Fluctuations for products of random matrices

Yi Sun

Columbia University

February 2020

I. Setting: Products of M random $N \times N$ matrices

II. Mathematical setup and results for fixed M

III. Main results: LLN and CLT with $N, M \to \infty$ jointly

IV. Method: Multivariate Bessel generating functions

Products of random matrices

Consider M independent $N \times N$ random matrices Y_1, \ldots, Y_M satisfying the rotational invariance in law

$$Y_k U \stackrel{d}{=} Y_k$$

for any unitary matrix U. Define the product

$$X = Y_1 Y_2 \cdots Y_M$$
.

Question: How do singular values of *X* look as $N \to \infty$?

Example: Wishart / "white" sample covariance (M = 1)

If M = 1, Y_1 with i.i.d. $\mathcal{N}_{\mathbb{C}}(0, 1/2)$ entries:

- $X = Y_1$ has i.i.d. multivariate Gaussian columns
- ► XX^* = sample covariance for population covariance $Id_{N\times N}$

Law of Large Numbers: Quarter-circle law

Example: General sample covariance (M = 2)

- If M=2, Y_1 arbitrary and Y_2 with i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1/2)$ entries:
 - $X = Y_1 Y_2$ has i.i.d. multivariate Gaussian columns
 - ► XX^* = sample covariance for population covariance $Y_1Y_1^*$

Extensively studied in statistics and mathematics:

- Random matrix theory: [Marchenko-Pastur '67, Jonsson '82, Bai-Silverstein '04]
- ► High-dimensional PCA: [Wachter '76, Johnstone '01, Baik-Silverstein '06, El Karoui '07, Paul '07, Nadler '08, Bai-Yao '08]
- Sphericity testing / signal detection [Ledoit-Wolf '02, Onatski-Moreira-Hallin '13, '14, Johnstone-Onatski '18]

Example: Separable sample covariance (M = 3)

The **separable covariance model** considers a data matrix

$$X = Y_1 \cdot Y_2 \cdot Y_3$$

with Y_1 , Y_3 arbitrary and Y_2 having i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1/2)$ entries.

- Rows and columns of X both have non-trivial correlation
- ► Entries of X are multivariate Gaussian with population covariance $Y_1 Y_1^* \otimes Y_3 Y_3^*$

Applications in several fields:

- Spatio-temporal statistics (rows = space, columns = time) [Storch-Zwiers '99, Paul-Silverstein '09]
- ► Matrix-variate statistics [Dawid '81, Dutilleul '99, Wang-West '09, Allen-Tibshirani '10, Hoff '11, Leng-Tang '12, Fosdick-Hoff '12]
- ► Approximate factor models in economics [Onatski '08]

Feed-forward fully connected network with *D* layers of width *N*:

- ▶ Weights $W_1, ..., W_D \in \mathbb{R}^{N \times N}$ and biases $b_1, ..., b_D \in \mathbb{R}^N$.
- ▶ Given input $x = x^0 \in \mathbb{R}^N$, activations at layer k are:

$$x^k = f(W_k \cdot x^{k-1} + b_k) \in \mathbb{R}^N$$

for an **activation function** f(x) applied element-wise.

▶ The **output** $F_{\theta}(x) \in \mathbb{R}^{N}$ is

$$F_{\theta}(x) = x^{D} = f(b_{D} + W_{D} \cdot f(b_{D-1} + W_{D-1} \cdot f(\cdots)))$$

for **parameters** $\theta = (W_1, \dots, W_D, b_1, \dots, b_D)$.

At initialization: W_i has i.i.d. real Gaussian entries, $b_i = 0$.

$$F_{\theta}(x) = f(b_D + W_D \cdot f(b_{D-1} + W_{D-1} \cdot f(\cdots)))$$

Jacobian of output with respect to input is:

$$J(x) = Df(x^{D}) \cdot W_{D} \cdot Df(x^{D-1}) \cdots W_{1},$$

where for $x \in \mathbb{R}^N$, Df(x) is the diagonal matrix

$$Df(x) = \begin{bmatrix} f'(x_1) & & & \\ & f'(x_2) & & \\ & & \ddots & \\ & & f'(x_N) \end{bmatrix}.$$

