

		NOOKDWES-UNIVEKSITEII POTCHEFSTROOMKAMPUS Fakulteit Ingenieurswese	MKAMPUS rswese
Benodigdhede vir hierdie vraestel Multikeusekaarte:	vraestel: Nie-programmeerbare sakrekenaar: V	Oopboek-eksamen:	men:
Grafiekpapier:	Draagbare rekenaar:	-	
SEMESTERTOETS:	2 GRADE/DIPLOMA:	OMA: Bing	
VAKKODE: VAK:	EERI 418 BEHEERTEORIE II	DUUR: MAKS:	1½ URE 40
DOSENT:	PROF. K.R. UREN	DATUM:	24-04-2015
MODERATOR:	PROF. G. VAN SCHOOR	<u>.</u>	0.0110.0

TOTAAL: 40

VRAAG 1/ QUESTION 1

VRAMO II QUESTION I Druk C(z) in figuur 1 uit as 'n funksie van R(z) en die gegewe oordragsfunksies. /

Express C(z) in figure 1 in terms of R(z) and the given transfer functions.

[10]

116

Die digitale filter in figuur 2 los die volgende verskilvergelyking op: / The digital filter in figure 2 solves the following difference equation:

$$m(k+2) = e(k) + 1.7m(k+1) - 0.72m(k)$$

Die monsterfrekwensie is 20 Hz. / The sampling rafe is 20 Hz. Die aanlegoordragsfunksie word gegee deur: / The plant transfer function is given by:

$$G_p(s) = \frac{1}{s+1}$$
 Digitale /Digital

Figuur / Figure 2

P/A

 $\sqcup m(kT)$

2.1 Bepaal die stelseloordragsfunksie $(\frac{C(z)}{E(z)})$. I

Determine the transfer function of the system $\left(rac{C(z)}{E(z)}
ight)$.

4

2.2 Bepaal die stelseloordragsfunksie $rac{C(z)}{E(z)}$ indien die verwerkingstyd van die digitale filter van

0.051s ook gemodelleer moet word. /

Determine the system transfer function $\frac{C(z)}{E(z)}$ when a computational delay of 0.051s also needs

to be modelled.

(6)

2/6

VRAAG 3 / QUESTION 3

Figuur / Figure 3

Beskou die stelsel in figuur 3. / Consider the system in figure 3.

$$3.1$$
 Bepaal die stelseloordragsfunksie $\left(rac{eta(z)}{R(z)}
ight)$ in terme van $G(z)$. /

Determine the system transfer function
$$inom{eta(z)}{R(z)}$$
 in terms of G(z).

 \in

9

4

3

3.2 Bepaal die oordragsfunksie vir
$$K = 10$$
 en $T = 0.2$ s. Wat is die tipe van die stelsel? / Determine the transfer function for $K = 10$ and $T = 0.2$ s. Find the system type.

Discuss the meaningfulness of the choice of the sampling rate. What is the effect of this sampling rate on the response of the system Make a recommendation on the sampling rate that would minimise the discretisation error without unnecessarily increasing the modelling time. (5)

Addisionele inligting / additional information:

$$\zeta = \frac{-\ln r}{\sqrt{\ln^2 r + \theta^2}}$$

$$\omega_n = \frac{1}{T}\sqrt{\ln^2 r + \theta^2}$$

$$\tau = \frac{1}{C\omega}$$
[20]

EERI 418

3/6

S
⋍
⊏
œ
ŝ
≒
50
7
Z
κi
<u>e</u>
Q
œ
\vdash

								l 	I 	g 2	Į":
	z-Transform	2.11	$\frac{z}{1-z}$	$\frac{z}{(z-1)^2}$	$\frac{z(z+1)}{(z-1)^3}$	$\frac{v-z}{z}$	$\frac{dz}{(z-a)^2}$	$\frac{z \sin a}{z^2 - 2z \cos a + 1}$	$\frac{z(z-\cos u)}{z^2-2z\cos u+1}$	$\frac{az \sin b}{z^2 - 2az \cos b + a^2}$	$z^2 - az \cos b$
1	Sequence	8(k - n)	1	y	<i>t</i> 2	a^k	kak	sin ak	cos ak	a ^k sin bk	a* cos bk

Iransiorm	$E(z) = \sum_{k=0}^{\infty} e(k) z^{-k}$	$a_1 E_1(z) + a_2 E_2(z)$		$z^{n}\left[E(z) - \sum_{k=0}^{n-1} e(k)z^{-k}\right]$	$E(ze^{-a})$	$-z \frac{dE(z)}{dz}$	$E_1(x)E_2(x)$	$E_1(z) = \frac{z}{z - 1} E(z)$	Initial value: $e(0) = \lim_{z \to \infty} E(z)$
Sequence	e(k)	$a_1e_1(k)+a_2e_2(k)$	$e(k-n)u(k-n); n \ge 0$	$e(k+n)u(k); n \ge 1$	$e^{ak}e(k)$	ke(k)	$e_1(k) * e_2(k)$	$e_1(k) = \sum_{n=0}^k e(n)$	Initial value: $e(0) = \lim_{x \to \infty}$

