$$5/u, v) = 4u \cos vi + 4u \sin vj + u^2 K$$
, $0 \le u \le 2$, $0 \le v \le 2\pi$
 $\frac{x^2 + y^2}{16}$

The paraboloid is "wider". The top is now the circle $x^2+y^2=64$ It was $x^2+y^2=4$

$$r(y, z) = (16y^2 + 2^2)i + yj + zk$$

or,

u≥0, 0≤v≤2#

r(u,v) = 2 cosu i + 4sin uj + v t

15.6 # 12

$$g(x,y,z) = kz$$

$$m = \iint_{S} k \, dS = \iint_{R} k \, \left[a^{2} - x^{2} - y^{2} \right] \sqrt{1 + \left(\frac{-x}{a^{2} - x^{2} - y^{2}} \right)^{2}} + \left(\frac{-y}{a^{2} - x^{2} - y^{2}} \right)^{2} dA = 0$$

$$= \iint_{R} k \sqrt{a^{2}-x^{2}-y^{2}} \left(\frac{a}{\sqrt{a^{2}-x^{2}-y^{2}}} \right) dA = \iint_{R} ka dA = ka \iint_{R} dA = ka/\pi a^{2} = ka^{3}\pi$$