

SM2软件实现

● 山东大学网络空间安全学院

● SM2算法结构

- 大数运算 (加 减 乘 模逆)
 - 256比特多精度运算,一般基于64比特/32比特无符号数组
 - p n两个素域
- 椭圆曲线 kP (固定点G 非固定点P)
 - DOUBLE
 - ADD
- 协议 签名、验签、加解密、密钥协商

≰大多 ■ SM2算法结构

- kP= P+P+.....+P 重复k次
- 二进制方法

Algorithm 13. (Left-to-right) binary method for point multiplication

INPUT: $k = (k_{m-1}, \dots, k_1, k_0)_2, P \in E(\mathbb{F}_p)$. OUTPUT: kP.

- Q ← O.
- 2. For i from m-1 downto 0 do 2.1 $Q \leftarrow 2Q$. 2.2 If $k_i = 1$ then $Q \leftarrow Q + P$.
- Return(Q).
- 2个椭圆曲线点运算
 - 2Q
 - Q+P

● SM2算法结构

Point DOUBLE

- Q=2P
- 计算复杂度: 4M+4S+10A
- Point ADD
- Q=P+Q
- 计算复杂度: 12M + 4S + 7A
- 对于**Z=1**的情况进一步减少 计算复杂度
 - PD₇₌₁ 2M+4S+7A
 - PA ₇₂₌₁ 8M +3S +7A
- 加法的数量不能忽略

```
Input: (X, Y, Z)
S = 4XY^2; M = 3X^2 + aZ^4
X' = M^2 - 2S
Y' = M(S - X') - 8Y'
Output: (X', Y', Z')
Point Addition
 Input: (X_1, Y_1, Z_1), (X_2, Y_2, Z_2)
U_1 = X_1Z_2^2; U_2 = X_2Z_1^2; S_1 = Y_1Z_2^3; S_2 = Y_2Z_1^3
if (U_1 == U_2) then
 if (S1 != S2) return POINT AT INFINITY
  else return POINT DOUBLE (X1, Y1, Z1)
H = U_2 - U_1; R = S_2 - S_1
X_3 = R^2 - H^3 - 2U_1H^2
Y_3 = R(U_1H^2 - X_3) - S_1H^3
Z_3 = HZ_1Z_2
Output: (X3, Y3, Z3)
```

5

●基本优化思路

- 大数运算:基础,乘法和乘方是关键
- · ECC坐标变换:
 - 标准为仿射坐标系(X,Y):Y²⁼ X³+aX+b
 - jacobian坐标系(x, y, z): y²=x³+ax.Z⁴+bz⁶
 - $X = x/z^2$, $Y = y/z^3$
 - · jacobian坐标系计算复杂度低
- ECC中固定点点乘kG: 预计算表
 - · 运算中G为固定点,可预计算nG并存储为表
- 非固定点点乘kP: 预计算nP
 - 在线运算, 计算代价较大, 需要权衡预计算量。
- 协议层: 复杂运算的组合

5

● 大数运算

- 256比特多精度运算 d=a+b
- 64比特无符号数组表示 a[4] b[4] d[4] 小端存储
 - ▶ c|d[0]= a[0]+b[0];//其中c为进位标志
 - > c |d[1] = a[1] + b[1] + c:
 - > c | d[2] = a[2] + b[2] + c;
 - > c | d[3] = a[3] + b[3] + c;
- 结果为 c|d[3]|d[2]|d[1]|[d[0], < 2P (257位)
- 如果结果>=p, 需要减p,完成模约
 - ▶ c d [0] = d [0] -p [0]; //其中c为借位标志
 - > c |d[1] = d[1] p[1] c
 - > c |d[2] = d[2] p[2] c
 - > c | d[3] = d[3] p[3] c

● 大数运算

- 几个问题:
 - 带进位的加法/带借位的减法如何实现?
 - 如何判断结果是否>=p
 - 模约安全么?

● 大数运算

• 带进位的加法/带借位的减法如何实现?

```
    X86-64 内部指令
#include <intrin.h>
unsigned char carry = 0;
for (int i = 0; i < 4; i++) {
    carry = _addcarry_u64(carry, a[i], b[i], &d[i]);
} //adcq
unsigned char carry = 0;
for (int i = 0; i < 4; i++) {
    carry = _subborrow_u64(carry, d[i], p[i], &d[i]);
} //sbbq</li>
```

● 大数运算

- 计算依赖标志寄存器,同时结果会影响标志寄存器
- 汇编实现的话效率稍高
- subq a, b #0.25
- sbbg c, d #1
- sbbq e, f
- sbbq g, h

ADD SUB	r,r/i	1	1	p0156	1	0.25	
ADD SUB	r,m	1	2	p0156 p23		0.5	
ADD SUB	m,r/i	2	4	2p0156 2p237 p4	5	1	
ADC SBB	r,r/i	1	1	p06	1	1	
ADC SBB	r,m	2	2	p06 p23		1 1	
ADC SBB	m,r/i	4	6	3p0156 2p237 p4	5	2	

10

● 大数运算

- 汇编实现加法可利用bmi2 adcx adox优化
- adcx 只影响carry标志 , adox只影响overflow标志
- 可同时执行两组多精度加法,内存加法效率较高
- xor z.z://清除标识位
- adcx a, b; adox p0 (%rsp), j;
- adcx c, d; adox p0+8 (%rsp), I;
- adcx e, f; adox p0+16(%rsp), n;
- adcx g, h; adox p0+24(%rsp), p;

