Le problème est le suivant : on a $g^a = 2^{219}$, $g^b = 2^{146}$ et $g = 2^{73}$. Il faut trouver g^{ab} (et non ab comme je le croyais). Il

suffit donc de remarquer que $2^{73a}=2^{219}[p]$ doc 73a=219+k (p-1), de même 146=73b+l (p-1) donc $73^2ab=219.146$ [p-1]. Il nous faut trouver $g^{ab}[p]=2^{73ab}[p]$. Il nous faut donc trouver l'inverse de 73 modulo p-1. On trouve

et donc $73ab = 219*146*(73)^{-1}[p-1] = 438$, on a donc enfin $g^{ab} = 2^{73ab} = 2^{438} = 2^{219*2} = 70980344169492860405207403114062$ le flag cherché est donc 70980344169492860405