Analysis of Algorithms: Methods and Examples

CS 350 – Algorithms and Complexity
Paul Doliotis (PhD)
Adjunct Assistant Professor
Portland State University

 Asymptotic behavior: The behavior of a function as the input approaches infinity.

Which of these functions is smallest asymptotically?

- Which of these functions is smallest asymptotically?
 - f(N) seems to grow very slowly after a while.

Which of these functions is smallest asymptotically?

However, the picture is not conclusive (need to see what

happens for larger N). h(N) c*f(N) N: Size of data g(N)f(N)

Which of these functions is smallest asymptotically?

- Proving that f(N) = O(g(N)) would provide a conclusive answer.

Using Limits for Comparing Order of Growth

- $\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$, implies that t(n) has a smaller order of growth than g(n)
- $\lim_{n \to \infty} \frac{t(n)}{g(n)} = c$, c > 0, implies that t(n) has the same order of growth as g(n)
- $\lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty$, implies that t(n) has a larger order of growth than g(n)
- Note that the first two cases mean that: $t(n) \in O(g(n))$
- Note that the last two cases mean that: $t(n) \in \Omega(g(n))$
- Note that the second case means that: $t(n) \in \Theta(g(n))$

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
 - constants
 - behavior for small values of N.
- How do we see that?

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
 - constants
 - behavior for small values of N.
- How do we see that?
 - In the previous formulas, it is sufficient that the limit is equal to a constant. The value of the constant does not matter.
 - In the previous formulas, only the limit at infinity matters.
 This means that we can ignore behavior up to any finite value, if we need to.

Using Limits: An Example

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(???).$$

Using Limits: An Example

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).$$

• Let
$$f(n) = \frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3}$$

• Let $g(n) = n^2$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} \frac{1}{n^2} \right)$$
$$= \lim_{n \to \infty} \left(\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^5 + n^3 + 3n^2} \right) = \frac{1}{5}$$

Using Limits: An Example

• Show that
$$\frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3} = \Theta(n^2).$$

• Let
$$f(n) = \frac{n^5 + 3n^4 + 2n^3 + n^2 + n + 12}{5n^3 + n + 3}$$

• Let $g(n) = n^2$.

- In the previous slide, we showed that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{5}$
- Therefore, $f(n) = \Theta(g(n))$.

- $1 = O(\log(N))$
- $\log(N) = O(N)$
- $\bullet N = O(N^2)$
- If $c \ge d \ge 0$, then $N^d = O(N^c)$.

- $1 = O(\log(N))$
- $\log(N) = O(N)$
- $\bullet N = O(N^2)$
- If $c \ge d \ge 0$, then $N^d = O(N^c)$.
 - Higher-order polynomials always get larger than lowerorder polynomials, eventually.

- $1 = O(\log(N))$
- $\log(N) = O(N)$
- $\bullet N = O(N^2)$
- If $c \ge d \ge 0$, then $N^d = O(N^c)$.
 - Higher-order polynomials always get larger than lowerorder polynomials, eventually.
- For any d, if c > 1, $N^d = O(c^N)$.

- $1 = O(\log(N))$
- $\log(N) = O(N)$
- $\bullet N = O(N^2)$
- If $c \ge d \ge 0$, then $N^d = O(N^c)$.
 - Higher-order polynomials always get larger than lowerorder polynomials, eventually.
- For any d, if c > 1, $N^d = O(c^N)$.
 - Exponential functions always get larger than polynomial functions, eventually.

- $1 = O(\log(N))$
- $\log(N) = O(N)$
- $\bullet N = O(N^2)$
- If $c \ge d \ge 0$, then $N^d = O(N^c)$.
 - Higher-order polynomials always get larger than lowerorder polynomials, eventually.
- For any d, if c > 1, $N^d = O(c^N)$.
 - Exponential functions always get larger than polynomial functions, eventually.
- You can use these facts in your assignments.
- You can apply transitivity to derive other facts, e.g., that $log(N) = O(N^2)$.

Using Substitutions

• If $\lim_{x \to \infty} h(x) = \infty$, then:

$$f(x) = O(g(x)) \Rightarrow f(h(x)) = O(g(h(x))).$$

- How do we use that?
- For example, prove that $\log(\sqrt{N}) = O(\sqrt{N})$.

Using Substitutions

• If $\lim_{x \to \infty} h(x) = \infty$, then:

$$g(x) = O(f(x)) \Rightarrow g(h(x)) = O(f(h(x))).$$

- How do we use that?
- For example, prove that $\log(\sqrt{N}) = O(\sqrt{N})$.
- Use $h(x) = \sqrt{N}$. We get:

$$log(N) = O(N) \Rightarrow log(\sqrt{N}) = O(\sqrt{N})$$

Big-Oh Notation: Example Problem

- Is $N = O(\sin(N) N^2)$?
- Answer:

Big-Oh Notation: Example Problem

- Is $N = O(\sin(N) N^2)$?
- Answer: no!
- Why? sin(N) fluctuates forever between -1 and 1.
- As a result, sin(N) N² fluctuates forever between negative and positive values.
- Therefore, for every possible $c_0>0$ and N_0 , we can always find an $N>N_0$ such that:

$$N > c_0 \sin(N) N^2$$