

Edition 1.0 2012-06

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Electronic railway equipment – Train communication network (TCN) – Part 2-1: Wire Train Bus (WTB)

Matériel électronique ferroviaire – Réseau embarqué de train (TCN) – Partie 2-1: Bus de Train Filaire (WTB)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ISBN 978-2-88912-067-3

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FO	REWC)RD		. 11	
INT	NTRODUCTION				
1	Scop	Scope			
2	·				
3		Terms and definitions, abbreviations, conventions			
Ū	3.1 Terms and definitions				
	3.2		riations		
	3.3		ntions		
	5.5	3.3.1	Base of numeric values		
		3.3.2	Naming conventions		
		3.3.3	Time naming conventions		
		3.3.4	Procedural interface conventions		
		3.3.5	Specification of transmitted data		
		3.3.6	State diagram conventions		
	3.4		al considerations		
	5.4	3.4.1	Interface between equipment		
		3.4.2	Interface between consists		
		3.4.3	Real-Time Protocols		
		3.4.4	Network Management		
		3.4.5	Configurations		
		3.4.6	Structure of a standard device		
			mance test		
4	Physical layer				
•	4.1	Topology			
	4.1	4.1.1	Bus sections		
		4.1.1	Couplers		
		4.1.3	Nodes		
		4.1.4	Consist orientation		
		4.1.5	Consist specification (informal)		
	4.2		n specifications		
	4.2	4.2.1	Topology		
		4.2.1	Duplicated medium (option)		
		4.2.3	Bus Configuration rules		
		4.2.4	Cable specification		
		4.2.5	Shielding concept		
		4.2.6	Terminator		
	4.3		n attachment		
	4.0	4.3.1	Node connection points identification		
		4.3.2	Direct node attachment		
		4.3.3	Indirect node attachment		
		4.3.4	Connector (optional)		
	4.4		specifications		
	4.4	4.4.1	Node elements		
		4.4.2	Node and switch settings		
		4.4.3	Duplicated Line Units (option)		
	4.5		nit specifications		
	7.0	Line O	int opositions		

		4.5.1	Galvanic separation	. 58
		4.5.2	Insertion losses of a Line Unit	. 58
		4.5.3	Switches specifications	. 59
		4.5.4	Shield connection to a Line Unit	. 59
		4.5.5	Fritting (option)	. 60
	4.6	Transc	eiver specifications	. 61
		4.6.1	Conventions	. 61
		4.6.2	Transmitter	. 61
		4.6.3	Receiver specifications	. 64
	4.7	Mediun	n-dependent signalling	. 66
		4.7.1	Frame encoding and decoding	. 66
		4.7.2	Duplicated line handling (option)	. 69
		4.7.3	Line Unit interface	.71
5	Link	Layer C	ontrol	.72
	5.1	Addres	sing	.72
	5.2		s and telegrams	
		5.2.1	Frame Data format	.73
		5.2.2	Telegram timing	
		5.2.3	Elements of the HDLC Frame	
		5.2.4	Link Control Field	.77
		5.2.5	Handling of 'Attention', 'Change' and 'Inhibit'	
		5.2.6	Size, FCS and protocol errors	
	5.3	Telegra	am formats and protocols	
		5.3.1	Link Data field	. 80
		5.3.2	Process Data	.81
		5.3.3	Message Data	. 83
		5.3.4	Supervisory Data	. 84
		5.3.5	Detection telegram	. 85
		5.3.6	Presence telegram	. 87
		5.3.7	Status telegram	. 88
		5.3.8	Set to Intermediate telegram	. 90
		5.3.9	Naming telegram	. 91
		5.3.10	Unname telegram	. 93
		5.3.11	Set to End telegram	. 93
		5.3.12	Topography telegram	. 95
	5.4	Mediun	n allocation	. 97
		5.4.1	Organisation	. 97
		5.4.2	Periodic Phase	. 98
		5.4.3	Sporadic phase	. 99
	5.5	Inaugu	ration	. 99
		5.5.1	General	. 99
		5.5.2	Descriptors	101
		5.5.3	Detection of other compositions (informal)	105
		5.5.4	State diagrams of the inauguration	108
	5.6	Link la	yer interface	148
		5.6.1	Link layer layering	148
		5.6.2	Link Process_Data_Interface	149
		5.6.3	Link Message_Data_Interface	150
		5.6.4	Link management interface	150

6	Real-	- I ime pr	rotocois	161
	6.1	Genera	al	161
		6.1.1	Contents of this clause	161
		6.1.2	Structure of this clause	162
	6.2	Variabl	les – Services and Protocols	163
		6.2.1	General	163
		6.2.2	Link layer Interface for Process_Data	163
		6.2.3	Application interface for Process_Variables	169
	6.3	Messa	ges Services and Protocols	184
		6.3.1	General	184
		6.3.2	Reference station	184
		6.3.3	Message packets handling	187
		6.3.4	Message Link layer	189
		6.3.5	Message Network Layer	199
		6.3.6	Message transport layer	
		6.3.7	Multicast Transport Protocol (option)	242
		6.3.8	Message session layer	258
		6.3.9	Message Presentation Layer	
			Message Application layer	
	6.4		ntation and encoding of transmitted and stored data	
		6.4.1	Purpose	
		6.4.2	Data ordering	
		6.4.3	Notation for the primitive types	
		6.4.4	Structured types	
		6.4.5	Alignment	
		6.4.6	Notation for special types	
7	Appli	cation L	ayer	301
	7.1	Proces	ss Data Marshalling	301
		7.1.1	Marshalling Types	301
		7.1.2	Marshalling Modes	
		7.1.3	Data Paths in PDM	
		7.1.4	PDM Operation	303
		7.1.5	PDM Functions	304
	7.2	WTB L	ine Fault Location Detection	
		7.2.1	Architecture	
		7.2.2	Protocol Overview	
		7.2.3	LFLD Sequence	
		7.2.4	End Node State Machine (Testing Node)	
		7.2.5	Intermediate Node State Machine (Segmenting Node)	
		7.2.6	Disturbed Line selection	
		7.2.7	Location Detection	
8	Train	Networ	k Management	313
	8.1	Genera	al	313
		8.1.1	Contents of this clause	313
		8.1.2	Structure of this clause	
	8.2	Manag	er, Agents and interfaces	
		8.2.1	Manager and Agent	314
		8.2.2	Management messages protocol	314
		8.2.3	Interfaces	315

