University of Texas at Dallas

Department of Electrical Engineering

EEDG 6306 - Application Specific Integrated Circuit Design

Homework #4

Due on Mid-night 12:00, September 21th, 2016

Submission for Homework #4:

(a) Your C/C++ source code. (b) Your output file. (c) HW report

Input files will be posted on: http://utdallas.edu/~zxb107020

Please submit this homework to zxb107020@utdallas.edu

Write a C/C++ program to accomplish the computation presented in the paper. At this time, we introduce **virtual address coefficient** and rj to do the computation. Follow the tutorial below and section III of the paper.

- (1.1) Only shift and addition operation are allowed for computation.
- (1.2) Input samples are signed 16-bit hex number, fixed-point, two's complement, Leftmost bit is sign bit.
 - (1.3) The output data should be 40 bits and printed out as hexadecimal number.
 - (1.4) Assume $x(0-k_{max})=\cdots = x(-2)=x(-1)=0$. Your input start from X(0).
- (1.5) Print your output data (for data2.in/Coeff2.in/Rj2.in) to the file named xxx_HW4.out, xxx is your **First Name**, if submit by team separate your first name by _ exp. xxx_xxx_HW4.out. Apply the same name style to your source code file.
 - (1.6) Follow the procedure in the example for computation.
 - (1.7) data1.in/Coeff1.in/Rj1.in and ouput1.out are for testing purpose
 - (1.8) Your report should include how to implement the algorithm.

Computation transformation

Example:

Assume filter order N=3, POT digit limit to 2^{-4} (in this HW, it can reach 2^{-16})

$$y(n) = \sum_{k=0}^{3} h(k)x(n-k)$$

$$= h(0)x(n-0) + h(1)x(n-1) + h(2)x(n-2) + h(3)x(n-3)$$

Assume:

$$h(0) = 2^{-1} - 2^{-3}$$

$$h(1) = 2^{-3} + 2^{-4}$$

$$h(2) = 2^{-1} + 2^{-2} - 2^{-4}$$

$$h(3) = -2^{-3}$$

=>

$$y(n) = (2^{-1} - 2^{-3})x(n-0) + (2^{-3} + 2^{-4})x(n-1) + (2^{-1} + 2^{-2} - 2^{-4})x(n-2) + (-2^{-3})x(n-3)$$

=>

$$y(n) = 2^{-1}[x(n-0) + x(n-2)] + 2^{-2}[x(n-2)] + 2^{-3}[-x(n-0) + x(n-1) - x(n-3)] + 2^{-4}[x(n-1) - x(n-2)]$$

Let:

$$u_{4} = x(n-0) + x(n-2)$$

$$u_{3} = x(n-2)$$

$$u_{2} = -x(n-0) + x(n-1) - x(n-3)$$

$$u_{1} = x(n-1) - x(n-2)$$

=>

$$y(n) = 2^{-1}u_4 + 2^{-2}u_3 + 2^{-3}u_2 + 2^{-4}u_1$$

=>

$$y(n) = 2^{-1}(u_4 + 2^{-1}(u_3 + 2^{-1}(u_2 + 2^{-1}u_1)))$$

Use the highlight formulation for this homework.

Below is a general format for 16 bit shifting,

$$y(n) = 2^{-1}(u_{16} + 2^{-1}(u_{15} + \dots 2^{-1}(u_{2} + 2^{-1}u_{1}))$$

The format of input data: C48B= 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 **MSB** 16 bits LSB

The format of coefficient data:

038=

s: sign bit Address bits:

0: addition The address of input data

1: subtraction

MSB 9 bits LSB

Coefficient data "038" in hex number is equivalent to ADDING term x(n-56)

18*C*=

s	address bit											
1	1	0	0	0	1	1	0	0				

MSB 9 bits LSB

Coefficient data "18C" in hex number is equivalent to SUBTRACTING term x(n-140)

The format of rj data:

OB=

0	0	0	0	1	0	1	1	

The rj data shows the total number of addition/subtraction operation involved in computing each u term.

MSB 8 bits LSB

For the rj data shows above, the specific u (u_j) term have 11 addition/subtraction operations when doing the computation.

The above picture shows how to get specific u by coefficient and rj.

