MULTI-ROBOT COORDINATION SYSTEM INTEGRATION GUIDE

MULTI-ROBOT COORDINATION SYSTEM INT

Document ID: MRCIG-2024-01

Version: 3.2

Effective Date: January 11, 2024

Classification: CONFIDENTIAL - FOR AUTHORIZED USE ONLY

1. INTRODUCTION AND SCOPE

1. This Multi-Robot Coordination System Integration Guide ("Integration

2. This Integration Guide constitutes confidential and proprietary inform
2. DEFINITIONS
1. "Authorized Integration Partner" means any entity or individual form
2. "Control Architecture" means the hierarchical command and contro
3. "Integration Environment" means the physical and digital infrastruct
4. "System Components" means all hardware, software, and firmware
3. TECHNICAL REQUIREMENTS
Hardware Infrastructure
a) Minimum computing specifications:

- -2-

Processing: Intel Xeon E-2288G or equivalent

-

Memory: 64GB ECC RAM

-

Storage: 2TB NVMe SSD

b) Network requirements:

-

Dedicated gigabit ethernet infrastructure

_

Maximum latency tolerance: 50ms

-

Minimum bandwidth: 100Mbps per active robot

2. Software Dependencies

a) Operating System: Ubuntu Server 20.04 LTS or later

b) Database: PostgreSQL 13.0 or later

c) Runtime Environment: ROS2 Galactic or later

4. INTEGRATION PROCEDURES

- 1. Pre-Integration Assessment
- a) Site survey and environmental mapping
- b) Network infrastructure validation
- c) Safety system compatibility verification
- d) Existing automation system interface analysis
- 2. System Deployment
- a) Core system installation

- b) Robot fleet initialization
- c) Navigation map generation
- d) Control system configuration
- 3. Validation and Testing
- a) Individual robot functionality verification
- b) Multi-robot coordination testing
- c) Emergency response system validation
- d) Performance metrics baseline establishment

5. SAFETY AND COMPLIANCE

- 1. Safety Standards
- a) ISO/TS 15066:2016 compliance for collaborative robotics

- b) ANS⊮RIA R15.06-2012 robot safety requirements
- c) IEC 61508 functional safety standards
- 2. Emergency Protocols
- a) E-stop system implementation requirements
- b) Failsafe mode specifications
- c) Human override procedures
- d) Incident reporting requirements

6. MAINTENANCE AND SUPPORT

- 1. Routine Maintenance
- a) Daily system health checks
- b) Weekly performance optimization

- c) Montaly software updates
- d) Quarterly hardware inspections
- 2. Technical Support
- a) 24/7 emergency support access
- b) Tiered response protocols
- c) Remote diagnostics requirements
- d) Escalation procedures

7. INTELLECTUAL PROPERTY AND CONFIDENTIA

- 1. All System Components, including but not limited to software, algor
- 2. Integration Partners shall maintain strict confidentiality regarding al

8. LIABILITY AND INDEMNIFICATION

- 1. The Company shall not be liable for any damages arising from una
- 2. Integration Partners shall indemnify the Company against any claim

9. DOCUMENT CONTROL

- 1. This document is subject to version control and periodic updates.
- 2. The most recent version shall supersede all previous versions.
- 3. Distribution of this document is restricted to Authorized Integration

AUTHORIZATION

By: -8-

Dr. Elena Kovacs

Chief Research Officer

NaviFloor Robotics, Inc.

Date: _

Document Control Number: DCN-2024-011-MRCIG

Last Updated: January 11, 2024

