Pontifícia Universidade Católica do Paraná

Disciplina: Resolução de Problemas com Lógica Matemática (RPLM) Lista de Exercícios 7

Nome: João Vitor Palmonari, Loraine de Fátima Mendes, Lucas Gabriel Mendes De Castro, Marcio Vinicius de Souza da Rocha

Exercícios:

1. Indique a regra de inferência que justifica a validade de:

a)
$$\{(p \rightarrow q)\} \models (p \rightarrow q) \lor \neg r$$

b)
$$\{ \neg p \land (q \rightarrow r) \} \vDash \neg p$$

c)
$$\{(p \rightarrow q), (q \rightarrow \neg r)\} \models (p \rightarrow \neg r)$$

1c)
$$\{(p \rightarrow Q), (Q \rightarrow TR)\} \not\models (p \rightarrow TR)$$

1. $p \rightarrow Q$ ho

2. $Q \rightarrow TR$ hip

 $p \rightarrow TR$ p

d)
$$\{p \rightarrow (q \rightarrow r), p\} \models q \rightarrow r$$

10)
$$\{\rho \rightarrow (Q \rightarrow R), \rho\} \not\models Q \rightarrow R$$

1. $\rho \rightarrow (Q \rightarrow R)$

2. ρ

3. $Q \rightarrow R$

SH112

e)
$$\{(q \lor r) \rightarrow \neg p, \neg \neg p\} \models \neg (q \lor r)$$

f) $\{(p \rightarrow q), (r \rightarrow \neg s)\} \models (p \rightarrow q) \land (r \rightarrow \neg s)$

17)
$$\{(p + q), (R + 75)\} \neq (p + q) n(R + 75)$$

1. $(p + q)$ nip

2. $(R + 75)$

And

3. $(p + q)n(R + 75)$ 63 4;2

g) $\{(p \land q) \lor (\neg p \land r), \neg (\neg p \land r)\} \vDash (p \land q)$

GMPralvlapns	n) his	A ., R	
2-120171.	hip	~B	10001
3. (pnq)	gra .	(acA)	1 (il8
C D	- des	(leneg)	2
J. U	112,	11 9	184
	9/11	APRIN BUT	

2. Indique uma possível conclusão para:

a)
$$\{(s \lor t) \rightarrow (r \land q), (r \land q) \rightarrow \neg p\}$$

(ZA) {15, t) + (R 10), 1	R1Q)-17P}
1 (5 v T) D(R 1Q) 2 (R 1Q) D 7 P 3 (5 v T) - D 7 P Silogismo Hipotético A DB B DC A DC	$A = (S \vee T)$ $B = (R^n Q)$ $C = P$

b)
$$\{(p \leftrightarrow q) \rightarrow \neg(r \land s), \neg \neg(r \land s)\}$$

(2B) { (P4DQ) +> (R1S), 27 (R	15)}
1. (P4-DQ) -> 7(R 15) 2. 77(R 15) 3. 7(P4-DQ)	A = (P4-10) B = 1(Rns)
Modes Tollers A + B 7B	134-613

 $c) \{ s \lor (r \land t), \neg s \}$

d)
$$\{p \rightarrow (r \lor \neg s), (r \lor \neg s) \rightarrow t\}$$

$$e)\;\{\;p\;\rightarrow\;r\;,\,\neg\;q\;\rightarrow\;\neg\;s\;,\,p\;\mathsf{V}\;\neg\;q\;\}$$

f) $\{\neg p \lor \neg q, \neg \neg q\}$

g)
$$\{ p \rightarrow (\neg r \land q), \neg (\neg r \land q) \lor \neg s, \neg q \rightarrow s \}$$

3. Construa as deduções:

a)
$$\{(p \land q) \rightarrow s, p, q\} \vDash s$$

b) $\{p \rightarrow q, \neg p \rightarrow r, \neg q\} \models r$

(3B)	{P	DQ, 7P + R, 7Q)	} = R	
1.	P-DO	Modes	tollers 1,3	
2.	TP-1) R 1. P+	o Q	
3.	70	3 20		1
4-	TP	(Modas tollers 1,3) 20	11 / 2 /	4
5.	R	(Modes Powers 4,2)	Goos Powers	, ~
			4. 7P	-
			2.7PDR	-
			B. R	

c) { p \rightarrow q , q $\rightarrow \neg \neg r$, s $\rightarrow \neg r$, p } $\models \neg s$

