

DECUS

PROGRAM LIBRARY

DECUS NO.	8-293
TITLE	ATOMIC COORDINATE PROGRAM
AUTHOR	Kenneth B. Wiberg
COMPANY	Yale University New Haven, Connecticut
DATE	November 24, 1969
SOURCE LANGUAGE	MACRO 8

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related program material, and no responsibility is assumed by these parties in connection therewith.

Coordinate Program*

This program consists of a main program and a large number of subroutines which are designed to facilitate developing the coordinates of the atoms of a given molecule. Loading information is allowed by a description of the available options, and of the algorithms which are used. The program occupies essentially all of core except for that used by version C of the floating point interpreter. Some locations normally used by the interpreter are also used, so that it is necessary to load the interpreter before loading the program. The binary tape which is supplied contains both the interpreter and the program.

Loading

The binary tape is loaded in the usual fashion via the binary loader. The starting address is 200. In case of an error, recovery can be made by restarting at 4746 or 1026. If this does not work, reload the program (this does not erase data) and restart at one of these locations.

Operation and Options

On starting, the computer will type

ATOM 1 IS AT 0, 0, 0
ATOM 2, R(1, 2) =

The 1-2 bond length is then typed followed by a space. The computer now types

ATOM 3, R(2, 3) =

* The development of this program was assisted by a National Science Foundation Grant.

The bond length is typed followed by a space. The response is
ANGLE (1, 2, 3)=. The bond angle is typed. Atoms 1, 2 and 3 are placed in the x, y plane, with atom 2 lying on the x axis. Further atoms require information on bond length, bond angle and torsional angles.

Thus, the computer types

NOW TYPE R(K, L), ANGLE(J, K, L) and TORS (I, J, K, L) WHERE L IS THE NEW ATOM

I J K L R(K, L) ANGLE TORS

Integer values for the indices are now typed followed by decimal values for the bond length, angle and torsional angle. Each value is followed by a space. As an example, for cyclohexane with tetrahedral angles, the initial values of R(1, 2)=1.54, R(2, 3)=1.54 and ANGLE(1, 2, 3)=109.5 would be followed by

01 02 03 04 1.54 109.5 60.0
02 03 04 05 1.54 109.5 -60.0
03 04 05 06 1.54 109.5 60.0

The coordinates of the carbons will now have been developed. An exit from this mode of operation is effected by giving the first index a value of -1. The computer then types > and waits for the control letter followed by a space. The set of control letters and their effect is given in Table I.

As a check on the coordinates defined by the values given above (note that one torsional angle must be negative in order to close the ring), we may type R^b1^b6^b. (The superscript b indicates a space). The computer then answers with 1.54 indicating the correct distance. One bond has not been defined by the data given above - that between atoms 1 and 6. This information is needed if the coordinates are to be plotted later. To add this type E, followed by a space. The computer responds with

ATOMS

00010002

00020003

00030004

00040005

00050006

ADD

Now, type $1^b 6^b$ to insert the additional bond. Terminate mode by typing -1 followed by a blank. The computer responds with DELETE. Since no pair of atoms is to be deleted, respond with -1 followed by a blank. The computer now types > and waits for another command.

The secondary hydrogens may now be added. The sequence would be

S 6 1 2 1.1 106.0
S 1 2 3 1.1 106.0
S 2 3 4 1.1 106.0
S 3 4 5 1.1 106.0
S 4 5 6 1.1 106.0
S 5 6 1 1.1 106.0

Here, S indicates that two hydrogens are to be added to the second atom of the list that follows (cf Table I). The three numbers give the indices of the atoms forming the C-C-C bond to which the hydrogens are to be added. The next number gives the bond length and is followed by the H-C-H bond angle.

