Lecture 8: Cosets, subgroups of \mathbb{Z} Consider the group $G_1 = D_6$

The elements are:

1 $P P^2 P^3 P^4 P^5$

TPT PT PT P5

We have the relations $P^6=1$, $T^2=1$, $T^2=1$.

Left cosets of
$$H = \{1, T\}$$

1 P P² P³ P⁴ P⁵

Right cosets of $H = \{1, T\}$

1 P P² P³ P⁴ P⁵

T PT P² P³ P⁴ P⁵

T PT P² P³ P⁴ P⁵

T PT P² P³ P⁴ P⁵

So, we observe that (1) Both left and right cosets give partitions of the group. (2) Right cosets of a group may be very different from the left cosets.

Subgroups of Z We know that if integer, the set $mZ = \{mx \mid x \in Z\}$ is a subgroup of ZL. Are there any other subgroups

of ZZ ?

Recall

Well-ordering principle

member

Any non-empty set of positive

integers has a smallest

Non-examples 1) Consider the set IR of all real numbers. This has no smallest element. 2) Consider the set of all positive real numbers. It has a lower bound but no smallest

A small generalization.

Let $S \subseteq \mathbb{Z}$ be a non-empty subset that has a lower bound,

i.e. there exists some $x_0 \in \mathbb{Z}$ such that $x \ge x_0 \ \forall \ x \in S$. Then S has a smallest

element

Proof Let $T = \{x - x_0 + 1 \mid x \in S\}$ Then T consists of positive integers. Also, T is non-empty. So, T has a smallest element z. Then z = y - x + 1 for some yes.

We claim that y is the smallest element of 5. If not, suppose there exists some xeS, x<y.

Then, $x-x_0+1 < y-x_0+1 = Z$.

But $x-x_0+1 \in T$ and Z is

the smallest element of T. — contra.

Conclusion

as well.

So, the well-ordering principle applies to non-empty subsets of <u>non-negative</u> integers

Division algorithm Let $a, b \in \mathbb{Z}$, b > 0. Then, there exist unique integers

there exist unique integers q, r such that a = bq + r

and $0 \le r < b$.

Warning Note the conditions on r carefully. We have 0 < r and r < b.

Proof

Consider the set

 $S = \{a - bm \mid m \in \mathbb{Z}, a - bm > 0\}$

We claim that S is non-empty.

Case 1 Suppose a > 0.

Then $a = a - b \cdot 0$ E 5. Case 2 a < 0

Then a - b(2a) = a(1-2b). As b > 1, 2b > 2 and so 1-2b < 0.

As a < 0, a(1-2b) > 0.

So $a - b(2a) \in S$.

So, in this case also, S is non-empty.

So, S has a smallest element, which we denote by r. As $r \in S$, there exists some $g \in \mathbb{Z}$ such that a - bg = r. If r > b, $r-b > 0 \Rightarrow a-bq-b > 0$ But this means $a - b(q+1) \in S$. So, existence is But a-b(q+1) <r proved.

Uniqueness

Suppose we have two pairs

(q1, r1) and (q2, r2) with

the required property. So, $a = b q_1 + r_1$ and

a = b q2 + r2. If $r_1=r_2$, then $bq_1=bq_2 \Rightarrow q_1=q_2$.

So, if possible, let
$$r_1 \neq r_2$$
.
Suppose $r_1 < r_2$. So $r_2 - r_1 > 0$
Then, $bq_1 - bq_2 = r_2 - r_1$.

Then,
$$bq_1 - bq_2 = r_2 - r_1$$
.
So $b(q_1 - q_2) = r_2 - r_1$

As b>0 and $r_2-r_1>0$, we

see that $q_1-q_2 > 0$. So $q_1 - q_2 > 1 \implies r_2 - r_1 = b(q_1 - q_2) > b$

But $r_2 < b$ and $r_1 \ge 0$ So $r_2 - r_1 < b$ — contra.

So, $r_1 \neq r_2$ is impossible.

Thus, $r_1 = r_2$ and so $q_1 = q_2$. This completes the proof.

Theorem Any subgroup H of \mathbb{Z} is of the form \mathbb{Z} for some $\mathbb{Z} > 0$.

Proof Let H be a subgroup

Let $S = \{x \mid x \in H, x > 0\}$.

Case 1 Suppose $S = \phi$

Thus, all elements of H are

non-positive. If I x & H such that 2<0,

then -x>0. But $-x\in H$ \Rightarrow $-x \in S$ — contra.

So, It has no negative elements,

So, H = {0}.
So, we can

So, we can take m=0.

Case 2 Suppose $S \neq \phi$.

Then, S has a smallest element, which we denote by

m. We daim that $H = m \mathbb{Z}$.

Indeed, suppose x & H is any element. By division algorithm, I q, rez such that x = qm + r, $0 \le r < m$. Then, as xEH and gm EH, r= x- qm & H.

If r>0, re S.

But r<m and m is the smallest element of S. - contra. So, r = 0. Thus, $x = q.m. \Rightarrow x \in m\mathbb{Z}$

Thus, H C m Z

But mZ SH => H = mZ.

This completes the proof.

Cosets of subgroups of \mathbb{Z} . Let H be a subgroup of \mathbb{Z} . Assume $H \neq \{0\}$.

Thus, there exists m > 0 such that $H = m \mathbb{Z}$.

Any coset of H is of the form a + mZ, $a \in Z$.

When is a+mZ = b+mZ. $a+mZ = b+mZ \iff a \in b+mZ$

⇒ a = b + md for Some integer d

⇒ m divides a - b.

Use division algorithm.

Let $q_{,,r} \in \mathbb{Z}$ such that a= mg,+r, 0< 1, < m and $q_2, r_2 \in \mathbb{Z}$ such that $0 \le r_2 < m$ b = mg2 + r2, Then, $a-b = m(q_1-q_2) + (r_1-r_2)$ So m divides a-b m divides r,-r2.

If $r_1 > r_2$, $0 \le r_1 - r_2 < m$ and so m cannot divide r_-r_-

Similarly, if r2>r1,

0 < r2-r1 < m and so m cannot divide r_-r_. So m cannot divide $r_1-r_2=-(r_2-r_1)$

So, m divides $r_1-r_2 \iff r_1=r_2$. Thus, we have proved, a+mZ'=b+mZ' if and only if a and b leave the same remainder when divided by m.

So, the cosets of mZ are mZ, 1+mZ, ----, (m-1)+mZ. The collection of all these cosets is Z/mZ. Note that, in this case, the left and right cosets are the

same.

Example		m = 5	(Each column is a coset of 571)	
-10	- 9	- 8	-7	-6
-5	-4	-3	-2	-1
O	1	2	3	4
5	6	7	8	9
10	11	12	13	14
	•	•	•	•
, :	•	•	•	•
		•	•	•