8.3	Manag	ed objects	317			
	8.3.1	Object Attributes				
	8.3.2	Station objects				
	8.3.3	WTB link objects				
	8.3.4	Variable objects				
	8.3.5	Messenger objects				
	8.3.6	Domain objects				
	8.3.7	Task objects				
	8.3.8	Clock object				
	8.3.9	Journal object				
8.4		Equipment objectes and management messages				
0.4	8.4.1	Notation for all management messages				
	8.4.2	Station services				
	8.4.3	WTB link services				
	8.4.4	Variables services				
	8.4.5	Messages services				
	8.4.6	Domain services				
	8.4.7	Task services	374			
	8.4.8	Clock services	376			
	8.4.9	Journal Service	377			
	8.4.10	Equipment Service	379			
8.5	Interfac	ce Procedures	380			
	8.5.1	Manager interface (MGI)	380			
	8.5.2	Agent interface				
Bibliograp	phy		384			
•		Train Bus				
Figure 2	– Layeri	ng of the TCN	14			
Figure 3 -	– State	transition example	39			
Figure 4	– Interfa	aces between equipment	40			
Figure 5	– Interfa	aces between consists	40			
Figure 6	– Train I	Bus and Consist network	41			
_		configurations				
•		VTB device configuration options				
•		Composition (two Intermediate Nodes shown)				
		cle measurement				
_		nected nodes in regular operation				
•		ble-line attachment				
•						
•		nded shield concept				
_		ing shield concept				
		ninator				
•	Figure 16 – Direct node attachment (optional double-line)53					
Figure 17	Figure 17 – Indirect attachment54					
Figure 18						
riguic ic	B – WTB	connector, front view	55			

Figure 20 – Node with redundant Line Units	58
Figure 21 – Attenuation measurement	59
Figure 22 – Shield grounding in the Line Unit	60
Figure 23 – Fritting source and load	60
Figure 24 – Transmitter fixtures	62
Figure 25 – Pulse wave form at transmitter	63
Figure 26 – Signal and idling at transmitter	64
Figure 27 – Receiver signal envelope	65
Figure 28 – Receiver edge distortion	66
Figure 29 – Idealised frame on the line (16 bit Preamble shown)	67
Figure 30 – Bit encoding	67
Figure 31 – Preamble	
Figure 32 – End Delimiter	68
Figure 33 – Valid frame, RxS, CS and SQE signals	69
Figure 34 – Garbled frame, RxS, CS, SQE signals	69
Figure 35 – Redundant Lines (as seen at a receiver)	70
Figure 36 – Line_Disturbance signals	71
Figure 37 – HDLC Frame structure	73
Figure 38 – Telegram timing	74
Figure 39 – Example of Interframe spacing	75
Figure 40 – Frame spacing measured at the master side	76
Figure 41 – Frame spacing at the slave	76
Figure 42 – HDLC Data format	77
Figure 43 – Format of HDLC Data	77
Figure 44 – Process Data telegram	81
Figure 45 – Format of Process Data Request	82
Figure 46 – Format of Process Data Response	83
Figure 47 – Message Data telegram	83
Figure 48 – Format of Message Data Request	83
Figure 49 – Format of Message Data Response	84
Figure 50 – Supervisory telegram	84
Figure 51 – Detection telegram	85
Figure 52 – Format of Detect Request	86
Figure 53 – Format of Detect Response	86
Figure 54 – Presence telegram	87
Figure 55 – Format of Presence Request	87
Figure 56 – Format of Presence Response	88
Figure 57 – Status telegram	88
Figure 58 – Format of Status Request	89
Figure 59 – Format of Status Response	90
Figure 60 – Set-to-Intermediate telegram	90
Figure 61 – Format of SetInt Request	90
Figure 62 – Format of SetInt Response	91

Figure 63 – Naming telegram	91
Figure 64 – Format of Naming Request	92
Figure 65 – Format of Naming Response	92
Figure 66 – Unnaming telegram	93
Figure 67 – Format of Unname Request	93
Figure 68 – Set to End telegram	93
Figure 69 – Format of SetEnd Request	94
Figure 70 – Format of SetEnd Response	94
Figure 71 – Topography telegram	95
Figure 72 – Format of Topography Request	95
Figure 73 – Format of Topography Response	96
Figure 74 – Structure of the Basic Period	97
Figure 75 – Node position numbering	. 100
Figure 76 – Format of Node Descriptor	. 101
Figure 77 – Format of Node Report	. 102
Figure 78 – Format of User Report	. 102
Figure 79 – Format of Composition Strength	
Figure 80 – Master_Report	. 104
Figure 81 – Format of Topo Counter	
Figure 82 – Format of Master Topo	. 105
Figure 83 – Timing Diagram of detection protocol	. 107
Figure 84 – Major node states and application settings	. 108
Figure 85 – Node processes (End Setting)	. 109
Figure 86 – AUXILIARY_PROCESS states	. 115
Figure 87 – NAMING_RESPONSE macro	. 116
Figure 88 – States of MAIN PROCESS	. 117
Figure 89 – Macro 'START_NODE'	. 120
Figure 90 – Procedure REQUEST_RESPONSE	. 122
Figure 91 – Procedures 'SET_TO_INT' and 'SET_TO_END'	. 123
Figure 92 – Macro 'INIT_MASTER'	.124
Figure 93 – Macro 'NAMING_MASTER'	.125
Figure 94 – Macro ASK_END	.126
Figure 95 – Procedure NAME_ONE	. 129
Figure 96 – Macro TEACHING_MASTER	. 131
Figure 97 – Macro 'UNNAMING_MASTER'	. 132
Figure 98 – Macro 'REGULAR_MASTER'	. 134
Figure 99 – Macro CHECK_DESC	. 135
Figure 100 – Macro PERIODIC_POLL	. 137
Figure 101 – Macro MESSAGE_POLL	. 138
Figure 102 – States 'UNNAMED_SLAVE'	. 140
Figure 103 – States 'NAMED_SLAVE'	.142
Figure 104 – Macro 'LEARNING_SLAVE'	. 144
Figure 105 – Macro 'REGIII AR SLAVE'	146

