CYK Derivation

by Fares Hedayati

Let $w = a_1 a_2 \cdots a_n$ and let G = (V, T, S, P). CYK algorithm takes the string w and the grammar G as input and says that if G can generate w or not. The algorithm is as follows:

Let $w_{i,j} = w_i w_{i+1} \cdots w_j$ and let $X_{i,j}$ be the set of variables $A \in V$ such that when you start from A after applying some production rules from P, the substring $w_{i,j}$ can be achieved. This means that $X_{i,j} = \{A \in V : A \Rightarrow^* w_{i,j}\}$. Obviously w is generated by G if and only if S is a member of $X_{1,n}$ because $X_{1,n}$ is the set of variables that when you start from any of them, then you can derive the whole string (note that $w_{1,n} = w$). Now if S is in $X_{1,n}$ then by starting from S the whole string can be derived.

Now note $X_{i,i}$ is the set of variables that can derive $w_{i,i}$ (note that $w_{i,i}$ is a_i). Hence $X_{i,i}$ is the set of variables from V like A that have production rules of the form $A \to a_i$ in P. Furthermore $X_{i,j}$ can be built recursively by finding all A in V such that there is a production $A \to BC$ with $B \in X_{i,k}$ and $C \in X_{k+1,j}$ for some k. The CYK algorithm is as follows:

```
Let X_{i,i} = \{\} for 1i \le n (initially they are all empty)

For i = 1 to n

For A \in V

If A \to a_i \in P

Add A to X_{i,i}

For s = 1 to n - 1

For i = 1 to n - s

X_{i,i+s} = \{\}

For k = i to i + s - 1

For B \in X_{i,k}

For C \in X_{k+1,i+s}

For A \in V

If A \to BC \in P

Add A to X_{i,i+s}
```

If $S \in X_{1,n}$ output yes otherwise output no.

Now we change the CYK algorithm in the following way to find the derivation:

We introduce a new data structure $Y_{i,j}$ for each $X_{i,j}$. Each member of $Y_{i,j}$ is a set of four elements, something of the form [A, k, B, C] where A and B and C are variables from V and k is a number between i and j-1. If $[A, k, B, C] \in Y_{i,j}$, this means that $A \to BC \in P$ and $B \in X_{i,k}$ and $C \in X_{k+1,j}$

```
Let X_{i,i} = \{\} for 1i \leq n (initially they are all empty)
For i = 1 to n
    For A \in V
         If A \to a_i \in P
             Add A to X_{i,i} and Add [A, null, null, null] to Y_{i,i}
For s = 1 to n - 1
    For i = 1 to n - s
         X_{i,i+s} = \{\} and Y_{i,i+s} = \{\}
        For k = i to i + s - 1
             For B \in X_{i,k}
                  For C \in X_{k+1,i+s}
                      For A \in V
                          If A \to BC \in P
                               Add [A, k, B, C] to Y_{i,i+s} and Add A to X_{i,i+s}
If S \in X_{1,n}
    Output yes
    Find a set in Y_{1,n} such that S is its first element,
    let this set be [S, k, R, T] call Derive([S, k, R, T], 1, n).
Else
    Output no
Derive([A, k, B, C], i, j)
    If i == j
         Print A \to a_i
    Else
         Print A \to BC
```

```
Call Derive
(Find(B, i, k) , i,\,k) Call Derive
(Find(C, k+1, j) , k+1,\,j)
```

$\operatorname{Find}(A,\!i,\!j)$

Return the set in $Y_{i,j}$ that starts with A, let this set be [A, k, B, C]. If such a set does not exist in $Y_{i,j}$ return $\{\}$