Неравенство Минковского) $f, g \in L_p(X, \mu) \Rightarrow ||f + g||_{L_p} \le ||f||_{L_p} + ||g||_{L_p}$

Th 45. Пространство $L_p(X,\mu)$ - полное.

Пемма 15. Пусть $f(x) \in L_p(X,\mu)$, тогда $\exists \{f_n(x)\}$ - простые функции со счётным числом значений: $\|f_n - f\|_{L_1} \to 0$

Пемма 16. Пусть $f(x) \in L_p(X,\mu),$ тогда $\exists \{f_n(x)\}$ - простые функции с конечным числом значений: $\|f_n-f\|_{L_1} \to 0$

Th 46. Если $f \in L_p(D, dx), D$ - ограниченое замкнутое множество $\Rightarrow \exists \{\phi_n\}_{n=1}^{\infty} : \phi_n \in C(D): \|\phi_n - f\|_{L_p} \to 0$

Th 47. $d\mu = dx$, $f \in L_p(X, \mu) \Rightarrow \forall \varepsilon > 0 \exists \delta > 0 \forall \Delta : |\Delta| < \delta \Rightarrow ||f(x + \Delta) - f(x)||_{L_p} < \varepsilon$. Bhe D doonpedersem f hyrem.

7 Заряды

Х, Σ - сигма-алгебра

Def 34. Отображение $\Phi(A): \Sigma \to \mathbb{R}$ называется зарядом, если $A = \coprod_{k=1}^{\infty} A_k, \ A_k \in \Sigma, \ \Phi(A) = \sum_{k=1}^{\infty} \Phi(A_k),$ ряд должен абсолютно сходиться.

Def 35. Множество $A \in \Sigma$ называется положительным относительно заряда Φ , если $\forall B \subset A, \ B \in \Sigma \Rightarrow \Phi(B) \geq 0$.

Лемма 17. Пусть $A \in \Sigma$, тогда $\sup_{B \subset A, B \in \Sigma} |\Phi(B)| < \infty$

Th 48. (Жордана)

Пусть заряд $\Phi(A)$ задан на множестве X, тогда $\exists X^-, X^+: X^- \cap X^+ = \emptyset$, $X = X^+ \coprod X^-, X^-$ - отрицательно относительно Φ, X^+ - положительно относительно Φ .

Следствие 9. Заряд Ф представляется в виде разности двух мер ν^{\pm} : $\Phi = \nu^{+} - \nu^{-}$, $\forall A \in \Sigma$.

Th 49. $(Pa\partial o \mu a - Hu \kappa o \partial u \mu a)$

Пусть ν,μ - σ -аддитивные меры, заданные на Σ,ν абсолютно непрерывна относительно μ , тогда существует f такая, что $\nu(A)=\int_A f d\mu$.

Лемма 18. Условия предыдущей теоремы $+ \nu(X) > 0 \Rightarrow \exists A \in \Sigma, \delta > 0$: $\nu(A) > 0, \ \forall B \subset A, \ B \in \Sigma \Rightarrow \nu(B) \geq \delta \mu(B).$

Def 36. Функция f из теоремы Радона-Никодима называется производной Радона-Никодима $(f = \frac{d\nu}{du})$.

Тһ 50. (о замене переменной)

Пусть ν абсолютно непрерывна относительно μ , $\rho=\frac{d\nu}{d\mu}$ - производная Радона-никодима u $f\rho$ - интегрируема \Rightarrow f - интегрируема u $\int\limits_X f d\nu = \int\limits_X f \rho d\mu$

8 Теорема Фубини

Пусть $X\subset\mathbb{R}^n,Y\subset\mathbb{R}^m,$ $Z=X\times Y,$ Пусть $D=A\times B,$ $\mu_z(D)=\mu_x(A)*\mu_y(B)$ и справедливо $\mu_z(A)=\int\limits_A\mu_y(D_x)d\mu_x,$ где $D_x=\{y:\;(x,y)\in D\}$

Пемма 19. Пусть P_x, P_y - полукольца, тогда $P_z = P_x \times P_y$ - полукольцо.

Th 51. Пусть μ_x, μ_y - σ -аддитивные меры на P_x, P_y , тогда μ_z σ -аддитивная на P_z .

Лемма 20. Пусть μ - мера Лебега, C измеримо относительно μ , тогда $\exists D: C \subset D, \ \mu(C) = \mu(D), \ D = \cap_{k=1}^{\infty} C_k, \ C_{k+1} \subset C_k, \ C_k = \cup_{n=1}^{\infty} B_{n,k}, \ B_{n,k} \subset B_{n+1,k}, B_{n,k}$ - элементарные.

