Artificial Intelligence

Knowledge (expert) systems

Dictionary Definition of Knowledge

- A clear and certain <u>perception</u> of something; the act, fact, or state of knowing; understanding.
- <u>Learning</u>; all that has been perceived or grasped by the mind.
- <u>Practical experience</u>; skill; as a knowledge of seamanship.
- Acquaintance or familiarity such as with a fact or place.
- Cognizance; recognition.
- <u>Information</u>; the body of facts accumulated by mankind.
- Acquaintance with facts; range of awareness, or understanding.
 - Webster's New Twentieth Century Dictionary of the English Language (Second Edition)

Knowledge Systems Definition

- Knowledge refers to the <u>codified experience</u> of agents
 - Codified means knowledge has been formulated, recorded, and made ready for use
 - Experience is source of information for solving problems
 - Codified experience must be organized and generalized to guide future action
- "Knowledge is what we have learned from our experiments"

Bodies of Knowledge

Domain knowledge

- General terminology and facts of <u>domain</u> without focus on a particular task
 - e.g., facts about *general chemistry*, but not limited to just chemical synthesis

Task knowledge

- Terminology, computational models, and facts associated with performing a kind of <u>task</u>
 - e.g., knowledge and models about a *scheduling* task

Expert Systems

- A computer program whose performance is guided by specific, expert knowledge in solving problems
 - Focus on problem solving
 - Knowledge is that which can guide a search for solutions
- "Expert" knowledge means <u>narrow</u> specialization and <u>substantial</u> competence *****
 - Less breadth and flexibility than human experts
 - (Just like a Ph.D. dissertation!)
- Knowledge system vs. expert system
 - Focuses attention on the knowledge that systems carry,
 rather than if it constitutes expertise
- Expert-level advisors or consultants
 - Smart spreadsheet, intelligent patient monitor, financial advisor, therapy critic, cognitive coprocessor

Parts of a Knowledge System

Expert Systems are generally...

- Open to inspection
 - Present intermediate steps and answer questions about the solution process
- Easily modified
 - With adding/deleting from knowledge base
- Heuristic
 - Using often imperfect knowledge ("tricks", "rules-of-thumb")

Appropriate Problem has...

- The need justifies the cost of building the system
- Human expertise is not available in all situations
- Problem may be solved using computational reasoning techniques
- Problem is well-structured with no Common Sense reasoning required (otherwise too hard!)
 - More on this later!
- Problem may not be solved with traditional computing methods
- Cooperative and articulate experts exist
- Problem is of proper size and scope

Knowledge System Scenarios

- Participatory design
 - Involves several people in three roles working together to develop the system
 - User, domain expert, and knowledge engineer
 - Emphasizes communication among participants
 - Most common in practice

Design Team

- Domain expert
 - Experience solving problems in domain
 - Knows little about creation of knowledge systems
 - Spells out skills to knowledge engineer
- Knowledge engineer (you!)
 - AI expert, has experience building knowledge systems
 - Knows little about the expert's domain
- End user
 - Understanding of job, determines major design constraints
 - Make this person happy!
- All need to learn concepts and terminology of task to communicate efficiently

Working Together

- Begins with knowledge engineer gaining some familiarity with problem domain
 - Helps in communicating with domain expert
 - Background reading, interviews, etc.
- Next, extract expert's problem-solving knowledge
 - Give experts sample problems and get determine techniques used in their solution

Relations to Psychology

Goals

- Gain insights about nature of mental processing
- Learn about intermediate steps in solving problem
- Identify knowledge used for problems

• "Verbal" data hypothesis

- Information used during performance of task is reportable in verbal protocols
- Information reported in verbal protocols is used in problem solving
- CURRENT RESEARCH SHOWS <u>NOT</u> ALWAYS TRUE (other methods exist)

Types of Cases

- Typical cases
 - Use during problem identification stage
- Random cases
 - Random cases selected from case file
 - Check for gaps in coverage
- Extreme and tough cases
 - Involves unusual circumstances
 - Reveals hidden assumptions and exceptions from typical cases

Types of Added Constraints

- Limited time to solve problems
 - Limit time expert has to solve problem
 - Provide insights into expert's search strategy
- Withholding information
 - Leave out information usually available
 - e.g., no patient history before interpreting x-ray
 - This provides evidence about the extent to which history data are used in the interpretation process
 - But, more left out is less reliable as evidence

