MICROSIZED	FUEL CEL	L SYSTEM
-------------------	-----------------	----------

Patent Number:

JP7201348

Publication date:

1995-08-04

Inventor(s):

NAGURA HIROAKI; others: 01

Applicant(s)::

NRI & NCC CO LTD

Requested Patent:

□ JP7201348

Application Number: JP19930337595 19931228

Priority Number(s):

IPC Classification:

H01M8/04

EC Classification:

Equivalents:

Abstract

PURPOSE:To provide a microsized fuel cell capable of supplying energy to a microrobot put to practical use in the future, by using hydrogen energy which is a clean energy source with small contamination. CONSTITUTION: In a microsized fuel cell provided with a gas flow path system, having a gas flow path 2 prepared by etching a silicon substrate 1, microsensor 3 and an opening/closing control part 4, and a power generating cell part, a flow amount of H2 gas and O2 gas is controlled by a microactuator 3 and a microvalve 4.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平7-201348

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

H 0 1 M 8/04

N

Z

審査請求 未請求 請求項の数1 OL (全 3 頁)

(21)出願番号

特願平5-337595

(22)出願日

平成5年(1993)12月28日

(71)出願人 000155469

株式会社野村総合研究所

東京都中央区日本橋1丁目10番1号

(72)発明者 名倉 宏明

神奈川県横浜市旭区さちが丘148-4-807

(72)発明者 竹下 秀夫

神奈川県横浜市港北区箕輪町2丁目7番1

号 野村総研日吉寮

(74)代理人 弁理士 西澤 利夫

(54) 【発明の名称】 超小型燃料電池システム

(57)【要約】

【構成】 シリコン基盤(1)をエッチングして作製す るガス流路(2)とマイクロセンサー(3)と開閉制御 部(4)とを有するガス流路系および発電セル部を備え た超小型燃料電池であって、マイクロアクチュータ (3) とマイクロパルブ(4) によって、H2 ガスとO 2 ガスの流量を制御する超小型燃料電池システム。

【効果】 汚染の少ないクリーンなエネルギー源である 水素エネルギーを用いて、将来の実用化されるマイクロ ロボットにエネルギー供給可能な超小型燃料電池システ ムが可能となる。

【特許請求の範囲】

【請求項1】 基盤に形成されたガス流路系とその開閉 制御部および発電セル部を備えた超小型燃料電池であっ て、マイクロアクチュータとマイクロパルプによって、 ガス流量を制御する超小型燃料電池システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、超小型燃料電池に関 するものである。さらに詳しくは、この発明は、エネル ギー、機械、医療等の分野で超小型機械装置等のエネル 10 ギー源として特に有用な超小型燃料電池システムに関す るものである。

[0002]

【従来の技術とその課題】近年、次世代の小型ロボット として、マイクロマシンの開発が行われ始めた。マイク ロマシンは、超小型のロボットであり、特に人間の手に は届かない超細部の治療を必要とする医療等の分野でそ の実用化が期待されているシステムである。

【0003】しかしながら、このシステムは、現在のと ころ開発段階にあり、マイクロマシンに使用するエネル 20 ギー源等の具体的なコンセプトは、いまだ固まっていな い。このシステムのエネルギー源として考えられるもの に、従来から使用されている石油や天然ガス等の化石燃 料があるが、これらの使用は環境汚染を引き起こすこと がわかっており、医療等に使用するためには、これら従 来の化石燃料に代わるクリーンな新エネルギー源の開発 が急務となっている。中でも水素エネルギーの利用は、 次世代の重要なエネルギー源として期待されている。 従来から、水森を利用したエネルギー源として、燃料電 池が考案されてきた。燃料電池は、水索と酸素との電気 30 化学的反応によって直接発電を行い、生じる直流出力を 電気エネルギーとして利用するものである。燃料電池 は、使用する電解質により、アルカリ水溶液方式、リン 酸水溶液方式、溶解炭酸塩方式、固体電解質方式の4方 式に分類される。現在までのところ、最も実用化が進ん でいる燃料電池は、リン酸水溶液方式で、燃料として、 天然ガス、ナフサ、メタノール等の化石燃料を水蒸気改 質した水素が利用するものである。

【0004】しかしながら、これらの燃料電池は、発電 システム等に用いられる大型のもので、小型の燃料電池 40 可能となる。 システムは、現在までのところ考案されていなかった。 この発明は、以上の通りの従来技術の欠点を解消し、ク リーンなエネルギー源である水素エネルギーを利用し、 次世代の小型ロボットとして期待されるマイクロマシン 等のエネルギー源として機能することが可能な超小型燃 料電池システムを提供することを目的としている。

【課題を解決するための手段】この発明は、上記の課題 を解決するものとして、基盤に形成されたガス流路系と その開閉制御部および発電セル部を備えた超小型燃料電 50 6 反応媒体

池であって、マイクロアクチュータとマイクロパルプに よって、ガス流量を制御する超小型燃料電池システムを 提供する。

【0006】この構造を用いて、ガスの流量制御するこ とよって、化学反応の最適化を行い、エネルギー効率を 100 %に高めることが可能となる。以下、実施例を示 し、さらに詳しくこの発明について説明する。

[0007]

【実施例】

実施例1

実際に、この発明の超小型燃料電池システムを作製し た。以下、実施例について説明する。この発明の超小型 燃料電池システムは、図1に例示されるように、たとえ ばシリコン半導体基盤(1)に形成されたガス流路 (2) を通じて送り込まれるH2ガス及びO2 ガスの流 量をマイクセンサー(3)が感知し、化学反応が最適に なるよう圧電素子等による開閉制御部(4)を操作して 流量制御を行って、発電セル部 (5) にH2 ガス及びO 2 ガスを送り込んで発電を行うものである。発電セル部 では、H2 ガス及びO2 ガスが反応媒体(6)によって 化学反応を起こし電気を発生させる。この時、反応媒体 である電解質の種類は、従来知られている任意の方法を 用いてもよい。化学反応によって生じた生成水は、生成 水排出口(7)を通って外部に排出される。また、反応 媒体(6)も排出口(8)より排出され、発生した電気 は、電極(9)より出力される。

【0008】この方法を用いることによって、エネルギ 一効率を100%まで高めることが可能となる。また、超小 型の部品構成であるため、次世代の小型ロボットとして 期待されるマイクロマシン等の稼動エネルギー源として 機能することが可能であり、水素エネルギーを用いるク リーンなエネルギー源であることから、特にマイクロマ シン等の導入が望まれている医療技術等には、汚染の心 配のない有効なエネルギー源として使用できる。

[0009]

【発明の効果】以上詳しく説明した通り、この発明によ って、汚染の少ないクリーンなエネルギー源である水素 エネルギーを用いて、将来の実用化されるマイクロロボ ットにエネルギー供給可能な超小型燃料電池システムが

【図面の簡単な説明】

【図1】この発明の超小型燃料電池システムの構造を示 した概念図である。

【符号の説明】

- 1 半導体基盤
- 2 ガス流路
- 3 マイクロセンサー
- 4 開閉制御部
- 5 発電セル部

7 生成水排出口 8 反応媒体排出口

9 電極

【図1】

