PSE 2024-1 PROYECTO

Clock Alarm Elaborado Por Benjamín Hernández Herrera

Introducción

Este proyecto se centra en el desarrollo de un reloj alarma controlado por infrarrojo, una solución práctica y útil para la gestión de alarmas. La motivación principal es crear un dispositivo funcional y adaptable que pueda mejorarse con el tiempo, por ejemplo, añadiendo un reproductor MP3. Además, este proyecto brinda la oportunidad de aprender a usar diversos sensores y componentes electrónicos en conjunto.

Inspirado en:

La elaboración de este proyecto es una adaptación del Reloj Alarma de Elegoo, agregando que ahora se controla de manera remota con un control y receptor infrarrojo.

<u>elegoogroup/Arduino-Alarm-Clock: Arduino Alarm Clock (github.com)</u>

Lista de materiales

El costo total de los Componentes fue de 979 pesos mexicanos.

Componente	Precio (\$ MXN)
Elegoo Uno R3 + Cable	360
Reloj a Tiempo Real - RTC DS3231	44
Sensor de Temperatura y Humedad - DHT11	30
Zumbador pasivo	5
Pantalla LCD 16x2	69
Sensor Infrarrojo	12
Control Infrarrojo	98
Potenciómetro	9
Protoboard	129
Resistor 330 Ohm	2
Cables Tipo Dupont	69
Batería 9V	49
Conector batería de 9V a Plug	20
Pinzas de Punta	83
Total	979

Tarjeta ELEGOO UNO R3

La Placa de Desarrollo Elegoo Uno R3 es una tarjeta basada en el microcontrolador ATmega328P, similar a la Arduino Uno. Es una plataforma muy popular para proyectos de electrónica y programación debido a su versatilidad y facilidad de uso.

- Microcontrolador: ATmega328P.
- Pines digitales: 14 (6 de ellos PWM).
- Pines analógicos: 6.
- Memoria Flash: 32 KB (0.5 KB usados por el bootloader).
- SRAM: 2 KB.
- **EEPROM:** 1 KB.
- Voltaje de operación: 5V.
- Conectividad: USB para programación y comunicación, UART, SPI, I2C.

Memoria EEPROM

EEPROM o E²PROM son las siglas de Electrically Erasable Programmable Read-Only Memory. Es un tipo de memoria ROM que puede ser programada, borrada y reprogramada eléctricamente

Se va a utilizar para guardar los valores de la alarma.

www.arduinoecia.com.br

Reloj de Tiempo Real - RTC DS3231

Reloj en tiempo real es un reloj de un ordenador, incluido en un circuito integrado, que mantiene la hora actual.

Bibliotecas requeridas:

- <RTClib.h> por Adafruit
- <Wire.h>

Sensor de Temperatura y Humedad - DHT11

El sensor DHT11 es un dispositivo básico y económico que se utiliza para medir la temperatura y la humedad del ambiente. Es ampliamente utilizado en proyectos de electrónica y sistemas de monitoreo ambiental debido a su simplicidad y eficiencia.

Características del Sensor DHT11:

- Medición de Temperatura:
 - Rango de medición: 0 a 50°C
 - Precisión: ±2°C
- Medición de Humedad:
 - Rango de medición: 20% a 90% de humedad relativa
 Precisión: ±5% de humedad relativa
- Voltaje de Operación: 3.3V a 5.5V
- Tiempo de Respuesta:
 - Humedad: ≤5 segundos
 - Temperatura: ≤2 segundos
- Frecuencia de Muestreo: 1 vez por segundo (1 Hz)
- Dimensiones: Pequeño y compacto, generalmente mide 15.5mm x 12mm x 5.5mm
- Salida de Datos: Señal digital serial
- Interfaz: Utiliza un solo pin de datos para la comunicación, lo que simplifica su integración en proyectos basados en microcontroladores como Arduino.

