IIT Jodhpur

Biological Vision and Applications Module 03-01: Reasoning

Hiranmay Ghosh

What is "reasoning"

- We "know" some facts
 - Supplied by others
 - Sensed by some sensors
- We infer unknown facts from the known facts

A simple example:

- Prior knowledge:
 - I need to go to the institute
 - Metro connects my home to the institute
- Inference:
 - Therefore. I take metro

Reasoning paradigms

- In human mind, reasoning is intuitive
- Formalizations
 - ► Knowledge driven (top-down)
 - ► Rule-based reasoning
 - ► Model-based reasoning
 - Case-based reasoning
 - Data driven (bottom-up)

Rule-based reasoning

- Apply some rules on the known facts to "deduce" unknown facts
- Formalized as logic
 - $\forall x : bird(x) \rightarrow fly(x), \forall x : parrot(x) \rightarrow bird(x)$
 - $ightharpoonup \Longrightarrow \forall x : parrot(x) \to fly(x)$
- Also called "deductive" reasoning
- Many flavors
 - Propositional calculus, predicate calculus
 - First order logic, second order logic, ...
 - Descriptions logic
- See Norvig & Russell

Rule-based reasoning

Strengths and weaknesses

- Major strength:
 - Reasoning is valid
 - If the premises are true, the consequence must be true.
 - Can be proved
- Major weaknesses:
 - Can discover fact implied by known facts
 - Cannot find "new" fact
 - Cannot handle uncertain sensory data
 - If premises are not known or incorrect, the reasoning breaks down

Model based reasoning

- Based on a mental model of the world (diseases and symptoms)
 - What symptoms are caused by a disease

- Doctor "observes" the symptoms (patient / lab reports)
- Doctor needs to infer the disease
 - Checks which model matches the observations

Why deductive reasoning cannot be used ?

- One could frame the rules
 - ightharpoonup Sneeze \land Cough \land Body-ache \rightarrow Flu
 - ightharpoonup Cough \land Body-ache \land Breathlessness \rightarrow Covid
- Why it does not work?
 - Uncertainty of effects: All symptoms for a disease may not appear in a patient
 - Noisy / incomplete data: The patient / lab reports may be incomplete or wrong
 - Degree of symptom: Symptoms may manifest in various degrees (strong/mild)

Matching a model

Exact match vs. approximate match

- Real-world is extremely complex we lack knowledge
 - Creating an "exact" model of the real world is impossible
- A real-world scenario will seldom match a model
- Model that <u>best</u> explains the observations is accepted as the inference
 - ► There may be many different ways to define the "best" explanation
- Inferencing by best explanation is known as "abduction"

Abduction

Strengths and weaknesses

- Strengths
 - Robust against
 - Incomplete knowledge
 - Incomplete/erroneous data
 - Can generate "new" fact
 - ► Emergent knowledge
 - ► Observes symptoms infers disease
- Weaknesses
 - ► The inference is not "valid"
 - Correctness of inference cannot be proven

Induction

Generalization from observations

- Example: Suppose you observe
 - Parrot is a bird; parrot can fly
 - Crow is a bird; crow can fly
 - Mynah is a bird; mynah can fly
 - **...**
- Now we ask: Hoopoe is a bird; can it fly?
- From your earlier observations
 - You create a generalized model of a bird
 - You extrapolate the properties to a new species of bird
- You may get it wrong penguins cannot fly

Properties of Abduction and Induction

- Abduction and induction result in new facts being generated
 - Not implied by existing knowledge
 - Inferred entities can be of different kind from the observed entities
- The inference of abduction and induction need not be valid
- Robust against uncertainties
 - In the model
 - In the observations
- Useful in processing sensory signals (essentially noisy)
- Induction is a special form of abduction

Case based reasoning

- Try to compare current scenario with scenario earlier observed
 - Infer based on earlier best-matched scenario
- Example
 - ► Earlier we have seen a winged thing it could fly
 - ► We see a new winged thing it should fly
- Apparently similar to induction
- Difference:
 - In induction, a generic model is formed (even without encountering a new scenario)
 - A new scenario is interpreted with the generic model
 - In CBR, no generic model is formed
 - A new scenario is compared with earlier cases
 - CBR can work with less experiential data

Data driven reasoning

Bottom-up approach

- Uses statistical similarity/associations to discover patterns
- We learn the models from data
- Flexible no prior models
- Can't handle sparse and noisy data

Data driven reasoning

Example

	Sneeze	Cough	Body ache	Breathlessness
Patient 1	X	X	X	
Patient 2	X	X		
Patient 3		X	X	X
Patient 4		X	X	
Patient 5		X	X	X
Patient 6	X	X	X	
Patient 7		X		X
Patient 8	X		X	
Patient 9	X	X	X	
Patient 10			X	X

- No prior knowledge about diseases
- Patients 1, 2, 6, and 8 have similar symptoms \rightarrow disease 1
- Patients 3,4,5,9 and 10 have similar symptoms \rightarrow disease 2
- Patient 7 has Unique symptom
 - Observation error?
 - A new unknown disease?
- Pros: can discover new patterns (new models)
- Cons: inductive generalization not possible

Which one?

- Which form of reasoning in used in the human mental processes ?
 - Probably all of them, depending on context
- Which form of reasoning in used in the human perception?
 - Involves processing of sensory data (noisy)
 - Differences in visual appearance of object instances (uncertainties)
 - Incomplete model of the world (incomplete knowledge)
 - Model based abduction seems to be most appropriate
 - Inexact matching
 - Bayesian reasoning

Quiz

Quiz 03-01

End of Module 03-01