Глава 1. Оптимальное размещение базовых станций широкополосной беспроводной сети связи для обслуживания заданного множества рассредоточенных объектов

Построение современной инфраструктуры передачи информации для обслуживания множества объектов промышленного или гражданского назначения, рассредоточенных на некоторой территории, является актуальной задачей при создании единой систем контроля и управления указанными объектами. Создание такой инфраструктуры позволяет обеспечить оперативный контроль и управление объектами путем передачи необходимой информации с сенсоров и датчиков объектов в соответствующий внешнее приемное устройство. Для создания подобной инфраструктуры эффективно используются сети широкополосной беспроводной связи, необходимым этапом проектирования которых является решение задачи определения мест размещения базовых станций [0]. В настоящей работе строятся и исследуются две математические модели задач размещения базовых станций, которые применимы на этапе синтеза топологии сети в процессе комплексного проектирования мультимедийных сетей. Предлагается модель для проверки существования допустимого решения при условия выполнении технологических ограничений для предложенной на предыдущих этапах схемы расстановки станций и модель для оптимизационной задачи. Оптимизационная задача состоит в выборе множества станций из заданного набора типов станций с различными характеристиками и их расстановки на избыточном множестве возможных мест размещения. В поставленной задаче рассматривается задача обслуживания объектов, расположение которых задано их координатами на плоскости. Особенностью такой задачи в широком классе задач оптимального размещения мощностей является наличие условия на наличие информационной связи между станциями и внешним приемным устройством (шлюзом), выполнение которого гарантирует поступление всей информации с контролируемых объектов в центр управления.

1.1 Задача при заданных местах размещения станций.

Задано множество вершин $A = \{a_i\}, i = \overline{0,n}$ на плоскости. Каждая вершина a_i имеет координаты $\{x_i, y_i\}$.

Множество A состоит из двух подмножеств:

- $-A_1$ множество вершин, которое соответствует объектам, с которых необходимо собирать информацию. Каждой вершине a_i приписана величина v_i максимальный объем информации, снимаемой с объекта, расположенного на этой вершине. В частности, объектами могут быть любые стационарные абонентские устройства сети 802.11n. В дальнейшем будем считать, что каждая вершина из A_1 является объектом контроля.
- $-A_2 =$ множество мест, где размещены базовые станции. В дальнейшем вершину из A_2 будем идентифицировать не только как место размещения, но и как соответствующую станцию.

По определению:

$$A_1 \cup A_2 = \varnothing;$$

$$A_1 \cap A_2 = A.$$

Все вершины пронумерованы так,что:

$$A_1 = \{a_i\}, i = \overline{1, n_1};$$

$$A_2 = \{a_i\}, i = \overline{n_1 + 1, n}.$$

Каждой вершине из A_2 приписаны три параметра $s_i = \{r_i, R_i, \vartheta_i\}$, где:

- $-r_i$ максимальный радиус покрытия станции. Параметр, который характеризует зону охвата территории каждой станцией;
- $-R_i$ максимальный радиус связи станции. Параметр характеризует расстояние, на котором обеспечивается радиорелейная связь между станциями;
- $-\vartheta_{i}$ максимальный объем информации в единицу времени, который может быть получен от объектов, обслуживаемых станцией.

Также задана вершина специального вида (шлюз) $s_0 = \{r_0, R_0, \vartheta_0\}$ с координатами $\{x_0, y_0\}$. По условию задачи величина ϑ_0 больше суммы величин ϑ_i у всех вершин множества A_1 .

Задано условие, что со шлюзом и между собой могут быть связаны только вершины множества A_2 .

Требуется проверить, что при заданных наборе и размещении станций вся имеющаяся информация с объектов (множество A_1) может быть собрана и передана системой станций (множество A_2) до шлюза s_0 .

Сформулируем задачу в виде модели ЛП.

Составим граф $H = \{A, E\}$ для возможного потока информации между вершинами множества $A = A_1 \cup A_2$. По определению, каждой вершине из A_2 соответствует свой набор параметров $\{r_i R_i, \vartheta_i\}$. Матрица смежности $E = \{e_{ij}\}$ графа H строится по следующим правилам:

- $-e_{ij}=1$, если расстояние между i-ым объектом $(a_i \in A_1)$ и j-ым местом размещения станции $(a_j \in A_2)$ не более радиуса покрытия для станции соответствующего этой вершине типа;
- $-e_{ij}=1$, если расстояние между i-ым местом размещения $(a_i \in A_2)$ и j-ым местом размещения $(a_j \in A_2)$, не более радиуса связи той станции, у которой радиус связи не больше радиуса связи другой станции;
- $-e_{i0}=1$, если расстояние от вершины $a_i \in A_2$ до шлюза не более R_i ;
- $-e_{ij}=0$, во всех остальных случаях.

