FEUILLE D'EXERCICES N°2

EXERCICE 1. Regarder l'aide à propos de la commande seq et comprendre sa syntaxe. L'utiliser pour construire :

- la séquence des k^2 pour les entiers k variant de 1 à 30:
- la séquence des nombres pairs entre 1 et 50;
- la séquence suivante : $1, \frac{1}{8}, \frac{1}{27}, \frac{1}{64}, \frac{1}{125}$; la séquence des $e^{a\pi/b}$ pour a variant de 1 à 15 et b variant de 1 à 10.

Exercice 2. Nous avons déjà vu la commande solve pour résoudre des équations. Trouver les racines complexes du polynôme $x^{20} - 1$. Quel est le type d'objet que retourne Maple? En utilisant Maple et sans les afficher, déterminer combien il a de racines. A l'aide de la fonction map, vérifier que ce sont bien des racines. Montrer que la somme des racines est nulle. (Sur papier) Pouvez vous généraliser si l'on remplace 20 par n entier quelconque?

EXERCICE 3. Construire en une seule commande :

- la liste des 100 premiers nombres premiers (regarder la commande *ithprime*);
- la liste des nombres premiers entre 1 et 100.

EXERCICE 4. Tracer les graphes de $x \mapsto \log(x+1)$ et de $x \mapsto 1,01 \log(x)$. Chercher leur(s) point(s) d'intersection : avec solve, que se passe-t-il? avec fsolve? Tracer sur un même dessin les graphes de ces deux fonctions, en choisissant l'intervalle en abscisse de façon à faire apparaître ce(s) point(s) d'intersection.

Exercice 5. Utiliser seq pour tracer sur un même dessin les graphes des fonctions $f_n(x) = x^{n^2/10}$ pour n allant de 1 à 10. Recadrer le dessin en abscisse et en ordonnée pour le rendre plus lisible.

EXERCICE 6. On reprend l'exercice 2. En utilisant pointplot, tracer dans le plan les points correspondant aux racines complexes du polynôme $x^{20} - 1$. Que remarquez-vous? Comment l'expliquez-vous?