

Advanced Hybrid On-Board Science Data Processor - SpaceCube 2.0

ESTO Earth Science Technology Forum
June 23, 2010

Tom Flatley – Branch Head
NASA/GSFC Science Data Processing Branch

On-Board Science Data Processing

ESDS On-Board Processing

- Data Volume Reduction
- Compression
- Calibration / Correction
- Classification
- Product Generation
- Autonomy
- Event / Feature Detection
- Real-time / Direct Broadcast

Hybrid Science Data Processing

- CPU
- FPGA
- DSP

GSFC SpaceCube On-Board Processor

- 10x-100x computing performance
- Lower power (MIPS/watt)
- Lower cost (commercial parts)
- Radiation tolerant (not hardened)
- Software upset mitigation

On-Board Image Processing

Long Range Camera on Rendezvous

Short Range Camera on Deploy

GSFC SpaceCube 1.0a - Hubble SM 4 (May 2009):

- Autonomous Rendezvous and Docking Experiment
- Hosted camera AGC and two Pose algorithms

STS-125 Payload Bay

Software Upset Mitigation

On-Board Data Reduction

On-Board Data Reduction

On-Board Products

- Classification
- Product Generation
- Event Detection

HyspIRI Demonstration Testbed

HyspIRI SpaceCube IPM Testbed

SpaceCube 2.0 Block Diagram

Spacewire / LVDS / MGT / GigE / Mission Unique High-speed

Standard 3U Card Form Factor
Nominal Box Level Parameters:
Size 5"x5"x7", Weight 10-15 lbs, Power 10-20 watts

Processor Comparison

	MIPS	Power	MIPS/
			W
MIL-STD-1750A	3	15W	0.2
RAD6000	35	10-20W	2.33 ¹
RAD750	300	10-20W	20 ²
SPARC V8	86	1W ³	86 ³
LEON 3FT	60	3-5W ³	15 ³
GSFC SpaceCube 1.0	3000	5-15W	4004
GSFC SpaceCube 2.0	5000	10-20W	500 ⁵

Notes:

- 1 typical, 35 MIPS at 15 watts
- 2 typical, 300 MIPS at 15 watts
- 3 processor device only ... total board power TBD
- 4 3000 MIPS at 7.5 watts (measured)
- 5 5000 MIPS at 10 watts (calculated)