

Final Project Submission

Please fill out:

- Student name: Miguel Barriola Arranz
- Student pace: self paced
- Scheduled project review date/time:
- Instructor name:
- Blog post URL: https://medium.com/@mbarriolaarranz

1. Overview

The project entails performing exploratory data analysis (EDA) on current box office trends to guide the newly established movie studio of your company in creating profitable films. We will collect and analyze data on film genres, budgets, revenues, and ratings to uncover what types of films resonate with audiences and yield high returns. The analysis will result in actionable insights regarding film characteristics such as genre, production budget, and release timing, providing a strategic blueprint for the studio's success in the competitive landscape of film production. The final deliverable will be a concise report with recommendations for the types of films to produce, supported by data-driven evidence.

2. Business Understanding

Our business goal is to establish a data-driven foundation for our new film studio's production strategy by answering three critical questions:

- 1. Which movie genre yields the highest ROI?
- 2. What is the relationship between a movie's run-time and its ROI and production costs?
- 3. How does a director's involvement correlate with a movie's ROI and production costs?

By investigating these areas, we aim to identify profitable genres, optimal film lengths, and directors whose past work indicates a likelihood of future success. These insights will inform our decision-making process in greenlighting new film projects, ensuring that our investments are aligned with market trends and have a higher probability of financial success.

3. Data Understanding

3.1 Data Description

Drawing from a rich dataset aggregated from:

- Box Office Mojo
- IMDB
- Rotten Tomatoes
- TheMovieDB
- The Numbers

Our analysis targets three pivotal questions to carve out a strategic niche for our new movie studio. By exploring which movie genres yield the highest ROI, the relationship between a film's runtime and its financial metrics, and the impact of directorial involvement on a movie's success, we aim to uncover actionable insights. This investigation is set to guide our studio in selecting film projects that align with proven market successes, optimizing for genres, runtimes, and directorial choices that historical data suggests are most lucrative. The outcome of this focused analysis will inform our decision-making process, ensuring that our investments capitalize on trends that offer the greatest potential for financial return. This streamlined approach positions our studio to effectively compete in the dynamic film industry landscape, leveraging datadriven strategies to achieve commercial and critical success.

3.2 Import Necessary Libraries

```
In [2]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import sqlite3
In [3]:
    pd.set_option('display.max_columns', 500)
```

3.3 Define global variables

```
In [4]:
INPUT_PATH_bom_movie_gross = "C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScier
INPUT_PATH_tmdb_movies = "C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScier
INPUT_PATH_tn_movie_budgets = "C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScier
INPUT_PATH_rt_movie_info = "C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScience
INPUT_PATH_rt_reviews = "C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScience_Fl
```

3.4 Functions

```
In [5]:
#This function is going to get the genre name from the genre id
def get_genre_from_id(genre_ids):
    """
    Converts a list of genre IDs into their corresponding genre names.

Parameters:
    genre_ids (list): A list of integers representing genre IDs.

Returns:
    list: A list of strings where each string is the genre name associated wit
    """
    return [genre_id_dictionary[genre_id] for genre_id in genre_ids]
```

3.5 Code

3.5.1 Bom Movie Gross csv

```
In [6]:
    df_bom = pd.read_csv(INPUT_PATH_bom_movie_gross, encoding="latin-1")
    df_bom
```

Out[6]:		title	studio	domestic_gross	foreign_gross	year
	0	Toy Story 3	BV	415000000.0	652000000	2010
	1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
	2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
	3	Inception	WB	292600000.0	535700000	2010
	4	Shrek Forever After	P/DW	238700000.0	513900000	2010
	•••					
	3382	The Quake	Magn.	6200.0	NaN	2018
	3383	Edward II (2018 re-release)	FM	4800.0	NaN	2018
	3384	El Pacto	Sony	2500.0	NaN	2018
	3385	The Swan	Synergetic	2400.0	NaN	2018
	3386	An Actor Prepares	Grav.	1700.0	NaN	2018

3387 rows × 5 columns

```
In [7]: (df bom.isnull().sum()/len(df bom))*100
```

```
Out[7]: title 0.000000
studio 0.147623
domestic_gross 0.826690
foreign_gross 39.858282
year 0.000000
dtype: float64
```

```
In [8]: df_bom.duplicated().sum()
```

Out[8]: 0

Bom Movie Gross dataset contains 3387 movies and includes 5 columns of datapoints on each movie. Another noticeable detail is that foreign_gross contains almost 40% of NaNs

