Devoir surveillé n° 6 Version 1

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X - 1)^2$.

II. Polynômes de Tchebychev.

On définit la suite de polynômes de Tchebychev, notée $(P_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}$, par :

$$P_0 = 1,$$
 $P_1 = X,$ $\forall n \in \mathbb{N}, P_{n+2} = 2XP_{n+1} - P_n.$

On dit qu'un polynôme P est pair si P(-X) = P, impair si P(-X) = -P.

- 1) a) Montrer que, pour tout $n \in \mathbb{N}$, P_n est de degré n.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$, P_n a pour coefficient dominant 2^{n-1} .
 - c) Montrer que, pour tout $n \in \mathbb{N}$, le polynôme P_n est de même parité que n.
 - d) Calculer $P_n(1)$, $P_n(-1)$ et $P_n(0)$ pour tout $n \in \mathbb{N}$.
 - e) Soit $x \in \mathbb{R}$, quelle relation de récurrence vérifie la suite $(P_n(x))_{n \in \mathbb{N}}$? En déduire la valeur de $P_n(x)$, pour tout $n \in \mathbb{N}$. On discutera les trois cas suivants.
 - i) Si |x| > 1.
 - **ii)** Si |x| = 1.
 - **iii)** Si |x| < 1.
- 2) a) Montrer que $\forall n \in \mathbb{N}, \ \forall \alpha \in \mathbb{R}, \ P_n(\cos \alpha) = \cos(n\alpha)$.
 - b) Montrer que, pour tout $n \in \mathbb{N}$, P_n est l'unique polynôme de $\mathbb{R}[X]$ vérifiant la relation : $\forall \alpha \in \mathbb{R}, \ P_n(\cos \alpha) = \cos(n\alpha)$.
 - c) Déterminer, pour tout $n \in \mathbb{N}$, toutes les racines de P_n .
 - d) Déterminer, pour tout $n \in \mathbb{N}$, toutes les racines de P'_n .
- 3) Démontrer que $\forall n \in \mathbb{N}, P_n \wedge P_{n+1} = 1.$
- 4) Écrire dans le langage Python une fonction Tchebychev(n), prenant en argument un entier naturel n et renvoyant la liste des coefficients de P_n .

Ainsi, Tchebychev(2) renverra [2,0,-1], car $P_2 = 2X^2 - 1$.

Il sera apprécié que chaque boucle soit accompagnée de son invariant.

III. Une équation fonctionnelle.

Partie 1 : endomorphismes continus de $(\mathbb{R}, +)$.

On veut montrer que l'ensemble des homothéties de \mathbb{R} est égal à l'ensemble \mathscr{E} des endomorphismes continus du groupe additif $(\mathbb{R},+)$, c'est-à-dire des fonctions **continues** $f:\mathbb{R}\to\mathbb{R}$ vérifiant

$$\forall x, y \in \mathbb{R} , f(x+y) = f(x) + f(y).$$

- 1) Soit $f \in \mathscr{E}$.
 - a) Montrer que : $\forall x \in \mathbb{R}, \ \forall k \in \mathbb{Z}, \ f(kx) = kf(x).$
 - b) On pose $\lambda = f(1)$. Démontrer que : $\forall x \in \mathbb{Q}$, $f(x) = \lambda x$.

 Indication : si $x \in \mathbb{Q}$, on pourra multiplier x par un entier pour obtenir un entier et utiliser la question précédente.
- 2) Conclure.

Partie 2 : une équation fonctionnelle.

On veut maintenant déterminer l'ensemble \mathcal{E}' des fonctions f de \mathbb{R} vers \mathbb{R} continues en $\mathbf{0}$ vérifiant :

$$\forall x, y \in \mathbb{R} , f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}.$$
 (\\(\beta\))

En particulier, cela signifie que $\forall x, y \in \mathbb{R}$, $1 + f(x)f(y) \neq 0$.

- 3) Quelles sont les fonctions constantes de \mathcal{E}' ?
- 4) Soit f un élément de \mathscr{E}' pour lequel il existe un $x_0 \in \mathbb{R}$ tel que $|f(x_0)| = 1$. Montrer que f est une fonction constante sur \mathbb{R} .
- 5) Soit f un élément de \mathcal{E}' qui n'est **pas** une fonction constante.
 - a) Montrer que f(0) = 0. Étudier la parité de f.
 - **b)** Montrer que f est continue sur \mathbb{R} .
 - c) En déduire que, pour tout réel x, on a |f(x)| < 1.
 - d) Justifier que th réalise une bijection de $\mathbb R$ sur un intervalle J qu'on précisera. On note Argth sa réciproque.
 - e) On pose : $g: x \mapsto \operatorname{Argth}(f(x))$. Justifier l'existence et la continuité de g sur \mathbb{R} .
 - f) Vérifier que la fonction the est un élément de \mathcal{E}' .
 - g) En déduire que g est un élément de \mathscr{E} .
- **6)** Donner l'expression des fonctions non constantes de \mathcal{E}' .
- 7) Conclure en donnant une description complète de \mathcal{E}' .

— FIN —