Team Darts

Class Distribution

Class distribution

Profiling results with random selection

ACCURACY per minibatch for various batch sizes

Profiling results with optimal batch size

Optimal batch size - 16

Client ID	#Round	Avg accuracy	Avg loss	Avg time
11	7	85.96	0.6283	0.1070
6	2	83.59	0.5642	0.0901
4	2	79.53	0.8506	0.1242
8	2	79.06	1.0312	0.0921
10	2	74.86	1.5690	0.0902

Accuracy & Time plots with optimal batch size

Client selection strategy

Client selection algorithm: UCB (Upper Confidence Bound)


```
Algorithm 1 UCB Client Selection with \epsilon-Greedy and Initial Random Rounds
 1: Input:
2: Client list \mathcal{C} = \{c_1, c_2, \dots, c_N\} with client IDs \{0, 1, \dots, N-1\}, where N is the total
    number of clients
      Round number t \in \{1, 2, \dots, T\}
      Number of clients to select per round k
      Exploration parameter c > 0
      \epsilon-greedy probability \epsilon \in [0,1]
      Number of initial random rounds R_{\text{init}}
 8: Initialization:
       For each client i \in \{0, 1, \dots, N-1\}:
         n_i \leftarrow 0
                                                                        \triangleright Number of selections for client i
         r_i \leftarrow \lceil
                                                                               \triangleright List of rewards for client i
12: if t \leq R_{\text{init}} or random(0,1) \leq \epsilon then \Rightarrow Random selection for initial rounds or \epsilon-greedy
        Select k clients uniformly at random from \mathcal{C} without replacement
        Update n_i \leftarrow n_i + 1 for each selected client i
        return Selected client IDs
16: end if
17: UCB Selection:
18: Compute total selections s \leftarrow \sum_{i=0}^{N-1} n_i + 10^{-10}
                                                                                    ▶ Avoid division by zero
19: for each client i \in \{0, 1, ..., N-1\} do
        if r_i is empty then
                                                                                ▷ Client has no rewards yet
            \bar{r}_i \leftarrow 0
                                                                                  ▶ Set average reward to 0
                                                                                 ▶ Compute average reward
        end if
     n_i' \leftarrow n_i + 10^{-10}
                                                                > Small epsilon to avoid division by zero
       UCB_i \leftarrow \bar{r}_i + c\sqrt{\frac{\ln(s)}{n'_i}}
                                                                                      ▷ Compute UCB score
27: end for
28: Select k clients with the highest UCB<sub>i</sub> values
29: Update n_i \leftarrow n_i + 1 for each selected client i
30: return Selected client IDs
```

Results and takeaways

Round	UCM Accuracy	Random Accuracy
1	89.81%	77.81%
10	53.00%	76.37%
20	61.05%	49.38%

Benefits:

- Faster Convergence:
- Greater Resource Efficiency
- Potentially Higher Accuracy:
- Adaptive Selection

Trade offs:

- Increased Server Complexity
- Risk of Fairness Bias