

FAST LOAD FLOW TECHNIQUES OF LARGE SCALE SYSTEMS

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

By
PUNKAJ GUPTA

to the
DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
DECEMBER, 1982

CENTRAL LIBRARY

Acc. No. A 82687

CERTIFICATE

Certified that this work 'FAST LOAD FLOW TECHNIQUES OF LARGE SCALE SYSTEMS' by Shri Pankaj Gupta has been carried out under my supervision and has not been submitted elsewhere for a degree.

Dated:

(L.P. Singh)
Professor

Department of Electrical Engineering
Indian Institute of Technology
KANPUR

ACKNOWLEDGEMENT

I am deeply indebted to my thesis supervisor Dr. L.P. Singh who suggested the problem and provided the necessary guidance and encouragement during the course of this work.

I am highly thankful to Mr. V.P. Sunnak and Mr. A.K. Katare for their help in preparing the flow charts and proof reading.

I am also thankful to Mr. J.S. Rawat for his excellent typing.

- PUNKAJ GUPTA

TABLE OF CONTENTS

	Page
ABSTRACT	
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LOAD FLOW TECHNIQUES	6
2.1 Introduction	6
2.2 Load Flow Studies	6
2.3 Bus Categorization	7
2.4 Newton-Raphson Method	11
2.5 Steps for the Newton-Raphson Iterative Scheme	14
2.6 Decoupled Method	16
2.7 Fast Decoupled Method	18
CHAPTER 3 SPARSITY AND OPTIMAL ORDERING	21
3.1 Introduction	21
3.2 Functional Equations	22
CHAPTER 4 LOAD FLOW ANALYSIS: CASE STUDIES	30
4.1 Introduction	30
4.2 Newton-Raphson Method	32
4.3 Decoupled Method	37
4.4 Fast Decoupled Method	38
4.5 Q-Limit Adjustment	38
CHAPTER 5 CONCLUSION	43
REFERENCES	
APPENDIX	

ABSTRACT

Exhaustive studies have been conducted in the field of load flow analysis. The results of these studies have pointed out the advantages of the fast converging methods like Newton-Raphson especially in polar coordinates and Fast Decoupled method . The former method has the disadvantage of large memory requirement and greater computation time. These methods (in particular Newton-Raphson) become a practical tool only when sparsity of the coefficient matrix and bus admittance matrix are exploited. The use of ordered elimination reduces the computation time further.

In this thesis, programs have been developed to perform LF studies by all the three methods such as, NR , D.C. and FD. Sparsity ordered eliminations are the key features of the program. A comparative study of these three methods with reference to computation time and memory requirements is also given.

CHAPTER 1

INTRODUCTION

The modern trend is to form a grid system of all the available energy sources i.e. towards interconnecting all types of generating stations. This provides the greatest advantage of meeting the load supply demands economically at all times. The power supply undertakings must keep pace with the load growth. In addition to the above, care must be taken so as not to overload the interconnecting systems resulting into their instability.

Load flow analysis is very important when new components or additions to existing ones are considered. With proper and accurate load flow studies, the interruption of power can be minimised. Load flow calculations are necessary at the initial stage for the purpose of planning, operation and control. It provides voltage magnitude and phase angle at each bus and power flows including line losses in each element of the power system network. Apart from determining the steady state operating conditions of a power system network for the purpose of planning, operation and control, load flow calculations also provide initial conditions for transient stability studies.

Prior to the advent of digital computer, load flow studies were performed on A.C. calculating boards i.e. network

analysers. A calculating board is a single phase scaled down model of a balanced three phase system. The board being made up of a number of elements viz. resistances, inductances and capacitances, all of which are adjustable, along with a number of sources and measuring instruments. Initial adjustments in this case usually take a lot of time since each adjustment at any bus affects values of pertinent quantities at other buses. In addition to this, considerable amount of time is lost in recording observations.

The appearance of the digital computers revolutionized the whole concept of load flow calculations. Mathematical model (i.e. equations) which were once thought to be cumbersome and of purely theoretical interest became practically feasible. The ease with which computers can handle arithmetic operations gave a boost to the numerical methods. The mathematical model for the purpose of load flow studies is a set of non-linear algebraic equations. The non linearity of the system of equations defies an exact analytical solution and one must resort to some iterative techniques which will render a sufficiently accurate numerical solution. There is no dearth of numerical techniques available, only the enormous computational effort is a deterrent, but with the coming of the digital computer, it is no longer a stumbling block, for now the problem is to develop an algorithm for solving these equations on the computer.

The first practical methods to solve these power system network equations on a digital computer, appeared in literature in 1956 [1,2]. These methods (one of the methods was the gauss-seidel technique) required minimum storage and hence were well suited to the first generation computers. However these methods were slow in convergence and thus not very well suited to handle large systems. Any method which has to handle a large system must possess the following two key features.

1. Nominal storage requirements
2. Reliable and fast in convergence.

The Newton-Raphson method's quadratic convergence property was highlighted around the same time [3,4] but was found to be computationally uncompetitive. The application of sparsity programmed ordered elimination by Tinmy and Walker to the Newton-Raphson method reduced the storage requirement and also optimized the computation time to such an extent that Newton-Raphson method gained popularity over and above other methods [5], and has now come to be widely regarded as the general purpose load flow approach [6]. The decoupled and fast decoupled load flow techniques are modifications of the Newton-Raphson method which exploit the loose physical interaction between MW and MVAR flows in a power system. Storage and computation time are further minimized in the above mentioned methods, without appreciable loss in accuracy.

Present day power systems are large and complex because of greater interconnection. To analyse such a large scale system on a digital computer with limited memory application of sparsity oriented ordered elimination techniques are needed.

Keeping the above factors in view, programs are developed for the three methods viz. Newton-Raphson, Decoupled and Fast Decoupled. These programs have been tested for a 100 bus 128 line system of UPSEB. Programs are capable of handling a larger system; data storage requirements of the large system are the limiting factors which dictate system size that can be simulated on a particular digital computer. Although the use of magnetic tapes can overcome this problem to some extent, one has to pay in terms of speed. The main features of the programs developed in this thesis are:

1. User oriented input/output format
2. Storage of only non-zero elements of Y_{bus}
3. Storage of only non-zero elements of Jacobian
4. Ordered elimination of the Jacobian equation

The chapter-wise summary of the work covered in this thesis is given as follows.

Chapter 2 is devoted to the theoretical aspects of the methods used viz. Newton-Raphson, Decoupled and the Fast Decoupled method. A brief account of each method and their relative merits are also discussed in this chapter.

Chapter 3 deals with sparsity ordered elimination. A general description of the technique and in specific, its application to power system problem has been given.

Chapter 4 deals with the case study of the following systems

14 bus 20 lines IEEE system

57 bus 80 lines IEEE system

and 100 bus 128 lines UPSEB system.

The advantage of sparsity ordered elimination are elaborated by comparasion of results for the three systems in relation to memory requirements and computer time. Detailed flow chart for all the methods used as well as results etc. are given.

Chapter 5 concludes with the specific findings in this thesis along with future scope of the work.

CHAPTER 2

LOAD FLOW TECHNIQUES

2.1 INTRODUCTION:

This chapter deals with the currently favoured methods for load flow studies. A literature survey will reveal a host of algorithms which have been suggested from time to time to solve this problem of load flow analysis. An excellent review of the major portion of work done in this field has been given in [7]. In general it is difficult to point out the best method for a particular application. The relative properties and performances of different load flow methods can be influenced substantially by the types and size of the problems to be handled and also by the computing facilities available. Any final choice is invariably a compromise between the various criteria of goodness by which the load flow methods are to be compared with each other. Every such criteria is directly or indirectly associated with financial cost. This chapter spells out the details of the load flow problem and the numerical techniques for its solution.

2.2 LOAD FLOW STUDIES:

The objective of the load flow study is to determine the phase angle and reactive power on each P-V bus and the phase angle and voltage magnitude at each P-Q bus subject to the constraints on the real and reactive power at

P-Q buses and the real power and voltage magnitude at the P-V buses. Based upon this it is possible to classify the buses into three categories.

2.3 BUS CATEGORIZATION:

The buses are categorized depending on the quantity specified at the bus

- a) Load or a P-Q bus
- b) Voltage controlled or a P-V bus
- c) Slack or swing bus

a) Load or a P-Q bus: For this type of a bus, we know a priori P_{L_i} and Q_{L_i} and specify P_{G_i} and Q_{G_i} . In effect we thus specify the bus injections P_i and Q_i . Solution of the load flow equations will render $|V_i|$ and θ_i . A load bus which due to its lack of generating equipment, is characterized by zero P_{G_i} and Q_{G_i} evidently falls in this category.

b) P-V or a voltage controlled bus: For this type of a bus we know a priori P_{L_i} and Q_{L_i} and specify $|V_i|$ and P_{G_i} . In effect, we thus specify the bus powers P_i . Solution of the load flow equations render Q_i (and hence Q_{G_i}) and θ_i . This is called a voltage controlled bus because its voltage can be controlled.

c) Slack or swing bus: This is the reference bus where the voltage magnitude and phase angle are specified. One of the generator with the maximum real power capabilities must be

selected as the swing bus to provide for the additional real and reactive power to supply line losses because these are unknown till the final load flow solution is obtained. The variables of interest at this bus are the real and reactive power.

Assuming balanced 3-phase conditions, which is usually done for the purpose of load flow studies, the transmission system can be represented by its positive sequence network. The nodal admittance matrix can be expressed as follows

$$\begin{matrix} I_{BUS} \\ (nx1) \end{matrix} = \begin{matrix} Y_{BUS} \\ (nxn) \end{matrix} \begin{matrix} V_{BUS} \\ (nx1) \end{matrix} \quad (2.1)$$

The above equation can be written in the following form for a P^{th} node.

$$I_p = \sum_{q=1}^n Y_{pq} V_q \quad (2.2)$$

$p = 1, 2, \dots, n$

This equation simply states that the currents at any node or bus is the algebraic sum of all the currents entering or leaving the node. The power at any bus is calculated by the $V_p I_p^*$ product.

$$V_p I_p^* = V_p \sum_{q=1}^n Y_{pq}^* V_q^* \quad (2.3)$$

separating equation (2.3) into the real and imaginary parts gives us the expressions for real and reactive powers i.e.

$$P_p = \text{REAL} [v_p \sum_{q=1}^n Y_{pq}^* v_q^*] \quad (2.4)$$

$$Q_p = \text{IMAG} [v_p \sum_{q=1}^n Y_{pq}^* v_q^*] \quad (2.5)$$

p = 1, 2, ..., n.

With the following substitutions for Y_{pq} , v_p and v_q

$$Y_{pq} = G_{pq} + jB_{pq}$$

$$v_p = |v_p| (\cos \theta_p + j \sin \theta_p)$$

$$v_q = |v_q| (\cos \theta_q + j \sin \theta_q)$$

equations (2.4) and (2.5) become

$$P_p = |v_p| \sum_{q=1}^n ((G_{pq} \cos \theta_{pq} + B_{pq} \sin \theta_{pq}) |v_q|) \quad (2.6)$$

$$Q_p = |v_p| \sum_{q=1}^n ((G_{pq} \sin \theta_{pq} - B_{pq} \cos \theta_{pq}) |v_q|) \quad (2.7)$$

Let us examine the number of knowns and unknowns at the three type of buses.

suppose total number of buses = N

slack bus = 1

Number of P-Q buses = M

Number of P-V buses = N-M-1

If V and Θ are known at all the buses we can find out P and Q at all buses using equations (2.6) and (2.7) i.e. V and Θ are the state variables.

$$\text{Total number of possible unknowns} = 2N$$

As voltages at all P-V buses are known and also at slack bus V is assumed 1.0 p.u. and angle $\Theta_s = 0^\circ$.

$$\begin{aligned}\text{Number of knowns} &= N-M-1+2 \\ &= N-M+1\end{aligned}$$

$$\begin{aligned}\text{Number of unknowns} &= 2N-(N-M+1) \\ &= N+M-1\end{aligned}$$

Hence $(N+M-1)$ equations are needed to solve for the unknowns. For each load bus P and Q are known so we can write two equations at each P-Q bus. Also P is known at each P-V bus so one equation for P can be written for each P-V bus.

$$\text{Number of equations for } (N-M-1) \text{ P-V buses} = N-M-1$$

$$\text{Number of equations for } M \text{ P-Q buses} = 2M$$

$$\begin{aligned}\text{Total number of equations} &= 2M+N-M-1 \\ &= N+M-1\end{aligned}$$

Thus the number of equations is equal to the number of unknowns [Note this has been possible, only if Θ_{pq} i.e. $(\Theta_p - \Theta_q)$ is treated as one unknown by taking one of the buses as reference].

Bus constraint equations are

$$\Delta P_p = P_p^{sp} - P_p^{cal} \quad (2.9)$$

$$\Delta Q_p = Q_p^{sp} - Q_p^{cal} \quad (2.10)$$

where superscript 'sp' and 'cal' stand for specified and calculated respectively. P_p^{cal} and Q_p^{cal} are obtained from the equations (2.6) and (2.7). As can be seen by the appearance of $\cos \theta_{pq}$ and $\sin \theta_{pq}$ terms in the expressions for P_p^{cal} and Q_p^{cal} , it is a system of non-linear equations and one has to resort to numerical techniques to obtain a solution. The solution of these equations for V's and θ 's is the load flow problem.

2.4 NEWTON RAPHSON METHOD:

When there is no mismatch between the specified and calculated powers equations (2.9) and (2.10) [in matrix notation] become

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = 0 \quad (2.11)$$

Applying Newton-Raphson method we have

(2.12)

$$\begin{bmatrix}
 \Delta P_1 & \frac{\partial \Delta P_1}{\partial \Theta_1} & \dots & \frac{\partial \Delta P_1}{\partial \Theta_{N-1}} & |V_1| & \frac{\partial \Delta P_1}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta P_1}{\partial V_M} & |V_M| \\
 \Delta P_2 & \frac{\partial \Delta P_2}{\partial \Theta_1} & \dots & \frac{\partial \Delta P_2}{\partial \Theta_{N-1}} & |V_1| & \frac{\partial \Delta P_2}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta P_2}{\partial V_M} & |V_M| \\
 \Delta P_3 & \dots & \dots & \dots & |V_1| & \dots & \dots & \dots & \Delta \Theta_3 & \dots \\
 \vdots & & & & & & & & & \vdots \\
 \Delta P_{N-1} & \frac{\partial \Delta P_{N-1}}{\partial \Theta_1} & \frac{\partial \Delta P_{N-1}}{\partial \Theta_2} & \dots & \frac{\partial \Delta P_{N-1}}{\partial \Theta_{N-1}} & |V_1| & \frac{\partial \Delta P_{N-1}}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta P_{N-1}}{\partial V_M} & |V_M| \\
 \Delta Q_1 & \frac{\partial \Delta Q_1}{\partial \Theta_1} & \frac{\partial \Delta Q_1}{\partial \Theta_2} & \dots & \frac{\partial \Delta Q_1}{\partial \Theta_{N-1}} & |V_1| & \frac{\partial \Delta Q_1}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta Q_1}{\partial V_M} & |V_M| \\
 \Delta Q_2 & \frac{\partial \Delta Q_2}{\partial \Theta_1} & \frac{\partial \Delta Q_2}{\partial \Theta_2} & \dots & \frac{\partial \Delta Q_2}{\partial \Theta_{N-1}} & |V_1| & \frac{\partial \Delta Q_2}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta Q_2}{\partial V_M} & |V_M| \\
 \vdots & \dots & \dots & \dots & \dots & |V_1| & \frac{\partial \Delta Q_M}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta Q_M}{\partial V_M} & |V_M| \\
 \Delta Q_M & \frac{\partial \Delta Q_M}{\partial \Theta_1} & \frac{\partial \Delta Q_M}{\partial \Theta_2} & \dots & \frac{\partial \Delta Q_M}{\partial \Theta_{N-1}} & |V_1| & \frac{\partial \Delta Q_M}{\partial V_2} & |V_2| & \dots & \frac{\partial \Delta Q_M}{\partial V_M} & |V_M|
 \end{bmatrix}$$

In short the above can be written in the form

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} H & N \\ M & L \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta v \\ |v| \end{bmatrix} \quad (2.13)$$

where

$$\begin{bmatrix} H & N \\ M & L \end{bmatrix}$$

is called the Jacobian matrix

H — Partial derivatives of P w.r.t. θ 's

L — Partial derivatives of Q w.r.t. V's

N — Partial derivatives of P w.r.t. V's

M — Partial derivatives of Q w.r.t. θ 's

The Δv 's are divided by $|v|$ and corresponding elements of Jacobian are multiplied by ' v ' to bring about a symmetry in the elements of the Jacobian.

It can be shown that

for $p \neq q$

$$H_{pq} = L_{pq} = |v_p| |v_q| (G_{pq} \sin \theta_{pq} - B_{pq} \cos \theta_{pq}) \quad (2.14)$$

$$N_{pq} = -M_{pq} = |v_p| |v_q| (G_{pq} \cos \theta_{pq} + B_{pq} \sin \theta_{pq}) \quad (2.15)$$

For $p = q$ we have

$$H_{pp} = -Q_p - B_{pp} |v_p|^2 \quad (2.16)$$

$$L_{pp} = Q_p - B_{pp} |v_p|^2 \quad (2.17)$$

$$N_{pp} = P_p + G_{pp} |v_p|^2 \quad (2.18)$$

$$M_{pp} = P_p - G_{pp} |v_p|^2 \quad (2.19)$$

Where P_p and Q_p are calculated from equations (2.6) and (2.7).

