Lie Group Formulation of Articulated Rigid Body Dynamics

Junggon Kim

11/9/2012, Ver 1.01

Abstract

It has been usual in most old-style text books for dynamics to treat the formulas describing linear(or translational) and angular(or rotational) motion of a rigid body separately. For example, the famous Newton's 2nd law, f = ma, for the translational motion of a rigid body has its partner, so-called the Euler's equation which describes the rotational motion of the body. In this article a simple and elegant equations of motion of a rigid body is presented using generalized notations of kinematic and dynamic quantities such as velocity, force and momentum (Section 1). Then efficient recursive algorithms for inverse and forward dynamics of articulated rigid bodies are derived using the notations. A hybrid dynamics algorithm, or a generalized version of the inverse and forward dynamics algorithms, is also presented (Section 2). Finally, analytic derivatives of the dynamics algorithms are derived (Section 3).¹

1 Dynamics of a Rigid Body

This section describes the equations of motion of a single rigid body in a geometric manner.

1.1 Rigid Body Motion

Figure 1: Coordinates frames for a rigid body

To describe the motion of a rigid body, we need to represent both the position and orientation of the body. Let $\{B\}$ be a coordinate frame attached to the rigid body and $\{A\}$ be an arbitrary coordinate frame, and all coordinate frames will be right-handed Cartesian from now on. We can define a 3×3 matrix

$$R = [x_{ab}, y_{ab}, z_{ab}] \tag{1}$$

¹GEAR (Geometric Engine for Articulated Rigid-body simulation) is a C++ implementation of the algorithms presented in this article. (http://www.cs.cmu.edu/~junggon/tools/gear.html)

where $x_{ab}, y_{ab}, z_{ab} \in \Re^3$ are the coordinates of the coordinate axes of $\{B\}$ with respect to $\{A\}$. A matrix of this form is called a rotation matrix as it can be used to describe the orientation (or rotation) of a rigid body, relative to a reference frame. Since the columns of a rotation matrix are mutually orthonormal and the coordinate frame is right-handed, the rotation matrix has two properties,

$$RR^{\mathrm{T}} = R^{\mathrm{T}}R = I, \quad \det R = 1, \tag{2}$$

and it is denoted by $SO(3)^2$.

Let $p \in \mathbb{R}^3$ be the position vector of the origin of $\{B\}$ from the origin of $\{A\}$, and $R \in SO(3)$ be the rotation matrix of $\{B\}$ relative to $\{A\}$. The configuration space of the rigid body motion can be represented with the pair (R, p), which is denoted as SE(3). A 4×4 matrix,

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \tag{3}$$

is called the homogeneous representation of $T=(R,p)\in SE(3)$, and its inverse can be obtained with

$$T^{-1} = \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{bmatrix}. \tag{4}$$

From now on, a simple declaration, $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, will be used to notify that $T \in SE(3) : \{A\} \to \{B\}$, where $\{A\} \to \{B\}$ is the sum of the property of the sum of the property o SE(3) represents the orientation and position of a coordinate frame $\{B\}$ with respect to another coordinate frame $\{A\}$.

The Lie algebra of SE(3), denoted as se(3), is identified as a 6-dimensional vector space $(w, v) \in$ \Re^6 where $w \in so(3)$, the Lie algebra of SO(3). $\xi = (w,v) \in se(3)$ can also be represented as a 4×4 matrix,

$$\xi = \begin{bmatrix} [w] & v \\ 0 & 0 \end{bmatrix} \tag{5}$$

where $[w] = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix} \in \Re^{3\times 3}$ is a skew-symmetric matrix. The adjoint action of $T \in SE(3)$ on $\xi \in se(3)$, $Ad: SE(3) \times se(3) \rightarrow se(3)$, is defined as

$$Ad_T \xi = T \xi T^{-1}. \tag{6}$$

From (3), (4) and (5), Ad_T can be regarded as a linear transformation, $Ad_T : se(3) \to se(3)$, which is defined by a 6×6 matrix

$$Ad_T = \begin{bmatrix} R & 0\\ [p]R & R \end{bmatrix} \tag{7}$$

where $T = (R, p) \in SE(3)$. The coadjoint action of T on $\xi^* \in dse(3)$ which is the dual of ξ , $\operatorname{Ad}_T^*: dse(3) \to dse(3)$, is defined by a 6×6 matrix

$$Ad_T^* = Ad_T^T. (8)$$

Generalized Velocity and Force

Let $T(t) = (R(t), p(t)) \in SE(3)$ be a motion trajectory of a coordinate frame attached to a rigid body with respect to an inertial frame. The generalized velocity of the rigid body is defined as

$$V = T^{-1}\dot{T} = \begin{bmatrix} [w] & v \\ 0 & 0 \end{bmatrix} \tag{9}$$

where $[w] = R^{\mathrm{T}}\dot{R}$ and $v = R^{\mathrm{T}}\dot{p}$. The physical meaning of $w \in \Re^3$ is the rotational (or angular) velocity of the coordinate frame attached to the body relative to the inertial frame, but expressed in

² The notation SO abbreviates special orthogonal and 'special' refers to the fact that $\det R = +1$ rather than ± 1 . See [2] for more details.

the body coordinate frame. Similarly, $v \in \mathbb{R}^3$ represents the velocity of the origin of the coordinate frame relative to the inertial frame, and still expressed in the body frame. The generalized velocity is an element of se(3), and can be simply regarded as a 6-dimensional vector, i.e.,

$$V = \begin{pmatrix} w \\ v \end{pmatrix}. \tag{10}$$

As the generalized velocity is an instance of se(3), it follows the adjoint transformation rule defined in (7). Let $\{A\}, \{B\}$ be two different coordinate frames attached to the same rigid body, and $T_a, T_b \in SE(3)$ represent the orientation and position of the two frames with respect to an inertial frame. Then, from (6) and (9), the generalized velocities of $\{A\}$ and $\{B\}$ have the following relation:

$$V_b = \operatorname{Ad}_{T_{ba}} V_a \tag{11}$$

where $T_{ba} \in SE(3) : \{B\} \to \{A\}.$

With a coordinate frame attached to a rigid body, the *generalized force* acting on the body can be defined as

$$F = \binom{m}{f} \tag{12}$$

where $m \in \mathbb{R}^3$ and $f \in \mathbb{R}^3$ represent a moment and force acting on the body respectively, viewed in the body frame. The generalized force is known as the member of dse(3), and has the following transformation rule,

$$F_b = \operatorname{Ad}_{T_{ab}}^* F_a \tag{13}$$

where F_a and F_b denote a generalized force viewed from different body frames $\{A\}$ and $\{B\}$, and $T_{ab} \in SE(3) : \{A\} \to \{B\}$.

1.3 Generalized Inertia and Momentum

The kinetic energy of a rigid body is given by the following volume integral

$$e = \int_{\text{vol}} \frac{1}{2} \|v\|^2 d\mathbf{m}$$
 (14)

which means the sum of the kinetic energies of all the mass particles constituting the body. By introducing a coordinate frame attached to the body, (14) can be restructured as the following simple quadratic form,

$$e = \frac{1}{2}V^{T}\mathcal{I}V \tag{15}$$

where $V \in \Re^6$ is the generalized velocity of the body and $\mathcal{I} \in \Re^{6 \times 6}$, which is known as *generalized* inertia, represents the mass and mass distribution with respect to the body frame.

