Probabilistic Graphical Models MVA 2018/2019 HWK1

Louis GUO, Laurent LIN

Exercise 1: Learning in discrete graphical models

Let $(z_i, x_i)_{i=1,...,n}$ an i.i.d. sample of observations. Let $n_{k,m} = \sum_{i=1}^n 1_{z_i = m, x_i = k}$ and $n_m = \sum_{i=1}^n 1_{z_i = m}$ for $m \in \{1, ..., M\}$ and $k \in \{1, ..., K\}$.

The maximum likelihood estimator of π and θ are found by respectively considering the distribution of z and x|z:

$$\hat{\pi_m} = \frac{n_m}{n}, \hat{\theta_{k,m}} = \frac{n_{k,m}}{n}$$

Exercise 2.1.(a): LDA formulas

Let $(x_i, y_i)_{i=1,...,n}$ an i.i.d. sample of observations. For estimating π , we consider the distribution of $y \sim Bernoulli(p)$, for Σ , μ_1 and μ_0 , we consider the negative log-likelihood of x|y distribution knowing that p(X|Y =

$$j) = Normal(\mu_j, \Sigma) \text{ for } j \in \{0, 1\}. \text{ Let } \boxed{n_j = \sum_{i=1}^n 1_{y_i = j}}, \boxed{\widetilde{\Sigma_j} = \frac{\sum_{i=1}^n 1_{y_i = j} (x_i - \mu_j)(x_i - \mu_j)^T}{n_j}} \text{ for } j \in \{0, 1\}.$$

The maximum likelihood estimators are:

$$\left[\hat{\pi} = \frac{\sum_{i=1}^{n} y_i}{n}\right], \left[\hat{\mu_j} = \frac{\sum_{i=1}^{n} x_i 1_{y_i = j}}{n_j}\right], \left[\hat{\Sigma} = \frac{n_1 \widetilde{\Sigma_1} + n_0 \widetilde{\Sigma_0}}{n}\right]$$

With Bayes formula, we have $p(y=1|x) = \frac{\pi p(x|y=1)}{\pi p(x|y=1) + (1-\pi)p(x|y=0)} = \frac{1}{1+\frac{1-\pi}{\pi}\frac{p(x|y=0)}{p(x|y=1)}} = \sigma(\omega^T x + C)$ with $\omega = \Sigma^{-1}(\mu_0 - \mu_1)$, C a constant wrt to x and σ the sigmoid function. We recognize here the logistic regression model.

Exercise 2.5.(a): QDA formulas

We will keep the same notations as for 2.1.(a). For estimating π , we consider the distribution of $y \sim Bernoulli(p)$, for Σ_1 , Σ_0 , μ_1 and μ_0 , we consider the negative log-likelihood of x|y distribution knowing that $p(X|Y=j) = Normal(\mu_j, \Sigma_j)$ for $j \in \{0, 1\}$.

The maximum likelihood estimator of π , Σ_1 , Σ_0 , μ_1 and μ_0 are :

$$\widehat{\pi} = \frac{\sum_{i=1}^{n} y_i}{n}, \widehat{\mu}_j = \frac{\sum_{i=1}^{n} x_i 1_{y_i = j}}{n_j}, \widehat{\Sigma}_j = \widetilde{\Sigma}_j$$

More detailed proves on page 5.

Exercise 1: Learning in discrete graphical models

Let $(z_i, x_i)_{i=1,\dots,n}$ an i.i.d. sample of observations.

The negative log-likelihood of the distribution of z is given by:

$$-l(\pi) = -log(p(z_1, ..., z_n)) = -log(\prod_{i=1}^n p(z_i)) = -\sum_{i=1}^n \sum_{m=1}^M log(\pi_m^{1_{z_i=m}}) = -\sum_{m=1}^M n_m log(\pi_m) = -n\sum_{m=1}^M \frac{n_m}{n} log(\pi_m)$$

with $n_m = \sum_{i=1}^n 1_{z_i = m}$ We want to minimize the negative log-likelihood over π with constraints $\sum_{m=1}^M \pi_m = 1$ and $\pi > 0$, which can be seen as the cross-entropy between discrete distributions z and \tilde{z} . (\tilde{z} the empirical discrete variable with $p(\tilde{z} = m) = \frac{n_m}{n}$ such that $-l(\pi) = nH(z, \tilde{z})$. Here \tilde{z} is fixed, cross-entropy takes on its minimal value for $z = \tilde{z}$ i.e. $\pi_m = \frac{n_m}{n}$ as the maximum likelihood estimator.