Th 52. Пусть С измеримо относительно $\mu_z = \mu_x \otimes \mu_y$, тогда C_x измеримо относительно μ_y и $\mu_y(C_x)$ интегируема по X и $\mu_z(C) = \int\limits_X \mu_y(C_x) d\mu_z$

Th 53. (Фубини)

- 1. Пусть f(x,y) интегрируема по μ_z на Z, тогда f(x,y) п.в. интегрируема по Z_x , а функция $I(x)=\int\limits_Y f(x,Y)d\mu_y$ интегрируема по X и $\int\limits_Z f(x,y)d\mu_z=\int\limits_X I(x)d\mu_x$
- 2. Пусть $f(x) \geq 0$ и существует повторный интеграл, тогда существует и двойной и они равны.

9 Метрические пространства

Def 37. Пространство M называется метрическим, если для $\forall x,y \in M$ задано отображение $\rho: M \times M \to \mathbb{R}$, обладающее следующими свойствами:

- 1. Неотрицательность $\rho(x,y) \geq 0, \rho(x,y) = 0 \Rightarrow x = y$
- 2. Симметричность $\rho(x,y) = \rho(y,x)$
- 3. Неравенство треугольника $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$

Def 38. Открытый шар с центром в точке x_0 , радиусом r из M: $B(x_0,r) = \{x \in M: \ \rho(x,x_0) < r\}$

Def 39. Замкнутый шар с центром в точке x_0 , радиусом r из M: $\overline{B}(x_0,r)=\{x\in M:\ \rho(x,x_0)\leq r\}$

Def 40. Множество называется открытым, если \forall точка этого множество входит в это множество с некоторой окрестностью (открытый шар)

Def 41. Точка x_0 называется предельной для множества M, если $\forall r>0 \Rightarrow (B(x_0,r)\cap M)\backslash \{x_0\} \neq \emptyset$

- **Def 42.** Замыкание множества присоединение к множеству его предельных точке
- **Def 43.** Множество называется замкнутым, если совпадает со своим замыканием
- St 7. Пусть ρ метрика $\Rightarrow \frac{\rho}{1+\rho}$ тоже метрика.
- St 8. Пусть $G\subset M$ открыто, $F\subset M$ замкнуто, тогда $M\backslash G$ замкнуто, $M\backslash F$ открыто.
- **Th 54.** 1. Объединение произвольного числа открытых множество открыто
 - 2. Пересечение конечного числа открытых множеств открыто
 - 3. Пересечение произвольного числа замкнутых множеств замкнуто
 - 4. Объединение конечного числа замкнутых множество замкнуто

9.1 Последовательности

- **Def 44.** Последовательность $\{x_n\}_{n=1}^\infty$ из M сходится к $x_0 \in M$, если $\lim_{n \to \infty} \rho(x_n, x_0) = 0$
- **Def 45.** Метрическое пространство М называется полным, если в нем \forall фундаментальная последовательность сходится.
- **Def 46.** Отображение $f: X \to Y$ называется непрерывным в точке $x_0 \in M$, если $\forall \{x_n\}_{n=1}^{\infty}$ из X, такой что $x_n \to x_0$ следует, что $f(x_n) \to f(x)$.

9.2 Сжимающие отображения

- **Def 47.** Отображение $f: X \to X$ называется сжимающим, если $\exists \alpha \in [0,1)$: $\rho(f(x),f(y)) \leq \alpha \rho(x,y), \forall x,y \in M$.
- St 9. Сжимающее отображение непрерывно
- **Th 55.** (принцип сжимающих отображений)

Пусть M - полное пространство $u f: M \to M$ - сжимающее, тогда $\exists ! x_0 \in M: f(x_0) = x_0$ - неподвижная точка.

- St 10. Скорость сходимости: $\rho(x_n, x) \leq \frac{\alpha^n}{1-\alpha} \rho(x_0, x_1)$
- **Th 56.** Пусть M полное метрическое пространство f^m , $m \in \mathbb{N}$ сжимающее отображение в $M \Rightarrow \partial$ ля $f \exists !$ неподвижная точка.
- **Th** 57. Пусть M полное метрическое пространство, $\overline{B}(x_0,r) \subset M$ u $f: \overline{B}(x_0,r) \to M$, f сжимающее на шаре. Тогда если $\rho(f(x_0),x_0) \le (1-\alpha)r$, то $\exists ! x' \in \overline{B}(x_0,r)$ неподвижная точка.

