Kestusandmed, longituudsus: sündmusanalüüs

Ristlõikeandmed, kordusmõõtmised, kestusandmed

- Ristlõikeandmed konkreetsel ajahetkel mõõdetud andmed
- Staatilised, ei võimalda üldjuhul ajakomponenti (sündmuste järgnevust) analüüsida
- Selle võimaldamiseks kordusmõõtmised, kaks varianti:
 - Mõõdetavad tunnused samad, indiviidid erinevad
 - Indiviidid samad, mõõdetavad tunnused põhiosas samad
- Teise puhul ongi tegu kestusandmetega
 - ehk longituudandmetega
 - ehk pikilõikeliste andmetega
- Kas Euroopa Sotsiaaluuring on longituuduuring?

(Tooding 2015)

Longituudandmed, kestusandmed, pikilõikelised andmed

- Longituuduuringud rikkaliku andmestikuga, aga
 - metodoloogiliselt väljakutseterohked
 - nii andmekogumise kui andmeanalüüsi metoodika poolest
 - korralduslikult keerukamad
 - kulukad

Sündmusanalüüs, elukestusanalüüs

Survival analysis, time-to-event analysis, failure analysis

- Kogum analüüsimeetodeid, mis võimaldavad analüüsida
 - mingi sündmuseni kuluva aja kestust (perioodi/episoodi pikkust)
 - ja seda kestust mõjutavaid tegureid
- Olulised mõisted:
 - Sündmus
 - Episood, sündmusele eelnev ajaperiood

Sündmusanalüüsi näiteid

Sündmus	Episood
	Sündmus

• Võimalik uurida kestuse erinevust gruppides, tegureid, mis kestust ja sündmuseni jõudmist võivad mõjutada

Tsenseerimine

- Uuring võib lõppeda enne sündmuse toimumist
- Uuritav võib n-ö ära kaduda
- Sündmust ei pruugi toimuda, sest leiab aset muu sündmus (nt inimene ei leia tööd, sest kaotab õnnetuse tõttu töövõime)
- Nimetatakse tsenseerimiseks (konkreetse indiviidi andmed on tsenseeritud)
- Probleem, sest me ei tea, millal sündmus oleks toimunud

Tsenseerimine

Tsenseerimine

Elukestusfunktsioon, elulemusfunktsioon

Survival function

- Sündmuse mittetoimumise tõenäosus ajahetkeni t (t kaasa arvatud)
- Nt tõenäosus, et
 - vähipatsient jääb ajahetkeni t ellu
 - töötu ei ole t kuud pärast arvelevõtmist tööd leidnud
- Indiviidide osakaal, kellel ajahetkeni t El OLE sündmus aset leidnud

$$S(t) = P(T > t)$$

• Kui tsenseeritud indiviide ei esineks, saaks elulemusfunktsiooni arvutada lihtsalt

$$\hat{S}(t) = \frac{Indiviidide \ arv, kellel \ T > t}{K\tilde{o}igi \ indiviidide \ arv}$$

- Mida teha tsenseeritud indiviididega?
 - Kui viskame välja, võime üle hinnata sündmuste osakaalu (elulemus väiksem)
 - Kui võrdsustame tsenseerimise sündmuse mittetoimumisega, võime alahinnata sündmuste osakaalu (elulemus tegelikust suurem)

Riskifunktsioon

Hazard function

- Sündmuse toimumise tõenäosus ajahetkel t indiviidil, kellel selle ajahetkeni sündmust toimunud ei ole
 - Ehk sündmuse toimumise tõenäosus ajahetkel t nende hulgas, kes on selle hetkeni elus (kellel pole veel sündmust toimunud)
 - Ehk sündmuse toimumise tinglik tõenäosus vaadeldaval ajahetkel eeldusel, et sündmus ei ole toimunud enne ajahetke

$$\lambda_i = P(T = a_i | T \ge a_i)$$

$$\lambda(t) = \lim_{\Delta t \to 0^+} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Kaplan-Meieri hinnangufunktsioon

