Package 'ubiquity'

January 7, 2025

Type Package

Title PKPD, PBPK, and Systems Pharmacology Modeling Tools

Version 2.1.0

Maintainer John Harrold < john.m.harrold@gmail.com>

Description Complete work flow for the analysis of pharmacokinetic pharmacodynamic (PKPD), physiologically-based pharmacokinetic (PBPK) and systems pharmacology models including: creation of ordinary differential equation-based models, pooled parameter estimation, individual/population based simulations, rule-based simulations for clinical trial design and modeling assays, deployment with a customizable 'Shiny' app, and noncompartmental analysis. System-specific analysis templates can be generated and each element includes integrated reporting with 'PowerPoint' and 'Word'.

URL https://r.ubiquity.tools

SystemRequirements Perl

BugReports https://github.com/john-harrold/ubiquity/issues

License BSD_2_clause + file LICENSE

Encoding UTF-8

Depends R (>= 4.2.0)

Imports cli, deSolve, dplyr (>= 1.0.0), digest, doParallel, flextable, foreach, ggplot2, knitr, MASS, onbrand (>= 1.0.2), optimx, PKNCA, pso, readxl, rmarkdown, rhandsontable, scales, stats, stringr, shiny,

Suggests babelmixr2, GA, GGally, gridGraphics, gridExtra, grid, officer, rxode2, webshot, ggrepel, rstudioapi, testthat

VignetteBuilder knitr

RoxygenNote 7.3.2

NeedsCompilation no

Author John Harrold [aut, cre] (https://orcid.org/0000-0003-2052-4373)

Repository CRAN

Date/Publication 2025-01-07 14:30:02 UTC

2 Contents

Contents

build_system	 3
calculate_halflife	 4
gg_axis	 5
gg_log10_xaxis	 6
gg_log10_yaxis	 7
linspace	 8
logspace	 9
pad_string	
prepare_figure	
run_simulation_titrate	
run_simulation_ubiquity	
simulate_subjects	
som_to_df	
system_check_requirements	
system_check_steady_state	
system_clear_cohorts	
system_define_cohort	
system_define_cohorts_nm	
system_estimate_parameters	
system_fetch_guess	
system_fetch_iiv	
system_fetch_nca	
system_fetch_nca_columns	
system_fetch_parameters	
system_fetch_rpt_officer_object	
system_fetch_rpt_onbrand_object	
system_fetch_set	
system_fetch_template	
system_fetch_TSsys	
system_glp_init	
system_glp_scenario	
system_load_data	
system_log_debug_save	
system_log_init	
system_nca_parameters_meta	
system_nca_run	
system_nca_summary	
system_new	41
system_new_list	43
system_new_tt_rule	43
system_od_general	44
system_plot_cohorts	
system_rpt_add_doc_content	
system_rpt_add_slide	
system_rpt_estimation	 48
system_rpt_nca	 49

build_system 3

workshop_fetch	
vp	
var2string	
toc	
tic	
system_zero_inputs	
system_view	
system_simulate_estimation_results	
system_set_tt_rate	
system_set_tt_cond	
system_set_rpt_onbrand_object	
system_set_rpt_officer_object	
system set rate	
system_set_option	
system_set_iiv	
system_set_guess	
system_set_covariate	
system_set_bolus	
system_select_set	
system_rpt_template_details	
system_rpt_save_report	
system_rpt_read_template	

build_system

Build the System File

Description

Builds the specified system file creating the targets for R and other languages as well as the templates for performing simulations and estimations.

```
build_system(
   system_file = "system.txt",
   distribution = "automatic",
   perlcmd = "perl",
   output_directory = file.path(".", "output"),
   temporary_directory = file.path(".", "transient"),
   verbose = TRUE,
   ubiquity_app = FALSE,
   debug = TRUE
)
```

4 calculate_halflife

Arguments

system_file name of the file defining the system in the ubiquity format (default = 'system.txt'), if the file does not exist a template will be created and compiled. distribution indicates weather you are using a 'package' or a 'stand alone' distribution of ubiquity. If set to 'automatic' the build script will first look to see if the ubiquity R package is installed. If it is installed it will use the package. Otherwise, it will assume a "sand alone" distribution. perlcmd system command to run perl ("perl") output_directory location to store analysis outputs (file.path(".", "output")) temporary_directory location to templates and otehr files after building the system (file.path(".", "transient")) verbose enable verbose messaging (TRUE) ubiquity_app set to TRUE when building the system to be used with the ubiquty App (FALSE) Boolean variable indicating if debugging information should be displayed (TRUE) debug

Value

initialized ubiquity system object

Examples

calculate halflife

Calculate the halflife of data

Description

Determines the terminal halflife of a sequence of corresponding times and values with optional minimum and maximum times to censor data.

```
calculate_halflife(times = NULL, values = NULL, tmin = NULL, tmax = NULL)
```

gg_axis 5

Arguments

```
times - sequence of times

- corresponding sequence of values

tmin - minimum time to include (NULL)

tmax - maximum time to include (NULL)
```

Value

List with the following names

- thalf Halflife in units of times above
- mod Result of lm used to fit the log transformed data
- df Dataframe with the data and predicted values at the time within tmin and tmax

Examples

```
x = c(0:100)
y = exp(-.1*x)
th = calculate_halflife(times=x, values=y)
thalf = th$thalf
```

gg_axis

Make Pretty ggplot x- or y-Axis Log 10 Scale

Description

used to convert the x and y-axis of a ggplot to a log 10 scale that is more visually satisfying than the ggplot default.

```
gg_axis(
  fo,
  yaxis_scale = TRUE,
  xaxis_scale = TRUE,
  ylim_min = NULL,
  ylim_max = NULL,
  xlim_min = NULL,
  xlim_max = NULL,
  xlim_max = TRUE,
  y_tick_label = TRUE
)
```

6 gg_log10_xaxis

Arguments

fo	ggplot figure object
yaxis_scale	TRUE indicates that the y-axis should be log10 scaled
xaxis_scale	TRUE indicates that the x-axis should be log10 scaled
ylim_min	set to a number to define the lower bound of the y-axis
ylim_max	set to a number to define the upper bound of the y-axis
xlim_min	set to a number to define the lower bound of the x-axis
xlim_max	set to a number to define the upper bound of the x-axis
x_tick_label	TRUE to show x tick labels, FALSE to hide the x tick labels
y_tick_label	TRUE to show y tick labels, FALSE to hide the y tick labels

Value

ggplot object with formatted axis

See Also

```
gg_log10_xaxis and gg_log10_yaxis
```

Examples

gg_log10_xaxis

Make Pretty ggplot x-Axis Log 10 Scale

Description

Wrapper for gg_axis to create a log 10 x-axis

gg_log10_yaxis 7

Usage

```
gg_log10_xaxis(
  fo,
  xlim_min = NULL,
  xlim_max = NULL,
  y_tick_label = TRUE,
  x_tick_label = TRUE
)
```

Arguments

fo	ggplot figure object
xlim_min	set to a number to define the lower bound of the x-axis
xlim_max	set to a number to define the upper bound of the x-axis
y_tick_label	TRUE to show y tick labels, FALSE to hide the y tick labels
x_tick_label	TRUE to show x tick labels, FALSE to hide the x tick labels

Value

ggplot object with formatted axis

See Also

```
gg_axis and gg_log10_xaxis
```

Examples

gg_log10_yaxis

Make Pretty ggplot y-Axis Log 10 Scale

Description

Wrapper for gg_axis to create a log 10 y-axis

8 linspace

Usage

```
gg_log10_yaxis(
  fo,
  ylim_min = NULL,
  ylim_max = NULL,
  y_tick_label = TRUE,
  x_tick_label = TRUE
)
```

Arguments

```
fo ggplot figure object

ylim_min set to a number to define the lower bound of the y-axis

ylim_max set to a number to define the upper bound of the y-axis

y_tick_label TRUE to show y tick labels, FALSE to hide the y tick labels

x_tick_label TRUE to show x tick labels, FALSE to hide the x tick labels
```

Value

ggplot object with formatted axis

See Also

```
gg_axis and gg_log10_xaxis
```

Examples

linspace

Implementation of the linspace Function from Matlab

Description

Creates a vector of n elements equally spaced apart.

logspace 9

Usage

```
linspace(a, b, n = 100)
```

Arguments

- a initial number
- b final number
- n number of elements (integer \geq 2)

Value

vector of numbers from a to b with n linearly spaced apart

Examples

```
linspace(0,100, 20)
```

logspace

Implementation of the logspace Function from Matlab

Description

Creates a vector of n elements logarithmically spaced apart.

Usage

```
logspace(a, b, n = 100)
```

Arguments

- a initial numberb final number
- n number of elements (integer >=2)

Value

vector of numbers from a to b with n logarithmically (base 10) spaced apart

Examples

```
logspace(-2, 3,20)
```

prepare_figure

pad_string

Pad String with Spaces

Description

Adds spaces to the beginning or end of strings until it reaches the maxlength. Used for aligning text.

Usage

```
pad_string(str, maxlength = 1, location = "beginning")
```

Arguments

str string

maxlength length to pad to

location either "beginning" to pad the left or "end" to pad the right

Value

Padded string

Examples

```
pad_string("bob", maxlength=10)
pad_string("bob", maxlength=10, location="end")
```

prepare_figure

Make ggplot Figure Pretty

Description

Takes a ggplot object and alters the line thicknesses and makes other cosmetic changes to make it more appropriate for exporting.

```
prepare_figure(
  purpose = "present",
  fo,
  y_tick_minor = FALSE,
  y_tick_major = FALSE,
  x_tick_minor = FALSE,
  x_tick_major = FALSE
)
```

run_simulation_titrate 11

Arguments

```
purpose either "present" (default), "print" or "shiny"

fo ggplot figure object

y_tick_minor Boolean value to control grid lines

y_tick_major Boolean value to control grid lines

x_tick_minor Boolean value to control grid lines

x_tick_major Boolean value to control grid lines
```

Value

ggplot object

Examples

run_simulation_titrate

Simulate With Titration or Rule-Based Inputs

Description

Provides an interface to run_simulation_ubiquity to start and stop simulations and apply rules to control dosing and state-resets.

