

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2017

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- 2. Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël oop tussen twee subvrae, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 9. Toon ALLE formules en substitusies in ALLE berekeninge.
- 10. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 11. Gee kort (bondige) motiverings, besprekings, ensovoorts waar nodig.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommer (1.1–1.10) in die ANTWOORDEBOEK neer, byvoorbeeld 1.11 D.

- 1.1 Die IUPAC-naam van 'n organiese verbinding met molekulêre formule C₇H₁₄O₂:
 - A Heptanaal
 - B Heptan-1-ol
 - C Heptan-2-ol
 - D Heptanoësuur (2)
- 1.2 Watter EEN van die volgende strukture is die funksionele groep aldehiede?

- _c_o_c_
- 1.3 Watter EEN van die volgende vergelykings verteenwoordig 'n krakingsproses?
 - A $5CH_2 = CH_2 \rightarrow (CH_2CH_2)_5$
 - B $CH_3(CH_2)_5CH = CH_2 + H_2 \rightarrow CH_3(CH_2)_6CH_3$
 - C $CH_3(CH_2)_6CH_3 \rightarrow CH_3(CH_2)_4CH_3 + CH_2 = CH_2$
 - D $CH_3(CH_2)_7OH \rightarrow CH_3(CH_2)_5CH = CH_2 + H_2O$ (2)

(2)

1.4 Die potensiële-energiediagram vir 'n chemiese reaksie word hieronder getoon.

Beskou die volgende stellings oor die grafiek hierbo:

- I: X verteenwoordig die potensiële energie van die produkte wat tydens die terugwaartse reaksie gevorm word.
- II: Die grafiek kan 'n voorstelling van die verandering in potensiële energie vir die volgende reaksie wees:

$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq) \quad \Delta H > 0$$

III: Die grafiek kan 'n voorstelling van die verandering in potensiële energie vir die verbranding van metaan wees.

Watter van die stellings hierbo is WAAR?

- A Slegs I en II
- B Slegs II en III
- C Slegs I en III

1.5 'n Sekere chemiese reaksie bereik ewewig by 25 °C. Die ewewigskonstante, K_c , vir die reaksie by hierdie temperatuur is 1,0 x 10^{-4} .

Watter EEN van die volgende stellings oor hierdie reaksie by ewewig is KORREK?

- A Die konsentrasie van die produkte is gelyk aan dié van die reaktanse.
- B Die konsentrasie van die produkte is hoër as dié van die reaktanse.
- C Die konsentrasie van die produkte is laer as dié van die reaktanse.
- D Die tempo van die voorwaartse reaksie is laer as die tempo van die terugwaartse reaksie.

1.6 Beskou die volgende chemiese reaksie by ewewig in 'n geslote houer:

$$2HgO(s) \rightleftharpoons 2Hg(\ell) + O_2(g)$$

Meer HgO(s) word nou by konstante temperatuur by die houer gevoeg.

Hoe sal die aantal (in mol) $O_2(g)$ en die waarde van K_c by ewewig beïnvloed word?

	AANTAL MOL O ₂	K _c
Α	Toeneem	Toeneem
В	Toeneem	Bly dieselfde
С	Bly dieselfde	Bly dieselfde
D	Bly dieselfde	Toeneem

(2)

- 1.7 Watter EEN van die volgende oplossings, elk met 'n konsentrasie van 0,1 mol·dm⁻³, het die hoogste pH?
 - A HNO₃(aq)
 - B NH₄Cl(aq)
 - C $Na_2CO_3(aq)$

D
$$CH_3COOH(aq)$$
 (2)

1.8 Die selnotasie vir 'n galvaniese sel is soos volg:

$$Ni(s) | Ni^{2+} (1 \text{ mol} \cdot dm^{-3}) | | Pb^{2+} (1 \text{ mol} \cdot dm^{-3}) | Pb(s)$$

Watter EEN van die volgende stellings is KORREK vir hierdie sel?

- A Ni word geoksideer.
- B Pb(s) word gereduseer.
- C Ni²⁺(ag) is die oksideermiddel.
- D Pb^{2+} is die reduseermiddel. (2)

Kopiereg voorbehou

1.9 Watter EEN van die volgende kombinasies toon die produkte wat tydens die elektrolise van 'n GEKONSENTREERDE natriumchloriedoplossing gevorm word, KORREK?

	KATODE	ANODE
Α	Waterstof	Natrium
В	Waterstof	Chloor
С	Chloor	Natrium
D	Chloor	Waterstof

(2)

- 1.10 Watter EEN van die volgende is NIE deel van die eutrofikasieproses NIE?
 - A Alge-opbloeiing
 - B Bakteriese stikstoffiksering
 - C Uitputting van suurstof in water
 - D Toename in plantvoedingstowwe in water

(2) **[20]**

VRAAG 2 (Begin op 'n nuwe bladsy.)