Введем переменные $x_{ij} \ge 0$. Это искомое количество информации, передаваемой в единицу времени по дуге e_{ij} графа H. Распишем условия для нашей задачи. Величина суммарного потока, который выходит с объекта равен весу ϑ_i :

$$\sum_{a_i \in \Gamma^+(a_i)} x_{ij} = \vartheta_i, \forall a_i, i = \overline{1, n_1}, \tag{1.1}$$

где $\Gamma^+(a_i)$ – множество вершин на графе H, в которые входят дуги, исходящие из вершины a_i .

Сумма входящих и выходящих потоков для любой i-ой вершины множества A_2 равна нулю:

$$\sum_{a_j \in \Gamma_1^-(a_i)} x_{ij} + \sum_{a_j \in \Gamma_2^-(a_i)} x_{ji} - \sum_{a_j \in \Gamma_2^+(a_i)} x_{ij} = 0, \forall a_i \in A_2.$$
 (1.2)

Здесь множество $\Gamma_1^-(a_i)$ – вершины множества A_1 , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^-(a_i)$ – вершины множества A_2 , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^+(a_i)$ – вершины множества A_2 , в которые входят дуги, исходящие из вершины a_i .

Через систему станций вся информация от объектов должна поступить на шлюз s_0 :

$$\sum_{a_j \in \Gamma_2^-(a_0)} x_{j0} = \sum_{a_i \in A_1} \vartheta_i; \tag{1.3}$$

Объем информации, поступающей с других вершин на станцию, если она размещена на j-ой вершине, ограничен мощностью станции ϑ_j :

$$\sum_{a_j \in \Gamma^-(a_i)} x_{ji} \leqslant \vartheta_j, \forall a_j \in A_2 D. \tag{1.4}$$

Для нахождение допустимого решения задачь (1.1) - (1.4) (или доказательства, что допустимого решения не существует) может быть применена стандартная процедура нахождения допустимого решения задачи линейного программирования с вводом искусственных переменных в уравнения (1.1) - (1.4) и минимизации состоящей из этих переменных линейной формы. Если значение целевой функции в результате решения задачи окажется больше нуля, то допустимого решения для данного размещения станций не существует, в противном случае полученное решение дает допустимое распределение потоков по каналам связи.

1.2 Оптимизационная задача выбора набора размещаемых станций и определения мест их размещения

Постановка задачи Задано множество вершин $A=a_i,\ i=\overline{0,n}$ на плоскости. Каждая вершина a_i имеет координаты $\{x_i,y_i\}$. Множество A состоит из двух подмножеств:

 $-A_1$ – множество вершин, с которых необходимо собирать информацию. Каждой вершине a_i приписана величина v_i – максимальный объем информации, снимаемой с объекта, расположенного на этой вершине; $-A_2$ — множество возможных мест размещения базовых станций. По определению

$$A_1 \cup A_2 = \varnothing;$$

$$A_1 \cap A_2 = A.$$

Все вершины пронумерованы так, что:

$$A_1 = \{a_i\}, i = \overline{1,n_1};$$

$$A_2 = \{a_i\}, i = \overline{n_1 + 1, n}.$$

Задано множество типов базовых станций $S=s_j,\ j=\overline{1,s},$ которые необходимо разместить на множестве $A_2.$

Каждой станции приписаны четыре параметра $s_j = \{r_j, R_j, \vartheta_j, c_j\}$, где:

- $-r_{j}$ максимальный радиус покрытия;
- $-R_{j}$ максимальный радиус связи между станциями;
- $-\vartheta_{j}$ максимальный объем информации в единицу времени, который может быть получен от объектов, обслуживаемых данной станцией;
- $-c_{j}$ стоиомость станции.

