Group Rings of Infinite Groups

by Prof. Dr. Giles Gardam notes by Stefan Albrecht

University Bonn – winter term 2023/24

Literature Passman: The algebraic structure of group rings

Contents

Lecture 1: The Kaplansky Conjectures – An Overview	2
Lecture 2: The Unit Conjecture	3

Lecture 1: The Kaplansky Conjectures – An Overview

Definition 1.1. Let R be a ring and G be a group. The *group ring*

$$R[G] = \left\{ \sum_{i=1}^{n} r_{g_i} g_i \mid g_i \in G, r_{g_i} \in R \right\}$$

is the ring consisting of finite formal R-linear combinations of the group elements with multiplication

$$\left(\sum r_g g\right)\left(\sum s_h h\right) = \sum rg s_h g h = \sum_k \left(\sum_{gh=k} r_g s_h\right) k.$$

In this course, we will (almost) always have $R = \mathbb{Z}$ or R = K a field. In the latter case, K[G] is often called the group algebra.

Example 1.2. For $G = \mathbb{Z} = \langle t \rangle$, then R[G] is the ring of Laurent polynomials in t over R, usually denoted $R[t, t^{-1}]$.

Viewpoint of Noether: Representations of groups are modules over group rings.

Warning: K[G] is a non-commutative ring unless G is abelian. It is (left-)Noetherian only in special settings and it is never semisimple for infinite G. (cf. Masuhke's theorem).

Although group rings tend to have bad ring-theoretic properties, they conjecturally have nice elementary properties. Note first that for $k \in K^{\times}$ and $g \in G$, the element $kg \in K[G]$ is a unit, such units are called *trivial*. A group is called *torsion free* if it has no nontrivial elements of finite order.

Conjecture 1.3 (Kaplansky). Let K be a field and G be a torsion free group. Then K[G]

- has no nontrivial units,
- has no non-zero zero divisors,
- has no non-trivial idempotents.

Furthermore, for any group G (possibly with torsion), K[G] is directly finite (=von Neumann-finite =Dedekind-finite), i.e. if $\alpha\beta=1$, then $\beta\alpha=1$.

Remark 1.4. Torsion-freeness is essential. Assume $g \in G$ has order $n \ge 2$. Then $0 = (1 - g)(1 + g + \ldots + g^{n-1})$

Remark 1.5. The unit conjecture is false, the others are open.

Remark 1.6. These conjectures are "local" in the sense that they only depend on the finitely generated subgroups of G.

Proposition 1.7. For a given field K and a group G, we have

unit conj. \Longrightarrow zero divisor-conj. \Longrightarrow idempotent conj. \Longrightarrow direct finite-conj.

Proof. The last 2 implications are easy ring theoretic statements. The first implication requires the following theorem by Connell (which we will prove later): K[G] is prime (meaning AB=0 implies A=0 or B=0 for two-sided ideals $A,B\subseteq K[G]$) if and only if G has no non-trivial finite normal subgroups. Since G is torsion-free, K[G] is prime. Now suppose $\alpha\beta=0$ for $\alpha,\beta\neq 0$. Then there exists some $\gamma\in K[G]$ with $\beta\gamma\alpha\neq 0$: Otherwise $(K[G]\beta K[G])\cdot (K[G]\alpha K[G])=0$. Now (1-

 $\beta\gamma\alpha)(1+\beta\gamma\alpha)=1$ and $1+\beta\gamma\alpha$ is a non-trivial unit, since if it were trivial then $\beta\gamma\alpha=kg-1$, but $0=(\beta\gamma\alpha)^2=k^2g^2-2kg+1$, which is absurd unless g=1, in which case $\beta\gamma\alpha=k-1$ again squares to zero, hence $\beta\gamma\alpha=0$.

Definition 1.8. A group G is residually finite if for all $1 \neq g \in G$ there exists a homomorphism $\varphi_g: G \to Q, Q$ finite, such that $\varphi_g(g) \neq 1$.

We will see later that the direct finiteness conjecture is true for $K=\mathbb{C}$. For now, we prove

Proposition 1.9. Let G be residually finite. Then K[G] is directly finite.

