Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 186.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.54 658.53 658.52 Bølgelengde (nm) 658.51 658.50 658.49 658.48 658.47 10 20 50 0 30 40 60 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 14.28, tilsynelatende blå størrelseklass $m_B=17.22$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 5.68, tilsynelatende blå størrelseklass $m_B = 7.62$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=5.68,$ tilsynelatende

blå størrelseklass m_B = 8.62

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 14.28, tilsynelatende blå størrelseklass $m_B = 16.22$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.76 og store halvakse a=24.15 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.76 og store halvakse a=9.27 AU.

Filen 1F.txt

Ved bølgelengden 600.72 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 10.60 10.40 Tilsynelatende størrelsklasse m_{V} 10.20 10.00 9.80 9.60 9.40 9.20 20 40 100 120 Ó 60 80 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 18.40 solmasser, temperatur på 20.00 Kelvin og tetthet 9.97e-21 kg per kubikkmeter

Gass-sky B har masse på 5.40 solmasser, temperatur på 66.20 Kelvin og tetthet 3.63e-22 kg per kubikkmeter

Gass-sky C har masse på 9.20 solmasser, temperatur på 77.40 Kelvin og

tetthet 7.09e-21 kg per kubikkmeter

Gass-sky D har masse på 34.90 solmasser, temperatur på 13.90 Kelvin og tetthet 1.09e-20 kg per kubikkmeter

Gass-sky E har masse på 6.00 solmasser, temperatur på 28.40 Kelvin og tetthet 7.71e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjerna har en degenerert heliumkjerne

STJERNE B) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE C) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE D) kjernen består av karbon og oksygen og er degenerert

STJERNE E) stjernas overflate består hovedsaklig av helium

Filen 1L.txt

Stjerne A har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 7.81

Stjerne B har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 2.86

Stjerne C har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V = 9.15

Stjerne D har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 8.66

Stjerne E har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 8.73

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten 100 m/s mot deg eller fra deg (like mange i hver retning) og tilsvarende for den andre halvparten av partiklene men disse har 50 m/s mot deg eller fra deg

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.3359999999999996536104 AU.

Tangensiell hastighet er 63415.979909928923007101 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.730 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.715 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=20.518.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9428 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00026 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=220.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9972 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 580.50 nm.

Filen 4A.txt

Stjernas masse er 1.82 solmasser.

Stjernas radius er 0.48 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -400 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: $14.08\ \mathrm{millioner}\ \mathrm{K}$

Filen 4G.txt

Massen til det sorte hullet er 4.59 solmasser.

r-koordinaten til det innerste romskipet er
r $=14.33~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=21.43~\mathrm{km}.$