

Αναφορά Project-A

Στοιχεία ομάδας: Καραμπάς Πέτρος(ΑΜ: 2987), Αλεξίου Αλέξανδρος(ΑΜ: 2929), Αμβαζάς Νικόλαος(ΑΜ: 2932)

Email ομάδας: cs02987@uoi.gr, cs02929@uoi.gr, cs02932@uoi.gr

Τμήμα μηχανικών ηλεκτρονικών υπολογιστών και πληροφορικής. Πανεπιστήμιο Ιωαννίνων

11 Ιανουαρίου 2021

Πληροφορίες: Για το προγραμματιστικό κομμάτι του project χρησιμοποιήθηκε η γλώσσα προγραμματισμού C. Συμπεριλάβαμε τα εκτελέσιμα αρχεία στο παραδοτέο μας. Οδηγίες για την εγκατάσταση των dependencies, την εκτέλεση των προγραμμάτων και την διάρθρωση των αρχείων του project υπάρχουν αναλυτικά στο Github. Για οποιοδήποτε πρόβλημα παρακαλούμε επικοινωνήστε μαζί μας.

Πρόβλημα 1 - Μελέτη Τετρακόπτερου

Εύρεση τύπων για την επίληση του Π.Α.Τ.

$$M \cdot z'' = f_z - g \cdot M - C_z \cdot |z'| \cdot z' \leftrightarrow z'' = \frac{f_z - g \cdot M - C_z \cdot |z'| \cdot z'}{M}$$
(1)

$$I_z \cdot \psi'' = \tau_z - 0.5 \cdot C_{\psi} \cdot |\psi'| \cdot \psi' \leftrightarrow \psi'' = \frac{\tau_z - 0.5 \cdot C_{\psi} \cdot |\psi'| \cdot |\psi'|}{I_z}$$
(2)

$$z(0) = z_0, \ \psi(0) = \psi_0(3)$$

$$z'(0) = \psi'(0) = 0$$
 (4)

Για την λύση του Π.Α.Τ πρέπει να κάνουμε χρήση συστήματος διαφορικών εξισώσεων. Θεωρούμε:

$$z = x, z' = y$$

$$\psi = w, \psi' = u$$

Άρα,

$$x' = y = f_x(t, x, y),$$

 $y' = z'' = f_y(t, x, y),$
 $w' = u = f_w(t, w, u),$
 $u' = \psi'' = f_u(t, w, u),$

Επομένως

$$(1) \to z'' = \frac{f_z - g \cdot M - C_z \cdot |y| \cdot y}{M}$$

$$(2) \to \psi'' = \frac{\tau_z - 0.5 \cdot C_{\psi} \cdot |u| \cdot u}{I_z}$$

 (α') Χρήση της μεθόδου του Euler και της Βελτιωμένης Euler για την επίλυση.

Euler:

$$x_{n+1} = x_n + h \cdot x'_n = x_n + h \cdot f_x (t_n, x_n, y_n) = x_n + h \cdot y_n$$
$$y_{n+1} = y_n + h \cdot y'_n = y_n + h \cdot f_y (t_n, x_n, y_n) = y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right)$$

και

$$w_{n+1} = w_n + h \cdot w'_n = w_n + h \cdot f_w (t_n, w_n, u_n) = w_n + h \cdot u_n$$

$$u_{n+1} = u_n + h \cdot u'_n = u_n + h \cdot f_u (t_n, w_n, u_n) = u_n + h \cdot \left(\frac{\tau_z - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n}{I_z} \right)$$

με

$$x(0) = z(0) = z_0 = \frac{2987}{1000} = 2,987$$
$$x'(0) = y(0) = z'(0) = 0$$
$$w(0) = \psi(0) = \psi_0 = 0$$
$$w'(0) = u(0) = \psi'(0) = 0$$

και

t = Ανεξάρτητη μεταβλητή (Χρόνος)

$$C_z = 3 - \frac{2987}{5000} = 2,4026$$

$$C_{\psi} = 5 - \frac{2987}{5000} = 4,4026$$

Βελτιωμένη Euler:

•
$$x_{n+1} = x_n + \frac{h}{2} \cdot [f_x(t_n, x_n, y_n) + f_x(t_n + h, x_n + h \cdot f_x(t_n, x_n, y_n), y_n + h \cdot f_y(t_n, x_n, y_n))]$$

$$= x_n + \frac{h}{2} \cdot [y_n + y_n + h \cdot y'_n]$$

$$= x_n + \frac{h}{2} \cdot \left[2 \cdot y_n + h \cdot \frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right]$$

$$\bullet y_{n+1} = y_n + \frac{h}{2} \cdot \left[f_y \left(t_n, x_n, y_n \right) + f_y \left(t_n + h, x_n + h \cdot f_x \left(t_n, x_n, y_n \right), y_n + h \cdot f_y \left(t_n, x_n, y_n \right) \right) \right] =$$

$$= y_n + \frac{h}{2} \cdot \left[\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} + \left(\frac{f_z - g \cdot M - C_z \cdot |y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right) | \cdot \left(y_n + h \cdot \left(\frac{f_z - g \cdot$$

και

•
$$w_{n+1} = w_n + \frac{h}{2} \cdot [f_w(t_n, w_n, u_n) + f_w(t_n + h, w_n + h \cdot f_w(t_n, w_n, u_n), u_n + h \cdot f_u(t_n, w_n, u_n))]$$

$$= w_n + \frac{h}{2} \cdot [u_n + u_n + h \cdot u'_n]$$

$$= w_n + \frac{h}{2} \cdot \left[2 \cdot u_n + h \cdot \frac{\tau_z - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n}{I_z} \right]$$

$$\bullet u_{n+1} = u_n + \frac{h}{2} \left[f_u \left(t_n, w_n, u_n \right) + f_u \left(t_n + h, w_n + h \cdot f_w \left(t_n, w_n, u_n \right), u_n + h \cdot f_u \left(t_n, w_n, u_n \right) \right) \right] =$$

$$= u_n + \frac{h}{2} \cdot \left[\frac{\tau_z - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n}{I_z} + \left(\frac{\tau_z - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n}{I_z} \right) \left| \cdot \left(u_n + h \cdot \left(\frac{\tau_z - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n}{I_z} \right) \right) \right| \right]$$

 (γ') Αντικαθιστώντας τις εισόδους με τις παρακάτω τιμές στις εξισώσεις και εφαρμόζοντας τις μεθόδους Euler παίρνουμε τα παρακάτω αποτελέσματα.

$$f_z = M \cdot g + K_{pz} \cdot (z_{des} - z) - K_{dz} \cdot (z') = M \cdot g + K_{pz} \cdot (z_{des} - x) - K_{dz} \cdot y$$
$$\tau_z = K_{p\psi} \cdot (\psi_{des} - \psi) - K_{d\psi} \cdot (\psi') = K_{p\psi} \cdot (\psi_{des} - w) - K_{d\psi} \cdot u$$

με

$$K_{pz} = 5$$

$$K_{dz} = 15 + \frac{2987}{1000}$$

$$K_{p\psi} = 5$$

$$K_{d\psi} = 20$$

$$z_0 = 0$$

$$\psi_0 = \frac{2987}{10000}$$

$$z_{des} = \frac{2987}{200}$$

$$\psi_{des} = \frac{-2987}{3000}$$

και

$$C_z = 3 + \frac{2987}{5000}$$
$$C_{\psi} = 5$$

Euler:

•
$$x_{n+1} = x_n + h \cdot x'_n = x_n + h \cdot f_x (t_n, x_n, y_n) = x_n + h \cdot y_n$$

• $y_{n+1} = y_n + h \cdot y'_n = y_n + h \cdot \left(\frac{f_z - g \cdot M - C_z \cdot |y_n| \cdot y_n}{M} \right)$

$$= y_n + h \cdot \frac{(M \cdot g + K_{pz} \cdot (z_{des} - x_n) - K_{dz} \cdot y_n - M \cdot g - C_z \cdot |y_n| \cdot y_n)}{M}$$

$$= y_n + h \cdot \frac{(K_{pz} \cdot (z_{des} - x_n) - K_{dz} \cdot y_n - C_z \cdot |y_n| \cdot y_n)}{M}$$

και

•
$$w_{n+1} = w_n + h \cdot w'_n = w_n + h \cdot f_w (t_n, w_n, u_n) = w_n + h \cdot u_n$$

