Instruções: Sintam-se livres para consultar outros materiais e conversar com os colegas ou comigo sobre esta lista. Contudo, quando forem escrever as respostas, nenhum material auxiliar poderá ser consultado.

1 Lista de exercícios 1

Exercício 1.1. Mostre que se $\phi \sim \text{Bernoulli}(p)$, então $\mathbb{E}[\phi] = \mathbb{P}(\phi = 1)$.

Exercício 1.2. Mostre que se $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$, então $\bar{X} \sim N(\mu, n^{-1}\sigma^2)$.

Exercício 1.3. Considere que $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ e $\Phi(x)$ é função de distribuição acumulada da N(0, 1). Determine $y(c) := P(\bar{X} > c)$ em função de n, μ, σ^2 e Φ , e determine o valor de c tal que $y(c) = \alpha$.

Exercício 1.4. Considere que $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$. Construa um intervalo de confiança de confiança $1 - \alpha$:

- (a) para μ quando σ^2 é conhecido,
- (b) para μ quando σ^2 é desconhecido,
- (c) para σ^2 quando μ é desconhecido.

Exercício 1.5. Enuncie o Teorema do Limite Central e explique a sua importância.

Exercício 1.6. Considere que $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(\theta)$. Determine:

- (a) O estimador de máxima verossimilhança para θ , $\hat{\theta}$.
- (b) A informação de Fischer de X_1 em relação a θ .
- (c) A distribuição assintótica de $\hat{\theta}$ baseada na informação de Fischer.