

Vector Addition/Subtraction

$$\begin{bmatrix} 1 \\ + \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ + \\ 4 \end{bmatrix} = \begin{bmatrix} 1 + 4 \\ 2 + 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 - 2 \\ 2 - 2 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Vector Addition/Subtraction

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}$$

Null Vector Or Zero vector

Scalar Multiplication

$$3 * \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 1 + 1 \\ 2 + 2 + 2 \end{bmatrix} = \begin{bmatrix} 3 * 1 \\ 3 * 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$3 * \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 * 1 \\ 3 * 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Core Idea - Linear combination

$$-0.5 * \begin{bmatrix} 2 \\ 4 \end{bmatrix} + 2 * \begin{bmatrix} 1 \\ 5 \end{bmatrix} =$$

$$= \begin{bmatrix} -0.5 * 2 \\ -0.5 * 4 \end{bmatrix} + \begin{bmatrix} 2 * 1 \\ 2 * 5 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ 10 \end{bmatrix}$$

Core Idea – Independency and Dependency $a\vec{v} + b\vec{u}$

- > Vectors v and u are **Independent** if no combination except $0\vec{v} + 0\vec{u}$ gives $\vec{0}$
- > Vectors v and u are **Dependent** if there is a combination $a\vec{v} + b\vec{u}$ that gives $\vec{0}$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} and \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix} and \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
Independent
Dependent

Shaddy Abado, Ph.D.

Linear combination (2D case)

Two Linearly Dependent Vectors

The combination $a \begin{bmatrix} 4 \\ 6 \end{bmatrix} + b \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ Line

x-axis

Linear combination (2D case)

$$\vec{v} = \begin{vmatrix} \vec{v}_1 \\ \vdots \\ v_n \end{vmatrix}$$

Definition

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \cdots v_n^2}$$

Example

$$\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$
Shaddy Abado, Ph.D.

Norm Property

The norm ||v|| of a vector $v \in S$ is a real number that satisfies the following properties:

- $\geq ||v|| \geq 0$,
- |v| = 0 if and only if v = 0,
- $|av| = |a| ||v||, a \in R1, and$
- $|v| + w| \le ||v|| + ||w||$, (triangle or Minkowski inequality).

Unit Vector

Definition:

A unit vector is a vector whose length equals one

$$\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \| \quad \| \begin{bmatrix} 0 \\ 1 \end{bmatrix} \| \quad \| \begin{bmatrix} 1/\sqrt{3} \\ \sqrt{2}/\sqrt{3} \end{bmatrix} \|, \dots$$

$$||u|| = \sqrt{0^2 + 1^2} = \sqrt{0 + 1} = \sqrt{1} = 1$$

$$||u|| = \sqrt{(1/\sqrt{3})^2 + (\sqrt{2}/\sqrt{3})^2} = \sqrt{1/3 + 2/3} = \sqrt{1} = 1$$

Shaddy Abado, Ph.D.

Unit Vectors

y-axis

Scalar product (dot product, inner product)

It is called 'scalar product' because the output is a scaler

$$y = \overrightarrow{v} \cdot \overrightarrow{w} = \sum_{i=1} v_i w_i$$

$$v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$u = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

no difference
$$\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{w}$$

Order makes

$$= 1 * 7 + 2 * 3 = 13$$

Perpendicular/Orthogonal Vectors

v and u are said to be orthogonal to each other if $v \cdot u = 0$

Right angle (90°)

Dot product and Norm

The length (i.e., ||v||) of a vector v is the square root of the dor product $\vec{v} \cdot \vec{v}$

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + \dots + v_N^2}$$

Example

Cosine Formula

$$\frac{\boldsymbol{v} \cdot \boldsymbol{u}}{\|\boldsymbol{v}\| \|\boldsymbol{u}\|} = \cos \theta$$

$$\|\boldsymbol{v}\| \|\boldsymbol{u}\|$$

$$\boldsymbol{v} \cdot \boldsymbol{u} = \|\boldsymbol{v}\| \|\boldsymbol{u}\| \cos \theta$$
Algebraic Geometric

The significance of this property is that the left-hand side is purely <u>algebraic</u> and the right-hand side is purely <u>geometric</u>.

Cosine Formula - Example

$$\frac{\boldsymbol{v} \cdot \boldsymbol{u}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|} = \operatorname{Cos} \boldsymbol{\theta}$$

$$\boldsymbol{v} \cdot \boldsymbol{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = -1 * -1 + 2 * 4 = 9$$
$$\|\boldsymbol{v}\| = \sqrt{1 + 4} = \sqrt{5} \quad \|\boldsymbol{u}\| = \sqrt{1 + 16} = \sqrt{17}$$

 $\frac{1}{\sqrt{17}\sqrt{5}} = \cos \theta$ $\cos \theta = 0.97$

 $\theta \sim 0.2 \ Rad \ ; 12.5^{\circ}$

Shaddy Abado, Ph.D.

Check

Session 2 - Outline

- ➤ Brief overview of previous session
- Properties of Matrix
- Matrix Multiplication
 - ➤ Matrix Scalar Multiplication
 - ➤ Matrix Vector Multiplication
 - ➤ Matrix Matrix Multiplication
- > Definitions and properties:
 - ➤ Transpose, Identity, Diagonal, Symmetry, Antisymmetry and Asymmetry, Triangular, Permutation, Inverse, and Orthogonal

Session 2 - Motivation

- Our ability to <u>analyze dataset and solve</u> <u>equations</u> depends on performing <u>algebraic</u> <u>operations with matrices</u>.
- ➤ Matrices are an <u>efficient</u> way to store information and a powerful tool for calculations involving linear transformations.
- ➤ Basic understanding of how to manipulate matrices is needed.

Keep in mind ...

Matrices are the result of organizing information related to linear functions.

We are <u>not</u> studying matrices but rather <u>linear</u> <u>functions</u>; those linear functions can be represented as matrices under certain notational conventions.

Example I - .GIF

- ➤ In computer graphics, .gif (Graphics Interchange Format) extension image files are actually just <u>matrices</u>: at the start of the file the size of the matrix is given, after which each number is a matrix entry indicating the color of a particular pixel in the image.
- This matrix then has its rows shuffled a bit: by listing, say, every eighth row, a web browser downloading the image can start displaying an incomplete version of the picture before the download is complete

Example II – Graph Theory

In graph theory, a graph is a collection of <u>vertices</u> and some <u>edges</u> connecting vertices. Graphs occur in many applications, ranging from telephone networks to airline routes.

A matrix can be used to indicate how many edges attach one

Matrix - Definition

MATHEMATICS

a rectangular array of quantities or expressions in rows and columns that is treated as a single entity and manipulated according to particular rules.

 an organizational structure in which two or more lines of command, responsibility, or communication may run through the same individual.

Origin

late Middle English (in the sense 'womb'): from Latin, 'breeding female,' later 'womb,' from mater, matr-'mother.'

Translate matrix to Choose language

Use over time for: matrix

Matrix - Basic Definitions

Scalars → Vectors → Matrices

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$$

$$u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} v & w & u \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & u_1 \\ \vdots & \vdots & \vdots \\ v_n & w_n & u_n \end{bmatrix}$$

The columns of A are vectors in \mathbb{R}^n

Matrix – Basic Definitions

We will denote a matrix of size $N \times M$ as

Matrix – Example

We will denote a matrix of size 3×3 as

Shaddy Abado, Ph.D.

28

Matrix - Basic Definitions

A vectors is a special types of matrix

- \triangleright Will refer to an nx1 matrix as an n-dimensional column vector.
- \triangleright Will refer to an 1xm matrix as an m-dimensional row vector.

$$v_{nx1} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \qquad v_{1xm} = \begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix}$$

Unless otherwise stated vectors are assumed to be column vectors.

Matrix - Basic Definitions

Square Matrix

$$A_{2X3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

 $n \neq m$

n > m

n < m

Or

Shaddy Abado, Ph.D.

Rectangular Matrix

Matrix - Examples

$$A_{?X?} = \begin{bmatrix} 1 & 3 & 6 \\ 5 & -1 & 10 \\ 7 & 6 & 99 \end{bmatrix}$$

 $a_{32} = ?$ Diagonal Elements?

$$\boldsymbol{B}_{?X?} = \begin{bmatrix} 2 & 4 & 2 & 3 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$C_{?X?} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$

Matrix Addition / Subtraction

Addition of matrices can be defined as

$$C_{nXm} = A_{nXm} + B_{nXm}$$

where the elements of C are obtained by adding the corresponding elements of A and B.

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} b_{11} + a_{11} & b_{12} + a_{12} & b_{13} + a_{13} \\ b_{21} + a_{21} & b_{22} + a_{22} & b_{23} + a_{23} \\ b_{31} + a_{31} & b_{32} + a_{32} & b_{33} + a_{33} \end{bmatrix}$$

Matrix Addition (Example)

$$\begin{bmatrix} 1 & 3 & -2 \\ -\frac{1}{3} & 6 & -1 \\ 2 & 2 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = ?$$

$$\begin{bmatrix} 1+3 & 3+3 & -2+3 \\ -\frac{1}{3}+3 & 6+3 & -1+3 \\ 2+3 & 2+3 & 5+3 \end{bmatrix} = \begin{bmatrix} 4 & 6 & 1 \\ 2 & 9 & 2 \end{bmatrix}$$

Matrix subtraction (Example)

Matrix Addition / Subtraction

What about?

$$\begin{bmatrix} 1 & 3 & -2 \\ -\frac{1}{3} & 6 & -1 \\ 2 & 2 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 4 \\ -1 & 0 & 5 \end{bmatrix} = ?$$

Null Matrix

$$\begin{bmatrix} 1 & 3 & -2 \\ -\frac{1}{3} & 6 & -1 \\ 2 & 2 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 3 & -2 \\ -\frac{1}{3} & 6 & -1 \\ 2 & 2 & 5 \end{bmatrix} = ?$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{0}$$

Null Matrix

Matrix – Data Example

Let's assume we have different samples from a dataset with two attributes:

- 1) Number of cars per household and
- 2) Number of cellphones per households

We also have a neighborhood with 3 houses

A household vector:

$$v_1 = \begin{bmatrix} \#Cars \\ \#Cells \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

A neighborhood matrix:

$$A_{2X3} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Matrix Addition - Data Example

"Difference in a neighborhood's content over the course of two years"

Year # 2

Year # 1

Matrix Multiplication

Given matrix A we can multiply it by a:

- **≻**Scalar
- **≻** Vector
- > Matrix

Matrix - Scalar Multiplication

Multiplication of a matrix A by a scalar b can be defined as $bA_{nXm}=\pmb{C}_{nXm}$ where the elements of \pmb{C} are the corresponding elements of A multiplied by b.

Scalar
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} b * a_{11} & b * a_{12} & b * a_{13} \\ b * a_{21} & b * a_{22} & b * a_{23} \\ b * a_{31} & b * a_{32} & b * a_{33} \end{bmatrix}$$

Matrix – Scalar Multiplication (Example)

$$\begin{array}{c|cccc}
3 * \begin{bmatrix} 1 & 3 & -2 \\ -\frac{1}{3} & 6 & -1 \\ 2 & 2 & 5 \end{bmatrix} = ?
\end{array}$$

$$\begin{bmatrix} 3*1 & 3*3 & 3*-2 \\ 3*-\frac{1}{3} & 3*6 & 3*-1 \\ 3*2 & 3*2 & 3*5 \end{bmatrix} = \begin{bmatrix} 3 & 9 & -6 \\ -1 & 18 & -3 \\ 6 & 6 & 15 \end{bmatrix}$$

Matrix – Scalar Multiplication (Data Example)

"Increasing the contain of each household in a neighborhood by three folds"

$$3 * \begin{bmatrix} 3 \ cars & 2 \ cars & 3 \ cars \end{bmatrix}$$
Household 1 Household 2 Household 3

[9 cars 6 cars 9 cars]
6 Cells 6 Cells 3 Cells]
Household 1 Household 2 Household 3

Shaddy Abado, Ph.D.

Properties of Matrices — Addition and Scalar multiplication

$$A+B=B+A$$
 Commutative $A+(B+C)=(A+B)+C$ Associative $A+(B+C)=A$ $A+(B+C)=A$ Distributive

$$(a+b)A = aA + bA$$
$$a(bA) = (ab)A$$

Associative +
Distributive

Now you try...

$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 2 & 3 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix} = ?$$

$$\begin{bmatrix} 1+1 & 1+0 & 0+3 \\ 2+0 & 1+2 & -1+0 \\ 2+3 & 3+1 & 1+4 \end{bmatrix} =$$

$$\begin{bmatrix} 2 & 1 & 3 \\ 2 & 3 & -1 \\ 5 & 4 & 5 \end{bmatrix}$$

Now you try...

$$2 * \begin{bmatrix} 1 & 0 & -1 \\ 1 & 6 & 4 \end{bmatrix} = ?$$

$$\begin{bmatrix} 2 * 1 & 2 * 0 & 2 * -1 \\ 1 & 1 & 2 * 6 & 2 * 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 12 & 8 \end{bmatrix}$$

Now you try...

Matrix addition/subtraction and Scalar Multiplication

Calculate

$$2 * \begin{bmatrix} 1 & 0 & -1 \\ 1 & 3 & 2 \end{bmatrix} + 3 * \begin{bmatrix} -1 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -2 \\ 2 & 6 & 4 \end{bmatrix} + \begin{bmatrix} -3 & 3 & 0 \\ 0 & 6 & 9 \end{bmatrix} = \begin{bmatrix} -1 & 3 & -2 \\ 2 & 12 & 13 \end{bmatrix}$$

Mathematical Notations - Summation

Capital Sigma

$$\sum_{i=m}^n a_i = a_m + a_{m+1} + a_{m+2} + \cdots + a_{n-1} + a_n$$

i - Index of summation

Examples

$$\sum_{i=3}^{6} i^2 = 3^2 + 4^2 + 5^2 + 6^2 = 86.$$

Recall and Example: Dot Product

$$y = \overrightarrow{v} \cdot \overrightarrow{w} = \sum_{i=1}^{N} v_i w_i$$
$$= v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \sum_{i=1}^{2} v_i w_i = v_1 w_1 + v_2 w_2$$

$$u = \begin{bmatrix} 7 \\ 3 \end{bmatrix} \qquad = 1 * 7 + 2 * 3 = 13$$

Shaddy Abado, Ph.D.

Now you try ...

$$y_1 = \sum_{j=1}^{n} a_{1j} v_j = ?$$

$$y_1 = \sum_{j=1}^n a_{1j}v_j = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n$$

Matrix - vector Multiplication

Multiplication of Matrix A and vector \vec{v} can be defined only if they are of the proper sizes.

$$y_{mx} = A_{mxn} \cdot v_{mx}$$

Notice that # of columns of A = # of rows of v

Matrix – Vector Multiplication

$y_{mx1} = A_{mxn} \cdot v_{nx1}$

Notice that # of columns of A = # of rows of v

The general formula for a matrix-vector product is

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}$$

The vector y is a linear combination of the columns of A.

Matrix – Vector Multiplication (Example)

$$A_{2X2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$v_{2X1} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
 "Row Weights"

First, multiply Row 1 of the matrix by Column 1 of the vector.

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 6 \end{bmatrix} = 1 * 5 + 2 * 6 = 17$$

Next, multiply Row 2 of the matrix by Column 1 of the vector.

$$[3 \quad 4] \cdot \begin{bmatrix} 5 \\ 6 \end{bmatrix} = 3 * 5 + 4 * 6 = 39$$

Finally, write the matrix-vector product.

$$A \cdot v = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

Matrix – Vector Multiplication (Example)

xample)
$$A_{2X3} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 4 \end{bmatrix} \quad v_{3X1} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$
 "Weights"

What is the expected dimension of the output vector?

$$A_{2X3} \cdot v_{3X1} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 4 \end{bmatrix}_{2X3} \cdot \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}_{3X1}$$
$$= \begin{bmatrix} 1 * 2 + 2 * (-2) + (-1) * 1 \\ 2 * 2 + 0 * (-2) + 4 * 1 \end{bmatrix}_{2X1}$$

Matrix – Vector Multiplication

Let A be a matrix and v a column vector. If $A \cdot v = \vec{0}$ then vector v is orthogonal to the rows of A.

$$\begin{bmatrix} 2 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}$$

Matrix – Vector Multiplication Text Mining Example

Word – Document Matrix

	Doc 1	Doc 2	Doc 3
Word 1	3	0	0
Word 2	2	0	0
Word 3	0	2	0
Word 4	1	0	1

- \triangleright The documents are represented by a vector in \mathbb{R}^3
- ➤ In reality, we may have thousands of documents and words

Matrix – Vector Multiplication **Text Mining Example**

$$w = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Represents a document dealing primarily with document 1 and secondarily with document 3.

> **Document New Document**

This is a linear combination of the columns of the Word – Document Matrix.

Multiplication of matrices A and B can be defined only if they are of the proper sizes.

$$Y_{mxn} = A_{mx} \cdot B_{mxn}$$

Given matrix A_{mxk} , and matrix B_{kxn} with columns $[b_1, b_2, ... b_n]$, then the product AB is the mxn matrix whose columns are $Ab_1, Ab_2, ... Ab_n$

$$AB = A[b_1, b_2, ... b_n] = [Ab_1, Ab_2, ... Ab_n]$$

Each column in AB is a linear combination of the columns of A using weights from the corresponding columns of B

The product element in row i and column j (i.e., a_{ij}) is the sum of the products of corresponding elements from row i of A and column j of B

Example for multiplying matrix A which contains 2 rows and matrix B which contains 3 columns

$$\begin{bmatrix} Row1 \\ Row2 \end{bmatrix} \begin{bmatrix} Col1 & Col2 & Col3 \end{bmatrix}$$

$$= \begin{bmatrix} Row1 & X & Col1 \\ Row2 & X & Col1 \end{bmatrix} \begin{bmatrix} Row1 & X & Col2 \\ Row2 & X & Col1 \end{bmatrix} \begin{bmatrix} Row2 & X & Col2 \\ Row2 & X & Col3 \end{bmatrix}$$

The product element in row i and column j (i.e., a_{ij}) is the sum of the products of corresponding elements from row i of A and column j of B

(Example)

$$AB = A[b_1, b_2, ... b_n]$$

= $[Ab_1, Ab_2, ... Ab_n]$

$$\boldsymbol{A}_{2X2} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \qquad \boldsymbol{B}_{2X2} = \begin{bmatrix} -1 & 0 \\ 5 & 1 \end{bmatrix}$$

What is the expected dimension?

$$A_{2X2} \cdot B_{2X2}$$

$$= \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 * (-1) + 2 * 5 , & 1 * 0 + 2 * 1 \\ 4 * (-1) + 3 * 5 , & 4 * 0 + 3 * 1 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 2 \\ 11 & 3 \end{bmatrix}$$

Matrix – Matrix Multiplication (Example)

The product element in row i and column j (i.e., a_{ij}) is the sum of the products of corresponding elements from row i of A and column j of B

$$A_{2X2} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \qquad B_{2X2} = \begin{bmatrix} -1 & 0 \\ 5 & 1 \end{bmatrix}$$

$$A_{2X2} \cdot B_{2X2} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 5 & 1 \end{bmatrix} \quad \begin{array}{l} \text{Row } 2 \Rightarrow i = 2 \\ \text{Column } 1 \Rightarrow j = 1 \end{array}$$

$$4*-1+3*5=11$$

Shaddy Abado, Ph.D.

Matrix – Matrix Multiplication (Example)

$$A_{2X3} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{bmatrix} \qquad B_{3X2} = \begin{bmatrix} 2 & 4 \\ 1 - 1 \\ 0 & 0 \end{bmatrix}$$

What is the expected Dimension?

$$A_{2X3} \cdot B_{3X2}$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 * 2 + 2 * 1 + 3 * 0 & 1 * 4 + 2 * (-1) + 3 * 0 \\ 4 * 2 + 5 * 1 + 6 * 0 & 4 * 4 + 5 * (-1) + 6 * 0 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 2 \\ 13 & 11 \end{bmatrix}$$
Shaddy Abado, Ph.D.

Matrix – Matrix Multiplication (Example)

$$A_{2X2} \cdot B_{2X2} = \begin{bmatrix} 9 & 2 \\ 11 & 35 \end{bmatrix}$$
Check

$$A_{2X2} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

$$B_{2X2} = \begin{bmatrix} -1 & 0 \\ 5 & 1 \end{bmatrix}$$

$$\begin{array}{c}
B_{2X2} \cdot A_{2X2} = \begin{bmatrix} -1 & 0 \\ 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \\
= \begin{bmatrix} -1 & -2 \\ 9 & 13 \end{bmatrix}$$
Check

$$B_{MXN} \cdot A_{NXM} \neq A_{NXM} \cdot B_{MXN}$$

Not Commutative

Matrix – Matrix Multiplication (Example)

A vector operating on a vector can yield a scalar or a matrix, depending on the order of operation.

matrix, depending on the order of operation.
$$\begin{bmatrix} [Row1] \\ [Row2] \end{bmatrix} \begin{bmatrix} [Col1 \ Col2 \ Col3] \\ = [Row1 \ X \ Col1 \ Row1 \ X \ Col2 \ Row1 \ X \ Col2 \end{bmatrix} \\ = [Row1 \ X \ Col1 \ Row2 \ X \ Col2 \ Row2 \ X \ Col3] \end{bmatrix}$$

$$A_{3X1} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}; B_{1X3} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \\ 0 \\ 3 \end{bmatrix}$$
Matrix
$$A_{3X1} \cdot B_{1X3} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \\ 0 \\ -2 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$$

$$B_{1X3} \cdot A_{3X1} = \begin{bmatrix} 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ \underline{Shadity Abado, Ph.D.} \end{bmatrix} = 2 * 2 + 1 * 0 + 3 * (-1) = 1$$

Your Turn ...

Calculate $A \cdot v$

$$A_{3X2} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 2 & 2 \end{bmatrix} \qquad v_{2X1} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$A_{2X3} \cdot v_{3X1} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 2 & 2 \end{bmatrix}_{3X2} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}_{2X1}$$

$$= \begin{bmatrix} -1 * -1 + 1 * 1 \\ 1 * -1 - 1 * 1 \\ 2 * -1 + 2 * 1 \end{bmatrix}_{3X1}$$

$$= \begin{bmatrix} 2 \\ -2 \end{bmatrix}_{\text{Shally Qadg Ps} X_1}$$

Your Turn ...

$$A_{3X2} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$B_{2X3} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \end{bmatrix}$$

Calculate $A \cdot B$

$$A_{3X2} \cdot B_{2X3} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}_{3X2} \cdot \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \end{bmatrix}_{2X3}$$

$$= \begin{bmatrix} 1*1+3*-1 & 1*2+3*3 & 1*0+3*1 \\ 2*1+1*-1 & 2*2+1*3 & 2*0+1*1 \\ 1*1+2*-1 & 1*2+2*3 & 1*0+2*1 \end{bmatrix}_{3x3}$$

$$= \begin{bmatrix} -2 & 11 & 3 \\ 1 & 7 & 1 \\ -1 & 8 & 2 \end{bmatrix}$$

Your Turn ...

$$A_{2X3} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \end{bmatrix}$$

$$B_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

Calculate $A \cdot B$

$$A_{2X3} \cdot B_{3X4} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \end{bmatrix}_{2X3} \cdot \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix}_{3X4}$$
$$= \begin{bmatrix} 5 & 5 & -1 & 1 \\ 6 & 2 & -1 & -3 \end{bmatrix}_{2X4}$$

Properties of Matrices – Matrix Multiplication

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
 Associative $A \cdot (B + C) = A \cdot B + A \cdot C$ Left Distributive $(A + B) \cdot C = A \cdot C + B \cdot C$ Right Distributive $A \cdot B \neq B \cdot A$ In general (not Commutative) $a(A \cdot B) = (aA) \cdot B = A \cdot (aB)$

Properties of Matrices – Matrix Multiplication

If AB = AC then it is **not true** that B = C

If
$$AB = \mathbf{0}$$
, we cannot conclude that either $A = \mathbf{0}$ or $B = \mathbf{0}$

$$A_{2X2} \cdot B_{2X2} = \begin{bmatrix} -1 & 4 \\ 3 & -12 \end{bmatrix} \cdot \begin{bmatrix} 4 & 8 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A_{2X2} \cdot C_{2X2} = \begin{bmatrix} -1 & 4 \\ 3 & -12 \end{bmatrix} \cdot \begin{bmatrix} 12 & 16 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Shaddy Abado, Ph.D.

Check

Transpose

The transpose A^T of a matrix A is an operation in which the terms above and below the diagonal are interchanged.

Example I

$$A_{2X3} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{bmatrix} \quad A_{3X2}^T = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 3 & 2 \end{bmatrix}$$

Example II

$$A_{2X2} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \qquad A_{2X2}^T = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

For any matrix A_{NXM} : $A^T \cdot A$ and $A \cdot A^T$ are square matrices of size M and N, respectively.

This will be very helpful in sessions 6 and 8.

Transpose - Examples

$$A = \begin{bmatrix} 3 & 9 & -6 \\ -1 & 18 & -3 \\ 6 & 6 & 15 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 3 / & -1 / & 6 \\ 9 & 18 & 6 \\ -6 & -3 & 15 \end{bmatrix}$$

Transpose - Examples

$$A = \begin{bmatrix} 3 & 9 & -6 \\ -1 & 18 & -3 \\ 6 & 6 & 15 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 3 & -1 & 6 \\ 9 & 18 & 6 \\ -6 & -3 & 15 \end{bmatrix}$$

Transpose - Properties

$$(A^{T})^{T} = A$$

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(A \cdot B)^{T} = B^{T} \cdot A^{T}$$
The order matters

Sum

Product

Inner and Outer products

A vector operating on a vector can yield a scalar or a matrix, depending on the order of operation.

$$v_{3X1} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} Row1 \\ Row2 \end{bmatrix} \begin{bmatrix} Col1 & Col2 & Col3 \end{bmatrix}$$

$$= \begin{bmatrix} Row1 \ X \ Col1 & Row1 \ X \ Col2 & Row1 \ X \ Col3 \end{bmatrix}$$

$$= \begin{bmatrix} Row2 \ X \ Col1 & Row2 \ X \ Col2 & Row2 \ X \ Col3 \end{bmatrix}$$

Inner Product

$$v_{1X3}^T \cdot v_{3X1} = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 2 * 2 + 0 * 0 + 1 * 1 = 5$$

Scalar

Outer Product

$$v_{3X1} \cdot v_{1X3}^T = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Matrix

Diagonal Matrix

A diagonal matrix has nonzero terms only along its main diagonal.

The matrix A_{NXN} is diagonal if $a_{ij} = 0$ if $i \neq j$

The sum and product of diagonal matrices are also diagonal.

Example
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Diagonal Matrix - Examples

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Recall:

The sum and product of diagonal matrices are also diagonal.

Diagonal Matrix - Data Example

"A neighborhood with Three households, each household owns a unique type of items"

$$\begin{bmatrix} 9 \ cars & 0 & 0 \\ 0 & 2 \ cells & 0 \\ 0 & 0 & 4 \ Bikes \end{bmatrix}$$
Household 1 Household 2 Household 3

Identity Matrix

The *identity* matrix I is a square diagonal matrix with 1 on the main diagonal.

Example

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \cdot I = I \cdot A = A$$

Identity Matrix - Data Example

"A neighborhood with Three households, each household owns a single unique item"

$$\begin{bmatrix} 1 \ cars & 0 & 0 \\ 0 & 1 \ cells & 0 \\ 0 & 0 & 1 \ Bikes \end{bmatrix}$$
Household 1 Household 2 Household 3

Trace

The **Trace** of a square matrix A_{nXn} is the sum of its diagonal elements

$$tr A = \sum_{i=1}^{N} a_{ii}$$

Example

Now you try ...

$$A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 5 & 9 \\ 1 & 0 & 2 \end{bmatrix}$$

$$Trace(A) = ?$$

$$Trace(A) = 1 + 5 + 2 = 8$$

Now you try ...

$$A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 3 & 0 & -1 & 7 \\ 4 & -1 & 0 & -2 \end{bmatrix}$$

$$A^T = ?$$

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & -1 \\ 3 & -1 & 0 \\ 5 & 7 & -2 \end{bmatrix}$$

Symmetry, Anti-symmetry and Asymmetry Matrices

- \triangleright A symmetric matrix is one for which ${f A}^{
 m T}={f A}$.
- \triangleright An anti-symmetric matrix is one for which ${f A}^{
 m T} = -{f A}^{
 m T}$
- An asymmetric matrix is neither symmetric nor antisymmetric.

Any matrix A can be written as

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$
Symmetric matrix
Shaddy Abado, Ph.D.

Anti-Symmetric matrix
Shaddy Abado, Ph.D.

Symmetric and Anti-symmetry Matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}} = \mathbf{A}$$
 or
 $a_{ij} = a_{ji}$

$$\begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{bmatrix} A^{T} = -A$$

$$\begin{bmatrix} a_{12} & a_{23} & a_{23} \\ a_{ij} & -a_{ji} \end{bmatrix}$$

Transpose of a Symmetric Matrix (Example) $a_{ij} = a_{ji}$

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 2 & 5 \\ 4 & 5 & -1 \end{bmatrix}$$

$$A^T = ?$$

$$A^{T} = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 2 & 5 \\ 4 & 5 & -1 \end{bmatrix}$$

$$A^T = A$$
Shaddy Abado, Ph.D.

Symmetric Matrix - Examples

Are these matrices symmetric?

$$\begin{bmatrix} 1 & 3 & 4 \\ 3 & 2 & 5 \\ 4 & 5 & -1 \end{bmatrix}$$

? Yes

Recall:

$$a_{ij} = a_{ji}$$

$$\begin{bmatrix} 10 & 1 & 3 \\ 2 & -22 & 3 \\ 2 & 2 & 4 \end{bmatrix}$$
? No

$$\begin{bmatrix} 0 & -1 & 2 \\ -1 & 0 & 4 \\ 2 & 4 & 0 \end{bmatrix}$$
?

Symmetry Matrices - Applications

Symmetric matrices have many applications. For example, if we consider the shortest distance between pairs of cities, we might get a table like the following:

	City A	City B	City C
City A	0	150	120
City B	150	0	300
City C	120	300	0

[0	150	120
150	0	300
L120add	y A 3 a(0,0).d.	0 -

Triangular Matrices

A **lower triangular** matrix is one in which all entries <u>above</u> the main diagonal are zero. Lower triangular matrices are often denoted by L.

$$L = egin{bmatrix} \ell_{1,1} & & & & 0 \ \ell_{2,1} & \ell_{2,2} & & & \ \ell_{3,1} & \ell_{3,2} & \ddots & & \ dots & dots & \ddots & \ddots & \ \ell_{n,1} & \ell_{n,2} & \dots & \ell_{n,n-1} & \ell_{n,n} \end{bmatrix}$$

Shaddy Abado, Ph.D.

The transpose of a **lower triangular** matrix is an **upper triangular** matrix (Check)

Example

 $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 4 & 5 & 0 \end{bmatrix}$

Triangular Matrices

An **upper triangular** matrix is one in which all entries below the main diagonal are zero. Upper triangular matrices are often denoted by U.

$$U = egin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \dots & u_{1,n} \ & u_{2,2} & u_{2,3} & \dots & u_{2,n} \ & \ddots & \ddots & dots \ & \ddots & \ddots & dots \ & 0 & u_{n-1,n} \ & u_{n,n} \end{bmatrix}$$

The transpose of an **upper triangular** matrix is **lower triangular** matrix (Check)

	[1	3	4]
Example	0	2	5
haddy Abado, Ph.D.	Lo	0	-1

Triangular Matrices - Examples

$$\begin{bmatrix} 1 & 4 & 2 \\ 0 & 4 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

Upper triangular

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -8 \end{bmatrix}$$

Lower and upper triangular

$$\begin{bmatrix} -1 & 0 & 0 \\ 2 & -2 & 0 \\ 9 & 9 & -1 \end{bmatrix}$$

Lower triangular

$$\begin{bmatrix} 1 & 3 & 1 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Neither (Not a Square Matrix)

Elementary Matrices

Differs from the identity matrix by one single elementary row operation

- ➤ Row switching (Permutation Matrix)
- ➤ Row addition (Elimination Matrix)
- > Row multiplying by constant

This will be very useful in Sessions 3 and 4

Permutation Matrix

A **permutation matrix** P is a square matrix composed of zeroes and a single one in each column. None of the ones occur in the same row.

- $\triangleright P_{ij}$ is the identity matrix with rows i and j reversed
- > It affects a row exchange when it operates on a general matrix A.
- \triangleright There are n! permutation matrices of size n
- $\triangleright PP^T = I$ (Check)
- $||P||_2 = 1$; $||P||_{\infty} = 1$
- $\triangleright Det(P) = 1$

Permutation matrices of order two

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Permutation matrices of order three

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ Abada & Pb \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Permutation Matrix (Example)

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

$$P \cdot A = ?$$

Permutation Matrix (Example)

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

Permutation matrix which affects the exchange of the **first** and **third** rows

$$P \cdot A =$$

$$egin{bmatrix} 0 & 0 & 1 & | & 1 & 3 & -1 & 1 & | & 1 & 2 & -2 & -2 | \\ 0 & 1 & 0 & | & 2 & 1 & 0 & 0 & | & 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & | & 1 & 2 & -2 & -2 & | & 1 & 3 & -1 & 1 \end{bmatrix}$$

Elimination Matrix

The **elimination matrix** E_{ij} multiplies the j^{th} row by l_{ij} and subtracts it from the i^{th} row.

- \blacktriangleright To define an elimination matrix start with the identity matrix I and change one of its zeros to multiplier -l.
- $> E^{-1}E = I$ (Check)

Examples
$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -l & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad E_{13} = \begin{bmatrix} 1 & 0 & -l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 a_{21}

Multiplies the **1**st row by l and subtracts it from the **2**nd howbadd, Ph.D.

Multiplies the 3rd row by l and subtracts it from the 1st row l

Elimination Matrix (Example)

$$\boldsymbol{E_{21}} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

$$E_{21} \cdot A = ?$$

Elimination Matrix (Example)

$$\boldsymbol{E_{21}} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

The elimination matrix E_{ij} multiplies the j^{th} row by l_{ij} and subtract it from the i^{th} row

The elimination matrix E_{21} multiplies the $\mathbf{1}^{\underline{st}}$ row by $\underline{\mathbf{2}}$ and subtract from the $\mathbf{2}^{\underline{nd}}$ row

Unchanged

Elimination Matrix (Example)

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 0 & 5 & 2 & -2 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

The elimination matrix E_{21} multiplies the $\mathbf{1}^{st}$ row by $\mathbf{2}$ and subtract from the $\mathbf{2}^{nd}$ row

104

Multiplying Row by constant

- Matrix D multiplies all elements on the i^{th} row by non-zero scalar m
- $> \det(D) = m$
- |P||D|| = m

Examples

Multiplies the 2nd row by m. Shaddy Abado, Ph.D.

Multiplies the 3rd row by m

Multiplying Row by constant (Example)

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 3 & 5 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

$$D \cdot A = ?$$

Multiplying Row by constant (Example)

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{3X4} = \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 3 & 5 \\ 1 & 2 & -2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & -1 & 1 \\ 2 & 1 & 3 & 5 \\ 1 & 2 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 4 & 3 & -1 & 1 \\ 4 & 2 & 6 & 10 \\ 2 & -2 & -2 \end{bmatrix}$$

Orthogonal and Orthonormal Matrices

A matrix is orthogonal if all its columns are orthogonal to each other

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 8 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 8 \end{bmatrix}$$
 Check

If the columns are also normalized (Size =1) then the matrix is called <u>orthonormal</u>

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
Shaddy Abado, Ph.D.

Inverse Matrix

➤ What is the inverse of 3?

➤ What should the inverse of matrix A do?

$$I = A \cdot (Inverse\ Matrix)$$

Definition:

Matrix A has an inverse A^{-1} if $I = A \cdot A^{-1} = A^{-1} \cdot A$

Inverse Matrix - Properties

$$(A^{-1})^{-1} = A$$

$$(A^{-1})^{T} = (A^{T})^{-1}$$

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
The order matters

More in Session 4

Inverse Matrix (Example)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$\begin{bmatrix} 2 & 2 \\ -2 & 2 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$A \qquad A^{-1}$$

Shaddy Abado, Ph.D.

111

*

Invertible and Singular Matrices

- \rightarrow If A^{-1} exists \rightarrow A is Invertible
- \rightarrow If A^{-1} doesn't exist \rightarrow A is Singular

- ightharpoonup Independent column vectors ightharpoonup A is Invertible
- \triangleright **Dependent** column vectors \rightarrow A is **Singular**

Mathematical Notations - Product

Capital Pi

i - Index of Product

Examples

$$\prod_{i=1}^{6} i = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$$

Matrix – Vector Multiplication

What is the expected dimension of the output vector?

$$y_m = A_{mXn} \cdot v_n$$

$$y_i = \sum_{j=1}^n a_{ij} v_j$$
; $i = 1, ... m$

Example
$$y_1 = \sum_{j=1}^{n} a_{1j}v_j = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n$$

$$= 1^{st} row \cdot v$$

The vector y is a linear combination of the columns of A.

Matrix – Matrix Multiplication

Multiplication of matrices A and B can be defined only if they are of the proper sizes.

$$y_{ij} = \sum_{s=1}^{k} a_{is}b_{sj}$$

$$i = 1, \dots m; j = 1, \dots n$$

The product element in row i and column j (i.e., y_{ij}) is the sum of the products of corresponding elements from row i of A and column j of B

Matrix – Matrix Multiplication

$$y_{ij} = \sum_{s=1}^{k} a_{is}b_{sj}$$

 $i = 1, ... m; j = 1, ... n$

Example (Assume k = 3)

$$y_{11} = \sum_{s=1}^{k=3} a_{1s} b_{s1} = a_{11} b_{11} + a_{12} b_{21} + a_{13} b_{31}$$

$$y_{12} = \sum_{s=1}^{k=3} a_{1s} b_{s2} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32}$$

The product element in row i and column j (i.e., y_{ij}) is the sum of the products of corresponding elements from row i of A and column j of B

*

Symmetry, Anti-symmetry (Example)

Any matrix A can be written as
$$A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$

Symmetric matrix Anti-Symmetric matrix

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 1 \\ 1 & 2 & -3 \end{bmatrix} \qquad A^T = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & 2 \\ 4 & 1 & -3 \end{bmatrix}$$

$$\frac{1}{2}(A + A^{T}) = \begin{vmatrix} 1 & 3/2 & 5/2 \\ 3/2 & 2 & 3/2 \\ 5/2 & 3/2 & -3 \end{vmatrix} \checkmark \text{Symmetric matrix}$$

$$\frac{1}{2}(A - A^{T}) = \begin{bmatrix} 0 & 3/2 & 3/2 \\ -3/2 & 0 & -1/2 \\ -3/2 & 1/2 & 0 \end{bmatrix}$$
 Anti-Symmetric matrix

$$A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$
 Shaddy Abado, Ph.D

Matrix Norm

Similarly to vectors, The *norm* | |**A**|| of a matrix **A** is a real number that satisfies the following properties:

- $> ||A|| \geq 0$,
- > ||A|| = 0 if and only if A = 0,
- $|aA| = |a| ||v||, a \in R1$, and
- $|A| + |B| \le |A| + |B|$, (triangle or Minkowski inequality).

Matrix Norm (Examples)

$$\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|,$$

Which is the maximum absolute <u>column</u> sum of the matrix

$$\|A\|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^n|a_{ij}|.$$

which is the maximum absolute <u>row</u> sum of the matrix

$$A = egin{bmatrix} -3 & 5 & 7 \ 2 & 6 & 4 \ 0 & 2 & 8 \end{bmatrix}$$

$$||A||_1 = \max(|-3|+2+0,5+6+2,7+4+8) = \max(5,13,19) = 19$$

Vector and Matrix Norm - Properties

$$||Av|| \le ||A|| ||v||$$

 $||AB|| \le ||A|| ||B||$