Projektowanie systemów sterowania (laboratorium) (wersja robocza 23.03.2012)

1. P	omiesz	czenie z grzejnikiem olejowym	3			
1.1.	Kons	strukcja i badanie własności modelu	3			
1.2. Badanie własności układu regulacji ciągłej P i PI						
1.3.		nie własności układu regulacji z termostatem				
		czenie z grzejnikiem c.o.				
2.1.		el pomieszczenia z grzejnikiem wodnym				
2.2.		tyfikacja eksperymentalna modelu				
2.3.		dy regulacji ciągłej PI				
2.4.	Dobo	or nastaw	7			
3. P	rosta in	stalacja c.o.	8			
3.1.	Mod	el kotła	8			
3.2.	Pom	ieszczenie z grzejnikiem i kotłownia	8			
3.3.		ılacja bezpośrednia				
3.4.	_	owanie w układzie otwartym				
3.5.		· · · · · · · · · · · · · · · · · · ·				
	_	ılacja pogodowa (jakościowa)				
		e ogrzewanie (c.o.) budynku				
4.1.		el termokinetyczny budynku z kotłownią				
4.2.		ılacja centralna				
4.3.		nek z kotłownią – model termokinetyczny i hydrauliczny 1				
4.4.	Wsp	ółdziałanie układów regulacji	12			
4.5.	Ogrz	ewanie grupy budynków 1	12			
	2					
Prograi	m: projek	ctowanie układów sterowania (AIR, 15 ćwiczeń)				
ćw	pkt					
1.	2.1	Pomieszczenie z grzejnikiem wodnym				
2.	2.1	Pomieszczenie z grzejnikiem wodnym (maskowanie, uruchomienie ze skryptu)				
3.	2.2	Identyfikacja eksperymentalna – met. Küpfmüllera, [Strejca, momentów] - Spr				
4.	2.3	Regulacja PI – sterowanie temperaturą i przepływem				
5.	2.4	Dobór nastaw, Zastosowanie wskaźników jakości - Spr				
6.	3.1-2	Model kotła. Modele złożone – pomieszczenie i kotłownia (z opóźnieniem)	_			
7.	3.3,5	Regulacja PI – regulacja bezpośrednia i jakościowa (sterowanie mocą)				
8.		Regulacja PI – nieliniowości (ograniczenia), NCD - Spr				
9.	4.1	Budynek z kotłownią – modele złożone				
10.	4.2	Regulacja centralna – regulacja wg pomieszczenia reprezentatywnego, regulacja jakościowa - Spr				
11.		Budynek z kotłownią – model cieplny i hydrauliczny				
12.	4.2	Współdziałające układy regulacji – regulacja centralna i lokalna - Spr				
13.						
14.			_			
	1		_			
		acja procesów dynamicznych i projektowanie układów sterowania (EZI, 15 ćwiczeń)				
ćw 1.	pkt	Domigozogania z grzeinikiam alaktryognym (Cyyy) analiza zacad kanatrykaii				
	1 1	Pomieszczenie z grzejnikiem elektrycznym (Cvw) - analiza zasad konstrukcji	_			
<u>2.</u> 3.		Pomieszczenie z grzejnikiem elektrycznym (Cvw, Cvg)				
	1.2-3	Podstawowe układy regulacji (P, PI, dwupołożeniowa) - spr	_			
4.	2.1	Pomieszczenie z grzejnikiem wodnym Pomieszczenie z grzejnikiem wodnym (mogławania wysokomiania za glymyty)				
5.	2.1	Pomieszczenie z grzejnikiem wodnym (maskowanie, uruchomienie ze skryptu)				
6.		Identyfikacja eksperymentalna – met. Küpfmüllera - spr				
7.	2.3	Regulacja PI – sterowanie temperaturą i przepływem				
8.	2.4	Czujniki i elementy wykonawcze. Ocena jakości				
		Dobór nastaw, [NCD] - spr				
	3.1-2	Model kotła. Modele złożone – pomieszczenie i kotłownia (z opóźnieniem)				
11		ed Pogulacia PI – ragulacia baznaśradnia i iakościowa (starowania maca)				
13	3.3,5	Regulacja PI – regulacja bezpośrednia i jakościowa (sterowanie mocą)				
13		Opóźnienie transportowe Regulacja PI – nieliniowości (ograniczenia) - spr				
15 16		Funkcje CACSD				
10						

INFO nt zawartości sprawozdania

Sprawozdanie:

1) zadanie: wariant1 / wariant2 / wariant3

tzn.: *zadanie* ma być zrealizowane w jednym z wariantów: *wariant1* - wariant najprostszy niezbędny do zaliczenia / *wariant2* - wariant podstawowy / *wariant3* - pełna realizacja zadania

2) zadanie: polecenie1, polecenie2, [polecenie 3]

tzn.: zadanie polega na zrealizowaniu wszystkich poleceń, co najwyżej można opuścić [polecenie3], np.: badane reakcje na: skok q_g , skok T_{zew} - reakcje na skokowe zmiany wartości zadawane na poszczególnych wejściach (pojedynczo)

Oznaczenia (jak w podręczniku):

Q – ciepło, [J]

q - moc, [W]

T – temperatura, [C]

f – przepływ, [m³/s]

