Assignment No. 3 for Ch. 4.2 and Ch. 5 (Spring 2024)

ASC

Example database

<u>EMP</u>				
ENO	ENAME	TITLE		
E1	J. Doe	Elect. Eng		
E2	M. Smith	Syst. Anal.		
E3	A. Lee	Mech. Eng.		
E4	J. Miller	Programmer		
E5	B. Casey	Syst. Anal.		
E6	L. Chu	Elect. Eng.		
E7	R. Davis	Mech. Eng.		
E8	J. Jones	Syst. Anal.		

ASG					
ENO	PNO	RESP	DUR		
E1 E2 E2 E3 E3 E4 E5	P1 P1 P2 P3 P4 P2 P2	Manager Analyst Analyst Consultant Engineer Programmer Manager	12 24 6 10 48 18 24		
E6	P4	Manager	48		
E6	P4	_	48		
E7	P3	Engineer	36		
E8	P3	Manager	40		

PROJ				
PNO	PNAME	BUDGET		
P1	Instrumentation	150000		
P2	Database Develop.	135000		
P3	CAD/CAM	250000		
P4	Maintenance	310000		

PAY		
TITLE	SAL	
Elect. Eng. Syst. Anal. Mech. Eng.	40000 34000 27000	
Programmer	24000	

1. (Ch. 04) Consider the join graph below and the following information: size(EMP) = 300, size(ASG) = 400, size(PROJ) = 500, size(EMP ⋈ ASG) = 500, and size(ASG ⋈ PROJ) = 400. Describe an optimal join program that minimizes response time (consider only communication) without using semi-join.

2. Consider the join graph above in 1, and give a program (possibly not optimal) that reduces each relation fully by semijoins. The final query result needs to be in Site 2.

3. (Ch. 04) Consider the following query, the join graph and the distribution of the relations and/or fragmentations to the sites depicted below. We assume all records have same size. size(EMP ⋈ ASG) = 3000, and size(ASG ⋈ PROJ) = 2000. The goal is to minimize communication cost. The final query result needs to be in Site 2.

SELECT ENAME
FROM EMP, ASG, PROJ
WHERE PROJ.PNO = ASG.PNO AND
EMP.ENO = ASG.ENO

Relations	Site 1	Site 2	Site 3	Total
EMP	2000	2000	2000	6000
ASG		3000		3000
PROJ			2000	2000
Total	2000	5000	4000	11000

- 1) Which join do we need to perform first, either EMP ⋈ ASG or ASG ⋈ PROJ? Why?
- 2) Explain how to perform the first join in terms of which relation needs to be sent to which site. You do not need to consider semijoin.
- 3) Explain how to perform the second join which is using the result of the first join in terms of which relation(s) need(s) to be sent to which site(s). You do not need to consider semijoin.
- 4. (Ch. 05) For the following histories,

$$H1 = \{W2(x), W1(x), R3(x), R1(x), W2(y), R3(y), R2(x), R3(z)\}$$

$$H2 = \{R3(y), R3(z), W2(y), R2(z), W1(x), R3(x), W2(x), R1(x)\}$$

$$H3 = \{W2(x), R3(z), W2(y), R1(x), R3(x), R2(z), R3(y), W1(x)\}$$

$$H4 = \{R2(z), W2(x), W2(y), W1(x), R1(x), R3(x), R3(y), R3(z)\}$$

- 1) Provide all possible pair of conflicting operations.
- 2) Which histories are conflict equivalent? You need to provide a reason (or reasons) for your answer.
- 5. (Ch. 05) Which of the above histories are serializable? You need to provide a reason (or reasons) for your answer using serialization graph.