TSA - Meteorological forcing: Some information

Meteorological forcing data are read in every hour (oldbc, newbc) and the fields are interpolated in time to get values for the current time step nt (oldbc < "nt" < newbc):

- Temperature, wind, moisture, surface pressure are interpolated linearly (see chapter 1)
- Precipitation is required as rate for TSA; the average rate of the (1hour) period is taken for every time step of this interval (for details see chapter 2)
- Solar and thermal radiation at the ground (sobs, thbs, net fluxes) are needed for TSA, time average fluxes are read in (ASOB_S/ATHB_S) for both times oldbc and newbc and the average is done for this time interval (chapter 3)
- Some remarks for ICON input are in blue.

1. "Atmospheric" forcing

The NL(METFORCING) parameter ntype_atminput controls the atmospheric forcing, .e. g. which fields are read in (read_Imgrib) for temperature (t_in), wind (u_in, v_in), surface humidity (qv_in) and surface pressure (ps_in); see also TSA TABLE, \rightarrow means conversion:

ntype_atminput = 1	ntype_atminput = 2	ntype_atminput = 3	Input	TSA
			name	name
U,V (ke:ke+1) \rightarrow SP (ke:ke+1)	SP_10M - nudging	SP_10M - analysis	u_in	u
T(ke:ke+1)	T_2M - nudging	T_2M - analysis	t_in	t
QV(ke:ke+1)	TD_2M − nudging →	RELHUM_2M – analysis	qv_in	qv
	QV_2M	→ QV_2M		
PS	PS	PS	ps_in	ps

ntype_atminput=2 not possible for ICON (atmospheric fields should be analysis of forecast fields).

Input varibales are stored in ..._bd arrays:

```
IF (ntype_atminput<=3) THEN

IF (lcrop) THEN

u_bd(:,:,ke,nx) = u_in (i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1)

t_bd(:,:,ke,nx) = t_in (i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1)

qv_bd(:,:,ke,nx) = qv_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1)

! qv_bd(:,:,ke) = qv_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1) !XYZ> in TSA, qv is 4 dimensional

ps_bd(:,:,nx) = ps_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1)

ELSE

..... (spatial interpolation)
```

In read_metforc (after read_lmgrib/read_icongrib): linear interpolation to current time step

[!] Section 5: Temporal Interpolation

```
fac = (date_delta(actual_date*100,oldbc_date*100) &
    + (acthour-INT(acthour))*60.0_wp) / REAL(delta_bc)
 fac1=1.0-fac
 ! Atmospheric variables at the reference level
 IF (ntype_atminput<=4) THEN
  u(:,:,ke,nnew) = fac1*u_bd(:,:,ke,n1) + fac*u_bd(:,:,ke,n2)
  t(:,:,ke,nnew) = fac1*t\_bd(:,:,ke,n1) + fac*t\_bd(:,:,ke,n2)
  qv(:,:,ke,nnew)= fac1*qv_bd(:,:,ke,n1) + fac*qv_bd(:,:,ke,n2)
! qv(:,:,ke)= fac1*qv_bd(:,:,ke) + fac*qv_bd(:,:,ke)
                                                 !XYZ> uncommented qv non-tracer is 4 dimentional
  ps(:,:,nnew) = fac1*ps_bd(:,:,n1) + fac*ps_bd(:,:,n2)
 ELSE
  WRITE(6,*) "Invalid ntype_atminput! (Time interpolation)"
  STOP
 ENDIF
IF (lcalc) THEN
  ! Section 6: Conversions
  ! Copy time levels
  u(:,:,ke,nnow) = u(:,:,ke,nnew)
  t(:,:,ke,nnow) = t(:,:,ke,nnew)
  qv(:,:,ke,nnow) = qv(:,:,ke,nnew)
  ps(:,:,nnow) = ps(:,:,nnew)
  pO(:,:,ke) = ps(:,:,nnew) * EXP(-g*dz/(r_d*t(:,:,ke,nnew)))
!\ diagnosis\ of\ T\_2m\ and\ u\_10m
  IF ( ABS(dz\_u-10.0\_wp) < 1.0E-6\_wp ) THEN
    u_10m(:,:) = u(:,:,ke,nnew)
   lu10m=.FALSE.
  ELSE IF ( dz_u>10.0_wp) THEN
```

```
lu10m=.TRUE.
  ELSE
    WRITE(6,*) "dz_u lower than 10m is not allowed!"
  ENDIF
  IF (ABS(dz-2.0\_wp) < 1.0E-6\_wp) THEN
   t_2m(:,:) = t(:,:,ke,nnew)
   lt2m=.FALSE.
  ELSE IF ( dz > 2.0_wp ) THEN
   It2m=.TRUE.
  FISF
    WRITE(6,*) "dz lower than 2m is not allowed!"
  ENDIF
  IF ( lt2m .OR. lu10m) THEN
   CALL near_surface(nnew,lt2m,lu10m)
  ENDIF
QUESTIONS:
u_10m? Seems to be SP_10M?!
In SR init_variables: v=0,pp=0. Where is pp computed? Only p0 needed?
```