ADCX ADOX	r,r	1	1	p06	1	1
ADC SBB	r,m	2	2	p06 p23		1
ADC SBB	m,r/i	4	6	3p0156 2p237 p4	5	2

● 大数运算

- · 如何判断结果是否>=p
- 模约安全么?
- 条件转移指令实现安全高效的模约
 - 将计算结果a, b, c, d复制到e, f, g, h寄存器
 - 将进位标志复制到一个寄存器g, 然后执行多精度减法-p
 - 如果结果有借位, e, f, g, h为正确结果, 否则a, b, c, d为正确结果
 - 利用条件转移指令cmovx将正确结果复制到结果寄存器

● 大数运算-模约

> setc g ;//1

> movq a, e; movq b, f; movq c, g; movq d, h; //1

> subq p[0], a; //1

> sbbq p[1], b; //1

> sbbq p[2], c; //1

> sbbq p[3], d; //1

> sbbq \$0, g; //1

> cmovc e, a; cmovc f, b; cmovc g, c; cmovc h, d; //2

• 常量时间实现

● 大数运算-乘法

- 乘法相对复杂, 利用BMI2 优化
- MULX ADOX ADCX SHLX SHRX
- mulx a, o0, o1
 - 其中一个乘数 固定为rdx,另一个乘数a可以为内存或寄存器,输出到两个寄存器o0,o1中,不影响标志寄存器
 - lo=mulx u64(uint64 t a, uint64 t b, uint64 t * hi);
 - hi lo= a*b;

MULX	r32,r32,r32	3	3	p1 2p056	4	1	Τ
MULX	r32,r32,m32	3	4	p1 2p056 p23		1	
MULX	r64,r64,r64	2	2	p1 p5	4	1	
MULX	r64 r64 m64	2	3	n1 n6 n23		1	

14

● 大数运算-乘法

- SHLX/SHRX 不影响标记寄存器
 - shlx sft, a,b ;// b= (a<<<sft)
 - shrx sft, a, b ;// b= (a>>>sft)
- 用在小数乘法 2a, 3a....
- 蒙哥马利模约

The state of the s		_				1	1
SHLX SHRX SARX	r,r,r	1	1	p06	1	0.5	
SHLX SHRX SARX	rmr	2	2	n06 n23		0.5	

● 大数运算-乘法

- X86-64架构下schoolbook 足够好
- A0x[B3..B0]
- A1x[B3..B0]
- A2x[B3..B0]
- A3x[B3..B0]
- 结果不超过512比特
- 乘方时间约为乘法80%

● 大数运算-乘法

- 如何将512比特约简到256比特素域内?
- 三种情况
 - 蒙哥马利快速模约(p)
 - 巴洛特模约 (n, p)
 - 蒙哥马利域模约
 - · 蒙哥马利友好(p)
 - 一般情况(n, p)
 - SM2曲线优化(sm2)

● 大数运算-乘法

- 蒙哥马利快速模约(p)
- p bin: 2^256 2^224 2^96 + 2^64 1

- 按32bits分组
- 将模约转换为加法和减法
- 最多减去13P

● 大数运算-乘法

- 蒙哥马利快速模约(sm2)
- 首先处理高256比特
- 低256比特执行多精度加法


```
movl T15d, T14d ; SHRX Sft32, T15, T15 ; movl T9d, T8d ; SHRX Sft32, T9, T9 ; movl T13d, T12d ; SHRX Sft32, T13, T13 ;
                                                                       movq T14, tmp0;;\
                                                             ; movq T8, T16;\\
; ;\
mov1 T11d ,T10d ; SHRX Sft32, T11, T11 ; movq T13, tmp1;;\
adox T15, T14; ; adox T9, T16; ;\
adox T14, T13; ;
                               adcx T10, T16;;\
adox T13, T12; ;
                              adcx T11, T16; ;\
adox T15, T10;
 adox T13, T10;
                       adcx tmp0, T9;;\
adcx tmp1, T8; adox T11,T14; ;\
adox T12,T11; adox T12, T16;
adox 712, 711; adox 712, 716; adox 712, 716; adox 712, 715; adox 716, 7112; adox 716, adox 713, 716; adox 718, 7
SHLX Sft32, 716, 713;\
                               adcx T16, T15;\
                              adox T8 , T9; \
adcx T16, T13; adox
SHRX Sft32, T16,tmp0;\
                                   posC(%rsp), T13;\
SHLX Sft32, T11, X00;\
SHRX Sft32, T11, tmp1;\
adcx X00, tmp0; adox
SHLX Sft32, T10, X00;\
                                    (posC+8) (%rsp), tmp0; \
SHRX Sft32, T10, T16;\
adcx tmp1, X00; adcx T12,X00 ;\
adox (posC+16) (%rsp), X00
SHLX Sft32, T15, T12;\
SHRX Sft32, T15, T11;\
adcx T12, T16;\
adcx T14,T16; adox (posC+24)(%rsp), T16;\
movq $0,Sft32;\
 adcx Sft32,T11 ; adox Sft32,T11 ;\
mov1 T8d, T15d;
SALQ $32,T15;\
SHRQ $32,T8 ;\
addq T9, T8 ;\
setc T9b; \
 movzx T9b, T12;\
suba
          T15, T13 ;\
           T8, tmp0
T12, X00
sbbq
           $0, T16
$0, T11 ;\
```

