Per tots els exercicis que venen a continuació, recordem que si en l'expressió

$$\sigma = \frac{F}{A}$$

l'àrea està en mm^2 , llavors l'esforç queda en MPa.

* * *

Pàg 175

Exercici 4.

a) Barra de secció rectangular

llavors l'esforç val

$$\sigma = \frac{F}{A} = \frac{780 \cdot 9, 8}{10 \cdot 15} = 50,96 \, MPa$$

b) Tub. El perfil es pot representar (l'escala no és realista) com

llavors l'esforç val

$$\sigma = \frac{F}{A} = \frac{F}{\frac{D^2}{4} - \frac{(D-e)^2}{4}} = \frac{780 \cdot 9, 8}{\frac{45^2}{4} - \frac{(45-2)^2}{4}} = 173,73 \, MPa$$

 $\mathbf{c})$

l'àrea a considerar és

$$A = 80 \cdot 200 - (80 - e) \cdot (200 - e) = 80 \cdot 200 - (80 - 1, 5) \cdot (200 - 1, 5) = 417,75 \, mm^2$$

llavors l'esforç val

$$\sigma = \frac{F}{A} = \frac{780 \cdot 9, 8}{417, 75} = 18,3 \, MPa$$

d)

L'esforç val

$$\sigma = \frac{F}{A} = \frac{F}{\pi \frac{D^2}{4}} = \frac{780 \cdot 9, 8}{\pi \cdot \frac{6^2}{4}} = 270, 35 \, MPa$$

e) El perfil correspon a la figura

L'àrea de l'hexàgon es pot trobar de la següent manera. La secció es pot dividir en sis parts

el valor de α es pot calcular fàcilment,

$$\alpha = \frac{360}{6} = 60^{\circ}$$

i en quant a β

$$2\beta + \alpha = 180^{\circ} \rightarrow \beta = \frac{180^{\circ} - \alpha}{2} = \frac{180^{\circ} - 120^{\circ}}{2} = 60^{\circ}$$

si considerem ara un dels triangles en que ha quedat dividit l'hexàgon podem relacionar l'altura d'aquest amb l'angle β i el costat a. Al dividir en dos el triangle podem calcular l'àrea del triangle rectangle, i tenim

d'on

$$\tan \beta = \frac{h}{a/2} \to h = \frac{a}{2} \tan \beta$$

i l'àrea d'aquest triangle serà

$$A' = \frac{\frac{a}{2} \cdot h}{2} = \frac{\frac{a}{2} \cdot \frac{a}{2} \tan \beta}{2} = \frac{a^2 \tan \beta}{8} = \frac{a^2 \tan \frac{180^\circ - \frac{360^\circ}{6}}{2}}{8}$$

Llavors, com que a l'hexàgon hi ha $6 \cdot 2 = 12$ d'aquests triangles, l'àrea total serà

$$A = 6 \cdot 2 \cdot \frac{a^2 \tan \frac{180^\circ - \frac{360^\circ}{6}}{2}}{8}$$

Noteu que aquest resultat es pot generalitzar fàcilment a qualsevol polígon regular de n costats de longitud a, segons

$$A = n \cdot 2 \cdot \frac{a^2 \tan \frac{180^\circ - \frac{360^\circ}{n}}{2}}{8}$$

Tornant al cas de l'hexàgon, l'àrea val

$$A = 6 \cdot 2 \cdot \frac{20^2 \cdot \tan \frac{180^\circ - \frac{360^\circ}{6}}{2}}{8} = 6 \cdot 2 \cdot \frac{20^2 \cdot \tan 60^\circ}{8} = 1039, 23 \, mm^2$$

ara, calculem l'esforç com

$$\sigma = \frac{F}{A} = \frac{780 \cdot 9, 8}{1039, 23} = 7,35 \, MPa$$

Exercici 7.

a) Calculem

$$\sigma = \frac{F}{A} = \frac{F}{\pi \frac{D^2}{4}} = \frac{160 \cdot 9, 8}{\pi \cdot \frac{3^2}{4}} = 221, 83 \, MPa$$

b) Mirem a la taula de la pàgina 172, i veiem que per l'acer, el límit elàstic més baix val $295\,MPa$ que correspon a l'acer amb contingut baix en carboni. Com el valor obtingut en l'apartat anterior és inferior a aquest, podem dir que el cable sotmès a tracció es troba en el règim elàstic.

