Functional analysis

Mike Antonenko

Based on lectures by Vladimir Peller

Typeset on March 24, 2021

Contents		Riesz's lemma	15
	_	Orthonormal bases	15
Introduction	2		
Completions	2		
Equivalent norms	2		
Linear operators	4		
Operator norm	4		
The space of bounded operators is complete	4		
Functionals	5		
Strong convergence	5		
More on Banach spaces	5		
Three fundamental principles of functional analysis	. 6		
Hanh-Banach theorem	6		
Useful corollaries	7		
Banach limits	7		
The complex case	8		
Complex Hanh-Banach	8		
Quotient spaces	9		
Annulator	10		
Separability of duals	10		
Open map and closed graph theorems	11		
Inverse function theorem	11		
Closed graph theorem	11		
Why is the closed graph theorem important	12		
Sobolev spaces	12		
Complementary spaces	12		
Uniform boundedness principle	13		
Banach-Steinhaus theorem	13		
Inner products	13		
Hilbert spaces	14		
Projections	14		
Projections onto linear subspaces	15		

Introduction

Let *X* be a vector space over a field $K \in \{\mathbb{R}, \mathbb{C}\}$.

Definition. A map $f: X \to \mathbb{R}$ is called a *norm*, iff we have

- 1. If $x \in X \setminus 0$, then f(x) > 0; and f(0) = 0.
- 2. f(kx) = |k| f(x) for all $k \in \mathbb{R}$, $x \in X$.
- 3. $f(x + y) \le f(x) + f(y)$ for all $x, y \in X$.

Definition. A pair $(V, ||\Box|)$, where $||\Box||$ is a norm on a vector space V, is called a *normed space*. A normed space is *Banach*, iff it is complete.

Completions

Definition. \widehat{X} is called a *completion* of X, iff \widehat{X} is complete and X is dense in \widehat{X} .

Theorem. A completion \widehat{X} exists.

Proof. Call two Cauchy sequences $\{x_n\}$ and $\{y_n\}$ equivalent, iff $||x_n - y_n|| \to 0$, and let \widehat{X} be the resulting quotient. Since the point-wise sum of two Cauchy sequences is Cauchy, in this natural way we may introduce vector space structure on \widehat{X} . The norm on \widehat{X} is introduced as

$$\left\| \left[x_n \right] \right\| \coloneqq \lim_{n \to \infty} \left\| x_n \right\|.$$

This map is defined correctly:

- 1. The limit on the right always exists: since $\{x_n\}$ is Cauchy, the sequence $\{\|x_n\|\}$ of reals is Cauchy, which implies it must converge.
- 2. If $[x_n] = [y_n]$, then $|||x_n|| ||y_n||| \le ||x_n y_n|| \xrightarrow[n \to \infty]{} 0$. Therefore, $||[x_n]|| = ||[y_n]||$.

X is embedded into \widehat{X} by mapping $x \in X$ into the class of the constant sequence at x. It is easy to see that this map preserves norms.

Theorem. Let \widehat{X}_2 be another completion of X. Then exists a bijection $f: \widehat{X} \to \widehat{X}_2$ which is linear, preserves norms, and maps the embedded X into the embedded X.

These two theorems endow us with the right to never consider pathological incomplete spaces.

Proof. Map
$$[x_n] \in \widehat{X}$$
 into $\lim x_n \in \widehat{X}_2$.

Exercise 1. The space C[a,b] with the norm $||f||_2 = \int |f|$ is not complete. Define

$$f_n(x) = \begin{cases} 0, & x \in [a, c], \\ n(x - c), & x \in [c, c + 1/n], \\ 1, & x \in [c + 1/n, b]. \end{cases}$$

Then f_n is a Cauchy sequence which does not have a limit in C[a, b].

Proof. It is easy to see that the limit of $\{f_n\}$ is $[x \ge c]|_{[a,b]}$, so it does not have a continuous limit. Nevertheless, it is Cauchy, since

$$||f_n - f_m|| = \frac{1}{2} \left| \frac{1}{n} - \frac{1}{m} \right| \xrightarrow{\min\{m,n\} \to \infty} 0.$$

Equivalent norms

Definition. We say norms are *equivalent*, iff the metrics they generate are Lipschitz equivalent.

Exercise 2. Norms are equivalent iff they generate the same topology.

Exercise 3. In infinite-dimensional spaces, there are norms which are not equivalent.

Proof. For example, consider X = C[0, 1], L^1 -norm and the sup-norm on it. It is true that L^1 -norm does not surpass the

sup-norm, but there is no constant for the opposite inequality: we can think of a function with an arbitrarily large sup-norm, but constant integral.

Theorem. If *X* is finite-dimensional, then every two norms on *X* are equivalent.

Proof. Suppose dim X = n, and e_1, \ldots, e_n is a basis. Let $x = a_1e_1 + \cdots + a_ne_n$. Let $\|\Box\|$ be a norm on X. Define a new *norm* as

$$|x| = \sqrt{a_1^2 + \dots + a_n^2}.$$

Then

$$||x|| \le \sum_{i=1}^{n} |a_i| ||e_i||$$

$$\le M \sum_{i=1}^{n} |a_i|$$

$$\le M \left(\sum_{i=1}^{n} |a_i| \right)^{\frac{1}{2}}$$

$$= M|x|.$$

The function $x \mapsto \|x\|$ is continuous in the norm $|\Box|$. Let $|x_k - x| \to 0$. Then

$$\left| \|x_k\| - \|x\| \right| \le \|x_k - x\|$$

$$\le M\sqrt{n}|x_k - x|$$

$$\to 0.$$

Consider the set $S = \{x \in E \mid |x| = 1\}$. S is compact in $|\Box|$. $\varphi|_S$ is continuous and nonzero. Then $\varphi > \delta$ for some $\delta > 0$, so

$$\left\| \frac{x}{|x|} \right\| \ge \delta \iff \|x\| \ge \delta |x|.$$

Corollary. Every finite-dimensional normed vector space is complete.

Proof. Every Euclidean space is complete.

Corollary. A finite-dimensional subspace of a normed space is closed.

