0 Logistická regrese

Logistická regrese predikuje pravděpodobnost jednotlivých hodnot vysvětlované proměnné. Pro binární klasifikaci $Y \in \{0,1\}$, na kterou se omezíme, tedy vrací pravděpodobnost $1, P(Y = 1) \in [0,1]$.

0.1 Použití pro binární klasifikaci

0.1.1 Sigmoida

V modelu použijeme lineární výraz $\mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \ldots + w_p x_p$, který má však obor hodnot na celém \mathbb{R} . Tento výraz proto dosadíme do funkce, která je ostře rostoucí a má obor hodnot podmnožinu [0,1]. V logistické regresi volíme sigmoidu

$$f(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

Jedná se o speciální případ logistické funkce

$$f(x) = \frac{L}{1 + e^{-k(x - x_0)}},$$

se supremem L=1, koeficientem růstu k=1 a středem $x_0=0$.

Sigmoida má jako definiční obor celé \mathbb{R} a obor hodnot (0,1). Na celém definičním oboru je ostře rostoucí, limita pro $x \to -\infty$ je 0 a pro $x \to +\infty$ je 1. Také platí, že střed má v bodě 0: $f(0) = \frac{1}{2}$.

0.1.2 Fungování modelu logistické regrese

Binární klasifikace vysvětlované proměnné $Y \in \{0,1\}$ s p příznaky X_1, \ldots, X_p logistická regrese provede predikcí pravděpodobnosti

$$P(Y = 1 \mid \boldsymbol{x}, \boldsymbol{w}) = \frac{e^{\boldsymbol{w}^T \boldsymbol{x}}}{1 + e^{\boldsymbol{w}^T \boldsymbol{x}}},$$

kde $\boldsymbol{x}=(1,x_1,\ldots,x_p)$ je vektor hodnot příznaků a $\boldsymbol{w}=(w_0,\ldots,w_p)$ je vektor koeficientů. Model zvolí 1 když P $(Y=1\mid\boldsymbol{x},\boldsymbol{w})>0.5$, jinak predikuje 0.

0.2 Hranice rozhodnutí

Hranice rozhodnutí je dána rovnicí

$$P(Y = 1 \mid \boldsymbol{x}, \boldsymbol{w}) = 0.5 \Leftrightarrow \boldsymbol{w}^T \boldsymbol{x} = 0 \Leftrightarrow w_0 + w_1 x_1 + \ldots + w_p x_p = 0$$

To odpovídá nadrovině v prostoru \mathbb{R}^p . Hranici tedy tvoří lineární varieta dimenze p-1.

0.3 Logistická regrese jako MLE odhad

Vzhledem k tomu, že u logistické regrese predikujeme pravděpodobnost hodnot proměnné Y, nelze vyloženě měřit chybu takových odhadů a následně je minimalizovat jako u lineární regrese. Proto parametry \boldsymbol{w} odhadujeme MLE (maximum likelihood estimation) metodou maximální věrohodností.

0.3.1 Myšlenka MLE odhadu

Pro parametry $\boldsymbol{w} = (w_0, w_1, \dots, w_p)$ jsou pravděpodobnosti následující

$$p_1(\boldsymbol{x}; \boldsymbol{w}) = P(Y = 1 \mid \boldsymbol{x}, \boldsymbol{w}) = \frac{e^{\boldsymbol{w}^T \boldsymbol{x}}}{1 + e^{\boldsymbol{w}^T \boldsymbol{x}}}$$
$$p_0(\boldsymbol{x}; \boldsymbol{w}) = P(Y = 0 \mid \boldsymbol{x}, \boldsymbol{w}) = \frac{1}{1 + e^{\boldsymbol{w}^T \boldsymbol{x}}}$$