2.1 Bestudeer die struktuurformule hieronder.

Vir hierdie verbinding, skryf neer die:

- 2.1.3 IUPAC-naam van die organiese suur wat in die bereiding daarvan gebruik word (1)
- 2.1.4 STRUKTUURFORMULE van sy reguitketting- (onvertakte) funksionele isomeer (2)
- 2.2 Skryf die struktuurformule van 4-metielpentan-2-oon neer. (3)
- 2.3 Beskou die struktuurformule hieronder.

Vir hierdie verbinding, skryf neer die:

VRAAG 3 (Begin op 'n nuwe bladsy.)

Die dampdruk-teenoor-temperatuurgrafiek hieronder vir vier reguitketting- (onvertakte) alkane (**P**, **Q**, **R** en **S**) is verkry.

VAN **P** NA **S** VERSKIL ELKE VERBINDING VAN DIE VORIGE VERBINDING MET 'N –CH₂-GROEP.

Die dampdruk word in mmHg gemeet. Atmosferiese druk is 760 mmHg.

- 3.1 Gee 'n rede waarom daar gesê word dat alkane VERSADIG is. (1)
- 3.2 Definieer dampdruk. (2)
- 3.3 Gebruik die inligting in die grafiek hierbo om die volgende vrae te beantwoord.
 - 3.3.1 Wat is die effek van 'n toename in temperatuur op dampdruk? Kies uit VERHOOG, VERLAAG of GEEN EFFEK NIE. (1)
 - 3.3.2 Watter verbinding het 'n kookpunt van ongeveer 68 °C? Gee 'n rede vir die antwoord. (2)
 - 3.3.3 Watter verbinding het die langste kettinglengte? Verduidelik die antwoord volledig. (4)
- 3.4 Verbinding **P** het VYF koolstofatome.
 - 3.4.1 Teken die struktuurformule van 'n kettingisomeer van **P**. Skryf die IUPAC-naam van hierdie isomeer neer. (3)
 - 3.4.2 Hoe sal die dampdruk van hierdie isomeer met dié van verbinding **P** vergelyk? Kies uit HOËR AS, LAER AS of GELYK AAN. (1) [14]

VRAAG 4 (Begin op 'n nuwe bladsy.)

Die vloeidiagram hieronder toon hoe 'n alkohol (verbinding **P**) gebruik kan word om ander organiese verbindings te berei. Die letters **A** tot **E** verteenwoordig verskillende organiese reaksies. **X**, **Y** en **Z** is organiese verbindings.

- 4.1 Is verbinding **P** 'n PRIMÊRE, SEKONDÊRE of TERSIÊRE alkohol? Gee 'n rede vir die antwoord. (2)
- 4.2 Skryf neer die soort:
 - 4.2.1 Eliminasiereaksie deur **A** verteenwoordig (1)
 - 4.2.2 Addisiereaksie deur **B** verteenwoordig (1)
 - 4.2.3 Eliminasiereaksie deur **D** verteenwoordig (1)
- 4.3 Natriumhidroksied word as een van die reaktanse in reaksie **C** gebruik.
 - 4.3.1 Watter soort reaksie vind hier plaas? (1)
 - 4.3.2 Noem die TWEE reaksietoestande vir hierdie reaksie. (2)
 - 4.3.3 Skryf die IUPAC-naam van verbinding **X** neer. (2)
- 4.4 Skryf die FORMULE neer van 'n anorganiese reaktans benodig vir reaksie **D**. (1)
- 4.5 Gebruik STRUKTUURFORMULES en skryf 'n gebalanseerde vergelyking vir reaksie **E** neer. (3)
- 4.6 Skryf die IUPAC-naam van verbinding **Z** neer. (1) **[15]**

(2)

VRAAG 5 (Begin op 'n nuwe bladsy.)

'n Groep leerders gebruik die reaksie tussen verpoeierde sink en OORMAAT verdunde soutsuur om een van die faktore wat die tempo van 'n chemiese reaksie beïnvloed, te ondersoek. Die gebalanseerde vergelyking vir die reaksie is:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

Hulle doen twee eksperimente. Die reaksietoestande wat gebruik word, word in die tabel hieronder opgesom.

EKSPERIMENT	TEMPERATUUR (°C)	VOLUME VAN HCℓ (cm³)	KONSENTRASIE HCℓ (mol·dm ⁻³)	MASSA VAN Zn (g)
I	25	200	0,25	Х
II	25	200	0,40	х

Die resultate wat verkry is, word in die grafiek hieronder (nie volgens skaal geteken nie) getoon.

Grafiek van volume H₂(g) berei teenoor tyd

- 5.1 Definieer *reaksietempo*.
- 5.2 Skryf 'n ondersoekende vraag vir hierdie ondersoek neer. (2)
- 5.3 Watter kurwe, **P** of **Q**, verteenwoordig die resultate van eksperiment **I**? Verduidelik die antwoord. (3)
- 5.4 Die gemiddelde tempo van die bereiding van waterstofgas, soos deur grafiek **P** voorgestel, was 15 cm³·s⁻¹. Bereken die massa sink wat gebruik is.

