MATHEMATISCHE METHODEN

Dr. Michael Czerner Bearbeitungszeit: 180 min.

Name:

Matrikel-Nr.:

Studienfach:

Klausurnummer:

Platznummer:

Aufgabe	1	2	3	4	5	6	7	8	9	10	Summe	100%	Note
max	6	6	10	12	8	14	8	14	8	14	100	95	

Aufgabe 1: Grenzwerte

Berechnen Sie die folgenden Grenzwerte:

a)
$$\lim_{x \to 0} \frac{x + x^2}{4\sin(3x) + 2x^2}$$

b)
$$\lim_{x \to -\infty} e^{-x} x^{-1}$$

c)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2}$$

Aufgabe 2: Ableitungen

Berechnen Sie die folgenden Ableitungen:

a)
$$\frac{\mathrm{d}}{\mathrm{d}u}\sin(u)^2$$

b)
$$\frac{\mathrm{d}}{\mathrm{d}x}\cos(x) x^2 \mathrm{e}^{3x}$$

c)
$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^{3x^2}$$

Aufgabe 3: Vektorrechnung

Gegeben seien zwei Vektoren \vec{a} und \vec{b} des \mathbb{R}^3 mit den Einträgen $a_k=2k-4$ und $b_k=(k-1)^3$.

a) Wie lauten die Vektoren als Tripel reeller Zahlen $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$?

b) Berechnen Sie das Kreuzprodukt $\vec{a} \times \vec{b}$ und das Skalarprodukt $\vec{a} \cdot \vec{b}$.

c) Wie lässt sich der Winkel zwischen den Vektoren \vec{a} und \vec{b} berechnen?

d)	Berechnen	Sie den	Betrag vo	on \vec{a} . Nor	mieren sie	$ec{a}$ anschließe	nd.
,	D 1	a: I		₹,	11. 1	-	
e)	Berechnen	Sie den	Anteil vo	n <i>b</i> , der p	arallel zu	\dot{a} steht.	
f)	Berechnen	Sie den	Anteil vo	n $ec{b}$, der o	rthogonal	zu $ec{a}$ steht.	

Aufgabe 4:

Gegeben ist die Matrix
$$A = \begin{pmatrix} \frac{1}{2} & 0 & 1\\ 0 & \frac{1}{2} & 1\\ 1 & 0 & \frac{1}{2} \end{pmatrix}$$
.

- a) Zeigen Sie, dass das Gleichungssystem $A\vec{x}=\vec{b}$ immer eindeutig lösbar ist. (2 Punkte)
- b) Lösen Sie das Gleichungssystem $A\vec{x}=\vec{b}$ für $\vec{b}=\begin{pmatrix}1\\1\\0\end{pmatrix}$. (5 Punkte)
- c) Berechnen Sie die Eigenwerte und zugehörigen Eigenvektoren. (5 Punkte)

Aufgabe 5: Drehimpuls

Berechnen Sie den Drehimpuls $\vec{L}(t)$ eines Teilchens der Masse m und der Bahnkurve $\vec{r}(t)$, die gegeben ist als

$$\vec{r}(t) = l_0 \begin{pmatrix} \cos \omega t \\ 0 \\ \sin \omega t \end{pmatrix}.$$

Dabei ist der Drehimpuls definiert als

$$\vec{L}(t) = \vec{r}(t) \times \vec{p}(t)$$
 mit dem Impuls $\vec{p}(t) = m\dot{\vec{r}}(t)$.

Aufgabe 6: Lineare Algebra

a) Gegeben sind die Vektoren $\vec{a}=\begin{pmatrix}0\\2\\4\end{pmatrix}$ und $\vec{b}=\begin{pmatrix}\alpha^2-\alpha\\1\\2\end{pmatrix}$ mit $\alpha\in\mathbb{R}$. Konstru-

ieren Sie einen Vektor \vec{c} , der orthogonal zu \vec{a} und \vec{b} steht und normiert ist. Bilden diese drei Vektoren eine Basis?

b) Wie groß ist das Volumen des Körpers, der von den Vektoren $\vec{a},\ \vec{b}$ und \vec{c} aufgespannt wird?

c) Zeigen Sie mit Hilfe der Indexschreibweise für beliebige Vektoren \vec{a}, \vec{b} und \vec{c} : $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b})$

Hinweis: $\sum_{j} \epsilon_{ijk} \epsilon_{lmj} = \delta_{im} \delta_{kl} - \delta_{il} \delta_{km}$

Aufgabe 7: Orthogonale Transformation

Gegegeben sei die Matrix $A \in \mathbb{R}^{n \times n}$ und die Matrix $B = D^T A D$, wobei D eine $n \times n$ orthogonale Transformation beschreibt. Zeigen Sie, dass dann gilt:

- a) Tr[B] = Tr[A]
- b) det(B) = det(A)

Dabei steht Tr[A] für die Spur der Matrix A, die definiert ist als die Summe der Diagonalelemente. Es gilt also: $\text{Tr}[A] = \sum_{i=1}^n A_{ii}$

Aufgabe 8:

Gegeben sei das folgende Kraftfeld:

$$\vec{F}(x,y,z) = \begin{pmatrix} 4\beta x^3 z^2 \\ \gamma y^2 + \alpha y z^3 \\ \beta x^4 + \frac{3}{2}\alpha y^2 z^2 \end{pmatrix}$$

a) Berechnen Sie $\nabla \times \vec{F}.$ Interpretieren Sie das Ergebnis.

b) Berechnen Sie die Arbeit entlang folgender Wege:

(a)
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

c) Welche(n) Parameter muss man wie wählen, damit die Arbeit wegunabhängig wird?

d) Berechnen Sie für den Fall, dass \vec{F} konservativ ist, das Potential ϕ so, dass $\phi\begin{pmatrix}0\\0\\0\end{pmatrix}=42.$

Aufgabe 9:

Der Gradient eines Vektorfeldes \vec{A} ergibt eine Matrix C mit den Einträgen $C_{ij} = \frac{\partial}{\partial x_i} A_j$. Für das Produkt dieser Matrix mit dem Vektorfeld gilt also folgende Relation (die hier gegeben sei):

$$\left(C \cdot \vec{A}\right)_i = \sum_j C_{ij} A_j = \sum_j \left(\frac{\partial}{\partial x_i} A_j\right) A_j$$

Zeigen Sie, dass gilt:

$$C \cdot \vec{A} = \frac{1}{2} \operatorname{grad} \left(\vec{A} \cdot \vec{A} \right)$$

Aufgabe 10: Volumenintegrale

Integrieren Sie:

a) Das Skalarfeld $\phi(x,y,z)=xz\sin(x+y)$ über einen Würfel der Kantenlänge 1 mit Eckpunkten in

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

b) Das Skalarfeld $\tau(\rho,\phi,z)=z+\phi\sin(\phi^2)$ über einen Zylinder mit Höhe und Radius 1, dessen Grundfläche in der x-y-Ebene liegt, wobei der Mittelpunkt der Grundfläche im Ursprung liegen soll.

c) Das Skalarfeld $\gamma(r,\theta,\phi)={\rm e}^r\theta\sin\phi$ über eine im Ursprung zentrierte Kugel mit Radius 1.