Также задана станция специального вида (шлюз) $s_0=\{r_0,R_0,\vartheta_0,c_0\}$ с координатами $\{x_0,y_0\}$, где $r_0=R_0=\vartheta_0=c_0=0$

Требуется разместить станции таким образом, чтобы вся информация с объектов (вершинах множества A_1) могла быть собрана и передана системой станций, размещенных на выбранных в результате решения задачи вершинах множества A_2 , до шлюза s_0 и общая стоимость размещенных станций была бы минимальной. Как и в предыдущих задачах вершины и станции будем, соответственно, идентифицировать как объекты или станции на них размещенные. Задано условие, что информация с вершин множества A_1 может передаваться непосредственно только на вершины множества A_2 , а со шлюзом и между собой могут быть связаны только вершины множества A_2 .

Заметим, что в отличие от предыдущих двух задач в данной задаче задано не множество станций, которые все должны быть использованы в проектируемой сети, а только типы станций. Таким образом в результате решения задачи определяется как набор станций, так и места их размещения. Формулировка

задачи в виде модели частично целочисленного ЛП. Вместо каждой вершины ai, $i=\overline{n_1+1,n}$ введем m вершин с координатами вершины a_i , и различными параметрами, соответствующими различным типам станций. Обозначим такую группу вершин, записанных с одинаковыми координатами вместо вершины a_i , как D_i . Каждой вершине из D_i поставим в соответствие набор параметров только одного типа станции из S, т.е. на данной вершине может стоять либо станция приписанного типа либо никакая. Обозначим расширенное множество вершин A_2 через A_2D .

Составим граф $H = \{AD, E\}$, описывающий сеть для передачи потока информации между вершинами расширенного множества $AD = A_1 \cup A_2D$ и шлюзом. Матрица смежности $E = e_{ij}$ графа H строится по следующим правилам.

- $-e_{ij}=1$, если расстояние между i-ой вершиной $(a_i \in A_1)$ и j-ой вершиной $(a_j \in A_2D)$ не более радиуса покрытия, приписанного этой вершине;
- $-e_{ij}=1$, если вершины a_i и a_j принадлежат разным множествам D_i и D_j и расстояние между ними не более радиуса связи той вершины, у которой радиус связи не больше радиуса связи другой вершины;
- $-e_{i0}=1$ ($a_i\in A_2D$) если расстояние от вершины до шлюза не более R_i ;
- $-e_{ij}=0$, во всех остальных случаях.

Введем потоковые переменные $x_{ij} \geqslant 0$.

Распишем условия для нашей задачи. Величина суммарного потока, который выходит с вершины a_i равен весу ϑ_i

$$\sum_{a_j \in \Gamma^+(a_i)} x_{ij} = \vartheta_i, \forall a_i, i = \overline{1, n_1};$$
(1.5)

где $\Gamma^+(a_i)$ – множество вершин на графе H, в которые входят дуги, исходящие из вершины a_i .

Сумма входящих и выходящих потоков для любой i-ой вершины множества A_2D равна нулю

$$\sum_{a_j \in \Gamma_1^-(a_i)} x_{ij} + \sum_{a_j \in \Gamma_2^-(a_i)} x_{ji} - \sum_{a_j \in \Gamma_2^+(a_i)} x_{ij} = 0, \forall a_i \in A_2.$$
 (1.6)

Здесь множество $\Gamma_1^-(a_i)$ – вершины множества A_1 , из которые выходят дуги, входящие в вершину a_i , $\Gamma_2^-(a_i)$ – вершины множества A_2D , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^+(a_i)$ – вершины множества A_2D , в которые входят дуги, исходящие из вершины a_i .

Через систему станций вся информация от объектов должна поступить на шлюз s_0

$$\sum_{a_j \in \Gamma_2^-(a_0)} x_{j0} = \sum_{a_i \in A_1} \vartheta_i. \tag{1.7}$$

Здесь $\Gamma_2^-(a_0)$ — подмножество вершин множества A_2D , дуги которых входят в шлюз a_0 .

Введем булевы переменные y_i для вершин $a_i, ai \in A_2D$

- $-y_{i}=1$, если станция стоит на месте a_{i} ;
- $-y_i = 0$, в противном случае.

Объем информации, поступающей от вершин множества A_1 на вершину $a_i \in A_2D$, ограничен мощностью станции ϑ_i .

$$\sum_{a_j \in \Gamma^-(a_i)} x_{ji} \leqslant y_i \cdot \vartheta_i, \forall a_i \in A_2 D. \tag{1.8}$$

На множестве D_i может быть размещено не более одной станции

$$\sum_{a_j \in D_i} y_j \leqslant 1, \forall D_i. \tag{1.9}$$

Целевая функция

$$\sum_{a_i \in A_2 D} c_i \cdot y_i \to min. \tag{1.10}$$

Задача (1.5) — (1.10) представляет собой частично целочисленную задачу линейного программирования с $s \cdot |A_2|$ булевыми переменными.