Proof. It is complete, and every convergent sequence is Cauchy sequence.

Definition. The set $M \subseteq X$ is bounded, iff

$$\sup_{m\in M}||m||<+\infty.$$

Lemma (on an almost-perpendicular). Let E be a normed space, and F < E its closed proper subspace. Then for every $\epsilon > 0$ exists a vector $x \in E$ such that ||x|| = 1 and $\operatorname{dist}(x, F) > 1 - \epsilon$.

Proof. Let $y \in E \setminus F$. Then $d = \operatorname{dist}(y, F) > 0$, since F is closed. Let $\delta > 0$. By definition of infimum, there exists $a \in F$ such that

$$d \le ||y - a|| \le d + \delta.$$

Put $y_2 = y - a$. Since $a \in F$, $dist(y_2, F) = dist(y, F) = d$. Define

$$x = \frac{y_2}{d+\delta} = \frac{y-a}{d+\delta}.$$

Then $||x|| \le 1$, but

$$\operatorname{dist}(x,F) = \operatorname{dist}\left(\frac{y}{d+\delta},F\right) \ge \frac{\operatorname{dist}(y,F)}{d+\delta} = \frac{d}{d+\delta}.$$

Since the δ is arbitrary, and by increasing the norm of x we do not get closer to F, we get the desired.

Theorem. Let *X* be a normed space. Equivalent are:

- 1. *X* is finite-dimensional.
- 2. Every bounded subset of *X* is relatively compact.

Proof of $1 \implies 2$. From corollary on page 3.

Proof of $2 \implies 1$. Suppose X is not finite-dimensional. We assert that there exists a bounded sequence that does not have a convergent subsequence (so in no way the closure of a bounded subset that contains this sequence can be compact). We show this by induction: suppose x_1, \ldots, x_n are already built. By the almost-perpendicular lemma there exists x_{n+1} such that $||x_{n+1}|| = 1$ and

$$\operatorname{dist}(x_{n+1},\operatorname{Span}\{x_1,\ldots,x_n\}) > 1/2$$

(since X is not finite-dimensional, the span here is a proper subspace of X). Continuing to infinity, we get a sequence $\{x_n\}$. It is bounded (all its members are on the unit sphere). Nevertheless, no subsequence of it is Cauchy by construction.

Linear operators

Definition. A linear operator $T: X \to Y$ is *bounded*, iff T(B) is bounded, where B is the unit ball in X.

Lemma. Let *X* and *Y* be normed vector spaces, and $T: X \to Y$ a linear operator. The following are equivalent:

- 1. *T* is continuous.
- 2. *T* is continuous at 0.
- 3. *T* is bounded.

Proof of $1 \Leftrightarrow 2$. Let $x \in X$. T is continuous at x iff for every convergent $x_n \to x$ the sequence Tx_n also converges (to Tx). Now observe that

$$||Tx_n - Tx|| = ||T(x_n - x)||.$$

Proof of $2 \Rightarrow 3$. Consider

$$D = \left\{ y \in Y \mid \left\| y \right\| \le 1 \right\}.$$

There is $\delta > 0$ such that, if $||x|| \le \delta$, then $Tx \in D$. Let $z \in D$. Since

$$||T\delta z|| \leq 1,$$

we have

$$||Tz|| \leq 1/\delta$$
.

Proof of $3 \Rightarrow 1$. Let $||x|| \le 1$. Then $||Tx|| \le M$, so $||x|| < \epsilon$ implies $||Tx|| \le M\epsilon$.

Operator norm

Definition. Let *T* is a continuous operator. Its *norm* is

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||}.$$

Exercise 4. ||T|| is indeed a norm.

Lemma. An operator is bounded iff it has finite norm.

Proof. Obvious.

Lemma. A linear combination of continuous operators is continuous.

Proof.

$$||(kA+B)|| \le |k|||A|| + ||B||.$$

The space of bounded operators is complete

Definition. $\mathcal{B}(X,Y)$ is the set of bounded linear operators $X \to Y$ with the obvious structure of a vector space and the standard operator norm as the norm.

Theorem. Let Y be complete. Then $\mathcal{B}(X,Y)$ is complete.

I have seen three quite concise proofs of this theorem and understood neither. Here is a long one, my own.

Proof. Let $\{T_n\}$ be a Cauchy sequence. Fix $x \in X$. $\{T_n x\}$ is a Cauchy sequence in Y:

$$||T_n x - T_m x|| \le ||T_n - T_m|| ||x||$$

$$\le \varepsilon ||x||.$$

By completeness of Y, there is a limit $t \underset{n \to \infty}{\longleftarrow} T_n x$.

The map $x \mapsto t$ we have just build is a linear operator. Call it T. T_n is a Cauchy sequence, so $||T_n|| \le M$ for some M. Then

T itself is bounded:

$$||Tx|| \le ||T_n x|| + \epsilon$$

$$\le M||x|| + \epsilon.$$

We assert that $||T_nx - Tx|| \to 0$. Suppose otherwise:

$$\exists \epsilon > 0 \ \forall n_0 \in \mathbb{N} \ \exists n > n_0 \ \exists x \in B \colon ||T_n x - Tx|| > \epsilon.$$

Since $\{T_n\}$ is Cauchy,

$$\forall \, \delta > 0 \, \exists \, n_1 \in \mathbb{N} \, \forall \, k, l > n_1 \, \forall \, x \in B \colon \left\| T_k x - T_l x \right\| \leq \delta.$$

Fix this $\delta > 0$ and take the corresponding n_1 . From the first line with quantifiers, there exist $n > n_1$ and $x \in B$ such that

$$||T_nx-Tx||>\epsilon.$$

From the second one, for any $m > n_1$ we get

$$||T_n x - T x|| \le ||T_n x - T_m x|| + ||T_m x - T x||$$

$$\le \delta + ||T_m x - T x||.$$

Since $Tx = \lim_{m\to\infty} T_m x$, there is m_0 such that $||T_m x - Tx|| \le \delta$ for all $m > m_0$. Take $m_1 = \max\{m_0, n_1\}$. Then, for any $m > m_1$,

$$||T_n x - Tx|| \le \delta + ||T_n x - Tx||$$

$$< 2\delta.$$

Now launch $n_1 \to \infty$ and, consequently, $\delta \to 0$. We get a contradiction:

$$\epsilon < ||T_n x - Tx|| \le 2\delta.$$

Remark. Our proof does not use the boundedness of operators in the space $\mathcal{B}(X,Y)$.

