UNIVERSITE LIBANAISE FACULTE DE GENIE

Concours entrée 2008-2009

CHIMIE

Durée: 1 heure

L'usage d'une Calculatrice non Programmable est autorisé.

Premier exercice (6points) Identification d'un Ester

Un ester E de formule moléculaire C₆H₁₂O₂ dérive d'un alcool A et d'un acide B. B est obtenu à partir de A. La chaîne carbonée de A est ouverte et saturée.

- 1- Identifier A, B et E.
- 2- Ecrire l'équation de la réaction permettant de passer de A à B.
- 3- Ecrire l'équation de la réaction donnant E à partir de A et B.
- 4- Durant le passage de A à B, il peut se former un composé organique C. Proposer un test justifiant la transformation totale de A en B

Deuxième exercice (7 points) Etude d'un équilibre chimique hétérogène

L'oxyde de mercure II se décomposés à chaud selon l'équation:

$$2 \text{ HgO}_{(s)} = 2 \text{ Hg}_{(g)} + O_{2(g)}$$

Le but de cet exercice est d'étudier cet équilibre hétérogène à la température de 450 °C.

Donnée:

- Masse molaire en g.mol⁻¹: M (HgO) = 216,6
- -Constante des gaz parfaits: $R = 8.314 \text{ J.mol}^{-1}.\text{K}^{-1}$

1-Etude de l'équilibre dans un récipient vide

Dans un récipient de capacité 1L que l'on considère invariable avec la température, on introduit, après avoir fait le vide, à 25 °C, une masse *m* d'oxyde mercurique HgO pur.

On porte le récipient à une température constant $t=450\,^{\circ}\text{C}$ supérieure à la température d'ébullition du mercure, on laisse l'équilibre s'établir (la réaction est très lente) et on mesure la pression totale $(P_{\text{éq}})$ à l'équilibre, elle a pour valeur $P_{\text{éq}}=3.9\,\text{bar}$.

Soit x la pression de O_2 à l'équilibre.

- 1.1- Calculer la pression du dioxygène x.
- 1.2- Donner, en fonction de x la constante d'équilibre Kp. Calculer Kp
- 1.3-Calculer la valeur minimale m₀ qu'il faut introduire dans le récipient afin que l'équilibre soit établie.

UNIVERSITE LIBANAISE FACULTE DE GENIE

2- Etude de l'équilibre en présence de dioxygène.

On modifie l'expérience précédente de la manière suivante:

Après avoir fait le vide, on introduit l'oxyde mercurique à 25°C, puis on introduit de dioxygène en quantité telle que sa pression soit de 0,385 bar à 25°C. Le récipient est alors fermé et porté à 450 °C.

- 2.1- Préciser l'effet de cette modification sur la position de l'équilibre.
- 2.2- Etablir l'expression permettant de calculer la nouvelle pression totale obtenue en fonction de y pression de Hg à l'équilibre.
- 2.3-Vérifier que la valeur de cette pression est P = 3,935 bar.

Troisième exercise (7 points) Solution tampon

Le but de cet exercice est de préparer une solution de pH connu.

Donnée:

Couple acide/base	H_3O^+ / H_2O	CH ₃ COOH/ CH ₃ COO	H ₂ O/HO
pKa	0	4,8	14

On dispose des deux solutions suivantes:

- -Solution S_1 d'éthanoate de sodium ($Na^+ + CH_3 COO^-$) de concentration $C_1 = 0.02 \text{ mol.L}^{-1}$;
- -Solution S_2 d'acide hydrochlorique ($H_3O^++Cl^-$) de concentration $C_2 = 0.05$ mol. L^{-1} ; et de la verrerie nécessaire pour effectuer des mesures précises.

On tend à préparer deux solutions tampon:

- La solution A, de $pH_A = 5.1$ en versant un volume V_1 de S_1 dans un volume V_2 de S_2 .
- La solution B, de $pH_B = 4.5$ en versant un volume V_2 de S_2 dans un volume V_1 de S_1 .
- 1-Montrer que dans chaque cas on a la relation suivante :

$$\frac{V_1}{V_2} = \frac{{V_1}'}{{V_2}'} = \frac{C_2}{C_1} \left(1 + 10^{(pH - pKa)} \right)$$

- 2-Calculer le volume V_1 de S_1 qu'il faut verser dans un volume V_2 de S_2 pour obtenir 100 mL de A et le volume V_2 de S_2 qu'il faut verser dans un volume V_1 de S_1 Pour obtenir 250 mL de B.
- 3-On prépare une solution tampon de pH = 4.8 en mélangeant un volume x de S_1 et un volume y de S_2 . Trouver la relation entre x et y dans les deux cas suivants:
- 3.1- on verse S_2 dans S_1
- 3.2- on verse S_1 dans S_2

UNIVERSITE LIBANAISE FACULTE DE GENIE

Concours entrée 2008-2009

Durée: 1 heure

Solution de CHIMIE

Premier exercice (6 points) <u>Identification d'un Ester</u>

Nº	Répondre attendue			
1	L'acide provenant de l'oxydation ménagée de l'alcool, l'alcool est donc primaire. L'acide et l'alcool renferment dans leurs molécules le même nombre d'atomes de carbone. L'ester est formé à partir de A et de B et possédant dans sa molécule 6 atomes de carbone, chacune des molécules A et B renferme 3 atomes de carbone. A est le propan-1- ol de formule semi développée CH ₃ – CH ₂ – CH ₂ OH. B est acide propénoïque de formule semi développée CH ₃ – CH ₂ – COOH	3		
2	Il s'agit d'une oxydation ménagée, l'équation est alors: CH ₃ − CH ₂ − CH ₂ OH + O ₂ → CH ₃ − CH ₂ − COOH + H ₂ O.	1		
3	C'est une esterification: CH ₃ – CH ₂ – COOH+ CH ₃ – CH ₂ – CH ₂ OH⇒CH ₃ – CH ₂ –COO− CH ₂ – CH ₂ – CH ₃ + H ₂ O	1		
4	Le corps organique qui peut être formé est le propanal. Si la réaction est totale on n'a pas le compose C. le test est négatif avec le DNPH	1		

