under Graduate Homework In Mathematics

SetTheory 6

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年12月14日

ROBEM I Assume A can be well-ordered, prove that $\mathcal{P}(A)$ can be linear-orderd.

SPETION. Assume (A, <) is a well-ordered set. For $X, Y \in \mathcal{P}(A), X \neq Y$, let $X \prec Y \iff \min X \Delta Y \in X$. Now we prove \prec is linear-order.

First by defination we get $X \not\prec X, \forall X \subset A$.

Second, for $X, Y \in \mathcal{P}, X \neq Y$, we have $X\Delta Y \neq \emptyset$. Since A is well-ordered, we get min $X\Delta Y$ exists. And min $X\Delta Y \in X\Delta Y \in X \cup Y$. So we get $X \prec Y \lor Y \prec X$.

Finally, assume $X \prec Y, Y \prec Z$, now we prove $X \prec Z$. Let $x = \min X\Delta Y \in X, y = \min Y\Delta Z \in Y$. Easily we get $X\Delta Z = (X\Delta Y)\Delta(Y\Delta Z)$. Assume $t = \min X\Delta Z$. Only need to prove $t \in X$. If not, we get $t \in Z$. If $t \in X\Delta Y$, then $t \geq x$. Since $t \notin X \wedge x \in X$, we get t > x. So $x \notin X\Delta Z$, so $x \in Z$. Noting $x \notin Y$, we get $x \in Y\Delta Z$, so x > y. So $y \notin X\Delta Y$, so $y \in X$. Since $y \notin Z$, we get $y \in X\Delta Z$. So t < y. So t < y < x < t, contradiction! Else we get $t \in Y\Delta Z$. Since $t \in Z$ we get $t \notin Y$. Then t > y. So $t \in Z$, thus $t \in X\Delta Z$. So $t \in Z$, thus $t \in X\Delta Z$. Then t > y, contradiction!

So we get \prec is a linear-order on $\mathcal{P}(A)$.

ROBEM II Assume $\{X_i : i \in I\}$ and $\{Y_i : i \in I\}$ are two disjoint families such that $X_i \approx Y_i$. Prove that $\bigcup_{i \in I} X_i \approx \bigcup_{i \in I} Y_i$

SOUTON. Since $X_i \approx Y_i$, we get $\text{bij}(X_i, Y_i) \neq \emptyset$. Let $\theta: I \to \bigcup_{i \in I} \text{bij}(X_i, Y_i)$ is a choice function. i.e., $\theta(i) \in \text{bij}(X_i, Y_i)$. Now consider $\tau = \bigcup \text{ran}(\theta)$. We will prove τ is bijection from $X := \bigcup_{i \in I} X_i$ to $\bigcup_{i \in I} Y_i$.

First we prove τ is a map. i.e., $\forall x \in X, \exists ! y \in Y, (x,y) \in \tau$. Since $X_i \cap X_j = \emptyset, \forall i \neq j$, we get $x \in X \to \exists ! i \in I, x \in X_i$. So $(x, \theta(i)(x)) \in \tau$. If $(x, z) \in \tau$, we get $\exists j \in I, (x, z) \in \theta(j)$. Since $x \in \text{dom}(\theta(j)) = X_j$, we get j = i. Since $\theta(i)$ is a map, we get $z = \theta(i)(x)$.

Second we prove τ is injection. Assume $x, t \in X, \tau(x) = \tau(t)$. Now we prove x = t. Since $Y_i \cap Y_j = \emptyset, \forall i \neq j$, we get $\exists ! i \in I, \tau(x) \in Y_i$. Since $\operatorname{ran}(\theta(j)) = Y_j, \forall j \in I$, we get $(x, \tau(x)) \in \theta(i)$. So $\theta(i)(x) = \tau(x)$. For the same reason we get $\theta(i)(t) = \tau(t)$. So $\theta(i)(x) = \theta(i)(t)$. Since $\theta(i)$ is bijection, we get x = t.

Finally we prove τ is surjection. Assume $y \in Y$, then $\exists i \in I, y \in Y_i$. So $\exists x \in X_i, \theta(i)(x) = y$. So $\tau(x) = y$. So τ is surjective.

ROBEM III Prove that $\prod_{0 < n < \omega} n = 2^{\aleph_0}$.

SPETION. Obviously
$$\prod_{0< n<\omega} n=\prod_{n<\omega} (n+1)=(\sup_{n<\omega} (n+1))^{|\omega|}=\aleph_0^{\aleph_0}=2^{\aleph_0}.$$

ROBEM IV Prove that $\prod_{n<\omega} \aleph_n = \aleph_\omega^{\aleph_0}$.

SOUTION. Obviously
$$\aleph_n > 0$$
, so we get $\prod_{n < \omega} \aleph_n = (\sup_{n < \omega} \aleph_n)^\omega = \aleph_\omega^{\aleph_0}$.

ROBEM V Prove that $\prod_{n<\omega+\omega}\aleph_n=\aleph_{\omega+\omega}^{\aleph_0}$.

SPETION. Let
$$f: \omega \to \omega + \omega$$
 be a bijection. Then $\prod_{n < \omega + \omega} \aleph_n = \prod_{n < \omega} \aleph_{f(n)}$. So we get $\prod_{n < \omega + \omega} = \left(\sup_{n < \omega} \aleph_{f(n)}\right)^{\aleph_0} = \aleph_{\omega + \omega}^{\aleph_0}$.

ROBEM VI For every ordinal α less than ω_1 , prove that $\exists X : \omega \to \mathcal{P}(\alpha)$ such that ordertype $(X(n)) \le \alpha^n$ and $\alpha = \bigcup \operatorname{ran} X$.

SOUTON. If not, assume β is the least ordinal less than ω_1 don't meet the requirement. If $\beta = \alpha + 1$, Since $\alpha < \beta$, we get $\exists X \in {}^{\omega}\mathcal{P}(\alpha)$ meet the requirement. Now we let $Y : \omega \to \mathcal{P}(\beta)$ and $Y(0) = \{\alpha\}, Y(n+1) = X(n)$. Then easily Y meet the requirement, contradiction! Else, β is limit ordinal. Since $\beta < \omega_1$ we get $\mathrm{cf}(\beta) \leq \omega$. Since β is limit ordinal we get $\mathrm{cf}(\beta) = \omega$. Consider $\theta \mathrm{cf}(\beta) \to \beta$ is unbounded, then $\beta = \bigcup \mathrm{ran} \theta$. For $n \in \mathrm{cf}(\beta)$, we have $\theta(n) < \beta$, so by AC, $\exists X : \mathrm{cf}(\beta) \times \omega \to \mathcal{P}(\beta)$ such that $\mathrm{ordertype}(X(n,m)) \leq \theta(n)^m$ and $\theta(n) = \bigcup_{m \in \omega} X(n,m)$. Now let $Y : \omega \to \mathcal{P}(\beta)$ and $Y(2^n(2m+1)-1) = X(n,m)$. Then easily ordertype $(Y(k)) \leq \beta^k$ and $\beta = \bigcup \mathrm{ran} \theta = \bigcup_{n,m \in \omega} X(n,m) = \bigcup_{k \in \omega} Y(k)$. contradiction! So such β doesn't exist.

ROBEM VII If κ is a cardinal and λ < order type (κ) , then $\kappa^{\lambda} = \sum_{\alpha < \kappa} |\alpha|^{\lambda}$.

SOLTION. When $\lambda = 0$ it's obvious, now we assume $\lambda > 0$. Easily $\kappa \geq \omega$ is a cardinal, so we get $\sum_{\alpha < \kappa} |\alpha|^{\lambda} = \kappa \sup_{\alpha < \kappa} |\alpha|^{\lambda} \leq \kappa \cdot \kappa^{\lambda} = \kappa^{\lambda}$. Now consider $f \in {}^{\lambda}\kappa$, we get f is bounded. So ${}^{\lambda}\kappa = \bigcup_{\alpha < \kappa} {}^{\lambda}\alpha$. So we get $\kappa^{\lambda} \leq \sum_{\alpha < \kappa} |\alpha|^{\lambda}$. Finally we get $\kappa^{\lambda} = \sum_{\alpha < \kappa} |\alpha|^{\lambda}$.

ROBEM VIII Prove that $\aleph_{\omega}^{\aleph_1} = 2^{\aleph_1} \cdot \aleph_{\omega}^{\aleph_0}$.