Simple Linear Regression

Machine Learning
Dr. Adnan Abid
Courtesy Super Data Science

How Good is the Regression Line?

Computation of **a** and **b** for Linear Regression

$$y = a x + b$$

• **a** – slope

b – y-intercept

$$a = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i \right)$$

Problem 1

Consider the following set of points:

n = 3					
х	У	ху	x ²		
-2	-1	2	4		
1	1	1	1		
3	2	6	9		
$\Sigma x = 2$	$\Sigma y = 2$	$\Sigma xy = 9$	$\Sigma x^2 = 14$		

	$n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}$
Ci	$n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}$
	$b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i \right)$

х	У	ху	x ²	
-2	-1	2	4	
1	1	1	1	
3	2	6	9	
$\Sigma x = 2$	$\Sigma y = 2$	$\Sigma xy = 9$	$\Sigma x^2 = 14$	

$$\mathbf{a} = \underline{(3^*9 - 2^*2)}$$
$$(3^*14 - 2^2)$$

$$a = 23/38$$

$$\mathbf{b} = (\underline{1}) (\Sigma y - a \Sigma x)$$

$$b = (1/3)(2 - (23/38)*2)$$

$$y = \frac{23 x}{100} + \frac{5}{100}$$

y = ax + b

 $y = \frac{23 x}{38} + \frac{5}{19}$

https://www.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/more-onregression/v/regression-line-example

