

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 171011
1.0	Matemática - Álgebra		1.a Série	М	03/04/2017	
Questões Testes Páginas Professor(es)						
11	6	7	Fábio Cáceres / Fátima Regina / Sílvia Guitti			

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)		Turma	N.o
Nota	Professor	Assinatura do	o Professor

Instruções

- 1. Coloque nome, número e turma em todas as folhas da prova.
- 2. Leia a prova com calma e atenção, selecione por onde começar.
- 3. Comece pelo que julgar mais fácil e tente não deixar nenhuma questão em branco.
- 4. Tenha ordem e capricho, tudo é importante na sua avaliação.
- 5. A prova pode ser feita a lápis com respostas a tinta.
- 6. Questões rasuradas ou desorganizadas serão anuladas.
- 7. Não escreva no tampo da mesa. Existem espaços reservados para rascunho na própria prova.
- 8. Não é permitido o uso de calculadoras.
- 9. A compreensão da prova é parte integrante dela, portanto não faça perguntas ao professor aplicador.
- 10. O gabarito será publicado na internet após as 14h30 min.

Boa sorte! Ótima prova!

Note e Adote:	
$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$ $(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$ $x^3 + y^3 = (x+y) \cdot (x^2 - xy + y^2)$	$\begin{vmatrix} x^3 - y^3 = (x - y) \cdot (x^2 + xy + y^2) \\ (x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz \end{vmatrix}$

Parte I: Testes (valor: 3,0)

- 01. (UEM-2012) Num grupo de 87 pessoas, 51 possuem automóvel, 42 possuem motos e 5 pessoas não possuem nenhum dos dois veículos. O número de pessoas que possuem automóvel e moto é:
 - a. 4
- b. 11
- c. 17
- d. 19
- e. 14
- 02. (CFTMG-2017) Se x e y são dois números reais positivos, então a expressão $\left(x \cdot \sqrt{\frac{y}{x}} + y \cdot \sqrt{\frac{x}{y}}\right)^2$ é equivalente a:
 - a. \sqrt{xy}
 - b. 2xy
 - c. 4*xv*
 - d. $2\sqrt{xy}$
 - e. xy

- 03. O único par de números **naturais** m e n que satisfaz a igualdade $m^2 n^2 = 17$ é tal que:
 - a. o seu produto é 72.
 - b. a sua soma é 18.
 - c. o seu quociente é 17.
 - d. a sua diferença é 2.
 - e. não existe par de números naturais que satisfaça essa igualdade.
- 04. (IFSC-2015) Leia e analise as seguintes afirmações:
 - I. $(a+b)^2 = a^2 + b^2$, para quaisquer $a \in b$ reais.
 - II. $\sqrt{a^2 + b^2} = a + b$, para quaisquer $a \in b$ reais.
 - III. $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$, para quaisquer $a \in b$ naturais
 - IV. $\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$, para quaisquer a, b e c racionais diferentes de zero.
 - V. $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$, para quaisquer a, b e c racionais diferentes de zero.

Assinale a alternativa correta:

- a. Apenas as afirmações II, III, IV e V são verdadeiras.
- b. Apenas as afirmações II, III e V são verdadeiras.
- c. Apenas as afirmações I, III e IV são verdadeiras.
- d. Apenas as afirmações III e V são verdadeiras.
- e. Todas as afirmações são verdadeiras.
- 05. (Mackenzie-2015) Se $A = \{x \in \mathbb{N} / x \text{ \'e divisor de } 60\}$ e $B = \{x \in \mathbb{N} / 1 \le x \le 5\}$, então o número de elementos do conjunto das **partes** de $A \cap B$ é um número: (conjunto das partes de $A \cap B$, e indicase $P(A \cap B)$, é o cojunto formado por todos os subconjuntos de $A \cap B$).
 - a. múltiplo de 4, menor que 48.
 - b. primo entre 27 e 33.
 - c. ímpar, múltiplo de 3.
 - d. par, múltiplo de 6.
 - e. pertencente ao conjunto $\{x \in \mathbb{N} / 32 < x \le 40\}$
- 06. (IFAL-2016) Reduzindo a expressão $\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2} + \sqrt{2}} \cdot \sqrt{2 \sqrt{2 + \sqrt{2}}}$ ao numeral mais simples, temos:
 - a. $\sqrt{\underline{6}}$
 - b. $\sqrt{2}$
 - c. $2 \sqrt{2}$
 - d. 2
 - e. $2 + \sqrt{2}$

