Kapitel 15

Konfidenzintervalle

Definition 15.1

Sei $\alpha \in (0,1)$ fest vorgegeben. Ein Intervall der Form [L(x),U(x)] mit messbaren Funktionen $L,U:\chi^n \to \Theta \subset \mathbb{R}$ heißt $(1-\alpha)$ -Konfidenzintervall, falls $L(x) \leq U(x) \ \forall x \in \chi^n \ und \ P_{\theta}(L \leq U) = 1 \ mit \ P_{\theta}(L \leq \theta \leq U) = 1 - \alpha$

Bemerkung 15.1

- (i) Sowohl Lage als auch Länge des Konfidenzintervalls hängen von der konkreten Stichprobe ab.
- (ii) Sei zum Beispiel $\alpha=0.05$, dann enthält das Konfidenzintervall in 95% der Fälle den wahren Parameter.

Beispiel 15.1

Es sei $P_{\theta}=N(\theta,\sigma^2),\,\sigma^2$ bekannt. Stichprobe X vom Umfang n. Bestimme $(1-\alpha)$ -Konfidenzintervall für θ . Sei

$$z := \frac{\overline{X} - \theta}{\sigma}.$$

Unter P_{θ} gilt: $z \sim N(0,1)$, (wegen Lemma 6.2, Bsp. 9.4). Wichtig: die Verteilung von z unter P_{θ} hängt nicht mehr von θ ab.

$$\Phi(c) - \Phi(-c) = P_{\theta}(-c \le z \le c) = P_{\theta}(\underbrace{X - \frac{c}{\sqrt{n}}\sigma}_{L(X)} \le \theta \le \underbrace{\overline{X} + \frac{c}{\sqrt{n}}\sigma}) \stackrel{!}{=} 1 - \alpha$$

$$1 - \alpha = \Phi(c) - \Phi(-c) = \Phi(c) - (1 - \Phi(c)) = 2\Phi(c) - 1 \Rightarrow \Phi(c) = 1 - \frac{\alpha}{2}$$

Mit z_{α} bezeichnen wir im Folgenden das α -Quantil der Standardnormalverteilung. Also: $\Phi(z_{\alpha}) = \alpha$. Wegen Symmetrie gilt: $z_{\alpha} = -z_{1-\alpha}$ $\Rightarrow = z_{1-\frac{\alpha}{2}}$. Ein $(1-\alpha)$ -Konfidenzintervall ist also:

$$\left[\overline{x} - \frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}} \sigma, \ \overline{x} + \frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}} \sigma \right]$$

Die ist ein Sonderfall. Die Länge des Konfidenzintervalls: $2 \cdot \frac{z_{1-\frac{\alpha}{2}}}{\sqrt{n}} \sigma$ und hängt nicht vom Zufall ab.

Beispiel 15.2 Es sei $P_{\theta} = B(m, \theta), \, \Theta = [0, 1], \, \chi = \mathbb{N}_0, \, n = 1$

Beispiel 13.4:
$$P_{\theta}\left(\frac{X - m\theta}{\sqrt{m\theta(1 - \theta)}} \le x\right) \approx \Phi(x)$$

Dann gilt:

$$P_{\theta}\left(-c \le \frac{X - m\theta}{\sqrt{m\theta(1 - \theta)}} \le c\right) \approx \Phi(c) - \Phi(-c) \stackrel{!}{=} 1 - \alpha \Rightarrow c = z_{1 - \frac{\alpha}{2}}$$

Wir versuchen auf die Darstellung $L(x) \le \theta \le U(x)$ zu kommen:

$$-c \le \frac{X - m\theta}{\sqrt{m\theta(1 - \theta)}} \le c \Leftrightarrow |X - m\theta| \le c\sqrt{m\theta(1 - \theta)}$$
$$\Leftrightarrow (X - m\theta)^2 \le c^2 m\theta(1 - \theta)$$
$$\Leftrightarrow \theta^2(c^2 + m) - \theta(2x + c^2) + \frac{x^2}{m} \le 0$$

Nullstellen der Parabel in θ :

$$\theta_{1/2} = \frac{1}{m+c^2} \left(x + \frac{c^2}{2} \pm c\sqrt{\frac{X(m-X)}{m} + \frac{c^2}{4}} \right)$$

Das heißt:

$$L(x) = \frac{1}{m + (z_{\frac{\alpha}{2}})^2} \left(x + \frac{(z_{\frac{\alpha}{2}})^2}{2} + z_{\frac{\alpha}{2}} \sqrt{\frac{x(m-x)}{m} + \frac{(z_{\frac{\alpha}{2}})^2}{4}} \right)$$

$$U(X) = \frac{1}{m + (z_{\frac{\alpha}{2}})^2} \left(x + \frac{(z_{\frac{\alpha}{2}})^2}{2} - z_{\frac{\alpha}{2}} \sqrt{\frac{x(m-x)}{m} + \frac{(z_{\frac{\alpha}{2}})^2}{4}} \right)$$

In einer Klinik gab es im letzten Jahr 87827 Geburten, davon 45195 Jungen. Gesucht: 0.99 - Konfidenzintervall für die Wahrscheinlichkeit, dass ein Neugeborenes männlich ist.

Hier: m = 87827, x = 45195, $\alpha = 0.01$

$$z_{\frac{\alpha}{2}} = z_{0,005} = -z_{0,995} = -z_{1-\frac{\alpha}{2}} = -2,576$$

Einsetzen: [0,51091,0,51961]