Def 48. Метрическое пространство М называется компактным, если из \forall последовательность его элементов можно выделить сходяющуюся подпоследовательность.

Th 58. Пусть M - метрическое, полное, компактное $u \ f : M \to M$, $\rho(f(x), f(y)) < \rho(x, y), \forall x, y \in M, x \neq y, \, mor \partial a \, \exists ! x' \in M : \, f(x') = x'.$

9.3 Теорема Хаусдорфа о пополнении метрического пространства

Def 49. Два метрических пространства называется измотреческими, если между ними существует биекция, сохраняющая расстояние между точками $(M \sim M')$

Th 59. Пусть M - метрическое пространство, тогда существует u единственно полное метрическое пространство \widetilde{M} , такое что $M_0 \sim M$, $M_0 \subset \widetilde{M}$, $\overline{M_0} = \widetilde{M}$

9.4 Теорема Бэра о категориях

Def 50. Множество A назывется всюду плотным в M, если $\overline{A} = M$.

Def 51. Множество A называется нигде не плотным в M, если \overline{A} не содержит ни одного шара из M.

Пемма 21. Замкнутое множество F - нигде не плотно в $M \Leftrightarrow \overline{(M \backslash F)} = M$

Th 60. (О вложенных шарах)

Пусть M - полное метрическое пространство, $\overline{B}(x_{n+1},r_{n+1})\subset \overline{B}(x_n,r_n)$ - вложенные шары $u\lim_{n\to\infty}r_n=0,\ mor\partial a\cap_{n=1}^\infty\overline{B}(x_n,r_n)\neq\emptyset$

Th 61. Пусть M - полное метрическое пространство, $G_n \subset M$ - открытые множества, $\overline{G} = M$, тогда $\bigcap_{n=1}^{\infty} G_n \neq \emptyset$.

Def 52. Множество называется множеством I категории, если оно представимо в виде не более чем счётного объединения нигде не плотных множеств. Иначе - II категории.

Th 62. (Бэра)

Полное пространство - множество II категории.

10 Компактность в метрических пространствах

Def 53. Пространство M называется компактным, если из любой последовательность его элементов можно выделить сходящуюся подпоследовательность

Def 54. Пространство М называется предкомпактным, если из любой последовательностми его элементов можно выделить фундаментальную последовательность

St 11. M - $nped\kappaomna\kappa m$ но u $nonho \Rightarrow M$ - $\kappa omna\kappa m$ но

Def 55. Пространство M называется ограниченным, если sup $\rho(x,y) < \infty$.

Лемма 22. Предкомпактное пространство ограничено.

Def 56. Пусть M - метрическое. Множество $Q \subset M$ называется ε - сетью для $E\subset M$, если $E\subset \cup_{x\in Q}B(x,\varepsilon)$

Def 57. M - вполне ограничено, если $\forall \varepsilon > 0$ существует конечная ε -сеть, покрывающая М.

St 12. Из вполне ограниченности следует обычная ограниченность, но не наоборот.

Th 63. M - предкомпактно $\Leftrightarrow M$ - вполне ограничено.

Следствие 10. (признак предкомпактности)

M - предкомпактно, если $\forall \varepsilon > 0$ существует конечная предкомпактная ε - сеть, покрывающая М.

Th 64. (Гейне-Бореля)

M- компактно \Leftrightarrow из \forall открытого покрытия M можно выделить конечное подпокрытие.

Критерии предкомпактности

 $K \subset \mathbb{R}^n$ - компакт

Th 65. Множество $E \subset C(K)$ предкомпактно $\Leftrightarrow E$ - равномерно ограничено и равностепенно непрерывно.

Th 66. (Pucca) Множество $E\subset L_p(K)$ предкомпактно $\Leftrightarrow E$ - равномерно ограничено и равностепенно в смысле L_p :

1.
$$\exists M > 0 \ ||f||_{L_n} \leq M, \ \forall f \in E$$

2.
$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \|f(x+\Delta) - f(x)\|_{L_p} < \varepsilon, \forall f \in E, |\Delta| < \delta$$

Случай l_p :

$$x \in \overline{l_p, x = (x_1, x_2, x_3, \dots)}$$

 $P_N(x) = (x_1, \dots, x_N, 0, \dots)$

$$P_N(x) = (x_1, \dots, x_N, 0, \dots)$$

$$R_N(x) = x - P_N(x)$$

 $||P_N(x)||_{l_p} \le ||x||_{l_p}$

Th 67. Множество $E \subset l_p$ предкомпактно \Leftrightarrow

1.
$$\exists M > 0 \ ||x||_{l_n} \leq M, \forall x \in E$$

2.
$$\forall \varepsilon > 0 \exists N(\varepsilon) : ||R_N(x)|| < \varepsilon, \forall x \in E$$

11 Банаховы пространства

Пусть Х- линейное нормированное пространство.