Usage

```
run_simulation_titrate(SIMINT_p, SIMINT_cfg, SIMINT_dropfirst = TRUE)
```

Arguments

```
SIMINT_p list of system parameters

SIMINT_cfg ubiquity system object

SIMINT_dropfirst when TRUE it will drop the first sample point (prevents bolus doses from starting at 0)
```

Value

som

See Also

```
system_new_tt_rule, system_set_tt_cond and the titration vignette (vignette("Titration",
package = "ubiquity"))
```

```
run_simulation_ubiquity
```

Simulate Individual Response

Description

Controls the execution of individual simulations with deSolve using either R scripts or loadable C libraries.

Usage

```
run_simulation_ubiquity(SIMINT_parameters, SIMINT_cfg, SIMINT_dropfirst = TRUE)
```

Arguments

```
SIMINT_parameters

vector of parameters

SIMINT_cfg ubiquity system object

SIMINT_dropfirst

when TRUE it will drop the first sample point (prevents bolus doses from starting at 0)
```

Value

The simulation output is mapped (som) is a list. time-course is stored in the simout element.

- The first column (time) contains the simulation time in the units of the simulation.
- Next there is a column for each: State, output and system parameter
- Models with covariate will contain the initial value (prefix: SIMINT_CVIC_) as well as the values at each time point
- Each static and dynamic system parameter is also passed through
- A column for each timescale is returned with a "ts." prefix.

See Also

```
Simulation vignette("Simulation", package = "ubiquity"))
```

simulate_subjects 13

simulate_subjects

Run Population Simulations

Description

Used to run Population/Monte Carlo simulations with subjects generated from either provided variance/covariance information or a dataset.

Usage

```
simulate_subjects(
  parameters,
  cfg,
  show_progress = TRUE,
  progress_message = "Simulating Subjects:"
)
```

Arguments

parameters list containing the typical value of parameters

cfg ubiquity system object

show_progress Boolean value controlling the display of a progress indicator (TRUE)

progress_message

text string to prepend when called from the ShinyApp

Details

Failures due to numerical instability or other integration errors will be captured within the function. Data for those subjects will be removed from the output. Their IDs will be displayed as messages and stored in the output.

For more information on setting options for population simulation see the stochastic section of the system_set_option help file.

Value

Mapped simulation output with individual predictions, individual parameters, and summary statistics of the parameters. The Vignettes below details on the format of the output.

See Also

```
Vignette on simulation (vignette("Simulation", package = "ubiquity")) titration (vignette("Titration", package = "ubiquity")) as well as som_to_df
```

som_to_df

som_to_df	Converts the Wide/Verbose Output Simulation Functions into Data Frames

Description

The functions run_simulation_ubiquity, simulate_subjects, or run_simulation_titrate provide outputs in a more structured format, but it may be useful to convert this "wide" format to a tall/skinny format.

Usage

```
som_to_df(cfg, som)
```

Arguments

cfg	ubiquity system object
som	simulation output from run_simulation_ubiquity, simulate_subjects, or
	run_simulation_titrate

Value

Data frame of the format:

When applied to the output of run_simulation_ubiquity or run_simulation_titrate

- ts.time timescale of the system
- ts.ts1, ... ts.tsn timescales defined in the system (<TS>)
- pred predicted/simulated response
- tt.ti1.x titration event information (*)
- name state or output (<O>) name corresponding to the prediction

When applied to the output of simulate_subjects

- ID subject ID
- ts.time timescale of the system
- ts.ts1, ... ts.tsn timescales defined in the system (<TS>)
- pred predicted/simulated response
- tt.ti1.x titration event information (*)
- P1, P2, ... Pn system parameters for the subject (<P>)
- name state or output (<O>) name corresponding to the prediction

(* - field present when titration is enabled)

See Also

run_simulation_titrate internally when running simulations.

```
system_check_requirements
```

Check For Perl and C Tools

Description

Check the local installation for perl and verify C compiler is installed and working.

Usage

```
system_check_requirements(
  checklist = list(perl = list(check = TRUE, perlcmd = "perl"), C = list(check = TRUE)),
  verbose = TRUE
)
```

Arguments

checklist list with names corresponding to elements of the system to check.

verbose enable verbose messaging

Value

List fn result of all packages

Examples

```
invisible(system_check_requirements())
```

Description

Takes the ubiquity system object and other optional inputs to verify the system is running at steady state. This also provides information that can be helpful in debugging systems not running at steady state.

Usage

```
system_check_steady_state(
  cfg,
  parameters = NULL,
  zero_rates = TRUE,
  zero_bolus = TRUE,
  output_times = seq(0, 100, 1),
  offset_tol = .Machine$double.eps * 100,
  derivative_tol = .Machine$double.eps * 100,
  derivative_time = 0
)
```

Arguments

cfg	ubiquity system object
parameters	optional set of parameters (NULL) to check at steady state (if set to NULL then the parameters for the currently selected parameter set will be used) $ \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
zero_rates	Boolean value to control removing all rate inputs (TRUE)
zero_bolus	Boolean value to control removing all bolus inputs (TRUE)
output_times	sequence of output times to simulate for offset determination ($seq(0,100,1)$)
offset_tol	maximum percent offset to be considered zero (.Machine\$double.eps*100)
derivative_tol	maximum derivative value to be considered zero (.Machine\$double.eps*100)
derivative_time	
	time to evaluate derivatives to identify devictions (A) set to NIII L to slim deriva

time to evaluate derivatives to identify deviations (0), set to NULL to skip derivative evaluation

Value

List with the following names

- steady_state Boolean indicating weather the system was at steady state
- states_derivative Derivatives that had values greater than the derivative_tol
- states_simulation States that had values greater than the offset_tol
- som Simulated output
- derivatives Derivatives
- states_derivative_NA_NaN States that had derivatives that evaluated as either NA or NaN
- states_simulation_NA_NaN States with simulation values that had either NA or NaN
- derivative_tc Data frame with the timecourse of states where the derivative was found to be greater than tolerance (states_derivative)

system_clear_cohorts 17

```
system_clear_cohorts Clear all Cohorts
```

Description

Clear previously defined cohorts

Usage

```
system_clear_cohorts(cfg)
```

Arguments

cfg ubiquity system object

Value

ubiquity system object with no cohorts defined

```
system_define_cohort     Define Estimation Cohort
```

Description

Define a cohort to include in a parameter estimation

Usage

```
system_define_cohort(cfg, cohort)
```

Arguments

cfg ubiquity system object cohort list with cohort information

Details

Each cohort has a name (eg d5mpk), and the dataset containing the information for this cohort is identified (the name defined in system_load_data)

Next if only a portion of the dataset applies to the current cohort, you can define a filter (cf field). This will be applied to the dataset to only return values relevant to this cohort. For example, if we only want records where the column DOSE is 5 (for the 5 mpk cohort). We can use the following:

```
cohort[["cf"]] = list(DOSE = c(5))
```

If the dataset has the headings ID, DOSE and SEX and cohort filter had the following format:

```
cohort[["cf"]] = list(ID = c(1:4),

DOSE = c(5,10),

SEX = c(1))
```

It would be translated into the boolean filter:

```
(ID==1) | (ID==2) | (ID==3) | (ID==4)) & ((DOSE == 5) | (DOSE==10)) & (SEX == 1)
```

Optionally you may want to fix a system parameter to a different value for a given cohort. This can be done using the cohort parameter (cp) field. For example if you had the body weight defined as a system parameter (BW), and you wanted to fix the body weight to 70 for the current cohort you would do the following:

```
cohort[["cp"]] = list(BW = c(70))
```

Note that you can only fix parameters that are not being estimated.

By default the underlying simulation output times will be taken from the general output_times option (see system_set_option). However It may also be necessary to specify simulation output times for a specific cohort. The output_times field can be used for this. Simply provide a vector of output times:

```
cohort[["output_times"]] = seq(0,100,2)
```

Next we define the dosing for this cohort. It is only necessary to define those inputs that are non-zero. So if the data here were generated from animals given a single 5 mpk IV at time 0. Bolus dosing is defined using <B:times> and <B:events>. If Cp is the central compartment, you would pass this information to the cohort in the following manner:

```
cohort[["inputs"]][["bolus"]] = list()
cohort[["inputs"]][["bolus"]][["Cp"]] = list(TIME=NULL, AMT=NULL)
cohort[["inputs"]][["bolus"]][["Cp"]][["TIME"]] = c( 0)
cohort[["inputs"]][["bolus"]][["Cp"]][["AMT"]] = c( 5)
```

Inputs can also include any infusion rates (infusion_rates) or covariates (covariates). Covariates will have the default value specified in the system file unless overwritten here. The units here are the same as those in the system file

Next we need to map the outputs in the model to the observation data in the dataset. Under the outputs field there is a field for each output. Here the field ONAME can be replaced with something more useful (like PK).

system_define_cohort 19

```
cohort[["outputs"]][["ONAME"]] = list()
```

If you want to further filter the dataset. Say for example you have two outputs and the cf applied above reduces your dataset down to both outputs. Here you can use the "of" field to apply an "output filter" to further filter the records down to those that apply to the current output ONAME.

If you do not need further filtering of data, you can you can just omit the field.

Next you need to identify the columns in the dataset that contain your times and observations. This is found in the obs field for the current observation:

The times and observations in the dataset are found in the 'TIMECOL' column and the 'OBSCOL' column (optional missing data option specified by -1).

These observations in the dataset need to be mapped to the appropriate elements of your model defined in the system file. This is done with the model field:

First the system time scale indicated by the TS placeholder above must be specified. The time scale must correspond to the data found in TIMECOL above. Next the model output indicated by the MODOUTPUT placeholder needs to be specified. This is defined in the system file using <0> and should correspond to OBSCOL from the dataset. Lastly the variance field specifies the variance model. You can use the keyword PRED (the model predicted output) and any variance parameters. Some examples include:

- variance = "1" Least squares
- variance = "PRED^2" Weighted least squares proportional to the prediction squared
- variance = "(SLOPE*PRED)^2" Maximum likelihood estimation where SLOPE is defined as a variance parameter (<VP>)

The following controls the plotting aspects associated with this output. The color, shape and line values are the values used by ggplot functions.

```
cohort[["outputs"]][["ONAME"]][["options"]] = list(
    marker_color = "black",
    marker_shape = 16,
    marker_line = 1 )
```

If the cohort has multiple outputs, simply repeat the process above for the. additional cohorts. The estimation vignettes contains examples of this.

Note: Output names should be consistent between cohorts so they will be grouped together when plotting results.

