

Recap

Image filtering

- Image filtering: compute function of local neighborhood at each position
- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

f[.,.]

h[.,.]

f[.,.]

Image filtering – Correlation Formula

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Slide credit: David Lowe (UBC)

Image filtering – Using Correlation Formula

?

Image filtering - Questions

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Image filtering - Questions

Original

Source: D. Lowe

Image filtering - Questions

Correlation formula leads to counter intuitive image filtering

original

5

shifted

Image filtering - Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Image filtering - Convolution

Shifted left By 1 pixel

Source: D. Lowe

Image filtering - Sharpening

0	0	0
0	2	0
0	0	0

Sharpening filter

Accentuates differences with local average

Image filtering - Sharpening

after

Image filtering - Edges

1	0	-1
2	0	-2
1	0	-1
Sobel		

Vertical Edge (absolute value)

Image filtering - Edges

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Image filters - Separability

Are you familiar with Matric outer product?

Followed by convolution along the remaining column:

Image Resizing

Why does a lower resolution image still make sense to us? What do we lose?

Image Resizing – Basic Approach

Do you see any potential Issues?

Throw away every other row and column to create a 1/2 size image

Image Resizing – Aliasing

• 1D example (sinewave):

Image Resizing – Aliasing

Reconstructed signal not the same as original!

• 1D example (sinewave):

Image Resizing – Aliasing

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Sampling

How to Subsample Images

Solutions:

- Sample more often
- Get rid of all frequencies that are greater than half the new sampling frequency
 - Will lose information
 - But it's better than aliasing
 - Apply a smoothing filter

Image Sub-Sampling Pipeline

Any signal can be approximate by a summation of sinusoids!

Our building block:

$$A\sin(\omega x + \phi)$$

Add enough of them to get any signal g(x) you want!

• example : $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$

Slides: Efros

Example: Music

 We think of music in terms of frequencies at different magnitudes

Image Fourier Analysis - Convolution

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$F[g*h] = F[g]F[h]$$

 Convolution in spatial domain is equivalent to multiplication in frequency domain!

$$g * h = F^{-1}[F[g]F[h]]$$

Image Fourier Analysis - Advantage

Too many spatial filter operations! What is the computational complexity of convolution?

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

Image Fourier Analysis - Advantage

In frequency domain – Convolution becomes multiplication

Image Smoothing – Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Image Smoothing – Gaussian Kernel

Image Smoothing – Gaussian Kernel

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving two times with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Source: K. Grauman

Box Filter Vs Gaussian Filter

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Fourier Analysis – Box Filter

Box Filter

Fourier Analysis – Gaussian Filter

Gaussian

Template Matching

- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross
 Correlation

Sum of Squared Differences (SSD)

- Goal: find in image
- Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

1- sqrt(SSD)

Thresholded Image

Sum of Squared Differences (SSD)

Goal: find in image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

Input

1- sqrt(SSD)

Normalized Cross Correlation

- Goal: find in image
- Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum\limits_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})}{\left(\sum\limits_{k,l} (g[k,l] - \overline{g})^2 \sum\limits_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Normalized Cross Correlation

Goal: find in image

Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Normalized Cross Correlation

Goal: find in image

Method 3: Normalized cross-correlation

Normalized X-Correlation

Thresholded Image

SSD vs NCC - What to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast

Image Pyramids

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Image Pyramids

Source: Forsyth

Image Pyramids

Repeat

- Filter
- Subsample

Until minimum resolution reached

can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Gaussian Smoothing

What does blurring take away?

original

Gaussian Smoothing

What does blurring take away?

smoothed (5x5 Gaussian)

Gaussian Smoothing

High-Pass filter

smoothed - original

Laplacian Pyramid

Edges in Depth

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Edges in Depth

Edges are caused by a variety of factors

Finding Edges

An edge is a place of rapid change in the image intensity function

Edges as Gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The edge strength is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Edges as Gradient

Edges for Noisy Image!

Where is the edge?

Source: S. Seitz

Finding Edges in Noisy Images

To find edges, look for peaks in $\frac{d}{dx}(f*h)$

Source: S. Seitz

Differential and Associative Properties

$$\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$$

This saves us one operation:

Derivative of Gaussian

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian

Sobel Filters

Common approximation of derivative of Gaussian

-1	0	1
-2	0	2
-1	0	1

 s_x

 s_y

Sobel Filter - Example

Source: Wikipedia

Sobel Filter - Example

thresholding

Non-Maxima Suppression

Check if pixel is local maximum along gradient direction

Edge Thinning

thinning

(non-maximum suppression)