10. Pomer tepelných kapacít vzduchu

Autor pôvodného textu: Peter Dieška

Úloha: Určiť pomer tepelných kapacít vzduchu – tepelnej kapacity pri konštantnom tlaku a pri konštantnom objeme Clémentovou - Desormesovou metódou.

Teoretický úvod

Z ekonomického hľadiska je často potrebné poznať koľko tepla potrebujeme na zohriatie telesa o jeden teplotný stupeň. Veličinou slúžiacou na kvantifikáciu tohto procesu je tepelná kapacita C. Zavádza sa ako podiel (množstva) dodaného tepla ΔQ meraného v jouloch a prírastku teploty telesa ΔT vyjadreného v stupňoch: $C = (\Delta Q / \Delta T)$. Prírastok teploty vyjadrený v stupňoch Celzia, alebo v kelvinoch je síce rovnaký, ale ak sa uvádza rozmer tepelnej kapacity, tak v súlade s pravidlami sústavy SI sa uvádza zásadne značka K. V presnej definícii tepelnej kapacity ide o limitu podielu:

$$C = \lim_{\Delta T \to 0} \frac{\Delta Q}{\Delta T} \quad . \tag{10.1}$$

Jednotkou tepelnej kapacity je joule/kelvin, značka J/K.

Tepelná kapacita telesa závisí popri druhu materiálu aj od jeho veľkosti. Preto je vhodné prepočítavať tepelnú kapacitu na jednotku objemu, hmotnosti, alebo látkového množstva. Preto sa zavádzajú veličiny

 $\label{eq:cv} objemov\'a~tepeln\'a~kapacita~c_v = C/V~,~s~jednotkou~J\cdot K^{-1}\cdot m^{-3}~,$ $\label{eq:cw} hmotnostn\'a~tepeln\'a~kapacita~c_m = C/m~,~s~jednotkou~J\cdot K^{-1}\cdot kg^{-1}~,$ a $\label{eq:cw} mol\'arna~tepeln\'a~kapacita~c_M = C/n~,~s~jednotkou~J\cdot K^{-1}\cdot mol^{-1}~,$

kde V je objem telesa, m hmotnosť a n jeho látkové množstvo, vyjadrené počtom mólov.

Ak sústava (napr. plyn v nádobe) pri zohrievaní zväčšuje svoj objem, koná prácu. Časť dodávaného tepla sa pritom spotrebuje na konanie práce, a tak na zohriatie sústavy o jeden stupeň pri konštantnom tlaku treba dodať viac tepla, ako v prípade, keď sa jej objem nemení. Preto sa rozlišujú tepelné kapacity *pri konštantnom objeme* C_V a *pri konštantnom tlaku* C_D , medzi ktorými platí nerovnosť

$$C_p > C_V$$
.

Tomuto kvalitatívnemu vzťahu v prípade ideálneho plynu zodpovedá presný kvantitatívny vzťah pomenovaný podľa nemeckého vedca J.R. Mayera (1814 – 1878):

$$C_p = C_V + nR, (10.2)$$

v ktorom R je molárna plynová konštanta a n látkové množstvo. Keď rovnicu vydelíme látkovým množstvom, dostaneme vzťah pre molárne tepelné kapacity c (index M je vynechaný, aby vzťah bol prehľadnejší):

$$c_p = c_V + R . (10.3)$$

Podľa tohto vzťahu na zohriatie jedného mólu ideálneho plynu o 1 K pri konštantnom tlaku, treba dodať tepla viac o hodnotu rovnajúcu sa molárnej plynovej konštante *R*.

Podiel tepelných kapacít pri konštantnom tlaku a pri konštantnom objeme

$$(C_p / C_V) = \kappa \tag{10.4}$$

je vždy väčší než 1, a nazýva sa *Poissonova konštanta*. Táto sa uplatňuje napríklad pri adiabatickom deji, pri vyjadrení súčinu tlaku a objemu plynu:

$$pV^{\kappa} = \text{konšt.}$$
 (10.5)

Z kinetickej teórie plynov je známe, že molárna tepelná kapacita c_V ideálneho plynu pri stálom objeme súvisí s počtom stupňov voľnosti i jeho molekúl:

$$c_V = i \frac{R}{2} .$$

Jednoatómové molekuly majú tri stupne voľnosti, t.j. i = 3, dvojatómové 5, viacatómové 6. Keď toto dosadíme do rovnice (10.4) a použijeme aj vzťah (10.3), dostaneme

$$\kappa = \frac{c_p}{c_V} = \frac{i\frac{R}{2} + R}{i\frac{R}{2}} = \frac{i+2}{i}.$$

Tento vzťah umožňuje zo znalosti Poissonovej konštanty určiť základný parameter molekúl plynu – z koľkých atómov sa molekuly skladajú. Pre dvojatómový plyn, za aký môžeme považovať aj vzduch, vychádza $\kappa=7/5=1,4$.

