

DIALOG(R)File 345:Inpadoc Fam.& Legal Stat

(c) 2002 EPO. All rts. reserv.

14231669

Basic Patent (No.Kind.Date): JP 10041068 A2 19980213 <No. of Patents: 002 >

DRIVING OF ELECTROLUMINESCENT ELEMENT (English)

Patent Assignee: STANLEY ELECTRIC CO LTD

Author (Inventor): GOTO TATSUYA

IPC: *H05B-033/08; G09G-003/12

Language of Document: Japanese

Patent Family:

Patent No	Kind	Date	Applc No	Kind	Date	
JP 10041068	A2	19980213	JP 96197683	A	19960726	(BASIC)
JP 3229819	B2	20011119	JP 96197683	A	19960726	

Priority Data (No.Kind.Date):

JP 96197683 A 19960726

EP 19834 ③

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 10041068
PUBLICATION DATE : 13-02-98

APPLICATION DATE : 26-07-96
APPLICATION NUMBER : 08197683

APPLICANT : STANLEY ELECTRIC CO LTD;

INVENTOR : GOTO TATSUYA;

INT.CL. : H05B 33/08 G09G 3/12

TITLE : DRIVING OF ELECTROLUMINESCENT ELEMENT

ABSTRACT : PROBLEM TO BE SOLVED: To prolong the life of an electroluminescent element by setting both positive and negative polarity voltages of an alternating voltage in stepwise waveforms having at least three steps in both rising and falling voltage portions.

SOLUTION: An alternating voltage E is applied between a transparent electrode of an electroluminescent element and an aluminum electrode to emit light. Here, the waveform of the voltage E is formed stepwise in both rising voltage portion EU and falling voltage portion ED. The half cycle on the positive polarity side and the half cycle on the negative polarity side of the voltage E are symmetric each other. The number of steps dividing the voltage E is appropriately set depending on conditions such as the characteristics of the electroluminescent element and the driving voltage. The number of steps may be small if, for example, the driving voltage is low and the light emitting layer has a long life. In effect, the object is to assure an extended life of the electroluminescent element, which is practically attained by setting the number of steps to at least three.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-41068

(43)公開日 平成10年(1998)2月13日

(51)Int.Cl.
H 05 B 33/08
G 09 G 3/12

識別記号 庁内整理番号
4237-5H

F I
H 05 B 33/08
G 09 G 3/12

技術表示箇所

審査請求 未請求 請求項の数 2 ○ L (全 4 頁)

(21)出願番号 特願平8-197683

(22)出願日 平成8年(1996)7月26日

(71)出願人 000002303

スタンレー電気株式会社

東京都目黒区中目黒2丁目9番13号

(72)発明者 後藤辰也

東京都町田市成瀬2-29-13

(74)代理人 弁理士 秋元輝雄

(54)【発明の名称】 EL素子の駆動方法

(57)【要約】

【課題】 従来のEL素子の駆動方法においては、過大な突入電流を生じないように正弦波の交番電圧で駆動するものであったので、この交番電圧の発生のためにLC発振回路が必要となり、全体構成が大型化する問題点を生じていた。

【解決手段】 本発明により、交番電圧Eは、正負極性電圧の双方が少なくとも各3段の昇圧部EUおよび降圧部EDを有する階段状波形とされる。EL素子の駆動方法としたことで、EL素子に過電流による寿命の短縮を生じることなく、コンデンサ、コイルなどを使用することなく発生することができる波形の交番電圧Eでの駆動を可能とし駆動装置を小型化し課題を解決するものである。

【特許請求の範囲】

【請求項1】 発光層を透明電極とアリミ電極とで挟み、両電極間に交番電圧を印加して成るEJL素子の駆動方法において、前記交番電圧は、正負極性電圧の双方が少なくとも各3段の昇圧部および降圧部を有する階段状波形とされて、いることを特徴とするEJL素子の駆動方法。

【請求項2】 前記交番電圧は、正極性側の半サイクルと負極性側の半サイクルとの電位のクラップ電位に対する絶対値を非対称として設定していることを特徴とする請求項1記載のEJL素子の駆動方法。

【免明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、EJL(エレクトロルミネセンス)素子と称されている、蛍光体に電場を加えることで発光させる素子の駆動方法に関するものであり、詳細には、駆動を行うときの電圧波形の改良に係るものである。

【0002】

【従来の技術】 図5に示すものはEJL素子10の基本的な構成であり、例えばZnS(Mg,Al)などの組成を有する蛍光体により形成した発光層11の一方の面にITOなど透明且つ導電性を有する部材で形成された透明電極12を設け、他方の面にアルミニウムの蒸着などによる形成されたアリミ電極13を設け、両電極12、13で発光層11を挟む構成としたものである。

