Scilab Textbook Companion for Modern Physics for Scientists and Engineers by S. T. Thornton and A. Rex¹

Created by
Juhi Rajput
Modern Physics
Physics
Shri Mata Vaishno Devi University
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

August 14, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Modern Physics for Scientists and Engineers

Author: S. T. Thornton and A. Rex

Publisher: Cengage Learning, USA

Edition: 4

Year: 2013

ISBN: 978-1-133-10372-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
2	Special Theory of Relativity	11
3	The Experimental Basis of Quantum Physics	21
4	Structure of the Atom	32
5	Wave Properties of Matter and Quantum Mechanics I	39
6	Quantum Mechanics II	47
7	The Hydrogen Atom	54
8	Atomic Physics	61
9	Statistical Physics	64
10	Molecules Lasers and Solids	70
11	Semiconductor Theory and Devices	7 6
12	The Atomic Nucleus	81
13	Nuclear Interactions and Applications	94
14	Particle Physics	102
15	General Relativity	106

List of Scilab Codes

Exa 2.2	Speed of the aircraft
Exa 2.3	Speed of the aircraft from the standpoint of length con-
	traction
Exa 2.4	Speed of the aircraft from the standpoint of length con-
	traction
Exa 2.6	Time loss of an atomic clock
Exa 2.8	Relativistic doppler effect in twin paradox
Exa 2.11	Accelerating electrons to produce X rays
Exa 2.13	Head on collision of two protons
Exa 2.15	Minimum kinetic energy of the protons in head on col-
	lision
Exa 2.16	Binding energy of He nucleus
Exa 2.17	Fractional mass increase of the Na and Cl atoms
Exa 2.18	Kinetic energy and the mass of sigma particle
Exa 3.1	A moving electron subjected to electric and magnetic
	fields
Exa 3.3	Hydrogen series of spectral lines
Exa 3.4	Maximum wavelength emitted from a heated furnace .
Exa 3.5	Sun as a blackbody
Exa 3.10	Exposure time of light to produce a photoelectron of
	given kinetic energy
Exa 3.11	Photoelectric effect for lithium
Exa 3.12	Lithium exposed to light radiation
Exa 3.13	Number of photons in the light beam of given wave-
	length and intensity
Exa 3.15	Minimum wavelength of the X rays
Exa 3.16	X ray scattering from the gold target

Exa 4.1	Maximum scattering angle in Geiger and Marsden ex-
E 4.9	periment
Exa 4.2	Fraction of alpha particles deflected from a gold foil.
Exa 4.3	Fraction of alpha particles deflected from goil foil at a given angle
Exa 4.5	Size of the nucleus
Exa 4.6	Nonrelativistic justification for the spped of the electron
Exa 4.7	Longest and shortest wavelengths observed in Paschen series for hydrogen
Exa 4.8	Wavelengts of H alpha lines for three isotopes of hydrogen
Exa 4.9	Shortest wavelength emitted by doubly positive Li ion
Exa 5.1	The wavelength of the X rays incident on rock salt
Exa 5.2	de Broglie wavelength of a tennis ball and an electron
Exa 5.3	de Broglie wavelength of an electron used by Davisson
T . F 4	and Germer
Exa 5.4 Exa 5.7	Wavelength of a neutron at different temperatures
	Distance between first two maxima in fringe pattern .
Exa 5.8	Momentum uncertainty fo a tennis ball and an electron
Exa 5.9	Minimum kinetic energy of an electron in hydrogen atom
Exa 5.10	Minimum kinetic energy of electron localized within a
Exa 5.12	typical nuclear radius
Exa 5.12	Energy width of excited state of atom and uncertainty ratio of frequency of emitted photon
Exa 5.13	Energy at diffrent levels
Exa 6.4	Probabilities of a particle in the given regions
Exa 6.4 Exa 6.9	Transition energy for a proton confined to a nucleus
Exa 6.14	Fraction of electrons tunneling through a barrier
Exa 6.15	Probability of electron tunneling through the barrier .
Exa 6.16	A particle penetrating through a potential step
Exa 6.17	An alpha particle tunnelling through a nucleus
Exa 7.2	Normalization of hydrogen wave function
Exa 7.4	Degeneracy of M level in hydrogen atom
Exa 7.7	Energy difference between components of p states of
	atomic hydrogen placed in an external field
Exa 7.8	Separation of the atomic beam
Exa 7.9	Number of distinct states for the 4d level of atomic hy-
	drogen
Exa 7.10	Energy of allowed transitions for the hydrogen atom .
	0, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Exa 7.13	Probability of the electron in the 1s state of the hydro-
Exa 8.3	gen atom
Exa 8.5	LS coupling of two electrons in an atom
Exa 8.8	Internal magnetic field causing spin orbit splitting
Exa 9.1	Mean translational kinetic energy of gas molecules at
Exa 9.1	room temperature
Exa 9.3	Mean molecular speed in light gas hydrogen and heavy
Exa 9.0	radon gas
Exa 9.4	Fraction of molecules in an ideal gas having speed near
LIAG J.4	to the most probable speed
Exa 9.6	Relative number of atoms in the ground and first excited
LAG 5.0	states in atomix hydrogen
Exa 9.7	Fermi energy and Fermi temperature for copper
Exa 9.8	Electronic contribution to the molar heat capacity of
LAG 0.0	metals
Exa 10.1	Energy of lowest rotational state of nitrogen gas
Exa 10.2	Vibrational energy levels of HCl molecule
Exa 10.4	Range parameter for NaCl
Exa 10.5	Induced diamagnetism in an atom
Exa 10.6	Paramagnetism in a typical material
Exa 10.7	Superconductivity in niobium
Exa 10.8	Magnetic field perpendicular to the loop
Exa 11.1	Relative number of electrons with given energies above
	the valence band
Exa 11.3	Hall effect in zinc strip
Exa 11.4	Current through a reverse bias pn junction diode
Exa 11.5	Energy produced by a solar cell per day
Exa 11.6	Data bits stored into CD ROM
Exa 12.1	Minimum kinetic energy of a proton in a medium sized
	nuclecus
Exa 12.2	Nuclear radius of calcium
Exa 12.3	Radii of U238 and He4 nuclei
Exa 12.4	A proton subjected to the magnetic field
Exa 12.5	Binding energy of Be
Exa 12.6	Total Coulomb energy of U238
Exa 12.8	Binding energy per nucleon
Exa 12.10	Radiactive decay of Po210

Exa 12.11	Time of decay of F18 isotope	87
Exa 12.12	Alpha activity of 10 kg sample of U235	88
Exa 12.13	Non emission of a neutron by U230	89
Exa 12.15	Possible reaction with Fe55 isotope	89
Exa 12.16	Allowed decay modes for Ac226	90
Exa 12.17	Error introduced in the gamma ray energy	92
Exa 12.18	Age of the uranium ore	92
Exa 12.19	C14 dating to determine age of bone	93
Exa 13.1	Number of neutrons produced in collision of alpha par-	
	ticle and carbon target	94
Exa 13.2	Likelihood of a neutron production than a proton	95
Exa 13.3	Nuclear reaction observed by Rutherford	95
Exa 13.4	Final energy of excitation of product nucleus in the nu-	
	clear reaction	96
Exa 13.5	Ground state Q value of the induced fission reaction .	97
Exa 13.6	Excitation energy of the compound nuclei	98
Exa 13.7	Nuclear fission through neutron capture	98
Exa 13.8	Fusion reaction in supergiant stars	99
Exa 13.9	Ignition temperature needed for the fusion reaction be-	
	tween a deuterium and a tritium	100
Exa 13.10	Neutron beam study of atomic structures	100
Exa 14.1	Mass of the meson from Heisenberg uncertainty principle	102
Exa 14.2	Range of the weak interaction	103
Exa 14.10	Fixed target accelerators	103
Exa 14.11	Energy required by a fixed target accelerator to match	
	with that available for colliding beams at LHC	104
Exa 15.1	Gravitational time dilation effect	106
Exa 15.2	Schwarzschild radius for the sun and the earth	107
Exa 15.3	Time taken by a black hole to radiate its energy	108
Exa 16.1	Hubble constant determinantion	109
Exa 16.2	Current ratio of protons to neutrons in the universe .	109
Exa 16.3	Ratio of protons to neutrons at 10 billion kelvin tem-	
	perature of the universe	110
Exa 16.4	Mean temperature of the sun	111
Exa 16.5	Radius of the neutron star	112
Exa 16.6	Redshift versus recession velocity	112
Exa 16.7	Difference in the travel times of different mass neutrinos	114
Exa 16.8	Critical density of the universe	115

100	TT 11 14	C + 1	C +1 .	115
Exa In 9	Upper limit	of the age	of the universe	115
1110 10.0	oppor mini	or une age	or one difficulties	

List of Figures

16.1	Redshift	versus	recession	velocity							1	1:

Chapter 2

Special Theory of Relativity

Scilab code Exa 2.2 Speed of the aircraft

```
1 // Scilab Code Ex2.2 : Page -34 (2013)
2 clc; clear;
3 \text{ ly} = 9.46\text{e}+015; // Distance travelled by light in
      an year, m
                // Speed of light, m/s
4 c = 3e+008;
5 L = 4.30*ly; // Distance of Alpha Centauri from
     earth, m
6 T0 = 16*365.25*24*60*60; // Proper time in system
      K_prime, s
7 // As time measured on earth, T = 2*L/v = T0-prime/
      \operatorname{sqrt}(1-(v/c)^2), solving for v
8 v = sqrt(4*L^2/(T0^2+4*L^2/c^2));
                                      // Speed of the
       aircraft, m/s
9 gama = 1/sqrt(1-(v/c)^2); // Relativistic factor
10 T = gama*T0/(365.25*24*60*60); // Time interval
      as measured on Earth, y
11 printf("\nThe speed of the aircraft = \%4.2 \,\mathrm{e} m/s", v)
12 printf("\nThe time interval as measured on earth =
     %4.1 f y, T);
13
```

```
14 // Result
15 // The speed of the aircraft = 1.42\,\mathrm{e}+008\,\mathrm{m/s}
16 // The time interval as measured on earth = 18.2\,\mathrm{y}
```

Scilab code Exa 2.3 Speed of the aircraft from the standpoint of length contraction

```
1 // Scilab Code Ex2.3 : Page-38 (2013)
2 clc; clear;
3 \text{ LO} = 4.30;
                   // Distance of Alpha Centauri from
      earth, ly
4 c = 3e + 008;
                  // Speed of light, m/s
5 T = 8; // Proper time in system K_prime, y
6 // As v/c = L0*sqrt(1-(v/c)^2)/(c*T) or bita = L0*
      \operatorname{sqrt}(1-\operatorname{bita}^2)/(\operatorname{c}*T), solving for bita
7 bita = sqrt(L0^2/(T^2 + L0^2)); // Boost
      parameter
8 v = L0*sqrt(1-bita^2)/T; // Speed of the aircraft
     , c units
9 printf("\nThe boost parameter = \%5.3 \,\mathrm{f}", bita);
10 printf("\nThe speed of the aircraft = \%5.3 f c units"
      , v);
11
12 // Result
13 // The boost parameter = 0.473
14 // The speed of the aircraft = 0.473 c units
```

Scilab code Exa 2.4 Speed of the aircraft from the standpoint of length contraction

```
1 // Scilab Code Ex2.4 : Page-40 (2013) 2 clc; clear;
```

```
3 c = 1; // For simplicity assume speed of light to
      be unity, m/s
4 \text{ bita} = 0.600;
                    // Boost parameter
5 gama = 1/sqrt(1-bita^2); // Relativistic factor
6 \text{ u_x\_prime} = 0; // Speed of the protons in
     spaceship frame along x-axis, m/s
7 u_y_prime = 0.99*c; // Speed of the protons in
     spaceship frame along y-axis, m/s
8 u_z_prime = 0; // Speed of the protons in
     spaceship frame along z-axis, m/s
                  // Speed of the spaceship w.r.t.
9 v = 0.60*c;
     space station, m/s
10 u_x = (u_x_prime + v)/(1 + v/c^2*u_x_prime); //
     Speed of protons in space station frame along x-
     axis, m/s
11 u_y = u_y_prime/(gama*(1 + v/c^2*u_x_prime));
     Speed of protons in space station frame along y-
     axis, m/s
12 u_z = u_z_prime/(gama*(1 + v/c^2*u_x_prime));
     Speed of protons in space station frame along y-
     axis, m/s
13 u = sqrt(u_x^2 + u_y^2 + u_z^2); // The speed of
     the protons measured by an observer in the space
     station, m/s
14 printf("\nThe speed of the protons measured by an
     observer in the space station = \%5.3 \,\mathrm{f} c units", u
     );
15
16 // Result
17 // The speed of the protons measured by an observer
     in the space station = 0.994 c units
```

Scilab code Exa 2.6 Time loss of an atomic clock

```
1 // Scilab Code Ex2.6 : Page-45 (2013)
```

```
2 clc; clear;
3 c = 2.998e + 008; // Speed of light in free space,
     m/s
4 v = 7712; // Speed of the space shuttle, m/s
5 bita = v/c; // Boost parameter
6 T_loss = 295.02; // Total measured loss in time,
     ps/sec
7 Add_T_loss = 35.0; // Additional time loss for
     moving clock from general relativity prediction,
8 // From time dilation relation, T0-prime = T*sqrt(1)
     - bita^2), solving for (T - T0_prime)/T
9 Calc_T_loss = bita^2/2*1e+012; // Expected time
     lost per sec by the moving clock, ps/sec
10 Measured_T_loss = T_loss + Add_T_loss; // Total
     measured loss in time per sec as per special
     relativity, ps/s
11 percent_T_loss = (Calc_T_loss - Measured_T_loss)/
     Calc_T_loss*100; // Percentage deviation of
     measured and the calculated time loss per sec
12 T = 6.05e+05; // Total time of the seven-day
     mission, s
13 delta_T = Calc_T_loss*1e-012*T; // The total time
      difference between the moving and stationary
     clocks during the entire shuttle flight, s
14 printf("\nThe expected time lost per second for the
     moving clock = \%6.2 f ps", Calc_T_loss);
15 printf("\nThe percentage deviation of measured and
     the calculated time loss per sec for moving clock
      = %3.1 f percent", percent_T_loss);
16 printf("\nThe total time difference between the
     moving and stationary clocks during the entire
     shuttle flight = \%3.1 \,\mathrm{f} ms", delta_T/1e-003);
17
18 // Result
19 // The expected time lost per second for the moving
     clock = 330.86 ps
20 // The percentage deviation of measured and the
```

```
calculated time loss per sec for moving clock = 0.3 percent

21 // The total time difference between the moving and stationary clocks during the entire shuttle flight = 0.2 ms
```

Scilab code Exa 2.8 Relativistic doppler effect in twin paradox

```
1 // Scilab Code Ex2.8 : Page-57 (2013)
2 clc; clear;
3 f0 = 1;
           // For simplicity assume frequency of the
      signals sent by Frank, Hz
  // Outbound trip
5 bita = -0.8; // Boost parameter for receding
     frames
6 f = sqrt(1+bita)/sqrt(1-bita)*f0;
     frequency of the signals received by Mary in
     outbound trip, Hz
7 printf("\nThe frequency of the signals received by
     Mary in outbound trip = f0/\%d", ceil(f*9));
8 // Return trip
9 \text{ bita} = +0.8;
                   // Boost parameter for approaching
     frames
10 f = sqrt(1+bita)/sqrt(1-bita)*f0;
     frequency of the signals received by Mary in
     return trip, Hz
11 printf("\nThe frequency of the signals received by
     Mary in return trip = \%df0", f);
12
13 // Result
14 // The frequency of the signals received by Mary in
     outbound trip = f0/3
15 // The frequency of the signals received by Mary in
     return trip = 3f0
```

Scilab code Exa 2.11 Accelerating electrons to produce X rays

```
1 // Scilab Code Ex2.11: Page-64 (2013)
2 clc; clear;
3 q = 1.6e-019; // Charge on an electron, C
4 V = 25e+003; // Accelerating potential, volt
            // Kinetic energy of electrons, J
5 \quad K = q * V;
6 \text{ m} = 9.11\text{e}-031; // Rest mass of an electron, kg
7 c = 3.00e+08; // Speed of light, m/s
8 // From relativistic kinetic energy formula, K = (
     gama - 1)*m*C^2, solving for gama
9 gama = 1 + K/(m*c^2); // Relativistic factor
10 bita = sqrt((gama^2-1)/gama^2); // Boost
     parameter
11 u = bita*c; // Speed of the electrons, m/s
12 // From non-relativistic expression, K = 1/2*m*u^2,
     solving for u
13 u_classical = sqrt(2*K/m); // Non-relativistic
     speed of the electrons, m/s
14 u_error = (u_classical - u)/u_classical*100;
     Percentage error in speed of electrons, m/s
15 printf("\nThe relativistic speed of the accelerated
     electrons = \%4.2 \,\mathrm{e} m/s", u);
16 printf("\nThe classical speed is about %d percent
     greater than the relativistic speed", ceil(
     u_error));
17
18 // Result
19 // The relativistic speed of the accelerated
     electrons = 9.04e+007 \text{ m/s}
20 // The classical speed is about 4 percent greater
     than the relativistic speed
```

