

Convert Gimli_TML to SOC_TML for BBRx Testing

Presented By: EK Tan, Stephen Fu

CONFIDENTIAL PRELIMINARY

Steps in Applying SOC_TML

- Using correct TMLs
- Using SOC_tml and MSM_SOC_tml
- Vector differences
- Testmethod Codes

Using Correct SOC_TML

- 2 different TMLs are required
- Import the correct TML:
 - SOC_tml
 - MSM_SOC_tml
- From C++ Perspective select 'Project → Build All'
- From terminal navigate to
 - MyDevice/testmethod/sh_lib-EL5-64bit
- Make 'preload' directory
 - mkdir preload
- Copy libccf_core.so into preload
 - This can be copied from:
 - SOC_tml/core/Concurrency/lib/7.2.0/

Using Correct SOC_TML

- Inside the preload directory create another preload directory
- Create symbolic link to the SOC Library.
 - cd preload
 - Should now be in the directory:
 - MyDevice/testmethod/sh_lib-EL5-64bit/preload/preload
 - In -sf ../../libSOC_tml.so .

- New testsuits needs to be created
- New testsuits uses SOC_TML and MSM_SOC_TML
- The original Gimli BBRx testsuits is split into 2 separate testsuits
- "xxx_SETUP" setup the device in correct testmode, creates AnalogSet, execute test, digital capture at ADC output and store captured data in Mempool
- "xxx" retrieves the captured data from Mempool, perform calculation and datalog

- Both "xxx_SETUP" and "xxx" are using SOC_tml/MSM_SOC_tml.
- "xxx_SETUP" testsuit:
 - MSM_SOC_tml.custom.ADC.AWG_ExecuteSetup
- "xxx" testsuit:
 - MSM_SOC_tml.custom.BBRx.XTest
 XTest can be: Gain, IRN, Attenuation, SNR, IRDCOffset, Jammer.
- Both test methods have new parameters: *Bebug*, *Development Mode and SMC Mode*. Please refer to training material "SOC_Library_Training" on how to set these parameters.
- Refer to the original testsuit to set up the other test parameters.

MSM_SOC_tml.custom.ADC.AWG_ExecuteSetup for "xxx_SETUP"

AWG_ExecuteSetup

Creates AnalogSet, execute test, digital capture at ADC output and store captured data in Mempool

• MSM SOC tml.custom.BBRx.Xtest for "xxx" testsuit

Xtest can be the following:

AdcTest

Attenuation

Gain

IDD

IRDCoffset

IRN

jammer

jammer_dB

SNR

Refer to the original testsuit to set up the other test parameters.

AN_BBRX_1X_NOTONE AN_BBRX_1X_NOTONE_SETUP

Analog Setup was created by AN_BBRX_1X_NOTONE_SETUP

Refer to the original testsuit to set up the other test parameters.

 AN_BBRX_1X_NOTONE_1 read the captured data from Mempool, perform calculation and datalogging.

The BBRx parameters are used for calculation and datalogging:

ADCs to Test:

Test items will be added in the test table if needed:

Suite name	Test name
AN_BBRX_1X_NOTONE	
Test mode	
AN_BBRX_1X_NOTONE	AN_BBRX_1X_NOTONE_ADC0_IRN_I_1Khz_630Khz_LV
AN_BBRX_1X_NOTONE	AN_BBRX_1X_NOTONE_ADC0_IRN_Q_1Khz_630Khz_LV
AN_BBRX_1X_NOTONE	AN_BBRX_1X_NOTONE_ADC0_ORN_I_1Khz_630Khz_LV
AN_BBRX_1X_NOTONE	AN_BBRX_1X_NOTONE_ADC0_ORN_Q_1Khz_630Khz_LV
AN_BBRX_1X_NOTONE	AN_BBRX_1X_NOTONE_ADC1_IRN_I_1Khz_630Khz_LV
AN_BBRX_1X_NOTONE	AN_BBRX_1X_NOTONE_ADC1_IRN_Q_1Khz_630Khz_LV

Vector Differences

- The original digital pattern now breaks into 2 portions:
 - Setup
 - Read
- "xxx_SETUP" uses Setup digital pattern
- "xxx" uses the Read digital pattern
 - Original vector

