Subgroup Test: $a, b \in H \implies ab \in H \text{ AND } a^{-1} \in H$

- Center: $Z(G) = \{a \in G \mid ax = ax \forall x \in G\}$
- Centralizer: $Z(a) = \{g \in G \mid ga = ag\}$
- 3.14: Let x be a nonidentity element of G and let $b = b = x^{-1}ax$. Then $b^2 = e \implies b = a \implies xa = ax$
- 3.46: $xa = ax \implies xaaa = axaa \implies xa^3 = a^3x \implies C(a) \subseteq C(a^3)$ $xa^3 = a^3x \implies xa^3a^3 = a^3xa^3 = xa = ax \implies C(a^3) \subseteq C(a)$

Cyclic Groups: $G = \langle a \rangle$

- $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$
- Number of elements of order d in a finite cyclic group is $\phi(d)$
- $a^k e \implies |a| \text{ divides } k$
- $ab = ba \implies |ab| \text{ divides } |a||b|$

Permutations: $\phi(a) = b$

- Disjoint cycles commute
- $\epsilon = \beta_1 \beta_2 \dots \beta_r \implies r$ is even
- $|A_n| = n!/2$
- 5.46: (1234) = (14)(13)(12) is odd but x^2 is even thus no solutions Construct 2 solutions for x^3 . We see $(1432)^3$ and $((1432)(567))^3$ works
- 5.58: Show $Z(S_n) = \{\epsilon\}$. Take $\sigma(a) = b$ and $\tau = (bc)$ Then $\tau \sigma(a) = c$ but $\sigma \tau(a) = b$

Isomorphism: $\phi(ab) = \phi(a)\phi(b)$ where ϕ is 1-1 and onto

- If ϕ is 1-1 and G is finite $\implies \phi$ is onto
- Automorphism: isomorphism that takes $G \to G$. Aut(G) is the group of automorphisms of G
- $\operatorname{Inn}(G) = \{ \phi_a(x) = axa^{-1} \mid a, x \in G \}$
- $\operatorname{Aut}(Z_n) \approx U(n)$
- **6.20**: TODO
- 6.26: $\phi: Z_{20} \to Z_{20}$ and $\phi(5) = 5$. Determine possible values of $\phi(x)$ Note Aut $(Z_{20}) = U(20)$. See that $\phi(5) = 5a = 5 \pmod{20} \implies 20 \mid 5(a-1) \implies a \in \{1, 9, 13, 17\}$
- **6.40**: TODO
- 6.44: Let G be finite Abelian with no elements of order 2. Show φ: g → g² is an automorphism
 1-1: Assume a ≠ b but φ(a) = φ(b) ⇒ a² = b² ⇒ (ab⁻¹)² = e but contradiction since it has order 2. Thus a = b onto: since G is finite and φ is 1-1, φ is onto
 φ(ab) = (ab)² = a²b² = φ(a)φ(b)
- **6.64**: Show Q is not isomorphic to a proper subgroup of itself

 Define $\phi: Q \to H$ which is determined by $\phi(x) = x\phi(1)$ for $x \in Q$ SInce ϕ is onto, let $x = y/\phi(1)$ then $\phi(x) = x\phi(1) = \frac{y}{\phi(1)}\phi(1) = y$ so H = Q contradiction

Cosets

- Lagrange's Theorem: $H \leq G \implies |H|$ divides |G| and the number of distinct left cosets is |G|/|H|
- $|HK| = |H||K|/|H \cup K|$
- $|G| = 2p \implies G \approx Z_{2p} \text{ or } G \approx D_p$
- 7.12: Let |G| = 155 and $a, b \in G$. Show only subgroup of G that contains a, b is G itself Let $H \leq G$ and $a, b \in H$. By Lagrange, $|H| = \{1, 5, 31, 155\}$. Let $L = \langle a, b \rangle$. If either has order $155 \implies L = H = G$ Otherwise |a| = 5 and $|b| = 31 \implies |L| = 5 * 31 = 155 \implies L = H = G$

• 7.26: Suppose G has no non-trivial proper subgroup, show that |G| is prime. |G| is finite because otherwise $G = \langle g \rangle$ (no proper subgroup) and $g^2 \leq G$. Contradiction Thus |G| must be prime, otherwise there would be a subgroup of order of a divisor of |G|**Externel Direct Product**: $G \oplus H$ cyclic if and only if |G|, |H| are relatively prime • $|(g_1, g_2, \ldots)| = \operatorname{lcm}(|g_1|, |g_2|, \ldots)$ $\phi(15) = 8$ so each cyclic subgroup of 15 has 8 unique generators $\implies 48/8 = 6$ cyclic subgroups

