Toy NETS Simulation in a 1D Double-Well Potential

Ethan Furman Haverford College, Physics & Mathematics Bryn Mawr College, Physics

Goal

Compare the effect of NETS-inspired drift with standard Langevin dynamics when applied to barrier crossing in a 1D double-well potential. The goal is to understand how this drift can accelerate transitions while slightly biasing the stationary distribution.

Model

- Potential: $V(x) = (x^2 1)^2$ (minima at $x = \pm 1$, barrier at x = 0)
- Baseline Langevin: $dx = -V'(x)dt + \sqrt{2/\beta} dW_t$
- Toy NETS drift: $u_{\alpha}(x) = -\alpha \tanh(x)$ Full dynamics: $dx = [-V'(x) + u_{\alpha}(x)]dt + \sqrt{2/\beta} dW_t$
- Parameters used: $\beta = 5$, $\alpha = 0.5$, dt = 0.01, T = 200, N = 100 trajectories

Key Metrics Computed

- Sample trajectories x(t)
- Transition counts per trajectory
- Mean first-passage times (MFPT)
- Stationary histograms vs theoretical Boltzmann: $p_{\text{Boltz}}(x) \propto e^{-\beta V(x)}$
- α-sweep: transition rate vs histogram distortion (L1, KL)

Results

Figure 1: Sample trajectories starting in the left well $(x_0 = -1)$. Langevin dynamics occasionally crosses the barrier at x = 0 but remains mostly trapped in the left well. The toy NETS-inspired drift (with $\alpha = 0.4$) produces multiple barrier crossings, demonstrating accelerated transitions. Time step $\Delta t = 0.01$, $\beta = 3.0$.

Figure 2: Stationary position distributions (after burn-in) from N=100 trajectories. NETS drift slightly biases the histogram toward the barrier, while Langevin reproduces the Boltzmann distribution.

Figure 3: Mean first-passage times (left well to $x \ge 0.2$). NETS reduces MFPTs and increases the number of successful crossings compared to Langevin.

Figure 4: Tradeoff between acceleration (mean transitions) and histogram distortion (L1, KL) as α is varied. Larger α increases transitions but biases stationary distribution.

Summary Table

Method	Mean transitions	Mean MFPT	# trajectories reached
Langevin	21.54 ± 0.84	19.08 ± 2.11	100/100
Toy NETS α =0.4	31.57 ± 0.85	13.78 ± 1.47	100/100

Table 1: Comparison of Langevin and Toy NETS trajectories in the 1D double-well potential. MFPT measured from left well (x < 0) to $x \ge 0.2$.

Takeaways

- NETS-inspired drift accelerates transitions and reduces MFPT compared to standard Langevin dynamics.
- Stationary distribution is slightly biased, demonstrating the tradeoff between kinetic acceleration and equilibrium accuracy.
- Provides a computationally tractable toy model to explore concepts underlying NETS and rare-event acceleration.