【0003】 上記EJL素子10を駆動するときには、透明電極12とアリミ電極13との間に、図6に示すように正弦波(サインウェーブ)の波形を有する交番電圧Sを印加し、発光層11を構成する蛍光体を励起して発光を得るものである。このときには、交番電圧SはEJL素子10に高い発光効率が得られる周波数とされるが、通常には200Hz～1kHzの範囲に最適値がある。また、電圧は8V～150Vの範囲である。

【0004】

【発明が解決しようとする課題】 しかしながら、前記した従来の駆動方法では、交番電圧Sの波形に正弦波が要求されるので、交番電圧Sの発生にはコイル(シ)ヒコッテンサ(C)によるもの共振回路を使用せざるを得ないものとなる。しかも、このときの周波数が比較的に低いためコイルやヒコッテンサが大型のものとなり、オシログラフなど駆動装置の大型化する問題点を抱いている。また、前記したヒコッテンサなどの駆動装置は出力波形を正弦波とした場合、例えば矩形波のものと比較すると効率が低下し、駆動装置は一層に大型化して上記の問題点を一層に顕著なものとなる。

【0005】 ここで、前記EJL素子10の駆動に正弦波の交番電圧Sが要求される理由は、EJLから明らかなるように透明電極12とアリミ電極13と対応する二つの電極12と同様な構成であるので、明確な、また、一方の

電位から他方の電位に急激に変化する波形を印加すると、その変化時に過大な充電電流が流れるものとなる。その時の過大電流により発光層11が破損するものと成るからである。従って、例えばヒコッテンサにより小型化が可能である矩形波の駆動装置は採用できないとされている。

【0006】

【課題を解決するための手段】 本発明は前記した従来の課題を解決するための具体的な手段として、発光層を透明電極とアリミ電極とで挟み、両電極間に交番電圧を印加して成るEJL素子の駆動方法において、前記交番電圧は、正負極性電圧の双方が少なくとも各3段の昇圧部および降圧部を有する階段状波形とされて、いることを特徴とするEJL素子の駆動方法を提供することによって課題を解決するものである。

【0007】

【発明の実施の形態】 つきに、本発明を図に示す実施形態に基づいて詳細に説明する。図1に符号10で示すものは本発明に係るEJL素子の駆動方法で採用する交番電圧の第一の実施形態であり、この交番電圧EJLはEJL素子10(図5参照)の透明電極12とアリミ電極13との間に印加することで直打を行わせるものである。

【0008】 このときには、前記交番電圧EJLの波形は、電位が上昇する部分(以下、昇圧部EJLと称する)においても、電位が下降する部分(以下、降圧部EJL)においても階段状となるものとされて、いる。そして、この第一の実施形態では交番電圧EJLは正極性側の半サイクルと、負極性側の半サイクルが対称形狀とされて、いる。

【0009】 ここで、前記交番電圧EJLの波形について更に詳細に説明を行う。尚、上記にも説明したように、この第一の実施形態では正極性側の半サイクルと負極性側の半サイクルとが対称形狀であるので、説明は正極性側の半サイクルで代表させて行うものとする。

【0010】 前記交番電圧EJLは、まず、昇圧部EJLではクラップ電位EJLから、EJL素子10の特性に合せて設定された最高電位まで上昇するものとされるが、この第一の実施形態では、クラップ電位EJLから電位EJL01、電位EJL02、電位EJL03、電位EJL04を経由し、最高電位である電位EJL05までの5段階のステップで電位を上昇するものとされている。

【0011】 そして、降圧部EJLでは逆に電位EJL05から電位EJL04、電位EJL03、電位EJL02、電位EJL01を経由して5段階の波形を呈するものとされ、一方で電位EJL05に達するものとされている。このときには、この実施形態では、電位EJL05と電位EJL04、電位EJL04と電位EJL03、電位EJL03と電位EJL02、電位EJL02と電位EJL01および電位EJL01と電位EJL00は、順次、直打とされて、いる。

【0012】 また、前記電位EJL05と電位EJL04、電位EJL04と電位EJL03、電位EJL03と電位EJL02、電位EJL02と電位EJL01、電位EJL01と電位EJL00は、既述の駆動方法によ

れが設定された電位を保つものとされているので、昇圧部E11においても降圧部E10においても電位の変化は階段状となり、且つ、昇圧部E11と降圧部E10は対称の形狀を有するものとなる。

【0013】図2に示すものは、上記に説明した交番電圧EをE11素子10に印加したときの電流波形Aであり、例えばアンド電位のVと電位E11D01との間など、各電位間に於て急激な電圧変化を生じるので、ヒーク状の充電電流を生じるものとなるが、本発明によりクランド電位のVから最高電位E11D05の間に階段状に分割されたことで、それぞれの電位間に生じる充電電流のヒーク値は、一度にクランド電位のVから最高電位E11D05まで上昇させる場合に比べて少ないものとなる。