To obtain an explicit form of the generalized inertia of a rigid body, let $r \in \mathbb{R}^3$ be the position of a body point relative to the body frame and $(R,p) \in SE(3)$ represents orientation and position of the body frame with respect to an inertial frame respectively. Using $||v||^2 = ||\dot{p} + \dot{R}r||^2$, $R^T\dot{R} = [w]$ and $R^T\dot{p} = v$, (14) can be rewritten as

$$e = \frac{1}{2} \int_{\text{vol}} \left(||\dot{p}||^2 + 2\dot{p}^{\text{T}} \dot{R}r + ||\dot{R}r||^2 \right) d\mathbf{m}$$
 (16)

$$= \frac{1}{2} \left\{ \dot{p}^{\mathrm{T}} \dot{p} \int_{\mathrm{vol}} d\mathbf{m} - 2 \dot{p}^{\mathrm{T}} R \left(\int_{\mathrm{vol}} [r] d\mathbf{m} \right) w + w^{\mathrm{T}} \left(\int_{\mathrm{vol}} [r]^{\mathrm{T}} [r] d\mathbf{m} \right) w \right\}$$
(17)

$$= \frac{1}{2} \left\{ \mathbf{m} v^{\mathrm{T}} v - 2 v^{\mathrm{T}} \left(\int_{\mathbf{vol}} [r] d\mathbf{m} \right) w + w^{\mathrm{T}} \left(\int_{\mathbf{vol}} [r]^{\mathrm{T}} [r] d\mathbf{m} \right) w \right\}$$
(18)

$$= \frac{1}{2} V^{\mathrm{T}} \mathcal{I} V \tag{19}$$

where V = (w, v) is the generalized velocity of the body and the generalized inertia, \mathcal{I} , has the following explicit matrix form:

$$\mathcal{I} = \begin{bmatrix} \int_{\text{vol}} [r]^{\text{T}} [r] d\mathbf{m} & \int_{\text{vol}} [r] d\mathbf{m} \\ \int_{\text{vol}} [r]^{\text{T}} d\mathbf{m} & \mathbf{m} \mathbf{1} \end{bmatrix}.$$
 (20)

The generalized inertia is symmetric positive definite, and its upper diagonal term, $I = \int_{\text{vol}} [r]^{\text{T}} [r] dm$, is the definition of the well-known 3×3 inertia matrix of the rigid body with respect to the body frame. If the origin of the body frame is located on the center of mass, then the generalized inertia becomes a block diagonal matrix because $\int_{\text{vol}} [r] dm = 0$. In addition, if the orientation of the body frame also coincides with the principle axes of the body, then the generalized inertia becomes a diagonal matrix.

Let $\{A\}$ and $\{B\}$ be coordinate frames attached to a rigid body, \mathcal{I}_a and \mathcal{I}_b be the generalized inertias of the body corresponding to the two frames. Using (11), (15), and the fact that the kinetic energy of the body should remain under change of coordinate frame, the following transformation rule between the generalized inertias can be obtained:

$$\mathcal{I}_b = \operatorname{Ad}_{T_{ab}}^* \mathcal{I}_a \operatorname{Ad}_{T_{ab}} \tag{21}$$

where $T_{ab} \in SE(3): \{A\} \to \{B\}$. If the mass, m, and the inertia matrix in a center of mass frame³, $I_c \in \Re^{3\times 3}$, are given, one can get the generalized inertia in an arbitrary body frame from (21), rather than using (20), as

$$\mathcal{I} = \begin{bmatrix} RI_c R^{\mathrm{T}} + \mathbf{m}[p]^{\mathrm{T}}[p] & \mathbf{m}[p] \\ \mathbf{m}[p]^{\mathrm{T}} & \mathbf{m}\mathbf{1} \end{bmatrix}$$
(22)

where $(R, p) \in SE(3)$ represents the orientation and position of the center of mass frame with respect to the body frame.

The *generalized momentum* of a rigid body is defined as

$$L = \mathcal{I}V \tag{23}$$

where \mathcal{I} and V are the generalized inertia and velocity of the body expressed in a coordinate frame attached to the body.

 L_a and L_b be the generalized momentum of a rigid body expressed in different body frames, $\{A\}$ and $\{B\}$, respectively. Using (11) and (21) one can derive the following transformation rule for generalized momentums:

$$L_b = \operatorname{Ad}_{T_{ab}}^* L_a \tag{24}$$

which is same to that of generalized forces, and indeed, the generalized momentum is also known as dse(3).

1.4 Time Derivatives of se(3) and dse(3)

Recall that the time derivative of a 3-dimensional vector $x = \sum_{i=1}^{3} x_i \hat{e}_i$, expressed in a moving coordinate frame $\{\hat{e}_i\}$, can be obtained as

$$\frac{d}{dt}x = \sum_{i=1}^{3} \left\{ \left(\frac{d}{dt}x_i \right) \hat{e}_i + x_i \left(\frac{d}{dt} \hat{e}_i \right) \right\} = \dot{x} + w \times x \tag{25}$$

where $\dot{x} = \sum_{i=1}^{3} \left(\frac{d}{dt}x_i\right) \hat{e}_i = \left(\frac{dx_1}{dt}, \frac{dx_2}{dt}, \frac{dx_3}{dt}\right)$ is the component-wise time derivative of x and w is the angular velocity of the moving frame.

³ A coordinate frame whose origin is located on the center of mass of the body.

The time derivatives of se(3) and dse(3) which are expressed in a moving frame have more generalized form. A simple approach to obtain the derivatives is to transform se(3) (or dse(3)) to a stationary coordinate frame, differentiate it there, and transform the derivative back to the original moving coordinate frame with the (correct) assumption that the derivative of se(3) (or dse(3)) can be transformed with the rule of se(3) (or dse(3)). Note that differentiating a vector in a stationary coordinate frame with respect to time is just getting the component-wise derivative of it.

Lemma 1. Let $X \in se(3)$ be expressed in a moving frame attached to a rigid body. Then the time derivative of X can be obtained by

$$\frac{d}{dt}X = \dot{X} + \mathrm{ad}_V X \tag{26}$$

where \dot{X} is the component-wise time derivative of X and $ad_V : se(3) \to se(3)$ is a linear transformation defined as

$$\operatorname{ad}_{V} = \begin{bmatrix} [w] & 0 \\ [v] & [w] \end{bmatrix} \tag{27}$$

where $V = (w, v) \in se(3)$ is the generalized velocity of the body.

Proof. Let $T = (R, p) \in SE(3)$ denote the orientation and position of the moving frame with respect to an inertial frame which is stationary in the space. By transforming X to the inertial frame, differentiating it there, and then transforming the result back to the original body frame, one can get

$$\frac{d}{dt}X = \operatorname{Ad}_{T^{-1}}\frac{d'}{dt}\left(\operatorname{Ad}_{T}X\right) = \dot{X} + \operatorname{Ad}_{T^{-1}}\frac{d'}{dt}\left(\operatorname{Ad}_{T}\right)X$$

where $\frac{d'}{dt}$ represents the component-wise differentiation and $\dot{X} = \frac{d'}{dt}X$. Using (7) and $V = (w, v) = (R^{\mathrm{T}}\dot{R}, R^{\mathrm{T}}\dot{p})$, one can show $\mathrm{Ad}_{T^{-1}}\frac{d'}{dt}(\mathrm{Ad}_T) = \mathrm{ad}_V$ as follows:

$$\begin{split} \mathbf{A}\mathbf{d}_{T^{-1}}\frac{d'}{dt}\mathbf{A}\mathbf{d}_{T} &= \begin{bmatrix} R^{\mathrm{T}} & \mathbf{0} \\ -R^{\mathrm{T}}\left[p\right] & R^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \dot{R} & \mathbf{0} \\ \left[\dot{p}\right]R + \left[p\right]\dot{R} & \dot{R} \end{bmatrix} \\ &= \begin{bmatrix} \left[w\right] & \mathbf{0} \\ \left[v\right] & \left[w\right] \end{bmatrix} \end{split}$$

Lemma 2. Let $Y \in dse(3)$ be expressed in a moving frame attached to a rigid body. Then the time derivative of Y can be obtained by

$$\frac{d}{dt}Y = \dot{Y} - \operatorname{ad}_{V}^{*}Y \tag{28}$$

where \dot{Y} is the component-wise time derivative of Y and $ad_V^*: dse(3) \to dse(3)$ is a linear transformation defined as

$$\operatorname{ad}_{V}^{*} = \operatorname{ad}_{V}^{\mathrm{T}} = \begin{bmatrix} [w] & 0 \\ [v] & [w] \end{bmatrix}^{\mathrm{T}}$$
(29)

where $V = (w, v) \in se(3)$ is the generalized velocity of the body.

Proof. Similarly to the proof of Lemma 1, the derivative of $Y \in dse(3)$ can be obtained by

$$\frac{d}{dt}Y = \operatorname{Ad}_T^* \frac{d'}{dt} \left(\operatorname{Ad}_{T^{-1}}^* Y \right) = \dot{Y} + \operatorname{Ad}_T^* \frac{d'}{dt} \left(\operatorname{Ad}_{T^{-1}}^* \right) Y.$$

⁴ In [1] the time derivative of a spatial velocity which is similar to the generalized velocity in this article was obtained with this approach.

