REMARKS

Applicants have amended their claims in order to further clarify the definition

of various aspects of the present invention. Specifically, claims 2 and 5 have been

amended to recite that a "bed" is positioned adjacent the abutted portion. Note, for

example, the paragraph bridging pages 4 and 5 of Applicants' specification; see

also, for example, Fig. 10 and the description corresponding thereto, on page 12,

lines 3-11 of Applicants' specification. Note also the paragraph bridging pages 10

and 11.

Moreover, Applicants have amended claims 4-6 and 8 to recite a railway car.

Note, for example, Fig. 15 and the corresponding description in the first full

paragraph on page 15 of Applicants' specification.

In addition, Applicants have amended each of claims 7 and 8 to recite that a

face of the side opposed to the one side is arranged as an outer surface of the

structure body (or railway car). Note, for example, the paragraph bridging pages 10

and 11 of Applicants' specification.

Applicants respectfully traverse the rejection of their claims under the first

paragraph of 35 USC 112, as set forth on pages 2 and 3 of the Office Action mailed

April 1, 2005, particularly insofar as this rejection is applicable to the claims as

presently amended.

In particular, the contention by the Examiner that the "backing member"

limitation is not present in the original application is respectfully traversed,

particularly insofar as applicable to the claims as presently amended. In this regard,

attention is respectfully directed to the paragraph bridging pages 4 and 5 of

Applicants' specification, and in particular the description that the hollow members

are mounted on a bed, which also lies under the vertical plates 36, 36. Such bed is

5

shown in one embodiment in the drawing figures, e.g., at Fig. 10 and the description corresponding thereto at page 12, lines 3-9, of Applicants' specification. Clearly, the "bed" is present in the original application.

Furthermore, Applicants have amended their claims to recite a railway car. Noting the last two lines on page 2 of the Office Action mailed April 1, 2005, clearly Applicants support the "railway car" in their original disclosure, as well as in the disclosure in prior Application No. 08/820,231.

It is respectfully submitted that claims 7 and 8 patentably distinguish over the teachings of the references applied by the Examiner in rejecting these claims in the Office Action mailed April 1, 2005, that is, the teachings of the U.S. Patents to Childress, No. 5,862,975, and to Thomas, et al., No. 5,460,317, International (PCT) Publication No. WO 95/26254 (Midling), and the publications The 2nd International Forum on Aluminum Ships (November 1995), Dawes, "An Introduction to Friction Stir Welding and its Development", in Welding & Metal Fabrication (January 1995), pages 13-16, and Bulletin 6 of the TWI-World Centre for Materials Joining Technology, Vol. 36, (November/December 1995), pages 124-127, under the provisions of 35 USC 103.

It is respectfully submitted that these references as applied by the Examiner would have neither taught nor would have suggested such a structure body, or such railway car, as in the present claims, having first and second plates welded from one side, at a welding portion, in a thickness direction, by friction stir welding, wherein a raised portion is connected to the welding portion at the one side and projects to the one side of the first plate, and wherein a face of the side opposed to the one side is arranged as an outer surface of the structure body or of the railway car. See claims 7 and 8.

Docket No. 503.35255V12 Serial No. 10/600,611 July 1, 2005

By having the face of the structure, opposite to the face upon which the friction stir welding is performed, being the outer (e.g., exposed) surface of the structure body or railway car, a body having an exposed surface which is flat and has a good appearance, yet forming part of a body having a strong weld, can be achieved.

In addition, according to the present invention, with the raised portion connected to the welding portion and projecting to the one side of the first plate (that is, being at the one side at which welding takes place), this side being, e.g., an inner face of the structure body (railway car), e.g., covered by a decorative plate, there is no need to machine or grind off the raised portion while still achieving a pleasing appearance of the face arranged as the outer surface of the structure body (railway car).

Midling discloses a method of friction stir welding based on a relative rubbing movement between a probe of harder material and members to be joined, the friction stir welding utilizing a non-consumable probe that is provided with a concave bottom part and an interchangeable pin having a surface of threaded configuration. The welded product is displayed schematically in Figs. 5a-e, which show different types of welds provided by the method and probes. Note also the paragraph bridging pages 5 and 6 of Midling.

