

어떤 알고리즘을 써야할까?

: Category	
E DATE	@2022/03/10
Complete	
≡ etc	
ල පු	

1. 키워드 추출

▼ 개체명 추출방식이란

개체명 추출 방식

관계도 분석 개체명 추출 방식

검색 결과 중 정확도 상위 100건의 뉴스 본문을 형태소 분석하여 명사상당어구를 추출합니다. 이후 추출된 명사상당어구에 개체명 분석 알고리즘(Structured SVM(Support Vector Machine))을 적용 하며 개체명의 관련기사 건수를 고려해 가중치를 부여합니다.

1. 공공인공지능 - 언어 분석 기술 - 형태소 분석 API

https://aiopen.etri.re.kr/guide_wiseNLU.php

- 언어 분석을 위한 6종의 API는 HTTP 기반의 REST API 인터페이스로 JSON 포맷 기반의 입력 및 출력을 지원하며 ETRI에서 제공하는 API Key 인증을 통해 사용할 수 있는 Open API입니다.
- 5,000건/일 (1회 사용시 입력은 1만글자 이하)

자바 예제

// 형태소들 중 명사들에 대해서 많이 노출된 순으로 출력 (최대 5개) morphemes

• NNG: 일반명사, NNP: 고유명사, NNB: 의존명사

• NN : 명사

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/42cbfe5e-421f-42 8e-9905-1f2900137c3f/001.형태소분석 가이드라인.pdf

5페이지

5.1. 태그 세트 분류 체계

대분류	소분류	세분류
(1) 체언		일반명사(NNG)
	명사(NN)	고유명사(NNP)
		의존명사(NNB)
	대명사(NP)	대명사(NP)
	수사(NR)	수사(NR)
(2) 용언	동사(VV)	동사(VV)
	형용사(VA)	형용사(VA)
	보조용언(VX)	보조용언(VX)
	지정사(VC)	긍정지정사(VCP)
		부정지정사(VCN)
(3) 수식언	관형사(MM)	성상 관형사(MMA)
		지시 관형사(MMD)
		수 관형사(MMN)
	부사(MA)	일반부사(MAG)
		접속부사(MAJ)
(4) 독립언	감탄사(IC)	감탄사(IC)
(5) 관계언	격조사(JK)	주격조사(JKS)
		보격조사(JKC)
		관형격조사(JKG)

2. 파이썬 오픈소스 라이브러리 - KoNLPy

<u>https://datascienceschool.net/03 machine learning/03.01.02 KoNLPy 한국어 처리 패키</u> <u>지.html</u>

KoNLPy(코엔엘파이라고 읽는다)는 한국어 정보처리를 위한 파이썬 패키지이다.

import warnings
warnings.simplefilter("ignore")
import konlpy
konlpy.__version__

한국어 말뭉치

KoNLPy에서는 대한민국 헌법 말뭉치인 kolaw와 국회법안 말뭉치인 kobill을 제공한다. 각 말뭉치가 포함하는 파일의 이름은 fields 메서드로 알 수 있고 open 메서드로 해당 파일의 텍스트를 읽어들인다.

```
from konlpy.corpus import kolaw
kolaw.fileids()
 ['constitution.txt']
c = kolaw.open('constitution.txt').read()
print(c[:40])
 대한민국헌법
 유구한 역사와 전통에 빛나는 우리 대한국민은 3.1운동으로
from konlpy.corpus import kobill
kobill.fileids()
 ['1809895.txt',
   '1809890.txt',
  '1809899.txt',
  '1809898.txt',
  '1809891.txt',
  '1809892.txt',
  '1809894.txt',
  '1809893.txt',
  '1809896.txt',
  '1809897.txt']
d = kobill.open('1809890.txt').read()
print(d[:40])
 지방공무원법 일부개정법률안
 (정의화의원 대표발의 )
  의 안
  번 호
```

형태소 분석

KoNLPy는 다음과 같은 다양한 형태소 분석, 태깅 라이브러리를 파이썬에서 쉽게 사용할 수 있도록 모아놓았다.

- Hannanum: 한나눔. KAIST Semantic Web Research Center 개발.
 - http://semanticweb.kaist.ac.kr/hannanum/
- Kkma: 꼬꼬마. 서울대학교 IDS(Intelligent Data Systems) 연구실 개발.
 - o http://kkma.snu.ac.kr/
- Open Korean Text: 오픈 소스 한국어 분석기. 과거 트위터 형태소 분석기.

• https://github.com/open-korean-text/open-korean-text

```
from konlpy.tag import *

hannanum = Hannanum()
kkma = Kkma()
komoran = Komoran()
mecab = Mecab()
okt = Okt()
```

이 클래스들은 다음과 같은 메서드를 공통적으로 제공한다.

