STT 3850 : Week 3

Fall 2024

Appalachian State University

Section 1

Outline for the week

By the end of the week:

- Data Wrangling
- "Tidy" data

Section 2

Data Wrangling

Data Wrangling

In this chapter, we'll introduce a series of functions from the dplyr package for data wrangling. We will be able to take a data frame and "wrangle" it (transform it) to suit your needs. Such functions include:

- filter() a data frame's existing rows to only pick out a subset of them.
- summarize() one or more of its columns/variables with a summary statistic.
- group_by() its rows. In other words, assign different rows to be part of the same group.
 - We can then combine group_by() with summarize() to report summary statistics for each group separately.

Data Wrangling

- mutate() its existing columns/variables to create new ones. For example, convert hourly temperature recordings from degrees Fahrenheit to degrees Celsius.
- arrange() its rows. For example, sort the rows of weather in ascending or descending order of temp.
- join() it with another data frame by matching along a "key" variable. In other words, merge these two data frames together.

An additional benefit from learning to use the dplyr package for data wrangling is its similarity to the **SQL** (database querying language).

Needed packages

Let's load all the packages needed for this chapter.

```
library(nycflights13)
library(ggplot2)
library(dplyr)
```

Before we start, let's first introduce a nifty tool: the pipe operator |>.

• The pipe operator allows us to combine multiple operations in R into a single sequential chain of actions.

Let's start with a hypothetical example:

Say you would like to perform a hypothetical sequence of operations on a hypothetical data frame x using hypothetical functions f(), g(), and h():

- Take x then
- ② Use x as an input to a function f() then
- lacktriangledown Use the output of f(x) as an input to a function g() then
- lacktriangledown Use the output of g(f(x)) as an input to a function h()

One way to achieve this sequence of operations is by using nesting parentheses as follows:

```
h(g(f(x)))
```

You can obtain the same output as the hypothetical sequence of functions as follows:

```
x |>  # take x
f() |>  # Use this output as the input to f() then
g() |>  # Use this output as the input to g() then
h()  # Use this output as the input h()
```

This is much more human-readable because you can clearly read the sequence of operations line-by-line.

For example:

```
flights |>
  filter(carrier == "AS") |>
  select(year, month, arr_delay, dep_delay) |>
  slice_head(n = 3)
```

Note that the pipe operator |> has to come at the end of lines.

Subset Observations (Rows)

The filter() function allows you to specify criteria about the values of a variable in your dataset and then filters out only the rows that match that criteria.

- We begin by focusing only on flights from New York City to Portland, Oregon.
 - The dest destination code (or airport code) for Portland, Oregon is "PDX".
 - Run the following and look at the results in RStudio's spreadsheet viewer to ensure that only flights heading to Portland are chosen.

```
portland_flights <- flights |>
  filter(dest == "PDX")
# View(portland_flights)
```

We test for equality using the double equal sign == and not a single equal sign =.

- You can use other operators beyond just the == operator that tests for equality:
 - > corresponds to "greater than"
 - < corresponds to "less than"
 - >= corresponds to "greater than or equal to"
 - <= corresponds to "less than or equal to"</p>
 - != corresponds to "not equal to." The ! is used in many programming languages to indicate "not".
- Furthermore, you can combine multiple criteria using operators that make comparisons:
 - | corresponds to "or"
 - & corresponds to "and"

- We filter flights for all rows that
 - departed from JFK and
 - were heading to Burlington, Vermont ("BTV") or Seattle, Washington ("SEA") and
 - departed in the months of October, November, or December.

One may use commas in place of &

Lets filter rows corresponding to flights that didn't go to Burlington, VT or Seattle, WA.

```
not_BTV_SEA <- flights |>
  filter(!(dest == "BTV" | dest == "SEA"))
# View(not_BTV_SEA)
```

Note note the careful use of parentheses. The code below will produce different results.

```
flights |>
filter(!dest == "BTV" | dest == "SEA")
```

Say we have a larger number of airports we want to filter for. We could continue to use the | (or) operator:

A shorter approach will be to use %in% operator along with the c() function.

```
many_airports <- flights |>
  filter(dest %in% c("SEA", "SFO", "PDX", "BTV", "BDL"))
# View(many_airports)
```

The %in% operator is useful for looking for matches commonly in one vector/variable compared to another.

