Marginally Trapped Surfaces in Minkowski 4-Space and 1-Dimensional Isometry Groups

Miguel Ortega

Universidad de Granada

V International Meeting on Lorentzian Geometry Martina Franca, July 2009

Summary

- References
- 2 Intro
- 3 Surfaces in Minkowski 4-Space
- Boost case
- 6 Rotational Case
- 6 Screw Case
- Gaussian curvature

References

This talk is a summary of my works with Stefan Haesen (Simon Steven Institute for Geometry, The Nederlands)

- S. Haesen, –, Boost invariant marginally trapped surfaces in Minkowski space, Class. Quant. Grav 24(2007), 5441-5452
- S. Haesen, –, Screw Invariant Marginally Trapped Surfaces in Minkowski 4-space, J. Math. Anal. Appl. **355**(2009), 639-648
- S. Haesen, –, Marginally trapped surfaces in Minkowski 4-space invariant under a rotation subgroup of the Lorentz group, To appear in Gen. Rel. Grav (2009).

In a Lorentzian 4-spacetime (M, \langle, \rangle) , let S be a compact spacelike surface without boundary.

A trapped surface

is a surface whose mean curvature is timelike.

In a Lorentzian 4-spacetime (M, \langle, \rangle) , let S be a compact spacelike surface without boundary.

A trapped surface

is a surface whose mean curvature is timelike.

A marginally trapped surface

is a surface whose mean curvature is always lightlike.

Given two future-pointing lightlike normal vectors \mathbf{k} and \mathbf{l} along \mathbf{S} , with $\langle \mathbf{k}, \mathbf{l} \rangle = -1$

In a Lorentzian 4-spacetime (M, \langle, \rangle) , let S be a compact spacelike surface without boundary.

A trapped surface

is a surface whose mean curvature is timelike.

A marginally trapped surface

is a surface whose mean curvature is always lightlike.

Given two future-pointing lightlike normal vectors \mathbf{k} and \mathbf{l} along \mathbf{S} , with $\langle \mathbf{k}, \mathbf{l} \rangle = -1$

ferences Intro Surfaces in Minkowski 4-Space Boost case Rotational Case Screw Case Gaussian curvature

In Physics

In a Lorentzian 4-spacetime (M, \langle, \rangle) , let S be a compact spacelike surface without boundary.

A trapped surface

is a surface whose mean curvature is timelike.

A marginally trapped surface

is a surface whose mean curvature is always lightlike.

Given two future-pointing lightlike normal vectors \mathbf{k} and \mathbf{l} along \mathbf{S} , with $\langle \mathbf{k}, \mathbf{l} \rangle = -1$

A Marginally Outer Trapped Surface (MOTS)

is a surface whose mean curvature is always parallalel to either ${\bf k}$ or to ${\bf l}$. In particular, it might be zero.

In certain spacetimes

If the mean curvature of a trapped surface points to the past, then the spacetime is expanding.

Viceversa, if the mean curvature of a trapped surface points to the future, then the spacetime is contracting.

Penrose [Phys. Rev. Lett. 14(1965) 57-59]

For some spacetimes with a trapped surface, there is a *singularity* (could be a big bang, a big crunch...)

Penrose [Phys. Rev. Lett. 14(1965) 57-59]

For some spacetimes with a trapped surface, there is a *singularity* (could be a big bang, a big crunch...)

Dafermos [Class. Quant. Grav. 22 (2005) 2221]

The existence of one trapped surface in a spherically symmetric spacetime is sufficient to ensure the formation of a black hole.

Penrose [Phys. Rev. Lett. 14(1965) 57-59]

For some spacetimes with a trapped surface, there is a *singularity* (could be a big bang, a big crunch...)

Dafermos [Class. Quant. Grav. 22 (2005) 2221]

The existence of one trapped surface in a spherically symmetric spacetime is sufficient to ensure the formation of a black hole.

In a spacetime, a region containing black holes is supposed to be surrounded by a 3-dim hypersurface which is foliated by MOTS. This hypersurface is called *generalized apparent horizon*.

Surfaces in Minkowski 4-Space

The (Lorentz-)Minkowski 4-space \mathbb{L}^4 is \mathbb{R}^4 endowed with the metric $\langle \cdot, \cdot \rangle = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$. The time orientation is given by $\partial_{\mathbf{x}_1}$.

S a spacelike surface, w/o boundary.

A trapped surface

is a surface whose mean curvature is timelike.

Surfaces in Minkowski 4-Space

The (Lorentz-)Minkowski 4-space \mathbb{L}^4 is \mathbb{R}^4 endowed with the metric $\langle \cdot, \cdot \rangle = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$. The time orientation is given by ∂_{x_1} .