3.5.2 Tmdb Movies csv

In [9]:
 df_tmdb = pd.read_csv(INPUT_PATH_tmdb_movies, encoding="latin-1", index_col=0)
 df_tmdb

Out[9]:	genre_ids	id	original_language	original_title	popularity	release_date
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16
•••						
26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13
26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01
26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01
26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22
26516	[53, 27]	309885	en	The Church	0.600	2018-10-05

```
26517 rows × 9 columns
```

```
In [10]:
            (df_tmdb.isnull().sum()/len(df_tmdb))*100
          genre_ids
Out[10]:
                                  0.0
                                  0.0
                                  0.0
          original_language
          original_title
                                  0.0
                                  0.0
          popularity
          release_date
                                  0.0
          title
                                  0.0
          vote_average
                                  0.0
          vote_count
                                  0.0
          dtype: float64
In [11]:
           df_tmdb.duplicated().sum()
Out[11]:
          1020
In [12]:
           duplicates_df_tmdb = df_tmdb[df_tmdb.duplicated(keep=False)].sort_values('id')
           duplicates_df_tmdb
Out[12]:
                  genre_ids
                                  id original_language
                                                               original_title popularity release_d
                        [16,
                                                         åfã"åfå°<ã®ç¥žéšã
          20626
                      10751,
                                 129
                                                                                 32.043
                                                                                           2002-09
                         14]
                        [16,
                                                         åfã"åfå°<ã®ç¥žéšã
          14173
                      10751,
                                 129
                                                                                 32.043
                                                                                           2002-09
                         14]
                        [35,
              43
                                 239
                                                            Some Like It Hot
                                                                                 14.200
                                                                                           1959-03
                                                     en
                      10749]
                        [35,
          24000
                                 239
                                                     en
                                                            Some Like It Hot
                                                                                 14.200
                                                                                           1959-03
                      10749]
                     [28, 53,
                                                               Terminator 2:
          20639
                                 280
                                                                                 24.604
                                                                                           1991-07
                                                     en
                        878]
                                                              Judgment Day
                                                      •••
          17071
                              560717
                                                                                  0.600
                                                                                           2015-01
                        [27]
                                                                   Requiem
                                                     en
          23685
                        [35]
                             564441
                                                            Adopting Trouble
                                                                                  0.600
                                                                                           2016-04
                                                     en
          20461
                        [35]
                              564441
                                                            Adopting Trouble
                                                                                  0.600
                                                                                           2016-04
                                                     en
                                                            Harvested Alive -
                                                                  10 1/---- - £
```

23/85	[צצ]	5/2012	en	ιυ rears οτ Investigations	U.bUU	ZU10-11
20569	[99]	572012	en	Harvested Alive - 10 Years of Investigations	0.600	2016-11

2016 rows × 9 columns

.3]:		genre_ids	id	original_language	original_title	popularity	release_date
	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19
	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26
	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07
	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22
	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16
	•••						
	26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13
	26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01
	26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01
	26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22
	26516	[53, 27]	309885	en	The Church	0.600	2018-10-05

25497 rows × 9 columns

Tmdb movies dataset contains 25497 movies and includes 9 columns of datapoints on each movie. There are no NaNs in any of the columns. We proceeded to drop all the duplicated registrations.

3.5.3 Tn movie budgets csv

In [14]:	df_ti		pd.read_csv(I	INPUT_PATH_	tn_movie_budgets,	encoding= <mark>"lati</mark> n	-1")
Out[14]:		id	release_date	movie	production_budget	domestic_gross	worldwide_gro
	0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,2
	1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,8
	2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,3
	3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,9
	4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,7
	•••						
	5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	
	5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,4
	5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,3
	5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	
	5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,0
	5782 r	ows	× 6 columns				
In [15]:	(df_	tn.i	snull().sum())/len(df_tn	1))*100		
Out[15]:	domes world	e octic stic_ lwide	late on_budget _gross	0.0 0.0 0.0 0.0 0.0 0.0			

```
In [16]: df_tn.duplicated().sum()
```

Out[16]: 0

Tn movie budget dataset contains 5782 movies and includes 6 columns of datapoints on each movie. There are no NaNs in any of the columns and there are no duplicates.

