Chapter 2 Arrays

2.2 The Array as an Abstract Data Type Array:

- A set of pairs: <index, value>
 (correspondence or mapping)
- Two operations: retrieve, store

Now we will use the C++ class to define an ADT.

JYP · ·

ADT2.1 GeneralArray

```
class GeneralArray {
// a set of pairs <index, value> where for each value of
// index in IndexSet there is a value of type float. IndexSet is
// a finite ordered set of one or more dimensions.
public:
  GeneralArray(int j, RangeList list, float initValue =
                                                  defaultValue);
  // The constructor GeneralArray creates a j
  // dimensional array of floats; the range of the kth
  // dimension is given by the kth element of list.
  // For all i∈IndexSet, insert <i, initValue> into the array.
```

```
float Retrieve(index i);
// if (i∈IndexSet) return the float associated with i in the
// array;else throw an exception.

void Store(index i, float x);
// if (i∈IndexSet) replace the old value associated with i
// by x; else throw an exception.
}; //end of GeneralArray
```

Note:

- Not necessarily implemented using consecutive memory
- Index can be coded any way
- GeneralArray is more general than C++ array as it is more flexible about the composition of the index set
- To be simple, we will hereafter use the C++ array

2.3 The Polynomial Abstract Data Type

Array can be used to implement other abstract data types. The simplest one might be:

Ordered or linear list.

Example:

```
(Sun, Mon, Tue, Wed, Thu, Fri, Sat)
```

() // empty list

More generally, An ordered list is either empty or $(a_0, a_1, ..., a_{n-1})$. // index important

Main operations:

- (1) Find the length, n, of the list.
- (2) Read the list from left to right (or right to left)
- (3) Retrieve the ith element, 0≤i<n.
- (4) Store a new value into the ith position, 0≤i<n.
- (5) Insert a new element at position i, 0≤i<n, causing elements numbered i, i+1,...n-1 to become numbered i+1, i+2,...n.

(6) Delete the element at position i, 0≤i<n, causing elements numbered i+1, i+2,...n-1 to become numbered i, i+1,...n-2.

How to represent ordered list efficiently?

- Use array: a_i ←→index i
- Sequential mapping, because using conventional array representation, we are storing a_i and a_{i+1} into consecutive location i and i+1.
- Random access any element in O(1).
- Operations (5) and (6) need data movement.

Now let us look at a problem requiring ordered list.

Problem: build an ADT for the representation and manipulation of symbolic polynomials.

$$A(x)=3x^2+2x+4$$

 $B(x)=x^4+10x^3+3x^2+1$

Degree: the largest exponent

ADT 2.3 Polynomial

```
class Polynomial {
    // p(x)=a<sub>0</sub>x<sup>e0</sup>+,...,+ a<sub>n</sub>x<sup>en</sup> ; a set of ordered pairs of <e<sub>i</sub>, a<sub>i</sub>>,
    // where a<sub>i</sub> is a nonzero float coefficient and e<sub>i</sub> is a
    // non-negative exponent
public:
    Polynomial ( );
    // Construct the polynomial p(x)=0
```

```
void AddTerm (Exponent e, Coefficient c);
// add the term <e,c> to *this, so that it can be initialized
Polynomial Add (Polynomial poly);
// return the sum of the polynomials *this and poly
Polynomial Mult (Polynomial poly);
// return the product of the polynomials *this and poly
float Eval (float f);
// evaluate polynomial *this at f and return the result
```

2.3.1 Polynomial Representation

Representation 1 private:

```
int degree; // degree ≤ MaxDegree
float coef[MaxDegree+1];
```

Let a be
$$A(x)=a_nx^n+a_{n-1}x^{n-1}+,...,+a_1x+a_0$$

a.degree=n;

a.coef[i] = a_{n-i}, 0 ≤i≤ n

Simple algorithms for many operations.

Representation 2

When a.degree << MaxDegree, representation 1 is very poor in memory use. To improve, define variable sized data member as:

```
private:
  int degree;
  float *coef;
Polynomial::Polynomial(int d)
  int degree=d;
  coef= new float[degree+1];
```

JYP 1:

Representation 3

Representation 2 is still not desirable. For instance, x¹⁰⁰⁰+1 makes 999 entries of the coef be zero.