Quadro de Respostas

- Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.
 - 2. Rasura = Anulação.

ı		01	02	03	04	05	06
	a.						
l	b.						
I	C.						
	d.						
	e.						

Parte II: Questões (valor: 7,0)

01. (valor: 0,5) Dado o conjunto $A = \{\emptyset; \{2,3\}; 2; 3; \{5\}\}$, após analisar as afirmações, assinale com (**V**) o que for verdadeiro e, com (**F**), o que for falso. (lê-se: \in : pertence, \notin : não pertence, $A \subset B$: A está contido em B e A $\not\subset$ B: A não está contido em B).

$$\emptyset \in A$$
 () $\{3\} \notin A$ () $\{2, \{5\}\} \subset A$ () $\emptyset \not\subset A$ () $\{\{5\}\} \subset A$ ()

02. (valor: 0,5) Nos diagramas a seguir hachure (pinte) as regiões que representam os seguintes conjuntos:

a.
$$(B \cap C) - (A \cup D)$$

b.
$$(C-A)\cap (C-B)$$

03. (valor: 0,5) Sendo A = $\{x \in \mathbb{Z} / -3 < x \le 1\}$, B = $\{x \in \mathbb{N} / x^2 \le 36\}$ e C = $\{x \in \mathbb{N} / x^2 - 3x - 18 = 0\}$ represente por enumeração os seguintes conjuntos:

- $\mathsf{a.\ } A = \{$
- b. B = {
- c. $C = \{$
- $\text{d. } A-B=\{$

$$e. \bigcirc C = \{$$

(lê se: $\bigcap_{\mathbf{R}} \mathbf{C}$, complementar de \mathbf{C} em relação ao conjunto \mathbf{B})

- 04. (valor: 0,5) Em uma pesquisa de mercado, foram entrevistados consumidores sobre suas preferências em relação aos produtos A e B. Os resultados da pesquisa indicaram que:
 - 310 pessoas compram o produto A;
 - 220 pessoas compram o produto B;
 - 110 pessoas compram os produtos A e B;
 - 510 pessoas não compram nenhum do dois produtos.

Qual é o número de consumidores entrevistados? (Sugestão: faça o diagrama de Venn-Euler).

05. (valor: 1,0) Simplifique as expressões:

a.
$$\frac{123}{41} - 2 \cdot \left(23\frac{7}{19} - 21\frac{7}{19}\right)$$

b.
$$\frac{\left(0,\overline{27} + \frac{8}{11}\right) - \frac{1}{4}}{0,\overline{6} + \frac{1}{12}}$$

Aluno(a)	Turma	N.o	P 171011
			p 5

06. (valor: 1,0) Simplifique as expressões:

a.
$$\frac{\left(-2^{2^3}\right) \cdot \left[\left(-32\right)^{20}\right]^{\frac{1}{4}}}{\left(-0.25^{-4}\right)^2}$$

b.
$$\frac{\left(-10000^3\right)^6 \cdot \left(-0.01^2\right)^3}{-100^{3^2}}$$

07. (valor: 1,0) Após analisar as afirmações a seguir sobre produtos notáveis, fatoração e frações algébricas, assinale com (**V**) o que for verdadeiro e, com (**F**), o que for falso.

()
$$(3a^2 - 2b)^2 = 9a^4 - 12a^2b + 4b^2$$

$$(a-b)^3 = a^3 - b^3$$

()
$$64a^2 - 49b^2 = (8a - 7b) \cdot (8a + 7b)$$

()
$$4a^2 - 16b^2 = (2a - 4b)^2$$

$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

()
$$\frac{3x-3}{x^2-1} = \frac{3}{x+1}$$
, para $x \ne 1$ e $x \ne -1$

()
$$\frac{x^2 - 6x + 9}{x + 3} = x + 3$$
, para $x \neq -3$

()
$$\frac{x^2 - 3x - 10}{x^2 + 4x + 4} = \frac{x - 5}{x + 2}$$
, para $x \neq -2$

()
$$\frac{4x^2 + y^2 - 4xy}{8x^3 - 4x^2y - 2xy^2 + y^3} = \frac{1}{2x + y}$$
, para $2x + y \neq 0$

()
$$\frac{x^2 - xy}{xy - y^2} = \frac{x}{y}$$
, para $y \neq 0$

08. (valor: 0,5) Simplifique:

$$2 \cdot (2x-3)^2 - 3 \cdot (3x+4) \cdot (3x-4) - (2-3x)^3$$

09. (valor: 0,5) Resolva a equação abaixo:

$$\frac{2x}{x-1} - \frac{3}{3-x} = \frac{x+3}{x^2 - 4x + 3}$$

Aluno(a)	Turma	N.o	P 171011
			p 7

10. (valor: 0,5) **Leia com atenção**: Observe a fatoração por agrupamento do polinômio $p(x) = x^3 - 3x^2 - 4x + 12$.

$$p(x) = x^{3} - 3x^{2} - 4x + 12$$

$$p(x) = x^{2} (x - 3) - 4(x - 3)$$

$$p(x) = (x - 3) (x^{2} - 4)$$

$$p(x) = (x - 3) (x + 2) (x - 2)$$

Note que o polinômio $p(x) = x^3 - 3x + 2$ não apresenta os quatro termos como no exemplo acima resolvido, então usamos o seguinte artifício que é decompor o termo 3x em duas parcelas, que devem ser convenientemente escolhidas. Neste caso, vamos transformar -3x em -x-2x. Observe como vamos proceder:

$$p(x) = x^{3} - 3x + 2$$

$$p(x) = x^{3} - x - 2x + 2$$

$$p(x) = x(x^{2} - 1) - 2(x - 1)$$

$$p(x) = x(x - 1)(x + 1) - 2(x - 1)$$

$$p(x) = (x - 1)(x^{2} + x - 2)$$

$$p(x) = (x - 1)(x + 2)(x - 1)$$

$$p(x) = (x - 1)^{2}(x + 2)$$

Agora fatore o polinômio $p(x) = x^3 - 7x + 6$

11. (valor: 0,5) (OBM) Determine o valor da expressão
$$\frac{2015^3 - 1}{1 + 2015^2 + 2016^2}$$

Parte I: Testes (valor: 3,0)

01. (UEM-2012) Num grupo de 87 pessoas, 51 possuem automóvel, 42 possuem motos e 5 pessoas não possuem nenhum dos dois veículos. O número de pessoas que possuem automóvel e moto é:

a. 4

c. 17

d. 19

e. 14

Sendo A e M, respectivamente, os conjuntos das pessoas que possuem automóvel e moto e x é o número de pessoas que possuem ambos veículos (automóvel e moto).

Assim,

$$51 - x + x + 42 - x + 5 = 87 \Leftrightarrow$$

$$\Leftrightarrow$$
 98 – x = 87 \Leftrightarrow x = 11

Portanto, 11 pessoas possuem automóvel e moto.

