Predictive Modeling - Multiple Linear Regression

The point of this project is to build on initial data preparation, cleaning, and analysis, enabling us to make assertions vital to organizational needs. In this project, I conduct logistic regression and multiple regression to model the phenomena revealed by data. This project covers normality, homoscedasticity, and significance, preparing us to communicate findings and the limitations of those findings accurately to organizational leaders.

Competencies

Logistic Regression

Employs logistic regression algorithms in describing phenomena.

Multiple Regression

Employs multiple regression algorithms with categorical and numerical predictors in describing phenomena.

Regression Implications

Makes assertions based on regression modeling.

Write Up

Research Question

What variables influence higher additional charges throughout this hospital chain?

Goals

The goal and objective of my analysis is to gain a fundamental understanding of the variables that do and do not have an impact on additional charges within the hospital.

Summary of Assumptions

- Continuous y variable
- Low multicollinearity
- The residuals being normally distributed
- Homoskedasticity

The y variable in a multiple linear regression model must be continuous and not a categorical variable. "Multicollinearity refers to a linear relationship between any of the x variables," (Straw, 2023) and these relationships negatively affect the coefficients and therefore negatively affect the overall model. The residuals also need to be normally distributed and address homoskedasticity by having similar variance throughout all x variables.

My research question focuses on variables that are influential to additional charges in the hospital or the main continuous variable. The use of multiple linear regression helps, "to analyze and understand the relationship between two or more variables of interest." (Middleton, 2022) Multiple linear regression is a method to determine effective relationships among variables that are in line with the research question indicated in part one.

Code

```
In [3]: # Importing packages
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import missingno as msno
   import seaborn as sns

In [4]: # Importing medical data CSV and creating the medical_data DataFrame
   medical_data = pd.read_csv("C:/Users/Makayla Avendano/Desktop/medical_clean.csv")

In [5]: # Looking at columns, non-null counts and data types
   medical_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

```
#
     Column
                          Non-Null Count
                                           Dtype
     _____
                          _____
                                           _ _ _ _ _
 0
     CaseOrder
                          10000 non-null
                                           int64
 1
     Customer id
                          10000 non-null
                                           object
 2
     Interaction
                          10000 non-null
                                           object
 3
     UID
                          10000 non-null
                                           object
 4
     City
                          10000 non-null
                                           object
 5
     State
                          10000 non-null
                                           object
 6
     County
                          10000 non-null
                                           object
 7
     Zip
                          10000 non-null
                                           int64
 8
     Lat
                          10000 non-null
                                           float64
 9
     Lng
                          10000 non-null
                                           float64
 10
     Population
                          10000 non-null
                                           int64
 11
                          10000 non-null
     Area
                                           object
 12
     TimeZone
                          10000 non-null
                                           object
 13
     Job
                          10000 non-null
                                           object
 14
     Children
                          10000 non-null
                                           int64
 15
     Age
                          10000 non-null
                                           int64
                          10000 non-null
 16
     Income
                                           float64
 17
     Marital
                          10000 non-null
                                           object
 18
     Gender
                          10000 non-null
                                           object
 19
     ReAdmis
                          10000 non-null
                                           object
 20
     VitD levels
                          10000 non-null
                                           float64
 21
     Doc visits
                          10000 non-null
                                           int64
 22
     Full meals eaten
                          10000 non-null
                                           int64
 23
                          10000 non-null
                                           int64
     vitD supp
     Soft drink
                          10000 non-null
                                           object
 25
     Initial admin
                          10000 non-null
                                           object
     HighBlood
                          10000 non-null
                                           object
 26
 27
     Stroke
                          10000 non-null
                                           object
 28
     Complication risk
                          10000 non-null
                                           object
 29
     Overweight
                          10000 non-null
                                           object
 30
     Arthritis
                          10000 non-null
                                           object
 31
     Diabetes
                          10000 non-null
                                           object
     Hyperlipidemia
                          10000 non-null
                                           object
     BackPain
                          10000 non-null
                                           object
 33
 34
     Anxiety
                          10000 non-null
                                           object
 35
     Allergic rhinitis
                          10000 non-null
                                           object
 36
     Reflux esophagitis
                          10000 non-null
                                           object
 37
     Asthma
                          10000 non-null
                                           object
 38
     Services
                          10000 non-null
                                           object
 39
     Initial_days
                          10000 non-null
                                           float64
 40
     TotalCharge
                          10000 non-null
                                           float64
 41
     Additional charges
                          10000 non-null
                                           float64
 42
     Item1
                          10000 non-null
                                           int64
 43
     Item2
                          10000 non-null
                                           int64
 44
     Item3
                          10000 non-null
                                           int64
 45
     Item4
                          10000 non-null
                                           int64
 46
                          10000 non-null
     Item5
                                           int64
 47
     Item6
                          10000 non-null
                                           int64
 48
     Item7
                          10000 non-null
                                           int64
     Item8
                          10000 non-null
                                          int64
dtypes: float64(7), int64(16), object(27)
memory usage: 3.8+ MB
```

```
In [6]: # Drop columns that are not needed
new_med_data = medical_data.drop(columns=['Interaction', 'UID', 'City', 'State', 'Cour')
```

```
In [7]: # Updated data frame
new_med_data.info()
```

```
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 27 columns):
       Column
                                   Non-Null Count Dtype
      ----
                                   -----
                                                          ----
 0
       Children
                                 10000 non-null int64
 1
       Age
                                   10000 non-null int64
      Income
Gender
ReAdmis
VitD_levels
Doc_visits
 2
                                   10000 non-null float64
 3
                                   10000 non-null object
 4
                                   10000 non-null object
 5
                                   10000 non-null float64
5 Doc_vis__
7 Full_meals_eaten
8 vitD_supp 10000 non-null object
10 Initial_admin 10000 non-null object
11 HighBlood 10000 non-null object
 14 Overweight
 15 Arthritis 10000 non-null object
16 Diabetes 10000 non-null object
17 Hyperlipidemia 10000 non-null object
18 BackPain 10000 non-null object
19 Anxiety 10000 non-null object
 15 Arthritis
 20 Allergic_rhinitis 10000 non-null object
      Reflux esophagitis 10000 non-null object
                                   10000 non-null object
 22 Asthma
 23 Services24 Initial_days25 TotalCharge
                                   10000 non-null
                                                          object
                                   10000 non-null float64
                                   10000 non-null float64
 26 Additional_charges 10000 non-null float64
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(5), int64(5), object(17)

memory usage: 2.1+ MB

Data Cleaning

Data cleaning is an integral part of any data analysis. To make my analysis as accurate as possible, it is necessary to verify that the data is clean. Cleaning the data involves looking at duplicates, missing values, and outliers.

Duplicates

With duplicates in the data, we are exposed to potential integrity threats including causing inaccuracies and skewing the data with unnecessary inflation. The steps used to clean duplicates in the data include the use of .duplicated and .value_counts to look at the counts of duplicates within each variable.

```
In [8]: # Duplicates
medical_duplicates = new_med_data.duplicated()
print(medical_duplicates.value_counts())
```

False 10000

Name: count, dtype: int64

Missing Values

Missing values can also negatively influence the data similar to duplicates through possible integrity threats like inaccuracies and inflation or deflation of values. Missing values were addressed using the pair of the .isnull() and .sum() function. This looked at each variable and indicated whether any values were missing within that variable. I also verified this information with the use of the missingno library and the msno function to create a matrix to indicate no values were missing.

```
In [9]:
         # Missing Values
          # Sum of all null values within each column
          new med data.isnull().sum()
         Children
 Out[9]:
                                0
         Age
         Income
                                 0
         Gender
                                0
         ReAdmis
                                0
         VitD levels
                                0
                                0
         Doc visits
         Full_meals_eaten
                                0
                                0
         vitD supp
         Soft drink
                                0
         Initial_admin
                                0
                                0
         HighBlood
                                0
         Stroke
         Complication_risk
                                0
                                0
         Overweight
         Arthritis
                                0
         Diabetes
                                0
         Hyperlipidemia
         BackPain
                                0
         Anxiety
                                0
         Allergic rhinitis
                                0
         Reflux esophagitis
                                0
         Asthma
         Services
                                0
                                0
         Initial_days
         TotalCharge
                                0
         Additional charges
          dtype: int64
          # Double checking no missing values
In [10]:
          msno.matrix(new_med_data)
         <Axes: >
Out[10]:
```