Jacobian at initialization – with U_1, \ldots, U_D Haar unitary:

$$J(x) = Df(x^{D}) \cdot W_{D} \cdot Df(x^{D-1}) \cdot \cdot \cdot W_{1}$$

$$\stackrel{d}{=} (Df(x^{D})U_{D}) \cdot W_{D} \cdot (Df(x^{D-1})U_{D-1}) \cdot \cdot \cdot \cdot W_{1}$$

fits into our framework with M = 2D and

$$Y_1 = Df(x^D)U_D, \qquad Y_2 = W_D, \qquad \dots$$

Typical values: depth D = O(100) and width $N = O(10^5)$

Conclusion: Asymptotic study requires $N, M \to \infty$ jointly

In training with loss $\ell(y, y')$ at data point (x_i, y_i) , take step

$$\theta' = \theta - \alpha \cdot \nabla_{\theta} \ell(\mathbf{y}_i, \mathbf{F}_{\theta}(\mathbf{x}_i)).$$

Expressed with $J_{\theta}F_{\theta}(x_i)$, which also has product structure.

For successful training, must make sure gradients are not:

- too large (gradient explosion), or
- too small (gradient vanishing).

[Saxe-McClelland-Ganguli '14] [Pennington-Schoenholz-Ganguli '17] [Chen-Pennington-Schoenholz '18] [Hanin '18] [Zhang-Dauphin-Ma '19]

I. Setting: Products of M random $N \times N$ matrices

Mathematical setup and results for fixed M

III. Main results: LLN and CLT with $N,M \to \infty$ jointly

IV. Method: Multivariate Bessel generating functions

Random Matrix Theory: global regime

Recall $N \times N$ matrices Y_1, \ldots, Y_M :

$$X_{N,M} = Y_1 Y_2 \cdots Y_M.$$

Consider the empirical spectral measure of $X_{N,M}$

$$\nu_{N,M} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\mu_i}$$

with $\mu_1 \ge \cdots \ge \mu_N$ singular values of $X_{N,M}$. As $N \to \infty$, want:

- **Law of Large Numbers:** Deterministic limit for $\nu_{N,M}$
- ▶ **Central Limit Theorem:** Gaussian fluctuations of $\nu_{N,M}$ about its expectation (after rescaling).

Global regime because they rely on singular values as a whole.

LLN for products with M fixed

Define the S-transform from free probability

$$S_{\nu}(z)=rac{z+1}{z}M_{\nu}^{-1}(z)$$
 with $M_{\nu}(z)=\intrac{xz}{1-xz}d
u(x).$

Let A, B be right-invariant matrices whose singular values $\{a_i\}, \{b_i\}$ have empirical measures with deterministic limits

$$\nu_{\mathcal{A}} := \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{a_i} \qquad \nu_{\mathcal{B}} := \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{b_i}.$$

Theorem (Voiculescu, '80s)

The empirical singular value measure of X = AB has deterministic limit ν_X satisfying

$$S_{\nu_X}(z) = S_{\nu_A}(z)S_{\nu_B}(z).$$

CLT for products with M fixed

Define the **height function** of *X*:

$$\mathcal{H}_{N}(t) = \#\{\mu_{i} \leq t\} = N \nu_{X} ((-\infty, t]).$$

Note that $N \to \infty$ limit of $\frac{1}{N}\mathbb{E}[\mathcal{H}_N(t)]$ is determined by LLN.

Theorem (Gorin-S. '18)

As $N \to \infty$, the limit of fluctuations of the height function

$$\xi(x) := \lim_{N \to \infty} \left(\mathcal{H}_N(x) - \mathbb{E}[\mathcal{H}_N(x)] \right)$$

is an **explicit** Gaussian log-correlated field $\xi(x)$, meaning

$$\mathbb{E}[\xi(x)\xi(y)] \approx -\frac{1}{2\pi^2}\log|x-y|$$
 for $x \approx y$.

Note: Fluctuations $\mathcal{H}_N(x) - \mathbb{E}[\mathcal{H}_N(x)]$ are random functions on \mathbb{R} converging to the random **distribution** $\xi(x)$.

CLT for products with M fixed

Theorem (Gorin-S. '18)

As $N \to \infty$, the limit of fluctuations of the height function

$$\xi(x) := \lim_{N \to \infty} \left(H_N(x) - \mathbb{E}[H_N(x)] \right)$$

is an **explicit** Gaussian log-correlated field $\xi(x)$, meaning

$$\mathbb{E}[\xi(x)\xi(y)] \approx -\frac{1}{2\pi^2}\log|x-y|$$
 for $x \approx y$.

