1 Números Reais

1. Simplifique as seguintes expressões (definidas nos respectivos domínios):

a)
$$\frac{\frac{x}{2}}{\frac{2}{x}}$$
,

b)
$$\frac{x+1}{\frac{1}{x}+1}$$
,

c)
$$\frac{1}{1+x} + \frac{1}{x^2+x}$$
,

d)
$$\sqrt{x^2}$$
,

e)
$$(\sqrt{x})^2$$
,

f)
$$4^x \frac{4}{2^x}$$
,

g)
$$2^{x^2} (2^x)^2$$
,

h)
$$\frac{\sqrt[3]{x^2}}{\sqrt[6]{x}}$$
,

i)
$$\sqrt{x-2}\sqrt{x+2}$$
,

$$j) \ \frac{\sqrt{x}}{\sqrt{x+1}-\sqrt{x}},$$

k)
$$\log\left(\frac{1}{x}\right) + \log\left(x^2\right)$$
,

1)
$$\log(2x^2 + 2x^{-2}) + \log(\frac{x^2}{2} + \frac{x^{-2}}{2})$$
.

2. Resolva as seguintes equações e inequações:

a)
$$(x^2 - 3x + 2)(x - 1) \ge 0$$
,

b)
$$x \le 2 - x^2$$
,

c)
$$x^2 \le 2 - x^4$$
,

d)
$$x^3 + x \le 2x^2$$
,

e)
$$\sqrt[3]{x^2 + 2x} = 2$$
,

- f) $\sqrt[3]{x-1} = \sqrt{x-1}$,
- g) $\frac{x-1}{x^2-1} \le 1$,
- h) $x = \frac{1}{x}$,
- i) $x < \frac{1}{x}$,
- j) x < |x|,
- k) $|x| \ge \frac{x}{2} + 1$,
- 1) $|x| \le |x-2|$,
- m) $|x^2 2| \le 2$,
- n) $\frac{x^4-16}{|x-1|} \le 0$,
- o) $e^{x^3} < 1$,
- p) $e^{-2x} 2e^{-x} \le -1$,
- q) $\log\left(\frac{1}{x}\right) \ge 0$,
- r) $\log(x^2 3) \ge 0$,
- 3. Escreva cada um dos seguintes conjuntos como intervalos ou reuniões de intervalos:
 - $a) \left\{ x : \frac{x-1}{x+1} \le 1 \right\},$
 - b) $\{x: \frac{x^4-1}{x^3} \le x\}$,
 - c) $\{x: |3x-4| \ge x^2\}$,
 - d) $\{x: |x-1|(x^2-4) \ge 0\},\$
 - e) $\{x: (|x|-1)(x^2-4) \le 0\},\$
 - f) $\{x: |x^2 1| \le |x + 1|\}$,
 - g) $\{x: x^2 |x| 2 \le 0\}$,
 - $h) \left\{ x : \frac{x}{|x|-1} \ge 0 \right\},\,$
 - i) $\left\{x: \frac{x^2 |x|}{x 3} \le 0\right\}$,
- 4. Indique justificando quais das proposições seguintes são verdadeiras:
 - a) $\{1\} \subset \{1, \{2, 3\}\}$
 - b) $\{1\} \in \{1, \{2, 3\}\}$
 - c) $2 \in \{1, \{2, 3\}\}$
 - d) $1 \in \{\mathbb{R}\}$
 - e) $\emptyset = \{x \in \mathbb{N} : x = x + 1\}$

- f) $\emptyset \in \{0\}$
- g) $\emptyset \subset \{0\}$
- h) $\forall_{x \in \mathbb{R}} x > 0 \iff x^{-1} > 0$
- i) $\forall_{x \in \mathbb{R}} x > 1 \iff x^{-1} < 1$
- j) $\forall_{x,y \in \mathbb{R}} x < y \implies y^{-1} < x^{-1}$
- k) $\forall_{x \neq 0} x^2 > 0$
- 1) $\forall_{x,y \in \mathbb{R}} x < y \implies x^2 < y^2$
- m) $\forall_{x,y \in \mathbb{R}} x < y < 0 \implies x^2 > y^2$

5. (Ex. 1.17, 1.18 e 1.19 de [2]) Demonstre pelo princípio de indução matemática que:

- a) $1+3+\cdots+(2n-1)=n^2$, $\forall n \in \mathbb{N}_1^{-1}$.
- b) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$, para todo o natural $n \ge 1$.
- c) $(n!)^2 > 2^n n^2$, para todo o natural $n \ge 4$.
- d) $n! \ge 2^{n-1}$, para todo o natural $n \ge 1$.

6. Demonstre pelo princípio de indução matemática que:

- a) $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$, para qualquer $n \in \mathbb{N}_1$.
- b) Para $a \in \mathbb{R}$, $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$, para qualquer $n \in \mathbb{N}$.
- c) $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!} = 1 \frac{1}{(n+1)!}$, para qualquer $n \in \mathbb{N}$.
- d) $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$, para qualquer $n \in \mathbb{N}_1$.
- e) $1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$, para qualquer $n \in \mathbb{N}_1$.

