Лекция 13; Иесидование функций методами дифференциального истемия

(13.1) Условия монотонности и экстремума орункуми

Teorema 13.1: Nyome $f:(a; b) \rightarrow \mathbb{R}$ guapapannyuhyena na (a; b) Frozga f'(x) > 0 na $(a; b) \Rightarrow f$ bozpaeraer na $(a; b) \Rightarrow f'(x) > 0$ na (a; b) f bozpaeraer na $(a; b) \Rightarrow f'(x) > 0$ na (a; b) f'(x) > 0 na $(a; b) \Rightarrow f$ ne yorbaer na $(a; b) \Rightarrow f'(x) > 0$ na (a; b) f'(x) = 0 na $(a; b) \Rightarrow f$ ne bozpaeraer na $(a; b) \Rightarrow f'(x) < 0$ na $(a; b) \Rightarrow f$ zorbaer na $(a; b) \Rightarrow f'(x) = 0$ na $(a; b) \Rightarrow f$ zorbaer na $(a; b) \Rightarrow f'(x) = 0$ na $(a; b) \Rightarrow f$ zorbaer na $(a; b) \Rightarrow f'(x) = 0$ na $(a; b) \Rightarrow f$ zorbaer na $(a; b) \Rightarrow f'(x) = 0$ na $(a; b) \Rightarrow f$

Lоказатель ство: Дил могек $x_1 < x_2$, где $x_1, x_2 \in (a; b)$, по теореме Лагранка $f(x_2) - f(x_1) = f'(\frac{a}{b})(x_2 - x_1)$, токка $x_1 < \frac{a}{b} < x_2$. Знак $f(x_2) - f(x_1)$ совпадает со знаном $f'(\frac{a}{b})$.

Теорена 13.2: (необходима условия внутреннего окстренуна) $P_{\text{ункумя}} = f: \mathcal{U}(x_0) \rightarrow \mathbb{R}$, где 10 лвияется точкой экстренуна. Гюгда мого f не дифференцируема b м. x_0 , либо $f'(x_0) = 0$.

Теорена 13.5: (достаточноге условия экстренуна в терминах парвай процьодной). Пусть $f: \mathcal{U}(x_0) \to |R|$ непрерпыта в тоже x_0 и зидофенницируема в $\mathcal{U}(x_0)$. Густь $\mathcal{U}_{x_0} := \{x \in \mathcal{U}(x_0): x < x_0\}$ и $\mathcal{U}_{x_0} := \{x \in \mathcal{U}(x_0): x > x_0\}$. Глогда

1) ecau f'(x)<0 que $x\in l^1(x)$ n f'(x)<0 que $x\in l^1_+(x)$ mo morra x0 ne absaemae morrai enempouyua que f;

2) ecau f'(x)<0 gue $x\in \mathring{U}(x)$ n f'(x)>0 gue $x\in \mathring{U}_{x}(x)$ mo motra x_{0} absoence motrous empororo renauros runningua gue f;

3) echu f'(x) > 0 gue $x \in \mathring{U}(x)$ u f'(x) < 0 gue $x \in \mathring{U}_{x}(x)$ mo mothe x_{0} absonce mornoi empororo rehaustoro manchique gue f;

4) ecsu f'(x)>0 gue $x\in \mathring{U}_{x}(x_{0})$ u f'(x)>0 gue $x\in \mathring{U}_{x}(x_{0})$ mo morka x_{0} ne absence morkoù enempeuyua gue f.

Пример 13.1 Рассмоприи $f(x) = 2x^2 + x^2 \sin \frac{1}{x}$, $x \neq 0$, f(0) = 0.

For war $x^2 \le f(x) \le 3x^2$, motro $x \ge 0$ alrestae motron emporo sonarsnoro suru sujus que f. Figu $x \ne 0$, usulu $f'(x) = 4x + 2x \sin \frac{1}{x} - \cos \frac{1}{x}$,

она не состраняет знак им в какой прокологой наприрастиость Q

Lokaza-renoctro: 1) to meopene 15.1 quekyne of amporo yonbaem na $U_{-}(x_{0})$. B cany herpepalhocan of θ mother to $\lim_{x\to\infty} f(x) = f(x_{0}).$

Forga $f(x) > f(x_0)$ pa $\mathcal{U}_{\underline{a}}(x_0)$. In a vericuo gonazobaeman, ruo $f(x) < f(x_0)$ gua baex $x \in \mathcal{U}_{\underline{a}}(x_0)$. To cost approxima of exports your forbaem of $\mathcal{U}(x_0)$, a mozica x_0 ne abserce sucombenantici.