Value

ubiquity system object with cohort defined

See Also

```
Estimation vignette("Estimation", package = "ubiquity"))
```

```
system_define_cohorts_nm
```

Define Cohorts from NONMEM Input File

Description

This function allows the user to define cohorts automatically from a NONMEM dataset

Usage

```
system_define_cohorts_nm(
  cfg,
  DS = "DSNAME",
  col_ID = "ID",
  col_CMT = "CMT",
  col_DV = "DV",
  col_TIME = "TIME",
  col_AMT = "AMT",
  col_RATE = "RATE",
  col_EVID = "EVID",
  col_GROUP = NULL,
  filter = NULL,
  OBS = NULL
)
```

Arguments

```
cfg ubiquity system object

DS Name of the dataset loaded using system_load_data

col_ID Column of unique subject identifier

col_CMT Compartment column

col_DV Column with observations or '.' for input
```

col_TIME	Column with system time of each record
col_AMT	Infusion/dose amounts (these need to be in the same units specified in the system.txt file)
col_RATE	Rate of infusion or '.' for bolus
col_EVID	EVID (0 - observation, 1 dose)
col_GROUP	Column name to use for defining similar cohorts when generating figures.
filter	List used to filter the dataset or NULL if the whole dataset is to be used (see filter rules or nm_select_records or a description of how to use this option)
INPUTS	List mapping input information in the dataset to names used in the system.txt file
OBS	List mapping observation information in the dataset to nams used in the system.txt file

Details

NOTE: to use this function it is necessary that a timescale be define for the system time scale. For example, if the system time scale was days, something like the following is needed:

```
<TS:days> 1

Include all records in the dataset
```

filter = NULL

Include only records matching the following filter

```
filter = list()
filter$COLNAME = c()
```

Mapping information:

The inputs mapping information (INPUTMAP) is alist with a field for each type of input: input:

- bolus List with a name for each bolus state in the dataset (<B:?>): each bolus name should have a CMT_NUM field indicating the compartment number for that state
- infusion_rates List with a name for each rate in the dataset (<R:?>): each rate name should have a CMT_NUM field indicating the compartment number for that state
- covariates List with for each covariate in the dataset (<CV:?>): each covariate name should have a col_COV indicating the column in the database that contains that covariate

From a coding perspective it looks like this:

The observation mapping information (OBSMAP) is a list with elements for each output as described in for system_define_cohort. Each output is a list with the following names:

- variance Variance model for this output
- CMT Compartment number mapping observations for this output
- output Name of the output (<0>) corresponding with the observations
- missing Value indicating a missing observation or NULL

From a coding perspective it looks like this:

Value

ubiquity system object with cohorts defined.

See Also

Estimation vignette("Estimation", package = "ubiquity"))

```
system_estimate_parameters
```

Control Estimation Process

Description

Manages the flow of parameter estimation using data specified with system_define_cohort.

Usage

```
system_estimate_parameters(
  cfg,
  flowctl = "plot guess",
  analysis_name = "my_analysis",
  archive_results = TRUE
)
```

Arguments

```
cfg ubiquity system object
flowctl string to control what the flow of the function
analysis_name string containing the name of the analysis
archive_results
```

boolean variable to control whether results will be archived

system_fetch_guess 23

Details

The flowctl argument can have the following values

- "plot guess" return the initial guess
- "estimate" perform estimation
- "previous estimate as guess" load previous estimate for analysis_name and use that as the initial guess
- "plot previous estimate" return the previous estimate for analysis_name

Value

parameter estimates

system_fetch_guess

Fetch Current Parameter Guesses

Description

Fetch a list of the guesses for the current parameter set and parameters selected for estimation

Usage

```
system_fetch_guess(cfg)
```

Arguments

cfg

ubiquity system object

Value

list of current parameter gauesses

system_fetch_iiv

Fetch Variability Terms

Description

Extract elements of the current variance/covariance matrix specified in the system file with <IIV: ?:?>?, <IIVCOR:?:?>?, <IIVCORSET:?:?>?

```
system_fetch_iiv(cfg, IIV1, IIV2)
```

24 system_fetch_nca

Arguments

cfg	ubiquity system object
IIV1	row name of the variance/covariance matrix
IIV2	column name of the variance/covariance matrix

Value

Value from the variance/covariance matrix

See Also

```
system_set_iiv
```

Examples

system_fetch_nca

Fetch NCA Results

Description

Fetches the NCA summary from the ubiquity system object.

Usage

```
system_fetch_nca(cfg, analysis_name = "analysis")
```

Arguments

```
cfg ubiquity system object
analysis_name string containing the name of the NCA analysis (default 'analysis')
```

Value

List with a data frame of the NCA results (NCA_summary), the raw output from PKNCA (PKNCA_results), and also a list element indicating the overall success of the function call (isgood)

See Also

```
Vignette on NCA (vignette("NCA", package = "ubiquity"))
```

```
system_fetch_nca_columns
```

Columns in NCA Analysis

Description

Show the columns available in a given NCA analysis

Usage

```
system_fetch_nca_columns(cfg, analysis_name = "analysis")
```

Arguments

```
cfg ubiquity system object
analysis_name string containing the name of the NCA analysis (default 'analysis')
```

Value

list with the following elements:

- isgood Boolean variable to identify if the function executed properly (TRUE) or if there were any errors (FALSE)
- NCA_col_summary dataframe with the columns from the analysis in analysis_name (col_name NCA short name, from where the parameter was derived from, label verbose text label for the column, and description, verbose text description of the parameter.
- len_NCA_col maximum length of the col_name column
- len_from maximum length of the from column
- len_label maximum length of the label column
- len_description maximum length of the description column

See Also

Vignette on NCA (system_nca_parameters_meta)

```
system_fetch_parameters
```

Fetch System Parameters

Description

Fetch the parameters of the currently selected parameter set. To switch between parameter sets use system_select_set

Usage

```
system_fetch_parameters(cfg)
```

Arguments

cfg

ubiquity system object

Value

List of parameters for the selected parameter set

Examples

```
system_fetch_rpt_officer_object
```

Extracts the officer Object From the Specified ubiquity Report

Description

This will extract an officer object from the ubiquity system object for the specified report name.

Usage

```
system_fetch_rpt_officer_object(cfg, rptname = "default")
```

Arguments

cfg ubiquity system object rptname ubiquity report name

Value

officer report object

See Also

```
system_set_rpt_officer_object
```

```
system_fetch_rpt_onbrand_object
```

Extracts the onbrand Object From the Specified ubiquity Report

Description

This will extract an onbrand object from the ubiquity system object for the specified report name.

Usage

```
system_fetch_rpt_onbrand_object(cfg, rptname = "default")
```

Arguments

cfg ubiquity system object rptname ubiquity report name

Value

onbrand report object

See Also

```
system_set_rpt_onbrand_object
```

system_fetch_set

Fetch Mathematical Set

Description

Fetch the elements of the specified mathematical set that was defined in the system file.

Usage

```
system_fetch_set(cfg, set_name = NULL)
```

Arguments

cfg ubiquity system object set_name name of mathematical set

Value

A sequence containing the elements of the parameter set or NULL if if there was a problem.

Examples

system_fetch_template Create New Analysis Template

Description

Building a system file will produce templates for R and other languages. This function provides a method to make local copies of these templates.

system_fetch_template 29

Usage

```
system_fetch_template(
  cfg,
  template = "Simulation",
  overwrite = FALSE,
  output_directory = getwd()
)
```

Arguments

```
cfg ubiquity system object

template template type

overwrite if TRUE the new system file will overwrite any existing files present
output_directory

directory where workshop files will be placed (getwd())
```

Details

The template argument can have the following values for the R workflow:

- "Simulation" produces analysis_simulate.R: R-Script named with placeholders used to run simulations
- "Estimation" produces analysis_estimate.R: R-Script named with placeholders used to perform naive-pooled parameter estimation
- "NCA" produces analysis_nca.R: R-Script to perform non-compartmental analysis (NCA) and report out the results
- "ShinyApp" produces ubiquity_app.R, server.R and ui.R: files needed to run the model through a Shiny App either locally or on a Shiny Server
- "Model Diagram" produces system.svg: SVG template for producing a model diagram (Goto https://inkscape.org for a free SVG editor)
- "Shiny Rmd Report" produces system_report.Rmd and test_system_report.R: R-Markdown file used to generate report tabs for the Shiny App and a script to test it

And this will create files to use in other software:

- "Adapt" produces system_adapt.for and system_adapt.prm: Fortran and parameter files for the currently selected parameter set in Adapt format.
- "Berkeley Madonna" produces system_berkeley_madonna.txt: text file with the model and the currently selected parameter set in Berkeley Madonna format
- "nlmixr" produces system_nlmixr.R For the currently selected parameter set to define the system in the 'nlmixr' format.
- "NONMEM" produces system_nonmem.ctl For the currently selected parameter set as a NONMEM countrol stream.
- "Monolix" produces system_monolix.txt and system_monolix.mlxtran For the currently selected parameter set.
- "mrgsolve" produces system_mrgsolve.cpp: text file with the model and the currently selected parameter set in mrgsolve format

system_fetch_TSsys

Value

List with vectors of template sources, destinations and corresponding write success (write_file), also a list element indicating the overall success of the function call (isgood)

Examples

system_fetch_TSsys

Fetch System Timescale

Description

Reads through the system information and tries to determine the system time scale (the timescale that has a value of 1)

Usage

```
system_fetch_TSsys(cfg)
```

Arguments

cfg

ubiquity system object

Value

Name of the system timescale or NULL if it was not found

system_glp_init 31

system_glp_init

Description

Creates a new GLP study design

Usage

```
system_glp_init(cfg, study_title = "Study Title", study_name = "default")
```

Arguments

cfg ubiquity system object

study_title String containing descriptive information about the study

study_name short name used to identify the study in other functions ("default")

Value

cfg ubiquity system object with the study initialized

Description

Identifies the top dose required in a GLP tox study in order to match human metrics (Cmax and AUCs) within a specified multiplier.

For a given set of human parameters the human doses required to hit the target Cmin and AUC (both or one) will be identified. The Cmax and AUC associated with the largest of those doses will be determined and the corresponding doses for a tox species (and provided parameters) will be determined for specific tox multipliers.

Optionally, simulations can be be run by specifying doses for either/or the human or tox species. Sample times can also be specified to generate annotated figures and tables to be given to analysts to facilitate assay design.

