50.021 Artificial Intelligence

Simriti Bundhoo 1006281

Homework 6

1 Minimax Search

(a)

At the max level, the value is 7.

At the min level, the values are as follows:

- i) $a_1 = 3$
- ii) $a_2 = 7$
- iii) $a_3 = 5$
- iv) $a_4 = 6$

(b)

For all the MIN branches, the minimum possible value (min) is initially set to ∞ .

Exploring a_1 :

- When comparing between min and b_1 : MIN(∞ , 4), b_1 is the smaller value. So the minimum changes from ∞ to 4.
- When comparing between min and b_2 : MIN(4, 12), 4 is still the smaller value. So the minimum is unchanged.
- When comparing between min and b_3 : MIN(4, 3), b_3 is the smaller value. So the minimum changes from 4 to 3.
- When comparing between min and b_4 : MIN(3, 8), 3 is still the smaller value. So the minimum is unchanged.

3 is the minimum value of branch a_1 .

Exploring a_2 :

• When comparing between min and c_1 : MIN(∞ , 7), c_1 is the smaller value. So the minimum changes from ∞ to 7.

- When comparing between min and c_2 : MIN(7, 9), 7 is still the smaller value. So the minimum is unchanged.
- When comparing between min and c₃: MIN(7, 15), 7 is still the smaller value. So the minimum is unchanged.
- When comparing between min and c_4 : MIN(7, 8), 7 is still the smaller value. So the minimum is unchanged.

7 is the minimum value of branch a_2 .

Exploring a_3 :

- When comparing between min and d_1 : MIN(∞ , 5), d_1 is the smaller value. So the minimum changes from ∞ to 5.
- When comparing between min and d₂: MIN(5, 21), 5 is still the smaller value. So the minimum is unchanged.
- When comparing between min and d_3 : MIN(5, 8), 5 is still the smaller value. So the minimum is unchanged.
- When comparing between min and d_4 : MIN(5, 13), 5 is still the smaller value. So the minimum is unchanged.

5 is the minimum value of branch a_3 .

Exploring a_4 :

- When comparing between min and e_1 : MIN(∞ , 15), e_1 is the smaller value. So the minimum changes from ∞ to 15.
- When comparing between min and e_2 : MIN(15, 8), e_2 is the smaller value. So the minimum changes from 15 to 8.
- When comparing between min and e_3 : MIN(8, 6), e_3 is the smaller value. So the minimum changes from 8 to 6.
- When comparing between min and e_4 : MIN(6, 9), 6 is still the smaller value. So the minimum is unchanged.

6 is the minimum value of branch a_4 .

For the MAX branches, the MAXIMUM possible value (max) is initially set to $-\infty$.

- When comparing between max and a_1 : MAX $(-\infty, 3)$, all is the larger value. So the maximum changes from $-\infty$ to 3.
- When comparing between max and a_2 : MAX(3, 7), a_2 is the larger value. So the maximum changes from 3 to 7.
- When comparing between max and a_3 : MAX(7, 5), 7 is still the larger value. So the maximum is unchanged.
- When comparing between max and a_4 : MAX(7, 6), 7 is still the larger value. So the maximum is unchanged.

7 (a_2) is the maximum value of the MAX branches.

(c) The chosen move is a_2 .

2 $\alpha - \beta$ Pruning

(a)

The following actions are pruned: d_2 , d_3 , d_4 and e_4 .

(b)

For all the MIN branches, β is initialised to ∞ and for all the MAX branches, α is initialised to $-\infty$.

Exploring a_1 :

- We first explore b_1 . $\beta = \text{MIN}(\beta, b_1) = \min(\infty, 4) = 4$
- Similarly in b_2 , $\beta = MIN(\beta, b_2) = MIN(4, 12) = 4$
- In b_3 , $\beta = MIN(\beta, b_3) = MIN(4, 3) = 3$
- Finally, in b_4 , $\beta = MIN(\beta, b_1) = MIN(3, 8) = 3$

After exploring a_1 , $\alpha = 3$.

Exploring a_2 :

- We first explore c_1 . $\beta = \text{MIN}(\beta, b_1) = \min(\infty, 7) = 7$
- The same steps are repeated for b_2, b_3 and b_4 . The minimum (β) remains 7.
- As α is not greater or equal to β , so no pruning will happen.
- Finally, the value of α changes from 3 to 7 as $\max(alpha, a_2)$ is 7.

After exploring a_2 , $\alpha = 7$.

 β is reset to ∞ before we explore a_3 .

Exploring a_3 :

- We first explore d_1 . $\beta = \text{MIN}(\beta, d_1) = \min(\infty, 5) = 5$.
- The same steps are repeated for b_2, b_3 and b_4 . The minimum (β) remains 5.
- As α is greater or equal to β (7 \geq 5), pruning happens. All values which appear after β (5) is pruned.
- The d_2, d_3 and d_4 branches are pruned.

After exploring a_3 , α is still 7.

 β is reset to ∞ before we explore a_4 .

Exploring a_4 :

- We first explore e_1 . $\beta = MIN(\beta, e_1) = min(\infty, 15) = 15$.
- The same steps are repeated for b_2, b_3 and b_4 . The minimum (β) becomes 6 at e_3 .
- As α is greater or equal to β (7 \geq 6), pruning happens. All values which appear after β (6) is pruned.
- The e_4 branch is pruned.
- The value at the MAX branch remains 7.

3 ExpectiMinimax Search

(a)

At the max level, the value is 1.5.

At the chance level, the values are as follows:

- i) $a_1 = 1.5$
- ii) $a_2 = 0$

At the min level, the values are as follows: 2, 1, 0, 0.

(b) The chosen move is a_1 .