02. (CFTMG-2017) Se x e y são dois números reais positivos, então a expressão $\left(x \cdot \sqrt{\frac{y}{x}} + y \cdot \sqrt{\frac{x}{y}}\right)^2$ é equivalente a:

a. \sqrt{xy}

b. 2*xy*

$$\left(x\cdot\sqrt{\frac{y}{x}}+y\cdot\sqrt{\frac{x}{y}}\right)^2 = \left(x\cdot\sqrt{\frac{y}{x}}\right)^2 + 2\left(x\cdot\sqrt{\frac{y}{x}}\right)\cdot\left(y\cdot\sqrt{\frac{x}{y}}\right) + \left(y\cdot\sqrt{\frac{x}{y}}\right)^2 =$$

c. 4*xy*

d.
$$2\sqrt{xy}$$
 = $x^2 \cdot \frac{y}{x} + 2x \cdot y \cdot \sqrt{\frac{y}{x} \cdot \frac{x}{y}} + y^2 \cdot \frac{x}{y} = x \cdot y + 2x \cdot y + x \cdot y$, pois $x > 0$ e $y > 0$

e. xy

Portanto,
$$\left(x\sqrt{\frac{y}{x}} + y \cdot \sqrt{\frac{x}{y}}\right)^2 = 4x \cdot y$$

- 03. O único par de números **naturais** m e n que satisfaz a igualdade $m^2 n^2 = 17$ é tal que:
 - a. o seu produto é 72.
 - b. a sua soma é 18.
 - c. o seu quociente é 17.
 - d. a sua diferença é 2.
 - e. não existe par de números naturais que satisfaça essa igualdade.

Sendo m, $n \in \mathbb{N}$, segue que $m^2 - n^2 = 17 \Leftrightarrow (m+n) \cdot (m-n) = 17 \cdot 1$

Assim,
$$\begin{cases} m+n=17\\ m-n=1 \end{cases}$$

Resolvendo o sistema acima, obteremos m = 9 e n = 8

Portanto, o único par de números naturais que satisfaz a igualdade tem produto $9 \cdot 8 = 72$

- 04. (IFSC-2015) Leia e analise as seguintes afirmações:
 - I. $(a+b)^2 = a^2 + b^2$, para quaisquer $a \in b$ reais.
 - II. $\sqrt{a^2 + b^2} = a + b$, para quaisquer $a \in b$ reais.
 - III. $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$, para quaisquer $a \in b$ naturais
 - IV. $\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$, para quaisquer a, b e c racionais differentes de zero.
 - V. $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$, para quaisquer a, b e c racionais diferentes de zero.

Assinale a alternativa correta:

- a. Apenas as afirmações II, III, IV e V são verdadeiras.
- b. Apenas as afirmações II, III e V são verdadeiras.
- c. Apenas as afirmações I, III e IV são verdadeiras.
- d. Apenas as afirmações III e V são verdadeiras.
- e. Todas as afirmações são verdadeiras.
- I. Falsa, pois $(a + b)^2 = a^2 + 2ab + b^2$
- II. Falsa, basta supor: a = 1 e $b = 1 \Rightarrow \sqrt{1^2 + 1^2} = \sqrt{2} \neq 2 = 1 + 1$
- III. Correta.
- IV. Falsa, basta supor: a = 1, b = 1 e $c = 1 \Rightarrow \frac{1}{1+1} = \frac{1}{2} \neq 2 = \frac{1}{1} + \frac{1}{1}$
- V. Correta.

Portanto, a alternativa que contempla as afirmações corretas III e V é a d.

