UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Sistemas Nebulosos

Relações Nebulosas

Cristiano Leite de Castro

Adaptação de material didático do Prof. André Paim Lemos (DELT)

Produto Cartesiano

$$U \times V = \{(x, y) | x \in U \ e \ y \in V\}$$

Relação binária R(U,V)

$$\mu_R(x,y) = \begin{cases} 1 & \iff (x,y) \in R(x,y) \\ 0 & caso \ contrario \end{cases}$$

$$R \subseteq U \times V$$

Exemplo:

```
-R(U,V): x é divisível por y
```

- U = {10, 15, 20}
- $V = \{2, 3, 5\}$

 $R(U,V) = \{(10,2), (10,5), (15,3), (15,5), (20,2), (20,5)\}$

- Conjuntos ordinários
 - Tupla (elemento) pertence ou não a relação

- -R(U,V): x é divisível por y
 - $U = \{10, 15, 20\}$
 - $V = \{2, 3, 5\}$

$$(10,2) \in R$$

$$(10,3) \notin R$$

 Representa o grau de presença ou ausência de associação (interação) entre os elementos de dois ou mais conjuntos nebulosos.

Exemplos:

- x é bem maior que y
- y é muito próximo de x
- SE x é alto ENTÃO y é baixo

 Relação binária nebulosa é um conjunto nebuloso definido no espaço cartesiano UxV

$$R(U, V) = \{(x, y), \mu_R(x, y) | (x, y) \in U \times V\}$$

- Conjuntos ordinários : $\mu_R(x,y) \in \{0,1\}$
- Conjuntos nebulosos : $\mu_R(x,y) \in [0,1]$

Se a relação é definida no espaço U \times V então $\mu_R(.)$ é uma Função de Pertinência Bi-dimensional

Exemplo

- Sejam U e V números reais
- -R(x,y): "x é próximo de y"

$$\mu_R(x,y) = \max\{(5 - |x - y|)/5, 0\}$$

- $U = V = \{10,40,80,100,300\}$
- R(x,y): "x é muito maior que y"

	X/Y	10	40	80	100	300
$\mu_R(x,y)=$	10	0	0	0	0	0
	40	0,4	0	0	0	0
	80	0,8	0,2	0	0	0
	100	1,0	0,6	0,2	0	0
	300	1,0	0,8	0,4	0,2	0

 operações, união, intercessão, complemento também podem ser utilizadas em relações nebulosas

$$\mu_{R \cap S}(x, y) = \mu_R(x, y) \land \mu_S(x, y)$$

$$\mu_{R \bowtie S}(x,y) = \mu_R(x,y) \vee \mu_S(x,y)$$

- o operador é aplicado elemento a elemento.

 Λ = t-norma V = s-norma

- Exemplo:
 - $U = \{2,12\} e V = \{1,7,13\}$
 - Relações:
 - "u é próximo de v"
 - "u é muito menor que v"

$$\mu_p(u,v) = \begin{pmatrix} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{pmatrix}$$

$$\mu_m(u,v) = \begin{pmatrix} 0 & 0.6 & 1 \\ 0 & 0 & 0.3 \end{pmatrix}$$

• "u é próximo de v" e "u é muito menor que v"

$$\mu_{p\cap m}(u,v) = \mu_p(u,v) \wedge \mu_m(u,v)$$

$$\mu_p(u,v) = \begin{pmatrix} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{pmatrix}$$

$$\mu_m(u,v) = \begin{pmatrix} 0 & 0.6 & 1 \\ 0 & 0 & 0.3 \end{pmatrix}$$

$$\mu_{p\cap m}(u,v) = \begin{pmatrix} 0 & 0.4 & 0.1 \\ 0 & 0 & 0.3 \end{pmatrix}$$

• "u é próximo de v" ou "u é muito menor de v"

$$\mu_{p \cup m}(u, v) = \mu_{p}(u, v) \vee \mu_{m}(u, v)$$

$$\mu_{p}(u, v) = \begin{pmatrix} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{pmatrix}$$

$$\mu_{m}(u, v) = \begin{pmatrix} 0 & 0.6 & 1 \\ 0 & 0 & 0.3 \end{pmatrix}$$

$$\mu_{p \cup m}(u, v) = \begin{pmatrix} 0.9 & 0.6 & 1 \\ 0.1 & 0.4 & 0.9 \end{pmatrix}$$

Example 5.2

Let R be a fuzzy relation between the two sets $X = \{\text{New York City, Paris}\}\$ and $Y = \{\text{Beijing, New York City, London}\}\$, which represents the relational concept "very far." This relation can be written in list notation as

$$R(X, Y) = 1/NYC$$
, Beijing + $0/NYC$, $NYC + .6/NYC$, London + $.9/Paris$, Beijing + $.7/Paris$, $NYC + .3/Paris$, London.

This relation can also be represented by the following two-dimensional membership array (matrix):

	NYC	Paris
Beijing	1	.9
NYC	0	.7
London	.6	.3

 "u é próximo de v" definida em U x V (U= {2,12} e V={1,7,13})

$$\mu_p(u,v) = \begin{pmatrix} 0.9 & 0.4 & 0.1\\ 0.1 & 0.4 & 0.9 \end{pmatrix}$$

 "v é muito maior que w" definida em V x W (W={4,8})

$$\mu_{mm}(v,w) = \begin{pmatrix} 0 & 0 \\ 0.6 & 0 \\ 1 & 0.7 \end{pmatrix}$$

- A proposição
 - "u é próximo de v e v é muito maior que w"
- Composição de duas relações nebulosas

$$R(U, W) = P(U, V) \circ M(V, W)$$

• R(U,W) é definida em U x W

Composição Max-Min:

$$\mu_{P^{\circ}M}(u,w) = \left\{ (u,w), \max_{v} \left[\min(\mu_{p}(u,v), \mu_{M}(v,w) \right] \right\}$$

```
\Lambda = \min V = \max
```

• "u é próximo de v e v é muito maior que w"

- similar a uma multiplicação de matrizes
 - Porém tratar multiplicação como mínimo e adição como máximo

Exemplo:

$$\mu_{p \circ mm}(1,1) = max(min(0.9,0),$$

 $min(0.4,0.6), min(0.1,1)) = 0.4$

Composição Max-Produto

$$P \circ M(u, w) = \vee [\mu_P(u, v) \mu_M(v, w)]$$

Composição Max-Estrela (★=t-norma)

$$P \circ M(u, w) = \vee [\mu_P(u, v) \star \mu_M(v, w)]$$

Propriedades de Relações Nebulosas

$$R \circ (S \circ T) = (R \circ S) \circ T$$

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

$$R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

$$S \subseteq T \implies R \circ S \subset R \circ T$$

Leitura Recomendada

- Capítulo 3 do Livro Seção 3.2.2.
 - Jyh-Shing Roger Jang and Chuen-Tsai Sun. 1996. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

