A Book of Abstract Algebra (2nd Edition)

Chapter AC, Problem 1E

Bookmark

Show all steps:

ON

Problem

$$+3+5+\cdots+(2n-1)=n^2$$

(That is, the sum of the first n odd integers is equal to n^2 .)

Step-by-step solution

Step 1 of 2

Objective:-

The objective is to prove $1+3+5+\cdots+(2n-1)=n^2$ using mathematical induction.

Comment

Step 2 of 2

Proof:-

$$P(n) = 1 + 3 + 5 + \dots + (2n-1) = n^2$$

Let consider rule for n = 1.

$$P(1) = 1$$

$$P(1) = 1^2$$

Thus, this rule is true for n = 1.

Let this rule is true for n = k.

$$P(k) = 1 + 3 + 5 + \dots + (2k-1) = k^2$$
(1)

Let consider rule for n = k + 1.

$$P(k+1)=1+3+5+\cdots+(2k-1)+(2(k+1)-1)$$

$$P(k+1)=1+3+5+\cdots+(2k-1)+(2k+2-1)$$

$$P(k+1)=1+3+5+\cdots+(2k-1)+(2k+1)$$

Use the equation (1).

$$P(k+1) = k^2 + (2k+1)$$

$$P(k+1) = k^2 + 2k + 1^2$$

$$P(k+1) = (k+1)^2$$

This rule also true for n = k + 1. Hence, by mathematical induction this rule is true for all positive integer n.

Proved

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices Cookie Notice General Policies Intellectual Property Rights Terms of Use Global Privacy Policy

Honor Code Honor Shield

ES

Cheap Textbooks
Chegg Coupon
Chegg Play
Chegg Study Help
College Textbooks
eTextbooks
Flashcards
Learn
Chegg Math
Solver

CHEGG PRODUCTS AND SERVICES

Mobile Apps Sell Textbooks Solutions Manual Study 101 Textbook Rental Used Textbooks Digital Access Codes Chegg Money

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with
eTextbooks
Help to use
EasyBib Plus
Manage Chegg
Study Subscription
Return Your Books
Textbook Return
Policy