More on Fiedler vector

Ivan Slapničar

Faculty of EE, ME and Naval Arch.

University of Split

Croatia

om M Sc Thesis by Ivančica Mirošević (2)

(edited from M.Sc.Thesis by Ivančica Mirošević (2005))

Outline

- Graph model
- Partitioning functions
- Laplacian and normalized Laplacian
- Discrete formulation of a partitioning problem
- Relaxation of a discrete problem
- Bipartitioning algorithm
- Example

Model

G = (V, B) is a simple, finite, undirected, weighted graph where:

 $V = \{1, 2, 3, ..., n\}$ is a set of nodes and

B is a set of edges $\{i, j\}$, $i, j \in V$, with weights $t(\{i, j\}) \in \mathbb{R}^+$.

The neighborhood matrix of G is a $n \times n$ matrix $W = [w_{ij}]$, s.t.

$$w_{ij} = \begin{cases} t(\{i,j\}), & \text{if } \{i,j\} \in B, \\ 0, & \text{otherwise.} \end{cases}$$

Example (G_{small})

$$W = \begin{bmatrix} 0 & 2 & 3 & 4 & 0 & 0 & 0 \\ 2 & 0 & 0 & 7 & 1 & 0 & 0 \\ 3 & 0 & 0 & 3 & 0 & 2 & 1 \\ 4 & 7 & 3 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 7 & 3 \\ 0 & 0 & 2 & 0 & 7 & 0 & 5 \\ 0 & 0 & 1 & 0 & 3 & 5 & 0 \end{bmatrix}$$

Cut of the partition

Let $V_1, V_2 \subset V$, $V_1, V_2 \neq \emptyset$. We define

$$\operatorname{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} w_{ij},$$

$$t\left(i\right) = \sum_{j=1}^{n} w_{ij}$$

(weight of node i = weights of all edges incident to it)

$$t(V_l) = \sum_{i \in V_l} t(i) = \sum_{i \in V_l} \sum_{j \in V} w_{ij} = \operatorname{cut}(V_l, V \setminus V_l) + \operatorname{within}(V_l)$$

Partitioning functions

Proportional cut

$$R(V_1, V_2) = \frac{\operatorname{cut}(V_1, V_2)}{|V_1|} + \frac{\operatorname{cut}(V_1, V_2)}{|V_2|}$$

favors partitions into sets with equal number of nodes.

Normalized cut

$$N(V_1, V_2) = \frac{\text{cut}(V_1, V_2)}{t(V_1)} + \frac{\text{cut}(V_1, V_2)}{t(V_2)}$$

maximizes weights of edges within subsets.

Proportional v.s. normalized cut

Left partition:

$$\operatorname{cut}(V_1, V_2) = 2 \qquad \operatorname{cut}(V_1', V_2') = 3$$

$$R(V_1, V_2) = \frac{2}{1} + \frac{2}{11} = 2.18 \qquad R(V_1', V_2') = \frac{3}{6} + \frac{3}{6} = 1$$

$$N(V_1, V_2) = \frac{2}{2} + \frac{2}{50} = 1.04 \qquad N(V_1', V_2') = \frac{3}{27} + \frac{3}{25} = 0.$$

Right partition:

$$\operatorname{cut}(V_1, V_2) = 2 \qquad \operatorname{cut}(V_1', V_2') = 3$$

$$R(V_1, V_2) = \frac{2}{1} + \frac{2}{11} = 2.18 \qquad R(V_1', V_2') = \frac{3}{6} + \frac{3}{6} = 1$$

$$N(V_1, V_2) = \frac{2}{2} + \frac{2}{50} = 1.04 \qquad N(V_1', V_2') = \frac{3}{27} + \frac{3}{25} = 0.23$$

NP-hard optimization problem

Theorem 1 (Papadimitrou, 1997) Computing a normalized cut of a graph is NP-hard.

