EXPERIMENT NO.11

Nidhi Kochar, Batch-S13, Roll no.44

AIM-Write python programs to implement Pandas and its various functions

THEORY:

In computer programming, pandas is a software library written for the Python programming language for data manipulation and analysis.

In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software released under the three-clause BSD license. The name is derived from the term "panel data", an econometrics term for data sets that include observations over multiple time periods for the same individuals.

Its name is a play on the phrase "Python data analysis" itself. Wes McKinney started building what would become pandas at AQR

LIBRARY FEATURES:

9. Hierarchical axis indexing to work with high-dimensional data in a lower-dimensional data structure.

10.Time series-functionality: Date range generation and frequency conversion, moving window statistics, moving window

11.linear regressions, date shifting and lagging.

12. Provides data filtration.

13. The library is highly optimized for performance, with critical code paths written in Cython or C.

```
In [1]: import pandas as pd
 In [3]: pd.Series([13,17,19],index=['P1','P2','P3'])
 Out[3]: P1
               13
               17
         P2
         Р3
               19
         dtype: int64
In [29]: h=pd.Series([13,17,19],index=['P1','P2','P3'])
         h[1:]#Slicing value from index location 1 till the end
Out[29]: P2
               17
         Р3
               19
         dtype: int64
In [31]: h.loc['P2']#Using explicit indexing
Out[31]: 17
In [32]: h.iloc[1]#Using implicit indexing
Out[32]: 17
```

```
In [7]: d = {'Prime nos': [13,17,19], 'Composite Nos.': [4,6,20]}
         df = pd.DataFrame(data=d)
         df#Creates table
Out[7]:
             Prime nos Composite Nos.
          0
                  13
                                 4
          1
                  17
                                 6
          2
                                20
                  19
In [12]: df.values#Prints all the values
Out[12]: array([[13, 4],
                [17, 6],
                [19, 20]], dtype=int64)
In [11]: df.index#Prints row labels of Dataframe
Out[11]: RangeIndex(start=0, stop=3, step=1)
In [15]: df.columns#Prints the names of all coloumns
Out[15]: Index(['Prime nos', 'Composite Nos.'], dtype='object')
In [19]: import numpy as np
         g=np.arange(14).reshape(7,2)
         g#Creating a numpy array
Out[19]: array([[ 0,
                      1],
                [ 2,
                     3],
                [4,5],
                [6,
                     7],
                [8, 9],
                [10, 11],
                [12, 13]])
```

In [20]: pd.DataFrame(g,columns=['A','B'])#Converting the numpy array to DataFrame

Out[20]:

In [34]: df = pd.read_csv("student_records.csv")
 df#Reading the csv file from the records

Out[34]:

	Name	OverallGrade	Obedient	ResearchScore	ProjectScore	Recommend
0	Henry	Α	Υ	90	85	Yes
1	John	С	N	85	51	Yes
2	David	F	N	10	17	No
3	Holmes	В	Υ	75	71	No
4	Marvin	E	N	20	30	No
5	Simon	Α	Υ	92	79	Yes
6	Robert	В	Υ	60	59	No
7	Trent	С	Υ	75	33	No

In [36]: df.head()# Prints first 5 values of the table

Out[36]:

	Name	OverallGrade	Obedient	ResearchScore	ProjectScore	Recommend
0	Henry	А	Υ	90	85	Yes
1	John	С	N	85	51	Yes
2	David	F	N	10	17	No
3	Holmes	В	Υ	75	71	No
4	Marvin	Е	N	20	30	No

In [37]: df.tail()# prints last 5 values of the Table

Out[37]:

