Machine Learning

- Aula 2

1 - Python

2 - Pacotes

Jupyter

3 - Plotagem

Scatter plot

Default plot

Contour plot

Histograma

4 - Revisão

4.1 - Regressão

Regressão: Quando o valor que queremos prever para uma dada instância é uma quantidade

Base de Dados

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	price
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	36.2

Predição e Erro

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	price
96	0.11504	0.0	2.89	0.0	0.445	6.163	69.6	3.4952	?
97	0.12083	0.0	2.89	0.0	0.445	8.069	76.0	3.4952	?
98	0.08187	0.0	2.89	0.0	0.445	7.820	36.9	3.4952	?
99	0.06860	0.0	2.89	0.0	0.445	7.416	62.5	3.4952	?
100	0.14866	0.0	8.56	0.0	0.520	6.727	79.9	2.7778	?

Ļ	Tell tell
	21.4
	38.7
ľ	43.8
ľ	33.2
I	27.5

Regressão

Custo

Custo

4.2 - Classificação

Classificação: Quando o valor que queremos prever para uma dada instância é uma classe (um

valor categórico)

Base de Dados

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	cancer
50	11.76	21.60	74.72		0.08637	1
51	13.64	16.34	87.21	571.8	0.07685	1
52	11.94	18.24	75.71	437.6	0.08261	1
53	18.22	18.70	120.30	1033.0	0.11480	0
54	15.10	22.02	97.26	712.8	0.09056	0
55	11.52	18.75	73.34	409.0	0.09524	1

Base de Dados

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	cancer
50	11.76	21.60	74.72	427.9	0.08637	1
51	13.64	16.34	87.21	571.8	0.07685	1
52	11.94	18.24	75.71	437.6	0.08261	1
53	18.22	18.70	120.30	1033.0	0.11480	0
54	15.10	22.02	97.26	712.8	0.09056	0
55	11.52	18.75	73.34	409.0	0.09524	1

Predição e Erro

Predição

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	cancer
105	13.110	15.56	87.21	530.2	0.13980	?
106	11.640	18.33	75.17	412.5	0.11420	?
107	12.360	18.54	79.01	466.7	0.08477	?
108	22.270	19.67	152.80	1509.0	0.13260	?
109	11.340	21.26	72.48	396.5	0.08759	?
110	9.777	16.99	62.50	290.2	0.10370	?

Classificação

4.3 - Aprendizagem

Ajustar modelo (to fit a model)

Gradient descent:

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

epeat
$$\{$$

$$\frac{1}{2m}\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})^2$$
 $\theta_j:=\theta_j-lpha \frac{\partial}{\partial \theta_j}J(heta_0,\dots, heta_n)$

(simultaneously update for every $j = 0, \dots, n$)

Validação

5 - Redes Neurais

Reta, Plano, Hiperplano

Reta, Plano, Hiperplano

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_2 x_2$$

$$ax + by + cz + d = 0$$

Representação gráfica

$$h_{\Theta}(x) = \Theta_0 + \Sigma \Theta_i x_i$$

$$h_{\Theta}(x) = \Theta \cdot x$$

XOR

XOR

Mas e o treino?

-

Mas e o treino?

Não muda!

```
Gradient descent:
```

```
Repeat \left\{ \begin{array}{ll} \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \\ \end{array} \right. \left. \left\{ \begin{array}{ll} \text{Simultaneously update for every } j = 0, \dots, n \end{array} \right\}
```