So, we store only the none zero terms:

$$A(x) = b_m x^{em} + b_{m-1} x^{em-1} + \dots + b_0 x^{e0}$$

Where
$$b_i \neq 0$$
, $e_m > e_{m-1} > ..., e_0 \ge 0$

```
class Polynomial; // forward declaration
class Term {
friend Polynomial;
private:
   float coef; // coefficient
   int exp; // exponent
class Polynomial {
public:
private:
 Term *termArray;
 int capacity; // size of termArray
 int terms; // number of nonzero terms
```

For
$$A(x) = 2x^{1000} + 1$$

A.termArray looks like:

coef

exp

2	1	
1000	0	

Many zero Few zero

--- good

--- not very good, may use twice as much space as in presentation 2.

2.3.2 Polynomial Addition

Use presentation 3 to obtain C = A + B.

Idea:

Because the exponents are in descending order, we can adds A(x) and B(x) term by term to produce C(x).

The terms of C are entered into its termArray by calling function NewTerm.

If the space in termArray is not enough, its capacity is doubled.

```
1 Polynomial Polynomial::Add (Polynomial b)
2 { // return the sum of the polynomials *this and b.
   Polynomial c;
3
   int aPos=0, bPos=0;
   while ((aPos < terms) && (bPos < b.terms))
5
     if (termArray[aPos].exp==b.termArray[bPos].exp) {
6
      float t = termArray[aPos].coef + termArray[bPos].coef
      if (t) c.NewTerm (t, termArray[aPos].exp);
8
9
      aPos++; bPos++;
10
11
     else if (termArray[aPos].exp < b.termArray[bPos].exp) {</pre>
12 c.NewTerm (b.termArray[bPos].coef, b.termArray[bPos].exp);
13
      bPos++;
14
```

```
15
    else {
      c.NewTerm (termArray[aPos].coef, termArray[aPos].exp);
16
17
      aPos++;
18
19 // add in the remaining terms of *this
20 for (; aPos < terms; aPos++)
     c.NewTerm(termArray[aPos].coef, termArray[aPos].exp );
21
22 // add in the remaining terms of b
23 for (; bPos < b.terms; bPos++)
24 c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);
25 return c;
26 }
```

```
void Polynomial::NewTerm(const float theCoeff,
                            const int the Exp)
{ // add a new term to the end of termArray.
 if (terms == capacity)
 { // double capacity of termArray
    capacity *=2;
    term *temp = new term[capacity]; // new array
    copy(termArray, termAarry + terms, temp);
    delete [] termArray; // deallocate old memory
    termArray = temp;
 termArray[terms].coef = theCoeff;
 termArray[terms++].exp = theExp;
```

Analysis of Add:

Let m, n be the number of nonzero terms in a and b respectively.

- line 3 and 4---O(1)
- in each iteration of the while loop, aPos or bPos or both increase by 1, the number of iterations of this loop ≤ m+n-1
- if ignore the time for doubling the capacity, each iteration takes O(1)
- line 20--- O(m), line 23--- O(n)

Asymptotic computing time for Add: O(m+n)

Analysis of doubling capacity:

- the time for doubling is linear in the size of new array
- initially, c.capacity is 1
- suppose when Add terminates, c.capacity is 2^k
- the total time spent over all array doubling is

$$O(\sum_{i=1}^{k} 2^{i}) = O(2^{k+1}) = O(2^{k})$$

• since c.terms > 2^{k-1} and m + n \geq c.terms, the total time for array doubling is

$$O(c.terms) = O(m + n)$$

- so, even consider array doubling, the total run time of Add is O(m + n).
- experiments show that array doubling is responsible for very small fraction of the total run time of Add.