S a spacelike surface, w/o boundary.

A trapped surface

is a surface whose mean curvature is timelike.

A marginally trapped surface

is a surface whose mean curvature \mathbf{H} is lightlike or zero: $\langle \mathbf{H}, \mathbf{H} \rangle = 0$.

Surfaces in Minkowski 4-Space

The (Lorentz-)Minkowski 4-space \mathbb{L}^4 is \mathbb{R}^4 endowed with the metric $\langle \cdot, \cdot \rangle = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$. The time orientation is given by ∂_{x_1} .

S a spacelike surface, w/o boundary.

A trapped surface

is a surface whose mean curvature is timelike.

A marginally trapped surface

is a surface whose mean curvature \mathbf{H} is lightlike or zero: $\langle \mathbf{H}, \mathbf{H} \rangle = 0$.

A maximal surface

is a surface whose mean curvature is everywhere zero.

We put
$$\overrightarrow{k} = (1, 1, 0, 0)/\sqrt{2}$$
, $\overrightarrow{l} = (1, -1, 0, 0)/\sqrt{2}$, $\overrightarrow{e}_1 = (1, 0, 0, 0)$, $\overrightarrow{e}_2 = (0, 1, 0, 0)$, $\overrightarrow{e}_3 = (0, 0, 1, 0)$ and $\overrightarrow{e}_4 = (0, 0, 0, 1)$.

We consider spacelike surfaces in \mathbb{L}^4 which are invariant under the following subgroups of direct, linear isometries of \mathbb{L}^4 .

w.r.t. $\{\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3, \overrightarrow{e}_4\}$.

w.r.t. $\{\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3, \overrightarrow{e}_4\}$,

Screw
$$G_3 = \left\{ B_{\theta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \theta^2 & 1 & \sqrt{2}\theta & 0 \\ \sqrt{2}\theta & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} : \theta \in \mathbb{R} \right\},$$

w.r.t. $\{ \overrightarrow{k}, \overrightarrow{l}, \overrightarrow{e}_3, \overrightarrow{e}_4 \}$.

A boost invariant spacelike surface S is contained in either

$$\begin{split} \mathcal{E}_1 &= \{(x_1,x_2,x_3,x_4) \in \mathbb{L}^4: x_1 > 0, \ x_1^2 > x_2^2\}, \text{ or in} \\ \mathcal{E}_2 &= \{(x_1,x_2,x_3,x_4) \in \mathbb{L}^4: x_1 < 0, \ x_1^2 > x_2^2\}. \end{split}$$

We assume $S \subset \mathcal{E}_1$.

Given a point $p = a_k \overrightarrow{k} + a_l \overrightarrow{l} + a_3 \overrightarrow{e}_3 + a_4 \overrightarrow{e}_4 \in \mathbb{L}^4$, a screw invariant spacelike surface is contained in either

$$\mathcal{R}^+ = \{ p \in \mathbb{L}^4 : \alpha_k > 0 \}, \quad \mathcal{R}^- = \{ p \in \mathbb{L}^4 : \alpha_k < 0 \}.$$

We assume that a screw invariant spacelike surface $S \subset \mathbb{R}^+$.

We put

$$\begin{split} & \mathcal{P}_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{L}^4 : x_2 = 0, x_1 > 0\} \subset \mathcal{E}_1, \\ & \mathcal{P}_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{L}^4 : x_4 = 0, x_3 > 0\}, \\ & \mathcal{P}_3 = \{(\alpha_k, \alpha_1, \alpha_3, \alpha_4) \in \mathbb{L}^4 : \alpha_3 = 0, \alpha_k > 0\} \subset \mathcal{R}^+. \end{split}$$

On S we introduce a (local) parametrization $X(s,\theta)$ on a dense open subset Σ_{α} of S as follows,

$$\Sigma_{\alpha} = \{X(s, \theta) = \alpha(s) \cdot B_{\theta} : s \in I, \theta \in \mathbb{R}\},\$$

where α is a unit spacelike curve $\alpha: I \subset \mathbb{R} \to \mathcal{P}_i$, $(\langle \alpha', \alpha' \rangle = 1)$ according to i = 1, 2, 3 (boost, rotational or screw cases.)

future-pointing timelike, η_2 spacelike.

