Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék

Digitális Rendszerek (BSc)

 előadás: Logikai egyenletek leírása I. Boole-algebra axiómái és tételei

Előadó: Vörösházi Zsolt

voroshazi@vision.vein.hu

Jegyzetek, segédanyagok:

Könyvfejezetek:

```
http://www.knt.vein.hu-> Oktatás -> Tantárgyak -> Digitális
Rendszerek (BSC).
```

```
(00_chapter, 01_chapter.pdf)
```

- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

I. Logikai egyenletek leírása

Stílus – Absztrakció – Formalizmus

Stílus

- Komplex feladat ⇒ egyszerűbb, kezelhető részfeladatokra bontása
 - □ Szisztematikus
 - □ Érthető módszerek kellenek

PI: programozási stílusok (Top-down, strukturált)

- Jó stílus kialakításának szabályai:
 - □ Top-down módszer szerinti tervezés
 - Csak kiforrott, biztos technikákat szabad alkalmazni
 - □ Fontos a dokumentálás!

Absztrakció

- Digitális tervezés "elvi-fogalmi" szintje
 - Kezdeti absztrakció a tervezés során meghatározó, kritikus pont!
 - 1. koncepcionális modell (elvi elgondolás)
 - 2. megvalósítható, realizálható modell (HW)
 - □ Magas-szintű absztrakció ⇒ elvi modell szintenkénti finomítása és felépítése

Formalizmus

- A rendszer viselkedésének leírására szolgál
 - Szisztematikus szabályok és eljárások
 - □ Minden absztrakciós szinten fontos a használatuk
 - PI: alapvető formalizmus a Boole-algebra (bináris logika elmélete) – de csak alsóbb szinteken használható

(felsőbb-, rendszer-szint) Absztrakció ⇔ (alsóbb-, áramköri szint)
Boole algebra
(konkretizálás)

Digitális tervezés

- Logikai konstansok:
 - □ Logikai állítás: Igaz / Hamis, True / False, 1 / 0
- Logikai (bináris) változók:
 - □ Pl: 'A' logikai változó esetén legyen,

A:=fotódióda hiba

- 'A' lehet: T / F (A=F nincs hiba; A=T hiba)
- Logikai változó neve utaljon a funkciójára
- Logikai operátorok:
 - □ Felírásuk igazság táblázattal (Truth Table)

Igazságtábla: logikai operátorok felírása

'X' logikai függvény megadása az 'A,C,B' logikai változók összes lehetséges értékétől függően Jel: X(A,C,B) //3 változó -> 2^3 = 8 sor//

А	С	В	Х
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Α	С	В	Х
F	F	F	F
F	F	Т	Т
F	Т	F	Т
F	Т	Т	F
Т	F	F	Т
Т	F	Т	F
Т	Т	F	F
Т	Т	Т	F

sor 0.

). I.

-

3.

4. 5.

6.

Kanonikus "standard" igazság tábla:
 000 – 111 -ig (3 változó esetén)

- Jel: NOT $A = \overline{A}$
- Formális definíció igazságtáblával:

А	NOT A
0	1
1	0

- Def:
 - □ ha A hamis, NOT A igaz
 - □ ha A igaz, NOT hamis

- Jel: B AND C = B·C
- Formális definíció igazságtáblával:

В	С	B⋅C
0	0	0
0	1	0
1	0	0
1	1	1

Def: B·C értéke pontosan akkor 'igaz' ha 'B' és
 'C' is egyszerre 'igaz', különben hamis

- Jel: B **OR** C = B+C
- Formális definíció igazságtáblával:

В	С	B+C
0	0	0
0	1	1
1	0	1
1	1	1

 Def: B+C értéke pontosan akkor 'igaz', ha 'B' és 'C' közül legalább az egyik 'igaz', különben hamis

Egyváltozós logikai függvények:

Jelmásoló (jel-erősítés):

be	ki
0	0
1	1

Nemzetközi szabvány

Magyar szabvány

Negálás - Inverter (NOT):

be	ki
0	1
1	0

Kétváltozós logikai függvények:

■ ÉS (AND):

Α	В	ki
0	0	0
0	1	0
1	0	0
1	1	1

VAGY (OR):

Α	В	ki
0	0	0
0	1	1
1	0	1
1	1	1

Antivalencia (XOR):

Α	В	ki
0	0	0
0	1	1
1	0	1
1	1	0

Kétváltozós log.függv. (folyt.):

■ NEM-ÉS (NAND):

Α	В	ki
0	0	1
0	1	1
1	0	1
1	1	0

NEM-VAGY (NOR):

Α	В	ki
0	0	1
0	1	0
1	0	0
1	1	0

Ekvivalencia (NXOR):

Α	В	ki
0	0	1
0	1	0
1	0	0
1	1	1

Tri-State Buffer:

- buszok esetén használatos: kommunikációs irány változhat
 - □ Driver: egyirányú kommunikációra
 - □ Transceiver: kétirányú kommunikációra
- 3 állapota lehet:
 - □ magas: '1'
 - □ alacsony: '0' (normál TTL szintek)
 - nagy impedanciás áll: 'Z' mindkét kimeneti tranzisztor zár

High-true enable

Low-true enable

Boole algebra

(1815-1864)

- Logikai operátorok algebrája
- George Boole: először mutatott hasonlóságot az általa vizsgált logikai operátorok és a már jól ismert aritmetikai operátorok között.
- HW tervezés alacsonyabb absztrakciós szintjén rendkívül fontos szerepe van. (Specifikáció + egyszerűsítés)

Boole algebra elemei:

- A vizsgált 3 alapművelet: AND, OR, NOT
- Tulajdonságaik (AND, OR esetén):
 - Kommutatív: A+B=B+A, A · B=B · A
 - Asszociatív: A+(B+C)=(A+B)+C=A+B+C
 A ·(B · C)=(A · B) · C=A · B · C
 - Disztributív: $A \cdot (B+C)=A \cdot B+A \cdot C$, $A+(B \cdot C)=(A+B) \cdot (A+C)$
- Operátor precedencia (csökkenő sorrendben):
 - NOT
 - AND
 - OR
 - átzárójelezhetőség!

Boole algebrai azonosságok!

$$1.)\overline{\overline{A}} = A$$

$$2.)A + 0 = A$$

$$3.)A+1=1$$

$$4.)A + A = A$$

$$5.)A + \overline{A} = 1$$

6.)
$$A \cdot 1 = A$$

$$7.)A \cdot 0 = 0$$

$$8.)A \cdot A = A$$

$$9.)A \cdot \overline{A} = 0$$

$$10.)A + A \cdot B = A$$

$$11.)A \cdot (A+B) = A$$

$$12.)A \cdot B + A \cdot \overline{B} = A$$

$$13.)(A+B)\cdot (A+\overline{B})=A$$

$$14.)A + \overline{A} \cdot B = A + B$$

$$15.$$
) $A \cdot (\overline{A} + B) = A \cdot B$

$$16.)A + B \cdot C = (A + B) \cdot (A + C)$$

17.)
$$A \cdot (B + C) = A \cdot B + A \cdot C$$

De-Morgan azonosságok:

$$18.)\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$19.)\overline{A \cdot B} = \overline{A} + \overline{B}$$

PI: De Morgan

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Α	В	A·B	NOT (A·B)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Dualitás elve

Α	В	NOT A	NOT B	NOT(A) + NOT(B)
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Példa: egyszerűsítésre

$$\overline{A \cdot (B + C \cdot (B + \overline{A}))} = \overline{A} + \overline{B}$$

■ PI:

sor	Α	В	W
0	0	0	0
1	0	1	0
2	1	0	1
3	1	1	0

W pontosan akkor lesz **igaz**, ha A igaz és B hamis, egyébként W **hamis** lesz. Vagyis egyenletként kifejezve: $W = A \cdot B$

