Linear Algebra 5C

Aamod Varma

December 3, 2024

5C

Problem 1

Proof. If F=C then T has an upper triangular matrix regardless. If F=R then consider T(x,y)=(-y,x). We have $T^2+I=0$. So the minimal polynomial of T does not have any real eigenvalues. However $T'=T^2$ has the upper triangular matrix -I

Problem 2

Proof. (a). We have $(A+B)_{jk}=A_{jk}+B_{jk}$ As both A and B are upper triangular matrices we know that $A_{jk}=B_{jk}=0$ for j>k. Hence $(A+B)_{jk}=0$ for j>k. And $(A+B)_{kk}=A_{kk}+B_{kk}=\alpha_k+\beta_k$ (b). We have,

$$(AB)_{jk} = \sum_{n=1}^{m} A_{jn} B_{nk}$$

First consider if j > k. We have,

$$\sum_{n=1}^{k} A_{jn} B_{nk} + \sum_{n=k+1}^{m} A_{jn} B_{nk}$$

In the first sum we have j > k and k > n so j > n which means that $A_{jn} = 0$ so the sum goes to zero. In the second sum we have n > k so $B_{nk} = 0$ so that goes to zero. Hence the sum is always 0 for any choice of j, k if j > k.

This shows that AB is an upper triangular matrix.

Now if j = k we have,

$$(AB)_{kk} = \sum_{n=1}^{m} A_{kn} B_{nk} = A_{kk} B_{kk} = \alpha_k \beta_k$$

Problem 3

Proof. (1). We know if T is an upper triangular matrix then the minimal polynomial of T can be written as $(z - \lambda_1) \dots (z - \lambda_n)$. We also know that if T is invertible then its minimal polynomial is,

$$(z-\frac{1}{\lambda_1})\dots(z-\lambda_n)$$

Because it is of this form we can create an upper triangular matrix with the reciprocals on the diagonal.

(2). The existence of an upper triangular matrix for T implies that for the

basis v_1, \ldots, v_n we can write,

$$Tv_1 = \lambda_1 v_1$$

$$Tv_2 = a_1 v_1 + \lambda_2 v_2$$

$$\dots$$

$$Tv_n = b_1 v_1 + \dots + \lambda_n v_n$$

Now let us apply T^{-1} on each side and we get,

$$v_{1} = \lambda_{1} T^{-1} v_{1}$$

$$v_{2} = a_{1} T^{-1} v_{1} + \lambda_{2} T^{-1} v_{2}$$

$$\dots$$

$$v_{n} = b_{1} T^{-1} v_{1} + \dots + T^{-1} \lambda_{n} v_{n}$$

Rearranging the term we get,

$$T^{-1}v_{1} = \frac{v_{1}}{\lambda_{1}}$$

$$T^{-1}v_{2} = \frac{v_{2}}{\lambda_{2}} - \frac{a_{1}}{\lambda_{2}}T^{-1}v_{1}$$

$$\dots$$

$$T^{-1}v_{n} = \frac{v_{n}}{\lambda_{n}} - \frac{b_{1}}{\lambda_{n}}T^{-1}v_{1} + \dots$$

Going from the beginning we have $T^{-1}v_1 \in span(v_1), T^{-1}v_2 \in span(v_1, v_2)$ and going forward we get $T^{-1}v_k \in span(v_1, \dots, v_{k-1})$. This makes our matrix upper triangular.

We see that for any $k \in \{1, ..., n\}$ that the term before v_k for $T^{-1}v_k$ is $\frac{1}{\lambda_k}$. Hence our diagonal is $\frac{1}{\lambda_k}$ for the v_k .

Problem 6

Proof. If F = C that means that there exists an upper triangular matrix with respect to some basis of V. Let this basis be v_1, \ldots, v_n where $n = \dim V$.

Now this means that for any k, $span(v_1, ..., v_k)$ is invariant under T as $T(v_k) \in span(v_1, ..., v_k), T(v_{k-1}) \in span(v_1, ..., v_{k-1}), ...$

Problem 7a

Proof. (a). Consider the list $(v, Tv, \ldots, T^{\dim V}v)$. As the dimension is $\dim V+1$ there is some smallest k such that $T^{k+1} \in span(v, \ldots, T^k)$. Which makes $U = span(v, \ldots, T^k)$ invariant under T. Let p_v be the minimal

polynomial of $T_{|U}$ so we see that,

$$p_v(T)v = p_v(T_{|U})v = 0$$

We know that the degree cannot be smaller than k so it is of least degree.

Problem 8b

Proof. We have $T^2v + 2Tv + 2v = 0$

So the minimal polynomial is either $z^2+2z+2=0$ or a polynomial multiple of it whose roots are -1+i or -1-i.

Which means that eigenvalues of T are the same so it must appear on the diagonal of A. \Box

Problem 9

Proof. Now let T be the linear map associated with B. Because F = C there exists some basis of V in which there is a linear map C which is upper triangular. Let this basis be v_1, \ldots, v_n . If B is a matrix defined on the basis u_1, \ldots, u_n . Then we can define $A = M(T, (v_1, \ldots, v_n), (u_1, \ldots, u_n))$ such that $A^{-1}BA = M(T, (v_1, \ldots, v_n), (v_1, \ldots, v_n)) = C$.

Problem 10

Proof. $a \Rightarrow b$

If the matrix is lower triangular then we can say that,

$$Tv_1 = a_1 v_1, \dots, a_n v_n$$
$$\dots$$
$$T(v_n) = b_n v_n$$

So we see that for any j we have $Tv_j \in span(v_j, \ldots, v_n)$ but $span(v_j, \ldots, v_n) \subset span(v_k, \ldots, v_n)$. So for any $v \in span(v_k, \ldots, v_n)$ we have $Tv \in span(v_1, \ldots, v_n)$ which makes the span invariant.

 $b \Rightarrow c$ If the span is invariant then it follows.

 $c \Rightarrow b$ If c is true that means that we can write Tv_1, \ldots, Tv_k in the way we wrote above which means we can make a lower triangular matrix.