- A_i Weingarten endomorphism associated with η_i , i = 1, 2.
- The mean curvature vector is

$$\mathbf{H} = \frac{1}{2} \Big(- \mathsf{Tr}(A_1) \eta_1 + \mathsf{Tr}(A_2) \eta_2 \Big).$$

By the local theory of surfaces, we compute the coefficients of the first and the second fundamental forms...

$$\begin{split} E = \langle X_s, X_s \rangle, \quad F = \langle X_s, X_\theta \rangle, \quad G = \langle X_\theta, X_\theta \rangle, \\ i = 1, 2, \quad e_i = \langle X_{ss}, \eta_i \rangle, \quad f_i = \langle X_{s\theta}, \eta_i \rangle, \quad g_i = \langle X_{\theta\theta}, \eta_i \rangle. \end{split}$$

$$h_i = \mathsf{tr}_{\langle,\rangle}(A_i) = \frac{e_i G - 2f_i F + g_i E}{EG - F^2} \ \Rightarrow \ \mathbf{H} = \frac{1}{2} \Big(-h_1 \eta_1 + h_2 \eta_2 \Big).$$

By the local theory of surfaces, we compute the coefficients of the first and the second fundamental forms...

$$\begin{split} E = \langle X_s, X_s \rangle, \quad F = \langle X_s, X_\theta \rangle, \quad G = \langle X_\theta, X_\theta \rangle, \\ i = 1, 2, \quad e_i = \langle X_{ss}, \eta_i \rangle, \quad f_i = \langle X_{s\theta}, \eta_i \rangle, \quad g_i = \langle X_{\theta\theta}, \eta_i \rangle. \end{split}$$

$$h_i = \mathsf{tr}_{\langle,\rangle}(A_i) = \frac{e_i G - 2f_i F + g_i E}{EG - F^2} \ \Rightarrow \ \mathbf{H} = \frac{1}{2} \Big(-h_1 \eta_1 + h_2 \eta_2 \Big).$$

Thus,

$$0 = \langle \mathbf{H}, \mathbf{H} \rangle \Longleftrightarrow h_1 = \pm h_2$$
 pointwise.

Sign Choice Lemma

Given a smooth function $\rho: I \to \mathbb{R}$, there exist functions $\epsilon: I \to \{-1, 1\} \subset \mathbb{R}$ such that $\epsilon \rho$ is smooth.

The simplest choice consists of setting ε as a constant.

Sign Choice Lemma

Given a smooth function $\rho: I \to \mathbb{R}$, there exist functions $\epsilon: I \to \{-1, 1\} \subset \mathbb{R}$ such that $\epsilon \rho$ is smooth.

The simplest choice consists of setting ε as a constant.

Sign Choice Lemma

Given a smooth function $\rho: I \to \mathbb{R}$, there exist functions $\epsilon: I \to \{-1, 1\} \subset \mathbb{R}$ such that $\epsilon \rho$ is smooth.

The simplest choice consists of setting ε as a constant.

Note that ε is not always unique!

Remark

 $\langle \mathbf{H}, \mathbf{H} \rangle = 0$ iff $h_1 = \varepsilon h_2$ for a suitable function ε .

Remark

$$\langle \mathbf{H}, \mathbf{H} \rangle = 0$$
 iff $h_1 = \varepsilon h_2$ for a suitable function ε .

Main problem

To solve equation $h_1 = \varepsilon h_2$.

Boost case

We consider $\alpha:I\subset\mathbb{R}\to\mathcal{P}_1$, $\alpha=(\alpha_1,0,\alpha_3,\alpha_4)$ with $\alpha_1>0$ and $\langle\alpha',\alpha'\rangle=1$. The parametrization of Σ_α is

$$X(s,\theta) = \Big(\alpha_1(s)\cosh(\theta), \ \alpha_1(s)\sinh(\theta), \ \alpha_3(s), \ \alpha_4(s)\Big),$$

$$s \in I, \ \theta \in \mathbb{R}$$
.

Rotational Case

A globally defined orthonormal basis of the normal bundle of Σ_{α} is given by

$$\begin{array}{rcl} \eta_1 & = & \displaystyle \frac{\left(\cosh(\theta)(1+(\alpha_1')^2), \, \sinh(\theta)(1+(\alpha_1')^2), \, \alpha_1'\alpha_3', \, \alpha_1'\alpha_4'\right)}{\sqrt{1+(\alpha_1')^2}}, \\ \eta_2 & = & \displaystyle \frac{1}{\sqrt{1+(\alpha_1')^2}} \Big(0, 0, \, -\alpha_4', \, \alpha_3'\Big), \end{array}$$

with η_1 future-pointing time-like and η_2 space-like.

$$h_1 = - \, \frac{1 + (\alpha_1')^2 + \alpha_1 \alpha_1''}{\alpha_1 \sqrt{1 + (\alpha_1')^2}}, \quad h_2 = \frac{-\alpha_4' \alpha_3'' + \alpha_3' \alpha_4''}{\sqrt{1 + (\alpha_1')^2}}.$$