• $u_{n+1} = u_n + h \cdot u'_n = u_n + h \cdot \left(\frac{\tau_z - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n}{I_z}\right)$
= $u_n + h \cdot \frac{(K_{p\psi} \cdot (\psi_{des} - w_n) - K_{d\psi} \cdot u_n - 0.5 \cdot C_\psi \cdot |u_n| \cdot u_n)}{I_z}$

Βελτιωμένη Euler:

•
$$x_{n+1}=...=x_n+rac{h}{2}\cdot\left[2\cdot y_n+h\cdotrac{f_z-g\cdot\ M-C_z\cdot\ |y_n|\cdot\ y_n}{M}
ight]$$
 Αντικατάσταση του f_z

$$= x_n + \frac{h}{2} \cdot \left[2 \cdot y_n + h \cdot \frac{\left(K_{pz} \cdot \left(z_{des} - x_n \right) - K_{pz} \cdot y_n - C_z \cdot |y_n| \cdot y_n \right) \right)}{M} \right]$$

$$\bullet \ y_{n+1}=y_n+\tfrac{h}{2}\cdot \left[f_y\left(t_n,x_n,y_n\right)+f_y\left(t_n+h,\ x_n+h\cdot \ f_x\left(t_n,x_n,y_n\right),\ y_n+h\cdot \ f_y\left(t_n,x_n,y_n\right)\right)\right]=0$$

$$=y_n+\frac{h}{2}\cdot\left[\frac{f_z-g\cdot M-C_z\cdot|y_n|\cdot y_n}{M}+\left(\frac{f_z-g\cdot M-C_z\cdot\left|y_n+h\cdot\left(\frac{f_z-g\cdot M-C_z\cdot|y_n|\cdot y_n}{M}\right)\right|\cdot\left(y_n+h\cdot\left(\frac{f_z-g\cdot M-C_z\cdot|y_n|\cdot y_n}{M}\right)\right)}{M}\right)\right]$$

Αντικατάσταση του f_z

$$= y_n + \frac{h}{2} \cdot \frac{\left(K_{pz} \cdot (z_{des} - x_n) - K_{dz} \cdot y_n - C_z \cdot |y_n| \cdot y_n\right)}{M} + \frac{h}{2} \cdot \left(\frac{K_{pz} \cdot (z_{des} - x_n) - K_{dz} \cdot y_n - C_z \cdot |y_n| \cdot y_n)}{M}\right) \left| \cdot \left(y_n + h \cdot \left(\frac{(K_{pz} \cdot (z_{des} - x_n) - K_{dz} \cdot y_n - C_z \cdot |y_n| \cdot y_n)}{M}\right)\right)\right|}{M}\right)$$

και

•
$$w_{n+1} = w_n + \frac{h}{2} \cdot [f_w(t_n, w_n, u_n) + f_w(t_n + h, w_n + h \cdot f_w(t_n, w_n, u_n), u_n + h \cdot f_w(t_n, w_n, u_n))]$$

$$= w_n + \frac{h}{2} \cdot [u_n + u_n + h \cdot u'_n]$$

$$= w_n + \frac{h}{2} \cdot \left[2 \cdot u_n + h \cdot \frac{(\tau_z - 0.5 \cdot C_{d\psi} \cdot |u_n| \cdot u_n)}{I_z} \right]$$

Αντικατάσταση του τ

$$= w_n + \frac{h}{2} \cdot \left[2 \cdot u_n + h \cdot \frac{(K_{p\psi} \cdot (\psi_{des} - w_n) - u_n \cdot K_{d\psi} - C_{d\psi} \cdot |u_n| \cdot u_n)}{I_z} \right]$$

