

Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies

Ilyas Fatkhullin

Anas Barakat

Anastasia Kireeva

Niao He

Problem Setting

Markov Decision Process (MDP):

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \rho, \gamma).$$

Parameterized policy: π_{θ} , $\theta \in \mathbb{R}^d$.

Goal:
$$\max_{\theta} J(\theta) := \mathbb{E}_{\rho,\pi_{\theta}} \left[\sum_{h=0}^{+\infty} \gamma^h r(s_h, a_h) \right].$$

Assumptions

Assumption 1. Fisher-non-degenerate (FND) policy. There exists $\mu_F > 0$ such that for all $\theta \in \mathbb{R}^d$,

$$F_{\rho}(\theta) \succcurlyeq \mu_F \cdot I_d$$
, where

$$F_{\rho}(\theta) := \mathbb{E}_{s \sim d_{\rho}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot|s)} [\nabla \log \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s)^{\top}].$$

Examples: Gaussian and Cauchy policies (\mathcal{S} and \mathcal{A} can be <u>continuous!</u>)

$$\pi_{\theta}(a|s) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(a - \varphi(s)^{\top}\theta)^{2}}{2\sigma^{2}}\right),$$

$$\pi_{\theta}(a|s) = \frac{1}{\pi\sigma} \left(1 + \left(\frac{a - \varphi(s)^{\top}\theta}{\sigma}\right)^{2}\right)^{-1}.$$

Assumption 2. Compatible function approximation framework [1, 2, 3]. For all $\theta \in \mathbb{R}^d$,

 $\mathbb{E}[(A^{\pi_{\theta}}(s, a) - (1 - \gamma)w^{*}(\theta)^{\top} \nabla \log \pi_{\theta}(a|s))^{2}] \leq \varepsilon_{\text{bias}},$ where $A^{\pi_{\theta}}$ is the advantage function, $w^{*}(\theta) := F_{\rho}(\theta)^{\dagger} \nabla J(\theta), \quad \pi^{*} \text{ is an optimal policy,}$ and $\mathbb{E} \equiv \mathbb{E}_{s \sim d_{\rho}^{\pi^{*}}, a \sim \pi^{*}(\cdot|s)}.$

Prior Work

Sample complexities for achieving $\mathbb{E}\left[J^* - J(\theta)\right] \leq \varepsilon$.		
Discrete/finite	FND policies	
$\mathcal{S},\mathcal{A}\ \mathbf{spaces}$	(Assumptions 1 and 2)	
TSIVR-PG (Q)-NPG Policy Mirror Descent	Vanilla-PG [1] SRVR-PG and Natural-PG [2] STORM-PG-F [3]	
$\mathcal{\tilde{O}}(\varepsilon^{-2})$	$\mathcal{\tilde{O}}(arepsilon^{-3})$	

Question

Can we **improve** $\tilde{\mathcal{O}}(\varepsilon^{-3})$ sample complexity for FND policies using **computationally efficient** PG algorithm?

Algorithms

Algorithm 1 N-PG-IGT

Normalized-PG-with Implicit Gradient Transport [4]

- 1: Input: θ_0 , θ_1 , d_0 , T, H, $\{\eta_t\}_{t>0}$, $\{\gamma_t\}_{t>0}$
- 2: **for** t = 1, ..., T 1 **do**
- 3: $\bar{\theta}_t = \theta_t + \frac{1 \eta_t}{\eta_t} (\theta_t \theta_{t-1})$
- Sample a trajectory $ar{ au}_t \sim p(\cdot|\pi_{ar{ heta}_t})$ of length H
- $d_t = (1 \eta_t)d_{t-1} + \eta_t \nabla J(\bar{\tau}_t, \theta_t)$
- $\theta_{t+1} = \theta_t + \gamma_t \frac{d_t}{\|d_t\|}$
- 7: end for

Algorithm 2 (N)-HARPG

(Normalized)-Hessian-Aided Recursive PG

- Input: θ_0 , θ_1 , d_0 , T, H, $\{\eta_t\}_{t>0}$, $\{\gamma_t\}_{t>0}$
- 2: **for** t = 1, ..., T 1 **do**
- g: $q_t \sim \mathcal{U}([0,1])$
- $\theta_t = q_t \theta_t + (1 q_t) \theta_{t-1}$
- Sample $\tau_t \sim p(\cdot|\pi_{\theta_t}); \ \hat{\tau}_t \sim p(\cdot|\pi_{\hat{\theta}_t}) \ \text{of length} \ H$
- 6: $v_t = \widetilde{\nabla}^2 J(\hat{\tau}_t, \hat{\theta}_t) (\theta_t \theta_{t-1})$
- 7: $d_t = (1 \eta_t) (d_{t-1} + v_t) + \eta_t \nabla J(\tau_t, \theta_t)$
- 8: $\theta_{t+1} = \begin{cases} \theta_t + \gamma_t d_t & (\mathsf{HARPG}) \\ \theta_t + \gamma_t \frac{d_t}{\|d_t\|} & (\mathsf{N-HARPG}) \text{ [5]} \end{cases}$
- 9: end for

Advantages:

- Easy to implement
- Batch-free
- No IS weights
- Comp. efficient
- Single loop
- Low memory

