Subject: Engineering Mathematics Chapter: Linear Algebra

DPP-01

Topic: Types of Matrics & Operation on Matrices

- **1.** Let A is a matrix of order 3 defined as, $A = [a_{ij}]_{3\times3}$ where $a_{ij} = \lim_{x \to \infty} \frac{\sin(ix)}{\tan(jx)}$, $\forall 1 \le i, j \le 3$. Then A^2 is
 - (a) 4A
- (b) 3A
- (c) 2A
- (d) A
- **2.** For α , β , γ , let $A = \begin{bmatrix} \alpha^2 & 6 & 8 \\ 3 & \beta^2 & 9 \\ 4 & 5 & \gamma^2 \end{bmatrix}$ &

$$B = \begin{bmatrix} 2\alpha & 3 & 5 \\ 2 & 2\beta & 6 \\ 1 & 4 & 2\gamma - 3 \end{bmatrix}. \text{ If } T_r(A) = T_r(B) \text{ then the}$$

value of
$$\left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right)$$
 is

- (c) 3
- (d) 4
- If the product of *n* matrices

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
 is equal to the matrix
$$\begin{bmatrix} 1 & 378 \end{bmatrix}$$

- $\begin{bmatrix} 1 & 378 \\ 0 & 1 \end{bmatrix}$ then the value of n is equal to
- (b) 27
- (c) 377 (d) 378
- **4.** If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = I_3$,
 - then x + y equal
 (a) 0 (b) -1
 (c) 2 (d) -2

- 5. If $A = \begin{bmatrix} 3 & 4 \\ 1 & -6 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 5 \\ 6 & 1 \end{bmatrix}$ then X such that

 - (a) $\begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 5 \\ -1 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 5 & 2 \\ -1 & 0 \end{bmatrix}$ (d) None of these
- 6. If $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$, the x equals

 (a) $\pm 2\sqrt{3}$ (b) $\pm 4\sqrt{3}$ (c) $\pm 3\sqrt{2}$ (d) $\pm 4\sqrt{2}$

- 7. Let $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$ and

$$2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$$
 then $Tr(A) - Tr(B)$ has the

- value equal to
- (a) 0
- (b) 1
- (c) 2
- (d) 3
- **8.** A is an involutary matrix given by

6. A is an involutary matrix given by
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \text{ then the inverse of } \frac{A}{2} \text{ will be}$$
(a) $2A$ (b) $\frac{A^{-1}}{2}$
(c) $\frac{A}{2}$ (d) A^{2}

- **9.** Let $A = \begin{bmatrix} \beta & -1 \\ 1 & 2\beta \end{bmatrix}$ and det.(A⁴) = 16, then the product of all possible real value of $\boldsymbol{\beta}$ equals
- (c) 0
- (d) 2

- **10.** Let a = 2; b = -4; c = 1 and d = -2, then the matrix
 - (a) Idempotent(b) Involutary(c) Non-singular(d) Nilpotent

Answer Key

1. (b)

2. (c)

3. (b)

4. (a)

5. (d)

6. (b)

7. (c)

8. (a)

9. (b)

10. (d)

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4