Signal	dac_adc_port (Instructions)	tic_port (Instructions)	
Call# Grp	DEFAULT	DEFAULT	
0	CALL cdac_sigen_dac_adc	CALL bbrx_32k_tic_setup	
1	BEND	CALL bbrx_32k_tic_read	
2		BEND	

Vector Differences

Setup vector for "xxx_SETUP" testsuit

Signal	dac_adc_port (Instructions)	tic_port (Instru		
Call# Grp	DEFAULT	DEFAULT		
0	CALL cdac_sigen_dac_adc	CALL bbrx_32k_tic_setup		
1	BEND	BEND		

Read vector for "xxx" testsuit

Signal	dac_adc_port (Instructions)	tic_port (Instru	
Call# Grp	DEFAULT	DEFAULT	
0	CALL cdac_sigen_dac_adc	CALL bbrx_32k_tic_read	
1	BEND	BEND	

Testmethod Codes Details

- _read_pll & pll_status
 - Comment out the line "INT offset = (_read_pll) ? 1 : 0;" and set offset = 0 and pll_status = 0, otherwise result is not correct for Gain testing.
 - Need to find out what is the purpose of _read_pll and pll_status.
- unpackAndErrorCorrect_gimli
 - The ADC design mode for Gimli is ATLAS, New decoding method "unpackAndErrorCorrect_gimli" is generated for ATLAS. But seems the decoding method is the same with DAPHNIS, we can keep using unpackAndErrorCorrect function in MSM_SOC_TML.

- log_PTR
 - CR QCOM-385 " [SOC Lib] Wrong generation of Test Name for BBRx test in SOC TML " has been created.

 The following tests have been created and verified and results are correlated to original tests.

• AN_BBRX_1X_1TONE_BYPASS_AAF (TM: BBRx.Gain)

	Test Name				Test F	Resut	Diff		
BBRx Test Suits Name		Limits Low	Limits High	Unit	Gimli_TML	SOC_TML	Delta	%diff	
	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC0_100k Hz_ADC_GAIN_I_LV	-1.99	1.99	dB	-0.0594291	-0.063154	0.003725	0.09%	
	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC0_100k Hz_ADC_GAIN_Q_LV	-1.99	1.99	dB	0.0115947	0.008099	0.003496	0.09%	
	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC1_100k Hz_ADC_GAIN_I_LV	-1.99	1.99	dB	-0.257536	-0.259507	0.001971	0.05%	
AN_BBRX_1X_1TONE	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC1_100k Hz_ADC_GAIN_Q_LV	-1.99	1.99	dВ	-0.190457	-0.192482	0.002025	0.05%	
_BYPASS_AAF	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC2_100k Hz_ADC_GAIN_I_LV	-1.99	1.99	dB	-0.110329	-0.110711	0.000382	0.01%	
	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC2_100k Hz_ADC_GAIN_Q_LV	-1.99	1.99	dB	-0.0471708	-0.047962	0.000791	0.02%	
	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC3_100k Hz_ADC_GAIN_I_LV	-1.99	1.99	dB	0.0107457	0.009251	0.001495	0.04%	
	AN_BBRX_1X_1TONE_B YPASS_AAF_ADC3_100k Hz_ADC_GAIN_Q_LV	-1.99	1.99	dB	0.095826	0.09479	0.001036	0.03%	

• AN_BBRX_1X_NOTONE_BYPASS_AAF (TM: BBRx.IRN)