Figure 106 – Link layer layering	148
Figure 107 – Structure of the Train Communication Network	161
Figure 108 – Real-Time Protocols layering	162
Figure 109 – LPI primitives exchange	166
Figure 110 – Check_Variable	171
Figure 111 – Individual access	175
Figure 112 – Set access	179
Figure 113 – Cluster access	182
Figure 114 – Terminal station	184
Figure 115 – Router station between WTB and MVB	185
Figure 116 – Gateway station between WTB and Consist network	186
Figure 117 – Packet format	188
Figure 118 – Link layer data transmission	190
Figure 119 – Link_Message_Data_Interface (LMI)	191
Figure 120 – Example of MVB Message_Data frame	192
Figure 121 – Example of WTB Message_Data frame	193
Figure 122 – LMI primitives	194
Figure 123 – Network layer on a Node	200
Figure 124 – Encoding of the Network_Address	203
Figure 125 – Building of the addresses in an outbound packet	205
Figure 126 – Network address encoding on the train bus	206
Figure 127 – Transport packet exchange	213
Figure 128 – Packet formats (transport layer body)	215
Figure 129 – State transition diagram of the MTP	224
Figure 130 – Time-out SEND_TMO	227
Figure 131 – Time-out ALIVE_TMO	228
Figure 132 – Transport interface	236
Figure 133 – Multicast message with no retransmission	243
Figure 134 – Short multicast message with no BD packets and no loss	244
Figure 135 – Exchange with lost packets	245
Figure 136 – Packet formats	247
Figure 137 – Protocol machine states	248
Figure 138 – Session layer transfer	259
Figure 139 – Session_Header in Call_Message (of type Am_Result)	260
Figure 140 – Application_Messages_Interface	261
Figure 141 – Encoding of AM_ADDRESS.	265
Figure 142 – Process Data Marshalling	301
Figure 143 – PDM Data Paths	302
Figure 144 – PDM Operation	304
Figure 145 – PDM Invalidate Variable or Function result	304
Figure 146 – PDM Operation	306
Figure 147 – PDM Validty check	306
Figure 148 – LFLD Architecture	307

Figure 149 – LFLD sequence	309
Figure 150 – End node state machine	311
Figure 151 – LFLD process, SN at node 63	312
Figure 152 – LFLD process, SN at node 1	312
Figure 153 – LFLD process, SN at node 1, attachment in direction 1	313
Figure 154 – Management messages	315
Figure 155 – Agent Interface on a (gateway) Station	316
Figure 156 – Station_Status	318
Table 1 – Template for the specification of an interface procedure	36
Table 2 – Example of message structure	37
Table 3 – Example of textual message form (corresponding to Table 2)	38
Table 4 – State transitions table	39
Table 5 – Interoperability testing	45
Table 6 – WTB connector pin assignment	55
Table 7 – Signals of the Line Unit Interface	72
Table 8 – Link Control encoding	78
Table 9 – NodeControl data structure	110
Table 10 – MyStatus data structure	111
Table 11 – Shared Variables of a node	112
Table 12 – Variables of Main Process	112
Table 13 – Lists of Main Process	113
Table 14 – 'START_NODE'	118
Table 15 – 'MASTER STATES'	118
Table 16 – 'SLAVE STATES'	119
Table 17 – Time constant values	147
Table 18 – LPI primitives	166
Table 19 – Var_Size and Var_Type encoding in a PV_Name	173
Table 20 – LMI primitives	195
Table 21 – Routing situations	207
Table 22 – Routing of packets coming from the transport layer	209
Table 23 – Routing of packets coming from a consist network	210
Table 24 – Routing of packets coming from the train bus	211
Table 25 – Message Transport Control encoding	216
Table 26 – Connect_Request	219
Table 27 – Connect_Confirm	219
Table 28 – Disconnect_Request	220
Table 29 – Disconnect_Confirm	220
Table 30 – Data_Packet	220
Table 31 – Ack_Packet	221
Table 32 – Nak_Packet	221
Table 33 – Broadcast_Connect (BC1, BC2, BC3)	221
Table 34 – Broadcast_Data	222

Table 35 – Broadcast_Repeat	. 222
Table 36 – Broadcast_Stop (BSC, BSO)	. 223
Table 37 – MTP states	. 223
Table 38 – MTP incoming events	. 225
Table 39 – MTP outgoing events	. 225
Table 40 – MTP control parameters	. 226
Table 41 – MTP auxiliary variables	. 226
Table 42 – MTP time-outs (worst case)	. 228
Table 43 – Implicit actions	. 228
Table 44 – Compound actions	. 229
Table 45 – Producer states and transitions	. 230
Table 46 – Consumer states and transitions	. 233
Table 47 – TMI primitives	. 237
Table 48 – States of the MCP machine	.248
Table 49 – Incoming Events	.249
Table 50 – Outgoing Events	. 249
Table 51 – Control fields in packets	250
Table 52 – Auxiliary variables	. 251
Table 53 – MCP constants	. 252
Table 54 – MCP time-outs	. 252
Table 55 – MCP Compound actions	253
Table 56 – Filtering of BR packets	. 254
Table 57 – MCP Producer state event table	. 255
Table 58 – MCP Consumer state event table	
Table 59 – AMI primitives	. 262
Table 60 – Address constants	. 264
Table 61 - System Address and User Address	267

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRONIC RAILWAY EQUIPMENT – TRAIN COMMUNICATION NETWORK (TCN) –

Part 2-1: Wire Train Bus (WTB)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61375-2-1 was prepared by IEC technical committee 9: Electrical equipment and systems for railways.

The text of this standard is based on the following documents:

FDIS	Report on voting
9/1642/FDIS	9/1666/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 61375 series, under the general title *Electronic railway equipment – Train communication network (TCN)*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- · withdrawn.
- · replaced by a revised edition, or
- · amended.

This first edition cancels and replaces the clauses of IEC 61375-1 second edition published in 2007, relevant to the specification of WTB and constitutes a technical revision.

It was prepared taking into account IEC 61375-1, third edition.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This part of IEC 61375 specifies one component of the Train Communication Network, the Wire Train Bus (WTB), a serial data communication bus designed primarily, but not exclusively, for interconnecting consists which are frequently coupled and uncoupled, as is the case of international UIC trains.

Figure 1 illustrates the WTB application.

Figure 1 - Wire Train Bus

This standard defines these interfaces as connections to a data communication network, called the Train Communication Network (TCN).

