

Why quantum chemistry?

- The behavior of the particles is governed by the equation of motion, and its classical mechanical version is known as the Newton's law.
- The proper description of atoms, molecules, and electrons is given by the laws of quantum mechanics. For this reason, we need to consider the **Schrödinger** equation, which is a quantum-mechanical equation of motion.
- If the solutions of the Schrödinger equations are generated without reference to experimental data, the methods are usually called "ab initio" (latin: "from the beginning") or "first principle".

The Schrödinger equation

- In chemistry or solid state physics, the fundamental interaction we are interested is the electrostatic interaction.
- · Here we introduce three assumptions to the SE
 - 1. time-independent
 - 2. non-relativistic
 - 3. Born-Oppenheimer approximation
- Under these approximations, the system of nuclei and electrons is described with a Hamiltonian below

$$\hat{H} = T_{\rm nuc} + T_{\rm el} + V_{\rm nuc-nuc} + V_{\rm nuc-el} + V_{\rm el-el}$$

These terms are written in the atomic unit as

$$T_{
m nuc} = \sum_{I=1}^L rac{
abla_I^2}{2M_I} \qquad \qquad ext{(kinetic energy of nuclei)}$$
 $T_{
m el} = \sum_{i=1}^N rac{
abla_i^2}{2} \qquad \qquad ext{(kinetic energy of electrons)}$ $V_{
m nuc-nuc} = rac{1}{2} \sum_{I
eq J} rac{Z_I Z_J}{|{f R}_I - {f R}_J|} \qquad \qquad ext{(nuclei-nuclei repulsion)}$ $V_{
m nuc-el} = -\sum_{i,I} rac{Z_I}{|{f r}_i - {f R}_I|} \qquad \qquad ext{(nuclei-electron attraction)}$ $V_{
m el-el} = rac{1}{2} \sum_{i
eq j} rac{1}{|{f r}_i - {f r}_j|} \qquad \qquad ext{(electron-electron repulsion)}$

In this case, the Schrödinger equation becomes

$$\hat{H}_{\mathrm{el}}(\{\mathbf{R}\})\Psi(\mathbf{r},\{\mathbf{R}\}) = E_{\mathrm{el}}(\{\mathbf{R}\})\Psi(\mathbf{r},\{\mathbf{R}\})$$

- Here, one can make the direct functional relationship (or "mapping") between the nuclear coordinates $\{{\bf R}\}$ and the electronic energy $E_{\rm el}$.
- It is quite informative to visualize $E_{\rm el}(\{{\bf R}\})$ as the function of $\{{\bf R}\}$, which is often called **potential energy surface**.

Dirac's braket notation

 It is convenient to use the Dirac's "bra-ket notation" for wave functions and multidimensional integrals in electronic structure theory in order to simplify the notation. The equivalences are defined as

$$egin{align} |\Psi
angle \equiv \Psi, & \langle\Psi| \equiv \Psi, \ & \int d{f r} \Psi^* \Psi = \langle\Psi|\Psi
angle \ & \int d{f r} \Psi^* \hat{H} \Psi = \langle\Psi|\hat{H}|\Psi
angle \end{aligned}$$

- The ket $|\Psi
angle$ denotes a wave function while the bra $\langle\Psi|$ denotes a complex

conjugate wave function Ψ^* . The combined braket denotes that the whole expression should be integrated over all coordinates.

Hartree-Fock theory - Introduction

- Except for the simplest cases, there are no simple way to solve the SE in a closed analytical form so we have to solve it numerically.
- The SE is a second-order partial differential equation (PDE), so in principle it can be directly solve. However, this needs integration over a large number of dimensions ($3 \times N_{\rm elec}$), which is impossible.
- · This difficulty can be solved by two approaches
 - 1. Approximate the electron-electron interaction by the effective one-electron problem. This reduces the 3N dim. integration to a sum of 3 dim. integrations.
 - 2. Expanding the wave function in some suitable basis set, as this will convert the PDE into a set of algebraic equations.
- The methodology based on above approaches is the Hartree-Fock-Roothaan equation, and is the basis of modern quantum chemistry calculations.

