Ramseyeva teorija

Jan Pantner (jan.pantner@gmail.com)

16. oktober 2024

1 Ramseyeva števila

Naloga 1.1. Dokažite, da med poljubnimi šestimi ljudmi vedno obstajajo trije, ki se med seboj poznajo, ali trije, ki se med seboj ne poznajo.

Izrek: Ramsey

Za poljubni naravni števili r in s obstaja najmanjše takšno naravno število n = R(r, s), da velja naslednje: Če povezave polnega grafa K_n pobarvamo z dvema barvama, zagotovo obstaja poln podgraf moči r, v katerem so vse povezave prve barve ali pa poln podgraf moči s, v katerem so vse povezave druge barve.

Naloga 1.2. Določite R(3,3) in R(3,4).

Naloga 1.3. Dokažite, da velja $R(3,3,3) \leq 17$.

Trditev

Naj bo $k \geq 2$ celo število. Tedaj velja

$$R(\underbrace{3,3,\ldots,3}_{k\text{-krat}}) \leq \lfloor ek! \rfloor + 1.$$

Naloga 1.4. Elemente množice $\{1, 2, ..., 1978\}$ pobarvamo s šestimi barvami. Dokažite, da obstajajo števila $x, y, z \in \{1, 2, ..., 1978\}$, ki so iste barve in za njih velja x + y = z.

Izrek: Schur

Dokažite, da za vsako naravno število k obstaja naravno število n, da za vsako k-barvanje elementov množice $\{1,2,\ldots,n\}$ obstajajo števila $x,\,y,\,z$ iz $\{1,2,\ldots,n\}$ iste barve z lastnostjo x+y=z.

Dodatne naloge

Naloga 1.5. Povezave grafa K_n pobarvamo z dvema barvama. Dokažite, da dobimo vsaj

$$\binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor$$

monokromatičnih trikotnikov.

Naloga 1.6. Dokažite Schurov izrek.

Naloga 1.7. Naj bo m naravno število. Dokažite, da ima za dovolj velik n vsaka 0/1 matrika velikosti $n \times n$ glavno podmatriko velikosti m, pri kateri so vsi elementi nad diagonalo enaki in vsi elementi pod diagonalo enaki. $Glavna\ podmatrika$ je podmatrika, ki jo določa k vrstic in k istoležečih stolpcev.

2 Grafovska Ramseyeva števila

Definicija

Naj bodo G_1, \ldots, G_k enostavni grafi. $Grafovsko\ Ramseyevo\ število\ R(G_1, G_2, \ldots, G_k)$ je najmanjše naravno število n, za katerega velja, da vsako barvanje sk barvami povezav K_n vsebuje G_i barve i za nek i.

Naloga 2.1. Določite $R(P_4, P_4)$ in $R(P_4, C_4)$.

Naloga 2.2. Naj bo T drevo na m vozliščih. Dokažite, da je $R(T, K_n) = (m-1)(n-1)+1$.

Dodatne naloge

Naloga 2.3. Določite $R(P_n, P_3)$ in $R(P_n, P_4)$.

Naloga 2.4. Naj bodo povezave grafa K_5 pobarvane z rdečo in modro barvo tako, da ni nobenega monokromatičnega trikotnika. Dokažite, da povezave rdeče barve sestavljajo cikel dolžine 5 in povezave modre barve sestavljajo cikel dolžine 5.

Naloga 2.5. Dokažite, da je $R(2K_3, K_3) = 8$.

Naloga 2.6. Dokažite, da za vsako naravno število m obstaja takšno naravno število n, da vsak seznam n realnih števil vsebuje monoton podseznam dolžine m.

3 Posplošitev Ramseyevega izreka

Izrek: Ramsey

Naj bo $r \geq 1$ in $a_1, a_2 \geq r$. Tedaj obstaja najmanjše naravno število $N(a_1, a_2; r)$, tako da velja naslednje: Če v množici S moči $n \geq N(a_1, a_2; r)$ vse r-podmnožice pobarvamo z barvo 1 ali 2, potem obstaja takšna a_1 -podmnožica, da so vse njene r-podmnožice barve 1, ali pa obstaja takšna a_2 -podmnožica, da so vse njene r-podmnožice barve 2.

Naloga 3.1. Dokažite, da za vsak $n \in \mathbb{N}$ obstaja tako število N(n), da velja: Če imamo v ravnini $N \geq N(n)$ točk v splošni legi, potem med njimi obstaja n točk, ki določajo konveksen n-kotnik.