Hash Table

Problema del dizionario

Dato un universo U di possibili elementi, dobbiamo mantenere un sott'insieme $S\subseteq U$ soggetto alle seguenti operazioni:

- make-dictionary(): crea un dizionario vuoto
- ullet insert(u) : aggiungi l'elemento $u\in U$ a S
- ullet delete(u) : cancella u da S se $u \in S$
- ullet look-up(u) : determina se u sta in S

Il problema che U può avere una dimensione molto grande, e definire un array di tale dimensione non è efficiente.

Soluzioni:

- Deterministica AVL: O(|S|) spazio e O(log(|S|)) costo per ogni operazione.
- Randomizzata Hash Tables: O(|S|) spazio e O(1) costo per ogni operazione.

Idea

L'idea è quella di tenere in memoria un tabella (array H) e ogni H[i] è una linked list di elementi mappati dalla funzione di hash.

Una **collisione** avviene quando, dati due elementi $u \in U$ e $v \in V$ tali che $u \neq v$, e h(u) = h(v).

L'obiettivo è trovare una funzione h di hash tale che rispetti le seguenti caratteristiche:

- 1. Deterministica: La stessa chiave deve produrre lo stesso indice.
- 2. Uniforme: Le chiavi devono essere distribuite uniformemente nell'array per minimizzare le collisioni.
- 3. Veloce da calcolare: Dovrebbe essere computazionalemente efficiente per garantire l'accesso rapido.
- Fatto I: Se $|U|>m^2$, per ogni funzione hash h deterministica esiste un insieme S di dimensione n tale che tutti gli elementi di S sono mappati nello stesso slot.
- **Dimostrazione**: Fissato h che dovrà mappare ciascun elemento di U in H, e S può essere scelto in modo opportuno dall'''avversario'' rispetto ad h. Dunque esiste almeno uno slot i di H la cui lista di trabocco ha dimensione n. Dunque il costo per ogni operazione è $\theta(n)$

Randomized Hash Functions

In questo approccio iniziale, si tenta di mappare ogni elemento $u \in S$ a uno slot in H in modo indipendente e uniforme. Questo significa che, per ogni elemento u, scegliamo h(u) (il valore hash di u) come un numero random tra gli slot disponibili di H.

Poiché ogni slot in H ha uguale probabilità di essere scelto, la probabilità che un elemento u venga mappato a uno specifico slot i è data da:

$$Pr[h(u) = i] = \frac{1}{m}$$

dove m è il numero di slot di H.

Quando vogliamo fare un'operazione di insert o lookup per un elemento u, generiamo h(u) come un valore random tra gli slot. Tuttavia, dato che h(u) è scelto casualmente ogni volta, non c'è alcuna garanzia che la stessa chiave u venga mappata sempre allo stesso indice.

Di conseguenza, la stessa chiave u potrebbe essere associata a indici diversi in momenti diversi, rendendo difficile trovare dove u sia stato inserito in precedenza.

Per ovviare a questo problema, è necessario memorizzare esplicitamente ogni coppia $(u,\ h(u))$. Così, ogni volta che vogliamo fare una ricerca (Lookup), possiamo trovare la posizione esatta di u senza dipendere dalla generazione casuale di h(u).

Tuttavia, memorizzare tutte le coppie $(u,\ h(u))$ equivale essenzialmente a tenere traccia di ogni elemento con il proprio valore hash associato, trasformando questo sistema in un dizionario o una mappa in cui ogni chiave ha un valore associato (quindi stiamo cercando di risolvere il problema del dizionraio mediante un dizionari).

Una famiglia $\mathbb H$ di funzioni hash si dice **universale** se per ogni $u,\ v\in U\ u
eq v$ la probabilità $\Pr_{h \in \mathbb{H}}[h(u) = h(v)] \leq \frac{1}{m}$

Questo significa che una famiglia di funzioni hash è considerata universale se la probabilità che due elementi distinti u e v dell'universo U vengano mappati allo stesso valore è al più $\frac{1}{m}$ dove m è la dimensione dell'intervallo delle funzioni hash.

Success

Teorema: Sia $\mathbb H$ una famiglia di funzioni hash universale. Sia $S\subseteq U$ di n elementi. Sia $u\in S$. Scegliamo uniformemente random una funzione h all'interno di $\mathbb H$ e sia X una varibiale aleatoria che conta il numero di elementi di S mappati nello slot h(u). Allora

$$E[X] = 1 + \frac{n}{m}$$

Dimostrazione: Fissato u, per ogni $s \in S$,

$$X_s = egin{cases} 1 & ext{se } h(s) = h(u) \ 0 & ext{altrimenti} \end{cases}$$

e
$$X = \sum_{s \in S} X_s$$

e
$$X=\sum_{s\in S}X_s$$
. $E[X]=E\left[\sum_{s\in S}X_s\right]=\sum_{s\in S}E[X_s]=\sum_{s\in S}Pr[h(s)=h(u)]=1+\sum_{s\in S-\{u\}}Pr[h(s)=h(u)]$

Osservazione: Il teorema ci dice che, fissato un elemento $u \in S$, il numero atteso di elementi in Smappati nello stesso bucket di h(u) è $E[X]=1+rac{n}{m}$. Questo significa che nel bucket associato a h(u), oltre a u stesso, ci aspettiamo in **MEDIA** $rac{n}{m}$ altri elementi di S. Conoscendo n, possiamo scegliere m=O(n) in modo tale che la dimensione di ciascun bucket sia

pprox O(1). In altre parole, se il numero di bucket è proporzionale al numero di elementi, ci aspettiamo che ogni bucket contenga in media un numero costante di elementi.