The negative log-likelihood of x|z is given by:

$$-l(\theta) = -log(\prod_{i=1}^{n} p(x_i|z_i)) = -\sum_{i=1}^{n} \sum_{k,m} log(\theta_{k,m}^{1_{z_i=m,x_i=k}}) = -\sum_{k,m} n_{k,m} log(\theta_{k,m})$$

with $n_{k,m} = \sum_{i=1}^{n} 1_{z_i = m, x_i = k}$. As $\sum_{k,m} n_{k,m} = 1$. With the same cross-entropy argument, we can derive the maximum likelihood estimator $\theta_{k,m} = \frac{n_{k,m}}{n}$

Exercise 2.1.(a): LDA formulas

Let $(x_i, y_i)_{i=1,...,n}$ an i.i.d. sample of observations, we want to find the maximum likelihood estimator of π ,

$$\Sigma$$
, μ_1 and μ_0 . Let $n_j = \sum_{i=1}^n 1_{y_i=j}$, $\widetilde{\Sigma}_j = \frac{\sum_i^n 1_{y_i=j} (x_i - \mu_j)(x_i - \mu_j)^T}{n_j}$ for $j \in \{0, 1\}$. For estimating π , we

consider the distribution of $y \sim Bernoulli(p)$, hence $\left[\hat{\pi} = \frac{\sum_{i=1}^{n} y_i}{n}\right]$. For the rest, we consider the negative log-likelihood of x|y distribution knowing that $p(X|Y=j) = Normal(\mu_j, \Sigma)$:

$$\begin{split} -l(\mu_0, \mu_1, \Sigma) &= -log(\prod_i p(x = x_i | y = 0)^{1_{y_i = 0}} p(x = x_i | y = 1)^{1_{y_i = 1}}) \\ &= \sum_{i = 1}^n -log(\frac{\exp(\frac{-(x_i - \mu_1)^T \Sigma^{-1}(x_i - \mu_1)}{2})^{y_i} \exp(\frac{-(x_i - \mu_0)^T \Sigma^{-1}(x_i - \mu_0)}{2})^{1 - y_i}}{2\pi \sqrt{\det(\Sigma)}}) \\ &= n\log(2\pi) + \frac{n}{2}\log(\det(\Sigma)) + \frac{1}{2}\sum_{i, y_i = 0} (x_i - \mu_0)^T \Sigma^{-1}(x_i - \mu_0) + \frac{1}{2}\sum_{i, y_i = 1} (x_i - \mu_1)^T \Sigma^{-1}(x_i - \mu_1) \\ &= n\log(2\pi) - \frac{n}{2}\log(\det(\Sigma^{-1})) + \frac{n_1}{2}Tr(\Sigma^{-1}\widetilde{\Sigma_1}) + \frac{n_0}{2}Tr(\Sigma^{-1}\widetilde{\Sigma_0}) \end{split}$$

For $j \in \{0,1\}$, $\nabla_{\mu_j}(-l) = \sum_{i,y_i=j} \Sigma^{-1}(\mu_j - x_i) = \Sigma^{-1}(\sum_{i,y_i=j} \mu_j - x_i) = 0$, if and only if $\left| \hat{\mu_j} = \frac{\sum_i^n x_i 1_{y_i=j}}{n_j} \right|$, it's minimum as -l is strictly convex w.r.t to μ_j since $\nabla^2_{\mu_j}(-l) = \Sigma^{-1}n_j$ is symmetric positive-semidefinite. Since $\nabla_{\Sigma}(\frac{n_j}{2}Tr(\Sigma^{-1}\widetilde{\Sigma_j})) = \frac{n_j}{2}\widetilde{\Sigma_j}$ and $\nabla_{\Sigma}(-\frac{n}{2}\log(\det(\Sigma^{-1}))) = -\frac{n}{2}\Sigma$, $\nabla_{\Sigma}(-l) = \frac{n}{2}\Sigma - \frac{n_1\widetilde{\Sigma_1} + n_0\widetilde{\Sigma_0}}{2} = 0$ if and only if $\left| \hat{\Sigma} = \frac{n_1\widetilde{\Sigma_1} + n_0\widetilde{\Sigma_0}}{n} \right|$, it's the minimum as -l is strictly convex w.r.t to Σ since $\nabla^2_{\Sigma}(-l) = \frac{n}{2}I_n$ is symmetric positive-semidefinite.

