

ELEARNING VITEK 2 MÓDULO 5

SISTEMA EXPERTO AVANZADO (AES)

FLUJO DE DATOS DE VITEK 2

SISTEMA EXPERTO AVANZADO (AES)

- El Sistema experto avanzado es el núcleo de los Informes Interpretativos
- AES ayuda al microbiólogo a validar los resultados de susceptibilidad antes de reportar la información de tratamiento relevante para el paciente.
- Los microbiólogos pueden informar rápida y confiadamente la mayoría de los resultados de identificación y susceptibilidad a los médicos, y centrar su atención solo en aquellos que requieren su experiencia. (4)
- Proporciona una validación rápida, automática y estandarizada los resultados de susceptibilidad.
- El software VITEK 2 ADVANCED EXPERT SYSTEM es como tener un asesor experto a su lado. Aplica un indicador de color a cada aislamiento que muestra el nivel de confianza en los resultados de susceptibilidad.

AES - VALOR MÉDICO PROBADO

Los resultados de MIC de un aislado cultivado en tan solo 5 a 8 horas permiten a los médicos optimizar rápidamente la terapia antimicrobiana e implementar políticas de control de infecciones (4):

- Reducción de la duración y el costo de la hospitalización (1-3).
- •Disminución del uso de antimicrobianos y ayuda a implementar políticas de administración institucional (1-4).
- Medicamento correcto en la dosis correcta en el momento correcto

^{1.} Barenfanger J, Drake C, Kacich G. Clinical and Financial Benefits of Rapid Bacterial Identification and Antimicrobial Susceptibility Testing. J Clin Microbiol. 1999:37(5):1415-1418.

^{2.} Galar A, Leiva J, Espinosa M, Guillén-Grima F, Hernáez S, Yuste JR. Clinical and economic evaluation of the impact of rapid microbiological diagnostic testing. J Infect. 2012;65(4):302-309.

^{3.} Galar A, Yuste JR, Espinosa M, Guillén-Grima F, Hernáez-Crespo S, and Leiva J. Clinical and economic impact of rapid reporting of bacterial identification and antimicrobial susceptibility results of the most frequently processed specimen types. Eur J Clin Microbiol Infect Dis. 2012;31(9):2445-2452

^{4.} LaBombardi, VJ. Maximizing the Use of the Advanced Expert System™ to Improve Patient Care. White Paper. 2011.

AES - BASE DE DATOS

Cada microorganismo se caracteriza por tener una "huella" única: Fenotipo. 3,500 Fenotipos 45,000 Distribución de CMI 207 Organismos

La identificación del **fenotipo** está basada en un estudio de <u>distribución de Concentraciones Mínimas Inhibitorias (CMI)</u> para **cada antibiótico** de cada familia de antibióticos , representando **todos** los posibles valores de **CMI** descritas para una especie y un mecanismo de resistencia, a la vez.

La curva Gaussiana, representa la distribución de MIC y es convertida en una gráfica AES.

Un resultado "Típico" representa el límite de un posible resultado de CMI para ese antibiótico.

Un resultado "No muy típico" se adiciona a la distribución de CMI para tener en cuenta la exactitud de la prueba.

Muy típica (tipicidad cercana a 100) — La MIC obtenida con mayor frecuencia

Típica (tipicidad de 70)

No muy Típica (tipicidad de 20)

RESULTADO VITEK

VISTA DEL AES

RESULTADO DEL AES

ANÁLISIS DEL AES PASO 1 : VALIDACIÓN BIOLÓGICA

- Los valores de MIC de la cepa identificada, deben coincidir dentro de los diferentes rangos de distribuciones de MIC que están en la base de datos, para cada antibiótico.
- Para predecir el fenotipo, se analizan todos los antibióticos de la misma familia.
- Podría ser necesario corrección a un antibiótico si alguno no coincide dentro de los rangos de distribución para el fenotipo de la familia.

VALIDACIÓN BIOLÓGICA

El AES indica el parecido de los valores de CMI de la cepa de estudio con la base fenotípica, utilizando estrellas:

El AES también nos indica que tan bien los resultados de las CMI coinciden con la base de datos de un fenotipo, con un <u>nivel de</u> confianza:

Amarillo indica que el antibiograma coincide pero necesita realizar una corrección de CMI para empatar correctamente con el fenotipo propuesto.

Rojo indica que el antibiograma del aislamiento no coincide con la base de conocimientos del AES (no se encontró fenotipo en una o más familias de antibióticos)

Morado indica que el análisis del AES no se puede efectuar, debido a que no existen datos de distribución de CMI's para ese organismo en la base de datos.

Negro indica que los puntos de corte no han sido definidos para esa especie en la Guía de uso e interpretación del antibiograma (CLSI, EUCAST, etc.) para uno de los antibióticos en la tarjeta.