P – ciśnienie, [Pa]

 C_v – pojemność cieplna magazynu

Własności wybranych materiałów

Ciepło właściwe	c_p [J/kgK]
Szkło	700
Beton	800
Aluminium	902
Styropian	1200
Drewno	1500
Powietrze	1008
Gliceryna	2400
Woda (25°C)	4175,4

Literatura: Tablice/87,89

Gęstość	$\rho [\text{kg/m}^3]$
Szkło	2400
Beton	2300
Aluminium	2700
Styropian	16
Drewno (dąb)	600-900
Powietrze	1,185
Gliceryna	1258,2
Woda (25°C)	997,04

1. Pomieszczenie z grzejnikiem olejowym

1.1. Konstrukcja i badanie własności modelu

<u>Cel</u>: Budowa i weryfikacja prostego modelu obiektu. Uruchamianie symulacji od dowolnego stanu ustalonego. Symulacja z wykorzystaniem skryptów.

Grzejnik o pojemności V_g , wypełniony olejem z grzałką elektryczną o mocy q_g ogrzewa pomieszczenie o kubaturze V_w . Zakładamy że gęstość i ciepło właściwe oleju w grzejniku i powietrza w pomieszczeniu są stałe.

Zadania:

- 1. Zbudować model w postaci równań różniczkowych:
 - pojedyncze pomieszczenie, wszystkie ściany są zewnętrzne i jednolite
 - ciepło jest akumulowane przez powietrze w pomieszczeniu i przez olej w grzejniku
- 2. Wyznaczyć wzory na parametry modelu, zakładając następujące warunki obliczeniowe (wirtualny eksperyment):
 - przy temperaturze -20°C na zewnątrz w pomieszczeniu jest 20°C a grzejnik grzeje z maksymalną mocą q_{gN} (o wartości typowej dla instalacji domowych),
 - można zmierzyć temperaturę grzałki,

(brakujące wartości nominalne oszacować w miarę realne).

- 3. Przygotować schemat w Simulinku oraz skrypt do uruchomiania symulacji. Części skryptu:
 - wartości nominalne (obliczeniowe) na podstawie wirtualnego eksperymentu,
 - identyfikacja parametrów na podstawie stanu ustalonego i wartości nominalnych,
 - stan początkowy punkt pracy w stanie ustalonym od którego uruchamia się symulacje,
 - uruchomienie symulacji i wykresy.
- 4. Zweryfikować poprawność modelu (na podstawie zachowania w stanie ustalonym dla warunków obliczeniowych oraz w innym punkcie pracy)
- 5. Badanie własności dynamicznych obiektu przez obserwację reakcji kolejno na zmianę q_g , T_{zew}

Pytania:

- 1. Oznaczyć zmienne wejściowe i wyjściowe, zmienne stanu
- 2. Sklasyfikować model: liniowość, rząd
- 3. Typowe wartości współczynnika przenikania dla zewnętrznych przegród budowlanych są rzędu 1.2 [W/m²K] w starych budynkach i 0.3 [W/m²K] w budownictwie ekonomicznym. Jaką wartość ma współczynnik przenikania w badanym modelu? Wyjaśnij różnice.
- 4. Jak szybko model reaguje na zmiany mocy grzałki, temperatury zewnętrznej? Czy są to wartości jakie mogą wystąpić na rzeczywistym obiekcie?
- 5. Jaki wpływ na własności modelu mają: objętość pomieszczenia i grzejnika, moc grzejnika, powierzchnia ścian.

Zagadnienia dodatkowe:

- 1. Wymienić wszystkie założenia, które zostały przyjęte podczas konstrukcji modelu
- Na bazie teorii (odnosząc się do matematycznego modelu badanego obiektu) wytłumaczyć wyniki z symulacji - przebieg reakcji, stan ustalony
- 3. Wyznaczyć i zinterpretować stałe czasowe. Porównać wartości wyznaczone analitycznie i doświadczalnie
- 4. Zaproponować (i zastosować) wskaźniki, które pozwolą określić różnice w obserwowanych przebiegach.
- 5. Wyznaczyć model w postaci macierzowej i wskazać sposób wykorzystania tej postaci w Matlabie/Simulinku: $\dot{x} = Ax + Bu$
- 6. Wyznaczyć równanie operatorowe modelu i wskazać sposób wykorzystania tej postaci w Matlabie/Simulinku: $x_1(s) = G_1(s)u_1(s) + G_2(s)u_2(s)$

Sprawozdanie:

- 1) stan początkowy: ustalony nominalny / wybrany ustalony / ustalony w różnych punktach pracy,
- 2) badane reakcje na: skok q_g , skok T_{zew} ,
- 3) wpływ: V_w , V_g , q_g , powierzchni ścian
- 4) realne wartości parametrów, 5) odpowiedzi na pytania i wnioski

1.2. Badanie własności układu regulacji ciągłej P i Pl

<u>Cel</u>: Parametryzacja modeli ("maskowanie"). Układ ze sprzężeniem zwrotnym. Podstawowe własności regulatora P i PI.

