

Brain Tumors

Diagnostics

BIO 389

Caroline Happold / Dorothee Gramatzki
Department of Neurology

Brain tumors - Diagnostics

- Clinical diagnosis
 - Taking history (timing of symptoms onset and progression, severity of symptoms, presence of other diseases, family history etc.)
 - Physical examination
- Technical diagnostics
 - Imaging
 - Nuclear medicine
 - Lab investigations (cerebro-spinal fluid (CSF))
 - Pathology / Molecular analyses
 - EEG (electroencephalography)

Brain tumors - Diagnostics

- Imaging
 - Computed tomography (CT)
 - Magnetic resonance imaging (MRI)
 - Anatomical, functional (fMRI), metabolic (spectroscopy)
 - Conventional X-ray, angiography...
 - Intraoperative imaging (ultrasound / MRI)
- Nuclear medicine
 - Positron emission tomography (PET)
- Laboratory investigation
- Pathology
 - from CSF, biopsy, resection

Practical issues

- Use CT or better MRI scan to obtain anatomical pictures of the brain and to reveal structural alterations
- Use contrast agent to reveal break-down of the blood-brain-barrier
- Perfusion-MRI and spectroscopy might help to differentiate tumor from other differential diagnosis or to learn more about tumor type
- fMRI might help the surgeon to calculate and avoid risks
- PET gives insight in tumor metabolism or receptor status
- Angigography might help for differential diagnosis and might help the surgeon

CT scan

with contrast agent

⇒ helps to make the diagnosis

Intraoperative ultrasound

⇒ helps during surgery

MRI scan (post-operative) - Histology: glioblastoma

with contrast agent

⇒ helps to assess the tumor status after surgery / base line
MRI scan

MRI scan

03/2013

04/2013

⇒ helps to discover tumor progression

MRI perfusion

CBFCerebral blood flow

CBVCerebral blood volume

⇒ helps to discover tumor progression

MRI scan

FET (fluorethyl-tyrosine) - PET

⇒ helps to discover tumor progression / active tumor

plus

MRI scan

Tumor-specific treatment with bevacizumab

Start

3 months later

⇒ helps to monitor treatment / to make treatment decisions

Planning CT scan

⇒ helps to plan external beam radiotherapy (Department of Radiooncology)

Functional (f) MRI

⇒ presurgical planning requires knowledge of eloquent areas of the cortex

Meningeoma – MRI scan

Meningeoma - Angiography

Commonly supplied by dural arteries

Meningeoma – The role of preoperative angiography and embolization

⇒ helps to diminish operative time and intraoperative blood loss

Gallium⁶⁸ DOTATATE-PET

- -DOTATATE binds to <u>somatostatin receptors</u>, which are found on the cell surfaces of a number of neuroendocrine tumors, and thus directs the radioactivity (Gallium68) into the tumors
- -Tested for diagnosis

-<u>Lutetium¹¹⁷ DOTATATE</u> has been tested for the treatment of somatostatin-positive tumors

Diagnostics – cerebrospinal fluid

Solid type

Nonadherent type

Brain tumors - Diagnostics

EEG: electrophysiological monitoring method to record electrical activity of the brain

- Epileptiform pattern
- Focal slowing