Outliers

Lastly, outliers can distort relationships or individual measurements which would be detrimental to a multiple linear regression model. The outliers were found using box plots and treated using the replace or imputation technique. I used the 95th percentile of the box plot and used NumPy's .where() function to replace all values above the 95th percentile with the median of the variable.


```
In [13]: # Treat outliers with imputation
    percentile_income = np.percentile(new_med_data['Income'], 95)
    print(percentile_income)
```

96071.83099999995

```
In [14]: # Replacing with the median
median = float(new_med_data['Income'].median())
new_med_data['Income'] = np.where(new_med_data['Income'] > percentile_income, median,
```

```
In [15]: # Verifying the max value
    new_med_data.describe()
```

Out[15]:		Income	Doc_visits	Initial_days	TotalCharge	Additional_charges
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
	mean	36188.024603	5.012200	34.455299	5312.172769	12934.528587
	std	21376.715194	1.045734	26.309341	2180.393838	6542.601544
	min	154.080000	1.000000	1.001981	1938.312067	3125.703000
	25%	19598.775000	4.000000	7.896215	3179.374015	7986.487755
	50%	33766.005000	5.000000	35.836244	5213.952000	11573.977735
	75 %	49348.447500	6.000000	61.161020	7459.699750	15626.490000
	max	96067.940000	9.000000	71.981490	9180.728000	30566.070000


```
In [17]: Initial_daysPlot = plt.boxplot(x='Initial_days', data = new_med_data)
```


In [18]: TotalChargePlot = plt.boxplot(x='TotalCharge', data = new_med_data)


```
In [19]: Additional_chargesPlot = plt.boxplot(x='Additional_charges', data = new_med_data)
```



```
In [20]: # Treat outliers with imputation
    percentile_addcharges = np.percentile(new_med_data['Additional_charges'], 95)
    print(percentile_addcharges)
```

26604.554999999997

```
In [21]: # Replacing with the median
  median = float(new_med_data['Additional_charges'].median())
  new_med_data['Additional_charges'] = np.where(new_med_data['Additional_charges'] > per
```

In [22]: # Verifying the max value
 new_med_data.describe()

Out[22]:		Income	Doc_visits	Initial_days	TotalCharge	Additional_charges
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
	mean	36188.024603	5.012200	34.455299	5312.172769	12108.260572
	std	21376.715194	1.045734	26.309341	2180.393838	5538.630675
	min	154.080000	1.000000	1.001981	1938.312067	3125.703000
	25%	19598.775000	4.000000	7.896215	3179.374015	7986.487755
	50%	33766.005000	5.000000	35.836244	5213.952000	11573.938868
	75%	49348.447500	6.000000	61.161020	7459.699750	14535.582983
	max	96067.940000	9.000000	71.981490	9180.728000	26604.310000

```
In [23]: # EDA - Looking at descriptive statistics
    new_med_data.describe()
```

In [26]:

Out[26]:

3, 8:17 PM			D2	208 - Predictive Mo	deling - Multip	le Linear Re	egression		
Out[23]:		Income	Doc_visits	Initial_days	TotalChar	ge Addi	tional_char	ges	
	count	10000.000000	10000.000000	10000.000000	10000.0000	000	10000.000	000	
	mean	36188.024603	5.012200	34.455299	5312.1727	769	12108.260	572	
	std	21376.715194	1.045734	26.309341	2180.3938	338	5538.630	675	
	min	154.080000	1.000000	1.001981	1938.3120)67	3125.703	000	
	25%	19598.775000	4.000000	7.896215	3179.3740)15	7986.487	755	
	50%	33766.005000	5.000000	35.836244	5213.9520	000	11573.938	868	
	75%	49348.447500	6.000000	61.161020	7459.6997	' 50	14535.582	983	
	max	96067.940000	9.000000	71.981490	9180.7280	000	26604.310	000	
In [24]:			egorical des ribe(include	scriptive dat e='object')	ra				
Out[24]:		HighBlood	Stroke Comp	lication_risk O	verweight	Arthritis	Diabetes	Anxiety	Services
	count	10000	10000	10000	10000	10000	10000	10000	10000
	unique	2	2	3	2	2	2	2	4
	top	No	No	Medium	Yes	No	No	No	Blood Work
	freq	5910	8007	4517	7094	6426	7262	6785	5265
In [25]:			ditional Cha itional_char	<i>rges</i> r <mark>ges'].descri</mark>	be()				
Out[25]:	count mean std min 25% 50% 75% max	10000.00 12108.26 5538.63 3125.70 7986.48 11573.93 14535.58 26604.31	0572 0675 3000 7755 8868 2983						

sns.histplot(new_med_data.Additional_charges,kde=True) plt.title("Univariate Statistics - Additional Charges")

Text(0.5, 1.0, 'Univariate Statistics - Additional Charges')

Histogram Plot - Additional Charges

Univariate Statistics - Additional Charges


```
# Univariate - Total Charges
In [27]:
         new_med_data['TotalCharge'].describe()
         count
                   10000.000000
Out[27]:
                    5312.172769
         mean
                    2180.393838
         std
         min
                    1938.312067
         25%
                    3179.374015
         50%
                    5213.952000
         75%
                    7459.699750
         max
                    9180.728000
         Name: TotalCharge, dtype: float64
         # Histogram - Total Charges
In [28]:
          sns.histplot(new_med_data.TotalCharge,kde=True)
          plt.title("Univariate Statistics - Total Charges")
         Text(0.5, 1.0, 'Univariate Statistics - Total Charges')
Out[28]:
```

Univariate Statistics - Total Charges


```
# Univariate - Income
In [29]:
         new_med_data['Income'].describe()
         count
                   10000.000000
Out[29]:
         mean
                   36188.024603
                   21376.715194
         std
         min
                     154.080000
         25%
                   19598.775000
         50%
                   33766.005000
         75%
                   49348.447500
         max
                   96067.940000
         Name: Income, dtype: float64
         # Histogram - Income
In [30]:
          sns.histplot(new_med_data.Income,kde=True)
          plt.title("Univariate Statistics - Income")
         Text(0.5, 1.0, 'Univariate Statistics - Income')
Out[30]:
```

Univariate Statistics - Income


```
# Univariate - Doctor Visits
In [31]:
         new_med_data['Doc_visits'].describe()
         count
                   10000.000000
Out[31]:
                       5.012200
         mean
                       1.045734
         std
         min
                       1.000000
         25%
                       4.000000
                       5.000000
         50%
         75%
                       6.000000
         max
                       9.000000
         Name: Doc_visits, dtype: float64
         # Histogram - Doctor Visits
In [32]:
          sns.histplot(new_med_data.Doc_visits,kde=True)
          plt.title("Univariate Statistics - Doctor Visits")
         Text(0.5, 1.0, 'Univariate Statistics - Doctor Visits')
Out[32]:
```

1000

500

0

1

2

3

Univariate Statistics - Doctor Visits 4000 3500 2500 2000 1500 -

6

8

9

```
# Univariate - Initial Days
In [33]:
         new_med_data['Initial_days'].describe()
                   10000.000000
         count
Out[33]:
                      34.455299
         mean
                      26.309341
         std
         min
                       1.001981
         25%
                       7.896215
         50%
                      35.836244
         75%
                      61.161020
         max
                      71.981490
         Name: Initial_days, dtype: float64
         # Histogram - Initial Days
In [34]:
          sns.histplot(new_med_data.Initial_days,kde=True)
          plt.title("Univariate Statistics - Initial Days")
         Text(0.5, 1.0, 'Univariate Statistics - Initial Days')
Out[34]:
```

4

Doc_visits

Univariate Statistics - Initial Days


```
# Univariate - Services Variable
In [35]:
         new_med_data['Services'].describe()
         count
                         10000
Out[35]:
         unique
                    Blood Work
         top
         freq
                          5265
         Name: Services, dtype: object
         # Count Plot - Services
In [36]:
          sns.countplot(data=new_med_data, x='Services')
          plt.title("Univariate Statistics - Services")
         Text(0.5, 1.0, 'Univariate Statistics - Services')
Out[36]:
```

Univariate Statistics - Services


```
# Univariate - Complication Risk
In [37]:
         new_med_data['Complication_risk'].describe()
         count
                    10000
Out[37]:
         unique
                   Medium
         top
         freq
                      4517
         Name: Complication_risk, dtype: object
         # Count Plot - Complication Risk
In [38]:
         sns.countplot(data=new_med_data, x='Complication_risk')
         plt.title("Univariate Statistics - Complication Risk")
         Text(0.5, 1.0, 'Univariate Statistics - Complication Risk')
Out[38]:
```

