SYNTAX ANALYSIS - Part I

Based on Chapter 4 of Aho, Lam, Sethi, Ullman:

Compilers: Principles, Techniques, & Tools

2nd Ed, Addison Wesley, 2007

Table of Contents

- Introduction
- The Role of Parser
- Context-Free Grammars
- Derivations
- Parse Trees
- Writing a Grammar
- Ambiguity
- Left Recursion Elimination
- Left Factoring

Introduction

- Every programming language has rules that prescribe the syntactic structure of well-formed programs
- The syntax of programming language constructs can be described by context-free grammars
- Formal grammars
 - a precise and easy-to-understand syntactic specification
 - automatic construction of an efficient parser
 - syntax-directed translation
 - evolution of programming language
- Parsing
 - generating a parse tree
 - various LL and LR parsing techniques
 - parser generator: yacc(bison), JavaCC, etc.

The Role of Parser

• Interaction of lexical analyzer with parser

- Secondary tasks
 - reporting errors
 - recovery of errors

Context-Free Grammars

- Recursive Structure of High-level Language
 - <stmt $> \rightarrow$ if <exp> then <stmt> else <stmt>
 - this form of statement cannot be specified using regular expressions
- Definition
 - a CFG G contains <T, N, S, P>
 - T : a set of terminal symbols (tokens)
 - N : a set of non-terminal symbols
 - S : a distinguished non-terminal symbol that denotes the language defined by the grammar
 - P: a set of production rules

$$A \rightarrow \alpha$$
 (A in N, α in (T \cup N)*)

Context-Free Grammars

• Example: Arithmetic Expressions

```
expr -> expr + term

expr -> expr - term

expr -> term

term -> term * factor

term -> term / factor

term -> factor

factor -> (expr)

foctor -> id
```

expr, term, factor: non-terminal symbols
() - id + - * / : terminal symbols
expr : start symbol

• BNF(Backus Naur Form) and Algol60

Context-Free Grammars

- Notational Conventions
 - Terminal symbols
 - lower-case letters early in the alphabet: a, b, c
 - operator symbols: +, -, etc.
 - punctuation symbols: (), etc.
 - digits: 0,1,..., 9
 - boldface strings such as id or if
 - Non-terminal symbols
 - upper-case letters early in the alphabet: A,B,C
 - the letter S (usually start symbol)
 - lower-case italic names such as *expr* or *stmt*
 - Upper-case letter late in the alphabet, X,Y, Z: grammar symbols
 - Lower-case letter late in the alphabet, u, v, ..., z: strings of terminals
 - Lower-case Greek letters, α , β , γ : strings of grammar symbols

Derivations

- A derivation is viewed as the process by which a grammar defines a language
 - top-down construction of a parse tree
- General form (one-step derivation) $\alpha A\beta \Rightarrow \alpha\gamma\beta$ if $A \rightarrow \gamma$ is a production $\alpha_1 => \alpha_2 => \dots => \alpha_n$ " α_1 derives α_n "
- Example

$$E -> E + E \mid E * E \mid (E) \mid - E \mid id$$

$$E \Rightarrow -E$$
 "E derives -E"
$$E \Rightarrow -(E) \Rightarrow -(id)$$
 "a derivation of -(id) from E

Derivations

More notations

```
\overset{*}{\Rightarrow}: \text{``derives in zero or more steps''} \\ \overset{+}{\Rightarrow}: \text{``derives in one or more steps''} \\ \alpha \overset{*}{\Rightarrow} \alpha \\ \alpha \overset{*}{\Rightarrow} \beta \& \beta \Rightarrow \gamma \text{ , then } \alpha \overset{+}{\Rightarrow} \gamma
```

- L(G), language generated by G $\{w \mid S \xrightarrow{+} w, w \text{ is a string of terminals}\}$
- Sentential form

$$S \stackrel{*}{\Rightarrow} \alpha : \alpha \text{ is a sentential form of } G$$

 $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E \Rightarrow -(id+E) \Rightarrow -(id+id)$

