PS Analysis 3 WS 2024/25

Übungszettel 8 (ODE)

Birgit Schörkhuber

ankreuzbar bis 26.11., 8:00

1. Gegeben sei ein Anfangswertproblem der Form

$$u'(t) = f(t, u(t)), \quad u(t_0) = u_0$$

mit $f \in C(U, \mathbb{R}^d)$ lokal Lipschitz-stetig bezüglich des 2. Arguments, $(t_0, u_0) \in U$, $U \subset \mathbb{R}^d$ offen. Seien $T_0, \delta > 0$ so, dass $V_0 := [t_0 - T_0, t_0 + T_0] \times \overline{B_\delta}(u_0) \subset U$ gilt. Seien

$$m:=\sup_{(t,x)\in V_0}|f(t,x)|,\quad T:=\min\left\{T_0,\frac{\delta}{m}\right\},$$

falls $m \neq 0$. Beweisen Sie mit Hilfe des Fixpunktsatzes von Weissinger ¹ die Existenz einer Lösung $u \in C^1(J_T, \mathbb{R}^d)$, $J_T := [t_0 - T, t_0 + T]$. Gehen Sie wie folgt vor.

- (a) Definieren Sie $X := C(J_T, \mathbb{R}^d)$ ausgestattet mit Supremumsnorm $\|\cdot\|_{\infty}$. Definieren Sie auf $M := \{u \in X : \|u u_0\|_{\infty} \leq \delta\}$ eine geeignete Abbildung K und zeigen Sie $K : M \to M$.
- (b) Sei L>0 die lokale Lipschitzkonstante von f auf V_0 . Zeigen Sie induktiv, dass für alle $u,v\in M$ und für alle $n\in\mathbb{N}$

$$||K^n(u) - K^n(v)||_{\infty} \le \frac{L^n T^n}{n!} ||u - v||_{\infty}$$

gilt und folgern Sie daraus die Existenz eines Fixpunktes von K.

2. Gegeben sei ein Anfangswertproblem der Form

$$u'(t) = f(t, u(t)), \quad u(t_0) = u_0$$

mit $f \in C(\mathbb{R} \times \mathbb{R}^d, \mathbb{R}^d)$ global Lipschitz-stetig. Beweisen Sie die Existenz einer eindeutigen Lösung $u \in C^1(\mathbb{R}, \mathbb{R}^d)$. Gehen Sie dabei vor wie in Aufgabe 1, aber mit T > 0 nun beliebig und M = X.

3. Gegeben sei das skalare Anfangswertproblem

$$u'(t) = \sin(tu(t)), \quad u(0) = u_0.$$

- (a) Argumentieren Sie, dass für jedes $u_0 \in \mathbb{R}$ eine eindeutige globale Lösung $u \in C^1(\mathbb{R}, \mathbb{R})$ existiert.
- (b) Finden Sie eine Konstante C > 0, so dass für $|u_0| \le C$ gilt

$$\forall t \in [0,1] : |u(t)| < \varepsilon$$

mit
$$\varepsilon = 10^{-2}$$
.

¹Blatt 7

4. Zeigen Sie, dass die Aussage von Lemma 2.18 im Allgemeinen nicht mehr gilt, falls lediglich eine Ungleichung der Form

$$|f(t,x)| \le a(t) + b(t)|x|^{\alpha}$$

mit $\alpha > 1$ erfüllt ist. *Hinweis: Beispiel 1.9.*

5. Gegeben sei die skalare Differentialgleichung

$$u'(t) = f(u(t))$$

mit $f \in C(\mathbb{R})$ lokal Lipschitz-stetig und f(0) = f(1) = 0. Beweisen Sie, dass für jede Anfangsbedingung $u(0) = u_0 \in [0,1]$ eine eindeutige maximale Lösung $u \in C((T_-,T_+),\mathbb{R})$ existiert, wobei $u(t) \in [0,1]$ für alle $t \in (T_-,T_+)$ gilt. Was lässt sich über das maximale Existenzintervall aussagen?

Hinweis: Können Sie spezielle konstante Lösungen erraten?