1. Let $P \subseteq \mathbb{R}^d$ be a polytope defined by $Ax \leq b$. Let $a_1, ..., a_m$ be the rows of A, and $b=(b_1, ..., b_m)$.

Let
$$x \in P$$
, $I(x) = \{i \in [m] : \langle a_i, x \rangle < b_i \}$, let's denote $\triangle_{min} = min \left\{ \frac{b_i - \langle a_i, x \rangle}{\|a_i\|} \mid i \in I(x) \right\}$.

Take
$$\epsilon = \triangle_{min}$$
. Let $y \in B_{\epsilon}(x)$ in some norm of \mathbb{R}^d .

$$|||x|| - ||y||| \le ||y - x|| \le \triangle_{min} \le$$

For all
$$i \in [m] : ||a_i|| \triangle_{min} \ge ||a_i|| ||y - x|| \ge \langle a_i, y - x \rangle = \langle a_i, y \rangle - \langle a_i, x \rangle \ge \langle a_i, y \rangle - \triangle_{min}$$

$$\langle a_i,y\rangle = \langle a_i,x+y-x\rangle \leq \langle a_i,x\rangle + \langle a_i,y-x\rangle \leq \langle a_i,x\rangle + \|a_i\| \, \|y-x\| \leq \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| \, \frac{b_i - \langle a_i,x\rangle}{\|a_i\|} = \langle a_i,x\rangle + \|a_i\| +$$

- 2. Let $P \subseteq \mathbb{R}^d$ be a polytope, suppose that P is defined by $Ax \leq b$.
 - (a) Assume that (a) holds $x \in P$ is a vertex of P and let's show that (b) holds. Since x is a vertex of P there exists some linear functional that x is it's unique maximizer:

$$f(y) = \langle c, y \rangle$$
, $\underset{y \in P}{argmax} f(y) = x$, $f(x) = f_{max}$

Suppose, by contradiction, that $\exists 0 \neq v \in \mathbb{R}^d$ such that $x+v \in P$ and

and so either x is not the maximizer or it's not a unique maximizer

If
$$\langle c, v \rangle < 0 \Rightarrow -\langle c, v \rangle > 0$$
 and so $\langle c, x - v \rangle = \langle c, x \rangle + \langle c, -v \rangle = \langle c, x \rangle - \langle c, v \rangle > \langle c, x \rangle$ and again x is not the maximizer of f(y) on P, in contradiction.

(b) Assume that (b) holds: For every $0 \neq v \in \mathbb{R}^d$ either $x + v \notin P$ or

 $x - v \notin P$ or both. Let's show that (a) holds:

Consider the linear functional $f(x) = \left\langle \sum_{i \in [m] \setminus I(x)} a_i, x \right\rangle$. Suppose, by contradiction, that x is not it's unique maximizer on P, then there

exists some $v' \in \mathbb{R}^d$ such that $x + v' \in P$ and such that $f(x) \leq$

$$f(x+v') = \left\langle \sum_{i \in [m] \setminus I(x)} a_i, x+v' \right\rangle \Rightarrow$$

$$\sum_{i \in [m] \setminus I(x)} \langle a_i, x \rangle \le \sum_{i \in [m] \setminus I(x)} (\langle a_i, x \rangle + \langle a_i, v' \rangle) \Rightarrow \sum_{i \in [m] \setminus I(x)} \langle a_i, v' \rangle \ge 0$$

$$x + v' \in P \Rightarrow A(x + v') \le b \Rightarrow \forall 1 \le i \le d \quad a_i x + a_i v' \le b_i$$

 $\forall 1 \leq i \leq d \ x \in P \Rightarrow a_i x \leq b_i \text{ and since } \sum \langle a_i, v' \rangle \geq 0 \text{ we can zero}$

every coordinate of v' such that $a_i v' < 0$ and we will get a vector with only non-negative coordinates, lets denote it v. $x + v \in P$ since for all coordinates we have zeroed out the condition that is required for x + v to be in P is $a_i x \leq b_i$ which holds since $x \in P$. For coordinates we haven't zeroed the condition $a_i x + a_i v' \leq b_i$ still holds. The vector x-v is also in P since $\forall 1 \leq i \leq d$ $a_ix-a_iv \leq a_ix+a_iv \leq b_i$. In contradiction to the assumption.

- 3. Let G = (V, E) be a graph.
 - (a) Let's denote the vertices of G as v_i $1 \le i \le |V|$.

Define the vector x of size |V| $x_i = \begin{cases} 1 & v_i \in C \\ 0 & v_i \notin C \end{cases}$

$$min \qquad \overrightarrow{\mathbf{1}} \cdot x$$

$$m = s.t. \qquad x_i \in \{0, 1\}$$
for each $v_i v_j \in E, x_i + x_j \ge 1$

(b) The functions $f: V \to \{0,1\}$ such that for each $v_i v_j \in E, f(v_i) +$ $f(v_i) \geq 1$ are a subset of the fractional vertex cover.

Therefore The minimum weight of the functions $f: V \to \{0,1\}, s.t. \ v_i v_i \in$ $E, f(v_i) + f(v_i) \ge 1$, let's call it: r, is smaller or equal to the minimum weight of the fractional vertex cover m^* .

$$\begin{array}{ll}
min & \sum f(v_i) \\
r = s.t. & \\
\end{array}$$

for each $v_i v_j \in E$, $f(v_i) + f(v_j) \ge 1$

If we denote the vector x to be f over all all vertices of G : x = f(V)

and so we get that $m^* \leq m$.

$$\begin{array}{ccc} & \min & & \vec{\mathbf{1}} \cdot x \\ (\mathbf{c}) & m^* = s.t. & & x_i \geq 0 \\ & & \text{for each } v_i v_j \in E, x_i + x_j \geq 1 \end{array}$$

- (d) Algorithm for finding a 2m vertex cover:
 - i. Solve the LP that gives us m^* and denote it's argmin as x^* .

ii.
$$x_i = \begin{cases} 1 & x_i^* \ge 0.5 \\ 0 & x_i^* < 0.5 \end{cases}$$

claim: x is a vertex cover of size at most 2m.

It is a vertex cover since for each edge $v_i v_j \in E \ x_i^* + x_j^* \geq 1$, therefore at least one of x_i^* and x_i^* are at least 0.5 and so at least

one of
$$x_i$$
 and x_j are 1.
 $m \ge m^* = \sum_{i=1}^{|V|} x_i^*$.

Since for each coordinate of x^* at the very most we have multiplied it by 2 then the size of the provided vertex cover by the algorithm is : $\sum_{i=1}^{|V|} x_i \leq \sum_{i=1}^{|V|} 2x_i^* = 2m^* \leq 2m$.

- 4. Let $x \in conv(S)$ therefore $x = \alpha_1 s_1 + ... + \alpha_k s_k$ such that $\alpha_i \geq 0$, $\sum_{i=1}^k \alpha_k = 1$
 - If $k \leq d+1$ then we are done. Suppose k > d+1 then $s_1, ... s_k$ are linearly dependant and so :
 - Therefore $s_2-s_1,...,s_k-s_1$ are also linearly dependant

5. Denote v = 1 $\forall 1 \le i \le n, \ 0 \le a_i \le 1$ $a^T v = x$