Def 58. Если X - полное, то называется Банаховым.

Def 59. Нормы $\|*\|_1$, $\|*\|_2$ называется эквивалентными, если $\exists c_1, c_2 :\Rightarrow c_1 \|*\|_1 \leq \|*\|_2 \leq c_2 \|*\|_1$

Def 60. Пространство называется сепарабельным, если в нём существует счётное всюду плотное множество.

11.1 Отображения

Х, У - нормированные пространства.

Def 61. Отображение $f: X \to Y$ называется непрерывным в точке $x_0 \in X$, если $\forall \{x_n\}_{n=1}^{\infty}: x_n \to x \Rightarrow f(x_n) \to f(x)$.

Лемма 23. Если линейный оператор непрерывен в точке $x_0 \in X$, то он непрерывен на всём X.

Def 62. Отображение A называется ограниченным, если переводит любое ограниченное множество в ограниченное множество

Def 63. Норма оператора: $||A|| = \sup_{\|x\| \le 1} ||Ax||$

Лемма 24. Пусть A - линейный, тогда $\|A\| = \sup_{\|x\|=1} \|Ax\| = \sup_{x \geq 0} \frac{\|Ax\|}{\|x\|}$

 ${f Th}$ 68. Линейный оператор A - непрерываен $\Leftrightarrow A$ - ограничен.

Def 64. L(X,Y) - пространство линейных операторов, действующих из X в Y

Th 69. Если Y - банахово, то L(X,Y) - банахово.

Тһ 70. (Банаха-Штейнгауза)

 $\dfrac{\varPi y c m b}{\lim_{n \to \infty}} \|A_n x\| < \infty\}$ - множество II категории, тогда $\exists M > 0: \|A_n\| \leq M.$

Следствие 11. Пусть X - банохово, Y - нормированное, $A_n \in L(X,Y)$ и $\limsup_{n \to \infty} \|A_n x\| < \infty, \forall x \in X, \ mor \partial a \ \exists M > 0: \ \|A_n\| \leq M.$

Лемма 25. Пусть $x(t) \in C[a,b], \ A(x) = \int\limits_a^b \phi(t) x(t) dt, \ \phi(t) \in L(a,b), \ mor \partial a$ $\|A\| = \int\limits_a^b |\phi(t)| dt$

Th 71. (о расходимости тригонометрического ряда)

Пусть $S_n(f,x)$ -тригонометрический ряд для f, тогда $\exists f \in C[-\pi,\pi]: S_n(f,0)$ - расходится.

12 Обратные операторы

 $A:X o Y,\ X,Y$ - линейные нормированные пространства

Def 65. Оператор $A_L^{-1}: Y \to X$ называется обратным левым, если $A_L^{-1}A = E$, правый аналогично

Th 72. Ecau $\exists A_L^{-1}, A_R^{-1}, \ mo \ A_L^{-1} = A_R^{-1} = A^{-1}$

Тһ 73. Следующие три утверждения эквивалентны:

- 1. Ax = y не может иметь двух решений x
- 2. $\ker A = \{0\}$
- 3. $\exists A_I^{-1}$

Th 74. Следующие три утверждения эквивалентны:

- 1. Ax = y разрешимо
- 2. R(A) = Y, R область значений оператора
- 3. $\exists A_{R}^{-1}$

Def 66. Оператор A называется обратимым, если уравнение Ax = y однозначно разрешимо и устойчиво к изменениям правой части y (Обратимый - тот у которого существует ограниченный обратный)

Th 75. Пусть X - банахово, Y - нормированное, $A:X\to Y,\ \exists M>0: \|Ax\|\ge M\|x\|,\ \forall x\in X,\ \overline{R}(A)=Y,\ mor da\ A$ - обратимый.

Th 76. Пусть X - банахово, $A:X\to X$ и $\|A\|<1$, тогда (E-A) - обратим.

Th 77. Пусть X - банахово, $A:X\to X$ и A - ограничен, тогда

- $1. \ \exists R = \lim_{n o \infty} \sqrt[n]{\|A^n\|}$ спектральный радиус оператора
- 2. Если R < 1, то E A обратим.

