#### **CSE 475: Statistical Methods in Al**

# Assignment 2 : Face Classification/Verification

Author: Thejasvi Konduru

Roll no: 20171134

Date:

Monsoon 2019

4/11/19

## 1. Eigen Faces

#### 1.1 Introduction

Eigenfaces is the name given to a set of eigenvectors when they are used in the computer vision problem of human face recognition. The eigenfaces may be considered as a set of features which characterize the global variation among face images. Then each face image is approximated using a subset of the eigenfaces, those associated with the largest eigenvalues. These features account for the most variance in the training set.

## 1.2 EigenValue Spectrum



#### 1. Yale Face Database

Fewer eigenvectors are required for accurate reconstruction because the primary components show high variance and it implies there is high importance to multiple components.

#### 2.IMFDB

Fewer eigenvectors are required for accurate reconstruction because the first few primary components are close to each other i.e they capture a lot of the variance of the image.

#### 3.IIIT-CFW

Large number of eigenvectors are required for reconstruction because the first component captures a lot of variance but the remaining vectors do not.

#### 1.3 Reconstruction

- 1. **IIIT-CFW**: 328 eigen vectors are required for reconstruction. The error obtained is 0.06.
- 2.**IMFDB**:142 eigen vectors are required for reconstruction. The error obtained is 0.03.
- 3. Yale\_face: 69 eigen vectors are required for reconstruction. The error obtained is 0.04.

Yale\_face requires less eigenvectors than IMFDB because real features have more

Intuition:Yale\_face requires less real faces which have 3.IIIT-CFW
more dense features with considerable variances so The best model is LDA+LR
Yale face requires less eigenvectors than IMFDB.

### 1.4 Difficult Persons/Identities

IMFDB:-

1. More eigenvectors are required for madhuri dixit.

2.Less eigenvectors are required for Katrina kaif. or 3D.

## 3.TSNE FACE VISUALISATION

3.1 Dataset Visualisation

It is a reduction technique for Converting data to 2D









## 2. Face Classification

The procedure for the face classification algorithm is:

1. Load the dataset

2. Split the data into training data and test data.

3. Do feature extraction.

4. Select a classifier and train the classifier on the train Data.

5. Validate the classifier on the test data and calculate the performance metrics.

various combinations of features and classifier types.

Classifiers: MLP,SVM,LR,Decision Tree

VGG,Resnet

Features used: PCA,KPCA,LDA,KLDA,VGG,ResNet

1.Yale-face

## 4.KNN classifier

The procedure for this is:-

1.Load the dataset

2.Split the data into train

and test data

3. Feature extraction

4. Validate the classifier.

5.Classifier:-KNN

6.Features used:-PCA,KPCA

LDA,KLDA,

5.Extension/Application

IMFDB data is taken and label

The best model is PCA+LR

#### 2.IMFDB

The best model is resnet+MLP classifier is used and resnet\_features is used for Dimensionality reduction.

IMFDB data is taken and label o is given for film stars and label 1 is for politicians and MLP

## Q2:-The best model and confusion matrix for Yale face and IMFDB

|       |                                                                                      |       |          |                  |                       |                    |                  |                   |                  | The best model is:-                                          |
|-------|--------------------------------------------------------------------------------------|-------|----------|------------------|-----------------------|--------------------|------------------|-------------------|------------------|--------------------------------------------------------------|
|       |                                                                                      | 1     | Method   | Reduced          | Classification_er     | ror                | Accuracy         |                   | F1-Score         | <pre>jet_pca+Logistic_Regression</pre>                       |
| 1     | 1 get_pca+MLP 2 get_pca+Logistic_Regression 3 get_pca+SVM                            |       | a+MLP    | 100              | 8.8888888888888       | 886 91.1           | 1111111111111    | 91.09             | 52380952381      | $ \begin{bmatrix} [ & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$ |
| 2     |                                                                                      |       | ression  | 100              |                       | 0.0 100.0          |                  | 100.0             |                  | $ \begin{bmatrix} 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 &$   |
| 3     |                                                                                      |       | 100      | 46.6666666666666 | 64 53.3333333333333 5 |                    | 54.81            | 48148148148       |                  |                                                              |
| 4     | get_pca+De                                                                           | cisio | n_trees  | 100              | 22.222222222222       | 14 77.777777777779 |                  | 76.76190476190476 |                  | [0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0                     |
| MFDE  | B<br>Dest model is:-                                                                 | [M]   | FDB      |                  |                       |                    |                  |                   |                  |                                                              |
| get_r | resnet_features+ML                                                                   | Р     |          |                  | Method                | Reduced            | Classification_e | error             | Accuracy         | F1-Score                                                     |
| [0 3  | 3 0 0 0 0 0 0]<br>0 3 0 0 0 0 0]<br>0 0 3 0 0 0 0]<br>0 0 0 3 0 0 0]<br>0 0 0 3 0 0] | 1     |          | get_ı            | esnet_features+MLP    | 2048               |                  | 0.0               | 100.0            | 100.0                                                        |
|       |                                                                                      | 2     | get_resi | net_features+    | Logistic_Regression   | 2048               |                  | 0.0               | 100.0            | 100.0                                                        |
|       |                                                                                      | 3     |          | get_r            | esnet_features+SVM    | 2048               |                  | 25.0              | 75.0             | 77.5                                                         |
| [0 6  |                                                                                      | 4     | ge       | t_resnet_feat    | tures+Decision_trees  | 2048               | 4.166666666666   | 657 95            | 5.83333333333333 | 95.71428571428571                                            |