Table 1. Properties of the z transform

Modified z-transform $E(z,m)$	<u> </u>	$\frac{mT}{z-1} + \frac{T}{(z-1)^2}$	$\frac{T^2}{2} \left[\frac{m^2}{2-1} + \frac{2m+1}{(2-1)^4} + \frac{2}{(2-1)^5} \right]$	$\lim_{n\to 0} (-1)^n + \frac{g^{n+1}}{2d^{n+1}} \left[\frac{e^{-nnt}}{z - e^{-nt}} \right]$	Z E	$\frac{T\epsilon^{-uuT}[\epsilon^{-uT} + m(z - \epsilon^{-uT})]}{(z - \epsilon^{-uT})^2}$	$\left(-1\right)^k \frac{\partial^k}{\partial a^k} \left[\frac{e^{-mq}}{z - e^{-q}} \right]$	$\frac{1}{2 - 1} = \frac{e^{-mnT}}{2 - e^{-nT}}$	$\frac{T}{(2-1)^2} + \frac{anT - 1}{a(z-1)} + \frac{e^{-anT}}{a(z-e^{-aT})}$	$\frac{1}{z=1} \left[\frac{1+anT}{z-e^{-\alpha}} + \frac{aTe^{-\alpha}}{(z-e^{-\alpha})^2} \right] e^{-arz}$	$\frac{e^{-i\omega t}}{2^{1-\epsilon}e^{-it}} = \frac{e^{-i\omega t}}{2^{1-\epsilon}e^{it}}$	$\frac{z \sin(anT) + \sin(1-m)aT}{z^2 - 2z \cos(aT) + 1}$	$\frac{z \cos(amT) - \cos(1 - m)aT}{z^2 - 2z \cos(aT) + 1}$	$\frac{1}{b} \left[\frac{e^{-m^2} [L \sin bmT + e^{-n^2} \sin (1-m)bT]}{z^2 - 2z e^{-n^2} \cos bT + e^{-n^2}} \right]$	$\frac{e^{-\mu nT} I_z \cos bmT + e^{-nT} \sin \left(1 - m\right) bT]}{z^2 - 2ze^{-nT} \cos bT + e^{-2zT}}$		$e^{-imT}f_2 \cos bmT + e^{-sT} \sin (1 - m)bT$ $z^2 - 2ze^{-sT} \cos bT + e^{-ksT}$	$+\frac{a}{b} \left[e^{-mt} [z \sin bmT - e^{-sT} \sin (1-m)bT] \right] $ $-2t - 2z e^{-sT} \cos bT + e^{-sT}$	$A = \frac{b(1 - \epsilon^{-a}) - a(1 - \epsilon^{-b})}{ab(b - a)}$	$B = \frac{ae^{-a'}(1 - e^{-b'}) - be^{-b'}(1 - e^{-a'})}{ab(b - a)}$
z-Transform E(x)	1 - z	$\frac{R}{(a-b)^i}$	$\frac{T^2 \chi(z+1)}{2(z-1)^3}$	$\lim_{n\to\infty} (-1)^{k-1} \frac{\partial^{k-1}}{\partial a^{k-1}} \left[\frac{z}{z-e^{-az}} \right]$	$\frac{x}{x'-e^{-x'}}$	$\frac{Tz e^{-\delta T}}{(z - e^{-\delta T})}$	$(-1)^{-\frac{\partial^2}{\partial u^2}} \left[\frac{z}{z - \epsilon^{-p}} \right]$	$\frac{z(1-\epsilon^{-\epsilon})}{(z-1)(z-\epsilon^{-\epsilon})}$	$\frac{z[(aT-1+\epsilon^{-aT})z+(1-\epsilon^{-aT}-aT\epsilon^{-aT})]}{a(z+1)^2(z-\epsilon^{-aT})}$	$\frac{z}{z-1} = \frac{z}{z-e^{-zt}} = \frac{aTe^{-aT}z}{(z-e^{-at})^2}$	$\frac{(e^{-at} - e^{-at})_2}{(z - e^{-at})}$	$\frac{z \sin(aT)}{z^2 - 2z \cos(aT) + 1}$	$\frac{z(z-\cos(aT))}{z^2-2z\cos aT+1}$	$\frac{1}{b} \left[\frac{ze^{-at} \sin bT}{z^2 - 2ze^{-at} \cos (bT) + e^{-brT}} \right]$	$\frac{z^2 - z e^{-s^2} \cos b T}{z^2 - 2z e^{-s^2} \cos b T + e^{-2sT}}$	$\frac{z(Az+B)}{(z-1)(z^2-2ze^{-a^2}\cos bT+e^{-2a^2})}$	$A = 1 - \epsilon^{-\alpha T} \left(\cos b T + \frac{a}{b} \sin b T \right)$	$B = e^{-2\sigma T} + e^{-\tau T} \left(\frac{a}{b} \sin bT - \cos bT \right)$	$\frac{(A\underline{z}+B)z}{(z-\epsilon^{-\theta})(z-\epsilon^{-\theta})(z-1)}$	
Time function e(/)	m(i)		2 2			W. C.	a N		1 - 1 - 6-41	$1 = (1 + at)e^{-at}$	\$ 	sin (at)	cos (at)	$\frac{1}{b} \epsilon^{-m} \sin bt$	e "Coshi	$1 - e^{-a} \left(\cos bt + \frac{a}{b} \sin bt \right)$			$\frac{1}{ab} + \frac{e^{-a}}{a(a-b)}$	$+\frac{\epsilon^{-4\alpha}}{b(b-a)}$
Laplace transform E(s)	-11-5	-14	-1 °5	$\frac{(k-1)!}{s^k}$	T + S	$\frac{1}{(s+a)^2}$	$\frac{(k-1)!}{(s+a)^k}$	$\frac{a}{s(s+a)}$	$s^{2}(s+a)$	$\frac{a^2}{s(s+a)^2}$	$\frac{b-a}{(s+a)(s+b)}$	$\frac{a}{s^2 + a^2}$	$\frac{3}{3^2+6^2}$	$\frac{1}{(s+a)^2+b^2}$	$\frac{s+a}{(s+a)^2+b^2}$	$\frac{a^2 + b^2}{s[(s+a)^2 + b^2]}$			$\frac{1}{s(s+u)(s+b)}$	