The TCN has a hierarchical structure with two levels of networks, a Train Backbone and a Consist network:

- a) for interconnecting consists in Open Trains (see definition) such as international UIC trains, this standard specifies a Train Bus called the Wire Train Bus (WTB);
- b) for connecting standard on-board equipment a Consist network e.g. the Multifunction Vehicle Bus (MVB) can be used.

In the TCN architecture, WTB features Real-Time Protocols, which offer two communication services:

- c) Process Variables, a distributed, real-time database, periodically refreshed through broadcasting;
- d) messages, transmitted on demand either as:
 - · unicast messages (point-to-point) or/and
 - · multicast messages.

WTB in the TCN offers a common Network Management, which allows debugging, commissioning and maintenance over the network.

The Consist network MVB shares Real-Time Protocols and Network Management with WTB. Other implementations of consist networks need adaption to the Real-Time Protocols and Network Management of WTB.

The TCN is structured similarly to the Open System Interconnection model defined in ISO/IEC 7498-1 (see Figure 2).

NOTE The circled numbers refer to the clauses of this standard.

Figure 2 - Layering of the TCN

This standard has been, for editorial reasons, divided into eight clauses:

Clause 1

Scope;

Clause 2

Normative references;

Clause 3

Terms and definitions, abbreviations, conventions;

Clause 4 and 5: Wire Train Bus,

Physical layer and Link Layer Control;

Clause 6: Real-Time protocols,

- Variables: Link Layer Interface and Application Layer Interface;
- Messages: Link Layer Interface, Protocols, Application Layer Interface;
- Data Representation;

Clause 7: Application Layer

- Process Data Marshalling
- WTB Line Fault Location Detection

Clause 8: Train Network Management

Configuration, supervision and control of the network.

ELECTRONIC RAILWAY EQUIPMENT – TRAIN COMMUNICATION NETWORK (TCN)–

Part 2-1: Wire Train Bus (WTB)

1 Scope

This part of IEC 61375 applies to data communication in Open Trains, i.e. it covers data communication between consists of the said open trains and data communication within the consists of the said open trains.

The applicability of this standard to the train communication bus (WTB) allows for interoperability of individual consists within Open Trains in international traffic. The data communication bus inside consists (e.g. MVB) is given as recommended solution to cope with the said TCN. In any case, proof of compatibility between WTB and a proposed consist network will have to be brought by the supplier.

This standard may be additionally applicable to closed trains and multiple unit trains when so agreed between purchaser and supplier.

NOTE 1 For a definition of Open Trains, Multiple Unit Trains and Closed Trains, see Clause 3.

NOTE 2 Road vehicles such as buses and trolley buses are not considered in this standard.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60571, Electronic equipment used on rail vehicles

IEC 60807 (all parts), Rectangular connectors for frequencies below 3 MHz

IEC 61375-1, Electronic railway equipment – Train communication network (TCN) – Part 1: General architecture

IEC 61375-2-2:2012, Electronic railway equipment – Train communication network (TCN) – Part 2-2: Wire Train Bus conformance testing

IEC 61375-3-1, Electronic railway equipment – Train communication network (TCN) – Part 3-1: Multifunction Vehicle Bus (MVB)

ISO/IEC 8802-2, Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 2: Logical link control

ISO/IEC 8824 (all parts), Information technology – Abstract Syntax Notation One (ASN.1)

ISO/IEC 8825 (all parts), Information technology – ASN.1 encoding rules

ISO/IEC 8859-1, Information technology – 8-bit single-byte coded graphic character sets – Part 1: Latin alphabet No. 1

ISO/IEC 9646 (all parts), Information technology – Open Systems Interconnection – Conformance testing methodology and framework

ISO/IEC 10646, Information Technology – Universal Multipl-Octet Coded Character Set (UCS)

ISO/IEC 13239, Information technology – Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures

ITU-T Recommendation V24, List of definitions for interchange circuits between data terminal equipment (DTE) and data-circuit terminating equipment (DCE)

ITU-T Recommendation Z.100, Specification and Description Language (SDL)

IEEE 754, Standard for Binary Floating-Point Arithmetic

UIC CODE 556, Information transmission in the train (train-bus)

UIC CODE 557, Diagnostics on passenger rolling stock

SOMMAIRE

ΑV	ANI-F	PROPOS	S	395		
IN	ITRODUCTION39					
1	Dom	Domaine d'application40				
2			normatives			
3		Termes et définitions, abréviations, conventions				
J						
	3.1 3.2		es et définitionsations			
	3.2		entions			
	3.3	3.3.1	Base des valeurs numériques			
		3.3.2	Conventions d'appellation			
		3.3.3	Conventions of appenation			
		3.3.4	Conventions pour les interfaces de procédure			
		3.3.5	Spécification des données transmises			
		3.3.6	Conventions de diagrammes d'état			
	3.4		dérations généralesdérations générales			
	0.4	3.4.1	Interface entre équipements			
		3.4.2	Interface entre rames			
		3.4.3	Protocoles en Temps Réel			
		3.4.4	Gestion de Réseau			
		3.4.5	Configurations			
		3.4.6	Structure d'un dispositif normalisé			
	3.5		de conformité			
4		Couche physique				
-	4.1		ogie			
	7.1	4.1.1	Sections du bus			
		4.1.2	Coupleurs			
		4.1.3	Nœuds			
		4.1.4	Orientation de la rame			
		4.1.5	Spécification de la rame (informelle)			
	4.2		ications du support			
	1.2	•	Topologie			
		4.2.2	Support doublé (en option)			
		4.2.3	Règles de configuration de bus			
		4.2.4	Spécification du câble			
		4.2.5	Concept du blindage			
		4.2.6	Terminaison			
	4.3		rdement au support			
		4.3.1	Identification des points de connexion des nœuds			
		4.3.2	Connexion directe d'un nœud			
		4.3.3	Connexion indirecte d'un nœud			
		4.3.4	Connecteur (en option)			
	4.4	Spécif	ications des nœuds			
		4.4.1	Différents éléments d'un nœud			
		4.4.2	Position du nœud et des commutateurs			
		4.4.3	Unités de Ligne doublées (en option)			
	4.5		ications des Unités de Ligne			
		•	•			