Zadania:

- 1. Przygotować sparametryzowany model pomieszczenia i regulatora PI
- 2. Wykonać układ ze sprzężeniem zwrotnym z regulatorem PI, sterującym mocą grzejnika.
- 3. Zbadać własności układu z regulatorem P i PI (błąd regulacji, zakres stabilności)

Uwaga: W badaniach obu układów regulacji:

- badania przeprowadzić w nominalnym punkcie pracy (tzn. w warunkach obliczeniowych)
- przedstawić reakcję układu na skokową zmianę temperatury na zewnątrz i wartości zadanej
- poprawnie rejestrować reakcję na zakłócenia:
 - a) zadając wymuszenie gdy układ znajdzie się w stanie ustalonym wersja uproszczona
 - b) uruchamiając symulację od określonego stanu początkowego wersja podstawowa

Pytania:

- 1. Wyznacz zmienne sterujące (u) i zakłócenia (z) w modelu pomieszczenia
- 2. Jak nastawy regulatora wpływają na dokładność regulacji i stabilność?

Zagadnienia dodatkowe:

- 1. Zaproponować wskaźniki jakości dla badanych układów z regulacji (wskaźniki, które pozwolą porównywać działanie układów dla różnych wartości parametrów).
- 2. Wyznaczyć model zamkniętego układu regulacji z regulatorem proporcjonalnym.

1.3. Badanie własności układu regulacji z termostatem

Cel: Badanie układu regulacji – regulator dwupołożeniowy z histerezą.

Zadania:

- 1. Układ regulacji z termostatem (regulator dwupołożeniowy z histerezą, który wł/wył grzejnik)
- 2. Założyć, że przy temperaturze -20°C na zewnątrz w pomieszczeniu jest 20°C a grzejnik jest włączony ciągle i grzeje z maksymalną mocą q_{gN} .
- 3. Zbadać wpływ parametrów termostatu na własności układu

Pytania:

- 1. Scharakteryzować stan równowagi układu
- 2. Jak na własności układu regulacji z termostatem wpływa: moc grzałki, histereza?
- 3. Czy moc grzałki i histereza wpływa na średnią wartość temperatury w pomieszczeniu?
- 4. Od czego zależy szybkość nagrzewania i wychładzania pomieszczenia?

Zagadnienia dodatkowe:

- 1. Zbadać czy koszt ogrzewania pomieszczenia przez grzejnik z termostatem zależy od mocy grzałki lub od histerezy?
- 2. Jeśli zmienną procesową w termostacie będzie temperatura w grzejniku, czy to na wpływ na funkcjonalność urządzenia (czy spełni oczekiwania użytkownika, czy pokrętło wartości zadanej można wyskalować tak by odpowiadało temperaturze wewnątrz pomieszczenia)? Odpowiedź potwierdź analitycznie lub eksperymentalnie.
- 3. Wyznaczyć zależność pomiędzy wzmocnieniem regulatora proporcjonalnego a uchybem regulacji dla badanego obiektu. Sprawdzić z wynikami przeprowadzonych symulacji.
- 4. Wytłumaczyć różnicę pomiędzy termostatem i regulatorem proporcjonalnym z wyjściem 2stanowym

Sprawozdanie:

- dla regulacji ciągłej: 1) poprawność, 2) regulator P i PI; 3) reakcja na: skok T_{zew}^* , skok T_{wew}^* ; 4) wpływ nastaw
- dla termostatu: 1) poprawność; 2) wpływ: histerezy, q_g ; 3) reakcja na: skok T_{zew}^* skok T_{wew}^* ; 4) wpływ k i qi

2. Pomieszczenie z grzejnikiem c.o.

2.1. Model pomieszczenia z grzejnikiem wodnym

<u>Cel</u>: Znaczenie założeń podczas konstrukcji modelu. Budowa i weryfikacja modelu obiektu. Uruchamianie symulacji od dowolnego stanu ustalonego. Charakterystyki statyczne i dynamiczne.

Ilość ciepła dostarczana do pomieszczenia zależy od temperatury wody zasilającej grzejnik c.o. i od natężenia przepływu wody. Dodatkowym źródłem ciepła mogą być osoby, sprzęt gospodarstwa domowego, itp. Mogą wystąpić też dodatkowe straty ciepła, np. otwarte okno. Te dodatkowe zyski/straty ciepła są uwzględniane w postaci +/- wartości mocy q_t (ciepło "technologiczne")

Model pomieszczenia z grzejnikiem może odpowiadać dosłownie pojedynczemu pomieszczeniu lub reprezentować cały budynek.

Zadania:

- 1. Zbudować model w postaci równań różniczkowych dla obiektu pomieszczenie + grzejnik przy wybranym zestawie założeń dotyczących pojemności cieplnej powietrza w pomieszczeniu (C_{vw}) , wody w grzejniku (C_{vg}) i materiału ścian (C_{vs}) :
 - wer.a) $C_{vw} >> C_{vg}$, $C_{vw} >> C_{vs}$ wersja uproszczona
 - wer.b) $C_{vw} \approx C_{vg}$, $C_{vw} >> C_{vs}$ wersja podstawowa 1
 - wer.c) $C_{vw} >> C_{vg}$, $C_{vw} \approx C_{vs}$ wersja podstawowa 2
- 2. Wyznaczyć wzory na parametry modelu zakładając, że temperaturze obliczeniowej T_{zewN} =-20°C zapotrzebowanie na ciepło wynosi 20kW (dla budynku), co zapewnia wewnątrz temperaturę T_{wewN} =+20°C. Zapotrzebowanie w pełni pokrywa instalacja centralnego ogrzewania brak dodatkowych zysków/strat ciepła (q_{tN} =0W). Temperatura wody zasilającej i powracającej z instalacji w warunkach nominalnych (obliczeniowych) wynosi T_{gzN}/T_{gpN} =90/70°C.
- 3. Przygotować schemat w Simulinku oraz skrypt do uruchomiania symulacji. Części skryptu:
 - wartości nominalne (obliczeniowe) na podstawie wirtualnego eksperymentu,
 - identyfikacja parametrów na podstawie stanu ustalonego i wartości nominalnych,
 - stan początkowy punkt pracy (stan ustalony) od którego uruchamia się symulacje,
 - uruchomienie i wykresy.
- 4. Zweryfikować poprawność modelu (na podstawie zachowania w stanie ustalonym dla warunków obliczeniowych oraz w innym punkcie pracy)
- 5. Sparametryzować model pomieszczenia (blokowanie, maskowanie), przygotowując go do wykorzystania w dalszych badaniach (współpraca z regulatorem, model budynku)
- 6. Zbadać reakcję obiektu kolejno na zmianę temperatury na zewnątrz, temperatury wody zasilającej instalację, natężenia przepływu wody w instalacji oraz dodatkowe zyski/straty ciepła. Badania wykonać w różnych punktach pracy nominalnym (*N*) i innym, np.:

<u> </u>	·· · J · I		-)	·
wej. / p.pracy	1	2	3	4
T_{zew0}	N	<i>N</i> +10	N	N
T_{gz0}	N	N	<i>N</i> -10	N
f_{g0}	N	N	N	N*0,5

Symulację uruchamiać od odpowiedniego stanu ustalonego.

- 7. Zbadać możliwość regulacji temperatury wewnątrz (T_{wew}) przez sterowanie temperaturą wody zasilającej grzejnik i przez natężenie przepływu wody przez grzejnik:
 - wykreślić charakterystyki statyczne: $T_{wew}(T_{gz})$ i $T_{wew}(f_g)$
 - wyznaczyć czułość obiektu na wielkości sterujące

Pytania:

- 1. Sklasyfikować model (rząd, liniowość, unilateralność)
- 2. Oznaczyć zmienne stanu, zmienne wejściowe (podzielić na zmienne sterujące i zakłócenia)
- 3. Porównaj reakcje obiektu w różnych punktach pracy. Wyjaśnij podobieństwa i różnice.

Zagadnienia dodatkowe:

- 1. Czy w reakcji badanego modelu moga wystapić oscylacje, np. dla innych wartości parametrów?
- 2. Porównać¹ modele badanego obiektu w wersji uproszczonej i podstawowej

¹ Dla porównywania wykonać wykresy na jednym obrazie lub zaproponować wskaźniki. Jak wyjaśnić wyniki?

- 3. Przygotować symulację, która wykreśli charakterystyki statyczne: $T_{wew}(T_{gz})$, $T_{wew}(f_g)$, korzystając z dynamicznego modelu pomieszczenia z grzejnikiem.
- 4. Wykonaj linearyzację dynamiczną modelu.

Sprawozdanie:

- 1) stan początkowy: ustalony nominalny / wybrany ustalony / ustalony w różnych punktach pracy,
- 2) badane reakcje na: skok T_{zew} , skok T_{gz} , skok f_g , skok q_t
- 3) charakterystyki statyczne, 4) czułość,
- 5) wersja: uproszczona / podstawowa, 6) maskowanie, 7) odpowiedzi na pytania i wnioski

2.2. Identyfikacja eksperymentalna modelu

<u>Cel</u>: Eksperymentalne metody wyznaczania prostych modeli. Identyfikacja modeli typu MIMO

$$x_1(s) = G_{11}(s)u_1(s) + G_{12}(s)u_2(s)$$

$$x_2(s) = G_{21}(s)u_1(s) + G_{22}(s)u_2(s)$$

$$x_2(s) = G_{21}(s)u_1(s) + G_{22}(s)u_2(s)$$

Zadania:

- Traktując wykonany wcześniej model (2.1) jako wirtualny obiekt (oryginał) zidentyfikować obiekt metodą Küpfmüllera. Na potrzeby tej identyfikacji przyjąć, że przepływ f_g jest parametrem modelu.
- 2. Porównać odpowiedzi skokowe modelu i oryginału. Zaproponować i zastosować jakiś wskaźnik do oceny dokładności modeli zastępczych.
- 3. Czy zmiana punktu pracy obiektu (wartości T_{gz} , T_{zew} i f_g) wpłynie na dokładność wyznaczonego modelu?

Zagadnienia dodatkowe:

- 1. Wykonać identyfikację wybranej transmitancji za pomocą aproksymacji (modelu) Strejca.
- 2. Zastosować identyfikację wybranej transmitancji metodą momentów.
- 3. Która identyfikacja była najdokładniejsza (Küpfmüllera, Strejca, m.momentów)?
- 4. Wyznacz dokładne transmitancje obiektu (na podstawie równań różniczkowych, definiujących obiekt).

