# The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech



irtps.//github.com/sarurab speeth/or

Kaito Baba, Wataru Nakata, Yuki Saito, and Hiroshi Saruwatari (The University of Tokyo, Japan)

## Introduction

#### **Automatic MOS Prediction**

Machine learning system that predicts Mean Opinion Score (MOS) of synthetic speech (e.g., UTMOS [1])

- ✓ Reducing the costs of human-based subjective evaluations (♣)
- ✓ Achieving highly reproducible evaluation
- × Suffering from the bias observed in the training data

RQ: Can we develop a MOS predictor suitable for high-quality synthetic speech?

## Our Contributions: The Development of UTMOSv2

MOS predictor designed for comparing high-quality synthetic speech

- ↓ UTMOSv2 achieved  $\frac{1}{1}$ st place in  $\frac{7}{16}$  evaluation metrics  $\frac{1}{1}$  and  $\frac{2}{1}$ nd place in the remaining 9 metrics in the VoiceMOS Challenge (VMC) 2024 Track 1 [2]  $\frac{1}{1}$
- Publicly available on GitHub (scan the QR code above)

## Our UTMOSv2 for The VMC 2024 Track 1

#### The VMC 2024 Track 1

# Dataset: Zoomed-in MOS test results of BVCC [3]

50% = validation quality

Hidden from participants! > 25% = final test

- No official training dataset for zoomed-in MOS tests
  - → Our team conducted 50% zoomed-in MOS test using BVCC & published the results as "sarulab-data" (sarulab).

#### **Evaluation Metrics:**

quality

- MSE (Mean Squared Error)
- SRCC (Spearman's Rank Correlation Coefficient)
- LCC (Linear Correlation Coefficient)
- KTAU (Kendall's Tau)
- Evaluation for each utterance (Utterance-level)
- Evaluation for each speech synthesis system (System-level)

# UTMOSv2



- ① Fusion of SSL/spectrogram features  $\rightarrow$  See Exp. 1
  - Using pretrained speech SSL model / image classification model as powerful feature extractors for MOS prediction
- ② Multi-stage learning strategy  $\rightarrow$  See Exp. 2
  - 1) Pretrain each feature extractor independently
  - 2) Train the last FC layer
  - 3) Fine-tune the whole system
- ③ Data-domain encoding  $\rightarrow$  See Exp. 3
  - Condition the MOS predictor on the data domain ID

# Experimental Evaluation with 12% Zoomed-in BVCC

#### Experimental Setup (See our paper for more details)

| Traning<br>Dataset    | BVCC [3], Blizzard Challenge 2008~2011 [4,5,6,7], SOMOS [8], sarulab (Mixup [15] was used as the data augmentation)      |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|
| Feature<br>Extractor  | SSL: wav2vec2.0-base [9] (pretrained on LibriSpeech [10]) Spectrogram: EfficientNetV2 [11] (pretrained on ImageNet [12]) |
| Optimizer             | AdamW [13] w/ cosine annealing scheduler [14] (The learning rates were tuned for each experiment)                        |
| Training<br>Objective | Minimizing contrastive loss [1] $+$ MSE                                                                                  |
| Checkpoint Selection  | 5-fold cross-validation based on the average system-level SRCC (The primal metric for the VMC 2024 Track 1)              |

#### Exp. 1: Effects of Feature Fusion

|              | Uttera | nce-level | Syste |        |    |   |
|--------------|--------|-----------|-------|--------|----|---|
|              | MSE ↓  | SRCC ↑    | MSE ↓ | SRCC ↑ |    |   |
| UTMOSv2      | 0.459  | 0.579     | 0.288 | 0.854  |    |   |
| w/o SSL      | 0.357  | 0.516     | 0.188 | 0.770  | 1) |   |
| w/o Spec.    | 0.673  | 0.529     | 0.497 | 0.793  |    | 2 |
| SSL-MOS [16] | 0.741  | 0.417     | 0.589 | 0.609  |    |   |
| UTMOS [1]    | 0.541  | 0.300     | 0.378 | 0.367  |    |   |

- ✓ 1 The fusion improved SRCC
- Achieved higher performance than the baselines (SSL-MOS, UTMOS)

## Exp. 2: Comparison of Multi-Stage Learning

|               |       | nce-level |       |        |  |
|---------------|-------|-----------|-------|--------|--|
|               | MSE ↓ | SRCC ↑    | MSE ↓ | SRCC ↑ |  |
| UTMOSv2       | 0.459 | 0.579     | 0.288 | 0.854  |  |
| w/o Stage $1$ | 0.342 | 0.505     | 0.108 | 0.816  |  |
| w/o Stage 2   | 0.293 | 0.423     | 0.097 | 0.672  |  |

✓ The multi-stage learning process improved SRCC

[4] Karaiskos et al., BC Workshop 2008, [5] Black et al., BC Workshop 2009, [6] Black et al., BC Workshop 2010, [7] King et al., BC Workshop 2011, [8] Maniati et al., INTERSPEECH 2022, [9] Baevski et al., NeurIPS 2020,

[10] Panayotov et al., ICASSP 2015, [11] Tan et al., ICML 2021, [12] Deng et al., CVPR 2009, [13] Loshchilov et al., ICLR 2019, [14] Loshchilov et al., ICLR 2017, [15] Zhang et al., ICLR 2018,

[16] Cooper et al., ICASSP 2022.

# Exp. 3: Investigation on Training Dataset

The data domain ID specified for MOS prediction

|              |       |        |       |        | <b></b> |        |         |        |
|--------------|-------|--------|-------|--------|---------|--------|---------|--------|
|              | BVCC  |        | ВС    |        | SOMOS   |        | sarulab |        |
| System-level | MSE ↓ | SRCC ↑ | MSE ↓ | SRCC ↑ | MSE ↓   | SRCC ↑ | MSE ↓   | SRCC ↑ |
| All datasets | 0.288 | 0.854  | 0.088 | 0.851  | 0.056   | 0.844  | 0.058   | 0.838  |
| $w/o\;BVCC$  | _     | -      | 0.343 | 0.832  | 0.128   | 0.846  | 0.101   | 0.836  |
| w/o BC       | 0.145 | 0.819  | -     | -      | 0.069   | 0.823  | 0.122   | 0.805  |
| w/o SOMOS    | 0.224 | 0.696  | 0.221 | 0.682  | _       | -      | 0.221   | 0.700  |
| w/o sarulab  | 0.282 | 0.647  | 0.102 | 0.661  | 0.186   | 0.690  | -       | -      |

- ✓ Training on all datasets generally yielded the best performance
- ✓ Removing SOMOS or sarulab degraded the performance
  - → SOMOS/sarulab datasets were important for the zoomed-in MOS prediction

