Using Neural Networks to Classify 3D Scans of Museum Artifacts

Capstone Project in Machine Learning, 2021

Alvaro Ortiz Troncoso

https://www.epfl.ch/

3D-digitalization before 2021

Automated 3D scanning at Museum für Naturkunde Berlin, using the CultLab3D system developed by Fraunhofer institute (Photo: Carola Radke, MfN)

3D-digitalization after 2021

Automated 3D scanning at Museum für Naturkunde Berlin, using the collection digitization system developed by Picturae (Photo: Maren Demant, ifs)

Given the current state of digitization of cultural artifacts, what results can be expected?

Until 2021

Digitizing an artifact can take several hours (including post-processing), therefore digitization reserved for the most prestigious items in the collection

After 2021

Cost-efficient and timely mass-digitization of all the artifacts in a collection

What problem could be solved by mass digitization?

- 30 million objects
- 80% of the collection is stored in historical cabinets
- Taxonomical and geografical information is not up to modern standards

- Open knowledge infrastructure
 - · Make accessible to scientists
 - · Make accessible to anyone
 - · Worldwide, CC-BY

What problem could be solved by mass digitization + Machine Learning?

Enhance incomplete metadata by learning from complete metadata.

Data Sources Digitization projects in Archaeology

University of Virginia, Charlottesville, USA

Global Digital Heritage, USA / IT / ES (non-profit)

Centro Universitario de Mérida, ES

Institutul National al Patrimoniului, București, RO

Data Sources Aggregator

University of Virginia, Charlottesville, USA

Musée Art & Histoire, Bruxelles, BE

INSTITUTE OF ARCHAEOLOGY OF CAS, Prague, CS

Global Digital Heritage, USA / IT / ES (non-profit)

https://sketchfab.com

Centro Universitario de Mérida, ES

Institutul National al Patrimoniului, București, RO

Download

- * 3D data
- * Metadata

Downloaded data: Metadata

- 1) the name of the 3D model
- 2) ideally a textual description of the object, written by a museum curator
- 3) the API-URI where the 3D-model file can be downloaded
- 4) a link to the 3D-model's preview page on Sketchfab
- 5) the name of the museum, institution or organization that provided the digitized object
- 6) a link to the providers page on Sketchfab
- 7) the license of the 3D-model
- 8) the number of vertices in the 3D-model
- 9) tags added by the provider of the 3D-model describing the object (json)

	Data Provider	Object Count	
1	Archaeological 3D virtual museum	369	
2	The Royal Museums of Art and History	343	
3	Global Digital Heritage	180	
4	Institutul Național al Patrimoniului	22	
5	CMPLab	11	
6	UVA3D	10	
7	Other (less than 10 models each)	85	

Downloaded data: Classes

Various types of pots in the data set: Neolithic LBK vessel, Neolithic SBK mortar, Bronze Age bowl on foot, Iron Age -Visigoth- bottle, Greek Jug, Roman cup (screenshot from the Sketchfab website).

Caveat 1: Data is imbalanced by class

Caveat 2: Data is imbalanced by source

Downloaded 3D models have to be homogenized

The 3D-model with the least vertices (A), with the most vertices (B), the model with the most vertices sub-sampled to 37532 vertices (C)

Machine learning setup

Preprocess 3D-models

A Greek jug (A), its 3D point cloud (B), its texture image (C).

Point clouds

- sub sample point cloud data so that the number of vertices is the number computed in the EDA in notebook 1, i.e. 37838 vertices
- 2) rotate the point cloud to generate an elevation (side) view
- 3) generate plan (top) and cross-section views by rotating the elevation view
- 4) render the views as images
- 5) save the pixel data of the flattened images into a npz file

Textures

- 6) resize the texture image to the size expected by the data extraction model, i.e. 299x299 pixels RGB
- 7) save the textures as flattened images into a npz file

Split data into "train", "validate" and "test" datasets

- Training dataset (70%)
- Validation dataset (20%)
- Test dataset (10%)

Extract features by transfer learning

Extract features by transfer learning

Inception v3 model, trained on "ImageNet" dataset (14.197.122 images) on Google Cloud

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna: "Rethinking the Inception Architecture for Computer Vision", 2015.

Principal component analysis

Classify

Classify

Intermediate result: A list of numbers, representing "features"

Output:
Probability that the artifact belongs to each of the 6 classes

Example:

For the first artifact, for the "elevation view"

Neolithic LBK	50%
Neolithic SBK	40%
Bronze Age	80%
Iron Age	70%
Greek	20%
Roman	60%

Combine classifications

Classify and combine

Results: Accuracy

Results: confusion matrix

	Α	В	С	D	E	F	G	Н
1			Predictions					
2			Bronze Age	Greek	Iron Age	Neolithic Linear Pottery Culture (LBK)	Neolithic Stroked Pottery culture (SBK)	Roman
3		Bronze Age	97 %	0 %	0 %	3 %	0 %	0 %
4		Greek	0 %	87 %	3 %	0 %	0 %	0 %
5		Iron Age	7 %	0 %	83 %	0 %	0 %	0 %
6	True class	Neolithic Linear Pottery Culture (LBK)		0 %	0 %	100 %	0 %	0 %
7		Neolithic Stroked Pottery culture (SBK)		0 %	0 %	40 %	50 %	0 %
8	_	Roman	0 %	14 %	43 %	0 %	0 %	43 %
9								

Evaluation

Practical results

- Evaluation
 Accuracy is not the only criterion
- Transfer learning
 Transfer learning does improve the results considerably, on small data sets.
- Choice of model
 Investigate several suitable alternatives, but stick with those you understand.
- Apply suitable corrections to the results
 Expect data to be incomplete, unbalanced or non-homogeneous, know how to handle these data.

What could be improved?

- Choose a suitable scanning method for ML from the onset
 While point clouds with tens of thousands points provide enough information,
 missing textures certainly are a problem. Therefore 3D-scanning methods that provide a texture
 should be preferred.
- The usual: Larger data set, faster hardware, more time...