Non-iterative clean up guarantee

Jiaxin Hu

March 22, 2022

Algorithm 1 Non-iterative clean up

Input: Gaussian tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$ and permutation π_1 .

- 1: For each pair $(i,k) \in [n]^2$, calculate $W_{ik} = \sum_{\omega \in [n]^{m-1}} \mathcal{A}_{i,\omega} \mathcal{B}_{k,\pi_1(\omega)}$.
- 2: Sort $\{W_{ik}: (i,k) \in [n]^2\}$ and let \hat{S} denote the set of indices of largest n elements.
- 3: if there exists a permutation $\hat{\pi}$ such that $\hat{S} = \{(i, \hat{\pi}(i)) : i \in [n]\}$ then
- 4: Output $\hat{\pi}$.
- 5: **else**
- 6: Output error.
- 7: end if

Output: Estimated permutations $\hat{\pi}$ or error.

Theorem 0.1 (Guarantee for clean up). Suppose the input permutation π_1 has at most r fake pairs such that $(n-r)^{(m-1)/2} \gtrsim n^{(m-1)/4} \log^{1/4} n - \log^{1/2} n$. Then, the output of non-iterative clean up Algorithm 1 is equal to the true permutation with a high probability; i.e., $\hat{\pi} = \pi^*$ with a high probability as $n \to \infty$.

Proof of Lemma 0.1. Without loss of generality, we assume π^* is the identity mapping. Let L denote the set of indices of the true pairs in π_1 ; i.e., $\pi(i) = i$ for all $i \in L$ and $|L| = \ell = n - r$. To show the Algorithm 1 picks π^* with a high probability, it suffices to show the following event holds with a high probability tends to 1 as $n \to \infty$:

$$\min_{i \in [n]} W_{ii} \ge \max_{i \ne k} W_{ik},$$

recalling that

$$W_{ik} = \sum_{\omega \in [n]^{m-1}} \mathcal{A}_{i,\omega} \mathcal{B}_{k,\pi_1(\omega)}.$$

Note that for an arbitrary $i \in [n]$, we have

$$W_{ii} = \sum_{\omega \in L^{m-1}} \mathcal{A}_{i,\omega} \mathcal{B}_{i,\pi_1(\omega)} + \sum_{\omega \in [n]^{m-1}/L^{m-1}} \mathcal{A}_{i,\omega} \mathcal{B}_{i,\pi_1(\omega)} =: W_1 + W_2,$$

where the variables $\mathcal{A}_{i,\omega}$ and $\mathcal{B}_{i,\pi_1(\omega)}$ are correlated with parameter ρ in the first term while $\mathcal{A}_{i,\omega}$

and $\mathcal{B}_{i,\pi_1(\omega)}$ are independent with each other in the second term. Hence, we have

$$\mathbb{P}(W_{ii} < t_1) \leq \mathbb{P}(W_1 < t_1 + t') + \mathbb{P}(W_2 < -t')
= \mathbb{P}\left(\frac{W_1}{\ell^{m-1}} < \frac{t_1 + t'}{\ell^{m-1}}\right) + \mathbb{P}\left(\frac{W_2}{n^{m-1} - \ell^{m-1}} \leq -\frac{t'}{n^{m-1} - \ell^{m-1}}\right)
\leq 2 \exp\left(-\min\left\{\frac{1}{32\rho^2}, \frac{1}{16(1-\rho^2)}\right\}\ell^{m-1}\left(\rho - \frac{t_1 + t'}{\ell^{m-1}}\right)^2\right)
+ \exp\left(-\frac{(t')^2}{4(n^{m-1} - \ell^{m-1})}\right),$$

for $\rho - \frac{t_1 + t'}{\ell^{m-1}} \in [0, \min\{2\rho, 2\sqrt{2}\sqrt{1-\rho^2}\}]$ and $\frac{t'}{n^{m-1} - \ell^{m-1}} \in [0, \sqrt{2}]$, where the inequality follows from the Lemma 1.

Note that for all $i \neq k$

$$\mathbb{P}(W_{ik} > t_2) = \mathbb{P}\left(\frac{1}{n^{m-1}}W_{ik} > \frac{t_2}{n^{m-1}}\right) \le \exp\left(-\frac{t_2^2}{4n^{m-1}}\right)$$

for $t_2/n^{m-1} \in [0, \sqrt{2}]$, where the inequality follows from the Lemma 1.

By union bound, we have

$$\mathbb{P}\left(\min_{i \in [n]} W_{ii} < t_1\right) \\
\leq n \left[2 \exp\left(-\min\left\{\frac{1}{32\rho^2}, \frac{1}{16(1-\rho^2)}\right\} \ell^{m-1} \left(\rho - \frac{t_1 + t'}{\ell^{m-1}}\right)^2\right) + \exp\left(-\frac{(t')^2}{4(n^{m-1} - \ell^{m-1})}\right) \right] (1)$$

and

$$\mathbb{P}\left(\max_{i\neq k} W_{ik} > t_2\right) \le n^2 \exp\left(-\frac{t_2^2}{4n^{m-1}}\right). \tag{2}$$

Now, we only need to verify that there exist proper $t_1 > t_2$ such that probabilities (1) and (2) tend to 0 as $n \to \infty$. We check the constraints for t', t_1, t_2 , respectively.

