Medical Image Analysis with CNNs

June 18, 2019

Machine Learning Summer School

Matthew Engelhard

Identifying Skin Cancer

MEDICAL IMAGE CLASSIFICATION

Letter Published: 25 January 2017

Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteva 록, Brett Kuprel 록, Roberto A. Novoa 록, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun 록

Nature 542, 115–118 (02 February 2017) Download Citation ±

Classification: predict the label associated with each image

Take a model trained on naturalistic images...

...and repurpose it to evaluate medical images

Classifier Output: Two-Class (e.g. Yes/No)

Gulshan et al. JAMA (2016)

Two-Class Predictions

$$\sigma(z_i) = \frac{e^{z_i}}{1 + e^{z_i}}$$

In logistic regression, x_i is a vector of predictor variables

Two-Class Predictions

$$\sigma(z_i) = \frac{e^{z_i}}{1 + e^{z_i}}$$

When identifying diabetic retinopathy, consider ω_i , a vector of high-level features extracted by the CNN

Classifier Output: Multi-Class (ImageNet)

Esteva et al. Nature (2017)

Multi-Class Predictions

Multi-Class Predictions

$$p_{ij} = \frac{e^{Z_{ij}}}{\sum_{c=1}^{1000} e^{Z_{ic}}}$$

 z_i are log-odds scores for each class

Classifier Output: Multi-Class (Lesion Type)

Esteva et al. Nature (2017)

Step 1: Modify the Architecture

1000 training classes

757 training classes

Step 1: Modify the Architecture

1000 training classes

757 training classes

Step 1: Modify the Architecture

New layers with randomly initialized weights

Step 2: Fine-tune the Parameters

"pre-training", or "transfer learning"

Input Image

Step 2: Fine-tune the Parameters

"pre-training", or "transfer learning"

Input Image

Feature detectors at the top of the network are typically highly specialized for a

Step 2: Fine-tune the Parameters

"pre-training", or "transfer learning"

Duke UNIVERSITY

Input Image

A filter that detects edges may be useful for many classification tasks.

Pre-training, in brief

- fine-tuning a pre-trained model tends to be at least as good as learning from scratch (empirical result)
- 2) freeze early layers and fine-tune later layers more data → fine-tune more layers
- 3) best tuning depth depends on the application, and should be explored

Repurposing the Inception v3 CNN

- Begin with a model trained on ImageNet (to classify everyday images)
- Modify the <u>architecture</u> to match the new number of training classes
- Fine-tune <u>parameters</u> using images of skin lesions

Inception v3 and many other models are freely available

Pre-trained Models

Neural nets work best when they have many parameters, making them powerful function approximators. However, this means they must be trained on very large datasets. Because training models from scratch can be a very computationally intensive process requiring days or even weeks, we provide various pre-trained models, as listed below. These CNNs have been trained on the ILSVRC-2012-CLS image classification dataset.

In the table below, we list each model, the corresponding TensorFlow model file, the link to the model checkpoint, and the top 1 and top 5 accuracy (on the imagenet test set). Note that the VGG and ResNet V1 parameters have been converted from their original caffe formats (here and here), whereas the Inception and ResNet V2 parameters have been trained internally at Google. Also be aware that these accuracies were computed by evaluating using a single image crop. Some academic papers report higher accuracy by using multiple crops at multiple scales.

Model	TF-Slim File	Checkpoint	Top-1 Accuracy	Top-5 Accuracy
Inception V1	Code	inception_v1_2016_08_28.tar.gz	69.8	89.6
Inception V2	Code	inception_v2_2016_08_28.tar.gz	73.9	91.8
Inception V3	Code	inception_v3_2016_08_28.tar.gz	78.0	93.9
Inception V4	Code	inception v4 2016 09 09.tar.gz	80.2	95.2

TF-Slim Code:

Defines the model architecture

Checkpoint File:

Trained model parameters

https://github.com/tensorflow/models/tree/master/research/slim#Pretrained

What are the labels?

"GROUND TRUTH" IN MEDICINE

Esteva et al: Two Types of Labels

All images: dermatologists' annotations

Two Rounds of Evaluation

- 1. Model development: predict dermatologists' annotations:
 - Three-class disease partition
 - Nine-class disease partition

- 2. Model evaluation: predict biopsy result (benign vs malignant)
 - Keratinocyte carcinoma vs benign seborrheic keratosis
 - Malignant melanoma vs benign nevus
 - Standard images
 - Dermoscopy

Model Development:

Predict dermatologists' annotations

- 9-fold cross-validation
 - 757 training classes derived from dermatologists' annotations
 - 3 and 9-class validation partitions
 - two dermatologists

training set validation set

Model Evaluation: Predict Biopsy Result

test set of 1942 biopsy-proven images

Performance of the trained model is compared to 21 dermatologists on a test set of biopsy-proven images

Specifying training classes based on taxonomy of lesions

Disease Partitioning Algorithm:

- Ascend the tree until the current node contains <1000 images across all child nodes.
 Add these images as a distinct training class.
- This resulted in 757 training classes.
- However, performance was assessed based on higher-level nodes.