7. Demonstre pelo princípio de indução matemática que:

- a) $(n+2)! \ge 2^{2n}$, para qualquer $n \in \mathbb{N}_1$.
- b) $2n-3 < 2^{n-2}$, para todo o natural $n \ge 5$.
- c) $7^n 1$ é múltiplo² de 6 para qualquer $n \in \mathbb{N}_1$.
- d) $2^{2n} + 2$ é múltiplo de 3 para qualquer $n \in \mathbb{N}$.

8. (Ex. 1.20 de [2]) Demonstre a desigualdade de Bernoulli:

Sendo
$$a > -1$$
 e $n \in \mathbb{N}$, $(1 + a)^n \ge 1 + na$.

9. Seja P(n) a condição " $n^2 + 3n + 1$ é par".

¹Esta expressão pode ser escrita na forma $\sum_{k=1}^{n} (2k-1) = n^2$. ²Um número é múltiplo de 6 sse é da forma 6k, para algum $k \in \mathbb{N}_1$.

- a) Mostre que $P(n) \Rightarrow P(n+1)$.
- b) Pode concluir que $n^2 + 3n + 1$ é par, para qualquer $n \in \mathbb{N}$?
- c) Mostre que, para qualquer $n \in \mathbb{N}$, $n^2 + 3n + 1$ é ímpar.
- 10. Seja $f: \mathbb{N} \longrightarrow \mathbb{N}$ tal que f(0) = 1 e f(n+1) = (2n+2)(2n+1)f(n). Mostre por indução matemática que, para qualquer $n \in \mathbb{N}$,

$$f(n) = (2n)!$$

11. Considere a sucessão real (u_n) dada por:

$$\begin{cases} u_1 = 3, \\ u_{n+1} = \frac{3u_n}{(n+1)^2}. \end{cases}$$

Mostre, usando indução matemática, que $u_n = \frac{3^n}{(n!)^2}$, para qualquer $n \in \mathbb{N}_1$.

12. (Teste de 29/4/2006) Considere a sucessão real (u_n) dada por:

$$\begin{cases} u_1 = 1, \\ u_{n+1} = \sqrt{2u_n^2 + 1}. \end{cases}$$

Mostre, usando indução matemática, que $u_n = \sqrt{2^n - 1}$, para qualquer $n \in \mathbb{N}_1$.

- 13. Verifique que se $n \in \mathbb{N}$ é impar, então n^2 é também impar. O que pode concluir de $n \in \mathbb{N}$ sabendo que n^2 é par?
- 14. Verifique que se x, y são números racionais, então x + y, xy, -x, x⁻¹ (para $x \ne 0$) são também números racionais.
- 15. (Ex. I.3 de [1]) Verifique que, se x é um número racional diferente de zero e y um número irracional, então x + y, x y, xy e y/x são irracionais; mostre também que, sendo x e y irracionais, a sua soma, diferença, produto e quociente podem ser ou não ser irracionais.
- 16. (Ex. 1.2 de [2]) Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : |x| \ge \frac{x}{2} + 2 \right\}, \qquad B = [-3, 4], \qquad C = \mathbb{R} \setminus \mathbb{Q}.$$

a) Mostre que $A \cap B = \left[-3, -\frac{4}{3} \right] \cup \{4\}.$

 $^{^3}$ Ou seja, $\mathbb Q$ é fechado para a adição e multiplicação e contem os simétricos e inversos de todos os seus elementos. Mostra-se assim, uma vez que também os elementos neutros 0 e 1 são racionais, que $\mathbb Q$ é um corpo. É fácil ver que também verifica as propriedades de ordem, ou seja, $\mathbb Q$ é um corpo ordenado.

- b) Indique, se existirem em \mathbb{R} , sup A, min($A \cap B$), max($A \cap B$), inf($A \cap B \cap C$), sup($A \cap B \cap C$) e min($A \cap B \cap C$).
- 17. (Exame de 19/1/2000) Considere os conjuntos A e B definidos por

$$A = \left\{ x \in \mathbb{R} \ : \ \frac{x-1}{x \log x} > 0 \right\}, \qquad B = \left\{ x \in \mathbb{R} \ : \ x = -\frac{1}{n}, n \in \mathbb{N}_1 \right\}.$$

Mostre que o conjunto A é igual a $\mathbb{R}^+ \setminus \{1\}$. Determine, caso existam, ou justifique que não existem, o supremo, o ínfimo, o máximo e o mínimo dos conjuntos A e $A \cup B$.

18. (Ex. 1.8 de [2]) Considere os conjuntos

$$A = \left\{ x \in \mathbb{R} : \frac{1}{\log x} \ge 1 \right\}, \qquad B = \left\{ 1 - \frac{(-1)^n}{n}, n \in \mathbb{N}_1 \right\}.$$

Para cada um dos conjuntos A e B, indique o conjunto dos majorantes, o conjunto dos minorantes e, no caso de existirem (em \mathbb{R}), o supremo, o ínfimo, o máximo e o mínimo.

