Agenda

- 4. Ganzzahlige Optimierung
- 5. Dynamische Optimierung

Lehrevaluation

- Dieses Semester steht wieder die Lehrevaluation des Moduls an.
- ▶ Bitte geht auf den folgenden Link oder scannt den QR-Code, um an der Umfrage teilzunehmen.
- ► Es handelt sich hier lediglich um den Vorlesungsteil der Veranstaltung. Für die Evaluation der Tutorien wird es eine gesonderte Umfrage geben, die in den Tutorien verlinkt sein wird.
- Sämtliches Feedback ist willkommen. Wir wollen euch eine bestmögliche Veranstaltung anbieten und freuen uns über Verbesserungsvorschläge, Kritikpunkte oder ein Lob.

https://befragung.tu-berlin.de/evasys/online.php?p=Q9T2C

Ganzzahlige Optimierung

In der Realität haben viele Probleme nur ganzzahlige Lösungen

- Anzahl der Schiffe in einem Konvoi
- ► Produktionsmenge gemessen in Stückzahlen (Losgrößenplanung)
- Gegenstände, die man in einen Rucksack packt

Wir unterscheiden in ganzzahlige und binäre Probleme

- ▶ Binär:
 - ▶ Wird die Maschine des Typs i beschafft?
 - Wird Gegenstand *i* eingepackt? (Rucksackproblem)
- Ganzzahlig:
 - Wie viele Maschinen des Typs i werden beschafft?
 - Welche Kombination aus Produkten soll produziert werden?

整数优化

在现实中,许多问题只有整数解决方案。

- 船队中的船只数量
- 以件数为单位的生产量(批量生产计划)
- 装讲背包的物品

我们区分整数问题和一讲制问题

- 一讲制:
 - 是否采购类型为i的机器?
 - 是否将物品i放入背包中? (背包问题)
- 整数:
 - 要采购多少台类型为i的机器?
 - 应该生产哪种产品组合?

Agenda

- 4. Ganzzahlige Optimierung
- Branch-and-Bound-Algorithmus
- 4.2 Gomory-Algorithmus

Branch-and-Bound-Algorithmus - Grundidee

- ▶ Lösung einer Folge von relaxierten Problemen um das ursprüngliche ganzzahlige Problem zu lösen.
- Zerlegung des Optimierungsproblems in kleinere Teilprobleme (Branching)
- Entscheidung, welches Teilproblem weitergeführt wird oder durch ein anderes dominiert wird (Bounding)
- Die ganzzahlige, optimale Lösung einer linearen Relaxation eines ganzzahligen Problems ist auch die optimale Lösung des ganzzahligen Problems
- Der Zielfunktionswert eines übergeordneten (Teil-)Problems stellt immer eine obere Schranke für die Zielfunktionswerte der untergeordneten Probleme dar

Definition

Ein relaxiertes Problem ist ein einfacheres Problem, dessen Lösungsmenge alle Lösungen des Ursprungsproblems enthält. Ferner steht die Lösung des relaxiertenProblems in einem nicht-trivialen Zusammenhang mit der Lösung des Ausgangsproblems.

Team Operations Research

定义

分支定界算法 - 基本思想

题的解有着非平凡的关系。

 解决—系列放宽的问题来解决原始的整数问题 * 将优化问题分解为较小的子问题 (分支) 决定哪个子问题继续,或者被其他问题所主导(界定) 整数问题的线性放宽的最优解也是整数问题的最优解

 更高级(部分)问题的目标函数值始终是下级问题的目标函数值的上限 放宽的问题是一个较简单的问题,其解集包含原始问题的所有解。此外、放宽问题的解与原始问

Branch-and-Bound-Algorithmus

LP-Relaxation: Die Forderung der Ganzzahligkeit wird aufgegeben

Prozedur Branch-and-Bound

- ► Input:
 - ⊳ Ganzzahliges lineares Problem P₀
- ► Initialisierung:
 - $\triangleright K = \{P_0\}$
 - \triangleright Untere Schranke $U=-\infty$
 - ightharpoonup Obere Schranke $O=+\infty$
- ▶ Weitere Schritte siehe nächste Folie

Branch-and-Bound-Algorithmus

Branch-and-Bound-Algorithmus

Untersuchen der Teilprobleme: Ausloten nach ...

