Computer Vision

-Spatial and Frequency Domain Processing-

Oliver Bimber

Course Schedule

Туре	Date	Time	Room	Topic	Comment
Lec l	11.10.2022	12:00-13:30	ні	Introduction and Course Overview	
Lab I	10./11./12./13.10.2022	17:15-18:45	S3055	Introduction to Python	
Lec2	18.10.2022	12:00-13:30	HS I	Spatial and Frequency Domain Processing	
Lab2	17./18./19./20.10.2022	17:15-18:45	S3055	Introduction to IP/CV Modules	
Lec3	25.10.2022	12:00-13:20	HS I	Gradient Domain Processing	National Holiday (26.10.)
Lec4	08.11.2022	12:00-13:30	HS 10	Segmentation and Local Features	Allerheiligen (2.11.)
Lab3	07./08./08./10.11.2022	17:15-18:45	S3055	Project Introduction	
Lec5	15.11.2022	12:00-13:30	HS I	Basics of Cameras	
Lec6	22.11.2022	12:00-13:30	HS I	Geometric Camera Calibration	
Lab4	21./22./23./24.11.2022	17:15-18:45	S3055	Project Basics and Related Work	
Lec7	29.11.2022	12:00-13:30	HS I	The Geometry of Multiple Views	
Lec8	06.11.2022	12:00-13:30	HS I	Stereoscopic Depth Estimation	Mariä Empfängnis (8.12.)
Lec9	13.12.2022	12:00-13:30	HS I	Range Scanning and Data Processing	
Lab5	12./13./14./15.12.2022	17:15-18:45	S3055	Presentation of Initial Ideas	Christmas Break
Lec10	10.01.2023	12:00-13:30	HS I	Structure from Motion	
Lab6	09./10./11./12.01.2023	17:15-18:45	S3055	Presentation of Intermediate Results and Final Concepts	
Lecll	17.01.2023	12:00-13:30	HS I	Computational Imaging	
Lec 12	24.01.2023	12:00-13:30	HS I	Recap and Q&A	
Lab7	23./24./25./26.01.2023	17:15-18:45	S3055	Final Project Presentations	
ExI	31.01.2023	12:00-13:30	HS I	Exam (Hauptklausur)	
Ex2	28.02.2023	15:30-17:00	ТВА	Retry Exam (Nachklausur)	

Image Analysis

- One goal of image analysis is to identify distinct image features
- What are good features?

Image Analysis

- One goal of image analysis is to identify distinct image features
- What are good features?
 - for example, those image points that describe main characteristics of image content, such as edges or corners

Image Analysis

- One goal of image analysis is to identify distinct image features
- What are good features?
 - for example, those image points that describe main characteristics of image content, such as edges or corners
 - but features should also be robust (invariant to rotation, translation, scaling, lighting, etc.), since we want to find the same features if the same content is captured under different conditions
- How do we compute (simple) features?

Linear Filtering

Which kind of filtering operation is this?

$$R_{i,j} = \frac{1}{(2k+1)^2} \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} F_{u,v}$$

Linear Filtering

- Which kind of filtering operation is this?
 - local average
- Image filtering:
 - construct new image R of same size as original image F
 - fill each location in R with a weighted sum of the pixel values of corresponding location's neighbourhood in F
 - use the same weights each time
 - different sets of weights represent different filters
 - shift-invariant: filtered result depends on image neighbourhood – but not on position of neighbourhood
 - linear: filtering the sum of two images is equivalent as summing the two filtered images

 $R_{i,j} = \frac{1}{(2k+1)^2} \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} F_{u,v}$

• Shift invariant linear system (SILS)

Convolution

- The pattern of weights is usually referred to as kernel H
- The process of applying H to an image F is known as convolution
- Say: "The convolution of F with H results in R"
- The kernel H can be defined as a continuous function or a finite matrix of discrete weights
- What is the kernel for our local average example?

