Задачник по эконометрике-1

(с шахматами и поэтэссами)

Дмитрий Борзых, Борис Демешев 19 сентября 2013 г.

Содержание

1	проверка гипотез строго по уставу:	4
2	МНК без матриц и вероятностей	2
3	Теорема Гаусса-Маркова и нормальность	4
4	Мультиколлинеарность	11
5	Гетероскедастичность	14
6	Временные ряды	17
7	Функциональная форма	18
8	Инструментальные переменные	18
9	Проекция, Картинка	19
10	Деревья и Random Forest	19
11	SVM	20
12	МЕГАМАТРИЦА (операции со случайными векторами)	20
13	Метод максимального правдоподобия	21
14	Логит и пробит	23
15	Голая линейная алгебра	25
16	Парадигма случайных величин	25
17	Метод Монте-Карло	25
18	Программирование	25
\mathbf{T}	odo list	
Ko	сяк. Почему-то книтр внутри solution ругается на доллар	9

1 Проверка гипотез строго по уставу!

- 1. Условия применимости теста
- 2. Формулировка H_0, H_a и уровня значимости α
- 3. Формула расчета и наблюдаемое значения статистики, S_{obs}
- 4. Закон распределения S_{obs} при верной H_0
- 5. Область в которой H_0 не отвергается
- 6. Точное Р-значение
- 7. Вывод

В качестве вывода допускается только одна из двух фраз:

- Гипотеза H_0 отвергается
- Гипотеза H_0 не отвергается

Остальные фразы считаются неуставными

2 МНК без матриц и вероятностей

- 1. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta} x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \sum x_i y_i / \sum x_i^2$
- 2. Даны n чисел: y_1, \ldots, y_n . Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \bar{y}$
- 3. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$. Найдите $\hat{\beta}_1$ и $\hat{\beta}_2$ методом наименьших квадратов. $\hat{\beta}_2 = \sum (x_i \bar{x})(y_i \bar{y}) / \sum (x_i \bar{x})^2$, $\hat{\beta}_1 = \bar{y} \hat{\beta}_2 \bar{x}$
- 4. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = 1 + \hat{\beta}x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \sum x_i(y_i 1) / \sum x_i^2$
- 5. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Оцените вес каждого слитка методом наименьших квадратов. $(300 \hat{\beta}_1)^2 + (200 \hat{\beta}_2)^2 + (400 \hat{\beta}_1 \hat{\beta}_2)^2 \rightarrow \min$
- 6. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью мнк оцените на сколько опоздал лектор. $2 \cdot (10 \hat{\beta})^2 + (3 \hat{\beta})^2 \to \min$
- 7. Регрессия на дамми-переменную...
- 8. Функция f(x) дифференциируема на отрезке [0;1]. Найдите аналог МНК-оценок для регрессии без свободного члена в непрерывном случае. Более подробно: найдите минимум по $\hat{\beta}$ для функции

$$Q(\hat{\beta}) = \int_0^1 (f(x) - \hat{\beta}x)^2 dx$$
 (1)

- 9. Есть двести наблюдений. Вовочка оценил модель $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ по первой сотне наблюдений. Петечка оценил модель $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x$ по второй сотне наблюдений. Машенька оценила модель $\hat{y} = \hat{m}_1 + \hat{m}_2 x$ по всем наблюдениям.
 - (a) Возможно ли, что $\hat{\beta}_2 > 0, \, \hat{\gamma}_2 > 0, \,$ но $\hat{m}_2 < 0?$
 - (b) Возможно ли, что $\hat{\beta}_1 > 0, \, \hat{\gamma}_1 > 0,$ но $\hat{m}_1 < 0$?
 - (с) Возможно ли одновременное выполнение всех упомянутых условий?

да, возможно. Два вытянутых облачка точек. Первое облачко даёт первую регрессию, второе — вторую. Прямая, соединяющая центры облачков, — общую.

- 10. Вася оценил модель $y = \beta_1 + \beta_2 d + \beta_3 x + \varepsilon$. Дамми-переменная d обозначает пол, 1 для мужчин и 0 для женщин. Оказалось, что $\hat{\beta}_2 > 0$. Означает ли это, что для мужчин \bar{y} больше, чем \bar{y} для женщин? Нет. Коэффициенты можно интерпретировать только «при прочих равных», т.е. при равных x. Из-за разных x может оказаться, что у мужчин \bar{y} меньше, чем \bar{y} для женщин.
- 11. Какие из указанные моделей можно представить в линейном виде?
 - (a) $y_i = \beta_1 + \frac{\beta_2}{x_i} + \varepsilon_i$
 - (b) $y_i = \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)$
 - (c) $y_i = 1 + \frac{1}{\exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$
 - (d) $y_i = \frac{1}{1 + \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$
 - (e) $y_i = x_i^{\beta_2} e^{\beta_1 + \varepsilon_i}$
- 12. У эконометриста Вовочки есть переменная 1_f , которая равна 1, если i-ый человек в выборке женщина, и 0, если мужчина. Есть переменная 1_m , которая равна 1, если i-ый человек в выборке мужчина, и 0, если женщина. Какие \hat{y} получатся, если Вовочка попытается построить регрессии:
 - (a) y на константу и 1_f
 - (b) y на константу и 1_m
 - (c) y на 1_f и 1_m без константы
 - (d) y на константу, 1_f и 1_m
- 13. У эконометриста Вовочки есть три переменных: r_i доход i-го человека в выборке, m_i пол (1 мальчик, 0 девочка) и f_i пол (1 девочка, 0 мальчик). Вовочка оценил две модели

Модель А $m_i = \beta_1 + \beta_2 r_i + \varepsilon_i$

Модель В $f_i = \gamma_1 + \gamma_2 r_i + u_i$

- (а) Как связаны между собой оценки $\hat{\beta}_1$ и $\hat{\gamma}_1$?
- (b) Как связаны между собой оценки $\hat{\beta}_2$ и $\hat{\gamma}_2$?

Оценки МНК линейны по объясняемой переменной. Если сложить объясняемые переменные в этих двух моделях, то получится вектор из единичек. Если строить регрессию вектора из единичек на константу и r, то получатся оценки коэффициентов 1 и 0. Значит, $\hat{\beta}_1 + \hat{\gamma}_1 = 1$, $\hat{\beta}_2 + \hat{\gamma}_2 = 0$

- 14. Эконометрист Вовочка оценил линейную регрессионную модель, где y измерялся в тугриках. Затем он оценил ту же модель, но измерял y в мунгу (1 тугрик = 100 мунгу). Как изменятся оценки коэффициентов? Увеличатся в 100 раз
- 15. Возможно ли, что при оценке парной регрессии $y = \beta_1 + \beta_2 x + \varepsilon$ оказывается, что $\hat{\beta}_2 > 0$, а при оценке регрессии без константы, $y = \gamma x + \varepsilon$, оказывается, что $\hat{\gamma} < 0$? да
- 16. Эконометрист Вовочка оценил регрессию y только на константу. Какой коэффициент R^2 он получит? $R^2=0$
- 17. Эконометрист Вовочка оценил методом наименьших квадратов модель 1, $y = \beta_1 + \beta_2 x + \beta_3 z + \varepsilon$, а затем модель 2, $y = \beta_1 + \beta_2 x + \beta_3 z + \beta_4 w + \varepsilon$. Сравните полученные ESS, RSS, TSS и R^2 . $TSS_1 = TSS_2$, $R^2 \geqslant R^2$, $ESS_2 \geqslant ESS_1$, $RSS_2 \leqslant RSS_1$
- 18. (?) Создайте набор данных с тремя переменными y, x и z со следующими свойствами. При оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ получается $\hat{\beta}_2 > 0$. При оценке модели $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x + \hat{\gamma}_3 z$ получается $\hat{\gamma}_2 < 0$. Объясните принцип, руководствуясь которым легко создать такой набор данных.