Bibliotecas requeridas: "DHT.h" por Ken Shirriff, Rafi Khan, Armin Joachimsmeyer et al.

Pantalla LCD 16x2

Es una Pantalla de cristal líquido, formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora.

Cuenta con 16 columnas y 2 filas de caracteres.

Pin No	Name	Description
1	Vss	GND
2	Vdd	+5v
3	Vo	Contrast Control
4	RS	Register Select
5	R/W	Read/Write
6	E	Enable (Strobe)
7	D0	Data LSB
8	D1	Data
9	D2	Data
10	D3	Data
11	D4	Data
12	D5	Data
13	D6	Data
14	D7	Data MSB

Zumbador Pasivo

El buzzer pasivo es ideal para proyectos donde se requiere generar un sonido, como en una alarma. Este componente necesita que la placa o microcontrolador genere una señal oscilatoria a una frecuencia establecida mediante programación. Su uso permite emitir sonidos específicos y personalizados en función de las necesidades del proyecto.

Sensor Infrarrojo

¿Qué es un Sensor Receptor IR?

- Microchip con fotocélula: Sintonizado para recibir luz infrarroja.
- Usos comunes: Detección de controles remotos en TVs, reproductores de DVD, etc.
- Funcionamiento: Detecta pulsos IR emitidos por el LED IR en el control remoto.

Sensor Infrarrojo

Características del Sensor IR

- Filtrado para luz IR: No detecta bien luz visible.
- Demodulador interno: Detecta IR modulado a 38 KHz.
- Salida digital: Detecta señal IR y emite 0V, sin señal emite 5V.
- Frecuencia de detección: Pico a 38 KHz.
- Color del LED: Pico a 940 nm. Invisible al ojo humano.
- Compatibilidad: Funciona mejor con LEDs de 900 a 1000 nm.

Spectral sensitivity characteristics

^{*} The peaks for PNA4601M, PNA4608M, and PNA4610M are all fo.

Incompatibilidad Zumbador y Sensor Infrarrojo

Al utilizar la biblioteca **IRremote** se tiene por defecto el **timer 2** con el pin 3, el cual también es utilizado por el método **tone()** del Zumbador pasivo. Lo cual genera inconsistencia respecto a los valores que recibe el **sensor infrarrojo**.

Solución: Cambiar al timer1 con el pin 9.

1 Answer

Sorted by: Highest score (default)

You can use a different timer for the IRRemote library in

0

Arduino\libraries\IRremote\boarddefs.h

by changing the comments around line 190

// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, Nano,
// ATmega48, ATmega88, ATmega168, ATmega328
#define IR_USE_TIMER1 // tx = pin 9
//#define IR_USE_TIMER2 // tx = pin 3

For me (with a Nano) this at least removed the linker error. HTH

Share Improve this answer Follow

Add a comment

#else

- 8

Circuito electrónico

Se conectan todos los componentes de la siguiente forma:

PINES

• **LCD16x2:** 3,4,5,6, 11, 12

• **RTC:** A4(SDA), A5(SCL)

DHT: 2IR: 9

• BUZZER: 7

Funcionalidad

Es un sistema basado en Arduino que incluye un sensor de temperatura y humedad, una pantalla LCD, un reloj de tiempo real (RTC), un receptor infrarrojo (IR) y un buzzer para una alarma.

Inclusión de librerías:

- DHT.h: Maneja el sensor de temperatura y humedad DHT11.
- LiquidCrystal.h: Controla la pantalla LCD.
- RTClib.h: Maneja el reloj de tiempo real (RTC).
- Wire.h: Protocolo I2C.
- **EEPROM.h:** Manipulación de la memoria EEPROM.
- IRremote.h: Controla el receptor infrarrojo.
- RemoteCodes.h: Contiene los códigos del control remoto.

