COMP 472 Artificial Intelligence (Winter 2024)

Worksheet #3: Decision Trees & k-means Clustering

Decision Tree. Given the following training data:

	Features (X)				Output f(X)
Student	'A' last year?	Black hair?	Works hard?	Drinks?	'A' this year?
X1: Richard	Yes	Yes	No	Yes	No
X2: Alan	Yes	Yes	Yes	No	Yes
X3: Alison	No	No	Yes	No	No
X4: Jeff	No	Yes	No	Yes	No
X5: Gail	Yes	No	Yes	Yes	Yes
X6: Simon	No	Yes	Yes	Yes	No

Create a decision tree that decides if a student will get an 'A' this year, based on an input feature vector X. (Note: check that your tree would return the correct answer for all of the training data rows above.)

Your Decision Tree

Information Content. The information content (measured in bits) of an event x with P(x) > 0 is defined as:

$$-P(x) \cdot \log_2(P(x))$$

An impossible event (P(x) = 0) is defined as having an information content of 0. What's the information content of a certain event (P(x) = 1)?

Entropy. Using the definition of *Entropy* for a discrete random variable X with possible outcomes x_1, x_2, \ldots, x_n :

$$H(X) = -\sum_{i=1}^{n} p(x_i) \cdot \log_2 p(x_i)$$

compute the entropy for the outcome of the color in the game of *Roulette*, where you have the numbers 1–36 (half red, half black) and the 0 with the color green:

$$H(X) =$$

Note: make sure you use $\log_2(x)$; if you have a calculator with \log_{10} only, you can compute it using the formula $\log_2(x) = \log_{10}(x)/\log_{10}(2)$.

Information Gain. Compute the *Information Gain* (IG) for the following training data S when splitting using the "Size" attribute:

Size	Color	Shape	Output
Big	Red	Circle	+
Small	Red	Circle	+
Small	Red	Square	-
Big	Blue	Circle	-
		>	

$$H(S) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$$

$$gain(S, A)$$

$$= H(S) - H(S|A)$$

$$= H(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} \cdot H(S_v)$$

H(S|Size) =

$$gain(Size) = H(S) - H(S|Size) =$$

F-Measure. Compute the *F-Measure*, which combines *precision* and *recall* into a single number, using $\beta = 1$ (called F_1 -measure, P and R have an equal weight):

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

For the systems s_2, s_3 from the previous lecture's worksheet:

- 1. $s_2: P = 100\%, R = 60\% \Rightarrow F_1 =$ ______
- 2. $s_3: P = 71\%, R = 100\% \Rightarrow F_1 =$ ______

k-Means Clustering. Here is a dataset with two attributes, to be grouped into two clusters. Compute the distance $d(\vec{p}, \vec{q}) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$ of each data point to the two initial centroids and assign each point to its closest cluster:

	Centroid		
	a1	a2	
Cluster 1	1.0	1.0	
Cluster 2	5.0	7.0	

	a1	a2	Distance to C1	Distance to C2	Cluster
Data1	1.5	2.0			
Data2	3.0	4.0			
Data3	4.5	5.0			
Data4	3.5	4.5			