Adaptive Interpolation for Electronic-System Design

Ivan, Petru, and Zebo

Outline

- Motivation
- Interpolation

Electronic-System Design

Electronic-System Design

Electronic-System Design

$$f(\mathbf{x})$$

Questions

- Range of outputs?
- Most influential inputs?
- Input values to agree with data?
- Probability distribution of outputs?

Optimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$

Integration

$$\int f(\mathbf{x})w(\mathbf{x})d\mathbf{x}$$

Inference

$$p(\mathbf{x}|\mathcal{D}) \propto p(\mathcal{D}|\mathbf{x})p(\mathbf{x})$$

Evaluation

$$f(\mathbf{x})$$

Curse of Dimensionality

1	10	10 seconds
2	100	2 minutes
3	1,000	16 minutes
4	10,000	3 hours
5	100,000	1 day
6	1,000,000	2 weeks
	•••	111
20	100,000,000,000,	3 trillion years
	000,000,000	$(200 \times \text{the universe})$

Curse of Complexity

blackscholes	1	1 hour
bodytrack	1	2 hours
canneal	1	2 hours
dedup	1	4 hours
facesim	1	13 hours
ferret	1	3 hours
•••		•••
x264	1	3 hours

Approximation

$$\tilde{f}(\mathbf{x}) \approx f(\mathbf{x})$$

Approximation

- Regression
- Interpolation

Regression

Interpolation

Interpolation

- Grid
- Basis
- Structure
- Adaptivity

Full-Tensor Grid

Smolyak (Sparse) Grid

Piecewise Linear Basis

Lagrange Basis

Nodal Structure

Hierarchical Structure

Multiindex

$$i = (i_1, \dots, i_n)$$

(0, 0)

(0, 0)

(1, 0)

(0, 1)

 \bigcirc

(0,0)
(1,0)
(0,1)
(1,1)

31

Locality

Surrogate

$$\tilde{f}(\mathbf{x}) = \sum_{\mathbf{i} \in \mathcal{I}} \sum_{\mathbf{j} \in \mathcal{J}_{\mathbf{i}}} \Delta f(\mathbf{x}_{\mathbf{i}\mathbf{j}}) e_{\mathbf{i}\mathbf{j}}(\mathbf{x})$$

Surrogate

$$\tilde{f}(\mathbf{x}) = \sum_{\mathbf{k} \in \mathcal{K}} \Delta f(\mathbf{x}_{\mathbf{k}}) e_{\mathbf{k}}(\mathbf{x})$$

Adaptivity

- Global
- Local
- Hybrid

Surplus

Global Adaptivity

Step Function

Step Function

Where Is the Action?

Local Adaptivity

Step Function

Which Direction to Go?

Hybrid Adaptivity

 Local refinements with respect to important dimensions

Conclusion

$$\rightarrow$$
 $\tilde{f}(\mathbf{x})$ \rightarrow

Conclusion

$$\tilde{f}(\mathbf{x}) = \sum_{\mathbf{k} \in \mathcal{K}} \Delta f(\mathbf{x}_{\mathbf{k}}) e_{\mathbf{k}}(\mathbf{x})$$

Thank you! Questions?