Appln. No.: 10/644,134

Amendment dated: August 2, 2007

Reply to the final Office Action of March 14, 2007

AMENDMENT(S) TO THE CLAIMS

Please amend claims 3-5, 12-14, 16, 27, 29 and 30 as follows. This listing of claims will replace all prior versions and listings of claims in this application:

<u>Listing of Claims</u>:

- 1. (Previously presented) Spring element of claim 27 wherein the hydropneumatic strut has a hydraulic height regulator valve or a height sensor connected or connectable with a feedback loop, by means of which the position of the piston in the cylinder can be adjusted or determined.
- 2. (Previously presented) Spring element according to claim 1, wherein the feedback loop is a mechanical feedback loop that emits a signal, exclusively or also, in a strut adjustment area, which said signal is dependent on the position of the piston.
- 3. (Currently amended) Spring element according to claim 2, wherein the mechanical feedback loop emits, exclusively in the strut adjustment area, a signal dependent on the position of the strut piston, while the position of the mechanical feedback loop remains constant above and below the adjustment area.
- 4. (Currently amended) Spring element according to claim 1, wherein the strut piston has a lug with at least some conical sections, and the feedback loop is a mechanical feedback loop

Appln. No.: 10/644,134 Page 3

Amendment dated: August 2, 2007

Reply to the final Office Action of March 14, 2007

that comes into contact with the surface of the lug at least in the conical area and undergoes a deflection dependent on the position of the lug.

5. (Currently amended) Spring element according to claim 27, wherein a bore extending

in a longitudinal direction of the cylinder is positioned in a cylinder head, and the mechanical

feedback loop of the a height regulator valve or the a height sensor is located in a bore extending

perpendicular thereto in the cylinder head.

6. (Previously presented) Spring element according to claim 27, wherein the auxiliary

spring is integrated into the strut in such a manner that the auxiliary spring does not increase the

length of the strut.

7. (Previously presented) Spring element according to claim 6, wherein the auxiliary

spring and the strut are arranged concentrically and that the auxiliary spring encloses the strut

cylinder.

Claims 8 to 10, (Cancelled)

11. (Previously presented) Spring element according to claim 1, further comprising an

adjustment unit, aligned with the strut, that can be height adjusted in the direction of movement

of the strut and which is supported on the strut piston or strut cylinder.

Appili. No.: 10/04

Amendment dated: August 2, 2007

Reply to the final Office Action of March 14, 2007

12. (Currently amended) Spring element with a hydropneumatic strut to be positioned between a bogie and a body of a rail car, with the strut enclosing a sliding strut piston in a strut cylinder, whereby one of the strut piston or the strut cylinder can be connected with the bogie and the other of the strut piston and strut cylinder can be connected with the body, and a cylinder piston space is connected with a hydraulic accumulator, wherein the hydropneumatic strut has a hydraulic height regulator valve or a height sensor connected or connectable with a feedback loop, by means of which the position of the strut piston in the strut cylinder can be adjusted or determined, wherein the spring element includes an adjustment unit, aligned with the strut, that can be height adjusted in the direction of movement of the strut and which is supported on the strut piston or strut cylinder, and

wherein the adjustment unit includes a <u>hydraulic cylinder</u> piston introduced into a hydraulic cylinder, height-adjustable in the direction of movement of the strut, and supported on the strut piston or strut cylinder.

13. (Currently amended) Spring element according to claim 12, comprising an equalizer pendulum one end of which is connected with the strut piston and the other end of which is connected with the hydraulic cylinder piston, the ends of the equalizer pendulum being spherical, to facilitate a movement of the strut crossways to the direction of movement of the strut piston and hydraulic cylinder piston.

Page 5

Appln. No.: 10/644,134

).. 10/044,134

Amendment dated: August 2, 2007

Reply to the final Office Action of March 14, 2007

which is supported on the <u>a</u> strut piston or the <u>a</u> strut cylinder.

14. (Currently amended) Spring element of claim 27 comprising an adjustment unit, aligned with the strut, that can be height adjusted in the direction of movement of the strut and

15. (Canceled).

16. (Currently amended) Spring element of claim 27 with a hydropneumatic strut to be positioned between the bogic and the body of the rail car, with the strut having a sliding piston in a cylinder, whereby the piston or the cylinder can be connected with the bogic and the other component can be connected with the body, and the cylinder piston area is connected with a hydraulic accumulator, characterized by the presence of another spring element that is aligned with the strut and which engages independent of the position of the strut piston.

- 17. (Previously presented) Spring element according to claim 16, wherein the additional spring element is designed as a coil spring or a rubber spring.
- 18. (Previously presented) Spring element according to claim 16, comprising an end-stop element designed to travel longitudinally in the direction of movement of the piston in the cylinder and by means of which the end position of the piston in the cylinder can be changed.

Appln. No.: 10/644,134 Page 6

Amendment dated: August 2, 2007

Reply to the final Office Action of March 14, 2007

25. (Previously presented) Spring element of claim 27 comprising an end-stop element that is designed to slide longitudinally in the direction of movement of the piston and by means

of which the end position of the piston in the cylinder can be changed.

26. (Canceled)

27.(Currently amended) Spring element with a hydropneumatic strut to be positioned between a bogie and a body of a rail car,

with the strut enclosing a sliding <u>strut</u> piston in a <u>strut</u> cylinder, whereby the <u>strut</u> piston or <u>strut</u> cylinder can be connected with the bogie and other of the <u>strut</u> piston and the <u>strut</u> cylinder with the body, and

a cylinder piston space is connected with a hydraulic accumulator, wherein
the spring element comprises an auxiliary spring which is concentrically arranged with
the strut, encloses the strut cylinder, and is preloaded by a hydraulic cylinder which is connected
with the strut cylinder piston space.

28. (Currently amended) Spring element according to Claim 1, wherein said height sensor or <u>hydraulic height regulator</u> valve (50) is positioned above said piston (30) and in a cylinder head (44) mounted upon said cylinder (40).

Appln. No.: 10/644,134

Amendment dated: August 2, 2007

Reply to the final Office Action of March 14, 2007

29. (Currently amended) Spring element according to Claim 29, Spring element with a hydropneumatic strut to be positioned between a bogie and a body of a rail car,

with the strut enclosing a sliding strut piston in a strut cylinder, whereby the strut piston or strut cylinder can be connected with the bogie and other of the strut piston and the strut cylinder with the body, and

a cylinder piston space is connected with a hydraulic accumulator, wherein

the spring element comprises an auxiliary spring which is concentrically arranged with

the strut, encloses the strut cylinder, and is preloaded by a hydraulic cylinder which is connected

with the strut cylinder piston space,

wherein the hydropneumatic strut has a hydraulic height regulator valve or a height sensor connected or connectable with a feedback loop, by means of which the position of the piston in the hydraulic cylinder can be adjusted or determined

wherein said height sensor or hydraulic height regulator valve is positioned above said piston and in a cylinder head mounted upon said cylinder, and

wherein said height sensor or <u>hydraulic height regulator</u> valve (50) comprises a displacement indicator (52) arranged therein to be movable substantially horizontally.

30. (Currently amended) Spring element according to Claim 29, wherein said cylinder head (44) comprises an upwardly-extending bore (46) and said strut piston (30) comprises a lug (32) extending upwardly therefrom and having a conically-tapering upward end (34) arranged to be movably mounted within said bore (46),

Page 8

Appln. No.: 10/644,134

Amendment dated: August 2, 2007
Reply to the final Office Action of March 14, 2007

such that during operation, said displacement indicator (52) calipers a surface of said conically-tapering end (34) of said lug (32).