Functionals

Definition. A *functional* is a linear operator $X \to K$.

Definition. The *dual* X^* of X is the space $\mathcal{B}(X,K)$ of continuous functionals.

Corollary. X^* is complete.

Proof. Since *K* is complete in either case.

Strong convergence

Definition. A sequence of operators $T_n \to T$ converges *strongly* or *point-wise*, iff $T_n x \to T x$ for all $x \in X$.

Lemma. If $||T_n - T|| \to 0$, then $T_n \to T$ strongly.

Proof. Since

$$|T_nx-Tx|\leq ||T_n-T|||x|.$$

Remark. The converse is not true.

Definition. $l^p = L^p(\mathbb{N}, \#)$ is the space of real-valued sequences which converge in the L^p norm (with respect to the cardinality measure).

Proof of the remark. Consider the operators

$$s_k(c_0, c_1, \dots) = (c_k, c_{k+1}, \dots)$$

on l^p . $||s_k|| = 1$, since there are sequences with a single unit and other elements zero and applying s_k does not lessen the sequence norm anyway. Nevertheless, $s_k \to 0$ pointwise (strongly), since all the sequences in l^p converge.

More on Banach spaces

Theorem. Let Y be complete. Let $\{T_n\} \subseteq \mathcal{B}(X,Y)$ be operators with $\sup \|T_n\| < +\infty$, and let $E \subseteq X$ be dense. Suppose that, for every $e \in E$, the sequence $\{T_n e\} \subseteq Y$ converges. Then exists $T \in \mathcal{B}(X,Y)$ such that $T_n \to T$ pointwise.

Remark. If $\{T_n\}$ converges strongly, then $\sup ||T_n|| < +\infty$. This is a harder fact.

Proof. Define

$$Te := \lim_{n \to \infty} T_n e$$
.

Let $x \in x$. Take $\{e_n\}$ such that $||e_n - x|| \xrightarrow[n \to \infty]{} 0$. We assert T can be continued to a bounded operator $X \to Y$.

 $\{Te_n\}$ is Cauchy.

$$||Te_{k} - Te_{k}|| \le ||Te_{j} - T_{n}e_{j}|| + ||T_{n}e_{j} - T_{n}e_{k}|| + ||Te_{k} - T_{n}e_{k}||$$

$$< 2\epsilon + ||T_{n}e_{j} - T_{n}e_{k}||$$

$$\le 2\epsilon + ||T_{n}||||e_{j} - e_{k}||$$

$$\xrightarrow[n \to \infty]{n \to \infty} 0.$$

$$\min\{j,k\} \to \infty$$

Theorem. Let X and Y be normed spaces, and Y complete. Let F be dense in X. Let $T: F \to Y$ be a continuous linear operator. Then exists unique $T_{\sharp} \in \mathcal{B}(X,Y)$ such that $\left\|T_{\sharp}\right\| = \|T\|$ and $T_{\sharp}|_{F} = T$.

Proof. Let $x \in X$, $f_n \in F$, $||f_n - x|| \to 0$. Then

$$\left\| Tf_n - Tf_m \right\| \le \left\| T \right\| \left\| f_n - f_m \right\|$$

$$\xrightarrow{0} \dots$$

Hence $\{Tf_n\}$ is a Cauchy sequence and, as such, converges to some y. Define

$$T_{t}x = y$$
.

This definition does not depend on the choice of the sequence.

Three fundamental principles of functional analysis

- 1. Hanh-Banach theorem.
- 2. Closed graph and open map theorems.
- 3. The principle of uniform boundedness.

Hanh-Banach theorem

Definition. Let *X* be a vector space over K, $p: X \to \mathbb{R}$. It is said that *p* is a *seminorm*, iff

- 1. $p(x) \ge 0$.
- 2. |k|p(x) = p(kx) for all $k \in K$.
- 3. $p(x+y) \le p(x) + p(x)$.

Example. Consider $X = C(\mathbb{R})$ and $p(f) = \int_0^1 |f|$. Then p is a seminorm, but not a norm, since there is a nonzero function, which is zero on [0,1].

Definition. Let X be a K-vector space. A $p: X \to \mathbb{R}$ is a *sublinear functional*, iff

- 1. $p(x+y) \le p(x) + p(y)$.
- 2. p(kx) = |k|p(x) for all $k \in K$.

Theorem (Hanh, Banach). Let X be a real vector space, $p: X \to \mathbb{R}$ a sublinear functional. Let $Y \le X$ and $f: Y \to \mathbb{R}$ a linear functional such that $f(y) \le p(y)$ for all $y \in Y$. Then exists $F: X \to \mathbb{R}$ such that $F|_Y = f$ and $F(x) \le p(x)$ for all $x \in X$.

Lemma (Hanh-Banach in codimesion 1). Ler $x_0 \in X \setminus Y$. Let $Y_{\sharp} = Y + \operatorname{Span}\{y_0\}$. Then f can be continued to a linear functional on $f_{\sharp} \colon Y_{\sharp} \to \mathbb{R}$ such that $f_{\sharp} \leq p$ on Y_{\sharp} .

Proof. Let $y \in Y_{\sharp}$, $y \in Y$, $\alpha \in \mathbb{R}$.

We assert a $c \in \mathbb{R}$ can be chosen in such a way that

$$f_{\sharp}(y + \alpha y_0) := f(y) + \alpha c$$

satisfies

$$f_{\mathbb{H}} \le p \iff f(y) + \alpha c \le p(y + \alpha y_0).$$
 (1)

If $\alpha = 0$, the inequality is satisfied.

Suppose $\alpha > 0$. Divide (1) through by α :

$$f\left(\frac{y}{\alpha}\right) + c \le p\left(\frac{y}{\alpha} + y_0\right).$$

This rewrites as

$$p(y_1+y_0)-f(y_1)\geq c,$$

where $y_1 = y/\alpha$.