The system file requires the following components:

- Output for the drug concentration - Output for the cumulative AUC - Bolus dosing defined in a specific compartment - Timescale specified for the system timescale (e.g. if the timescale is hours then you need <TS> hours = 1.0)

32 system_glp_scenario

Usage

```
system_glp_scenario(
  cfg,
  output_Conc = NULL,
 output_AUC = NULL,
  timescale = NULL,
  units_Conc = "",
  units_AUC = "",
  study_scenario = "Tox Study",
  human_sim_times = NULL,
  study_name = "default",
  human_parameters = NULL,
  human_bolus = NULL,
  human_ndose = 1,
  human_dose_interval = 1,
  human_Cmin = NULL,
  human_AUC = NULL,
  human_sample_interval = NULL,
  human_sim_doses = NULL,
  human_sim_samples = NULL,
  tox_species = "Tox",
  tox_sim_times = NULL,
  tox_parameters = NULL,
  tox_bolus = NULL,
  tox_ndose = 1,
  tox_dose_interval = 1,
  tox_Cmax_multiple = 10,
  tox_AUC_multiple = 10,
  tox_sample_interval = NULL,
  tox_sim_doses = NULL,
  tox_sim_samples = NULL,
  annotate_plots = TRUE
)
```

Arguments

```
cfg
                  ubiquity system object
                  model output specified with <0> containing the concentration associated with
output_Conc
                  drug exposure.
output_AUC
                  model output specified with <0> containing the cumulative exposure
                  system timescale specified with <TS> used for AUC comparisons and plotting
timescale
units_Conc
                  units of concentration ('')
                  units of AUC ('')
units_AUC
study_scenario string containing a descriptive name for the tox study
human_sim_times
                  user-specified simulation output times for humans (same timescale as the sys-
                  tem)
```

system_glp_scenario 33

study_name name of the study to append the scenario to set with 'system_glp_init()'

('default'): When a report is initialized using system_rpt_read_template the report name is 'default' unless otherwise specified. To disable reporting set

this to NULL, and to use a different report specify the name here.

human_parameters

list containing the human parameters

human_bolus string containing the dosing state for human doses (specified with <B:?>)

human_ndose number of human doses to simulate

human_dose_interval

dosing interval in humans (time units specified with <B:?>)

human_Cmin target Cmin in humans (corresponding to output_Conc above)
human_AUC target AUC in humans (corresponding to output_AUC above)

human_sample_interval

time interval in units specified by timescale above to evaluate the trough concentration and AUC (e.g $c(1.99,\,4.001)$ would consider the interval between 2 and 4)

human_sim_doses

optional list of doses into human_bolus to simulate (see Details below)

human_sim_samples

optional list of sample times in units specified by timescale above to label on plots of simulated doses (the default NULL will disable labels)

tox_species optional name of the tox species ("Tox")

tox_sim_times user-specified simulation output times for the tox species (same timescale as the

system)

tox_parameters list containing the parameters for the tox species

tox_bolus string containing the dosing state for tox species doses (specified with <B:?>)

tox_ndose number of tox doses to simulate

tox_dose_interval

dosing interval in the tox species (time units specified with <B:?>)

tox_Cmax_multiple

for each target (Cmin and AUC) the dose in the tox species will be found to cover this multiple over the projected Cmax in humans (10)

tox_AUC_multiple

for each target (Cmin and AUC) the dose in the tox species will be found to cover this multiple over the projected AUC in humans (10)

tox_sample_interval

interval to consider the AUC and Cmax for comparing the human prediction to the tox multiple

tox_sim_doses optional list of doses into tox_bolus to simulate (see Details below)

tox_sim_samples

optional list of sample times in units specified by timescale above to label on plots of simulated doses (the default NULL will disable labels)

annotate_plots Boolean switch to indicate if human_sim_samples and tox_sim_samples should be labeled on their respective plots (TRUE)

34 system_load_data

Details

Both human_sim_doses and tox_sim_doses are lists with names corresponding to the label of the dose. Each element has an AMT and TIME element which corresponds to the dosing times and amounts in the units specified with <B:?> in the system file.

For example if you wanted to simulate four weekly doses of 20 mg to a 70 kg person and the units of bolus doses were days and mg/kg for the times and amounts you would do the following:

Value

cfg ubiquity system object with the scenario added if successful

system_load_data	Loading Datasets

Description

Loads datasets at the scripting level from a variable if data_file is a data.frame or from the following formats (based on the file extension)

- · csv comma delimited
- tab tab delimited
- xls or xlsx excel spread sheet

Multiple datasets can be loaded as long as they are given different names. Datasets should be in a NONMEM-ish format with the first row containing the column header names.

Usage

```
system_load_data(cfg, dsname, data_file, data_sheet)
```

Arguments

cfg	ubiquity system object
dsname	short name of the dataset to be used to link this dataset to different operations
data_file	the file name of the dataset or a data frame containing the data
data_sheet	argument identifying the name of the sheet in an excel file

Value

Ubiquity system object with the dataset loaded

system_log_debug_save

```
system_log_debug_save Save variables to files
```

Description

Triggered when debugging is enabled, this function will save the contents of values to the specified file name in the ubiquity temporary directory.

Usage

```
system_log_debug_save(cfg, file_name = "my_file", values = NULL)
```

Arguments

cfg ubiquity system object
file_name name of the save file without the ".RData" extension

values named list of variables to save

Value

Boolean variable indicating success

Examples

```
# Creating a system file from the mab_pk example
fr = system_new(file_name = "system.txt",
               system_file = "mab_pk",
overwrite = TRUE,
               output_directory = tempdir())
# Building the system
cfg = build_system(system_file = file.path(tempdir(), "system.txt"),
     output_directory = file.path(tempdir(), "output"),
                             = tempdir())
      temporary_directory
# enable debugging:
cfg=system_set_option(cfg,group = "logging",
                        option = "debug",
                        value = TRUE)
# Saving the cfg variable
system_log_debug_save(cfg,
  file_name = 'my_file',
  values = list(cfg=cfg))
```

system_log_init

Initialize System Log File

Description

Initializes the currently specified system log file.

Usage

```
system_log_init(cfg)
```

Arguments

cfg

ubiquity system object

Value

ubiquity system object with logging enabled

Examples

system_nca_parameters_meta

List NCA parameters, text names and descriptions

Description

Provides a verbose information about NCA parameters

```
system_nca_parameters_meta(cfg)
```

system_nca_run 37

Arguments

cfg

ubiquity system object

Value

List with the following elements:

- isgood Boolean value indicating the success of the function call.
- parameters List with element names for each standard column header for NCA output. Each element name is a list with the following elements:
 - label Textual descriptor of the parameter.
 - description Verbose description of the parameter.
 - from Text indicating the source of the parameter (either PKNCA or ubiquity).

See Also

```
Vignette on NCA (vignette("NCA", package = "ubiquity"))
```

system_nca_run

Automatic NCA

Description

Performs NCA in an automated fashion

Usage

```
system_nca_run(
  cfg,
  dsname = "PKDS",
  dscale = 1,
  NCA_options = NULL,
  NCA_min = 4,
  analysis_name = "analysis",
  dsfilter = NULL,
  extrap_C0 = TRUE,
  extrap_N = 2,
  sparse = FALSE,
  dsmap = list(TIME = "TIME", NTIME = "NTIME", CONC = "CONC", DOSE = "DOSE", ID = "ID",
      ROUTE = "ROUTE", DOSENUM = NULL, BACKEXTRAP = NULL, SPARSEGROUP = NULL),
  dsinc = NULL
)
```

38 system_nca_run

Arguments

cfg ubiquity system object

name of dataset loaded with (system_load_data) dsname

factor to multiply the dose to get it into the same units as concentration (default dscale

1): if you are dosing in mg/kg and your concentrations is in ng/ml, then dscale

= 1e6

specify a list of options for PKNCA to overwrite the defaults (default NULL will NCA_options

> use defaults). For example if you want to set the maximum extrapolation of AUCinf to 10 half-life half-life of 0.8 you would use: list(max.aucinf.pext=10,

min.hl.r.squared=.9)

minimum number of points required to perform NCA for a given subset (default NCA_min

4)

analysis_name string containing the name of the analysis (default 'analysis') to archive to files

and reference results later

list of names corresponding to the column names in the dataset and values are

a sequence indicating values to keep (default NULL. Multiple names are and-ed together. For example the following would keep all of the records where dose is

1, 2, or 5 and the dose number is 1

 $dsfilter = list(dose=c(1,2,5), dose_number = c(1))$

extrap_C0 Boolean variable to enable automatic determination of initial drug concentration if no value is specified; the rules used by WinNonlin will be used:

> • If the route is "iv infusion" or "extra-vascular" and the data is single dose data, then a concentration of zero will be used. If repeat dosing is used, the minimum value from the previous dosing interval will be used.

