

O SISTEMA

■ Introdução

sistemas eletrónicos ... trata-se dum conjunto de componentes (a maior parte dos quais eletrónicos) ligados de forma a funcionar como um todo, que desempenham uma determinada função, solicitados por sinais de controlo específicos ...

Caixa preta

Diagrama de blocos de um computador

Parâmetro	Microfone	Amplificador	Altifalante	Sistema
Impedância	50kΩ	Entrada: 10MΩ Saída: 8Ω	8Ω	_
Resposta em	40-9000Hz	20-15000Hz	30-12000Hz	_
frequência (±3dB)				
Potência		30W (max.)	30W	30W
Tensão de saída	100μV	15,5V max		_
Ganho de tensão		10000		_
Distorção harmónica		1%		_
Alimentação		~230V, 50Hz	_	~230V, 50Hz

Especificações do sistema PA e seus componentes

- (a) Equivalente de Thevenin do microfone
- (b) Circuito equivalente da ligação microfone amplificador

Amplificador

- (a) Diagrama de blocos do amplificador
- (b) Ligação do amplificador ao altifalante

Microfone

Impedância: 50 kΩ

Tensão de saída: 100 µV (em circuito-aberto, para um nível médio de voz)

Amplificador

Impedância de entrada: 1MΩ

Ganho: 10000 (em circuito aberto)

$$V_o = (10.000)(V_i)$$

$$V_i = 100 \times 10^{-6} \frac{10^6 \Omega}{10^6 \Omega + 50 \times 10^3 \Omega} = 0,95 \times 10^{-4} V$$

$$\rightarrow V_o = (10.000)(0.95 \times 10^{-4}) = 0.95V$$

Para um amplificador com uma impedância de 10 k Ω em vez de 1 M Ω :

$$V_o = (10.000)(V_i) = (10.000)(100 \times 10^{-6}) \frac{10 \times 10^3 \Omega}{10 \times 10^3 \Omega + 50 \times 10^3 \Omega}$$
$$= 0.167V$$

Tipos de Sistemas

... é a natureza da relação entre a entrada e a saída que determina a classificação de qualquer sistema ...

Lineares, Não Lineares

$$\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \ldots + a_{1}\frac{dy}{dt} + a_{0} = b_{m}\frac{d^{m}x}{dt^{m}} + b_{m-1}\frac{d^{m-1}x}{dt^{m-1}} + \ldots + b_{1}\frac{dx}{dt} + b_{0}$$

Características de Sistemas Lineares:

- → É válido o princípio da sobreposição
- → Não produzem novas frequências ...

a)
$$A = E_0/E_i$$
 $E_0 = \frac{E_0}{E_i}$

b) Linha recta $E'_i = 1V$ Sinusóide $E''_i = 0.5 \operatorname{sen}(\omega t)$

c)
$$E_i = E'_i + E''_i = 1 + 0.5 \operatorname{sen}(\omega t)$$

d)
$$E_o = E'_o + E''_o = 5 + 2.5 \operatorname{sen}(\omega t)$$

■ Malha Aberta, Malha Fechada

... Um sistema em malha-fechada é aquele onde a saída depende não só da entrada, mas também de uma medida da sua própria saída ...

Sistema em malha fechada: automóvel e condutor

Diagrama de blocos de um sistema em malha-fechada

■ Repetibilidade/Precisão

A precisão de um sistema é definida pela quantidade de medidas repetidas nas mesmas condições que dão o mesmo resultado. É uma medida da repetibilidade ou da dispersão de um conjunto de medidas.

■ Exatidão

É o desvio entre o valor medido e o valor real.

$$Exactidão(\%) = \frac{Valor\ real\ - Valor\ Medido}{Valor\ de\ referência} \times 100$$

Valor de referência – É um valor real definido previamente, frequentemente é o valor de fim de escala

■ Relação entre Repetibilidade/precisão e exatidão

- a) Baixa ExactidãoBaixa Precisão
- b) Baixa Exactidão Alta Precisão
- c) Alta Exactidão Baixa Precisão
- d) Alta Exactidão Alta Precisão