• nouns : 명사 추출

• morphs : 형태소 추출

● pos : 품사 부착

명사 추출

문자열에서 명사만 추출하려면 noun 명령을 사용한다.

```
hannanum.nouns(c[:40])
 ['대한민국헌법', '유구', '역사', '전통', '빛', '우리', '대한국민', '3.1운동']
kkma.nouns(c[:40])
 ['대한'
  '대한민국'
  '대한민국헌법',
  '민국',
  '헌법',
  '유구',
'역사',
  '전통',
  '우리',
  '국민',
  '3',
  '1',
  '1운동',
  '운동']
# komoran은 빈줄이 있으면 에러가 남
komoran.nouns("\n".join([s for s in c[:40].split("\n") if s]))
 ['대한민국', '헌법', '역사', '전통', '국민', '운동']
mecab.nouns(c[:40])
 ['대한민국', '헌법', '역사', '전통', '우리', '국민', '운동']
okt.nouns(c[:40])
 ['대한민국', '헌법', '유구', '역사', '전통', '우리', '국민', '운동']
```

https://liveyourit.tistory.com/57 https://livedata.tistory.com/19

2. 랭킹

특성추출이란??

뉴스에 등장하는 명사 중에서 해당 뉴스에서 중요하다고 판단하여 추출한 키워드입니다. 이 때 중요도는 '텍스트 랭크(Text Rank)' 알고리즘으로 판단합니다.

텍스트 랭크 알고리즘: 단어 간 연결망을 그려서 중심이 되는 단어를 찾는 알고리즘입니다. 특정 문서에서 같이 사용된 단어들 간에 연결망을 그리고, 그 연결망에서 다른 단어들과 많이 연결

될수록 중요한 단어라고 판단합니다.

특성값이란?

특성값 정보는 특성추출에 기반해 계산된 중요도 값입니다.

빈도수 비중이란?

빈도수 비중 정보는 추출된 모든 키워드에서 해당 키워드가 차지하는 비중을 의미합니다.즉, 모든 키워드의 빈도수의 총합을 해당 키워드의 빈도수로 나누어 100을 곱하여 구한 값입니다.

https://www.bigkinds.or.kr/v2/analysis/featureExtraction.do#

3. 추천 알고리즘

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/17f3f088-14a5-42 9b-93bb-1ad4093c0132/빅카인즈_사용자매뉴얼.pdf

4-5 페이지

번호	구분	설명
1	분석 대상 뉴스	자동으로 분석된 뉴스의 개수가 표시됩니다.
2	뉴스 클러스터¹	뉴스 클러스터의 개수가 표시됩니다.
3	클러스터 내 대표 이슈	각 뉴스 클러스터의 대표 이슈가 표시됩니다. 각 이슈를 선택한 이후 관계도 분석 버튼을 클릭하면 관계도 분석 화면으로 이동합니다. 관계도 분석 화면에 대한 자세한 내용은 "5.1.2 관계도 분석하기"에서 확인할 수 있습니다.
4	상위 클러스터 분류	각 뉴스 클러스터에 포함된 뉴스가 표시됩니다

위의 **오늘의 이슈** 페이지는 <mark>토픽 랭크 알고리즘</mark>을 통하여 분석되고 코사인 유사도에 따라 <mark>뉴스</mark> 클러스터로 재구성됩니다.

• 뉴스 클러스터: 뉴스를 주제별로 분류한 후, 특정 이슈(키워드)별로 묶은 뉴스 그룹을 말합니다.

구현 순서

- 1. 중요 키워드 추출
- 2. 뉴스 클러스터 생성
- 3. 뉴스 클러스터 내 대표 키워드 추출
- 4. 뉴스 클러스터 제목 구성

뉴스 클러스터링이란?

• 형태소 분석과 문서 간의 유사도를 계산해 자동으로 뉴스를 모아주는 기술입니다.

8

• 분석 대상이 되는 뉴스를 1건씩 형태소 분석하여 '명사 상당어구'를 추출

- '명사 상당어구'에서 토픽랭크(TopicRank) 알고리즘을 사용하여 <mark>뉴스 내 중요 키워드를 선</mark>정한 후 키워드를 벡터(Vector)로 구성
- 문서 벡터간 코사인 거리(Cosine Distance) 계산하여 문서 간의 <mark>유사도(Similarity</mark>)가 임계 치(0.2) 이상인 뉴스를 그룹핑
- 모든 문서가 클러스터링 될 때까지 문서 간 그룹핑 반복 수행

작업이 완료 된 뉴스 클러스터링 품질 정확률 : 평균 82.43%