import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
iris= pd.read_csv("/content/IRIS.csv")

iris

→		sepal_length	sepal_width	petal_length	petal_width	species	
	0	5.1	3.5	1.4	0.2	Iris-setosa	ılı
	1	4.9	3.0	1.4	0.2	Iris-setosa	+/
	2	4.7	3.2	1.3	0.2	Iris-setosa	_
	3	4.6	3.1	1.5	0.2	Iris-setosa	
	4	5.0	3.6	1.4	0.2	Iris-setosa	
	145	6.7	3.0	5.2	2.3	Iris-virginica	
	146	6.3	2.5	5.0	1.9	Iris-virginica	
	147	6.5	3.0	5.2	2.0	Iris-virginica	
	148	6.2	3.4	5.4	2.3	Iris-virginica	
	149	5.9	3.0	5.1	1.8	Iris-virginica	
	150	v <i>C</i> l					

150 rows × 5 columns

Next steps: Generate code with iris

View recommended plots

iris.head()#first five rows of the dataset

→		sepal_length	sepal_width	petal_length	petal_width	species	
	0	5.1	3.5	1.4	0.2	Iris-setosa	11.

1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Next steps:

Generate code with iris

View recommended plots

iris.describe()#last five rows of the dataset

Ţ

	sepal_length	sepal_width	petal_length	petal_width	\blacksquare
count	150.000000	150.000000	150.000000	150.000000	ılı
mean	5.843333	3.054000	3.758667	1.198667	
std	0.828066	0.433594	1.764420	0.763161	
min	4.300000	2.000000	1.000000	0.100000	
25%	5.100000	2.800000	1.600000	0.300000	
50%	5.800000	3.000000	4.350000	1.300000	
75%	6.400000	3.300000	5.100000	1.800000	
max	7.900000	4.400000	6.900000	2.500000	

```
print("Target Labels",iris["species"].unique()) #target values

Target Labels ['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']
```

```
#scatter plot according to sepal length and sepal width
import plotly.express as px
fig=px.scatter(iris,x="sepal_width",y="sepal_length",color="species")
fig.show()
```


#KNN classification algorithm to train iris classification model

```
x= iris.drop("species",axis=1)
y= iris["species"]
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x,y,test_size=0.2, random_state=0) #splitting data into training and from sklearn.neighbors import KNeighborsClassifier
knn= KNeighborsClassifier(n_neighbors=1)
```

```
knn.tit(x_train, y_train)
```

```
▼ KNeighborsClassifier
KNeighborsClassifier(n_neighbors=1)
```

```
#input a set of measurements of iris flower and use the model to predict iris species
x_new = np.array([[5, 2.9, 1, 0.2]])
prediction = knn.predict(x_new)
print("Prediction: {}".format(prediction))

    Prediction: ['Iris-setosa']
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning:

    X does not have valid feature names, but KNeighborsClassifier was fitted with feature names
```

TT B $I \leftrightarrow \bigoplus \square$ 99 $\sqsubseteq \sqsubseteq - \psi \oplus \blacksquare$

So this is how you can train a ML model for task of Iris Flo Classification using Python.

So this is how you can train a ML model for task of Iris Flower Classification using Python.