038	18C	00F	096	16A	130	110	013	14F	1F1	0FA	08E	1FC	1B0	13E	0CF
R ₁ (0B)								R ₂ (0F)							
OEE	021	1AF	04C	0A5	076	0EB	13E	0A8	055	17A	078	0B4	03D	0B7	1DD
	R ₂ (0F)							R ₃ (0E)							
169	16C	1F3	0E1	0B2	14E	1D3	0F8	14D	1FF	170	002	04A	1B0	17E	115
R ₃ (0E)						R ₄ (0D)									
132	1F9	15D	024	104	1A3	1BC	007	01A	1E4	0C3	095	0AF	1F7	08C	1C6
		R ₄ (0D)						R ₅ (08)				R ₆ (0D)			
19C	0FC	00C	OFB	134	1E9	1AA	176	01C	075	0CC	14A	1B1	142	1B6	1B8
R ₆ (0D)						R ₇ (0D)									
1BB	09F	1FC	027	134	0D1	00F	189	130	199	04B	017	081	0E1	09D	10C
			R ₇ (0D)						R ₈ (R ₈ (06) R ₉ (05)					
1F3	02B	1D3	09C	1D8	01D	0A6	02D	179	0AE	122	076	012	094	090	141
R ₉ (0	R ₉ (05) R ₁₀ (06)							R ₁₁ ((04) R ₁₂ (06				06)		
13D	104	062	0C1	093	068	132	183	0B6	0DD	0BD	1FE	0DD	07C	0E6	105
R ₁₂ (06) R ₁₃ (09)							R ₁₄ (0B)								
1A2	0F1	00A	049	0AD	095	011	0E0	17C	1E3	1C2	0A7	1F8	12C	123	0C1
R ₁₄ (0B)						R ₁₅ (14)									
050	176	057	102	155	13F	1FD	1E7	159	047	018	13D	1E6	053	192	
	R ₁₅ (14)										R ₁₆ (05)				

Here is an example how to get y(2) (inputs are the same with your test set): No x(n-0), x(n-1) terms

=>

Y(0)=0;

Y(1)=0;

C48B: 1100 0100 1000 1011 // x(0) ext. to 24-bit: 1111 1111 1100 0100 1000 1011 // x(0) two's complement: 0000 0000 0011 1011 0111 0101 // -x(0)

- ① u1 = 0000 0000 0000 0000 0000
- 2 2⁻¹u1 = 0000 0000 0000 0000 0000 0000 0
- ③ (②+u2) = 0000 0000 0000 0000 0000 0
- ⑤ (④+u3) = 0000 0000 0000 0000 0000 0000 00

- $8 2^{-1}(6+u4) = 1111 1111 1110 0010 0100 0101 1000$
- 9 (8+u5) = 1111 1111 1110 0010 0100 0101 1000
- ① (①+u6) = 1111 1111 1111 0001 0010 0010 1100 0

$$\textcircled{9}$$
 2⁻¹($\textcircled{9}$ +u7) = 1111 1111 1111 1100 0100 1000 1011 000

- (10 +u8) = 1111 1111 1111 1100 0100 1000 1011 000
- (60+u9) = 1111 1111 1111 1110 0010 0100 0101 1000

- ② (②+u11) = 1111 1111 1111 1000 1001 0001 0110 00
- $2^{-1}(9+u11) = 1111 1111 1111 1111 1100 0100 1000 1011 000$
- 3 (2+u12) = 1111 1111 1111 1110 0100 1000 1011 000
- $@ 2^{-1}(@+u12) = 1111 1111 1111 1111 1110 0010 0100 0101 1000$
- ② (②+u13) = 1111 1111 1111 1110 0010 0100 0101 1000
- $@ 2^{-1}(@+u13) = 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 0001 \ 0010 \ 0010 \ 1100 \ 0$
- ② (②+u14) = 1111 1111 1111 1111 0001 0010 0010 1100 0
- 3 2⁻¹(3+u14) = 1111 1111 1111 1111 1111 1000 1001 0001 0110 00
- $39 \ 2^{-1}(89 + u15) = 0000 \ 0000 \ 0001 \ 1101 \ 1011 \ 0110 \ 1100 \ 1000 \ 1011 \ 000$
- ③ (@+u16) = 0000 0000 0001 1101 1011 0110 1100 1000 1011 000

 $\textcircled{9}\ 2^{-1}(\textcircled{9}+u16)=0000\ 0000\ 0000\ 1110\ 1101\ 1011\ 0110\ 0100\ 0101\ 1000$ Hex= 0 0 0 E D B 6 4 5 8

y(2)= 000EDB6458