UNIVERSITE LIBANAISE FACULTE DE GENIE

Deuxième exercice (7 points) <u>Etude d'un équilibre chimique hétérogène</u>

Nº			Répondre	attendue		Note
1.1	La pression totale à l'équilibre est: $P_{eq} = P_{O2} + P_{Hg} = x + 2$ $x = 3x = 3.9$. On tire: $x = 1.3$ bar.				1	
1.2	$Kp = P_{O2} \times (P_{Hg})^2 = x \times (2x)^2 = 4x^3 = 8.79.$				1	
1.3	Pour que l'équilil constituants du sy $n_0 = m_o/M_{HgO} \ge 1$ La valeur minima	ystème. $n_{O2 (eq)} = \frac{P}{P}$	$\frac{(O_2)V}{RT} = \frac{1}{2}$	$3 \times 10^5 \times 1.0 \times 1$ 8.314(273+45	$\frac{0^{-3}}{0)} = 0.0216 \text{ mol.}$	1,5
2.1	On introduit initialement du dioxygène et de l'oxyde mercurique. Pour atteindre la valeur K _p , il faut qu'un peu moins de HgO se dissocie.				0,5	
2.2						2
	Etat initial Etat équilibre	2HgO(s)	2Hg(g) 0 Y	$O_{2(g)}$ 0.385 $\frac{y}{2} + 0.385$	$ \begin{array}{c} \mathbf{P_{totale}} \\ 0.385 \\ \hline \frac{3y}{2} + 0.385 \end{array} $	
2.3	$Kp = (y)^{2}(\frac{y}{2} + 0)$ Avec P = 3.935 b vérifiée.			2	3. La valeur 3.935 is	1

UNIVERSITE LIBANAISE FACULTE DE GENIE

Troisième exercice (7 points) <u>Solution tampon</u>

ľ	V _o	Répondre attendue				
	1	En mélangeant les deux solutions S_1 et S_2 ou S'_1 et S'_2 une réaction va avoir lieu d'équation: $CH_3COO^- + H_3O^+ \implies CH_3COOH + H_2O$				
		Dont Kr = 10 ^{4.8} > 10 ⁴ la réaction est totale. Pour avoir une solution tampon, il faut que les deux espèces CH ₃ COO ⁻ et CH ₃ COOH coexistent dans des proportions voisines l'une de l'autre et que Les ions H ₃ O ⁺ réagissent totalement. pH = pKa + log[base]/[acide] on tire [base]/[acide] = 10 ^{pH-pKa} = 10 ^{0.3} = 2 en ajoutant S ₁ sur S ₂ tout H ₃ O ⁺ se transforme en CH ₃ COOH et il faut ajouter en plus CH ₃ COO ⁻ tel que:				
		$ \begin{array}{c ccccc} & CH_3COO^- & H_3O^+ & CH_3COOH & H_2O \\ \hline Etat initial & C_1V_1 & C_2V_2 & 0 & Bcp \\ \end{array} $	1			
		Etat équilibre $C_1V_1 - C_2V_2$ 0 C_2V_2 Bcp $\{C_1V_1 - C_2V_2\}/C_2V_2 = 10^{pH-pKa}$ On tire $\frac{V_1}{V_1} = \frac{C_2}{V_2}(1 + 10^{pH-pKa})$.				
	2	$\{C_1V_1 - C_2V_2\}/C_2V_2 = 10^{pH-pKa}$ On tire $\frac{V_1}{V_2} = \frac{c_2}{c_1}(1 + 10^{pH-pKa})$. Dans le premier cas: $V_1 + V_2 = 100 \text{ mL}$; $\frac{V_1}{V_2} = \frac{0.05}{0.02}(1 + 10^{5.1-4.8})$; $V_1 = 88,24 \text{ mL et } V_2 = 11,76 \text{ mL}$ Dans le deuxième cas: $V_1 = 197,36 \text{ mL et } V_2 = 52,64 \text{ mL}$				
	3	Dans le deuxième cas: $V_1 = 197,36 \text{ mL}$ et $V_2 = 52.64 \text{ mL}$. On peut appliquer dans les deux cas la relation : $\frac{V_1}{V_2} = \frac{C_2}{C_1} (1 + 10^{pH-pKa}).$ On tire : $\frac{x}{y} = \frac{0,05}{0,02} (1 + 10^0) = 5$ Ou bien : dans les cas où on ajoute S_2 à la base S_1 ça correspond à la demi-équivalence. $nCH_3COO^- = 2nH_3O^+$ $0.02x = 2.005 \text{ on tire } \frac{x}{y} = 2.5$ dans les cas où on ajoute la base S_1 à l'acide S_2 ça correspond à un nombre de mole CH_3COO^- double du nombre de mole de H_3O^+				
		nombre de moie CH ₃ COO double du nombre de moie de H ₃ O nCH ₃ COO on tire : $\frac{x}{y} = 5$.				

UNIVERSITE LIBANAISE FACULTE DE GENIE