Interpreting the ROC Curve

CLASSIFICATION RESULTS

Results: CNN Performance vs Dermatologists

Evaluation Measures: Classification

Sensitivity, or True Positive Rate:

true positives all condition positives

Specificity, or (1 – False Positive Rate):

true negatives all condition negatives

Accuracy:

true positives + true negatives total cases

Specificity 1.0 0.8 0.9 0.3 1.0 0.9 0.8 0.7 0.6 Sensitivity 0.3 Gleason Grade ≥8 vs Gleason Grade <8 or No Prostate Cancer (AUC = 0.827) 0.2 Gleason Grade ≥7 vs Gleason Grade <7 or No Prostate Cancer (AUC = 0.782) 0.1 Any Prostate Cancer vs No Prostate Cancer (AUC = 0.678) 0.2 0.1 0.3 0.6 0.7 0.8 0.9 1 -Specificity

Receiver Operating Characteristic Curve for Prostate-Specific Antigen (PSA)

Thompson IM, Ankerst DP, Chi C, et al. Operating Characteristics of Prostate-Specific Antigen in Men With an Initial PSA Level of 3.0 ng/mL or Lower. *JAMA*. 2005;294(1):66–70. doi:10.1001/jama.294.1.66

Set a "classification threshold" to distinguish between groups

ROC curve demo

http://arogozhnikov.github.io/2015/10/05/roc-curve.html

Once a threshold is set, we get a "confusion matrix"

	Condition Positive	Condition Negative
Prediction Positive	True Positive	False Positive
Prediction Negative	False Negative	True Negative

Sensitivity, or True Positive Rate:

true positives all condition positives

Specificity, or (1 – False Positive Rate):

true negatives
all condition negatives

Accuracy:

true positives + true negatives total cases

- 1) Set a threshold on PSA
- 2) Make predictions:
 - Above threshold: cancer-positive
 - Below threshold: cancer-negative
- Count true positives, true negatives, false positives, and false negatives
- Calculate sensitivity and specificity
- 5) Plot point and repeat

Set a threshold on classifier predictions

$$p(y_i = 1 | x_i) = \sigma(z_i)$$

classification threshold

A low threshold favors sensitivity, because more points are predicted to be ones

Set a threshold on classifier predictions

$$p(y_i = 1 | x_i) = \sigma(z_i)$$

classification threshold

A high threshold favors specificity, because more points are predicted to be zeros

Results: CNN Performance vs Dermatologists

How do the authors attempt to look inside the "black box"?

MODEL INTERPRETATION

Machine Learning: A Black Box?

Prostate-specific antigen measurement: A Black Box?

Two competing perspectives

Clinicians must fully understand how their diagnostic tools work

Clinicians must be sure these tools are *valid* and *reliable*

Saliency maps for example images

a. Malignant Melanocytic Lesion

d. Benign Melanocytic Lesion

g. Inflammatory Condition

Saliency maps show gradients for each pixel with respect to the CNN's loss function.

Darker pixels represent those with more influence.

b. Malignant Epidermal Lesion

e. Benign Epidermal Lesion

h. Genodermatosis

c. Malignant Dermal Lesion

f. Benign Dermal Lesion

i. Cutaneous Lymphoma

Q: How much does this visualization help us understand the model?

Detection and Segmentation for Medical Images

BEYOND CLASSIFICATION

Detection: propose regions and predict their labels

Detection in medicine

Glomerular Detection with Faster-RCNN Kawazoe et al., *J. Imaging*, 2018

Pulmonary Nodule detection in CT van Ginneken et al., *Biomedical Imaging*, 2015

Segmentation: predict the label for each pixel

Segmentation of optic disc, fovea and retinal vasculature

Journal of Computational Science, 20, 70-79 (2017).

Precisely Identify Boundaries

Determine Areas or Volumes

Segmentation-based features when end-to-end classification is not feasible

nature biomedical engineering

Article | Published: 10 October 2018

Development and validation of a deeplearning algorithm for the detection of polyps during colonoscopy

Pu Wang, Xiao Xiao, Jeremy R. Glissen Brown, Tyler M. Berzin, Mengtian Tu, Fei Xiong, Xiao Hu, Peixi Liu, Yan Song, Di Zhang, Xue Yang, Liangping Li, Jiong He, Xin Yi, Jingjia Liu & Xiaogang Liu [™]

Nature Biomedical Engineering 2, 741–748 (2018) | Download Citation ±

Approach: Start with SegNet (2015)

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla University of Cambridge

Retrain to segment polyps in real time

THANK YOU!

Questions or ideas? Please contact me at m.engelhard@duke.edu

