PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISH	HED U	INDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/05378
C12N 15/31, 15/54, 9/10, 1/21, C07K 14/315, C12P 19/04, A61K 39/09, C12Q 1/14, 1/68, G01N 33/569 // C12R 1/46	A3	(43) International Publication Date: 3 February 2000 (03.02.00)
(21) International Application Number: PCT/NLS (22) International Filing Date: 19 July 1999 (1993) (30) Priority Data: 98202465.5 22 July 1998 (22.07.98) 98202467.1 22 July 1998 (22.07.98) (71) Applicant (for all designated States except US): STIC DIENST LANDBOUWKUNDIG ONDERZOEK [Bornsesteeg 53, NL-6708 PD Wageningen (NL). (72) Inventor; and (75) Inventor/Applicant (for US only): SMITH, Hilda, In [NL/NL]; Golfpark 98, NL-8241 AG Lelystad (NI) (74) Agent: OTTEVANGERS, S., U.; Vereenigde Octrooi Nieuwe Parklaan 97, NL-2587 BN The Hague (NI)	19.07.9 ELIZABE ELIZABE L).	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. (88) Date of publication of the international search report:
(54) Title: STREPTOCOCCUS SUIS VACCINES AND D	DIAGN	OSTIC TESTS
A Orfs 22 2Y 2X spa2A	Cps2Bcps2C	ceps2D cps2E cps2F cps2G cps2H cps2J cps2K
В	 - 	X P B X
pCPS9-1		<u> </u>
Orfs		eps9D cps9E cps9Fcps1Gcps1H
C 45 6 1 2 3	4 5	P Sc P C 1 1 1 1 1 1 1 1 1

(57) Abstract

The invention relates to Streptococcus suis infections of pigs, to vaccines directed against those infections and to tests for diagnosing Streptococcus suis infections. The invention provides an isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis or a gene or gene fragment derivated thereof. The invention furthermore provides a nucleic acis probe or primer allowing species or serotype specific detection of Streptococcus suis. The invention also provides a Streptococcus suis antigen and vaccine derived thereof.

eps7E eps7Feps7G eps7H

pCPS7-1 pCPS7-2

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Interi. nai Application No PCT/NL 99/00460

A 01 400		- PC	1/NL 99/00460
IPC 7	C12N15/31 C12N15/54 C12N9 C12P19/04 A61K39/09 C12Q1 //C12R1/46	/10 C12N1/21 /14 C12Q1/68	
According	to International Patent Classification (IPC) or to both national clas	sification and IPC	
	SEARCHED		
IPC /	·	01N C12R	
	ation searched other than minimum documentation to the extent the description of the extent the description of the description		
·		a vase anu, where practical, search	terms used)
	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	ELLIOTT S ET AL: "Streptococcin young pigs. V. An immunogen polysaccharide from Streptococcitype 2 with particular reference vaccination against streptococcimeningitis in pigs" J HYG (LOND.), vol. 85, no. 2, October 1980 (1989 275-285, XP000857913) page 284, paragraph 1	ic cus suis ce to cal	13,14
X	QUESSY S ET AL: "Immunization against Streptococcus suis serd infections using a live avirule CAN J VET RES., vol. 58, no. 4, October 1994 (1 pages 299-301, XP002126884 page 300, column 3, paragraph 4	otype 2 ent strain" 1994-10),	13,14
		-/	
X Furth	ner documents are listed in the continuation of box C.	X Patent family members	s are tisted in annex.
"A" docume consid "E" earlier of filing d "L" docume which in citation "O" docume other n "P" docume later th	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ant referring to an oral disolosure, use, exhibition or	cited to understand the printer invention "X" document of particular releverants to considered nove involve an inventive step we'y' document of particular releverants to combined with document is combined with	conflict with the application but inciple or theory underlying the vance; the claimed invention all or cannot be considered to when the document is taken alone vance; the claimed invention volve an inventive step when the none or more other such document grows to a person skilled arme patent family
5	January 2000	05. 04.	·
	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Lonnoy, 0	

Intern. ial Application No PCT/NL 99/00460

		PCT/NL 99/00460
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BUSQUE P ET AL: "Immunization of pigs against Streptococcus suis serotype 2 infection using a live avirulent strain" CAN J VET RES., vol. 61, no. 4, October 1997 (1997-10), pages 275-279, XP002126885 page 278, column 1, paragraph 1; page 278, column 2, paragraph 2 page 278, column 1, paragraph 1	13,14
Y .	CHARLAND N ET AL: "Streptococcus suis serotype 2 mutants deficient in capsular expression" MICROBIOLOGY, vol. 144, no. 2, February 1998 (1998-02), pages 325-332, XP002095859 cited in the application the whole document	1-4,7-29
Υ	KOLKMAN M ET AL: "Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae" J. BIOCHEM., vol. 123, no. 5, May 1998 (1998-05), pages 937-945, XP002095975 figure 1	1-4,7-29
P,X	SMITH D ET AL: "Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor" INFECT IMMUN, vol. 67, no. 4, April 1999 (1999-04), pages 1750-1756, XP002126886 cited in the application the whole document	1-4,7-29
A	WO 95 06732 A (MASURE H ROBERT ;TUOMANEN ELAINE (US); PEARCE BARBARA J (US); UNIV) 9 March 1995 (1995-03-09)	
A	EP 0 750 043 A (NESTLE SA) 27 December 1996 (1996-12-27)	
A	WO 95 31548 A (UAB RESEARCH FOUNDATION ;YOTHER JANET (US); DILLARD JOSEPH P (US)) 23 November 1995 (1995-11-23)	
A	ROBERTS I. S.: "The biochemistry and genetics of capsular polysaccharide production in bacteria" ANN. REV. MICROBIOL., vol. 50, 1996, pages 285-315, XP002095976 page 304 -page 306	
	-/	

Intern. (al Application No PCT/NL 99/00460

		PCT/NL 9	9/00400
C.(Continu Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		
			Refevent to claim No.
A	WO 92 16630 A (CENTRAAL DIERGENEESKUNDIG INST) 1 October 1992 (1992-10-01)		
Α	WO 96 21465 A (CONNAUGHT LAB ;YANG YAN PING (CA); KANDIL ALI (CA); GISONNI LUCY () 18 July 1996 (1996-07-18)		
A	WATSON D A ET AL: "PNEUMOCOCCAL VIRULENCE FACTORS AND HOST IMMUNE RESPONSES TO THEM" EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, vol. 14, no. 6, June 1995 (1995-06), pages 479-490, XP000676358		
A	SMITH H ET AL: "High-efficiency transformation and gene inactivation in Streptococcus suis type 2" MICROBIOLOGY, vol. 141, January 1995 (1995-01), pages 181-188, XP002095860 cited in the application		
			14
		:	

International application No.

PCT/NL 99/00460

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of	irst sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the	following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 26 is directed to a method of treatment human/animal body, the search has been carried out and on the alleged effects of the compound/composition.	of the based
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirem an extent that no meaningful International Search can be carried out, specifically:	ents to such
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences	of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report cov searchable claims.	ers all
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not in of any additional fee.	vite payment
3. As only some of the required additional search fees were timely paid by the applicant, this International Sear covers only those claims for which fees were paid, specifically claims Nos.:	rch Report
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 4 (totally); 1-3, 7-29 (partially)	૧ Report is
Remark on Protest The additional search fees were accompanied by the ap No protest accompanied the payment of additional search	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 4 (totally) and 1-3, 7-29 (all partially)

An isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis or a gene or gene fragment derived thereof; an isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis serotype 2 or a gene or a gene fragment derived thereof; a nucleic acid probe or primer derived from said nucleic acid; a diagnostic test comprising said probe or primer; a protein or fragment thereof encoded by said nucleic acid; a method to produce a S. suis capsular antigen comprising using said protein; said S. suis capsular antigen; a vaccine comprising said antigen; a recombinant S. suis mutant provide with a modified capsular gene cluster; A recombinant micro-organism comprising at least a part of a capsular gene cluster of S. suis; a vaccine comprising said mutant S. suis or said recombinant microorganism; a method for controlling or eradicating a Streptococcal disease comprising testing a sample collected from a population partly or wholly vaccinated with said vaccine for the presence of encapsulated Streptococcal strains and/or capsule specific antibodies

2. Claims: 5 (totally) and 1-3, 7-29 (all partially)

As for subject 1, but relating to serotype 1 Streptococcus suis

3. Claims: 6 (totally) and 1-3, 7-29 (all partially)

As for subject 1, but relating to serotype 9 Streptococcus suis

information on patent family members

Interr. inal Application No PCT/NL 99/00460

Patent document cited in search report	t	Publication date		Patent family member(s)	Publication date
WO 9506732	A	09-03-1995	US AU AU CA EP FI JP NO NZ US	5928900 A 709405 B 7680994 A 2170726 A 0721506 A 960977 A 9504686 T 960839 A 273497 A 5981229 A	27-07-1999 26-08-1999 22-03-1995 09-03-1995 17-07-1996 30-04-1996 13-05-1997 19-04-1996 25-03-1999 09-11-1999
EP 0750043	A	27-12-1996	EP AU AU CA JP NZ US	0750042 A 709636 B 4335496 A 2169201 A 9000269 A 280974 A 5733765 A 5786184 A	27-12-1996 02-09-1999 09-01-1997 21-12-1996 07-01-1997 26-08-1998 31-03-1998 28-07-1998
WO 9531548	A	23-11-1995	AU EP US	2638595 A 0804582 A 5948900 A	05-12-1995 05-11-1997 07-09-1999
WO 9216630	Α	01-10-1992	NL AU CA CN DE DK EP ES GR JP JP NZ US	9100510 A 143693 T 659637 B 1546492 A 2105057 A 1065490 A 69214277 D 575497 T 0575497 A 2094907 T 3022052 T 2776633 B 6505390 T 242037 A 5610011 A	16-10-1992 15-10-1996 25-05-1995 21-10-1992 22-09-1992 21-10-1992 07-11-1996 18-11-1996 29-12-1993 01-02-1997 31-03-1997 16-07-1998 23-06-1994 24-03-1997 11-03-1997
WO 9621465	A	18-07-1996	US AU CA EP	5681570 A 4325496 A 2210139 A 0805691 A	28-10-1997 31-07-1996 18-07-1996 12-11-1997

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷:
C12N 15/31, 15/54, 9/10, 1/21, C07K
14/315, C12P 19/04, A61K 39/09, C12Q
1/14, 1/68, G01N 33/569

(11) International Publication Number:

WO 00/05378

(43) International Publication Date:

3 February 2000 (03.02.00)

(21) International Application Number:

PCT/NL99/00460

A2

(22) International Filing Date:

19 July 1999 (19.07.99)

(30) Priority Data:

98202465.5 98202467.1 22 July 1998 (22.07.98) EP 22 July 1998 (22.07.98) EP

(71) Applicant (for all designated States except US): STICHTING DIENST LANDBOUWKUNDIG ONDERZOEK [NL/NL]; Bornsesteeg 53, NL-6708 PD Wageningen (NL).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SMITH, Hilda, Elizabeth [NL/NL]; Golfpark 98, NL-8241 AG Lelystad (NL).

(74) Agent: OTTEVANGERS, S., U.; Vereenigde Octrooibureaux, Nieuwe Parklaan 97, NL-2587 BN The Hague (NL).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS SUIS VACCINES AND DIAGNOSTIC TESTS

(57) Abstract

The invention relates to Streptococcus suis infections of pigs, to vaccines directed against those infections and to tests for diagnosing Streptococcus suis infections. The invention provides an isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis or a gene or gene fragment derivated thereof. The invention furthermore provides a nucleic acis probe or primer allowing species or serotype specific detection of Streptococcus suis. The invention also provides a Streptococcus suis antigen and vaccine derived thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

•	•						
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Title: Streptococcus suis vaccines and diagnostic tests.

The invention relates to Streptococcus infections of pigs, to vaccines directed against those infections, to tests for diagnosing Streptococcus infections and to the field of bacterial vaccines, more in particular to vaccines directed against Streptococcus infections.

Streptococcus species, of which there are a large variety causing infections in domestic animals and man, are often grouped according to Lancefield's groups. Typing according to Lancefield occurs on the basis of serological determinants or antigens that are among others present in the capsule of the bacterium and allows for only an approximate determination, often bacteria from a different group show cross-reactivity with each other, while other Streptococci can not be assigned a group-determinant at all. Within groups, further differentiation is often possible on the basis of serotyping; these serotypes further contribute to the large antigenic variability of Streptococci, a fact that creates an array of difficulties within diagnosis of and vaccination against Streptococcal infections.

10

20

25

30

Lancefield group A Streptococcus species (GAS, Streptococcus pyogenes), are common with children, causing nasopharyngeal infections and complications thereof. Among animals, especially cattle are susceptible to GAS, whereby often mastitis is found.

Group A streptococci are the etiologic agents of streptococcal pharyngitis and impetigo, two of the commonest bacterial infections in children, as well as a variety of less common but potentially life-threatening infections, including soft tissue infections, bacteraemia, and pneumonia. In addition, GAS are uniquely associated with the postinfectious autoimmune syndromes of acute rheumatic fever and poststreptococcal glomerulonephritis.

Several recent reports suggest that the incidence both of serious infections due to GAS and of acute rheumatic fever has

increased during the past decade, focusing renewed interest on defining the attributes or virulence factors of the organism that may play a role in the pathogenesis of these diseases.

GAS produce several surface components and extracellular products that may be important in virulence. The major surface protein, M protein, has been studied in the most detail and has been shown convincingly to play a role in both virulence and immunity. Isolates rich in M protein are able to grow in human blood, a property thought to reflect the capacity of M protein to interfere with phagocytosis, and these isolates tend to be virulent in experimental animals.

Lancefield group B Streptococcus (GBS) are most often seen with cattle, causing mastitis, however, human infants are susceptible as well, often with fatal consequences. Group B streptococci (GBS) constitute a major cause of bacterial sepsis and meningitis among human neonates born in the United States and Western Europe and are emerging as significant neonatal pathogens in developing countries as well.

It is estimated that GBS strains are responsible for 10,000 to 15,000 cases of invasive infection in neonates in the United States alone. Despite advances in early diagnosis and treatment, neonatal sepsis due to GBS continues to carry a mortality rate of 15 to 20%. In addition, survivors of GBS meningitis have 30 to 50% incidence of long-term neurologic sequelae. The increasing recognition over the past two decades of GBS as an important pathogen for human infants has generated renewed interest in defining the bacterial and host factors important in virulence of GBS and in the immune response to GBS infection.

20

Particular attention has focused on the capsular polysaccharide as the predominant surface antigen of the organisms. In a modification of the system originally developed by Rebecca Lancefield, GBS strains are serotyped on the basis of antigen differences in their capsular polysaccharides and the presence or absence of serologically defined C proteins. While GBS isolated from non-human sources

often lack a serologically detectable capsule, a large majority of strains associated with neonatal infection belong to one of four major capsular serotypes, la, lb, II or III. The capsular polysaccharide forms the outermost layer around the exterior of the bacterial cell, superficial to the cell wall. The capsule is distinct from the cell wall-associated group B carbohydrate. It has been suggested that the presence of sialic acid in the capsule of bacteria that cause meningitis is important for these bacteria to breach the blood-brain barrier. Indeed, in S. agalactiae sialic acid has shown to be critical for the virulence function of the type III capsule. The capsule of S. suis serotype is composed of glucose, galactose, N-acetylglucosamine, rhamnose and sialic acid.

The group B polysaccharide, in contrast to the typespecific capsule, is present on all GBS strains and is the
basis for serogrouping of the organisms into Lancefield's
group B. Early studies by Lancefield and co-workers showed
that antibodies raised in rabbits against whole GBS organisms
protected mice against challenge with strains of homologous
capsular type, demonstrating the central role of the capsular
polysaccharide as a protective antigen. Studies in the 1970s
by Baker and Kasper demonstrated that cord blood of human
infants with type III GBS sepsis uniformly had low or
undetectable levels of antibodies directed against the type
III capsule, suggesting that a deficiency of anticapsular
antibody was a key factor in susceptibility of human neonates
to GBS disease.

15

30

35

Lancefield group C infections, such as those with S. equi, S. zooepidemicus, S. dysgalactiae, and others are mainly seen with horse, cattle and pigs, but can also cross the species barrier to humans. Lancefield group D (S. bovis) infections are found with all mammals and some birds, sometimes resulting in endocarditis or septicaemia.

Lancefield groups E, G, L, P, U and V (S. porcinus, S, canis, S. dysgalactiae) are found with various hosts, causing

neonatal infections, nasopharyngeal infections or mastitis.

Within Lancefield groups R, S, and T, (and with ungrouped types) S. suis is found, an important cause of meningitis, septicemia, arthritis and sudden death in young pigs.

5 Incidentally, it can also cause meningitis in man.

15

20

25

35

Streptococcus suis is an important cause of meningitis, septicemia, arthritis and sudden death in young pigs (4, 46). Incidentally, it can also cause meningitis in man (1). S. suis strains are usually identified and classified by their morphological, biochemical and serological characteristics (58, 59, 46). Serological classification is based on the presence of specific antigenic polysaccharides. So far, 35 different serotypes have been described (9, 56, 14). In several European countries, S. suis serotype 2 is the most prevalent type isolated from diseased pigs, followed by serotypes 9 and 1. Serological typing of S. suis is carried out using different types of agglutination tests. In these tests, isolated and biochemically characterised S. suis cells are agglutinated with a panel of 35 specific sera. These methods are very laborious and time-consuming.

Little is known about the pathogenesis of the disease caused by S. suis, let alone about its various serotypes such as type 2. Various bacterial components, such as extracellular and cell-membrane associated proteins, fimbriae, haemaglutinins, and haemolysin have been suggested as virulence factors (9, 10, 11, 15, 16, 47, 49). However, the precise role of these protein components in the pathogenesis of the disease remains unclear (37). It is well known that the polysaccharidic capsule of various Streptococci and other gram-positive bacteria plays an important role in pathogenesis (3, 6, 35, 51, 52). The capsule enables these micro-organisms to resist phagocytosis and is therefore regarded as an important virulence factor. Recently, a role of the capsule of S. suis in the pathogenesis was suggested as well (5). However, the structure, organisation and functioning of the genes responsible for capsule polysaccharide synthesis (cps) in S. suis is unknown. Within S. suis serotypes

1

10

15

20

25

35

WO 00/05378 PCT/NL99/00460

1 and 2 strains can differ in virulence for pigs (41, 45, 49). Some type 1 and 2 strains are virulent, other strains are not. Because both virulent and non-virulent strains of serotype 1 and 2 strains are fully encapsulated, it may even be that capsule is not a relevant factor required for virulence.

Attempts to control *S. suis* infections or disease are still hampered by the lack of knowledge about the epidemiology of the disease and the lack of effective vaccines and sensitive diagnostics. It is well known and generally accepted that the polysaccharidic capsule of various Streptococci and other gram-positive bacteria plays an important role in pathogenesis. The capsule enables these micro-organisms to resist phagocytosis and is therefore regarded as an important virulence factor.

Compared to encapsulated *S. suis* strains, non-encapsulated *S. suis* strains are phagocytosed by murine polymorphonuclear leucocytes to a greater degree. Moreover, an increase in thickness of capsule was noted for *in vivo* grown virulent strains while no increase was observed for avirulent strains. Therefor, these data again demonstrate the role of the capsule in the pathogenesis for *S. suis* as well.

Ungrouped Streptoccus species, such as S. mutans, causing carries with humans, S, uberis, causing mastitis with cattle, and S. pneumonia, causing major infections in humans, and Enterococcus faecilalis and E. faecium, further contributed to the large group of Streptococci.

Streptococcus pneumoniae (the pneumococcus) is a human pathogen causing invasive diseases, such as pneumonia, bacteraemia, and meningitis. Despite the availability of antibiotics, pneumococcal infections remain common and can still be fatal, especially in high-risk groups, such as young children and elderly people. Particularly in developing countries, many children under the age of five years die each year from pneumococcal pneumonia. S. pneumoniae is also the leading cause of otitis media and sinusitis. These infections are less serious, but nevertheless incur substantial medical

costs, especially when leading to complications, such as permanent deafness. The normal ecological niche of the pneumococcus is the nasopharynx of man. The entire human population is colonised by the pneumococcus at one time or another, and at a given time, up to 60% of individuals may be carriers. Nasopharyngeal carriage of pneumococci by man is often accompanied by the development of protection to infection by the same serotype. Most infections do not occur after prolonged carriage but follow the acquisition of recently acquired strains. Many bacteria contain surface 10 polysaccharides which act as a protective layer against the environment. Surface polysaccharides of pathogenic bacteria usually make the bacteria resistant to the defense mechanisms of the host, e.g., the lytic action of serum or phagocytosis. In this respect, the serotype-specific capsular polysaccharide (CP) of Streptococcus pneumoniae, is an important virulence factor. Unencapsulated strains are avirulent, and antibodies directed against the CP are protective. Protection is serotype specific; each serotype has its own, specific CP structure. Ninety different capsular serotypes have been identified. Currently, CPs of 23 serotypes are included in a vaccine.

15

20

25

30

35

Vaccines directed against Streptococcus infections in general aim at utilising an immune response directed against the polysaccharide capsule of the various Streptococcus species, especially since the capsule is considered a main virulence factor for these bacteria. The capsule, during infection, provides resistance to phagocytosis and thus promotes the escape of the bacteria from the immune system of the host, protecting the bacteria by elimination by macrophages and neutrophils.

The capsule particularly confers the bacterium resistance to complement-mediated opsonophagocytosis. In addition, some bacteria express capsular polysaccharides (CPs) that mimic host molecules, thereby avoiding the immune system of the host. Also, even when the bacteria have been phagocytosed, intracellular killing is hampered by the presence of a

capsule.

10

20

25

30

It is in general thought that only when the host has antibodies or other serum-factors directed against capsule antigens, the bacterium will get recognised by the immune system through the anticapsular-antibodies or serum-factors bound to its capsule, and will, through opsonisation, get phagocytosed and killed.

However, these antibodies are serotype-specific, and will often only confer protection against only one of the many serotypes known within a group of *Streptococci*.

For example, current commercially available *S. suis* vaccines, which are in general based on whole-cell-bacterial preparations, or on capsule-enriched fractions of *S. suis*, confer only limited protection against heterologous strains. Also, the current pneumococcal vaccine, licensed in the United States in 1983, consists of purified CPs of 23 pneumococcal serotypes whereas at least 90 CP types exist.

The composition of this pneumococcal vaccine was based on the frequency of the occurrence of disease isolates in the US and cross-reactivity between various serotypes. Although this vaccine protects healthy adults against infections caused by serotypes included in the vaccine, it fails to raise a protective immune response in infants younger than 18 months and it is less effective in elderly people. In addition, the vaccine confers only limited protection in patients with immunodeficiencies and haematology malignancies. In the light of above, improved vaccines are needed against Streptococcus infections. Much attention is being paid at producing CP vaccines by producing the relevant polysaccharides via chemical or recombinant means. However, chemical synthesis of polysaccharides is costly, and capsular polysaccharide synthesis by recombinant means necessitates knowledge about the relevant genes, which are not always available and need to de determined for each and every relevant serotype.

The invention provides an isolated or recombinant nucleic acid encoding a capsular (cps) gene cluster of Streptococcus suis. Biosynthesis of capsule polysaccharides in general has been studied in a number of Gram-positive and Gram-negative 5 bacteria (32). In Gram-negative bacteria, but also in a number of gram-positive bacteria, genes which are involved in the biosynthesis of polysaccharides are clustered at a single locus. Streptococcus suis capsular genes as provided by the invention show a common genetic organisation involving three distinct regions. The central region is serotype specific and 10 encodes enzymes responsible for the synthesis and polymerisation of the polysaccharides. This region is flanked by two regions conserved in Streptococcus suis which encode proteins for common functions such as transport of the polysaccharide across the cellular membrane. However, in 15 between species, only low homologies exist, hampering easy comparison and detection of seemingly similar genes. Knowing the nucleic acid encoding the flanking regions allows typespecific determination of nucleic acid of the central region of Streptococcus suis serotypes, as for example described in the 20 experimental part of the description of the invention.

The invention provides an isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis or a gene or gene fragment derived thereof. Such a nucleic acid is for example provided by hybridising chromosomal DNA derived from any one of the Streptococcus suis serotypes to a nucleic acid encoding a gene derived from a Streptococcus suis serotype 1, 2 or 9 capsular gene cluster, as provided by the invention (see for example Tables 4 and 5) and cloning of (type-specific) genes as for example described in the experimental part of the description. At least 14 open reading frames are identified. Most of the genes belong to a single transcriptional unit, identifying a co-ordinate control of these genes, they, and the enzymes and proteins they encode, act in concert to provide the capsule with the relevant polysaccharides. The invention provides cps genes and proteins

30

35

encoded thereof involved in regulation (CpsA), chain length determination (CpsB, C), export (CpsC) and biosynthesis (CpsE, F, G, H, J, K). Although the overall organisation seemed at first glance to be similar to that of the cps and eps gene clusters of a number of Gram-positive bacteria (19, 32, 42), overall homologies are low (see table 3). The region involved in biosynthesis is located at the centre of the gene cluster and is flanked by two regions containing genes with more common functions.

10

20

25

30

35

The invention provides an isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis serotype 2 or a gene or gene fragment derived thereof, preferably as identified in Figure 3. Genes in this gene cluster are involved in polysaccharide biosynthesis of capsular components and antigens. For a further description of such genes see for example Table 2 of the description, for example a cpsA gene is provided functionally encoding regulation of capsular polysaccharide synthesis, whereas cpsB and cpsC are functionally involved in chain in chain length determination. Other genes, such as cpsD, E, F, G, H, I, J, K and related genes, are involved in polysaccharide syntheses, functioning for example as glucosyl- or glycosyltransferase. The cpsF, G, H, I, J genes encode more type-specific proteins than the flanking genes which are found more-or-less conserved throughout the species and can serve as base for selection of primers or probes in PCR-amplification or cross-hybridisation experiments for subsequent cloning.

For example, the invention further provides an isolated or recombinant nucleic acid encoding a capsular gene cluster of *Streptococcus suis* serotype 1 or a gene or gene fragment derived thereof, preferably as identified in Figure 4.

In addition, the invention provides an isolated or recombinant nucleic acid encoding a capsular gene cluster of Streptococcus suis serotype 9 or a gene or gene fragment derived thereof, preferably as identified in Figure 5.

Furthermore, the invention provides for example a fragment or parts thereof of the *cps* locus, involved in the capsular polysaccharide biosynthesis, of *S. suis*, exemplified in the experimental part for serotype 1, 2 or 9, and allows easy identification or detection of related fragments derived of other serotype of *S. suis*.

The invention provides a nucleic acid probe or primer derived from a nucleic acid according to the invention allowing species or serotype specific detection of Streptococcus suis. Such a probe or primer (herein used interchangeably) is for example a DNA, RNA or PNA (peptide nucleic acid) probe hybridising with capsular nucleic acid as provided by the invention. Species specific detection is provided preferably by selecting a probe or primer sequence from a species-specific region (e.g. flanking region) whereas serotype specific detection is provided preferably by selecting a probe or primer sequence from a type-specific region (e.g. central region) of a capsular gene cluster as provided by the invention. Such a probe or primer can be used in a further unmodified form, for example in crosshybridisation or polymerase-chain reaction (PCR) experiments as for example described in the experimental part of the description of the invention. Herein the invention provides the isolation and molecular characterisation of additional type specific cps genes of S. suis types 1 and 9. In addition, we describe the genetic diversity of the cps loci of serotypes 1, 2 and 9 among the 35 S. suis serotypes yet known. Typespecific probes are identified. Also, a type-specific PCR for for example serotype 9 is provided, being a rapid, reliable and sensitive assay, which is used directly on nasal or tonsillar swabs or other samples of infected or carrier animals.

15

20

25

The invention also provides a probe or primer according to the invention further provided with at least one reporter molecule. Examples of reporter molecules are manifold and known in the art, for example a reporter molecule can comprise

additional nucleic acid provided with a specific sequence (e.g. oligo-dT) hybridising to a corresponding sequence to which hybridisation can easily be detected for example because it has been immobilised to a solid support.

Yet other reporter molecules comprise chromophores, e.g. fluorochromes for visual detection, for example by light microscopy or fluorescent in situ hybridisation (FISH) techniques, or comprise an enzyme such as horseradish peroxidase for enzymatic detection, e.g in enzyme-linked assays (EIA). Yet other reporter molecules comprise radioactive compounds for detection in radiation-based-assays.

In a preferred embodiment of the invention, at least one probe or primer according to the invention is provided (labelled) with a reporter molecule and a quencher molecule, providing together with unlabeled probe or primer a PCR-based test allowing rapid detection of specific hybridisation.

The invention further provides a diagnostic test or test kit comprising a probe or primer as provided by the invention. Such a test or test kit, for example a cross-hybridisation test or PCR-based test, is advantageously used in rapid detection and/or serotyping of Streptococcus suis.

The invention furthermore provides a protein or fragment thereof encoded by a nucleic acid according to the invention. Examples of such a protein or fragment are for example proteins described in for example Table 2 of the description, for example a cpsA protein is provided functionally encoding regulation of capsular polysaccharide synthesis, whereas cpsB and cpsC are functionally involved in chain in chain length determination. Other proteins or functional fragments thereof as provided by the invention, such as cpsD, E, F, G, H, I, J,

20

25

30

as provided by the invention, such as cpsD, E, F, G, H, I, J K and related proteins, are involved in polysaccharide biosynthesis, functioning for example as glucosyl- or glycosyltransferase in polysaccharide biosynthesis of Streptococcus suis capsular antigen.

35 The invention furthermore provides a method to produce a Streptococcus suis capsular antigen comprising using a protein

or functional fragment thereof as provided by the invention, and provides therewith a Streptococcus suis capsular antigen obtainable by such a method. A comparison of the predicted amino acid sequences of the cps2 genes with sequences found in the databases allowed the assignment of functions to the open reading frames. The central region contains the type specific glycosyltransferases and the putative polysaccharide polymerase. This region is flanked by two regions encoding for proteins with common functions, such as regulation and 10 transport of polysaccharide across the membrane. Biosynthesis of Streptococcus capsular polysaccharide antigen using a protein or functional fragment thereof is advantageously used in chemo-enzymatic synthesis and the development of vaccines which offer protection against 15 serotype-specific Streptococcal disease, and is also advantageously used in the synthesis and development of multivalent vaccines against Streptococcal infections. Such vaccines elicit anticapsular antibodies which confer protection.

Furthermore, the invention provides an acapsular Streptococcus mutant for use in a vaccine, a vaccine strain derived thereof and a vaccine derived thereof. Surprisingly, and against the grain of common doctrine, the invention provides use of a Streptococcus mutant deficient in capsular expression in a vaccine.

20

25

30

35

Acapsular Streptococcus mutants have long been known in the art and can be found in nature. Griffith (J. Hyg. 27:113-159, 1928) demonstrated that pneumococci could be transformed from one type to another. If he injected live rough (acapsular or unencapsulated) type 2 pneumococci into mice, the mice would survive. If, however, he injected the same dose of live rough type 2 mixed with heat-killed smooth (encapsulated) type 1 into a mouse, the mouse would die, and from the blood he could isolate live smooth type 1 pneumococci. At that time, the significance of this transforming principle was not understood. However, understanding came when it was shown that

DNA constituted the genetic material responsible for phenotypic changes during transformation.

10

25

30

35

Streptococcus mutants deficient in capsular expression are found in several forms. Some are fully deficient and have 5 no capsule at all, others form a deficient capsule, characterised by a mutation in a capsular gene cluster. Deficiency can for instance include capsular formation wherein the organization of the capsular material has been rearranged, as for example demnosrable by electron microscopy. Yet others have a nearly fully developed capsule which is only deficient in a particular sugar component.

Now, after much advance of biotechnology and despite the fact that little is still known about the exact localisation and sequence of genes involved in capsular synthesis in Streptococci, it is possible to create mutants of Streptococci, for example by homologous recombination or transposon mutagenesis, which has for example been done for GAS (Wessels et al., PNAS 88:8317-8321, 1991), for GBS (Wesels et al., PNAS 86: 8983-8987, 1989), for S. suis (Smith, ID-DLO Annual report 1996, page 18-19; Charland et al., Microbiol. 20 144:325-332, 1998) and for S. pneumonia (Kolkman et al., J. Bact. 178:3736-3741, 1996). Such recombinant derived mutants, or isogenic mutants, can easily be compared with the wild-type strains from which they have been derived.

In a preferred embodiment, the invention provides use of a recombinant-derived Streptococcus mutant deficient in capsular expression in a vaccine. Recombinant techniques useful in producing such mutants are for example homologous recombination, transposon mutagenises, and others, whereby deletions, insertions or (point)-mutations are introduced in the genome. Advantages of using recombinant techniques are the stability of the obtained mutants (especially with homologous recombination and double cross-over techniques), and the knowledge about the exact site of the deletion, mutation or insertion.

In a much preferred embodiment, the invention provides a

stable mutant deficient in capsular expression obtainable for example through homologous recombination or cross over integration events. Examples of such a mutant can be found in the experimental part of this description, for example mutant 10cpsB or 10cpsEF is such a stable mutant as provided by the invention.

The invention also provides a Streptococcus vaccine strain and vaccine that has been derived from a Streptococcus mutant deficient in capsular expression. In general, said strain or vaccine is applicable within the whole range of Streptococcal infections, be it for those with animals or man or with zoonotic infections. It is of course now possible to first select a common vaccine strain and derive a Streptococcus mutant deficient in capsular expression thereof for the selection of a vaccine strain and use in a vaccine according to the invention.

10

15

20

25

30

35

In a preferred embodiment, the invention provides use of a Streptococcus mutant deficient in capsular expression in a vaccine wherein said Streptococcus mutant is selected from the group composed of Streptococcus group A, Streptococcus group B, Streptococcus suis and Streptococcus pneumonia. Herewith the invention provides vaccine strains and vaccines for use with these notoriously heterologous Streptococci, of which a multitude of serotypes exist. With a vaccine as provided by the invention that is derived from a specific Streptococcus mutant that deficient in capsular expression, the difficulties relating to lack of heterologous protection can be circumvented since these mutants do nor rely on capsular antigens per se to induce protection.

In a preferred embodiment, said vaccine strain is selected for its ability to survive or even replicate in an immune-competent host or host cells and thus can persist for a certain period, varying from 1-2 days to more than one or two weeks, in a host, despite its deficient character.