Univariate Statistics - Complication Risk


```
# Univariate - High Blood Pressure
In [39]:
          new med data['HighBlood'].describe()
         count
                    10000
Out[39]:
         unique
                        2
         top
                       No
         freq
                     5910
         Name: HighBlood, dtype: object
         # Count Plot - High Blood Pressure
In [40]:
          sns.countplot(data=new_med_data, x='HighBlood')
          plt.title("Univariate Statistics - High Blood")
         Text(0.5, 1.0, 'Univariate Statistics - High Blood')
Out[40]:
```

Univariate Statistics - High Blood


```
# Univariate - Stroke
In [41]:
          new_med_data['Stroke'].describe()
         count
                    10000
Out[41]:
         unique
                        2
         top
                       No
         freq
                    8007
         Name: Stroke, dtype: object
         # Count Plot - Stroke
In [42]:
          sns.countplot(data=new_med_data, x='Stroke')
          plt.title("Univariate Statistics - Stroke")
         Text(0.5, 1.0, 'Univariate Statistics - Stroke')
Out[42]:
```

Univariate Statistics - Stroke


```
# Univariate - Arthritis
In [43]:
          new_med_data['Arthritis'].describe()
                    10000
         count
Out[43]:
         unique
                        2
         top
                      No
         freq
                     6426
         Name: Arthritis, dtype: object
         # Count Plot - Arthritis
In [44]:
          sns.countplot(data=new_med_data, x='Arthritis')
          plt.title("Univariate Statistics - Arthritis")
         Text(0.5, 1.0, 'Univariate Statistics - Arthritis')
Out[44]:
```

Univariate Statistics - Arthritis


```
# Univariate - Overweight
In [45]:
          new_med_data['Overweight'].describe()
                    10000
         count
Out[45]:
         unique
                        2
         top
                      Yes
         freq
                     7094
         Name: Overweight, dtype: object
         # Count Plot - Overweight
In [46]:
          sns.countplot(data=new_med_data, x='Overweight')
          plt.title("Univariate Statistics - Overweight")
         Text(0.5, 1.0, 'Univariate Statistics - Overweight')
Out[46]:
```

Univariate Statistics - Overweight


```
# Univariate - Diabetes
In [47]:
         new_med_data['Diabetes'].describe()
                    10000
         count
Out[47]:
         unique
                        2
         top
                      No
         freq
                    7262
         Name: Diabetes, dtype: object
         # Count Plot - Diabetes
In [48]:
          sns.countplot(data=new_med_data, x='Diabetes')
          plt.title("Univariate Statistics - Diabetes")
         Text(0.5, 1.0, 'Univariate Statistics - Diabetes')
Out[48]:
```

Univariate Statistics - Diabetes


```
# Univariate - Anxiety
In [49]:
         new_med_data['Anxiety'].describe()
                    10000
         count
Out[49]:
         unique
                        2
         top
                      No
         freq
                     6785
         Name: Anxiety, dtype: object
         # Count Plot - Anxiety
In [50]:
          sns.countplot(data=new_med_data, x='Anxiety')
          plt.title("Univariate Statistics - Anxiety")
         Text(0.5, 1.0, 'Univariate Statistics - Anxiety')
Out[50]:
```

Univariate Statistics - Anxiety


```
In [51]: # Bivariate Statistics
# Additional Charges vs Total Charges
new_med_data[['Additional_charges', 'TotalCharge']].describe()
```

Out[51]:		Additional_charges	TotalCharge
	count	10000.000000	10000.000000
	mean	12108.260572	5312.172769
	std	5538.630675	2180.393838
	min	3125.703000	1938.312067
	25%	7986.487755	3179.374015
	50%	11573.938868	5213.952000
	75 %	14535.582983	7459.699750
	max	26604.310000	9180.728000

```
In [52]: # Additional Charges vs Total Charges correlation
   new_med_data[['Additional_charges', 'TotalCharge']].corr()
```

Out[52]:		Additional_charges	TotalCharge
	Additional_charges	1.000000	0.028396
	TotalCharge	0.028396	1.000000

```
In [53]: # Additional Charges vs Total Charges scatterplot
    sns.scatterplot(data=new_med_data, x='TotalCharge', y='Additional_charges')
    plt.title("Bivariate Statistics - Total Charge vs Additional Charges Distribution")
```

Out[53]: Text(0.5, 1.0, 'Bivariate Statistics - Total Charge vs Additional Charges Distributio n')

Bivariate Statistics - Total Charge vs Additional Charges Distribution


```
In [54]: # Bivariate Statistics
    # Additional Charges vs Income
    new_med_data[['Additional_charges', 'Income']].describe()
```

Out[54]: Additional_charges Income
count 10000.000000 10000.00000
mean 12108.260572 36188.02460
std 5538.630675 21376.71519
min 3125.703000 154.08000
25% 7986.487755 19598.77500
50% 11573.938868 33766.00500
75% 14535.582983 49348.44750
max 26604.310000 96067.94000

```
In [55]: # Additional Charges vs Income correlation
new_med_data[['Additional_charges', 'Income']].corr()
```

Out[55]:

	Additional_charges	Income
Additional_charges	1.000000	-0.005247
Income	-0.005247	1.000000

```
In [56]: # Additional Charges vs Income plot
    sns.scatterplot(data=new_med_data, x='Income', y='Additional_charges')
    plt.title("Bivariate Statistics - Income vs Additional Charges Distribution")
```

Out[56]: Text(0.5, 1.0, 'Bivariate Statistics - Income vs Additional Charges Distribution')

Bivariate Statistics - Income vs Additional Charges Distribution


```
In [57]: # Bivariate Statistics
# Additional charges vs doc visits
new_med_data[['Additional_charges', 'Doc_visits']].describe()
```

Out[57]:

	Additional_charges	Doc_visits
count	10000.000000	10000.000000
mean	12108.260572	5.012200
std	5538.630675	1.045734
min	3125.703000	1.000000
25%	7986.487755	4.000000
50%	11573.938868	5.000000
75%	14535.582983	6.000000
max	26604.310000	9.000000

```
In [58]: # Additional charges vs doc visits correlation
   new_med_data[['Additional_charges', 'Doc_visits']].corr()
```

Out[58]: Additional_charges Doc_visits

Additional_charges	1.000000	0.009862
Doc_visits	0.009862	1.000000

```
In [59]: # Additional charges vs doc visits plot
sns.scatterplot(data=new_med_data, x='Doc_visits', y='Additional_charges')
plt.title("Bivariate Statistics - Doc Visits vs Additional Charges Distribution")
```

Out[59]: Text(0.5, 1.0, 'Bivariate Statistics - Doc Visits vs Additional Charges Distributio n')

Bivariate Statistics - Doc Visits vs Additional Charges Distribution


```
In [60]: # Bivariate Statistics
# Additional Charges vs Initial days
new_med_data[['Additional_charges', 'Initial_days']].describe()
```

Out[60]:		Additional_charges	Initial_days
	count	10000.000000	10000.000000
	mean	12108.260572	34.455299
	std	5538.630675	26.309341
	min	3125.703000	1.001981
	25%	7986.487755	7.896215
	50%	11573.938868	35.836244
	75%	14535.582983	61.161020
	max	26604.310000	71.981490

```
In [61]: # Additional Charges vs Initial days correlation
   new_med_data[['Additional_charges', 'Initial_days']].corr()
```

Out[61]:		Additional_charges	Initial_days
	Additional_charges	1.00000	0.00634
	Initial_days	0.00634	1.00000

```
In [62]: # Additional Charges vs Initial days plot
    sns.scatterplot(data=new_med_data, x='Initial_days', y='Additional_charges')
    plt.title("Bivariate Statistics - Initial Days vs Additional Charges Distribution")
```

Out[62]: Text(0.5, 1.0, 'Bivariate Statistics - Initial Days vs Additional Charges Distributio n')

Bivariate Statistics - Initial Days vs Additional Charges Distribution

In [63]: # Bivariate (categorical values)
Additional charges vs Services
pd.crosstab(new_med_data.Additional_charges, new_med_data.Services, margins=True)