3.5.4 Rt movie information tsv

In [17]:
 df_rt_movie = pd.read_csv(INPUT_PATH_rt_movie_info, delimiter = '\t', encoding
 df_rt_movie

	ui_i	c_movi	e					
ut[17]:		id	synopsis	rating	genre	director	writer	theater_date
	0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971
	1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012
	2	5	Illeana Douglas delivers a superb performance 	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996
	3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994
	4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN
	•••							
	1555	1996	Forget terrorists or hijackers there's a ha	R	Action and Adventure Horror Mystery and Suspense	NaN	NaN	Aug 18, 2006
	1556	1007	The popular Saturday	DC.	Comedy Science	Steve	Terry Turner Tom Davis Dan	11 22 1002

סככו	וצצו	inight Live sketch was exp	۲۵	Fiction and Fantasy	Barron	Aykroyd Bonnie Turner	JUI 25, 1995
1557	1998	Based on a novel by Richard Powell, when the l	G	Classics Comedy Drama Musical and Performing Arts	Gordon Douglas	NaN	Jan 1, 1962
1558	1999	The Sandlot is a coming-of-age story about a g	PG	Comedy Drama Kids and Family Sports and Fitness	David Mickey Evans	David Mickey Evans Robert Gunter	Apr 1, 1993
1559	2000	Suspended from the force, Paris cop Hubert is	R	Action and Adventure Art House and Internation	NaN	Luc Besson	Sep 27, 2001

1560 rows × 12 columns

```
In [18]:
          (df_rt_movie.isnull().sum()/len(df_rt_movie))*100
Out[18]:
         id
                           0.000000
          synopsis
                           3.974359
         rating
                           0.192308
         genre
                          0.512821
         director
                          12.756410
         writer
                          28.782051
         theater_date 23.012821
         dvd_date
                          23.012821
         currency
                          78.205128
         box_office
                          78.205128
         runtime
                          1.923077
          studio
                          68.333333
         dtype: float64
In [19]:
          df_rt_movie.duplicated().sum()
```

Out[19]: 0

Rt movie information dataset contains 1560 movies and includes 12 columns of datapoints on each movie. There is a high percentage of NaNs in currency, box_office and studio. There are no duplicates.

3.5.5 Rt reviews tsv

```
In [20]:
    df_rt_reviews = pd.read_csv(INPUT_PATH_rt_reviews, delimiter = '\t', encoding=
```

Out[20]:		id	review	rating	fresh	critic	top_critic	publisher	
	0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	
	1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	
	2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	
	3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	
	4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	
	•••								
	54427	2000	The real charm of this trifle is the deadpan c	NaN	fresh	Laura Sinagra	1	Village Voice	9
	54428	2000	NaN	1/5	rotten	Michael Szymanski	0	Zap2it.com	5
	54429	2000	NaN	2/5	rotten	Emanuel Levy	0	EmanuelLevy.Com	
	54430	2000	NaN	2.5/5	rotten	Christopher Null	0	Filmcritic.com	5
	54431	2000	NaN	3/5	fresh	Nicolas Lacroix	0	Showbizz.net	
	54432 rd	ows × 8	3 columns						
in [21]:	(df_r	t_revi	ews.isnull().	sum()/1	en(df_r	t_reviews))	*100		
Out[21]:	id review		0.000000 10.220091						

fresh 0.000000 critic 5.000735 top_critic 0.000000 publisher 0.567681 date 0.000000 dtype: float64

In [22]: df_rt_reviews.duplicated().sum()

Out[22]: 9

In [23]:

duplicates_df_5_rt_reviews = df_rt_reviews[df_rt_reviews.duplicated(keep=False duplicates_df_5_rt_reviews

Out[23]:		id	review	rating	fresh	critic	top_critic	publisher	date
	8128	304	Friends With Kids is a smart, witty and potty	NaN	fresh	NaN	0	Liverpool Echo	June 29, 2012
	8129	304	Friends With Kids is a smart, witty and potty	NaN	fresh	NaN	0	Liverpool Echo	June 29, 2012
	14574	581	NaN	4.5/5	fresh	NaN	0	Film Threat	December 6, 2005
	14575	581	NaN	4.5/5	fresh	NaN	0	Film Threat	December 6, 2005
	26225	1055	NaN	4/5	fresh	NaN	0	Film Threat	December 6, 2005
	26226	1055	NaN	4/5	fresh	NaN	0	Film Threat	December 6, 2005
	35161	1368	NaN	2/5	rotten	NaN	0	Film Threat	December 6, 2005
	35162	1368	NaN	2/5	rotten	NaN	0	Film Threat	December 6, 2005
	35165	1368	NaN	2/5	rotten	NaN	0	Film Threat	December 8, 2002
	35166	1368	NaN	2/5	rotten	NaN	0	Film Threat	December 8, 2002
	40566	1535	NaN	2/5	rotten	NaN	0	Film Threat	December 6, 2005
	40567	1535	NaN	2/5	rotten	NaN	0	Film Threat	December 6, 2005
			This tired,						