■ PI:

sor	Α	В	Υ
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	1

Y pontosan akkor lesz **igaz**, ha A és B is hamis, vagy A igaz és B hamis, vagy A és B is igaz, egyébként W **hamis** lesz. Vagyis egyenletként kifejezve:

$$Y = \overline{A} \cdot \overline{B} + A \cdot \overline{B} + A \cdot B \Longrightarrow \overline{B} + A \cdot B \Longrightarrow \overline{B} + A$$

$$\overline{Y} = \overline{A} \cdot B$$

1.) Sum-of-Products (szorzat "termek" összege)

- Szorzat (AND) termek összeg (OR) kapcsolata
- Emberi szemléletmódhoz közelebb áll: a táblázat soraiból azokat a függvényértékeket (Y) vesszük amelyek '1'-esek
- Def: <u>Triviális forma</u>: ha egy változó egy adott szorzat termben vagy ponáltan, vagy negáltan <u>legfeljebb</u> egyszer szerepel.

Ezt hívják még mintermnek (m_i) vagy kanonikus szorzat termnek is.

- \square PI: *valós / triviális /* kanonikus formulák: $A,A,A\cdot B,A\cdot B\cdot C$
- □ PI: <u>érvénytelen</u> formulák (de ettől még Boole kifejezés), ami jelenti azt is, hogy tovább egyszerűsíthetők:

$$A \cdot \overline{A}, \overline{A} \cdot B \cdot B \cdot \overline{C}$$

Diszjunktív Normál Forma:

Jel:
$$Y(DNF): \sum_{i=0}^{2^{n}-1} m_i$$

- n változó esetén 2ⁿ lehetséges minterm van.
- Képzésük: az igazságtáblázatból azoknak a mintermeknek a VAGY kapcsolatát vesszük, ahol függvényértékek sorában (Y) '1' -es szerepel, vagy ahol a függvény komplemensének (Y) értéke '0'.
- minterm: m_i (i. sora a kanonikus táblának, ahol Y értéke '1').

Példa: DNF felírása

Igazságtábla:

	sor	A	В	Υ
•	0	0	0	1
	1	0	1	0
	2	1	0	1
	3	1	1	1

■ Kapott egyenlet:
$$Y = \overline{A} \cdot \overline{B} + A \cdot \overline{B} + A \cdot B = m_0 + m_2 + m_3$$
[0 0] [1 0] [1 1]

■ Komplemens: $\overline{Y} = \overline{A} \cdot B = m_1$

2.) Product-of-Sums: összeg"termek" szorzata

- összeg (OR) termek szorzat (AND) kapcsolata
- Maxterm (M_i): olyan kanonikus összeg term, amelyben mindegyik logikai változó <u>pontosan</u> egyszer fordul elő, ponált, vagy negált alakban.
 - \square Valós maxterm: $\overline{A} + B + \overline{C}$, de nem valós: $\overline{A} + \overline{C}$
 - □ Kanonikus forma: $W = (P + Q + R)(P + \overline{Q} + \overline{R})$
 - □ Nem kanonikus forma: $W = (P+Q)(P+\overline{Q}+\overline{R})$
- Gyakorlatban kevésbé használt forma.

KNF: Konjunktív Normál Forma

- Jel: $W(KNF) = \prod_{i=0}^{2} M_i$
- Képzésük: a kanonikus igazságtábla azon maxtermjeinek ÉS kapcsolatát vesszük, ahol a függvény (W) értéke '0', vagy a komplemens függvény (W) értéke '1'.
- PI: $W = \overline{A} + \overline{B}$ vagy

$$\overline{W} = (A+B) \cdot (\overline{A}+B) \cdot (A+\overline{B}) \stackrel{disztributív}{=} \overline{\overline{A} \cdot B} = A \cdot B$$

Maxterm (M_i): az igazságtáblázat i. sora, ahol a kimeneti függvényérték '0'.

