Famous Pdfs:	Maximum Likelihood Estimation (MLE):	3. Compute: $L^{(m+1)} =$
$\overline{\text{Bern}(x \theta)} = \theta^x (1-\theta)^{1-x} = \theta^{1\{x=1\}} (1-\theta)^{1\{x=0\}}.$	The MLE of parameter θ is: $\theta_{ML} = \arg \max_{\theta} p(\mathcal{D} \mid \theta)$. For i.i.d.	$\frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi^{(m+1)}(k) \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k^{(m+1)}, \boldsymbol{\Sigma}_k^{(m+1)}) \right)$
$Unif(x a,b) = \frac{1}{b-a} \mathbb{1} \{ a \le x \le b \}.$	data $\mathcal{D} = \{x_1, \dots, x_n\}$, we maximize the log-likelihood: $\log p(\mathcal{D} \mid \theta) = \sum_{i=1}^n \log p(x_i \mid \theta)$.	4. untill: $ L^{(m+1)} - L^{(m)} < \epsilon$.
$\operatorname{Exp}(x \lambda) = \lambda e^{-\lambda x} \mathbb{1}\{x \ge 0\}.$	Bernoulli MLE: If $x_i \sim \text{Bern}(\theta)$, then:	4. untili. D = D = D = E ∈ E. K-Means Algorithm
$Bin(x n,\theta) = \binom{n}{x}\theta^x(1-\theta)^{n-x}$ where $\binom{n}{x} = \frac{n!}{x!(n-x)!}$.	$p(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0},$	$\overline{\text{GMM}}$ with $\Sigma_k = \sigma^2 I$ and $\pi(k) = 1/K$ are fixed. Only μ_k are
$Beta(\theta a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$	$\log p(\mathcal{D} \mid \theta) = N_1 \log \theta + N_0 \log(1 - \theta)$. Solving	inferred.
$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \text{ for } x \in \mathbb{R}.$	$\frac{\partial}{\partial \theta} \log p(\mathcal{D} \mid \theta) = 0$: $\theta_{\text{ML}} = \frac{N_1}{N_0 + N_1} = \frac{N_1}{n}$.	1. E-step: Assign each x_i to its nearest cluster center:
Probability Basics:	Exponential MLE: If $x_i \sim \text{Exp}(\lambda)$, then:	$k_i = \arg\min_k \ x_i - \mu_k^{(m)}\ ^2$. Define hard assignment:
$\overline{\mathbb{P}((X,Y)\in A)} = \int_A p(x,y) dx dy.$	$\log p(\mathcal{D} \mid \lambda) = n \log \lambda - \lambda \sum_{i=1}^{n} x_i$. Solving	$r_{ik}^{(m)} = 1$ if $k = k_i$, otherwise $r_{ik}^{(m)} = 0$.
$p(x) = \int_{-\infty}^{\infty} p(x, y) dy. p(y x) = \frac{p(x, y)}{p(x)}.$	$\frac{\partial}{\partial \lambda} \log p(\mathcal{D} \mid \lambda) = 0$: $\lambda_{\text{ML}} = \frac{1}{\sum_{i=1}^{n} x_i}$.	$Q(\theta \mid \theta^{(m)}) = -\frac{1}{2\sigma^2} \sum_{i=1}^n \ x_i - \mu_{k_i}^{(m)}\ ^2 + \text{const.}$
p(x,y) = p(x)p(y x), If X and Y are independent, then	Linear Regression Model:	2. M-step: Update cluster centers: $\mu_k^{(m+1)} = \frac{1}{N_k} \sum_{i:k_i=k} x_i$,
p(x,y) = p(x)p(y).	$\mathbf{x} = (x_1, x_2, \dots, x_D), y = \mathbf{w}^{\top} \mathbf{x} + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2).$	2. Wi-step: Optiate cluster centers. $\mu_k = \frac{1}{N_k} \sum_{i:k_i=k} x_i$,
Likelihood of i.i.d. dataset: $p(\mathcal{D}) = \prod_{i=1}^n p(x_i)$ or	Thus, the likelihood is: $p(y \mid \mathbf{x}, \mathbf{w}) = \mathcal{N}(y \mid \mathbf{w}^{\top} \mathbf{x}, \sigma^2)$.	where $N_k = \sum_{i=1}^n \mathbb{1}\{k_i = k\}$. 3. Update each cluster center using the mean of its assigned points.
$\log p(\mathcal{D}) = \sum_{i=1}^{n} \log p(x_i)$. where dataset	Basis Function Expansion: model non-linear relationships using	EM Algorithm for MAP Estimation
$\mathcal{D} = \{x_1, \dots, x_n\}$ is i.i.d.	basis functions: $\phi(\mathbf{x}) = \begin{bmatrix} \varphi_1(\mathbf{x}) & \varphi_2(\mathbf{x}) & \cdots & \varphi_M(\mathbf{x}) \end{bmatrix}^\top$,	Given data \mathbf{x} , the posterior is $p(\theta \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \theta)p(\theta)}{p(\mathbf{x})}$. The MAP
Bayes' theorem: $p(x y) = \frac{p(x,y)}{p(y)} = \frac{p(y x)p(x)}{p(y)}$.	$y = \mathbf{w}^{\top} \phi(\mathbf{x}) + \epsilon$; For $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$,	estimate is $\theta_{MAP} = \arg \max_{\theta} (\log p(\mathbf{x} \mid \theta) + \log p(\theta)).$
Expectation: $\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x) dx$, $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) p(x) dx$,	L 3_	Algorithm:
$\mathbb{E}[X] = \int_{-\infty} x p(x) dx, \mathbb{E}[g(X)] = \int_{-\infty} g(x) p(x) dx,$ $\mathbb{E}[Y + Y] = \mathbb{E}[Y] + \mathbb{E}[Y]$	$y = w_1 + w_2 x_1 + w_3 x_2 + w_4 x_1^2 + w_5 x_2^2 + \epsilon.$	1. Pick initial guess $\theta^{(0)}$.