Although an immunodeficient host will support replication of a wide range of bacteria that are deficient in one or more

virulence factors, in general it is considered a characteristic of pathogenicity of Streptococci that they can survive for certain periods or replicate in a normal host or host cells such as macrophages. For example, Wiliams and 5 Blakemore (Neuropath. Appl. Neurobiol.: 16, 345-356, 1990; Neuropath. Appl. Neurobiol.: 16, 377-392, 1990; J. Infect. Dis.: 162, 474-481, 1990) show that both polymorphonuclear cells and macrophage cells are capable of phagocytosing pathogenic S. suis in pigs lacking anti-S. suis antibodies, only pathogenic bacteria could survive and multiply inside macrophages and the pig.

10

15

25

30

35

In a preferred embodiment, the invention, however, provides a deficient or avirulent mutant or vaccine strain which is capable of surviving at least 4-5 days, preferably at least 8-10 days in said host, thereby allowing the development of a solid immune response to subsequent Streptococcus infection,

Due to its persistent but avirulent character, a Streptococcus mutant or vaccine strain as provided by the 20 invention is well suited to generate specific and/or longlasting immune responses against Streptococcal antigens, moreover because possible specific immune responses of the host directed against a capsule are relatively irrelevant because a vaccine strain as provided by the invention is in general not recognised by such antibodies.

In addition, the invention provides a Streptococcus vaccine strain according the invention which strain comprises a mutant capable of expressing a Streptococcus virulence factor or antigenic determinant.

In a preferred embodiment, the invention provides a Streptococcus vaccine strain according to the invention which strain comprises a mutant capable of expressing a Streptococcus virulence factor wherein said virulence factor or antigenic determinant is selected from a group of cellular components, such as muramidase-released protein (MRP) extracellular factor (EF) and cell-membrane associated

proteins, 60kDA heat shock protein, pneumococcal surface protein A (Psp A), pneumolysin, C protein, protein M, fimbriae, haemagglutinins and haemolysin or components functionally related thereto.

In a much preferred embodiment, the invention provides a Streptococcus vaccine strain according to the invention which strain comprises a mutant capable of over-expressing said virulence factor. In this way, the invention provides a vaccine strain for incorporation in a vaccine which specifically causes a host to provide a immune response directed against antigenically important determinants of virulence (listed above), thereby providing specific protection directed against said determinants. Over-expression can for example be achieved by cloning the gene involved behind a strong promoter, which is for example constitutionally expressed in a multicopy system, either in a plsamid or via intergration in a genome.

10

20

25

30

In yet another embodiment, the invention provides a Streptococcus vaccine strain according to the invention which comprises a mutant capable of expressing a non-Streptococcus protein. Such a vector-Streptococcus vaccine strain allows, when used in a vaccine, protection against other pathogens than Streptococcus.

Due to its persistent but avirulent character, a Streptococcus vaccine strain or mutant as provided by the invention is well suited to generate specific and long-lasting immune responses, not only against Streptococcal antigens, but also against other antigens when these are expressed by said strain. Especially antigens derived from another pathogen are now expressed without the detrimental effects of said antigen or pathogen which would otherwise have harmed the host.

An example of such a vector is a Streptococcus vaccine strain or mutant wherein said antigen is derived from a pathogen, such as Actinobacillus pleuropneumonia, Mycoplasmatae, Bordetella, Pasteurella, E. coli, Salmonella, Campylobacter, Serpulina and others.

The invention also provides a vaccine comprising a Streptococcus vaccine strain or mutant according to the invention and further comprising a pharmaceutically acceptable carrier or adjuvant. Carriers or adjuvants are well known in the art, examples are phosphate buffered saline, physiological salt solutions, (double-)oil-in-water-emulsions, aluminumhydroxide, Specol, block- or co-polymers, and others.

A vaccine according to the invention can comprise a vaccine strain either in a killed or live form. For example, a killed vaccine comprising a strain having (over)expressed a Streptococcal or heterologous antigen or virulence factor is very well suited for eliciting an immune response. In a preferred embodiment, the invention provides a vaccine wherein said strain is live, due to its persistent but avirulent character, a Streptococcus vaccine strain as provided by the invention is well suited to generate specific and long-lasting immune responses.

10

15

20

25

30

Now that a Streptococcal vaccine is provided by the invention, the invention also provides a method for controlling or eradicating a Streptococcal disease in a population comprising vaccinating subjects in said population with a vaccine according to the invention.

In a preferred embodiment, a method for controlling or eradicating a Streptococcal disease is provided comprising testing a sample, such as a blood sample, or nasal or throat swab, faeces, urine, or other samples such as can be sampled at or after slaughter, collected from at least one subject, such as an infant or a pig, in a population partly or wholy vaccinated with a vaccine according to the invention for the presence of encapsulated Streptococcal strains or mutants. Since a vaccine strain or mutant according to the invention is not pathogenic, and can be distinguished from wild-type strains by capsular expression, the detection of (fully) encapsulated Streptococcal strains indicates that wild-type 35 infections are still present. Such wild-type infected subjects can than be isolated from the remainder of the population

until the infection has passed away. With domestic animals, such as pigs, it is even possible to remove the infected subject from the population as a whole by culling. Detection of wild-type strains can be achieved via traditional culturing techniques, or by rapid detection techniques such as PCR detection.

In yet another embodiment, the invention provides a method for controlling or eradicating a Streptococcal disease comprising testing a sample collected from at least one subject in a population partly or wholly vaccinated with a vaccine according to the invention for the presence of capsule-specific antibodies directed against Streptococcal strains. Capsule specific antibodies can be detected with classical techniques known in the art, such as used for Lancefield's group typing or serotyping.

10

15

20

25

30

35

A much preferred embodiment of a method provided by the invention for controlling or eradicating a Streptococcal disease in a population comprises vaccinating subjects in said population with a vaccine according to the invention and testing a sample collected from at least one subject in said population for the presence of encapsulated Streptococcal strains and/or for the presence of capsule-specific antibodies directed against Streptococcal strains.

For example, a method is provided according to the invention wherein said Streptococcal disease is caused by Streptococcus suis.

The invention also provides a diagnostic assay for testing a sample for use in a method according to the invention comprising at least one means for the detection of encapsulated Streptococcal strains and/or for the detection of capsule-specific antibodies directed against Streptococcal strains.

The invention furthermore provides a vaccine comprising an antigen according to the invention and further comprising a suitable carrier or adjuvant. The immunogenicity of a capsular antigen provided by the invention is for example increased by

linking to a carrier (such as a carrier protein), allowing the recruitment of T-cell help in developing an immune response.

The invention further provides a recombinant microorganism provided with at least a part of a capsular gene cluster derived from Streptococcus suis. The invention provides for example a lactic acid bacterium provided with at least a part of a capsular gene cluster derived from Streptococcus suis. Various food-grade lactic acid bacteria (Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarium and Streptococcus gordonii) have been used as delivery systems for mucosal immunization. It has now been shown that oral (or mucosal) administration of recombinant L. lactis, Lactobacillus, and Streptococcus gordonii can elicit local IgA and /or IgG antibody responses to an expressed antigen. The use of oral routes for immunization against infective diseases is desirable because oral vaccines are easier to administer, have higher compliance rates, and because mucosal surfaces are the portals of entry for many pathogenic microbial agents. It is within the skill of the artisan to provide such micro-organisms with (additional) genes.

10

15

20

25

30

The invention further provides a recombinant Streptococcus suis mutant provided with a modified capsular gene cluster. It is within the skill of the artisan to swap genes within a species. In a preferred embodiment, an avirulent Streptococcus suis mutant is selected to be provided with at least a part of a modified capsular gene cluster according to the invention.

The invention further provides a vaccine comprising a microorganism or a mutant provided by the invention. An advantage of such a vaccine over currently used vaccines is that they comprise accurately defined micro-organisms and wellcharacterised antigens, allowing accurate determination of immune responses against various antigens of choice.

The invention is further explained in the experimental part of this description without limiting the invention thereto.

Experimental part

MATERIAL AND METHODS

5

30

Bacterial strains and growth conditions.

The bacterial strains and plasmids used in this study are listed in Table 1. *S. suis* strains were grown in Todd-Hewitt broth (code CM189, Oxoid), and plated on Columbia agar blood base (code CM331, Oxoid) containing 6% (v/v) horse blood. *E. coli* strains were grown in Luria broth (28) and plated on Luria broth containing 1.5% (w/v) agar. If required, antibiotics were added to the plates at the following concentrations: spectinomycin: 100 ug/ml for *S. suis* and 50 ug/ml for *E. coli* and ampicillin, 50 ug/ml.

Serotyping. The *S. suis* strains were serotypes by the slide agglutination test with serotype-specific antibodies (44).

DNA techniques. Routine DNA manipulations were performed as described by Sambrook et al. (36).

Alkaline phosphatase activity. To screen for PhoA fusions in *E.coli*, plasmid libraries were constructed. Therefore, chromosomal DNA of *S. suis* type 2 was digested with *Alu*I. The 300-500-bp fragments were ligated to *Sma*I-digested pPHOS2. Ligation mixtures were transformed to the PhoA- *E. coli* strain CC118. Transformants were plated on LB media supplemented with 5-Bromo-4-chloro-3-indolylfosfaat (BCIP, 50 ug/ml, Boehringer, Mannheim, Germany). Blue colonies were purified on fresh LB/BCIP plates to verify the blue phenotype.

DNA sequence analysis. DNA sequences were determined on a 373A DNA Sequencing System (Applied Biosystems, Warrington, GB). Samples were prepared by use of a ABI/PRISM dye terminator cycle sequencing ready reaction kit (Applied Biosystems). Sequencing data were assembled and analyzed using the MacMollyTetra program. Custom-made sequencing primers were purchased from Life Technologies. Hydrophobic stretches within

proteins were predicted by the method of Klein et al. (17). The BLAST program available on Netscape NavigatorTM was used to search for protein sequences related to the deduced amino acid sequences.

- 5 Construction of gene-specific knock-out mutants of S. suis. To construct the mutant strains 10cpsB and 10cpsEF we electrotransformed the pathogenic serotype 2 strain 10 (45, 49) of S. suis with pCPS11 and pCPS28 respectively. In these plasmids the cpsB and cpsEF genes were disturbed by the insertion of a spectinomycin-resistance gene. To create pCPS11 10 the internal 400 bp PstI-BamHI fragment of the cpsB gene in pCPS7 was replaced by the SpcR gene. For this purpose pCPS7 was digested with PstI and BamHI and ligated to the 1,200-bp PstI-BamHI fragment, containing the SpcR gen, from pIC-spc. To construct pCPS28 we have used pIC20R. In this plasmid we inserted the KpnI-SalI fragment from pCPS17 (resulting in pCPS25) and the XbaI-ClaI fragment from pCPS20 (resulting in pCPS27). pCPS27 was digested with PstI and XhoI and ligated to the 1,200-bp PstI-XhoI fragment, containing the SpcR gene of 20 pIC-spc. The electrotransformation to S. suis was carried out
- Southern blotting and hybridization. Chromosomal DNA was isolated as described by Sambrook et al. (36). DNA fragments were separated on 0.8% agarose gels and transferred to Zeta-25 Probe GT membranes (Bio-Rad) as described by Sambrook et al. (36). DNA probes were labelled with [(-32p]dCTP (3000 Ci mmol⁻¹; Amersham) by use of a random primed labelling kit (Boehringer). The DNA on the blots was hybridized at 65°C with appropriate DNA probes as recommended by the supplier of the Zeta-Probe membranes. After hybridization, the membranes were washed twice with a solution of 40 mM sodium phosphate, pH 7.2, 1 mM EDTA, 5% SDS for 30 min at 65°C and twice with a solution of 40 mM sodium phosphate, pH 7.2, 1 mM EDTA, 1% SDS for 30 min at 65°C.

as described before (38).

35 **PCR.** The primers used in the cps2J PCR correspond to the positions 13791-13813 and 14465-14443 in the *S. suis cps2*

locus. The sequences were: 5'-CAAACGCAAGGAATTACGGTATC-3' and 5'-GAGTATCTAAAGAATGCCTATTG-3'. The primers used for the cps1I PCR correspond to the positions 4398-4417 and 4839-4821 in the $S.\ suis\ cps1$ sequence. The sequences were: 5'-

- GGCGGTCTAGCAGATGCTCG-3' and 5'-GCGAACTGTTAGCAATGAC-3'. The primers used in the *cps9H* PCR correspond to the positions 4406-4126 and 4494-4475 in the *S. suis cps9* sequence. The sequences were: 5'-GGCTACATATAATGGAAGCCC3' and 5'-CGGAAGTATCTGGGCTACTG-3'.
- 10 Construction of gene-specific knock-out mutants of *S. suis*. To construct the mutant strains 10cpsB and 10cpsEF we electrotransformed the pathogenic serotype 2 strain 10 of *S. suis* with pCPS11 and pCPS28 respectively. In these plasmids the *cps*B and *cps*EF genes were disturbed by the
- insertion of a spectinomycin-resistance gene. To create pCPS11 the internal 400 bp PstI-BamHI fragment of the cpsB gene in pCPS7 was replaced by the SpcR gene. For this purpose pCPS7 was digested with PstI and BamHI and ligated to the 1,200-bp PstI-BamHI fragment, containing the SpcR gen, from pIC-spc. To
- construct pCPS28 we have used pIC20R. In this plasmid we inserted the KpnI-SalI fragment from pCPS17 (resulting in pCPS25) and the XbaI-ClaI fragment from pCPS20 (resulting in pCPS27). pCPS27 was digested with PstI and XhoI and ligated to the 1,200-bp PstI-XhoI fragment, containing the SpcR gene of pIC-spc. The electrotransformation to S. suis was carried out

as described before (38).

- Phagocytosis assay. Phagocytosis assays were performed as described by Leij et al. (23). Briefly, to opsonize the cells, 10^7 S. suis cells were incubated with 6% SPF-pig serum for 30 min at 37°C in a head-over-head rotor at 6 rpm. 10^7 AM and 10^7 opsonized S. suis cells were combined and incubated at 37° C under continuous rotation at 6 rpm. At 0, 30, 60 and 90 min, 1-ml samples were collected and mixed with 4 ml of ice-cold EMEM to stop phagocytosis. Phagocytes were removed by centrifugation
- for 4 min at 110 x g and 4° C. The number of colony forming units (CFU) in the supernatants was determined. Control

experiments were carried out simultaneously by combining 10^7 opsonized S. suis cells with EMEM (without AM).

Killing assays. AM $(10^7/\text{ml})$ and opsonized *S. suis* cells $(10^7/\text{ml})$ were mixed 1 : 1 and incubated for 10 min at 37°C

- under continuous rotation at 6 rpm. Ice-cold EMEM was added to stop further phagocytosis and killing. To remove extracellular *S. suis* cells, phagocytes were washed twice (4 min, 110 x g, 4°C) and resuspended in 5 ml EMEM containing 6% SPF serum. The tubes were incubated at 37°C under rotation at 6 rpm. After 0,
- 15, 30, 60 and 90 min, samples were collected and mixed with ice-cold EMEM to stop further killing. The samples were centrifuged for 4 min at 110 x g at 4°C and the phagocytic cells were lysed in EMEM containing 1% saponine for 20 min at room temperature. The number of CFU in the suspensions was determined.
 - Pigs. Germfree pigs, cross-breeds of Great Yorkshire and Dutch landrace, were obtained from sows by caesarian sections. The surgery was performed in sterile flexible film isolators. Pigs were allotted to groups, each consisting of 4 pigs, and were housed in sterile stainless steel incubators.

20

- Experimental infections. Pigs were inoculated intranasally with S. suis type 2 as described before. To predispose the pigs for infection with S. suis, five-day old pigs were inoculated intranasally with about 10⁷ CFU of Bordetella bronchiseptica strain 92932. Two days later the pigs were inoculated
 - intranasally with $S.\ suis$ type 2 (10⁶ CFU). Pigs were monitored twice daily for clinical signs of disease, such as fever, nervous signs and lameness. Blood samples were collected three times a week from each pig. White blood cells were counted with
- 30 a cell counter. To monitor infection with *S. suis* and *B. bronchiseptica* and to check for absence of contaminants, we collected swabs of nasopharynx and feces daily. The swabs were plated directly onto Columbia agar containing 6% horse blood. After three weeks the pigs were killed and examined for
- 35 pathological changes. Tissue specimens from the central nervous system, serosae, and joints were examined bacteriologically and

histologically as described before (45, 49). Colonization of the serosae was scored positively when *S. suis* was isolated from the pericardium, thoracal pleura or the peritoneum. Colonization of the joints was scored positively when *S. suis* was isolated from one or more joints (12 joints per animal were scored).

Vaccination and challenge

One week old pigs were vaccinated intravenously with a dosage of 106 cfu of the S. suis strains 10cpsEF or 10cpsB. Three weeks later the pigs were challenged intravenously with the pathogenic serotype 2 strain 10 (107 cfu). Disease monitoring, haematological, serological and bacteriological examinations as well as post-mortum examinations were as described before under experimental infections.

Electron Microscopy. Bacteria were prepared for electron microscopy as described by Wagenaar et al. (50). Shortly, bacteria were mixed with agarose MP (Boehringer) of 37° C to a concentration of 0.7%. The mixture was immediately cooled on ice. Upon gelifying, samples were cut into 1 to 1.5 mm slices and incubated in a fixative containing 0.8% glutaraldehyde and 0.8% osmiumtetraoxide. Subsequently, the samples were fixed and stained with uranyl acetate by microwave stimulation, dehydrated and imbedded in eponaraldite resin. Ultra-thin sections were counterstained with lead citrate and examined with a Philips CM 10 electron microscope at 80 kV.

Isolation of porcine alveolar macrophages (AM). Porcine AM were obtained from the lungs of specific pathogen free (SPF) pigs. Lung lavage samples were collected as described by van Leengoed et al. (43). Cells were suspended in EMEM containing 6% (v/v) SPF-pig serum and adjusted to 10^7 cells per ml.

RESULTS

Identification of the cps locus.

The cps locus of S.suis type 2 was identified by making use of a strategy developed for the genetic identification of exported proteins (13, 31). In this system we made use of a plasmid (pPHOS2) containing a truncated alkaline phosphatase gene (13). The gene lacked the promoter sequence, the translational start site and the signal sequence. The truncated gene is preceded by 10 a unique SmaI restriction site. Chromosomal DNA of S. suis type 2, digested with AluI, was randomly cloned in this restriction site. Because translocation of PhoA across the cytoplasmic membrane of E. coli is required for enzymatic activity, the system can be used to select for S. suis fragments containing a 15 promoter sequence, a translational start site and a functional signal sequence. Among 560 individual E. coli clones tested, 16 displayed a dark blue phenotype when plated on media containing BCIP. DNA sequence analysis of the inserts from several of these plasmids were performed (results not shown) and the 20 deduced amino acid sequences were analyzed. The hydrophobicity profile of one of the clones (pPHOS7, results not shown) showed that the N-terminal part of the sequence resembled the characteristics of a typical signal peptide: a short hydrophilic N-terminal region is followed by a hydrophobic region of 38 amino acids. These data indicate that the phoA system was successfully used for the selection of S. suis genes encoding exported proteins. Moreover, the sequences were analyzed for similarities present in the databases. The sequence of pPHOS7 showed a high similarity (37% identity) with 30 the protein encoded by the cps14C gene of Streptococcus pneumoniae (19). This strongly suggests that pPHOS7 contains a part of the cps operon of S. suis type 2. Cloning of the flanking cps genes. In order to clone the flanking cps genes of S. suis type 2 the insert of pPHOS7 was used as a probe to identify chromosomal DNA fragments which contain flanking cps genes. A 6-kb HindIII fragment was

identified and cloned in pKUN19. This yielded clone pCPS6 (Fig. 1C). Sequence analysis of the insert of pCPS6 revealed that pCPS6 most probably contained the 5'-end of the cps locus, but still lacked the 3'-end. Therefore, sequences of the 3'-end of pCPS6 were in turn used as a probe to identify chromosomal fragments containing cps sequences located further downstream. These fragments were also cloned in pKUN19, resulting in pCPS17. Using the same system of chromosomal walking we subsequently generated the plasmid pCPS18, pCPS20, pCPS23 and pCPS26, containing downstream cps sequences.

Analysis of the cps operon. The complete nucleotide sequence of the cloned fragments was determined (figure 4). Examination of the compiled sequence revealed the presence of at least 13 potential open reading frame (Orfs), which were designated as

Orf 2Y, Orf2X and Cps2A-Cps2K (Fig. 1A). Moreover, a 14th, incomplete, Orf (Orf 2Z) was located at the 5'-end of the sequence. Two potential promoter sequences were identified. One was located 313 bp (locations 1885-1865 and 1884-1889) upstream of Orf2X. The other potential promoter sequence was

located 68 bp upstream of Orf2Y (locations 2241-2236 and 2216-2211). Orf2Y is expressed in opposite orientation. Between Orfs 2Y and 2Z the sequence contained a potential stem-loop structure, which could act as a transcription terminator. Each Orf is preceded by a ribosome-binding site and the majority of

the Orfs are very closely linked. The only significant intergenic gap was found between Cps2G and Cps2H (389 nucleotides). However, no obvious promoter sequences or potential stem-loop structures were found in this region. These data suggest that Orf2X and Cps2A-Cps2K are arranged as an operon.

25

30

An overview of all Orfs with their properties is shown in Table 2. The majority of the predicted gene products is related to proteins involved in polysaccharide biosynthesis. Orf2Z showed some similarity with the YitS protein of Bacillus subtilis. YitS was identified during the sequence analysis of the complete genome of B. subtilis. The function of the protein

is unknown.

35

Orf2Y showed similarity with YcxD protein of *B. subtilis* (53). Based on the similarity between YcxD and MocR of *Rhizobium meliloti* (33), YcxD was suggested to be a regulatory protein.

Orf2X showed similarity with the hypothetical YAAA proteins of *Haemophilus influenzae* and *E. coli*. The function of these proteins is unknown.

The gene products encoded by the cps2A, cps2B, cps2C and cps2D genes showed approximate similarity with the CpsA, CpsC, CpsD and CpsB proteins of several serotypes of Streptococcus pneumoniae (19), respectively. This suggest similar functions for these proteins. Hence, Cps2A may have a role in the regulation of the capsular polysaccharide synthesis. Cps2B and Cps2C could be involved in the chain length determination of the type 2 capsule and Cps2C can play an additional role in the export of the polysaccharide. The Cps2D protein of S. suis is related to the CpsB protein of S. pneumoniae and to proteins encoded by genes of several other Gram-positive bacteria involved in polysaccharide or exopolysaccharide synthesis, but their function is unknown (19).

The protein encoded by cps2E gene showed similarity to several bacterial proteins with glycosyl transferase activities: Cps14E and Cps19fE of S. pneumoniae serotypes 14 and 19F (18, 19, 29), CpsE of Streptococcus salvarius (X94980) and CpsD of Streptococcus agalactiae (34). Recently, Kolkman et al. (18) showed that Cps14E is a glucosyl-1-phosphate transferase that links glucose to a lipid carrier, the first step in the biosynthesis of the S. pneumoniae type 14 repeating unit. Based on these data a similar function may be fulfilled by Cps2E of S. suis.

The protein encoded by the cps2F gene showed similarity to the protein encoded by the rfbU gene of Salmonella enteritica. (25). This similarity is most pronounced in the C-terminal regions of these proteins. The rfbU gene was shown to encoded mannosyltransferase activity (25).

The cps2G gene encoded a protein that showed moderate similarity with the rfbF gene product of Campylobacter hyoilei (22), the epsF gene product of S. thermophilus (40) and the capM gene product of S. aureus (24). On the basis of similarity the rfbF, epsF and capM genes are suggested to encoded galactosyltransferase activities. Hence, a similar glycosyl transferase activity could be fulfilled by the cps2G gene product.

The cps2H gene encodes a protein that is similar to the N-terminal region of the lgtD gene product of Haemophilus influenzae (U32768). Moreover, the hydrophobicity plots of Cps2H and LgtD looked very similar in these regions (data not shown). Based on sequence similarity the lgtD gene product was suggested to have glycosyl transferase activity (U32768).

10

20

25

30

also found in Cps2J and Cps2K.

The gene product encoded by the cps2I gene showed some similarity with a protein of Actinobacillus actinomycetemcomitans (AB002668). This protein is part of the gene cluster responsible for the serotype-b-specific antigen of A. actimycetemcomitans. The function of the protein is unknown.

The gene products encoded by the <code>cps2J</code> and <code>cps2K</code> genes showed significant similarities to the <code>Cps14J</code> protein of <code>S.</code> pneumoniae. The <code>cps14J</code> gene of <code>S.</code> pneumoniae was shown to encode a <code>B-1,4-galactosyltransferase</code> activity. In <code>S.</code> pneumoniae <code>CpsJ</code> is responsible for the addition of the fourth (i.e. last) sugar in the synthesis of the <code>S.</code> pneumoniae serotype 14 polysaccharide (20). Even some similarity was found between <code>Cps2J</code> and <code>Cps2K</code> (Fig. 2, 25.5% similarity). This similarity was most pronounced in the N-terminal regions of the proteins. Recently, two small conserved regions were identified in the N-terminus of <code>Cps14J</code> and <code>Cps14I</code> and their homologues (20). These regions were predicted to be important for catalytic activity. Both regions, <code>DXS</code> and <code>DXDD</code> (Fig. 2), were

Distribution of the cps2 genes in other S. suis serotypes. To examine the relationship between the cps2 genes and cps genes in the other S. suis serotypes, we performed crosshybridization experiments. DNA fragments of the individual cps2 genes were amplified by PCR, labelled with 32P, and used to probe Southern blots of chromosomal DNA of the reference strains of the 35 different S. suis serotypes. Large variation in the hybridization patterns were observed (Table 4). As a positive control we used a probe specific for 16S rRNA. The 16S rRNA probe hybridized with all serotypes tested. However, 10 none of the other genes tested were common in all serotypes. Based on the genetic organization of the genes we previously suggested that orfX and cpsA-cpsK genes are part of one operon and that the protein encoded by these genes are all involved in polysaccharide biosynthesis. OrfY and OrfZ are not a part 15 of this operon, and their role in the polysaccharide biosynthesis is unclear. Based on sequence similarity data, OrfY may be involved in regulation of the cps2 genes. OrfZ is proposed to be unrelated to polysaccharide biosynthesis. Probes specific for the orfZ, orfY, orfX, cpsA, cpsB, cpsC and 20 cpsD genes hybridized with most other serotypes. This suggests that the protein encoded by these genes are not type-specific, but may perform more common functions in biosynthesis of the capsular polysaccharide. This confirms previous data which showed that the cps2A-cps2D genes showed strong similarity to 25 cps genes of several serotype of Streptococcus pneumoniae. Based on this similarity Cps2A is possibly a regulatory protein, whereas Cps2B and Cps2C may play a role in length determination and export of polysaccharide. The cps2E gene hybridized with DNA of serotypes 1, 2, 14 and 1/2. The cps2E 30 gene showed a strong similarity to the cps14E gene of S. pneumoniae (18). This enzyme was shown to have a glucosyl-1phosphate activity and catalyzed the transfer of glucose to a lipid carrier (18). These data indicate that a glycosyltransferase closely related to Cps14E may be responsible for the first step in the biosynthesis of

polysaccharide in the S. suis serotypes 1, 2, 14 and 1/2. The cps2F, cps2G, cps2H, cps2I and cps2J genes hybridized with chromosomal DNA of serotypes 2 and 1/2 only. The cps2G gene showed an additional weak hybridization signal with DNA of serotype 34. In agglutination tests serotype 1/2 showed agglutination with sera specific for serotype 2 as well as with sera specific for serotype 1. This suggests that serotype 1/2 shares antigenic determinants with both types 1 and 2. The hybridization data confirmed these data. All putative glycosyltransferases present in serotype 2 are also present in 10 serotype 1/2. The cps2K gene showed a similar hybridization pattern as the cps2E gene. Hybridization was observed with DNA of serotypes 1, 2, 14 and 1/2. Taken together these hybridization data show that the cps2 gene cluster can be divided in three regions: a central region containing the type-specific genes is flanked by two regions containing common genes for various serotypes.

Cloning of the type-specific cps genes of serotypes 1 and 9.

To clone the type-specific cps genes of S. suis serotype 1 we 20 used the cps2E gene as a probe to identify chromosomal DNA fragments of type 1 which contain flanking cps genes. A 5 kb EcoRV fragment was identified and cloned in pKUN19. This yielded pCPS1-1 (Fig. 1B). This fragment was in turn used as a probe to identify an overlapping 2.2 kb HindIII fragment. 25 pKUN19 containing this HindIII fragment was designated pCPS1-2. The same strategy was followed to identify and clone the type-specific cps genes of serotype 9. In this case, we used the cps2D gene as a probe. A 0.8 kb HindIII-XbaI fragment was identified and cloned, yielding pCPS9-1 (Fig. 1C). This 30 fragment was in turn used as a probe to identify a 4 kb XbaI fragment. pKUN19 containing this 4 kb XbaI fragment was designated pCPS9-2.

Analysis of the cloned cps1 genes. The complete nucleotide sequence of the inserts of pCPS1-1 and pCPS1-2 was determined (figure 5). Examination of the sequence revealed the presence five complete and two incomplete Orfs (Fig.1B). Each Orf is preceded by a ribosome-binding site. In accord with data obtained for the cps2 genes of serotype 2, the majority of the Orfs is very closely linked. The only significant gap (718 bp) was found between Cps1G and Cps1H. No obvious promoter sequences or potential stem-loop structures could be found in this region. This suggests that, as in serotype 2, the cps genes in serotype 1 are arranged in an operon.

An overview of the Orfs and their properties in shown in Table 2. As expected on the basis of the hybridization data (Table 4), the protein encoded by the cps1E gene was related to Cps2E of S. suis type 2 (identity of 86%). The fragment cloned in pCPS1-1 lacked the coding region for the first 7 amino acids of the cps1E gene.

The protein encoded by the cps1F and cps1G genes showed strong similarity to the Cps14F and Cps14G proteins of Streptococcus pneumoniae serotype 14, respectively (20). The function of the Cps14F is not completely clear, but it has been suggested that Cps14F can enhance role in glycosyltransferase activity. The cps14G gene of S. pneumoniae was shown to encode ß-1,4-galactosyltransferase activity. In 25 S. pneumoniae type 14 this activity is required for the second step in the biosynthesis of the oligosaccharide subunit (20). Based on the similarity data found similar glycosyltransferase and enhancing activities are suggested for the cps 1G and cps1F genes of S. suis type 1.

20

30

35

The protein encoded by the cps1H gene showed similarity to the Cps14H protein of S. pneumoniae (20). Based on sequence similarity Cps14H was proposed to be the polysaccharide polymerase (20).

The protein encoded by the cps11 gene showed some similarity with the Cps14J protein of S. pneumoniae (19). The cps14J gene was shown to encode a B-1,4-galactosyltransferase

activity, responsible for the addition of the fourth (i.e. last) sugar in the synthesis of the *S. pneumoniae* serotype 14 polysaccharide.

Between Cps1G and Cps1H a gap of 718 bp was found. This region revealed three small Orfs. The three Orfs were expressed in three different reading frames and were not preceded by potential ribosome binding sites, nor contained potential start sites. However, the three potential gene products encoded by this region showed some similarity with three successive regions of the C-terminal part of the EpsK protein of Streptococcus thermophilus (27% identity, 40). The region related to the first 82 amino acids is lacking.

Analysis of the cloned cps9 genes. We also determined the complete nucleotide sequence of the inserts of pCPS9-1 and pCPS9-2 (figure 6). Examination of the sequence revealed the presence of three complete and two incomplete Orfs (Fig.1C). As in serotypes 1 and 2, all Orfs are preceded by a ribosome-binding site and are very closely coupled. As suggested by the hybridization data (Table 4) the Cps2D and Cps9D proteins were highly related (Table 2). Based on sequence comparisons pCPS9-1 lacked the first 27 amino acids of the Cps9D protein.

20

25

30

35

The protein encoded by the cps9E gene showed some similarity with the CapD protein of Staphylococcus aureus serotype 1 (24). Based on sequence similarity data the Cap1D protein was suggested to be an epimerase or a dehydratase involved in the synthesis of N-acetylfructosamine or N-acetylgalactosamine (63).

Cps9F showed some similarity to the CapM proteins of *S. aureus* serotypes 5 and 8 (61, 64, 65). Based on sequence similarity data Cap5M and Cap8M are proposed to be glycosyltransferases (63).

The protein encoded by the cps9G gene showed some similarity with a protein of Actinobacillus actinomycetemcomitans (AB002668_4). This protein is part of a gene cluster responsible for the serotype-b specific antigens

of $\mbox{\it Actinobacillus actinomycetem}{\it comitans}$. The function of the protein is unknown.

The protein encoded by the cps9H gene showed some similarity with the rfbB gene of Yersinia enterolitica (68). The RfbB protein was shown to be essential for O-antigen synthesis, but the function of the protein in the synthesis of the O:3 lipopolysaccharide is unknown.

10

15

30

Serotype 1 and serotype 9 specific cps genes. To determine whether the cloned fragments in pCPS1-1, pCPS1-2, pCPS9-1 and pCPS9-2 contained the type-specific genes for serotype 1 and 9, respectively, cross hybridization experiments were performed. DNA fragments of the individual cps1 and cps9 genes were amplified by PCR, labelled with 32P, and used to probe Southern blots of chromosomal DNA of the reference strains of the 35 different S. suis serotypes. The results are shown in Table 5. Based on the data obtained with the cps2E probe (Table 4), the cps1E probe was expected to hybridize with chromosomal DNA of S. suis serotypes 1,2, 14, 27 and 1/2. The cps1H, cps9E and cps9F probes hybridized with most other serotypes. However, the cps1F and cps1G and cps1I probes hybridized with chromosomal DNA of serotypes 1 and 14 only. The cps9G and cps9H probe hybridized with serotype 9 only. These data suggest that the cps9G and cps9H probes are specific for serotype 9 and therefore could be useful tools for the development of rapid and sensitive diagnostic tests for S. suis type 9 infections.

