MIMIC - III Medical Information Mart for Intensive Care

Katarzyna Kobylińska

- https://mimic.physionet.org/
- Kody do ekstrakcji danych, MIT lab, czy MIMICextract

Dostęp do bazy

- Kurs dotyczący ochrony wrażliwych danych dotyczących zdrowia: Health Insurance Portability and Accountability Act (HIPAA)
- Zgody na odpowiednie używanie danych, <u>m.in</u> zakaz dzielenia się danymi, odpowiednie cytowanie w publikacjach, zakaz identyfikacji pacjentów.
- Dostęp otrzymujemy w przeciągu co najmniej tygodnia
- Dostęp do instrukcji w jaki sposób ściągnąć bazę danych z PhysioNetWorks

Zalety MIMIC III

- Dostępność, możliwość publikacji, reprodukcja kodów:
- Johnson, A., Pollard, T., Shen, L. et al. MIMIC-III, a freely accessible critical care database. Sci Data 3, 160035 (2016).

https://doi.org/10.1038/sdata.2016.35database. Sci Data 3, 160035 (2016).

- Jedyna dostępna baza dotycząca pacjentów na OIOM
- Analizy nie są ograniczone (gdy mamy dostęp do bazy)
- Możliwość modelowania różnych problemów na tych samych danych
- 3. Luka XAI + MIMIC III
- 4. Popularna w zastosowaniach ML w MED

Charakterystyka danych

Critical care unit	ccu	CSRU	міси	SICU	TSICU	Total
Distinct patients, no. (% of total admissions)	5,674 (14.7%)	8,091 (20.9%)	13,649 (35.4%)	6,372 (16.5%)	4,811 (12.5%)	38,597 (100%)
Hospital admissions, no. (% of total admissions)	7,258 (14.6%)	9,156 (18.4%)	19,770 (39.7%)	8,110 (16.3%)	5,491 (11.0%)	49,785 (100%)
Distinct ICU stays, no. (% of total admissions)	7,726 (14.5%)	9,854 (18.4%)	21,087 (39.5%)	8,891 (16.6%)	5,865 (11.0%)	53,423 (100%)
Age, years, median (Q1-Q3)	70.1 (58.4–80.5)	67.6 (57.6–76.7)	64.9 (51.7–78.2)	63.6 (51.4-76.5)	59.9 (42.9-75.7)	65.8 (52.8–77.8)
Gender, male, % of unit stays	4,203 (57.9%)	6,000 (65.5%)	10,193 (51.6%)	4,251 (52.4%)	3,336 (60.7%)	27,983 (55.9%)
ICU length of stay, median days (Q1-Q3)	2.2 (1.2-4.1)	2.2 (1.2-4.0)	2.1 (1.2-4.1)	2.3 (1.3-4.9)	2.1 (1.2-4.6)	2.1 (1.2-4.6)
Hospital length of stay, median days (Q1-Q3)	5.8 (3.1–10.0)	7.4 (5.2–11.4)	6.4 (3.7–11.7)	7.9 (4.4–14.2)	7.4 (4.1–13.6)	6.9 (4.1–11.9)
ICU mortality, percent of unit stays	685 (8.9%)	353 (3.6%)	2,222 (10.5%)	813 (9.1%)	492 (8.4%)	4,565 (8.5%)
Hospital mortality, percent of unit stays	817 (11.3%)	424 (4.6%)	2,859 (14.5%)	1,020 (12.6%)	628 (11.4%)	5,748 (11.5%)

CCU is Coronary Care Unit; CSRU is Cardiac Surgery Recovery Unit; MICU is Medical Intensive Care Unit; SICU is Surgical Intensive Care Unit; TSICU is Trauma Surgical Intensive Care Unit.

Klasy zmiennych

Class of data	Description
Billing	Coded data recorded primarily for billing and administrative purposes. Includes Current Procedural Terminology (CPT) codes, Diagnosis-Related Group (DRG) codes, and International Classification of Diseases (ICD) codes.
Descriptive	Demographic detail, admission and discharge times, and dates of death.
Dictionary	Look-up tables for cross referencing concept identifiers (for example, International Classification of Diseases (ICD) codes) with associated labels.
Interventions	Procedures such as dialysis, imaging studies, and placement of lines.
Laboratory	Blood chemistry, hematology, urine analysis, and microbiology test results.
Medications	Administration records of intravenous medications and medication orders.
Notes	Free text notes such as provider progress notes and hospital discharge summaries.
Physiologic	Nurse-verified vital signs, approximately hourly (e.g., heart rate, blood pressure, respiratory rate).
Reports	Free text reports of electrocardiogram and imaging studies.

Przykładowe dane

- 1. Patient level data SUBJECT_ID
- 2. Hospital level data HADM_ID
- 3. ICU level data ICUSTAY_ID