Using (8) and $V = (w, v) = (R^T \dot{R}, R^T \dot{p})$, one can show $\operatorname{Ad}_T^* \frac{d'}{dt} \operatorname{Ad}_{T^{-1}}^* = -\operatorname{ad}_V^*$ as follows:

$$\begin{split} \operatorname{Ad}_{T}^{*} \frac{d'}{dt} \operatorname{Ad}_{T^{-1}}^{*} &= \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}[p] \\ 0 & R^{\mathrm{T}} \end{array} \right] \left[\begin{array}{cc} \dot{R} & [\dot{p}] \, R + [p] \, \dot{R} \\ 0 & \dot{R} \end{array} \right] \\ &= \left[\begin{array}{cc} [w] & [v] \\ 0 & [w] \end{array} \right] = -\operatorname{ad}_{V}^{\mathrm{T}} = -\operatorname{ad}_{V}^{*} \end{split}$$

1.5 Geometric Dynamics of a Rigid Body

Equations of motion of a rigid body can be written as

$$F = \frac{d}{dt}L\tag{30}$$

where F represents the net sum of the generalized forces acting on the rigid body and L is the generalized momentum of the body. Using (23) and (28), the equations of motion of the rigid body can be written as

$$F = \mathcal{I}\dot{V} - \mathrm{ad}_V^* \mathcal{I}V \tag{31}$$

where \dot{V} is the component-wise time derivative of the generalized velocity of the body. Note that $\dot{L} = \dot{\mathcal{I}}V + \mathcal{I}\dot{V} = \mathcal{I}\dot{V}$ because the components of \mathcal{I} doesn't vary.

The dynamics equation of a rigid body is coordinate invariant, i.e., the structure of the equation still remains under change of coordinate frame. Let $\{A\}$ and $\{B\}$ be coordinate frames attached to a body, V_a and V_b be the generalized velocities, F_a and F_b be the generalized forces, and \mathcal{I}_a and \mathcal{I}_b be the generalized inertias corresponding to $\{A\}$ and $\{B\}$ respectively. Using the transformation rules, (11), (13), and (21), one can easily transform the dynamics equations with respect to $\{A\}$, $F_a = \mathcal{I}_a \dot{V}_a - \operatorname{ad}_{V_a}^* \mathcal{I}_a V_a$, to the equations in $\{B\}$, $F_b = \mathcal{I}_b \dot{V}_b - \operatorname{ad}_{V_b}^* \mathcal{I}_b V_b$, and this shows the coordinate invariance of (31) under change of coordinate frame.

2 Dynamics of Open Chain Systems

Let $q \in \Re^n$ denote the set of coordinates of all joints in a system, and for open chain systems, n is equal to the degree-of-freedom of the system. The dynamics equations of the system can be written as

$$M(q)\ddot{q} + b(q,\dot{q}) = \tau \tag{32}$$

where $M(q) \in \Re^{n \times n}$ is a symmetric mass matrix of the system, $b(q, \dot{q}) \in \Re^n$ represents Coriolis, centrifugal, and gravity terms, and $\tau \in \Re^n$ denotes torque(or force) vector corresponding to the system coordinates q.

Calculating the joint torque(or force) τ with given (q, \dot{q}, \ddot{q}) is called *inverse dynamics*. It is typically used to obtain the required joint torques which make the system move along a given joint trajectory. On the other hand, calculating \ddot{q} with given (q, \dot{q}, τ) is called *forward dynamics*, and it is frequently used to simulate the system evolution in time by integrating \ddot{q} to get (q, \dot{q}) at the next time step.

In general, the command input on a joint can be either torque or acceleration during the simulation and the command type does not have to be same for all joints. The equations of motion can be rewritten as

$$M\begin{pmatrix} \ddot{q}_a \\ \ddot{q}_p \end{pmatrix} + b = \begin{pmatrix} \tau_a \\ \tau_p \end{pmatrix} \tag{33}$$

where the subscript 'a' is for the acceleration-prescribed joints and the subscript 'p' is for the joints with given, or known, torques. We can compute (τ_a, \ddot{q}_p) with known (\ddot{q}_a, τ_p) from the equations and

Inverse dynamics	$(q,\dot{q},\ddot{q}) ightarrow au$
Forward dynamics	$(q,\dot{q}, au) ightarrow \ddot{q}$
Hybrid dynamics	$(q_a, \dot{q}_a, \ddot{q}_a, q_p, \dot{q}_p, \tau_p) \to (\tau_a, \ddot{q}_p)$

Table 1: Input and output of dynamics

we call this hybrid dynamics ⁵ One possible solution for hybrid dynamics is to rearrange (33) and solve it with a direct matrix inversion. For example, the accelerations of the unprescribed joints can be obtained by $\ddot{q}_p = M_{pp}^{-1}(\tau_p - b_p - M_{pa}\ddot{q}_a)$ where $M = \begin{bmatrix} M_{aa} & M_{ap} \\ M_{pa} & M_{pp} \end{bmatrix}$, $b = \begin{pmatrix} b_a \\ b_p \end{pmatrix}$, and $q = \begin{pmatrix} q_a \\ q_p \end{pmatrix}$. The method, however, is not efficient for a complex system because it requires building the mass matrix and inverting the submatrix corresponding to the unprescribed joints, which leads to an $O(n^2) + O(n_p^3)$ algorithm where n and n_p denote the number of all coordinates and the number of unprescribed coordinates respectively.

In Table 1 the input and output of inverse, forward, and hybrid dynamics are summarized. Note that hybrid dynamics is a generalization of traditional forward and inverse dynamics, i.e., they can be regarded as the extreme cases of hybrid dynamics when all of the joints have given, or known, torques and when all of the joints are acceleration-prescribed respectively.

2.1 Recursive Inverse Dynamics

A recursive Newton-Euler inverse dynamics algorithm using the geometric notations shown in Section 1 was presented in [3]. Here the algorithm is slightly modified to support multi-degree-of-freedom joints in the formulation.

Let $\{0\}$ be an inertial frame which is stationary in the space, $\{I\}$ be a coordinate frame attached to i-th rigid body of the open chain system, and $\{\lambda(i)\}$ be a coordinate frame attached to the parent body of the i-th rigid body. Also, let $T_i \in SE(3) : \{0\} \to \{i\}$, $T_{\lambda(i)} \in SE(3) : \{0\} \to \{\lambda(i)\}$, and $T_{\lambda(i),i} \in SE(3) : \{\lambda(i)\} \to \{i\}$. From $T_i = T_{\lambda(i)}T_{\lambda(i),i}$ and (6), the generalized velocity of the i-th body can be rewritten as

$$V_i = T_i^{-1} \dot{T}_i \tag{34}$$

$$= T_{\lambda(i),i}^{-1} T_{\lambda(i)}^{-1} \left(\dot{T}_{\lambda(i)} T_{\lambda(i),i} + T_{\lambda(i)} \dot{T}_{\lambda(i),i} \right)$$
(35)

$$= \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} V_{\lambda(i)} + S_i \dot{q}_i \tag{36}$$

where $S_i\dot{q}_i = T_{\lambda(i),i}^{-1}\dot{T}_{\lambda(i),i} \in se(3)$ represents the relative velocity of the i-th body with respect to its parent. $S_i = S_i(q_i) \in (se(3) \times n_i)$ is called the Jacobian of the joint connecting the i-th body and its parent and $q_i \in \Re^{n_i}$ represents the coordinate vector of the joint.

As shown in (31), component-wise time derivatives of the generalized velocities of all bodies in the system are needed to build the dynamics equations for each body. Recalling that $\dot{A}^{-1} = -A^{-1}\dot{A}A^{-1}$ for an arbitrary matrix A, and $\mathrm{ad}_{\xi_1}\xi_2 = \xi_1\xi_2 - \xi_2\xi_1$ for arbitrary $\xi_1, \xi_2 \in se(3)$, one can derive the following formula for \dot{V}_i , the component-wise time derivative of V_i :

$$\dot{V}_i = \frac{d'}{dt} \left(T_{\lambda(i),i}^{-1} V_{\lambda(i)} T_{\lambda(i),i} \right) + \dot{S}_i \dot{q}_i + S_i \ddot{q}_i \tag{37}$$

$$= -T_{\lambda(i),i}^{-1} \dot{T}_{\lambda(i),i} T_{\lambda(i),i}^{-1} V_{\lambda(i)} T_{\lambda(i),i} + T_{\lambda(i),i}^{-1} \dot{V}_{\lambda(i)} T_{\lambda(i),i}$$

$$+T_{\lambda(i),i}^{-1}V_{\lambda(i)}\dot{T}_{\lambda(i),i} + \dot{S}_i\dot{q}_i + S_i\ddot{q}_i \tag{38}$$

$$= \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \operatorname{ad}_{\operatorname{Ad}_{T_{\lambda(i),i}^{-1}} V_{\lambda(i)}} S_i \dot{q}_i + \dot{S}_i \dot{q}_i + S_i \ddot{q}_i$$
(39)

$$= \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \operatorname{ad}_{V_i} S_i \dot{q}_i + \dot{S}_i \dot{q}_i + S_i \ddot{q}_i$$
(40)

⁵We follow [1] for the terminology.

