Table of Contents

elear	1
prepare data	
solve using fminunc (to verify our result)	
mplement my own algorithm	
show figures	
compare with matlab fminunc	

clear

```
clear;
close all;
fclose all;
```

prepare data

```
randn('seed', 1);
beta = zeros(10, 1);
beta(3) = 1;
beta(5) = 7;
beta(10) = 3;
n = 100;
p = 10;
X = randn(n, p);
y = X * beta + 0.1 * randn(n, 1);
lambda = 0.2;
```

solve using fminunc (to verify our result)

```
a0 = rand(10, 1);
V = @(a) norm(y - X * a, 2) ^ 2 + lambda * norm(a, 1);
aopt = fminunc(V, a0);
```

Warning: Gradient must be provided for trust-region algorithm; using quasi-newton algorithm instead.

Local minimum found.

Optimization completed because the size of the gradient is less than the default value of the optimality tolerance.

implement my own algorithm

```
[beta, status, history] = l1_norm_ls_solver(X, y, lambda);
```

Solving a problem of size (n=100, p=10), with lambda=2.00000e-01

iter	gap	primobj	dualobj	reltot	
0	4.92e+03	4.91972e+03	1.67317e+00	2.93935e+03	
1	3.77e+03	3.76975e+03	1.67323e+00	2.25198e+03	
2	1.07e+00	3.17128e+00	2.10371e+00	5.07467e-01	
3	2.70e-01	3.16589e+00	2.89636e+00	9.30589e-02	
4	2.01e-01	3.16587e+00	2.96512e+00	6.77048e-02	
5	1.37e-01	3.16585e+00	3.02915e+00	4.51294e-02	
6	8.71e-02	3.16584e+00	3.07871e+00	2.82996e-02	
7	5.47e-02	3.16582e+00	3.11116e+00	1.75699e-02	
8	3.42e-02	3.16579e+00	3.13163e+00	1.09087e-02	
9	2.17e-02	3.16574e+00	3.14409e+00	6.88601e-03	
10	1.39e-02	3.16565e+00	3.15179e+00	4.39943e-03	
11	8.95e-03	3.16554e+00	3.15659e+00	2.83476e-03	
12	5.65e-03	3.16538e+00	3.15973e+00	1.78873e-03	
13	3.49e-03	3.16525e+00	3.16175e+00	1.10477e-03	
14	2.07e-03	3.16514e+00	3.16306e+00	6.55760e-04	
Absolute	tolerance	reached.			

show figures

```
hold on;
figure(1);
title('Duality gap, prinobj, dualobj');
xlabel('iter');
ylabel('log(.)');
plot(history(:, 1), log(history(:, 2)), 'r-');
plot(history(:, 1), log(history(:, 3)), 'g--');
plot(history(:, 1), log(history(:, 4)), 'b*-');
legend('duality gap', 'primobj', 'dualobj')
hold off;
```


compare with matlab fminunc

```
error = aopt - beta;
fprintf('Difference with matlab fminunc:\nerror=');
disp(error);
Difference with matlab fminunc:
error=
       1.0e-03 *
   -0.6304
   -0.5299
   0.0067
   -0.6078
    0.0981
   -0.3700
   -0.1489
   -0.5425
   -0.3541
    0.0099
```

Published with MATLAB® R2016a