Definition Loi de Bernoulli Loi de Poisson Loi Normale Loi Exponentielle

Quelques Exemples de Familles Exponentielles Canoniques

MAHAMAT ATTEÏB Adoum

Institut Polytechnique de Paris Mastère spécialisé : Big Data

09/12/2023

Definition Loi de Bernoulli Loi de Poisson Loi Normale Loi Exponentielle

1 Definition

2 Loi de Bernoulli

3 Loi de Poisson

4 Loi Normale

5 Loi Exponentielle

Définition : Famille exponentielle canonique

Une loi fait partie de la famille exponentielle canonique si sa densité f(X) s'écrit sous cette forme :

$$f(x) = \exp\left(\frac{X\theta - B(\theta)}{\phi} + c(X, \phi)\right)$$

avec $B'(\theta) = g^{-1}(\theta)$ et $g(\theta) = (B'(\theta))^{-1}$ la fonction lien. Son espérance et sa variance s'écrivent : $E(X) = B'(\theta)$ et $V(X) = B''(\theta) \times \phi$

Dans les slides ci-dessous, on essaie de montrer que les lois (Bernoulli, Poisson, normale et exponentielle) appartiennent à la famille exponentielle canonique. A chaque fois, on détermine la fonction lien et leur espérance et variance.

Loi de Bernoulli : $X \sim B(p)$

$$f(x) = p^{x}(1-p)^{1-x}$$

$$= \exp(\log p^{x}) \times \exp(\log(1-p)^{1-x})$$

$$= \exp(x \log p + (1-x) \log(1-p))$$

$$= \exp(x \log p + \log(1-p) - x \log(1-p))$$

$$f(x) = \exp\left(x \log \frac{p}{1-p} + \log(1-p)\right)$$

On pose : $\theta = \log \frac{p}{1-p}$, $\exp(\theta) = \exp(\log \frac{p}{1-p})$ donc $p = \frac{\exp(\theta)}{1+\exp(\theta)}$

L'expression :
$$\log(1-p) = \log\left(1 - \frac{\exp(\theta)}{1 + \exp(\theta)}\right) = -\log(1 + \exp(\theta))$$

On réccrit la densité en fonction de θ

$$f(x) = p^{x}(1-p)^{1-x}$$

$$= \exp\left(x \log \frac{p}{1-p} + \log(1-p)\right)$$

$$= \exp\left(x\theta - \log(1 + \exp(\theta))\right)$$

$$f(x) = \exp\left(\frac{x\theta - \log(1 + \exp(\theta))}{1}\right)$$

Donc, la loi de Bernoulli fait partie de la famille exponentielle canonique avec $B(\theta) = \log(1 + \exp(\theta))$ et $\phi = 1$

Fonction lien:

Maintenant, on détermine la fonction lien $g(\theta) = (B'(\theta))^{-1}$

$$B'(\theta) = \frac{\exp(\theta)}{1 + \exp(\theta)}$$

On cherche donc l'inverse de $B'(\theta)$.

On pose:

$$\frac{\exp(\theta)}{1 + \exp(\theta)} = p$$

$$\exp(\theta) = p(1 + \exp(\theta))$$

$$\exp(\theta) = \frac{p}{1 - p}$$

$$\log(\exp(\theta)) = \log \frac{p}{1 - p}$$

$$\theta = \log \frac{p}{1 - p}$$

Connaissant $B(\theta)$, on peut déterminer l'espérance et la variance.

Espérance :

$$E(X) = B'(\theta) = \frac{\exp(\theta)}{1 + \exp(\theta)}$$

 $E(X) = p$

$$V(X) = B''(\theta) \times \phi = \frac{\exp(\theta)}{(1 + \exp(\theta))^2} \times 1$$
$$= \frac{\exp(\theta)}{1 + \exp(\theta)} \times \frac{1}{(1 + \exp(\theta))}$$
$$V(X) = p(1 - p)$$

