Revision date: 16/08/2017

General structure and terminology of BIPM codes for atomic clock and psfs data

The BIPM code of a Cesium clock (unchanged rule) is composed of 7 digits as:

the statistical index \Rightarrow one digit (always 1), for internal use at BIPM

the clock type/maker \Rightarrow two digits the clock serial number \Rightarrow last four digits

The BIPM code of a hydrogen maser already contributing to TAI in August 2017 (unchanged rule) is composed of 7 digits as:

the statistical index \Rightarrow one digit (always 1), for internal use at BIPM

the clock type \Rightarrow two digits (always 40)

the last two digits of the laboratory code \Rightarrow two digits ordinal number of the clock in the laboratory or \Rightarrow two digits

the last two digits of the clock serial number

The BIPM code of a non-Cesium atomic clock that starts contributing to TAI after August 2017 is composed of 7 digits as:

the statistical index ⇒ one digit (always 1), for internal use at BIPM

the clock type ⇒ two digits
the clock model/maker ⇒ two digits
the last two digits of the clock serial number

The BIPM code of a primary or secondary frequency standard (unchanged rule) is composed of 7 digits as:

the statistical index ⇒ one digit (always 1), for internal use at BIPM

the transition type \Rightarrow two digits

the last two digits code of the laboratory \Rightarrow two digits the ordinal number of the psfs in the laboratory \Rightarrow two digits (this number identifies the psfs and should not be modified)

Code of the laboratory can be accessed at: http://webtai.bipm.org/database/labcode.html.

Codes for clock types, clock transition and clock models can be accessed at: http://webtai.bipm.org/database/clock.html.

A dedicated tool has been created to automatically generate a clock code: http://webtai.bipm.org/database/howtoclk.html. (Please inform the BIPM of any new clock code assigned with the tool).

Examples:

Clock type	Statistical index	Clock type cod	de serial number	
Cs clocks				
H-P/Agilent/Symmetricom 5071A High perf.	1	35	XXXX	
H-P/Agilent/Symmetricom 5071A Low perf.	1	36	XXXX	
		1	two last digit of	Ordinal number of the clock in the
		1	the BIPM laboratory	laboratory (in 2 digits) or the last
			code	two digits of the serial number
Hydrogen masers				
T4S-iMaser 3000 ACTIVE HYDROGEN MASER	1	4110	XX	
VCH-1003A ACTIVE HYDROGEN MASER	1	4150	XX	
VCH-1033 ACTIVE HYDROGEN MASER	1	4151	XX	
Primary Frequency Standard, Cs transition	1	92	XX	XX
Secondary Frequency Standard, Rb transition	1	93	XX	xx

Examples of running Primary and Secondary Frequency Standards

Acronyms	BIPM codes	PFS	pfsCode
IT	100 11	ITCsF2	1921102
NIST	100 02	NIST-F1	1920201
NPL	100 17	NPL-CsF1	1921701
OP	100 08	SYRTE-FO1	1920801
OP	100 08	SYRTE-FO2	1920802
OP	1000 8	SYRTE-FORb	1930803
PTB	100 05	PTB-CsF1	1920503
SU	100 38	SU-CsFO2	1923802

Note: The last two digits of pfsCode are the choice of each laboratory, and should not change. This table provides only an example.