Aula 19

- Device drivers
- Princípios gerais
- Caso de estudo: device driver para uma UART
- Princípio de operação e estruturas de dados
- Funções de interface com a aplicação
- Funções de serviço de interrupções e interface com o hardware

José Luís Azevedo, Bernardo Cunha, Tomás O. Silva, P. Bartolomeu

Introdução

- O número de periféricos existentes é muito vasto:
 - Teclado, rato, placas (gráfica, rede, som, etc.), disco duro, *pen drive*, scanner, câmara de vídeo, etc.
- Estes periféricos apresentam características distintas:
 - Operações suportadas: leitura, escrita, leitura e escrita
 - Modo de acesso: carater, bloco, etc.
 - Representação da informação: ASCII, UNICODE, *Little/Big Endian*, etc.
 - Largura de banda: desde alguns bytes/s até MB/s
 - **Recursos utilizados**: portos (I/O, *memory mapped*), interrupções, DMA, etc.
 - Implementação: diferentes dispositivos de uma dada classe podem ser baseados em implementações distintas (e.g. diferentes fabricantes, diferentes modelos) com reflexos profundos na sua operação interna

Introdução

- As aplicações/Sistemas Operativos (SO) não podem conhecer todos os tipos de dispositivos passados, atuais e futuros com um nível de detalhe suficiente para realizar o seu controlo a baixo nível!
- **Solução**: Criar uma camada de abstração que permita o acesso ao dispositivo de forma independente da sua implementação
- Device driver
 - Um programa que permite a outro programa (aplicação, SO) interagir com um dado dispositivo de hardware
 - Implementa a camada de abstração e lida com as particularidades do dispositivo controlado
 - Como o Device Driver tem de lidar com os aspetos específicos da implementação hardware, o seu fornecimento é normalmente assegurado pelo fabricante
- Aspetos-chave:
 - Abstração: esconde as complexidades do hardware, permitindo um acesso simplificado
 - **Uniformização de acesso**: diferentes dispositivos da mesma classe podem ser acedidos de forma semelhante
 - Independência entre aplicações/SO e o hardware: facilita a compatibilidade e a portabilidade do software

DETI-UA

- O acesso, por parte das aplicações, a um *device driver* é diferente num sistema embutido e num sistema computacional de uso geral (com um Sistema Operativo típico, e.g. Linux, Windows, Mac OS)
- Sistemas embutidos: as aplicações acedem diretamente aos *device* drivers
 - Estes sistemas normalmente não têm kernel (núcleo de um SO) ou têm um kernel mínimo, permitindo que o software de aplicação interaja diretamente com o hardware
 - A ausência de uma camada de abstração complexa permite respostas rápidas e baixo overhead, fatores críticos para sistemas de tempo real

 Nos sistemas operativos típicos (e.g., Linux, Windows, macOS), as aplicações não interagem diretamente com os device drivers: as aplicações fazem chamadas ao sistema (system calls) quando precisam de interagir com o hardware

- O kernel do SO recebe estas chamadas e faz o acesso ao hardware, utilizando os device drivers adequados
- Os *device drivers* executam as operações específicas de acesso ao hardware

- A separação em camadas é feita através de dois ambientes de execução distintos: "user space" e "kernel space"
 - "Espaço de utilizador" (User Space): onde as aplicações comuns são executadas, sem acesso direto ao hardware, o que evita que erros nas aplicações afetem o funcionamento do sistema operativo
 - "Espaço de Kernel" (Kernel Space): onde o sistema operativo e os device drivers operam, com acesso privilegiado ao hardware, permitindo ao sistema controlar os recursos físicos da máquina de forma segura
- Vantagens: segurança, estabilidade
 - Aplicações maliciosas ou com erros não podem aceder diretamente ao hardware ou interferir com o sistema operativo
 - Erros em aplicações no espaço de utilizador não comprometem o funcionamento do sistema como um todo (o *kernel* continua a funcionar normalmente)

- O Sistema Operativo especifica classes de dispositivos e, para cada classe, uma interface que estabelece como é realizado o acesso a esses dispositivos
 - A função do device driver é traduzir as chamadas realizadas pela aplicação/SO em ações específicas do dispositivo
 - Exemplos de classes de dispositivos: interface com o utilizador, armazenamento de massa, comunicação, ...

Exemplo de um device driver: comunicação série

• Admitindo que é fornecida uma biblioteca que apresenta a seguinte interface:

```
    void comDrv_init(int baudrate, char dataBits, char parity, char stopBits);
    char comDrv_getc(void); // read a character
    void comDrv_putc(char ch); // write a character
    void comDrv_close(void);
```

Do ponto de vista da aplicação:

- Do ponto de vista funcional é relevante qual o modelo/fabricante do dispositivo de comunicação série?
- Se o dispositivo de comunicação for substituído por outro com arquitetura interna distinta, sendo fornecida uma biblioteca com interface compatível, é necessário alterar a aplicação?