15/02/2024, 19:22 12 de 43

42369	1598	neutered action thriller won't cau	2/5	rotten	NaN	0	Empire Magazine	November 14, 2008
42381	1598	This tired, neutered action thriller won't cau	2/5	rotten	NaN	0	Empire Magazine	November 14, 2008
49486	1843	NaN	0.5/5	rotten	NaN	0	Film Threat	December 6, 2005
49487	1843	NaN	0.5/5	rotten	NaN	0	Film Threat	December 6, 2005
49491	1843	NaN	0.5/5	rotten	NaN	0	Film Threat	December 8, 2002
49492	1843	NaN	0.5/5	rotten	NaN	0	Film Threat	December 8, 2002

Rt reviews dataset contains 54432 movies and includes 8 columns of datapoints on each movie. There is a low percentage of NaNs in review, and rating.

There are 9 duplicated rows.

3.5.6 IM sqlite3

```
In [24]:
    route_db = r"C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScience_FlatIron_Curso
    conn = sqlite3.connect(route_db)
    df_im_movie_basics = pd.read_sql_query("SELECT * FROM MOVIE_BASICS", conn)
    df_im_movie_basics
```

Out[24]:		movie_id	primary_title	original_title	start_year	runtime_minutes	
	0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,
	1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biog
	2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	
	3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Со
	4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,D
	•••						

146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	1
146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	
146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	
146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	NaN	I

146144 rows × 6 columns

3.5.7 First Question: Which genre has a higher ROI?

To be able to answer this question we would have to combine Tmdb Movies and Tn movie budgets We would be unable to extract the information of the ROI for each genre from IM because it does not have information about revenues

Let's start looking at df_tmdb

In [26]:	df_tmdl	b					
Out[26]:		genre_ids	id	original_language	original_title	popularity	release_date
	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19
	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26
	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07
		54.6 2.5					

3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16
•••						
26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13
26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01
26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01
26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22
26516	[53, 27]	309885	en	The Church	0.600	2018-10-05

25497 rows × 9 columns

We are going to analyze all the films regarless of the original language they are in. Also, we are going to drop the unnecessary columns from the tmdb dataset

In [27]:
 df_tmdb_updated = df_tmdb.drop(['original_title','original_language','vote_ave
 df_tmdb_updated

Out[27]:		genre_ids	id	title
-	0	[12, 14, 10751]	12444	Harry Potter and the Deathly Hallows: Part 1
	1	[14, 12, 16, 10751]	10191	How to Train Your Dragon
	2	[12, 28, 878]	10138	Iron Man 2
	3	[16, 35, 10751]	862	Toy Story
	4	[28, 878, 12]	27205	Inception
	•••		•••	
	26512	[27, 18]	488143	Laboratory Conditions
	26513	[18, 53]	485975	_EXHIBIT_84xxx_
	26514	[14, 28, 12]	381231	The Last One
	26515	[10751, 12, 28]	366854	Trailer Made
	26516	[53, 27]	309885	The Church

25497 rows × 3 columns

If we look at the column 'genre_ids' one can see that there is a list of them for each

ITIOVIE. OHE WOULD THINK THAT IT 5 DECAUSE A HOVIE CAIL HAVE HIGHLIPE GEHIES.

To make sense of the genre_ids, we found a logical value for each genre_id in the TMDB website: https://www.themoviedb.org/talk/5daf6eb0ae36680011d7e6ee

```
In [28]:
          TMDB_dictionary = {
           'Action': 28,
          'Adventure' : 12,
          'Animation' : 16,
          'Comedy' : 35,
          'Crime' : 80,
          'Documentary': 99,
          'Drama' : 18,
          'Family' : 10751,
          'Fantasy' : 14,
          'History': 36,
           'Horror' : 27,
          'Music': 10402,
          'Mystery': 9648,
          'Romance' : 10749,
          'Science Fiction': 878,
          'TV Movie' : 10770,
          'Thriller': 53,
          'War': 10752,
          'Western': 37
          genre_id_dictionary = {value:key for key,value in TMDB_dictionary.items()}
```

