Filed: June 19, 2006 TC Art Unit: 1792

Confirmation No.: 9512

<u>REMARKS</u>

Further to the Office Action mailed October 2, 2009, Applicant respectfully requests

reconsideration.

Allowable Subject Matter

The Examiner has indicated that claim 21 is allowed and that claims 12 and 19

would be allowable if rewritten in independent form including all of the limitations of the

base claim and any intervening claims.

Double Patenting Rejection

Claim 10 is objected to as being a substantial duplicate of claim 21. Applicant

respectfully submits that this rejection is moot based on the amendments to independent

claim 1, submitted herein, from which claim 10 depends. Accordingly, Applicant

respectfully requests that this rejection be withdrawn.

In the Claims

Applicant has amended the claims and claim 1 now incorporates subject matter of

former claims 2 and 5 (now canceled) and of claim 8, and has been amended to recite that

the reaction gas contains at least one carbon-precursor hydrocarbon "selected in the

group of propane, butane, propylene and ethane," support for which is found at least at

page 8, line 25 to page 9, line 2 of the originally filed specification. In addition, claim 1 has

been amended to recite that the method is characterized by measuring the content in the

effluent gas of at least one compound selected from "allene and propine," and the process

is controlled by adjusting at least the flow rate of "the carbon-precursor hydrocarbon"

admitted into the oven "to maintain the measured content at a substantially constant

value," support for which is found at least at page 20, lines 32-35, original claim 1 and

example 9 of the originally filed specification.

-5-

BDL-487XX WEINGARTEN, SCHURGIN, GAGNEBIN & LEBOVICI LLP TEL. (617) 542-2290 FAX. (617) 451-0313

Filed: June 19, 2006 TC Art Unit: 1792

Confirmation No.: 9512

Claim 8 has been amended to recite that "the carbon-precursor hydrocarbon" is

diluted in methane "or in an inert gas," support for which is found at least at page 6, lines

21-26 of the originally filed specification.

Thus, Applicant respectfully submits that no new matter has been added by the

amendments to the claims submitted herein.

Obviousness Rejections Under 35 USC §103

Claims 1 - 4, 6 - 9, 11, 13, 15, 16 - 18 and 20 stand rejected under 35 U.S.C.

§103(a) as being unpatentable over US Patent 6,001,419 to Leluan in view of US Patent

6,210,745 to Gaughan and further in view of "Formation of Pyrolytic Carbon During the

Pyrolysis of Ethane at High Conversions," by Glasier. Applicant respectfully traverses.

Claim 1, as amended, recites a method of controlling the process of densifying at

least one porous substrate with pyrolytic carbon by chemical vapor infiltration.

process includes admitting a reaction gas "containing at least one carbon-precursor

hydrocarbon selected in the group of propane, butane, propylene and ethane" and

measuring the content in an effluent gas "of at least one compound selected from allene

and propine." The process is controlled by "adjusting at least the flow rate of the carbon-

precursor hydrocarbon admitted into the oven to maintain the measured content at a

substantially constant value."

Leluan is directed to a method of chemical vapor infiltration with variable infiltration

parameters for accomplishing a densification process. (Abstract). Leluan discloses that it

is necessary to adapt the infiltration parameters throughout the densification process as a

function of changes in the porometry, i.e., the size and shape of the internal pores of the

substrate, as the pores are being filled. (Col. 4, lines 27-28). The variation of parameters,

for example, temperature, pressure, gas flow rate, or gas retention (or transit time), is

controlled in a predetermined manner and not as a function of a content in the affluent gas,

i.e., in "real-time," as in the present application.

-6-

Filed: June 19, 2006 TC Art Unit: 1792 Confirmation No.: 9512

The Examiner acknowledges that Leluan "fails to disclose controlling the process by measuring the contents in the effluent gas." (Office Action, page 5). According to the Examiner, however, "Gaughan discloses controlling a vapor deposition process by using a residual gas analyzer" to "improve real time monitoring of the process" and that it would have been obvious to modify Leluan to "analyze the effluent gas to control the process" as, according to the Examiner, "taught by Gaughan." (Office Action, page 6.)

Gaughan is directed to a surface coating process in which the chemical vapor in the chamber is monitored. (Col. 2, lines 10-13). According to Gaughan, there is a correlation between the amounts and ratios of various gases in a deposition chamber and the amount of material that has been deposited. (Col. 3, line 25 - col. 4, line 8). Gaughan teaches that a residual gas analyzer (RGA) can be used as a quality control system to monitor the surface coating process. (Col. 4, lines 8-47). Specifically, predetermined parameters are implemented to deposit a film and a resulting gaseous environment is measured. (Col. 6, lines 8-13; Fig. 3, steps 76, 78). The gaseous environment is measured and compared to an expected value range based on the amount of material that was meant to be deposited. (Col. 6, lines 14-20; Fig. 3, steps 80, 82). If the measured gases fall within the range, then the amount of deposited material is acceptable. If, however, the measured gases are out of range, then the amount of material that has been deposited is not acceptable and, therefore the process is outside of specifications.

