Computer Exercise 1 EL2520 Control Theory and Practice

Jiaqi Li Sifan Jiang jiaqli@kth.se sifanj@kth.se 960326-1711 961220-8232

April 29, 2019

Suppression of disturbances

The weight is

$$\begin{split} W_S(s) &= \frac{1}{(s+\epsilon+i\sqrt{\omega^2-\epsilon^2})(s+\epsilon-i\sqrt{\omega^2-\epsilon^2})} \\ &= \frac{1}{(s+0.5+i\sqrt{(100\pi)^2-0.5^2})(s+0.5-i\sqrt{(100\pi)^2-0.5^2})} \end{split}$$

Figure 1: Simulation results with system G, using W_S .

- How much is the disturbance damped on the output? The rate between the disturbance amplitude and the output oscillations is 4.543×10^{-4} .
- What amplification is required for a P-controller to get the same performance, and what are the disadvantages of such a controller?

Robustness

Figure 2: Bode diagram showing that the small gain theorem is satisfied.

Figure 3: Simulation results with system G_0 , using W_S and W_T .

Compare the results to the previous simulation

.....

Control signal

The weights are

$$W_S(s) = \dots$$

 $W_T(s) = \dots$
 $W_U(s) = \dots$

Figure 4: Simulation results with system G_0 , using W_S , W_T and W_U .

Compare the results to the previous simulations $% \left(x\right) =\left(x\right) +\left(x\right)$

.....