The solution of equation (2.13) gives us the $\Delta\Theta$'s and ΔV 's which are used to update earlier estimates of Θ 's and V 's and the process is repeated till the mismatch ΔP and ΔQ become less than a pre-assigned tolerance value ϵ . When this is achieved, the iterative process is stopped as the desired accuracy has been obtained.

2.5 STEPS FOR THE NEWTON-RAPHSON ITERATIVE SCHEME:

1. If nothing is available regarding the actual value of variables at the buses assume a flat start, assign V at all buses equal to slack bus voltage and angles equal to slack bus angle i.e. zero. Set iteration count 'K' to one.
2. Calculate P^{cal} and Q^{cal} (using equation (2.6) and (2.7)) with values of V 's and Θ 's as in step (1).
3. Calculate power mismatch at all buses using equation (2.9) and (2.10).
4. Test for convergence by checking power mismatch. If ΔP 's and ΔQ 's at all buses are less than a pre-defined value ϵ , we jump out of the iterative loop and go to step (10).

5. Check if the number of iterations has exceeded the predefined value 'ITMAX' (say), if it has exceeded go to step (12).
6. Calculate the elements of the Jacobian using equations (2.14) through (2.19).
7. Solve equation (2.13) for $\Delta \theta$'s and $\frac{\Delta V}{V}$'s using one of the direct methods of solution (e.g. Gaussian elimination)
8. Update the voltages and angles at all the buses using the correction factors obtained in step (7). Increment iteration count by '1'

$$|v|^{K+1} = |v|^K + \left| \frac{\Delta v}{V} \right|^K |v| \quad (2.20)$$

$$\theta^{K+1} = \theta^K + \Delta \theta^K \quad (2.21)$$

9. With the voltages and angles as given equations (2.20) and (2.21) start the $(K+1)^{th}$ iteration i.e. go to step (2).
10. Using the latest voltage and estimates, calculate slack bus power, line flows and line losses.
11. Go to Step 13 .
12. Convergence not obtained in 'K' iterations.
13. Convergence obtained in 'K' iterations. Print bus status, line flows, line losses.

The main disadvantage of this method is that the storage requirements and computation work involved is enormous. For a 'N' bus system with 'M' P-Q buses the order of Jacobian is $(N+M-1)$. Thus for a typical 100 bus problem with 19 P-V buses including slack bus, which has been carried out in this thesis, we require 32.4 K of computer memory for storing the Jacobian matrix. Storage of data, bus admittance matrix etc. are over and above this. Bus admittance matrix for a 100 bus system will contribute towards a storage requirement of 10K. Thus Jacobian and bus admittance matrix together take the major portion of total storage requirements for any problem. With full storage schemes the solution is limited to small problems because of memory restrictions. The Newton-Raphson method together with sparsity and ordered elimination technique [5] is a powerful tool for obtaining load flow solution, as it optimizes memory requirement as well as computation time. The number of iterations required for solution is virtually independent of problem size. This is strictly true for programs without additional features like automatic tap adjustment of a transformer, Q limit checks etc. which may require additional iterations. A program adjusted for Q limits may take an additional two or more iterations.

2.6 DECOUPLED METHOD:

In all the decoupled methods the load flow equations have been derived from the Newton-Raphson formulation in polar coordinates to reduce memory requirement and computational

efforts. These methods are based on neglecting the coupling terms M and N of the Jacobian matrix in the Newton-Raphson method, on the assumption that the coupling between real bus power versus bus voltage magnitude and reactive power versus bus voltage angle is relatively weak. Any such approximations to the Jacobian inevitably sacrifices the true quadratic convergence property, but compensating computational benefits can accrue. Based upon these assumptions equation (2.13) reduces to two sets of independent equations for P's and Q's.

$$[\Delta P] = H [\Delta Q] \quad (2.22)$$

$$[\Delta Q] = L \left[\frac{\Delta V}{|V|} \right] \quad (2.23)$$

Equations (2.22) and (2.23) are formulated and solved successively. The latest values of Θ are used to solve for V . The decoupled method converges as reliably as the formal Newton-Raphson Method, although it takes more number of iterations to achieve accuracies comparable to the Newton's method. This however is not necessary as convergence to practical accuracies takes more or less the same number of iterations. The saving in terms of memory requirements is nearly 75% for Jacobian element storage although overall saving of the memory is only of the order of 40-50%. The computation time per iteration is also 10-20% less than Newton-Raphson Method.

2.7 FAST DECOUPLED METHOD:

The decoupled method can be further simplified without appreciable loss of accuracy [7,8]. In practical power system the following assumptions hold good.

1. θ_{pq} is small .
2. $G_{pq} \sin \theta_{pq} \ll B_{pq}$.
3. $Q_p \ll B_{pp} |V|^2$.

Applying these assumptions to equations (2.22) and (2.23) [reproduced below].

$$[\Delta P] = H [\Delta \theta]$$

$$[\Delta Q] = L \left[\frac{\Delta V}{|V|} \right]$$

We have

$$[\Delta P] = [V B' V] [\Delta \theta] \quad (2.24)$$

$$[\Delta Q] = [V B'' V] \left[\frac{\Delta V}{|V|} \right] \quad (2.25)$$

The elements of the matrix B' and B'' are strictly elements of $[-B]$. The decoupling process is given a final shape by.

- (a) Omitting from $[B']$ the representation of those network elements that predominantly affect MVAR flows i.e. shunt reactances and off nominal in phase taps.

(b) Omitting from $[B'']$ the angle shifting effects of phase elements.

(c) While calculating for P^{th} bus taking the left hand 'V' terms (for P^{th} bus) in equations (2.24) and (2.25) on to the left hand side of the equations and then in equation (2.24) removing the influence of MVAR flows on the calculations of $\Delta\theta$ by setting all right hand 'V' terms to 1 p.u.

With these assumptions the relevant equations for Fast-Decoupled load flow are

$$\left[\frac{\Delta P}{|V|} \right] = [B'] [\Delta \theta] \quad (2.26)$$

$$\left[\frac{\Delta Q}{|V|} \right] = [B''] [\Delta V] \quad (2.27)$$

This method though not possessing the true quadratic convergence of the Newton-Raphson method, converges very fast as the time per iteration is very less. It is as reliable as the Newton-Raphson method within the acceptable limits of accuracy. Adjusted solutions, to incorporate all other additional features, in this case, will take more number of iterations but since time per iteration is very less compared to Newton-Raphson method the overall computation time is not affected significantly.

In this chapter we have outlined the various methods of current interest. The methods in themselves are not new but form a powerful tool when sparsity of the Jacobian matrix is exploited. Implemented as such, they may not be able to handle systems of 500 bus or more (especially Newton-Raphson method) whereas using sparsity, we can handle system sizes of 1000 buses and above with little difficulty.

CHAPTER 3

SPARSITY AND OPTIMAL ORDERING

3.1 INTRODUCTION:

The sparsity occurs in some form in most of the physical systems such as communication network, current theory, family trees, organization structure and sociograms. Let a physical system be described by a set of 'n' algebraic linear equations of the form

$$[A] x = y \quad (3.1)$$

The problem is to determine the solution vector x by Gaussian elimination method such that the computational efforts and hence, the time of computation i.e. the cost is minimized. Following Von Neuman, the number of multiplication required to obtain solution is counted as a measure of computing time. Therefore if only the number of multiplication is to be counted, a reduced matrix 'M' of the coefficient matrix A [Eqn. 3.1]. whose elements are defined as

$$\begin{aligned} m_{ij} &= 1 && \text{if } m_{ij} \neq 0 \\ &= 0 && \text{if } m_{ij} = 0 \end{aligned} \quad (3.2)$$

contains all the required information for solving the problem.

Let the number of multiplication to process the i^{th} row be m_i and therefore, for the entire system, the total number of multiplication

$$\phi = \sum_{i=1}^n m_i \quad (3.3)$$

where n is the number of equations i.e. order of the system.

3.2 FUNCTIONAL EQUATIONS:

Optimal elimination is actually a topological problem which can be formulated using notation from graph theory. Some systems such as electrical networks may be thought of being their own graph, thus a picture of one of these systems with slight modification could serve as its own graph inspite of the fact that there may be more than one scalar quantity associated with each node, other systems such as those arise from difference equations may have no direct graph. For these systems, the following procedure is adopted to construct its graph. With each equation in the coefficient matrix 'A' (eqn. 3.1), there is associated a node in the system graph and with each non-zero term,

$$a_{ij} \text{ for } i = 1, \dots, n \quad (3.4)$$

$$j = 1, \dots, n$$

there is associated an undirected branch between the ith and the jth node.

The system graph will be referred to as 'G'; during the elimination process it is modified, just as the rows of the coefficient matrix 'A' are modified. Let G^i is a graph obtained by eliminating the ith node from system graph G

[i.e. processing i^{th} row of the corresponding coefficient matrix 'A']. Let $W(G)$ be defined to be the number of multiplication required to solve optimally the system [i.e. $[A]x = y$] whose graph is 'G' and let (i) be one plus the degree of i^{th} node in the graph 'G'. From this, it is clear, that, $W(G)$ is a minimum value of \emptyset and e_i is the number of multiplications required to eliminate i^{th} row from the given system whose graph is G. Then,

$$W(G) = \min \emptyset [e_i] \quad (3.5)$$

$$W(G) = \min [e_i + W(G^i)] \quad (3.6)$$

where e_i is the permutation of ordering.

Bellman uses the term 'policy' to describe a specific permutation i.e. a certain policy results in a permutation for which it is then possible to evaluate the number of multiplications or work. The optimal policy corresponds to the minimum work.

Following Bellman, it is possible to choose any initial policy i.e. method of ordering the nodes i.e. equations or rows of corresponding coefficient matrix and proceed iteratively to obtain the solution of the above equations i.e. eqn. (3.6) whose solution is unique even though the optimal policy may not be unique.

Let $W_0[G]$ be the number of multiplications needed using initial policy. Then we have from the equation (3.6)

$$W_N[G] = \min_i [e_i + W_{N-1}[G^i]] \quad (3.7)$$

$N = 1, \dots, n$

Here $W_N[G]$ is the number of multiplications required to solve optimally the system having 'n' equations i.e. whose coefficient matrix has 'n' rows and G is the corresponding graph. The solution of these equation which is dynamic programming will yield the following result. At each step in the elimination scheme, eliminate that node next which has the smallest degree.

Such problems can easily be formulated and solved by the principle of dynamic programming which is developed by Richard Bellman because these problems belong to a category known as the multistage decision process, typical example being that of travelling sales man problem. Here we take the initial decision which is arbitrary and based upon this decision all other decisions are optimal, say in this particular case, the initial decision is that the i th row of the coefficient matrix ' A ' is processed first i.e., i th node of the corresponding graph ' G ' is eliminated first; because of taking this decision, the cost involved e_i where e_i indicates the number of multiplications needed to process

the i^{th} row of coefficient matrix A, will be the measure of the cost to process the i^{th} row. Because of taking this decision, the graph 'G' will change to G^i and number of nodes will become $(N-1)$ and hence the formulation using dynamic programming will yield the result,

$$W_N(G) = \min_i (e_i + W_{N-1}(G^i)) \quad (3.8)$$

$N = 1 \dots n$

The main advantage of using this formulation is; at any stage we deal with only one variable i.e. instead of solving all the n variables together, they are solved one at a time, however n number of times.

3.3 DIRECT SOLUTION OF SPARSE NETWORK EQUATIONS BY OPTIMALLY ORDERED ELIMINATION:

For the sparse systems, which normally occur in power system network formulation, solution is obtained by optimally ordered elimination. This method consists of two parts [9,10,11].

- 1) A scheme of recording the operation of triangular decomposition of a matrix such that repeated direct solution can be obtained without repeating the triangularization process.
- 2) A scheme of ordering the operation such that it tends to conserve sparsity of the original system.

The first part of the method is applicable to any matrix. However the application of the second part i.e. ordering to conserve sparsity is limited to sparse matrix in which the pattern of non-zero elements is symmetric and for which an arbitrary order of decomposition does not affect adversely the numerical accuracy, such matrices are normally characterized by a strong diagonal. The coefficient matrix in the case of the load flow problem belong to this category where more than 90% elements are zero at off diagonal locations. Let us take the equation

$[A] x = y$ which can be expanded as

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ \vdots \\ Y_n \end{bmatrix} \quad (3.9)$$

The matrix 'A' is changed to augmented matrix A by adding in $(n+1)$ th column, the known constants of column vector Y. By factored LU decomposition of the coefficient matrix, we obtain the following matrix known as the table of factors.

$$\begin{bmatrix} d_{11} & u_{12} & \cdots & u_{1n} & u_{1n+1} \\ \ell_{21} & d_{22} & \cdots & u_{2n} & u_{2n+1} \\ \vdots & \vdots & & \vdots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & d_{nn} & u_{nn+1} \end{bmatrix} \quad (3.10)$$

where the elements of the matrix are defined below

$$d_{ii} = \frac{1}{a_{ii}^{(i-1)}}$$

$$u_{ij} = a_{ij}^{(i)}$$

$$L_{ij} = a_{ij}^{(j-1)}$$

When the matrix to be decomposed is sparse the order in which the rows are processed affect the number of non-zero terms in the upper triangular matrix. If a programming scheme is such that it processes and stores, only the non-zero terms, a great saving in operation and memory can be achieved by keeping the table of factors as sparse as possible. The absolute optimal ordering scheme would result in the least terms in the table of factors.

However the absolute scheme of ordering has not been developed as yet, we give below the following effective scheme of near optimal ordering.

1. In this scheme the coefficient matrix of a physical system is ordered before hand. Here the rows with only one non-zero element at the off diagonal locations is numbered first-row with two non-zero elements is numbered two and so on. Finally the row with the maximum non-zero elements is numbered last. The rows of coefficient matrix A in the process of elimination, are processed in this sequence. From the graph point of view, a node with a degree one is numbered one, a node with a degree two is numbered two and finally the row with the highest degree is numbered last. This algorithm is simple to program and fast to execute , however the main disadvantage of the algorithm is that it does not take into account the changes in the pattern of non-zero elements in the coefficient matrix.

2. This algorithm has been derived by using the technique of dynamic programming by R. Bellman, In this algorithm, in the process of elimination, we eliminate that row next which has the minimum number of non-zero elements in the off-diagonal locations. From the graph point of view, we eliminate that node next which has minimum degree. This algorithm, even though, being more complex than the first one, is certainly more efficient because it takes into account the changes in the pattern of non-zero elements in the process of elimination.

3. In this algorithm, in the process of elimination, eliminate that row next whose elimination will introduce minimum number of non-zero elements in the off diagonal locations. From the graph point of view in the process of elimination, eliminate that node next whose elimination will introduce minimum number of new links in the system graph. This algorithm has not been used by us because it takes more time compared to (2). However, if the criteria is only to optimize the computer memory with cost having no consideration, this is certainly the best.

Algorithm (2) which claims to optimize both the computer memory and almost the computer time has been used by us. The input information in this case is a list by rows of the column numbers counting off diagonal non-zero terms (i.e. branches). This scheme no doubt is more efficient than the first one.

CHAPTER 4

LOAD FLOW ANALYSIS: CASE STUDIES

4.1 INTRODUCTION:

This chapter presents the load flow studies for the following systems.

1. 14 bus 20 lines IEEE system
2. 57 bus 80 lines IEEE system
3. 100 bus 128 lines UPSEB systems

These systems have been studied using the following methods.

1. Newton-Raphson method in polar coordinates
2. Decoupled method in polar coordinates
3. Fast Decoupled method

The choice of a particular method invariably depends upon the following factors.

1. Memory requirement
2. Speed
3. Accuracy
- and 4. Convergence criterion

An attempt has been made in this chapter to compare the three methods based upon above mentioned criterion. The results of the systems studied and their significance are also discussed. The details of the study have been categorized method-wise.

Memory requirement and computer time invariably dictate the choice of method for load flow studies i.e. why NR method in polar coordinates has been chosen.

Accuracy and quadratic convergence properties of this method are offset by the memory and computational requirement. Although programming technique is important in all load flow methods for obtaining fast execution and economy in storage, it is the cornerstone of methods such as Newton - Raphson. Thus in the case sparsity oriented programming makes all the difference, for without efficient storage and execution this method loses all its charm. To emphasize on the importance of sparsity oriented programming for these methods (especially NR method) two sets of programs are developed.

SET I: Full storage mode and gaussian elimination for solving the load flow equations.

SET II: Storing only non-zero elements of the Jacobian and Bus admittance matrix and ordered elimination of the load flow equations.

Each of the above mentioned sets offers a choice of three methods viz Newton-Raphson, Decoupled and Fast Decoupling. The details of memory requirement and computation time for each method [for the systems studied] with and without sparsity oriented programming are given. Each method will be taken

CENTRAL LIBRARY

Acc. No. A 82687

up and studied with reference to the four factors mentioned before. The results of the sample systems are used as a means of comparing various criteria's.

4.2 NEWTON-RAPHSON METHOD :

The three systems are solved using this method. The Computation time for different systems (with and without the use of sparsity oriented programming) are listed in Table 4.1. If we consider the 14 bus system and compare the per iteration time in Case I and Case II we find that the difference does not justify the extra efforts involved in sparsity oriented programming, but a glance at the results for 57 bus and 100 bus system will speak otherwise. The iteration time in Case I is roughly five times that of Case II for a 57 bus system and twenty five times for a 100 bus system respectively.

The saving in terms of memory requirement is also tremendous. Table 4.2 gives the memory saved with sparsity oriented approach. [Only Jacobian and bus admittance matrix requirements are compared as they take the bulk of storage space. The data storage requirements being same for both cases].

