Université Constantine 2

Faculté des Nouvelles Technologies Département dInformatique Fondamentale et ses Applications — IFA

Développement d'une approche de distribution des espaces d'états basée sur la théorie de jeux : Application au model checking distribué

Présenté par: Karimou Seyni Ibrahim

Encadré par

Pr. Djamel Eddine SAIDOUNI,

Dr. Bouneb Zine El Abidine,

Directeur de mémoire

Co-encadreur

0.0.

1. Introduction

- 1.1 Contexte
- 1.2 Motivation
- 1.3 Objectifs
- 2. Problématique
- 2.1 Definition
- 3. Contribution
- 3.1 Definition
- 4. Conclusion
- 4.1 Definition

1. Introduction

Problématique Contribution

1. Introduction

Introduction

1.1. Contexte

 Introduction
 Problématique
 Contribution
 Conclus

 ○●○○○
 ○○
 ○○
 ○○

1. Introduction

1.1. Contexte

Abbildung: Ariane 5

 Introduction
 Problématique
 Contribution
 Conclusion

 ○●○○○
 ○○
 ○○
 ○○

1. Introduction

1.1. Contexte

Abbildung: Ariane 5

Abbildung: Missile Patriote

 Introduction
 Problématique
 Contribution
 Conclusion

 ○●○○○
 ○○
 ○○
 ○○

1. Introduction

1.1. Contexte

Abbildung: Ariane 5

Abbildung: Missile Patriote

IE9+, Google Chrome, Firefox, Opera, Safari, etc							
Real year	1858	1990	1994	2000	200		
.getYear() result	-42	90	94	100	107		
.getFullYear() result	1858	1990	1994	2000	200		

IE6-8							
Real year	1858	1990	1994	2000	200		
.getYear() result	1858	90	94	2000	2007		
.getFullYear() result	1858	1990	1994	2000	2007		

Abbildung: Bug 2000

 Introduction
 Problématique
 Contribution
 Conclusion

 ○●○○○
 ○○
 ○○
 ○○

1. Introduction

1.1. Contexte

Ces dernières années plusieurs catastrophes sont dues à des erreurs de spécifications des systèmes développés.

Abbildung: Ariane 5

Abbildung: Missile Patriote

IE9+, Google Chrome, Firefox, Opera, Safari, etc							
	Real year	1858	1990	1994	2000	200	
	.getYear() result	-42	90	94	100	107	
	.getFullYear() result	1858	1990	1994	2000	200	

IE6-8						
Real year	1858	1990	1994	2000	200	
.getYear() result	1858	90	94	2000	2007	
.getFullYear() result	1858	1990	1994	2000	2007	

Abbildung: Bug 2000

La fiabilité de tout système est envisageable, en particulier ceux de systèmes critiques.

1. Introduction 1.1. Contexte

Comment faire?

 Introduction
 Problématique
 Contribution
 Conclusion

 ○00 ● ○
 ○
 ○
 ○

1. Introduction

1.1. Contexte

le model checking permet de détecter automatiquement des erreurs dans le processus de conception, elle fournit aussi un contre-exemple en cas de non insatiabilité de la propriété dans le modèle permettant ainsi de corriger la source de lerreur dans le système.

 Introduction
 Problématique
 Contribution
 Conclusion

 ○00 ● ○
 ○
 ○
 ○

1. Introduction

1.1. Contexte

le model checking permet de détecter automatiquement des erreurs dans le processus de conception, elle fournit aussi un contre-exemple en cas de non insatiabilité de la propriété dans le modèle permettant ainsi de corriger la source de lerreur dans le système.

Systèmes

 Introduction
 Problématique
 Contribution
 Conclusion

 ○○●○○
 ○○
 ○○
 ○○

1. Introduction

1.1. Contexte

le model checking permet de détecter automatiquement des erreurs dans le processus de conception, elle fournit aussi un contre-exemple en cas de non insatiabilité de la propriété dans le modèle permettant ainsi de corriger la source de lerreur dans le système.

 Introduction
 Problématique
 Contribution
 Conclusion

 ○00 ●○○
 ○○
 ○○
 ○○

1. Introduction

1.1. Contexte

le model checking permet de détecter automatiquement des erreurs dans le processus de conception, elle fournit aussi un contre-exemple en cas de non insatiabilité de la propriété dans le modèle permettant ainsi de corriger la source de lerreur dans le système.

 Introduction
 Problématique
 Contribution
 Conclusion

 ○○○ ◆○
 ○○
 ○○
 ○○

1. Introduction

1.2. Motivation

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

widers pruch sfrei

- ► A Aussage
- ► T formales System

$$\neg \exists A : T \rightarrow A \land T \rightarrow \neg A$$

 Introduction
 Problématique
 Contribution
 Conclusion

 00000€
 00
 00
 00

1. Introduction

1.3. Objectifs

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

widers pruch sfrei

- ► A Aussage
- ► T formales System

$$\neg \exists A: T \rightarrow A \land T \rightarrow \neg A$$

2. Problématique

roduction Problématique Contribution Conclusio

2. Problématique

2.1. Definition

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

widers pruch sfrei

- A Aussage
- ► T formales System

$$\neg \exists A : T \rightarrow A \land T \rightarrow \neg A$$

3. Contribution

oduction Problématique Contribution Conclusio

3. Contribution

3.1. **Definition**

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

widers pruch sfrei

- A Aussage
- ► T formales System

$$\neg \exists A : T \rightarrow A \land T \rightarrow \neg A$$

roduction Problématique Contribution **Conclusion**

4. Conclusion

4.1. **Definition**

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

widers pruch sfrei

- A Aussage
- ► *T* formales System

$$\neg \exists A : T \rightarrow A \land T \rightarrow \neg A$$

 Introduction
 Problématique
 Contribution
 Conclusion

 ○○○○○
 ○○
 ○○

4. Conclusion

▶ Large number of possible parameter-value combinations

Introduction Problématique Contribution **Conclusion**000000 00 00

Conclusion

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters

ntroduction Problématique Contribution Conclusion

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.

ntroduction Problématique Contribution **Conclusion**

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.
- muliticollinearity or high correlation between parameter values

troduction Problématique Contribution **Conclusion**00000 00 00 00

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.
- muliticollinearity or high correlation between parameter values
- ▶ Which criteria for evaluating the difference between observed and simulated runoff.