AES DEFINICIÓN DEL FENOTIPO

Matrix de la base de datos

Distribución derivada de la literatura

Si los resultados de MIC observados caen dentro de las distribuciones de MIC descritas para los fenotipos, entonces los resultados son considerados "consistentes."

Resultados de susceptibilidad consistentes

AES PROCESO DE DECISIÓN

Si AES encuentra un fenotipo exacto, selecciona ese único fenotipo y lo califica como:

"Resultados de susceptibilidad altamente consistentes con la identificación del organismo."

El resultado será marcado con semáforo verde y los resultados pueden ser aceptados y validados.

Éste tipo de resultados corresponden aproximadamente al 95% de casos emitidos por el AES.

Resultados de AES: Coherente Fenotipos seleccionados para revisión:	
Ninguno detectado	

- ✓ Se propone corrección para ESBL
- ✓ Corrección propuesta MIC > 4 µg/ml

Los resultados
pueden ser
aceptados y
validados después
de la revisión de las
modificaciones.
AES modifica una
MIC para relacionarla
con el mejor fenotipo
posible.

Asegurando las buenas practicas

Pureza, tiempo de incubación de la colonia y densidad óptica del inóculo.

Es necesario repetir el test.

Si el AES no reconoce le fenotipo por cada familia de antibioticos y se requieren corrección de CMI en 2 o más antibióticos, el AES me indicará nivel de confianza incoherente.

Asegurando las buenas practicas

Pureza, tiempo de incubación de la colonia y densidad óptica del inóculo.

El organismo no presenta gran frecuencia en clínica, por lo que no hay distribuciones de CMI en la base de datos.

El resultado se reporta y el clínico debe de dar terapia basándose en la historia clínica del paciente y apoyado en el resultado de antibiograma.

RESUMEN DE VALIDACIÓN BIOLÓGICA

✓ Permite revisar la consistencia entre los resultados de identificación y susceptibilidad.

- ✓ Detecta la aparición de nuevos mecanismos de resistencia.
- ✓ Mide la desviación frente a la base de datos, comparando el resultados con los mecanismos de resistencia conocidos.
- ✓ Es una herramienta clave de aprendizaje y de Control de Calidad.

ANÁLISIS DEL AES PASO 2: INTERPRETACIÓN MIC

 En este paso, los MIC se convierten en una categoria en Susceptible / Intermedio / Resistente de acuerdo con las Directrices de la guía de interpretación de uso

ANÁLISIS DEL AES PASO 3: REGLAS FORZADAS

- Las reglas forzadas corrigen una Interpretación para proporcionar una respuesta clínica más relevante
 - Puntos de corte no adaptados a una especie en particular
 - Antibiótico no considerado para el tratamiento.
 - Los resultados in vitro no están correlacionados con el resultado in vivo
- Independiente del fenotipo encontrado por AES
- Las reglas provienen de pautas, comentarios y notas
 - CLSI y /o EUCAST

ANÁLISIS DEL AES PASO 3: REGLAS FORZADAS

ver explicación de la correction propuesta

ANÁLISIS DEL AES PASO 4: CORRECION TERAPEUTICA

- Basado solo en el mecanismo de resistencia identificado, AES corrige la llamada de categoría, para predecir mejor la respuesta terapéutica.
 - Si se encuentra Susceptible in vitro, para un fenotipo particular, el fármaco podría ser ineficiente in vivo => riesgo de fracaso del tratamiento.
 - S cambiar a R de acuerdo con las recomendaciones de expertos / directrices. P.ej.
 : CLSI Tabla 3 A p.129.

Cefoxitin is used as a surrogate for mecA-mediated oxacillin resistance.

Isolates that test as mecA positive should be reported as oxacillin (not cefoxitin) resistant; other β-lactam agents should be reported as resistant or should not be reported.

AES solo aplica CT a Fenotipos "mejores" y "reconocidos"

ANÁLISIS DEL AES PASO 5 : DEDUCCION ANTIBIOTICO

Permite informar sobre antibióticos que no se han probado en la tarjeta, pero que están presentes en la Base de conocimiento de AES.

La selección de antibióticos a deducir (que se muestra en el reporte del aislada con un signo +) es configurable en la configuración

VT2 / AST.

CONCLUSIONES AES

Mejora en el flujo de trabajo y Calidad del reporte a través de la validación en línea de los resultados VITEK 2

- Detección de errores técnicos
- Detección de patrones de susceptibilidad atípicos
- Provee información sobre mecanismos de resistencia
- Herramienta de aprendizaje Invaluable
- Asegura Calidad

EVITA LA FALLA TERAPEUTICA

PIONEERING DIAGNOSTICS