

Lecture 4: Word Classification and Machine Learning 2

- 1. Machine Learning and NLP: Finish
- 2. Seq2Seq Learning
- 3. Seq2 Assignment Project Exam Help
 - 1. RNN (Recurrent Neural Network)
 - 2. LSTM (Loist Tenture of S.com
 - 3. GRU (Gated Recurrent Unit)
- 4. Data Transformation for Deep Learning NLP
- Next Week Preview
 - Natural Language Processing Stack

.... And some interesting notice in the end of the lecture!

The purpose of Natural Language Processing: Overview

Problem Abstraction

Prediction

Assignment Project Exam Help

X i	Inputs	Features words (indices or vectors!), context windows, sentences, documents, etc.
y i	Outputs (labels)	 What we try to predict/classify E.g. word meaning, sentiment, name entity

boy

spreading

one hot vector

What if we consider this as a <u>sequential input</u>?
Let's add the concept 'time'

Lecture 4: Word Classification and Machine Learning 2

- Machine Learning and NLP: Finish
- 2. Seq2Seq Learning
- 3. Seq2 signment Project Exam Help
 - 1. RNN (Recurrent Neural Network)
 - 2. LSTM (Loisthor-Terrumeore's.com
 - 3. GRU (Gated Recurrent Unit)
- 4. Data Transformation for Deep Learning NLP
- Next Week Preview
 - Natural Language Processing Stack

Illustration

Running time

Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning WeChat: cstutorcs

Sequence Feeding

N = # of

Sequence 2 Sequence Learning

N = MAssignment Project Exam\H€l\M

Seq2Seq – Speech Recognition

How is the weather today

Output: Text

Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

Input: Speech Signal

Seq2Seq – Movie Frame Labelling

Swing

Output: Scene Labels

Assignment Project Exam Help

https://tutorcs.com

Swing Hit Bat_Broken

Sequence 2 Sequence Learning WeChat: cstutorcs

Input: Video Frame

Seq2Seq – PoS Tagging

ADV VERB DET NOUN NOUN Output: Part of Speech Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

How is the weather today Input: Text

Seq2Seq – Arithmetic Calculation

Seq2Seq – Arithmetic Calculation

3 5

Output: Numbers

Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

Input: Math Expression

Seq2Seq – Machine Translation

今天 天气 怎么 样?

Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

Input: English Text

Seq2Seq – Sentence Completion

How is the weather today?

Assignment Project Exam Help

https://qtnthegperappuse

It is quite hot inside

WeChat: cstutorcs
I may need to stop by Darling Harbour

When is the dinner appointment

Change the schedule

Text him that I cannot meet at 6:30pm

I like learning Natural Language Processing

Seq2Seq – Sentence Completion

How is the weather today?

Assignment Project Exam Help

https://qtnonesperapouse

It is quite hot inside

WeChat: cstutorcs
I may need to stop by Darling Harbour

When is the dinner appointment

Change the schedule

Text him that I cannot meet at 6:30pm

I like learning Natural Language Processing

Y

X

I like learning Natural Language Processing

Seq2Seq – Sentence Completion

Seq2Seq – Conversation Modelling

Conversation

Seq2Seq – Conversation Modelling

Okay. I will open windows for you

Output: Utterance

Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

Input: Utterance

Lecture 4: Word Classification and Machine Learning 2

- 1. Machine Learning and NLP: Finish
- 2. Seq2Seq Learning
- 3. seq2sesignmenti Project Exam Help
 - 1. RNN (Recurrent Neural Network)
 - 2. LSTM (Loistshor-Tenturores.com
 - 3. GRU (Gated Recurrent Unit)
- 4. Data Transformation for Deep Learning NLP
- Next Week Preview
 - Natural Language Processing Stack

Prediction

Prediction + Convolution Idea

Prediction + Memory = Sequence Modelling

Prediction + Memory = Sequence Modelling

Neural Network + Memory

Memory is vital to experiences, it is the retention of information over time for the purpose of influencing future action

Neural Network + Memory

$$h_{t} = tanh(W_{hh}h_{t-1} + W_{xh}x_{t} + b_{h})$$
New hidden state

A function Previous state input with parameters W

Neural Network + Memory = Recurrent Neural Network

$$h_{t} = tanh(W_{hh}h_{t-1} + W_{xh}x_{t} + b_{h})$$
New hidden state

A function Previous state input with parameters W

Tanh activation

The tanh activation is used to help regulate the values flowing through the network. The tanh function squishes values to always be between -1 and 1.

Assignment Project Exam Help

Neural Network + Memory = Recurrent Neural Network

With Sequence Input

Assignment Project Exam Help

Neural Network + Memory = Recurrent Neural Network

Q: Why do we need tanh function?

WeChat: cstutorcs

Vector Transformations with tanh

Neural Network + Memory = Recurrent Neural Network

Q: Why do we need tanh function?