$$R_{i,j} = \frac{1}{(2k+1)^2} \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} F_{u,v}$$

$$R_{i,j} = \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} H_{i-u,j-v} \cdot F_{u,v}$$

$$R = H \otimes F$$

Convolution

- The pattern of weights is usually referred to as kernel
 H
- The process of applying H to an image F is known as convolution
- Say: "The convolution of F with H results in R"
- The kernel H can be defined as a continuous function or a finite matrix of discrete weights
- What is the kernel for our local average example?
- How large is it?

$$R_{i,j} = \frac{1}{(2k+1)^2} \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} F_{u,v}$$

$$R_{i,j} = \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} H_{i-u,j-v} \cdot F_{u,v}$$

$$R = H \otimes F$$

$$H_{i,j} = \frac{1}{(2k+1)^2}$$

Convolution

- The pattern of weights is usually referred to as kernel
- The process of applying H to an image F is known as convolution
- Say: "The convolution of F with H results in R"
- The kernel H can be defined as a continuous function or a finite matrix of discrete weights
- What is the kernel for our local average example?
- How large is it?
 - $(2k+1)^2$ weights

"box filter"

$$R_{i,j} = \frac{1}{(2k+1)^2} \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} F_{u,v}$$

$$R_{i,j} = \sum_{u=i-k}^{u=i+k} \sum_{v=j-k}^{v=j+k} H_{i-u,j-v} \cdot F_{u,v}$$

$$R = H \otimes F$$

$$H_{i,j} = \frac{1}{(2k+1)^2}$$

Example

Original

Example: Identity

Original

Original

0	0	0	
0	1	0	
0	0	0	

Filtered (no change)

Example

?

Original

Example: Local Average

 $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

?

Original

Original

1	1	1	1	
<u>-</u>	1	1	1	
9	1	1	1	

Blur (with a box filter)

Example

0	0	0	11	1	1	1
0	2	0		1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Example: Sharpening

?

(Note that filter sums to 1)

Original

Sharpening filter

 Accentuates differences with local average

Example: Sharpening

before

after

Example: Classification

Example: Classification

- Convolving an average kernel with an image is known as smoothening or blurring
- Our local average kernel is a smoothening operator
- But it is quite unrealistic (its output does not look like the one of a defocused camera)
- Why?

$$R = H \otimes F$$

$$H_{i,j} = \frac{1}{(2k+1)^2}$$

- Convolving an average kernel with an image is known as smoothening or blurring
- Our local average kernel is a smoothening operator
- But it is quite unrealistic (its output does not look like the one of a defocused camera)
- Why?
 - the intensity spread (point spread function - PSF) of a defocused point is not spatially constant, but follows a Gaussian distribution
- The standard deviation sigma σ controls the influence of the neighbours (small σ neighbours have small weights)

$$R = H \otimes F$$

$$H_{i,j} = \frac{1}{(2k+1)^2}$$

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{(x^{2} + y^{2})}{2\sigma^{2}}\right)$$
normalization (sum of weights equals I)

$$H_{i,j} =$$

$$\frac{1}{2\pi\sigma^2}\exp\left(-\frac{((i-k-1)^2+(j-k-1)^2)}{2\sigma^2}\right)$$

- Convolving an average kernel with an image is known as smoothening $H_{i,i}$ = or blurring
- Our local average kernel is a smoothening operator
- But it is quite unrealistic (its output does not look like the one of a defocused camera)
- Why?
 - the intensity spread (point spread function - PSF) of a defocused point is not spatially constant, but follows a Gaussian distribution
- The standard deviation sigma o controls the influence of the neighbours (small σ - neighbours have small weights)

$$H_{i,j} =$$

$$\frac{1}{2\pi\sigma^2}\exp\left(-\frac{((i-k-1)^2+(j-k-1)^2)}{2\sigma^2}\right)$$

smoothening reduces noise

Properties of Gaussians

- Remove "high-frequency" components from the image (lowpass filter)
- Convolution with itself is another Gaussian
 - one can smoothen with smallwidth kernel multiple times, and get same result as smoothening with largerwidth kernel
 - convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$
- =2+6+3=112D convolution = 6 + 20 + 10 = 36(center location only) = 4 + 8 + 6 = 1865 The filter factors into a product of 1D filters: Perform convolution ***** 3 18 along rows: 18 Followed by convolution 65 along the remaining column:

- Separable kernel
 - factors into product of two ID Gaussians

Convolution Rules for SILSs

 Superimposition: the sum of two filtered images is equivalent to the filtered image with the sum of the two kernels (component-wise addition)

 $H_1 \otimes R + H_2 \otimes R =$ $(H_1 + H_2) \otimes R$

 Scaling: scaling of a filtered image is equivalent to filtering the image with a scaled kernel

 $(kH) \otimes R = k(H \otimes R)$

- Symmetric: the convolution of two filters to an image is symmetric
- $H_1 \otimes (H_2 \otimes R) = H_2 \otimes (H_1 \otimes R)$
- Associative: convolution is associative, which means that we can find a single kernel that behaves like the composition of two kernels

$$H_1 \otimes (H_2 \otimes R) = (H_1 \otimes H_2) \otimes R$$

Example: Unsharp Masking

https://en.wikipedia.org/wiki/Lennahttps://de.wikipedia.org/wiki/Lena_(Testbild)

What does blurring take away?

Let's add it back:

Example: Unsharp Masking

- The partial derivation of a function f can be estimated as a symmetric finite difference
- How does the corresponding filter kernel look like?

$$\frac{\partial f(x,y)}{\partial x} \approx f(x+1,y) - f(x-1,y)$$

- The partial derivation of a function f can be estimated as a symmetric finite difference
- How does the corresponding filter kernel look like?
- When is the filter's response large?

- The partial derivation of a function f can be estimated as a symmetric finite difference
- How does the corresponding filter kernel look like?
- When is the filter's response large?
 - positive slope (from left to right)
- What about the partial derivation in y direction?

- The partial derivation of a function f can be estimated as a symmetric finite difference
- How does the corresponding filter kernel look like?
- When is the filter's response large?
 - positive slope (from left to right)
- What about the partial derivation in y direction?
- Note that finite differences respond strongly to noise!

$$\frac{\partial f(x,y)}{\partial x} \approx f(x+1,y) - f(x-1,y)$$

$$H = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\partial f(x,y)}{\partial y} \approx f(x,y+1) - f(x,y-1)$$

$$H = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad H = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

- The partial derivation of a function f can be estimated as a symmetric finite difference
- How does the corresponding filter kernel look like?
- When is the filter's response large?
 - positive slope (from left to right)
- What about the partial derivation in y direction?
- Note that finite differences respond strongly to noise!

examples for partial derivations in horizo

Computer Graphics

Frequency Decomposition

- An image can also be seen as a discrete two-dimensional signal
- As any signal, it can be decomposed into an integral of weighted basis functions
- A Discrete (Fast) Fourier Transformation applies cos+/-sin basis functions at different frequencies, while the weight coefficients represent the amplitude / magnitude of a particular frequency
- A Discrete Cosine Transformation (this is what JPEG compression uses) applies only a cosine basis functions for decomposition
- Thus, every image can be decomposed into a spectrum of frequency of a particular basis function
- This spectrum can be processed / analyzed as well
- The image can be composed from the spectrum through integration

Spatial vs. Frequency Domain

- Convolution theorem:
 - convolution in spatial domain equals a multiplication in frequency domain
 - a division in frequency domain equals the inverse operation, which is called deconvolution / inverse filtering
- In case of deconvolution with a Gaussian kernel, this is equivalent with sharpening (or deblurring)