The next common task when working with data frames is to compute **summary statistics**. Summary statistics are single numerical values that summarize a large number of values.

- Commonly known examples of summary statistics include
 - the mean (also called the average),
 - the median (the middle value),
 - the sum,
 - the smallest value also called the minimum,
 - the largest value also called the maximum, and
 - the standard deviation.

Let's calculate two summary statistics (mean and standard deviation) of the temp temperature variable in the weather data frame from nycflights13 package.

```
summary_temp <- weather |>
summarize(mean = mean(temp), std_dev = sd(temp))
summary_temp
```

• NAs appear as the answers since temp has NA values.

- If you want to ignore the NA values:
 - Set the na.rm argument to TRUE.
 - rm is short for "remove"; this will ignore any NA missing values and only return the summary value for all non-missing values.

Other summary functions we can use inside the summarize():

- mean(): the average
- sd(): the standard deviation, which is a measure of spread
- min() and max(): the minimum and maximum values, respectively
- IQR(): interquartile range
- sum(): the total amount when adding multiple numbers
- n(): a count of the number of rows in each group

group_by

- Say instead of a single mean temperature for the whole year, you would like 12 mean temperatures, one for each of the 12 months separately.
 - We would like to compute the mean temperature split by month.
 - We can do this by "grouping" temperature observations by the values of another variable, in this case by the 12 values of the variable month.

group_by

```
summary monthly temp <- weather |>
 group by(month) |>
  summarize(mean = mean(temp, na.rm = TRUE),
            std dev = sd(temp, na.rm = TRUE),
            count = n()
summary monthly temp |>
 slice head(n = 3)
# A tibble: 3 x 4
 month mean std dev count
 <int> <dbl> <dbl> <int>
```

Grouping by more than one variable

We can also group by more than one variable

```
by_origin_monthly <- flights |>
  group_by(origin, month) |>
  summarize(count = n())
dim(by_origin_monthly)

[1] 36  3
by_origin_monthly |> head(n = 2)
```

Observe that there are 36 rows to by_origin_monthly because there are 12 months for 3 airports (EWR, JFK, and LGA).

Grouping by more than one variable

Why do we group_by(origin, month) and not group_by(origin) and then group_by(month)? Let's investigate:

```
by origin monthly incorrect <- flights |>
  group by(origin) |>
  group_by(month) |>
  summarize(count = n())
dim(by_origin_monthly_incorrect)
[1] 12 2
by_origin_monthly_incorrect |> head(n = 2)
# A tibble: 2 x 2
 month count
```

```
month count
<int> <int> 1 27004
2 2 24951
```

The second group_by(month) overwrote group_by(origin).

Another common transformation of data is to create/compute new variables based on existing ones.

For example, we can create a new variable by converting temperatures from $^{\circ}\text{F}$ to $^{\circ}\text{C}$ using the formula

$$\text{temp in C} = \frac{\text{temp in F} - 32}{1.8}$$

We can apply this formula to the temp variable using the mutate() function from the dplyr package.

- In this code:
 - we mutate() the weather data frame by creating a new variable temp_in_C = (temp - 32) / 1.8,
 - create a new variable monthT that has the name of the months,
 - then overwrite the original weather data frame.

Let's compute monthly average temperatures in both °F and °C.

```
summary monthly temp <- weather |>
 group by(month, monthT) |>
  summarize(mean temp in F = mean(temp, na.rm = TRUE),
           mean temp in C = mean(temp in C, na.rm = TRUE))
summary_monthly_temp |>
 head(n = 4)
# A tibble: 4 x 4
# Groups: month [4]
 month monthT mean_temp_in_F mean_temp_in_C
                         <dbl>
 <int> <chr>
                                        <dbl>
                                         2.02
 1 January
                          35.6
2 2 February
                                         1.26
                          34.3
3
   3 March
                          39.9
                                        4.38
```

4 April

4

11.0

51.7

Let's consider another example.