- Rightmost and leftmost derivations
 - rightmost(leftmost) non-terminal is replaced at each step $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$
- Leftmost(rightmost) sentential form $S \stackrel{*}{\Longrightarrow} \alpha$

• Example 1

$$E \rightarrow (E) \mid a$$

$$L(G) = \{a, (a), ((a)), ...\} = \{ (^n a)^n \mid n \ge 0 \}$$

$$e.g. E \Rightarrow (E) \Rightarrow ((E)) \Rightarrow ((a))$$

$$cf. E \rightarrow (E) \Rightarrow infinite recursion$$

• Example 2

• Example 3: statements statement -> if-stmt | other if-stmt -> if(exp) statement | if (exp) statement else statement exp -> 0 | 1E.g. if (1) other else if (0) other else other $statement \Rightarrow if\text{-stmt} \Rightarrow if (exp) statement else statement$ \Rightarrow if (1) statement else statement \Rightarrow if (1) other else statement \Rightarrow if (1) other else if-stmt \Rightarrow if (1) other else if (exp) statement else statement \Rightarrow if (1) other else if (0) statement else statement \Rightarrow if (1) other else if (0) other else statement \Rightarrow if (1) other else if (0) other else other

• Example 4: Balanced parentheses

$$A \rightarrow (A)A \mid \varepsilon$$

e.g. $A \Rightarrow (A)A \Rightarrow (A)$

 $A \Rightarrow AB \Rightarrow BB \Rightarrow () B \Rightarrow () (A) \Rightarrow () (B) \Rightarrow () (())$

• Example 5: statement sequence

```
stmt-sequence \rightarrow stmt \; ; stmt-sequence \mid stmt stmt \rightarrow \mathbf{s} L(G) = \{ \; s, \; s \; ; \; s, \; s \; ; \; s \; ; \; s, \; \dots \} \qquad ; \text{ as a separator} stmt-sequence \rightarrow stmt \; ; stmt-sequence \mid \; \epsilon stmt \rightarrow s L(G) = \{ \; \epsilon \; , \; s \; ; \; s
```

Parse Trees and Derivations

• A parse tree can be viewed as a graphical representation for a derivation without considering replacement order

Parse Trees and Derivations

• Derivation and parse tree : (a - b) * c

E 6

E

 E^{1}

E 5

E

id

leftmost derivationpreorder numbering

Ambiguity

- A grammar that produces more than one parse tree for some sentence is said to be *ambiguous*
- Example : id + id * id

$$E \Rightarrow E + E$$

$$\Rightarrow id + E$$

$$\Rightarrow id + E * E$$

$$\Rightarrow id + id * E$$

$$\Rightarrow id + id * id$$

Syntax Trees

- Parse tree contains much more information than is necessary for a compiler to produce executable code
- Syntax tree(or abstract syntax tree) is an abstraction of the actual source code token sequences

Syntax Tree

Syntax Trees

• Example: if-statement

Parse Tree

Syntax Tree

Syntax Trees

• Example: Statement Sequence

Writing a Grammar

- Grammatical rules of programming languages
 - lexical rule : regular expressions lexical analyzer
 - syntactic rule: CFG parser
 - semantic rule(context-sensitive syntax): semantic analyzer
 - e.g. requirement that identifiers should be declared before they are used
- Each parsing method can handle grammars only of a certain form
 - rewriting initial grammars
 - using operator precedence and associativity
 - left-recursion elimination
 - left factoring

Regular Expressions vs CFG

- Regular Grammar: <T, N, S, P>
 - right regular grammar (right linear grammar)
 - $A \rightarrow aB$
 - A -> a
 - A \rightarrow ϵ
 - left regular grammar (left linear grammar)
 - A -> Ba
 - A -> a
 - A $-> \epsilon$
- A regular grammar is a CFG
 - but, simple and easy to implement efficiently

