Задача

Условие

Пусть отрезок PA – перпендикуляр к плоскости α , $A \in \alpha$. В плоскости α лежит отрезок BC, причем |AB| = |AC|. Пусть известны |PA|, |BC| и угол, под которым отрезок BC виден из точки A, т.е. $\angle BAC$. Как вычислить угол, под которым он виден из точки P, т.е. $\angle BPC$? Для этой же ситуации составьте задачу, обратную данной.

Решение

Пусть $BA=CA=r,\,BC=x,\,AP=h,\,BP=CP=l,\,\angle BAC=\beta$ и $\angle BPC=\alpha$. Заметим, что, поскольку $\triangle BAC$ и $\triangle BAC$ – равнобедренные треугольники, $x=2asin(\beta/2)=2lsin(\alpha/2)$. Из этого следует, что $\alpha=2asin(\frac{a}{l}sin(\beta/2))$. Из теоремы пифагора

$$\alpha = 2asin(\frac{a}{\sqrt{a^2 + h^2}}sin(\beta/2)) = 2asin(\frac{\frac{x}{2sin(\beta/2)}}{\sqrt{\frac{x}{2sin(\beta/2)}^2 + h^2}}sin(\beta/2)). \tag{1}$$

Обратная задача: Известны x, α и β . Найти h.