Deconvolution / Inverse Filtering

- Given an image I that is convolved with signal K results in I'=I*K+N (whereby N is noise)
- If noise N and convolution signal H are known, then original image F can be recovered with $I=K^{-1*}(I'-N)$
- This is known as deconvolution
- The challenge is to estimate K and N
- Example: image deblurring
 - we know that for camera lenses with round apertures the point spread function (PSF) of defocus is Gaussian – thus K is Gaussian
 - the scale of K depends on the amount of defocus
 - noise model can be given or not (then it has to be predicted)
- Wiener filter, regularized filter, Lucy-Richardson algorithm, blind deconvolution

original image

Deconvolution / Inverse Filtering

- Given an image I that is convolved with signal K results in I'=I*K+N (whereby N is noise)
- If noise N and convolution signal H are known, then original image F can be recovered with $I=K^{-1}*(I'-N)$
- This is known as deconvolution
- The challenge is to estimate K and N
- Example: image deblurring
 - we know that for camera lenses with round apertures the point spread function (PSF) of defocus is Gaussian – thus K is Gaussian
 - the scale of K depends on the amount of defocus
 - noise model can be given or not (then it has to be predicted)
- Wiener filter, regularized filter, Lucy-Richardson algorithm, blind deconvolution

convolution in spatial domain: $I(x,y) * K_s(x,y) = I'(x,y)$

convolution in frequency domain (Fourier transform + convolution theorem):

$$\hat{I}(f_x, f_y) \cdot \hat{K}_s(f_x, f_y) = \hat{I}'(f_x, f_y)$$

deconvolution in frequency domain:

$$\hat{I}(f_x, f_y) = \frac{\hat{I}'(f_x, f_y)}{\hat{K}_s(f_x, f_y)}$$

This is simplified and does not consider a noise model. Division by small values in frequency domain leads to ringing artefacts in spatial domain. Better: apply regularized techniques.

Spatial and Frequency Domain Processing

Filter Banks

- What filters should be used for identifying important features?
 - a lot of research has (and is still) being carried out on this
 - some use filters that are adapted to the human visual system (spots and bars at different orientations)
 - others use simpler edge and line filters
- How do we filter features (e.g., spots or bars) at different scales?

Image Pyramids

- An image pyramid is a collection of representations of the same image at different scales
- Typically, each layer is half the width and half the height of the previous layer
- At each layer, a Gaussian pyramid stores a smoothened (Gaussian kernel) and down sampled version of the previous layer
- A Gauss filter is a low-pass filter
- In terms of signal processing, each level of the Gaussian pyramid is reduced by a subband of higher frequencies (going bottom up)
- The top entry (one pixel) represents the basis (average image intensity)

$$P_{G}^{n+1}(I) = \downarrow (G_{s} \otimes P_{G}^{n}(I))$$

$$P_G^1(I) = I$$

Gaussian pyramid

Oriented Image Pyramids

- Apply filter bank to levels of pyramid (Gaussian or Laplacian)
- This is called oriented pyramid or steerable pyramid
- It contains the feature response at different scales for Gaussian (or different sub-bands for Laplacian)
- Multiple image pyramids can be the result of a texture analysis process

oriented filter bank of four orientation filters applied to levels of image pyramid pyramid

- A Gauss filter is a low-pass filter
- Consequently, Gaussian pyramid successively removes high frequencies
- What happens if two consecutive layers are subtracted?

$$P_L^n(I) = P_G^n(I) - \uparrow P_G^{n+1}(I)$$

- A Gauss filter is a low-pass filter
- Consequently, Gaussian pyramid successively removes high frequencies
- What happens if two consecutive layers are subtracted?
 - the resulting image contains the removed (via Gauss filter) spatial frequencies (a sub-band)
- What happens if this is done for each layer of the Gaussian pyramid?