		4.5.1	Isolement galvanique	448
		4.5.2	Pertes d'insertion d'une Unité de Ligne	449
		4.5.3	Spécifications des commutateurs	450
		4.5.4	Connexions du blindage à une Unité de Ligne	450
		4.5.5	Nettoyage des contacts (en option)	451
	4.6	Spécifi	cations de l'émetteur-récepteur	452
		4.6.1	Conventions	452
		4.6.2	Émetteur	452
		4.6.3	Spécifications du récepteur	456
	4.7	Signali	sation dépendant du support	458
		4.7.1	Codage et décodage des trames	458
		4.7.2	Traitement de lignes doublées (en option)	463
		4.7.3	Interface de l'Unité de Ligne	465
5	Cont	rôle de l	a Couche de Liaison	466
	5.1	Adress	age	466
	5.2		s et télégrammes	
		5.2.1	Format des Données de Trame (Frame_Data)	
		5.2.2	Cadence des télégrammes	
		5.2.3	Élément d'une trame HDLC	
		5.2.4	Champ de Contrôle de Liaison (Link_Control)	473
		5.2.5	Traitement des bits 'Attention', 'Change' et 'Inhibit'	
		5.2.6	Erreurs de taille, de FCS et de protocole	
	5.3	Format	s et protocoles des télégrammes	
		5.3.1	Champ Link_Data	
		5.3.2	Données de Processus	477
		5.3.3	Données de Messagerie	480
		5.3.4	Données de Supervision	482
		5.3.5	Télégramme de détection	483
		5.3.6	Télégramme de présence	485
		5.3.7	Télégramme de statut	487
		5.3.8	Télégramme de mise en position intermédiaire	489
		5.3.9	Télégramme de nomination	490
		5.3.10	Télégramme de dénommage	491
		5.3.11	Télégramme de mise en position terminale	492
		5.3.12	Télégramme de Topographie	493
	5.4	Attribut	tion du support	495
		5.4.1	Organisation	495
		5.4.2	Phase Périodique	496
		5.4.3	Phase apériodique	498
	5.5	Inaugu	ration	498
		5.5.1	Généralités	498
		5.5.2	Descripteurs	500
		5.5.3	Détection d'autres compositions (informel)	505
		5.5.4	Diagrammes d'état de l'inauguration	508
	5.6	Interfac	ce Couche de Liaison	557
		5.6.1	Organisation de la Couche de Liaison	557
		5.6.2	Interface de liaison de Données de Processus	558
		5.6.3	Interface de liaison de Données de Messagerie	559
		5.6.4	Interface de gestion de la Couche de Liaison	560

6	Prote	ocoles e	n Temps Reel	570
	6.1	Généra	alités	571
		6.1.1	Teneur du présent article	571
		6.1.2	Structure du présent article	571
	6.2	Variab	les – Services et protocoles	573
		6.2.1	Généralités	573
		6.2.2	Interface de la couche de liaison pour Process_Data	573
		6.2.3	Interface d'application pour Process_Variables	579
	6.3	Service	es et Protocoles de Messagerie	594
		6.3.1	Généralités	594
		6.3.2	Station de référence	594
		6.3.3	Traitement des paquets de messages	598
		6.3.4	Couche de Liaison de Messagerie	600
		6.3.5	Couche de Réseau de Messagerie	612
		6.3.6	Couche de transport de messages	626
		6.3.7	Protocole de transport de distribution (en option)	660
		6.3.8	Couche session de messages	676
		6.3.9	Couche de présentation des messages	
			Couche d'application des messages	
	6.4		ntation et codage des données transmises ou stockées	
		6.4.1	Objet	
		6.4.2	Organisation des données	
		6.4.3	Notation des types primitifs	
		6.4.4	Types structurés	
		6.4.5	Alignement	
		6.4.6	Notation des types spéciaux	
7	Cou	che d'Ap	plication	719
	7.1	Triage	des Données de Processus	
		7.1.1	Types de triage	719
		7.1.2	Modes de triage	
		7.1.3	Chemins d'accès aux données dans PDM	
		7.1.4	Fonctionnement de PDM	
		7.1.5	Fonctions du PDM	
	7.2	Détect	ion de l'emplacement de défaut en ligne du WTB	
		7.2.1	Architecture	
		7.2.2	Présentation du protocole	
		7.2.3	Séquence LFLD	
		7.2.4	Machine d'état du nœud d'extrémité (Nœud d'essai)	731
		7.2.5	Machine d'état du nœud intermédiaire (Nœud de segmentation)	732
		7.2.6	Sélection de ligne perturbée	
		7.2.7	Détection de l'emplacement	
8	Gest	tion de F	Réseau de Train	734
	8.1	Généra	alités	734
		8.1.1	Contenu du présent article	
		8.1.2	Structure du présent article	
	8.2	Gestio	nnaire, agents et interfaces	
		8.2.1	Gestionnaire et agent	735
		8.2.2	Protocole des messages de gestion	
		8.2.3	Interfaces	737

8.3	Objets	Geres	739
	8.3.1	Attributs d'objet	
	8.3.2	Objets de la Station	
	8.3.3	Objets de liaison WTB	
	8.3.4	Objets variables	
	8.3.5	Objets du Messager	
	8.3.6	Objets de domaine	
	8.3.7 8.3.8	Objets de tâche Objet d'horloge	
	8.3.9	Objet de journal	
		Objet d'Equipement	
8.4		es et messages de gestion	
•	8.4.1	Notation pour tous les messages de gestion	
	8.4.2	Services de la station	
	8.4.3	Services de liaison du WTB	762
	8.4.4	Services de Variables	773
	8.4.5	Services de messagerie	784
	8.4.6	Services de domaine	793
	8.4.7	Services de tâche	
	8.4.8	Services d'horloge	
	8.4.9	Service de journal	
0.5		Service d'Equipement	
8.5		dures d'interface	
	8.5.1 8.5.2	Interface du Gestionnaire (MGI)	
Ribliogra		interface de l'Agent	
Dibliogra	pi ii c		
Figure 1	– Bus d	e Train Filaire	397
•		fication du TCN	
_		ple de transition d'état	
_		aces entre équipements	
•			
•		aces entre rames	
_		e Train et réseau de Rame	
•	•	gurations du TCN	
•	•	ns de configuration du dispositif WTB du TCN	
		osition du Train (montrant deux Nœuds Intermédiaires)	
•		ure du véhicule	
Figure 1	I – Nœu	ıds reliés en fonctionnement normal	437
Figure 12	2 – Liais	on à ligne double	438
Figure 13	3 – Cond	cept de blindage à la masse	441
Figure 14	4 – Cond	cept de blindage flottant	442
Figure 15	5 – Term	ninaison	442
Figure 16	6 – Conr	nexion directe d'un nœud (ligne double en option)	443
_		nexion indirecte	
_		e avant d'un connecteur WTB	
•		mple de structure d'une MAU	

