### Aufgabe 9.2 (Punkte 10+10)

D-Latch und D-Flipflop: Wir betrachten das pegelgesteuerte D-Latch (high-aktiv) und das vorderflankengesteuerte D-Flipflop. Wir nehmen an, dass die beiden Flipflops jeweils eine Zeiteinheit benötigen, bis ihr neuer Ausgangswert Q am Ausgang anliegt.

# Pegelgesteuertes D-Flipflop (D-Latch)

10.4.2 Schaltwerke - Flipflops - D-Latch

64-040 Rechnerstrukturen und Betriebssystem

- ▶ Takteingang C
- ▶ Dateneingang D
- aktueller Zustand Q, Folgezustand Q+

|   | C | D | $Q^+$ |
|---|---|---|-------|
|   | 0 | 0 | Q     |
|   | 0 | 1 | Q     |
| 0 | 1 | 0 | 0     |
|   | 1 | 1 | 1     |

Wert am Dateneingang wird durchgeleitet, wenn das Taktsignal

### Aufgabe 9.3 (Punkte 10+5+5)

D-Flipflop Schaltungsvarianten: Wir betrachten zwei Schaltungen mit jeweils einem vorderflankengesteuerten D-Flipflop:



(a) Ermitteln Sie für beide Schaltungen die Flusstafel (mit dem Ausgangszustand Q<sup>+</sup> als Funktion des aktuellen Zustands Q und der Eingangswerte D, E und CLK. Verwenden Sie ggf. einen Pfeil nach oben als Symbol für eine Taktflanke.

| D | E | CLK | $Q^+$ |
|---|---|-----|-------|
| 0 | 0 | 0   | Q     |
|   |   |     |       |

# Flipflop mit Taktausblendung





Aufgabe 9.3 (Punkte 10+8+5)

D-Flipflop Schaltungsvarianten: Wir betrachten zwei Schaltungen mit jeweils einem vorderflankengesteuerten D-Flipflop:

1. Flipflop mit Multiplexer



- (b) Beide Schaltungen haben eine ähnliche Funktion. Wofür würde man diese Schaltungen einsetzen?
- (c) Diskutieren Sie kurz Vor- und Nachteile beider Varianten. Welche spezielle Eigenschaft muss E erfüllen, damit die zweite Variante genutzt werden kann?

## RS-Flipflop mit Takt

0.4.1 Schaltwerke - Flipflops - RS-Flipflop

64-040 Rechnerstrukturen und Betriebssysteme

- RS-Basisflipflop mit zusätzlichem Takteingang C
- Ånderungen nur wirksam, während C aktiv ist
- Struktur



| 5 | R | Q  | NQ     | NOR        |
|---|---|----|--------|------------|
| Х | Х | Q* | NQ*    | store      |
| 0 | 0 | Q* | NQ*    | store      |
| 0 | 1 | 0  | 1      |            |
| 1 | 0 | 1  | 0      |            |
| 1 | 1 | 0  | 0      | forbidden  |
|   | Х | хх | X X Q* | X X Q* NQ* |

mass L crianci, danni die zwene variante genazi werden kann.

Antwort 6)

Der Eingang Enable dient dazu, das Einspeichern eines neuen Werts bei einer Vorderflanke auf dem Takteingang zu unterbinden. Nur bei einer 1 am Enable-Eingang wird der Wert, der am D-Eingang anliegt, mit der nächsten Vorderflanke des Taktes wirklich übernommen.

C)

(c) Diskutieren Sie kurz Vor- und Nachteile beider Varianten. Welche spezielle Eigenschaft muss E erfüllen, damit die zweite Variante genutzt werden kann? Flipflop mit Taktausblendung

| CLK | E  | Y          | D | Q+ | _  |
|-----|----|------------|---|----|----|
| *   | 0. | 0          | * | Q  |    |
| 0   | 1  | 0          | * | Q  |    |
| 14  | 1  | 1          | 0 | 0  |    |
| 11  | 1  | 1          | 1 | 1  |    |
| 1   | 1  | 1          | * | Q  |    |
| 1   | 1  | 1          | 0 | 0  | 72 |
| 1   | 1  | $\uparrow$ | 1 | 11 |    |

Das passiert dei Varacte 1 nicht.

### Flankengesteuertes D-Flipflop

10.4.3 Schaltwerke - Fliefloos - D-Flieflo

040 Rechrerstrukturen und Betriebssysteme

- ► Takteingang C
- Dateneingang D
- ▶ aktueller Zustand Q, Folgezustand Q<sup>+</sup>

| C | D | Q <sup>+</sup> |
|---|---|----------------|
| 0 | * | Q              |
| 1 | * | Q              |
| 1 | 0 | 0              |
| 1 | 1 | 1              |



- Wert am Dateneingang wird gespeichert, wenn das Taktsignal sich von 0 auf 1 ändert ⇒ Vorderflankensteuerung
  - -"- 1 auf 0 ändert ⇒ Rückflankensteuerung
- ▶ Realisierung als Master-Slave Flipflop oder direkt