

VI. Országos Magyar Matematikaolimpia

XXXIII. EMMV

megyei szakasz, 2024. február 3.

VIII. osztály

1. feladat (10 pont). Adottak az
$$x = \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \ldots + \frac{1}{\sqrt{2023}+\sqrt{2024}}$$
 és $y = \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \ldots + \frac{1}{\sqrt{2024}+\sqrt{2025}}$ valós számok.

- a) Igazold, hogy x + y természetes szám!
- b) Igazold, hogy $|x 22| |y 22| < 45 \sqrt{2024}$.

Faluvégi Melánia, Zilah Nagy Enikő, Nagyvárad Tóth Csongor, Szováta

Megoldás. Hivatalból (1 pont)

a) Kiszámítjuk az x és y számok összegét, így

$$x+y = \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{2024}+\sqrt{2025}}.$$

A nevező gyöktelenítése után azt kapjuk, hogy

$$x + y = \frac{1 - \sqrt{2}}{-1} + \frac{\sqrt{2} - \sqrt{3}}{-1} + \dots + \frac{\sqrt{2024} - \sqrt{2025}}{-1}.$$
 (2 pont)

Továbbá
$$x + y = \frac{1 - \sqrt{2} + \sqrt{2} - \sqrt{3} + \dots + \sqrt{2024} - \sqrt{2025}}{-1} = \frac{1 - \sqrt{2025}}{-1} = 44$$
, ami egy természetes szám. (2 pont)

b) Mivel
$$x>y$$
 és $x+y=44$, ezért $x>22$ és $y<22$. (2 pont) Ez alapján írhatjuk, hogy $|x-22|-|y-22|=x-22-(22-y)=x+y-44=0$. A $0<45-\sqrt{2024}$ egyenlőtlenség egyenértékű azzal, hogy $45^2>2024$, ami igaz, hiszen $2025>2024$. (3 pont)

- **2. feladat** (10 pont). Az ABCD trapézban $\widehat{A} = \widehat{D} = 90^{\circ}$. A trapéz átlói merőlegesek egymásra és az O pontban metszik egymást úgy, hogy OA = 16 cm és OC = 9 cm. Az AC átlóra a C pontban húzott merőleges az AB egyenest az E pontban metszi.
 - a) Számítsd ki a CE szakasz hosszát!
 - b) Mennyivel nagyobb az AECD trapéz területe az ABCD trapéz területénél?
 - c) Igazold, hogy $AD = \sqrt{DC \cdot AB}$.

Császár Sándor, Csíkszereda

Megoldás. Hivatalból (1 pont)

a) Az ADC derékszögű háromszögben a DC befogóra a befogótételt alkalmazva kapjuk, hogy $DC^2 = OC \cdot AC$, így $DC = \sqrt{OC \cdot AC} = \sqrt{9 \cdot 25} = 15$ cm. Az AD befogóra alkalmazva a befogótételt azt kapjuk, hogy $AD^2 = AO \cdot AC$, ahonnan $AD = \sqrt{AO \cdot AC} = \sqrt{16 \cdot 25} = 20$ cm.

A DO szakasz magasság az ADC háromszögben, így a magasság tétele alapján $DO = \sqrt{AO \cdot OC} =$ $\sqrt{16 \cdot 9} = 12 \text{ cm}.$ (1 pont)

Továbbá a DAB derékszögű háromszögben a DA befogóra a befogó tételét alkalmazzuk, tehát $DA^2 = DO \cdot DB$, ahonnan $DB = \frac{DA^2}{DO} = \frac{100}{3}$ cm. (1 pont) A DBEC négyszögben $DC \parallel BE$, valamint $DB \parallel CE$, mert mindkét szakasz merőleges a CA egye-

nesre. Ezek alapján DBECnégyszög paralelogramma, tehát $CE=DB=\frac{100}{3}$ cm. (1 pont)

b) A DBEC négyszög paralelogramma, ezért BE = DC = 15 cm. Az AECD trapéz területe az ABCD trapéz területénél a CBE háromszög területével nagyobb, tehát $T_{CBE} = \frac{BE \cdot AD}{2} = \frac{15 \cdot 20}{2} = 150 \text{ cm}^2.$ (2 pont)

c) Az ADC és BAD derékszögű háromszögekben $\widehat{DCA} = \widehat{ADO} = 90^{\circ} - \widehat{DAO}$, így a két háromszög hasonló, ezért $\frac{AD}{BA} = \frac{DC}{AD}$, ahonnan következik, hogy $AD = \sqrt{DC \cdot AB}$.