Scilab code Exa 2.13 Head on collision of two protons

```
1 // Scilab Code Ex2.13: Page-69 (2013)
2 clc; clear;
3 c = 1;
             // For simplicity assume peed of light to
      be unity, m/s
4 K = 2.00; // Kinetic energy of protons, GeV
5 E0 = 0.938; // Rest mass of a proton, GeV 6 E = K + E0; // Total energy of the proton, GeV
7 // From relativistic mass energy relation, E^2 = (p*
      c)^2+E0^2, solving for p
8 p = sqrt(E^2 - E0^2)/c; // Momentum of the
      protons, GeV/c
9 // As E = gama*E0, solving for gama
10 gama = E/E0; // Relativistic factor
11 bita = sqrt((gama^2-1)/gama^2); // Boost
      parameter
12 v = bita*3.00e+08; // Speed of 2 GeV proton, m/s
13 printf("\nThe energy of each initial proton = \%5.3 \,\mathrm{f}
      GeV", E);
14 printf("\nThe momentum of each initial proton = \%4.2
      f \text{ GeV/c}", p);
15 printf("\nThe speed of each initial proton = \%3.1e m
      /s", v);
16 printf("\nThe relativistic factor, gama = \%4.2 \,\mathrm{f}",
17 printf("\nThe boost parameter, beta = \%5.3 \,\mathrm{f}", bita);
18
19 // Result
20 // The energy of each initial proton = 2.938 GeV
21 // The momentum of each initial proton = 2.78 \text{ GeV/c}
22 // The speed of each initial proton = 2.8e+008 m/s
23 // The relativistic factor, gama = 3.13
24 // The boost parameter, beta = 0.948
```

Scilab code Exa 2.15 Minimum kinetic energy of the protons in head on collision

```
1 // Scilab Code Ex2.15: Page-71 (2013)
2 clc; clear;
3 E_d = 1875.6;
                   // Rest mass energy of the
     deuterium, MeV
4 \text{ E_pi} = 139.6; // Rest mass energy of the pion,
     MeV
5 E_p = 938.3; // Rest mass energy of the proton,
     MeV
6 K = 1/2*(E_d + E_pi - 2*E_p); // Minimum kinetic
     energy of the protons, MeV
7 printf("\nThe minimum kinetic energy of the protons
     = %2d MeV", K);
9 // Result
10 // The minimum kinetic energy of the protons = 69
     MeV
```

Scilab code Exa 2.16 Binding energy of He nucleus

Scilab code Exa 2.17 Fractional mass increase of the Na and Cl atoms

```
1 // Scilab Code Ex2.17: Page-72 (2013)
2 clc; clear
3 u = 931.5;
                // Energy equivalent of 1 amu, MeV/u
            // For simplicity assume speed of light in
      vacuum to be unity, m/s
                // The dissociationenergy of the NaCl
5 E_B = 4.24;
      molecule, MeV
6 M = 58.44*u;
                 // Energy corresponding to molecular
      mass of NaCl, MeV
7 	 f_r = E_B/M;
                 // The fractional mass increase of
     the Na and Cl atoms
8 printf("\nThe fractional mass increase of the Na and
      Cl atoms when they are not bound together in
     NaCl = \%4.1e", f_r/1e+006);
9
10 // Result
11 // The fractional mass increase of the Na and Cl
     atoms when they are not bound together in NaCl =
     7.8e - 011
```

Scilab code Exa 2.18 Kinetic energy and the mass of sigma particle

```
1 // Scilab Code Ex2.18: Page-72 (2013)
2 clc; clear
3 c = 1;
             // For simplicity assume speed of light in
       vacuum to be unity, m/s
4 E0_n = 940; // Rest energy of a neutron, MeV
5 E0_pi = 140; // Rest energy of a pion, MeV 6 p_n = 4702; // Momentum of the neutron, MeV/c 7 p_pi = 169; // Momentum of the pion, MeV/c
8 E_n = sqrt((p_n*c)^2+E0_n^2); // Total energy of
      the neutron, MeV
9 E_{pi} = sqrt((p_pi*c)^2+E0_pi^2); // Total energy
      of the pion, MeV
10 E = E_n + E_pi; // Total energy of the reaction,
     MeV
11 p_sigma = p_n + p_pi; // Momentum of the sigma
      particle, MeV/c
12 E0_sigma = sqrt(E^2 - (p_sigma*c)^2); // Rest
      mass energy of the sigma particle, MeV
13 m_sigma = E0_sigma/c^2; // Rest mass of sigma
      particle, MeV/c^2;
14 K = E - E0_sigma; // Kinetic energy of sigma
      particle, MeV
15 printf("\nThe rest mass of sigma particle = %4d MeV/
      c^2", ceil(m_sigma));
16 printf("\nThe kinetic energy of sigma particle = %4d
      MeV", ceil(K));
17
18 // Result
19 // The rest mass of sigma particle = 1192 \text{ MeV/c}^2
20 // The kinetic energy of sigma particle = 3824 MeV
21 // The answers are given wrongly in the textbook
```

Chapter 3

The Experimental Basis of Quantum Physics

Scilab code Exa 3.1 A moving electron subjected to electric and magnetic fields

```
1 // Scilab Code Ex3.1: Page-87 (2013)
2 clc; clear
3 E = 1.2e+004; // Electric field , V/m
4 B = 8.8e-004; // Magnetic field, T
5 l = 0.05; // Length of the deflection plates, m
6 v0 = E/B; // Initial velocity of the electron, m/
7 theta = 30; // Angular deflection of the electron
     , degrees
8 q_ratio_m = E*tand(theta)/(B^2*1); // Specific
     charge of the electron, C/kg
9 printf("\nThe initial velocity of the electron = \%3
     .1e m/s, v0);
10 printf("\nThe specific charge of the electron = \%3.1
     e C/kg", q_ratio_m);
11
12 // Result
13 // The initial velocity of the electron = 1.4e+007 m
```

```
14 // The specific charge of the electron = 1.8e+011 C/ \,\mathrm{kg}
```

Scilab code Exa 3.3 Hydrogen series of spectral lines

```
1 // Scilab Code Ex3.3: Page-94 (2013)
2 clc; clear
3 function flag = check_visible(lambda)
       if lambda \geq= 400 & lambda < 700 then
           flag = 1;
5
           else flag = 0;
       end
8 endfunction
9 R_H = 1.0968e + 007;
                       // Rydberg constanr, per metre
10 f = zeros(7);
11 // Lyman series
12 printf("\nFor Lyman series, the wavelengths are:\n")
13 n = 1; // The lowest level of Lyman series
14 \text{ for } k = 2:1:3
15
       lambda = 1/(R_H*(1/n^2-1/k^2))/1e-009;
       printf("k = \%d, %5.1 f nm", k, lambda);
16
       f(k) = check_visible(lambda);
17
18
       if f(k) == 1 then
                printf(" (Visible) \n");
19
20
           else
                printf("(Ultraviolet)\n");
21
22
       end
23 end
24 \text{ if } f(1) == 1 | f(2) == 1 | f(3) == 1 \text{ then}
           printf("Some wavelengths of Lyman series
25
               fall in the visible region.\n")
26
       else
27
           printf("All the wavelengths of Lyman series
               fall in the UV-region.\n")
```

```
28
       end
29
30 // Balmer series
31 printf("\nFor Balmer series, the wavelengths are:\n"
      )
32 n = 2;
            // The lowest level of Balmer series
33 \text{ for } k = 3:1:7
34
       lambda = 1/(R_H*(1/n^2-1/k^2))/1e-009;
       printf("k = \%d, %5.1 f nm", k, lambda);
35
       f(k) = check_visible(lambda);
36
            if f(k) == 1 then
37
                printf(" (Visible) \n");
38
39
            else
                printf(" (Ultraviolet)\n");
40
41
       end
42 end
43
44 // Paschen series
45 printf("\nFor Paschen series, the wavelengths are:\n
46 n = 3; // The lowest level of Lyman series
47 \text{ for } k = 4:1:5
       lambda = 1/(R_H*(1/n^2-1/k^2))/1e-009;
48
       printf("k = \%d, %5.1 f nm", k, lambda);
49
       f(k) = check_visible(lambda);
50
       if f(k) == 1 then
51
52
                printf(" (Visible) \n");
53
            else
                printf(" (Infrared) \setminus n");
54
55
       end
56 end
57 // For limiting member
58 k = \%inf;
59 lambda = 1/(R_H*(1/n^2-1/k^2))/1e-009;
60 printf("k = \%d, %5.1 f nm", %inf, lambda);
61 f(6) = check_visible(lambda);
62 \text{ if } f(6) == 1 \text{ then}
                printf(" (Visible) \n");
63
```

```
64
            else
                printf(" (Infrared)\n");
65
66
       end
  if f(4)
            == 1 | f(5) == 1 | f(6) == 1 then
67
            printf("Some wavelengths of Paschen series
68
               fall in the visible region.")
69
       else
70
            printf ("All the wavelengths of Paschen
               series fall in the IR-region.")
71
       end
72
73 // Result
74 // For Lyman series, the wavelengths are:
75 // k = 2, 121.6 nm (Ultraviolet)
76 // k = 3, 102.6 \text{ nm} (Ultraviolet)
77 // All the wavelengths of Lyman series fall in the
      UV-region.
78
79 // For Balmer series, the wavelengths are:
80 // k = 3, 656.5 \text{ nm} \text{ (Visible)}
81 // k = 4, 486.3 \text{ nm} \text{ (Visible)}
82 // k = 5, 434.2 \text{ nm} \text{ (Visible)}
83 // k = 6, 410.3 nm (Visible)
84 // k = 7, 397.1 nm (Ultraviolet)
85
86 // For Paschen series, the wavelengths are:
87 // k = 4, 1875.6 \text{ nm} (Infrared)
88 // k = 5, 1282.1 nm (Infrared)
89 // k = Inf, 820.6 nm (Infrared)
90 // All the wavelengths of Paschen series fall in the
       IR-region.
```

Scilab code Exa 3.4 Maximum wavelength emitted from a heated furnace

```
1 // Scilab Code Ex3.4: Page-98 (2013)
```

Scilab code Exa 3.5 Sun as a blackbody

```
2 // Scilab Code Ex3.5: Page-98 (2013)
3 clc; clear
4 lambda_max = 500e-009; // Maximum intensity
     wavelength emitted by the sun, m
5 b = 2.898e-003; // Wein's constant, m-K
6 sigma = 5.67e-008; // Stefan's constant, W/Sq.m-K
     ^{^{\circ}}4
7 r = 6.96e + 008; // Radius of the sun, m
11 T_sun = b/lambda_max; // The temperature of the
     sun's surface, K
12 R_T = sigma*T_sun^4; // Power per unit area
     radiated by the sun, W/Sq.m
13 P_{sun} = R_T * S; // The total power radiated from
     the sun's surface, W
14 F = r_E^2/(4*R_E^2); // Fraction of sun's
```

```
radiation received by Earth
15 P_Earth_received = P_sun*F; // The radiation
      received by the Earth from the sun, W
16 U_Earth = P_Earth_received*60*60*24;
      radiation received by the Earth from the sun in
      one day, J
17 R_Earth = P_Earth_received/(%pi*r_E^2); // Power
      received by the Earth per unit of exposed area, W
18 printf("\nThe surface temperature of the sun = %4d K
      ", ceil(T_sun));
19 printf("\nThe power per unit area emitted from the
      surface of the sun = \%4.2 \,\mathrm{e} \,\mathrm{W/Sq.m}, R_T);
20 printf("\nThe energy received by the Earth each day
      from the radiation of sun = \%4.2 \,\mathrm{e} J", U_Earth);
21 printf("\nThe power received by the Earth per unit
      of exposed area = \%4d \text{ W/Sq.m}, ceil(R_Earth));
22
23 // Result
24 // The surface temperature of the sun = 5796 \text{ K}
25 // The power per unit area emitted from the surface
      of the sun = 6.40 \,\text{e} + 007 \,\text{W/Sq.m}
  // The energy received by the Earth each day from
      the radiation of sun = 1.54e+0.22 J
27 // The power received by the Earth per unit of
      exposed area = 1397 \text{ W/Sq.m}
28 // The answers are given wrong in the textbook
```

Scilab code Exa 3.10 Exposure time of light to produce a photoelectron of given kinetic energy

```
1 // Scilab Code Ex3.10: Page-106 (2013)
2 clc; clear
3 phi = 2.36; // Work function of sodium, eV
4 N_A = 6.02e+023; // Avogadro's number
```

```
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
6 I = 1e-008; // Intensity of incident radiation, W
     /Sq.m
7 K = 1.00; // Kinetic energy of the ejected
     photoelectron, eV
8 rho = 0.97; // Density of Na atoms, g/cc
9 M = 23; // Gram atomic mass of Na, g/mol
                         // Number of Na atoms per
10 n = N_A*1e+006/M*rho;
     unit volume, atoms/metre-cube
11 // Assume a cubic structure, then 1/d^3 = n, solving
      for d
12 d = (1/n)^{(1/3)};
                      // Thickness of one layer of
     sodium atoms, m
13 N = n*d; // Number of exposed atoms per Sq.m
14 R = I/(N*e); // Rate of energy received by each
     atom, eV/s
15 t = (phi+K)/R; // Time needed to absorb 3.36 eV
     energy
16 printf("\nThe exposure time of light to produce the
     photoelectron of %4.2 f kinetic energy = %4.1 f
     years", K, t/(60*60*24*365.25));
17
18 // Result
19 // The exposure time of light to produce the
     photoelectron of 1.00 kinetic energy = 14.7 years
```

Scilab code Exa 3.11 Photoelectric effect for lithium

```
7 h = 6.626e-034;  // Planck's constant, Js
8 E = h*c/(lambda*e);  // Energy of incident light,
        eV
9 V0 = E - phi;  // Stopping potential, V
10 printf("\nThe energy of incident photons = %4.2 f eV", E);
11 printf("\nThe stopping potential = %4.2 f V", V0);
12
13 // Result
14 // The energy of incident photons = 3.10 eV
15 // The stopping potential = 0.17 V
```

Scilab code Exa 3.12 Lithium exposed to light radiation

```
2 // Scilab Code Ex3.12: Page-109 (2013)
3 clc; clear
4 \text{ phi} = 2.93;
                 // Work function of lithium, eV
5 c = 2.998e+008; // Speed of light in vacuum, m/s
             // Kinetic energy of photoelectron, eV
6 K = 3.00;
7 E = phi + K;
                  // Total energy of the incident
     light, eV
8 h = 6.626e-034; // Planck's constant, Js
9 e = 1.6e-019; // Energy equivalent of 1 eV, J
               // Frequency of incident light, Hz
10 f = E*e/h;
11 lambda = c/f;
                     // Wavelength of the incident light
12 printf ("\nThe frequency of incident light = \%4.2 \,\mathrm{e} Hz
     ", f);
13 printf("\nThe wavelength of the incident light = \%4
      .2 f nm, lambda/1e-009);
14
15 // Result
16 // The frequency of incident light = 1.43 \,\mathrm{e} + 0.015 \,\mathrm{Hz}
17 // The wavelength of the incident light = 209.37 nm
```

Scilab code Exa 3.13 Number of photons in the light beam of given wavelength and intensity

```
1 // Scilab Code Ex3.13: Page-110 (2013)
2 clc; clear
3 \quad lambda = 350;
                    // Wavelength of incident light, nm
4 e = 1.6e-019; // Energy equivalent of 1 eV, J
5 E = 1.250e + 003/lambda; // Total energy of the
     incident light, eV
6 I = 1e-008;
                  // Intensity of incident light, W/Sq.
7 // As Intensity, I = N*E, solving for N
8 N = I/(E*e); // The number of photons in the
     light beam
9 printf("\nThe number of photons in the light beam =
     \%3.1e \text{ photons/Sq.m/s}, N);
10
11 // Result
12 // The number of photons in the light beam = 1.8e
     +010 photons/Sq.m/s
```

Scilab code Exa 3.15 Minimum wavelength of the X rays

```
8 printf("\nThe minimum wavelength of X-rays = %4.2e m
    ", lambda_min);
9
10 // Result
11 // The minimum wavelength of X-rays = 3.55e-011 m
```

