Lecture 16: Query Processing and Optimization

CS 1555: Database Management Systems

Constantinos Costa

http://db.cs.pitt.edu/courses/cs1555/current.term/

March 21, 2019, 16:00-17:15 University of Pittsburgh, Pittsburgh, PA

Lectures based: P. Chrysanthis & N. Farnan Lectures

Example Query Processing

SID	5Name	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35

SID	BID	Day
22	101	10/10/96
58	103	11/12/96

R1

*S*1

SELECT S.sname

FROM Sailors S, Reservations R

WHERE S.sid = R.sid

AND R.BID = 103

CS 1555: Database Management Systems - Constantinos Costa

3 of 38

Conceptual Evaluation Strategy

- Semantics of an SQL query defined in terms of the following conceptual evaluation strategy:
 - 1. Compute the cross-product of *from-list*
 - 2. Discard resulting tuples that fail *qualifications*
 - 3. Delete attributes that are not in **select-list**
 - 4. If DISTINCT is specified, eliminate duplicate rows

CS 1555: Database Management Systems - Constantinos Costa

Example of Conceptual Evaluation

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND R.bid=103

1. Compute the cross-product of from-list

S.SID	SName	Rating	Age	R.SID	BID	Day
22	Dustin	7	45	22	101	10/10/96
22	Dustin	7	45	58	103	11/12/96
31	Lubber	8	55	22	101	10/10/96
31	Lubber	8	55	58	103	11/12/96
58	Rusty	10	35	22	101	10/10/96
58	Rusty	10	35	58	103	11/12/96

CS 1555: Database Management Systems - Constantinos Costa

5 of 38

Example of Conceptual Evaluation

SELECT S.name

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND R.bid=103

2. Discard resulting tuples that fail qualifications

S.SID	SName	Rating	Age	R.SID	BID	Day
22	Dustin	7	45	22	101	10/10/96
22	Dustin	X	45	58	103	11/12/96
31	Lubber	8	55	22	101	10/10/96
31	Lubber	8	55	58	103	11/12/96
58	Rusty	10	35	22	101	10/10/96
58	Rusty	10	35	58	103	11/12/96

CS 1555: Database Management Systems - Constantinos Costa

Example of Conceptual Evaluation

SELECT S.name

FROM Sailors S, Reserves R

WHERE S.sid=R.sid AND R.bid=103

3. Delete attributes that are not in select-list

S.SID	SName	Rating	Age	R.SID	BID	Day
22	Dustin	7	45	22	101	10/10/96
22	Dustin	7	45	58	103	11/12/96
31	Lubber	8	55	22	101	10/10/96
31	Lubber	8	55	58	103	11/12/96
58	Rusty	10	35	22	101	10/10/96
58	Rusty	10	35	58	103	11/12/96

CS 1555: Database Management Systems - Constantinos Costa

7 of 38

Conceptual Evaluation Strategy

 This strategy is probably the <u>least efficient way</u> to compute a query!

 An "optimizer" will find more efficient strategies to compute the <u>same answers</u>

CS 1555: Database Management Systems - Constantinos Costa

Outline of algebraic optimization

- 1. Break up selections (with conjunctive conditions) into a cascade of selection operators
- 2. Push selection operators as far down in the tree as possible
- 3. Convert Cartesian products into joins
- 4. Rearrange leaf nodes to:
 - Execute first the most restrictive select operators
 - What is restrictive? (Fewest tuples or Smallest size)
 - Make sure we don't have Cartesian products
- 5. Move projections as far down as possible
- 6. Identify subtrees that represent groups of operations which can be executed by single algorithm

CS 1555: Database Management Systems - Constantinos Costa

Example of Query Tree

P.P.Number, P.D.Num, E.Last, E.Address, E.DOB

O P.Location = 'PGH' AND P.D.Num=D.D.Number AND D.MgrSSN=E.SSN

 Select P.PNumber, P.DNum, E.Last, E.Address, E.DOB From Employee as E, Department as D, Project as P, Where P.DNum = D.DNumber and D.MgrSSN = E.SSN and P.Location='PGH'

CS 1555: Database Management Systems - Constantinos Costa

18 of 38

Example of Query Tree (Step 2)

CS 1555: Database Management Systems - Constantinos Costa

Query Execution Plans

- Query tree annotated with algorithms and access methods
- Q: Is single-operator-at-a-time appropriate?
 - Materialized evaluation or processing
 - A: NO. Why?
 - A: We would need temporary relations (and extra disk space) to store intermediate results
- What is the alternative?
 - Pipelining or Stream-based Processing
 - Combine operators (and their execution) into a sequence

CS 1555: Database Management Systems - Constantinos Costa

Operator Evaluation

- <u>Several</u> alternative algorithms are available for <u>implementing</u> each relational operator
 - $\underline{\text{No}}$ algorithm is universally superior
 - Several factors influence which algorithm performs best:
 - · Size of the tables
 - · Existing index and sort orders
 - Size of available memory
 - •

CS 1555: Database Management Systems - Constantinos Costa

How to implement Selection (σ)?

- · Depends on:
 - Type of Query:
 - 1. Point query,
 - 2. Range query,
 - 3. Conjunction, or
 - 4. Disjunction

- Type of available Access Path:
 - 1. Index,
 - 2. Sorted File, or
 - 3. None!

CS 1555: Database Management Systems - Constantinos Costa

28 of 38

Selectivity

- The optimizer uses selectivity to choose!
- Selectivity (S):
 - The ratio of: the number of records that satisfy a condition to the total number of records
 - Example: for $\sigma_{\text{type="Drama"}}$, **S** = 500K/2M = 0.25
 - S between 0.0 and 1.0
 - S = 0: no records satisfy the condition
 - S = 1: all records satisfy the condition
 - Selectivity estimates are stored in DBMS Catalog

CS 1555: Database Management Systems - Constantinos Costa

Selectivity

- The <u>actual</u> distribution of selectivity is kept in the catalog in the form of a **histogram**
 - To get <u>more accurate</u> estimate of the number of records that satisfy a particular condition

Drama: 500,000Comedy: 460,000Documentary: 200,000Musicals: 20,000

Apply the condition with smallest estimate first

CS 1555: Database Management Systems - Constantinos Costa

