Noh et al. (2020) "Unpacking the demand for sustainable equity investing"

Hulai Zhang

Env.Climate

Jan 18, 2024

Overview

- Heterogeneity in investor demand for sustainability
 - Institutions increase their demand for sustainability
 - Price elastic insitutions demand more for sustainability and not undo the demand impact
 - The overall trend is driven by within-investor preference shift
- Effect of demand heterogeneity
 - Pressure for sustainability weakly pushes firm to increase their sustainability

Hulai Zhang (Env.Climate) Noh et al. (2020) Jan 18, 2024 2 / 16

The model is from Koijen and Yogo (2019).

- N+1 financial assets: n=0,1,...,N
- I investors: i = 1, ..., I
- $p_t(n) = \log(P_t(n))$ endogenous
- ullet $x_t(n)$ exogenous characteristics: sustainability, investment, profitability

Optimal Portfolio Choice

The investor chooses port. weights $w_{i,t}(n)$ on each date to maximize the expected log utility at terminal T.

$$\begin{split} \max_{w_{i,t}} \mathbb{E}_{i,t}[\log(A_{i,T})] \\ \text{s.t.} \ \ A_{i,t+1} &= A_{i,t}\{R_{t+1}(0) + w_{i,t}^{'}[R_{t+1} - R_{t+1}(0)]\} \\ w_{i,t} &\geq 0; 1^{'}w_{i,t} < 1 \end{split}$$

Optimal Portfolio Choice

The first order condition is the constrained Euler equation:

$$\mathbb{E}_{i,t}[(\frac{A_{i,t+1}}{A_{i,t}})^{-1}R_{t+1}] = 1 - (I - 1w'_{i,t})(\Lambda_{i,t} - \lambda_{i,t}1)$$

The portfolio choice is

$$w_{i,t}^{(1)} \approx [\Sigma_{i,t}^{(1,1)}]^{-1} [\mu_{i,t}^{(1)} - \lambda_{i,t} 1]$$

When the investor is not constrained, the Euler equation and portfolio choice are normal.

Characteristics-base demand model:

- One factor model: $R_t(n) = \mu_t(n) + \beta(n)f_t + \epsilon_t(n)$
 - $\mu_{i,t}(n) = y_{i,t}(n)'\Phi_{i,t} + \phi_{i,t}$
 - $\Gamma_{i,t}(n) = y_{i,t}(n)'\Psi_{i,t} + \psi_{i,t}$
- $\Rightarrow w_{i,t}(n) = y_{i,t}(n)'\Pi_{i,t} + \pi_{i,t}$

Characteristics-base demand

$$\frac{w_{i,t}(n)}{w_{i,t}(0)} = \delta_{i,t}(n) = \exp\left[\alpha_{i,t} + \beta_{0,i,t} m e_t(n) + \beta_{1,i,t} x_t(n)\right] \cdot \epsilon_{i,t}(n)$$

where $\epsilon_{i,t}(n)$ is the **latent demand**, and

$$w_{i,t}(n) = \frac{\delta_{i,t}(n)}{1 + \sum_{m \in N_{i,t}} \delta_{i,t}(m)}; w_{i,t}(0) = \frac{1}{1 + \sum_{m \in N_{i,t}} \delta_{i,t}(m)}$$

- Assumption: $\beta_{0,i,t} < 1$ demand is downward sloping.
- $ME_t(n) = \sum_{i=1}^{I} A_{i,t} w_{i,t}(n)$
- $p = f(p) = \log\left(\sum_{i=1}^{I} A_i w_i(p)\right) s$

Unique Equilibrium

f(p) has a unique fixed point in \mathbb{R}^N if all assets have ≥ 1 investor with $-1 < \beta_{0,i,t} < 1$.

Estimation

- Moment Condition: $\mathbb{E}[\epsilon_{i,t}(n)|me_t(n),x_t(n)]=1$
- Since p is endogenous, the moment condition should be $\mathbb{E}[\epsilon_{i,t}(n)|\hat{me}_t(n),x_t(n)]=1$
- The instrument could be

$$\hat{m}e_{i,t}(n) = \log \left(\sum_{j \neq i} A_{j,t} \frac{I_{j,t}(n)}{1 + \sum_{m=1}^{N} I_{j,t}(m)} \right)$$

or

$$\hat{m}e_{i,t}(n) = \log \left(\sum_{j \neq i} A_{j,t} \frac{I_{j,t}(n)BE_t(n)}{\sum_{m=1}^{N} I_{j,t}(m)BE_t(m)} \right)$$

Data

- Measure of sustainability
 - Emission intensity: Scope 1 CO₂ emission divided by revenue; S&P Trucost
 - \bullet Environment score: $g_t(n) = \frac{-[10 \mathbb{E}_t(n)]w_t^E(n)}{100};$ MSCI KLD
 - Green patents: identified by CPC or IPC code; PatentsView
- Portfolio holdings: FactSet
- Asset prices: CRSP
- Asset characteristics: Compustat

