Содержание

1	Он	еприводимых многочленах	6
	1.1	Неприводимые многочлены	6
	1.2	Основная теорема арифметики для многочленов над полем	(
		1.2.1 Вспомогательная лемма 1	6
		1.2.2 Вспомогательная лемма 2	6
		1.2.3 Теорема	6
2	Ок	сорнях многочленов	7
	2.1	Корни многочленов	7
	2.2	Теорема Безу	7
	2.3	Формальная производная	7
		2.3.1 Определение	7
		2.3.2 Основные свойства	7
	2.4	Кратные корни	8
		2.4.1 Определение	8
		2.4.2 Эквивалентные условия существования кратного корня	8
		2.4.3 Свойства кратных корней	8
3	Об	инвариантных подпространствах	8
	3.1	Инвариантные подпространства	8
		3.1.1 Определение	8
		3.1.2 Свойства	Ć
	3.2	Собственные векторы и собственные значения	Ć
		3.2.1 Определение	Ć
		3.2.2 Собственное подпространство	Ć
	3.3	Характеристический многочлен и его инвариантность	Ć
		3.3.1 Определение	Ć
		3.3.2 О делителях характеристического многочлена	Ć
			(
			(
			(
	3.4		(
			(
			(
4	Ос	обственных векторах и собственных значениях 1	.(
•	4.1	Линейная независимость собственных векторов, принадлежащих попарно	
		- / - · · · · · · · · · · · · · · · · ·	(
	4.2	•	1
			1
		1 • • •	1
	4.3		1

5	ОΓ	амильтоне-Кэли 12
	5.1	Приведение матрицы преобразования к треугольному виду
		5.1.1 Новые обозначения
		5.1.2 Инвариантность "сдвинутых" операторов
		5.1.3 Об инвариантных подпространствах в операторе с собственным зна-
		чением
		5.1.4 Теорема о приведении матрицы преобразования к треугольному виду
	r 0	
	5.2	Теорема Гамильтона-Кэли
6	ΟΣ	$ m KH\Phi$
	6.1	Аннулирующие многочлены преобразования
	6.2	Корневые подпространства
	6.3	Разложение пространства в сумму корневых подпространств
	6.4	Жорданова нормальная форма
	0	6.4.1 Жорданова клетка
		6.4.2 Жорданов вид
		6.4.3 Жорданова нормальная форма
		6.4.4 Нильпотентный оператор
		· ·
		6.4.6 Высота вектора
		6.4.7 О линейной независимости векторов с различными высотами 1
	a =	6.4.8 О дополнении циклического подпространства до всего пространства . 1
	6.5	Существование жордановой нормальной формы в случае единственного соб-
		ственного значения и в общем случае
	6.6	Единственность жордановой нормальной формы
	6.7	Метод её нахождения без поиска базиса
	6.8	Минимальный многочлен линейного преобразования, его свойства, связь с
		жордановой нормальной формой
		6.8.1 Определение
		6.8.2 О делимости любого аннулирующего многочлена минимальным 1
		6.8.3 Единственность
		6.8.4 Связь минимального многочлена с жордановой формой
7	Ол	инейных рекуррентах 18
	7.1	Линейные рекурренты
		7.1.1 Определение
		7.1.2 Оператор левого сдвига
		7.1.3 Инвариантность оператора левого сдвига
		7.1.4 Минимальный многочлен оператора сдвига
		7.1.5 Характеристический многочлен оператора сдвига
	7.2	Общий вид линейной рекурренты над производным полем
	1.2	Оощий вид липсипой рекурренты над производным полем
8	Об	илинейных формах 20
	8.1	Билинейные формы
	8.2	Координатная запись билинейной формы
		8.2.1 Матрица формы
		8.2.2 Координатная запись
	8.3	Матрица билинейной формы и её изменение при замене базиса

9	Ещё	ё больше о билинейных формах	21
	9.1	Симметричные и кососимметричные билинейные формы, их матрицы	21
		9.1.1 Определение симметричной формы	21
		9.1.2 Определение кососимметричной формы	21
		9.1.3 Свойства матриц кососимметричных и симметричных форм	21
	9.2	Ядро формы, ортогональное дополнение подпространства (относительно фор-	
		мы), их свойства	21
		9.2.1 Ядро формы	21
		9.2.2 Ортогональное дополнение подпространства	22
		9.2.3 Свойства ортогональных дополнений	22
		9.2.4 Относительная невырожденность	22
		9.2.5 Теорема о прямой сумме подпространства и его ортогонального до-	
		полнения	22
10	Ок	вадратичных формах	22
		Квадратичные формы, их связь с симметричными билинейными формами.	22
		10.1.1 Определение	22
		10.1.2 Связь квадратичных форм с симметричными билинейными формами	23
	10.2	Приведение квадратичной формы к каноническому виду	23
		Положительно определённые квадратичные формы	23
	10.0	10.3.1 Определение	23
		10.3.2 Критерий положительной определённости	23
	10 4	Индексы инерции квадратичной формы	23
		Закон инерции	24
		Метод Якоби приведения квадратичной формы к диагональному виду	24
		Критерий Сильвестра	$\frac{24}{24}$
	10.1	притерии опливестра	47
11	При	ведение кососимметричной билинейной формы к каноническому ви-	
	ду		2 5
	, 10		
12	Об	эрмитовых формах	2 5
	12.1	Полуторалинейные формы в комплексном пространстве	25
	12.2	Эрмитовы полуторалинейные и квадратичные формы, связь между ними	25
		12.2.1 Определение эрмитовой полуторалинейной формы	25
		12.2.2 Определение эрмитовой квадратичной формы	25
		12.2.3 О связи эрмитовых полуторалинейных и квадратичных форм	25
	12.3	Приведение к каноническому виду	26
		Закон инерции и критерий Сильвестра для эрмитовых квадратичных форм	26
13	Об	операторах в евклидовых и эрмитовых пространствах	2 6
	13.1	Евклидово и эрмитово пространство	26
		13.1.1 Евклидово пространство	26
		13.1.2 Эрмитово пространство	26
	13.2	Выражение скалярного произведения в координатах	26
	13.3	Свойства матрицы Грама	26
		Неравенство Коши-Буняковского-Шварца, неравенство треугольника	27
		13.4.1 Неравенство Коши-Буняковского-Шварца	27
		13.4.2 Неравенство треугольника	27

14	Об	ортонормированных векторах и изоморфизмах	27	
	14.1	Ортонормированные базисы и ортогональные (униатрные) матрицы	27	
		14.1.1 Определения для векторов	27	
		14.1.2 Определения для матриц	27	
	14.2	Существование ортонормированных базисов	27	
		Изоморфизмы евклидовых и эрмитовых пространств	28	
		14.3.1 Определение	28	
		14.3.2 Теорема об изоморфизме пространств с одинаковой размерностью	28	
	14.4	Канонический изоморфизм евклидова пространства и сопряжённого к нему	28	
	11.1	Training rectain isotrop priorit epitringopa reperiperier barri companioni in item,		
15	5 Об ортогонализации и объёмах			
	15.1	Ортогональное дополнение подпространства	28	
	15.2	Ортогональное проектирование	29	
		15.2.1 Определение	29	
		15.2.2 Вычисление проекции	29	
	15.3	Процесс ортогонализации Грама-Шмидта	29	
		Объём параллелипипеда	29	
		15.4.1 Определение	29	
		15.4.2 Вычисление объёма параллелипипеда	30	
		• ''		
16	O co	опряжённых преобразованиях	30	
	16.1	Связь билинейных (полуторалинейных) форм и линейных преобразований		
		в евклидовом (эрмитовом) пространстве	30	
		16.1.1 Новое обозначение	30	
		16.1.2 Связь билинейных форм и преобразований	30	
	16.2	Преобразование, сопряжённое данному	30	
	16.3	Его существование и единственность, его свойства	31	
		16.3.1 Существование сопряжённого оператора	31	
		16.3.2 Связь матрицы оператора и сопряжённого к нему	31	
		16.3.3 Свойства сопряжённых операторов	31	
		16.3.4 О связи инвариантных подпространств оператора и сопряжённого к		
		нему	31	
	16.4	Теорема Фредгольма	31	
17		амосопряжённых преобразованиях	32	
		Самосопряжённые линейные преобразования	32	
	17.2	Свойства самосопряжённых преобразований	32	
		17.2.1 Инвариантные пространства самосопряжённых операторов	32	
		17.2.2 Характеристический многочлен самосопряжённых операторов	32	
		17.2.3 Ортогональность собственных подпространств самосопряжённого опе-		
		ратора	32	
	17.3	Существование ортонормированного базиса из собственных векторов само-		
		сопряжённого линейного преобрзования	32	
10	06		0.0	
18		ортогональных операторах	33	
	18.1	Ортогональные и унитарные преобразования, их свойства	33	
		18.1.1 Определение	33	
		18.1.2 Критерий ортогональности преобразования	33	

		18.1.3 Об инвариантных подпространствах ортогонального оператора	33
	18.2	Инвариантные подпространства малой размерности для преобразований ве-	
		щественного типа	33
	18.3	Канонический вид унитарного и ортогонального преобразований	34
		18.3.1 Канонический вид унитарного преобразования	34
		18.3.2 Канонический вид ортогонального преобразования	34
	18.4	Полярное разложение линейного преобразования в евклидовом пространстве	35
19	Оп	ривидениях	35
	19.1	Приведение квадратичной формы в евклидовом пространстве к главным осям	35
	19.2	Одновременное приведение пары квадратичных форм к диагональному виду	36
20	Оте	ензорах	36
	20.1	Тензоры, как полилинейные отображения	36
		20.1.1 Определение тензора	36
		20.1.2 Примеры тензоров	36
	20.2	Тензорное произведение тензоров	36
	20.3	Координатная запись тензора, изменение координат при замене базиса	36
		20.3.1 Координатная запись тензора	36
		20.3.2 Изменение координат при замене базиса	37

1 О неприводимых многочленах

1.1 Неприводимые многочлены

Пусть F - поле, $P \in F[x]$. Многочлен P называется неприводимым над F, если $\deg P > 0$ и P не раскладывается в произведение двух многочленов положительной степени.

1.2 Основная теорема арифметики для многочленов над полем

1.2.1 Вспомогательная лемма 1

Пусть F - поле, $Q \in F[x], \deg Q > 0$. Тогда Q раскладывается в произведение неприводимых многочленов.

Доказательство.

Докажем утверждение индукцией по $\deg Q$. База тривиальна: если $\deg Q=1$, то он уже неприводим. Докажем переход. Если Q неприводим, то получено требуемое, иначе выполнено равенство $Q=Q_1Q_2$ для некоторых $Q_1,Q_2\in F[x]$ таких, что $0<\deg Q_1,\deg Q_2<\deg Q$, тогда Q_1,Q_2 представляются в виде произведения неприводимых по предположению индукции.

1.2.2 Вспомогательная лемма 2

Пусть F - поле, $P,Q,R\in F[x]$, многочлен P неприводим и выполнено $P\mid QR$. Тогда $P\mid Q$ или $P\mid R$.

Доказательство.

Предположим, что $P \nmid Q$. Тогда, в силу неприводимости многочлена P, выполнено равенство $\gcd(P,Q)=1$, поэтому существуют многочлены $K,L\in F[x]$ такие, что KP+LQ=1. Умножая обе части равенства на R, получим, что KPR+LQR=R, откуда $P\mid KPR+LQR=R$.

1.2.3 Теорема

Пусть F - поле, и $Q \in F[x] \setminus \{0\}$. Тогда существует такой скаляр $\alpha \in F^*$ и такие неприводимые многочлены $P_1, \ldots, P_k \in F[x]$, что Q можно представить в следующем виде:

$$Q = \alpha P_1 \dots P_k$$

Более того, если $Q = \alpha P_1 \dots P_k = \beta R_1 \dots R_l$ для некоторого скаляра $\beta \in F^*$ и неприводимых многочленов $R_1 \dots R_l \in F[x]$, то k = l и существует перестановка $\sigma \in S_k$ такая, что для каждого $i \in \{1, \dots, k\}$ многочлены P_i и $P_{\sigma(i)}$ ассоциированы.

Доказательство.

- (Существование) Случай, когда $\deg Q > 0$ уже разобран, если $\deg Q = 0$, то $Q = \alpha$
- (Единственность) Проведём индукцию по k (Количеству неприводимых многочленов, на которые раскладывается Q). База, k=0, тривиальна: $\deg Q=0 \Rightarrow k=l=0, Q=\alpha=\beta$.

Теперь докажем переход. Пусть k>0 и выполнены равенства $Q=\alpha P_1\dots P_k=\beta R_1\dots R_l$. Тогда, поскольку $P_k\mid R_1\dots R_l$, существует $i\in\{1,\dots,l\}$ такое, что $P_k\mid R_i$, то есть многочлены ассоциированы в силу их неприводимости: $R_i=\gamma P_k,\gamma\in$

 F^* . Пусть без ограничени общности i=l, тогда $\alpha P_1 \dots P_{k-1}=(\beta \gamma) R_1 \dots R_{l-1}$, и применимо предположение индукции.

2 О корнях многочленов

2.1 Корни многочленов

Пусть $P \in F[x]$. Скаляр $\alpha \in F$ называется корнем многочлена P, если выполнено равенство P(a) = 0

2.2 Теорема Безу

Скаляр $\alpha \in F$ является корнем многочлена $P \in F[x] \Leftrightarrow (x-a) \mid P$ Доказательство.

Разделим P с остатком на (x-a), то есть выберем $R,Q \in F[x]$ такие, что P=(x-a)Q+R и $\deg R\leqslant 0$. Заметим, что P(a)=R, тогда выполнены равносильности $P(a)=0\Leftrightarrow R=0\Leftrightarrow (x-a)\mid P$

2.3 Формальная производная

2.3.1 Определение

Пусть $P = p_0 + p_1 x + \dots + p_n x^n \in F[x]$. Формальной производной многочлена P(x) называется многочлен $P' := p_1 + 2p_2 x + \dots + np_n x^{n-1}$, где целочисленные скаляры понимаются, как суммы соответствующего числа единиц.