The memory requirement and computation time per iteration for case II increases linearly with the number of buses. In contrast to this, for case I the memory requirement is

Table 4.1

14 bus system

Type	C.P.U. Time	No. of Iterations	Time per Iteration	Specified Tolerance ϵ	Achieved Tolerance
Without Sparsity (Case I)	1.19	3	0.396	0.001	0.00011
With Sparsity (Case II)	0.95	3	0.316	0.001	0.00011

57 bus system

Type	C.P.U. Time	No. of Iterations	Time per Iteration	Specified Tolerance ϵ	Achieved Tolerance
Without Sparsity (Case I)	34.02	4	8.505	0.001	0.00015
With Sparsity (Case II)	6.98	4	1.745	0.001	0.00015

100 bus system

Type	C.P.U. Time	No. of Iterations	Time per Iteration	Specified Tolerance ϵ	Achieved Tolerance
Without Sparsity (Case I)	624.84	7	89.26	0.001	0.00015
With Sparsity (Case II)	25.80	7	3.69	0.001	0.00015

Table 4.2

No. of buses	No. of P-V buses	Order of Jacobian	Order of Y_{Bus}	Without Sparsity (Case I)			With Sparsity (Case II)			Saving	% sav.
				Jacobian	Y_{Bus}	Total	Jacobian*	Y_{Bus}^*	Total		
14	5	22	14	484	392	876	438	216	654	222	25.34
57	7	106	57	11236	6498	17734	2154	852	3006	14728	83.05
100	19	180	100	32400	20000	52400	3702	1424	5126	47274	90.22

*This includes the storage needed for indexing information.

Table 4.3

14 bus system					
Type	C.P.U. Time	Iterations	Time per Iteration	Specified ϵ_s	Achieved ϵ_A
Without Sparsity (Case I)	3.0	15	0.2	0.001	0.00097
With Sparsity (Case II)	2.16	15	0.144	0.001	0.00097

57 bus system

57 bus system					
Type	C.P.U. Time	Iterations	Time per Iteration	Specified ϵ_s	Achieved ϵ_A
Without Sparsity (Case I)	14.56	7	2.08	0.06	0.051
With Sparsity (Case II)	10.38	7	1.48	0.06	0.051

100 bus system

100 bus system					
Type	C.P.U. Time	Iterations	Time per Iteration	Specified ϵ_s	Achieved ϵ_A
Without Sparsity (Case I)	75.54	9	8.4	0.001	0.00048
With Sparsity (Case II)	32.0	9	3.56	0.001	0.00048

Table 4.4

No. of buses	No. of P-V buses	Order of Jacobian	Order of Y Bus	Without Sparsity (Case I)		With Sparsity (Case II)		Saving	% sav
				Jacobian	Y _{Bus}	Total	Jacobian*	Y _{Bus}	
14	5	13	14	169	392	561	147	216	363
57	7	56	57	3136	6498	9634	612	852	1464
100	19	99	100	9801	20000	29801	1059	1424	2483

* This includes the storage needed for indexing information.

roughly $5N^2$, where N is the number of buses. From the Table 4.1 and 4.2, it can be inferred that the Newton-Raphson method realizes its full potential only when it is used with sparsity ordered elimination, especially for a large scale system.

4.3 DECOUPLED METHOD:

Table 4.3 gives the computation time for the three systems. It is interesting to note that the decoupled technique, saves substantial amount of time, compared to Newton-Raphson method, for Case I, (compare tables 4.1 and 4.3 for Case I) but this saving is almost negligible when we compare for Case II, e.g. for 100 bus system, the iteration time for the Newton-Raphson method (case II) is 3.69 seconds while the corresponding time for Decoupled technique (case II) is 3.56 seconds. Table 4.4 gives the memory requirements for the Decoupled method. A comparison of Table 4.2 and Table 4.4, reveals the following.

For Case I : 100 bus system , Decoupled method requires 29801 words of memory as compared to 52400 in Newton-Raphson method. This amounts to a saving of 50%.

For case II : 100 bus system; Decoupled method requires 2473 words as compared to 5126 in Newton-Raphson method.

Although, the saving in this case is of the order of about 40% , its significance is not much because the absolute memory requirement has come down to a low level because of sparsity. Thus, when the sparsity and ordered eliminates are used, the Decoupled method is ruled out because memory requirement and computer time are almost same for both methods, hence one would prefer to make use of the more accurate method like Newton-Raphson with the added advantage of quadratic convergence (true quadratic convergence characteristics is lost in the Decoupled method).

4.4 FAST DECOUPLED METHOD:

Tables 4.5 and 4.6 give the computation time and memory requirement for the three systems. In this method, the iteration time is reduced to a great extent as compared with other methods. Memory requirements for this method are the same as that for Decoupled method. Quadratic convergence feature is lost in this method and thus we need a few additional iterations for convergence as compared to Newton-Raphson. However the increase in overall time is not much because of the lower per iteration time.

4.5 Q LIMIT ADJUSTMENT:

Q limit adjustment is also tried out using the following three schemes.

Table 4.5

14 bus system

Type	C.P.U. Time	Iterations	Time per Iteration	Specified ϵ_s	Achieved ϵ_A
Without Sparsity (Case I)	1.38	10	0.138	0.001	0.00080
With Sparsity (Case II)	1.22	10	0.122	0.001	0.00080

57 bus system

Type	C.P.U. Time	Iterations	Time per Iteration	Specified ϵ_s	Achieved ϵ_A
Without Sparsity (Case I)	9.76	6	1.626	0.02	0.019
With Sparsity (Case II)	5.28	6	0.88	0.02	0.019

100 bus system

Type	C.P.U. Time	Iterations	Time per Iteration	Specified ϵ_s	Achieved ϵ_A
Without Sparsity (Case I)	52.57	7	7.51	0.001	0.00028
With Sparsity (Case II)	14	7	2.0	0.001	0.00028

Table 4.6

No. of buses	No. of P-V buses	Order of Jacobian of Y_{Bus}	Without Sparsity (Case I)			With Sparsity (Case II)			Saving	% sav.	
			Jacobian Y_{Bus}	Total	Jacobian* + Y_{Bus}	Total					
14	5	13	14	169	392	561	324	216	540	21	3.7%
57	7	56	57	3136	6498	9634	1278	852	2130	7504	77.9%
100	19	99	100	9801	20000	29801	2136	1424	3560	26241	88.05%

* This includes storage needed for indexing information.

+ In case Table of factors for both B' and B'' are stored. (If Table of factors B' and B'' are not stored then memory requirement is almost the same as that for Decoupled method).

1. P-V to P-Q switching
2. Voltage perturbation
3. Voltage perturbation using feedback

The flow chart for the above mentioned methods are attached alongwith.

All these have not worked out very neatly. P-V to P-Q switching scheme works well for the 57 bus system, probably because of the number of P-V buses is not very large. When applied to the 100 bus system with 19 P-V buses (including slack) violations keep occurring at every iteration and the solution does not converge. The addition of soft constraints reduced the number of violations but without appreciable overall gain. In the voltage perturbation method the voltage of the P-V bus is perturbed slightly to 0.1% for 57 bus and 0.5% for 100 bus system to adjust the Q limits. The bus is treated as a P-V bus throughout. In this case convergence is obtained in an iteration when Q is being violated at one of the buses (bus No. 73 for the 100 bus case). Also, the Q at other P-V buses goes too far inside the Q limits.

In the third scheme, although the Q at most of the buses is within the tolerance band, yet, at one of the buses it is completely out of limit. This is because, the solution converges when the Q violation takes place at one of the

bus. If we introduce the constraint that both should be satisfied simultaneously then it does not converge at all.

All the schemes (1,2, and 3) have been tried out only in the case of Newton-Raphson method.

It is clear that the success in all the above schemes especially schemes 2 and 3 is due to various empirical adjustments. At the same time, the adjustments are system dependent i.e. they may work for a particular system only (this is true for voltage perturbation scheme no. 2).

The flow diagrams data and load flow results for the three systems by various methods have been attached alongwith. It is to be noted that for the 100 bus problem, results are for the adjusted solution with scheme (3). An unadjusted solution takes 4 iterations (Q 's being violated at 6 buses) and 16.6 seconds. The results with Decoupled and Fast Decoupled methods using scheme 2, are also inclosed. It is to be noted that the unadjusted solution will require lesser number of iterations.

CHAPTER 5

CONCLUSION

The main objective of this thesis has been to present a detailed comparative study of Newton-Raphson, Decoupled and Fast Decoupled methods. The importance of any load flow solution depends largely upon its merits regarding reliability, convergence characteristics, solution time and memory requirements. The above methods differ, most, in their memory and computation time requirements. Keeping this in view, a comparative study of the aforementioned methods has been made. In order to optimize computational time, the emphasis has been on the sparsity oriented programming approach. From the results obtained in this thesis, it is clear that this approach optimizes memory and/or computational time. The full potential of these methods is realized only when memory and computation time are optimized by the application of sparsity oriented programming techniques.

For practical power system, various additional features, should be incorporated in the load flow program. These additional features are in the form of Q limits, variable transformer taps etc. The schemes tried out here for the Q limit, have not yielded satisfactory results. It is felt that the addition of these features in the load flow program would further enhance its utility.

REFERENCES

- [1] J.B. Ward and H.W. Hale, 'Digital Computer Solution of Power-flow Problems', AIEE Trans. (Power App. Syst.), vol. 75, pp. 398-404, June, 1956.
- [2] A.F. Glimm and G.W. Stagg, 'Automatic Calculation of Load-flows', AIEE Trans. (Power App. Syst.), vol. 76, pp. 817-828, Oct. 1957.
- [3] J.E. Van Ness, 'Iteration Methods for Digital Load Flow Studies', AIEE Trans. (Power App. Syst.), vol. 78, pp. 583-588, Aug. 1959.
- [4] J.E. Van Ness and J.H. Griffin, 'Elimination Methods for Load-flow Studies', AIEE Trans. (Power App. Syst.), vol. 80, pp. 299-304, June, 1961.
- [5] W.F. Tinney and J.W. Walker, 'Direct Solutions of Sparse Network Equations by Optimally Ordered Triangular Factorization', Proc. IEEE, vol. 55, pp. 1801-1809, Nov. 1967.
- [6] W.F. Tinney and C.E. Hart, 'Power Solution by Newton's Method', IEEE Trans. (Power App. Syst.), vol. PAS-86, pp. 1449-1456, Nov. 1967.
- [7] Brian Stott, 'Review of Load-flow Calculation Methods', Proc. IEEE, vol. 62, No. 7, pp. 916-929, July, 1974.
- [8] B. Stott and O. Alsac, 'Fast Decoupled Load-flow', IEEE Trans. on PAS, vol. 93, pp. 859-864, 1974.
- [9] W.F. Tinny and N. Sato, 'Technique for Exploiting the Sparsity of Newton's Method', IEEE Trans. on PAS, vol. 82, pp. 944, Dec., 1963.

- [10] L.P. Singh and A.K. Goel, 'An Optimal Ordering for Sparse System', JIE(India), vol. 57, Pt. EL-2, pp. 105, Oct. 1976.
- [11] L.P. Singh and H.C. Sirivastava, 'Sparsity and Optimal Ordering', JIE(India), vol. 57, Pt. EL-6, pp. 274, June 1977.
- [12] K.K. Goyal and L.P. Singh, 'Optimal Elimination of Sparse System using Dynamic Programming Technique', Proc. CST-81, March 14, 1981, N.D.
- [13] M.A. Pai, 'Computer Techniques in Power System Analysis', New Delhi : McGraw Hill 1979.
- [14] Olle I. Elgerd, 'Electric Energy Systems Theory', New Delhi : McGraw Hill 1971.
- [15] G.W. Stagg and A.H. El -Abiad, 'Computer Methods in Power System Analysis', New York: McGraw Hill, 1968.

APPENDIX

The general 'continuous feedback' adjustment formula is

$$\Delta x = \alpha \Delta y$$

where α is the 'feedback gain' whose choice is important for each type of control, each load flow method, and in some cases each system. The objective in choosing α is to minimise the total number of iterations while preserving reliable convergence. The slowly converging methods tend to suffer much less than the fast converging ones from the effects of the adjustments. The value of α can be chosen empirically to suit a particular system or else should be approximately the sensitivity between x and y at the operating point. For a given system, a suitable fixed estimate of this can be calculated or found empirically.

When the adjustment process is initiated, a trial correction $\Delta x^{(1)}$ (not too small) is made on the basis of an error $\Delta y^{(0)}$. One or more load flow iterations are then performed until moderate convergence is achieved, and the new error is $y^{(1)}$. An estimate of α can now be found thus,

$$\alpha = \Delta x^{(1)} / (\Delta y^{(1)} - \Delta y^{(0)})$$

Flow Chart for the Newton-Raphson, Decoupled and Fast Decoupled methods using Sparsity and ordered elimination.

Q limits with P-V to P-Q switching (with soft constraints)

Q-limits using error back principle with soft constraints

NOTE!

For N bus system

Let P-Q buses = MB
 and P-V Buses = NPV
 (Not including slack)

Then after renumbering as in block two of flow chart.⁺

Bus No. 1 to MB will be P-Q buses

Bus No. MB+1 to MB+NPV will be P-V buses

Bus No. MB+NPV+1 will be slack bus

卷之三

A. L. BROWN / JOURNAL OF ENVIRONMENT & DEVELOPMENT 20(2)

卷之三

卷之三

卷之三

LIST OF INPUT DATA

BUS NO. & NAME		SEPARATION	LOAD POWER	VOLT MAG	ASSUMED SUS. VOLTAGES PULSE EAGLE
3	3.0000	3.0000	14.9000	5.0000	1.0000 0.0000
4	40.0000	0.3000	21.7000	12.7000	1.0000 9.0000
2	40.0000	0.3000	91.2000	19.0000	1.0000 0.0000
3	5.0000	0.0000	47.8000	3.9000	1.0000 0.0000
4	5.0000	0.0000	7.6000	1.6000	1.0000 0.0000
5	0.0000	0.0000	11.2000	7.5000	1.0000 0.0000
6	0.0000	0.0000	0.0000	0.0000	1.0000 0.0000
7	0.0000	0.0000	0.0000	0.0000	1.0000 0.0000
8	0.0000	0.0000	0.0000	0.0000	1.0000 0.0000
9	0.0000	0.0000	29.5000	16.5000	1.0000 0.0000
10	-0.0000	0.0000	9.0000	5.8000	1.0000 9.0000
11	0.0000	0.0000	3.5000	1.8000	1.0000 0.0000
12	0.0000	0.0000	6.1000	1.6000	1.0000 0.0000
13	0.0000	0.0000	13.5000	5.8000	1.0000 0.0000
14	232.4000	0.0000	0.0000	0.0000	1.0000 0.0000

詩經

TO BUS	FROM BUS	E NUMBER	LINE IMPEDENCE		HALF LINE CHRG ADMIT	OFF NOM TR TURN RATIO
			PRIME	SECOND		
1	14	14	0.01938	0.05917	0.00000	0.02640
2	2	2	0.04699	0.19297	0.00000	0.02190
3	2	3	0.05611	0.17632	0.00000	0.01870
4	14	14	0.05031	0.22304	0.00000	0.02460
5	2	2	0.05682	0.17388	0.00000	0.01700
6	3	2	0.06201	0.17103	0.00000	0.01730
7	6	6	0.01335	0.04211	0.00000	0.00640
8	5	5	0.00000	0.25202	0.00000	0.03200
9	4	4	0.00000	0.20912	0.00000	0.07600
10	7	7	0.00000	0.17615	0.00000	1.00000
11	4	4	0.00000	0.55618	0.00000	0.36960
12	7	7	0.00000	0.11001	0.00000	1.00000
13	9	9	0.03181	0.08450	0.00000	1.00000
14	6	6	0.03834	0.19890	0.00000	0.36960
15	6	6	0.12261	0.25581	0.00000	0.00000
16	6	6	0.06615	0.13027	0.00000	0.00000
17	9	9	0.12711	0.27038	0.00000	0.00000
18	10	10	0.02026	0.19207	0.00000	0.00000

VOLTAGE CONTROLLED BUS DATA					
S.NO.	BUS NO.	V _{AVG}	V _{MINIMUM}	V _{MAXIMUM}	SCHEDULED VOLTAGE
1	2	2	-40.0000	50.0000	1.0453
2	3	3	0.0000	40.0000	1.0103
3	6	6	-6.9000	24.0000	1.0703
4	8	8	-6.0000	24.0000	1.0903
5	14	14	-50.0000	50.0000	1.0603

SHUNT LOAD DATA		
S.NO.	BUS NO.	NAME
1	9	9

SHUNT LOAD AVAILABLE

0.0000	0.19000
--------	---------

LIST OF OUTPUT RESULTS

DIVX = 7.00010347 EPSYL = 0.00100000

FOR THE RAPID ITERATIVE TECHNIQUE CONVERGED IN 3 ITERATIONS

Bus	Bus Name	Voltage Angle	Generation	Load
1	1.03493 -16.01691	0.00000	-0.00158	14.00000
2	1.04590 -14.94768	40.00001	46.42293	21.70000
3	1.01620 -12.74697	0.00000	25.69310	19.00000
4	1.01479 -10.27669	-0.00001	0.02151	47.63000
5	1.07730 -0.74804	0.00005	0.51075	7.63000
6	1.07009 -14.21396	0.00002	11.65231	11.70000
7	1.03649 -13.33456	-0.00007	-0.00215	0.00000
8	1.04908 -14.43458	0.00000	18.26026	0.00000
9	1.05590 -14.91512	0.00005	-0.00764	23.50000
10	1.05021 -15.07641	0.00001	-0.00084	9.00000
11	1.05651 -14.77564	-0.00001	0.00038	3.50000
12	1.05512 -15.06733	-0.00000	0.00006	6.10000
13	1.05024 -15.14607	0.00000	0.00055	13.50000
14	1.05000 0.00000	232.42153	-15.54653	0.00000
	TOTAL GENERATION =	272.421650	86.501236	TOTAL LOAD = 259.000000
				TOTAL LOSSES = 13.421650

