Name: Tan Lai Chian Alan Student Number: A0174404L

Question 2B

Step 1: Make all FDs singleton on RHS

Step 2: Remove all trivial FDs (retain non-trivial FDs)

Step 3: Initialize an empty list with variable name extraneous free fd

Step 4: For each non-trivial FD (Remove extraneous attributes using the following steps)

Step 4-1: If length(LHS) >= 2

Step 4-1-1: Get all possible subset combinations of LHS up to length(LHS) - 1 (i.e. if LHS = { A, B, C }, then set of possible subset combinations = { {A}, {B}, {C}, {A,B}, {A,C}, {B,C} }

Step 4-1-2: For each subset combination

Step 4-1-2-1: Compute closure C of subset combination

Step 4-1-2-2: If closure C contains all LHS computed in Step 3-1,

append subset combination to extraneous free fd[i]

Step 4-1-3: If extraneous_free_fd[i] is empty, means all attributes of LHS are non-extraneous. Copy non-trivial FD to extraneous_free_fd

Step 4-2: Else, copy non-trivial FD to extraneous_free_fd

Step 5: Get cartesian product of extraneous_free_fd to get all possible permutation sets of FD

Step 6: Initialize an empty list with variable name *redundant_free_fd*

Step 7: For each permutation (Remove redundant FD using the following steps)

Step 7-1: For each FD in this permutation list

Step 7-1-1: Remove FD F from list

Step 7-1-2: Compute closure C of F (LHS of F)

Step 7-1-3: If RHS of F is not in closure C, means F is not a redundant FD. Add F to *redundant free fd*

Question 2C

Step 1: Find all closures of (R, FD), resulting in a new set of FDs

Step 2: Find minimal cover of new set of FDs