•
$$u_{n+1} = u_n + \frac{h}{2} \left[f_u \left(t_n, w_n, u_n \right) + f_u \left(t_n + h, \ w_n + h \cdot f_w \left(t_n, \ w_n, \ u_n \right), \ u_n + h \cdot f_u \left(t_n, \ w_n, \ u_n \right) \right) \right]$$

$$=u_n+\frac{h}{2}\left[\left.\cdot\frac{\left(\tau_z-0.5\cdot C_{d\psi}\cdot|u_n|\cdot u_n\right)}{I_z}+\left(\frac{\tau_z-0.5\cdot C_{d\psi}\cdot\left|u_n+h\cdot\left(\frac{\left(\tau_z-0.5\cdot C_{d\psi}\cdot|u_n|\cdot u_n\right)}{I_z}\right)\right|\cdot\left(u_n+h\cdot\left(\frac{\left(\tau_z-0.5\cdot C_{d\psi}\cdot|u_n|\cdot u_n\right)}{I_z}\right)\right)}{I_z}\right)\right]$$

Αντικατάσταση του au_z

$$= u_n + \frac{h}{2} \cdot \left(\frac{K_{p\psi} \cdot (\psi_{des} - w_n) - K_{d\psi} \cdot u_n - 0.5C_{d\psi} \cdot |u_n| \cdot u_n}{I_z} \right) + \frac{h}{2} \cdot \left(\frac{K_{p\psi} \cdot (\psi_{des} - w_n) - K_{d\psi} \cdot u_n - 0.5 \cdot C_{d\psi} \cdot |u_n| \cdot u_n}{I_z} \right) \cdot \frac{\left(K_{p\psi} \cdot (\psi_{des} - w_n) - K_{d\psi} \cdot u_n - 0.5 \cdot C_{d\psi} \cdot |u_n| \cdot u_n}{I_z} \right)}{I_z} \right)$$

Παρατηρήσεις

Όπως παρατηρούμε στα διαγράμματα (a), (b), (c), (d) για την πρώτη είσοδο το τετρακόπτερο μετατοπίζεται στον άξονα Z, ενώ ο προσανατολισμός του δεν μεταβάλλεται. Το γεγονός αυτό είναι λογικό διότι στην πρώτη είσοδο η τιμή τ_z είναι ίση με μηδέν. Αντιθέτως στην δεύτερη είσοδο, από τα διαγράμματα (e), (f) και (g), (h) παρατηρούμε πως το τετρακόπτερο ισορροπεί στον άξονα Z στην τιμή 2,9870. Αυτό είναι επίσης λογικό διότι στην δεύτερη είσοδο η δύναμη των κινητήρων f_z είναι ίση με gM αφού από τη φυσική, για να ισορροπεί το τετρακόπτερο πρέπει η συνισταμένη όλων των δυνάμεων στον άξονα Z να είναι ίση με το μηδέν. Ο προσανατολισμός του τώρα μεταβάλλεται ομαλά. Για την είσοδο του γ ερωτήματος παρατηρούμε από τα διαγράμματα (i), (j), (k), (l) ότι το τετρακόπτερο υψώνεται με εκθετικό ρυθμό αλλά ταυτοχρόνως μεταβάλλεται και ο προσανατολισμός του.

Πρόβλημα 2 - Απλοποίηση της μελέτης της κάθετης κίνησης του τετρακόπτερου (στον Ζ άξονα)

$$M \cdot z'' = f_z - g \cdot M - C_z \cdot z' (5)$$
$$f_z = M \cdot g + K_{pz} \cdot (z_{des} - z) - K_{dz} \cdot z' (6)$$

$$(5) \Longrightarrow M \cdot z'' = M \cdot g + K_{pz} \cdot (z_{des} - z) - K_{dz} \cdot z' - g \cdot M - C_z \cdot z'$$

$$\Longrightarrow M \cdot z'' = K_{pz} \cdot z_{des} - K_{pz} \cdot z - K_{dz} \cdot z' - C_z \cdot z'$$

$$\Longrightarrow M \cdot z'' + (K_{dz} + C_z) \cdot z' + K_{pz} \cdot z = K_{pz} \cdot z_{des}$$

(α) Εφαρμογή Μ. Laplace στην εξίσωση με μηδενικές αρχικές συνθήκες:

$$M \cdot s^{2} \cdot Z(s) + (K_{dz} + C_{z}) \cdot s \cdot Z(s) + K_{pz} \cdot Z(s) = K_{pz} \cdot z_{des} \cdot U(s)$$

$$= > Z(s) \cdot (M \cdot s^{2} + (K_{dz} + C_{z}) \cdot s + K_{pz}) = K_{pz} \cdot z_{des} \cdot U(s)$$

$$= > \frac{Z(s)}{U(s)} = \frac{K_{pz} \cdot z_{des}}{M \cdot s^{2} + (K_{dz} + C_{z}) \cdot s \cdot + K_{pz}}$$