- ▶ ... Ganzzahligkeit: Das Teilproblem ist bereits optimal ganzzahlig gelöst
- ▶ ... Unzulässigkeit: Der zulässige Bereich ist leer
- ► ... Beschränkung: Die obere Schranke eines Teilproblems ist kleiner als eine bereits gefundene ganzzahlige Lösung (untere Schranke)

Wenn ein Teilproblem ausgelotet ist, muss es nicht weiter verzweigt werden.

检查子问题: 查看是否...

- ...整数解: 子问题已经以最优整数解解决
- ...不可行性: 可行解空间为空
- ...受限制: 子问题的上界小于已找到的整数解(下界)
 - 当一个子问题被查明后,就不需要再进行分支了。

Ganzzahlige Optimierung – Beispiel

Produktion von Stühlen und Tischen

Tisch:

- ► 1h Arbeit
- ▶ 9m² Holz
- ▶ 8 Euro Erlös

Stuhl:

- ► 1*h* Arbeit
- \triangleright 5 m^2 Holz
- ▶ 5 Euro Erlös

Momentan verfügbar:

- ► 6h Arbeit
- ► 45*m*² Holz

Initialisierung:

- ▶ $K = \{P_0\}$
- ▶ Obere Schranke $O = +\infty$

$$\begin{array}{lll} \max z = & 8x_1 + 5x_2 \\ \text{s.t.} & 1x_1 + 1x_2 & \leq 6 \\ & 9x_1 + 5x_2 & \leq 45 \\ & x_{1,2} & \in \mathbb{N} \end{array}$$

LP-Relaxation: Entfernung der Ganzzahligkeitsbedingung

Ergebnis der Berechnung

- ► $x_1 = 3,75$
- $x_2 = 2,25$
- ightharpoonup z = 41,25

Schlussfolgerungen

- ► Obere Schranke *O* = 41,25
- ► Kein Ausloten möglich

Neue Teilprobleme bilden

► Auswahl einer beliebigen nicht-ganzzahligen Variablen

Auswahl einer beliebigen nicht-ganzzahligen Variablen

- $> x_1 = 3,75$
- lacktriangle Feststellen der ganzzahligen Nachbarn 3 $\leq x_1 \leq 4$

Bildung von zwei neuen Teilproblemen durch Einführung neuer Nebenbedingungen

- ▶ Teilproblem P_1 : $x_1 \ge 4$
- ▶ Teilproblem P_2 : $x_1 \le 3$

$$\begin{array}{ll} \max z = & 8x_1 + 5x_2 \\ \text{s.t.} & 1x_1 + 1x_2 & \leq 6 \\ & 9x_1 + 5x_2 & \leq 45 \\ & x_{1,2} & \geq 0 \end{array}$$

Einfügen der neuen Nebenbedingung

 $ightharpoonup x_1 \geq 4$

Ergebnis der Berechnung

- ► $x_1 = 4$
- ► $x_2 = 1.8$
- \triangleright z = 41

Schlussfolgerungen

- ► Obere Schranke $O_1 = 41$
- ► Kein Ausloten möglich

Neue Teilprobleme bilden

► Auswahl einer beliebigen nicht-ganzzahligen Variable

Auswahl einer beliebigen nicht-ganzzahligen Variablen

- $x_2 = 1.8$
- lacktriangle Feststellen der ganzzahligen Nachbarn 1 $\leq x_2 \leq 2$

Bildung von zwei neuen Teilproblemen durch Einführung neuer Nebenbedingungen

- ▶ Teilproblem P_{11} : $x_2 \ge 2$
- ▶ Teilproblem P_{12} : $x_2 \le 1$

$$\begin{array}{lll} \max z = & 8x_1 + 5x_2 \\ \text{s.t.} & 1x_1 + 1x_2 & \leq 6 \\ & 9x_1 + 5x_2 & \leq 45 \\ & x_1 & \geq 4 \\ & x_{1,2} & \geq 0 \end{array}$$