WeChat: cstutorcs

Vector Transformations with tanh

Neural Network + Memory = Recurrent Neural Network

Several Variants of RNN

Neural Network + Memory = Recurrent Neural Network

Backpropagation through time

- Similar as standard backpropagation on unrolled network
- Similar as training very deep networks with tied parameters

Neural Network + Memory = Recurrent Neural Network

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Neural Network + Memory = Recurrent Neural Network

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Neural Network + Memory = Recurrent Neural Network

Many to 1

Neural Network + Memory = Recurrent Neural Network

Neural Network + Memory = Recurrent Neural Network

Many to Many

Neural Network + Memory = Recurrent Neural Network

Limitation of Vanilla RNN

The Problem of Learning Long-Range Dependencies

Limitation of Vanilla RNN

"I grew up in Italy ... (5 more sentences)... My grandma's house was very cosy and... (5 more sentences)... I speak fluent _____"

Limitation of Vanilla RNN

Limitation1: Vanishing Gradient Issue

During back-propagation and calculating gradients, it tends to get smaller and smaller as we keep on moving backward in the Network. This means that the neurons in the Earlier layers learn very slowly as compared to the neurons in the later layers in the Hierarchy.

Limitation of Vanilla RNN

Limitation2: Exploding Gradient

In RNN, error gradients can accumulate during an update and result in very large gradients. These in turn result in large updates to the network weights, and an unstable network. At an extreme, the values of weights can become so large as to overflow and result in NaN weight values that can no longer be updated.

LSTM (Long Short-Term Memory) - Idea

- 4 times more parameters than RNN
- Mitigates vanishing gradient problem through gating
- Widely used and was <u>SOTA</u> in many sequence learning problems

State-Of-The-Art

Sigmoid activation

A sigmoid activation is similar to the tanh activation. Instead of squishing values between -1 and 1, it squishes values between 0 and 1.

Assignment Project Exam Help

LSTM (Long Short-Term Memory) – Forget Gate

Decides what information should be thrown away or kept

Information from the **previous hidden state** and information from the **current input** is passed through the **sigmoid function**. Values come out between 0 and 1. The closer to 0 means to forget, and the closer to 1 means to keep.

LSTM (Long Short-Term Memory) – Input Gate

- 1. Pass the previous hidden state and current input into a sigmoid function
- 2. Pass the hidden state and current input into the tanh function to squish values between -1 and 1 to help regulate the network
- 3. Multiply the tanh output with the sigmoid output

^{*}sigmoid output will decide which information is important to keep from the tanh output

LSTM (Long Short-Term Memory) – Cell States

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- the cell state gets pointwise multiplied by the forget vector
- take the output from the input gate and do a pointwise addition which updates the cell state to new values that the neural network finds relevant
- That gives us our new cell state

LSTM (Long Short-Term Memory) – Output Gate

decides what the next hidden state should be.

- pass the previous hidden state and the current input into a sigmoid function
- pass the newly modified cell state to the tanh function
- multiply the tanh output with the sigmoid output to decide what information the hidden state should carry

LSTM (Long Short-Term Memory) - Overall

Gated Recurrent Unit

tanh

pointwise multiplication

pointwise addition

vector concatenation

Gated Recurrent Unit

• GRU first computes an **update gate**based on **Augreint input ward Precipient** Example p
and **hidden state**

Compute reset gate similarly but
 with different weights
 If reset gate units of the atis ign Stell to reset gate units of the atis ign Stell to reset gate units of the atis ign Stell to reset gate units of the atis ign Stell to reset gate units of the atis ign Stell to reset gate units of the atis ign Stell to reset gate units of the atis ign Stell to reset gate similarly but

update gate

previous memory and only stores the new word information

 Final memory at time step combines current and previous time steps

Seq2Seq Modelling

Seq2Seq – PoS tagger

ADV VERB DET NOUN NOUN Output: Part of Speech Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

How is the weather today Input: Text

Seq2Seq Modelling

N to N

Sequence Modelling for POS Tagging

Lecture 4: Word Classification and Machine Learning 2

- 1. Machine Learning and NLP: Finish
- 2. Seq2Seq Learning
- 3. Seq2sessignmenta Project Exam Help
 - 1. RNN (Recurrent Neural Network)
 - 2. LSTM (Loistshor-Terruleope's.com
 - GRU (Gated Recurrent Unit)
- 4. Data Transformation for Deep Learning NLP
- Next Week Preview
 - Natural Language Processing Stack

ImageNet: Image Classification

Image Pixel

Topic Classification

News Articles

Visual Question Answering

Visual Question Answering

WeChat: cstutorcs
What color of the shirt does he wear

Submit

Predicted top-5 answers with confidence:

•	
orange	99.999%
yellow	0.001%
orange and white	0.000%
yellow and orange	0.000%
orange and black	0.000%