We are going to create another column in the dataset that contains the list of genres that each id corresponds to

Out[30]:	ut[30]: genre_ids		id	title	genre_name
-	0	[12, 14, 10751]	12444	Harry Potter and the Deathly Hallows: Part 1	[Adventure, Fantasy, Family]
	1	[14, 12, 16, 10751]	10191	How to Train Your Dragon	[Fantasy, Adventure, Animation, Family]
	2	[12, 28, 878]	10138	Iron Man 2	[Adventure, Action, Science Fiction]
	3	[16, 35, 10751]	862	Toy Story	[Animation, Comedy, Family]
	4	[28, 878, 12]	27205	Inception	[Action, Science Fiction, Adventure]

				•••
[Horror, Drama]	Laboratory Conditions	488143	[27, 18]	26512
[Drama, Thriller]	_EXHIBIT_84xxx_	485975	[18, 53]	26513
[Fantasy, Action, Adventure]	The Last One	381231	[14, 28, 12]	26514
[Family, Adventure, Action]	Trailer Made	366854	[10751, 12, 28]	26515
[Thriller, Horror]	The Church	309885	[53, 27]	26516

25497 rows × 4 columns

Given that we now have the genre names we have no need of the genre_ids, so we will proceed to drop the genre_ids column. Also, we are going to explode all the genres of each title.

```
In [31]:
    df_tmdb_updated = df_tmdb_updated.explode('genre_name')
    df_tmdb_updated.drop('genre_ids', axis=1, inplace=True)
```

Now let's look at df_tn dataset

In [32]:	df_tn	

Out[32]:		id	release_date	movie	production_budget	domestic_gross	worldwide_gro
_	0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,2
	1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,8 [°]
	2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,3
	3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,9
	4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,74
	•••						
	5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	1

5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,4!
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,3
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	:
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,0

5782 rows × 6 columns

Let's try to see which columns from df_tmdb and df_tn are related to each other

In [33]: df_tmdb_updated[df_tmdb_updated['title'].str.contains('Avatar')]

Out[33]:		id	title	genre_name
	6	19995	Avatar	Action
	6	19995	Avatar	Adventure
	6	19995	Avatar	Fantasy
	6	19995	Avatar	Science Fiction
	1831	278698	Avatar Spirits	NaN
	3387	79582	Aliens vs. Avatars	Science Fiction
	3387	79582	Aliens vs. Avatars	Horror
	3387	79582	Aliens vs. Avatars	Thriller
	23157	460441	Avatar Flight of Passage	Adventure
	23157	460441	Avatar Flight of Passage	Family

In [34]: df_tn[df_tn['movie'].str.contains('Avatar')]

Out[34]:		id	release_date	movie	production_budget	domestic_gross	worldwide_gross	
	0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279	

We can see that the columns id don't match and the only possible option for both datasets to be joined is by joinin 'title' from df_tmdb_updated with 'movie' from df_tn

Looking at the im dataset, we have information about the genres but there is no information about financial costs or revenues. What we will do is join by the movies

name and then carry on the process to try to find the ROI for each genre.

Now, we will drop unnecessary columns and calculate the ROI values for each movie in the df_tn