Applicant notes that Gaughan is related to a surface coating process, and more particularly, to forming a TiN film onto a surface. Gaughan, however, does not relate to a pyrolytic carbon densification process as does Leluan and the present application. As set forth in the present specification, to successfully complete the process of densification of at least one porous substrate with pyrolytic carbon by chemical vapor infiltration, the reaction gas has to reach the internal porosity of the substrate before forming the pyrolytic carbon deposit. As also explained in the present specification, the infiltration process is greatly influenced by the progressive densification of the porous substrate, i.e., the progressive filling of the pores of the substrate.

Filed: June 19, 2006 TC Art Unit: 1792

Confirmation No.: 9512

As Gaughan is related to an external surface coating process, Gaughan does not

deal with the problems of filling up the pores of a porous substrate due to changes in

porometry, as dealt with by Leluan, as such a problem is necessarily absent, and not an

issue, in a surface coating process.

The Examiner acknowledges that Leluan in view of Gaughan fails to disclose

measuring the content of allene, propine and benzene in the effluent. (Office Action, page

6). The Examiner submits, however, that Glasier discloses formation of pyrolytic carbon

using ethane and discloses that the amount of benzene in the effluent gas relates to the

carbon deposition and that it would have been obvious to control deposition by measuring

the benzene in the effluent gas.

Applicant respectfully submits that maintaining "the measured content at a

substantially constant value," as recited in claim 1, as amended, is not taught or suggested

by the cited combination of references. Essentially, Applicant understands that the Glasier

reference has been cited as teaching this limitation.

Glasier also relates to a surface coating process and to the study of the deposition

of a pyrolytic carbon coating on quartz, i.e., a non-porous substrate, using ethane as a

precursor. (Page 16, Right Col., last paragraph). According to Glasier, there is a

correlation between the rate of pyrolytic carbon formation and the benzene concentration

in a reactor. According to Applicant's review, however, the only teaching of Glasier with

respect to benzene is that, in a surface coating process, the higher the benzene

concentration in the reactor, the higher the deposition rate.

Glasier, however, only teaches that the benzene concentration relates to the

deposition rate in connection with a CVD process, namely the formation of the coating film

on the surface of a substrate. Even assuming that maintaining the content of benzene

concentration at a constant value could assist in maintaining a constant deposition rate, as

suggested by the Examiner, there would then be no relevance with respect to a CVI

process. As the Examiner has noted, a CVI process differs from a CVD process in that it

aims at depositing a material inside a substrate (within the porosity of a substrate) rather

-8-

Filed: June 19, 2006 TC Art Unit: 1792

Confirmation No.: 9512

than on the surface of a substrate. In the case of a CVI process, maintaining a constant

deposition rate would result in a premature blocking of the access to the internal porosity

of the substrate. Even so, there is no teaching or suggestion that can be found in Glasier

that a correlation is identified as between the deposition rate and a CVD process and the

measured content of C₃H₄. Further, there is no teaching or suggestion to be found in

Glasier that the content of the compound in the effluent gas is maintained at a substantially

constant value by varying the flow rate of the carbon-precursor polycarbon, as is recited in

claim 1.

Applicant respectfully submits, for at least the foregoing reasons, that independent

claim 1, as amended, is patentable over the cited combination of Leluan, Gaughan, and

Glasier. As claims 3, 4 and 8 - 12 depend, either directly or indirectly from claim 1, it is

respectfully submitted that these claims are also patentable over this cited combination of

references.

Claims 5 and 14, now canceled, stand rejected as being unpatentable over Leluan

in view of Gaughan and Glasier and further in view of "A Reduced Reaction Model for

Carbon CVD/CVI Processes" by Birakayala. As claim 1 has been amended to incorporate

the subject matter of canceled claim 5, Applicant traverses the rejection of claim 5 as now

being applied to claim 1.

Applicant submits that Birakayala does not remedy the deficiencies of Leluan,

Gaughan and Glasier with respect to independent claim 1, as amended.