Out[63]:	Services	Blood Work	CT Scan	Intravenous	MRI	All
	Additional_charges					
	3125.703	1	0	0	0	1
	3132.25999	1	0	1	0	2
	3139.049369	2	0	0	0	2
	3173.112679	0	1	0	0	1
	3213.0799	1	0	0	0	1
	26592.28	1	0	0	0	1
	26594.73	0	1	0	0	1
	26601.03	0	0	0	1	1
	26604.31	1	0	1	0	2
	All	5265	1225	3130	380	10000

```
In [64]: # Bivariate (categorical values)
# Additional charges vs Services
sns.kdeplot(data=new_med_data, x='Additional_charges', hue='Services', fill=True)
```

Out[64]: <Axes: xlabel='Additional_charges', ylabel='Density'>


```
In [65]: # Bivariate (categorical values)
# Additional charges vs Complication risk
pd.crosstab(new_med_data.Additional_charges, new_med_data.Complication_risk, margins=1
```

Out[65]:	Complication_risk	High	Low	Medium	All
	Additional_charges				
	3125.703	0	1	0	1
	3132.25999	0	2	0	2
	3139.049369	0	2	0	2
	3173.112679	0	1	0	1
	3213.0799	0	0	1	1
	•••				
	26592.28	0	0	1	1
	26594.73	1	0	0	1
	26601.03	1	0	0	1
	26604.31	2	0	0	2
	All	3358	2125	4517	10000

```
In [66]: # Bivariate (categorical values)
    # Additional charges vs Complication risk
    sns.kdeplot(data=new_med_data, x='Additional_charges', hue='Complication_risk', fill=]
Out[66]: <Axes: xlabel='Additional_charges', ylabel='Density'>
```


In [67]: # Bivariate (categorical values)
Additional charges vs High Blood
pd.crosstab(new_med_data.Additional_charges, new_med_data.HighBlood, margins=True)

Out[67]:	HighBlood	No	Yes	All
	Additional_charges			
	3125.703	1	0	1
	3132.25999	2	0	2
	3139.049369	2	0	2
	3173.112679	1	0	1
	3213.0799	1	0	1
	•••			
	26592.28	0	1	1
	26594.73	0	1	1
	26601.03	0	1	1
	26604.31	0	2	2
	All	5910	4090	10000

```
In [68]: # Bivariate (categorical values)
# Additional charges vs High Blood
sns.kdeplot(data=new_med_data, x='Additional_charges', hue='HighBlood', fill=True)
```

Out[68]: <Axes: xlabel='Additional_charges', ylabel='Density'>

In [69]: # Bivariate (categorical values)
Additional charges vs Stroke
pd.crosstab(new_med_data.Additional_charges, new_med_data.Stroke, margins=True)

Out[69]:	Stroke	No	Yes	All
	Additional_charges			
	3125.703	1	0	1
	3132.25999	2	0	2
	3139.049369	2	0	2
	3173.112679	1	0	1
	3213.0799	1	0	1
	26592.28	0	1	1
	26594.73	0	1	1
	26601.03	1	0	1
	26604.31	2	0	2
	All	8007	1993	10000

```
In [70]: # Bivariate (categorical values)
# Additional charges vs Stroke
sns.kdeplot(data=new_med_data, x='Additional_charges', hue='Stroke', fill=True)
```

Out[70]: <Axes: xlabel='Additional_charges', ylabel='Density'>


```
In [71]: # Bivariate (categorical values)
# Additional charges vs Arthritis
pd.crosstab(new_med_data.Additional_charges, new_med_data.Arthritis, margins=True)
```

Out[71]:	Arthritis	No	Yes	All
	Additional_charges			
	3125.703	1	0	1
	3132.25999	2	0	2
	3139.049369	1	1	2
	3173.112679	1	0	1
	3213.0799	1	0	1
	26592.28	1	0	1
	26594.73	0	1	1
	26601.03	1	0	1
	26604.31	1	1	2
	All	6426	3574	10000

In [73]: # Bivariate (categorical values)
Additional charges vs Overweight
pd.crosstab(new_med_data.Additional_charges, new_med_data.Overweight, margins=True)

Out[73]:	Overweight	No	Yes	All
	Additional_charges			
	3125.703	1	0	1
	3132.25999	0	2	2
	3139.049369	0	2	2
	3173.112679	1	0	1
	3213.0799	0	1	1
	26592.28	0	1	1
	26594.73	0	1	1
	26601.03	0	1	1
	26604.31	0	2	2
	All	2906	7094	10000

```
In [74]: # Bivariate (categorical values)
# Additional charges vs Overweight
sns.kdeplot(data=new_med_data, x='Additional_charges', hue='Overweight', fill=True)
```

Out[74]: <Axes: xlabel='Additional_charges', ylabel='Density'>

In [75]: # Bivariate (categorical values)
Additional charges vs Diabetes
pd.crosstab(new_med_data.Additional_charges, new_med_data.Diabetes, margins=True)

Out[75]:	Diabetes	No	Yes	All
	Additional_charges			
	3125.703	1	0	1
	3132.25999	2	0	2
	3139.049369	2	0	2
	3173.112679	1	0	1
	3213.0799	1	0	1
	26592.28	1	0	1
	26594.73	0	1	1
	26601.03	1	0	1
	26604.31	2	0	2
	All	7262	2738	10000

8934 rows × 3 columns

```
In [76]:
         # Bivariate (categorical values)
         # Additional charges vs Diabetes
         sns.kdeplot(data=new_med_data, x='Additional_charges', hue='Diabetes', fill=True)
         <Axes: xlabel='Additional_charges', ylabel='Density'>
```

Out[76]:


```
In [77]: # Bivariate (categorical values)
# Additional charges vs Anxiety
pd.crosstab(new_med_data.Additional_charges, new_med_data.Anxiety, margins=True)
```

Out[77]:	Anxiety	No	Yes	All
	Additional_charges			
	3125.703	1	0	1
	3132.25999	1	1	2
	3139.049369	1	1	2
	3173.112679	1	0	1
	3213.0799	0	1	1
	•••			
	26592.28	1	0	1
	26594.73	1	0	1
	26601.03	0	1	1
	26604.31	2	0	2
	All	6785	3215	10000

8934 rows × 3 columns

```
In [78]: # Bivariate (categorical values)
    # Additional charges vs Anxiety
    sns.kdeplot(data=new_med_data, x='Additional_charges', hue='Anxiety', fill=True)
Out[78]: 

Axes: xlabel='Additional_charges', ylabel='Density'>
```


Data Transformation

My data transformation goals include changing categorical data to numerical data through the re-expression of categorical variables. Due to most statistical methods only working with numerical data, we had to change the categorical data to represent numerical values. I performed re-expression on ordinal data and nominal categorical data using the ordinal encoder technique and one hot encoding.

Ordinal data was re-expressed with an ordinal encoder technique. This technique started with creating a new column to insert the new values into. Next, a dictionary was created to easily distinguish the most valuable to the least valuable or in this case yes as the most valuable or 1 and no as the least valuable or 0. It is also worth mentioning the one other instance of ordinal data that included low, medium, and high values instead of Boolean values that were encoded as 0,1,2 respectively. The last step was to use the replace function in Python to replace the categorical values with the defined numerical values.

Nominal data was re-expressed with one hot encoding. There was one variable that had categorical data that was nominal: services. I used the function get dummies within the pandas library to create new variables called dummy variables that, "contain a binary encoding (0 or 1) to denote whether a particular row belongs to this category." (Middleton, 2022) The services variable had four possible values and with the get dummies function, we can follow the k-1 rule to mitigate multicollinearity and retain 3 of the 4 dummy variables using the drop_first=True

