

Making Mindful Matters, Matter www.mindmakersproject.org

Javabots Workshop

Electronic Bow & Social Impact Making

Our Vision & Mission

"Our vision is to build a diverse technology proficient community that values knowledge sharing, redefines possibility and inspires a new generation of engineering enthusiasts."

// Mind Makers

"Our mission is to inspire lifelong dreams, create lasting relationships, and strengthen women influence in STEM."

//Javabots

The 1st Bow-Makers

The First Bow Workshop

(Play Bow Video)

Objectives

Today we will...

Learn...

- Electrical laws
- Circuits
- Soldering

Practice...

- Teamwork
- Value of teaching
- Paying it forward

Pre-Engineering = Theory

Circuits & Ohm's Law $V = I \times R$

voltage = current x resistance

volts = amps x ohms

$$V = A \times \Omega$$

Kirchhoff's Laws

Voltage (Loop) Law

$$V = V_1 + V_2 + V_3$$

Ohm's Law

$$V = I \times R$$

Current Law

$$I_1 = I_2 + I_3 + I_4$$

Series & Parallel Circuits

Series

Parallel

Diodes & LEDs

LED Sequins, Adafruit

LED Sequins

LED Sequin, Adafruit

Sequin Specs

3-6 V 5-25mA

Sequins in Series & Parallel

- Both circuits use equal power per LED
 - Same voltage, same current
- Low voltage, high current (overall)
- High voltage, low current (overall)

RF Communication

- Crystal vibrates at frequency dependent on atomic structure
- Voltage changes distort shape, generate electric field
- Signal measured & matched to "tune in"
- Wave can be modified to encode information
- Inbound wave induces current in conductor

Image from Wikipedia

Engineering – Applied Theory

Your Materials

Soldering iron	#
Solder (rosin core)	#
Copper sponge	#\$
RF Toggle Receiver	@
RF 2-button Remote	#
LED Sequins (5-10)	@\$
Battery pack with power switch	@
Rechargeable batteries - 3-6 Volts	@
Black fabric bow or ribbon	@
Black thread	#
Thin sewing needle	@
Black insulated 16-20 AWG wire	#
Small soldered breadboard (PCB)	@
Wire strippers	#
Helping hands	#\$
Needle nose pliers	#
Wire cutters/nippers	#
Conductive thread	#\$
Small, printed circuit board (PCB)	@
Headband, barrette, pins or other fasteners	@
Multimeter	#
Hot glue and glue sticks	#

The Procedure

- 1. Plan component placement (& sew bow)
- 2. Layout & Attach LEDs
- 3. Solder LEDs into Circuit
- 4. Test & Debug LED Circuit
- 5. Build Power Breakout Board
- 6. Connect RF Module
- 7. Test RF Control
- 8. Mount Components to Bow

1. Plan Placement & Sew

2. Layout & Attach LEDs

- Mount LEDs with thread
 - Enough to hold w/o covering pad
- Line up +/-
 - Parallel circuit

3. Solder LEDs Into Circuit

Soldered Jumper Wire + to + to -

Leave two wire leads from the Sequin nearest to power or RF board One lead +, one lead -

LED Sequin, Adafruit

4. Test & Debug Circuit

- Connect battery to LED circuit using leads
- If circuit doesn't light...

Debug...

Your BFF, The Multimeter

Continuity
 measurement

Battery voltage

5. Build Power Breakout Board

6. Connect RF Receiver

Antenna

Apply power

Board compares inbound RF signals

Activates voltage pins 0-3

RF Receiver, Adafruit

Ground

Digital Output (On/Off Voltage)

Voltage Input

7. Test RF Control

RF Transmitter, Adafruit

8. Mount Components to Bow

Ribbon laced through clip backing & sewn in place to rest of bow

RF
Module
inside
loop sewn
shut @
bottom

Layer of ribbon wrapped around, covering & isolating power breakout

Battery pack inside loop sewn shut @ bottom

Light Up the Room!

Let's Start With Sewing!

Target Circuit

Add'l Slides

Power

 $watts = volts \ x \ amps$

 $watts = I^2 x R$

Ohm's Law

 $V = I \times R$

