Lab 3

Môn: Hệ thống số (TN)

Lóp: L01 **Nhóm:** 7

GVHD: Kiều Đỗ Nguyên Bình

Thành viên: Lê Đức Huy 1810166

Nguyễn Gia Huy
Huỳnh Thiên Trình
Lê Bá Thông
Lê Duy Bình
1810173
1810615
1810555
51204735

1 Introduction

1.1 Aims

- Implement half adder, full adder circuit.
- Practice with different adder circuits.

1.2 Requirements

- Understand how to implement an adder circuit.
- Have ability to combine the small cicuits to implement the bigger ones.

1.3 Procedure

- Verify the gates.
- Make the connections as per the circuit diagram.
- Switch on V_{cc} and apply various combinations of input according to the truth table.
- Note down the output readings for half/full adder and half/full subtractor sum/difference and the carry/borrow bit for different combinations of inputs.

1.4 Report Requirements

Your report of each exercise should include:

- Answer and explain all questions (If required).
- The circuit and truth table of each exercise.
- Two or Three photos of the circuit **on KIT**.

2 Contents

2.1 Half/Full Adder

2.1.1 Using X-OR and Basic Gates

Half Adder

Figure 1: Half Adder circuit with X-OR and Basic Gates.

Full Adder

Figure 2: Full Adder circuit with X-OR and Basic Gates.

2.1.2 Using only NAND gates

Half Adder

Figure 3: Half Adder circuit with only NAND gates.

Full Adder

Figure 4: Full Adder circuit with only NAND gates.

2.2 Half/Full Subtractor

2.2.1 Using X-OR and Basic Gates

Half Subtractor

Figure 5: Half Subtractor circuit with X-OR and Basic Gates.

Full Subtractor

Figure 6: Full Subtractor circuit with X-OR and Basic Gates.

2.2.2 Using only NAND gates

Half Subtractor

Figure 7: Half Subtractor circuit with only NAND gates.

Full Subtractor

Figure 8: Full Subtractor circuit with only NAND gates.

Fill in these tables:

	Half Adder								
A	$\mathbf{A} \mathbf{B} \mathbf{S} \mathbf{C} \mathbf{S}(\mathbf{V}) \mathbf{C}(\mathbf{V})$								
0	0	0	0	0	0				
0	1	1	0	1	0				
1	0	1	0	1	0				
1	1	0	1	0	1				

	Half Subtractor								
A	B D B D(V) B(V)								
0	0	0	0	0	0				
0	1	1	1	1	1				
1	0	1	0	1	0				
1	1	0	0	0	0				

	Full Adder									
A	В	$\mathbf{C}(\mathbf{V})$								
0	0	0	0	0	0	0				
0	0	1	1	0	1	0				
0	1	0	1	0	1	0				
0	1	1	0	1	0	1				
1	0	0	1	0	1	0				
1	0	1	0	1	0	1				
1	1	0	0	1	0	1				
1	1	1	1	1	1	1				

	Full Subtractor									
A	B	B(V)								
0	0	0	0	0	0	0				
0	0	1	1	1	1	1				
0	1	0	1	1	1	1				
0	1	1	0	1	0	1				
1	0	0	1	0	1	0				
1	0	1	0	0	0	0				
1	1	0	0	0	0	0				
1	1	1	1	1	1	1				

3 Exercices

Exercice 1: Implement a half subtractor circuit use **only** NAND gate. Show results on LED diode.

	Half Subtractor								
A	B D B D(V) B(V)								
0	0	0	0	0	0				
0	1	1	1	1	1				
1	0	1	0	1	0				
1	1	0	0	0	0				

Exercice 2: Implement full adder circuit from the half adder

The full adder circuit must have 3 inputs: bit A, bit B and carry bit. Show results on LED diode.

	Full Adder									
A	В	C(V)								
0	0	0	0	0	0	0				
0	0	1	1	0	1	0				
0	1	0	1	0	1	0				
0	1	1	0	1	0	1				
1	0	0	1	0	1	0				
1	0	1	0	1	0	1				
1	1	0	0	1	0	1				
1	1	1	1	1	1	1				

Exercice 3: Implement an adder that can be work out the sum of two 2-bits numbers by using full adder circuit. Show results on both LED diot and 7-seg LED.

Inputs					Ou	tputs	5
\mathbf{a}_1	\mathbf{a}_0	$\mathbf{b_1}$	b	0	\mathbf{c}_1	S ₁	S ₀
0	0	0	0)	0	0	0
0	0	0	1		0	0	1
0	0	1	0)	0	1	0
0	0	1	1		0	1	1
0	1	0	0)	0	0	1
0	1	0	1		0	1	0
0	1	1	0)	0	1	1
0	1	1	1		1	0	0
1	0	0	0)	0	1	0
1	0	0	1		0	1	1
1	0	1	0)	1	0	0
1	0	1	1		1	0	1
1	1	0	0)	0	1	1
1	1	0	1		1	0	0
1	1	1	0)	1	0	1
1	1	1	1		1	1	0