TOTAL GENERATION = 272.421650 TOTAL LOAD = 259.000000 TOTAL LOSSES = 13.421650

5.201235

WISST OF OUTPUT RESULTS

FIGURE 1. TECHNIQUE COVERED IN 15 ITERATIONS

LOAD	DEFLECTION		
	ANGLE	BRIDGE	LOAD
1.03494 -16.01573	-0.00164	0.00112	14.90000
1.04500 -4.94766	39.79478	45.43315	21.70000
1.01000 -12.71752	-0.00624	25.69476	90.20000
1.01478 -16.07168	0.00111	-0.00128	47.80000
1.01729 -2.74563	-0.00137	-0.00139	7.60000
1.07000 -14.21327	9.00151	31.66663	11.20000
1.05646 -12.33454	0.00012	-0.00011	3.00000
1.09000 -4.43345	0.00060	18.25787	0.00000
1.05500 -14.31592	-0.01361	0.00299	29.50000
1.05672 -15.07639	0.00041	-0.00013	9.00000
1.05651 -15.77572	-0.00067	-0.00025	3.50000
1.05515 -15.07156	-0.07082	0.03339	6.10000
1.05023 -15.14495	0.01726	-0.09735	14.50000
1.06000 0.00000	237.42236	-15.54476	0.00000

TOTAL GENERATION = 272,421,720 H6_501402 TOTAL LOAD = 259,000,000 81,300,001 TOTAL LOSSES = 13,421,719 5.201401

LIST OF OUTPUT RESULTS

DMAX = 0.00060604 EPSIL = 0.00100000

FAST DECOUPLED ITERATIVE TECHNIQUE CONVERGED IN 10 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1	1	1.03493	-16.01756	0.06126	-0.00098
2	2	1.04500	-4.98765	40.00021	46.43231
3	3	1.01000	-17.74701	0.00024	25.69409
4	4	1.91472	-10.27871	-0.00084	0.00104
5	5	1.01729	-8.74790	0.00004	-0.00091
6	6	1.97609	-14.71284	-0.00024	11.66201
7	7	1.05049	-15.33668	-0.00069	0.00011
8	8	1.04060	-13.33468	0.00066	18.25640
9	9	1.05500	-14.91524	0.00303	-0.00291
10	10	1.05022	-15.07651	-0.00092	0.00193
11	11	1.02651	-14.77558	-0.00026	0.00033
12	12	1.05517	-15.26373	0.06676	-0.08129
13	13	1.05622	-15.14748	-0.07276	0.08487
14	14	1.06092	0.09500	232.42164	-15.54163
TOTAL GENERATION =		273.427340	36.500603	TOTAL LOAD =	253.000000
TOTAL LOSSES =				TOTAL LOSSES =	13.423039
					5.200502

G.F. STUDY (PS-N6-CRA), WITHOUT ADDING ANY NEW 400KV LINE

IPODATA = 0 IS=1TH = 0 IMETH = 3 ICHOIC = 0 ISFART = 0

NO. OF STUDIES = 1 PRINT OPTIONS = 2 2 2 2 2 2

LIST OF INPUT DATA

NO. OF BUSES NO. OF LINES SLACK BUS VOLT. CONT. BUSES SHUNT LOADS MAX. ITERATIONS CONV. LINES
57 80 57 7 7 7 10 .02040000

BUS DATA

BUS NO.	NAME	GENERATION	LOAD POWER	ASSUMED BUS VOLTAGES	
				VOLT MAG	PHASE ANGLE
1		0.0000 0.0000	3.0000 88.0000	1.0000	0.0000
2		40.0000 0.0000	41.0000 21.0000	1.0000	0.0000
3		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
4		0.0000 0.0000	13.0000 4.0000	1.0000	0.0000
5		0.0000 0.0000	75.0000 2.0000	1.0000	0.0000
6		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
7		450.0000 0.0000	150.0000 22.0000	1.0000	0.0000
8		0.0000 0.0000	121.0000 26.0000	1.0000	0.0000
9		0.0000 0.0000	5.0000 2.0000	1.0000	0.0000
10		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
11		310.0000 0.0000	377.0000 24.0000	1.0000	0.0000
12		0.0000 0.0000	18.0000 2.3000	1.0000	0.0000
13		0.0000 0.0000	10.5000 5.3000	1.0000	0.0000
14		0.0000 0.0000	22.0000 5.0000	1.0000	0.0000
15		0.0000 0.0000	43.0000 3.0000	1.0000	0.0000
16		0.0000 0.0000	42.0000 8.0000	1.0000	0.0000
17		0.0000 0.0000	27.2000 9.0000	1.0000	0.0000
18		0.0000 0.0000	3.3000 0.6000	1.0000	0.0000
19		0.0000 0.0000	2.3000 1.0000	1.0000	0.0000
20		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
21		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
22		0.0000 0.0000	6.3000 2.1000	1.0000	0.0000
23		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
24		0.0000 0.0000	6.3000 3.2000	1.0000	0.0000
25		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
26		0.0000 0.0000	9.3000 0.5000	1.0000	0.0000
27		0.0000 0.0000	4.6000 2.3000	1.0000	0.0000
28		0.0000 0.0000	17.0000 2.6000	1.0000	0.0000
29		0.0000 0.0000	3.6000 1.8000	1.0000	0.0000
30		0.0000 0.0000	5.8000 2.9000	1.0000	0.0000
31		0.0000 0.0000	1.6000 0.8000	1.0000	0.0000
32		0.0000 0.0000	3.8000 1.9000	1.0000	0.0000
33		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000
34		0.0000 0.0000	6.0000 3.0000	1.0000	0.0000
35		0.0000 0.0000	0.0000 0.0000	1.0000	0.0000

LINE NUMBER	FROM BUS	TO BUS	LINE IMPEDENCE	HALF LINE CHARG ADMIT		EFF 574 TR TURNS RATIO
				IMP	ADMIT	
1	57	1	0.00639 0.02800	0.00000 0.06450	0.00000 1.06000	1.06000
2	1	2	0.02963 0.08500	0.00000 0.04090	0.00000 1.03000	1.03000
3	2	3	0.01123 0.03660	0.00000 0.01900	0.00000 1.00000	1.00000
4	3	4	0.06250 0.13200	0.00000 0.01290	0.00000 1.00000	1.00000
5	3	5	0.04233 0.14800	0.00000 0.01743	0.00000 1.00000	1.00000
6	5	6	0.02950 0.10200	0.00000 0.01380	0.00000 1.00000	1.00000
7	5	7	0.03399 0.17300	0.00000 0.02350	0.00000 1.05000	1.05000
8	7	8	0.02990 0.07550	0.00000 0.02740	0.00000 1.00000	1.00000
9	8	9	0.03690 0.16970	0.00000 0.02200	0.00000 1.00000	1.00000
10	6	10	0.02500 0.09480	0.00000 0.01090	0.00000 1.00000	1.00000
11	8	11	0.06480 0.29500	0.00000 0.03860	0.00000 1.00000	1.00000
12	8	12	0.04813 0.15800	0.00000 0.02630	0.00000 1.00000	1.00000
13	12	13	0.01320 0.04340	0.00000 0.00550	0.00000 1.00000	1.00000
14	12	14	0.02659 0.08690	0.00000 0.01150	0.00000 1.00000	1.00000
15	57	14	0.01740 0.09103	0.00000 0.04940	0.00000 1.00000	1.00000
16	57	16	0.04540 0.10600	0.00000 0.02730	0.00000 1.00000	1.00000
17	57	17	0.02383 0.08800	0.00000 0.01430	0.00000 1.00000	1.00000
18	2	14	0.01673 0.06300	0.00000 0.02722	0.00000 1.00000	1.00000
19	3	17	0.00903 0.05500	0.00000 0.00000	0.00000 0.97000	0.97000
20	3	17	0.00000 0.43000	0.00000 0.59500	0.00000 0.97500	0.97500

6	52	-0.03024	-0.05110	-0.05100	-0.05029
7	53	0.01200	0.01120	0.00700	0.00710
8	54	0.02773	0.12626	0.00030	0.01640
9	55	0.02110	0.07320	0.00000	0.00940
10	56	0.01780	0.05600	0.00000	0.03013
11	57	0.01033	0.08130	0.00023	0.01080
12	58	0.00500	0.00000	0.00000	1.00000
13	59	0.00393	0.17900	0.00000	0.02380
14	60	0.01710	0.05470	0.00000	0.00740
15	61	0.04510	0.08500	0.00000	0.00000
16	62	0.02830	0.43400	0.00000	0.03000
17	63	0.00500	0.77670	0.00000	0.02900
18	64	0.037360	0.11760	0.00000	0.00000
19	65	0.00993	0.01520	0.00060	0.00000
20	66	0.01650	0.25600	0.00000	0.00420
21	67	0.03000	1.18200	0.00000	0.03000
22	68	0.00000	1.23000	0.00000	0.00000
23	69	0.00000	0.04730	0.00000	0.03000
24	70	0.00000	0.01650	0.00000	0.00000
25	71	0.00000	0.25400	0.00000	0.00000
26	72	0.06180	0.09540	0.00000	0.00000
27	73	0.00000	0.04180	0.00000	0.00000
28	74	0.00000	0.05870	0.00000	0.00000
29	75	0.00000	0.06460	0.00000	0.00000
30	76	0.03970	0.03600	0.00000	0.00000
31	77	0.013500	0.20200	0.00000	0.00000
32	78	0.00000	0.32600	0.00000	0.00000
33	79	0.00000	0.95300	0.00000	0.00000
34	80	0.05200	0.49700	0.00000	0.00000
35	81	0.04300	0.75500	0.00000	0.00000
36	82	0.03970	0.03600	0.00000	0.00000
37	83	0.00000	0.95300	0.00000	0.00000
38	84	0.05200	0.07800	0.00000	0.00160
39	85	0.04300	0.05270	0.00000	0.00000
40	86	0.03970	0.03600	0.00000	0.00000
41	87	0.00000	0.02900	0.00000	0.00000
42	88	0.00000	0.03600	0.00000	0.00000
43	89	0.00000	0.02950	0.00000	0.00000
44	90	0.00000	0.74900	0.00000	0.00000
45	91	0.02300	0.83790	0.00000	0.00000
46	92	0.03000	0.04660	0.00026	0.00003
47	93	0.01920	0.02950	0.00000	0.00000
48	94	0.00000	0.74900	0.00000	0.00000
49	95	0.02300	0.35200	0.00000	0.00000
50	96	0.03000	0.04660	0.00026	0.00003
51	97	0.01920	0.02950	0.00000	0.00000
52	98	0.00000	0.74900	0.00000	0.00000
53	99	0.02300	0.83790	0.00000	0.00000
54	100	0.03000	0.04660	0.00026	0.00003
55	101	0.01920	0.02950	0.00000	0.00000
56	102	0.00000	0.74900	0.00000	0.00000
57	103	0.02300	0.35200	0.00000	0.00000
58	104	0.03000	0.04660	0.00026	0.00003
59	105	0.01920	0.02950	0.00000	0.00000
60	106	0.00000	0.74900	0.00000	0.00000
61	107	0.02300	0.83790	0.00000	0.00000
62	108	0.03000	0.04660	0.00026	0.00003
63	109	0.01920	0.02950	0.00000	0.00000
64	110	0.00000	0.74900	0.00000	0.00000
65	111	0.02300	0.35200	0.00000	0.00000
66	112	0.03000	0.04660	0.00026	0.00003
67	113	0.01920	0.02950	0.00000	0.00000
68	114	0.00000	0.74900	0.00000	0.00000
69	115	0.02300	0.83790	0.00000	0.00000
70	116	0.03000	0.04660	0.00026	0.00003
71	117	0.01920	0.02950	0.00000	0.00000
72	118	0.00000	0.74900	0.00000	0.00000
73	119	0.02300	0.35200	0.00000	0.00000
74	120	0.03000	0.04660	0.00026	0.00003
75	121	0.01920	0.02950	0.00000	0.00000
76	122	0.00000	0.74900	0.00000	0.00000
77	123	0.02300	0.83790	0.00000	0.00000
78	124	0.03000	0.04660	0.00026	0.00003
79	125	0.01920	0.02950	0.00000	0.00000
80	126	0.00000	0.74900	0.00000	0.00000
81	127	0.02300	0.35200	0.00000	0.00000
82	128	0.03000	0.04660	0.00026	0.00003
83	129	0.01920	0.02950	0.00000	0.00000
84	130	0.00000	0.74900	0.00000	0.00000
85	131	0.02300	0.83790	0.00000	0.00000
86	132	0.03000	0.04660	0.00026	0.00003
87	133	0.01920	0.02950	0.00000	0.00000
88	134	0.00000	0.74900	0.00000	0.00000
89	135	0.02300	0.35200	0.00000	0.00000
90	136	0.03000	0.04660	0.00026	0.00003
91	137	0.01920	0.02950	0.00000	0.00000
92	138	0.00000	0.74900	0.00000	0.00000
93	139	0.02300	0.83790	0.00000	0.00000
94	140	0.03000	0.04660	0.00026	0.00003
95	141	0.01920	0.02950	0.00000	0.00000
96	142	0.00000	0.74900	0.00000	0.00000
97	143	0.02300	0.35200	0.00000	0.00000
98	144	0.03000	0.04660	0.00026	0.00003
99	145	0.01920	0.02950	0.00000	0.00000
100	146	0.00000	0.74900	0.00000	0.00000
101	147	0.02300	0.83790	0.00000	0.00000
102	148	0.03000	0.04660	0.00026	0.00003
103	149	0.01920	0.02950	0.00000	0.00000
104	150	0.00000	0.74900	0.00000	0.00000
105	151	0.02300	0.35200	0.00000	0.00000
106	152	0.03000	0.04660	0.00026	0.00003
107	153	0.01920	0.02950	0.00000	0.00000
108	154	0.00000	0.74900	0.00000	0.00000
109	155	0.02300	0.83790	0.00000	0.00000
110	156	0.03000	0.04660	0.00026	0.00003
111	157	0.01920	0.02950	0.00000	0.00000
112	158	0.00000	0.74900	0.00000	0.00000
113	159	0.02300	0.35200	0.00000	0.00000
114	160	0.03000	0.04660	0.00026	0.00003
115	161	0.01920	0.02950	0.00000	0.00000
116	162	0.00000	0.74900	0.00000	0.00000
117	163	0.02300	0.83790	0.00000	0.00000
118	164	0.03000	0.04660	0.00026	0.00003
119	165	0.01920	0.02950	0.00000	0.00000
120	166	0.00000	0.74900	0.00000	0.00000
121	167	0.02300	0.35200	0.00000	0.00000
122	168	0.03000	0.04660	0.00026	0.00003
123	169	0.01920	0.02950	0.00000	0.00000
124	170	0.00000	0.74900	0.00000	0.00000
125	171	0.02300	0.83790	0.00000	0.00000
126	172	0.03000	0.04660	0.00026	0.00003
127	173	0.01920	0.02950	0.00000	0.00000
128	174	0.00000	0.74900	0.00000	0.00000
129	175	0.02300	0.35200	0.00000	0.00000
130	176	0.03000	0.04660	0.00026	0.00003
131	177	0.01920	0.02950	0.00000	0.00000
132	178	0.00000	0.74900	0.00000	0.00000
133	179	0.02300	0.83790	0.00000	0.00000
134	180	0.03000	0.04660	0.00026	0.00003
135	181	0.01920	0.02950	0.00000	0.00000
136	182	0.00000	0.74900	0.00000	0.00000
137	183	0.02300	0.35200	0.00000	0.00000
138	184	0.03000	0.04660	0.00026	0.00003
139	185	0.01920	0.02950	0.00000	0.00000
140	186	0.00000	0.74900	0.00000	0.00000
141	187	0.02300	0.83790	0.00000	0.00000
142	188	0.03000	0.04660	0.00026	0.00003
143	189	0.01920	0.02950	0.00000	0.00000
144	190	0.00000	0.74900	0.00000	0.00000
145	191	0.02300	0.35200	0.00000	0.00000
146	192	0.03000	0.04660	0.00026	0.00003
147	193	0.01920	0.02950	0.00000	0.00000
148	194	0.00000	0.74900	0.00000	0.00000
149	195	0.02300	0.83790	0.00000	0.00000
150	196	0.03000	0.04660	0.00026	0.00003
151	197	0.01920	0.02950	0.00000	0.00000
152	198	0.00000	0.74900	0.00000	0.00000
153	199	0.02300	0.35200	0.00000	0.00000
154	200	0.03000	0.04660	0.00026	0.00003
155	201	0.01920	0.02950	0.00000	0.00000
156	202	0.00000	0.74900	0.00000	0.00000
157	203	0.02300	0.83790	0.00000	0.00000
158	204	0.03000	0.04660	0.00026	0.00003
159	205	0.01920	0.02950	0.00000	0.00000
160	206	0.00000	0.74900	0.00000	0.00000
161	207	0.02300	0.35200	0.00000	0.00000
162	208	0.03000	0.04660	0.00026	0.00003
163	209	0.01920	0.02950	0.00000	0.00000
164	210	0.00000	0.74900	0.00000	0.00000
165	211	0.02300	0.83790	0.00000	0.00000
166	212	0.03000	0.04660	0.00026	0.00003
167	213	0.01920	0.02950	0.00000	0.00000
168	214	0.00000	0.74900	0.00000	0.00000
169	215	0.02300	0.35200	0.00000	0.00000
170	216	0.03000	0.04660	0.00026	0.00003
171	217	0.01920	0.02950	0.00000	0.00000
172	218	0.00000	0.74900	0.00000	0.00000
173	219	0.02300	0.83790	0.00000	0.00000
174	220	0.03000	0.04660	0.00026	0.00003
175	221	0.01920	0.02950	0.00000	0.00000
176	222	0.00000	0.74900	0.00000	0.00000
177	223	0.02300	0.35200	0.00000	0.00000
178	224	0.03000	0.04660	0.00026	0.00003
179	225	0.01920	0.02950	0.00000	0.00000
180	226	0.00000	0.74900	0.00000	0.00000
181	227	0.02300	0.83790	0.00000	0.00000
182	228	0.03000	0.04660	0.00026	0.00003
183	229	0.01920	0.02950	0.00000	0.00000
184	230	0.00000	0.74900	0.00000	0.00000
185	231	0.02300	0.35200	0.00000	0.00000
186</td					