	ROW_ID	SUBJECT_ID	HADM_ID	ICUSTAY_ID	(CHARTTIME	ITEMID	VALUE	VALUEUOM		STORETIME	CGID	STOPPED	NEWBOTTLE	ISERROR
1	344	21219	177991	225765	2142-09-08	10:00:00	40055	200	ml	2142-09-08	12:08:00	17269	NA	NA	NA
2	345	21219	177991	225765	2142-09-08	12:00:00	40055	200	ml	2142-09-08	12:08:00	17269	NA	NA	NA
3	346	21219	177991	225765	2142-09-08	13:00:00	40055	120	ml	2142-09-08	13:39:00	17269	NA	NA	NA
4	347	21219	177991	225765	2142-09-08	14:00:00	40055	100	ml	2142-09-08	16:17:00	17269	NA	NA	NA
5	348	21219	177991	225765	2142-09-08	16:00:00	40055	200	ml	2142-09-08	16:17:00	17269	NA	NA	NA
6	349	21219	177991	225765	2142-09-08	17:00:00	40055	100	ml	2142-09-08	17:16:00	17269	NA	NA	NA
7	350	21219	177991	225765	2142-09-08	18:00:00	40055	120	ml	2142-09-08	18:56:00	17269	NA	NA	NA
8	351	21219	177991	225765	2142-09-08	20:00:00	40055	60	ml	2142-09-08	19:39:00	19525	NA	NA	NA

ROW_ID	SUBJECT_	_ID H	HADM_ID		ADMITTIME		DISCHTIME	DEATHTIME	ADMISSION_TYPE		ADMISSI	ON_LOCAT	ION	DISCHARGE_LOCATION	INSURANCE	LANGUAGE	RELIGION N	MARITAL_STATUS
21		22	165315	2196-04-09	12:26:00	2196-04-10	15:54:00)	EMERGENCY	EN	MERGENCY	ROOM AD	MIT D	DISC-TRAN CANCER/CHLDRN H	Private		UNOBTAINABLE	MARRIED
22		23	152223	2153-09-03	07:15:00	2153-09-08	3 19:10:00)	ELECTIVE	PHYS RE	EFERRAL/	NORMAL D	ELI	HOME HEALTH CARE	Medicare		CATHOLIC	MARRIED
23		23	124321	2157-10-18	19:34:00	2157-10-25	5 14:00:00)	EMERGENCY	TRANSFE	ER FROM	HOSP/EXT	RAM	HOME HEALTH CARE	Medicare	ENGL	CATHOLIC	MARRIED
24		24	161859	2139-06-06	16:14:00	2139-06-09	12:48:00)	EMERGENCY	TRANSFE	ER FROM	HOSP/EXT	RAM	HOME	Private		PROTESTANT QUAKER	SINGLE

DE SHORT_TITL	ICD9_CODE	ROW_ID
56 TB pneumonia-oth tes	01166	174
70 TB pneumothorax-unspe	01170	175
71 TB pneumothorax-no exa	01171	176
72 TB pneumothorx-exam unk	01172	177
73 TB pneumothorax-micro d	01173	178
74 TB pneumothorax-cult d	01174	179

Ekstrakcja danych

- MIT lab: Massachusetts Institute of Technology (MIT)'s Laboratory for Computational Physiology
- https://github.com/MIT-LCP/mimic-code/tree/ master/buildmimic

100 GB wolnej przestrzeni na dysku

Open Access | Published: 24 May 2016

MIMIC-III, a freely accessible critical care database

Alistair E.W. Johnson, Tom J. Pollard ☑, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi & Roger G. Mark

Scientific Data 3, Article number: 160035 (2016) | Cite this article

71k Accesses | 1004 Citations | 77 Altmetric | Metrics

Abstract

MIMIC-III ('Medical Information Mart for Intensive Care') is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.

Design Type(s)	data integration objective
Measurement	Demographics • clinical measurement • intervention • Billing • Medical History

Predictive modeling in urgent care: a comparative study of machine learning approaches

Figure 1. Distribution of length of stays (LOS) and readmission in MIMIC-III.

Predictive modeling in urgent care: a comparative study of machine

learning approaches

Task:
prawdopodobieństwo
ponownego pobytu na
oddziale

Rank	nk Model AUC		F1	Sn	Sp	<i>P-</i> value	
Classic	models						
1	RF w/ w48	0.582 (0.0067)	0.122 (0.0025)	0.601 (0.02)	0.563 (0.0086)	.0387	
2	LR w/ w2v	0.577 (0.0067)	0.123 (0.0023)	0.574 (0.031)	0.592 (0.0211)	.0469	
3	RF w/ 48h	0.577 (0.009)	0.121 (0.003)	0.571 (0.021)	0.583 (0.004)	.0657	
Seque	ntial models						
1	LSTM w/ x19 + h2v	0.580 (0.00914)	0.112 (0.0043)	0.548 (0.0192)	0.565 (0.0206)	.0606	
2	LSTM w/ x19	0.554 (0.00648)	0.108 (0.0028)	0.538 (0.0168)	0.554 (0.0214)	.107	
3	LSTM w/ w2v	0.552 (0.0154)	0.107 (0.0038)	0.567 (0.0404)	0.524 (0.0272)	.199	

Benchmarking deep learning models on large healthcare datasets

TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications, https://arxiv.org/abs/2003.12012, ACM SIGMOD 2020

Designing Theory-Driven User-Centric Explainable AI Conference on Human Factors in Computing Systems, May 4–9, 2019

TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications

TRACER to provide accurate and inTerpRetAble Clinical dEcision suppoRt to doctors and practitioners of other domains

TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications, https://arxiv.org/abs/2003.12012

TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications

TRACER:

- Istniejące metody nadmiernie zależne od przedziałów czasowych, bez różnicowania ważności cech niezmiennych i zmiennych w czasie
- Zapewnienie dokładnego i możliwego do interpretacji wsparcia w podejmowaniu decyzji lekarzom.

Patient-level:

TRACER pozwala zrozumieć dlaczego konkretni pacjenci umierają w szpitalu na przykładzie danych MIMIC III

Time Window (Hour)

Time Window (Hour)