2. Precipitation

Input for "Terra" or TSA are precipitation <u>rates</u>, e. g. the <u>average</u> rainfall and snowfall <u>rate</u> of the time interval oldbc \rightarrow newbc is taken for every time step. It has to be checked, if there are precipitation amounts over one hour (Ihourly_data = .true. is set in the NL METFORCING, but not checked in the code) or accumulated values since start of nudging (forecast) run.

Here are the corresponding lines of the code:

```
snow_gsp_in=snow_gsp_in/3600.0
                        snow_con_in=snow_con_in/3600.0
                        tot_prec_in=tot_prec_in/3600.0_wp
                       * The sum of (rain_gsp_in + rain_con_in) rsp. (snow_gsp_in + snow_con_in) is stored in
                         prr_gsp_bd rsp. prs_gsp_bd (or tot_prec_in in prr_gsp_bd with prs_gsp_bd=0.0)
                       IF (Itot_prec) THEN
                         prr_gsp_bd(:,:,nx) = tot_prec_in
                         prs_gsp_bd(:,:,nx) = 0.0_wp
                       ELSE
                          prr_gsp_bd(:,:,nx) = (rain_gsp_in + rain_con_in)
                          prs_gsp_bd(:,:,nx) = (snow_gsp_in + snow_con_in)
                       ENDIF
                       IF (Icrop) THEN
                                prr_gsp_bd(:,:,nx) =(rain_gsp_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1)+ &
                                          rain_con_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1))
                                prs_gsp_bd(:,:,nx) =(snow_gsp_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1)+ &
                                          snow_con_in(i0_crop:i0_crop+ie-1,j0_crop:j0_crop+je-1))
                       ELSE
! Section 5: Temporal Interpolation
! Rain data
IF (ntype_raininput==1) THEN
  IF (Inew_Imana) THEN
   IF (Ihourly_data) THEN
     prr_gsp(:,:)= prr_gsp_bd(:,:,n2)
     prs_gsp(:,:)= prs_gsp_bd(:,:,n2)
   ELSE IF (nave_new>nave_old) THEN
     prr_gsp(:,:)= (prr_gsp_bd(:,:,n2)-prr_gsp_bd(:,:,n1)) / FLOAT(nave_new-nave_old)
     prs\_gsp(:,:) = (prs\_gsp\_bd(:,:,n2) - prs\_gsp\_bd(:,:,n1)) \ \ / \ FLOAT(nave\_new-nave\_old)
   ELSE
     prr_gsp(:,:)= prr_gsp_bd(:,:,n2)/FLOAT(nave_new)
```

```
prs_gsp(:,:)= prs_gsp_bd(:,:,n2)/FLOAT(nave_new)
   ENDIF
 ENDIF
ELSEIF ((ntype_raininput==2).OR.(ntype_raininput==4)) THEN
 IF (Inew rado) THEN
   WHERE (t(:,:,ke,nnew)>273.15)
    prr_gsp(:,:)=prr_gsp_bd(:,:,nrain2)
    prs_gsp(:,:)=0.0_wp
   ELSEWHERE
    prr_gsp(:,:)=0.0_wp
    prs_gsp(:,:)=prr_gsp_bd(:,:,nrain2)
   END WHERE
 ENDIF
ELSE
 WRITE(6,*) "Invalid ntype_raininput! (Time interpolation)"
ENDIF
```