Type specific PCR. So far, the probes were tested on the 35 different reference strains only. To test the diagnostic value of the type-specific cps probes further, several other S. suis serotype 1, 2, 1/2, 9 and 14 strains were used. Moreover, since a PCR based method would be even more rapid and sensitive than a hybridization test, we tested whether we could use a PCR for the serotyping of the S. suis strains. The

oligonucleotide primer sets were chosen within the cps2J, cps1I and cps9H genes. Amplified fragments of 675 bp, 380 bp and 390 bp were expected respectively. The results show that 675 bp fragments were amplified on type 2 and 1/2 strains using cps2J primers; 380 bp fragments were amplified on type 1 and 14 strains using cps1I primers and 390 bp fragments were amplified on type 9 strains using cps9H primers.

Construction of mutants impaired in capsule production. To evaluate the role of the capsule of S. suis type 2 in the pathogenesis, we constructed two isogenic mutants in which capsule production was disturbed. To construct mutant 10cpsB, pCPS11 was used. In this plasmid a part of the cps2B gene was replaced by the spectinomycin-resistance gene. To construct mutant strain 10cpsEF the plasmid pCPS28 was used. In pCPS28 the 3'-end of cps2E gene as well as the 5'-end of cps2F gene were replaced by the spectinomycin-resistance gene. pCPS11 and pCPS28 were used to electrotransform strain 10 of S. suis type 2 and spectinomycin-resistant colonies were selected. Southern blotting and hybridization experiments were used to select 20 double cross over integration events (results not shown). To test whether the capsular structure of the strains 10cpsB and 10cpsEF was disturbed, we used a slide agglutination test using a suspension of the mutant strains in hyperimmune anti-S. suis type 2 serum (44). The results showed that even in the 25 absence of serotype specific antisera, the bacteria agglutinated. This indicates that in the mutant strains the capsular structure was disturbed. To confirm this, thin sections of wild type and mutant strains were compared by electron microscopy. The results showed that compared to the wild type (Fig. 3A) the amount of capsule produced by the mutant strains was greatly reduced (Figs. 3B and 3C). Almost no capsular material could be detected on the surface of the mutant strains.

Capsular mutants are sensitive to phagocytosis and killing by porcine alveolar macrophages (PAM).

The capsular mutants were tested for their ability to resist phagocytosis by PAM in the presence of porcine SPF serum. The wild type strain 10 seemed to be resistant to phagocytosis under these conditions (Fig. 4A). In contrast, the mutant strains were efficiently ingested by macrophages (Fig. 4A). After 90 min. more than 99.7% (strain 10cpsB) and 99.8% (strain 10cpsEF) of the mutant cells were ingested by the macrophages. Moreover, as shown in Fig. 4B the ingested strains were 10 efficiently killed by the macrophages. 90-98% of all ingested cells were killed within 90 min. No differences could be observed between wild type and mutant strains. These data indicate that the capsule of S. suis type 2 efficiently protects the organism from uptake by macrophages in vitro. 15

Capsular mutants are less virulent for germfree piglets. The virulence properties of the wild-type and mutant strains were tested after experimental infection of newborn germfree pigs (45, 49). Table 1 shows that specific and nonspecific signs of disease could be observed in all pigs inoculated with the wild type strain. Moreover, all pigs inoculated with the wild type strain died during the course of the experiment or were killed because of serious illness or nervous disorders (Table 3). In 25 contrast, the pigs inoculated with strains 10cpsB and 10cpsEF showed no specific signs of disease and all pigs survived until the end of the experiment. The temperature of the pigs inoculated with the wild type strain increased 2 days after inoculation and remained high until day 5 (Table 3). The temperature of the pigs inoculated with the mutant strains sometimes exceeded the 40°C, however, we could observe significant differences in the fever index [i.e % of observations in an experimental group during which pigs showed fever (>40°C)] between pigs inoculated with wild type and 35 mutant strains. All pigs showed increased numbers of

polymorphonuclear leucocytes (PMLs) (>10 x 10^9 PMLs per litre)

20

30

(Table 3). However, in pigs inoculated with the mutant strains the percentage of samples with increased numbers of PMLs was considerably lower. S. suis strains and B. bronchiseptica could be isolated from the nasopharynx and feces swab samples of all pigs from 1 day post-infection until the end of the experiment (Table 3). Postmortem, the wild type strain could frequently be isolated from the central nervous system (CNS), kidney, heart, liver, spleen, serosae, joints and tonsils. Mutant strains could easily be recovered form the tonsils, but were never recovered from the kidney, liver or spleen. Interestingly, low numbers of the mutant strains were isolated from the CNS, the serosae, the joints, the lungs and the heart. Taken together, these data strongly indicated that mutant S. suis strains, impaired in capsule production, are not virulent for young germfree pigs.

10

15

20

25

35

We describe the identification and the molecular characterisation of the cps locus, involved in the capsular polysaccharide biosynthesis, of S. suis Most of the genes seemed to belong to a single transcriptional unit, suggesting a co-ordinate control of these genes. We assign functions to most of the gene products. We thereby identified regions involved in regulation (Cps2A), chain length determination (Cps2B, C), export (Cps2C) and biosynthesis (Cps2E, F, G, H, J, K). The region involved in biosynthesis is located at the centre of the gene cluster and is flanked by two regions containing genes with more common functions. The incomplete orf2Z gene was located at the 5'-end of the cloned fragment. Orf2Z showed some similarity with the YitS protein of B. subtilis. However, because the function of the YitS protein is unknown this did not give us any information about the possible function of Orf2Z. Because the orf2Z gene is not a part of the cps operon, a role of this gene in polysaccharide biosynthesis is not expected. The Orf2Y protein showed some similarity with the YcxD protein of B. subtilis (53). The YcxD protein was suggested to be a regulatory protein. Similarly, Orf2Y may be involved in the regulation of polysaccharide biosynthesis. The Orf2X

protein showed similarity with the YAAA proteins of *H. influenzae* and *E. coli*. The function of these proteins is unknown. In *S. suis* type 2 the *orf2X* gene seemed to be the first gene in the *cps2* operon. This suggests a role of Orf2X in the polysaccharide biosynthesis. In *H. influenzae* and *E. coli*, however, these proteins are not associated with capsular gene clusters. The analysis of isogenic mutants impaired in the expression of Orf2X should give more insight in the presumed role of Orf2X in the polysaccharide biosynthesis of *S. suis* type 2.

10

15

35

The gene products encoded by the cps2E, cps2F, cps2G, cps2H, cps2J and cps2K genes showed little similarity with glycosyltransferases of several Gram-positive or Gram-negative bacteria (18, 19, 20, 22, 25). The cps2E gene product shows some similarity with the Cps14E protein of S. pneumoniae (18, 19). Cps14E is a glucosyl-1-phosphate transferase that links glucose to a lipid carrier (18). In S. pneumoniae this is the first step in the biosynthesis of the oligosaccharide repeating unit. The structure of the S. suis serotype 2 capsule contains glucose, galactose, rhamnose, N-acetyl glucoseamine and sialic acid in a ratio of 3:1:1:1:1 (7). Based on these data we conclude that Cps2E of S. suis has glucosyltransferase activity, and is involved in the linkage of the first sugar to the lipid carrier.

The C-terminal region of the cps2F gene product showed some similarity with the RfbU of Salmonella enteritica. RfbU was shown to have mannosyltransferase activity (24). Because mannosyl is not a component of the S. suis type 2 polysaccharide a mannosyltransferase activity is not expected in this organism. Nevertheless, cps2F encodes a glycosyltransferase with another sugar specificity.

Cps2G showed moderate similarity to a family of gene products suggested to encode galactosyltransferase activities (22, 24, 40). Hence a similar activity is shown for Cps2G.

Cps2H showed some similarity with LgtD of H. influenzae (U32768). Because LgtD was proposed to have glycosyltransferase

activity, a similar activity is fulfilled by Cps2H.

Cps2J and Cps2K showed similarity to Cps14J of S. pneumoniae (20). Cps2J showed similarity with Cps14I of S. pneumoniae as well. Cps14I was shown to have N-acetyl glucosaminyltransferase 5 activity, whereas Cps14J has a β-1,4-galactosyltransferase activity (20). In S. pneumoniae Cps14I is responsible for the addition of the third sugar and Cps14J for the addition of the last sugar in the synthesis of the type 14 repeating unit (20). Because the capsule of S. suis type 2 contains galactose as well as N-acetyl glucosamine components, qalactosyltransferase as well as N-acetyl glucoaminyltransferase activities could be envisaged for the cps2J and cps2K gene products, respectively. As was observed for Cps14I and Cps14J, the N-termini of Cps2J and Cps2K showed a significant degree of sequence similarity. Within the Nterminal domains of Cps14I and Cps14J, two small regions were identified, which were also conserved in several other glycosyltransferases (22). Within these two regions, two Asp residues were proposed to be important for catalytic activity. 20 The two conserved regions, DXS and DXDD, were also found in Cps2J and Cps2K.

The function of Cps2I remains unclear. Cps2I showed some similarity with a protein of *A. actinomycetemcomitans*. Although this protein part is of the gene cluster responsible for the serotype-B-specific antigens, the function of the protein is unknown.

25

30

35

We further describe the identification and characterization of the cps genes specific for S. suis serotypes 1, 2 and 9. After the entire cps2 locus of S. suis serotype 2 was cloned and characterized, functions for most of the cps2 gene products could be assigned by sequence homologies. Based on these data the glycosyltransferase activities, required for type specificity, could be located in the centre of the operon. Cross-hybridization experiments, using the individual cps2 genes as probes on chromosomal DNAs of the 35 different serotypes, confirmed this idea. The regions containing the

type-specific genes of serotypes 1 and 9 could be cloned and characterized, showing that an identical genetic organization of the cps operons of other S. suis serotypes exists. The cps1E, cps1F, cps1G, cps1H, and cps1I genes revealed a striking similarity with cps14 E, cps14F, cps14G, cps14H and cps14J genes of S. pneumoniae. Interestingly, S. pneumoniae serotype 14 is the serotype most commonly associated with pneumococcal infections in young children (54), whereas S. suis serotype 1 strains are most commonly isolated from piglets younger than 8 weeks (46). In S. pneumoniae the 10 cps14E, cps14G, cps14I and cps14J encode the glycosyltransferases required for the synthesis of the type 14 tetrameric repeating unit, showing that the cps1E, cps1G and cps1I genes encoded glycosyltransferases. The precise functions of these genes as well as the substrate 15 specificities of the enzymes can be established. In S. pneumoniae the cps14E gene was shown to encode a glucosyl-1phosphate transferase catalyzing the transfer of glucose to a lipid carrier. Moreover, cpsE-like genes were found in S. pneumoniae serotypes 9N, 13, 14, 15B, 15C, 18F, 18A and 19F (60). CpsE mutants were constructed in the serotypes 9N, 13 , 14 and 15B. All mutant strains lacked glucosyltransferase activity (60). Moreover, in all these S. pneumoniae serotypes the cpsE gene seemed to be responsible for the addition of glucose to the lipid carrier. Based on these data we suggest that in S. suis type 1 the cps1E gene may fulfil a similar function. The structure of the S. suis type 1 capsule is unknown, but it is composed of glucose, galactose, N-acetyl glucosamine, N-acetyl galactosamine and sialic acid in a ratio of 1: 2.4: 1: 1:1.4 (5). Therefore a role of a cpsE-like 30 glucosyltransferase activity can easily be envisaged. CpsE like sequences were also found in serotypes 2, 1/2 and 14. For polysaccharide biosynthesis in S. pneumoniae type 14, transfer of the second sugar of the repeating unit to the first lipid-linked sugar is performed by the gene products of 35 cps14F and cps14G (20). Similar to Cps14F and Cps14G, the S.

suis type 1 proteins CpslF and CpslG may act as one glycosyltransferase performing the same reaction. Cpsl4F and Cpsl4G of S. pneumoniae showed similarity to the N-terminal half and C-terminal half of the SpsK protein of Sphingomonas (20, 67), respectively. This suggests a combined function for both proteins. Moreover, cpsl4F and cpsl4G like sequences were found in several serotypes of S. pneumoniae and these genes always seemed to exist together (60). The same was observed for S. suis type 1. The cpslF and cpslG probes hybridized with type 1 and type 14 strains.

According to the similarity found between the cps1H gene and the cps14H gene of S. pneumoniae (20), cps1H is expected to encode a polysaccharide polymerase.

10

15

20

25

30

35

The protein encoded by the <code>cpslI</code> gene showed some similarity with the <code>Cpsl4J</code> protein of <code>S. pneumoniae</code> (19). The <code>cpsl4J</code> gene was shown to encode a ß-1,4-galactosyltransferase activity, responsible for the addition of the fourth (i.e. last) sugar in the synthesis of the <code>S. pneumoniae</code> serotype 14 polysaccharide. In <code>S. suis</code> type 2 the proteins encoded by the <code>cps2J</code> and <code>cps2K</code> genes showed similarity to the <code>Cpsl4J</code> protein. However, no significant homologies were found between <code>Cps2J</code>, <code>Cps2K</code> and <code>Cps1I</code>. In the N-terminal regions of <code>Cps14J</code> and <code>Cps14I</code> two small conserved regions, <code>DXS</code> and <code>DXDD</code>, were identified (19). These regions seemed to be important for <code>catalytic</code> activity (13). At the same positions in the sequence <code>Cps2I</code> contained the regions <code>DXS</code> and <code>DXED</code>.

In the region between Cps1G and Cps1H three small Orfs were identified. Since the Orfs were expressed in three different reading frames, and did not contain potential start sites, expression is not expected. However, the three potential gene products encoded by this region showed some similarity with three successive regions of the C-terminal part of the EpsK protein of Streptococcus thermophilus (27% identity, 40). The region related to the first 82 amino acids is lacking. The EpsK protein was suggested to play a role in the export of the exopolysaccharide by rendering the polymerized

exopolysaccharide more hydrophobic through a lipid modification. These data could suggest that the sequences in the region between Cps1G and Cps1H originated from *epsK*-like sequence. Hybridization experiments showed that this *epsK*-like region is also present in other serotype 1 strains as well as in serotype 14 strains (results not shown).

The function of most of the cloned serotype 9 genes can be established. Based on sequence similarity data the cps9E and cps9F genes could be glycosyltransferases (61, 24, 63, 64, 65). Moreover, the cps9G and cps9H genes showed similarity to genes located in regions involved in polysaccharide biosynthesis, but the function of these genes is unknown (68).

10

15

20

35

Cross-hybridization experiments using the individual cps2, cps1 and cps9 genes as probes showed that the cps9G and cps9H probes specifically hybridized with serotype 9 strains. Therefore, these are useful as tools for the identification of S. suis type 9 strains both for diagnostic purposes as well as in epidemiological and transmission studies. We previously developed a PCR method which can be used to detect S. suis strains in nasal and tonsil swabs of pigs (62). The method was for example used to identify pathogenic (EF-positive) strains of S. suis serotype 2 During the last years, beside S. suis type 2 strains, serotype 9 strains are frequently isolated from organs of diseased pigs. However, until now a rapid and sensitive diagnostic test was not available for type 9 strains. Therefore, the type 9 specific probes or the type 9 specific PCR is of great diagnostic value. The cps1F, cps1G and cpslI probes hybridized with serotype 1 as well as with serotype 14 strains. In coagglutination tests type 1 strains react with the anti-type 1 as well as with the anti-type 14 antisera (56). This suggests the presence of common epitopes between these serotypes. On the other hand type 1 strains agglutinated only with anti-type 1 serum (56,57), indicating that it is possible to detect differences between those serotypes.

The cps2F, cps2G, cps2H, cps2I and cps2J probes hybridized

with serotypes 2 and 1/2 only. Serotype 34 showed a weak hybridizing signal with the cps2G probe. As shown in agglutination tests type 1/2 strains react with sera directed against type 1 as well as with sera directed against type 2 strains (46). Therefore, type 1/2 shared antigens with both types 1 and 2. Based on the hybridization patterns of serotype 1/2 strains with the cps1 and cps2 specific genes, serotype 1/2 seemed to be more closely related to type 2 strains than to type 1 strains. In our current studies we identify type-specific genes, primers or probes which are used for the discrimination of serotypes 1, 14 and 2 and 1/2 and others of the 35 serotypes yet known. Furthermore, type-specific genes, primers or probes can now easily be developed for yet unknown serotypes, once they become isolated.

Cloning and characterization of a further part of the cps2 locus.

15

20

25

30

35

Based on the established sequence 11 genes, designated cps2L to cps2T, orf2U and orf2V, were identified. A gene homologous to genes involved in the polymerization of the repeating oligosaccharide unit (cps2O) as well as genes involved in the synthesis of sialic acid (cps2P to cps2T) were identified. Moreover, hybridization experiments showed that the genes involved in the sialic acid synthesis are present in S. suis serotype 1, 2, 14, 27 and 1/2. The "cps2M" and "cps2N" regions showed similarity to proteins involved in the polysaccharide biosynthesis of other gram-positive bacteria. However, these regions seemed to be truncated or were nonfunctional as the result of frame-shift or point mutations. At its 3'-end the cps2 locus contained two insertional elements ("orf2U" and "orf2V") both of which seemed to be nonfunctional.

To clone the remaining part of the cps2 locus, sequences of the 3'-end of pCPS26 (Fig. 1C) were used to identify a chromosomal fragment containing cps2 sequences located further downstream. This fragment was cloned in pKUN19 resulting in pCPS29. Using a similar approach we subsequently isolated the

plasmids pCPS30 and pCPS34 containing downstream cps2 sequences (Fig. 1C).

Analysis of the cps2 operon.

25

5 The complete nucleotide sequence of the cloned fragments was determined. Examination of the compiled sequence revealed the presence of : a sequence encoding the C-terminal part of Cps2K, six apparently functional genes (designated cps20cps2T) and the remnants of 5 different ancestral genes (designated "cps2L", "cps2M", "cps2N", "orf2U" and "orf2V"). 10 The latter genes seemed to be truncated or incomplete as the result of the presence of stop codons or frame-shift mutations (Fig. 1A). Neither potential promoter sequences nor potential stem-loop structures could be identified within the sequenced 15 region. A ribosome-binding site precedes each ORF and the majority of the ORFs is very closely linked. Three intergenic gaps were found: one between "cps2M" and "cps2N" (176 nucleotides), one between cps20 and cps2P (525 nucleotides), and one between cps2T and "orf2U" (200 nucleotides). These and 20 our above data show that Orf2X and Cps2A-Orf2T are part of a single operon.

A list of all loci and their properties is shown in Table 4. The "cps2L" region contained three potential ORFs, of 103, 79 and 152 amino acids, respectively, which were only separated from each other by stop codons. Only the first ORF is preceded by a potential ribosomal binding site and contained a methionine start codon. This suggests that "cps2L" originates from an ancestral cps2L gene, which coded for a protein of 339 amino acids. The function of this hypothetical Cps2L protein remains unclear so far: no significant homologies were found between Cps2L and proteins present in the data libraries. It is not clear whether the first ORF of the "cps2L" region is expressed into a protein of 103 amino acids. The "cps2M" region showed homology to the N-terminal 134 amino acids of the NeuA proteins of Streptococcus agalactiae and Escherichia coli (AB017355, 32). However,

although the "cps2 M" region contained a potential ribosome binding site, a methionine start codon was absent. Compared with the S. agalactiae sequence, the ATG start codon was replaced by a lysin encoding AAG codon. Moreover, the region homologous to the first 58 amino acids of the S. agalactiae NeuA (identity 77%) was separated from the region homologous to amino acids 59-134 of NeuA by a repeated DNA sequence of 100-bp (see later). In addition, the region homologous to amino acids 59 to 95 of NeuA (identity 32%) and the region homologous to the amino acids 96 to 134 of NeuA (identity . 10 50%) were present in different reading frames. Therefore, the partial and truncated NeuA homologue is probably nonfunctional in S. suis. The "cps2N" region showed homology to CpsJ of S. agalactiae (accession no. AB017355). However, sequences homologous to the first 88 amino acids of CpsJ were lacking in 15 S. suis. Moreover, the homologous region was present in two different reading frames. The protein encoded by the cps20 gene showed homology to proteins of several streptococci involved in the transport of the oligosaccharide repeating unit (accession no. AB017355), suggesting a similar function 20 for Cps20. The proteins encoded by the cps2P, cps2S and cps2T genes showed homology to the NeuB, NeuD and NeuA proteins of S. agalactiae and E. coli (accession no AB017355). Because the "cps2M" region also showed homology to NeuA of E. coli, S. suis cps2 locus contains a functional neuA gene (cps2T) as 25 well as a nonfunctional ("cps2M") gene. The mutual homology between these two regions showed an identity of 77% at the amino acid level over amino acids 1-58 and 49% over the amino acids 59-134. Cps2Q and Cps2R showed homology to the N-30 terminal and C-terminal parts of the NeuC protein of S. agalactiae and E. coli, respectively. This suggests that the function of the S. agalactiae NeuC protein in S. suis is likely fulfilled by two different proteins. In E. coli the neu genes are known to be involved in the synthesis of sialic acid. NeuNAc is synthesized from N-acetylmannosamine and 35 phosphoenolpyruvate by NeuNAc synthetase. Subsequently, NeuNAc

is converted to CMP-NeuNAc by the enzyme CMP-NeuNAc synthetase. CMP-NeuNAc is the substrate for the synthesis of polysaccharide. In E. coli K1 NeuB is the NeuNAc synthetase, NeuA is the CMP-NeuNAc synthetase. NeuC has been implicated in the NeuNAc synthesis, but its precise role is not known. The precise role of NeuD is not known. A role of the Cps2P-Cps2T proteins in the synthesis of sialic acid can easily be envisaged, since the capsule of S. suis serotype 2 is rich in sialic acid. In S. agalactiae sialic acid has been shown to be critical to the virulence function of the type III capsule. Moreover, it has been suggested that the presence of sialic acid in capsule of bacteria which can cause meningitis may be important for the capacity of these bacteria to breach the blood-brain barrier. So far, however, the requirement of the sialic acid for virulence of S. suis remains unclear.

"Orf2U" and "Orf2V" showed homology to proteins located on two different insertional elements. "Orf2U" is homologous to IS1194 of Streptococcus thermophilus, whereas "Orf2V" showed homology to a putative transposase of Streptococcus pneumoniae. This putative transposase was recently found to be associated with the type 2 capsular locus of S. pneumoniae. Compared with the original insertional elements in S. thermophilus and S. pneumoniae, both "Orf2U" and "Orf2V" are likely to be non-functional due to frame shift mutations within their coding regions.

15

20

25

30

35

A striking observation was the presence of a sequence of 100 bp (Fig. 9) which was repeated three times within the cps2 operon. The sequence is highly conserved (between 94% and 98%) and was found in the intergenic regions between cps2G and cps2H, within "cps2M" and between cps2O and cps2P. No significant homologies were found between this 100-bp direct repeat sequence and sequences present in the data libraries, suggesting that the sequence is unique for S. suis.

Distribution of the cps2 sequences among the 35 S. suis serotypes. To examine the presence of sialic acid encoding genes in other S. suis serotypes, we performed cross-

hybridization experiments. DNA fragments of the individual cps2 genes were amplified by PCR, radiolabelled with 32P and hybridized to chromosomal DNA of the reference strains of the 35 different S. suis serotypes. As a positive control we used a probe specific for S. suis 16S rRNA. The 16S rRNA probe hybridized with almost equal intensities to all serotypes tested (Table 4). The "cps2L" sequence hybridized with DNA of serotype 1, 2, 14 and 1/2. The "cps2M", cps2O, cps2P, cps2Q, cps2R, cps2S and cps2T genes hybridized with DNA of serotype 1, 2, 14, 27 and 1/2. Because the cps2P-cps2T genes are most 10 probably involved in the synthesis of sialic acid these results suggest that sialic acid is also a part of the capsule in the S. suis serotype 1, 2, 14, 27 and 1/2. This is in agreement with the finding that the serotypes 1, 2 and 1/2 possess a capsule that is rich in sialic acid. Although the 15 chemical compositions of the capsules of serotype 14 and 27 are unknown, recent agglutination studies using sialic acidbinding lectins suggested the presence of sialic acid in S. suis serotype 14, but not in serotype 27. In these studies, sialic acid was also detected in serotypes 15 and 16. Since 20 the latter observation is not in agreement with our hybridization studies, it might be that other genes, not homologous to the cps2P-cps2T genes, are responsible for the sialic acid synthesis in serotypes 15 and 16.

A probe based on "cps2N" sequences hybridized with DNA from serotypes 1, 2, 14 and 1/2. A probe specific for "orf2U" hybridized with serotypes 1, 2, 7, 14, 24, 27, 32, 34, and 1/2, whereas a probe specific for "orf2V" hybridized with many different serotypes. In addition, we prepared a probe specific for the 100-bp direct repeat sequence. This probe hybridized with the serotypes 1, 2, 13, 14, 22, 24, 27, 29, 32, 34 and 1/2 (Table 4). To analyze the number of copies of the direct repeat sequence within the S. suis serotype 2 chromosome, a Southern blot hybridization and analysis was performed.

25

30

35 Therefore, chromosomal DNA of S. suis serotype 2 was digested with NcoI and hybridized with a 32P-labelled direct repeat

sequence. Only one hybridizing fragment, containing the three direct repeats present on the cps2 locus, was found (results not shown). This indicates that the 100-bp direct repeat sequence is only associated with the cps2 locus. In S. pneumoniae a 115-bp long repeated sequence was found to be

pneumoniae a 115-bp long repeated sequence was found to be associated with the capsular genes of serotypes 1, 3, 14 and 19F. In S. pneumoniae this 115-bp sequence was also found in the vicinity of other genes involved in pneumococcal virulence (hyaluronidase and neuraminidase genes). A regulatory role of the 115-bp sequence in co-ordinate control of these virulence-related genes was suggested.

10

15

20

25

30

35

To study the role of the capsule in resistance to phagocytosis and in virulence, we constructed two isogenic mutants in which capsule synthesis was disturbed. In 10cpsB, the cps2B gene was disturbed by the insertion of an antibiotic-resistance gene, whereas in 10cpsEF parts of the cps2E and cps2F genes were replaced. Both mutant strains seemed to be completely unencapsulated. Because the cps 2 genes seemed to be part of an operon polar effects cannot be excluded. Therefore these data did not give any information about the role of Cps2B, Cps2E or Cps2F in the polysaccharide biosynthesis. However, the results clearly show that the capsular polysaccharide of S. suis type 2 is a surface component with antiphagocytic activity. In vitro wild type encapsulated bacteria are ingested by phagocytes at a very low frequency, whereas the mutant unencapsulated bacteria are efficiently ingested by porcine macrophages. Within 2 hours, over 99.6% of mutant bacteria were ingested and over 92% of the ingested bacteria were killed. Intracellularly, wild type as well as mutant strains seemed to be killed with the same efficiency. This suggests that the loss of capsular material is associated with loss of capacity to resist uptake by macrophages. This loss of resistance to in vitro phagocytosis was associated with a substantial attenuation of the virulence in germfree pigs. All pigs inoculated with the mutant strains survived the experiment and did not show any specific clinical

signs of disease. Only some aspecific clinical signs of disease could be observed. Moreover, mutant bacteria could be reisolated from the pigs. This supports the idea that, as in other pathogenic Streptococci, the capsule of S. suis acts as an important virulence factor. Transposon mutants prepared by Charland impaired in the capsule production showed a reduced virulence in pigs and mice. To construct these mutants the type 2 reference strain S735 was used. We previously showed that this strain is only weakly virulent for young pigs. Moreover, the insertion site of the transposon is unsolved sofar.

As a further example herein a rapid PCT test for Streptococcus suis type 7 is described.

15

25

30

35

10

Recent epidemiological studies on Streptococcus suis infections in pigs indicated that, besides serotypes 1, 2 and serotype 7 is also frequently associated with diseased animals. For the latter serotype, however, no rapid and 20 sensitive diagnostic methods are available. This hampers prevention and control programs. Here we describe the development of a type-specific PCR test for the rapid and sensitive detection of S. suis serotype 7. The test is based on DNA sequences of capsular (cps) genes specific for serotype 7. These sequences could be identified by cross-hybridization of several individual cps genes with the chromosomal DNAs of 35 different S. suis serotypes.

Streptococcus suis is an important cause of meningitis, septicemia, arthritis and sudden death in young pigs [69,70]. It can, however, also cause meningitis in man [71]. Attempts to control the disease are still hampered by the lack of sufficient knowledge about the epidemiology of the disease and the lack of effective vaccines and sensitive diagnostics.

S. suis strains can be identified and classified by their morphological, biochemical and serological characteristics [70, 73, 74]. Serological classification is based on the

presence of specific antigenic determinants. Isolated and biochemically characterized S. suis cells are agglutinated with a panel of specific sera. These typing methods are very laborious and time-consuming and can only be performed on isolated colonies. Moreover, it has been reported that nonspecific cross-reactions may occur among different types of S. suis [75, 76].

So far, 35 different serotypes have been described [7, 78, 79]. S. suis serotype 2 is the most prevalent type isolated from diseased pigs, followed by serotypes 9, and 1. However, recently serotype 7 strains were also frequently isolated from diseased pigs [80, 81, 82]. This suggests that infections with S. suis serotype 7 strains seemed to be an increasing problem. Moreover, the virulence of S. suis serotype 7 strains was confirmed by experimental infection of young pigs [83].

15

20

30

Recently, rapid and sensitive PCR assays specific for serotypes 2 (and 1/2), 1 (and 14) and 9 were developed [84]. These assays were based the cps loci of S. suis serotypes 2, 1 and 9 [84, 85]. However, until now no rapid and sensitive diagnostic test is available for S. suis serotype 7. Herein we describe the development of a PCR test for the rapid and sensitive detection of S. suis serotype 7 strains. The test is based on DNA sequences which form a part of the cps locus of S. suis serotype 7. Compared with the serological serotyping methods the PCR assay was a rapid, reliable and sensitive assay. Therefore, this test, in combination with the PCR tests which we previously developed for serotype 1, 2 and 9, will undoubtedly contribute to a more rapid and reliable diagnosis of S. suis and may facilitate control and eradication programs.

Materials and Methods

Bacterial strains, growth conditions and serotyping.

The bacterial strains and plasmids used in this study are listed in Table 7. The S. suis reference strains were obtained from M. Gottschalk, Canada. S. suis strains were grown in Todd-Hewitt broth (code CM189, Oxoid), and plated on Columbia agar blood base (code CM331, Oxoid) containing 6% (v/v) horse blood. E.coli strains were grown in Luria broth [86] and plated on Luria broth containing 1.5% (w/v) agar. If required, ampicillin was added to the plates. The S. suis strains were serotyped by the slide agglutination test with serotypespecific antibodies [70].

15 DNA techniques.

Routine DNA manipulations and PCR reactions were performed as described by Sambrook et al. [88]. Blotting and hybridization was performed as described previously [84,86].

20 DNA sequence analysis.

DNA sequences were determined on a 373A DNA Sequencing System (Applied Biosystems, Warrington, GB). Samples were prepared by use of a ABI/PRISM dye terminator cycle sequencing ready reaction kit (Applied Biosystems). Custom-made sequencing primers were purchased from Life Technologies. Sequencing data were assembled and analyzed using the McMollyTetra program. The BLAST program was used to search for protein sequences homologous to the deduced amino acid sequences.

30

PCR.

The primers used for the cps7H PCR correspond to the positions 3334-3354 and 3585-3565 in the S. suis cps7 locus. The sequences were:

5'-AGCTCTAACACGAAATAAGGC-3' and 5'-GTCAAACACCCTGGATAGCCG-3'.

The reaction mixtures contained 10 mM Tris-HCl, pH 8.3; 1.5 mM

MgCl2; 50 mM KCl; 0.2 mM of each of the four deoxynucleotide triphosphates; 1 microM of each of the primers and 1U of AmpliTaq Gold DNA polymerase (Perkin Elmer Applied Biosystems, New Jersey). DNA amplification was carried out in a Perkin Elmer 9600 thermal cycler and the program consisted of an incubation for 10 min at 95oC and 30 cycles of 1 min at 95oC, 2 min at 56oC and 2 min at 72oC.

Results and discussion

10

15

Cloning of the seroytpe 7-specific cps genes.

To isolate the type-specific cps genes of S. suis serotype 7 we used the cps9E gene of serotype 9 as a probe to identify chromosomal DNA fragments of type 7 containing homologous DNA sequences [84]. A 1.6-kb PstI fragment was identified and cloned in pKUN19. This yielded pCPS7-1 (Fig. 11C). In turn, this fragment was used as a probe to identify an overlapping 2.7 kb ScaI-ClaI fragment. pGEM7 containing the latter fragment was designated pCPS7-2 (Fig. 11C).

20

25

30

35

Analysis of the cloned cps7 genes.

The complete nucleotide sequences of the inserts of pCPS7-1, pCPS7-2 were determined. Examination of the cps7 sequence revealed the presence of two complete and two incomplete open reading frames (ORFs) (Fig.11C). All ORFs are preceded by a ribosome-binding site. In accord with the data obtained for the cps1, cps2 and cps9 genes of serotypes 1, 2 and 9, respectively, the type 7 ORFs are very closely linked to each other. The only significant intergenic gap was that found between cps7E and cps7F (443 nucleotides). No obvious promoter sequences or potential stem-loop structures were found in this region. This suggests that, as in serotype 1, 2 and 9, the cps genes in serotype 7 form part of an operon.

An overview of the ORFs and their properties is shown in Table 8. As expected on the basis of the hybridization data [84], the Cps9E and Cps7E proteins showed a high similarity

(identity 99%, Table 8). Based on sequence comparisons between Cps9E and Cps7E, the PstI fragment of pCPS7-1 lacks the region encoding the first 371 codons of Cps7E. The C-terminal part of the protein encoded by the cps7F gene showed some similarity with the BplG protein of Bordetella pertussis [88], as well as with the C-terminal part of S. suis Cps2E [85]. Both BplG and Cps2E were suggested to have glycosyltransferase activity and are probably involved in the linkage of the first sugar to the lipid carrier [85,88]. The protein encoded by the cps7G gene showed similarity with the BlpF protein of Bordetella pertussis [88]. BplF is likely to be involved in the biosynthesis of an amino sugar, suggesting a similar function for Cps7G. The protein encoded by the cps7H gene showed similarity with the WbdN protein of E. coli [89] as well as with the N-terminal part of the Cps2K protein of S. suis [81]. Both WbdN and Cps2K were suggested to have glycosyltransferase activity [85, 89].

Serotype 7 specific cps genes.