Figure 20 – Nœuds avec des Unites de Ligne redondantes	448
Figure 21 – Mesure de l'atténuation	449
Figure 22 – Mise à la masse du blindage de l'Unité de Ligne	450
Figure 23 – Source et charge de nettoyage des contacts	451
Figure 24 – Montages de l'émetteur	453
Figure 25 – Forme d'impulsion au niveau de l'émetteur	454
Figure 26 – Signal et mise en veille de l'émetteur	455
Figure 27 – Enveloppe du signal du récepteur	456
Figure 28 – Distorsion frontale du récepteur	458
Figure 29 – Trame idéale sur la ligne (avec un Préambule de 16 bits)	459
Figure 30 – Codage des bits	459
Figure 31 – Préambule	460
Figure 32 – Délimiteur de Fin	461
Figure 33 – Trame valide avec les signaux RxS, CS et SQE	462
Figure 34 – Trame brouillée avec les signaux RxS, CS et SQE	462
Figure 35 – Lignes redondantes (vues par un récepteur)	463
Figure 36 – Signaux de Line_Disturbance	464
Figure 37 – Structure de la trame HDLC	467
Figure 38 – Cadence d'un télégramme	468
Figure 39 – Exemple d'intervalle entre les trames	469
Figure 40 – Intervalles entre les trames mesurés du côté du maître	471
Figure 41 – Intervalles entre les trames mesurés du côté de l'esclave	471
Figure 42 – Format des Données HDLC	472
Figure 43 – Format de données HDLC	473
Figure 44 – Télégramme de Données de Processus	478
Figure 45 – Format de Process_Data_Request	479
Figure 46 – Format de Process_Data_Response	480
Figure 47 – Télégramme de Données de Messagerie	481
Figure 48 – Format de Message_Data_Request	481
Figure 49 – Format de Message_Data_Response	482
Figure 50 – Télégramme de supervision	482
Figure 51 – Télégramme de détection	484
Figure 52 – Format de Detect_Request	484
Figure 53 – Format de Detect_Response	485
Figure 54 – Télégramme de présence	485
Figure 55 – Format de Presence_Request	486
Figure 56 – Format de Presence_Response	487
Figure 57 – Télégramme de statut	487
Figure 58 – Format de Status_Request	488
Figure 59 – Format de Status_Response	488
Figure 60 – Télégramme de mise en position intermédiaire	489
Figure 61 – Format de SetInt_Request	
Figure 62 – Format de SetInt_Response	

Figure 63 – Télégramme de nomination	490
Figure 64 – Format de Naming_Request	491
Figure 65 – Format de Naming_Response	491
Figure 66 – Télégramme de dénommage	491
Figure 67 – Format de Unname_Request	492
Figure 68 – Télégramme de mise en position terminale	492
Figure 69 – Format de SetEnd_Request	493
Figure 70 – Format de SetEnd_Response	493
Figure 71 – Télégramme de topographie	493
Figure 72 – Format de Topography_Request	494
Figure 73 – Format de Topography_Response	495
Figure 74 – Structure de la Période de Base	496
Figure 75 – Numérotation de la position des nœuds	499
Figure 76 – Format de Node_Descriptor	501
Figure 77 – Format de Node_Report	502
Figure 78 – Format de User_Report	502
Figure 79 – Format de Composition_Strength	502
Figure 80 – Master_Report	503
Figure 81 – Format de Topo_Counter	504
Figure 82 – Format de Master_Topo	504
Figure 83 – Chronogramme du protocole de détection	508
Figure 84 – Principaux états des nœuds et réglages de l'application	508
Figure 85 – Processus des nœuds (position d'extrémité)	510
Figure 86 – États AUXILIARY_PROCESS	518
Figure 87 – Macro NAMING_RESPONSE	519
Figure 88 – Etats de MAIN_PROCESS	520
Figure 89 – Macro START_NODE	523
Figure 90 – Procédure REQUEST_RESPONSE	525
Figure 91 – Procédures SET_TO_INT et SET_TO_END	526
Figure 92 – Macro INIT_MASTER	527
Figure 93 - Macro NAMING_MASTER	530
Figure 94 – Macro ASK_END	532
Figure 95 – Procédure NAME_ONE	535
Figure 96 – Macro TEACHING_MASTER	537
Figure 97 – Macro UNNAMING_MASTER	537
Figure 98 - Macro 'REGULAR_MASTER'	540
Figure 99 – Macro CHECK_DESC	541
Figure 100 - Macro PERIODIC_POLL	544
Figure 101 – Macro MESSAGE_POLL	545
Figure 102 – États UNNAMED_SLAVE	547
Figure 103 – Etats NAMED_SLAVE	550
Figure 104 – Macro LEARNING_SLAVE	552
Figure 105 Macro DECLILAD SLAVE	555

Figure 106 – Organisation de la Couche de Liaison	558
Figure 107 – Structure du Réseau Embarqué de Train	571
Figure 108 – Organisation en couches des Protocoles en Temps Réel	572
Figure 109 – Echange de primitives LPI	576
Figure 110 – Check_Variable	581
Figure 111 – Accès individuel	585
Figure 112 – Accès par jeu	589
Figure 113 – Accès par grappe	592
Figure 114 – Station terminale	595
Figure 115 – Station d'acheminement entre le WTB et le MVB	596
Figure 116– Station passerelle entre le WTB et le Réseau de Rame	597
Figure 117 – Format de paquet	599
Figure 118 – Transmission de données de couche de liaison	601
Figure 119 – Interface LMI	602
Figure 120 – Exemple de trame Message_Data sur le MVB	604
Figure 121 – Exemple de trame Message_Data sur le WTB	605
Figure 122 – Primitives LMI	606
Figure 123 – Couche réseau sur un nœud	613
Figure 124 – Codage de la Network_Address	617
Figure 125 – Génération des adresses dans un paquet sortant	619
Figure 126 – Codage des adresses réseau sur le bus de train	621
Figure 127 – Echange de paquets de transport	628
Figure 128 – Format des paquets (corps de la couche transport)	631
Figure 129 – Diagramme de transition d'état du MTP	641
Figure 130 – Temporisation SEND_TMO	645
Figure 131 – Temporisation ALIVE_TMO	645
Figure 132 – Interface de transport	654
Figure 133 – Message distribué sans retransmission	661
Figure 134 – Message distribué court sans paquet BD et sans perte	662
Figure 135 – Echange avec des paquets perdus	663
Figure 136 – Format de paquet	665
Figure 137 – Etats de la machine de protocole	666
Figure 138 – Transfert Couche Session	677
Figure 139 – Session_Header de Call_Message (de type Am_Result)	678
Figure 140 – Interface d'application de messages	679
Figure 141 – Codage de AM_ADDRESS	683
Figure 142 – Triage des Données de Processus	720
Figure 143 – Chemins d'accès PDM	721
Figure 144 – Fonctionnement de PDM	723
Figure 145 – PDM invalide la variable ou le résultat de la fonction	723
Figure 146 – Fonctionnement de PDM	725
Figure 147 – Contrôle de validité du PDM	725
Figure 148 – Architecture LFLD	726