- 05. (Mackenzie-2015) Se $A = \{x \in IN/x \text{ \'e divisor de } 60\}$ e $B = \{x \in IN/1 \le x \le 5\}$, então o número de elementos do conjunto das **partes** de $A \cap B$ é um número: (conjunto das partes de $A \cap B$, e indica-se $P(A \cap B)$, é o conjunto formado por todos os subconjuntos de $A \cap B$).
 - a. múltiplo de 4, menor que 48.
 - b. primo entre 27 e 33.
 - c. ímpar, múltiplo de 3.
 - d. par, múltiplo de 6.
 - e. pertencente ao conjunto $\{x \in IN/32 < x \le 40\}$

Do enunciado, temos:

$$A = \{x \in \mathbb{N}/x \text{ \'e divisor de } 60\} = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$$

$$B = \{x \in \mathbb{N}/1 \le x \le 5\} = \{1, 2, 3, 4, 5\}$$

$$A \cap B = \{1, 2, 3, 4, 5\} \Rightarrow n (A \cap B) = 5$$

Sendo
$$n(P(A \cap B)) = 2^{n(A \cap B)} \Rightarrow n(P(A \cap B)) = 2^5 = 32$$

Portanto, o número de elementos do conjunto das partes de A∩B é multiplo de 4 e menor que 48.

- 06. (IFAL-2016) Reduzindo a expressão $\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2} + \sqrt{2}} \cdot \sqrt{2 \sqrt{2 + \sqrt{2}}}$ ao numeral mais simples, temos:
 - a. $\sqrt{6}$
 - b. $\sqrt{2}$
 - c. $2 \sqrt{2}$
 - d. 2
 - e. $2 + \sqrt{2}$

Sendo que
$$(a+b) \cdot (a-b) = a^2 - b^2$$

Note que
$$(2 + \sqrt{2 + \sqrt{2}}) \cdot (2 - \sqrt{2 + \sqrt{2}}) = 2^2 - (\sqrt{2 + \sqrt{2}})^2 = 4 - (2 + \sqrt{2}) = 2 - \sqrt{2}$$

Logo,
$$\sqrt{2 + \sqrt{2 + \sqrt{2}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2}}} = \sqrt{2 - \sqrt{2}}$$

De maneira análoga, temos que:

$$\sqrt{2+\sqrt{2}}\cdot\sqrt{2-\sqrt{2}} = \sqrt{2^2-(\sqrt{2})^2} = \sqrt{4-2} = \sqrt{2}$$

Portanto,
$$\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{2}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2}}} = \sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 - \sqrt{2}} = \sqrt{2} \cdot \sqrt{2} = 2$$

Quadro de Respostas

Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.

2. Rasura = Anulação.

	01.	02.	03.	04.	05.	06.
a.			X		X	
b.	X					
C.		X				
d.				X		Χ
e.						

Parte II: Questões (valor: 7,0)

01. (valor: 0,5) Dado o conjunto $A = \{\emptyset; \{2, 3\}; 2; 3; \{5\}\}$, após analisar as afirmações, assinale com (**V**) o que for verdadeiro e, com (F), o que for falso (lê-se: ∈: pertence, ∉: não pertence, A ⊂ B: A está contido em B e A ⊄ B: A não está contido em B).

$$\emptyset \in A$$

$$\{2, \{5\}\} \subset A \quad (\mathbf{V})$$

$$\emptyset \not\subset A$$

 $\{\{5\}\} \subset A$

- 02. (valor: 0,5) Nos diagramas a seguir hachure (pinte) as regiões que representam os seguintes conjuntos:
- a. $(B \cap C) (A \cup D)$

b. $(C - A) \cap (C \cup B)$

- 03. (valor: 0,5) Sendo A = $\{x \in \mathbb{Z}/-3 \le x \le 1\}$, B = $\{x \in IN/x^2 \le 36\}$ e C = $\{x \in IN/x^2 3x 18 = 0\}$ represente por enumeração os seguintes conjuntos:
 - a. $A = \{-2, -1, 0, 1\}$
 - b. $B = \{0, 1, 2, 3, 4, 5, 6\}$
 - c. $C = \{x \in IN/(x-6) \cdot (x+3) = 0\} = \{6\}$, note que $-3 \notin IN$
 - d. $A B = A (A \cap B) = \{-2, -1, 0, 1\} \{0, 1\} = \{-2, -1\}$

e.
$$\bigcirc C = B - C$$
, pois $C \subset B \Rightarrow \bigcirc C = \{0, 1, 2, 3, 4, 5\}$