- Passengers are often frustrated when their flight departs late, but aren't as annoyed if, in the end, pilots can make up some time during the flight.
- This is known in the airline industry as gain, and we will create this variable using the mutate() function:

```
flights <- flights |>
  mutate(gain = dep_delay - arr_delay)
flights |>
  select(dep_delay, arr_delay, gain) -> flights_gain
```

flights_gain

```
# A tibble: 336,776 x 3
  dep_delay arr_delay gain
      <dbl> <dbl> <dbl>
                 11
                      -9
                 20 -16
3
                 33 -31
               -18 17
5
            -25 19
6
              12
                     -16
        -5
                 19
                     -24
8
        -3
                -14 11
9
        -3
                     5
                 -8
10
        -2
                  8
                      -10
 i 336,766 more rows
```

Let's look at some summary statistics of the gain variable

```
gain summary <- flights |>
  summarize(
    Min = min(gain, na.rm = TRUE),
    Q1 = quantile(gain, 0.25, na.rm = TRUE),
    Median = quantile(gain, 0.5, na.rm = TRUE),
    Q3 = quantile(gain, 0.75, na.rm = TRUE),
    Max = max(gain, na.rm = TRUE),
    Mean = mean(gain, na.rm = TRUE),
    SD = sd(gain, na.rm = TRUE),
    Missing = sum(is.na(gain))
gain_summary
```

Since gain is a numerical variable, we can visualize its distribution using a histogram.

arrange and sort rows

- One of the most commonly performed data wrangling tasks is to sort a data frame's rows in alphanumeric order by one of the variables in the data frame/tibble.
- The dplyr package's arrange() function allows us to sort/reorder a data frame's rows according to the values of a specified variable.

arrange and sort rows

Suppose we are interested in determining the most frequent destination airports for all domestic flights departing from New York City in 2013.

```
freq_dest <- flights |>
  group_by(dest) |>
  summarize(num_flights = n())
freq_dest |> head(n = 3)
```

Observe that by default the rows of the resulting freq_dest data frame are sorted in alphabetical order of destination.

arrange and sort rows

Say instead we would like to see the same data, but sorted from the most to the least number of flights (num_flights) instead

```
freq_dest |>
  arrange(num_flights) |>
  head(n = 5)
```

This is, however, the opposite of what we want. The rows are sorted with the least frequent destination airports displayed first.

arrange and sort rows

To switch the ordering to be in "descending" order instead, we use the desc() function.

```
freq_dest |>
arrange(desc(num_flights)) |>
head(n = 5)
```

join data frames

Another common data transformation task is "joining" or "merging" two different datasets.

- For example, in the flights data frame, the variable carrier lists the carrier code for the different flights.
- While the corresponding airline names for "UA" and "AA" might be somewhat easy to guess (United and American Airlines), what airlines have codes "VX", "HA", and "B6"?
- This information is provided in a separate data frame airlines.

join data frames

Lets see the data relationships from the nycflights13 package.

Matching "key" variable names

In both the flights and airlines data frames, the key variable we want to join/merge/match the rows by has the same name: **carrier**.

 Let's use the inner_join() function to join the two data frames, where the rows will be matched by the variable carrier, and then compare the resulting data frames:

```
flights_joined <- flights |>
  inner_join(airlines, by = "carrier")
# View(flights)
# View(flights_joined)
```

Observe that the flights and flights_joined data frames are identical except that flights_joined has an additional variable name.

Matching "key" variable names

A visual representation of the inner_join() is shown below

- There are other types of joins available,
 - such as left_join(), right_join(), outer_join(), and anti_join(),
 - but the inner_join() will solve nearly all of the problems you'll encounter in this class.

Different "key" variable names

- Say instead you are interested in the destinations of all domestic flights departing NYC in 2013,
 - and you ask yourself questions like: "What cities are these airports in?", or "Is ORD Orlando?", or "Where is FLL?"
- The airports data frame contains the airport codes for each airport:

View(airports)

- However, if you look at both the airports and flights data frames, you'll find that the airport codes are in variables that have different names.
 - In airports the airport code is in faa.
 - whereas in flights the destination airport codes are in dest.
 - This fact is further highlighted in the visual representation of the relationships between these data frames.

