MATH 18.01 - MIDTERM 3 REVIEW: SUMMARY OF SOME KEY CONCEPTS

18.01 Calculus, Fall 2014 Professor: Jared Speck

- **a.** Differential equations: $\frac{dy}{dx} = F(x, y)$
 - (a) Separation of variables: allows one to solve equations of the form $\frac{dy}{dx} = g(x)h(y)$
 - (i) Solution: $\int \frac{dy}{h(y)} = \int g(x) \, dx + C$
 - (b) In general there are infinitely many solutions
 - (c) Initial value problem
 - (i) Finding the particular solution y(x) with $y(x_0) = y_0$
- **b.** First fundamental theorem
 (a) If F' = f, then $\int_a^b f(x) dx = F(b) F(a)$ **c.** Second fundamental theorem

- (a) $\frac{d}{dx} \int_a^x f(t) dt = f(x)$ **d.** $L(x) = \int_1^x \frac{dt}{t}$ is an alternate definition of $\ln x$ **e.** Areas between curves (a) Area = $\int_a^b f(x) g(x) dx$ (using vertical rectangles)
 - (i) f is the upper function, g is the lower function
 - (ii) a and b are the x coordinates of the intersection points
 - (b) Area = $\int_{c}^{d} \widetilde{f}(y) \widetilde{g}(y) dy$ (using horizontal rectangles)
 - (i) \widetilde{f} is the right function, \widetilde{g} is the left function
 - (ii) c and d are the y coordinates of the intersection points
- **f**. Volume of a solid
 - (a) Total solid volume = $\int \text{Cross sectional area } d \text{width}$
- g. Volume of a solid of revolution
 - (a) Disk method
 - (i) Volume of a thin disk: $dV = \pi r^2 dx$, where r is the disk radius and dx is the disk thickness
 - (ii) Total solid volume = $\int dV$
 - (b) Shell method
 - (i) Volume of a thin shell of radius x, height h, and thickness dx is $dV = 2\pi x h dx$
 - (ii) Total solid volume = $\int dV$
- **h**. Average value of f(x) on [a,b] is $\frac{1}{b-a} \int_a^b f(x) dx$