• 8.22: Determine number of elements of order 15 and number of cyclic groups of order 15 in $Z_{30} \oplus Z_{20}$ |a|=15 and |b|=1 or $5 \implies 8*5=40$ AND |a|=3 and $|b|=5 \implies 2*4=8$. SO 48 elements of order 15

Normal Subgroup: $H \subseteq G \implies aH = Ha \forall a \in G$

- Normal Subgroup Test: $xHx^{-1} \subseteq H \forall x \in G$
- $H \subseteq G, K \subseteq G \implies HK \subseteq G$
- $|gHg^{-1}| = |H|$
- G/Z(G) cyclic $\implies G$ Abelian
- Cauchy Theorem: p divides order of $G \implies G$ has an element of order p
- $H, K \leq G, G = HK$, and $H \cap K = \{e\} \implies G = H \times K$
- $|G| = p^2 \implies G \approx Z_{p^2}$ OR $G \approx Z_p \oplus Z_p$. ALSO G is Abelian
- 9.22: Determine order of $(Z \oplus Z)/\langle (2,2) \rangle$. Is it cyclic?

Since $((1,0)+(2,2))^m \notin (2,2)$ order is infinite.

Any cyclic group with infinite order cannot have an element of finite order but we see $((1,1)+(2,2))^2 \in (2,2)$

- 9.48: If |G:Z(G)| = 4, show that $G/Z(G) \approx Z_2 \oplus Z_2$ |G/Z(G)|=4 so either $\approx Z_4$ or $\approx Z_2 \oplus Z_2$. Cannot be cyclic since otherwise G is Abelian but we see $Z(G) \neq G$
- 9.52: Let G be Abelian and H be a subgroup with with all elements of G with finite order. Show that every nonidentity element of G/H has infinite order

Take $g \notin H$ and |gH| < n. Then $g^n \in H$. Contradiction since g as finite order

• 9.72: Let G be a group and H be an odd-order subgroup of G of index 2. Show H contains every element of odd order Take $g \in G$ with odd order. Since gcd(2, |g|) = 1, g^2 generates $\langle g \rangle$. But since $|G: H| = 2 \implies g^2 \in H \implies g \in H$

Group Homomorphism: $\phi(ab) = \phi(a)\phi(b)$

- $\operatorname{Ker}(\phi) = \{x \in G \mid \phi(x) = e\} \leq G$
- First Isomorphism Theorem: $G/\operatorname{Ker}(\phi) \approx \phi(G)$ defined by $g\operatorname{Ker}(\phi) \to \phi(g)$
- **10.24**: $Z_{50} \to Z_{15}$ with $\phi(7) = 6$

$$7k = 6 \pmod{15} \implies k = 3 \implies \phi(x) = 3x$$

Image of ϕ is $\langle 3 \rangle$

$$Ker(\phi) = \langle 5 \rangle$$

$$\phi^{-1}(3) = 1 + \langle 5 \rangle$$

• 10.42: If $M, N \subseteq G$ and $N \subseteq M$ show $(G/N)/(M/N) \approx G/M$

Define
$$\phi: G/N \to G/M$$
 with $\phi(gN) = gM$

$$\operatorname{Ker}(\phi) = \{gN \mid g \in M\} = M/N \text{ and then apply first isomorphism theorem}$$

- 10.62: Determine homomorphisms Z ONTO S_3 and all homomorphisms from Z TO S_3

No ONTO because Z is cyclic but S_3 not cyclic. To is determined by $\phi(1) = \tau \in S_3$

Conjugacy Class: $cl(a) = \{xax^{-1} \mid x \in G\}$ partitions G into equivalence classes

- |cl(a)| = |G:C(a)|
- |cl(a)| divides |G|
- $|G| = \sum |G:C(a)|$
- p-groups $(|G| = p^k)$ have non trivial center Z(G)

Sylow Theorem 1: p^k divides $|G| \implies G$ has at least 1 subgroup of order p^k

Sylow Theorem 3: $|G| = p^k m \implies n_p \equiv 1 \pmod{p}$ AND $n_p \mid m$ AND any 2 Sylow p-subfroup are conjugate

- $|G| = pq, q \nmid p-1 \implies G$ is cyclic AND $G \approx Z_{pq}$
- 24.22: Show $|G| = 56 = 2^3 * 7$ has a nontrivial normal subgroup $n_7 = 1$ or 8. If 1 done. Otherwise $n_7 = 8$. These comprise of 6 * 8 = 48 of the elements. So we have unique 2-Sylow subgroup
- **24.40**: TODO
- 24.60: Determine $|G|=45=3^2*5$ $n_5=1$ and $n_3=1$ Thus $G\approx Z_9\times Z_5\approx Z_3\times Z_3\approx Z_5$