Politecnico di Milano, Master of Science in Civil Engineering for Risk Mitigation Course Computational Mechanics - A.A. 2021/2022 - Prof. Gabriella Bolzon

School of Civil, Environmental and Land Management Engineering M.Sc program in Civil Engineering for Risk Mitigation Computational Mechanics

> Prof. Gabriella Bolzon Presented by: Jasem Avaz Nasab

> > Base Exercises A.Y:21-22

Politecnico di Milano, Master of Science in Civil Engineering for Risk Mitigation Course Computational Mechanics - A.A. 2021/2022 - Prof. Gabriella Bolzon

Exercise 1 - SOLUTION

SURNAME: **AVAZ NASAB** NAME: **JASEM**

STUDENT IDENTIFICATION NUMBER: 996310 PERSON CODE: 10753087

abcdef

EXPRESSIONS OF THE VOLUME FORCES

$$m = 8.5$$
 $n = 9$

$$F_x = 8.5 \frac{x}{l} - 9 \frac{y}{l}$$
 $F_y = -8.5 \frac{x}{l} + 9 \frac{y}{l}$

VALUES OF EQUIVALENT NODAL FORCES

triangle square

$Q1x = 0.1788 \text{ hl}^2$	$Q1x = -0.0417 \text{ hl}^2$
$Q1y=-0.1788 hl^2$	$Q1y = 0.0417 \text{ hl}^2$
$Q2x = 0.4856 \text{ hl}^2$	$Q2x = 0.6667 \text{ hl}^2$
$Q2y=-0.4856 \text{ hl}^2$	$Q2y=-0.6667 hl^2$
$Q3x = 0.0509 \text{ hl}^2$	$Q3x = -0.0833 \text{ hl}^2$
$Q3y=-0.0509 \text{ hl}^2$	$Q3y = 0.0833 \text{ hl}^2$
	$Q4x=-0.7917 hl^2$
	$Q4y = 0.7917 \text{ hl}^2$

SKETCH OF EQUIVALENT NODAL FORCES

triangle square

Exercise 2 - SOLUTION

SURNAME:

STUDENT IDENTIFICATION NUMBER: $\underline{9}\,\underline{9}\,\underline{6}\,\underline{3}\,\underline{1}\,\underline{0}$

abcdef

NAME: **JASEM**

PERSON CODE: AVAZ NASAB

$$n_1 = 1.9$$

$$n_2 = 1.1$$

STRUCTURES a) and b)

WHOLE STIFFNESS MATRIX - matrix rank = 2

$$K_{whole} = \frac{EA}{b} \begin{bmatrix} 0.365 & -0.192 & -0.365 & 0.192 & 0 & 0 \\ -0.192 & 0.101 & 0.192 & -0.101 & 0 & 0 \\ -0.365 & 0.192 & 0.365 & -0.192 & 0 & 0 \\ 0.192 & -0.101 & -0.192 & 1.101 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

CONFIGURATION a)

REDUCED STIFFNESS MATRIX - matrix rank = 1

$$K_{reduced} = \frac{EA}{b} \begin{bmatrix} 0.101 & 0.192 \\ 0.192 & 0.365 \end{bmatrix}$$

possible rigid body motions (y/n) = **yes** numerical and graphical representation of the rigid body motion, if any

possible rigid body motions (y/n) = **yes**numerical and graphical representation of the rigid body motion, if any

CONFIGURATION b)

REDUCED STIFFNESS MATRIX - matrix rank = 1

$$K_{reduced} = \frac{EA}{b} \begin{bmatrix} 0.365 & -0.365 \\ -0.365 & 0.365 \end{bmatrix}$$

STRUCTURES c) and d)

WHOLE STIFFNESS MATRIX - matrix rank = 6

	$\int \frac{EA}{b}$	0	0	$-\frac{EA}{b}$	0	0	0	0	0	0]
$K_{whole} =$	0	$\frac{12EI}{b^3}$	$\frac{6EI}{b^2}$	0	$-\frac{12EI}{b^3}$	$\frac{6EI}{b^2}$	0	0	0	0
	0	$\frac{6EI}{b^2}$	$\frac{4EI}{b}$	0	$-\frac{6EI}{b^2}$	$\frac{2EI}{b}$	0	0	0	0
	$-\frac{EA}{b}$	0	0	$\frac{1.909EA}{b}$	0	0	0	$-\frac{0.909EA}{b}$	0	0
	0	$-\frac{12EI}{b^3}$	$-\frac{6EI}{b^2}$	0	$\frac{12EI}{b^3}$	$-\frac{6EI}{b^2}$	0	0	0	0
	0	$\frac{6EI}{b^2}$	<u>2EI</u> b	0	$-\frac{6EI}{b^2}$	7.636 <i>EI</i> <i>b</i>	$\frac{4.958EI}{b^2}$	0	$-\frac{4.959EI}{b^2}$	1.818 <i>EI</i>
	0	0	0	0	0	$\frac{0.535EI}{b^2}$	$\frac{9.016EI}{b^3}$	0	$-\frac{9.016EI}{b^3}$	$\frac{0.535EI}{b^2}$
	0	0	0	$-\frac{0.909EA}{b}$	0	0	0	$\frac{0.909EA}{b}$	0	0
	0	0	0	0	0	$-\frac{4.959EI}{b^2}$	$-\frac{9.016EI}{b^3}$	0	$\frac{9.016EI}{b^3}$	$-\frac{4.959EI}{b^2}$
	0	0	0	0	0	$\frac{1.818EI}{b}$	$\frac{4.959EI}{b^2}$	0	$-\frac{4.959EI}{b^2}$	$\frac{3.636EI}{b}$

