MATB44 - Week 4 Tutorial Teaching Notes

Week 4 Topics

Exact Differential Equations

Definition and Recognition

- General form: M(x,y)dx + N(x,y)dy = 0
- Exactness condition: \$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\$
- Solution method: finding potential function \$\phi(x,y)\$
- Integration techniques and path independence

Method of Finding Integrating Factors

- When equations are not exact
- Types of integrating factors: \$\mu(x)\$, \$\mu(y)\$, \$\mu(xy)\$, \$\mu(x^2 + y^2)\$
- Systematic approach to finding appropriate integrating factors
- · Reduction to exact form and solution

Definition and Theory

What are Exact Differential Equations?

An exact differential equation has the form: \$M(x,y)dx + N(x,y)dy = 0\$

where there exists a function $\phi(x,y)$ such that: $\phi(x,y) \neq x$ that: $\phi(x,y) \neq x$ that: $\phi(x,y)$ and $\phi(x,y)$ and $\phi(x,y)$ are the exists a function $\phi(x,y)$ and $\phi(x,y)$ ar

Exactness Condition

The equation M(x,y)dx + N(x,y)dy = 0 is **exact** if and only if: $\frac{M}{\pi x} = \frac{N}{\pi x}$

Solution Method for Exact Equations

- 1. **Verify exactness**: Check that $\frac{M}{partial M}{partial y} = \frac{N}{partial N}{partial x}$
- 2. Find potential function: Integrate \$M\$ with respect to \$x\$ or \$N\$ with respect to \$y\$
- 3. Determine arbitrary function: Use the other partial derivative condition
- 4. Write general solution: \$\phi(x,y) = C\$

Integrating Factors

When an equation is **not exact**, we can sometimes find an **integrating factor** $\mu(x,y)$ such that: $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$

is exact.

Methods for Finding Integrating Factors

Method 1: $\mu = \mu(x)$ (depends only on x)

- Condition: \$\frac{P_y Q_x}{Q} = F(x)\$
- Formula: $I(x) = e^{\int F(x)dx}$

Method 2: $\mu = \mu(y)$ (depends only on y)

- Condition: \$\frac{P_y Q_x}{P} = F(y)\$
- Formula: \$I(y) = e^{-\int F(y)dy}\$

Method 3: $\mu = \mu(x/y)$ (depends on ratio x/y)

- Condition: $y^2 \cdot Cdot \frac{P_y Q_x}{xP + yQ} = F(x/y)$
- Formula: $1(x/y) = e^{\infty}$ where u = x/y

Method 4: $\mu = \mu(xy)$ (depends on product xy)

- Condition: $\frac{P_y Q_x}{yQ xP} = F(xy)$
- Formula: $1(xy) = 1(u) = e^{\infty}$ where u = xy

Method 5: Monomial Integrating Factor

- For equations with monomial terms \$x^a y^b\$
- General form: P(x,y)dx + Q(x,y)dy = 0
- Where $P = (x^{a_1} y^{a_2} + x^{b_1} y^{b_2})$ and $Q = (x^{c_0} y^{c_2} + x^{d_0} y^{d_2})$
- Integrating factor: $1 = x^a y^b$ where a, b are to be determined

Key Examples

example 1 exact

Solve: $(2xy + 3x^2)dx + (x^2 + 2y)dy = 0$ \$

Solution: Step 1: Check exactness

- $P(x,y) = 2xy + 3x^2$, $Q(x,y) = x^2 + 2y$
- $P_y = 2x$, $Q_x = 2x$

Since $P_y = Q_x = 2x$, the equation is **exact**.

Step 2: Find potential function From $\frac{\pi}{\pi} = P = 2xy + 3x^2$: $\frac{\pi}{x} = P = 2xy$

Step 3: Determine h(y) From $\frac{\phi}{\phi}$ $y = Q = x^2 + 2y$: $\frac{\phi}{\phi}$ $y = Q = x^2 + 2y$: $\frac{\phi}{\phi}$

Therefore: h'(y) = 2y, so $h(y) = y^2 + C$

Final solution: $x^2y + x^3 + y^2 = C$

example 2 applying method 1

Solve: $((x^2+1)y + x), dx + x(x^2+1), dy = 0$ \$

Solution: Step 1: Check exactness

- $P = (x^2+1)y + x$, $Q = x(x^2+1)$
- $P_y = x^2 + 1$, $Q_x = 3x^2 + 1$

Since $P_y \neq Q_x$, the equation is not exact.

