MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI HIVATAL

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha az útmutatóban egy **megjegyzés** zárójelben szerepel, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. **Mértékegység hiánya esetén** csak akkor jár pontlevonás, ha a hiányzó mértékegység válaszban vagy mértékegység-átváltásban szerepel (zárójel nélkül).
- 7. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 10. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 11. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek bizonyos statisztikai mutatók kiszámítására (átlag, szórás) abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, azokért nem jár pont.

- 12. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 13. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 14. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 15. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1.		
$A \cap B = \{1; 3; 5\}$	1 pont	
$A \setminus B = \{2; 4\}$	1 pont	
Összesen:	2 pont	

2.		
60	2 pont	
Összesen:	2 pont	

3.		
x = 3	2 pont	
Összesen:	2 pont	

4.		
580 ezer forint	2 pont	
Összesen:	2 pont	

5.		
(Az 5 cm hosszú oldallal szemközti szöget jelölje α .		
A szinusztétel alapján:) $\frac{\sin \alpha}{\sin 60^{\circ}} = \frac{5}{6}$.	1 pont	
$\sin \alpha \approx 0.7217$	1 pont	
$\alpha \approx 46.2^{\circ}$ (Az α nem lehet tompaszög.)	1 pont	
	3 pont	

6.		
Egy megfelelő gráf, például:		
	2 pont	Nem egyszerű gráf is el- fogadható.
Összesen:	2 pont	

7.		
$\left(\frac{1}{2} \cdot \frac{4 \cdot 3^3 \cdot \pi}{3} = 18\pi\right) \approx 56,5 \text{ cm}^3$	2 pont	
Összesen:	2 pont	

8.		
(A minimum 50, az alsó kvartilis 55, a medián 75, a felső kvartilis 110, a maximum 145 millió Ft.) 40 50 60 70 80 90 100 110 120 130 140 150 millió Ft	4 pont	A minimum és maximum meghatározása összesen 1, a medián 1, az alsó és a felső kvartilis meghatározása összesen 1 pontot ér. A kapott adatokból készített diagramért 1 pont jár.
Összesen:	4 pont	

9.		
$\overrightarrow{CA} = \mathbf{a} - \mathbf{c}$	1 pont	
$\overrightarrow{BE} = 2(\mathbf{a} + \mathbf{c})$	2 pont	$2\mathbf{a} + 2\mathbf{c}$
Összesen:	3 pont	

10.		
y = 2x + 1	2 pont	
Összesen:	2 pont	

11.		
$q = \left(\frac{36}{24} = \right)1,5$	1 pont	
$a_1 = \left(\frac{24}{1,5} = \right)16$	1 pont	
$S_6 = 16 \cdot \frac{1,5^6 - 1}{1,5 - 1} = 332,5$	1 pont	16 + 24 + 36 + 54 + 81 + + 121,5 = 332,5
Összesen:	3 pont	

12. első megoldás		
Összesen 36-féle dobás lehetséges (összes eset száma).	1 pont	
A kedvező dobások száma 6 (1-6, 3-6, 5-6, 6-5, 6-3, 6-1).	1 pont	
A keresett valószínűség így $\frac{6}{36} \left(= \frac{1}{6} \right)$.	1 pont	
Összesen:	3 pont	

12. második megoldás		
Lehet a piros kockán 6-os és a kék kockán páratlan szám, vagy fordítva.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége, hogy a piros kockával 6-ost dobunk $\frac{1}{6}$, annak a valószínűsége, hogy kékkel páratlan számot dobunk $\frac{1}{2}$.	1 pont	
A keresett valószínűség ezért $2 \cdot \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{6}$.	1 pont	
Összesen:	3 pont	

II. A

13. a)		
Az egyenlet bal oldalán álló törteket közös nevezőre hozva: $\frac{5x+40}{100} + \frac{4x-20}{100} = 2.$	1 pont	Ez a pont akkor is jár, ha a vizsgázó az egyenlet mindkét oldalát megszo- rozza 100-zal.
5x + 40 + 4x - 20 = 200	1 pont	
9x + 20 = 200	1 pont	
x = 20	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra hivatkozással.	1 pont	
Összesen:	5 pont	

