

台灣化學纖維股份有限公司 塑膠部

報告人:胡明諭 2020年12月4日

【密】【會後收回】

內 容

- 一、塑膠部AI推動規劃
- 二、PC廠AI推動規劃
- 三、製程與動機說明
- 四、模組開發應用成果
- 五、模組開發流程
- 六、結論

3

- 1. 本部AI推動組織包含各廠自主開發小組於2017/12/6成立, 並積極指派各廠人員至AI學校受訓。
- 2. PI(Plant Information)系統於2018年7月建置完成後,開始進行數據收集,雖然起步時間較晚,初期由各廠針對製程痛點及節水節能方面進行,嘗試結合AI知識來解決問題,朝自主開發方向努力。
- 3.本部各廠屬石化下游製程,能耗較小,初期自主開發能力較不足,且AI模組案件規模較小,故應用在節水節能推動方面,與化工事業群相比,效益不大。後續持續派員前往人工智慧學校受訓,選擇困難度較高的案件,與學校進行產學合作,同時也鼓勵員工提出製程痛點,由各廠自行檢討改善對策,以精進自主開發能力,並調整AI開發方向,朝向穩定製程、節能減碳及影像辨識等三個方向來努力。

塑膠部AI推動規劃

塑膠部智能工廠 推動組織人員共43人, 以推動全員AI為目標。

4

經理主持推動會議,檢 討各廠AI專案執行進度 作推動交流。

塑膠部智能工廠推動組織

◎塑膠部AI專案彙總

5

塑膠部AI專案規劃有28案,自行開發18案,委外10案,預估年效益是84,821千元,已完成10案,年效益41,444千元。

年效益單位:千元

米石 口门	AI專案數量			預估年效益
類別	自行開發	委外	合計	(已完成)
製程管理優化	9 (4)	7 (2)	16 (6)	48, 046 (36, 164)
品質管理優化	7 (2)	1 (0)	8 (2)	36, 775 (5, 280)
工廠安全管理	0 (0)	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	2 (0)	_
設備健康 狀態預警	$\begin{pmatrix} 2 \\ (2) \end{pmatrix}$	0 (0)	2 (2)	_
合 計	18 (8)	10 (2)	28 (10)	84, 821 (41, 444)

◎製程管理優化有16案,自行開發9案,委外7案,預估年 效益48,046千元,已完成6案,年效益36,164千元。

類別	項次	項目名稱	合作單位	預完/完成日	預估年效益 (千元)
	1	PC廠雙酚A溶液濃度穩定控制優 化	自行開發	2020/2 完成	20, 480
	2	PC廠汽提塔能源優化	自行開發	2020/6 完成	2, 864
	3	PP廠重質塔(3C-782)蒸汽用量最 佳化	自行開發	2020/7 完成	6, 264
製程管理 優化	4	新港PABS廠放流水水質穩定化	自行開發	2020/7 完成	符合環保 法規
	5	PP廠第1系列PP粉MI及乙烯預測 模組	台科大	2020/9 完成	3, 840
	6	麥寮PABS廠SAN#3線上MI計模 組開發	台科大	2020/10 完成	2, 716
	7	麥寮PABS廠SAN#1線上MI計模 組開發	自行開發 (平行展開)	2021/12	1, 358

類別	項次	項目名稱	合作單位	預完/完成日	預估年效益 (千元)
	8	麥寮PABS廠SAN#2線上MI計 模組開發	自行開發 (平行展開)	2021/12	1, 358
	9	新港PABS廠SAN#1線上MI計 模組開發	自行開發 (平行展開)	2021/12	2, 610
	10	寧波PABS廠SAN#4線上MI計 模組開發	自行開發 (平行展開)	2021/12	2, 244
	11	PP廠包裝袋車縫影像辨識	威盛公司	2020/12	1,740
制和竺珊	12	新港PABS廠押出機斷條 影像辨識	自行開發	2021/3	788
製程管理 優化	13	麥寮PABS廠包裝袋車縫影像 辨識	威盛/琦詮	2021/3	299
	14	寧波PABS廠押出機垂條 影像識別	臺裕/群匯/ 富士康 (POC驗證中)	2021/6	750
	15	寧波PABS廠包裝機AI智能化	臺裕/群匯 (POC驗證中)	2021/6	735
	16	新港PABS廠 600區製程溝汙 染影像辨識	鴻齡	2021/6	環保需求
	小計	已完成6案,年效益36,164千元	•		48, 046

○品質管理優化案有8案,自行開發7案,委外1案,預估年 效益36,775千元,已完成2案,年效益5,280千元。

類別	項次	項目名稱	合作單位	預完/完成日	預估年效益 (千元)
	1	麥寮PABS廠 基粉區凝聚段KOH 添加優化模組開發	自行開發	2020/1 完成	2, 640
	2	新港PABS廠 基粉區凝聚段KOH 添加優化模組開發	自行開發 (平行展開)	自行開發 2020/1 完成 自行開發 2020/4 (平行展開) 完成 自行開發 2020/4	2, 640
	3	寧波PABS廠 基粉區凝聚段KOH 添加優化模組開發	自行開發 (平行展開)	2020/12	4, 137
品質管理	4	PP廠 製粒機PP粒MI預測 (第三系列製粒機)	自行開發	2021/2	4, 340
優化	5	PC廠 押條模頭焦化物(GUM) 辨識	工研院	2021/2	993
	6	麥寮PABS廠 SAN製程DMF純化 系統效能預測	自行開發	2021/6	828
	7	PC廠 寡聚合溶液品質預測	自行開發	2021/7	9, 635
	8	PC廠 聚合溶液品質預測	自行開發	2021/11	11, 562
	小計	已完成2案,年效益5,280千元。			36, 775

- ◎工廠安全管理有2案。
- ◎設備健康狀態預警有2案,皆為自行開發(共24設備)。

類別	項次	項目名稱	合作單位	預完/完成日	預估年效益 (千元)
工廠安全	1	PP廠 2P-201C/D驟冷液泵浦丙烯 洩漏 影像安全管理	強將/鴻齡	2021/3	確保 工安
管理	2	新港PABS廠槽車收料安全辨識	東宜/鴻齡 /緯謙	2021/7	確保 工安
設備健康 狀態預警	1	PRiSM軟體開發設備健康度監控 診斷(有2設備)	自行開發	2019/12 完成	確保 生産
	2	iEM軟體開發設備健康度監控診 斷(有22設備)	自行開發	2020/8 完成	確保 生産
	小計	已完成設備健康狀態預警2案(共24	_		

(2021.02)

預估年效益為

(2020,06)

合計共有5案,

45,534千元。

二、PC廠AI推動規劃

塑膠部自行開發

第一案

◎PC廠AI專案彙總

PC廠共有三個系列,每個系列製程主要分4個單元,每一單元都有做AI 規劃,先執行一個系列後,再平行展開到其他二個系列。

◎21,197千元

◎規劃進行中

(2021.11)

11

三、製程與動機說明

- ◎製程說明
- 1. 雙酚A必須在鹼性環境下才能溶解,在原料調配單元,先用純水將32%的液鹼稀釋成5. 6%,再將5. 6%的液鹼與雙酚A混合攪拌,調配成濃度13. 5%的雙酚A溶液,最後再送至寡聚合及聚合單元反應。
- 2. 原設計操作,雙酚A溶液濃度控制範圍在13.5±0.3%。

三、製程與動機說明

◎動機說明

- 1. 因雙酚A溶液濃度控制範圍在13.5±0.3%,控制範圍大,穩定性不佳, 當濃度超限時,總酚會超過100ppm的管制值上限,造成PC粉降級損失。
- 2. 透過AI技術,自行開發濃度控制優化模組,先使濃度控制範圍縮小到 13.5±0.1%,累積操作經驗及信心後,進一步將雙酚A溶液濃度提升 至13.8±0.1%,來節省調配用水與汽提塔處理廢水的蒸汽。

四、模組開發應用成果

系列別	減少PC粉降級損失		節省用水		節省用汽		年效益	
	損失量 (噸/年)	年效益 (千元/年)	節省量 (噸/日)	年效益 (千元/年)	節省量 (噸/時)	年效益 (千元/年)	小計 (千元/年)	
PC1	558	5, 245	24	236	0.064	367	5, 848	
PC2	531	4, 991	24	236	0.064	367	5, 594	
PC3	864	8, 122	36	354	0.098	562	9, 038	
合計	1, 953	18, 358	84	826	0. 226	1, 296	20, 480	

說明:

- 1. 第一系列導入AI模組前,雙酚A溶液濃度晃動大,PC粉總酚偶爾會超過管制值,降級損失約558噸/年。
- 2.2020年2月第一系列導入預測模組及操作建議模組後,盤控人員可提前知道濃度變化及調整方向,未再發生PC粉降級損失。
- 3. 雙酚A溶液濃度透過AI模組穩定控制,後續進一步將濃度由13.5%提升至13.8%,可節省調配用水約24噸/日,節省汽提塔處理廢水用汽約0.064噸/時。
- 4. 本案在第一系列投入使用後,年效益為5,848千元。在2020年3月及4月平行展開至PC2及PC3系列,合計年效益20,480千元。

- ◎步驟一:定義問題與目標
- ◎定義問題(針對製程痛點,檢討問題所在)

說明:

- 1. 雙酚A 溶液濃度控制範圍在±0.3%,穩定性不佳,如遇濃度超管制值,影響聚合單元反應平衡,造成PC溶液總酚超限問題。
- 2. 雙酚A為固體顆粒,在使用氮氣輸送過程中,雙酚A與管壁碰撞產生細粉,導致粒徑大小不一,造成雙酚A溶液濃度不穩定。
 - (1)濃度高:聚合單元未反應雙酚A殘留太多,PC聚合物溶液總酚超限。
 - (2)濃度低:聚合單元反應不佳,雙酚A不足造成PC寡聚合物與液鹼反應,反應物小分子量較多,PC聚合物溶液總酚超限。

◎定義目標

說明:

- 1. 開發雙酚A溶液濃度預測模組,將濃度範圍精準控制在±0.1%,提供預測 值及操作建議值,協助盤控人員進行即時調整,達到模組準確預測、人 員即時調整,以及產品品質穩定的目標。
- 2. 雙酚A 溶液濃度,由13.5%提升至13.8%,可以節省用水與用汽,達到降低成本的目的。

- ◎步驟二:資料蒐集與前處理
- ◎收集製程與品質檢驗數據

收集2019年1月至2020年1月,與本案相關的14個製程變數數據(每小時選用1筆DCS數據使用,共9,264筆),後續經探索分析,將變數篩選到剩下7個。另外收集雙酚A溶液濃度檢測數據(每8小時1筆品管檢測數據,共1,095筆),其中能相互對應數據只有1,095筆。

製程變數(14個)

- 1. 純水流量
- 2. 調配槽液位
- 3. 調配槽壓力
- 4. 雙酚A假密度
- 5. 液鹼濃度
- 6. 液鹼流量
- 7. 雙酚A下料量
- 8. 餵料機電流
- 9. 調配槽出口壓力
- 10. 液鹼稀釋溫度
- 11. 混合器電流
- 12. 調配槽溫度
- 13. 調配槽攪拌電流
- 14. 調配槽排氣溫度

◎資料前處理

將14個製程變數設定操作上下限,來過濾剔除開停車及異常偏移數據, 資料清理後,有效數據由1,095筆降為1,040筆,作為後續模型訓練及驗 證資料。

删除開停車及異常數據

◎資料處理標準化

因每個變數的單位尺度不同,模型訓練時,將導致權重失真,使用log函數進行轉化,將數據壓縮到一個區間,使數據標準化,來提高後續建立模型的準確度。

原始儀錶點數據 (每個變數落在不同範圍)

純水流量	液鹼流量	假密度	調配槽液位
T/h	Kg/h	Kg/m^3	%
FIC1101	FIC1102	BD	LIC1103
35. 968	7718. 875	0.507	33. 359
35. 915	7708.699	0.503	33. 353
35.058	7515. 374	0.492	33. 342
33. 374	7160.659	0.492	33. 363
33. 408	7156. 288	0.476	33. 358
33. 480	7185.665	0.481	33. 344
33.416	7165. 250	0.499	33. 365
33. 323	7138. 436	0.487	33. 365

log函數

數據標準化	
(各變數縮放至特定	區域)

純水流量	液鹼流量	假密度	調配槽液位
T/h	Kg/h	Kg/m^3	%
FIC1101	FIC1102	BD	LIC1103
3. 610	8. 952	0.410	3. 537
3.609	8.950	0.407	3. 537
3.585	8. 925	0.400	3. 536
3. 537	8.876	0.399	3. 537
3. 538	8.876	0.390	3. 537
3.540	8.880	0.392	3. 536
3.539	8.877	0.405	3. 537
3. 536	8. 873	0.397	3. 537

log函數: log1P=ln(1+X); 例如ln(1+35.968)=3.610

◎步驟三:資料探索分析

- 1. 針對14個影響雙酚A溶液濃度變化的變數,進行探索性分析。
- 2. 以皮爾森相關分析法進行探索分析,發現變數1:液鹼濃度相關係數為0.72;變數2:雙酚A假密度相關係數為0.7,這2個變數與雙酚A溶液濃度有高度相關(相關係數0.7以上),與製程操作經驗相符。
- 3. 篩選相關係數0. 3以上製程變數,共計10個,作為後續模組開發參考。

製程變數(14個)						
項目	相關係數	項目	相關係數			
1. 液鹼濃度	0.72	8. 調配槽出口壓力	0.42			
2. 雙酚A假密度	0.70	9. 調配槽攪拌電流	0.38			
3. 純水流量	0.67	10. 液鹼稀釋溫度	0.31			
4. 調配槽液位	0.66	11. 混合器電流	0.15			
5. 調配槽壓力	0.58	12. 調配槽溫度	0.13			
6. 液鹼流量	0.55	13. 餵料機電流	0.09			
7. 雙酚A下料量	0.52	14. 調配槽排氣溫度	0.08			

- ◎步驟三:資料探索分析
- 4. 使用XGBoost重要性分析,來比對14個製程變數與雙酚A溶液濃度的關聯性差異,其中發現純水流量與調配槽液位的特徵分數較高,代表與雙酚A溶液濃度有較高的關聯性,此與製程操作經驗亦相符。
- 5. 篩選10個特徵分數較高的製程變數,作為後續模組開發參考。

- ◎步驟三:資料探索分析
- 6. 原始採用的14個製程變數,藉由探索分析篩選,以皮爾森相關分析法取 10個變數;以XGBoost重要性分析取10個變數,最後和製程檢討,利用 化工原理與質量平衡,篩選出7個與雙酚A溶液濃度相關的變數,作為 後續模組開發使用。

 製程變數(14個)	皮爾森	XGBoost		
表在愛數(14個)	相關分析法(10)	重要性分析(10)		
1. 純水流量				/
2. 調配槽液位				製程錶點
3. 調配槽壓力				•
4. 雙酚A假密度			abel a bar a	1. 純水流量
5. 液鹼濃度			製程檢討	2. 調配槽液位
6. 液鹼流量			篩選錶點 7個	3. 調配槽壓力
7. 雙酚A下料量			1. 化工原理	4. 雙酚A假密度
8. 餵料機電流			2. 質能平衡	5. 液鹼濃度
9. 調配槽出口壓力				6. 液鹼流量
10. 液鹼稀釋溫度				7. 雙酚A下料量
11. 混合器電流				\/
12. 調配槽溫度				
13. 調配槽攪拌電流				
14. 調配槽排氣溫度				
			•	

- ◎步驟四:模組開發與評估
- ◎AI品質模組建立(演算法選定)
- (1)濃度預測目標為連續型的數值,同時選用極限梯度提升、線性回歸和 隨機森林等3種演算法,來進行建模與誤差比較。
- (2)將篩選後的7個製程變數,分別投入這3種演算法進行模組訓練及驗證。

		訓練		驗證	
演算法	特點	RMSE	MAPE	RMSE	MAPE
		<0.1%	<5%	<0.1%	<5%
極限梯度提升 (XGBoost)	利用決策樹演算訓練多個模組,並共同 預測及計算殘差,針對錯誤部分加強學 習,最後將n次組合模組結果加權總和後 得出結果,以提高模組準確度。	0.061	0.4	0.067	0. 5
線性回歸 (Linear Regression)	利用最小平方函數對一個或多個自變數 和應變數之間關係進行建模的一種迴歸 分析。	0.164	1.5	0. 172	1.6
隨機森林 (Random Forest)	一種包含多個決策樹的分類器,加入隨 機分配的訓練資料,大幅增進運算結果。	0.092	0.9	0.113	1.1

◎極限梯度提升(XGBoost)演算法,其中驗證的均方根誤差(RMSE)0.067%符合雙酚A溶液濃度目標控制範圍(誤差小於0.1%),故選用極限梯度提升作為模組的演算法。

RMSE:均方根誤差(Root Mean Square Error)

MAPE: 平均絕對百分比誤差(Mean absolute percentage Deviation)

- ◎步驟四:模組開發與評估
- ◎模組建置

預測模組建立後,將70%的數據資料用來訓練模組,30%的資料用來驗證模組。

◎ 模組上線測試

模組於2020年2月上線測試,測試結果雙酚A溶液濃度預測值 與檢測值變化趨勢相近,均方根誤差(RMSE)為0.081%,符合 目標誤差<0.1%。

- ◎步驟五:線上應用及測試
- ◎模組開發應用平台

將AI預測值及建議值模組導入即時監控管理系統(RTPMS),建置網頁 畫面。畫面主要區分為線上操作數據、雙酚A溶液濃度趨勢、預測與操 作建議,以及各製程錶點趨勢。

23

- ◎步驟五:線上應用及測試
- ◎案例說明:
 - (1)2020/2/18 17:00,取樣檢測雙酚A溶液濃度為13.72%,AI預測值 為13.70%。
 - (2)雙酚A溶液目標濃度為13.8%,盤控人員依循模組建議,將純水流量由原來的34.86噸/小時,調降至操作建議值34.58噸/小時。

- ◎步驟五:線上應用及測試
- ◎案例說明:

2020/2/18 18:00,再加強取樣檢測,雙酚A溶液濃度已提升為13.80%, AI預測值為13.78%,接近雙酚A溶液目標濃度13.80%,實際檢測值與操作目標值相當,可提供盤控人員即時調整方向,快速穩定雙酚A溶液品質。

◎雙酚A溶液濃度穩定度提升

- 1. 第一系列導入AI模組前,盤控人員依據每8小時取樣檢驗結果,依SOP 調整雙酚A溶液濃度,因依靠人工取樣檢測,無法即時監控濃度,雙酚 A溶液濃度控制仍偶爾晃動大。
- 2.2020年2月第一系列導入預測模組及操作建議模組後,盤控人員可以提前知道雙酚A溶液濃度變化趨勢及調整方向,使雙酚A溶液濃度可以穩定控制在13.5±0.1%,後續再逐步提升濃度至13.8±0.1%,PC粉總酚含量由平均72ppm降至平均約50ppm。

◎節省用水與用汽

預測模組除了穩定品質操作外,後續將雙酚A溶液濃度提升至13.8%後, 純水用量由35.5噸/小時降至34.5噸/小時,節省24噸/日,汽提塔處理 廢水耗用蒸汽由3,890公斤/小時降至3,826公斤/小時,節省0.064噸/ 小時。

六、結論

- 1. 本案為廠內自行開發,無投資費用發生,且預測模組導入使用後,盤控人員可以依雙酚A溶液濃度變化進行即時調整,提高濃度穩定性,減少PC粉降級損失,同時達到節省用水與用汽;本案平行展開至PC2及PC3系列,分別於2020年3月及4月陸續投入使用後,合計年效益為20,480千元。
- 2. 雙酚A溶液濃度控制上下限由±0.3%縮小到±0.1%後,PC產品總 酚含量降到約50ppm,與同光氣法製程的帝人產品65ppm及三菱 52ppm相當;比熔融法製程的奇美151ppm及拜耳143ppm要好。
- 3. 後續本部各廠必須再持續精進,運用AI技術來輔助製程操作及解決問題,朝精準控制、品質穩定及節能減碳的方向努力,並平行展開到相同製程,以降低操作成本,提高產品競爭力。

附錄:英文專有名詞資料表

英文名詞	英文全名	中文名稱	說明
PI	Plant Information	工廠資訊管理系統	收集並整合有關生產過程信息平 台
PRiSM	Process Information Signal Monitor	設備故障預警及監 控平台	設備智能管理套裝軟 廠商:AVEVA
iEM	Intelligent Equipment Monitor System	設備狀態智能預警 系統	設備智能管理套裝軟體 廠商:中泰瑞
RTPMS	Real Time Production Management System	即時生產管理系統	作為生產績效管理應用及收集儲 存製程運轉/品管/設備等數據
XGBoost	XGBoost	極限梯度提升	為非線性建模演算法
Linear Regression	Linear Regression	線性迴歸	為線性建模演算法
RandomForest	RandomForest	隨機森林	為非線性建模演算法
RMSE	Root Mean Square Error	均方根誤差	測量數值之間差異的量度
MAPE	Mean-Absolute Percentage Error	平均絕對誤差率	模型評估準確度的方法之一。代表預測值與實際值的平均誤差率 單位為%。越趨近於O越準確。

報告完畢

恭請指導