COSTANTI FISICHE

Massa elettrone m_e =9x10⁻³¹ kg; carica elettrone -e=1.6x10⁻¹⁹ C; $ε_0$ =8.85x10⁻¹² (SI); $1/4πε_0$ =9x10⁹ (SI); $μ_0$ =4π 10⁻⁷ (SI)

COMPITINO

ESERCIZIO DI MAGNETOSTATICA

Un cavo conduttore cilindrico di raggio R_1 =0.5cm è percorso da una corrente elettrica stazionaria distribuita uniformemente su tutta la <u>sezione</u> con densità di corrente j_{vol} =2Am⁻² parallela all'asse.

- 1- Calcolare, usando il teorema di Ampere, il campo magnetico generato nello spazio e disegnare in un grafico B(r).
- 2- Calcolare la densità di energia del campo magnetico.

A distanza d=10cm dall'asse del conduttore, in modo diametralmente opposto, vengono posti:

- A) un filo conduttore percorso dalla corrente Ifilo=2mA parallela a quella del conduttore
- B) un elettrone in moto a velocità v=10ms⁻¹ in direzione opposta a quella della corrente del conduttore
- 3- Calcolare la forza agente sul filo
- 4- Calcolare la forza agente sull'elettrone

Il cavo conduttore con la guaina viene inserito in modo coassiale al centro di un solenoide rettilineo indefinito composto da N=50 spire circolari di R=5cm percorse dalla corrente **I=0.1mA**

- 5- Calcolare il flusso concatenato
- 6- Calcolare il coefficiente di mutua induzione

ESERCIZIO DI INDUZIONE ELETTROMAGNETICA

Un circuito a U vincolato nel piano XY e formato da due binari paralleli ad X distanti **a=2cm**, ha una parte mobile libera di scorrere senza attrito, in direzione x. Nello spazio è presente un campo magnetico stazionario e uniforme **B=+0.5T** in direzione normale al circuito (fig.). Il tratto mobile viene tenuto in moto con velocità **v₀=0.5ms**⁻¹ lungo x costante.

- 7- Determinare valore della forza elettromotrice indotta nel circuito
- a) Il circuito viene chiuso con 2 resistenze di $R=5\Omega$ in parallelo si trascuri ogni fenomeno di autoinduzione.
 - 8- Calcolare la corrente indotta
 - 9- Calcolare la potenza necessaria per tenere in moto la barretta con velocità costante.
 - 10- Calcolare la potenza dissipata dal conduttore per effetto joule e commentare il risultato.
- b) Il circuito viene chiuso con un'induttanza $L=10^{-2}H$ e una resistenza $R=5\Omega$ in serie.
 - 11- Scrivere la legge di Ohm per il circuito e dare la legge di variazione della corrente indotta i(t).
 - 12- Calcolare l'energia immagazzinata nel circuito e commentare il risultato.

*** GIUSTIFICARE DEBITAMENTE LE RISPOSTE CON I PRINCIPI E LE LEGGI DELLA FISICA *** LE RISPOSTE NON GIUSTIFICATE NON VERRANNO CONSIDERATE

QUESITI DI TEORIA

- 13- Dare la I legge elementare di Laplace
- 14- Descrivere il comportamento di un dipolo magnetico immerso in un campo magnetico uniforme B.
- 15- Dare la legge di Ampere-Maxwell per il campo magnetico non stazionario