(36) and (40) are well suited to calculate the generalized velocity and its component-wise time derivative of each body in a open chain system from the ground to the end of the system recursively, as the velocity and acceleration of the ground are known in most cases.⁶ Note that $\dot{S}_i \neq 0$ as the joint Jacobian S_i is a function of q_i in general.

Let $F_i \in dse(3)$ be the generalized force transmitted to i-th body from its parent through the connecting joint, and $F_i^{\text{ext}} \in dse(3)$ be a generalized force acting on the i-th body from environment. Both F_i and F_i^{ext} are expressed in $\{i\}$. From (31), the equations of motion for the i-th body can be written as

$$F_i + F_i^{\text{ext}} - \sum_{k \in \mu(i)} \text{Ad}_{T_{i,k}^{-1}}^* F_k = \mathcal{I}_i \dot{V}_i - \text{ad}_{V_i}^* \mathcal{I}_i V_i$$
(41)

where the left hand side of the equations represents the net force acting on the body, $\mu(i)$ is the set of child bodies of the i-th body, and $-\mathrm{Ad}_{T_{i,k}}^* F_k$ is the generalized force, transmitted from k-th child body, expressed in $\{i\}$. It should be noted that the generalized force, F_i , for each body can be calculated by (41) from the ends to the ground recursively, as the end bodies have no child.

A recursive inverse dynamics algorithm for open chain systems is shown in Table 2, and the following is a list of symbols for the geometric inverse dynamics:

- i = index of the i-th body.
- $\lambda(i)$ = index of the parent body of the i-th body.
- $\mu(i)$ = set of indexes of the child bodies of the i-th body.
- $q_i \in \Re^{n_i}$ = coordinates of the i-th joint which connects the i-th body with its parent body.
- $\tau_i \in \Re^{n_i} = \text{torque}(\text{or force})$ exerted by the i-th joint.
- $T_{\lambda(i),i} \in SE(3) : \{\lambda(i)\} \to \{i\}$, a function of q_i .
- $V_i \in se(3)$ = the generalized velocity of the i-th body, viewed in the body frame $\{i\}$.
- $\dot{V}_i \in se(3) = \text{component-wise time derivative of } V_i$.
- $S_i \in (se(3) \times n_i) = \text{Jacobian of } T_{\lambda(i),i} \text{ viewed in } \{i\}.$ $S_i = \left[T_{\lambda(i),i}^{-1} \frac{\partial T_{\lambda(i),i}^{-1}}{\partial q_i^1}, \cdots, T_{\lambda(i),i}^{-1} \frac{\partial T_{\lambda(i),i}^{-1}}{\partial q_i^{n_i}}\right], \text{ where } q_i^k \in \Re \text{ denotes the k-th coordinate of the i-th joint, i.e., } q_i = (q_i^1, \cdots, q_i^{n_i}).$
- \mathcal{I}_i = the generalized inertia of the i-th body, viewed in $\{i\}$.
- $F_i \in dse(3)$ = the generalized force transmitted to the i-th body from its parent through the connecting joint, viewed in $\{i\}$.
- $F_i^{\text{ext}} \in dse(3)$ = the generalized force acting on the i-th body from environment, viewed in $\{i\}$.

Table 2: Recursive Inverse Dynamics

⁶One can assume that $V_0 = 0$ and $\dot{V}_0 = (0, g)$ where $g \in \Re^3$ denote the gravity vector, viewed in the inertial frame, with appropriate direction and magnitude.

$$\begin{aligned} \textbf{while} & \text{ forward recursion } \textbf{do} \\ & T_{\lambda(i),i} = \text{ function of } q_i \\ & V_i = \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} V_{\lambda(i)} + S_i \dot{q}_i \\ & \dot{V}_i = \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \operatorname{ad}_{V_i} S_i \dot{q}_i + \dot{S}_i \dot{q}_i + S_i \ddot{q}_i \\ & \textbf{end while} \\ & \textbf{while} & \textbf{backward recursion } \textbf{do} \\ & F_i = \mathcal{I}_i \dot{V}_i - \operatorname{ad}_{V_i}^* \mathcal{I}_i V_i - F_i^{\text{ext}} + \sum_{k \in \mu(i)} \operatorname{Ad}_{T_{i,k}^{-1}}^* F_k \\ & \tau_i = S_i^{\text{T}} F_i \\ & \textbf{end while} \end{aligned}$$

2.2 Recursive Forward Dynamics

Featherstone [1] found that the dynamics equations of the i-th body can be reformulated to have the following form,

$$F_i = \hat{\mathcal{I}}_i \dot{V}_i + \hat{\mathcal{B}}_i, \tag{42}$$

where \hat{I}_i is called as the articulated body inertia of the body and $\hat{\mathcal{B}}_i$ is an associated bias force. He also showed that the articulated body inertia and bias force corresponding to each body in open chain systems can be calculated recursively, and by using these new quantities, forward dynamics can be solved with an O(n) algorithm. A Lie group formulation of the articulated body inertia method was reported in [4]. Here, a more general form of the geometric formulation supporting multi-degree-of-freedom joint models is presented.

Starting from (42), we'll show that the same form of dynamics equations still holds for the parent of the i-th body($\lambda(i)$ -th body), and $\hat{\mathcal{I}}_{\lambda(i)}$ and $\hat{\mathcal{B}}_{\lambda(i)}$ can be calculated from $\hat{\mathcal{I}}_i$ and $\hat{\mathcal{B}}_i$, which leads a backward recursion process for them.

Let's assume that the equations of motion for i-th body can be written as (42). By substituting (40) for \dot{V}_i in (42), one can get

$$F_i = \hat{\mathcal{I}}_i \left(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \operatorname{ad}_{V_i} S_i \dot{q}_i + S_i \ddot{q}_i + \dot{S}_i \dot{q}_i \right) + \hat{\mathcal{B}}_i, \tag{43}$$

and from $S_i^{\mathrm{T}} F_i = \tau_i$, the unknown \ddot{q}_i can be written as

$$\ddot{q}_i = \left(S_i^{\mathrm{T}} \hat{\mathcal{I}}_i S_i\right)^{-1} \left\{ \tau_i - S_i^{\mathrm{T}} \hat{\mathcal{I}}_i \left(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \operatorname{ad}_{V_i} S_i \dot{q}_i + \dot{S}_i \dot{q}_i \right) - S_i^{\mathrm{T}} \hat{\mathcal{B}}_i \right\}. \tag{44}$$

From (41) the dynamics equations for the $\lambda(i)$ -th body becomes

$$F_{\lambda(i)} = \mathcal{I}_{\lambda(i)} \dot{V}_{\lambda(i)} - \operatorname{ad}^*_{V_{\lambda(i)}} \mathcal{I}_{\lambda(i)} V_{\lambda(i)} - F_{\lambda(i)}^{\operatorname{ext}} + \sum_{k \in \mu(\lambda(i))} \operatorname{Ad}^*_{T_{\lambda(i),k}^{-1}} F_k, \tag{45}$$

and by substituting (43) for F_k in (45), one can get

$$F_{\lambda(i)} = \mathcal{I}_{\lambda(i)} \dot{V}_{\lambda(i)} - \operatorname{ad}_{V_{\lambda(i)}}^* \mathcal{I}_{\lambda(i)} V_{\lambda(i)} - F_{\lambda(i)}^{\text{ext}} + \sum_{k \in \mu(\lambda(i))} \operatorname{Ad}_{T_{\lambda(i),k}^{-1}}^* \left\{ \hat{\mathcal{I}}_k \left(\operatorname{Ad}_{T_{\lambda(i),k}^{-1}} \dot{V}_{\lambda(i)} + \operatorname{ad}_{V_k} S_k \dot{q}_k + S_k \ddot{q}_k + \dot{S}_k \dot{q}_k \right) + \hat{\mathcal{B}}_k \right\}.$$

$$(46)$$

By substituting (44) for the unknown \ddot{q}_k in (46) and arranging the equations in terms of $\dot{V}_{\lambda(i)}$, one can have the dynamics equations for the $\lambda(i)$ -th body with the following desired form:

$$F_{\lambda(i)} = \hat{\mathcal{I}}_{\lambda(i)} \dot{V}_{\lambda(i)} + \hat{\mathcal{B}}_{\lambda(i)} \tag{47}$$

