#### Manažment znalostí (2)

#### OBSAH PREDNÁŠKY

- Proces vyhľadávania informácií (information retrieval – IR)
  - stručné zopakovanie základných informácií z prvej prednášky
- Klasické modely pre IR
  - Boolovský
    - Stručné zopakovanie
  - Vektorový
    - · Rôzne typy váhovania indexových termov
    - · Výpočet podobnosti dopytu a dokumentu
  - Pravdepodobnostný
    - Základné východiská



#### Formálna definícia IR modelu

- Model je štvorica (D, Q, F, R(q,di)), kde
  - − D je množina reprezentácií dokumentov d<sub>i</sub> kolekcie
  - Q je množina reprezentácií používateľských otázok q
  - F je spôsob (matematický aparát) modelovania reprezentácií dokumentov, otázok a ich vzťahov
  - $-R(q,d_j)$  je ohodnocovacia funkcia, ktorá priradí dvojici  $(q,d_j) \in Q \times D$  reálne číslo. Toto ohodnotenie (ranking) potom určuje usporiadanie dokumentov vrátených ako odpoveď systému na používateľskú otázku q

#### Boolovský model

- Boolovský model: w<sub>ij</sub> ∈ {0,1}; dopyt je podmnožina indexových termov pospájaných logickými spojkami AND, OR alebo NOT
- Jedna z možných foriem vnútornej reprezentácie dokumentov pre boolovskom modeli je incidenčná matica term-dokument

# Príklad boolovskej reprezentácie: incidenčná matica term-dokument

|           | Antony and Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |  |
|-----------|----------------------|------------------|----------------|--------|---------|---------|--|
| Antony    | 1                    | 1                | 0              | 0      | 0       | 1       |  |
| Brutus    | 1                    | 1                | 0              | 1      | 0       | 0       |  |
| Caesar    | 1                    | 1                | 0              | 1      | 1       | 1       |  |
| Calpurnia | 0                    | 1                | 0              | 0      | 0       | 0       |  |
| Cleopatra | 1                    | 0                | 0              | 0      | 0       | 0       |  |
| mercy     | 1                    | 0                | 1              | 1      | 1       | 1       |  |
| worser    | 1                    | 0                | 1              | 1      | 1       | 0       |  |

- Stĺpce predstavujú jednotlivé dokumenty (divadelné hry)
- Riadky predstavujú vybrané termy
- Hodnota 1 znamená, že dané slovo sa vyskytuje v danej hre, ináč 0

# Príklad boolovského dopytu a jeho vyhodnotenia

- Takže pre každý term máme vektor binárnych hodnôt dĺžky rovnej počtu dokumentov v korpuse
- Ak chceme napr. vyhľadať hry, v ktorých sa vyskytuje *Brutus*, *Caesar* ale nevyskytuje sa tam *Calpurnia*, môžeme sformulovať dopyt:

Brutus AND Caesar BUT NOT Calpurnia 110100 AND 110111 AND 101111

- Jeho výsledok získame bitovým súčinom, t.j.
  110100 AND 110111 AND 101111 = 100100
- Takže danej podmienke vyhovujú hry Antony and Cleapatra a Hamlet

1











#### Vyhodnotenie dopytu nad invertovaným indexom Uvažujme jednoduchý dopyt BRUTUS AND CAESAR Postup vyhodnotenia tohto dopytu: 1. Nájdi v slovníku termov BRUTUS a získaj jeho zoznam výskytov 2. Nájdi v slovníku termov CAESAR a získaj jeho zoznam výskytov Sprav prienik oboch zoznamov výskytov 16 → 32 → 64 → 128 Brutus 13 + 21 - 34 Caesar 5 → 8 Ak sú dĺžky vstupných zoznamov výskytov x a y, potom operácia ich zlúčenia má časovú zložitosť O(x + y)Dôležitým predpokladom je, že zoznamy výskytov sú usporiadané podľa ID dokumentu

