Standard Code Library

Shanghai Jiao Tong University

October, 2015

Contents

1	数论	数论算法						
	1.1	快速数论变换	6					
	1.2	多项式求逆	7					
	1.3	中国剩余定理	7					
	1.4	Miller Rabin	7					
	1.5	Pollard Rho	8					
	1.6	坚固的逆元	9					
	1.7	直线下整点个数	9					
2	数值	[算法	10					
	2.1	快速傅立叶变换	10					
	2.2	单纯形法求解线性规划	10					
	2.3	自适应辛普森	12					
3	数据结构							
	3.1	Splay 普通操作版	13					
	3.2	Splay 区间操作版	15					
	3.3	坚固的 Treap	19					
	3.4	k-d 树	21					
	3.5	树链剖分	22					
		3.5.1 点操作版本	22					
		3.5.2 链操作版本	26					
	3.6	Link-Cut-Tree	26					
4	图论		29					
	4.1	强连通分量	29					
	4.2	2-SAT 问题	30					
	4.3	二分图最大匹配	31					
		4.3.1 Hungary 算法	31					

CONTENTS 3

		4.3.2 Hopcroft Karp 算法	31
	4.4	二分图最大权匹配	32
	4.5	最大流	33
		4.5.1 Dinic	33
		4.5.2 ISAP	34
		4.5.3 SAP	35
	4.6	上下界网络流	36
		4.6.1 无源汇的上下界可行流	36
		4.6.2 有源汇的上下界可行流	37
		4.6.3 有源汇的上下界最大流	37
		4.6.4 有源汇的上下界最小流	37
	4.7	最小费用最大流	37
		4.7.1 稀疏图	37
		4.7.2 稠密图	38
	4.8	一般图最大匹配	36
	4.9	无向图全局最小割	42
	4.10	最小树形图	42
	4.11	有根树的同构	44
	4.12	度限制生成树	44
4.13 弦图相关		弦图相关	46
		4.13.1 弦图的判定	46
		4.13.2 弦图的团数	48
	4.14	哈密尔顿回路(ORE 性质的图)	49
5	字符	· ·串	52
	5.1	模式串匹配	52
	5.2	坚固的模式串匹配	52
	5.3	AC 自动机	52
	5.4	后缀数组	53
	5.5	广义后缀自动机	54
	5.6	Manacher 算法	55
	5.7	回文树	55
	5.8	循环串最小表示	56
6 计算几何		.几何	57
-			57
			57
			57

4 CONTENTS

		6.1.3 半平面交	. 58
		6.1.4 最近点对	. 58
	6.2	三维基础	. 59
		6.2.1 点类	. 59
		6.2.2 凸包	. 61
		6.2.3 绕轴旋转	. 63
	6.3	多边形	. 64
		6.3.1 判断点在多边形内部	. 64
		6.3.2 多边形内整点计数	. 65
	6.4	圆	. 65
		6.4.1 最小覆盖圆	. 65
		6.4.2 最小覆盖球	. 66
		6.4.3 多边形与圆的交面积	. 68
7	其它		71
	7.1	STL 使用方法	. 71
		7.1.1 nth_element	. 71
		7.1.2 next_permutation	. 71
	7.2	博弈论相关	. 71
		7.2.1 巴什博奕	. 71
		7.2.2 威佐夫博弈	. 71
		7.2.3 阶梯博奕	. 72
		7.2.4 图上删边游戏	. 72
	7.3	Java Reference	. 72
8	数学	公式	74
	8.1	常用数学公式	. 74
		8.1.1 求和公式	. 74
		8.1.2 斐波那契数列	. 74
		8.1.3 错排公式	
		8.1.4 莫比乌斯函数	. 75
		8.1.5 Burnside 引理	. 75
		8.1.6 五边形数定理	. 75
		8.1.7 树的计数	. 75
		8.1.8 欧拉公式	
		8.1.9 皮克定理	
		8.1.10 牛顿恒等式	. 76
	8.2	平面几何公式	. 77

CONTENTS 5

	8.2.1	三角形	77
	8.2.2	四边形	77
	8.2.3	正 n 边形	77
	8.2.4	圆	78
	8.2.5	棱柱	78
	8.2.6	棱锥	79
	8.2.7	棱台	79
	8.2.8	圆柱	79
	8.2.9	圆锥	79
	8.2.10	圆台	80
	8.2.11	球	80
	8.2.12	球台	80
	8.2.13	球扇形	80
8.3	立体几	何公式	80
	8.3.1	球面三角公式	80
	8.3.2	四面体体积公式	81

Chapter 1

数论算法

1.1 快速数论变换

使用条件及注意事项: mod 必须要是一个形如 $a2^b+1$ 的数, prt 表示 mod 的原根。

```
const int mod = 998244353;
    const int prt = 3;
    int prepare(int n) {
 4
        int len = 1;
 5
        for (; len <= 2 * n; len <<= 1);</pre>
 6
        for (int i = 0; i <= len; i++) {</pre>
 7
            e[0][i] = fpm(prt, (mod - 1) / len * i, mod);
 8
            e[1][i] = fpm(prt, (mod - 1) / len * (len - i), mod);
 9
10
        return len;
11
    }
12
    void DFT(int *a, int n, int f) {
        for (int i = 0, j = 0; i < n; i++) {</pre>
13
            if (i > j) std::swap(a[i], a[j]);
14
15
            for (int t = n >> 1; (j ^= t) < t; t >>= 1);
16
17
        for (int i = 2; i <= n; i <<= 1)</pre>
            for (int j = 0; j < n; j += i)</pre>
18
                 for (int k = 0; k < (i >> 1); k++) {
19
                     int A = a[j + k];
20
                     int B = (long long)a[j + k + (i >> 1)] * e[f][n / i * k] % mod;
22
                     a[j + k] = (A + B) \% mod;
23
                     a[j + k + (i >> 1)] = (A - B + mod) % mod;
24
        if (f == 1) {
25
26
            long long rev = fpm(n, mod -2, mod);
27
            for (int i = 0; i < n; i++) {</pre>
28
                a[i] = (long long)a[i] * rev % mod;
29
30
        }
31 }
```

1.2. 多项式求逆 7

1.2 多项式求逆

使用条件及注意事项: 求一个多项式在模意义下的逆元。

```
void getInv(int *a, int *b, int n) {
 2
        static int tmp[MAXN];
        std::fill(b, b + n, 0);
 3
 4
        b[0] = fpm(a[0], mod - 2, mod);
        for (int c = 1; c <= n; c <<= 1) {</pre>
            for (int i = 0; i < c; i++) tmp[i] = a[i];</pre>
 7
            std::fill(b + c, b + (c << 1), 0);
 8
            std::fill(tmp + c, tmp + (c << 1), 0);
 9
            DFT(tmp, c << 1, 0);
            DFT(b, c << 1, 0);
10
            for (int i = 0; i < (c << 1); i++) {</pre>
11
12
                 b[i] = (long long) (2 - (long long) tmp[i] * b[i] % mod + mod) * b[i] % mod;
13
14
            DFT(b, c << 1, 1);
            std::fill(b + c, b + (c << 1), 0);
15
16
        }
17 }
```

1.3 中国剩余定理

使用条件及注意事项:模数可以不互质。

```
bool solve(int n, std::pair<long long, long long> input[],
                      std::pair<long long, long long> &output) {
 3
        output = std::make pair(1, 1);
 4
        for (int i = 0; i < n; ++i) {</pre>
            long long number, useless;
            euclid(output.second, input[i].second, number, useless);
 7
            long long divisor = std::__gcd(output.second, input[i].second);
            if ((input[i].first - output.first) % divisor) {
 8
 9
                return false;
10
11
            number *= (input[i].first - output.first) / divisor;
            fix(number, input[i].second);
13
            output.first += output.second * number;
14
            output.second *= input[i].second / divisor;
1.5
            fix(output.first, output.second);
16
17
        return true;
18 }
```

1.4 Miller Rabin

```
1 const int BASE[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
2
3 bool check(const long long &prime, const long long &base) {
```

8 CHAPTER 1. 数论算法

```
4
        long long number = prime -1;
 5
        for (; ~number & 1; number >>= 1);
 6
        long long result = power_mod(base, number, prime);
 7
        for (; number != prime - 1 && result != 1 && result != prime - 1; number <<= 1) {
 8
            result = multiply_mod(result, result, prime);
9
        return result == prime -1 \mid \mid (number & 1) == 1;
10
11
    }
12
    bool miller rabin(const long long &number) {
13
14
        if (number < 2) {
15
            return false;
16
17
        if (number < 4) {
18
            return true;
19
20
        if (~number & 1) {
21
            return false;
22
23
        for (int i = 0; i < 12 && BASE[i] < number; ++i) {</pre>
24
            if (!check(number, BASE[i])) {
2.5
                return false;
26
27
28
        return true;
29
    }
```

1.5 Pollard Rho

```
long long pollard rho(const long long &number, const long long &seed) {
 2
        long long x = rand() % (number - 1) + 1, y = x;
 3
        for (int head = 1, tail = 2; ; ) {
 4
            x = multiply mod(x, x, number);
 5
            x = add mod(x, seed, number);
 6
            if (x == y) {
 7
                return number;
 8
9
            long long answer = std::\_gcd(abs(x - y), number);
10
            if (answer > 1 && answer < number) {</pre>
11
                return answer;
12
13
            if (++head == tail) {
14
                y = x;
15
                tail <<= 1;
16
17
        }
18
19
20
   void factorize(const long long &number, std::vector<long long> &divisor) {
21
        if (number > 1) {
22
            if (miller rabin(number)) {
```

1.6. 坚固的逆元 9

```
23
                divisor.push_back(number);
24
            } else {
25
                long long factor = number;
26
                for (; factor >= number;
27
                       factor = pollard_rho(number, rand() % (number - 1) + 1));
28
                factorize(number / factor, divisor);
29
                factorize(factor, divisor);
30
31
        }
32 }
```

1.6 坚固的逆元

```
1 long long inverse(const long long &x, const long long &mod) {
2     if (x == 1) {
3         return 1;
4     } else {
5         return (mod - mod / x) * inverse(mod % x, mod) % mod;
6     }
7 }
```

1.7 直线下整点个数

```
long long solve (const long long &n, const long long &a,
                    const long long &b, const long long &m) {
 3
        if (b == 0) {
 4
            return n * (a / m);
 5
 6
        if (a >= m) {
 7
            return n * (a / m) + solve(n, a % m, b, m);
 8
        }
 9
        if (b >= m) {
10
            return (n - 1) * n / 2 * (b / m) + solve(n, a, b % m, m);
11
12
        return solve((a + b * n) / m, (a + b * n) % m, m, b);
13 }
```

Chapter 2

数值算法

2.1 快速傅立叶变换

```
int prepare(int n) {
        int len = 1;
        for (; len <= 2 * n; len <<= 1);</pre>
 3
        for (int i = 0; i < len; i++) {</pre>
 4
            e[0][i] = Complex(cos(2 * pi * i / len), sin(2 * pi * i / len));
            e[1][i] = Complex(cos(2 * pi * i / len), -sin(2 * pi * i / len));
 7
 8
        return len;
9
   }
10
11
    void DFT(Complex *a, int n, int f) {
12
        for (int i = 0, j = 0; i < n; i++) {</pre>
13
            if (i > j) std::swap(a[i], a[j]);
14
            for (int t = n >> 1; (j ^= t) < t; t >>= 1);
15
16
        for (int i = 2; i <= n; i <<= 1)</pre>
17
            for (int j = 0; j < n; j += i)</pre>
18
                 for (int k = 0; k < (i >> 1); k++) {
19
                     Complex A = a[j + k];
                     Complex B = e[f][n / i * k] * a[j + k + (i >> 1)];
20
21
                     a[j + k] = A + B;
                     a[j + k + (i >> 1)] = A - B;
22
23
        if (f == 1) {
24
            for (int i = 0; i < n; i++)</pre>
25
                a[i].a /= n;
26
27
28
   }
```

2.2 单纯形法求解线性规划

使用条件及注意事项: 返回结果为 $\max\{c_{1\times m}\cdot x_{m\times 1}\mid x_{m\times 1}\geq 0_{m\times 1}, a_{n\times m}\cdot x_{m\times 1}\leq b_{n\times 1}\}$

2.2. 单纯形法求解线性规划

```
1 std::vector<double> solve(const std::vector<std::vector<double> > &a,
                             const std::vector<double> &b, const std::vector<double> &c) {
 3
       int n = (int)a.size(), m = (int)a[0].size() + 1;
 4
       std::vector<std::vector<double> > value(n + 2, std::vector<double>(m + 1));
       std::vector<int> index(n + m);
 5
 6
       int r = n, s = m - 1;
 7
       for (int i = 0; i < n + m; ++i) {</pre>
 8
            index[i] = i;
 9
10
       for (int i = 0; i < n; ++i) {</pre>
           for (int j = 0; j < m - 1; ++j) {
11
12
               value[i][j] = -a[i][j];
13
14
           value[i][m - 1] = 1;
           value[i][m] = b[i];
15
16
           if (value[r][m] > value[i][m]) {
17
               r = i;
18
19
20
       for (int j = 0; j < m - 1; ++j) {
21
           value[n][j] = c[j];
2.2
23
       value[n + 1][m - 1] = -1;
24
       for (double number; ; ) {
25
           if (r < n) {
26
               std::swap(index[s], index[r + m]);
27
               value[r][s] = 1 / value[r][s];
28
               for (int j = 0; j <= m; ++j) {</pre>
29
                   if (j != s) {
30
                        value[r][j] *= -value[r][s];
31
32
               for (int i = 0; i <= n + 1; ++i) {</pre>
33
                    if (i != r) {
34
35
                       for (int j = 0; j <= m; ++j) {</pre>
36
                            if (j != s) {
37
                               value[i][j] += value[r][j] * value[i][s];
38
39
40
                       value[i][s] *= value[r][s];
41
                    }
42
               }
4.3
           }
44
           r = s = -1;
45
           for (int j = 0; j < m; ++j) {</pre>
46
               if (s < 0 \mid | index[s] > index[j]) {
47
                    s = j;
48
49
                    }
50
                }
51
52
           if (s < 0) {
53
               break;
```

12 CHAPTER 2. 数值算法

```
54
55
             for (int i = 0; i < n; ++i) {</pre>
56
                 if (value[i][s] < -eps) {</pre>
57
                     if (r < 0)
58
                     \label{eq:continuous} |\ |\ (number = value[r][m] / value[r][s] - value[i][m] / value[i][s]) < -eps
59
                     || number < eps && index[r + m] > index[i + m]) {
60
61
62
                 }
63
            if (r < 0) {
64
65
                 // Solution is unbounded.
66
                 return std::vector<double>();
67
68
69
        if (value[n + 1][m] < -eps) {
70
            // No solution.
71
            return std::vector<double>();
72
73
        std::vector<double> answer(m -1);
74
        for (int i = m; i < n + m; ++i) {</pre>
75
            if (index[i] < m - 1) {
76
                 answer[index[i]] = value[i - m][m];
77
78
79
        return answer;
80
```

2.3 自适应辛普森

```
double area(const double &left, const double &right) {
 1
 2
        double mid = (left + right) / 2;
 3
        return (right - left) * (calc(left) + 4 * calc(mid) + calc(right)) / 6;
 4
 5
 6
    double simpson (const double &left, const double &right,
 7
                   const double &eps, const double &area_sum) {
 8
        double mid = (left + right) / 2;
9
        double area_left = area(left, mid);
10
        double area_right = area(mid, right);
11
        double area_total = area_left + area_right;
12
        if (std::abs(area_total - area_sum) < 15 * eps) {</pre>
13
            return area_total + (area_total - area_sum) / 15;
14
15
        return simpson(left, mid, eps / 2, area left)
16
             + simpson(mid, right, eps / 2, area right);
17 }
18
19
    double simpson(const double &left, const double &right, const double &eps) {
20
        return simpson(left, right, eps, area(left, right));
21
```

Chapter 3

数据结构

3.1 Splay 普通操作版

使用条件及注意事项:

- 1. 插入 x 数
- 2. 删除 x 数 (若有多个相同的数,因只删除一个)
- 3. 查询 x 数的排名 (若有多个相同的数,因输出最小的排名)
- 4. 查询排名为 x 的数
- 5. 求 x 的前驱 (前驱定义为小于 x, 且最大的数)
- 6. 求 x 的后继 (后继定义为大于 x, 且最小的数)

```
int pred(int x) {
       splay(x, -1);
 3
        for (x = c[x][0]; c[x][1]; x = c[x][1]);
 4
        return x;
 5
   }
   int succ(int x) {
 7
       splay(x, -1);
 8
        for (x = c[x][1]; c[x][0]; x = c[x][0]);
 9
       return x;
10
11 void remove(int x) {
12
       if (b[x] > 1) {b[x]--; splay(x, -1); return;}
13
        splay(x, -1);
14
       if (!c[x][0] \&\& !c[x][1]) rt = 0;
15
       else if (c[x][0] \&\& !c[x][1]) f[rt = c[x][0]] = -1;
       else if (!c[x][0] \&\& c[x][1]) f[rt = c[x][1]] = -1;
16
17
            int t = pred(x); f[rt = c[x][0]] = -1;
18
            c[t][1] = c[x][1]; f[c[x][1]] = t;
19
20
            splay(c[x][1], -1);
21
```

```
22
        c[x][0] = c[x][1] = f[x] = d[x] = s[x] = b[x] = 0;
23
   }
   int find(int z) {
24
25
        int x=rt;
26
        while (d[x]!=z)
27
            if (c[x][d[x]<z]) x=c[x][d[x]<z];</pre>
28
            else break;
29
        return x;
30
   void insert(int z) {
31
32
        if (!rt) {
33
            f[rt = ++size] = -1;
34
            d[size] = z; b[size] = 1;
35
           splay(size, -1);
36
           return;
37
38
        int x = find(z);
39
        if (d[x] == z) {
40
           b[x]++;
41
           splay(x, -1);
42
           return;
43
44
        c[x][d[x] < z] = ++size; f[size] = x;
45
        d[size] = z; b[size] = s[size] = 1;
46
        splay(size, -1);
47
48
   int select(int z) {
49
        int x = rt;
50
        while (z < s[c[x][0]] + 1 || z > s[c[x][0]] + b[x])
51
            if (z > s[c[x][0]] + b[x])  {
52
               z = s[c[x][0]] + b[x];
53
                x = c[x][1];
54
55
            else x = c[x][0];
56
        return x;
57
   }
58
   int main() {
59
        scanf("%d",&n);
60
        for (int i = 1; i <= n; i++) {</pre>
61
            int opt, x;
62
            scanf("%d%d", &opt, &x);
63
            if (opt == 1) insert(x);
            else if (opt == 2) remove(find(x)); //删除 x数 (若有多个相同的数, 因只删除一个)
64
            else if (opt == 3) { // 查询x数的排名(若有多个相同的数, 因输出最小的排名)
65
66
                insert(x);
67
                printf("%d\n", s[c[find(x)][0]] + 1);
68
                remove(find(x));
69
70
            else if (opt == 4) printf("%d\n",d[select(x)]);
71
            else if (opt == 5) {
72
                insert(x);
73
                printf("%d\n", d[pred(find(x))]);
74
                remove(find(x));
```

3.2. SPLAY 区间操作版 15

```
7.5
76
            else if (opt == 6) {
77
                insert(x);
78
                printf("%d\n", d[succ(find(x))]);
79
                remove(find(x));
80
            }
81
        }
82
        return 0;
83 }
```

3.2 Splay 区间操作版

使用条件及注意事项:

这是为 NOI2005 维修数列的代码,仅供区间操作用的 splay 参考。

```
1 const int INF = 100000000;
 2 const int Maxspace = 500000;
 3 struct SplayNode{
 4
       int ls, rs, zs, ms;
 5
       SplayNode() {
 6
           ms = 0;
 7
           ls = rs = zs = -INF;
 8
 9
       SplayNode(int d) {
          ms = zs = ls = rs = d;
10
11
12
       SplayNode operator + (const SplayNode &p) const {
13
           SplayNode ret;
           ret.ls = max(ls, ms + p.ls);
14
           ret.rs = max(rs + p.ms, p.rs);
15
           ret.zs = max(rs + p.ls, max(zs, p.zs));
16
17
           ret.ms = ms + p.ms;
18
           return ret;
19
       }
21 int n, m, rt, top, a[MAXN], f[MAXN], c[MAXN][2], g[MAXN], h[MAXN], z[MAXN];
22 bool r[MAXN], b[MAXN];
23 void makesame(int x, int s) {
24
       if (!x) return;
25
       b[x] = true;
       d[x] = SplayNode(g[x] = s);
27
       t[x].zs = t[x].ms = g[x] * h[x];
28
       t[x].ls = t[x].rs = max(g[x], g[x] * h[x]);
29 }
30 void makerev(int x) {
31
       if (!x) return;
32
       r[x] ^= 1;
33
       swap(c[x][0], c[x][1]);
34
       swap(t[x].ls, t[x].rs);
35 }
36 void pushdown(int x) {
       if (!x) return;
```

```
38
        if (r[x]) {
39
            makerev(c[x][0]);
40
            makerev(c[x][1]);
41
            r[x]=0;
42
43
        if (b[x]) {
            makesame(c[x][0],g[x]);
44
            makesame(c[x][1],g[x]);
45
46
            b[x]=g[x]=0;
47
48
   }
   void updata(int x) {
49
        if (!x) return;
50
51
        h[x]=h[c[x][0]]+h[c[x][1]]+1;
52
        t[x]=t[c[x][0]]+d[x]+t[c[x][1]];
53
54
   void rotate(int x,int k) {
55
        pushdown(x);pushdown(c[x][k]);
56
        int y = c[x][k]; c[x][k] = c[y][k^1]; c[y][k^1] = x;
57
        if (f[x] != -1) c[f[x]][c[f[x]][1] == x] = y; else rt = y;
58
        f[y] = f[x]; f[x] = y; f[c[x][k]] = x;
59
        updata(x); updata(y);
60
   }
61
   void splay(int x, int s) {
62
       while (f[x] != s) {
63
            if (f[f[x]]!=s) {
64
                pushdown(f[f[x]]);
65
                rotate(f[f[x]], (c[f[f[x]]][1] == f[x]) ^ r[f[f[x]]]);
66
67
            pushdown(f[x]);
68
            rotate(f[x], (c[f[x]][1]==x) ^r[f[x]]);
69
70
71
   void build(int &x,int l,int r) {
72
        if (1 > r) {x = 0; return;}
        x = z[top--];
73
        if (1 < r) {
74
75
            build(c[x][0],1,(1+r>>1)-1);
76
            build(c[x][1],(1+r>>1)+1,r);
77
78
        f[c[x][0]] = f[c[x][1]] = x;
79
        d[x] = SplayNode(a[1+r>>1]);
80
        updata(x);
81
   }
   void init() {
82
83
        d[0] = SplayNode();
84
        f[rt=2] = -1;
85
        f[1] = 2; c[2][0] = 1;
86
        int x;
87
        build(x, 1, n);
88
        c[1][1] = x; f[x] = 1;
89
        splay(x, -1);
90
```

3.2. SPLAY 区间操作版 17

```
91 int find(int z) {
 92
         int x = rt; pushdown(x);
 93
         while (z != h[c[x][0]] + 1) {
 94
             if (z > h[c[x][0]] + 1) {
 95
                 z = h[c[x][0]] + 1;
 96
                 x = c[x][1];
 97
             }
 98
             else x = c[x][0];
 99
             pushdown(x);
100
101
         return x;
102 }
103 void getrange(int &x,int &y) {
104
       y = x + y - 1;
        x = find(x);
105
        y = find(y + 2);
106
107
         splay(y, -1);
108
         splay(x, y);
109 }
110 void recycle(int x) {
111
        if (!x) return;
112
        recycle(c[x][0]);
113
        recycle(c[x][1]);
114
        z[++top]=x;
115
         t[x] = d[x] = SplayNode();
116
         r[x] = b[x] = g[x] = f[x] = h[x] = 0;
117
         c[x][0] = c[x][1]=0;
118 }
119
    int main() {
120
         scanf("%d%d",&n,&m);
         for (int i = 1; i <= n; i++) scanf("%d",a+i);</pre>
121
         for (int i = Maxspace; i>=3; i--) z[++top] = i;
122
123
         init();
         for (int i = 1; i <= m; i++) {</pre>
124
125
             char op[10];
             int x, y, tmp;
126
             scanf("%s", op);
127
128
             if (!strcmp(op, "INSERT")) {
129
                 scanf("%d%d", &x, &y);
130
                 n += y;
131
                 if (!y) continue;
132
                 for (int i = 1; i <= y; i++) scanf("%d",a+i);</pre>
133
                 build(tmp, 1, y);
134
                 x = find(x + 1); pushdown(x);
135
                 if (!c[x][1]) \{c[x][1] = tmp; f[tmp] = x; \}
136
                 else{
137
                     x = c[x][1]; pushdown(x);
138
                     while (c[x][0]) {
139
                         x = c[x][0];
140
                         pushdown(x);
141
142
                     c[x][0] = tmp; f[tmp] = x;
143
                 }
```

```
144
                 splay(tmp, -1);
145
146
             else if (!strcmp(op, "DELETE")) {
                 scanf("%d%d", &x, &y); n -= y;
147
148
                 if (!y) continue;
149
                 getrange(x, y);
150
                 int k = (c[y][0] == x);
151
                 recycle(c[x][k]);
152
                 f[c[x][k]] = 0;
153
                 c[x][k] = 0;
154
                 splay(x, -1);
155
156
             else if (!strcmp(op, "REVERSE")) {
                 scanf("%d%d", &x, &y);
157
158
                 if (!y) continue;
                 getrange(x, y);
159
                 int k = (c[y][0]==x);
160
161
                 makerev(c[x][k]);
162
                 splay(c[x][k], -1);
163
             else if (!strcmp(op, "GET-SUM")) {
164
165
                 scanf("%d%d", &x, &y);
166
                 if (!y) {
                     printf("0\n");
167
168
                     continue;
169
170
                 getrange(x,y);
171
                 int k = (c[y][0] == x);
172
                 printf("%d\n", t[c[x][k]].ms);
173
                 splay(c[x][k], -1);
174
175
             else if (!strcmp(op, "MAX-SUM")) {
176
                 x = 1; y = n;
177
                 getrange(x, y);
178
                 int k = (c[y][0] == x);
                 printf("%d\n", t[c[x][k]].zs);
179
180
                 splay(c[x][k], -1);
181
182
             else if (!strcmp(op, "MAKE-SAME")) {
183
                 scanf("%d%d%d", &x, &y, &tmp);
184
                 if (!y) continue;
185
                 getrange(x, y);
186
                 int k = (c[y][0] == x);
187
                 makesame(c[x][k], tmp);
188
                 splay(c[x][k], -1);
189
             }
190
191
         return 0;
192 }
```

3.3. 坚固的 TREAP 19

3.3 坚固的 Treap

使用条件及注意事项: 题目来源 UVA 12358

```
int ran() {
       static int ret = 182381727;
 3
       return (ret += (ret << 1) + 717271723) & (~0u >> 1);
 4
   }
 6 int alloc(int node = 0) {
7
       size++;
 8
       if (node) {
 9
           c[size][0] = c[node][0];
10
           c[size][1] = c[node][1];
11
           s[size] = s[node];
12
           d[size] = d[node];
13
       }
14
       else{
15
           c[size][0] = 0;
16
           c[size][1] = 0;
17
           s[size] = 1;
18
           d[size] = '_{\sqcup}';
19
       }
20
       return size;
21 }
22
23 void update(int x) {
      s[x] = 1;
2.4
25
       if (c[x][0]) s[x] += s[c[x][0]];
       if (c[x][1]) s[x] += s[c[x][1]];
26
27 }
29 int merge(const std::pair<int, int> &a) {
30
       if (!a.first) return a.second;
31
       if (!a.second) return a.first;
32
       if (ran() % (s[a.first] + s[a.second]) < s[a.first]) {
33
           int newnode = alloc(a.first);
34
           c[newnode][1] = merge(std::make_pair(c[newnode][1], a.second));
35
           update (newnode);
36
           return newnode;
37
       }
38
       else{
39
           int newnode = alloc(a.second);
40
           c[newnode][0] = merge(std::make pair(a.first, c[newnode][0]));
41
           update (newnode);
42
           return newnode;
43
        }
44 }
45
46 std::pair<int, int> split(int x, int k) {
47
       if (!x || !k) return std::make pair(0, x);
48
       int newnode = alloc(x);
       if (k <= s[c[x][0]]) {
```

```
50
             std::pair<int, int> ret = split(c[newnode][0], k);
 51
             c[newnode][0] = ret.second;
 52
             update (newnode);
 53
             return std::make_pair(ret.first, newnode);
 54
         }
 55
         else{
 56
             std::pair<int, int> ret = split(c[newnode][1], k - s[c[x][0]] - 1);
 57
             c[newnode][1] = ret.first;
 58
             update (newnode);
 59
             return std::make pair(newnode, ret.second);
 60
 61
    }
 62
 63
    void travel(int x) {
 64
         if (c[x][0]) travel(c[x][0]);
 65
         putchar(d[x]);
         if (d[x] == 'c') cnt++;
 66
 67
         if (c[x][1]) travel(c[x][1]);
 68
 69
 70
    int build(int 1, int r) {
 71
         int newnode = alloc();
72
         d[newnode] = tmp[l + r >> 1];
 73
         if (1 \le (1 + r >> 1) - 1) c[newnode][0] = build(1, (1 + r >> 1) - 1);
 74
         if ((1 + r >> 1) + 1 <= r) c[newnode][1] = build((1 + r >> 1) + 1, r);
 75
         update (newnode);
 76
         return newnode;
 77
    }
 78
 79
    int main() {
         scanf("%d", &n);
 80
         for (int i = 1, last = 0; i <= n; i++) {</pre>
 81
             int op, v, p, 1;
 82
             scanf("%d", &op);
 83
 84
             if (op == 1) {
                 scanf("%d%s", &p, tmp + 1);
 85
 86
                 p -= cnt;
 87
                 std::pair<int, int> ret = split(rt[last], p);
 88
                 rt[last + 1] = merge(std::make_pair(ret.first, build(1, strlen(tmp + 1))));
 89
                 rt[last + 1] = merge(std::make pair(rt[last + 1], ret.second));
 90
                 last++;
 91
 92
             else if (op == 2) {
 93
                 scanf("%d%d", &p, &1);
 94
                 p -= cnt; 1 -= cnt;
 95
                 std::pair<int, int> A = split(rt[last], p - 1);
 96
                 std::pair<int, int> B = split(A.second, 1);
 97
                 rt[last + 1] = merge(std::make_pair(A.first, B.second));
 98
                 last++;
 99
100
             else if (op == 3) {
101
                 scanf("%d%d%d", &v, &p, &1);
102
                 v -= cnt; p -= cnt; l -= cnt;
```

3.4. K-D 树 21

3.4 k-d 树

使用条件及注意事项:这是求 k 远点的代码,要求 k 近点的话把堆的比较函数改一改,把朝左儿子或者是右儿子的方向改一改。

```
1
   struct Heapnode{
 2
       long long d;
 3
        int pos;
 4
       bool operator <(const Heapnode &p)const {</pre>
 5
            return d > p.d || (d == p.d && pos < p.pos);
 6
        }
 7
   };
 8
 9
   struct MsgNode{
10
        int xmin, xmax, ymin, ymax;
11
        MsgNode() {}
12
       MsgNode(const Point &a) : xmin(a.x), xmax(a.x), ymin(a.y), ymax(a.y) {}
13
        long long dist(const Point &a) {
14
            int dx = std::max(std::abs(a.x - xmin), std::abs(a.x - xmax));
15
            int dy = std::max(std::abs(a.y - ymin), std::abs(a.y - ymax));
16
            return (long long) dx * dx + (long long) dy * dy;
17
18
       MsgNode operator + (const MsgNode &rhs) const {
19
            MsgNode ret;
20
            ret.xmin = std::min(xmin, rhs.xmin);
21
            ret.xmax = std::max(xmax, rhs.xmax);
22
            ret.ymin = std::min(ymin, rhs.ymin);
23
            ret.ymax = std::max(ymax, rhs.ymax);
24
            return ret;
25
        }
26 };
27
28
   struct TNode{
29
        int 1, r;
30
        Point p;
31
        MsgNode d;
32
   }tree[MAXN];
33
34
   void buildtree(int &rt, int 1, int r, int pivot) {
35
       if (1 > r) return;
36
       rt = ++size;
37
        int mid = 1 + r >> 1;
        if (pivot == 1) std::nth element(p + 1, p + mid, p + r + 1, cmpx);
```

```
39
        if (pivot == 0) std::nth element(p + 1, p + mid, p + r + 1, cmpy);
40
        tree[rt].d = MsgNode(tree[rt].p = p[mid]);
41
        buildtree(tree[rt].1, 1, mid - 1, pivot ^{^{\land}} 1);
42
        buildtree(tree[rt].r, mid + 1, r, pivot ^ 1);
43
        if (tree[rt].l) tree[rt].d = tree[rt].d + tree[tree[rt].l].d;
44
        if (tree[rt].r) tree[rt].d = tree[rt].d + tree[tree[rt].r].d;
45
   }
46
47
   void query(int rt, const Point &a, int k, int pivot) {
48
        Heapnode now = (Heapnode) {dist(a, tree[rt].p), tree[rt].p.pos};
49
        if (heap.size() < k) heap.push(now);</pre>
50
        else if (now < heap.top()) {heap.pop(); heap.push(now);}</pre>
51
        int lson = tree[rt].1, rson = tree[rt].r;
52
        if (pivot == 1 && cmpx(a, tree[rt].p)) std::swap(lson, rson);
53
        if (pivot == 0 && cmpy(a, tree[rt].p)) std::swap(lson, rson);
54
        if (lson && (heap.size() < k \mid | tree[lson].d.dist(a) >= heap.top().d)) query(lson, a, k,
           pivot ^ 1);
55
        if (rson \&\& (heap.size() < k \mid | tree[rson].d.dist(a) >= heap.top().d)) query(rson, a, k,
           pivot ^ 1);
56
   }
57
58 int main() {
59
        for (int i = 1; i <= q; i++) {</pre>
            int k;
60
61
            Point now;
62
            now.read();
63
            scanf("%d", &k);
            while (!heap.empty()) heap.pop();
64
65
            query(rt, now, k, 1);
66
            printf("%d\n", heap.top().pos);
67
68
        return 0;
69
```

3.5 树链剖分

3.5.1 点操作版本

使用条件及注意事项: 树上最大(非空)子段和,注意一条路径询问的时候信息统计的顺序。

```
struct Node{
1
 2
        int asum, lsum, rsum, zsum;
3
        Node() {
 4
            asum = 0;
 5
            lsum = -INF;
            rsum = -INF;
 6
7
            zsum = -INF;
8
9
        Node(int d) : asum(d), lsum(d), rsum(d), zsum(d) {}
10
        Node operator + (const Node &rhs) const {
11
            Node ret;
            ret.asum = asum + rhs.asum;
```

3.5. 树链剖分 23

```
13
            ret.lsum = std::max(lsum, asum + rhs.lsum);
14
           ret.rsum = std::max(rsum + rhs.asum, rhs.rsum);
15
           ret.zsum = std::max(zsum, rhs.zsum);
16
            ret.zsum = std::max(ret.zsum, rsum + rhs.lsum);
17
            return ret;
18
        }
19
   }tree[MAXN * 6];
20
21
   int n, q, cnt, tot, h[MAXN], d[MAXN], t[MAXN], f[MAXN], s[MAXN], z[MAXN], w[MAXN], o[MAXN], a[
       MAXN];
22
   std::pair<bool, int> flag[MAXN * 6];
23
24 void addedge(int x, int y) {
25
       cnt++; e[cnt] = (Edge) \{y, h[x]\}; h[x] = cnt;
26
        cnt++; e[cnt] = (Edge)\{x, h[y]\}; h[y] = cnt;
27 }
28
29 void makesame(int n, int 1, int r, int d) {
30
       flag[n] = std::make pair(true, d);
31
        tree[n].asum = d * (r - 1 + 1);
32
        if (d > 0) {
           tree[n].lsum = d * (r - 1 + 1);
33
            tree[n].rsum = d * (r - 1 + 1);
34
           tree[n].zsum = d * (r - 1 + 1);
35
36
        }
37
       else{
38
           tree[n].lsum = d;
39
            tree[n].rsum = d;
40
            tree[n].zsum = d;
41
        }
42 }
43
44 void pushdown(int n, int 1, int r) {
        if (flag[n].first) {
4.5
            makesame(n << 1, 1, 1 + r >> 1, flag[n].second);
46
            makesame(n << 1 ^ 1, (l + r >> 1) + 1, r, flag[n].second);
47
48
            flag[n] = std::make pair(false, 0);
49
        }
50 }
51
52 void modify(int n, int 1, int r, int x, int y, int d) {
53
        if (x <= 1 && r <= y) {</pre>
54
            makesame(n, l, r, d);
55
            return;
56
        }
57
        pushdown(n, 1, r);
58
        if ((1 + r >> 1) < x) modify(n << 1 ^ 1, (1 + r >> 1) + 1, r, x, y, d);
59
        else if ((1 + r >> 1) + 1 > y) modify(n << 1, 1, 1 + r >> 1, x, y, d);
60
        else{
61
            modify(n << 1, 1, 1 + r >> 1, x, y, d);
62
            modify(n << 1 ^1, (l + r >> 1) + 1, r, x, y, d);
63
        tree[n] = tree[n << 1] + tree[n << 1 ^ 1];</pre>
64
```

```
65
    }
 66
 67
    Node query(int n, int 1, int r, int x, int y) {
 68
         if (x <= 1 && r <= y) return tree[n];</pre>
         pushdown(n, 1, r);
 69
         if ((1 + r >> 1) < x) return query(n << 1 ^ 1, (1 + r >> 1) + 1, r, x, y);
 70
 71
         else if ((1 + r >> 1) + 1 > y) return query(n << 1, 1, 1 + r >> 1, x, y);
 72
         else{
 73
             Node left = query(n << 1, 1, 1 + r >> 1, x, y);
 74
             Node right = query(n << 1 ^ 1, (1 + r >> 1) + 1, r, x, y);
 75
             return left + right;
 76
 77
    }
 78
 79
    void modify(int x, int y, int val) {
 80
         int fx = t[x], fy = t[y];
         while (fx != fy) {
 81
             if (d[fx] > d[fy]) {
 82
 83
                 modify(1, 1, n, w[fx], w[x], val);
 84
                 x = f[fx]; fx = t[x];
 85
 86
             else{
 87
                 modify(1, 1, n, w[fy], w[y], val);
 88
                 y = f[fy]; fy = t[y];
 89
 90
 91
         if (d[x] < d[y]) modify(1, 1, n, w[x], w[y], val);
 92
         else modify(1, 1, n, w[y], w[x], val);
 93
    }
 94
 95 Node query(int x, int y) {
 96
         int fx = t[x], fy = t[y];
97
         Node left = Node(), right = Node();
98
         while (fx != fy) {
             if (d[fx] > d[fy]) {
99
100
                 left = query(1, 1, n, w[fx], w[x]) + left;
101
                 x = f[fx]; fx = t[x];
102
             }
103
             else{
104
                 right = query(1, 1, n, w[fy], w[y]) + right;
105
                 y = f[fy]; fy = t[y];
106
107
108
         if (d[x] < d[y]) {
109
            right = query(1, 1, n, w[x], w[y]) + right;
110
         }
111
         else{
112
             left = query(1, 1, n, w[y], w[x]) + left;
113
114
         std::swap(left.lsum, left.rsum);
115
         return left + right;
116 }
117
```

3.5. 树链剖分 25

```
118 void predfs(int x) {
119
        s[x] = 1; z[x] = 0;
120
         for (int i = h[x]; i; i = e[i].next) {
121
             if (e[i].node == f[x]) continue;
             f[e[i].node] = x;
122
123
             d[e[i].node] = d[x] + 1;
124
             predfs(e[i].node);
125
             s[x] += s[e[i].node];
126
             if (s[z[x]] < s[e[i].node]) z[x] = e[i].node;
127
         }
128 }
129
130 void getanc(int x, int anc) {
131
         t[x] = anc; w[x] = ++tot; o[tot] = x;
132
         if (z[x]) getanc(z[x], anc);
133
         for (int i = h[x]; i; i = e[i].next) {
134
             if (e[i].node == f[x] || e[i].node == z[x]) continue;
135
             getanc(e[i].node, e[i].node);
136
137 }
138
139 void buildtree(int n, int l, int r) {
140
         if (1 == r) {
141
             tree[n] = Node(a[o[l]]);
142
             return;
143
         }
144
         buildtree(n << 1, 1, 1 + r >> 1);
145
         buildtree(n << 1 ^ 1, (l + r >> 1) + 1, r);
         tree[n] = tree[n << 1] + tree[n << 1 ^ 1];</pre>
146
147
148
149
    int main() {
         scanf("%d", &n);
150
         for (int i = 1; i <= n; i++) scanf("%d", a + i);</pre>
151
152
         for (int i = 1; i < n; i++) {</pre>
153
             int x, y; scanf("%d%d", &x, &y);
154
             addedge(x, y);
155
         }
156
         predfs(1);
157
         getanc(1, 1);
158
         buildtree(1, 1, n);
159
         scanf("%d", &q);
160
         for (int i = 1; i <= q; i++) {</pre>
161
             int op, x, y, c;
             scanf("%d", &op);
162
             if (op == 1) {
163
164
                 scanf("%d%d", &x, &y);
                 Node ret = query(x, y);
165
                 printf("%d\n", std::max(0, ret.zsum));
166
167
             }
168
             else{
                 scanf("%d%d%d", &x, &y, &c);
169
170
                 modify(x, y, c);
```

```
171 }
172 }
173 return 0;
174 }
```

3.5.2 链操作版本

```
1 void modify(int x, int y) {
        int fx = t[x], fy = t[y];
       while (fx != fy) {
3
           if (d[fx] > d[fy]) {
 4
 5
               modify(1, 1, n, w[fx], w[x]);
                x = f[fx]; fx = t[x];
 6
7
            }
8
            else{
9
               modify(1, 1, n, w[fy], w[y]);
10
               y = f[fy]; fy = t[y];
11
12
13
        if (x != y) {
14
            if (d[x] < d[y]) modify(1, 1, n, w[z[x]], w[y]);
15
            else modify(1, 1, n, w[z[y]], w[x]);
16
17 }
```

3.6 Link-Cut-Tree

```
1
   struct MsgNode{
       int leftColor, rightColor, answer;
        MsgNode() {
           leftColor = -1;
 5
           rightColor = -1;
 6
           answer = 0;
 7
        }
 8
       MsgNode(int c) {
9
           leftColor = rightColor = c;
10
            answer = 1;
11
        }
12
       MsgNode operator + (const MsgNode &p) const {
13
            if (answer == 0) return p;
14
            if (p.answer == 0) return *this;
15
           MsgNode ret;
16
            ret.leftColor = leftColor;
17
           ret.rightColor = p.rightColor;
           ret.answer = answer + p.answer - (rightColor == p.leftColor);
18
19
           return ret;
20
        }
21 }d[MAXN], q[MAXN];
22 int n, m, c[MAXN][2], f[MAXN], p[MAXN], s[MAXN], flag[MAXN];
23 bool r[MAXN];
```

3.6. LINK-CUT-TREE

```
24 void init(int x, int value) {
25
       d[x] = g[x] = MsgNode(value);
26
        c[x][0] = c[x][1] = 0;
        f[x] = p[x] = flag[x] = -1;
27
28
        s[x] = 1;
29
   }
30 void update(int x) {
31
        s[x] = s[c[x][0]] + s[c[x][1]] + 1;
32
        g[x] = MsgNode();
33
        if (c[x][0 ^ r[x]]) g[x] = g[x] + g[c[x][0 ^ r[x]]];
34
        g[x] = g[x] + d[x];
35
        if (c[x][1 ^ r[x]]) g[x] = g[x] + g[c[x][1 ^ r[x]]];
36 }
37 void makesame(int x, int c) {
38
        flag[x] = c;
39
        d[x] = MsqNode(c);
40
        g[x] = MsgNode(c);
41 }
42 void pushdown(int x) {
43
        if (r[x]) {
44
            std::swap(c[x][0], c[x][1]);
4.5
            r[c[x][0]] ^= 1;
46
            r[c[x][1]] ^= 1;
47
            std::swap(g[c[x][0]].leftColor, g[c[x][0]].rightColor);
48
            std::swap(g[c[x][1]].leftColor, g[c[x][1]].rightColor);
49
            r[x] = false;
50
        if (flag[x] != -1) {
51
            if (c[x][0]) makesame(c[x][0], flag[x]);
52
53
            if (c[x][1]) makesame(c[x][1], flag[x]);
54
            flag[x] = -1;
55
        }
56 }
   void rotate(int x, int k) {
57
       pushdown(x); pushdown(c[x][k]);
58
59
        int y = c[x][k]; c[x][k] = c[y][k ^ 1]; c[y][k ^ 1] = x;
60
        if (f[x] != -1) c[f[x]][c[f[x]][1] == x] = y;
61
        f[y] = f[x]; f[x] = y; f[c[x][k]] = x; std::swap(p[x], p[y]);
62
        update(x); update(y);
63 }
64 void splay(int x, int s = -1) {
65
        pushdown(x);
66
        while (f[x] != s) {
67
            if (f[f[x]] != s) rotate(f[f[x]], (c[f[f[x]]][1] == f[x]) ^ r[f[f[x]]]);
68
            rotate(f[x], (c[f[x]][1] == x) ^ r[f[x]]);
69
        }
70
       update(x);
71
   }
   void access(int x) {
72
73
        int y = 0;
74
        while (x != -1) {
75
            splay(x); pushdown(x);
76
            f[c[x][1]] = -1; p[c[x][1]] = x;
```

Chapter 4

图论

4.1 强连通分量

```
1 int stamp, comps, top;
   int dfn[N], low[N], comp[N], stack[N];
 4 void tarjan(int x) {
       dfn[x] = low[x] = ++stamp;
 6
        stack[top++] = x;
 7
        for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
            int y = edge[x][i];
 8
            if (!dfn[y]) {
9
10
                tarjan(y);
11
                low[x] = std::min(low[x], low[y]);
            } else if (!comp[y]) {
12
                low[x] = std::min(low[x], dfn[y]);
14
15
16
        if (low[x] == dfn[x]) {
17
            comps++;
18
19
                int y = stack[--top];
20
                comp[y] = comps;
21
            } while (stack[top] != x);
22
        }
23 }
24
25
   void solve() {
26
        stamp = comps = top = 0;
27
        std::fill(dfn, dfn + n, 0);
28
        std::fill(comp, comp + n, 0);
        for (int i = 0; i < n; ++i) {</pre>
29
30
            if (!dfn[i]) {
31
                tarjan(i);
32
33
        }
34 }
```

30 CHAPTER 4. 图论

4.2 点双连通分量

4.2.1 坚固的点双连通分量

```
1 int n, m, x, y, ans1, ans2, tot1, tot2, flag, size, ind2, dfn[N], low[N], block[M], vis[N];
 2 vector<int> a[N];
 3 pair<int, int> stack[M];
   void tarjan(int x, int p) {
 5
        dfn[x] = low[x] = ++ind2;
 6
        for (int i = 0; i < a[x].size(); ++i)</pre>
 7
            if (dfn[x] > dfn[a[x][i]] && a[x][i] != p) {
 8
                stack[++size] = make pair(x, a[x][i]);
 9
                if (i == a[x].size() - 1 || a[x][i] != a[x][i + 1])
10
                     if (!dfn[a[x][i]]){
11
                         tarjan(a[x][i], x);
12
                         low[x] = min(low[x], low[a[x][i]]);
13
                         if (low[a[x][i]] >= dfn[x]){
14
                             tot1 = tot2 = 0;
15
                             ++flag;
16
                             for (; ; ) {
17
                                 if (block[stack[size].first] != flag) {
18
                                     ++tot1;
19
                                     block[stack[size].first] = flag;
20
21
                                 if (block[stack[size].second] != flag) {
22
                                     ++tot1;
23
                                     block[stack[size].second] = flag;
24
25
                                 if (stack[size].first == x && stack[size].second == a[x][i])
26
                                     break:
27
                                 ++tot2;
28
                                 --size;
29
30
                             for (; stack[size].first == x && stack[size].second == a[x][i]; --size
                                )
31
                                 ++tot2;
32
                             if (tot2 < tot1)
33
                                 ans1 += tot2;
                             if (tot2 > tot1)
34
35
                                 ans2 += tot2;
36
                         }
37
38
                     else
39
                        low[x] = min(low[x], dfn[a[x][i]]);
40
41
42
    int main(){
43
        for (; ; ) {
            scanf("%d%d", &n, &m);
44
            if (n == 0 && m == 0) return 0;
45
            for (int i = 1; i <= n; ++i) {</pre>
46
47
                a[i].clear();
48
                dfn[i] = 0;
```

4.2. 点双连通分量 31

```
49
50
             for (int i = 1; i <= m; ++i) {</pre>
51
                  scanf("%d%d",&x, &y);
52
                  ++x, ++y;
53
                  a[x].push_back(y);
54
                  a[y].push_back(x);
55
56
             for (int i = 1; i <= n; ++i)</pre>
57
                  sort(a[i].begin(), a[i].end());
58
             ans1 = ans2 = ind2 = 0;
59
             for (int i = 1; i <= n; ++i)</pre>
60
                  if (!dfn[i]) {
61
                      size = 0;
62
                      tarjan(i, 0);
63
             printf("%d\sqcup%d\setminusn", ans1, ans2);
64
65
66
        return 0;
67 }
```

4.2.2 朴素的点双连通分量

```
1 void tarjan(int x) {
        dfn[x] = low[x] = ++ind2;
 2
 3
        v[x] = 1;
        for (int i = nt[x]; pt[i]; i = nt[i])
 4
 5
            if (!dfn[pt[i]]){
 6
                 tarjan(pt[i]);
 7
                 low[x] = min(low[x], low[pt[i]]);
 8
                 if (dfn[x] <= low[pt[i]])</pre>
 9
                     ++v[x];
10
             }
11
            else
12
                low[x] = min(low[x], dfn[pt[i]]);
13 }
14 int main(){
15
        for (; ; ) {
            scanf("%d%d", &n, &m);
16
            if (n == 0 \&\& m == 0)
17
18
                 return 0;
19
            for (int i = 1; i <= ind; ++i)</pre>
20
                 nt[i] = pt[i] = 0;
21
            ind = n;
            for (int i = 1; i <= ind; ++i)</pre>
22
                 last[i] = i;
23
            for (int i = 1; i <= m; ++i) {</pre>
24
                 scanf("%d%d", &x, &y);
25
26
                 ++x, ++y;
27
                 edge(x, y), edge(y, x);
28
29
            memset(dfn, 0, sizeof(dfn));
30
            memset(v, 0, sizeof(v));
```

32 CHAPTER 4. 图论

```
31
            ans = num = ind2 = 0;
32
            for (int i = 1; i <= n; ++i)</pre>
33
                 if (!dfn[i]){
                     root = i;
34
35
                     size = 0;
36
                     ++num;
37
                     tarjan(i);
38
                     --v[root];
39
40
             for (int i = 1; i <= n; ++i)</pre>
                 if (v[i] + num - 1 > ans)
41
42
                     ans = v[i] + num - 1;
43
             printf("%d\n",ans);
44
        return 0;
45
46 }
```

4.3 2-SAT 问题

```
1 int stamp, comps, top;
   int dfn[N], low[N], comp[N], stack[N];
 3
   void add(int x, int a, int y, int b) {
 4
 5
        edge[x << 1 \mid a].push_back(y << 1 \mid b);
 6
 7
   void tarjan(int x) {
8
       dfn[x] = low[x] = ++stamp;
9
        stack[top++] = x;
10
11
        for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
12
            int y = edge[x][i];
13
            if (!dfn[y]) {
14
                tarjan(y);
15
                low[x] = std::min(low[x], low[y]);
16
            } else if (!comp[y]) {
17
                low[x] = std::min(low[x], dfn[y]);
18
19
        if (low[x] == dfn[x]) {
20
21
            comps++;
22
            do {
23
                int y = stack[--top];
24
                comp[y] = comps;
25
            } while (stack[top] != x);
26
        }
27
   }
28
29 bool solve() {
        int counter = n + n + 1;
30
31
        stamp = top = comps = 0;
        std::fill(dfn, dfn + counter, 0);
```

4.4. 二分图最大匹配 33

```
33
        std::fill(comp, comp + counter, 0);
34
        for (int i = 0; i < counter; ++i) {</pre>
35
             if (!dfn[i]) {
36
                 tarjan(i);
37
38
39
        for (int i = 0; i < n; ++i) {</pre>
40
             if (comp[i << 1] == comp[i << 1 | 1]) {</pre>
41
                 return false;
             }
42
43
            answer[i] = (comp[i << 1 | 1] < comp[i << 1]);
44
45
        return true;
46 }
```

4.4 二分图最大匹配

4.4.1 Hungary 算法

时间复杂度: $\mathcal{O}(V \cdot E)$

```
1 int n, m, stamp;
 2 int match[N], visit[N];
 4 bool dfs(int x) {
        for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
 6
            int y = edge[x][i];
 7
            if (visit[y] != stamp) {
 8
                 visit[y] = stamp;
 9
                 if (match[y] == -1 \mid \mid dfs(match[y]))  {
10
                     match[y] = x;
11
                     return true;
12
                 }
13
            }
14
        }
15
        return false;
16
17
18
   int solve() {
        std::fill(match, match + m, -1);
19
20
        int answer = 0;
        for (int i = 0; i < n; ++i) {</pre>
21
22
            stamp++;
23
            answer += dfs(i);
24
25
        return answer;
26 }
```

4.4.2 Hopcroft Karp 算法

时间复杂度: $\mathcal{O}(\sqrt{V} \cdot E)$

34 CHAPTER 4. 图论

```
1
    int matchx[N], matchy[N], level[N];
 3
    bool dfs(int x) {
 4
        for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
 5
             int y = edge[x][i];
 6
             int w = matchy[y];
 7
             if (w == -1 \mid | \text{level}[x] + 1 == \text{level}[w] && dfs(w)) {
                 matchx[x] = y;
 8
9
                 matchy[y] = x;
10
                 return true;
11
12
13
        level[x] = -1;
14
        return false;
15 }
16
17
    int solve() {
18
        std::fill(matchx, matchx + n, -1);
19
        std::fill(matchy, matchy + m, -1);
20
        for (int answer = 0; ; ) {
21
             std::vector<int> queue;
22
             for (int i = 0; i < n; ++i) {</pre>
23
                 if (matchx[i] == -1) {
24
                     level[i] = 0;
25
                     queue.push_back(i);
26
                 } else {
                     level[i] = -1;
27
28
29
30
             for (int head = 0; head < (int) queue.size(); ++head) {</pre>
31
                 int x = queue[head];
32
                 for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
33
                     int y = edge[x][i];
34
                     int w = matchy[y];
35
                     if (w != -1 \&\& level[w] < 0) {
36
                          level[w] = level[x] + 1;
37
                          queue.push_back(w);
38
                     }
39
                 }
40
41
             int delta = 0;
42
             for (int i = 0; i < n; ++i) {</pre>
43
                 if (matchx[i] == -1 && dfs(i)) {
44
                     delta++;
45
                 }
46
47
             if (delta == 0) {
48
                 return answer;
49
             } else {
50
                 answer += delta;
51
52
53 }
```

4.5. 二分图最大权匹配

35

4.5 二分图最大权匹配

43

44 }

return res;

```
时间复杂度: \mathcal{O}(V^4)
   int DFS(int x) {
 2
        visx[x] = 1;
 3
        for (int y = 1;y <= ny;y ++) {</pre>
 4
            if (visy[y]) continue;
 5
            int t = lx[x] + ly[y] - w[x][y];
 6
            if (t == 0) {
                 visy[y] = 1;
 7
                 if (link[y] == -1||DFS(link[y])){
 8
 9
                     link[y] = x;
10
                     return 1;
11
                 }
12
            }
13
             else slack[y] = min(slack[y],t);
14
        }
15
        return 0;
16 }
17 int KM(){
        int i,j;
18
19
        memset(link,-1,sizeof(link));
20
        memset(ly,0,sizeof(ly));
21
        for (i = 1; i <= nx; i++)</pre>
             for (j = 1, lx[i] = -inf; j <= ny; j++)</pre>
22
                 lx[i] = max(lx[i], w[i][j]);
23
        for (int x = 1; x <= nx; x++) {</pre>
24
2.5
            for (i = 1; i <= ny; i++) slack[i] = inf;</pre>
26
            while (true) {
27
                 memset(visx, 0, sizeof(visx));
28
                 memset(visy, 0, sizeof(visy));
29
                 if (DFS(x)) break;
30
                 int d = inf;
31
                 for (i = 1; i <= ny;i++)</pre>
32
                     if (!visy[i] && d > slack[i]) d = slack[i];
33
                 for (i = 1; i <= nx; i++)</pre>
34
                     if (visx[i]) lx[i] -= d;
35
                 for (i = 1; i <= ny; i++)</pre>
36
                     if (visy[i]) ly[i] += d;
37
                     else slack[i] -= d;
38
            }
39
        }
40
        int res = 0;
41
        for (i = 1;i <= ny;i ++)</pre>
42
            if (link[i] > -1) res += w[link[i]][i];
```

36 CHAPTER 4. 图论

4.6 最大流

4.6.1 Dinic

使用方法以及注意事项: n 个点,m 条边,inf 为一个很大的值,源点 s,汇点 t,图中最大点的编号为 t。邻接表: p 数组记录节点,nxt 数组指向下一个位置,c 数组记录可增广量,h 数组记录表头 (初始全为 -1)。时间复杂度: $\mathcal{O}(V^2 \cdot E)$

```
int bfs() {
 1
 2
        for (int i = 1;i <= t;i ++) d[i] = -1;</pre>
 3
        int 1,r;
        q[l = r = 0] = s, d[s] = 0;
 4
 5
        for (;1 <= r;1 ++)</pre>
 6
            for (int k = h[q[1]]; k > -1; k = nxt[k])
 7
                if (d[p[k]] == -1 \&\& c[k] > 0) d[p[k]] = d[q[1]] + 1, q[++ r] = p[k];
8
        return d[t] > -1 ? 1 : 0;
9
10
    int dfs(int u,int ext) {
        if (u == t) return ext;
11
        int k = w[u], ret = 0;
12
                                                   //w数组为当前弧
13
        for (; k > -1; k = nxt[k], w[u] = k) {
            if (ext == 0) break;
14
15
            if (d[p[k]] == d[u] + 1 && c[k] > 0)
16
                int flow = dfs(p[k], min(c[k], ext));
17
                if (flow > 0) {
                    c[k] = flow, c[k ^ 1] += flow;
18
19
                    ret += flow, ext -= flow; //ret累计增广量, ext记录还可增广的量
20
                }
21
            }
22
23
        if (k == -1) d[u] = -1;
24
        return ret;
25
   }
26
   void dinic() {
27
        while (bfs()) {
28
            for (int i = 1; i <= t;i ++) w[i] = h[i];</pre>
29
            dfs(s, inf);
30
31 }
```

4.6.2 ISAP

时间复杂度: $\mathcal{O}(V^2 \cdot E)$

```
int Maxflow_Isap(int s,int t,int n) {
    std::fill(pre + 1, pre + n + 1, 0);
    std::fill(d + 1, d + n + 1, 0);

    std::fill(gap + 1, gap + n + 1, 0);

    for (int i = 1; i <= n; i++) cur[i] = h[i];

    gap[0] = n;

    int u = pre[s] = s, v, maxflow = 0;

    while (d[s] < n) {
        v = n + 1;
    }
}</pre>
```

4.6. 最大流 37

```
10
            for (int i = cur[u]; i; i = e[i].next)
11
            if (e[i].flow && d[u] == d[e[i].node] + 1) {
12
                v = e[i].node; cur[u]=i; break;
13
14
            if (v <= n) {
15
                pre[v] = u; u = v;
16
                if (v == t) {
17
                    int dflow = INF, p = t; u = s;
18
                    while (p != s) {
19
                        p = pre[p];
20
                        dflow = std::min(dflow, e[cur[p]].flow);
21
22
                    maxflow += dflow; p = t;
23
                    while (p != s) {
24
                        p = pre[p];
                        e[cur[p]].flow -= dflow;
25
26
                        e[e[cur[p]].opp].flow += dflow;
27
28
                }
29
30
            else{
                int mindist = n + 1;
31
32
                for (int i = h[u]; i; i = e[i].next)
33
                    if (e[i].flow && mindist > d[e[i].node]) {
34
                        mindist = d[e[i].node]; cur[u] = i;
35
36
                if (!--gap[d[u]]) return maxflow;
37
                qap[d[u] = mindist + 1] ++; u = pre[u];
38
            }
39
40
        return maxflow;
41
   4.6.3 SAP
       时间复杂度: \mathcal{O}(V^2 \cdot E)
 1 const int N = 110, M = 30110, INF = 1000000000;//边表不要开小
   int n, m, ind, S, T, flow, tot, pt[M], nt[M], last[N], size[M], num[N], h[N], now[N];
 3
   void edge(int x, int y, int z){
 4
        last[x] = nt[last[x]] = ++ind;
 5
        pt[ind] = y, size[ind] = z;
 6
 7
    int aug(int x, int y) {
 8
        if (x == T)
 9
            return y;
10
        int f = y;
        for (int i = now[x]; pt[i]; i = nt[i])
11
            if (size[i] && h[pt[i]] + 1 == h[x]){
12
13
                int z = aug(pt[i], min(f, size[i]));
14
                f = z;
15
                size[i] -= z;
```

size[i ^ 1] += z;

16

```
17
                 now[x] = i;
18
                 if (h[S] > tot || f == 0)
19
                     return y - f;
20
            }
21
        now[x] = nt[x];
22
        if (--num[h[x]] == 0)
23
            h[S] = tot + 1;
24
        ++num[++h[x]];
25
        return y - f;
26
27
    int main(){
28
        int np, nc;
29
        for (; scanf("%d%d%d%d", &n, &np, &nc, &m) == 4; ) {
30
             for (int i = 0; i <= ind; ++i)</pre>
                pt[i] = nt[i] = last[i] = size[i] = 0;
31
32
             ind = n + 2;
33
             if (ind % 2 == 0)
34
                ++ind;
35
             S = n + 1, tot = T = n + 2;
36
             for (int i = 0; i <= tot; ++i)</pre>
37
                num[i] = h[i] = now[i] = 0;
38
             for (int i = 1; i <= tot; ++i)
39
                 last[i] = i;
40
             for (int i = 1; i <= m; ++i) {</pre>
41
                 int x, y, z;
42
                 for (; getchar() != '('; );
43
                 scanf("%d%*c%d%*c%d", &x, &y, &z);
44
                 ++x, ++y;
                 edge(x, y, z);
45
46
                 edge(y, x, 0);
47
48
             for (int i = 1; i <= np; ++i) {</pre>
49
                 int y, z;
                 for (; getchar() != '('; );
50
                 scanf("%d%*c%d", &y, &z);
51
52
                 ++y;
53
                 edge(S, y, z);
54
                 edge(y, S, 0);
55
56
             for (int i = 1; i <= nc; ++i) {</pre>
57
                int x, z;
58
                 for (; getchar() != '('; );
59
                 scanf("%d%*c%d", &x, &z);
60
                 ++x;
61
                 edge(x, T, z);
62
                 edge(T, x, 0);
63
             }
64
             num[0] = tot;
65
             for (int i = 1; i <= tot; ++i)</pre>
                 now[i] = nt[i];
66
67
             flow = 0;
             for (; h[S] <= T; )</pre>
68
69
                 flow += aug(S, INF);
```

4.7. 上下界网络流 39

4.7 上下界网络流

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,F(u,v) 表示边 (u,v) 的流量。设 G(u,v)=F(u,v)-B(u,v),显然有

$$0 \le G(u, v) \le C(u, v) - B(u, v)$$

4.7.1 无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* ,对于原图每条边 (u,v) 在新网络中连如下三条边: $S^* \to v$,容量为 B(u,v); $u \to T^*$,容量为 B(u,v); $u \to v$,容量为 C(u,v) - B(u,v)。最后求新网络的最大流,判断从超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。

4.7.2 有源汇的上下界可行流

从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边。按照**无源汇的上下界可行流**一样做即可,流量即为 $T\to S$ 边上的流量。

4.7.3 有源汇的上下界最大流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 ∞ ,下届为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最大流。
- 2. 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照**无源汇的上下界可行流**的方法,建立超级源点 S^* 和超级汇点 T^* ,求一遍 S^* \to T^* 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 $S \to T$ 的最大流即可。

4.7.4 有源汇的上下界最小流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 x,下界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最小流。
- 2. 按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,但是注意这一次不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 上界 ∞ 的边。因为这条边下界为 0,所以 S^* , T^* 无影响,再直接求一次 $S^* \to T^*$ 的最大流。若超级源点 S^* 出发的边全部满流,则 $T \to S$ 边上的流量即为原图的最小流,否则无解。

4.8 最小费用最大流

4.8.1 稀疏图

时间复杂度: $\mathcal{O}(V \cdot E^2)$

```
struct EdgeList {
 1
 2
        int size;
 3
        int last[N];
 4
        int succ[M], other[M], flow[M], cost[M];
 5
        void clear(int n) {
 6
            size = 0;
 7
            std::fill(last, last + n, -1);
 8
9
        void add(int x, int y, int c, int w) {
10
            succ[size] = last[x];
11
            last[x] = size;
12
            other[size] = y;
13
            flow[size] = c;
14
            cost[size++] = w;
15
16 } e;
17
18 int n, source, target;
19 int prev[N];
20
21 void add(int x, int y, int c, int w) {
22
        e.add(x, y, c, w);
23
        e.add(y, x, 0, -w);
24 }
25
26 bool augment() {
        static int dist[N], occur[N];
27
28
        std::vector<int> queue;
29
        std::fill(dist, dist + n, INT MAX);
30
        std::fill(occur, occur + n, 0);
31
        dist[source] = 0;
32
        occur[source] = true;
33
        queue.push_back(source);
34
        for (int head = 0; head < (int) queue.size(); ++head) {</pre>
35
            int x = queue[head];
36
            for (int i = e.last[x]; ~i; i = e.succ[i]) {
37
                int y = e.other[i];
38
                if (e.flow[i] && dist[y] > dist[x] + e.cost[i]) {
39
                    dist[y] = dist[x] + e.cost[i];
40
                    prev[y] = i;
41
                    if (!occur[y]) {
42
                         occur[y] = true;
43
                         queue.push_back(y);
44
                     }
45
                }
46
            }
47
            occur[x] = false;
48
49
        return dist[target] < INT MAX;</pre>
50
   }
51
52
    std::pair<int, int> solve() {
53
        std::pair<int, int> answer = std::make_pair(0, 0);
```

4.8. 最小费用最大流 41

```
54
        while (augment()) {
55
            int number = INT_MAX;
56
            for (int i = target; i != source; i = e.other[prev[i] ^ 1]) {
57
                number = std::min(number, e.flow[prev[i]]);
58
            }
59
            answer.first += number;
60
            for (int i = target; i != source; i = e.other[prev[i] ^ 1]) {
61
                e.flow[prev[i]] -= number;
                e.flow[prev[i] ^ 1] += number;
62
63
                answer.second += number * e.cost[prev[i]];
64
65
66
        return answer;
67 }
   4.8.2 稠密图
        使用条件:费用非负
        时间复杂度: \mathcal{O}(V \cdot E^2)
   int aug(int no,int res) {
        if(no == t) return cost += pi1 * res,res;
 3
        v[no] = true;
 4
        int flow = 0;
        for(int i = h[no]; ~ i ;i = nxt[i])
 5
            if(cap[i] && !expense[i] && !v[p[i]]) {
 6
 7
                int d = aug(p[i],min(res,cap[i]));
                cap[i] -= d, cap[i ^ 1] += d, flow += d, res -= d;
 8
 9
                if( !res ) return flow;
10
            }
11
        return flow;
13 bool modlabel() {
14
        int d = maxint;
15
        for(int i = 1;i <= t;++ i)</pre>
16
            if(v[i]) {
17
                for(int j = h[i]; ~ j ;j = nxt[j])
18
                     if(cap[j] && !v[p[j]] && expense[j] < d) d = expense[j];</pre>
19
            }
20
        if(d == maxint)return false;
21
        for(int i = 1;i <= t;++ i)</pre>
22
            if(v[i]) {
23
                for(int j = h[i]; ~ j; j = nxt[j])
24
                     expense[j] -= d, expense[j ^ 1] += d;
25
        pi1 += d;
26
27
        return true;
28 }
29
   void minimum cost flow zkw() {
        cost = 0;
30
31
        do{
32
            do {
33
                memset(v, false, sizeof v);
```

```
34          } while (aug(s,maxint));
35          } while (modlabel());
36    }
```

4.9 一般图最大匹配

时间复杂度: $\mathcal{O}(V^3)$

```
1 int match[N], belong[N], next[N], mark[N], visit[N];
 2 std::vector<int> queue;
 4 int find(int x) {
 5
       if (belong[x] != x) {
 6
           belong[x] = find(belong[x]);
 7
 8
       return belong[x];
9
   }
10
11 void merge(int x, int y) {
12
       x = find(x);
13
       y = find(y);
       if (x != y) {
14
15
           belong[x] = y;
16
17
   }
18
19 int lca(int x, int y) {
20
       static int stamp = 0;
21
       stamp++;
22
       while (true) {
23
           if (x != -1) {
24
               x = find(x);
25
               if (visit[x] == stamp) {
26
                   return x;
27
               }
28
               visit[x] = stamp;
29
               if (match[x] != -1) {
30
                    x = next[match[x]];
31
                } else {
32
                    x = -1;
33
34
            }
35
           std::swap(x, y);
36
37 }
38
39 void group(int a, int p) {
40
       while (a != p) {
           int b = match[a], c = next[b];
41
42
           if (find(c) != p) {
43
               next[c] = b;
```

4.9. 一般图最大匹配 43

```
45
            if (mark[b] == 2) {
46
                mark[b] = 1;
47
                queue.push_back(b);
48
49
            if (mark[c] == 2) {
50
                mark[c] = 1;
                queue.push_back(c);
51
52
53
            merge(a, b);
54
            merge(b, c);
55
            a = c;
56
        }
57 }
58
59 void augment(int source) {
60
        queue.clear();
        for (int i = 0; i < n; ++i) {</pre>
61
62
            next[i] = visit[i] = -1;
63
            belong[i] = i;
64
            mark[i] = 0;
65
66
        mark[source] = 1;
67
        queue.push back(source);
68
        for (int head = 0; head < (int)queue.size() && match[source] == -1; ++head) {
69
            int x = queue[head];
70
            for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
                int y = edge[x][i];
71
72
                if (match[x] == y \mid | find(x) == find(y) \mid | mark[y] == 2) {
73
                     continue;
74
75
                if (mark[y] == 1) {
76
                     int r = lca(x, y);
77
                     if (find(x) != r) {
78
                        next[x] = y;
79
80
                     if (find(y) != r) {
81
                        next[y] = x;
82
83
                    group(x, r);
84
                     group(y, r);
85
                } else if (match[y] == -1) {
86
                     next[y] = x;
87
                     for (int u = y; u != -1; ) {
88
                         int v = next[u];
89
                         int mv = match[v];
90
                        match[v] = u;
                        match[u] = v;
91
92
                         u = mv;
93
94
                    break;
95
                } else {
                     next[y] = x;
96
97
                    mark[y] = 2;
```

```
98
                      mark[match[y]] = 1;
 99
                      queue.push_back(match[y]);
100
                  }
101
             }
102
         }
103
     }
104
105
     int solve() {
106
         std::fill(match, match + n, -1);
107
         for (int i = 0; i < n; ++i) {</pre>
              if (match[i] == -1) {
108
109
                  augment(i);
110
111
112
         int answer = 0;
113
         for (int i = 0; i < n; ++i) {</pre>
114
             answer += (match[i] != -1);
115
116
         return answer;
117 }
```

4.10 无向图全局最小割

时间复杂度: $\mathcal{O}(V^3)$ 注意事项: 处理重边时,应该对边权累加

```
int node[N], dist[N];
2 bool visit[N];
3
 4
    int solve(int n) {
 5
        int answer = INT MAX;
 6
        for (int i = 0; i < n; ++i) {</pre>
7
            node[i] = i;
8
9
        while (n > 1) {
10
            int max = 1;
11
            for (int i = 0; i < n; ++i) {</pre>
12
                dist[node[i]] = graph[node[0]][node[i]];
13
                if (dist[node[i]] > dist[node[max]]) {
14
                    max = i;
15
16
17
            int prev = 0;
18
            memset(visit, 0, sizeof(visit));
19
            visit[node[0]] = true;
20
            for (int i = 1; i < n; ++i) {</pre>
21
                if (i == n - 1) {
22
                    answer = std::min(answer, dist[node[max]]);
                     for (int k = 0; k < n; ++k) {
23
24
                         graph[node[k]][node[prev]] =
25
                             (graph[node[prev]][node[k]] += graph[node[k]][node[max]]);
26
```

4.11. 最小树形图 45

```
27
                          node[max] = node[--n];
28
                    }
29
                    visit[node[max]] = true;
30
                    prev = max;
31
                    \max = -1;
                    for (int j = 1; j < n; ++j) {</pre>
32
                          if (!visit[node[j]]) {
33
34
                               dist[node[j]] += graph[node[prev]][node[j]];
35
                               if (\max == -1 \mid | \operatorname{dist}[\operatorname{node}[\max]] < \operatorname{dist}[\operatorname{node}[j]])  {
36
                                    max = j;
37
38
                          }
39
                    }
40
               }
41
          }
42
          return answer;
43 }
```

4.11 最小树形图

```
int n, m, used[N], pass[N], eg[N], more, queue[N];
   double g[N][N];
 3
    void combine(int id, double &sum) {
        int tot = 0, from, i, j, k;
        for (; id != 0 && !pass[id]; id = eg[id]) {
 6
            queue[tot++] = id;
 7
 8
            pass[id] = 1;
 9
        }
10
11
        for (from = 0; from < tot && queue[from] != id; from++);</pre>
12
        if (from == tot) return;
13
        more = 1;
14
        for (i = from; i < tot; i++) {</pre>
1.5
            sum += g[eg[queue[i]]][queue[i]];
16
            if (i != from) {
17
                 used[queue[i]] = 1;
18
                 for (j = 1; j <= n; j++) if (!used[j]) {</pre>
19
                     if (g[queue[i]][j] < g[id][j]) g[id][j] = g[queue[i]][j];</pre>
20
21
            }
22
        }
23
        for (i = 1; i <= n; i++) if (!used[i] && i != id) {</pre>
24
2.5
            for (j = from; j < tot; j++) {</pre>
26
                 k = queue[j];
27
                 if (g[i][id] > g[i][k] - g[eg[k]][k]) g[i][id] = g[i][k] - g[eg[k]][k];
28
            }
29
        }
30 }
31
```

```
32
    double mdst(int root) {
33
        int i, j, k;
34
        double sum = 0;
35
        memset(used, 0, sizeof(used));
36
        for (more = 1; more; ) {
37
            more = 0;
38
            memset(eg, 0, sizeof(eg));
39
            for (i = 1; i <= n; i++) if (!used[i] && i != root) {</pre>
40
                 for (j = 1, k = 0; j \le n; j++) if (!used[j] \&\& i != j)
41
                     if (k == 0 || g[j][i] < g[k][i]) k = j;
42
                 eg[i] = k;
43
            }
44
45
            memset(pass, 0, sizeof(pass));
46
            for (i = 1; i \le n; i++) if (!used[i] \&\& !pass[i] \&\& i != root) combine(i, sum);
47
        }
48
49
        for (i = 1; i <= n; i++) if (!used[i] && i != root) sum += q[eq[i]][i];</pre>
50
        return sum;
51
```

4.12 有根树的同构

时间复杂度: $\mathcal{O}(VlogV)$

```
const unsigned long long MAGIC = 4423;
 3
   unsigned long long magic[N];
   std::pair<unsigned long long, int> hash[N];
 5
    void solve(int root) {
 6
 7
        magic[0] = 1;
8
        for (int i = 1; i <= n; ++i) {</pre>
9
            magic[i] = magic[i - 1] * MAGIC;
10
11
        std::vector<int> queue;
12
        queue.push back(root);
        for (int head = 0; head < (int) queue.size(); ++head) {</pre>
13
14
            int x = queue[head];
15
            for (int i = 0; i < (int)son[x].size(); ++i) {</pre>
16
                 int y = son[x][i];
17
                queue.push back(y);
18
19
20
        for (int index = n - 1; index >= 0; —index) {
21
            int x = queue[index];
            hash[x] = std::make_pair(0, 0);
22
23
24
            std::vector<std::pair<unsigned long long, int> > value;
            for (int i = 0; i < (int)son[x].size(); ++i) {</pre>
25
26
                int y = son[x][i];
27
                value.push back(hash[y]);
```

4.13. 度限制生成树 47

```
28
29
            std::sort(value.begin(), value.end());
30
31
            hash[x].first = hash[x].first * magic[1] + 37;
32
            hash[x].second++;
33
            for (int i = 0; i < (int) value.size(); ++i) {</pre>
34
                hash[x].first = hash[x].first * magic[value[i].second] + value[i].first;
35
                hash[x].second += value[i].second;
36
37
            hash[x].first = hash[x].first * magic[1] + 41;
38
            hash[x].second++;
39
40 }
```

4.13 度限制生成树

```
1 int n, m, S, K, ans , cnt , Best[N], fa[N], FE[N];
 2 int f[N], p[M], t[M], c[M], o, Cost[N];
 3 bool u[M], d[M];
 4 pair<int, int> MinCost[N];
   struct Edge {
        int a, b, c;
 7
       bool operator < (const Edge & E) const { return c < E.c; }</pre>
 8 }E[M];
9 vector<int> SE;
10 inline int F(int x) {
       return fa[x] == x ? x : fa[x] = F(fa[x]);
11
12 }
13 inline void AddEdge(int a, int b, int C) {
       p[++o] = b; c[o] = C;
15
       t[o] = f[a]; f[a] = o;
16 }
17 void dfs(int i, int father) {
18
       fa[i] = father;
19
        if (father == S) Best[i] = -1;
20
        else {
21
            Best[i] = i;
22
            if (~Best[father] && Cost[Best[father]] > Cost[i]) Best[i] = Best[father];
23
        }
24
        for (int j = f[i]; j; j = t[j])
        if (!d[j] && p[j] != father) {
25
26
            Cost[p[j]] = c[j];
27
            FE[p[j]] = j;
28
            dfs(p[j], i);
29
30 }
31
   inline bool Kruskal() {
       cnt = n - 1, ans = 0; o = 1;
        for (int i = 1; i <= n; i++) fa[i] = i, f[i] = 0;</pre>
33
       sort(E + 1, E + m + 1);
34
35
        for (int i = 1; i <= m; i++) {</pre>
```

```
36
            if (E[i].b == S) swap(E[i].a, E[i].b);
37
            if (E[i].a != S && F(E[i].a) != F(E[i].b)) {
38
                fa[F(E[i].a)] = F(E[i].b);
39
                ans += E[i].c;
                cnt --;
40
41
                u[i] = true;
42
                AddEdge(E[i].a, E[i].b, E[i].c);
                AddEdge(E[i].b, E[i].a, E[i].c);
43
44
45
46
        for (int i = 1; i <= n; i++) MinCost[i] = make_pair(INF, INF);</pre>
47
        for (int i = 1; i <= m; i++)</pre>
48
        if (E[i].a == S) {
49
            SE.push back(i);
50
            MinCost[F(E[i].b)] = min(MinCost[F(E[i].b)], make pair(E[i].c, i));
51
52
        int dif = 0;
53
        for (int i = 1; i <= n; i++)</pre>
54
        if (i != S && fa[i] == i) {
55
            if (MinCost[i].second == INF) return false;
56
            if (++ dif > K) return false;
57
            dfs(E[MinCost[i].second].b, S);
58
            u[MinCost[i].second] = true;
59
            ans += MinCost[i].first;
60
61
        return true;
62
   }
63
   bool Solve() {
64
        memset(d, false, sizeof d);
65
        memset(u, false, sizeof u);
66
        if (!Kruskal()) return false;
67
        for (int i = cnt + 1; i <= K && i <= n; i++) {</pre>
            int MinD = INF, MinID = -1;
68
69
            for (int j = (int) SE.size() - 1; j \ge 0; j--)
70
            if (u[SE[j]])
71
                SE.erase(SE.begin() + j);
72
            for (int j = 0; j < (int) SE.size(); j++) {</pre>
73
                int tmp = E[SE[j]].c - Cost[Best[E[SE[j]].b]];
74
                if (tmp < MinD) {</pre>
75
                    MinD = tmp;
76
                    MinID= SE[j];
77
                }
78
79
            if (MinID == -1) return true;
80
            if (MinD >= 0) break;
81
            ans += MinD;
82
            u[MinID] = true;
83
            d[FE[Best[E[MinID].b]]] = d[FE[Best[E[MinID].b]] ^ 1] = true;
84
            dfs(E[MinID].b, S);
85
86
        return true;
87
88 int main(){
```

4.14. 弦图相关 49

4.14 弦图相关

4.14.1 弦图的判定

```
int n, m, first[1001], l, next[2000001], where[2000001],f[1001], a[1001], c[1001], L[1001], R
       [1001],
 2 v[1001], idx[1001], pos[1001];
 3 bool b[1001][1001];
 5 inline void makelist(int x, int y) {
 6
      where[++1] = y;
 7
       next[l] = first[x];
 8
       first[x] = 1;
 9
   }
10
11 bool cmp (const int &x, const int &y) {
12
       return(idx[x] < idx[y]);</pre>
13 }
14
15 int main(){
16
       for (;;)
17
18
            n = read(); m = read();
            if (!n && !m) return 0;
19
20
            memset(first, 0, sizeof(first)); l = 0;
21
            memset(b, false, sizeof(b));
22
            for (int i = 1; i <= m; i++)</pre>
23
24
                int x = read(), y = read();
25
                if (x != y && !b[x][y])
26
27
                   b[x][y] = true; b[y][x] = true;
28
                   makelist(x, y); makelist(y, x);
29
                }
30
            }
31
            memset(f, 0, sizeof(f));
32
            memset(L, 0, sizeof(L));
            memset(R, 255, sizeof(R));
33
34
            L[0] = 1; R[0] = n;
35
            for (int i = 1; i <= n; i++) c[i] = i, pos[i] = i;</pre>
            memset(idx, 0, sizeof(idx));
36
            memset(v, 0, sizeof(v));
37
38
            for (int i = n; i; ---i)
39
            {
40
                int now = c[i];
41
                R[f[now]]--;
                if (R[f[now]] < L[f[now]]) R[f[now]] = -1;
```

```
43
                idx[now] = i; v[i] = now;
44
                for (int x = first[now]; x; x = next[x])
45
                    if (!idx[where[x]])
46
47
                       swap(c[pos[where[x]]], c[R[f[where[x]]]]);
48
                       pos[c[pos[where[x]]]] = pos[where[x]];
49
                       pos[where[x]] = R[f[where[x]]];
50
                       L[f[where[x]] + 1] = R[f[where[x]]] --;
51
                       if (R[f[where[x]]] < L[f[where[x]]]) R[f[where[x]]] = -1;
52
                       if (R[f[where[x]] + 1] == -1)
53
                           R[f[where[x]] + 1] = L[f[where[x]] + 1];
54
                       ++f[where[x]];
55
                    }
56
57
            bool ok = true;
            //v是完美消除序列.
58
59
            for (int i = 1; i <= n && ok; i++)</pre>
60
61
                int cnt = 0;
62
                for (int x = first[v[i]]; x; x = next[x])
63
                    if (idx[where[x]] > i) c[++cnt] = where[x];
64
                sort(c + 1, c + cnt + 1, cmp);
65
                bool can = true;
66
                for (int j = 2; j <= cnt; j++)
67
                    if (!b[c[1]][c[j]])
68
69
                        ok = false;
70
                        break;
71
72
73
            if (ok) printf("Perfect\n");
74
            else printf("Imperfect\n");
75
            printf("\n");
76
77
   }
```

4.14.2 弦图的团数

```
1 int n, m, first[100001], next[2000001], where[2000001], 1, L[100001], R[100001], c[100001], f
       [100001],
   pos[100001], idx[100001], v[100001], ans;
   inline void makelist(int x, int y) {
 5
        where [++1] = y;
        next[l] = first[x];
 6
7
        first[x] = 1;
8
   }
9
10 int read() {
11
        char ch:
        for (ch = getchar(); ch < '0' || ch > '9'; ch = getchar());
12
13
        int cnt = 0;
```

```
14
        for (; ch \geq '0' && ch \leq '9'; ch = getchar()) cnt = cnt * 10 + ch - '0';
15
        return (cnt);
16 }
17
18 int main() {
        //freopen("1006.in", "r", stdin);
19
        //freopen("1006.out", "w", stdout);
20
21
        memset(first, 0, sizeof(first)); 1 = 0;
22
        n = read(); m = read();
23
        for (int i = 1; i <= m; i++)</pre>
2.4
2.5
            int x, y;
26
            x = read(); y = read();
27
            makelist(x, y); makelist(y, x);
28
29
        memset(L, 0, sizeof(L));
        memset(R, 255, sizeof(R));
30
        memset(f, 0, sizeof(f));
31
32
        memset(idx, 0, sizeof(idx));
33
        for (int i = 1; i <= n; i++) c[i] = i, pos[i] = i;</pre>
34
       L[0] = 1; R[0] = n; ans = 0;
3.5
        for (int i = n; i; —i)
36
37
            int now = c[i], cnt = 1;
38
            idx[now] = i; v[i] = now;
39
            if (--R[f[now]] < L[f[now]]) R[f[now]] = -1;
40
            for (int x = first[now]; x; x = next[x])
41
                if (!idx[where[x]])
42
43
                     \verb|swap(c[pos[where[x]]], c[R[f[where[x]]]]);|\\
                     pos[c[pos[where[x]]]] = pos[where[x]];
44
4.5
                     pos[where[x]] = R[f[where[x]]];
46
                     L[f[where[x]] + 1] = R[f[where[x]]] --;
                     if (R[f[where[x]]] < L[f[where[x]]]) R[f[where[x]]] = -1;
47
                     if (R[f[where[x]] + 1] == -1) R[f[where[x]] + 1] = L[f[where[x]] + 1];
48
                     ++f[where[x]];
49
50
51
                else ++cnt;
52
            ans = max(ans, cnt);
53
54
        printf("%d\n", ans);
55 }
```

4.15 哈密尔顿回路(ORE 性质的图)

```
ORE 性质:
```

```
\forall x,y\in V\land (x,y)\notin E\ s.t.\ deg_x+deg_y\geq n返回结果: 从顶点 1 出发的一个哈密尔顿回路 使用条件: n\geq 3
```

```
1 int left[N], right[N], next[N], last[N];
```

```
void cover(int x) {
 4
        left[right[x]] = left[x];
 5
        right[left[x]] = right[x];
 6
    }
 7
 8
    int adjacent(int x) {
 9
        for (int i = right[0]; i <= n; i = right[i]) {</pre>
10
            if (graph[x][i]) {
11
                 return i;
12
13
14
        return 0;
15 }
16
17
    std::vector<int> solve() {
        for (int i = 1; i <= n; ++i) {</pre>
18
19
            left[i] = i - 1;
20
            right[i] = i + 1;
21
22
        int head, tail;
23
        for (int i = 2; i <= n; ++i) {</pre>
            if (graph[1][i]) {
24
                head = 1;
25
26
                tail = i;
27
                cover (head);
28
                cover(tail);
29
                next[head] = tail;
30
                break;
31
            }
32
33
        while (true) {
34
            int x;
35
            while (x = adjacent(head)) {
36
                next[x] = head;
37
                head = x;
38
                cover (head);
39
40
            while (x = adjacent(tail)) {
41
                next[tail] = x;
42
                 tail = x;
43
                cover(tail);
44
45
            if (!graph[head][tail]) {
                 for (int i = head, j; i != tail; i = next[i]) {
46
47
                     if (graph[head][next[i]] && graph[tail][i]) {
48
                         for (j = head; j != i; j = next[j]) {
49
                             last[next[j]] = j;
50
                         }
51
                         j = next[head];
52
                         next[head] = next[i];
53
                         next[tail] = i;
54
                         tail = j;
```

```
55
                        for (j = i; j != head; j = last[j]) {
                          next[j] = last[j];
56
57
58
                       break;
59
                    }
60
               }
61
           }
62
           next[tail] = head;
            if (right[0] > n) {
63
64
               break;
65
66
           for (int i = head; i != tail; i = next[i]) {
67
                if (adjacent(i)) {
68
                   head = next[i];
69
                   tail = i;
70
                   next[tail] = 0;
71
                    break;
72
                }
           }
73
74
75
       std::vector<int> answer;
76
       for (int i = head; ; i = next[i]) {
77
           if (i == 1) {
78
               answer.push_back(i);
79
                for (int j = next[i]; j != i; j = next[j]) {
80
                  answer.push_back(j);
81
82
                answer.push back(i);
83
                break;
84
           if (i == tail) {
85
86
               break;
87
88
89
       return answer;
90 }
```

Chapter 5

字符串

5.1 模式串匹配

```
1
   void build(char *pattern) {
 2
        int length = (int)strlen(pattern + 1);
 3
        fail[0] = -1;
 4
        for (int i = 1, j; i <= length; ++i) {</pre>
 5
            for (j = fail[i - 1]; j != -1 \&\& pattern[i] != pattern[j + 1]; j = fail[j]);
 6
            fail[i] = j + 1;
 7
 8
    }
 9
10
    void solve(char *text, char *pattern) {
11
        int length = (int)strlen(text + 1);
        for (int i = 1, j; i <= length; ++i) {</pre>
12
            for (j = match[i - 1]; j != -1 \&\& text[i] != pattern[j + 1]; j = fail[j]);
13
14
            match[i] = j + 1;
15
16 }
```

5.2 坚固的模式串匹配

```
1 lenA = strlen(A); lenB = strlen(B);
   nxt[0] = lenB, nxt[1] = lenB - 1;
    for (int i = 0;i <= lenB;i ++)</pre>
        if (B[i] != B[i + 1]) {nxt[1] = i; break;}
5
    int j, k = 1, p, L;
    for (int i = 2;i < lenB;i ++) {</pre>
7
        p = k + nxt[k] - 1; L = nxt[i - k];
        if (i + L <= p) nxt[i] = L;</pre>
8
9
        else {
            j = p - i + 1;
10
            if (j < 0) j = 0;
11
            while (i + j < lenB \&\& B[i + j] == B[j]) j++;
12
            nxt[i] = j; k = i;
```

5.3. AC 自动机 55

```
14
      }
15 }
16 int minlen = lenA <= lenB ? lenA : lenB; ex[0] = minlen;</pre>
17 for (int i = 0;i < minlen;i ++)
18
        if (A[i] != B[i]) {ex[0] = i; break;}
19 k = 0;
20 for (int i = 1;i < lenA;i ++) {
21
        p = k + ex[k] - 1; L = next[i - k];
22
        if (i + L \le p) ex[i] = L;
23
        else {
           j = p - i + 1;
24
25
            if (j < 0) j = 0;
            while (i + j < lenA && j < lenB && A[i + j] == B[j]) j++;
26
            ex[i] = j; k = i;
27
28
        }
29 }
```

5.3 AC 自动机

```
1 int size, c[MAXT][26], f[MAXT], fail[MAXT], d[MAXT];
 3 int alloc() {
 4
       size++;
        std::fill(c[size], c[size] + 26, 0);
        f[size] = fail[size] = d[size] = 0;
 6
7
        return size;
8 }
10 void insert(char *s) {
        int len = strlen(s + 1), p = 1;
        for (int i = 1; i <= len; i++) {</pre>
1.3
            if (c[p][s[i] - 'a']) p = c[p][s[i] - 'a'];
14
            else{
15
                int newnode = alloc();
                c[p][s[i] - 'a'] = newnode;
16
17
                d[newnode] = s[i] - 'a';
18
                f[newnode] = p;
                p = newnode;
19
20
            }
21
        }
22 }
23
24 void buildfail() {
25
       static int q[MAXT];
        int left = 0, right = 0;
26
27
        fail[1] = 0;
        for (int i = 0; i < 26; i++) {</pre>
28
            c[0][i] = 1;
29
30
            if (c[1][i]) q[++right] = c[1][i];
31
       while (left < right) {</pre>
```

56 CHAPTER 5. 字符串

```
33
            left++;
34
            int p = fail[f[q[left]]];
35
            while (!c[p][d[q[left]]]) p = fail[p];
36
            fail[q[left]] = c[p][d[q[left]]];
37
            for (int i = 0; i < 26; i++) {</pre>
38
                 if (c[q[left]][i]) {
39
                     q[++right] = c[q[left]][i];
40
41
42
43
        for (int i = 1; i <= size; i++)</pre>
            for (int j = 0; j < 26; j++) {
44
45
                 int p = i;
46
                 while (!c[p][j]) p = fail[p];
47
                 c[i][j] = c[p][j];
48
49
```

5.4 后缀数组

```
1
    namespace suffix array{
        int wa[MAXN], wb[MAXN], ws[MAXN], wv[MAXN];
 3
        bool cmp(int *r, int a, int b, int l) {
            return r[a] == r[b] && r[a + 1] == r[b + 1];
 5
 6
        void DA(int *r, int *sa, int n, int m) {
 7
            int *x = wa, *y = wb, *t;
 8
            for (int i = 0; i < m; i++) ws[i] = 0;</pre>
 9
            for (int i = 0; i < n; i++) ws[x[i] = r[i]]++;</pre>
            for (int i = 1; i < m; i++) ws[i] += ws[i - 1];</pre>
10
11
            for (int i = n - 1; i \ge 0; i--) sa[--ws[x[i]]] = i;
12
            for (int i, j = 1, p = 1; p < n; j <<= 1, m = p) {
                 for (p = 0, i = n - j; i < n; i++) y[p++] = i;
13
14
                for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
15
                for (i = 0; i < n; i++) wv[i] = x[y[i]];
                for (i = 0; i < m; i++) ws[i] = 0;</pre>
16
17
                for (i = 0; i < n; i++) ws[wv[i]]++;</pre>
18
                for (i = 1; i < m; i++) ws[i] += ws[i-1];</pre>
                for (i = n - 1; i >= 0; i--) sa[-ws[wv[i]]] = y[i];
19
20
                for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
                     x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++;
21
22
23
24
        void getheight(int *r, int *sa, int *rk, int *h, int n) {
25
            for (int i = 1; i <= n; i++) rk[sa[i]] = i;</pre>
26
            for (int i = 0, j, k = 0; i < n; h[rk[i++]] = k)</pre>
27
                for (k ? k - : 0, j = sa[rk[i] - 1]; r[i + k] == r[j + k]; k++);
28
29
   };
```

5.5. 广义后缀自动机 57

5.5 广义后缀自动机

```
// Generalized Suffix Automaton
 1
    void add(int x, int &last) {
 3
        int lastnode = last;
 4
        if (c[lastnode][x]) {
 5
            int nownode = c[lastnode][x];
 6
            if (l[nownode] == l[lastnode] + 1) last = nownode;
 7
            else{
 8
                int auxnode = ++size; l[auxnode] = l[lastnode] + 1;
 9
                for (int i = 0; i < 26; i++) c[auxnode][i] = c[nownode][i];</pre>
                f[auxnode] = f[nownode]; f[nownode] = auxnode;
10
                for (; lastnode && c[lastnode][x] == nownode; lastnode = f[lastnode]) {
11
12
                    c[lastnode][x] = auxnode;
13
14
                last = auxnode;
15
            }
16
        }
17
        else{
18
            int newnode = ++size; l[newnode] = l[lastnode] + 1;
            for (; lastnode && !c[lastnode][x]; lastnode = f[lastnode]) c[lastnode][x] = newnode;
19
20
            if (!lastnode) f[newnode] = 1;
21
            else{
22
                int nownode = c[lastnode][x];
23
                if (l[lastnode] + 1 == l[nownode]) f[newnode] = nownode;
24
                else{
25
                    int auxnode = ++size; l[auxnode] = l[lastnode] + 1;
26
                    for (int i = 0; i < 26; i++) c[auxnode][i] = c[nownode][i];</pre>
27
                     f[auxnode] = f[nownode]; f[nownode] = f[newnode] = auxnode;
28
                    for (; lastnode && c[lastnode][x] == nownode; lastnode = f[lastnode]) {
29
                         c[lastnode][x] = auxnode;
30
31
                }
32
33
            last = newnode;
34
        }
35
   }
```

5.6 Manacher 算法

```
void manacher(char *text, int length) {
 2
        palindrome[0] = 1;
        for (int i = 1, j = 0; i < length; ++i) {</pre>
 3
 4
            if (j + palindrome[j] <= i) {</pre>
 5
                palindrome[i] = 0;
 6
            } else {
 7
                palindrome[i] = std::min(palindrome[(j << 1) - i], j + palindrome[j] - i);
 8
            while (i - palindrome[i] \ge 0 \&\& i + palindrome[i] < length
 9
10
                     && text[i - palindrome[i]] == text[i + palindrome[i]]) {
```

58 CHAPTER 5. 字符串

5.7 回文树

```
1 struct Palindromic_Tree{
 2
       int nTree, nStr, last, c[MAXT][26], fail[MAXT], r[MAXN], l[MAXN], s[MAXN];
        int allocate(int len) {
           l[nTree] = len;
 5
           r[nTree] = 0;
 6
           fail[nTree] = 0;
 7
           memset(c[nTree], 0, sizeof(c[nTree]));
8
           return nTree++;
9
        }
10
       void init() {
11
           nTree = nStr = 0;
12
           int newEven = allocate(0);
13
           int newOdd = allocate(-1);
14
           last = newEven;
15
           fail[newEven] = newOdd;
16
            fail[newOdd] = newEven;
17
            s[0] = -1;
18
19
        void add(int x) {
           s[++nStr] = x;
20
           int nownode = last;
21
           while (s[nStr - 1[nownode] - 1] != s[nStr]) nownode = fail[nownode];
22
23
            if (!c[nownode][x]) {
               int newnode = allocate(1[nownode] + 2), &newfail = fail[newnode];
25
               newfail = fail[nownode];
26
               while (s[nStr - 1[newfail] - 1] != s[nStr]) newfail = fail[newfail];
27
               newfail = c[newfail][x];
28
               c[nownode][x] = newnode;
29
30
            last = c[nownode][x];
31
           r[last]++;
32
33
        void count() {
34
           for (int i = nTree - 1; i >= 0; i--) {
35
               r[fail[i]] += r[i];
36
37
        }
38 }
```

5.8. 循环串最小表示 59

5.8 循环串最小表示

```
int solve(char *text, int length) {
1
       int i = 0, j = 1, delta = 0;
       while (i < length && j < length && delta < length) {
 3
           char tokeni = text[(i + delta) % length];
 4
 5
           char tokenj = text[(j + delta) % length];
           if (tokeni == tokenj) {
 6
 7
                delta++;
8
           } else {
9
                if (tokeni > tokenj) {
10
                   i += delta + 1;
11
                } else {
12
                    j += delta + 1;
13
14
                if (i == j) {
15
                   j++;
16
17
                delta = 0;
18
           }
19
       }
20
       return std::min(i, j);
21 }
```

Chapter 6

计算几何

6.1 二维基础

6.1.1 点类

```
struct Point{
       double x, y;
3
       Point() {}
 4
        Point(double x, double y):x(x), y(y) {}
        Point operator +(const Point &p)const {
           return Point(x + p.x, y + p.y);
7
8
       Point operator - (const Point &p) const {
9
           return Point (x - p.x, y - p.y);
10
11
        Point operator *(const double &p)const {
12
           return Point(x * p, y * p);
13
14
       Point operator / (const double &p) const {
15
          return Point(x / p, y / p);
16
17
       int read() {
18
           return scanf("%lf%lf", &x, &y);
19
        }
20 };
21
22 struct Line{
23
       Point a, b;
24
       Line() {}
25
       Line(Point a, Point b):a(a), b(b) {}
26 };
```

6.1.2 凸包

```
1 bool Pair_Comp(const Point &a, const Point &b) {
2    if (dcmp(a.x - b.x) < 0) return true;</pre>
```

6.1. 二维基础 61

```
3
        if (dcmp(a.x - b.x) > 0) return false;
 4
        return dcmp(a.y - b.y) < 0;
 5
   }
 6
 7
    int Convex_Hull(int n, Point *P, Point *C) {
        sort(P, P + n, Pair_Comp);
 8
 9
        int top = 0;
10
        for (int i = 0; i < n; i++) {</pre>
            while (top \ge 2 \&\& dcmp(det(C[top - 1] - C[top - 2], P[i] - C[top - 2])) <= 0) top—;
11
12
            C[top++] = P[i];
13
        int lasttop = top;
14
        for (int i = n - 1; i >= 0; i--) {
15
            while (top > lasttop && dcmp(det(C[top - 1] - C[top - 2], P[i] - C[top - 2])) <= 0)
16
                top--;
            C[top++] = P[i];
17
18
        }
19
        return top;
20 }
```

6.1.3 半平面交

```
1 bool isOnLeft(const Point &x, const Line &1) {
       double d = det(x - 1.a, 1.b - 1.a);
 2
 3
        return dcmp(d) <= 0;</pre>
 4
   // 传入一个线段的集合L, 传出A, 并且返回A的大小
   int getIntersectionOfHalfPlane(int n, Line *L, Line *A) {
       Line *q = new Line[n + 1];
       Point *p = new Point[n + 1];
9
        sort(L, L + n, Polar Angle Comp Line);
10
        int 1 = 1, r = 0;
11
        for (int i = 0; i < n; i++) {</pre>
12
            while (1 < r \&\& !isOnLeft(p[r-1], L[i])) r--;
            while (1 < r && !isOnLeft(p[l], L[i])) l++;
13
14
            q[++r] = L[i];
15
            if (1 < r \&\& is\_Colinear(q[r], q[r-1])) {
16
                r--;
17
                if (isOnLeft(L[i].a, q[r])) q[r] = L[i];
18
19
            if (1 < r) p[r - 1] = getIntersection(q[r - 1], q[r]);
20
21
        while (1 < r \&\& !isOnLeft(p[r-1], q[1])) r--;
22
        if (r - 1 + 1 \le 2) return 0;
23
        int tot = 0;
24
        for (int i = 1; i <= r; i++) A[tot++] = q[i];</pre>
25
        return tot;
26 }
```

6.1.4 最近点对

62 CHAPTER 6. 计算几何

```
bool comparex(const Point &a, const Point &b) {
 1
 2
        return sgn(a.x - b.x) < 0;
 3
 4
 5
    bool comparey(const Point &a, const Point &b) {
 6
        return sgn(a.y - b.y) < 0;
 7
 8
9
    double solve(const std::vector<Point> &point, int left, int right) {
10
        if (left == right) {
11
            return INF;
12
13
        if (left + 1 == right) {
14
            return dist(point[left], point[right]);
15
16
        int mid = left + right >> 1;
17
        double result = std::min(solve(left, mid), solve(mid + 1, right));
18
        std::vector<Point> candidate;
19
        for (int i = left; i <= right; ++i) {</pre>
20
            if (std::abs(point[i].x - point[mid].x) <= result) {</pre>
21
                candidate.push back(point[i]);
22
23
        }
24
        std::sort(candidate.begin(), candidate.end(), comparey);
25
        for (int i = 0; i < (int)candidate.size(); ++i) {</pre>
26
            for (int j = i + 1; j < (int)candidate.size(); ++j) {</pre>
                if (std::abs(candidate[i].y - candidate[j].y) >= result) {
27
28
                    break;
29
30
                result = std::min(result, dist(candidate[i], candidate[j]));
31
32
33
        return result;
34
   }
35
36 double solve(std::vector<Point> point) {
37
        std::sort(point.begin(), point.end(), comparex);
38
        return solve(point, 0, (int)point.size() - 1);
39
```

6.2 三维基础

6.2.1 点类

```
1 int dcmp(const double &x) {
2     return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1);
3  }
4
5 struct TPoint{
6 double x, y, z;
7 TPoint() {}
```

6.2. 三维基础 63

```
8
       TPoint(double x, double y, double z) : x(x), y(y), z(z) {}
9
       TPoint operator +(const TPoint &p)const {
10
           return TPoint(x + p.x, y + p.y, z + p.z);
11
        }
12
       TPoint operator - (const TPoint &p) const {
           return TPoint(x - p.x, y - p.y, z - p.z);
13
14
15
       TPoint operator *(const double &p)const {
16
           return TPoint(x * p, y * p, z * p);
17
       TPoint operator / (const double &p) const {
18
19
           return TPoint(x / p, y / p, z / p);
20
21
       bool operator <(const TPoint &p)const {</pre>
22
           int dX = dcmp(x - p.x), dY = dcmp(y - p.y), dZ = dcmp(z - p.z);
           return dX < 0 || (dX == 0 && (dY < 0 || (dY == 0 && dZ < 0)));
23
2.4
25
       bool read() {
26
           return scanf("%lf%lf%lf", &x, &y, &z) == 3;
27
28 };
29
30 double sqrdist(const TPoint &a) {
31
    double ret = 0;
32
       ret += a.x * a.x;
33
       ret += a.y * a.y;
34
       ret += a.z * a.z;
35
       return ret;
36 }
37 double sqrdist(const TPoint &a, const TPoint &b) {
38
      double ret = 0;
       ret += (a.x - b.x) * (a.x - b.x);
39
       ret += (a.y - b.y) * (a.y - b.y);
40
       ret += (a.z - b.z) * (a.z - b.z);
41
       return ret;
42
43 }
44 double dist(const TPoint &a) {
45
       return sqrt(sqrdist(a));
46 }
47 double dist(const TPoint &a, const TPoint &b) {
48 return sqrt(sqrdist(a, b));
49 }
50 TPoint det(const TPoint &a, const TPoint &b) {
51
      TPoint ret;
52
       ret.x = a.y * b.z - b.y * a.z;
       ret.y = a.z * b.x - b.z * a.x;
53
54
       ret.z = a.x * b.y - b.x * a.y;
55
       return ret;
56 }
57 double dot(const TPoint &a, const TPoint &b) {
58
       double ret = 0;
       ret += a.x * b.x;
59
60
       ret += a.y * b.y;
```

64 CHAPTER 6. 计算几何

```
61
        ret += a.z * b.z;
62
        return ret;
63 }
64 double detdot(const TPoint &a, const TPoint &b, const TPoint &c, const TPoint &d) {
65
        return dot(det(b - a, c - a), d - a);
66
    6.2.2 凸包
 1 struct Triangle{
        TPoint a, b, c;
 3
        Triangle() {}
        Triangle(TPoint a, TPoint b, TPoint c) : a(a), b(b), c(c) {}
 4
 5
        double getArea() {
 6
            TPoint ret = det(b - a, c - a);
 7
            return dist(ret) / 2.0;
 8
        }
9
   };
10 namespace Convex_Hull {
11
        struct Face{
12
            int a, b, c;
13
            bool isOnConvex;
14
            Face() {}
15
            Face(int a, int b, int c) : a(a), b(b), c(c) {}
16
        };
17
18
        int nFace, left, right, whe[MAXN][MAXN];
19
        Face queue[MAXF], tmp[MAXF];
20
21
        bool isVisible(const std::vector<TPoint> &p, const Face &f, const TPoint &a) {
22
            return dcmp(detdot(p[f.a], p[f.b], p[f.c], a)) > 0;
23
24
        bool init(std::vector<TPoint> &p) {
25
26
            bool check = false;
27
            for (int i = 1; i < (int)p.size(); i++) {</pre>
28
                if (dcmp(sqrdist(p[0], p[i]))) {
29
                    std::swap(p[1], p[i]);
30
                    check = true;
31
                    break;
32
                }
33
34
            if (!check) return false;
35
            check = false;
36
            for (int i = 2; i < (int)p.size(); i++) {</pre>
37
                if (dcmp(sqrdist(det(p[i] - p[0], p[1] - p[0])))) {
38
                    std::swap(p[2], p[i]);
39
                    check = true;
40
                    break:
41
42
43
            if (!check) return false;
```

6.2. 三维基础 65

```
44
            check = false;
45
            for (int i = 3; i < (int)p.size(); i++) {</pre>
46
                 if (dcmp(detdot(p[0], p[1], p[2], p[i]))) {
47
                     std::swap(p[3], p[i]);
48
                     check = true;
49
                     break;
50
                 }
51
52
            if (!check) return false;
53
            for (int i = 0; i < (int)p.size(); i++)</pre>
                 for (int j = 0; j < (int)p.size(); j++) {</pre>
54
55
                     whe[i][j] = -1;
56
57
            return true;
58
        }
59
60
        void pushface(const int &a, const int &b, const int &c) {
61
            nFace++;
62
            tmp[nFace] = Face(a, b, c);
63
            tmp[nFace].isOnConvex = true;
64
            whe[a][b] = nFace;
6.5
            whe[b][c] = nFace;
66
            whe[c][a] = nFace;
67
        }
68
69
        bool deal(const std::vector<TPoint> &p, const std::pair<int, int> &now, const TPoint &base
70
            int id = whe[now.second][now.first];
71
            if (!tmp[id].isOnConvex) return true;
72
            if (isVisible(p, tmp[id], base)) {
73
                 queue[++right] = tmp[id];
74
                 tmp[id].isOnConvex = false;
75
                 return true;
76
77
            return false;
78
        }
79
80
        std::vector<Triangle> getConvex(std::vector<TPoint> &p) {
            static std::vector<Triangle> ret;
81
82
            ret.clear();
83
            if (!init(p)) return ret;
84
            if (!isVisible(p, Face(0, 1, 2), p[3])) pushface(0, 1, 2); else pushface(0, 2, 1);
8.5
             \textbf{if} \ (!isVisible(p, Face(0, 1, 3), p[2])) \ pushface(0, 1, 3); \ \textbf{else} \ pushface(0, 3, 1); \\ 
86
            if (!isVisible(p, Face(0, 2, 3), p[1])) pushface(0, 2, 3); else pushface(0, 3, 2);
            if (!isVisible(p, Face(1, 2, 3), p[0])) pushface(1, 2, 3); else pushface(1, 3, 2);
87
88
            for (int a = 4; a < (int)p.size(); a++) {</pre>
89
                 TPoint base = p[a];
90
                 for (int i = 1; i <= nFace; i++) {</pre>
                     if (tmp[i].isOnConvex && isVisible(p, tmp[i], base)) {
91
92
                         left = 0, right = 0;
93
                         queue[++right] = tmp[i];
94
                         tmp[i].isOnConvex = false;
95
                         while (left < right) {</pre>
```

66 CHAPTER 6. 计算几何

```
96
                              Face now = queue[++left];
 97
                              if (!deal(p, std::make pair(now.a, now.b), base)) pushface(now.a, now.
                                  b, a);
 98
                              if (!deal(p, std::make_pair(now.b, now.c), base)) pushface(now.b, now.
                                  c, a);
 99
                              if (!deal(p, std::make pair(now.c, now.a), base)) pushface(now.c, now.
                                  a, a);
100
101
                          break;
102
                      }
103
                  }
104
             for (int i = 1; i <= nFace; i++) {</pre>
105
106
                 Face now = tmp[i];
107
                 if (now.isOnConvex) {
108
                      ret.push back(Triangle(p[now.a], p[now.b], p[now.c]));
109
110
111
             return ret;
112
113
    } ;
114
115 int n;
116 std::vector<TPoint> p;
     std::vector<Triangle> answer;
117
118
119
     int main() {
120
         scanf("%d", &n);
121
         for (int i = 1; i <= n; i++) {</pre>
             TPoint a;
122
123
             a.read();
124
             p.push_back(a);
125
126
         answer = Convex Hull::getConvex(p);
127
         double areaCounter = 0.0;
128
         for (int i = 0; i < (int) answer.size(); i++) {</pre>
129
             areaCounter += answer[i].getArea();
130
131
         printf("%.3f\n", areaCounter);
132
         return 0;
133 }
```

6.2.3 绕轴旋转

使用方法及注意事项: 逆时针绕轴 AB 旋转 θ 角

```
1 Matrix getTrans(const double &a, const double &b, const double &c) {
2    Matrix ret;
3    ret.a[0][0] = 1; ret.a[0][1] = 0; ret.a[0][2] = 0; ret.a[0][3] = 0;
4    ret.a[1][0] = 0; ret.a[1][1] = 1; ret.a[1][2] = 0; ret.a[1][3] = 0;
5    ret.a[2][0] = 0; ret.a[2][1] = 0; ret.a[2][2] = 1; ret.a[2][3] = 0;
6    ret.a[3][0] = a; ret.a[3][1] = b; ret.a[3][2] = c; ret.a[3][3] = 1;
7    return ret;
```

6.3. 多边形 67

```
8 }
9
   Matrix getRotate(const double &a, const double &b, const double &c, const double &theta) {
10
       Matrix ret;
        ret.a[0][0] = a * a * (1 - cos(theta)) + cos(theta);
11
12
        ret.a[0][1] = a * b * (1 - cos(theta)) + c * sin(theta);
        ret.a[0][2] = a * c * (1 - cos(theta)) - b * sin(theta);
13
14
        ret.a[0][3] = 0;
15
16
       ret.a[1][0] = b * a * (1 - cos(theta)) - c * sin(theta);
        ret.a[1][1] = b * b * (1 - \cos(\text{theta})) + \cos(\text{theta});
17
       ret.a[1][2] = b * c * (1 - cos(theta)) + a * sin(theta);
18
19
       ret.a[1][3] = 0;
20
       ret.a[2][0] = c * a * (1 - cos(theta)) + b * sin(theta);
21
       ret.a[2][1] = c * b * (1 - cos(theta)) - a * sin(theta);
22
       ret.a[2][2] = c * c * (1 - cos(theta)) + cos(theta);
23
24
       ret.a[2][3] = 0;
25
26
       ret.a[3][0] = 0;
27
       ret.a[3][1] = 0;
28
       ret.a[3][2] = 0;
29
       ret.a[3][3] = 1;
30
       return ret;
31 }
32 Matrix getRotate(const double &ax, const double &ay, const double &az, const double &bx, const
        double &by, const double &bz, const double &theta) {
33
        double 1 = dist(Point(0, 0, 0), Point(bx, by, bz));
        Matrix ret = getTrans(-ax, -ay, -az);
35
        ret = ret * getRotate(bx / 1, by / 1, bz / 1, theta);
36
        ret = ret * getTrans(ax, ay, az);
37
        return ret;
38 }
```

6.3 多边形

6.3.1 判断点在多边形内部

```
1 bool point_on_line(const Point &p, const Point &a, const Point &b) {
 2
        return sgn(det(p, a, b)) == 0 && sgn(dot(p, a, b)) <= 0;
 3
   }
 4
   bool point in polygon(const Point &p, const std::vector<Point> &polygon) {
 6
        int counter = 0;
 7
        for (int i = 0; i < (int)polygon.size(); ++i) {</pre>
 8
            Point a = polygon[i], b = polygon[(i + 1) % (int)polygon.size()];
 9
            if (point_on_line(p, a, b)) {
10
                // Point on the boundary are excluded.
11
                return false;
12
13
            int x = sgn(det(a, p, b));
14
            int y = sgn(a.y - p.y);
```

68 CHAPTER 6. 计算几何

```
int z = sgn(b.y - p.y);
counter += (x > 0 && y <= 0 && z > 0);
counter -= (x < 0 && z <= 0 && y > 0);

return counter;
```

6.3.2 多边形内整点计数

```
int getInside(int n, Point *P) { // 求多边形P内有多少个整数点
 1
        int OnEdge = n;
 3
        double area = getArea(n, P);
        for (int i = 0; i < n - 1; i++) {</pre>
 4
 5
            Point now = P[i + 1] - P[i];
 6
            int y = (int) now.y, x = (int) now.x;
 7
            OnEdge += abs(gcd(x, y)) - 1;
 8
9
        Point now = P[0] - P[n - 1];
        int y = (int) now.y, x = (int) now.x;
10
        OnEdge += abs(gcd(x, y)) - 1;
11
12
        double ret = area - (double) OnEdge / 2 + 1;
13
        return (int) ret;
14 }
```

6.4 圆

6.4.1 最小覆盖圆

```
Point getmid(Point a, Point b) {
        return Point((a.x + b.x) / 2, (a.y + b.y) / 2);
 3
 4
    Point getcross(Point a, Point vA, Point b, Point vB) {
 5
        Point u = a - b;
 6
        double t = det(vB, u) / det(vA, vB);
 7
        return a + vA * t;
 8
    }
9
    Point getcir(Point a, Point b, Point c) {
10
        Point midA = getmid(a,b), vA = Point(-(b - a).y, (b - a).x);
        Point midB = getmid(b,c), vB = Point(-(c - b).y, (c - b).x);
11
12
        return getcross(midA, vA, midB, vB);
13
14
    double mincir(Point *p,int n) {
15
        std::random shuffle(p + 1, p + n + 1);
16
        Point O = p[1];
17
        double r = 0;
18
        for (int i = 2; i <= n; i++) {</pre>
19
            if (dist(0, p[i]) <= r) continue;</pre>
20
            0 = p[i]; r = 0;
21
            for (int j = 1; j < i; j++) {</pre>
22
                if (dist(0, p[j]) <= r) continue;</pre>
```

6.4. 圆

```
23
                 O = getmid(p[i], p[j]); r = dist(O,p[i]);
                for (int k = 1; k < j; k++) {
24
25
                     if (dist(0,p[k]) <= r) continue;</pre>
26
                     0 = getcir(p[i], p[j], p[k]);
27
                     r = dist(0,p[i]);
28
                 }
29
            }
30
        }
31
        return r;
32 }
```

6.4.2 最小覆盖球

```
1 double eps (1e-8);
 2 int sign(const double & x) {
 3
       return (x > eps) - (x + eps < 0);
 4 }
 5 bool equal(const double & x, const double & y) {
 6
       return x + eps > y and y + eps > x;
 7
 8
   struct Point {
 9
       double x, y, z;
10
       Point() {
11
       Point(const double & x, const double & y, const double & z) : x(x), y(y), z(z) {
12
13
14
       void scan() {
           scanf("%lf%lf%lf", &x, &y, &z);
15
16
17
       double sqrlen() const {
           return x * x + y * y + z * z;
18
19
20
       double len() const {
21
          return sqrt(sqrlen());
22
23
       void print() const {
24
           printf("(%lf_{\sqcup}%lf)\n", x, y, z);
25
        }
26 } a[33];
27 Point operator + (const Point & a, const Point & b) {
28
       return Point(a.x + b.x, a.y + b.y, a.z + b.z);
29
30 Point operator - (const Point & a, const Point & b) {
31
       return Point(a.x - b.x, a.y - b.y, a.z - b.z);
32
33 Point operator * (const double & x, const Point & a) {
34
       return Point(x * a.x, x * a.y, x * a.z);
35 }
36 double operator % (const Point & a, const Point & b) {
37
       return a.x * b.x + a.y * b.y + a.z * b.z;
38 }
39 Point operator * (const Point & a, const Point & b) {
```

70 CHAPTER 6. 计算几何

```
40
        return Point(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
41
   }
42
   struct Circle {
43
        double r;
44
        Point o;
45
        Circle() {
46
            o.x = o.y = o.z = r = 0;
47
48
        Circle(const Point & o, const double & r) : o(o), r(r) {
49
50
        void scan() {
51
           o.scan();
52
            scanf("%lf", &r);
53
54
        void print() const {
55
           o.print();
56
           printf("%lf\n", r);
57
58 };
59 struct Plane {
60
       Point nor;
61
        double m;
62
        Plane(const Point & nor, const Point & a) : nor(nor) {
63
           m = nor % a;
64
65
   };
66 Point intersect(const Plane & a, const Plane & b, const Plane & c) {
        Point cl(a.nor.x, b.nor.x, c.nor.x), c2(a.nor.y, b.nor.y, c.nor.y), c3(a.nor.z, b.nor.z, c
67
           .nor.z), c4(a.m, b.m, c.m);
        return 1 / ((c1 * c2) % c3) * Point((c4 * c2) % c3, (c1 * c4) % c3, (c1 * c2) % c4);
68
69
70 bool in(const Point & a, const Circle & b) {
71
        return sign((a - b.o).len() - b.r) <= 0;
72 }
73 bool operator < (const Point & a, const Point & b) {
74
        if(!equal(a.x, b.x)) {
75
           return a.x < b.x;</pre>
76
77
        if(!equal(a.y, b.y)) {
78
           return a.y < b.y;</pre>
79
80
        if(!equal(a.z, b.z)) {
81
            return a.z < b.z;</pre>
82
83
        return false;
84 }
85 bool operator == (const Point & a, const Point & b) {
86
        return equal(a.x, b.x) and equal(a.y, b.y) and equal(a.z, b.z);
87
88
   vector<Point> vec;
89
   Circle calc() {
90
        if(vec.empty()) {
91
            return Circle(Point(0, 0, 0), 0);
```

6.4. 圆

```
92
         }else if(1 == (int)vec.size()) {
 93
             return Circle(vec[0], 0);
 94
         }else if(2 == (int)vec.size()) {
             return Circle(0.5 * (vec[0] + vec[1]), 0.5 * (vec[0] - vec[1]).len());
 95
         }else if(3 == (int)vec.size()) {
 96
              \textbf{double} \ \texttt{r((vec[0] - vec[1]).len()} \ \ \texttt{(vec[1] - vec[2]).len()} \ \ \texttt{* (vec[2] - vec[0]).len()} \ \ \texttt{/}
 97
                   2 / fabs(((vec[0] - vec[2]) * (vec[1] - vec[2])).len()));
 98
              return Circle(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] + vec[0])),
                               Plane(vec[2] - vec[1], 0.5 * (vec[2] + vec[1])),
 99
100
                           Plane((vec[1] - vec[0]) * (vec[2] - vec[0]), vec[0])), r);
101
         }else {
              Point o(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] + vec[0])),
102
103
                        Plane(vec[2] - vec[0], 0.5 * (vec[2] + vec[0])),
                        Plane(vec[3] - vec[0], 0.5 * (vec[3] + vec[0])));
104
105
              return Circle(o, (o - vec[0]).len());
106
         }
107 }
108 Circle miniBall(int n) {
109
         Circle res(calc());
110
         for(int i(0); i < n; i++) {</pre>
111
              if(!in(a[i], res)) {
112
                  vec.push back(a[i]);
113
                  res = miniBall(i);
114
                  vec.pop_back();
115
                  if(i) {
116
                      Point tmp(a[i]);
117
                      memmove(a + 1, a, sizeof(Point) * i);
118
                      a[0] = tmp;
119
                  }
120
              }
121
122
         return res;
123
124
    int main() {
         int n;
125
         for(;;) {
126
              scanf("%d", &n);
127
128
              if(!n) {
129
                  break;
130
131
              for(int i(0); i < n; i++) {</pre>
132
                  a[i].scan();
133
              }
134
              sort(a, a + n);
135
             n = unique(a, a + n) - a;
136
             vec.clear();
137
             printf("%.10f\n", miniBall(n).r);
138
         }
```

6.4.3 多边形与圆的交面积

1 // 求扇形面积

72 CHAPTER 6. 计算几何

```
double getSectorArea(const Point &a, const Point &b, const double &r) {
 3
        double c = (2.0 * r * r - sqrdist(a, b)) / (2.0 * r * r);
 4
        double alpha = acos(c);
 5
        return r * r * alpha / 2.0;
 6
    }
 7
    // 求二次方程 ax^2 + bx + c = 0 的解
 8
    std::pair<double, double> getSolution(const double &a, const double &b, const double &c) {
9
        double delta = b * b - 4.0 * a * c;
10
        if (dcmp(delta) < 0) return std::make pair(0, 0);</pre>
        else return std::make pair((-b - sqrt(delta)) / (2.0 * a), (-b + sqrt(delta)) / (2.0 * a))
11
12
   // 直线与圆的交点
13
   std::pair<Point, Point> getIntersection(const Point &a, const Point &b, const double &r) {
14
15
        Point d = b - a;
        double A = dot(d, d);
16
17
        double B = 2.0 * dot(d, a);
18
        double C = dot(a, a) - r * r;
19
        std::pair<double, double> s = getSolution(A, B, C);
20
        return std::make pair(a + d * s.first, a + d * s.second);
21 }
22 // 原点到线段AB的距离
23 double getPointDist(const Point &a, const Point &b) {
        Point d = b - a;
24
2.5
        int sA = dcmp(dot(a, d)), sB = dcmp(dot(b, d));
26
        if (sA * sB <= 0) return det(a, b) / dist(a, b);</pre>
27
        else return std::min(dist(a), dist(b));
28
   }
29
    // a和b和原点组成的三角形与半径为r的圆的交的面积
30
    double getArea(const Point &a, const Point &b, const double &r) {
31
        double dA = dot(a, a), dB = dot(b, b), dC = getPointDist(a, b), ans = 0.0;
        if (dcmp(dA - r * r) \le 0 \& dcmp(dB - r * r) \le 0) return det(a, b) / 2.0;
32
33
        Point tA = a / dist(a) * r;
34
        Point tB = b / dist(b) * r;
35
        if (dcmp(dC - r) > 0) return getSectorArea(tA, tB, r);
36
        std::pair<Point, Point> ret = getIntersection(a, b, r);
37
        if (dcmp(dA - r * r) > 0 \&\& dcmp(dB - r * r) > 0) {
38
            ans += getSectorArea(tA, ret.first, r);
39
            ans += det(ret.first, ret.second) / 2.0;
40
            ans += getSectorArea(ret.second, tB, r);
41
            return ans;
42
43
        if (dcmp(dA - r * r) > 0) return det(ret.first, b) / 2.0 + getSectorArea(tA, ret.first, r)
44
        else return det(a, ret.second) / 2.0 + getSectorArea(ret.second, tB, r);
45
   }
46
   // 求圆与多边形的交的主过程
47
    double getArea(int n, Point *p, const Point &c, const double r) {
48
        double ret = 0.0;
49
        for (int i = 0; i < n; i++) {</pre>
50
            int sgn = dcmp(det(p[i] - c, p[(i + 1) % n] - c));
51
            if (sgn > 0) ret += getArea(p[i] - c, p[(i + 1) % n] - c, r);
52
            else ret -= getArea(p[(i + 1) % n] - c, p[i] - c, r);
```

```
6.4. 圆
```

```
53 }
54 return fabs(ret);
55 }
```

Chapter 7

其它

7.1 STL 使用方法

7.1.1 nth element

用法: $nth_element(a + 1, a + id, a + n + 1)$; 作用: 将排名为 id 的元素放在第 id 个位置。

7.1.2 next_permutation

用法: $next_permutation(a + 1, a + n + 1)$;

作用:以 a 中从小到大排序后为第一个排列,求得当期数组 a 中的下一个排列,返回值为当期排列是否为最后一个排列。

7.2 博弈论相关

7.2.1 巴什博奕

- 1. 只有一堆 n 个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取 m 个。最后取光者得胜。
- 2. 显然, 如果 n = m + 1, 那么由于一次最多只能取 m 个, 所以, 无论先取者拿走多少个, 后取者都能够一次拿走剩余的物品, 后者取胜。因此我们发现了如何取胜的法则: 如果 n = (m+1)r + s, (r) 为任意自然数, $s \le m$, 那么先取者要拿走 s 个物品, 如果后取者拿走 $k(k \le m)$ 个, 那么先取者再拿走 m + 1 k 个, 结果剩下 (m+1)(r-1) 个, 以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下 (m+1) 的倍数,就能最后获胜。

7.2.2 威佐夫博弈

- 1. 有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限, 最后取光者得胜。
- 2. 判断一个局势 (a,b) 为奇异局势(必败态)的方法:

$$a_k = [k(1+\sqrt{5})/2], b_k = a_k + k$$

7.3. JAVA REFERENCE 75

7.2.3 阶梯博奕

1. 博弈在一列阶梯上进行,每个阶梯上放着自然数个点,两个人进行阶梯博弈,每一步则是将一个阶梯上的若干个点(至少一个)移到前面去,最后没有点可以移动的人输。

2. 解决方法: 把所有奇数阶梯看成 N 堆石子,做 NIM。(把石子从奇数堆移动到偶数堆可以理解为拿走石子,就相当于几个奇数堆的石子在做 Nim)

7.2.4 图上删边游戏

链的删边游戏

- 1. 游戏规则:对于一条链,其中一个端点是根,两人轮流删边,脱离根的部分也算被删去,最后没边可删的人输。
- 2. 做法: sg[i] = n dist(i) 1 (其中 n 表示总点数, dist(i) 表示离根的距离)

树的删边游戏

- 1. 游戏规则:对于一棵有根树,两人轮流删边,脱离根的部分也算被删去,没边可删的人输。
- 2. 做法: 叶子结点的 sq = 0,其他节点的 sq 等于儿子结点的 sq + 1 的异或和。

局部连通图的删边游戏

- 1. 游戏规则:在一个局部连通图上,两人轮流删边,脱离根的部分也算被删去,没边可删的人输。局部连通图的构图规则是,在一棵基础树上加边得到,所有形成的环保证不共用边,且只与基础树有一个公共点。
- 2. 做法: 去掉所有的偶环,将所有的奇环变为长度为1的链,然后做树的删边游戏。

7.3 Java Reference

```
1 import java.io.*;
  import java.util.*;
 3 import java.math.*;
 4
 5 public class Main {
 6
       static int get(char c) {
            if (c <= '9')
 7
                return c - '0';
 8
 9
            else if (c <= 'Z')
10
                return c - 'A' + 10;
11
12
                return c - 'a' + 36;
13
        }
14
       static char get(int x) {
15
            if (x <= 9)
                return (char) (x + '0');
16
17
            else if (x \le 35)
               return (char) (x - 10 + 'A');
18
19
            else
20
                return (char) (x - 36 + 'a');
21
       static BigInteger get(String s, BigInteger x) {
```

76 CHAPTER 7. 其它

```
23
           BigInteger ans = BigInteger.valueOf(0), now = BigInteger.valueOf(1);
24
            for (int i = s.length() - 1; i >= 0; i---) {
25
                ans = ans.add(now.multiply(BigInteger.valueOf(get(s.charAt(i)))));
26
                now = now.multiply(x);
27
            }
28
           return ans;
29
30
       public static void main(String [] args) {
31
            Scanner cin = new Scanner(new BufferedInputStream(System.in));
32
            for (; ; ) {
33
                BigInteger x = cin.nextBigInteger();
34
                if (x.compareTo(BigInteger.valueOf(0)) == 0)
35
36
                String s = cin.next(), t = cin.next(), r = "";
37
                BigInteger ans = get(s, x).mod(get(t, x));
38
                if (ans.compareTo(BigInteger.valueOf(0)) == 0)
39
                   r = "0";
40
                for (; ans.compareTo(BigInteger.valueOf(0)) > 0;) {
41
                    r = get(ans.mod(x).intValue()) + r;
42
                    ans = ans.divide(x);
43
44
                System.out.println(r);
45
           }
46
        }
47
   }
48
49
   // Arrays
50 int a[];
   .fill(a[, int fromIndex, int toIndex],val); | .sort(a[, int fromIndex, int toIndex])
51
52
   // String
53 String s;
    .charAt(int i); | compareTo(String) | compareToIgnoreCase () | contains(String) |
54
55 length () | substring(int 1, int len)
56 // BigInteger
   .abs() | .add() | bitLength () | subtract () | divide () | remainder () | divideAndRemainder
57
       () | modPow(b, c) |
58 pow(int) | multiply () | compareTo () |
59 gcd() | intValue () | longValue () | isProbablePrime(int c) (1 - 1/2^c) |
60 nextProbablePrime () | shiftLeft(int) | valueOf ()
61 // BigDecimal
62 .ROUND CEILING | ROUND DOWN FLOOR | ROUND HALF DOWN | ROUND HALF EVEN | ROUND HALF UP |
       ROUND UP
63
   .divide(BigDecimal b, int scale , int round mode) | doubleValue () | movePointLeft(int) | pow(
       int) |
64 setScale(int scale , int round_mode) | stripTrailingZeros ()
65 // StringBuilder
66 StringBuilder sb = new StringBuilder ();
67 sb.append(elem) | out.println(sb)
```

Chapter 8

数学公式

8.1 常用数学公式

8.1.1 求和公式

1.
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(4n^2-1)}{3}$$

2.
$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

3.
$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$$

4.
$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

5.
$$\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

6.
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

7.
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

8.
$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$

8.1.2 斐波那契数列

1.
$$fib_0 = 0, fib_1 = 1, fib_n = fib_{n-1} + fib_{n-2}$$

2.
$$fib_{n+2} \cdot fib_n - fib_{n+1}^2 = (-1)^{n+1}$$

3.
$$fib_{-n} = (-1)^{n-1} fib_n$$

4.
$$fib_{n+k} = fib_k \cdot fib_{n+1} + fib_{k-1} \cdot fib_n$$

5.
$$gcd(fib_m, fib_n) = fib_{gcd(m,n)}$$

6.
$$fib_m|fib_n^2 \Leftrightarrow nfib_n|m$$

8.1.3 错排公式

1.
$$D_n = (n-1)(D_{n-2} - D_{n-1})$$

2.
$$D_n = n! \cdot \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$$

78

8.1.4 莫比乌斯函数

8.1.5 Burnside 引理

设 G 是一个有限群,作用在集合 X 上。对每个 g 属于 G,令 X^g 表示 X 中在 g 作用下的不动元素,轨道数(记作 |X/G|)由如下公式给出:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

8.1.6 五边形数定理

设 p(n) 是 n 的拆分数,有

$$p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k-1} p\left(n - \frac{k(3k-1)}{2}\right)$$

8.1.7 树的计数

1. 有根树计数: n+1 个结点的有根树的个数为

$$a_{n+1} = \frac{\sum_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n}$$

其中,

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$

2. 无根树计数: 当n为奇数时,n个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$$

8.1. 常用数学公式

当 n 为偶数时,n 个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$$

79

3. n 个结点的完全图的生成树个数为

$$n^{n-2}$$

4. 矩阵—树定理:图 G 由 n 个结点构成,设 A[G] 为图 G 的邻接矩阵、D[G] 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 C[G] = D[G] - A[G] 的任意一个 n-1 阶主子式的行列式值。

8.1.8 欧拉公式

平面图的顶点个数、边数和面的个数有如下关系:

$$V - E + F = C + 1$$

其中,V是顶点的数目,E是边的数目,F是面的数目,C是组成图形的连通部分的数目。当图是单连通图的时候,公式简化为:

$$V - E + F = 2$$

8.1.9 皮克定理

给定顶点坐标均是整点(或正方形格点)的简单多边形,其面积 A 和内部格点数目 i、边上格点数目 b 的关系:

$$A = i + \frac{b}{2} - 1$$

8.1.10 牛顿恒等式

设

$$\prod_{i=1}^{n} (x - x_i) = a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n$$

$$p_k = \sum_{i=1}^{n} x_i^k$$

则

$$a_0p_k + a_1p_{k-1} + \dots + a_{k-1}p_1 + ka_k = 0$$

特别地,对于

$$|\mathbf{A} - \lambda \mathbf{E}| = (-1)^n (a_n + a_{n-1}\lambda + \dots + a_1\lambda^{n-1} + a_0\lambda^n)$$

有

$$p_k = Tr(\mathbf{A}^k)$$

8.2 平面几何公式

8.2.1 三角形

1. 半周长

$$p = \frac{a+b+c}{2}$$

2. 面积

$$S = \frac{a \cdot H_a}{2} = \frac{ab \cdot sinC}{2} = \sqrt{p(p-a)(p-b)(p-c)}$$

3. 中线

$$M_a = \frac{\sqrt{2(b^2 + c^2) - a^2}}{2} = \frac{\sqrt{b^2 + c^2 + 2bc \cdot cosA}}{2}$$

4. 角平分线

$$T_a = \frac{\sqrt{bc \cdot [(b+c)^2 - a^2]}}{b+c} = \frac{2bc}{b+c} \cos \frac{A}{2}$$

5. 高线

$$H_a = bsinC = csinB = \sqrt{b^2 - (\frac{a^2 + b^2 - c^2}{2a})^2}$$

6. 内切圆半径

$$\begin{split} r &= \frac{S}{p} = \frac{arcsin\frac{B}{2} \cdot sin\frac{C}{2}}{sin\frac{B+C}{2}} = 4R \cdot sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2} \\ &= \sqrt{\frac{(p-a)(p-b)(p-c)}{p}} = p \cdot tan\frac{A}{2}tan\frac{B}{2}tan\frac{C}{2} \end{split}$$

7. 外接圆半径

$$R = \frac{abc}{4S} = \frac{a}{2sinA} = \frac{b}{2sinB} = \frac{c}{2sinC}$$

8.2.2 四边形

 D_1, D_2 为对角线, M 对角线中点连线, A 为对角线夹角, p 为半周长

1.
$$a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4M^2$$

- 2. $S = \frac{1}{2}D_1D_2sinA$
- 3. 对于圆内接四边形

$$ac + bd = D_1D_2$$

4. 对于圆内接四边形

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

8.2.3 正 n 边形

R 为外接圆半径, r 为内切圆半径

1. 中心角

$$A = \frac{2\pi}{n}$$

2. 内角

$$C = \frac{n-2}{n}\pi$$

3. 边长

$$a = 2\sqrt{R^2 - r^2} = 2R \cdot \sin\frac{A}{2} = 2r \cdot \tan\frac{A}{2}$$

4. 面积

$$S = \frac{nar}{2} = nr^2 \cdot tan\frac{A}{2} = \frac{nR^2}{2} \cdot sinA = \frac{na^2}{4 \cdot tan\frac{A}{2}}$$

8.2.4 圆

1. 弧长

$$l = rA$$

2. 弦长

$$a = 2\sqrt{2hr - h^2} = 2r \cdot \sin\frac{A}{2}$$

3. 弓形高

$$h = r - \sqrt{r^2 - \frac{a^2}{4}} = r(1 - \cos\frac{A}{2}) = \frac{1}{2} \cdot \arctan\frac{A}{4}$$

4. 扇形面积

$$S_1 = \frac{rl}{2} = \frac{r^2 A}{2}$$

5. 弓形面积

$$S_2 = \frac{rl - a(r - h)}{2} = \frac{r^2}{2}(A - sinA)$$

8.2.5 棱柱

1. 体积

$$V = Ah$$

A 为底面积,h 为高

2. 侧面积

$$S = lp$$

l 为棱长,p 为直截面周长

3. 全面积

$$T = S + 2A$$

8.2.6 棱锥

1. 体积

$$V = Ah$$

A 为底面积,h 为高

2. 正棱锥侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 正棱锥全面积

$$T = S + 2A$$

8.2.7 棱台

1. 体积

$$V = (A_1 + A_2 + \sqrt{A_1 A_2}) \cdot \frac{h}{3}$$

 A_1, A_2 为上下底面积,h 为高

2. 正棱台侧面积

$$S = \frac{p_1 + p_2}{2}l$$

 p_1, p_2 为上下底面周长,l 为斜高

3. 正棱台全面积

$$T = S + A_1 + A_2$$

8.2.8 圆柱

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = 2\pi r(h+r)$$

3. 体积

$$V = \pi r^2 h$$

8.2.9 圆锥

1. 母线

$$l = \sqrt{h^2 + r^2}$$

2. 侧面积

$$S = \pi r l$$

3. 全面积

$$T = \pi r(l+r)$$

4. 体积

$$V = \frac{\pi}{3}r^2h$$

8.2.10 圆台

1. 母线

$$l = \sqrt{h^2 + (r_1 - r_2)^2}$$

2. 侧面积

$$S = \pi(r_1 + r_2)l$$

3. 全面积

$$T = \pi r_1(l + r_1) + \pi r_2(l + r_2)$$

4. 体积

$$V = \frac{\pi}{3}(r_1^2 + r_2^2 + r_1 r_2)h$$

8.2.11 球

1. 全面积

$$T = 4\pi r^2$$

2. 体积

$$V = \frac{4}{3}\pi r^3$$

8.2.12 球台

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = \pi(2rh + r_1^2 + r_2^2)$$

3. 体积

$$V = \frac{\pi h[3(r_1^2 + r_2^2) + h^2]}{6}$$

8.2.13 球扇形

1. 全面积

$$T = \pi r (2h + r_0)$$

h 为球冠高, r_0 为球冠底面半径

2. 体积

$$V = \frac{2}{3}\pi r^2 h$$

8.3 立体几何公式

8.3.1 球面三角公式

设 a,b,c 是边长,A,B,C 是所对的二面角,有余弦定理

 $cosa = cosb \cdot cosc + sinb \cdot sinc \cdot cosA$

正弦定理

$$\frac{sinA}{sina} = \frac{sinB}{sinb} = \frac{sinC}{sinc}$$

三角形面积是 $A + B + C - \pi$

8.3.2 四面体体积公式

U, V, W, u, v, w 是四面体的 6 条棱, U, V, W 构成三角形, (U, u), (V, v), (W, w) 互为对棱, 则

$$V = \frac{\sqrt{(s-2a)(s-2b)(s-2c)(s-2d)}}{192uvw}$$

其中

$$\begin{cases} a &= \sqrt{xYZ}, \\ b &= \sqrt{yZX}, \\ c &= \sqrt{zXY}, \\ d &= \sqrt{xyz}, \\ s &= a+b+c+d, \\ X &= (w-U+v)(U+v+w), \\ x &= (U-v+w)(v-w+U), \\ Y &= (u-V+w)(V+w+u), \\ y &= (V-w+u)(w-u+V), \\ Z &= (v-W+u)(W+u+v), \\ z &= (W-u+v)(u-v+W) \end{cases}$$