where

$$\hat{\mathcal{I}}_{\lambda(i)} = \mathcal{I}_{\lambda(i)} + \sum_{k \in \mu(\lambda(i))} \operatorname{Ad}_{T_{\lambda(i),k}}^{*} \left\{ \hat{\mathcal{I}}_{k} - \hat{\mathcal{I}}_{k} S_{k} \left(S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} S_{k} \right)^{-1} S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} \right\} \operatorname{Ad}_{T_{\lambda(i),k}}^{-1}$$

$$\hat{\mathcal{B}}_{\lambda(i)} = -\operatorname{ad}_{V_{\lambda(i)}}^{*} \mathcal{I}_{\lambda(i)} V_{\lambda(i)} - F_{\lambda(i)}^{\operatorname{ext}}$$

$$+ \sum_{k \in \mu(\lambda(i))} \operatorname{Ad}_{T_{\lambda(i),k}}^{*} \left\{ \hat{\mathcal{B}}_{k} + \hat{\mathcal{I}}_{k} \left(\operatorname{ad}_{V_{k}} S_{k} \dot{q}_{k} + \dot{S}_{k} \dot{q}_{k} \right) \right.$$

$$+ \hat{\mathcal{I}}_{k} S_{k} \left(S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} S_{k} \right)^{-1} \left(\tau_{k} - S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} (\operatorname{ad}_{V_{k}} S_{k} \dot{q}_{k} + \dot{S}_{k} \dot{q}_{k}) - S_{k}^{\mathrm{T}} \hat{\mathcal{B}}_{k} \right) \right\}.$$

$$(48)$$

In summary, the O(n) algorithm for forward dynamics of open chain systems consists of the following three main recursion process:

- 1. Forward recursion: recursively calculates V_i for each body with (36).
- 2. Backward recursion: recursively calculates $\hat{\mathcal{I}}_i$ and $\hat{\mathcal{B}}_i$ for each body with (48) and (49).
- 3. Forward recursion: recursively calculates \ddot{q}_i and \dot{V}_i for each body with (44) and (40).

Table 3 shows the forward dynamics algorithm for open chain systems with a few additional intermediate variables, such as η_i, Ψ_i, Π_i , and β_i , for the simplicity and efficiency of the equations.

Table 3: Recursive Forward Dynamics

```
 \begin{aligned} & \textbf{while} \text{ forward recursion } \textbf{do} \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

2.3 Recursive Hybrid Dynamics

A geometric recursive algorithm for hybrid dynamics of open chain systems was reported in [5], but the formulation was based on 1-dof joints. Here, more general form of the geometric hybrid dynamics is presented to support multi-degree-of-freedom joints more conveniently.

One can derive the hybrid dynamics for open chain systems with a similar way as in 2.2 for forward dynamics. Let's go back to (46). Unlike the case of forward dynamics, as \ddot{q}_k in (46)

corresponding to an active joint is already known, one can arrange (46) in terms of $\dot{V}_{\lambda(i)}$ by substituting (44) into (46) for \ddot{q}_k of passive joints only as follows:

$$F_{\lambda(i)} = \hat{\mathcal{I}}_{\lambda(i)} \dot{V}_{\lambda(i)} + \hat{\mathcal{B}}_{\lambda(i)} \tag{50}$$

where

$$\hat{\mathcal{I}}_{\lambda(i)} = \mathcal{I}_{\lambda(i)} + \sum_{k \in \{\mu(\lambda(i)) \cap a\}} \operatorname{Ad}_{T_{\lambda(i),k}}^{*-1} \hat{\mathcal{I}}_{k} \operatorname{Ad}_{T_{\lambda(i),k}}^{-1} \\
+ \sum_{k \in \{\mu(\lambda(i)) \cap p\}} \operatorname{Ad}_{T_{\lambda(i),k}}^{*-1} \left\{ \hat{\mathcal{I}}_{k} - \hat{\mathcal{I}}_{k} S_{k} \left(S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} S_{k} \right)^{-1} S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} \right\} \operatorname{Ad}_{T_{\lambda(i),k}}^{-1} \\
\hat{\mathcal{B}}_{\lambda(i)} = -\operatorname{ad}_{V_{\lambda(i)}}^{*} \mathcal{I}_{\lambda(i)} V_{\lambda(i)} - F_{\lambda(i)}^{\mathrm{ext}} \\
+ \sum_{k \in \{\mu(\lambda(i)) \cap a\}} \operatorname{Ad}_{T_{\lambda(i),k}}^{*-1} \left\{ \hat{\mathcal{B}}_{k} + \hat{\mathcal{I}}_{k} \left(\operatorname{ad}_{V_{k}} S_{k} \dot{q}_{k} + \dot{S}_{k} \dot{q}_{k} + S_{k} \ddot{q}_{k} \right) \right\} \\
+ \sum_{k \in \{\mu(\lambda(i)) \cap p\}} \operatorname{Ad}_{T_{\lambda(i),k}}^{*-1} \left\{ \hat{\mathcal{B}}_{k} + \hat{\mathcal{I}}_{k} \left(\operatorname{ad}_{V_{k}} S_{k} \dot{q}_{k} + \dot{S}_{k} \dot{q}_{k} \right) \\
+ \hat{\mathcal{I}}_{k} S_{k} \left(S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} S_{k} \right)^{-1} \left(\tau_{k} - S_{k}^{\mathrm{T}} \hat{\mathcal{I}}_{k} (\operatorname{ad}_{V_{k}} S_{k} \dot{q}_{k} + \dot{S}_{k} \dot{q}_{k}) - S_{k}^{\mathrm{T}} \hat{\mathcal{B}}_{k} \right) \right\}.$$
(52)

where 'a' and 'p' denote the sets of the acceleration-prescribed and unprescribed joints in the system respectively. Table 4 shows the hybrid dynamics algorithm for open chain systems.

Table 4: Recursive Hybrid Dynamics

