Занятие 9. Рекурсивные алгоритмы и их реализация

Цель. Получить знания и практические навыки по разработке и реализации рекурсивных процессов

Оглавление

Per	Рекурсивная функция		
5	Примеры реализации рекурсивных алгоритмов	. 4	
4	Форма отчета	. 3	
3	Варианты	. 2	
2	Задание	. 1	
1	Ответить на вопросы	. 1	

1 Ответить на вопросы

Дайте определение понятиям

- 1) Определение рекурсивной функции
- 2) Шаг рекурсии -
- 3) Глубина рекурсии -
- 4) Условие завершения рекурсии -
- 5) Виды рекурсии
- линейная -
- каскадная -
- 6) Прямая и косвенная рекурсия
- 7) Организация стека рекурсивных вызовов

2 Задание

Разработать и протестировать рекурсивные функции в соответствии с задачами варианта

- 1) Требования к выполнению первой задачи варианта:
 - приведите итерационный алгоритм решения задачи
 - реализуйте алгоритм в виде функции и отладьте его
 - определите теоретическую сложность алгоритма
 - опишите рекуррентную зависимость в решении задачи
 - реализуйте и отладьте рекурсивную функцию решения задачи
 - определите глубину рекурсии, изменяя исходные данные
 - определите сложность рекурсивного алгоритма, используя метод подстановки и дерево рекурсии
 - приведите для одного из значений схему рекурсивных вызовов

- разработайте программу демонстрирующую выполнение обеих функций и покажите результаты тестирования.
- 2) Требования к выполнению второй задачи варианта:
 - рекурсивную функцию для обработки списковой структуры согласно варианту. Информационная часть узла простого типа целого;
 - для создания списка может быть разработана простая или рекурсивная функция по желанию (в тех вариантах, где не требуется рекурсивное создание списка);
 - определите глубину рекурсии
 - определите теоретическую сложность алгоритма
 - разработайте программу, демонстрирующую работу функций и покажите результаты тестов.
- 3) Составить отчет по выполненному заданию

3 Варианты

	dHIDI
Номер	
1	1. Найти наибольший общий делитель двух целых чисел
	2. Создание и вывод линейного однонаправленного списка из п
	элементов
2	1. Найти n-ое число Фибоначчи.
	2. В однонаправленном списке из п элементов найти элемент с заданным
	значением и вернуть на него указатель.
3	1. Определить делится ли число на каждую из своих цифр.
	2. Не используя связанный стек проверить баланс скобок в
	арифметическом выражении, которое передано как строка.
4	1. Определить является ли текст – палиндромом.
	2. Удалить из связанного однонаправленного списка все элементы,
	равные заданному.
5	1. Дан массив из п элементов вещественного типа. Вычислить среднее
	значение всех элементов массива.
	2. Создание связанного стека из п элементов.
6	1. Сколько квадратов можно отрезать от прямоугольника со сторонами а
	И 6.
	2. Удаление связанного стека.
7	1. Найти максимальный элемент в массиве из п элементов.
	2. Создание очереди на однонаправленном списке.
8	1. Перевести число из 10-системы счисления в систему с основанием
	$B(1 \le B \le 10)$
	2. Удаление очереди, реализованной на однонаправленном списке
9	1. Бинарный поиск элемента в массиве
	2. Создание двунаправленного списка.
10	1. Вычислить значение цифрового корня для некоторого целого числа N.
	2. Найти в двунаправленном списке количество четных элементов.

11	1. Вычислить x1(x2+x3)(x4+x5+x6)(x46+x47++x55).
	2. Удаление двунаправленного списка
12	1. Сортировка массива по возрастанию
	2. Создать новый однонаправленный список из исходного
	однонаправленного списка, записав его элементы наоборот.
13	1. Дана последовательность из N чисел X1,X2,,XN. Вычислить
	значение выражения: $Xn(Xn+Xn-1)(Xn+Xn-1+Xn-2)(Xn+Xn-1+Xn-1+Xn-1+Xn-1+Xn-1+Xn-1+Xn-1+Xn$
	2+Xn-3) (Xn+Xn-1+Xn-2++X1). Массив не использовать.
	2. Удалить из однонаправленного списка нули.
14	1. Дана строка. Выполнить переворот строки (записать наоборот) на ее
	же месте в памяти.
	2. Определить количество вхождений: положительных, отрицательных,
	нулевых значений в линейном списке.
15	1. Ханойская башня.
	2. Удалить однонаправленный список.
16	1. Прохождение лабиринта
	2. Определить симметрично ли число, цифры которого последовательно
	записаны в узлах двунаправленного списка

4 Форма отчета

- 1. Титульный лист
- 2. Ответы на вопросы
- 3. Отчет по задаче 1
 - 1) Условие задачи
 - 2) Постановка задачи
 - 3) Описание алгоритма рекуррентная зависимость
 - 4) Коды используемых функций
 - 5) Ответы на задания по задаче 1: список требований к задаче 1
 - 6) Код программы и скриншоты результатов тестирования
- 4. Отчет по задаче 2
 - 1) Условие задачи
 - 2) Постановка задачи
 - 3) Описание алгоритма рекуррентная зависимость
 - 4) Коды используемых функций
 - 5) Ответы на задания по задаче 1: список требований к задаче 1
 - 6) Код программы и скриншоты результатов тестирования

```
Примеры реализации рекурсивных алгоритмов
 Рекурсивная функция
 #include "stdafx.h"
#include "iostream.h"
// Задача 1.Дана последовательность целых чисел, заканчивающаяся нулем
// вывести сначала положительные, а затем отрицательные значения
 void rec1();
Рекуррентная зависимость
f(\quad) = \begin{cases} cin \gg n & \text{Вывод } n \text{ и шаг в рекурсию при } n > 0 \\ \\ cin \gg n & \text{Шаг в рекурсию и вывод } n \text{ при } n < 0 \\ \\ cin \gg n & \text{Выход из рекурсии при } n = 0 \end{cases}
//Задача 2. Вычислить x^n. При x=0 и n<0 результат INFINITY
x^n = \left\{ egin{array}{ll} x*x^{n-1} & 	ext{если } n > 0 \ 1/x^n & 	ext{если } n < 0 \end{array} 
ight.
Такое определение алгоритма говорит об его рекурсивной природе
int rec2(int x, int n);
int main()
         rec1();
         cout << rec2(2,3);
         double rez=rec2(0, -3);
         if (rez == INFINITY)
                 std::cout << "zero divide";
         else
```

std::cout << rez;

return 0;

cin>>n; if (n==0)

else

return;

}

void rec1()

{int n;

```
if(n>0)
                   cout<<n;
                   rec11();
             }
             else
             {rec11();
             cout<<n;
}
double rec2(int x, int n)
      if (n==0)
             return 1;
      Íf (n>0)
            // step recursii rec2(x,n)=x*rec2(x,n-1)
            return x*rec2(x,n-1);
      if(n<0)\{
             return 1/rec2(x,abs(n));
}
```