

订阅DeepL Pro以翻译大型文件。 欲了解更多信息,请访问www.DeepL.com/pro。

	御介绍	्वि <u>वि</u> श
	互联网上的服务质量	
	查普特-伊曼纽尔	
INP	ENSEEIH	I 7
	2020-2021	1
查普特-	伊曼纽尔	2020-20211 / 95

备注:			

1	简介
2	❤ ifications of needs 如何共享资源
4	?IP世界的两种架构 参考书目
5	

肴	≩注:			
_				
_				
_				
_				

简介

简介

我们在谈论什么?困

难

工具

我的机制、协议、架构但IP!是做什

么的?

备注:			

备注: 1 简介 ■ 我们在谈论什么? 什么是服务质量?

■ 服务的概念

- ■ 由网络通过API提供给应用程序的一套功能。
- 例如,数的转移,.

服务质量

满意实施申请的条件

- 在"有限"的条件下
- 如**d**lai, jigue, **d**bit, ...

查普特-伊曼纽尔

40	~ 7/2 /		=
		性发	

一项服务的质量不能仅仅通其性能来衡量。其他同样重要的因素(有时更

多, 取决于背景) 必需虑到

安全性

可利用性

La **魤**/la fiabilité' (法语)

本课程不打解决这些问题。

他们每个人都为我提供了完整的课程和书籍。

在此,我们将重点讨论允许网络(有资格作为供应商/运营商)保证一定 水平的性能的工具

备汪:			

逻 完成	
"对一个或多个对象的集体行为的一组质量要求。	
另一个	
"分布式多媒体系统的那些定量和定性特征的集合,这些特征对于实现一	
个应用程序的所需功能是必要的。[16]	
再来一个路上的人	
一组参数,用于评估一个系统提供的服务的性能和用户将从中获得的	
满意度。	
0000 00043 (65	
直音特-伊曼纽尔 对服务质量的简 频 -绍 2020-20217 /95	
困难	
	备注:
	-
1 简介	
■ 我们在谈论什么?困	
难	
工具	
我的机制、协议、架构 但IP!是做什	
么的?	
	-
直普特-伊曼纽尔	
困难	

第一层难度是限制条件/需求的*规*范 我们如何衡量一个应用程序产生的流量?

需要定义应用程序所需的 "三要素"(netriques)模型是不含糊地定义的

对网络荷的影响, 因此对实施的手段的影响

相关参数 在不同实体之间翻译这些参数

我们如何确定对服务质量的需求?

如何评估供应商提供的服务质量? 我们如何能就服务质量进行谈判? 供应商和客户之间的合同概念

没有通用的表面处理

备注:

第二个层面的困难是实施服务质量。 如何确保遵守合同? 被受(拒绝)—项合同(它不可能機動的条件。 呼*叫连接准入控制* (CAC) 最终拒绝不履行合同部分的客户的流量的机制 维持治安、塑造形象 如何实施服务质量? 实施"效型机制 这些机制在现现所同实体中的定位 这些实体相互之间的协调 本理的//学星版 对面写真重的影响 本理的//学星版 对面写真重的影响 本理的//学星版 不是道的例子:**Etc**phony 备注:

T IM T ALZERIUM 1 : CAPHONY
■ 在交换电话网络上
呼叫' V 信呼叫接载抢
■ 电路设置 " 🍑 "-资源 🖟 量'(哪一个?)的保
■ 证
在一个分组网络上(VoIP)。
■ 信号?不是以IP为原生的
接受/拒绝的能力?没有在IP虚拟电路中原生实现?不在
IP中
什么保证?夹具,损失,

工具
1 简介 ② 我们在谈论什么?困难 ② 工具 ③ 我り机制、协议、架构但IP!是做什 ② 么的?