 Neem die molêre gasvolume by 25 °C as 24 000 cm³. (5)

(1)

(1)

(3) **[17]**

- 5.5 In 'n derde eksperiment (eksperiment III), reageer 200 cm³ van 'n 0,25 mol·dm⁻³ verdunde soutsuuroplossing by 35 °C met dieselfde hoeveelheid sinkpoeier as in eksperiment II en eksperiment II.
 - 5.5.1 Hoe sal die reaksiewarmte van eksperiment II met dié van eksperiment III vergelyk? Kies uit MEER AS, MINDER AS of GELYK AAN.
 - 5.5.2 Hoe sal die aktiveringsenergie van die reaksie in eksperiment I met dié van die reaksie in eksperiment III vergelyk? Kies uit MEER AS, MINDER AS of GELYK AAN.
- 5.6 Die tempo van die reaksie in eksperiment III is hoër as dié van eksperiment I.

Verduidelik hierdie stelling volledig deur na die botsingsteorie te verwys.

VRAAG 6 (Begin op 'n nuwe bladsy.)

Karbonielbromied, COBr₂, ontbind in koolstofmonoksied en broom volgens die volgende gebalanseerde vergelyking:

$$COBr_2(g) \rightleftharpoons CO(g) + Br_2(g)$$
 $\Delta H > 0$

COBr₂(g) word aanvanklik in 'n 2 dm³-houer verseël en tot 73 °C verhit. Die reaksie word toegelaat om ewewig by hierdie temperatuur te bereik. Die ewewigskonstante vir die reaksie by hierdie temperatuur is 0,19.

6.1 Definieer *chemiese ewewig*. (2)

By ewewig word gevind dat 1,12 g CO(g) in die houer teenwoordig is.

- 6.2 Bereken die:
 - 6.2.1 Ewewigskonsentrasie van die $COBr_2(g)$ (7)
 - 6.2.2 Persentasie $COBr_2(g)$ wat by 73 °C ontbind (4)
- 6.3 Watter EEN van die volgende beskryf die K_c-waarde KORREK wanneer ewewig by 'n laer temperatuur bereik word?

$$K_c < 0.19$$
 $K_c > 0.19$ $K_c = 0.19$ (1)

Die druk van die sisteem word nou verlaag deur die volume van die houer by 73 °C te vergroot en die stelsel word toegelaat om ewewig te bereik.

Hoe sal die aantal mol van COBr₂(g) beïnvloed word? Kies uit VERMEERDER, VERMINDER of BLY DIESELFDE. Verduidelik die antwoord.

[17]

(3)

Kopiereg voorbehou

VRAAG 7 (Begin op 'n nuwe bladsy.)

7.1 Ammoniak ioniseer in water om 'n basiese oplossing te vorm volgens die volgende gebalanseerde vergelyking:

$$NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

- 7.1.1 Is ammoniak 'n SWAK of 'n STERK basis? Gee 'n rede vir die antwoord. (2)
- 7.1.2 Skryf die gekonjugeerde suur van $NH_3(g)$ neer. (1)
- 7.1.3 Identifiseer EEN stof in hierdie reaksie wat as 'n amfoliet in sommige reaksies kan optree. (1)
- 7.2 'n Leerder voeg gedistilleerde water by 'n grondmonster en filtreer dan die mengsel. Die pH van die gefiltreerde vloeistof word dan gemeet.

Hy voeg dan geleidelik 'n ammoniakoplossing, $NH_3(aq)$, by hierdie vloeistof en meet die pH van die oplossing met gereelde tussenposes. Die grafiek hieronder toon die resultate wat verkry is.

- 7.2.1 Is die grondmonster SUUR of BASIES? Verwys na die grafiek hierbo en gee 'n rede vir die antwoord. (2)
- 7.2.2 Bereken die konsentrasie hidroksiedione (OH^-) in die reaksiemengsel na die byvoeging van 4 cm³ NH_3 (aq). (4)

7.3 'n Laboratoriumtegnikus wil die konsentrasie van 'n soutsuur(HCl)-monster bepaal. Hy voeg 5 cm³ van die HCl-monster by 495 cm³ gedistilleerde water om 500 cm³ verdunde soutsuur, HCl(aq), te gee.

Tydens 'n reaksie reageer 50 cm³ van hierdie verdunde soutsuuroplossing, HCl(aq), volledig met 0,29 g natriumkarbonaat, Na₂CO₃(s).

Die gebalanseerde vergelyking vir die reaksie is:

$$Na_2CO_3(s) + 2HC\ell(aq) \rightarrow 2NaC\ell(aq) + CO_2(g) + H_2O(\ell)$$

Bereken die konsentrasie van die soutsuurmonster.

(*1*)

VRAAG 8 (Begin op 'n nuwe bladsy.)

8.1 Leerders stel 'n galvaniese sel op en meet die emk daarvan onder standaardtoestande.

- 8.1.1 Skryf die naam van komponent **Y** neer. (1)
- 8.1.2 Is At die ANODE of die KATODE? (1)
- 8.1.3 Skryf die algehele (netto) selreaksie neer wat in hierdie sel plaasvind wanneer dit in werking is. (3)
- 8.1.4 Bereken die aanvanklike emk van hierdie sel. (4)

8.2 Oorweeg die halfselle, **P**, **Q** en **R**, wat in die tabel hieronder voorgestel word.

HALFSEL								
Р	Q	R						
Zn Zn ²⁺ (aq)	Cl ₂ Cl ⁻ (aq)	Cu Cu ²⁺ (aq)						

Verskillende kombinasies van die halfselle hierbo word vergelyk om die hoogste emk te bepaal wat onder standaardtoestande gelewer word.