- Take care for time units in COSMO and ICON, normally ICON output is in minutes and COSMO in hours; in the code it is assumed, that the time stamps are in hours
- prr_gsp/prs_gsp are then used as average rates in the terra MODULE src_soil_multlay (new: sfc_terra) with SUBROUTINE terra_multlay (new: terra) for every time step in the time interval [oldbc, new_bc].
- SUBROUTINE init_variables (terra_lmenv.f90): Presettings prr_con, prs_con, prs_gsp mit 0.0. Why not prr_gsp?
- Attention: There could be a division by zero, if nave new=0!!
- QUESTIONS: What about graupel, hail if available? Why no splitting convective/grid scale prep.?

3. Radiation

Net radiation fluxes are required by TSA (?), although Julian Tödter (GUF) states that the radiation forcing data are longwave and shortwave downward radiation fluxes at the surface (so_down_bd, th_down_bd).

• Here are the corresponding lines of the code:

```
read_metforc

|
>>>>> call read_lmgib

* read in ASOB_S/ATHB_S and store sobs2_in/thbs2_in
```

- * NEW: in case of missing the fields are set to zero!! Or should there be an abort??
- * NEW: if only the instant values SOBS_RAD/THBS_RAD are available they will be taken
- *! convert net radiation to downwelling radiation

```
sobs2\_in(:,:) = sobs2\_in(:,:) / (1.0\_wp-albrad\_in(:,:)/100.0\_wp) \\ thbs2\_in(:,:) = (thbs2\_in(:,:) + (1.0\_wp-ctalb)*sigma*t\_g\_in(:,:)**4)/(1.0\_wp-ctalb)
```

* Downwelling radiation is stored in xx_down_bd (:,:,nx) for two time levels

! check domains and if simple croping is possible

```
IF (lcrop) THEN so\_down\_bd(:,:,nx) = sobs2\_in \ (i0\_crop:i0\_crop+ie-1,j0\_crop:j0\_crop+je-1) th\_down\_bd(:,:,nx) = thbs2\_in \ (i0\_crop:i0\_crop+ie-1,j0\_crop:j0\_crop+je-1) pabs\_bd \ \ (:,:,nx) = pabs\_in \ (i0\_crop:i0\_crop+ie-1,j0\_crop:j0\_crop+je-1)
```

| (read_metfor)

.....