Una prima famiglia di funzione hash randomizzate

Come progettisti della funzione hash, ci è dato sapere alcune informazioni: |U|=N, |S|=n. Adesso con queste informazioni dobbiamo determinare la dimensione corretta della Hash Table. Sia m dunque la dimensione della Hash Table, un numero **primo** tale che $n \leq 2n$, e tale numero m esiste sempre grazie ad un teorema dimostrato da *Chebyshev*.

Il secondo step, è quello di codificare ciascun elemento $x \in U$ come un intero in base m, di r cifre, $x = \langle x_1, x_2, \ldots, x_r \rangle$. La quantità totale di combinazioni possibili con r cifre è m^r . Per garantire che ogni elemento dell'universo possa essere rappresentato senza collisioni, è necessario che il numero totale di combinazioni sia almeno pari al numero di elementi nell'universo, ovvero deve vale che $m^r \geq N$.

$$m^r \geq N \Rightarrow log(m^r) \geq log(N) \Rightarrow r \; log(m) \geq log(N) \Rightarrow r \geq rac{log(N)}{log(M)}$$

Definiamo ora una generica funzione hash della nostra famiglia $\mathbb H$. Per ogni $a\in U$ fissato, scriviamo a in m-ario, ovvero $a=\langle a_1,a_2,\ldots,a_r\rangle$, dove $a_i\in[m]$ per ogni $i=1,2,\ldots,r$.

$$h_a(x) = ig(\sum_{i=1}^r a_i x_i ig) \mod m$$

Quindi, la nostra famiglia di funzioni $\mathbb{H}=\{h_a:a\in U\}$. Per memorizzare una singola funzione h, necessitiamo di $r=\theta(\frac{log(N)}{log(M)})$ cifre, ciascuna di dimensione log(m).

Costo computazionale nel modello RAM

Nel modello **RAM (Random Access Machine)**, supponiamo che ogni operazione aritmetica su parole (addizioni e modulo) richieda O(1) tempo. Questo ci consente di:

- Accedere a ciascun valore a_i e moltiplicarlo per x_i in tempo O(1).
- ullet Sommare i prodotti parziali e fare il modulo m, tutto in tempo costante.

Nel modello RAM

- Memorizzare una funzione h_a richiede O(1) spazio per la stringa a.
- Calcolare $h_a(x)$ richie O(1) tempo grazie all'accesso e alla manipolazione costante delle parole.

Pertanto, il costo complessivo per memorizzare e computare $h_a(x)$ è molto efficiente e supporta operazioni di hashing rapide nel modello a registri (RAM).

Teorema: $\mathbb{H} = \{h_a : a \in U\}$ è universale.

Dimostrazione: Per dimostrare che $\mathbb{H}=\{h_a:a\in U\}$ è universale dobbiamo dimostrare che, presi due elementi $x=(x_1,x_2,\ldots,x_r)\in U$ e $y=(y_1,y_2,\ldots,y_r)\in U$, tale che $x\neq y$,

$$Pr[h_a(x) = h_a(y)] \leq rac{1}{m}$$

Siccome $x \neq y$, allora $\exists j$ intero tale che: $x_j \neq y_j$.

$$Pr[h_a(x) = h_a(y)] = Pr \ ig[\ \sum_{i=1}^r a_i x_i \ mod \ m = \sum_{i=1}^r a_i y_i \ mod \ m \ ig]$$

Adesso, da entrambi i termini tiriamo fuori x_i e y_i che per ipotesi sono diversi.

$$Pr \ ig[\ a_j(x_j-y_j) = \sum_{i=1, i
eq j}^r a_i(x_i-y_i) \ mod \ m \ ig]$$

Per il *Principle Of Deffered Decision*, $\sum_{i=1,i\neq j}^r a_i(x_i-y_i)\ mod\ m$ è un numero fissato non più una variabile random, dunque l'unica variabile random è a_j . La probabilità che valga quell'uguaglianza è $\frac{1}{m}$ in quando è la probabilità di scegliere $a_j\in [m]$ necessario per rendere verà l'uguaglianza.

Conclusione: $\mathbb{H}=\{h_a:a\in U\}$ è universale in quanto $Pr[h_a(x)=h_a(y)]\leq rac{1}{m}$.