各注·			
备注:			

在哪些设备上? ■ 巨的机器(客户机、服务器)。 ■ 流量来源 ■ ン・ 一月已 多 客户-要求 ■ 有源网络元素(路由器)。 ■ 实施质量保证服务

备汪:			
-			

查普特-伊曼纽尔

备注:		

ivecanisms, protoc	cois, architecture	
1 简介		
查普特-伊曼纽尔	对服务质量的管介绍	2020-202115 / 95

备注:		

责任的重新划分	
谁来决定?谁	
植入了?	
实体之间的接口	
量 增加额外的服务基元 不需要写参数	
对网络中的实体进行重新划分	
决策和实施机构在哪里?	_
· 查卷株。伊曼纽尔	

议定书	
	备注:
路由	
资源描述	
政策描述(接纳,) 拥堵控制	
运输 可靠性 冲压	
标记	

【保留资源 种类为了能够保证一项服务 根据交通规则进行包装 衡量标准 为了核实对合同的遵守情况 包装 为了确保遵守合同的规定 控制拥堵 为了管理网络的行为

IP!是做什么的?	
	备注:
简介	-
我们在谈论什么?困	
工具	
我的机制、协议、架构 但IP!是做什	
么的?	

备注:

游戏的状态

IP没有连接'。

没有协商、接受、拒绝呼叫的可能性 没有路由器的状态 无相关资源

逐跳路由

无法保证数据包所遵循的路径的一致性 异步路由表

我们谈论的是*最大的努力*

Reseau尽力去理解:它不保证任何事情

备注:			

备注:		

有什么希望吗?

- TCP进行拥塞控制
 - 目标:保持队列稳定和空旷 观察水桶的行为
 - 对你的流量进行相应的调整
- 主动排队管理
 - 目标:预测拥堵,而不是忍受拥堵 观察排队情况
 - 自2015年以来,建议"[1]。

这不是服务质量, 但这是朝正确方向迈出的一步

备注:			

需求的描述 &cifications of needs

2 需求说明 简介

一个例子:**d**bit的时间用

备注:		

备注:			

应用要求和特点

历史上**Te**phonie

- 低和恒定的穿射间 恒定的 Bbit
- 可接受的错误 零星使
- 用用
- 特莱之见
 - 任何, 但恒定的強討间高(恒定)位扩散
 - 可接受的错误永久传输
- 计算机科学
 - 任意 "穿動村间 可变位
 - 不可接受的错误 零星
 - 使用

查普特-伊曼纽尔

备注:			

应用要求和特点

服务的融合(语音、电视互联网接入在同设备上)。

如何处理数的流动?

个人治疗

它是否存在于互联网的范围内?

按组治疗

每个流的效果如何?

如何对交通进行建模?

有些流量排准以建筑体流量过于复杂

计量学

如何确定水桶的大小?

甚至比 "模式的网络更复杂

例如,见ATM

■ Debit 在交通方面可以使用什么措施(时 ■ 间尺度) ?平均**eb**it,爆裂,... ■ 损失率 ■ 最大平均损失数 哪种分布? ■钳工 ■ **d**ai的变体 ■ 对 "time-re'el "应用很重要 ■ 用户满意度 难以在各层之间进转换

不同类型的机制

- 我如何完成matriques?
 - 有应用意义的东西在网络(或传输)层面上并不总是有意义的。
- 难以评估 "我建的问题
- 滑动,移动平均, ...

道路上的各种行为

添加剂Metrique

■ Mr1,r2 = Mr1 + Mr2 ■ 裴德莱,吉格

凹陷的我trique

- Mr1, r2 = min(Mr1, Mr2)
 - MA DE Mr1 × Mr2

乘法的救掠块的概率

查普特-伊曼纽尔

备注:		

备注:

2	需求说明		

一个例子: dbit的时间用

一个例子:**d**bit的时候用

问题在

一个实施的例子:令牌桶 另一个实施的例子:

GCRA Bursts instantane的? 一个例子: Intserv的TSpec

备注:			

问题在

- 什么是**d**bit?
 - 每单位时间内的信息量

在服务质量合同的背景下,你们何完成?