- 8.2.1 Skryf die NAAM van 'n geskikte elektrode vir halfsel **Q** neer. (1)
- 8.2.2 Noem die standaardtoestande waaronder die halfselle moet funksioneer om 'n regverdige vergelyking te verseker. (2)
- 8.2.3 Skryf die NAAM of FORMULE neer van die sterkste reduseermiddel in die halfselle hierbo. (1)
- 8.2.4 Watter kombinasie halfselle sal die hoogste emk lewer? Kies uit **PR**, **PQ** of **QR**. (GEEN berekening word verlang NIE.) (1) [14]

(3)

(1) **[9]**

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde diagram hieronder stel 'n elektrochemiese sel voor wat tydens die suiwering van koper gebruik word. Een van die elektrodes bestaan uit onsuiwer koper.

- 9.1 Watter soort kragbron, WS of GS, word gebruik om die reaksie in hierdie sel aan te dryf? (1)
- Wanneer 'n elektriese stroom deur die $CuCl_2(aq)$ vloei, neem die massa van elektrode **P** toe.

Is elektrode **P** die KATODE of die ANODE?
Skryf die relevante halfreaksie neer om die antwoord te ondersteun. (3)

9.3 Die onsuiwer koper bevat sink-onsuiwerhede wat na sink-ione geoksideer word.

Verwys na die relatiewe sterktes van oksideermiddels om te verduidelik waarom die sink-ione nie die gehalte van die suiwer koper wat in hierdie sel gelewer word, sal beïnvloed nie.

- 9.4 Elektrode **P** en **Q** word nou deur koolstofelektrodes vervang.
 - 9.4.1 Wat sal by elektrode **Q** waargeneem word? (1)
 - 9.4.2 Hoe sal die konsentrasie van die elektroliet verander soos wat die reaksie verloop? Kies uit VERHOOG, VERLAAG of BLY DIESELFDE.

VRAAG 10 (Begin op 'n nuwe bladsy.)

10.1 Die vergelykings hieronder verteenwoordig twee industriële prosesse wat by die bereiding van ammoniumnitraat betrokke is.

Skryf neer die:

10.1.1 NAAM van stof
$$\mathbf{A}$$
 (1)

10.2 'n 15 kg-sak kunsmis bevat 5% fosfor, 10% stikstof en 15% kalium.

Bereken die:

TOTAAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{ heta}}$	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a v_a}{c_b v_b} = \frac{n_a}{n_b}$	$pH = -log[H_3O^+]$

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}_{\mathsf{cell}}^{\theta} = \mathsf{E}_{\mathsf{cathode}}^{\theta} - \mathsf{E}_{\mathsf{anode}}^{\theta} \ / \mathsf{E}_{\mathsf{sel}}^{\theta} = \mathsf{E}_{\mathsf{katode}}^{\theta} - \mathsf{E}_{\mathsf{anode}}^{\theta}$$

or/of

$$\mathsf{E}^{\theta}_{\text{cell}} = \mathsf{E}^{\theta}_{\text{reduction}} - \mathsf{E}^{\theta}_{\text{oxidation}} / \mathsf{E}^{\theta}_{\text{sel}} = \mathsf{E}^{\theta}_{\text{reduksie}} - \mathsf{E}^{\theta}_{\text{oksidasie}}$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} \, - \, E_{\text{reducing agent}}^{\theta} \, \, / \, E_{\text{sel}}^{\theta} \, = E_{\text{oksideermiddel}}^{\theta} \, - \, E_{\text{reduseermiddel}}^{\theta}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		1	(,								Atomic r	number				(,	(,	(-)	(• •)	(•)	
	1							KEY/SL	EUTE		Atoom										2
2,1	Н											gotai									He
'	1										V										4
	3		4	1				Electr	onoge	.tiv.itv.	29	6,,	mbol			5	6	7	8	9	10
0	_	2						Electr		invity iwiteit	್ತ Cı		mbool								_
1,0	Li	1,5	Be					Elektro	nega	iwiteit	63,	5 SII	προσι				2,5 C	ဗို N	3,5	6,4 F	Ne
	7		9													11	12	14	16	19	20
	11		12								T					13	14	15	16	17	18
0,9	Na	1,2	Mg						App	roximat	e relativ	e atomi	c mass			₹. ∀ €	[∞] . Si	2, P	S,5	% Cf	Ar
	23	•	24						Ber	aderde	relatiew	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	1,0	Ca	ر. د,	Sc	1,5	Ti	6, A	6, C			ω Co	² ω Ni						_	8, Br	Kr
0		~		Τ.		<u> </u>		-	-			-	_	-	-	I -	-				l l
-	39		40		45		48	51	52		56	59	59	63,5		70	73	75	79	80	84
	37	_	38		39	_	40	41	42		44	45	46	47	48	49	50	51	52	53	54
8,0	Rb	1,0	Sr	1,2	Y	4,	Zr	Nb	ω Μ	o L 🚡 To	Ru	[₹] Rh	² Pd	್ಲ್ Ag	∵ Cd	Ç In	[∞] Sn	್ಲ್ Sp	Z Te	2,5	Xe
	86		88		89		91	92	96	6	101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
2,0	Cs	6,0	Ba		La	1,6	Hf	Ta	V			Ir	Pt	Au	Hg	_	[∞] Pb		% Po		Rn
0	133	0			139	7	179	181	18			192	195	197	201	204	207	209	8 1 0	2 Ar	1311
	87		137		89		1/9	101	10	4 100	190	192	195	197	201	204	207	209			
		•	88																		
0,7	Fr	6,0	Ra		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			226					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
											' '''					_					
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238			7 3			•					
										230		1						1	1		