Sprawozdanie:

1) modele: Küpfmüllera, Strejca; 2) punkt pracy: nominalny / wybrane punkty; 3) wskaźniki jakości

2.3. Układy regulacji ciągłej Pl

Cel: Struktura regulatorów PID (nastawy zależne i niezależne). Własności algorytmu PI. Stan poczatkowy w punkcie równowagi. Regulacja dla obiektów liniowych i nieliniowych.

Zadania:

- 1. Zrealizować układy sprzężenia zwrotnego z regulatorem PI dla dwóch wariantów sterowania temperaturą wewnątrz pomieszczeń – zmienna procesowa T_{wew} , sterowanie T_{gz} albo f_g ,
- 2. Nastawy regulatora dobrać metodą prób i błędów (nie muszą być optymalne, wystarczy, że układ będzie stabilny).
- 3. Przedstawić reakcję obiektu na zmianę temperatury na zewnatrz, dodatkowego zysku/straty ciepła w pomieszczeniu, wartość zadaną temperatury pomieszczeń. Badania wykonać w różnych punktach pracy:

wej. / p.pracy	1	2	3
T_{zew0}	N	<i>N</i> +10	N
T_{gz0}	N	N	<i>N</i> -10
T_{wew0}^{*}	N	N-2	N
$T_{wew0} = T_{wew0}^*$			

wej. / p.pracy	1	2	3
T_{zew0}	N	<i>N</i> +10	N
f_{g0}	N	N	N*0,5
T_{wew0}^{*}	N	N-2	N
$T_{wew0} = T_{wew0}^*$			

Uwaga na poprawność wykonania eksperymentu, tzn. by zmiana wymuszenia, była zadawana gdy układ jest w stanie ustalonym (uchyb regulacji wynosi zero):

- wer.a) zadanie zmiany po dojściu układu do stanu ustalonego wersja minimalna,
- wer.b) uruchamianie symulacji od stanu nominalnego wersja uproszczona,
- wer.c) uruchamianie symulacji od dowolnego stanu ustalonego wersja podstawowa.
- 4. Rejestrować przebieg zmiennej procesowej i zmiennej sterującej

- 5. Zaproponować i zastosować wskaźniki jakości do porównywania badanych układów regulacji.
- 6. Zbadać wrazliwość układu regulacji na zmiany nastaw regulatora.

Pytania:

- 1. Opisać własności układu regulacji PI ze sterowaniem T_{gz}
- 2. Opisać własności układu regulacji PI ze sterowaniem f_g ,
- 3. Czy nastawy dobrane względem zakłóceń na jednym wejściu, będą równie dobre przy analogicznych zakłóceniach na innym wejściu?
- 4. Czy nastawy regulatora wyznaczone w jednym punkcie pracy będą równie dobre w innym punkcie pracy? Czy dotyczy to obu układów, tj ze sterowaniem T_{gz} i f_g ?

Zagadnienia dodatkowe:

- 1. W bloku regulatora wydziel przetwornik wielkości pomiarowej i przetwarzanie przez elementy sterujące i wykonawcze.
- 2. Przedstawić komplet równań stanu dla badanego obiektu łącznie regulatorem PI
- 3. Jak zmienią się własności układów regulacji jeśli zostanie zastosowany regulator:
 - a. regulator P
 - b. regulator PID
- 4. Zinterpretować badane układy w odniesieniu do ogólnego schematu układu ze sprzężeniem zwrotnym

Sprawozdanie:

- gdy zmienna sterująca = T_{gz}
 - 1) poprawność, 2) stan początkowy: ustalony nominalny / wybrany ustalony / ustalony w różnych punktach pracy,
 - 3) badane reakcje na: skok T_{zew} , skok q_{ν} skok T_{wew}^*
 - 4) wskaźniki jakości regulacji, 5) wrażliwość na zmianę nastaw
- gdy zmienna sterująca = f_g

6÷10) jw

11) odpowiedzi na pytania i wnioski

2.4. Dobór nastaw

Cel: Praktyczne (inżynierskie) metody doboru nastaw PID.

Zadania:

- 1. Badania zrealizować dla układu regulacji T_{wew} ze sterowaniem T_{gz} w wybranym punkcie pracy
- 2. Wykorzystać metodę doboru nastaw Zieglera-Nicholsa opartą na wyznaczeniu modelu zastępczego obiektu.
- 3. Wykorzystać do doboru nastaw blok NCD. Porównać nastawy uzyskane "ręcznie" i z NCD.

Pytania:

- 1. Czy jakość regulacji będzie równie dobra gdy zmienią się wartości zmiennych wejściowych (punkt pracy)?
- 2. Czy nastawy obliczone metodą Zieglera-Nicholsa są optymalne? Określ jakość regulacji (stosując wybrane wskaźniki).
- 3. Czy wartość nastaw i jakość regulacji uzyskanej z zastosowaniem NCD zależy od wartości początkowych nastaw?
- 4. Czy dobrane nastawy dają realny przebieg regulacji ze względu na zmienną sterującą?

Zagadnienia dodatkowe:

1. Czy można zrealizować dobór nastaw regulatora stosując podstawowy eksperyment doboru nastaw Zieglera-Nicholsa? Jeśli tak – to jak?. Jeśli nie – to uzasadnij.