Suppose α < 0. Dividing (1) through by $-\alpha$, we get

$$f(y_2) - p(y_2 - y_0) \le c,$$

where $y_2 = -y/\alpha$.

Now, if we show that

$$f(y_2) - p(y_2 - y_0) \le p(y_1 + y_0) - f(y_1),$$

we are done by the Cantor-Dedekind axiom. But that trivially follows from the triangle inequality for p and linearity of f.

Proof of the theorem of Hanh and Banach in the general case. Consider the set

 $A = \{(M, f_M) \mid Y \leq M \leq X, f_M : M \to \mathbb{R} \text{ is a linear functional, } f \in \mathbb{R} \}$

We tell that $(M, f_M) \leq (N, f_N)$, iff $M \leq N$ and $f_N|_M = f_M$. The union of any chain is its supremum; we have a maximal element (L, F). We assert that L = X.

Suppose otherwise, and let $y_0 \in X \setminus L$. Define $L_{\sharp} = L + \operatorname{Span}\{y_0\}$. By the lemma, there exists $F_{\sharp} : L_{\sharp} \to \mathbb{R}$ such that $F_{\sharp} \leq p$. But then $(L_{\sharp}, F_{\sharp}) \geq (L, F)$.

Useful corollaries

Corollary. Let $Y \leq X$ and $f \in \mathcal{B}(Y, \mathbb{R})$. Then there exists $F: X \to \mathbb{R}$ such that $F|_Y = f$ and ||F|| = ||f||.

Proof. Let p(x) = ||f|| ||x||. Then $f(y) \le p(y)$ for all $y \in Y$. Take F as in the HB theorem. Then

$$F(x) \le ||f|| ||x||.$$

Likewise, taking the -F for -f, we get

$$||F|| \le ||f||.$$

The converse inequality is evident.

Corollary. Let $Y \le X$, $x_0 \in X \setminus Y$. Then exists $F \in X^*$ such that $||F|| \le 1$, $F|_Y = 0$, and $F(x_0) = \text{dist}(x_0, Y)$.

Proof. Define p(x) = dist(x, Y). Since Y is closed, $d := p(x_0) > 0$. Define

$$f(y + \alpha x_0) := \alpha d$$
.

Then $f \leq p$, and exists $F \colon X \to \mathbb{R}$ such that $F|_L = f|_L$ and $F \leq p$. In particular, $F|_Y = 0$ (what we need) and $F(x_0) = d$. Observe that the same applies to -f, and so $\|F(x)\| \leq p(x) \leq \|x\|$. Hence $\|F\| \leq 1$.

Corollary. Let $x_0 \in X$. Then exists $F \in X^*$ such that $||F(x_0)|| = ||x_0||$ and ||F|| = 1.

Proof. The case $Y = \{0\}$ of the previous corollary.

Corollary. Let *X* be a normed space, $M \le X$. Then

$$\operatorname{Cl} M = \bigcap \{\ker f \mid f \in X^*, M \subseteq \ker f\}.$$

Proof. Let N denote the intersection. Since N is closed as an intersection of closed sets, $\operatorname{Cl} M \subseteq N$. We now show that $\overline{\operatorname{Cl} M} \subseteq \overline{N}$. Let $x_0 \notin \operatorname{Cl} M$. By a corollary from page 7, there exists a functional $f(X^*)$ such that $||f|| \leq 1$, $M \subseteq \ker f$ and $f(x_0) = \operatorname{dist}(x_0, M)$. f participates in the intersection on the right, but its kernel does not contain x_0 . Therefore, $x_0 \notin N$, as asserted.

Corollary. Let X be a normed space, $M \le X$. The following conditions are equivalent:

- 1. *M* is dense.
- 2. For every functional $f \in X^*$, if $M \subseteq \ker f$, then f = 0.

Proof. This is a reformulation of the previous theorem.

Banach limits

Definition. Let $c \leq l^{\infty}$ be the space of convergent subsequences. A map $L: l^{\infty} \to \mathbb{R}$ is a *Banach limit*, iff

- 1. It is a continuous linear functional.
- 2. For all $x = \{x_n\} \in c$,

$$Lx = \lim x_n$$
.

- 3. If $x \ge 0$, then $Lx \ge 0$.
- 4. $L\{x_{n+1}\} = L\{x_n\}$.

Theorem. *L* exists.

Proof. Put, for $x = \{x_n\}$,

$$f(x) = \lim x_n$$
.

 $f \colon c \to \mathbb{R}$ is a linear functional. Define a majoring sublinear functional (exercise) as

$$p(x) = \limsup \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Observe that $p|_c = f$, so $f \le p$. By HB, we have $L: l^{\infty} \to \mathbb{R}$, which, luckily, satisfies the definition of Banach limit:

- 1. $L|_{c} = f$.
- 2. If $x \le 0$, then $Lx \le p(x) \le 0$.
- 3. Put $x_i' = x_{i+1} x_i$. By linearity of L, it is sufficient to show that $L\{x_n'\} = 0$. And indeed,

$$p(x') = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (x_{n+1} - x_n) = 0.$$

The complex case

Definition. Let $c \leq l^{\infty}(\mathbb{C})$ be the space of convergent subsequences. A map $L: l^{\infty} \to \mathbb{C}$ is a *Banach limit*, iff

- 1. It is a continuous linear functional.
- 2. For all $x = \{x_n\} \in c$,

$$Lx = \lim x_n$$
.

3. If $x \in \mathbb{R}$ and $x \ge 0$, then $Lx \ge 0$.

- 4. $L\{x_{n+1}\} = L\{x_n\}$.
- 5. ||L|| = 1.

Theorem. *L* exists.

Proof. Let *L* be a real Banach limit. For $a, b \in l^{\infty}(\mathbb{C})$, define

$$L(a+ib) := La + iLb$$
.

All of the properties now follow trivially from those of real limits, except the final one.

