Model Checking 2nd Edition

Chapter 8: Binary Decision Diagrams and Symbolic Model Checking

Binary Decision Diagrams and Symbolic Model Checking

The model-checking problem and algorithms for CTL

Wang Qirui 1W202047 6/12/2023

Table of Contents

- 1. Fairness in Symbolic Model Checking
 - 1. Example for $\mathbf{E}\mathbf{X}f$ and $\mathbf{E}(f\mathbf{U}g)$
- 2. Counterexample and Witness
 - 1. Method for finding witnesses
 - 2. Example for $\mathbf{EG}f$
- 3. Relational Product Computations
 - 1. Special Algorithm for Relational Product
 - 2. Partitioned Transition Relations
 - 1. Disjunctive Partitioning
 - 2. Conjunctive Partitioning
 - 3. Recombining Partitions

6/12/2023 3 / 36

Fairness in Symbolic Model Checking

Extend to include fairness constraints

6/12/2023 4 / 36

Fairness in Symbolic Model Checking

Introduction

Given fairness constraints as a set of CTL formulas:

$$F = \{P_1, P_2, \dots, P_n\}$$

A series of procedures for checking CTL formulas relative to the P_i s, similar to the procedures with prefix "Check".

6/12/2023 5 / 36

Fairness in Symbolic Model Checking

Procedure definitions

Recall that:

$$\mathbf{EG}f = oldsymbol{
u} oldsymbol{Z}.f \wedge igwedge_{k=1}^n \mathbf{EXE}(f\mathbf{U}(Z \wedge P_k)).$$

Based on that, we can compute the set of states:

$$bddCheckFairEG(f(ar{v})) = \ oldsymbol{
u} oldsymbol{Z}(ar{v}).f(ar{v}) \wedge igwedge_{k=1}^n bddCheckEX(bddCheckEU(f(ar{v}), oldsymbol{Z}(ar{v}) \wedge Check(P_k))).$$

Each time the above expression is **evaluated**, some fixpoint computations inside bddCheckEU are performed.

Fairness in Symbolic Model Checking

 $\mathbf{E}\mathbf{X}f$ and $\mathbf{E}(f\mathbf{U}g)$

Checks for $\mathbf{EX}f$ and $\mathbf{E}(f\mathbf{U}g)$ are similar to explicit state model checking. The set of states that are the start of some fair computation is:

$$fair(\bar{v}) = bddDCheckFair(\mathbf{EG}true).$$

 $\mathbf{E}\mathbf{X}f$ is true under fairness constraints in a state s if and only if:

- 1. there is successor state s'.
- 2. s' is at the beginning of some fair computation path.

 $\mathbf{EX}f$ is equivalent to $\mathbf{EX}(f\wedge fair)$ (without fairness constraints). Then define

$$\mathit{bddCheckFairEX}(f(ar{v})) = \mathit{bddCheckEX}(f(ar{v}) \land \mathit{fair}(ar{v})).$$

Also, $\mathbf{E}(f\mathbf{U}g)$ is equivalent to $\mathbf{E}(f\mathbf{U}(g \wedge fair))$. So

$$bddCheckFairEU(f(\bar{v}),g(\bar{v})) = bddCheckEU(f(\bar{v}),g(\bar{v}) \wedge fair(\bar{v})).$$

Counterexample and Witness

Counterexamples and witnesses

Introduction

CTL model-checking algorithm is able to find counterexamples and witnesses.

- Formula with A is false
 - Find a computation path demonstrating the negation of the formula is true
- Formula with E is true
 - Find a computation path demonstrating why the formula is true

For example, if model checker discovers that:

- lacksquare $\mathbf{AG}f$ is true o Produce a path to a state which of holds
- $lackbox{ } \mathbf{EF}f$ is true o Produce a path to a state which f holds

The counterexample for a ${f A}$ formula is the witness for the dual ${f E}$ formula.

With this, we just need to find witnesses for EX and EG and EU.

Explainition of procedure

- 1. Find the SCCs of the transition graph determined by the Kripke structure.
- 2. Form a new graph whose nodes are the SCCs and whose edges are the edges between the SCCs in the original graph.
 - 1. There is no proper cycle in the new graph.
 - 2. Every infinite path must have **a suffix** contained within a SCC.

Example-1.1

Prev Next

Case for $\mathbf{EG}f$

Find a witness for $\mathbf{EG}f$ under fairness constraints $F = \{P_1, \dots, P_n\}$.

