Pre-test: Probability exam problems

1a. In a group of 20 girls, 13 take history and 8 take economics. Three girls take both history and economics, as shown in the following Venn diagram. The values p and q represent numbers of girls.

Find the value of p; [2 marks]

1b. Find the value of q. [2 marks]

1c. A girl is selected at random. Find the probability that she takes economics but not history. [2 marks]

2a. Events A and B are independent with $\mathrm{P}(A\cap B)=0.2$ and $\mathrm{P}(A'\cap B)=0.6$

Find P(B). [2 marks]

2b. Find $P(A \cup B)$.

3a. The following Venn diagram shows the events A and B, where P(A)=0.4, $P(A\cup B)=0.8$ and $P(A\cap B)=0.1$. The values p and q are probabilities.

(i) Write down the value of q.

(ii) Find the value of p. [3 marks]

1

 $\mathbf{3b.} \, \mathrm{Find} \, \mathrm{P}(B)$. [3 marks]

4a. In a class of 21 students, 12 own a laptop, 10 own a tablet, and 3 own neither.

The following Venn diagram shows the events "own a laptop" and "own a tablet".

The values p, q, r and s represent numbers of students.

- (i) Write down the value of p.
- (ii) Find the value of q.
- (iii) Write down the value of r and of s.

[5 marks]

- **4b.** A student is selected at random from the class.
 - (i) Write down the probability that this student owns a laptop.
 - (ii) Find the probability that this student owns a laptop or a tablet but not both. [4 marks]

4c. Two students are randomly selected from the class. Let L be the event a "student owns a laptop".

(i) **Copy** and complete the following tree diagram. (Do **not** write on this page.)

(ii) Write down the probability that the second student owns a laptop given that the first owns a laptop.

[4 marks]

5a. A factory has two machines, A and B. The number of breakdowns of each machine is independent from day to day.

Let A be the number of breakdowns of Machine A on any given day. The probability distribution for A can be modelled by the following table.

а	0	1	2	3
P(A = a)	0.55	0.3	0.1	k

Find k. [2 marks]

5b. (i) A day is chosen at random. Write down the probability that Machine A has no breakdowns.

(ii) Five days are chosen at random. Find the probability that Machine A has no breakdowns on exactly four of these days. [3 marks]

 ${f 5c.}$ Let B be the number of breakdowns of Machine B on any given day. The probability distribution for B can be modelled by the following table.

ь	0	1	2	3
P(B=b)	0.7	0.2	0.08	0.02

Find E(B). [2 marks]

 ${f 5d.}$ On Tuesday, the factory uses both Machine A and Machine B. The variables ${f A}$ and ${f B}$ are independent.

- (i) Find the probability that there are exactly two breakdowns on Tuesday.
- (ii) Given that there are exactly two breakdowns on Tuesday, find the probability that both breakdowns are of Machine A. [8 marks]

6a. Let
$$C$$
 and D be independent events, with $\mathrm{P}(C) = 2k_{ ext{ and }}\mathrm{P}(D) = 3k_{ ext{ , where }}^2$ 0 < $k < 0.5$

Write down an expression for $\mathrm{P}(C\cap D)$ in terms of k.

[2 marks]

6b. Find P(C'|D)

[3 marks]

Topic 4—Vectors

4.1	Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$
4.2	Scalar product	$ \mathbf{v} \cdot \mathbf{w} = \mathbf{v} \mathbf{w} \cos \theta$
		$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$
	Angle between two vectors	$\cos \theta = \frac{v \cdot w}{ v w }$
4.3	Vector equation of a line	r = a + tb

Topic 5—Statistics and probability

5.2	Mean of a set of data	$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$
5.5	Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$
	Complementary events	P(A) + P(A') = 1
5.6	Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
	Conditional probability	$P(A \cap B) = P(A) P(B \mid A)$
	Independent events	$P(A \cap B) = P(A) P(B)$
5.7	Expected value of a discrete random variable <i>X</i>	$E(X) = \mu = \sum_{x} x P(X = x)$
5.8	Binomial distribution	$X \sim B(n, p) \implies P(X = r) = \binom{n}{r} p^r (1 - p)^{n - r}, r = 0, 1,, n$
	Mean	E(X) = np
	Variance	Var(X) = np(1-p)
5.9	Standardized normal variable	$z = \frac{x - \mu}{\sigma}$