$ \begin{split} \mathbb{E}[X+Y] &= \mathbb{E}[X] + \mathbb{E}[Y], \\ \mathbb{E}[X\mid Y=y] &= \int_{-\infty}^{\infty} x p(x\mid y) dx, \end{split} $	MLE for w: Given i.i.d. training data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\},\ \log p(\mathbf{y} \mid \mathbf{\Phi}, \mathbf{w}) = -\frac{1}{2\sigma^2} \ \mathbf{\Phi}\mathbf{w} - \mathbf{y}\ ^2 + \text{const, where}$	2. E-step: At iteration $m+1$, compute
$\mathbb{E}[f(X)g(Y) \mid Y = y] = \mathbb{E}[f(X) \mid Y = y]g(y).$	$\mathbf{\Phi} = \begin{bmatrix} \mathbf{v} & \mathbf{v} \end{bmatrix}^{\top}$ is the design metric. Maximizing west are given	$Q(\theta \mid \theta^{(m)}) = \int p(\mathbf{y} \mid \mathbf{x}, \theta^{(m)}) \log p(\mathbf{y} \mid \theta) d\mathbf{y}.$
Variance and Covariance:	$\Phi = [\mathbf{x}_1 \dots \mathbf{x}_n]^\top \text{ is the design matrix. Maximizing w.r.t. } \mathbf{w} \text{ gives the least squares solution: } \mathbf{w}_{ML} = (\Phi^\top \Phi)^{-1} \Phi^\top \mathbf{y}.$	3. M-step: Update
$var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2, cov(X, Y) =$	Model Evaluation Metrics:	$\theta^{(m+1)} = \arg \max_{\theta} \left(Q(\theta \mid \theta^{(m)}) + \log p(\theta) \right).$
$\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y],$		Repeat until convergence.
var(X + Y) = var(X) + var(Y) + 2cov(X, Y).	• RSS = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$. • RMSE = $\sqrt{\frac{1}{n}}$ RSS.	Markov Chains A discrete time sequence $\mathbf{r} = [m[0], m[1]]$ where each
Vector Variables: $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^\top$, $\mathbb{E}[\mathbf{x}] = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^\top$	• $R^2 = 1 - \frac{\text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$	A discrete-time sequence $\mathbf{x} = \{x[0], x[1], \dots\}$, where each $x[t] \in \{1, 2, \dots, M\}$, satisfies the Markov property:
$\begin{bmatrix} \mathbb{E}[x_1] & \mathbb{E}[x_2] & \cdots & \mathbb{E}[x_n] \end{bmatrix}^{\top}$ If \mathbf{A} is a deterministic matrix $\mathbb{E}[\mathbf{A}_{\mathbf{Y}}] = \mathbf{A}_{\mathbf{E}[\mathbf{Y}]}$	Maximum A Posteriori (MAP) Estimation:	$p(x[t] \mid x[1], \dots, x[t-1]) = p(x[t] \mid x[t-1])$
If \mathbf{A} is a deterministic matrix, $\mathbb{E}[\mathbf{A}\mathbf{x}] = \mathbf{A}\mathbb{E}[\mathbf{x}]$. Covariance: $cov(\mathbf{x}) = \mathbf{\Sigma}_{xx} = \mathbb{E}[(\mathbf{x} - \mathbb{E}\mathbf{x})(\mathbf{x} - \mathbb{E}\mathbf{x})^{\top}]$,	• The MAP estimate maximizes the posterior:	Transition Matrix
Covariance: $cov(\mathbf{x}) = \mathbf{Z}_{xx} = \mathbb{E}[(\mathbf{x} - \mathbb{E}\mathbf{x})(\mathbf{x} - \mathbb{E}\mathbf{x})],$ $cov(\mathbf{A}\mathbf{x}) = \mathbf{A} cov(\mathbf{x}) \mathbf{A}^{\top}$	$\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta \mid \mathcal{D})$. Using Bayes' theorem: $p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta)p(\theta)$,	• Each row of T sums to one: $\sum_{i=1}^{M} T(i, i) = \sum_{i=1}^{M} T(i, i) = 1 \text{ Tipe } (row)$
$\operatorname{Cov}(\mathbf{A}\mathbf{x}) = \mathbf{A}\operatorname{cov}(\mathbf{x})\mathbf{A}$ $\operatorname{Cross-covariance:} \operatorname{cov}(\mathbf{x},\mathbf{y}) = \mathbf{\Sigma}_{xy} = \mathbb{E}[(\mathbf{x} - \mathbb{E}\mathbf{x})(\mathbf{y} - \mathbb{E}\mathbf{y})^{\top}]$	$\log p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta)p(\theta),$ $\log p(\theta \mid \mathcal{D}) = \log p(\mathcal{D} \mid \theta) + \log p(\theta) + \text{const.}$	$\sum_{j=1}^{M} T(i,j) = \sum_{j=1}^{M} p_{x[t] x[t-1]}(j \mid i) = 1. \mathbf{T} \text{ is a (row)}$ stochastic matrix.
Matrix Calculus: $\frac{\partial (\mathbf{a}^{\top} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{a}, \frac{\partial (\mathbf{x}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top})\mathbf{x}$	• Given: $p(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}, p(\theta) = \text{Beta}(\theta \mid a, b),$	• Given initial distribution $\mathbf{p}_0 = [p_0(1), p_0(2), \dots, p_0(M)],$
Matrix Calculus: $\frac{1}{\partial \mathbf{x}} = \mathbf{a}, \frac{1}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^\top)\mathbf{x}$	$\log p(\mathcal{D} \mid \theta)p(\theta) =$	$\mathbf{p}_1 = \mathbf{p}_0 \mathbf{T}$. For general t , let $\mathbf{p}_t = [p_t(1), \dots, p_t(M)]$, then:
$\frac{\partial (\mathbf{a}^{\top} \mathbf{X} \mathbf{b})}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^{\top}, \frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X}) (\mathbf{X}^{-1})^{\top},$	$(N_1 + a - 1) \log \theta + (N_0 + b - 1) \log (1 - \theta)$. Solving	$\mathbf{p}_t = \mathbf{p}_0 \mathbf{T}^t$.
$\frac{\partial (\mathbf{a}^{\top}\mathbf{X}^{-1}\mathbf{b})}{\partial \mathbf{X}} = -(\mathbf{X}^{-1})^{\top}\mathbf{a}\mathbf{b}^{\top}(\mathbf{X}^{-1})^{\top}$	$\frac{\partial}{\partial \theta} \log p(\mathcal{D} \mid \theta) = 0$: $\theta_{\text{MAP}} = \frac{N_1 + a - 1}{n + a + b - 2}$.	MLE for Transition Matrix Estimate prior \(\pi\) and transition matrix T from training data:
Parametric vs. Non-Parametric Models	Classification and Naïve Bayes:	• Estimate prior π and transition matrix \mathbf{T} from training data: $p(x[0], \dots, x[t] \mid \pi, \mathbf{T}) = \pi(x[0])\mathbf{T}(x[0], x[1])\dots$
A parametric model assumes a fixed number of parameters. It	• Classification Rule: Given feature vector \mathbf{x} and class label	$\mathbf{T}(x[t-1], x[t])$ Given n observed sequences
usually belongs to a predefined family of distributions: $p(x, y) = p(x, y \mid \theta)$ or $p(x) = p(x \mid \theta)$.	$y \in \{1, \dots, K\}, \delta(\mathbf{x}) = k \text{ if } p(y = k \mid \mathbf{x}) \text{ is maximized.}$ • Naïve Bayes Classifier: Assuming conditional independence,	$\mathcal{D} = \{\mathbf{x}_1[0:t_1], \dots, \mathbf{x}_n[0:t_n]\},$ each of varying length
1. Faster to train (find "optimal" θ). 2. Stronger assumptions about	$p(\mathbf{x} \mid y = c, \theta) = \prod_{d=1}^{D} p(x_d \mid \theta_{dc})$. Using Bayes' rule:	$t_i + 1$, assume all data points follow the same T .
