

微信支付PB级金融数据高可靠的腾讯云 Elasticsearch优化

顾明,高级工程师 腾讯,微信支付,2023/04/08

分享嘉宾

连锁反应,方案引入新挑战

平稳的集群

一 不均衡打破了集群的平静

- •不均衡(倾斜)的问题
 - •SLA降级
 - 节点负载高/过载,请求时延变长/失败。
 - •容量规划失效/事故
 - 引发计划外扩容
 - 成本超出预期
 - •业务中断
 - 85%, 90%, 95%
 - •磁盘过高水位线, index只读

不均衡如何产生

理想

- 集群中分片尺寸相当
- ES内置均衡策略:以分片 数均衡为目标

现实

大小不一,不断流动

- 实时业务数据
 - 预创建空index
- 长生命周期数据
 - 不同时期index的分片尺寸不同
 - 数据一直被保留,没有清理的机会
- 长期的运维
 - 坏件维修
 - 扩容,缩容
 - 不同时期的采购,不同容量的节点, 不同容量的磁盘

•

需要怎样的均衡

- 系统可靠性
 - 副本跨机房
- 系统成本
 - 磁盘容量
 - 节点负载
- 系统性能
 - 节点负载
- •均衡自身的成本
 - 数据搬迁消耗io、cpu、内存
- •时间维度
 - 对变化的系统做均衡决策

方案

- •组合多维目标
 - •分片跨节点
 - •副本跨机房
 - 热温数据分层均衡
 - •最小化搬迁次数
 - •不同时期对应不同的策略

全面获取集群状态

- 节点和磁盘的关系
- •index和分片的分布
- •磁盘与分片的关系

>> 跳出局部解1

- •分片数 vs 使用率
 - 使用量<其他盘使用量
 - •分片数>节点内其他盘分片数

以退为进

搬迁盘node1_disk4的小分片,再均衡

》 跳出局部解2

- •节点 vs 磁盘
 - •空盘和满盘在一起
 - •修理故障盘场景

腾挪

选择一:满盘分片先挪到其他节点上,再挪回空盘

选择二:其他节点分片先挪到空盘上,满盘分片再挪到其他节点上

逼近均值

均值 节点1 节点2

elastic 中国开发者大会 2023

~ 不同时期的均衡

>>>

细粒度评估减少搬迁次数,降低均衡成本

- •细粒度的搬迁评估,减少搬迁次数
 - 节点/index级→磁盘/分片级
 - 热机:千万(千分片数)
 - 冷机: >1亿(万分片数)

- •细粒度评估,增加了路径评估计算量
 - 机器学习降低需求
 - 聚类磁盘,控制局部搬迁

- 验证数据
 - 400秒→10秒

再快一点

流水线加速

均衡效果的判断

- •磁盘容量离散度
 - 越小越好

- •均衡前后磁盘使用率
 - 越直越好

磁盘使用量标准差

磁盘使用率(均衡前后对比)

磁盘容量告警

初始状态:64%-87%

均衡前,先尝试数据下沉(热转冷)

初始状态:64%-87%

数据下沉后:47%-80%数据下沉,不能缓解均衡问题

>>> 均衡效果

磁盘使用率(均衡前后对比)

均衡前:52%-86% 平静的直线,没有倾斜和热点

均衡后:68%-71% 约等于多了15%容量

平衡集群,稳定运行

连锁反应,方案引入新挑战

数据搬迁期间查询超时

搬迁期间超时数是日常超时数的几十倍

查询超时源于IO冲突

数据搬迁对磁盘IO的消耗→冲突←查询对磁盘IO的需求

自适应查询降低超时数

选择状态最好的节点分发查询请求

$$\Psi(s) = R(s) - 1/\mu(s) + (\hat{q}(s))^3 / \mu(s)$$

- 协调节点与数据节点之间的历史请求的响应时间
- 数据节点执行先前搜索所花费的时间
- 数据节点的搜索线程池的队列大小

C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection

) 自适应查询的不足之处(被动防守)

问题:

试错的代价

策略的运转依赖持续的查询超时 历史的查询超时能够指导后续的查询路由 避免饥饿,持续消耗一些查询来更新慢节点的质 量数据

无米之炊窘境 批量搬迁导致数据的3副本所在节点都繁忙

对策:

被动试错→主动选优 主动选择未参与数据搬迁的节点执行查询

主动编排搬迁顺序,预留副本查询

>> 变被动为主动,通过IO隔离降低超时数(反击)

- 控制搬迁顺序,控制查询路由,实现参与搬迁的磁盘不参与搜索
- 故障适应性
- 减小搬迁性能的下降
- 数据一致性

需要持续读磁盘0,需要持续写磁盘1

>> 防守+反击降低超时数

超时数基本与背景超时数相当

elastic 中国开发者大会 2023

感谢观看

专业、垂直、纯粹的 Elastic 开源技术交流社区

https://elasticsearch.cn/