Additive analogue:

- ▶ 2nd order freeness: [Collins-Mingo-Śniady-Speicher '04]
- Stieltjes transform: [Pastur-Vasilchuk '07]

Multiplicative case:

- Sample covariance: [Jonsson '82, Bai-Silverstein '04]
- Separable covariance: [Bai-Li-Pan '16]
- Gaussianity: [Guionnet-Novak '15] [Arizmendi-Mingo '18]
- ► Explicit covariance + log-correlation: [Gorin-s. 18]

Fixed matrix size (N) and growing number (M)

Recall that

$$X_{N,M} = Y_1 Y_2 \cdots Y_M.$$

Consider *N* fixed as $M \to \infty$:

- Singular values grow exponentially in M
- Lyapunov exponents have deterministic limits

$$\lambda_i := \frac{1}{M} \log \mu_i$$

[Furstenberg-Kesten '60]

Appears in dynamical systems from population ecology

Growing matrix size (N) and number (M) together

What if $N, M \to \infty$ together?

- Should consider Lyapunov exponents
- ▶ Taking $N \to \infty$ and then $M \to \infty$: free probability regime
 - LLN studied in [Kargin '08] [Tucci '10]
- ▶ Taking $M \to \infty$ and then $N \to \infty$: similarity to fixed N

Our results: LLN and CLT for all joint limits $N, M \to \infty$.

I. Setting: Products of M random $N \times N$ matrices

II. Mathematical setup and results for fixed M

III. Main results: LLN and CLT with $N, M \to \infty$ jointly

IV. Method: Multivariate Bessel generating functions

$M \to \infty$, multiplicative case

Define i.i.d. $N \times N$ random matrices

$$Y_k := AU_k$$

with i.i.d Haar unitary matrices U_k and deterministic diagonal

$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_N \end{pmatrix}$$

with $a_j > 0$ so $\nu := \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{a_i}$ converges. Define

$$X_{N,M} := Y_1 Y_2 \cdots Y_M.$$

For $M \to \infty$, study Lyapunov exponents $\{\lambda_k\}$ defined by

$$\lambda_k := \frac{1}{M} \log \left(k^{\text{th}} \text{ singular value of } X_{N,M} \right)$$

$M \to \infty$ LLN, multiplicative case

Define:

$$S(z) := \frac{z+1}{z} M_{\nu}^{-1}(z) \qquad M_{\nu}(z) := \int \frac{xz}{1-xz} d\nu(x).$$

Theorem (Newman '86, Kargin '08, Tucci '10, Gorin-S. '18)

As $N,M\to\infty$ jointly, the empirical measure of Lyapunov exponents converges to the explicit measure

$$\lim_{N,M\to\infty} \frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k} = \frac{-e^{-x}}{S'(S^{-1}(e^{-x}))} \mathbf{1}_{[-\log S(-1), -\log S(0)]} dx.$$

- ▶ CDF of limiting measure is $S^{-1}(e^{-x}) + 1$
- lacktriangle Limiting measure in LLN recovers original measure u
- ▶ Holds for **any** relative rate of growth $N, M \rightarrow \infty$

$M \to \infty$ CLT, multiplicative case

Lyapunov exponents

$$\lambda_k = \frac{1}{M} \log \left(k^{\text{th}} \text{ singular value of } X_{N,M} \right)$$

and height function $H_{N,M}(t) = \#\{\lambda_k \leq t\}$.

Theorem (Gorin-S. '18)

As $N, M \to \infty$ jointly, rescaled fluctuations converge

$$M^{1/2}\Big(H_{N,M}(x)-\mathbb{E}[H_{N,M}(x)]\Big)\to \xi(x)$$

to explicit Gaussian field $\xi(x)$ with **white noise** component, i.e.

$$\mathbb{E}[\xi(x)\xi(y)] \approx \delta(x-y)$$
 for $x \approx y$.