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BEL 4A: STANDAARD-REDUKSIEPOTENSIA								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Half-reactions/Halfreaksies $E^{\alpha}(V)$								
$\begin{array}{rclrclclclclclclclclclclclclclclclclclc$	F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23					
$Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $Ag^{+} + e^{-} = Ag + 0,80$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $Cu^{+} + e^{-} = Cu + 0,52$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $Cu^{2+} + 2e^{-} = Cu + 0,17$ $Cu^{2+} + e^{-} = Cu^{+} + 0,15$ $S + 2H^{+} + 2e^{-} = Sn^{2+} + 0,15$ $S + 2H^{+} + 2e^{-} = H_{2}(g) + 0,14$ $2H^{+} + 2e^{-} = H_{2}(g) + 0,14$ $2H^{+} + 2e^{-} = Pb - 0,13$ $Sn^{2+} + 2e^{-} = Ni - 0,14$ $Ni^{2+} + 2e^{-} = Ni - 0,27$ $Co^{2+} + 2e^{-} = Cd - 0,40$ $Cr^{3+} + e^{-} = Cr^{2+} - 0,41$ $Fe^{2+} + 2e^{-} = Cd - 0,40$ $Cr^{3+} + e^{-} = Cr^{2+} - 0,41$ $Fe^{2+} + 2e^{-} = Dn - 0,66$ $Pb^{2+} + 2e^{-} = Cn - 0,66$ $Pb^{2+} + 2e^{-} = Ni - 0,13$ $Sn^{2+} + 2e^{-} = Ni - 0,27$ $Co^{2+} + 2e^{-} = Cn - 0,28$ $Cd^{2+} + 2e^{-} = Cn - 0,28$ $Cd^{2+} + 2e^{-} = Cn - 0,40$ $Cr^{3+} + e^{-} = Cr - 0,41$ $Fe^{2+} + 2e^{-} = Cn - 0,41$ $Fe^{2+} + $	$MnO_2 + 4H^+ + 2e^-$	\Rightarrow	$Mn^{2+} + 2H_2O$	+ 1,23					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07					
$Ag^{+} + e^{-} = Ag $	$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	=	Hg(ℓ)	+ 0,85					
$Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $Cu^{+} + e^{-} = Cu + 0,52$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $Sn^{4+} + 2e^{-} = Sn^{2+} + 0,15$ $S + 2H^{+} + 2e^{-} = H_{2}S(g) + 0,14$ $2H^{+} + 2e^{-} = H_{2}(g) + 0,00$ $Fe^{3+} + 3e^{-} = Fe + 0,06$ $Pb^{2+} + 2e^{-} = Pb + 0,13$ $Sn^{2+} + 2e^{-} = Ni + 0,13$ $Sn^{2+} + 2e^{-} = Sn + 0,14$ $Ni^{2+} + 2e^{-} = Ni + 0,14$ $Ni^{2+} + 2e^{-} = Ci + 0,14$ $Ni^{2+} + 2e^{-} = Ci + 0,14$ $Ni^{2+} + 2e^{-} = Ci + 0,14$ $Fe^{2+} + 2e^{-} = Ci + 0,14$ $Fe^{2+} + 2e^{-} = Ci + 0,14$ $Fe^{2+} + 2e^{-} = Fe + 0,14$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,14$ $Fe^{2+} + 2e^{-} = Fe + 0,14$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,14$ $Fe^{2+} + 2e^{-} = Fe + 0,14$ $Cr^{3+} + 2e^{-} = Fe + 0,16$ $Cr^{3+} +$	$Ag^+ + e^-$	=	Ag	+ 0,80					
$\begin{array}{rclrclclclclclclclclclclclclclclclclclc$	$NO_{3}^{-} + 2H^{+} + e^{-}$	=	$NO_2(g) + H_2O$	+ 0,80					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2(g) + 2H^+ + 2e^-$	\Rightarrow	H_2O_2	+ 0,68					
$SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O $	I ₂ + 2e ⁻	=	2I ⁻	+ 0,54					
$2H_2O + O_2 + 4e^- = 4OH^-$ $Cu^{2^+} + 2e^- = Cu$ $+ 0,34$ $SO_4^{2^-} + 4H^+ + 2e^- = SO_2(g) + 2H_2O$ $Cu^{2^+} + e^- = Cu^+$ $Sn^{4^+} + 2e^- = Sn^{2^+}$ $+ 0,15$ $S + 2H^+ + 2e^- = H_2S(g)$ $Fe^{3^+} + 3e^- = Fe$ $Pb^{2^+} + 2e^- = Pb$ $Sn^{2^+} + 2e^- = Pb$ $Sn^{2^+} + 2e^- = Pb$ $Sn^{2^+} + 2e^- = Ni$ $Sn^{2^+} + 2e^- = Ni$ $Sn^{2^+} + 2e^- = Co$ $Co^{2^+} + 2e^- = Co$ $Co^{2^+} + 2e^- = Co$ $Cd^{2^+} + 2e^- = Co$ $Cr^{3^+} + 3e^- = Cr$ $2H_2O + 2e^- = H_2(g) + 2OH^-$ $Cr^{3^+} + 3e^- = Cr$ $2H_2O + 2e^- = H_2(g) + 2OH^-$ $Cn^{3^+} + 3e^- = Cr$ $2H_2O + 2e^- = H_2(g) + 2OH^-$ $Cr^{2^+} + 2e^- = Mn$ $Cr^{2^+} + 2e^- = Mn$ $Ar^{3^+} + 3e^- = A\ell$ $Mg^{2^+} + 2e^- = Mg$ $Na^+ + e^- = Na$ $Ca^{2^+} + 2e^- = Ca$ $Sr^{2^+} $	Cu ⁺ + e [−]	=	Cu						
