ROS 2

Node configuration

Roberto Masocco roberto.masocco@uniroma2.it

University of Rome Tor Vergata
Department of Civil Engineering and Computer Science Engineering

May 31, 2023

Recap

Multiple ROS 2 nodes can communicate using three different paradigms:

- Topics: asynchronous, unidirectional communication.
- Services: synchronous, bidirectional communication.
- Actions: asynchronous, bidirectional communication.

All rely on messages, which must be defined, and on QoS policies.

New code examples are available.

This lecture is <u>here</u>.

1 Namespaces

2 Node parameters

1 Namespaces

2 Node parameters

1 Namespaces

2 Node parameters

Why parameters?

Example: The camera driver node

Suppose you have to integrate an **RGB camera** into your architecture, by writing a ROS 2 node that acts as a **driver**:

- the node uses the necesary libraries to interact with the camera hardware;
- RGB frames are constantly published on some topic;
- during constant operation, you would like to change some values to tune image quality, e.g., exposure.

You could **encode** such parameters in your program, or pass them as **command-line arguments**, but this is just the beginning...

Why parameters?

Example: The controller node

Suppose you implemented some **discrete-time control law** in a ROS 2 node:

- subscribers constantly sample sensor measurements, and callbacks embed the control algorithm;
- the control law depends on some parameters;
- you would like to change the parameters without having to recompile your software each time;
- you would like to have **other modules** to change such parameters automatically if need be, and to **automatically react** to such changes.
- ... Middleware support is evidently needed.

Node parameters

A ROS 2 node can have one or more **parameters**: values that can be specified at **startup**, changed at **runtime**, and used in the implementation.

The parameter system is **decentralized** and **built on messages and services**: each node has its own parameters and related services, and updates are **broadcasted** to every other node over the /parameter_events topic (try to inspect it! Remember to log it too during experiments!).

Parameters can be listed, queried, described and set, using either CLI tools or service calls; YAML configuration files may be loaded or dumped.

It is possible to specify what to do when a parameter update is requested by defining a callback.

A parameter may be **read-only** and its type may be **dynamic**.

Parameter types

From the rcl_interfaces/ParameterType message file:

- BOOL
- INTEGER
- DOUBLE
- STRING
- BYTE_ARRAY
- BOOL_ARRAY
- INTEGER_ARRAY
- DOUBLE_ARRAY
- STRING ARRAY

Parameters CLI commands

- ros2 param list NODE_NAME
 Lists available parameters of a node.
- ros2 param describe NODE_NAME PARAMETER_NAME Shows information about a parameter.
- ros2 param get NODE_NAME PARAMETER_NAME Returns the value of a parameter.
- ros2 param set NODE_NAME PARAMETER_NAME VALUE
 Sets a given value for a parameter.
- ros2 param dump NODE_NAME
 Dumps the current parameter configuration in a YAML file.
- ros2 param load NODE_NAME PARAMETER_FILE Loads parameters from a YAML file.

Parameters CLI commands

When starting a node with ros2 run, it is possible to specify parameters as **command-line arguments**:

```
ros2 run PACKAGE_NAME EXECUTABLE_NAME --ros2-args -p
param_name:=param_value ...
```

It is also possible to specify a configuration file:

```
ros2 run PACKAGE_NAME EXECUTABLE_NAME --ros2-args --params-file
PARAMETER_FILE
```

Parameters services

When a node is launched, it automatically instantiates the following services:

- ~/get_parameters
- ~/set_parameters
- ~/list_parameters
- ~/describe_parameters
- ~/get_parameter_types
- ~/set_parameters_atomically

Try to inspect them with ros2 service type! They all take groups of parameters on which to operate, and can be called either from a **CLI tool** or from a **client node**: that is the way to go if you want to **automate parameter updates**.

Coding with parameters

Hints and best practices

- Parameters are referred to by their name.
- Before being used, a parameter must be declared to the middleware: this is usually done in the constructor of a node specifying their name and default value.
- Parameter values can be retrieved atomically by calling an API, but accessing the
 middleware's internals to do this might be slow: define class member variables that track
 the value of each parameter by being updated each time the parameter is.

Coding with parameters

Suggested TODO list

- **1** Define class member variables to track the value of each parameter.
- ② Define a callback to be called when a parameter is updated.
- **Declare** the parameters in the **constructor** of the node; do this **first**, so that the parameters are available as soon as the node is started.
- Register the callback to the middleware.
- Use the parameter values in the implementation.

Coding with parameters

About declarations

There are two APIs, corresponding to two ways to declare parameters:

- the lazy way: declare_parameter(...) specifying only the name and the default value of the parameter;
- the complete way: declare_parameter(...) specifying all the information about the parameter, including its type, description, read-only flag, max and min values, constraints and more, using a rcl_interfaces::msg::ParameterDescriptor object.

The complete way is **recommended**, but induces a lot of **boilerplate code**!

Check out our **params_manager** library!

Example: Parametric publisher

Now go have a look at the $\frac{\text{ros2-examples/src/cpp/parameters_example_cpp}}{\text{package!}}$

1 Namespaces

2 Node parameters

Scripting ROS 2 Architectures

A ROS 2-based control architecture for a robot can easily get to have 20 nodes or more.

It then becomes critical to be able to **automate startup and configuration** of all the modules, or some subsets, also for testing.

That is what the ROS 2 Launch System is for.

Launch Files

Launch files are Python scripts that specify how ROS 2 modules must be located, configured and started. Their format is such that the Launch System can parse and integrate them when invoked.

Many things can be configured about modules in such files:

- console and text files logs;
- command line arguments;
- node parameters;
- remappings.

Targeted modules may even not be ROS 2 nodes.

Launch files may be included, so that large architectures can be started with single commands.

```
1 from launch import LaunchDescription
2 from launch ros.actions import Node
3
    The following function MUST be specified
5
  """Builds a launch description."""
7 def generate_launch_description():
    ld = LaunchDescription()
9
    node = Node(
10
      package = 'PACKAGE NAME',
11
      executable = 'EXECUTABLE NAME'
12
13
    ld.add_action(node)
14
    return ld
```

Listing 1: Minimal example of a launch file

Coding Launch Files

Launch Files Best Practices

- Their extension is usually .launch.py.
- They are usually placed in a directory named launch that is installed in the workspace path during build.
- A module can have its own launch files but those for the entire architecture must form an appropriate package, whose name is usually PROJECT_bringup.

A comprehensive description of all the features of launch files can be found in launch_files.md.

Example: Bringup Package

Now go have a look at the ros2-examples/src/ros2_examples_bringup package!