Példák: KNF

- Legyen: M_i = A+B+C ahol a kimeneti függvényérték hamis volt. Ez az M_i maxterm igaz A,B,C változók értékének kombinációjára, kivéve egyet, ahol A=1, B=0, C=1. Tehát [101]=5. → M₅ (táblázat 5.sora)
- Legyen: M_i = A + B + C ahol a kimeneti függvényérték hamis volt. Ez az M_i maxterm igaz A,B,C változók értékének kombinációjára, kivéve egyet, ahol A=0, B=0, C=0. Tehát [000]=0. → Így M₀ (táblázat 0.sora)

Példa: KNF felírása

Igazságtábla

sor	J	K	L	W
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

Igazságtáblából kapjuk, hogy:

$$W(KNF) = (J + K + L) \cdot (\overline{J} + K + L) \cdot (\overline{J} + K + \overline{L}) \cdot (\overline{J} + \overline{K} + L) \cdot (\overline{J} + \overline{K} + \overline{L})$$

$$W(KNF) = [000] \cdot [100] \cdot [101] \cdot [110] \cdot [111] = M_0 \cdot M_4 \cdot M_5 \cdot M_6 \cdot M_7$$

$$W(DNF) = (\overline{J} \cdot \overline{K} \cdot L) + (\overline{J} \cdot K \cdot \overline{L}) + (\overline{J} \cdot K \cdot L)$$
$$W(DNF) = [001] + [010] + [011] = m_1 + m_2 + m_3$$

Igazságtábla felírása logikai kifejezésekből I.

- a.) DNF-ből: felírás egyszerű
 - Kanonikus mintermből: egy sor képződik (ahol Y igaz),
 - Nem kanonikus, kevesebb változót tartalmazó termből: több sor is képződhet, mivel egy ilyen term egy adott logikai változó ponált és negált értékére is igaz kimeneti eredményt (Y) ad,
 - Egy sorhoz több term is tartozhat!

Példa: DNF -> Igazságtábla

Eredeti egyenlet:

$$Y(DNF) = J \cdot \overline{K} + \overline{J} \cdot K \cdot L + J \cdot K \cdot \overline{L} + K \cdot L$$
 term1 term2 term3 term4 kanonikus (minterm)

Kapott igazságtábla:

sor	J	K	L	W
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

term2 és term4 term1 term1 term3

term4

- b.) KNF-ből: felírás nehezebb (az egyes logikai változók negált értékeit kell venni)
 - Kanonikus maxtermből: egy sor képződik (ahol Y hamis),
 - Nem kanonikus, kevesebb változót tartalmazó termből: több sor is képződhet, mivel egy ilyen term egy adott logikai változó ponált és negált értékére is hamis kimeneti eredményt (Y) ad,
 - Egy sorhoz több term is tartozhat!

Példa: KNF -> Igazságtábla

Eredeti egyenlet:

$$G(KNF) = (\overline{A} + B + C) \cdot (\overline{A} + B) \cdot (\overline{A} + \overline{B} + \overline{C})$$
term1 term2 term3
kanonikus (maxterm)

Kapott igazságtábla:

sor	Α	В	С	G	
0	0	0	0	1	
1	0	0	1	1	
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	0	
6	1	1	0	1	
7	1	1	1	0	

term1 és term2

term2

term3

Igazság táblák tömörebb felírási formája

- Eml: Kanonikus ig. táblánál: n változó -> 2ⁿ sor (összes lehetséges változó kombináció felírásával)
- Egyszerűsített / tömörebb felírás:
 - □ "X": Don't Care változó két értéke: 0 és 1 is lehet.

$$Y = J \cdot K + J \cdot K \cdot L + J \cdot K \cdot L + K \cdot L$$

term2

term3

term1

1	*
kanonikus	(minterm)

J	K	L	Υ
0	0	0	0
0	0	1	0
0	1	0	0
X	1	1	1
1	0	X	1
1	1	0	1

term2 és term4 Term1: L don't care (0 v. 1)

term4

term3

term1 Term4: J dont'care (1 v. 0)

34

- Bizonyos bemeneti kombinációkra ugyanazt a kimeneti eredményt kapjuk (irreleváns)
- Jele: "—" Don't care kimeneti állapot
- PI.