rule. Instead of using the services categorical variable, we now were able to use the 3 remaining dummy variables.

```
# Data Wrangling
In [79]:
         # Re-expression
         new_med_data.HighBlood.unique()
         array(['Yes', 'No'], dtype=object)
Out[79]:
In [80]:
         # 2. Create new column to input into
         new_med_data['HighBlood_numeric'] = new_med_data['HighBlood']
         # 3. Create dictionary for the values
In [81]:
         dict_highblood = {"HighBlood_numeric": {"Yes": 1, "No": 0}}
         new_med_data.replace(dict_highblood, inplace = True)
In [82]: new_med_data.HighBlood_numeric.unique()
         array([1, 0], dtype=int64)
Out[82]:
In [83]:
         # Data Wrangling
         # Re-expression
         new_med_data.Stroke.unique()
         array(['No', 'Yes'], dtype=object)
Out[83]:
In [84]: # 2. Create new column to input into
         new_med_data['Stroke_numeric'] = new_med_data['Stroke']
In [85]: # 3. Create dictionary for the values
         dict_stroke = {"Stroke_numeric": {"Yes": 1, "No": 0}}
         new med data.replace(dict stroke, inplace = True)
In [86]: # Data Wrangling
         # Re-expression
         new_med_data.Arthritis.unique()
         array(['Yes', 'No'], dtype=object)
Out[86]:
In [87]:
         # 2. Create new column to input into
         new_med_data['Arthritis_numeric'] = new_med_data['Arthritis']
         # 3. Create dictionary for the values
In [88]:
         dict_arthritis = {"Arthritis_numeric": {"Yes": 1, "No": 0}}
         new_med_data.replace(dict_arthritis, inplace = True)
In [89]: # Data Wrangling
         # Re-expression
         new_med_data.Overweight.unique()
         array(['No', 'Yes'], dtype=object)
Out[89]:
```

```
In [90]: # 2. Create new column to input into
          new_med_data['Overweight_numeric'] = new_med_data['Overweight']
          # 3. Create dictionary for the values
In [91]:
          dict_overweight = {"Overweight_numeric": {"Yes": 1, "No": 0}}
          new_med_data.replace(dict_overweight, inplace = True)
In [92]: # Data Wrangling
          # Re-expression
          new_med_data.Diabetes.unique()
          array(['Yes', 'No'], dtype=object)
Out[92]:
In [93]: # 2. Create new column to input into
          new med data['Diabetes numeric'] = new med data['Diabetes']
In [94]: # 3. Create dictionary for the values
          dict_diabetes = {"Diabetes_numeric": {"Yes": 1, "No": 0}}
          new med data.replace(dict diabetes, inplace = True)
In [95]: # Data Wrangling
          # Re-expression
          new_med_data.Anxiety.unique()
          array(['Yes', 'No'], dtype=object)
Out[95]:
In [96]: # 2. Create new column to input into
          new med data['Anxiety numeric'] = new med data['Anxiety']
In [97]: # 3. Create dictionary for the values
          dict_anxiety = {"Anxiety_numeric": {"Yes": 1, "No": 0}}
          new_med_data.replace(dict_anxiety, inplace = True)
          # Data Wrangling
In [98]:
          # Re-expression
          new med data.Complication risk.unique()
          array(['Medium', 'High', 'Low'], dtype=object)
Out[98]:
In [99]:
          # 2. Create new column to input into
          new_med_data['Complication_risk_numeric'] = new_med_data['Complication_risk']
          # 3. Create dictionary for the values
In [100...
          dict complication = {"Complication risk numeric": {"Low": 0, "Medium": 1, "High": 2}}
          new_med_data.replace(dict_complication, inplace = True)
          # Look at all column names to start developing the model
In [102...
          new med data.info()
```

In [103...

In [104...

In [105...

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 20 columns):
    Column
                               Non-Null Count Dtype
    _____
                               _____
                                              ____
                               10000 non-null float64
 0
    Income
 1
    Doc visits
                               10000 non-null int64
 2
    HighBlood
                               10000 non-null object
 3
    Stroke
                               10000 non-null object
 4
    Complication risk
                               10000 non-null object
 5
    Overweight
                               10000 non-null object
 6
    Arthritis
                               10000 non-null object
 7
    Diabetes
                               10000 non-null object
    Anxiety
                               10000 non-null object
 9
    Services
                               10000 non-null object
 10 Initial days
                               10000 non-null float64
 11 TotalCharge
                               10000 non-null float64
                               10000 non-null float64
 12 Additional_charges
 13 HighBlood numeric
                               10000 non-null int64
 14 Stroke numeric
                               10000 non-null int64
                               10000 non-null int64
 15 Arthritis numeric
                               10000 non-null int64
 16 Overweight numeric
 17 Diabetes numeric
                               10000 non-null int64
                               10000 non-null int64
 18 Anxiety numeric
    Complication risk numeric 10000 non-null int64
dtypes: float64(4), int64(8), object(8)
memory usage: 1.5+ MB
# Drop columns that are not needed
new med data = new med data.drop(columns=['HighBlood','Stroke','Complication risk','Ov
new med data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 13 columns):
#
    Column
                               Non-Null Count Dtype
                               -----
    -----
                               10000 non-null float64
 0
    Income
    Doc visits
                               10000 non-null int64
 1
 2
    Services
                               10000 non-null object
 3
    Initial days
                               10000 non-null float64
 4
    TotalCharge
                               10000 non-null float64
    Additional_charges
 5
                               10000 non-null float64
 6
    HighBlood_numeric
                               10000 non-null int64
 7
    Stroke numeric
                               10000 non-null int64
 8
    Arthritis numeric
                               10000 non-null int64
 9
    Overweight numeric
                               10000 non-null int64
 10 Diabetes_numeric
                               10000 non-null int64
 11
    Anxiety numeric
                               10000 non-null int64
    Complication risk numeric 10000 non-null int64
dtypes: float64(4), int64(8), object(1)
memory usage: 1015.8+ KB
# Using get dummies pandas function to get numerical values for the one categorical va
new med data = pd.get dummies(new med data, columns=['Services'], prefix='Services', c
new med data.head()
```

Out[105]:

4

]:		Income	Doc_visits	Initial_days	TotalCharge	Additional_charges	HighBlood_numeric	Stroke_num
	0	86575.93	6	10.585770	3726.702860	17939.403420	1	
	1	46805.99	4	15.129562	4193.190458	17612.998120	1	
	2	14370.14	4	4.772177	2434.234222	17505.192460	1	
	3	39741.49	4	1.714879	2127.830423	12993.437350	0	
	4	1209.56	5	1.254807	2113.073274	3716.525786	0	
								>
•••			linear re d_data.Add	egression ditional_ch	arges			

```
In [107... # Multiple linear regression
    y = new_med_data.Additional_charges
    X = new_med_data[['Income','Initial_days','Doc_visits','TotalCharge', 'HighBlood_numer
    model = sm.OLS(y,X.astype(float))
    results_initial = model.fit()
    print(results_initial.summary())
```

=======================================	============	========	========	=======	======	
Dep. Variable: A	dditional_charges	R-squared	l:		0.355	
Model:	OLS	Adj. R-sc	uared:		0.355	
Method:	Least Squares	F-statist	ic:		393.3	
Date:	Mon, 07 Aug 2023	Prob (F-s	statistic):		0.00	
Time:	23:26:49	Log-Likel	ihood:		-98188.	
No. Observations:	10000	AIC:		1.	964e+05	
Df Residuals:	9985	BIC:			965e+05	
Df Model:	14					
Covariance Type:	nonrobust					
=======================================		=======		=======	========	=:
======				- 1.1		
0.0751	coef	std err	t	P> t	[0.025	
0.975]						_
Income	-0.0030	0.002	-1.457	0.145	-0.007	
0.001	0.0030	0.002	2.137	0.1.5	0.007	
Initial_days	-51.6074	12.793	-4.034	0.000	-76.684	
-26.530	31,0074	12.755	7.057	0.000	70.004	
Doc_visits	22.4108	42.577	0.526	0.599	-61.049	
105.870	2211200	12.377	0.520	0.333	02.013	
TotalCharge	0.6558	0.155	4.236	0.000	0.352	
0.959	0.0330	0.133	4.250	0.000	0.332	
HighBlood_numeric	6609.2288	92.124	71.743	0.000	6428.647	
6789.811	000512200		, _ , , ,	0.000	0.12000.7	
Stroke_numeric	348.0033	111.460	3.122	0.002	129.519	
566.487						
Arthritis_numeric	93.0304	93.494	0.995	0.320	-90.237	
276.298						
Overweight_numeric	-61.5910	98.083	-0.628	0.530	-253.853	
130.671						
Diabetes_numeric	97.9816	100.445	0.975	0.329	-98.910	
294.873						
Anxiety_numeric	-15.1317	96.307	-0.157	0.875	-203.913	
173.650						
Complication_risk_num	meric 22.9094	70.331	0.326	0.745	-114.953	
160.772						
Services_CT Scan	270.6102	141.224	1.916	0.055	-6.218	
547.438						
Services_Intravenous	69.1391	100.474	0.688	0.491	-127.810	
266.088						
Services_MRI	120.6894	236.466	0.510	0.610	-342.832	
584.211						
const	7531.1395	424.239	17.752	0.000	6699.546	
8362.733						
=======================================	============	=======		=======	======	
Omnibus:	523.454	Durbin-Wa	itson:		2.017	
Prob(Omnibus):	0.000	Jarque-Be	era (JB):		254.932	
Skew:	0.201	Prob(JB):		4	.39e-56	
Kurtosis:	2.329	Cond. No.		4	.05e+05	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.05e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Model

An initial multiple linear regression model was created using all variables listed above in C2 with the dependent (y) variable as additional charges and the remaining variables as the independent (x) variables. Screenshot of the initial model summary below.

