线性代数-9

主讲: 吴利苏

wulisu@sdust.edu.cn

2023年12月3日

• 矩阵的初等变换:

$$r_i \leftrightarrow r_j \cdot r_i \times k, r_i + kr_j, c_i \leftrightarrow c_j, c_i \times k, c_i + kc_j$$

• 矩阵的初等变换:

$$r_i \leftrightarrow r_j \cdot r_i \times k, r_i + kr_j, c_i \leftrightarrow c_j, c_i \times k, c_i + kc_j$$

• 矩阵的等价:

$$A \stackrel{r}{\sim} B, A \stackrel{c}{\sim} B, A \sim B;$$

• 矩阵的初等变换:

$$r_i \leftrightarrow r_j.r_i \times k, r_i + kr_j, c_i \leftrightarrow c_j, c_i \times k, c_i + kc_j$$

• 矩阵的等价:

$$A \stackrel{r}{\sim} B, A \stackrel{c}{\sim} B, A \sim B;$$

• 矩阵的等价化简:

 $A \xrightarrow{\text{有限次初等行变换}}$ 行阶梯形 $\xrightarrow{\text{有限次初等行变换}}$ 行最简形 $\xrightarrow{\text{有限次初等列变换}}$ 标准形

• 矩阵的初等变换:

$$r_i \leftrightarrow r_j \cdot r_i \times k, r_i + kr_j, c_i \leftrightarrow c_j, c_i \times k, c_i + kc_j$$

• 矩阵的等价:

$$A \stackrel{r}{\sim} B, A \stackrel{c}{\sim} B, A \sim B;$$

• 矩阵的等价化简:

 $A \xrightarrow{\text{有限次初等行变换}}$ 行阶梯形 $\xrightarrow{\text{有限次初等行变换}}$ 行最简形 $\xrightarrow{\text{有限次初等列变换}}$ 标准形

• 初等矩阵:

• 初等变换和初等矩阵联系: 左行右列;

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{fll} \times \text{inff-} \text{gr}} PA \xrightarrow{\text{fll} \times \text{inff-} \text{gr}} P'PA \xrightarrow{\text{fll} \times \text{inff-} \text{gr}} P'PAQ$

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{fR} \times \text{ni} + \text{fre}} PA \xrightarrow{\text{fR} \times \text{ni} + \text{fre}} PA \xrightarrow{\text{fR} \times \text{ni} + \text{fre}} PAQ$

• 方阵 A 可逆 \Leftrightarrow $A \stackrel{r}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{fR} \times \text{in} \text{ if } T} PA \xrightarrow{\text{fR} \times \text{in} \text{ if } T} PA \xrightarrow{\text{fR} \times \text{in} \text{ if } T} PAQ$

- 方阵 A 可逆 $\Leftrightarrow A \stackrel{r}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;
- 初等变换的应用:

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PAQ$

- 方阵 A 可逆 $\Leftrightarrow A \stackrel{\tau}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;
- 初等变换的应用:
 - 求可逆 P, 使得 $PA = B :\Rightarrow (A E) \xrightarrow{f \in \mathcal{P}} (B P)$;

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PAQ$

- 方阵 A 可逆 $\Leftrightarrow A \stackrel{r}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;
- 初等变换的应用:
 - 求可逆 P, 使得 $PA = B :\Rightarrow (A E) \xrightarrow{f \circ f} (B P)$;
 - $\rlap{$\rlap{$\rlap{$\rlap{$\rlap{$}}$}}$} A^{-1} :\Rightarrow (A \ E) \xrightarrow{\it ftg} (E \ A^{-1});$

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PA \xrightarrow{\text{flk/n} \text{ in } PA} PAQ$

- 方阵 A 可逆 $\Leftrightarrow A \stackrel{r}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;
- 初等变换的应用:
 - 求可逆 P, 使得 $PA = B :\Rightarrow (A E) \xrightarrow{f \circ f} (B P)$;
 - $\not x A^{-1} :\Rightarrow (A E) \xrightarrow{f \not x \not y} (E A^{-1});$

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{flk/n} \text{ iff } \text{c} \text{ iff } PA} PA \xrightarrow{\text{flk/n} \text{ iff } PA} PA$