With Bayes formula, we have $p(y=1|x) = \frac{\pi p(x|y=1)}{\pi p(x|y=1) + (1-\pi)p(x|y=0)} = \frac{1}{1 + \frac{1-\pi}{\pi} \frac{p(x|y=0)}{p(x|y=1)}}$

$$\begin{split} \frac{1-\pi}{\pi} \frac{p(x|y=0)}{p(x|y=1)} &= \frac{1-\pi}{\pi} \exp(-\frac{||x-\mu_0||_{\Sigma^{-1}}^2 - ||x-\mu_1||_{\Sigma^{-1}}^2}{2}) \\ &= \exp(\log(\frac{1-\pi}{\pi}) - \frac{-2 < x|\mu_0 - \mu_1 >_{\Sigma^{-1}} + (||\mu_0||_{\Sigma^{-1}}^2 - ||\mu_1||_{\Sigma^{-1}}^2)}{2}) \\ &= \exp(\omega^T x + C) \end{split}$$

with $\omega = \Sigma^{-1}(\mu_0 - \mu_1)$, C a constant wrt to x and σ the sigmoid function. Hence $p(y = 1|x) = \sigma(\omega^T x + C)$: we recognize the logistic regression model. The assumption of equal covariance matrices cancel the quadratic part in the exponents. The decision boundary are then linear in x: classifications regions will be separated by hyperplanes.

Exercise 2.5.(a): QDA formulas

We will keep the same notations and we want to find the maximum likelihood estimator of π , Σ_1 , Σ_0 , μ_1 and μ_0 . We still have $\hat{\pi} = \frac{\sum_{i=1}^n y_i}{n}$. For the rest, we consider the negative log-likelihood of x|y distribution knowing that $p(X|Y=j) = Normal(\mu_j, \Sigma_j)$:

$$\begin{split} -l(\mu_0, \mu_1, \Sigma_0, \Sigma_1) &= -log(\prod_i p(x = x_i | y = 0)^{1_{y_i = 0}} p(x = x_i | y = 1)^{1_{y_i = 1}}) \\ &= n\log(2\pi) - \frac{n_1}{2}\log(\det(\Sigma_1^{-1})) - \frac{n_0}{2}\log(\det(\Sigma_0^{-1})) + \frac{n_1}{2}Tr(\Sigma_1^{-1}\widetilde{\Sigma_1}) + \frac{n_0}{2}Tr(\Sigma_0^{-1}\widetilde{\Sigma_0}) \end{split}$$

For $j \in \{0,1\}$, we also obtain $\widehat{\mu_j} = \frac{\sum_{i=1}^n x_i 1_{y_i=j}}{n_j}$, it's the minimum as -l is strictly convex w.r.t to μ_j since $\nabla^2_{\mu_j}(-l) = \Sigma_j^{-1} n_j$ is symmetric positive-semidefinite. $\nabla_{\Sigma_j}(\frac{n_j}{2}Tr(\Sigma_j^{-1}\widetilde{\Sigma_j})) = \frac{n_j}{2}\widetilde{\Sigma_j}$ and $\nabla_{\Sigma_j}(-\frac{n_j}{2}\log(\det(\Sigma_j^{-1}))) = -\frac{n_j}{2}\Sigma_j$, $\nabla_{\Sigma_j}(-l) = \frac{n_j}{2}\Sigma_j - \frac{n_j}{2}\widetilde{\Sigma_j} = 0$, if and only if $\widehat{\Sigma_j} = \widetilde{\Sigma_j}$, it's the minimum as -l is strictly convex w.r.t to Σ_j since $\nabla^2_{\Sigma_j}(-l) = \frac{n_j}{2}I_n$ is symmetric positive-semidefinite.