Theorem (3.2.7b). Let f be the function defined by $f(x) = 3x^3 + (\log x)^4$. f(x) is $\mathcal{O}(x^3)$.

Proof. Let g be the function defined by $g(x) = x^3$. f(x) is the sum of functions. The function $3x^3$ in the sum of functions f(x) is less than or equal to $3 \cdot g(x)$, for all $x \in \mathbb{R}$ Therefore, $3x^3$ is $\mathcal{O}(g(x))$ with constant witnesses C = 3, and any $k \in \mathbb{R}$. If $x \geq 1$, then the function $(\log x)^4$ is less than g(x). Therefore, $(\log x)^4$ is $\mathcal{O}(g(x))$ with constant witnesses C = 1, and k = 1. By the theorem stating that the bounding function for the sum of functions is the maximum bounding function of those functions, it follows that f(x) is $\mathcal{O}(x^3)$ with constant witnesses C = 3 and k = 1.