

SOLUCIÓN - Arquitectura de Lenguajes y Programación

En el siguiente documento se presentan las soluciones a la primera experiencia de laboratorio de Fundamentos de Computación y Programación.

El computador y su arquitectura básica

1. En el siguiente ejercicio debe identificar el concepto con su respectiva descripción:

1. Computador	<u>4</u>	Transporte de datos e instrucciones entre dispositivos.
2. Hardware	<u>3</u>	Estructura básica de los computadores de 5 elementos.
3. Arquitectura de Von Neumann	<u>1</u>	Artefacto que permite calcular, computar y manipular datos (lógica-matemática) e interactuar con el usuario.
4. Buses	<u>5</u>	ALU, unidad de control y registros.
5. CPU	<u>2</u>	Componentes físicos del computador.

2. Coloque el respectivo concepto en el lugar correspondiente:

Unidad aritmética-lógica |Unidad de control | Memoria | Dispositivos de entrada/salida | Buses

Sistema binario

3. Transforme los siguientes números en base 2 a base decimal teniendo en cuenta que las palabras de computador son de 1 byte:

$$(00000000)_2 = (0)_{10}$$
 $(00000100)_2 = (4)_{10}$
 $(00000001)_2 = (1)_{10}$ $(10000100)_2 = 1*2^7 + 1*2^2 = (132)_{10}$
 $(00000010)_2 = (2)_{10}$ $(00001001)_2 = 2^3 + 2^0 = (9)_{10}$
 $(00000011)_2 = (3)_{10}$ $(10101010)_2 = 2^7 + 2^5 + 2^3 + 2^1 = (170)_{10}$

4. Transforme los siguientes números en base 10 a base binaria teniendo en cuenta que las palabras de computador son de 1 byte:

$$(0)_{10} = (00000000)_2$$
 $(7)_{10} = (00000111)_2$ $(11)_{10} = (00000011)_2$ $(11)_{10} = (00001010)_2$ $(16)_{10} = (00010000)_2$ $(32)_{10} = (00100000)_2$

5. Realice las siguientes sumas binarias y luego traduzca el resultado a número decimal:

00000000	00000010	00000101
+ 00000001	+ 00000001	+ 00000001
$00000001 = (1)_{10}$	$00000011 = (3)_{10}$	00000110 = (6) ₁₀
01000000	01010010	01111111
+ 00000001	+ 00010101	+ 00000001
01000001 = (65) ₁₀	01100111 = (103) ₁₀	10000000 = (128) ₁₀

5. Traduzca los números decimales a binario y luego reste el segundo número al primero como se indica, para comprobar el resultado final, tradúzcalo nuevamente a decimal:

1.	5 – 3 =					
	$(5)_{10} = (00000101)_2$	\rightarrow	Transformamos 5 a binario			
	$(3)_{10} = (00000011)_2$	\rightarrow	Transformamos 3 a binario			
	Ahora se necesita complementar para conseguir el valor de −3 en binario					
	00000011 → 11111100	\rightarrow	Cambiamos los 0's por 1's y viceversa			
	11111100 + <u>00000001</u> 11111101	\rightarrow	Sumamos el valor 00000001 para obtener –3 en binario			
	00000101 + <u>11111101</u> 100000010	\rightarrow	Sumamos 5 con –3 en binario para obtener el resultado, tras calcular el resultado obtenemos el número 100000010, de 9 cifras			
	$(00000010)_2 = (2)_{10}$	\rightarrow	Cómo estamos trabajando en complemento a 2 a 8 bits, se elimina la cifra de más a la izquierda, resultando el valor binario 00000010 igual a 2 en el sistema decimal			
2.	2 – 2 =					
	$(2)_{10} = (00000010)_2$	\rightarrow	Transformamos 2 a binario			
	Ahora se necesita complementar para conseguir el valor de -2 en binario					
	00000010 → 11111101	\rightarrow	Cambiamos los 0's por 1's y viceversa			
	11111101 + <u>00000001</u> 11111110	\rightarrow	Sumamos el valor 00000001 para obtener –2 en binario			
	00000010 + <u>11111110</u> 100000000	\rightarrow	Sumamos 2 con –2 en binario para obtener el resultado, tras calcular el resultado obtenemos el número 100000000, de 9 cifras			
	$(00000000)_2 = (0)_{10}$	\rightarrow	Cómo estamos trabajando en complemento a 2 a 8 bits, se elimina la cifra de más a la izquierda, resultando el valor binario 00000000 igual a 0 en decimal			

3. 16 – 32 =

$(16)_{10} = (00010000)_2$	\rightarrow	Transformamos 16 a binario
$(32)_{10} = (00100000)_2$	\rightarrow	Transformamos 32 a binario
	mentar	para conseguir el valor de 32 en binario
00100000 → 11011111	\rightarrow	Cambiamos los 0's por 1's y viceversa
11011111	\rightarrow	Sumamos el valor 00000001 para obtener –32
+ <u>00000001</u>		en binario
11100000		
00010000	\rightarrow	Sumamos 16 con -32 en binario para obtener el
+ <u>11100000</u>		resultado, tras calcular el resultado obtenemos
11110000		el número 11110000.
$(11110000)_2 = (\.;?)_{10}$	\rightarrow	Cómo estamos trabajando en complemento a 2 a 8 bits, y la octava cifra del número es un 1, eso indica que el resultado es un número negativo, por lo que se debe realizar el proceso de complemento a la inversa para obtener el resultado en decimal
11110000 - <u>00000001</u>	\rightarrow	Comenzamos restando 00000001 en binario, esto significa tener que transformarlo también usando complemento a 2
00000001 → 11111110	\rightarrow	Cambiamos los 0's por 1's y viceversa
11111110	\rightarrow	Sumamos el valor 00000001 para obtener –1 en
+ <u>00000001</u>		binario
11111111		
11110000	\rightarrow	Sumamos el resultado con -1 en binario para
+ <u>11111111</u>		obtener el valor original, tras calcular el
<mark>1</mark> 11101111		resultado obtenemos el número 11101111.
(11101111) ₂	\rightarrow	Cómo estamos trabajando en complemento a 2 a 8 bits, se elimina la cifra de más a la izquierda, resultando el valor binario 11101111.
$(11101111)_2 \rightarrow (00010000)_2$	\rightarrow	Ahora para terminar el proceso inverso al complemento a 2, cambiamos los 0's por 1's y viceversa
$(00010000)_2 \rightarrow (16)_{10}$	\rightarrow	Lo que da como resultado 16 en decimal, por lo tanto el resultado de la resta era —16

Lenguajes de programación

6. Dada las siguientes oraciones en español, determine que error léxico, sintáctico o semántico presentan, justificando sus respuestas:

Los libros los en el estante	Error sintáctico: Se espera un verbo
Están plantando pasto verd	Error léxico: No existe palabra "verd"
3. Los pernos juegan fútbol	Error semántico: No es posible saber a que "pernos" se hace referencia
4. &p& está aburrido	Error léxico: No existe la palabra &p&
5. Niñas las buscan a sus padres	Error sintáctico: La frase no está en orden