13. b)		
A téglalap rövidebb oldalának hossza (cm-ben mérve)		
legyen a , ekkor a másik oldal hossza $a + 48$.	1 pont	b(b-48) = 2025
A feladat szövege alapján: $a(a + 48) = 2025$.		
$a^2 + 48a - 2025 = 0$	1 pont	$b^2 - 48b - 2025 = 0$
$a_1 = 27$	1 pont	$b_1 = 75$
$a_2 = -75$, ami nem megoldása a feladatnak.	1 pont	$b_2 = -27$, nem megoldás
A téglalap oldalainak hossza 27 cm és 75 cm.	1 pont	
A téglalap kerülete $(2 \cdot 27 + 2 \cdot 75 =) 204$ cm.	1 pont	
Összesen:	6 pont	

14. a)		
Az ABD derékszögű háromszögben $\cos ABD \ll \frac{12}{20}$,	1 pont	
ahonnan ABD < ≈ 53,1°,	1 pont	
igy $β = (53,1^{\circ} + 63^{\circ} =) 116,1^{\circ}.$	1 pont	
Összesen:	3 pont	

14. b)		
Az ABD derékszögű háromszögben Pitagorasz-tétellel:	2 pont	$AD = 20 \cdot \sin 53.1^{\circ}$
$AD = \sqrt{20^2 - 12^2} = 16 \text{ cm}.$	2 poin	
A DBC háromszögben koszinusztétellel:	1 nont	
$CD^2 = 20^2 + 15^2 - 2 \cdot 20 \cdot 15 \cdot \cos 63^\circ (\approx 352,6),$	1 pont	
amiből $CD \approx 18,8$ cm.	1 pont	
Az ABD derékszögű háromszög területe (a két befogó		12.20.sin 53.1°
szorzatának fele) $\frac{12 \cdot 16}{2} = 96 \text{ cm}^2$.	1 pont	$\frac{12 \cdot 20 \cdot \sin 53,1^{\circ}}{2} \approx 96 \text{ cm}^2$
(A DBC háromszög területe a trigonometrikus terület-		(Háron-kánlattal:)
képlettel) $\frac{20 \cdot 15 \cdot \sin 63^{\circ}}{2} \approx$	1 pont	(Héron-képlettel:) $t = \sqrt{26,9 \cdot 6,9 \cdot 11,9 \cdot 8,1} \approx$
2		ν γ20,5 0,5 11,5 0,1
$\approx 134 \text{ cm}^2$.	1 pont	
A négyszög területe így $(96 + 134 =) 230 \text{ cm}^2$.	1 pont	
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó a válaszait mértékegység nélkül adja meg, akkor ezért a feladatban összesen 1 pontot veszítsen.

14. c)		
Az állítás hamis.	1 pont	
Egy megfelelő ellenpélda (pl. egy olyan téglalap, amelyik nem négyzet).	1 pont	
Összesen:	2 pont	

15. a)						
	f	g	h			8 jó válasz 4, 7 jó válasz 3,
van zérushelye	IGAZ	IGAZ	HAMIS		5 pont	6 jó válasz 2, 5 jó válasz 1 pontot ér.
van maximuma	HAMIS	IGAZ	HAMIS		3 point	
szig. mon. növekvő	IGAZ	HAMIS	IGAZ			5-nél kevesebb jó válasz
						esetén nem jár pont.
			Összesen	1:	5 pont	

15. b)		
Megoldandó a $2^x + 1 = 1,25$ egyenlet.	1 pont	
$2^x = 0.25$	1 pont	
(Az exponenciális függvény kölcsönös egyértelműsége miatt) $x = -2$.	1 pont	
Összesen:	3 pont	

15. c)		
A vizsgázó másodfokú függvény grafikonját (normálparabola) ábrázolja	1 pont	
a [-1; 4] intervallumon,	1 pont	
melynek minimumhelye 1,	1 pont	1-
minimumértéke –2.	1 pont	
Összesen:	4 pont	