Th 78. Пусть X - банахово, $A: X \to Y$ - обратимый, $B: X \to Y$, $\|A - B\| < \frac{1}{\|A^{-1}\|} \Rightarrow B$ - обратим.

Следствие 12. Множество обратимых операторов открыто.

Th 79. Пусть X - банахово, $A: X \to Y$ -обратимый, $\{A_n\}: X \to Y$ и $\|A_n - A\| \to 0 \Rightarrow A_n$ -обратимы, начиная с некоторого номера и $\|A_n^{-1} - A^{-1}\| \to 0$

Th 80. (Банаха об обратном операторе)

Пусть X,Y - банаховы пространства, $A:X\to Y$ - однозначно определённый ограниченный оператор, D(A)=X,R(A)=Y, тогда A - обратим.

Следствие 13. Пусть X - полно относительно двух норм $\|*\|_1, \|*\|_2$ $u \exists M>0: \|x\|_1 \leq M\|x\|_2, \forall x \in X, \ morda \ \exists m>0: \|x\|_2 \leq m\|x\|_1, \forall x \in X$

Def 67. Оператор $A:X\to Y$ называется замкнутым, если $\forall x_n\to x:Ax_n\to y\Rightarrow x\in D(A), Ax=y$

Def 68. График оператора A- множество $\Gamma(A) = \{(x, Ax) : \forall x \in X\}.$

St 13. Оператор замкнут по норме \Leftrightarrow его график замкнут по норме $\|x\|^* = \|x\| + \|Ax\|$

Th 81. (о замкнутом графике)

Пусть X,Y - банаховы, $A:X\to Y,$ D(A)=X линейный оператор A замкнут $\Rightarrow A$ - ограничен

13 Функционалы

Th 82. (Хана-Банаха)

Пусть M - многообразие в X (M замкнуто относительно операции сложения и умножения на элемент из поля), X - линейное нормированное пространство и на M задан линейный ограниченный функционал f(x): $M \to \mathbb{R}$, тогда $\exists F: X \to \mathbb{R}$ - продолжение f с сохранением норми: $f(x) = F(x), \forall x \in M, \|f\| = \|F\|$.

 $(B\ \text{нашем курсе теорема доказана только если }X\ \text{-}\ \text{сепарабельно, но тео-рема верна }u\ \text{в общем случае})$

Следствие 14. Пусть $x_0 \in X, x_0 \neq 0$, тогда $\exists f(x) : X \to \mathbb{R}$ - линейный ограниченный функционал такой, что $f(x_0) = \|x_0\| \ u \ \|f\| = 1$.

Следствие 15. Если $f(x_0) = 0$ для любого линейного ограниченного функционала, то $x_0 = 0$.

Следствие 16. Пусть M - замкнутое многообразие в $X, M \neq X, x_0 \in X \backslash M$, тогда \exists линейный ограниченный функционал $f(x): X \to \mathbb{R}: f(x) = 0 \forall x \in M, f(x_0) = 1.$

13.1 Сопряженные пространства

Def 69. X^* - пространство линейных ограниченных функционалов над X. $(X^* = L(X, \mathbb{R})).$ X^* называется сопряженным к X

St 14. X^* - полно, $m.\kappa$. \mathbb{R} - полно

Th 83. Из сепарабельности X^* следует сепарабельность X.

Def 70. Пространство X^{**} второе сопряженное пространство, $X^{**} = (X^*)^*$

Th 84. $X \subset X^{**}$

Лемма 26. $\tau_x(x^*) = x^*(x), x \in X, x^* \ inX^*, \ morda \|\tau_x\| = \|x\|$

- **Def 71.** Пространство называется рефлексивным, если $X^{**} = X$
- **Def 72.** Последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ называется слабосходящейся, если $\forall x^* \in X^*$ сходится последовательность $x^*(x_n)$.
- **Def 73.** Последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ называется слабо фундаментальной, если $\forall x^* \in X^*$ последовательность $x^*(x_n)$ фундаментальна.
- **Лемма 27.** Из сходимости по мере следует слабая сходимость (обратное неверно)
- Лемма 28. Слабый предел единственен
- Тһ 85. Слабо фундаментальная последовательность ограничена.
- Тһ 86. Рефлексивное пространство слабо полно
- Тһ 87. (О слабой компактности)

B сепарабельном рефлексивном пространстве из всякой ограниченной последовательности можно выделить слабо сходящуюся подпоследовательность.