Knowledge Acquisition Problems

- Human skill is practice-based ("learn by doing")
 - After years of practice, skills are highly integrated and often not explicitly/individually retrievable
- Individual's <u>expertise can be influenced</u> by social processes, hidden agendas, etc.
 - Not necessarily "factual" about the world
- Expertise changes over time!
 - Lifelong learning

System Design Process

- After distilling knowledge used for tasks, begin actual design of the system
 - Selecting ways to represent knowledge
 - Determining the search strategy
 - Designing the user interface
- Build prototype to test
- Refine by progressive approximation
 - Problem solving mistakes leads to correction or additions to knowledge base
- Need never be considered "finished"
 - Always limitations or shortcomings

Example System: MYCIN

- MYCIN (Buchanan & Shortliffe, 1984)
- Expert system that consults on diagnosis of infectious diseases
 - Especially bacterial infections of the blood
 - Also makes therapy recommendations
- Use of explicit knowledge base
 - Search for solutions guided by KB
- Opened up niche for a new kind of AI system
- Widely studied and imitated
 - Good starting point for learning about knowledge systems

MYCIN: Solution Space Taxonomy

- MYCIN is a goal-driven (<u>backward-chaining!</u>) expert system
 - A possible infecting organism forms goal that is either confirmed or eliminated
- After answers to questions suggest meningitis, goes into full goal-driven mode
 - After sees that patient has had headaches and other abnormal neurological signs (suggests meningitis)
 - Tries to determine actual infecting organism
 - Considers each infecting organism it knows about, and attempts to eliminate or confirm each hypothesis in turn
- Looks for goal with certainty of 1 (absolutely certain)
 - When confidence measures for rule get below threshold
 (.2), search is terminated

1) Patient's name: (first-last):

```
** FRED BRAUN
```

2) Sex:

** M

3) Age:

** 55

4) Are there any cultures for Fred Braun which may be related to the present illness, and from which organisms have been grown successfully in the microbiology laboratory?

** **Y**

CULTURE-1

- 5) From what site was the specimen for CULTURE-1 taken?
 - ** BLOOD
- 6) Please give the date and time when CULTURE-1 was obtained. (mo/da/yr time)
 - ** June 20, 1977
- The first organism isolated from the blood culture of 20-JUN-77 (CULTURE-1) will be referred to as:

ORGANISM-1

- 7) Enter the laboratory-reported identity of ORGANISM-1:
 - ** UNKNOWN

[continued next slide]

- 8) Enter the stain of ORGANISM-1:
 - ** **NEG**
- 9) Is ORGANISM-1 rod or coccus (etc.):
 - ** ROD
- 10) What is the form of the individual organisms?
 - ** FUSIFORM

(50 more questions follow!!!)

Gives diagnose of a probable infection type and associated organisms

INFECTION-1 IS BACTEREMIA

<ITEM-1> E. COLI [ORGANISM-1]

<ITEM-2> KLEBSIELLA [ORGANISM-1]

<ITEM-3> ENTEROBACTER [ORGANISM-1]

<ITEM-4> KLEBSIEELA-PNEUMONIAE [ORGANISM-1]

Inside MYCIN

- Translates pseudo-English rules to and from internal production-rule representation
 - Uses key-words and templates to guide translation into internal symbol structures
 - Implemented as production rules in LISP

RULE-177

- If 1) the infection is primary-bacteremia, and
 - 2) the site of the culture is one of the sterile sites, and
 - 3) the suspected portal of entry of the organism is the gastro-intestinal tract,

Then there is suggestive evidence (.7) that the identity of the organism is bacteroides

Subsystem of MYCIN

- Explanation systems
 - Mechanism to explain or justify conclusions
 - "transparent box" rather then "black box"
 - User can discard conclusion if disagree
- MYCIN explanation program built from collection of specialist subprograms
 - Designed to answer particular kinds of queries
 - Examine diagnosis rule trace of system

Question and Answering

** IS ORGANISM-1 A STREPTOCOCCUS?

No. the identity of ORGANISM-1 IS e.coli (.74) bacteroides (.7) klebsiella-pneumoniae (.4) pseudomonas-aeruginosa (.22) ...