# Algoritmus pre nájdenie prieniku dvoch usporiadaných zoznamov

```
\begin{split} & \text{INTERSECT}(p_1, p_2) \\ & \textit{answer} \leftarrow <> \\ & \text{while } p_1 \neq \text{NIL and } p_2 \neq \text{NIL} \\ & \text{do if } \textit{docID}(p_1) = \textit{docID}(p_2) \\ & \text{then } \text{ADD}(\textit{answer}, \textit{docID}(p_1)) \\ & p_1 \leftarrow \textit{next}(p_1) \\ & p_2 \leftarrow \textit{next}(p_2) \\ & \text{else if } \textit{docID}(p_1) < \textit{docID}(p_2) \\ & \text{then } p_1 \leftarrow \textit{next}(p_1) \\ & \text{else } p_2 \leftarrow \textit{next}(p_2) \\ & \text{return } \textit{answer} \end{split}
```

# Algoritmus pre vyhodnotenie konjunktívnych dopytov

```
\begin{split} & \text{INTERSECT}(< t_1, \dots, t_n >) \\ & \textit{terms} \leftarrow \text{SortByIncreasingFrequency}(< t_1, \dots, t_n >) \\ & \textit{result} \leftarrow \textit{postings}(\textit{first}(\textit{terms})) \\ & \textit{terms} \leftarrow \textit{rest}(\textit{terms}) \\ & \textbf{while } \textit{terms} \neq \text{NIL and } \textit{result} \neq \text{NIL} \\ & \textbf{do } \textit{result} \leftarrow \text{INTERSECT}(\textit{result, postings}(\textit{first}(\textit{terms}))) \\ & \textit{terms} \leftarrow \textit{rest}(\textit{terms}) \\ & \textbf{return } \textit{result} \end{split}
```

#### Boolovský model - sumár

- Výhody
  - Jasný formalizmus
  - Jednoduchosť
- Nevýhody
  - Presná zhoda výskytu termov otázky v dokumente môže viesť k príliš veľkému (OR) alebo naopak príliš malému (AND) počtu dokumentov v odpovedi
    - Nevadí pri strojovom spracovaní, nevhodné pre používateľov
  - Dokumenty nemožno usporiadať podľa stupňa relevancie k otázke
    - Pri usporiadaní podľa relevancie počet dokumentov v odpovedi nie je problémom (stačí uvažovať prvých k)
  - Neberie sa do úvahy frekvencia výskytu jednotlivých termov otázky v dokumente

# Zohľadnenie frekvencie výskytu termu v dokumente – vektorový model (1)

|           | Antony and Cleopatra |     | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|-----|-------------|--------|---------|---------|
| Antony    | 157                  | 73  | 0           | 0      | 0       | 0       |
| Brutus    | 4                    | 157 | 0           | 1      | 0       | 0       |
| Caesar    | 232                  | 227 | 0           | 2      | 1       | 1       |
| Calpurnia | 0                    | 10  | 0           | 0      | 0       | 0       |
| Cleopatra | 57                   | 0   | 0           | 0      | 0       | 0       |
| mercy     | 2                    | 0   | 3           | 5      | 5       | 1       |
| worser    | 2                    | 0   | 1           | 1      | 1       | 0       |

- Táto reprezentácia nezohľadňuje poradie slov v dokumente => tzv. "bag of words" model
- Ako využiť informáciu o frekvencii výskytu termu tf<sub>ij</sub> pre výpočet miery relevancie k dopytu?

# Zohľadnenie frekvencie výskytu termu v dokumente (2)

- Frekvencia výskytu nie je presne to, čo chceme
  - dokument s 10-timi výskytmi termu bude viac relevantný ako dokument s jedným výskytom, ale nie 10-krát relevantnejší
- Relevancia nerastie proporcionálne s frekvenciou výskytu
- Dá sa však použiť logaritmus frekvencie výskytu tak, aby:

− pre 0 
$$\rightarrow$$
 0, pre 1  $\rightarrow$  1, pre 2  $\rightarrow$  1.3, pre 10  $\rightarrow$  2, pre 1000  $\rightarrow$  4 ...

