Roads and Libraries

Determine the minimum cost to provide library access to all citizens of HackerLand. There are n cities numbered from 1 to n. Currently there are no libraries and the cities are not connected. Bidirectional roads may be built between any city pair listed in cities. A citizen has access to a library if:

- Their city contains a library.
- They can travel by road from their city to a city containing a library.

Example

The following figure is a sample map of HackerLand where the dotted lines denote possible roads:

$$egin{aligned} c_road &= 2 \ c_lib &= 3 \ cities &= [[1,7],[1,3],[1,2],[2,3],[5,6],[6,8]] \end{aligned}$$

The cost of building any road is $cc_road = 2$, and the cost to build a library in any city is $c_lib = 3$. Build 5 roads at a cost of $5 \times 2 = 10$ and 2 libraries for a cost of 6. One of the available roads in the cycle $1 \to 2 \to 3 \to 1$ is not necessary.

There are q queries, where each query consists of a map of HackerLand and value of c_lib and c_road . For each query, find the minimum cost to make libraries accessible to all the citizens.

Function Description

Complete the function *roadsAndLibraries* in the editor below. roadsAndLibraries has the following parameters:

- *int n*: integer, the number of cities
- int c_lib: integer, the cost to build a library
- *int c_road*: integer, the cost to repair a road
- $int\ cities[m][2]$: each cities[i] contains two integers that represent cities that can be connected by a new road

Returns

- int: the minimal cost

Input Format

The first line contains a single integer q_i , that denotes the number of queries.

The subsequent lines describe each query in the following format:

- The first line contains four space-separated integers that describe the respective values of n, m, c_lib and c_road , the number of cities, number of roads, cost of a library and cost of a road.
- Each of the next m lines contains two space-separated integers, u[i] and v[i], that describe a bidirectional road that can be built to connect cities u[i] and v[i].

Constraints

- $1 \le q \le 10$
- $1 \le n \le 10^5$
- $0 \leq m \leq min(10^5, \frac{n \cdot (n-1)}{2})$
- $1 \le c_road, c_lib \le 10^5$
- $1 \leq u[i], v[i] \leq n$
- · Each road connects two distinct cities.

Sample Input

Sample Output

```
4 12
```

Explanation

Perform the following q=2 queries:

1. HackerLand contains n=3 cities and can be connected by m=3 bidirectional roads. The price of building a library is $c_{lib}=2$ and the price for repairing a road is $c_{road}=1$.

The cheapest way to make libraries accessible to all is to:

- Build a library in city ${\bf 1}$ at a cost of $x={\bf 2}$.
- Build the road between cities ${\bf 1}$ and ${\bf 2}$ at a cost of y=1.
- Build the road between cities ${f 2}$ and ${f 3}$ at a cost of y=1.

This gives a total cost of 2+1+1=4. Note that the road between cities 3 and 1 does not need to be built because each is connected to city 2.

2. In this scenario it is optimal to build a library in each city because the cost to build a library is less than the cost to build a road.

There are $\mathbf{6}$ cities, so the total cost is $\mathbf{6} \times \mathbf{2} = \mathbf{12}$.