the data distribution.	$p(y=c\mid \mathbf{x},\theta)\propto \pi(c)\prod_{d=1}^{D}p(x_d\mid \theta_{dc}),$ where $\pi(c)$ is the	• $\log p(\mathcal{D} \mid \pi, \mathbf{T}) =$
A non-parametric model the number of parameters grows with the	prior probability of class c .	$\begin{array}{l} \sum_{i=1}^{n} \log \pi(x_{i}[0]) + \sum_{i=1}^{n} \sum_{t=1}^{t_{i}} \log \mathbf{T}(x_{i}[t-1], x_{i}[t]) \\ = \sum_{x=1}^{M} N_{x} \log \pi(x) + \sum_{x=1}^{M} \sum_{y=1}^{M} N_{xy} \log \mathbf{T}(x, y). \end{array}$
amount of training data: 1. More flexible. 2. Can be computationally	Mixture Models and Gaussian Mixture Model (GMM):	$= \sum_{x=1}^{M} N_x \log \pi(x) + \sum_{x=1}^{M} \sum_{y=1}^{M} N_{xy} \log \mathbf{T}(x, y).$
intractable for large datasets. Bayesian Inference:	• Suppose an observation \mathbf{x} can be generated from one of K possible probability density functions (pdfs): $p(\mathbf{x} \mid \boldsymbol{\eta}_1), \dots, p(\mathbf{x} \mid \boldsymbol{\eta}_K)$.	$N_x = \sum_{i=1}^n \mathbb{1}(x_i[0] = x),$
Given a parametric model, the posterior is derived as:	The generating index z follows a categorical distribution:	$N_{xy} = \sum_{i=1}^{n} \sum_{t=1}^{t_i} \mathbb{1}(x_i[t-1] = x, x_i[t] = y).$ $\bullet \hat{\pi}(x) = \frac{N_x}{n}, \hat{\mathbf{T}}(x, y) = \frac{N_{xy}}{\sum_{z=1}^{M} N_{xz}}.$
$p(\theta \mid x) = \frac{p(x \theta)p(\theta)}{p(x)} \propto p(x \mid \theta)p(\theta)$, where $p(x)$ is a	$p(z) = \operatorname{Cat}(z \mid \boldsymbol{\pi})$. Since z is unobserved, it is a latent variable .	$\bullet \hat{\pi}(x) = \frac{N_x}{n}, \hat{\mathbf{T}}(x,y) = \frac{N_x y}{\sum_{x} M_x N_{xx}}.$
normalization constant. If $p(x) \propto f(x)$ for some function $f(x)$,	The marginal distribution is: $p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) p(\mathbf{x} \mid \boldsymbol{\eta}_k)$,	• May predict certain strings are impossible if data have zero count of
then $p(x) = cf(x)$ with $c = (\int f(x)dx)^{-1}$.	where $\boldsymbol{\theta} = (\boldsymbol{\pi}, \{\boldsymbol{n}, \}^K,)$	certain states (this is a form of overfitting).
Conjugate Distributions:	• GMM: $p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$, where $\boldsymbol{\theta} = (\boldsymbol{\pi}, \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^{K})$. Given i.i.d. observations	HMM: Hidden Markov Model
If prior and posterior share the same form, they are conjugate:	$\boldsymbol{\theta} = (\boldsymbol{\pi}, \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K)$. Given i.i.d. observations	A hidden Markov model consists of: • A discrete state Markov chain with hidden states or latent variables
$p(\theta \mid x) \propto p(x \mid \theta)p(\theta)$. The prior $p(\theta)$ is called the conjugate prior of the likelihood $p(x \mid \theta)$.	$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) p(\mathbf{x}_i \mid \boldsymbol{\eta}_k).$	$z[t] \in \{1, \dots, M\}, t = 0, 1, \dots$, with initial pdf π and
1. Allows for analytical closed form solutions and easy to interpret.	$\log p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \boldsymbol{\theta}) = \sum_{i=1}^n \log \sum_{k=1}^K \pi(k) p(\mathbf{x}_i \mid \boldsymbol{\eta}_k).$	transition matrix \mathbf{T} .
May lack flexibility to complex data, requiring MCMC.	Algorithmic Issues in Mixture Models:	• An observation model with emission probabilities
Conjugate Prior for Binomial:	• Singularity: If for some k , we set $\mu_k = \mathbf{x}_i$ and $\sigma_k \to 0$, then: $\mathcal{N}(\mathbf{x}_i \mid \mu_k, \sigma_k \mathbf{I}) \propto \frac{1}{\sigma_k} \to \infty$.	$p(\mathbf{x}[t] \mid z[t]) = p(\mathbf{x}[t] \mid \phi_{z[t]})$, where $\phi = (\phi_1, \dots, \phi_M)$. Applications: (1) Long-range dependencies; (2) Speech recognition;
Given $s \sim \text{Bin}(n, \theta)$ and prior $\theta \sim \text{Beta}(a, b)$, the posterior is:	• Unidentifiability: no unique global optimum for log-likelihood	(3) Gene finding; (4) Emission probabilities (Gaussian example).
$p(\theta \mid s) \propto \text{Bin}(s \mid \theta, n) \cdot \text{Beta}(\theta \mid a, b)$ $\propto \theta^{s} (1 - \theta)^{n - s} \cdot \theta^{a - 1} (1 - \theta)^{b - 1}$	function.	Baum-Welch Algorithm for HMM Training
$\propto \theta (1-\theta)$ $\cdot \theta (1-\theta)$ $\propto \theta^{s+a-1} (1-\theta)^{n-s+b-1}$. Thus, the posterior follows:	Optimization Challenges: non-convex, hard to solve.	1. Initialize $\theta^{(0)}$.
