Wireless Sensor Networks

Ramin Sadre, UCL with material by Brian Nielsen, AAU

Wireless Sensor Networks (WSN)

- Invented for the monitoring of
 - Spaces
 - Things
 - Interactions
- Examples:
 - Eco-system monitoring
 - Habitat monitoring
 - Disaster management
 - Asset tracking
- First WSN: SmartDust project 2001 Berkeley/UCLA

Example: PermaSense project (2007)

- Global warming's effect on permafrost in the high swiss alps
- Inaccessible 7 of 12 months, -30° C, high winds
- Collect data for calibration of geo-science models

Shockfish

- Well-protected "Shockfish TinyNode 584" board with small microcontroller
- External sensor for temperature & water content attached to rock (via cable)
- 2 "Lithium-thionyl chloride (Li-SOCl2)" type batteries in parallel
- Optimized HW (12 μA sleep, 14 mA during transmissions)

Challenge: Resource-constrained Communication

- How can sensors send their data to the servers?
- Not enough power to reach server directly
- Multihop wireless network
 - Own position and neighbors initially unknown or dynamic, nodes can disappear! → Robust routing algorithms&protocols needed

Power Profile of a device

- <1> Repeatedly turn on radio to scan for other nodes
- <2> Nothing found → reduce listening time
- <3> Read out sensors, write data to SD card. Don't attempt to send

In this use case, energy saving is more important than communication speed!

Modern WSN hardware

- The design principles of WSN hardware has not much changed since the SmartDust project in 2001:
 - Low-power microcontroller or SoC
 - Wireless network interfaces
 - Sensors on board or directly attached
- Typical modern low-power design
 - IEEE 802.15.4 wireless network
 - ARM CortexCPU, 32MHz
 - 32KBytes RAM, 512kB flash
- If power-consumption is not an issue:
 - Bluetooth, WiFi or LoRa on board
 - ESP32: Two CPU cores, 150MHz
 - 500kBytes RAM, 4MB flash

Internet of Things

Internet of Things (IoT)

- IoT = network of physical objects equipped with electronics and network connectivity that can be sensed and controlled remotely
 - Devices send data to servers in cloud where it is processed and analyzed
- So, basically: IoT = WSN + Data analytics in the cloud
 The Internet of Things

Source: Freescale

Enablers of Internet of Things (1)

Technological enablers of the IoT: Advancements in many fields in the past two decades

- From embedded systems, WSNs, Ad-hoc communication:
 - Low-power computing and battery technology
 - Wireless communication, communication protocols for ad-hoc and self-organizing networks
 - Dedicated operating systems
- 2. From automation:
 - Protocols for machine-to-machine communication
- 3. From Cloud Computing/Big Data:
 - Clouds for data storage and processing
 - Data mining to analyze large-scale sensor data

Enablers of Internet of Things (2)

- 4. From distributed computing, web services
 - Grid computing
 - Service discovery
 - REST
- 5. Addressability of billions of devices: RFID, IPv6
- 6. Autonomous systems: agents, self-organization