Exercises: P93-2,6, P94-9

2.4 Sparse Matrices

2.4.1 Introduction

A general matrix consists of m rows and n columns (m × n) of numbers, as:

	0	1	2
0	-27	3	4
1	6	82	-2
2	109	-64	11
3	12	8	9
4	48	27	47

Fig.2.2(a) 5×3

	0	1	2	3	4	5
0	15	0	0	22	0	-15
1	0	11	3	0	0	0
2	0	0	0	-6	0	0
3	0	0	0	0	0	0
4	91	0	0	0	0	0
5	0	0	28	0	0	0

Fig. 2.2(b) 6×6

A matrix of $m \times m$ is called a square.

A matrix with many zero entries is called sparse.

Representation:

- A natural way --- a[m][n], access element by a[i][j], easy operations. But for sparse matrix, wasteful of both memory and time.
- Alternative way --- store nonzero elements explicitly. 0 as default.

ADT 2.4 SparseMatrix

```
class SparseMatrix
{ // a set of <row, column, value>, where row, column are
 // non-negative integers and form a unique combination;
 // value is also an integer.
public:
   SparseMatrix (int r, int c, int t);
   // creates a rxc SparseMatrix with a capacity of t nonzero
   // terms
   SparseMatrix Transpose ();
   // return the SparseMatrix obtained by transposing *this
   SparseMatrix Add (SparseMatrix b);
   SparseMatrix Multiply (SparseMatrix b);
};
```

2.4.2 Sparse Matrix Representation

Use triple <row, col, value>, sorted in ascending order by <row, col>.

We need also the number of rows and the number of columns and the number of nonzero elements. Hence,

```
class SparseMatrix;
class MatrixTerm {
friend class SparseMatrix;
private:
   int row, col, value;
};
```

And in class SparseMatrix:

private:

Int rows, cols, terms, capacity;
MatrixTerm *smArray;

Now we can store the matrix of Fig.2.2 (b) as Fig.2.3 (a).

	row	col	value
smArray[0]	0	0	15
[1]	0	3	22
[2]	0	5	-15
[3]	1	1	11
[4]	1	2	3
[5]	2	3	-6
[6]	4	0	91
[7]	5	2	28

Fig.2.3 (a) _{JYP}

2.4.3 Transposing a Matrix

Transpose:

If an element is at position [i][j] in the original matrix, then it is at position [j][i] in the transposed matrix.

Fig.2.3(b) shows the transpose of Fig2.3(a).

	row	col	value
smArray[0]	0	0	15
[1]	0	4	91
[2]	1	1	11
[3]	2	1	3
[4]	2	5	28
[5]	3	0	22
[6]	3	2	-6
[7]	5	0	-15

Fig.2.3 (b) _{JYP}

First try:

```
For (each row i)

take element (i, j, value) and

store it in (j, i, value) of the transpose;
```

Difficulty: not knowing where to put (j, i, value) until all other elements preceding it have been processed.

Improvement:

For (all elements in column j)
store (i, j, value) of the original matrix as
(j, i, value) of the transpose;

Since the rows are in order, we will locate elements in the correct column order.

```
for (int c=0; c<cols; c++) // transpose by columns
8
        for ( int i=0; i<terms; i++ )
9
        // find and move terms in column c
10
          if ( smArray[i].col == c )
11
12
           b.smArray[CurrentB].row = c;
13
           b.smArray[CurrentB].col = smArray[i].row;
           b.smArray[CurrentB++].value= smArray[i].value;
14
15
     } // end of if (terms > 0)
16
17
    return b;
18 }
```

Time complexity of Transpose:

- line 7-15 loop--- cols times
- line 10 loop--- terms times
- other line--- O(1)

Total time: O(cols* terms)

Additional space: O(1)

Think:

O(cols* terms) is not good. If terms = O(cols* rows) then it becomes O(cols^{2*} rows)---too bad! Since with 2-dimensional representation,

we can get an easy O(cols* rows) algorithm as:

```
for (int j=0;j < columns;j++)
for (int i=0; i < rows; i++) B[j][i] = A[i][j];</pre>
```

Further improvement:

If we use some more space to store some knowledge about the matrix, we can do much better: doing it in O(cols + terms).

- get the number of elements in each column of
 *this = the number of elements in each row of b;
- obtain the starting point in b of each of its rows;
- move the elements of *this one by one into their right position in b.