- 方阵 A 可逆 $\Leftrightarrow A \stackrel{r}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;
- 初等变换的应用:
 - 求可逆 P, 使得 $PA = B :\Rightarrow (A E) \xrightarrow{f \circ f} (B P)$;
 - $\not x A^{-1} :\Rightarrow (A E) \xrightarrow{f \not y \not y} (E A^{-1});$
 - $\not \stackrel{\cdot}{x} A^{-1}B :\Rightarrow (A B) \xrightarrow{f \uparrow g \not h} (E A^{-1}B);$
 - $AX = \beta$: $(A \beta) \xrightarrow{free \#} f \downarrow f | f | f | f |$

- 初等变换和初等矩阵联系: 左行右列;
- 可逆矩阵可表示为初等矩阵乘积;

 $A \xrightarrow{\text{flk}, \text{instable}} PA \xrightarrow{\text{flk}, \text{instable}} P'PA \xrightarrow{\text{flk}, \text{instable}} P'PAQ$

- 方阵 A 可逆 $\Leftrightarrow A \stackrel{r}{\sim} E \Leftrightarrow A \stackrel{c}{\sim} E \Leftrightarrow A \sim E \Leftrightarrow |A| \neq 0$;
- 初等变换的应用:
 - 求可逆 P, 使得 $PA = B :\Rightarrow (A E) \xrightarrow{f \in \mathcal{P}} (B P)$;
 - $\not x A^{-1} :\Rightarrow (A E) \xrightarrow{f \not x \not x} (E A^{-1});$
 - $\not x A^{-1}B :\Rightarrow (A B) \xrightarrow{f \not x} (E A^{-1}B);$
 - 解 $AX = \beta$: \Rightarrow $(A \beta) \xrightarrow{f \notin \mathcal{H}}$ 行最简形;
 - 注: 求可逆 Q, 使得 AQ = B; A^{-1} ; BA^{-1} ; $X^TA = \beta^T$ 用列分块, 初等 列变换.

本次课内容

矩阵的秩和线性方程组解的存在性

• 如何判断 $A \sim B$?

- 如何判断 *A* ∼ *B*?
 - 根据定义,如果经过有限次初等行变换和初等列变换可以把 A 变为 B,则 $A \sim B$, 否则 $A \sim B$.

- 如何判断 A ~ B?
 - 根据定义,如果经过有限次初等行变换和初等列变换可以把 A 变为 B,则 $A \sim B$, 否则 $A \sim B$.
 - 根据初等变换和初等矩阵的联系,如果存在可逆 P 和可逆 Q,使得 PAQ = B,则 $A \sim B$, 否则 $A \sim B$.

- 如何判断 A ~ B?
 - 根据定义,如果经过有限次初等行变换和初等列变换可以把 A 变为 B,则 $A \sim B$,否则 $A \sim B$.
 - 根据初等变换和初等矩阵的联系,如果存在可逆 P和可逆 Q,使得 PAQ=B,则 $A\sim B$, 否则 $A\sim B$.
- 有更简单的方法判断 A ~ B 或 A ~ B 吗?

- 如何判断 A ~ B?
 - 根据定义,如果经过有限次初等行变换和初等列变换可以把 A 变为 B,则 $A \sim B$,否则 $A \sim B$.
 - 根据初等变换和初等矩阵的联系,如果存在可逆 P和可逆 Q,使得 PAQ=B,则 $A\sim B$, 否则 $A\sim B$.
- 有更简单的方法判断 A ~ B 或 A ~ B 吗?
- 有!研究等价矩阵 A 和 B 的共性: (不变性/不变量: 在有限初等变换下保持不变的性质和数量)

- 如何判断 A ~ B?
 - 根据定义,如果经过有限次初等行变换和初等列变换可以把 A 变为 B,则 $A \sim B$, 否则 $A \sim B$.
 - 根据初等变换和初等矩阵的联系,如果存在可逆 P和可逆 Q,使得 PAQ=B,则 $A\sim B$, 否则 $A\sim B$.
- 有更简单的方法判断 A~B或 A~B吗?
- 有!研究等价矩阵 A 和 B 的共性:(不变性/不变量: 在有限初等变换下保持不变的性质和数量)
 - 例如等价的方阵具有相同的可逆性, 若 A 可逆, B 不可逆, 则必有 $A \sim B$.