3. feladat (10 pont). Az ábrán látható négyzetrácsos táblán két játékos játszik. A bal alsó négyzetben álló bábuval felváltva lépnek akárhány négyzetet vagy jobbra vagy felfelé. Az veszít, aki a bábuval az X-szel jelölt jobb felső négyzetre lép. Jelöld be a táblán azokat a négyzeteket, ahova lépve a kezdő játékos biztosan nyer! Indokold a válaszod!

Matlap 1/2024, A:4865

Első megoldás. Hivatalból

(1 pont)

Az első játékos lépése kényszerítő kell legyen a másik játékos lépéséhez.

(1 pont)

Visszafele gondolkodunk. Aki az X melletti két 1-essel jelölt négyzet egyikére lép, mindenképpen nyer, mivel ellenfele onnan csak a vesztes X-szel jelölt négyzetre léphet. (1 pont) Aki valamelyik 2-essel jelölt négyzetre lép, az veszít, mivel ellenfele bármelyik 2-es négyzetről egyből valamelyik 1-essel jelölt négyzetre léphet és az előbb tárgyalt módon nyer. (1 pont) Nyer az a játékos, aki a 3-assal jelölt négyzetre lép, hiszen ellenfele onnan csak a 2-essel jelölt négyzetekre léphet, így az előbbiek alapján veszít a korábbiak alapján. (2 pont)

A 3-as négyzetre léphetünk a 4-essel jelölt négyzetekről, így aki a 4-esekre lép, az mindenképpen veszít a fentiek alapján.

Aki az 5-ös négyzetre lép mindenképpen nyer, mivel ellenfele onnan csak a 4-esekkel vagy 2-esekkel jelölt valamelyik négyzetre léphet és veszít az előbb tárgyaltak alapján. (1 pont)

Aki a 6-ossal jelölt négyzetre lép, az veszít, mert ellenfele onnan léphet az 5-ös négyzetre és nyer. Aki az 7-es négyzetre lép mindenképpen nyer, mivel ellenfele onnan csak a 6-os, 4-es vagy 2-es négyzetek valamelyikére léphet, ezért veszít. (1 pont)

					2	1	X
					2	2	1
					3	2	2
6	6	6	6	5	4	2	2
8	8	8	7	6	4	2	2
i							

					2	1	\mathbf{X}
					2	2	1
					3	2	2
6	6	6	6	5	4	2	2
8	8	8	7	6	4	2	2
	9						
•							

Az a játékos, aki a 8-as négyzetek valamelyikére lép, az veszít, mert ellenfele onnan léphet a 7-es négyzetre és nyerhet az előbbiek alapján. A 9-es négyzetről csak 6-ossal vagy 8-assal jelölt négyzetre lehet lépni, így a fentiek alapján a 9-esre lépő játékos nyerhet. A 10-es négyzetekről egy lépéssel elérhető a 9-es négyzet. Így aki a 10-es négyzetekre lép veszít, hiszen ellenfele a 9-es négyzetre lépve

nyerhet a korábbiak alapján. Végül a 11-es négyzetre lépő játékos nyerhet, mivel az ellenfele onnan csak a 10-es, 8-as vagy 6-os négyzetekre léphet, ahonnan veszít. (1 pont)

					2	1	\mathbf{x}								2	1	[
					2	2	1								2	2	
					3	2	2								3	2	
6	6	6	6	5	4	2	2			6	6	6	6	5	4	2	
8	8	8	7	6	4	2	2			8	8	8	7	6	4	2	4
10	9									10	9						
	10									11	10						
i	10									i	$\overline{10}$						

Összegezve, ha a kezdő játékos csak a páratlan számokkal jelzett négyzetekre lép, akkor ellenfele lépéseitől függetlenül nyer. Valóban, a páratlan számokkal jelzett négyzetek nyerő pozíciók, mivel onnan az ellenfél csak (annál kisebb) páros számokkal jelölt négyzetekre tud lépni, illetve páros számokkal jelölt négyzetekről a kezdő játékos mindig tud (annál kisebb) páratlan számmal jelölt négyzetre lépni. (1 pont)

Második megoldás. Hivatalból

(1 pont)

Tekintsük a tábla alábbi színezését. A bábu és az X négyzetét fehéren hagyjuk.

