Abstract algebra: Homework #23

Finished on November 10, 2020

Professor Pu Zhang

Zixing Wang

Student Number: 518070910121

1. 试构作一个 8 元域, 并写出它的加法表和乘法表

Solution

 $8=2^3$, 设 F 是 8 元域,则 F 的素域是 \mathbb{Z}_2 , $[F:\mathbb{Z}_2]=3$, 找一个 \mathbb{Z}_2 上的 3 次不可约 多项式,比如 $f(x)=x^3+x+1$,设 u 是它的一个根,那么 $\mathbb{Z}_2(u)$ 就是一个 8 元域。

那么计算可得该 8 元域的元素满足

$$0 = 0$$

$$u = u$$

$$u^2 = u^2$$

$$u + 1 = u^3$$

$$u^2 + u = u^4$$

$$u^2 + u + 1 = u^5$$

$$u^2 + 1 = u^6$$

$$1 = u^{7}$$

这些式子给出了乘法的法则。

加法只需要各个系数按照 \mathbb{Z}_2 的加法方式相加即可。

加法表:

+	0	1	u	u+1	u²	u²+1	u²+u	u²+u+1
0	0	1	u	u+1	u²	u²+1	u²+u	u²+u+1
1	1	0	u+1	u	u²+1	u ²	u²+u+1	u²+u
u	u	u+1	0	1	u²+u	u²+u+1	u²	u ² +1
u+1	u+1	u	1	0	u²+u+1	u²+u	u ² +1	u²
u ²	u²	u²+1	u²+u	u²+u+1	0	1	u	u+1
u ² +1	u ² +1	u ²	u²+u+1	u²+u	1	0	u+1	u
u²+u	u²+u	u²+u+1	u ²	u²+1	u	u+1	0	1
u²+u+1	u²+u+1	u²+u	u²+1	u ²	u+1	u	1	0

乘法表:

**	0	1	u	u+1	u²	u²+1	u²+u	u²+u+1
0	0	1	u	u+1	u²	u²+1	u²+u	u²+u+1
1	1	u²+1	0	u²	u	u²+u+1	u+1	u²+u
u	u	0	u²	u²+u	u+1	1	u²+u+1	u²+1
u+1	u+1	u²	u²+u	u²+1	u²+u+1	u	1	0
u ²	u²	u	u+1	u²+u+1	u²+u	0	u²+1	1
u²+1	u²+1	u²+u+1	1	u	0	u²+u	u²	u+1
u²+u	u²+u	u+1	u²+u+1	1	u²+1	u²	0	u
u²+u+1	u²+u+1	u²+u	u²+1	0	1	u+1	u	u ²

3. 设 F 为 p^n 元域 (p 为素数) , $F = F_p(u)$. 试问 u 是否一定为乘法循环群 $F^* = F - \{0\}$ 的生成元?

Solution

不一定的。

 x^2+1 在 $\mathbb{Z}_3[x]$ 中是不可约多项式。令 u 是方程 $x^2+1\in\mathbb{Z}_3[x]$ 的一个根,因为 $u^4=(u^2)^2=2^2=1$,所以在 $\mathbb{Z}_3(u)$ 中 u 不是乘法循环群的生成元。

- 4. 设 f(x) 是 $F_p[x]$ 中首 1 不可约多项式.
- (1) 若 u 为 f(x) 的一个根,则 f(x) 共有 n 个彼此不同的根,并且它们为 $u,u^p,u^{p^2},\cdots,u^{p^{n-1}}$
- (2) 若 f(x) 的一个根 u 为域 $F = F_p(u)$ 的乘法循环群 $F^* = F \{0\}$ 的生成元, 则 f(x) 的每个根也都是 F^* 的生成元
- (3) 证明 $F_p[x]$ 中 n 次本原多项式共有 $\varphi(p^n-1)/n$ 个, 其中 $\varphi(n)$ 是欧拉函数,表示从 1 到 n 的正整数中与 n 互素的正整数个数。

Solution

(1) 根据有限域的结构定理知 F_n 中元 a 均满足 $a^p = a$,

从而对任一正整数 $t(1 \le t \le n-1)$ 均有 $a^{p^t} = a$,于是 $f\left(u^{p^t}\right) = (f(u))^{p^t} = 0$,即 $u, u^p, \dots, u^{p^{n-1}}$ 均是 f(x) 的根.