- 如何判断 A ~ B?
 - 根据定义,如果经过有限次初等行变换和初等列变换可以把 A 变为 B,则 $A \sim B$,否则 $A \sim B$.
 - 根据初等变换和初等矩阵的联系,如果存在可逆 P和可逆 Q,使得 PAQ=B,则 $A\sim B$, 否则 $A\sim B$.
- 有更简单的方法判断 A ~ B 或 A ~ B 吗?
- 有!研究等价矩阵 A 和 B 的共性:(不变性/不变量: 在有限初等变换下保持不变的性质和数量)
 - 例如等价的方阵具有相同的可逆性, 若 A 可逆, B 不可逆, 则必有 $A \sim B$.
- 矩阵的秩, 一个等价完全不变量: 两个同型矩阵 $A \sim B \Leftrightarrow A, B$ 的秩相同.

| k 阶子式

• k 阶子式: 任取矩阵 $A_{m \times n}$ 的 k 行 k 列, $k \le \min\{m, n\}$,其行列 交叉处的 k^2 个元素构成的 k 阶行列式,称为 A 的一个 k 阶子式.

$$\left(\begin{array}{ccccc}
1 & 1 & -2 & 1 & 4 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

k阶子式

• k 阶子式: 任取矩阵 $A_{m \times n}$ 的 k 行 k 列, $k \le \min\{m, n\}$,其行列 交叉处的 k^2 个元素构成的 k 阶行列式,称为 A 的一个 k 阶子式.

k阶子式

• k 阶子式: 任取矩阵 $A_{m \times n}$ 的 k 行 k 列, $k \le \min\{m, n\}$,其行列 交叉处的 k^2 个元素构成的 k 阶行列式,称为 A 的一个 k 阶子 式.

$$\begin{pmatrix}
1 & 1 & -2 & 1 & 4 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{vmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{vmatrix}$$

k阶子式

• k 阶子式: 任取矩阵 $A_{m \times n}$ 的 k 行 k 列, $k \le \min\{m, n\}$,其行列 交叉处的 k^2 个元素构成的 k 阶行列式,称为 A 的一个 k 阶子 式.

$$\begin{pmatrix}
1 & 1 & -2 & 1 & 4 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{vmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{vmatrix}$$

■ 区分 k 阶子式、子块、余子式、代数余子式.

定义

若 A 存在一个非零 r 阶子式 D, 而所有的 r+1 阶子式都为零 (如果存在), 则称 D 为 A 的最高阶非零子式, 数 r 称为 A 的秩, 记为 R(A) 或 r(A).

定义

若 A 存在一个非零 r 阶子式 D, 而所有的 r+1 阶子式都为零 (如果存在), 则称 D 为 A 的最高阶非零子式, 数 r 称为 A 的秩, 记为 R(A) 或 r(A).

•
$$R(O) := 0$$
, $R(E_n) = n$, $R\begin{pmatrix} E_r & O \\ O & O \end{pmatrix} = r$.

定义

若 A 存在一个非零 r 阶子式 D, 而所有的 r+1 阶子式都为零 (如果存在), 则称 D 为 A 的最高阶非零子式, 数 r 称为 A 的秩, 记为 R(A) 或 r(A).

•
$$R(O) := 0$$
, $R(E_n) = n$, $R\begin{pmatrix} E_r & O \\ O & O \end{pmatrix} = r$.

• 行阶梯形矩阵的秩为非零行的行数.

定义

若 A 存在一个非零 r 阶子式 D, 而所有的 r+1 阶子式都为零 (如果存在), 则称 D 为 A 的最高阶非零子式, 数 r 称为 A 的秩, 记为 R(A) 或 r(A).

•
$$R(O) := 0$$
, $R(E_n) = n$, $R\begin{pmatrix} E_r & O \\ O & O \end{pmatrix} = r$.

• 行阶梯形矩阵的秩为非零行的行数.

$$R \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = 3.$$

定理

若 $A \sim B$, 则 R(A) = R(B).

定理

若 $A \sim B$, 则 R(A) = R(B).

证明思路:有限次初等变换不改变方阵的行列式是否为零这一 结论.

定理

若 $A \sim B$, 则 R(A) = R(B).

- 证明思路:有限次初等变换不改变方阵的行列式是否为零这一 结论.
- $A \sim B \Leftrightarrow$ 存在可逆 P, Q 使得 PAQ = B.

定理

若 $A \sim B$, 则 R(A) = R(B).

- 证明思路:有限次初等变换不改变方阵的行列式是否为零这一 结论.
- $A \sim B \Leftrightarrow$ 存在可逆 P, Q 使得 PAQ = B. 所以矩阵与可逆矩阵相乘, 秩不变, i.e.

$$R(A) = R(PAQ) = R(PA) = R(AQ).$$

定理

若 $A \sim B$, 则 R(A) = R(B).