Fluctuations go from log-correlated for M fixed to white noise for $M \to \infty$

$M \to \infty$, comparison to additive case

Define $X_{N.M}^{\text{add}} := \sum_{k=1}^{M} U_k A U_k^*$. As $N, M \to \infty$, have

$$\frac{1}{M}X_{N,M}^{\text{add}} \approx \frac{1}{N} \Big(\sum_{k=1}^{N} a_k\Big) \cdot \text{Id}$$

$$\sqrt{\frac{N^2-1}{NM}}\Big(X_{N,M}^{\mathsf{add}}-\mathbb{E}[X_{N,M}^{\mathsf{add}}]\Big) pprox (\mathsf{constant}) \cdot \mathsf{GUE}_{N,\mathsf{Tr}=0},$$

where

$$GUE_{N,Tr=0} = \begin{pmatrix} traceless \ Hermitian \ matrix \ with \ i.i.d. \\ complex \ Gaussian \ entries \end{pmatrix}$$

Theorem (Johansson '98)

Fluctuations of height function of GUE_N converge as $N \to \infty$ to explicit log-correlated Gaussian field.

Fluctuations stay log-correlated between M fixed and $M \to \infty$.

Why does white noise appear?

Consider additive decomposition

$$X_{N,M}^{\mathsf{add}} = \mathbb{E}[X_{N,M}^{\mathsf{add}}] + \left(X_{N,M}^{\mathsf{add}} - \mathbb{E}[X_{N,M}^{\mathsf{add}}]\right).$$

Expectation is multiple of identity: $\frac{1}{M}\mathbb{E}[X_{N,M}^{\mathsf{add}}] \approx (\mathsf{const}) \cdot \mathsf{Id}$

$$(\textit{k}^{\text{th}} \text{ eigenval. of } \textit{X}^{\textit{add}}_{\textit{N},\textit{M}}) \approx \boxed{(\texttt{const}_1) \cdot \textit{M}} + \boxed{(\texttt{const}_2) \cdot \sqrt{\textit{M}} \cdot \gamma_{\textit{k}}}\\ \mathbb{E}[\textit{X}^{\text{add}}_{\textit{N},\textit{M}}] & \textit{X}^{\text{add}}_{\textit{N},\textit{M}} - \mathbb{E}[\textit{X}^{\text{add}}_{\textit{N},\textit{M}}]}$$

for $\gamma_k \stackrel{d}{=} (k^{\text{th}} \text{ eigenval. of GUE}_{N,\text{Tr}=0}).$

Fluctuations of spectrum of $X_{N,M}^{\text{add}}$ come **only** from fluctuations of spectrum of $X_{N,M}^{\text{add}} - \mathbb{E}[X_{N,M}^{\text{add}}]$.

Why does white noise appear?

Consider multiplicative decomposition

$$\begin{split} \log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^* &= \mathbb{E}[\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^*] \\ &+ \Big(\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^* - \mathbb{E}[\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^*]\Big). \end{split}$$

Expectation $\mathbb{E}[\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^*]$ has non-trivial spectrum

- ▶ k^{th} eigenvalue of log $X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^*$ not determined from spectra of its expectation and fluctuations
- ▶ fluctuations $\left(\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^* \mathbb{E}[\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^*]\right)$ are distributed along the spectrum of $\mathbb{E}[\log X_{N,M}^{\text{mult}}(X_{N,M}^{\text{mult}})^*]$

Why a $M^{1/2}$ scaling?

For **fixed** N, $M \to \infty$: limit of Lyapunov exponents is

$$(\lambda_1,\ldots,\lambda_N)\approx \mathbb{E}\Big[(\lambda_1,\ldots,\lambda_N)\Big]+\frac{1}{\sqrt{M}}\mathcal{N}(0,\Sigma)$$

[Akemann-Burda-Kieburg '14], [Forrester '15], [Reddy '16], [Kieburg-Kosters '17]

Empirical measure $\frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_k}$ has non-trivial limit, so...

- ▶ $\frac{1}{\sqrt{M}}$ fluctuation in height function (giving $M^{1/2}$ scaling)

Does the relative rate of growth of *N*, *M* matter?

Global LLN and CLT: Our result holds for any relative rate

For **local statistics** (correlations in a $O(N^{-1})$ neighborhood), as $N, M \to \infty$ jointly for complex Ginibre:

- for $N \gg M$: sine kernel correlations
- ▶ for $N \ll M$; transition to delta function statistics

[Akemann-Burda-Kieburg '18] [Liu-Wang-Wang '18]

Analogy with Dyson Brownian motion

Dyson Brownian Motion (DBM) is the process

$$\{X_k(t)\}_{k=1}^N = \begin{cases} \text{eigenvalues of Brownian motion on} \\ N \times N \text{ complex Hermitian matrices} \end{cases}$$

It solves the stochastic differential equation

$$dX_k(t) = dB_k(t) + \sum_{j \neq k} \frac{dt}{X_k(t) - X_j(t)}.$$

Observation (Maurice Duits)

Double contour integral for correlation kernel of singular values of products of M Ginibre matrices looks similar to kernel for DBM at time $t = M^{-1}$.

