

Long-term alkalinity increase in the Baltic Sea buffers CO₂-induced acidification

Jens D. Müller
Leibniz-Institute for Baltic Sea Research Warnemünde (IOW)

Ocean Sciences Meeting - Portland February 12, 2018

Co-Authors:
Bernd Schneider
Gregor Rehder

commonly referred to as the "other CO₂ problem" (Henderson 2006, Turley 2005). fication is a predictable consequence of rising atmospheric CO₂ and does not suffer ties associated with climate change forecasts. Absorption of anthropogenic CO₂, and lower calcium carbonate (CaCO₃) saturation in surface waters, where the bulk

Ocean Acidification in the Baltic Sea?

Option 2:

Check what you know about Alkalinity!

Data compilation:

- CANIBAL data set¹ → most of the historic observations dating back to 1906
- SMHI monitoring data²
- Baltic-C (BALTEX Phase II (BONUS+))3
- FMI monitoring data⁴
- 31436 observations
- First measurements in the early 20th century
- Surface water <20m

Thanks for your attention!

Long-term alkalinity trends in the Baltic Sea and their implications for CO₂-induced acidification

Jens Daniel Müller,* Bernd Schneider, Gregor Rehder

Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany

Anthropogenic CO_2 emissions currently decrease open ocean pH, but on multi-millennial time scales intensified continental weathering is expected to contribute to increasing oceanic alkalinity (A_T) and thus mitigate the acidification signal. The Baltic Sea is an ideal study site for such A_T dynamics, due to its direct link to terrestrial processes, short water residence time and long history of A_T measurements dating back to

Müller et al. (2016)

Long-term alkalinity trends in the Baltic Sea and their implications for CO₂-induced acidification.

Limnol. Oceanogr. 61, 1984–2002.

doi:10.1002/lno.10349.

Schneider and Müller (2018)

Biogeochemical Transformations
in the Baltic Sea:

Observations Through Carbon Dioxide Glasses
doi:10.1007/978-3-319-61699-5.