Exemplo

A especificação da exatidão de grande parte dos aparelhos de medida – de um voltímetro, p. ex. –, faz-se normalmente nestes termos, isto é, em termos do valor máximo de funcionamento ou fim de escala. Dizer que a classe de exatidão dum voltímetro é 0.1, por exemplo, quer dizer que o maior erro que é possível cometer numa medida (tendo em conta todas as fontes de imprecisão), é 0.1% do valor máximo da escala em que se está a trabalhar. Assim, quando trabalhamos na escala de 20V, o maior erro absoluto que cometemos é:

$$Erro\ abs = \frac{Exatidão}{100} * 20 = 0.02V$$

 Quando medimos nesta escala, uma tensão de 5V, o erro relativo cometido é de:

$$Erro\ relativo = \frac{0.02}{5} * 100 = 0.4\%$$

- Dizemos que uma medição é feita com elevada precisão se os erros acidentais são pequenos quando comparados com o valor da grandeza medida;
- Dizemos que uma medição é feita com elevado rigor ou exatidão se os erros sistemáticos são pequenos (quando comparados com o valor da grandeza medida);
- O termo precisão é usado para caracterizar a repetibilidade dos resultados, indicando o desvio em relação ao valor médio;
- A exatidão é o termo que se utiliza para exprimir o afastamento do valor médio relativamente ao verdadeiro valor da grandeza;
- A precisão é tanto maior quanto mais próxima do valor médio estiver a medida;

Qual a escala para medir com maior exatidão 1,1A:

Errado

Certo

Sensibilidade

... A sensibilidade dum sistema é uma indicação de qual a variação de entrada que é necessária para produzir a variação de saída desejada ...

$$sensibilidade = \frac{\Delta saida}{\Delta entrada}$$

Exemplo:

Considere-se o sistema de controlo de velocidade eletrónico da fig. Neste caso a referência de velocidade é determinada pela tensão no ponto médio do potenciómetro, *Er.* Vamos admitir que quando *Er* = 5V, a velocidade é 3000rpm (rotações-por-minuto). Para *Er* = 6V, a velocidade é 4000rpm. A sensibilidade é então de (6 – 5)V para a variação correspondente de (4000 – 3000) rpm, ou seja, **1000rpm/V.**

■ No exemplo anterior se quisermos provocar uma alteração de 4000rpm na velocidade, devemos variar a entrada de (4000 a dividir pela sensibilidade):

$$\Delta E_r = \frac{4000rpm}{1000rpm/V} = 4V$$

Ou seja, é necessário variar a tensão E_r de 5V para 9V. É possível traçar um gráfico com os pontos acima obtidos:

E _r	Velocidade (rpm)		
5	3000		
6	4000		
9	7000		

■ Resolução

 A resolução define-se como a quantidade mais pequena que um sistema é capaz de distinguir.

Exemplo : Considere-se o caso duma resistência variável de 100Ω com uma resolução de 1% do seu valor máximo, ou seja : A resistência pode assim ser ajustada para 1Ω , 2Ω , 3Ω , etc., mas não pode fixar-se em 2.2Ω ou 4.5Ω (admitindo que se começa em 0Ω).

Linearidade

... pode definir-se como o desvio da relação entre a entrada e a saída de uma linha recta ...

Resistência versus posição angular do veio para uma resistência variável - relação linear

$$%Iinearidade = \frac{\Delta R}{R_{max}} \times 100$$

%linearidade =
$$\frac{\Delta R}{R_{\star}} \times 100$$

Resistência *versus* posição angular do veio para uma resistência variável - relação não-linear

■ Resposta em Frequência

... tem a ver com o comportamento do sistema perante estímulos (entradas) sinusoidais de diferentes frequências ...

Curva de resposta em frequência

Curva de resposta em frequência (limitada a altas e baixas frequências)

largura de banda =
$$f_{sc} - f_{ic}$$
 (Hz)

$$X_{DB} = 20 \times \log_{10}(X)$$

■ Resposta em Frequência (exemplos)

Resposta em Frequência (exemplos)

■ Tempo de resposta

... tem a ver com a rapidez com que um sistema responde a variações do sinal de entrada ...

Resposta do sistema para uma entrada em degrau

■ Características Dinâmicas

Respostas em regime transitório: (a)sub-amortecida; (b) criticamente amortecida; (c) sobre-amortecida

Tempo de resposta e gama de erro

Oscilações não-amortecidas (sistema instável)