Stock Market Sentiment Analysis

Problem & Motivation

Investor sentiment is known to significantly influence stock market movements, particularly during periods of volatility.

With the growing volume of discussions on Chinese financial forums, there is a valuable opportunity to systematically quantify investor emotions from online posts.

This project aims to construct a structured sentiment index based on forum data and integrate it into a predictive model for next-day returns of the Shanghai Composite Index, bridging behavioral insights with quantitative forecasting.

Dataset Description

Data Collection:

Collected from Eastmoney Guba forums using a custom scraper.

Contents: Post metadata:

- 1. Author
- 2. Forum age
- 3. Influence score
- 4. Title
- 5. Views
- 6. Comments
- 7. Posting date

Preprocessing: Standardized posting dates Dropped irrelevant columns Filled missing views/comments with zeros Imputed missing age/influence using IterativeImputer (Bayesian Ridge)

Final Output: 7 structured fields.

Model Selection

To enhance sentiment prediction performance, we selected the Chinese ELECTRA model for fine-tuning. ELECTRA offers higher pre-training efficiency, avoids the [MASK] token mismatch problem found in traditional models, and achieves strong downstream performance with fewer parameters. Its efficient training process and robust representation learning make it a powerful choice for capturing subtle and complex investor sentiment from forum posts.

Feature	BERT(MS1)	ELECTRA(MS2)		
Objective	[MASK] prediction	Token replacement detection		
Efficiency	Low	High		
[MASK] Problem	Yes	No		
Performance	Good	Better		

- 1. Consistent Improvement in Model Performance Throughout training, both Accuracy and F1 Score show a clear upward trend.
- 1. Accuracy improved from 41.7% at step 200 to about 71.7%
- 2. F1 Score improved from 0.297 to about 0.716. This steady improvement suggests that the model consistently learned better decision boundaries with more training steps, without sudden drops or instability.
- 2. Smooth Loss Curve Convergence Both Training Loss and Validation Loss decrease smoothly
- 1. Training Loss dropped from 1.08 to 0.645.
- 2. Validation Loss dropped from 1.067 to 0.688. This indicates that the model generalized well to unseen validation data, and there were no signs of overfitting during training.
- 3. Strong Precision and Recall Balance
- By the end of training:
- 1. Precision reaches about 0.717.
- 2. Recall reaches about 0.717 as well.

The close values between Precision and Recall demonstrate a large fluctuations, reflecting a wellwell-balanced model that is neither too conservative nor too converged model ready for deployment aggressive in making predictions — a particularly good sign for sentiment classification tasks.

	Step	Training Loss	Validation Loss	Accuracy	FI	Precision	Recall
	200	1.080400	1.067276	0.417422	0.297374	0.302771	0.417422
	400	1.018900	1.002015	0.520659	0.513223	0.518929	0.520659
	600	0.949800	0.935479	0.560123	0.559900	0.560628	0.560123
	800	0.901200	0.887359	0.587643	0.587918	0.590020	0.587643
	1000	0.843000	0.846206	0.610595	0.610119	0.610273	0.610595
	1200	0.819200	0.811761	0.635802	0.635880	0.638387	0.635802
	1400	0.806100	0.791189	0.651301	0.651659	0.653106	0.651301
	1600	0.783400	0.777956	0.657990	0.657239	0.661290	0.657990
	1800	0.752400	0.755511	0.670871	0.670535	0.670821	0.670871
	2000	0.740100	0.744487	0.678592	0.678839	0.681123	0.678592
	2200	0.709300	0.742168	0.683714	0.683544	0.683565	0.683714
	2400	0.715800	0.728553	0.692543	0.692060	0.692382	0.692543
	2600	0.711100	0.711648	0.695199	0.694957	0.695134	0.695199
	2400	0.715800	0.728553	0.692543	0.692060	0.692382	0.692543
	2600	0.711100	0.711648	0.695199	0.694957	0.695134	0.695199
	2800	0.706300	0.705199	0.699633	0.699365	0.700539	0.699633
	3000	0.693700	0.709614	0.698658	0.699129	0.706461	0.698658
	3200	0.684700	0.693084	0.709131	0.709397	0.710554	0.709131
	3400	0.654500	0.695285	0.710832	0.711082	0.711861	0.710832
	3600	0.653100	0.702099	0.709399	0.709043	0.711316	0.709399
	3800	0.633800	0.681473	0.716699	0.716070	0.717206	0.716699
	4000	0.656400	0.695744	0.709991	0.710021	0.720722	0.709991
	4200	0.645600	0.688771	0.716928	0.715989	0.717687	0.716928

4. Excellent Overall F1 Score

An F1 Score above 0.70 in a real-world noisy dataset like forum posts is a very solid result.

Especially given the complexity and informal language typical of forum discussions, achieving a 0.7169 F1 means the model effectively captures sentiment nuances.

5. Model Stability

From step 3000 onwards, metrics start to stabilize around high values without or further fine-tuning.

