Tutorial on Relations

- 1. Let R be the relation on set A where $R = \{(a, b) \mid a = 2b\}$. List all the possible order paired of relation R if set $A = \{1,2,3,4\}$.
- 2. The relation R onto a set $A = \{1,2,3\}$ is given by $R = \{(1,1), (1,2), (3,2)\}$ Show the relation R in the form of a matrix and arrow diagram.
- 3. The matrix below represents the relation S onto a set $B = \{a, b, c\}$. State and give the reasons on whether the relation S is reflexive, symmetric and/or transitive. State whether it is an equivalence relation.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

4. The matrix below represents the relation R onto a set $A = \{a, b, c\}$. State and give the reasons on whether the relation S is reflexive, symmetric and/or transitive. State whether it is an equivalence relation.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

5. The matrix below represents the relation S onto a set $B = \{a, b, c\}$. State and give the reasons on whether the relation S is reflexive, symmetric and/or transitive. State whether it is an equivalence relation.

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

6. The relation *S* from set *X* to set *Y* is shown in the arrow diagram below. Show the relation *S* in a form of matrix and ordered pairs.

Answers (Relations)

1.
$$R = \{(2,1), (4,2)\}$$

2.

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- 3. S is not a reflexive and not a transitive relation. S is a symmetric relation. Thus S is not an equivalence relation.
- 4. Relation R is an equivalence relation as it is reflexive, symmetric and transitive.
- 5. Relation S is not an equivalence relation as it is not reflexive, not symmetric and not transitive.

6.

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\{(x_1, y_3), (x_2, y_1), (x_3, y_3), (x_4, y_4)\}$$

Tutorial on Functions

- 1. Determine whether each of the following sets of ordered pairs is a function from the given domain to the given codomain.
 - (a) Domain = $\{1,2,3\}$, Codomain = $\{a,b,c,d,e\}$, $R = \{(1,a),(2,b),(3,b)\}$
 - (b) Domain = $\{1,2,3,4\}$, Codomain = $\{a,b,c,d\}$, $S = \{(2,d),(3,a),(4,d)\}$
 - (c) Domain = $\{1,2,3\}$, Codomain = $\{a,b,c,d\}$, $T = \{(1,b),(2,c),(3,a),(3,d)\}$
 - (d) Domain = $\{1,2,3,4\}$, Codomain = $\{a,b\}$, $T = \{(1,b),(2,b),(3,b),(4,b)\}$
- 2. The function f is defined by $f(x) = x^3 + 3$ for all real values of x. Evaluate the values of the following:
 - (a) f(1)

(b) f(-1)

- (c) f(2a)
- 3. Let the function $f: A \to B$, $g: B \to C$, $h: C \to D$ be defined by the figure below. Determine which of the functions are:
 - (i) injective (one-to-one) and/or
 - (ii) surjective (onto).

4. The functions f and g are defined for all real values of x as follows:

$$f(x) = 2x - 1$$
 and $g(x) = \frac{2x+3}{x-1}$, $x \ne 1$

- (a) Find the composite functions $(f \circ g)(x)$ and $(g \circ f)(x)$.
- (b) Find the inverse functions $f^{-1}(x)$ and $g^{-1}(x)$.
- (c) Evaluate $f \circ g^{-1}(1)$ and $g^{-1} \circ f^{-1}(-2)$.
- 5. Let the function $f: A \to B$, $g: B \to C$, $h: C \to D$ be defined by the figure below. Determine which of the functions are is invertible, and, if it is, find its inverse.

- 6. Consider the two functions $f: R \to R$ and $g: R \to R$, where R is the set of all real values of x, as f(x) = x + 2 and $g(x) = x^2$. State with reason, which of these two functions is invertible.
- 7. The functions f and g are defined for all real values of x as follows:

$$f(x) = \frac{8}{x-3}$$
, $x \neq 3$ and $g(x) = 2x - 3$

- (a) Find the expressions for f^{-1} , $(f \circ g)(x)$ and $(g \circ f)(x)$.
- (b) Find the value of x for which $(f \circ g)(x) = (g \circ f)(x)$.
- 8*. The functions f and g are defined by f(x) = x 3 and $g(x) = x^2$ respectively. Find another function h such that $hgf(x) = x^2 6x + 3$

 9^* . The functions f and g are defined for all real values of x as follows:

$$f(x) = x^2 - 1$$
 and $g(x) = (x - 1)^2$

- (a) If 4f(x) + 3 = f(kx), find the value(s) of k.
- (b) Express g(2x + 1) in terms of f(x).
- (c) Find a function h such that f(x) = g(x) + 2h(x).

Answers (Functions)

- 1. (a) Yes (b) No (c) No (d) Yes
- 2. (a) 4 (b) 2 (c) $8a^3 + 3$
- f is both not injective and not surjective.
 g is injective but not surjective.
 h is not injective but surjective.

4. (a)
$$(f \circ g)(x) = \frac{3x+7}{x-1}, x \neq 1; (g \circ f)(x) = \frac{4x+1}{2x-2}, x \neq 1$$

(b) $f^{-1}(x) = \frac{1}{2}(x+1), g^{-1}(x) = \frac{3+x}{x-2}, x \neq 2$
(c) -9, -1

- 5. f is injective but is not surjective. Thus, f is not invertible. g is not injective but is surjective. Thus, g is not invertible. h is both injective and surjective. Thus, h is invertible. Hence, $h^{-1} = \{(x, f), (y, r), (z, s)\}$
- 6. f is invertible, whereas g is not.
- 7. (a) $f^{-1}(x) = \frac{8+3x}{x}$, $x \neq 0$; $f \circ g(x) = \frac{4}{x-3}$, $x \neq 3$; $g \circ f(x) = \frac{25-3x}{x-3}$, $x \neq 3$ (b) 7
- 8^* . h(x) = x 6
- 9*. (a) ± 2 (b) 4f(x) + 4 (c) h(x) = x 1