Sprawozdanie: Odpowiedzi na pytania i wnioski zilustrowane wykresami, tabelami

3. Prosta instalacja c.o.

3.1. Model kotła

Cel: Konstrukcja modelu, grupowanie, parametryzowanie

Kocioł (piec gazowy lub olejowy z regulacją mocy) podgrzewa wodę powracającą z instalacji. Zakłada się źródło ciepła o wydajności q_k . Kocioł nie traci ciepła do otoczenia (doskonała izolacja)

Zadania:

- 1. Zbudować model kotłowni, w którym zmiennymi wejściowymi są moc pieca, natężenie przepływu wody i temperatura wody wpływającej do pieca, a zmienną wyjściową temperatura wody zasilającej instalację c.o. Piec jest dobrze izolowany i nie traci ciepła do otoczenia. Założenia dotyczące pojemności cieplnej pieca C_{vk} :
 - a) C_{vk} jest pomijalnie mała wersja uproszczona
 - b) C_{vk} jest znacząca wersja podstawowa
- 2. Wyznaczyć parametry modelu, zakładając wydajność kotła 20kW oraz nominalne (obliczeniowe) temperatury wody w instalacji $T_{gzN}/T_{gpN}=90/70$ °C.
- 3. Wykonać i zweryfikować model. Wykonać grupowanie i parametryzację modelu.

3.2. Pomieszczenie z grzejnikiem i kotłownia

Cel: Konstrukcja modeli złożonych

Pomieszczenie z grzejnikiem reprezentuje całą instalację c.o. budynku. Zakładamy doskonałą izolację cieplną przewodów instalacji, zarówno z ciepłą wodą przepływająca od kotła do grzejnika, jak i z wodą schłodzoną powracającą do kotłowni. Uwzględniamy opóźnienia transportowe

Zadania:

1. Złożyć schemat modelu obiektu wykorzystując przygotowane wcześniej bloki pomieszczenia i kotłowni. Uwzględnić opóźnienia transportowe (przyjąć stałe wartości opóźnienia, niezależne od przepływu).

2. Przygotować skrypt do uruchomienia symulacji od dowolnego stanu ustalonego (można wykorzystać skrypty wykonane przy konstrukcji bloków – 2.1, 3.1)

Pytania:

1. Które zmienne są zmiennymi wejściowymi złożonego modelu? Podziel je na zmienne sterujące i zakłócenia.

3.3. Regulacja bezpośrednia

<u>Cel</u>: Regulacja bezpośrednia temperatury wewnątrz, za pomocą sterowania wydajnością kotła.

Regulator kotłowy PI steruje mocą kotła Zmiany mocy kotła są ograniczone co do zakresu wartości i szybkości zmian

Zadania:

- 1. Zrealizować układ sprzężenia zwrotnego z regulatorem PI, który stabilizuje T_{wew} poprzez zmianę q_g . Dobrać nastawy zapewniające stabilność układu.
- 2. Zbadać działanie układu regulacji kolejno przy zmianie temperatury na zewnątrz, dodatkowego zysku/straty ciepła w pomieszczeniu, wartości zadanej temperatury pomieszczeń.
- 3. Uzupełnić regulator o blok nasycenia wielkości sterującej i powtórzyć badania z punktu 2

Pytania:

- 1. Wymień następujące zmienne złożonego modelu: zmienne wejściowe, zmienna procesowa, zmienna sterująca, wartość zadana
- 2. W jakich sytuacjach zmienna sterująca przekracza zakres zmienności (możliwości technicznych)?

Sterowanie

- 3. Jak zmieni się przebieg regulacji jeśli zmienna sterująca wejdzie w obszar nasycenia?
- 4. Jakie inne ograniczenia można wprowadzić do regulatora?

3.4. Sterowanie w układzie otwartym

<u>Cel</u>: Stabilizacja temperatury wewnątrz, za pomocą sterowania wydajnością kotła.

Zadania:

1. Traktując budynek jako jedno zastępcze pomieszczenie z jednym zastępczym grzejnikiem można napisać:

$$\frac{q}{q_{N}} = \frac{c_{p} \rho f_{N} (T_{gz} - T_{gp})}{c_{p} \rho f_{N} (T_{gzN} - T_{gpN})} = \frac{K_{cg} (T_{gsr} - T_{wew})}{K_{cg} (T_{gsrN} - T_{wewN})} = \frac{K_{cw} (T_{wew} - T_{zew})}{K_{cw} (T_{wewN} - T_{zewN})}$$

gdzie zmienne i ich wartości nominalne $(q_N, T_{gzN}, T_{gpN}, f_N)$ dotyczą modelu zastępczego. Wyznacz wzory do obliczania wartości temperatury zasilania T_{kz} (= T_{gz}), powrotu T_{kp} (= T_{gp}) i mocy q dla określonej wartości temperatury zewnętrznej T_{zew} i wewnętrznej T_{wew} , czyli funkcje:

$$T_{kz} = a_z T_{wew} + b_z T_{zew}, T_{kp} = a_p T_{wew} + b_p T_{zew}, q = a_q T_{wew} + b_q T_{zew},$$

- 5. Zrealizować układ sterowania otwartego, który stabilizuje T_{wew} poprzez ustawienie wyliczonej wartości mocy q_g
- 6. Zbadać działanie układu kolejno przy zmianie temperatury na zewnątrz, dodatkowego zysku/straty ciepła w pomieszczeniu, wartości zadanej temperatury pomieszczeń.,

3.5. Regulacja pogodowa (jakościowa)

<u>Cel</u>: Regulacja pogodowa jako przykład regulacji pośredniej i zdalnej

Regulator kotłowy PI

Kocioł może wytwarzać o 10% mocy więcej niż wartość nominalna.

