

Machine learning in mineral processing

Process Engineering

23 March 2018 - Maties Machine Learning

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Mineral processing

Continuous, connected, controlled, circulating, complex, changing

Industrial data

- Online physical property sensor data
 - E.g. mass flow rate, density, temperature, pressure
 - ~ seconds
- Online image data
 - E.g. rocks on conveyor belts, flotation froth (mud and bubbles)
 - ~ minutes
- Offline laboratory data
 - E.g. metal content, particle size distribution
 - ~ hours
- Offline image data
 - E.g. microscopic grain shape and colour
 - ~ days

- Many faults and failures can occur in complex processes
- Large variation in normal operating conditions due to range of allowable disturbances

- Missed detections can lead to suboptimal performance, equipment failure, safety and environmental violations
- False alarms can lead to unnecessary downtime and loss of trust in alarm systems

- Unsupervised learning problem
 - Abundance of one class of data: Normal operating conditions
- Fault detection
 - Feature extraction
 - Data description / support estimation
- Fault identification
 - Topology extraction
 - Supervised learning model inspection:
 - Variable importance
 - Partial dependence

- Feature extraction
 - Sensor data correlated (through mass and energy balances, control instructions)
 - Sensor data noisy
 - Feature space represents lower dimensional, noise-free information
 - Residual space represents feature extraction model validity

- Feature extraction
 - Principal component analysis

•
$$T^* = XP^*$$
; $\hat{X} = T^*(P^*)^T$

Kernel principal component analysis

- Feature extraction
 - Autoassociative neural networks (NLPCA)

- Feature extraction
 - Autoassociative neural networks (NLPCA)

UNIVERSITY

- Data description / support estimation
 - Kernel density estimation
 - One-class support vector machines

- Data description / support estimation
 - Kernel density estimation
 - One-class support vector machines

$$\min_{\mathbf{w}, \rho, \xi} \left(\frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{\nu N} \sum_{i=1}^N \xi_i - \rho \right)$$
subject to $\mathbf{w}^T \Phi(\mathbf{x}_i) - \rho + \xi_i \ge 0$; $i = 1, \dots, N$
and $\xi_i \ge 0$; $i = 1, \dots, N$
and $\rho \ge 0$.

- Data description / support estimation
 - Kernel density estimation
 - One-class support vector machines

- Topology extraction
 - Identification of propagation path of fault
 - Transfer entropy / lagged cross-correlation used to determine direction and strength of connections between variables

$$t(x|y) = \sum p(x_{i+h}, x_i, y_i) log \left(\frac{p(x_{i+h}|x_i, y_i)}{p(x_{i+h}|x_i)} \right)$$

$$\rho_k^{LC} = \frac{1}{N - k} \sum_{i=1}^{N-k} \frac{(x_i - \mu_x)(y_{i+k} - \mu_y)}{\sigma_x \sigma_y}$$

- Topology extraction
 - Identification of propagation path of fault
 - Transfer entropy / lagged cross-correlation used to determine direction and strength of connections between variables

- Topology extraction
 - Identification of propagation path of fault
 - Transfer entropy / lagged cross-correlation used to determine direction and strength of connections between variables

- Research approach
 - Scarcity of industrial data with faults detected and identified
 - Simulation of complex, dynamic processes with known faults
 - Repository with dynamic models and simulated data

github.com/ProcessMonitoringStellenboschUniversity

Soft sensors

- Ore characteristics
 - Metal content, particle size → correlated to process performance
 - Captured by image data

Image data

- Soft sensor
 - Trained model for prediction of process performance from measured process data

Etc.

Dimensionality reduction

Modelling

Predicted variable

Ore grade

Particle size

Process state

e

Soft sensors

 Flotation grade prediction with convolutional neural networks texture features and classification

Soft sensors

 Flotation grade prediction with convolutional neural networks texture features and classification

introduced to create lower dimensional feature space

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Soft sensors

 Flotation grade prediction with convolutional neural networks texture features and classification

Soft sensors

 Flotation grade prediction with convolutional neural networks texture features and classification

Interpretability important for industrial adoption

Figure 8-9: Deepdream Optimal Inputs for Filter Activation in First Convolutional Layer

Figure 8-11: Deepdream Optimal Inputs for Filter Activation in Second Convolutional Layer (Contrast was enhanced in this image for visualisation purposes)

Challenges and opportunities

- Data size, quality and fusion
 - Potentially massive data sets
 - Shifting process conditions
 - Online process data + offline process data + maintenance records
 + mine plan + purchase orders + etc.
- Exploiting process knowledge
 - Dynamic Bayesian networks
 - Hybrid modelling
- Process recovery
 - Actionable insights
 - Reinforcement learning

Questions?

