Table 1: Results of physicochemical properties of the oil blend

Blends	Physicochemical Properties								
Ratio (BTO: WUVO)	MC (%)	SG	V @ 40 °C (mm²/s)	AV (mgKOH/g oil)	SV (mg KOH/g oil)	IV (meq O ₂ /kg oil)	API g		
BTO ₁₀	0.020	0.914	25.80	0.332	192	60.18	23.31		
BTO ₂₀	0.020	0.912	24.90	0.303	189	60.03	23.65		
BTO ₃₀	0.020	0.910	24.60	0.296	185	59.86	23.99		
BTO ₄₀	0.020	0.905	23.50	0.283	186	59.80	24.85		
BTO ₅₀	0.020	0.904	23.10	0.262	185	59.56	25.03		
BTO ₆₀	0.020	0.890	22.30	0.249	180	58.88	27.49		
BTO ₇₀	0.020	0.902	22.52	0.252	186	58.60	25.37		
BTO ₈₀	0.020	0.911	22.86	0.272	188	59.94	23.82		
BTO ₉₀	0.020	0.913	22.94	0.276	191	59.70	23.48		

M = Moisture content, SG = Specific gravity, V = Viscosity, AV = Acid value, IV = Iodine value, PV = Peroxide value, SV = Saponification value, API g = API gravity

Table 2: Five level- four variable- factors experimental for FAEE

Variables	Units	Symbol				Levels	
			-2	-1	0	1	2
Reaction time	(min)	X_1	60	65	70	75	80
Catalyst amount	(wt.%)	X_2	1.5	2.0	2.5	3.0	3.5
Reaction temp.	(°C)	X_3	60	65	70	75	80
EtOH/OMR	(ml/ml)	X_4	4	5	6	7	8

Table 3a: Experimental results and the predicted value

SN	X ₁	X ₂	X ₃	X ₄	FAEE3	PFAEE3
1	0.000	0.000	0.000	1.732	92.30	92.30
2	0.000	0.000	0.000	-0.269	93.80	93.80

3	-1.000	-1.000	-1.000	0.604	90.50	90.46	
4	1.000	-1.000	-1.000	0.604	93.00	93.04	
5	-1.000	1.000	-1.000	0.604	91.60	91.64	
6	1.000	1.000	-1.000	0.604	91.70	91.66	
7	-1.000	-1.000	1.000	0.604	90.90	90.94	
8	1.000	-1.000	1.000	0.604	96.24	96.20	
9	-1.000	1.000	1.000	0.604	97.20	97.16	
10	1.000	1.000	1.000	0.604	99.80	99.84	
11	1.518	0.000	0.000	-1.050	99.40	99.40	
12	-1.518	0.000	0.000	-1.050	93.00	93.00	
13	0.000	1.518	0.000	-1.050	96.00	96.00	
14	0.000	-1.518	0.000	-1.050	86.80	86.80	
15	0.000	0.000	1.518	-1.050	97.90	97.90	
16	0.000	0.000	-1.518	-1.050	85.00	85.00	

Table 3b: Anova and test of significant table

Source	Sum of	df	Mean Square	F -Value	Prob > F
	Squares				
Model	263.03	14	18.79	1300.18	0.0217
X_1	32.54	1	32.54	2251.71	0.0134
X_2	44.26	1	44.26	3063.24	0.0115
X_3	108.11	1	108.11	7481.75	0.0074
X_4	0.56	1	0.56	38.91	0.1012
X_1^2	12.09	1	12.09	836.54	0.0220
X_2^2	2.80	1	2.80	193.46	0.0457
X_3^2	2.62	1	2.62	181.25	0.0472
X_4^2	2.20	1	2.20	152.05	0.0515
X_1X_2	3.30	1	3.30	228.54	0.0420
X_1X_3	3.56	1	3.56	246.67	0.0405
X_1X_4	1.83	1	1.83	126.57	0.0564
X_2X_3	12.65	1	12.65	875.46	0.0215
X_2X_4	9.72	1	9.72	672.64	0.0245
X_3X_4	12.68	1	12.68	877.26	0.0215
Residual	0.014	1	0.014	-	-
Cor Total	263.04	15	-	-	-

