UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea	ı	

Numărul legitimației de bancă	
Numele	
Prenumele tatălui	
Prenumele	

CHESTIONAR DE CONCURS

DISCIPLINA: Fizică F2

VARIANTA A

- O maşină termică ideală funcționează după un ciclu Carnot între temperaturile T₁=400 K şi T₂=300 K.
 Ştiind că în timpul unui ciclu maşina primeşte căldura Q₁=400 kJ, lucrul mecanic efectuat de maşină în timpul unui ciclu este: (5 pct.)
 - a) 100 J; b) 400 J; c) 420 kJ; d) 125 kJ; e) 100 kJ; f) 20000 J.
- 2. Unitatea de măsură a forței în S. I. este: (5 pct.)
 - a) $kg \cdot m^2 \cdot s^{-2}$; b) N/m^2 ; c) $m \cdot s^{-2}$; d) N; e) $kg \cdot m \cdot s^{-1}$; f) $N \cdot m$.
- 3. O cantitate de gaz ideal încălzit la presiune constantă absoarbe o cantitate de căldură de 11,62 kJ, iar încălzită la volum constant între aceleași temperaturi absoarbe cantitatea de căldură de 8,3 kJ. Exponentul adiabatic al gazului este: (5 pct.)
 - a) 1,5; b) 1,2; c) 1,4; d) 0,6; e) 1,67; f) 1,3.
- 4. Un camion cu masa de 10 tone își mărește viteza de la 10 m/s la 25 m/s. Lucrul mecanic efectuat de motor este: (5 pct.)
 - a) 2625 kJ; b) 5,35 MJ; c) 2500 kJ; d) 2125 kJ; e) 3,125 MJ; f) 2,45 MJ.
- 5. Pentru a încălzi izobar cu 5 K o cantitate de 10 moli de hidrogen se transmite gazului căldura Q=915 J. Ştiind că R=8,3 J/(mol·K) variația energiei interne a gazului în procesul considerat este: (5 pct.)
 - a) 550 J; b) 412 J; c) 500 J; d) 508 J; e) 512 J; f) 485 J.
- 6. Unitatea de măsură în S. I. a căldurii specifice este: (5 pct.)
 - a) $J/(mol \cdot K)$; b) $J \cdot K$; c) $J/(kg \cdot K)$; d) J/kg; e) J/K; f) J.
- 7. Un automobil are în momentul începerii frânării viteza de 20 m/s. Considerând coeficientul de frecare dintre roți și șosea $\mu = 0.4$ și g = 10 m/s², spațiul de frânare până la oprire este: (5 pct.)
 - a) 50 m; b) 25 m; c) 15 m; d) 60 m; e) 100 m; f) 90 m.
- 8. Volumul a 4 kg de oxigen aflat la presiunea de $4,15\cdot10^5$ N/m² și temperatura de 300 K ($\mu_{O_2} = 32$ g/mol, R = 8,3 J/(mol·K)) este: (5 pct.)
 - a) 1,6 dm³; b) 1,5 cm³; c) 1 m³; d) 3 m³; e) 2,12 m³; f) 0,75 m³.
- 9. Utilizând notațiile din manualele de fizică, expresia principiului întâi al termodinamicii este: (5 pct.)

a)
$$\Delta Q = U + L$$
; b) $\Delta U = Q - L$; c) $C_p - C_v = R$; d) $\eta = \frac{T_1 - T_2}{T_1}$; e) $\Delta U = Q/L$; f) $\eta = \frac{Q_1 - |Q_2|}{Q_1}$.

10. Un corp cu masa 0,4 kg cade liber de la înălțimea de 20 m. Neglijând frecarea cu aerul și considerând $g = 10 \text{ m/s}^2$ energia totală a corpului este: (5 pct.)

- 11. Un automobil, având viteza de 10 m/s la baza unei pante de înclinare 3° urcă panta fără motor. Știind coeficientul de frecare $\mu = 0.05$ și considerând g = 10 m/s², $\sin 3^{\circ} \approx 0.05$, $\cos 3^{\circ} \approx 1$, timpul după care viteza mobilului devine 5 m/s este: (5 pct.)
 - a) 15 s; b) 9 s; c) 1 min; d) 10 s; e) 5 s; f) 6 s.
- 12. Utilizând notațiile din manualele de fizică, expresia legii lui Hooke este: (5 pct.)

a)
$$F = -kx^2$$
; b) $\sigma = \frac{\varepsilon}{E}$; c) $F = m \cdot a$; d) $\Delta l \cdot l_0 = E \frac{F}{S_0}$; e) $\Delta l = E l_0 \frac{S_0}{F}$; f) $\frac{\Delta l}{l_0} = \frac{1}{E} \frac{F}{S_0}$.

- 13. Trei rezistoare identice, fiecare de rezistență R, sunt legate mai întâi în serie și apoi în paralel. Raportul rezistențelor echivalente ale celor două grupări este: (5 pct.)
 - a) 6; b) R/3; c) 9; d) 3; e) 3 R; f) 1/3.
- 14. Utilizând notațiile din manualele de fizică, expresia legii lui Ohm pentru întreg circuitul este: (5 pct.)

a)
$$I = \frac{E}{R+r}$$
; b) $I = \frac{E}{r^2}$; c) $E = \frac{I}{R+r}$; d) $U = R \cdot I$; e) $P = U \cdot I$; f) $I = \frac{E \cdot r}{R}$.

- 15. Unitatea de măsură a rezistivității electrice în S. I. este: (5 pct.)
 - a) Ω ; b) $\Omega \cdot m$; c) Ω/m ; d) V; e) $\Omega \cdot m^2$; f) A.
- 16. Printr-un conductor de lungime 100 m și secțiune 1 mm² trece un curent de 1,6 A dacă la capetele lui se aplică o tensiune de 4 V. Rezistivitatea materialului din care este confecționat conductorul este: (5 pct.)

a)
$$3 \cdot 10^{-8} \Omega$$
; b) $2 \cdot 10^{-8}$; c) $4 \cdot 10^{-8} \Omega \cdot m$; d) $2.5 \cdot 10^{-6} \Omega \cdot m$; e) $5 \cdot 10^{-8} \Omega / m$; f) $2.5 \cdot 10^{-8} \Omega \cdot m$.

- 17. Un circuit electric conține o baterie cu t. e. m. 10 V și rezistența internă 0,75 Ω și un rezistor cu rezistența de 1,25 Ω . Energia electrică furnizată de baterie în timp de 10 minute este: (5 pct.)
 - a) 30 kJ; b) 600 J; c) 15 kJ; d) 20 kJ; e) 300 J; f) 60 kJ.
- 18. Un generator produce aceeași putere electrică într-un rezistor cu rezistența de 9 Ω sau într-un rezistor cu rezistența de 16 Ω . Rezistența internă a generatorului este: (5 pct.)
 - a) 24 Ω ; b) 12 Ω ; c) 10 Ω ; d) 6 Ω ; e) 2 Ω ; f) 4 Ω .