10

15

20

25

30

To determine whether the cloned fragments in pCPS7-1 and pCPS7-2 contained serotype 7-specific DNA sequences, cross hybridization experiments were performed. DNA fragments of the individual cps7 genes were amplified by PCR, labelled with 32P, and used to probe spot blots of chromosomal DNA of the reference strains of 35 different S. suis serotypes. The results are summarized in Table 9. As expected, based on the data obtained with the cps9E probe [84], the cps7E probe hybridized with chromosomal DNA of many different S. suis serotypes. The cps7F and cps7G probes showed hybridization with chromosomal DNA of S. suis serotypes 4, 5, 7, 17, and 23. However, the cps7H probe hybridized with chromosomal DNA of serotype 7 only, indicating that this gene is specific for serotype 7.

Type specific PCR.

We tested whether we could use PCR instead of hybridization for the typing of the S. suis serotype 7 strains. For that purpose we selected an oligonucleotide primer set within the cps7H gene with which an amplified fragment of 251-bp was expected. In addition, we included in our analysis several S. suis serotype 7 strains, other than the reference strain. These strains were obtained from different countries and were isolated from different organs (Table 7). The results show that indeed a fragment of about 250-bp was amplified with all type 7 strains used (Fig. 12B), whereas no PCR products were obtained with serotype 1, 2 and 9 strains (Fig. 12A). This suggests that the PCR test, as described here, is a rapid diagnostic tool for the identification of S. suis serotype 7 strains. Until now such a diagnostic test was not available for serotype 7 strains. Together with the recently developed PCR assays for serotype 1, 2, 1/2, 14 and 9, this assay may be an important diagnostic tool to detect pigs carrying serotype 2, 1/2, 1, 14 ,9 and 7 strains and may facilitate control and eradication programs. 20

TABLE 1. Bacterial strains and plasmids

strain/plasmid	relevant	source/reference
	characteristics	
Strain		
E.coli		
CC118	PhoA ⁻	(28)
XL2 blue	Stratagene	
E.coli		
XL2 blue	Stratagene	
S. suis		
10	virulent serotype 2 strain	(49)
3	serotype 2	(63)
17	serotype 2	(63)
735	reference strain serotype 2	(63)
T15	serotype 2	(63)
6555	reference strain serotype l	(63)
6388	serotype 1	(63)
6290	serotype 1	(63)
5637	serotype 1	(63)
5673	serotype 1/2	(63)
5679	serotype 1/2	(63)
5928	serotype 1/2	(63)
5934	serotype 1/2	(63)
5209	reference strains serotype 1/2	(63)
5218	reference strain serotype 9	(63)
5973 -	serotype 9	(63)
6437	serotype 9	(63)
6207	serotype 9	(63)
reference strains	serotypes 1-34	(9, 56, 14)
S. suis		
10	virulent serotype 2 strain	(51)
10cpsB	isogenic cpsB mutant of strain 10	this work
10cpsEF	isogenic cpsEF mutant of strain 10	this work
Plasmid		
pKUN19	replication functions pUC, Amp ^R	(23)
pGEM72f(+)	replication functions pUC, Amp	(23) Promega Corp.
pIC19R	replication functions pUC, Amp ^R	(29)
pIC20R	replication functions pUC, Amp	(29)
pIC-spc	pIC19R containing spc ^R gene of pDL282	labcollection

WO 00/05378	PCT	T/NL99/00460
pDL282	replication functions of pBR322 and	
	pVT736-1, Amp ^R , Spc ^R	(43)
pPHOS2	pIC-spc containing the truncated phoA gene	this work
	of pPHO7 as a <i>PstI-Bam</i> HI fragment	
рРНО7	contains truncated phoA gene	(15)
pPHOS7	pPHOS2 containing chromosomal S. suis DNA	this work
pCPS6	pKUN19 containing 6 kb HindIII fragment	this work (Fig.1)
	of cps operon	
pCPS7	pKUN19 containing 3,5 kb EcoRI-HindIII fragment	this work (Fig.1)
	of cps operon	
pCPS11	pCPS7 in which 0.4 kb PstI-BamHI fragment	this work (Fig.1)
	of cpsB gene is replaced by SpcR gene of pIC-spc	
pCPS17	pKUN19 containing 3.1 kb KpnI fragment	this work (Fig.1)
	of <i>cps</i> operon	
pCPS18	pKUN19 containing 1.8 kb SnaBI fragment	this work (Fig.1)
	of cps operon	
pCPS20	pKUN19 containing 3.3 kb XbaI-HindIII	this work (Fig.1)
	fragment of cps operon	
pCPS23	pGEM72f(+) containing 1.5 kb MluI fragment	this work (Fig.1)
	of cps operon	
pCPS25	pIC20R containing 2.5 kb KpnI-SalI fragment	this work (Fig.1)
	of pCPS17	
pCPS26	pKUN19 containing 3.0 kb HindIII fragment	this work (Fig.1)
	of cps operon	
pCPS27	pCPS25 containing 2.3 kb XbaI (blunt)-ClaI	this work (Fig.1)
	fragment of pCPS20	
pCPS28	pCPS27 containing the 1.2 kb PstI-XhoI Spc ^R	this work (Fig.1)
	gene of pIC-spc	this work (Pig 1)
pCPS29	pKUN19 containing 2.2 kb SacI-PstI fragment	this work (Fig.1)
pCPS1-1	of cps operon pKUN19 containing 5 kb <i>EcoR</i> V fragment	this work (Fig.1)
pcr31-1	of cps operon of type 1	this work (regie,
pCPS1-2	pKUN19 containing 2.2 kb HindIII fragment	this work (Fig.1)
pordi z	of cps operon of type 1	
pCPS9-1	pKUN19 containing 1 kb HindIII-XbaI	this work (Fig.1)
por os 1	fragment of cps operon of serotype 9	
pCPS9-2	pKUN19 containing 4.0 kb XbaI-XbaI	this work (Fig.1)
£	fragment of cps operon of serotype 9	

Amp^R: ampicillin resistant Spc^R: spectinomycin resistant cps: capsular polysaccharide

Table 2. Properties of Orfs in the cps locus of

Table other	Table 2. Properties of Orfs in the other bacteria	of Orfs in th		cps locus of S. suis sero	serotype 2 and silimarities to gene product	wo 00/05
ORF	nucleotide position in sequence	number of amino acids	\$25	proposed function of gene product ¹	similar gene product (% identity)	5378
Orf22	1 -719	240	44	Опкпомп	B. subtilis YitS (26%)	
Orf2Y	2079-822	419	38	Transcription regulation	B. subtilis YcxD (39%)	
Orf2X	2202-2934	244	36	Unknown	H. influenzae YAAA (24%)	
Cps2A	3041-4484	481	39	Regulation	S. pneumoniae Cps19fA (58%)	
Cps2B	4504-5191	229	40	Chain length determination	S. pneumoniae type 3 Orfl (58%)	
Cps2C	5203-5878	225	40	Chain length determination/ Export	S. pneumoniae Cps23fD (63%)	
Cps2D	5919-6648	243	38	Unknown	S. pneumoniae CpsB (62%)	
Cps2E	6675-8052	459	33	Glycosyltransferase	S. pneumoniae Cps14E (56%)	
Cps2F	8089-9256	389	32	Glycosyl transferase	S. pneumoniae Cps23fT	
Cps2G	9262-10417	385	36	Glycosyltransferase	S. thermophilus EpsF (25%)	
Cps2H	10808-12176	457	31	Glycosyltransferase	S. mutans RGPEC, N (29%)	PCT
Cps2I	12213- 13443	410	29	CP polymerase	S. pneumoniae Cps23fI (48%)	/NL9
Cps2J	13583-14579	332	29	Glycosyltransferase	S. pneumoniae Cps14J (31%)	9/00
Cps2K	14574-15576	334	37	Glycosyltransferase	S.pneumoniae Cps14J (40%)	- 460

7	į	;
1		
ì	Ĭ)
)
7		
E		

		• •									
1	$S.$ agalactiae ${ t CpsF}^{ t N}$ (77%)	E. coli NeuA , (47%)	S. agalactiae CpsJ (43%)	S. agalactiae CpsK (41%)	S. agalactiae NeuB (80%) E. coli NeuB (59%)	S. agalactiae NeuC ^N (61%) E. coli NeuC ^N (54%)	S. agalactiae NeuC ^c (55%) E. coli NeuC ^c (40%)	E. coli NeuD (32%)	S. agalactiae CpsF (49%) E.coli NeuA (34%)	S. thermophilus IS1194 (51%)	S. pneumoniae orfl (85%)
Unknown	ı			Repeat unit transporter	Sialic acid synthesis	Sialic acid synthesis	Sialic acid synthesis	Sialic acid synthesis	CMP-NeuNAc synthetase	Transposase	Transposase
37	38		39	40	39	42	40	42	40	42	37
103	1		ı	476	338	170	184	208	395	168	116
15618-16635	16811-17322		17559-18342	18401-19802	20327-21341	21355-21865	21933-22483	22501-23125	23136-24366	24566-25488	25691-26281
"Cps2L"	"Cps2M"		"Cps2N"	Cps20	Cps2P	Cps2Q	Cps2R	Cps2S	Cps2T	"Orf2U"	"Orf2V"

 $^{^{1}\}mathrm{Predicted}$ by sequence similarity N Similarity refers to the amino-terminal part of the gene product C Similarity refers to the carboxy-terminal part of the gene product ORFs between N N are truncated or non-functional as the result of frame-shift or point mutations

TABLE 3. Properties of ORFs in the cps genes of S. suis serotypes 1 and 9 and silimarities to gene products of other bacteria

		58	3				
WO 00	0/05378					PCT/NL99/00	460
	reference/ accession nr	E (26) re Cps14E (12)	e Cps14F (14)	e Cps14G(50%) (14)	е Срs14H (14)	(13) (13) (29) (1us EpsI (28)	se Cps14J ()
its of other bacteria	similar gene product (% identity)	Streptococcus suis Cps2E (26) (86%) Streptococcus pneumoniae Cps14E	Streptococcus pneumoniae Cps14F (83%)	Streptococcus pneumoniae Cps14G(50%)	Streptococcus pneumoniae Cps14H (30%)	Streptococcus pneumoniae Cps14J (38%) Lactoccocus lactis EpsG (31%) Streptococcus thermophilus EpsI (33%) (29)	Streptococcus pneumoniae Cps14J
S. suis serotypes 1 and 9 and silimarities to gene products of	proposed function of gene product ¹	Glucosyltransferase	Unknown	Glycosyltransferase	CP polymerase	Glycosyltransferase	Glycosyltransferase
and 9 and	predicted pI	8 . 0	8.2	7.5	8. 4.		
uis serotypes 1	predicted mol. mass (kDa)	52.25	17.3	19.5	45.5		
	number of amino acids	454	149	164	389		
RFs in the	ູ້ບ + ບ	3.4 %	8 33 8	25%	24%		
TABLE 3. Properties of ORFs in the cps genes of	nucleotide position in sequence	1-1363	1374-1821	1823-2315	3035-4202	4197-	
TABLE 3.	ORF	Cps1E ²	CpslF	Cps1G	Срѕ1н	CpslI	CpslJ

WO 00/05	378
----------	-----

	(13)	Streptococcus pneumoniae Cps14J (44%)	Streptococcus suis Cps2D (89%)	Staphylococcus aureus CaplD (27%)	Staphylococcus aureus Cap5M (52%)	Actinobacillus actinomycetemcomitans (41%) (AB002668_4) Haemophilus influenzae Lsg (41%)	Yersinia enterolitica RfbB (28%)
		Glycosyltransferase	Unknown	Glycosyltransferase	Glycosyltransferase	Unknown	Unknown
		8.7	8.1		8.2	0.8	7.2
		32.5	24.9		22.3	31.5	16.5
		278	215		200		143
		37%	37%		99 90 1	e S	*0E
Table 3 continued		Cps1K³	Cps9D ² 1-646	Cps9E 680-	Cps9F	Cps9G	Cps9H³
			-	-	-	=	

¹Predicted by sequence similarity
² N-terminal part of protein is lacking
³ C-terminal part of protein is lacking

WO 00/05378

Table 4.			Æ	Hybridization of	diz	atio	E E		ero	serotype	8	ಯಾ	ge	genes	and	ne	ight	poq:	rinç	ž.	adne	nce	S S	th	chr	Ö	and neightbouring sequences with chromosomal DNA	NO	V of	0	other	ser	serotypes	s 0
serotypes	-	2	е	4	5 (6 7		8 9		10 1	11 1	12 13	3 14	1 15	16	17	18	19	20	21	22	23	24	25	26 2	27	28 29	30	31	32	33	34	1/2	. I
DNA probes	[
orf2Z	+	+	+	+		+		+		_	+	++	+	+	+	+	+	+		+		+	+	+	,		+	+	+			•		
orf2Y	+	+	+	+		•	<i>T</i>	+	_	+	+	+1	+	+	+	+	+	+	++	+	#	+	+	+	· +	_	+	+	+		,	Ţ		
ortex	+	+	+	+		T	Ψ	+		+	+	+1	+	+	+	+	+	+		+		+	+	+	•		+	+	+			•		
cps2A	+	+	+	+	_	7 +	∓	+	,	+	+	+	+	+	+	+	+	+		+	ı	+	+	+			+	+	+			•		
cps2B	+	+	+	+	·	+	T	+	<i>*</i>	, _	٠	#1	+	•	•	+	++	++		+1		+	+	+	•		+	#	+		+1	•		
cps2C	+	+	+	+		Ŧ +	Ŧ	+	+	+	•	#	+	•	++	•	,	,				+	+	+	•	_	, H	•	+		++	•		
cps2D	+	+	+	+		Ŧ +	7	+	+	+	#	++	+	•	H	+	+	+		+1		+	+	+		_	+	H	+			•		
cps2E	+	+		•		•	٠	•	•	•	•	٠	+	•	,	•	•			,					•	_		•				,		
cps2F		+			•	'	•	•	'	•	•	•	•	٠	•	•			,									•				T .		
cps2G		+			•	•	•	•	•	•	•	•	٠	٠	•	•									,		•	٠				+		
cps2H		+		•	•		•	•	•	•	٠	•	•	•	ı	٠											•	•				T .		
cps2/	,	+		•	•	•	•	•	•	•	1	•	•	•	•	•	•											٠			,	•		
cps2J		+			•		•	•	'	'	•	•	•	٠	•				,								•	•				•		
cps2K	+	+		•	•		•	•	•	•	٠	•	+	•	•	•						,			·			,			,	•		
"cps2L"	+	+		•	•		•	•	•	•	•	٠	+	•	٠	•									•			•				,		
"cps2M"	+	+		•			•	•	•	•	٠	•	+	•	٠	•	•						,	,	•	+		•	•			,		
"cps2N"	+	+			•		•	1	,	'	•	•	+	•	•	•			,		,		,		·			•				,		
cps20	+	+			•		•	•	•	•		٠	+	٠	•	•	٠		,	,					•	+		•				Ť.		
cps2P	+	+			•		•	•	•	•	•	•	+	٠	•	•	•								•	+		٠				•		
cps20	+	+	,	•	•		•	•	•	•	١	•	+	•	•	ı	•									+		•				,		
cps2R	+	+					•	•	•	•	•	٠	+	٠	•	•	•								,	+		٠	ı			•		
cps2S	+	+	,		•		•	•	•	•	٠	٠	+	٠	•	•							,	,			•	•	•	,		,		
cps2T	+	+	,		•	•	•		•	•	•	•	+	٠	•	•	•								•	e	•	٠		,		,		
"orf2U"	+	+		•	•		·	•	•	•	•	•	+	,	•	•	•					•	+	,	•			•		+		+		
"orf2V"	+	+	+1	+	, H		ا .		•	•	•	•	+	+	٠	+	+	++			++	+			+			٠	+	+		+		
100-bp repeat	+	+	,			•	•	•	•	•	•	+	+	•	•	٠					+		+			+	,	•		+		+		
16SrRNA	+	+	+	+		+		∓	T _	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+		

Table 5. Hybridization of serotypes 1 and 9 cps genes with chromosomal DNA of other 5. suis serotypes

Serotype cps1E cps1F cps1G cps1H cps1I 1 + + + + + + + + + + + + + + + + + +									
	cpslF	cps1G	срѕін		zps9E	cps9F	568d5	н6sdɔ	16rrna
	+	+	+	+		ı	1	١,	+
W 4 20 00 12 00 11 11 11 11 11 11 11 11 11 11 11 11	,		,	ı	١	ı	1	•	+
4 2 3 6 7 8	ı		+	1	+	1	ı	1	+
2 5 5 6 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ı	1	+	•	+	1	ŧ	1	+
7 1 1 8		. •	+	•	+	1	1	1	+
	,	ı	1	•	•	•	ı	ı	+
,	,	,	+	ı	+	•	1	1	+
	1	,		•	1	1	1	ı	+
,	,		+	1	+	+	+	+	+
10	,		+	1	+	+	1	1	+
		,	+	•	+	#	•	•	+
12 -			+1	1	+	+1	•	1	+
13 -		1	+	t	+	ı	1	ı	+
14 +	+	+	+	+	1	•	•	t	+
15	,			•	ı	ı	1	ı	+
16		t	1	•	ı	ι	1	1	+
71	1		+	1	+	ŧ	1	t	+
18 -		,	+	i	+	1	1	ı	+
19		,	+	•	+	•	1	1	+
50		,	,	1	,	ı	1	•	+
21		·	+	1	+	+1	•	١	+
	1	1	1	•	ı	1	ı	ı	+

Table 5 continued

TABLE 6. Virulence of wild type and capsular mutant S. suis strains in germfree pigs

S. suis strains ¹	pigs/ group [n]	mortality ² [%]	morbidity ³ [%]	clinical ind group	clinical index of the group	fever index ⁷	leuco- cyte index ⁸	isola	isolation of S. suis in pigs [n] per group i	S. suis in pigs [n] per group in
				spec symptoms ⁵	spec non-spec. symptoms ⁵ symptoms ⁶			CNS	serosae	joints
10	4	100	100	11	88	43	44	2	3	Δ.
10cpsB	4	0	0	0	10	1	m		ю	2
10cpsEF	4	0	0	0	0	ч	0	1	m	2

1 strain10 in the wild type strain, strains 10cpsB and 10cpsEF are isogenic capsular mutant strains

2 piglets which died spontaneously or had to be killed for animal welfare reasons

3 only considering pigs with specific symptoms

'clinical index: % of observations which matched the described criteria

⁵ specific symptoms: ataxia, lemeness on at lest one joint, stiffness

6 non-specific symptoms: inappetance, depression

 7 % of observations in the experimental group with a body temperature > 40 $^{
m 0}$ C

 6 % of blood samples in the group in which number of granulocytes > $10^{10}/1$

•, .:

Table 7.	Bacterial strains and plasmids
strain/plasmid	relevant characteristics
Strain E.coli XL2 blue	
reference strains 5667	s 1-34 7, tonsil
7037 7044	serotype 7, organs (1994) serotype 7, brains (1994)
7068	7 (1994)
7646	, ,
7759	••
8169	7
15913	serotype 7, meninges (1998)
Plasmid	α
pKUN19replication functions pUC, Amp" pGEM72f(+)	nctions pUC, Amp" replication functions pUC, Amp ^R
pCPS9-1	pkUN19 containing 1 kb HindIII-XbaI fragment of cps operon of serotype 9
pCPS9-2	
pCPS7-1	strocyfor
pCPS7-2	of cps operon of type 7 pGEM7 containing 2.7-kb Scal-Clal fragment of cps operon of type 7

'Amp^R; ampicillin resistant cps: capsular polysaccharide

Table 8. Properties of Orfs in the cps genes of S. suis serotype 7 and

0r f	nucleotide position in sequence	proposed function of gene product	(% identity)
Cps7E	1-719	Glycosyltransferase	Streptococcus suis Cps9E (99%)
Cps7F	1164-1863	Glycosyltransferase	Bordetella pertussis BplG ¹ (43%) Streptococcus suis Cps2E ¹ (33%)
Cps7G	1872-3086	Biosynthesis amino sugar	Bordetella pertussis BplF (48%)
Срѕ7Н	3104-3737	Glycosyltransferase	Escherichia coli WbdN (35%) Streptococcus suis Cps2K ² (31%)

 $^1\mathrm{similarity}$ refers to the C-terminal part of the gene product $^2\mathrm{similarity}$ refers to the N-terminal part of the gene product

tion of serotype 7 cps probes with chromosomal DNA of S. suis serotypes	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1/2		
¥1.	16		+
bes	15		+
pro	4		+
sa	55		+ , , , +
7	12		+ , , , +
ype	=		+ +
erot	1 2		+ , , , +
ŭ 44	0		+ , , , +
e o	7 8		+++++
	9		+
idiz	5		+++,+
Hybridizat	4		++++++
	3		+ , , , +
	8		+
	-		+
Table 9.	serotypes	DNA probes	cps7E cps7F cps7G cps7H 16SrRNA

•. .

LEGENDS TO FIGURES

Figure 1.

Organization of the cps2 gene cluster of S. suis type 2.

- (A) Genetic map of the cps2 gene cluster. The shadowed arrows represent potential ORFs. Interrupted ORFs indicate the presence of stop codons or frame-shift mutations. Gene designations are indicated below the ORFs. The closed arrows indicate the position of the potential promoter sequences.
- indicates the position of the potential transcription regulator sequence. ||| indicates the position of the 100-bp repeated sequence.
 - (B) Physical map of the cps2 locus.
- Restriction sites are as follows: A: AluI; C: ClaI; E, EcoRI;

 H, HindIII; K, KpnI; M, MluI; N, NsiI; P, PstI; S, SnaBI; Sa:

 SacI; X, XbaI.
 - (C) The DNA fragments cloned in the various plasmids.

Figure 2

- 20 Ethidium bromide stained agarose gel showing PCR products obtained with chromosomal DNA of *S. suis* strains belonging to the serotypes 1,2, ½, 9 and 14 and *cps2J*, *cps1I* and *cps9H* primer sets as described in Materials and Methods. (A) *cps1I* primers.
- 25 (B) cps2J primers and (C) cps9H primers. Lanes 1-3: serotype 1 strains; lanes 4-6: serotype 2 strains; lanes 7-9: serotype ½ strains; lanes 10-12: serotype 9 strains and lanes 13-15: serotype 14 strains.
- (B) Ethidium bromide stained agarose gel showing PCR products obtained with tonsillar swabs collected from pigs carrying S.suis type 2, type 1 or type 9 strains and cps2j, cps1I and cpsH primer sets as described in Materials and Methods.

 Bacterial DNA suitable for PCR was prepared by using the multiscreen methods as described previously (20). (A) cps1I primers. (B) cps2J primers and (C) cps9H primers. Lanes 1-3:
- PCR products obtained with tonsillar swabs collected from pigs

carrying *S.suis* type 1 strains; lanes 4-6: PCR products obtained with tonsillar swabs collected from pigs carrying *S.suis* type 2 strains; lanes 7-9: PCR products obtained with tonsillar swabs collected from pigs carrying *S.suis* type 9 strains; lanes 10-12: PCR products obtained with chromosomal DNA from serotype 9, 2 and 1 strains respectively; lane 13: negative control, no DNA present.

Figure 3

10 CPS2 nucleotide sequences and corresponding amino acid sequences from the open reading frames.

Figure 4

CPS1 nucleotide sequences and corresponding amino acid sequences from the open reading frames.

Figure 5

CPS9 nucleotide sequences and corresponding amino acid sequences from the open reading frames.

20

Figure 6

CPS7 nucleotide sequences and corresponding amino acid sequences from the open reading frames.

25

Figure 7

Alignments of the N-terminal parts of Cps2J and Cps2K. Identical amino acids are marked by bars. The amino acids shown in bold are also conserved in Cps14I, Cps14J of S.

opneumoniae and several other glycosyltransferases (19). The aspartate residues marked by asterics are strongly conserved.

Figure 8

Transmission electron micrographs of thin sections of various 35 S. suis strains.

(A) wild type strain 10;

- (B) mutant strain 10cpsB;
- (C) mutant strain 10cpsEF.

Bar = 100 nm

5 Figure 9

- (A) Kinetics of phagocytosis of wild type and mutant *S. suis* strains by porcine alveolair macrophages. Phagocytosis was determined as described in Materials and Methods. The Y-axis represents the number of CFU per milliliter in the supernatant fluids as determined by plate counting, the X-axis represents time in minutes.
 - □ wild type strain 10;
 - o mutant strain 10cpsB;
 - Δ mutant strain 10cpsEF.

15

- (B) Kinetics of intracellular killing of wild type and mutant S. suis strains by porcine AM. The intracellular killing was determined as described in Material and Methods. The Y-axis represents the number of CFU per ml in the supernatant fluids after lysis of the macrophages as determined by plate counting, the X-axis represents time in minutes.
 - ☐ wild type strain 10;
 - o mutant strain 10cpsB;
 - Δ mutant strain 10cpsEF.

25

Figure 10

Nucleotide sequence alignment of the highly conserved 100-bp repeated element.

- 1) 100-bp repeat between cps2G and cps2H
- 30 2) 100-bp repeat within "cps2M"
 - 3) 100-bp repeat between cps20 and cps2P

Figure 11. The cps2, cps9 and cps7 gene clusters of S. suis serotypes 2, 9 and 7.

(A) Genetic organization of the cps2 gene cluster [84]. The large arrows represent potential ORFs. Gene designations are indicated below the ORFs. Identically filled arrows represent ORFs which showed homology. The small closed arrows indicate the position of the potential promoter sequences. | indicates the position of the potential transcription regulator sequence.

- (B) Physical map and genetic organization of the cps9 gene cluster [15]. Restriction sites are as follows: B: BamHI; P: PstI; H: HindIII; X:XbaI. The DNA fragments cloned in the various plasmids are indicated. The open arrows represent potential ORFs.
- (C) Physical map and genetic organization of the cps7gene cluster. Restriction sites are as follows: C: ClaI; P: PstI;
 Sc: ScaI. The DNA fragments cloned in the various plasmids are indicated. The open arrows represent potential ORFs.
 - Figure 12 (A) Ethidium bromide stained agarose gel showing PCR products obtained with chromosomal DNA of S. suis strains belonging to the serotypes 1, 2, 9 and 7 and the cps7H primer set. Strain designations are indicated above the lanes. C: negative control, no DNA present. M: molecular size marker (lambda digested with EcoRI and HindIII).
- (B) Ethidium bromide stained agarose gel showing PCR products obtained with serotype 7 strains collected in different countries and from different organs. Bacterial DNA suitable for PCR was prepared by using the multiscreen method as described previously [89]. Strain designations are indicated above the lanes. M: molecular size marker (lambda digested with EcoRI and HindIII).

REFERENCES

- 1. Arends, J. P., and H. C. Zanen. 1988. Meningitis caused by *Streptococcus suis* in humans. Rev. Infect. Dis. 10:131-137.
- 2. Arrecubieta, C., E. Garcia, and R. Lopez. 1995. Sequence and transcriptional analysis of a DNA region involved in the
- 5 production of capsular polysaccharide in *Streptococcus* pneumoniae type 3. Gene 167: 1-7
 - 3. Arrecubieta, C., R. Lopez, and E. Garcia. 1994. Molecular characterization of *cap3A*, a gene from the operon required for the synthesis of the capsule of *Streptococcus pneumoniae*
- type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176: 6375-6383.
 - 4. Clifton-Hadley, F.A. 1983. Streptococcus suis type 2 infections. Br. Vet. J. 139:1-5.

15

- 5. Charland, N., J. Harel, M. Kobisch, S. Lacasse, and M. Gottschalk. 1998. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiol. 144:325-332.
- 6. Cross, A. S. 1990. The biological significance of
- 20 bacterial encapsulation. Curr. Top. Microbiol. Immunol. 150: 87-95.
 - 7. Elliott, S. D. and J. Y. Tai . 1978. The type specific polysaccharide of *Streptococcus suis*. J. Exp. Med. 148: 1699-1704.
- 25 8. Feder, I., M. M. Chengappa, B. Fenwick, M. Rider and J. Staats. 1994. Partial characterization of *Streptococcus suis* type 2 hemolysin. J. Clin. Microbiol. 32:1256-1260.
 - 9. Gottschalk, M., R. Higgins, M. Jacques, M. Beaudoin, and
 - J. Henrichsen. 1991. Characterization of six new capsular
- types (23 through 28) of Streptococcus suis. J. Clin. Microbiol. 29:2590-2594.
 - 10. Gottschalk, M., S. Lacouture, and J. D. Dubreuil. 1995. Characterization of *Streptococcus suis* type 2 haemolysin.

Microbiology 141:189-195.

- 11. Gottschalk, M., A. Lebrun, M. Jacques, and R. Higgins.
- 1990. Haemagglutination properties of Streptococcus suis. J.
- Clin. Microbiol. 28: 2156-2158.
- 5 12. Guidolin, A., J. M. Morona, R. Morona, D. Hansman, and J. C. Paton. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. 1994. Infect. Immun. 62: 5384-5396.
- 10 13. Guitierrez, C., and J. C. Devedjian. 1989. Plasmid facilitating in vitro construction of PhoA fusions in Escherichia coli. Nucl. Acid. Res. 17: 3999.
 - 14. Higgins, R., M. Gottschalk, M. Boudreau, A. Lebrun, and J. Henrichsen. 1995. Description of six new capsular types (28)
- through 34) of *Streptococcus suis*. J. Vet. Diagn. Invest. 7:405-406
 - 15. Jacobs, A. A., P. L. W. Loeffen, A. J. G. van den Berg, and P. K. Storm. 1994. Identification, purification and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect. Immun. 62: 1742-1748.
 - 16. Jacques, M., M. Gottschalk, B. Foiry B.and R. Higgins. 1990. Ultrastructural study of surface components of Streptococcus suis. J. Bacteriol. 172:2833-2838.
- 17. Klein P., M. Kanehisa and C. DeLisi. 1985. The detection 25 and classification of membrane spanning proteins. Biochim. Biophys. Acta. 851: 468-476.
 - 18. Kolkman, M. A. B., D. A. Morrison, B. A. M. van der Zeijst, and P. J. M. Nuijten. 1996. The capsule polysaccharide synthesis locus of *Streptococcus pneumoniae* serotype 14:
- identification of the glycosyl transferase gene *cps14E*. J. Bacteriol. 178: 3736-3541.
 - 19. Kolkman, M. A. B., W. Wakarchuk, P. J. M. Nuijten, and B. A. M. van der Zeijst. 1997. Capsular polysaccharide synthesis in *Streptococcus pneumoniae* serotype 14: molecular analysis of
- 35 the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the

tetrasaccharide subunit. Mol. Microbiol. 26: 197-208.

- 20. Kolkman, M. A. B., B. A. M. van der Zeijst and P. J. M. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of
- 5 Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272: 1950219508.
 - 21. Konings, R. N. H., E. J. M. Verhoeven, and B. P H. Peeters. 1987. pKUN vectors for the separate production of both DNA strands of recombinant plasmids. Methods Enzymol.
- 10 153: 12-34.
 - 22. Korolik, V., B. N. Fry, M. R. Alderton, B. A. M. van der Zeijst, and P. J. Coloe. 1997. Expression of *Campylobacter hyoilei* lipo-oligosaccharide (LOS) antigens in *Escherichia coli*. Microbiol. 143: 3481-3489.
- 15 23. Leij, P. C. J., R. van Furth, and T. L. van Zwet. 1986. In vitro determination of phagocytosis and intracellular killing of polymorphonuclear and mononuclear phagocytes. In Handbook of Experimental Immunology, vol. 2. Cellular Immunology, pp. 46.1-46.21. Edited by D. M. Weir, L. A.
- 20 Herzenberg, C. Blackwell and L. A. Herzenberg. Blackwell Scientific Publications, Oxford.
 - 24. Lin, W. S., T. Cunneen, and C. Y. Lee. 1994. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in
- 25 Staphylococcus aureus. J. Bacteriol. 176: 7005-7016.
- 25. Liu, D., A. M. Haase, L. Lindqvist, A.A. Lindberg, and P. R. Reeves. 1993. Glycosyl transferases of O-antigen biosynthesis in *Salmonella enteritica*: Identification and characterization of transferase genes of group B, C2, and E1.
- 30 J. Bacteriol. 175: 3408-3413.
 - 26. Manoil, C., and J. Beckwith. 1985. A transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82: 8129-8133.
- 27. Marsh, J. L., M. Erfle, and E. J. Wykes. 1984. The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene

- 32:481-485.
- 28. Miller, J. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
- 29. Morona, J. K., R. Morona, and J. C. Paton. 1997.
- 5 Characterization of the locus encoding the *Streptococcus* pneumoniae type 19F capsular polysaccharide biosynthesis pathway. Mol. Microbiol. 23: 761-763.
 - 30. Muñoz, R., M. Mollerach, R. López and E. Garcia. 1997. Molecular organization of the genes required for the synthesis
- of type 1 capsular polysaccharide of *Streptococcus pneumoniae*; formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes.

 Mol. Microbiol. 25: 79-92.
 - 31. Pearce B. J., Y. B. Yin, and H. R. Masure. 1993. Genetic
- identification of exported proteins in *Streptococcus* pneumoniae. Mol. Microbiol. 9: 1037-1050.
 - 32. Roberts, I. S. 1996. The biochemistry and genetics of capsular polysaccharide production in bacteria. Ann. Rev. Microbiol. 50: 285-315.
- 20 33. Rossbach, S., D. A. Kulpa, U. Rossbach, and F. J. de Bruin. 1994. Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of *Rhizobium meliloti* L5-30. Mol. Gen. Genet. 245: 11-24.
 - 34. Rubens, C. E., L. M. Heggen, R. F. Haft, and R. M.
- Wessels. 1993. Identification of *cpsD*, a gene essential for type III capsule expression in group B streptococci. Mol. Microbiol. 8: 843-855.
 - 35. Rubens, C. E., L. M. R. Wessels, L. M. Heggen, and D. L. Kasper. 1987. Transposon mutagenesis of type III group B
- 30 Streptococcus: correlation of capsule expression with virulence. Proc. Natl. Acad. Sci. USA 84:7208-7212.
 - 36. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989.

 Molecular cloning. A laboratory manual. Second edition. Cold

 Spring Harbor Laboratory Press. Cold Spring Harbor. New York.
- 37. Smith, H. E., U. Vecht, H. J. Wisselink, N. Stockhofe-Zurwieden, Y. Biermann, and M. A. Smits. 1996. Mutants of

Streptococcus suis types 1 and 2 impaired in expression of muramidase-released protein and extracellular protein induce disease in newborn germfree pigs. Infect Immun. 64: 4409-4412.