$$w_{i,j} = \begin{cases} 1 + \log_{10} tf_{i,j}, & \text{if } tf_{i,j} > 0 \\ 0, & \text{iná č} \end{cases}$$

 Pre výpočet podobnosti dokumentu d voči dopytu q možno použiť vzťah:

$$sim(q,d) = \sum_{t \in a \cap d} (1 + \log_{10} tf_{t,d})$$

17

#### Zohľadnenie frekvencie výskytu termu v celej kolekcii dokumentov

- Okrem frekvencie výskytu termu v danom dokumente je dôležitá aj jeho frekvencia v celej kolekcii.
  - Zriedkavé termy nesú viac informácie ako často sa vyskytujúce termy, čo chceme vyjadriť aj číselne
- Dokumentová frekvencia df<sub>i</sub> termu i je počet dokumentov v kolekcii, v ktorých sa tento term nachádza
  - df<sub>i</sub> je nepriamo úmerná informatívnosti daného termu pre vyhľadávanie. Platí tiež, že df<sub>i</sub> ≤ N
- · Definujeme preto inverznú dokumentovú frekvenciu:

$$idf_i = log_{10} \left( \frac{N}{df_i} \right)$$

- Každý term  $t_i$  v kolekcii má teda jednu hodnotu  $idf_i =>$
- Pri jednoslovných dopytoch idf<sub>i</sub> nemá vplyv na výsledné usporiadanie dokumentov podľa relevancie

18

## Váhovanie tf-idf

· Najlepšia známa váhovacia schéma pre vvhľadávanie informácií ie súčin váh tf a idf

$$w_{ij} = (1 + \log tf_{i,j}) \times \log_{10} \left(\frac{N}{df_i}\right)$$

 Výpočet podobnosti dokumentu voči dopytu:

$$sim(q,d) = \sum_{t \in q \cap d} \mathbf{w}_{t,d}$$

### Matica term-dokument pri použití tf-idf váhovania

|           | Antony and | Julius | The     | Hamlet | Othollo | Macbeth  |
|-----------|------------|--------|---------|--------|---------|----------|
|           | Cleopatra  | Caesar | Tempest | Haimet | Otheno  | Wacbetti |
| Antony    | 5,25       | 3,18   | 0       | 0      | 0       | 0,35     |
| Brutus    | 1,21       | 6,1    | 0       | 1      | 0       | 0        |
| Caesar    | 8,59       | 2,54   | 0       | 1,51   | 0,25    | 0        |
| Calpurnia | 0          | 1,54   | 0       | 0      | 0       | 0        |
| Cleopatra | 2,85       | 0      | 0       | 0      | 0       | 0        |
| mercy     | 1,51       | 0      | 1,9     | 0,12   | 5,25    | 0,88     |
| worser    | 1,37       | 0      | 0,11    | 4,15   | 0,25    | 1,95     |

- Dokumenty sú teda vektory reálnych hodnôt v T - rozmernom priestore ( $d_i \in R^T$ ), resp.
- Každý dokument je jeden bod v tomto priestore

### Dopyty ako vektory

- · Tak ako dokumenty, aj dopyty možno reprezentovať vektormi v T-rozmernom priestore
- Usporiadanie dokumentov podľa relevancie k dopytu je potom usporiadaním blízkosti ich vektorov k vektorom daného dopytu
- Blízkosť vektorov = podobnosť vektorov
- Blízkosť ≈ opak vzdialenosti
- Použiť Euclidovskú vzdialenosť?
  - Nie je dobrý nápad, lebo má veľkú hodnotu pre vektory rôznej dĺžky

### Prečo vzdialenosť nie je v tomto prípade dobrá miera



Preto sa ako miera podobnosti pri vyhľadávaní informácií používa uhol medzi vektorom dokumentu a vektorom dopytu

