参考答案

2.1

要证明 $f(n) = \Theta(g(n))$ 当且仅当存在正常数 c_1, c_2, n_0 ,使得当 $n \ge n_0$ 时,

 $c_1g(n) \le f(n) \le c_2g(n)$ 。 取 $c_1 = 3/5, c_2 = 1$ 代入不等式,由左不等式可得 n>=21/13,由右

不等式可得 n>=0。所以取 n_0 = 21/13。所以当 $n \ge n_0$, c_1 = 3/5, c_2 = 1时,f(n) = $\Theta(g(n))$

2.2

因为
$$f(n) \le \max(f(n), g(n))$$
, $g(n) \le \max(f(n), g(n))$

所以有 $f(n) + g(n) \le 2 \max(f(n), g(n))$

即
$$\frac{1}{2}(f(n)+g(n)) \leq \max(f(n),g(n))$$

又因为 $\max(f(n), g(n)) = f(n)$ 或者g(n)

所以
$$\max(f(n), g(n)) \leq f(n) + g(n)$$

对于
$$n \ge n_0$$
, 取 $c_1 = \frac{1}{2}$, $c_2 = 1$, 可得

$$c_1(f(n)+g(n)) \leq \max(f(n),g(n)) \leq c_2(f(n)+g(n))$$

故所证成立。

2.3

要证 $(n+a)^b = \theta(n^b)$ 当且仅当存在正常数 a_0, c_1, c_2 ,使得 $c_1 n^b \le (n+a)^b \le c_2 n^b$

先设
$$C_1 = (\frac{1}{2})^b$$
,则由 $C_1(n^b) \le (n+a)^b \Leftrightarrow (\frac{1}{2}n)^b \le (n+a)^b$

$$\Leftrightarrow \frac{1}{2}n \le n + a \Leftrightarrow -\frac{1}{2}n \le a \Leftrightarrow n \ge -2a$$

又因为 $n \geq 0$,所以可取 $n_0 \dashv 2a$,使得对于任何的a ,当 $n \geq n_0$ 时,

有
$$\left(\frac{1}{2}n\right)^{b} \leq (n+a)^{b}$$

而当
$$n_0 = 2a$$
|时, $(n+a)^b \le (n+|a|)^b \le (n+\frac{n}{2})^b \le (\frac{3}{2}n)^b \le (2n)^b = 2^b n^b$

所以 C_2 可取 2^b

所以当
$$_{C_1} = (\frac{1}{2})^b, C_2 = 2^b, n_0 = 2a$$
|时,可证 $(n+a)^b = \theta(n^b)$

//根据极限来证也可以。

2.4

要证 $f(n) = \Theta(n^2)$ 当且仅当存在正常数 c_1, c_2, n_0 ,使得当 $n \ge n_0$ 时, $c_1 n^2 \le f(n) \le c_2 n^2$,取 $c_1 = a/2, c_2 = 2a$,代入左不等式可得: $\frac{a}{2} n^2 + bn + c \ge 0$,求出 $n \ge \frac{-b + \sqrt{|4ac - b^2|}}{a}$ 。 代入右不等式可得: $an^2 - bn - c \ge 0$,求出 $n \ge \frac{b + \sqrt{|-4ac - b^2|}}{2a}$ 。 取 $n_0 = \max(\frac{-b + \sqrt{|4ac - b^2|}}{a}, \frac{b + \sqrt{|-4ac - b^2|}}{2a}, 0)$ 。 当 $n \ge n_0$ 时, $f(n) = \Theta(n^2)$

2.5

要证明 $f(n)=\mathrm{O}(g(n))$ 当且仅当存在正常数 c,n_0 ,使得当 $n\geq n_0$ 时,有 $f(n)\leq cg(n)$,即 $n^2\leq cn^3$,求解得 $c\geq 1/n\geq 0$,所以对于所有的 $n\geq 0$,有 $f(n)=\mathrm{O}(g(n))$

2.6

 $2^{n+1} = O(2^n)$ 成立,因为存在正常数 $c \ge 2$,使得当 $n \ge 0$ 时,有 $2^{n+1} \le c2^n$

 $2^{2n}=\mathrm{O}(2^n)$ 不成立,因为根据不等式 $2^{2n}\leq c2^n$ 计算可得 $c\geq 2^n$,当 n 无穷大时,c 不存在,所以不成立。

2.7

由 $f(n)=\mathrm{O}(g(n))$ 可得存在正常数 c,n_0 ,当 $n\geq n_0$ 时,有 $f(n)\leq cg(n)$,可得 $1/cf(n)\leq g(n)$,所以存在一个正常数 $c_1=1/c$,当 $n\geq n_0$ 时, $c_1f(n)\leq g(n)$,所以 $g(n)=\Omega(f(n))$

2.8

要证明 $n^3 = \Omega(n^2)$ 当且仅当存在正常数 c, n_0 ,使得当 $n \ge n_0$ 时,有 $cn^2 \le n^3$,求解得

 $c \ge 1/n \ge 0$,所以对于所有的 $n \ge 0$,有 $n^3 = \Omega(n^2)$

2.9 按照定义证明即可,比较简单,略(充分性,必要性)

2.10

由已知可得存在正常数 n_1,n_2,c_1,c_2 ,使得当 $n\geq n_1$ 时,有 $f_1(n)\leq c_1g(n)$ 。当 $n\geq n_2$ 时, $f_2(n)\leq c_2g(n)$ 。 所以 $f_1(n)\times f_2(n)\leq c_1g(n)\times c_2g(n)=c_1c_2(g(n)\times g(n))$,所以当 $n_0=\max(n_1,n_2)\ ,\ c=c_1c_2$ 时, $f_1(n)\times f_2(n)=\mathrm{O}(g(n)\times g(n))$