Simple functions are dense in l^{∞} , so we may prove the statement for them and be happy after using continuity of L. Let $x=\sum \alpha_k \chi_{E_k}$ for some partition $\bigsqcup_{k\in\mathbb{N}} E_k=\mathbb{N}$, and $\left|\alpha_{\square}\right|\leq 1$. Then $Lx=\sum \alpha_k L\chi_{E_k}$, and

$$|Lx| \le \sum_{k \in \mathbb{N}} L(\chi_{E_k})$$

$$= L(\chi_{\sqcup E_k})$$

$$\le 1,$$

which was asserted.

Complex Hanh-Banach

Let $K = \mathbb{C}$.

Definition. Let Z be a complex vector space. We denote by Z^{\star} the space of bounded linear functionals $Z \to \mathbb{C}$.

Lemma. A functional $f \in Z^*$ can be recovered from its real or imaginary part.

Proof. Let f = u + iv. Since f is linear over \mathbb{C} , we may write

$$if(x) = iu(x) - v(x) = f(ix) = u(ix) - iv(ix).$$

Since 1 and i are a basis, we infer from here that

$$-v(x) = u(ix).$$

Theorem (Hanh-Banach, the complex version). Let X be a complex normed space, $Y \le X$. Let $p: X \to \mathbb{R}$ be a seminorm. Let $f \in Y^*$ be a linear functional such that $|f| \le p$. Then exists a functional $F \in X^*$ such that |f| = f and $|F| \le p$.

Proof. Let $f \in Y^*$ and u = Re f. u is a real linear functional on Y. By the real HB, exists a functional $U \in X^*$ such that $U|_Y = u$ and $|U(x)| \le p(x)$ for all $x \in X$. Define

$$F(x) := U(x) - iU(ix).$$

This is a complex functional on X, and $F|_Y = f$. We assert that $|F| \le p$. Let $r \in C$ be such that

$$|F(x)| = rF(x)$$

and |r| = 1. Then

$$|F(x)| = F(rx) = U(rx) \le p(rx) = |r|p(x) = p(x),$$

what was to be shown.

Quotient spaces

Definition. Let X be a normed space, $M \le X$. On X/M we can introduce a norm:

$$||[x]|| := \operatorname{dist}(x, M).$$

In this section, we preserve this naming, using, furthermore, $[\Box]$ or $q: X \to X/M$ for the canonical projection. (And of course, we use choice throughout.)

Lemma. This is indeed a norm.

Proof.

1. Homogeneity. x = x' + m for some $m \in M$, $x' \in \overline{M}$. m is the closest to x point of M: for any other m_1 we have

$$||x - m_1|| = ||x' + m - m_1|| \ge ||m - m_1|| + ||x'||.$$

Then

$$||[kx]|| = ||kx - m|| = |k|||x'|| = |k|||[x]||.$$

2. Triangle inequality. Since

$$||x + y - m|| \le ||x - m/2|| + ||y - m/2||.$$

- 3. Nonzero on nonzero vectors. By closedness of M.
- 4. Zero on the zero vector. As $0 \in M$.

Lemma. $||[x]|| \le ||x||$ for all $x \in X$.

Proof. $dist(x, M) \le ||x||$.

Lemma. If X is complete, then X/M is.

Proof. Let $\{[x_n]\}$ be a Cauchy sequence. There exists a subsequence $\{x_{n_k}\}$ such that

$$||[x_{n_k}-x_{n_{k+1}}]||<2^{-k}.$$

Let $\{y_k\}$ be a sequence in M such that

$$||x_{n_k} + y_k - x_{n_{k+1}} - y_{k+1}|| < 2^{1-k}$$

(it exists by the previous inequality and the definition of distance). Then $\{x_{n_k} - y_k\}$ is a Cauchy sequence (**exercise**). Since X is complete, it converges to some x_* . Then

$$[x_{n_k}] \to [x_0]$$

by the previous lemma.

Lemma. Let $W \subseteq X/M$. $q^{-1}(W)$ is open iff W is open.

Hence the norm topology we have introduced equals the usual quotient topology.

 \Leftarrow . Let $[x] \in W \subseteq X/M$. We want to find a neighbourhood $U \ni x$ such that $[U] \subseteq W$.

Since W is open, there exists $\epsilon > 0$ such that, if ||[y] - [x]||, then $qy \in W$.

That is, if $dist(y, x) < \epsilon$, then $y \in q^{-1}(U)$; as needed.

 \Rightarrow . Suppose that $q^{-1}(W)$ is open. Let $[x] \in W$. We want to find a ball around [x] that would lie in W. There is one

around x that lies in $q^{-1}(W)$: for all y with ||y - x|| < some $\epsilon > 0$ we have $y \in q^{-1}(W)$. This implies, in particular, that

$$||[y] - [x]|| \le ||y - x|| < \epsilon.$$

Lemma. Let $U \subseteq X$. Then qU is open.

That is, q is open.

Remark. The converse is not necessarily true.

Proof. Sufficient to show that $q^{-1}(qU)$ is open. In fact,

$$q^{-1}(qU)=\bigcup_{y\in M}(U+y).$$

Annulator

Definition. Let $M \leq X$, as before. Its *annulator* is the set

$$M^{\perp} = \left\{ f \in X^* \mid M \subseteq \ker f \right\}.$$

Theorem. There exists a linear isometry

$$\rho: X^*/M^{\perp} \longrightarrow M^*$$

defined by

$$\rho \colon [f] \longmapsto f|_M.$$

Proof. Let $[f] \in X^*/M^{\perp}$.

The ρ defined is indeed a bijective function, since for every $g \in M$ we have

$$f \sim g \iff f - g \sim 0$$

$$\iff f - g \in M^{\perp}$$

$$\iff (f - g)|_{M} = 0$$

$$\iff f|_{M} = g|_{M}.$$

This function does map into M^* : $f|_M \in M^*$ (a restriction of a linear function onto a linear subspace is linear; a restriction of a continuous function is continuous).

We show that it is an isometry. Let $\lambda \in M^*$. By HB there exists $\Lambda \colon X \to K$ such that $\Lambda|_M = \lambda$ and $\|\Lambda\| = \|\lambda\|$. But Λ gets mapped into λ by ρ , and ρ is bijective.