* * *

Pàg 190

Qüestió 4.

$$\varepsilon = \frac{\Delta L}{L_0} = \frac{0.6}{0.8 \cdot 10^3} = 7.5 \cdot 10^{-4}$$

Qüestió 5.

$$\sigma = \frac{F}{A} \rightarrow F = \sigma \cdot A = 75 \cdot 10 = 750 \, N$$

Qüestió 9.

$$\sigma = \frac{F}{A} \to F = \sigma \cdot A = 70 \cdot 10 = 700 \, N$$

Qüestió 10. Aquest fenomen s'anomena vinclament.

Qüestió 11.

$$\sigma = \frac{F}{A} = \frac{9, 5 \cdot 10^3}{5^2} = 380 \, MPa$$

Qüestió 12. A partir de la definició de densitat

$$\rho = \frac{m}{V}$$

podem calcular la massa com

$$m = \rho \cdot V = \rho \cdot \pi \frac{D^2}{4} \cdot L = 2700 \cdot \pi \cdot \frac{(140 \cdot 10^{-3})^2}{4} \cdot 1, 3 = 54,03 \, kg$$

i el pes, prenent $g = 10 \, m/s^2$

$$P = mg = 54,03 \cdot 10 = 540,3 N$$

Qüestió 13.

$$\sigma = \frac{F}{A} \to A = \frac{F}{\sigma} = \frac{45 \cdot 10}{67} = 6,58 \, mm^2$$

Pàg 191

Exercici 1.

Calculem la longitud de cada part

$$\begin{cases} a = 3 \\ b = \sqrt{3^2 + 3^2} = 3\sqrt{2}c = 3 \\ d = \sqrt{3^2 + 5^2} = \sqrt{34} \\ e = 5 \end{cases}$$

i la longitud total

$$L = a + b + c + d + e = 11 + 3\sqrt{2} + \sqrt{34}$$

En quant a l'àrea S de la secció

és fàcil veure que

$$S = 50 \cdot 50 - 2 \cdot (50 - 2 \cdot 5) \cdot (25 - 2, 5) = 700 \, \text{mm}^2$$

de forma que (mirem la densitat de l'alumini a la taula de la pàgina 172)

$$m = \rho \cdot V = \rho \cdot S \cdot L = 2710 \cdot 700 \cdot (11 + 3\sqrt{2} + \sqrt{34}) = 4 \cdot 10^7 \, kg$$

i el pes

$$P = mg = 4 \cdot 10^7 \cdot 9, 8 = 3,92 \cdot 10^6 \, N$$

Exercici 2.

a) Per l'acer (contingut mitjà en carboni), el límit elàstic val

$$\sigma_e = 350 \, MPa$$

com el coeficient de seguretat és n=3, l'esforç de treball no podrà superar

$$\frac{\sigma_e}{3} = \frac{350}{3} = 116,67 \, MPa$$

llavors, podem escriure

$$\sigma = \frac{F}{A} \to 166,67 = \frac{992 \cdot 10^3}{200 \cdot e + (200 - e) \cdot e}$$

d'on s'obté

$$e^2 - 400e + 8502,857 = 0$$

i

$$e = \frac{400 \pm \sqrt{400^2 - 4 \cdot 8502, 857}}{2}$$

amb solucions $e_1 = 377, 47 \, mm$, $e_2 = 22, 525 \, mm$. Les dues són equivalents, però prenem la segona per mantenir les proporcions de la figura.