Zadania:

- 1. Zrealizuj układ pośredniej regulacji temperatury T_{wew} na podstawie wartości temperatur mierzonych na kotle (T_{kz}, T_{kp}) , czyli tzw. regulację pogodową:
 - wer.a) regulacja temperatury powrotu $T_{kp}=a_pT_{wew}+b_pT_{zew}$,
 - wer.b) regulacja temperatury zasilania $T_{kz}=a_zT_{wew}+b_zT_{zew}$.

2. Zbadać działanie układu regulacji kolejno przy zmianie temperatury na zewnątrz, dodatkowego zysku/straty ciepła w pomieszczeniu, wartości zadanej temperatury pomieszczeń.

Sprawozdanie: Kontrola sterowania, nieliniowe bloki regulatora

4. Centralne ogrzewanie (c.o.) budynku

4.1. Model termokinetyczny budynku z kotłownią

Do budynku obejmującego kilka pomieszczeń (mieszkań) jest dostarczane ciepło z własnej kotłowni. Przy temperaturze zewnętrznej –20°C piec wytwarza maksymalną moc cieplną, która zapewnia ogrzanie pomieszczeń do temperatury 20°C. W tych warunkach przepływ wody przez grzejniki jest maksymalny.

Przy grzejnikach znajdują się zawory, które umożliwiają sterowanie natężeniem przepływu wody. Przepływ wody przez piec jest równy sumie przepływów przez poszczególne grzejniki.

Zadania:

 q_k

- 1. Wykorzystując przygotowane wcześniej modele pomieszczenia (2.1) i kotłowni (3.1), zbudować model budynku składającego się z kilku pomieszczeń (np. trzech), zakładając że:
 - pomieszczenia nie wymieniają ciepła między sobą przez wspólne ściany,
 - nie ma strat ciepła w pionach instalacji,
 - temperatura wody powracającej do kotłowni wynika z natężenia przepływu i temperatury wody wypływającej z poszczególnych grzejników,
 - wersje:
 - a) uproszczona: nie ma opóźnień transportowych, otwarty obieg wody
 - b) podstawowa: uwzględnia opóźnienia transportowe i zamkniety obieg wody
- 2. Początkowy punkt pracy obiektu wyznaczać przy założeniu, że przepływy wody w instalacji mają wartość nominalną f_{gN} i piec w pełni pokrywa zapotrzebowanie na ciepło przy danej temperaturze zewnętrznej.
- 3. Zbadać reakcję obiektu na zmianę temperatury na zewnątrz, moc kotła, dodatkowe zyski/straty ciepła u najbliższego i najdalszego z odbiorców, zmianę natężenia przepływu u najdalszego odbiorcy. Obserwować między innymi temperaturę wody powracającej do kotłowni. Badania wykonać w różnych punktach pracy, uruchamiając symulację od odpowiedniego stanu ustalonego.

Pytania:

- 1. Które zmienne są zmiennymi wejściowymi złożonego modelu?
- 2. Jaki wpływ mają opóźnienia transportowe na własności obiektu?

Zagadnienia dodatkowe:

1. Wykonać prosty model zastępczy budynku (budynek jako jedno zastępcze pomieszczenie) i porównać reakcje modelu zastępczego z modelem badanym w ćwiczeniu.

Sprawozdanie:

- 1) stan początkowy: ustalony nominalny / wybrany ustalony / ustalony w różnych punktach pracy,
- 2) badane reakcje na: skok T_{zew} , skok q_k , skok q_b skok f_{gb} 3) obserwacja T_{zew} i T_{kp} ,
- 4) wersja: uproszczona / podstawowa, 5) warunki: T_{kp} =średnia ważona, znaczące opóźnienie
- 6) odpowiedzi na pytania i wnioski

4.2. Regulacja centralna

Cel: Zapotrzebowanie na ciepło. Różne sposoby regulacji źródła

Regulacja centralna, czyli układ regulacji w źródle ciepła, polega na sterowaniu wydajnością źródła, tak by pokryć aktualne zapotrzebowanie na ciepło u odbiorców, które zależy przede wszystkim od temperatury na zewnątrz. Można to realizować na kilka sposobów, zależnie od wyboru zmiennej procesowej:

- regulacja według temperatury w reprezentatywnym pomieszczeniu,
- regulacja na podstawie wartości średniej u odbiorców,
- regulacja pogodowa wg temperatury wody zasilającej lub powrotnej.