Recall that:

$$\mathbf{EG}f = oldsymbol{
u} oldsymbol{Z}.f \wedge igwedge_{k=1}^n \mathbf{EXE}(f\mathbf{U}(Z \wedge P_k)).$$

For a state s in $\mathbf{EG}f$, we want to find a path π :

- starting from s,
- satisfying f in every state,
- visits every set $P \in F$ infinitely often.

It can be constructed using a sequence of prefixes of the path of increasing length **until a cycle** is found.

Case for $\mathbf{EG}f$

- 1. Evaluate the fixpoint formula. In every iteration of the outer fixpoint computation
 - lacktriangle Compute a collection of least fixpoints associated with $\mathbf{E}(f\mathbf{U}(Z\wedge P))$, for each $P\in F.$
 - lacksquare For each P, we obtain an increasing sequence of approximations $Q_0^P\subseteq Q_1^P\subseteq\dots$
 - $lacksquare Q_i^P$ is a set containing all states, which can reach a state in $Z\wedge P$ in at most i steps while satisfying f.
 - lacksquare At last iteration, when $Z=\mathbf{EG}f$, save the sequence of approximations Q_i^P for each $P\in F.$
- 2. Given a state s in $\mathbf{EG}f$, then:
 - lacksquare It must have a successor in $\mathbf{E}(f\mathbf{U}(\mathbf{EG}f\wedge P))$ for each $P\in F.$
 - lacktriangle Minimize the length of the witness path by choosing the first fairness constraint P that can be reached from s.
 - lacksquare Looking for a successor of s in Q_0^P,Q_1^P,\ldots , for each $P\in F.$
 - Must be found in some Q_i^P .

Case for $\mathbf{EG}f$

2. Continue

- t has a path of length i to a state in $(\mathbf{EG}f) \wedge P$ so it is in $\mathbf{EG}f$.
- ullet Then choose any state in intersection of t's successors and $Q_{i-1}^P.$
- lacksquare Repeat until i=0, we get a path from s to some state u in $(\mathbf{EG}f)\wedge P$.
- Then repeat the process for u and other fairness constraints until all fairness constraints are visited, and let the final state be s'.
- 3. For the cycle part, we need a non-trivial path from s' to t along with each state satisfying f.
 - ightarrowThat is, a witness for $\{s'\} \wedge \mathbf{EXE}(f\mathbf{U}\{t\})$.
 - If the formula is true, then we found the witness path.
 - Else, the simplest strategy is to restart the procedure from s' using entire F.
 - s' is in $\mathbf{EG}f$ but **not in** the SCC of f, which contains t.
 - Eventually find a cycle, or reach a terminal SCC.

Figure 8.5 Witness is in the first strongly connected component.

Figure 8.6 Witness spans three strongly connected components.

Case for $\mathbf{EG}f$

- Another way is to ${f pre-compute}\;{f E}(f{f U}\{t\}).$
 - The first time we exit the set, we know the cycle cannot be completed.
 - So restart from that state.
- These approaches tend to find short counterexamples but shortest cycle.

For $\mathbf{E}(f\mathbf{U}g)$ and $\mathbf{E}\mathbf{X}f$.

fair denotes the set of states satisfying $\mathbf{EG}true$ under fairness constraints F.

- $\mathbf{E}(f\mathbf{U}g)$ under F extends to $\mathbf{E}(f\mathbf{U}(g\wedge fair))$.
- **EX** f under F extends to $\mathbf{EX}(f \wedge fair)$.

Relational Product Computations

Relational Product Computations

Introduction

Most of the operations used in the symbolic model-checking algorithm are **linear** in the product of the sizes of the operand OBDDs.

• Main exception: relational product operation for $\mathbf{EX}h$:

$$\exists ar{v}'[h(ar{v}') \land R(ar{v}, ar{v}')]$$

- It's possible to be implmented with one conjunction and multiple existential quantifications.
 - But too slow in practice.
- lacktriangledown The OBDD for $h(ar v') \wedge R(ar v, ar v')$ is often larger than that for final result.
 - It's better to avoid constructing it.

A special algorithm for relational product in one step.

Relational Product Computations

Special Algorithm for Relational Product

An algorithm for arbitrary OBDDs f and g.