Scilab code Exa 3.16 X ray scattering from the gold target

```
1 // Scilab Code Ex3.16: Page-116 (2013)
2 clc; clear
3 c = 2.998e + 008;
                        // Speed of light in vacuum, m/s
                      // Planck's constant, Js
4 h = 6.626e - 034;
                       // Rest mass of an electron , kg
// Wavelength of the X-ray , nm
5 \text{ m_e} = 9.11e-031;
6 \text{ lambda} = 0.050;
                   // The angle at which the recoil
7 \text{ theta} = 180;
      electron Ke becomes the largest, degree
8 E_x_{av} = 1.240e + 003/lambda; // Energy of the X-
      ray, eV
  lambda_prime = lambda + (1-\cos d(theta))*h/(m_e*c*1e)
                 // The largest wavelength of the
      scattered photon, nm
10 E_prime_x_ray = 1.240e+003/lambda_prime;
      Energy of the scattered photon, eV
11 K = (E_x_{ray} - E_prime_x_{ray})/1e+003; // Kinetic
      energy of the most energetic recoil electron, keV
12 if (E_prime_x_ray < E_x_ray) then
       printf("\nThe X-ray is Compton-scattered by the
13
          electron.");
14 else
       printf("\nThe X-ray is not Compton-scattered by
15
          the electron.");
16 \, \text{end}
17 printf("\nThe largest wavelength of the scattered
      photon = \%5.3 \, \text{f} \, \text{nm}, lambda_prime);
18 printf("\nThe kinetic energy of the most energetic
```

Chapter 4

Structure of the Atom

Scilab code Exa 4.1 Maximum scattering angle in Geiger and Marsden experiment

```
// Scilab Code Ex4.1: Page-129 (2013)
clc; clear
m_e = 0.000549; // Rest mass of an electron, u
m_He = 4.002603; // Rest mass of a helium, u
M_alpha = m_He - 2*m_e; // Mass of alpha particle, u
theta_max = 2*m_e/M_alpha; // Maximum scttering angle for aplha particle, rad
printf("\nThe maximum scttering angle for aplha particle = %5.3 f degrees", theta_max*180/%pi);

// Result
// The maximum scttering angle for aplha particle = 0.016 degrees
```

Scilab code Exa 4.2 Fraction of alpha particles deflected from a gold foil

```
1 // Scilab Code Ex4.2: Page-137 (2013)
2 clc; clear
3 \text{ rho} = 19.3;
                // Density of gold, g/cc
4 N_A = 6.02e + 023; // Avogadro's number
5 N_M = 1; // Number of atoms per molecule
6 M_g = 197; // Gram atomic mass of gold, g/mol
7 n = rho*N_A*N_M/(M_g*1e-006); // Number density
     of gold atoms, atoms/metre-cube
            // Atomic number of gold
8 	 Z1 = 79;
             // Atomic number of He nucleus
9 Z2 = 2;
                // Thickness of the gold foil, m
10 t = 1e-006;
11 e = 1.602e-019; // Charge on an electron, C
12 k = 9e+009; // Coulomb constant, N-Sq.m/C^2
13 theta = 90; // Angle of deflection of alpha
     particle, degrees
              // Kinetic energy of alpha particles,
14 K = 7.7;
     MeV
15 f = \%pi*n*t*(Z1*Z2*e^2*k/(2*1.6e-013*K))^2*cotd(
     theta/2)^2; // The fraction of alpha particles
     deflected
16 printf("\nThe fraction of alpha particles deflected
     = \%1.0 \,\mathrm{e}, f);
17
18 // Result
19 // The fraction of alpha particles deflected = 4e
     -005
```

Scilab code Exa 4.3 Fraction of alpha particles deflected from goil foil at a given angle

```
1 // Scilab Code Ex4.3: Page-138 (2013)
2 clc; clear
3 rho = 19.3; // Density of gold, g/cc
4 N_A = 6.02e+023; // Avogadro's number
5 N_M = 1; // Number of atoms per molecule
```

```
6 M_g = 197; // Gram atomic mass of gold, g/mol
7 n = rho*N_A*N_M/(M_g*1e-006); // Number density
     of gold atoms, atoms/metre-cube
8 Z1 = 79; // Atomic number of gold
9 Z2 = 2; // Atomic number of He nucleus
10 t = 2.1e-007; // Thickness of the gold foil, m
11 e = 1.602e-019; // Charge on an electron, C
12 k = 9e+009; // Coulomb constant, N-Sq.m/C<sup>2</sup>
                 // Distance of the alpha particles
13 r = 1e-002;
     from the target, m
               // Angle of deflection of alpha
14 theta = 45;
     particle, degrees
15 K = 7.7;
           // Kinetic energy of alpha particles,
     MeV
16 	 f = n*t*(Z1*Z2*e^2*k)^2/((r*1.6e-013*K)^2*sind(theta)
     /2) ^4*16); // The fraction of alpha particles
     deflected
17 printf("\nThe fraction of alpha particles deflected
     at \%d degrees = \%3.1e per mm square", theta, f/1e
     +006);
18
19 // Result
20 // The fraction of alpha particles deflected at 45
     degrees = 3.2e-007 per mm square
```

Scilab code Exa 4.5 Size of the nucleus

```
1 // Scilab Code Ex4.5:Page-139 (2013)
2 clc; clear
3 Z1 = 2; // Atomic number of He nucleus
4 Z2 = 13; // Atomic number of aluminium
5 e = 1.602e-019; // Charge on an electron, C
6 k = 9e+009; // Coulomb constant, N-Sq.m/C^2
7 K = 7.7; // Kinetic energy of alpha particles,
MeV
```

```
8 r_min = Z1*Z2*e^2*k/(K*1.6e-013);  // Size of the
    aluminium nucleus, m
9 printf("\nThe size of the aluminium nucleus = %3.1e
    m", r_min);
10
11 // Result
12 // The size of the aluminium nucleus = 4.9e-015 m
13
14
15 // Result
16 // Result
17 The maximum scttering angle for aplha particle = 0.016 degrees
```

Scilab code Exa 4.6 Nonrelativistic justification for the spped of the electron

```
1 // Scilab Code Ex4.6: Page-140 (2013)
2 clc; clear
3 c = 3.00e + 008; // Speed of light, m/s
4 r = 0.5e-010;  // Radius of the atom, m
5 e = 1.6e-019;  // Charge on an electron, C
6 \text{ m_e} = 9.11\text{e}-031; // Mass of the electron, kg
7 k = 9e+009; // Coulomb constant, N-Sq.m/C<sup>2</sup>
8 v = e*k^(1/2)/(m_e*r)^(1/2); // Speed of the
      electron, m/s
9 \text{ if } v < 0.01*c \text{ then}
       printf("\nThe nonrelativistic treatment for
           calculating speed of the electron = \%3.1e m/s
            is justified", v);
11 end
12
13 // Result
14 // The nonrelativistic treatment for calculating
      speed of the electron = 2.2e+006 m/s is justified
```

Scilab code Exa 4.7 Longest and shortest wavelengths observed in Paschen series for hydrogen

```
1 // Scilab Code Ex4.7: Page -146(2013)
2 clc; clear
3 function region = check_region(lambda)
       if lambda >= 400 & lambda < 700 then
           region = "visible";
           else region = "infrared";
       end
8 endfunction
9 n_1 = 3;
              // Lower electron orbit in Paschen
     series
10 n_u = [4, %inf]; // First and limiting upper
     orbits in Paschen series
11 R_inf = 1.0974e+007; // Rydberg constant, per
     metre
12 lambda_max = 1/(R_inf*(1/n_1^2-1/n_u(1)^2)*1e-009);
        // The longest wavelength in Paschen series,
                                         // Check for
13 region = check_region(lambda_max);
     the region
14 printf("\nThe maximum wavelength is %d nm and is in
     the %s region", ceil(lambda_max), region);
15 lambda_min = 1/(R_inf*(1/n_1^2-1/n_u(2)^2)*1e-009);
        // The shortest wavelength in Paschen series,
     nm
16 region = check_region(lambda_min); // Check for
     the region
  printf("\nThe minimum wavelength is %d nm and is
      also in the %s region", lambda_min, region);
18
19 // Result
20 // The maximum wavelength is 1875 nm and is in the
```

```
infrared region
21 // The minimum wavelength is 820 nm and is also in the infrared region
```

Scilab code Exa 4.8 Wavelengts of H alpha lines for three isotopes of hydrogen

```
1 // Scilab Code Ex4.8: Page -149(2013)
2 clc; clear
3 \text{ m_e} = 0.0005486;
                     // Mass of an electron u
                      // Mass of a proton, u
4 \text{ m_p} = 1.007276;
                     // Mass of a deutron, u
5 \text{ m_d} = 2.013553;
                      // Mass of a triton, u
6 \text{ m_t} = 3.015500;
7 R_{inf} = 1.0974e + 007;
                          // Rydberg constant, per
     metre
8 R_H = 1/(1+m_e/m_p)*R_inf; // Rydberg constant
     for hydrogen
9 R_D = 1/(1+m_e/m_d)*R_inf; // Rydberg constant
     for deuterium
10 R_T = 1/(1+m_e/m_t)*R_inf; // Rydberg constant
     for tritium
  lambda_H = 1/(R_H*(1/2^2-1/3^2)*1e-009);
11
     Wavelength of H_alpha line for hydrogen, nm
  lambda_D = 1/(R_D*(1/2^2-1/3^2)*1e-009);
     Wavelength of H_alpha line for deuterium, nm
13 lambda_T = 1/(R_T*(1/2^2-1/3^2)*1e-009);
     Wavelength of H_alpha line for tritium, nm
14 printf("\nThe wavelength of H_alpha line for
     hydrogen = \%6.2 f nm, lambda_H);
15 printf("\nThe wavelength of H_alpha line for
     deutruim = \%6.2 f nm, lambda_D);
16 printf("\nThe wavelength of H_alpha line for tritium
      = %6.2 f nm", lambda_T);
17
18 // Result
```

```
19 // The wavelength of H_alpha line for hydrogen = 656.45~\rm nm   
20 // The wavelength of H_alpha line for deutruim = 656.27~\rm nm   
21 // The wavelength of H_alpha line for tritium = 656.22~\rm nm
```

Scilab code Exa 4.9 Shortest wavelength emitted by doubly positive Li ion

```
1 // Scilab Code Ex4.9: Page-150 (2013)
2 clc; clear
3 R = 1.0974e+007; // Rydberg constant, per metre
4 Z = 3; // Atomic number of Li
5 n_l = 1; // Lower orbit of Li++ ion
6 n_u = %inf; // Limiting orbit of Li++ ion
7 lambda = 1/(Z^2*R*(1/n_l^2-1/n_u^2)*1e-009); //
The shortest wavelentgh emitted by Li++ ion, nm
8 printf("\nThe shortest wavelentgh emitted by Li++
ion = %4.1 f nm", lambda);
9
10 // Result
11 // The shortest wavelentgh emitted by Li++ ion =
10.1 nm
```

Chapter 5

Wave Properties of Matter and Quantum Mechanics I

Scilab code Exa 5.1 The wavelength of the X rays incident on rock salt

```
1 // Scilab Code Ex5.1 : Page -167 (2013)
2 clc; clear;
3 N_A = 6.022e + 23; // Avogdaro's No., per mole
4 n = 1; // Order of diffraction
5 M = 58.5; // Molecular mass of NaCl, g/mol
6 rho = 2.16; // Density of rock salt, g/cc
7 two_theta = 20; // Scattering angle, degree
8 theta = two_theta/2; // Diffraction angle, degree
9 N = N_A*rho*2/(M*1e-006); // Number of atoms per
     unit volume, per metre cube
10 d = (1/N)^{(1/3)}; // Interplanar spacing of NaCl
     crystal, m
11 lambda = 2*d*sind(theta)/n; // Wavelength of X-
     rays using Bragg's law, m
12 printf("\nThe wavelength of the incident X rays =
     \%5.3 \, \text{f} \, \text{nm}, lambda/1e-009);
13
14 // Result
15 // The wavelength of the incident X rays = 0.098 nm
```

Scilab code Exa 5.2 de Broglie wavelength of a tennis ball and an electron

```
1 // Scilab Code Ex5.2 : Page -168 (2013)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 // For a moving ball
6 m = 0.057;
               // Mass of the ball, kg
7 v = 25; // Velocity of ball, m/s
8 p = m*v; // Momentum of the ball, kgm/s
9 lambda = h/p; // Lambda is the wavelength of ball
10 printf("\nThe wavelength of ball = \%3.1e m", lambda)
11 // For a moving electron
12 m = 0.511e+006; // Rest mass of an electron, eV
13 K = 50; // Kinetic energy of the electron, eV
14 p = sqrt(2*m*K); // Momentum of the electron, kgm
     /s
 lambda = h*c/(1.602e-019*p*1e-009); // Wavelength
      of the electron, nm
16 printf("\nThe wavelength of the electron = \%4.2 \,\mathrm{f} nm"
     , lambda);
17
18 // Result
19 // The wavelength of ball = 4.7e-034 m
20 // The wavelength of the electron = 0.17 nm
```

Scilab code Exa 5.3 de Broglie wavelength of an electron used by Davisson and Germer

```
1 // Scilab Code Ex5.3 : Page-173 (2013)
2 clc; clear;
                 // Mass of the electron, kg
3 m = 9.1e-31;
4 h = 6.63e-34;
                  // Planck's constant, Js
5 c = 3e+008; // Speed of light, m/s
6 = 1.6e-19;
                // Energy equivalent of 1 eV, J/eV
           // Potential difference between
7 V0 = 54;
     electrodes, V
  lambda = h*c/(sqrt(2*m*c^2/e*V0)*e*1e-009);
      Broglie wavelength of the electron, nm
9 printf("\nThe de Broglie wavelength of the electron
     used by Davisson and Germer = \%5.3 f nm", lambda);
10
11 // Result
12 // The de Broglie wavelength of the electron used by
      Davisson and Germer = 0.167 nm
```

Scilab code Exa 5.4 Wavelength of a neutron at different temperatures

```
1 // Scilab Code Ex5.4 : Page -174 (2013)
2 clc; clear;
3 h = 6.63e - 34;
                    // Planck's constant, Js
                  // Speed of light, m/s
4 c = 3e + 008;
                  // Energy equivalent of 1 eV, J/eV
5 e = 1.6e-19;
                   // Mass of a neutron, kg
6 m = 1.67e-27;
                    // Boltzmann constant, J/mol/K
7 k = 1.38e-23;
                   // Temperatures, K
8 T = [300 77];
  lambda = h*c/(sqrt(3*m*c^2/e*k/e*T(1))*e);
      wavelength of the neutron at 300 K, nm
10 printf ("\nThe wavelength of the neutron at %d K = \%5
      .3 f \text{ nm}, T(1), lambda/1e-09);
11 lambda = h*c/(sqrt(3*m*c^2/e*k/e*T(2))*e);
                                                   // The
      wavelength of the neutron at 77 K, nm
12 printf("\nThe wavelength of the neutron at %d K = \%5
     .3 f \text{ nm}, T(2), lambda/1e-09);
```

```
13   
14 // Result   
15 // The wavelength of the neutron at 300 K = 0.146 nm   
16 // The wavelength of the neutron at 77 K = 0.287 nm
```

Scilab code Exa 5.7 Distance between first two maxima in fringe pattern

```
1 // Scilab Code Ex5.7 : Page -184 (2013)
2 clc; clear;
3 h = 6.626e-34; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 e = 1.602e-019; // Energy equivalent of 1 eV, J/
     ev
6 d = 2000; // Distance between slit centres, nm
7 K = 50e+003; // Kinetic energy of electrons, eV
8 1 = 350e + 006; // Distance of screen from the
     slits, nm
9 lambda = 1.226/sqrt(K); // Non-relativistic value
     of de Broglie wavelength of the electrons, nm
10 E0 = 0.511e+006; // Rest energy of the electron,
     J
11 E = K + E0; // Total energy of the electron, J
12 p_c = sqrt(E^2 - E0^2); // Relativistic mass
     energy relation, eV
13 lambda_r = h*c/(p_c*e*1e-009); // Relativistic
     value of de Broglie wavelength, nm
14 percent_d = (lambda - lambda_r)/lambda*100;
     Percentage decrease in relativistic value
     relative to non-relavistic value
15 sin_theta = lambda_r/d; // Bragg's law
16 y = l*sin_theta; // The distance of first maximum
      from the screen, nm
17 printf("\nThe percentage decrease in relativistic
     value relative to non-relavistic value = \%1.0 \,\mathrm{f}
     percent", percent_d);
```

Scilab code Exa 5.8 Momentum uncertainty fo a tennis ball and an electron

```
1 // Scilab Code Ex5.8 : Page-187 (2013)
2 clc; clear;
3 dx = 17.5;
               // The uncertainty in position, m
                     // Reduced Planck's constant, Js
4 h = 1.05e-034;
5 \text{ dp_x} = h/(2*dx); // The uncertainty in momentum,
      kgm/s
6 printf("\nThe uncertainty in momentum of the ball =
      \%1.0 \,\mathrm{e} \,\mathrm{kg-m/s}", dp_x);
7 dx = 0.529e-010; // The uncertainty in position,
8 \text{ dp_x} = h/(2*dx); // The uncertainty in momentum,
      kgm/s
9 printf("\nThe uncertainty in momentum of the
      electron = \%1.0 \,\mathrm{e}\,\mathrm{kg-m/s}", dp_x);
10
11 // Result
12 // The unecrtainty in momentum of the ball = 3e-036
      kg-m/s
13 // The uncertainty in momentum of the electron = 1e
      -024 \text{ kg-m/s}
```