Analogy with Dyson Brownian motion

For N = 1, DBM is Brownian motion. For $\xi_i \sim \mathcal{N}_{\mathbb{C}}(0, 1/2)$:

$$\frac{1}{tM}\log\prod_{i=1}^{tM}|\xi_i|\approx \mathbb{E}[\log|\xi_i|] + \sqrt{\mathsf{Var}(\log|\xi_i|)}\cdot\frac{1}{\sqrt{M}}t^{-1}B_t,$$

$$\stackrel{d}{\approx}\mathbb{E}[\log|\xi_i|] + \sqrt{\mathsf{Var}(\log|\xi_i|)}\cdot\frac{1}{\sqrt{M}}B_{t^{-1}},$$

where Brownian motion B_t satisfies $t^{-1}B_t \stackrel{d}{=} B_{t^{-1}}$.

Proposition (Akemann-Burda-Kieburg '18)

If $N/M \to \infty$ with $N/M \in (0, \infty)$, local law of Lyapunov exponents for Ginibre matrices and DBM started at evenly spaced initial condition coincide.

Note: Limiting empirical measure of Lyapunov exponents for Ginibre is uniform.

Analogy with Dyson Brownian motion

Recall the SDE for Dyson Brownian Motion:

$$dX_k(t) = dB_k(t) + \sum_{j \neq k} \frac{dt}{X_k(t) - X_j(t)}.$$

Addition: $X_k(0) = (const)$

all $t \implies log$ -correlated (strong interactions dominate)

Multiplication: $X_k(0) = k^{th}$ Lyapunov exponent

small $t \implies$ white noise (BM near initial condition dominates)

finite $t \implies \text{log-correlated (strong interactions dominate)}$

[Duits-Johansson '18]

Relies on non-trivial limit of Lyapunov exponents!

I. Setting: Products of M random $N \times N$ matrices

II. Mathematical setup and results for fixed M

III. Main results: LLN and CLT with $N, M \to \infty$ jointly

IV. Method: Multivariate Bessel generating functions

Overview of method

Combine integrable probability and moment method:

- 1. Define Bessel generating function $\phi_{x}^{\text{mult}}(s)$ of measure
- 2. Find differential operators D_k in s_1, \ldots, s_N giving moments

$$\mathbb{E}\Big[p_{k_1}(x)\cdots p_{k_r}(x)\Big] = D_{k_1}\cdots D_{k_r}\phi_X^{\text{mult}}(\rho),$$

where
$$p_k(x) = x_1^k + \cdots + x_N^k$$
.

- 3. Obtain **LLN** and **CLT** with integral covariance kernel in terms of asymptotics for derivatives of $\log \phi_X^{\text{mult}}(s)$.
- 4. Obtain **exact asymptotics** for derivatives of $\log \phi_X^{\text{mult}}(s)$.

Analogous to moment generating functions for 1-D measures.

1-D LLN and CLT from moment generating function

Let X_N be a sequence of real-valued random variables.

1. Moment generating function is

$$\phi_{X_N}(s) = \mathbb{E}\Big[e^{sX_N}\Big].$$

2. Moments of X_N are obtained by derivatives

$$\mathbb{E}[X_N^k] = \phi_{X_N}^{(k)}(0).$$

3. Cumulants of X_N are obtained by log-derivatives so that

$$\begin{array}{l} \text{LLN} \iff \kappa_2(X_N) = \frac{d^2}{ds^2}[\log \phi_{X_N}(s)]\Big|_{s=0} = o(1) \\ \\ \text{CLT} \iff \kappa_k(X_N) = \frac{d^k}{ds^k}[\log \phi_{X_N}(s)]\Big|_{s=0} = o(1) \text{ for } k \geq 3. \end{array}$$

4. Get LLN and CLT from log-derivatives for specific $\phi_{X_N}(s)$.

Step 1: Multivariate Bessel generating functions

Multivariate Bessel function is defined by

$$\mathcal{B}(s,x) := \frac{\det(e^{s_i x_j})_{i,j=1}^N}{\prod_{i < j} (s_i - s_j) \prod_{i < j} (x_i - x_j)} (N-1)! \cdots 1!.$$