b) Per l'aliatge lleuger $\sigma_e = 97 MPa$, llavors

$$\sigma_t = \frac{\sigma_e}{n} = \frac{97}{3} = 32,33 \, MPa$$

i, de forma similar a l'apartat anterior

$$\sigma = \frac{F}{A} \to 32, 33 = \frac{992 \cdot 10^3}{200 \cdot e + (200 - e) \cdot e}$$

d'on s'obté

$$e^2 - 400e + 3,068 \cdot 10^4 = 0$$

i

$$e = \frac{400 \pm \sqrt{400^2 - 4 \cdot 3,068 \cdot 10^4}}{2}$$

amb solucions $e_1 = 296,54 \, mm$, $e_2 = 103,46 \, mm$. Novament prenem la darrera solució i tenim que la secció A en aquest cas val

$$A = 200 \cdot e + (200 - e) \cdot e = 3,068 \cdot 10^4 \, mm^2$$

c) Les masses respectives són, en cada cas

$$m_{acer} = \rho_{acer} V$$

$$m_{acer} = \rho_{acer} \cdot [200 \cdot e + (200 - e) \cdot e] \cdot L = 7850 \cdot 8,50 \cdot 10^{-3} \cdot 0,5 = 33,37 \, kg$$

 $m_{alia} = \rho_{alia} V$

$$m_{alia} = \rho_{alia} \cdot [200 \cdot e + (200 - e) \cdot e] \cdot L = 2800 \cdot 3,068 \cdot 10^{-2} \cdot 0,5 = 120,456 \, kg$$

d) En principi, a igual resistència mecànica, convindria triar el més lleuger, però sovint els costos econòmics s'imposen a l'hora de prendre aquest tipus de decisions.

Exercici 3.

a)
$$\sigma = \frac{F}{A} = \frac{F}{\pi \cdot \frac{D^2}{4}} = \frac{23 \cdot 10^3}{\pi \cdot \frac{20^2}{4}} = 73,21 \, MPa$$

b) Calculem l'allargament unitari

$$\varepsilon = \frac{\Delta L}{L_0} = \frac{66,556 \cdot 10^{-3}}{100} = 6,65 \cdot 10^{-4} = 0,0665\%$$

la deformació patida és molt petita i donat que s'ha aplicat $23\,kN$, podem pensar que es tracta d'un material prou rígid.

c) Calculem el mòdul de Young que correspon a aquest material

$$\sigma = E\varepsilon \rightarrow E = \frac{\sigma}{\varepsilon} = \frac{73,21}{6,65 \cdot 10^{-4}} = 110\,GPa$$

mirant a la taula de la $p\grave{a}gina$ 172 veiem que poden ser: coure, bronze o llautó.

* * *

Pàg 178

Exercici 8.

a) La duresa Brinell es calcula com

$$HBW = 0,102 \cdot \frac{F}{A}$$

amb l'àrea en mm^2 , llavors

$$A = \frac{\pi D_1 \left[D_1 - \sqrt{D_1^2 - D_2^2} \right]}{2} = \frac{\pi \cdot 10 \cdot \left[10 - \sqrt{10^2 - 2,75^2} \right]}{2} = 6,056 \, mm^2$$
i

$$HBW = 0,102 \cdot \frac{29418}{6,056} = 495,45$$

b) Ha de ser qualsevol material que sigui més dur. Dels que apareixen al llibre de text, per poc, ho és l'acer per a eines (HBW=500).

Exercici 9.

a) A partir de la relació entre la resistència al trencament σ_t (en MPa) i la duresa Brinell, HBW, per acers

$$\sigma_t = 3,45 \cdot HBW$$

podem calcular

$$HBW = \frac{\sigma_t}{3.45} = \frac{615}{3.45} = 178,26$$

Respecte al coure no podem dir res perquè la relació anterior només val per acers.

* * *

Pàg 184

Exercici 12. La resiliència K, es calcula com

$$K = \frac{E}{A}$$

on E és l'energia usada per trencar la proveta i A l'àrea de la secció on impacta el martell de l'assaig Charpy. Fent servir la notació de l'exercici, l'àrea val (suposem que la secció de la proveta és quadrada)

$$A = (L_2 - L_3) \cdot L_2 = (15 - 5) \cdot 15 = 150 \, \text{mm}^2$$

Com que l'energia perduda en l'impacte val

$$E = mgh - mgh' = mg(h - h') = 22 \cdot 9, 8 \cdot (0, 25 - 0, 12) = 28,03 J$$

la resiliència queda

$$K = \frac{E}{A} = \frac{28,03}{150} = 0,187 \, J/mm^2$$

Exercici 13.