Proof. A group homomorphism $\varphi: G \to Q$ induces a ring homomorphism $K[G] \to K[Q]$. Thus K[Q] is a K[G]-module. Note that Q is a basis for the K-vector space K[Q], so if Q is finite this is a finite dimensional representation of G on V = K[Q].

Suppose $\alpha\beta=1$ in K[G]. Let $A=\operatorname{supp}(\alpha):=\{g\in G\mid (\alpha)_g\neq 0\},\ B=\operatorname{supp}(\beta).$ Let C=BA. By residual finiteness, there is a finite quotient $\varphi:G\to Q$ which is injective on C. Now the induced maps $\rho_\alpha,\rho_\beta\in\operatorname{End}(V)$ satisfy $\rho_\alpha\circ\rho_\beta=\rho_{\alpha\beta}=\operatorname{id}_V$ and thus – since V is finite-dimensional – we have $\rho_\beta\circ\rho_\alpha=\operatorname{id}_V$ as well. Write $\beta_\alpha=\sum_{c\in C}(\beta\alpha)_cc$ and thus

$$\rho_{\beta\alpha}(1_Q) = \varphi(\beta\alpha) = \sum_{c \in C} (\beta\alpha)_c \varphi(c) = 1_Q$$

forces $(\beta \alpha)_c = 1$ if c = 1 and 0 else.

Lecture 2: The Unit Conjecture

There is only one known way to probe the unit conjecture for a given group G: the unique product property.

Definition 2.1. A group G has the *unique product property* (UPP, "has unique products", "has UP") if for all non-empty finite subsets $A, B \subseteq G$ there exists some $g \in G$ s.t. g = ab for a unique pair $(a,b) \in A \times B$.

Example 2.2. In $(\mathbb{Z}, +)$, given finite $A, B \subseteq \mathbb{Z}$, one can take $g = \max A + \max B$. Hence \mathbb{Z} has unique products.

Remark 2.3. A group with unique products is torsion-free: If $1 \neq H \leq G$, H finite, then take A = B = H. Each product now occurs exactly |H| times.

Remark 2.4. It's difficult to produce torsion-free groups that don't have UP.

Proposition 2.5. A group with UP satisfies the zero divisor conjecture for all fields K.

Proof. Let $\alpha, \beta \in K[G]$ with $\alpha, \beta \neq 0$, and set $A = \text{supp}(\alpha)$, $B = \text{supp}(\beta)$. Write $\alpha = \sum_{a \in A} \lambda_a a$ and $\beta = \sum_{b \in B} \mu_b b$. Then if $g = a_0 b_0$, $a_0 \in A$, $b_0 \in B$ is a unique product for A, B, then we have

$$(\alpha\beta)_g = \sum_{ab=a} \lambda_a \mu_b = \lambda_{a_0} \mu_{b_0} \neq 0.$$

Hence $\alpha\beta \neq 0$ in K[G].

For the unit conjecture, we need something that is a priori stronger.

Definition 2.6. A group G has the *two unique products property* if for all finite subsets $A, B \subseteq G$ with $|A| \cdot |B| \ge 2$, there exist $g_0 \ne g_1 \in G$, such that $g_0 = a_0b_0$ and $g_1 = a_1b_1$ for unique pairs $(a_0, b_0), (a_1, b_1) \in A \times B$.

Proposition 2.7 (Strognowski). The two unique products property is equivalent to the unique product property.

Proof. If G satisfies 2UPP, it clearly satisfies UPP (if |A| = |B| = 1, the product is clearly unique).

Conversely, assume that G has UP but that there exist finite sets $A, B \subseteq G$ with $|A||B| \ge 2$ with only 1 unique product. Without loss (by translating A on the left and B on the right), we may assume that $1=1\cdot 1$ is the unique unique product. Now let $C=B^{-1}A$ and $D=BA^{-1}$. We claim that now there is unique product for C and D. Every element of CD can be written as $b_1^{-1}a_1b_2a_2^{-1}$ for some $a_i\in A,b_i\in B$. If $(a_1,b_2)\ne (1,1)$ then by assumption there is another pair a_1',b_2' s.t. $a_1b_2=a_1'b_2'$ and thus $b_1^{-1}a_1b_2a_2^{-1}=b_1^{-1}a_1'b_2'a_2^{-1}$ is not a unique product for CD. If, on the other hand, $(a_1,b_2)=(1,1)$, then unless $(a_2,b_1)=(1,1)$, we find a_2',b_1' such that

