Diagramas de Cuerpo Libre Estación Boca de Pescado

RESOLVIENDO LAS ECUACIONES:

De [3]

Nc,t - 200 - 0.601* 9.81 = 0 Nc,t = 200 + 0.601*9.81 = 205.896 N

De [1]

Nr = 169.51N Nr = (4*0.447*9.81 + 46.341*9.81 - Nt.c = 0 Nr = (4*0.447*9.81 + 46.341*9.81 + 205.896)/4 Nr = 169.51N

- 105

f2 - 4*0.74*Nr = 0 f2 = 4*0.74*169.51 = 501.751N

Adicionando un margen del 10%: 501.751+0.1*501.751 = 551.926N

AMS

MA = 0.325 (200) - 30000*(0.002166) = 0.02 N*m

mt = 0.601kg fP = 30000N f1 = 200N Nc,t = 205.896 N

	Estación o	le corte de Tubos
Г	NE	EUMÁTICA
	Cilindro Vertical	Cilindro Horizontal
1. Selección cilindros		
Fm (N)	200	43
(0,4-,07)	0,7	0,7
	0,87	0,87
Fc	328,41	2700,00
2. Area mínima		
Presión (bar)	6	6
Presión (Pa)	600000	600000
Amin (mm^2)	547,35	4500,00
3. Diámetro mínimo		
Dmin (mm)	26,40	75,69
3. Parámetros normalizados		
Diámetro émbolo (D) [mm]	32	80
Diámetro vástago (d) [mm]	12	25
Carrera (L) [mm]	50	80
3. Fuerza de avance y retroceso		
Fuerza de avance (Fa) [N]	482,55	3015,93
Fuerza de retroceso (Fr) [N]	414,69	2721,40
		•
Cilindro escogido	CP96SDB32 - 25	CP96SDB50 - 160
Accesorio Fijacion		

4. Pandeo

$$F_a < \frac{F_p}{3.5}$$

5. Amortiguamiento

$$E_c = \frac{1}{2}(m + m_v) \cdot v^2$$

6. Consumo de aire			
L (mm)	50	80]
D (mm)	32	80	
V (m^3)	4,02124E-05	0,000402124	
V(L)	0,040212386	0,40212386	
	_		
del cilindro			
k	2	2	
Tiempo de proceso	11,426	11,426	
n	6	6	
C(Litros/min)	0,482548632	4,825486316	
	<u>-</u>		
normales			
Presión (Atm)	5,921538	5,921538	
CCn	3,33997869	33,3997869	Total
Ajuste 25% (L/min)	4,174973363	41,74973363	45,924707
	•		
8. Caudal de un cilindro			
A(m^2)	0,000804248	0,005026548	
vm(m/s)	0,7	0,7	
q(m^3/s)	0,000562973	0,003518584	
	33,77840421	211,1150263	
9. Velocidad de avance			
Va (m/s)	1	1	

10. Velocidad de flujo de tubería		
Diametro Tubería(mm)	9,5	9,5
Vt(m/s)	11,34626039	70,91412742
	7	
11. Número de Reynolds		
Re	713,8375741	4461,484838
	ī	
12. Selección válvulas		
Q (m^3/h)	2,026704253	12,66690158
deltaP(bar)	2	2
sg	1	1
k	1,433096321	8,956852003
Q	8,923578825	55,77236765
desItaP(psi)	29,0076	29,0076
sg	1	1
Cv	1,656849897	10,35531186
Valvula	VQ7-8-FG-S-3R	VQ7-8-FG-S-3R

$$Q = k \sqrt{\frac{\Delta p}{sg}}$$

Q caudal Δp caída de presión en la válvula sg gravedad específica k coeficiente de caudal (Cv o Kv)