For measure $\nu(x)$ on *N*-tuples $(x_1 \ge \cdots \ge x_N)$ and $\rho = (N-1,\ldots,0)$, the **Bessel generating function** is

$$\phi_
u(oldsymbol{s}) := \mathbb{E}_
u\left[rac{\mathcal{B}(oldsymbol{s}; oldsymbol{x})}{\mathcal{B}(
ho, oldsymbol{x})}
ight].$$

- normalized by $\phi_{\nu}(\rho) = 1$
- $\phi_{\nu}(s)$ is analogue of Schur generating function for discrete measures (ρ replaced by 0^N in [Bufetov-Gorin '13-'17])

Step 1: Bessel generating functions and products

Recall for $\rho = (N-1, ..., 0)$ and a measure ν on $(x_1, ..., x_N)$:

$$\phi_
u(oldsymbol{s}) := \mathbb{E}_
u\left[rac{\mathcal{B}(oldsymbol{s};oldsymbol{x})}{\mathcal{B}(
ho,oldsymbol{x})}
ight]$$

Let ν be the measure on **log-singular values** (scaled by 2) of a random matrix X. Define

$$\phi_X^{\mathsf{mult}}(s) := \phi_{\nu}(s).$$

Proposition

For independent right-unitarily invariant matrices X, Y:

$$\phi_{XY}^{\mathsf{mult}}(s) = \phi_{X}^{\mathsf{mult}}(s) \cdot \phi_{Y}^{\mathsf{mult}}(s).$$

Proof: Analytic continuation of functional relation for unitary group characters.

Step 2: Moments from Bessel generating functions

Consider differential operators

$$D_k := \prod_{i < j} (s_i - s_j)^{-1} \circ \sum_{i=1}^N \partial_i^k \circ \prod_{i < j} (s_i - s_j).$$

Proposition (Gorin-S. '18)

If $\phi_{\nu}(s)$ is Bessel generating function for measure ν on $(x_1 \geq \cdots \geq x_N)$, moments of ν are

$$\mathbb{E}[p_{k_1}(x)\cdots p_{k_r}(x)] = D_{k_1}\cdots D_{k_r}\phi_{\nu}(\rho)$$

for $p_k(x) = x_1^k + \cdots + x_N^k$.

Proof: Analytic continuation from $D_k \phi_{\nu}(s) = p_k(x) \phi_{\nu}(s)$ via

$$\frac{\mathcal{B}(\boldsymbol{s},\boldsymbol{x})}{\mathcal{B}(\boldsymbol{\rho},\boldsymbol{x})} = \frac{\det(e^{\boldsymbol{s}_i\boldsymbol{x}_j})_{i,j=1}^N}{\prod_{i< j}(\boldsymbol{s}_i-\boldsymbol{s}_j)} \frac{\prod_{i< j}(\rho_i-\rho_j)}{\det(e^{\rho_i\boldsymbol{x}_j})_{i,j=1}^N}.$$

Step 3: LLN from Bessel generating functions

Theorem (Gorin-S. '18)

If $\phi_X^{\text{mult}}(s)$ for probability measure on $(x_1 \ge \cdots \ge x_N)$ satisfies

$$rac{1}{N} \partial_{r_i} [\log \phi_X^{\mathsf{mult}}(\mathit{rN})] \Big|_{r_k =
ho_k/N, k
eq j}
ightarrow \Psi'(r_i),$$

have convergence in probability for fixed M:

$$\lim_{N\to\infty}\frac{1}{N}p_k(x)=\frac{1}{k+1}\oint\Big(\log(u/(u-1))+\Psi'(u)\Big)^{k+1}\frac{du}{2\pi \mathbf{i}}$$

and for $\psi_X(s) = \phi_X^{\mathsf{mult}}(s)^M$ with $M \to \infty$:

$$\lim_{N\to\infty}\frac{1}{N}p_k(x)=\oint\log(u/(u-1))\Psi'(u)^k\frac{du}{2\pi\mathbf{i}}.$$

Step 3: CLT from Bessel generating functions

Theorem (Gorin-S. '18)

