HOMEWORK 4

SAI SIVAKUMAR

Discuss the construction of an analytic bijection from

$$S = \{|z+1| < 2\} \cap \{|z-1| < 2\}$$

to the unit disc $\mathbb{D} = \{|z| < 1\}$. [Suggestion: See the discussion of exponential functions following Corollary 2.11 in Conway.]

Discussion. Let $C_{\pm} = \{|z \pm 1| = 2\}$ be the boundaries of the discs forming S above; observe $C_{+} \cap C_{-} = \{\pm i\sqrt{3}\}$. Then let $G: \mathbb{C} \to \mathbb{C}$ denote the Möbius map given by

$$G(z) = \left(\frac{z + \sqrt{3}i}{z - \sqrt{3}i}\right) \left(\frac{1 - \sqrt{3}i}{1 + \sqrt{3}i}\right),\,$$

and see that G sends $-i\sqrt{3}$ to 0, $i\sqrt{3}$ to ∞ , 1 to 1, and -1 to $-1/2+i\sqrt{3}/2$. Hence G maps C_+ to the real axis $\mathbb R$ and C_- to the line passing through the origin and $-1/2+i\sqrt{3}/2$. Since $G(0)=1/2+i\sqrt{3}/2$ lies in the first quadrant, G maps $\{|z+1|<2\}$ to the upper half plane and $\{|z-1|<2\}$ to the region above but not including the line passing through the origin and $-1/2+i\sqrt{3}/2$. Hence the intersection of the discs is sent to the complex numbers whose principal argument lies in $(0,2\pi/3)$; call this region U. Then let $f: \mathbb{C} \setminus \{0+it \mid t \leq 0\} \to \mathbb{C}$ be defined by $f(z)=z^{3/2}=\exp(3/2\log(z))$. The function f is analytic (it is the composition of analytic functions) and bijective as it possesses the left and right inverse given by $f^{-1}(z)=z^{2/3}=\exp(2/3\log(z))$. By inspection f takes U to the upper half plane. Then as before, use the Möbius map $S^{-1}(S(z)=-i(z+i)/(z-i))$ from Example 2.47 in the notes to map the upper half plane to the unit disc. Thus $S^{-1}\circ f\circ G\colon \mathcal{S}\to \mathbb{D}$ is the desired analytic bijection.