■ 什么时间尺度?什么样的变化是

可以接受的?

►► 例子:64Kbit/

对于一个电话服务

每125微秒一个8位采样

在整个交流过程中,在任何时候

对于一个文件传输服务

1MB文件在128秒内传解均时间和可能的可变速率

查普特-伊曼纽尔

	备注:		
-			

从微观完成

让我们同**转在**一个设备(路由器)上 发生了什么。

一个包裹的时间尺度 每个到时间

每个离开时间

每条曲线的 "斜率 "是一个**db**it

局部 "无限"(等于支持物的大队

0

流量曲线的概念

a(t)是比特的数量

隹	7注:			
_				
_				
_				

检查一个交通是否符合一个

ebit 是流量曲线a(t) 右下(德位常数)

- 易于实施
- 长期平均有效
- 那么在短期内呢?
 - 不能防止爆裂

Temps

翻译

■ 思想

- 在每个重要时间从(0,0)开始
- 德比特的半边线沿着曲线 "滑行"

- 我们忘记了通证。
- 交通包络的概念

查普特-伊曼纽尔

引入突发事件

限制性太强(不可能有突 发事件)。

不允许 "追赶"。

机会不等人。

t∀。振幅和如的突紧事件

 $a(t_0) + b + r_o (t -$

 t_0)

쏧	У Т	•
щ	11	

_				

2 需求的描述 Socifications of needs 一个例子: Abit的时使用 问题: 一个实施的例子: 今牌桶 另一个实施的例子: GCRA Bursts instantane的? 一个例子: Intserv的TSpec

备注:			

一个实施的例子:令牌桶 代币桶的原理 一桶容量'b的代币 充满了持续的节奏感 每秒钟r个令牌 如果桶中至少包含n个令牌,那么n个比特 的数据包就是符合要求的,然后从 桶中删除n个令牌。 否则,根据战略和资源的不同,包 德鲁特 搁置马克

查普特-伊曼纽尔

田任 .		

备注:		

备注:			

另一个实施的例子:GCRA

② 需求的描述 ✿cifications of needs ■ 一个例子:**db**it的时使用

一个实施的例子:令牌桶 另一个实施的例子:

GCRA Bursts instantane的?

查普特-伊曼纽尔

备注:			

GCRA算法

在ATM中使用'。

*GCRA(Τ, τ)*算法 *T*是两

个ATM单元之间的持续间

τ是Τ上的一个tole'rance。

透開海个单元的算法

t细胞的到出期

X是预期的日期 最初 $X=t_0$ (第

一辆车到的日期)。

备注:			

备注:

备注:

迸发瞬间的?

- 预切工具的问题突发事件的为不受制 所
 - 以必须限制其振幅
- 另一种可能性是使用两套参数
 - 一个是平均**eb**it(*可持续*率)。
 - 一个为*高峰*率

查普特-伊曼纽尔

一个例子:Intserv的TSpec

② 需求的描述**\$**cifications of needs

一个例子:**d**bit的时间用

ÄÄÄ ipp

一个实施的例子:令牌桶另一个实施的例子:

GCRA Bursts instantane的?

备注:	 	 	
-			

一个例子:Intserv的TSpec 备注: 在IntServ架构中,一个流量的特点是由以下结构组成的 结构 { float r; float b; float p; unsigned m; unsigned M; } token_bucket_tspec; r是**d**bit b是突发大小 p是*峰值速率* m是最小尺寸(一个包的成至少是m)。 M是最大尺寸(更大的包装不符合要求) 查普特-伊曼纽尔 对服务质量的簿所·绍 2020-202146 /95 备注: 如何共享资源? 3 如何共享资源? ■ 最大限度地提高**db**it? ■ 来点 相信怎么样? 查普特-伊曼纽尔

最大限度地提高**ebit?**

3 如何共享资源?

最大限度地提高的德比特?

P嗎. 不是有点'搠吗?