Metóda merania

V tejto laboratórnej úlohe sa na určenie Poissonovej konštanty používa nepriama

metóda – s využitím adiabatického deja. Ide o metódu, ktorú v roku 1819 navrhli Clément a Desormes. Ich zariadenie sa skladá z väčšej sklenenej banky B, s ktorou je spojený merač tlaku - manometer, v ktorom sa ako meracia kvapalina využíva (zafarbená) voda (obrázok vedľa). Kohútom K_1 sa do banky dá priviesť skúmaný plyn, v tomto prípade vzduch, pomocou stláčacieho balónika.

Do banky sa natlačí vzduch tak, aby v banke bol mierny pretlak, čo sa prejaví rozdielom hladín kvapaliny v manometri. V banke je potom tlak

$$p_1 = b + \rho g h_1$$
, (10.6)

kde b je atmosférický tlak, ρ hustota

kvapaliny, g tiažové zrýchlenie a h_1 rozdiel hladín kvapaliny, meraný však až po ustálení teploty v banke. Pri tlačení do banky sa vzduch mierne zohrieva, podobne ako pri tlačení do kolesa bicykla. Preto treba chvíľu počkať na vyrovnanie teploty vzduchu v banke s teplotou okolia. Stav plynu potom označíme indexom 1, zodpovedá mu teplota T_1 a tlak p_1 . Potom

nakrátko otvoríme širší kohút K_2 , takže sa tlak plynu v banke vyrovná atmosférickému tlaku b a kohút zavrieme. Stav hneď po uzavretí kohúta označíme indexom 2, zopovedajú mu teplota T_2 a tlak $p_2 = b$. Expanzia plynu pri otvorení kohúta prebieha rýchlo, plyn sa pritom ochladzuje, lebo koná prácu na úkor svojej vnútornej energie. Pri rýchlom procese sa ochladenému plynu z teplejšieho okolia nestíha ihneď dodať teplo potrebné na vyrovnie teploty, preto je expanzia plynu adiabatickým dejom.

Pri adiabatickom deji platí vzťah (10.5), v ktorom vystupujú tlak a objem. V tomto prípade sa však časť plynu dostáva z banky von, objem plynu nie je dobre definovaný, preto bude vhodnejšie vzťah upraviť tak, aby v ňom vystupoval tlak s teplotou. Zo stavovej rovnice ideálneho plynu pV = nRT vyjadríme objem a dosadíme do vzťahu (10.5):

$$p_1 \left(\frac{nRT_1}{p_1}\right)^{\kappa} = p_2 \left(\frac{nRT_2}{p_2}\right)^{\kappa} \implies p_1 \left(\frac{T_1}{p_1}\right)^{\kappa} = p_2 \left(\frac{T_2}{p_2}\right)^{\kappa} \implies p_1 \left(\frac{T_1}{p_1}\right)^{\kappa} = b \left(\frac{T_2}{b}\right)^{\kappa}. \tag{10.7}$$

lebo $p_2 = b$. Banka je po adiabatickom deji uzavretá, ochladený plyn sa postupne zohrieva, až dosiahne ustálenú teplotu T_3 , ktorá sa rovná pôvodnej teplote T_1 okolia. Dej prebieha pri nemeniacom sa objeme (izochorický dej), tlak v nádobe s rastúcou teplotou postupne rastie, až na ustálenú hodnotu

$$p_3 = b + \rho g h_3 . \tag{10.8}$$

Výsledný stav označíme indexom 3 - plyn má teplotu $T_3 = T_1$ a tlak p_3 . Medzi začiatočnými a konečnými hodnotami tlaku a teploty plyny pri izochorickom deji platí vzťah

$$\left(\frac{T_2}{p_2}\right) = \left(\frac{T_3}{p_3}\right) \quad (p_2 = b, T_3 = T_1) \implies \left(\frac{T_2}{b}\right) = \left(\frac{T_1}{p_3}\right).$$
(10.9)

Dosadením týchto vzťahov do rovnice (10.7) dostaneme:

$$p_1\left(\frac{T_1}{p_1}\right)^{\kappa} = b\left(\frac{T_2}{b}\right)^{\kappa} \implies p_1\left(\frac{T_1}{p_1}\right)^{\kappa} = b\left(\frac{T_1}{p_3}\right)^{\kappa},$$

odkiaľ vyplýva

$$\frac{p_1}{b} = \left(\frac{p_1}{p_3}\right)^{\kappa} \quad \Rightarrow \quad \kappa \ln \frac{p_1}{p_3} = \ln \frac{p_1}{b} \quad ,$$

ako aj výsledný vzťah používaný na výpočet Poissonovej konštanty

$$\kappa = \frac{\ln p_1 - \ln b}{\ln p_1 - \ln p_3} \quad . \tag{10.10}$$

Pri praktickom meraní bývajú tlaky p_1 aj p_3 podstatne menšie ako atmosférický tlak b. To umožňuje zjednodušiť vzťah (10.10) nasledujúcim spôsobom, v ktorom využijeme Taylorov rozvoj funkcie $\ln(1+x) \cong x$, platný pre malé x:

$$\kappa = \frac{\ln \frac{p_1}{b}}{\ln \frac{p_1}{p_3}} = \frac{\ln \frac{b + \rho g h_1}{b}}{\ln \frac{b + \rho g h_3}{b + \rho g h_3}} = \frac{\ln \left(1 + \frac{\rho g h_1}{b}\right)}{\ln \left(1 + \frac{\rho g h_1}{b}\right) - \ln \left(1 + \frac{\rho g h_3}{b}\right)} \cong \frac{\frac{\rho g h_1}{b}}{\frac{\rho g h_1}{b} - \frac{\rho g h_3}{b}} = \frac{h_1}{h_1 - h_3}$$
(10.11)

Postup práce

Na začiatku, aj na konci merania, odčítame na laboratórnom barometri atmosférický tlak. Ak sa počas merania tlak zmenil, počítame s priemernou hodnotou.

Balónikom pripojeným ku kuhútiku K_1 nahustíme do banky vzduch, aby manometer ukázal pretlak 20 cm až 30 cm vodného stĺpca. Počkáme, kým sa hladiny ustália a odčítame rozdiel hladín h_1 vodných stĺpcov v ramenách manometra. Potom nakrátko otvoríme široký kohút K_2 a hneď zavrieme. Po vyrovnaní teploty vzduchu v banke s teplotou okolia, keď sa hladiny v ramenách manometra znova ustália, odčítame rozdiel ich polôh h_3 . Meranie opakujeme 10-krát pri rôznych začiatočných hodnotách h_1 . Namerané hodnoty zapisujeme do tabuľky a pri každom meraní vypočítame Poissonovu konštantu podľa približného vzťahu.

Tab. 10.1

$b_1 =$		$b_2 =$			
i	h_1	h_3	p_1	p_3	К

Po vykonaní všetkých meraní, vypočítame aritmetický priemer získaných hodnôt Poissonovej konštanty a potom smerodajnú odchýlku aritmetického priemeru podľa vzťahu

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}.$$

Z približného vzťahu (10.11) vyplýva, že medzi veličinami h_1 a h_3 je lineárny vzťah:

$$h_3 = \frac{\kappa - 1}{\kappa} h_1 \ . \tag{10.12}$$

Namerané dvojice bodov (h_1,h_3) vynesieme na milimetrový papier a preložíme nimi priamku. Zo smernice tejto priamky určíme hodnotu κ . Vyberieme jeden bod priamky a pomocou presného vzorca (10.10) vypočítame príslušnú hodnotu Poissonovej konštanty. Odchýlka Δ od hodnoty aritmetického priemeru udáva systematickú chybu v určení Poissonovej konštanty zapríčinenú výpočtom podľa približného vzorca.

Upozornenie

Pri nahusťovaní vzduchu musíme dávať pozor, aby klesajúca hladina vodného stĺpca neklesla príliš blízko k dolnému ohybu U trubice manometra, lebo kvapalina potom môže z manometra vystreknúť.

Otázky a problémy

- 1. Čomu sa rovná rozdiel molárnych tepelných kapacít pri stálom tlaku a pri stálom objeme?
- 2. Odvoď te vzťah vyjadrujúci Poissonovu konštantu.
- 3. Odhadnite, ktoré sú možné zdroje chýb tejto meracej metódy.

Meno: Krúžok: Dátum merania:

Protokal laboratórnai úloby 10

Protokol laboratórnej úlohy 10 Pomer tepelných kapacít vzduchu

Stručný opis metódy merani

Vzťahy ktoré sa používajú pri meraní:

Prístroje a pomôcky:

Meranie

Atmosférický tlak na začiatku merania $b_1 =$

na konci merania $b_2 =$

i	h_1	h_3	p_1	p_3	К
Aritme	tický priemer v	ypočítaných ho	dnôt Poissono	vej konštanty:	κ _p =

Smernica lineárnej závislosti h_3 od h_1	k =
Poissonova konštanta vypočítaná podľa smernice	$\kappa_{\rm s} =$
Aritmetický priemer nameraných hodnôt konštanty	$\kappa_{ m p}=$
Smerodajná odchýlka aritmetického priemeru	σ=
Rozdiel $\Delta = \kappa_p - \kappa_s$	$\Delta =$

Aritmetický priemer nameraných hodnôt s uvedením jeho smerodajnej odchýlky:						
$\kappa_{ m p} =$						
K protokolu treba pripojiť graf závislosti h_3 od $ h_3$	i_1					
Slovné zhodnotenie výsledkov merania:						
Dátum odovzdania protokolu:						
Podpis študenta:	Podpis učiteľa:					