Step 2: Try $\omega = \mu(x)$ Compute $\frac{P_y - Q_x}{Q} = \frac{(x^2+1) - (3x^2+1)}{x(x^2+1)} = \frac{-2x^2}{x(x^2+1)} = -\frac{2x}{x^2+1} = F(x)$ This depends only on \$x\$, so Method 1 applies.

Find the integrating factor: $\mu(x) = e^{\int F(x), dx} = e^{\int F(x), dx} = e^{\int F(x^2+1)dx} = e^{\int F(x^2+1)} = \frac{1}{x^2+1}$

Step 3: Multiply by \sum_{x^2+1} and solve as exact Multiply the equation by \sum_{x^2+1} : $\frac{1}{x^2+1}$: $\frac{x^2+1}$ Big) dx + x, dy = 0\$\$ Now $\frac{P = y + \frac{x}{x^2+1}}$, $\frac{Q = x}$ with $\frac{Q = x}$

Integrate $\hat P$ with respect to x: $\hat p$ int $\hat p$ int $\hat p$ with respect to x: $\hat p$ int $\hat p$ int

Final solution: $\$xy + \frac{1}{2}\ln(x^2+1) = C\$$

example 3 applying method 2

Solve: $\$((y^2+1)), dx + (xy), dy = 0\$$ with $\$P(y)=y^2+1\$, \$Q(x,y)=xy\$$

Solution: **Step 1**: Check condition for \$\mu(y)\$

- $P_y = 2y$, $Q_x = y$
- Compute $\frac{P_y Q_x}{P} = \frac{2y y}{y^2 + 1} = \frac{y}{y^2 + 1} = F(y)$, which depends only on \$y\$.

Step 2: Find integrating factor $\mu(y)$ (Method 2) $\mu(y) = e^{- \inf F(y), dy} = e^{- \inf \frac{y}{y^2+1}dy} = e^{- \frac{1}{2}\ln(y^2+1)} = \frac{1}{\sqrt{y^2+1}}$

Step 3: Multiply and check exactness After multiplying by $\mu(y)$:

- $\frac{y^2+1}{\sqrt{2+1}} = \frac{y^2+1}{\sqrt{2+1}} = \frac{y^2+1}{y^2+1}$
- $tilde Q = \mu Q = \frac{xy}{\sqrt{y^2+1}}$ Then $tilde P_y = \frac{y^2+1}}$ and $tilde Q_x = \frac{y}{\sqrt{y^2+1}}$, so the equation is exact.

Step 4: Solve the exact equation Integrate $\hat x^2 = 4$: Solve the exact equ

Final solution: $$x\simeq y^2+1$ = C\$\$

example 4 applying method 3

Solve: $\frac{x^2}{y}$, dx + x, dy = 0\$ with $P(x,y) = \frac{x^2}{y}$ \$, Q(x,y) = x\$

Solution (Method 3: \$\mu=\mu(x/y)\$): Step 1: Verify the condition depends only on \$u=x/y\$

- $P_y = -\frac{x^2}{y^2}$, $Q_x = 1$ (non-exact)
- Compute $\$y^2,\frac{P_y Q_x}{xP + yQ} = y^2,\frac{-\sqrt{x^2}{y^2} 1}{x\cdot \sqrt{x^2}{y} + y\cdot x} = -\frac{(x^2+y^2)}{x^3/y + xy} = -\frac{x^2+y^2}{x^3/y + xy} = -\frac{x^2$

 ${x^2(x/y)+y^2(x/y)} = -\frac{u^2+1}{u(u^2+1)} = -\frac{1}{u} = F(u)$ This depends only on u=x/y, so Method 3 applies.