备注	:			
-				
-				

Ø 一个链接提供了一个宇的特性有的最大德比特 调制、编码、... 一个自然的目标是尽量多地使用它 传递信息, 使成为最佳的传输条件。 ■ 这是调度员行为的一种选择,这种行为可能是常低效的 ■特别是对于传输条件差的客户 ■ 一种 "均的形式可能是可取的 ■ 如何衡量它?

来点 粗 怎么样?		
3 如何共享资源? 最大限度地提高ebit? 来点相信怎么样?		

equitable是什么意思?

资源的平等分配?

对每个客户来说,都没有代问题,见ACM例子

提供egales业绩?

没有为每个客户提供相的服务的理由是

自由并不意味着egalite!

全世界都不希望停止提供構质量的服务 不同级别的服务质量=不同的收费标准

如何管理资源匮乏的问题?

把整个世界放在我此例中?满足要求最低的人? 满足于最昂贵的?

如果出现盈余, 该如何处理?

离开是 "公平 "的吗?

需要 "好點测量 "工具

备注:	
备注:	
PER 1-1	

最大-最小公平性

我们说,一个机会是*最大-最小公平的*。

.如果你不能给一个顾客更多的钱而不给了一个没有得到更好服务的顾客更少的钱。

- 在数据包大小不变的情况,*轮回是最大-最小公平的*,一个客户的任何增加都是以牺牲另一个客户的利益为代价的,这并不是更好的
- 如果数据包的大小不恒定,这就不再是*公平排队*技术的建议了,比 ■ 如说
 - 我们平等分享
 - 那些拥有太多的人的盈余被拿走,并在其他
 - 人中平均分配。

查普特-伊曼纽尔

对服务质量的篇系统

2020-202152 / 9

备注:

比例公平

- 为什么不寻求一种妥协呢?尽量利用好现有资源为
 - 所有用户提供最基本的服务
- 将每个客户与一个优先级联系起来
 - 反之则是与成正比的。
- 例如,一个条件不好的顾客 "**c**her"

文献[11]中相当广泛地描忆这一点。

查普特-伊曼纽尔

耆那教的标准

寻找一个标准[10]。

人口规模指数 测量规模指数 在[0, 1]内 连续的

以下标准的定义

$$I(X, ..., nX) = n - (\frac{n}{k \pm x_i})^2 \times \frac{n}{k = 1 \times 2}$$

允许评估一个人的行为中的一种平等方式。

4 33.		
备注:		
A 沿		
备注:		

备注: ■ Fggo平年4184 期 ■ 发现:在一个网络包上整合服务的可能性 ■ 部棚板 邓恩恩 ■ 以这种方式完成接口和信号的工作 查普特-伊曼纽尔 对服务质量的简单介绍 IntServ的目标 备注: ■ 保证每个流量的QoS参数 ■ 一个流量=一个通信 坚定的端到端保证 ■ 为了这个目的,我们要进行分类口分类。 的一般架构[3]。 用于规流量参数(TSpec)和QoS参数(RSPEC)的工具 ■ 一个信令协议(RSVP[4])。 从与提议的服务类别相关的行为[18, 13]。 工作组的目标 备注: 三个主要领域 定义并记录提供给应用程序的服务模式

应用要求的表达, 提供给路由器的信息和本地网络的限制。

定义(行为)测试以验证以下能力

受控负荷[18]。

最大的努力

档整度贷网络上的尽力而为

AR DEA /T

基本要素

服务类别		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

备注:			
各注:			

备注:			
- <u></u>			

备注:			

备注:

受控负载流量类别

- 它对应用程序的 "保证"[18]。
 - 大比例的数据包将被传送(错误率接近媒体的错误率)。
 - 大多数数据包的传输时间不会比最低的传输时间长很多。
- 当然对于这一点,应用程序致力于其TSpec
 - 配置文件之外的数据包将被区别对待,例如,与 "尽
- 力而为"的流量一样