Number of k-partitions of a set of n elements is given by Stirling number S(n,k):

$$S(n,2) = 2^{n-1} - 1;$$

 $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}.$

100 elements $\rightarrow 6.3383 \cdot 10^{29}$ bipartitions and $6.4176 \cdot 10^{80}$ 7-partitions.

Laplacian

 $L = [l_{ij}]$ is a real $n \times n$ matrix, s.t.

$$l_{ij} = \begin{cases} \sum_{k=1}^{n} w_{ik} &, i = j \\ -w_{ij} &, i \neq j, \{i, j\} \in B \end{cases}$$

$$0 &, \text{ otherwise}$$

Incidence matrix I_G of G is $|V| \times |B|$ matrix with one row/column for every node/edge.

The column corresponding to the edge $\{i, j\}$ is zero except in the i-th and j-th row, where the elements are $\sqrt{w_{ij}}$ and $-\sqrt{w_{ij}}$.

Laplace matrix and incidence matrix of G_{small}

$$L = \begin{bmatrix} \mathbf{9} & -2 & -3 & -4 & 0 & 0 & 0 \\ -2 & \mathbf{10} & 0 & -7 & -1 & 0 & 0 \\ -3 & 0 & \mathbf{9} & -3 & 0 & -2 & -1 \\ -4 & -7 & -3 & \mathbf{14} & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & \mathbf{11} & -7 & -3 \\ 0 & 0 & -2 & 0 & -7 & \mathbf{14} & -5 \\ 0 & 0 & -1 & 0 & -3 & -5 & \mathbf{9} \end{bmatrix},$$

Properties of Laplacian (1)

(i)
$$L = D - W$$
, where D is diagonal with $d_{ii} = \sum_{j=1}^{n} w_{ij}$,

- (ii) $L = I_G I_G^T$,
- (iii) L is symmetric positive semi-definite,

Properties of Laplacian (2)

- (iv) $L\mathbf{1} = 0$ for $\mathbf{1} = [1, ..., 1]^T$,
- (v) If G has c components, then L has c zero eigenvalues,
- (vi) For each $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{x}^T L \mathbf{x} = \sum_{i < j} w_{ij} \left(x_i - x_j \right)^2,$$

(vii) For each $\mathbf{x} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$

$$(\alpha \mathbf{x} + \beta \mathbf{1})^T L (\alpha \mathbf{x} + \beta \mathbf{1}) = \alpha^2 \mathbf{x}^T L \mathbf{x}.$$

Normalized Laplacian

 $L_n = [l_{n_{ij}}]$ is a $n \times n$ matrix, s.t.

$$l_{n_{ij}} = \begin{cases} 1 &, i = j \\ -\frac{w_{ij}}{\sqrt{d_{ii}}\sqrt{d_{jj}}} &, i \neq j, \{i, j\} \in B \\ 0 &, \text{ otherwise} \end{cases}$$

In other words,

$$L_n = D^{-1/2}(D - W)D^{-1/2}.$$

Normalized Laplacian of G_{small}

$$L_n = \begin{bmatrix} 1 & -\frac{2}{\sqrt{9}\sqrt{10}} & -\frac{3}{\sqrt{9}\sqrt{9}} & -\frac{4}{\sqrt{9}\sqrt{14}} & 0 & 0 & 0\\ -\frac{2}{\sqrt{9}\sqrt{10}} & 1 & 0 & -\frac{7}{\sqrt{10}\sqrt{14}} & -\frac{1}{\sqrt{10}\sqrt{11}} & 0 & 0\\ -\frac{3}{\sqrt{9}\sqrt{9}} & 0 & 1 & -\frac{3}{\sqrt{9}\sqrt{14}} & 0 & -\frac{2}{\sqrt{9}\sqrt{14}} & -\frac{1}{\sqrt{9}\sqrt{9}}\\ -\frac{4}{\sqrt{9}\sqrt{14}} & -\frac{7}{\sqrt{10}\sqrt{14}} & -\frac{3}{\sqrt{9}\sqrt{14}} & 1 & 0 & 0 & 0\\ 0 & -\frac{1}{\sqrt{10}\sqrt{11}} & 0 & 0 & 1 & -\frac{7}{\sqrt{11}\sqrt{14}} & -\frac{3}{\sqrt{11}\sqrt{9}}\\ 0 & 0 & -\frac{2}{\sqrt{9}\sqrt{14}} & 0 & -\frac{7}{\sqrt{11}\sqrt{14}} & 1 & -\frac{5}{\sqrt{14}\sqrt{9}}\\ 0 & 0 & -\frac{1}{\sqrt{9}\sqrt{9}} & 0 & -\frac{3}{\sqrt{11}\sqrt{9}} & -\frac{5}{\sqrt{14}\sqrt{9}} & 1 \end{bmatrix}$$