The secondary hydrogens will now have been added using the specified bond length and angle. The set of coordinates which have been developed may be outputted by typing $P^b 0^b$ (zero). If the coordinates are to be punched on tape for later tape to card conversion, type $P^b -1^b$. The computer halts, and the punch may be turned on. Pressing CONTINUE will cause the coordinates to be printed and punched in decimal form, and the computer again halts. If the tape is to be loaded back into the computer at a later time, shut off punch, put teletype on local, turn on punch and type 00^b . In either case, the program is continued by pressing CONTINUE.

The other options should be fairly clear from the descriptions in Table I. The one designated by L is particularly useful. If one wishes to replace a hydrogen with a methyl group, for example, one may translate so that the coordinates of the carbon to which it is attached is 0, 0, 0. Then L followed by the coordinates of the hydrogen will rotate the entire set of coordinates so that the hydrogen will lie on the z axis. Using the change (C) option, the hydrogen may be replaced by a carbon with the appropriate C-C bond length. The coordinates of methyl hydrogens may be added by translating to make the coordinates of the new carbon 0, 0, 0 and adding the following using the fix (F) option:

```
01 0.0 -1.0343 0.374  
02 0.8957 0.5172 0.374  
03 -0.8957 0.5172 0.374  
00
```

Note that a zero followed by a number and a blank must precede each set of floating point numbers. This is necessary so that the computer may ignore leader, line feed and carriage return characters when a tape is read in using the F option. The computer initially checks each character to see if it is a zero. When it finds the first zero, it reads the following number. If the number is greater than zero, the x, y and z coordinates are read using the floating point interpreter. If the number is zero, an exit from the subroutine is called and another option character is requested. If a particular orientation of the methyl group with respect to the rest of the molecule is desired, the molecule may be suitably rotated about the z axis ($U^b_3 v^b$ where v is the number of degrees) before adding the hydrogen coordinates.

The program will accept up to 42 atoms. A larger number will result in destroying data and part of the program. No check is provided to guard against this possibility. Particular attention should be paid to the bond register. If a large number of changes in coordinates are made, it is possible for this register to overflow without exceeding 42 atoms. It should therefore be checked occasionally - and it will have to be correct if the WRITE program is to operate correctly. In deleting coordinates using the delete (D) option, it is important to note that an attempted deletion of non-existent data (i. e. $n_1 >$ no. of atoms) results in deleting the coordinates of the last atom in the list.

It is possible to have difficulty entering hydrogens using the S option for certain arrangements of atoms. This is not a frequent occurrence and may be corrected by deleting the incorrect atoms, rotating the coordinates and using S again. The bond register also will have to be corrected.

The WRITE (on CRT) option is described in a separate writeup.

A sample run using this program is appended.

CYCLOHEXANE ← typed on "local" before starting program

CALCULATE ATOMIC COORDINATES ← initial program typeout

ATOM 1 IS AT 0,0,0

ATOM 2, R(1,2) = 1.54

ATOM 3, R(2,3) = 1.54 ANGLE (1,2,3) = 109.5

NOW TYPE R(K,L), ANGLE(J,K,L) AND TORS(I,J,K,L) WHERE L IS } 1st three atoms
THE NEW ATOM are defined

I J K L R(K,L) ANGLE TORS

01 02 03 04 1.54 109.5 60.0

02 03 04 05 1.54 109.5 -60.0

03 04 05 06 1.54 109.5 60.0

-1

>R 1 6 +0.1542879E+01 R asks for bond length (undefined bond is checked)

>A 2 1 6 +0.1094618E+03 A asks for bond angle (undefined angle is checked)

>E ← E asks for listing of bond register

ATOMS

00010002

00020003

00030004

00040005

00050006

} atoms which are bonded, ie. 1-2, 2-3 etc.