● 大数运算-乘法

- 巴洛特模约 通用, 性能较差
- 需要执行 2次 256比特乘法

Algorithm 2.14 Barrett reduction

Input: $p, b \ge 3, k = \lfloor \log_b p \rfloor + 1, 0 \le z < b^{2k}, \text{ and } \mu = \lfloor b^{2k}/p \rfloor.$ Output: $z \mod p.$

- 1. $\widehat{q} \leftarrow \lfloor \lfloor z/b^{k-1} \rfloor \cdot \mu/b^{k+1} \rfloor$.
- 2. $r \leftarrow (z \mod b^{k+1}) (\widehat{q} \cdot p \mod b^{k+1})$.
- 3. If r < 0 then $r \leftarrow r + b^{k+1}$.
- 4. While $r \ge p$ do: $r \leftarrow r p$.
- 5. Return(r).

refs: guide to elliptic curve cryptography

● 大数运算-乘法

- · 需要减去多次p时如何处理?
- while (a>p) a=a-p;

•

- 构造一个预计算表, 只保存低256比特
- np[0]: 0 (
- np[1]: p (
- np[2]: 2p 1
- np[3]: 3p 2
- np[4]: 4p 3
- 如计算结果为 c|b3|b2|b1|b0
- b= b- np[c] , 如 有借位 + p, 否则 +0

● 大数运算-乘法

- 预计算表 index 0 存储全0
- index1 存储p
- 只需要根据借位标志设置序号即可
- const time实现

```
shlq $5, Sft32 ;\
xorq SIN, SIN; \
movq $32, X00;\
leaq SM2nXN_p64(%rip), T9 ;\
subq ( 32) (T9 , Sft32), T13 ;\
sbbq ( 40) (T9 , Sft32), DIN ;\
sbbq (48) (T9 , Sft32), tmp1 ;\
sbbq ( 56) (T9 , Sft32), T16;\
cmovc X00, SIN; \
movq rspParS(%rsp), T8;\
addq (T9 , SIN), T13;\
adcq ( 8) (T9 ,SIN),DIN ; \
adcq ( 16) (T9 ,SIN), tmp1; \
adcq ( 24) (T9 ,SIN),T16 ; \
movq T13, (T8);\
movg DIN, 8 (T8);\
movq tmp1, 16(T8);\
movq T16, 24 (T8)
```

22

● 大数运算-乘法

- 蒙哥马利乘法 推荐算法
- 运算规则
- $c = axbx2^{-256}$
 - k0 64比特常数
 - k=4
 - T3/2s直接丢弃低64位
 - 结果不超过2p
 - SM2 p为MM友好素数

Algorithm 1: Word-by-Word Algorithm 2: Word-by-Word Montgomery Multiplication (WW-MM) Montgomery Multiplication for a Montgomery Friendly modulus p Input: p < 21 (odd modulus), (Montgomery Friendly Multiplica- $0 \le a$, b < p, $1=s \times k$ tion) Output: a×b×2-1 mod p Satisfying -p-1 mod 2=1. Pre-computed: $k0 = -p^{-1} \mod 2^{8}$ Input: p < 21 (Montgomery Friendly modulus) 1. $T = a \times b$ $0 \le a, b < p, l=s \times k$ Output: a×b×2-1 mod p For i = 1 to k do 2. $T1 = T \mod 2^{s}$ Flow 3. $Y = T1 \times k0 \mod 2^8$ $4. T2 = Y \times p$ For i = 1 to k do 5. T3 = (T + T2)2. T1 = T mod 2^s 6 T = T3 / 2° 3. T2 = T1 × p 4. T3 = (T + T1)7. If $T \ge p$ then X = T - p; 5. $T = T3 / 2^8$ else X = T End For Return X 6. If $T \ge p$ then X = T - p; else X = T

Fast Prime Field Elliptic Curve Cryptography with 256 Bit Primes @2013

● 大数运算-乘法

- SM2优化
- p bin: 2^256 2^224 2^96 + 2^64 1

- · SM2 步骤3 可退化为 加法 和减法
- 可用mulx adcx adox 构造多流水线

大数运算-乘法

- 运算规则
- $c = axbx2^{-256}$
- · 转入MM域
 - 将 a-> ax2256
 - 将 b-> ax2256
 - a=MULP (a. 2²⁵⁶)
 - b= MULMM (a. 2⁵¹²)
 - MULMM (ax2²⁵⁶, bx2²⁵⁶) $= ax2^{256}xbx2^{256}x2^{-256} =$
- 转出MM域
 - MULP (ax2²⁵⁶, 2⁻²⁵⁶)
 - MULMM (ax2²⁵⁶, 1)

```
Montgomery Multiplication (WW-MM)
Input: p < 21 (odd modulus),
      0 \le a, b < p, 1=s \times k
Output: a×b×2-1 mod p
Pre-computed: k0 = -p^{-1} \mod 2^{8}
```

For i = 1 to k do 2. $T1 = T \mod 2^s$ 3. $Y = T1 \times k0 \mod 2^8$ 4. $T2 = Y \times p$

