Constraints on the chiral unitary $\bar{K}N$ amplitude from $\pi\Sigma K^+$ photoproduction data

Maxim Mai, Ulf-G. Meißner

Why is $\bar{K}N$ interaction so important?

- Test of our understanding of low-energy SU(3) dynamics: ChPT is the right tool to study meson-baryon scattering, but
 - 1) new mass scale: IR, EOMS reg. scheme ✓
 - 2) large kaon mass, strong coupling, resonance:

$$a_{K^-p} = +0.63^{+0.43}_{-0.51} + 0.20i \text{ fm}$$
 (NNLO ChPT¹)
 $a_{K^-p} = -0.66^{+0.16}_{-0.16} + 0.81^{+0.18}_{-0.18}i \text{ fm}$ (EXP²)

- \rightarrow non-perturbative techniques IAM, N/D, BSE ...
- In-medium $\bar{K}N$ amplitudes for \bar{K} -nuclear states

• Understanding of CLAS data: $\gamma^{(*)}p \to \pi \Sigma K^+$

¹ M.M., Bruns, Kubis, Meissner (2009)

² Bazzi et al. (2011)

Nature of $\Lambda(1405)$?

- Quark model genuine qqq state Capstick, Isgur (1986)
 - ▶ or even more exotic states: hybrids, active glue, ...
- Dynamically generated from coupled-channel effects

Dalitz, Tuan (1960!)

• Lattice QCD: $\Lambda(1405)$ is dominated by a molecular $\bar{K}N$ state

Hall et al. (2014)

- Unitarized coupled-channel amplitude from ChPT
 - ▶ (N)LO chiral potential within BSE

Kaiser, Siegel, Weise (1995); Oset, Ramos (1998); \dots

▶ two pole solution Oller, Meissner (2001); ...

Experimental situation

• Total cross sections on $K^-p \to K^-p, \bar{K}^0n, \dots$

1960s-1980s

▶ old and not very restrictive³

• $\pi\Sigma$ mass distribution

Hemingway (1985)

- ▶ multistep production: $K^-p \to (\pi^-)\Sigma^+(1660) \to (\pi^+)\Lambda(1405) \to \Sigma\pi$
- ▶ low resolution

• SIDDHARTA experiment

Bazzi (2011)

- ▶ KH strong energy shift and width $\rightarrow a_{K^-p}$
- ▶ Plans for an upgrade to $\bar{K}D \to A_{Kd} \Rightarrow \text{extract } a_1, a_0 \text{ directly}^4$
- pp collisions

COSY (2008); HADES (2013)

► Theoretically very complicated⁵

• $\pi\Sigma$ mass distribution

CLAS (2012)

- ▶ electro- and photoproduction: $\gamma p \to (K^+)\Lambda(1405) \to \pi \Sigma$
- ▶ high statistics and good angular resolution
- $J^P = \frac{1}{2}$ "confirmed"

oulf-oset-ref

³ MM, Meißner (2012), Guo, Oller (2013)

Kamalov, Oset, Ramos (2001); MM, Baru, ... (2014)

Meson-baryon scattering (S = -1)

Framework

• Unitarity \rightarrow BSE:

$$T({\mathbf{A}}_2,{\mathbf{A}}_1;p)=V({\mathbf{A}}_2,{\mathbf{A}}_1;p)+i\int\frac{d^dl}{(2\pi)^d}\frac{V({\mathbf{A}}_2,{\mathbf{A}};p)T({\mathbf{A}},{\mathbf{A}}_1;p)}{(({\mathbf{A}}-{\mathbf{A}})-m+i\epsilon)(l^2-M^2+i\epsilon)}$$

- ▶ Passarino-Veltman reduction $\rightarrow I_B$, I_M , $I_{MB}(s)$ \Rightarrow dim. req. in d=4 and MS subtraction scheme
- $ightharpoonup T \sim \text{bubble chain in } s \text{ direction} \rightarrow \text{topologies are missing}$ \Rightarrow scale dependence μ_i does **not** cancel out
 - \Rightarrow free model parameters
- (Off-shell) T corresponds to a set of Feynman diagrams
 - \rightarrow can be solved exactly, if $V \sim set$ of local terms \rightarrow on-shell solution: $T_{on} = \frac{V}{1-CV} \stackrel{.}{=} T|_{I_M \rightarrow 0}$

Framework

• Kernel \rightarrow NLO ChPT potential (contact terms):

$$\begin{split} \mathcal{L}_{\phi B}^{(1)} &= \langle \bar{B}(i\gamma_{\mu} D^{\mu} - m_{0})B \rangle + \frac{D/F}{2} \langle \bar{B}\gamma_{\mu}\gamma_{5}[u^{\mu}, B]_{\pm} \rangle \\ \mathcal{L}_{\phi B}^{(2)} &= b_{0} \langle \bar{B}B \rangle \langle \chi_{+} \rangle + \ldots + b_{1} \langle \bar{B}\left[u_{\mu}, \left[u^{\mu}, B\right]\right] \rangle + \ldots + ib_{5} \langle \bar{B}\sigma^{\mu\nu}\left[\left[u_{\mu}, u_{\nu}\right], B\right] \rangle + \ldots \\ &+ \frac{i\,b_{11}}{2m_{0}} \Big(2 \langle \bar{B}\gamma^{\mu}\left[D_{\nu}, B\right] \rangle \langle u_{\mu}u^{\nu} \rangle + \langle \bar{B}\gamma^{\mu}B \rangle \langle \left[D_{\nu}, u_{\mu}\right]u^{\nu} + u_{\mu}\left[D_{\nu}, u^{\nu}\right] \rangle \Big) \\ \Rightarrow &V^{(2)} = A_{WT}(q_{1}^{\prime} + q_{2}^{\prime}) + A_{14}(q_{1} \cdot q_{2}) + A_{57}[q_{1}^{\prime}, q_{2}^{\prime}] + A_{M} + A_{811}\Big(q_{2}(q_{1} \cdot p) + q_{1}^{\prime}(q_{2} \cdot p)\Big) \end{split}$$