Kaplan-Meier estimator, product-limit estimator

- Mitteparameetriline meetod elukestusfunktsiooni hindamiseks
 - st hindamiseks, kui suur on tõenäosus, et ajahetkeni t pole sündmust toimunud

$$S(t) = \prod_{i: t_i \le t} \left(1 - \frac{d_i}{n_i}\right)$$

- $t_i = 1, 2, ..., k$ sündmuse toimumise momendid vaatlusperioodi vältel
- d_i ajavahemikus (t_{i-1} , t_i) toimuvate sündmuste arv
- n_i indiviidide arv, kellel enne ajahetke t_i ei ole sündmust toimunud ($T \ge t_i$)
- Elukestusfunktsiooni hindamine konkreetse ajahetke kohta

$$S(t_i) = S(t_{i-1}) \cdot (1 - \frac{d_i}{n_i})$$

Saame esitada elukestusfunktsiooni väärtused võrdlevalt rühmiti

Kaplan-Meier i hinnangufunktsioon Kaplan-Meier estimator, product-limit estimator

	t _i	2,0	2,5	2,8	3,5	5,5	8,0
	$d_{i} \\$	1	1	2	1	1	2
	n_{i}	10	9	8	6	4	2
1-	d _i /n _i	9/10	8/9	6/8	5/6	3/4	1/2
1-	d _i /n _i	0,9	0,89	0,75	0,83	0,75	0,5
	S(t _i)	0,9	0,8	0,6	0,5	0,38	0,19

Jaotusfunktsioon ehk sündmuste kumulatiivne jaotus

$$F(t) = 1 - S(t)$$

- Näitab tõenäosust, et sündmus on vaadeldavaks ajahetkeks toimunud
- Elukestusfunktsiooni peegelpilt

Vahel kergem intuitiivselt mõista (nt praktikutel)

0,5.

0,38

(Stare 2020)

aastad

Kaplan-Meieri hinnangufunktsioon

Kaplan-Meier estimator, product-limit estimator

- Elukestuskõveraid saab arvutada eri rühmadele ja võrrelda,
 - kuidas sündmuse toimumise tõenäosus muutub ajas rühmiti
 - kas rühmad erinevad sündmuse toimumise tõenäosuse poolest
- Võimalik arvutada kõveratele usaldusvahemikud ja võrrelda ka nende alusel
- Episoodide jaotus asümmeetriline
 - tsenseeritud juhtumitel pigem pikem episood =>
 - usaldusvahemikud elukestuse suuremate väärtuste puhul laiemad
- Elukestuse erinevuste hindamiseks rühmades võimalik
 - võrrelda usaldusvahemikega K-M kõveraid visuaalselt
 - arvutada erinevust/seost mõõtev teststatistik
 - kasutada keerulisemaid (parameetrilisi ja semiparameetrilisi) meetodeid

Logaritmiline astaktest

Log-rank test, Mantel-Haenszel test

- Mitteparameetriline test elukestusfunktsioonide võrdlemiseks kahes või enamas rühmas
 - H0: sündmuse toimumise hetkel on sündmuse kumulatiivsed tõenäosused rühmades võrdsed
 - H1: sündmuse kumulatiivsed tõenäosused rühmades erinevad
- Testi loogika sarnane hii-ruut-testile
 - Iga ajahetke kohta, mil mõnel indiviidil toimub sündmus, arvutatakse teoreetiline sündmuste arv rühmades, mis peaks esinema eeldusel, et rühmade elukestustes erinevused puuduvad
 - Iga ajahetke kohta arvutatakse tegeliku ja teoreetilise sündmuste arvu vahe, võetakse ruutu, jagatakse teoreetilise sündmuste arvuga ja summeeritakse
 - Võrreldakse hii-ruut-jaotusega => saadakse teststatistiku olulisuse tõenäosus

$$\chi^{2} = \sum_{i=1}^{g} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- *g* rühmade arv
- O_i tegelik sündmuste arv hetkel i
- E_i teoreetiline sündmuste arv hetkel i
- K-M elukestuskõverad ei tohiks lõikuda
 - Kui lõikuvad, on antud testi suutlikkus tuvastada rühmadevahelisi erinevusi elukestuses väga madal
- Kasutatakse väga laialdaselt

(Clark et al 2003; Tiit ja Tooding 2019: 161)