Übungen zur Linearen Algebra I 10. Übungsblatt

Abgabe bis zum 16.01.20, 9:15 Uhr

Aufgabe 1 $(3 \cdot 2 \text{ Punkte})$. Bestimmen Sie mit dem Verfahren der Vorlesung die Lösungsmengen folgender Gleichungssysteme über den rationalen Zahlen:

$$\begin{pmatrix} 0 & 6 & -2 & -1 \\ -1 & -1 & 0 & -1 \\ -2 & 3 & -1 & -2 \\ 1 & 0 & 0 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 2 \\ 11 \\ 15 \\ -10 \end{pmatrix}, \quad \begin{pmatrix} 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 4 \\ 4 \\ 4 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 \end{pmatrix} \cdot x = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

Aufgabe 2 (1+2+1+2) Punkte). Sei K ein Körper und K[x] sein Polynomring.

- (a) Zeigen Sie, dass die Polynome $x^2 + 1$ und $x^2 + x + 1$ teilerfremd sind.
- (b) Finden Sie mit dem euklidischen Algorithmus Polynome $p, q \in K[x]$ mit $p \cdot (x^2 + 1) + q \cdot (x^2 + x + 1) = 1$.

Sei nun $f \in K[x]$ ein Polynom. Zeigen Sie:

- (c) $fK[x] = \{fg \mid g \in K[x]\}$ ist ein Untervektorraum von K[x].
- (d) $\dim_K K[x]/fK[x] = |\deg(f)|$.

Aufgabe 3 (2+2+1+1 Punkte). Sei K ein Körper, $A \in M_{n,n}(K)$ und $\lambda \in K$.

- (a) Zeigen Sie: $det(\lambda A) = \lambda^n det(A)$.
- (b) Zeigen Sie: Ist $K = \mathbb{R}$, n = 3 und A antisymmetrisch (d.h. gilt $A^t = -A$), so ist A nicht invertierbar.
- (c) Gibt es eine antisymmetrische invertierbare reelle 2×2 -Matrix?
- (d) Gibt es eine antisymmetrische invertierbare 3×3 -Matrix über einem anderen Körper als den reellen Zahlen?

Aufgabe 4 (3+3 Punkte). Sei K ein Körper. Für $x, y \in K$ und $n \ge 1$ betrachten wir die Matrizen $A = (a_{ij})_{ij} \in M_{n,n}(K)$ und $B = (b_{ij})_{ij} \in M_{2n,2n}(K)$ definiert durch

$$a_{ij} = \begin{cases} y & \text{falls } i \neq j, \\ x, & \text{falls } i = j, \end{cases} \qquad b_{ij} = \begin{cases} x & \text{falls } i = j, \\ y & \text{falls } i + j = 2n + 1, \\ 0 & \text{sonst.} \end{cases}$$

- (a) Bringen Sie A mittels geeigneter Zeilen- und Spaltenumformungen auf obere Dreicksform und zeigen Sie: $\det(A) = (x + (n-1)y)(x-y)^{n-1}$.
- (b) Zeigen Sie mittels vollständiger Induktion und Spaltenentwicklung: $det(B) = (x^2 y^2)^n$.