$p(\theta \mid s) = \text{Beta}(\theta \mid s + a, n - s + b)$	• If latent variables z_1, \ldots, z_n are observed, the likelihood	2. E step: Use Forward-Backward Algorithm to compute
Categorical Distribution:	simplifies to: $\log p((\mathbf{x}_1, z_1), \dots, (\mathbf{x}_n, z_n) \mid \boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\log \pi[z_i] + \log p(\mathbf{x}_i \mid \boldsymbol{\eta}_{z_i})\right)$. much easier to maximize.	$\gamma_{i,t}(z) = p(z_i[t] = z \mathbf{x}_i[0:t_i], \theta^{(m)}) \propto \alpha_j(z)\beta_j(z),$
• A categorical variable X follows: $Cat(x \mid \theta_1, \dots, \theta_K)$ with	$\sum_{i=1}^{n} (\log \pi[z_i] + \log p(\mathbf{x}_i \mid \boldsymbol{\eta}_{z_i}))$. Huch easier to maximize. Gaussian Mixture Model (GMM):	$\xi_{i,t}(z,z') = p(z_i[t-1] = z, z_i[t] = z' \mathbf{x}_i[0:t_i], \theta^{(m)}),$
parameters $\theta_k \ge 0$, $\sum_{k=1}^{K} \theta_k = 1$; $Cat(x \mid \theta_1, \dots, \theta_K) = \theta_x$.	• Observed data $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^D$ are generated from a mixture of	$\propto \alpha_{t-1}(z)p(\mathbf{x}_i[t] z_i[t] = z')\beta_t(z')p(z_i[t] = z' z_i[t-1] = z).$
• Given i.i.d. samples $X_i \sim \operatorname{Cat}(\theta_1, \dots, \theta_K)$, the joint probability of $\mathcal{D} = \{X_1, \dots, X_n\}$ is: $p(\mathcal{D}) = \prod_{i=1}^n \operatorname{Cat}(x_i \mid$	K Gaussian distributions:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\theta_1, \dots, \theta_K = \prod_{i=1}^n \prod_{k=1}^K \theta_k^{1\{x_i=k\}}$. Using count notation	$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$	3. M step : Update parameters $\hat{\pi}(z) = \frac{\sum_{i=1}^{n} \gamma_{i,0}(z)}{n}$,
	$\boldsymbol{\theta} = (\pi(k), \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_{k=1}^K.$	$\hat{T}(z,z') = \frac{\sum_{i=1}^n \sum_{t=1}^{t_i} \xi_{i,t}(z,z')}{\sum_u \sum_{i=1}^n \sum_{t=1}^{t_i} \xi_{i,t}(z,u)}, \hat{\phi}_z = \text{emission probability}$
$N_k = \sum_{i=1}^n \mathbb{1}\{x_i = k\}$, we get: $p(\mathcal{D}) = \prod_{k=1}^K \theta_k^{N_k}$. Gaussian (Normal) Distribution:	• Complete data likelihood: $\log p(\mathbf{y}_1, \dots, \mathbf{y}_n \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \sum_{i=1}^{K} (\log p(\mathbf{y}_i) + \log p(\mathbf{y}_i) + \log p(\mathbf{y}_i))$	$\sum_{u}\sum_{i=1}^{n}\sum_{t=1}^{i}\xi_{i,t}(z,u)$ parameters.
A random variable X follows a normal distribution:	$\sum_{k=1}^{K} \sum_{i:z_i=k} \left(\log \pi(k) + \log \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right).$	4. Repeat E and M steps.
$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}.$	• The MLE estimates for μ_k and Σ_k : $\hat{\mu}_k = \frac{1}{n} \sum_{i:z_i=k} \mathbf{x}_i$,	Inference in HMMs
$\sqrt{2\pi\sigma^2}$ If $V = M(\omega - 2)$ down $V = M(\omega - 2)$ for $\omega = -\infty$	$\hat{\mathbf{\Sigma}}_k = \frac{1}{n} \sum_{i:z_i = k} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_k) (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_k)^{\top}.$	• Filtering: Estimate latent state $p(z[t] \mathbf{x}[0:t])$ using observations
If $X \sim \mathcal{N}(\mu, \sigma^2)$, then: $aX \sim \mathcal{N}(a\mu, a^2\sigma^2)$ for any $a \in \mathbb{R}$ $X + c \sim \mathcal{N}(\mu + c, \sigma^2)$. If $Z \sim \mathcal{N}(0, 1)$, then	Expectation-Maximization (EM) Algorithm:	up to time t (Forward Algorithm). • Smoothing: Estimate $p(z[t] \mathbf{x}[0:T])$, using both past and future
$X = \sigma Z + \mu \sim \mathcal{N}(\mu, \sigma^2)$. If $X \sim \mathcal{N}(\mu, \sigma^2)$ and	Complete data \mathbf{y} can't be known directly. Still since $\log p(\mathbf{x} \mid \boldsymbol{\theta})$ is hard to optimize. Try maximize the expectation	observations (Forward-Backward Algorithm).
$Y \sim \mathcal{N}(\xi, \nu^2)$ are independent: $X + Y \sim \mathcal{N}(\mu + \xi, \sigma^2 + \nu^2)$.	· r · · · · · · · · · · · · · · · · · ·	• Fixed-lag smoothing: Estimate $p(z[t-l] \mathbf{x}[0:t])$ for online
Multivariate Gaussian Distribution:	$\mathbb{E}_{p(\mathbf{y} \mathbf{x},\hat{\boldsymbol{\theta}})} \left[\log p(\mathbf{y} \mid \boldsymbol{\theta}) \mid \mathbf{x}, \hat{\boldsymbol{\theta}} \right].$	inference (Forward-Backward Algorithm).
A random vector \mathbf{X} follows a multivariate normal distribution: $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) =$	EM Steps: 1. Initialize $\theta^{(0)}$. 2. E-step : Compute	• Prediction: Estimate $p(z[t+h] \mathbf{x}[0:t])$, where $h>0$ is the prediction horizon: $p(z[t+h] \mathbf{x}[0:t])=$
	$Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(m)}) = \mathbb{E}_{p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{y} \mid \boldsymbol{\theta}) \mid \mathbf{x}, \boldsymbol{\theta}^{(m)} \right] =$	prediction notion: $p(z[t+h] \mathbf{x}[0:t]) = \sum_{z[t],\dots,z[t+h-1]} p(z[t+h] z[t+h-1])p(z[t+h-1])$
$\frac{1}{(2\pi)^{K/2}(\det \boldsymbol{\Sigma})^{1/2}} \exp{\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}.$	$\int \log p(\mathbf{y} \mid \boldsymbol{\theta}) p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}^{(m)}) d\mathbf{y}.$	$\frac{\sum_{z[t],\dots,z[t+h-1]} P(x[t+h] z[t]) \cdot p(z[t] \mathbf{x}[0:t])}{1 z[t+h-2] \cdot p(z[t+1] z[t]) \cdot p(z[t] \mathbf{x}[0:t])}.$
• $\mathbf{X} = [X_1, \dots, X_n]^{\top}$ is jointly Gaussian if for any vector	3. M-step : Update θ by $\theta^{(m+1)} = \arg \max_{\theta \in \Theta} Q(\theta \mid \theta^{(m)})$.	MAP sequence: using Viterbi Algorithm, most probable sequence
$\mathbf{a} \in \mathbb{R}^n$, the linear combination: $\mathbf{a}^{\top} \mathbf{X} = \sum_{i=1}^n a_i X_i$ is	Repeat until convergence.	$\mathbf{z}^*[0:T] = \arg\max_{\mathbf{z}[0:T]} p(\mathbf{z}[0:T] \mathbf{x}[0:T]).$
Gaussian. • If $\mathbf{Z} \sim \mathcal{N}(0, \mathbf{I})$, then: $\mathbf{X} = \mathbf{AZ} + \boldsymbol{\mu}$ is jointly Gaussian with	EM for GMM:	Sampling Using Cdf If $X \sim F$, then: $\mathbb{P}(X \leq x) = F(x)$, Let $U \sim \text{Unif}(0, 1)$,
mean and covariance: $\mathbb{E}[\mathbf{X}] = \mu$, $\operatorname{cov}(\mathbf{X}) = \mathbf{A} \mathbf{A}^{\top}$	Given $\pi^{(0)}(k)$, $\mu_k^{(0)}$, $\Sigma_k^{(0)}$ for $k = 1,, K$.	define: $X = F^{-1}(U) \Rightarrow X \sim F$.