> • If the route is "iv bolus" then log-linear regression of the number of observations specified by extrap_N will be used. If the slope of these points is positive the first positive observation will be used as an estimate of C0

number of points to use for back extrapolation (default 2); this number can be extrap_N overwritten for each subject using the BACKEXTRAP column in the dataset

> Boolean variable used to indicate data used sparse sampling and the analysis should use the average at each time point (the SPARSEGROUP column must be

specified in the dsmap below)

dsmap list with names specifying the columns in the dataset (* required):

• TIME* Time since the first dose; "TIME" (default)

- NTIME* Nominal time since last dose; "NTIME" (default)
- CONC* Concentration data; "CONC" (default)
- DOSE* Dose given; ("DOSE" (default)
- ID* Subject ID; ("ID" (default)
- ROUTE* Route of administration; "ROUTE" (default), can be either "iv bolus", "iv infusion" or "extra-vascular". Variants such as "IV_bolus" and "extravascular" should work as well.
- DOSENUM Numeric dose (starting at 1) used for grouping multiple dose data; optional, NULL (default) for single dose data)

dsfilter

sparse

system_nca_summary 39

• BACKEXTRAP Specifying the number of points to use to extrapolate the initial concentration for "iv bolus" dosing; optoinal f NULL (default) will use the value defined in extrap_N (note this value must be <= NCA_min)

• SPARSEGROUP Column containing a unique value grouping cohorts for pooling data. Needed when sparse is set to TRUE; optional, NULL (default)

dsinc

(NOT CURRENTLY IMPLEMENTED) optional character vector of columns from the dataset to include in the output summary (default NULL)

Value

cfg ubiquity system object with the NCA results and if the analysis name is specified:

- output/analysis_name-nca_summary-pknca.csv NCA summary
- output/analysis_name-pknca_summary.csv Raw output from PKNCA with subject and dose number columns appended
- output/analysis_name-nca_data.RData objects containing the NCA summary and a list with the ggplot grobs

See Also

```
Vignette on NCA (vignette("NCA", package = "ubiquity"))
```

system_nca_summary

Summarize NCA Results in Tabular Format

Description

Creates tabular summaries of NCA results

Usage

```
system_nca_summary(
  cfg,
  analysis_name = "analysis",
  treat_as_factor = c("ID", "Dose_Number", "Dose"),
  params_include = c("ID", "cmax", "tmax", "auclast"),
  params_header = NULL,
  rptname = "default",
  label_format = NULL,
  summary_stats = NULL,
 summary_labels = list(MEAN = "Mean", STD = "Std Dev", MEDIAN = "Median", N = "N obs",
    SE = "Std Err."),
  summary_location = NULL,
  ds_wrangle = NULL,
 digits = 3,
  table_theme = "theme_zebra"
)
```

Arguments

cfg ubiquity system object

string containing the name of the analysis (default 'analysis') that was previanalysis_name

ously run

treat_as_factor

sequence of column names to be treated as factors (default c("ID", "Dose_Number", "Dose")). Use this to report values without added decimals.

params_include vector with names of parameters to include (default c("ID", "cmax", "tmax",

"auclast"))

params_header list with names of parameters followed by a vector of headers. You can use the

placeholder "<label>" to include the standard label (e.g. list(cmax=c("<label>",

"(ng/ml)"))), with a default of NULL.

rptname report name (either PowerPoint or Word) that this table will be used in ("default")

label_format string containing the format in which headers and labels are being specified,

either "text", or "md" (default NULL assumes "text" format)

summary_stats

list with strings as names containing placeholders for summary statistics and the values indicate the parameters to apply those statistics to. for example, if you want to calculate mean and standard deviation of AUClast you could use list("<MEAN> (<STD>)"=c("auclast"). This would create a row at the bottom of the table with this information for just the listed parameters. To split this up across two rows just do the following: list("<MEAN>"=c("auclast"), "<STD>"=c("auclast")). Any NA values will be ignored when calculating statistics. The allowed summary statistics are the mean (<MEAN>), median (<MEDIAN>), standard deviation (<STD>), standard error (<SE>), and the number of observations used to calculate statistics. (<N>). The default value of NULL prevents any summary statistics from being included.

summary_labels list containing the mapping of summary statistics defined by summary_stats with their text labels in the output tables:

```
list(MEAN
            = "Mean",
            = "Std Dev",
     STD
     MEDIAN = "Median",
     Ν
            = "N obs",
     SE
            = "Std Err.")
```

summary_location

column where to put the labels (e.g. Mean (Std)) for summary statistic. The default (NULL) will leave these labels off. If you set this to the "ID" column it will put them under the subject IDs.

```
ds_wrangle = list(Dose=c(30), Dose_Number = c(1))
ds_wrangle
```

number of significant digits to report (3) or NULL to prevent rounding digits

table_theme flextable theme see the flextable package for available themes, and set to NULL

to prevent themes from being applied. (default="theme_zebra")

system_new 41

Value

list with the following elements

• isgood Boolean variable indicating success (TRUE) or failure (FALSE) if the call is successful the following will be defined (NULL

- nca_summary dataframe containing the summary table with headers and any summary statistics appended to the bottom
- nca_summary_ft same information in the nca_summary ouput as a flextable object
- components list with the elements of the summary table each as dataframes (header, data, and summary)

See Also

Vignette on NCA (vignette("NCA", package = "ubiquity"))

system_new

Create New system.txt File

Description

Copy a blank template (system_file="template") file to the working directory or an example by specifying the following:

- "template" Empty system file template
- "adapt" Parent/metabolite model taken from the adapt manual used in estimation examples [ADAPT]
- "two_cmt_cl" Two compartment model parameterized in terms of clearances
- "one_cmt_cl" One compartment model parameterized in terms of clearances
- "two_cmt_micro" Two compartment model parameterized in terms of rates (micro constants)
- "one_cmt_micro" One compartment model parameterized in terms of rates (micro constants)
- "mab_pk" General compartmental model of mAb PK from Davda 2014 [DG]
- "pbpk" PBPK model of mAb disposition in mice from Shah 2012 [SB]
- "pbpk_template" System parameters from Shah 2012 [SB] have been defined for all species
 along with the set notation to be used as a template for developing models with physiological
 parameters
- "pwc" Example showing how to make if/then or piece-wise continuous variables
- "tmdd" Model of antibody with target-mediated drug disposition
- "tumor" Transit tumor growth model taken from Lobo 2002 [LB]

42 system_new

Usage

```
system_new(
  file_name = "system.txt",
  system_file = "template",
  overwrite = FALSE,
  output_directory = getwd()
)
```

Arguments

```
file_name name of the new file to create

system_file name of the system file to copy

overwrite if TRUE the new system file will overwrite any existing files present

output_directory

getwd() directory where system file will be placed
```

Details

References

- [ADAPT] Adapt 5 Users Guide https://bmsr.usc.edu/files/2013/02/ADAPT5-User-Guide.
- [DG] Davda et. al. mAbs (2014) 6(4):1094-1102 doi:10.4161/mabs.29095
- [LB] Lobo, E.D. & Balthasar, J.P. AAPS J (2002) 4, 212-222 doi:10.1208/ps040442
- [SB] Shah, D.K. & Betts, A.M. JPKPD (2012) 39 (1), 67-86 doi:10.1007/s1092801192322

Value

TRUE if the new file was created and FALSE otherwise

Examples

system_new_list 43

system_new_list

Fetch List of Available System Templates

Description

Returns a list of internal templates with descriptions of their contents and file locations

Usage

```
system_new_list()
```

Value

list with the template names as the keys

- file_path Full path to the system file
- description Description of what this system file provides

Examples

```
# To get a list of systems
systems = system_new_list()
```

system_new_tt_rule

Titration Rules

Description

Defines a new titration rule and the times when that rule is evaluated

Usage

```
system_new_tt_rule(cfg, name, times, timescale)
```

Arguments

cfg ubiquity system object name name for the titration rule

times list of times when the rule will be evaluated

time scale associated with the titration times (as defined by <TS:?>)

44 system_od_general

Details

```
\label{eq:cfg} \begin{array}{lll} \text{cfg = system\_new\_tt\_rule(cfg,} \\ & \text{name} & = \text{"rname",} \\ & \text{times} & = \text{c(0, 2, 4),} \\ & \text{timescale = "weeks")'} \end{array}
```

A titration rule identifies a set of times (times) and an associated time scale (timescale) in which titration events can potentially occur. Any times scale, as defined in the system file with <TS:?>, can be used in place of "weeks" above. The name, "rname" above, is used to link the titration rule to different conditions discussed below. The name should be a string beginning with a letter, and it can contain any combination of numbers, letters, and underscores. With the rule created we can then add conditions to that rule.'

Value

Ubiquity system object with the titration rule created

See Also

```
system_set_tt_cond, run_simulation_titrate
```

system_od_general

General Observation Details Function

Description

Used to calculate observation details based on cohorts created with system_define_cohort

Usage

```
system_od_general(pest, cfg, estimation = TRUE, details = FALSE)
```

Arguments

pest vector of parameters to be estimated

cfg ubiquity system object

estimation TRUE when called during an estimation and FALSE when called to test objective

function or generate observation information for plotting

details TRUE to display information about cohorts as they are simulated (useful for de-

bugging when passed through system_simulate_estimation_results)

system_plot_cohorts 45

Value

If estimation is TRUE then the output is a matrix of observation details of the format:

```
od$pred = [TIME, OBS, PRED, VAR, OUTPUT, COHORT]
```

The values are the observed (OBS) data, predicted values (PRED) and variance (VAR) at the given TIME. The columns OUTPUT and COHORT can be used for sorting. These should be unique numbers.

When estimation is FALSE we output od\$pred is a data frame with the following headings:

```
od$pred = [TIME, OBS, PRED, VAR, SMOOTH, OUTPUT, COHORT]
```

The TIME, OBS, PRED and VAR are the same as those listed above. The SMOOTH variable is FALSE for rows that correspond to records in the dataset and TRUE when the PRED represents the smooth predictions. The OUTPUT and COHORT columns here are text values used when defining the cohorts.

Also the od\$all list item is created with all of the simulation information stored for each cohort:

```
od$all = [ts.time, ts.ts1, ... ts.tsn, pred, name, cohort]
```

- tstime timescale of the system
- ts.ts1, ... ts.tsn timescales defined in the system
- pred smooth prediction
- name state or output name corresponding to the prediction
- cohort name of the cohort for these predictions

Lastly the field isgood will be set to FALSE if any problems are encountered, and TRUE if everything worked.

```
od$isgood = TRUE
```

See Also

system_define_cohort and system_simulate_estimation_results

```
system_plot_cohorts     Plot Estimation Results
```

Description

Generates figures for each cohort/output for a given set of parameter estimates.

46 system_plot_cohorts

Usage

```
system_plot_cohorts(
  erp,
  plot_opts = c(),
  cfg,
  analysis_name = "analysis",
  archive_results = TRUE,
  prefix = NULL
)
```

Arguments

```
erp output from system_simulate_estimation_results

plot_opts list controling how predictions and data are overlaid

cfg ubiquity system object

analysis_name string containing the name of the analysis

archive_results

boolean variable to control whether results will be archived

prefix depreciated input mapped to analysis_name
```

Details

The general format for a plot option for a given output (OUTPUT) is:

```
plot_opts$outputs$OUTPUTt$option = value
```

The following options are:

- yscale and xscale = "linear" or "log"
- ylabel and xlabel = "text"
- xlim and ylim = c(min, max)

It is also possible to control the height and width of the time course tc and observed vs predicted op file by specifying the following in the default units of ggsave.

```
    plot_opts$tc$width = 10
    plot_opts$tc$height = 5.5
    plot_opts$op$width = 10
    plot_opts$op$height = 8.0
```

To control the figures that are generated you can set the purpose to either "print", "present" (default) or "shiny".

```
plot_opts$purpose = "present"
```

Value

List of plot outputs containing two elements timecourse and obs_pred, for the time course of and observed vs predicted, respectively. Both of these fields contain three elements for a given output. For example, say there is an output named PK the both the timecourse and obs_pred elements will have a field named PK containing a ggplot object and two fields PK_png and PK_pdf containing the paths to the files containing that figure in the respective formats.