II. B

16. a)		
A hívások átlagos ideje 2012-ben: $(18\ 001:8045\approx)\ 2,24\ perc.$	1 pont	
A hívások száma 2017-ben: (22 377 : 2,83 ≈) 7907 millió db.	1 pont	7894 és 7921 közé eső bármilyen érték elfogad- ható.
A hívások időtartama 2022-ben: (8577 · 3,31 ≈) 28 390 millió perc.	1 pont	28 347 és 28 432 közé eső bármilyen érték elfogad- ható.
Összesen:	3 pont	

16. b)		
A szintenként kapható pontok egy számtani sorozat egymást követő tagjai: $a_4 = 630$, $a_7 = 990$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$a_7 - a_4 = 990 - 630 = 3d,$	1 pont	
innen $d = 120$.	1 pont	
$a_1 = a_4 - 3d = 270$	1 pont	
$S_{12} = \frac{2 \cdot 270 + 11 \cdot 120}{2} \cdot 12 =$	1 pont	270 + 390 + + 1590 =
= 11 160 az összpontszáma annak a játékosnak, aki mind a 12 szintet teljesítette.	1 pont	
Összesen:	6 pont	

16. c)		
(5-4=) 1 főnek csak az Alfánál és a Bétánál, $(6-4=)$ 2 főnek csak a Bétánál és a Gammánál, $(7-4=)$ 3 főnek csak az Alfánál és a Gammánál volt már előfizetése.	2 pont	Alfa Béta
(32 – 1 =) 31 főnek volt már legalább az egyik szolgáltatónál előfizetése.	1 pont	3 2 1 Gamma
Összesen $31 - (1 + 2 + 3 + 4) = 21$ főnek volt előfizetése pontosan egy szolgáltatónál.	1 pont	
Ha <i>x</i> főnek csak a Bétánál volt már előfizetése, akkor csak az Alfánál 2 <i>x</i> , csak a Gammánál 4 <i>x</i> főnek volt már előfizetése.	1 pont	
x + 2x + 4x = 21,	1 pont	
ahonnan $x = 3$.	1 pont	
A Bétánál $(3 + 1 + 4 + 2 =) 10$ főnek volt már előfizetése.	1 pont	
Összesen:	8 pont	

17. a)		
A felhasznált érmék lehetnek:		
- 3 db 100 Ft-os (és 0 db 50 Ft-os),		Ez a pont akkor is jár, ha
- 2 db 100 Ft-os és 2 db 50 Ft-os,	1 pont	1
– 1 db 100 Ft-os és 4 db 50 Ft-os,	•	oldásból derül ki.
– (0 db 100 Ft-os és) 6 db 50 Ft-os.		
3 db 100 Ft-ossal, illetve 6 db 50 Ft-ossal is csak	1 nont	
1-1-féleképpen lehet fizetni.	1 pont	
2 db 100 Ft-ossal és 2 db 50 Ft-ossal		
$\binom{4}{2}$ = 6-féleképpen lehet fizetni.	2 pont	
1 db 100 Ft-ossal és 4 db 50 Ft-ossal 5-féleképpen	1 nont	
lehet fizetni.	1 pont	
Összesen $(1+6+5+1=)$ 13-féleképpen dobhatunk	1 pont	
be az automatába 300 Ft-ot.	ı pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó rendezetten felsorolja az összes lehetőséget, és ez alapján helyesen válaszol, akkor a teljes pontszám jár.

17. b) első megoldás		
Az összes (egyenlő valószínűségű) eset száma:	1 pont	Egyesével választva, a sorrendet is figyelembe véve az összes eset száma $6 \cdot 5 \cdot 4 = 120$.
A kedvező esetek száma: $\binom{2}{1} \cdot \binom{4}{2} = 12$.	2 pont	A kedvező esetek száma $\binom{3}{2} \cdot 2 \cdot 4 \cdot 3 = 72.$
A keresett valószínűség: $\frac{12}{20} = 0,6$.	1 pont	
Összesen:	4 pont	