LIST OF OUTPUT RESULTS

DMAX = 0.00015363 EPSIL = 0.00100000

NEWTON RAPHSON ITERATIVE TECHNIQUE CONVERGED IN 4 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1		1.01000	-1.18481	-0.00001	-0.46260 3.00000 98.00000
2		0.98474	-5.97006	40.00000	-4.62074 41.00000 21.00000
3		0.98173	-7.31889	-0.00002	-0.00059 0.00000 0.00000
4		0.97696	-8.52467	0.00001	-0.00051 13.00000 4.00000
5		0.98022	-8.65156	0.00008	0.05919 75.00000 2.00000
6		0.98454	-7.58478	-0.00004	0.01536 0.00000 0.00000
7		1.00500	-4.47147	450.00010	61.48202 150.00000 22.00000
8		0.98001	-9.59266	-0.00003	2.27571 121.00000 26.00000
9		0.98716	-11.47807	-0.00002	0.00157 5.00000 2.00000
10		0.97399	-10.20965	-0.00002	-0.00084 0.00000 0.00000
11		1.01500	-10.49009	310.00004	128.95345 372.00000 24.00000
12		0.97829	-9.82199	0.00002	0.00575 18.00000 2.30000
13		0.96943	-9.37825	-0.00001	0.00283 10.50000 5.30000
14		0.98785	-7.19780	0.00000	0.00336 22.00000 5.00000
15		1.01336	-8.87245	0.00000	0.00227 43.00000 3.00000
16		1.01744	-5.40293	0.00001	0.00334 42.00000 8.00000
17		1.01103	-11.50990	0.00004	-0.00159 27.20000 9.80000
18		1.00844	-13.36147	-0.00000	0.00643 3.30000 0.50000
19		1.01932	-13.81090	0.00001	-0.00065 2.30000 1.00000
20		1.00817	-12.83133	-0.00001	0.00037 0.00000 0.00000
21		1.01417	-12.84601	0.00006	0.00048 0.00000 0.00000
22		1.01258	-12.90917	0.00007	0.00005 6.30000 2.10000
23		1.00057	-13.23379	-0.00024	-0.00673 0.00000 0.00000
24		0.98029	-18.71654	0.00011	-0.00973 6.30000 3.20000
25		0.96167	-12.92784	0.00004	0.00232 0.00000 0.00000
26		0.98378	-11.47373	-0.00010	-0.00262 9.30000 0.50000
27		0.99866	-10.44832	-0.00003	0.00451 4.60000 2.30000
28		1.01204	-9.74209	0.00033	-0.00886 17.00000 2.60000
29		0.95894	-18.75776	0.00003	-0.00033 3.60000 1.80000
30		0.92865	-19.40450	0.00005	0.00068 5.00000 2.90000
31		0.93759	-18.48443	0.00009	-0.00278 1.60000 0.80000
32		0.93526	-18.52516	0.00002	0.08039 3.80000 1.90000
33		0.96703	-14.13720	-0.00009	-0.00437 0.00000 0.00000
34		0.97343	-13.89345	0.00002	-0.00018 6.00000 3.00000
35		0.98257	-13.62037	0.00000	0.00045 0.00000 0.00000
36		0.99139	-13.43294	0.00004	0.00035 0.00000 0.00000
37		1.01877	-12.72915	-0.00002	0.00128 14.00000 1.00000
38		0.98931	-13.47789	-0.00004	0.00036 0.00000 0.00000

39	0.97944	-13.64110	-0.00001	0.00025	0.00000	0.00000
40	1.00~64	-14.01908	0.00006	-0.00197	6.30000	3.00000
41	0.97275	-15.53702	0.00001	0.00075	7.40000	4.00000
42	1.01221	-11.36190	-0.00003	-0.00319	2.00000	1.00000
43	1.02195	-11.84846	0.00004	0.00722	12.00000	1.80000
44	1.03941	-9.28718	0.00005	0.00310	0.00000	0.00000
45	1.07025	-11.17237	0.00005	-0.0073	0.00000	0.00000
46	1.04195	-12.55068	-0.00003	0.00030	29.70000	11.60000
47	1.03527	-12.63575	0.00004	0.00046	0.00000	0.00000
48	1.04528	-12.98777	0.00005	-0.00308	18.00000	8.50000
49	1.03190	-13.44176	-0.00002	-0.00117	21.00000	10.50000
50	1.05961	-12.55091	0.00003	-0.00432	18.00000	5.30000
51	0.98287	-11.47205	-0.00001	0.00326	4.00000	2.20000
52	0.97379	-12.22224	-0.00005	-0.00687	20.00000	10.00000
53	0.99978	-11.70240	0.00009	0.00234	4.10000	1.40000
54	1.03479	-10.81064	0.00010	0.00043	6.00000	2.40000
55	0.97476	-16.06116	0.00001	-0.00044	7.60000	2.20000
56	0.97146	-16.56956	0.00002	-0.00113	6.70000	2.00000
57	1.04000	0.00000	478.85738	129.09619	55.00000	17.00000

TOTAL GENERATION = 1278.4588000 TOTAL LOAD = 1230.800000 TOTAL LOSSES = 28.059731 -119.215508

LIST OF OUTPUT RESULTS

DMAX = 0.000100210 CRSTL = 0.00000000

SEARCHING ITERATIVE TECHNIQUE CONVERGED IN 7 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1		1.01000	-1.19573	0.00004	-0.76004 3.00000 58.00000
2		0.98500	-5.98209	39.96127	+3.647972 41.00000 21.00000
3		0.98184	-7.32915	-0.00089	0.02224 0.00000 0.00500
4		0.97100	-8.52073	0.12587	+0.12585 13.00000 4.00000
5		0.98000	-8.55074	-0.11965	+0.28888 75.00000 2.00000
6		0.98426	-7.59294	0.05924	+0.05026 0.00000 0.00000
7		1.00500	-4.48452	449.98062	62.03233 150.00000 22.00000
8		0.98000	-9.50798	-0.03457	0.41437 121.00000 26.00000
9		0.98717	-11.49198	0.01668	0.02017 5.00000 7.00000
10		0.97400	-10.22538	0.04485	0.07313 0.00000 0.00000
11		1.01500	-10.50116	309.97891	129.94082 377.00000 24.00000
12		0.97829	-9.80467	0.01370	0.03756 19.00000 2.30000
13		0.96942	-9.39125	-0.03770	0.02813 10.50000 5.30000
14		0.98789	-7.20522	0.10484	+0.11829 23.00000 5.00000
15		1.01337	-8.82071	-0.00486	0.02694 43.00000 3.00000
16		1.01745	-5.40742	-0.00482	0.02982 42.00000 8.00000
17		1.01111	-11.52153	-0.07252	0.18052 27.00000 9.80000
18		1.00740	-13.30184	0.04244	+0.23038 3.30000 0.50000
19		1.01843	-13.75405	0.02052	0.03537 2.30000 1.00000
20		1.00727	-12.77770	0.02106	-0.08355 0.00000 0.00000
21		1.01334	-12.79757	0.02496	-0.04571 0.00000 0.00000
22		1.01164	-12.85765	0.09955	-0.19494 6.30000 2.10000
23		0.99314	-13.16193	-0.09321	-0.40311 0.00000 0.00000
24		0.97785	-18.18733	-0.36132	0.14570 6.30000 3.20000
25		0.93930	-12.85486	0.01472	-0.11799 0.00000 0.00000
26		0.98154	-11.40300	0.00525	-0.44812 9.30000 0.50000
27		0.99692	-10.39319	0.33951	-1.80667 4.60000 2.30000
28		1.01150	-9.75253	-1.28227	5.11822 17.00000 2.60000
29		0.95664	-18.68350	0.19414	-0.09129 3.50000 1.20000
30		0.92551	-19.29646	0.04032	0.00124 5.80000 2.90000
31		0.93560	-18.32196	-3.40881	4.81658 1.60000 0.80000
32		0.93294	-18.15889	3.38746	-4.81547 3.80000 1.90000
33		0.96499	-13.89255	0.08681	0.01097 0.00000 0.00000
34		0.97140	-13.6134	1.10395	-1.59369 6.00000 3.00000
35		0.98094	-13.44805	0.46798	-0.40198 0.00000 0.00000
36		0.99013	-13.33055	-1.19780	1.54550 0.00000 0.00000
37		1.01817	-12.68891	0.35124	0.11428 14.00000 7.00000
38		0.98796	-13.36780	0.12693	-0.30876 0.00000 0.00000

39	0.97771	-13.46576	-0.02680	-0.16573	0.00000	0.00000
40	1.00061	-14.08403	-0.54410	1.04472	6.30000	3.00000
41	0.97140	-15.44698	0.10193	-0.18261	7.10000	4.00000
42	1.01222	-11.38254	0.00306	0.00671	2.00000	1.00000
43	0.02145	-11.81704	0.11250	-0.25136	12.00000	1.80000
44	1.03231	-9.26118	-0.24404	0.32743	0.00000	0.00000
45	1.07028	-11.19151	0.00679	-0.03116	0.00000	0.00000
46	1.04183	-12.57561	-1.87876	1.96959	29.70000	11.60000
47	1.01500	-12.62024	1.61676	-1.43353	0.00000	0.00000
48	1.04524	-13.00571	-1.02992	1.21992	18.00000	8.50000
49	1.03176	-13.41394	0.67834	-0.59136	21.00000	10.50000
50	1.05062	-12.56618	-0.27616	0.21357	18.00000	5.30000
51	0.97756	-11.12921	0.69989	-1.95758	4.90000	2.20000
52	0.96733	-11.82723	0.44883	-2.48429	20.00000	10.00000
53	0.99614	-11.47821	0.20894	-0.53375	4.10000	1.40000
54	1.03457	-10.83320	-0.62445	1.75323	6.80000	3.40000
55	0.97252	-15.88570	0.47178	-1.24152	7.60000	2.20000
56	0.96982	-16.45198	-0.11613	0.30738	6.70000	2.00000
57	1.04000	0.00000	479.25882	128.98084	55.00000	17.00000

TOTAL GENERATION = 1278.941700 317.174700 TOTAL LOAD = 1250.000000 336.000000 TOTAL LOSSES = 28.141647

-18.025362

LIST OF OUTPUT RESULTS

DMAX = 0.01986371 EPSIL = 0.02000000

FAST DECOUPLED ITERATIVE TECHNIQUE CONVERGED IN 6 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1		1.01000	-1.18446	-0.00167	-0.76866 3.00000 88.00000
2		0.98500	-5.97264	40.00375	-3.67385 41.00000 21.00000
3		0.98185	-7.31812	0.00034	-0.00674 0.00000 0.00000
4		0.97685	-8.51885	-0.00328	0.00741 13.00000 4.00000
5		0.98000	-8.64321	0.00345	-0.60557 75.00000 2.00000
6		0.98446	-7.57707	-0.01122	-0.01568 0.00000 0.00000
7		1.00500	-4.46509	450.00189	61.74142 150.00000 22.00000
8		0.98000	-9.58682	-0.01836	2.17740 121.00000 26.00000
9		0.98717	-11.47347	-0.00064	-0.00264 5.00000 2.00000
10		0.97402	-10.20420	0.01632	-0.04342 0.00000 0.00000
11		1.01500	-10.48647	309.99691	128.88437 377.00000 24.00000
12		0.97833	-9.81855	-0.00626	0.00310 18.00000 2.30000
13		0.96951	-9.37543	0.00440	-0.02650 10.50000 5.30000
14		0.98796	-7.19713	-0.01849	0.01748 22.00000 5.00000
15		1.01336	-8.86984	0.00035	-0.00766 43.00000 3.00000
16		1.01744	-5.40153	0.00086	-0.00794 42.00000 8.00000
17		1.01116	-11.50769	0.04616	-0.05509 27.20000 9.80000
18		1.00835	-13.37454	-0.04539	0.07089 3.30000 0.60000
19		1.01922	-13.82265	0.00600	-0.00627 2.30000 1.00000
20		1.00805	-12.84395	-0.01326	0.02079 0.00000 0.00000
21		1.01405	-12.85776	-0.01924	0.02441 0.00000 0.00000
22		1.01245	-12.92208	-0.07316	0.11416 6.30000 2.10000
23		1.00029	-13.25571	-0.08274	0.10393 0.00000 0.00000
24		0.98009	-18.23131	0.02498	-0.02716 6.30000 3.20000
25		0.96139	-12.94996	-0.00527	0.03353 0.00000 0.00000
26		0.98341	-11.49338	-0.09168	0.16650 9.30000 0.50000
27		0.99833	-10.46159	-0.54233	0.72537 4.60000 2.30000
28		1.01196	-9.73343	1.49961	-2.01020 17.00000 2.60000
29		0.95875	-18.77251	0.00079	0.00767 3.60000 1.80000
30		0.92845	-19.42398	0.02922	-0.03303 5.80000 2.90000
31		0.93722	-18.51168	1.59849	-1.55546 1.60000 0.80000
32		0.93423	-16.59008	-1.59366	1.56858 3.80000 1.90000
33		0.96658	-14.17672	0.04520	-0.05349 0.00000 0.00000
34		0.97293	-13.93576	-0.39711	0.54307 6.00000 3.00000
35		0.98221	-13.65156	-0.10078	0.10186 0.00000 0.00000
36		0.99118	-13.45345	0.37285	-0.46772 0.00000 0.00000
37		1.01869	-12.73814	0.02471	-0.03456 14.00000 7.00000
38		0.98908	-13.50014	-0.08371	0.12076 0.00000 0.00000

39	0.97906	-13.67371	-0.05486	0.06831	0.00000	0.00000		
40	1.00072	-14.03850	0.25818	-0.37128	6.30000	3.00000		
41	0.97256	-15.54872	-0.00356	0.01179	7.10000	4.00000		
42	1.01226	-11.35499	0.00169	-0.00339	2.00000	1.00000		
43	1.02191	-11.85522	-0.03916	0.06849	12.00000	1.80000		
44	1.03948	-9.25728	0.10746	-0.15032	0.00000	0.00000		
45	1.07044	-11.16822	-0.00910	0.01407	0.00000	0.00000		
46	1.04206	-12.54501	0.89530	"1.10641	29.70000	11.60000		
47	1.03523	-12.64071	-0.82498	0.96466	0.00000	0.00000		
48	1.04533	-12.98450	0.37004	-0.52021	18.00000	8.50000		
49	1.03184	-13.44680	-0.20425	0.30501	21.00000	10.50000		
50	1.05963	-12.54611	0.08378	-0.12007	18.00000	5.30000		
51	0.98160	-11.55144	-0.41927	0.53051	4.90000	2.20000		
52	0.97222	-12.33150	-0.60885	0.93328	20.00000	10.00000		
53	0.99873	-11.76736	-0.29828	0.37501	4.10000	1.40000		
54	1.03476	-10.80322	0.61255	-0.77547	6.80000	3.40000		
55	0.97431	-16.09467	-0.29956	0.45135	7.60000	2.20000		
56	0.97116	-16.59074	0.08707	-0.10455	6.70000	2.00000		
57	1.04000	0.00000	478.76959	128.98431	55.00000	17.00000		
TOTAL GENERATION =	1278.995100	316.576160	TOTAL LOAD =	1250.000000	336.000000	TOTAL LOSSES =	28.195084	-19.423843

HYDRO POWER EVALUATION FOR APRIL 1982.