### Kosínusová miera podobnosti

- Uvedené dve tvrdenia sú ekvivalentné:
  - Usporiadať dokumenty podľa klesajúcej hodnoty uhla medzi dopytom a dokumentom
  - Usporiadať dokumenty podľa stúpajúcej hodnoty kosínusu uhla medzi dopytom a dokumentom
- · Kosínus je monotónne klesajúca funkcia na intervale [0°, 180°]



## Normalizácia dĺžky vektora

- Vektor môže byť normalizovaný predelením všetkých jeho zložiek jeho dĺžkou, t.j.  $|\vec{x}| = \sqrt{\sum_i x_i^2}$ Výsledkom normalizácie je, že vektor má jednotkovú dĺžku
- Kosínusová podobnosť medzi dopytom a dokumentom:

$$sim(q,d) = \cos(\vec{q},\vec{d}) = \frac{\vec{q} \bullet \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \bullet \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|r|} q_i d_i}{\sqrt{\sum_{i=1}^{|r|} q_i^2} \sqrt{\sum_{i=1}^{|r|} d_i^2}}$$

• Pre vektory normalizované na jednotkovú dĺžku vektora je kosínusová vzdialenosť jednoducho skalárnym súčinom normalizovaných vektorov q a d

$$sim(q,d) = cos(\vec{q},\vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|T|} q_i d_i$$





## Príklad tf-idf výpočtu pre Inc. Itc

- · Dokument: "car insurance auto insurance"
- · Dopyt: "best car insurance"

| Term      | Dopyt            |                           |                 |                  |                        |             | Dokument         |                           |                        |             | Súčin |
|-----------|------------------|---------------------------|-----------------|------------------|------------------------|-------------|------------------|---------------------------|------------------------|-------------|-------|
|           | tf <sub>ij</sub> | tf <sub>ij</sub> -<br>log | df <sub>i</sub> | idf <sub>i</sub> | <b>W</b> <sub>ij</sub> | nor<br>mal. | tf <sub>ij</sub> | tf <sub>ij</sub> -<br>log | <b>W</b> <sub>ij</sub> | nor<br>mal. |       |
| auto      | 0                | 0                         | 5000            | 2.3              | 0                      | 0           | 1                | 1                         | 1                      | 0.52        | C     |
| best      | 1                | 1                         | 50000           | 1.3              | 1.3                    | 0.34        | 0                | 0                         | 0                      | 0           | (     |
| car       | 1                | 1                         | 10000           | 2.0              | 2.0                    | 0.52        | 1                | 1                         | 1                      | 0.52        | 0.27  |
| insurance | 1                | 1                         | 1000            | 3.0              | 3.0                    | 0.78        | 2                | 1.3                       | 1.3                    | 0.68        | 0.53  |

- Viete povedať aká je hodnota N?
- Miera podobnosti sim = 0 + 0 + 0.27 + 0.53 = 0.8

...

#### Vektorový model - sumár

- Výhody
  - Schéma váženia termov podľa frekvencie ich výskytu zvyšuje výkonnosť vyhľadávania
  - Vyhľadá aj dokumenty ktoré len čiastočne vyhovujú zadanej otázke
  - Usporiadanie nájdených dokumentov podľa stupňa ich relevancie
- Nevýhody
  - Predpoklad nezávislosti indexových termov síce neplatí, ale prakticky ide väčšinou iba o lokálne závislosti malých skupín termov

40

# Pravdepodobnostný model (1)

- Tento model sa snaží odhadnúť pravdepodobnosť, že používateľ bude považovať daný dokument d<sub>j</sub> za relevantný k svojej otázke q
- · Preto nutne musí predpokladať, že:
  - $-\,$  Táto pravdepodobnosť závisí len od otázky qa dokumentu  $d_j$
  - Existuje podmnožina všetkých dokumentov, ktorú používateľ preferuje ako odpoveď na svoju otázku q, tzv. ideálna odpoveď R
  - Dokumenty z R budú predikované ako relevantné ku q, ale všetky ostatné dokumenty mimo R budú nerelevantné
- $w_{ii} \in \{0,1\}$  aj  $w_{ia} \in \{0,1\}$ ; q je podmnožina indexových termov