17. b) második megoldás		
Annak a valószínűsége, hogy elsőre tejcsokoládés, másodikra és harmadikra is étcsokoládés desszertet választ Balázs: $\frac{2}{6} \cdot \frac{4}{5} \cdot \frac{3}{4} = \frac{1}{5}$.	2 pont	
Hasonlóan $\frac{1}{5}$ a valószínűsége annak, hogy másodikra, és szintén $\frac{1}{5}$, hogy harmadikra választ tejcsokoládés desszertet Balázs (és a másik két választott deszszert étcsokoládés).	1 pont	$\frac{4}{6} \cdot \frac{2}{5} \cdot \frac{3}{4} = \frac{1}{5}$ $\frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} = \frac{1}{5}$
A keresett valószínűség: $3 \cdot \frac{1}{5} = \frac{3}{5}$.	1 pont	
Összesen:	4 pont	

17. c)		
A túróhenger sugara 9 mm, a félhenger sugara 10 mm.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A túróhenger térfogata: $9^2 \pi \cdot 100 \approx 25 447 \text{mm}^3$.	1 pont	
A téglatest térfogata: $20 \cdot 10 \cdot 102 = 20 \cdot 400 \text{ mm}^3$.	1 pont	
A félhenger térfogata: $0.5 \cdot 10^2 \pi \cdot 102 \approx 16022 \text{ mm}^3$.	1 pont	
A desszert térfogata: $20 400 + 16 022 = 36 422 \text{ mm}^3$.	1 pont	
A csokoládé térfogata a desszert és a túróhenger térfogatának különbsége: $36422 - 25447 \approx 10975~\text{mm}^3$,	1 pont	
azaz kb. 11 cm³ csokoládé kerül egy desszertbe.	1 pont	
Összesen:	7 pont	

18. a)		
8848 méter = 8,848 km	1 pont	
$p(8,848) = 101325 \cdot 10^{-0.054 \cdot 8.848} \approx$	1 pont	
≈ 33 723 Pa	1 pont	
Összesen:	3 pont	

18. b)		
Megoldandó a $60000 = 101325 \cdot 10^{-0.054 \cdot h}$ egyenlet.	1 pont	
Innen $10^{-0.054 \cdot h} = \frac{60\ 000}{101\ 325} \ (\approx 0.592).$	1 pont	
Ebből $-0.054h = \lg 0.592 (\approx -0.2277),$	1 pont	
figy $h \approx 4,22$ km,	1 pont	
azaz kerekítve 4200 méter magasságban lesz a légnyomás 60 000 Pa.	1 pont	Ezt a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	5 pont	

18. c)		
Összesen 268 hegymászó szerepel a táblázatban.	1 pont	
Ebből az egyes kontinensekhez tartozó középponti szögek rendre: $\frac{125}{268} \cdot 360^{\circ} \approx 168^{\circ}, \frac{70}{268} \cdot 360^{\circ} \approx 94^{\circ},$ $\frac{50}{268} \cdot 360^{\circ} \approx 67^{\circ}, \frac{23}{268} \cdot 360^{\circ} \approx 31^{\circ}.$	2 pont	1 vagy 2 hiba esetén 1 pont jár.
Megfelelő kördiagram, jelmagyarázattal. 90° Ázsia 10° 0° kontinens Európa	2 pont	
Összesen:	5 pont	

18. d) első megoldás		
Az Ágnesből és Lászlóból álló hegymászópár és a másik három hegymászó 4!-féle sorrendben követheti egymást.	2 pont	
Ágnes és László minden ilyen esetben 2-féle sorrendben haladhatnak egymás után.	1 pont	
Így a lehetőségek száma 2 · 4! = 48.	1 pont	
Összesen:	4 pont	

18. d) második megoldás		
Ágnes és László 4-féle helyen (1-2, 2-3, 3-4, 4-5),	1 pont	
2-féle sorrendben haladhat egymás után.	1 pont	
A többiek 3!-féle sorrendben szerepelhetnek a sorban,	1 pont	
így a lehetőségek száma $4 \cdot 2 \cdot 3! = 48$.	1 pont	
Összesen:	4 pont	