【0014】図3は、同一電圧、同一周波数(100V、400Hz)でE11素子10を上記の本発明の交番電圧Eで駆動したときの輝度維持率B1と、従来例の正弦波の交番電圧で駆動したときの輝度維持率B0とを示すものであり、上記のようにヒーク値が低減されたことで、本発明の交番電圧Eで駆動した場合にも、従来例の正弦波で駆動するのと同様以上の輝度維持率、即ち、寿命をE11素子10に対し与えることが可能となる。

【0015】ここで、交番電圧Eを階段状に分割する段数に関して述べれば、これは駆動するべきE11素子10の特性、あるいは、必要とされる駆動電圧などの条件により適宜に設定されるものであり、例えば、駆動電圧が低い且つ発光層11も耐久性が高く、ものであれば、段数は少なくて良いものとなる。要はE11素子10に充分な寿命が保証されれば良い。本発明を成すための試作、検討の結果では、少なくとも5段とすることで、その目的は達成されるものである。

【0016】次いで、本発明の駆動方法である交番電圧Eの発生手段について各案を行ってみると、この交番電圧Eは階段状に変化するものであるので、例えば梯子型抵抗回路など簡便なデジタル回路手段による波形生成手段により、コイル、コントローラなどを使用することなく発生させることができ、極めて小型に駆動装置が形成できるものとなる。

【0017】図4は、本発明の第二の実施形態の交番電圧Eを示すものであり、実際にE11素子10を駆動してみると、例えば電極特性の相違などにより、透明電極12側から流れ電流とアンド電極13側から流れ電流とに、即ち、正負の半サイクルの間に電流順位差を生じる場合を生じて生じる。

【0018】このときに、通常には、E11素子10に対する寿命の確保などの面から、電流が多く流れる側を基準として電圧が設定されるので、電流が少ない側の半サイクルの駆動においてはE11素子10の発光量は保たないものとなり、結果としてE11素子10に期待する光量が得られないものとなっている。

【0019】この第二の実施形態は、上記の状態に対応

して成されたものであり、本発明の駆動方法では、正極性側の半サイクル用と負極性側の半サイクル用とのそれぞれに専用の梯子型抵抗回路など波形生成手段を設けることで、それぞれの半サイクルの電圧調整が可能となる。

【0020】そして、この第二の実施形態では、前記交番電圧E11において、例えば透明電極12に印加する昇圧部E11の電位E11D01～E11D05、および、降圧部E10の電位E11D01～E11D05に対して、アンド電極13に印加する昇圧部E11の電位E11D01～E11D05、および、降圧部E10の電位E11D01～E11D05のそれぞれを電圧を高く設定し、透明電極12と同じ電流が流れるものと調整するものである。

【0021】

【発明の効果】以上に説明したように本発明により、交番電圧は、正負極性電圧の双方が少なくとも各3段の昇圧部および降圧部を有する階段状波形とされているE11素子の駆動方法とすることで、E11素子に過電流による寿命の短縮を生じることなく、コントローラ、コイルなどを使用することなく発生することができる波形の交番電圧での駆動を可能とし駆動回路を小型化し、この種の装置の全体構成の小型化に極めて優れた効果を發揮するものである。

【0022】また、上記の構成とすることで、正極側の半サイクルと負極側の半サイクルとの電位を個別に設定することを可能とし、例えば電極の特性の相違などにより一方の電極の側の電圧に対する駆動効率が低く、これによりE11素子の全体としての発光光量が低下する問題に対しても、電流が高効率側と同一となるように低効率側の電圧を調整できるものとし、寿命に影響を及ぼすことなく光量の増加を可能とする優れた効果も發揮するものである。

【図面の簡単な説明】

【図1】 本発明に係るE11素子の駆動方法の第一の実施形態の電圧波形を示すグラフである。

【図2】 同じ第一の実施形態の電流波形を示すグラフである。

【図3】 同じ第一の実施形態による寿命特性を従来例との比較で示すグラフである。

【図4】 同じ本発明に係るE11素子の駆動方法、第二の実施形態の電圧波形を示すグラフである。

【図5】 E11素子の構成の例を示す説明図である。

【図6】 従来例の駆動方法における電圧波形を示すグラフである。

【符号の説明】

10……E11素子

11……発光管

12……透明電極

13……アンド電極

E11……交番電圧

EU……昇圧部
 EU01～EU05、EU11～EU15……電位
 ED……降圧部

ED01～ED05、ED11～ED15……電位
 A……電流波形

【図 1】

【図 2】

【図 3】

【図 4】

【図 5】

【図 6】