See Also

The estimation vignette ("Estimation", package = "ubiquity"))

```
{\tt system\_rpt\_add\_doc\_content}
```

Adds Content to a Word Report

Description

Appends content to an open ubiquity Word report.

Usage

```
system_rpt_add_doc_content(
  cfg,
  type = NULL,
  content = NULL,
  rptname = "default"
)
```

Arguments

cfg ubiquity system object

type Type of content to add. See the onbrand function report_add_doc_content

for the allowed content types.

content List with content to add to the report. See the onbrand function report_add_doc_content

format of this list.

rptname Report name

Value

ubiquity system object with the content added to the specified report

See Also

```
report_add_doc_content and Reporting vignette (vignette("Reporting", package = "ubiquity"))
```

Description

Adds a slide to a ubiquity report.

Usage

```
system_rpt_add_slide(
  cfg,
  template = NULL,
  elements = NULL,
  rptname = "default"
)
```

Arguments

cfg ubiquity system object

template Name of slide template to use

elements List with content to populate placeholders in the slide. See the onbrand functions

report_add_slide and add_pptx_ph_content for details on the expected for-

mat of this list.

rptname Report name

Value

ubiquity system object with the slide added to the specified report

See Also

```
report_add_slide, add_pptx_ph_content, and Reporting vignette ("Reporting",
package = "ubiquity"))
```

```
system_rpt_estimation Generate a Report from Parameter Estimation
```

Description

This will take the output generated during a parameter estimation and append those results to a specified report.

Usage

```
system_rpt_estimation(cfg, rptname = "default", analysis_name = NULL)
```

system_rpt_nca 49

Arguments

cfg ubiquity system object rptname report name ("default")

analysis_name string containing the name of the estimation analysis and used as a prefix to store

the results

Value

ubiquity system object with estimation report appended

See Also

```
system_rpt_read_template, the reporting vignette (vignette("Reporting", package = "ubiquity"))
and the estimation vignette (vignette("Estimation", package = "ubiquity"))
```

system_rpt_nca

Report NCA

Description

Appends the results of NCA to a report

Usage

```
system_rpt_nca(
  cfg,
  rptname = "default",
  analysis_name = "analysis",
  rows_max = 10,
  table_headers = TRUE
)
```

Arguments

cfg ubiquity system object

rptname report name (either PowerPoint or Word)

analysis_name string containing the name of the NCA analysis (default 'analysis')
rows_max maximum number of rows per slide when generating tabular data

table_headers Boolean variable to add descriptive headers to output tables (default TRUE)

Value

cfg ubiquity system object with the NCA results appended to the specified report and if the analysis name is specified:

See Also

```
Vignette on NCA (vignette("NCA", package = "ubiquity"))
```

Description

Creates a new officer report based either on the ubiquity template or one specified by the user. Once created, content can then be added.

Usage

```
system_rpt_read_template(
  cfg,
  template = "PowerPoint",
  mapping = NULL,
  rptname = "default"
)
```

Arguments

cfg ubiquity system object

template Type of internal template to use ("PowerPoint" or "Word") or path to template

file

mapping Path to an onbrand yaml mapping file: If an internal ubiquity template has been

supplied, this argument will be ignored and the yaml file from ubiquity will be

used.

rptname report name

Details

The 'template' and 'mapping' inputs can specify either the internal ubiquity templates or user-defined templates If you specify 'template' values of 'PowerPoint' or 'Word' then the internal ubiquity templates for PowerPoint or Word will be used and the mapping information will be ignored.

If templates other than the values above are specified you will need also supply a yaml mapping file for an 'onbrand' reporting template. The vignette below highlights how to go about creating these files.

Value

ubiquity system object with and empty report initialized

system_rpt_save_report 51

See Also

```
Reporting vignette (vignette("Reporting", package = "ubiquity"))
Custom Office Template vignette(vignette("Custom_Office_Templates", package="onbrand"))
```

```
system_rpt_save_report
```

Save Report to a File

Description

Saves a ubiquity report to the specified file.

Usage

```
system_rpt_save_report(cfg, output_file = NULL, rptname = "default")
```

Arguments

cfg ubiquity system object

output_file File to save the report to (must be either .pptx or .docx depending on the type of

report)

rptname ubiquity report name

Value

list with the following elements

- isgood Boolean variable indicating success or failure
- msgs Verbose description of the save results

See Also

```
Reporting vignette("Reporting", package = "ubiquity"))
```

52 system_select_set

```
system_rpt_template_details
```

Generate Details about Report Template

Description

Wrapper for the onbrand::template_details function, see the help for that function for more information

Usage

```
system_rpt_template_details(cfg, rptname = "default")
```

Arguments

cfg ubiquity system object

rptname Report name

Value

list with template information, see template_details for information on the structure of this list.

See Also

```
template_details and Reporting vignette (vignette("Reporting", package = "ubiquity"))
```

system_select_set

Selecting Parameter Sets

Description

The system file can contain multiple parameterizations using the <PSET:?:?>? notation. This function provides the means for switching between these parameterizations, and (optionally) specifying a subset of parameters estimated when performing parameter estimation.

Usage

```
system_select_set(cfg, set_name = "default", parameter_names = NULL)
```

Arguments

cfg ubiquity system object

set_name string containing the name of the parameter set

parameter_names

list of parameter names to be estimated

system_set_bolus 53

Value

Ubiquity system object with the specified parameter set active

Examples

system_set_bolus

Set Bolus Inputs

Description

Defines infusion rates specified in the system file using <B:times> and <B:events>

Usage

```
system_set_bolus(cfg, state, times, values)
```

Arguments

cfg ubiquity system object

state name of the state to apply the bolus

times list of injection times

values corresponding list injection values

Value

Ubiquity system object with the bolus information set

See Also

```
system_zero_inputs
```

54 system_set_covariate

Examples

```
system_set_covariate Set Covariate Values
```

Description

Covariates specified in the system file using <CV:?> and <CVSET:?:?> will have their default values for a given parameter set. This function is a means to overwrite those values.

Usage

```
system_set_covariate(cfg, covariate, times, values)
```

Arguments

cfg ubiquity system object
covariate name of the covariate
times list of times (system time units)
values corresponding list of values

Value

Ubiquity system object with the covariate set

system_set_guess 55

Examples

system_set_guess

Alter Initial Guess and Parameter Bounds

Description

Default values for parameters are taken from the system.txt file either when the parameter was defined (<P>) or when it was reassigned for a parameter set (<PSET:?:?>?). These can be altered at the scripting level using this function.

Usage

```
system_set_guess(cfg, pname, value, lb = NULL, ub = NULL)
```

Arguments

```
cfg ubiquity system object
pname name of parameter to set
value value to assign

1b optionally change the lower bound (NULL)
ub optionally change the upper bound (NULL)
```

Details

When performing a parameter estimation, the initial guess will be the value specified in the system.txt file for the currently selected parameter set. The following command can be used after the parameter set has been selected to specify the value (VALUE) of the parameter PNAME and optionally the lower (1b) and upper (ub) bounds:

56 system_set_iiv

```
cfg = system_set_guess(cfg, pname="PNAME", value=VALUE, lb=NULL, ub=NULL)
```

To set the initial guess for the parameter Vc to a value of 3, the following would be used:

```
cfg = system_set_guess(cfg, "Vc", value=3)
```

To specify the guess and overwrite the upper bound on Vc and set it to 5

```
cfg = system_set_guess(cfg, "Vc", value=3, ub=5)
```

Value

cfg ubiquity system object with guess and bounds assigned

Description

Set elements of the current variance covariance matrix specified in the system file with <IIV:?:?>?, <IIVCOR:?:?>?, <IIVCORSET:?:?>?

Usage

```
system_set_iiv(cfg, IIV1, IIV2, value)
```

Arguments

cfg ubiquity system object

IIV1 row name of the variance/covariance matrix

IIV2 column name of the variance/covariance matrix element value value to assign to the variance/covariance matrix element

Value

Ubiquity system object with IIV information set

See Also

```
system_fetch_iiv
```

Examples

```
# Creating a system file from the mab_pk example
fr = system_new(file_name = "system.txt",
               system_file = "mab_pk",
overwrite = TRUE,
                output_directory = tempdir())
# Building the system
cfg = build_system(system_file = file.path(tempdir(), "system.txt"),
                        = file.path(tempdir(), "output"),
      output_directory
      temporary_directory
                              = tempdir())
# Clearing all inputs
cfg = system_zero_inputs(cfg)
# Setting the covariance element for CL and Vc to 0.03
cfg = system_set_iiv(cfg,
                    IIV1 = "ETACL",
                    IIV2 = "ETAVc",
                     value=0.03)
```

system_set_option

Setting Analysis Options

Description

Different options associated performing analyses (e.g running simulations, performing parameter estimation, logging, etc.) can be set with this function

Usage

```
system_set_option(cfg, group, option, value)
```

Arguments

cfg	ubiquity system object
group	options are grouped together by the underlying activity being performed: "estimation", "general", "logging", "simulation", "solver", "stochastic", or "titration"
option	for each group there are a set of options
value	corresponding value for the option

Details

```
group="estimation"
```

The default estimation in R is performed using either the optim or optimx libraries. This is selected by setting the optimizer option:

The optimization routine then specified using the method. By default this option is set to Nelder-Mead.

And different attributes are then selected using the control.

For the different methods and control options, see the documentation for the optim and optimx libraries.

To perform a global optimization you can install either the particle swarm (pso) genetic algorithm (GA) libraries. To use the particle swarm set the optimizer and method:

The control option is a list described pso documentation.

To use the genetic algorithm set the optimizer and method:

The control option is a list and the list elements are the named options in the GA documentation. Use the following as an example:

To alter initial guesses see: system_set_guess

When performing parameter estimation, the internal function system_od_general is used. This is the function that simulates your system at the conditions defined for the different cohorts. This is pretty flexible but if you want to go beyond this you can set the observation_function option:

That will instruct the optimization routines to use the user defined function my_od. You will need to construct that function to have the same input/output format as system_od_general.

group=general

• "output_directory" = String where analysis outputs will be placed. Generally you wont want to change this, but it can be useful in Shiny apps where you need to have each shiny user generate output in that users directory: file.path(".", "output")

```
group=logging
```

By default ubiquity prints different information to the console and logs this information to a log file. The following options can be used to control this behavior:

- "enabled" = Boolean variable to control logging: TRUE
- "file" = String containing the name of the log file: file.path("transient", "ubiquity_log.txt")
- "timestamp" = Boolean switch to control appending a time stamp to log entries: TRUE
- "ts_str" = String format of timestamp: "
- "debug" = Boolean switch to control debugging (see below): FALSE
- "verbose" = Boolean switch to control printing to the console FALSE

To enable debugging of different functions (like when performing esitmation), set the debug option to TRUE. Important function calls will be trapped and information will be logged and reported to the console.

group="simulation"

• "dynamic" - Set to TRUE (default) and simulations will behave normally. Set to FALSE and ODES will evaulate to zero. This is useful for steady-state analysis.

- "include_important_output_times" Automatically add bolus, infusion rate switching times, etc: "yes"(default), "no".
- "integrate_with" Specify if the ODE solver should use the Rscript ("r-file") or compiled C ("c-file"), if the build process can compile and load the C version it will be the default otherwise it will switch over to the R script.
- "output_times" Vector of times to evaulate the simulation (default seq(0, 100, 1)).
- "solver" Selects the ODE solver: "lsoda" (default), "lsode", "vode", etc.; see the documentation for deSolve for an exhaustive list.
- "sample_bolus_delta" Spacing used when sampling around bolus events (default 1e-6).
- "sample_forcing_delta" Spacing used when sampling around forcing functions (infusion rates, covariates, etc) (default 1e-3).

group=solver

Depending on the solver, different options can be set. The documentation for deSolve lists the different solvers. For a full list of options, see the documentation for the specific solver (e.g. ?lsoda). Some common options to consider are:

- "atol" Relative error tolerance
- "rtol" Absolute error tolerance
- "hmin" Minimum integration step size
- "hmax" Maximum integration step size

To select the vode solver and set the maximum step size to 0.01, the following would be used:

group="stochastic"

When running stochastic simulations (inter-individual variability applied to system parameters) it can be useful to specify the following:

- "ci" Confidence interval (default 95)
- "nsub" Number of subjects (default 100)
- "seed" Seed for the random numebr generator (default 8675309)
- "ponly" Only generate the subject parameters but do not run the simulations (default FALSE)

 "ssp" - A list of the calculated static secondary parameters to include (default all parameters defined by <As>)

- "outputs" A list of the predicted outputs to include (default all outputs defined by <0>)
- "states" A list of the predicted states to include(default all states)
- "sub_file" Name of data set loaded with (system_load_data) containing subject level parameters and coviariates
- "sub_file_sample" Controls how subjects are sampled from the dataset

If you wanted to generate 1000 subjects but only wanted the parameters, you would use the following:

If you wanted to exclude both states and secondary parameters, while only including the output Cp_nM, you would do the following:

To pull subject information from a data file instead of generating the subject parameters from IIV information the sub_file option can be used. The value here SUBFILE_NAME is the name given to a dataset loaded with (system_load_data):

Sampling from the dataset can be controlled using the sub_file_sample option:

Sampling can be done sequentially ("sequential"), with replacement ("with replacement"), or without replacement ("without replacement")

```
group="titration"
```

"titrate" - By default titration is disable (set to FALSE). If you are going to use titration, enable it here by setting this option to TRUE. This will force #' simulate_subjects to use run_simulation_titrate internally when running simulations.

Value

Ubiquity system object with the option set

Description

Assigns a value for a named parameter in a parameter list.

Usage

```
system_set_parameter(cfg, parameters, pname, value)
```

Arguments

cfg ubiquity system object parameters vector of parameters parameter name

value value

Details

To set the parameter Vc to a value of 3, the following would be used:

```
parameters = system_fetch_parameters(cfg)
parameters = system_set_parameter(cfg, parameters, pname = 'Vc', value = 3)
```

Value

parameters vector with pname set to value

system_set_rate 63

system_set_rate

Set Infusion Rate Inputs

Description

Defines infusion rates specified in the system file using <R:?>

Usage

```
system_set_rate(cfg, rate, times, levels)
```

Arguments

cfg ubiquity system object rate name of infusion rate times list of time values

levels corresponding list of infusion values

Value

Ubiquity system object with the infusion rate set

See Also

```
system_zero_inputs
```

Examples

```
# Creating a system file from the mab_pk example
fr = system_new(file_name = "system.txt",
               system_file = "mab_pk",
overwrite = TRUE,
               output_directory = tempdir())
# Building the system
cfg = build_system(system_file = file.path(tempdir(), "system.txt"),
                       = file.path(tempdir(), "output"),
     output_directory
                             = tempdir())
      temporary_directory
# Clearing all inputs
cfg = system_zero_inputs(cfg)
# 5 minute infusion at 10 mg/min
cfg = system_set_rate(cfg,
          rate = "Dinf",
          times = c(0, 5),
          levels = c(10, 0)
```

```
system_set_rpt_officer_object

Sets the officer Object for the Specified ubiquity Report
```

Description

This will replace the officer object in the ubiquity system object for the specified report name with the value supplied.

Usage

```
system_set_rpt_officer_object(cfg, rpt = NULL, rptname = "default")
```

Arguments

cfg ubiquity system object
rpt officer report object
rptname ubiquity report name

Value

ubiquity system object with the replaced officer object

See Also

```
system_fetch_rpt_officer_object
```

```
system_set_rpt_onbrand_object

Sets the onbrand Object for the Specified ubiquity Report
```

Description

This will reset the onbrand object in the ubiquity system object for the specified report name.

Usage

```
system_set_rpt_onbrand_object(cfg, obnd = NULL, rptname = "default")
```

Arguments

cfg ubiquity system object
obnd onbrand report object
rptname ubiquity report name

Value

ubiquity system object with onbrand report set

See Also

```
system_fetch_rpt_onbrand_object
```

```
system_set_tt_cond
```

Define Titration Triggers and Actions

Description

Once a rule has been defined using system_new_tt_rule, it can then be used by specifying checks at each of the titration time points that, when true, will perform some actions.

Usage

```
system_set_tt_cond(cfg, name, cond, action, value = "-1")
```

Arguments

cfg	ubiquity system object
name	string containing the name for the titration rule to which this condition applies
cond	string that evaluates a boolean value that is TRUE when the action should be triggered
action	stringing that evaluates to what should be done when the condition is met (e.g. changing the dose, state change, etc)
value	code to be stored in the titration history to track when this condition has been triggered

Details

The general syntax for setting a new condition is:

The name input will associate this condition with a previously defined rule. For each time defined when the rule was created, the condition (cond) will be evaluated. If that condition evaluates as TRUE then the action will be evaluated. Lastly, when a condition action is evaluated, the value is stored in the titration history.

Multiple conditions can be associated with a rule. The internal titration history will track each one where a condition has been evaluated as true, but the simulation output will only show the **last** condition to be evaluated as true.

The cond field is a string that, when evaluated, will produce a boolean value (TRUE or FALSE). If you simply want to force an action at each of the times for a given rule you can use: cond = "TRUE". Alternatively you can provide mathematical expressions or even complicated user defined functions.

The action field is evaluated when cond is true. To modify how a simulation is going to be performed, you will want to modify the SIMINT_cfgtt variable using the different system commands. Certain common tasks have prototype functions created to make it easier for the user:

- SI_TT_BOLUS Set bolus dosing
- SI_TT_RATE Set infusion inputs
- SI_TT_STATE Reset system states

Note: Protype functions are strings but sometimes it is necessary to specify strings within this string. For the main string use double quotes (") and for the internal strings use single quotes (')

```
SI_TT_BOLUS
```

The simplest way to apply a bolus when the condition is true is to use the following:

The values and times are vectors of numbers of equal length. The dosing and time units are those specified in the system. txt file for the <B:?> delimiter. The times are relative to the titration time. So 0 above means at the titration time.

It's possible to specify an interval and a number of times to repeat the last dose using the following:

This will give a dose of 5 at the titration point and 2 time units later. The dose of 10 at time 4 will be repeated 7 times every 4 time units. So a total of 8 (7 + 1) doses at 10 will be administered. Remember the time units were those defined in <B:?>. The input repdose can be either 'last' or 'none'

Note: The main string is in double quotes "" but the strings in the protype argument (e.g. 'last') are in single quotes'.'

```
SI_TT_RATE
```

If you created an infusion named Dinf using <R:?> and the infusion units are min (times) and mg/min (rates). To have a 60 minute infusion of 20 mg/min then we would do the following:

```
action = "SI_TT_RATE[rate='Dinf', times=c(0, 60), levels=c(20.0, 0)]"
```

If we wanted to do this every day for 9 more days (a total of 10 days) we can repeat the sequence:

```
action = "SI_TT_RATE[rate = 'Dinf', times = c(0, 60), levels = c(20, 0), repdose = 'sequence', number = 9, interval = 24*60]"
```

The input repdose can be either 'sequence' or 'none'.

Note: The time units and dosing rate are those specified using <R:?>.

```
SI_TT_STATE
```

To provide fine control over states at titration points the state reset prototype is provided. For example, if you are modeling an assay where there is a wash step and you want to drop a concentration to zero. If you have a state named Cc defined in your system. txt and you want to set it to 0.0 in a condition the following action would work.

```
action = "SI_TT_STATE[Cc][0.0]"
```

The value here is a number but you can use any mathematical combination of variables available in the titration environment. Also you can create your own user function and place the function call within the brackets above.

Titration Environment

The cond, action, and value statements can use any variables available in the titration environment. If you want to perform complicated actions, you can simply create a user defined functions and pass it the variables from the titration environment that you need. These include named variables from the model as well as internal variables used to control the titration.

States and Parameters

System parameters (<P>), static secondary parameters (<As>) and the initial value of covariates are available. Also the state values (at the current titration time) can be used. These are all available as the names specified in the system.txt file. Since system resets (SI_TT_STATE) are processed first, any changes made to states are the values that are active for other actions.

Internal Simulation Variables

Internal variables are used to control titration activities. These variables can also be used in the conditions and actions.