2.3.2 Основные свойства

- 1. $\forall \alpha, \beta \in F : \forall P, Q \in F[x] : (\alpha P + \beta Q)' = \alpha P' + \beta Q'$ (Линейность)
- 2. $\forall P,Q \in F[x]: \ (PQ)' = P'Q + PQ' \ (Правило Лейбница)$

Доказательство.

1. Пусть $n:=\max(\deg P,\deg Q)$, тогда многочлены P и Q можно представить в виде $P=\sum_{i=0}^n p_i x^i, Q=\sum_{i=0}^n q_i x^i,$ откуда $\alpha P+\beta Q=\sum_{i=0}^n (\alpha p_i+\beta q_i) x^i.$ Проверим требуемое равенство непосредственной проверкой:

$$(\alpha P + \beta Q)' = \sum_{i=0}^{n} i(\alpha p_i + \beta q_i) x^{i-1} = \alpha \sum_{i=0}^{n} i p_i x^{i-1} + \beta \sum_{i=0}^{n} i q_i x^{i-1} = \alpha P' + \beta Q'$$

2. Левая и правая часть требуемого равенства линейны по P и Q, поэтому равенство достаточно проверить на некотором базисе пространства многочленов, например, для произвольных многочленов вида $P(x) = x^i, Q(x) = x^j, i, j \in \mathbb{N} \cup \{0\}$

$$(PQ)' = (i+j)x^{i+j-1} = ix^{i-1}x^j + jx^ix^{j-1} = P'Q + Q'P$$

2.4 Кратные корни

2.4.1 Определение

Пусть $a \in F$ - корень многочлена $P \in F[x]$. Кратностью корня a называется наибольшее $\gamma \in \mathbb{N}$ такое, что $(x-a)^{\gamma} \mid P$. Если $\gamma > 1$, то корень a называется кратным, иначе простым.

2.4.2 Эквивалентные условия существования кратного корня

- 1. c кратный корень P.
- 2. P(c) = P'(c) = 0
- 3. $(x-c)|\gcd(P, P')$

Доказательство.

- (1 \Leftrightarrow 2) Пусть c корень многочлена P, тогда P = (x c)Q и P' = Q + (x c)Q', поэтому c кратный корень многочлена $P \Leftrightarrow P'(c) = 0$
- $(2 \Leftrightarrow 3) P(c) = P'(c) = 0 \Leftrightarrow (x c) \mid P', P \Leftrightarrow (x c) \mid \gcd(P, P')$

2.4.3 Свойства кратных корней

Пусть $c \in F$ - корень многочлена $P \in F[x]$ кратности $k \in \mathbb{N}, k > 1$. Тогда выполнены следующие свойства:

- 1. c корень многочлена P' кратности хотя бы k-1.
- 2. Если char F > k или char F = 0, то c корень многочлена P' кратности ровно k-1.

Доказательство.

Многочлен P имеет вид $P=(x-c)^kQ, Q\in F[x], (x-c)\nmid Q.$ Тогда:

$$P' = k(x-c)^{k-1}Q + (x-c)^kQ' = (x-c)^{k-1}(kQ + (x-c)Q')$$

Из равенства выше следует, что c уже корень многочлена P' кратности хотя бы k-1. Рассмотрим теперь многочлен kQ+(x-c)Q'. Если char $F>k\vee$ char F=0, то $kQ(c)\neq 0$, поэтому кратность корня c у многочлена P' равна k-1

3 Об инвариантных подпространствах

3.1 Инвариантные подпространства

3.1.1 Определение

Пусть $\varphi \in \mathcal{L}(V)$. Подпространство $U \leqslant V$ называется инвариантным относительно преобразования φ , если $\varphi(U) \leqslant U$

3.1.2 Свойства

- 1. Пусть $\varphi \in \mathcal{L}(V)$, подпространства $U, W \leqslant V$ таковы, что $U \leqslant \operatorname{Ker} \varphi$ и $\operatorname{Im} \varphi \leqslant W \leqslant V$. Тогда U и W инвариантны относительно φ .
- 2. Пусть $\varphi, \psi \in \mathcal{L}(V)$, причём $\varphi \circ \psi = \psi \circ \varphi$. Тогда Ker ψ и Im ψ инвариантны относительно φ .

Доказательство.

- 1. $\varphi(U) \leqslant \varphi(\operatorname{Ker} \varphi) = {\vec{0}} \leqslant U$
 - $\varphi(W) \leqslant \operatorname{Im} \varphi \leqslant W$
- 2. Пусть $\vec{u} \in \text{Ker } \psi$, тогда $\psi(\varphi(\vec{u})) = \varphi(\psi(\vec{u})) = \varphi(\vec{0}) = \vec{0} \in \text{Ker } \psi$
 - Пусть $\vec{u} \in \text{Im } \psi$, тогда $\exists \vec{w} \in V: \ \psi(\vec{w}) = \vec{u} \ \varphi(\vec{u}) = \varphi(\psi(\vec{w})) = \psi(\varphi(\vec{w})) \in \text{Im } \psi$

3.2 Собственные векторы и собственные значения

3.2.1 Определение

Пусть $\varphi \in \mathcal{L}(V)$. Вектор $\vec{v} \in V \setminus \{\vec{0}\}$ называется собственным вектором оператора φ с собственным значением $\lambda \in F$, если $\varphi(\vec{v}) = \lambda \vec{v}$.

Скаляр $\mu \in F$ называется собственным значением оператора φ , если существует собственный вектор $\vec{u} \in V \setminus \{\vec{0}\}$ оператора φ с собственным значением μ .

3.2.2 Собственное подпространство

Пусть $\varphi \in \mathcal{L}(V), \lambda \in F$ - собственное значение оператора φ . Подпространство $V_{\lambda} := \mathrm{Ker}\; (\varphi - \lambda) \leqslant V$ называется собственным подпространством оператора φ , соответствующим собственному значению λ

3.3 Характеристический многочлен и его инвариантность

3.3.1 Определение

Пусть $A \in M_n(F)$. Характеристическим многочленом матрицы A называют многочлен $\chi_{\lambda}(A) = |A - \lambda E|$

3.3.2 О делителях характеристического многочлена

Пусть $\varphi \in \mathcal{L}(V)$, $\varphi \leftrightarrow A \in M_n(F)$. Тогда скаляр $\lambda_0 \in F$ является собственным значением оператора $\varphi \Leftrightarrow \chi_A(\lambda_0) = 0 \Leftrightarrow (\lambda - \lambda_0) \mid \chi_A(\lambda)$

Доказательство.

Скаляр λ_0 является собственным значением тогда и только тогда, когда $\mathrm{Ker}\ (\varphi - \lambda_0) \neq \{\vec{0}\}$. Выполнены следующие равносильности:

$$\mathrm{Ker}\;(\varphi-\lambda_0)\neq\{\vec{0}\}\Leftrightarrow\mathrm{rk}\;(A-\lambda_0E)< n\Leftrightarrow |A-\lambda_0E|=0\Leftrightarrow \chi_A(\lambda_0)=0\Leftrightarrow (\lambda-\lambda_0)\mid \chi_A(\lambda_0)=0$$

3.3.3 Подобные матрицы

Матрицы $A, B \in M_n(F)$ называются подобными, если существует матрица $S \in Gl_n(F)$ такая, что $B = S^{-1}AS$

Подобные матрицы - это матрицы одного и того же оператора в разных базисах.

3.3.4 Об инвариантности характеристического многочлена

Пусть $A, B \in M_n(F)$ - подобные матрицы. Тогда $\chi_A(\lambda) = \chi_B(\lambda)$ Доказательство.

Зафиксируем значение $\lambda \in F$, тогда выполнены следующие равенства:

$$\chi_A(\lambda) = |A - \lambda E| = |S^{-1}(B - \lambda E)S| = |B - \lambda E| = \chi_B(\lambda)$$

3.3.5 Характеристический многочлен оператора

Пусть $\varphi \in \mathcal{L}(V)$. Характеристическим многочленом оператора φ называется характеристический многочлен его матрицы в произвольном базисе. Обозначение - $\chi_{\varphi}(\lambda)$

3.4 Определитель и след преобразования

3.4.1 О коэффициентах в характеристическом многочлене

Пусть $A \in M_n(F)$. Тогда в характеристическом многочлене $\chi_A(\lambda)$ коэффициент при λ^{n-1} равен $(-1)^{n-1}$ tr A, а свободный член равен $\det A$.

Доказательство.

Во всех нетождественных перестановках степень получаемых в $\chi_a(\lambda)$ мономов не превосходит n-2, поэтому слагаемое с λ^{n-1} может возникнуть только при $\sigma=id$, когда число $(-\lambda)$ перемножается n-1 раз и умножается на один из диагональных элементов, поэтому коэфициент при $(\lambda)^{n-1}$ равен $(-1)^{n-1} \cdot \operatorname{tr} A$. Свободный член в $\chi_A(\lambda)$ равен $\chi_A(0) = |A|$.

3.4.2 След и определитель оператора

Пусть $\varphi \in \mathcal{L}(V)$. Следом оператора φ называется след матрицы φ в произвольном базисе, определителем оператора - определитель матрицы φ в произвольном базисе. Обозначения - $\operatorname{tr} \varphi$, $\operatorname{det} \varphi$ соответственно.

4 О собственных векторах и собственных значениях

4.1 Линейная независимость собственных векторов, принадлежащих попарно различным собственным значениям

Пусть $\varphi \in \mathcal{L}(V), \lambda_1, \ldots, \lambda_n \in F$ - различные собственные значения оператора φ . Тогда сумма $V_{\lambda_1} + \cdots + V_{\lambda_n}$ - прямая.

Доказательство.

Проведём индукцию по k (количеству собственных подпространств). База n=1 тривиальна, докажем переход. Пусть для некоторого k>1 утверждение неверно, тогда, по

критерию прямой суммы, существует индекс $i \in \{i, \ldots, k\}$ такой, что выполнено следующее:

$$V_{\lambda_i} \cap (\lambda_1 \cup \dots \cup \lambda_{i-1} \cup \lambda_{i+1} \cup \dots \cup \lambda_k) \neq \{\vec{0}\}$$

Пусть без ограничений общности i=k, тогда существуют векторы $\vec{v_1} \in V_{\lambda_1}, \dots, \vec{v_{k-1}} \in V_{\lambda_{k-1}}$ такие, что выполнено следующее:

$$\vec{v_1} + \dots + \vec{v_{k-1}} = \vec{v_k} \neq \{\vec{0}\}$$

Применим к неравенству выше оператор φ , и вычтем из полученного равенства исходное, умноженное на λ_k , тогда:

$$(\lambda_1 - \lambda_k)\vec{v_1} + \dots + (\lambda_{k-1} - \lambda_k)\vec{v_{k-1}} = \vec{0}$$

Все коэффициенты в левой части по условию отличны от нуля, а также хотя бы один из векторов в левой части - ненулевой, поскольку сумма этих векторов равна $\vec{v_k} \neq \vec{0}$. Получено нетривиальное разложение нуля, что невозможно по предположению индукции, значит сумма $\vec{v_1} + \dots + \vec{v_k}$ - прямая.

4.2 Алгебраическая и геометрическая кратность собственного значения

4.2.1 Определение

Пусть $\varphi \in \mathcal{L}(V)$, $\lambda_0 \in F$ - собственное значение оператора φ . Алгебраической кратностью собственного значения λ_0 называется кратность корня λ_0 в $\chi_{\varphi}(\lambda)$, геометрической кратностью - величина $\dim V_{\lambda_0}$

4.2.2 Теорема о связи геометрической и алгебраической кратностей

Пусть $\varphi \in \mathcal{L}(V), \lambda_0 \in F$ - собственное значение оператора φ . Тогда алгебраическая кратность значения λ_0 не меньше его геометрической кратности.

Доказательство.

Пусть геометрическая кратность значения λ_0 равна $k \in \mathbb{N}$. Выберем базис $(\vec{e_1}, \ldots, \vec{e_k})$ в V_{λ_0} и дополним этот базис до базиса в $(\vec{e_1}, \ldots, \vec{v_n})$ в V. Тогда матрица оператора φ в этом базисе имеет следующий вид для некоторой матрицы $D \in M_{n-k}(F)$:

$$\varphi \leftrightarrow_e A := \begin{pmatrix} \lambda_0 E_k & * \\ 0 & D \end{pmatrix}$$

По теореме об определителе с углом нулей, выполнены следующие равенства:

$$\chi_{\varphi}(\lambda) = |A - \lambda E_k| = |(\lambda_0 - \lambda)E_k| \cdot |D - \lambda E_{n-k}| = (\lambda_0 - \lambda)^k |D - \lambda E_{n-k}|$$

Значит, λ_0 - корень кратности не меньше k в $\chi_{\varphi}(\lambda)$.

4.3 Условия диагонализуемости преобразования

Пусть $\varphi \in \mathcal{L}(V)$. Тогда равносильны следующие условия:

1. Оператор φ диагонализуем.

2. Алгебраическая кратность каждого собственного значения оператора φ равна геометрической, и χ_{φ} раскладывается на линейные сомножители.

3.
$$V = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

4. В V есть базис из собственных векторов оператора φ .

Доказательство.

- 1. $(1 \Rightarrow 2)$ Пусть в некотором базисе e в V матрица оператора φ имеет диагональный вид, $\lambda_1, \ldots, \lambda_k \in F$ различные элементы на диагонали, $\alpha_1, \ldots, \alpha_k \in \mathbb{N}$ количества их вхождений в матрицу, тогда $\chi_{\varphi}(\lambda) = \prod_{i=1}^k (\lambda \lambda_i)^{\alpha_i}$. Для любого $i \in \{1, \ldots, k\}$ алгебраическая кратность значения λ_i равна α_i , при этом α_i базисных векторов из e являются собственными векторами со значениями λ_i , откуда $\dim V_{\lambda_i} \geqslant \alpha_i$, и обратное неравенство тоже верно (по предыдущей теореме).
- 2. (2 \Rightarrow 3). Пусть $V_{\lambda_1},\ldots,V_{\lambda_k}\leqslant V$ собственные подпространства оператора φ . Их сумма прямая, и по условию $\sum\limits_{i=1}^k \dim V_{\lambda_i} = \sum\limits_{i=1}^k \alpha_i = n,$ поэтому $V_{\lambda_1}\oplus\cdots\oplus V_{\lambda_k} = V$
- 3. $(3 \Rightarrow 4)$. Выберем базисы e_1, \ldots, e_k в пространствах $V_{\lambda_1}, \ldots, V_{\lambda_k}$. Тогда, так как сумма $V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$ прямая, то объединение этих базисов даёт базис в V, который и является искомым.
- 4. $(4 \Rightarrow 1)$. Если e базис, составленный из собственных векторов, то именно в этом базисе матрица оператора будет иметь диагональный вид.