Different "key" variable names

In order to join these two data frames by airport code, our inner_join()
operation will use the by = c("dest" = "faa") argument:

```
flights_with_airport_names <- flights |>
  inner_join(airports, by = c("dest" = "faa"))
# View(flights_with_airport_names)
```

Different "key" variable names

Let's construct the chain of pipe operators |> that computes the number of flights from NYC to each destination, but also includes information about each destination airport:

```
named dests <- flights |>
  group by(dest) |>
  summarize(num flights = n()) |>
  arrange(desc(num_flights)) |>
  inner_join(airports, by = c("dest" = "faa")) |>
  rename(airport_name = name)
named_dests[1:2, 1:4]
# A tibble: 2 x 4
  dest num_flights airport_name
                                                      lat
  <chr>
              <int> <chr>
                                                    <dbl>
1 ORD
              17283 Chicago Ohare Intl
                                                     42.0
2 ATL
              17215 Hartsfield Jackson Atlanta Intl
                                                     33.6
```

Multiple "key" variables

- Say instead we want to join two data frames by multiple key variables.
- For example, from the visual representation of the relationships between the data frame:
 - we see that in order to join the flights and weather data frames, we need more than one key variable: year, month, day, hour, and origin.
 - This is because the combination of these 5 variables act to uniquely identify each observational unit in the weather data frame: hourly weather recordings at each of the 3 NYC airports.
- We achieve this by specifying a vector of key variables to join by using the c() function.
 - Recall, this function is short for "combine" or "concatenate."

Multiple "key" variables

```
flights weather joined <- flights |>
 inner join(weather, by = c("year", "month", "day",
                        "hour", "origin"))
flights_weather_joined[1:5, 1:6]
# A tibble: 5 x 6
  year month day dep time sched dep time dep delay
 <int> <int> <int> <int>
                               <int>
                                        <dbl>
 2013 1 1
                                 515
                    517
2 2013 1 1 533
                                 529
3 2013 1 1 542
                                 540
4 2013 1 1 544
                                 545
                                          -1
  2013 1
5
                 554
                                 600
                                          -6
# View(flights_weather_joined)
```

Subset Variables (Columns)

We've seen that the flights data frame in the nycflights13 package contains 19 different variables.

#glimpse(flights)

However, say you only need two of these 19 variables, say carrier and flight. You can select() these two variables:

```
flights_sub <-flights |>
    select(carrier, flight)
```

Let's say instead you want to drop, or de-select, certain variables. For example, lets say we want to remove the year in the flights data frame. We can deselect year by using the - sign:

```
flights_no_year <- flights |> select(-year)
```

Another way of selecting columns/variables is by specifying a range of columns:

```
names(flights)
 [1] "year"
                      "month"
                                        "day"
                                                          "dep_time"
 [5] "sched_dep_time" "dep_delay"
                                        "arr_time"
                                                          "sched_arr_
 [9] "arr delay"
                 "carrier"
                                        "flight"
                                                          "tailnum"
[13] "origin"
                                        "air time"
                      "dest"
                                                          "distance"
[17] "hour"
                      "minute"
                                        "time hour"
                                                          "gain"
flight_arr_times <- flights |>
  select(month:day, arr_time:sched_arr_time)
#flight_arr_times
```

This will select() all columns between month and day, as well as between arr_time and sched_arr_time, and drop the rest.

The select() function can also be used to reorder columns when used with the everything() helper function.

