## 530 陈斯杰 电子信息工程 第8次作业

1.

使用Dijkstra算法得到:

- 1.  $a \to v_1 = 2$
- 2.  $a \to v_2 = 7$
- 3.  $a \to v_3 = 1$
- 4.  $a \to v_4 = 3$
- 5.  $a \to v_5 = 6$
- 6.  $a \to v_6 = 10$
- 7.  $a \to b = 12$

2.

Kruskal即贪心(按边权升序排序)+并查(依次判断边的两端点是否在同一连通分量内). 代码方面网上模板过多,在此不加赘述.

手动运算结果如下:

 $times add_edge cost$ 

- 1 (B,D) 5
- 2 (D,F) 6
- $3 \qquad (B,C) \qquad 7$
- 4 (A,B) 10
- 5 (E,F) 10

最小生成树的权为38.

3.

中国邮路可以理解为连通途中所有顶点的一个闭连通有向图,图中的边我们可以理解为双向的弧,以 $v_1$ 为起点的中国邮路为:  $v_1 \longrightarrow v_2 \longrightarrow v_7 \longrightarrow v_3 \longrightarrow v_4 \longrightarrow v_5 \longrightarrow v_6 \longrightarrow v_1$ 

4.

任取初始匹配 $M_1 = (x_1, y_2), (x_2, y_3), (x_3, y_5), (x_5, y_4)$ 

过未饱和点 $x_4$ 可得一条 $M_1$ 增广路 $x_4y_3x_2y_2x_1y_1$ 改进后得到

 $M_2 = (x_1, y_1), (x_2, y_2), (x_3, y_5), (x_4, y_3), (x_5, y_4)$ 此时X中均为饱和点, $M_2$ 即为一个最大匹配

5.

画图如下:

设数学为m, 物理为p, 电工为e, 计算机为c



求完美匹配得下图:

设数学为m, 物理为p, 电工为e, 计算机为c



6.

增广弧:得到的最大流为11

1. 
$$s \to a \to t$$

2. 
$$s \to b \to c \to t$$

3. 
$$s \to b \to a \to t$$

7.

将两岸状态抽象为点,将状态的转移抽象为边,模型即可转化为求最短路问题。 将状态抽象为点(下表标1的表示单位在左岸,表0的表示单位在右岸):

| 状态点<br>名字 | 人 | 狼 | 羊 | 菜 |
|-----------|---|---|---|---|
| A         | 1 | 1 | 1 | 1 |
| В         | 0 | 1 | 0 | 1 |
| С         | 1 | 1 | 0 | 1 |
| D         | 0 | 1 | 0 | 0 |
| E         | 1 | 1 | 1 | 0 |
| F         | 0 | 0 | 1 | 0 |
| G         | 1 | 0 | 1 | 0 |
| Н         | 1 | 0 | 1 | 1 |
| I         | 0 | 0 | 0 | 1 |
| J         | 0 | 0 | 0 | 0 |

### 将状态的转移抽象为边:



代码方面网上模板过多,在此不加赘述.

答案为ABCIHFGJ或ABCDEFGJ. 即(羊空菜羊狼空羊)或(羊空狼羊菜空羊).

8.

总有3人相互认识与总有3人相互不认识是等价的,我们考虑前一种。

我们用A、B、C、D、E、F来表示这六个人,若两人相互认识,我们用实线将两个顶点连接起来,若两人不认识,则用虚线。对于顶点A,与其相连的边有(A,B),(A,C),(A,D),(A,E),(A,F).五条边中,至少有三条为实线或至少三条虚线,不妨设为三条实线,不妨设为(A,B),(A,C),(A,D)。如图:



我们再考虑BCD三个顶点,若三点之间的连线均为虚线,则三条虚线构成三角形,即BCD三人互相不认识,矛盾!所以,BC、BD、CD三条边中至少有一条实线,不妨设为BC,如图:



所以ABC三人互相认识,同理,我们可以证明至少三人互相不认识。 所以,六人集会上,总有三人互相认识或者三人互相不认识。 9.

由避圈法得,下图为最短路径,最短长度为790。



10.

以城镇各地区为点、两两连接为边画图,地区之间的距离设为对应边的权重,求最小支撑

# 树,该树的权重即为总的最小车道长度。

### 11.

## 最小生成树如下图:



12. 手动运算结果如下:

| times | $add\_edge$ | $\cos t$ |
|-------|-------------|----------|
| 1     | (10,12)     | 61       |
| 2     | (3,6)       | 63       |
| 3     | (6,9)       | 67       |
| 4     | (9,11)      | 73       |
| 5     | (4,6)       | 76       |
| 6     | (12,14)     | 82       |
| 7     | (9,10)      | 84       |
| 8     | (5,8)       | 86       |
| 9     | (10,13)     | 88       |
| 10    | (7,10)      | 92       |
| 11    | (8,9)       | 95       |
| 12    | (1,4)       | 107      |
| 13    | (1,2)       | 112      |



最小生成树的权为1086.

13.

该问题为求该带权无向图的最小生成树,以减小架设管道的距离。 运用Kruskal算法,依次加入边(5,6),(4,7),(10,11),(3,5),(1,2),

(5,9), (1,4), (5,8), (10,14), (9,12), (9,10), (12,13).

如下图:



14.

设活动路径长度为从第i个活动开始到第j个活动开始所需时间。路径: 1-3-6-8: 17, 1-3-7:12, 1-4-8:7, 2-5-8:16, 2-9:7 关键路径: 1-3-6-8, 2-9

15.

该网络图为:



识别所有路径:  $\begin{cases} L_1: 1 \to 3 \to 6 \to 7 & \text{长度为17} \\ \\ L_2: 2 \to 4 \to 6 \to 7 & \text{长度为19 } \\ \\ L_3: 2 \to 5 \to 7 & \text{长度为14} \end{cases}$ 

16.

关键路径节点为: 开始  $\rightarrow$  2  $\rightarrow$  4  $\rightarrow$  6  $\rightarrow$  7

关键路径长度为: 20个单位

| from | to | first | last | $\Delta t$ |
|------|----|-------|------|------------|
| 0    | 2  | 0     | 0    | 0          |
| 0    | 3  | 7     | 9    | 2          |
| 2    | 5  | 10    | 14   | 4          |
| 2    | 4  | 10    | 10   | 0          |
| 3    | 6  | 13    | 15   | 2          |
| 4    | 6  | 15    | 15   | 0          |
| 5    | 7  | 14    | 18   | 4          |
| 6    | 7  | 18    | 18   | 0          |

17.

使用最短路模型.



黑色数字为最早开始时间,红色数字为最晚开始时间,红色线路为关键路径,总工期38个月。

18.

### 列表解决:

## (1)活动最早开始时间:

| 最早开始时间 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 栈             |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|
| 初始状态   | $\infty$ | {1,2}         |
| 一{2}   | 0        | 0        | $\infty$ | $\infty$ | 7        | 7        | $\infty$ | $\infty$ | $\{1, 5, 6\}$ |
| 二{6}   | 0        | 0        | $\infty$ | $\infty$ | 7        | 7        | $\infty$ | 19       | {1,5}         |
| 三{5}   | 0        | 0        | $\infty$ | $\infty$ | 7        | 7        | 13       | 19       | {1}           |
| 四{1}   | 0        | 0        | 10       | 10       | 7        | 7        | 13       | 19       | {3,4}         |
| 五{4}   | 0        | 0        | 10       | 10       | 7        | 7        | 14       | 19       | {3,7}         |
| 六{7}   | 0        | 0        | 10       | 10       | 7        | 7        | 14       | 21       | {3}           |
| 七{3}   | 0        | 0        | 10       | 10       | 7        | 7        | 14       | 25       | {}            |

## (2)最晚开始时间:

| 最晚开始时间 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  |
|--------|---|---|----|----|----|----|----|----|
| *      | 0 | 5 | 10 | 14 | 12 | 13 | 18 | 25 |

# (3)松弛:

| 松弛 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|----|---|---|---|---|---|---|---|---|
| *  | 0 | 5 | 0 | 4 | 5 | 6 | 4 | 0 |

(4)关键路径:  $1 \longrightarrow 3 \longrightarrow 8$ 

(5)项目工期: 34周。

19.



如上图所示, $V_i$ 表示第i年初做出的决策, $V_6$ 表示第五年底。

其中 $V_i \to V_j$ 的赋权表示将第i年初购买设备一直使用到第j年初所需要的费用。即转化为由 $V_1 \to V_6$ 最短路径问题。

由Dijkstra算法可得,最短路径为 $V_1-V_4-V_6$ 或 $V_1-V_3-V_6$ ,最短路径为53。 20.

### 画出图为:



#### 依题意简化图得:



#### 解得:



即排座位的方式为: a,b,d,f,g,e,c依次围坐一圈 21.

【思路】将26个字母作为节点,每个单词作为一条有向边,弧头为单词首字母,弧尾为单词尾字母。一组单词构成节点数有限的有向图,判断单词能否完成接龙即判断有向图是否存在欧拉回路或者欧拉路。

【例1】  $teeth \rightarrow happy \rightarrow yet \rightarrow teach$ 



【例2】old - ok - king - deep



#### 【解】

- 例1满足除两个节点外(一个入度比出度多1,一个入度比出度少1),每个节点入度等于出度,存在欧拉路,可以完成接龙
- 例2没有回路,不存在欧拉路,因此不能完成接龙

22.

题目要求修建管道系统,使得任意两个存储站之间能够连接。修建成本显然需要重点考虑,即成本要最低,因此选择使用最小生成树模型.



如图建造,花费资金830.

23.

运用图论知识,求算出ABC三地到8个菜市场的最短距离,如下表:

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|---|----|----|----|----|----|----|----|----|
| A | 4  | 8  | 8  | 16 | 11 | 6  | 24 | 20 |
| В | 14 | 7  | 7  | 16 | 12 | 16 | 23 | 17 |
| С | 20 | 19 | 11 | 14 | 6  | 15 | 5  | 10 |

再对各集散点运往各菜市场的供应量进行假设,通过线性规划求解。 24.



如上图分析可知,每日最多可增加9万吨供水量。