

proof of Brouwer fixed point theorem

Canonical name ProofOfBrouwerFixedPointTheorem1

Date of creation 2013-03-22 18:13:24 Last modified on 2013-03-22 18:13:24

Owner uriw (288) Last modified by uriw (288)

Numerical id 4

Author uriw (288) Entry type Proof Classification msc 47H10

Classification msc 54H25 Classification msc 55M20 The *n*-dimensional simplex S_n is the following subset of \mathbb{R}^{n+1}

$$\left\{ (\alpha_1, \alpha_2, \dots, \alpha_{n+1}) \, \middle| \, \sum_{i=1}^{n+1} \alpha_i = 1, \quad \alpha_i \ge 0 \quad \forall i = 1, \dots, n+1 \right\}$$

Given an element $x = \sum_i \alpha_i e_i \in \mathcal{S}_n$ we denote $[x]_i = \alpha_i$ (i.e., the *i*-th barycentric coordinate). We also denote $F(x) = \{i \mid [x]_i \neq 0\}$. An *I*-face of \mathcal{S}_n is the subset $\{x \mid F(x) \subseteq I\}$.

As was noted in the statement of the theorem, the 'shape' is unimportant. Therefore, we will prove the following variant of the theorem using the KKM lemma.

Theorem 1 (Brouwer's Fixed Point Theorem). Let $f: \mathcal{S}_n \to \mathcal{S}_n$ be a continuous function. Then, f has a fixed point, namely, there is an $L \in \mathcal{S}_n$ such that L = f(L).

Proof. Clearly, $\sum_{i=1}^{n} [y]_i = 1$ for any $y \in \mathcal{S}_n$ and L = f(L) if and only if $[L]_i = [f(L)]_i$ for all i = 1, 2, ..., n + 1. For each i = 1, 2, ..., n + 1 we define the following subset C_i of \mathcal{S}_n :

$$C_i = \left\{ x \in \mathcal{S}_n \,\middle|\, [x]_i \ge [f(x)]_i \right\}$$

We claim that if x is in some I-face of S_n $(I \subseteq \{1, 2, ..., n+1\})$ then there is an index $i \in I$ such that $x \in C_i$. Indeed, if x is in some I-face then $F(v) \subseteq I$. Thus, if $[x]_i \neq 0$ then $i \in I$. This shows that

$$\sum_{i \in I} [x]_i = 1$$

Assuming by contradiction that $x \notin C_i$ for all $i \in I$ implies that $[x]_i < [f(x)]_i$ for all $i \in I$. But this leads to a contradiction as the following inequality shows:

$$1 = \sum_{i \in I} [x]_i < \sum_{i \in I} [f(x)]_i \le \sum_{i=1}^n [f(x)]_i = 1$$

This discussion establishes that each I-face is contained in the union $\bigcup_{i \in I} C_i$. In addition, the subsets C_i are all closed. Therefore, we have shown that the hypothesis of the KKM Lemma holds.

By the KKM lemma there is a point L that is in every C_i for $i=1,2,\ldots,n+1$. We claim that L is a fixed point of f. Indeed, $[L]_i \geq [f(L)]_i \geq 0$ for all $i=1,2,\ldots,n+1$ and thus:

$$1 = [L]_1 + [L]_2 + \dots + [L]_{n+1} \ge [f(L)]_1 + [f(L)]_2 + \dots + [f(L)]_{n+1} = 1$$

Therefore, $[L]_i = [f(L)]_i$ for all i = 1, 2, ..., n+1 which implies that L = f(L).