			Limita		Test	Resut	Diff	
BBRx Test Suits Name			Limits High	Unit	Gimli_TML	SOC_TML	Delta	%diff
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADCO_IR							
	N_I_1Khz_630Khz_LV	1	40.5	uVrms	31.0193	31.60394	-0.58464	-1.48%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADCO_IR							
	N_Q_1Khz_630Khz_LV	1	40.5	uVrms	33.9277	30.38681	3.540893	8.96%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC0_O							
	RN_I_1Khz_630Khz_LV	1	40.5	uVrms	30.5978	33.86424	-3.26644	-8.27%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADCO_O							
	RN_Q_1Khz_630Khz_LV	1	40.5	uVrms	34.0184	32.56005	1.45835	3.69%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC1_IR							
	N_I_1Khz_630Khz_LV	1	40.5	uVrms	32.8347	28.48851	4.34619	11.00%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC1_IR							
	N_Q_1Khz_630Khz_LV	1	40.5	uVrms	33.6618	28.59478	5.06702	12.83%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC1_O							
	RN_I_1Khz_630Khz_LV	1	40.5	uVrms	30.9442	30.52599	0.418211	1.06%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC1_O							
AN_BBRX_1X_NOTON		1	40.5	uVrms	32.2175	30.63986	1.577641	3.99%
E_BYPASS_AAF	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC2_IR							
	N_I_1Khz_630Khz_LV	1	40.5	uVrms	29.8992	28.83004	1.069165	2.71%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC2_IR							
	N_Q_1Khz_630Khz_LV	1	40.5	uVrms	31.7327	27.47984	4.252859	10.77%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC2_O							
	RN_I_1Khz_630Khz_LV	1	40.5	uVrms	29.1492	30.89194	-1.74274	-4.41%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC2_O							
	RN_Q_1Khz_630Khz_LV	1	40.5	uVrms	31.3899	29.44518	1.94472	4.92%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC3_IR							
	N_I_1Khz_630Khz_LV	1	40.5	uVrms	29.646	28.6503	0.995704	2.52%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC3_IR							
	N_Q_1Khz_630Khz_LV	1	40.5	uVrms	30.4858	29.31833	1.167472	2.96%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC3_O							
	RN_I_1Khz_630Khz_LV	1	40.5	uVrms	29.7195	30.69935	-0.97985	-2.48%
	AN_BBRX_1X_NOTONE_BYPASS_AAF_ADC3_O							
	RN_Q_1Khz_630Khz_LV	1	40.5	uVrms	31.1659	31.41516	-0.24925	-0.63%

• AN_BBRX_1X_ATTN_BYPASS_AAF (TM: BBRx.Attenuation)

	Test Name Limits Low Limits High			Ì	Test R	Resut	Diff		
BBRx Test Suits Name		Unit							
					Gimli_TML	SOC_TML	Delta	%diff	
	AN_BBRX_1X_ATTN_BYP								
	ASS_AAF_ADC0_I_LV	-1	1	dB	0.287578	0.287337	0.000241	0.01%	
	AN_BBRX_1X_ATTN_BYP	_	_						
	ASS_AAF_ADC0_Q_LV	-1	1	dB	0.285244	0.282957	0.002287	0.11%	
	AN_BBRX_1X_ATTN_BYP			l D	0.200274	0.200224	0.004.05	0.000/	
	ASS_AAF_ADC1_I_LV	-1	1	dB	0.288374	0.290221	-0.00185	-0.09%	
	AN DDDY AV ATTN DVD								
AN DDDY 1V ATTN D	AN_BBRX_1X_ATTN_BYP	1	1	٩n	0.300000	0.204277	0.002292	0 110/	
YPASS_AAF	ASS_AAF_ADC1_Q_LV	-1	1	dB	0.286669	0.284377	0.002292	0.11%	
IPASS_AAI	AND DDDV AV ATTNI DVD								
	AN_BBRX_1X_ATTN_BYP	-1	1	dB	0.285248	0.286533	-0.00128	-0.06%	
	ASS_AAF_ADC2_I_LV	-1	1	иь	0.265246	0.260333	-0.00128	-0.00%	
	AN DDDV 4V ATTN DVD								
	AN_BBRX_1X_ATTN_BYP ASS AAF ADC2 Q LV	-1	1	dB	0.283547	0.280649	0.002898	0.14%	
	A33_AAF_ADCZ_Q_LV	-1	1	ив	0.265347	0.200049	0.002696	0.14/0	
	ANI DDDV 1V ATTNI DVD								
	AN_BBRX_1X_ATTN_BYP ASS AAF ADC3 I LV	-1	1	dB	0.28394	0.285695	-0.00175	-0.09%	
	NOS_ANI_ADCS_I_LV	T	1	uв	0.20394	0.203033	-0.00173	-0.03/0	
	AN DDDY 1V ATTN DVD								
	AN_BBRX_1X_ATTN_BYP ASS AAF ADC3 Q LV	-1	1	dB	0.279559	0.283694	-0.00414	-0.21%	
	ASS_AAF_ADCS_Q_LV	-T	1	uв	0.279559	0.283094	-0.00414	-0.219	