It is respectfully submitted that in connection with the welded structures shown by Midling, no indication is made as to outer and inner surfaces. It is respectfully submitted that Midling would have neither disclosed nor would have suggested such structure body or such railway car as in the present claims, wherein the face of the side opposed to the one side at which the friction stir welding takes place, is arranged as an outer surface of the structure body or railway car.

The contention by the Examiner in the second paragraph on page 3 of the Office Action mailed April 1, 2005, that the outer face of the structure body is relative to the direction in which the body is being viewed and does not structurally limit the article, is respectfully traversed, especially, insofar as applicable to the claims as presently amended. Note that the "structure body", which can, for example, be a building or railway car, having an inside and outside, would have had an outer surface located (exposed) to the outside, and it is respectfully submitted that the outer surface as in the present claims clearly has a definite meaning in the art and further structurally defines the article.

In particular, attention is particularly directed to claim 8, reciting a <u>railway car</u>, with claim 8 reciting that the face of the side opposed to the one side is arranged as an <u>outer surface of said railway car</u>. It is respectfully submitted that <u>such outer surface of the railway car further structurally defines the surface</u> (as can be seen in Fig. 15), which <u>must</u> be considered in determining patentability.

As can be seen in the foregoing, and as will be seen throughout the rest of these remarks in connection with the other applied references, it is respectfully submitted that these references would have neither disclosed nor would have suggested such structure wherein the specified face opposed to the one side is arranged as an outer surface of the structure body (railway car), and advantages achieved thereby.

Eurthermore, it is emphasized that present claims 7 and 8 also recite that the structure body (railway car) has a raised portion connected to the welding portion at the one side and projecting to the one side of the first plate. It is respectfully submitted that the references as applied by the Examiner would have neither taught nor would have suggested such raised portion.

Docket No. 503.35255V12 Serial No. 10/600,611 July 1, 2005

The reference by the Examiner to Figs. 5a-5e of Midling, et al., as showing, inter alia, the raised portion, is respectfully traversed. It would appear that Figs. 5a-%e of Midling, et al. show a depression at the weld, not a raised portion. The Examiner is respectfully requested to point out the specific drawing figure, and/or specific description, in Midling, et al., showing such raised portion.

Thomas, et al. discloses a friction stir welding for joining two workpieces or for operating on a workpiece. Welded structure is shown in, e.g., Fig. 1, wherein a pair of aluminum alloy plates 1A, 1B are butted together about a joint line 2. See column 3, lines 62 and 63. Note also the paragraph bridging columns 1 and 2; and column 2, lines 10-13, 23-25, and 34-43, of Thomas, et al. This patent discloses various examples, and states that in all of the examples, the result of the welding operation is an extremely smooth finish on the surfaces of the plates which is a particular advantage of the process. See column 9, lines 21-25.

As seen in Fig. 1 of Thomas, et al., the weld is shown, without an indication as to the body (e.g., vehicle) formed using the welded structure, and clearly without showing an inner or outer face of the body (vehicle). Moreover, from the welded structure shown in Fig. 1, there appears to be a depression at the welded portion. It is respectfully submitted that the disclosure of this reference would have taught away from the present claims, including the raised portion connected to the welding portion as in the present claims, and the outer surface with respect to the side subjected to introduction of the friction stir welding tool.

The 2nd International Forum on Aluminum Ships discloses, in Fig. 4, a general view of a friction stir weld in 5083 alloy, describing that the joint quality is excellent and the "weld" is difficult to differentiate from parent material, even after prolonged etching.

Docket No. 503.35255V12 Serial No. 10/600,611 July 1, 2005

This Fig. 4 is a general view of the weld, and it is respectfully submitted that the disclosure in connection therewith would have neither described nor would have suggested the presently claimed structure body or railway car, having the specified face arranged as the outer surface of the structure body (railway car), and advantages thereof; and/or the raised portion as in the present claims.