IPDATA = 0 LS416 = 1 EWEF = 3 LOGIC = 0 ISTART = 0

NO. OF STUDIES = 1 PRINT OPTIONS = 2 2 2 2 2

LIST OF INPUT DATA

NO. OF BUSES 100 NO. OF LINES 129 SLACK BUS VOLT. CONST BUSES SHUNT LOADS MAX. ITERATIONS CONV. LIMIT BASE POWER 1000.000000

BUS DATA

BUS NO.	BUS NAME	GENERATION	LOAD POWER	ASSUMED BUS VOLTAGES	VOLT MAG	PHASE ANGLE
1	OBRA(TH)10.5	136.00003	90.0000	0.0000	1.0000	0.0000
2	OBRA(TH)220	0.0000	0.0000	58.20000	1.0000	0.0000
3	OBRA A 15.75	398.0000	175.0000	0.0000	1.0000	0.0000
4	OBRA A'420	0.0000	0.0000	0.0000	1.0000	0.0000
5	PANKI 11	24.0000	20.0000	0.0000	1.0000	0.0000
6	PANKI 132	0.0000	0.0000	80.0000	1.0000	0.0000
7	PANKI(EXT)11	140.0000	90.0000	0.0000	1.0000	0.0000
8	PANKI 220	0.0000	0.0000	55.0000	34.5000	0.0000
9	PANKI 400	0.0000	0.0000	0.0000	1.0000	0.0000
10	HDJ'A' 11	22.0000	10.0000	0.0000	1.0000	0.0000
11	HDJ 132	0.0000	0.0000	110.0000	90.0000	0.0000
12	HDJ'B' 11	50.0000	40.0000	0.0000	1.0000	0.0000
13	HDJ 220	0.0000	0.0000	0.0000	1.0000	0.0000
14	RICHARD 11	40.0000	30.0000	0.0000	1.0000	0.0000
15	RICHARD 132	0.0000	0.0000	73.0000	58.0000	1.0000
16	OBKACH 11	0.0000	0.0000	0.0000	1.0000	0.0000
17	OBRA(TH)132	0.0000	0.0000	18.0000	10.5000	1.0000
18	KHATIMA 11	25.0000	15.0000	0.0000	1.0000	0.0000
19	KHATIMA132	0.0000	0.0000	9.6000	8.0000	1.0000
20	CHILLA 11	131.0000	90.0000	0.0000	1.0000	0.0000
21	CHILLA 132	0.0000	0.0000	0.0000	1.0000	0.0000
22	RANGANGA 11	48.0000	30.0000	0.0000	1.0000	0.0000
23	RANGANGA132	0.0000	0.0000	2.5000	1.2000	1.0000
24	CHIBRO 11	120.0000	55.0000	0.0000	1.0000	0.0000
25	CHIBRO 220	0.0000	0.0000	0.0000	1.0000	0.0000
26	DAKPANI 11	33.0000	20.0000	0.0000	1.0000	0.0000
27	DAKPANI 132	0.0000	0.0000	2.5000	1.0000	1.0000
28	DHALIPUR 11	51.0000	20.0000	0.0000	1.0000	0.0000
29	DHALIPUR132	0.0000	0.0000	2.5000	1.0000	1.0000
30	KULHAL 11	80.0000	50.0000	0.0000	1.0000	0.0000
31	KULHAL 132	0.0000	0.0000	2.5000	1.0000	1.0000
32	ROBCHANG 132	0.0000	0.0000	18.0000	13.5000	1.0000
33	SAHIPUR1132	0.0000	0.0000	50.0000	42.0000	1.0000
34	SAHIPUR 220	0.0000	0.0000	0.0000	1.0000	0.0000
35	GAJIPUR 132	0.0000	0.0000	12.0000	7.2000	1.0000

36	MAU 132	0.0000	0.0000	13.2000	10.0000	1.0000	0.0000
37	GKP 132	0.0000	0.0000	32.0000	35.0000	1.0000	0.0000
38	GKP 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
39	KHALBAD 132	0.0000	0.0000	9.6000	6.0000	1.0000	0.0000
40	BASTI 62	0.0000	0.0000	9.6000	6.0000	1.0000	0.0000
41	FZD 132	0.0000	0.0000	16.0000	16.0000	1.0000	0.0000
42	MANDADIN 132	0.0000	0.0000	22.0000	20.0000	1.0000	0.0000
43	JAUNPUR 152	0.0000	0.0000	15.0000	12.0000	1.0000	0.0000
44	MIRZAPUR 152	0.0000	0.0000	8.0000	5.0000	1.0000	0.0000
45	JIGNA 132	0.0000	0.0000	8.0000	6.0000	1.0000	0.0000
46	SLN 132	0.0000	0.0000	58.0000	50.5800	1.0000	0.0000
47	SLN 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
48	SLN'A' 400	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
49	ALLD 132	0.0000	0.0000	34.0000	34.0000	1.0000	0.0000
50	ALLD 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
51	LUCKNOW 132	0.0000	0.0000	50.0000	31.0000	1.0000	0.0000
52	LUCKNOW 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
53	LUCKNOW 400	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
54	SITAPUR 182	0.0000	0.0000	28.0000	18.0000	1.0000	0.0000
55	SITAPUR 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
56	SHAJPUR 132	0.0000	0.0000	22.0000	13.5000	1.0000	0.0000
57	SHAHPUR 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
58	DHDNA 132	0.0000	0.0000	32.0000	31.0000	1.0000	0.0000
59	KHURJA 132	0.0000	0.0000	20.0000	17.0000	1.0000	0.0000
60	KHURJA 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
61	BHOOR 132	0.0000	0.0000	0.0000	25.0000	1.0000	0.0000
62	MURAD 132	0.0000	0.0000	60.0000	48.0000	1.0000	0.0000
63	MURAD 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
64	MURAD 400	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
65	MEERUT 132	0.0000	0.0000	40.0000	40.0000	1.0000	0.0000
66	MEERUT 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
67	SHAMLI 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
68	SAHAPUR 132	0.0000	0.0000	18.0000	18.0000	1.0000	0.0000
69	SAHAPUR 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
70	ROORKEE 52	0.0000	0.0000	6.0000	5.0000	1.0000	0.0000
71	HARDWAR 132	0.0000	0.0000	18.0000	16.0000	1.0000	0.0000
72	RISH 132	0.0000	0.0000	22.0000	17.0000	1.0000	0.0000
73	RISH 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
74	DDN 132	0.0000	0.0000	13.0000	10.0000	1.0000	0.0000
75	KHODRI 132	0.0000	0.0000	2.5000	1.0000	1.0000	0.0000
76	KHODRI 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
77	NEHTAUR 132	0.0000	0.0000	20.0000	24.0000	1.0000	0.0000
78	KASHPUR 132	0.0000	0.0000	5.0000	3.0000	1.0000	0.0000
79	MBD 132	0.0000	0.0000	36.0000	36.0000	1.0000	0.0000
80	MBD 220	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000

LINE NUMBER	FROM BUS	TO BUS	LINE IMPEDENCE
1	4 OBRA-A' 420	9 PANKI 400	0.00790 0.08120
2	9 PANKI 400	64 MURAD 400	0.00796 0.08112
3	48 SLN-A' 400	53 LUCKNOW 00	0.00298 0.03009
4	48 SLN-A' 400	4 OBRA-A' 420	0.00000 0.04775
5	63 MURAD 220	64 MURAD 400	0.00000 0.02604
6	2 OBRA(TH)220	34 SAHUPURI 220	0.00811 0.03877
7	2 OBRA(TH)220	50 ALLD 220	0.01000 0.02370
8	38 GKP 220	47 SLN 220	0.02470 0.10685
9	50 ALLD 220	8 PANKI 220	0.01722 0.06229
10	8 PANKI 220	52 LUCKNOW 220	0.00505 0.02113
11	8 PANKI 220	85 MAIMPURI220	0.01292 0.06171
12	85 MAIMPURI220	13 HUJ 220	0.01060 0.05064
13	60 KHURJA 220	63 MURAD 220	0.00649 0.02374
14	13 HDJ 220	60 KHURJA 220	0.00373 0.01780
15	63 MURAD 220	67 SHANLI220	0.01739 0.08307
16	13 HDJ 220	60 MBD 220	0.01645 0.0995
17	73 RISH 220	96 MUZAFFR220	0.01390 0.06597
18	63 MURAD 220	66 MEERUT220	0.00761 0.03132
19	69 SAHAPUR220	67 SHANLI220	0.01150 0.05790
20	69 SAHAPUR220	76 KHODKI 220	0.00720 0.03442
21	66 MEERUT220	86 MUZAFFR220	0.00993 0.04998
22	73 RISH 220	76 KHODKI 220	0.01440 0.07247

LINE DATA	LINE NUMBER	FROM BUS	TO BUS	HALF LINE CHARG ADMIT	OFF NOM IR TURNS Natio
	1	4 OBRA-A' 420	9 PANKI 400	0.00300 0.26590	1.00000
	2	9 PANKI 400	64 MURAD 400	0.00000 0.25500	1.00000
	3	48 SLN-A' 400	53 LUCKNOW 00	0.00000 0.09820	1.30000
	4	48 SLN-A' 400	4 OBRA-A' 420	0.00000 0.06013	1.00000
	5	63 MURAD 220	64 MURAD 400	0.00000 0.00000	1.02500
	6	2 OBRA(TH)220	34 SAHUPURI 220	0.00811 0.03877	0.13220 1.00000
	7	2 OBRA(TH)220	50 ALLD 220	0.01000 0.02370	0.07200 1.00000
	8	38 GKP 220	47 SLN 220	0.02470 0.10685	0.10120 1.00000
	9	50 ALLD 220	8 PANKI 220	0.01722 0.06229	0.06030 1.00000
	10	8 PANKI 220	52 LUCKNOW 220	0.00505 0.02113	0.03229 1.00000
	11	8 PANKI 220	85 MAIMPURI220	0.01292 0.06171	0.21043 1.00000
	12	85 MAIMPURI220	13 HUJ 220	0.01060 0.05064	0.17266 1.00000
	13	60 KHURJA 220	63 MURAD 220	0.00649 0.02374	0.03093 1.30000
	14	13 HDJ 220	60 KHURJA 220	0.00373 0.01780	0.00350 1.00000
	15	63 MURAD 220	67 SHANLI220	0.01739 0.08307	0.07932 1.00000
	16	13 HDJ 220	60 MBD 220	0.01645 0.0995	0.07400 1.00000
	17	73 RISH 220	96 MUZAFFR220	0.01390 0.06597	0.05690 1.00000
	18	63 MURAD 220	66 MEERUT220	0.00761 0.03132	0.03120 1.00000
	19	69 SAHAPUR220	67 SHANLI220	0.01150 0.05790	0.04711 1.00000
	20	69 SAHAPUR220	76 KHODKI 220	0.00720 0.03442	0.11720 1.00000
	21	66 MEERUT220	86 MUZAFFR220	0.00993 0.04998	0.04067 1.00000
	22	73 RISH 220	76 KHODKI 220	0.01440 0.07247	0.05898 1.00000

23	79 KHOJNAGI 270	25 CHIKED 220	0.00921	0.00099	0.03000	0.00337	1.00000
24	52 LUDHIANA 220	55 SITAPUR132	0.01589	0.01997	0.00000	0.00509	1.00000
25	2 JIRAI 132	17 DERAJH 132	0.02056	0.01133	0.00000	0.00061	1.00000
26	17 SPRI 132	15 RIAH 132	0.01582	0.01767	0.00000	0.01735	1.00000
27	15 RIHAND 132	32 ROHCHAG 132	0.0260	0.06205	0.00000	0.02849	1.00000
28	17 BRRATH 132	32 ROHGANG 132	0.01303	0.02102	0.00000	0.01429	1.00000
29	32 ROBSANG 132	33 SARHPURI 132	0.04048	0.09640	0.00000	0.04439	1.00000
30	32 ROBGRNG 132	44 HIRZAPUR132	0.04680	0.11760	0.00000	0.04860	1.00000
31	33 SAHPUR132	35 GAJIPUR 132	0.05100	0.11100	0.00000	0.01220	1.00000
32	33 SAHPUR132	36 MAU 132	0.09120	0.21717	0.00000	0.02500	1.00000
33	33 SAHPUR132	42 HANDBAH 132	0.05000	0.12590	0.00000	0.05200	1.00000
34	35 GAJIPUR 132	36 MAU 132	0.04080	0.10480	0.00000	0.00980	1.00000
35	37 GKP 132	36 MAU 132	0.04932	0.11745	0.00000	0.05408	1.00000
36	37 GKP 132	39 KHADRAU 132	0.03400	0.08150	0.00000	0.00900	1.00000
37	39 KHALGORD 132	40 BASTI 62	0.02550	0.06550	0.00000	0.00620	1.00000
38	41 FZD 132	46 SLN 132	0.05491	0.11622	0.00000	0.01420	1.00000
39	42 MANDADIH 132	43 JAUNPUR 152	0.05000	0.13500	0.00000	0.01380	1.00000
40	44 MIRZAPUR132	45 JIGNA 132	0.01700	0.03950	0.00000	0.01800	1.00000
41	51 LUCKNOW132	54 SITAPUR182	0.08004	0.20447	0.00000	0.02072	1.00000
42	54 SHAJPUR182	56 SHAJPUR132	0.08569	0.21550	0.00000	0.02216	1.00000
43	56 SHAJPUR132	58 DHONA 132	0.03816	0.09086	0.00000	0.04184	1.00000
44	58 DHONA 132	19 KHATIBA 132	0.03968	0.09307	0.00000	0.04286	1.00000
45	2 DBRAC(TH)220	15 RIHAND 132	0.03258	0.18200	0.00000	0.00843	1.00000
46	59 KHURJA 132	61 KHOOR 132	0.01945	0.04955	0.00000	0.00500	1.00000
47	61 RHOOR 132	62 MURAD 132	0.05100	0.13000	0.00000	0.01390	1.00000
48	70 RDRKEE 52	68 SAHPUR132	0.01442	0.0335	0.00000	0.01582	1.00000
49	70 RDRKEE 52	71 HARDWAR 132	0.01580	0.03167	0.00000	0.01735	1.00000
50	77 NEMTAJUR132	70 ROURKE 52	0.04048	0.09640	0.00000	0.04439	1.00000
51	71 HARDWAR 132	72 RISH 132	0.02233	0.05318	0.00000	0.00612	1.00000
52	74 DDM 132	31 KULHAL 132	0.04860	0.10000	0.00000	0.00900	1.00000
53	72 RISH 132	74 DDM 132	0.01851	0.04432	0.00000	0.02040	1.00000
54	74 DDM 132	29 DHALIPUR132	0.03860	0.09800	0.00000	0.00900	1.00000
55	31 KULHAL 132	29 DHALIPUR132	0.00450	0.01100	0.00000	0.00120	1.00000
56	29 DHALIPUR132	27 DAKRANI 132	0.00450	0.01000	0.00000	0.00120	1.00000
57	27 DAKRANI 132	75 KHUDRI 132	0.00450	0.01000	0.00000	0.00120	1.00000
58	77 NEMTAJUR132	23 RANGANGA 132	0.02699	0.06226	0.00000	0.02260	1.00000
59	79 MBD 132	77 MEHTAUR132	0.01603	0.03878	0.00000	0.07000	1.00000
60	23 RAKANGA 132	78 KASHPUR132	0.02280	0.05330	0.00000	0.02500	1.00000
61	79 MBD 132	81 GAJRALA 72	0.04600	0.11530	0.00000	0.01220	1.00000
62	78 KASHPUR132	79 MBD 132	0.05677	0.11300	0.00000	0.01470	1.00000
63	81 GAJRALA 72	82 HAFUR 132	0.04700	0.11650	0.00000	0.01340	1.00000
64	11 HOJ 132	59 KHURJA 132	0.04188	0.05442	0.00000	0.01084	1.00000
65	43 JAUPUR 152	83 SHAGAM 132	0.04040	0.10075	0.00000	0.01040	1.00000
66	84 HALGWANT132	78 KASHPUR132	0.05398	0.11588	0.00000	0.01347	1.00000

67	21 CHILDA 132	72 RISH 132	0.01395	0.03114	0.00066	0.00361	1.00000
58	7 HARZWAR 132	21 CHILDA 132	0.00331	0.02216	0.00000	0.00250	1.00000
69	77 NEHAUR 132	21 CHILDA 132	0.00097	0.02082	0.00000	0.02096	1.00000
70	58 OHDA 132	79 MBD 132	0.04141	0.09861	0.00000	0.03941	1.00000
71	14 KIHAND 11	15 KIHAND 132	0.03000	0.03100	0.00000	0.03000	0.95000
72	16 ORRA(TH) 11	17 ORRA(TH) 132	0.00000	0.16550	0.00000	0.00000	0.95000
73	1 ORRA(TH) 10,5	2 ORRA(TH) 220	0.00000	0.02330	0.00000	0.00000	0.95000
74	3 ORRA A 15,75	4 ORRA 'A' 420	0.00000	0.02110	0.00000	0.00000	1.00000
75	2 ORRA(TH) 220	4 ORRA 'A' 420	0.00000	0.02508	0.00000	0.00000	1.05000
76	18 KHATIYA 11	19 KHATIYA 132	0.00000	0.28550	0.00000	0.00000	1.00000
77	7 PANKI (EXP) 11	8 PANKI 220	0.00000	0.07971	0.00000	0.00000	1.00000
78	6 PANKI 132	8 PANKI 220	0.00000	0.05000	0.00000	0.00000	1.00000
79	6 PANKI 220	9 PANKI 400	0.00000	0.05368	0.00000	0.00000	1.00000
80	5 PANKI 11	6 PANKI 132	0.00009	0.27500	0.00000	0.00000	1.00000
81	19 HDJ 'K' 11	11 HDJ 132	0.00000	0.14625	0.00000	0.00000	0.95000
82	12 HDJ 'B' 11	13 HDJ 220	0.00000	0.05225	0.00000	0.00000	0.95000
83	11 HDJ 132	13 HDJ 220	0.00000	0.03884	0.00000	0.00000	1.00000
84	30 KUCHAL 11	31 KUCHAL 132	0.00000	0.30000	0.00000	0.00000	1.00000
85	28 DHALIPUR 11	29 DHALIPUR 132	0.00000	0.15000	0.00000	0.00000	1.00000
86	26 DAKRANI 11	27 DAKRANI 112	0.00000	0.50000	0.00000	0.00000	1.00000
87	24 CHIBRD 11	25 CHIBRD 220	0.00000	0.49420	0.00000	0.00000	1.00000
88	22 RAMGANGA 11	23 RAMGANGA 132	0.00000	0.07500	0.00000	0.00000	0.95000
89	20 CHILDA 11	21 CHILDA 132	0.00000	0.00500	0.00000	0.00000	0.95000
90	33 SAMUPURI 132	34 SAMUPURI 220	0.00000	0.04660	0.00000	0.00000	1.00000
91	37 GKP 132	38 GKP 220	0.00003	0.05000	0.00000	0.00000	1.00000
92	46 SLN 132	47 SLN 220	0.00000	0.05000	0.00000	0.00000	1.00000
93	47 SLN 220	48 SLN 'A' 400	0.00000	0.05208	0.00000	0.00000	1.07500
94	49 ALD 132	50 ALD 220	0.00000	0.08000	0.00000	0.00000	1.05000
95	51 LUCKNOW 132	52 LUCKNOW 220	0.00000	0.04900	0.00000	0.00000	1.00000
96	52 LUCKNOW 220	53 LUCKNOW 400	0.00000	0.06000	0.00000	0.00000	0.95000
97	59 KHURJA 132	60 KHURJA 220	0.00000	0.10000	0.00000	0.00000	1.02500
98	62 NURAD 132	63 NURAD 220	0.00000	0.05000	0.00000	0.00000	1.05000
99	65 MEERUT 132	66 MEERUT 220	0.00000	0.04640	0.00000	0.00000	1.00000
100	68 SHAPUR 132	69 SAHAPUR 220	0.00000	0.05088	0.00000	0.00000	1.05000
101	72 RISH 132	73 RISH 220	0.00000	0.10120	0.00000	0.00000	0.95000
102	75 KHODKI 132	76 KHODKI 220	0.00000	0.10000	0.00000	0.00000	1.00000
103	79 MBD 132	80 MBD 220	0.00000	0.05000	0.00000	0.00000	1.00000
104	54 STAPUR 182	55 STAPUR 220	0.00000	0.10000	0.00000	0.00000	1.00000
105	56 STAJPUR 132	57 STAJPUR 220	0.00000	0.10000	0.00000	0.00000	1.00000
106	89 AZAM 132	88 AZAM 220	0.00000	0.10000	0.00000	0.00000	1.00000
107	90 SHAGLI 132	67 SHAGLI 220	0.00000	0.05000	0.00000	0.00000	1.00031
108	87 MUZAFFR 132	86 MUZAFFR 220	0.00000	0.05000	0.00000	0.00000	1.00000
109	34 SAMUPURI 220	88 AZAM 220	0.01734	0.07447	0.00000	0.07117	1.00000
110	89 AZAM 32	36 MAU 132	0.02547	0.04875	0.00000	0.02245	0.95000
111	90 SHAGLI 132	87 MUZAFFR 132	0.04561	0.11479	0.00000	0.01181	1.00000

111	91 OBRA "B" 15.75	92 OBRA "B" 420	0.00000	0.02915	0.00000	0.00000
113	7 OBRA(TH)220	92 OBRA "B" 420	0.00000	0.05208	0.00000	0.00000
114	47 SLM "D"	93 SLM "B" 400	0.00000	0.05208	0.00000	0.00000
115	94 OBRA "A" 33	4 OBRA "A" 420	0.00000	0.33833	0.00000	0.00000
116	94 OBRA "A" 33	2 OBRA(TH)220	0.00000	0.28666	0.00000	0.00000
117	95 OBRA "B" 33	92 OBRA "B" 420	0.00000	0.33833	0.00000	0.00000
118	95 OBRA "B" 33	2 OBRA(TH)220	0.00000	0.28666	0.00000	0.00000
119	96 SLM "A" 33	48 SLM "A" 400	0.00000	0.33833	0.00000	0.00000
120	96 SLM "A" 33	47 SLM 220	0.00000	0.28666	0.00000	0.00000
121	97 SLM "B" 33	93 SLM "B" 400	0.00000	0.33833	0.00000	0.00000
122	97 SLM "B" 33	47 SLM 220	0.00000	0.28666	0.00000	0.00000
123	98 PANKI 33	9 PANKI 400	0.00000	0.16917	0.00000	0.00000
124	98 PANKI 33	8 PANKI 220	0.00000	0.14333	0.00000	0.00000
125	99 LKD 33	53 LUCKNOW 400	0.00000	0.16917	0.00000	0.00000
126	99 LKD 33	52 LUCKNOW 220	0.00000	0.14333	0.00000	0.00000
127	100 MURAD 33	54 MURAD 400	0.00000	0.16917	0.00000	0.00000
128	100 MURAD 33	63 MURAD 220	0.00000	0.14333	0.00000	0.00000

VOLTAGE CONTROLLED BUS DATA

S. NO.	BUS NO.	NAME	Q-MINIMUM	Q-MAXIMUM	V-MAXIMUM	SCHEDULED VOLTAGE
1	3 OBRA A 15.75	"15.0000	150.0000	150.0000	1.0100	1.0100
2	5 PANKI 11	"3.2000	22.0000	22.0000	1.0100	1.0100
3	34 SAHUPUR 220	"20.0000	20.0000	20.0000	1.0500	1.0500
4	12 HDJ "B" 11	"16.5000	40.0000	40.0000	0.9800	0.9800
5	1 OBRA(TH)10.5	"35.0000	90.0000	90.0000	1.0000	1.0000
6	18 KHATINA 11	"2.7600	15.0000	15.0000	1.0500	1.0500
7	20 CHILLA 11	"7.2000	90.0000	90.0000	1.0500	1.0500
8	24 CHIBRO 11	"12.0000	60.0000	60.0000	1.0400	1.0400
9	28 DHALIPUR 11	"1.7000	20.0000	20.0000	1.0400	1.0400
10	73 RISH 220	0.0000	20.0000	20.0000	1.0500	1.0500
11	62 MURAD 132	0.0000	50.0000	50.0000	1.0500	1.0500
12	7 PANKI(EXT)11	0.0000	90.0000	90.0000	1.0200	1.0200
13	10 HDJ "A" 11	0.0000	10.0000	10.0000	0.9800	0.9800
14	14 RIHAND 11	0.0000	30.0000	30.0000	0.9800	0.9800
15	22 RAMGANGA 11	0.0000	30.0000	30.0000	1.0200	1.0200
16	26 DAKRANI 11	0.0000	20.0000	20.0000	1.0500	1.0500
17	30 KULHAL 11	0.0000	50.0000	50.0000	1.0500	1.0500
18	46 SLM 132	"20.0000	30.0000	30.0000	1.0200	1.0200
19	85 MAINPUR1220	0.0000	50.0000	50.0000	1.0100	1.0100

SHUNT LOAD DATA

S. NO.	BUS NO.	NAME	SHUNT LOAD AVAILABLE
1	3. ROBGANG 132	0.00000	0.05400
2	33 SARUPUR132	0.00000	0.13800
3	36 MAU 132	0.00000	0.09500
4	27 Gop 132	0.00000	0.38600

5	41	FZD	132	0.00000	0.12100
6	46	SLN	132	0.00000	0.05600
7	49	ALLO	132	0.00000	0.08900
8	51	LUCKNOW	132	0.00000	0.07400
9	54	SITAPUR	182	0.00000	0.04400
10	56	SHAJPUR	132	0.00000	0.02400
11	58	DHONA	132	0.00000	0.09900
12	6	PANKI	132	0.00000	0.08300
13	11	HDJ	132	0.00000	0.40300
14	59	KHURJA	132	0.00000	0.22900
15	62	MURAD	132	0.00000	0.20000
16	65	MEKRUT	132	0.00000	0.10100
17	90	SHAMLI	132	0.00000	0.18700
18	70	ROORKEE	52	0.00000	0.06900
19	78	KASHPUR	132	0.00000	0.03100
20	79	MBD	132	0.00000	0.42600
21	85	MAINPUR	1220	0.00000	0.07000
22	87	MUZAFFR	132	0.00000	0.35000
23	4	DBRA "A"	420	0.00000	-1.00000
24	9	PANKT	400	0.00000	-1.00000
25	48	SLN "A"	400	0.00000	-0.50000
26	53	LUCKNOW	400	0.00000	-0.50000
27	64	MURAD	400	0.00000	-0.50000
28	89	AZAM	132	0.00000	0.04500
29	92	DBRA "B"	420	0.00000	0.00000
30	40	BASTI	62	0.00000	0.05000
31	68	SAHAPUR	132	0.00000	0.12000
32	94	DBRA "A"	33	0.00000	0.00000
33	96	SLN "A"	33	0.00000	0.00000
34	77	NEHTAUR	132	0.00000	0.08800
35	98	PANKI	33	0.00000	0.00000
36	99	LKD	33	0.00000	0.00000
37	100	MURAD	33	0.00000	0.00000

LIST OF OUTPUT RESULTS

OMAX = 0.00015998 EPSIL = 0.00100000

NEWTON RAPHSON ITERATIVE TECHNIQUE CONVERGED IN 7 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1	OBRA(TH)10.5	1.00000	0.00000	129.39452 103.62430	0.00000 0.00000
2	OBRA(TH)220	1.03491	-1.65877 -0.00003	0.00028	58.00000 40.00000
3	OBRA A 15.75	1.01000	5.95954 398.00000	137.66420	0.00000 0.00000
4	OBRA 'A' 420	0.98579	1.35100 0.00001	-0.00005	0.00000 0.00000
5	PANKI 11	1.01000	-0.34776 24.00000	17.25541	0.00000 0.00000
6	PANKI 132	0.96523	-4.22968 0.00000	0.00056	80.00000 60.00000
7	PANKI(EXT)11	1.02000	3.83493 140.00000	52.56645	0.00000 0.00000
8	PANKI 220	0.99502	-2.54208 0.00003	0.00024	55.00000 34.50000
9	PANKI 400	0.97271	-1.37872 0.00000	-0.00015	0.00000 0.00000
10	HDJ 'A' 11	0.93982	-3.23760 22.00000	6.90086	0.00000 0.00000
11	HDJ 132	1.00352	-5.05613 -0.00000	0.08107	110.00000 90.00000
12	HDJ 'B' 11	0.98000	-2.00528 50.00000	39.36849	0.00000 0.00000
13	HDJ 220	1.01467	-3.43548 -0.00002	-0.00012	0.00000 0.00000
14	RINAND 11	0.97000	-3.26373 40.00000	28.25042	0.00000 0.00000
15	RINAND 132	1.01462	-4.01606 -0.00004	0.00011	73.00000 58.00000
16	OBRA(H) 11	0.96869	-3.68541 0.00000	0.00000	0.00000 0.00000
17	OBRA(H)132	1.02236	-3.68541 0.00004	0.00023	18.00000 10.50000
18	KHATENA 11	1.05000	0.51414 25.00000	12.46170	0.00000 0.00000
19	KHATENA132	1.01844	-3.30793 0.00000	0.00059	5.60000 8.00000
20	CHELLA 11	1.05000	10.09414 131.00000	60.04496	0.00000 0.00000
21	CHELLA 132	1.07562	5.98687 -0.00003	-0.00364	0.00000 0.00000
22	RANGANGA 11	1.02000	2.22662 48.00000	14.45755	0.00000 0.00000
23	RANGANGA132	1.06894	0.42576 -0.00001	0.00053	2.50000 1.20000
24	CHIBRO 11	1.04000	12.46404 120.00000	-6.78747	0.00000 0.00000
25	CHIBRO 220	1.05178	6.53243 0.00006	-0.00213	0.00000 0.00000
26	DAKRANI 11	1.05000	18.87955 33.00000	1.10543	0.00000 0.00000
27	DAKRANI 132	1.05649	10.32559 0.00002	-0.00532	2.50000 1.00000
28	DHALIPUR 11	1.05985	18.35905 51.00000	3.74078	0.00000 0.00000
29	DHALIPUR132	1.05914	10.52528 -0.00007	-0.00838	2.50000 1.00000
30	KULHAL 11	1.05000	23.15570 79.99999	4.96951	0.00000 0.00000
31	KULHAL 132	1.06072	10.71162 -0.00010	-0.01512	2.50000 1.00000
32	ROBGANG 132	1.01560	-4.55651 -0.00003	-0.00002	18.00000 13.50000
33	SAHUPURI132	1.00781	-6.23139 0.00001	0.00007	50.00000 42.00000
34	SAHUPURI 220	1.02000	-4.06952 0.00001	12.64091	0.00000 0.00000
35	GAJIPUR 132	1.01664	-7.41904 0.00000	0.00004	12.00000 7.20000
36	MAU 132	1.03378	-7.76921 0.00000	-0.00003	13.20000 10.00000
37	GKP 132	1.03327	-8.83929 0.00001	0.00014	32.00000 35.00000
38	GKP 220	1.03237	-7.85072 0.00000	0.00001	0.00000 0.00000

39	0.00000							
25	CHIBRO 220	1.05178	6.53243	0.00096	-0.00213	0.00000	0.00000	
26	DAKRANI 11	1.05000	18.87955	33.00000	1.10543	0.00000	0.00000	
27	DAKRANI 132	1.05649	10.32559	0.00002	-0.00532	2.50000	1.00000	
28	DHALIPUR 11	1.05985	18.35905	51.00000	3.74078	0.00000	0.00000	
29	DHALIPUR132	1.05914	10.52528	-0.00007	-0.00838	2.50000	1.00000	
30	KULHAL 11	1.05000	23.15570	79.99999	4.96951	0.00000	0.00000	
31	KULHAL 132	1.06072	10.71162	-0.00010	-0.01512	2.50000	1.00000	
32	ROB GANG 132	1.01560	-4.55651	-0.00003	-0.00002	18.00000	13.50000	
33	SAHUPURI132	1.00781	-5.23139	0.00001	0.00007	50.00000	42.00000	
34	SAHUPURI 220	1.02000	-4.06952	0.00001	12.64091	0.00000	0.00000	
35	GAJIPUR 132	1.01663	-7.41904	0.00000	0.00004	12.00000	7.20000	
36	MAU 132	1.03378	-7.76921	0.00000	-0.00003	13.20000	10.00000	
37	GKP 132	1.03327	-8.83929	0.00001	0.00014	32.00000	35.00000	
38	GKP 220	1.03237	-7.85072	0.00000	0.00001	0.00000	0.00000	
39	KHALBAD 132	1.02283	-9.66607	0.00001	0.00003	9.60000	6.00000	
40	BASTI 62	1.02031	-10.00920	0.00001	0.00004	9.60000	6.00000	
41	FZD 132	1.00797	-8.75196	-0.00000	0.00007	16.00000	16.00000	
42	MANDADIH132	0.94747	-8.56428	0.00001	0.00003	22.00000	20.00000	
43	JAUNPUR 152	0.91694	-9.91312	-0.00001	0.00002	15.00000	12.00000	
44	MIRZAPUR152	1.00507	-5.54804	0.00001	-0.00002	8.00000	5.00000	
45	JIGNA 132	1.00206	-5.68727	0.00000	0.00003	8.00000	6.00000	
46	SLN 132	1.02000	-7.58870	-0.00001	28.37426	58.00000	50.58000	
47	SLN 220	1.02923	-5.56508	0.00000	0.00000	0.00000	0.00000	
48	SLN'A' 400	0.96954	-2.27964	-0.00000	-0.00043	0.00000	0.00000	
49	ALLD 132	1.04787	-3.68467	-0.00000	0.00013	34.00000	34.00000	
50	ALLD 220	1.02014	-2.15370	0.00000	-0.00015	0.00000	0.00000	
51	LUCKNOW132	0.95373	-4.76023	-0.00000	0.00037	50.00000	31.00000	
52	LUCKNOW220	0.96407	-3.13441	-0.00001	-0.00034	0.00000	0.00000	
53	LUCKNOW400	0.97653	-2.63423	0.00000	-0.00003	0.00000	0.00000	
54	SITAPUR182	0.95741	-5.32063	-0.00000	0.00035	28.00000	18.00000	
55	SITAPUR220	0.96193	-4.11007	0.00001	-0.00014	0.00000	0.00000	
56	SHAJPUR132	0.98232	-5.06892	-0.00000	0.00060	22.00000	13.50000	
57	SHAHPUR220	0.98232	-5.06892	0.00000	0.00000	0.00000	0.00000	
58	DHONA 132	1.00632	-3.95914	-0.00001	0.00068	32.00000	31.00000	
59	KHURJA 132	1.02437	-4.57611	0.00002	0.00018	20.00000	17.00000	
60	KHURJA 220	1.01213	-3.09183	0.00002	-0.00029	0.00000	0.00000	
61	BHOOR 132	1.02308	-4.30306	-0.00003	-0.00002	0.00000	25.00000	
62	MURAD 132	1.05000	-4.20543	0.00000	29.03238	60.00000	48.00000	
63	MURAD 220	1.00954	-2.27503	0.00000	-0.00270	0.00000	0.00000	
64	MURAD 400	0.97946	-2.08277	-0.00000	0.00009	0.00000	0.00000	
65	MEERUT132	0.99721	-2.55182	0.00000	-0.00017	40.00000	40.00000	
66	MEERUT220	1.01132	-1.49732	0.00001	-0.00087	0.00000	0.00000	
67	SHAMLI220	1.03252	1.08084	-0.00000	-0.00450	0.00000	0.00000	
68	SAHAPUR132	1.07885	3.61730	-0.00001	-0.00123	18.00000	18.00000	