5 О Гамильтоне-Кэли

5.1 Приведение матрицы преобразования к треугольному виду

5.1.1 Новые обозначения

- 1. Для произвольных $\varphi \in \mathcal{L}(V)$ и $\mu \in F$ положим $\varphi_{\mu} := \varphi \mu$
- 2. Для произвольных $A \in M_n(F)$ и $\mu \in F$ положим $A_\mu := A \mu E$

5.1.2 Инвариантность "сдвинутых" операторов

Пусть $\varphi \in \mathcal{L}(V)$. Тогда $U \leqslant V$ является инвариантным относительно $\varphi \Leftrightarrow U$ является инвариантным относительно φ_μ

Доказательство.

- \Rightarrow Если U инвариантно относительно φ , то $\varphi_{\mu}(U) \leqslant \varphi(U) + \mu U \leqslant U$
- \Leftarrow Если Uивариантно относительно $\varphi,$ то $\varphi(U)\leqslant \varphi_{\mu}(U)+\mu U\leqslant U$

5.1.3 Об инвариантных подпространствах в операторе с собственным значением

Пусть оператор $\varphi \in \mathcal{L}(V)$ имеет собственное значение. Тогда существует инвариантное относительно φ подпространство $U \leqslant V$ размерности n-1.

Доказательство.

Пусть $\mu \in F$ - собственное значение оператора φ . Тогда φ_{μ} - невырожденный оператор, то есть dim Im $\varphi_{\mu} \leqslant n-1$. Дополним базис в dim Im φ_{μ} до базиса в некотором подпространстве $U \leqslant V$ размерности n-1, тогда U инвариантно относительно φ_{μ} и, следовательно, отноительно φ .

5.1.4 Теорема о приведении матрицы преобразования к треугольному виду

Пусть $\varphi \in \mathcal{L}(V)$, и χ_{φ} раскладывается на линейные сомножители. Тогда в V существует такой базис $e = (\vec{e_1}, \dots, \vec{e_n})$, что для любого $i \in \{1, \dots, n\}$ подпространство $\langle e_1, \dots, e_n \rangle$ инвариантно относительно оператора φ .

Доказательство.

Проведём индукцию по n (размеру этого подпространства). База n=1, тривиальна, докажем переход, n>1. Многочлен χ_{φ} имеет корни, поэтому существует инвариантное подпространство $U\leqslant V$ размерности n-1. Положим $\psi:=\varphi|_U\in\mathcal{L}(U)$, тогда $\chi_{\psi}\mid\chi_{\varphi}$, поэтому χ_{ψ} также раскладывается на линейные сомножители, и к нему применимо предположение индукции. Выберем подходящий базис e' в U и дополним его до базиса в V, получим требуемое.

5.2 Теорема Гамильтона-Кэли

Для любого оператора (но мы доказываем только для таких, характеристический многочлен которых раскладывается на линейные сомножители) $\varphi \in \mathcal{L}(V)$ выполнено следующее равенство:

$$\chi_{\varphi}(\varphi) = 0$$

Доказательство.

Выберем базис e в V, в котором $\forall i \in \{1, ..., n\} : V_i := \langle \vec{e_1}, ..., \vec{e_i} \rangle \leqslant V$ инвариантно относительно φ , тогда матрица оператора φ в этом базисе имеет верхнетреугольный вид. Пусть $\varphi \leftrightarrow_e diag(\lambda_1, ..., \lambda_n) \in M_n(F)$. Покажем, что тогда $\forall i \in \{1, ..., n\} : \varphi_{\lambda_i}(V_i) \leqslant V_{i-1}$.

Действительно, так как V_i инвариантно относительно φ , то оно также инвариантно относительно φ_{λ_i} , и матрица сужения $\psi := \varphi_{\lambda_i}|_{V_i} \in \mathcal{L}(V_i)$ имеет вид:

$$\psi \leftrightarrow_{(\vec{e_1}, \dots, \vec{e_i})} \begin{pmatrix} \lambda_1 - \lambda_0 & * & \dots & * \\ 0 & \lambda_2 - \lambda_0 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Последняя координата у образов всех базисных векторов нулевая, поэтому $\psi(V_i) \leqslant V_{i-1}$. Следовательно, выполнены следующие включения:

$$\chi_{\varphi}(\varphi)(V) = (\varphi_{\lambda_1} \dots \varphi_{\lambda_n})(V) \leqslant (\varphi_{\lambda_1} \dots \varphi_{\lambda_{n-1}})(V_{n-1}) \leqslant \dots \leqslant \{\vec{0}\}$$

Таким образом, $\chi_{\varphi}(\varphi) = 0$.

6 ОЖНФ

6.1 Аннулирующие многочлены преобразования

Пусть $\varphi \in \mathcal{L}(V)$. Многочлен $P \in F[x] \setminus \{0\}$ называется аннулирующим многочленом оператора φ , если $P(\varphi) = 0$.

6.2 Корневые подпространства

Пусть λ_i - собственное значение оператора φ . Корневым подпространством, соответствующим λ_i , называется $V^{\lambda_i} = \mathrm{Ker}\; (\varphi_{\lambda_i})^{\alpha_i}$, где α_i - алгебраическая кратность собственного значения λ_i для оператора φ

6.3 Разложение пространства в сумму корневых подпространств

Пусть $\varphi \in \mathcal{L}(V)$, $P \in F[x]$ - аннулирующий многочлен оператора φ , и $P = P_1 P_2$, для многочленов $P_1, P_2 \in F[x]$, таких, что $\gcd(P_1, P_2) = 1$. Тогда $V = V_1 \oplus V_2$, где $V_1 := \operatorname{Ker} P_1(\varphi), V_2 := \operatorname{Ker} P_2(\varphi)$ - инвариантные относительно φ подпространства.

Доказательство.

Подпространства из условия инвариантны относительно φ , поскольку операторы $P_1(\varphi), P_2(\varphi)$ коммутируют с φ . Покажем, что Im $P_1(\varphi) \leqslant V_2$. Действительно, $P_2(\varphi)(P_1(\varphi)(V)) = P(\varphi)(V) = \{\vec{0}\}$, то есть Im $P_1(\varphi) \leqslant V_2$. Аналогично, выполняется включение для Im $P_2(\varphi) \leqslant V_1$. Поскольку $\gcd(P_1, P_2) = 1$, то существуют многочлены $Q_1, Q_2 \in F[x]$ такие, что выполнено равенство $P_1Q_1 + P_2Q_2 = 1$, подставим φ в это равенство и получим следующее:

$$P_1(\varphi)Q_1(\varphi) + P_2(\varphi)Q_2(\varphi) = id$$

Значит, для произвольного $\vec{v} \in V$ выполнены следующие равенства:

$$\vec{v} = id(\vec{v}) = Q_1(\varphi)(P_1(\varphi)(\vec{v})) + Q_2(\varphi)(P_2(\varphi)(\vec{v}))$$

Заметим теперь, что $P_1(\varphi)(\vec{v}) \in \text{Im } P_1(\varphi) \leqslant V_2, P_2(\varphi)(\vec{v}) \in \text{Im } P_2(\varphi) \leqslant V_1$, откуда $Q_1(\varphi)(P_1(\varphi)(\vec{v})) \in V_2, Q_2(\varphi)(P_2(\varphi)(\vec{v})) \in V_1$ в силу инвариантности подпространств V_1 и V_2 относительно φ . Значит $V_1 + V_2 = V$, причём эта сумма - прямая, т.к. для любого вектора $\vec{w} \in V_1 \cap V_2$ выполнены следующие равенства:

$$\vec{w} = Q_1(\varphi)(P_1(\varphi)(\vec{w})) + Q_2(\varphi)(P_2(\varphi)(\vec{w})) = Q_1(\varphi)(\vec{0}) + Q_2(\varphi)(\vec{0}) = \vec{0}$$

Таким образом, $V = V_1 \oplus V_2$.

6.4 Жорданова нормальная форма

6.4.1 Жорданова клетка

Пусть F - поле, $\lambda_0 \in F$. Жордановой клеткой размера $k \in \mathbb{N}$ с собственным значением λ_0 называется матрица $J_k(\lambda_0) \in M_k(F)$, имеющая следующий вид:

$$J_k(\lambda_0) := \begin{pmatrix} \lambda_0 & 1 & \dots & 0 \\ 0 & \lambda_0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \lambda_0 & 1 \\ 0 & \dots & 0 & \lambda_0 \end{pmatrix}$$

6.4.2 Жорданов вид

Пусть F - поле, $A \in M_n(F)$. Матрица A имеет жорданов вид, если она имеет блочнодиагональный вид, в котором каждый блок является жордановой клеткой.

6.4.3 Жорданова нормальная форма

Пусть V - линейное пространство, $\varphi \in \mathcal{L}(V)$. Если в некотором базисе матрица оператора φ имеет жорданов вид, то она называется жордановой нормальной формой оператора φ , а соответствующий базис - его жордановым базисом.

6.4.4 Нильпотентный оператор

Пусть $\psi \in \mathcal{L}(V)$. Оператор ψ называется нильпотентным, если существует $m \in \mathbb{N}$ такое, что $\psi^m = 0$

6.4.5 Циклическое подпространство

Пусть $\varphi \in \mathcal{L}(V)$ - нильпотентный оператор. Подпространство $U \leqslant V$ называется циклическим относительно ψ , если оно инвариантно относительно ψ и существует вектор $\vec{v} \in V$ такой, что U - минимальное по включению инвариантное подпространство, содержащее \vec{v} .

6.4.6 Высота вектора

Пусть $\psi \in \mathcal{L}(V)$ - нильпотентный оператор, $\vec{v} \in V \setminus \{\vec{0}\}$. Высотой вектора \vec{v} относительно ψ называется наименьшее $n \in \mathbb{N}$ такое, что $\psi^n(\vec{v}) = 0$

6.4.7 О линейной независимости векторов с различными высотами

Пусть $\psi \in \mathcal{L}(V)$ - нильпотентный оператор, и пусть векторы $\vec{v_1}, \dots, \vec{v_k} \in V \setminus \{\vec{0}\}$ имеют попарно различные высоты относительно ψ . Тогда эти векторы образуют линейно независимую систему.

Доказательство.

Предположим, что это не так, тогда существует нетривиальная линейная комбинация с коэффициентами $\alpha_1, \ldots, \alpha_k \in F$, равная нулю:

$$\alpha_1 \vec{v_1} + \dots + \alpha_k \vec{v_k} = \vec{0}$$

Пусть $\vec{v_i}$ - вектор с наибольшей высотой n_i , коэффициент при котором не равен нулю. Применяя к данному равенству ψ^{n-1} , получим, что $\alpha_i \psi^{n-1}(\vec{v_i}) = \vec{0}$. Значит $\alpha_i = 0$, что противоречит нашему условию.

6.4.8 О дополнении циклического подпространства до всего пространства

Пусть $\psi \in \mathcal{L}(V)$ - нильпотентный оператор, $\vec{v} \in V \setminus \{\vec{0}\}$ - вектор наибольшей высоты n в пространстве V, и $U \leqslant V$ - циклическое подпространство, порождённое \vec{v} . Тогда существует $W \leqslant V$ такое, что W инвариантно относительно ψ и $V = U \oplus W$.

Доказательство.

Вектор из условия определён корректно, т.к. все векторы из $V \setminus \{\vec{0}\}$ имеют конечную высоту, ограниченную сверху величиной $\dim V$. Выберем инвариантное подпространство

 $W\leqslant V$ наибольшей размерности такое, что $W\cap U=\{\vec{0}\}$. Такое пространство точно существует, потому что $\vec{0}\leqslant V$ удовлетворяет условию. Если $U\oplus W=V$, то утверждение доказано.

Если же $U \oplus W \neq V$, то выберем $\vec{v} \notin U \oplus W$. Поскольку в наборе $\vec{v}, \psi(\vec{v}), \dots, \vec{0}$ первый вектор не лежит в $U \oplus W$, а последний - лежит, то в некоторый момент произойдёт скачок из $V \setminus (U \oplus W)$ в $U \oplus W$. Пусть без ограничения общности это произойдёт на первом шаге, тогда:

$$\psi(\vec{v}) = \alpha_0 \vec{v_0} + \dots + \alpha_{n-1} \psi^{n-1} (\vec{v_{n-1}}) + \vec{w}$$

Применим к обеим частям равенства оператор ψ^{n-1} , получим следующее:

$$\vec{0} = \alpha_0 \psi^{n-1}(\vec{v_0}) + \psi^{n-1}(\vec{w})$$

Поскольку сумма прямая, то оба слагаемых в правой части равны нулю, то есть $\alpha_0 = 0 \wedge \psi^{n-1}(\vec{w}) = 0$. Положим теперь $\vec{v'} := \vec{v} - \alpha_1 \vec{v_1} - \dots - \alpha_{n-1} \psi^{n-2}(\vec{v_{n-1}})$. Заметим, что $\vec{v'} \notin U \oplus W$, т.к. $\vec{v} \notin U \oplus W$. Кроме того:

$$\psi(\vec{v'}) = \psi(\vec{v}) - \alpha_1 \psi(vecv_1) - \dots - \alpha_{n-1} \psi^{n-1}(\vec{v_{n-1}}) = \vec{w}$$

Значит, пространство $W \oplus \langle \vec{x'} \rangle$ - тоже инвариантно относительно ψ , причём $(W \oplus \langle \vec{x'} \rangle) \cap U = \{\vec{0}\}$. Получено противоречие с максимальное размерностью пространства W.

6.5 Существование жордановой нормальной формы в случае единственного собственного значения и в общем случае

Пусть $\varphi \in \mathcal{L}(V)$ и χ_{φ} раскладывается на линейные сомножители. Тогда у оператора φ существует жорданова нормальная форма.

Доказательство.

