Prime-Indexed Resonances in Non-Reciprocal Thermal Emission: A Base-Zero Mathematical Analysis

Ivan Silva* Carlonoscopen, LLC

Abstract

We analyze digitized emissivity spectra from a recent study of non-reciprocal thermal emission in magnetic-field-biased ε -near-zero (ENZ) InGaAs multilayers. Using the Base-Zero (BZ) rotational-node formalism, we identify three consistent features: (i) linear low-field scaling of $\Delta\varepsilon$ with $|\mathscr{B}|$, (ii) a prime-indexed resonance advantage, and (iii) a monotonic global proxy $\Sigma\Delta(\mathscr{B})$ that vanishes at $\mathscr{B}=0$. These results indicate that prime-indexed modes may serve as privileged resonance windows in optical systems. BZ thus provides a compact mathematical framework for summarizing observed trends, with follow-up optical experiments suggested to test its broader applicability.

1 Introduction

Non-reciprocal thermal emission in photonic media under magnetic bias enables controlled symmetry perturbations. A recent ENZ InGaAs experiment reported strong contrasts in emissivity between $\pm \mathcal{B}$ configurations. Independently, the Base-Zero (BZ) construction maps indices $k=1,\ldots,N$ to unit complex nodes $z_k=\exp[i(2\pi k/N-\pi)]$, with $\mathrm{Im}\,z_k$ serving as a rotation-weight measure. For N=5 nodes aligned with five ENZ resonances, the BZ weighting yields a simple global proxy $\Sigma\Delta$ for symmetry-sensitive response.

2 Methods

digitized emissivity spectra across $\{-5, -3, -1, 0, +1, +3, +5\}$ T, aggregated inciover dence angle by taking the maximum emissivity at each wavelength (for clarity in this public and formed interpolated onto a common grid, $\Delta \varepsilon(\lambda, \mathscr{B}) = \varepsilon(\lambda, +\mathscr{B}) - \varepsilon(\lambda, -\mathscr{B}).$ For target ENZ $\{23.3 \,\mu\text{m}, 21.6 \,\mu\text{m}, 19.8 \,\mu\text{m}, 17.4 \,\mu\text{m}, 15.2 \,\mu\text{m}\}\$ we extracted $\Delta \varepsilon_k(\mathscr{B})$ and computed $\Sigma \Delta(\mathscr{B}) = \sum_k \Delta \varepsilon_k \operatorname{Im} z_k$ with N = 5. Uncertainty was assessed via repeated digitization checks (see data repository).

3 Results

3.1 Linear low-field scaling

Across modes we observe approximately linear scaling of $\Delta \varepsilon_k$ with $|\mathcal{B}|$ up to about 3 T.

3.2 Prime-indexed resonance advantage

The modes aligned with prime-indexed BZ nodes (notably $21.6\,\mu m$) show larger non-reciprocal contrast than composite-indexed modes, consistent with the rotation-weight interpretation.

3.3 Global proxy $\Sigma\Delta(\mathscr{B})$

The aggregate proxy rises monotonically with $|\mathcal{B}|$ and is zero at $\mathcal{B}=0$, reflecting reciprocity at zero bias and enhanced symmetry breaking under stronger fields.

4 Discussion

We emphasize two points. First, BZ is used here as a compact mathematical descriptor that happens to align with the observed prime-indexed enhancement and global symmetry trend in this optical setting. Second, while these correlations are intriguing, broader physical implications should be evaluated cautiously through further optical experiments (e.g., prime-spaced ENZ lattices and time-resolved phase mapping) before drawing general conclusions. The presence of a prime-indexed enhancement may provide a design principle for tailoring resonant responses in magneto-optical materials.

5 Conclusions

In this public-safe report we document linear low-field scaling, a prime-indexed resonance advantage, and a monotonic symmetry proxy in digitized non-reciprocal ENZ emission data. The BZ formalism provides a succinct way to summarize these patterns. Focused optical follow-ups can help clarify the range

Figure 1: Left: Non-reciprocal contrast $\Delta \varepsilon$ versus $|\mathscr{B}|$ at five ENZ resonances. Square markers denote prime-indexed modes. Right: Monotonic growth of the global proxy $\Sigma \Delta(\mathscr{B})$.

of validity and potential mechanistic interpretations of primeweighted responses in photonic materials.

Acknowledgments

We thank the original experimental team for making figures available, and colleagues for feedback on the digitization and analysis.

References

- [1] Z. Zhang, A. K. Dehaghi, P. Ghosh, and L. Zhu, Observation of strong non-reciprocal thermal emission, *arXiv* **2501.12947**v2 (2025), https://arxiv.org/abs/2501.12947.
- [2] C. Caloz, A. Alu, S. Tretyakov, and D. Sounas, Electromagnetic nonreciprocity, *Phys. Rev. Applied* **10**, 047001 (2018).
- [3] I. Silva, Supplemental analysis: Base-Zero validation from digitized spectra of strong non-reciprocal thermal emission, Technical report, Carlonoscopen, LLC (2025).