Global Convergence

N-PG-IGT

Theorem 1. Under Assumptions 1, 2 and regularity of π_{θ} , if we set $\gamma_{t} = \mathcal{O}\left(\frac{1}{t}\right)$, $\eta_{t} = \frac{1}{(t+1)^{4/5}}$ and $H = (1-\gamma)^{-1}\log(T+1)$, then $J^{*} - \mathbb{E}\left[J(\theta_{T})\right] \leq \mathcal{O}\left(\frac{1}{(T+1)^{2/5}}\right) + \frac{\sqrt{\varepsilon_{\text{bias}}}}{1-\gamma}.$

HARPG and N-HARPG

Theorem 2. Under Assumptions 1, 2 and regularity of π_{θ} , if we set $\gamma_{t} = \mathcal{O}\left(\frac{1}{t^{1/2}}\right)$ ($\gamma_{t} = \mathcal{O}\left(\frac{1}{t}\right)$ for N-HARPG), and $\eta_{t} = \frac{1}{t+1}$, $H = (1-\gamma)^{-1} \log(T+1)$, then

$$J^* - \mathbb{E}\left[J(\theta_T)\right] \leq \mathcal{O}\left(\frac{1}{(T+1)^{1/2}}\right) + \frac{\sqrt{\varepsilon_{\mathrm{bias}}}}{1-\gamma}.$$

Summary of Sample Complexities

Vanilla-PG N-PG-IGT (N)-HARPG

$FOSP$ $\mathbb{E}\left[\ \nabla J(\theta)\ \right] \leq \varepsilon$	$\tilde{\mathcal{O}}(\varepsilon^{-4})$ [1]	$\tilde{\mathcal{O}}(\varepsilon^{-3.5})$ (new)	$\tilde{\mathcal{O}}(\varepsilon^{-3})$ [5]
$Global^{(a)}$ $\mathbb{E}\left[J^* - J(\theta)\right] \le \varepsilon$	$\widetilde{\mathcal{O}}(\varepsilon^{-3})$ [1]	$\widetilde{\mathcal{O}}(\varepsilon^{-2.5})$ (new)	$\widetilde{\mathcal{O}}(\varepsilon^{-2})$ (new)

(a) Under Assumptions 1, 2; up to an error bar controlled by $\varepsilon_{\text{bias}}$.

Proof Sketch for N-PG-IGT

Define:
$$J_H(\theta) := \mathbb{E}_{\rho,\pi_{\theta}} \left[\sum_{h=0}^{H-1} \gamma^t r(s_h, a_h) \right]$$
 .

Step I. Ascent-like lemma. If $\theta_{t+1} = \theta_t + \gamma_t \frac{d_t}{\|d_t\|}$, then

$$J(\theta_{t+1}) \ge J(\theta_t) + \frac{\gamma_t}{3} \|\nabla J(\theta_t)\| - \frac{8\gamma_t}{3} \|\hat{e}_t\| - \mathcal{O}(\gamma_t^2 + \gamma^H \gamma_t),$$

where $\hat{e}_t := d_t - \nabla J_H(\theta_t).$

Step II. Relaxed weak gradient domination [3].

Lemma 1. Let Assumptions 1, 2 hold, and, in addition, $\|\nabla \log \pi_{\theta}(a|s)\| \leq M_g$ for all $a \in \mathcal{A}, s \in \mathcal{S}$. Then

$$\varepsilon' + \|\nabla J(\theta)\| \ge \sqrt{2\mu} \left(J^* - J(\theta)\right)$$
 for all $\theta \in \mathbb{R}^d$, where $\varepsilon' := \frac{\mu_F \sqrt{\varepsilon_{\text{bias}}}}{M_g(1-\gamma)}$ and $\mu := \frac{\mu_F^2}{2M_g^2}$.

Step III. <u>Variance reduction control</u>.

$$\hat{e}_t = (1 - \eta_t)\hat{e}_{t-1} + \eta_t e_t + (1 - \eta_t)S_t + \eta_t Z_t,$$

where $e_t := \widetilde{\nabla} J(\tilde{\tau}_t, \tilde{\theta}_t) - \nabla J_H(\tilde{\theta}_t)$, and S_t, Z_t are second-order Taylor approximation of J. $\mathbb{E}[\|\hat{e}_t\|] = \mathcal{O}(t^{-2/5})$.

Step IV. Combine I-III and bound $\delta_t := \mathbb{E}[J^* - J(\theta_t)].$

$$\delta_{t+1} \leq (1 - \Omega(\gamma_t))\delta_t + \mathcal{O}(\gamma_t t^{-2/5} + \gamma_t^2 + \varepsilon' \gamma_t).$$

Experiments

Continuous control tasks: Walker (top), Reacher. Policy Parameterization: $\pi_{\theta}(\cdot|s) \sim \mathcal{N}(\mu_{\theta}(s), \Sigma_{\theta}(s))$. **Experiment 1.** Convergence with tuned initial γ_0 .

Experiment 2. Robustness to initial step-size choice.

- [1] R. Yuan, R. Gower, A. Lazaric. A general sample complexity analysis of vanilla policy gradient. AISTATS 2022.
- [2] Y. Liu, K. Zhang, T. Basar, W. Yin. An improved analysis of (variance-reduced) policy gradient and natural policy gradient methods. NeurIPS 2020.
- [3] Y. Ding, J. Zhang, J. Lavaei. On the global optimum convergence of momentum-based policy gradient. AISTATS 2022.
- [4] A. Cutkosky, H. Mehta. Momentum improves normalized SGD. ICML 2020.
- [5] S. Salehkaleybar, S. Khorasani, N. Kiyavash, N. He, P. Thiran. Momentum-Based Policy Gradient with Second-Order Information. arXiv:2205.08253, 2022.