Представим V в виде прямой суммы подпространств:

$$V = V^{\lambda_1} \oplus \cdots \oplus V^{\lambda_k}$$

 $\forall i \in \{1, \ldots, k\}: \varphi_{\lambda_i}|_{V^{\lambda_i}}$ - нильпотентный, поэтому он раскладывается в прямую сумму подпространств и, как следствие, имеет жорданов базис e_i . В этом базисе оператор $\varphi_{\lambda_i}|_{V^{\lambda_i}}$ имеет жорданову нормальную форму с нулями на главной диагонали.

В этом же базисе e_i оператор $\varphi|_{V^{\lambda_i}}$ имеет матрицу, состоящую из тех же клеток, что и $\varphi_{\lambda_i}|_{V^{\lambda_i}}$, только вместо нуля на диагонали стоит λ_i

Объединение жордановых базисов в подпространствах $V^{\lambda_1}, \dots, V^{\lambda_k}$ даёт искомый жорданов базис в V.

6.6 Единственность жордановой нормальной формы

Пусть $\varphi \in \mathcal{L}(V)$, и χ_{φ} раскладывается на линейные сомножители. Тогда жорданова нормальная форма оператора φ единственна с точностью до перестановки клеток.

Доказательство. Пусть $\lambda_0 \in F$ - собственное значение оператора φ . Выберем жорданов базис $e = (\vec{e_1}, \ldots, \vec{e_n})$ такой, что $\varphi \leftrightarrow_e A \in M_n(F)$, где A - жорданова нормальная форма, в которой все клетки со значением λ_0 стоят в начале и имеют суммарный размер $d \leqslant n$, тогда этим клеткам соответствует начальный фрагмент базиса $(\vec{e_1}, \ldots, \vec{e_d})$. Обозначим размеры

этих клеток через k_1, \ldots, k_s , тогда $\sum_{i=1}^s k_i = d$. Достаточно показать, что набор $\{k_1, \ldots, k_s\}$ определён однозначно.

Пусть α_0 - алгебраическая кратность значения λ_0 , тогда выполнено равенство $d=\alpha_0$. Рассмотрим оператор φ_{λ_0} и заметим, что $\varphi_{\lambda_0} \leftrightarrow_e A_{\lambda_0} = A - \lambda_0 E$, то есть первые d элементов на диагонали A_{λ_0} равны нулю, а остальные - отличные от нуля. При возведении матрицы A_{λ_0} в некоторую степень каждая клетка возводится в степень независимо, причём ранг каждой вырожденной клетки в каждой следующей степени уменьшается на один, пока клетка не станет нулевой, а невырожденные клетки остаются невырожденными. Значит $\mathrm{rk}\ (A_{\lambda_0})^d = n - d$.

Исследуем нильпотентный оператор $\psi := \varphi_{\lambda_0}|_{V^{\lambda_0}} \in \mathcal{L}(V^{\lambda_0})$. Его матрица в базисе $e' = (\vec{e_1}, \ldots, \vec{e_d})$ имеет блочно-диагональный вид из жордановых клеток со значением ноль и размерами k_1, \ldots, k_s .

Пусть n_1 - число клеток, с размером $\geqslant 1$, n_2 - число клеток с размером $\geqslant 2$, и так далее. Число клеток размера $j \in \{1,\ldots,d\}$ равно n_j-n_{j+1} , поэтому для опредления числа клеток каждого размера достаточно найти числа n_i . $\forall i \in \{1,\ldots,d\}: V_i := \mathrm{Ker}\ \psi^i,$ тогда $V_{\lambda_0} = V_1 \leqslant \ldots \leqslant V_d = V^{\lambda_o}$. Чтобы определить величины $\dim V_1,\ldots,\dim V_d$ снова воспользуемся замечанием о том, что возведение клетки в каждую следующую степень уменьшает её ранг на один, пока она не станет нулевой:

$$\dim V_1 = \dim \operatorname{Ker} \ \psi = d - \operatorname{rk} \ \psi = n_1$$

$$\dim V_2 = \dim \operatorname{Ker} \ \psi^2 = d - \operatorname{rk} \ \psi^2 = (d - \operatorname{rk} \ \psi) + (\operatorname{rk} \ \psi - \operatorname{rk} \ \psi^2) = n_1 + n_2$$

$$\dots$$

$$\dim V_d = \dim \operatorname{Ker} \ \psi^d = (d - \operatorname{rk} \ \psi^{d-1}) + (\operatorname{rk} \ \psi^{d-1} - \operatorname{rk} \ \psi^d) = \sum_{i=1}^d n_i$$

Таким образом, числа n_1, \ldots, n_d определяются однозначно через величины $\dim V_1, \ldots, \dim V_d$ вне зависимости от выбора базиса, и по ним однозначно определяется набор $\{k_1, \ldots, k_s\}$, что и требовалось доказать.

6.7 Метод её нахождения без поиска базиса

Метод нахождения ЖН Φ без поиска базиса описан в доказательстве единственности разложения жордановой нормальной формы.

6.8 Минимальный многочлен линейного преобразования, его свойства, связь с жордановой нормальной формой

6.8.1 Определение

Минимальным многочленом оператора φ называется аннулирующий многочлен наименьшей степени.

6.8.2 О делимости любого аннулирующего многочлена минимальным

Пусть $\varphi \in \mathcal{L}(V), \mu_{\varphi}$ - минимальный многочлен для φ . Тогда многочлен $P \in F[x]$ - аннулирующий для $\varphi \Leftrightarrow \mu_{\varphi} \mid P$

Доказательство.

Разделим P на μ_{φ} с остатком: $P=\mu_{\varphi}Q+R, \deg R<\deg \mu_{\varphi},$ тогда $P(\varphi)=R(\varphi).$ Т.к. μ_{φ} - минимальный, то:

$$P(\varphi) = 0 \Leftrightarrow R(\varphi) = 0 \Leftrightarrow \mu_{\varphi} \mid P$$

6.8.3 Единственность

Минимальный многочлен оператора $\varphi \in \mathcal{L}(V)$ единственен с точностью до ассоциированности.

Доказательство.

Пусть $\mu_1, \mu_2 \in F[x]$ - различные минимальные многочлены для φ , тогда:

$$\begin{cases} \mu_1 \mid \mu_2 \\ \mu_2 \mid \mu_1 \end{cases} \Rightarrow \begin{cases} \deg \mu_1 \leqslant \deg \mu_2 \\ \deg \mu_2 \leqslant \deg \mu_1 \end{cases} \Rightarrow \deg \mu_1 = \deg \mu_2$$

Т.к. $\mu_1 \mid \mu_2$, то μ_1 и μ_2 ассоциированы.

6.8.4 Связь минимального многочлена с жордановой формой

Пусть $\varphi \in \mathcal{L}(V)$, и χ_{φ} раскладывается на линейные сомножители. Тогда его минимальный многочлен имеет вид $\mu_{\varphi} = \prod (\lambda_i - \lambda)^{\beta_i}$, где β_i - наибольший размер клетки с собственным значением λ_i в жордановой нормальной форме оператора φ для всех $i \in \{1, \ldots, k\}$

Доказательство.

Многочлен p аннулирующий \Leftrightarrow он обнуляет каждую клетку жордановой нормальной формы. Пусть s_j - наибольший размер клетки, соответствующей значению λ_j в ЖНФ оператора φ , тогда:

$$p(J_{s_j}(\lambda_j)) = \prod_{i=1}^k (\lambda_i E - J_{s_j}(\lambda_j))^{\beta_i} = (-J_{s_j})^{b_j} \prod_{i \neq j} (\lambda_i E - J_{s_j}(\lambda_j))^{\beta_i}$$

Поскольку все матрицы в произведении, кроме первой, невырожденные, то их произведение тоже невырожденная матрица, поэтому выполнено неравенство $(J_{s_j})^{\beta_j}=0$, откуда $\beta_j\geqslant s_j$. Но нам достаточно и степени $\beta_j=s_j$.

7 О линейных рекуррентах

7.1 Линейные рекурренты

7.1.1 Определение

Последовательность $(a_i) \in F^{\infty}$ называется линейной рекуррентой с характеристическим многочленом $p = x^n + p_{n-1}x^{n-1} + \cdots + p_0 \in F[x]$, если выполнено следующее условие:

$$\forall k \in \mathbb{N} \cup \{0\}: a_{k+n} + p_{n-1}a_{k+n-1} + \dots + p_0a_k = 0$$

Обозначим множество рекуррент с характеристическим многочленом p через V_p

7.1.2 Оператор левого сдвига

Оператором левого сдвига на F^{∞} называется оператор $\varphi: F^{\infty} \to F^{\infty}$, заданный для каждой последовательности $(a_i) \in F^{\infty}$ как $\varphi((a_i)) := (a_{i+1})$

7.1.3 Инвариантность оператора левого сдвига

Пусть $p \in F[x], \varphi$ - оператор левого сдвига. Тогда $V_p = \operatorname{Ker} p(\varphi)$.

Из этого следует, что V_p инвариантно относительно φ , поэтому можно рассматривать оператор $\psi:=\varphi|_{V_p}$

Доказательство.

Для любой последовательности $A=(a_i)\in F^\infty$ выполнена равносильность $A\in \operatorname{Ker}\ p(\varphi)\Leftrightarrow p(\varphi)(A)=(0)$. Заметим, что $\forall k\in\mathbb{N}\cup\{0\}:\ [p(\varphi)(A)]_k=a_{k+n}+a_{k+n-1}p_{n-1}+\cdots+a_kp_0,$ поэтому $A\in \operatorname{Ker}\ p(\varphi)\Leftrightarrow A\in V_p$

7.1.4 Минимальный многочлен оператора сдвига

Минимальный многочлен μ_{ψ} оператора ψ равен p с точностью до ассоциированности. Доказательство.

С одной стороны, $V_p = \mathrm{Ker}\ p(\varphi)$, поэтому $\mathrm{Im}\ p(\psi) = p(\varphi)(V_p) = \{\vec{0}\}$, значит $\mu_\psi \mid p$.

С другой стороны, $\forall A \in V_p: \mu_{\psi}(\psi)(A) = (0) \Leftrightarrow A \in \operatorname{Ker} \mu_{\psi}(\psi) \Leftrightarrow A \in V_{\mu_{\psi}} \Rightarrow V_p \leqslant V_{\mu_{\psi}} \Rightarrow \deg p \leqslant \deg \mu_{\psi} \Rightarrow p = \mu_{\psi}$ с точностью до ассоциированности.

7.1.5 Характеристический многочлен оператора сдвига

Характеристический многочлен χ_{ψ} оператора ψ равен $(-1)^n p$ Доказательство.

В стандартном базисе e матрица преобразования ψ имеет следующий вид:

$$\psi \leftrightarrow_e A_p \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -p_0 & -p_1 & \dots & -p_{n-1} \end{pmatrix}$$

Докажем индукцией по n, что $|A_p - \lambda E| = (-1)^n p(\lambda)$, база n=1 тривиальна. Докажем переход, используя разложение определителя по первому столбцу:

$$\begin{vmatrix} -\lambda & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -p_0 & -p_1 & \dots & -p_{n-1} - \lambda \end{vmatrix} = -\lambda \begin{vmatrix} -\lambda & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -p_1 & -p_2 & \dots & -p_{n-1} - \lambda \end{vmatrix} + (-1)^{n+1}(-p_0) = (-\lambda)(-1)^{n-1}(p_1 + \lambda p_2 + \dots + \lambda^{n-2}p_{n-1}) + (-1)^n p_0 = (-1)^n p(\lambda)$$

7.2 Общий вид линейной рекурренты над производным полем

Пусть $p \in F[x]$ раскладывается на линейные сомножители. Тогда каждое решение рекурренты с характеристическим многочленом p имеет следующий вид для некоторого

набора коэффициентов $\{\beta_{it}\}\subset F$:

$$(a_m) = \sum_{i=1}^{k} \sum_{t=1}^{\alpha_i} \beta_{it} C_m^{t-1} \lambda_i^{m+1-t}$$

Доказательство.

Поскольку минимальный многочлен ψ равен характестическому многочлену ψ , то для каждого собственного значения λ в ЖНФ оператора ψ есть ровно одна жорданова клетка с таким собственным значением, и она имеет размер α . Найдём последовательности A_1, \ldots, A_{α} такие, что

$$\varphi(A_1) = (0)$$

$$\varphi(A_2) = A_1$$

$$\cdots$$

$$\varphi(A_{\alpha}) = \varphi(A_{\alpha-1})$$

Все эти последовательности обнуляются оператором $(\varphi_{\lambda})^{\alpha}$, а значит и $p(\varphi)$, поэтому они лежат в V_p . Именно они образуют жорданов базис в V^{λ} . Пусть $A_1 := (1, \lambda, \lambda^2, \ldots)$, тогда $\psi_{\lambda}(A_1) = (0)$, теперь для каждого $t \in \{1, \ldots, \alpha\}$ положим, что $A_t = (f_t(m)\lambda^{m+1-t})$ для некоторой функции $f_t : \mathbb{N} \cup \{0\} \to F$, причём $f_1 = 1$, считая A_t найденным, найдём A_{t+1} :

$$\varphi_{\lambda}(A_{t+1}) = A_{t}$$

$$f_{t+1}(m+1)\lambda^{m+1-t} - \lambda f_{t+1}(m)\lambda^{m-t} = f_{t}(m)\lambda^{m+1-t}$$

$$f_{t+1}(m+1) - f_{t+1}(m) = f_{t}(m)$$

Базе $f_1=1$ и рекуррентному соотношению удовлетворяет семейство функций $\{f_t\}_{t=1}^{\alpha}$ такое, что $f_t(m)=C_m^{t-1}$. Таким образом, $A_t=(C_m^{t-1}\lambda^{m+1-t})$. Объединение жордановых базисов клеток и будет базисом в V_p , который позволяет представить каждый элемент из V_p в требуемом виде.

8 О билинейных формах

8.1 Билинейные формы

Пусть V - линейное пространство над полем F. Билинейной формой на V называется функция $b: V \times V \to F$, линейная по обоим аргументам.

