Cálculo do número de instruções dos *benchmarks* e implementação de novas *pin tools*

Gustavo Ciotto Pinton

Universidade Estadual de Campinas - UNICAMP MO601B - Arquitetura de Computadores

19 de Setembro de 2016

Escolha da pin tool

- Tools disponíveis para a contagem de instruções:
 - inscount 0: Nenhuma otimização. Funções de rotina inseridas a cada instrução.
 - inscount1: medida de granularidade é o BBL (basic block), economizando diversas chamadas à função de análise.
 - inscount2: BBL, inserção IPOINT_ANYWHERE e PIN_FAST_ANALYSIS_CALL;
 - inscount_tls: BBL, inserção IPOINT_ANYWHERE, PIN_FAST_ANALYSIS_CALL e unidade de armazenamento rápido, TLS, indexado pelos ids das threads.
- ▶ Melhor performance para o nosso caso: inscount2!
 - Não são necessárias informações sobre o número de threads;
 - Aproximadamente 20 horas para um Intel i3.

Resultados

Figura: Número de instruções dos benchmarks pertencentes ao conjunto CINT.

Resultados

Figura: Número de instruções dos benchmarks pertencentes ao conjunto CFP.

Resultados

- 403.gcc utiliza mais entradas em seus testes, com 9 entradas, totalizando 1.152.387.847.873 instruções executadas;
- 454.calculix: maior número de instruções com 6.894.341.859.256;
- 998. specrand e 999. specrand: mesmo número de instruções (536.611.748 instruções cada);
- Em geral, os benchmarks do conjunto inteiro executam menos instruções que os do conjunto de ponto flutuante.

- Contagem do número de instruções por rotina e por thread;
 - Função de instrumentação: a cada rotina;
 - Função de análise: a cada instrução.
 - 2 listas ligadas: 1 de rotinas e outra de threads:
 - Cada nó de rotina contém nome (RTN_Name), id (RTN_Id), o primeiro nó de uma lista de threads e um ponteiro para o próximo nó;
 - Cada nó de thread contém a sua id (THREAD_ID), o número de instruções executadas da respectiva rotina e um ponteiro para o próximo nó;
 - Programas com muitas threads: forte impacto negativo à performance, uma vez que um nó de thread é procurado a cada instrução (rotina de análise).

- Simulação de dois modelos de branch prediction discutidos em aula (1 e 2 bits).
 - Função de instrumentação: a cada instrução;
 - Função de análise: a cada instrução de branch ou chamada de rotina.
 - Função hash: 12 bits menos significativos;
 - Modelo de 1 bit: apenas o último salto é considerado;
 - Modelo de 2 bits: máquina de estados com 4 estados (STRONG_TAKEN, WEAK_TAKEN, STRONG_NOT_TAKEN e WEAK_NOT_TAKEN).
- ► Testes no conjunto ref dos benchmarks 400.perlbench, 401.bzip2, 403.gcc, 445.gobmk e 999.specrand

Resultados

- Contagem do número de instruções por rotina e por thread:
 - Benchmarks testados apresentam apenas uma thread: performance não é extremamente degradada;

Tabela: Resultados obtidos para algumas rotinas importantes.

Benchmark	Ε	Rotina	%
400.perlbench	3	S_regmatch	50
401.bzip2	6	BZ2_compressBlock	22.2
403.gcc	9	bitmap_operation	9.2
445.gobmk	5	do_play_move	8.4
999.specrand	1	GIprintf_fp	32.6

Resultados

 Simulação de dois modelos de branch prediction discutidos em aula (1 e 2 bits).

Tabela: Resultados obtidos para os modelos 1-bit e 2-bit.

		Modelo 1			Modelo 2		
Benchmark	E	Misses	Hits	%	Misses	Hits	%
400.perlbench	3	4.0×10^{10}	9.4×10^{10}	0.70	2.7×10^{10}	1.1×10^{11}	0.80
401.bzip2	6	9.1×10^{9}	5.4×10^{10}	0.86	1.3×10^{10}	5.0×10^{10}	0. 79
403.gcc	9	4.7×10^{9}	2.3×10^{10}	0.83	4.9×10^{9}	2.3×10^{10}	0. 82
445.gobmk	5	2.0×10^{10}	4.3×10^{10}	0.68	1.8×10^{10}	4.5×10^{10}	0.72
999.specrand	1	3.9×10^{7}	6.4×10^{7}	0.62	4.7×10^{7}	5.9×10^{7}	0.58

Referências

Pin 2.11 User Guide, 2012, disponível em https://software.intel.com/sites/landingpage/ pintool/docs/49306/Pin/html/;

► SPEC CPU2006: Read Me First, disponível em https: //www.spec.org/cpu2006/Docs/readme1st.html.