```
# Reducing the model - Backward Stepwise Elimination
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric']).assign(const=1)
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())
```

coef std err t P> t [0.025
Income -0.0030 0.002 -1.459 0.145 -0.007
0.001
Doc visits 22.4238 42.575 0.527 0.598 -61.031
105.879
Initial_days -51.3247 12.665 -4.052 0.000 -76.151
-26.498
TotalCharge 0.6523 0.153 4.258 0.000 0.352
0.953
HighBlood_numeric 6609.4835 92.105 71.760 0.000 6428.938
6790.029
Stroke_numeric 348.2084 111.447 3.124 0.002 129.750
566.667
Arthritis_numeric 93.0995 93.489 0.996 0.319 -90.157
276.356 Overweight numeric 61 4540 08 674 0 627 0 531 252 600
Overweight_numeric -61.4540 98.074 -0.627 0.531 -253.699 130.791
Diabetes_numeric 98.2633 100.424 0.978 0.328 -98.587
295.114
Complication_risk_numeric 23.7046 70.145 0.338 0.735 -113.794
161.203
Services_CT Scan 270.7416 141.215 1.917 0.055 -6.068
547.551
Services_Intravenous 69.0548 100.467 0.687 0.492 -127.881
265.991
Services_MRI 120.9551 236.449 0.512 0.609 -342.532
584.442
const 7533.8507 423.867 17.774 0.000 6702.986
8364.715
Omnibus: 523.697 Durbin-Watson: 2.018
Prob(Omnibus): 0.000 Jarque-Bera (JB): 254.976
Skew: 0.201 Prob(JB): 4.29e-56
Kurtosis: 2.329 Cond. No. 4.04e+05

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified
- [2] The condition number is large, 4.04e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [109... # Reducing model - Backward Stepwise Elimination
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
```

results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	noni	OLS Adquares F- g 2023 Pr :28:02 Lc 10000 AI 9987 BI 12	C:	stic): d:	0.35 0.35 459. 0.6 -98188 1.964e+6 1.965e+6	55 0 0 0 3 3 5 5 5
===	coef	std err	t	P> t	[0.025	0.9
75]					- 	
Income 001	-0.0030	0.002	-1.455	0.146	-0.007	0.
Doc_visits	22.5528	42.571	0.530	0.596	-60.895	106.
001 Initial_days	-53.4272	11.031	-4.843	0.000	-75.051	-31.
803	0 (770	0 122	F 000	0.000	0 417	0
TotalCharge 939	0.6779	0.133	5.089	0.000	0.417	0.
HighBlood_numeric 330	6607.2555	91.865	71.923	0.000	6427.181	6787.
Stroke_numeric 916	348.4727	111.439	3.127	0.002	130.030	566.
Arthritis_numeric 760	90.9398	93.266	0.975	0.330	-91.880	273.
Overweight_numeric	-61.2423	98.068	-0.624	0.532	-253.475	130.
Diabetes_numeric 778	96.2747	100.247	0.960	0.337	-100.229	292.
Services_CT Scan 922	271.1344	141.204	1.920	0.055	-5.654	547.
Services_Intravenou	us 69.1849	100.462	0.689	0.491	-127.741	266.
Services_MRI 502	120.0647	236.423	0.508	0.612	-343.373	583.
const 640	7498.1024			0.000	6693.564	8302.
Omnibus: Prob(Omnibus): Skew: Kurtosis:	52	23.938 Du 0.000 Ja 0.201 Pr 2.329 Co	rbin-Watson: rque-Bera (3 ob(JB): nd. No.	: JB):	2.01 255.02 4.19e-5 3.91e+6	18 26 56 95

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.91e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [110...

```
# Reducing model - Backward Stepwise Elimination
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())
```

OLS Regression Results

=======================================	========	=======		=======		==
Dep. Variable:	Additional_ch	arges R-s	squared:		0.35	55
Model:		OLS Ad	j. R-squared	:	0.35	55
Method:	Least Sq	uares F-s	statistic:		500.	.7
Date:	Mon, 07 Aug		ob (F-statis	•	0.6	90
Time:			g-Likelihood	:	-98188	
No. Observations:		10000 AI	C:		1.964e+6	
Df Residuals:		9988 BI	C:		1.965e+6	95
Df Model:		11				
Covariance Type:		obust 				
===						
	coef	std err	t	P> t	[0.025	0.9
75]						
Income 001	-0.0030	0.002	-1.457	0.145	-0.007	0.
Doc_visits	22.2734	42.566	0.523	0.601	-61.165	105.
711	22,2734	42.300	0.525	0.001	-01.105	100.
Initial_days	-53.4092	11.031	-4.842	0.000	-75.032	-31.
786	33.4032	11.051	7.072	0.000	73.032	51.
TotalCharge	0.6777	0.133	5.088	0.000	0.417	0.
939						
HighBlood_numeric	6607.3722	91.861	71.928	0.000	6427.305	6787.
439						
Stroke_numeric	348.1563	111.433	3.124	0.002	129.725	566.
588						
Arthritis_numeric	90.7257	93.261	0.973	0.331	-92.085	273.
537						
Overweight_numeric	-61.3345	98.064	-0.625	0.532	-253.559	130.
890						
Diabetes_numeric	97.3597	100.220	0.971	0.331	-99.092	293.
811						
Services_CT Scan	263.0416	140.296	1.875	0.061	-11.968	538.
051	64 0064	00 400	0 (1)	0 530	422 222	255
Services_Intravenou	is 61.0961	99.188	0.616	0.538	-133.332	255.
524	7507.8168	409.975	18.313	0 000	6704.183	8311.
const	/30/.0100	409.975	10.313	0.000	0704.103	0311.
451						
Omnibus:			rbin-Watson:		2.01	_
Prob(Omnibus):			rque-Bera (J	в).	254.75	
Skew:			ob(JB):	-,.	4.81e-5	
Kurtosis:			nd. No.		3.91e+6	
=======================================	========	=========	=========	=======		==

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 3.91e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [111...

```
# Reducing model - Backward Stepwise Elimination
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())
```

OLS Regression Results

============							
	Additional_ch			ıuared:		0.355	
Model:	, .a.a.= a= aa.=_a.			R-squared:		0.355	
Method:	Least So			atistic:		550.8	
Date:	Mon, 07 Aug	•		(F-statistic):	0.00	
Time:		28:11		·Likelihood:	, -	-98188.	
No. Observations:		10000	AIC:			1.964e+05	
Df Residuals:		9989	BIC:			1.965e+05	
Df Model:		10				_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Covariance Type:	nonr	robust					
=======================================			=====	.========	======	=========	
===							
	coef	std	err	t	P> t	[0.025	0.9
75]							
Income	-0.0030	0.	002	-1.451	0.147	-0.007	0.
001							
<pre>Initial_days</pre>	-53.4603	11.	030	-4.847	0.000	-75.082	-31.
839							
TotalCharge	0.6783	0.	133	5.093	0.000	0.417	0.
939							
HighBlood_numeric	6607.7052	91.	856	71.936	0.000	6427.649	6787.
761							
Stroke_numeric	348.0037	111.	429	3.123	0.002	129.581	566.
427							
Arthritis_numeric	90.6451	93.	258	0.972	0.331	-92.159	273.
449							
Overweight_numeric	-60.7201	98.	053	-0.619	0.536	-252.924	131.
484							
Diabetes_numeric	97.9942	100.	209	0.978	0.328	-98.436	294.
424	262 2627	4.40		4 000		44 045	
Services_CT Scan	263.9627	140.	280	1.882	0.060	-11.015	538.
940	60 0004		400	0 410	0 = 40	422.640	0.55
Services_Intravenou	ıs 60.8084	99.	183	0.613	0.540	-133.610	255.
226	7647 4060	252	774	24 502	0.000	6025 605	0200
const	7617.1069	352.	//1	21.592	0.000	6925.605	8308.
609							
					======		
Omnibus: Prob(Omnibus):	52	24.525		oin-Watson: Jue-Bera (JB):		2.018 255.155	
Skew:		0.000 0.201				3.92e-56	
Kurtosis:		2.329		i. No.		3.36e+05	
val.rosts.		∠. 329		. NU. 		3.30e+05	
		===	=		=		