6. $T = T3 / 2^{\circ}$ 7. If $T \ge p$ then X = T - p; else X = T

5. T3 = (T + T2)

Montgomery Multiplication for a Montgomery Friendly modulus p (Montgomery Friendly Multiplica-Satisfying -p-1 mod 2=1. Input: p < 21 (Montgomery Friendly modulus) $0 \le a$, b < p, $l=s \times k$ Output: a×b×2-1 mod p Flow 1. $T = a \times b$ For i = 1 to k do 2. T1 = T mod 2^s 3. T2 = T1 × p 4. T3 = (T + T1)5. T = T3 / 2 8 End For 6. If $T \ge p$ then X = T - p; else X = T

● 大数运算-乘法

- 对于SM2算法, n域的运算较少, barrett模约更合适
- · 可构造全MM域的大数运算库
 - 性能优,通用性好,支持多条256比特曲线
 - 无预计算表
 - 大数乘法/乘方运算最少可低至1个函数

	N MP	P MP	P MM	N MM	GP MM	FP MM
MUL	85. 98	53. 95	46. 24	54. 64	54. 64	51. 36
SQR	82. 36	48. 99	41.88	50. 22	50. 39	47. 08

● 大数运算-模逆

金 シネグる

- · bEEA 二进制扩展欧几里得
- · FLT 费马小定理
- 蒙哥马利模逆
- SafeGCD ***

● 大数运算-模逆

- 简单,通用
- 非常量时间

Algorithm 2.22 Binary algorithm for inversion in \mathbb{F}_p

INPUT: Prime p and $a \in [1, p-1]$. OUTPUT: $a^{-1} \mod p$.

- 1. $u \leftarrow a, v \leftarrow p$.
- 2. $x_1 \leftarrow 1, x_2 \leftarrow 0$.
- 3. While $(u \neq 1 \text{ and } v \neq 1)$ do
 - 3.1 While u is even do

 $u \leftarrow u/2$.

If x_1 is even then $x_1 \leftarrow x_1/2$; else $x_1 \leftarrow (x_1 + p)/2$.

3.2 While v is even do

If x_2 is even then $x_2 \leftarrow x_2/2$; else $x_2 \leftarrow (x_2 + p)/2$.

3.3 If $u \ge v$ then: $u \leftarrow u - v$, $x_1 \leftarrow x_1 - x_2$;

Else: $v \leftarrow v - u$, $x_2 \leftarrow x_2 - x_1$.

4. If u = 1 then $\operatorname{return}(x_1 \mod p)$; else $\operatorname{return}(x_2 \mod p)$.

大数运算-FLT模逆

• FLT 费马小定理 p

• $a^{-1} = a^{p-2}$

felem_square(tmp, in); /* 2^1 */ felem_mul(tmp, in, ftmp); /* 2^2 - 2^0 */ felem_assign(e2, ftmp); felem square(tmp, ftmp); /* 2^3 - 2^1 */ felem square(tmp, ftmp); /* 2^4 - 2^2 */ felem_mul(tmp, ftmp, e2); /* 2^4 - 2^0 */ felem assign(e4, ftmp); felem square(tmp, ftmp); /* 2^5 - 2^1 */ felem square(tmp, ftmp); /* 2^6 - 2^2 */ felem square(tmp, ftmp); /* 2^7 - 2^3 */ felem square(tmp, ftmp); /* 2^8 - 2^4 */ felem mul(tmp, ftmp, e4);/* 2^8 - 2^0 */ felem_assign(e8, ftmp); for (i = 0; i < 8; i++) felem_square(tmp, ftmp); /* 2^16 - 2^8 */

felem_mul(tmp, ftmp, e8); /* 2^16 - 2^0 */ felem_assign(e16, ftmp); for (i = 0; i < 16; i++) { felem_square(tmp, ftmp);} /* 2^32 - 2^16 */ felem_mul(tmp, ftmp, e16);/* 2^32 - 2^0 */ felem_assign(e32, ftmp); for (i = 0; i < 32; i++) { felem square(tmp, ftmp);} /* 2^64 - 2^32 */ felem assign(e64, ftmp); felem_mul(tmp, ftmp, in);/* 2^64 - 2^32 + 2^0 */ for (i = 0; i < 192; i++) { felem square(tmp, ftmp);} /* 2^256 - 2^224 + 2^192 */ felem_mul(tmp, e64, e32); /* 2^64 - 2^0 */ for (i = 0; i < 16; i++) { felem_square(tmp, ftmp2);} /* 2^80 - 2^16 */

felem_mul(tmp, ftmp2, e16); /* 2^80 - 2^0 */ for (i = 0; i < 8; i++) { felem_square(tmp, ftmp2);} /* 2^88 - 2^8 */ felem_mul(tmp, ftmp2, e8); /* 2^88 - 2^0 */ for (i = 0: i < 4: i++) { felem_square(tmp, ftmp2);} /* 2^92 - 2^4 */ felem_mul(tmp, ftmp2, e4); /* 2^92 - 2^0 */ felem square(tmp, ftmp2); /* 2^93 - 2^1 */ felem square(tmp, ftmp2); /* 2^94 - 2^2 */ felem_mul(tmp, ftmp2, e2); /* 2^94 - 2^0 */ felem square(tmp, ftmp2); /* 2^95 - 2^1 */ felem square(tmp, ftmp2); /* 2^96 - 2^2 */ felem_mul(tmp, ftmp2, in); /* 2^96 - 3 */ felem_mul(tmp, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */

255S +15M

- FLT 费马小定理 n
- $a^{-1} = a^{p-2}$

一种国密SM2算法曲线中对于阶n的高速等时模逆算法 2021 . 12 . 31 观源(上海)科技有限公司 顾星远 邓超国 许森 钱铮 M + S 291

可用蒙哥马利乘法加速

大数运算-蒙哥马利模逆

蒙哥马利模逆 通用寄存器下最高效算法 最终结果需要修正

Algorithm 2.23 Partial Montgomery inversion in \mathbb{F}_n

INPUT: Odd integer p > 2, $a \in [1, p-1]$, and $n = \lceil \log_2 p \rceil$.