8.2 Координатная запись билинейной формы

8.2.1 Матрица формы

Матрицей формы $b \in \mathcal{B}(V)$ в базисе $(\vec{e_1}, \dots, \vec{e_2}) =: e$ называется следующая матрица B:

$$B = (b(\vec{b_i}, \vec{b_j})) = \begin{pmatrix} b(\vec{e_1}, \vec{e_1}) & \dots & b(\vec{e_1}, \vec{e_n}) \\ \vdots & \ddots & \vdots \\ b(\vec{e_n}, \vec{e_1}) & \dots & b(\vec{e_n}, \vec{e_n}) \end{pmatrix}$$

8.2.2 Координатная запись

Пусть $b \in \mathcal{B}(V), e$ - базис в $V, b \leftrightarrow_e B$. Тогда для любых $\vec{u}, \vec{v} \in V, \vec{u} \leftrightarrow_e x, \vec{v} \leftrightarrow_e y$, выполнено $b(\vec{u}, \vec{v}) = x^T B y$

Доказательство.

$$b(\vec{u}, \vec{v}) = b(\sum_{i=1}^{n} x_i \vec{e_i}, \sum_{j=1}^{n} y_j \vec{e_j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i b(\vec{e_i}, \vec{e_j}) y_j = x^T B y$$

8.3 Матрица билинейной формы и её изменение при замене бази-

Пусть $b \in \mathcal{B}(V), e$ и e' - два базиса в V, e' = eS. Тогда если $b \leftrightarrow_e B, b \leftrightarrow_{e'} B',$ то $B' = S^T B S$

9 Ещё больше о билинейных формах

9.1 Симметричные и кососимметричные билинейные формы, их матрицы

9.1.1 Определение симметричной формы

Пусть $b \in \mathcal{B}(V)$. Форма b называется симметричной, если для всех $\vec{u}, \vec{v} \in V$ выполнено $b(\vec{u}, \vec{v}) = b(\vec{v}, \vec{u})$. Пространство симметричных форм на V обозначается через $\mathcal{B}^+(V)$

9.1.2 Определение кососимметричной формы

Пусть $b \in \mathcal{B}(V)$. Форма b называется кососимметричной, если:

- 1. $\forall \vec{u}, \vec{v} \in V : b(\vec{u}, \vec{v}) = -b(\vec{v}, \vec{u})$
- $2. \ \forall \vec{u} \in V: \ b(\vec{v}, \vec{v}) = 0$

Пространство кососимметричных форм обозначается через $\mathcal{B}^-(V)$

9.1.3 Свойства матриц кососимметричных и симметричных форм

Пусть e - базис в $V, b \in \mathcal{B}(V), b \leftrightarrow_e B$. Тогда:

- 1. $b \in \mathcal{B}^+(V) \Leftrightarrow B = B^T$
- 2. $b \in \mathcal{B}^-(V) \Leftrightarrow B = -B^T$ и на главной диагонали B стоят нули

9.2 Ядро формы, ортогональное дополнение подпространства (относительно формы), их свойства

9.2.1 Ядро формы

Пусть $b \in \mathcal{B}^{\pm}(V)$. Ядром формы b называется подпространство $\text{Ker } b := \{\vec{v} \in V : \forall \vec{u} \in V : b(\vec{u}, \vec{v}) = 0\} = \{\vec{u} \in V : \forall \vec{v} \in V : b(\vec{u}, \vec{v}) = 0\} \leqslant V$

9.2.2 Ортогональное дополнение подпространства

Пусть $b \in \mathcal{B}^{\pm}(V)$, $\vec{u}, \vec{v} \in V$. Векторы \vec{u}, \vec{v} называются ортогональными, если $b(\vec{u}, \vec{v}) = 0$. Если $U \leq V$, то ортогональным дополнением к U относительно b называется $U^{\perp} := \{\vec{v} \in V : \forall \vec{u} \in U : b(\vec{u}, \vec{v}) = 0\}$

9.2.3 Свойства ортогональных дополнений

Пусть $b \in \mathcal{B}^{\pm}(V), U \leqslant V$. Тогда:

- 1. $\dim U^{\perp} \geqslant \dim V \dim U$
- 2. Если b невырожденна, то $\dim U^{\perp} = \dim V \dim U$

Доказательство.

Пусть $n:=\dim V, k:=\dim U$. Дополним базис $(\vec{e_1},\ldots,\vec{e_k})$ в U до базиса $e:=(\vec{e_1},\ldots,\vec{e_n})$ в V

Тогда, если $\vec{v} \in V, \vec{v} \leftrightarrow_e x$, то $\vec{v} \in U^\perp \Leftrightarrow \forall i \in \{1, \ldots, k\} : b(\vec{e_i}, \vec{v}) = 0 \Leftrightarrow B'x = 0$, где B' - матрица, составленная из первых k строк матрицы B. Тогда, так как $rk B' \leqslant k$, то $\dim U^\perp \geqslant \dim V - \dim U$. Более того, если форма b невырождена, то матрица B тоже невырождена, откуда $rk B' = k \Rightarrow \dim U^\perp = \dim V - \dim U$.

9.2.4 Относительная невырожденность

Подпространство $U \leqslant V$ называется невырожденным относительно $b \in \mathcal{B}^{\pm}(V)$, если ограничение $b|_{U} \in \mathcal{B}^{\pm}(U)$ невырожденно.

9.2.5 Теорема о прямой сумме подпространства и его ортогонального дополнения

Пусть $b \in \mathcal{B}^{\pm}(V)$. Тогда подпространство $U \leqslant V$ невырожденно относительно $b \Leftrightarrow V = U \oplus U^{\perp}$

Доказательство.

- \Rightarrow Значит $\dim U^{\perp}=n-k,$ Ker $b|_{U}=\{\vec{0}\},$ значит $\forall \vec{u}\in U:\ \exists \vec{v}\in U:\ b(\vec{u},\vec{v})\neq 0.$ Это значит, что $U\cap U'=\{\vec{0}\}\Rightarrow U\oplus U',$ но $\dim(U\oplus U')=n\Rightarrow V=U\oplus U'$
- \Leftarrow Если сумма $U\oplus U'$ прямая, то Ker $b|_U=\{\vec{0}\}.$ Значит U невырождено относительно b.

10 О квадратичных формах

10.1 Квадратичные формы, их связь с симметричными билинейными формами

10.1.1 Определение

Квадратичной формой, соответствующей форме $b \in \mathcal{B}(V)$ называется функция $h: V \to F$ такая, что $\forall \vec{v} \in V: h(\vec{v}) = b(\vec{v}, \vec{v})$. Квадратичные формы на V образуют линейное пространство над F, обозначаемое через $\mathcal{Q}(V)$

10.1.2 Связь квадратичных форм с симметричными билинейными формами

Пусть char $F \neq 2$. Тогда для любой квадратичной формы h на V существует единственная форма $b \in \mathcal{B}^+(V)$, соответствующая ей.

Доказательство.

Пусть $b \in \mathbb{B}(V), h(\vec{v}) = b(\vec{v}, \vec{v}).$ b представимо в виде $b^+ + b^-$, где $b^\pm \in \mathbb{B}^\pm(V)$, тогда $h(\vec{v}) = b(\vec{v}, \vec{v}) = b^+(\vec{v}, \vec{v})$. Более того, по h можно однозначно восстановить b^+ следующим образом: $\forall \vec{u}, \vec{v} \in V: b^+(\vec{u}, \vec{v}) := \frac{h(\vec{u} + \vec{v}) - h(\vec{v}) - h(\vec{u})}{2}$

10.2 Приведение квадратичной формы к каноническому виду

Пусть char $F \neq 2, h \in \mathcal{Q}(V)$. Тогда в пространстве V существует такой базис e, что h в этом базисе имеет диагональную матрицу.

Следствие. Пусть $F = \mathbb{R}, h \in \mathcal{Q}(V)$. Тогда в пространстве V существует такой базис e, что h в этом базисе имеет диагональную матрицу с числами 0 и ± 1 на главной диагонали. Доказательство.

Проведём индукцию по $n:=\dim V$. База, n=1, тривиальна. Пусть теперь $n>1, h\in \mathbb{Q}(V), b\in \mathbb{B}^+(V)$ - полярная к h форма. Если h=0, то b=0, поэтому у h нулевая матрица, если же $h\neq 0$, то $\exists \vec{e_1}\in V:\ h(\vec{e_1})\neq 0$. Тогда $\langle e_1\rangle$ невырожденно относительно b, откуда $V=\langle \vec{e_1}\rangle \oplus \langle \vec{e_1}\rangle^\perp$. По предположению индукции, в U^\perp существует базис, в котором матрица $h|_U$ диагональна, и объединение этого базиса с $\vec{e_1}$ и даёт искомый базис в V.

10.3 Положительно определённые квадратичные формы

10.3.1 Определение

Пусть $h \in \mathcal{Q}(V)$. Тогда h называется:

- Положительно определённой, если $\forall \vec{v} \in V, \vec{v} \neq \vec{0}: h(\vec{v}) > 0.$
- Положительно полуопределённой, если $\forall \vec{v} \in V: \ h(\vec{v}) \geqslant 0$
- Отрицательно определённой, если $\forall \vec{v} \in V, \vec{v} \neq \vec{0}: \ h(\vec{v}) < 0.$
- Отрицательно полуопределённой, если $\forall \vec{v} \in V: h(\vec{v}) \leqslant 0$

10.3.2 Критерий положительной определённости

 $B\in M_n(\mathbb{R})$ положительно определена $\Leftrightarrow \exists A\in Gl_n(\mathbb{R}):\ B=A^TA$ Доказательство.

Квадратичная форма $h \leftrightarrow_e B$ положительно определена $\Leftrightarrow h$ имеет нормальный вид $E \Leftrightarrow$ для некоторой матрицы $S \in Gl_n(\mathbb{R})$ выполнено $E = S^T B S \Leftrightarrow$ для некоторой матрицы $A \in Gl_n(\mathbb{R})$ выполнено $B = A^T A$

10.4 Индексы инерции квадратичной формы

Пусть $h \in \mathcal{Q}(V)$. Её положительным индексом инерции $\sigma_+(h)$ называется наибольшая размерность подпространства $U \leqslant V$ такого, что $h|_U$ положительно определена, отрицательным индексом инерции $\sigma_-(g)$ - наибольшая размерность подпространства $U \leqslant V$ такого, что $h|_U$ отрицательно определена.

10.5 Закон инерции

Пусть $h \in \mathcal{Q}(V)$, B - нормальная форма h в нормальном базисе e. Тогда на диагонали матрицы стоит ровно $\sigma_+(h)$ единиц и $\sigma_-(h)$ минус единиц.

Следствие. (Закон инерции). Нормальный вид квадратичной формы $h \in \mathcal{Q}(V)$ определён однозначно с точностью до перестановки диагональных элементов.

Доказательство.

Пусть $n:=\dim V$. Без ограничений общности можно считать, что нормальная форма h имеет вид, где на диагонали стоят подряд k единиц, l нулей и m минус единиц, где k+l+m=n

Пусть $U:=\langle\vec{e_1},\ldots,\vec{e_j}\rangle,W:=\langle\vec{e_{k+1}},\ldots,\vec{e_n}\rangle$ сужение $h|_U$ положительно определено $\Rightarrow \sigma_+(h)\geqslant k$. С другой стороны, сужение $h|_W$ отрицательно полуопределено, пусть теперь $U'\leqslant V$ положительно определено, тогда $U'\cap W=\{\vec{0}\}$. Значит $\sigma_+(h)=k$. Аналогично $\sigma_-(h)=m$.

10.6 Метод Якоби приведения квадратичной формы к диагональному виду

Пусть $h \in \mathcal{Q}(V), h \leftrightarrow_e B$, причём все главные миноры матрицы B отличны от нуля. Тогда существует такой базис e' = eS, что матрица перехода S - верхнетреугольная с единицами на главной диагонали, $h \leftrightarrow_{e'} B'$ и B' диагональна. Более того, тогда $B' = diag(\Delta_1(B), \frac{\Delta_2(B)}{\Delta_1(B)}, \dots, \frac{\Delta_n(B)}{\Delta_{n-1}(B)})$

Доказательство.

Докажем индукцией по $n:=\dim V$, что матрица формы h приводится к диагональному виду в базисе с матрицей перехода из условия. База n=1 тривиальна, подходит исходный базис e. Пусть теперь n>1, тогда $U:=\langle \vec{e_1},\ldots,\vec{e_{n-1}}\rangle$ невырожденно относительно b, т.к. $\Delta_{n-1}(B)\neq 0$. Значит $V=U\oplus U^\perp$. Представим $\vec{e_n}=\vec{u}+\vec{e_n'},\vec{u}\in U,\vec{e_n'}\in U^\perp,\vec{e_n'}\neq \vec{0}$. По предположению индукции, в U можно выбрать подходящий базис $(\vec{e_1},\ldots,\vec{e_{n-1}})$, тогда его объединение с $\vec{e_n'}$ будет искомым.

Вычислим значения диагональных элементов $d_i, i \in \{1, ..., n\}$ Заметим, что поскольку базис e' получен описанным выше образом, то $\forall i \in \{1, ..., n\} : \langle \vec{e_1}, ..., \vec{e_i} \rangle = \langle \vec{e_1}', ..., \vec{e_i}' \rangle$. Пусть B_i - подматрица B в левом верхнем углу, а B_i' - аналогичная матрица в B'. Тогда $B_i' = S_i^T B_i S_i$, где S_i - соответствующая подматрица S, поэтому $b_1 b_2 ... b_i = \Delta_i(B_i') = |B_i'| = |S_i^T B_i S_i| = |B_i| = \Delta(B_i)$. Значит $B' = diag(\Delta_1(B), \frac{\Delta_2(B)}{\Delta_1(B)}, ..., \frac{\Delta_n(B)}{\Delta_{n-1}(B)})$

10.7 Критерий Сильвестра

Пусть $h \in \mathcal{Q}(V), h \leftrightarrow_e B$. Тогда h положительно определена $\Leftrightarrow \forall i \in \{1, \dots, n\}: \Delta_i(B) > 0$.

Доказательство. \Rightarrow Если h положительно определена, то $B = A^T A, A \in Gl_n(\mathbb{R})$. Тогда $\Delta_n(B) = |B| = |A|^2 > 0$. Поскольку главному минору порядка i соответствует ограничение h на $U = \langle \vec{e_1}, \ldots, \vec{e_i} \rangle$, которое тоже положительно определено, то, аналогично $\Delta_i(B) > 0$ \Leftarrow Очевидно, используя метод Якоби.