(lê se: $\bigcap_{\mathbf{B}} \mathbf{C}$, complementar de \mathbf{C} em relação ao conjunto \mathbf{B})

- 04. (valor: 0,5) Em uma pesquisa de mercado, foram entrevistados consumidores sobre suas preferências em relação aos produtos A e B. Os resultados da pesquisa indicaram que:
 - 310 pessoas compram o produto A;
 - 220 pessoas compram o produto B;
 - 110 pessoas compram os produtos A e B;
 - 510 pessoas não compram nenhum do dois produtos.

Qual é o número de consumidores entrevistados? (Sugestão: faça o diagrama de Venn-Euler.)

Sendo A, B e U, respectivamente, os conjuntos dos compradores dos produtos A, compradores dos produtos B e do total de compradores entrevistados.

De acordo com o diagrama ao lado, temos que o total de consumidores entrevistados é igual a:

$$510 + 200 + 110 + 110 = 930$$

05. (valor: 1,0) Simplifique as expressões:

a.
$$\frac{123}{41} - 2 \cdot \left(23\frac{7}{19} - 21\frac{7}{19}\right) = \frac{123}{41} - 2 \cdot \left(23 + \frac{7}{19} - 21 - \frac{7}{19}\right)$$

= $3 - 2 \cdot (23 - 21) = 3 - 2 \cdot (2) = 3 - 4 = -1$
Portanto, $\frac{123}{41} - 2 \cdot \left(23\frac{7}{19} - 21\frac{7}{19}\right) = -1$

b.
$$\frac{\left(0, \overline{27} + \frac{8}{11}\right) - \frac{1}{4}}{0, \overline{6} + \frac{1}{12}} = \frac{\left(\frac{3}{11} + \frac{8}{11}\right) - \frac{1}{4}}{\frac{2}{3} + \frac{1}{12}} = \frac{\frac{11}{11} - \frac{1}{4}}{\frac{2}{3} + \frac{1}{12}} = \frac{\frac{4-1}{4}}{\frac{8+1}{12}} = \frac{3}{4} \cdot \frac{12}{9} = 1$$
Portanto,
$$\frac{\left(0, \overline{27} + \frac{8}{11}\right) - \frac{1}{4}}{0, \overline{6} + \frac{1}{12}} = 1$$

$$0, \overline{27} = \frac{27}{99} = \frac{3}{11}$$
$$0, \overline{6} = \frac{6}{9} = \frac{2}{3}$$

06. (valor: 1,0) Simplifique as expressões:

a.
$$\frac{\left(-2^{2^3}\right) \cdot \left[(-32)^{20}\right]^{\frac{1}{4}}}{\left(-0,25^{-4}\right)^2} = \frac{\left(-2^8\right) \cdot \left(2^5\right)^5}{\left(2^{-2}\right)^{-8}} = \frac{-2^8 \cdot 2^{25}}{2^{16}} = -2^{33} \cdot 2^{16} = -2^{17}$$

$$2^{2^3} \cdot \left[(-32)^{20}\right]^{\frac{1}{4}} = -2^{17}$$
Portanto,
$$\frac{\left(-2^{2^3}\right) \cdot \left[(-32)^{20}\right]^{\frac{1}{4}}}{\left(-0,25^{-4}\right)^2} = -2^{17}$$

b.
$$\frac{\left(-10000^{3}\right)^{6} \cdot \left(-0.01^{2}\right)^{3}}{-100^{3^{2}}} = \frac{\left(10^{4}\right)^{18} \cdot \left(-1\right)^{3} \cdot \left(10^{-2}\right)^{6}}{\left(-1\right) \cdot \left(10^{2}\right)^{9}} = \frac{10^{72} \cdot 10^{-12}}{10^{18}} = \frac{10^{60}}{10^{18}} = 10^{42}$$

$$100 = 10^{2}$$

$$10000 = 10^{4}$$
Portanto,
$$\frac{\left(-10000^{3}\right)^{6} \cdot \left(-0.01^{2}\right)^{3}}{-100^{3^{2}}} = 10^{42}$$