Α	В	Υ
0	X	1
1	0	
1	1	0

ha '-'=1,
$$Y = \overline{A} + A \cdot \overline{B} = \overline{A} + \overline{B}$$

ha '-'=0, $Y = \overline{A}$

KARNOUGH TÁBLÁK

- Korai időszakban: logikai elemek hatalmas, nehezen tervezhető, nagy energiát disszipáló eszközökből álltak
- Logikai kifejezések egyszerűsítése. Ma: HW olcsó elemekből épül fel. Cél: az áramköri minimalizáció (modularitás, egyszerűség)

 K-Map / Veicht diagram: grafikus ábrázolási és egyszerűsítési mód, a kanonikus igazságtábla egy újrarendezett formája (több forma is létezik, és fontos a betűk, cimkék sorrendje)

Karnough tábla felírása igazság táblázatból

- Igazságtábla mindenegyes sorának kimeneti értékéhez (Yi) a Karnough tábla egy négyzete feleltethető meg.
- Pl. n=2 változó esetén lehetséges táblák:

sor	Α	В	Y
0	0	0	Y0
1	0	1	Y1
2	1	0	Y2
3	1	1	Y3

általános jelölés

- n=2, 3, 4 változóval még könnyű felírni (>4 változó felett már más technikát használunk)
- Pl: n=3 változó esetén lehetséges táblákra:

	D <i>C</i>	•	C			
BC			В			
A		00	01	11	10	
	0	Y ₀	Y ₁	Y ₃	Y ₂	
A	1	Y ₄	Y ₅	Y ₇	Y ₆	

■ Pl: n=4 változó esetén lehetséges táblákra:

AB			Α			
CD		00	01	11	10	
	00	Y ₀	Y ₄	Y ₁₂	Y ₈	
	01	Y ₁	Y ₅	Y ₁₃	Y ₉	
	11	Y ₃	Y ₇	Y ₁₅	Y ₁₁	D
С	10	Y ₂	Y ₆	Y ₁₄	Y ₁₀	
B						

n= 5 változó esetén

n=6 változó esetén

Boole függvény ábrázolási módjai

■ Boole-algebrai kifejezés: $Y = A \cdot B + A \cdot B$

Igazságtábla:

	_		
sor	Α	В	Υ
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0

Karnough tábla:

- Def: Ha egy Karnough táblában két szomszédos (adjacent) cella csak egy változó értékében különbözik (egységnyi távolság)!
- PI. $Y_3 = \overline{A} \cdot B \cdot C$ és $Y_7 = A \cdot B \cdot C$

Egyszerűsítés Karnough táblákkal

- Tömörítés szabályai:
 - 2ⁿ (n=0,1,2..) term vonható be egy tömbbe,
 - Egyetlen term több tömbben is szerepelhet (átlapolódás lehetséges)
 - Egyik tömb, a másikat nem tartalmazhatja teljes mértékben, (redundancia)
 - Mindig a lehető legnagyobb lefedéseket keressük, és haladjunk a legkisebb méretű tömbök/lefedések felé
 - Don't care ('-') kimeneti függvényértékeket a jobb lefedésnek megfelelően kell megválasztani (NTSH)
 - Egymás mellett lévő (adjacens) sorokra és oszlopokra érvényes:

Példa: Karnough táblák egyszerűsítése

érvényes

Nem összes, de lehetséges egyszerűsítések - érvényes érvénytelen

Átlós, és nem 2ⁿ számú '1'-es lefedés érvénytelen

45

Lehetséges módszerek Karnough tábla értelmezésére:

- M1: *Y*(*DNF*) '1'-esek lefedésével képzett (normál, eddig használt ált. módszer)
- M2: $\overline{Y}(DNF)$ '0'-k lefedésével képzett inverz függvény felírás
- M3: Y(KNF) '0'-k lefedésével képzett
- M4: *Y*(*KNF*) '1'-esek lefedésével képzett inverz függvény felírás

 Ajánlott: fejezetek végén a feladatok (Exercises) részek áttekintése.