

UF MG UNIVERSIDADE FEDERAL DE MINAS GERAIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

LUIZ ALBERTO QUEIROZ CORDOVIL JÚNIOR RODRIGO FARIAS ARAÚJO

SISTEMAS NEBULOSOS: EXERCÍCIO COMPUTACIONAL 3

LUIZ ALBERTO QUEIROZ CORDOVIL JÚNIOR RODRIGO FARIAS ARAÚJO

APLICAÇÃO DO ALGORITMO C-MEANS PARA SEGMENTAÇÃO DE IMAGENS

Relatório apresentado como requisito parcial para obtenção de aprovação na disciplina Sistemas Nebulosos do Programa de Pós-Graduação em Engenharia Elétrica, na Universidade Federal de Minas Gerais.

Prof. Dr. André Paim Lemos

Sumário

1	Introdução	1
2	Descrição do Experimentos	3
3	Resultados	3
	3.1 Agrupamento de dados	5
	3.2 Segmentação de imagens	5
4	Conclusões	7
	Referências	8

Lista de Figuras

1	Conjunto de dados fcmdata.dat	3
2	Imagens usadas na aplicação do algoritmo c-means para segmentação de imagens.	4
3	Comparação dos centros dos agrupamentos, considerando 4 agrupamentos, ob-	
	tidos por meio do algoritmo c-means implementado e da função fcm do MA-	
	TLAB	5

1 Introdução

Um algoritmo de clusterização organiza itens em grupos, baseado no critério de similaridade. O algoritmo *fuzzy c-Means* realiza agrupamentos de tal forma que determinado item pode pertencer a mais de um grupo afim, em que o grau de pertinência para cada item é dado por uma distribuição de probabilidade sobre os *clusters*.

Fuzzy c-means, é um algoritmo para análise de agrupamentos associado à representação de uma classe ou grupo singular em um dado conjunto de dados. c agrupamentos são representados por um vetor de centros C.

Considerada como uma técnica de aprendizado não-supervisionado e raciocínio aproximado, possui aplicações diversas em tratativas de classificação, dentre as quais aplicação à tarefa de segmentação de imagens e inferência de dados abordadas neste trabalho.

Para que se alcance o objetivo da *clusterização*, realiza-se determinado número de iterações no sentido de minimizar a função de custo $J_cM(\mu_h,C)$, em termos da distância euclidiana entre um ponto aleatório de um conjunto de dados e outro ponto, também aleatório, dito pertencente ao vetor de centros.

$$J = \sum_{i=1}^{N} \sum_{j=1}^{C} \mu_{ij} ||x_i - c_j||^2$$
(1.1)

onde:

- $N \longrightarrow \text{número de dados};$
- $\mathcal{C} \longrightarrow$ número de centros (*clusters*);
- $c_j \longrightarrow \text{vetor de centro do } j$;
- $\mu_{ij} \longrightarrow$ grau de pertinência do *i*-ésimo dado x_i no *cluster* j.

A norma $||x_i - c_j||$ mede a similaridade (ou proximidade) de um dado x_i para vetor de centro c_j do j. Em cada iteração, o algoritmo mantém o vetor centro para cada *cluster*.

Para cada ponto x_i , o grau de pertinência para cada c_j é calculado da seguinte forma:

$$\mu_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{\|x_i - c_j\|}{\|x_i - c_k\|}\right)^{\frac{2}{m-1}}}$$
(1.2)

onde *m* é coeficiente de fuzzificação.

O vetor centro c_i é calculado como:

$$c_j = \frac{\sum_{i=1}^N \mu_{ij}^m x_i}{\sum_{i=1}^N \mu_{ij}^m}$$
 (1.3)

No início do algoritmo, o grau de pertinência para os dados é inicializado com um valor randômico $\theta_{ij} \in [0,1] \mid \sum_{i}^{C} \mu_{ij} = 1$.

O coeficiente de $fuzzificação\ m\in[1,\infty]$, mede a tolerância do cluster. Este valor determina o quanto um cluster pode sobrepor outro. Quanto maior este valor, maior a sobreposição entre os agrupamentos, ao passo que também se usa uma maior quantidade de dados que podem estar inseridos em subconjunto fuzzy em que o grau de pertinência não é nem 0 ou 1, mas sim, algo entre estes valores.

O critério de parada é expresso em termos da acurácia dos graus de pertinência aplicados ao conjunto de dados, no sentido de determinar o número de iterações durante o processo de minimização. Esta é calculada utilizando o grau de pertinência de uma iteração para outra, considerando o maior valor de μ_{ij} para todos os dados x_i em todos os (clusters) c_j . A representação desta medida entre a iteração k e k+1 é dada por:

$$\epsilon = \Delta_i^N \Delta_j^C |\mu_{ij}^{k+1} - \mu_{ij}^k| \tag{1.4}$$

onde μ_{ij}^k e μ_{ij}^{k+1} são os graus de pertinência nas respectivas iterações e o operador Δ , retorna o maior valor do vetor em análise.