Zadania:

- 1. Zrealizować układ regulacji według temperatury w reprezentatywnym pomieszczeniu oraz układ regulacji pogodowej wg temperatury wody zasilającej.
- 2. Zastosować najprostszy regulator zapewniający zerową wartość uchybu. Dobrać nastawy regulatora zapewniające stabilność układu.
- 3. Zbadać reakcję na zmiany temperatury zewnętrznej i dodatkowe źródła/straty ciepła w poszczególnych pomieszczeniach. Obserwować temperaturę w pomieszczeniach i temperaturę wody powracającej do kotłowni
- 4. Zbadać wrażliwość na zmiany nastaw regulatorów.
- 5. Porównać badane przypadki za pomocą zaproponowanych wskaźniki jakości

Pytania:

- 1. Jakie wskaźniki jakości zastosowano do porównania badanych układów?
- 2. Czy otrzymane wartości współczynników jakości zależą od punktu pracy obiektu?
- 3. Jaki wpływ mają opóźnienia transportowe na zachowanie obiektu?

Zagadnienia dodatkowe:

- 1. Zmienić układ regulacji centralnej zamiast temperatury wody zasilającej regulować temperaturę wody powrotnej.
- 2. Porównać własności dynamiczne układu z regulacją T_{kz} i T_{kp} .

Sprawozdanie

- regulacia centralna:
 - 1) poprawność, 2) punkt pracy: nominalny / różne punkty prac, 3) reakcja na: skok T_{zev} skok q_b
 - 4) obserwacja T_{wew} i T_{kp} , 5) wrażliwość na zmianę nastaw,
 - 6) zastosowanie wskaźników jakości, 7) odpowiedzi na pytania i wnioski

4.3. Budynek z kotłownią – model termokinetyczny i hydrauliczny

Cel: Proste modele hydrauliczne. Modele złożone – współdziałanie obiektów

Przepływ w wody w instalacji jest wymuszany przez pompę, która wytwarza różnicę ciśnień P_k . Rozpływ wody – przepływy w poszczególnych gałęziach zależą od oporów hydraulicznych – stałych (grzejnik, kocioł) i zmiennych (zawory). W prostej wersji modelu hydrauliki nie są uwzględniane straty ciśnienia na przewodach (opory hydrauliczne sieci mniejsze niż opory urządzeń) oraz ciśnienie konieczne do wpompowania wody na określoną wysokość budynku.

Zadania:

- 1. Zrealizować model opisujący zależności hydrauliczne w instalacji, zakładając:
 - wer.a) liniową zależność ciśnienia i przepływu, zerowy opór przewodów wersja minimalna,

- wer.b) liniową zależność ciśnienia i przepływu, niezerowy opór przewodów wersja podstawowa,
- wer.c) nieliniową zależność ciśnienia i przepływu $(P=Rf^2)$, niezerowy opór przewodów wersja rozszerzona.
- 2. Zrealizować model opisujący zależności hydrauliczne w instalacji, zakładając:

4.4. Współdziałanie układów regulacji

<u>Cel</u>: Różne typy regulacji. Współpraca kilku obwodów regulacji.

W układach ciepłowniczych stosowane są następujące typy regulacji:

- regulacja centralna (w źródle ciepła) i lokalna (u odbiorców),
- regulacja jakościowa (zmiana temperatury) i ilościowa (zmiana przepływu).

W ogrzewanym budynku wprowadzono:

- centralną regulację jakościową regulacja temperatury wody zasilającej lub powrotnej przez sterowanie mocą pieca,
- lokalną regulację ilościową regulacja temperatury w pomieszczeniu przez sterowanie przepływem wody przez grzejnik.

Zadania:

- 1. Porównać własności obiektu w następujących 3 przypadkach:
 - bez lokalnej regulacji temperatury pomieszczeń
 - regulacja temperatury typu PI działa tylko w części pomieszczeń
 - we wszystkich pomieszczeniach działa lokalna regulacja temperatury typu PI (dodatkowo)
- 2. Zbadać reakcję na zmiany temperatury zewnętrznej i dodatkowe źródła/straty ciepła w poszczególnych pomieszczeniach. Obserwować temperaturę w pomieszczeniach i temperaturę wody powracającej do kotłowni
- 3. Zbadać wrażliwość na zmiany nastaw regulatorów.
- 4. Porównać badane przypadki za pomocą zaproponowanych wskaźniki jakości

Pytania:

- 1. Jak dobrano nastawy regulatorów?
- 2. Czy dobór nastaw kolejno dla poszczególnych obwodów gwarantuje stabilność pracy wszystkich układów na raz?
- 3. Czy nastawy regulatora centralnego dobrane dla obiektu bez regulacji lokalnej będą równie dobre po włączeniu regulacji lokalnej?

Zagadnienia dodatkowe:

- 1. Zmienić układ regulacji centralnej zamiast temperatury wody zasilającej regulować temperaturę wody powrotnej.
- 2. Porównać własności dynamiczne układu z regulacją T_{kz} i T_{kp} .
- 3. Jak opóźnienia wpływają na własności dynamiczne układów regulacji na obiekcie?

4.5. Ogrzewanie grupy budynków

Cel: Wpływ opóźnień transportowych. Losowe zakłócenia.

Zadania:

- 1. Zasymulować działanie układu w ciągu doby
 - zmiany temperatury zewnętrznej w postaci sinusoidy

-	losowe zakłócenia - odchylenie temperatury dodatkowe źródła/zapotrzebowanie na ciepło	zewnętrznej	(zachmurzenie,	poryw	wiatru) i
					10