Оглавление

1	Алгебраическое введение	2
	1.1 Кольцо целых алгебраических	2
	1.2 Норма	2
2	Специальный метод решета числового поля	4
\mathbf{A}	Приложение	6

Глава 1

Алгебраическое введение

1.1 Кольцо целых алгебраических

Чтобы понять что тут вообще происходит, нужно немного алгебры. Основное поле - \mathbb{Q} . Корни полиномов с коэффициентами из \mathbb{Q} называют алгебраическими над \mathbb{Q} . Алгебраическое число называется целым алгебраическим, если его минимальный многочлен $g(x) \in \mathbb{Z}[x]$. Введем множество целых алгебраических поля $\mathbb{Q}(\alpha)$

$$\mathfrak{O}_{\mathbb{Q}(\alpha)} = \{ x \mid x \in \mathbb{Q}(\alpha) \& x \text{ - целое алгебраическое} \}$$

 $\mathbf{T}(?)$. $\mathfrak{O}_{\mathbb{Q}(lpha)}$ - кольцо. Кроме того $\mathbb{Z}[lpha]\subseteq\mathfrak{O}_{\mathbb{Q}(lpha)}$ - подкольцо.

 $\mathbf{T}(?)$. K - none, $R \subset K$ - nodronьцо c однозначным разложением на множители. Тогда R содержит корни всех неприводимых унитарных многочленов из R[x]

Нас будет интересовать подкольцо $\mathbb{Z}[\alpha]$ с однозначным разложением на множители. Но в каких случаях будет получаться это однозначное разложение? Теорема гарантирует однозначное разложение в $\mathbb{Z}[\alpha]$, если $\mathbb{Z}[\alpha] = \mathfrak{O}_{\mathbb{Q}(\alpha)}$. Но это не всегда так. Что делать когда это не так?

Пример. Рассмотрим $\gamma = -\frac{1}{2} + \frac{\sqrt{5}}{2} \notin \mathbb{Z}[\sqrt{5}]$. Но γ корень $x^2 + x - 1 \in \mathbb{Z}[x]$, значит $\gamma \in \mathfrak{O}_{\mathbb{Q}(\sqrt{5})}$

$$\mathbf{T}(?)$$
. $\forall \beta \in \mathfrak{O}_{\mathbb{Q}(lpha)} o eta \cdot f'(lpha) \in \mathbb{Z}[lpha]$, где $f'(x)$ - минимальный многочлен $lpha$

1.2 Норма

Вспомним, что $\mathbb{Q}(\alpha)$ - в.п. над \mathbb{Q} . Введем в этом пространстве линейный оператор, соответствующий некоторому элементу $\beta \in \mathbb{Q}(\alpha)$

$$\mathcal{H}_{\beta}: \ \mathbb{Q}(\alpha) \xrightarrow[x\mapsto\beta x]{} \mathbb{Q}(\alpha)$$

Опр. Норма $\beta \in \mathbb{Q}(\alpha)$ определяется следующим равенством

$$\mathcal{N}(\beta) = \det(\mathcal{H}_{\beta})$$

Как вычислять эту норму для произвольного элемента? Пока не ясно. В алгоритме говорится, что норму элемента вида $\beta=a+b\alpha$ можно вычислить по формуле

$$\mathcal{N}(\beta) = F(a,b) = b^{degf} f(\frac{a}{b})$$
, где f - полином степени порождающий поле.

Откуда эта формула? Как ее получить из определения? Нужно разбираться. Но пока будем считать, что все норм.

Пример. Попробуем вычислить норму $\beta = a + b\sqrt{5}$ в $\mathbb{Q}(\sqrt{5})$.

Найдем $\mathcal{H}_{\beta} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. По определению эта матрица соответствует оператору, который x отправляет в βx . Подействуем этой матрицей на элементы $1 \ u \ \sqrt{5}$. Им соответствуют векторы $(1,0) \ u \ (0,1)$.

$$\beta \cdot 1 = \beta = a + b\sqrt{5} \implies \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\beta \cdot \sqrt{5} = 5b + a\sqrt{5} \implies \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5b \\ a \end{pmatrix}$$

Получили матрицу $\begin{pmatrix} a & 5b \\ b & a \end{pmatrix}$. Делаем вывод, что $\mathcal{N}(\beta) = \det(\mathcal{H}_{\beta}) = a^2 - 5b^2$.

Попробуем вычислить по формуле. Поле $\mathbb{Q}(\sqrt{5})$ построено с помощью полинома $f(x) = x^2 - 5$.

$$\mathcal{N}(\beta) = F(a,b) = b^2 f(\frac{a}{b}) = b^2 ((\frac{a}{b})^2 - 5) = a^2 - 5b^2$$

Maruя...

Глава 2

Специальный метод решета числового поля

Пусть нужно факторизовать число

$$n = r^t - s$$

Нам нужно построить поле по некоторому полиному f(x). Выберем d - степень полинома.

$$r^t - s \equiv 0 \bmod n$$

$$r^t \equiv s \bmod n$$

Положим $k = \lceil \frac{t}{d} \rceil$ и домножим обе части на r^{kd}

$$r^{t+kd} \equiv sr^{kd} \bmod n$$

$$r^{kd} \equiv sr^{kd-t} \bmod n$$

Положим $m=r^k$ и $c=sr^{kd-t}$

$$m^d \equiv c \bmod n$$

В качестве полинома возьмем

$$f(x) = x^d - c$$

Построим поле

$$\mathbb{Q}^{[x]}/_{(f)}\cong\mathbb{Q}(lpha)$$
, где $lpha$ - корень $f(x)$

Что же делать дальше?

Литература

[1] Text

Приложение А Приложение