$\begin{bmatrix} \mu_X \end{bmatrix} \qquad \begin{bmatrix} \sigma_Y^2 & \cos(X, Y) \end{bmatrix}$	$L^{(0)} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi^{(0)}(k) \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\Sigma}_k^{(0)}) \right).$	$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$
$\bullet \boldsymbol{\mu} = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_X^2 & \operatorname{cov}(X,Y) \\ \operatorname{cov}(X,Y) & \sigma_Y^2 \end{bmatrix}.$	Repeat:	Transformations $T(x) = T(x) = T(x)$.
$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}.$	1. E-step: Compute responsibilities:	If $Y = f(X)$, then $p_Y(y) = \sum_{k=1}^K \frac{p_X(x_k)}{ f'(x_k) }$, where x_k are the
Likelihood Functions for Common Distributions:	$r_{ik}^{(m)} = \frac{\pi^{(m)}(k)\mathcal{N}(\mathbf{x}_i \boldsymbol{\mu}_k^{(m)}, \boldsymbol{\Sigma}_k^{(m)})}{\sum_{k'} \pi^{(m)}(k')\mathcal{N}(\mathbf{x}_i \boldsymbol{\mu}_{k'}^{(m)}, \boldsymbol{\Sigma}_{k'}^{(m)})}, n_k^{(m)} = \sum_{i=1}^n r_{ik}.$	solutions to $f(x) = y$ Note: Requires solving $f(x) = y$ and
1. Bernoulli: If $x_i \sim \text{Bern}(\theta)$ i.i.d., where $\theta \in [0, 1]$, then:	$\sum_{k'} \pi^{(m)}(k') \mathcal{N}(\mathbf{x}_i \boldsymbol{\mu}_{k'}^{(m)}, \boldsymbol{\Sigma}_{k'}^{(m)}), k \qquad \qquad \boldsymbol{\omega}_{i=1}^{i=1}, k$	knowing $f'(x)$
$p(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}, N_k = \sum_{i=1}^n \mathbb{1}\{x_i = k\}.$	2. M-steps Undete personators: $\pi^{(m+1)}(L) = \frac{n(m)}{k}$	Rejection Sampling
2. Exponential: If $x_i \sim \text{Exp}(\lambda)$ i.i.d., where $\lambda > 0$, then:	2. M-step: Update parameters: $\pi^{(m+1)}(k) = \frac{n_k^{(m)}}{n}$, $\boldsymbol{\mu}_k^{(m+1)} = \frac{1}{n_k^{(m)}} \sum_{i=1}^n r_{ik}^{(m)} \mathbf{x}_i$, $\boldsymbol{\Sigma}_k^{(m+1)} =$	$\bullet p(z) = \frac{1}{M} \tilde{p}(z)$, where M unknown. Choose proposal $q(z)$, and
$p(\mathcal{D} \mid \lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} x_i\right).$	μ_{k} $= \frac{1}{n_{k}^{(m)}} \sum_{i=1}^{m} r_{ik}^{(m)} \mathbf{x}_{i}, \boldsymbol{\Sigma}_{k}^{(m+1)} = 1$	constant $k \ge \frac{\tilde{p}(z)}{g(z)}$ for all z.
3. Gaussian: If $x_i \sim \mathcal{N}(\mu, \sigma^2)$ i.i.d., then $\theta = (\mu, \sigma^2)$ and:	$\frac{1}{n^{(m)}} \sum_{i=1}^{n} r_{ik}^{(m)} (\mathbf{x}_i - \boldsymbol{\mu}_k^{(m+1)}) (\mathbf{x}_i - \boldsymbol{\mu}_k^{(m+1)})^{\top}.$	$-q(z)$ • supp $(p) \subseteq \text{supp}(q)$, where supp $p = \overline{\{z : p(z) > 0\}}$.
$p(\mathcal{D} \mid \theta) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$	$n_k^{(m)} \stackrel{\angle}{=} i=1$ ' ik ' n_k	• Sampling Procedure: 1. Sample $z \sim q(z)$ 2. Sample
<u> </u>		- *\ / 1

```
u \sim \text{Unif}[0, kq(z)] 3. Accept z if u \leq \tilde{p}(z).
                                                                                                             Proposal Variance
                                                                                                                                                                                                                          • Mini-batch GD: over subset (e.g., 32 to 256 samples). Mini-batch
• \mathbb{P}(z \text{ accepted}) = \int \frac{\tilde{p}(z)}{kq(z)} q(z) dz = \frac{M}{k}.
• Choose smallest possible k s.t. kq(z) \geq \tilde{p}(z) \ \forall z.
                                                                                                             • Important to tune proposal variance \sigma.
                                                                                                                                                                                                                          gradient approximates the full training set gradient well.
                                                                                                             ullet \sigma too small 	o slow convergence, high acceptance rate, takes a long
                                                                                                                                                                                                                          • SGD: mini-batch size = 1, fast but noisy. Less used.
                                                                                                                                                                                                                          • Momentum: v_t = \beta v_{t-1} + (1-\beta)\nabla \mathcal{L}, improves convergence.
                                                                                                             time to explore the whole space.
• Accepted z \sim p(z)
                                                                                                             • \sigma too large \rightarrow big steps, low acceptance rate, stuck for long time.
\mathbb{P}(z \leq z_0 \mid \text{accepted}) = \frac{1}{M} \int_{z \leq z_0} \tilde{p}(z) dz \rightarrow \text{Accepted samples}
                                                                                                            • Rules of thumb: (1) Random walk MH: target acceptance rate of

    Nesterov Momentum: lookahead at next step before computing

follow the CDF of p(z)
                                                                                                             0.25 to 0.5. (2) Independence chain MH: acceptance rate close to 1
                                                                                                                                                                                                                          gradient. (Skip)
Importance Sampling
• Estimate expectation \mathbb{E}_p[f(z)] = \int f(z)p(z) dz, where p(z) is
                                                                                                             Discard early samples before chain reaches stationary distribution.
                                                                                                            Hard to know when. E.g. x_0 \sim \text{Unif}(\{0,1,\dots,20\}), takes over 400 steps to "forget" initial state.
hard to sample.
