# LABORATORIO DE MAQUINAS TERMICAS<sup>3</sup> Análisis de la combustión y su impacto ambiental

## **Objetivos: El alumno:**

- I. Describe la importancia de los combustibles como fuente energética y de la combustión como un proceso de obtención de energía en forma de calor.
- II. Revisa detalladamente las características de los combustibles. (Tipo, densidad, viscosidad, pureza, volatilidad, poder calorífico alto (superior) y bajo (inferior), temperatura de flama adiabática, análisis físico y análisis químico, entalpía de formación, etc.).
- III. Calcula parámetros característicos del proceso de combustión, para realizar conclusiones acerca de la importancia de un proceso eficiente y su efecto sobre consumo excesivo de combustible, costos y contaminación ambiental. (térmica, atmosférica y por partículas solidas).

#### Reporte:

#### 1. Combustibles. Elaborar un cuadro sinóptico indicando. (20%)

- Análisis físico y químico.
- Listado de al menos cinco criterios que deben tomarse en cuenta para la selección de un combustible.
- Resumir el propósito, a quien está dirigido su alcance de al menos dos Normas referentes al manejo, almacenamiento y
  protección contra incendio de los combustibles utilizados en México.

#### 2. Combustión. Elaborar un mapa mentall que muestre. (20%

- · Analizadores de gases (tipos y principio de funcionamiento. Dar al menos dos ejemplos, no aparato de Orsat)
- El convertidor catalítico de dos y tres vías. Partes componentes y funcionamiento.

### 3. Contaminación. Elaborar un mapa conceptual que incluya. (20%)

- Efectos sobre la salud
- El cambio climático.
- Resumir el propósito, a quien está dirigido y su alcance de al menos dos Normas referentes a la contaminación industrial por emisiones contaminantes a la atmosfera.

# 4. Memoria de cálculo completa para la caldera - aceite diésel. (30%)

5. Reflexión de lo aprendido, de lo requiere estudiar y profundizar, de su desempeño y compromiso con su aprendizaje, de lo que requiere mejorar, etc. Fuentes de consultadas. (10%)

#### 6. Fuentes consultadas.

Bibliografía sugerida:

Termodinámica. Cengel-Boles.

Normas ASME, NOM, AISI, NFPA, etc.

Notas: 1.- El reporte deberá integrarse en un 60% por investigación bibliográfica y 40% por Internet. 2.- Debe incluir ilustraciones al tema y presentarse de acuerdo a la numeración indicada. (No se califica si no sigue la numeración sugerida) 3.- Se entrega una semana después de terminarse la actividad. 4.- Debe incluir una hoja carátula con nombre, nombre y número de la actividad, grupo y fecha de entrega. 5. - Se entrega en hojas blancas tamaño carta, perfectamente engrapadas.

# Composición del aceite diésel (valores estandarizados).

| С    | H2  | 02  | N2  | S     | H20   |
|------|-----|-----|-----|-------|-------|
| 80 % | 7 % | 3 % | 9 % | 0.2 % | 0.8 % |

| 2                                |                        |                             |
|----------------------------------|------------------------|-----------------------------|
| o Laboratorio de Maquinas d      | TEDMICAS COLIDOS:      | ING. JAIME AGUILAR REYES    |
| ENDOING LOINTO DE L'INQUITINAS I | I LINITICAS. GINOI OS. | TING: JATINE AGGILAN INCHES |



Mapa conceptual



Mapa mental