CS 341 Automata Theory Geoffrey Parker - grp352 Homework 8 Due Tuesday, March 6

This assignment covers Chapter 12.

- 1) Build a PDA to accept each of the following languages L:
 - a) $\{a^nb^m: m \le n \le 2m\}.$

Solution:

b) $\{w \in \{a,b\}^* : \text{ every prefix of } w \text{ has at least as many } a's \text{ as b's} \}.$

Solution:

c) $\{a^nb^m: m \ge n, m-n \text{ is even}\}.$

Solution:

- 2) Let $L = \{ ba^{m_1}ba^{m_2}ba^{m_3} \dots ba^{m_n} : n \geq 2, m_1, m_2, \dots, m_n \geq 0, \text{ and } m_i \neq m_j \text{ for some } i, j \}.$
 - a) Show a PDA that accepts L.

Solution:

b) Show a context-free grammar that generates L.

Solution:

$$\begin{split} S \rightarrow GS \mid SG \mid Y \\ Y \rightarrow bL \mid bR \\ L \rightarrow aLa \mid aL \mid aXb \\ R \rightarrow aRa \mid Ra \mid Xba \\ X \rightarrow GX \mid \epsilon \\ G \rightarrow Ga \mid b \end{split}$$

c) Prove that L is not regular.

Proof: If L were regular, then L^R would be regular. If L^R were regular, then $\neg(L^R)$ would be regular. If $\neg(L^R)$ were regular, then $L' = \neg(L^R) \cap a^*ba^*b$ would be regular. $L' = a^nba^nb$. Let $w = a^kba^kb$. Then y must be a^p for some $p \ge 1$, with y in the first region of a's. Pumping out generates a new string $w' = a^{n-p}ba^nb$ which is not in L'. So by the pumping theorem L' is not regular. Therefore L is not regular.

- 3) Consider the language $L = L_1 \cap L_2$, where $L_1 = \{ww^R : w \in \{a,b\}^*\}$ and $L_2 = \{a^nb^*a^n : n \ge 0\}$.
 - a) List the first four strings in the lexicographic enumeration of L.

 $Solution: \epsilon$, aa, bb, aaaa

b) Write a context-free grammar to generate L.

Solution:

$$S \to aSa \mid B$$
$$B \to bBb \mid \epsilon$$

c) Show a natural PDA for L. (In other words, dont just build it from the grammar using one of the two-state constructions presented in the book.)

Solution:

d) Prove that L is not regular.

Proof: Let $w=a^kbba^k$. Then y must be a^p for some $p\geq 1$ in the first group of a's. Now pump out generates a new string $w'=a^{k-p}bba^k$ which is not in L. Therefore by the pumping theorem L is not regular.

- 4) * Let $L = \{w \in \{\mathtt{a},\mathtt{b}\}^*$: the first, middle, and last characters of w are identical}.
 - a) Show a context-free grammar for L.

 \Box

b) Show a natural PDA that accepts L.

Solution: \Box

c) Prove that L is not regular.

Proof: