STATS310B – Lecture 3

Sourav Chatterjee Scribed by Michael Howes

01/11/22

Contents

L	Jensen's inequality]
2	Martingales	2
3	Stopping times	4

1 Jensen's inequality

Jensen's inequality is an important result about conditional expectations and convex functions. It states:

Theorem 1 (Jensen's inquality). Let X be an integrable random variable taking values in some interval I. Let $\phi: I \to \mathbb{R}$ be a convex function such that $\phi(X)$ is integrable. Then for any sub- σ -algebra \mathcal{G} , we have

$$\phi(\mathbb{E}(X|\mathcal{G})) \leq \mathbb{E}(\phi(X)|\mathcal{G}),$$

almost surely.

To prove Jensen's inequality, we will first prove some lemmas about convex functions.

Lemma 1. Let A be a collection of convex functions $f: I \to \mathbb{R}$. The function

$$g(x) = \sup_{f \in \mathcal{A}} f(x),$$

is also convex.

Proof. Let $x, y \in I$ and let $t \in [0, 1]$. For each $f \in \mathcal{A}$ we have

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \le tg(x) + (1-t)g(y).$$

Thus,

$$g(tx + (1-t)y) = \sup_{f \in \mathcal{A}} f(tx + (1-t)y) \le tg(x) + (1-t)g(y)$$

This lemma has the immediate corollary,

Corollary 1. The supremum of a collection of affine functions is a convex function.

We will next see that above corollary has a converse.

Lemma 2. Let $\phi: I \to \mathbb{R}$ be a convex function on some interval I. The there exists sequences $a_n, b_n \in \mathbb{R}$ such that

$$\phi(x) = \sup_{n \in \mathbb{N}} a_n x + b_n.$$

Proof. We first will state and prove a fact. If ϕ is convex and $y \in I$, then there exists a line $x \mapsto a_y x + b_y$ such that $\phi(y) = a_y y + b_y$ and $\phi(x) \ge a_y x + b_y$ for all $x \in I$. That is, there exists a line through $(y, \phi(y))$ that sits below the graph of ϕ . The justification is as follows. By convexity, the function $\frac{\phi(y+t)-\phi(y)}{1}$ is a decreasing function of t. Thus, the limits

$$c = \lim_{t \nearrow 0} \frac{\phi(y+t) - \phi(y)}{t}$$
, and $d = \lim_{t \searrow 0} \frac{\phi(y+t) - \phi(y)}{t}$,

both exist and $c \leq d$. Thus, we can take a_y to be any value in [c,d] and let $b_y = \phi(y) - a_y y$. The line $x \mapsto a_y x + b_y$ sits below the graph ϕ by the convexity of ϕ .

Now define $g: I \to \mathbb{R}$ by

$$g(x) = \sup_{y \in \mathbb{Q} \cap I} a_y x + b_y.$$

The function g is the supremum of a countable collection of affine functions and thus g is convex. In particular g and ϕ are both continuous. Furthermore, $\phi(x) = g(x)$ on $\mathbb{Q} \cap I$ and so $\phi = g$ which completes the proof.

We are now ready to prove Jensen's inequality.

Proof of Jensen's inequality. By Lemma 2, we have

$$\phi(x) = \sup_{n \in \mathbb{N}} a_n x + b_n.$$

Thus, for every n,

$$\mathbb{E}(\phi(X)|\mathcal{G}) \ge \mathbb{E}(a_n X + b_n | \mathcal{G}) = a_n \mathbb{E}(X|\mathcal{G}) + b_n,$$

almost surely. One can show that $\mathbb{E}(X|\mathcal{G}) \in I$ almost surely since I is an interval. Thus, by taking a supremum over n, we have

$$\mathbb{E}(\phi(X)|\mathcal{G}) \ge \sup_{n \in \mathbb{N}} a_n \mathbb{E}(X|\mathcal{G}) + b_n = \phi(\mathbb{E}(X|\mathcal{G})),$$

almost surely.

2 Martingales

Definition 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A *filtration* is a monotone sequence of sub- σ -algebras,

$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq F_2 \subseteq \ldots \subseteq \mathcal{F}$$
.

Example 1. If we have a sequence of random variables $(X_n)_{n=1}^{\infty}$, then the sequence $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$ is a filtration.

Definition 2. A sequence of random variables $(X_n)_{n\geq 0}$ is adapted to a filtration $(F_n)_{n\geq 0}$ if for every $n\geq 0, X_n$ is \mathcal{F}_n -measurable.

Example 2. Given any sequence $(X_n)_{n\geq 0}$. The sequence $(X_n)_{n\geq 0}$ is adapted to the filtration $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$.

Definition 3. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration. A martingale is a sequence of random variables $(X_n)_{n\geq 0}$ adapted to $(\mathcal{F}_n)_{n>0}$, such that

- 1. For every n, $\mathbb{E}|X_n| < \infty$.
- 2. For every n, $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$, almost surely.

Example 3. Let $X_1, X_2, ...$ be independent with $\mathbb{E}[X_i] = 0$. Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$ for $n \ge 1$. Then $(S_n)_{n \ge 0}$ is a martingale with respect to the filtration $\mathcal{F}_n = \sigma(X_i, 1 \le i \le n)$. Note that

$$|S_n| \le \sum_{i=1}^n |X_i|.$$

Thus, S_n is integrable for each n. The random variable S_n is also \mathcal{F}_n measurable. Furthermore,

$$\mathbb{E}(S_{n+1}|\mathcal{F}_n) = \mathbb{E}(X_{n+1} + S_n|\mathcal{F}_n)$$

$$= \mathbb{E}(X_{n+1}|\mathcal{F}_n) + \mathbb{E}(S_n|\mathcal{F}_n)$$

$$= \mathbb{E}[X_{n+1}] + S_n$$

$$= S_n.$$

More generally if X_i is integrable with mean μ_i , then $S_n = \sum_{i=1}^n X_i - \mu_i$ is a martingale.

Example 4. Let X_1, \ldots, X_n be independent with $\mathbb{E}|X_i|^2 < \infty$. Suppose that $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = \sigma^2$ for all i. Let,

$$Z_n = \left(\sum_{i=1}^n X_i\right)^2 - n\sigma^2 = S_n^2 - n\sigma^2,$$

and $Z_0 = 0$. Then Z_n is a martingale with respect to $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Note first that $\mathbb{E}[|Z_n|] \leq \mathbb{E}[S_n^2] + n = 2n$ and so each Z_n is integrable. Also,

$$\mathbb{E}(Z_{n+1}|\mathcal{F}_n) = \mathbb{E}((S_n + X_{n+1})^2|\mathcal{F}_n) - (n+1)\sigma^2$$

$$= \mathbb{E}(S_n^2|\mathcal{F}_n) + 2\mathbb{E}(S_n X_{n+1}|\mathcal{F}_n) + \mathbb{E}(X_{n+1}^2|\mathcal{F}_n) - (n+1)\sigma^2$$

$$= S_n^2 + 2S_n \mathbb{E}(X_{n+1}|\mathcal{F}_n) + \mathbb{E}(X_{n+1}^2|\mathcal{F}_n) - (n+1)\sigma^2$$

$$= S_n^2 + 2S_n \mathbb{E}[X_{n+1}] + \mathbb{E}[X_{n+1}^2] - (n+1)\sigma^2$$

$$= S_n^2 - n\sigma^2.$$

Example 5. Let X_1, X_2, \ldots be i.i.d. random variables such that for some $\theta \in \mathbb{R}$, $m(\theta) = \mathbb{E}[e^{\theta X_i}] < \infty$. Then

$$M_n = \frac{e^{\theta S_n}}{m(\theta)^n},$$

is a martingale with respect to $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Note that

$$\mathbb{E}[|M_n|] = \frac{1}{m(\theta)^n} \mathbb{E}[e^{\theta S_n}] = \frac{1}{m(\theta)^n} \prod_{i=1}^n \mathbb{E}[e^{\theta X_i}] = 1.$$

Furthermore,

$$\mathbb{E}(M_{n+1}|\mathcal{F}_{n+1}) = \mathbb{E}\left(\frac{e^{\theta X_{n+1}}}{m(\theta)}M_n|\mathcal{F}_n\right)$$
$$= M_n \mathbb{E}\left(\frac{e^{\theta X_{n+1}}}{m(\theta)}|\mathcal{F}_n\right)$$
$$= M_n \mathbb{E}\left[\frac{e^{\theta X_{n+1}}}{m(\theta)}\right]$$
$$= M_n.$$

01/11/22 STATS310B – Lecture 3

3 Stopping times

Definition 4. Let $\{F_n\}$ be a filtration. A *stopping time* is a random variable T such that T takes values in $\{0,1,\ldots\} \cup \{\infty\}$ and for every $n \in \{0,1,\ldots\}$, then event $\{T=n\} \in \mathcal{F}_n$.

For a filtration $\{F_n\}$, we can think of each σ -algebra \mathcal{F}_n as the information available at time n. The condition $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ means that we gain more information over a time. A stopping time is then a procedure where the decision to stop at time n depends only on the information available at time n.

Example 6. Let $\{X_n\}_{n\geq 0}$ be a sequence of random variables adapted to a filtration $\{\mathcal{F}_n\}_{n\geq 0}$. Take any Borel set $A\subseteq \mathbb{R}$, let $T=\inf\{n\geq 0: X_n\in A\}$ where $\int\emptyset=\infty$. Then T is a stopping time since

$$\{T=n\} = \{X_n \in A\} \cap \left(\bigcap_{i=1}^{n-1} \{X_i \notin A\}\right) \in \mathcal{F}.$$

Example 7. Let $\{S_n\}_{n\geq 0}$ be a simply symmetric random walk (SSRW). That is, $S_0=0$ and $S_n=X_1+\ldots+X_n$ where X_i are i.i.d. and $\mathbb{P}(X_i=1)=\mathbb{P}(X_i=-1)=\frac{1}{2}$. Take any integers a<0< b and define $T=\inf\{n: S_n=a \text{ or } S_n=b\}$. By the previous example, T is a stopping time.

Related to stopping times, is the concept of a stopped σ -algebra.

Definition 5. Given a filtration $\{\mathcal{F}_n\}_{n\geq 0}$ and a stopping time T. The stopped σ -algebra is defined to be

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T = n \} \in \mathcal{F}_n \text{ for all } n \}.$$

Remark 1. The stopped σ -algebra is indeed a σ -algebra. Since

- 1. $\emptyset \in \mathcal{F}_T$ trivially.
- 2. If $A \in \mathcal{F}_T$, then $A^c \cap \{T = n\} = \{T = n\} \setminus (A \cap \{T = n\})$ and $\{T = n\} \in \mathcal{F}_n$ since T is a stopping time.
- 3. If $A_i \in \mathcal{F}_T$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_T$ since $(\bigcup_{i=1}^{\infty} A_i) \cap \{T=n\} = \bigcup_{i=1}^{\infty} A_i \cap \{T=n\}$.

Example 8. Consider the SSRW from the previous example with $T = \min\{n : S_n = a \text{ or } S_n = b\}$. The event $A = \{S_n \ge 0, \text{ for all } n \le T\}$ is in \mathcal{F}_T .