	Name	OverallGrade	Obedient	ResearchScore	ProjectScore	Recommend
3	Holmes	В	Υ	75	71	No
4	Marvin	E	N	20	30	No
5	Simon	Α	Υ	92	79	Yes
6	Robert	В	Υ	60	59	No
7	Trent	С	Υ	75	33	No

```
In [38]: df.describe#Describes the whole table
Out[38]: <bound method NDFrame.describe of</pre>
                                                  Name OverallGrade Obedient ResearchScor
            ProjectScore Recommend
             Henry
                                         Υ
                                                        90
                                                                      85
                                                                                Yes
         0
                               C
         1
               John
                                         N
                                                        85
                                                                      51
                                                                                Yes
         2
             David
                                F
                                                                      17
                                         Ν
                                                        10
                                                                                 No
                               В
         3
            Holmes
                                         Υ
                                                        75
                                                                      71
                                                                                 No
         4
            Marvin
                                Ε
                                                        20
                                                                      30
                                                                                 No
                                                                      79
         5
                                         Υ
                                                        92
              Simon
                               Α
                                                                                Yes
            Robert
                               В
                                                                      59
         6
                                         Υ
                                                        60
                                                                                 No
                               C
         7
              Trent
                                                        75
                                                                      33
                                                                                 No>
In [39]: df.shape#Prints the rows and columns of table
Out[39]: (8, 6)
In [40]: df.info#Similar to describe functionality
Out[40]: <bound method DataFrame.info of
                                                Name OverallGrade Obedient
                                                                             ResearchScore
         ProjectScore Recommend
                                         Υ
                                                        90
                                                                      85
             Henry
                                                                                Yes
         1
               John
                               C
                                         Ν
                                                        85
                                                                      51
                                                                                Yes
                                F
              David
         2
                                         Ν
                                                        10
                                                                      17
                                                                                 No
                               В
                                                        75
         3
            Holmes
                                         Υ
                                                                      71
                                                                                 No
            Marvin
                                Ε
                                                        20
                                                                                 No
         4
                                         N
                                                                      30
         5
              Simon
                               Α
                                         Υ
                                                        92
                                                                      79
                                                                                Yes
            Robert
                               В
                                         Υ
                                                        60
                                                                      59
                                                                                 No
                               C
             Trent
                                                        75
                                                                      33
                                                                                 No>
In [42]: | i=np.arange(12).reshape(3,4)
         i#Creating numpy array of 3 rows and 4 coloumns
Out[42]: array([[ 0,
                       1,
                           2, 3],
                 [4, 5, 6, 7],
```

9, 10, 11]])

```
In [49]: | o=pd.DataFrame(i,columns=['A','B','C','D'])
         o#Converting the array to DataFrame
Out[49]:
            A B C
                     D
         0 0 1
                  2
                     3
            4 5 6 7
         2 8 9 10 11
In [50]: o_array = o.values
         print(o_array)
         print(type(o_array))#Prints the type of array
         [[0 1 2 3]
          [4 5 6 7]
          [8 9 10 11]]
         <class 'numpy.ndarray'>
In [52]: from numpy import nan
         o.iloc[2,2]=nan
         o#Converting one of the values to Nan
Out[52]:
            А В
                   C D
           0 1
                  2.0
           4 5
                  6.0 7
         2 8 9 NaN 11
In [57]: | o.fillna(10)
         #Filling the Nan value to specified number
Out[57]:
            А В
                   C D
            0 1
                  2.0
           4 5
                  6.0 7
         2 8 9 10.0 11
In [78]: x=np.full((3,3),6)
         Х
Out[78]: array([[6, 6, 6],
                [6, 6, 6],
                [6, 6, 6]])
```

```
In [79]: y=pd.DataFrame(x,columns=['C1','C2','C3'])
y
```

Out[79]:

```
    C1
    C2
    C3

    0
    6
    6
    6

    1
    6
    6
    6

    2
    6
    6
    6
```

```
In [83]: y.groupby('C2').mean()#Prints the mean of column 2
```

Out[83]:

C1 C3

6

6

In [112]: import pandas as pd
 df = pd.read_csv("record.csv")
 df

Out[112]:

	Roll No	Name	Math	Python	COA	AT	CNND	Total Score	Percentage
0	1	S1	45	32	67	70	60	274	55.0
1	2	S2	56	34	98	37	80	305	61.0
2	3	S3	67	77	87	53	98	382	76.0
3	4	S4	71	77	43	2	49	243	49.0
4	5	S5	97	77	87	42	96	398	80.0
5	6	S6	50	4	20	35	54	163	33.0
6	7	S7	52	100	40	35	71	298	60.0
7	8	S8	69	12	88	65	23	256	51.0
8	9	S9	98	12	83	50	40	284	57.0
9	10	S10	44	90	32	25	42	233	47.0
10	11	S11	73	69	57	23	10	233	47.0
11	12	S12	22	55	20	4	36	137	27.0
12	13	S13	70	71	15	99	45	300	60.0
13	14	S14	55	34	59	48	21	217	43.0
14	15	S15	36	9	16	59	46	166	33.0
15	16	S16	43	69	21	76	34	244	49.0
16	17	S17	59	69	59	41	42	269	54.0
17	18	S18	94	24	62	37	18	235	47.0
18	19	S19	42	87	7	31	46	214	43.0
19	20	S20	32	23	76	81	57	269	54.0

In [113]: #a. Extract the top 5 rankers.
df.nlargest(5,'Total Score')

Out[113]:

	Roll No	Name	Math	Python	COA	AT	CNND	Total Score	Percentage
4	5	S5	97	77	87	42	96	398	80.0
2	3	S3	67	77	87	53	98	382	76.0
1	2	S2	56	34	98	37	80	305	61.0
12	13	S13	70	71	15	99	45	300	60.0
6	7	S7	52	100	40	35	71	298	60.0

In [114]: #b. Extract the last 5 losers.
df.nsmallest(5,'Total Score')

Out[114]:

	Roll No	Name	Math	Python	COA	ΑT	CNND	Total Score	Percentage
11	12	S12	22	55	20	4	36	137	27.0
5	6	S6	50	4	20	35	54	163	33.0
14	15	S15	36	9	16	59	46	166	33.0
18	19	S19	42	87	7	31	46	214	43.0
13	14	S14	55	34	59	48	21	217	43.0

In [125]: #c. Display the names of the students whose Total Score is below median. df.median()#finding the median

Out[125]: Roll No 10.5 Math 55.5 Python 62.0 COA 58.0 ΑT 41.5 CNND 45.5 Total Score 250.0 Percentage 50.0 dtype: float64

In [123]: df[df.Percentage < 50]#Printing values less than median</pre>

Out[123]:

	Roll No	Name	Math	Python	COA	ΑT	CNND	Total Score	Percentage
3	4	S4	71	77	43	2	49	243	49.0
5	6	S6	50	4	20	35	54	163	33.0
9	10	S10	44	90	32	25	42	233	47.0
10	11	S11	73	69	57	23	10	233	47.0
11	12	S12	22	55	20	4	36	137	27.0
13	14	S14	55	34	59	48	21	217	43.0
14	15	S15	36	9	16	59	46	166	33.0
15	16	S16	43	69	21	76	34	244	49.0
17	18	S18	94	24	62	37	18	235	47.0
18	19	S19	42	87	7	31	46	214	43.0

In [18]: #Bifurcate the students and assign ranks depending on their scores.
#You can choose to have your range of marks to be assigned for grades A, B, C, D,

```
In [8]: import pandas as pd
df = pd.read_csv("record.csv")
df
```

Out[8]:

	Roll No	Name	Math	Python	COA	ΑT	CNND	Total Score	Percentage
0	1	S1	45	32	67	70	60	274	55.0
1	2	S2	56	34	98	37	80	305	61.0
2	3	S3	67	77	87	53	98	382	76.0
3	4	S4	71	77	43	2	49	243	49.0
4	5	S5	97	77	87	42	96	398	80.0
5	6	S6	50	4	20	35	54	163	33.0
6	7	S7	52	100	40	35	71	298	60.0
7	8	S8	69	12	88	65	23	256	51.0
8	9	S9	98	12	83	50	40	284	57.0
9	10	S10	44	90	32	25	42	233	47.0
10	11	S11	73	69	57	23	10	233	47.0
11	12	S12	22	55	20	4	36	137	27.0
12	13	S13	70	71	15	99	45	300	60.0
13	14	S14	55	34	59	48	21	217	43.0
14	15	S15	36	9	16	59	46	166	33.0
15	16	S16	43	69	21	76	34	244	49.0
16	17	S17	59	69	59	41	42	269	54.0
17	18	S18	94	24	62	37	18	235	47.0
18	19	S19	42	87	7	31	46	214	43.0
19	20	S20	32	23	76	81	57	269	54.0

```
In [14]: def fun(x):
    if 90<x<100:
        return 'A'
    elif 70<x<90:
        return 'B'
    elif 60<x<70:
        return 'C'
    elif 40<x<60:
        return 'D'
    else:
        return 'E'
#Defining function to map grades</pre>
```