ELSEIF (ntype_radinput==4) THEN

```
! Section 5: Temporal Interpolation
! Radiation
IF (ntype_radinput<=2) THEN
           IF (Inew_Imana) THEN
                    IF (Ihourly_data) THEN
                              so_down_bd(:,:,n1) = so_down_bd(:,:,n2)
                              th_down_bd(:,:,n1) = th_down_bd(:,:,n2)
                              pabs = pabs_bd(:,:,n2)
                     ELSE IF (nave_new>nave_old) THEN
                              so\_down\_bd(:,:,n1) = (nave\_new*so\_down\_bd(:,:,n2) - nave\_old*so\_down\_bd(:,:,n1)) / FLOAT(nave\_new-nave\_old) / FLOAT(nave\_new*so\_down\_bd(:,:,n2) - nave\_old*so\_down\_bd(:,:,n2) / FLOAT(nave\_new*so\_down\_bd(:,:,n2) / FLOAT(nave\_new*so\_down\_bd(:,:,n2
                              th\_down\_bd(:,:,n1) = (nave\_new*th\_down\_bd(:,:,n2) - nave\_old*th\_down\_bd(:,:,n1)) / FLOAT(nave\_new-nave\_old) / FLOAT(nave\_new*th\_down\_bd(:,:,n2) - nave\_old*th\_down\_bd(:,:,n2) / FLOAT(nave\_new*th\_down\_bd(:,:,n2) / FLOAT(nave\_new*th\_down\_bd(:,:,n2
                              pabs = (nave_new*pabs_bd(:,:,n2) - nave_old*pabs_bd(:,:,n1)) / FLOAT(nave_new-nave_old)
                     ELSE
                              so\_down\_bd(:,:,n1) = so\_down\_bd(:,:,n2)
                              th_down_bd(:,:,n1) = th_down_bd(:,:,n2)
                              pabs = pabs_bd(:,:,n2)
                     ENDIF
           ENDIF
```

```
IF (Inew_rad) THEN
   so_down_bd(:,:,n1)=so_down_bd(:,:,n2)
   th_down_bd(:,:,n1)=th_down_bd(:,:,n2)
  ENDIF
 ELSE
  WRITE(6,*) "Invalid ntype_radinput! (Time interpolation)"
  STOP
 ENDIF
IF (lcalc) THEN
                !!!! lcalc = .true. (default in NL RUN_TERRA) set in read_namelist
  ! Section 6: Conversions
  ! diagnosis of net radiation from down-welling fluxes
  DO i=1,ie
   DO j=1,je
    IF (Ilandmask(i,j)) THEN
      CALL calc_albedo(i,j,nnow,also,alth)
      sobs(i,j)=so\_down\_bd(i,j,n1)*(1.0\_wp-also)
      thbs(i,j)=th\_down\_bd(i,j,n1)-(1.0\_wp-alth)*sigma*t\_g(i,j,nnow)**4
    ENDIF
   ENDDO
  ENDDO
  IF (ntype_radinput==4) THEN
   pabs=0.5_wp*sobs
  ENDIF
```

ENDIF

• sobs and thbs are used in MODULE src_soil_multlay (new; sfc_terra) with SUBROUTINE terra_multlay (new: terra) for every time step in the time interval [oldbc, new_bc].

Questions:

Why sob2_in → so_down_bd → sobs and thbs2_in → th_down_bd → thbs?
 Why are input ASOB_S/ATHB_S not used directly??

- albrad_in is not used for second conversion, but SUBROUTINE calc_albedo is used (→ also, alth; includes bare soil, snow, vegetation). May be it is more precise to compute it again??
- If ALB_RAD is missing, what should be taken as default? Use calc_albedo?? Set to csalb_p=0.15?
- Remarks to SUBROUTINE calc_albedo: csalb_p is replaced by vegalb(im,jm). NL parameter of RUN_TERRA lconstvegalb (default: .true.) controls setting of vegalb in read_const_fields:
 - o lconstvegalb=.true.: vegalb=csalb p (for lhomosoil=.true. and .false.)
 - o lconstvegalb=.false.: vegalb=vegalb_const (= NL input in EXTPARA for lhomosoil=.true.)
 - o lconstvegalb=.false.: vegalb=vegalb_in (lhomosoil=.false.)
 - → Iconstvegalb=.true. AND Ihomosoil =.false. (default is .true.!!!! should be changed!!!)

"vegalb" will not be read in as Iconstvegalb=.true.; so vegalb=csalb p will be uses in calc albedo

- Julian Tödter has found an error concerning longwave net radiation, which seems to be not corrected!? Old: lwnet = lwdown (1-a) * sigma *T**4">lwnet = lwdown (1-a) * sigma *T**4 (a=0.004=ctalb(?))
 New: lwdown-sigma*T**4.
 See here parts of the code:
 - 1. read_lm/icongrib:
 - (1) thbs2_in is read in
 - (2) thbs2_in(:,:) = (thbs2_in(:,:)+(1.0_wp-ctalb)*sigma*t_g_in(:,:)**4)/(1.0_wp-ctalb)
 - (3) th_down_bd(:,:,nx) = thbs2_in
 - 2. read metforc
 - (1) time average
 - (2) CALL calc albedo(i,j,nnow,also,alth)
 - (3) thbs(i,j)= th down bd(i,j,n1)-(1.0 wp-alth)*sigma*t g(i,j,nnow)**4