- 证明思路:有限次初等变换不改变方阵的行列式是否为零这一 结论.
- $A \sim B \Leftrightarrow$ 存在可逆 P, Q 使得 PAQ = B. 所以矩阵与可逆矩阵相乘, 秩不变, i.e.

$$R(A) = R(PAQ) = R(PA) = R(AQ).$$

• 计算 R(A): 通过初等行变换把 A 化为行阶梯形,

$$R(A) = 行阶梯形的非零行数.$$

例题

$$A = \begin{pmatrix} 3 & 2 & 0 & 5 & 0 \\ 3 & -2 & 3 & 6 & -1 \\ 2 & 0 & 1 & 5 & -3 \\ 1 & 6 & -4 & -1 & 4 \end{pmatrix}$$

例

设

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 3 & 2 & \lambda & -1 \\ 5 & 6 & 3 & \mu \end{pmatrix},$$

已知
$$R(A) = 2$$
, 求 λ 和 μ .

性质

1) $0 \le R(A_{m \times n}) \le \min\{m, n\};$

- 1) $0 \leq R(A_{m \times n}) \leq \min\{m, n\};$
- 2) $R(A^T) = R(A);$

- 1) $0 \leq R(A_{m \times n}) \leq \min\{m, n\};$
- 2) $R(A^T) = R(A)$;
- 3) A, B 同型,则 $A \sim B \Leftrightarrow R(A) = R(B)$;

- 1) $0 \leq R(A_{m \times n}) \leq \min\{m, n\};$
- 2) $R(A^T) = R(A)$;
- 3) A, B 同型,则 $A \sim B \Leftrightarrow R(A) = R(B)$;
- 4) 若 P, Q 可逆, 则 R(PAQ) = R(A) = R(PA) = R(AQ);

- 1) $0 \le R(A_{m \times n}) \le \min\{m, n\};$
- 2) $R(A^T) = R(A)$;
- 3) A, B 同型,则 $A \sim B \Leftrightarrow R(A) = R(B)$;
- 4) 若 P, Q 可逆,则 R(PAQ) = R(A) = R(PA) = R(AQ);
- 5) $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$, 特别地, $R(A) \le R(A, \beta) \le R(A) + 1$;

- 1) $0 \le R(A_{m \times n}) \le \min\{m, n\};$
- 2) $R(A^T) = R(A)$;
- 3) A, B 同型,则 $A \sim B \Leftrightarrow R(A) = R(B)$;
- 4) 若 P, Q 可逆,则 R(PAQ) = R(A) = R(PA) = R(AQ);
- 5) $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$, 特别地, $R(A) \le R(A, \beta) \le R(A) + 1$;
- 6) $R(A+B) \leq R(A) + R(B)$;

- 1) $0 \leq R(A_{m \times n}) \leq \min\{m, n\};$
- 2) $R(A^T) = R(A)$;
- 3) A, B 同型,则 $A \sim B \Leftrightarrow R(A) = R(B)$;
- 4) 若 P, Q 可逆,则 R(PAQ) = R(A) = R(PA) = R(AQ);
- 5) $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$, 特别地, $R(A) \le R(A, \beta) \le R(A) + 1$;
- 6) $R(A + B) \le R(A) + R(B)$;
- 7) $R(AB) \le \min\{R(A), R(B)\};$

- 1) $0 \le R(A_{m \times n}) \le \min\{m, n\};$
- 2) $R(A^T) = R(A)$;
- 3) A, B 同型,则 $A \sim B \Leftrightarrow R(A) = R(B)$;
- 4) 若 P, Q 可逆,则 R(PAQ) = R(A) = R(PA) = R(AQ);
- 5) $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$, 特别地, $R(A) \le R(A, \beta) \le R(A) + 1$;
- 6) $R(A + B) \le R(A) + R(B)$;
- 7) $R(AB) \leq \min\{R(A), R(B)\};$
- 8) 若 $A_{m \times n} B_{n \times l} = O$, 则 $R(A) + R(B) \le n$.

例

证明: 若 $A_{m \times n} B_{n \times l} = C$, 且 R(A) = n, 则 R(B) = R(C).

例

证明: 若
$$A_{m \times n} B_{n \times l} = C$$
, 且 $R(A) = n$, 则 $R(B) = R(C)$.

• $R(A_{m \times n}) = n$, 则称 A 为列满秩矩阵; $R(A_{m \times n}) = m$, 则称 A 为行满秩矩阵; $R(A_{m \times n}) = n = m$, 则称 A 为满秩矩阵.

