Magic States Distillation Using Quantum Expander Codes.

David Ponarovsky

March 3, 2024

1 Good Codes With Large Λ .

Definition 1.1. Let $M \in \mathbb{F}_2^{k \times n}$ upper triangular matrix such that k < n. We say that M has the 1-stairs property if $M_{ij} = 1$ any j < i.

Claim 1.1. Any $M \in \mathbb{F}_2^{k \times n}$ upper triangular matrix can be turn into upper triangular matrix that has the 1-stairs property by elementary operation.

Proof. Consider the following algorithm: Let M be our initial matrix. We iterate over the rows from left to right. In the ith iteration, we check for any row j < i if $M_{ji} = 1$. If not, we set M to be the matrix obtained by adding the ith row to the jth row. Since M is an upper triangular matrix, adding the ith row does not change any entry M_{js} for s < i. Therefore, the obtained matrix is still an upper triangular matrix and the entries at M_{js} for j, s < i remain the same, namely 1 if and only if $j \le s$.

Continuing with the process eventually yields, after k iterations, a matrix with the 1-stair property.

Claim 1.2. Let Λ be a set of k' independent codewords in a [n, k, d] code. Then there exists a code $C' = [\leq 2n, \geq k - k'/2, d]$ and a set of independent codewords Λ' in it, such that $|\Lambda'| > \frac{1}{2}|\Lambda|$ and for every pair $x, y \in \Lambda'$, we have $x \cdot y = 0$.

Proof. First, consider the upper triangular matrix obtained by applying Gaussian elimination on Λ that has the 1-stair property. Now, consider the following process: go uphill, from right to left, iterating over the matrix. Let j=k be the first non-zero coordinate in the bottom row of the matrix. In the *i*th iteration, we ask how many rows u_m , such that m < j, satisfy $u_m u_j = 0$.

- If more than half of such u_m satisfy the equality, then we move on to the next iteration.
- Otherwise, we encode the jth coordinate by C_0 , which maps $1 \to w$ such that $w \cdot w = 0$. This flips the value of $u_m u_j$ for any pair, so we get that the majority of pairs satisfy the equality.

Notice that because we iterate on the upper triangular matrix, we don't change the value of $u_m u_{j'}$ for any j' > j (since its jth coordinate was 0 before the encoding, the encoded bit will also be 0, thus not affecting the multiplication).

Denote the set of the obtained vectors by Γ . Let $S \subset \Gamma$ be the group of vectors for which there exists at least one vector in Γ whose multiplication with them is not zero. Note that the total number of pairs with zero multiplication is greater than:

$$\frac{k'-1}{2} + \frac{k'-2}{2} + \ldots + \frac{2}{2} = \frac{1}{2} \frac{(k'-1)(k'-2)}{2}$$

So

$$|S| \cdot (k'-1) \le {k' \choose 2} - \frac{1}{2} \frac{(k'-1)(k'-2)}{2} < \frac{k'(k'-1)}{2} \Rightarrow |S| < \frac{k'}{2}$$

Set $\Lambda' \leftarrow \Gamma/S$. And we got what we wanted.

Claim 1.3. We can repeat Claim 1.2 by considering triple multiplications instead of pair multiplications. Let C_2 and C_3 be the codes obtained from this process. We can then guarantee the existence of $\Lambda_2 \in C_2$ and $\Lambda_3 \in C_3$ such that for any $x, y \in \Lambda_2$, xy = 0, and for any triple $x, y, z \in \Lambda_3$, xyz = 0. The code $C_2 \otimes C_3$ has a group of codewords Λ_{23} such that for any $x, y, z \in \Lambda_{23}$, xy = 0 and xyz = 0.

Claim 1.4. Suppose that a set of vectors $\Lambda \subset C$ satisfies the relation xy = 0 and xyz = 0 for any $x, y, z \in \Lambda$. Then, there exists a code C' with a code length roughly equal to C and a subset $\Lambda' \subset C'$ such that for any distinct $x, y, z \in \Lambda'$, xy = 0, xyz = 0, and xx = 1.

Proof. We return to the process in Claim 1.2, but taking the standard upper triangular form of Λ instead the 1-stairs form. Notice that the rows are linear combinations of the original vectors in Λ and therefore also preserve the original relations. So now, for any j < k, we have that encoding the M_{jj} bit only affects the multiplication of $u_j u_j$. Thus, we will encode the jth coordinate such that the multiplication of a row by itself is 1 residue 4.

References

- [BH12] Sergey Bravyi and Jeongwan Haah. "Magic-state distillation with low overhead". In: *Physical Review A* 86.5 (2012), p. 052329.
- [MEK12] Adam M. Meier, Bryan Eastin, and Emanuel Knill. Magic-state distillation with the four-qubit code. 2012. arXiv: 1204.4221 [quant-ph].
- [TZ14] Jean-Pierre Tillich and Gilles Zemor. "Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength". In: *IEEE Transactions on Information Theory* 60.2 (Feb. 2014), pp. 1193–1202. DOI: 10.1109/tit. 2013.2292061. URL: https://doi.org/10.1109%2Ftit.2013.2292061.