- Cache the results of the recursive calls.
 - With form (f, g, E, r)
- A (f, g, E, r) in the cache means the previous call returns r.
- Exponential complexity in the worst case.
 - OBDD for the result is **exponentially larger** than that for $f(\bar{v})$ and $g(\bar{v})$.
 - In this case, no algorithm can do better.

```
function RelProd(f,g:OBDD, E: set of variables):OBDD
     if f = 0 \lor g = 0 then
           return 0;
     else if f = 1 \land g = 1 then
           return 1;
     else if (f,g,E,r) is in the result cache then
           return r:
     else
           let x be the top variable of f;
           let y be the top variable of g;
           let z be the topmost of x and y;
           r_0 := RelProd(f|_{z \leftarrow 0}, g|_{z \leftarrow 0}, E);
           r_1 := RelProd(f|_{z \leftarrow 1}, g|_{z \leftarrow 1}, E);
           if z \in E then
                 r := Or(r_0, r_1);
                 /* OBDD for r_0 \vee r_1 */
           else
                 r := IfThenElse(z, r_1, r_0);
                 /* OBDD for (z \wedge r_1) \vee (\neg z \wedge r_0) */
           end if
           insert (f, g, E, r) in the result cache;
           return r;
     end if
end function
```

Figure 8.7 Relational product algorithm.

Why it is useful?

- The relational product algorithm needs $R(\bar{v}, \bar{v}')$ to be **monolithic transition relation**.
 - Consists of single OBDD. (The construction of this from Kripke structure is shown in 8.2)
 - This OBDD is too large in practice.
- Partitioned transition relations provide a much more concise representation.
 - But cannot be used in the relational product algorithm we just saw.

Recall the modeling of synchronous circuits in chapter 3.

- ullet Transition relations are described in form of \wedge or ee of $R_i(ar v,ar v')$
 - Each piece can be represented by a small OBDD.
 - Partitioned transition relation:
 - The model can be represented by a list of OBDDs
 - Imlicitly conjuncted or disjuncted.

Circuit Modeling Example

For synchronous circuits:

$$R_i(ar{v},ar{v}')=(v_i'\equiv f_i(ar{v}))$$

- Conjunctive partitioned transition relation.
 - The transition relation is represented by a list of R_{i} , with implicit conjunction.
- For asynchronous circuits,

$$R_i(ar{v},ar{v}')=(v_i'\equiv f_i(ar{v}))\wedge igwedge_{j
eq i}(v_j'\equiv v_j)$$

- Disjunctive partitioned transition relation.
 - The transition relation is represented by a list of R_i , with implicit disjunction.
 - But the OBDD for R_i may be much larger than that for f_i .
 - up to n times larger, where n is the number of variables used to encode the states.

Techinques for efficient representation

Let

$$N_i(ar{v},v_i')=v_i'\equiv f_i(ar{v})$$

The pair $(N_i(\bar{v}, v_i'), i)$ is used to represent $R_i(\bar{v}, \bar{v}')$.

ullet Means that v_i' is constrained by N_i , if j
eq i, then v_i' is constrained to be equal to v_i .

Then we exploit this during the relational product computation.

$$egin{aligned} &\exists ar{v}'[h(ar{v}') \wedge R(ar{v}, ar{v}')] \ =& \exists ar{v}'[h(ar{v}') \wedge (N_i(ar{v}, v_i') \wedge igwedge_{i
eq i}(v_j' \equiv v_j))] \end{aligned}$$

with the equivalent expression

$$\exists v_i'[h(v_i,\ldots,v_{i-1},v_i',v_{i+1},\ldots,v_n) \wedge N_i(ar{v},v_i')].$$

Techinques for efficient representation

Partitioned transition relation with one OBDD per state variable

- is often efficient than constructing a monotlithic transition relation.
- But not always best.
- ullet Better to combine some of the R_i into one OBDD by forming their disjunction or conjunction.
 - ullet May be fewer OBDD nodes if the R_i are combined has similar structure near the root.
 - Combining some of the OBDDs may speed up the relational product computation.

Disjunctive partitioning

For a disjunctive partitioned transition relation, the relational product computed is of the form

$$\exists ar{v}'[h(ar{v}') \wedge igvee_{i=0}^{n-1} R_i(ar{v},ar{v}')].$$

This can be computed simply distributing the existential quantification over the disjunctions:

$$igvee_{i=0}^{n-1} \exists ar{v}'[h(ar{v}') \wedge R_i(ar{v},ar{v}')].$$

By this, the computation can be reduced to a series of relational products involving smaller OBDDs.

Large asynchoronous circuits can be verified efficiently than monotlithic transition relations.