11 Приведение кососимметричной билинейной формы к каноническому виду

Пусть $b \in \mathcal{B}^-(V)$. Тогда в V существует базис e, в котором матрица b имеет блочно-диагональный вид, состоящий из блоков B_i , где $\forall i: B_i = (0) \lor B_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Доказательство.

Докажем данное утверждение индукцией по $n:=\dim V$. База, n=1, и случай, когда b=0, тривиальны. Пусть теперь $\exists \vec{v_1}, \vec{v_2} \in V: b(\vec{v_1}, \vec{v_2}) \neq 0$. Пусть $U=\langle \vec{v_1}, \vec{v_2} \rangle$. Тогда эти векторы линейно независимы, и без ограничения общности можно считать, что $b|_U=\begin{pmatrix} 0&1\\-1&0 \end{pmatrix}$ Заметим, что ограничение $b|_U$ невырожденно, значит $V=U\oplus U^\perp$, и к U^\perp применимо предположение индукции.

12 Об эрмитовых формах

12.1 Полуторалинейные формы в комплексном пространстве

Полуторалинейной формой на V называется функция $b: V \times V \to \mathbb{C}$ такая, что:

- 1. *b* линейна по первому аргументу
- 2. b сопряжённо-линейна по второму аргументу:
 - $\forall \vec{u}, \vec{v_1}, \vec{v_2} \in V : b(\vec{u}, \vec{v_1} + \vec{v_2}) = b(\vec{u}, \vec{v_1}) + b(\vec{u}, \vec{v_2})$
 - $\forall \vec{u}, \vec{v} \in V : \forall \lambda \in \mathbb{C} : b(\vec{u}, \lambda \vec{v}) = \overline{\lambda} b(\vec{u}, \vec{v})$

12.2 Эрмитовы полуторалинейные и квадратичные формы, связь между ними

12.2.1 Определение эрмитовой полуторалинейной формы

Пусть $b \in \mathcal{S}(V)$. Форма b называется эрмитовой, если для всех $\vec{u}, \vec{v} \in V$ выполнено $b(\vec{u}, \vec{v}) = \overline{b(\vec{v}, \vec{u})}$. Матрица $B \in M_n(\mathbb{C})$ называется эрмитовой, если $B^T = \overline{B}$, или $B = B^*$, где $B^* := \overline{B^T}$ - эрмитово сопряжённая к B матрица.

12.2.2 Определение эрмитовой квадратичной формы

Эрмитовой квадратичной формой, соответствующей эрмитовой форме $b \in \mathcal{S}(V)$, называется функция $h: V \to \mathbb{C}$ такая, что $\forall \vec{v} \in V: h(\vec{v}) = b(\vec{v}, \vec{v})$. Форма h называется полярной к h.

12.2.3 О связи эрмитовых полуторалинейных и квадратичных форм

Если $b_1, b_2 \in \mathcal{S}(V)$ - различные эрмитовы формы, то соответствующие им квадратичные формы также различны.

Доказательство.

Пусть h - эрмитова квадратичная форма. Восстановим эрмитову форму $b \in \mathbb{S}(V),$ полярную к h:

$$Re(b(\vec{u}, \vec{v})) = \frac{h(\vec{u} + \vec{v}) - h(\vec{u}) - h(\vec{v})}{2}$$
$$Im(b(\vec{u}, \vec{v})) = Re(-ib(\vec{u}, \vec{v})) = Re(b(\vec{u}, i\vec{v}))$$

12.3 Приведение к каноническому виду

Пусть h - эрмитова квадратичная форма. Тогда в пространстве V существует такой базис e, что h в этом базисе имеет диагональную матрицу с числами 0 и ± 1 на главной диагонали.

Доказательство аналогично билинейному случаю.

12.4 Закон инерции и критерий Сильвестра для эрмитовых квадратичных форм

Аналогично билинейному случаю.

13 Об операторах в евклидовых и эрмитовых пространствах

13.1 Евклидово и эрмитово пространство

13.1.1 Евклидово пространство

Евклидовым пространством называется линейное пространство V над \mathbb{R} , на котором определена положительно определённая симметричная билинейная форма (\vec{u}, \vec{v}) - скалярное произведение.

13.1.2 Эрмитово пространство

Эрмитовым пространством называется линейное пространство V над \mathbb{C} , на котором определена положительно определённая квадратичная форма (\vec{u}, \vec{v}) - скалярное произведение.

13.2 Выражение скалярного произведения в координатах

В евклидовом случае матрица Грама симметрична, в эрмитовом - эрмитова. Более того, очевидно, что для любых векторов $\vec{u} \leftrightarrow_e x, \vec{v} \leftrightarrow_e y$ выполнено $(\vec{u}, \vec{v}) = x^T \Gamma y$

13.3 Свойства матрицы Грама

Система $(\vec{v_1},\ldots,\vec{v_k})$ линейно независима \Leftrightarrow её матрица Грама Γ положительно определена \Leftrightarrow det $\Gamma>0$

Доказательство.

Если система $(\vec{v_1}, \ldots, \vec{v_k})$ линейно зависима, то тогда существует столбец $x \neq \vec{0}$ такой, что $(\vec{v_1}, \ldots, \vec{v_k})x = \vec{0}$. Тогда $\forall i \in \{1, \ldots, k\}: (0, \ldots, 1_i, \ldots, 0)\Gamma x = 0 \Rightarrow E\Gamma x = 0 \Rightarrow$

 Γ вырожденна, откуда $\det \Gamma = 0$, и Γ не положительно определена. Если же система $(\vec{v_1}, \ldots, \vec{v_k})$ линейно независима, то Γ - это матрица ограничения скалярного произведения на $\langle \vec{v_1}, \ldots, \vec{v_k} \rangle$, тогда Γ положительно определена, а значит $\det \Gamma > 0$

13.4 Неравенство Коши-Буняковского-Шварца, неравенство треугольника

13.4.1 Неравенство Коши-Буняковского-Шварца

Для любых векторов $\vec{u}, \vec{v} \in V$ выполнено $|(\vec{u}, \vec{v})| \leq ||\vec{u}|| \cdot ||\vec{v}||$, причём равенство достигается тогда и только тогда, когда \vec{u} и \vec{v} коллинеарны.

Доказательство.

Обозначим через Γ матрицу Γ рама системы векторов (\vec{u}, \vec{v}) , тогда выполнено $\det 0 \leq \det \Gamma = \|\vec{u}\|^2 \cdot \|\vec{v}\|^2 - (\vec{u}, \vec{v})^2$, откуда $|(\vec{u}, \vec{v})| \leq \|\vec{u}\| \cdot \|\vec{v}\|$

13.4.2 Неравенство треугольника

Для любых векторов $\vec{u}, \vec{v} \in V$ выполнено $\|\vec{u} + \vec{v}\| \leq \|\vec{v}\| + \|\vec{u}\|$. Доказательство. Воспользуемся неравенством Коши-Буняковского-Шварца.

$$\|\vec{v} + \vec{u}\|^2 = (\vec{u} + \vec{v}, \vec{u} + \vec{v}) = \|\vec{v}\|^2 + \|\vec{u}\|^2 + 2Re(\vec{u}, \vec{v}) \leqslant \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2(\vec{u}, \vec{v}) \leqslant \|\vec{v}\|^2 + \|\vec{u}\|^2 + 2\|\vec{v}\| \cdot \|\vec{u}\| = (\|\vec{v}\| + \|\vec{u}\|)^2$$

14 Об ортонормированных векторах и изоморфизмах

14.1 Ортонормированные базисы и ортогональные (униатрные) матрицы

14.1.1 Определения для векторов

Векторы $\vec{u}, \vec{v} \in V$ называются ортогональными, если $(\vec{u}, \vec{v}) = 0$. Обозначение $\vec{u} \perp \vec{v}$. Система векторов $(\vec{v_1}, \ldots, \vec{v_k})$ из V называется ортогональной, если все векторы системы попарно ортогональны, и ортонормированной, если она ортогональна и длина каждого вектора равна 1.

14.1.2 Определения для матриц

Матрица $S \in M_n(\mathbb{R})$ называется ортогональной, если $S^TS = E$. Матрица $S \in M_n(\mathbb{C})$ называется унитарной, если $\overline{S^T}S = E$, или $S^T\overline{S} = E$.

14.2 Существование ортонормированных базисов

В пространстве V существует ортонормированный базис.

Доказательство.

Приведём скалярное произведение к нормальному виду E. Нормальный базис и будет искомым ортонормированным базисом.

14.3 Изоморфизмы евклидовых и эрмитовых пространств

14.3.1 Определение

Пусть V_1 и V_2 евклидовы (эрмитовы) пространства. Отображение $\varphi:V_1\to V_2$ называется изоморфизмом евклидовых (эрмитовых) пространств, если:

- 1. φ изоморфизм линейных простриств V_1 и V_2 .
- 2. $\forall \vec{u}, \vec{v} \in V : (\vec{u}, \vec{v}) = (\varphi(\vec{u}), \varphi(\vec{v}))$

14.3.2 Теорема об изоморфизме пространств с одинаковой размерностью

Пусть V_1 и V_2 - евклидовы (эрмитовы) пространства. Тогда $V_1\cong V_2\Leftrightarrow \dim V_1=\dim V_2$ Доказательство.

 \Leftarrow Пусть e_1, e_2 - ортонормированные базисы в V_1, V_2, φ - линейное отображение, такое, что $\varphi(e_1) = e_2$, причём для любых $\vec{u}, \vec{v} \in V_1 : \vec{v} \leftrightarrow_{e_1} x, \vec{u} \leftrightarrow_{e_1} y$, выполнено $(\vec{u}, \vec{v}) = x^T \overline{y} = (\varphi(\vec{u}), \varphi(\vec{v}))$.

 \Rightarrow Поскольку $V_1\cong V_2$, то они в частности изоморфны, как линейные пространства, тогда $\dim V_1=\dim V_2$

14.4 Канонический изоморфизм евклидова пространства и сопряжённого к нему

Для каждого $\vec{v} \in V$ положим $f_{\vec{v}}(\vec{u}) := (\vec{v}, \vec{u})$. Тогда сопоставление $\vec{v} \mapsto f_{\vec{v}}$ осуществляет изоморфизм между V и V^* .

Доказывается непосредственной проверкой.

15 Об ортогонализации и объёмах

15.1 Ортогональное дополнение подпространства

Пусть $U, W \leqslant V$. Тогда:

- 1. $(U^{\perp})^{\perp} = U$
- $2. \ (U+W)^{\perp}=U^{\perp}\cap W^{\perp}$
- 3. $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$

Доказательство.

Расммотрим изоморфизм $\theta: V \to V^*$ из предыдущей теоремы и заметим, что $\theta(U^{\perp}) = \{f_{\vec{v}} \in V^* \mid \vec{v} \in U^{\perp}\} = \{f \in V^* \mid \forall \vec{u} \in U: f(\vec{u}) = 0\} = U^0$ для любого подпространства $U \leqslant V$.

- 1. Докажем данную формулу непосредственно. Так как $\dim U = \dim V \dim U$; $\dim U^{\perp} = \dim V \dim(U^{\perp})^{\perp}$, то $\dim U = \dim(U^{\perp})^{\perp}$. При этом, $U \leqslant (U^{\perp})^{\perp}$, поскольку $\forall \vec{u} \in U, \forall \vec{v} \in U^{\perp} : \vec{u} \perp \vec{v}$. Значит $U = (U^{\perp})^{\perp}$
- 2. Поскольку $(U+W)^0=U^0\cap W^0$, то, применяя θ к обеим частям неравенства, получим, $(U+W)^\perp=U^\perp\cap W^\perp$

3. Поскольку $(U\cap W)^0=U^0+W^0$, то, применяя θ к обеим частям неравенства, получим, $(U\cap W)^\perp=U^\perp+W^\perp$

15.2 Ортогональное проектирование

15.2.1 Определение

Пусть $U\leqslant V, \vec{v}\in V$. Вектор \vec{v} единственным образом представляется в виде суммы $\vec{u}+\vec{u'},\vec{u}\in U,\vec{u'}\in U^\perp$. Вектор \vec{u} называется ортогональной проекцией \vec{v} на подпространство U. Обозначение - $pr_U\,\vec{v}$

15.2.2 Вычисление проекции

Пусть $e = (\vec{e_1}, \dots, \vec{e_k})$ - это ортогональный базис в U. Тогда для любого вектора $\vec{v} \in V$ выполнено равенство:

$$pr_U \vec{v} = \sum_{i=1}^k \frac{(\vec{v}, \vec{e_i})}{\|e_i\|^2} \vec{e_i}$$

Доказательство.

Представим \vec{v} в виде $\vec{v} = \vec{u} + \vec{u'}, \vec{u} \in U, \vec{u'} \in U^{\perp}$, тогда $\vec{u} = \sum_{i=1}^k \alpha_i \vec{e_i}$. Заметим теперь, что $\forall j \in \{1, \ldots, k\} : \ (\vec{e_j}, \vec{v}) = (\vec{u} + \vec{u'}, \vec{e_j}) = (\vec{u}, \vec{e_j}) = \alpha_j \|\vec{e_j}\|^2$, откуда получаем требуемое.

15.3 Процесс ортогонализации Грама-Шмидта

Пусть $(\vec{f_1},\ldots,\vec{f_n})$ - базис в V. Тогда в V существует ортогональный базис $(\vec{e_1},\ldots,\vec{e_n})$ такой, что $\forall k \in \{1,\ldots,n\}: \langle \vec{e_1},\ldots,\vec{e_i} \rangle = \langle \vec{f_1},\ldots,\vec{f_i} \rangle$, причём матрица перехода S - верхнетреугольная с единицами на диагонали.

Доказательство.

Положим $\vec{e_1} := \vec{f_1}, \vec{e_i} = \vec{f_i} - pr_{\langle f_1, \dots, f_{i-1} \rangle}(\vec{f_i})$. Тогда матрица перехода S - верхнетреугольная с единицами на главной диагонали, поэтому $(\vec{e_1}, \dots, \vec{e_n})$ является базисом в V.