例

证明: 若
$$A_{m \times n} B_{n \times l} = C$$
, 且 $R(A) = n$, 则 $R(B) = R(C)$.

- $R(A_{m \times n}) = n$, 则称 A 为列满秩矩阵; $R(A_{m \times n}) = m$, 则称 A 为行满秩矩阵; $R(A_{m \times n}) = n = m$, 则称 A 为满秩矩阵.
- AB = O, A 列满秩,则 B = O.
 即 A 列满秩,则有左消去律;同理,B 行满秩,则有右消去律。

例

证明: 若
$$A_{m \times n} B_{n \times l} = C$$
, 且 $R(A) = n$, 则 $R(B) = R(C)$.

- $R(A_{m \times n}) = n$, 则称 A 为列满秩矩阵; $R(A_{m \times n}) = m$, 则称 A 为行满秩矩阵; $R(A_{m \times n}) = n = m$, 则称 A 为满秩矩阵.
- AB = O, A 列满秩,则 B = O.
 即 A 列满秩,则有左消去律;同理,B 行满秩,则有右消去律。
- A 可逆 $\Leftrightarrow A$ 满秩.

例

设 A 为 n 阶矩阵, 证明 $R(A+E)+R(A-E) \ge n$.

线性方程组解的存在性

秩的应用: 判断 $AX = \beta$ 解的存在性.

定理

设 $A_{m \times n} X = \beta$ 为一个非齐次 n 元线性方程组,则方程组

- \mathcal{K} $R(A) < R(A, \beta)$;
- $f \bowtie R(A) = R(A, \beta);$
 - 有唯一解 \Leftrightarrow $R(A) = R(A, \beta) = n$;
 - 有无穷解 $\Leftrightarrow R(A) = R(A, \beta) < n$.

秩的应用: 判断 $AX = \beta$ 解的存在性.

定理

设 $A_{m \times n} X = \beta$ 为一个非齐次 n 元线性方程组,则方程组

- \mathcal{K} $R(A) < R(A, \beta)$;
- $f \bowtie R(A) = R(A, \beta);$
 - 有唯一解 \Leftrightarrow $R(A) = R(A, \beta) = n$;
 - 有无穷解 $\Leftrightarrow R(A) = R(A, \beta) < n$.

推论

齐次线性方程组 AX = 0 有非零解 ⇔ R(A) < n.

秩的应用: 判断 $AX = \beta$ 解的存在性.

定理

设 $A_{m \times n} X = \beta$ 为一个非齐次 n 元线性方程组,则方程组

- \mathcal{L} $\mathbf{K} \Leftrightarrow R(A) < R(A, \beta)$;
- $f \bowtie R(A) = R(A, \beta)$;
 - 有唯一解 \Leftrightarrow $R(A) = R(A, \beta) = n$;
 - 有无穷解 $\Leftrightarrow R(A) = R(A, \beta) < n$.

推论

齐次线性方程组 AX = 0 有非零解 $\Leftrightarrow R(A) < n$.

• 求解 $AX = \beta \Rightarrow$ 通过初等行变换化增广矩阵 (A, β) 为行最简形,判断解的存在性并求解.

例

求解

$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 &= 1\\ 3x_1 - x_2 - 3x_3 + 4x_4 &= 4\\ x_1 + 5x_2 - 9x_3 - 8x_4 &= 0 \end{cases}$$

例

设

$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 &= 0\\ x_1 + (1+\lambda)x_2 + x_3 &= 0\\ x_1 + x_2 + (1+\lambda)x_3 &= 0 \end{cases}$$

讨论 λ 取何值时,方程组有唯一解,无解,无穷解? 并在有无穷解时求通解.

定理

矩阵方程 AX = B 有解 $\Leftrightarrow R(A) = R(A, B)$.

定理

矩阵方程 AX = B 有解 $\Leftrightarrow R(A) = R(A, B)$.

定理

 $R(AB) \leq \min\{R(A), R(B)\}.$

小结

- 1、 秩的定义、求 R(A);
- 2、 判断线性方程组 $AX = \beta$ 解的存在性, 并求解.

练习

例

求解

$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 &= 0 \\ 2x_1 + x_2 - 2x_3 - 2x_4 &= 0 \\ x_1 - x_2 - 4x_3 - 3x_4 &= 0 \end{cases}$$

作业

• Page79-Page80. 10-(3)、15-(3)、18.

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2023年12月3日