## The best model and confusion matrix for IIIT-CFW

| III | IT-CFW                      |         |                      |                   |                   | [IIT-CFW<br>The best model is:-         |  |
|-----|-----------------------------|---------|----------------------|-------------------|-------------------|-----------------------------------------|--|
|     | Method                      | Reduced | Classification_error | Accuracy          | F1-Score          | <pre>jet_lda+Logistic_Regression</pre>  |  |
| 1   | get_lda+MLP                 | 7       | 8.333333333333343    | 91.666666666666   | 91.54761904761905 | [[3 0 0 0 0 0 0 0]<br>[0 3 0 0 0 0 0 0] |  |
| 2   | get_lda+Logistic_Regression | 7       | 4.16666666666657     | 95.83333333333334 | 95.71428571428571 | [0 0 3 0 0 0 0 0]<br>[0 0 1 2 0 0 0 0]  |  |
| 3   | get_lda+SVM                 | 7       | 4.16666666666657     | 95.83333333333334 | 95.71428571428571 | [0 0 0 0 3 0 0 0]<br>[0 0 0 0 0 3 0 0]  |  |
| 4   | get_lda+Decision_trees      | 7       | 4.16666666666657     | 95.83333333333334 | 95.71428571428571 | [0 0 0 0 0 0 0 3]                       |  |

## Q4:-The tables for all the combination of features and classifier(KNN)

|              | Method                                             | Reduced         | Classification_error                           | Accurac                                        | y F1-Scor                                                    |
|--------------|----------------------------------------------------|-----------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| 1            | get_pca+KNN                                        | 100             | 8.88888888888888                               | 91.11111111111111                              | 1 91.095238095238                                            |
| 2            | get_kernel_pca+KNN                                 | 100             | 8.88888888888888                               | 91.11111111111111                              | 1 91.095238095238                                            |
| 3            | get_lda+KNN                                        | 14              | 0.0                                            | 100.                                           | 0 100.                                                       |
| 4            | get_kernel_lda+KNN                                 | 14              | 0.0                                            | 100.                                           | 0 100.                                                       |
| 5            | get_vgg_features+KNN                               | 4096            | 46.665866666668864                             | 53.33333333333333                              | 6 51.91534391534390                                          |
| 6            | get_resnet_features+KNN                            | 2048            | 0.0                                            | 100.                                           | 0 100.0                                                      |
|              | -DB                                                |                 |                                                |                                                |                                                              |
|              |                                                    | Between         | Cl. 16 - 16                                    |                                                | F1 6                                                         |
| MF           | Method                                             | Reduced         | Classification_error                           | Accuracy                                       | F1-Score                                                     |
| MF           |                                                    | Reduced         | Classification_error                           | Accuracy<br>50.0                               | F1-Score<br>50.148809523809526                               |
| MF           | Method                                             |                 |                                                | 17,00000,0000                                  | 12 00012                                                     |
| MF           | Method<br>get_pca+KNN                              | 100             | 50.0                                           | 50.0                                           | 50.148809523809526                                           |
| MF<br>1<br>2 | Method  get_pca+KNN get_kernel_pca+KNN             | 100             | 50.0<br>54.1666668866667                       | 50.0<br>45.8333333333333333                    | 50.148809523809526<br>44.25595238095239                      |
|              | Method  get_pca+KNN get_kernel_pca+KNN get_lda+KNN | 100<br>100<br>7 | 50.0<br>54.16666668866667<br>4.166666668666657 | 50.0<br>45.83333333333333<br>95.83333333333333 | 50.148809523809526<br>44.25595238095239<br>95.71428571428572 |

#### IIIT-CFW

|   | Method                  | Reduced | Classification_error | Accuracy          | F1-Score          |
|---|-------------------------|---------|----------------------|-------------------|-------------------|
| 1 | get_pca+KNN             | 100     | 58.3333333333333     | 41.6666666666667  | 42.22222222222    |
| 2 | get_kernel_pca+KNN      | 100     | 62.5                 | 37.5              | 39.1666666666667  |
| 3 | get_lda+KNN             | 7       | 4.16666666666657     | 95.83333333333334 | 95.71428571428571 |
| 4 | get_kernel_lda+KNN      | 7       | 4.16666666666657     | 95.83333333333334 | 95.71428571428571 |
| 5 | get_vgg_features+KNN    | 4096    | 29.16666666666657    | 70.83333333333334 | 69.94047619047619 |
| 6 | get resnet features+KNN | 2048    | 8.3333333333333333   | 91.6666666666666  | 91.42857142857143 |



The above are the plots for K vs accuracy for each dataset

Q3.The scatter plot contains data points of one class are grouped together for TSNE

Reduction.

Q5:-Resnet features is used because it gives high accuracy.

The scatter plot obtained is:-



PRECISION=(TP)/(TP+FP)

When the dataset is skewed recall and precision come out as more supreme evaluation metrics. In this case the classes are balanced therefore I have used only accuracy metric.

## Q5:-Real Life Application:-

Nowadays, with the participation of actors in politics many psychological studies have started to work on the influence of the stardom and fanbase of the filmstars on the voting power of the public and how the thinking power of the people changes.

So if the classifier has a weak confidence on classifying the person as an actor or politician , then that means the person in the image can be classified as belonging to both categories. So, to support the hypothesis the studies use weighted classification along with other factors

## **Steps to Follow:**

- 1.The dataset is loaded
- 2.The labels should be changed i.e label 0 is given for film stars and label 1 is given for politicians.
- 3. Split the data into training and test data.
- 4. The dimensionality reduction is done using Resnet features.
- 5.The classifier used is MLP.
- 6. Three hidden layers are used and the size of the hidden layers are 1024,512,64.
- 7.Maximum iterations used are 200 and batch size is 20 and activation function used is Relu.

#### **Metrics:**

The accuracy obtained is nearly 100%. These results show that the classification results after only a few iterations of 200 on a small dataset give out near perfect results.