AC 215 Presented by:
Data Pets

Data Pets: A closer 📆 and Me

An End-to-End Approach leveraging Computer Vision, NLP to enable better Pet Adoption Matching

Part I

Context and Project Scope

I: Context and Project Scope

We focus on data science enablement for solution on matching dog lovers to dogs available for adoption

Market Status Quo

- According to *The List*, 60% of American households are dog lovers, accounting for >60M household as potential market
- Adoption on average takes 1-2 weeks, with majority of time spent on matching dogs

Our Business

We aim to leverage big data and deep learning to create a user-friendly tool to match potential dog loving adopters/owners

Industry Challenge

- > Not enough propagandization and information
- Not transparent communication and impersonal adoption experience
- > Poor User Browsing/Searching Experience
- Time Consuming Process in Double Matching (dog-adopter) Process

Technical Approach

- > Data Handling: Big Data Stored on GCP
- > Computer Vision for enhancing picture quality
- NLP for dog persona creation and Chatbot for Question-Answering Task
- Docker/Kubernetes for App Depolyment

Part II

Data Science Technicalities

II: Data Science Technicalities

Proposed Solution: Computer Vision

> Fig 1: Remove old and add new backgrounds with different effects

> Fig 2: Example Matched Images by using EfficientNet and FAISS embedding search

> Fig 3: Example Input Images that contains Dog-Irrelevant Features

Computer Vision serves for following purposes:

- Remove Noisy Background from uploaded dog pictures using DeepLabv3 Plus
- Allow users to choose and add new background/effects
- Enhance the image if the solution of the uploaded picture is not ideal

II: Data Science Technicalities

Proposed Solution: Natural Language Processing

> Fig 1: Probability scores for start and end tokens predicted by BERT with an example question

NLP serves for following purposes:

- Enhancing the Creation of the Persona of the dog for better User Adoption Experience
- Enabling Chatbot Functionality for User to direct communicate
- Fulfilling Question-Answering Functionality

Part III

Limitations and Next Step

III: Limitations and Next Steps We proposed solution as per each limitation

4 Ways to solve current limitations

- We plan on switching over to lightweight model for image segmenting so as to **reduce model running time**
- We plan on switching over to GPT based language model to account for incapability of BERT in language generation
- We plan on using Node JS for front-end and Oracle for back-end database for better app design
- We plan to utilize Docker to containerize both applications and leverage it to GCP using Kubernetes for better app deployment and setting

Reference

Remaining Project Timeline

Remaining Project Timeline

Project Checklist

Reference: Contact Page

Biographies and Contacts

Ivan Shu Big BOSS guanhuashu@hsph.harvard.edu

Yuxin Xu
Big BOSS
yuxinxu@hsph.harvard.edu

Sean BaiBig BOSS
xiangbai@hsph.harvard.edu

Sean Gao Hard Labor ☺ shanggao@hsph.harvard.edu