Scilab code Exa 5.9 Minimum kinetic energy of an electron in hydrogen atom

Scilab code Exa 5.10 Minimum kinetic energy of electron localized within a typical nuclear radius

```
// Scilab Code 5.10: : Page-190 (2013)
clc; clear;
dx = 6e-015;  // The uncertainty in position of
    the electron, m

h_bar = 1.054e-034;  // PReduced Planck's constant
    , Js

e = 1.602e-019;  // Energy equivalnet of 1 eV, J/
    eV

c = 3e+008;  // Speed of light, m/s

E0 = 0.511e+006;  // Rest mass energy of the
    electron, J

dp = h_bar*c/(2*dx*e);  // Minimum electron
    momentum, eV/c

p = dp;  // Momentum of the electron at least
```

Scilab code Exa 5.12 Energy width of excited state of atom and uncertainty ratio of frequency of emitted photon

```
1 // Scilab Code Ex5.12 : Page-190 (2014)
2 clc; clear;
3 c = 3e + 8;
               // Speed of light, m/s
4 dt = 1e-08; // Relaxation time of atom, s
5 h = 6.6e-34; // Planck's constant, Js
6 	 dE = h/(4*\%pi*dt);
                      // Energy width of excited
     state of atom, J
  lambda = 300e-009; // Wavelegth of emitted photon
8 f = c/lambda; // Frequency of emitted photon, per
      sec
9 printf("\nThe energy width of excited state of the
     atom = \%3.1e\ eV", dE/1.6e-019);
10 	 df = dE/h;
              // Uncertainty in frequency, per sec
11 printf("\nThe uncertainty ratio of the frequency =
     \%1.0e", df/f);
12
13 // Result
14 // The energy width of excited state of the atom =
     3.3e - 008 \text{ eV}
```

Scilab code Exa 5.13 Energy at diffrent levels

```
1 // Scilab Code Ex5.13 : Page-195 (2014)
2 clc; clear;
3 n = [1 2 3]; // First three energy levels
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 c = 3e008; // Speed of light, m/s
6 h = 6.63e-034; // Planck's constant, Js
7 m = 9.1e-031; // Mass of the proton, kg
8 1 = 0.1; // Length of one-dimensional box, nm
9 E_n = n^2*(h*c/(e*1e-009))^2/(8*m*c^2/e*1^2);
      Energy of nth level, eV
10 printf("\nThe first three energy level are:\nE1 = \%2
      .0 \text{ f eV}, E2 = \%3.0 \text{ f eV} and E3 = \%3.0 \text{ f eV}, E_n(1),
      E_n(2), E_n(3);
11
12 // Result
13 // The first three energy level are:
14 // E1 = 38 \text{ eV}, E2 = 151 \text{ eV} \text{ and } E3 = 340 \text{ eV}
```

Chapter 6

Quantum Mechanics II

Scilab code Exa 6.4 Probabilities of a particle in the given regions

```
1 // Scilab Code Ex6.4 : Page -205 (2014)
2 clc; clear;
                 // For simplicity assume alpha to be
3 \text{ alpha} = 1;
     unity
4 P = integrate('sqrt(alpha)*exp(-2*alpha*x)', 'x', 0,
                    // Probability that the particle
      1/alpha);
     lies between 0 and 1/alpha
5 printf("\nThe probability that the particle lies
     between 0 and 1/alpha = \%5.3 \,\mathrm{f}, P);
6 P = integrate('sqrt(alpha)*\exp(-2*alpha*x)', 'x', 1/
                        // Probability that the
     alpha, 2/alpha);
      particle lies between 1/alpha and 2/alpha
7 printf("\nThe probability that the particle lies
     between 1/alpha and 2/alpha = \%5.3 f, P);
9 // Result
10 // The probability that the particle lies between 0
     and 1/alpha = 0.432
11 // The probability that the particle lies between 1/
     alpha and 2/alpha = 0.059
```

Scilab code Exa 6.9 Transition energy for a proton confined to a nucleus

```
1 // Scilab Code Ex6.9: Page -215 (2014)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 h_bar = h/(2*%pi); // Reduced Planck's constant,
5 c = 3.00e + 008; // Speed of light, m/s
6 e = 1.602e-019; // Energy equivalent of 1 eV, J 7 m = 938.3e+006; // Energy equivalent of proton
     mass, eV
8 L = 1e-005; // Diameter of the nucleus, nm
9 E1 = \%pi^2*(h_bar*c/(e*1e-009))^2/(2*L^2*m*1e+006);
          // Energy of the ground state of proton, MeV
10 E2 = 4*E1;
                // Energy of first excited state of
     proton, MeV
  delta_E = E2 -E1;  // Transition energy of the
      proton inside the nucleus, MeV
12 printf("\nThe transition energy of the proton inside
       the nucleus = \%1d MeV", delta_E);
13
14 // Result
15 // The transition energy of the proton inside the
      nucleus = 6 MeV
```

Scilab code Exa 6.14 Fraction of electrons tunneling through a barrier

```
5 c = 3.00e + 008; // Speed of light, m/s
                     // Energy equivalent of 1 eV, J
6 = 1.602e-019;
                     // Energy equivalent of electron
7 m = 0.511e + 006;
     rest mass, eV
8 VO = 10; // Height of potential barrier, eV
9 E = 5; // Energy of the incident electrons, eV
10 L = 0.8e-009; // Width of the potential barrier,
11 k = sqrt(2*m*(V0 - E))*e/(h_bar*c);
     Schrodinger's constant, per m
12 T = (1 + V0^2*sinh(k*L)^2/(4*E*(V0 - E)))^(-1);
     // Transmission electron probability
13 printf("\nThe fraction of electrons tunneled through
      the barrier = \%3.1e", T);
14
15 // Result
16 // The fraction of electrons tunneled through the
     barrier = 4.4e - 008
```

Scilab code Exa 6.15 Probability of electron tunneling through the barrier

```
1 // Scilab Code Ex6.15: Page -229 (2014)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
5 c = 3.00e+008; // Speed of light, m/s
                   // Energy equivalent of 1 eV, J
6 e = 1.602e-019;
                    // Energy equivalent of electron
7 m = 0.511e + 006;
     rest mass, eV
8 \ VO = 10;
           // Height of potential barrier, eV
9 \text{ Sum}_M = 0;
10 i = 1;
11 for E = 5:-1:1 // Range of energies of the
```

```
incident electrons, eV
      M = 16*E/V0*(1-E/V0); // All the factors
12
         multiplying the exponential term
       Sum_M = Sum_M + M; // Accumulator
13
14
       i = i + 1;
15 end
16 E = 5;
         // Given energy of the incident electrons,
17 M = int(Sum_M/i); // Avearge value of M
18 L = 0.8e-009; // Width of the potential barrier,
19 k = sqrt(2*m*(VO - E))*e/(h_bar*c);
     Schrodinger's constant, per m
20 T = M*exp(-2*k*L); // Transmission electron
     probability
21 printf("\nThe fraction of electrons tunneled through
      the barrier = \%3.1e", T);
22
23 // Result
24 // The fraction of electrons tunneled through the
     barrier = 2.2e - 008
```

Scilab code Exa 6.16 A particle penetrating through a potential step

```
eV

10 1 = h_bar*c/(2*sqrt(2*m*(VO - E))*1e-009*e); //
Penetration distance into the barrier when the probability of the particle penetration drops to 1/e, nm

11 printf("\nThe penetration distance for a %d eV electron approaching a step barrier of %d eV = %5 .3 f nm", E, VO, 1);

12

13 // Result

14 // The penetration distance for a 5 eV electron approaching a step barrier of 10 eV = 0.044 nm
```

Scilab code Exa 6.17 An alpha particle tunnelling through a nucleus

```
1
2 // Scilab Code Ex6.17: Page -234 (2014)
3 clc; clear;
4 h = 6.62e-034; // Planck's constant, Js
5 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
6 c = 3.00e + 008; // Speed of light, m/s
7 e = 1.602e-019; // Charge on an electron, C
8 k = 9e+009; // Coulomb constant, N-Sq.m./C^2
9 m = 3727; // Energy equivalent of alpha particle
     rest mass, MeV
10 E = 5; // Given energy of the incident electrons,
      eV
11 Z1 = 2; // Atomic number of an alpha particle
12 Z2 = 92; // Atomic number of the U-238 nucleus
13 r_N = 7e-015; // Nuclear radius, m
14 K = 4.2; // Kinetic energy of alpha particle, MeV
15 V_C = Z1*Z2*e^2*k/(r_N*e*1e+006); // Coulomb
     Potential, MeV
16 r_prime = V_C*r_N/(K*1e-015); // Distance through
```

```
which the alpha particle must tunnel, fm
17 kapa = sqrt(2*m*(V_C-E))*e/(h_bar*c*1e-006);
                                                    //
     Schronginger's Constant, per m
18 L = r_prime - r_N/1e-015; // Barrier width, fm
19 T = 16*(K/V_C)*(1-K/V_C)*\exp(-2*kapa*L*1e-015);
     // Tunnelling probability of alpha particle
20 V_C_{new} = V_C/2; // Potential equal to half the
     Coulomb potential, MeV
21 L = L/2;
             // Width equal to half the barrier width
     , fm
22 kapa = sqrt(2*m*(V_C_new-E))*e/(h_bar*c*1e-006);
     // Schronginger's Constant, per m
23 T_a = 16*(K/V_C_new)*(1-K/V_C_new)*exp(-2*kapa*L*1e)
     -015):
               // Approximated tunnelling probability
     of alpha particle
24 \ v = sqrt(2*K/m)*c;
                        // Speed of the alpha particle
     , m/s
                // Time taken by alpha particle to
25 t = r_N/v;
      cross the U-238 nucleus, s
26 printf("\nThe barrier height = \%2d MeV", ceil(V_C));
27 printf("\nThe distance that alpha particle must
      tunnel = \%2d \text{ fm}", r_prime);
28 printf("\nThe tunneling potential assuming square-
     top potential = \%1.0e", T);
29 printf("\nThe approximated tunneling potential = \%3
     .1e", T_a);
30 printf("\nThe speed of the alpha particle = \%3.1e m/
     s", v);
31 printf("\nThe time taken by alpha particle to cross
     the U-238 nucleus = \%1.0e s", t);
32
33 // Result
34 // The barrier height = 38 MeV
35 // The distance that alpha particle must tunnel = 63
36 // The answers are given wrongly in the textbook
37 // The tunneling potential assuming square-top
     potential = 6e-123
```

```
38 // The approximated tunneling potential = 3.8e-040
39 // The speed of the alpha particle = 1.4e+007 m/s
40 // The time taken by alpha particle to cross the U
-238 \text{ nucleus} = 5e-022 \text{ s}
41 // Some answers are given wrong in the textbook for this problem
```

Chapter 7

The Hydrogen Atom

Scilab code Exa 7.2 Normalization of hydrogen wave function

```
1 // Scilab Code Ex7.2: Page -248 (2014)
2 clc; clear;
              // For simplicity assume Bohr radius to
3 \ a0 = 1;
     be unity, m
4 NE = 1/(64*\%pi*a0^5)*integrate('r^4*exp(-r/a0)', 'r'
     , 0, 15)*integrate('\sin(t)^3', 't', 0, %pi)*
     integrate('p^0', 'p', 0, 2*%pi);
5 if round(NE) == 1 then
       printf("\nThe hydrogen wave function <211| is
          normalized");
7 else
       printf("\nThe hydrogen wave function <211| is
         not normalized");
9 end
10
11 // Result
12 // The hydrogen wave function <211 is normalized
```

Scilab code Exa 7.4 Degeneracy of M level in hydrogen atom

```
1 // Scilab Code Ex7.4: Page -252 (2014)
2 clc; clear;
3 n = 3; // Principal quantum number
4 \text{ Total} = 0;
2(1 + 1)");
                         \mathrm{m}_{-}\mathrm{l}
                                                -----");
7 \text{ for } 1 = 0:1:n-1
       printf("\n^{d}", n);
       printf(" %d ", 1);
9
            if 1 > 0 then
10
11
                count = 0;
               for m_l = -1:1:1
12
                  printf("%2d ", m_1);
13
14
                   count = count + 1;
15
               end
               if 1 == 1 then
16
                    printf("
                                   ");
17
               else
18
                    printf("");
19
20
               end
21
            else
22
                   m_1 = 0;
                   count = 0;
23
                                             ", m_1);
                   printf("%2d
24
25
                   count = count + 1;
26
            end
            printf(" %d", count);
27
28
            Total = Total + count;
29 end
30 printf("\n
                                       Total = \%d", Total);
31
32 // Result
33 // n
                 m_l
                                      2(1 + 1)
34 // -
35 // 3
                  0
                                        1
            0
36 // 3
                 -1 \quad 0 \quad 1
                                        3
            1
37 // 3
            2
                 -2 -1 0
                                2
                                        5
38 //
                               Total = 9
```

Scilab code Exa 7.7 Energy difference between components of p states of atomic hydrogen placed in an external field

```
1 // Scilab Code Ex7.7: Page -255 (2014)
2 clc; clear;
3 = 1.602e-019; // Charge on an electron, C
4 h = 6.62e-034; // Planck's constant, Js
5 h_bar = h/(2*%pi); // Reduced Planck's constant,
6 m = 9.11e-031; // Electron mass, kg
7 B = 2.00; // External magnetic field, T
               // Lower orbial magnetic quantum number
8 m_11 = 0;
9 m_12 = 1; // Upper orbial magnetic quantum number
10 delta_m_l = m_12 - m_11; // Change in m_l
11 mu_B = e*h_bar/(2*m); // Bohr's magneton, J/T
12 delta_E = mu_B*B*delta_m_l/e;
                                  // Energy
      difference between components of p states of
     atomic hydrogen placed in the external field, eV
13 printf("\nThe value of Bohr magneton = \%4.2 \,\mathrm{e} J/T",
     mu_B);
14 printf("\nThe energy difference between components
     of p states of atomic hydrogen placed in the
     external field = \%4.2 \,\mathrm{e} eV", delta_E);
15
16 // Result
17 // The value of Bohr magneton = 9.26e-024 J/T
18 // The energy difference between components of p
     states of atomic hydrogen placed in the external
      field = 1.16e - 004 eV
```

Scilab code Exa 7.8 Separation of the atomic beam

```
1 // Scilab Code Ex7.8: Page -257 (2014)
2 clc; clear;
3 \text{ m} = 1.67 \text{ e} - 027;
                       // Mass of the proton, kg
4 k = 1.38e-023;
                      // Boltzmann constant, J/K
5 T = 663; // Temperature of the discharge tube, K
6 \text{ v_x} = \text{sqrt}(3*k*T/m); // Average speed of the
      hydrogen atom
7 \text{ mu}_z = 9.27e-024;
                          // Bohr's magneton, J/T
8 B_grad = 1240; // Magnetic field gradient, T/m
9 delta_x = 0.03; // Length of the homogeneous
      magnetic field, m
10 d = 1/(2*m)*(mu_z*B_grad)*(delta_x/v_x)^2;
      Separation of the atomic beam, m
11 printf("\nThe separation of the atomic beam = \%4.2 \,\mathrm{f}
     mm", d/1e-003);
12
13 // Result
14 // The separation of the atomic beam = 0.19 \text{ mm}
```

Scilab code Exa 7.9 Number of distinct states for the 4d level of atomic hydrogen

```
1 // Scilab Code Ex7.9: Page -259 (2014)
2 clc; clear;
3 n = 4; // Principal quantum number
4 1 = 2; // For 4d-state
5 printf("\nn l
                            m_l
 printf("\n---
7
        count = 0;
8
        for m_1 = -1:1:1
            if (m_1 == 0) then
9
                printf("\n\%d", n);
10
                printf("
                            %d ", 1);
11
                         \%2d", m_1);
                printf("
12
                            +1/2, -1/2");
                printf("
13
```

```
14
             else
                 printf("\n
                                            %2d", m_1);
15
                 printf(" +1/2, -1/2");
16
17
             end
18
             count = count + 2;
19
        end
20 printf("\nTotal No. of different states for 4d level
       of atomic hydrogen = \%d", count);
21
22 // Result
\frac{23}{n}
                       m_l
                                m\_s
24 //
25 //
                             +1/2, -1/2
26 //
                             +1/2, -1/2
                       -1
            2
                             +1/2, -1/2
27 // 4
                        0
28 //
                             +1/2, -1/2
29 //
                        2
                             +1/2, -1/2
30 // Total No. of different states for 4d level of
      atomic hydrogen = 10
```