MLE je takový odhad parametrů, pro které je daná realizace náhodného výběru nejpravděpodobnější (má největší věrohodnost). Metoda maximální věrohodnosti formálně odhaduje hodnotu $\hat{\boldsymbol{w}}$ parametru \boldsymbol{w} , která maximalizuje $L(\boldsymbol{w}; \boldsymbol{X})$ na trénovacích datech $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N)$, kde $\boldsymbol{x}_i = (1, x_{i,1}, \dots, x_{i,p})$ jsou jednotlivé naměřené hodnoty:

$$\hat{\boldsymbol{w}} \in \left\{ rg \max_{\boldsymbol{w} \in \mathbb{R}^{p+1}} L(\boldsymbol{w}; \boldsymbol{X}) \right\}, \quad \text{kde } L(\boldsymbol{w}; \boldsymbol{X}) = \prod_{i=1}^{N} p_{Y_i}(\boldsymbol{x}_i; \boldsymbol{w})$$

0.3.2 Sestavení optimalizační úlohy pro trénování

Pro tuto funkci se snažíme nalézt maximum (nemusí existovat). Před zderivováním se však často vyplatí věrohodnost zlogaritmovat (log-likelihood), který je na $(0, +\infty)$ prostý a ostře rostoucí a tudíž má maximum ve stejném bodě.

$$\ell(\boldsymbol{w}; \boldsymbol{X}) = \ln L(\boldsymbol{w}; \boldsymbol{X}) = \sum_{i=1}^{N} \ln p_{Y_i}(\boldsymbol{x}_i; \boldsymbol{w})$$

$$= \sum_{i=1}^{N} Y_i \ln p_1(\boldsymbol{x}_i; \boldsymbol{w}) + (1 - Y_i) \ln p_0(\boldsymbol{x}_i; \boldsymbol{w}) = \dots$$

$$= \sum_{i=1}^{N} \left(Y_i \boldsymbol{w}^T \boldsymbol{x}_i - \ln(1 + e^{\boldsymbol{w}^T \boldsymbol{x}_i}) \right)$$

Parciální derivace a gradient vychází

$$\frac{\partial \ell(\boldsymbol{w}; \boldsymbol{X})}{\partial w_j} = \sum_{i=1}^{N} \left(Y_i \boldsymbol{x}_{i,j} - \frac{e^{\boldsymbol{w}^T \boldsymbol{x}_i} \cdot \boldsymbol{x}_{i,j}}{1 + e^{\boldsymbol{w}^T \boldsymbol{x}_i}} \right) = \sum_{i=1}^{N} \boldsymbol{x}_{i,j} \left(Y_i - p_1(\boldsymbol{x}; \boldsymbol{w}) \right)$$
$$\nabla \ell(\boldsymbol{w}; \boldsymbol{X}) = \boldsymbol{X}^T \left(\boldsymbol{Y} - \boldsymbol{P} \right), \quad \text{kde } \boldsymbol{P} = (p_1(\boldsymbol{x}_1; \boldsymbol{w}), \dots, p_1(\boldsymbol{x}_N; \boldsymbol{w}))^T$$

Náš odhad leží v bodě, kde věrohodnost nabývá maxima, což nalezneme položením gradientu nule:

 $abla \ell(\hat{m{w}}; m{X}) = m{X}^T \left(m{Y} - \hat{m{P}} \right) = m{0}$

Zde neexistuje explicitní řešení a je třeba jej hledat numerickými aproximativními metodami (např. vícerozměrnou Newtonovou metodou lze ukázat, že řešení konverguje k lok. maximu, které je v případě logistické regrese současně globálním maximem).

Výpočet koeficientů logistické regrese je výpočetně náročný. Bez explicitního vzorce je výsledek jen aproximace a je možné, že počítač nic nevrátí (nepodaří se mu nalézt dostatečně dobrá aproximace).

Funkce $\ell(\boldsymbol{w}; \boldsymbol{X})$ také žádné maximum mít nemusí. V takovém případě se numerickou metodou pouze snažíme hledat přibližné řešení $\boldsymbol{X}^T \left(\boldsymbol{Y} - \hat{\boldsymbol{P}} \right) = \boldsymbol{0}$.