假设存在 $u^{p^i} = u^{p^j} (1 \le i < j \le n-1)$, 那么 $\left(u^{p^{j-i}} - u\right)^{p^i} = u^{p^j} - u^{p^i} = 0$, 那么 $u^{p^{j-i}-1} = 1$, 于是 $F_p(u)$ 是 p^{j-i} 元域的子域. 但 $F_p(u)$ 是 p^n 元域. 这导致了矛盾.

从而假设不成立, 因此这些根两两不同。

- (2) 若 u 是 $F_p(u)$ 的乘法群的生成元,则 u 的乘法阶为 p^n-1 . 因为 $p^t(1 \le t \le n-1)$ 与 p^n-1 互素,故 $u^p, \dots, u^{p^{n-1}}$ 均为 p^n-1 阶元,从而均是循环群 $F_p^*(u)$ 的生成元,即 f(x) 的任一根均是 $F_p^*(u)$ 的生成元.
 - (3) 我们采用"算两次"的方法来证明。

设 $F_p[x]$ 中共有 t 个 n 次本原多项式, 它们均为多项式 $x^{p^n}-x$ 的因子. 设 E 是 $x^{p^n}-x$ 所有的根作成的 p^n 元域, 则 E 的乘法循环群 E^* 有 $\varphi(p^n-1)$ 个生成元.

由 (2) 知 $F_p[x]$ 中每个 n 次本原多项式的所有根均为 E^* 的生成元. 而 E^* 的任一生成元均是 $F_p[x]$ 中某一个 n 次本原多项式的一个根, 因为两个不同的 n 次本原多项式互素, 所以没有相同的根, 从而 E^* 共有 nt 个生成元.

所以 $nt = \varphi(p^n - 1)$, 我们得到 $F_p[x]$ 中 n 次本原多项式共有 $\varphi(p^n - 1)/n$ 个.

7. 设 K 是有限域. 求证: 对每个 $n \ge 1$, K[x] 中必存在 n 次不可约多项式.

Solution

设这个有限域 K 是 p^n 元域,特征数是 p。设 F 是 K 所含的素域,则 K 是 F 的 k 次扩域,即 [K:F]=k.

作 K[x] 中的多项式 $x^{p^{kn}}-x$ 在 K 上的分裂域 E, 那么 E 恰好由 $x^{p^{kn}}-x$ 的两两互 异的 p^{kn} 个根组成.

 $F \subset K \subset E$,且 $E \not\in F$ 的有限扩域,且 [E:F] = kn,所以根据望远镜公式 [E:K] = n. 因为有限域 $E \not\in E$ 表域 F 的一个单扩域,所以存在 E 中的元素 u,使得 E = F(u),那 么 $E = F(u) \subset K(u) \subset E$,得到 E = K(u),于是 [K(u):K] = n

那么 u 在 K 上的极小多项式就是 K[x] 中的 n 次不可约多项式.

- 8. (1) 证明 $x^4 + x + 1$ 为 $F_2[x]$ 中本原多项式
- (2) 列出 16 元域 $F_{16} = F_2[u]$ 中 (唯一的) 4 元子域的全部元素, 这里 u 是 $x^4 + x + 1 \in F_2[x]$ 的一个根
 - (3) 求出 u 在 F₄ 上的极小多项式.

Solution

(1) 设 u 是它的一个根,那么

$$u = u$$

$$u^2 = u^2$$

$$u^3 = u^3$$

$$u^4 = u + 1$$

$$u^5 = u^2 + u$$

$$u^6 = u^3 + u^2$$

$$u^7 = u^3 + u + 1$$

$$u^8 = u^2 + 1$$

$$u^9 = u^3 + u$$

$$u^{10} = u^2 + u + 1$$

$$u^{11} = u^3 + u^2 + u$$

$$u^{12} = u^3 + u^2 + u + 1$$

$$u^{13} = u^3 + u^2 + 1$$

$$u^{14} = u^3 + 1$$

$$u^{15} = 1$$

因此,按照本原多项式的定义可知 $x^4 + x + 1$ 为 $F_2[x]$ 中本原多项式.

(2) $F_{16} = F_2[u]$ 中 (唯一的) 4 元子域的全部元素是

$$F_4 = \{0, 1, u^5, u^{10}\} = \{0, 1, u^2 + u, u^2 + u + 1\}$$

(3) 该极小多项式至少是二次的.

根据上述的关系式可以发现 u 满足 $x^2 + x + u^5 = 0$,

所以这是 u 在 F_4 上的极小多项式.