OUTPUT: Either "not invertible" or (x, k) where $n \le k \le 2n$ and $x = a^{-1}2^k \mod p$.

- 1. $u \leftarrow a, v \leftarrow p, x_1 \leftarrow 1, x_2 \leftarrow 0, k \leftarrow 0$.
- 2. While v > 0 do
 - 2.1 If v is even then $v \leftarrow v/2$, $x_1 \leftarrow 2x_1$; else if u is even then $u \leftarrow u/2$, $x_2 \leftarrow 2x_2$; else if $v \ge u$ then $v \leftarrow (v - u)/2$, $x_2 \leftarrow x_2 + x_1$, $x_1 \leftarrow 2x_1$; else $u \leftarrow (u - v)/2, x_1 \leftarrow x_2 + x_1, x_2 \leftarrow 2x_2$. 2.2 $k \leftarrow k + 1$.
- 3. If $u \neq 1$ then return("not invertible").
- 4. If $x_1 > p$ then $x_1 \leftarrow x_1 p$.
- 5. Return (x_1, k) .

大数运算-蒙哥马利模逆

- BMI指今 tzcnt
- 获取尾部0的数量n m=64-n
- 结合shlx shrx 同步执行 v>>n和 x1<<n

```
tzcnt tmp0, tmp4; \
  iz .Lbl##lbout :\
  movq $64, Sft63; subq tmp4, Sft63;\
  ADDq tmp4, par3(%rsp);\
   SHRx tmp4, tmp0, tmp0;
   SHLX Sft63, Sft01, tmp3; orq tmp3, tmp0;
   SHRx tmp4, Sft01, Sft01;
SHLX Sft63, A3, tmp3; orq tmp3, Sft01; \
   SHRx tmp4, A3, A3;\
   SHLX Sft63, A2, tmp3; orq tmp3, A3; \
SHRX Sft63, A0, A1;\
        SHLx tmp4, A0, A0; \
    SHRx tmp4, A2, A2;\
```

Algorithm 2.23 Partial Montgomery inversion in \mathbb{F}_p

INPUT: Odd integer p > 2, $a \in [1, p-1]$, and $n = \lceil \log_2 p \rceil$.

OUTPUT: Either "not invertible" or (x, k) where $n \le k \le 2n$ and $x = a^{-1}2^k \mod p$.

- 1. $u \leftarrow a, v \leftarrow p, x_1 \leftarrow 1, x_2 \leftarrow 0, k \leftarrow 0$.
- 2. While v > 0 do
 - 2.1 If v is even then $v \leftarrow v/2$, $x_1 \leftarrow 2x_1$: else if u is even then $u \leftarrow u/2$, $x_2 \leftarrow 2x_2$; else if $v \ge u$ then $v \leftarrow (v - u)/2$, $x_2 \leftarrow x_2 + x_1$, $x_1 \leftarrow 2x_1$; else $u \leftarrow (u - v)/2, x_1 \leftarrow x_2 + x_1, x_2 \leftarrow 2x_2$.
- $2.2 \ k \leftarrow k + 1.$
- 3. If $u \neq 1$ then return("not invertible").
- 4. If $x_1 > p$ then $x_1 \leftarrow x_1 p$.
- 5. Return (x_1, k) .

● 大数运算-SafeGCD

- 基于simd实现的最高效、 安全方法
- CHES 2019
- Thomas Pornin 2020提出改进方法,通用寄存器下效率更优

```
Algorithm 2 Extended Binary GCD (optimized algorithm)
Require: Odd modulus m \ (m \ge 3, m \bmod 2 = 1), value y \ (0 \le y < m), and k > 1
Ensure: 1/y \mod m (if GCD(y, m) = 1)
 1: a \leftarrow v, u \leftarrow 1, b \leftarrow m, v \leftarrow 0
 2: for 1 \le i \le \lceil (2\operatorname{len}(m) - 1)/k \rceil do
           n \leftarrow \max(\operatorname{len}(a), \operatorname{len}(b), 2k)
           \tilde{a} \leftarrow (a \bmod 2^{k-1}) + 2^{k-1} \lfloor a/2^{n-k-1} \rfloor
                                                                                                                                  \triangleright \bar{a} < 2^{2k}
           \bar{b} \leftarrow (b \mod 2^{k-1}) + 2^{k-1} |b/2^{n-k-1}|
           f_0 \leftarrow 1, g_0 \leftarrow 0, f_1 \leftarrow 0, g_1 \leftarrow 1
           for 1 \le j \le k - 1 do
                 if \tilde{a} = 0 \mod 2 ther
                     \bar{a} \leftarrow \bar{a}/2
                      if \bar{a} < \bar{b} then
                            (\bar{a},\bar{b}) \leftarrow (\bar{b},\bar{a})
                            (f_0, g_0, f_1, g_1) \leftarrow (f_1, g_1, f_0, g_0)
                      \bar{a} \leftarrow (\bar{a} - \bar{b})/2
                      (f_0, g_0) \leftarrow (f_0 - f_1, g_0 - g_1)
                 (f_1,g_1) \leftarrow (2f_1,2g_1)
           (a,b) \leftarrow ((af_0 + bg_0)/2^{k-1}, (af_1 + bg_1)/2^{k-1})
           if a < 0 then
                (a, f_0, g_0) \leftarrow (-a, -f_0, -g_0)
           if h < 0 then
                (b, f_1, g_1) \leftarrow (-b, -f_1, -g_1)
          (u, v) \leftarrow (uf_0 + vg_0 \mod m, uf_1 + vg_1 \mod m)
23: v \leftarrow v/2^{(k-1)\lceil (2\text{len}(m)-1)/(k-1)\rceil} \mod m
24: if b \neq 1 then
25: return 0 (value y is not invertible)
```