Inicialización de componentes:

- **Sensor de temperatura y humedad:** Se configura en el pin 2 y se especifica el tipo DHT11.
- Pantalla LCD: Se inicializa con los pines correspondientes.
- Reloj RTC: Se inicializa y se maneja la fecha y hora.
- Receptor infrarrojo: Configurado en el pin 9.
- Buzzer: Para la alarma, conectado al pin 7.

Variables y configuraciones:

- Fecha y hora: Se definen variables para manejar la fecha y hora actual.
- Alarma: Variables para la configuración de la alarma.
- Pantalla LCD: Configuración inicial y creación de un símbolo personalizado (el símbolo de grado °).

Funcionalidad

Función setup():

- Inicia la comunicación serie.
- Recupera la hora de la alarma guardada en la EEPROM.
- Inicializa el receptor IR, el sensor DHT y el RTC.
- Configura la pantalla LCD y muestra un mensaje si el módulo RTC no se encuentra.

•

Función loop():

- Gestiona las señales del receptor IR para cambiar configuraciones o activar/desactivar la alarma.
- Actualiza y muestra la hora y los datos de temperatura y humedad cada segundo.
- Si la alarma está activada, llama a la función callAlarm() para manejar el buzzer.

Funciones auxiliares:

- updateWeatherData(): Lee los valores de temperatura y humedad del sensor DHT11.
- printWeatherData(): Muestra los valores de temperatura y humedad en la pantalla LCD.
- callAlarm(): Controla el sonido de la alarma basándose en la configuración y la hora actual.
- dateAndTimeSetup(): Permite la configuración de la fecha, hora y alarma usando el control remoto.

Conclusiones

El desarrollo de un reloj alarma controlado por infrarrojo ha demostrado ser una solución práctica y útil para la gestión de alarmas. Este proyecto no solo ha cumplido su objetivo principal de crear un dispositivo funcional y adaptable, sino que también ha abierto la puerta a futuras mejoras, como la integración de un reproductor MP3. Además, la implementación de este proyecto ha sido punto de partida para utilizar diversos sensores y componentes electrónicos en conjunto, enriqueciendo así el conocimiento y las habilidades en electrónica y programación en el contexto de Sistemas Empotrados.

Referencias

- <u>elegoogroup/Arduino-Alarm-Clock: Arduino Alarm Clock (github.com)</u>
- arduino Function tone and IRremote Stack Overflow
- ELEGOO UNO R3 Placa ATmega328P con cable USB (compatible con Arduino) para Arduino : Amazon.com.mx: Electrónicos
- Caracteristicas de los Pines de la LCD 16X2. | Jovanna Yepez (wordpress.com)
- Módulo RTC DS3231 Reloj de Tiempo Real UNIT Electronics (uelectronics.com)
- Sensor De Temperatura y Humedad DHT11 Módulo KY-015 (uelectronics.com)
- Zumbador Buzzer Pasivo Módulo KY-006 UNIT Electronics (uelectronics.com)
- Display LCD 2x16 Steren Tienda en Línea
- Sensor Receptor Infrarroio IR (uelectronics.com)
- Decodificación de control remoto por infrarrojos para Arduino MCU Intelligent Car Accessories : Amazon.com.mx; Electrónicos
- Potenciómetro miniatura sin switch, de 10 KOhms Steren
- Protoboard de ensamble a presión, 1 bloque y 2 tiras St (steren.com.mx)
- Resistencia de carbón, de 1 Watt, al 5% de tolerancia, (steren.com.mx)
- <u>Juego de 80 cables de 15 cm tipo Dupont Steren Tienda e</u>
- Pila alcalina "9V" Cuadrada en Venta | Steren Tienda en Línea
- Conector de bateria 9V con Plug (nomada-e.com)
- Pretul PPC-6P, Pinza de punta y corte en acero al carbono, 6": Amazon.com.mx: Herramientas y Mejoras del Hogar
- 850 nm frente a 940 nm. ¿qué longitud de onda infrarroja es mejor? Conocimiento (jpnvnightvision.com)