ADD 1 6 add the 1,6 bond

ADD -1 -1 terminates mode

DELETE -1 -1 terminates mode

>S 6 1 2 1.1 106

>S 1 2 3 1.1 106

>S 2 3 4 1.1 106

>S 3 4 5 1.1 106

>S 4 5 6 1.1 106

>S 5 6 1 1.1 106

>P 0 ← P asks for printout. φ gives all coordinates in floating point form, a

ATOM X Y Z

0001 +0.0000000E+00 +0.0000000E+00 +0.0000000E+00

0002 +0.1539999E+01 +0.0000000E+00 +0.0000000E+00

0003 +0.2054054E+01 +0.1451670E+01 +0.0000000E+00

0004 +0.1541440E+01 +0.2178525E+01 -0.1257180E+01

0005 +0.1441717E-02 +0.2180052E+01 -0.1258062E+01

0006 -0.5140514E+00 +0.7288928E+00 -0.1258945E+01

0007 -0.3815353E+00 +0.4892026E+00 +0.9083559E+00

0008 -0.3815352E+00 -0.1031332E+01 +0.2801060E-01

0009 +0.1922070E+01 -0.5406136E+00 +0.8784978E+00

0010 +0.1922070E+01 -0.5406136E+00 -0.8784978E+00

0011 +0.1719231E+01 +0.1975553E+01 +0.9074350E+00

0012 +0.3153556E+01 +0.1467640E+01 +0.2893292E-01

0013 +0.1924548E+01 +0.3209266E+01 -0.1285477E+01

0014 +0.1923544E+01 +0.1688022E+01 -0.2164595E+01

0015 -0.3805962E+00 +0.2720688E+01 -0.3795649E+00

0016 -0.3795888E+00 +0.2721399E+01 -0.2136560E+01

0017 -0.1613584E+01 +0.7146030E+00 -0.1287592E+01

0018 -0.1802634E+00 +0.2059813E+00 -0.2167322E+01

> Another command is requested

Table I
Control Characters and Their Effect^{*}

<u>Character and List</u>	<u>Effect</u>
R n ₁ n ₂	The distance between atoms n ₁ and n ₂ is typed.
A n ₁ n ₂ n ₃	The angle formed by atoms n ₁ , n ₂ and n ₃ is typed.
T n ₁ n ₂ n ₃ n ₄	The torsional angles formed by atoms n ₁ , n ₂ , n ₃ and n ₄ is typed.
S n ₁ n ₂ n ₃ v ₁ v ₂	Secondary hydrogens are added to atom n ₂ which is attached to n ₁ and n ₃ . The bond length is v ₁ and the HCH bond angle is v ₂ .
M n ₁ n ₂ n ₃ n ₄ v ₁	A methine hydrogen is added to atom n ₁ which is attached to atoms n ₂ , n ₃ and n ₄ . The bond length is v ₁ .
G	Get additional coordinates. A new set of indices, bond length, bond angle and torsional angle is then typed. Exit from this mode is made by typing -1 as before. Change the coordinates of atom n ₁ to v ₁ , v ₂ , v ₃ .
C n ₁ v ₁ v ₂ v ₃	Fix the coordinates of another atom as v ₁ , v ₂ , v ₃ . Additional coordinates may be added until a zero value of n ₁ is reached. The computer then asks for a new instruction. n ₁ must be preceded by a zero in each case. Thus, the last entry is 00 followed by a space.
D n ₁	Delete the coordinates of atom n ₁ . If n ₁ is greater than the number of atoms, the coordinates of the last atom are deleted.
I n ₁ v ₁ v ₂ v ₃	Insert the coordinates v ₁ , v ₂ , v ₃ before those of atom n ₁ .
F n ₁ v ₁ v ₂ v ₃	Examine bond registers. The attached atoms are listed in pairs. The computer then types ADD. Additional bonding pairs may now be entered. Adding is terminated by -1. The computer then types DELETE. The number in the list of the entry to be deleted may now be typed. This mode is terminated by -1.
E	

P n₁

Print coordinates. If n₁ is zero, all coordinates are typed in floating point form. If n₁ is positive, the coordinates of atom n₁ are typed. If n₁ is negative, the computer halts, permitting the punch to be turned on. Pressing the CONTINUE key leads to typing of coordinate values in decimal form. The computer again halts and is restarted by pressing the CONTINUE key. If the tape is to be read back into the computer at a later time, terminate the tape with 00 (see text).

W

Write coordinates in CRT. This leads to the message "LOAD SECOND TAPE, START AT 4400." See writeup of the WRITE subroutine.

B n₁

Invert the values of the x(n₁=1), y(n₁=2) or z(n₁=3) array (i. e. multiply them by -1, 0).

L v₁ v₂ v₃

Rotate the vector defined by v₁, v₂, v₃ so that it lies along the z axis.

Q n₁ n₂

Transpose arrays n₁ and n₂ (i. e. exchange them). For x, n=1; y, n=2; z, n=3.

U n₁ v₁

Rotate about axis n₁ by v₁ degrees.

V n₁ v₁ v₂ v₃

If n₁ is a positive integer, translate coordinates of atom n to 0, 0, 0- ignore v₁, v₂, v₃. If n₁ is zero or negative, translate coordinates to make v₁, v₂, v₃=0, 0, 0.

* The values designated as n are integers, those designated by v are decimal numbers. A space or carriage return must follow each entry.

If the control character is entered incorrectly, type it a second time. The computer will respond with a "?", followed by > . Then a new character may be entered.

If an integer is entered incorrectly, type a back arrow (\leftarrow) before the terminating space. Then type the entire correct number. If the space is typed, stop computer and restart at 4746.

If a decimal (floating point) number is entered incorrectly, type a "rubout" before the terminating space. Then type the entire correct number.

Method of Calculation

The first atom is located at 0, 0, 0 and its bond to the second atom is considered to lie on the x axis. The third atom is placed in the xy plane with $x_3 = x_2 - r_{23}\cos\theta$ and $y_3 = \sin\theta$.

The remaining atoms are located as follows where R is the bond length between atoms k and l, θ is the bond angle formed by atoms j, k and l, and ϕ is the torsional angle formed by atoms i, j, k and l.

A new coordinate system is set up so that

$$x'_1 = R\cos\theta$$

$$y'_1 = R\sin\theta\cos\phi$$

$$z'_1 = R\sin\theta\sin\phi$$

Then the transformation matrix is obtained which will transform the new coordinate system into the original system. Thus:

$$x_1 = x_k + T_{xx} \cdot x'_1 + T_{xy} \cdot y'_1 + T_{xz} \cdot z'_1$$

$$y_1 = y_k + T_{yx} \cdot x'_1 + T_{yy} \cdot y'_1 + T_{yz} \cdot z'_1$$

$$z_1 = z_k + T_{zx} \cdot x'_1 + T_{zy} \cdot y'_1 + T_{zz} \cdot z'_1$$

The transformation matrix is obtained as follows:

$$R_{ab} = \sqrt{(x_j - x_k)^2 + (y_j - y_k)^2 + (z_j - z_k)^2}$$

$$T_{xx} = (x_j - x_k) / R_{ab} \quad T_{yx} = (y_j - y_k) / R_{ab} \quad T_{zx} = (z_j - z_k) / R_{ab}$$

$$\text{SCALE} = (x_i - x_k) T_{xx} + (y_i - y_k) T_{yx} + (z_i - z_k) T_{zx}$$

$$R_1 = (x_i - x_k) - \text{SCALE} \cdot T_{xx}$$

$$R_2 = (y_i - y_k) - \text{SCALE} \cdot T_{yx}$$

$$R_3 = (z_i - z_k) - \text{SCALE} \cdot T_{zx}$$

$$RAJ = \sqrt{R_1^2 + R_2^2 + R_3^2}$$

$$T_{xy} = R_1 / RAJ \quad T_{yy} = R_2 / RAJ \quad T_{zy} = R_3 / RAJ$$

$$T_{xz} = T_{yz} \cdot T_{zy} - T_{zx} \cdot T_{yy}$$

$$T_{yz} = T_{zx} \cdot T_{xy} - T_{xx} \cdot T_{zy}$$

$$T_{zz} = T_{xx} \cdot T_{yy} - T_{yx} \cdot T_{xy}$$

The bond lengths and bond angles are calculated using the usual relationships. The dihedral angle (ϕ) is calculated as follows where atoms 1, 2, 3 and 4 define the angle:

$$C = [(y_1 - y_2)(z_2 - z_3) - (z_1 - z_2)(y_2 - y_3)] \cdot [(y_4 - y_3)(z_2 - z_3) - (z_4 - z_3)(y_2 - y_3)]$$

$$+ [(z_1 - z_2)(x_2 - x_3) - (x_1 - x_2)(z_2 - z_3)] \cdot [(z_4 - z_3)(x_2 - x_3) - (x_4 - x_3)(z_2 - z_3)]$$

$$+ [(x_1 - x_2)(y_2 - y_3) - (y_1 - y_2)(x_2 - x_3)] \cdot [(x_4 - x_3)(y_2 - y_3) - (y_4 - y_3)(x_2 - x_3)]$$

$$D = \{[(y_1 - y_2)(z_2 - z_3) - (z_1 - z_2)(y_2 - y_3)]^2 + [(z_1 - z_2)(x_2 - x_3) - (x_1 - x_2)(z_2 - z_3)]^2\}$$

$$+ \{[(x_1 - x_2)(y_2 - y_3) - (y_1 - y_2)(x_2 - x_3)]^2\}^{\frac{1}{2}} \cdot \{[(y_4 - y_3)(z_2 - z_3) - (z_4 - z_3)(y_2 - y_3)]^2$$

$$+ [(z_4 - z_3)(x_2 - x_3) - (x_4 - x_3)(z_2 - z_3)]^2 + [(x_4 - x_3)(y_2 - y_3) - (y_4 - y_3)(x_2 - x_3)]^2\}^{\frac{1}{2}}$$

$$\phi = \cos^{-1}(C/D)$$

Coordinate Program Storage Map

0002-0037}	Page 0 constants
0063-0177}	
0200-1023	Initial operating program
1025-1177	PRNT- Subroutine control program
1200-1265	ANGLES- Bond angle subroutine
1266-1277	RVAL- Bond distance subroutine
1300-1327	SDIST- Subroutine for calculating distance between points
1330-1372	TRPOSE- Subroutine for transposing coordinates
1373-1457	DELETE- Subroutine for deleting coordinates
1460-1562	ROT2- Subroutine for rotating about an axis
1563-1633	TRANSL- Subroutine for translating coordinates
1634-1732	LOCATN- Subroutine for obtaining addresses of elements in x, y and z arrays
1733-1747	CHANGE- Subroutine for changing a coordinate
1750-1777	FIX- Subroutine for fixing additional coordinates
2000-2060	PRINTT- Subroutine for printing coordinates using E format
2061-2357	SECOND- Subroutine for adding secondary hydrogens
2360-2574	TORSS- Torsional angle subroutine
2600-2641	LIST- Subroutine which prints coordinates - used with PRINTT
2642-2674	ARCOS- ARC COSINE subroutine
2675-2777}	
4400-4520}	ROT1- Subroutine for rotating a point onto the Z axis
4521-4606	INSERT- Subroutine for inserting a coordinate
4607-4722	TERT- Subroutine for introducing tertiary hydrogens
4723-4745	WRITE- Dummy write subroutine (see text)
4746-4750	RECOVR- Error recovery subroutine
4315-4376}	
4143-4176}	EXAMINE Subroutine for examining bond register
3654-3703	INVERT- Subroutine for changing sign along one coordinate
3704-3777	PRNT2- Print selection subroutine
5000-5123}	
5252-5376}	DCOUT- Decimal output subroutine
5544-5562	SIGN- Subroutine used by ROT1
4751-4756	ERR- Subroutine used by DCOUT
3000-3177	X Array
3200-3377	Y Array
3400-3577	Z Array
3600-3652	Bond register
4000-4057	MESAGE- Typeout subroutine (DIGITAL-8-18)
4075-4142	DECPRT- Decimal print subroutine (DIGITAL-8-22)
4200-4311	SICONV- Decimal input subroutine (DIGITAL-8-28)
4757-7577	Floating point interpreter "C" (with overlays from some of the above subroutines)

/PROGRAM FOR OBTAINING CARTESIAN COORDINATES
CALL=4400
RETURN=5400
FSQRT=2
FCOS=4
FSIN=3
FATAN=5
BAX=146
BAY=151
BAZ=154
TZ1=65
TZ2=157
TZ3=143
INPUT=13
OUTPUT=14
FLPT=4407
*2

0002	3000	LOCX,	3000
0003	3200	LOCY,	3200
0004	3400	LOCZ,	3400
0005	3600	LOCR,	3600
0006	0000	NN,	0
0007	5600		5600
0010	0000	LX,	0
0011	0000	LY,	0
0012	0000	LZ,	0
0013	0000	IX,	0
0014	0000	IY,	0
0015	0000	IZ,	0
0016	0000	JX,	0
0017	0000	JY,	0
0020	0000	JZ,	0
0021	0000	KX,	0
0022	0000	KY,	0
0023	0000	KZ,	0
0024	0000	IR,	0
0025	0000	ZERO,	FLTG 0.0
0026	0000		
0027	0000		
0030	0000	R,	FLTG 0.0
0031	0000		
0032	0000		
0033	7773	CONST,	FLTG 0.01745329
0034	2167		
0035	6416		

0036	4000	MESAGE,	4000
0037	0000	N,	0
		*63	
0063	0000	INDEX,	0
0064	0003	THREE,	3
0065	0000	ANGLE,	FLTG 0.0
0066	0000		
0067	0000		
0070	0000	TORS,	FLTG 0.0
0071	0000		
0072	0000		
0073	0000	TEMP,	FLTG 0.0
0074	0000		
0075	0000		
0076	0000	II,	0
0077	0000	J,	0
0100	0000	K,	0
0101	0000	L,	0
0102	4200	SICONV,	4200
0103	4075	DECPRT,	4075
0104	0000	FLAG,	0
0105	0000	TX1,	FLTG 0.0
0106	0000		
0107	0000		
0110	0000	TX2,	FLTG 0.0
0111	0000		
0112	0000		
0113	0000	TX3,	FLTG 0.0
0114	0000		
0115	0000		
0116	0000	TY1,	FLTG 0.0
0117	0000		
0120	0000		
0121	0000	TY2,	FLTG 0.0
0122	0000		
0123	0000		
0124	0000	TY3,	FLTG 0.0
0125	0000		
0126	0000		
0127	0000	SS,	FLTG 0.0
0130	0000		
0131	0000		
0132	0000	CS,	FLTG 0.0
0133	0000		
0134	0000		
0135	0000	C2,	FLTG 0.0
0136	0000		
0137	0000		
0140	0000	RAJ,	FLTG 0.0
0141	0000		
0142	0000		
0143	0000	RAB,	FLTG 0.0
0144	0000		
0145	0000		

0146	0000	JAX,	FLTG 0.0
0147	0000		
0150	0000		
0151	0000	JAY,	FLTG 0.0
0152	0000		
0153	0000		
0154	0000	JAZ,	FLTG 0.0
0155	0000		
0156	0000		
0157	0000	SCALE,	FLTG 0.0
0160	0000		
0161	0000		
0162	0000	SUM,	FLTG 0.0
0163	0000		
0164	0000		
0165	0000	CAX,	FLTG 0.0
0166	0000		
0167	0000		
0170	0000	CAY,	FLTG 0.0
0171	0000		
0172	0000		
0173	0000	CAZ,	FLTG 0.0
0174	0000		
0175	0000		
0176	0513	CONT,	COORD
0177	1025	PRINT,	PRNT
		*3600	
3600	0102		0102
3601	0203		0203