DLHLP 2023 Fall LLM Finetuning

陳光銘 (b08502105@ntu.edu.tw)

楊智凱 (b08202033@ntu.edu.tw)

Outline

- 1. Background
 - LLM and Finetuning
 - Inference Parameters
- 2. Homework (TODOs)
 - Dataset Collection/Construction
 - Model Selection
 - Finetuning
 - Paper Reading
 - Presentation

Background

LLM and Finetuning

Recommendation

- Here we will only briefly go through some background knowledge
- Please refer to the following lecture videos for details
 - ChatGPT (可能)是怎麼煉成的 GPT 社會化的過程
 - 【生成式AI】ChatGPT 原理剖析 (2/3) 預訓練 (Pre-train)

Causal Language Modeling (文字接龍)

- Predict the next token (conditioned on previous tokens only)
 - vs. masked language modeling (MLM)

Prob. Distribution over all possible tokens

Finetuning

- Train the pre-trained model for specific purposes
 - Specific domain, language, writing style...
 - Corresponding dataset is needed
- Instruction tuning: teach the model to understand and follow the instruction

Inference Parameters

Inference

- When using LLM for generation, there are typically several parameters:
 - max_length
 - o num_beams
 - temperature
 - o Top-k
 - o Top-p

指令: 跟我講解總結記憶體這項技術

回覆:

隨機存儲是一種技術,其中數據被存儲在一個或多個位元組(位元)上。這些位元被稱為"行"或"列"。這個技術在計算機和其他計算設備中非常常見。它允許快速存儲和檢索數據。在某些情況下!它也被用於創建密碼學和數據加密 。隨機數據通常以二進制形式存儲,這意味著它可以用於存儲任何兩個數字的值。這使得它非常適合存儲大量數據的情況。它也非常有用於在數據庫中存儲數據;這些數據可以是文本、數字、圖像、音頻和視頻數據等等。此技術的 一個應用是創建安全的數據存儲解決方案。這可以包括使用隨機位元存儲密碼或使用

max_length

- The max length of the generated token sequence.
- If you found that the generated sentence seems truncated, check max_length!

指令: 有機電致發光材料及裝置

回覆:

本研究所提供的有機發光二極體及其相關裝置,是一種使用有機材料(通常為硅)進行光電效應的光電元件及其應用。該裝置具有以下特點:

- 1. 光電導性;
- 2. 具有高光電容率與低光電阻率;
- 3. 能夠產生高頻率的光,並且具有較低的光損失率。
- 4. 可以應用於各種應用領域、如顯示器、顯示屏、通訊裝置、照明裝置等。
- 5. 對環境的影響較小。
- 6. 適用於低光環境下的應用់ 如夜間環境、低光照明環境等。

研究結果顯示:使用這種裝置可以有效地提高光學顯示技術的效能(如電視、電

num_beams

- Number of beams for beam search during generation
 - Higher num_beams can take more possible beams into consideration, but it will also increase the computation.

temperature

- Related to the diversity of the output
- Higher temperature for better diversity

Top-K

Top-P

1. Consider only the top tokens whose likelihoods add up to 15%. Ignore all others.

2. Sample from them based on their likelihood scores.

Homework (TODOs)

Sample code link

Dataset Collection/Construction

TODO: Task Design and Dataset Collection/Construction

- Decide the task you want the model to learn
 - o Translation, question answering...

- Collect/Construct the corresponding dataset
 - Existing corpora for some languages: <u>Common Crawl</u>, <u>nlp_chinese_corpus</u>, ...
 - Existing instruction tuning datasets: <u>Stanford Alpaca</u>, <u>BELLE</u>, ...
 - o Other resources (for reference): <u>LLMDataHub</u>, <u>awesome-instruction-dataset</u>
 - Construct your own dataset (maybe through web crawling?)

TODO: Data Preprocessing

- Preprocessing may be needed.
- For example: the data may need to be transformed into instruction format for instruction tuning

```
"instruction": "this is a description of patent, give a title of it",
"input": "實施形態提供一種能夠使動作穩定之記憶裝置。本發明之一實施形態之記憶裝置包含第1導電部、第2導電部、第1電阻變化部、第1區域及絕緣部。自第1
"output": "記憶裝置"
,
"instruction": "this is a description of patent, give a title of it",
"input": "與密碼更新技術相關聯的實例被描述。一種實例方法包括在一基本輸入/輸出系統(BIOS)中接收欲修改一管理員密碼的一請求。該管理員密碼可被更新。
"output": "密碼更新技術"
```

Model Selection

TODO: Select the Model

- Pick the model for finetuning
 - There are lots of model on <u>Hugging Face</u>
 - Or you may use this model: Provided Model (教育部人工智慧競賽辦公室委託國科會開發的模型)
 - Warning: The model will be available only after TAs receive all the NDA from you.
 - Hand it in ASAP if you haven't

- Parameter-efficient finetuning?
 - It could be better to finetune the entire model in this homework.
 - If it's not affordable for some of you, parameter-efficient finetuning is okay as well.

Finetuning

TODO: Finetune the Selected Model

- Finetune the model with the collected dataset
- Here's a <u>tutorial</u> that may be helpful.
 - Sample code also provides an example of finetuning for your reference.
 - Feel free to modify the sample code if needed.

Paper Reading

TODO: Paper Reading

- Select 1~2 paper(s) you are interested in.
 - See next page for paper list
 - Register <u>here!</u> DON'T CHOOSE PAPER(S) THAT HAVE BEEN CHOSEN BY OTHERS
- Summarize and present the chosen papers in your presentation.

TODO: Paper Reading

- 1. <u>Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering</u>
- 2. <u>Can Language Models Understand Physical Concepts?</u>
- 3. <u>Label Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning</u>
- 4. Can We Edit Factual Knowledge by In-Context Learning?
- 5. <u>Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture</u>
- 6. <u>Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!</u>
- 7. <u>LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models</u>
- 8. Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
- 9. Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought
- 10. <u>LeanDojo: Theorem Proving with Retrieval-Augmented Language Models</u>

TODO: Paper Reading

- 11. <u>Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large Language Models by Extrapolating Errors from Small Models</u>
- 12. Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer
- 13. Knowledge Rumination for Pre-trained Language Models

Presentation

TODO: Present Your Work

- Prepare a presentation on what you have done.
- Possible directions
 - What task did you want the model to learn?
 - What dataset did you use? How did you process the dataset?
 - What model did you choose?
 - Was the finetuning useful? How was the improvement?
 - Effect of different generation strategies (inference parameters)
 - The paper(s) you read
 - Other point(s) you want to share with us

Report Dates

- 11/20: group 1, 2, 3 and 4
- 11/27: group 5, 6, 7 and 8

Q & A

- If you have any problem, you can...
 - Check whether this problem has been asked and solved in the FB post
 - o If not:
 - Comment on the FB post of this homework
 - Contact TAs (via Email or DM)

Other Ref.

https://github.com/ntunlplab/traditional-chinese-alpaca

https://twpat.tipo.gov.tw/

https://arxiv.org/abs/2106.09685

https://www.nstc.gov.tw/folksonomy/detail/f094b57a-204e-4114-99d3-a9412a e42d7a?l=ch