19. Sejam A, B e C os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : x^2 + 2|x| > 3 \right\}, \qquad B = \left] 0, \sqrt{2} \right[,$$

$$C = \left\{ \sqrt{2} - \frac{1}{n} : n \in \mathbb{N}_1 \right\}.$$

- a) Calcule A sob a forma de uma reunião de intervalos.
- b) Indique, caso exista, $\inf A$, $\min A \cap B$, $\max A \cap B$, $\max A \cap B \cap \mathbb{Q}$, $\inf A \cap B \cap \mathbb{Q}$, $\max C$, $\max B \setminus C$.
- 20. (Exame de 2000) Sejam A e B os subconjuntos de \mathbb{R} definidos por

$$A = \{x \in \mathbb{R} : |x - 1| \le x^2 - 1\}, \qquad B = [-2, 2].$$

- a) Determine *A* sob a forma de reunião de intervalos.
- b) Determine, se existirem em \mathbb{R} , o máximo e o mínimo de $A \cap B$ e o supremo, ínfimo, máximo e mínimo de $(A \cap B) \setminus \mathbb{Q}$.
- 21. (Exame de 30/11/2002) Considere os seguintes conjuntos de \mathbb{R} :

$$A = \left\{ x : |x^2 - 2| \le 2x + 1 \right\}, \qquad B = \mathbb{Q}, \qquad C = \left\{ \frac{1}{k^2} : k \in \mathbb{N}_1 \right\}.$$

a) Mostre que $A = [-1 + \sqrt{2}, 3]$.

- b) Determine, se existirem, o supremo, ínfimo, máximo e mínimo de $A \cap B$, C.
- 22. (Exame de 16/1/2004) Considere os seguintes conjuntos de números reais:

$$A = \left\{ x : \frac{x^2 - 1}{x} \ge |x - 1| \right\}, \qquad B = \left\{ x : \text{sen } x = 0 \right\}, \qquad C = \mathbb{Q}.$$

- a) Mostre que $A = \left[-\frac{1}{2}, 0 \right] \cup [1, +\infty[.$
- b) Escreva os conjuntos dos majorantes e minorantes de $A \cap C$ e $B \cap C$. Calcule ou conclua da não existência de sup A, inf $A \cap C$, min $A \cap C$, min B, sup $B \cap C$.
- 23. (Teste de 12/11/2005) Considere os seguintes conjuntos de \mathbb{R} :

$$A = \left\{ x : x \ge 0 \ \land \ \frac{x^4 - 4}{|x - 1|} \le 0 \right\}, \qquad B = \left\{ x : x \ge 0 \ \land \ \exists_{k \in \mathbb{N}} \ kx \notin \mathbb{Q} \right\}.$$

- a) Mostre que $A = [0, \sqrt{2}] \setminus \{1\}$ e justifique que $B = [0, +\infty[\setminus \mathbb{Q}]]$
- b) Determine, ou mostre que não existem, o supremo, ínfimo, máximo e mínimo de cada um dos conjuntos A e $A \setminus B$.
- 24. (Teste de 29/4/2006) Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x : \frac{x^2 - 2}{|x| - 1} \le 0 \right\}, \quad B = \{2^{n/2} : n \in \mathbb{N}_1\}.$$

- a) Mostre que $A = \left[-\sqrt{2}, -1 \right] \cup \left[1, \sqrt{2} \right]$.
- b) Determine ou justifique que não existem, os supremo, máximo, ínfimo e mínimo de cada um dos conjuntos $A \cap \mathbb{Q}$, $B \in B \cap \mathbb{Q}$.
- 25. (Ex. 1.10 de [2]) Seja A um subconjunto de \mathbb{R} , majorado e não vazio, e seja m um majorante de A, distinto do supremo desse conjunto. Mostre que existe $\epsilon > 0$ tal que $V_{\epsilon}(m) \cap A = \emptyset$.
- 26. (Ex. I.5 de [1]) Sejam A e B dois subconjuntos de $\mathbb R$ tais que $A \subset B$ e suponha que A é não vazio e B é majorado. Justifique que existem os supremos de A e B e prove que se verifica sup $A \leq \sup B$.
- 27. (Ex. 1.12 de [2]) Sendo U e V dois subconjuntos majorados e não vazios de \mathbb{R} , tais que sup U < sup V, justifique (de forma precisa e abreviada) as afirmações seguintes:
 - a) Se $x \in U$, então $x < \sup V$.
 - b) Existe pelo menos um $y \in V$ tal que $y > \sup U$.

- 28. (Ex. 1.14 de [2]) Sejam A e B dois subconjuntos de \mathbb{R} .
 - a) Prove que, se $\sup A < \inf B$, $A \in B$ são disjuntos.
 - b) Mostre, por meio de exemplos, que se for $\sup A > \inf B \wedge \sup B > \inf A$, $A \in B$ podem ser ou não disjuntos.

Parte III Bibliografia

0 Bibliografia

- [1] J. Campos Ferreira. *Introdução à Análise Matemática*. Fundação Calouste Gulbenkian, Lisboa.
- [2] Departamento de Matemática do Instituto Superior Técnico. *Exercícios de Análise Matemática I/II*, 2ª edição, 2005. IST Press, Lisboa.