Given a smooth function $\alpha_1 > 0$, we define

$$\rho = -\frac{1+(\alpha_1')^2+\alpha_1\alpha_1''}{\alpha_1}.$$

We choose a function ϵ as in Sign Choice Lemma, such that $\epsilon \rho$ is smooth. We define

Angle function:
$$\xi = \int \frac{\epsilon \, \rho}{1 + (\alpha_1')^2} ds$$
 ,

$$\alpha_3 = \int \sqrt{1+(\alpha_1')^2} \, \cos(\xi) \mathsf{d}s, \text{ and } \alpha_4 = \int \sqrt{1+(\alpha_1')^2} \, \sin(\xi) \mathsf{d}s.$$

Finally, we consider the curve

$$\alpha = (\alpha_1, 0, \alpha_3, \alpha_4) \ (\Rightarrow \langle \alpha', \alpha' \rangle = 1.)$$

Theorem 1

Any boost invariant, marginally trapped surface S (in \mathcal{E}_1) admits a dense open subset of the form Σ_{α} whose profile curve α is as above, with

$$\mathbf{H} = \frac{\rho}{2\sqrt{1 + (\alpha_1')^2}} (-\varepsilon \eta_1 + \eta_2).$$

Theorem 1

Any boost invariant, marginally trapped surface S (in \mathcal{E}_1) admits a dense open subset of the form Σ_{α} whose profile curve α is as above, with

$$\mathbf{H} = \frac{\rho}{2\sqrt{1 + (\alpha_1')^2}}(-\varepsilon\eta_1 + \eta_2).$$

In addition, given any other unit spacelike curve $\beta = (\beta_1, 0, \beta_3, \beta_4)$ such that $\beta_1 = \alpha_1$, there exists an affine isometry F of \mathbb{L}^4 such that $F(\Sigma_\alpha) = \Sigma_\beta$.

Corollary 1

Let Σ_{α} be a boost invariant maximal surface (in \mathcal{E}_1). Then, a unit profile curve is given by

$$\begin{split} \alpha(s) &= \left(f(s), 0, \cos(\xi_0) \sqrt{\alpha_1} \arctan\left(\frac{s + \alpha_2}{f(s)}\right), \\ &\sin(\xi_0) \sqrt{\alpha_1} \arctan\left(\frac{s + \alpha_2}{f(s)}\right) \right), \end{split}$$

where $f(s) = \sqrt{a_1 - (s + a_2)^2}$, and a_1 , a_2 , $\xi_0 \in \mathbb{R}$, $a_1 > 0$, being integration constants.

A Gluing Algorithm

Proposition 1

Take two unit curves, α^1 , α^2 : $]p_i$, $q_i[\rightarrow \mathcal{P}_1$, with $-\infty \leqslant p_1 < q_1 < p_2 < q_2 \leqslant +\infty$, such that Σ_{α^i} are marginally trapped. Let $0 < d \leqslant \frac{1}{4} \min\{q_1 - p_1, p_2 - q_1, q_2 - p_2\}$.

Then, there exist a unit spacelike curve $\beta:]p_1,q_2[\to \mathcal{P}_1,$ $\beta=(\beta_1,0,\beta_3,\beta_4)$ which is the profile curve of a marginally trapped surface Σ_{β} such that

- There exists a direct affine isometry $F_1: \mathbb{L}^4 \to \mathbb{L}^4$ with $F_1 \circ \alpha^1_{||p_1,q_1-d|} = \beta_{||p_1,q_1-d|}$.
- ② There exists a direct affine isometry $F_2:\mathbb{L}^4\to\mathbb{L}^4$ such that $F_2\circ\alpha^2_{||p_2+d,q_2|}=\beta_{||p_2+d,q_2|}$.
- **1** The (intermediate) surface $\sum_{\beta_{\parallel q_1, p_2}}$ is maximal.

New surfaces

This gluing method gives the possibility to construct a surface S satisfying the following conditions:

New surfaces

This gluing method gives the possibility to construct a surface S satisfying the following conditions:

- **S** is boost invariant, marginally trapped, with (infinitely many countable) regions $\{S_n : n \in \mathbb{N} \subset \mathbb{N}\}$ where its mean curvature vector $\mathbf{H} \neq \mathbf{0}$.
- ② The mean curvature vector of each region S_n can be set either future or past-pointing, as *desired*.
- **3** Among two *adjacent* regions S_n and S_{n+1} , there is an open subset which is maximal, i.e. H = 0.