Scilab code Exa 7.10 Energy of allowed transitions for the hydrogen atom

```
1 // Scilab Code Ex7.10: Page -263 (2014)
2 clc; clear;
3 function flag = check_allowance(dn, dl, dml, dms)
       if (dl == -1 | dl == 1 | dml == -1 | dml == 0 |
         dml == 1 | dms == -1 | dms == 0 | dms == 1) &
          dl <> 0 then
           flag = 1;
5
6
       else
7
           flag = 0;
       end
9 endfunction
10 state = [2 0 0 1/2; 3 1 1 1/2; 2 0 0 1/2; 3 0 0 1/2;
      4 2 -1 -1/2; 2 1 0 1/2];
```

```
11 for i = 1:2:5
12
       flag = 0;
       d_n = state(i,1) - state(i+1,1);
13
       d_1 = state(i,2) - state(i+1,2);
14
15
       d_m_1 = state(i,3) - state(i+1,3);
       d_m_s = state(i,4) - state(i+1,4);
16
       flag = check_allowance(d_n, d_1, d_m_1, d_m_s);
17
18
       if flag == 1 then
           printf ("\n) nThe transition (%d,%d,%d,1/%d)
19
              --> (\%d, \%d, \%d, 1/\%d) is allowed", state(i
               ,1), state(i,2), state(i,3), state(i,4)
              *4, state(i+1,1), state(i+1,2), state(i
              +1,3), state(i+1,4)*4);
           delta_E = -13.6*(1/state(i+1)^2-1/state(i)
20
               ^2);
21
           printf("\nThe energy of this transition is
              \%4.2 \, f \, eV", delta_E);
22
       else
           printf ("\n\nThe transition (\%d,\%d,\%d,\%d)-->
23
                (\%d,\%d,\%d,\%d) is not allowed", state(i
               ,1), state(i,2), state(i,3), state(i,4),
              state(i+1,1), state(i+1,2), state(i+1,3),
                state(i+1,4));
24
       end
25
  end
26
27
  // Result
   // The transition (2,0,0,1/2) --> (3,1,1,1/2) is
      allowed
  // The energy of this transition is 1.89 eV
29
30
  // The transition (2,0,0,0)—> (3,0,0,0) is not
31
      allowed
32
  // The transition (4,2,-1,1/-2) --> (2,1,0,1/2) is
33
      allowed
34 // The energy of this transition is -2.55 eV
```

Scilab code Exa 7.13 Probability of the electron in the 1s state of the hydrogen atom

```
// Scilab Code Ex7.13: Page-265 (2014)
clc; clear;
a0 = 1;    // For simplicity assume bohr radius to be unity
P = integrate('4/a0^3*exp(-2*r/a0)*r^2', 'r', a0, 10);
printf("\nThe probability of the electron in the 1s state of the hydrogen atom = %4.2f", P);
// Result
// The probability of the electron in the 1s state of the hydrogen atom = 0.68
```

Chapter 8

Atomic Physics

Scilab code Exa 8.3 Splitting of 3p subshell of sodium

```
1 // Scilab Code Ex8.3: Page -285 (2014)
2 clc; clear;
                          // Energy difference for the 3p
3 \text{ delta_E} = 2e-003;
       subshell of sodium, eV
4 h = 6.62e-034; // Planck's constant, Js
5 e = 1.602e-019; // Energy equivalent of 1 eV, J 6 c = 3.00e+008; // Speed of light in vacuum, m/s
7 lambda = 589.3; // Wavelength of spectral line,
      nm
  // As delta_E = h*c/lambda^2*delta_lambda, solving
      for delta_lambda
9 delta_lambda = lambda^2*e/(h*c*1e+009)*delta_E;
      // Splitting of 3p subshell of sodium, nm
10 printf("\nThe splitting of 3p subshell of sodium =
      \%3.1\,\mathrm{f} nm", delta_lambda);
11
12 // Result
13 // The splitting of 3p subshell of sodium = 0.6 \text{ nm}
```

Scilab code Exa 8.5 LS coupling of two electrons in an atom

```
1 // Scilab Code Ex8.5: Page - 289 (2014)
2 clc; clear;
3 11 = 1;
             // Orbital angular momentum quantum
     number for first electron
4 12 = 2;
           // Orbital angular momentum quantum
     number for second electron
5 s1 = 1/2;
                // Spin angular momentum quantum number
       for first electron
6 	 s2 = 1/2;
              // Spin angular momentum quantum number
       for second electron
7 \text{ temp_j} = zeros(15);
8 \text{ cnt} = 1;
9 printf("\nThe all possibe values of the total
      angular momentum quantum number of J are:\n");
10 for L = abs(11 - 12):1:abs(11 + 12)
       for S = abs(s1 - s2):1:abs(s1 + s2)
11
           for j = abs(L - S):1:abs(L + S)
12
13
                temp_j(cnt) = j;
14
                cnt = cnt + 1;
15
           end
16
       end
17 \text{ end}
18 J = -1;
19 temp_J = gsort(temp_j, 'g', 'i');
20 \text{ for } i = 1:1:cnt-1
21
       if temp_J(i) > J then
22
          J = temp_J(i);
          printf("%d ", J);
23
24
       end
25 end
26
27 // Result
28 // The all possibe values of the total angular
     momentum quantum number of J are:
29 // 0 1
                3
```

Scilab code Exa 8.8 Internal magnetic field causing spin orbit splitting

```
1 // Scilab Code Ex8.8: Page -291 (2014)
2 clc; clear;
3 delta_E = 0.0021; // Energy difference for the 3p
      subshell of sodium, eV
4 h = 6.62e-034; // Planck's constant, Js
5 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
6 e = 1.602e-019; // Energy equivalent of 1 eV, J
7 m = 9.11e-031; // Rest of an an electron, kg
8 \text{ g_s} = 2;
            // Gyromagnetic ratio due to spin
     splitting
9 // As delta_E = g_s * e * h_bar/(2*m)*B, solving for B
10 B = m*delta_E/h_bar; // Internal magnetic field
     causing the LS splitting, T
11 printf("\nThe internal magnetic field causing the LS
      splitting = \%2d T, B);
12
13 // Result
14 // The internal magnetic field causing the LS
     splitting = 18 T
```

Chapter 9

Statistical Physics

Scilab code Exa 9.1 Mean translational kinetic energy of gas molecules at room temperature

```
1 // Scilab Code Ex9.1: Page -303 (2014)
2 clc; clear;
3 k = 1.38e - 023;
                   // Boltzmann constant, J/K
4 N_A = 6.023e+023;
                       // Avogadro's number
5 T = 293;
            // Room temperature, K
6 e = 1.6e-019; // Energy equivalent of 1 eV, J
7 // For a single molecule
8 K_bar_single = 3/2*k*T/e; // Mean translational
     kinetic energy of a single gas molecule, J
9 // For a 1 mole of molecules
10 K_bar_mole = K_bar_single*N_A*e; // Mean
     translational kinetic energy of 1 mole of gas
     molecules, J
11 printf("\nThe mean translational kinetic energy of
     the single idela gas molecule = \%5.3 f eV",
     K_bar_single);
12 printf("\nThe mean translational kinetic energy of
     the one mole of ideal gas molecules = %4d J",
     ceil(K_bar_mole));
13
```

Scilab code Exa 9.3 Mean molecular speed in light gas hydrogen and heavy radon gas

```
1 // Scilab Code Ex9.3: Page-310 (2014)
2 clc; clear;
3 k = 1.38e - 023;
                     // Boltzmann constant, J/K
                     // Mass equivalent of one atomic
4 u = 1.67e - 027;
     mass unit, kg
5 T = 293;
            // Room temperature, K
6 \text{ m}_H = 1.008*u;
                  // Gram atomic mass of hydrogen,
     kg
                // Gram molecular mass of hydrogen
7 m = 2*m_H;
     molecule, kg
8 v_bar = 4/sqrt(2*%pi)*sqrt(k*T/m); // Mean
     molecular speed in the light gas hydrogen, m/s
  printf("\nThe mean molecular speed in the light gas
     hydrogen = %4d m/s", ceil(v_bar));
10 m = 222*u; // Gram atomic mass of Radon, kg
11 v_bar = 4/sqrt(2*%pi)*sqrt(k*T/m);
      molecular speed in the heavy radon gas, m/s
12 printf("\nThe mean molecular speed in the heavy
     radon gas = \%3d \text{ m/s}, ceil(v_bar));
13
14 // Result
15 // The mean molecular speed in the light gas
     hydrogen = 1749 \text{ m/s}
16 // The mean molecular speed in the heavy radon gas =
      167 \text{ m/s}
```

Scilab code Exa 9.4 Fraction of molecules in an ideal gas having speed near to the most probable speed

```
1 // Scilab Code Ex9.4: Page-310 (2014)
2 clc; clear;
            // For simplicity assume mass of gas
3 m = 1;
      molecule to be unity, kg
  k = 1.38e-023; // Boltzmann constant, J/K
             // Room temperature, K
5 T = 293;
6 \text{ bita = } k*T;
                  // Energy associated with three
      degrees of freedom, J
7 \text{ v_mps} = \text{sqrt}(2/(\text{bita*m}));
                              // For simplicity assume
      most probable speed to be unity, m/s
8 C = (bita*m/(2*\%pi))^(3/2); // Constant in the
      distribution function
9 P = integrate ('4*\%pi*C*exp(-1/2*bita*m*v^2)*v^2', 'v
      ', 0.99*v_mps, 1.01*v_mps);
10 printf("\nThe fraction of molecules in an ideal gas
      in equilibrium which have speeds within 1 percent
      above and below the most probable speed = \%5.3 f"
      , P);
11
12 // Result
13 // The fraction of molecules in an ideal gas in
      equilibrium which have speeds within 1 percent
      above and below the most probable speed = 0.017
```

Scilab code Exa 9.6 Relative number of atoms in the ground and first excited states in atomix hydrogen

```
1 // Scilab Code Ex9.6: Page -315 (2014) 2 clc; clear;
```

```
3 k = 1.38e-023; // Boltzmann constant, J/K
4 T = [293 5000 1e+006]; // Room temperature,
      temperature at the surface of the star and
      temperature at the star interior respectively, K
5 e = 1.6e - 019;
                     // Energy equivalent of 1 eV, J
                 // Possible configuration of the
6 \text{ g_E1} = 2;
      electrons in ground state of H-atom
7 g_E2 = 8;
                 // Possible configuration of the
      electrons in the first excited state of H-atom
                // Energy of the ground state, eV
8 E1 = -13.6;
                  // Energy of the first excited state
9 E2 = -3.4;
      state, eV
10 \text{ n\_ratio} = \text{zeros}(3);
11 \quad for \quad i = 1:1:3
       n_{ratio}(i) = g_E2/g_E1*exp(1/(k*T(i))*(E1 - E2)*
12
       printf ("\nFor T = \%4.2 \,\mathrm{e} K, n_E2/n_E1 = \%4.2 \,\mathrm{e}", T
13
           (i), n_ratio(i));
14 end
15
16
17 // Result
18 // For T = 2.93 e + 002 K, n_E 2 / n_E 1 = 2.05 e - 175
19 // For T = 5.00 e + 003 K, n_E 2 / n_E 1 = 2.14 e - 010
20 // For T = 1.00 e + 006 K, n_E 2 / n_E 1 = 3.55 e + 000
```

Scilab code Exa 9.7 Fermi energy and Fermi temperature for copper

```
1 // Scilab Code Ex9.7: Page-320 (2014)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J
4 n = 8.47e+028; // Number density of conduction electrons in copper, per metre cube
5 k = 1.38e-023; // Boltzmann constant, J/K
6 h = 6.626e-034; // Planck's constant, Js
```

```
7 m = 9.11e-031;  // Mass of an electron, kg
8 E_F = h^2/(8*m*e)*(3*n/%pi)^(2/3);  // Fermi
        energy for copper, eV
9 T_F = E_F*e/k;  // Fermi temperature for copper, K
10 printf("\nThe Fermi energy for copper = %4.2 f eV",
        E_F);
11 printf("\nThe Fermi temperature for copper = %4.2 e K
        ", T_F);
12
13 // Result
14 // The Fermi energy for copper = 7.04 eV
15 // The Fermi temperature for copper = 8.16 e+004 K
```

Scilab code Exa 9.8 Electronic contribution to the molar heat capacity of metals

```
1 // Scilab Code Ex9.8: Page -322 (2014)
2 clc; clear;
3 R = 1;
            // For simplicity assume the molar gas
      constant to be unity, J/mol/K
4 T = 293; // Room temperature, K
5 \text{ T_F} = 8.16\text{e}+004; // The Fermi temperature for
      copper
6 C_V = \%pi^2*T/(2*T_F)*R; // Electronic
      contribution to the molar heat capacity for
      copper, J/mol/K
7 printf("\nThe electronic contribution to the molar
     heat capacity for copper = \%6.4 \,\mathrm{fR}", C_V);
8 \text{ T_F} = 6.38\text{e}+004; // The Fermi temperature for
      silver
9 C_V = \pi^2 *T/(2*T_F)*R; // Electronic
      contribution to the molar heat capacity for
      silver, J/mol/K
10 printf("\nThe electronic contribution to the molar
     heat capacity for silver = \%6.4 \,\mathrm{fR}", C_V);
```

```
11
12 // Result
13 // The electronic contribution to the molar heat capacity for copper = 0.0177R
14 // The electronic contribution to the molar heat capacity for silver = 0.0227R
```

Chapter 10

Molecules Lasers and Solids

Scilab code Exa 10.1 Energy of lowest rotational state of nitrogen gas

```
1 // Scilab Code Ex10.1 : Page -342 (2014)
2 clc; clear;
3 m = 2.33e-026; // Mass of a nitrogen atom, kg
4 R = 1.1e-010;
                  // Interatomic separtion between
     two nitrogen atoms, m
5 h = 6.626e-034; // Planck's constant, Js
6 e = 1.6e-019; // Energy equivalent of 1 eV, J
7 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
8 I = m*R^2/2; // Moment of rotational inertia of
     nitrogen gas molecule, kg-Sq.m
9 l = 1; // Rotational angular momentum quantum
     number
10 E_{rot} = h_{bar}^2*1*(1+1)/(2*I); // The energy for
     lowest rotational state of the nitrogen molecule,
      J
11 printf("\nThe energy for lowest rotational state of
     the nitrogen molecule = \%4.2\,\mathrm{e} eV", E_rot/e);
12
13 // Result
14 // The energy for lowest rotational state of the
```

Scilab code Exa 10.2 Vibrational energy levels of HCl molecule

```
2 // Scilab Code Ex10.2 : Page -343 (2014)
3 clc; clear;
4 h = 6.626e-034; // Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
6 h_bar = h/(2*%pi); // Reduced Planck's constant,
      Js
7 k = 1.38e-023; // Boltzmann constant, J/K
8 u = 1.67e-027; // Mass equivalent of 1 am
                     // Mass equivalent of 1 amu, kg
9 m1 = 34.97*u; // Atomic mass of chlorine atom, kg 10 m2 = 1.008*u; // Atomic mass of hydrogen atom, kg
11 mu = m1*m2/(m1 + m2); // Reduced mass of the HCl
      system, kg
12 delta_E = 0.36; // Spacing between vibrational
      energy levels of the HCl molecule, eV
13 omega = delta_E*e/h_bar; // Angular frequency of
      vibration, rad/s
14 kapa = mu*omega^2;
                         // Effective force constant
      for HCl molecule, N/m
15 T = delta_E*e/k; // Classical temperature
      associated with the rotational energy spacing, K
16
17 printf("\nThe effective force constant for HCl
      molecule = \%3d \text{ N/m}, ceil(kapa));
18 printf("\nThe classical temperature associated with
      the rotational energy spacing = \%4d K", ceil(T));
19
20 // Result
21 // The effective force constant for HCl molecule =
      489 \text{ N/m}
22 // The classical temperature associated with the
```

```
rotational energy spacing = 4174~\mathrm{K}
23 // The answers are given wrong in the textbook
```

Scilab code Exa 10.4 Range parameter for NaCl

```
1 // Scilab Code Ex10.4 : Page - 358 (2014)
2 clc; clear;
3 = 1.602e-019; // Charge on an electron, C
4 N_A = 6.023e+023; // Avogadro's number
5 alpha = 1.7476; // Madelung constant
                      // Dissociation energy of NaCl
6 E = -764.4e+003;
     molecule, J/mol
7 V = E/N_A; // Repulsive potential energy, J
8 k = 8.988e+009; // Coulomb's constant, N-Sq.m/C^2
9 r0 = 0.282e-009; // Equilibrium separation for
      nearest neighbour in NaCl, m
10 rho = r0*(1+r0*V/(k*alpha*e^2)); // Range
      parameter for NaCl, nm
11 printf("\nThe range parameter for NaCl = \%6.4 \, \text{f} nm",
      rho/1e-009);
12
13 // Result
14 // The range parameter for NaCl = 0.0316 nm
```