Hartree product

- We are mainly interested in the electronic ground state energy E_0 .
- There is an important quantum mechanical principle the Rayleigh-Ritz variational principle that provides a route to find approximate solutions for E_0 .
- It states that the expectation value of \hat{H} of any Ψ is always higher than or equal to the exact E_0 , i.e.

$$E_0 \leq rac{\langle \Psi | \hat{H} | \Psi
angle}{\langle \Psi | \Psi
angle}$$

• So, the expectation value calculated by the wave function at your hand Ψ will always be an upper bound for the true ground state energy. By improving $|\Psi\rangle$, you will have a lower expectation value and that is closer to the true ground state energy.

• Since $V_{
m nuc-el}$ is an effective external potential for an electron, we write it

$$v_{
m ext}({f r}) = -\sum_I rac{Z_I}{|{f r}-{f R}_I|}$$

· And we define the one-electron Hamiltonian

$$\hat{h}(\mathbf{r}) = -rac{
abla^2}{2} + v_{
m ext}(\mathbf{r})$$

· Then one can form the one-electron SE as

$$\hat{h}(\mathbf{r})\psi_i(\mathbf{r})=\epsilon_i\psi_i(\mathbf{r})$$

• In this case, the N-electron wave function can be expressed by the product of ψ_i as

$$\Psi_{\mathrm{HP}}(\mathbf{r}_1,\mathbf{r}_2,\cdots,\mathbf{r}_N)=\psi_1(\mathbf{r}_1)\psi_2(\mathbf{r}_2)\cdots\psi_N(\mathbf{r}_N)$$

- This wave function is called **Hartree product**, and it is a first crude guess for the true N-electron wave function.
- Note that ψ_i is orthonormal thus $\langle \psi_i({f r}) | \psi_j({f r})
 angle = \delta_{ij}.$

Spatial and spin orbitals

- The one-electron wave function $\psi_i(\mathbf{r})$ is called the *orbital*, and the Hartree product means that N-electron wave function is expressed by the product of orbitals.
- Up to now we assumed that the orbital depends only on \mathbf{r} , but an electron has the spin degree of freedom. We write this spin variable by ω , and combine it with the spatial coordinate \mathbf{r} as $\mathbf{x} = (\mathbf{r}, \omega)$.
- Let the one-electron wave function in \mathbf{x} as $\chi_i(\mathbf{x})$.
- Assuming that \mathbf{r} and ω are independent, we have $\chi_i(\mathbf{x}) = \psi_i(\mathbf{r})\sigma_i(\omega)$, where ψ and σ denote the spatial and spin parts.
- + χ , ϕ , σ are a spin orbital, spatial orbital, and spin function.

• Since an electron have no chance to take both α and β spin simultaneously, following integration over the spin variable holds.

$$\int d\omega lpha^*(\omega)lpha(\omega)=1$$
 $\int d\omega eta^*(\omega)eta(\omega)=1$
 $\int d\omega lpha^*(\omega)eta(\omega)=0$
 $\int d\omega eta^*(\omega)lpha(\omega)=0$

Hartree equation

• Using the spin orbital χ above, we determine the expectation value of the Hamiltonian

$$\hat{H}=\hat{h}(\mathbf{r})+rac{1}{2}\sum_{i
eq j}^{N}rac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}$$

with respect to the Hartree product. This becomes

$$egin{aligned} \langle \Psi_{ ext{HP}} | \hat{H} | \Psi_{ ext{HP}}
angle &= \sum_{i=1}^N \int d\mathbf{x} \chi_i^*(\mathbf{x}) \hat{h(\mathbf{r})} \chi_i(\mathbf{x}) \ &+ rac{1}{2} \sum_{i=1}^N \int d\mathbf{x} d\mathbf{x}' \chi_i^*(\mathbf{x}) \chi_j^*(\mathbf{x}') rac{1}{|\mathbf{r} - \mathbf{r}'|} \chi_i(\mathbf{x}) \chi_j(\mathbf{x}') \ &+ V_{ ext{nuc-nuc}} \end{aligned}$$

- Now we minimize this w.r.t. $\chi_i(\mathbf{x})$ under the constraint that $\chi_i^*(\mathbf{x})$ is normalized.
- This is a typical variational problem with the constraint taken into account via Lagrange multipliers, which gives

$$rac{\delta}{\delta\chi_i^*}\left[\langle\Psi_{
m HP}|\hat{H}|\Psi_{
m HP}
angle - \sum_{i=1}^N\left\{\epsilon_i\left(1-\langle\chi_i|\chi_i
angle
ight)
ight\}
ight] = 0$$

• The ϵ_i act as Lagrange multipliers ensuring the normalization of $\chi_i(\mathbf{x})$. This leads to the so-called **Hartree equation** as

$$\left[\hat{h} + \sum_{j=1}^N \int d\mathbf{x}' \chi_j^*(\mathbf{x}') \chi_j(\mathbf{x}') rac{1}{|\mathbf{r} - \mathbf{r}'|}
ight] \chi_i(\mathbf{x}) = \epsilon_i \chi_i(\mathbf{x})$$

 This shows that an effective one-electron SE is solved for an electron embedded in the electrostatic field of all electrons (including itself).

Hartree potential

Using the electron density

$$ho(\mathbf{r}) = \sum_{i=1}^N \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r})$$

the Hartree potential \hat{v}_H can be defined as

$$\hat{v}_H(\mathbf{r}) = \int d\mathbf{r}' rac{
ho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$$

which corresponds to the electrostatic potential of all electrons. With \hat{v}_H , the Hartree equation can be written as

$$\left[\hat{h}+\hat{v}_H
ight]\chi_i(\mathbf{x})=\epsilon_i\chi_i(\mathbf{x})$$

Self-consistent field

• The Hartree equation have the form of one-electron SE. However, the solutions $\chi_i(\mathbf{x})$ enter the effective one-particle Hamiltonian via \hat{v}_H .

- This dilemma can be resolved in an iterative fashion: One starts with some initial
 guess for the wave functions which enter the effective one particle Hamiltonian.
 The Hartree equations are then solved and a new set of solutions are determined.
- This cycle is repeated so often until the iterations no longer modify the solutions, i.e. self-consistency is reached. Such method is known as self-consistent field (SCF) method.

Hartree-Fock method

- The Hartree product obeys the Pauli' exclusion principle only to some extent.
- In the Hartree product wave function, each electronic state is occupied by one electron. However, it does not take into account the anti-symmetry character of the wave function, which is also required by the Pauli principle.
- This requires that the sign of wave function should change when two electrons are exchanged; this is anti-symmetric character of the electronic wave function.

Slater determinant

 The anti-symmetric problem can be fixed by replacing the product of the oneelectron wave function by the determinant of them. This is called a **Slater** determinant, and it has the form of

$$\Psi(\mathbf{x}_1,\mathbf{x}_2,\cdots\mathbf{x}_N) = rac{1}{\sqrt{N!}} egin{array}{cccc} \chi_1(\mathbf{x}_1) & \cdots & \chi_1(\mathbf{x}_N) \ dots & \ddots & dots \ \chi_N(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_N) \end{array}$$

· For example in two-electron case,

$$\begin{split} \Psi(\mathbf{x}_1, \mathbf{x}_2) &= \chi_1(\mathbf{x}_1) \chi_2(\mathbf{x}_2) & \text{(Hatree product)} \\ \Psi(\mathbf{x}_1, \mathbf{x}_2) &= \chi_1(\mathbf{x}_1) \chi_2(\mathbf{x}_2) - \chi_1(\mathbf{x}_2) \chi_1(\mathbf{x}_2) & \text{(Slater determinant)} \end{split}$$

Then the expectation value of the Hamiltonian with the Slater determinant is

$$egin{aligned} \langle \Psi | H | \Psi
angle &= \sum_{i=1}^N \int d\mathbf{r} \psi_i^*(\mathbf{r}) \hat{h} \psi_i(\mathbf{r}) \ &+ rac{1}{2} \sum_{i,j=1}^N \int d\mathbf{r} d\mathbf{r}' rac{1}{|\mathbf{r} - \mathbf{r}'|} \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r}) \psi_j^*(\mathbf{r}') \psi_j(\mathbf{r}') \ &- rac{1}{2} \sum_{i,j=1}^N \int d\mathbf{r} d\mathbf{r}' rac{1}{|\mathbf{r} - \mathbf{r}'|} \delta_{\omega_i,\omega_j} \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r}') \psi_j^*(\mathbf{r}') \psi_j(\mathbf{r}) \ &+ V_{ ext{nuc-nuc}} \end{aligned}$$

where Kronecker delta $\delta_{\omega_i,\omega_j}$ is coming from the integration in the spin variable.

• Just like the Hartree equation, we minimize the expectation value with respect to ψ^* under the constraint of normalization. This gives the **Hartree-Fock equation** as

$$\left[\hat{h}+\hat{v}_H(\mathbf{r})
ight]\psi_i(\mathbf{r})-\sum_{j
eq i}\int d\mathbf{r}'rac{1}{|\mathbf{r}-\mathbf{r}'|}\psi_j^*(\mathbf{r}')\psi_i(\mathbf{r}')\psi_j(\mathbf{r})=\epsilon_i\psi_i(\mathbf{r})$$

- The last term of the left-hand side corresponds to the *exchange interaction* of electrons, as it exchanges ψ_i into ψ_j when it applies to ϕ_i . This term arises by replacing the Hartree product into the determinant, and has purely quantum-mechanical character (no classical-mechanics interpretation)
- $\delta_{\omega_i,\omega_j}$ in this term means that the exchange interaction is only present among the electrons of same spin.
- By using the Fock operator \hat{f} , the HF equation becomes

$$\hat{f}(\mathbf{x})\chi(\mathbf{x}) = \epsilon_i \chi(\mathbf{x})$$

Hartree-Fock-Roothaan equation

• The HF equation is a very complicated integro-differential equation, so we expand χ_i with a suitable basis set $\tilde{\chi}_i$ as

$$\chi_i(\mathbf{x}) = \sum_{\mu=1}^K C_{\mu i} ilde{\chi}_{\mu}(\mathbf{x})$$

• Where $C_{\mu i}$ is the expansion coefficient. Lets' introduce the overlap and Fock integrals

$$S_{\mu
u} = \int d\mathbf{x} ilde{\chi}_{\mu}(\mathbf{x}) ilde{\chi}_{
u}(\mathbf{x}), \;\; F_{\mu
u} = \int d\mathbf{x} ilde{\chi}_{\mu}(\mathbf{x}) \hat{f}(\mathbf{x}) ilde{\chi}_{
u}(\mathbf{x})$$

· Then the HF equation becomes the Hartree-Fock-Roothaan equation

$$\sum_{
u} F_{\mu
u} C_{
u i} = \epsilon_i \sum_{
u} S_{\mu
u} C_{
u i} ~~ ext{or}~~ \mathbf{FC} = \mathbf{SC} \epsilon_i$$

- · This is a general eigenvalue problem, and easily solved.
- As F depends on C, it should be solved by the SCF manner.

Basis set

- Quantum chemical methods usually describe the electrons by a localized basis set.
- · Historically, two localized basis set is commonly known
 - 1. Slater type functions: $\exp(-\alpha r_{iI})$
 - 2. Gaussian type functions: $\exp(-\alpha r_{iI}^2)$.
- α is the exponent of the function and r_{iI} is the distance between the electron i and the nucleus I.
- The Gaussian type function is more often used because they allow the analytic evaluation of the matrix elements necessary to perform an electronic structure calculation.
- In GAUSSIAN, only the Gaussian type function is used.

Electron correlation

- The Hartree-Fock method generates solutions to the Schrodinger equation where the real electron-electron interaction is replaced by an average interaction.
- In a sufficiently large basis set, the HF wave function accounts for ~99% of the

total energy.

- The remaining 1% is often very important for describing chemical phenomena such as chemical bond formation or breaking.
- The difference in energy between the HF and the lowest possible energy in the given basis set is called the electron correlation energy.
- As the HF solution usually gives ~99% of the correct answer, electron correlation methods normally use the HF wave function as a starting point for improvements.

Density Functional Theory

- A function is a prescription for producing a number from a set of variables.
- A functional is a prescription for producing a number from a function, which in turn depends on variables.
- A wave function and the electron density are thus *functions*, while the energy depending on a wave function or an electron density is a *functional*.
- We will denote a function depending on a set of variables ${\bf x}$ with $f({\bf x})$, while a functional depending on a function f is denoted as F[f].

Orbital-free DFT

- The electronic energy functional of electron density ρ can be divided into three parts
 - \circ kinetic energy functional T[
 ho]
 - \circ the nuclei-electron attraction energy functional $E_{ne}[
 ho]$
 - \circ the electron-electron repulsion energy functional $E_{ee}[
 ho].$
- With reference to the Hartree-Fock theory, $E_{ee}[\rho]$ may be divided into Coulomb and exchange parts, $J[\rho]$ and $K[\rho]$.
- Among these energy functionals, $E_{ne}[\rho]$ and $J[\rho]$ can be interpreted by the classical electrodynamics,

$$egin{align} E_{ne}[
ho] &= -\sum_{i}^{N_{nuc}} \int rac{Z_a(R_a)
ho(\mathbf{r})}{|\mathbf{R}_a - \mathbf{r}|} d\mathbf{r} \ J[
ho] &= rac{1}{2} \iint rac{
ho(\mathbf{r})
ho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d\mathbf{r} d\mathbf{r'} \ \end{aligned}$$

- Here, the factor of 1/2 in $J[\rho]$ allows the integration to be done over all space fo both ${\bf r}$ and ${\bf r'}$ variables. Unlike these energy components, exchange part $K[\rho]$ can only be interpreted by the quantum mechanics.
- Early attempts of deducing functionals for the kinetic and exchange energies considered a uniform electrons gas where it may be shown that $T[\rho]$ and $K[\rho]$ are given by Thomas, Fermi, and Dirac as

$$T_{TF}[
ho] = C_F \int
ho^{5/3}({f r}) d{f r} \ K_D[
ho] = -C_X \int
ho^{4/3}({f r}) d{f r} \ C_F = rac{3}{10} (3\pi^2)^{2/3}, \ C_X = rac{3}{4} \left(rac{3}{\pi}
ight)^{1/3}$$

- Since $T[\rho]$ and $K[\rho]$ functionals are depending directly on the electron density, these methods are called *orbital-free DFT*, as opposed to the Kohn-Sham theory discussed in the next section.
- Unfortunately, the accuracy of the orbital-free DFT is too low to be of general use.

Kohn-Sham theory

- The main drawback in the orbital-free DFT is the poor representation of the kinetic energy.
- The idea in the Kohn-Sham formalism is to split the kinetic energy functional into two parts, one which can be calculated exactly, and a small correction term.
- Assume for the moment a Hamiltonian operator of the form with $0 \le \lambda \le 1$.

$$H_{\lambda} = \mathbf{T} + \mathbf{V}_{ext}(\lambda) + \lambda \mathbf{V}_{ee}$$

- The external potential operator \mathbf{V}_{ext} is equal to \mathbf{V}_{ee} for $\lambda=1$, but for intermediate λ value it is assumed that $\mathbf{V}_{ext}(\lambda)$ is adjusted such that the same density is obtained for $\lambda=1$ (the real system), for $\lambda=0$.
- For the $\lambda=0$ case, the electrons are non-interacting, and the exact solution to the Schrodinger equation is given as a Slater determinant.

· The exact kinetic energy functional is

$$T_{KS} = \sum_{i}^{N_{el}} raket{\phi_i} - rac{1}{2}
abla^2 \ket{\phi_i}$$

- The $\lambda=1$ corresponds to interacting electrons, and Eq.X is therefore only an approximation to the real kinetic energy.
- The key to Kohn-Sham theory is to calculate the kinetic energy under the assumption of non-interacting electrons.
- The remaining kinetic energy is absorbed into an exchange-correlation term, and a general DFT energy expression can be written as

$$E_{DFT}[
ho] = T_{KS}[
ho] + E_{ne}[
ho] + J[
ho] + E_{XC}[
ho]$$

Gradient methods and molecular property

- Once the electronic energy is obtained by solving the electronic Schrodinger equation, a number of molecular properties, perhaps the most important being the equilibrium molecular geometry, can be determined.
- The calculation of molecular or crystal structures is a variable supplement to experimental data in areas of structural chemistry such as X-ray crystallography, electron diffraction, and microwave spectroscopy.
- Calculation of derivatives of the potential energy with respect to nuclear coordinates is crucial to the efficient determination of equilibrium structures.
- The derivatives can be computed numerically by calculating the potential energy at many geometries and determining the change in energy as each nuclear coordinate is varied.

Energy derivatives

- For a diatomic molecule, the molecular potential energy E depends only on the internuclear distance R; therefore, to find the potential minimum (or in general the energy stationary point) we need to locate a zero in dE/dR.
- The search is more complicated for polyatomic molecules because the potential energy is a function of many nuclear coordinates, q_i .

• At the equilibrium geometry, each of the forced f_i exerted on a nucleus by electrons and other nuclei must vanish:

$$f_i = -rac{\partial E}{\partial q_i} = 0 ext{ (for all i)}$$

 Therefore, in principle, the equilibrium geometry can be found by computing all the forces at a given molecular geometry and seeing if they vanish.

Hessian

- A zero gradient characterizes a stationary point on the surface, but does not tell whether it is minima, maxima, or saddle points.
- To distinguish the types of stationary points, it is necessary to consider the second derivatives of the energy with respect to the nuclear coordinates.
- The quantities $\partial^2 E/\partial q_i\partial q_j$ comprise the **Hessian or Hesse matrix**.
- A maximum (minimum) of a multi-dimensional potential energy surface is characterized by the eigenvalues of the Hessian all being positive (negative).
- A transition state (a first-order saddle point) correspond to one negative eigenvalue and all the rest positive.

Transition state

- The transition state (TS) is a point on the PES connecting the two energy minima.
- A clear example of this is that the bond dissociation or formation process (Fig.X).
- The minimum at right corresponds to the state that has the O-H bond in this example, while the left minimum corresponds to the state with N-H bond.
- There is a saddle point between them, and the activation energy (E_a) can be measured by the energy difference between minima and the saddle point.

Activation energy

• When we have the E_a , we can calculate the rate constant of the chemical reaction by Arrhenius equation as

$$k = A \exp\left(-rac{E_a}{RT}
ight)$$

where A is the pre-exponential factor and R is the gas constant.

- A is less dependent to molecular species, but E_a is highly dependent.
- Therefore obtaining the transition state structure is critically important topic in the chemical reaction.

Thermodynamics

- The important thermodynamics quantities such as enthalpy, entropy, Gibbs free energy has contributions from translational, electronic, rotational, and vibrational motions of molecules.
- To calculate them, the partition function $q(\boldsymbol{V},T)$ is needed.
- From q(V,T) to these quantities, the entropy S, internal energy E, and heat capacity C_V is obtained as

$$S = R + R \ln q + RT \left(rac{\partial \ln q}{\partial T}
ight)_V \ E = RT^2 \left(rac{\partial \ln q}{\partial T}
ight)_V \ C_V = \left(rac{\partial E}{\partial T}
ight)_{N.V}$$

Partition functions

The translation partition function is

$$q_{
m trans} = \left(rac{2\pi m k_B T}{h^2}
ight)^{3/2} V$$

· For the non-linear polyatomic molecule, the rotational partition function is

$$q_{\mathrm{rot}} = rac{\pi^{1/2}}{\sigma_{\mathrm{rot}}} \left[rac{T^{3/2}}{\Theta_{\mathrm{rot,x}}^{1/2} \Theta_{\mathrm{rot,y}}^{1/2} \Theta_{\mathrm{rot,z}}^{1/2}}
ight]$$

• The vibrational partition function (for mode \emph{i}) and overall one is

$$egin{aligned} q_{
m vib,i} &= rac{\exp(-\Theta_i/2T)}{1-\exp(-\Theta_i/T)} \ q_{
m vib} &= \prod_i rac{\exp(-\Theta_i/2T)}{1-\exp(-\Theta_i/T)} \end{aligned}$$