19. (?) У меня есть набор данных с выборочным средним \bar{y} и выборочной дисперсией s^2 . Как нужно преобразовать данные, чтобы выборочное среднее равнялось 7, а выборочная дисперсия — 9? $y_i^* = 7 + 3(y_i - \bar{y})/s$

3 Теорема Гаусса-Маркова и нормальность

- 1. Напишите формулу для оценок коэффициентов в парной регрессии без матриц
- 2. Напишите формулу для оценок коэффициентов в множественной регрессии с матрицами
- 3. (аналогично) для дисперсий
- 4. Сформулируйте теорему Гаусса-Маркова
- 5. Ошибки регрессии ε_i независимы и равновероятно принимают значения +1 и -1. Также известно, что $y_i = \beta \cdot i + \varepsilon_i$. Модель оценивается всего по двум наблюдениям.
 - (a) Найдите закон распределения $\hat{\beta}$, RSS, ESS, TSS, R^2
 - (b) Найдите $\mathbb{E}(\hat{\beta})$, $Var(\hat{\beta})$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$, $\mathbb{E}(R^2)$
 - (c) При каком β величина $\mathbb{E}(R^2)$ достигает максимума?
- 6. По 47 наблюдениям оценивается зависимость доли мужчин занятых в сельском хозяйстве от уровня образованности и доли католического населения по Швейцарским кантонам в 1888 году.

$$Agriculture_i = \beta_1 + \beta_2 Examination_i + \beta_3 Catholic_i + \varepsilon_i$$

xtable(coef.t)

	Оценка	Ст. ошибка	t-статистика
(Intercept)		8.72	9.44
Examination	-1.94		-5.08
Catholic	0.01	0.07	

- (а) Заполните пропуски в таблице
- (b) Укажите коэффициенты, значимые на 10% уровне значимости.
- (c) Постройте 99%-ый доверительный интервал для коэффициента при переменной Catholic

Набор данных доступен в пакете R:

```
h <- swiss
```

7. Оценивается зависимость уровня фертильности всё тех же швейцарских кантонов в 1888 году от ряда показателей. В таблице представлены результаты оценивания двух моделей. Модель 1: $Fertility_i = \beta_1 + \beta_2 Agriculture_i + \beta_3 Education_i + \beta_4 Examination_i + \beta_5 Catholic_i + \varepsilon_i$ Модель 2: $Fertility_i = \gamma_1 + \gamma_2 (Education_i + Examination_i) + \gamma_3 Catholic_i + u_i$

```
m1 <- lm(Fertility~Agriculture+Education+Examination+Catholic,data=h)
m2 <- lm(Fertility~I(Education+Examination)+Catholic,data=h)
```

apsrtable(m1,m2)

Таблица 1:

		таолица
	Model 1	Model 2
(Intercept)	91.06*	80.52*
	(6.95)	(3.31)
Agriculture	-0.22^*	
	(0.07)	
Education	-0.96^*	
	(0.19)	
Examination	-0.26	
	(0.27)	
Catholic	0.12^*	0.07^{*}
	(0.04)	(0.03)
I(Education + Examination)	,	-0.48^*
,		(0.08)
N	47	$\dot{47}$
R^2	0.65	0.55
adj. R^2	0.62	0.53
Resid. sd	7.74	8.56
~		

Standard errors in parentheses

Набор данных доступен в пакете R:

h <- swiss

- (a) Проверьте гипотезу о том, что коэффициент при Education в модели 1 равен -0.5.
- (b) На 5% уровне значимости проверьте гипотезу о том, что переменные Education и Examination оказывают одинаковое влияние на Fertility.
- 8. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

```
model1 <- lm(price~totsp+livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
rownames(coef.table) <- c("Константа","Общая площадь", "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Оценка ковариационной матрицы $\widehat{Var}(\hat{\beta})$ имеет вид

```
var.hat <- vcov(model1)
xtable(var.hat)</pre>
```

^{*} indicates significance at p < 0.05

	(Intercept)	totsp	livesp
(Intercept)	19.07	0.03	-0.45
totsp	0.03	0.01	-0.02
livesp	-0.45	-0.02	0.03

- (a) Проверьте H_0 : $\beta_{totsp} = \beta_{livesp}$. В чём содержательный смысл этой гипотезы?
- (b) Постройте доверительный интервал дли $\beta_{totsp} \beta_{livesp}$. В чём содержательный смысл этого доверительного интервала?

Из оценки ковариационной матрицы находим, что $se(\hat{\beta}_{totsp} = \hat{\beta}_{livesp}) = 0.2696$. Исходя из $Z_{crit} = 1.96$ получаем доверительный интервал, [-0.8221; 0.2348].

Вывод: при уровне значимости 5% гипотеза о равенстве коэффициентов не отвергается.

9. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

```
model1 <- lm(price~totsp+livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
rownames(coef.table) <- c("Константа","Общая площадь", "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Оценка ковариационной матрицы $\widehat{Var}(\hat{\beta})$ имеет вид

xtable(vcov(model1))

	(Intercept)	totsp	livesp
(Intercept)	19.07	0.03	-0.45
totsp	0.03	0.01	-0.02
livesp	-0.45	-0.02	0.03

- (a) Постройте 95%-ый доверительный интервал для ожидаемой стоимости квартиры с жилой площадью $30~{\rm m}^2$ и общей площадью $60~{\rm m}^2$.
- (b) Постройте 95%-ый прогнозный интервал для фактической стоимости квартиры с жилой площадью 30 $\rm m^2$ и общей площадью 60 $\rm m^2.$
- 10. Рассмотрим модель с линейным трендом без свободного члена, $y_t = \beta t + \varepsilon_t$.
 - (a) Найдите МНК оценку коэффициента β
 - (b) Рассчитайте $\mathbb{E}(\hat{\beta})$ и $\mathrm{Var}(\hat{\beta})$ в предположениях теоремы Гаусса-Маркова
 - (c) Верно ли, что оценка $\hat{\beta}$ состоятельна?
 - (a) $\hat{\beta} = \frac{\sum y_t t}{\sum t^2}$
 - (b) $\mathbb{E}(\hat{\beta}) = \beta$ и $\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{\sum_{t=1}^T t^2}$
 - (с) Да, состоятельна
- 11. В модели $y_t = \beta_1 + \beta_2 x_t$, где $x_t = \begin{cases} 2, t = 1 \\ 1, t > 1 \end{cases}$:

- (a) Найдите мнк-оценку $\hat{\beta}_2$
- (b) Рассчитайте $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$ в предположениях теоремы Гаусса-Маркова
- (c) Верно ли, что оценка $\hat{\beta}_2$ состоятельна?

12. В модели
$$y_t = \beta_1 + \beta_2 x_t$$
, где $x_t = \left\{ \begin{array}{l} 1, \ t=2k+1 \\ 0, \ t=2k \end{array} \right.$:

- (a) Найдите мнк-оценку $\hat{\beta}_2$
- (b) Рассчитайте $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$ в предположениях теоремы Гаусса-Маркова
- (c) Верно ли, что оценка $\hat{\beta}_2$ состоятельна?
- 13. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража, метража жилой площади и дамми-переменной, равной 1 для кирпичных домов.

```
model1 <- lm(price~totsp+livesp+brick+brick:totsp+brick:livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
# rownames(coef.table) <- c("Константа","Общая площадь", "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-66.03	6.07	-10.89	0.00
totsp	1.77	0.12	14.98	0.00
livesp	1.27	0.25	5.05	0.00
brick	-19.59	9.01	-2.17	0.03
totsp:brick	0.42	0.20	2.10	0.04
livesp:brick	0.09	0.38	0.23	0.82

- (а) Выпишите отдельно уравнения регрессии для кирпичных домов и для некирпичных домов
- (b) Проинтерпретируйте коэффициент при $brick_i \cdot totsp_i$
- 14. По 20 наблюдениям оценивается линейная регрессия $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, причём истинная зависимость имеет вид $y = \beta_1 + \beta_2 x + \varepsilon$. Случайная ошибка ε_i имеет нормальное распределение N(0,1).
 - (a) Найдите вероятность $\mathbb{P}(\hat{\beta}_3 > se(\hat{\beta}_3))$
 - (b) Найдите вероятность $\mathbb{P}(\hat{\beta}_3 > \sigma_{\hat{\beta}_3})$
 - (a) $\mathbb{P}(\hat{\beta}_3 > se(\hat{\beta}_3)) = \mathbb{P}(t_{17} > 1) = 0.1657$
 - (b) $\mathbb{P}(\hat{\beta}_3 > \sigma_{\hat{\beta}_3}) = \mathbb{P}(N(0,1) > 1) = 0.1587$
- 15. Регрессионная модель задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = (\beta_1, \beta_2, \beta_3)'$. Известно, что $\mathbb{E}(\varepsilon) = 0$ и $\mathrm{Var}(\varepsilon) = \sigma^2 \cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 4 & -3 \\ 0 & -3 & 6 \end{pmatrix}.$$

- (а) Укажите число наблюдений.
- (b) Укажите число регрессоров с учетом свободного члена.
- (с) Запишите модель в скалярном виде
- (d) Рассчитайте $TSS = \sum (y_i \bar{y})^2$, $RSS = \sum (y_i \hat{y}_i)^2$ и $ESS = \sum (\hat{y}_i \bar{y})^2$.
- (e) Рассчитайте при помощи метода наименьших квадратов $\hat{\beta}$, оценку для вектора неизвестных коэффициентов.
- (f) Чему равен $\hat{\varepsilon}_5$, МНК-остаток регрессии, соответствующий 5-ому наблюдению?
- (g) Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- (h) Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- (i) Рассчитайте $\widehat{\mathrm{Var}}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\hat{\beta}$.
- (j) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_1$.
- (k) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_2)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_2$.
- (l) Найдите $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$, несмещенную оценку ковариации МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
- (m) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1-\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2+\hat{\beta}_3)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2-2\hat{\beta}_3)$
- (n) Найдите $\widehat{\mathrm{Corr}}(\hat{\beta}_1,\hat{\beta}_2)$, оценку коэффициента корреляции МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
- (о) Найдите $s_{\hat{\beta}_1}$, стандартную ошибку МНК-коэффициента $\hat{\beta}_1$.
- (p) Рассчитайте выборочную ковариацию y и \hat{y} .
- (q) Найдите выборочную дисперсию y, выборочную дисперсию \hat{y} .
- 16. Априори известно, что парная регрессия должна проходить через точку (x_0, y_0) .
 - (а) Выведите формулы МНК оценок;
 - (b) В предположениях теоремы Гаусса-Маркова найдите дисперсии и средние оценок Вроде бы равносильно переносу начала координат и применению результата для регрессии без свободного члена. Должна остаться несмещенность.
- 17. Мы предполагаем, что y_t растёт с линейным трендом, т.е. $y_t = \beta_1 + \beta_2 t + \varepsilon_t$. Все предпосылки теоремы Гаусса-Маркова выполнены. В качестве оценки $\hat{\beta}_2$ предлагается $\hat{\beta}_2 = \frac{Y_T 1}{T 1}$, где T общее количество наблюдений.
 - (а) Найдите $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$
 - (b) Совпадает ли оценка $\hat{\beta}_2$ с классической мнк-оценкой?
 - (c) У какой оценки дисперсия выше, у $\hat{\beta}_2$ или классической мнк-оценки?
- 18. Сгенерировать набор данных, обладающий следующим свойством. Если попытаться сразу выкинуть регрессоры x и z, то гипотеза о их совместной незначимости отвергается. Если вместо этого попытаться выкинуть отдельно x, или отдельно z, то гипотеза о незначимости не отвергается. Сгенерировать сильно коррелированные x и z
- не отвергается. Сгенерировать сильно коррелированные x и z 19. Вася считает, что выборочная ковариация $\mathrm{SCov}(y,\hat{y}) = \frac{\sum (y_i \bar{y})(\hat{y}_i \bar{y})}{n-1}$ это неплохая оценка для $\mathrm{Cov}(y_i,\hat{y}_i)$. Прав ли он? Не прав. Ковариация $\mathrm{Cov}(y_i,\hat{y}_i)$ зависит от i, это не одно неизвестное число, для которого можно предложить одну оценку.
- 20. Сгенерировать набор данных, обладающий следующим свойством. Если попытаться сразу выкинуть регрессоры x и z, то гипотеза о их совместной незначимости отвергается. Если вместо сначала выкинуть отдельно x, то гипотеза о незначимости не отвергается. Если затем выкинуть z, то гипотезы о незначимости тоже не отвергается. ??

- 21. К эконометристу Вовочке в распоряжение попали данные с результатами контрольной работы студентов по эконометрике. В данных есть результаты по каждой задаче, переменные p_1, p_2, p_3, p_4 и p_5 , и суммарный результат за контрольную, переменная kr. Чему будут равны оценки коэффициентов, их стандартные ошибки, t-статистики, P-значения, R^2, RSS , если
 - (a) Вовочка построит регрессию kr на константу, p_1, p_2, p_3, p_4 и p_5
 - (b) Вовочка построит регрессию kr на p_1, p_2, p_3, p_4 и p_5 без константы
- 22. Про R_{adi}^2
 - (a) Может ли в модели с константой R^2_{adj} быть отрицательным?
 - (b) Что больше, R^2 или R^2_{adi} в модели с константой?
 - (c) Вася оценил модель A, а затем выкинул из нее регрессор z и оценил получившуюся модель B. В моделях A и B оказались равные R^2_{adj} . Чему равна t-статистика коэффициента при z в модели A?
 - (d) Есть две модели с одной и той же зависимой переменной, но с разными объясняющими переменными, модель A и модель B. В модели A коэффициент R^2_{adj} больше, чем в модели B. В какой из моделей больше коэффициент $\hat{\sigma^2}$?

да,
$$R^2$$
, $t = 1$, B

23. Сгенерируйте данные так, чтобы при оценке линейной регрессионной модели оказалось, что скорректированный коэффициент детерминации, R_{adj}^2 , отрицательный.

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k}$$

Следовательно, при R^2 близком к 0 и большом количестве регрессоров k может оказаться, что $R^2_{adj} < 0$.

Например,