- a) Aquesta afirmació vol dir que després de $5 \cdot 10^6$ cicles, l'esforç que el trencaria és de $600\,MPa$.
- b) Aquesta afirmació vol dir que si l'esforç de treball no supera els 150 MPa, el material podrà resistir 10^8 cicles sense trencar-se.
- c) Aquesta afirmació ens diu que aquest material té límit de fatiga, i val $300\,MPa$

Exercici 14. Com que l'alumini no és ferromagnètic, caldrà usar un assaig de raigs X o $raigs \gamma$, en funció del gruix de la peça.

Exercici 15.

- a) El material A té límit de fatiga i val uns $500\,MPa$. El material B no té límit de fatiga.
- **b)** La resistència a la fatiga del material A per $10\,000=10^4$ cicles és d'uns $900\,MPa$

- c) La resistència a la fatiga del material B per a 100 milions de cicles (10⁸) és d'uns $300 \, MPa$.
- **d)** La vida a la fatiga del material B per un esforç de $600\,MPa$ és d'uns 10^5 cicles.
- e) Si fem el que proposa l'enunciat aquest material no es trencarà mai, ja que el seu límit de fatiga és de $500\,MPa$.

* * *

Pàg 189

Exercici 18.

a) L'increment de temperatura val

$$\Delta T = 30 K = 30^{\circ} C$$

ja que la relació entre l'escala centígrada i la Kelvin és

$$T(K) = T(^{\circ}C) + 273$$

i els increments són iguals entre les dues.

b) La temperatura final serà

$$T_f = T_i + \Delta T = 285 + 30 = 315 K = 42^{\circ} C$$

Exercici 19. Perquè el poliestirè expandit conté bombolles d'aire en el seu interior, que fan d'aïllant tèrmic.

Exercici 20. Fent servir l'expressió

$$\Delta L = L_0 \alpha \Delta T$$

calculem quant s'escurça a l'hivern (passem de $20^{\circ}C$ a $4^{\circ}C$)

$$\Delta L_h = 140 \cdot 18, 7 \cdot 10^{-7} \cdot (-16) = -4, 19 \cdot 10^{-3} \, m = -4, 19 \, mm$$

A l'estiu s'allarga (passem de $20^{\circ}C$ a $28^{\circ}C$)

$$\Delta L_e = 140 \cdot 18, 7 \cdot 10^{-7} \cdot (8) = 2,094 \cdot 10^{-3} \, m = 2,094 \, mm$$

De forma que la diferència de llargària entre l'estiu i l'hivern és

$$\Delta L = 4.19 + 2.094 = 6.284 \, mm$$

Exercici 21. La potència que es transmet a través de la pared de maó val

$$P_p = \frac{\lambda_p \cdot A \cdot \Delta T}{e_p} = \frac{0.87 \cdot 3 \cdot 2.5 \cdot (28 - 20)}{0.14} = 372,86 \, W$$

la potència que es transmet a través del vidre de la finestra val

$$P_v = \frac{\lambda_v \cdot A \cdot \Delta T}{e_v} = \frac{1, 7 \cdot 0, 7 \cdot 2 \cdot (28 - 20)}{0,005} = 3808 W$$

La potència total serà doncs

$$P = P_p + P_v = 372,86 + 3808 = 4180,86 W$$

L'àrea de la pared val $3 \cdot 2.5 = 7.5 \, m^2$, la del vidre de la finestra $0.7 \cdot 2 = 1.4 \, m^2$, és a dir la finestra és

$$\frac{7.5}{1.4} = 5.357$$

vegades més petita que la pared, però perd 10 vegades més potència tèrmica. Per tant, per millorar l'eficiència climàtica del recinte caldria posar per exemple, un vidre doble amb càmera interior, per exemple.

* * *

Pàg 191

Exercici 4.

A partir de la definició d'allargament unitari

$$\varepsilon = \frac{\Delta L}{L_0} = \frac{0.6 \cdot 10^{-3}}{0.8} = 7.5 \cdot 10^{-4} = 0.075 \%$$

Exercici 5.

La força es pot calcular com

$$\sigma = \frac{F}{A} \to F = A\sigma = 10 \cdot 75 = 750 \, N$$