HOMEWORK 4 - MATH402B

DUE: WEDNESDAY OCTOBER 25TH

- (1) Goodman 1.10.3
- (2) Goodman 1.10.4
- (3) Let \mathcal{R} be the set of rational points on the unit circle (recall that the unit circle is the set of points (x, y) in \mathbb{R}^2 such that $x^2 + y^2 = 1$); these are the points having both coordinates rational numbers. Follow these steps to show \mathcal{R} is a group under the given operation. Given two rational points (α, β) and (γ, λ) on the unit circle define the operation

$$(\alpha, \beta) \star (\gamma, \lambda) = (\alpha \gamma - \beta \lambda, \alpha \lambda + \beta \gamma)$$

- (a) Show that this is a well defined binary operation on \mathcal{R} . Show that (1,0) acts like an identity under \star . Given any (α, β) show that there exists (γ, λ) so that $(\alpha, \beta) \star (\gamma, \lambda) = (1,0)$, i.e. every rational point has an inverse with respect to \star .
- (b) Compute $(\frac{3}{5}, \frac{4}{5}) \star (\frac{5}{13}, \frac{12}{13})$.
- (c) Describe the computation in the previous part in terms of the geometry of the unit circle.
- (4) Goodman 2.1.5
- (5) Goodman 2.1.12
- (6) Goodman 2.1.15
- (7) Consider the following two sets of matrices $A = \{ \begin{pmatrix} r & 0 \\ 0 & \frac{1}{r} \end{pmatrix} : r \in \mathbb{R} \}$ and $N = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \}$. Prove that they are subgroups of the group $SL_2(\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \text{ and } ad bc = 1 \}$ with the usual matrix multiplication. Write two isomorphisms between the groups and another known group coming from sets of numbers (e.g. \mathbb{Q} , \mathbb{Z} , \mathbb{R} , \mathbb{C}).
- (8) Goodman 2.2.4
- (9) Let (G, \cdot) be a group and consider the group $(G \times G, \cdot)$ as defined in class. Prove that $\Delta = \{(g, g) : g \in G\}$ is a subgroup of $G \times G$.