

3EE200

Techniques et dispositifs pour l'électronique analogique et numérique

Chapitre n° 5 : Fonctions Numériques à Transistors

Le Circuit Numérique Parfait

- Alimentation unique V_{DD}/V_{SS}
- Consommation minime
- Niveaux de sortie V_{DD}/V_{SS}
- Transition à (V_{DD}+V_{SS})/2
- Pas de délais
- Nombre d'entrées et de sorties illimité
- Impédance d'entrée infinie
- Impédance de sortie nulle

Mais en électronique, rien n'est parfait ...

Technologies TTL et CMOS

- Deux technologies historiques
 - TTL Transistors Bipolaires
 - CMOS Transistors MOS

Inverseur logique

CMOS

Technologie TTL

Avantages

- Vitesse de commutation
- Immunité aux parasites bonnes (découplage de l'alim)
- Entrées en l'air à 1

Inconvénients

- Alimentation fixe
- Consommation statique

Technologie CMOS

Avantages:

- Simplicité
- Densité d'intégration élevée
- Consommation statique faible
- Alimentation variable

• Inconvénients:

- Rapidité
- Fragilité (décharges statiques)

Caractéristiques des CI Numériques

Niveaux de tension

Caractéristiques des CI Numériques

Marge de bruit

Caractéristiques des CI Numériques

- Temps
 - Rise/Fall Time
 - Propagation Time (LH/HL)

Circuit CMOS

Circuit CMOS

Structure des Portes Logiques

Structure des Portes Logiques

Inverseur Trois Etats

V _{in}	Sel	V_{out}
0	1	1
1	1	0
Х	0	Haute
		impédance

Exemple d'application avec $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{in} = 0V$ ou 5V

$$t_p = \frac{t_{pHL} + t_{pLH}}{2}$$

NMOS Q₂

Consommation

Puissances dissipées dans l'inverseur logique

Dimensionnement

- Inverseur (chargé par C)
 - PDN Le chemin de décharge de C passe par Q_n de facteur de dimensionnement $n \Leftrightarrow \text{impédance } Z_n = K/n$
 - PUN Le chemin de charge de C passe par Q_p de facteur de dimensionnement $p \Leftrightarrow impédance Z_p = K/p$
- Fonction logique (chargée par C) à j entrées
 - PDN : Chaque chemin de décharge de C passe par un i (pouvant varier de 1 à j) NMOS (numérotés de 1 à i) de facteur de dimensionnement respectif n_i ⇔ l'impédance totale du chemin doit être égale à Z_n ⇒ K/n₁+ K/n₂+... + K/n_i = K/n
 - PUN Chaque chemin de charge de C passe par i (pouvant varier de 1 à j)
 PMOS (numérotés de 1 à i) de facteur de dimensionnement respectif p_i ⇔
 l'impédance totale du chemin doit être égale à Z_p
 ⇒ K/p₁+ K/p₂+... + K/p_i = K/p
- On commence toujours par le chemin qui contient le plus grand nombre de transistors

Dimensionnement

- Dimension des transistors de Y(A,B,C,D)
 - PDN
 - Le chemin le plus long passe par Q_{nD} , Q_{nA} et Q_{nB} ; On les considère identiques, donc $n_D = n_A = n_B = n'$ $\Rightarrow Z_n = K/n_D + K/n_A + K/n_B = 3K/n' = K/n \Rightarrow n'=3n$
 - Le second chemin passe par Q_{nD} et Q_{nC} $\Rightarrow Z_n = K/n_D + K/n_C = K/3n + K/n_C = K/n \Rightarrow n_C = 3n/2$
 - PUN
 - Le chemin le plus long passe par Q_{pC} et Q_{pA} ; On les considère identiques, donc $p_D = p_A = p_B = p''$ $\Rightarrow Z_p = K/p_C + K/p_A = 2K/p'' = K/p \Rightarrow p'' = 2p$
 - Le second chemin passe par Q_{pC} et Q_{pB} ; Il est identique au précédent $\Rightarrow p_B = p_A = 2p$
 - Le troisième chemin passe un seul transistor Q_{pD}
 ⇒ p_D = p
- Exercice : trouver la fonction logique Y

 V_{DD}

Bascules

Latch

• Bascule D

Astables et Oscillateurs

Astable

Oscillateur

