1/11

FIG. 1

FIG. 2

FIG. 3

DIRECT LIGATION REACTON

FIG. 4

pTXB1
...Met Ala Met Gly Gly Gly Arg Leu Glu Gly Ser Ser Cysl. Intein
CAT ATG GCC ATG GGT GGC GGC CGC CTC GAG GGC TCT TCC TGC
Ndel Ncol Nott Xhol Sapl

5/11

FTG. 5A

DNA Sequence of pTXBl plasmid

140- 997 beta-lactamase (Ap)

1042-1555M13 origin

ColEl origin 2254

2626-2814 rop

3376-4455 lacIq

5440-5456T7 promoter

5440-5459T7 universal primer (forward)

first nucleotide of the T7 transcript 5457

5459-5483 lac operator

5513-5519 Shine-Dalgarno sequence (T7 gene 10)

5525-5572 Multiple cloning site

5573-6166 Mxe GyrA intein (N198A)

6197-6352 Chitin-binding domain

6375-6497T7 transcription terminator

TXBl.seq.old Length: 6503 March 17, 1998 11:14 Type: N Check: 1445

1 AACTACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT

51 GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA

101 CCCTGATAAA TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA

151 ACATTTCCGT GTCGCCCTTA TTCCCTTTTT TGCGGCATTT TGCCTTCCTG

201 TTTTTGCTCA CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG

251 TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT

301 CCTTGAGAGT TTTCGCCCCG AAGAACGTTC TCCAATGATG AGCACTTTTA

351 AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTGTTGACGC CGGGCAAGAG

401 CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC

451 ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT

501 GCAGTGCTGC CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG

551 ACAACGATCG GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG

601 GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA

651 TACCAAACGA CGAGCGTGAC ACCACGATGC CTGTAGCAAT GGCAACAACG

701 TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA

751 ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT

801 CGGCCCTTCC GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG

851 CGTGGGTCTC GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC

6/11

FIG. 5B

901	CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC
951	GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA
1001	CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TACCCCGGTT
1051	GATAATCAGA AAAGCCCCAA AAACAGGAAG ATTGTATAAG CAAATATTTA
1101	AATTGTAAAC GTTAATATTT TGTTAAAATT CGCGTTAAAT TTTTGTTAAA
1151	TCAGCTCATT TTTTAACCAA TAGGCCGAAAA TCGGCAAAAT CCCTTATAAA
1201	TCAAAAGAAT AGCCCGAGAT AGGGTTGAGT GTTGTTCCAG TTTGGAACAA
1251	GAGTCCACTA TTAAAGAACG TGGACTCCAA CGTCAAAGGG CGAAAAACCG
1301	TCTATCAGGG CGATGGCCCA CTACGTGAAC CATCACCCAA ATCAAGTTTT
1351	TTGGGGTCGA GGTGCCGTAA AGCACTAAAT CGGAACCCTA AAGGGAGCCC
1401	CCGATTTAGA GCTTGACGGG GAAAGCCGGC GAACGTGGCG AGAAAGGAAG
1451	GGAAGAAAGC GAAAGGAGCG GGCGCTAGGG CGCTGGCAAG TGTAGCGGTC
1501	ACGCTGCGCG TAACCACCAC ACCCGCCGCG CTTAATGCGC CGCTACAGGG
1551	CGCGTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA
1601	ATCCCTTAAC GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA
1651	GATCAAAGGA TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT
1701	TGCAAACAAA AAAACCACCG CTACCAGCGG TGGTTTGTTT GCCGGATCAA
1751	GAGCTACCAA CTCTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT
1801	ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA
1851	ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG
1901	GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG
1951	
2001	CACAGCCCAG CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG
2051	CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG
210	CONTROL AGEGGEAGG TEGGAACAGE AGAGEGEARG AGGGGAGETTE
215	CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC
220	1 TGACTTGAGE GTCGATTTT GTGATGCTEG TCAGGGGGGE GGAGCCTATG
225	1 GAAAAACGCC AGCAACGCGG CCTTTTTACG GTTCCTGGCC TTTTGCTGGC
230	1 CTTTTGCTCA CATGTTCTTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC

WO 00/18881 PCT/US99/22776

7/11

FIG. 5C

2351 CGTATTACCG CCTTTGAGTG AGCTGATACC GCTCGCCGCA GCCGAACGAC
2401 CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC TATGGTGCAC TCTCAGTACA
2451 ATCTGCTCTG ATGCCGCATA GTTAAGCCAG TATACACTCC GCTATCGCTA
2501 CGTGACTGGG TCATGGCTGC GCCCCGACAC CCGCCAACAC CCGCTGACGC
2551 GCCCTGACGG GCTTGTCTGC TCCCGGCATC CGCTTACAGA CAAGCTGTGA
2601 CCGTCTCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC ATCACCGAAA
2651 CGCGCGAGGC AGCTGCGGTA AAGCTCATCA GCGTGGTCGT GCAGCGATTC
2701 ACAGATGTCT GCCTGTTCAT CCGCGTCCAG CTCGTTGAGT TTCTCCAGAA
2751 GCGTTAATGT CTGGCTTCTG ATAAAGCGGG CCATGTTAAG GGCGGTTTTT
2801 TCCTGTTTGG TCACTTGATG CCTCCGTGTA AGGGGGAATT TCTGTTCATG
2851 GGGGTAATGA TACCGATGAA ACGAGAGAGG ATGCTCACGA TACGGGTTAC
2901 TGATGATGAA CATGCCCGGT TACTGGAACG TTGTGAGGGT AAACAACTGG
2951 CGGTATGGAT GCGGCGGGAC CAGAGAAAAA TCACTCAGGG TCAATGCCAG
3001 CCGAACGCCA GCAAGACGTA GCCCAGCGCG TCGGCCGCCA TGCCGGCGAT
3051 AATGGCCTGC TTCTCGCCGA AACGTTTGGT GGCGGGACCA GTGACGAAGG
3101 CTTGAGCGAG GGCGTGCAAG ATTCCGAATA CCGCAAGCGA CAGGCCGATC
3151 ATCGTCGCGC TCCAGCGAAA GCGGTCCTCG CCGAAAATGA CCCAGAGCGC
3201 TGCCGGCACC TGTCCTACGA GTTGCATGAT AAAGAAGACA GTCATÁAGTG
3251 CGGCGACGAT AGTCATGCCC CGCGCCCACC GGAAGGAGCT GACTGGGTTG
3301 AAGGCTCTCA AGGGCATCGG TCGAGATCCC GGTGCCTAAT GAGTGAGCTA
3351 ACTTACATTA ATTGCGTTGC GCTCACTGCC CGCTTTCCAG TCGGGAAACC
3401 TGTCGTGCCA GCTGCATTAA TGAATCGGCC AACGCGCGGG GAGAGGCGGT
3451 TTGCGTATTG GGCGCCAGGG TGGTTTTTCT TTTCACCAGT GAGACGGGCA
3501 ACAGCTGATT GCCCTTCACC GCCTGGCCCT GAGAGAGTTG CAGCAAGCGG
3551 TCCACGCTGG TTTGCCCCAG CAGGCGAAAA TCCTGTTTGA TGGTGGTTAA
3601 CGGCGGGATA TAACATGAGC TGTCTTCGGT ATCGTCGTAT CCCACTACCG
3651 AGATATCCGC ACCAACGCGC AGCCCGGACT CGGTAATGGC GCGCATTGCG
3701 CCCAGCGCCA TCTGATCGTT GGCAACCAGC ATCGCAGTGG GAACGATGCC
3751 CTCATTCAGC ATTTGCATGG TTTGTTGAAA ACCGGACATG GCACTCCAGT

WO 00/18881

PCT/US99/22776

8/11

FIG. 5D

3801 CGCCTTCCCG TTCCGCTATC GGCTGAATTT GATTGCGAGT GAGATATTTA 3851 TGCCAGCCAG CCAGACGCAG ACGCGCCGAG ACAGAACTTA ATGGGCCCGC 3901 TAACAGCGCG ATTTGCTGGT GACCCAATGC GACCAGATGC TCCACGCCCA 3951 GTCGCGTACC GTCTTCATGG GAGAAAATAA TACTGTTGAT GGGTGTCTGG 4001 TCAGAGACAT CAAGAAATAA CGCCGGAACA TTAGTGCAGG CAGCTTCCAC 4051 AGCAATGGCA TCCTGGTCAT CCAGCGGATA GTTAATGATC AGCCCACTGA 4101 CGCGTTGCGC GAGAAGATTG TGCACCGCCG CTTTACAGGC TTCGACGCCG 4151 CTTCGTTCTA CCATCGACAC CACCACGCTG GCACCCAGTT GATCGGCGCG 4201 AGATTTAATC GCCGCGACAA TTTGCGACGG CGCGTGCAGG GCCAGACTGG 4251 AGGTGGCAAC GCCAATCAGC AACGACTGTT TGCCCGCCAG TTGTTGTGCC 4301 ACGCGGTTGG GAATGTAATT CAGCTCCGCC ATCGCCGCTT CCACTTTTTC 4351 CCGCGTTTTC GCAGAAACGT GGCTGGCCTG GTTCACCACG CGGGAAACGG 4401 TCTGATAAGA GACACCGGCA TACTCTGCGA CATCGTATAA CGTTACTGGT 4451 TTCACATTCA CCACCCTGAA TTGACTCTCT TCCGGGCGCT ATCATGCCAT 4501 ACCGCGAAAG GTTTTGCGCC ATTCGATGGT GTCCCGGATC TCGACGCTCT 4551 CCCTTATGCG ACTCCTGCAT TAGGAAGCAG CCCAGTAGTA GGTTGAGGCC 4601 GTTGAGCACC GCCGCCGCAA GGAATGGTGC ATGCCGCCCT TTCGTCTTCA 4651 AGAATTAATT CCCAATTCCA GGCATCAAAT AAAACGAAAG GCTCAGTCGA 4701 AAGACTGGGC CTTTCGTTTT ATCTGTTGTT TGTCGGTGAA CGCTCTCCTG 4751 AGTAGGACAA ATCCGCCGGG AGCGGATTTG AACGTTGCGA AGCAACGGCC 4801 CGGAGGGTGG CGGGCAGGAC GCCCGCCATA AACTGCCAGG AATTAATTCC 4851 AGGCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT 4901 TATCTGTTGT TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGG 4951 GAGCGGATTT GAACGTTGCG AAGCAACGGC CCGGAGGGTG GCGGGCAGGA 500. CGCCCGCCAT AAACTGCCAG GAATTAATTC CAGGCATCAA ATAAAACGAA 5051 AGGCTCAGTC GAAAGACTGG GCCTTTCGTT TTATCTGTTG TTTGTCGGTG 5101 AACGCTCTCC TGAGTAGGAC AAATCCGCCG GGAGCGGATT TGAACGTTGC 5151 GAAGCAACGG CCCGGAGGGT GGCGGGCAGG ACGCCCGCCA TAAACTGCCA 5201 GGAATTAATT CCAGGCATCA AATAAAACGA AAGGCTCAGT CGAAAGACTG

