Inżynieria oprogramowania

Skąd ta inżynieria?

Wcześniej

- Tylko małe programy,
- Jedna osoba pomysłodawcą, autorem i użytkownikiem,

Później,

- Chęć tworzenia większych rzeczy w krótszym czasie,
- Nowsze języki umożliwiające tworzenie większych programów,
- Konieczność pracy w grupie,
 - Komunikacja,
 - Dokumentacja,
 - Standaryzacja języków, notacji, narzędzi,
- Nowe zagadnienia wynikające z tworzenie dla nowych klientów,
 - · Zbieranie i analiza wymagań,
 - Projektowanie,
 - Interfejs użytkownika,

Przyczyny i początki ...

- Przyczyny powstania inżynierii oprogramowania
 - Rosnąca złożoność projektów informatycznych,
 - Brak standardów i narzędzi umożliwiających (ułatwiających) pracę w grupie programistycznej,
 - Nieumiejętność szacowania kosztów i czasochłonności projektów informatycznych.
 - Brak zrozumienia, że pracochłonność projektu nie rośnie liniowo ze wzrostem jego rozmiaru.
- Początki inżynierii oprogramowania datuje się na lata sześćdziesiąte począwszy od powstania pierwszych programów na rynek komercyjny,
 - Czas tzw. "Kryzysu oprogramowania",
 - Czas gwałtownego rozwoju technologii,
 - Czas spadku cen i zwiększenia dostępności sprzętu komputerowego,

Historia programowania 1

- Programowanie liniowe
 - Wykonanie programu linia po linii,
 - Konieczność wykorzystania etykiet/numerowania linii kodu,
 - Konieczność wykorzystania instrukcji typu "goto",
 - Bardzo trudny podział programu między programistów,
- Programowanie proceduralne
 - Możliwość wyznaczania bloków w kodzie źródłowym
 - Wcięcia, nawiasy klamrowe { }, konwencja begin/end,
 - Instrukcje sterujące
 - Instrukcje warunkowe,
 - Instrukcje powtórzenia/pętle,
 - Procedury i funkcje,
 - Możliwość dekompozycji kodu źródłowego,
 - Duża ilość zmiennych.

Historia programowania 2

- Programowanie strukturalne
 - Zmienne grupujące powiązane dane (struktury, rekordy),
 - Mała ilość zmiennych,
 - Ułatwione przekazywanie argumentów
 - Rozdział pomiędzy danymi i funkcjami,
- Programowanie obiektowe
 - Powiązanie danych i operacji na nich wykonywanych,
 - Abstrakcja dostosowanie ilości składowych i metod do kontekstu,
 - Enkapsulacja ukrywanie danych i operacji,
 - Dziedziczenie rozszerzanie funkcjonalności,
 - Polimorfizm wielopostaciowość, elastyczność programowania,
- Programowanie komponentowe
 - Ponowne wykorzystanie kodu,
 - Szybkość tworzenia aplikacji,
 - Zaawansowane narzędzia projektowe.

Języki programowania

- Liniowe
 - Basic wczesne wersje i dialekty,
- Proceduralne
 - Bash
- Strukturalne
 - C
 - Ada
 - C++, PHP, Python, Swift możliwość programowania strukturalnego,
- Obiektowe
 - C++, PHP, Python, Swift możliwość programowania obiektowego,
 - Java, C# języki zorientowane obiektowo,
- Środowiska komponentowe

Co to jest inżynieria oprogramowania?

- Jest to dziedzina inżynierii, która obejmuje wszystkie aspekty tworzenia oprogramowania od fazy początkowej do jego pielęgnacji/utrzymania,
- Inżynieria oprogramowania zajmuje się teorią, metodami i narzędziami związanymi z wytwarzaniem oprogramowania,

Ważne:

- Systematyzuje i porządkuje pracę nad oprogramowaniem,
- Skutecznie zapewnia wysoką jakość oprogramowania,
- Bardzo prężny rozwój przez ostatnie kilkadziesiąt lat,
- Tworzenie oprogramowania to ważna gałąź gospodarki,

Oprogramowanie – co to jest?

- Oprogramowanie są to programy komputerowe wraz z całym środowiskiem je otaczającym (dokumentacja, konfiguracja, często nierozerwalne ze sprzętem),
- "Oprogramowanie jest wszędzie" komputery, automatyka, sprzęt domowy, samochody,
- Rodzaje oprogramowania
 - Oprogramowanie gotowe / powszechne,
 - Skierowane do dużej liczby użytkowników,
 - Niska cena,
 - Dostępność "od ręki",
 - Oprogramowanie na zamówienie / dostosowane,
 - Dostosowane do indywidualnych potrzeb,
 - Wysoka cena,
 - Długi czas przygotowania,

Proces tworzenia oprogramowania

- Zbiór czynności (etapów) i związanych z nimi wynikami cząstkowymi, które zmierzają do przygotowania gotowego produktu czyli oprogramowania,
- Podstawowe czynności / etapy
 - Specyfikacja i analiza oprogramowania,
 - Projektowanie oprogramowania,
 - Tworzenie oprogramowania,
 - Utrzymanie i ewolucja oprogramowania,

Cechy dobrego oprogramowania

Utrzymywalność,

- Maksymalizacja czasu użytkowania,
- Możliwość ewolucji zgodnie z potrzebami użytkownika,

Ufność / Niezawodność,

- Minimalizacja kosztów w przypadku wystąpienia awarii,
- Oprogramowanie nie powinno powodować fizycznych i ekonomicznych strat w razie wystąpienia awarii,

Efektywność / Wydajność,

 Oprogramowania powinno racjonalnie wykorzystywać dostępne zasoby sprzętowe (pamięć, moc obliczeniową),

Użyteczność / Użytkowość,

- Przejrzysty i intuicyjny interfejs,
- Dobra jakość dokumentacji,

Czy programy się starzeją?

- Oprogramowanie się nie starzeje ale dezaktualizuje
- Krzywa starzenia dla sprzętu

Czy programy się starzeją?

- Oprogramowanie się nie starzeje ale dezaktualizuje
- Krzywa starzenia dla oprogramowania idealna

Czy programy się starzeją?

- Oprogramowanie się nie starzeje ale dezaktualizuje
- Krzywa starzenia dla oprogramowania realna,

