About data sets and possible statistical analysis

1. Understanding the Variables:

- **Region**: Categorical variable indicating geographic locations.
- **Soil_Type**: Categorical variable classifying soil characteristics.
- Crop: Categorical variable specifying crop types.
- Rainfall_mm: Continuous variable measuring rainfall in millimeters.
- **Temperature_Celsius**: Continuous variable recording average temperature.
- Fertilizer_Used: Categorical variable indicating fertilizer application.
- Irrigation_Used: Categorical variable showing irrigation practices.
- Weather Condition: Ordinal or categorical variable summarizing weather.
- Days_to_Harvest: Continuous variable for time to harvest.

•

2. Possible Analyses and Statistical Tests:

1. Comparing Means Across Groups:

a. To compare Yield_tons_per_hectare or Days_to_Harvest across categories (e.g., Region, Soil_Type, Crop, or Fertilizer_Used):

Use ANOVA if there are more than two groups.

Use t-tests if comparing between two groups.

2. Relationship Between Continuous Variables:

a. To assess the relationship between Rainfall_mm, Temperature_Celsius, Days_to_Harvest, and Yield_tons_per_hectare:
Use Pearson correlation (for linear relationships).
Use Spearman correlation (for non-linear relationships).

3.Examining the Effect of Multiple Factors on Yield:

- a. To study how multiple factors (e.g., Rainfall_mm, Temperature_Celsius, Fertilizer_Used, Irrigation_Used) influence Yield_tons_per_hectare: Use Multiple Linear Regression if the dependent variable is continuous.
- b. If the dependent variable is not continuous, use Generalized Linear Models (GLM).

4. Analyzing Categorical Relationships:

a. To check the association between Categorical Variables (e.g., Region, Crop, Fertilizer_Used, Irrigation_Used):
Use a Chi-square test.

5. Comparing Weather Conditions:

a. If analyzing how Weather_Condition affects Yield_tons_per_hectare or other variables: Use Kruskal-Wallis test if data is non-parametric.

6.Predicting Yield:

a. To predict Yield_tons_per_hectare based on all other variables:
Appling Machine Learning models like Random Forest, Decision Trees, or Gradient Boosting.