ME598/494 Homework 3

1. (40 Points, problem from Professor M. Kokkolaras, McGill University) Vapor-liquid equilibria data are correlated using two adjustable parameters A_{12} and A_{21} per binary mixture. For low pressures, the equilibrium relation can be formulated as:

$$p = x_1 \exp\left(A_{12} \left(\frac{A_{21}x_2}{A_{12}x_1 + A_{21}x_2}\right)^2\right) p_1^{sat} + x_2 \exp\left(A_{21} \left(\frac{A_{12}x_1}{A_{12}x_1 + A_{21}x_2}\right)^2\right) p_2^{sat}.$$

$$(1)$$

Here the saturation pressures are given by the Antoine equation

$$\log_{10}(p^{sat}) = a_1 - \frac{a_2}{T + a_3},\tag{2}$$

where $T = 20(^{\circ}\text{C})$ and $a_{1,2,3}$ for a water - 1,4 dioxane system is given below.

	a_1	a_2	a_3
Water	8.07131	1730.63	233.426
1,4 dioxane	7.43155	1554.679	240.337

The following table lists the measured data $(x_1 + x_2 = 1)$. x_1 is for water.

_											1.0
p	28.1	34.4	36.7	36.9	36.8	36.7	36.5	35.4	32.9	27.7	17.5

Estimate A_{12} and A_{21} using data from Table 1: (1) Formulate the least square problem; (2) Since the model is nonlinear, the problem does not have an analytical solution. Therefore, solve it using the gradient descent or Newton's method implemented in HW1; (3) Compare your optimized model with the data. Does your model fit well with the data?

2. Solve the following problem using Bayesian Optimization:

$$\min_{x_1, x_2} \left(4 - 2.1x_1^2 + \frac{x_1^4}{3} \right) x_1^2 + x_1 x_2 + (-4 + 4x_2^2) x_2^2, \tag{3}$$

for $x_1 \in [-3, 3]$ and $x_2 \in [-2, 2]$. You can use an off-the-shelf Bayesian Optimization solver.