```
set.seed(42)
y <- rnorm(200,sd=15)
X <- matrix(rnorm(2000),nrow=200)
model <- lm(y~X)
report <- summary(model)
report$adj.r.squared</pre>
## [1] -0.02745
```

Косяк. Почему-то книтр внутри solution ругается на доллар.

- 24. В классической линейной регрессионной модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, дисперсия зависимой переменной не зависит от номера наблюдения, $\mathrm{Var}(y_i) = \sigma^2$. Почему для оценки σ^2 вместо известной из курса математической статистики формулы $\sum (y_i \bar{y})^2/(n-1)$ используют $\sum \hat{\varepsilon}_i^2/(n-2)$? формула $\sum (y_i \bar{y})^2/(n-1)$ неприменима так как $\mathbb{E}(y_i)$ не является константой
- 25. Оценка регрессии имеет вид $\hat{y}_i = 3 2x_i$. Выборочная дисперсия x равна 9, выборочная дисперсия y равна 40. Найдите R^2 и выборочные корреляции $\mathrm{sCorr}(x,y)$, $\mathrm{sCorr}(y,\hat{y})$. R^2 это отношение выборочных дисперсий \hat{y} и y.
- 26. Слитки-вариант. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Предположим, что ошибки взвешивания независимые одинаково распределенные случайные величины с нулевым средним.
 - (а) Найдите несмещеную оценку веса первого шара, обладающую наименьшей дисперсией.

(b) Как можно проинтерпретировать нулевое математическое ожидание ошибки взвешивания?

Как отсутствие систематической ошибки.

- 27. Скачайте результаты двух контрольных работ по теории вероятностей, с описанием данных, . Наша задача попытаться предсказать результат второй контрольной работы зная позадачный результат первой контрольной, пол и группу студента.
 - (а) Какая задача из первой контрольной работы наиболее существенно влияет на результат второй контрольной?
 - (b) Влияет ли пол на результат второй контрольной?
 - (с) Влияет ли редкость имени на результат второй контрольной?
 - (d) Что можно сказать про влияние группы, в которой учится студент?
- 28. Напишите свою функцию, которая бы оценивала регрессию методом наименьших квадратов. На вход функции должны подаваться вектор зависимых переменных y и матрица регрессоров X. На выходе функция должна выдавать список из $\hat{\beta}$, $\widehat{\text{Var}}(\hat{\beta})$, \hat{y} , $\hat{\varepsilon}$, ESS, RSS и TSS. По возможности функция должна проверять корректность аргументов, например, что в y и X одинаковое число наблюдений и т.д. Использовать lm или glm запрещается.
- 29. Сгенерируйте вектор y из 300 независимых нормальных N(10,1) случайных величин. Сгенерируйте 40 «объясняющих» переменных, по 300 наблюдений в каждой, каждое наблюдение независимая нормальная N(5,1) случайная величина. Постройте регрессию y на все 40 регрессоров и константу.
 - (а) Сколько регрессоров оказалось значимо на 5% уровне?
 - (b) Сколько регрессоров в среднем значимо на 5% уровне?
 - (c) Эконометрист Вовочка всегда использует следующий подход: строит регрессию зависимой переменной на все имеющиеся регрессоры, а затем выкидывает из модели те регрессоры, которые оказались незначимы. Прокомментируйте Вовочкин эконометрический подход.
- 30. Мы попытаемся понять, как введение в регрессию лишнего регрессора влияет на оценки уже имеющихся. В регрессии будет 100 наблюдений. Возьмем $\rho = 0.5$. Сгенерим выборку совместных нормальных x_i и z_i с корреляцией ρ . Настоящий y_i задаётся формулой $y_i = 5 + 6x_i + \varepsilon_i$. Однако мы будем оценивать модель $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 z_i$.
 - (a) Повторите указанный эксперимент 500 раз и постройте оценку для функции плотности $\hat{\beta}_1$.
 - (b) Повторите указанный эксперимент 500 раз для каждого ρ от -1 до 1 с шагом в 0.05. Каждый раз сохраняйте полученные 500 значений $\hat{\beta}_1$. В осях $(\rho, \hat{\beta}_1)$ постройте 95%-ый предиктивный интервал для $\hat{\beta}_1$. Прокомментируйте.
- 31. Цель задачи оценить модель САРМ несколькими способами.
 - (a) Соберите подходящие данные для модели САРМ. Нужно найти три временных ряда: ряд цен любой акции, любой рыночный индекс, безрисковый актив. Переведите цены в доходности.
 - (b) Постройте графики
 - (с) Оцените модель САРМ без свободного члена по всем наборам данных. Прокомментируйте смысл оцененного коэффициента
 - (d) Разбейте временной период на два участка и проверьте устойчивость коэффициента бета

- (е) Добавьте в классическую модель САРМ свободный член и оцените по всему набору данных. Какие выводы можно сделать?
- (f) Методом максимального правдоподобия оцените модель с ошибкой измерения $R^m R^0$, т.е.

истинная зависимость имеет вид

$$(R^s - R^0) = \beta_1 + \beta_2 (R_m^* - R_0^*) + \varepsilon$$
 (2)

величины R_m^* и R_0^* не наблюдаемы, но

$$R_m - R_0 = R_m^* - R_0^* + u (3)$$

- 32. Как построить доверительный интервал для вершины параболы? ... bootstrap, дельта-метод
- 33. Вася оценил исходную модель:

$$y_i = \beta_1 + \beta_2 x_i + u_i$$

Для надежности Вася стандартизировал переменные, т.е. перешёл к $y_i^* = (y_i - \bar{y})/s_y$ и $x_i^* = (x_i - \bar{x})/s_x$. Затем Вася оценил ещё две модели:

$$y_i^* = \beta_1' + \beta_2' x_i^* + u_i'$$

И

$$y_i^* = \beta_2'' x_i^* + u_i''$$

В решении можно считать s_x и s_y известными.

- (a) Найдите $\hat{\beta}'_1$
- (b) Как связаны между собой $\hat{\beta}_2$, $\hat{\beta}_2'$ и $\hat{\beta}_2''$?
- (c) Как связаны между собой \hat{u}_i , \hat{u}'_i и \hat{u}''_i ?
- (d) Как связаны между собой $\widehat{\text{Var}}\left(\hat{\beta}_{2}\right)$, $\widehat{\text{Var}}\left(\hat{\beta}_{2}'\right)$ и $\widehat{\text{Var}}\left(\hat{\beta}_{2}''\right)$?
- (e) Как выглядит матрица $\widehat{\operatorname{Var}}\left(\hat{\beta}'\right)$?
- (f) Как связаны между собой t-статистики $t_{\hat{\beta}_2},\,t_{\hat{\beta}_2'}$ и $t_{\hat{\beta}_2''}$?
- (g) Как связаны между собой R^2 , $R^{2\prime}$ и $R^{2\prime\prime}$?
- (h) В нескольких предложениях прокомментируйте последствия перехода к стандартизированным переменным

4 Мультиколлинеарность

- 1. Сгенерируйте данные так, чтобы при оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$ оказывалось, что по отдельности оценки коэффициентов $\hat{\beta}_2$ и $\hat{\beta}_3$ незначимы, но модель в целом значима.
- 2. В этом задании нужно сгенерировать зависимую переменную y и два регрессора x и z.
 - (a) Сгенерируйте данные так, чтобы корреляция между регрессорами x и z была больше 0.9, и проблема мультиколлинеарности есть, т.е. по отдельности регрессоры не значимы, но регрессия в целом значима.
 - (b) А теперь сгенерируйте данные так, чтобы корреляция между регрессорами была по-прежнему больше 0.9, но проблемы мультиколлинеарности бы не было, т.е. все коэффициенты были бы значимы.

(c) Есть несколько способов, как изменить генерации случайных величин, чтобы перейти от ситуации «а» к ситуации «b». Назовите хотя бы два.

увеличить количество наблюдений, уменьшить дисперсию случайной ошибки

3. Исследуем зависимость длины тормозного пути автомобиля от скорости по историческим данным 1920-х годов.

```
h <- cars
ggplot(h,aes(x=speed,y=dist))+geom_point()+
labs(title="Зависимость длины тормозного пути",
x="Скорость, миль в час",y="Длина пути, футов")
```



```
speed.mean <- mean(h$speed)</pre>
```

Построим результаты оценивания нецентрированной регрессии:

```
cars.model <- lm(dist~speed+I(speed^2)+I(speed^3),data=h)
cars.table <- as.table(coeftest(cars.model))
rownames(cars.table) <-c("Kohctahta","speed","speed^2","speed^3")</pre>
```

с тремя переменными руками громоздко делать, а с двумя вроде не видно мультик.

xtable(cars.table)

	Estimate	Std. Error	t value	$\Pr(> t)$
Константа	-19.51	28.41	-0.69	0.50
speed	6.80	6.80	1.00	0.32
$speed^2$	-0.35	0.50	-0.70	0.49
speed^3	0.01	0.01	0.91	0.37

Ковариационная матрица коэффициентов имеет вид:

```
cars.vcov <- vcov(cars.model)
rownames(cars.vcov) <-c("Kohctahta", "speed", "speed^2", "speed^3")
colnames(cars.vcov) <-c("Kohctahta", "speed", "speed^2", "speed^3")
xtable(cars.vcov)</pre>
```

- (а) Проверьте значимость всех коэффициентов и регрессии в целом
- (b) Постройте 95%-ый доверительный интервал для $\mathbb{E}(dist)$ при speed=10
- (c) Постройте 95%-ый доверительный интервал для $\mathbb{E}(ddist/dspeed)$ при speed=10

	Константа	speed	speed^2	speed^3
Константа	806.86	-186.20	12.88	-0.27
speed	-186.20	46.26	-3.35	0.07
speed^2	12.88	-3.35	0.25	-0.01
$speed^3$	-0.27	0.07	-0.01	0.00

- (d) Как выглядит уравнение регрессии, если вместо *speed* использовать центрированную скорость? Известно, что средняя скорость равна 15.4
- (е) С помощью регрессии с центрированной скоростью ответьте на предыдущие вопросы.
- 4. Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g для Крокодила Гены, вектор h для Чебурашки и вектор x для Пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $\mathrm{sCorr}(g,h) = -0.9$. Гена и Чебурашка собирали независимо от Пионеров, поэтому выборочные корреляции $\mathrm{sCorr}(g,x) = 0$, $\mathrm{sCorr}(h,x) = 0$. Если регрессоры g, h и x центрировать и нормировать, то получится матрица \hat{X} .
 - (a) Найдите параметр обусловленности матрицы $(\tilde{X}'\tilde{X})$
 - (b) Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы \tilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров
 - (c) Шпионка Шапокляк пытается смоделировать ежедневный выпуск танков, y. Выразите коэффициенты регрессии $y = \beta_1 + \beta_2 g + \beta_3 h + \beta_4 x + \varepsilon$ через коэффициенты регрессии на главные компоненты, объясняющие не менее 70% общей выборочной дисперсии.
- 5. Для модели $y_i = \beta x_i + \varepsilon$ рассмотрите модель Ridge regression с коэффициентом λ .
 - (a) Выведите формулу для $\hat{\beta}_{RR}$
 - (b) Найдите $\mathbb{E}(\hat{\beta}_{RR})$, смещение оценки $\hat{\beta}_{RR}$,
 - (c) Найдите $Var(\hat{\beta}_{RR}), MSE(\hat{\beta}_{RR})$
 - (d) Всегда ли оценка $\hat{\beta}_{RR}$ смещена?
 - (е) Всегда ли оценка $\hat{\beta}_{RR}$ имеет меньшую дисперсию, чем $\hat{\beta}_{ols}$?
 - (f) Найдите такое λ , что $MSE(\hat{\beta}_{RR}) < MSE(\hat{\beta}_{ols})$
- 6. Известно, что в модели $y = X\beta + \varepsilon$ все регрессоры ортогональны.
 - (a) Как выглядит матрица X'X в случае ортогональных регрессоров?
 - (b) Выведите $\hat{\beta}_{rr}$ в явном виде
 - (c) Как связаны между собой $\hat{\beta}_{rr}$ и $\hat{\beta}_{ols}$?
- 7. Для модели $y_i = \beta x_i + \varepsilon_i$ выведите в явном виде $\hat{\beta}_{lasso}$.
- 8. По 13 наблюдениям Вася оценил модель со свободным членом, пятью количественными регрессорами и двумя качественными. Качественные регрессоры Вася правильно закодировал с помощью дамми-переменных. Одна качественная переменная принимала четыре значения, другая пять.
 - (a) Найдите SSR, R^2
 - (b) Как выглядит матрица $X(X'X)^{-1}X'$?
 - (c) Почему 13 несчастливое число?

5 Гетероскедастичность

- 1. Что такое гетероскедастичность? Гомоскедастичность?
- 2. Диаграмма рассеяния стоимости квартиры в Москве (в 1000\$) и общей площади квартиры имеет вид:

```
ggplot(flats,aes(x=totsp,y=price))+geom_point()+
labs(x="Общая площадь, кв. м.",y="Цена квартиры, 1000$")
```


Какие подходы к оцениванию зависимости имеет смысл посоветовать исходя из данного графика?

По графику видно, что с увеличением общей площади увеличивается разброс цены. Поэтому разумно, например, рассмотреть следующие подходы:

- (a) Перейти к логарифмам, т.е. оценивать модель $\ln price_i = \beta_1 + \beta_2 \ln totsp_i + \varepsilon_i$
- (b) Оценивать квантильную регрессию. В ней угловые коэффициенты линейной зависимости будут отличаться для разных квантилей переменной price.
- (c) Обычную модель линейной регрессии с гетероскедастичностью вида $Var(\varepsilon_i) = \sigma^2 totsp_i^2$
- 3. По наблюдениям x=(1,2,3)', y=(2,-1,3)' оценивается модель $y=\beta_1+\beta_2x+\varepsilon$. Ошибки ε гетероскедастичны и известно, что $\mathrm{Var}(\varepsilon_i)=\sigma^2\cdot x_i^2$.
 - (a) Найдите оценки $\hat{\beta}_{ols}$ с помощью МНК и их ковариационную матрицу
 - (b) Найдите оценки $\hat{\beta}_{gls}$ с помощью обобщенного МНК и их ковариационную матрицу
- 4. В модели $y = \hat{\beta}_1 + \hat{\beta}_2 x + \varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i) = \sigma^2 x_i^2$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность? Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на $|x_i|$.
- 5. В модели $y = \hat{\beta}_1 + \hat{\beta}_2 x + \varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i) = \lambda |x_i|$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность? Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на $\sqrt{|x_i|}$.
- 6. Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на x_i^2 гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $Var(\varepsilon_i)$? $Var(\varepsilon_i) = cx_i^4$
- 7. Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на $\sqrt{x_i}$ гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $\text{Var}(\varepsilon_i)$? $\text{Var}(\varepsilon_i) = cx_i$

8. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,30$	1.21	1.89	2.74	48.69
$i=1,\ldots,11$	1.39	2.27	2.36	10.28
$i=12,\ldots,19$	0.75	2.23	3.19	5.31
$i = 20, \dots, 30$	1.56	1.06	2.29	14.51

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \ H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (а) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1 = 11$ число наблюдений в первой подгруппе, $n_3 = 11$ число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs} = 1.41$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 3.44]$
- (e) Статистический вывод: поскольку $GQ_{obs} \in [0; 3.44]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.
- 9. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,50$	1.16	1.99	2.97	174.69
$i=1,\ldots,21$	0.76	2.25	3.18	20.41
$i=22,\ldots,29$	0.85	1.81	3.32	3.95
$i=30,\ldots,50$	1.72	1.41	2.49	130.74

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 1%.

Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \, H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (а) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1 = 21$ число наблюдений в первой подгруппе, $n_3 = 21$ число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs} = 6.49$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 3.12]$
- (e) Статистический вывод: поскольку $GQ_{obs} \notin [0; 3.12]$, то на основании имеющихся наблюдений на уровне значимости 1% основная гипотеза H_0 отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.
- 10. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,30$	0.96	2.25	3.44	52.70
$i=1,\ldots,11$	1.07	2.46	2.40	5.55
$i=12,\ldots,19$	1.32	1.01	2.88	11.69
$i=20,\ldots,30$	1.04	2.56	4.12	16.00

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \ H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (а) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1 = 11$ число наблюдений в первой подгруппе, $n_3 = 11$ число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs} = 2.88$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 3.44]$
- (e) Статистический вывод: поскольку $GQ_{obs} \in [0; 3.44]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.
- 11. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка			, 0	RSS
$i=1,\ldots,50$	0.93	2.02	3.38	145.85
$i = 1, \dots, 50$ $i = 1, \dots, 21$	1.12	2.01	3.32	19.88
$i = 22, \dots, 29$	0.29	2.07	2.24	1.94
$i=30,\ldots,50$	0.87	1.84	3.66	117.46

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \, H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (а) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1 = 21$ число наблюдений в первой подгруппе, $n_3 = 21$ число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs} = 5.91$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 2.21]$
- (e) Статистический вывод: поскольку $GQ_{obs} \notin [0; 2.21]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.
- 12. Рассмотрим линейную регрессию $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$. При оценивании с помощью МНК были получены результаты: $\hat{\beta}_1 = 1.21, \ \hat{\beta}_2 = 1.11, \ \hat{\beta}_3 = 3.15, \ R^2 = 0.72.$ Оценена также вспомогательная регрессия: $\hat{\varepsilon}_i = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i + u_i$. Результаты оценивания следующие: $\hat{\delta}_1 = 1.50, \ \hat{\delta}_2 = -2.18, \ \hat{\delta}_3 = 0.23, \ \hat{\delta}_4 = 1.87, \ \hat{\delta}_5 = -0.56, \ \hat{\delta}_6 = -0.09, \ R_{aux}^2 = 0.36$

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероскедастичность ошибок при помощи теста Уайта. $H_0: Var(\varepsilon_i) = \sigma^2$, $H_a: Var(\varepsilon_i) = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i$.

- (a) Тестовая статистика $W=n\cdot R_{aux}^2$, где n число наблюдений, R_{aux}^2 коэффициент детерминации для вспомогательной регрессии.
- (b) Распределение тестовой статистики при верной H_0 : $W \sim \chi^2_{k_{aux}-1}$, где $k_{aux} = 6$ число регрессоров во вспомогательной регрессии, считая константу.
- (c) Наблюдаемое значение тестовой статистики: $W_{obs}=18$
- (d) Область в которой H_0 не отвергается: $W \in [0; W_{crit}] = [0; 11.07]$
- (e) Статистический вывод: поскольку $W_{obs} \notin [0;11.07]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 отвергается. Таким образом, тест Уайта выявил гетероскедастичность.

6 Временные ряды

- 1. Что такое автокорреляция?
- 2. На графике представлены данные по уровню озера Гуро́н в футах в 1875-1972 годах:

```
ggplot(df,aes(x=obs,y=level))+geom_line()+
labs(x="Год",ylab="Уровень озера (футы)")
```


График автокорреляционной и частной автокорреляционной функций:

- (a) Судя по графикам, какие модели класса ARMA или ARIMA имеет смысл оценить?
- (b) По результатам оценки некоей модели ARMA с двумя параметрами, исследователь посчитал оценки автокорреляционной функции для остатков модели. Известно, что для остатков модели первые три выборочные автокорреляции равны соответственно 0.0047, -0.0129 и -0.063. С помощью подходящей статистики проверьте гипотезу о том, что первые три корреляции ошибок модели равны нулю.
- 3. Винни-Пух пытается выявить закономерность в количестве придумываемых им каждый день ворчалок. Винни-Пух решил разобраться, является ли оно стационарным процессом, для этого он оценил регрессию

$$\Delta \hat{y}_t = 4.5 - 0.4 y_{t-1} + 0.7 \Delta y_{t-1}$$

Из-за опилок в голове Винни-Пух забыл, какой тест ему нужно провести, то ли Доктора Ватсона, то ли Дикого Фуллера.

- (а) Аккуратно сформулируйте основную и альтернативную гипотезы
- (b) Проведите подходящий тест на уровне значимости 5%
- (с) Сделайте вывод о стационарности ряда
- (d) Почему Сова не советовала Винни-Пуху пользоваться широко применяемым в Лесу *t*-распределением?

7 Функциональная форма

1. Сгенерируйте данные так, чтобы при оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$ оказывалось, что $\hat{\beta}_2 > 0$, а при оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ оказывалось, что $\hat{\beta}_2 < 0$.

8 Инструментальные переменные

Экзогенность, $\mathbb{E}(\varepsilon \mid x) = 0$

Предопределённость, $\mathbb{E}(\varepsilon_t \mid x_t) = 0$ для всех t

- 1. Табличка 2 на 2. Найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(\varepsilon|x)$, $\mathrm{Cov}(\varepsilon,x)$.
- 2. Приведите примеры дискретных случайных величин ε и x, таких, что
 - (a) $\mathbb{E}(\varepsilon) = 0$, $\mathbb{E}(\varepsilon \mid x) = 0$, но величины зависимы. Чему в этом случае равно $\text{Cov}(\varepsilon, x)$?
 - (b) $\mathbb{E}(\varepsilon)=0$, $\mathrm{Cov}(\varepsilon,x)=0$, но $\mathbb{E}(\varepsilon\mid x)\neq 0$. Зависимы ли эти случайные величины?

3. Все предпосылки классической линейной модели выполнены, $y = \beta_1 + \beta_2 x + \varepsilon$. Рассмотрим альтернативную оценку коэффициента β_2 ,

$$\hat{\beta}_{2,IV} = \frac{\sum z_i (y_i - \bar{y})}{\sum z_i (x_i - \bar{x})} \tag{4}$$

- (а) Является ли оценка несмещенной?
- (b) Любые ли z_i можно брать?
- (c) Найдите $Var(\hat{\beta}_{2,IV})$

Да, является. Любые, кроме констант. $Var(\hat{\beta}_{2,IV}) = \sigma^2 \sum (z_i - \bar{z})^2 / (\sum (z_i - \bar{z})x_i)^2$.

9 Проекция, Картинка

- 1. Найдите на Картинке все перпендикулярные векторы. Найдите на Картинке все прямоугольные треугольники. Сформулируйте для них теоремы Пифагора. $\sum y_i^2 = \sum \hat{y}_i^2 + \sum \hat{\varepsilon}_i^2$, TSS = ESS + RSS,
- 2. Покажите на Картинке TSS, ESS, RSS, R^2 , sCov (\hat{y}, y)
- 3. Предложите аналог R^2 для случая, когда константа среди регрессоров отсутствует. Аналог должен быть всегда в диапазоне [0; 1], совпадать с обычным R^2 , когда среди регрессоров есть константа, равняться единице в случае нулевого $\hat{\varepsilon}$. Спроецируем единичный столбец на «плоскость», обозначим его 1'. Делаем проекцию y на «плоскость» и на 1'. Далее аналогично.
- 4. Вася оценил регрессию y на константу, x и z. А затем, делать ему нечего, регрессию y на константу и полученный \hat{y} . Какие оценки коэффициентов у него получатся? Чему будет равна оценка дисперсии коэффицента при \hat{y} ? Почему оценка коэффициента неслучайна, а оценка её дисперсии положительна? Проекция y на \hat{y} это \hat{y} , поэтому оценки коэффициентов будут 0 и 1. Оценка дисперсии $\frac{RSS}{(n-2)ESS}$. Нарушены предпосылки теоремы Гаусса-Маркова, например, ошибки новой модели в сумме дают 0, значит коррелированы.
- 5. При каких условиях TSS = ESS + RSS? Либо в регрессию включена константа, либо единичный столбец (тут была опечатка, столбей) можно получить как линейную комбинацию регрессоров, например, включены дамми-переменные для каждого возможного значения качественной переменной.

10 Деревья и Random Forest

1. Для случайных величин X и Y найдите индекс Джини и энтропию

$$X = 0 = 1 \ \mathbb{P}() = 0.2 = 0.8$$
, $Y = 0 = 1 = 5 \ \mathbb{P}() = 0.2 = 0.3 = 0.5$

- 2. Случайная величина X принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p.
 - (а) Постройте график зависимости индекса Джини и энтропии от р
 - (b) При каком p энтропия и индекс Джини будут максимальны?
- 3. табличка с тремя признаками...
 - (a) Какой фактор нужно использовать при прогнозировании y, чтобы минимизировать энтропию?
 - (b) Какой фактор нужно использовать при прогнозировании y, чтобы минимизировать индекс Джини?

11 SVM

1. Имеются три наблюдения A, B и C:

$$\begin{array}{c|ccc}
 & x & y \\
\hline
A & 1 & -2 \\
B & 2 & 1 \\
C & 3 & 0
\end{array}$$

- (a) Найдите расстояние AB и косинус угла ABC
- (b) Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью гауссовского ядра с $\sigma=1$.
- (c) Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью полиномиального ядра второй степени
- 2. Переход из двумерного пространства в расширяющее задан функцией

$$f:(x_1,x_2)\to(1,x_1,x_2,3x_1x_2,2x_1^2,4x_2^2)$$

Найдите соответствующую ядерную функцию

3. Ядерная функция имеет вид

$$K(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

Как может выглядеть функция $f: \mathbb{R}^2 \to \mathbb{R}^3$ переводящие исходные векторы в расширенное пространство? $f(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

4. Дана плоскость. На ней точки. Симметрично ох. Найдите разделяющую гиперплоскость при разных C.

12 МЕГАМАТРИЦА (операции со случайными векторами)

- 1. В рамках классической линейной модели найдите все математические ожидания и все ковариационные матрицы всех пар случайных векторов: ε , y, \hat{y} , $\hat{\varepsilon}$, $\hat{\beta}$. Т.е. найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(y)$, ... и $\text{Cov}(\varepsilon, y)$, $\text{Cov}(\varepsilon, \hat{y})$, ... $\text{Var}(\hat{\beta}) = \sigma^2(X'X)^{-1}$
- 2. Найдите $\mathbb{E}(\sum (\varepsilon_i \bar{\varepsilon})^2)$, $\mathbb{E}(RSS)$ $(n-1)\sigma^2$, $(n-k)\sigma^2$
- 3. Используя матрицы $P=X(X'X)^{-1}X'$ и $\pi=\vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ запишите $RSS,\ TSS$ и ESS в матричной форме $TSS=y'(I-\pi)y,\ RSS=y'(I-P)y,\ ESS=y'(P-\pi)y$
- 4. $\mathbb{E}(TSS)$, $\mathbb{E}(ESS)$ громоздкие $\mathbb{E}(TSS) = (n-1)\sigma^2 + \beta'X'(I-\pi)X\beta$
- 5. Вася строит регрессию y на некий набор объясняющих переменных и константу. А на самом деле $y_i = \beta_1 + \varepsilon_i$. Чему равно $\mathbb{E}(TSS)$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$ в этом случае? $(n-1)\sigma^2$, $(n-k)\sigma^2$, $(k-1)\sigma^2$

6. Известно, что
$$\varepsilon \sim N(0,I)$$
, $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)'$. Матрица $A = \begin{pmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{pmatrix}$.

- (a) Найдите $\mathbb{E}(\varepsilon' A \varepsilon)$
- (b) Как распределена случайная величина $\varepsilon' A \varepsilon$?

по χ^2 -распределению

7. Известно, что
$$\varepsilon \sim N(0,A)$$
, $\varepsilon = (\varepsilon_1, \varepsilon_2)'$. Матрица $A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$, матрица $B = \begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$

- (a) Как распределен вектор $h = B\varepsilon$?
- (b) Найдите $A^{-1/2}$

- (c) Как распределен вектор $u=A^{-1/2}\varepsilon$? $u\sim N(0,I)$
- 8. Известна ковариационная матрица вектора $\varepsilon = (\varepsilon_1, \varepsilon_2),$

$$Var(\varepsilon) = \begin{pmatrix} 9 & -1 \\ -1 & 9 \end{pmatrix}$$

Найдите четыре различных матрицы A, таких что вектор $v=A\varepsilon$ имеет некоррелированные компоненты с единичной дисперсией, то есть $Var(A\varepsilon)=I$.

- 9. Случайные величины w_1 и w_2 независимы и нормально распределены, N(0,1). Из них составлено два вектора, $w=\left(\begin{array}{c}w_1\\w_2\end{array}\right)$ и $z=\left(\begin{array}{c}-w_2\\w_1\end{array}\right)$
 - (a) Являются ли векторы w и z перпендикулярными?
 - (b) Найдите $\mathbb{E}(w)$, $\mathbb{E}(z)$
 - (c) Найдите Var(w), Var(z), Cov(w, z)
 - (d) Рассмотрим классическую линейную модель. Являются ли векторы $\hat{\varepsilon}$ и \hat{y} перпендикулярными? Найдите $\text{Cov}(\hat{\varepsilon},\hat{y})$.
- 10. Есть случайный вектор $w = (w_1, w_2, \dots, w_n)'$.
 - (a) Возможно ли, что E(w) = 0 и $\sum w_i = 0$?
 - (b) Возможно ли, что $E(w) \neq 0$ и $\sum w_i = 0$?
 - (c) Возможно ли, что E(w) = 0 и $\sum w_i \neq 0$?
 - (d) Возможно ли, что $E(w) = \neq \text{ и } \sum w_i \neq 0$?
 - (e) Чему в классической модели регрессии равны: $\mathbb{E}(\varepsilon)$ и $\sum \varepsilon_i$?
 - (f) Чему в классической модели регрессии равны: $\mathbb{E}(\hat{\varepsilon})$ и $\sum \hat{\varepsilon}_i$?

Каждый из вариантов возможен

13 Метод максимального правдоподобия

- 1. Выпишите в явном виде функцию максимального правдоподобия для модели $y = \beta_1 + \beta_2 x + \varepsilon$, если $\varepsilon \sim N(0, A)$. Матрица A устроена по принципу: $Cov(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$, и $Var(\varepsilon_i) = \sigma^2 x_i^2$.
- 2. Выпишите в явном виде функцию максимального правдоподобия для модели $y = \beta_1 + \beta_2 x + \varepsilon$, если $\varepsilon \sim N(0, A)$. Матрица A устроена по принципу: $\text{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$, и $\text{Var}(\varepsilon_i) = \sigma^2 |x_i|$.
- 3. Пусть p неизвестная вероятность выпадения орла при бросании монеты. Из 100 испытаний 42 раза выпал «Орел» и 58 «Решка».
 - (a) Найдите оценку \hat{p} методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для p
 - (c) Протестируйте на 5%-ом уровне значимости гипотезу о том, что монетка «правильная» с помощью теста Вальда, теста множителей Лагранжа, теста отношения правдоподобия
- 4. Дядя Вова (Владимир Николаевич) и Скрипач (Гедеван) зарабатывают на Плюке чатлы, чтобы купить гравицапу. Число заработанных за i-ый день чатлов имеет пуассоновское распределение, заработки за разные дни независимы. За прошедшие 100 дней они заработали 250 чатлов.

- (a) Оцените параметр λ пуассоновского распределения методом максимального правдоподобия
- (b) Сколько дней им нужно давать концерты, чтобы оценка вероятности купить гравицапу составила 0.99? Гравицапа стоит пол кц или 2200 чатлов.
- (c) Постройте 95% доверительный интервал для λ
- (d) Проверьте гипотезу о том, что средний дневной заработок равен 2 чатла с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа
- 5. Инопланетянин Капп совершил вынужденную посадку на Землю. Каждый день он выходит на связь со своей далёкой планетой. Продолжительность каждого сеанса связи имеет экспоненциальное распределение с параметром λ . Прошедшие 100 сеансов связи в сумме длились 11 часов.
 - (a) Оцените параметр λ экспоненциального распределения методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для λ
 - (c) Проверьте гипотезу о том, что средняя продолжительность сеанса связи равна 5 минутам с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа
- 6. Предположим, что в классической линейной модели ошибки имеют нормальное распределение, т.е.

$$y_i = \beta_1 + \beta_2 x_{2,i} + \ldots + \beta_k x_{k,i} + \varepsilon_i$$

где ε_i нормальны $N(0,\sigma^2)$ и независимы

- (a) Найдите оценки для β и σ^2 методом максимального правдоподобия.
- (b) Являются ли полученные оценки $\hat{\beta}_{ML}$ и \hat{s}_{ML}^2 несмещенными?
- (c) Выведите формулу LR-статистики у теста отношения правдоподобия для тестирования гипотезы об адекватности регрессии H_0 : $\beta_2 = \beta_3 = \ldots = \beta_k = 0$.
- 7. Наблюдения X_1, \ldots, X_n независимы и нормальны $N(\mu, 1)$. По 100 наблюдениям оказалось, что $\sum x_i = 200, \sum x_i^2 = 900$.
 - (а) Оцените μ методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для μ
 - (c) Проверьте гипотезу о том, что $\mu=3$ против альтернативной $\mu\neq 3$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
 - (d) Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i > 2.5)$
- 8. Наблюдения X_1,\dots,X_n независимы и нормальны $N(0,\sigma^2)$. По 100 наблюдениям оказалось, что $\sum x_i=200,\,\sum x_i^2=900.$
 - (a) Оцените σ^2 методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для σ^2
 - (c) Проверьте гипотезу о том, что $\sigma^2=4$ против альтернативной $\sigma^2\neq 4$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
 - (d) Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i > 2.5)$
- 9. Наблюдения X_1, \ldots, X_n независимы и нормальны $N(\mu, \sigma^2)$. По 100 наблюдениям оказалось, что $\sum x_i = 200, \sum x_i^2 = 900$.
 - (a) Оцените μ и σ^2 методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для μ , σ^2

- (c) [R] Проверьте гипотезу о том, что $\sigma^2 = 4$ против альтернативной $\sigma^2 \neq 4$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- (d) [R] Проверьте гипотезу о том, что $\mu=3$ против альтернативной $\mu\neq 3$ с помощью тестов Вальда, множителей Лагранжа и отношения правдоподобия
- (e) [R] Постройте 95% доверительный интервал для неизвестной величины $\mathbb{P}(X_i > 2.5)$
- (f) [R] На графике постройте двумерную 95% доверительную область для вектора (μ, σ^2)
- 10. [R] По ссылке http://people.reed.edu/~jones/141/Coal.html скачайте данные о количестве крупных аварий на английских угольных шахтах.
 - (а) Методом максимального правдоподобия оцените две модели:
 - і. Пуассоновская модель: количества аварий независимы и имеют Пуассоновское распределение с параметром λ .