Проверим равенство $\langle \vec{e_1}, \dots, \vec{e_k} \rangle = \langle \vec{f_1}, \dots, \vec{f_k} \rangle$ индукцией по k. База k=1 тривиальна. Пусть теперь i>1, тогда: $\langle \vec{e_1}, \dots, \vec{e_{i-1}}, \vec{e_i} \rangle = \langle \vec{f_1}, \dots, \vec{f_{i-1}}, \vec{e_i} \rangle = \langle \vec{f_1}, \dots, \vec{f_{i-1}}, \vec{f_i} \rangle$

15.4 Объём параллелипипеда

15.4.1 Определение

k - мерным объёмом системы $(\vec{v_1}, \ldots, \vec{v_k})$ векторов из V называется величина $V_k(\vec{v_1}, \ldots, \vec{v_k})$, определяемая индуктивно:

- Если k=1, то $V_1(\vec{v_1}):=\|\vec{v_1}\|$
- Если $k \geqslant 2$, то $V_k := V_{k-1}(\vec{v_1}, \ldots, \vec{v_{k-1}}) \cdot \rho(\langle \vec{v_1}, \ldots, \vec{v_{k-1}} \rangle, \vec{v_k})$

15.4.2 Вычисление объёма параллелипипеда

Пусть $\vec{v_1}, \ldots, \vec{v_k} \in V, \Gamma := \Gamma(\vec{v_1}, \ldots, \vec{v_k})$. Тогда $V_k(\vec{v_1}, \ldots, \vec{v_k}) = \sqrt{\det \Gamma}$ Доказательство.

Если система $(\vec{v_1}, \ldots, \vec{v_k})$ линейно зависима, то $\det \Gamma = 0$, но при этом $\exists i \in \{1, \ldots, k\}$: $\vec{v_i} \in \langle v_1, \ldots, v_{i-1} \rangle \Rightarrow V_i(\vec{v_1}, \ldots, \vec{v_i}) = 0$, поэтому все последующие объёмы также равны нулю.

Если же система $(\vec{v_1},\ldots,\vec{v_k})$ линейно независима, то она образует базис в $U:=\langle \vec{v_1},\ldots,\vec{v_k}\rangle$. Применим к нему метод Грама-Шмидта и получим ортогональный базис $(\vec{e_1},\ldots,\vec{e_k})$ такой, что $(\vec{e_1},\ldots,\vec{e_k})=(\vec{v_1},\ldots,\vec{v_k})S$, где матрица перехода S - верхнетреугольная с единицами на главной диагонали. Тогда $\det\gamma(\vec{e_1},\ldots,\vec{e_k})=\det\Gamma\cdot(\det S)^2=\det\Gamma$, откуда:

$$V_k(\vec{e_1}, \dots, \vec{e_k}) = V_1(\vec{e_1})\rho(\vec{e_2}, \langle \vec{e_1} \rangle) \dots \rho(\vec{e_k}, \langle \vec{e_1}, \dots, \vec{e_{k-1}} \rangle) =$$

$$\|\vec{e_1}\| \dots \|\vec{e_k}\| = \sqrt{\det \Gamma(\vec{e_1}, \dots, \vec{e_k})} = \sqrt{\det \Gamma}$$

Остаётся проверить по индукции, что $\forall i \in \{1, \ldots, k\}: V_i(\vec{e_1}, \ldots, \vec{e_i}) = V_i(\vec{v_1}, \ldots, \vec{v_i}).$ База i=1 тривиальна. Пусть теперь $i \geqslant 2$, тогда:

$$V_{i}(\vec{e_{1}}, \dots, \vec{e_{i}}) = V_{i-1}(\vec{e_{1}}, \dots, \vec{e_{i-1}})\rho(\vec{e_{i}}, \langle \vec{e_{1}}, \dots, \vec{e_{i-1}} \rangle) =$$

$$V_{i-1}(\vec{v_{1}}, \dots, \vec{v_{i-1}})\rho(\vec{e_{i}}, \langle \vec{v_{1}}, \dots, \vec{v_{i-1}} \rangle) = V_{i}(\vec{v_{1}}, \dots, \vec{v_{i}})$$

16 О сопряжённых преобразованиях

16.1 Связь билинейных (полуторалинейных) форм и линейных преобразований в евклидовом (эрмитовом) пространстве

16.1.1 Новое обозначение

Пусть $\varphi \in \mathcal{L}(V)$. Для всех $\vec{u}, \vec{v} \in V$ положим $f_{\varphi}(\vec{u}, \vec{v}) := (\varphi(\vec{u}), \vec{v})$

16.1.2 Связь билинейных форм и преобразований

Пусть e - ортонормированный базис в $V, \varphi \in \mathcal{L}(V)$ - такой оператор, что $\varphi \leftrightarrow_e A, f_\varphi \leftrightarrow_e B$. Тогда $B = A^T$.

Следствие. Сопоставление $\varphi \mapsto f_{\varphi}$ осуществляет изоморфизм между $\mathcal{L}(V)$ и $\mathcal{B}_{\theta}(V)$ Доказательство.

Если $\vec{u} \leftrightarrow_e x, \vec{v} \leftrightarrow_e y$. Тогда $f_{\varphi}(\vec{u}, \vec{v}) = (\varphi(\vec{u}), \vec{v}) = x^T B y = (Ax)^T y = x^T A^T y$, что и означает требуемое в силу биективности сопоставления матриц θ -линейных форм.

16.2 Преобразование, сопряжённое данному

Пусть $\varphi \in \mathcal{L}(V)$. Оператором, сопряжённым к φ , называется оператор φ^* такой, что $f_{\varphi} = g_{\varphi^*}$, то есть $\forall \vec{u}, \vec{v} \in V : (\varphi(\vec{u}), \vec{v}) = (\vec{u}, \varphi^*(\vec{v}))$

16.3 Его существование и единственность, его свойства

16.3.1 Существование сопряжённого оператора

Поскольку сопоставление $\varphi \mapsto f_{\varphi} \mapsto g_{\varphi^*} \mapsto \varphi^*$ биективны, то сопряжённый оператор существует и единственен. Более того, сопоставление $\varphi \mapsto \varphi^*$ осуществляет автоморфизм в евклидовом случае и антиавтоморфизм в эрмитовом случае.

16.3.2 Связь матрицы оператора и сопряжённого к нему

Пусть e - ортонормированный базис в $V, \varphi \in \mathcal{L}(V)$ - такой линейный оператор, что $\varphi \leftrightarrow_e A$. Тогда $\varphi^* \leftrightarrow_e A^*$.

Доказательство.

Поскольку $\varphi \leftrightarrow_e A$, то $f_{\varphi} = g_{\varphi^*} \leftrightarrow A^T$. Значит $\varphi^* \leftrightarrow A^*$.

16.3.3 Свойства сопряжённых операторов

- 1. Сопоставление $\varphi \mapsto \varphi^*$ сопряжённо линейно
- 2. $\forall \varphi, \psi \in \mathcal{L}(V) : (\varphi \psi)^* = \psi^* \varphi^*$
- 3. $\forall \varphi \in \mathcal{L}(V) : \varphi^{**} = \varphi$

Доказательство.

Первое свойство уже было отмечено, докажем два последних. Зафиксируем $\vec{u}, \vec{v} \in V,$ тогда:

$$(\varphi\psi(\vec{u}), \vec{v}) = (\psi(\vec{u}), \varphi^*(\vec{v})) = (\vec{u}, \psi^*\varphi^*(\vec{v}))$$
$$(\vec{u}, \varphi(\vec{v})) = \overline{(\varphi(\vec{v}), \vec{u})} = \overline{(\vec{v}, \varphi^*(\vec{u}))} = (\varphi^*(\vec{u}), \vec{v})$$

В силу единственности оператора, получили требуемое.

16.3.4 О связи инвариантных подпространств оператора и сопряжённого к нему

Пусть $\varphi \in \mathcal{L}(V)$ и подпространство $U \leqslant V$ инвариантно относительно φ . Тогда U^\perp инвариантно относительно φ^* .

Доказательство.

Пусть $\vec{v} \in U^{\perp}$. Тогда $\forall \vec{u} \in U: 0 = (\varphi(\vec{u}), \vec{v}) = (\vec{u}, \varphi^*(\vec{v}))$ в силу инвариантности U. Значит $\varphi^*(\vec{v}) \in U^{\perp}$.

16.4 Теорема Фредгольма

Пусть $\varphi \in \mathcal{L}(V)$. Тогда $\operatorname{Ker} \varphi^* = (\operatorname{Im} \varphi)^{\perp}$ Доказательство.

- \subset . Пусть $\vec{v} \in \text{Ker } \varphi^* \Rightarrow \varphi^*(\vec{v}) = 0 \Rightarrow \forall \vec{u} \in V : 0 = (\vec{u}, \varphi^*(\vec{v})) = (\varphi(\vec{u}), \vec{v}) \Rightarrow \vec{v} \in (\text{Im } \varphi)^{\perp}$
- \supset . Заметим, что rk $\varphi = \operatorname{rk} \varphi^* = \dim \operatorname{Im} \varphi = \dim \operatorname{Im} \varphi^* \Rightarrow \dim \operatorname{Ker} \varphi^* = \dim V \dim \operatorname{Im} \varphi = \dim (\operatorname{Im} \varphi)^{\perp}$.

17 О самосопряжённых преобразованиях

17.1 Самосопряжённые линейные преобразования

Оператор $\varphi \in \mathcal{L}(V)$ называется самосопряжённым, если $\varphi^* = \varphi$, то есть $\forall \vec{u}, \vec{v} \in V(\varphi(\vec{u}), \vec{v}) = (\vec{u}, \varphi(\vec{v}))$.

17.2 Свойства самосопряжённых преобразований

17.2.1 Инвариантные пространства самосопряжённых операторов

Пусть $\varphi \in \mathcal{L}(V)$ - самосопряжённый, $U \leqslant V$. Тогда U инвариантно относительно $\varphi \Leftrightarrow U^{\perp}$ инвариантно относительно φ .

Доказательство.

⇒. Это уже было доказано.

 \Leftarrow . $(U^{\perp})^{\perp}=U$, поэтому U инвариантно относительно φ .

17.2.2 Характеристический многочлен самосопряжённых операторов

Пусть $\varphi \in \mathcal{L}(V)$ - самосопряжённый. Тогда его характеристический многочлен χ_{φ} раскладывается на линейные сомножители над \mathbb{R} .

Доказательство.

Пусть V - эрмитово пространство, $\lambda \in \mathbb{C}$ - корень χ_{φ} . Тогда λ является собственным значением φ с собственным вектором $\vec{v} \in V, \vec{v} \neq \vec{0}$, откуда

$$\lambda \|\vec{v}\|^2 = (\varphi(\vec{v}), \vec{v}) = (\vec{v}, \varphi^*(vev)) = \overline{\lambda} \|\vec{v}\|^2 \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$$

Пусть теперь V евклидово пространство с ортонормированным базисом e, тогда $\varphi \leftrightarrow_e A \in M_n(\mathbb{R}), A = A^T$. Рассмотрим U - эрмитово пространство с ортонормированным базисом \mathcal{F} , и оператор $\psi \leftrightarrow_{\mathcal{F}} A$. Тогда ψ тоже самосопряжённый, поэтому для ψ утвеждение выполнено. Тогда заметим, что $\chi_{\varphi} = \chi_A = \chi_{\psi}$.

17.2.3 Ортогональность собственных подпространств самосопряжённого оператора

Пусть $\varphi \in \mathcal{L}(V)$ - самосопряжённый, $\lambda_1, \lambda_2 \in \mathbb{R}$ - два различных собственных значения φ . Тогда $V_{\lambda_1} \bot V_{\lambda_2}$.

Доказательство.

Пусть $\vec{v_1} \in V_{\lambda_1}, \vec{v_2} \in V_{\lambda_2}$. Тогда:

$$\lambda_1(\vec{v_1}, \vec{v_2}) = (\varphi(\vec{v_1}), \vec{v_2}) = (\vec{v_1}, \varphi(\vec{v_2})) = \lambda_2(\vec{v_1}, \vec{v_2}) \Rightarrow (\vec{v_1}, \vec{v_2}) = 0$$

17.3 Существование ортонормированного базиса из собственных векторов самосопряжённого линейного преобрзования

Пусть $\varphi \in \mathcal{L}(V)$ - самосопряжённый. Тогда в V существует ортонормированный базис e, в котором матрица оператора φ диагональна.

Доказательство.

Проведём индукцию по $n:=\dim V$. База, n=1, тривиальна. Пусть n>1. Поскольку корни χ_{φ} вещественные, то у φ есть собственное значение $\lambda_0\in\mathbb{R}$. Пусть $\vec{e_0}\in V$ -

соответствующий ему собственный вектор длины 1. Тогда подпространство $U := \langle \vec{e_1} \rangle^{\perp}$ инвариантно относительно φ , поэтому можно рассмотреть оператор $\varphi|_U \in \mathcal{L}(U)$, который также является самосопряжённым. По предположению индуции, в U есть ортонормированный базис из собственных векторов, тогда его объединение с $\vec{e_0}$ даёт нужный нам базис в V.

18 Об ортогональных операторах

18.1 Ортогональные и унитарные преобразования, их свойства

18.1.1 Определение

Оператор $\varphi \in \mathcal{L}(V)$ называется ортогональным (унитарным), если $\forall \vec{u}, \vec{v} \in V : (\vec{u}, \vec{v}) = (\varphi(\vec{u}), \varphi(\vec{v}))$

18.1.2 Критерий ортогональности преобразования

Пусть $\varphi \in \mathcal{L}(V)$. Тогда оператор φ ортогонален (унитарен) $\Leftrightarrow \varphi$ обратим и $\varphi^{-1} = \varphi^*$ Доказательство.

По определению, φ ортогонален (унитарен) \Leftrightarrow для любых векторов $\vec{u}, \vec{v} \in V$ выполнено $(\vec{u}, \vec{v}) = (\varphi(\vec{u}), \varphi(\vec{v})) = (\vec{u}, \varphi^* \varphi(\vec{v})) \Rightarrow \varphi^* \varphi = id$. Это равносильно тому, что φ обратим и $\varphi^{-1} = \varphi^*$

18.1.3 Об инвариантных подпространствах ортогонального оператора

Пусть $\varphi \in \mathcal{L}(V)$ - ортогональный (унитарный), $U \leqslant V$. Тогда U инвариантно относительно $\varphi \Leftrightarrow U^{\perp}$ - инвариантно относительно φ

Доказательство.