6/12/2023 23 / 36

Conjunctive partitioning

For a conjunctive partitioned transition relation, the relational product computed is of the form

$$\exists ar{v}'[h(ar{v}') \wedge igwedge_{i=0}^{n-1} R_i(ar{v},ar{v}')].$$

But the existential quantification cannot be distributed over the conjunctions.

There are two observations:

- 1. Circuits exhibit locally, many R_i depend on only a few variables.
 - Combine for a dependence on multiple primed variables sometimes advantageous.
- 2. Subformulas do not rely on the variables being quantified can be moved outside.

Based on these, we can

- Conjunct the $R_i(\bar{v}, \bar{v}')$ with $h(\bar{v}')$.
- Early quantification of variables that are not being depended on.

Conjunctive partitioning

Take the modulo 8 counter example in chapter 3, recall that

$$egin{aligned} R_0(ar v,v_0') &= (v_0' \Leftrightarrow
eg v_0) \ R_1(ar v,v_1') &= (v_1' \Leftrightarrow v_0 \oplus v_1) \ R_2(ar v,v_2') &= (v_2' \Leftrightarrow (v_0 \wedge v_1) \oplus v_2) \end{aligned}$$

The relational product for $\mathbf{E}\mathbf{X}h$ is

$$\exists v_0' \exists v_1' \exists v_2' [h(ar{v}') \land (R_0(ar{v}, v_0') \land R_1(ar{v}, v_1') \land R_2(ar{v}, v_2'))].$$

And can be rewritten as

$$\exists v_2'\exists v_1'\exists v_0'[\Big(ig(h(ar{v}')\wedge R_0(ar{v},v_0')ig)\wedge R_1(ar{v},v_1')\Big)\wedge R_2(ar{v},v_2')].$$

- Subformulas can be moved outside the scope of existential quantification.
 - If they don't depend on variables being quantified.

6/12/2023 25 / 36

Conjunctive partitioning

Then we can re-express the relational product as

$$\exists v_2' \Big[\exists v_1' ig[\exists v_0' [h(ar{v}') \land R_0(ar{v}, v_0')] \land R_1(ar{v}, v_1') ig] \land R_2(ar{v}, v_2') \Big].$$

So this can be computed by starting with $h(\bar{v}')$, at each step:

- 1. Combine the previous result with $R_i(\bar{v}, \bar{v}')$.
- 2. Quantify out the appropriate variables.

Thus, the computation has been reduced to a series of small steps.

The intermediate results may depend both on variables in \bar{v} and on variables in \bar{v}' .

6/12/2023 26 / 36

Conjunctive partitioning

Principles for reordering the conjuncts:

- Variables in \overline{v}' can be quantified out early.
- Variables in \bar{v} can be added slowly.

This reduce the number of variables in the intermediate OBDDs, and thus the size of the OBDDs.

- lacktriangle Computing the RP for ${f EX}h$ is computing the predecessor of a set of states.
- Sometimes we need to compute the successor of a state set.
 - Quantify out the present state variables.

The RP for a successor computation has the form:

$$\exists v_0 \exists v_1 \exists v_2 [h(ar{v}) \wedge (R_0(v_0, ar{v}') \wedge R_1(v_0, v_1, ar{v}') \wedge R_2(v_0, v_1, v_2, ar{v}'))].$$

Unprimed variables are written explicitly, while primed variables are left implicit.

Successor computation

Then it can be rewritten as

$$\exists v_0 \exists v_1 \exists v_2 [\left(\left(h(ar{v}) \wedge R_2(v_0, v_1, v_2, ar{v}')
ight) \wedge R_1(v_0, v_1, ar{v}')
ight) \wedge R_0(v_0, ar{v}')].$$

And then as

$$\exists v_0 \Big[\exists v_1 ig[\exists v_2 [h(ar{v}) \wedge R_2(v_0,v_1,v_2,ar{v}')] \wedge R_1(v_0,v_1,ar{v}')ig] \wedge R_0(v_0,ar{v}')\Big].$$

In this case

- ullet The number of new state variables v_i' is **independent** of the ordering
- ullet The number of old state variables v_i remaining at each stage **depends** on the ordering.
 - Minimized by reordering.

Generalize successor computation

This method can be generalized to arbitrary **conjunctive partitioned transition relation** with n state variables.