$$b_1^{-1}a_1b_2a_2^{-1} = b_1^{-1}a_2^{-1} = (a_2b_1)^{-1} = (a_2'b_1')^{-1} = b_1'^{-1}a_1b_2a_2'^{-1}$$

is not a unique product. Finally, if $a_2 = b_1 = 1$, then our element of CD is $1 = 1 \cdot 1 = b^{-1}b = aa^{-1}$ for any $a \in A, b \in B$, and A or B has an element other than 1, which gives more than one factorisation. \Box

Corollary 2.8. A group with UP satisfies the unit conjecture.

Most examples of groups with UP are left-orderable.

Definition 2.9. A group G is (*left-)orderable* if it admits a total order \prec that is left-invariant, i.e. if $g \prec h$, then $kg \prec kh$ for all $g, h, k \in G$.

Remark 2.10. Being left- and right-orderable are equivalent (define $g \prec' h$ iff $g^{-1} \prec h^{-1}$)) but admitting a bi-invariant total order is much stronger.

Proposition 2.11. A left-orderable group G has unique products.

Proof. Fix a left-order \prec . Given finite subsets $A, B \subseteq G$, we show that the maximum of AB is a unique product. Let $b_0 = \max B$. Then for all $a \in A$, $b \in B \setminus \{b_0\}$, we have $b \prec b_0$, so $ab \prec ab_0$. Thus the maximum of AB can only be written as ab_0 for some $a \in A$, and thus must be unique.

Remark 2.12. It is not necessarily true that $\max(AB) = \max A \cdot \max B$.

Definition 2.13. For a left-ordered group (G, \prec) , the set $\mathcal{P} = \{g \in G \mid 1 \prec g\}$ is called its *positive cone*.

The positive cone clearly satisfies $\mathcal{P}^2 \subseteq \mathcal{P}$ (i.e. it's a subsemigroup) and $G = \mathcal{P} \sqcup \{1\} \sqcup \mathcal{P}^{-1}$. The converse is also true:

Lemma 2.14. Left-orders are equivalent to choices of $\mathcal{P} \subseteq G$ satisfying $\mathcal{P}^2 \subseteq \mathcal{P}$ and $G = \mathcal{P} \sqcup \{1\} \sqcup \mathcal{P}^{-1}$.

Lemma 2.15. A group G is left-orderable if and only if for all $g_1, \ldots, g_n \in G \setminus \{1\}$, there exists a choice of signs $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$ such that $1 \notin S(g_1^{\varepsilon_1}, \ldots, g_n^{\varepsilon_n})$ (the subsemigroup generated by $g_1^{\varepsilon_1}, \ldots, g_n^{\varepsilon_n}$).

Proof. If G is left-ordered, set $\varepsilon_i = 1$ iff $g_i \in \mathcal{P}$.

For the other implication, we use compactness (slogan: the inverse limit of non-empty finite sets is non-empty). Let $X = \{1, -1\}^{G\setminus\{1\}}$ be the set of functions $G\setminus\{1\}\to\{1, -1\}$, and let $A\subseteq X$ be the set of those functions that define a positive cone. This is equivalent to satisfying (simultaneously) the condition on choice of sign for all possible $g_1, \ldots, g_n \in G\setminus\{1\}$ (for n=3). That is, if we denote such functions $A_{\{g_1,\ldots,g_n\}}\subseteq X$, then

$$A = \bigcap_{\substack{S \subseteq G \setminus \{1\}\\ S \text{ finite}}} A_S$$

But X is compact by Tychonoff and all the A_S are closed. Furthermore, all finite intersections of the A_S are non-empty by assumption. So $A \neq \emptyset$.

We apply the lemma to prove

Theorem 2.16 (Burns-Hale, 1972). Let G be a group. If every non-trivial finitely generated subgroup of G has a non-trivial left-orderable quotient, then G is left-orderable.

In particular, a locally indicable group (i.e. every nontrivial finitely generated subgroup surjects onto \mathbb{Z}) is left-orderable.

Corollary 2.17 (Higman, 1940). *Loally indicable groups satisfy the unit conjecture.*