For t', we have

$$\begin{cases} \frac{t'}{n^{m-1}-\ell^{m-1}} \in [0,\sqrt{2}] \\ \frac{(t')^2}{4(n^{m-1}-\ell^{m-1})} \ge \log n \end{cases} \Rightarrow 2\log^{1/2} n \left(n^{m-1}-\ell^{m-1}\right)^{1/2} \le t' \le \sqrt{2} \left(n^{m-1}-\ell^{m-1}\right), \quad (3)$$

where upper bound follows from Lemma 1 (first constraint), and the lower bound follows from the decay of probability (1) (second constraint).

For t_1 , note that min $\left\{\frac{1}{32\rho^2}, \frac{1}{16(1-\rho^2)}\right\} \geq \frac{1}{32}$, we have

$$\begin{cases} \rho - \frac{t_1 + t'}{\ell^{m-1}} \in [0, \min\{2\rho, 2\sqrt{2}\sqrt{1 - \rho^2}\}] \\ \frac{1}{32}\ell^{m-1} \left(\rho - \frac{t_1 + t'}{\ell^{m-1}}\right)^2 \ge \log n \end{cases} \Rightarrow f(\rho)\ell^{m-1} - t' \le t_1 \le \rho\ell^{m-1} - \sqrt{32}\log^{1/2}n\ell^{(m-1)/2} - t',$$

$$\tag{4}$$

where $f(\rho) = \rho - \min\{2\rho, 2\sqrt{2}\sqrt{1-\rho^2}\}$, the upper bound follows from the decay of probability (1) (second constraint), and the lower bound follows from Lemma 1 (first constraint).

For t_2 ,

$$\begin{cases} \frac{t_2}{n^{m-1}} \in [0, \sqrt{2}] \\ \frac{t_2^2}{4n^{m-1}} \ge 2\log n \end{cases} \Rightarrow 4n^{(m-1)/2} \log^{1/2} n \le t_2 \le \sqrt{2}n^{m-1}, \tag{5}$$

where upper bound follows from Lemma 1 (first constraint), and the lower bound follows from the decay of probability (2) (second constraint).

Note that $\ell \in [n]$. When $\ell = n$, we have $n^{m-1} - \ell^{m-1} = 0$. When $\ell \neq n$, $\min\{n^{m-1} - \ell^{m-1}\} = n^{m-1} - (n-1)^{m-1} = \mathcal{O}(n^{m-1}) \gtrsim \log n$. Therefore, there always exists a t' satisfies (3).

Take $t' = 3 \log^{1/2} n \left(n^{(m-1)/2} - \frac{\ell^{m-1}}{2n^{(m-1)/2}} \right)$, which satisfies constraint (3) since

$$(n^{m-1} - \ell^{m-1})^{1/2} = n^{(m-1)/2} \left(1 - \frac{\ell^{m-1}}{n^{m-1}} \right)^{1/2} \le n^{(m-1)/2} \left(1 - \frac{\ell^{m-1}}{2n^{(m-1)/2}} \right),$$

where the inequality follows by $(1-x)^{1/2} \le 1-x/2$ for $x \in [0,1]$. Then, to verify the existence of $t_1 > t_2$ under the constraints (4) and (5), we need to show the upper bound of t_1 is larger than the lower bound of t_2 , which requires

$$4n^{(m-1)/2}\log^{1/2}n \le \rho\ell^{m-1} - \sqrt{32}\log^{1/2}n\ell^{(m-1)/2} - 3\log^{1/2}n\left(n^{(m-1)/2} - \frac{\ell^{m-1}}{2n^{(m-1)/2}}\right).$$

This indicates

$$0 \le \left(\rho + \frac{3\log^{1/2} n}{2n^{(m-1)/2}}\right) \ell^{m-1} - \sqrt{32}\log^{1/2} n\ell^{(m-1)/2} - 7n^{(m-1)/2}\log^{1/2} n.$$

Note that the coefficient for ℓ^{m-1} is dominated by ρ for ρ near to 1 when n is large enough. By the root formula of quadratic equation, when

$$\ell^{(m-1/2)} \ge \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \mathcal{O}\left(n^{(m-1)/4} \log^{1/4} n - \log^{1/2} n\right),$$

there exist $t_1 > t_2$ to let the probabilities (1) and (2) tend to 0 as $n \to \infty$.

Lemma 1 (Tail bounds for the product of normal variables). Consider the correlated pairs of normal variables (X_i, Y_i) for $i \in [n]$, where $X_i, Y_i \sim N(0, 1)$. Let $H = \frac{1}{n} \sum_{i \in [n]} X_i Y_i$. If $cov(X_i, Y_i) = \rho > 0$, then we have

$$\mathbb{P}(|H - \rho| \ge t) \le 4 \exp\left(-\min\left\{\frac{1}{32\rho^2}, \frac{1}{16(1-\rho^2)}\right\}nt^2\right),$$

for constant $t \in [0, \min\{2\rho, 2\sqrt{2}\sqrt{1-\rho^2}\}]$. If $cov(X_i, Y_i) = 0$, then, we have

$$\mathbb{P}\left(|H| \ge t\right) \le 2\exp\left(-\frac{nt^2}{4}\right),$$

for constant $t \in [0, \sqrt{2}]$.

References