2/6

Table 4. Laplace transform properties

$\mathcal{L}\left[\frac{df}{dt}\right] = sF(s) - f(0^+)$	$\mathcal{L}\left[\frac{d^{n}f}{dt^{n}}\right] = s^{n}F(s) - s^{n-1}f(0^{+})$	$\mathcal{L}\left[\int_{0}^{t} f(\tau) d\tau\right] = \frac{F(s)}{s}$	$\mathscr{L}[f(t-t_0)u(t-t_0)] = e^{-t_0 x} F(s)$	$\lim_{s \to \infty} f(t) = \lim_{s \to 0} s F(s)$	$\lim_{t\to\infty} f(t) = \lim_{t\to\infty} sF(s)$	$\mathcal{L}[e^{-a}f(t)] = F(s+a)$	$\mathscr{L}^{-1}[F_1(s)F_2(s)] = \int_0^s f_1(t-\tau)f_2(\tau)d\tau$
Derivative	nth-order derivative	Integral	Shifting	Initial value	Final value	Frequency shift	Convolution integral

Table 5 Optimum coefficients of T(s) Based on the ITAE Criterion for a Step Input

$$s + \omega_n$$

$$s^2 + 1.4\omega_n s + \omega_n^2$$

$$s^3 + 1.75\omega_n s^2 + 2.15\omega_n^2 s + \omega_n^3$$

$$s^4 + 2.1\omega_n s^3 + 3.4\omega_n^2 s^2 + 2.7\omega_n^3 s + \omega_n^4$$

$$s^5 + 2.8\omega_n s^4 + 5.0\omega_n^2 s^3 + 5.5\omega_n^3 s^2 + 3.4\omega_n^4 s + \omega_n^5$$

$$s^6 + 3.25\omega_n s^5 + 6.60\omega_n^2 s^4 + 8.60\omega_n^3 s^3 + 7.45\omega_n^4 s^2 + 3.95\omega_n^5 s + \omega_n^6$$

EERI 418

(N)

$Z_{2}Z_{2}Z_{2}Z_{2}Z_{3}Z_{3}Z_{3}Z_{4}Z_{5}Z_{5}Z_{5}Z_{5}Z_{5}Z_{5}Z_{5}Z_{5$	6 = 0,051 s = T + 0,02T K=1 &=0,02 m=0,08 G(2,m) = 3 m [1-e-st]	$\begin{bmatrix} 22860(1-2) & 3660 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	22 0)2 (0)2	
2				

Question 3	(5) $ (818'0 + 2) (1-2) $ $ (818'0 + 2) + h(618') $ $ (818'0 + 2) + h$	$e(LT) _{L\to\infty} = \lim_{z\to 1} (z-1) E(z)$ $= \lim_{z\to 1} (z-1)^{2}$ $= \frac{Tz}{(z-1)^{2}}$ $= \lim_{z\to 1} (z-1)^{2} \frac{Tz}{(z-1)^{2}}$ $= \frac{T(1-o.544)}{o.4.o.528.1,818}$ $= \frac{T(1-o.544)}{o.4.o.528.1,818}$ $= \frac{T(1-o.544)}{o.4.o.528.1,818}$ $= \frac{T(1-o.544)}{o.4.o.528.1,818}$ $= \frac{T(1-o.544)}{o.4.o.528.1,818}$ $= \frac{T(1-o.544)}{o.4.o.528.1,818}$	

3.4 Pole van die stelsel is by	2 2 - 1,2178 2 + 0,82 = 0 5 2 - 1,2178 2 (1,217) 2 - 4 · 0,82 5 2 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3	2 0 + J24 \right\r	Who is it will have the control of t	Evensfertunction is given by T(S) = 104.16(48) = 10.5 \$(44.5)	7 = 5 = 0, =
				7	

overshoot		
T T T T T T T T T T		
The sampling rate is will be larger than		
7 X = 1.		