Now the algorithm FastTranspose.

```
1 SparseMatrix SparseMatrix::FastTranspose ()
2 { // return the transpose of *this in O(terms+cols) time.
    SparseMatrix b(cols, rows, terms);
3
    if (terms > 0)
   { // nonzero matrix
5
6
     int *rowSize = new int[cols];
     int *rowStart = new int[cols];
     // compute rowSize[i] = number of terms in row i of b
8
9
     fill(rowSize, rowSize + cols, 0); // initialze
10
     for (i=0; i<terms; i++) rowSize[smArray[i].col]++;</pre>
```

```
11
     // rowStart[i] = starting position of row i in b
12
    rowStart[0] = 0;
     for (i=1;i<cols;i++) rowStart[i]=rowStart[i-1]+rowSize[i-1];
13
     for (i=0; i<terms; i++)
14
15
        // copy from *this to b
16
         int j = rowStart[smArray[i].col];
17
         b.smArray[j].row = smArray[i].col;
18
         b.smArray[j].col = smArray[i].row;
19
        b.smArray[j].value = smArray[i].value;
20
         rowStart[smArray[i].col]++;
        // end of for
21
```

```
delete [] rowSize;
delete [] rowStart;
delete [] rowStart;
// end of if
return b;
```

For Fig.2.3(a), after line 13, we get:

	[0]	[1]	[2]	[3]	[4]	[5]
RowSize=	2	1	2	2	0	1
RowStart=	0	2	3	5	7	7

Note the error in P101 of the text book!

Analysis:

3 loops:

- line 10--- O(terms)
- line 13--- O(cols)
- line 14 21--- O(terms)

and line 9--- O(cols), other lines--- O(1)

Total: O(cols+terms)

This is a typical example for trading space for time.

Exercises: P107-1, 2, 4

2.6 The String Abstract data Type

```
A string S = s_0, s_1, ..., s_{n-1},
where s_i \in \text{char}, 0 \le i < n, n is the length.
```

```
ADT 2.5 String
class String
{  // a finite set of zero or more characters;
public:
    String (char *init, int m );
    // initialize *this to string init of length m
```

```
bool operator == (String t);
// if *this equals t, return true else false.
bool operator ! ( );
// if *this is empty return true else false.
int Length ();
// return the number of chars in *this
String Concat (String t);
String Substr (int i, int j);
int Find (String pat);
// return i such that pat matches the substring of *this that
// begins at position i. Return –1 if pat is either empty or not
// a substring of *this.
```

Assume the String class is represented by:

```
private:
    char* str;
```

2.6.1 String Pattern Matching: A Simple Algorithm

The idea is showed in the function Find.

```
int String::Find ( String pat )
{ // Return -1 if pat does not occur in *this; otherwise
 // return the first position in *this, where pat begins.
   if (pat.Length() == 0) return -1; // pat is empty
   for (int start=0; start<=Length() - pat.Length(); start++)</pre>
   { // check for match beginning at str[start]
      for (int j=0; j<pat.Length()&&str[start+j]==pat.str[j];j++)
      if (j== pat.Length()) return start; // match found
     // no match at position start
    return -1; // pat does not occur in s
```

The complexity of it is O(LengthP * LengthS). Problem: rescanning.

Even if we check the last character of pat first, the time complexity can't be improved!

2.6.2 String Pattern Matching: The Knuth-Morris-Pratt Algorithm

Can we get an algorithm which avoid rescanning the strings and works in O(LengthP + LengthS)?

This is optimal for this problem, as in the worst it is necessary to look at characters in the pattern and string at least once.

Basic Ideas:

- Rescanning to avoid missing the target --- too conservative. If we can go without rescanning, it is likely to do the job in O(LengthP + LengthS).
- Preprocess the pattern, to get some knowledge of the characters in it and the position in it, so that if a mismatch occurs we can determine where to continue the search and avoid moving backwards in the string.