- 38. Smith, H. E., H. J. Wisselink, U. Vecht, A. L. J.
- Gielkens and M. A. Smits. 1995. High-efficiency transformation and gene inactivation in *Streptococcus suis* type 2. Microbiol. 141: 181-188.
 - 39. Sreenivasan, P. K., D. L. LeBlanc, L. N. Lee, and P. Fives-Taylor. 1991. Transformation of *Actinobacillus*
- actinomycetemcomitans by electroporation, utilizing constructed shuttle plasmids. Infect. Immun. 59: 4621-4627.
 - 40. Stringele F., J.-R. Neeser, and B. Mollet. 1996. Identification and characterization of the *eps* (exopolysaccharide) gene cluster from *Streptococcus*
- thermophilus Sfi6. J. Bacteriol. 178: 1680-1690.
 - 41. Stockhofe-Zurwieden, N., U. Vecht, H. J. Wisselink, H.van Lieshout, and H. E. Smith. 1996. Comparative studies on the pathogenicity of different *Streptococcus suis* serotype 1 strains. In Proceedings of the 14th IPVS Congress. pp. 299.
- 20 42. van Kranenburg, R., J. D. Marugg, I. I. van Swam, N. J. Willem and W. M. de Vos. 1997. Molecular characterization of the plasmid-encoded *eps* gene cluster essential for exopolysaccharide biosynthesis in *Lactococcus lactis* Mol. Microbiol. 24: 387-397.
- 25 43. van Leengoed, L. A., E. M. Kamp, and J. M. A. Pol. 1989. Toxicity of *Haemophilus pleuropneumoniae* to porcine lung macrophages. Vet. Microbiol. 19: 337-349.
- 44. van Leengoed, L. A. M. G., U. Vecht, and E. R. M. Verheyen. 1987. Streptococcus suis type 2 infections in pigs in The Netherlands (part two). Vet Quart. 9, 111-117.
 - 45. Vecht, U., J. P. Arends, E. J. van der Molen, and L. A. M. G. van Leengoed. 1989. Differences in virulence between two strains of *Streptococcus suis* type 2 after experimentally induced infection of newborn germfree pigs. Am. J. Vet. Res.
- 35 50:1037-1043.
 - 46. Vecht, U., L. A. M. G. van Leengoed, and E. R. M.

Verheyen. 1985. Streptococcus suis infections in pigs in The Netherlands (part one). Vet. Quart. 7:315-321

- 47. Vecht, U., H. J. Wisselink, M. L. Jellema, and H. E. Smith. 1991. Identification of two proteins associated with
- virulence of *Streptococcus suis* type 2. Infect. Immun. 59:3156-3162.
 - 48. Vecht, U., H. J. Wisselink, N. Stockhofe-Zurwieden, and H. E. Smith. 1996. Characterization of virulence of the Streptococcus suis serotype 2 reference strain Henrichsen S
- 735 in newborn gnotobiotic pigs. Vet. Microbiol. 51:125-136.
 49. Vecht, U., H. J. Wisselink, J. E. van Dijk, and H. E. Smith. 1992. Virulence of *Streptococcus suis* type 2 strains in newborn germfree pigs depends on phenotype. Infect. Immun. 60:550-556.
- 15 50. Wagenaar, F., G. L. Kok, J. M. Broekhuijsen-Davies, and J. M. A. Pol. 1993. Rapid cold fixation of tissue samples by microwave irradiation for use in electron microscopy. Histochemical J. 25: 719-725.
- 51. Wessels, M. R. and M. S. Bronze. 1994. Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc. Natl. Acad. Sci. USA 91: 12238-12242.
 - 52. Wessels, M. R., A. E. Moses, J. B. Goldberg, and T. J. DiCesare. 1991. Hyaluronic acid capsule is a virulence factor
- for mucoid group A streptococci. Proc. Natl. Acad. Sci. USA. 88: 8317-8321.
 - 53. Yamane, K., M. Kumamano, and K.Kurita. 1996. The 25°-36° region of the *Bacillus subtilis* chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes. Microbiol. 142: 3047-3056.
 - 54. Butler, J. C., R. F. Breiman, H. B. Lipman, J. Hofmann, and R. R. Facklam. 1995. Serotype distribution of *Streptococcus pneumoniae* infections among preschool children in the United States, 1978-1994: implications fro development
- of a conjugate vaccine. J. Infect. Dis. 171: 885-889.

30

55. Charland, N., M. Jacques, S. Lacoutre and M. Gottschalk.

1997. Characterization and protective activity of a monoclonal antibody against a capsular epitope shared by *Streptococcus suis* serotypes 1, 2 and 1/2. Microbiol. 143:3607-3614.

- 56. Gottschalk, M., R. Higgins, M. Jacques, K. R. Mittal,
- and J. Henrichsen. Description of 14 new capsular types of Streptococcus suis. J. Clin. Microbiol. 27:2633-2636.
 - 57. Heath, P. J., B. W. Hunt, and J. P. Duff. 1996. Streptococcus suis serotype 14 as a cause of pig disease in the UK. Vet. Rec. 2:450-451.
- 10 58. Hommez, J., L. A. Devrieze, J. Henrichsen, and F. Castryck. 1986. Identification and characterization of Streptococcus suis. Vet. Microbiol. 16:349-355.

 59. Killper-Balz, R., and K. H. Schleifer. 1987.
 - Streptococcus suis sp. nov. nom. rev. Int. J. Syst. Bacteriol.
- 15 37:160-162.

2405.

30

- 60. Kolkman, M. A. B., B. A. M. van der Zeijst, and P. J. M. Nuijten. 1998. Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. Submitted for publication.
- 20 61. Lee, J. C., S. Xu, A. Albus, and P. J. Livolsi. 1994.

 Genetic analysis of type 5 capsular polysaccharide expression by Staphylococcus aureus. J. Bacteriol. 176:4883-4889.
 - 62. Reek, F. H., M. A. Smits, E. M. Kamp, and H. E. Smith. 1995. Use of multiscreen plates for the preparation of
- 25 bacterial DNA suitable for PCR. BioTechniques 19: 282-285.
- 63. Sau, S., N. Bhasin, E. R. Wann, J. C. Lee, T. J. Foster, and C. Y. Lee. 1997. The *Staphylococcus aureus* allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiol. 143: 2395-
 - 64. Sau, S., and C. Y. Lee. 1996. Cloning of type 8 capsule genes and analysis of gene clusters for the production of different capsular polysaccharides in *Staphylococcus aureus*.

 J. Bacteriol. 178: 2118-2126.
- 35 65. Sau, S., and C. Y. Lee. 1997. Molecular characterization and transcriptional analysis of type 8 capsule genes in

Staphylococcus aureus. J. Bacteriol. 179:1614-1621.

- 66. Smith, H. E., M. Rijnsburger, N. Stockhofe-Zurwieden, H.
- J. Wisselink, U. Vecht, and M. A. Smits. 1997. Virulent
- strains of Streptococcus suis serotype 2 and highly virulent
- strains of Streptococcus suis serotype 1 can be recognized by
 - a unique ribotype profile. J. Clin. Microbiol. 35:1049-1053.
 - 67. Yamazaki, M., L. Thorne, M. Mikolajczak, R. W.
 - Armentrout, and T. J. Pollock. 1996. Linkage of genes essential for synthesis of a polysaccharide capsule in
- 10 Sphingomonas strain S88. J. Bacteriol. 178:2676-2687.
 - 68. Zhang, L., A.Al-Hendy, P. Toivanen. and M. Skurnik. 1993.
 - Genetic organization and sequence of the $\it rfb$ gene cluster of
 - Yersinia enterolitica serotype 0:3: similarities to the dTDP-L-rhamnose biosynthesis pathway of Salmonella and to the
- 15 bacterial polysaccharide transport systems. Mol. Microbiol.
- 9:309-321.
 - 69 Clifton-Hadley, F.A. (1983). Streptococcus suis type 2 infections. Br. Vet. J. 139, 1-5.
 - 70 Vecht, U., van Leengoed, L. A. M. G. and Verheyen, E. R.
- 20 M. (1985). Streptococcus suis infections in pigs in The Netherlands (part one). Vet. Quart. 7, 315-321
 - 71 Arends, J. P. and Zanen, H. C. (1988). Meningitis caused by Streptococcus suis in humans. Rev. Infect. Dis. 10, 131-137.
- 25 72 Hommez, J., Devrieze, L.A., Henrichsen, J. and Castryck,
 - F. (1986). Identification and characterization of
 - Streptococcus suis. Vet. Microbiol. 16, 349-355.
 - 73 Killper-Balz, R. and Schleifer, K. H. (1987).
 - Streptococcus suis sp. nov. nom.rev. Int. J. Syst. Bacteriol.
- 30 37, 160-162.
 - 74 Gottschalk, M., Higgins, R. and Jacques, M. (1993).
 - Production of capsular material by Streptococcus suis serotype
 - 2 under different conditions. Can. J. Vet. Res. 57, 49-52.
 - 75 Higgins, R. and Gottschalk, M. (1990). Un update on
- 35 Streptococcus suis identification. J. Vet. Diagn. Invest. 2, 249-252.

76 Gottschalk, M., Higgins, R., Jacques, M., Beaudoin, M. and Henrichsen, J. (1991). Characterization of six new capsular types (23 through 28) of Streptococcus suis. J. Clin. Microbiol. 29, 2590-2594.

- 5 77 Gottschalk, M., Higgins, R., Jacques, M., Mittal, K. R. and Henrichsen, J. (1989) Description of 14 new capsular types of Streptococcus suis. J. Clin. Microbiol. 27, 2633-2636.
 - 78 Higgins, R., Gottschalk, M., Boudreau, M., Lebrun, A. and Henrichsen, J. (1995). Description of six new capsular types
- 10 (28 through 34) of Streptococcus suis. J. Vet. Diagn. Invest. 7, 405-406
 - 79 Aarestrup, F. M., Jorsal, S. E. and Jensen, N. E. (1998). Serological characterization and antimicrobial susceptibility of Streptococcus suis isolates from diagnostic samples in
- 15 Denmark during 1995 and 1996. Vet. Microbiol. 15, 59-66.
 - 80 MacLennan, M., Foster, G., Dick, K., Smith, W. J. and Nielsen, B. (1996). Streptococcus suis serotypes 7, 8 and 14 from diseased pigs in Scotland. Vet Rec. 139, 423-424.
 - 81 Sihvonen, L., Kurl, D. N. and Henrichsen, J. (1988).
- 20 Streptococcus suis isolates from pigs in Finland. Acta Vet. Scand. 29, 9-13.
 - 82 Boetner, A. G., Binder, M. and Bille-Hansen, V. (1987). Streptococcus suis infections in Danish pigs and experimental infection with Streptococcus suis serotype 7. Acta Path.
- 25 Microbiol. Immunol. Scand. Sect. B, 95, 233-239.
 - 83 Smith, H. E., Veenbergen, V., van der Velde, J., Damman, M., Wisselink, H. J. and Smits, M. A. (1999). The cps genes of Streptococcus suis serotypes 1, 2 and 9: development of rapid serotype-specific PCR assays. J. Clin. Microbiol. submitted
- 30 84 Smith, H. E., Damman, M., van der Velde, J., Wagenaar, F., Wisselink, H. J., Stockhofe-Zurwieden, N. and Smits, M. A. (1999). Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect.
- 35 Immun. 67, 1750-1756.
 - 85 Miller, J. (1972). Experiments in Molecular Genetics.

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

86 Sambrook, J., E. F. Fritsch, and T. Maniatis. (1989).

Molecular cloning: a laboratory manual. Cold Spring Harbor

Laboratory, Cold Spring Harbor, NY.

- 87 Allen, A. and Maskell, D. (1996). The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis. Mol. Microbiol. 19, 37-52.
- 88 Wang, L. and Reeves, P. R. (1998). Organization of

 Escherichia coli O157 O antigen gene cluster and

 identification of its specific genes. Infect. Immun. 66, 3545
 3551.
 - 89 Wisselink, H. J., Reek, F. H., Vecht, U., Stockhofe-Zurwieden, N., Smits, M. A. and Smith, H. E. (1999).
- Detection of virulent strains of Streptococcus suis type 2 and highly virulent strains of Streptococcus suis type 1 in tonsillar specimens of pigs by PCR. Vet. Microbiol. 67, 143-157.
- 90 Konings, R. N. H., Verhoeven, E. J. M. and Peeters, B. P. 20 H. (1987). pKUN vectors for the separate production of both DNA strands of recombinant plasmids. Methods Enzymol. 153, 12-34.

CLAIMS

- 1. An isolated or recombinant nucleic acid encoding a capsular gene cluster of *Streptococcus suis* or a gene or gene fragment derived thereof.
- 2. A nucleic acid according to claim 1 encoding a

10

- 5 Streptococcus suis serotype-specific central region, preferably encoding at least one enzyme or fragment thereof involved in polysaccharide biosynthesis.
 - 3. A nucleic acid according to claim 1 or 2 hybridising to a nucleic acid encoding a gene derived from a *Streptococcus suis* serotype 1, 2 or 9 capsular gene cluster.
 - 4. An isolated or recombinant nucleic acid encoding a capsular gene cluster of *Streptococcus suis* serotype 2 or a gene or gene fragment derived thereof, preferably as identified in Figure 3.
- 5. An isolated or recombinant nucleic acid encoding a capsular gene cluster of *Streptococcus suis* serotype 1 or a gene or gene fragment derived thereof, preferably as identified in Figure 4.
- 6. An isolated or recombinant nucleic acid encoding a capsular gene cluster of *Streptococcus suis* serotype 9 or a gene or gene fragment derived thereof, preferably as identified in Figure 5.
 - 7. A nucleic acid probe or primer derived from a nucleic acid according to anyone of claims 1 to 6 allowing species or
- 25 serotype specific detection of Streptococcus suis.
 - 8. A probe or primer according to claim 7 provided with at least one reporter molecule.
 - 9. A diagnostic test comprising a probe or primer according to claim 7 or 8.
- 30 10. A protein or fragment thereof encoded by a nucleic acid according to anyone of claims 1 to 6.
 - 11. A protein or fragment according to claim 10 capable of polysaccharide biosynthesis.

12. A method to produce a *Streptococcus suis* capsular antigen comprising using a protein or fragment according to claim 11.

- 13. A Streptococcus suis capsular antigen obtainable by a method according to claim 12.
- 14. A vaccine comprising an antigen according to claim 13 and further comprising a suitable carrier or adjuvant.
 - 15. A recombinant *Streptococcus suis* mutant provided with a modified capsular gene cluster.
- 16. A recombinant micro-organism comprising at least a part of a capsular gene cluster of *Streptococcus suis*.
 - 17. A recombinant micro-organism according to claim 16 comprising a lactic acid bacterium.
 - 18. A vaccine comprising a mutant according to claim 15 or a micro-organism according to claim 16 or 17.
- 19. A vaccine according to claim 18 comprising a *Streptococcus* mutant deficient in capsular expression.
 - 20. A vaccine according to claim 19 wherein said *Streptococcus* mutant has been derived by recombinant techniques, preferably through homologous recombination.
- 20 21. A vaccine according to claim 19 or 20 wherein said mutant is capable of surviving in an immune-competent host.
 - 22. A vaccine according to claim 21 wherein said mutant is capable of surviving at least 4-5 days, preferably at least 8-10 days, in said host.
- 23. A vaccine according to any of claims 19 to 22 comprising a mutant capable of expressing a *Streptococcus* virulence factor or antigenic determinant.
 - 24. A vaccine according to any of claims 19 to 23 comprising a mutant capable of expressing a non-Streptococcus protein.
- 30 25. A vaccine according to claim 24 wherein said non-Streptococcus protein has been derived from a pathogen.
 - 26. A method for controlling or eradicating a Streptococcal disease in a population comprising vaccinating subjects in said population with a vaccine according to anyone of claims
- 35 18 to 25.
 - 27. A method for controlling or eradicating a Streptococcal

disease comprising testing a sample collected from at least one subject in a population partly or wholly vaccinated with a vaccine according to anyone of claims 19 to 25 for the presence of encapsulated Streptococcal strains.

- 5 28. A method for controlling or eradicating a Streptococcal disease comprising testing a sample collected from at least one subject in a population partly or wholly vaccinated with a vaccine according to anyone of claims 19 to 25 for the presence of capsule-specific antibodies directed against

 10 Streptococcal strains.
 - 29. A method for controlling or eradicating a Streptococcal disease in a population comprising selecting subjects in said population vaccinated with a vaccine according to anyone of claims 19 to 25 and testing a sample collected from at least one subject in said population for the presence of encapsulated Streptococcal strains and/or for the presence of capsule-specific antibodies directed against Streptococcal strains.

15

ig.

3/59

AAGCTTGGAT	ATTGATCACA	TGATGGAGGT	GATGGAAGCA	TCTAAGTCTG	CAGCGGGGTC
	AGTCCGCAGG				
ACATTATCGT	TGTGACGATT	ACAGGTGGGC	TATCGGGTAG	TTTTAATGCG	GCACGTGTAG
	GTATATCGAA				
GATAGTTTGT		GGAAATGGAT		ACCAAATCAA	TCGCTTAATT
	TAGATTTTCC				
	AAGCTCCTCT				AGAATGGAAG
	TTGGTAGGCA		TCTTCTCAAT		11011111001110
	AAGTGCTGAA				CCTCATAACA
	AGCAGCCTTT				001011111011
	TTATGGCCCA			TCCAACAATT	СТСДСДСТТС
	GTTTTCCAAC		GACGAAGTTG		CICHOMOTIO
	TTTTATGCTG			GGCTACGAAG	TCANACCCTC
	TAATAATTT		TTCCGCTATA		IGMMGCGIG
				TATTGGATTT	これの中でもの中でも
	TAAGTTCGAG				CATICATICA
	GAATTGCTCC		CAAAATCTTG		CAMCTCTTCC
	AATCAGCTTT				CAIGIGIIGG
	AAAGAATCCC		TGAAAGGTCA		mmmma mmcca
	TACGGGATGT			CAGTCTTTTA	TTTTATTCCA
	TAAATGTGAT		TGTGTTCCGC		ma cmcca mma
	GTAGAGCGAG			ATTGGTATCG	TAGTCGATTA
	TTTGATGAAG				
	GGAGGGCAGG			ATTTTATATA	GATGACGCGA
TTATCTGTAT	CAAGATAGTG	TAAAGGTAGG	CTATGACTAG		
	TCATCCTCAA				TTACGATGGC
	GCTATATCAT		GAGAGGGTTG		
	GAAAAACTTA		TTTGGAAGAT	ACTTTCCAAT	TCTTCTAGGT
CAATTCCATC	TAAATTCCGT	TCAATTGTTT	GATAGGGGAT	TCCTTGATGT	
CGAATGAGCT	CTATCATTCG	TGAATAGGTA		TCAAGATTTC	CGTTTTTCCA
GCCAAGGTTT	CCATTTGTGT	GAGAATATAT	AGAGCTTGTT	GACTACCAGC	
	AGCTGGTCTT		GACATGATAG	TCCATTAACA	GACTTTGAAC
GGAGGAAATC	AATTCTGCCA	ATCCCTCTTG	CTGGTGATAG	TAGTTGAATA	
GGTAATTTTC	CCGCCCAATA	AGACTTTCTT	TTAGACAAAT	CCGAAAATCT	TCATAGGTAA
TTCTTGAAAG	TCTGTAGGAT	TGAGCTCTAC		TTGGAAATCT	
CTATCCTCTA	AGATATAATA	ACCGCTTTTT	TCGACAGCGT	AGATCTTATT	TTGGTATTTT
	TAGCCTTTTG		TTGCTACAAT		
	CGGATAGAAG		TCCACGTTTG	AATCGATGTT	CCTCTATTCC
AGTCAAAATA	TCTTGGATGA	TAACTTGATA	TTTTTTCATC	TAGGTCCCCT	
TTTTTATAGA	CTATGTTACT	AGCTAGTATA	TAGAAAAAAT	TGAAGAAAGA	CAATATATGA
ATAATGGGGT	TGAGGTTCAG	GAATTAAGCT	ACTCTATGGT	ATAATTAAGT	
GATGAAAATA	ATTATACCTA	ATGCAAAAGA	AGTAAATACA	AATCTAGAGA	ATGCCTCGTT
	TCTGATCGAA				
TTGATGTAAA	AAAGATGGCT	GCCTTTTATA	AATTGAATGA	AGCAAAGGCT	GAGTTAGAAG
CTGACCGTTG	GTATCGAATC	AGGACAGGTC	AAGCAAAAAC	CTATCCAGCC	
TGGCAGTTAT	GTATCGAATC	AGGACAGGTC CATGTATCGT	AAGCAAAAAC	CTATCCAGCC	
TGGCAGTTAT	GTATCGAATC ATGATGGTCT	CATGTATCGT	AAGCAAAAAC TATATGGATA	CTATCCAGCC GGCGAGGTAT	
TGGCAGTTAT	GTATCGAATC ATGATGGTCT ATTTACGTGA	CATGTATCGT	AAGCAAAAAC TATATGGATA GTAGCGACAG	CTATCCAGCC GGCGAGGTAT CCTTATACGG	AGATTCGAAA
TGGCAGTTAT GAAGAAAATT ATTGATTCAT	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT	CATGTATCGT CCACGTTCGT TCATTTCACC	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG	AGATTCGAAA
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG	AGATTCGAAA GGAGCTTAAA
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG	AGATTCGAAA GGAGCTTAAA
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAA	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGGCA	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC ATCAATAAAA	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT ATGTGAAATT	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA ATGAAAAAGA	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGCCA TAACGTTTTC	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA CAGCGCTAAA	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC CCTTCATACG
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC ATCAATAAAA AAGGGTAGAA	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT ATGTGAAATT AAATATTAAT	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA ATGAAAAAGA TTCTATGATA	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGGCA TAACGTTTTC TAATGGATGC	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA CAGCGCTAAA GTTATAGGTA	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC CCTTCATACG
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC ATCAATAAAA AAGGGTAGAA AAGGGTTGTTT	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT ATGTGAAATT AAATATTAAT ATGAAAAAGA	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA ATGAAAAAGA TTCTATGATA GAAGCGGACG	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGGCA TAACGTTTTC TAATGGATGC AAGTAAGTCG	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA CAGCGCTAAA GTTATAGGTA TCCAAGTTCA	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC CCTTCATACG AAAGTCTAGG
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC ATCAATAAAA AAGGGTAGAA AAGGTTGTTT AATTGGTAAA	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT ATGTGAAATT AAATATTAAT ATGAAAAAGA TTTTGCGCTT	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA ATGAAAAAGA TTCTATGATA GAAGCGGACG TTGGGACTTT	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGGCA TAACGTTTTC TAATGGATGC AAGTAAGTCG ATTCCATTAC	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA CAGCGCTAAA GTTATAGGTA TCCAAGTTCA TCTATGTTTG	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC CCTTCATACG
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC ATCAATAAAA AAGGGTAGAA AAGGTTGTTT AATTGGTAAA CCATGTATCG	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT ATGTGAAATT AAATATTAAT ATGAAAAAGA TTTTGCGCTT CTATAACATC	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA ATGAAAAAGA TTCTATGATA GAAGCGGACG TTGGGACTTT CTAGGATTTCC	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGGCA TAACGTTTTC TAATGGATGC AAGTAAGTCG ATTCCATTAC GGTATTTAAA	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA CAGCGCTAAA GTTATAGGTA TCCAAGTTCA TCTATGTTTG CTATATTGTG	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC CCTTCATACG AAAGTCTAGG TTCTTAGTGA
TGGCAGTTAT GAAGAAAATT ATTGATTCAT GATAGGCAAT AAGTTGGTGA CTCCCCAGAT GCAGGTCAGC TGGTTGGCTA GGTGGATGGC ATCAATAAAA AAGGGTAGAA AAGGTTGTTT AATTGGTAAA CCATGTATCG ACGCTTTTGC	GTATCGAATC ATGATGGTCT ATTTACGTGA CCTTTTGAAT CAGTCTTTGA TGATGAACTG TCAGAAAAGA TAAAAGTTCA AGAACAATAT TTTGAATATT ATGTGAAATT AAATATTAAT ATGAAAAAGA TTTTGCGCTT	CATGTATCGT CCACGTTCGT TCATTTCACC AACAGTACTG ATTCTCTCAC TTAGTTAAAA CTCGACTATA TCAGGAATTA GTACTTCCGA ATGAAAAAGA TTCTATGATA GAAGCGGACG TTGGGACTTT CTAGATTTCC GGCAGTATTG	AAGCAAAAAC TATATGGATA GTAGCGACAG TCACCGCTTA GCGACCGTAT TGGCTTCGTC TTCTTTTCAT TCAAAAAAAG TCGGACATTC ATCAACGGCA TAACGTTTTC TAATGGATGC AAGTAAGTCG ATTCCATTAC GGTATTTAAA GCTGGATTAT	CTATCCAGCC GGCGAGGTAT CCTTATACGG GATTTTCAAG TATGACCAAG AGAATTTGAG GGAAGAAAAA GCAGAGGAAG AAGATTTTAA AACCAACTTA CAGCGCTAAA GTTATAGGTA TCCAAGTTCA TCTATGTTTG CTATATTGTG TGATGTGGCG	AGATTCGAAA GGAGCTTAAA CAGGTGTTTT ATTGCTGTCC CCTTCATACG AAAGTCTAGG TTCTTAGTGA TAAGAAAGCG

DNA Serotype 2

4/59

				CGACTAAATT	CAAATTCGAC
	TATGAAATGA				
				ATACGACCAA	GATAACATCA
CCGCTTTATT	GGATGACATA	TCCAAAATGG	AATCTACTCA	ACTAGCAACT	
				TGAATGGCGA	GAGTCAAGCG
	ACGGAGTTTT				
CTTTTCTTCA	AAAGTGAAAA	AAATATATAG	TTTCAAAGTG	ACTCAGACTG	TTGAAACAGC
TACTAAGCAG	GTGAGTGGAG	ATAGCTTTAA	TATCTATATT	AGTGGTATTG	
ATGCTTATGG	ACCGATTTCT	ACGGTCTCTC	GTTCAGATGT	CAATATCATT	ATGACTGTCA
ATCGTGCGAC	ACATAAGATT	TTATTGACAA	CTACTCCACG	AGATTCATAC	
GTTGCTTTCG	CAGATGGCGG	GCAAAATCAA	TACGATAAAC	TAACACATGC	TGGTATTTAC
GGTGTCAATG	CTTCTGTGCA	CACCTTAGAA	AATTTTTATG	GGATTGACAT	
TAGCAATTAT	GTGCGGTTGA	ACTTCATTTC	CTTCCTTCAA	TTAATCGACT	TGGTGGGTGG
AATTGATGTA	TATAACGATC	AAGAATTTAC	AAGTTTACAT	GGGAATTATC	
ATTTCCCTGT	TGGACAAGTT	CATTTAAACT	CAGACCAAGC	ATTAGGCTTC	GTTCGAGAGC
GCTACTCTTT	AACAGGGGGT	GACAATGACC	GTGGTAAAAA	CCAGGAAAAA	
				ATCTAAAAAA	TTACCAGGCA
	GATTGGAAGG				
				CAATTTACAG	TAGAGTCACA
	GGAACAGGAC				
				GGAGCAATCA	AAGGCAGCGA
	ACTTGTTGAA				
ATCAAGAAGT	AAATGCAATC	GAAATCGATG	TTTTATTCTT	ACTAAAAACA	ATTTGGAGAA
	AATTCTCTTA				
GTCTACAGTA	GTTTTTTAGT	GACACCTCAA	TATGACTCCA	CTACCCGTAT	CTATGTAGTG
	TTGAAGCCGG				
				TCACAAGATG	TATTGACACA
	GAATTGAATC				
TTTCTATTCC	TGTTGATACT	CGTATCGTTT	CTATTTCTGT	GCGTGATGCG	GATCCAAATG
	TATTGCAAAT				
GTTGAGGTCA	CCAAGGTAAG	CGATGTGACG	ACACTTGAAG	AAGCAGTCCC	AGCGGAAGAA
CCAACCACTC	CAAATACAAA	ACGAAATATC	TTGCTTGGTT	TATTAGCTGG	
AGGTATCTTG	GCAACAGGTC	TTGTACTGGT	TATGGAGGTT	TTGGATGACC	GTGTAAAACG
	ATCGAAGAGG				
CAGATTCGAA	GAAATTAAAA	TAGGAGAACA	ATATGGCGAT	GTTAGAAATT	GCACGTACAA
	AGTAAATAAA				
AATATTCAGC	TTAGCGGAGC	AGATATTAAG	GTTGTTGGTA	TTACCTCTGT	TAAATCGAAT
	GTACAACTGC				
AGGTTATAAG	ACCGTCTTGG	TGGATGCAGA	TATCCGAAAT	TCAGTCATGC	CTGGTTTCTT
CAAGCCAATT	ACAAAGATTA	CAGGTTTGAC	GGATTACCTA	GCAGGGACAA	
CAGACTTGTC	TCAAGGATTA	TGCGATACAG	ATATTCCAAA	CTTGACCGTA	ATTGAGTCAG
GAAAGGTTTC			TACAAAGTAA		
AATCTACTTG	CGACTCTTCG	TCGCTATTAT	GATTATGTTA	TCGTTGACTG	TCCACCATTA
GGACTGGTAA	TTGATGCAGC	TATCATTGCA	CAAAAATGTG	ATGCGATGGT	
TGCAGTAGTA	GAAGCAGGCA	ATGTTAAGTG	CTCATCTTTG	AAAAAAGTAA	AAGAGCAGTT
GGAACAAACA	GGCACACCGT	TCTTAGGCGT	TATCTTGAAC	AAATATGATA	
TTGCCACTGA	GAAGTATAGT	GAATACGGAA	ATTACGGCAA	AAAAGCCTAA	TTTCTCAGAT
AACATAAGTT	TGATAAGTAG	GTATTAATAT	GATTGATATC	CATTCGCATA	
TCATATTTGG	TGTGGATGAC	GGTCCCAAAA	CTATTGAAGA	GAGCCTGAGT	TTGATAAGCG
AACCTTATCC	TCAAGGTGTT	CGCTATATCG	TAGCGACATC	TCATAGACGA	
AAGCITATCO	TTGAAACACC	AGAAAAAATC	ATCATGATTA	ACTTTCTTCA	ACTTAAAGAG
CCACTACCAC	AAGTTTATCC	TCDADTACGA	TTGTGCTATG	GTGCTGAATT	
CADAMADAVCAC	ДДДСДТДТСС ТДТДТДТСТ	TAAGCAAACT	TGAAAAAAAG	AAAGTACCAA	CACTTAATGG
CACCACCAYA OTWITHING!	VAUCUTAICI	ACTTCACTAC	GGATACTCCT	TGGAAAGAGA	
CICGIGCIMI	TITOTOTIOG	ATCACCCTAC	TTGGGCTAAC	TCCCGTACTT	GCCCATATAG
1 I CHAGHAGC	TOTOTACOMA	THETCACTOR	AGAGAGTAGA	AAAGCTAATT	
AGCGTTAIGA	CCTACACTCA	CCTANATACT	AACCATGTGT	TGAAGCCTGC	тттааттссс
GACAAGGGAT	DACAA MOMMAA	A A A A C C TA A C T	CCDADALALA	TAGAGCAGGA	1111111000
GAACGAGCAA	TCTCTTCCTT	CCCDTDTCCD	ΤΑΣΤΑΤΙΤΙΙ	AGTAGACCTC	CGTTTATGAG
TTTAGTACAT	TOTOTIOCIA	DANABCACTA	ТССТСАССАТ	AGAGCGAAGG	55111110110
		HIUMUNAHA	TOGIOUGGUI	Down of the second	

Fig. 3 cont.