Scilab code Exa 10.5 Induced diamagnetism in an atom

Scilab code Exa 10.6 Paramagnetism in a typical material

```
1 // Scilab Code Ex10.6 : Page-366 (2014)
2 clc; clear;
3 mu_B = 9.27e-024; // Bohr's magneton, J/T
4 B = 0.50; // Applied magnetic field, T
5 k = 1.38e-023; // Boltzmann constant, J/K
6 T = 10*mu_B*B/k; // Temperature at which mu*B =
     0.1 \, k*T, K
7 b_muB = mu_B*B/(k*T);
8 ratio = b_muB/tanh(b_muB); // Ratio of b_muB and
     tanh (b_muB)
9 	ext{ if } (ratio - 1) < 0.01 	ext{ then}
       printf("\nThe value of T = \%4.2 f K is suiable as
           a classical temperature.", T);
11 else
       printf("\nThe value of T = \%4.2 f K is not
12
          suiable as a classical temperature.", T);
14 // For higher temperature
15 T = 100; // Given temperature
16 b_muB = mu_B*B/(k*T);
17 ratio = b_muB/tanh(b_muB); // Ratio of b_muB and
     tanh (b_muB)
18 \text{ if } (\text{ratio} - 1) < 0.001 \text{ then}
       printf ("\nAt the value of T = \%4.2 f K, the
```

```
approximation is an excellent one.", T);

20 else

21     printf("\nAt the value of T = %4.2 f K, the approximation is not an excellent.", T);

22 end

23

24     // Result

25     // The value of T = 3.36 K is suiable as a classical temperature.

26     // At the value of T = 100.00 K, the approximation is an excellent one.
```

Scilab code Exa 10.7 Superconductivity in niobium

```
1 // Scilab Code Ex10.7 : Page -374 (2014)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/K
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 h = 6.62e-034; // Planck's constant, Js
6 c = 3.00e+008; // Speed of light, m/s
  T_c = 9.25; // Critical temperature for niobium,
     K
8 E_g = 3.54*k*T_c; // Energy gap for niobium from
     BCS theory, J
                      // Minimum photon wavelength
  lambda = h*c/E_g;
      needed to break the Cooper pair, m
10 printf("\nThe energy gap for niobium = \%4.2 \text{ f meV}",
      E_g/(e*1e-003);
11 printf("\nThe minimum photon wavelength needed to
      break the Cooper pair = \%4.2\,\mathrm{e} m", lambda);
12
13 // Result
14 // The energy gap for niobium from BCS theory = 2.82
15 // The minimum photon wavelength needed to break the
```

Scilab code Exa 10.8 Magnetic field perpendicular to the loop

```
1 // Scilab Code Ex10.8 : Page - 382 (2014)
2 clc; clear;
3 r = 1e-002;
                  // Radius of the loop, m
                        // Magnetic flux penetrating
4 \text{ phi0} = 2.068e-015;
     to the loop, T-Sq.m
5 A = \pi^2; // Area of the loop, Sq.m
                   // Magnetic field perpendicular to
6 B = phi0/A;
     the loop, T
  printf("\nThe magnetic field perpendicular to the
     loop = \%4.2 \,\mathrm{e}\ \mathrm{T}, B);
9 // Result
10 // The magnetic field perpendicular to the loop =
      6.58e - 012 T
```

Chapter 11

Semiconductor Theory and Devices

Scilab code Exa 11.1 Relative number of electrons with given energies above the valence band

```
1 // Scilab Code Ex11.1 : Page -399 (2014)
2 clc; clear;
3 e = 1.6e - 0.19;
                       // Energy equivalent of 1 eV, J
4 k = 1.38e-023;
                       // Boltzmann constant, J/K
5 T = 293; // Room temperature, K
6 	ext{ dE} = [0.10, 1.0, 10.0]; // Energies above the
      valence band, eV
7 	ext{ F_FD} = zeros(3);
8 \text{ for } i = 1:1:3
        F_FD(i) = 1/(exp(dE(i)*e/(k*T)) + 1);
        printf("\nFor E - E_F = \%4.2 \, \text{f eV}, F_FD = \%4.2 \, \text{e}",
            dE(i), F_FD(i));
11
  end
12
13 // Result
14 // For E - E_F = 0.10 \text{ eV}, F_FD = 1.88 \text{ e} - 002
15 // For E - E_F = 1.00 \text{ eV}, F_FD = 6.53 \text{ e} - 018
16 // For E - E_F = 10.00 \text{ eV}, F_FD = 1.40 \text{ e} - 172
```

Scilab code Exa 11.3 Hall effect in zinc strip

```
1
2 // Scilab Code Ex11.3: Page -402 (2014)
3 clc; clear;
4 e = 1.6e-019; // Energy equivalent of 1 eV, J
5 rho = 5.92e-008; // Resistivity of the zinc at
      room temperature, ohm-m
6 B = 0.25; // Magnetic field applied perpendicular
       to the strip, T
7 x = 10.0e-002; // Length of the zinc strip, m
8 y = 2.0e-002; // Width of the zinc strip, m
9 V = 20e-003; // Potential difference applied
      across the strip, V
10 I = 0.400; // Current through the strip, A
11 V_H = 0.56e-006; // Hall voltage that appeared
      across the strip , V
12 z = rho*x*I/(y*V); // Thickness of the strip, m
13 n = I*B/(e*V_H*z); // Number density of the
                          // Number density of the
      charge carriers, per metre cube
14 printf ("\nThe thickness of the zinc strip = \%4.2 \,\mathrm{e} m"
      , z);
15 printf("\nThe number density of the charge carriers
      = \%4.2e per metre cube", n);
16 printf("\nThe charge carries in zinc are positive.")
17
18 // Result
19 // The thickness of the zinc strip = 5.92e-006 m
20 // The number density of the charge carriers = 1.89e
      +029 per metre cube
21 // The charge carries in zinc are positive.
```

Scilab code Exa 11.4 Current through a reverse bias pn junction diode

```
// Scilab Code Ex11.4: Page-408 (2014)
clc; clear;
e = 1.602e-019;  // Energy equivalent of 1 eV, J
k = 1.38e-023;  // Boltzmann constant, J/K
T = 293;  // Room temperature, K
V_f = 0.200;  // Forward voltage, V
L_f = 50e-003;  // Forward current, A
V_r = -0.200;  // Reverse voltage, V
L_r = I_f*(exp(e*V_r/(k*T))-1)/(exp(e*V_f/(k*T)) -
1);  // Reverse current from diode equation, A
printf("\nThe reverse current through pn-juntion diode = %2d micro-ampere", I_r/1e-006);
// Result
// Result
// The reverse current through pn-juntion diode =
-18 micro-ampere
```

Scilab code Exa 11.5 Energy produced by a solar cell per day

```
// Scilab Code Ex11.5: Page-412 (2014)
clc; clear;
A = 100*100; // Area of solar cell, Sq.m
t = 12*60*60; // Time for which the solar cell operates, s
phi = 680; // Solar flux received by the solar cell, W/Sq.m
eta = 0.30 // Efficiency of the solar array
E_array = eta*phi*A*t; // Energy produced by solar cell in one 12-hour day, J
```

```
8 printf("\nThe energy produced by solar cell in one
     12-\text{hour day}: \%3.1\,\text{e} J", E_array);
                   // Power output of power plant, W
9 P = 100e + 006;
                    // Time for which power plant
10 t = 24*60*60;
     operates, s
11 E_plant = P*t;
                  // Energy produced by power plant,
12 printf("\nThe energy produced by power plant in one
     day: %3.1e J which is about %d times more than
      that produced by solar cell array..!", E_plant,
     ceil(E_plant/E_array));
13
14 // Result
15 // The energy produced by solar cell in one 12-hour
     day : 8.8e + 0.00 J
16 // The energy produced by power plant in one day:
      8.6e+012 J which is about 99 times more than that
      produced by solar cell array..!
```

Scilab code Exa 11.6 Data bits stored into CD ROM

```
1
2 // Scilab Code Ex11.6: Page-418 (2014)
3 clc; clear;
4 \text{ r1} = 2.30e-002;
                    // Radius of inner edge of
      storing region of CD-ROM, m
                    // Radius of outer edge of storing
5 \text{ r2} = 5.80 \text{e} - 002;
      region of CD-ROM, m
6 A = \%pi*(r2^2 - r1^2);
                              // Area of the usable
     region of CD-ROM, Sq.m.
7 N = 700e + 006 * 8;
                     // Total number of bits in CD-ROM
8 \text{ APB} = A/N;
                 // Area per bit of CD-ROM, Sq.m/bit
9 t = 1.6e-006; // Track width of CD_ROM, m
10 l = APB/t;
                  // Bit length, m
11 printf("\nThe surface area of CD-ROM allowed for
```

```
each data bit = %3.1e Sq.m/bit", APB);
12 printf("\nThe approx. dimensions of each bit along the track = %1.0f micro-metre", 1/1e-006);
13
14 // Result
15 // The surface area of CD-ROM allowed for each data bit = 1.6e-012 Sq.m/bit
16 // The approx. dimensions of each bit along the track = 1 micro-metre
```

Chapter 12

The Atomic Nucleus

Scilab code Exa 12.1 Minimum kinetic energy of a proton in a medium sized nuclecus

```
1 // Scilab Code Ex12.1: Page-432 (2014)
2 clc; clear;
                 // Planck's constant, Js
3 h = 6.62e - 034;
4 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
5 m = 1.67e-027; // Rest mass of proton, kg
                     // Energy equivalent of 1 eV, J
6 = 1.602e-019;
                    // Speed of light, m/s
7 c = 3.00e + 008;
8 delta_x = 8.0e-015; // Size of the nucleus, m
                                  // Uncertainty in
9 delta_p = h_bar/(2*delta_x*e);
     momentum of proton from Heisenberg Uncertainty
     Principle, eV-s/m
                    // Minimum momentum of the
10 p_min = delta_p;
     proton inside the nucleus, eV-s/m
11 K = (p_min*c)^2*e/(2*m*c^2*1e+006);
     minimum kinetic energy of the proton in a medium
     sized nuclecus, MeV
12 printf("\nThe minimum kinetic energy of the proton
     in a medium sized nuclecus = \%4.2 \text{ f MeV}", K);
13
```

```
14 // Result
15 // The minimum kinetic energy of the proton in a
    medium sized nuclecus = 0.08 MeV
```

Scilab code Exa 12.2 Nuclear radius of calcium

```
1 // Scilab Code Ex12.2: Page-436 (2014)
2 clc; clear;
5 m_e = 0.511; // Rest mass energy of electron, MeV
6 \text{ m_p} = 938.3; // Rest mass energy of proton, MeV
7 h = 6.62e-034; // Planck's constant, Js
8 A = 40; // Mass number of Ca-40
9 \text{ r0} = 1.2;
               // Nuclear radius constant, fm
10 R = r0*A^(1/3); // Radius of Ca-40 nucleus, fm
11 printf("\nThe radius of Ca-40 nucleus = \%3.1 \, \mathrm{f} fm", R
     );
12 lambda = 2.0; // de-Broglie wavelength to
     distinguish a distance at least half the radius,
     fm
13 // Electron energy
14 E = ceil(sqrt(m_e^2+(h*c/(lambda*e*1e+006*1e-015)))
     ^2));
          // Total energy of the probing electron,
      MeV
15 K = E - m_e; // Kinetic energy of probing
     {\tt electron} \ , \ {\tt MeV}
16 printf("\nThe kinetic energy of probing electron =
     \%3d MeV", ceil(K));
17 // Proton energy
18 E = ceil(sqrt(m_p^2+(h*c/(lambda*e*1e+006*1e-015)))
     ^2)); // Total energy of the probing electron,
      MeV
19 K = E - m_p; // Kinetic energy of probing
     electron, MeV
```

Scilab code Exa 12.3 Radii of U238 and He4 nuclei

```
1 // Scilab Code Ex12.3: Page -437 (2014)
2 clc; clear;
3 A_U238 = 238;
                    // Mass number of U-238
4 \text{ A\_He4} = 4; // Mass number of He-4
5 r0 = 1.2; // Nuclear radius constant, nm
6 R_U238 = r0*A_U238^(1/3); // Radius of U-238
     nucleus, fm
7 R_He4 = r0*A_He4^(1/3); // Radius of He-4 nucleus
     , fm
8 printf("\nThe radii of U-238 and He-4 nuclei are \%3
     .1 f fm and \%3.1 f fm repectively", R_U238, R_He4);
9 ratio = R_U238/R_He4; // Ratio of the two radii
10 printf("\nThe ratio of radius to U-238 to that of He
     -4 = \%3.1 \,\mathrm{f}", ratio);
11
12 // Result
13 // The radii of U-238 and He-4 nuclei are 7.4 fm and
      1.9 fm repectively
14 // The ratio of radius to U-238 to that of He-4 =
     3.9
```

Scilab code Exa 12.4 A proton subjected to the magnetic field

```
1 // Scilab Code Ex12.4: Page-438 (2014)
2 clc; clear;
3 h = 6.62e - 034;
                    // Planck's constant, Js
4 c = 3.00e+008; // Speed of light, m/s
5 e = 1.602e - 019;
                    // Energy equivalent of 1 eV, J
6 B = 2.0; // Applied magnetic field, T
7 \text{ mu_N} = 3.15e-008; // Nucleon magnetic moment, eV/
     Τ
8 mu_p = 2.79*mu_N; // Proton magnetic moment, eV/T
9 delta_E = 2*mu_p*B; // Energy difference between
     the up and down proton states, eV
10 f = delta_E*e/h; // Frequency of electromagnetic
     radiation that flips the proton spins, Hz
  lambda = c/f;
                  // Wavelength of electromagnetic
     radiation that flips the proton spins, m
12 printf("\nThe energy difference between the up and
     down proton states = \%3.1e eV", delta_E);
13 printf("\nThe frequency of electromagnetic radiation
      that flips the proton spins = \%2d MHz", f/1e
     +006);
14 printf("\nThe wavelength of electromagnetic
     radiation that flips the proton spins = \%3.1 f m",
      lambda);
15
16 // Result
17 // The energy difference between the up and down
     proton states = 3.5e-007 eV
18 // The frequency of electromagnetic radiation that
     flips the proton spins = 85 MHz
19 // The wavelength of electromagnetic radiation that
     flips the proton spins = 3.5 \text{ m}
```

Scilab code Exa 12.5 Binding energy of Be

```
1 // Scilab Code Ex12.5: Page -443 (2014)
2 clc; clear;
3 c = 3.00e + 008;
                      // Speed of light, m/s
4 e = 1.602e - 019;
                       // Energy equivalent of 1 eV, J
                // Energy equivalent of 1 amu, MeV
5 u = 931.5;
6 \text{ m_n} = 1.008665;
                      // Mass of a neutron, u
                       // Mass of a proton, u
7 \text{ M}_{H} = 1.007825;
                     // Mass of helium nucleus
8 \text{ M}_{He} = 4.002603;
                        // Mass of Be-8, u
9 \text{ M}_Be = 8.005305;
10 B_Be = (4*m_n+4*M_H - M_Be)*u;
11 B_Be_2alpha = (2*M_He - M_Be)*u;
12 printf ("\nThe binding energy of Be-8 = \%4.1 f MeV and
       is positive", B_Be);
13 if (B_Be_2alpha > 0) then
       printf("\nThe Be-4 is stable w.r.t. decay into
14
          two alpha particles.");
15 else
16
       printf("\nThe Be-4 is unstable w.r.t. decay into
           two alpha particles since the decay has
          binding energy of %5.3 f MeV", B_Be_2alpha);
17
  end
18
19 // Result
20 // The binding energy of Be-8 = 56.5 MeV and is
      positive
21 // The Be-4 is unstable w.r.t. decay into two alpha
      particles since the decay has binding energy of
      -0.092 \text{ MeV}
```

Scilab code Exa 12.6 Total Coulomb energy of U238

```
1 // Scilab Code Ex12.6: Page-444 (2014)
2 clc; clear;
3 Z = 92; // Atomic number of U-238
4 A = 238; // Mass number of U-238
```

