iris-dataset

September 12, 2023

Import Libraries

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import warnings
  warnings.filterwarnings('ignore')
  %matplotlib inline
```

```
[2]: iris =pd.read_csv(r'D:\DatSets\iris.csv')
iris
```

[2]:		Id	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	${\tt PetalLengthCm}$	${\tt PetalWidthCm}$	\
	0	1	5.1	3.5	1.4	0.2	
	1	2	4.9	3.0	1.4	0.2	
	2	3	4.7	3.2	1.3	0.2	
	3	4	4.6	3.1	1.5	0.2	
	4	5	5.0	3.6	1.4	0.2	
		•••	•••	•••	•••	•••	
	145	146	6.7	3.0	5.2	2.3	
	146	147	6.3	2.5	5.0	1.9	
	147	148	6.5	3.0	5.2	2.0	
	148	149	6.2	3.4	5.4	2.3	
	149	150	5.9	3.0	5.1	1.8	

Species

- 0 Iris-setosa
 1 Iris-setosa
 2 Iris-setosa
 3 Iris-setosa
 4 Iris-setosa

- 145 Iris-virginica
- 146 Iris-virginica
- 147 Iris-virginica
- 148 Iris-virginica
- 149 Iris-virginica

[150 rows x 6 columns]

```
[3]: #We dont require the ID Columns
      iris.drop('Id',axis=1, inplace =True)
 [4]: iris.head()
 [4]:
         SepalLengthCm
                        SepalWidthCm PetalLengthCm
                                                    PetalWidthCm
                                                                       Species
                   5.1
                                 3.5
                                                1.4
                                                              0.2 Iris-setosa
                   4.9
      1
                                 3.0
                                                1.4
                                                              0.2 Iris-setosa
      2
                   4.7
                                 3.2
                                                1.3
                                                              0.2 Iris-setosa
      3
                   4.6
                                 3.1
                                                1.5
                                                              0.2 Iris-setosa
                   5.0
                                 3.6
                                                1.4
                                                              0.2 Iris-setosa
 [5]: iris.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 5 columns):
          Column
                         Non-Null Count Dtype
          _____
                         -----
      0
          SepalLengthCm 150 non-null
                                         float64
          SepalWidthCm
      1
                         150 non-null
                                         float64
      2
          PetalLengthCm 150 non-null
                                         float64
      3
          PetalWidthCm
                         150 non-null
                                         float64
          Species
                         150 non-null
                                         object
     dtypes: float64(4), object(1)
     memory usage: 6.0+ KB
 [6]: iris['Species'].value_counts()
 [6]: Iris-setosa
                         50
      Iris-versicolor
                         50
                         50
      Iris-virginica
      Name: Species, dtype: int64
[14]: aa =plt.subplots(figsize=(4,6))
      aa=sns.countplot(x='Species', data =iris)
      for bars in aa.containers :
          aa.bar_label(bars)
```


We can see that there are 50 samples each of all the Iris Species in the data set.

0.0.1 JointPlot


```
[21]: sns.jointplot(x='SepalLengthCm',y='SepalWidthCm',data=iris, kind='reg')
#kind: { "scatter" | "kde" | "hist" | "hex" | "reg" | "resid" }
```

[21]: <seaborn.axisgrid.JointGrid at 0x29e1312de40>

[22]: sns.jointplot(x='SepalLengthCm',y='SepalWidthCm',data=iris, kind='hist')

[22]: <seaborn.axisgrid.JointGrid at 0x29e13b357e0>

0.0.2 Facegrid Plot

[26]: <seaborn.axisgrid.FacetGrid at 0x29e1305bd00>


```
[28]: iris.boxplot(by="Species", figsize=(12, 6))
[28]: array([[<Axes: title={'center': 'PetalLengthCm'}, xlabel='[Species]'>,
                <Axes: title={'center': 'PetalWidthCm'}, xlabel='[Species]'>],
               [<Axes: title={'center': 'SepalLengthCm'}, xlabel='[Species]'>,
                <Axes: title={'center': 'SepalWidthCm'}, xlabel='[Species]'>]],
              dtype=object)
                                             Boxplot grouped by Species
                            PetalLengthCm
                                                                           PetalWidthCm
            8
            6
            4
            2
            0
                            SepalLengthCm
                                                                           SepalWidthCm
            8
            6
            4
            2
            0
                 Iris-setosa
                             Iris-versicolor
                                          Iris-virginica
                                                               Iris-setosa
                                                                           Iris-versicolor
                                                                                         Iris-virginica
```

0.1 Strip Plot

[Species]

[Species]

0.1.1 Combining Box and Strip Plots

0.2 Violin Plot

```
[31]: fig=plt.gcf()
  fig.set_size_inches(10,7)
  fig=sns.violinplot(x='Species',y='SepalLengthCm',data=iris)
```



```
[32]: plt.figure(figsize=(15,10))
  plt.subplot(2,2,1)
  sns.violinplot(x='Species',y='PetalLengthCm',data=iris)
  plt.subplot(2,2,2)
  sns.violinplot(x='Species',y='PetalWidthCm',data=iris)
  plt.subplot(2,2,3)
  sns.violinplot(x='Species',y='SepalLengthCm',data=iris)
  plt.subplot(2,2,4)
  sns.violinplot(x='Species',y='SepalWidthCm',data=iris)
```

[32]: <Axes: xlabel='Species', ylabel='SepalWidthCm'>

0.3 Pair Plot

[33]: sns.pairplot(data=iris,kind='scatter')

[33]: <seaborn.axisgrid.PairGrid at 0x29e17104d90>

[34]: sns.pairplot(iris,hue='Species')

[34]: <seaborn.axisgrid.PairGrid at 0x29e17d68af0>

0.3.1 Heat map

0.4 Distribution plot:

```
[36]: iris.hist(edgecolor='black', linewidth=1.2)
fig=plt.gcf()
fig.set_size_inches(12,6)
```


0.5 Swarm plot

```
[37]: sns.set(style="darkgrid")
  fig=plt.gcf()
  fig.set_size_inches(10,7)
  fig = sns.swarmplot(x="Species", y="PetalLengthCm", data=iris)
```


0.6 LM Plot

[39]: fig=sns.lmplot(x="PetalLengthCm", y="PetalWidthCm",data=iris)

0.7 Facegrid

```
[41]: sns.FacetGrid(iris, hue="Species").map(sns.kdeplot, "PetalLengthCm").

→add_legend()
plt.ioff()
```

[41]: <contextlib.ExitStack at 0x29e17aaaa70>

0.8 Boxen Plot

```
[46]: fig=plt.gcf()
fig.set_size_inches(10,7)
fig=sns.boxenplot(x='Species',y='SepalLengthCm',data=iris)
plt.show()
```


0.9 Area Plot:

```
[53]: iris.plot.

→area(y=['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm'],alpha=0.

→4,figsize=(12, 6));
plt.show()
```


