Exercise 6.121

L Answer (f).

We are given the function

$$x(t) = x_1 * x_2(t),$$
 1

where

$$x_1(t) = e^{-t}u(t)$$
 and $x_2(t) = \text{sinc}(10t)$.

Let X, X_1 , and X_2 denote the Fourier transforms of x, x_1 , and x_2 , respectively. To begin, we find X. From the convolution property of the Fourier transform, we have

$$X(\omega) = X_1(\omega)X_2(\omega)$$
.

From a table of Fourier transform pairs, we have

Insform pairs, we have
$$X_1(\omega) = \frac{1}{1+j\omega} \quad \text{and} \quad X_2(\omega) = \frac{\pi}{10} \operatorname{rect}(\omega/20).$$

Thus, we have

$$X(\omega) = \frac{\pi}{10} \operatorname{rect}(\omega/20) \left(\frac{1}{1+j\omega}\right)$$
.

Since $\frac{1}{1+j\omega}$ is nonzero for all ω and $\cot(\omega_1 z_0)$. $\omega \in [-10,10]$. Therefore, by the sampling theorem, we have that magnitude frequency is 10 $\omega_s > 2(10) = 20$.

So. $\omega_s > 20$ Since $\frac{1}{1+i\omega}$ is nonzero for all ω and rect $(\omega/20)$ is nonzero only if $\omega \in [-10, 10], X(\omega)$ is only nonzero if

highest magnitude frequency is 10