SpaMo Results 03-03-2023 10:16

For further information on how to interpret these results please access https://meme-suite.org/meme/doc/spamo-output-format.html. To get a copy of the MEME software please access https://meme-suite.org.

If you use SpaMo in your research, please cite the following paper:

Tom Whitington, Martin C. Frith, James Johnson and Timothy L. Bailey "Inferring transcription factor complexes from ChIP-seq data", Nucleic Acids Res. 39(15):e98, 2011. [full text]

PRIMARY MOTIFS | SEQUENCE DATABASE | SECONDARY MOTIF DATABASES | SPACING ANALYSIS | INPUTS AND SETTINGS | PROGRAM INFORMATION | RESULTS IN **TSV FORMAT** CONTRIBUTING SEQUENCE IDS [DOWNLOAD PLAIN] [DOWNLOAD BED]

PRIMARY MOTIFS **Next Top**

Database	Name	Preview	Significant Secondaries	List
meme.xml	GGGHGGCSGMGGSGG (MEME-2)	႞ႝ <mark>ၟႄႍၜၟႄၞႍၟၟႝၜၟႜၟၞၜၟႜ</mark> ၜၘၜၙႜၟၜၞၞ	8	GCTGGGATTACAGGC (MEME-3), 3- TAATCCCAGCA (STREME-3), 5- ▼
Alphabet				

Background source: the file './background'

Name	Bg.				Bg.	Name
Adenine	0.2666	Α	~	Т	0.2666	Thymine
Cytosine	0.2334	С	~	G	0.2334	Guanine

SEQUENCE DATABASE Next Previous Top

Name	Last Modified	Contained	Too Short	Too Masked	No Primary	Too Similar	Used
Galaxy8-hyperacetylation_fasta	Thu Mar 2 08:04:26 2023	958	0	0	65	290	603

SECONDARY MOTIF DATABASES

Next Previous Top

	Name	Last Modified	Number of Motifs	Motifs Significant	Motifs Redundant
n	neme.xml	Thu Mar 2 13:34:08 2023	3	3	0
S	streme.xml	Thu Mar 2 13:34:29 2023	5	3	2

SETTINGS Next Previous Top

Match Score Threshold 7 (bits)
Margin size 150

Show Advanced Settings

SPACING ANALYSIS FOR GGGHGGCSGMGGSGG (MEME-2)

Next Previous Top

Secondary GCTGGGATTACAGGC **Motif:** (MEME-3)

Cluster: GCTGGGATTACAGGC (MEME-3)

ACAGGC E- 4.08e-value: 236

Best 5 Gap:

Best upstream / **Orientation:** opposite strand

10020::chr4:156415650-15641839 10097::chr4:169685400-16969259 10103::chr4:169771180-16977319 1019::chr1:39551200-39554149 10200::chr4:185665950-185669499 1028::chr1:39656450-39663179 1029::chr1:39668980-39672849 10511::chr5:36689100-36693599 10543::chr5:39420680-39425729 10583::chr5:43063630-43068879 10641::chr5:54827750-54832679 10645::chr5:54886300-54890379 10833::chr5:72920350-72923599 10944::chr5:81642550-81646229 11548::chr5:142521680-142523879 11550::chr5:142531550-142537049 11596::chr5:147846830-147855179 11733::chr5:151096950-151098949 11807::chr5:156997500-15699962 Plain Format ∨ Download

Secondaries

						☐ Name	e matches .* e matches .* ter matches .* lue \leq 1 s (ranges allowed) 0-10 E-value
ID	Name	Cluster	E-value	Best Gap	Best Orientati	ion	Spacings
GCTGGGATTACAGGC	MEME-3	GCTGGGATTACAGGC	4.08e-236	5	upstream / opposite	strand	
3-TAATCCCAGCA	STREME-3	GCTGGGATTACAGGC	7.51e-219	4	upstream / same str	rand	
5-GATGTCAG	STREME-5	5-GATGTCAG	2.57e-42	11	downstream / same	strand	
4-AAATGCAAAA	STREME-4	4-AAATGCAAAA	1.43e-33	67	downstream / same strand		
GGGHGGCSGMGGSGG	MEME-2	GGGHGGCSGMGGSGG	2.37e-32	25	upstream / same strand		والمستراة والمست
тттткттттт	MEME-1	тпптктпптпт	8.63e-29	65	downstream / oppos	site strand	
2-ACTTTG	STREME-2	2-ACTITG	1.12e-23	20	downstream / same	strand	
1-CCACCCCCACCTCC	STREME-1	GGGHGGCSGMGGSGG	2.09e-9	25	upstream / opposite	strand	Lines of the second transport of the second

Previous Top

SpaMo version

5.5.1 (Release date: Sun Jan 29 10:33:12 2023 -0800)

Reference

Lock

Tom Whitington, Martin C. Frith, James Johnson and Timothy L. Bailey "Inferring transcription factor complexes from ChIP-seq data", Nucleic Acids Res. 39(15):e98, 2011. [full text]

Command line

spamo -verbosity 1 -oc spamo_out_3 -bgfile ./background -keepprimary -primary GGGHGGCSGMGGSGG ./Galaxy8-hyperacetylation_fasta.fasta

Result calculation took 2 seconds