```
while forward recursion do
              T_{\lambda(i),i} = \text{function of } q_i
             V_i = \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} V_{\lambda(i)} + S_i \dot{q}_i
             \eta_i = \operatorname{ad}_{V_i} S_i \dot{q}_i + \dot{S}_i \dot{q}_i
end while
while backward recursion do
           \begin{split} \hat{\mathcal{I}}_{i} &= \mathcal{I}_{i} + \sum_{k \in \mu(i)} \mathrm{Ad}^{*}_{T_{i,k}^{-1}} \Pi_{k} \mathrm{Ad}_{T_{i,k}^{-1}} \\ \hat{\mathcal{B}}_{i} &= -\mathrm{ad}^{*}_{V_{i}} \mathcal{I}_{i} V_{i} - F_{i}^{\mathrm{ext}} + \sum_{k \in \mu(i)} \mathrm{Ad}^{*}_{T_{i,k}^{-1}} \beta_{k} \end{split}
             if i \in a then
                          \Pi_i = \hat{\mathcal{I}}_i
                          \beta_i = \hat{\mathcal{B}}_i + \hat{\mathcal{I}}_i (\eta_i + S_i \ddot{q}_i)
                           \Psi_i = (S_i^{\mathrm{T}} \hat{\mathcal{I}}_i S_i)^{-1}
                           \Pi_i = \hat{\mathcal{I}}_i - \hat{\mathcal{I}}_i S_i \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{I}}_i
                          \beta_i = \hat{\mathcal{B}}_i + \hat{\mathcal{I}}_i \left\{ \eta_i + S_i \Psi_i \left( \tau_i - S_i^{\mathrm{T}} \left( \hat{\mathcal{I}}_i \eta_i + \hat{\mathcal{B}}_i \right) \right) \right\}
             end if
     \begin{aligned} &\text{do do} \\ \dot{V}_i &= \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + S_i \ddot{q}_i + \eta_i \\ F_i &= \hat{\mathcal{I}}_i \dot{V}_i + \hat{\mathcal{B}}_i \\ \tau_i &= S_i^{\mathrm{T}} F_i \\ \end{aligned}else
end while
while forward recursion do
                            \ddot{q}_i = \Psi_i \Big\{ 	au_i - S_i^{\mathrm{T}} \hat{\mathcal{I}}_i \Big( \mathrm{Ad}_{T_{\lambda(i)}^{-1}} \dot{V}_{\lambda(i)} + \eta_i \Big) - S_i^{\mathrm{T}} \hat{\mathcal{B}}_i \Big\}
```

$$\begin{split} \dot{V}_i &= \mathrm{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + S_i \ddot{q}_i + \eta_i \\ F_i &= \hat{\mathcal{I}}_i \dot{V}_i + \hat{\mathcal{B}}_i \\ \text{end if} \\ \text{end while} \end{split}$$

3 Differentiation of the Geometric Dynamics

3.1 Basic Derivatives

It is useful to have the following derivatives for differentiating the recursive dynamics algorithms with the chain rule.

Lemma 3. Let $p \in \Re$ be an arbitrary scalar variable and $T \in SE(3)$ be a function of p. Then

$$\frac{\partial}{\partial p} \mathrm{Ad}_T = \mathrm{ad}_{\frac{\partial T}{\partial p} T^{-1}} \mathrm{Ad}_T. \tag{53}$$

Proof. Let ξ be an arbitrary se(3). If Ad_T is regarded as a 6×6 matrix, then

$$\frac{\partial}{\partial p} \left(\mathrm{Ad}_T \xi \right) = \frac{\partial}{\partial p} \left(\mathrm{Ad}_T \right) \, \xi + \mathrm{Ad}_T \, \frac{\partial \xi}{\partial p}. \tag{54}$$

 Ad_T can also be regarded as a linear mapping, $\mathrm{Ad}_T:\xi\to T\xi T^{-1}$, and in this case,

$$\frac{\partial}{\partial p} \left(\mathrm{Ad}_{T} \xi \right) = \frac{\partial}{\partial p} \left(T \xi T^{-1} \right) \tag{55}$$

$$= \frac{\partial T}{\partial p} \xi T^{-1} + T \frac{\partial \xi}{\partial p} T^{-1} + T \xi \frac{\partial T^{-1}}{\partial p}$$
 (56)

$$=\frac{\partial T}{\partial p}T^{-1}T\xi T^{-1} - T\xi T^{-1}\frac{\partial T}{\partial p}T^{-1} + T\frac{\partial \xi}{\partial p}T^{-1}$$
(57)

$$= \operatorname{ad}_{\frac{\partial T}{\partial p}T^{-1}}\operatorname{Ad}_{T}\xi + \operatorname{Ad}_{T}\frac{\partial \xi}{\partial p}.$$
(58)

As $\xi \in se(3)$ is arbitrary, one can see $\frac{\partial}{\partial p} \mathrm{Ad}_T = \mathrm{ad}_{\frac{\partial T}{\partial p} T^{-1}} \mathrm{Ad}_T$ from (54) and (58).

Corollary 1. Let $p \in \Re$ be an arbitrary scalar variable and $T_{\lambda(i),i} \in SE(3) : \{\lambda(i)\} \to \{i\}$. Then

$$\frac{\partial}{\partial p} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} = -\operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}}$$

$$\tag{59}$$

$$\frac{\partial}{\partial p} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}}^{*} = -\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}^{*} \operatorname{ad}_{\frac{\partial h_{i}}{\partial p}}^{*}$$

$$\tag{60}$$

where $\frac{\partial h_i}{\partial p} \in se(3)$ is defined as

$$\frac{\partial h_i}{\partial p} = T_{\lambda(i),i}^{-1} \frac{\partial T_{\lambda(i),i}}{\partial p}.$$
 (61)

Corollary 2. If $p = q_i^k$ where q_i^k denotes the k-th coordinate of the i-th joint, then

$$\frac{\partial h_i}{\partial p} = S_i^k \tag{62}$$

where $S_i^k \in se(3)$ denotes the k-th column of the i-th joint Jacobian, $S_i \in (se(3) \times n_i)$. If $p \notin q_i = \{q_i^1, \dots, q_i^{n_i}\}$, then

$$\frac{\partial h_i}{\partial p} = 0. ag{63}$$

3.2 Derivatives of the Dynamics

By applying chain rule with (59) and (60), the recursive algorithm for inverse, forward, and hybrid dynamics can be differentiated with respect to an arbitrary scalar variable $p \in \Re$. Table 5 shows the derivative of the recursive inverse dynamics, and it can solve $\frac{\partial \tau}{\partial p}$ with given $\left(\frac{\partial q}{\partial p}, \frac{\partial \dot{q}}{\partial p}, \frac{\partial \ddot{q}}{\partial p}\right)$. In Table 6, the derivative of the recursive forward dynamics, which calculates $\frac{\partial \ddot{q}}{\partial p}$ with given $\frac{\partial \tau}{\partial p}$, is given. The derivative of the recursive hybrid dynamics which solves $\left(\frac{\partial \tau_a}{\partial p}, \frac{\partial \ddot{q}_p}{\partial p}\right)$ with given $\left(\frac{\partial q_a}{\partial p}, \frac{\partial \dot{q}_a}{\partial p}, \frac{\partial \ddot{q}_a}{\partial p}\right)$ is presented in Table 7.

Table 5: Derivative of the Recursive Inverse Dynamics

$$\begin{aligned} & \textbf{while} \text{ forward recursion } \textbf{do} \\ & \frac{\partial h_i}{\partial p} \triangleq T_{\lambda(i),i}^{-1} \frac{\partial T_{\lambda(i),i}}{\partial p} \\ & \frac{\partial V_i}{\partial p} = \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \frac{\partial V_{\lambda(i)}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} V_{\lambda(i)} + \frac{\partial S_i}{\partial p} \dot{q}_i + S_i \frac{\partial \dot{q}_i}{\partial p} \\ & \frac{\partial \dot{V}_i}{\partial p} = \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \frac{\partial \dot{V}_{\lambda(i)}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \frac{\partial S_i}{\partial p} \ddot{q}_i + S_i \frac{\partial \ddot{q}_i}{\partial p} \\ & + \operatorname{ad}_{\frac{\partial V_i}{\partial p}} S_i \dot{q}_i + \operatorname{ad}_{V_i} \left(\frac{\partial S_i}{\partial p} \dot{q}_i + S_i \frac{\partial \dot{q}_i}{\partial p} \right) + \frac{\partial \dot{S}_i}{\partial p} \dot{q}_i + \dot{S}_i \frac{\partial \dot{q}_i}{\partial p} \\ & \textbf{end while} \\ & \textbf{while backward recursion } \textbf{do} \\ & \frac{\partial F_i}{\partial p} = \frac{\partial \mathcal{I}_i}{\partial p} \dot{V}_i + \mathcal{I}_i \frac{\partial \dot{V}_i}{\partial p} - \operatorname{ad}_{\frac{\partial V_i}{\partial p}}^* \mathcal{I}_i V_i - \operatorname{ad}_{V_i}^* \left(\frac{\partial \mathcal{I}_i}{\partial p} V_i + \mathcal{I}_i \frac{\partial V_i}{\partial p} \right) - \frac{\partial F_i^{\text{ext}}}{\partial p} \\ & + \sum_{k \in \mu(i)} \operatorname{Ad}_{T_{i,k}^{-1}}^* \left(\frac{\partial F_k}{\partial p} - \operatorname{ad}_{\frac{\partial h_k}{\partial p}}^* F_k \right) \\ & \frac{\partial \tau_i}{\partial p} = \frac{\partial S_i}{\partial p}^{\mathrm{T}} F_i + S_i^{\mathrm{T}} \frac{\partial F_i}{\partial p} \\ & \textbf{end while} \end{aligned} \end{aligned}$$

