Comment exploiter un développement limité d'une fonction pour donner l'équation réduite de la tangente T à la courbe représentative $\mathscr C$ de cette fonction en son point d'abscisse 0 et préciser les positions relatives de $\mathscr C$ et T?

La courbe $\mathscr C$ est la courbe représentative de la fonction f dans un repère orthogonal. Pour obtenir une équation réduite de la tangente T à $\mathscr C$ en son point d'abscisse 0 et préciser les positions relatives de $\mathscr C$ et T, on utilise le résultat suivant.

Si le développement limité de f en 0 :

$$f(x) = a_0 + a_1 x + a_p x^p + x^p \varepsilon(x)$$
, avec $\lim_{x \to 0} \varepsilon(x) = 0$ et $a_p \ne 0$,

alors:

- 1. La courbe \mathscr{C} passe par le point A de coordonnées $A(0; a_0)$.
- 2. La courbe % admet en A une tangente T dont l'équation réduite est :

$$y = a_0 + a_1 x.$$

3. La position de $\mathscr C$ par rapport à T est donnée par le signe de $a_{\rho} x^{\rho}$ au voisinage de 0.

Dans les cas usuels, le 1^{er} terme non nul après $a_0 + a_1 x$ est $a_2 x^2$ ou $a_3 x^3$, c'est-à-dire p = 2 ou p = 3.

Exemple 1. Fonction $f: x \mapsto ln(1 + x)$.

On a obtenu (fiche méthode 7) le développement limité de f, à l'ordre 3, en 0 :

$$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon(x)$$
, avec $\lim_{x \to 0} \varepsilon(x) = 0$.

Donc, à l'ordre 2,
$$f(x) = x - \frac{x^2}{2} + x^2 \varepsilon(x)$$
, avec $\lim_{x \to 0} \varepsilon(x) = 0$.

On en déduit :

- 1. La courbe & passe par le point O(0; 0).
- 2. La courbe $\mathscr C$ admet en O une tangente T dont l'équation réduite est y=x.

3.
$$\overline{HM} = f(x) - x$$
 donc, au voisinage de 0, $\overline{HM} \approx -\frac{x^2}{2}$.

Ainsi, pour tout x voisin de 0, on a \overline{HM} < 0, donc $\mathscr C$ est au-dessous de T.