$Cu^{2+} + 2e^{-} = Cu $	$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45					
$SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + e^{-} = Cu^{+}$ $Sn^{4+} + 2e^{-} = Sn^{2+}$ $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ $2H^{+} + 2e^{-} = H_{2}(g)$ $Fe^{3+} + 3e^{-} = Fe$ Pb $O,00$ $Fe^{3+} + 2e^{-} = Pb$ $O,13$ $Sn^{2+} + 2e^{-} = Ni$ $O,27$ $Co^{2+} + 2e^{-} = Co$ $Cd^{2+} + 2e^{-} = Cd$ $Cr^{3+} + e^{-} = Cr^{2+}$ $Archive = Cr$ $Cr^{3+} + 3e^{-} = Cr$ $Archive = Cr$ $O,14$ $O,00$ $O,01$ $O,01$ $O,02$ $O,27$ $O,27$ $O,27$ $O,27$ $O,41$ $Fe^{2+} + 2e^{-} = Fe$ $O,44$ $Cr^{3+} + 3e^{-} = Cr$ $O,44$ $Cr^{3+} + 3e^{-} = Cr$ $O,74$ $2H_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $O,83$ $Cr^{2+} + 2e^{-} = Cr$ $O,91$ $Mn^{2+} + 2e^{-} = Mn$ $A\ell^{3+} + 3e^{-} = A\ell$ $O,13$ $O,27$ $O,27$ $O,40$ $O,40$ $O,40$ $O,40$ $O,40$ $O,40$ $O,40$ $O,41$ $O,40$		\rightleftharpoons	40H ⁻						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
$Sn^{4+} + 2e^{-} = Sn^{2+}$ + 0,15 $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ 0,00 $Fe^{3+} + 3e^{-} = Fe$ $-0,06$ $Pb^{2+} + 2e^{-} = Pb$ $-0,13$ $Sn^{2+} + 2e^{-} = Sn$ $-0,14$ $Ni^{2+} + 2e^{-} = Ni$ $-0,27$ $Co^{2+} + 2e^{-} = Co$ $-0,28$ $Cd^{2+} + 2e^{-} = Cd$ $-0,40$ $Cr^{3+} + e^{-} = Cr^{2+}$ $-0,41$ $Fe^{2+} + 2e^{-} = Fe$ $-0,44$ $Cr^{3+} + 3e^{-} = Cr$ $-0,74$ $Zn^{2+} + 2e^{-} = The$ $-0,44$ $Cr^{3+} + 3e^{-} = Cr$ $-0,76$ $ZH_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $-0,83$ $Cr^{2+} + 2e^{-} = Mn$ $-1,18$ $At^{3+} + 3e^{-} = At$ $-1,66$ $Mg^{2+} + 2e^{-} = Mg$ $-2,36$ $Na^{+} + e^{-} = Na$ $-2,71$ $Ca^{2+} + 2e^{-} = Sr$ $-2,89$ $Ba^{2+} + 2e^{-} = Ba$ $-2,90$ $Cs^{+} + e^{-} = Cs$ $-2,93$	$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=		-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow							
$Fe^{3^{+}} + 3e^{-} \implies Fe$ $Pb^{2^{+}} + 2e^{-} \implies Pb$ $Sn^{2^{+}} + 2e^{-} \implies Ni$ $Co^{2^{+}} + 2e^{-} \implies Co$ $Cd^{2^{+}} + 2e^{-} \implies Cd$ $Cr^{3^{+}} + e^{-} \implies Cr^{2^{+}}$ $-0,41$ $Fe^{2^{+}} + 2e^{-} \implies Cd$ $-0,40$ $Cr^{3^{+}} + e^{-} \implies Cr^{2^{+}}$ $-0,41$ $Fe^{2^{+}} + 2e^{-} \implies Fe$ $-0,44$ $Cr^{3^{+}} + 3e^{-} \implies Cr$ $2h_{2}O + 2e^{-} \implies H_{2}(g) + 2OH^{-}$ $Cr^{2^{+}} + 2e^{-} \implies Mn$ $Al^{3^{+}} + 3e^{-} \implies Al$ $Al^{3^{+}} + 3e^{-} \implies Al$ $Mg^{2^{+}} + 2e^{-} \implies Mg$ $Na^{+} + e^{-} \implies Na$ $Ca^{2^{+}} + 2e^{-} \implies Ca$ $Sr^{2^{+}} + 2e^{-} \implies Sr$ $Ba^{2^{+}} + 2e^{-} \implies Ba$ $Cs^{+} + e^{-} \implies Cs$ $K^{+} + e^{-} \implies K$ $-2,93$		=							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	_						
$Sn^{2+} + 2e^{-} \Rightarrow Sn$		\Rightarrow							