Fit Statistics

Std. Dev.	0.12	R-Squared	99.98%
Mean	93.45	Adj R-Squared	99.92%
C.V.	0.0056	Pred R-Squared	99.97%
PRESS	0.0043	Adeq Precision	127.523

(a) Reaction time (min) Vs. Catalyst amount (wt. %)

(c) Reaction time (min) Vs. EtoH/OMR (vol/vol)

(b) Reaction time (min) Vs. Reaction temperature (deg. C)

(d) Catalyst amount (wt. %) Vs. Reaction temperature (deg. C)

(e) Catalyst amount (wt. %) Vs. EtoH/OMR (vol/vol)

(f) EtoH/OMR (vol/vol) Vs. Reaction temperature (deg. C)

Fig. 1(a-f): Three dimensional plots

Fig. 2a: SEM images of calcined catalyst

Fig. 2b: FTIR spectral analysis of the catalyst

Table 4: BET and XRD analysis of the catalyst

Catalysts	β (m²/g)	λ (cm³/g)	CaO (%)	BS (μmole.g 400 <bs<650< th=""><th>•</th><th>TBS</th><th>BSD (μmole/m²)</th><th>FAEE (%wt.)</th><th>CA (wt.%)</th></bs<650<>	•	TBS	BSD (μmole/m²)	FAEE (%wt.)	CA (wt.%)
SFCTCPH	1.10	0.0030	87.65	22	174	196	178.18	98.20	2.50

 $[\]beta$ = Surface area, λ = Pore volume, BS = Basic site, TBS = Total basic site, BSD = Basic site density, GD = Green diesel, CA = Catalyst amount

Fig. 3: Plots of results of catalysts reusability test

Table 5: Qualities of the produced FAEE

Parameter	BTO ₆₀	FAEE3	[2]	[3]	
Colour@ 27 °C	Brownish-	Light yellowish	-	-	
	yellow				
State @ room temp	Liquid	Liquid	Liquid	Liquid	

Specific gravity	0.902	0.864	-	860-900
Viscosity @ 40 °C/ (mm²/s)	22.30	2.78	1.9-6.0	3.5-5.0
Moisture content (%)	0.02	<0.01	<0.03	0.02
%FFA (as oleic acid)	0.1745	0.018	0.40 max	0.25 max
Acid value (mg KOH/g oil)	0.249	0.036	0.80 max	0.50 max
lodine value (g l ₂ /100g oil)	58.88	53.62	ND	120 max
Saponification value (mg KOH/g	180.00	172.22	236.66-253.04	ND
oil)				
Peroxide value (meq O ₂ /kg oil)	12.65	8.60	ND	12.85
HHV (MJ/kg)	41.17	41.52	ND	ND
Cetane number	63.39	65.92	57 min	51 min
API gravity	22.30	32.27	30-42	ND
Diesel index	49.50	52.04	50.4 min	ND

ND = Not Determine

Table 7: Comparing this study with reported literature studies

Blended Oil	Blending ratio (vol/vol)	Catalysts	Calcination temperature and duration	% CaO/KOH conversion	Catalyst analysis	% Biodiesel yield	References
Waste cooking oil	-	Ripe and unripe Plantain peels	500 °C for 4 h	KOH = 47.67%	XRD, SEM, BET, and FTIR	97.96	[7]
Jatropha curcus+Heavea brasiliness+ Elais guineensis oils	33:33:34	Chiken foot, Cat fish bones, and mixed	1000 °C for 3 h	CaO = 99.84%	SEM, EDX-ray, FTIR and BET	97.25	[8]

Calophyllum inophyllum-	50:50	Donax deltoids shells	105 °C for 24 h	CaO = 70.87%	XRD, SEM, BET, and FTIR	96.50	[9]
waste cooking oil			_,,,				
Waste cooking oil (WCO)	-	Ca(NO ₃).4H ₂ O	900 °C for 3 h	CaO=99.92 %	XRD, SEM, BET, and FTIR	99.19%	[10]
Waste + pure vegetable oil	-	Banana peel	700 °C for 4 h	КОН		94 to 97%	[11]
Beef Tallow blend + Waste	60:40	Theobroma cacao pod husks		CaO	XRD, SEM, BET, and FTIR		THIS STUDY
used vegetable oil		Submerged fermented calcined	750 °C for 4 h	87.65%		99.64%	_

Predicted against Actual

Box-Cox Plot for Power Transformation