Theorem. There exists a linear isometry

$$(X/M)^* \longleftrightarrow M^{\perp}$$

defined by

$$\rho \colon f \longmapsto f \circ Q.$$

Proof. Let $\lambda \in (X/M)^*$, and let $\Lambda := \rho(\lambda)$. Since the norm of the composition does not surpass the product of norms, we have

$$\|\Lambda\| \leq \|\lambda\|.$$

Also, note that $\Lambda_{\mid} M = 0$.

Let $\Lambda \in M^{\perp}$. Define $\lambda[x] := \Lambda x$. Then $\|\lambda\| = \|\Lambda\|$: (1) obviously, $\|\lambda\| \le \|\Lambda\|$; (2) the other inequality has been shown.

Separability of duals

Theorem. Let X be normed and X^* separable. Then X is separable.

Example. The converse is false. Let $X = l^1$. Then $\left(l^1\right)^* \cong l^{\infty}$. But l^1 is separable, while l^{∞} is not.

Proof. Let $\{f_j\}$ be a dense sequence in the unit sphere of X^* . Such exists by hypothesis.

By definition of norm in the dual, there is a sequence $\{x_j\} \in X$ with $||x_j|| = 1$ and $|f_j(x_j)| \ge 1 - \epsilon_j$ for all j.

Let $M = \operatorname{Cl}\operatorname{Span}\left\{x_j\right\}$. By definition, this is a separable space.

Let $y \notin M$. By one of corollaries of HB there exists $f \in X^*$ such that $f|_M = 0$, $f(y) \neq 0$, ||f|| = 1.

Since $\{f_j\}$ is dense, there exists a convergent subsequence

 g_k of $\{f_j\}$: $g_k \to f$. Assume that $|g_k(x_k)| \ge 1/2$. Then

$$|f(g_k)| = |f(x_k) - g_k(x_k) + g_k(x_k)|$$

$$\ge |g_k(x_k)| - |f(x_k) - g_k(x_k)|$$

$$\ge 1/2 - o(1).$$

This is in contradiction to $f|_M = 0$.

Open map and closed graph theorems

Theorem (on an open map). Let X and Y be Banach and $A \in \mathcal{B}(X, Y)$. Then A is open.

The proof spans several lemmas.

Let $B_r \subseteq X$ be the ball of radius r > 0 with centre at 0.

Lemma. $0 \in \operatorname{Int} \operatorname{Cl} A(B_1)$.

Proof. Observe that

$$Y = \bigcup_{n \ge 1} \operatorname{Cl} A(B_n).$$

By Baire's theorem, one of the sets in the union has nonempty interior. But as they are all homothetic, this is true for any of them. Suppose y_0 lies in $V := \operatorname{Int} \operatorname{Cl} A(B_1)$ together with a ball B around it of radius δ .

Let $\{x_n\}$ be such that $||x_n|| < 1$ and $Ax_n \to y_0$ (such exists, since y_0 is in the closure).

For sufficiently small y, $y_0 + y \in Cl A(B_1)$.

There exists $\{z_n\}$ such that $\|z_n\| < 1$ and $Az_n \to y_0 + y$. $A(z_n - x_n) \to y$. Since $z_n, x_n \in B_1, z_n - x_n \in B_2$. The last two sentences say exactly that

$$y \in \operatorname{Cl} A(B_2)$$
.

This holds for sufficiently small y, which is equivalent to saying that

$$0 \in \operatorname{Int} \operatorname{Cl} A(B_1)$$
.

Lemma. Cl $A(B_1) \subseteq A(B_2)$.

Proof. Let $y_1 \in \operatorname{Cl} A(B_1)$. $0 \in \operatorname{Int} \operatorname{Cl} A(B_{1/2})$. Since in every neighbourhood of y_1 there are points from $A(B_1)$,

$$(y_1 - \operatorname{Cl} A(B_{1/2})) \cap A(B_1) \neq \emptyset.$$

That is, exists $x_1 \in B_1$ such that

$$Ax_1 \in y_1 - \text{Cl } A(B_{1/2}).$$

For some $y_2 \in \operatorname{Cl} A(B_{1/2})$,

$$Ax_1 = y_1 - y_2$$
.

Likewise,

$$(y_2 - \operatorname{Cl} A(B_{1/4})) \cap A(B_{1/2}) \neq \emptyset.$$

Continuing to infinity, we get a sequence $\{x_n\}$ such that

$$||x_n|| \le 2/2^n,$$

and a sequence $\{y_n\}$ such that $y_n \in \operatorname{Cl} A(B_{2/2^n})$ and

$$Ax_n = y_n - y_{n+1}.$$

Let $x := \sum x_n$ — by completeness of X, this vector indeed exists and has norm < 2. By continuity of A, $y_1 = Ax \in A(B_2)$.

Proof for the open graph theorem. Summing the two lemmas, we get

$$0 \in \operatorname{Int} \operatorname{Cl} A(B_1) \subseteq \operatorname{Int} A(B_1)$$
.

This finishes the proof, since

$$||Ax - Ax_0|| < \epsilon \iff ||A(x - x_0)|| < \epsilon.$$

Inverse function theorem

Theorem (inverse function theorem). Let X and Y be Banach and $A \in \mathcal{B}(X,Y)$ a bijection. Then A^{-1} is linear and continuous.

Proof. A^{-1} is linear anyway. Continuity is a direct corollary of the open map theorem.

Closed graph theorem

Definition. If *X* and *Y* are normed spaces, their coproduct has the following structure of a normed space:

$$||x \oplus y|| := ||x|| + ||y||.$$

Lemma. Let $A: X \to Y$ be a linear operator. Its graph is closed iff for any sequence $x_n \to 0$ such that the limit $\lim Ax_n$ exists, $Ax_n \to 0$.

Remark. The difference with continuity is that we do not expect that $\{Ax_n\}$ will automatically converge. The closed graph theorem tells it will in complete spaces.

 \Rightarrow . As the graph is closed, there is some x so that $(x_n, Ax_n) \rightarrow (x, Ax)$.

$$||x_n - x|| + ||A(x_n - x)|| \to 0.$$

Then

$$||x_n - x||, ||A(x_n - x)|| \to 0.$$

Since the sequence limit is unique, x = 0. Then $||Ax_n|| \to 0$.