Now we show details about the idea.

case:
$$j = 0$$

case: j ≠ **0**

An concrete example:

$$s = \dots a b d a b d \dots \dots$$

pat = $a b d a b c a c a b$
 $j=5$

To formalize the above idea:

Definition: if $p=p_0p_1...p_{n-1}$ is a pattern, then its failure function f, is defined as:

$$f(j) = \begin{cases} largest \ k < j, \ such \ that \ p_0p_1...p_k = p_{j-k}p_{j-k+1}...p_j \\ if \ such \ k \ge 0 \ exists \end{cases}$$

For example, pat = a b c a b c a c a b, we have

```
j 0 1 2 3 4 5 6 7 8 9

pat a b c a b c a b

f -1 -1 -1 0 1 2 3 -1 0 1
```

Note:

largest: no match be missed

k < j: avoid dead loop

From the definition of f, we have the following rule for pattern matching:

If a partial match is found such that $s_{i-j}...s_{i-1} = p_0p_1...p_{j-1}$ and $s_i \neq p_j$ then matching may be resumed by comparing s_i and $p_{f(j-1)+1}$ if $j \neq 0$. If j=0, then we may continue by comparing s_{i+1} and p_0 .

The failure function is represented by an array of integers f, which is a private data member of String.

Now the algorithm FastFind.

```
1 int String::FastFind (String pat)
2 { // Determine if pat is a substring of s
   int PosP = 0, PosS = 0;
3
   int LengthP= pat.Length(), LengthS= Length();
5
   while ((PosP < LengthP) && (PosS < LengthS))</pre>
      if ( pat.str[PosP] == str[PosS] ) { // characters match
6
      PosP ++; PosS ++;
8
      else
10
       if (PosP==0)
11
         PosS++;
12
       else PosP= pat.f [PosP-1] + 1;
13 if ((PosP < LengthP) || LengthP==0)) return -1;
14 else return PosS - LengthP;
15 }
```

Analysis of FastFind:

- Line 7 and 11 --- at most LengthS times, since PosS is increased but never decreased. So PosP can move right on pat at most LengthS times (line 7).
- Line 12 moves PosP left, it can be done at most LengthS times. Note that f(j-1)+1< j.

Consequently, the computing time is O(LengthS).

How about the computing of the f for the pattern? By similar idea, we can do it in O(LengthP).

f(0)=-1, now if we have f(j-1), we can compute f(j) from it by the following observation:

If a=b, then f(j)=f(j-1)+1 else

If c=b,
$$f(j)=f(f(j-1))+1=f^2(j-1)+1$$
 else

In general, we have the following restatement of the failure function:

$$f(j) = \begin{cases} -1 & \text{if } j = 0 \\ f^m(j-1) + 1 & \text{where m is the least k for which} \\ p_f^k_{(j-1)+1} = p_j & \\ -1 & \text{if there is no k satisfying the} \\ & \text{above} \end{cases}$$

Now we get the algorithm to compute f.

```
1 void String::Failurefunction()
2 { // compute the failure function of the pattern *this.
    int LengthP= Length();
3
   f[0] = -1;
    for (int j=1; j< LengthP; j++) // compute f[j]</pre>
5
6
       int i=f[j-1];
       while ((*(str+j)!=*(str+i+1)) \&\& (i>=0)) i=f[i]; // try for m
8
9
        if ( *(str+i)==*(str+i+1))
10
          f[i]=i+1;
11
      else f[i]= -1;
12
13 }
```

Analysis of fail:

- In each iteration of the while i decreases (line 8, and f(j)<j)</p>
- i is reset (line 7) to −1 (when the previous iteration went through line 11), or to a value 1 greater than its value on the previous iteration (when through line 10).
- There are only LengthP –1 executions of line 7, the value of i has a total increment of at most LengthP –1.
- i cannot be decremented more than LengthP –1 times, the while is iterated at most LengthP –1 times over the whole algorithm.

JYP (

Consequently, the computing time is O(LengthP).

Now we can see, when the failure function is not known in advance, pattern matching can be carried out in O(LengthP + LengthS) by first computing the failure function and then using the FastFind.

Exercises: P118-1, P119-7, 9

Experiment 1: P123-8