

Abderahmane ZENTOUT

Ingénieur Recherche et Développement en Perception et Intelligence Artificielle pour la Robotique

- ☆ Clermont-Ferrand (63000)
- 0768659438
- A Véhicule personnel

■ abderahmane.zentout@gmail.com

- Permis B
- **♀** France

EXPÉRIENCE PROFESSIONNELLE

Doctorant Salarié

De novembre 2023 à octobre 2024

Université Clermont Auvergne Clermont-Ferrand

- Réimplanter et ajuster (fine-tuning) des méthodes d'auto-calibration pour les réseaux de caméras, en intégrant des approches par réseaux de neurones convolutifs (CNN), Graph Attention Networks (GAT) et techniques RANSAC.
- Développer un simulateur de mouvement de particules et générer des projections, créant une base de données d'images synthétiques en Python.
- Concevoir et valider une méthode d'auto-calibration inspirée de RANSAC, atteignant une précision de 95% sur des données synthétiques.

Stage - Ingénieur R&D en Perception pour Véhicules Autonomes

De mars 2023 à septembre 2023

Sherpa Engineering Clermont-Ferrand, France

- Reproduire et analyser de manière comparative des modèles de détection d'objets avancés implémentés avec PyTorch sur le jeu de données KITTI dans le cadre d'une preuve de concept (POC).
- Concevoir et implémenter un modèle de détection d'objets basé sur des voxels en collaboration avec des ingénieurs et chercheurs, visant à satisfaire les exigences de performance et de précision du projet.
- Améliorer la précision de détection de 10 % grâce à une fusion tardive de capteurs (Caméra RGB et LiDAR).
- Créer un module de mesure de la vitesse des véhicules en 3D en utilisant le flux optique avec OpenCV.

Stage - Vision par ordinateur et Deep learning

D'avril 2022 à août 2022 Institut Pascal - UCA Clermont-Ferrand, France

- Analyser les méthodes d'apprentissage profond semi-supervisé pour la détection d'anomalies et de défauts sur des images RGB, implémentées avec PyTorch sur le dataset MVTec.
- Créer une base de données d'images réelles de pièces de roulement avec et sans défauts.
- Concevoir un pipeline combinant deux méthodes pour atteindre un taux de détection de défauts de 99%, validé sur un produit client avec un taux de détection de 97% et amélioré grâce aux retours du client.

Compétences Techniques et Outils

- Langages de programmation : Python, C++, Bash/Shell Scripting
- Bibliothèques et Frameworks: PyTorch, OpenCV, Scikit-Learn, NumPy, Pandas, Matplotlib, Seaborn, Visual Studio
- **Méthodologies et Techniques** : Vision par ordinateur, Apprentissage profond, Apprentissage par transfert, Augmentation de données, Fusion de capteurs
- Outils et Plateformes : Git, ROS, Docker, LaTeX, Linux

Ingénieur spécialisé en perception, IA et robotique, avec une expertise en détection d'objets, fusion de capteurs et vision par ordinateur. Expérimenté dans le développement de modèles d'apprentissage profond, l'auto-calibration de caméras, et l'analyse de données LiDAR et visuelles. Capable de concevoir des solutions performantes, d'optimiser des systèmes et de collaborer efficacement avec des équipes pluridisciplinaires.

ÉDUCATION

Master Automatique, robotique parc. Perception artificielle et robotique

De septembre 2021 à septembre 2023 Ecole Universitaire de Physique et d'Ingénieurie Clermont-Ferrand, France

- Obtention d'une bourse d'excellence et de mobilité de Clermont Auvergne INP dans le cadre de la formation pré-doctorale GT IMM (SFRI).
- Réalisations Académiques : Moyenne générale dépassant 15

Ingénieur d'état en automatique

De septembre 2015 à septembre 2020 Ecole Nationale Polytechnique Alger, Algérie

 Réaliser un projet de fin d'études intitulé "Reference Tracking in Underwater Optical Communication Systems" en collaboration avec l'Université KAUST.

PROJETS

Système Autonome de Livraison avec Manipulateur Mobile

- Détecter des objets à l'aide d'une caméra avec OpenCV.
- Planifier la trajectoire et naviguer une plateforme mobile, ainsi que contrôler le bras robotique monté sur celle-ci, sur ROS en utilisant C++ et Python.

Système d'Analyse Intelligente de Football

- Ajuster et suivre avec YOLOv8 pour détecter et suivre uniquement les joueurs, arbitres et ballon dans des vidéos de match.
- Segmenter par couleur pour identifier les équipes des joueurs.
- Analyser les mouvements des joueurs avec le flux optique d'OpenCV.
- Convertir les vitesses de déplacement en km/h via transformation de perspective.