On spectra of L and L_n

The largest eigenvalue λ_n of L is bounded by

$$\lambda_n \leq 2 \max d_{ii}$$
,

Spectrum of the normalized Laplacian satisfies

$$\sigma\left(L_{n}\right)\subseteq\left[0,2\right].$$

Discrete formulation

The partition $\pi = \{V_1, V_2\}$ of V is determined by a vector y s.t.

$$y_i = \begin{cases} \frac{1}{2}, & i \in V_1 \\ -\frac{1}{2}, & i \in V_2 \end{cases}$$

The proportional cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\}\\ |\mathbf{y}^T \mathbf{1}| < \beta}} \frac{1}{2} \sum_{i,j} (y_i - y_j)^2 w_{ij}$$

Without balancing factor β , the trivial partition minimizes the problem. $2\mathbf{y}^T\mathbf{1}$ measures the difference between |A| and |B|. $\beta=\frac{1}{2}$ requires the most even balancing. $\beta=\frac{n}{2}$ allows all bipartitions, including the trivial one.

Relaxation of the problem

The discrete problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\}\\ |\mathbf{y}^T \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} (y_i - y_j)^2 w_{ij}$$

The relaxed problem

$$\min_{\substack{y \in \mathbb{R}^n \ \mathbf{y}^T \mathbf{1} | \leq \frac{2\beta}{\sqrt{n}}}} \mathbf{y}^T L \mathbf{y}$$
 $|\mathbf{y}^T \mathbf{1}| \leq \frac{2\beta}{\sqrt{n}}$
 $\mathbf{y}^T \mathbf{y} = 1$

y needs to be normalized – this is equivalent to $|\mathbf{y}^T \mathbf{1}| \leq \beta$ and $\mathbf{y}^T \mathbf{y} = n/4$.

 β is irrelevant for the final partition!

For the normalized cut

The discrete problem is:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\}\\ |\mathbf{y}^T D \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} (y_i - y_j)^2 w_{ij}$$

The condition $|\mathbf{y}^T D \mathbf{1}| \leq \beta$ controls the difference between the weights of the two sets. The relaxed problem is:

$$\min_{y \in \mathbb{R}^n} \mathbf{y}^T L \mathbf{y}$$
 $|\mathbf{y}^T D \mathbf{1}| \leq \frac{\beta}{\sqrt{\theta n}}$
 $\mathbf{y}^T D \mathbf{y} = 1$

This is equivalent to $|\mathbf{y}^T D \mathbf{1}| \leq \beta$ and $\mathbf{y}^T D \mathbf{y} = \theta n$, where $\theta > 0$ reduces the influence of nodes with very large or very small weights.

The Theorem

Theorem 2 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1 < \lambda_2 < \lambda_3 \leq \cdots \leq \lambda_n$ and eigenvectors $\mathbf{v}^{[1]}, \mathbf{v}^{[2]}, ..., \mathbf{v}^{[n]}$. For a fixed $0 \leq \alpha < 1$, the problem

$$\min_{\mathbf{y} \in \mathbb{R}^n} \mathbf{y}^T A \mathbf{y}$$

$$|\mathbf{y}^T \mathbf{v}^{[1]}| \le \alpha$$

$$\mathbf{y}^T \mathbf{y} = 1$$

has the solution $y = \pm \alpha \mathbf{v}^{[1]} \pm \sqrt{1 - \alpha^2} \mathbf{v}^{[2]}$.

