Workshop 12

COMP20008 Elements of Data Processing

Learning outcomes

By the end of this class, you should be able to:

- assess whether a data set satisfies k-anonymity and l-diversity
- apply generalisation techniques to anonymise data
- explain basic concepts in differential privacy

k-anonymity

A data set satisfies k-anonymity if:

"every record is indistinguishable from at least k-1 other records with respect to the set of quasi-identifiers"

job	birth	postcode	illness
Cat1	*	4350	HIV
Cat1	*	4350	HIV
Cat1	1955	5432	Flu
Cat1	1955	5432	Fever
Cat2	1975	4350	Flu
Cat2	1975	4350	Fever

Consider the quasi-identifiers {job, birth, postcode}. What is the highest value of k for which this data is k-anonymous?

job	birth	postcode	illness
Cat1	*	4350	HIV
Cat1	*	4350	HIV
Cat1	1955	5432	Flu
Cat1	1955	5432	Fever
Cat2	1975	4350	Flu
Cat2	1975	4350	Fever

Consider the quasi-identifiers {job, birth, postcode}. What is the highest value of k for which this data is k-anonymous?

Each set of quasi-ids appears at least twice ⇒ data is 2-anonymous

job	birth	postcode	illness
Cat1	*	4350	HIV
Cat1	*	4350	HIV
Cat1	1955	5432	Flu
Cat1	1955	5432	Fever
Cat2	1975	4350	Flu
Cat2	1975	4350	Fever

Describe one possible privacy attack on this data.

job	birth	postcode	illness
Cat1	*	4350	HIV
Cat1	*	4350	HIV
Cat1	1955	5432	Flu
Cat1	1955	5432	Fever
Cat2	1975	4350	Flu
Cat2	1975	4350	Fever

Describe one possible privacy attack on this data.

A homogeneity attack: when records with the same quasi-ids have the same value for the sensitive attribute, it is no longer protected.

E.g. we know anyone in this data with job=Cat1 and postcode=4350 has HIV.

Privacy through generalisation

Make the quasi-identifiers less specific

Gross income:

\$54329

Gross income:

[\$50000, \$60000]

Postcode:

3032

Postcode:

30**

Q2: Generalisation

Consider the quasi-identifiers {name, gender, date_of_birth, zip_code}. Apply generalisation to make the following table 3-anonymous.

name	gender	date_of_birth	zip_code	disease
Alice	F	01/01/1981	11111	Flu
Anne	F	02/02/1981	11122	Flu
Sonia	F	12/03/1981	11133	Flu
Bob	М	12/01/1982	33311	Heart disease
Shunsuke	М	10/04/1982	33322	Cold
Carl	М	02/03/1982	33333	Flu

Q2: Generalisation

Consider the quasi-identifiers {name, gender, date_of_birth, zip_code}. Apply generalisation to make the following table 3-anonymous.

gender	date_of_birth	zip_code	disease
F	1981	111**	Flu
F	1981	111**	Flu
F	1981	111**	Flu
М	1982	333**	Heart disease
М	1982	333**	Cold
М	1982	333**	Flu

ℓ-diversity

A data set satisfies ℓ -diversity if:

"for each group of records with the same quasi-identifiers, there are at least ℓ distinct values for the sensitive attribute"

age	zip	diagnosis
[21-28]	9****	Measles
[21-28]	9****	Flu
[21-28]	9****	Flu
[48-55]	92***	Cancer
[48-55]	92***	Obesity
[48-55]	92***	Obesity

Consider the quasi-identifiers {age, zip}. What is the highest *k* for which this data is *k*-anonymous?

age	zip	diagnosis
[21-28]	9****	Measles
[21-28]	9****	Flu
[21-28]	9****	Flu
[48-55]	92***	Cancer
[48-55]	92***	Obesity
[48-55]	92***	Obesity

Consider the quasi-identifiers {age, zip}. What is the highest *k* for which this data is *k*-anonymous?

Each set of quasi-ids appears at least 3 times ⇒ data is 3-anonymous

age	zip	diagnosis
[21-28]	9****	Measles
[21-28]	9****	Flu
[21-28]	9****	Flu
[48-55]	92***	Cancer
[48-55]	92***	Obesity
[48-55]	92***	Obesity

Consider the quasi-identifiers {age, zip}. What is the highest ℓ for which this data is ℓ -diverse?

age	zip	diagnosis
[21-28]	9****	Measles
[21-28]	9****	Flu .
[21-28]	9****	Flu
[48-55]	92***	Cancer
[48-55]	92***	Obesity
[48-55]	92***	Obesity

Consider the quasi-identifiers {age, zip}. What is the highest ℓ for which this data is ℓ -diverse?