α) Κακ β πηνεκπε 1) μοπμο ποκεχαίς, επο $f(z) > f(x_0)$ πρυ $z \in \mathring{U}(x_0)$ τι $f(z) > f(x_0)$ πρυ $x \in \mathring{U}_{x_0}(x_0)$. Γοσπονη f πυνεπ g ποτισ g επρογμώ νοκαντισμένη πυνευνήν.

Теорема 13.4: (достаточнае учловия экстрельная в терииная впешия производитя)

Пуеть $f: W(x_0) \to \mathbb{R}$ имеет b т. x_0 производнае до порядка nвключительно $(n \ge 1)$. Гозда всли $f'(x_0) = ... = f^{(n-1)}(x_0) = 0$ и $f''(x_0) \neq 0$,

то при n негётной b т. x_0 экстрелизма нет, а при n четной m жо экстрелизм есть (строчий локальнай минимум, если $f^{(n)}(x_0) \ge 0$;

строчий локальнай максимум, всли $f^{(n)}(x_0) < 0$).

Докада тельетво: Локальная формула Глейлера позволяет записать $f(x) - f(x_0) = f^{(n)}(x_0) (x_0)^n + d(x) (x_0)^n$

ege $d(x) \rightarrow 0$ now $x \rightarrow x_0$. Ferenwinen remandered buge $f(x) - f(x_0) = \left(f^{(n)}(x_0) + d(x) \right) (x - x_0)^n$.

Jockobby d(z) - бесконигно малая друмкум при $x \Rightarrow x_0$ и $f^{(n)}(x_0) \neq 0$, мо знак $f^{(n)}(x_0) + d(x)$ совпадает со знаком $f^{(n)}(x_0)$ для x достахотно близичес к x_0 . Гри неготном n днак $(x-x_0)^n$ меняется при переходе x гереу x_0 , поэтому меняется и знак припацения. Симбатемия тогка x_0 не является тогкой энстрему ма.

Thu is tempous grax $(x-x_0)^n$ he menaeted upon heperoge x teps x_0 , normally the menaemas a stack springulation. The more as there was more as there was more formally composed in the second of the second more as the second more composed outside x_0 and x_0 are also as x_0 and x_0 and x_0 and x_0 and x_0 and x_0 and x_0 are also as x_0 and x_0 an

13.2) Условия вытуклости функции

Oпределение 13.1: Румкумя $f:(a;b) \rightarrow \mathbb{R}$ называетая выпуклой вису на интервам (a;b) тогда и только тогда, истда для любия $x_1, x_2 \in (a;b)$ и любих $d_1 \ge 0$; $d_1 + d_2 = 1$ выполняется перавенство

(1)
$$f(d_1x_1 + d_2x_2) \leq \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Если при $x_1 \neq x_2$ и $d_1 \cdot d_2 \neq 0$ неравенетво является стропии, то сругищие называется стропо выпуклой вырх на (a; b) веш b(1) замению знак на противоположный, то получите определение выпуклой вырх сругищим.

Ecm
$$x = d_1 x_1 + d_2 x_2$$
, $d_1 + d_2 = 1$, mo
$$d_1 = \frac{x_2 - x}{x_2 - x_1}, \quad d_2 = \frac{x - x_1}{x_2 - x_1}.$$

Formory (1) nome no game at f buge $f(z) \leq \frac{x_2-z}{x_2-x_1} f(z_1) + \frac{x-x_1}{x_2-x_1} f(x_2)$. Fix. $x_1 < x_2 = x$, $\leq x \leq x_2$, yourn base patencies $x_2-x_1=(x_2-z)+(x-x_1)$, nonyone whose yearstile bring known busy given f ha (a,b);

(1)
$$\frac{f(x) - f(x_0)}{x - x_1} \leq \frac{f(x_0) - f(x)}{x_0 - x_0} \quad \text{then } x_1 < x < x_2 \text{ is such a } x_1, x_2 \in (0; 0).$$