Scilab code Exa 12.8 Binding energy per nucleon

```
1 // Scilab Code Ex12.8: Page-447 (2014)
2 clc; clear;
                // Energy equivalent of 1 amu, MeV
3 u = 931.5;
4 m_p = 1.007825; // Mass of proton, amu
5 m_n = 1.008665;
                       // Mass of neutron, amu
6 M_Ne = 19.992440; // Mass of Ne-20 nucleus, amu
7 M_Fe = 55.934942; // Mass of Fe-56 nucleus, amu
8 M U = 238.050783: // Mass of U-238 nucleus, amu
                         // Mass of U-238 nucleus, amu
8 M_U = 238.050783;
10 A_Fe = 56; // Mass number of Fe-56 nucleus
11 A_U = 238; // Mass number of II 225
9 A_Ne = 20; // Mass number of Ne-20 nucleus
12 BE_Ne = [10*m_p+10*m_n-M_Ne]*u;
                                      // Binding energy
       of Ne-20 nucleus, MeV
13 BE_Fe = [26*m_p+30*m_n-M_Fe]*u; // Binding energy
       of Fe-56 nucleus, MeV
14 BE_U = [92*m_p+146*m_n-M_U]*u; // Binding energy
      of U-238 nucleus, MeV
15 printf("\nThe binding energy per nucleon for Ne-20:
       \%4.2 \text{ f MeV/nucleon}", BE_Ne/A_Ne);
16 printf("\nThe binding energy per nucleon for Fe-56:
       \%4.2 \text{ f MeV/nucleon}, BE_Fe/A_Fe);
17 printf("\nThe binding energy per nucleon for U-238:
       \%4.2 \text{ f MeV/nucleon}, BE_U/A_U);
18
19 // Result
```

```
20 // The binding energy per nucleon for Ne-20 : 8.03

MeV/nucleon
21 // The binding energy per nucleon for Fe-56 : 8.79

MeV/nucleon
22 // The binding energy per nucleon for U-238 : 7.57

MeV/nucleon
```

Scilab code Exa 12.10 Radiactive decay of Po210

```
1 // Scilab Code Ex12.10: Page-451 (2014)
2 clc; clear;
3 N_A = 6.023e + 023; // Avogadro's number
4 T = 138*24*3600; // Half life of Po-210, s
5 R = 2000; // Activity of Po-210, disintegrations/
6 M = 0.210; // Gram molecular mass of Po-210, kg
  f = 1/3.7e + 010;
                     // Conversion factor to convert
     from decays/s to Ci
                   // Activity of Po-210, micro-Ci
  A = R*f/1e-006;
                     // Number of radiactive nuclei of
9 N = R*T/\log(2);
      Po-210, nuclei
                // Mass of Po-210 sample, kg
10 \quad m = N*M/N_A;
11 printf("\nThe activity of Po-210 = \%5.3 f micro-Ci",
12 printf("\nThe mass of Po-210 sample = \%3.1e kg", m);
13
14 // Result
      The activity of Po-210 = 0.054 micro-Ci
15 / /
16 // The mass of Po-210 sample = 1.2e-014 kg
```

Scilab code Exa 12.11 Time of decay of F18 isotope

```
1 // Scilab Code Ex12.11: Page-452 (2014)
```

```
2 clc; clear;
3 T = 110;  // Half life of F-18, min
4 f_remain = 0.01;  // Fraction of the F-18 sample
    remained
5 t = -log(0.01)/(log(2)*60)*T;  // Time taken by
    the F-18 sample to decay to 1 percent of its
    initial value, h
6 printf("\nThe time taken for 99 percent of the F-18
    sample to decay = %4.1 f h", t);
7
8 // Result
9 // The time taken for 99 percent of the F-18 sample
    to decay = 12.2 h
```

Scilab code Exa 12.12 Alpha activity of 10 kg sample of U235

```
1 // Scilab Code Ex12.12: Page-452 (2014)
2 clc; clear;
                      // Avogadro's number
3 N_A = 6.023e+023;
4 M = 10e+03; // Mass of the U-235, g
5 \text{ M}_{\text{U}}235 = 235;
                    // Molecular mass of U-235, g
6 t_half = 7.04e+008; // Half life of U-235, y
7 N = M*N_A/M_U235; // Number of U-235 atoms in 10
     kg sample
8 R = log(2)*N/t_half; // The alpha activity of 10
     kg sample of U-235, decays/y
9 printf("\nThe alpha activity of 10 kg sample of U
     -235 = \%3.1 \,\mathrm{e} \,\mathrm{Bq}, R/(365.25*24*60*60));
10
11 // Result
12 // The alpha activity of 10 kg sample of U-235 = 8.0
     e + 008 Bq
```

Scilab code Exa 12.13 Non emission of a neutron by U230

```
1 // Scilab Code Ex12.13: Page-453 (2014)
2 clc; clear;
3 u = 931.5; // Energy equivalent of 1 u, MeV
4 M_U230 = 230.033927;
                          // Atomic mass of U-230, u
5 m_n = 1.008665; // Mass of a neutron, u
6 M_H = 1.007825; // Mass of hydrogen, u
7 \text{ M}_{\text{U}}229 = 229.033496; // Gram atomic mass of U-230
8 Q = (M_U230 - M_U229 - m_n)*u;
                                  // Q-value of the
     reaction emitting a neutron
9 if (Q < 0) then
10
      printf("\nThe neutron decay in this reaction is
         not possible.");
11 else
       printf("\nThe neutron decay in this reaction is
          possible.");
13 end
14 Q = (M_U230 - M_U229 - M_H)*u;
                                  // Q-value of the
     reaction emitting a proton
15 if (Q < 0) then
       printf("\nThe proton decay in this reaction is
16
         not possible.");
17 else
       printf("\nThe proton decay in this reaction is
18
          possible.");
19 end
20
21 // Result
22 // The neutron decay in this reaction is not
     possible.
23 // The proton decay in this reaction is not possible
```

Scilab code Exa 12.15 Possible reaction with Fe55 isotope

```
1 // Scilab Code Ex12.15: Page-461 (2014)
2 clc; clear;
                 // Energy equivalent of 1 u, MeV
3 u = 931.5;
4 M_Fe55 = 54.938298; // Atomic mass of Fe-55, u
5 \text{ M}_{\text{M}} \text{n} 55 = 54.938050;
                          // Atomic mass of Mn-55, u
6 \text{ m_e} = 0.000549; // Mass of the electron, u
7 Q = (M_Fe55 - M_Mn55 - 2*m_e)*u; // Q-value of
      the reaction undergoing beta+ decay, MeV
8 if (Q < 0) then
       printf("\nThe beta+ decay is not allowed for Fe
          -55");
10 else
11
       printf("\nThe beta+ decay is allowed for Fe-55")
12 end
13 Q = (M_Fe55 - M_Mn55)*u; // Q-value of the
      reaction undergoing electron capture, MeV
14 if (Q < 0) then
       printf("\nFe-55 may not undergo electron capture
15
          ");
16 else
       printf("\nFe-55 may undergo electron capture");
17
18 \, end
19
20 // Result
21 // The beta+ decay is not allowed for Fe-55
\frac{22}{\text{Fe}-55} may undergo electron capture
```

Scilab code Exa 12.16 Allowed decay modes for Ac226

```
1 // Scilab Code Ex12.16: Page-461 (2014)
2 clc; clear;
3 function [] = check_allowance(Q, decay_type)
4     if (Q < 0) then
5     printf("\nThe %s is not allowed for Ac-226",</pre>
```

```
decay_type);
6 else
      printf("\nThe \%s is allowed for Ac-226",
         decay_type);
8 end
9 endfunction
10 u = 931.5; // Energy equivalent of 1 u, MeV
11 M_Ac226 = 226.026090; // Atomic mass of Ac-226, u
12 M_Fr222 = 222.017544;
                            // Atomic mass of Fr-222, u
                     // Atomic mass of He-4, u
13 \text{ M}_{He4} = 4.002603;
14 \text{ M}_{Th226} = 226.024891;
                            // Atomic mass of M<sub>-</sub>Th226,
15 M_Ra226 = 226.025403; // Atomic mass of M_Ra226,
16 \text{ m_e} = 0.000549;
                   // Mass of the electron, u
17 // Alpha Decay
18 Q = (M_Ac226 - M_Fr222 - M_He4)*u; // Q-value of
     the reaction undergoing alpha decay, MeV
19 check_allowance(Q, "alpha decay");
20 // Beta- Decay
21 Q = (M_Ac226 - M_Th226)*u; // Q-value of the
     reaction undergoing beta-decay, MeV
22 check_allowance(Q, "beta-decay");
23 // Beta+ Decay
24 \ Q = (M_Ac226 - M_Ra226 - 2*m_e)*u; // Q-value\ of
     the reaction undergoing beta+ decay, MeV
25 check_allowance(Q, "beta+ decay");
26 // Electron Capture
27 Q = (M_Ac226 - M_Ra226)*u; // Q-value of the
     reaction undergoing electron capture, MeV
28 check_allowance(Q, "electron capture");
29
30 // Result
31 // The alpha decay is allowed for Ac-226
32 // The beta-decay is allowed for Ac-226
33 // The beta+ decay is not allowed for Ac-226
34 // The electron capture is allowed for Ac-226
```

Scilab code Exa 12.17 Error introduced in the gamma ray energy

```
// Scilab Code Ex12.17: Page -463(2014)
clc; clear;
u = 931.5; // Energy equivalent of 1 u, MeV
E_ex = 0.072; // Energy of the excited state, MeV
M = 226*u*1e; // Energy equivalent of atomic mass of Th-226, MeV
x = E_ex/(2*M); // The error introduced in the gamma ray energy by approximation
printf("\nThe error introduced in the gamma ray energy by approximation = %3.1e", x);

// Result
// The error introduced in the gamma ray energy by approximation = 1.7e-007
```

Scilab code Exa 12.18 Age of the uranium ore

```
// Scilab Code Ex12.18: Page-467(2014)
clc; clear;
t_half = 4.47e+009; // The half life of uranium
    ore, years
R_prime = 0.60; // The ratio of Pb206 abundance
    to that of U238
t = t_half/log(2)*log(R_prime + 1); // Age of the
    uranuim ore, years
printf("\nThe age of U-238 ore = %3.1e years", t);
// Result
// Result
// The age of U-238 ore = 3.0e+009 years
```

Scilab code Exa 12.19 C14 dating to determine age of bone

```
1 // Scilab Code Ex12.19: Page -469(2014)
2 clc; clear;
3 t_half = 5730; // The half life of uranium ore,
     years
                    // The initial ratio of C14 to C12
4 R0 = 1.2e-012;
      at the time of death
                   // The final ratio of C14 to C12 t
5 R = 1.10e-012;
      years after death
6 // As R = R0*exp(-lambda*t), solving for t
7 t = -\log(R/R0)*t_half/\log(2); // Age of the bone,
      years
8 printf("\nThe %3d years age of bone does not date
     from the Roman Empire.", ceil(t));
10 // Result
11 // The 720 years age of bone does not date from the
     Roman Empire.
```

Chapter 13

Nuclear Interactions and Applications

Scilab code Exa 13.1 Number of neutrons produced in collision of alpha particle and carbon target

```
1 // Scilab Code Ex13.1: Page -479(2014)
2 clc; clear;
3 N_A = 6.02e + 023; // Avogadro's number
4 e = 1.6e-019; // Charge on an electron, C
5 q = 2*e; // Charge on the alpha particle, C
6 rho = 1.9; // Density of carbon target, atoms/cc
7 N_M = 1; // Number of atoms per molecule
8 M_g = 12; // Gram atomic mass of C12 isotope, g/
     mol
9 sigma = 25e-031; // Total cross section for the
     reaction, Sq.m
10 t = 1e-006; // Thickness of carbon target, m
11 I_beam = 1e-006;
                    // Beam current of akpha
     particle, ampere
12 time = 3600; // Time for which the alpha particle
      beam is incident on the target, s
13 n = rho*N_A*N_M/M_g; // Number of nuclei per unit
      volume, per cc
```

Scilab code Exa 13.2 Likelihood of a neutron production than a proton

Scilab code Exa 13.3 Nuclear reaction observed by Rutherford

```
1 // Scilab Code Ex13.3: Page -481(2014)
2 clc; clear;
3 u = 931.5;
                  // Energy equivalent of 1 amu, MeV
4 \text{ M}_{He} = 4.002603;
                      // Mass of He-4 nucleus, u
                        // Mass of N-14 nucleus, u
5 M_N = 14.003074;
6 M_H = 1.007825; // Mass of hydrogen nucleus, u
                       // Mass of O-16 nucleus, u
7 \text{ M}_{0} = 16.999132;
                     // The kinetic energy of alpha
8 \text{ K_alpha} = 7.7;
      particle, MeV
9 \ Q = (M_He + M_N - M_H - M_0)*u; // The ground
      state Q-value of the nuclear reaction, MeV
10 // As Q = K_p + K_O - K_alpha, solving for K_p + K_O
11 K = Q + K_alpha; // The sum of kinetic energy of
      the products, MeV
12 printf("\nThe ground state Q-value of the endoergic
      nuclear reaction = \%5.3 \, \text{f MeV}", Q);
13 printf("\nThe sum of kinetic energy of the products
     = \%3.1 \text{ f MeV}", K);
14
15 // Result
16 // The ground state Q-value of the endoergic nuclear
       reaction = -1.192 \text{ MeV}
17 // The sum of kinetic energy of the products = 6.5
     MeV
```

Scilab code Exa 13.4 Final energy of excitation of product nucleus in the nuclear reaction

```
1 // Scilab Code Ex13.4: Page-484(2014)
2 clc; clear;
3 u = 931.5; // Energy equivalent of 1 amu, MeV
4 K_lab = 14.6; // Kinetic energy of incident aplha particle, MeV
5 Mx = 4; // Mass number of projectile nucleus
6 MX = 12; // Mass number of target nucleus
```

Scilab code Exa 13.5 Ground state Q value of the induced fission reaction

```
\frac{2}{\sqrt{\text{Scilab Code Ex13.5: Page} - 487(2014)}}
3 clc; clear;
4 u = 931.5;
                 // Energy equivalent of 1 amu, MeV
5 \text{ M}_{\text{U}235} = 235.0439;
                         // Mass of U-235 nucleus, u
                  // Mass of a neutron, u
6 m_n = 1.0087;
7 \text{ M}_{zr99} = 98.9165; // Mass of zr-99 nucleus, u
8 M_Te134 = 133.9115; // Mass of Te-134 nucleus, u
9 Q = (M_U235 + m_n - M_Zr99 - M_Te134 - 3*m_n)*u;
      // Q-value of the reaction, MeV
10 printf("\nThe ground state Q-value of the induced
      fission reaction = \%3d MeV", ceil(Q));
11
12 // Result
13 // The ground state Q-value of the induced fission
      reaction = 185 \text{ MeV}
```

Scilab code Exa 13.6 Excitation energy of the compound nuclei

```
1 // Scilab Code Ex13.6: Page -488(2014)
2 clc; clear;
3 u = 931.5;
                 // Energy equivalent of 1 amu, MeV
4 m_n = 1.0087; // Mass of a neutron, u
5 \text{ M}_{\text{U}235} = 235.0439; // Mass of U-235 nucleus, u
                          // Mass of U-236 nucleus, u
6 M_U236 = 236.0456;
7 M_U238 = 238.0508; // Mass of U-238 nucleus, u 
8 M_U239 = 239.0543; // Mass of U-239 nucleus, u
9 E_U236 = (m_n + M_U235 - M_U236)*u; // Excitation
       energy of U-236 nucleus, MeV
10 E_U239 = (m_n + M_U238 - M_U239)*u; // Excitation
       energy of U-239 nucleus, MeV
11 printf("\nThe excitation energy of U-236 nucleus =
      \%3.1 \text{ f MeV}", E_U236);
12 printf("\nThe excitation energy of U-239 nucleus =
      \%3.1 \text{ f MeV}", E_U239);
13
14 // Result
15 // The excitation energy of U-236 nucleus = 6.5 MeV
16 // The excitation energy of U-239 nucleus = 4.8 MeV
```

Scilab code Exa 13.7 Nuclear fission through neutron capture

```
6 delta_t = 5e-006; // Average time during which a
      neutron is captured, s
7 	ext{ fs} = t/delta_t;
                       // Number of fission cycles
      within 30 ms
8 N = (1.01)^fs;
                     // Number of fissions that occur
      in 30 ms
9 E_total = N*E; // Total energy produced in 30 ms,
       MeV
10 printf("\nThe total number of fissions that occur in
       \%d \text{ ms} = \%3.1 \,\mathrm{e}, t/1e-003, N);
11 printf("\nThe total energy produced = \%3.1e MeV",
      E_total);
12
13 // Result
14 // The total number of fissions that occur in 30 ms
      = 8.5 e + 0.25
15 // The total energy produced = 1.6\,\mathrm{e} + 0.28\,\mathrm{MeV}
16 // The answers are given wrong in the textbook
```

Scilab code Exa 13.8 Fusion reaction in supergiant stars

```
// Scilab Code Ex13.8: Page-500(2014)
clc; clear;
u = 931.5; // Energy equivalent of 1 amu, MeV
M_He = 4.002603; // Mass of He nucleus, u
M_C = 12.0 // Mass of carbon nucleus, u
M_O = 15.994915; // Mass of oxygen nucleus, u
Q = (M_He + M_C - M_O)*u; // Q-value of the reaction, MeV
printf("\nThe energy expended in the fusion reaction inside supergiant star = %3.1 f MeV", Q);
// Result
// The energy expended in the fusion reaction inside supergiant star = 7.2 MeV
```