因此,路由器必须接受或拒绝通信,这取决于

- 新通信的TPsec 可用资源
- TSpecs或观察的行为'的持续通信

查普特-伊曼纽尔

<u>备注:</u>			

QoS参数

备注:			

两套明确的参数 交通规范(TSPEC) 定义了客户承诺的内容(应用)所有流量类别的 通用工具 需求说明(RSPEC)。 完成客户想要的东西 具体每个交通类别

音符-伊曼纽尔 对服务质量的**海**介绍 2020-202170 / 9

交通规范

- 流量统计(TSPEC)[14, 15]。
 - 代币**bucketr**, b
 - ■创作
 - ■最大封装尺寸M

最小包装尺寸m(任何包装都被见为其尺寸至少为m)。

- 其单位是字节和秒。
- 适用于所有交通类的通用工具

查尝特。伊曼纽尔

担保流量类别规范

QoS要求是通过两个参数表的

一个最大的德比特R≥

可接受的乳品和供应绘型乳品的S型乳品之间的差异

然后每个路由器必须

检查其资源的可用性 评估其将导致的(最

大) 延迟

一个恒定的最坏情况的部分 (c) 一个取决于去位的部分 (D)

事实上,它是相对于流体模的误差幅度。

接收者收t和D参数之和,可以

备注:			

一般性介绍

基本要素

DiffServ架构	
② P世界的两种架构	
IntServ架构	
ĀĀĀ 原则	
■ 基本要素 交通类 域	
DiffServ资产负债表	
5 Religion	
	

备注:			

备注:			

备注:		

交通类	
在域(网络的八女生DSCP字段(前	
IP TOS)中	
一个班级内的共同治疗 简单而快速的治疗	
一个DSCP涉及一个PHB	

备注:			
_			
-			

备注:			

交通突	
4 IP世界的两种架构	
■ DiffServ架构	
■ 基本要素 交通类 城	
■ DiffServ审查	
本世紀 伊見研究	

备注:	

EF类
非EF流量的保证服务
Debit保证
Mai, 抖动, 低损耗率
特遇人列
受时间限制的应用
直观地讲,EF流量应该总是至少获得德位R 前期工作
具体来说,一个数据包不得遭受任何高于常数的 R 位的额
外延迟。

备注:			

<i>保证转发</i> 类	
保证的最大损失率 几个AFI等级	
■ Debit最小和最大损失率	
■ 损失的三个优先事项中的 @ AFI ,j	
■ 在RFC[6]中列出。	
查普特-伊曼纽尔 对服务质量的海外绍	2020-202185 / 95

各个领域

✓ IP世界的两种架构✓ DiffServ架构

查普特-伊曼纽尔

原则

基本要素 交通类 城

资源分配功能

DiffServ资产负债表

A领域
一组一致管理的路由器
在一个领域的边界
另一个域名A客户
现场的治疗条件
ALS中的 M gocie'es [2, 17]。
其中特别整介ca(<i>流量调节协议)</i> ,定义了应用于一类流量的调节规则
0
在域名和客户或另一个域名之间建立合同

备注:	
· · ·	
AZ >2-	
备注:	

备注:		

领域的概念 (3)

域的概念允许对路由器进行区分

- 科尔-弗
 - 隆蒂尔
- 一 座市7
- (Coeur
- Frontie`r e)

对管理进行分级

- ISP, AS, ...
- 要在域之间设置不同的PHB

通过重塑品牌

支持抗難心理发展的规模

查普特-伊曼纽尔

备注:			

资源分配

百川

基本要素 交通类 域

资源分配功能

DiffServ资产负债表

备注:			

备注:			

职能	
4 IP世界的两种架构 DiffServ架构 原则 基本要素交通类域 资源分配功能 DiffServ资产负债表	

备注:		

职能				
	仪表		CAC	
[
建筑的存在和位置	标记	塑形机 警察	ÅÅAQM	节目表

备注:		