The article from <u>Welding & Metal Fabrication</u> describes friction stir welding; and, in Fig. 1, shows two extruded, 6000 series, aluminum alloy panels autogenously friction stir welded together with very low distortion.

Childress shows a structural double-lap shear joint for attaching fiber-reinforced composite structures, especially graphite/epoxy laminates, to metal structures using metal Z-pins that extend through the composite structure and that are welded to the metal, the structural double-lap shear joint joining two metal tangs sandwiching the composite with a plurality of metal Z-pins that extend through the composite and that are welded to the tangs using resistance, laser, friction stir or another suitable welding process. See column 1, lines 6-10 and column 2, lines 39-43. Note also the paragraph bridging columns 2 and 3.

Bulletin 6 introduces the basic principal of friction stir welding, pointing out the practical advantages and disadvantages. This article discloses that the weld comprises a continuous consolidated nugget of forged material with a much refined grain size; and that the elliptical rings in the weld metal, seen in Fig. 3 of the article, are a product of the welding tool profile and forward movement per revolution in relation to the temperature gradient throughout the depth of the weld. Note also Fig. 2, showing schematically a perspective view of the welded structure; compare with Fig. 1 of Thomas, et al.

It is respectfully submitted that the article from the Welding & Metal

Eabrication, Childress and the article in <u>Bulletin 6</u> provide general views of the formed weld; and it is respectfully submitted that these references do not disclose, nor would have suggested, specifics of structural bodies formed, including wherein the face of the side opposed to the one side from which friction stir welding is performed, is arranged as an outer surface of the structure body (railway car), and advantages thereof; and/or the raised portion connected to the welding portion at the one side and projecting to the one side of the first plate, and various advantages achieved thereby.

It is respectfully submitted that in the field of welding, in general an upper face at a side of the weld where the welding tool was positioned is formed as the outer surface of the structure body. It is respectfully submitted that this is opposite to the presently claimed structure, wherein the face of the side opposed to the one side at which the friction stir welding is formed, is arranged as an outer surface of the structure body (railway car). It is respectfully submitted that the general teachings in various of the applied references would have taught away from the present invention, to one of ordinary skill in the relevant art.

The contention by the Examiner on pages 9 and 10 of the Office Action mailed April 1, 2005, that the outer face the structural body is relative to the direction in which the body is being viewed, is noted. It is emphasized that the present claims recite the <u>outer surface</u>, of the structure body, thereby providing a frame of reference.

The analogy by the Examiner, with respect to a structural body sitting upright from the ground and not connected to anything, set forth in the first paragraph on page 10 of the Office Action mailed April 1, 2005, is noted. With respect to the present claims, which recite an <u>outer surface</u>, clearly the recitation of an outer

Docket No. 503.35255V12 Serial No. 10/600,611

July 1, 2005

surface has meaning as a structural limitation of the article, that is, a surface facing

the outside. This would be especially true for a railway car, and the outer surface

thereof; in connection therewith, any contention by the Examiner as to a structure

body "sitting upright from the ground and is not connected to anything" is not

understood. With respect to the structural body, it is respectfully submitted that the

"outer surface" has a definite meaning, particularly with respect to the structural body

as described in the present disclosure (e.g., a building), so as to further structurally

define the body. Especially in light of the presently claimed subject matter, including

the outer surface, it is respectfully submitted that the teachings of the applied prior

art would have neither disclosed nor would have suggested the presently claimed

invention.

In view of the foregoing comments and amendments, reconsideration and

allowance of all of the claims presently in the application are respectfully requested.

Applicants request any shortage of fees due in connection with the filing of

this paper be charged to the Deposit Account of Antonelli, Terry, Stout & Kraus,

LLP, Deposit Account No. 01-2135 (case 503.35255V12), and credit any excess

payment of fees to such Deposit Account.

Respectfully Submitted,

ANTONELLI, TERRY, STOUT, & KRAUS, LLP

William I. Solomon

Registration Nø. 28,565

WIS/ksh

1300 N. Seventeenth Street

Suite 1800

Arlington, VA 22209

Tel: 703-312-6600

Fax: 703-312-6666

12