Introduction to modular arithmetic

Learning Objectives. By the end of class, students will be able to:

• Prove that $\{0, 1, \dots, m-1\}$ is a complete residue system modulo m.

Definition (complete residue system). Let $a, m \in \mathbb{Z}$ with m > 0. We call the set of all $b \in \mathbb{Z}$ such that $a \equiv b \pmod{m}$ the equivalence class of a. A set of integers such that every integer is congruent modulo m is called a *complete residue system modulo* m.

Proposition 1. Let m be a positive integer. Then equivalence modulo m partition the integers. That is, every integer is in exactly one equivalence class modulo m.

Proof This is an immediate consequence of the fact that equivalence modulo m is an equivalence relation.

Notice that this arguments also simplifies the proof the $\{0, 1, ..., m-1\}$ is a complete residue system modulo m. **Proposition 2.** The set $\{0, 1, ..., m-1\}$ is a complete residue system modulo m.

Proof Let $a, m \in \mathbb{Z}$ with m > 0. By the ??, there exist unique $q, r \in \mathbb{Z}$ such that a = qm + r with $0 \le r < m$. In fact, since $0 \le r < m$, we know $r = 0, 1, \ldots, m - 2$, or m - 1. Therefore, every integer is in the equivalence class of $0, 1, \ldots, m - 2$ or m - 1 modulo m. Since every integer is in exactly one equivalence class modulo m, and the remainder from the division algorithm is unique, it is not possible for a to be equivalent to any other element of $\{0, 1, \ldots, m - 1\}$.

In-class Problem 1 Practice: addition and multiplication tables modulo 3, 4, 5, 6, 7. I am adding 9 to include an odd composite.

Modulo 3

+	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

*	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

Modulo 4

_ +	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

*	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

Modulo 5

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[0]
[4]	[4]	[0]	[1]	[2]	[3]

*	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]

Learning outcomes: Author(s): Claire Merriman

Modulo 6

_+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

*	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Modulo 7

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[0]	[1]	[2]	[3]	[4]	[5]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

Modulo 8

_+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[2]	[0]	[2]	[4]	[6]	[0]	[2]	[4]	[6]
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]
[7]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Modulo 9

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[2]	[0]	[2]	[4]	[6]	[0]	[1]	[3]	[5]	[7]
[3]	[0]	[3]	[6]	[0]	[3]	[6]	[0]	[3]	[6]
[4]	[0]	[4]	[8]	[3]	[7]	[2]	[6]	[1]	[5]
[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]
[6]	[0]	[6]	[3]	[0]	[6]	[3]	[0]	[6]	[3]
[7]	[0]	[7]	[5]	[3]	[1]	[8]	[6]	[4]	[2]
[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]