9/11

FIG. 5E

	CECACETA CCA
5251	GGCCTTTCGT TTTATCTGTT GTTTGTCGGT GAACGCTCTC CTGAGTAGGA
5301	CAAATCCGCC GGGAGCGGAT TTGAACGTTG CGAAGCAACG GCCCGGAGGG
5351	TGGCGGGCAG GACGCCCGCC ATAAACTGCC AGGAATTGGG GATCGGAATT
5401	AATTCCCGGT TTAAACCGGG GATCTCGATC CCGCGAAATT AATACGACTC
5451	ACTATAGGGG AATTGTGAGC GGATAACAAT TCCCCTCTAG AAATAATTTT
5501	GTTTAACTTT AAGAAGGAGA TATAcatatg gctagctcgc gagtcgacgg
5551	cggccgcctc gagggctctt ccTGCATCAC GGGAGATGCA CTAGTTGCCC
5601	TACCCGAGGG CGAGTCGGTA CGCATCGCCG ACATCGTGCC GGGTGCGCGG
5651	CCCAACAGTG ACAACGCCAT CGACCTGAAA GTCCTTGACC GGCATGGCAA
5701	TCCCGTGCTC GCCGACCGGC TGTTCCACTC CGGCGAGCAT CCGGTGTACA
5751	CGGTGCGTAC GGTCGAAGGT CTGCGTGTGA CGGGCACCGC GAACCACCCG
5801	TTGTTGTGTT TGGTCGACGT CGCCGGGGTG CCGACCCTGC TGTGGAAGCT
5851	GATCGACGAA ATCAAGCCGG GCGATTACGC GGTGATTCAA CGCAGCGCAT
5901	TCAGCGTCGA CTGTGCAGGT TTTGCCCGCG GAAAACCCGA ATTTGCGCCC
5951	CACTCGCCGT CCCTGGACTG GTGCGTTTCT TGGAAGCACA
6001	THE TAR SECONOGUE AAGETATEGE EGACGAGETG ACCGAEGGE
• • • •	CCCALACTO CCCCALACTO GCCAGTGTCA CCGACGCCGG CGTGCAGCCG
6051	TO THE THEORY TO THE TOTAL CACGGCAGAC CACGCGTTTA TOACGAACGG
6101	GOCCTACTA GCCTTACTG GCCTCACCGG TCTGAACTCA GGCCTCACGA
6151	THE THE STATE COURT TO THE TAX ACACAGCTTA TACTGCGGGA
6203	CATATALCG CAAGACGTAT AAATGTTTGC AGCCCCACAC
6253	CAATTGGTCA CATATAACOO OOO OOOOOOOOOOOOOOOOOOOOO
630	1 CTCCTTGGCA GGATGGGAAC CHTOTO 1 AATGACtgca ggaaggGGAT CCGGCTGCTA ACAAAGCCCG AAAGGAAGCT
635	1 AATGACIGCA GGAAGGGAT COGGCTOOTH. 1 GAGTTGGCTG CTGCCACCGC TGAGCAATAA CTAGCATAAC CCCTTGGGGC
640	1 GAGTTGGCTG CTGCCACCGC .GAGCACTTTTTGCT GAAAGGAGGA ACTATATCCG 1 CTCTAAACGG GTCTTGAGGG GTTTTTTGCT GAAAGGAGGA ACTATATCCG
650	O1 GAT

FIG. 6

Hpa I LIGATION

11/11

FIG.~7 WESTERN BLOTS OF PROTEINS LIGATED TO A BIOTINYLATED PEPTIDE

MBP+Peptide	MBP Control	Bst Pol I+Peptide	Bst Pol I Control	Paramyosin+Peptide	Paramyosin Control	Thioredoxin+Peptide	Thioredoxin Control
-------------	-------------	-------------------	-------------------	--------------------	--------------------	---------------------	---------------------