                                                                                                                                                                                                                          Learning Rate (LR)
• Use proposal q(z) and importance weights w(z) = \frac{p(z)}{q(z)}, rewrite
                                                                                                             Thinning
as \mathbb{E}_p[f(z)] = \int f(z)w(z)q(z) dz \approx \frac{1}{n} \sum_{i=1}^n w(z_i)f(z_i),
                                                                                                             \overline{\text{Break dependencies}} between samples by taking every d-th sample.
• supp(f(z)) = f(z) is large where z_i \sim q(z).
• supp(f(\cdot)p(\cdot)) \subseteq \text{supp}(q). Keep all samples, no need q(z) \ge p(z). Better matches well, if q(z) is large where |f(z)|p(z) is large.
                                                                                                             Useful when \sigma is too large \rightarrow MC stuck for long time at same
                                                                                                             location. Subsample every d samples: z_0, z_d, z_{2d}, \dots
                                                                                                                                                                                                                          warmup(increase then cool down).
                                                                                                            Gibbs Sampling
Special case of Metropolis-Hastings, for multivariate p(z_1, \ldots, z_d)
                                                                                                                                                                                                                          Underfitting and Overfitting
• If only know how to compute p(z) and q(z) up to normalizing
                                                                                                             (hard to sample jointly when d is large). For each i, define
constants, use normalized weights:
                                                                                                            \mathbf{z}_{-i} = \{z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_d\}. If we can compute full conditionals p(z_i \mid \mathbf{z}_{-i}), we can perform Gibbs sampling:
                                                                                                                                                                                                                          Regularization Techniques
\mathbb{E}_p[f(z)] \approx \sum_{i=1}^n w_n(z_i) f(z_i), w_n(z_i) = \frac{w(z_i)}{\sum_j w(z_j)}.
Sampling Importance Resampling (SIR)

Convert importance weighted samples into unweighted samples
                                                                                                             • Initialize (z_1^{(0)}, \ldots, z_d^{(0)}).
                                                                                                            Initialize (z_1,\dots,z_d). For each iteration k, sequentially sample: z_1^{(k)} \sim p(\cdot \mid z_2^{(k-1)},\dots,z_d^{(k-1)})z_2^{(k)} \sim p(\cdot \mid z_1^{(k)},z_3^{(k-1)},\dots)z_j^{(k)} \sim p(\cdot \mid z_1^{(k)},\dots,z_{j-1}^{(k)},z_{j+1}^{(k-1)},\dots)... z_d^{(k)} \sim p(\cdot \mid z_1^{(k)},\dots,z_{d-1}^{(k)}). Discard burn in samples
from p(z).
1. Sample z_1, \ldots, z_n from q(z).
                                                                                                                                                                                                                          Batch Normalization
2. Compute weights w_n(z_1), \ldots, w_n(z_n).
3. Resample with replacement from \{z_1, \ldots, z_n\} using weights
                                                                                                                                                                                                                          • Normalize each mini-batch: \hat{x} = \frac{x-\mu}{2}
(w_n(z_1),\ldots,w_n(z_n)).
• Each sample \tilde{z}_i drawn from multinomial over \{z_1,\ldots,z_n\} with
                                                                                                             • Discard burn-in samples.
                                                                                                             \bullet Generating Approximate i.i.d. Samples: (1) Run r independent
weights w_n(z_i). asymptotically for large n \to \infty. \mathbb{P}(\tilde{z} \leq a) = \sum_{i=1}^n w_n(z_i) \mathbb{1}_{\{z_i \leq a\}} \to \int_{z \leq a} p(z) \, dz.
                                                                                                                                                                                                                          Hyperparameter Tuning
                                                                                                             Gibbs chains of length m, use final sample from each sequence. (2)
                                                                                                             Run one long sequence, discard burn-in, take every d-th sample.
SIR for Bayesian Inference
                                                                                                                                                                                                                          activation, loss f.
                                                                                                             · Getting conditionals distributions:
• Take unnormalized \tilde{p}(\theta) = p(\mathcal{D} \mid \theta)p(\theta), sample \theta_1, \dots, \theta_n
                                                                                                            p(z_1 \mid z_2, \dots, z_d) = \frac{p(z_1, \dots, z_d)}{p(z_2, \dots, z_d)} (1) Start with joint
• Resampling \theta_1, \dots, \theta_n according to weights (w_n(\theta_1), \dots, w_n(\theta_n)).
                                                                                                            p(z_1,\ldots,z_d). (2) Drop constants not depend on z_1. (3) Use
                                                                                                             knowledge of well-known distributions to find the distribution
                                                                                                            p(z_1 \mid z_2, \dots, z_d).
Introduction to NN and DL
                                                                                                                                                                                                                          with local receptive fields and shared weights.
Sampling for EM
                                                                                                                                                                                                                          \overline{w} over input x,
                                                                                                             • An artificial neuron computes y = f\left(\sum_{j=0}^{m} w_j x_j\right) with
• Observed incomplete data \mathbf{x}, while complete is (\mathbf{x}, \mathbf{z}). Need to
compute: Q(\theta \mid \theta^{(m)}) = \int p(\mathbf{z} \mid \mathbf{x}, \theta^{(m)}) \log p(\mathbf{x}, \mathbf{z} \mid \theta) \, dz.

• Q(\theta \mid \theta^{(m)}) \approx \frac{1}{n} \sum_{i=1}^{n} \log p(\mathbf{x}, \mathbf{z}_i \mid \theta), where \mathbf{z}_i \sim p(\mathbf{z} \mid \mathbf{x}, \theta^{(m)}).
                                                                                                                                                                                                                          (x*w)[n] = \sum_{k=-\infty}^{\infty} x[k]w[n-k]
                                                                                                            x_0=1, w_0=b. Common activations: sigmoid f(x)=\frac{1}{1+e^{-x}}, \text{ReLU } f(x)=\max(0,x).
                                                                                                             • Binary output: 1 if \mathbf{w}^T \mathbf{p} + b > 0, else 0. Decision boundary:
                                                                                                                   \mathbf{p} + b = 0. +1 from negative to positive.
· Rejection and importance sampling not suitable for
                                                                                                             • OR Gate Perceptron Design: Given \mathbf{w} = [1, 1]^T, point
high-dimensional \mathbf{z} \to \text{need MCMC} methods
Stationary Distribution
                                                                                                            \mathbf{p} = [0, 0.5]^T lies on the boundary. Then
Consider homogeneous Markov chain with transition probability
                                                                                                             1 \cdot 0 + 1 \cdot 0.5 + b = 0 \Rightarrow b = -0.5.
                                                                                                                                                                                                                          training.
p(x_t = y \mid x_{t-1} = x) = \mathbf{T}(x, y). \pi is a stationary distribution if \sum_x \pi(x) \mathbf{T}(x, y) = \pi(y) for all states y. Also called invariant distribution — does not change over time in the chain. If M states, \mathbf{T} is an M \times M matrix with \pi \mathbf{T} = \pi.