 - іі. Модель с раздутым нулём «zero inflated poisson model»: количества аварий независимы, с вероятностью p аварий не происходит вообще, с вероятностью (1-p) количество аварий имеет Пуассоновское распределение с параметром λ . Смысл этой модели в том, что по сравнению с Пуассоновским распределением у события $\{X_i=0\}$ вероятность выше, а пропорции вероятностей положительных количеств аварий сохраняются. В модели с раздутым нулём дисперсия и среднее количества аварий отличаются. Чему в модели с раздутым нулём равна $\mathbb{P}(X_i=0)$?
 - (b) С помощью тестов множителей Лагранжа, Вальда и отношения правдоподобия проверьте гипотезу H_0 : верна пуассоновская модель против H_a : верна модель с раздутым нулём
 - (с) Постройте доверительные интервалы для оценённых параметров в обоих моделях
 - (d) Постройте доверительный интервал для вероятности полного отсутствия аварий по обеим моделям
- 11. Совместное распределение величин X и Y задано функцией

$$f(x,y) = \frac{\theta(\beta y)^x e^{-(\theta+\beta)y}}{x!}$$

Величина X принимает целые неотрицательные значения, а величина Y — действительные неотрицательные. Имеется случайная выборка $(X_1, Y_1), \ldots (X_n, Y_n)$.

- (a) С помощью метода максимального правдоподобия оцените θ и β
- (b) С помощью метода максимального правдоподобия оцените $a = \theta/(\beta + \theta)$

$$\hat{\theta} = 1/\bar{Y}, \ \hat{\beta} = \bar{X}/\bar{Y}, \ \hat{a} = 1/(1+\bar{X})$$

14 Логит и пробит

- 1. Случайная величина X имеет логистическое распределение, если её функция плотности имеет вид $f(x) = e^{-x}/(1+e^{-x})^2$.
 - (a) Является ли f(x) чётной?
 - (b) Постройте график f(x)
 - (c) Найдите функцию распределения, F(x)
 - (d) Найдите $\mathbb{E}(X)$, Var(X)
 - (е) На какое известный закон распределения похож логистический?

f(x) чётная, $\mathbb{E}(X) = 0$, $Var(X) = \pi^2/3$, логистическое похоже на $N(0, \pi^2/3)$

2. Логит модель часто формулируют в таком виде:

$$y_i^* = \beta_1 + \beta_2 x_i + \varepsilon_i$$

где ε_i имеет логистическое распределение, и

$$y_i = \begin{cases} 1, \ y_i^* \geqslant 0 \\ 0, \ y_i^* < 0 \end{cases}$$

- (a) Выразите $\mathbb{P}(y_i = 1)$ с помощью логистической функции распределения
- (b) Найдите $\ln \left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)} \right)$

$$\ln\left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}\right) = \beta_1 + \beta_2 x_i.$$

- 3. [R] Сравните на одном графике
 - (a) Функции плотности логистической и нормальной $N(0,\pi^2/3)$ случайных величин
 - (b) Функции распределения логистической и нормальной $N(0,\pi^2/3)$ случайных величин
- 4. Винни-Пух знает, что мёд бывает правильный, $honey_i = 1$, и неправильный, $honey_i = 0$. Пчёлы также бывают правильные, $bee_i = 1$, и неправильные, $bee_i = 0$. По 100 своим попыткам добыть мёд Винни-Пух составил таблицу сопряженности:

Используя метод максимального правдоподобия Винни-Пух хочет оценить логит-модель для прогнозирования правильности мёда с помощью правильности пчёл:

$$\ln\left(\frac{\mathbb{P}(honey_i=1)}{\mathbb{P}(honey_i=0)}\right) = \beta_1 + \beta_2 bee_i$$

- (a) Выпишите функцию правдоподобия для оценки параметров β_1 и β_2
- (b) Оцените неизвестные параметры
- (с) С помощью теста отношения правдоподобия проверьте гипотезу о том, правильность пчёл не связана с правильностью мёда на уровне значимости 5%.
- (d) Держась в небе за воздушный шарик, Винни-Пух неожиданно понял, что перед ним неправильные пчёлы. Помогите ему оценить вероятность того, что они делают неправильный мёд.
- 5. Как известно, Фрекен Бок любит пить коньяк по утрам. За прошедшие 4 дня она записала, сколько рюмочек коньяка выпила утром, x_i , и видела ли она в этот день привидение, y_i ,

Зависимость между y_i и x_i описывается логит-моделью,

$$\ln\left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}\right) = \beta_1 + \beta_2 x_i$$

- (а) Выпишите в явном виде логарифмическую функцию максимального правдоподобия
- (b) [R] Найдите оценки параметров β_1 и β_2
- 6. При оценке логит модели

$$\mathbb{P}(y_i = 1) = \Lambda(\beta_1 + \beta_2 x_i)$$

оказалось, что $\hat{\beta}_1 = 0.7$ и $\hat{\beta}_2 = 3$. Найдите максимальный предельный эффект роста x_i на вероятность $\mathbb{P}(y_i = 1)$.

15 Голая линейная алгебра

Здесь будет собран минимум задач по линейной алгебре.

- 1. Приведите пример таких A и B, что $\det(AB) \neq \det(BA)$. Например, A = (1,2,3), B = (1,0,1)'
- 2. Для матриц-проекторов $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ и $P = X(X'X)^{-1}X'$ найдите $\operatorname{tr}(\pi)$, $\operatorname{tr}(P)$, $\operatorname{tr}(I-\pi)$, $\operatorname{tr}(I-P)$. $\operatorname{tr}(I) = n$, $\operatorname{tr}(\pi) = 1$, $\operatorname{tr}(P) = k$
- 3. Выпишите в явном виде матрицы X'X, $(X'X)^{-1}$ и X'y, если

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \bowtie X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

4. Выпишите в явном виде матрицы π , πy , $\pi \varepsilon$, $I - \pi$, если $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$.

16 Парадигма случайных величин

- 1. Найдите E(Y|X)
- 2. Про многомерное нормальное распределение
- 3. Известна совместная функция плотности пары величин X_i, Y_i

$$f(x,y) =$$

Найдите

- (a) $\mathbb{E}(X_i)$, $\mathbb{E}(Y_i)$, $\operatorname{Var}(X_i)$, $\operatorname{Var}(Y_i)$, $\operatorname{Cov}(X_i, Y_i)$
- (b) $\mathbb{E}(Y_i \mid X_i)$, $\mathbb{E}(X_i \mid Y_i)$
- (c) Вася оценивает модель $y_i = \beta_1 + \beta_2 x_i + \epsilon_i$ по огромному количеству наблюдений, n >> 0. Чему примерно у него окажутся равны $\hat{\beta}_1$, $\hat{\beta}_2$, \hat{s}^2 , $\widehat{\text{Var}}(\hat{\beta}_2)$? Чему равно $\mathbb{E}(\hat{\beta}_2)$? (или оно не будет браться???)
- (d) Петя оцениваем модель $y_i = \beta_1 + \beta_2 x_i + \beta_2 x_i^2 + \epsilon_i$. Найдите $\mathbb{E}(\hat{\beta}_1)$, $\mathbb{E}(\hat{\beta}_2)$, $\mathbb{E}(\hat{\beta}_3)$, $\operatorname{Var}(\hat{\beta})$ (?)

17 Метод Монте-Карло

сюда же тстс для линейной регрессии

1. На парковку ширины a приезжают машины ширины в один условный метр. Парковка не размечена, поэтому машины встают случайно на любое свободное место, куда они могут втиснуться. С помощью симуляций на компьютере определите, сколько в среднем поместится на такой парковке машин в зависимости от a.

18 Программирование

Все наборы данных доступны по ссылке https://github.com/bdemeshev/em301/wiki/Datasets.

- 1. Задача Иосифа Флавия.
- 2. Напишите программу, которая печатает сама себя.

- 3. Задача Макар-Лиманова. У торговца 55 пустых стаканчиков, разложенных в несколько стопок. Пока нет покупателей он развлекается: берет верхний стаканчик из каждой стопки и формирует из них новую стопку. Потом снова берет верхний стаканчик из каждой стопки и формирует из них новую стопку и т.д.
 - (a) Напишите функцию 'makar_step'. На вход функции подаётся вектор количества стаканчиков в каждой стопке до перекладывания. На выходе функция возвращает количества стаканчиков в каждой стопке после одного перекладывания.
 - (b) Изначально стаканчики были разложены в две стопки, из 25 и 30 стаканчиков. Как разложатся стаканчики если покупателей не будет достаточно долго?