69	SAHAPUR220	1.04114	4.23738	-0.00001	-0.00591	0.00000	0.00000
70	KOURKEE 52	1.07174	3.58174	-0.00003	-0.00236	6.00000	5.00000
71	HARDWAR132	1.06832	5.27504	-0.00001	-0.00025	18.00000	16.00000
72	KISH 132	1.05715	6.16039	0.00004	-0.00775	22.00000	17.00000
73	KISH 220	1.05000	4.09626	0.00000	-17.74436	0.00000	0.00000
74	UDN 132	1.05482	8.12917	-0.00000	-0.01355	13.00000	10.00000
75	KHODRI 132	1.05394	9.94136	-0.00001	-0.00501	2.60000	1.00000
76	KHODRI 220	1.05172	6.46886	0.00001	-0.01600	0.00000	0.00000
77	MENTAURI132	1.05508	0.26898	0.00001	-0.00434	20.00000	24.00000
78	KASHPUR132	1.05818	-0.48697	0.00003	0.00030	5.00000	3.00000
79	WAD 132	1.04126	*1.922796	0.00000	0.00017	36.00000	36.00000
80	WAD 220	1.03456	*2.40857	-0.00000	0.00031	0.00000	0.00000
81	GAJRALA 72	1.00337	-3.10198	0.00001	0.00010	9.00000	7.00000
82	HAPUR 132	0.97461	*3.57703	-0.00001	0.00031	18.00000	18.00000
83	SHAGARJI32	0.91127	-10.17230	-0.00000	0.00002	5.00000	4.00000
84	HALDWANI32	1.04824	*0.92399	-0.00000	0.00018	8.00000	6.00000
85	MAINPUR1220	1.01000	-4.25051	0.00000	45.54347	55.00000	48.00000
86	MUZAFFR220	1.03005	0.46595	0.00001	-0.00149	0.00000	0.00000
87	MUZAFFR132	1.03397	-0.14671	0.00000	-0.00049	32.00000	30.00000
88	AZAM220	1.00598	*5.53140	0.00001	0.00000	0.00000	0.00000
89	AZAM132	0.98996	-7.36138	0.00001	0.00002	10.00000	7.50000
90	SHAMLII32	1.03725	0.43283	-0.00001	-0.00056	15.00000	12.00000
91	OBRA*B*15.75	0.98862	-1.65877	0.00000	0.00000	0.00000	0.00000
92	OBRA*B*420	0.98862	-1.65877	0.00000	-0.00005	0.00000	0.00000
93	SLN*B* 400	0.96729	-5.56508	0.00000	-0.00002	0.00000	0.00000
94	OBRA*A* 33	1.01041	-0.31244	0.00000	0.00002	0.00000	0.00000
95	OBRA*B* 33	1.01206	-1.65877	0.00000	0.00001	0.00000	0.00000
96	SLN *A* 33	1.00144	-4.10683	0.00000	-0.00001	0.00000	0.00000
97	SLN *B* 33	1.00082	-5.56508	0.00000	-0.00001	0.00000	0.00000
98	PANKI 33	0.97932	*2.01212	0.00000	-0.00002	0.00000	0.00000
99	LKO 33	0.96978	*2.20340	0.00000	0.00000	0.00000	0.00000
100	MURAD 33	0.99574	-2.18829	-0.00000	0.00002	0.00000	0.00000

TOTAL GENERATION = 1291.394500 573.352480 TOTAL LOAD =

1253.700000 1054.480000 TOTAL LOSSES = 27.69458 -481.126530

LIST OF OUTPUT RESULTS

DMAX = 0.00048400 EPSIL = 0.00100000

DECOUPLED ITERATIVE TECHNIQUE CONVERGED IN 9 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1	OBRA(TH)10.5	1.00000	0.00000	129.47353	103.57990
2	OBRA(TH)220	1.03192	-1.65977	0.00256	0.01113
3	OBRA A 15.75	1.01000	5.95762	398.00002	137.56643
4	OBRA_A'420	0.98581	1.34917	0.00014	0.00150
5	PANKI 11	1.01000	-0.35102	23.99999	17.23487
6	PANKI 132	0.96529	-4.23271	0.00004	0.00011
7	PANKI(EXT)11	1.02000	3.83127	139.99996	52.48405
8	PANKI 220	0.98508	-2.54532	-0.00004	0.00069
9	PANKI 400	0.97280	-1.38258	-0.00007	-0.00064
10	HDJ'A' 11	0.96500	-3.26352	21.99997	9.69376
11	HDJ 132	1.00501	-5.06962	-0.00022	-0.00028
12	HDJ'B' 11	0.98000	-2.02024	49.99994	34.18531
13	HDJ 220	1.01527	-3.44960	0.00003	-0.00065
14	RJHAND 11	0.97000	-3.26482	39.99997	28.22650
15	RJHAND 132	1.01443	-4.01714	-0.00229	0.04130
16	OBRA(H) 11	0.96869	-3.68634	0.00000	0.00000
17	OBRA(H)132	1.02236	-3.68634	0.00483	-0.04472
18	KHATIMA 11	1.05000	0.50441	25.00003	12.10095
19	KHATIMA132	1.01937	-3.31919	0.00483	-0.00855
20	CHILLA 11	1.05000	10.07736	131.00021	59.98355
21	CHILLA 132	1.07566	5.97021	0.02153	-0.02100
22	RAMGANGA 11	1.02500	2.13775	47.99992	17.62359
23	RAMGANGA132	1.07006	0.35090	0.01158	-0.02347
24	CHIBRO 11	1.04000	12.46405	119.99994	-6.45591
25	CHIBRO 220	1.05148	6.53075	0.00034	-0.00020
26	DAKRANI 11	1.05000	18.91734	32.99995	1.51915
27	DAKRANI 132	-1.05454	10.34747	0.00216	-0.00367
28	DHALIPUR 11	1.04500	18.51562	50.99990	-0.63088
29	DHALIPUR132	1.05700	10.55365	-0.00319	-0.00088
30	KULHAL 11	1.05000	23.20564	79.99994	5.67775
31	KULHAL 132	1.05875	10.73796	0.00787	-0.02005
32	RDNGANG 132	1.01561	-4.55755	-0.00129	0.01060
33	SAHUPURI132	1.00781	-6.23233	-0.00710	0.00307
34	SAHUPURI 220	1.02000	-4.07043	-0.00249	12.59835
35	GAJIPUR 132	1.01664	-7.41959	0.00027	-0.00220
36	MAU 132	1.03379	-7.76952	0.04840	-0.01423
37	GKP 132	1.03327	-8.84059	-0.01051	-0.01038
38	GKP 220	1.03237	-7.85210	-0.00041	-0.00406

39	KHALBAD 132	1.02282	-9.56750	-0.00263	-0.00016	9.60000	6.00000
40	BASTI 62	1.02031	-10.01065	-0.00062	-0.00072	9.60000	6.00000
41	FZD 132	1.00798	-8.75360	0.00298	0.00333	16.00000	16.00000
42	MANDADIH 132	0.94746	-8.56541	-0.00725	-0.00043	22.00000	20.00000
43	JAUNPUR 152	0.91692	-9.91389	0.00132	-0.00546	15.00000	12.00000
44	MIRzapur 152	1.00507	-5.54911	0.00113	-0.00126	8.00000	5.00000
45	JIGNA 132	1.00206	-5.68839	-0.00231	-0.00001	8.00000	6.00000
46	SLN 132	1.02000	-7.59048	-0.00304	28.33423	58.00000	50.58000
47	SLN 220	1.02925	-5.56689	-0.00028	0.00307	0.00000	0.00000
48	SLN* 400	0.98958	-2.28173	-0.00012	-0.00186	0.00000	0.00000
49	ALLD 132	1.04789	-3.58617	0.00007	0.00003	34.00000	34.00000
50	ALLD 220	1.02015	-2.15526	-0.00246	-0.01596	0.00000	0.00000
51	LUCKNOW 132	0.95390	-4.76169	-0.00001	0.00019	50.00000	31.00000
52	LUCKNOW 220	0.96419	-3.13728	0.00002	-0.00075	0.00000	0.00000
53	LUCKNOW 400	0.97659	-2.63674	0.00000	0.00023	0.00000	0.00000
54	SITAPUR 132	0.95782	-5.32308	0.00123	-0.00170	28.00000	18.00000
55	SITAPUR 220	0.96218	-3.11380	0.00005	-0.00011	0.00000	0.00000
56	SHAJPUR 132	0.98333	-5.10015	0.00065	0.00104	22.00000	13.50000
57	SHAHPUR 220	0.98333	-5.10015	0.00000	0.00000	0.00000	0.00000
58	DHURA 132	1.00755	-3.97625	-0.00620	0.0078	32.00000	31.00000
59	KHURJA 132	1.02515	-4.58410	-0.00101	0.00203	20.00000	17.00000
60	KHURJA 220	1.01261	-3.10336	0.00040	0.00029	0.00000	0.00000
61	BHUJR 132	1.02366	-4.31008	0.00261	-0.00217	0.00000	25.00000
62	MURAD 132	1.05600	-4.20955	-0.00055	28.12147	60.00000	48.00000
63	MURAD 220	1.00479	-2.28278	0.00051	-0.00039	0.00000	0.00000
64	MURAD 400	0.97967	-2.08982	0.00001	0.00041	0.00000	0.00000
65	MEERUT 132	0.99741	-2.55928	0.00000	-0.00001	40.00000	40.00000
66	MEERUT 220	1.01152	-3.50518	-0.00003	-0.00005	0.00000	0.00000
67	SHAMLI 220	1.03260	1.37258	0.00012	-0.00054	0.00000	0.00000
68	SAHAPUR 132	1.07919	3.60479	0.00359	-0.00474	18.00000	18.00000
69	SAHAPUR 220	1.04109	4.22940	-0.00079	0.00002	0.00000	0.00000
70	KOURKEE 52	1.07715	3.66214	-0.00186	0.01344	5.00000	5.00000
71	HARDWAH 132	1.06840	5.25928	-0.01104	0.01612	18.00000	16.00000
72	RISH 132	1.05686	6.14898	-0.00311	-0.01062	22.00000	17.00000
73	RISH 220	1.05000	4.08829	0.00037	-17.15502	0.00000	0.00000
74	DDN 132	1.05368	8.13333	-0.01038	0.02423	13.00000	10.00000
75	KHODRI 132	1.05124	9.95706	-0.00093	0.01333	2.50000	1.00000
76	KHODRI 220	1.05147	8.46718	0.00002	0.00048	0.00000	0.00000
77	NEHTAUH 132	1.05680	0.22740	-0.01662	0.02473	20.00000	24.00000
78	KASHIPUR 132	1.05091	-0.54850	-0.00235	0.01061	5.00000	3.00000
79	MHD 132	1.04295	-1.95995	0.01112	-0.01201	36.00000	36.00000
80	MHD 220	1.00582	-2.43662	-0.00115	0.00070	0.00000	0.00000
81	GAJRALA 72	1.00515	-3.13075	-0.00481	0.00211	9.00000	7.00000
82	HANUR 132	0.97641	-3.89629	-0.00123	-0.00023	18.00000	18.00000
83	SHAGARJI 132	0.91124	-10.17300	0.00054	-0.00183	5.00000	4.00000

total separation = 1291.476209 572.937730 total load = 1753.700000 1054.480300 total losses = 27.776245 -481.542280

1000

LIST OF OUTPUT RESULTS

DMAX = 0.00028205 EPSIL = 0.00100000

FAST DECOUPLED ITERATIVE TECHNIQUE CONVERGED IN 7 ITERATIONS

BUS	BUS NAME	VOLTAGE	ANGLE	GENERATION	LOAD
1	OBRA(TH)10,5	1.00000	0.00000	129.34065	87.37264
2	OBRA(TH)220	1.03566	-1.65207	0.00066	-0.00512
3	OBRA A 15,75	1.01000	5.95393	398.00004	129.94623
4	UDRA'A'420	0.98732	1.35254	0.00001	-0.00056
5	PANKI 11	1.01000	-0.31665	24.00000	16.92489
6	PANKI 132	0.96613	-4.19495	0.00001	0.00002
7	PANKI(EXT)11	1.02000	3.85967	139.99999	51.24441
8	PANKI 220	0.98604	-2.51068	0.00008	0.00008
9	PANKI 400	0.97384	-1.35406	-0.00004	0.00028
10	HDJ'A' 11	0.98000	-3.26549	22.00001	18.26205
11	HDJ 132	1.00089	-5.03709	-0.00012	0.00033
12	HDJ'B' 11	0.98000	-1.98950	50.00003	35.88148
13	HDJ 220	1.01644	-3.41721	-0.00045	0.00046
14	RISHAND 11	0.98000	-3.28414	39.99999	35.58976
15	RISHAND 132	1.02265	-4.02280	-0.00073	0.00148
16	OBRA(H) 11	0.97504	-3.66167	0.00000	0.00000
17	OBRA(H)132	1.02906	-3.66167	-0.00109	0.00000
18	KHATIMA 11	1.05000	0.54799	24.99999	12.28831
19	KHATIMA132	1.01986	-3.27752	-0.00116	0.00282
20	CHILLA 11	1.05000	10.13141	130.99904	60.84149
21	CHILLA 132	1.07515	6.02237	-0.01547	0.03032
22	RAMGANG 11	1.02000	7.25367	47.99966	14.24049
23	RAMGANGA132	1.06702	0.43107	-0.01254	0.02501
24	CHIRHO 11	1.04000	12.51154	120.00028	-6.21194
25	CHIRHO 220	1.03126	6.58198	-0.00019	0.00001
26	DARSHAN 11	1.05000	18.98558	33.00006	1.69887
27	DARSHAN 132	1.05372	10.40876	-0.00158	0.00295
28	DHALIPUR 11	1.04000	18.62479	50.99996	-7.00517
29	DHALIPUR132	1.05608	10.61727	-0.00312	0.00623
30	EKHDAH 11	1.05000	21.27892	79.99978	5.98804
31	EKHDAH 132	1.05738	10.80087	-0.01157	0.02114
32	RONGANG 132	1.02329	-4.54319	0.00198	-0.00413
33	STADIUM132	1.01724	-6.23327	-0.00077	0.00164
34	STADIUM 220	1.03000	-4.10900	0.00005	31.12472
35	GAJIPUR 132	1.02553	-7.10527	0.00019	-0.00042
36	MAU 132	1.04222	-7.74419	0.00236	-0.00437
37	GKP 132	1.03410	-8.77029	-0.00075	0.00161
38	GKP 220	1.03686	-7.80295	-0.00001	-0.00000

39	KHAIBAD 132	1.02879	-9.58924	0.00031	-0.00062	9.60000	6.00000
40	BASTI 62	1.02634	-9.92934	0.00013	-0.00031	9.60000	6.00000
41	FZD 132	1.00797	-8.70082	0.00019	-0.00046	16.00000	16.00000
42	HANDADIH132	0.95787	-8.52535	0.00006	-0.00021	22.00000	20.00000
43	JAUNPUR 152	0.92780	-9.84616	-0.00003	0.00008	15.00000	12.00000
44	MIRZAPUR152	1.01300	-5.52305	0.00010	-0.00021	8.00000	5.00000
45	JIGNI 132	1.01002	-5.66037	0.00008	-0.00025	8.00000	6.00000
46	SLN 132	1.02000	-7.53758	-0.00020	25.44135	58.00000	50.58000
47	SLN 220	1.03067	-5.51678	0.00004	0.00015	0.00000	0.00000
48	SLN'A' 400	0.97092	-2.25303	-0.00005	0.00013	0.00000	0.00000
49	ALLD 132	1.05134	-3.65602	0.00005	-0.00010	34.00000	34.00000
50	ALLD 220	1.02332	-2.13485	-0.00205	0.00449	0.00000	0.00000
51	LUCKNOW132	0.95483	-4.72660	-0.00007	-0.00009	50.00000	31.00000
52	LUCKNOW220	0.96517	-3.10361	-0.00002	-0.00016	0.00000	0.00000
53	LUCKNOW400	0.97781	-2.60556	0.00007	0.00014	0.00000	0.00000
54	SITAPUR182	0.95841	-5.28787	-0.00008	-0.00013	28.00000	18.00000
55	SITAPUR220	0.96299	-4.07812	0.00004	0.00021	0.00000	0.00000
56	SHAJPUR132	0.98302	-5.05891	-0.00007	0.00006	22.00000	13.50000
57	SHAHPUR220	0.98302	-5.05891	0.00000	0.00000	0.00000	0.00000
58	DHOMA 132	1.00687	-3.93111	0.00031	-0.00107	32.00000	31.00000
59	KHURJA 132	1.02709	-4.53774	0.00042	-0.00089	20.00000	17.00000
60	KHURJA 220	1.01364	-3.06896	0.00001	-0.00015	0.00000	0.00000
61	BHOOR 132	1.02509	-4.26247	-0.00046	0.00098	0.00000	25.00000
62	MURAD 132	1.05000	-4.15709	0.00001	25.88926	60.00000	48.00000
63	MURAD 220	1.01040	-2.24012	-0.00023	-0.00058	0.00000	0.00000
64	MURAD 400	0.98037	-2.04981	0.00008	0.00034	0.00000	0.00000
65	MEERUT132	0.99789	-2.51399	-0.00004	0.00011	40.00000	40.00000
66	MEERUT220	1.01198	-1.16089	0.00005	-0.00017	0.00000	0.00000
67	SHAMLT220	1.03275	1.11942	-0.00019	-0.00017	0.00000	0.00000
68	SHRAPUR132	1.07858	3.65582	-0.00148	0.00104	18.00000	18.00000
69	SABARPUR220	1.04088	4.28103	0.00075	-0.00084	0.00000	0.00000
70	ROORKEE 52	1.07145	3.71722	0.00435	-0.00774	6.00000	5.00000
71	HARDWAH132	1.06783	5.31234	0.00416	-0.00713	18.00000	16.00000
72	RISHI 132	1.05635	5.20064	0.00653	-0.01423	22.00000	17.00000
73	RISHI 220	1.05000	4.13785	-0.00094	-16.67737	0.00000	0.00000
74	DDN 132	1.05298	8.19017	0.00463	-0.00854	13.00000	10.00000
75	KHUDRI 132	1.05046	10.31619	0.01128	-0.02362	2.50000	1.00000
76	KHUDRI 220	1.05120	6.52041	0.00049	-0.00145	0.00000	0.00000
77	NEHTAUH132	1.05525	0.29574	0.00974	-0.01758	20.00000	24.00000
78	KASHPUR132	1.05842	-0.46089	0.00645	-0.01145	5.00000	3.00000
79	MHD 132	1.04175	-1.90515	0.00037	-0.00391	36.00000	36.00000
80	MHD 220	1.00548	-2.38455	0.00048	-0.00022	0.00000	0.00000
81	GAJRALA 72	1.00389	-3.07818	-0.00087	0.00137	9.00000	7.00000
82	RAJPIK 132	0.97514	-3.84548	-0.00048	0.00120	18.00000	18.00000
83	SHAGANJ132	0.92222	-10.09983	-0.00000	0.00002	5.00000	4.00000