Pravdepodobnostný model (2)

 $p(R/\overline{d}_j)$  Je pravdepodobnosť toho, že dokument  $d_j$  j relevantný ku otázke q

 $p(\overline{R}/\overline{d}_j)$  Je pravdepodobnosť toho, že dokument  $d_j$  nie je relevantný ku otázke q

 $sim(d_{j},q) = \frac{p(R/\overline{d}_{j})}{p(\overline{R}/\overline{d}_{j})} = \frac{p(\overline{d}_{j}/R) \cdot p(R)}{p(\overline{d}_{j}/\overline{R}) \cdot p(\overline{R})} \approx \frac{p(\overline{d}_{j}/R)}{p(\overline{d}_{j}/\overline{R})}$ 

 $p(k_i/R)$  Je pravdepodobnosť výskytu termu  $k_i$  v dokumente náhodne vybratom z R

 $p(\bar{k_i}/R)$  Je pravdepodobnosť, že sa term  $k_i$  nevyskytuje v dokumente náhodne vybratom z R

 $sim(d_j,q) = \frac{(\prod_{g_i(\overline{d}_j)=1} p(k_i/R)) \cdot (\prod_{g_i(\overline{d}_j)=0} p(\overline{k}_i/R))}{(\prod_{g_i(\overline{d}_j)=1} p(k_i/\overline{R})) \cdot (\prod_{g_i(\overline{d}_j)=0} p(\overline{k}_i/\overline{R}))}$ 

\_

### Pravdepodobnostný model (4)

$$sim(d_j, q) \approx \sum_{i=1}^t w_{i,q} \cdot w_{i,j} \cdot \left(\log \frac{p(k_i/R)}{1 - p(k_i/R)} + \log \frac{1 - p(k_i/\overline{R})}{p(k_i/\overline{R})}\right)$$

- Keďže množinu R na začiatku nepoznáme, je nutné nájsť spôsob inicializácie vyššie uvedených pravdepodobností. Na to existuje niekoľko spôsobov, napr.:
- $p(k_i/R) = 0.5$  Predpokladáme, že výskyt všetkých termov  $k_i$  v dokumentoch z R je rovnako pravdepodobný
- $p(k_i/\overline{R}) = \frac{n_i}{N} \quad \begin{array}{l} \text{Distribúcia termu } k_i \text{ mimo dokumentov z } R \text{ je} \\ \text{zhodná s jeho distribúciou v celej množine} \\ \text{dokumentov} \end{array}$

#### Pravdepodobnostný model (5)

- Neskôr je táto inicializačná hodnota spresňovaná nasledovne:
- Nech V je množina dokumentov vrátených v 1. iterácii ako odpoveď na q a vo V, z nich sa vyskytuje term k;
- Potom sú možné tieto alternatívne vyjadrenia pravdepodobností:

dobností: 
$$p(k_i/R) = \frac{V_i}{V} \approx \frac{V_i + 0.5}{V + 1} \approx \frac{V_i + \frac{n_i}{N}}{V + 1}$$
 
$$p(k_i/\overline{R}) = \frac{n_i - V_i}{N - V} \approx \frac{n_i - V_i + 0.5}{N - V + 1} \approx \frac{n_i - V_i + \frac{n_i}{N}}{N - V + 1}$$

 Tento proces môže pokračovať aj bez asistencie človeka, alebo s jeho asistenciou tak, že človek vyberie z odpovede systému množinu V

## Pravdepodobnostný model (2)

- Výhody
  - Usporiadanie nájdených dokumentov podľa pravdepodobnosti ich relevancie k otázke
- Nevýhody
  - Nutnosť počiatočného odhadu niektorých pravdepodobností
  - Neberie sa do úvahy frekvencia výskytu jednotlivých termov otázky v dokumente
  - Predpoklad nezávislosti indexových termov neplatí (ale prakticky ide väčšinou iba o lokálne závislosti malých skupín termov, takže to v podstate nevadí)

33