1. Análise de Complexidade de Algoritmos

1.1 – Conceitos

Análise de Algoritmos é a área da computação que visa determinar a complexidade (custo) de um algoritmo, o que torna possível:

- Comparar algoritmos
- Determinar se um algoritmo é "ótimo".

Custo de um algoritmo:

- Tempo (número de passos)
- Espaço (memória)

Ex. 1: Organizar uma corda de tamanho T de maneira que ocupe o menor espaço possível.

- 1. Enrolar no braço (mesmo comprimento do laço)
- 2. Enrolar sobre si (aumentando gradativamente o tamanho do laço)
- 3. Dobrar sucessivamente (até que não seja mais possível dobrar)

Qual o método mais eficiente?

A complexidade de um algoritmo é medida segundo um **modelo matemático** que supõe que este vai trabalhar sobre uma entrada (massa de dados) de tamanho N.

O processo de execução de um algoritmo pode ser dividido em etapas elementares denominadas **passos** (número fixo de operações básicas, tempo constante, operação de maior freqüência chamada **dominante**). O **número de passos** de um algoritmo é considerado como o número de execuções da operação dominante em função das entradas, desprezando-se constantes aditivas ou multiplicativas.

Definimos a **expressão matemática** de avaliação do tempo de execução de um algoritmo como sendo uma **função** que fornece o **número de passos** efetuados pelo algoritmo a partir de uma certa **entrada**.

Ex. 2: Soma de vetores

```
para I de 1 até N faça S[I] \leftarrow X[I] + Y[I] Fim para
```

Número de passos = número de somas (N)

Ex. 3: Soma de matrizes

```
Para I de 1 até N faça
Para J de1 até N faça
C[I,J] \leftarrow A[I,j] + B[I,J]
Fim para
Fim para
```

Número de passos = número de somas (N*N)

Ex. 4: Produto de matrizes

```
Para I de 1 até N faça
Para J de 1 até N faça
P[I,J] \leftarrow 0
Para K de 1 até N faça
P[I,J] \leftarrow P[I,J] + A[I,K] * B[K,J]
Fim para
Fim para
Fim para
```

Número de passos = Número de somas e produtos (N*N*N)

A complexidade pode ser qualificada quanto ao seu comportamento como:

• Polinomial

A medida que N aumenta o fator que estiver sendo analisado (tempo ou espaço) aumenta linearmente.

• Exponencial

A medida que N aumenta o fator que estiver sendo analisado (tempo ou espaço) aumenta exponencialmente.

Algoritmo com complexidade exponencial, não é executável para valores de N muito grandes.

1.2 – Notação

A **notação O** é utilizada para expressar comparativamente o crescimento assintótico (velocidade com que tende a infinito) de duas funções.

Por definição, $f = \mathbf{O}(g)$ se existe uma constante c > 0 e um valor n_0 tal que $n > n_0 \Rightarrow f(n) \le c * g(n)$ ou seja, g atua como limite **superior** para valores assintóticos da função f.

Funções elementares usadas como referência: 1, n, lg n, n², n lg n, 2ⁿ (lg indica logaritmo na base 2)

Propriedades: Sejam f e g funções reais positivas e k uma constante. Então

(i)
$$O(f + g) = O(f) + O(g)$$

(ii) $O(k * f) = k * O(f) = O(f)$

A **notação** θ é usada para exprimir limites **superiores** justos. Sejam f e g funções reais positivas da variável n.

$$f = \theta(g) \iff f = \mathbf{O}(g) e g = \mathbf{O}(f)$$

A notação θ exprime o fato de que duas funções possuem a mesma ordem de grandeza assintótica.

Ex.:
$$f = n^2 - 1$$
; $g = n^2$; $h = n^3$ então $f \in \mathbf{O}(g)$; $f \in \mathbf{O}(h)$; $g \in \mathbf{O}(f)$ mas $h não \in \mathbf{O}(f)$. Logo $f \in \theta(g)$, mas $f não \in \theta(h)$.

A **notação** Ω é usada para exprimir limites **inferiores** assintóticos.

Sejam f e g funções reais positivas da variável n. Diz-se que $f = \Omega$ (g) se existe uma constante c > 0 e um valor n_0 tal que

$$n \ge n_0 \Rightarrow \ f(n) \ge \ c \ * \ g(n)$$

Ex.:
$$f = n^2 - 1$$
, então são válidas as igualdades: $f = \Omega(n)$ e $f = \Omega(1)$, mas não vale $f = \Omega(n^3)$.

1.3 Pior caso, melhor caso, caso médio

Seja A um algoritmo, $\{E_1, ..., E_m\}$ o conjunto de todas as entradas possíveis de A. Seja t_i o número de passos efetuados por A, quando a entrada for E_i . Definem-se:

```
complexidade do pior caso = max E_i \in E\{t_i\}
complexidade do melhor caso = min E_i \in E\{t_i\}
complexidade do caso médio = \sum_{1 \le i \le m} p_i * t_i
```

onde p $_{\rm i}$ é a probabilidade de ocorrência da entrada E $_{\rm i}$.

1.4 Algoritmos ótimos

Seja P um problema. Um limite inferior par P é uma função l, tal que a complexidade de pior caso de qualquer algoritmo que resolva P é $\Omega(l)$. Isto é, todo algoritmo que resolve P efetua, pelo menos, $\Omega(l)$ passos. Se existir um algoritmo A, cuja complexidade seja O(l), então A é denominado algoritmo **ótimo** para P. Ou seja, A apresenta a menor complexidade dentre todos os algoritmos que resolvem P.