** WHY DID YOU RULE OUT STREPTOCOCCUS AS A POSSIBLITY FOR ORGANISM-1?

RULE033 could have been used to determine that the identity of ORGANISM is streptococus. However, clause 2 of RULE033 ["the morphology of the organism is coccus"] was already known to be false for ORGANISM-1, so the rule was never tried

** HOW DID YOU KNOW THAT CULTURE-1 WAS FROM A STERILE SOURCE?

I used RULE189 to conclude that this blood culture was taken from a sterile source. This gave a cumulative CF of (1.0). The last question asked before the conclusion was made was 7

- Evaluation of MYCIN
 - Mistakes can be life-threatening
 - Overlooking infecting agent can be catastrophic
- Evaluated using a form of Turing test
 - 10 randomly selected case histories of meningitis
 - Re-diagnosed by MYCIN and eight practitioners at Stanford Medical School
 - Included five faculty, one research fellow in infectious diseases, one resident physician, one medical student
 - Actual therapy for cases by doctors also included
 - Evaluated by eight infectious-disease experts away from Stanford
 - Blind review (not given which was computer diagnosis)

Experts Evaluate MYCIN and Nine Other Prescribers			
Prescriber	Score*	Percent	
MYCIN	55	69	
Faculty-5	54	68	
Fellow	53	66	
Faculty-3	51	64	
Faculty-2	49	61	
Faculty-4	47	59	
Actual Rx	47	59	
Faculty-1	45	56	
Resident	39	49	
Student	28	35	

^{*} Evaluators rated each diagnosis as acceptable or unacceptable, giving one point for each acceptable rating. Perfect score is 80 points (10 cases x 8 reviewers).

Number of Cases in Which Therapy Missed a Treatable Pathogen

Prescriber	Number
MYCIN*	0
Faculty-5	1
Fellow	1
Faculty-3	1
Faculty-2	0
Faculty-4	0
Actual Rx	0
Faculty-1	0
Resident	1
Student	3

^{*}MYCIN gave fewer drugs than human experts on average

- MYCIN performed at least as well as the Stanford experts
 - Not surprising, as knowledge base represents combined expertise of some best medical minds
 - MYCIN did not overprescribe for infections
- Little agreement among human experts concerning correctness of diagnoses
 - No unanimous endorsement from evaluators

- MYCIN too slow to give speedy response in doctorcomputer interaction
 - Nearly 600 rules to check
 - Session lasted about one-half hour
 - Lots of typing
- MYCIN could not extrapolate to other situations
- MYCIN's explanations were limited
 - Not give deeper understanding
- FOLKLORE:
 - MYCIN asked if patient was pregnant even after been told patient was male!

Interesting Developments from MYCIN

• EMYCIN

- First "expert shell" developed from MYCIN
 - An expert system shell is a program that facilitates the development of expert systems.

NEOMYCIN

- Developed for <u>training</u> doctors
- Take them through various example cases, checking their conclusions and explaining where they went wrong

Knowledge vs. Complexity

- MYCIN demonstrated
 - Complexity of the world
 - Systems need to model that complexity
 - Role of knowledge
 - More complex the task, more knowledge necessary
- An increase in number of rules suggests program and task are more complex

Knowledge vs. Complexity: The Knowledge Hypothesis

- "Knowledge is power"
 - Was new style of building AI systems
 - Integral part of building knowledge systems
- The Knowledge Hypothesis
 - "To achieve a high level of problem-solving competence, a symbol system must use a great deal of domain-specific, task-specific, and case specific knowledge"

Knowledge Hypothesis Failure?

Chess

- Was widely believed that excellent chess play required large amounts of knowledge
- Grand-master estimated to have 50,000 situations in head
- Path was to put more knowledge in the programs
- Seems to be wrong here
 - Powerful chess programs got their edge through faster computing on specialized parallel processors
 - Search more deeply
 - Knowledge hypothesis not universal
- However... recent chess systems not based on bruteforce and compute power

Summary

- Knowledge
 - The codified experience of agents
- Expert system
 - System whose performance is guided by specific, expert knowledge in solving problems
- Participatory design and knowledge acquisition
 - Gain insights about nature of mental processing
- MYCIN
 - Expert system that consults on diagnosis of infectious diseases
- The Knowledge Hypothesis
 - Need lots of knowledge for complex world