Approx-SVP in Ideal lattices with Pre-Processing

Alice Pellet-Mary, Guillaume Hanrot and Damien Stehlé

LIP, ENS de Lyon

Journées C2 2018, October 8

What is this talk about

Time/Approximation factor trade-off for SVP in ideal lattices:

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

A basis of L is an invertible matrix B such that $L = \{Bx \mid x \in \mathbb{Z}^n\}$.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 11 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Complexity of SVP/CVP

Applications

SVP and CVP in general lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approximation trade-off for general lattices: BKZ algorithm

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.

 $\Rightarrow \text{E.g. ideal lattices}$

Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.

 $\Rightarrow \text{E.g. ideal lattices}$

Is approx-SVP still hard when restricted to ideal lattices?

SVP in ideal lattices

[CDPR16,CDW17]: Better than BKZ in the quantum setting

- Heuristic
- For prime power cyclotomic fields

[[]CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

This work

- Heuristic
- Pre-processing $2^{O(n)}$, independent of the choice of the ideal (non-uniform algorithm).

Outline of the talk

Definitions and objective

2 The CDPR algorithm

This work

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

• Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$ • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$ • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$
- Principal ideals: $\langle g \rangle = \{ gr \mid r \in R \}$ (i.e. all multiples of g)
 - e.g. $\langle 2 \rangle = \{ \text{even numbers} \} \text{ in } \mathbb{Z}$
 - g is called a generator of $\langle g \rangle$
 - ▶ The generators of $\langle g \rangle$ are exactly the ug for $u \in R^{\times}$

Why is $\langle g \rangle$ a lattice?

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

Why is $\langle g \rangle$ a lattice?

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^n + 1) \to \mathbb{Z}^n$$

 $r = r_0 + r_1 X + \dots + r_{n-1} X^{n-1} \mapsto (r_0, r_1, \dots, r_{n-1})$

 $\langle g \rangle \subseteq R \simeq \mathbb{Z}^n + \text{stable by '+' and '-'} \Rightarrow \text{lattice}$

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0,1]$, Find $r \in \langle g \rangle$ such that $\|r\| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, Find $r \in \langle g \rangle$ such that $||r|| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

BKZ algorithm can do it in time $2^{O(n^{1-\alpha})}$, can we do better?

Outline of the talk

Definitions and objective

2 The CDPR algorithm

This work

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g
angle$

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g \rangle$

If n = 1: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.

Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of $\langle g \rangle$

If $\mathbf{n}=\mathbf{1}$: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

For larger n: one of the generators is somehow small

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$.

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

• a > 0

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := \text{Log}(R^{\times})$ is a lattice

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1}=(1,\cdots,1)$ and $H=\mathbf{1}^{\perp}$.

Properties

 $\log r = h + a\mathbf{1}$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice
- $||r|| \simeq 2^{||\operatorname{Log} r||_{\infty}}$

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time $\operatorname{poly}(\underline{n})$
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\widetilde{O}(\sqrt{n})}$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\widetilde{O}(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| < \widetilde{O}(\sqrt{n})$

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR Algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ
 - ▶ Good basis of Λ ⇒ CVP in poly time ⇒ $||h|| < \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

Outline of the talk

Definitions and objective

The CDPR algorithm

This work

How to solve CVP in L?

CDPR	This work
Good basis of Λ	No good basis of L known

How to solve CVP in *L*?

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

$$L = \Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda)$$
 does not depend on $\langle g
angle$

How to solve CVP in *L*?

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

 $L = \Lambda \cup \bigcup_i (h_{\mathsf{Log}\,r_i} + \Lambda)$ does not depend on $\langle g \rangle \ \Rightarrow$ Pre-processing on L

How to solve CVP in 1?

CDPR	This work
Good basis of Λ	No good basis of L known

Key observation

 $L = \Lambda \cup \bigcup_i (h_{\log r_i} + \Lambda)$ does not depend on $\langle g \rangle \Rightarrow \text{Pre-processing on } L$

[Laa16]: • Find $s \in L$ such that $||s - t|| = \widetilde{O}(n^{\alpha})$ • Time: $2^{\widetilde{O}(n^{1-2\alpha})}$ (query) $+ 2^{O(n)}$ (pre-processing)

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

Conclusion

Approximation	Query time	Pre-processing
$2^{\widetilde{O}(n^{\alpha})}$	$2^{\widetilde{O}(n^{1-2\alpha})} + (\operatorname{poly}(n) \text{ or } 2^{\widetilde{O}(\sqrt{n})})$	2 ^{O(n)}

 $+2^{O(n)}$ Pre-processing / Non-uniform algorithm

Extensions

Non principal ideals

- \checkmark
- Generalization to other number fields
- Removing the heuristics

?

Extensions

Non principal ideals

- \checkmark
- Generalization to other number fields
- Removing the heuristics

?

Questions?