

Induksi Matematika (2)

Buktikan bahwa $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ berlaku untuk semua n bilangan bulat positif

Buktikan bahwa $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ berlaku untuk semua n bilangan bulat positif

Jawab:

P(n):
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1): 1 = \frac{1(1+1)}{2}$$
$$1 = 1$$

TERBUKTI P(1) benar

Buktikan bahwa $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ berlaku untuk semua n bilangan bulat positif **Jawab**:

P(n):
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1): 1 = \frac{1(1+1)}{2}$$
$$1 = 1$$

Perhatikan bahwa kita ingin membawa bentuk $1+2+3+\cdots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$ seperti rumus yang ingin dibuktikan pada soal

TERBUKTI P(1) benar

Inductive Step:

Asumsikan: P(k) benar sehingga berlaku $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$

Maka P(k+1):

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k(k+1) + 2(k+1)}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

TERBUKTI $P(k) \rightarrow P(k+1)$ berlaku

Buktikan bahwa $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ berlaku untuk semua n bilangan bulat positif **Jawab:**

P(n):
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1): 1 = \frac{1(1+1)}{2}$$

$$1 = 1$$

TERBUKTI P(1) benar

Inductive Step:

Asumsikan: P(k) benar sehingga berlaku $1+2+3+\cdots.+k=\frac{k(k+1)}{2}$ Maka P(k+1) :

$$1 + 2 + 3 + \dots + k + k + 1 = \frac{k(k+1)}{2} + k + 1$$
$$= \frac{k(k+1) + 2(k+1)}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

TERBUKTI $P(k) \rightarrow P(k+1)$ berlaku

Kesimpulan: Jadi, dari langkah-langkah induksi matematika terbukti bahwa P(n): $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$ berlaku untuk setiap bilangan bulat positif n

Buktikan bahwa $1+3+5+\cdots+(2n-1)=n^2$ berlaku untuk semua n bilangan bulat positif

Buktikan bahwa $1+3+5+\cdots+(2n-1)=n^2$ berlaku untuk semua n bilangan bulat positif

Jawab:

$$P(n):1 + 3 + 5 + \dots + (2n - 1) = n^2$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1)$$
: $1 = 1^2$
 $1 = 1$

TERBUKTI P(1) benar

Buktikan bahwa $1+3+5+\cdots+(2n-1)=n^2$ berlaku untuk semua n bilangan bulat positif

Jawab:

$$P(n):1+3+5+\cdots+(2n-1)=n^2$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1)$$
: $1 = 1^2$
 $1 = 1$

Perhatikan bahwa kita ingin membawa bentuk $1+3+5+\cdots+(2(k+1)-1)=(k+1)^2$ seperti rumus yang ingin dibuktikan pada soal

TERBUKTI P(1) benar

Inductive Step:

Asumsikan: P(k) benar sehingga berlaku $1 + 3 + 5 + \dots + (2k - 1) = k^2$

Maka P(k+1):

$$1 + 3 + 5 + \dots + (2k - 1) + (2(k + 1) - 1) = k^{2} + (2k + 2 - 1)$$
$$= k^{2} + 2k + 1$$
$$= (k + 1)^{2}$$

TERBUKTI $P(k) \rightarrow P(k+1)$ berlaku

Buktikan bahwa $1+3+5+\cdots+(2n-1)=n^2$ berlaku untuk semua n bilangan bulat positif

Jawab:

$$P(n):1+3+5+\cdots+(2n-1)=n^2$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1)$$
: $1 = 1^2$
 $1 = 1$

TERBUKTI P(1) benar

• Inductive Step:

Asumsikan: P(k) benar sehingga berlaku $1 + 3 + 5 + \cdots + (2k - 1) = k^2$

Maka P(k+1):

$$1 + 3 + 5 + \dots + (2k - 1) + (2(k + 1) - 1) = k^{2} + (2k + 2 - 1)$$
$$= k^{2} + 2k + 1$$
$$= (k + 1)^{2}$$

TERBUKTI $P(k) \rightarrow P(k+1)$ berlaku

Kesimpulan: Jadi, dari langkah-langkah induksi matematika terbukti bahwa P(n): $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ berlaku untuk setiap bilangan bulat positif n

Gunakan induksi matematika untuk membuktikan bahwa $n < 2^n$ berlaku untuk semua bilangan bulat positif n

Gunakan induksi matematika untuk membuktikan bahwa $n < 2^n$ berlaku untuk semua bilangan bulat positif n

Jawab:

$$P(n):n < 2^n$$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1): 1 < 2^1$$

1 < 2

TERBUKTI P(1) benar

Gunakan induksi matematika untuk membuktikan bahwa $n < 2^n$ berlaku untuk semua bilangan bulat positif n

Jawab:

 $P(n):n < 2^n$

Basis Step: Menunjukkan bahwa P(1) benar

$$P(1): 1 < 2^1$$

1 < 2

Perhatikan bahwa kita ingin membawa bentuk $k+1 < 2^{k+1}$ seperti rumus yang ingin dibuktikan pada soal

TERBUKTI P(1) benar

Inductive Step:

Asumsikan: P(k) benar sehingga berlaku $k < 2^k$ untuk k bilangan bulat positif Maka P(k+1):

$$k+1 < 2^k + 1$$

 $k+1 < 2^k + 1 < 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$

Sehingga

$$k+1 < 2^{k+1}$$

Gunakan induksi matematika untuk membuktikan bahwa $n < 2^n$ berlaku untuk semua bilangan bulat positif n

Jawab:

 $P(n):n < 2^n$

• Basis Step: Menunjukkan bahwa P(1) benar

$$P(1)$$
: 1 < 2¹ 1 < 2

TERBUKTI P(1) benar

Inductive Step:

Asumsikan: P(k) benar sehingga berlaku $k < 2^k$ untuk k bilangan bulat positif Maka P(k+1) :

$$k + 1 < 2^k + 1 < 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$$

Sehingga

$$k + 1 < 2^{k+1}$$

TERBUKTI $P(k) \rightarrow P(k+1)$ berlaku

Kesimpulan: Jadi, dari langkah-langkah induksi matematika terbukti bahwa P(n): $n < 2^n$ berlaku untuk setiap bilangan bulat positif n

Latihan

- 1. Buktikan menggunakan induksi matematika bahwa pernyataan $1^3 + 2^3 + 3^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$ berlaku untuk semua bilangan bulat positif n.
- 2. Temukan formula untuk $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$ dengan mencobanya pada beberapa n bernilai kecil. Buktikan formula yang kamu temukan dengan induksi matematika
- 3. Buktikan bahwa $4^{n+1} + 5^{2n-1}$ habis dibagi 21 untuk semua n bilangan bulat positif
- 4. Buktikan bahwa $n! < n^n$ untuk $n = \{n > 1, n \in \mathbb{Z}^+\}$

Apa yang sudah dipelajari?

 Contoh soal Induksi Matematika dan pembahasan

Topik Selanjutnya: Strong Induction

Referensi

Discrete Mathematics and Its Applications 7th Edition oleh Kenneth H.
 Rosen (2012)