Birakayala is related to the densification of a porous carbon fibrous substrate by

deposition of carbon within the pores of the substrate. (Page 675, Introduction, first

sentence). Birakayala discloses a reaction model for a CVD/CVI process to predict the

pore geometry changes with respect to time and gas space kinetics are a component of

the model. (Page 676, left column, bottom 5 lines). A total of 47 reversible reactions

involving 19 species are identified with a reference to the molecule C₃H₄ appearing at lines

16 and 17 of Table I. (Page 676). In order to build a useful model, a smaller set of the

-9-

Filed: June 19, 2006 TC Art Unit: 1792

Confirmation No.: 9512

most relevant reaction mechanisms is selected. (Page 676, right column, last two lines to

page 677, left column, line 1). The dominant species are identified as acetylene, benzene

and ethylene. (Page 677, left column, line 16-18 and right column, lines 9-12).

The Examiner maintains that Leluan in view of Gaughan and Glazier discloses

controlling the process by adjusting the flow rate of the gases in response to effluent gas

concentrations but fails to disclose measuring the amount of allene and/or propine content.

The Examiner asserts that Birakayala "explicitly discloses the by-products of the CVI

process and discloses that the amount of C₃H₄ can be measured." (Office Action, page 4,

lines 4 and 5). The Examiner further maintains that Birakayala discloses allene and/or

propine are known reaction products during the formation of carbon during an infiltration

process and therefore "taking the references collectively," it would have been obvious to

modify Leluan in view of Gaughan and Glasier to adjust the process parameters in

response to the allene and/or propine concentration "because Birakayala discloses such is

present in measurable quantities in the affluent gas of a CVI carbon densification process."

(Office Action, page 8).

Applicant respectfully disagrees and can find no teaching within Birakayala to

measure the content of C₃H₄ in an effluent gas in order to control the process. Birakayala

provides a detailed discussion about gas phase kinetics, surface kinetics and pore closure

models that can be used to predict deposition profiles within the pores. With respect to the

gas phase kinetics, Birakayala mentions that the complete mechanism is made up of 47

reversible reactions with 19 species. (Page 676, right column, section gas phase kinetics,

first paragraph, lines 14-15). There is a reference to C₃H₄ in Table 1 and Fig. 2 but

Applicant can find no indication or suggestion that the densification process could be

controlled as a function of the C₃H₄ content in the affluent gas.

Further, the Examiner has failed to show why, when considering Birakayala, one of

ordinary skill in the art would understand that the content of C₃H₄ among the 19 identified

species, would be critical, whereas, on the contrary, Birakayala directs the reader's

-10-

Filed: June 19, 2006 TC Art Unit: 1792

Confirmation No.: 9512

attention to the dominant species, i.e., acetylene, benzene and ethylene, which do not

include C₃H₄.

As above, Gaughan and Glasier are directed to forming a coating on the surface of

a substrate. In a densification process, in contrast to a surface coating process, the

changes in porometry, namely the progressive closure of the pores of the substrate greatly

influences the process, as discussed above. This is reiterated in Birakayala because the

pore closure model is one of the three components of the overall process model.

Similar to the arguments submitted above, a pore closure model, as described by

Birakayala, is completely irrelevant to an external surface coating process such as

described by Gaughan and Glasier. One of ordinary skill in the art, when implementing a

surface coating process, has no use for the teachings related to the problem of controlling

a densification process as described by Birakayala.

Assuming, without agreeing, that the combination of these references is proper,

however, Applicant respectfully submits that claim 1, as amended, is not rendered obvious

by the cited combination of references for at least the reason that there is no teaching or

suggestion of controlling a densifying process using a reaction gas containing at least one

carbon-precursor hydrocarbon selected "in the group of propane, butane, propylene and

ethane," measuring the content in the effluent gas "of at least one compound selected

from allene and propine" and adjusting the flow rate of the carbon-precursor hydrocarbon

to maintain the "measured content at a substantially constant value," as recited in claim 1.

-11-

Filed: June 19, 2006 TC Art Unit: 1792 Confirmation No.: 9512

In view of the foregoing, Applicant believes the pending claims are in condition for allowance and a notice to this effect is earnestly solicited. The Examiner is encouraged to telephone the undersigned attorney to discuss any matter that would expedite allowance of the present application. The Examiner is hereby authorized to charge any fees due to this submission, or credit any balance, to Deposit Account No. 23-0804.

Respectfully submitted, SION, Eric

Date: December 23, 2009

By: /Charles L. Gagnebin, iii/
Charles L. Gagnebin, III
Attorney for Applicant
Registration Number: 25,467

WEINGARTEN, SCHURGIN, GAGNEBIN & LEBOVICI LLP Ten Post Office Square Boston, MA 02109 Tel: (617) 542-2290

Fax: (617) 451-0313

388008.1

-12-