07. (valor: 1,0) Após analisar as afirmações a seguir sobre produtos notáveis, fatoração e frações algébricas, assinale com (**V**) o que for verdadeiro e, com (**F**), o que for falso.

$$(\mathbf{V}) (3a^2 - 2b)^2 = 9a^4 - 12a^2b + 4b^2$$

(F)
$$(a-b)^3 = a^3 - b^3$$
, pois $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

(V)
$$64a^2 - 49b^2 = (8a - 7b) \cdot (8a + 7b)$$

(F)
$$4a^2 - 16b^2 = (2a - 4b)^2$$
, pois $4a^2 - 16b^2 = (2a - 4b) \cdot (2a + 4b)$

(V)
$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

(V)
$$\frac{3x-3}{x^2-1} = \frac{3}{x+1}$$
, para $x \ne 1$ e $x \ne -1$, pois $\frac{3x-3}{x^2-1} = \frac{3(x-1)}{(x+1)\cdot(x-1)} = \frac{3}{x+1}$

(F)
$$\frac{x^2 - 6x + 9}{x + 3} = x + 3$$
, para $x \ne -3$, pois $\frac{x^2 - 6x + 9}{x + 3} = \frac{(x - 3)^2}{x + 3}$

(V)
$$\frac{x^2 - 3x - 10}{x^2 + 4x + 4} = \frac{x - 5}{x + 2}$$
, para $x \ne -2$, pois $\frac{x^2 - 3x - 10}{x^2 + 4x + 4} = \frac{(x - 5) \cdot (x + 2)}{(x + 2)^2} = \frac{x - 5}{x + 2}$

(V)
$$\frac{4x^2 + y^2 - 4xy}{8x^3 - 4x^2y - 2xy^2 + y^3} = \frac{1}{2x + y}, \text{ para } 2x + y \neq 0, \text{ pois } \frac{4x^2 - 4xy + y^2}{8x^3 - 4x^2y - 2xy^2 + y^3} = \frac{(2x - y)^2}{4x^2(2x - y) - y^2(2x - y)} = \frac{(2x - y)^2}{(2x - y) \cdot (4x^2 - y^2)} = \frac{(2x - y)^2}{(2x - y)^2 \cdot (2x + y)} = \frac{1}{2x + y}$$

(**V**)
$$\frac{x^2 - xy}{xy - y^2} = \frac{x}{y}$$
, para $y \ne 0$ e $x \ne y$, pois $\frac{x^2 - xy}{xy - y^2} = \frac{x \cdot (x - y)}{y \cdot (x - y)} = \frac{x}{y}$

08. (valor: 0,5) Simplifique:

$$2 \cdot (2x-3)^2 - 3 \cdot (3x+4) \cdot (3x-4) - (2-3x)^3$$

$$= 2 \cdot (4x^2 - 12x + 9) - 3 \cdot (9x^2 - 16) - (8 - 36x + 54x^2 - 27x^3)$$

$$= 8x^2 - 24x + 18 - 27x^2 + 48 - 8 + 36x - 54x^2 + 27x^3$$

$$= 27x^3 - 73x^2 + 12x + 58$$
Portanto, $2 \cdot (2x-3)^2 - 3 \cdot (3x+4) \cdot (3x-4) - (2-3x)^3 = 27x^3 - 73x^2 + 12x + 58$

