# MSMS - 106

### Ananda Biswas

#### Practical 08

Question: A manufacturing company has purchased three new machines of different makes and wishes to determine whether one of them is faster than the others in producing a certain output. Five-hourly production figures are observed at random from each machine and the results are as follows.

|              | Machine $A_1$ | Machine $A_2$ | Machine $A_3$ |
|--------------|---------------|---------------|---------------|
| Observations | 25            | 31            | 24            |
|              | 30            | 39            | 30            |
|              | 36            | 38            | 28            |
|              | 38            | 42            | 25            |
|              | 31            | 35            | 28            |

Use analysis of variance technique and determine whether the machines are significantly different in their mean speeds. Use  $\alpha=5\%$ .

### One-way ANOVA

Key assumptions of ANOVA are that the errors (and consequently the observations) must be normally distributed with homoscedastic variance.

First we shall verify the assumptions.

#### • Checking Normality

```
shapiro.test(machine_data$speed)

##

## Shapiro-Wilk normality test

##

## data: machine_data$speed

## W = 0.94173, p-value = 0.4046
```

A p-value of 0.4045684 results in failure of rejecting  $H_0$  at 5% level of significance that the data is from a normal distribution. This can also be verified by a normal Q-Q plot.

```
library(tidyverse)
```

```
machine_data %>%
   ggplot(aes(sample = speed)) +
   stat_qq(size = 2, col = "red") +
   stat_qq_line(linewidth = 1, col = "blue") +
   labs(x = "Theoretical Quantiles", y = "Sample Quantiles", title = "Normal Q-Q Plot")
```

### Normal Q-Q Plot



The points fit the line good.

### • Checking Homoscedastic Variance

```
bartlett.test(speed ~ machine, data = machine_data)

##
## Bartlett test of homogeneity of variances
##
## data: speed by machine
## Bartlett's K-squared = 1.8329, df = 2, p-value = 0.3999
```

A p-value of 0.3999448 results in failure of rejecting  $H_0$  at 5% level of significance that all the group variances are equal. This can also be verified by a box-plot.

```
machine_data %>%
   ggplot(aes(x = machine, y = speed)) +
   stat_boxplot(geom = "errorbar", linewidth = 1) +
   geom_boxplot(fill = "#eaf411", linewidth = 1) +
   stat_summary(fun = median, geom = "point", size = 3, col = "red") +
   stat_summary(fun = median, geom = "line", aes(group = 1), linewidth = 1, col = "blue") +
   labs(x = "Machine", y = "Speed", title = "Boxplot of Speed ~ Machine")
```

## Boxplot of Speed ~ Machine



The spread of the boxes are more or less similar across groups. The line joining the group averages (here median) clearly shows that the sample machine average speeds differ a lot.

p-value corresponding to machine is 0.0077073 < 0.05. So we reject the null hypothesis of equality of mean machine speeds at 5% level of significance and conclude that at least one of the machine has significantly different mean speed than others.

Now we shall do pairwise comparisons.

```
TukeyHSD(machine_data_anova, ordered = TRUE)
##
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
       factor levels have been ordered
##
##
## Fit: aov(formula = speed ~ machine, data = machine_data)
##
## $machine
      diff
                  lwr
                           upr
                                   p adj
## A-C
          5 -1.888394 11.88839 0.1709498
        10 3.111606 16.88839 0.0058028
## B-C
## B-A 5 -1.888394 11.88839 0.1709498
```

p-value corresponding to comparison of Machine B and Machine C is 0.0058028 < 0.025. So machine B and C are significantly different at 5% level of significance. Other comparisons are not significant. So we conclude that machine B is the best as it has the highest sample mean speed.