                                                                                                             • AND Gate Perceptron Design: Given \mathbf{w} = [1,1]^T , point
                                                                                                            \mathbf{p} = [0, 1.5]^T lies on the boundary. Then 1 \cdot 0 + 1 \cdot 1.5 + b = 0 \Rightarrow b = -1.5.
                                                                                                            • XOR and Multi-Layer Perceptron: Single-layer fails on XOR. Use hidden layer: Neuron 1: \mathbf{w}_1 = [1,1]^T, b = -0.5; Neuron 2: \mathbf{w}_2 = [-1,-1]^T, b = 1.5. Output neuron AND:
Asymptotic Steady State
Asympton: State States and state \pi_1: Markov evolution: \pi_1 = \pi_0 \mathbf{T}, \ \pi_2 = \pi_1 \mathbf{T}, \dots, \ \pi_k = \pi_0 \mathbf{T}^k. If the limit \pi = \lim_{k \to \infty} \pi_k = \lim_{k \to \infty} \pi_0 \mathbf{T}^k exist,\pi must satisfy \pi \mathbf{T} = \pi \to a stationary distribution
                                                                                                            \mathbf{w}_{2} = [1, 1], b = -1.5.
• Forward Propagation: Given W_{1}, W_{2}, W_{3}, b_{1}, b_{2}, b_{3}, input \mathbf{p},
                                                                                                                              \mathbf{h}_1 = \sigma(W_1\mathbf{p} + b_1), \mathbf{h}_2 = \sigma(W_2\mathbf{h}_1 + b_2),
Reversible Markov Chain (MC)
                                                                                                            compute. \hat{\mathbf{u}}_1 = \delta(\mathbf{w}_1\mathbf{p} + \delta I), \, \mathbf{u}_2 = \delta(\mathbf{w}_2\mathbf{u}_1 + \delta 2), \, \hat{\mathbf{u}}_3 = \sigma(\mathbf{w}_3\mathbf{h}_2 + \mathbf{b}_3).
• Universal Approximation Theorem: (1) Approximating Arbitrary
• Sufficient condition but not necessary condition for \pi to be
stationary: \pi(x)\mathbf{T}(x,y) = \pi(y)\mathbf{T}(y,x) for all x,y \to \text{This}
                                                                                                                                                                                                                          it will produce an output of W_2 \times H_2 \times K
                                                                                                             Decision Regions with 3-Layer MLP; Approximating a Function
                                                                                                                                                                                                                          W_2 = \frac{W_1 - F + 2P}{S} + 1. Same for H_2.
chain is reversible. Summing both sides over x:
                                                                                                             with 2-Layer MLP. (2) A hidden layer of nonconstant, bounded, and
\begin{array}{l} \sum_{x}\pi(x)\mathbf{T}(x,y) = \sum_{x}\pi(y)\mathbf{T}(y,x) = \\ \pi(y)\sum_{x}\mathbf{T}(y,x) = \pi(y). \end{array} • Sampling from a distribution \pi(x): Design transition \mathbf{T}(x,y)
                                                                                                             continuous neurons (with weights and biases), plus a linear output
                                                                                                             neuron (with weights but without bias) can approximate any
                                                                                                             continuous function to any arbitrary accuracy if there are enough
such that (1) All the ergodicity conditions hold (2) Usually make T
                                                                                                             hidden neurons.
                                                                                                                                                                                                                          5 \times 5, stride 1, padding 2 Output spatial size:
reversible and aperiodic (3) \pi(x) is stationary distribution.
                                                                                                             Feedforward Computation
• MCMC basis: Generate sample path for the Markov chain
                                                                                                            A multilayer NN maps input x to output y via: y = f(x) = \sigma(W_L \sigma(W_{L-1} \ldots \sigma(W_1 x + b_1) \cdots + b_{L-1}) + b_L).
z_0, z_1, \ldots, z_n starting from any z_0. If n large, then
p(z_n) \approx \pi(z_n) \rightarrow \text{obtain samples from } \pi
                                                                                                             All layers use weight matrices W_i and bias vectors b_i.
Metropolis-Hastings Algorithm
                                                                                                             NN terminology Basics
• Sample from \pi(\mathbf{x}) (e.g., \mathcal{X} = \mathbb{R}^{1000}). Assume we can compute
                                                                                                             • Classification: last layer = softmax, loss = cross-entropy.
unnormalized density \tilde{\pi}(\mathbf{x}). Choose transition probability q(\mathbf{x}, \mathbf{y})
                                                                                                            • Regression: last layer = linear, loss = MSE.
that is irreducible, aperiodic, and easy to sample — this is the
                                                                                                             • "2-layer NN(1-hidden-layer NN)" = input + 1 hidden + output.
• "3-layer NN(2-hidden-layer NN)" = input + 2 hidden + output.
proposal distribution.
• Let Z_0, Z_1, \ldots be the chain states. At step m:
                                                                                                            Activation Functions
                                                                                                            • Sigmoid: \sigma(x)=\frac{1}{1+e^{-x}}, output in [0,1], saturates.
• Tanh: \tanh(x)=2\sigma(2x)-1, output in [-1,1], zero-centered.
1. Let \mathbf{x} = Z_{m-1}.
                                                                                                                                                                                                                          Blank area for Appendix Notes
2. Sample \mathbf{y} \sim q(\mathbf{x}, \cdot).
3. Accept \mathbf{y} with probability A(\mathbf{x}, \mathbf{y}) = \min \left(1, \frac{\tilde{\pi}(\mathbf{y})q(\mathbf{y}, \mathbf{x})}{\tilde{\pi}(\mathbf{x})q(\mathbf{x}, \mathbf{y})}\right).

ReLU: max(0, x), avoids vanishing gradient, fast to compute.
Leaky ReLU: f(x) = αx if x < 0, else x, avoids dead neurons.</li>

4. If accepted, Z_m = \mathbf{y}; else Z_m = Z_{m-1}.

• (1) Sequence Z_0, Z_1, \ldots is a Markov chain (only depends on
                                                                                                             • Linear: f(x) = cx, used in regression output layer. Also known as
Z_{m-1}) (2) Like rejection/importance sampling, does not need
                                                                                                             identity activation function.
normalization constant of \tilde{\pi} (3) Suitable for high-dimensional \pi(\mathbf{x})
                                                                                                             ullet Softmax: \mathrm{softmax}(z_i) = rac{e^{z_i}}{\sum_j e^{z_j}}, output is probability
since sampling is from simple q(\mathbf{x},\cdot)
                                                                                                             distribution. • Maxout. • Exponential Linear Unit (ELU).
Proposal Distributions
• MH chain Z_0, Z_1, \ldots is designed to converge to stationary distribution \pi(\cdot). For large m, Z_m \sim \pi approximately.