- SIMINT_p list of system parameters
- SIMINT_cfg system configuration sent into the titration routine
- SIMINT_cfgtt- system configuration at the current titration event time
- SIMINT_ttimes vector of titration times (in simulation units)
- SIMINT_ttime current titration time (in simulation units)
- SIMINT_tt_ts list of time scales for the current titration

• SIMINT_history - data frame tracking the history of conditions that evaluated true with the following structure:

- - tname name of titration rule
 - value value indicating condition that was satisfied
 - simtime simulation time when that rule/value were triggered
 - timescale time at the rule timescale when that rule/value were triggered

Individual Simulations

To run an individual titration simulation use the following:

```
som = run_simulation_titrate(parameters, cfg)
```

This provides the same output as run_simulation_ubiquity with two extra fields. The first, som\$titration, contains three columns for each titration rule. The columns will have a length equal and corresponding to the simulation times. If the rule name is rname, then the column headers will have the following names and meanings:

- tt.rname.value Value of the rule for the active condition or -1 if not triggered
- tt.rname.simtime Simulation time where the last condition became active
- tt.rname.timescale Simulation time in the time scale the rule was specified in

The second field is som\$titration_history which contains a summary list of all of the titration events that were triggered.

- tname Titration rule name
- value Value of the rule for the active condition or -1 if not triggered
- simtime Simulation time where the last condition became active
- timescale Simulation time in the time scale the rule was specified in

To convert this structured list into a data frame the som_to_df command can be used:

```
sdf = som_to_df(cfg, som)
```

To run stochastic titration simulations, the same function is used:

```
som = simulate_subjects(parameters, cfg)
```

This will add a data a list element called som\$titration with three fields for each titration rule:

- tt.rname.value Value of the rule for the active condition or -1 if not triggered
- tt.rname.simtime Simulation time where the last condition became active
- tt.rname.timescale Simulation time in the time scale the rule was specified in

Each of these fields is a matrix with an entry for each simulation time (column) and each subject (row). This data structure can also be converted to a data frame using som_to_df.

system_set_tt_rate 69

Value

Ubiquity system object with the titration condition defined

See Also

```
system_new_tt_rule, run_simulation_titrate, som_to_df, simulate_subjects
```

Description

The prototype function SI_TT_RATE provides an abstract interface to this function. Based on the input from SI_TT_RATE infusion rate inputs will be updated for the current titration time.

Usage

```
system_set_tt_rate(
  cfg,
  rate,
  times,
  levels,
  tt_ts,
  tsinfo,
  repdose = "none",
  interval = 1,
  number = 0
)
```

Arguments

cfg	ubiquity system object
rate	name of the infusion rate to update(Defined in <r:?>)</r:?>
times	vector of switching times relative to the current titration time (in time units defined by $\langle R:? \rangle$)
levels	vector of infusion rates (in dosing units defined by <r:?>)</r:?>
tt_ts	list of timescale values for the current titration time
tsinfo	list with timescale information for inputs (bolus, rates, etc)
repdose	"none" or "sequence"
interval	interval to repeat in the units defined in <r:?></r:?>
number	number of times to repeat

Value

ubiquity system object with the infusion rates updated.

70 system_view

```
system_simulate_estimation_results

Simulate Results at Estimates
```

Description

Simulates the system at the parameter estimates pest for creating diagnostic plots

Usage

```
system_simulate_estimation_results(pest, cfg, details = FALSE)
```

Arguments

pest vector of parameters cfg ubiquity system object

details set TRUE to display information about cohorts as they are simulated (useful for

debugging)

Value

observations in a list, see system_od_general when estimation=FALSE

See Also

```
system_define_cohort, system_plot_cohorts and the vignette on parameter estimation (vignette("Estimation",
package = "ubiquity"))
```

system_view

View Information About the System

Description

Displays information (dosing, simulation options, covariates, etc) about the system.

Usage

```
system_view(cfg, field = "all", verbose = FALSE)
```

Arguments

cfg ubiquity system object

field string indicating the aspect of the system to display

verbose Boolean variable that when set to true will echo the information to the screen

system_zero_inputs 71

Value

sequence of strings with system in formation (one line per element)

The field

- "all" will show all information about the system
- "parameters" summary of parameter information
- "bolus" currently set bolus dosing
- "rate" infusion rate dosing
- "covariate" covariates
- "iiv" variance/covariance information
- "datasets" loaded datasets
- "simulation" simulation options
- "estimation" estimation options
- "nca" non-compartmental analyses that have been performed

Examples

system_zero_inputs

Zero All Model Inputs

Description

Multiple default inputs can be specified in the system file. At the scripting level this function can be used to set all inputs to zero. Then only the subsequently specified inputs will be applied.

Usage

```
system_zero_inputs(cfg, bolus = TRUE, rates = TRUE)
```

72

Arguments

cfg	ubiquity system object
bolus	Boolean value indicating weather bolus inputs should be set to zero
rates	Boolean value indicating weather infusion rate inputs should be set to zero

Value

Ubiquity system object with the specified inputs set to zero

See Also

```
system_set_rate, system_set_bolus
```

Examples

tic

Implementation of Matlab tic() command

Description

Used in conjunction with toc() to find the elapsed time when code is executed.

Usage

```
tic(type = c("elapsed", "user.self", "sys.self"))
```

Arguments

```
type can be either "elapsed" "user.self" or "sys.self"
```

toc 73

Value

time tic was called

See Also

toc

Examples

```
tic()
Sys.sleep(3)
toc()
```

toc

Implementation of Matlab toc() command

Description

Used in conjunction with tic() to find the elapsed time when code is executed.

Usage

toc()

Value

time in seconds since tic() was called

See Also

tic

Examples

```
tic()
Sys.sleep(3)
toc()
```

74 vp

var2string Converts Numeric Variables into Padded Strings

Description

Mechanism for converting numeric variables into strings for reporting.

Usage

```
var2string(vars, maxlength = 0, nsig_e = 3, nsig_f = 4)
```

Arguments

vars numeric variable or a vector of numeric variables

maxlength if this value is greater than zero spaces will be added to the beginning of the

string until the total length is equal to maxlength

nsig_e number of significant figures for scientific notation nsig_f number of significant figures for numbers (2.123)

Value

Number as a string padded

Examples

```
var2string(pi, nsig_f=20)
var2string(.0001121, nsig_e=2, maxlength=10)
```

νp

Print and Log Messages

Description

Used to print messages to the screen and the log file.

Usage

```
vp(cfg, str, fmt = "alert")
```

Arguments

workshop_fetch 75

Value

Boolean variable indicating success (TRUE) or failure (FALSE)

Examples

workshop_fetch

Fetch Ubiquity Workshop Sections

Description

With the ubiquity package this function can be used to fetch example files for different sections of the workshop.

Usage

```
workshop_fetch(
  section = "Simulation",
  overwrite = FALSE,
  copy_files = TRUE,
  output_directory = getwd()
)
```

Arguments

```
section Name of the section of workshop to retrieve ("Simulation")

overwrite if TRUE the new workshop files will overwrite any existing files present (FALSE)

copy_files if TRUE the files will be written to the output_directory, if FALSE only the names and locations of the files will be returned (TRUE)

output_directory

directory where workshop files will be placed (getwd())
```

76 workshop_fetch

Details

Valid sections are "Simulation", "Estimation", "In Vitro", "Titration" "Reporting", and "NCA"

Value

list

Examples

 $workshop_fetch("Estimation", output_directory=tempdir(), overwrite=TRUE)$

Index

add_pptx_ph_content, 48	system_fetch_template, 28
	system_fetch_TSsys, 30
<pre>build_system, 3</pre>	<pre>system_glp_init, 31</pre>
1 1 4 1 101:0 4	<pre>system_glp_scenario, 31</pre>
calculate_halflife,4	system_load_data, <i>17</i> , 34, <i>38</i> , <i>61</i>
doCalva 60	system_log_debug_save, 35
deSolve, 60	system_log_init, 36
gg_axis, 5, 6–8	system_nca_parameters_meta, 25, 36
gg_log10_xaxis, 6, 6, 7, 8	system_nca_run, 37
	system_nca_summary, 39
gg_log10_yaxis, 6, 7	system_new, 41
linspace, 8	system_new_list, 43
logspace, 9	system_new_tt_rule, <i>12</i> , 43, <i>65</i> , <i>69</i>
Togspace, 9	system_od_general, 44, 59, 70
nm_select_records, 21	system_plot_cohorts, 45, 70
Tim_Select_records, 21	system_rpt_add_doc_content, 47
pad_string, 10	system_rpt_add_slide, 48
prepare_figure, 10	system_rpt_estimation, 48
prepare_rigare, ro	system_rpt_nca, 49
report_add_doc_content, 47	system_rpt_read_template, 33, 49, 50
report_add_slide, 48	system_rpt_save_report, 51
run_simulation_titrate, 11, 14, 44, 62, 69	system_rpt_template_details, 52
run_simulation_ubiquity, <i>11</i> , 12, <i>14</i> , <i>68</i>	system_select_set, 26, 52
	system_set_bolus, 53, 72
simulate_subjects, 13, <i>14</i> , <i>62</i> , <i>69</i>	system_set_covariate, 54
som_to_df, 13, 14, 68, 69	system_set_guess, 55, 59
system_check_requirements, 15	system_set_iv, 24, 56
system_check_steady_state, 15	system_set_11v, 24, 30 system_set_option, 13, 18, 57
system_clear_cohorts, 17	system_set_option, 75, 76, 57 system_set_parameter, 62
system_define_cohort, 17, 45, 70	
system_define_cohorts_nm, 20	system_set_rate, 63, 72
system_estimate_parameters, 22	system_set_rpt_officer_object, 27, 64
system_fetch_guess, 23	system_set_rpt_onbrand_object, 27, 64
system_fetch_iiv, 23, 56	system_set_tt_cond, <i>12</i> , <i>44</i> , 65
system_fetch_nca, 24	system_set_tt_rate, 69
system_fetch_nca_columns, 25	system_simulate_estimation_results, 44,
system_fetch_parameters, 26	45, 70
system_fetch_rpt_officer_object, 26, 64	system_view, 70
	$system_zero_inputs, 53, 63, 71$
system_fetch_rpt_onbrand_object, 27, 65	tomplete details 52
system_fetch_set, 28	template_details, 52

78 INDEX

```
tic, 72, 73
toc, 73, 73
var2string, 74
vp, 74
workshop_fetch, 75
```