The Proof (1)

D. J. HIGHAM i M. KIBBLE, A unified view of spectral clustering, Mathematic Research Report 2, University of Strathclyde (2004) Let $A = V\Lambda V^T$ and set $\mathbf{z} = V^T\mathbf{y}$. Then, the problem becomes

$$\min_{\substack{\mathbf{z} \in \mathbb{R}^n \ |\mathbf{z}^T V^T \mathbf{v}^{[1]}| \leq \alpha}} \mathbf{z}^T \Lambda \mathbf{z},$$

or

$$\min_{\substack{\mathbf{z} \in \mathbb{R}^n \\ |\mathbf{z}_1| \le \alpha}} \sum_{i=1}^n \lambda_i z_i^2.$$

$$\mathbf{z}^T \mathbf{z} = 1 \tag{1}$$

The Proof (2)

From
$$\sum_{i=1}^{n} z_i^2 = 1$$
 and $\alpha^2 \ge z_1^2$ we have

$$\lambda_{1}z_{1}^{2} + \lambda_{2}z_{2}^{2} + \lambda_{3}z_{3}^{2} + \dots + \lambda_{n}z_{n}^{2}$$

$$= \lambda_{1}z_{1}^{2} + \lambda_{2}(1 - z_{1}^{2} - z_{3}^{2} - \dots - z_{n}^{2}) + \lambda_{3}z_{3}^{2} + \dots + \lambda_{n}z_{n}^{2}$$

$$= (\lambda_{1} - \lambda_{2})z_{1}^{2} + (\lambda_{3} - \lambda_{2})z_{3}^{2} + \dots + (\lambda_{n} - \lambda_{2})z_{n}^{2} + \lambda_{2} \geq$$

$$\geq (\lambda_{1} - \lambda_{2})\alpha^{2} + (\lambda_{3} - \lambda_{2})z_{3}^{2} + \dots + (\lambda_{n} - \lambda_{2})z_{n}^{2} + \lambda_{2} \geq$$

$$\geq (\lambda_{1} - \lambda_{2})\alpha^{2} + \lambda_{2} =$$

$$= \alpha^{2}\lambda_{1} + (1 - \alpha^{2})\lambda_{2}.$$

Thus,
$$z_1 = \pm \alpha$$
, $z_2 = \pm \sqrt{1 - \alpha^2}$ and $z_i = 0$ for $i > 2$, so
$$\mathbf{y} = V\mathbf{z} = \pm \alpha \mathbf{v}^{[1]} \pm \sqrt{1 - \alpha^2} \mathbf{v}^{[2]}.$$

The solution (1)

Corollary 1 For $0 \le \beta < \frac{n}{2}$ the relaxed proportional cut problem

$$\min_{egin{subarray}{c} y \in \mathbb{R}^n \ \mathbf{y}^T L \mathbf{y} \ |\mathbf{y}^T \mathbf{1}| \leq rac{2\beta}{\sqrt{n}} \ \mathbf{y}^T \mathbf{y} = 1 \ \end{array}$$

has the solution

$$\mathbf{y} = \pm \frac{2\beta}{\sqrt{n}} \mathbf{1} \pm \sqrt{1 - 4\frac{\beta^2}{n^2}} \mathbf{v}^{[2]}.$$

 $\mathbf{v}^{[2]}$ is the Fiedler vector of graph G.