Scilab code Exa 13.9 Ignition temperature needed for the fusion reaction between a deuterium and a tritium

```
1 // Scilab Code Ex13.9: Page -502(2014)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/K
                 // Distance at which the nuclear
4 r = 3e-015;
      force becomes effective, m
  e = 1.6e-019; // Charge on an electron, C
                  // Coulomb's constant, N-Sq.m/C<sup>2</sup>
6 K = 9e + 009;
7 V = K*e^2/r;
                  // Coulomb potential energy, J
8 // As V = 3/2*k*T, solving for T
9 T = 2/3*V/k; // The ignition temperature needed
     for the fusion reaction between deuterium and a
      tritium, K
10 printf("\nThe ignition temperature needed for the
      fusion reaction between a deuterium and a tritium
      = \%3.1 \,\mathrm{e} \,\mathrm{K}", T);
11
12 // Result
13 // The ignition temperature needed for the fusion
      reaction between a deuterium and a tritium = 3.7 e
     +009 K
```

Scilab code Exa 13.10 Neutron beam study of atomic structures

```
1 // Scilab Code Ex13.10: Page-509(2014)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/K
4 e = 1.6e-019; // Energy equivalent of 1 eV, J
5 h = 6.62e-034; // Planck's oconstant, Js
```

```
6 m = 1.67e-027; // Mass of the neutron, kg
7 lambda = 0.060e-009; // Wavelength of the neutron
      beam, m
8 p = h/lambda; // Momentum of the neutron from de-
     Broglie relation, kg-m/s
9 K = p^2/(2*m*e); // Kinetic energy of the neutron
      needed to study atomic structure, eV
10 // As K = 3/2*k*T, solving for T
                   // The temperature of the neutron
11 T = 2/3*K*e/k;
     needed to study atomic structure, K
12 printf("\nThe energy and temperature of the neutron
     needed to study the atomic structure of solids =
     \%4.2 \, \text{f eV} and \%4 \, \text{d K respectively}, K, T);
13
14 // Result
15 // The energy and temperature of the neutron needed
     to study the atomic structure of solids = 0.23 eV
      and 1760 K respectively
```

Chapter 14

Particle Physics

Scilab code Exa 14.1 Mass of the meson from Heisenberg uncertainty principle

```
1 // Scilab Code Ex14.1: Page -522(2014)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J
4 h = 6.62e-034; // Planck's occurrant, Js
5 c = 3.00e+008; // Speed of light in vacuum, m/s
6 h_bar = h/(2*%pi); // Reduced Planck's constant,
7 R_N = 1e-015; // Range of nuclear force, m
8 // As delta_E*delta_t = h_bar/2 and delta_E = m_pion
     *c^2, solving for m_pion
9 m_pion = h_bar*c/(2*R_N*e*1e+006); // Mass of the
      meson, MeV/c^2
10 printf("\nThe estimated mass of meson from
     Heisenberg uncertainty principle = %d MeV/c^2",
     round(m_pion));
11
12 // Result
13 // The estimated mass of meson from Heisenberg
     uncertainty principle = 99 \text{ MeV/c}^2
14 // The answer is rounded off in the textbook
```

Scilab code Exa 14.2 Range of the weak interaction

```
1 // Scilab Code Ex14.2: Page -525(2014)
2 clc; clear;
3 = 1.6e-019; // Energy equivalent of 1 eV, J
4 h = 6.62e-034;
                    // Planck's oconstant, Js
5 c = 3.00e + 008; // For simplicity assume speed of
     light to be unity
6 h_bar = h/(2*%pi); // Reduced Planck's constant,
     Js
7 \text{ m}_W = 80.4;
                 // Energy equivalent of mass of W-
     particle, MeV
8 R_W = h_{bar*c}/(2*m_W*e*1e+009); // Range of W-
     particle, m
  delta_t = h_bar/(2*m_W*e*1e+009); // Time during
     which the energy conservation is violated, s
10 printf("\nThe range of W- particle = \%3.1e m", R_W);
11 printf("\nThe time during which the energy
     conservation is violated = \%1.0e s", delta_t);
12
13 // Result
14 // The range of W- particle = 1.2e-0.18 m
15 // The time during which the energy conservation is
     violated = 4e-027 s
```

Scilab code Exa 14.10 Fixed target accelerators

```
4 K = 6.4; // Kinetic energy of the proton
      projectile, GeV
5 E_{cm} = \frac{\text{sqrt}(2*m_p^2+2*m_p*K)}{\text{Centre of mass}}
      energy of proton collsion with the fixed proton
      target, GeV
6 Q = 2*m_p - 4*m_p; // Q value of the reaction,
     GeV
7 K_{th} = -3*Q; // Threshold kinetic energy required
      to produce the antiprotons, GeV
8 K = 1000;
             // Kinetic energy of the protons in
     Tevatron, GeV
9 E_{cm_T} = sqrt(2*m_p^2+2*m_p*K);
                                       // Centre-of-mass
       energy available for the reaction for the
      Tevatron, GeV
10 printf("\nThe available energy in the center on mass
      =~\%4.2\,\mathrm{f}~\mathrm{GeV}" , E_cm);
11 printf("\nThe threshold kinetic energy required to
      produce the antiprotons = \%3.1 \, \text{f GeV}", K_th);
12 printf("\nThe centre-of-mass energy available for
      the reaction for the Tevatron = %d GeV", E_cm_T);
13
14 // Result
15 // The available energy in the center on mass = 3.71
      GeV
16 // The threshold kinetic energy required to produce
      the antiprotons = 5.6 \text{ GeV}
17 // The centre-of-mass energy available for the
      reaction for the Tevatron = 43 GeV
```

Scilab code Exa 14.11 Energy required by a fixed target accelerator to match with that available for colliding beams at LHC

```
1 // Scilab Code Ex14.11: Page -550(2014)
2 clc; clear;
3 m_p = 0.938; // Rest mass energy of the proton,
```

```
GeV
4 E_cm = 14000;  // Centre of mass energy of
    colliding proton beams at LHC, GeV
5 // As E_cm = sqrt(2*m_p^2+2*m_p*K), solving for K
6 K = E_cm^2*1e+009/(2*m_p);  // Approx. kinetic
    energy of the protons needed for fixed-target
    experiment, eV
7 printf("\nThe kinetic energy of the protons needed
    for fixed-target experiment = %3.1e eV", K);
8
9 // Result
10 // The kinetic energy of the protons needed for
    fixed-target experiment = 1.0e+017 eV
```

Chapter 15

General Relativity

Scilab code Exa 15.1 Gravitational time dilation effect

```
1 // Scilab Code Ex15.1: Page -562(2014)
2 clc; clear;
3 g = 9.8; // Acceleration due to gravity, m/sec^2
4 H = 10000; // Altitude of the aeroplane above the
      surface of earth, m
5 c = 3.00e + 008; // Speed of light in free space, m
     / s
6 T = 45*3600; // Time taken by the airplane to
     from eastward to westward trip, s
7 delta_T_G = g*H*T/(c^2*1e-009); // Time
      difference in the two clocks due to gravitational
       redshift, ns
8 C = 4e+007; // Circumference of the earth, m
9 v = 300; // Speed of the jet airplane, m/s 10 T0 = C/v; // Time of flight of jet airplane very
     near the surface of the earth, s
11 bita = v/c; // Boost parameter
12 // As from special relativity time dilation relation
      , T = T0*sqrt(1-bita^2), solving for T0 - T =
      delta_T_R, we have
13 delta_T_R = T0*(1-sqrt(1-bita^2))/1e-009; // Time
```

```
difference in the two clocks due to special
    relativity, ns

14 printf("\nThe gravitational time dilation effect of
    %d ns is larger than the approximate %4.1f ns of
    that of special relativity.", ceil(delta_T_G),
    delta_T_R);

15
16 // Result
17 // The gravitational time dilation effect of 177 ns
    is larger than the approximate 66.7 ns of that of
        special relativity.
```

Scilab code Exa 15.2 Schwarzschild radius for the sun and the earth

```
1 // Scilab Code Ex15.2: Page -567(2014)
2 clc; clear;
3 c = 3.00e + 008; // Speed of light in free space, m
    / s
4 G = 6.67e-011; // Newton's gravitational constant
     , N-Sq.m/per kg square
5 M_S = 2.0e+030; // Mass of the sun, kg
6 \text{ M\_E} = 6.0\text{e}+024; // Mass of the earth, kg
7 \text{ r_S} = 2*G*M_S/(c^2*1e+003); // Schwarzschild
     radius for sun, km
8 \text{ r_E} = 2*G*M_E/(c^2*1e-003); // Schwarzschild
      radius for earth, mm
9 printf("\nThe Schwarzschild radius for sun = %d km",
      ceil(r_S));
10 printf("\nThe Schwarzschild radius for earth = %d mm
     ", ceil(r_E));
11
12 // Result
13 // The Schwarzschild radius for sun = 3 km
14 // The Schwarzschild radius for earth = 9 \text{ mm}
```

Scilab code Exa 15.3 Time taken by a black hole to radiate its energy

```
1 // Scilab Code Ex15.3: Page -568(2014)
2 clc; clear;
3 c = 3.00e+008; // Speed of light in free space, m
    / s
4 G = 6.67e-011; // Newton's gravitational constant
     , N-Sq.m/per kg square
5 h = 6.62e-034; // Planck's constant, Js
6 h_bar = h/(2*%pi); // Reduced Planck's constant,
  sigma = 5.67e-008; // Stefan-Boltzmann constant,
     W per Sq.m per K<sup>4</sup>
8 k = 1.38e-023; // Boltzmann constant, J/K
9 M0 = 1.99e+030; // Mass of the sun, kg
10 alpha = 2*sigma*h_bar^4*c^6/((8*\%pi)^3*k^4*G^2);
     // A constant, kg<sup>3</sup>/s
11 t = integrate('1/alpha*M^2', 'M', 0, 3*M0);
12 printf("\nThe time required for the 3-solar-mass
     black hole to evaporate = \%3.1e y", t
     /(365.25*24*60*60));
13
14 // Result
15 // The time required for the 3-solar-mass black hole
      to evaporate = 5.7e+068 y
```

Chapter 16

Cosmology and Modern Astrophysics

Scilab code Exa 16.1 Hubble constant determinantion

```
// Scilab Code Ex16.1: Page-581(2014)
clc; clear;
H0 = 22;  // Value of Hubble constant, km/s per million ly
parsec = 3.26;  // The value of 1 parsec, light years
printf("\nThe value of Hubble constant = %d km/s per Mpc", ceil(H0*parsec));
// Result
// The value of Hubble constant = 72 km/s per Mpc
```

Scilab code Exa 16.2 Current ratio of protons to neutrons in the universe

```
1 // Scilab Code Ex16.2: Page -583(2014) 2 clc; clear;
```

```
// Let the current mass of the universe be
      unity
4 m_u = 1;
               // Mass equivalent of 1 amu, u
5 N_n = 2;
              // Number of neutrons in helium
6 N_p = 2; // Number of protons in helium
7 \text{ M_p} = 0.75*\text{M*m_u}; // Total mass of protons
                       // Total mass of helium
8 \text{ M}_{He} = 0.25*\text{M*m}_{u};
9 N_{p} = M_{p}/M_{e}*(N_{n} + N_{p}); // Total number of
     free protons for every He-4
10 N_P = N_{fp} + N_{p}; // Total number of protons per
     He-4
                       // Current ratio of protons to
11 ratio = N_P/N_n;
      the neutrons in the universe
12 printf("\nThe current ratio of protons to the
      neutrons in the universe = \%d", ratio);
13
14 // Result
15 // The current ratio of protons to the neutrons in
      the universe = 7
```

Scilab code Exa 16.3 Ratio of protons to neutrons at 10 billion kelvin temperature of the universe

```
// Scilab Code Ex16.3: Page-587(2014)
clc; clear;
m_n = 939.566; // Rest mass of the neutron, MeV/c
2
m_p = 938.272; // Rest mass of the proton, MeV/c
2
e = 1.6e-019; // Energy equivalent of 1 eV, J
c = 1; // For simplicity assume speed of light of light to be unity
T = 1e+010; // Temperature of the universe, K
delta_m = m_n - m_p; // Mass difference between a proton and a neutron, MeV/c^2
```

Scilab code Exa 16.4 Mean temperature of the sun

```
1 // Scilab Code Ex16.4: Page -589(2014)
2 clc; clear;
3 M = 1.99e + 030;
                      // Mass of the sun, kg
                     // Universal gravitational
4 G = 6.67e - 011;
      constant, N-Sq.m/kg<sup>2</sup>
5 k = 1.38e-023; // Boltzmann constant, J/K
                     // Radius of the sun, m
6 R = 6.96e + 008;
7 m = 1.67e-027; // Rest mass of the proton, kg
8 PE = 3/5*(G*M^2/R); // Self potential energy of
      the sun, J
9 // As KE = 1/3*(M/m_p)*m_p*v^2, solving for v
10 v = sqrt(2*PE/M); // Velocity of a proton inside
     the sun, m/s
11 // From kinetic theory of gases, v = sqrt(3*k*T/m),
      solving for T
                    // The mean temperature of the
12 T = m*v^2/(3*k);
     sun, K
13 printf("\nThe mean temperature of the sun = \%1.0 \,\mathrm{e}\ \mathrm{K}"
      , T);
14
```

```
15 // Result
16 // The mean temperature of the sun = 9e+006 K
```

Scilab code Exa 16.5 Radius of the neutron star

```
1 // Scilab Code Ex16.5: Page -590(2014)
2 clc; clear;
3 \text{ M_sun} = 1.99e+030; // Mass of the sun, kg
4 m_n = 1.675e-027; // Rest mass of the neutron, kg
5 h = 6.62e-034; // Planck's constant, Js
6 h_bar = h/(2*\%pi); // Planck's constant, Js
7 G = 6.67e-011; // Universal gravitational
     constant, N-Sq.m/kg<sup>2</sup>
8 N = 2*M_sun/m_n; // Number of neutrons in the
     neutron star
9 V = (6.5*h_bar^2/(N^(1/3)*m_n^3*G))^3; // Volume
     of the neutron star, metre cube
10 R = (3/(4*\%pi)*V)^(1/3); // The radius of neutron
      star, m
11 printf("\nThe radius of the neutron star of 2 solar
     masses = \%d km", ceil(R/1e+003));
12
13 // Result
14 // The radius of the neutron star of 2 solar masses
     = 11 \text{ km}
```

Scilab code Exa 16.6 Redshift versus recession velocity

```
1 // Scilab Code Ex16.6: Page-598(2014)
2 clc; clear;
3 c = 1; // Assume speed of light to be unity
```


Figure 16.1: Redshift versus recession velocity

```
4 clf();
5 v = [0:0.01:0.92]';
                      // Recession velocity ratio
6 bita = v/c;
7 \text{ for } i = 1:1:93
       red_shift(i) = sqrt((1+bita(i))/(1-bita(i)))-1;
9 end
10 plot(bita, red_shift);
11 title ('The relation between Redshift and recession
     velocity', 'fontsize', 4, 'color','red', '
      position', [0.02, 4.1]);
12 xlabel('Recession velocity (beta = v/c)', 'fontsize'
     , 3, 'color', 'green');
13 ylabel('Redshift', 'fontsize', 3, 'color', 'green');
14
15 // Result
16 // The plot between Redshift vs recession velocity
     is as shown in the Fig.
```

Scilab code Exa 16.7 Difference in the travel times of different mass neutrinos

```
1 // Scilab Code Ex16.7: Page -598(2014)
2 clc; clear;
3 c = 1;
           // For simplicity assume speed of light to
     be unity, m/s
                  // Distance of the supernova 1987A
4 d = 1.6e + 005;
    from the earth, ly
5 m = 16; // Mass of heavier neutrino, eV/c^2;
6 E = 20e + 006; // Energy of the neutrino, eV
7 delta_t = d/(2*c)*(m/E)^2; // Difference between
     the travel times of the lighter and the massive
     neutrinos, y
8 printf("\nThe difference between the travel times of
     the lighter and the massive neutrinos = \%3.1 f s"
     , delta_t*(365.25*24*60*60));
```

```
9
10 // Result
11 // The difference between the travel times of the lighter and the massive neutrinos = 1.6 s
```

Scilab code Exa 16.8 Critical density of the universe

Scilab code Exa 16.9 Upper limit of the age of the universe

```
1 // Scilab Code Ex16.9: Page-604(2014)
2 clc; clear;
3 H0 = 71; // Hubble cinstant, km/s per Mpc
4 tau = 1/H0*1e+006*3.26*9.46e+012/3.16e+007; //
    The upper limit of the age of the universe, y
5 printf("\nThe upper limit of the age of the universe = %4.2e y", tau);
6
```

```
7 // Result 8 // The upper limit of the age of the universe = 1.37 _{\rm e+010~y}
```