Figure 149 – Séquence LFLD	730
Figure 150 – Machine d'état du nœud d'extrémité	732
Figure 151 – Processus LFLD, nœud de segmentation au nœud 63	733
Figure 152 – Processus LFLD, nœud de segmentation au nœud 1	733
Figure 153 – Processus LFLD, nœud de segmentation au nœud 1, connexion dans la	70.4
direction 1	
Figure 154 – Messages de gestion	
Figure 155 – Interface de l'Agent sur une Station (passerelle)	
Figure 156 – Station_Status	/40
Tableau 1 – Modèle pour la spécification d'une procédure d'interface	423
Tableau 2 – Exemple de structure de message	424
Tableau 3 – Exemple de forme de message textuel (correspondant au Tableau 2)	425
Tableau 4 – Tableau de transitions d'état	
Tableau 5 – Essai d'interopérabilité	433
Tableau 6 – Affectation des broches d'un connecteur WTB	
Tableau 7 – Signaux de l'Interface Unité de Ligne	466
Tableau 8 – Codage de Link_Control	
Tableau 9 – Structure de données NodeControl	512
Tableau 10 – Structure de données MyStatus	513
Tableau 11 – Variables partagées d'un nœud	514
Tableau 12 – Variables du Main_Process	514
Tableau 13 – Listes du Main_Process	515
Tableau 14 – START_NODE	521
Tableau 15 – MASTER STATES (État de Maître)	521
Tableau 16 – SLAVE STATES (états esclave)	522
Tableau 17 – Valeurs des constantes de temps	556
Tableau 18 – Primitives LPI	576
Tableau 19 – Codage de Var_Size et Var_Type dans un PV_Name	583
Tableau 20 – Primitives LMI	607
Tableau 21 – Situations d'acheminement	622
Tableau 22 – Acheminement des paquets en provenance de la couche transport	624
Tableau 23 – Acheminement des paquets en provenance d'un réseau de rame	625
Tableau 24 – Acheminement des paquets en provenance du bus de train	626
Tableau 25 – Codage du Contrôle de transport de messages	632
Tableau 26 – Connect_Request	636
Tableau 27 – Connect_Confirm	636
Tableau 28 – Disconnect_Request	
Tableau 29 – Disconnect_Confirm	637
Tableau 30 – Data_Packet	
Tableau 31 – Ack_Packet	
Tableau 32 – Nak_Packet	
Tableau 33 – Broadcast_Connect (BC1, BC2, BC3)	
Tableau 34 – Broadcast Data	639

Tableau 35 – Broadcast_Repeat	639
Tableau 36 - Broadcast_Stop (BSC, BSO)	640
Tableau 37 – Etats MTP	640
Tableau 38 – Evénements MTP entrants	642
Tableau 39 – Evénements MTP sortants	642
Tableau 40 – Paramètres de contrôle MTP	643
Tableau 41 – Variables auxiliaires MTP	644
Tableau 42 – Temporisations MTP (pire des cas)	646
Tableau 43 – Actions Implicites	646
Tableau 44 – Actions Composées	647
Tableau 45 – Etats et transitions du Producteur	648
Tableau 46 – États et transitions du Consommateur	651
Tableau 47 – Primitives TMI	655
Tableau 48 – Etats de la machine MCP	666
Tableau 49 – Evénements entrants	667
Tableau 50 – Evénements sortants	667
Tableau 51 – Champs de contrôle des paquets	668
Tableau 52 – Variables auxiliaires	669
Tableau 53 – Constantes MCP	670
Tableau 54 – Temporisations MCP	670
Tableau 55 – Actions composées MCP	671
Tableau 56 – Filtrage des paquets BR	672
Tableau 57 – Tableau des événements d'état du Producteur MCP	673
Tableau 58 – Tableau des événements d'état du Consommateur MCP	675
Tableau 59 – Primitives AMI	680
Tableau 60 – Constantes d'adresse	682
Tableau 61 – Adresse Système et Adresse Utilisateur	685

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MATÉRIEL ÉLECTRONIQUE FERROVIAIRE – RÉSEAU EMBARQUÉ DE TRAIN (TCN) –

Partie 2-1: Bus de Train Filaire (WTB)

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de brevet. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale CEI 61375-2-1 a été établie par le comité d'études 9 de la CEI: Matériels et systèmes électriques ferroviaires.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
9/1642/FDIS	9/1666/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 61375, présentées sous le titre général *Matériel* électronique ferroviaire – Réseau embarqué de train (TCN), peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- · remplacée par une édition révisée, ou
- amendée.

Cette première édition annule et remplace les articles de la deuxième édition de la CEI 61375-1 publiée en 2007 applicables à la spécification du MTB dont elle constitue une révision technique.

Elle a été établie en tenant compte de la troisième édition de la CEI 61375-1.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

INTRODUCTION

La présente partie de la CEI 61375 spécifie un composant du Réseau Embarqué de Train, le Bus de Train Filaire (WTB pour Wire Train Bus), un bus série de transmission de données destiné principalement, mais pas exclusivement, à l'interconnexion des rames qui font l'objet d'accouplement et de désaccouplement fréquents, comme pour les trains internationaux UIC.

La Figure 1 illustre l'application WTB.

Figure 1 - Bus de Train Filaire

La présente norme définit ces interfaces en tant que raccordements à un réseau de communication de données, appelé Réseau Embarqué de Train (TCN, pour Train Communication Network).