$$P_L^n(I) = P_G^n(I) - \uparrow P_G^{n+1}(I)$$

- A Gauss filter is a low-pass filter
- Consequently, Gaussian pyramid successively removes high frequencies
- What happens if two consecutive layers are subtracted?
 - the resulting image contains the removed (via Gauss filter) spatial frequencies (a sub-band)
- What happens if this is done for each layer of the Gaussian pyramid?
 - the result is another image pyramid, called Laplacian pyramid, that can be thought of as the response of a band-pass filter (a sub-band at each level)
- What happens when the pyramid is collapsed?

$$P_L^n(I) = P_G^n(I) - \uparrow P_G^{n+1}(I)$$

Laplacian pyramid

$$P_L^n(I) = P_L^n(I) + \uparrow P_L^{n+1}(I) \rightarrow I$$

- A Gauss filter is a low-pass filter
- Consequently, Gaussian pyramid successively removes high frequencies
- What happens if two consecutive layers are subtracted?
 - the resulting image contains the removed (via Gauss filter) spatial frequencies (a sub-band)
- What happens if this is done for each layer of the Gaussian pyramid?
 - the result is another image pyramid, called Laplacian pyramid, that can be thought of as the response of a band-pass filter (a sub-band at each level)
- What happens when the pyramid is collapsed?
 - the original image results

Laplacian pyramid

$$P_L^n(I) = P_L^n(I) + \uparrow P_L^{n+1}(I) \rightarrow I$$

Recap. Example: Classification

Recap. Example: Classification

Processing Depth Data

- In many cases, depth maps can be processed like images
- Image operators, such as filters, can be applied
- This, for instance, allows to:
 - handle discontinuities and overlaps
 - fill missing portions
 - smoothen geometric noise
 - analyze depth images
 - find features such as edges
 - segmentation of objects
 - 3D object recognition
 - etc.

Example: LIDAR

Institute of Computer Graphics

Computer Vision

Course Schedule

Туре	Date	Time	Room	Торіс	Comment
Lec I	11.10.2022	12:00-13:30	НΙ	Introduction and Course Overview	
Labl	10./11./12./13.10.2022	17:15-18:45	S3055	Introduction to Python	
Lec2	18.10.2022	12:00-13:30	HS I	Spatial and Frequency Domain Processing	
Lab2	17./18./19./20.10.2022	17:15-18:45	S3055	Introduction to IP/CV Modules	
Lec3	25.10.2022	12:00-13:20	HS I	Gradient Domain Processing	National Holiday (26.10.)
Lec4	08.11.2022	12:00-13:30	HS 10	Segmentation and Local Features	Allerheiligen (2.11.)
Lab3	07./08./08./10.11.2022	17:15-18:45	S3055	Project Introduction	
Lec5	15.11.2022	12:00-13:30	HS I	Basics of Cameras	
Lec6	22.11.2022	12:00-13:30	HS I	Geometric Camera Calibration	
Lab4	21./22./23./24.11.2022	17:15-18:45	S3055	Project Basics and Related Work	
Lec7	29.11.2022	12:00-13:30	HS I	The Geometry of Multiple Views	
Lec8	06.11.2022	12:00-13:30	HS I	Stereoscopic Depth Estimation	Mariä Empfängnis (8.12.)
Lec9	13.12.2022	12:00-13:30	HS I	Range Scanning and Data Processing	
Lab5	12./13./14./15.12.2022	17:15-18:45	S3055	Presentation of Initial Ideas	Christmas Break
Lec I 0	10.01.2023	12:00-13:30	HS I	Structure from Motion	
Lab6	09./10./11./12.01.2023	17:15-18:45	S3055	Presentation of Intermediate Results and Final Concepts	
Lecll	17.01.2023	12:00-13:30	HS I	Computational Imaging	
Lec 12	24.01.2023	12:00-13:30	HS I	Recap and Q&A	
Lab7	23./24./25./26.01.2023	17:15-18:45	S3055	Final Project Presentations	
ExI	31.01.2023	12:00-13:30	HS I	Exam (Hauptklausur)	
Ex2	28.02.2023	15:30-17:00	TBA	Retry Exam (Nachklausur)	

Thank You!