35 Probar que el origen es un equilibrio inestable para el sistema

$$\left\{ \begin{array}{l} x'=x^3+xy\\ y'=-y+y^2+xy-x^3 \end{array} \right.$$

Indicación: Considerar una función del tipo $V(x,y)=x^4/4-y^2/2$

Demostración. Tomando $\Omega=\{(x,y): x\geq 0, -\frac{1}{\sqrt{2}}x^2\leq y\leq \frac{1}{\sqrt{2}}x^2\}$ tenemos que V(x,y)=0 en $\partial\Omega$ y V(x,y)>0 en $\dot{\Omega}$. Calculando $\dot{V}(x,y)$ obtenemos

$$\dot{V}(x,y) = x^3(x^3 + xy) - y(-y + y^2 + xy - x^3) = x^6 + yx^3(1+x) + y^2(1-y-x)$$

Tomando ahora la región abierta $U_{\varepsilon} = \{(x,y) : x+y < \varepsilon, |x| < \varepsilon\}$ que contiene al origen, entonces si $0 < \varepsilon < 1/3$ tenemos que si $(x,y) \in U_{\varepsilon} \setminus \{(0,0)\}$,

$$\dot{V}(x,y) = x^6 + yx^3(1+x) + y^2(1-y-x) \ge |x|^6 - |y||x|^3(1+\varepsilon) + |y|^2(1-\varepsilon)$$
$$= (|x|^3 - \sqrt{1-\varepsilon}|y|)^2 + (2\sqrt{1-\varepsilon} - 1 - \varepsilon)|y||x|^3 > 0$$

puesto que $2\sqrt{1-\varepsilon}-1-\varepsilon>0$ si $0<\varepsilon<1/3$.

Aplicando el Teorema de Cetaev, se obtiene la inestabilidad del punto de equilibrio (0,0).