- A user-defined permutation ρ of $\{0,1,\ldots,n-1\}$.
 - Determines the order in which the partitions $R_i(ar v,ar v')$ are combined.
- For each i, let D_i be the set of variables v_i' that $R_i(\bar{v}, \bar{v}')$ depends on.
- Let

$$E_i = D_{
ho(i)} - igcup_{k=i+1}^{n-1} D_{
ho(k)}.$$

- lacksquare The set of variables contained in $D_{
 ho(i)}$ but not in any $D_{
 ho(k)}$ for k>i.
- Pairwise disjoint, and their union contains all the variables.

Generalize successor computation

So the RP for $\mathbf{E}\mathbf{X}h$ can be computed as

$$egin{aligned} h_1(ar{v},ar{v}') &= \exists_{v_j' \in E_0} [h(ar{v}') \wedge R_{
ho(0)}(ar{v},ar{v}')] \ h_2(ar{v},ar{v}') &= \exists_{v_j' \in E_1} [h_1(ar{v},ar{v}') \wedge R_{
ho(1)}(ar{v},ar{v}')] \ &dots \ h_n(ar{v},ar{v}') &= \exists_{v_i' \in E_{n-1}} [h_{n-1}(ar{v},ar{v}') \wedge R_{
ho(n-1)}(ar{v},ar{v}')]. \end{aligned}$$

The final result is h_n .

If some E_i is empty, then

$$h_{i+1}(ar{v},ar{v}')=[h_i(ar{v},ar{v}')\wedge R_{
ho(i)}(ar{v},ar{v}')]$$

and no existential quantification will be used.

Generalize successor computation

The ordering ρ is essential to

- How early state variables can be quantified out.
- The size of the OBDDs constructed.
- The efficiency of the verification.

A good ordering ho can be searched by

- Using a greedy algorithm to find a good ordering on the variables v_i to be eliminated.
 - There is an obvious ordering on the relations R_i .
 - Variables can be eliminated in the order given by the greedy algorithm.

Algorithm for variable elimination

```
while V \neq \phi do

For each v \in V compute the cost of eliminating v;

Eliminate variable with lowest cost by updating C and V;

end while
```

Figure 8.7 Relational product algorithm.

- 1. Start with
 - lacktriangleright The set of variables V
 - lacksquare A collection ${\mathcal C}$ of sets where every $D_i \in {\mathcal C}$ is the set of variables that R_i depends on.
- 2. Eliminate the variables one at a time.
 - Always choose the variable with the least cost.
 - Update V and ${\mathcal C}$ appropriately.

Cost metric

For convenience, we define

- lacksquare R_v refers to the relation created when
 - 1. Eliminating v by taking the conjunction of all the R_i that depend on v
 - 2. And then quantifying out v.
- D_v refers to the set of variables that R_v depends on.

There are three cost mesures:

- 1. **Minimum size**: The cost of eliminating a variable v is $|D_v|$.
 - Always trying to ensure that the new relation depends on the fewest number of variables.

Cost metric

2. **Minimum increase**: The cost of eliminating a variable v is

$$|D_v| - \max_{D \in \mathcal{C}, v \in D} |D|$$
.

- Prefer to increase the size of an already large relation rather thab create a new one.
- 3. **Minimum sum**: The cost of eliminating a variable v is

$$\sum_{D \in \mathcal{C}, v \in D} |D|.$$

- Cost of conjunction depends on the size of the arguments.
- lacksquare Approximates it by the sum of R_i dependencies.

Summary to cost metric

- The goal is to minimize the size of the largest BDD created during variable elimination.
 - ullet Find an ordering that minimizes the largest set D_v .
- Locally optimal dose not imply optimal solution.
 - Every cost function has a counterexample.
 - Finding optimal ordering is NP-complete.
- Minimum sum seems to be the best choice in practice.

With better performance.

6/12/2023 35 / 36

Recombining Partitions

Summary

We showed

- A synchronous circuit could be represented by a set of transition relations $R_i(\bar{v}, \bar{v}')$, each depending on exactly one variable in \bar{v}' .
- Combining some of the R_i into one OBDD can obtain a **smaller** representation.
- Combining parts of a R speeds up the computation of the relational product.

For example, consider a n-bit counter.

- Under usual ordering, the number of nodes in the OBDD is $\mathcal{O}(n)$.
 - Both monolithic and fully partitioned.
- For a $h(\bar{v}')$ representing single state, the computation of relational product for
 - Fully partitioned: $\mathcal{O}(n^2)$
 - It requires n OBDD operations, each of which takes $\mathcal{O}(n)$ time.
 - Monolithic: $\mathcal{O}(n)$