$Ni^{2^{+}} + 2e^{-} \Rightarrow Ni$ $Co^{2^{+}} + 2e^{-} \Rightarrow Co$ $Cd^{2^{+}} + 2e^{-} \Rightarrow Cd$ $-0,28$ $Cd^{2^{+}} + 2e^{-} \Rightarrow Cd$ $-0,40$ $Cr^{3^{+}} + e^{-} \Rightarrow Cr^{2^{+}}$ $-0,41$ $Fe^{2^{+}} + 2e^{-} \Rightarrow Fe$ $-0,44$ $Cr^{3^{+}} + 3e^{-} \Rightarrow Cr$ $-0,74$ $Zn^{2^{+}} + 2e^{-} \Rightarrow Zn$ $-0,76$ $2H_{2}O + 2e^{-} \Rightarrow H_{2}(g) + 2OH^{-}$ $Cr^{2^{+}} + 2e^{-} \Rightarrow Cr$ $-0,91$ $Mn^{2^{+}} + 2e^{-} \Rightarrow Mn$ $-1,18$ $Al^{3^{+}} + 3e^{-} \Rightarrow Al$ $-1,66$ $Mg^{2^{+}} + 2e^{-} \Rightarrow Mg$ $-2,36$ $Na^{+} + e^{-} \Rightarrow Na$ $-2,71$ $Ca^{2^{+}} + 2e^{-} \Rightarrow Ca$ $Sr^{2^{+}} + 2e^{-} \Rightarrow Sr$ $-2,89$ $-2,90$ $-2,90$ $-2,90$ $-2,93$		\Rightarrow							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{rclcrcl} Cr^{3^{+}} + 3e^{-} & \rightleftharpoons & Cr & -0.74 \\ Zn^{2^{+}} + 2e^{-} & \rightleftharpoons & Zn & -0.76 \\ 2H_{2}O + 2e^{-} & \rightleftharpoons & H_{2}(g) + 2OH^{-} & -0.83 \\ Cr^{2^{+}} + 2e^{-} & \rightleftharpoons & Cr & -0.91 \\ Mn^{2^{+}} + 2e^{-} & \rightleftharpoons & Mn & -1.18 \\ A\ell^{3^{+}} + 3e^{-} & \rightleftharpoons & A\ell & -1.66 \\ Mg^{2^{+}} + 2e^{-} & \rightleftharpoons & Mg & -2.36 \\ Na^{+} + e^{-} & \rightleftharpoons & Na & -2.71 \\ Ca^{2^{+}} + 2e^{-} & \rightleftharpoons & Ca & -2.87 \\ Sr^{2^{+}} + 2e^{-} & \rightleftharpoons & Sr & -2.89 \\ Ba^{2^{+}} + 2e^{-} & \rightleftharpoons & Ba & -2.90 \\ Cs^{+} + e^{-} & \rightleftharpoons & K & -2.93 \\ \end{array}$									
$\begin{array}{rclcrcl} Zn^{2^{+}} + 2e^{-} & \rightleftharpoons & Zn & -0.76 \\ 2H_{2}O + 2e^{-} & \rightleftharpoons & H_{2}(g) + 2OH^{-} & -0.83 \\ Cr^{2^{+}} + 2e^{-} & \rightleftharpoons & Cr & -0.91 \\ Mn^{2^{+}} + 2e^{-} & \rightleftharpoons & Mn & -1.18 \\ A\ell^{3^{+}} + 3e^{-} & \rightleftharpoons & A\ell & -1.66 \\ Mg^{2^{+}} + 2e^{-} & \rightleftharpoons & Mg & -2.36 \\ Na^{^{+}} + e^{-} & \rightleftharpoons & Na & -2.71 \\ Ca^{2^{+}} + 2e^{-} & \rightleftharpoons & Ca & -2.87 \\ Sr^{2^{+}} + 2e^{-} & \rightleftharpoons & Sr & -2.89 \\ Ba^{2^{+}} + 2e^{-} & \rightleftharpoons & Ba & -2.90 \\ Cs^{^{+}} + e^{-} & \rightleftharpoons & K & -2.93 \\ \end{array}$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$Cr^{2^{+}} + 2e^{-} \Rightarrow Cr$ -0.91 $Mn^{2^{+}} + 2e^{-} \Rightarrow Mn$ -1.18 $A\ell^{3^{+}} + 3e^{-} \Rightarrow A\ell$ -1.66 $Mg^{2^{+}} + 2e^{-} \Rightarrow Mg$ -2.36 $Na^{+} + e^{-} \Rightarrow Na$ -2.71 $Ca^{2^{+}} + 2e^{-} \Rightarrow Ca$ -2.87 $Sr^{2^{+}} + 2e^{-} \Rightarrow Sr$ -2.89 $Ba^{2^{+}} + 2e^{-} \Rightarrow Ba$ -2.90 $Cs^{+} + e^{-} \Rightarrow Cs$ -2.92 $K^{+} + e^{-} \Rightarrow K$ -2.93									
$Mn^{2^{+}} + 2e^{-} \Rightarrow Mn$	-								
$Al^{3^{+}} + 3e^{-} \Rightarrow Al$									
$Mg^{2^{+}} + 2e^{-} \Rightarrow Mg$									
$Na^{+} + e^{-} \Rightarrow Na$									
$Ca^{2^{+}} + 2e^{-} \Rightarrow Ca$									
$Sr^{2^+} + 2e^- \Rightarrow Sr$ $-2,89$ $Ba^{2^+} + 2e^- \Rightarrow Ba$ $-2,90$ $Cs^+ + e^- \Rightarrow Cs$ $-2,92$ $K^+ + e^- \Rightarrow K$ $-2,93$									
$Ba^{2^{+}} + 2e^{-} \Rightarrow Ba$									
$Cs^{+} + e^{-} \rightleftharpoons Cs$ $-2,92$ $K^{+} + e^{-} \rightleftharpoons K$ $-2,93$									
$K^+ + e^- \Rightarrow K$ - 2,93			Cs						
$Li^+ + e^- \Rightarrow Li - 3,05$	$K^{+} + e^{-}$	=	K						
	Li ⁺ + e ⁻	=	Li	- 3,05					