 \Leftarrow . Let $(x_n, Ax_n) \to (x, y)$. We assert that y = Ax. Indeed,

$$||x_n - x|| + ||Ax_n - y|| \to 0$$

implies that $x_n - x \to 0$. But then $A(x_n - x) \to 0$ by hypothesis, and so

$$||Ax_n - Ax|| \to 0.$$

By uniqueness of limits, y = Ax.

Theorem (the closed graph theorem). Let X and Y be complete, $A: X \to Y$ linear. If the graph of A is closed, then A is continuous.

The converse is obvious.

Proof. $X \otimes Y$ is complete. Let G be the graph of A. Let $P: G \to X$ be defined as

$$P(x, Ax) := x$$
.

P is a bijection. The inverse function theorem says that P^{-1} is continuous. Let $Q: G \to X$ be defined as

$$Q(x, Ax) := Ax$$
.

Then Q is continuous. Then $A = QP^{-1}$ is continuous.

Why is the closed graph theorem important

Lemma. Let $\varphi \in L^p$. Define a linear $M: L^p \to L^p$ as $Mf := \varphi \cdot f$. Suppose that im $M \subseteq L^p$. Then M is bounded.

Proof. We check that the graph of M is closed. Let $f_n \to 0$ in L^p and $\varphi f_n \to g$. By Hölder's inequality, the sequence φf_n also converges to 0.

Sobolev spaces

Definition (Sobolev spaces). The normed space $W_p^n[a,b]$ consists of $f \in C^{n-1}[a,b]$ with the norm

$$||f||_{W_p^n} := \left(\sum_{k=0}^n ||f^{(k)}||_{L^p}^p\right)^{\frac{1}{p}}.$$

Lemma. This is a complete space.

Theorem. Let $M: f \mapsto \varphi \cdot f$ for some $\varphi \in W_p^n$. Then M is bounded.

Proof. Let $f_n \to 0$ and $\varphi f_n \to g$. Then $f_n \to 0$ pointwise. Then $\varphi f_n \to 0$ pointwise, which implies g = 0.

Complementary spaces

Definition. Let X be Banach. Let $M, N \leq X$ be closed spaces. The M and N are said to be *algebraically complementary*, iff

$$M + N = X$$
 and $M \cap N = \{0\}.$

They are topologically complementary, iff, in addition,

$$||x \oplus y|| \sim ||x|| + ||y||$$

for all $x \in M$ and $y \in N$ (that is, these norms are equivalent on $M \otimes N \cong X$.

Theorem. If X is Banach and $M, N \le X$ are algebraically complementary, then M and N are topologically complementary.

Proof. The map

$$x + y \mapsto x \otimes y$$

is an isomorphism of M+N and $M\otimes N$. The norms ||x||+||y|| and ||x+y|| are equivalent. The inverse map is continuous by the inverse function theorem; hence Lipschitz. Together with the triangle inequality, this gives the equivalence of norms.

Uniform boundedness principle

Theorem (uniform boundedness principle). Let X be Banach and Y normed. Let $A \subseteq \mathcal{B}(X,Y)$. A is bounded iff

$$\forall x \in X : \sup_{a \in A} ||ax|| < \infty.$$

Proof. If *A* is bounded, this is trivially true. We prove the converse.

Let

$$Q_n := \left\{ x \in X \mid \forall \, a \in A \colon \|ax\| \le n \right\}.$$

 Q_n is closed as an intersection of closed spaces (all a are continuous). By Baire's theorem, $\bigcap Q_n$ has non-empty interior. Let $x_0 \in \bigcap Q_n$ be such that

$$||a(x_0+x)|| \le 1$$

whenever ||x|| < r for all $a \in A$. Then

$$||ax|| \le 1 + ||ax_0||$$

for all $a \in A$. This implies

$$\sup_{\|x\| < n} \|ax\| < +\infty.$$

Corollary. Let X be normed, $A \subseteq X$. A is bounded iff, for every $f \in X^*$, f(A) is bounded.

Proof. The dual is complete. Put $X \leftarrow X^*$ and $Y \leftarrow X$.

Theorem. Let X be Banach, Y normed, and $A \subseteq \mathcal{B}(X,Y)$. A is bounded iff

$$\forall x \in X \ \forall g \in Y^*: \sup_{a \in A} |gax| < \infty.$$

Proof. A is bounded iff gA is bounded for every g iff

$$\forall g \in X^* \ \forall x \in X \colon \sup_{ga \in gA} |gax| < \infty$$

iff

$$\forall g \in X^* \ \forall x \in X \colon \sup_{a \in A} |gax| < \infty.$$

Banach-Steinhaus theorem

Theorem. Let X, Y be Banach spaces. Let $A_n \in \mathcal{B}(X, Y)$. Suppose $A_n x$ converges in Y for all $x \in X$. Then

$$\sup_{n} ||A_n|| < \infty,$$

and exists $A \in \mathcal{B}(X, Y)$ such that

$$||A_nx - Ax|| \to 0$$

for all $x \in X$.

Proof. Put $Ax := \lim(A_n x)$. If $A_n x$ converges for all x, then $A_n x$ is bounded in Y for all x. Then $\{A_n\}$ is bounded, and so

$$||Ax|| \leq \sup_{n} ||A_n|| ||x||.$$

Inner products

Definition. Let H be a vector space over K. An *inner product* on H is a map $\langle \Box, \Box \rangle \colon H^2 \to K$ such that

- 1. $\langle \alpha x + \beta, y \rangle = \alpha \langle x, y \rangle + \beta$ for all $x, y \in H$ and $\alpha, \beta \in K$.
- 2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in H$.
- 3. $\langle x, x \rangle \in \mathbb{R}$ and $\langle x, x \rangle \geq 0$.
- 4. $\langle x, x \rangle = 0$ implies x = 0.

