Lecture 12 Count Min Sketch, Count Sketch

Now we describe Count Min Sketch for solving (k, l)-point

query problem, and Count Sketch for solving (k, l2)-point

query problem (i.e., upon a query i', it returns X; such

that Xi = Xi ± 11X112/JR)

I Count Min Sketch

Let w, d be some parameters.

O Choose 2-wise independent hash functions $h_1, \dots, h_d : [n] \longrightarrow [w]$

Initialize C[l,s] =0 for each [=l=d] IES=w.

- ② for each item $e_t = (i_t, \Delta_t)$ in the stream for each l=1, ..., d, update $C[l, he(i_t)] \leftarrow C[l, he(i_t)] + \Delta_t$
- 3) for each iE[n], set $X_i = min C[l, he(i)]$
- (4) upon a query (i), output ti.

Lemma 1: Consider strict turnstile model (i.e. X70 at any time). Let $d = S2(\log(1/8))$ and w > 2k. Then for any fixed i E[n], $x_i \leq x_i$, and

[xi ≥ xi + ||x||,/k] ≤ S.

Proof: Fix I and iE[r]; Le(i) is the bucket that he hashes i to.

Ze=([l, he(i)] is the counter value that is haghed to.

Note $E[Z_{\ell}] = X_{i} + \sum_{i \neq i} P_{\ell}[\lambda_{\ell}(i') = h_{\ell}(i)] X_{i'}$ $= X_{i} + \sum_{i' \neq i} X_{i} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{i' \neq i'} + \sum_{i' \neq i'} X_{i'} / w \longrightarrow as h_{\ell} \text{ is choose}$ $= X_{$

Since we are considering strict turnstile, $Z_{\ell}-x_i$ is nonnegative. By Markov's inequality, $\Pr[Z_{\ell}-x_i>\frac{||x||_i}{k}]<\frac{1}{2}$

Since the d hash functions are independent, $\Pr[\min Z_{\ell} > \chi_i + \epsilon || x_{1}|_{i}] < (\frac{1}{z})^{d} < \epsilon$.

Note space complexity: $d \cdot w$ counters

If we set $d = \Omega((\ln n))$ and w = 3k, then with probability $1 - \frac{1}{n}$ for all $i \in [n]$, $X_i \leq x_i + \frac{\|X\|_1}{k}$.

The corresponding space is O(k | nn) counters

[If the total counter is at most m, then $O(k | nn \cdot | nm)$ bits of space)

I Count Sketch

Let w, d be some parameters.

① Choose 2-wise independent hash functions $h_{I, \dots}$ $h_{d}: [n] \longrightarrow [w];$

Choose 2-unse independent hash functions g_1 ... $g_d: [n] \rightarrow \{-1, 1\};$

Initialize C[l,s)=0 for each | ElEd

- (2) for each item $e_t = (i_t, \Delta_t)$ in the stream

 for each $l = 1, \dots, d$, update $C[l, h_e(i_t)] \leftarrow C[l, h_e(i_t)] + g(i_t) \cdot \Delta_t$
- (3) for each $i \in [n]$,

 set $X_i = \text{median} \{g_i(i) \cap C[i, h_i(i)], \dots, g_i(i) \cap C[l, h(i)]\}$
- (3) upon a query(i), output to

Intuition:

- Teach hash function he spreads the elements across w buckets
- 3 The hash function ge induces cancellations
- 3) Answer may be regative even if x>0; we take the median

Lemma 2. Let $d \ge 4 \log \frac{1}{8}$ and $w > 3k^2$. Then for any fixed $i \in [n]$, $E[X_i] = X_i$ and $Pr[|X_i - X_i| \ge \frac{||X||_2}{k}] \le 8$

Companson to Court Min

- 1. Error guarantee is with respect to $||x||_2$ instead of $||x||_1$. For $x \ge 0$, $||x||_2 \le ||x||_1$ and in Some cases $||x||_2 \ll ||x||_1$.
- 2. Space increases to $O(k^2 \log n)$ counters from $O(k \log n)$ counters. (corresponding to error prob $\leq \frac{1}{N}$)

Proof of Lemma 2:

Fix an iE[n] and de[d]. Let Ze=geci) C[l, he(i)].

For i'E[n] let Yi'be the indicator random varion ble that is I if he (i) = he(i'): that is i and i' collide

Note E[Xi) = E[Xii] = 1/w, as he 2-wise independent Note Ze = ge(i) C[l, he (i)]

= $g_{\ell}(i) g_{\ell}(i) \chi_i + \sum_{i' \neq i} g_{\ell}(i) g_{\ell}(i') \chi_{i'} \chi_{i'}$

Thus, $E[Z_{\ell}] = \chi_{i} + \sum_{i'\neq i} E[g_{\ell}(i')g_{\ell}(i')\chi_{i'}] \chi_{i'}$

Note Yi' is independent of Ge(i') and ge(i'), so Elge(i) ge(i')· Yi) = Elge(i) ge(i')]. Elki)

Now since $\exists \ell$ is z-wise independent, so $\Pr[\exists \ell(i) = g_{\ell}(i')] = \frac{1}{z}$, and $\Pr[\exists \ell(i') = g_{\ell}(i')] = \frac{1}{z}$

Thus E[ge(i) ge(i')] = 1x=+(-1)x==0

Thus $E[Z_e] = \chi_i + 0 = \chi_i$

Now we analyze Vorr[Ze].

$$V_{our}[Z_{\ell}] = E[(Z_{\ell} - \chi_{i})^{2}]$$

$$= E[(\sum_{i'\neq i} g_{\ell}(i) \cdot g_{\ell}(i') Y_{i'} \cdot \chi_{i'})^{2}]$$

$$= E[(\sum_{i'\neq i} Y_{i'}^{2} \chi_{i'}^{2} + \sum_{i'\neq i} \chi_{i'} \chi_{i'} g_{\ell}(i') g_{\ell}(i') Y_{i'} Y_{i'}]$$

$$= \sum_{i'\neq i} \chi_{i'}^{2} \cdot E[Y_{i'}^{2}] + 0 \leftarrow \text{ the same reason as}$$

$$\frac{2}{i^{2}} \times \frac{x_{i^{\prime}} \cdot EL_{i^{\prime}}}{1 + 0} \leftarrow \text{ the same }$$

$$\text{Yeason as }$$

$$\text{be fore}$$

Therefore
$$E[Z_e] = X_i$$
 and $Var_[Z_e] \le ||X||_2^2 w$.

Using Chebysheu
$$||F_E||Z_e - X_i| \ge \frac{||X||_2}{k}| \le \frac{||X||_2^2}{||X||_2^2} \le \frac{k^2}{w} < \frac{1}{3}$$

Via the Chernoff bound:

Thus with $d = \bigoplus((nn), w=4k^2, with prob. 1-\frac{1}{n},$ for all $i \in (n)$:

 $|X_i - X_i| \leq \frac{|X_i|}{|X_i|^5}$

Total space $O(k^2 \log n)$ counters, and $O(k^2 \ln n \cdot \ln m)$ bits (if total counter is $\leq m$)