- 14 low energy constants \rightarrow free parameters
- s and u channel BORN graphs:

 \rightarrow off-shell inclusion not feasible $\rightarrow V \mapsto V_{on-shell}$ lead to unphys. singularities below threshold⁶

Nissler, PhD thesis (2007)

Fit strategy

- Fit to SIDDHARTA, thr. ratios and tot. cross sections: MM, Meißner, Nucl. Phys. A **900**, 51 (2013)
 - ► Full offshell six channel problem
 - Two pole solution: first (narrow) pole as expected
 second pole at a significantly different position
 - ▶ No contradiction to $\pi\Sigma$ inv. mass distribution by Hemingway (1985)
 - Offshell effects are moderate
- \Rightarrow Redo the analysis:
 - ▶ Take all 10 channels into account
 - ▶ Put NLO potential onshell \rightarrow performance \times 30
 - ▶ Improve fitting strategy:
 - 1) Random start values \rightarrow fast (N = 19) fit
 - 2) Evaluate complex s plane \rightarrow sort out unphysical solutions
 - 3) Final, full (N = 158) fit

Fit results

 \Rightarrow 8 best fits are obtained:

Fit #	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90

... with similar threshold values:

Fit results

... with similar cross sections:

Fit results

..., but different pole positions:

- Borasoy, Meißner, Nißler
- Ikeda, Hyodo, Weise
- Mai, Meißner
- ▲ Guo, Oller I
- ▼ Guo, Oller II
- A Roca, Oset

Intermediate conclusion

- 8 best solutions for the $\bar{K}N$ amplitude found \rightarrow good description of hadronic data
- Scattering amplitudes are very different
 - \rightarrow e.g. (second) pole positions
- ⇒ Hadronic data does **not** fix the scattering amplitude fully
 - ▶ Constrain the free parameters of the model
 - ▶ Low-momentum kaon beam experiments are being debated
 - \rightarrow still some time to wait
 - \Rightarrow Use high-quality data on invariant mass distribution of $\pi\Sigma$ from $\gamma p \to K^+\pi\Sigma$ by the CLAS collaboration

$K^+\pi\Sigma$ photoproduction

Framework

- Gauge invariant amplitude:⁷
 - 1. hadronic skeleton (two-particle unitarity)
 - 2. couple photon to any possible place

✓LO chiral potential and vector mesons exchange diagrams⁸

 \Rightarrow Good fit with additional parameters (15 per energy bin!)

e.g. Borasoy et al. (2009)

⁸ Nakamura, Jido (2014)

Framework

- Simple model⁹
 - $M_j(W, M_{\pi\Sigma}) = C_i(W) \cdot I_{MB_i}(M_{inv}) \cdot T_{MB_i \to MB_j}^{on}(M_{\pi\Sigma})$

- ▶ no gauge invariance, parameters are non-physical

 \rightarrow global fit is meaningless

 \rightarrow microscopic features of the spectrum not accessible

▶ flexible enough for the CLAS data¹⁰

 \rightarrow less free parameters (15 \mapsto 10)

ightarrow conservative test for the hadronic solutions

⁹ e.g. Oset, Roca (2013)

Oset, Roca (2013)

Results - best fit

• Best fit: $\chi^2_{\rm photo,p.p.} \approx 1.77$ flexibility OK

Results - comparison

• But not for every solution:

Results - comparison

• Test of hadronic solutions:

Fit #	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$ (hadr.)	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90
$\chi^2_{\text{d.o.f.}}$ (hadr.) $\chi^2_{\text{p.p.}}$ (CLAS)	3.18	1.94	2.56	1.77	1.90	6.11	2.93	3.14

- ▶ #2, #4 and #5 are *good* fits
- ▶ #5 disagrees qualitatively with Hemingway $(K^-p \to \Sigma^+\pi^-\pi^+\pi^-)$:

Results - conclusion

⇒ After comparison with CLAS and Hemingway two solutions remain:

→ Different ansatz for the hadronic part, but similar poles as Oset and Roca

⇒ photoproduction amplitude is too simple!

⇒ or universal feature, demanded by CLAS data!

Summary and Outlook

DONE

- The NLO chiral unitary $\bar{K}N$ amplitude used to analyze hadronic data
- 8 solutions are found in the onshell approximation:

```
ightarrow narrow pole at a fixed position 
ightarrow broad pole has large systematic uncertainty
```

• Photoproduction amplitude constructed from the hadronic part:

```
ightarrow very flexible ansatz ... conservative test 
ightarrow 5 solutions disagree with the CLAS data 
ightarrow 2 solutions remain after all tests
```

TO DO

• Better ansatz is required for the photoproduction part

```
ightarrow physical parameters 
ightarrow microscopic features (electro vs. photoproduction?) 
ightarrow direct extraction of the \bar{K}N amplitude
```

Gracias!

