Next Steps: Vitamin D and Type 2 Diabetes Research Project

Project Status

Phase 1 Complete: Literature review, hypothesis development, aims paper, and computational infrastructure setup

Immediate Next Steps (Priority Order)

1. Data Acquisition and Access 🔐

Timeline: 1-2 months

Action Items:

- [] Apply for dbGaP Access
- Submit data access request for identified datasets (ARIC, JHS, CARDIA, WHI)
- Prepare Data Use Certification (DUC)
- Complete required training (e.g., "Protecting Human Research Participants")
- Estimated approval time: 4-8 weeks
- [] Institutional Approvals
- Obtain IRB approval/exemption for secondary data analysis
- Get institutional signing official approval for dbGaP
- Secure data storage infrastructure approval
- [] UK Biobank Application
- · Submit research proposal to UK Biobank
- · Request African ancestry subset data
- Budget for access fees (~\$3,000-5,000)

Resources Needed:

- Institutional credentials and signing official
- Secure computing environment (meets NIH security requirements)
- Budget for UK Biobank access

2. Real Data Analysis Pipeline Development 🔬

Timeline: 2-3 months (parallel with data acquisition)

Genomics Analysis:

- [] Quality Control Pipeline
- Implement ancestry verification using PCA
- Set up genotype QC filters (call rate, HWE, MAF)

- Prepare imputation pipeline (TOPMed reference panel)
- [] GWAS Analysis
- · Adapt existing scripts for real data
- Implement population stratification correction (PCs)
- Set up conditional analysis for independent signals
- · Plan meta-analysis across cohorts
- [] Functional Annotation
- Set up VEP (Variant Effect Predictor)
- Integrate CADD scores, PolyPhen, SIFT
- Map variants to vitamin D pathway genes

Proteomics Analysis:

- [] Data Preprocessing
- Normalize protein abundance data
- Handle missing values appropriately
- Batch effect correction
- [] Association Testing
- Protein-T2D associations
- Protein-vitamin D associations
- Mediation analysis framework

Metabolomics Analysis:

- [] Metabolite Profiling
- Identify vitamin D metabolites
- Glucose metabolism markers
- Lipid profiles
- [] Pathway Analysis
- KEGG pathway enrichment
- Metabolite set enrichment analysis

3. Multi-Omics Integration 🧬

Timeline: 3-4 months

Integration Approaches:

- [] Mendelian Randomization
- Implement two-sample MR
- Test vitamin D → T2D causality
- Sensitivity analyses (MR-Egger, weighted median)
- [] Network Analysis

- · Build gene-protein-metabolite networks
- Identify key regulatory nodes
- Community detection algorithms
- [] Machine Learning Models
- Develop predictive models for T2D risk
- Feature importance analysis
- Cross-validation strategies

4. Manuscript Preparation 📝

Timeline: 4-6 months

Primary Manuscript:

- [] Results Section
- Generate all figures and tables
- Write comprehensive results narrative
- · Statistical validation
- [] Discussion
- Interpret findings in biological context
- Compare with existing literature
- Address limitations
- Clinical implications
- [] Target Journals
- Primary: Nature Genetics, Nature Communications
- Secondary: Diabetes, Diabetologia
- Backup: PLoS Genetics, BMC Genomics

Supplementary Materials:

- [] Supplementary figures and tables
- [] Detailed methods
- [] Code availability (GitHub repository)
- [] Data availability statements

5. Thesis Committee Milestones 🎓

Committee Meeting #1 (Month 3-4):

- [] Present data acquisition progress
- [] Show preliminary QC results
- [] Discuss any challenges with real data

Committee Meeting #2 (Month 6-7):

• [] Present initial GWAS findings

- [] Show proteomics/metabolomics results
- [] Discuss integration strategies

Committee Meeting #3 (Month 9-10):

- [] Present integrated multi-omics results
- [] Show draft manuscript figures
- [] Discuss publication timeline

Thesis Defense (Month 12-15):

- [] Complete manuscript submission
- [] Prepare comprehensive thesis document
- [] Create defense presentation

6. Skills Development 📚

Computational Skills:

- [] Advanced R/Bioconductor
- GWAS packages (PLINK, GCTA, BOLT-LMM)
- Proteomics (limma, DEgMS)
- Metabolomics (xcms, MetaboAnalystR)
- [] Python for Bioinformatics
- · Pandas for data manipulation
- Scikit-learn for ML
- NetworkX for network analysis
- [] High-Performance Computing
- Cluster job submission (SLURM/PBS)
- · Parallel processing
- Memory optimization

Statistical Methods:

- [] Mendelian Randomization theory and practice
- [] Mixed models for related individuals
- [] Multiple testing correction strategies
- [] Causal inference methods

7. Collaboration and Networking 🤝

Internal Collaborations:

- [] Identify statistical genetics expert for consultation
- [] Connect with proteomics/metabolomics core facilities
- [] Engage clinical collaborators for interpretation

External Networking:

• [] Present at departmental seminars

- [] Submit abstracts to conferences:
- American Society of Human Genetics (ASHG)
- American Diabetes Association (ADA)
- Keystone Symposia
- [] Join relevant working groups (e.g., T2D-GENES, CHARGE)

8. Funding Opportunities 💰

Predoctoral Fellowships:

- [] NIH F31 (Ruth L. Kirschstein NRSA)
- Deadline: April, August, December
- Supports 2-3 years of PhD research
- [] ADA Predoctoral Fellowship
- Deadline: Usually January
- Diabetes-focused research
- [] Diversity Supplements
- If PI has active NIH grant
- · Rolling deadlines

Travel Grants:

- [] Conference-specific travel awards
- [] University graduate student travel funds
- [] Professional society student awards

Risk Mitigation Strategies

Potential Challenges:

- 1. Data Access Delays
 - Mitigation: Apply early, have backup datasets identified
 - Alternative: Use summary statistics for initial analyses

2. Limited Sample Sizes

- Mitigation: Meta-analysis across multiple cohorts
- Alternative: Focus on effect size rather than just significance

3. Null Findings

- Mitigation: Frame as important negative results
- Alternative: Emphasize methodological contributions

4. Technical Challenges

- Mitigation: Build in buffer time for troubleshooting
- Alternative: Seek expert consultation early

Success Metrics

Year 1:

- <a> Aims paper complete
- Computational infrastructure ready
- @ Data access obtained
- @ Initial GWAS results

Year 2:

- @ First manuscript submitted
- @ Conference presentation

Year 3:

Resources and Support

Computational Resources:

- University HPC cluster
- Cloud computing credits (AWS, Google Cloud)
- Local workstation for development

Data Storage:

- Secure server meeting NIH requirements
- Encrypted backup systems
- Version control (Git/GitHub)

Mentorship:

- Primary advisor (weekly meetings)
- Thesis committee (quarterly meetings)
- Statistical genetics consultant (as needed)
- Clinical collaborator (monthly check-ins)

Timeline Visualization

```
Month 1-2: Data access applications
Month 2-4: Pipeline development & testing
Month 4-6: Real data QC & initial analyses
Month 6-9: Multi-omics integration
Month 9-12: Manuscript writing
Month 12-15: Revisions & thesis preparation
Month 15-18: Defense & graduation
```

Contact and Collaboration

For questions or collaboration opportunities related to this project:

- **Repository**: https://github.com/ej777spirit/Abacus-VitD-DM2

- **Primary Investigator**: [Your Name]

- Institution: [Your Institution]

Last Updated: October 1, 2025

Status: Phase 1 Complete - Ready for Data Acquisition Phase