Interrogation SGBD (COURS, 5 Pts)

- 1. Quelles sont les deux modes d'optimisation utilisés dans les SGBD en donnant leurs principes ?
- 2. Donner les entrées et les sorties de chaque mode.
- 3. Donner deux implémentations pour l'exécution d'une jointure. Donner le coût pour chaque implémentation.
- 4. **[APCI]** Quelles sont les stratégies d'exécution d'une jointure sur une BD distribuée.

	Nom:
	Prénom :
	Matricule :
	Groupe :
ı	

1. Quelles sont les deux modes d'optimisation utilisés dans les SGBD en donnant leurs principes ?

Mode RBO (Rule Based Optimization) : un ensemble de règles figées est à appliquer sur l'arbre algébrique pour générer un autre arbre. La transformation se base sur les propriétés des opérateurs algébriques.

Mode CBS (Cost Based Optimiszation) : Un modèle de coût est utilisé pour évaluer le coût d'exécution de tous les plans d'exécution afin d'en choisir le moins couteux. Ce mode est basé sur un ensemble de statistiques collectées périodiquement et stockées dans la méta-base.

2. Donner les entrées et les sorties de chaque mode.

Modèle	Entrées	Sorties		
RBO	Arbre algébrique (A)	Un arbre algébrique optimisé résultat de		
	Ensemble de règles (R)	l'application de R sur A.		
СВО	Modèle de coût	Un plan d'exécution caractérisé par le		
	Statistiques	coût minimum.		
	Arbre algébrique			

- 3. Donner deux implémentations pour l'exécution d'une jointure. Donner le coût pour chaque implémentation.
 - a. Jointure par boucles imbriquées : dans cette implémentation, le SGBD charge un boc de la première table, et pour chaque bloc, il charge toute la deuxième table pour vérifier la correspondance.
 - Cost(R JOIN S)= $|R|+|R|^*|S|$ où |T| représente le nombre de page nécessaires pour stocker le table T.
 - b. Jointure par hachage : le but de cette implémentation est de décomposer une large jointure en un ensemble de petites jointures qui peuvent se faire en mémoire. Une fonction de hachage est appliquée sur les deux tables ce qui les fragmente en plusieurs blocs. Le SGBD charge chaque couple de bloc et fait la sous-jointure en mémoire.

Cost(R JOIN S)=3*(|R|+|S|)

- 5. [APCI] Quelles sont les stratégies d'exécution d'une jointure sur une BD distribuée.
 - a. Pour exécuter une jointure (R JOIN S) dans une base de données distribuée, il faut que les deux tables soient sur le même nœud. Trois stratégies sont souvent possibles
 - i. Transférer les deux tables R et S sur le site où la requête est lancée, l'exécuter et rendre le résultat à l'utilisateur

- ii. Transférer la table R sur le site où se trouve la table S, l'exécuter sur ce site ensuite envoyer le résultat au site où la requête a été lancée.
- iii. Faire le contraire en transférant la table S sur le site où se trouve R.

Interrogation SGBD (TD 10 Pts)

Soient les ordonnancements suivants :

O1: R1(A)R3(B)W1(B)W4(A)W1(E)W5(A)R2(D)R3(D)W2(D)W5(D)R4(E)R5(E)

O2: R1(A)R2(A)W2(A)R3(A)R4(D)W1(A)W3(B)W3(A)W1(B)W5(A)W1(D)W5(B)R5(D)

O3: R1(A)R1(E)R3(D)R4(D)W2(D)R4(A)R3(A)W4(A)W4(B)W3(B)W1(B)W2(E)

Supposons qu'ils sont corrects:

1. Construire le graphe de précédence pour O1 et O2. Sont-ils sérialisables ?

2. Construire le graphe d'attente pour O2 et O3. Existe-t-il un deadlock ? Trouver une solution

3. Dérouler l'algorithme d'estampillage pour O2. Existe-t-il un rejet ?

Nom:

Prénom:

Matricule:

Groupe:

100	
2	7
11	/
V	-
130	_

100	
5	7
v	7
-	1

						A .	Attale
Adh	Demade	nep	attite	Achim	Denade	Réporte	Albec
Ro(A)	SIM	on		R ₂ (A) R ₁ (E)	S1(A) S1(E)	OK	
R& (A) Wz (A)	(SZIA) (XZIA) (MINTE	Non	Tzatt T1	R3(D) Ru(D)	531D) Sy(D)	OK	Tzett T3, T4
R3 (A). Ry(D)	(\$2(1)	OK	N(D)	Ru(A)	W21) Su (A)	NON	12.00
W1 (A)	S1 (A)	non	T1 att 12,	13 R3(A)	53 (A) Xy (A)	Now	Ty att 12,13 allelo
W3 (B)	(X3(A)	Now	1	W3(B)-	13 FIN 141 X3 (6)	OK	V3 (A, B,D)
Wy (B)	-	Non	attela Tratt711	173 W2(E)		012	Us (A, E, B)
W1(D)	- Tow TA	-	attila	7-11	1	iller	14
	D) FinTs -] -	attete		(Tenon	ve veillie car	elleated tojin Ty

3 yds T2 T2 T3: C1 T1 T2: C2 & Deadlack T1 T3: C3

C21 C21 C3 = T1

Dannuler T1, RelanGer T1 order Ty T2 T3 TT T2

(T2 non ve veille car elle attend Tojani Ty) &wA(A) - OK

Wy(6) - OK FINTY U(AIB,D)

Pars 3: No Veiller T2

421D) - OK

WZ(E)-OK

pas de cycle - o Sérialisable

Actin | EL(A) | EE(A) | EL(B) | EE(B) | EL(D) | EE(D) | Dogs | 0 0 0 0 0 0

neum	EL(A)	(EEIA)	(EL(B)	EE (B)	EL(D)	(tE(0)
D. co	0	0	0	0	0	0
R ₁ (A)	1	0	0	0	0	5
Re(A)	2	0	0	0	0	5
WE(A)	2	2	0	0	0	O
R3 (A)	3	2	0	0	0	D
Ru(D)	3	2	D	0	4	0
M7(4)	Rex	ter ws	(A), a	nnulei	Ta. Ro	DalesTo
W3 (B)	13	2	0	3		
W3(A)	13	3	0	3	4	O
W2(B)					4	0
WSTA)	3	5	0	3	4	0
Wa(D)	Section 1					_
WILR)	3	5	0	5	4	0
Rr(D)	13	5	0	5	5	0

oui : Traété vegetée.

R6(A) 65 0 5 5 0 W6(A) 66 0 5 5 0 W6(B) 66 0 6 5 6 W6(O) 66 0 6 6