The solution (2)

Corollary 2 For $0 \le \beta < \sqrt{\theta n} \left\| D^{\frac{1}{2}} \mathbf{1} \right\|_2$ the relaxed normalized cut problem

$$\min_{\substack{y \in \mathbb{R}^n \\ |\mathbf{y}^T D \mathbf{1}| \leq \frac{\beta}{\sqrt{\theta n}} \\ \mathbf{y}^T D \mathbf{y} = 1}} \mathbf{y}^T L \mathbf{y}$$

has the solution

$$\mathbf{y} = \pm \frac{\beta}{\sqrt{\theta n} \left\| D^{\frac{1}{2}} \mathbf{1} \right\|_{2}^{2}} \mathbf{1} \pm \sqrt{1 - \frac{\beta^{2}}{\theta n} \left\| D^{\frac{1}{2}} \mathbf{1} \right\|_{2}^{2}} D^{-\frac{1}{2}} \mathbf{w}^{[2]},$$

 $D^{-\frac{1}{2}}\mathbf{w}^{[2]}$ is the normalized Fiedler vector (of a normalized Laplacian).

Constructing the partition

According to the definition, the sets V_1 and V_2 are determined by

$$V_1 = \{i : \mathbf{v}^{[2]}(i) < 0\}, \quad V_2 = \{i : \mathbf{v}^{[2]}(i) \ge 0\},$$

for the proportional cut, and

$$V_1 = \{i : D^{-\frac{1}{2}}\mathbf{w}^{[2]}(i) < 0\}, \quad V_2 = \{i : D^{-\frac{1}{2}}\mathbf{w}^{[2]}(i) \ge 0\}$$

for the normalized cut.

Components of the Fiedler vector of G_{small}

Proportional cut vs. normalized cut (1)

Proportional cut vs. normalized cut (2)

Proportional cut vs. normalized cut (3)

Concentric circles (1)

Concentric circles (2)

k-partitioning

- 1. Bipartition V; Set counter $k_c = 2$;
- 2. If $k_c < k$,
 - for each subset of V compute the optimal bipartition;
 - within all $(k_c + 1)$ -partitions, choose one with the smallest value of the partitioning function;
 - set $k_c = k_c + 1$ and repeat step 2.
- 3. Stop.

k-partitioning example

Bipartite graph

Undirected bipartite graph G is a triplet

$$G = (R, D, B).$$

 $R = \{r_1, \dots, r_m\}$ and $D = \{d_1, \dots, d_n\}$ are two sets of nodes and

$$B = \{ \{r_i, d_j\} : r_i \in R, d_j \in D \}$$

is a set of edges.

For example, D is a set of documents, R is a set of words and edge $\{r_i, d_j\}$ exists if document d_j contains word r_i .

Laplacian

Let e.g. $R = \{r_1, \dots, r_5\}$ and $D = \{d_1, d_2\}$. Then,

$$W = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 3 & 0 & 2 & 3 & 0 & 0 \\ 3 & 1 & 2 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$

where $A \in \mathbb{R}^{m \times n}$ is the terms \times documents matrix.

Connection to SVD (1)

Let

$$D = \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix}, \quad L = \begin{bmatrix} D_1 & -A \\ -A^T & D_2 \end{bmatrix}$$

Then

$$L_n = D^{-\frac{1}{2}} \begin{bmatrix} D_1 & -A \\ -A^T & D_2 \end{bmatrix} D^{-\frac{1}{2}} = \begin{bmatrix} I & -D_1^{-\frac{1}{2}}AD_2^{-\frac{1}{2}} \\ -D_2^{-\frac{1}{2}}AD_1^{-\frac{1}{2}} & I \end{bmatrix}$$

Connection to SVD (2)

Let

$$\mathbf{w} = egin{bmatrix} \mathbf{u} \ \mathbf{v} \end{bmatrix}, \ \ \mathbf{u} \in \mathbb{R}^m, \ \ \mathbf{v} \in \mathbb{R}^n,$$

be an eigenvector of the normalized Laplacian,

$$D^{-\frac{1}{2}}LD^{-\frac{1}{2}}\mathbf{w} = \lambda\mathbf{w}.$$

Then

$$D_1^{-\frac{1}{2}} A D_2^{-\frac{1}{2}} \mathbf{v} = (1 - \lambda) \mathbf{u},$$

$$D_2^{-\frac{1}{2}} A^T D_1^{-\frac{1}{2}} \mathbf{u} = (1 - \lambda) \mathbf{v}.$$