Step 3: Multiply and check exactness Multiply by \$\mu=\dfrac{y}{x}\$:

- $\frac{y}{x}\cdot P = \frac{y}{x}\cdot P = x$
- \$\tilde Q = \dfrac{y}{x}\cdot x = y\$ Then \$\tilde P_y = 0\$, \$\tilde Q_x = 0\$, so it is exact.

Step 4: Solve Integrate $\hat P$ with respect to x: $\hat x$: $\hat x$

Final solution: $$\star \frac{1}{2}x^2 + \frac{1}{2}y^2 = C$ \$

example 5 applying method 4

Solve: $x\left(1+(xy)^2\right)$, $dx + y\left(1+(xy)^2\right)$, dy = 0 with $P=x(1+(xy)^2)$, $Q=y(1+(xy)^2)$

Solution (Method 4: \$\mu=\mu(xy)\$): Step 1: Verify the condition depends only on \$u=xy\$

- $P_y = \beta(x(1+u^2)) = x\cdot 2u, y = x\cdot 2u = 2x^2y$
- \$Q_x = \partial_x\big[y(1+u^2)\big] = y\cdot 2u,u_x = y\cdot 2u\cdot y = 2y^2u = 2xy^3\$
- Compute \$\$\frac{P_y Q_x}{yQ xP} = \frac{2xy(x^2 y^2)}{,(y^2 x^2)(1+u^2),} = \frac{2u}{1+u^2} = F(u)\$\$ This depends only on \$u=xy\$, so Method 4 applies.

Step 3: Multiply and solve as exact Multiply by $\mu_{1}(xy)^2$:

- $\frac{x(1+(xy)^2)}{1+(xy)^2} = x$
- $\hat Q = \frac{y(1+(xy)^2)}{1+(xy)^2} = y$ Then the equation becomes x, dx + y, dy = 0, which is exact with potential $\frac{1}{2}x^2 + \frac{1}{2}y^2 = C$

Final solution: $$\frac{1}{2}x^2 + \frac{1}{2}y^2 = C$$

example 6 applying method 5

Solve: $(y^2 + 3xy), dx + (x^2 + xy), dy = 0$ \$ with $P=y^2+3xy$ \$, $Q=x^2+xy$ \$.

Solution (Method 5: Monomial Integrating Factor):

Step 1: Check exactness $P_y = 2y + 3x$, \qquad $Q_x = 2x + y$; (\neq)\$\$

Step 2: Assume a monomial integrating factor $\mbox{mu}(x,y) = x^a y^b$ and require exactness of $\mbox{mu P,dx + mu Q,dy=0}$.

Step 3: Expand μP and μQ \$\$x^a y^b P = x^a y^{b+2} + 3x^{a+1}y^{b+1}, \quad x^a y^b Q = x^{a+2}y^{b} + x^{a+1}y^{b+1}.\$\$

Step 4: Differentiate $\$ partial_y(x^a y^b P) = (b+2)x^a y^{b+1} + 3(b+1)x^{a+1}y^{b},\$\$ \$\partial_x(x^a y^b Q) = (a+2)x^{a+1}y^{b} + (a+1)x^{a}y^{b+1}.\$\$

Step 5: Match coefficients Match like monomials $x^a y^{b+1}$ and $x^{a+1}y^{b}$: b+2 = a+1, qquad 3(b+1) = a+2; b=0.

Step 6: Integrating factor $\$ mu(x,y) = x.\$\$

Step 7: Multiply and check exactness After multiplying by x: $\frac{1}{2}$ Wildle P = x y^2 + 3x^2 y, \quad \tilde Q = x^3 + x^2 y, \\$ \$\tilde P_y = 2xy + 3x^2, \quad \tilde Q_x = 3x^2 + 2xy ;\Rightarrow; \text{exact}.\$\$

Step 8: Potential function From $\phi_x = \theta$: \$\$\phi(x,y) = \int (x y^2 + 3x^2 y),dx = \tfrac{1} {2}x^2 y^2 + x^3 y + g(y).\$\$

Step 9: Determine g(y) \$\$\phi_y = x^2 y + x^3 + g'(y) = \tilde Q = x^3 + x^2 y ;\Rightarrow; g'(y)=0.\$

Step 10: Implicit solution $$\frac{1}{2}x^2 y^2 + x^3 y = C.$$