Investigation of Formal Verification for Self-Healing Analog/RF Systems

Motivation for formal verification

ANALYSISTASK	ANALYSIS METHOD
Analysis of a single operating point	Simulation
Analyze the correctness of design	Simulate one particular behavior
Analysis with process variations	Monte Carlo simulation
Analyze robustness against process variations	Simulate many behaviors
Analysis over complete post-silicon tuning range	Formal verification?
Determine whether there are acceptable solutions in the tuning range	State space too large for simulation! Verify all possible behaviors of a reasonably accurate behavioral model

How we can use formal verification

Verification-aided design of self-tuned components

Target application: self-healing PLL

Verify locking behavior over

- arbitrary initial states
- range of parameter values
- with self-healing logic

Behavioral model

- Continuous state variables: ₱_{ref}, ₱_v, V_i, V_{p1}, V_p
- Discrete switching due to charge pump operation

Simulation of the behavioral model

Verification approach

Decompose the locking specification into two parts

Transient verification

Bounded-time verification of whether all behaviors enter the invariant target

Invariant verification

- Identify regions of state space that guarantee staying in the limit indefinitely
- This becomes a target set for transient verification

Verification using reachability analysis

General approach

- Compute the set of all behaviors (not one-by-one)
 - for a range of initial conditions and a range of possible dynamics

- If reachable set is hard to compute (typically the case)
 - over-approximate the set using polyhedra

Challenges in reachability analysis

Hybrid dynamics

- Verification complexity exponential in the number of continuous state variables for polyhedral computations
- With zonotope (polyhedra with special structure) computations*, there's major speed-up in continuous reachability (cubic complexity); but complexity still exponential for hybrid dynamics

Very long transient

 Thousands of discrete transitions; over-approximation becomes less accurate with each discrete transition

Liveness specification (locking)

- Need to verify indefinite (infinite-time) behavior
- Over-approximation grows with time

^{*} Antoine Girard, Reachability of Uncertain Linear Systems Using Zonotopes. HSCC 2005

Transient verification using CORA* Fighting excessive growth of the reachability tree

^{*} CORA: COntinuous Reachability Analyzer. Althoff, M. Reachability Analysis and its Application to the Safety Assessment of Autonomous Cars, TU München, 2010

Transient verification using CORA

Making guard set overapproximations tighter

Overapproximation using a single zonotope

Tighter overapproximation using multiple intersecting zonotopes

Invariant verification: Forward-backward iteration

Forward-backward reachability iteration

1. Forward reachability
Check for unsafe/uncyclic behavior

2. Backward reachability Find unsafe/uncyclic part of initial set

3. Forward reachability
Exclude unsafe/uncyclic initial set,
update target set, continue...

Invariant verification using PHAVer*

PHAVer (Polyhedral Hybrid Automaton Verifier)

- Uses exact rational arithmetic up to arbitrary precision.
- Supports forward and backward reachability computation.
- However, needs to overapproximate linear dynamics by (even simpler) piecewise constant bounds on derivatives.

Reachability analysis with cycle unwrapped

^{*} Goran Frehse, PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3): 263-279 (2008)

0.4

Next Steps

- Completion of invariant and transient verification
- More detailed model including
 - Charge pump saturation
 - VCO nonlinearity
- Compositional verification: digital-analog decoupling