Out[14]: 'B'

In [17]: df['Grades'] = df['Grades'].apply(fun)
df# Applying function to grades coloumn

Out[17]:

	Roll No	Name	Math	Python	COA	AT	CNND	Total Score	Percentage	Grades
0	1	S1	45	32	67	70	60	274	55.0	D
1	2	S2	56	34	98	37	80	305	61.0	С
2	3	S3	67	77	87	53	98	382	76.0	В
3	4	S4	71	77	43	2	49	243	49.0	D
4	5	S5	97	77	87	42	96	398	80.0	В
5	6	S6	50	4	20	35	54	163	33.0	E
6	7	S7	52	100	40	35	71	298	60.0	E
7	8	S8	69	12	88	65	23	256	51.0	D
8	9	S9	98	12	83	50	40	284	57.0	D
9	10	S10	44	90	32	25	42	233	47.0	D
10	11	S11	73	69	57	23	10	233	47.0	D
11	12	S12	22	55	20	4	36	137	27.0	Е
12	13	S13	70	71	15	99	45	300	60.0	Е
13	14	S14	55	34	59	48	21	217	43.0	D
14	15	S15	36	9	16	59	46	166	33.0	Е
15	16	S16	43	69	21	76	34	244	49.0	D
16	17	S17	59	69	59	41	42	269	54.0	D
17	18	S18	94	24	62	37	18	235	47.0	D
18	19	S19	42	87	7	31	46	214	43.0	D
19	20	S20	32	23	76	81	57	269	54.0	D

```
In [22]: #e. Find out how many students have received grade A.
#f. Find out how many students have received grade B.
#g. Find out how many students have received grade C.
#h. Find out how many students have received grade D.
#i. Find out how many students have received grade E.
df['Grades'].value_counts()
#value counts function prints the unique values and their counts in specified col
```

Out[22]: D 12 E 5 B 2

C 1

Name: Grades, dtype: int64

In [23]: #g. The grace marks allowed for 100 marks subject is 5 Marks.

#Consider this as a new functionality and add another column Total Score which mu

#Now find out, which subject has the highest failure rate.

In [7]: import pandas as pd
 df = pd.read_csv("record.csv")
 df

Out[7]:

	Roll No	Name	Math	Python	COA	ΑT	CNND	Total Score	Percentage
0	1	S1	45	32	67	70	60	274	55
1	2	S2	56	34	98	37	80	305	61
2	3	S3	67	77	87	53	98	382	76
3	4	S4	71	77	43	2	49	243	49
4	5	S5	97	77	87	42	96	398	80
5	6	S6	50	4	20	35	54	163	33
6	7	S7	52	100	40	35	71	298	60
7	8	S8	69	12	88	65	23	256	51
8	9	S9	98	12	83	50	40	284	57
9	10	S10	44	90	32	25	42	233	47
10	11	S11	73	69	57	23	10	233	47
11	12	S12	22	55	20	4	36	137	27
12	13	S13	70	71	15	99	45	300	60
13	14	S14	55	34	59	48	21	217	43
14	15	S15	36	9	16	59	46	166	33
15	16	S16	43	69	21	76	34	244	49
16	17	S17	59	69	59	41	42	269	54
17	18	S18	94	24	62	37	18	235	47
18	19	S19	42	87	7	31	46	214	43
19	20	S20	32	23	76	81	57	269	54

```
In [4]: def func(x):
    if x<=35:
        return x+5
    else:
        return x
#Defining a function to increase marks by 5 if student has scored below 35 else r</pre>
```

```
In [5]: df["Math"] = df["Math"].apply(func)
    df["AT"] = df["AT"].apply(func)
    df["CNND"] = df["CNND"].apply(func)
    df["Python"] = df["Python"].apply(func)
    df["COA"] = df["COA"].apply(func)
    df
    #Applying the function to all the subject coloumns
```

Out[5]:

	Roll No	Name	Math	Python	COA	AT	CNND	Total Score	Percentage
0	1	S1	45	37	67	70	60	274	55
1	2	S2	56	39	98	37	80	305	61
2	3	S3	67	77	87	53	98	382	76
3	4	S4	71	77	43	7	49	243	49
4	5	S5	97	77	87	42	96	398	80
5	6	S6	50	9	25	40	54	163	33
6	7	S7	52	100	40	40	71	298	60
7	8	S8	69	17	88	65	28	256	51
8	9	S9	98	17	83	50	40	284	57
9	10	S10	44	90	37	30	42	233	47
10	11	S11	73	69	57	28	15	233	47
11	12	S12	27	55	25	9	36	137	27
12	13	S13	70	71	20	99	45	300	60
13	14	S14	55	39	59	48	26	217	43
14	15	S15	36	14	21	59	46	166	33
15	16	S16	43	69	26	76	39	244	49
16	17	S17	59	69	59	41	42	269	54
17	18	S18	94	29	62	37	23	235	47
18	19	S19	42	87	12	36	46	214	43
19	20	S20	37	28	76	81	57	269	54

```
In [15]: def fun2(x):
    if x<35:
        return "F"
    else:
        return "P"
#Defining a function to print F-Failed if student has scored below 35 else print</pre>
```

```
In [ ]: df["Math"] = df["Math"].apply(fun2)
    df["CNND"] = df["CNND"].apply(fun2)
    df["Python"] = df["Python"].apply(fun2)
    df["COA"] = df["COA"].apply(fun2)
    #Applying the functions to all subject coloumn
```

In [23]:

df

Out[23]:

	Roll No	Name	Math	Python	COA	AT	CNND	Total Score	Percentage
0	1	S1	Р	Р	Р	Р	Р	274	55
1	2	S2	Р	Р	Р	Р	Р	305	61
2	3	S3	Р	Р	Р	Р	Р	382	76
3	4	S4	Р	Р	Р	F	Р	243	49
4	5	S5	Р	Р	Р	Р	Р	398	80
5	6	S6	Р	F	F	Р	Р	163	33
6	7	S7	Р	Р	Р	Р	Р	298	60
7	8	S8	Р	F	Р	Р	F	256	51
8	9	S9	Р	F	Р	Р	Р	284	57
9	10	S10	Р	Р	Р	F	Р	233	47
10	11	S11	Р	Р	Р	F	F	233	47
11	12	S12	F	Р	F	F	Р	137	27
12	13	S13	Р	Р	F	Р	Р	300	60
13	14	S14	Р	Р	Р	Р	F	217	43
14	15	S15	Р	F	F	Р	Р	166	33
15	16	S16	Р	Р	F	Р	Р	244	49
16	17	S17	Р	Р	Р	Р	Р	269	54
17	18	S18	Р	F	Р	Р	F	235	47
18	19	S19	Р	Р	F	Р	Р	214	43
19	20	S20	Р	F	Р	Р	Р	269	54

In [27]: df['Math'].value_counts()#Prints the count of students who have passed and failed

Out[27]: P 19

F 1

Name: Math, dtype: int64

```
In [26]: df['AT'].value_counts()
Out[26]: P
              16
         Name: AT, dtype: int64
In [28]: df['Python'].value_counts()
Out[28]: P
              14
         Name: Python, dtype: int64
In [29]: df['COA'].value_counts()
Out[29]: P
              14
         Name: COA, dtype: int64
In [30]: df['CNND'].value_counts()
Out[30]: P
              16
         Name: CNND, dtype: int64
```

As we can see from the above results

g)subjects with highest failure rate is Python and COA

i)subjects with least failure rate is Math

CONCLUSION:

Thus we have successfully implemented Pandas in Python.