Lemma (CBS).

$$\left|\left\langle x,y\right\rangle \right|\leq \|x\|\left\|y\right\|.$$

Proof. Let $\alpha \in K$.

$$0 \le \langle x + \alpha y, x + \alpha y \rangle$$

= $||x||^2 + 2 \operatorname{Re}(\alpha \langle y, x \rangle) + |\alpha|^2 ||y||^2$.

 $\alpha =: re^{i\varphi}$. Choose φ in such a way that $\alpha \langle y, x \rangle \in \mathbb{R}$. The resulting degree 2 polynomial in r has at most one root.

Definition.

$$||x|| := \sqrt{\langle x, x \rangle}.$$

Lemma. This is a norm.

Proof. We check triangle inequality.

$$||x+y||^2 \le (||x|| + ||y||)^2$$

$$\iff ||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2.$$

This follows from CBS.

Lemma (parallelogram identity).

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof. Direct computation.

Lemma. Let $p \neq 2$ and $p \geq 1$. Then the l^p norm is not induced by any inner product.

Proof. $2^{1/p} + 2^{1/p} \neq 2(1+1)$.

Definition. We say x and y are *orthogonal* and write $x \perp y$, iff $\langle x, y \rangle = 0$.

Lemma (Pythagoras). x_1, \ldots, x_n are pairwise orthogonal iff

$$||x_1 + \dots + x_n||^2 = ||x_1||^2 + \dots + ||x_n||^2.$$

Proof. Direct computation.

Lemma (polarisation identity). Let $U = \{\pm 1, \pm i\}$ in case $K = \mathbb{C}$ and $U = \{\pm 1\}$ in case $K = \mathbb{R}$. Then

$$\langle x, y \rangle = \frac{1}{4} \sum_{\alpha \in U} \alpha ||x + \alpha y||^2.$$

Proof. Direct computation.

Lemma. Let $f: U \to B$ a linear operator. ||fu|| = ||u|| for all $u \in U$ iff $\langle fx, fy \rangle = \langle x, y \rangle$.

Proof. From the polarisation identity.

Hilbert spaces

Definition. Let H be an inner product space. H is Hilbert, iff it is complete with respect to the norm that is induced by the inner product.

Example. Consider C[a, b] with

$$\langle f, g \rangle \coloneqq \left(\int \overline{f} \cdot g \right)^{1/2}.$$

This space is not complete, so not Hilbert. But its completion is isometrically isomorphic to $L^2[a,b]$.

Projections

Theorem (existence and uniqueness of projections). Let H be a Hilbert space, C a closed convex set, $a \in H$. Then exists unique $x_0 \in C$ such that

$$||a-x_0||=d:=\operatorname{dist}(a,C).$$

Proof of existence. We may assume that a = 0. We want a vector of minimal norm in C. Exists a finite sequence $x_n \in C$ such that $||x_n|| \to d$. From parallelogram identity,

$$\left\| \frac{x_n - x_m}{2} \right\|^2 + \left\| \frac{x_n + x_m}{2} \right\|^2 = \frac{\left\| x_n \right\|^2 + \left\| x_m \right\|^2}{2}.$$

The right part tends to d^2 ; the right addend on the left part is at least d^2 . Then $x_n \to x_0$ for some $x_0 \in C$, since H is complete.

Proof of uniqueness. From the same identity we derive that the difference between two such vectors must be zero.

Projections onto linear subspaces

Theorem (definitions of a projection onto a subspace). Let U be a Hilbert space, $V \le U$. Then V is a closed convex set, and so satisfies the previous theorem. Let $x \in U$, $y_0 \in V$. The following are equivalent:

1.
$$||x - y_0|| = \text{dist}(X, V)$$
.

2.
$$x - y_0 \perp V$$
.

 $2 \Rightarrow 1$. Let $y \in V$. Then

$$||x - y||^2 = ||(x - y_0) - (y - y_0)||^2$$

$$= ||(x - y_0)||^2 - ||(y - y_0)||^2$$

$$\geq ||x - y_0||^2.$$

 $1 \Rightarrow 2$.

$$||x - (y_0 + \beta y)||^2$$

$$= ||x - y_0||^2 + |\beta|^2 ||y||^2 - 2 \operatorname{Re} (\beta \langle y, x - y_0 \rangle).$$

Choose β such that $\beta\langle y, x - y_0 \rangle \in \mathbb{R}$ and $\beta\langle y, x - y_0 \rangle < 0$. Since parabolas are convex, $y \perp x - y_0$ would lead to a contradiction. **Lemma.** In the conditions of the previous theorem, let $P: U \to V$ map every $x \in U$ into the corresponding y_0 . Then P is linear.

Proof. Because

$$\alpha_1 x_1 - P x_1 + \alpha_2 x_2 - P x_2 \perp K.$$

Riesz's lemma

Lemma (Riesz). Let H be a Hilbert space. The following are equivalent:

- 1. *f* is a continuous functional on *H*.
- 2. Exists $y \in H$ such that

$$fx = \langle y, x \rangle.$$

 $2 \Rightarrow 1$. Clearly, f is a continuous linear functional. By CBS, $||fx|| \le ||x|| ||y||$. This is sharp when x = y.

 $1\Rightarrow 2$. Let $N:=\ker f$. If N=H, then f=0. Suppose $w\in H\setminus N$. Define $v:=w-P_Nw$. Obviously, $v\perp N$. Define $\Phi_v(x)=\langle v,x\rangle$. Then $\ker \Phi_v=\ker f$, and so exists $c\in K$ such that $\Phi_v=cf$. Then

$$fx = \langle v/c, x \rangle$$
.

Definition. A topological vector space V is *reflexive*, iff the canonical map $V \to V^{**}$ is an isomorphism.

Example. The map $\Phi_{\square} \colon H \to H^*$ we have built in the proof is conjugate-linear:

$$\Phi_{\alpha v} = \overline{\alpha} \Phi_v.$$

Thus any Hilbert space is reflexive.

Orthonormal bases

Definition. A subset $S \subseteq U$ of a Hilbert space U is *orthonormal*, iff ||s|| = 1 and $s \perp s'$ for all different $s, s' \in S$. S is a *basis*, iff it is maximal among orthonormal sets.

Lemma. An orthonormal basis *B* exists.

Proof. From Zorn's lemma.