MOwNiT Laboratorium 1

Kacper Janda

9 października 2018

1 Wartości błędów dla przykładowych wartości

Wyniki pomiarów dla pojedynczej precyzji:

Wartość	Wartość binarna	Błąd bezwzględny	Błąd względny	Wielkość tablicy
0.1111111	0.000111001	102086.875000	0.091878	10^{7}
0.5078125	0.1000001	76108.500000	0.007651	10^{7}
0.5625000	0.1001000	508491.500000	0.090398	10^{7}

Wyniki pomiarów dla podwójnej precyzji:

Wartość	Wartość binarna	Błąd bezwzględny	Błąd względny	Wielkość tablicy
0.1111111	0.000111001	0.000182	0.000000	10^{7}
0.5078125	0.1000001	0.000000	0.000000	10^{7}
0.5625000	0.1001000	0.000000	0.000000	10^{7}

Przykładowe dane dające niezerowy błąd względny dla arytmetyki podwójnej precyzji:

Wartość	Błąd bezwzględny	Błąd względny	Wielkość tablicy
0.5312523432452345	45476.014320	0.000001	10^{11}

Użycie podwójnej precyzji zapewnia znaczne bardziej dokładne wyniki ale nie rozwiązuje problemu do końca.

Błędy numeryczne powstały przez dodawanie dwóch liczb, które znacznie różnią się wielkością. Ich wykładniki muszą zostać sprowadzone do tej samej wartości, co powoduje utratę cyfr znaczących.

2 Wykresy błędu dla sum cząstkowych

Wielkość tablicy	10^{7}
Wartość	0.53125

Na początku błąd bezwzględny jest równy 0, ponieważ suma jest na tyle

mała, że jest możliwe dodanie do niej pojedynczej wartości z pełną dokładnością. Gdy przestaje to być możliwe, błąd względny zaczyna rosnąć. Ponieważ zarówno rzeczywista suma, jak i błąd bezwzględny rosną liniowo lecz ich wykresy nie są do siebie równoległe to wykres błędu względnego jest fragmentem hiperboli.

3 Porównanie wydajności algorytmów

Wraz ze wzrostem dokładności rośnie czas potrzebny do wykonania obliczeń.

Algorytm Kahana dzięki redukcji błędów numerycznych oraz braku wywołań rekurencyjnych jest najlepszem wyborem jeżeli zależy nam na precyzji obliczeń. Największą zaletą algorytmów naiwnych jest ich szybkość, więc mogą znaleźć zastosowanie w aplikacjach przetwarzających dane w czasie rzeczywistym, w których poprawność numeryczna nie ma najwyższego priorytetu.