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

BEL 4B: STANDAARD-REDUKSIEPOTENSIA							
Half-reactions	E [™] (V)						
Li ⁺ + e⁻	=	Li	- 3,05				
K ⁺ + e ⁻	\Rightarrow	K	- 2,93				
Cs ⁺ + e ⁻	=	Cs	- 2,92				
Ba ²⁺ + 2e ⁻	\Rightarrow	Ва	- 2,90				
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89				
Ca ²⁺ + 2e ⁻	\Rightarrow	Ca	- 2,87				
Na ⁺ + e⁻ Mg ²⁺ + 2e⁻	\Rightarrow	Na	- 2,71				
Mg + 2e Al ³⁺ + 3e ⁻	=	Mg	- 2,36				
Mn ²⁺ + 2e ⁻	=	Ał Mn	- 1,66				
Cr ²⁺ + 2e	=	Cr	– 1,18 – 0,91				
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,91 - 0,83				
Zn ²⁺ + 2e ⁻	=	Zn	- 0,03 - 0,76				
Cr ³⁺ + 3e ⁻	=	Cr	- 0,70 - 0,74				
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44				
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41				
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40				
Co ²⁺ + 2e ⁻	=	Со	- 0,28				
Ni ²⁺ + 2e ⁻	.	Ni	- 0,27				
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14				
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13				
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06				
2H ⁺ + 2e ⁻	-	H ₂ (g)	0,00				
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14				
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15				
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16				
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17				
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34				
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40				
$SO_2 + 4H^+ + 4e^-$	\Rightarrow	S + 2H ₂ O	+ 0,45				
Cu ⁺ + e ⁻	=	Cu	+ 0,52				
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54				
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68				
Fe ³⁺ + e ⁻	\Rightarrow	Fe ²⁺	+ 0,77				
$NO_{3}^{-} + 2H^{+} + e^{-}$	=	$NO_2(g) + H_2O$	+ 0,80				
$Ag^+ + e^-$	=	Ag	+ 0,80				
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85				
$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96				
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07				
Pt ²⁺ + 2 e ⁻	\Rightarrow	Pt 2+ 0	+ 1,20				
$MnO_2 + 4H^+ + 2e^-$	\Rightarrow	$Mn^{2+} + 2H_2O$	+ 1,23				
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23				
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33				
$C\ell_2(g) + 2e^-$	=	2Cl-	+ 1,36				
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51				
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77				
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81				
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87				

Increasing reducing ability/Toenemende reduserende vermoë