Newton's Laws of Motion

Inertia

- Definition

 Tendency of an object to maintain its state of rest or uniform motion in a straight line
- Newton's first law
 "An object continues in its state of rest, or if
 moving it continues to move with uniform velocity,
 unless compelled by some external force to act
 otherwise"

Types of Inertia

Inertia of the coin resists change to its state of rest

Books on top of the one being pulled resist change to its state of rest

Situations Involving Inertia

Passenger has the inertia to remain at rest when the bus moves forward

Situations Involving Inertia

When the bus suddenly stop, the inertia of the passenger has the tendency to keep moving forward

 Only the carom coin at the bottom of a pile is removed when a fast moving carom striker hits it.

Situations Involving Inertia

Inertia of the passengers will maintain its original state that use to keep it moving at its original speed

Situations Involving Inertia

Huge inertia of the plane causes it to continue moving over a long period of time until its inertia overcome by the overdecelerating action of friction

Inertia of Direction

The inability of a body to change by itself its direction of motion.

E.g.: When a car moves round a curve the person sitting inside is thrown outwards in order to maintain his direction of motion due to inertia of motion.

Inertia and Mass

The larger the mass of an object, the greater its inertia

Inertia and Mass

The larger the mass of an object the larger its inertia

Inertia and Mass

Example:

Inertia of motorcycle << Inertia of car

Momentum

Definition: Momentum = Mass x velocity $p = m \times v$

Sl unit: kg ms-1

>> Vector quantity, has both magnitude and direction

Momentum

Example:

Force, mass and acceleration

Newton's Second Law

Definition:

Force ∞ final momentum - initial momentum time

The rate of change of linear momentum is directly proportional to its impressed force

Or

The Force is directly proportional to the product of mass and acceleration

Force, mass and acceleration

Newton's Second Law

$$F \propto \frac{mv - mu}{t}$$

$$F = kma$$

when
$$F = 1 \text{ N}$$
, $m = 1 \text{ kg and a} = 1 \text{ ms}^{-2}$, thus, $k = \frac{\Gamma}{ma} = 1$

$$F = ma$$

Relationship between force, mass and acceleration

Relationship between acceleration and force

a ∞ F

Relationship between force, mass and acceleration

Relationship between acceleration and mass

$$a \propto \frac{1}{m}$$

Impulsive force

Definition: Large force that acts over a short period of time during collision or explosion

$$F = \frac{mv - mu}{t}$$
 = rate of change of momentum

Impulse

Definition: Impulse = Ft

Ft = mv - mu

SI unit: kg ms-1 or Ns

Impulsive force

Increase of time impact will reduce the magnitude of force

Decrease of impact time will increase the magnitude of the force

Decreasing the time of impact to increase the impulsive force

Football

Large impulsive force to act on the ball

Decreasing the time of impact to increase the impulsive force

Hammer

Impulsive force acts on the head of the nail

Increasing the time of impact to reduce the impulsive force

Long jump

Sand pit lengthen the time of impact

Increasing the time of impact to reduce the impulsive force

High jump

>> Thick piece of soft mattress lengthen the time of impact

Newton's Third Law

- ☐ Newton's third law of motion states that "To every action, there will be an equal and opposite reaction.
- □Action and reaction are equal in magnitude but opposite in direction

