

Winning Space Race with Data Science

<Name> <Date>

Outline

- · Executive Summary
- Introduction
- Methodology
- Results
- · Conclusion
- Appendix

Executive Summary

• Goal: Analyze historical SpaceX launch data to uncover patterns and predict launch success.

Data Sources:

SpaceX REST API (/v4/launches, /v4/rockets, /v4/payloads, /v4/launchpads)
Web scraping (planned but API was sufficient)

- Tools: Pandas, Matplotlib, Seaborn, Folium, Plotly, SQLite, Scikit-learn
- Key Insights: Rocket type, orbit, and payload mass influence success rate.
- Deliverables: Cleaned dataset, EDA visuals, SQL analysis, interactive map, classifier model.

Introduction

- SpaceX has transformed the aerospace industry with reusable rockets.
- Analyzing launch data provides insight into mission success and technical evolution.

Objectives:

Identify success trends over time

Visualize launch data across rockets and sites

Predict future launch outcomes

Data Collection & Wrangling

- Primary Source: SpaceX API
- Fetched launch, rocket, payload, and launchpad data via REST endpoints
- Cleaned data:

Removed null success entries

Merged payloads, rockets, and launchpad info

Exploded payload arrays for detailed view

Normalized datetime and ID fields

EDA Methodology

- Used Pandas for data manipulation
- Visualized with Matplotlib, Seaborn, and Plotly
- Focused on:

Success distribution

Time-based trends

Rocket-based performance

Orbit and mass relationships

Predictive Analysis Methodology

- Objective: Predict whether a launch will be successful
- Used Random Forest Classifier
- Features:

Rocket type (one-hot encoded)

Orbit type (one-hot encoded)

Payload mass (kg)

• Evaluated via accuracy and classification report

EDA Visuals – Success Rate

 Pie chart showing overall launch success rate

• Bar chart of launches per year showing trend

Countplot showing rocket-wise success/failure

EDA Visuals – Orbit & Payload

Plotly histogram: Orbit vs Launch Outcome

• Heatmap of correlation: Payload mass vs success

• Boxplot: Payload mass by orbit type and success

EDA Visuals – Orbit & Payload

EDA Visuals – Orbit & Payload

SQL Analysis (1/2)

- Used SQLite to run SQL queries over the cleaned data
- Top Launch Sites:

```
SELECT launch_site, COUNT(*) as launch_count FROM spacex
GROUP BY launch_site
ORDER BY launch_count DESC
LIMIT 5;
```

• Other queries:

Count of successful launches

Average payload by rocket

SQL Analysis (2/2)

• Queried reused rockets and their success rate

• Queried orbit types used in successful missions

• Found insights on how reusability correlates with outcome

Folium Map

- Created interactive map of all launch sites
- Clustered launch markers with mission info
- Color-coded by success status
- Exported to spacex_launch_map.html

Folium Map

Plotly Dash Visuals

- Used Plotly Express for interactive visuals
- Histogram of orbits colored by success
- Setup ready for Dash integration with dropdown filters and sliders

Plotly Dash Visuals

Predictive Model Results

- Trained Random Forest Classifier
- Accuracy: ~91%
- Confusion Matrix:

True Positives: high

False Negatives: low

• Most important features:

Payload mass

Rocket type

Predictive Model Results

Innovative Insights

• Strong success correlation with specific rocket and orbit combinations

SpaceX increasingly favors reusable tech with high success

Model helps identify potential failures before launch

Creativity Applied

Interactive maps and visual storytelling

Dynamic use of APIs and Folium visuals

Combined API and SQL for hybrid insights

Prepared dashboard-ready Plotly visuals

Conclusion

• Success rate has increased over time

Reusable rockets are highly successful

Payload mass and orbit type are strong predictors

Model can reliably predict future launch success