Caso de estudo

- Aspetos-chave da implementação de um device driver para uma UART RS232 (Universal Asynchronous Receiver Transmitter) para executar num sistema com microcontrolador (i.e., sem sistema operativo)
- Princípio de operação
 - Desacoplamento da transferência de dados entre a UART e a aplicação, realizada por meio de FIFOs (um FIFO de transmissão e um de receção). Do ponto de vista da aplicação:
 - A **transmissão** consiste em copiar os dados a enviar para o FIFO de transmissão do *device driver*
 - A receção consiste em ler os dados recebidos que residem no FIFO de receção do device driver
 - A transferência de dados entre os FIFOS e a UART é realizada por interrupção, i.e., sem intervenção explícita da aplicação
 - Um FIFO pode ser implementado através de um *buffer* circular

DETI-UA

Princípio de operação – receção

- "tail" posição do buffer circular onde a rotina de serviço à interrupção escreve o próximo caracter lido da UART
- "head" posição do buffer circular de onde a função comDrv_getc() lê o próximo caracter
- "count" número de caracteres residentes no buffer circular (ainda não lidos pela aplicação)
- O acesso à variável "count" tem que ser feito numa secção crítica do código. Porquê?

Princípio de operação – transmissão

- "tail" posição do buffer circular onde a função comDrv_putc() escreve o próximo caracter
- "head" posição do buffer circular de onde a rotina de serviço à interrupção lê o próximo caracter a enviar para a UART
- "count" número de caracteres residentes no buffer circular (ainda não enviados para a UART)
- O acesso à variável "count" tem que ser feito numa secção crítica do código. Porquê?

Implementação - FIFO

• FIFO - Buffer circular implementado através de um array linear:

```
#define BUF_SIZE 32

typedef struct
{
  unsigned char data[BUF_SIZE];
  unsigned int head;
  unsigned int tail;
  unsigned int count;
} circularBuffer;

circularBuffer txb; // Transmission buffer
  circularBuffer rxb; // Reception buffer
```

- A constante "BUF_SIZE" deve ser definida em função das necessidades previsíveis de pico de tráfego.
- Se "BUF_SIZE" for uma potência de 2 simplifica a atualização dos índices do buffer circular (podem ser encarados como contadores módulo 2^N e podem ser geridos com uma simples máscara)

Implementação – Função de transmissão

• A função de transmissão, evocada pela aplicação, copia o caracter para o **buffer de transmissão** (posição "tail"), incrementa o índice "tail" e o contador


```
void comDrv_putc(char ch)
{
    Wait while buffer is full (txb.count==BUF_SIZE)
    Copy "ch" to the buffer ("tail" position)
    Increment "tail" index (mod BUF_SIZE)
    Increment "count" variable
}
```

Implementação – Função de receção

 A função de receção, evocada pela aplicação, verifica se há caracteres no buffer de receção para serem lidos e, caso haja, retorna o caracter presente na posição "head", incrementa o índice
 "head" e decrementa o contador


```
int comDrv_getc(char *pchar)
{
   If "count" variable is 0 then return false
   Copy character at position "head" to *pchar
   Increment "head" index (mod BUF_SIZE)
   Decrement "count" variable
   return true;
}
```

Implementação - RSI de receção

- A rotina de serviço à interrupção da receção é executada sempre que a UART recebe um novo caracter
- O caracter recebido pela UART deve então ser copiado para o buffer de receção, na posição "tail"; a variável "count" deve ser incrementada e o índice "tail" deve ser igualmente incrementado

```
void interrupt isr_rx(void)
{

Copy received character from UART to RX

buffer ("tail" position)

Increment "tail" index (mod BUF_SIZE)

Increment "count" variable
}
```

device driver

count

O que acontece no caso em que o buffer circular está cheio e a UART

recebe um novo caracter? Como resolver esse problema?

Reception buffer

tail

Append

Implementação – RSI de transmissão

- A UART gera, normalmente, uma interrupção de transmissão quando tiver disponibilidade para transmitir um novo caracter
- As tarefas a implementar na respetiva rotina de serviço à interrupção são:
 - Se o número de caracteres no buffer de transmissão for maior que 0 ("count" > 0), copiar o conteúdo do buffer na posição "head" para a UART
 - Decrementar a variável "count" e incrementar o índice "head"

```
void interrupt isr_tx(void)
{
   If "count" > 0 then {
      Copy character from TX buffer ("head") to UART
      Increment "head" index (mod BUF_SIZE)
      Decrement "count" variable
   }
   If "count" == 0 then disable UART TX interrupts
}
```

Atualização do TX "count" - Secção crítica

```
void comDrv_putc(char ch)
  Wait while buffer is full (count==BUF SIZE)
  Copy "ch" to the transmission buffer ("tail")
  Increment "tail" index (mod BUF_SIZE)
  Disable UART TX interrupts
                                        Secção crítica
  Increment "count" variable
                                        ("count" é um
  Enable UART TX interrupts
                                      recurso partilhado)
                                 Se a UART estiver disponível para
                                transmitir, desencadeia a imediata
void interrupt isr_tx(void)
                               geração da interrupção de transmissão
  if "count" > 0 then
    Copy character from TX buffer ("head") to UART
    Increment "head" index (mod BUF_SIZE)
    Decrement "count" variable
  if "count" == 0 then disable UART TX interrupts
```

Atualização do RX "count" - Secção crítica

```
int comDrv_getc(char *pchar)
  If "count" variable is 0 then return false
  Copy character at position "head" to *pchar
  Increment "head" index (mod BUF SIZE)
  Disable UART RX interrupts
                                     Secção crítica
  Decrement "count" variable
                                     ("count" é um
  Enable UART RX interrupts
                                   recurso partilhado)
  return true;
void interrupt isr_rx(void)
  Copy received character from UART to RX buffer
     ("tail" position)
  Increment "tail" index (mod BUF_SIZE)
  Increment "count" variable
```