Einfügen der neuen Nebenbedingung

 $\blacktriangleright x_2 \geq 2$

Ergebnis der Berechnung

Problem nicht lösbar

Schlussfolgerungen

- ➤ Ausloten von P₁₁
- ► Keine weiteren Probleme können ausgelotet werden 3,75

$$\begin{array}{lll} \max z = & 8x_1 + 5x_2 \\ \text{s.t.} & 1x_1 + 1x_2 & \leq 6 \\ & 9x_1 + 5x_2 & \leq 45 \\ & x_1 & \geq 4 \\ & x_2 & \geq 2 \\ & x_{1,2} & \geq 0 \end{array}$$

Einfügen der neuen Nebenbedingung

▶
$$x_2 \le 1$$

Ergebnis der Berechnung

$$x_1 = 4.44$$

►
$$x_2 = 1$$

$$ightharpoonup z = 40.56$$

Schlussfolgerungen

Kein Ausloten möglich

Neue Teilprobleme bilden

► Auswahl einer beliebigen nicht-ganzzahligen Variablen

Auswahl einer beliebigen nicht-ganzzahligen Variablen

$$> x_1 = 4,44$$

Feststellen der ganzzahligen Nachbarn $4 \le x_1 \le 5$

Bildung von zwei neuen Teilproblemen durch Einführung neuer Nebenbedingungen

- ► Teilproblem P_{121} : $x_1 \ge 5$
- ► Teilproblem P_{122} : $x_1 \le 4$

Einfügen der neuen Nebenbedingung

 $ightharpoonup x_1 \geq 5$

Ergebnis der Berechnung

- ► $x_1 = 5$
- ► $x_2 = 0$
- ► z = 40

Schlussfolgerungen

- ► Untere Schranke *U* = 40
- ► Ausloten: Ganzzahlige Lösung
- P₁₂₂ kann ebenfalls ausgelotet werden. (Da Zielfunktionswert aufgrund der ganzzahligen Koeffizienten und ganzzahligen Variablen ebenfalls ganzzahlig sein muss und damit maximal U = 40 ist.)

$$\begin{array}{lll} \max z = & 8x_1 + 5x_2 \\ \text{s.t.} & 1x_1 + 1x_2 & \leq 6 \\ & 9x_1 + 5x_2 & \leq 45 \\ & x_1 & \geq 4 \\ & x_2 & \leq 1 \\ & x_1 & \geq 5 \\ & x_{1,2} & \geq 0 \end{array}$$

Einfügen der neuen Nebenbedingung

►
$$x_1 \le 3$$

Ergebnis der Berechnung

- ► $x_1 = 3$
- ► $x_2 = 3$
- **▶** *z* = 39

Schlussfolgerungen

- ► Untere Schranke *U* = 40
- ► Zielfunktionswert geringer als untere Schranke
- ► P₂ kann ausgelotet werden

Branch-and-Bound-Algorithmus: Auswahlregeln

Auswahlregel für Variable

- Zufallsauswahl
- Fraktionellste Variable (1/2-Regel)

Wähle diejenige Variable zum Einschränken, deren aktueller, nicht ganzzahliger Anteil näher an \frac{1}{2} liegt.

▶ Strong Branching

Aufstellung und Berechnung von Teilproblemen für alle nicht ganzzahligen Variablen und schließlich Wahl der Variable, die den Zielfunktionswert am meisten verändert; Verwerfung der nicht ausgewählten Variablen

Auswahlstrategie für Teilprobleme:

Maximum Upper Bound (MUB)

Wähle Problem mit bestem Zielfunktionswert aus der Liste (beachte die Optimierungsrichtung)

Tiefensuche

Branch-and-Bound算法: 选择规则 变量洗择规则:

Wähle Problem aus der Liste, welches als letztes eingefügt wurde (LIFC

 随机选择 Breitensuche

分数最大的变量(12-规则): 选择当前非整数部分距离12最近的变量。

Wähle Problem aus der Liste, welches als erstes eingefügt wurde (FIFC* 强分支: 为所有非整数变量建立和计算子问题,最后选择对目标函数值影响最大的变量

选择的变量。 子问题选择策略:

最大上界(MUB): 从列表中选择具有最佳目标函数值的问题(考虑优化方向)。

 深度优先搜索:从列表中选择最后插入的问题(LIFO)。 广度优先搜索:从列表中选择最先插入的问题(FIFO)。

Team Operations Research Technische Universität Berlin – Workgroup for Infrastructure Policy (WIP)