Within each set of equivalent records, there are at most 2 distinct values for the sensitive attribute.

Hence the data is 2-diverse.

age	zip	diagnosis
[21-28]	9****	Measles
[21-28]	9****	Flu
[21-28]	9****	Flu
[48-55]	92***	Cancer
[48-55]	92***	Obesity
[48-55]	92***	Obesity

Describe one possible privacy attack on this data.

age	zip	diagnosis
[21-28]	9****	Measles
[21-28]	9****	Flu
[21-28]	9****	Flu
[48-55]	92***	Cancer
[48-55]	92***	Obesity
[48-55]	92***	Obesity

Describe one possible privacy attack on this data.

Background attack: if I know a 50 year old with zip code 92031 is recorded in the data and they aren't obese, I can conclude that they have cancer.

(Global) differential privacy

Q4: Differential privacy

What's the global sensitivity G?

What's the privacy loss k?

How does the ratio $\frac{G}{\nu}$ affect the noise level?

Q4: Differential privacy

What's the global sensitivity G?

The largest possible change that one record can make on the result of a query.

What's the privacy loss k?

Related to the confidence gained about the presence of a record in the data, based on the result of a query. Lower k implies better privacy.

How does the ratio $\frac{G}{\nu}$ affect the noise level?

This is the amount of noise added when using the Laplace mechanism

Consider a survey that collects marital status and sex from respondents.

What is the *global sensitivity* of the query: (CountFemale, CountMarried)?

	Marital status	Sex
1	Married	Female
2	Single	Male
3	Single	Male
4	Single	Female
5	Married	Female
:	:	:

Consider a survey that collects marital status and sex from respondents.

What is the *global sensitivity* of the query: (CountFemale, CountMarried)?

Consider change in output after adding a record:

n N	Married	Female	\rightarrow	(1, 1)	
n N	Married	Male	\rightarrow	(0, 1)	Global sensitivity is 2
n S	Single	Female	\rightarrow	(1,0)	(using the L1 norm)
n S	Single	Male	\rightarrow	(0, 0)	

	Marital status	Sex
1	Married	Female
2	Single	Male
3	Single	Male
4	Single	Female
5	Married	Female
:	:	:

What is the *global sensitivity* of the query: (CountMaleMarried, CountMaleSingle, CountFemaleMarried, CountFemaleSingle)?

	Marital status	Sex	
1	Married	Female	
2	Single	Male	
3	Single	Male	
4	Single	Female	
5	Married	Female	
:	:	:	

What is the *global sensitivity* of the query: (CountMaleMarried, CountMaleSingle, CountFemaleMarried, CountFemaleSingle)?

Consider change in output after adding a record:

n Married	Female	$\rightarrow (0,0,1,0)$	
n Married	Male	→ (1, 0, 0, 0	(Olobal Schallivity is 1
n Single	Female	$\rightarrow (0,0,0,1)$	(using the L1 norm)
n Single	Male	\rightarrow $(0, 1, 0, 0)$	

Marital status	Sex
Married	Female
Single	Male
Single	Male
Single	Female
Married	Female
:	:
	status Married Single Single Single

Revision

University X is planning to build a recommender system for its students. Based on subjects they have enrolled in, the system will recommend new subjects they might consider studying in the future.

A table showing a fragment of the data input to the system is below. The columns correspond to the codes of all the subjects in the University handbook. Rows correspond to students and whether they have enrolled in a subject ("Yes" if they have previously enrolled and "-" otherwise). The dataset covers the period 2010-2017, with 100,000 students and 3000 subjects. It is proposed that subject recommendations should be made using user based collaborative filtering.

PersonName	Subject1	Subject2	Subject3	Subject4	Subject5	
Alice	Yes	-	_	-	-	
Bob	Yes	Yes	-	Yes	-	
Margaret	Yes	Yes	-	-	-	

Explain three challenges for making this recommendation approach effective.

Scatter Plot

- (a) (1.5 mark) Are these likely to have come from the same dataset? Give two reasons why or why not.
- (b) (1.5 marks) Consider a dataset with 10000 rows and 500 features. Give three reasons why we might want to apply PCA while analysing the dataset.

2019 Exam Q2b

(3 marks) Consider the following regular expression:

```
int[1-9] += [A-Z][a-z] *
```

Which of the following terms would matched by this regular expression (write down all that apply):

int=Abc int2=A int3=Abc int44=Azz int5Abc int6=abc

2019 Exam Q2b