Επομένως η συνάρτηση μεταφοράς είναι:

$$H(s) = \frac{K_{pz} \cdot z_{des}}{M \cdot s^2 + (K_{dz} + C_z) \cdot s \cdot + K_{pz}} = \frac{5 \cdot \frac{2987}{200}}{1.5 \cdot s^2 + (15 + 4 - \frac{2987}{5000}) \cdot s + 5}$$
$$= \frac{74.675}{1.5 \cdot s^2 + 18.4026 \cdot s + 5}$$

Προσδιορισμός πόλων και μηδενικών της συνάρτησης:

Μηδενικά:

$$H\left(s\right) = 0$$

Δεν μηδενίζεται ο αριθμητής.

Όταν το s τείνει στο άπειρο κρατάω τον μέγιστο βαθμό του αριθμητή και το μέγιστο αριθμό του παρονομαστή.

$$s o\infty:H\left(s
ight) orac{K_{pz}\cdot z_{des}}{M\cdot s^{2}}$$
άρα $s o\infty$ διπλό μηδενικό

Πόλοι:

$$H\left(s
ight)
ightarrow \infty$$

$$M \cdot s^2 + (K_{dz} + C_z) \cdot s + K_{pz} = 0$$

$$\underline{\Delta} \underbrace{\text{Lianpinousa}}_{\Delta} = (K_{dz} + C_z)^2 - 4 \cdot M \cdot K_{pz}$$

$$\Delta = (15 + 3.4026)^2 - 4 \cdot 1.5 \cdot 5 = 308.6556$$

$$\Delta > 0$$

$$\underline{\text{Pizes}}_{s_{1,2}} = \frac{-18.4026 \pm \sqrt{308.6556}}{2 \cdot 1.5}$$

$$s_1 = -0.278$$

$$s_2 = -11.904$$

 (γ) $M \cdot z'' + (K_{dz} + C_z) \cdot z' + K_{pz} \cdot z = K_{pz} \cdot z_{des}$ $<=> 1.5 \cdot z'' + \left(15 + 4 - \frac{2987}{5000}\right) \cdot z' + 5 \cdot z = 5 \cdot \frac{2987}{200}$ $<=> 1.5 \cdot z'' + 18.4026 \cdot z' + 5 \cdot z = 74.675 \neq 0$

Οπότε η διαφορική εξίσωση είναι Μη-Ομογενής

$$\frac{\text{Μερική λύση}}{Z(t) = C}$$

Με αντικατάσταση στην ΔΕ έχουμε:

$$1.5 \cdot Z''(t) + 18.4026 \cdot Z'(t) + 5 \cdot Z(t) = 74.675$$

$$\underline{Z''(t) = Z'(t) = 0}$$

$$=> 5 \cdot Z(t) = 74.675$$

$$<=> 5 \cdot C = 74.675$$

$$<=> C = 14.935$$

$$1.5 \cdot r^2 + 18.4026 \cdot r + 5 = 0$$

Διακρίνουσα

$$\Delta = (18.4026)^2 - 4 \cdot 1.5 \cdot 5 = 308.65568676$$

$$r_{1,2} = \frac{-18.4026 \pm \sqrt{308.65568676}}{3}$$

$$r_1 = -0,27800018214$$

$$r_2 = -11,9903998179$$

Οπότε:

Ομογενής λύση

$$z_{o\mu}(t) = c_1 \cdot e^{-0.27800018214 \cdot t} + c_2 \cdot e^{-11.9903998179 \cdot t}$$

Γενική λύση

$$z(t) = z_{o\mu}(t) + Z(t)$$

$$=> z(t) = c_1 \cdot e^{-0.27800018214 \cdot t} + c_2 \cdot e^{-11.9903998179 \cdot t} + 14.935$$

Εύρεση των c_1, c_2 :

$$z(0) = 0 \Longrightarrow c_1 + c_2 + 14.935 = 0$$
$$z'(0) = 0 \Longrightarrow -0,27800018214 \cdot c_1 - 11,9903998179 \cdot c_2 = 0$$

