

**Tutorial 8: Data Privacy** 



- What is CIA Triad of information security?
- What is data privacy according to The General Data Protection Regulation (GDPR)?



CONFIDENTIALITY

INFORMATION

**AVAILABILITY** 

INTEGRITY

# + Q1 CIA Triad of information security

- Confidentiality: Ensures that data or an information system is accessed by only an authorized person.
- Integrity: Integrity assures that the data or information system can be trusted. Ensures that it is edited by only authorized persons and remains in its original state when at rest.

Availability: Data and information systems are available when required.



# + Q1 Data Privacy

- Issues related to appropriate use of information
- Goes beyond security
  - Not only your data, but also about you as a person
  - Personal
    - Name, identity card number, passport number, social security number, birthday, diagnostic health information, GPS position, IP address, behavioral profile, ethnic origin, religious beliefs, location derived from telecommunication systems...
- How your data could be treated and who could access to it
  - Privacy policy (like when installing an app)
    - How your data is going to be collected, saved, or transferred, and even if it will be transferred to third parties
- From an end user perspective
  - Preventing storage of personal information
  - Ensuring appropriate use of personal information
- Data Publishing
  - K- Anonymity, L-Diversity, T-closeness, Differential Privacy



#### + Q2 Quasi-identifiers

- What is a quasi-identifier?
  - A piece of information that alone is not an identifier, but when combined with other quasi-identifiers it can create a unique identifier.
    - Gender
    - Birth date
    - Street Name
- Can a dataset have no quasi-identifier, or multiple quasi-identifiers?
  - Yes, in fact, the issue that arises is datasets having too many quasi-identifiers that make it very easy to determine the entity that a record belongs to



#### + Q2 Quasi-identifiers

- What is the role a quasi-identifier plays in the k-anonymity approach?
  - k-anonymity aims to conceal these quasi-identifiers in groups to prevent statistical attacks
  - If we hide the quasi-identifier of Age, it will no longer be clear what Bob suffers (Bob is 53 years old)

| Age | Medial Issue | Ag  | е    | Medial Issue |
|-----|--------------|-----|------|--------------|
| 32  | Broken arm   | [30 | ,60] | Broken arm   |
| 48  | Headaches    | [30 | ,60] | Headaches    |
| 53  | Broken toe   | [30 | ,60] | Broken toe   |

■ By hiding the age in a group of size k (in this example k=3), no longer can we tell which row refers to Bob (more detailed examples coming)



#### + Q3 Data Publishing

- Considering the statistical attack example in Lecture Notes
- How can you protect data privacy (i.e., not revealing individual's salary) using k-anonymity, l-diversity and differential privacy?
- Please also discuss their potential problems



# + An Example of Statistical Attack

- Privacy rules
  - Cannot query about individual's salary
- Attack queries:

select count(\*)
from staff
where title = "Professor"

select sum(salary)
from staff
where title = "Professor"



#### + Q3

■ Easiest approach

select count(\*)

from staff

where title = "Professor" and Name = "Andy"

■ If the result is 1

Select sum(salary)

**from** staff

where title = "Professor" and Name = "Andy"

| ID | Name   | Title     | Age | Salary |
|----|--------|-----------|-----|--------|
| 1  | Andy   | Professor | 43  | 18.4K  |
| 2  | Bob    | Professor | 35  | 16.3K  |
| 3  | Claire | Professor | 47  | 18.4K  |
| 4  | Doug   | Professor | 34  | 16.3K  |
| 5  | Emma   | Lecturer  | 33  | 13.5K  |
| 6  | Fabio  | Lecturer  | 31  | 11.7K  |
| 7  | George | Lecturer  | 30  | 11.6K  |



#### + Q3

#### ■ Remove ID and Name

select count(\*)

**from** staff

where title = "Professor" and Age = 43

■ If the result is 1

**Select** sum(salary)

from staff

**where** title = "Professor" and Age = 43

| ID | Name   | Title     | Age | Salary |
|----|--------|-----------|-----|--------|
| 1  | Andy   | Professor | 43  | 18.4K  |
| 2  | Bob    | Professor | 35  | 16.3K  |
| 3  | Claire | Professor | 47  | 18.4K  |
| 4  | Doug   | Professor | 34  | 16.3K  |
| 5  | Emma   | Lecturer  | 33  | 13.5K  |
| 6  | Fabio  | Lecturer  | 31  | 11.7K  |
| 7  | George | Lecturer  | 30  | 11.6K  |



# + Q3 K-Anonymity

- Each combination of quasi-identifiers (QI) is hidden in a group of size at least *k* 
  - Title and Age
  - Requires that each (Title, Age) combination can be matched to at least *k* salaries

Select sum(\*)

from staff

where title = "Professor" and Age = 43

select count(salary)

from staff

where title = "Professor" and Age = 43

|        | ID | Name   | Title     | Age | Salary |
|--------|----|--------|-----------|-----|--------|
|        | 1  | Andy   | Professor | 43  | 18.4K  |
|        | 2  | Bob    | Professor | 35  | 16.3K  |
|        | 3  | Claire | Professor | 47  | 18.4K  |
|        | 4  | Doug   | Professor | 34  | 16.3K  |
|        | 5  | Emma   | Lecturer  | 33  | 13.5K  |
| )<br>( | 6  | Fabio  | Lecturer  | 31  | 11.7K  |
| т      | 7  | George | Lecturer  | 30  | 11.6K  |



| Title     | Age     | Salary |
|-----------|---------|--------|
| Professor | [40,50] | 18.4K  |
| Professor | [30,40] | 16.3K  |
| Professor | [40,50] | 18.4K  |
| Professor | [30,40] | 16.3K  |
| Lecturer  | [30,40] | 13.5K  |
| Lecturer  | [30,40] | 11.7K  |
| Lecturer  | [30,40] | 11.6K  |

# + Q3 K-Anonymity

select count(\*)

from staff

where title = "Professor" and Age IN [40,50]

**Select** max(salary)

from staff

where title = "Professor" and Age IN [40,50]

**Select** sum(salary)

from staff

where title = "Professor" and Age IN [40,50]

Select min(salary)

from staff

where title = "Professor" and Age IN [40,50]

|               | Title     | Age     | Salary |
|---------------|-----------|---------|--------|
| 2-Anonymity   | Professor | [40,50] | 18.4K  |
| 2-Anonymity   | Professor | [40,50] | 18.4K  |
| ٠, ٢          | Professor | [30,40] | 16.3K  |
| 2-Anonymity   | Professor | [30,40] | 16.3K  |
| 1             | Lecturer  | [30,40] | 13.5K  |
| 3-Anonymity - | Lecturer  | [30,40] | 11.7K  |
| L             | Lecturer  | [30,40] | 11.6K  |



# + Q3 K-Anonymity

select count(\*)

from staff

where title = "Professor" and Age IN [40,50]

**Select** max(salary)

from staff

where title = "Professor" and Age IN [40,50]

**Select** sum(salary)

from staff

where title = "Professor" and Age IN [40,50]

Select min(salary)

from staff

where title = "Professor" and Age IN [40,50]

#### Min = Max = Sum / 2!

- Hiding in a group of k is not sufficient
- The group should have a diverse set of sensitive values

|               | Title     | Age     | Salary |
|---------------|-----------|---------|--------|
| 2-Anonymity   | Professor | [40,50] | 18.4K  |
| 2-Anonymity   | Professor | [40,50] | 18.4K  |
|               | Professor | [30,40] | 16.3K  |
| 2-Anonymity   | Professor | [30,40] | 16.3K  |
| ۲             | Lecturer  | [30,40] | 13.5K  |
| 3-Anonymity - | Lecturer  | [30,40] | 11.7K  |
| L             | Lecturer  | [30,40] | 11.6K  |



#### + Q3 L-Diversity

select count(\*)

from staff

where title = "Lecturer" and Age IN [30,40]

**Select** sum(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

**Select** max(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

**Select** min(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

**Select** med(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

4-Anonymity

2-Diversity

| Title     | Age     | Salary |
|-----------|---------|--------|
| Professor | [30,50] | 18.4K  |
| Professor | [30,50] | 18.4K  |
| Professor | [30,50] | 16.3K  |
| Professor | [30,50] | 16.3K  |
| Lecturer  | [30,40] | 13.5K  |
| Lecturer  | [30,40] | 11.7K  |
| Lecturer  | [30,40] | 11.6K  |



3-Anonymity 3-Diversity

#### + Q3 L-Diversity

select count(\*)

from staff

where title = "Lecturer" and Age IN [30,40]

**Select** max(salary)

**from** staff

where title = "Lecturer" and Age IN [30,40]

**Select** med(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

4-Anonymity

2-Diversity

But if the attacker knows George's salary is low...

3-Anonymity

3-Diversity

| Title     | Age     | Salary |
|-----------|---------|--------|
| Professor | [30,50] | 18.4K  |
| Professor | [30,50] | 18.4K  |
| Professor | [30,50] | 16.3K  |
| Professor | [30,50] | 16.3K  |
| Lecturer  | [30,40] | 13.5K  |
| Lecturer  | [30,40] | 11.7K  |
| Lecturer  | [30,40] | 11.6K  |



Select sum(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

**Select** min(salary)

from staff

where title = "Lecturer" and Age IN [30,40]

#### + Q3 L-Diversity

- What if there are more attributes?
- What if the attacker has more background knowledge?
- What if it is harder to generalize data?
  - Hard to win this war...

|             | Title     | Age     | Salary |
|-------------|-----------|---------|--------|
| 4-Anonymity | Professor | [30,50] | 18.4K  |
| 4-Anonymity | Professor | [30,50] | 18.4K  |
| 2-Diversity | Professor | [30,50] | 16.3K  |
| l           | Professor | [30,50] | 16.3K  |
| 2           | Lecturer  | [30,40] | 13.5K  |
| 3-Anonymity | Lecturer  | [30,40] | 11.7K  |
| 3-Diversity | Lecturer  | [30,40] | 11.6K  |
|             |           |         |        |



#### + Q5 Differential Privacy

Illustration of ε-differential privacy



where D and D' are neighboring databases that differ by at most one tuple

$$\exp(-\varepsilon) \le \frac{\Pr[A(D) = 0]}{\Pr[A(D') = 0]} \le \exp(\varepsilon)$$



#### + Q3 Differential Privacy





The noise only depends on  $\Delta f$  and  $\varepsilon$  It has nothing to do with database!

# + Q3 Differential Privacy

- Add random noise using Laplace Distribution
- Count
  - Sensitivity  $\Delta f = 1$ ,
  - Query result: 3 + η
    - $\eta$  is drawn from Lap $(1/\varepsilon)$
    - Sensitivity of Count is  $\Delta f = 1$
    - Mean = 0
    - Variance =  $2/\epsilon^2$

variance:  $2\lambda^2$ 

#### Sum

- Sensitivity  $\Delta f = \text{Max}(\text{Salary}) = 13.5$
- Query result: sum+η
- $\eta$  is drawn from Lap(13.5/ $\varepsilon$ )
  - Mean = 0
  - Variance =  $2 \times 13.5^2 / \varepsilon^2$



select count(\*)
from staff
where title = "Lecturer" and Age IN [30,40]

| Title     | Age     | Salary |
|-----------|---------|--------|
| Professor | [30,50] | 18.4K  |
| Professor | [30,50] | 18.4K  |
| Professor | [30,50] | 16.3K  |
| Professor | [30,50] | 16.3K  |
| Lecturer  | [30,40] | 13.5k  |
| Lecturer  | [30,40] | 11.7K  |
| Lecturer  | [30,40] | 11.6K  |

# + Q3 Differential Privacy

- Still open problems out there...
  - Might be too strong
    - It requires that changing one tuple should not bring much change to the published result
  - How to choose an appropriate  $\varepsilon$  ?
  - How to quantify the cost of privacy and the gain of utility in releasing data?

