#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

| Кафедра      | теоретических | основ |
|--------------|---------------|-------|
| компьютерной | безопасности  | И     |
| криптографии |               |       |

## Идеалы полугрупп

## ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студентки 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Шуликиной Анастасии Александровны

| Преподаватель      |               |                |
|--------------------|---------------|----------------|
| профессор, д.фм.н. |               | В. А. Молчанов |
|                    | полпись, лата |                |

## СОДЕРЖАНИЕ

| BI | ЗЕДЕ | СНИЕ                                                         | 3 |
|----|------|--------------------------------------------------------------|---|
| 1  | Целі | ь работы и порядок её выполнения                             | 4 |
| 2  | Teop | RNG                                                          | 5 |
|    | 2.1  | Понятия идеалов полугрупп                                    | 5 |
|    |      | 2.1.1 Алгоритм построения идеалов полугруппы по таблице Кэли | 6 |
|    | 2.2  | Понятия и свойства отношений Грина на полугруппах            | 6 |
|    |      | 2.2.1 Алгоритм вычисления отношений Грина и построения       |   |
|    |      | «egg-box»-картины                                            | 7 |
|    | 2.3  | Код программы, на основе рассмотренных алгоритмов, на язы-   |   |
|    |      | ке C++                                                       | 9 |

## ВВЕДЕНИЕ

В данной лабораторной работе поставлена задача рассмотрения понятие идеалов полугрупп, разбор и реализация алгоритмов их построения, понятия и свойства отношений Грина на полугруппах, разбор и реализация алгоритмов вычисления отношений Грина и построения «egg-box»-картины конечной полугруппы.

1 Цель работы и порядок её выполнения

Цель работы – изучение строения полугрупп с помощью отношений Грина.

Порядок выполнения работы:

- 1. Рассмотреть понятия идеалов полугруппы. Разработать алгоритмы построения идеалов полугруппы по таблице Кэли.
- 2. Рассмотреть понятия и свойства отношений Грина на полугруппах.
- 3. Разработать алгоритмы вычисления отношений Грина и построения «egg-box»-картины конечной полугруппы.

2 Теория

### 2.1 Понятия идеалов полугрупп

Полугруппа – это алгебра  $S=(S,\cdot)$  с одной ассоциативной бинарной операцией  $\cdot$ , т.е. выполняется  $(x\cdot y)\cdot z=x\cdot (y\cdot z)$  для любых  $x,y,z\in S$ .

Если полугрупповая операция называется умножением (соответственно, сложением), то полугруппу называют мультипликативной (соответственно, аддитивной).

Пусть S — произвольная полугруппа. Непустое подмножество  $I\subset S$  называется правым (соответственно, левым) идеалом полугруппы S, если для любых  $x\in I,\,y\in S$  выполняется условие:  $xy\in I$  (соответственно  $yx\in I$ ), т.е.  $I\cdot S\subset I$ (соответственно,  $S\cdot I\subset I$ ). Если I — одновременно левый и правый идеал полугруппы S, то I называется двустронним идеалом (или просто идеалом) полугруппы S. Ясно, что в коммутативной полугруппе S все эти определения совпадают.

<u>Лемма 1.</u> Множество всех идеалов IdS (соответственно, левых идеалов LIdS или правых идеалов RIdS) любой полугруппы S является системой замыкания.

Пусть X – подмножество полугруппы S. Тогда наименьший правый идеал полугруппы S, содержащий подмножество X, равен  $(X] = XS^1 = X \cup XS$ , наименьший левый идеал полугруппы S, содержащий подмножество X, равен  $[X] = S^1X = X \cup SX$  наименьший идеал полугруппы S, содержащий подмножество X, равен  $[X] = S^1XS^1 = X \cup XS \cup SX \cup SXS$ .

В частности, любой элемент  $a \in S$  определяет наименьшие правый, левый и двусторонний идеалы:  $(a] = aS^1, [a) = S^1a$  и  $[a] = S^1aS^1$ , которые называются главными (соответственно, правыми, левыми и двусторонними) идеалами.

Минимальные относительно теоретико-множественного включения идеалы (соответственно, левые или правые идеалы) называются минимальными идеалами (соответственно, минимальными левыми или правыми идеалами).

<u>Лемма 2</u>. Если полугруппа имеет минимальный идеал, то он является ее наименьшим идеалом и называется ядром полугруппы.

Доказательство. Если I — минимальный идеал полугруппы S, то для любого идеала J полугруппы S непустое множество  $IJ \subset I \cap J \subset I$  и, значит, идеал  $I \cap J = I, I \subset J$ .

Любая конечная полугруппа имеет наименьший идеал, т.е. ядро полугруппы.

Доказательство. Для конечной полугруппы S множество всех идеалов IdS конечно и, значит, его пересечение является наименьшим идеалом S.

### 2.1.1 Алгоритм построения идеалов полугруппы по таблице Кэли

Вход. Полугруппа S, таблица Кэли размерностью N, выполняющая свойство ассоциативности.

Выход. Множество правых идеалов R, множество левых идеалов L и множество двусторонних идеалов I.

<u>Шаг 1.</u> Строится множество res, состоящее из всех возможных комбинаций элементов полугруппы S (сочетание без повторений):  $res = \{\{S_1\}, \{S_2\}, ..., \{S_N\}, ..., \{S_1, S_2\}, \{S_1, S_3\}, ..., \{S_2, S_3\}, ..., \{S_2, S_N\}, ..., \{S_1, S_2, S_N\}\}$ 

 $\underline{\text{Шаг 2.}}$  Цикл i от 1 по N.

- <u>Шаг 2.1.</u> Проверяем все подмножества множества res на выполнение условия правого идеала: если  $\forall res_i \in res : xy \in res_i \forall x \in res_i, y \in S$ , если условие выполняется, то  $res_i$  добавлем в множество R.
- <u>Шаг 2.2.</u> Проверяем все подмножества множества res на выполнение условия левого идеала: если  $\forall res_i \in res: yx \in res_i \forall x \in res_i, y \in S$ , если условие выполняется, то  $res_i$  добавлем в множество L.
- <u>Шаг 2.3.</u> Для того, чтобы множество  $res_i$  являлось двусторонним идеалом, оно должно удовлетворять условия правого и левого идеала. Если все подмножества множества res выполняют эти условия, то  $res_i$  добавляем в I.

<u>Шаг 3.</u> Выводится R, L, I.

Трудоемкость алгоритма  $O(N^3*M*M_2),\ M$  - размер множества res,  $M_2$  - размер множества  $res_i.$ 

2.2 Понятия и свойства отношений Грина на полугруппах

Отображения  $f: a \mapsto [a], f_r: a \mapsto (a], f_l: a \mapsto [a), a \in S$  определяют ядра  $\mathscr{J} = kerf, \mathscr{R} = kerf_r, \mathscr{L} = kerf_l$  по формулам:

$$(a,b) \in \mathscr{J} \iff [a] = [b],$$

$$(a,b) \in \mathscr{R} \iff (a] = (b],$$

$$(a,b) \in \mathcal{L} \iff [a) = [b).$$

Все эти отношения, а также отношения  $\mathscr{D} = \mathscr{R} \vee \mathscr{L}$ ,  $\mathscr{H} = \mathscr{R} \cap \mathscr{L}$  являются эквивалентностями на множестве S, которые называются отношениями Грина полугруппы S. Классы этих эквивалентностей, порожденные элементом  $a \in S$ , обозначаются  $J_a$ ,  $R_a$ ,  $L_a$ ,  $D_a$  и  $H_a$ , соответственно.

<u>Лемма</u>. Отношения Грина полугруппы S удовлетворяют следующим свойствам:

- 1. эквивалентность  $\mathscr{R}$  регулярна слева и эквивалентность  $\mathscr{L}$  регулярна справа, те.  $(a,b)\in\mathscr{R}\Rightarrow (xa,xb)\in\mathscr{R}$  и  $(a,b)\in\mathscr{L}\Rightarrow (ax,bx)\in\mathscr{L}$  для любых  $x\in S$ ,
- 2. эквивалентности  $\mathscr{R}, \mathscr{L}$  коммутируют,
- 3.  $\mathcal{D} = \mathcal{R} \cdot \mathcal{L} = \mathcal{L} \cdot \mathcal{R}$ ,
- 4. если полугруппа S конечна, то  $\mathcal{D} = \mathcal{J}$ ,
- 5. любой класс D эквивалентности  $\mathscr{D}$  можно изобразить с помощью следующей egg-box-диаграммы, клетки которой являются классами эквивалентности  $\mathscr{H}$ , лежащими в D.



Рисунок 1 – egg-box-диаграмма

2.2.1 Алгоритм вычисления отношений Грина и построения «egg-box»картины

Вход. Полугруппа S, таблица Кэли размерностью N, выполняющая свойство ассоциативности.

Выход. Отношения Грина  $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{H}, \mathscr{D}$  и «egg-box»-картины.

<u>Шаг 1.</u> Создаем булевую переменную chek = true.

Шаг 2. Цикл i от 1 до N.

 $\underline{\text{Шаг 2.1.}}$  Для каждого i цикл j от 1 до N.

<u>Шаг 2.2.</u>  $\forall S_i, S_j \in S$  : строим правые идеалы  $(S_i], (S_j],$  если  $(S_i] = (S_j],$  то добавляем  $(S_i, S_j)$  в множество  $\mathscr{R}$ .

<u>Шаг 2.3.</u>  $\forall S_i, S_j \in S$  : строим левые идеалы  $[S_i)$ ,  $[S_j)$ , если  $[S_i) = [S_j)$ , то добавляем  $(S_i, S_j)$  в множество  $\mathscr{L}$ .

<u>Шаг 2.4.</u>  $\forall S_i, S_j \in S$ : строим двусторонние идеалы  $[S_i]$ ,  $[S_j]$ , если  $[S_i] = [S_j]$ , то добавляем  $(S_i, S_j)$  в множество  $\mathscr{J}$ .

<u>Шаг 2.5.</u> Множество  $\mathscr{H}$  строится:  $\mathscr{H} = \mathscr{R} \cap \mathscr{L}$ .

<u>Шаг 2.6.</u> Множество  $\mathscr{D}$  строиться  $\mathscr{D} = \mathscr{R} \cup \mathscr{L}$ .

Шаг 3. Цикл по k от 0 до D.size.

<u>Шаг 3.1.</u> Проверяются все классы эквивалентности  $\mathcal{R}$ , если они совпадают с k-ым элментом множества  $\mathcal{D}$ , то они добавляются в res1.

<u>Шаг 3.2.</u> Проверяются все классы эквивалентности  $\mathcal{L}$ , если они совпадают с k-ым элментом множества  $\mathcal{D}$ , то они добавляются в res2.

<u>Шаг 3.3.</u> Цикл по i от 0 до res1.size, по j от 0 до res2.size, «egg-box»-картина строиться пересечением  $res1_i$  и  $res2_j$ .

<u>Шаг 4.</u> Выводятся отношения Грина  $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{H}, \mathscr{D}$  и «egg-box»-картины.

Трудоемкость алгоритма  $O(N^3)$ .

 $2.3~{
m Kog}$  программы, на основе рассмотренных алгоритмов, на языке  ${
m C}++$ 

На рисунках 2-5 можно увидеть работу, реализуемой программы, по рассмотренным алгоритмам.

```
© DACFVПрикладная универсальная алгебра\Лабораторная №4\combinatorial semigroup theory\x64\Debug\combinatorial semi... — 

1 - Построить подполугруппы бинарных отношений по заданному порождающему множеству
3 - Построить полугруппы по порождающему множеству и определяющим соотношениям
1
Введите количество элементов полугруппы S: 8
Введите забицу Кэлли:
0 1 2 3 4 5 6 7
Введите таблицу Кэлли:
0 1 2 3 4 5 6 7 0 1
2 3 4 5 6 7 0 1
2 3 4 5 6 7 0 1
2 3 4 5 6 7 0 1
2 3 4 5 6 7 0 1 2
3 4 5 6 7 0 1 2 3 4
5 6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 7 0 1 2 3 4 5
6 8ведите количество элементов в подмножестве: 1
Введите холичество элементы подмножества: 2
Подполугруппа: {0, 2, 4, 6}

1 - Построить подполугруппу по таблице Кэли
2 - Построить подполугруппы бинарных отношений по заданному порождающему множеству
3 - Построить полугруппы по порождающему множеству и определяющим соотношениям
```

Рисунок 2

```
🐼 D:\СГУ\Прикладная универсальная алгебра\Лабораторная №4\combinatorial semigroup theory\x64\Debug\combinatorial semi...
1 - Построить подполугруппу по таблице Кэли
2 - Построить полугруппы бинарных отношений по заданному порождающему множеству

    Построить полугруппы по порождающему множеству и определяющим соотношениям

2
Введите количество элементов на множестве: 3
Введите количество матриц в порождающем множестве: 3
Введите матрицу А
1 0 1
0 1 0
0 0 1
Введите матрицу В
1 1 0
0 0 1
1 0 1
Введите матрицу С
0 0 0
0 0
000
Полученная полугруппа:
0 0 0
0 0 0
0 0 0
1 0 1
0 1 0
0 0 1
  10
0 0 1
1 0 1
1 1 1
0 0 1
1 0 1
1 1 1
1 0 1
1 1 1
```

Рисунок 3

Листинг программы

```
Выбрать D\CГУ\Прикладная универсальная алгебра\Лабораторная №4\combinatorial semigroup theory\x64\Debug\combinat. — □ ×

В

1 1 0

0 0 1

1 0 1

E

1 1 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1
```

Рисунок 4

```
м D:\СГУ\Прикладная универсальная алгебра\Лабораторная №4\combinatorial semigroup theory\x64\Debug\combinatorial semi...
 - Построить подполугруппу по таблице Кэли
 - Построить полугруппы бинарных отношений по заданному порождающему множеству
 - Построить полугруппы по порождающему множеству и определяющим соотношениям
Введите количество элементов алфавита: 2
Введите алфавит: a b
Введите количество определяющих соотношений: 3
Введите определяющие соотношения (через пробел):
ab ba
aaa aa
bb b
Полученная полугруппа: {a aa aab ab b }
Таблица Кэли:
      a aa aab ab
     aa aa aab aab ab
 aa aa aab aab aab
 aab aab aab ab
                     ab
  b
 - Построить подполугруппу по таблице Кэли
  - Построить полугруппы бинарных отношений по заданному порождающему множеству
  - Построить полугруппы по порождающему множеству и определяющим соотношениям
```

Рисунок 5

## ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были рассмотрены понятия идеалов полугруппы, понятия и свойства отношений Грина на полугруппах, разобран алгоритм построения «egg-box»-картины конечной полугруппы. А также были реализованы алгоритм построения идеалов полугруппы по таблице Кэли, алгоритм вычисления отношений Грина и алгоритм построения «egg-box»-картины конечной полугруппы.