Numeri complessi

Coppie ordinate di numeri reali

Definizione

L'insieme $\mathbb C$ dei numeri complessi è definito come l'insieme delle coppie ordinate di numeri reali:

$$\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R}, \ y \in \mathbb{R}\}$$

L'insieme dei numeri complessi contiene l'insieme dei numeri reali ($\mathbb{R} \subseteq \mathbb{C}$)

Casi particolari

Definizione

Convenzionalmente si identificano le coppie $(x,0) \in \mathbb{R}^2$ con x

Convenzionalmente si chiamano le coppie $(0,y)\in\mathbb{R}^2$ numeri immaginari puri

In particolare il numero complesso (0,1) è detto unità immaginaria e lo si denota con i

Parte reale e parte immaginaria

Definizione

$$z=(x,y)\in\mathbb{C}$$

- x = Re(z) denota la parte reale
- y = Im(z) denota la parte immaginaria

Operazioni

Formule

Somma

$$z_1+z_2=(x_1,y_2)+(x_2,y_2)=(x_1+x_2,\;y_1+y_2)\;\;orall z_1,z_2\in\mathbb{C}$$

Prodotto scalare

$$a\cdot z=a\cdot (x,y)=(ax,ay) \ \ orall z\in \mathbb{C}, a\in \mathbb{R}$$

Forma cartesiana

Definizione

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + y(0, 1) = x + iy$$

Operazioni

Formule

Somma

$$z_1+z_2=(x_1+x_2)+i(y_1+y_2) \ \ orall z_1,z_2\in \mathbb{C}$$

Prodotto scalare

$$a \cdot z = ax + iay \ \ \forall z \in \mathbb{C}, a \in \mathbb{R}$$

Prodotto

$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1) \;\; orall z_1, z_2 \in \mathbb{C}$$

Coniugato

Definizione

$$ar{z}=x-iy$$

Modulo

Definizione

$$|z|=\sqrt{x^2+y^2}$$

Proprietà

Formule

$$\overline{z+w} = \bar{z} + \bar{w}$$

$$\overline{z\cdot w}=\bar{z}\cdot \bar{w}$$

$$z + \bar{z} = 2 \mathrm{Re}(z)$$

$$z-ar{z}=2i{
m Im}(z)$$

$$|z| = 0 \iff z = 0$$

$$|z+w| \leq |z| + |w|$$

$$z \cdot \bar{z} = |z|^2$$

$$|z \cdot w| = |z| \cdot |w|$$

Reciproco

Definizione

$$z^{-1}=rac{ar{z}}{|z|^2}$$

Forma trigonometrica

Definizione

Un punto si può individuare anche indicando la sua distanza dall'origine $\rho \geq 0$ e l'angolo formato con l'asse delle x $\theta \in [0,2\pi)$

La coppia (ρ, θ) individua le coordinate polari associate al punto

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \end{cases}$$

$$\left\{ \begin{aligned} &\rho = \sqrt{x^2 + y^2} = |z| \\ &\theta = \operatorname{Arg}(z) \end{aligned} \right.$$

Operazioni

Formule

Prodotto

$$|z_1\cdot z_2|=|z_1||z_2|(\cos(heta_1+ heta_2)+i\sin(heta_1+ heta_2)) \ \ orall z_1,z_2\in\mathbb{C}$$

Quoziente

$$rac{z_1}{z_2} = rac{|z_1|}{|z_2|}(\cos(heta_1- heta_2)+i\sin(heta_1- heta_2)) \ \ orall z_1,z_2 \in \mathbb{C} \wedge |z_2|
eq 0$$

Elevamento a potenza

$$z^n = |z|^n (\cos(n \cdot heta) + i \sin(n \cdot heta)) \ \ orall z \in \mathbb{C}, n \in \mathbb{R}$$

Forma esponenziale

Definizione

L'esponenziale complesso è definito come $e^{i\theta} := \cos(\theta) + i\sin(\theta)$

Q Osservazione >

$$e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$$

Operazioni

F Formule

Prodotto

$$|z_1\cdot z_2|=|z_1||z_2|e^{i(heta_1+ heta_2)}$$
 $orall z_1,z_2\in\mathbb{C}$

Quoziente

$$rac{z_1}{z_2} = rac{|z_1|}{|z_2|} e^{i(heta_1 - heta_2)} orall z_1, z_2 \in \mathbb{C} \wedge |z_2|
eq 0$$

Elevamento a potenza

$$z^n = |z|^n e^{i \cdot n \cdot \theta} \ \ \forall z \in \mathbb{C}, n \in \mathbb{R}$$

Risoluzione di equazioni

Formule

$$z_1=z_2 \iff egin{cases} |z_1|=|z_2| \ \operatorname{Arg}(z_1)=\operatorname{Arg}(z_2)+2k\pi, \; k\in\mathbb{Z} \end{cases}$$

Radici di numeri complessi

Formule

Sia $n\in N, n>2$, dato $w\in\mathbb{C}, w\neq 0, w=|w|e^{i\theta}$, un numero complesso $z\in\mathbb{C}, z=|z|e^{i\alpha}$ è una radice n-esima di w se $z^n=w$

$$z^n = |z|^n e^{i \cdot n \cdot \alpha}$$

$$\begin{cases} |z|^n = |w| \\ n \cdot \alpha = \theta + 2k\pi, \ k \in \mathbb{Z} \end{cases}$$

$$\left\{ egin{aligned} |z| = \sqrt[n]{|w|} = |w|^{1/n} \ lpha = rac{ heta + 2k\pi}{n}, \; k \in \mathbb{Z} \end{aligned}
ight.$$

Teorema fondamentale dell'algebra

Teorema

Un'equazione di grado $n \geq 1$ in $\mathbb C$

$$a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0, \quad \forall a_k \in \mathbb{C} \land a_n \neq 0$$

ha esattamente n soluzioni