		5/.			
	GAAAAATCCT				CCTCATAGAA
	AGCTATGAAT				
	ATATGATAGC				TATACCAAAT
	ATCGTTCTGG				
TGCATTTTTT	ATATCTCGTA	TGCCGGTTGA	ATTTGAGTAT	AGAGGTAATC	TGATAGAGTT
TGAAAAAACA	TTTAACTATA	GTATAATATT	TGTAATTTTT	CTTATGGCAG	
TTTCATTTAT	GTTAGAGAAT	AATTTCGCAC	TTTCAAGACG	TGGTGCCGTG	TATTTCACAT
TAATAAACTT	CGTTTTGGTA	TACCTATTTA	ACGTAATTAT	TAAGCAGTTT	
AAGGATAGCT	TTCTATTTTC	GACAACCTAT	CAAAAAAAGA	CGATTCTAAT	TACAACGGCT
GAACTATGGG	AAAATATGCA	AGTTTTATTT	GAATCAGATA	TACTATTTCA	
AAAAAATCTT	GTTGCATTGG	TAATTTTAGG	TACAGAAATA	GATAAAATTA	ATTTACCATT
ACCGCTCTAT	TATTCTGTTG	AAGAAGCTAT	AGGGTTTTCA	ACAAGGGAAG	
TGGTCGACTA	CGTCTTTATA	AATTTACCAA	GTGAATATTT	TGACTTAAAG	CAATTAGTTT
CAGACTTTGA	GTTGTTAGGT	ATTGATGTAG	GCGTTGATAT	TAATTCATTC	
GGTTTTACTG	TGTTGAAGAA	TAAAAAAATC	CAAATGCTAG	GTGACCATAG	CATCGTCACT
TTTTCCACAA	ATTTTTATAA	GCCTAGTCAC	ATCTGGATGA	AACGACTTTT	
	GGAGCAGTAG				TTTTGTTAAT
	CGTAGAGATG				
	TGGACGCATA				GTTGATGCCG
	GAAAGAATTA				
	ACAACGATCC				AAAAACAAGT
	TACCACAATT				
	CGTCCGCCTA				GTCAAAAGAG
	TTTAAACCAG				
	CACAGATTTT				ATTGATAATT
	GTCAGACATT				
	AGGGAGGTCA				TAGGGGATAT
	TATATTATTG				
	TTTCGTAGAA				ТТАТТААТТА
	TACAAGAGAA				
	ATAATGGAGC				TGGTTCAGCA
	TTTATGATAT				
	AATGATACCT				TTGGTCCTTT
	TTTAAGAAGC				
	CGGTCATGAA				CGACAGTATT
	TGAGAGTTTG				0011011011111
	ATATTGAAAA				TCCTGAAACA
	CTTATGGAAC				
	GTACGTGAGT				ΑΨΤΑСΤΑΨΨΨ
		СТСАВВЕТАВ	CTDTCDDCTD	ATCATTCGAG	
WGITIATOWA			CTATGAAGTA		
CCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATCATATTCA	AGAAAAGATT	TTGTTTTGAT	AACGAATGTA	
	ATCATATTCA GAAATTGAAA	AGAAAAGATT AAAGAAACAG	TTGTTTTGAT GGTTCGATAA	AACGAATGTA AGATAAGCGT	GAGCATAATT
ATAAAGTTTG	ATCATATTCA GAAATTGAAA TTGGAACAGT	AGAAAAGATT AAAGAAACAG CTATAATCAG	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA	AACGAATGTA AGATAAGCGT AATATATTCG	GAGCATAATT TGAAAATGCA
ATAAAGTTTG TTTGCTTATT	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA	AGAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT	GAGCATAATT TGAAAATGCA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA	GAGCATAATT TGAAAATGCA ATAGAGAAGT
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT	AGAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA	GAGCATAATT TGAAAATGCA ATAGAGAAGT
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA	AGAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG TCCATGCTGG	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG TCCATGCTGG TAGATAAGAA	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA	AGAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG TCCATGCTGG TAGATAAGAA CTAGTGCCAG	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG	AGAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC TCCAATTCTA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG TCCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTTTGACTACT	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC TCCAATTCTA TCATATCATA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG TCCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC TTGCTCAATA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT TGCCATAGAA	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTTTGACTACT AATAAGGTTG	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC TCCAATTCTA TCATATCATA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TGAGTATGAG TCCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT CAATAATACT	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC TTGCTCAATA ACCGCTGTCT	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT TGCCATAGAA TAGAAGGCAT	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTTTGACTACT AATAAGGTTG TTATCTGAAG	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC TCCAATTCTA TCATATCATA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TCATGCTGG TCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT CAATAATACT AATTACCTTT	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA GTTGTGGCAT
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC TTGCTCAATA ACCGCTGTCT GTTCATGAGA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT TGCCATAGAA TAGAAGGCAT TTATTGTCAA	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTTTGACTACT AATAAGGTTG ATTATCTGAAG ACCTAAATTC	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC TCCAATTCTA TCATATCATA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TCATGCTGG TCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT CAATAATACT AATTACCTTT CGATCAATTT	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA GTTGTGGCAT
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC TTGCTCAATA ACCGCTGTCT GTTCATGAGA TTTAATGGGG	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT TGCCATAGAA TAGAAGGCAT TTATTGTCAA CGTTTTGCTG	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTTTGACTACT AATAAGGTTG TTATCTGAAG ACCTAAATTC ATAAGATTGT	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TGATGGAGTC TCCAATTCTA TCATATCATA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TCATGCTGG TCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT CAATAATACT AATTACCTTT CGATCAATTT CAGGCTGTGG	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA GTTGTGGCAT
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC TTGCTCAATA ACCGCTGTCT GTTCATGAGA TTTAATGGGG AAAACAATCA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT TGCCATAGAA TAGAAGGCAT TTATTGTCAA CGTTTTGCTG CCTCATATCA	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTATTAACTA TTTGACTACT AATAAGGTTG TATCTGAAG ACCTAAATTC ATAAGATTGT AAGATTGT AAGATTGT AAGATTGCCA	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TCGATGTGATCT TCAATTCTA ACATAATCAT ACATAATCA ACATAATCA ATCTCTGATT GACAGTTTCA AATCAGTGTA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TCATGCTGG TCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT CAATAATACT AATTACCTTT CGATCAATTT CAGGCTGTGG ATCTACAATG	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA GTTGTGGCAT CAAACCATAT
ATAAAGTTTG TTTGCTTATT TGAAGCACTT AGGGGAAGAA TTGACAGTTG AACAAGTCAA AAGTTGTTTA TATGGGGCAG TGAATTTGAA AGTTGGTGCG ATTTTAATCC TTGCTCAATA ACCGCTGTCT GTTCATGAGA TTTAATGGGG AAAACAATCA GGGTAGATAA	ATCATATTCA GAAATTGAAA TTGGAACAGT TTCATGGTCA TCTTCTACTA GGAGCGAAAT TGAGCAATTA AGAAAGATTT AAGGATAAGT ATAAGGTTCT GCGCATGTTA CAAGTTGAAG AAAAGGGATT TGCCATAGAA TAGAAGGCAT TTATTGTCAA CGTTTTGCTG CCTCATATCA	AGAAAAGATT AAAGAAACAG CTATAATCAG CGAGGTTGGA AACTAAATCT ACTGGAATAA TCACAAGAAC TCTTGGGATT TATGAAAAAG CTTGGAACTT TCCTACCTAA TTATTAACTA TTTTGACTACT AATAAGGTTG TTATCTGAAG ACCTAAATTC ATAAGATTGT AAGATTGCT AAGATGACCA TATCAGTCCG	TTGTTTTGAT GGTTCGATAA GAGCTGTTAA GGAACGAACC TCTTCTAGAT AGATAATCTT AAATTAATGA TTATTGTTGA ATTCTATATC ATAAAAGGCT TCGATTCTA TCATATCATA	AACGAATGTA AGATAAGCGT AATATATTCG CATCTTTACT GTGGGCTTTA CACAGAGTTA TATGGATAGT TCATGCTGG TCATGCTGG TAGATAAGAA CTAGTGCCAG CGTAGGAAAT TCATCACTAT CAATAATACT AATTACCTTT CGATCAATTT CAGGCTGTGG ATCTACAATG TGTTCGAGAA	GAGCATAATT TGAAAATGCA ATAGAGAAGT TTATCAACAA AGCAGAATTA CATTAAGAGA TCTAAACAGA GTTGTGGCAT CAAACCATAT AGATTTGACA

	•	0 / .	, ,		
				TCGAACAGAA	TCCAAAAGCT
			GGAGAAGAGT		
				CAAGTCAGAC	GAATGGATTA
TTATGCAAAT	ACCACTGAAT		GTTTGATATT		
				AGCAATGGCA	TGCGGTAAAC
			GTGAGATGGT		
				TATCAAAAGT	AATTCTTCAG
TTATCGGAAA	ATATAAATCT	CAGAAAAAA	ATTGGTAATA	ATTCTATAGA	
ACGTCAAAAA	GAACATTTTT	CGTTAAAAAG	CTATGTAAAA	AATTTTTCGA	AAGTCTACAC
CTCCCTCAAA	GTATACTGAT	TGGCTGAAGT	GAATGCTTTA	GTATAGCGAT	
TTATCGTATT	CTCATTCGAT	AAAACAAATG	TTCAGAAACA	GTTATAAGTT	ATTTCTAAAG
GGCACCTCTA	TAAACTCCCA	AAATTGCGAA	TTTGGAGTTA	CGAAAGCCTT	
				AGCTCCCCTA	AAATAGAAGA
TAACAGAAGG	GAGCCTTCAA	AAACTTCATT	TTTAATTGGA	TTGTAGAAAA	
ACTGTTAAAT	CAATATTTAG	ATTTTTAGGA	GTTCAGTTTT	TGGGGGGAGA	GCTTAATAAT
			GTAAAATCAG		
				CTTTTACAAT	GGTTAATAAC
GAAAGTGAGA	TAATAGAGTC	ATTTATACGG	TATAATTATA	ACTTTATTGA	
CGAGATGGTC	ATTATTGATA	ATGGTTGTAC	AGATAACACG	ATGCAAATTA	TTTTTAATTT
GATTAAAGAG	GGATATAAAA	TATCCGTATA	TGATGAGTCT	TTAGAGGCAT	
ATAATCAGTA	TCGACTTGAT	AATAAATATC	TAACGAAAAT	AATTGCTGAA	AAAAATCCAG
ATTTGATAAT	ACCTTTGGAT	GCGGATGAAT	TTTTAACAGC	CGATTCAAAT	
				ATTATGTGAA	TTGGCAATGG
TTTGTTATGA	CTAAAAAAAGA	TGATATTAAT	GATTCGTTTA	TACCACGTAG	
AATGCAATAT	TGTTTTGAAA	AACCTGTTTG	GCATCATTCT	GATGGTAAAC	CAGTTACTAA
ATGTATAATT	TCCGCTAAGT	ATTACAAAAA	AATGAATTTA	AAGCTATCGA	
TGGGACATCA	CACTGTTTTT	GGTAACCCAA	ATGTAAGGAT	AGAACATCAT	AATGATTTGA
AATTTGCACA	TTATCGAGCT	ATTAGCCAAG	AGCAATTAAT	TTATAAAACA	
				ATATCGAAAC	AGCTCAAAGA
ACAAATCAGA	TCCCCCTCAT	TGAATCTGGC	GTGGATATGT	GGGAAACGGC	
VCITTITION.	IGGCGCICAI	10111101000	0100		
GAGAGAAGCC	TCTTATTCAG	GTTATGATTG	TAATGTTATA	CATGCACCAA	TTGATTTAAG
GAGAGAAGCC TTTTTGTAAA	TCTTATTCAG GAAAATATTG	GTTATGATTG TAATAAAATA	TAATGTTATA TAACGAACTA	CATGCACCAA TCCAGAGAAA	
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA	TCTTATTCAG GAAAATATTG ACGCGTGATG	GTTATGATTG TAATAAAATA AAAACGGGAA	TAATGTTATA TAACGAACTA GAGAAATGGC	CATGCACCAA TCCAGAGAAA TGTTCGTGCA	
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA	TATAATGTGG
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT	TATAATGTGG
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA	TATAATGTGG GACGATCTTA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT	TATAATGTGG GACGATCTTA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC	TATAATGTGG GACGATCTTA TTTTACCGCA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG	TATAATGTGG GACGATCTTA TTTTACCGCA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTCAG	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTTATTTGTA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTTATTTGTA GAAAAATGAG	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTTGTTGC	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTTATTTGTA GAAAAATGAG TTATTAGTAA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTTGTTGC GTTCTAGCGA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA TTCTGTGATT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTTGTTGC GTTCTAGCGA TGTATAGTTA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAAATAAC	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAAA GGAATATGTC	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT ATTAGGGTAT ATTAGGGTAT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC TTCAATGATG	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTCAG	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT ATTAGGGTAT TCCTATAACA TTTTAGCAAC	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATAA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AAGATATTGA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGCC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTCAG TGATTTTAGA	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGGCTT ATGCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAG GTTGTTTACT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA AGTTTGATA TTTATCAAT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AGATATTGA CGATATTAGG CGATATTAGG	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTCAG TGATTTTAGA AATAAGATG	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA AGTTTGATA AGTTTGATA TTTATCAAT AGTTTGATAA TTTATCAAT AGTTTGATAA TTTATAACTT GGCAGTAGAA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AGATATTGA CGATATTAGG GGTATCGGTT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTAGA AATAAAGATG TGATTTTAGA AATAAAGATG TTAGTCAGGG	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA AGTTTGATA TTTTATCAAT AGTTTGATAA TTTTTATCAAT AGTTTGATAA TTTTTTATCAAT AGTTTGATAA TTTTTTATAACTT GGCAGTAGAA TTTTTGGAATA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC TTCAATGATG AGATATTGA CGATATTGA CGATATTGA CGATATTGA CGATATTTAA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTAGA AATAAAGATG TTAGTTTAGA AATAAAGATG TTAGTCAGGG TGGGGTTCGT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA AGTTTGATA TTTTTATCAAT AGTTTGATAA TTTTTATCAAT AGTTTGATAA TTTTTTATCAAT AGTTTGATAA TTTTTGGAATA AGTATGGTTC	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AGATATTGA CGATATTGA CGATATTTGA CGATATTTAA CTATTTAA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAAGATG TTAGTTTAGA AATAAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC ATTAGCATG	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA TTTTTATCAAT AGTTTGATAA TTTTTGATAA TTTTTGAAAA TTTTTGGAATA AGTATGGTTC TTATTTCAAA	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC TTCAATGATG AGATATTGA CGATATTGA CGATATTGA CGATATTTAA CTATTAAAAGA CACACGCTCA	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT GTTTATTTAA	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA TTATTTAAGGA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC ATTAGAATTG	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA TTTTTATCAAT AGTTTGATAA TTTTTGAAAA TTTTTGGAATA AGTATGGTTC TTATTTCAAA CTTGTTAATC TTATTTCAAA CTTGTTAATC	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTCAATGATG AGATATTGA CGATATTGA CGATATTTAA CGATATTTAA CTATATAAAGA CACACGCTCA TTGACAAAAT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT GTTTATTTAA CAAAATAGAA	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA TTATTTAAGGA
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC ATTAGAATTG TACTATTGCT GGAGTACGCT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATA TTTTTATCAAT AGTTTGGAATA TTTTGGAATA AGTTTGGAATA AGTATGGTTC TTATTTCAAA CTTGTTAATC TTATTTCAAA CTTGTTAATC TTATTTCAAA CTTGTTAATC TCCATGCTAT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTCAATGATG AGATATTGA CGATATTGA CGATATTTAA CTATATAAAGA CACACGCTCA TTGACAAAAT TTTGTGCTAT	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT GTTTATTTAA CAAAATAGAA TTTTTTATAC	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA TTATTTAGG CAAAGACAAT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC ATTAGAATTG TACTATTGCT GGAGTACGCT TATTTCTTTG TACTATTGCT TACTATTGCT TACTATTGCT TACTATTGCT TACTATTGCT TACTATTGCT TACTATTGCT TACTATTGCT TACTATTCTTTG	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATAA TTTTTGATAA TTTTTGATAA TTTTTGGAATA AGTTTGGATA AGTATGGTTC TTATTTCAAA CTTGTTAATC TTATTTCAAA CTTGTTAATC TCCATGCTAT AACACATAGT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AGATATTGA CGATATTGA CGATATTTAA CTATATAAAGA CACACGCTCA TTGACAAAAT TTTGTGCTAT GATTCTTACG	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT GTTTATTTAA CAAAATAGAA TTTTTTATAC CTCATCGCGT	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA TTATTTAGG CAAAGACAAT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGGGTAT TCCTATAACA TTTTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC ATTAGAATTG TACTATTGCT GGAGTACGCT TATTTCTTTG GGAGTACGCT TATTTCTTTG TATTTCTTTG	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATAA TTTTTGATAA TTTTTGATAA TTTTTGAAAA TTTTTGGAATA AGTATGGTTC TTATTTCAAA CTTGTTAATC TTATTTCAAA CTTGTTAATC TCCATGCTAT AACACATAGT TAGAAATGAT	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AGATATTGA CGATATTGA CGATATTTAA CTATATAAAGA CACACGCTCA TTGACAAAAT TTTGTGCTAT GATTCTTACG TGGTTCCATC	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT GTTTATTTAA CAAAATAGAA TTTTTTATAC CTCATCGCGT TAATGTTGG TAATGTTGG	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA TTATTTAGG CAAAGACAAT TAATGGTCTT
GAGAGAAGCC TTTTTGTAAA CAGTAGCAGA AGCGAAAACA GATGGGTTAA ACTGAAATGT ATTTCTCAAA TGAATTTATT AGTATGTTGG AGATAGCTT ATCCTCAATA ATCAAGTCGA TAATGCAGGC TTTTTGTTGC GTTCTAGCGA TGTATAGTTA ATTAGCAAC ATCATTTGTT GGGGCAACGA GGATTGACGC ATTAACTTAC ATTAGCATT GGGGCAACGA TATAGCTTAC TATTAGCATT GGGGCAACGA TTTTAGCACC TTTTTGTTGT TGCAGCGGAT TACTATTCTT TGCAGCGGAT	TCTTATTCAG GAAAATATTG ACGCGTGATG AAAAGAAAAG	GTTATGATTG TAATAAAATA AAAACGGGAA AAATTTCTAA GTATATTCAT AGGCTTACTT GATTAATTAT ATACCTTGGA GACTTGTCAA TTGTATGCGC ATATATTCAT AAAACGTTTG ATGGGCATAA TTCTGTGATT AAAAAATAAC TTATATTTT ATTTATCAAT AGTTTGATAA TTTTTGATAA TTTTTGGAATA AGTTTGGAATA AGTTTGGAATA AGTATGGTTC TTATTTCAAA CTTGTTAATC TCCATGCTAT AACACATAGT TAGAAATGAT GGGATTTAAC GGGATTTAAC GGGATTTAAC GGGATTTAAC TCCATGCTAT AACACATAGT TAGAAATGAT GGGATTTAAC GGGATTTAAC	TAATGTTATA TAACGAACTA GAGAAATGGC AACCTATTAT CCCAATCCAT ACCGATAATC AACTCCAGAT TATAGAGCAA AGATTATTTC TTTTAGGATT AGAAACGGTA TTATTTGTA GAAAAATGAG TTATTAGTAA CAGTATCTAT AAACATATTG ATTTACTATC ATTTACTATC ATTCAATGATG AGATATTGA CGATATTGA CGATATTTAA CTATATAAAGA CACACGCTCA TTGACAAAAT TTTGTGCTAT GATTCTTACG TGGTTCCATC	CATGCACCAA TCCAGAGAAA TGTTCGTGCA ATTTGTATTA CAAATCATTT ACCAAATTAA TTTGCTAAGT GTTAAAAGAC TTTAAAAGAG TGTTCCGAAT TTGCAAACAC ATTTTAAAAG AATAAGAATT TTCGCAAGTT CTTATTTAGT TAGTTTATAA GGAATATGTC ATTATTTAGA AATAAGATG TTAGTCAGGG TGGGGTTCGT ACGGATCGTT GTTTATTTAA CAAAATAGAA TTTTTTATAC CTCATCGCGT TAATGTTGG GCTATAAGGG GCTATAAGGG	TATAATGTGG GACGATCTTA TTTTACCGCA TATCGAAAAG TATTATAAAA AATAATTTGT TTTGATTTTA AGCAAATTCT CGGATTTCAA TTTTAATGGA TTATTTAGG CAAAGACAAT TAATGGTCTT

7/59

AAAATGGTTT	TATCGGTCTG	GTAGGGTATG	GGATTGTTTT	ATATAAACTT	TATCGTAATG
TAAGAATATT	AAAAACAGAT	AATATAAAA	CAATAGGAAA	GTCTGTATTT	
				TAAATTTAAG	TTTTGTATTT
ATGCCAATAT					
				GTTTTGAGTT	GCTATTAATT
TGGTAGAGCA					
				AGGAATTAGA	GGATGGAAAA
AGTCAGCATT				TTAAGAGAGT	
				GATTCTTTTG	ATAGATGACG
GTTCTTCAGA				AGAGCAAGAT	
GGTAGAATAA				CAAACGCAAG	CAATTACCCT
ATCAAAAATA				CTGATGATAT	0.11.11.10.001
				AAAGAGAATG	ስጥ ስርጥርስጥጥጥ
GTCGGGAGGG					MINGIGNIII
				GCGAGACTTA	CCAAATCAAA
ATTTTCCCAA					GGAAATGAAA
				AACAGTGGTT	ACCACACCAC
TTATTATTA					AGGAGAGGAC
					CCMMMAAAMA
TAACAGAAAT				ACTACAAATA	CGTTTAAATA
TGATGTTTTT					CMA CA CMCCC
				TAAAGAGACG	CTACAGTGGC
ATATTATTTA					
CCAAAGAAAT				ATTCTTTAGA	TACTCTAAGT
ATTAAACGAA					
TAATAATTTG				GAAGAAAAA	ATAATGATTA
ACATTTCTAT					
				AGATTCTTCT	GGTGAATGAC
GGTAGTACGG					
				TCAGATGCCC	GTAATTATGG
CATAAGTCGC				TCAGATGATT	
				TGAGAGAGAG	AATGCCCTTG
TGGCAGTTGC	TGGTTATGAT	AGGGTAGATG	CTTCGGGGCA	TTTCTTAACA	
				GGAATGTTTG	TAAAAAGCTG
				AACTCTATAA	
				ATTCATGAAG	ATGAATACTT
				GTTAAGGAGT	
				TTCTAGTATG	ACTGACCATC
				CTTCTATGAA	
				CATTTTTAGC	CTTTGCTGTT
TTGTTTTTAG	GCAAATATAA	TCATTGGTTG	AGCAAACAGC	AAAAGAAGCT	
TCTCCAAACG	CTATTTAGAA	TTGTATATAA	ACAATTGAAG	CAAAATAAGC	GACTTGCTTT
				AATTTTAGTG	
TCTTTCTGAA	AACGGGGAAA	GATAAAATTC	AAGAAAGATT	GAGAAGAAGT	GAAAGTAGTA
CTCGGTAAGA	ATGTTGTAAT	AAATGGTTGA	AAGAAAAGGG	GATTAAAATG	
				AATGTATCAT	GGTACTTTGT
GTTATTTTTA	CACATCTGGA	TTGGTCTGTT	GAGCAGCGTC	AATGGTTTAT	
CTTTCCGTAT	TTCGTTGACA	TGGCTGTTCC	AATTTTTCTG	TTGCTTTCTG	CCTATTTTCG
				AAGTTCAGCA	
GTGGTATAAA	AGAAAGTATA	AACATGCTTT	GTCTCTATGC	TATCGTGATG	GCTGTTAATG
				CCTTTTTCAG	
GTTCTTCATC	GCTCCGTTCA	TTTGTCCTGT	GGCTACTTTC	TGGAGAATCG	GGTCCAGGGA
				TTTTATTACC	
ΔΙΙΟΟΟΛΟΙΙ	GTTCTTTTCG	AGAAAAATAA	ATGGTTGGGC	TTGCTTACTT	GTTTTTTAGT
				CACGGCATAT	
AUTOILIOU VAVADAUSILIOU	TAATATCACT	TCGTTATCTT	TTTGTTCTAG	GGCTTGGTTT	TTTCTTTCAA
				CCTATTTGGG	
				AGCCCTTCTC	СТССТТТТАТ
ATTAITGGAG	CHACTHCCAL	ጥርጥልጥርርርጥር	CCATTCIAIAG	ATGCTATGCT	CICCILITAL
OGIIOGWWG1	DTADIACTATC	CACAGAAGAT	TCCACCAATA	CTGTTGTCAA	AATTGGGAGT
MCCGGCCGGA	CAMPACANCA	TCACCCACAT	CCAGCAAIA	TCAGTAGTCG	.1.1.1000101
IGCTTCTIAL	CMIMICIACI	TOUCCCUOWI	OCIGIMITI	101101100	

		8/5	59		
CACCATTTTT	AGCAGTGCAA	TTTAAGGTAT	CTTCGTTGAA	TTTGTGGAAC	GGCTTGTTTA
CCTTTCTAAT			TTTTCTACAA		
TTTATGAGAG	TACGTGGAAA	ACGATAATGA	CTCATTTCAG	ATTAGCAGAT	GCCATTTCGT
TTATTAGCAG	ATTCGCATGT	TAATATTCCG	ACAAAGAAAT	TCAAATAGGT	
TGACGAGAGA	GGAGTGGTAT	CTGTTTCTAA	ACCCCAGTAT	CCCCCTTTAT	TTTCAAAGCT
ATATTTATTA	ACTGAACAAG	GAGAATTTTT	AAGAGAACTG	TTTGTTTAAT	
CCCAGCACGA	TCTGGTTCGA	AAGGCTTACC	GAATAAAAAC	ATGCTATTTT	TGGACGGGAA
ACCCATGATT	TTTCACACGA	TTGATGTGGC	AATTGAATCA	GGTTGTTTTG	
AGAAAGAAGA	CATCTATGTC	AGTACGGATT	CAGAAATGTA	TAAGGGGGGC	ACCTCTATAA
ATTCCCAAAA	TTGCGAATTT	GGAGTTACGA	AAGCCTTGTT	AAATCAACAT	
CTTAAATTTT	AGAAAATTAG	TTTTTAGAGG	TCCCCAAGGG	GATTTGCGAG	ACAAGAGGCA
TCAATGTATT	GTTAAGACCC	AAAGAACTAT	CTACTTATCA	TACTCCATCG	
AATGAAGTCA	GTACGCACTT	TTTTACGAAT	CTGGATTTTA	TGAAGATTGT	ATATTTGTTC
TTCTGCAAGT	CACCTCACCG	TTACGGACTG	GCGAACAGAT	AAAAGAAGCC	
ATGAATATGT	ACTTACAGGG	GGACTCAGAA	AATGTTTTGC	ATTTCAATGA	TGAAGGGCAA
GAAAGAGTGA	ATCAGTACAT	TATCGAAGCT	GTACAGGGGT	TATAAAAAGG	
GGTTACTTAT	CCTTAAAGTC	TGTATGTAGA	AGGAGAAAA	TTGAGACGAA	TTTATATTTG
CCATACGATG	TATCAGATCC	TGATTTCCTT	GTTAAAGATG	GACGTTGAGA	
GAGATAGTTT	GATGTCCGTT	GATATCATCG	GGCATTTTCC	AGATGTCAGG	GAGCAACTGC
AGCAGCATGT	TCATCTAATC	GAGGGAGACG	GAGCGTTCAT	TTGATCTATA	
TTCTTTGATA	GCTAGATCAA	AAACAAAAGA	ACGCCTTTCC	TTGTTACAGA	GCTATGACGA
GGTGATCATT			CGGTCATTTT	TTAAATAAAC	
ATCGGATTCC	CTATTCTCTT	TTGGAGGATG	GTTATAATTT	TTTCAAGGAT	AAAAGAGTGT
	GTCAATTCAA	TCATCTGTCT	GGAAAAGACT	CTTTTATCAA	
	AACCAACATA	TTTGATTGGT	TCAAGTCTCT	ATTGTCAATC	CATTGAGGTC
AATGATCTGT	CGCTCGTACA	ATTTGACTAG	GCTTATAAAC	CCTTTGTAGA	
AGTTCCGAGA	AAGCAATTAT	TTGATCAAGC	ATCGCCAGAG	AAGGTGCAAG	CGCTGCTGCA
GATATTTGGA		TAGTAGCGGA	TGAAGAGTCT	TCTCAAAAAC	
	ATTGACCCAG	CCCTTGTCTT	GGGATTATCA	TGTGACCGAA	GAGAGTTGTT
GGAGATTTAT	GTAGCAGGTC	TTGCCCCTTA	TCGGGAAGAC	TATACAATCT	
ACATAAAACC	GCACCCACGA	GATGGGGTTG	ATTATTCATT	TCTGGGTAAG	GCTGTGGTGC
TTCTGCCTCA	AGGTATTCCG	TTTGAGTTGT	TCGAAATGGC	AGGTAATATC	
CGTTTTGATA	TCGGTATGAC	CTATAGTTCG	TCTGCTTTAG	ATTTTTTAAA	TTGTTTTGAA
GAGAAAGTGT	ATTTAAAGGA	CACTTTTCCT		AAAATGATAT	
TTTGCGTGAG	GGGATAGAAT	AGGAGGATTC	ATGTCTAAAA	AATCAATAGT	TGTCTCAGGT
CTCGTCTATA	CGATTGGAAC	CATCCTCGTT		CCTTCATTAC	
CCTCCCCATC	TATACTCGTG	TCATTTCTCA	GGAAGTATAT	GGGCAGTTTA	GCTTGTATAA
TTCGTGGGTG	GGGCTAGTTG	GTCTCTTTAT	CGGTCTACAG	TTAGGTGGGG	
CTTTTGGCCC	GGGATGGGTA	CACTTCCGCG	AGAAATTTGA		TCCACCTTGA
TGGTCTCTTC	TATCGCTTTC	TTTTTACCAA		ATCTTTTCTC	
CTCAGTCAGC		CCTATTTGGT		GGGTCGTTCC	GCTTTACTTT
TTGCAAAGTT			TTTTTTACGA		
GCAGCGGCAG	CAGTCCATGT	GGACTTTACT	CCTATCGGTA	CTGAGCGCTG	TTATCAACAC
TGCTTTATCT	TTATTTCTCA	TCTTTTCGAT	GGAGAATGAT	TTCATCGCTC	
GTGTAATGGC	AAACTCGGCA	ACGACTGGTG	TTTTTGCTTG	TGTGTCCTTG	TTGTTTTTCT
ATAAGAAGAT	TGGGCTTCAT	TTTCGAAAGG	ACTATCTTCG	GTATGGTTTA	
AGTATATCGA	TTCCTCTTAT	TTTTCATGGA	TTAGGTCATA	ATGTACTCAA	TCAATTTGAC
AGAATCATGC	TCGGCAAGAT	GCTAACACTG	TCAGATGTAG	CCCTATACAG	
TTTCGGCTAC	ACACTTGCGT	CTATCTTACA	AATTGTGTTT	TCGAGCTTGA	ATACGGTATG
GTGTCCGTGG	TATTTTGAGA	AAAAGAGAGG	TGCAGATAAA	GATTTGCTCA	
GTTATGTCCG	TTACTATCTG	GCGATTGGCC	TGTTTGTGAC	TTTTGGATTT	CTAACAATTT
ACCCTGAATT	AGCGATGTTG	TTAGGTGGAT	CTGAGTATCG	TTTCAGTATG	
GGATTTATTC	CCATGATTAT	TGTCGGGGTG	TTCTTTGTAT	TTCTTTATAG	TTTTCCAGCC
AATATCCAGT	TTTATAGTGG	AAATACAAAG	TTTTTGCCAA	TTGGTACTTT	
TATAGCAGGT	GTACTAAATA	TTTCCGTCCA	CTTTGTTTTG	ATACCGACAA	AGAATTTATG
GTGCTGCTTT	GCAACGACTG	CTTCCTATCT	GTTGTTGCTA	GTCTTGCATT	
ATTTTGTTGC	TAAGAAAAAG	TATGCTTACG	ATGAAGTTGC	GATTTCAACA	TTTGTTAAGG
TAATTGCTCT	TGTTGTCGTC	TATACAGGCT	TGATGACAGT	ATTTGTCGGT	
TCAATCTGGA	TTCGTTGGTC	ACTAGGAATA	GCGGTTCTAG	TCGTTTATGC	CTACATTTTT
AGAAAGGAAT	TAACAGTTGC	CCTCAATACA	TTCAGGGAAA	AACGGTCTAA	

WO 00/05378

9/59 ATAAGGCAC CTCTATAAAC TCCCAAAATT GCGAATTTGG AGTTACGAAA GCCTTGTTAA ATCAAACATT TTAAATTTTA GAAAATTAGT TTTTAGAGGT CCCCATATAA AAACGTCCCA AATGAGAGGT GCTCATAAGA ATTGACCATC ACTGCCATCT ACCCAAAGTT CAAGTATTCT CTACCATGAA AATTGTGCTA TAATCAAGTA TAAAGAAGGG AATGTTTCTT AAAGGACGTA TGCGCCTCTG CTTATGCCAG AAGTCATGAG GTAAATCTCC CTAAAAATTG GGTAGAAAAG CAGATTAAAC TTCCACCAAT CTATTGAAGA TCGTGTTGAA GAGCAGGCTT TAGAAGCAAC AAGCCCTGAG ACTATTCGAA AGAAATCTAG GGCTATTTTT TCTAATCGGC TATCAGAAGT GAAGTAGCGA TCTTTATTAG TGTTCTTTTA CTACTTAAGG AAAACCAAGC TGCTCCCTCA AGACTTTATG GGAGCGATTT ACAGTCATTT TTAGAAAGGA AATAAAATGG TTTATATTAT TGCAGAAATT GGTTGTAATC ACAACGGTGA TGTTCATCTA GCACGGAAAA TGGTAGAAGT TGCCGTTGAT TGTGGTGTGG ATGCCGTTAA ATTTCAGACA TTTAAGGCAG ATTTGTTGAT TTCAAAATAC GCACCAAAGG CCGAATACCA AAAAATTACA ACAGGAGAGT CAGATTCTCA GCTCGAAATG ACTCGTCGTT TGGAATTGAG CTTTGAAGAG TATCTTGATT TGCGTGATTA CTGTCTTGAA AAGGGAGTTG ATGTGTTTTC GACACCTTTT GATGAGGAAT CATTGGACTT CTTGATTAGC ACAGATATGC CCGTTTATAA GATTCCATCT GGTGAGATTA CCAATCTTCC CTATTTGGAA AAAATTGGTC GTCAAGCTAA GAAAGTTATT CTTTCAACTG GTATGGCTGT TATGGATGAA ATTCATCAAG CGGTGAAGAT TTTGCAGGAA AATGGAACGA CCGATATTTC GATTTTGCAT TGTACAACCG AGTATCCAAC CCCTTACCCT GCTTTGAATT TGAATGTCTT GCATACCTTG AAAAAAGAAT TTCCAAACTT AACAATTGGC TATTCAGACC ATAGTGTTGG TTCAGAAGTA CCCATCGCTG CTGCAGCAAT GGGAGCTGAA TTGATTGAAA AGCACTTTAC TCTGGACAAT GAAATGGAAG GACCAGATCA TAAAGCGAGT GCTACTCCTG ATATCTTAGC AGCCTTGGTA AAAGGAGTGA GGATAGTGGA ACAATCTCTT GGTAAATTTG AAAAAGAGCC AGAAGAAGTT GAAGTACGAA ATAAAATTGT AGCTAGAAAA TCTATTGTTG CCAAAAAAAGC AATTGCTAAA GGCGAAGTCT TTACAGAAGA AAACATCACT GTCAAAAGAC CAGGAAATGG AATTTCGCCA ATGGAATGGT ACAAAGTCTT GGGGCAGGTG AGTGAGCAGG ATTTTGAGGA AGACCAAAAT ATTTGCCATA GTGCTTTTGA AAATCAAATG TAAGCGGAGT AAGGATGAAA AAAATTTGTT TTGTGACAGG CTCTCGTGCC GAATATGGGA TTATGCGTCG CTTATTGAGC TATCTACAGG ATGATCCAGA AATGGAGCTG GATCTTGTAG TGACAGCCAT GCATCTAGAA GAAAAATATG GGATGACGGT CAAAGACATC GAAGCGGACA AGCGTAGGAT TGTCAAGCGG ATTCCATTGC ATTTGACGGA TACGTCTAAG CAGACAATCG TCAAATCTTT AGCGACCTTG ACAGAGCAAC TCACGGTTCT TTTTGAAGAA GTCCAGTATG ACTTGGTGTT GATTCTGGGG GATCGCTATG AGATGCTACC AGTTGCCAAT GCTGCGTTGC TTTATAATAT TCCTATTTGC CATATTCATG GTGGTGAAAA AACCATGGGA AATTTTGATG AGTCGATTCG CCATGCCATT ACCAAGATGA GTCACCTTCA TCTGACATCA ACGGATGAAT TTAGAAATCG TGTCATTCAA CTAGGAGAAA ATCCAACCAT GTACTGAACA TCGGAGCTAT GGGTGTTGAA AATGTTTTAA AACAAGACTT TTTGACAAGA GAAGAGTTGG CGATGGAACT TGGAATTGAT TTTGCCGAGG ATTACTATGT TGTACTCTTT CACCCTGTTA CCTTGGAGGA TAACACAGCC GAAGAACAAA CGCAGGCCTT ATTAGATGCT CTAAAAGAAG ATGGTAGCCA GTGTTTGATA ATTGGATCCA ATTCGGATAC ACATGCCGAT AAGATAATGG AATTGATGCA TGAATTTGTA AAACAAGACT CTGATTCTTA CATCTTTACT TCGCTTCCAA CTCGTTATTA CCATTCCTTG GTCAAGCATT CACAAGGTTT AATAGGGAAT TCTTCGTCAG GTTTGATTGA AGTGCCCTCA TTACAGGTTC CGACCTTAAA TATTGGAAAT CGCCAATTTG GACGTTTGTC AGGACCGAGT GTGGTACATG TTGGAACTTC TAAGGAAGCG ATTGTTGGTG GTTTGGGGCA ATTACGTGAT GTGATAGATT TTACCAATCC ATTTGAACAA CCTGATTCTG CTTTACAAGG TTATCGAGCT ATCAAGGAAT TTTTATCTGT ACAGGCCTCA ACCATGAAAG AGTTTTATGA TAGATAGGGG AGAAAGTTTG ATGAAAAAG TAGCCTTTCT AGGAGCGGGT ACCTTTTCAG ATGGTGTCCT TCCTTGGTTG GATAGAACTC GATATGAACT CATTGGATAT TTTGAAGATA AACCGATCAG TGACTATCGT GGCTATCCTG TATTTGGTCC CTTGCAAGAT GTCCTAACCT ATTTGGATGA TGGAAAAGTA GATGCTGTCT TCGTCACTAT AGGTGACAAT GTCAAGCGCA AGGAAATCTT TGACTTGCTT GCCAAAGATC ATTATGATGC TTTGTTCAAC ATCATTAGCG AGCAAGCCAA TATTTTTTCC CCAGATAGTA TCAAGGGACG AGGGGTTTTC ATAGGTTTTT CAAGTTTTGT AGGAGCCGAT TCCTATGTCT ATGACAATTG TATCATCAAT ACGGGTGCCA TTGTGGAACA TCATACCACG GTGGAGGCCC ATTGTAACAT TACTCCAGGA GTGACCATAA ATGGCTTGTG CCGTATCGGA GAAAGCACTT ATATTGGAAG TGGTTCAACA GTGATTCAAT GTATCGAGAT TGCACCTTAT ACAACATTGG GGGCAGGGAC AGTTGTTTTG AAATCGTTGA CGGAGTCAGG GACCTATGTT