Table 6: Derivative of the Recursive Forward Dynamics

$$\begin{aligned} & \textbf{while} \text{ forward recursion } \textbf{do} \\ & \frac{\partial h_i}{\partial p} \triangleq T_{\lambda(i),i}^{-1} \frac{\partial T_{\lambda(i),i}}{\partial p} \\ & \frac{\partial V_i}{\partial p} = \operatorname{Ad}_{T_{\lambda(i),i}} \frac{\partial T_{\lambda(i),i}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}} V_{\lambda(i)} + \frac{\partial S_i}{\partial p} \dot{q}_i + S_i \frac{\partial \dot{q}_i}{\partial p} \\ & \frac{\partial \eta_i}{\partial p} = \operatorname{ad}_{\frac{\partial V_i}{\partial p}} S_i \dot{q}_i + \operatorname{ad}_{V_i} \left(\frac{\partial S_i}{\partial p} \dot{q}_i + S_i \frac{\partial \dot{q}_i}{\partial p} \right) + \frac{\partial \dot{S}_i}{\partial p} \dot{q}_i + \dot{S}_i \frac{\partial \dot{q}_i}{\partial p} \\ & \textbf{end while} \\ & \textbf{while backward recursion } \textbf{do} \\ & \frac{\partial \hat{\mathcal{I}}_i}{\partial p} = \frac{\partial \mathcal{I}_i}{\partial p} + \sum_{k \in \mu(i)} \operatorname{Ad}_{T_{i,k}}^* \left(\frac{\partial \Pi_k}{\partial p} - \Pi_k \operatorname{ad}_{\frac{\partial h_k}{\partial p}} - \left(\Pi_k \operatorname{ad}_{\frac{\partial h_k}{\partial p}} \right)^{\mathrm{T}} \right) \operatorname{Ad}_{T_{i,k}}^{-1} \\ & \frac{\partial \hat{\mathcal{B}}_i}{\partial p} = -\operatorname{ad}_{\frac{\partial V_i}{\partial p}}^* \mathcal{I}_i V_i - \operatorname{ad}_{V_i}^* \left(\frac{\partial \mathcal{I}_i}{\partial p} V_i + \mathcal{I}_i \frac{\partial V_i}{\partial p} \right) - \frac{\partial F_i^{\text{ext}}}{\partial p} \\ & + \sum_{k \in \mu(i)} \operatorname{Ad}_{T_{i,k}}^* \left(\frac{\partial \beta_k}{\partial p} - \operatorname{ad}_{\frac{\partial h_k}{\partial p}}^* \beta_k \right) \\ & \frac{\partial \Psi_i}{\partial p} = -\Psi_i \left\{ S_i^{\mathrm{T}} \frac{\partial \hat{\mathcal{I}}_i}{\partial p} S_i + \frac{\partial S_i}{\partial p}^{\mathrm{T}} \hat{\mathcal{I}}_i S_i + \left(\frac{\partial S_i}{\partial p}^{\mathrm{T}} \hat{\mathcal{I}}_i S_i \right)^{\mathrm{T}} \right\} \Psi_i \\ & \frac{\partial \Pi_i}{\partial p} = \frac{\partial \hat{\mathcal{I}}_i}{\partial p} - \left\{ \hat{\mathcal{I}}_i S_i \frac{\partial \Psi_i}{\partial p} S_i^{\mathrm{T}} \hat{\mathcal{I}}_i + \frac{\partial \hat{\mathcal{I}}}{\partial p} S_i \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{I}}_i + \left(\frac{\partial \hat{\mathcal{I}}}{\partial p} S_i \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{I}}_i \right)^{\mathrm{T}} \\ & + \hat{\mathcal{I}}_i \frac{\partial S_i}{\partial p} \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{I}}_i + \left(\hat{\mathcal{I}}_i \frac{\partial S_i}{\partial p} \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{I}}_i \right)^{\mathrm{T}} \right\} \\ & \frac{\partial \beta_i}{\partial p} = \frac{\partial \hat{\mathcal{B}}_i}{\partial p} + \frac{\partial \hat{\mathcal{L}}_i}{\partial p} \left\{ \eta_i + S_i \Psi_i \left(\tau_i - S_i^{\mathrm{T}} (\hat{\mathcal{I}}_i \eta_i + \hat{\mathcal{B}}_i) \right) \right\} \\ & + \hat{\mathcal{I}} \left\{ \frac{\partial \eta_i}{\partial p} + \left(\frac{\partial S_i}{\partial p} \Psi_i + S_i \frac{\partial \Psi_i}{\partial p} \right) \left(\tau_i - S_i^{\mathrm{T}} (\hat{\mathcal{I}}_i \eta_i + \hat{\mathcal{B}}_i) \right) \right\} \end{aligned}$$

$$\begin{split} +S_{i}\Psi_{i}\left(\frac{\partial\tau_{i}}{\partial p}-\frac{\partial S_{i}}{\partial p}^{T}(\hat{\mathcal{I}}_{i}\eta_{i}+\hat{\mathcal{B}}_{i})-S_{i}^{T}\left(\frac{\partial\hat{\mathcal{I}}_{i}}{\partial p}\eta_{i}+\hat{\mathcal{I}}_{i}\frac{\partial\eta_{i}}{\partial p}+\frac{\partial\hat{\mathcal{B}}_{i}}{\partial p}\right)\right)\right\} \\ \text{end while} \\ \text{while forward recursion do} \\ \frac{\partial\ddot{q}_{i}}{\partial p}&=\frac{\partial\Psi_{i}}{\partial p}\left\{\tau_{i}-S_{i}^{T}\hat{\mathcal{I}}_{i}\left(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}\dot{V}_{\lambda(i)}+\eta_{i}\right)-S_{i}^{T}\hat{\mathcal{B}}_{i}\right\} \\ &+\Psi_{i}\left\{\frac{\partial\tau_{i}}{\partial p}-\left(\frac{\partial S_{i}}{\partial p}^{T}\hat{\mathcal{I}}_{i}+S_{i}^{T}\frac{\partial\hat{\mathcal{I}}_{i}}{\partial p}\right)\left(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}\dot{V}_{\lambda(i)}+\eta_{i}\right) \\ &-S_{i}^{T}\hat{\mathcal{I}}_{i}\left(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}\frac{\partial\dot{V}_{\lambda(i)}}{\partial p}-\operatorname{ad}_{\frac{\partial h_{i}}{\partial p}}\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}\dot{V}_{\lambda(i)}+\frac{\partial\eta_{i}}{\partial p}\right) \\ &-\frac{\partial S_{i}}{\partial p}^{T}\hat{\mathcal{B}}_{i}-S_{i}^{T}\frac{\partial\hat{\mathcal{B}}_{i}}{\partial p}\right\} \\ \frac{\partial\dot{V}_{i}}{\partial p}&=\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}\frac{\partial\dot{V}_{\lambda(i)}}{\partial p}-\operatorname{ad}_{\frac{\partial h_{i}}{\partial p}}\operatorname{Ad}_{T_{\lambda(i),i}^{-1}}\dot{V}_{\lambda(i)}+\frac{\partial S_{i}}{\partial p}\ddot{q}_{i}+S_{i}\frac{\partial\ddot{q}_{i}}{\partial p}+\frac{\partial\eta_{i}}{\partial p} \\ \frac{\partial F_{i}}{\partial p}&=\frac{\partial\hat{\mathcal{I}}_{i}}{\partial p}\dot{V}_{i}+\hat{\mathcal{I}}_{i}\frac{\partial\dot{V}_{i}}{\partial p}+\frac{\partial\hat{\mathcal{B}}_{i}}{\partial p} \\ \text{end while} \end{split}$$

Table 7: Derivative of the Recursive Hybrid Dynamics

while forward recursion do
$$\frac{\partial h_i}{\partial p} \triangleq T_{\lambda(i),i}^{-1} \frac{\partial T_{\lambda(i),i}}{\partial p}$$

$$\frac{\partial V_i}{\partial p} = \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \frac{\partial V_{\lambda(i)}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} V_{\lambda(i)} + \frac{\partial S_i}{\partial p} \dot{q}_i + S_i \frac{\partial \dot{q}_i}{\partial p}$$

$$\frac{\partial \eta_i}{\partial p} = \operatorname{ad}_{Y_{\lambda(i),i}^{-1}} \frac{\partial V_{\lambda(i)}}{\partial p} + \operatorname{ad}_{V_i} \left(\frac{\partial S_i}{\partial p} \dot{q}_i + S_i \frac{\partial \dot{q}_i}{\partial p} \right) + \frac{\partial \dot{S}_i}{\partial p} \dot{q}_i + \dot{S}_i \frac{\partial \dot{q}_i}{\partial p}$$
end while
while backward recursion do
$$\frac{\partial \tilde{L}_i}{\partial p} = \frac{\partial \mathcal{L}_i}{\partial p} + \sum_{k \in \mu(i)} \operatorname{Ad}_{T_{i,k}^{-1}}^* \left\{ \frac{\partial \Pi_k}{\partial p} - \Pi_k \operatorname{ad}_{\frac{\partial h_k}{\partial p}} - \left(\Pi_k \operatorname{ad}_{\frac{\partial h_k}{\partial p}} \right)^{\mathrm{T}} \right\} \operatorname{Ad}_{T_{i,k}^{-1}}$$