		Estación Boca de Pescado		
	NEUN	NÁTICA	HIDRÁULICA	
	Cilindro Horizontal (A)	Cilindro Vertical (B)	Cilindro Vertical (C)	
1. Selección cilindros				
Fm (N)	551,926	200	30000	
(0,4-,07)	0,7	0,7	0,7	$F - F_M$
	0,87	0,87	0,87	$rac{1}{2} F_C = \frac{F_M}{\lambda \cdot \mu}$
Fc(N)	906,28	328,41	49261,08	
				<u> </u>
2. Area mínima				
Presión (bar)	6	6	160	$\Box A = = \frac{F}{2}$
Presión (Pa)	600000	600000	16000000	$A_{min} = \frac{r}{p}$;
Amin (mm^2)	1510,47	547,35	3078,82	· .
	<u> </u>			
3. Diámetro mínimo				$\neg D_{min} = \sqrt{\frac{4 \cdot A}{n}}$
Dmin (mm)	43,85	26,40	62,61	$\int D_{min} = \sqrt{\frac{4 \cdot A}{n}}$
	_			•
3. Parámetros normalizados				
Diámetro émbolo (D) [mm]	50	32	100	
Diámetro vástago (d) [mm]	20	12	56	
Carrera (L) [mm]	160	25	25	
				_
3. Fuerza de avance y retroce	so			$F_{-}=\frac{\pi}{2}$
Fuerza de avance (Fa) [N]	1178,10	482,55	125663,71	$F_a = \frac{\pi}{4} p_a$ $F_a = \frac{\pi}{4} p(D^2)$
Fuerza de retroceso (Fr) [N]	989,60	414,69	86255,57	$F_a = \frac{\pi}{4} p(D^2)$
Cilindro escogido	CP96SDB50 - 160	CP96SDB32 - 25	CHDSGB100 - 25	

4. Pandeo

$$F_a < \frac{F_p}{3,5}$$

5. Amortiguamiento

$$E_c = \frac{1}{2}(m + m_v) \cdot v^2$$

6. Consumo de aire				
L (mm)	160	25	25	$u = \pi$
D (mm)	50	32	100	$V = \frac{\pi}{4} LD^2$
V (m^3)	0,000314159	2,01062E-05	0,00019635	•
V(L)	0,314159265	0,020106193	0,196349541	
ciclos del cilindro				
k	2	2	2	$C = k \cdot n \cdot 1$
Tiempo de proceso	11,426	11,426	11,426	0 10 10 1
n	5	5	5	
C(Litros/min)	3,141592654	0,20106193	1,963495408	
normales				c $(p+1 Atm)$
Presión (Atm)	5,921538	5,921538		$C_{CN} = \frac{(p+1 Atm)}{1 Atm}$
CCn	21,74465293	1,391657788		Total
Ajuste 25% (L/min)	27,18081617	1,739572235	2,454369261	28,920388
8. Caudal de un cilindro				
A(m^2)	0,001963495	0,000804248	0,007853982	$q = A \cdot v_m$
vm(m/s)	0,5	0,7	0,7	$q - A \cdot \nu_m$
q(m^3/s)	0,000981748	0,000562973	0,005497787	
	58,90486225	33,77840421	329,8672286	
9. Velocidad de avance				4 q
Va (m/s)	0,5	1	0,7	$v_a = \frac{4}{\pi} \frac{q}{D^2}$
L.L				
tubería	0.5	0.5	٥٠	D^2
Diametro Tubería(mm)	9,5	9,5	9,5	$v_t = v_{a_{\scriptscriptstyle m I}} \cdot rac{D^2}{{d_t}^2}$
Vt(m/s)	13,85041551	11,34626039	77,56232687	

11. Número de Reynolds			
Re	871,3837574	713,8375741	4879,749041

 $Re = \frac{v \cdot d}{v}$

12. Selección válvulas			
Q (m^3/h)	3,534291735	2,026704253	19,79203372
deltaP(bar)	2	2	1
sg	1	1	1
k	2,499121653	1,433096321	19,79203372

Q	15,56148651	8,923578825	87,14432446
desltaP(psi)	29,0076	29,0076	14,5038
sg	1	1	1
Cv	2,889316925	1,656849897	22,88222261
Válvula	VQ7-8-FG-S-3R	VQ7-8-FG-S-3R	

Q caudal Δp caída de presión en la válvula sg gravedad específica k coeficiente de caudal (Cv o Kv)

Selección del Compresor

Compresores estacionarios estándar - ABAC International (abacaircompressors.com)

Modelo	Designación	L	l/min	Aceite	Bomba	CV	kW	rpm	Voltaje	Bar	dB(A)	L x An x Al (mm)	kg
PRO A29B 90 FM2	4116024527	90	255	Lubricados	A29B	2	1,5	1075	230/1/50	10	69	1010x415x980	59
PRO A29B 90 FT2	4116024528	90	255	Lubricados	A29B	2	1,5	1075	400/3/50	10	69	1010x415x980	59
A29B 90 FM3	4116024525	90	255	Lubricados	A29B	3	2,2	1075	230/1/50	10	69	1010x415x980	59
A29B 90 FT3	4116024526	90	255	Lubricados	A29B	3	2,2	1075	400/3/50	10	69	1010x415x980	59