WO 00/05378

PCT/NL99/00460

		10.	/59		
GGTGTACCTG	CTAGAAAGAT		AATTGATGGA	ACCAATTTGT	CTGATTCCTG
CTCGGTCAGG			AAAACATGTT		
GGTGTACCGA				AGTCTGGATG	TTTTAAGAAA
GAAAATATAT			GTTTACAAGG		
AACAACTGGG				GCGACAGATT	TTACAACCTC
TTTTCAACTG			TTTTTCTGAT		
TTGTTCTCCT				ACATGTCAAG	GAGGCGATGG
TIGITOTOCI	GAAAGGTCAA				00000
GATAAGTCTC				GATTCGCTAA	GGATATTGCA
	GCAGTTATCG		GAGAAAACAC		00.11.11
GGAT TAGGTG				GCGGATAAAA	СТТАТТТТТС
	GCGGCCTATG				01111111
-				CTTTGATTAC	СМСССТССТС
ATGATCACTT			AGTTAAAGCG		CAGCGTCCTG
AGCAACAAAA				TGTTAGCCTT	CTTN CTCC NT
CAACGAGTCC	ATGATAGTCT	CCCTCCCTTC	DATAGICGIC	CACCACTTCA	GITACIGGAI
GGTTTCGATA	ATATCAGCAT	CGGTGGGATG	ACAGCTTCGA	THE CHEMICAL TON	
AAACCAAGGT	CTCTTTTTGG	CTACTCCGAT	AAAGAAAGTT	TTGCTTTCTC	IIGGIGIGAA
TGATTTGATT	ACTGACTATC	CCTTGCATAT	GATTGAGGAT	ACTATICGCC	A MMCCCCM A CA
				TGTGACGACG	ATTGCCTACA
	TGATAGCGTT		AAATTGTGCA		mca a cmmcmm
	AGTCAGCAAG			TTGATCTAAA	TGAAGTTGTT
GAAAAAGAGG	CGATGCTTGA	CTATCAGTAT	ACCAATGATG	GATTGCATTT	~~~~~~~~
CAATCAGATT	GGACAAGAGC	GTGTGAATCA	GCTGATTTTG	ACAAGTTTGA	CAAGATAATT
TGGTGATAGA	AGCTATTTCA	GTGGCTAGAC	TATGTTGGTA	TGTGTTTTAG	
				ATTGACAACC	ATTTAGTTGT
TTTAATTATA	TAAGGGGACC		CCCTAAATTT		
AGATAATAGA	ATAAAAAGTA	ATGAGGAGAG	CTGTCATGCA	TTTATTCACA	GACGATGAAA
AAATCTTGTC	AAAACTATCA	GAGAAAGGCA	ATCCCTTAGA	ACGTTTGGAT	
GCCGTTATGG	ATTGGAATAT	CTTTCTTCCA	TTGTTGTCAG	AGTTATTCAG	TCGTAAAGAT
AAAGTCATCA	GTCGTGGCGG	TCGTCCTCAC	CTAGACTATC	TCATGATGTT	
		GTCTTCATAA	CCTATCTGAC	GATGCCATGG	AATATCAACT
GCTGGATCGT			TGGTTGTCAT		
TTCCCGATGC		TGGCTCTATC		AACCAAGTCA	GGTCGTGAAA
AGGAGTTGTT	CGATTTGTTC	TATGCCCATC	TCACAGATGA	AGGGGTGATT	
	GTCAGATTGT	GGATGCTACC	TTTGTCGAAT		ACGCAATTCA
CGTGAGGACA	ATCAGAAAAT		CGAAAATTAT		
CAGCTAGTGT	ACACGACTCC				GAAGCGGTTT
TTGATGACAG	TGCTTATGTT		TACCAGAAGG	TTGTCGCCAC	
CACACGATTC	GTCGTGCTTT	TAGAAATAAA	CCGTTGACTG	AGACTGATAA	GGTCATTAAT
CGACATATTA	CCAAAGTCCG		GAGCATGGTT	TTGGCTTCAT	•
TGAAACTAAC	ATGAAAGGTA	ACATCTGTCG	AGCAATTGGG	AAGGCACGAG	CTGAAACCAA
TGTGACCTTA	ACCAACCTGC	TCTACAATAT	CTGTCGTTTT	GAGCAAATCA	
AACGACTGGG	ATTACCATCC	GTGGGCTTAG	TGCGCCCAAA	AAATAGGAAA	ATAAGCAAAA
AGAGGCTGGG	CAAAAACTAG	TTTCTCACAA	TAAAAAAAACG	GCTCTTTGTC	
AACTGTAGTG	GGTAGACGAA	AAGCTAACAC	CTAGAGAGGA	CGAAATTCGT	TCTCTCATTT
TTGATGTTTA	AAGCGTAACC	GCCTAATAAC	AAGGTATCTA	TCCAATCACA	
CATTCCTCCA	TTATATAGTT	AAATGAAACA	AAAACAGTAC	ATCTATGATA	TAATGTATTT
ATGGCATATT	CATTAGATTT	TCGTAAAAAA	GTTCTCGCAT	ACTGTGAGAA	
AACCGGCAGT	ATTACTGAAG	CATCAGCTAT	TTTCCAAGTT	TCACGTAACA	CTATCTATCA
ATGGCTAAAA	TTAAAAGAGA	AAACCGGCGA	GCTTCATCAC	CAAGTTAAAG	
GAACCAAGCC	AAGAAAAGTG	GATAGAGATA	AATTAAAGAA	TTATCTTGAA	ACTCATCCAG
ATGCTTATTT	GACTGAAATA	GCTTCTGAAT	TTGACTGTCA	TCCAACAGCT	
ATTCATTACC	CCCTCAAAGC	TATGGGATAT	ACTCGAAAAA	AAAGAGCTGT	ACCTACTATG
AACAAGACCC	TGAAAAAGTA	GAACTGTTCC	TTAAAGAATT	GAATAACTTA	
ACCCACTTGA	CTCCTGTTTA	TATTGACGAG	ACAGGGTTTG	AGACATATTT	TCATCGAAAA
TATECTCECT	CTTTGAAAGG	TCAGTTGATA	AAAGGTAAGG	TCTCTGGAAG	
DACATACCAC	CGGATATCTT	TAGTAGCAGG	TCTCATAAAT	GGTGCGCTTA	TAGCCCCGAT
CACATACOA	GATACTATGA	CGAGTGGCTT	TTTCGAAGCT	T	
GUCUTUCUUL	J J				

11/59

SLDIDHMMEVMEASKSAAGSACPSPQAYQAAFEGAENIIVVTITGGLSGSFNAARVARDM YIEEHPNVNIHLIDSLSASGEMDLLVHQINRLISAGLDFPQVVEAITHYREHSKLLFVLA KVDNLVKNGRLSKLVGTVVGLLNIRMVGEASAEGKLELLQKARGHKKSVTAAFEEMKKAG YDGGRIVMAHRNNAKFFQQFSELVKASFPTAVIDEVATSGLCSFYAEEGGLLMGYEVKA

Fig. 3 cont.

ORF2Z

12/59

MKKYQVIIQDILTGIEEHRFKRGEKLPSIRQLREQYHCSKDTVQKAMLELKYQNKIYAVE KSGYYILEDRDFQDHTCRAQSYRLSRITYEDFRICLKESLIGRENYLFNYYHQQEGLAEL ISSVQSLLMDYHVYTKKDQLVITAGSQQALYILTQMETLAGKTEILIENPTYSRMIELIR HQGIPYQTIERNLDGIDLEELESIFQTGKIKFFYTIPRLHNPLGSTYDIATKTAIVKLAK QYDVYIIEDDYLADFDSSHSLPLHYLDTDNRVIYIKSFTPTLFPALRIGAISLPNQLRDI FIKHKSLIDYDTNLIMQKALSLYIDNGMFARNTQHLHHIYHAQWNKIKDCLEKYALNIPY RIPKGSVTFQLSKGILSPSIQHMFGKCYYFSGQKADFLQIFFEQDFADKLEQFVRYLNE

Fig. 3 cont.

ORF2Y

13/59 MKIIIPNAKEVNTNLENASFYLLSDRSKPVLDAISQFDVKKMAAFYKLNEAKAELEADRW YRIRTGQAKTYPAWQLYDGLMYRYMDRRGIDSKEENYLRDHVRVATALYGLIHPFEFISP HRLDFQGSLKIGNQSLKQYWRPYYDQEVGDDELILSLASSEFEQVFSPQIQKRLVKILFM EEKAGQLKVHSTISKKGRGRLLSWLAKNNIQELSDIQDFKVDGFEYCTSESTANQLTFXR SIKM

Fig. 3 cont.

ORF2X

14/59

MKKRSGRSKSSKFKLVNFALLGLYSITLCLFLVTMYRYNILDFRYLNYIVTLLLVGVAVL AGLLMWRKKARIFTALLLVFSLVITSVGIYGMQEVVKFSTRLNSNSTFSEYEMSILVPAN SDITDVRQLTSILAPAEYDQDNITALLDDISKMESTQLATSPGTSYLTAYQSMLNGESQA MVFNGVFTNILENEDPGFSSKVKKIYSFKVTQTVETATKQVSGDSFNIYISGIDAYGPIS TVSRSDVNIIMTVNRATHKILLTTTPRDSYVAFADGGQNQYDKLTHAGIYGVNASVHTLE NFYGIDISNYVRLNFISFLQLIDLVGGIDVYNDQEFTSLHGNYHFPVGQVHLNSDQALGF VRERYSLTGGDNDRGKNQEKVIAALIKKMSTPENLKNYQAILSGLEGSIQTDLSLETIMS LVNTQLESGTQFTVESQALTGTGRSDLSSYAMPGSQLYMMEINQDSLEQSKAAIQSVLVE

Fig. 3 cont.

CPS2A

15/59 MNNQEVNAIEIDVLFLLKTIWRKKFLILLTAVLTAGLAFVYSSFLVTPQYDSTTRIYVVS QNVEAGAGLTNQELQAGTYLAKDYREIILSQDVLTQVATELNLKESLKEKISVSIPVDTR IVSISVRDADPNEAARIANSLRTFAVQKVVEVTKVSDVTTLEEAVPAEEPTTPNTKRNIL LGLLAGGILATGLVLVMEVLDDRVKRPQDIEEVMGLTLLGIVPDSKKLK

Fig. 3 cont.

CPS2B

16/59 MAMLEIARTKREGVNKTEEYFNAIRTNIQLSGADIKVVGITSVKSNEGKSTTAASLAIAY ARSGYKTVLVDADIRNSVMPGFFKPITKITGLTDYLAGTTDLSQGLCDTDIPNLTVIESG KVSPNPTALLQSKNFENLLATLRRYYDYVIVDCPPLGLVIDAAIIAQKCDAMVAVVEAGN VKCSSLKKVKEQLEQTGTPFLGVILNKYDIATEKYSEYGNYGKKA

Fig. 3 cont.

CPS2C

17/59

MIDIHSHIIFGVDDGPKTIEESLSLISEAYRQGVRYIVATSHRRKGMFETPEKIIMINFL QLKEAVAEVYPEIRLCYGAELYYSKDILSKLEKKKVPTLNGSCYILLEFSTDTPWKEIQE AVNEMTLLGLTPVLAHIERYDALAFQSERVEKLIDKGCYTQVNSNHVLKPALIGERAKEF KKRTRYFLEQDLVHCVASDMHNLYSRPPFMREAYQLVKKEYGEDRAKALFKKNPLLILKN QVQ

Fig. 3 cont.

CPS2D

18/59

MNIEIGYRQTKLALFDMIAVTISAILTSHIPNADLNRSGIFIIMMVHYFAFFISRMPVEF EYRGNLIEFEKTFNYSIIFVIFLMAVSFMLENNFALSRRGAVYFTLINFVLVYLFNVIIK QFKDSFLFSTTYQKKTILITTAELWENMQVLFESDILFQKNLVALVILGTEIDKINLPLP LYYSVEEAIGFSTREVVDYVFINLPSEYFDLKQLVSDFELLGIDVGVDINSFGFTVLKNK KIQMLGDHSIVTFSTNFYKPSHIWMKRLLDILGAVVGLIISGIVSILLIPIIRRDGGPAI FAQKRVGQNGRIFTFYKFRSMFVDAEVRKKELMAQNQMQGGMFKMDNDPRITPIGHFIRK TSLDELPQFYNVLIGDMSLVGTRPPTVDEFEKYTPSQKRRLSFKPGITGLWQVSGRSDIT DFNEVVRLDLTYIDNWTIWSDIKILLKTVKVVLLREGGQ

Fig. 3 cont.

CPS2E

WO 00/05378

19/59

MRTVYIIGSKGIPAKYGGFETFVEKLTEYQKDKSINYFVACTRENSAKSDITGEVFEHNG ATCFNIDVPNIGSAKAILYDIMALKKSIEIAKDRNDTSPIFYILACRIGPFIYLFKKQIE SIGGQLFVNPDGHEWLREKWSYPVRQYWKFSESLMLKYADLLICDSKNIEKYIHEDYRKY APETSYIAYGTDLDKSRLSPTDSVVREWYKEKEISENDYYLVVGRFVPENNYEVMIREFM KSYSRKDFVLITNVEHNSFYEKLKKETGFDKDKRIKFVGTVYNQELLKYIRENAFAYFHG HEVGGTNPSLLEALSSTKLNLLLDVGFNREVGEEGAKYWNKDNLHRVIDSCEQLSQEQIN DMDSLSTKQVKERFSWDFIVDEYEKLFKG

Fig. 3 cont.

CPS2F

20/59

MKKILYLHAGAELYGADKVLLELIKGLDKNEFEAHVILPNDGVLVPALREVGAQVEVINY PILRRKYFNPKGIFDYFISYHHYSKQIAQYAIENKVDIIHNNTTAVLEGIYLKRKLKLPL LWHVHEIIVKPKFISDSINFLMGRFADKIVTVSQAVANHIKQSPHIKDDQISVIYNGVDN KVFYQSDARSVRERFDIDEEALVIGMVGRVNAWKGQGDFLEAVAPILEQNPKAIAFIAGS AFEGEEWRVVELEKKISQLKVSSQVXRMDYYANTTELYNMFDIFVLPSTNPDPLPTVVLK AMACGKPVVGYRHGGVCEMVKEGVNGFLVTPNSPLNLSKVILQLSENINLRKKIGNNSIE RQKEHFSLKSYVKNFSKVYTSLKVY

Fig. 3 cont.

CPS2G

21/59

MKIISFTMVNNESEIIESFIRYNYNFIDEMVIIDNGCTDNTMQIIFNLIKEGYKISVYDE SLEAYNQYRLDNKYLTKIIAEKNPDLIIPLDADEFLTADSNPRKLLEQLDLEKIHYVNWQ WFVMTKKDDINDSFIPRRMQYCFEKPVWHHSDGKPVTKCIISAKYYKKMNLKLSMGHHTV FGNPNVRIEHHNDLKFAHYRAISQEQLIYKTICYTIRDIATMENNIETAQRTNQMALIES GVDMWETAREASYSGYDCNVIHAPIDLSFCKENIVIKYNELSRETVAERVMKTGREMAVR AYNVERKQKEKKFLKPIIFVLDGLKGDEYIHPNPSNHLTILTEMYNVRGLLTDNHQIKFL KVNYRLIITPDFAKFLPHEFIVVPDTXDIEQVKSQYVGTGVDLSKIISLKEYRKEIGFIG NLYALLGFVPNMLNRIYLYIQRNGIANTIIKIKSRL.

Fig. 3 cont.

CPS2H

WO 00/05378

22/59

MQADRRKTFGKMRIRINNLFFVAIAFMGIIISNSQVVLAIGKASVIQYLSYLVLILCIVN DLLKNNKHIVVYKLGYLFLIIFLFTIGICQQILPITTKIYLSISMMIISVLATLPISLIK DIDDFRRISNHLLFALFITSILGIKMGATMFTGAVEGIGFSQGFNGGLTHKNFFGITILM GFVLTYLAYKYGSYKRTDRFILGLELFLILISNTRSVYLILLLFLFLVNLDKIKIEQRQW STLKYISMLFCAIFLYYFFGFLITHSDSYAHRVNGLINFFEYYRNDWFHLMFGAADLAYG DLTLDYAIRVRRVLGWNGTLEMPLLSIMLKNGFIGLVGYGIVLYKLYRNVRILKTDNIKT IGKSVFIIVVLSATVENYIVNLSFVFMPICFCLLNSISTMESTINKQLQT

Fig. 3 cont.

CPS2I

23/59

MEKVSIIVPIFNTEKYLRECLDSIISQSYTNLEILLIDDGSSDSSTDICLEYAEQDGRIK LFRLPNGGVSNARNYGIKNSTANYIMFVDSDDIVDGNIVESLYTCLKENDSDLSGGLLAT FDGNYQESELQKCQIDLEEIKEVRDLGNENFPNHYMSGIFNSPCCKLYKNIYINQGFDTE QWLGEDLLFNLNYLKNIKKVRYVNRNLYFARRSLQSTTNTFKYDVFIQLENLEEKTFDLF VKIFGGQYEFSVFKETLQWHIIYYSLLMFKNGDESLPKKLHIFKYLYNRHSLDTLSIKRT SSVFKRICKLIVANNLFKIFLNTLIREEKNND

Fig. 3 cont.

CPS2J

24/59								
MINISIIVPI	YNVEQYLSKC	INSIVNOTYK	HIEILLVNDG	STDNSEEICL	AYAKKDSRIR			
YFKKENGGLS	DARNYGISRA	KGDYLAFIDS	DDFIHSEFIQ	RLHEAIEREN				
ALVAVAGYDR	VDASGHFLTA	EPLPTNQAVL	SGRNVCKKLL	EADGHRFVVA	WNKLYKKELF			
EDFRFEKGKI	HEDEYFTYRL	LYELEKVAIV	KECLYYYVDR	ENSIITSSMT				
DHRFHCLLEF	QNERMDFYES	RGDKELLLEC	YRSFLAFAVL	FLGKYNHWLS	KQQKKLLQTL			
FRIVYKQLKQ	NKRLALLMNA	YYLVGCLHLN	FSVFLKTGKD	KIQERLRRSE				
SSTR								

Fig. 3 cont.

CPS2K

25/59

		,			
MSKKSIVVSG					GLVGLFIGLQ
LGGAFGPGWV					
LPDWVVPLIF					LFLTFPMEND
FIARVMANPA	TTGVLACVSX	WFSQKKNGLH	FRKDYLRYGL	SISIPLIFHG	
LGHNVLNQFD	RIMLGKMLTL	SDVALYSFGY	TLASILQIVF	SSLNTVWCPW	YFEKKRGADK
DLLSYVRYYL					
FFVFLYSFPA	NIQFYSGNTK	FLPIGTFIAG	VLNISVHFVL	IPTKNLWCCF	ATTASYLLLL
VLHYFVAKKK	YAYDEVAIST	FVKVIALVVV	YTGLMTVFVG	SIWIRWSLGI	
AVLVVYAYIF	RKELTVALNT	FREKRSK			

Fig. 3 cont.

CPS2O

26/59

MVYIIAEIGC	NHNGDVHLAR.	KMVEVAVDCG	VDAVKFQTFK	ADLLISKYAP	KAEYOKITTG
ESDSQLEMTR	RLELSFEEYL	DLRDYCLEKG	VDVFSTPFDE	ESLDFLISTD	
MPVYKIPSGE	ITNLPYLEKI	GRQAKKVILS	TGMAVMDEIH	QAVKILQENG	TTDISILHCT
TEYPTPYPAL	NLNVLHTLKK	EFPNLTIGYS	DHSVGSEVPI	AAAAMGAELI	
EKHFTLDNEM	EGPDHKASAT	PDILAALVKG	VRIVEQSLGK	FEKEPEEVEV	RNKIVARKSI
VAKKAIAKGE	VFTEENITVK	RPGNGISPME	WYKVLGQVSE	QDFEEDQNIC	
HSAFENOM					

Fig. 3 cont.

CPS2P

27/59

MKKICFVTGS RAEYGIMRRL LSYLQDDPEM ELDLVVTAMH LEEKYGMTVK DIEADKRRIV KRIPLHLTDT SKQTIVKSLA TLTEQLTVLF EEVQYDLVLI LGDRYEMLPV ANAALLYNIP ICHIHGGEKT MGNFDESIRH AITKMSHLHL TSTDEFRNRV IQLGENPTMY

Fig. 3 cont.

CPS2Q

28/59

MELGIDFAED YYVVLFHPVT LEDNTAEEQT QALLDALKED GSQCLIIGSN SDTHADKIME LMHEFVKQDS DSYIFTSLPT RYYHSLVKHS QGLIGNSSG LIEVPSLQVP TLNIGNRQFG RLSGPSVVHV GTSKEAIVGG LGQLRDVIDF TNPFEQPDSA LQGYRAIKEF LSVQASTMKE FYDR

Fig. 3 cont.

CPS2R

29/59

MKKVAFLGAG TFSDGVLPWL DRTRYELIGY FEDKPISDYR GYPVFGPLQD VLTYLDDGKV DAVFVTIGDN VKRKEIFDLL AKDHYDALFN IISEQANIFS PDSIKGRGVF IGFSSFVGAD SYVYDNCIIN TGAIVEHHTT VEAHCNITPG VTINGLCRIG ESTYIGSGST VIQCIEIAPY TTLGAGTVVL KSLTESGTYV GVPARKIK

Fig. 3 cont.

CPS2S

30/59

MEPICLIPAR	SGSKGLPNKN	MLFLDGVPMI	FHTIRAAIES	GCFKKENIYV	STDSEVYKEI
CETTGVQVLM	RPADLATOFT	TSFQLNEHFL	QDFSDDQVFV	LLQVTSPLRS	
GKHVKEAMEL	YGKGQADHVV	SFTKVDKSPT	LFSTLDENGF	AKDIAGLGGS	YRRQDEKTLY
YPNGAIYISS	KQAYLADKTY	FSEKTAAYVM	TKEDSIDVDD	HFDFTGVIGR	
IYFDYQRREQ	QNKPFYKREL	KRLCEQRVHD	SLVIGDSRLL	ALLLDGFDNI	SIGGMTASTA
				MESLVSKAEQ	
VFVTTIAYTL	FRDSVSNEEI	VQLNDVIVQS	ASELGISVID	LNEVVEKEAM	LDYQYTNDGL
HFNQIGQERV	NQLILTSLTR				

Fig. 3 cont.

CPS2T

WO 00/0)5378		31/59		PC	T/NL99/00460
ATCGCCAAAC	GAAATTGGCA GATTTAAATC	TTATTTGATA	TGATAGCAGT	TGCAATTTCT	GCAATCTTAA	CAAGTCATAT
ATGATGGTTC	ATTATTTTGC AAAAACATTT	ATTTTTTATA	TCTCGTATGC	CAGTTGAATT	TGAGTATAGA	GGTAATCTGA
AATTTTTCTT	ACGGCAGTAT TAAACTTCGT	CATTTTTGTT	GGAGAATAAT	TTCGCACTTT	CAAGACGTGG	TGCCGTGTAT
TAATTATTAA	GCAGTTTAAG	GATAGCTTTC	TATTTTCGAC	AATCTATCAA	AAAAAGACGA	TTCTAATTAC
TCACATAAAC	CGATGGGAAA AAATTCAAAA	AAATCTTGTT	GCATTGGTAG	TTTTAGGTAC	AGAAATAGAT	AAAATTAATT
GTTTTCAACA	GCTCTATTAT AGGGAAGTGG	TCGACCACGT	CTTTATAAAT	CTACCAAGTG	AGTTTTTAGA	CGTAAAGCAA
TTGATATTAA	ATTTTGAGTT TTCATTCGGT	TTTACTGCGT	TGAAAAACAA	AAAAATCCAA	CTGCTAGGTG	ACCATAGCAT
ATGATGAAAC	TCCACAAATT GACTTTTGGA	TATACTCGGA	GCGGTAGTCG	GGTTAATTAT	TTGTGGTATA	GTTTCTATTT
TTTTGCTCAG	AATTATTCGT AAACGAGTTG	GACAGAATGG	ACGCATATTT	ACATTCTACA	AGTTTCGATC	GATGTATGTT
GATGCTGAGG AGATGCAAGG	AGCGCAAAAA GTGGGTATGT	AGACTTGCTC TTTAAAATGG	AGCCAAAACC GAAAAACGAT			
CGCAAAAACA	AGTTTAGACG GCGATATGAG	AGTTACCACA	GTTTTATAAT			
CTGGTCAAAA	GAGACGATTG CAGGTTAGTG	AGTTTTAAAC	CAGGGATTAC			
TACATTGATA	ATTGGACTAT AGTGAAAGTT	CTGGTCAGAT	ATTAAAATTT			
CGGTTCTTCA	GGGGGACATT GGAAGGAAGA	TGACTCACTT	GTATTTGTTA		*	
AGAATGAAAA	AATGTATCCA AATTTAGTGA	TGTTACTTTC	CAACAAATCG			
ATTATTTCAT	CTGGTGCGGC ACTATTTGGA	CGTTGCTGTC	CCCTTCTTTT			
AACTGGAAAA	CTAGTTTATC	CCGTAACAGA	TATTTTTATT			
TGTAACAGTA	AAGAAATGAA GGAACTCATG	AACAACAGTT	TAATCGATTG			
CTGACTATAT	TTGATTTATT TCCAGAATAT	TGCAAGTATA	AAAAATTTCT			
TTTATGAATT	GAAATGGAAC CATTATCCAA	AGGAAAAAA	CAATTATTGT			
AGATAATAAT	AAAAAAGTAT ATTTTATTTA	TAGAAAATAT	AGATGATTTG			
TAAAACAAAT	TTATTGAAGT AGTTGAAAAA	TTTAATGAGG	ATCAAGAAA A			
TACAGATATT	AAAAGATGCA ATCATCTTCT	CTCAGGAGAA	TGCACACCAT			
TGAGCAAAAA	AGAATACCTG TATAAAGAAA	ATAGGATATA	TGAACGAGTT			
AAATGTTACA	GATTATTTCC AGCTTTTGAA	TAATATATCA	GAAAAAACTA	TTGATAATGT	ACTGTTTAGA	ATTTTATTAA
GTTTATTGAT	AGAATAAAAA AATTCTTTTA	ACATGGTCTA	AGAATAAGAT	TTGGTTCTAA	TTGGGTTTCG	CTTCCACATG
TTATTTATTT	AAGTAATCTA TATCTAAATA	AATGTCCAGA	TGAACTATTT	ATACAGACAA	TTATAGAAAA	ATATGAATTT
AGTGGAAAAA	ATCAACATCT TTTTTATTTG	TCTCCTATTG	TCTTTACAGA	TGATTCTATT	GATGAATTGC	TAAATGCAAG
AATAAATCTA	AATTTAAAGA AAATATGACC	AATTATTACT	AAAAAATAAA	ATAGTTGATT	TTGTGAGAGT	AATGTATGTT
TACTTCTGGT	TGATTATTTT AAAATTTTTG	TATTCCAGAG	CAAAAGTATG	TATTTTTATT	AATTTTTATG	AATTTAATTT
AAATGAAATT	TTATTGTTTT TTGAAAGATT	TATTATGGTC	TATATTATGT	TTTGTTTCAG	TAGTCACAAG	TATGTTTGTT
CCATAATTTG	GATTATTGCA	ATAATGTATT	ATAATTTGTA	TTCATTTATA	AATATTGATT	АТААААААТТ
ATATCTGCAT	ATCTTTTTA TGTATATTAT	TCAAAATGGG	AAAGATATTG	TATTTTTAGA	CAGACACCTT	ATAGGACTAG
TATGAACTAT	AACAGGCGTC CCTACGTTAA	ATACCACTAC	AATTATAGTT	TCAATTCCGT	TAATCTTTGC	ACTTATAAAA
AATAAAATGC	AACAATTTTT	TTTCTTGTGT	CTTGCTTTTA			

32/59

TACCGATCTA TTTAAGTGGA TCGAGAATTG GTAGTTTATC GCTAGCAATA TTAATTATAT GCTTGTTATG GAGATATATA GGTGGAAAAT TTGCTTGGAT AAAAAAGCTA ATAGTAATAT TTGTAATACT ACTTATTATT TTAAATACTG AATTGCTTTA CCATGAAATT TTGGCTGTTT ATAATTCTAG AGAATCAAGT AACGAAGCTA GATTTATTAT TTATCAAGGA AGTATTGATA AAGTATTAGA AAACAATATT TTATTTGGAT ATGGAATATC CGAATATTCA GTTACGGGAA CTTGGCTCGG AAGTCATTCA GGCTATATAT CATTTTTTA TAAATCAGGA ATAGTTGGGT TGATTTTACT GATGTTTTCT TTTTTTTATG TTATAAAAAA ACATCATTAG CCATATTTTT CATATATGAA ACAATAGATC CGATTATTAT TATATTAGTA CTATTCTTTT CTTCAATAGG TATTTGGAAT AATATAAATT TTAAAAAGGA TATGGAGACA AAAAATGAAT GATTTAATTT CAGTTATTGT ACCAATTTAT AATGTCCAAG ATTATCTTGA TAAATGTATT AACAGTATTA TTAACCAAAC ATATACTAAT TTAGAGGTTA TTCTCGTAAA TGATGGAAGT ACTGATGATT CTGAGAAAAT TTGCTTAAAC TATATGAAGA ACGATGGAAG AATTAAATAT TACAAGAAAA TTAATGGCGG TCTAGCAGAT GCTCGAAATT TCGGACTAGA ACATGCAACA GGTAAATATA TTGCTTTTGT CGATTCTGAT GACTATATAG AAGTTGCAAT GTTCGAGAGA ATGCATGATA
ATATAACTGA GTATAATGCC GATATAGCAG AGATAGATTT TTGTTTAGTA GACGAAAACG GGTATACAAA GAAAAAAGA AATAGTAATT TTCATGTCTT AACGAGAGAA GAGACTGTAA AAGAATTTTT GTCAGGATCT AATATAGAAA ATAATGTTTG GTGCAAGCTT TATTCACGAG ATATTATAAA AGATATAAAA TTCCAAATTA ATAATAGAAG TATTGGTGAG GATTTGCTTT TTAATTTGGA GGTCTTGAAC AATGTAACAC GTGTAGTAGT TGATACTAGA GAATATTATT ATAATTATGT CATTCGTAAC AGTTCGCTTA TTAATCAGAA ATTCTCTATA AATAATATTG ATTTAGTCAC AAGATTGGAG AATTACCCCT TTAAGTTAAA AAGAGAGTTT AGTCATTATT TTGATGCAAA AGTTATTAAA GAGAAGGTTA AATGTTTAAA CAAAATGTAT TCAACAGATT GTTTGGATAA TGAGTTCTTG CCAATATTAG AGTCTTATCG AAAAGAAATA CGTAGATATC CATTTATTAA AGCGAAAAGA TATTTATCAA GAAAGCATTT AGTTACGTTG TATTTGATGA AATTTTCGCC TAAACTATAT GTAATGTTAT ATAAGAAATT TCAAAAGCAG TAGAGGTAAA AATGGATAAA ATTAGTGTTA TTGTTCCAGT TTATAATGTA GATAAATATT TAAGTAGTTG TATAGAAAGC ATTATTAATC AAAATTATAA AAATATAGAA ATATTATTGA TAGATGATGG CTCTGTAGAT GATTCTGCTA AAATATGCAA GGAATATGCA GAAAAAGATA AAAGAGTAAA AATTTTTTC ACTAATCATA GTGGAGTATC AAATGCTAGA AATCATGGAA TAAAGCGGAG TACAGCTGAA TATATTATGT TTGTTGACTC TGATGATGTT GTTGATAGTA GATTAGTAGA AAAATTATAT TTTAATATTA TAAAAAGTAG AAGTGATTTA TCTGGTTGTT TGTACGCTAC TTTTTCAGAA AATATAAATA ATTTTGAAGT GAATAATCCA AATATTGATT TTGAAGCAAT TAATACCGTG CAGGACATGG GAGAAAAAA TTTTATGAAT TTGTATATAA ATAATATTTT TTCTACTCCT GTTTGTAAAC TATATAAGAA AAGATACATA ACAGATCTTT TTCAAGAGAA TCAATGGTTA GGAGAAGATT TACTTTTTAA TCTGCATTAT TTAAAGAATA TAGATAGAGT TAGTTATTTG ACTGAACATC TTTATTTTTA TAGGAGAGGT ATACTAAGTA CAGTAAATTC TTTTAAAGAA GGTGTGTTTT TGCAATTGGA AAATTTGCAA AAACAAGTGA TAGTATTGTT TAAGCAAATA TATGGTGAGG ATTTTGACGT ATCAATTGTT AAAGATACTA TACGTTGGCA AGTATTTTAT TATAGCTTAC TAATGTTTAA ATACGGAAAA CAGTCTATTT TTGACAAATT TTTAATTTTT AGAAATCTTT ATAAAAAATA TTATTTTAAC TTGTTAAAAG TATCTAACAA AAATTCTTTG TCTAAAAATT TTTGTATAAG AATTGTTTCG AACAAAGTTT TTAAAAAAAT ATTATGGTTA TAATAGGAAG ATATCATGGA TACTATTAGT AAAATTTCTA TAATTGTACC TATATATAAT GTAGAAAAAT ATTTATCTAA ATGTATAGAT AGCATTGTAA ATCAGACCTA CAAACATATA GAGATTCTTC TGGTGAATGA CGGTAGTACG GATAATTCGG AAGAAATTTG TTTAGCATAT GCGAAGAAAG ATAGTCGCAT TCGTTATTTT AAAAAAGAGA ACGGCGGGCT ATCAGATGCC CGTAATTATG GCATAAGTCG CGCCAAGGGT GACTACTTAG CTTTTATAGA CTCAGATGAT TTTATTCATT CGGAGTTCAT CCAACGTTTA CACGAAGCAA TTGAGAGAGA GAATGCCCTT GTGGCAGTTG CTGGTTATGA TAGGGTAGAT GCTTCGGGGC ATTTCTTAAC AGCAGAGCCG CTTCCTACAA ATCAGGCTGT TCTGAGCGGC AGGAATGTTT GTAAAAAGCT GCTAGAGGCG GATGGTCATC GCTTTGTGGT GGCCTGTAAT AAACTCTATA AAAAAGAACT ATTTGAAGAT TTTCGATTTG AAAAGGGTAA GATTCATGAA GATGAATACT TCACTTATCG CTTGCTCTAT GAGTTAGAAA AAGTTGCAAT AGTTAAGGAG TGCTTGTACT ATTATGTTGA CCGAGAAAAT AGTATCACAA CTTCTAGCAT GACTGACCAT CGCTTCCATT GCCTACTGGA ATTTCAAAAT GAACGAATGG ACTTCTATGA AAGTAGAGGA GATAAAGAGC TCTTACTAGA GTGTTATCGT TCATTTTTAG CCTTTGCTGT TTTGTTTTTA GGCAAATATA ATCATTGGTT GAGCAAACAG CAAAAGAAGC TT

33/59

RQTKLALFDM	IAVAISAILT	SHIPNADLNR	SGIFIIMMVH	YFAFFISRMP	VEFEYRGNLI
EFEKTFNYSI	IFAIFLTAVS	FLLENNFALS	RRGAVYFTLI	NFVLVYLFNV	
IIKQFKDSFL	FSTIYQKKTI	LITTAERWEN	MQVLFESHKQ	IQKNLVALVV	LGTEIDKINL
SLPLYYSVEE					
DINSFGFTAL					LIICGIVSIL
LVPIIRRDGG					
MQGWVCFKMG	KTILELLQLD	ISYAKTSLDE	LPQFYNVLIG	DMSLVGTRPP	TVDEFEKYTP
GQKRRLSFKP	GITGLWQVSG	RSNITDFDDV	VRLDLAYIDN	WTIWSDIKIL	•
LKTVKVVLLR	EGSK				

Fig. 4 cont.