Connection to SVD

Instead of computing the Fiedler vector of L_n , we compute the left and right singular vector of the normalized matrix $A_n = D_1^{-\frac{1}{2}}AD_2$ which correspond to the second largest singular value,

$$A_n \mathbf{v}^{[2]} = \sigma_2 \mathbf{u}^{[2]},$$

where $\sigma_2 = 1 - \lambda_2$

This is more stable!

 $\mathbf{u}^{[2]}$ partitions terms and $\mathbf{v}^{[2]}$ partitions documents!

Multipartitioning algorithm

- 1. For given matrix A compute $A_n = D_1^{-\frac{1}{2}}AD_2^{-\frac{1}{2}}$;
- 2. Compute k singular vectors of A_n , $\mathbf{u}^{[1]}$, ..., $\mathbf{u}^{[k]}$ and $\mathbf{v}^{[1]}$, ..., $\mathbf{v}^{[k]}$, and form the matrix

$$Z = \begin{bmatrix} D_1^{-\frac{1}{2}} U \\ D_2^{-\frac{1}{2}} V \end{bmatrix},$$

where

$$U = [\mathbf{u}^{[1]}, ..., \mathbf{u}^{[k]}]$$
 i $V = [\mathbf{v}^{[1]}, ..., \mathbf{v}^{[k]}]$.

3. Use k-means algorithm on the rows of the matrix Z.

Multipartitioning algorithm

k-means algorithm outputs means of the partitions

$$\mathbf{c}_1,...,\mathbf{c}_k$$

and the vector $[\sigma_1, \sigma_2, \cdots, \sigma_{m+n}]$, where

$$\sigma_i \in \{1, 2, \cdots, k\}, \quad i = 1, \cdots, m + n,$$

denotes the number of the partition to which Z(i) belongs, that is, the i-th word belongs to the partition σ_i , $i=1,\cdots,m$, and the j-th document belongs to the partition σ_{j+m} , $j=1,\cdots,n$,

Example

(Digital) textbook *Mathematics 1* (http://lavica.fesb.hr/mat1) consists of 146 documents divided in six chapters:

Basics, Linear algebra, Vector algebra and analytic geometry, Functions of a real variable, Derivatives and applications, Sequences and series.

Results of the spectral partitioning of documents and words:

testni data	algorithm	norm. cut	time (s)
(a)	mp	3.4254	0.672
(> 2 letters in a word)	rbp	3.582	3.75
3522×146	km	5.3561	1.766
(b)	mp	3.0196	0.484
(> 4 letters in word)	rbp	3.115	3.875
3213×146	km	5.1435	2.797

Example

Result of the partitioning with multipartitioning algorithm:

Basics (21) - $[261333341111313313223]^T$

Vector algebra and analytic geometry (20) - [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]^T

Example

Result of partitioning with recursive bipartitioning algorithm:

Basics (21) - $[2 1 1 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 2 3 2 2]^T$

Sequences and series (21) - $[2 2 3 3 2 2 3 2 1 3 2 2 2 2 2 2 1 1 6 6]^T$

IWASEP X

10th International Workshop on Accurate Solution of Eigenvalue Problems

June 2-5, 2014, Dubrovnik, Croatia

- I Split, 1996
- II Penn State, 1998 (LAA 309/1-3, 2000)
- III Hagen, 2000 (LAA 358, 2003)
- IV Split, 2002 (part of LAA 417/2-3, 2006)
- V Hagen, 2004 (SIMAX 28/4, 2006)
- VI Penn State, 2006 (SIMAX 31/1, 2009)
- VII Dubrovnik, 2008
- VIII Berlin, 2010
 - IX Berkeley (Napa Valley), 2012 (LAA, deadline Feb 28, 2013)