                                                                                                             Data Preprocessing
                                                                                                             • Standardization: zero mean, unit variance. x' = \frac{x-\mu}{\sigma}
• Burn-in period: discard first 1000 to 5000 samples
                                                                                                             • Normalization: scale to [0,1] or [-1,1]: x'=\frac{x-\min(x)}{\max(x)-\min(x)}
• Choice of Proposal Distribution:
                                                                                                             Loss Functions
1. q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y} - \mathbf{x}) — random walk MH.

(1) \mathbf{y} - \mathbf{x} \sim \mathcal{N}(0, \Sigma) — Gaussian centered at \mathbf{x}.
                                                                                                             • Classification: Cross-entropy loss: \mathcal{L}(\theta) = -\sum_{k=1}^{K} y_k \log \hat{y}_k.
                                                                                                             · Regression:
(2) \mathbf{y} - \mathbf{x} \sim \text{Unif}[-\delta, \delta]^d — Uniform around \mathbf{x}.
                                                                                                             Mean squared error (MSE): \mathcal{L}(\theta) = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2.
(3) If q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}, \mathbf{x}), then A(\mathbf{x}, \mathbf{y}) = \min\left(1, \frac{\tilde{\pi}(\mathbf{y})}{\tilde{\pi}(\mathbf{x})}\right)
                                                                                                            Mean absolute error (MAE): \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|

Gradient Descent (GD)
known as the Metropolis Algorithm.
(4) Variance affects — small ⇒ slow, high ⇒ high rejection rates.
                                                                                                             1. Initialization: Randomly initialize the model parameters \theta^0. Set
2. Independence Chain MH: q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}), i.e. next state is
independent of current. Works well if q(\mathbf{y}) closely approximates \pi(\mathbf{y}) and is heavy-tailed
                                                                                                            2. Compute the gradient of the loss function at \theta^{\text{old}}: \nabla \mathcal{L}(\theta^{\text{old}}).
3. Update the parameters: \theta^{\text{new}} = \theta^{\text{old}} - \alpha \nabla \mathcal{L}(\theta^{\text{old}}) where \alpha is
3. Exploiting Structure of \pi: Suppose \pi(\mathbf{x}) \propto \psi(\mathbf{x})h(\mathbf{x}), with
                                                                                                            the learning rate. 4. Set \theta^{\rm old}=\theta^{\rm new} and return to step 2 (repeat until terminating).
h(\mathbf{x}) is a density that can be sampled from, bounded function \psi(\mathbf{x})
Choose q(\mathbf{x}, \mathbf{y}) = h(\mathbf{y}), then:
                                                                                                             GD does not guarantee reaching a global minimum.
A(\mathbf{x}, \mathbf{y}) = \min\left(1, \frac{\tilde{\pi}(\mathbf{y})q(\mathbf{y}, \mathbf{x})}{\tilde{\pi}(\mathbf{x})q(\mathbf{x}, \mathbf{y})}\right) =

    Backpropagation: Combines forward pass + backward pass using

                                                                                                             chain rule to compute gradients of loss w.r.t. weights.
\min\left(1, \frac{\psi(\mathbf{y})h(\mathbf{y})h(\mathbf{x})}{\psi(\mathbf{x})h(\mathbf{x})h(\mathbf{y})}\right) = \min\left(1, \frac{\psi(\mathbf{y})}{\psi(\mathbf{x})}\right)
                                                                                                             · Batch GD: compute gradients over full dataset.
```

Adam: computes a weighted average of past gradients and weighted average of past squared gradients. • Other: RMSprop, Adagrad, Adadelta, Nadam, etc. • Most used: Adam, SGD with momentum. Too small → slow convergence; Too large → divergence or oscillations. • LR scheduling: reduce α over time. Approaches: step decay, exponential/cosine decay, reduce by constant, • Underfitting: high train + validation error (too simple). Overfitting: low train error, high validation error (too complex). • ℓ_2 regularization: $\mathcal{L}_{\text{reg}} = \mathcal{L}(\theta) + \lambda \sum_k \theta_k^2$, penalty for large. • ℓ_1 regularization: $\mathcal{L}_{\text{reg}} \mid \theta_k \mid$, perform worse than ℓ_2 . • Elastic net: mix of ℓ_1 and ℓ_2 . • Dropout: randomly deactivate neurons during training (e.g., p=0.5). • Early stopping: monitor validation loss, stop if no improvement after n epochs. Less dependent on initialization. Normalizes activations. Reduces vanishing/exploding gradients. Reduces internal covariate shift. Stabilizes training, enables higher learning rates. Common in CNNs. • layer size, lr(schedule), optimizer, regularization, batch size, • Methods: grid search(check all with step), random search, Bayesian optimization. Use k-fold cross-validation if data is limited. Why MLP Fails on Images MLPs are not translation invariant: shifting the input changes the output drastically. CNNs solve this Convolution Operation • 1D: Convolution flips and slides a kernel $x = [1, 2, 3, 4], w = [5, 6, 7] \rightarrow z = [5, 16, 34, 52, 45, 28]$ • 2D: Apply 2D filter over 2D image by elementwise multiplication and sum. Edge detectors highlight directional features. Convolutional Neural Networks(CNNs)

• Parameter sharing via convolution filters.

• Sparse connections via local receptive fields. ullet Translation invariance. ullet Fewer parameters than MLPs o faster Residual Networks (ResNets)

• Use identity skip connections:
output = layer(x) + x.

• Help prevent vanishing gradients.

• Enable very deep models (e.g., 18, 50, 152 layers). CNN Details • Each filter spans full input depth. • Produces one activation map per filter. • Multiple filters produce stacked output c.e.g., 6 filters \rightarrow output depth = 6). CNN Architecture Typical: [(CONV - ReLU) \times N - POOL] \times M [FC - ReLU] \times K - Softmax. Modern trends: deep models (VGG, ResNet), small filters (3 \times 3), less pooling. Spatial Dimensions For input of size $W_1 \times H_1 \times C$, filter size F, stride S, padding P, number of filters K: Number of parameters per filter: F^2C+1 (bias), total: $K(F^2C+1)$ for K filters. **Example Calculation:** Input: $32 \times 32 \times 3$, Filters: 10 of size $\begin{array}{ll} (32+2*2-5)/1+1=32\rightarrow 32\times 32\times 10 & \text{Params:} \\ 5*5*3+1=76 \text{ per filter} \rightarrow \text{total } 760 \text{ parameters.} \\ \textit{Padding Strategy} & \text{Zero-padding preserves spatial size. To preserve} \end{array}$ size: use padding $P = \frac{F-1}{2}$ if S = 1 **Pooling Layer** • Reduces spatial size, parameters, overfitting. • Max pooling: keep largest value in window. • Avg pooling: keep mean value. • Output size: $W_2 = \frac{W_1 - F}{F} + 1$, same for H_2 . • 0 learnable parameters.

Flatten and FC Layer

• Flatten: convert activation map to 1D before FC. • FC: standard dense layer connects to all inputs.