Le Réseau Embarqué de Train a une structure hiérarchisée avec deux niveaux de réseaux, un Réseau Central de Train et un Réseau de Rame:

- a) pour relier les rames de trains à composition variable (voir définition) tels que les trains internationaux UIC, la présente norme spécifie un Bus de Train appelé Bus de Train Filaire (WTB, pour Wire Train Bus);
- b) pour relier des équipements standards embarqués (un Réseau de Rame, par exemple) le Bus de Véhicule Multifonctions (MVB, pour Multifunction Vehicle Bus) peut être utilisé.

Dans l'architecture TCN, le WTB utilise des Protocoles en Temps Réel, qui offrent deux services de communication:

- c) le service de Variables de Processus, offert par une base de données distribuée, mise à jour en temps réel et périodiquement par diffusion;
- d) le service de Messagerie, offrant le transfert de messages à la demande, sous forme:
 - · de messages point à point et/ou
 - · de messages publipostés.

Dans le TCN, le WTB offre une gestion commune de réseau qui permet le déverminage, la mise en service et la maintenance sur tout le réseau.

Le MVB du Réseau de Rame partage des Protocoles en Temps Réel et une Gestion de Réseau avec le WTB. Une autre mise en œuvre des Réseaux de Rame doit être adaptée aux Protocoles en Temps Réel et à la Gestion de Réseau du WTB.

Le TCN présente une structure similaire à celle du modèle de Système Ouvert d'Interconnexion défini dans l'ISO/CEI 7498-1 (voir la Figure 2).

NOTE Les chiffres cerclés se réfèrent aux articles de la présente norme.

Légende

Anglais	Français
Application layer	Couche Application
Application Layer Interface	Interface de Couche d'Application
Link Layer Interface	Interface de Couche de Liaison
Network management	Gestion de Réseau
Real-time protocols	Protocoles en Temps Réel
User	Utilisateur
Process variables	Variables de processus
Messages	Messages
Presentation	Présentation
Session	Session
Transport	Transport
Network	Réseau
Wire train bus	Bus de Train Filaire
Consist network specified in IEC 61375-3-x	Réseau de Rame spécifié dans la CEI 61375-3-x
General normative elements	Eléments normatifs généraux

Figure 2 - Stratification du TCN

Pour des raisons rédactionnelles, la présente norme a été divisée en six articles:

Article 1 – Domaine d'application

Article 2 – Références normatives

Article 3 – Termes et définitions, abréviations, conventions

Articles 4 et 5 – Bus de train filaire (WTB)

- Contrôle de la couche physique et de la couche de liaison

Article 6 – Protocoles en Temps Réel

- Variables: Interface de couche de liaison et interface de couche d'application
- Messages: Interface de couche de liaison, Protocoles, interface de couche d'application
- Représentation des données

Article 7 – Couche d'application

- Triage des Données de Processus
- Détection de l'emplacement de défaut en ligne du WTB

Article 8 - Gestion de Réseau de Train

Configuration, supervision et commande du réseau

MATÉRIEL ÉLECTRONIQUE FERROVIAIRE – RÉSEAU EMBARQUÉ DE TRAIN (TCN) –

Partie 2-1: Bus de Train Filaire (WTB)

1 Domaine d'application

La présente partie de la CEI 61375 s'applique à la communication de données dans les Trains à Composition Variable, c'est-à-dire qu'elle couvre la communication de données aussi bien entre les rames que dans les rames desdits trains à composition variable.

L'application de la présente norme au bus de communication de données (WTB) permet l'interopérabilité des différentes rames d'un train à composition variable dans le trafic international. Le bus de communication de données dans les rames (le MVB, par exemple) est donné comme solution recommandée pour fonctionner avec ledit TCN. Dans tous les cas, le fournisseur aura à faire la preuve de la compatibilité entre le WTB et le Réseau de Rame proposé.

Après accord entre acheteur et fournisseur, la présente norme peut s'appliquer en outre aux trains indéformables et aux automotrices.

- NOTE 1 Pour la définition des Trains à Composition Variable, Automotrices et Trains Indéformables, voir Article 3.
- NOTE 2 Les véhicules routiers comme les bus et les trolleybus ne sont pas traités dans la présente norme.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60571, Equipements électroniques utilisés sur les véhicules ferroviaires

CEI 60807 (toutes les parties), Connecteurs rectangulaires utilisés aux fréquences inférieures à 3 MHz

CEI 61375-1, Matériel électronique ferroviaire – Réseau embarqué de train (TCN) – Partie 1: TNC – Réseau embarqué de train – Architecture générale

CEI 61375-2-2:2012, Matériel électronique ferroviaire – Réseau embarqué de train (TCN) – Partie 2-2: Bus de train filaire – Essais de conformité

CEI 61375-3-1, Matériel électronique ferroviaire – Réseau embarqué de train (TCN) – Partie 3-1: Bus de Véhicule Multifonctions (MVB)

ISO/CEI 8802-2, Technologies de l'information – Télécommunications et échange d'informations entre systèmes – Réseaux locaux et métropolitains – Exigences spécifiques – Partie 2: Contrôle de liaison logique

ISO/CEI 8824 (toutes les parties), *Technologie de l'information – Notation de syntaxe abstraite numéro un (ASN.1)*

ISO/CEI 8825 (toutes les parties), Technologie de l'information – Règles de codage ASN.1

ISO/CEI 8859-1, Technologies de l'information – Jeux de caractères graphiques codés sur un seul octet – Partie 1: Alphabet latin n° 1(disponible en anglais seulement)

ISO/CEI 9646 (toutes les parties), *Technologies de l'information – Interconnexion de systèmes ouverts (OSI) – Cadre général et méthodologie des tests de conformité*

ISO/CEI 10646, Technologie de l'information – Jeu universel de caractères codés sur plusieurs octets (JUC)

ISO/CEI 13239, Technologies de l'information – Télécommunications et échange d'information entre systèmes – Procédures de commande de liaison de données à haut niveau (HDLC)

UIT-T Recommandation V.24, Liste des définitions des circuits de jonction entre l'équipement terminal de traitement de données (DTE) et l'équipement de terminaison du circuit de données (DCE)

UIT-T Recommandation Z.100, Langage de description et de spécification (SDL)

IEEE 754, Standard for Binary Floating-Point Arithmetic

CODE UIC 556, Transmission d'information dans le train (bus de train)

CODE UIC 557, Technique de diagnostique dans les voitures