Algoritmo 1: Algoritmo Fuzzy c-Means

Agrupamento

Determinar a quantidade de partições c;

Determinar o erro máximo e;

Inicializar os centros aleatoriamente;

Inicializar o contador de iterações t = 0;

repita

Incrementar t;

Atualizar μ_h ;

Atualizar C;

 $\mathbf{at\acute{e}} \ \mathbf{que} \ \| C^{(t)} - C^{(t-1)} \| < (e)$

2 Descrição do Experimentos

Com o objetivo de avaliar o algoritmo *c-means* foram elaborados os seguintes experimentos:

- Aplicação do algoritmo fuzzy c-means desenvolvido ao conjunto de dados femdata.dat
 para 4 (quatro) grupos de agrupamentos e comparação dos resultados obtidos com a
 função fem do MATLAB.
- Adaptação do algoritmo anterior para o problema de segmentação de imagens e comparação dos resultados obtidos com a função fcm do MATLAB para o espaço de cores RGB utilizando diferentes quantidades de grupos de agrupamento.

A Figura 1 e 2 ilustram os dados do conjunto femdata. dat e as imagens utilizadas na aplicação do algoritmo *c-means* para segmentação de imagens, respectivamente.

Figura 1: Conjunto de dados fcmdata.dat.

3 Resultados

Nesta seção serão apresentados os resultados dos experimentos descritos anteriormente na Seção 2.

Figura 2: Imagens usadas na aplicação do algoritmo c-means para segmentação de imagens.

3.1 Agrupamento de dados

O algoritmo *c-Means* implementado foi utilizado para agrupamento de dados do conjunto de dados *fcmdata.dat*, considerando 4 agrupamentos. As Figuras 3(a) e 3(b) ilustram os centros dos agrupamentos obtidos quando utilizado o algoritmo implementado e a função fcm do MA-TLAB, respectivamente.

Figura 3: Comparação dos centros dos agrupamentos, considerando 4 agrupamentos, obtidos por meio do algoritmo c-means implementado e da função fcm do MATLAB.

3.2 Segmentação de imagens

Na abordagem computacional, por meio da técnica de validação cruzada, cada conjunto de espécies foi separado de forma aleatória em subconjuntos de treinamento e validação representados, com dimensão de 70% e 30%, respectivamente de cada classe de padrões.

Para todas as classes, no total, quatro dados de entrada aplicados a três espécies, com 50 amostras. Como ferramenta de aprendizagem, os conjuntos de treinamento e validação, foram determinados observando-se os percentuais em 35 e 15 amostras, respectivamente, para cada classe C_j .

Neste sentido, na etapa de treinamento, a partir de aprendizado supervisionado, houve a classificação inicial das amostras, como função da quantidade de regras e dos graus de certeza, no sentido de se estabelecer as condições e parâmetros iniciais do sistema de classificação.

A partir destes, houve a implementação das características de contexto adquiridas na etapa de treinamento, no sentido de aferir-se o desempenho do sistema de classificação.

Os experimentos foram realizados 25 vezes, para cada número de funções de pertinência de

2 até 15, com o propósito de se observar o limiar de convergência e paridade entre o erro do conjunto de treinamento e erro no conjunto de validação e eliminar a natureza estocástica da escolha do dados de treinamento de validação.

Nota-se que, para ambas as *t-normas* o número dito ideal de funções de pertinência é 8. De modo que, para um número menor de funções de pertinência ocorre o chamado *underfitting*, e para um número maior de funções de pertinência ocorre o chamado *overfitting*.

4 Conclusões

A utilização de métodos de classificação baseados em inferência, oferece uma solução baseada em conhecimento adquirido por aprendizagem ativa. Nesta abordagem, a classificação de pontos afins com relação aos seus respectivos centros, é relevante para análise de similaridade entre conjuntos de dados não-rotulados.

Com a aplicação de algoritmo *fuzzy c-Means* observou-se na realização dos experimentos, o efeito da aplicação das relações nebulosas e avaliação baseada em acurácia, em processos de inferência, propiciando distinção entre os dados de acordo com suas características de contexto. Nos experimentos de segmentação de imagem e no agrupamento de um conjunto de dados não-rotulados, a rotina implementada apresentou resultado bastante similar tomando-se como referência a função fcm do MATLAB©, apresentado desempenho satisfatório, conforme indicado na seção 3.

Referências

- [1] CANNON, Robert L.; DAVE, Jitendra V.; BEZDEK, James C. Efficient implementation of the fuzzy c-means clustering algorithms. IEEE transactions on pattern analysis and machine intelligence, n. 2, p. 248-255, 1986.
- [2] COUTINHO, P. H. S. Proposta de Novos Algoritmos Híbridos de Clusterização Fuzzy e suas aplicações. Trabalho de Conclusão de Curso. Departamento de Ciências Exatas e Tecnológicas. Universidade Estadual de Santa Cruz. Ilhéus-Bahia, 2017.