$$\frac{\partial \tilde{B}_i}{\partial p} = -\operatorname{ad}_{Y_i}^* \mathcal{L}_i V_i - \operatorname{ad}_i^* \left(\frac{\partial \mathcal{L}_i}{\partial p} V_i + \mathcal{L}_i \frac{\partial V_i}{\partial p} \right) - \frac{\partial F_i^{ext}}{\partial p}$$

$$+ \sum_{k \in \mu(i)} \operatorname{Ad}_{T_{i,k}^{-1}}^* \left(\frac{\partial \beta_k}{\partial p} - \operatorname{ad}_{\frac{\partial h_k}{\partial p}}^* \beta_k \right)$$
if $i \in a$ then
$$\frac{\partial \Pi_i}{\partial p} = \frac{\partial \tilde{L}_i}{\partial p}$$

$$\frac{\partial \beta_i}{\partial p} = -\Psi_i \left\{ S_i^{\mathrm{T}} \frac{\partial \tilde{L}_i}{\partial p} (\eta_i + S_i \ddot{q}_i) + \hat{\mathcal{L}}_i \left(\frac{\partial \eta_i}{\partial p} + \frac{\partial S_i}{\partial p} \ddot{q}_i + S_i \frac{\partial \ddot{q}_i}{\partial p} \right)$$
else
$$\frac{\partial \Psi_i}{\partial p} = -\Psi_i \left\{ S_i^{\mathrm{T}} \frac{\partial \tilde{L}_i}{\partial p} (\eta_i + S_i \ddot{q}_i) + \hat{\mathcal{L}}_i \left(\frac{\partial \eta_i}{\partial p} + \frac{\partial S_i}{\partial p} \ddot{q}_i + S_i \frac{\partial \ddot{q}_i}{\partial p} \right) \right\}$$

$$+ \hat{\mathcal{L}}_i \frac{\partial S_i}{\partial p} \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{L}}_i + \left(\frac{\partial S_i}{\partial p} \ddot{Y}_i \ddot{X}_i \right)^{\mathrm{T}} \right\} \Psi_i$$

$$\frac{\partial \Pi_i}{\partial p} = \frac{\partial \hat{L}_i}{\partial p} - \left\{ \hat{\mathcal{L}}_i S_i \frac{\partial \Psi_i}{\partial p} S_i^{\mathrm{T}} \hat{\mathcal{L}}_i + \frac{\partial \hat{L}}{\partial p} S_i \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{L}}_i + \left(\frac{\partial \hat{L}}{\partial p} S_i \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{L}}_i \right)^{\mathrm{T}} \right\}$$

$$+ \hat{\mathcal{L}}_i \frac{\partial S_i}{\partial p} \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{L}}_i + \left(\hat{\mathcal{L}}_i \frac{\partial S_i}{\partial p} \Psi_i S_i^{\mathrm{T}} \hat{\mathcal{L}}_i \right) \left\{ \frac{\partial \hat{L}_i}{\partial p} (\eta_i + \hat{S}_i) \right\}$$

$$+ \hat{\mathcal{L}}_i \frac{\partial S_i}{\partial p} \left\{ \eta_i + S_i \Psi_i \left(\tau_i - S_i^{\mathrm{T}} (\hat{\mathcal{L}}_i \eta_i + \hat{B}_i) \right) \right\}$$

$$+ \hat{\mathcal{L}}_i \frac{\partial S_i}{\partial p} \left\{ \eta_i + S_i \Psi_i \left(\tau_i - S_i^{\mathrm{T}} (\hat{\mathcal{L}}_i \eta_i + \hat{B}_i) \right) - S_i^{\mathrm{T}} (\hat{\mathcal{L}}_i \eta_i + \hat{\mathcal{L}}_i \frac{\partial \eta_i}{\partial p} + \frac{\partial \tilde{B}_i}{\partial p} \right) \right\}$$
end if
end while
while forward recursion do
if $i \in a$ then

$$\begin{split} \frac{\partial \dot{V}_i}{\partial p} &= \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \frac{\partial \dot{V}_{\lambda(i)}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \frac{\partial S_i}{\partial p} \ddot{q}_i + S_i \frac{\partial \ddot{q}_i}{\partial p} + \frac{\partial \eta_i}{\partial p} \\ \frac{\partial F_i}{\partial p} &= \frac{\partial \hat{\mathcal{I}}_i}{\partial p} \dot{V}_i + \hat{\mathcal{I}}_i \frac{\partial \dot{V}_i}{\partial p} + \frac{\partial \hat{\mathcal{B}}_i}{\partial p} \\ \frac{\partial \tau_i}{\partial p} &= \frac{\partial S_i}{\partial p}^{\mathrm{T}} F_i + S_i^{\mathrm{T}} \frac{\partial F_i}{\partial p} \\ \text{else} \\ & \frac{\partial \ddot{q}_i}{\partial p} &= \frac{\partial \Psi_i}{\partial p} \left\{ \tau_i - S_i^{\mathrm{T}} \hat{\mathcal{I}}_i \Big(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \eta_i \Big) - S_i^{\mathrm{T}} \hat{\mathcal{B}}_i \right\} \\ &+ \Psi_i \left\{ \frac{\partial \tau_i}{\partial p} - \Big(\frac{\partial S_i}{\partial p}^{\mathrm{T}} \hat{\mathcal{I}}_i + S_i^{\mathrm{T}} \frac{\partial \hat{\mathcal{I}}_i}{\partial p} \Big) \Big(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \eta_i \Big) \\ &- S_i^{\mathrm{T}} \hat{\mathcal{I}}_i \Big(\operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \frac{\partial \dot{V}_{\lambda(i)}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \frac{\partial \eta_i}{\partial p} \Big) \\ &- \frac{\partial S_i}{\partial p}^{\mathrm{T}} \hat{\mathcal{B}}_i - S_i^{\mathrm{T}} \frac{\partial \hat{\mathcal{B}}_i}{\partial p} \Big\} \\ &\frac{\partial \dot{V}_i}{\partial p} &= \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \frac{\partial \dot{V}_{\lambda(i)}}{\partial p} - \operatorname{ad}_{\frac{\partial h_i}{\partial p}} \operatorname{Ad}_{T_{\lambda(i),i}^{-1}} \dot{V}_{\lambda(i)} + \frac{\partial S_i}{\partial p} \ddot{q}_i + S_i \frac{\partial \ddot{q}_i}{\partial p} + \frac{\partial \eta_i}{\partial p} \\ &\frac{\partial F_i}{\partial p} &= \frac{\partial \hat{\mathcal{I}}_i}{\partial p} \dot{V}_i + \hat{\mathcal{I}}_i \frac{\partial \dot{V}_i}{\partial p} + \frac{\partial \hat{\mathcal{B}}_i}{\partial p} \\ &\text{end if} \\ &\text{end while} \end{aligned}$$

To obtain the derivatives of the dynamics, it is needed to run the associated recursive dynamics in advance, and in addition, the following quantities

$$\frac{\partial S_i}{\partial p}, \frac{\partial \dot{S}_i}{\partial p}, \frac{\partial F_i^{\text{ext}}}{\partial p}, \frac{\partial \mathcal{I}_i}{\partial p}, \text{ and } \frac{\partial h_i}{\partial p}$$
 (64)

for each body should be set properly in the initialization step.

The algorithms for the derivatives of the dynamics are so general that they can be applied to differentiating the equations of motion with respect to any arbitrary scalar variable. It should be noted that, by implementing the algorithms cleverly, the calculation speed can be much faster than its naive implementation, because, in some cases, many of the quantities in (64) are zero. For example,

• if $p=q^k$ where $q^k\in\Re$ denotes the k-th coordinate of system, then

$$-\frac{\partial \mathcal{I}_i}{\partial p} = 0$$

$$-\frac{\partial S_i}{\partial p} = \frac{\partial \dot{S}_i}{\partial p} = \frac{\partial h_i}{\partial p} = 0 \text{ when } q^k \notin q_i$$

• if
$$p = \dot{q}^k$$
, then
$$- \frac{\partial S_i}{\partial p} = \frac{\partial \mathcal{I}_i}{\partial p} = \frac{\partial h_i}{\partial p} = 0$$

$$- \frac{\partial \dot{S}_i}{\partial p} = 0 \text{ when } q^k \notin q_i$$

• if
$$p = \ddot{q}^k$$
, then
$$-\frac{\partial \dot{S}_i}{\partial p} = \frac{\partial S_i}{\partial p} = \frac{\partial \mathcal{I}_i}{\partial p} = \frac{\partial h_i}{\partial p} = 0.$$

References

- [1] Roy Featherstone, Robot Dynamics Algorithms, Kluver Academic Publishers, 1987.
- [2] Richard M. Murray, Zexiang Li and S. Shankar Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994.

- [3] F. C. Park, J. E. Bobrow and S. R. Ploen, "A Lie group formulation of robot dynamics," *International Journal of Robotics Research*, vol. 14, no. 6, pp. 609-618, 1995.
- [4] S. R. Ploen and F. C. Park, "Coordinate-invariant algorithms for robot dynamics," *IEEE Transactions on Robotics and Automation*, vol. 15, no. 6, pp. 1130-1136, 1999.
- [5] Garett A. Sohl and James E. Bobrow, "A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains," *Journal of Dynamic Systems, Measurement, and Control*, vol. 123, pp. 391-399, 2001.