- For example, suppose we want the hour, minute, and time_hour variables to appear immediately after the year, month, and day variables, while not discarding the rest of the variables.
- In the following code, everything() will pick up all remaining variables:

Lastly, the helper functions starts_with(), ends_with(), and contains() can be used to select variables/columns that match those conditions. As examples,

```
flights_sub1 <- flights |> select(starts_with("a"))
flights_sub2 <- flights |> select(ends_with("delay"))
flights_sub3 <- flights |> select(contains("time"))
```

Summary table

Verb	Data wrangling operation		
filter()	Pick out a subset of rows		
summarize()	Summarize many values to one using a summary statistic function like $\mbox{ mean()}$, $\mbox{median()}$, etc.		
group_by()	Add grouping structure to rows in data frame. Note this does not change values in data frame, rather only the meta-data		
mutate()	Create new variables by mutating existing ones		
arrange()	Arrange rows of a data variable in ascending (default) or desc ending order		
inner_join()	Join/merge two data frames, matching rows by a key variable		

Section 3

"Tidy" data

"Tidy" data

Let's now learn about the concept of "tidy" data format.

249 158 84

```
library(fivethirtyeight)
drinks smaller <- drinks |>
 filter(country %in% c("USA", "China", "Italy",
                      "Saudi Arabia")) |>
 select(-total_litres_of_pure_alcohol) |>
 rename(beer = beer_servings, spirit = spirit_servings,
        wine = wine_servings)
drinks smaller
# A tibble: 4 x 4
 country beer spirit wine
 <chr> <int> <int> <int> <int>
1 China
                79
                      192 8
2 Italy
          85 42 237
```

4 USA

3 Saudi Arabia 0 5

"Tidy" data

The drinks_smaller data frame, cannot be used to create the side-by-side barplot show below.

why?

"Tidy" data

- Let's break down the grammar of graphics we introduced earlier:
 - The categorical variable country with four levels (China, Italy, Saudi Arabia, USA) would have to be mapped to the x-position of the bars.
 - The numerical variable servings would have to be mapped to the y-position of the bars (the height of the bars).
 - The categorical variable type with three levels (beer, spirit, wine) would have to be mapped to the fill color of the bars.
- To recreate the barplot above, our data frame should be in the "tidy" format.

"Tidy" data: Definition

The word "tidy" in data science means that your data follows a standardized format.

- "Tidy" data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types.
- In tidy data:
 - Each variable forms a column.
 - Each observation forms a row.
 - Each type of observational unit forms a table.

"Tidy" data: Definition

Stock prices (non-tidy format):

Date	Boeing stock price	Amazon stock price	Google stock price
2009-01-01	\$173.55	\$174.90	\$174.34
2009-01-02	\$172.61	\$171.42	\$170.04

Stock prices (tidy format):

Date	Stock Name	Stock Price
2009-01-01	Boeing	\$173.55
2009-01-01	Amazon	\$174.90
2009-01-01	Google	\$174.34
2009-01-02	Boeing	\$172.61
2009-01-02	Amazon	\$171.42
2009-01-02	Google	\$170.04

"Tidy" data: Definition

- Observe that:
 - The non-tidy format of the stock prices is what's known as "wide" format, whereas the tidy format is known as "long/narrow" format.
- In the context of doing data science, long/narrow format is also known as "tidy" format.
- In order to use the ggplot2 and dplyr packages for data visualization and data wrangling, your input data frames must be in "tidy" format.
- Thus, all non-"tidy" data must be converted to "tidy" format first.

We convert the drinks_smaller data to "tidy" format by using the pivot_longer() function from the tidyr package:

drinks_smaller_tidy

```
A tibble: 12 \times 3
          type servings
  country
  <chr>
             <chr>
                       <int>
1 China
            beer
                          79
2 China
            spirit
                       192
3 China
              wine
                           8
4 Italy beer
                          85
5 Italy
                         42
            spirit
6 Italy
                         237
              wine
7 Saudi Arabia beer
                           5
8 Saudi Arabia spirit
9 Saudi Arabia wine
                           0
10 USA
                         249
              beer
11 USA
              spirit
                         158
12 USA
              wine
                          84
```

Note that the two ways to specify the vector argument to cols produce the same output.

```
library(tidyr)
drinks smaller |>
  pivot longer(names to = "type",
               values to = "servings",
               cols = c(beer, spirit, wine))
# Or
drinks smaller |>
  pivot_longer(names_to = "type",
               values to = "servings",
               cols = beer:wine)
```

