Chapter 4. Mathematical Expectation

1. Mean of a Random Variable

statistical experiment: two coins are tossed 16 times

1. Mean of a Random Variable

statistical experiment: two coins are tossed 16 times

X: the number of heads that occur per toss the value of X can be 0,1,2.

1. Mean of a Random Variable

statistical experiment: two coins are tossed 16 times

X: the number of heads that occur per toss the value of X can be 0, 1, 2.

Suppose that the experiment yields: no heads 4 times, one head 7 times, two heads 5 times.

the average number of heads per toss:

$$\frac{0 \times 4 + 1 \times 7 + 2 \times 5}{16} = 1.06$$

the average number of heads per toss:

$$\frac{0 \times 4 + 1 \times 7 + 2 \times 5}{16} = 1.06$$

restructure the computation:

$$0 \times \frac{4}{16} + 1 \times \frac{7}{16} + 2 \times \frac{5}{16} = 1.06$$

the average number of heads per toss:

$$\frac{0 \times 4 + 1 \times 7 + 2 \times 5}{16} = 1.06$$

restructure the computation:

$$0 \times \frac{4}{16} + 1 \times \frac{7}{16} + 2 \times \frac{5}{16} = 1.06$$

The numbers 4/16, 7/16, 5/16 are the relative frequencies for the different values of X in our experiment.

Remark:

we can calculate the average number, by knowing the **distinct** values that occur and their relative frequencies, without any knowledge of the **total number** of observations.

use this method of relative frequencies to calculate the average number of heads per toss of two coins that we might expect **in the long run**

use this method of relative frequencies to calculate the average number of heads per toss of two coins that we might expect **in the long run**

We shall refer to this average value as the **mean of the** random variable X and write it as μ_X .

use this method of relative frequencies to calculate the average number of heads per toss of two coins that we might expect **in the long run**

We shall refer to this average value as the **mean of the** random variable X and write it as μ_X .

It is also common to refer to this mean as the **mathematical** expectation or expected value, and denote it as E(X).

Two fair coins were tossed, the sample space is

$$S = \{HH, HT, TH, TT\},\$$

it follows that

$$P(X = 0) = P(TT) = 1/4,$$

 $P(X = 1) = P(TH) + P(HT) = 1/2,$
 $P(X = 2) = P(HH) = 1/4.$

Two fair coins were tossed, the sample space is

$$S = \{HH, HT, TH, TT\},\$$

it follows that

$$P(X = 0) = P(TT) = 1/4,$$

 $P(X = 1) = P(TH) + P(HT) = 1/2,$
 $P(X = 2) = P(HH) = 1/4.$

These probabilities are just the relative frequencies for the given events **in the long run**. Therefore,

Two fair coins were tossed, the sample space is

$$S = \{HH, HT, TH, TT\},\$$

it follows that

$$P(X = 0) = P(TT) = 1/4,$$

 $P(X = 1) = P(TH) + P(HT) = 1/2,$
 $P(X = 2) = P(HH) = 1/4.$

These probabilities are just the relative frequencies for the given events **in the long run**. Therefore,

$$\mu_X = E(X) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1.$$

the mean of any discrete random variable:

- 1. multiplying each of the values x_1, x_2, \ldots, x_n of r.v. X by its corresponding probability $p(x_1), p(x_2), \ldots, p(x_n)$
- 2. summing the products

the mean of any discrete random variable:

- 1. multiplying each of the values x_1, x_2, \ldots, x_n of r.v. X by its corresponding probability $p(x_1), p(x_2), \ldots, p(x_n)$
- 2. summing the products

in the case of **continuous** random variables: summations replaced by integrations

Definition 4.1

The **mean** or **expected value** of the random variable X is

$$\mu_X = E(X) = \sum_x x p(x)$$

if X is discrete, and

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

if X is continuous.

Example 4.1 A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Example 4.1 A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Solution

X: the number of good components in the sample.

Example 4.1 A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Solution

X: the number of good components in the sample.

The probability distribution of X is

Example 4.1 A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Solution

X: the number of good components in the sample.

The probability distribution of X is

$$p(x) = \frac{C_4^x C_3^{3-x}}{C_7^3}, \qquad x = 0, 1, 2, 3.$$

That is

$$p(0) = 1/35, p(1) = 12/35, p(2) = 18/35, p(3) = 4/35.$$

That is

$$p(0) = 1/35, p(1) = 12/35, p(2) = 18/35, p(3) = 4/35.$$

Therefore,

$$\mu_X = E(X) = 0 \times \frac{1}{35} + 1 \times \frac{12}{35} + 2 \times \frac{18}{35} + 3 \times \frac{4}{35} = \frac{12}{7}.$$

Example 4.2 In a gambling game a man is paid \$5 if he gets all heads or all tails when three coins are tossed, and he will pay out \$3 if either one or two heads show. What is his expected gain?

Example 4.2 In a gambling game a man is paid \$5 if he gets all heads or all tails when three coins are tossed, and he will pay out \$3 if either one or two heads show. What is his expected gain?

Solution

Suppose Y is the amount that gambler can win; and the possible values of Y are \$5 and -\$3.

Example 4.2 In a gambling game a man is paid \$5 if he gets all heads or all tails when three coins are tossed, and he will pay out \$3 if either one or two heads show. What is his expected gain?

Solution

Suppose Y is the amount that gambler can win; and the possible values of Y are \$5 and -\$3.

What are the corresponding probabilities?

$$P(Y = 5) = ?$$
 $P(Y = -3) = ?$

The sample space for the possible outcomes when three coins are tossed simultaneously is

```
S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}
```

The sample space for the possible outcomes when three coins are tossed simultaneously is

$$S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

Each of these possibilities is equally likely to occur ,with probability 1/8. Therefore,

The sample space for the possible outcomes when three coins are tossed simultaneously is

$$S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

Each of these possibilities is equally likely to occur ,with probability 1/8. Therefore,

$$P(Y = 5) = \frac{2}{8}, \qquad P(Y = -3) = \frac{6}{8}.$$

The sample space for the possible outcomes when three coins are tossed simultaneously is

$$S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

Each of these possibilities is equally likely to occur ,with probability 1/8. Therefore,

$$P(Y = 5) = \frac{2}{8}, \qquad P(Y = -3) = \frac{6}{8}.$$

It follows that,

$$E(Y) = 5 \times \frac{2}{8} + (-3) \times \frac{6}{8} = -1.$$

Example 4.3 (continuous r.v.) Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20000}{x^3}, & x > 100\\ 0, & \text{elsewhere,} \end{cases}$$

Find the expected life of this type of device.

Example 4.3 (continuous r.v.) Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20000}{x^3}, & x > 100\\ 0, & \text{elsewhere,} \end{cases}$$

Find the expected life of this type of device.

Solution

$$E(X) = \int_{100}^{\infty} x \frac{20000}{x^3} dx = \int_{100}^{\infty} \frac{20000}{x^2} dx = 200.$$

Example 4.3 (continuous r.v.) Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20000}{x^3}, & x > 100\\ 0, & \text{elsewhere,} \end{cases}$$

Find the expected life of this type of device.

Solution

$$E(X) = \int_{100}^{\infty} x \frac{20000}{x^3} dx = \int_{100}^{\infty} \frac{20000}{x^2} dx = 200.$$

Therefore, we can expect this type of device to last 200 hours, on average.

Remark:

In example 4.3, an engineer is interested in the **mean life** of a certain type of electronic device.

Remark:

In example 4.3, an engineer is interested in the **mean life** of a certain type of electronic device. This is an illustration of a **time to failure** problem that occurs often in practice.

Remark:

In example 4.3, an engineer is interested in the **mean life** of a certain type of electronic device. This is an illustration of a **time to failure** problem that occurs often in practice.

The expected values of the life of the device is an important parameter for its evaluation.

How to calculate the expect value of a new random variable g(X), a function of X?

How to calculate the expect value of a new random variable g(X), a function of X?

Theorem 4.1 The mean or expected value of the random variable $g(\boldsymbol{X})$ is

$$\mu_{g(X)} = E[g(X)] = \sum_{x} g(x)p(x)$$

if X is discrete, and

$$\mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

if X is continuous.

Example 4.4 Suppose that the number of cars X that pass through a car wash between 4:00 P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

Let g(X) = 2X - 1 represent the amount of money in dollars, paid to the attendant by the manager. Find the attendant's expected earnings for this particular period.

Solution

By Theorem 4.1, the attendant can expect to receive

Solution

By Theorem 4.1, the attendant can expect to receive

$$E[g(X)] = E(2X - 1) = \sum_{x=4}^{9} (2x - 1)p(x)$$

= $7 \times \frac{1}{12} + 9 \times \frac{1}{12} + 11 \times \frac{1}{4} + 13 \times \frac{1}{4} + 15 \times \frac{1}{6} + 17 \times \frac{1}{6}$
= \$12.67

Example 4.5 Let X be a random variables with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2\\ 0, & \text{elsewhere,} \end{cases}$$

Find the expect value of g(X) = 4X + 3.

Example 4.5 Let X be a random variables with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2\\ 0, & \text{elsewhere,} \end{cases}$$

Find the expect value of g(X) = 4X + 3.

Example 4.5 Let X be a random variables with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2\\ 0, & \text{elsewhere,} \end{cases}$$

Find the expect value of g(X) = 4X + 3.

$$E(4X+3) = 8$$

extend the concept of mathematical expectation to the case of two random variables \boldsymbol{X} and \boldsymbol{Y}

extend the concept of mathematical expectation to the case of two random variables \boldsymbol{X} and \boldsymbol{Y}

Definition 4.2 The mean or expected value of the random variable $g(\boldsymbol{X},\boldsymbol{Y})$ is

$$\mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)p(x,y)$$

if X and Y are discrete, and

$$\mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y)dxdy$$

if X and Y are continuous.

Example 4.6 Let X and Y be random variables with joint probability distribution indicated in Table 3.1 of Example 3.8. Find the expected value of g(X,Y)=XY.

f(x, y)	x			Row
	0	1	2	totals
10	3 28	9 28	3 28	15 28
y 1	3 14	3 14	20	3 7
2	1/28	- "		$\frac{1}{28}$
lumn totals	5	15 28	$\frac{3}{28}$	1

Example 4.7 Find E(Y/X) for the density function

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, 0 < y < 1 \\ 0, & \text{elsewhere,} \end{cases}$$

Example 4.7 Find E(Y/X) for the density function

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, 0 < y < 1 \\ 0, & \text{elsewhere,} \end{cases}$$

$$E(Y/X) = 5/8.$$

If g(X,Y) = X, we have

If
$$g(X,Y) = X$$
, we have

$$E(X) = \sum_{x} \sum_{y} xp(x,y) = \sum_{x} xp_X(x)$$
 (discrete case)

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x,y) dx dy = \int_{-\infty}^{\infty} x f_X(x) dx$$
 (continuous case)

If
$$g(X,Y) = X$$
, we have

$$E(X) = \sum_{x} \sum_{y} xp(x,y) = \sum_{x} xp_X(x)$$
 (discrete case)

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy = \int_{-\infty}^{\infty} x f_X(x) dx$$
 (continuous case)

Therefore, in calculating E(X) over a two-dimensional space, one may use either the joint probability distribution of X and Y or the marginal distribution of X.

Similarly, we have

$$E(Y) = \sum_{x} \sum_{y} y p(x, y) = \sum_{y} y p_{Y}(y)$$
 (discrete case)

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy = \int_{-\infty}^{\infty} y f_Y(y) dy$$
 (continuous case)