Rotational Case

Recall

$$\begin{split} \mathcal{P}_2 = & \{ (x_1, x_2, x_3, x_4) \in \mathbb{L}^4 : x_4 = 0, x_3 > 0 \} \\ \textbf{Rotational} : \mathbf{G}_2 = \left\{ B_\theta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(\theta) & \sin(\theta) \\ 0 & 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix} : \theta \in \mathbb{R} \right\}. \end{split}$$

Given a rotational invariant surface S, we introduce a parametrization $X(t,\theta)$ with a smooth spacelike unit curve $\alpha:I\subset\mathbb{R}\to\mathcal{P}_2,\ \alpha=(\alpha_1,\alpha_2,\alpha_3,0),\ i.\ e.$

$$\begin{split} \Sigma_{\alpha} = & \{X(t,\theta) = \alpha(t) \cdot B_{\theta} : t \in I, \theta \in \mathbb{R}\} \subset S, \\ X(t,\theta) = & \left(\alpha_1(t), \alpha_2(t), \alpha_3(t) \cos(\theta), \alpha_3(t) \sin(\theta)\right), \ t \in I, \theta \in \mathbb{R}. \end{split}$$

$$\begin{array}{lll} \eta_1 & = & \displaystyle \frac{1}{\sqrt{1+(\alpha_1')^2}} \Big(1+(\alpha_1')^2, \, \alpha_1'\alpha_2', \, \alpha_1'\alpha_3'\cos(\theta), \, \alpha_1'\alpha_3'\sin(\theta)\Big), \\[1mm] \eta_2 & = & \displaystyle \frac{1}{\sqrt{1+(\alpha_1')^2}} \Big(0, -\alpha_3', \, \alpha_2'\cos(\theta), \, \alpha_2'\sin(\theta)\Big), \end{array}$$

with η_1 future-pointing timelike and η_2 spacelike.

$$h_1 = -\frac{\alpha_1'\;\alpha_3' + \alpha_3\;\alpha_1''}{2\alpha_3\sqrt{1+(\alpha_1')^2}} \quad \text{and} \quad h_2 = -\frac{\alpha_2' + \alpha_3(\alpha_2''\;\alpha_3' - \alpha_2'\;\alpha_3'')}{2\alpha_3\sqrt{1+(\alpha_1')^2}}.$$

We recall $0 = \langle \mathbf{H}, \mathbf{H} \rangle \iff h_1 = \varepsilon h_2$.

Surfaces of type A

Given a smooth function $\tau:I\subset (0,\infty)\to \mathbb{R}$, choose a function $\epsilon:I\to \{1,-1\}$ such that $\epsilon\tau$ is also smooth. Define the coordinate functions $\alpha_i:I\to \mathbb{R}$, i=1,2,3, as follows

$$\alpha_1(t) = \int \epsilon(t) \tau(t) dt, \ \alpha_2(t) = \int \tau(t) dt, \ \alpha_3(t) = t.$$

Then, the curve $\alpha = (\alpha_1, \alpha_2, \alpha_3, 0)$ defines a marginally trapped surface Σ_{α} whose mean curvature vector is

$$\mathbf{H} = \frac{\tau + t\tau'}{2t\sqrt{1+\tau^2}} \left(\varepsilon\eta_1 - \eta_2\right).$$

Surfaces of type B

Given a smooth positive function $\alpha_3: I \subset \mathbb{R} \to \mathbb{R}$, and two constants $\epsilon_1, \epsilon_2 = \pm 1$, define

$$\begin{split} \xi(t) &= \int \frac{dt}{\alpha_3(t)}, \\ \alpha_1(t) &= \epsilon_1 \int \left\{ \sinh(\xi(t)) - \alpha_3'(t) \, \cosh(\xi(t)) \right\} \, dt, \\ \alpha_2(t) &= \epsilon_2 \int \left\{ \cosh(\xi(t)) - \alpha_3'(t) \, \sinh(\xi(t)) \right\} \, dt. \end{split}$$

Then, the curve $\alpha = (\alpha_1, \alpha_2, \alpha_3, 0)$ defines a marginally trapped surface whose mean curvature vector is

$$\mathbf{H} = \frac{\cosh(\xi(t)) \left(1 - \alpha_3'(t)^2 - \alpha_3(t) \, \alpha_3''(t)\right)}{2\alpha_3(t) \sqrt{1 + \alpha_1'(t)^2}} \left(\epsilon_1 \eta_1 - \epsilon_2 \eta_2\right).$$

Let Σ_{α} be a rotational invariant, marginally trapped surface in \mathbb{L}^4 . Then, the the surface is locally congruent to a surface of type A or of type B.

Let Σ_{α} be a rotational invariant, marginally trapped surface in \mathbb{L}^4 . Then, the the surface is locally congruent to a surface of type A or of type B.

In addition, in Case B, given two unit curves $\alpha=(\alpha_1,\alpha_2,\alpha_3,0)$ and $\beta=(\beta_1,\beta_2,\beta_3,0)$, such that $\alpha_3=\beta_3$, there exists an affine isometry F of \mathbb{L}^4 satisfying $F(\Sigma_\alpha)=\Sigma_\beta$.

Corollary 2

A rotational invariant, spacelike surface in \mathbb{L}^4 is maximal if, and only if, it is locally congruent to a surface Σ_{α} whose profile curve $\alpha = (\alpha_1, \alpha_2, \alpha_3, 0)$, is given by one of the following cases:

• Given a > 0, $b, c \in \mathbb{R}$ and $\varepsilon_1, \varepsilon_2 = \pm 1$,

$$\alpha_1(t) = a \, \varepsilon_1 \ln(t) + b, \quad \alpha_2(t) = a \, \varepsilon_2 \ln(t) + c, \quad \alpha_3(t) = t.$$

② Given ε_1 , $\varepsilon_2 = \pm 1$, and \mathfrak{a} , $\mathfrak{b} \in \mathbb{R}$,

$$\begin{split} &\alpha_1(t) = &\frac{\epsilon_1}{2}(\alpha^2+1-b) \text{ In } \left|\alpha+t+\sqrt{t^2+2\alpha t+b}\right|,\\ &\alpha_2(t) = &\frac{\epsilon_2}{2}(\alpha^2-1-b) \text{ In } \left|\alpha+t+\sqrt{t^2+2\alpha t+b}\right|,\\ &\alpha_3(t) = &\sqrt{t^2+2\alpha t+b}. \end{split}$$

A Gluing Algorithm

Proposition 2

Let Σ_{α^r} , r=1,2 be two surfaces of type A and/or B as in Theorem 2 with profile curves $\alpha^r: (a_r,b_r)\subset \mathbb{R}\longrightarrow \mathcal{P}_2$, r=1,2, with $b_1< a_2$. Assume that there is $\omega\geqslant 0$ such that the associated functions ϵ^r are constant on the intervals $(b_1-\omega,b_1)$ and $(a_2,a_2+\omega)$, respectively (Type A: $\epsilon^r=\epsilon$; type B, $\epsilon^r=\epsilon_1$). Then, there exist two affine isometries $F_r:\mathbb{L}^4\longrightarrow \mathbb{L}^4$, r=1,2, and a unit spacelike curve $\gamma: (a_1,b_2)\longrightarrow \mathcal{P}_2$, satisfying

- **1** the surface Σ_{γ} is rotational invariant and marginally trapped;

New surfaces

Previous proposition gives the possibility to construct a surface S satisfying the following conditions:

New surfaces

Previous proposition gives the possibility to construct a surface S satisfying the following conditions:

- **3** S is rotational invariant, marginally trapped, with (infinitely many countable) regions $\{S_n : n \in \mathbb{N} \subset \mathbb{N}\}$ where its mean curvature vector $\mathbf{H} \neq \mathbf{0}$.
- 2 Each region S_n can be of type either A or B.
- **3** The mean curvature vector of each region S_n can be set either future or past-pointing, as *desired*.
- 4 Among two adjacent regions S_n and S_{n+1} , there is an open subset which is maximal, i.e. H = 0.

Screw Case

Recall

w.r.t.
$$\{\overrightarrow{k}, \overrightarrow{l}, \overrightarrow{e}_3, \overrightarrow{e}_4\}$$
.

$$\mathcal{P}_3 = \Big\{ \alpha_k \overrightarrow{k} + \alpha_l \overrightarrow{l} + \alpha_3 \overrightarrow{e}_3 + \alpha_4 \overrightarrow{e}_4 \in \mathbb{L}^4 \ : \alpha_3 = 0, \ \alpha_k > 0 \Big\}.$$

If S is a screw invariant spacelike surface in $\mathbb{R}^+ \subset \mathbb{L}^4$, we introduce a parametrization $X(t,\theta)$ on a dense open subset Σ_α of S as follows: $\Sigma_\alpha = \{X(t,\theta) = \alpha(t) \cdot B_\theta : t \in I, \theta \in \mathbb{R}\} \subset S$, where

$$\alpha: I \subset \mathbb{R} \to \mathcal{P}_3, \quad \langle \alpha', \alpha' \rangle = 1, \quad \alpha = \alpha_k \overrightarrow{k} + \alpha_l \overrightarrow{l} + \alpha_4 \overrightarrow{e}_4,$$

$$\begin{split} X(t,\theta) &= \alpha_k(t) \overrightarrow{k} + \left(\theta^2 \alpha_k(t) + \alpha_l(t)\right) \overrightarrow{l} \\ &+ \sqrt{2} \theta \alpha_k(t) \overrightarrow{e}_3 + \alpha_4(t) \overrightarrow{e}_4. \end{split}$$

Type I Surfaces

Given α_{k0} , δ , $t_0 \in \mathbb{R}$, with $\delta = \pm 1$, $\alpha_{k0} > 0$, define α_k , α_l , $\alpha_4 : I \subset \mathbb{R} \longrightarrow \mathbb{R}$, $\alpha_k(t) = \alpha_{k0}$, $\alpha_4(t) = \underline{\delta}t + t_0$ and $\alpha_l(t)$ is any smooth function. Then, the curve $\alpha = \alpha_k \overrightarrow{k} + \alpha_l \overrightarrow{l} + \alpha_4 \overrightarrow{e}_4$ is unit spacelike and defines a surface Σ_{α} with

$$\mathbf{H} = \frac{1 + \alpha_{k0} \, \alpha_l''(t)}{2 \, \alpha_{k0}} \, \overrightarrow{\mathbf{l}}.$$

Type I Surfaces

Given α_{k0} , δ , $t_0 \in \mathbb{R}$, with $\delta = \pm 1$, $\alpha_{k0} > 0$, define α_k , α_l , $\alpha_4 : I \subset \mathbb{R} \longrightarrow \mathbb{R}$, $\alpha_k(t) = \alpha_{k0}$, $\alpha_4(t) = \delta t + t_0$ and $\alpha_l(t)$ is any smooth function. Then, the curve $\alpha = \alpha_k \overrightarrow{k} + \alpha_l \overrightarrow{l} + \alpha_4 \overrightarrow{e}_4$ is unit spacelike and defines a surface Σ_{α} with

$$\mathbf{H} = \frac{1 + \alpha_{k0} \, \alpha_l''(t)}{2 \, \alpha_{k0}} \, \overrightarrow{\mathbf{l}}.$$

Type II Surfaces

Given $\rho:I\subset\mathbb{R}\to\mathbb{R}$ and $\epsilon:I\subset\mathbb{R}\to\{\pm 1\},$ such that ρ and $\epsilon\rho$ are smooth, and for constants $\alpha_{k0},~\alpha_{l0},~\alpha_{40},~\alpha_{41},~f_0\in\mathbb{R},$ $\alpha_{k0}>0,$ define f, $\alpha_k,~\alpha_4,~\alpha_l:I\subset\mathbb{R}\to\mathbb{R}$ as follows,

$$\begin{split} f(t) &= \int_{t_0}^t \epsilon(r) \rho(r) dr + f_0, \ \alpha_k(t) = \sqrt{\alpha_{k0} + \int_{t_0}^t \exp(f(s)) ds}, \\ \alpha_4(t) &= \alpha_{40} + \alpha_{41} \alpha_k(t) \\ &+ \int_{t_0}^t \frac{\exp(f(s))}{\alpha_k(s)} \left(\int_{t_0}^s \frac{\alpha_k(w) \rho(w)}{\exp(f(w))} dw \right) ds, \\ \alpha_l(t) &= \alpha_{l0} - \int_{t_0}^t \frac{2\alpha_k(s)}{\exp(f(s))} ds \\ &+ \int_{t_0}^t \left\{ \frac{\alpha_k(s)}{4 \exp(f(s))} \left(\alpha_{k0} + \int_{t_0}^s \frac{2\alpha_k(w) \rho(w)}{\exp(f(w))} dw \right)^2 \right\} ds. \end{split}$$

Then, the curve $\alpha = \alpha_k \overrightarrow{k} + \alpha_l \overrightarrow{l} + \alpha_4 \overrightarrow{e}_4$ is unit spacelike and defines a surface Σ_{α} with

$$\mathbf{H} = \frac{\rho(t)}{2} \left(\epsilon \, \eta_1 + \eta_2 \right),$$

where

$$\begin{split} \eta_1 &= \alpha_k'(t) \overrightarrow{k} + \left(\frac{1}{\alpha_k'(t)} + \theta^2 \alpha_k'(t) + \alpha_l'(t)\right) \overrightarrow{l} \\ &+ \sqrt{2} \theta \alpha_k'(t) \overrightarrow{e}_3 + \alpha_4'(t) \overrightarrow{e}_4, \\ \eta_2 &= \left(\alpha_{41} + 2 \int_{t_0}^t \frac{2\alpha_k(w)\rho(w)}{\exp(f(w))} dw\right) \overrightarrow{l} + \overrightarrow{e}_4, \end{split}$$

is an orthonormal frame of the normal bundle, with η_1 timelike and η_2 spacelike.

Let S be a screw invariant, marginally trapped spacelike surface in \mathbb{R}^+ . Then, S is locally congruent to a surface Σ_{α} of type I or type II.

Corollary 3

Let S be a maximal screw invariant spacelike surface in \mathbb{R}^+ . Then, S is locally congruent to a surface Σ_{α} whose profile curve $\alpha = \alpha_k \overrightarrow{k} + \alpha_l \overrightarrow{l} + \alpha_4 \overrightarrow{e}_4$ is one of the following two cases:

- I. Given α_{k0} , α_{l0} , α_{l1} , δ , $t_0 \in \mathbb{R}$, with $\delta = \pm 1$, $\alpha_{k0} > 0$, define α_k , α_l , $\alpha_4 : I \subset \mathbb{R} \longrightarrow \mathbb{R}$, $\alpha_k(t) = \alpha_{k0}$, $\alpha_4(t) = \delta t + t_0$ and $\alpha_l(t) = \alpha_{l0} + \alpha_{l1} \, t t^2/(2\alpha_{k0})$.
- II. Given α_{k0} , α_{k1} , α_{40} , α_{41} , $\alpha_{l0} \in \mathbb{R}$, with $\alpha_{k1} > 0$, define the functions α_k , α_4 , $\alpha_l : I \subset (\frac{-\alpha_{k0}}{\alpha_{k1}}, +\infty) \subset \mathbb{R} \longrightarrow \mathbb{R}$ as follows,

$$\alpha_{k}(t) = \sqrt{\alpha_{k1} t + \alpha_{k0}}, \quad \alpha_{4}(t) = \alpha_{40} + \alpha_{41} \alpha_{k}(t),$$

$$\alpha_{l}(t) = \alpha_{l0} + \frac{(\alpha_{41})^{2}}{2} \alpha_{k}(t) - \frac{2}{3(\alpha_{k1})^{2}} \alpha_{k}(t)^{3}.$$

Type II surface

The coordinate function of the profile curve

$$\begin{split} \alpha_{l}(t) &= \alpha_{l0} - \int_{t_{0}}^{t} \frac{2\alpha_{k}(s)}{\exp(f(s))} ds \\ &+ \int_{t_{0}}^{t} \left\{ \frac{\alpha_{k}(s)}{4\exp(f(s))} \left(\alpha_{k0} + \int_{t_{0}}^{s} \frac{2\alpha_{k}(w)\rho(w)}{\exp(f(w))} dw \right)^{2} \right\} ds \end{split}$$

makes impossible to glue two of them.

Gaussian curvature

In general,

Gaussian curvature:
$$K = \frac{-e_1g_1 + f_1^2 + e_2g_2 - f_2^2}{EG - F^2}$$
.

In each case, the Gaussian curvature can be easily computed:

$$\begin{array}{lll} \text{Boost:} & \alpha=(\alpha_1,0,\alpha_3,\alpha_4), & K=\frac{\alpha_1''}{\alpha_1} \\ \text{Rotational:} & \alpha=(\alpha_1,\alpha_2,\alpha_3,0), & K=-\frac{\alpha_3''}{\alpha_3} \\ \text{Screw:} & \alpha=(\alpha_k,\alpha_l,0,\alpha_4), & K=-\frac{\alpha_k''}{\alpha_k} \end{array}$$

- Given $\alpha_1 > 0$ and $\epsilon_1 \Longrightarrow \exists$ boost invariant Σ_{α}
- Given $\alpha_3>0$ and ϵ_i , $i=1,2,\Longrightarrow \exists$ rotational invariant type B Σ_{α}
- Given $\rho > 0$ (or α_k) and ε , $\Longrightarrow \exists$ screw invariant type I or II Σ_{α}

Let G be either boost, rotational or invariant group. Let $\kappa:I\subset\mathbb{R}\longrightarrow\mathbb{R}$ be a smooth function. Given $t_0\in I$, there exist $\varepsilon>0$ and a unit space-like curve $\alpha:(t_0-\varepsilon,t_0+\varepsilon)\to\mathcal{P}_i$ such that α is a unit profile curve of the marginally trapped G-invariant surface Σ_α whose Gaussian curvature satisfies $K(t,\theta)=\kappa(t)$ for any $(t,\theta)\in(t_0-\varepsilon,t_0+\varepsilon)\times\mathbb{R}$.

Thank you very much for your attention