音楽における深層学習~導入~

Deep-people #1

この勉強会の目的

- 一緒に深層学習つよくなろうぜ!な会
 - LSPCはDeepにつよくない...
 - だからみんなで勉強して知見を貯めよう
- ゴール:院試の計画のモデルを実装・カスタマイズ可能な状態になる
 - 深層学習/対象とする音・音楽の処理について一通りは知っている
 - PyTorchで実験を行うプログラムを書ける

- (暫定) 春ABC: 毎週水曜56限
 - おそらくどの講義ともかぶってないはず
 - ゼミの日程と被ったら変えます

ベースとなる資料

Musical Applications of Machine Learning (2021)

- https://mac.kaist.ac.kr/~juhan/gct634/index.html
- KAISTの大学院の講義資料,音楽情報処理研究者のJuhan Nam氏によって作成
- 音楽情報処理×機械学習・深層学習のトピックをカバー
- ちょっと音響寄り、楽譜系のトピックをカバーしている資料は探します

- 宿題でサンプルコードが付いている
 - https://github.com/juhannam/gct634-ai613-2021

毎回の内容

・レクチャー

- 内容に関して輪講形式で発表
- スライドにまとめる or コードがあればgoogle colab等を駆使
- 資料をそのまま解説でもおk(however他人のプレゼンで解説するのは難しい...)

• 輪講方式

- 特に勉強したいトピックは個人に割り当て、誰も希望者がいないトピックは山本 が解説
- 担当はこの時間の終わりに決めましょう

導入①: なぜ深層学習を使うのか?

音樂情報処理

音楽をコンピュータで扱う研究分野

音楽を採譜して楽譜にする,音符から演奏を生成する, 作曲する,その音楽についての情報を獲得する etc...

音楽情報処理の種別

- ・ 処理の方向
 - 作る:音や楽譜を生成 or 加工
 - ・聴く:音や音楽から情報を獲得
- 対象データ
 - 音響データ:音そのもの. wav等
 - 記号表現:音楽を符号化したもの = 楽譜. MIDI等
 - テキストデータ:ジャンル・ムード等のメタデータ、歌詞等
 - ・レコードデータ:音楽配信の聴いた履歴等
 - etc...

音樂情報処理 meets 深層学習

・ 深層学習が音楽情報処理で急速に広まったのは2015~2018年くらい

Choi et al. AUTOMATIC TAGGING USING DEEP CONVOLUTIONAL NEURAL NETWORKS. ISMIR2016

Hadjeres et al. DeepBach: a Steerable Model for Bach Chorales Generation

. ICML2017 https://www.flow-machines.com/history/projects/deepbach-polyphonic-music-generation-bach-chorales/

Jansson et al.
Singing voice separation with deep u-net convolutional networks.
ISMIR2017

• (この辺の年代をサーベイするとタスクをDeep化した始祖的な論文に出会えるかも)

どんなことができるようになった?

どの方面に関しても処理の精度が上がった

- ・ 聴く側 -> 人間の能力に迫る認識能力
 - 自動採譜:ほぼ完璧に近い耳コピを実現
 - 音源分離:雑音の少ない分離音
 - 音楽ジャンル分類:人間と遜色ない程度の正解率 etc...

- 作る側 -> 違和感の少ない創作物
 - 歌声・楽音合成:本物と間違う程度の高精度な合成
 - 自動作曲:従来技術の不自然さをなくした楽曲の生成

音楽情報処理の技術トレンドのあゆみ

(大まかに) 3段階

ルールベース手法

音楽情報処理の黎明期

統計的学習ベース 手法

'00あたり~'10前半

深層学習

′10後半~

人がルールを与え, それに基づいて処理 人が<u>手がかり</u> (音響特徴量,確率分布等)を与え, あとはデータから学習させる 深層ニューラルネットワークを利用 より大量のデータを基に、 人の手を(あまり)加えず学習させる

3つの手法の比較

手法	データ駆動型アプローチ		
観点	深層学習	特徴量+古典的機械学習	ルールベース
必要なラベルデータ量	大量	少量	なくてもおk
必要な計算機リソース	×		△(ルールの計算量に依る)
スケーラビリティ (他タスクへの転用などを 柔軟に対応できるか)			×
対象のモデリングの表現力			×
ドメイン特有の知識の排除		\triangle	×
結果の解釈可能性			

要するに、深層学習は...

• こういう場合に選択肢に入る

- 大量のデータが扱えるとき
- とにかく性能が欲しいとき
- 専門知識によるモデリングに限界を感じた時
- 汎用的で柔軟なモデリングをしたいとき

• こういう場合は使わない方がいい

- データが大量にない
- 対象に対する性質が知りたい (::解釈可能性に難がある)
- 関係性が自明というところまで落とし込めるタスク

導入②:深層学習の流れ

深層学習をする上でのステップ

- 1. データの用意
- 2. データの前処理
- 3. モデルの学習
- 4. モデルのテスト (評価)

PyTorch

- Meta社による深層学習ライブラリ
- 現在おそらく最もメジャーで参考になる 資料も多い

データの前処理や準備周りを,Dataloaderという独自の仕組みでやってくれる