1.3 Пример решения задачи

Рассмотрим пример для оптимизационной задачи выбора набора размещаемых станций и определения мест их размещения. Задано множество рассредоточенных объектов A_1 , $|A_1|=4$ и шлюз (таблица 1).

Задано множество A_2 возможных мест расположения станций, $|A_2|=4$. Все вершины представлены на рисунке 1.1.

Таблица 1 — Координаты размещения

0	(7,4)	Координаты шлюза
1	(1, 5)	Координаты объектов
2	(4.5, 4)	
3	(6, 3)	
4	(3.5, 5)	
5	(2, 4)	Координаты размещения станций
6	(5, 5)	
7	(2, 6)	
8	(6, 5.5)	

Таблица 2 — Координаты размещения

Объекты	1	2	3	4
Мощность	10	15	17	18

Таблица 3 — Множество типов станций

Тип	Мощность, ϑ_j	Радиус покрытия, r_j	Радиус связи, R_j	Стоимость, c_j
1	80	1	6	70
2	100	2	5	75
3	100	2	5	75

Задано ограничение по мощности для кадого объекта (таблица 2).

Задано множество типов станций (таблица 4).

Необходимо разместить станции таким образом, чтобы минимизировать их суммарную общую стоимость. Построим граф сети H для данного набора типов станции. Матрица смежности представлена на рисункке 1.2

На основе матрицы смежности полученного графа запишем систему равенств и неравенств(1.5) — (1.10) и решим задачу частично целочисленного ЛП. В ходе решения мы получили следующее размещение станции (рис. 1.3)

Из графика видно, что были размещены на точках 7 и 8 две станции типа 2 и 3, соответственно. Решением задачи является суммарная стоимость равная: f=160.

Рисунок 1.1 — Координаты размещения

1.4 Результаты численного эксперимента

Алгоритмы построения графов H были запрограммированы на языке Python. Задачи, сформулированные на основании графов H в виде соответствующих задач математического программирования, были решены пакетом Optimization Toolbox MATLAB. В таблице 4 представлены результаты времени счета задач частично целочисленного ЛП для различных случаев числа мест размещения станций и числа объектов. Для каждого случая было проведено по 10 примеров.

	a_0	a_1	a_2	a_3	a_4	a_5s_1	a_6s_1	a_7s_1	a_8s_1	a_5s_2	a_6s_2	a_7s_2	a_8s_2	a_5s_3	a_6s_3	a_7s_3	a_8s_3
a_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a_1	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
a_2	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	1
a_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
a_4	1	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1
a_5s_1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
a_6s_1	1	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1
a_7s_1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1
a_8s_1	0	0	0	0	0	1	1	1	0	1	1	1	1	1	1	1	1
a_5s_2	1	0	0	0	0	1	1	1	1	0	1	1	1	1	1	1	1
a_6s_2	0	0	0	0	0	1	1	1	1	1	0	1	1	1	1	1	1
a_7s_2	1	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1
a_8s_2	1	0	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1
a_5s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1
a_6s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	1
a_7s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	1
a_8s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0

Рисунок 1.2 — Координаты размещения

Таблица 4 — Множество типов станций

Количество	Количество мест	Среднее время			
объектов, n_1	размещения станций, $n-n_1$	счета, сек.			
4	3	12,34			
4	4	12,42			
4	5	12,31			
6	6	11,20			
8	7	11,27			
10	7	12,32			
12	10	12,51			
14	7	12,42			
17	8	12,18			
21	8	12,53			
25	8	14,22			

1.5 Выводы к главе 1

В работе рассмотрены задачи размещения базовых станций при проектировании беспроводных широкополосных сетей связи. Предложены формулировки задач в виде моделей линейного и частично целочисленного линейного

Рисунок 1.3 — Координаты размещения

программирования как для случая проверки наличия допустимых решений для вариантов, предложенных проектировщиками, так и для экстремальной задачи отбора множества станций из имеющегося набора типов станций и оптимального размещения станций выбранного множества на избыточном множестве возможных мест размещения. Предложены алгоритмы построения графов информационных потоков, позволившие формализовать задачи в виде соответствующих моделей математического программирования. Приведены результаты вычислительного эксперимента.