Perturbation-expression association analysis in low-MOI single-cell CRISPR screens with SCEPTRE

Timothy Barry, Kaishu Mason, Kathryn Roeder & Eugene Katsevich

Manuscript & Software

Single cell CRISPR screens

Simultaneous profiling of CRISPR perturbations and whole transcriptome in single cells.

1. Library of targeting (T) and 2. Infect cells at low 3. Single-cell RNA sequencing non-targeting (NT) guide RNAs multiplicity of infection of gRNAs and transcriptome

Perturbation-gene association

Differential expression based on perturbation.

. Extract cells with NT or T_i 2. Extract expression of perturbation

gene k for each group

3. Apply two-sample test for differential expression

Calibration check framework

Apply DE method to each (NT gRNA, gene) pair.

Benchmarking calibration

Existing methods suffer excess false positives.

Reasons for miscalibration include:

- Sparsity breaks asymptotic approximations
- Confounding due to technical factors
- Model misspecification

Null z-score distribution

SCEPTRE methodology

Permutation test based on NB score statistic.

Null z-scores \tilde{z}_i

Calibration on control data

SCEPTRE improves calibration and sensitivity on six real datasets.

Number of false positives

Dataset	SCEPTRE	Seurat- Wilcox	Seurat- NB	t-test	MAST	KS test	MIMOSCA	NT pairs
Frangieh (Co Culture)	1	13	10	89	2083	0	4	596344
Frangieh (Control)	0	7	16	69	1873	0	0	528239
Frangieh (IFN-γ)	1	15	15	67	1933	0	5	565502
Papalexi (Gene)	0	8	4	24	19	9191	0	100458
Papalexi (Protein)	0	2	0	1	2	0	0	36
Schraivogel	3	2	3	4	1	1	19	4357
Simulated	0	0	0	7	16	0	1	96944
Average	0.7	6.7	6.9	37.3	846.7	1313.1	4.1	

Number of true positives

Dataset	SCEPTRE	Seurat- Wilcox	Seurat- NB	t-test	MAST	KS test	MIMOSCA	PC pairs
Frangieh (Co Culture)	103	98	94	-	-	90	5	181
Frangieh (Control)	77	74	72	-	-	70	4	170
Frangieh (IFN-γ)	94	89	81	-	-	81	8	181
Papalexi (Gene)	13	12	13	11	11	-	0	25
Papalexi (Protein)	2	2	2	2	2	2	2	2
Schraivogel	22	22	21	23	22	19	0	25

Take home message

SCEPTRE improves the quality of single-cell CRISPR screen analysis, paving the way for functional genomics discovery.