Investor demand

	AUM-Weighted		Equal-Weighted				
	Mean	SD	Mean	SD	Q10	Q50	Q90
Log Market to Book	0.699	0.365	0.349	0.615	-0.485	0.454	0.990
Log Book Equity	1.275	0.406	0.693	0.598	-0.053	0.674	1.498
Profitability	0.010	0.179	0.046	0.371	-0.376	0.034	0.480
Asset Growth	0.031	0.151	0.082	0.327	-0.279	0.057	0.476
Dividend / Book	0.079	0.205	0.027	0.336	-0.370	0.019	0.436
Market Beta	-0.028	0.176	-0.092	0.374	-0.556	-0.067	0.339
Non-Green Patents	0.020	0.210	-0.052	0.472	-0.562	-0.021	0.423
Environment Score	0.031	0.130	0.023	0.272	-0.287	0.013	0.343
Emissions Intensity	-0.023	0.126	-0.085	0.251	-0.394	-0.061	0.190
Green Patents	-0.003	0.168	-0.026	0.376	-0.407	0.004	0.341

 Large heterogeneity in investor demand for sustainability.

2014 2015 2016 2017 2018

2022

Investor demand

• Price-elastic investors have higher demand for sustainability on average for both environment score and emissions intensity.

Investor demand

The overall demand for sustainability could come from

- within-investor preference shift: investor becomes more preferred to sustainability
- 2 cross-investor AUM shift: fund flows to sustainable institutions

Shut off $\beta_{i,GHG,t}$ changes:

$$\beta_{i,GHG,t} = \beta_{i,GHG,T_0}$$

 The overall demand trend for sustainability is entirely driven by within-investor preference shift.

Effects of investor pressure for sustainability

Investor pressure for sustainability: $\frac{\partial mb_t(n)}{\partial s_t(n)}$

- Higher pressure: for an one unit increase of sustainability, the valuation gain is higher
- Firm thus has more incentive to increase sustainability

Hulai Zhang (Env.Climate) Noh et al. (2020) Jan 18, 2024

12 / 16

Effects of investor pressure for sustainability

	Forward 1-Year Outcome				
	(1)	(2)	(3)		
	Environment Score	Emissions Intensity	Green Patents		
Pressure: Environment Score	0.0187 ⁺ -0.000276 [2.006] [-0.0259]		-0.0147* [-2.248]		
Pressure: Emission Intensity	-0.0279**	0.0251**	0.00184		
	[-3.097]	[2.880]	[0.319]		
Pressure: Green Patents	0.00181	0.00322	0.00983 ⁺		
	[0.206]	[0.342]	[1.996]		
Environment Score	-0.228**	-0.0617**	-0.0103 ⁺		
	[-19.53]	[-2.963]	[-1.740]		
Emission Intensity	-0.0323*	-0.0178	0.00130		
	[-2.648]	[-1.225]	[0.268]		
Green Patents	-0.00625	0.00685	0.769**		
	[-0.706]	[0.703]	[37.07]		
Time FE	✓	✓	√		
Non-Green Controls	✓	✓	✓		
Within R ²	.053	.007	.668		
Observations	51065	51065	51065		

Counterfactual: ESG-agnostic mandates

If some institutions are not allowed to consider sustainability in portfolios

	Data	CF: Shut off Green Demand		
	(1)	(2) Active Inst	(3) All Inst	(4) All Inst + HH
Environment Score	0.115**	0.107**	0.114**	0.0698**
	[6.767]	[6.305]	[6.529]	[4.010]
Emissions Intensity	-0.0645**	-0.0345*	0.00311	0.00803
	[-4.261]	[-2.266]	[0.199]	[0.506]
Green Patents	-0.0115	0.0241	0.0150	0.00618
	[-0.603]	[1.262]	[0.784]	[0.327]
Time FE	√	√	√	√
Controls	√	√	√	√
Observations	26251	26251	26251	26251

Conclusion

- Institutions raise their demand for sustainability, but large heterogeneity across institutions
 - Price elastic insitutions demand more for sustainability and not undo the demand impact
 - The overall trend is driven by within-investor preference shift
- The insitutions' demand for sustainability has weak effect on firm's sustainability policies
 - The pressure pushes firm to improve sustainability
- The valuation will be affected if investors are not allowed to consider sustainability in portfolios

References

- Koijen, R. S. and M. Yogo (2019). A demand system approach to asset pricing. *Journal of Political Economy* 127(4), 1475–1515.
- Noh, D., S. Oh, and J. Song (2020, June). Unpacking the Demand for Sustainable Equity Investing.