Bayesian Classification: Why?

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance:</u> A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data

Bayes' Rule

$$p(h \mid d) = \frac{P(d \mid h)P(h)}{P(d)}$$

Understanding Bayes' rule

d = data

h = hypothesis (model)

- rearranging

$$p(h \mid d)P(d) = P(d \mid h)P(h)$$

$$P(d,h) = P(d,h)$$

the same joint probability

on both sides

Who is who in Bayes' rule

P(h): prior belief (probability of hypothesis h before seeing any data)

P(d | h): likelihood (probability of the data if the hypothesis h is true)

 $P(d) = \sum_{i} P(d \mid h)P(h)$: data evidence (marginal probability of the data)

P(h | d): posterior (probability of hypothesis h after having seen the data d)

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Choosing Hypotheses

 Maximum Likelihood hypothesis:

$$h_{ML} = \underset{h \in H}{\operatorname{arg max}} P(d \mid h)$$

- probable hypothesis given training data. This is the maximum a posteriori hypothesis:
 - Useful observation: it does not depend on the denominator P(d)

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid d)$$

Bayesian Classifiers

Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C \mid A_1, A_2,...,A_n)$

 Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$
 - Can estimate P(A_i | C_i) for all A_i and C_i.
 - This is a simplifying assumption which may be violated in reality
- The Bayesian classifier that uses the Naïve Bayes assumption and computes the MAP hypothesis is called Naïve Bayes classifier

$$c_{Naive\ Bayes} = \underset{c}{\arg\max}\ P(c)P(\mathbf{x}\,|\,c) = \underset{c}{\arg\max}\ P(c)\prod_{i}P(a_{i}\,|\,c)$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class: $P(C) = N_c/N$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c_k}$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from

Data?

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Normal distribution:

$$P(A_{i} | c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = <u>110</u>
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Naïve Bayesian Classifier:

Training Dataset

New Data:

X = (age <=30, Income = medium, Student = yes Credit_rating = Fair)

18	Xz	X 2	771	>-
age	income	student	<mark>credit_rating</mark>	com
<=30	high	no	fair	lio
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: An Example

Buy OR NOT BUX

Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X|Ci)P(Ci) for i=1,2

First step: Compute P(C) The prior probability of each class can be computed based on the training tuples: PCCV

P(buys_computer=no)=5/14=0.357

Naïve Bayesian Classifier: An Example

Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X|Ci)P(Ci), for i=1,2

```
Second step: compute P(X|Ci)

P(X|buys_computer=yes)= P(age=youth|buys_computer=yes)x

P(income=medium|buys_computer=yes) x

P(student=yes|buys_computer=yes)x

P(credit_rating=fair|buys_computer=yes)

= 0.044
```

P(age=youth|buys_computer=yes)=0.222
P(income=medium|buys_computer=yes)=0.444
P(student=yes|buys_computer=yes)=6/9=0.667
P(credit_rating=fair|buys_computer=yes)=6/9=0.667

Naïve Bayesian Classifier: An Example

P(credit_rating=fair|buys_computer=no)=2/5=0.400


```
Given X (age=youth, income=medium, student=yes, credit=fair)
Maximize P(X | Ci)P(Ci), for i=1,2
Second step: compute P(X|Ci)
P(X|buys_computer=no) = P(age=youth|buys_computer=no)x
                        P(income=medium|buys_computer=no) x
                        P(student=yes|buys_computer=no) x
                        P(credit rating=fair|buys computer=no)
                        = 0.019
P(age=youth|buys_computer=no)=3/5=0.666
P(income=medium|buys_computer=no)=2/5=0.400
P(student=yes|buys_computer=no)=1/5=0.200
```

Naïve Bayesian Classifier: An Example

```
Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize P(X|Ci)P(Ci), for i=1,2
```

We have computed in the first and second steps:

P(buys_computer=yes)=9/14=0.643

P(buys_computer=no)=5/14=0.357

P(X|buys_computer=yes)= 0.044

P(X|buys_computer=no)= 0.019

Third step: compute P(X | Ci)P(Ci) for each class

P(X|buys_computer=yes)P(buys_computer=yes)=0.044 x 0.643=0.028

P(X|buys_computer=no)P(buys_computer=no)=0.019 x 0.357=0.007

The naïve Bayesian Classifier predicts **X belongs to class ("buys_computer = yes")**

Example

Training set : (Öğrenme Kümesi)

	X	X	1	
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

X = (Refund = No, Married, Income = 120K)

QUINY

k

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

Ans-No W

- P(X|Class=No) = P(Refund=No|Class=No)
 × P(Married| Class=No)
 × P(Income=120K| Class=No)
 = 4/7 × 4/7 × 0.0072 = 0.0024
- P(X|Class=Yes) = P(Refund=No| Class=Yes)
 × P(Married| Class=Yes)
 × P(Income=120K| Class=Yes)
 = 1 × 0 × 1.2 × 10° = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No

Avoiding the 0-Probability Problem

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate:
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes_

p: prior probability

m: parameter

Naïve Bayes (Summary)

Advantage

- Ropust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes

Disadvantage

- Assumption: class conditional independence, which may cause loss of accuracy
- Independence assumption may not hold for some attribute.
 Practically, dependencies exist among variables
 - Use other techniques such as Bayesian Belief Networks (BBN)

Remember

- Bayes' rule can be turned into a classifier
- Maximum A Posteriori (MAP) hypothesis estimation incorporates prior knowledge; Max Likelihood (ML) doesn't
- Naive Bayes Classifier is a simple but effective Bayesian classifier for vector data (i.e. data with several attributes) that assumes that attributes are independent given the class.
- Bayesian classification is a generative approach to classification

Classification Paradigms

- In fact, we can categorize three fundamental approaches to classification:
- Generative models: Model $p(x|C_k)$ and $P(C_k)$ separately and use the Bayes theorem to find the posterior probabilities $P(C_k|x)$
 - E.g. Naive Bayes, Gaussian Mixture Models, Hidden Markov Models....
- Discriminative models:
- \longrightarrow etermine $P(C_k|x)$ directly and use in decision
 - E.g. Linear discriminant analysis, SVMs, NNs,...
- Find a discriminant function f that maps x onto a class label directly without calculating probabilities

Bayesian Belief Networks

- Bayesian belief network allows a subset of the variables to be conditionally independent
- A graphical model of causal relationships (neden sonuç ilişkilerini simgeleyen bir çizge tabanlı model)
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution

- Nodes: random variables
- ☐ Links: dependency
- ☐ X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- ☐ Has no loops or cycles

Bayesian Belief Network: An Example

The **conditional probability table** (**CPT**) for variable LungCancer:

	(FH, S)	$(FH, \sim S)$	(~FH, S)	(~FH, ~S)
LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

CPT shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of **X**, from CPT:

Bayesian Belief Networks
$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(Y_i))$$

Training Bayesian Networks

- Several scenarios:
 - Given both the network structure and all variables observable: learn only the CPTs
 - Network structure known, some hidden variables: gradient descent (greedy hill-climbing) method, analogous to neural network learning
 - Network structure unknown, all variables observable: search through the model space to reconstruct network topology
 - Unknown structure, all hidden variables: No good algorithms known for this purpose
- Ref. D. Heckerman: Bayesian networks for data mining