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.36e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
# Reducing model - Backward Stepwise Elimination
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())
```

===========	========		========	=======	:=======	===
Dep. Variable:	Additional_	_charges	R-squared:		0.	355
Model:		OLS	Adj. R-squar	ed:	0.	355
Method:	Least	Squares	F-statistic:		61	2.0
Date:	Mon, 07 A	Aug 2023	Prob (F-stat	istic):	0	.00
Time:	2	23:28:21	Log-Likeliho		-981	88.
No. Observations:		10000	AIC:		1.964e	+05
Df Residuals:		9990	BIC:		1.965e	+05
Df Model:		9			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Covariance Type:	no	nrobust				
=======================================		:=======				
_						
-	coef	std er	r t	P> t	[0.025	0.97
5]	coei	Stu en		POLCI	[0.023	0.37
2]						
-						
Income	-0.0030	0.00	2 -1.444	0.149	-0.007	0.00
1						
Initial_days	-53.4682	11.03	0 -4.848	0.000	-75.089	-31.84
8						
TotalCharge	0.6782	0.13	3 5.092	0.000	0.417	0.93
9	0,0,0=	0.720	3,000	0.000	01.27	0.75
HighBlood_numeric	6607.3919	91.85	2 71.936	0.000	6427.344	6787.43
9						
Stroke_numeric	346.8382	111.409	9 3.113	0.002	128.454	565.22
3	340.0302	111.40	3.113	0.002	120.454	303.22
Arthritis numeric	90.5828	93.25	5 0.971	0.331	-92.216	273.38
1	30.3020	JJ•2J.	0.571	0.551	52.210	273.30
Overweight_numeric	-60.4248	98.049	9 -0.616	0.538	-252.620	131.77
1	-00.4246	90.04	-0.010	0.556	-232.020	131.//
-	00 2504	100 20	4 0.000	0.326	00.063	204 77
Diabetes_numeric	98.3584	100.20	4 0.982	0.326	-98.062	294.77
9	242 2424	425 75	. 4 705	0.074	22 002	500 40
Services_CT Scan	242.3134	135.75	9 1.785	0.074	-23.802	508.42
8						
const	7638.9813	350.95	1 21.767	0.000	6951.046	8326.91
6						
=======================================	========	=======	========	=======	========	===
Omnibus:		524.822	Durbin-Watso			018
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	255.	
Skew:		0.201	Prob(JB):		3.84e	
Kurtosis:		2.329	Cond. No.		3.34e	+05
=======================================	=======		========	=======	========	===

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.34e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [113... # Reducing model - Backward Stepwise Elimination
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
```

```
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())
```

_____ Dep. Variable: Additional charges R-squared: 0.355 Model: OLS Adj. R-squared: 0.355 Method: Least Squares F-statistic: 688.5 Mon, 07 Aug 2023 Prob (F-statistic): Date: 0.00 Time: 23:28:29 Log-Likelihood: -98189. No. Observations: 10000 AIC: 1.964e+05 Df Residuals: 9991 BIC: 1.965e+05

Df Model: 8
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Income	-0.0030	0.002	-1.436	0.151	-0.007	0.001
<pre>Initial_days</pre>	-53.5656	11.028	-4.857	0.000	-75.183	-31.948
TotalCharge	0.6795	0.133	5.103	0.000	0.419	0.941
HighBlood_numeric	6605.7739	91.811	71.950	0.000	6425.805	6785.742
Stroke_numeric	346.9266	111.406	3.114	0.002	128.549	565.304
Arthritis_numeric	90.2648	93.251	0.968	0.333	-92.525	273.055
Diabetes_numeric	98.7377	100.199	0.985	0.324	-97.673	295.148
Services_CT Scan	242.1478	135.755	1.784	0.074	-23.958	508.254
const	7592.4255	342.713	22.154	0.000	6920.638	8264.213

Omnibus:	525.871	Durbin-Watson:	2.017
Prob(Omnibus):	0.000	Jarque-Bera (JB):	255.454
Skew:	0.201	Prob(JB):	3.38e-56
Kurtosis:	2.328	Cond. No.	3.26e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified
- [2] The condition number is large, 3.26e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [114...

X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())

============			=========
Dep. Variable:	Additional_charges	R-squared:	0.355
Model:	OLS	Adj. R-squared:	0.355
Method:	Least Squares	F-statistic:	786.7
Date:	Mon, 07 Aug 2023	Prob (F-statistic):	0.00
Time:	23:28:33	Log-Likelihood:	-98189.
No. Observations:	10000	AIC:	1.964e+05
Df Residuals:	9992	BIC:	1.965e+05
Df Model:	7		
Covariance Type:	nonrobust		
=======================================	=======================================		===========

	coef	std err	t	P> t	[0.025	0.975]
<pre>Income Initial_days</pre>	-0.0030 -54.4878	0.002 10.987	-1.431 -4.959	0.152 0.000	-0.007 -76.025	0.001 -32.951
TotalCharge	0.6912	0.133	5.212	0.000	0.431	0.951
HighBlood_numeric	6605.0850	91.808	71.944	0.000	6425.122	6785.047
Stroke_numeric	345.0462	111.388	3.098	0.002	126.703	563.390
Diabetes_numeric	98.8433	100.199	0.986	0.324	-97.567	295.253
Services_CT Scan	242.0549	135.754	1.783	0.075	-24.050	508.160
const	7594.8889	342.703	22.162	0.000	6923.122	8266.656
=======================================	=======	========				===
Omnibus:		527.024	Durbin-Watso	n:	2.	017
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	255.	722
Skew:		0.201	Prob(JB):		2.966	:-56
Kurtosis:		2.328	Cond. No.		3.266	+05

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.26e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [115... X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
    results_reduced = sm.OLS(y,X.astype(float)).fit()
    print(results_reduced.summary())
```

	=======================================		
Dep. Variable:	Additional_charges	R-squared:	0.355
Model:	OLS	Adj. R-squared:	0.355
Method:	Least Squares	F-statistic:	917.7
Date:	Mon, 07 Aug 2023	Prob (F-statistic):	0.00
Time:	23:28:37	Log-Likelihood:	-98189.
No. Observations:	10000	AIC:	1.964e+05
Df Residuals:	9993	BIC:	1.964e+05
Df Model:	6		

nonrobust

===========	========	=======	========	:=======	:=======	========
	coef	std err	t	P> t	[0.025	0.975]
Income Initial_days TotalCharge HighBlood_numeric Stroke_numeric Services_CT Scan	-0.0030 -55.4650 0.7031 6603.1710 345.7949 243.7301	0.002 10.942 0.132 91.788 111.386 135.743	1.796	0.150 0.000 0.000 0.000 0.002 0.073	-0.007 -76.914 0.444 6423.249 127.457 -22.354	0.001 -34.016 0.962 6783.093 564.133 509.814
const	7593.6153	342.700	22.158	0.000	6921.854	8265.376
============		=======				===
Omnibus:		527.158	Durbin-Watso	on:	2.	017
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	255.	718
Skew:		0.201	Prob(JB):		2.966	-56
Kurtosis:		2.328	Cond. No.		3.266	+05
===========	========	=======				:===

Notes:

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 3.26e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [116...
```

X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())

===========	=======================================		==========
Dep. Variable:	Additional_charges	R-squared:	0.355
Model:	OLS	Adj. R-squared:	0.355
Method:	Least Squares	F-statistic:	1101.
Date:	Mon, 07 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	23:28:39	Log-Likelihood:	-98191.
No. Observations:	10000	AIC:	1.964e+05
Df Residuals:	9994	BIC:	1.964e+05
Df Model:	5		

nonrobust

===========	========	=======	========			========
	coef	std err	t	P> t	[0.025	0.975]
Initial_days	-55.4593	10.943	-5.068	0.000	-76.910	-34.009
TotalCharge	0.7033	0.132	5.325	0.000	0.444	0.962
HighBlood_numeric	6601.6885	91.787	71.924	0.000	6421.768	6781.609
Stroke_numeric	345.4016	111.391	3.101	0.002	127.052	563.751
Services_CT Scan	246.2365	135.739	1.814	0.070	-19.840	512.313
const	7484.2218	334.196	22.395	0.000	6829.130	8139.314
===========	:=======	=======	========	========	========	====
Omnibus:		528.319	Durbin-Watso	on:	2	.017
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	255	.626
Skew:		0.200	Prob(JB):		3.10	e-56
Kurtosis:		2.327	Cond. No.		4.32	e+04
===========	:=======	=======	=========	========	========	====