CONFIGURATION c)

REDUCED STIFFNESS MATRIX - matrix rank = 6

possible rigid body motions (y/n) = **yes** numerical and graphical representation of the rigid body motion, if any

$$K_{red,c} = \begin{bmatrix} \frac{4EI}{b} & 0 & -\frac{6EI}{b^2} & \frac{2EI}{b} & 0 & 0 & 0\\ 0 & \frac{1.909EA}{b} & 0 & 0 & 0 & -\frac{0.909EA}{b} & 0\\ -\frac{6EI}{b^2} & 0 & \frac{12EI}{b^3} & -\frac{6EI}{b^2} & 0 & 0 & 0\\ \frac{2EI}{b} & 0 & -\frac{6EI}{b^2} & \frac{7.636EI}{b} & \frac{4.959EI}{b^2} & 0 & \frac{1.818EI}{b}\\ 0 & 0 & 0 & \frac{4.959EI}{b^2} & \frac{9.016EI}{b^3} & 0 & \frac{4.959EI}{b^2}\\ 0 & -\frac{0.909EA}{b} & 0 & 0 & 0 & \frac{0.909EA}{b} & 0\\ 0 & 0 & 0 & \frac{1.818EI}{b} & \frac{4.959EI}{b^2} & 0 & \frac{3.636EI}{b} \end{bmatrix}$$

CONFIGURATION d)

REDUCED STIFFNESS MATRIX - matrix rank = 6

possible rigid body motions (y/n) = **no**numerical and graphical representation of the
rigid body motion, if any

$$K_{red,d} = \begin{bmatrix} \frac{4EI}{b} & 0 & -\frac{6EI}{b^2} & \frac{2EI}{b} & 0 & 0\\ 0 & \frac{1.909EA}{b} & 0 & 0 & 0 & -\frac{0.909EA}{b} \\ -\frac{6EI}{b^2} & 0 & \frac{12EI}{b^3} & -\frac{6EI}{b^2} & 0 & 0\\ \frac{2EI}{b} & 0 & -\frac{6EI}{b^2} & \frac{7.636EI}{b} & \frac{4.959EI}{b^2} & 0\\ 0 & 0 & 0 & \frac{4.959EI}{b^2} & \frac{9.016EI}{b^3} & 0\\ 0 & -\frac{0.909EA}{b} & 0 & 0 & 0 & \frac{0.909EA}{b} \end{bmatrix}$$

Exercise 3 - SOLUTION

SURNAME: AVAZ NASAB

STUDENT IDENTIFICATION NUMBER: **996310**

abcdef

NAME: **JASEM**

PERSON CODE: 10753087

$n_1 = 3$ $n_2 = 20$

NUMERICAL SOLUTION

EQUIVALENT NODAL FORCES – quoted sketch

DISPLACEMENTS AND ROTATIONS AT NODES

horizontal displacement at node B: uB = 0

vertical displacement at node B: vB = -0.032658 $\Delta TL^2/h$

rotation at node B: ϕB = -0.120019 $\alpha \Delta T L/h$

horizontal displacement at node C: $uC = \alpha \Delta T L/4$

vertical displacement at node C: vC = $0.017636 \alpha \Delta TL^2/h$

rotation at node C: ϕ C = 0.335892 $\alpha\Delta$ TL/h

DEFORMED SHAPE - quoted graph

REACTION FORCES - quoted sketch

$22.044 * 10^{-3} LEI(a\Delta T/h)^{2}$

AXIAL FORCE DISTRIBUTION - quoted graph

BENDING MOMENT DISTRIBUTION – quoted graph

ANALYTICAL SOLUTION

DISPLACEMENTS AND ROTATIONS AT NODES

horizontal displacement at node B: uB = 0vertical displacement at node B: $vB = -0.032658 \, \Delta T L^2/h$ rotation at node B: $\phi B = -0.120019 \, \alpha \Delta T L/h$ horizontal displacement at node C: $uC = \alpha \Delta T L/4$ vertical displacement at node C: $vC = 0.017636 \, \alpha \Delta T L^2/h$ rotation at node C: $\phi C = 0.335892 \, \alpha \Delta T L/h$

DEFORMED SHAPE – quoted graph

REACTION FORCES - quoted sketch

$22.044 * 10^{-3} LEI(\alpha \Delta T/h)^{2}$

AXIAL FORCE DISTRIBUTION – quoted graph

BENDING MOMENT DISTRIBUTION – quoted graph

SHEAR FORCE DISTRIBUTION - quoted graph