09. (valor: 0,5) Resolva a equação abaixo:

$$\frac{2x}{x-1} - \frac{3}{3-x} = \frac{x+3}{x^2 - 4x + 3}$$

$$\Leftrightarrow \frac{2x}{x-1} + \frac{3}{x-3} = \frac{x+3}{(x-1)\cdot(x-3)}, \text{ Domínio de validade: D.V.} = IR - \{1, 3\}$$

$$\Leftrightarrow \frac{2x \cdot (x-3) + 3 \cdot (x-1)}{(x-1)\cdot(x-3)} = \frac{x+3}{(x-1)\cdot(x-3)}$$

$$\Leftrightarrow 2x \cdot (x-3) + 3 \cdot (x-1) = x+3$$

$$\Leftrightarrow 2x^2 - 6x + 3x - 3 = x+3$$

$$\Leftrightarrow 2x^2 - 4x - 6 = 0 \qquad : (2)$$

$$\Leftrightarrow x^2 - 2x - 3 = 0$$

$$\Leftrightarrow (x-3) \cdot (x+1) = 0$$

Como a solução da equação deve satisfazer tanto (I) como (II), isto é, (I) ∩ (II), segue que:

$$S = \{-1\}$$

10. (valor: 0,5) Leia com atenção.

 $x = 3 \lor x = -1$ (||)

Observe a fatoração por agrupamento do polinômio $p(x) = x^3 - 3x^2 - 4x + 12$

$$p(x) = x^{3} - 3x^{2} - 4x + 12$$

$$p(x) = x^{2}(x - 3) - 4(x - 3)$$

$$p(x) = (x - 3)(x^{2} - 4)$$

$$p(x) = (x - 3)(x + 2)(x - 2)$$

Note que o polinômio $p(x) = x^3 - 3x + 2$ não apresenta os quatro termos como no exemplo acima resolvido, então usamos o seguinte artifício, que é decompor o termo 3x em duas parcelas, que devem ser convenientemente escolhidas. Neste caso, vamos transformar -3x em -x-2x. Observe como vamos proceder:

$$p(x) = x^{3} - 3x + 2$$

$$p(x) = x^{3} - x - 2x + 2$$

$$p(x) = x(x^{2} - 1) - 2(x - 1)$$

$$p(x) = x(x - 1)(x + 1) - 2(x - 1)$$

$$p(x) = (x - 1)(x^{2} + x - 2)$$

$$p(x) = (x - 1)(x + 2)(x - 1)$$

$$p(x) = (x - 1)^{2}(x + 2)$$
Agora fatore o polinômio $p(x) = x^{3} - 7x + 6$

De acordo com o exemplo acima, transformamos -7x em -x-6x. Portanto,

$$p(x) = x^{3} - 7x + 6$$

$$p(x) = x^{3} - x - 6x + 6$$

$$p(x) = x \cdot (x^{2} - 1) - 6 \cdot (x - 1)$$

$$p(x) = x \cdot (x - 1) \cdot (x + 1) - 6 \cdot (x - 1)$$

$$p(x) = (x - 1) \cdot [x \cdot (x + 1) - 6]$$

$$p(x) = (x - 1) \cdot (x^{2} + x - 6)$$

$$p(x) = (x - 1) \cdot (x - 2) \cdot (x + 3)$$

11. (valor: 0,5) (OBM) Determine o valor da expressão $\frac{2015^3-1}{1+2015^2+2016^2}$

Seja a = 2015, então a expressão acima pode ser reescrita como:

$$\frac{a^3 - 1^3}{1 + a^2 + (a+1)^2} = \frac{(a-1) \cdot (a^2 + a + 1)}{1 + a^2 + a^2 + 2a + 1} = \frac{(a-1) \cdot (a^2 + a + 1)}{2a^2 + 2a + 2} = \frac{(a-1) \cdot (a^2 + a + 1)}{2 \cdot (a^2 + a + 1)} = \frac{a-1}{2},$$

pois
$$a^2 + a + 1 > 0$$

Portanto, o valor a ser determinado é $\frac{2015-1}{2}$ = 1007