● 大数运算-SafeGCD

- 常量时间 SafeGCD
- 非x86-64 非常量时间 蒙哥马利模逆
- 基于蒙哥马利乘法的FLT效率优于FLT

	SafeGCD	FLT	MMINV	FLTMN
N	3165. 50	24235. 67	4499. 07	15132. 78
P	3122. 54	11668. 61	4418. 40	10217. 80

34

●固定点点乘

- kG
- 核心为系数k的编码
- 利用预计算表将DOUBLE和ADD简化为查表
- · 对k每32比特抽取一个1比特 共8比特 32组

```
kbits[0, 32, 64, 96, ...] --> kb[0] oV= TBL[kb[31];
kbits[1, 33, 65, 97, ...] --> kb[1] for (i=30; i>=0; i--)
kbits[2, 34, 66, 98, ...] --> kb[2] {
kbits[3, 35, 67, 99, ...] --> kb[3] oV= DOUBLE (oV);
kbits[4, 36, 68, 100, ...] --> kb[4] oV= oV+ TBL (kb[i]);
...
kbits[31, 63, 95, 127, ...] --> kb[31] 31 (DOUBLE + ADD)
```

■固定点点乘

- 预计算表:
- 对于宽度为n的编码,需要存储 G.. 2ⁿ⁻¹. G个点坐标
- 需要处理系数为0的情况
- · 随着n的增加,预计算表尺寸变大
- 大的预计算表收益变低

n	存储点数	计算复杂度
8	256	31 DOUBLE + ADD
9	512	29 DOUBLE + ADD
10	1024	25 DOUBLE + ADD
11	2048	23 DOUBLE + ADD
12	4096	21 DOUBLE + ADD

●固定点点乘

- DOUBLE+ADD 4M+4S + 8M +3S
- 2P+Q= P+Q+P

■固定点点乘

- 如何抽取比特?
- BMI PEXT

• 将SRC1中MASK为1的比特 依次放入 DEST中,即mask里有

几个1放几位

●非固定点点乘

- 固定255次DOUBLE
- · ADD次数由非0比特数决定
- 标准实现 1/2非0比特, 127次ADD
- NAF编码 能够大幅降低非0元素数量
 - NAF编码: Non-Adjacent Form 非相邻形式编码,编码后不会出现 连续的1
 - 一个简单的例子
 - 7 binary $0.111 = 0.2^3 + 1.2^2 + 1.2^1 + 1.2^0$
 - NAF 100-1 = 1.2³ + 0.2³ + 0.2² + -1.2⁰

● 非固定点点乘-NAF

• 对于256bit来说,长度最长为257

非0元素数量≈L/3 = 85

- 一个良好的随机数非0元素数量约L/2=128点加运算减少1/3
- 如果我们把窗口放大,如w=3 那么3个比特最多有一个非0值, 该值为-3,-1,1,3
- w=4, 4比特最多1个非0值, -7 -5 -3 -1 1 3 5 7
- . .

· NAF编码算法

Algorithm 3.35 Computing the width-w NAF of a positive integer

INPUT: Window width w, positive integer k.

OUTPUT: $NAF_w(k)$.

- 1. $i \leftarrow 0$.
- 2. While k > 1 do
 - 2.1 If k is odd then: $k_i \leftarrow k \mod 2^w$, $k \leftarrow k k_i$;
 - 2.2 Else: $k_i \leftarrow 0$.
 - $2.3 \ k \leftarrow k/2, i \leftarrow i+1.$
- 3. Return $(k_{i-1}, k_{i-2}, \ldots, k_1, k_0)$.
- 对应的需要预计算nP

■非固定点点乘

· 对于w>2的情况,宽度约大,非零元素数量越少

W	非零元 素数量	非0元素范围 (-2^(w-1)+1,5, -3, -1, 1,3,5,2 1)	^(w-1) - 预计算表 坐标数量
4	50	-7 ~ 7	8/4
5	42	-15 ~ 15	16 /8
6	37	-31 ~ 31	32 /16
7	31	-63 ~ 63	64/32
8	29	-127 ~ 127	128/64
9	25	-255 ~ 255	256/128
10	24	-511 ~ 511	512/256
11	22	-1023 ~ 1023	1024/512
12	19	-2047 ~ 2047	2048/1024

非固定点点乘

W=5,分割为257/w个块后,每个块最多

• w=16,预计算的点数量迅速增加,为了降低点加数量预计算 代价越来越高

非固定点点乘

- 计算复杂度= 预计算计算复杂度 + 255 DOUBLE + n ADD
- 预计算标准流程 TBL[m]={P,3P,5P,7P,...};
 - > TBL[0]=P;
 - ➤ Q= 2P;
 - for(int i=1;i<w;i++)</pre>

 - Q = Q+P; TBL[i]=Q;
- 计算结果在雅可比坐标系下(x, y, z) 其运算过程中的ADD复 杂度为 12M+ 4S+ 7A
- 如果我们把预计算点转换为仿射坐标系, 计算复杂度降低为 8M+ 3S+ 7A , 但需要增加模逆开销

●非固定点点乘

- · 预计算-基于Co-Z方法
- 如果P, Q具有相同的Z坐标, 计算复杂度 5M +2S

Addition:

$$\begin{split} P_1 &= (X_1,Y_1,Z), P_2 = (X_2,Y_2,Z) \text{ and } P_1 + P_2 = (X_3',Y_3',Z_3') \\ A &= (X_2-X_1)^2, \, B = X_1A, \, C = X_2A, \, D = (Y_2-Y_1)^2 \end{split}$$

and

$$X_3' = D - B - C$$
,
 $Y_3' = (Y_2 - Y_1)(B - X_3) - Y_1(C - B)$,
 $Z_3' = Z(X_2 - X_1)$.

This addition involves 5M and 2S.

• 计算 P+Q, 同时更新P, 使得P+Q 和 P Z坐标保持相同 +1M+1S

$$(X_1(X_2-X_1)^2, Y_1(X_2-X_1)^3, Z(X_2-X_1)) \sim (X_1, Y_1, Z).$$

• 总复杂度为 6M+ 3S < 12M + 4S

● 非固定点点乘-预计算

- SafeGCD 耗时 3800 cycles
- DOUBLE 450cycles ADD 570 cycles
- 可利用同步模逆转化到仿射坐标系
- 输入(x1, y1, z1)(x2, y2, z2)
- 输出 (X1, Y1) (X2, Y2)
 - Z=z1. z2
 - $Z= Z^{-1} // (z1. z2)^{-1}$
 - T=Z, z2 //z1-1
 - T1=T. T
 - X1= x1. T1
 - T1=T1. T
 - Y1= Y1. T1

- T=Z, z1 //z2⁻¹
- T1=T. T
- X2= x2. T1
- T1=T1. T
- Y2= Y2. T1

1个INV + 2S + 9M

■ 非固定点点乘-预计算

- 输入(x1, y1, z1) (x2, y2, z2) (x3, y3, z3)
- 输出 (X1, Y1) (X2, Y2) (X3, Y3)
 - Z0=z1. z2
 - Z0-Z1. Z2 • Z=Z0. z3
 - T=Z. T //z1-1
- T=z1. z3
- -2. 1 //21
- T=Z. T //z2⁻¹
 T1=T. T

- $Z= Z^{-1} // (z1. z2. z3)^{-1}$
 - T1=T. T
- VO- 0 T

- T=Z. Z0 //z3⁻¹
- X1= x1. T1
- X2= x2. T1

T1=T. TX3= x3. T1

- T1=T1. TY1= Y1. T1
- T1=T1. TY2= Y2. T1

- T1=T1. T
- Y3= Y3. T1
- 1个INV + 3S + 16M

随着坐标数增加, 计算复杂度显著增加 1INV+nS+ (n+1)2M

● 非固定点点乘-总计算复杂度

w	非零元素	预计 算 点	计算复杂度	
4	50	3	3(6M+3S) + INV + 3S+16M + 255 (4M+4S) + 50 (8M+3S)	INV + 1454M + 1182S
5	42	7	7(6M+3S) + INV + 4S+25M + 255 (4M+4S) + 42 (8M+3S)	INV + 1423M + 1171S
6	37	15	15(6M+3S) + INV + 5S+36M + 255 (4M+4S) + 37(8M+3S)	INV + 1442M + 1181S
7	31	31	31(6M+3S) + INV + 6S+49M + 255 (4M+4S) + 31(8M+3S)	INV + 1503M + 1212S
8	29	63	63(6M+3S) + INV + 7S+64M + 255 (4M+4S) + 29(8M+3S)	INV + 1694M + 1303S

- 非模逆实现 w=5
 - 7*(6M+3S) + 255 (4M+4S) + 42 (12M+4S) +143M+38S-INV

▶ 非固定点点乘-安全实现

- Co-Z XY方法
- Faster Montgomery and double-add ladders for short Weierstrass curves @CHES2020 Mike Hamburg
- 三个阶段
- 1. setup
- ➤ CoZMH MM Setup (R, Q):
- 2. 255次 update
- \rightarrow nb=(k[i/64]&(((u64i)1)<<(i\)%64)))?1:0:
- > CoZMH MM Update (R+(1-nb)*4, R+nb*4, M, YP
- · 3. finish
- > CoZMH MM FinishXYZ(iout, XQP, XRP, M , YP, Q);

非固定点点乘-安全实现

- Co-Z XY方法
- 常量时间 8M+3S+7A /bits 优于 5-NAF
- 无需预计算

CoZMH MM Setup

SM2_SUB(Xrp, Xrp, T);

```
SM2 SQR ModP(T, xp);
SM2 SUB1(T,T);
SM2_3X(M,T); // M=3.xp^2+a
SM2 2X(Z,xp+4);
 SM2_SQR_ModP(Z, Z); //Z= Z^2
 SM2_SQR_ModP(Yp, Z); //Yq=Yp= Z^4
SM2_SQR_ModP(Xrp, M); //M^2
SM2_SQR_MOdP(T, xp, Z);
SM2_MUL_ModP(T, xp, Z);
SM2_3X(T,T); // M= 3xp.Z^2
```

CoZMH MM Update CoZMH MM FinishXYZ

```
SM2_MUL_ModP(Z, xp, YP);
SM2_MUL_ModP(YR1, Xrp, M);
SM2_2X(YR1,YR1);
                                                    SM2_3X(Z,Z); //
inverse256_SM2_p(Z,Z);
SM2_ADD(YR1, Yp, YR1); //1
                                                      SM2 2X(Z,Z);
SM2_SUB(E, Xqp, Xrp);
                                                 SM2 SOR ModP(M1, M);
SM2_MUL_ModP(F, YR1, E); //3
                                                 SM2 ADD(T, XOP, XRP);
SM2_SQR_ModP(G, E);
                                                  SM2 SUB(T, M1, T);
SM2_MUL_ModP(XRP1, Xrp, G);
SM2_SQR_ModP(H, YR1); //
                                                    SM2_MUL_ModP(T, T, xp+4);
                                                    SM2_MUL_ModP(Z, Z, T); //Z^-1
SM2_MUL_ModP(M1, M, F); //7
SM2_MUL_ModP(YP1, Yp, F);
                                                 SM2 SQR ModP(T, Z);
SM2_MUL_ModP(YP1, YP1, G); //8 Yp1
                                                 SM2 MUL ModP(Z, Z,T);
 SM2_ADD(K,H, M1);
                                                 SM2 MUL ModP(T, XQP,T);
 SM2 ADD(L,K, M1);
                                                 SM2_ADD(oxp,T, xp); // X done 2022-
SM2 SUB(M11, XRP1, K); //11
SM2 MUL ModP(XSP, H, L); //12
                                                 SM2_MUL_ModP(T, XQP,M);
SM2 SOR ModP(XTP, XRP1);
                                                  SM2_MUL_ModP(Z, Z, T);
  SM2 ADD(XTP, XTP, YP1);
                                                  SM2 ADD(oxp+4, Z, xp+4);
 SM2 MUL ModP(YP11, YP1, H);
```

固定点点乘-续

- DOUBLE+ADD 4M+4S +10A+ 8M +3S+7A 12M +7S + 17A
- 2P+Q= (P+Q) +P 可以利用CO-Z加速 13M +5S +13A

```
SM2_SQR_ModP(C, Z0);
SM2_MUL_ModP(D, C, Z0);
SM2_MUL_ModP(X2,Xp,C);
SM2_MUL_ModP(Y2,Yp,D);
SM2_SUB(T, X2, X1);
SM2_SQR_ModP(A, T);
SM2 MUL ModP(B, X1,A);
SM2_MUL_ModP(C, X2,A);
SM2_SUB(A, C, B);
 SM2_ADD(C, B, C);
 SM2_MUL_ModP(A, A,Y1);
SM2 SUB(D, Y2, Y1);
SM2_SQR_ModP(TmpReg, D);
 //X3= D- (B+C)
SM2_SUB(X3, TmpReg, C);
 //Y3 = (Y2 - Y1)(B - X3) - F
SM2 SUB(M, B, X3);
SM2_MUL_ModP(Y3, D,M);
SM2_SUB(Y3, Y3, A);
//Z3 = Z(X2 - X1)
 SM2_MUL_ModP(ZO, Z0,T);
```

```
//X3 Y3 Z0
 SM2_SUB(D, A, Y3);
 SM2_SQR_ModP(A, M);
 SM2_MUL_ModP(C, B,A);
 SM2_MUL_ModP(B, X3,A);
 SM2 SUB(A, C, B);
 SM2 ADD(C, B, C);
 SM2 MUL ModP(A, A,Y3);
 SM2_SQR_ModP(TmpReg, D);
 //X3= D- (B+C)
 SM2_SUB(X3, TmpReg, C);
 //Y3= (Y2-Y1)(B-X3)-E
SM2_SUB(M, B, X3);
SM2_MUL_ModP(Y3, D,M);
SM2_SUB(Y3, Y3, A);
 SM2_MUL_ModP(ZO, Z0,M);
```

双倍点

- 2. k. I w-naf编码. 同步计算
 - 对于k 可以设置一个大的w, 需要一个较大的预计算表
 - 1 按照前述非固定点点乘方法
- 3. JSF-5 联合编码
 - 具有更低的汉明重量, 计算复杂度较高
 - CO-Z 和 SafeGCD提升了JSF的实用性

●双倍点

J, & J, 3 SHANDONG UNIVERSITY

- 3. JSF-5 联合编码
 - 共12种组合

操作	编码	操作	编码
P	1	Q	5
Q-P	4	P+Q	6
3P	2	3Q	10
3Q+P	11	3Q-P	9
Q+3P	7	Q-3P	3
3Q-3P	8	3P+3Q	12

- 可利用Co-Z方法 同时计算 P+Q 和 P-Q
- · 然后利用SafeGCD 将预计算点坐标转到仿射坐标系

3

● 协议实现-验签

• x1= r-e mod n 等效于

 $x1 = (r-e) \mod p$ or $x1= (r-e)+N \mod p$

- 步骤6得到
 x1= X. Z⁻²
- 可不求逆, 验证如下公式: X = (r-e). Z² mod p

or $X = ((r-e)+N) \cdot Z^2 \mod p$

- w=127
- 步骤6 7 可优化