Regular Expressions vs CFG

- Every regular expression can be converted into a CFG
 - example : (a | b)*abb

$$A_0 \rightarrow aA_0 \mid bA_0 \mid aA_1$$

$$A_1 \rightarrow bA_2$$

$$A_2 \rightarrow bA_3$$

$$A_3 \rightarrow \epsilon$$

- Converting a NFA to a regular grammar
 - state $i \Rightarrow$ non-terminal Ai
 - transition $j = T(i, a) \Rightarrow \text{production } A_i \rightarrow aA_j$
 - transition $j = T(i, \varepsilon) \Rightarrow \text{production } A_i \rightarrow A_j$
 - $i \in F \Longrightarrow \operatorname{production} A_i -> \varepsilon$
 - $i = \text{start state} \implies A_i : \text{start symbol}$

- Using Operator Precedence and Associativity
 - Example:

- Grouping operators of equal precedences
- Lower precedence => higher in parse tree
- Left Associativity => left recursion

```
E -> E addop T | T
T -> T multop F | F
F -> id | (E) | - E
```

Dangling-else grammar
 stmt -> if expr then stmt
 if expr then stmt else stmt
 | S

if E1 then S1 else if E2 then S2 else S3

• Ambiguous if-stmt

if E1 then if E2 then S1 else S2

Rewriting grammar

Rewriting grammar

if E1 then if E2 then S1 else S2 stmt unmatched_stmt if expr then stmt E1 matched_stmt if expr then matched_stmt else matched_stmt E2 S1**S**2

Elimination of Left Recursion

- A grammar is left-recursive if there is $A \Longrightarrow A \alpha$ expr -> expr + term | term
- Top-down parsing cannot handle left-recursive grammars
- Eliminating left recursion

$$A \rightarrow A a \mid b \Rightarrow A \rightarrow bA'$$

 $A' \rightarrow aA' \mid \varepsilon$

Example

$$E \rightarrow E + T \mid T$$
 \Rightarrow $E \rightarrow TE'$
 $T \rightarrow T * F \mid F$ $E' \rightarrow TE' \mid \varepsilon$
 $F \rightarrow (E) \mid id$ $T \rightarrow FT'$
 $T' \rightarrow FT' \mid \varepsilon$
 $F \rightarrow (E) \mid id$

Elimination of Left Recursion

• General case (immediate left-recursion)

$$A \rightarrow A\alpha_{1} | A\alpha_{2} | \dots | A\alpha_{m} | \beta_{1} | \beta_{2} | \dots | \beta_{n}$$

$$=>$$

$$A \rightarrow \beta_{1}A' | \beta_{2}A' | \dots | \beta_{n}A'$$

$$A' \rightarrow \alpha_{1}A' | \alpha_{2}A' | \dots | \alpha_{m}A' | \epsilon$$

- It does not eliminate left recursion involving derivations of two or more steps
- Non-immediate left-recursion

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$ => $A \rightarrow SdA' \mid A' // left-recursive$
 $A' \rightarrow cA' \mid \epsilon$
 $S \Rightarrow Aa \Rightarrow Sda$

Elimination of Left Recursion

- Eliminating left-recursion (non-immediate recursion)
 - Arrange the nonterminals in some order, A_1, A_2, \ldots, A_n
 - for each Ai, (i = 1 to n) $\begin{aligned} &\text{for j = 1 to i 1} \\ &\text{replace } A_i -> A_j \gamma \\ &\text{by } A_i -> \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma, \\ &\text{where } A_j -> \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k \text{ are } A_j \text{-productions} \end{aligned}$ eliminate the immediate left recursion among the Ai-productions
- Example

- 1. ordering: SA
- 2. for S, no left-recursion
- 3. for A, replace A->Sd with S-productions

$$A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$$

4. elimination of left-recursion

Left Factoring

• Two productions for a non-terminal A have a common prefix

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

$$\Rightarrow$$

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

• General case

$$A \rightarrow \alpha \beta_{1} | \alpha \beta_{2} | \dots \alpha \beta_{n} | \gamma$$

$$\Rightarrow$$

$$A \rightarrow \alpha A' | \gamma$$

$$A' \rightarrow \beta_{1} | \beta_{2} | \dots \beta_{n}$$

Example

S->iEtS| iEtSeS | a S -> iEtSS' | a E -> b S' -> eS |
$$\epsilon$$
 E -> b