If $\phi_X^{\mathsf{mult}}(s)$ for probability measure on $(x_1 \geq \cdots \geq x_N)$ satisfies

$$\frac{1}{N} \partial_{r_i} [\log \phi_X^{\text{mult}}(rN)] \Big|_{r_k = \rho_k/N, k \neq i} \to \Psi'(r_i)$$

$$\partial_{r_i} \partial_{r_j} [\log \phi_X^{\text{mult}}(rN)] \Big|_{r_k = \rho_k/N, k \neq i, j} \to F^{(1,1)}(r_i, r_j)$$

have Gaussian limit for $\{p_k(x) - \mathbb{E}[p_k(x)]\}_{k \in \mathbb{N}}$ with $Cov(p_k, p_l)$:

$$\oint \oint \left(\log(u/(u-1)) + \Psi'(u)\right)^k \left(\log(w/(w-1)) + \Psi'(w)\right)^l \left(\frac{1}{(u-w)^2} + F^{(1,1)}(u,w)\right) \frac{du}{2\pi \mathbf{i}} \frac{dw}{2\pi \mathbf{i}}.$$

For $M \to \infty$: Similar theorem with $\psi_X^{\text{mult}}(s) = \phi_X^{\text{mult}}(s)^M$

Step 4: Asymptotics of Bessel generating functions

For LLN and CLT, need to find Ψ and F so that

$$\begin{split} & \frac{1}{N} \partial_{r_i} [\log \phi_X^{\text{mult}}(\textit{rN})] \Big|_{r_k = \rho_k/N, k \neq i} \rightarrow \Psi'(r_i) \\ & \partial_{r_i} \partial_{r_j} [\log \phi_X^{\text{mult}}(\textit{rN})] \Big|_{r_k = \rho_k/N, k \neq i, j} \rightarrow \textit{F}^{(1,1)}(r_i, r_j). \end{split}$$

For X = AU with A diagonal and U Haar unitary

$$\phi_X^{\mathsf{mult}}(s) = rac{\mathcal{B}(s,a)}{\mathcal{B}(
ho,a)}.$$

LLN \iff asymptotics for *s* differing from ρ in 1 coordinate:

$$s = (y, N-1, \dots, \widehat{x}, \dots, 0).$$

Step 4: LLN asymptotics

Theorem (Gorin-S. '18)

If the empirical measure of diagonal entries of A has limit ν :

$$\lim_{N\to\infty}\frac{1}{N}\partial_{r_k}[\log\phi_X^{\text{mult}}(rN)]\Big|_{r_k=\rho_k/N, k\neq i}=-\log S_{\nu}(r_i-1).$$

Proof: Asymptotic analysis of double contour integral

$$\frac{\mathcal{B}(s,a)}{\mathcal{B}(\rho,a)} = (\text{const}) \oint_{\{e^{a_k}\}} \frac{dz}{2\pi \mathbf{i}} \oint_{\{0,z\}} \frac{dw}{2\pi \mathbf{i}} \cdot \frac{z^x w^{-y-1}}{z-w} \cdot \prod_{k=1}^N \frac{w - e^{a_k}}{z - e^{a_k}}$$

for

$$s = (yN, N-1, \dots, \widehat{xN}, \dots, 0).$$

Step 4: LLN asymptotics

QR decomposition for a complex matrix:

X = UR with U unitary, R upper triangular

Lemma (Kieburg-Kosters '15, Gorin-S. '18)

If X is right unitarily invariant with QR-decomposition X = UR

$$\phi_X^{\mathsf{mult}}(s) = \mathbb{E}\Big[\prod_{k=1}^N R_{kk}^{2(s_k - \rho_k)}\Big].$$

Corollary (Gorin-S. '18)

Let X be right unitarily invariant with singular value measure converging to ν . For $t \in [0, 1]$, we have

$$-\log \mathcal{S}_{\nu}(t-1) = \lim_{N \to \infty} \mathbb{E}[2\log R_{\lfloor tN \rfloor, \lfloor tN \rfloor}].$$

Summary

- 1. Global fluctuations of sums and products of M independent $N \times N$ unitarily-invariant random matrices converge to explicit Gaussian fields as $N \to \infty$.
 - ▶ sums: log-correlated fields for *M* fixed and $M \rightarrow \infty$
 - ▶ products: **log-correlated** for M fixed to **white noise** for $M \to \infty$
- Uses differential operators acting on multivariate Bessel generating functions of empirical measures of Lyapunov exponents.

Reference

▶ V. Gorin and Y. S., Gaussian fluctuations for products of random matrices, arXiv:1812.06532.

Funding: NSF DMS-1701654, Simons Foundation