

1 Kurzaufgaben (13 Punkte)

a) Betrachten Sie die kartesischen Komponenten des Ortsvektors \vec{r} und des Impulsvektors \vec{p} eines Teilchens als generalisierte Koordinaten und Impulse. Berechnen Sie für einen konstanten Vektor \vec{a} die Poisson-Klammern

$$\{(\vec{a}\cdot\vec{r})^2;\vec{p}\}$$
.

- b) Ein vollkommen biegsames, homogenes Seil mit Gesamtlänge l und Masse m hänge auf einem Nagel, so dass die beiden hängenden Teile die Länge $\frac{l}{2}$ haben. Nach einer infinitesimal kleinen Verschiebung aus dem instabilen Gleichgewicht bewege sich das Seil reibungsfrei im homogenen Schwerefeld. Bestimmen Sie die Geschwindigkeit des Seiles unmittelbar nach dem vollständigen Abgleiten vom Nagel.
- c) Betrachten Sie den vertikalen Fall einer Masse m im homogenen Schwerefeld $g\vec{e}_z$ unter Berücksichtigung der Reibungskraft $F_R = -Kv^3\vec{e}_v$. Formulieren Sie die Differentialgleichung für die vertikale Geschwindigkeit der Masse und bestimmen Sie die stationäre (zeitunabhängige) Geschwindigkeit, die die Masse für große Zeiten erreicht.
- d) Ein Sportler hat die Jahresbestleistung im Hochsprung von h_1 . Wie hoch könnte dieser Sportler auf dem Mond mit sechsmal kleinerer Schwerebeschleunigung als auf der Erde springen?
- e) Ein mathematisches Pendel hat die Schwingungsperiode $T=1\,\mathrm{s}$. Wie groß ist die Schwingungsperiode des Pendels in einer Rakete, die mit einer Beschleunigung von 3g vertikal von der Erdoberfläche startet.

2 Zug (11 Punkte)

Zwei Eisenbahnwaggons mit Massen m_1 und m_2 sind mit einer masselosen Kupplung derart verbunden, dass der Abstand der Schwerpunkte l beträgt. Die Waggons bewegen sich reibungsfrei entlang der x-Achse. Am zweiten Waggon wird mit der zeitabhängigen Kraft $\vec{F}(t) = \alpha t \vec{e}_x$ für $t \ge 0$ mit $\alpha = \text{const.} > 0$ gezogen.

- a) Formulieren Sie die Zwangsbedingung für die Koordinaten der Schwerpunkte der Waggons x_1 und x_2 und geben Sie die Bewegungsgleichungen (Lagrange-Gleichungen 1. Art) für $x_1(t)$ und $x_2(t)$ an.
- b) Bestimmen Sie die Zwangskraft und die Lösung für $x_1(t)$ und $x_2(t)$.
- c) Die Kupplung löst sich, falls die Zwangskraft den kritischen Wert F_c^* übersteigt. Bestimmen Sie den Zeitpunkt, zu dem die Kupplung gelöst wird. Wie ändert sich das Ergebnis, falls am ersten Waggon mit $\vec{F}(t) = -\alpha t \vec{e}_x$ gezogen wird?

3 Frosch (11 Punkte)

Betrachten Sie, am Ufer stehend, einen Frosch der Masse m, der am Ende eines auf dem Wasser ruhenden Seerosenblattes der Masse M mit Durchmesser L sitzt. Reibungseffekte seien vernachlässigbar.

- a) Der Frosch springt unter dem Winkel α zur Horizontalen und landet am gegenüberliegenden Ende des Blattes.
 - i) Bestimmen Sie die Bahnkurve von Frosch (Koordinaten x(t) und z(t)) und Blatt (Koordinate X(t)).
 - ii) Bestimmen Sie die Sprungdauer t_s und die Anfangsgeschwindigkeiten des Frosches und des Blattes unmittelbar nach dem Sprung.
- b) Wie groß ist die Verschiebung des Blattes, wenn der Frosch vom einen Ende des Blattes zum anderen kriecht?

4 Satellitenmanöver (9 Punkte)

Ein Erdsatellit der Masse m bewege sich auf einer Kreisbahn mit Radius R_1 . Durch zwei Bremsmanöver kann der Satellit auf eine andere Kreisbahn mit Radius $R_2 < R_1$ gebracht werden: Nach einer kurzen Bremsung bewegt sich der Satellit auf einer elliptischen Bahn mit Aphelabstand R_1 und Perihelabstand R_2 ; die zweite Bremsung im Perihel führt auf die neue Kreisbahn mit Radius R_2 .

- a) Wie groß sind die Geschwindigkeiten v_1 und v_2 des Satelliten auf den Kreisbahnen?
- b) Bestimmen Sie die minimale und die maximale Geschwindigkeit des Satelliten v_{\min} und v_{\max} auf der elliptischen Bahn.
- c) Betrachten Sie den Fall, dass R_2 gleich dem Erdradius ist. Bestimmen Sie das Verhältnis zwischen der Umlaufperiode T_1 und der Zeit, bis der Satellit nach dem ersten Bremsmanöver auf der Erde landet.

5 Perle auf Schraubenlinie (4 Punkte)

Betrachten Sie die Bewegung einer Perle der Masse m auf der unendlichen Schraubenlinie, die in Zylinderkoordinaten durch $\rho=R$ und $z=b\varphi$ mit Konstanten R und b gegeben ist. Es wirke das homogene Schwerefeld $-g\vec{e}_z$. Vernachlässigen Sie Reibungseffekte.

- a) Betrachten Sie den Winkel φ als generalisierte Koordinate und bestimmen Sie die kinetische Energie und die Lagrange-Funktion des Systems.
- b) Formulieren Sie die Euler-Lagrange-Bewegungsgleichung und bestimmen Sie die Lösung.