Loi de Poisson : $X \sim \mathcal{P}(\lambda)$

$$f(x) = \exp(-\lambda) \frac{\lambda^{x}}{x!} = \exp(-\lambda) \frac{\exp(\log(\lambda^{x}))}{\exp(\log(x!))}$$

$$= \exp(-\lambda) \exp(\log(\lambda^{x}) - \log(x!))$$

$$= \exp(-\lambda + x \log(\lambda) - \log(x!))$$

$$= \exp(x \log(\lambda) - \lambda - \log(x!))$$
On pose $\theta = \log(\lambda) \Rightarrow \exp(\theta) = \lambda$

$$f(x) = \exp(x\theta - \exp(\theta) - \log(x!))$$

$$f(x) = \exp\left(\frac{x\theta - \exp(\theta)}{1} - \log(x!)\right)$$

La loi de Poisson fait partie de la famille exponentielle canonique avec $B(\theta) = \exp(\theta)$ et $\phi = 1$

Fonction lien:

$$B'(\theta) = \exp(\theta)$$
 et $B''(\theta) = \exp(\theta)$
On sait que l'inverse de la fonction $\exp(\theta)$ est $\log(\theta)$

Donc, $g(\theta) = (B'(\theta))^{-1} = \log(\theta)$ est la fonction lien de la loi de Poisson.

Espérance :

$$E(Y) = B'(\theta) = \exp(\theta) = \exp(\log(\lambda)) = \lambda$$

$$Var(Y) = B''(\theta)\phi = \exp(\theta) \times 1 = \exp(\log(\lambda)) = \lambda$$

Loi Normale : $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{split} f(x) &= \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ &= \exp\left(\log\frac{1}{\sqrt{2\pi\sigma^2}}\right) \cdot \exp\left(-\frac{x^2-2\mu x+\mu^2}{2\sigma^2}\right) \\ &= \exp\left[-\log\left(\sqrt{2\pi\sigma^2}\right) \cdot \exp\left(-\frac{x^2-2\mu x+\mu^2}{2\sigma^2}\right)\right] \\ &= \exp\left[\frac{\mu x}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{x^2}{2\sigma^2} - \log(\sigma\sqrt{2\pi})\right] \end{split}$$

$$f(x) = \exp\left[\frac{\mu x}{\sigma^2} - \frac{\frac{\mu^2}{2}}{\frac{2\sigma^2}{2}} - \frac{x^2}{2\sigma^2} - \log(\sigma\sqrt{2\pi})\right]$$
$$= \exp\left[\frac{\mu x}{\sigma^2} - \frac{\frac{\mu^2}{2}}{\sigma^2} - \frac{x^2}{2\sigma^2} - \log(\sigma\sqrt{2\pi})\right]$$
$$f(x) = \exp\left[\frac{\mu x - \frac{\mu^2}{2}}{\sigma^2} - \frac{x^2}{2\sigma^2} - \log(\sigma\sqrt{2\pi})\right]$$

On retrouve cette expression : $f(x) = \exp\left(\frac{x\theta - B(\theta)}{\phi} + c(x,\phi)\right)$ avec $\theta = \mu, \ B(\theta) = \frac{\mu^2}{2}, \ \phi = \sigma^2, \ et \ c(x,\phi) = \frac{x^2}{2\sigma^2} + \log(\sigma\sqrt{2\pi})$ La loi normale fait partie de la famille exponentielle canonique.

Fonction lien:

$$B'(\theta) = g^{-1}(\theta) = \mu$$

Donc, $g(\theta) = \mu$ est la fonction lien de la loi normale.

Espérance:

$$E(X) = B'(\theta) = \frac{2\mu}{2} = \mu$$

$$V(X) = B''(\theta) \times \phi = 1 \times \sigma^2 = \sigma^2$$

Loi exponentielle : $X \sim \mathcal{E}(\lambda)$

$$f(x) = \lambda \exp(-\lambda x)$$

$$f(x) = \exp(\log(\lambda)) \exp(-\lambda x)$$

$$f(x) = \exp(\log(\lambda) - \lambda x)$$

$$f(x) = \exp\left(\frac{x\lambda - \log(\lambda)}{-1}\right)$$

 $\theta = \lambda$, $B(\theta) = \log(\lambda)$, $B'(\theta) = \frac{1}{\lambda} = g^{-1}(\theta)$ et $\phi = -1$ La loi exponentielle fait partie de la famille exponentielle canonique.

Fonction Lien:

$$g(\theta) = B'(\theta)^{-1} = \log \lambda$$

Espérance :

$$E(X) = B'(\theta) = \frac{1}{\lambda}$$

$$V(X) = B''(\theta) \times \phi = \frac{-1}{\lambda^2} \times (-1) = \frac{1}{\lambda^2}$$