(4 pont)

Az vehető észre minden fehér négyzetről (az X-et kivéve) léphetünk valamelyik fekete négyzetre a megadott módon, (1 pont)

illetve fekete négyzetekről csak fehér négyzetekre léphetünk (feketére nem). (1 pont)

Így kezdő játékos a játék során mindig fekete négyzetre tud lépni, míg ellenfele csak fehér négyzetekre léphet. (2 pont)

A játék véges sok lépés után véget ér és a második játékos végül az \mathbf{x} -szel jelölt fehér négyzetre kell lépjen. (1 \mathbf{pont})

4. feladat (10 pont). Az ABCDA'B'C'D' kocka éle 12 cm.

- a) Hány különböző egyenlő oldalú háromszöget határoznak meg a kocka éleinek felezőpontjai? Indokold válaszodat!
- b) Az A_1 , E, F és G pontok az AB, DA, DD' és DC élek felezőpontjai. Az A_1 felezőponton áthaladó, az (EFG) síkkal párhuzamos sík az éleket az $A_1, A_2, A_3, \ldots, A_n$ pontokban metszi, ahol n a kocka azon éleinek a száma, amelyeket a párhuzamos sík metsz. Számítsd ki az A_1, A_2, \ldots, A_n pontok által meghatározott konvex alakzat területét!

Császár Sándor, Csíkszereda

4/6

Megoldás. Hivatalból (1 pont)

a) Az A'D' él M felezőpontját a többi él felezőpontjaival összekötő szakaszok hosszúság szerint 4 csoportba sorolhatók. Az A'D' él M felezőpontját az AB, BB', DC, CC' élek felezőpontjaival összekötő szakaszok egyenlő hosszúak. Az A'D' él M felezőpontját az AA', A'B', DD', D'C' élek felezőpontjaival összekötő szakaszok is egyenlő hosszúak. Végül az A'D' él M felezőpontját az B'C' és AD élek felezőpontjaival összekötő szakaszok egyenlő hosszúak, illetve a BC él felezőpontjával összekötő szakaszok esetén nem áll elő egyenlő oldalú háromszög.

Egyrészt az A'D' oldal felezőpontját rögzítve két nagyobb egyenlő oldalú háromszög szerkeszthető: MNP és MN'P'. A legfelső lap felezőpontjaira alkalmazva a szerkesztést összesen 8 ilyen háromszöget kapunk. (2 pont)

Másrészt kisebb egyenlő oldalú háromszögből szintén 8 szerkeszthető. Minden 3 csúcsközeli felezőpont meghatároz egyet. (1 pont)

Tehát összesen 16 szabályos háromszög szerkeszthető.

(1 pont)

b) Legyenek A_2, A_3, A_4, A_5, A_6 a BC, CC', C'D', D'A', A'A élek felezőpontjai. A háromszög középvonala párhuzamos a szembeni oldallal, így a (EFG) sík EF, FG és GE egyenesei párhuzamosak az AD', D'C és CA egyenesekkel, amelyek szintén párhuzamosak rendre az A_5A_6, A_3A_4 és A_1A_2 egyenesekkel. (2 pont)

Továbbá $A_1A_2 \parallel AC \parallel A'C' \parallel A_5A_4$, hasonló módon $A_5A_6 \parallel D'A \parallel C'B \parallel A_3A_2$ és $A_3A_4 \parallel CD' \parallel A_5A_4$

 $BA' \parallel A_1 A_6$. Mivel bármelyik felezőpontból kiinduló egyenes ugyanazzal az (ACD') síkkal párhuzamos, ezért az $A_1, A_2, A_3, \ldots, A_6$ pontok ugyanabban a síkban vannak, a kocka középpontjától egyenlő távolságra, és egy olyan szabályos hatszöget képeznek, amelynek oldalhosszúsága a kocka lapátlójának hosszának a fele, azaz $6\sqrt{2}$ cm. (2 pont)

Az $A_1A_2A_3A_4A_5A_6$ szabályos hatszög területe $T = \frac{6a^2\sqrt{3}}{4}$, ahol $a = 6\sqrt{2}$ a hatszög oldalának hossza, így $T = 108\sqrt{3}$ cm². (1 pont)

6/6