Поскольку $(U^{\perp})^{\perp} = U$, то достаточно доказать импликацию \Rightarrow . Так как U инвариантно относительно φ , то $\varphi^* = \varphi^{-1}$ инвариантно относительно U^{\perp} , то есть $\varphi^{-1}(U^{\perp}) \leqslant U^{\perp}$, но φ биективен, поэтому $\varphi^{-1}(U^{\perp}) = U^{\perp} \Rightarrow \varphi(U^{\perp}) = U^{\perp}$, откуда U^{\perp} инвариантно относительно φ .

18.2 Инвариантные подпространства малой размерности для преобразований вещественного типа

Пусть V - линейное пространство над \mathbb{R} , $\dim V \geqslant 1, \varphi \in \mathcal{L}(V)$. Тогда у φ существует одномерное или двумерное инвариантное подпространство.

Доказательство.

По основной теореме алгебры, минимальный многочлен μ_{φ} имеет следующий вид:

$$\mu_{\varphi} = \prod_{i=1}^{k} (\lambda - \lambda_i) \prod_{j=1}^{m} (\lambda^2 + \alpha_j \lambda + \beta_j)$$

Поскольку μ_{φ} - минимальный, то все операторы $\varphi-\lambda_i, \varphi^2+\alpha_j\varphi+\beta_j$ вырождены. Значит, возможны два случая

1. Если $\varphi - \lambda_i$ вырожденный, то $\exists \vec{v} \in V : \varphi(\vec{v}) = \lambda_i \vec{v} \Rightarrow \langle \vec{v} \rangle$ - ивариантное подпространство размерности 1.

2. Если $\varphi^2 + \alpha_j \varphi + \beta_j$ вырожденный, то $\exists \vec{v} \in V : (\varphi^2 + \alpha_j \varphi + \beta_j)(\vec{v}) = \vec{0} \Rightarrow \varphi^2(\vec{v}) = -\alpha_j \varphi(\vec{v}) - \beta_j \vec{v} \Rightarrow \langle \vec{v}, \varphi(\vec{v}) \rangle$ - инвариантное подпространство размерности 2.

18.3 Канонический вид унитарного и ортогонального преобразований

18.3.1 Канонический вид унитарного преобразования

Пусть V - эрмитово пространство, $\varphi \in \mathcal{L}(V)$ - унитарный. Тогда в V существует ортонормированный базис e, в котором матрица оператора φ диагональна с числами модуля 1 на главной диагонали.

Доказательство.

Докажем диагонализируемость оператора φ в ортонормированном базисе индкцией по $n:=\dim V$. База n=1 тривиальна, пусть n>1. Поскольку у χ_{φ} есть корень над \mathbb{C} , то у φ есть собственный вектор $\vec{e_0}$ длины 1. Тогда $U:=\langle\vec{e_0}\rangle^{\perp}$ инвариантно относительно φ , поэтому можно рассмотреть оператор $\varphi|_U\in\mathcal{L}(U)$, который также является унитарным. По предположению индукции, в U есть ортонормированный базис из собственных векторов, тогда объединение с $\vec{e_0}$ даёт искомый базис в V.

Покажем теперь, что все собственные значения оператора φ имеют модуль 1. Действительно, если $\vec{v} \in V, \vec{v} \neq \vec{0}$ - собственный вектор со значением λ , то $(\vec{v}, \vec{v}) = (\varphi(\vec{v}), \varphi(\vec{v})) = \lambda^2(\vec{v}, \vec{v}) \Rightarrow |\lambda| = 1$.

18.3.2 Канонический вид ортогонального преобразования

Пусть V - евклидово пространство $\varphi \in \mathcal{L}(V)$ - ортогональный. Тогда в V существует ортонормированный базис e, в котором матрица оператора φ имеет блочно-диагональный вид, состоящий из блоков B_i , где $\forall i: B_i = (\pm 1) \lor B_i = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$

Доказательство.

Проведём индукцию по $n:=\dim V$. База, n=0 тривиальна. Пусть $n\geqslant 1$. Выберем $U\leqslant V$ - одномерное или двумерное инвариантное относительно φ подпространство. Тогда U^\perp тоже инвариантно относительно φ , и в U^\perp есть требуемый базис e' по предположению индукции. Если e'' - некоторый ортонормированный базис в U, то его объединение с e' даёт ортонормированный базис в V. Исследуем оператор $\varphi|_U\in\mathcal{L}(U)$:

- 1. Если $\dim U = 1$, то $U = \langle \vec{v} \rangle$, где $\vec{v} \in V$ собственный вектор длины 1 с собственным значением $\lambda \in \mathbb{R} \Rightarrow \lambda = \pm 1$ аналогично комплексному случаю.
- 2. Если $\dim U=2$, то $\varphi|_U\leftrightarrow_{e''}C=\begin{pmatrix}a&b\\c&d\end{pmatrix}$. Тогда, т.к. $\varphi|_U$ также ортогональный, то:

$$C^{T}C = E \Leftrightarrow \begin{cases} a^{2} + c^{2} = 1\\ b^{2} + d^{2} = 1\\ ab + cd = 0 \end{cases}$$

Выберем $\alpha, \beta \in [0, 2\pi)$ такие, что $a = \cos \alpha, b = \sin \beta, c = \sin \alpha, d = -\cos \beta$, тогда $\sin(\alpha - \beta) = 0 \Leftrightarrow \alpha = \beta \vee \alpha = \beta \pm \pi$. В первом случае уже получено требуемое, во втором матрица C имеет вид:

$$\begin{pmatrix}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{pmatrix}$$

В этом случае $\chi_C(\lambda) = \lambda^2 - 1$, поэтому $U = \langle \vec{u}, \vec{v} \rangle, \vec{u}, \vec{v} \in V$ - собственные векторы длины 1 с собственными значениями 1 и -1. Заметим теперь, что $(\vec{u}, \vec{v}) = (\varphi(\vec{u}), \varphi(\vec{v})) = (\vec{u}, -\vec{v}) \Rightarrow (\vec{u}, \vec{v}) = 0$.

18.4 Полярное разложение линейного преобразования в евклидовом пространстве

Пусть $\varphi \in \mathcal{L}(V)$. Тогда существуют $\psi, \theta \in \mathcal{L}(V)$ такие, что ψ - самосопряжённый с неотрицательными собственными значениями, а θ - ортогональный (унитарный), и $\psi = \psi \theta$ Доказательство.

Рассмотрим оператор $\nu := \varphi^* \varphi, \nu^* = \varphi^* \varphi \Rightarrow \nu$ самосопряжённый. Более того, если $\vec{v} \in V \setminus \{\vec{0}\}$ - собственный вектор с собственным значением λ , то $(\varphi(\vec{v}), \varphi(\vec{v})) = (\vec{v}, \nu(\vec{v})) = \lambda(\vec{v}, \vec{v}) \Rightarrow \lambda \geqslant 0$.

Пусть $(\vec{e_1},\ldots,\vec{e_n})$ - ортонормированный базис в V из собственных векторов ν с собственными значениями $\lambda_1,\ldots,\lambda_k\geqslant 0$. Положим $\vec{f_i}=\varphi(\vec{e_i})$. Тогда $\forall i,j:(\vec{f_i},\vec{f_j})=(\vec{e_i},\nu(\vec{e_j}))=\lambda(\vec{e_i},\vec{e_j})\Rightarrow$ система $(\vec{f_1},\ldots,\vec{f_n})$ ортогональна и $\forall i: \|\vec{f_i}\|=\sqrt{\lambda_i}\vec{e_i}$

Без ограничения общности, будем считать, что первые k собственных значений положительные, а остальные - нулевые, тогда будем считать, что $\vec{g_i} = \begin{cases} \frac{\vec{f_i}}{\sqrt{\lambda_i}} & \vec{f_i} \neq \vec{0} \\ 0 & \vec{f_i} = 0 \end{cases}$ дополним систему $(\vec{g_1}, \ldots, \vec{g_k})$ до ортонормированного базиса $(\vec{g_1}, \ldots, \vec{g_n})$. Тогда оператор φ имеет следующий вид: $\varphi: \vec{e_i} \to \vec{g_i} \to \sqrt{\lambda} \vec{g_i} = \vec{f_i}$. Тогда зададим операторы $\theta, \psi \in \mathcal{L}(V)$, как:

$$\theta: \vec{e_i} \to \vec{g_i}$$

$$\psi: \vec{g_i} \to \sqrt{\lambda_i} \vec{g_i}$$

Таким образом, $\varphi = \psi \theta$. Наконец, θ переводит ортонормированный базис в ортонормированный, значит он ортогональный, а ψ имеет в базисе $(\vec{g_1}, \ldots, \vec{g_n})$ диагональный вид, поэтому ψ - самосопряжённый.

19 О привидениях

19.1 Приведение квадратичной формы в евклидовом пространстве к главным осям

Пусть V - евклидово (эрмитово) пространство, $q \in \mathcal{Q}(V)$. Тогда в V существует ортонормированный базис e, в котором q имеет диагональный вид.

Доказательство.

Пусть $b \in \mathbb{B}^+(V)$ - θ линейная форма, полярная к q. Тогда $\exists \varphi \in \mathbb{L}(V): b(\vec{u}, \vec{v}) = (\varphi(\vec{u}), \vec{v})$. При этом:

$$b(\vec{u},\vec{v}) = (\varphi(\vec{u}),\vec{v}) = \overline{b(\vec{v},\vec{u})} = \overline{(\varphi(\vec{v}),\vec{u})} = (\vec{u},\varphi(\vec{v}))$$

Значит φ самосопряжённый, и в V существует ортонормированный базис, в котором φ диагонализуем. Тогда если $\varphi \leftrightarrow_e A, b \leftrightarrow_e A^T, q \leftrightarrow_e A^T$, поэтому форма q тоже имеет диагональную матрицу в базисе e.

19.2 Одновременное приведение пары квадратичных форм к диагональному виду

Пусть V - линейное пространство над $\mathbb{R}(\mathbb{C}), q_1, q_2 \in \mathbb{Q}(V)$ и q_2 положительно определена. Тогда в V существует такой базис e, в котором матрицы форм q_1, q_2 диагональны. Доказательство.

Пусть b - θ -линейная форма, полярная к q_2 . Тогда b можно объявить скалярным (эрмитовым) произведением на V. В полученном евклидовом (эрмитовом) пространстве форма q_1 приводится к диагональному виду в некотором ортонормированном базисе e. Поскольку базис e - ортонормированный, то в этом же базисе q_2 имеет диагональный вид E.

20 О тензорах

20.1 Тензоры, как полилинейные отображения

20.1.1 Определение тензора

Тензором типа (p,q), или p раз контрвариантным и q раз ковариантным тензором называется полилинейное отображение $t:(V^*)^p \times V^q \to F$. Все тензоры типа (p,q) образуют линейное пространство над F, обозначение - \mathbb{T}_q^p .

20.1.2 Примеры тензоров

- 1. Тензор типа (0,1) это линейный функционал на V, поэтому $\mathbb{T}_1^0 = V^*$
- 2. Тензор типа (1,0) это элемент пространства V^{**} , поэтому $\mathbb{T}^1_0 = V^{**} \cong V$
- 3. Тензор типа (0,2) это билинейная форма на V, поэтому $\mathcal{B}(V)=\mathbb{T}_2^0$

20.2 Тензорное произведение тензоров

Пусть $t \in \mathbb{T}_q^p, t' \in \mathbb{T}_{q'}^{p'}$. Тогда тензорным произведением тензоров t и t' называется тензор $t \otimes t' \in \mathbb{T}_{q+a'}^{p+p'}$ следующего вида:

$$t \otimes t'(f_1, \ldots, f_{p+p'}, \vec{v_1}, \ldots, \vec{v_{q+q'}}) = t(f_1, \ldots, f_p, \vec{v_1}, \ldots, \vec{v_q}) \cdot t'(f_{p+1}, \ldots, f_{p+p'}, \vec{v_{q+1}}, \ldots, \vec{v_{q+q'}})$$

20.3 Координатная запись тензора, изменение координат при замене базиса

20.3.1 Координатная запись тензора

Пусть e и e^* - взаимные базисы V и $V^*, t \in \mathbb{T}_q^p$. Координатами тезора t в базисе e называется набор из следующих величин:

$$T_{j_1,\ldots,j_q}^{i_1,\ldots,i_p} = t(e^{t_1},\ldots,e^{t_p},e_{j_1},\ldots,e_{j_q}), i_1,\ldots,i_p,j_1,\ldots,j_q \in \{1,\ldots,n\}$$

Значит, произвольный тензор $t \in \mathbb{T}_q^p$ можно записать в таком виде:

$$t = t_{j_1, \dots, j_q}^{i_1, \dots, i_p} \cdot e_{i_1} \otimes \dots \otimes e_{i_p} \otimes e^{j_1} \otimes \dots \otimes e^{j_q}$$

20.3.2 Изменение координат при замене базиса

Пусть e,e' - базисы в V такие, что $e'_j=a^i_je_i,e^j=a^j_ie'^i.$ Тогда преобразование координат тензора $t\in\mathbb{T}_q^p$ при замене базиса имеет следующий вид:

$$t_{i_1,\dots,i_q}^{j_1,\dots,j_p}=a_{j_1'}^{j_1}\dots a_{j_p'}^{j_p}b_{i_1}^{i_1'}\dots b_{i_q'}^{i_q'}t_{i_1',\dots,i_q'}^{j_1',\dots,j_p'}$$

Доказательство.

Для простоты выполним проверку в случае, когда $t \in \mathbb{T}^1_1$, поскольку в общем случае рассуждение аналогично:

$$t = t_i^j e_j \otimes e^i = t_{i'}^{j'} e_{j'} \otimes e^{i'} = t_{i'}^{j'} (e_j a_{i'}^j) \otimes (e^i b_i^{i'}) = t_{i'}^{j'} a_{i'}^j b_i^{i'} e_j \otimes e^i$$

Получено разложение тензора t по базису e двумя способами, поэтому $t_i^j = t_{i'}^{j'} a_{j'}^j b_i^{i'}$