Solutions for practice quiz 1-2.

For the left situation:
$$T + F_b - G = 0$$
 --- O
For the right situation: $F_b' - G - T = 0$ --- O

(b) Based on eq.
$$D$$
 & eq. D ,

$$F_b = G - T, \quad F_b' = G + T$$

$$\Rightarrow F_b < G < F_b'.$$
Since $F_b = P_w Vg$, $G = P_{obj} Vg$, $F_b' = P_y Vg$,

where V is the volume of the object,

we have
$$P_w < P_{obj} < P_y$$

(C) eq.
$$0 + eq. \otimes 0$$
 on both stiles:

Fi' + Fb - 2 G = 0.

Py Vg + Pw Vg - 2 Pobj Vg = 0.

Py + Pw - 2 Pobj = 0.

i.e. $P_{0bj} = \frac{1}{2} (P_{y} + P_{w})$

- 3. (a) wavelength: $\lambda = 16 \text{ cm} = 0.16 \text{ m}$.

 frequency: $f = \frac{V}{\lambda} = 3.5 \text{ Hz}$.
 - (b) period: $T = \frac{1}{f} = \frac{2}{7}s$.

(c) Based on the graph, $A = 10 \text{ cm}, \quad k = \frac{2\pi}{\lambda} = \frac{2\pi}{16 \text{ cm}} = \frac{\pi}{8} \text{ cm}^{-1}$ $W = 2\pi f = 7\pi \text{ Hz}.$

since the wave travels leftward, the sign is positive. Thus, $y(x,t) = 10 \text{ cm} \cos\left(\frac{\pi}{8}x + 7\pi t + 9_o\right)$

when t=0, $\lambda=0$, y(0,0)=0 \Rightarrow $\omega s \phi_0=0$ \Rightarrow $\phi_0=\frac{\pi}{2}$ or $\frac{3}{2}\pi$.

since when t=0, 0 < x < 8 cm, y(x,0) > 0 $\Rightarrow \phi_0 = \frac{3}{2}\pi$

Therefore, $y(x,t) = (0 \text{ cm } COS(\frac{\pi}{8}x + 7\pi t + \frac{3}{2}x),$

where x's unit is cm, and t's unit is sec

