DBSCAN

Chelsea Parlett-Pelleriti

DBSCAN

Density Based Spatial Clustering of Applications with Noise

- Distance Metric
- Epsilon (eps)
- Minimum Points (*minpts*)

Benefits of DBSCAN

database 1

database 2

database3

Disadvantages of DBSCAN

- Can be less effective in High Dimensional Data
- Not great with overlapping/touching clusters
- Suboptimal when clusters have different densities

DBSCAN

Density Based Spatial Clustering of Applications with Noise

- Distance Metric
- Epsilon (eps)
- Minimum Points (*minpts*)

Core Point: **p** is a core point if it has at least *minpts* neighbors within *eps* distance of itself

Border Point*: **p** is a border point if it DOES NOT have at least *minpts* neighbors within *eps* distance of itself, but is a neighbor of a core point

Noise: **p** is noise if it DOES

NOT have at least *minpts*neighbors within *eps*distance of itself, and IS

NOT a neighbor of a core

point

>min_samples neighbors **DBSCAN** no. yes core point core point neighbor? no noise border point

Definitions

- <u>Directly density reachable</u>: **p** is directly density reachable from core-point **q** if it is in the neighborhood of **q**
- Density reachable: p is directly reachable from q if there are a chain of points that are directly density reachable from q to p
- <u>Density connected</u>: **p** and **q** are density connected if they are both density reachable from a third point, **o**

- <u>Cluster</u>: choose core point **q**, a cluster **C** contains all points density reachable by **q**
- Noise: any point not in a cluster

Directly density reachable: **p** is directly density reachable from core-point **q** if it is in the neighborhood of **q**

Density reachable: **p** is density reachable from **q** if there are a chain of points that are directly density reachable from **q** to **p**

Cluster: choose core point **q**, a cluster **C** contains all points density reachable by **q**

Noise: any point not in a cluster

Benefits of DBSCAN

database 1

database 2

database3

Choosing Minimum Points

- Domain Knowledge + Distance Metrics
- More rows = larger min_pts
- More noise = larger min_pts
- More features = larger min_pts

Elbow Method for Choosing eps

Choosing Epsilon

distances

- Elbow method (k-dist)
- DomainKnowledge

index