Testmethod Codes Details

• AN_BBRX_1X_p9Mhz_1p7Mhz (TM: BBRx.jammer)

BBRx Test	Tort Nama	Limits	Limits High	Unit		Resut	D	iff
Suits Name	Test Name	Low		Unit	Gimli_TML	SOC_TML	Delta	%diff
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_IQ_LV	1	83	uVrms	47.8611	48.3325	-0.4714	-0.579
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_IRN_I_1Khz_630Khz_LV	1	83	uVrms	47.7483	47.22196	0.526339	0.649
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_IRN_Q_1Khz_630Khz_LV	1	83	uVrms	47.9735	49.4181	-1.4446	-1.769
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_JAM1_AMP_I_LV	100	400	mVrms	302.552	302.4101	0.141877	0.059
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_JAM1_AMP_Q_LV	100	400	mVrms	305.403	305.2617	0.141331	0.059
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_JAM2_AMP_I_LV	100	400	mVrms	201.069	200.9774	0.091562	0.03
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC0_JAM2_AMP_Q_LV	100	400	mVrms	203.345	203.2413	0.10366	0.03
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_IQ_LV	1	83	uVrms	44.3827	46.473	-2.0903	-2.55
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_IRN_I_1Khz_630Khz_LV	1	83	uVrms	42.5781	42.65188	-0.07378	-0.099
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_IRN_Q_1Khz_630Khz_LV	1	83	uVrms	46.1168	50.00348	-3.88668	-4.74
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_JAM1_AMP_I_LV	100	400	mVrms	294.483	294.5067	-0.02365	-0.01
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_JAM1_AMP_Q_LV	100	400	mVrms	297.476	297.4987	-0.02265	-0.01
ANI DDDV	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_JAM2_AMP_I_LV	100	400	mVrms	195.54	195.5267	0.01333	0.00
AN_BBRX_ 1X_p9Mhz	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC1_JAM2_AMP_Q_LV	100	400	mVrms	198.107	198.1154	-0.00841	0.00
_1p7Mhz	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_IQ_LV	1	83	uVrms	48.5283	50.21102	-1.68272	-2.05
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_IRN_I_1Khz_630Khz_LV	1	83	uVrms	45.5613	48.80709	-3.24579	-3.96
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_IRN_Q_1Khz_630Khz_LV	1	83	uVrms	51.3241	51.57675	-0.25265	-0.31
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_JAM1_AMP_I_LV	100	400	mVrms	300.567	300.5502	0.016793	0.01
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_JAM1_AMP_Q_LV	100	400	mVrms	304.123	304.1146	0.008374	0.00
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_JAM2_AMP_I_LV	100	400	mVrms	199.746	199.734	0.011984	0.00
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC2_JAM2_AMP_Q_LV	100	400	mVrms	203.227	203.2079	0.019126	0.01
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_IQ_LV	1	83	uVrms	46.9902	45.918	1.072198	1.31
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_IRN_I_1Khz_630Khz_LV	1	83	uVrms	46.5034	45.91633	0.587068	0.72
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_IRN_Q_1Khz_630Khz_LV	1	83	uVrms	47.471	45.91967	1.551328	1.89
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_JAM1_AMP_I_LV	100	400	mVrms	305.285	305.2152	0.069777	0.02
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_JAM1_AMP_Q_LV	100	400	mVrms	308.418	308.3416	0.076391	0.03
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_JAM2_AMP_I_LV	100	400	mVrms	203.279	203.2122	0.06682	0.02
	AN_BBRX_1X_p9Mhz_1p7Mhz_ADC3_JAM2_AMP_Q_LV All Rights Reserved - ADVAN	100	400	mVrms	205.7	205.6333	0.066724	0.02 2016/10

Questions?

•Thank You!