Submit

Visual Question Answering

Where is he sitting

WeChat: cstutorcs

Predicted top-5 answers with confidence:

couch

chair

sofa
living room

1276%

Visual Question Answering

WeChat: cstutorcs
Why is he surprised

Submit

Predicted top-5 answers with confidence:

playing game game 13.713%

playing video games playing wii

hungry 36.734%

Classification Formulation

Why is he surprised

Classification Formulation

Classification

Graphical Notation for Data

V to 1

V to 1 – Simple Method

center one								
10	2	A	ssignm <u>ent</u>	t Projec	ct E	Exa	m I	Help
2	15	3	15					erage
5	1	5	https://	tutorcs	.co	m		1
	1		_		10	2	8	
			WeCha	it: cstu	orc	S ₁₅	3	5.6
		me	dian		5	1	5	,
10	2	8						•
2	15	3	5					
5	1	5	V					

V to 1 – Simple Method

5

1

Value

5

Data Transformation for Deep Learning NLP

V to 1 – Weighted Method

9/9

3/9

Weight

6/9

Element-wise multiplication

 $v = x_1 * w_1 + x_2$ **We Ehatige Stutores**

Element-wise multiplication

V to 1 – Linear Algebra

Convolution Neural Network (1)

Data Abstraction

Convolution Neural Network (2)

Convolution Neural Network (2)

V to V'

V to V' – generalized method

$$v_1 = x_1 * w_{1,1} + x_2 * w_{1,1} + \dots + x_9 * w_{1,9}$$

$$v_2 = x_1 * w_{2,1} + x_2 * w_{2,1} + \dots + x_9 * w_{2,9}$$

V to V' – generalized method

Weighted Sum

Assignment Project Exam Help

V to V' – Projection Notation

V to V' – Projection with Context (1)

V to V' – Projection with Context (2)

V to V' with Context - Linear Algebra

V to V' with Context - Linear Algebra (Simplified)

$$V \rightarrow V' \rightarrow 1$$

$$V \rightarrow V' \rightarrow 1$$

Assignment Project Exam Help

https://tutorcs.com

Single Layer

V →V′ →1

Multilayer

V →V′ →V″ →1

Seq2Seq Encoding

single light Project Exam Helpe **Summarisation Summarisation**

https://tutorcs.com

-	ı	1
-	-	-
-	1	-

V

Multiple Item Summarisation

10	2	8		13
2	15	As	S	ig
5	1	5		1

ignment Project/Ex	13	13 4	8		6	3	4
	gn	gnme	nt I	Pro	oje	ctzE	X1
1 45 31 3 4	1	1 45	31		3	4	0

?	?	?
?	?	?
?	?	?

Data 1

https://tutorcs.com

WeChat: cstutorcs

S

V

?

1

We Clamentow sel Average

Vs to V'

10	2	8	
2	15	As	S
5	1	5	

	13	4	8
5	ign	me	nt I
	1	45	31

	6	3	4	
r	oje	ctzE	Lx ı aı	m Help
	3	4	0	_

https://tutorcs.com

$$w^1 = 0.2$$

Element-wise multiplication

2	0.4	1.6
0.4	3	0.6
1	0.2	1.0

	5.2	1.6	3.2
+	1.6	2	0.8
	0.4	18	12.4

2.4	1.2	1.6
0.4	2.8	0.4
1.2	1.6	0

ν

9.6	3.2	6.4
2.4	7.8	1.8
2.6	19.8	13.4

Element-wise summation

Temporal Summarisation

Assignment Project Exam Help Context

How to include Pemperal Information?

WeChat: cstutorcs

$$Vs \rightarrow V's \rightarrow V'$$

Assignment Project Exam Help

Data 2

$$Vs \rightarrow V's \rightarrow V'$$

 $Vs \rightarrow V's \rightarrow V'$

$$Vs \rightarrow V's \rightarrow V'$$

Graphical Notation

Forward/Backward RNN

D

Data Transformation for Deep Learning NLP

Bidirectional RNN

Stacking RNN

RNN: Input and Output

$$\checkmark Vs \rightarrow 1$$

Seq2Seq Encoding and Decoding- Dialog System

Lecture 4: Word Classification and Machine Learning 2

- 1. Machine Learning and NLP: Finish
- 2. Seq2Seq Learning
- 3. Seq2 signment Project Exam Help
 - 1. RNN (Recurrent Neural Network)
 - 2. LSTM (Loigtshor-Tenturores.com
 - 3. GRU (Gated Recurrent Unit)
- 4. Data Transformation for Deep Learning NLP
- 5. Next Week Preview
 - Natural Language Processing Stack

Next Week Preview

The purpose of Natural Language Processing: Overview

Reference for this lecture

- Deng, L., & Liu, Y. (Eds.). (2018). Deep Learning in Natural Language Processing. Springer.
- Rao, D., & McMahan, B. (2019). Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. "O'Reilly Media, Inc.".
- Manning, C. A. Manaing ment Phütze, etc (1919) En Faundat processing. Mil Press 211 ment Phütze, etc (1919) En Faundat processing.
- Blunsom, P 2017, Deep Natural Language Processing, lecture notes, Oxford University
- Manning, C 2017, Naturating under the property of the proper
- Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., & Nie, J. Y. (2015, October). A
 hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In Proceedings of
 the 24th ACM International Conference of Informations and Knowledge Management (pp. 553-562).
 ACM.

Figure Reference

- https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
- https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21