30 { P+0 Q, Q +> 77R, S+07R,	P3. +75	
1. P + Q	MP(1,4)	MP (2,5)
2. Q -1777 R 3. S + 2 7 R	P-0Q	0-517R
4. P	Q	TIR
5. Q Modrs Powers (1,4) 6. 77R Modrs Powers (2,5)		MT(6,3)
7. 75 Modus tollews (6,3)		5->17R
		75

d) { p \land q , p \rightarrow r , q \rightarrow s } \models r \land s

THE BUTY	
di 1, (p19)	hip Flaterian
2. (0->01)	hip
3. [9->5]	hip
4. 6	samp.
5, 9	Dimp 1
6. AJ	mp 2, 4
7. 5.	MP 3,5
8 212	cony 6,7.
	V

e) $\{p \rightarrow (\neg q \land r), p, s \rightarrow q, s \lor t\} \models t$

f) $\{(p \lor q) \rightarrow (p \rightarrow (s \land t)), p \land r\} \vDash t \lor u$

g) { p
$$\rightarrow$$
 q , \neg q , (\neg p $\lor \neg$ r) \rightarrow s } \vDash s

h) { $p \rightarrow \neg r$, p, $s \rightarrow r$ } $\vDash \neg s$

i) $\{p \rightarrow q, p \rightarrow \neg r, p\} \vDash q \land \neg r$

.) \	1000	lip (page)
2.	(b-> va)	lip
3.	P	cap (1.0
4.	iq	MP 1,3
5.	791	mp 2,3
6,	gnnn.	myleny 14,5 va 1.

 $j) \quad \{\, \neg p \ \lor \, \neg \, \neg \, q \ , \, \neg \, \neg \, p \ , \, \neg \, r \ \rightarrow \, \neg \, q \ \} \vDash \neg \, \neg \, r$

(35)	{7PV77Q,77P,7R}	FQMAR
1.	7P V 77Q	AZIP
	קרר	BEQ
	7 R	CETR
4.	Q 50(1)	
5.	Q17 R CONT (4,3)	
	W. A.	
Siloa	ismo Distrutivo (1)	Contracse (4,3)
1	B. R	Q
7	PV77Q	7R
	79	QMR
	71Q = Q	

k) {pn7Q,QQV-1R,5-1R} = pn75

- bu → S

 The farm que ser elaboradas a nivel local e internacional.
- 5 · 6 ^ L S · mas a industria cultural como um todo passou por mome
- 3.5-0 R
- 4 Bilicas da épor similer 1, censurado, sendo liberado para exibição e pressão política, até mesmo por parte da ligreja Carálica, que oferece (aind Marganos de Parais, que aborda diretamente temas humanisticos
- 2 10 de l'acerdo adynames de romances, como no caso do filme São Ser
- 5 · boli 2 ro, os prod Lu 1 as 3 v gam o nacionalismo junto com os militare
- 6 es b v 12 pos produtocou 8 a M. dependiam do Estado, ja haviam sido mesmo. Sob o ponto de vista de que era necessária criar uma imagem par

- 4. Verificar se é um teorema. Fazer a prova através da **Negação do Teorema** e demonstrar utilizando a **Árvore de Resolução** (utilizar manipulação sintática):
 - 1. Transformar a fórmula em argumento: conjunção de cláusulas com implicação em uma TESE
 - 2. Chegar a uma cláusula vazia •, por derivação.

a)
$$(\neg p \land (\neg p \rightarrow (q \lor r)) \land \neg r) \rightarrow q$$

A) 1. Romerast ab agrapum 1 (A
(pc-en/(levp) <- 9~/n 9~/1~
gel Re-long MA (9
2. FNC de terema negado.
praphallusphan
the dw co

b) \neg ((p $\lor \neg$ q) $\land \neg \neg$ q \land (p \rightarrow (r \land s))) \lor s

c)
$$\neg r \rightarrow \neg ((p \rightarrow q) \land \neg q \land (p \lor r))$$

d) $(u \lor \neg r) \lor \neg (((p \lor q) \rightarrow \neg r) \land (s \rightarrow p) \land (t \rightarrow q) \land (s \lor t))$

5. Verificar se é um teorema. Fazer a prova através da **Negação da Tese** e demonstrar utilizando a **Árvore de Resolução** (utilizar manipulação sintática):

Dicas: 1. Transformar a fórmula em argumento: **conjunção** de cláusulas com **implicação** em uma TESE

2. Chegar a uma cláusula vazia •, por derivação.

a)(
$$\neg$$
(\neg ($p \rightarrow q$) $\lor \neg$ ($r \rightarrow s$)) \land ($t \rightarrow u$) \land ($u \rightarrow v$) \land (\neg $q \lor \neg v$)) \rightarrow (\neg $p \lor \neg t$)

$$b) \left(\left(p \land q \right) \land \left(p \rightarrow r \right) \right) \rightarrow \left(p \land r \right)$$

 $c) \left(\, \neg\, p \land \neg\, r\,\right) \lor \neg (\, (\, \neg\, p \land q\,) \land (\, r \rightarrow p\,)\,)$

 $d) \left(\left(\, \neg \, p \, \rightarrow \, q \, \right) \wedge \neg \left(\, r \wedge s \, \right) \wedge \left(\, p \, \rightarrow \, \left(\, r \wedge s \, \right) \right) \, \right) \, \rightarrow \, \neg \, p \wedge q$