Απο τη λύση του συστήματος παίρνουμε:

$$c_1 = -15,2894903563$$

και

$$c_2 = 0,35449035632$$

Άρα η γενική λύση είναι:

$$z\left(t\right) = -15,2894903563 \cdot e^{-0,27800018214 \cdot t} + 0,35449035632 \cdot e^{-11,9903998179 \cdot t} + 14.935$$

$$\text{me t} \in [\texttt{0,30}]$$

Πίνακας Αποτελεσμάτων

n	t _n	$z(t_n)$	$z_n(E)$	$z_n(BE)$	e _n (E)	e _n (BE)
0	0.000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
1	0.001	0.0000247902	0.000000000	0.0000248917	0.0000247902	0.000001015
2	0.002	0.0000987572	0.0000497833	0.0000989577	0.0000489739	0.000002005
3	0.003	0.0002213011	0.0001487392	0.0002215984	0.0000725619	0.0000002972
4	0.004	0.0003918293	0.0002962643	0.0003922209	0.0000955650	0.0000003916
5	0.005	0.0006097560	0.0004917623	0.0006102397	0.0001179938	0.0000004836
6	0.006	0.0008745026	0.0007346441	0.0008750761	0.0001398585	0.0000005735
:	:	:	:	:	:	:
15000	15.000	14.6987434633	14.6988803906	14.6987434506	0.0001369273	0.000000127
15001	15.001	14.6988091336	14.6989460319	14.6988091209	0.0001368983	0.000000127
15002	15.002	14.6988747855	14.6990116549	14.6988747729	0.0001368694	0.0000000127
15003	15.003	14.6989404193	14.6990772597	14.6989404066	0.0001368405	0.0000000127
15004	15.004	14.6990060348	14.6991428463	14.6990060221	0.0001368115	0.0000000127
15005	15.005	14.6990716320	14.6992084146	14.6990716193	0.0001367826	0.0000000127
:	•	:	:	÷	÷	÷
29995	29.995	14.9313442345	14.9313484701	14.9313442341	0.0000042356	0.000000004
29996	29.996	14.9313452507	14.9313494853	14.9313452503	0.0000042346	0.000000004
29997	29.997	14.9313462666	14.9313505001	14.9313462662	0.0000042335	0.000000004
29998	29.998	14.9313472822	14.9313515147	14.9313472818	0.0000042325	0.000000004
29999	29.999	14.9313482975	14.9313525289	14.9313482971	0.0000042315	0.000000004
30000	30.000	14.9313493125	14.9313535429	14.9313493121	0.0000042304	0.000000004

Figure 0: Σφάλματα αποκοπής των δύο μεθόδων

Figure 1: Σφάλματα αποκοπής της μεθόδου του Euler

Figure 2: Σφάλματα αποκοπής της βελτιωμένης μεθόδου του Euler

Από τον παραπάνω πίνακα αποτελεσμάτων και τα plots 0, 1, 2 παρατηρούμε πως η Βελτιωμένη μέθοδος είναι πιο ακρίβης διότι το σφάλμα αποκοπής της μεθόδου του Euler είναι πολύ μεγαλύτερο από αυτό της Βελτιωμένης μεθόδου του Euler όπως αυτό ήταν αναμενόμενο. Επίσης βλέπουμε μια ομοιότητα στις καμπύλες των errors μεταξύ των δύο μεθόδων, με την βελτιωμένη να είναι εξαιρετικά πιο ακριβής όσο περνάει ο χρόνος και γίνονται περισσότεροι συναρτησιακοί υπολογισμοί.

 (ϵ') Στα παρακάτω διαγράμματα απεικονίζονται η μετατόπιση και η ταχύτητα του τετρακόπτερου καθ'όλη τη διάρκεια της κίνησής του.

Στο plot (m) δεν μπορούμε να δούμε κάποια διαφορά μεταξύ των μεθόδων, ωστόσο όπως συμπεράναμε από τα error plots (0, 1, 2) η βελτιωμένη θα είναι πολύ κοντά στην αναλυτική λύση. Αν γίνει zoom στο διάγραμμα θα φανεί αυτή η παρατήρηση.