Notes:

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 4.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [117...
```

X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Complication_ri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())

```
______
Dep. Variable:
              Additional charges
                               R-squared:
                                                         0.355
Model:
                          OLS Adj. R-squared:
                                                         0.355
                  Least Squares F-statistic:
Method:
                                                         1375.
                Mon, 07 Aug 2023 Prob (F-statistic):
Date:
                                                          0.00
Time:
                      23:28:45 Log-Likelihood:
                                                       -98192.
No. Observations:
                         10000
                               AIC:
                                                      1.964e+05
Df Residuals:
                          9995
                               BIC:
                                                      1.964e+05
Df Model:
                            4
Covariance Type:
                    nonrobust
```

	coef	std err	t	P> t	[0.025	0.975]
<pre>Initial_days TotalCharge</pre>	-55.7636 0.7073	10.943 0.132	-5.096 5.355	0.000 0.000	-77.214 0.448	-34.313 0.966
HighBlood_numeric	6603.1470	91.794	71.935	0.000	6423.213	6783.081
Stroke_numeric const	348.1834 7502.4044	111.393 334.084	3.126 22.457	0.002 0.000	129.830 6847.532	566.537 8157.276

 Omnibus:
 531.346
 Durbin-Watson:
 2.017

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 255.867

 Skew:
 0.199
 Prob(JB):
 2.75e-56

 Kurtosis:
 2.325
 Cond. No.
 4.32e+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 4.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [118...
# VIF (variance inflation factor) - looks at multicolinearity
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Independent Variables Set
X = X.astype(float)

# VIF Data Frame
vif_data = pd.DataFrame()
vif_data["Feature"] = X.columns

# Calculate VIF for each feature
vif_data["VIF"] = [variance_inflation_factor(X.values, i)
for i in range(len(X.columns))]

vif_data = vif_data.sort_values(by='VIF', ascending=False)
print(vif_data)
```

```
Feature VIF

4 const 56.377480

1 TotalCharge 41.878499

0 Initial_days 41.863125

2 HighBlood_numeric 1.028799

3 Stroke numeric 1.000208
```

```
In [119...
```

```
# Final reduced model
X = new_med_data.drop(columns=['Additional_charges','Anxiety_numeric','Diabetes_numeri
results_reduced = sm.OLS(y,X.astype(float)).fit()
print(results_reduced.summary())
```

In [120...

In [122...

In [123...

OLS Regression Results

```
______
Dep. Variable:
              Additional charges
                                R-squared:
                                                           0.353
Model:
                           OLS Adj. R-squared:
                                                          0.353
                   Least Squares F-statistic:
Method:
                                                          2727.
                Mon, 07 Aug 2023 Prob (F-statistic):
Date:
                                                           0.00
                       23:29:19 Log-Likelihood:
Time:
                                                         -98207.
No. Observations:
                          10000 AIC:
                                                       1.964e+05
Df Residuals:
                          9997
                                BIC:
                                                        1.964e+05
Df Model:
                             2
Covariance Type:
                     nonrobust
______
                  coef std err t P>|t| [0.025

      HighBlood_numeric
      6684.5358
      90.630
      73.756

      Stroke_numeric
      340.6685
      111.542
      3.054

                                             0.000 6506.882 6862.189
                                           0.002
                                                    122.023
                                                             559.314
               9306.3902 61.976 150.160
                                             0.000
                                                    9184.904
                                                              9427.876
______
Omnibus:
                        535.698 Durbin-Watson:
                                                          2.015
                         0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                                         253.995
                          0.193 Prob(JB):
Skew:
                                                        7.01e-56
                          2.322 Cond. No.
                                                            2.89
Kurtosis:
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly spec
ified.
# Calculating RSE
mse = results initial.mse resid
print('mse: ',mse)
rse = np.sqrt(mse)
print('rse: ',rse)
mse: 19799875.768461548
rse: 4449.705132754478
# Calculating RSE
mse = results reduced.mse resid
print('mse: ',mse)
rse = np.sqrt(mse)
print('rse: ',rse)
mse: 19853294.35214707
rse: 4455.703575435317
# Visualizing model fit of reduced model
```

sm.qqplot(data=results reduced.resid, fit=True, line="45")

Justification of Model Reduction

The feature selection procedure that I initially used to reduce the linear regression model was backward stepwise elimination. Backward stepwise elimination is defined as a wrapper method that, "feed the features (variables) for your model and based on the model performance you add/remove the features." (Middleton, 2022) This was performed by evaluating the initial model variables and their corresponding p-values. I made comparisons and started eliminating variables one by one starting with the highest p-value first until there were no variables that were above 0.05. At the end of the evaluation, I removed a total of ten variables. With this technique, we were able to reduce the model and focus on those variables that have more influence on the dependent variable and get rid of those variables that do not.

Lastly, I used the Variance Inflation Factor (VIF) to look at multicollinearity and reduce the model further. Multicollinearity is important to address to adhere to the initial assumption that multicollinearity is low. When performing VIF, there were two variables with a value of above 10 which were then dropped from the model. (Sewell, n.d.)

Model Comparison

Looking at the initial model and the reduced model, it appears that the model decreased in strength and validity by a small amount. The model evaluation metric I chose to focus on was the residual standard error. The residual standard error (RSE) is, "Used to measure how well a regression model fits a dataset. In simple terms, it measures the standard deviation of the residuals in a regression model." (Middleton, 2022) The initial model RSE was 4449.71 and the reduced model RSE was 4455.70. Since a lower RSE is better, it appears that the model got slightly worse after reduction.

Results

An interpretation of the coefficients of the reduced model

HighBlood_numeric: 6684.54

Stroke_numeric: 340.67

The coefficients listed above are for all remaining variables within the reduced model. These coefficients indicate the effect that each variable has on the dependent variable additional charges in parallel with what direction the effect is. (Middleton, 2022) This means that a one-unit increase of the independent variable results in the value of the coefficients increase in the dependent variable. When an individual is characterized as having high blood pressure, there is an associated increase of additional charges by 6684.54. Similarly, when an individual is characterized as having a stroke there is an increase of additional charges by 340.67.

The statistical and practical significance of the reduced model

The model does have statistical significance. To determine statistical model significance, I focused on the F-statistic and the p-value. The p-value or Prob(F-statistic) in the summary of the reduced model indicated a value of 0.0. This value is less than the significance level of 0.05 and

therefore leads to the conclusion that we reject the null hypothesis and determine that there is a relationship that exists within this model. (Straw, 2023) As mentioned above, another evaluation metric to look at would be the F-statistic which was 2727. Utilizing the F-table of critical values, I discovered that the F-statistic (2727) was greater than the critical value (3) leading to the conclusion that the model is statistically significant. (Straw, 2023)

Now, looking at practical significance I do not believe that this model is practically significant. This model is looking at the relationship between additional hospital charges and the reduced models independent variables high blood pressure and stroke. The independent variables high blood pressure and stroke are too complex to condemn it to a simple linear regression model. When it comes to medical issues like high blood pressure and stroke, there are almost always other underlying factors and variables to consider that would cause an affect on additional hospital charges. This could be underlying diseases or even certain treatment protocols for these certain medical conditions.

Limitations of the data analysis

With data analysis, there are always advantages and disadvantages of each method used. I would like to focus on the methods used for outliers treatment, re-expression of categorical data, backward stepwise elimination, and variance inflation factor (VIF).

Outliers: The treatment I chose for the outliers within this data analysis was replacing them with the median or imputation. This method has drawbacks that stem from causing unnecessary influence on the data, skewing the data improperly, or adding bias.

Re-expression of categorical data: Due to the process of ordinal encoding, with larger data sets and more unique values this method could turn into a lengthy process in the future. One hot encoding increases dimensionality and decreases optimization with the increase in columns and lack of new information.

Backward Stepwise Elimination: Using this method could cause the elimination of explanatory variables that do have causal effects on the dependent variable with the lack of statistical significance and, "nuisance variables may be coincidentally significant." (Smith, 2018)

Variance Inflation Factor (VIF): I performed VIF after backward stepwise elimination which could have had an influence on the VIF values and caused incorrect interpretation.

Recommendations

Based on my results, I would recommend focusing on the creation and maintenance of a more exhaustive list of variables. Due to the complexity of these variables within the model created, it is important to zoom in on other underlying variables like billing practices or necessary treatment protocols when faced with these complicated variables.

In []: