Balanced Binary Search Tree

Bùi Tiến Lên

2022

Contents

- 1. Balanced Tree
- 2. AVL Tree
- 3. Red-Black Tree

- 4. Optimal binary search trees
- 5. Workshop

Balanced Tree

- Rotations
- Strategies in Balancing Tree

Balanced Tree

Rotations
Strategies in Balancin
Tree

AVL

Insertion

Deletion

Red-Black Tre

Optimal binary

search trees Static

Dynamic Splaying

Worksho

Introduction

Balance may be defined by:

- Comparing the numbers of nodes of the two subtrees
- Height balancing: comparing the heights of the twosub trees
- Null-path-length balancing: comparing the null-path-length of each of the two sub-trees
- Weight balancing: comparing the number of null sub-trees in each of the two sub trees

Balanced Tree

Rotations
Strategies in Balan
Tree

AVL Tre

Insertio

Red-Black Tre

Insertion
Deletion

Optimal binary

Static Dynamic Splaying

Worksho

Introduction (cont.)

Concept 1

A binary tree is **balanced** if the difference in the numbers of nodes of both subtrees of any node in the tree either **zero** or **one**.

Concept 2

A binary tree is **height-balanced** if the difference in height of both subtrees of any node in the tree either **zero** or **one**.

A complete binary tree is is height-balanced

Rotations

- A rotation allows us to interchange the role of the root and one of the root's children in a tree while still preserving the BST ordering among the keys in the nodes.
- There are two kinds of rotations: right rotation and left rotation

Right rotation

A right rotation involves the root and the left child. The rotation puts the root on the right, essentially reversing the direction of the left link of the root:

- Before the rotation, it points from the root to the left child
- After the rotation, it points from the old left child (the new root) to the old root (the right child of the new root)

nced Tree

Rotations

Strategies in Bal Tree

Tree

Insertion

Red-Black Tr

Optimal binar

search trees

Dynamic Splaving

Morkobon

Example

Make right rotation at 15

Implementation

h = x;

```
void rightRotate(link& h) {
  link x = h -> left;
  h \rightarrow left = x \rightarrow right;
  x->right = h;
```

Left rotation

A left rotation involves the root and the right child.

Implementation

```
void leftRotate(link& h) {
  link x = h->right;
  h->right = x->left;
  x \rightarrow left = h;
  h = x;
```

Tree

- Global rebalancing: an approach to producing better balance in BSTs is periodically to rebalance them explicitly.
 - costs at least linear time in the size of the tree
- **Local rebalancing**: balancing BSTs after each operation (insert, delete)

Strategies in Balancing

DSW algorithm

The algorithm was proposed by Colin Day and later improved by Quentin F. Stout and Bette L. Warren.

Idea of algorithm:

- 1. Transform an arbitrary BST into a linked-list-like-tree called backbone or vine by rotations
- 2. Transform this tree into a **perfectly balanced tree** by rotations

DSW algorithm (cont.)


```
CREATEBACKBONE(root)
     p := root
     while p \neq null?
          if p has a left chid?
               make right rotation at p
          else
               p := p \rightarrow right
```

DSW algorithm (cont.)


```
CREATECOMPLETETREE(root)
     n \leftarrow the number of nodes
     m \leftarrow 2^{\lfloor \log_2(n+1) \rfloor} - 1
     make n-m left rotations starting from the top of backbone
     while (m > 1)
          m \leftarrow m/2
          make m left rotations starting from the top of backbone
```

Strategies in Balancing

Tree

Illustration

Figure 1: BST

Figure 2: Backbone

Figure 3: Perfect

AVL Tree

070

- Insertion
- Deletion

AVL Tree

Deletio

Red-Black Tre

Optimal binary

Static Dynamic

Dynamic Splaying

Morkobor

AVL Tree

Concept 3

AVL tree

- proposed by two Soviet scientists G. M. Adelson-Velskii and E. M. Landis
- is BST tree which is height-balanced

$$\forall p : |\textit{height}(\textit{LeftSubtree}(p)) - \textit{height}(\textit{RightSubtree}(p))| \le 1$$
 (1)

The Height of an AVL Tree

AVL Tree

Deletie

Red-Black Tre

Optimal binary

Static

Dynamic

Splaying

Worksho

Consider the worst case,

- To determine the maximum height that an AVL tree with N nodes can have, we can instead ask what is the minimum number of nodes that an AVL tree of height h can have (called AVL tree F_h).
- We have the recurrence relation

$$|F_h| = |F_{h-1}| + |F_{h-2}| + 1 (2$$

where $|F_0| = 1$ and $|F_1| = 2$

Solve the equation, we have

$$|F_h| + 1 \approx \frac{1}{\sqrt{5}} \left[\frac{1 + \sqrt{5}}{2} \right]^{n+2} \tag{3}$$

• The height of an AVL tree in the worst case

$$h \approx 1.44 \log_2 |F_h| = 1.44 \log_2 N$$
 (4)

AVI Tree

Rebalancing technique

- After an insertion/deletion, we may find a node whose new balance violates the AVL condition.
- Four cases: LL imbalance, LR imbalance, RR imbalance, RL imbalance

Rotations Strategies in Balance

AVL Tree

Insertic

Red-Black Tro

Insertion Deletion

Optimal bins

search tree

Static

Splaying

Workshor

Rebalancing technique (cont.)

 Case LL imbalance is corrected by executing a single right rotation at the node with the imbalance.

AVL Tree

Rebalancing technique (cont.)

• Case LR imbalance is corrected by executing a double rotations

AVL Tre

Insertion

Rod-Black T

red bider i

Insertion

Optimal bina

search trees

Static

Dynami

Splayin

Workshop

Insertion

```
680
```

```
INSERT(root,key)
     if root = null
           root := new Node(key)
           return
     if root \rightarrow key = key
           return
     if root \rightarrow key < key
           INSERT(root \rightarrow right, key)
     if root \rightarrow key > key
           Insert(root \rightarrow left, key)
     if unbalanced at root? rebalance at root
```

nced Tree

Rotations
Strategies in Balancin
Tree

AVL Tre

Insertion

Red-Black Ti

Insertion

Optimal bina search trees

Static Static

Dynamic

Morkohom

Illustration

An AVL tree

lanced Tree

Rotations
Strategies in Balancii
Tree

AVL Tre

Insertion

Red-Black Tr

Insertion

Optimal bina search trees

Static

Splaying

Workshop

Illustration (cont.)

• Insert node $\bf 54$ into the tree ightarrow node $\bf 78$ become unbalanced

nced Tree

Rotations
Strategies in Balan
Tree

AVL Tre

Insertion

Pod Plack T

Insertion

Optimal bina search trees

Static

Dynamic

Workshop

Illustration (cont.)

 \bullet Case RL imbalance \to rebalance by making double rotations

Deletion

Illustration

An AVL tree

Deletion

Illustration (cont.)

• Delete node 32 from the tree \rightarrow node 44 become unbalanced

nced Tree

Rotations

Strategie Tree

AVL Tr

Deletion

Red-Black Tr

Optimal binar

search trees

Static

Splaying

Workshop

Illustration (cont.)

 \bullet Case RL imbalance \to rebalance by making double rotations

Red-Black Tree

- Insertion
- Deletion

Red-Black Tree

Red-Black Tree

Concept 4

A red-black (RB) tree is a special type of binary search tree that must statisfy

- 1. Each node is either red or black.
- 2. The root is **black**. (sometimes omitted)
- 3. If a node is red, then both its children are black.
- 4. Every path from a given node to any of its descendant null link has the same number of **black** nodes (balance criteria).

Concept 5

A left-leaning red-black (LLRB) tree (leveraging Andersson's idea AA tree) is a variant of the red-black tree that has only left red children

nced Tree

Rotations

Strategies in Balan Tree

AVL

Insertio

Red-Black Tree

Insertion

Optimal bin

search trees

Stati

Splayin

Workshor

Example

A red-black tree

Red-Black Tree

Example (cont.)

• A left-leaning red-black tree

Red-Black Tree

Example (cont.)

AA tree

Insertion

Deletion

Red-Black Tree

Insertion

Optimal bina

Static

Dynamic Splayin;

Workshop

The Height of a RB Tree

Theorem 1

The height of a red-black BST with N nodes is no more than $2\log_2 N$. It means that the height of an RB tree in the worst case

$$h \le 2\log_2 \mathsf{N} \tag{5}$$

Red-Black Tree

Operations

• Case 1: Left rotation to orient a right red node to left red node.

Red-Black Tree

Operations (cont.)

• Case 2: Right rotation.

Red-Black Tree

Operations (cont.)

• Case 3: Color flip.

AVL 7

Insertion

Pod Plack Tros

Insertion

Deletio

Optimal binar

search trees

Static

Dynami

Splaying

Workshop

Insertion

```
INSERT(root, key)
     if root = null
           root := new Node(key) red node
           return
     if root \rightarrow kev = kev
           return
     if root \rightarrow kev < kev
           INSERT(root \rightarrow right, key)
     if root \rightarrow kev > kev
           Insert(root \rightarrow left, key)
     if ISRed(root \rightarrow right) and not ISRed(root \rightarrow left) ROTATELEFT(root)
     if ISRED(root \rightarrow left) and ISRED(root \rightarrow left \rightarrow left) ROTATERIGHT(root)
     if ISRED(root \rightarrow left) and ISRED(root \rightarrow right) FLIPCOLORS(root)
```

lanced Tree

Strategies in Balancii

AVL

Deletion

Red-Black Tree

Red-Black Tre

Optimal bina

search trees

Dynamic Splaying

Morkshop

Example

• Typical left-leaning red-black BST built from random keys

Illustration

• A left-leaning red-black tree

Illustration (cont.)

Insert node 7 into the tree

Illustration (cont.)

• Flip color at 6 into the tree

Illustration (cont.)

• Right rotation at 13 into the tree

aced Tree

Rotations

Strategi Tree

ΔV/I Tre

AVL Tre

Insertion

Deletion

Red-Black II

Insertion

Deletion

Optimal bina

Static

Dynamic

Morkshore

Illustration (cont.)

Flip color at root at change root to black color

Deletion

Cost summary for symbol-table implementations

implementation	W	orst case		a	lene		
implementation	search	insert	remove	search hit	insert	remove	key
unordered list	N	1	N	N/2	1	N/2	equal
ordered list	N	N	N	N/2	N/2	N/2	compare
ordered array	$\log_2 extstyle N$	N	N	$\log_2 extcolor{N}$	N/2	N/2	compare
BST	N	N	N	$c\log_2 N$	$c\log_2 extstyle N$	\sqrt{N}	compare
AVL	$c_a \log_2 N$	-	-	$\log_2 extcolor{N}$	-	-	compare
RB	$c_r \log_2 N$	-	-	$\log_2 extcolor{N}$	-	-	compare
goal?							

Note: c = 1.39, $c_a = 1.44$, $c_r = 2.0$

Optimal binary search trees

- Static
- Dynamic

Strategies Tree

AVL Tree

Insertion

Red-Black

Optimal binary search trees

Static

Dynamic

Splaying

Morkobo

Introduction

Concept 6

An **optimal binary search tree** (optimal BST), sometimes called a weight-balanced binary tree, is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities)

- Optimal BSTs are generally divided into two types: **static** and **dynamic**
 - In the static optimality problem, the tree cannot be modified after it has been constructed.
 - In the dynamic optimality problem, the tree can be modified at any time, typically by permitting tree rotations.

Optimal binar

search trees

Static

Splaying

Morkobo

Introduction

 Suppose that we are designing a binary search tree for a program to translate text from English to Vietnamese, we want words that occur frequently in the text to be placed nearer the root.

Problem

Given a sequence of of n distinct keys in sorted order $(k_1 < k_2 < \cdots < k_n)$ and their frequencies

D-	key	k_1	k_2	 k_n
ν –	frequency	f_1	f_2	f_n

What binary search tree has the lowest search cost?

Search Cost

Strategies in Balan Tree

AVL 7

Insertion
Deletion

Red-Black Tre

Optimal binar search trees

Static

Dynamic

Worksho

Cost of search for key k_i

$$Cost(k_i) = Depth(k_i)$$
 (6)

where Depth(root) = 1

• Denote ExpectCost(l, r) be expected cost of search for a BST tree containing $\{k_l, ..., k_r\}$ given \mathcal{D}

$$EXPECTCOST(I, r) = \sum_{i=I}^{r} COST(k_i) f_i$$
 (7)

Rotations

Strategies in Balanc

AVL

Insertion

Red-Black Tre

Optimal bina

search trees

Static

Dynamic Splaying

Workshop

Search Cost (cont.)

• Compute the expected cost for the following binary search tree given

Optimal Search Cost

AVL I

Red-Black Tree

Deletion

search trees

Static Dynam

Dynamic Splaying

Workshop

- Denote Optimal Cost(I, r) be optimal cost of search for a BST tree T containing $\{k_1, ..., k_r\}$ given D
- Denote Optimal Cost(l, m, r) be optimal cost of search for a BST tree T containing $\{k_l, ..., k_r\}$ and k_m be the root node given \mathcal{D}
- We have

OPTIMALCOST
$$(l, m, r) = \sum_{i=l}^{r} f_i$$

$$+ \text{OPTIMALCOST}(l, m - 1)$$

$$+ \text{OPTIMALCOST}(m + 1, r)$$
(8)

$$OPTIMALCOST(I, r) = \min_{m \in \{I, \dots, r\}} \{OPTIMALCOST(I, m, r)\}$$
 (9)

Static

Optimal Search Cost (cont.)

Splay tree

AVL Tree

Insertion

Red-Black Tre

Insertion Deletion

Optimal binary search trees

Static

Dynamic

Splaying

Worksho

Concept 7

A **splay tree** is a binary search tree with the additional property that recently accessed elements are quick to access again.

- All normal operations (*insert*, *look-up*) on a binary search tree are combined with one basic operation, called **splaying**.
- For many sequences of non-random operations, splay trees perform better than other binary search trees.

AVL T

Insertion

Red-Black Tre

Optimal binary

Dynamic

Splaying

Workshop

Splaying

- When a node x is accessed, a splay operation is performed on x to move it to the root.
- To perform a splay operation we carry out a sequence of *splay steps*, each of which moves x closer to the root.
- There are three types of splay steps, each of which has two symmetric variants:
 - zig step
 - zig-zig step
 - zig-zag step

Splaying

Zig step

Strategies in Balancing

Splaying

Zig-zig

Strategies in Balancing

Splaying

Workshop

nced Tree

Strategies in Balan Tree

AVL

Insertio

Red-Black Tr

Insertion

Optimal binar

Static Dynamic

Workshop

1. What is an AVL tree?

																																							٠.
2.	W	/h	ıa	t	į	5	a	F	₹,	ec	-k	b	la	ac	:k	: 1	tr	e	e	?																			

Exercises

Workshop

• Programming exercises in [Cormen, 2009, Sedgewick, 2002]

References

Cormen, T. H. (2009).

Introduction to algorithms.

MIT press.

Sedgewick, R. (2002).

Algorithms in Java, Parts 1-4, volume 1.

Addison-Wesley Professional.

Walls and Mirrors (2014).

Data Abstraction And Problem Solving with C++.

Pearson.