DiffServ资产负债表

最
■ 比 <i>IntServ</i> 更 "现实更大的颗
粒度
考虑到 te ral te roge的情况
负 数
什 <mark>型,推計</mark> 划?
域间信令
■ 在COPS、RSVP、领域内的政策部署
什么资源管理?分布式(什么关系
? 集中式(<i>带宽经纪人</i>)。
^{直着後便是组介} 每个///// 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一

备注:			

[1]	F.Baker和G. Fairhurst。 IETF关于主动队列管理的建议。RFC 7567(当前最佳实践),2015 年7月。
[2]	S.Blake, D. Black, M. Carlson, E. Davies, and Z.王一月。RFC 2475 - 差异化服务的架构。信息性的,IETF,1998年12月。
[3]	R.Braden, D. Clark, and S.申克。 互联网架构中的综合服务:一个概述。技术报告,互联网工程任务 组,美国,1994。
[4]	R.Braden, L. Zhang, S. Berson, S. Herzog, 和S.贾明。RFC 2205:资源保留协议(rsvp)版本1功能规范。 标准轨道,IETF,1997年9月。
[5]	B.Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y.Le Boudec,

W.Courtney, S. Davari, V. Firoiu, and D.斯蒂利亚迪斯。

RFC 3246:一个加速转发PHB(每跳行为)。

查普特-伊曼纽尔

备注:		
-		

[6]	J.Heinanen, F. Baker, W. Weiss, and J. Wroclawski.RFC 2597: 保证转发的phb组。标准轨道, IETF, 1999年6月。	备注: 	
[7]	IETF, http://www.ietf.org/html.charters/OLD/diffserv-charter.html. 差异化服务(diffserv)章程。		
[8]	IETF, http://www.ietf.org/html.charters/OLD/intserv-charter.html. Intergated Services (intserv) 宪章。		_
[9]	V.Jacobson, K. Nichols, and K. Poduri.RFC 2598:一个加速转发的phb。		
	标准轨道,IETF,1999年6月。		
[10]	Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A quantitative measure of fairness and discrimination. 东方研究实验室,数字设备公司,哈德逊,马萨诸塞州,1984年。		
[11]	F P Kelly, A K Maulloo, and D K H Tan. 査 普特-伊曼纽尔 対服务质量的 職 が招 2020-202195 / 95		
	通信网络的速率控制:影子价格、比例公平和稳定性。		
	<i>运筹学会杂志</i> ,49(3): 237-252,1998。	备注:	
[12]	K.Nichols, S. Blake, F. Baker, and D.黑色。		
	ipv4和ipv6报头中差异化服务字段(DS字段)的定义。		
	RFC 2474, 互联网工程任务组, 1998年12月。		
[13]	S.Shenker, C. Partridge, and R.格林。 RFC 2212:保证服务质量的规范。标准轨道,IETF,1997		
F4.41	O Ohanka Tal Washamili		
[14]	S.Shenker和J. Wroclawski。 综合服务网元的一般特征参数。		
	技术报告2215, 1997年9月。		
[4.5]			
[10]	S.Shenker和J. Wroclawski。 网元服务规范模板。		
	查普特-伊曼纽尔 对服务质量的薄新·绍 2020-202195 / 95		—
	技术报告2216, 1997年9月。		
[16]	Andreas Vogel, Brigitte Kerherve', Gregor v.博赫曼,和扬-格塞。	备注:	
	分布式多媒体应用和服务质量:一项调查。		
	在CASCON '94: 1994年合作研究高级研究中心的会议记录中,第		
	71页。IBM出版社,1994年。		
[17]	A.Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn。		
	S.Herzog, A. Huynh, M. Carlson, J. Perry, and S.		
	Waldbusser.RFC 3198: 基于策略的管理的术语。技术报告3198		_
	,互联网工程任务组, 200 1年11月。		
[18]	J. Wroclawski.		

音特-伊曼纽尔 对服务质量的管介绍 2020-202

RFC 2211: 受控负载网元服务的规范。 技术报告2211, IETF, 1997年9月。

技术报告3246, 2002年3月。