CPS1E

34/59

MKVCLVGSSG GHLTHLYLLK PFWKEEERFW VTFDKEDARS LLKNEKMYPC YFPTNRNLIN LVKNTFLAFK ILRDEKPDVI ISSGAAVAVP FFYIGKLFGA KTIYIEVFDR VNKSTLTGKL VYPVTDIFIV QWEEMKKVYP KSINLGSIF

Fig. 4 cont.

CPS1F

35/59 PCT/NL99/00460 WO 00/05378

MIFVTVGTHE QQFNRLIKEI DLLKKNGSIT DEIFIQTGYS DYIPEYCKYK KFLSYKEMEQ YINKSEVVIC HGGPATFMNS LSKGKKQLLF PRQKKYGEHV NDHQVEFVRR ILQDNNILFI ENIDDLFEKI IEVSKQTNFT SNNNFFCERL KQIVEKFNED QENE

Fig. 4 cont.

CPS1G

36/59

MFKLFKYDPE	YFTFKYFWLI	IFIPEQKYVF	LLIFMNLILF	HIKFLKTKLI	LKNEILLFLL
WSILCFVSVV	TSMFVEINFE	RLFADFTAPI	IWIIAIMYYN	LYSFINIDYK	
KLKNSIFFSF	LVLLGISALY	IIQNGKDIVF	LDRHLIGLDY	LITGVKTRLV	GFMNYPTLNT
TTIIVSIPLI	FALIKNKMQQ	FFFLCLAFIP	IYLSGSRIGS	LSPLAILIIC	
LLWRYIGGKF	AWIKKLIVIF	VILLIILNTE	LLYHEILAVY	NSRESSNEAR	FIIYQGSIDK
VLENNILFGY	GISEYSVTGT	WLGSHSGYIS	FFYKSGIVGL	ILLMFSFFYV	
IKKSYGVNGE	TALFYFTSLA	IFFIYETIDP	IIIILVLFFS	SIGIWNNINF	KKDMETKNE

Fig. 4 cont.

CPS1H

37/59

MNDLISVIVP	IYNVQDYLDK	CINSIINQTY	TNLEVILVND	GSTDDSEKIC	LNYMKNDGRI
KYYKKINGGL	ADARNFGLEH	ATGKYIAFVD	SDDYIEVAMF	ERMHDNITEY	
				GSNIENNVWC	KLYSRDIIKD
IKFOINNRSI	GEDLLFNLEV	LNNVTRVVVD	TREYYYNYVI	RNSSLINQKF	
SINNIDLVTR	LENYPFKLKR	EFSHYFDAKV	IKEKVKCLNK	MYSTDCLDNE	FLPILESYRK
EIRRYPFIKA	KRYLSRKHLV	TLYLMKFSPK	LYVMLYKKFQ	KQ	

Fig. 4 cont.

CPS1I

38/59

MDKISVIVPV	YNVDKYLSSC	IESIINQNYK	NIEILLIDDG	SVDDSAKICK	EYEKDKRVKI
FFTNHSGVSN					
DLSGCLYATF					TPVCXLYQKR
YITDLFQENQ					•
KEGVFLQLEN	LQKQVIVLFK	QIYGEDFDVS	IVKDTIRWQV	FYYSLLMFKY	GKQSIFDKFL
TERNLYKKYY	FNLLKVSNKN	SLSKNFCIRI	VSNKVFKKIL	WL	

Fig. 4 cont.

CPS1J

39/59

MDTISKISII VPIYNVEKYL SKCIDSIVNQ TYKHIEILLV NDGSTDNSEE ICLAYAKKDS RIRYFKKENG GLSDARNYGI SRAKGDYLAF IDSDDFIHSE FIQRLHEAIE RENALVAVAG YDRVDASGHF LTAEPLPTNQ AVLSGRNVCK KLLEADGHRF VVACNKLYKK ELFEDFRFEK GKIHEDEYFT YRLLYELEKV AIVKECLYYY VDRENSITTS SMTDHRFHCL LEFQNERMDF YESRGDKELL LECYRSFLAF AVLFLGKYNH WLSKQQKK

Fig. 4 cont.

CPS1K

40/59

		40,	159		
AAGCTTATCG	TCAAGGTGTT			TCATAGACGA	AAAGGGATGT
	AGAAAAAGTT		ACTTTCTTCA	ATTTAAAGAC	
GCAGTAGCAG	AAGTTTATCC	TGAAATACGA	TTGTGCTATG	GTGCTGAATT	GTATTATAGT
AAAGATATAT			AAAGTACCCA	CACTTAATGG	
CTCGCGCTAT	ATTCTTTTGG	AGTTCAGTAG	TGATACTCCT	TGGAAAGAGA	TTCAAGAAGC
AGTGAACGAA	GTGACGCTAC	TTGGGCTAAC	TCCCGTACTT	GCCCATATAG	
AACGATATGA	CGCCCTAGCG	TTTCATGCAG	AGAGAGTAGA	AGAGTTAATT	GACAAGGGAT
GCTATACTCA	GGTAAATAGT	AATCATGTGC	TGAAGCCCAC	TTTAATTGGT	
GATCGAGCAA	AAGAATTTAA	AAAACGTACT	CGGTATTTTT	TAGAGCAGGA	TTTAGTACAT
TGTGTTGCTA	GCGATATGCA	TAATTTATCT	AGTAGACCTC	CGTTTATGAG	
GGAGGCTTAT	AAGTTGCTAA	CAGAGGAATT	TGGCAAAGAT	AAAGCGAAAG	CGTTGCTAAA
AAAGAATCCT	CTTATGCTAT	TAAAAAACCA	GGCGATTTAA	ACTGGTTACT	
CTAGATTGTG	GAGAGAAAA	TGGATTTAGG	AACTGTTACT	GATAAACTGT	TAGAACGCAA
CAGTAAACGA	TTGATACTCG	TGTGCATGGA	TACGTGTCTT	CTTATAGTTT	
CCATGATTTT	GAGCAGACTG	TTTTTGGATG	TTATTATTGA	CATACCAGAT	GAACGCTTCA
TTCTTGCAGT	TTTATTCGTA	TCAATTTTAT	ATTTGATTCT	ATCGTTTAGA	
TTAAAAGTCT	TTTCATTAAT	TACGCGTTAC	ACAGGGTATC	AGAGTTATGT	AAAAATAGGA
CTTAGTTTAA	TATCTGCGCA				
GTGGCAGGCT	TTTAGTTATC	GTTTCATCTT	AGTATCCTTA	TTTTTGTCGT	ATGTAATGCT
	AGGATTGTTT				
	GAAGGATAGC				GATGGTGGTA
	CAATACTGTC				
	ATCGTGATCC				TAAAGTTTTA
	ATGATATTCC				
	GCCATCCCTT	- "		GAGAAGATTG	TTGAAATCTG
	GGAGTGACCG	_			
	CATGTCTGTC				СТТСТТССТС
	TGTTTTGGAT			TTTCCAAGGG	CIICIIOOIC
	TTGTCACAGG			CAGAGCTATG	ΤΡΟΙΤΟΝ ΝΑΤΤ
	CGCCTAAACG		CTTGGACATG		ICGICAAAII
	ATTCATCGAG				ACTTCCTCCC
	GATATTCAAG				AGIIGGICCC
	CGATGTTGTT			GCATGTTCCT	ттсатссаат
	TGAAGCAGTG				110/1100/211
	CTAAAACTGC				АСАТАААССТ
	CAAATGTCAT				
	TTAAACGAGC			GCAGTCCGGT	TTGGGAATGT
	CGTGGAAGTG				11000111101
	TGTTACGGTT				ACGATTCCTG
	TTTGGTTATC				
	TGGATATGGG				AAAAGTTATC
	GACACACAGA				
				GAAGAACGTG	TCAGCGAACA
	AAAATATTTG	TGGGTCGCGT	TACAAATAAG		1011000111011
	ATTTATCAAT			AAATGAATTA	AAAAATATGT
	TGCAAAACAA				IDDUDITIOI
	AAACGATGTT				מאראאראאדא
	TTAAGAGTCA				MCMCMIN
	GTATATTTGG				שר הא א א הרביד א
	TATTATCTCA				IGIAAACGIA
	TTGCATTGGC				ስጥጥጥ እስር እስ
	GTAAAAACAA				ATTIMACAA
	GACGCACCAA				CTAACCCCAT
					CIAAGGCGAI
	GTGGGCGCGT				CONCOCHINA
CACAGCTTTT	TAATATTTT	AAAGGTGAAA	TGGCGATTGT	TGGTCCACGC	CCAGCCTTAT
	TGACTTAATT				~~~~~~~
	GACTAACCGG				GGAAATTGAT
	AATTAGATGG				
GGATATTAAA	TGTTTCTTAG	GTACATTCCT	CAGTGTAGCC	AGAAGCGAAG	GTGTTGTTGA
AGGTGGAACA	GGGCAGAAAG	GAAAAGGATG	AAATTTTCAG	TATTAATGTC	
GGTCTATGAG	AAAGAAAAAC	CAGAGTTTCT	TAGGGAATCT	TTGGAAAGCA	TCCTTGTCAA
TCAAACAATG	ATTCCAACGG	AGGTTGTCTT	GGTAGAGGAT	GGGCCACTCA	
ATCAGAGCTT	ATATAGTATT	TTAGAAGAAT	TTAAAAGTCG	ATTTTCATTT	TTTAAAACGA
TAGCCTTGGA	AAAGAATTCG	GGTTTAGGAA	TTGCACTGAA	TGAAGGTTTG	
AAACATTGTA	ATTATGAGTG	GGTTTGCACG	AAATGGATTC	TGATGATGTT	GCATATACAT
ACACGTTTTG	AAAAGCAAGT	TAACTTTATA	AAACAAAACC	CGACTATAGA	

41/59

TATTGAGATA	GATGAGTTCT	TAAATTCTAC	TAGTGAAATA	GTTTCTCATA	AAAATGTTCC
AACCCAGCAC	GATGAAATAT	TAAAGATGGC	AAGGCGGGAG	AAATCCATGT	
GCCACATGAC	TGTAATGTTT	AAAAAGAAAA	GTGTCGAGAG	AGCAGGGGG	TATCAAACAC
TTCCGTACGT	AGAAGATTAT	TTCCTTTGGG	TGCGCATGAT	TGCTTCAGGA	
TCGAAATTTG	CAAACATTGA	TGAAACACTA	GTTCTTGCAC	GTGTTGGAAA	TGGGATGTTC
AATAGGAGGG	GGAACAGAGA	ACAAATTAAC	AGTTGGACAT	TACTAATTGA	
ATTTATGTTA	GCTCAAGGAA	TTGTTACACC	ACTAGATGTA	TTTATTAATC	AAATTTACAT
TAGGGTCTTT	GTTTATATGC	CAACTTGGAT	AAAGAAACTC	ATTTATGGAA	
AAATCTTAAG	GAAATAGTAT	GATTACAGTA	TTGATGGCTA	CATATAATGG	AAGCCCATTT
ATAATAAAAC	AGTTAGATTC	AATTCGAAAT	CAAAGTGTAT	CAGCAGACAA	
AGTTATTATT	TGGGATGATT	GCTCGACAGA	TGATACAATA	AAAATAATAA	AAGATTATAT
AAAAAAATAT	TCTTTGGATT	CATGGGTTGT	CTCTCAAAAT	AAATCTAATC	
AGGGGCATTA	TCAAACATTT	ATAAATTTGA	CAAAGTTAGT	TCAGGAAGGA	ATAGTCTTTT
TTTCAGATCA	AGATGATATT	TGGGACTGTC	ATAAAATTGA	GACAATGCTT	
CCAATCTTTG	ACAGAGAAAA	TGTATCAATG	GTGTTTTGCA	AATCCAGATT	GATTGATGAA
AACGGAAATA	TTATCAGTAG	CCCAGATACT	TCGGATAGAA	TCAATACGTA	
CTCTCTAGA					

Fig. 5 cont.

42/59

AYRQGVRYIV ATSHRKGMF ETPEKVIMTN FLQFKDAVAE VYPEIRLCYG AELYYSKDIL SKLEKKKVPT LNGSRYILLE FSSDTPWKEI QEAVNEVTLL GLTPVLAHIE RYDALAFHAE RVEELIDKGC YTQVNSNHVL KPTLIGDRAK EFKKRTRYFL EQDLVHCVAS DMHNLSSRPP FMREAYKLLT EEFGKDKAKA LLKKNPLMLL KNQAI

Fig. 5 cont.

CPS9D

43/59

MDLGTVTDKL	LERNSKRLIL	VCMDTCLLIV	SMILSRLFLD	VIIDIPDERF	ILAVLFVSIL
VI.TI.SFRI.KV	FSLITRYTGY	OSYVKIGLSL	ISAHSLFLII	SMVLWQAFSY	
RETIVSLELS	YVMLITPRIV	WKVLHETRKN	AIRKKDSPLR	ILVVGAGDGG	NIFINTVKDR
KINEETVGTV	DRDPNKLGTF	IRTAKVLGNR	NDIPRLVEEL	AVDQVTIAIP	
SLNGKEREKI	VEICNTTGVT	VNNMPSIEDI	MAGNMSVSAF	QEIDVADLLG	RPEVVLDQDE
TNOFFOCKTI	LVTGAGGSIG	SELCROIAKE	TPKRLLLLGH	GENSIYLIHR	
FILEKYOGKI	FLVPLIADIO	DRELIFSIMA	EYQPDVVYHA	AAHKHVPLME	YNPHEAVKNN
TECTENIZATA	AKTAKVAKEV	MVSTDKAVNP	PNVMGATKRV	AEMIVTGLNE	
PGQTQFAAVR	FGNVLGSRGS	VVPLFKEOIR	KGGPVTVTDF	RMTRYFMTIP	EASRLVIQAG
UT AVCCETEV	T.DMGEPVOII.	FLARKVILLS	GHTEEEIGIV	ESGIRPGEKL	
YEELLSTEER	VSEOTHEKTE	VGRVTNKOSD	IVNSFINGLL	QKDRNELKNM	LIEFAKQE
IPPUDITER	100011101111			_	

Fig. 5 cont.

CPS9E

WO 00/05378

MYPICKRILA IIISGIAIVV LSPILLLIAL AIKLDSKGPV LFKQKRVGKN KSYFMIYKFR
SMYVDAPSDM PTHLLKDPKA MITKVGAFLR KTSLDELPQL FNIFKGEMAI
VGPRPALWNQ YDLIEERDKY GANDIRPGLT GWAQINGRDE LEIDEKSKLD GYYVQNMSLG
LDIKCFLGTF LSVARSEGVV EGGTGQKGKG

Fig. 5 cont.

CPS9F

45/59

MKFSVLMSVY	EKEKPEFLRE	SLESILVNQT	MIPTEVVLVE	DGPLNQSLYS	ILEEFKSRFS
FFKTIALEKN	SGLGIALNEG	LKHCNYEWVC	TKWILMMLHI	HTRFEKQVNF	
IKQNPTIDIE	IDEFLNSTSE	IVSHKNVPTQ	HDEILKMARR	EKSMCHMTVM	FKKKSVERAG
GYQTLPYVED	YFLWVRMIAS	GSKFANIDET	LVLARVGNGM	FNRRGNREQI	
NSWTLLIEFM	LAQGIVTPLD	VFINQIYIRV	FVYMPTWIKK	LIYGKILRK	

Fig. 5 cont.

CPS9G

MITVLMATYN GSPFIIKQLD SIRNQSVSAD KVIIWDDCST DDTIKIIKDY IKKYSLDSWV VSQNKSNQGH YQTFINLTKL VQEGIVFFSD QDDIWDCHKI ETMLPIFDRE NVSMVFCKSR LIDENGNIIS SPDTSDRINT YSL

Fig. 5 cont.

CPS9H

		47/			
WO 00/05378		47/			PCT/NL99/00460
CTGCAGCACA	TAAGCATGTT	CCATTGATGG	AATATAATCC	ACATGAAGCA	GTGAAGAATA
ATATTTTTGG	AACGAAGAAT	GTGGCTGAGG	CGGCTAAAAC	TGCAAAGGTT	
GCCAAATTTG	TTATGGTTTC	AACAGATAAA	GCTGTTAATC	CGCCAAATGT	CATGGGAGCG
ACTAAACGTG	TTGCAGAAAT	GATTGTAACA	GGTTTAAACG	AGCCAGGTCA	
GACTCAATTT	GCGGCAGTCC	GTTTTGGGAA	TGTTCTAGGT	AGTCGTGGAA	GTGTTGTTCC
GCTATTCAAA	GAGCAAATTA	GAAAAGGTGG	ACCTGTTACG	GTTACCGACT	
TTAGGATGAC	TCGTTATTTC	ATGACGATTC	CTGAGGCAAG	TCGTTTGGTT	ATCCAAGCTG
GACATTTGGC	AAAAGGTGGA	GAAATCTTTG	TCTTGGATAT	GGGTGAGCCA	
GTACAAATCC	TGGAATTGGC	AAGAAAAGTT	ATCTTGTTAA	GCGGACATAC	AGAGGAAGAA
ATCGGGATTG	TAGAATCTGG	AATCAGACCA	GGCGAGAAAC	TCTACGAGGA	
ATTGTTATCA	ACAGAAGAAC	GTGTCAGCGA	ACAGATTCAT	GAAAAAATAT	TTGTGGGTCG
CGTTACAAAT	AAGCAGTCGG	ACATTGTCAA	TTCATTTATC	AATGGATTAC	
TCCAAAAAGA	TAGAAATGAA	TTAAAAGATA	TGTTGATTGA	ATTTGCAAAA	CAAGAATAAG
AAAGTAAAAA	ATATTTTTAC	TTTCCTAGAG	TTTAAACGAT	GTTTAAGTTC	
TAGGAAGGTT	GGAATTGCTT	TCGTGGAGGT	GATAGATAGA	AACCTATATA	TTTGTAGAAG
AAAGGATATT	AAACTAAAGG	TGAATCGGAA	CATAAAGTTT	AGATAGAGTT	
GGTATTTAAT	GCCAAACAGG	TGAATGCAAC	CTCTCGCTCG	TTACTAAGCA	GGAGATAGTA
AAGTTGCTTG	AAAGAGAGTT	TGTTAATCAG	TATAAGTAGG	CTAAAGTGAG	
AATATATATC	TATTATTATC	GGTAATGATA	CTATTATTGA	GAATTATTGT	AGTGGGGATA
AAAATAATTT	TTGGTGATTT	TATCGTCCGA	CTTAAAGGTG	GGTTAAAAAA	
GTACTTATAT	TCTTTTAGAA	TTGATGAAAA	ATATGGGGGA	ATATAATATT	TATAGGAGAT
ACGATGACTA	GAGTAGAGTT	GATTACTAGA	GAATTTTTTA	AGAAGAATGA	
AGCAACCAGT	AAATATTTTC	AGAAGATAGA	ATCAAGAAGA	GGTGAATTAT	TTATTAAATT
CTTTATGGAT	AAGTTACTTG	CGCTTATCCT	ATTATTGCTA	TTATCCCCAG	
TAATCATTAT	ATTAGCTATT	TGGATAAAAT	TAGATAGTAA	GGGGCCAATT	TTTTATCGCC
AAGAACGTGT	TACGAGATAT	GGTCGAATTT	TTAGAATATT	TAAGTTTAGA	
ACAATGATTT	CTGATGCGGA	TAAAGTCGGA	AGTCTTGTCA	CAGTCGGTCA	AGATAATCGT
ATTACGAAAG	TCGGTCACAT	TATCAGAAAA	TATCGGCTGG	ACGAAGTGCC	
CCAACTTTTT	AATGTTTTAA	TGGGGGATAT	GAGCTTTGTA	GGTGTAAGAC	CAGAAGTACA
AAAATATGTA	AATCAGTATA	CTGATGAAAT	GTTTGCGACG	TTACTTTTAC	
CTGCAGGAAT	TACTTCACCA	GCGAGTATTG	CATATAAGGA	TGAAGATATT	GTTTTAGAAG
AATATTGTTC	TCAAGGCTAT	AGTCCTGATG	AAGCATATGT	TCAAAAAGTA	
TTACCAGAAA	AAATGAAGTA	CAATTTGGAA	TATATCAGAA	ACTTTGGAAT	TATTTCTGAT
TTTAAAGTAA	TGATTGATAC	AGTAATTAAA	GTAATAAAAT	AGGAGATTAA	CMCD D DMCD
AATGACAAAA	AGACAAAATA	TTCCATTTTC	ACCACCAGAT	ATTACCCAAG	CTGAAATTGA
TGAAGTTATT	GACACACTAA	AATCTGGTTG	GATTACAACA	GGACCAAAGA	
CAAAAGAGCT	AGAACGTCGG	CTATCAGTAT	TTACAGGAAC	CAATAAAACT	GTGTGTTTAA
ATTCTGCTAC	TGCAGGATTG	GAACTAGTCT	TACGAATTC1	TGGTGTTGGA	, mcmcammacm
CCCGGAGATG	AAGTTATTGT	TCCTGCTATG	ACCTATACTO	CCTCATGTAG	TGTCATTACT
CATGTAGGAG	CAACTCCTGT	GATGGTTGAT	ATTCAAAAA	ACAGCTTIGE	┧ ╮ ┉┌╖┉┉┌┌┉┌┉
GATGGAATAT	GATGCTTTGG	AAAAAGCGAT	TACTCCGAAF	ACAAAAGIIA	A TCATTCCTGT
TGATCTAGCT	GGTATTCCTT	GTGATTATGA	TAAGATTTAT	ACCATCGIAC	, mmmcccccxc
AAAACAAACG	CTCTTTGTAT	GTTGCTTCTG	ATAATAAATG	GCAGAAACT	TTTGGGCGAG
TTATTATCCT	ATCTGATAGI	GCACACTCAC	TAGGTGCTAG	TTATAAGGGA	ኔ p ጥአአሮአአጥጥጥጥ
AAACCAGCGG	GTTCCCTAGC	AGATTTTACC	TCATTTTCT	TCCATGCAG	TAAGAATTTT
ACAACTGCT	AAGGAGGTAG	TGTGACATGG	AGATCACATC	CIGALLIGGA	ኔ • ርአአአርርአሞርር
TGACGAAGAG	ATGTATAAAG	AGTTTCAGAT	TTACTCTCT	CATGGICAG	A CAAAGGATGC
ATTAGCTAAG	ACACAATTAC	GGTCATGGGA	ATATGACAT.	C GITATICCIO	ን ለ ጥጥአሮአአሮሮጥጥ
GTTACAAGT	TAATATGACA	GATATTATGG	CAGGTATCG	TOTIGIOCEA	A TTAGAACGTT
ACCCATCTT	GTTGAATCG	CGCAGAGAAA	TCATTGAGAZ	A ATACARIGO	ነ አ አሮአአምሮርሞሮሞ
GGCTTTGAGC	GGACTTCGA'	TAAGCCGTTG	GTACACCTG	CGGAAGAIA	A ACAATCGTCT
ATGCACTTGT	T ATATCACGC	A TCTACAAGGC	, TATACTITA	S AMCMACGAA C AATCTTCAC	ጉ ኮ ስርልልልሮሮልጥጥ
TGAAGTCAT	r caaaaaatgo	CTGAAGCAGG	TATIGUETG	C MAIGIICAC	T ACAAACCATT
ACCTCTTCT(CACAGCCTACA	A AGAATCTTGO	TTTTGAAAT	G MAMGATITT	ር C አአሮሞሞርአርምር
CGAATGCCT	A TCAGTATTT	r GAAAATGAAC	TTACACTGC	TOTIONING	C AACTTGAGTG
ATGAAGATG	r GGAGTATGT	J ATAGAAATG	TTTTAAAAA	I IGITAGTAG	ው አ ርእሮእሮርሞሞሮር
GATTAGTTA'	r tttggaagg	A GATATGGTG	AAAGAGATA	m ARCHCAAMO	A GACACGTTGG
TATCTATAA'	T AATGCCCTC	G TGGAATACA	CTAAGTATA	I MICIGAATC	ር ጥር አጥር አጥጥርጥ
ATCCAGTCA(G TGTTGGACC	A AACACACCA	AATTGGGAA	C VEWINATOR	T TGATGATTGT
TCTAATGAC	G AAACTGAAA	A AGTTGTTTC	CATTTUAAA	G MIICHAGAA	.1

DNA Serotype 7

48/59

ÄAAGTTTTTT	AAAAATTCGA	ATAATTTAGG	GGCAGCTCTA	ACACGAAATA	AGGCACTAAG
AAAAGCTAGA	GGTAGGTGGA	TTGCGTTCTT	GGATTCAGAT	GATTTATGGC	
ACCCGAGTAA	GCTAGAAAAA	CAGCTTGAAT	TTATGAAAAA	TAATGGATAT	TCATTTACTT
ATCACAATTT	TGAAAAGATT	GATGAATCTA	GTCAGTCTTT	ACGTGTCCTG	
GTGTCAGGAC	CAGCAATTGT	GACTAGAAAA	ATGATGTACA	ATTACGGCTA	TCCAGGGTGT
TTGACTTTCA	TGTATGATGC	AGACAAAATG	GGTTTAATTC	AGATAAAAGA	
TATAAAGAAA	AATAACGATT	ATGCGATATT	ACTTCAATTG	TGTAAGAAGT	ATGACTGTTA
TCTTTTAAAT	GAAAGTTTAG	CTTCGTATCG	AATTAGAAAA	AA	

Fig. 6 cont.

WO 00/0537849/59PCT/NL99/00460AAHKHVPLMEYNPHEAVKNNIFGTKNVAEAAKTAKVAKFVMVSTDKAVNPPNVMGATKRVAEMIVTGLNEPGQTQFAAVRFGNVLGSRGSVVPLFKEQIRKGGPVTVTDFRMTRYFMTIPEASRLVIQAGHLAKGGEIFVLDMGEPVQILELARKVILLSGHTEEEIGIVESGIRPGEKLYEELLSTEERVSEQIHEKIFVGRVTNKQSDIVNSFINGLLQKDRNELKDMLIEFAKQE

Fig. 6 cont.

CPS7E

WO 00/05378 50/59 PCT/NL99/00460

MTRVELITRE FFKKNEATSK YFQKIESRRG ELFIKFFMDK LLALILLLL SPVIIILAIW
IKLDSKGPIF YRQERVTRYG RIFRIFKFRT MISDADKVGS LVTVGQDNRI
TKVGHIIRKY RLDEVPQLFN VLMGDMSFVG VRPEVQKYVN QYTDEMFATL LLPAGITSPA
SIAYKDEDIV LEEYCSQGYS PDEAYVQKVL PEKMKYNLEY IRNFGIISDF
KVMIDTVIKV IK

Fig. 6 cont.

CPS7F

WO 00/05378		51/			PCT/NL99/00460
MTKRQNIPFS	PPDITQAEID	EVIDTLKSGW	ITTGPKTKEL	ERRLSVFTGT	NKTVCLNSAT
AGLELVLRIL	GVGPGDEVIV	PAMTYTASCS	VITHVGATPV	MVDIQKNSFE	
MEYDALEKAI	TPKTKVIIPV	DLAGIPCDYD	KIYTIVENKR	SLYVASDNKW	QKLFGRVIIL
SDSAHSLGAS	YKGKPAGSLA	DFTSFSFHAV	KNFTTAEGGS	VTWRSHPDLD	
DEEMYKEFQI	YSLHGQTKDA	LAKTQLGSWE	YDIVIPGYKC	NMTDIMAGIG	LVQLERYPSL
LNRRREIIEK	YNAGFEGTSI	KPLVHLTEDK	QSSMHLYITH	LQGYTLEQRN	
EVIQKMAEAG	IACNVHYKPL	PLLTAYKNLG	FEMKDFPNAY	QYFENEVTLP	LHTNLSDEDV
EYVIEMFLKI	VSRD				

Fig. 6 cont.

CPS7G

52/59

MVERDMVERD TLVSIIMPSW NTAKYISESI QSVLDQTHQN WELIIVDDCS NDETEKVVSH FKDSRIKFFK NSNNLGAALT RNKALRKARG RWIAFLDSDD LWHPSKLEKQ LEFMKNNGYS FTYHNFEKID ESSQSLRVLV SGPAIVTRKM MYNYGYPGCL TFMYDADKMG LIQIKDIKKN NDYAILLQLC KKYDCYLLNE SLASYRIRK

Fig. 6 cont.

CPS7H

-	1 (1) (1)	1 1 1 1		1111 11	1 1 1 11 1	EYAEQDGRIK AYAKKDSRIR	60 60
Cps2J Cps2K	1 111 1	11111	1 1 1 1	H 1	1 1	SDLSGGLLAT NAL_VAVAG	120

Fig. 7

Fig. 8

Fig. 9A

Fig. 9B

10607	17084	19903	
11 10E08 NACCOCACT CTATAAACTC CCAAAATTGC GAATTTGGAG TTACGAAAGC CTTGTTAAAT CAA-CATTTTA AATTTAGAA AATTAGTTTT TAGAGCTCCC	(1) TOSOS ANGESCACO CONTROLLO CONTRO	(2) 1888S GEGGGCCCC CONTROLL	
AATTTTAGAA	AATTTTAGAA		
TGTTAAAT CAA-CATTTA	TGTTAAAT CAA-CATCTTA		ISIIAANI CAAAAIIII
TIACGAAAGC CT			TTACCARAGE CI
GAATTTGGAG	GAATTTGGAG		GAATTTGGAG
CCAAAATTGC			CCAAAATTGC
CTATAAACTC			CTATAAACTC
TOTAL STORY		11111111	AAGGGCACCT
0	0 0	1020	19803
•	3	(7)	(3)

Fig. 12