In the context of movie finances, "worldwide gross" typically includes the "domestic gross". With that in mind, I am going to calculate the ROI column

```
In [35]:
          df_tn.drop(['id','release_date','domestic_gross'], axis=1, inplace=True)
In [36]:
          # Convert the currency strings to integers
          df_tn['worldwide_gross'] = df_tn['worldwide_gross'].replace('[\$,]', '', reger
In [37]:
          df_tn[df_tn['production_budget']==0]
Out[37]:
           movie production_budget worldwide_gross
In [38]:
          df_tn['ROI_%'] = round(((df_tn['worldwide_gross']-df_tn['production_budget'])
          df tn
Out[38]:
                                           production_budget worldwide_gross
                                                                               ROI_%
                                    movie
             0
                                                 425000000.0
                                                                2.776345e+09
                                                                                553.26
                                    Avatar
                  Pirates of the Caribbean: On
             1
                                                 410600000.0
                                                                1.045664e+09
                                                                                154.67
                             Stranger Tides
             2
                              Dark Phoenix
                                                 350000000.0
                                                                1.497624e+08
                                                                                -57.21
             3
                     Avengers: Age of Ultron
                                                                1.403014e+09
                                                 330600000.0
                                                                                324.38
                Star Wars Ep. VIII: The Last Jedi
                                                 317000000.0
                                                                1.316722e+09
                                                                                315.37
                                                                0.000000e+00
         5777
                                   Red 11
                                                      7000.0
                                                                               -100.00
         5778
                                 Following
                                                      6000.0
                                                                2.404950e+05
                                                                               3908.25
         5779
                Return to the Land of Wonders
                                                      5000.0
                                                                1.338000e+03
                                                                                -73.24
         5780
                        A Plague So Pleasant
                                                                0.000000e+00
                                                                               -100.00
                                                      1400.0
         5781
                                                      1100.0
                                                                1.810410e+05 16358.27
                         My Date With Drew
         5782 rows × 4 columns
         Let's now join df_tmdb_updated and df_tn
```

```
In [39]:
           # We will first have to rename the column 'movie' to 'title' so that we can su
           df_tn.rename({'movie':'title'},inplace=True,axis=1)
In [40]:
           df_question1 = df_tmdb_updated.merge(df_tn, on='title', how='inner')
           df_question1
Out[40]:
                     id
                                 title
                                      genre_name production_budget worldwide_gross
                                                                                          ROI_S
                          How to Train
                  10191
             0
                                                           165000000.0
                                            Fantasy
                                                                            494870992.0
                                                                                          199.9
                          Your Dragon
                          How to Train
             1
                  10191
                                         Adventure
                                                           165000000.0
                                                                            494870992.0
                                                                                          199.9
                          Your Dragon
                          How to Train
                  10191
             2
                                                           165000000.0
                                         Animation
                                                                            494870992.0
                                                                                          199.9
                          Your Dragon
                          How to Train
                  10191
             3
                                            Family
                                                           165000000.0
                                                                            494870992.0
                                                                                          199.9
                          Your Dragon
                  10138
                           Iron Man 2
                                         Adventure
                                                           170000000.0
                                                                            621156389.0
                                                                                          265.3
          5234
                509306
                              The Box
                                             Music
                                                            25000000.0
                                                                             34356760.0
                                                                                           37.4
          5235 546674
                              Enough
                                           Comedy
                                                            38000000.0
                                                                             50970660.0
                                                                                           34.1
          5236 546674
                              Enough
                                         Animation
                                                            38000000.0
                                                                             50970660.0
                                                                                           34.1
          5237 513161 Undiscovered
                                              NaN
                                                             9000000.0
                                                                              1069318.0
                                                                                           -88.1
          5238 514492
                                         Animation
                                                            12000000.0
                                                                            470700000.0 3822.5
                                 Jaws
         5239 rows × 6 columns
In [41]:
           df_question1['title'].nunique()
Out[41]:
          1924
In [42]:
           df_question1.groupby('genre_name').count().sort_values('id', ascending=False)
Out[42]:
                           id title production_budget worldwide_gross ROI_%
             genre_name
                         992
                               992
                                                   992
                                                                     992
                                                                            992
                  Drama
                Comedy
                         622
                               622
                                                   622
                                                                     622
                                                                            622
                 Thriller
                         599
                                                                            599
                               599
                                                   599
                                                                     599
                  Action
                         517
                               517
                                                   517
                                                                     517
                                                                            517
              Adventure 334
                               334
                                                   334
                                                                     334
                                                                            334
```

Horror	303	303	303	303	303
Crime	269	269	269	269	269
Romance	261	261	261	261	261
Science Fiction	251	251	251	251	251
Family	209	209	209	209	209
Fantasy	208	208	208	208	208
Mystery	164	164	164	164	164
Animation	136	136	136	136	136
Documentary	88	88	88	88	88
History	77	77	77	77	77
Music	56	56	56	56	56
War	53	53	53	53	53
Western	26	26	26	26	26
TV Movie	10	10	10	10	10

We are going to disregard all the genres that have less than 100 records to try to get solid conclusions

```
In [43]:
          # df_question1 = df_question1[~df_question1['genre_name'].isin(['Documentary'
In [44]:
          # df_question1_results = df_question1.groupby('genre_name').mean()[['ROI_%']].
          # df_question1_results
In [45]:
          # plt.figure(figsize=(18, 8)) # Set the figure size
          # bar_plot = sns.barplot(
                x='genre_name', # Set genre_name on the y-axis
                              # Set ROI_% on the x-axis
                y='ROI_%',
               data=df_question1_results,
                palette='muted', # Color palette
                ci=None
                                  # Disable confidence interval
          # )
          # # Set title and labels for axes
          # plt.title('ROI by Genre')
          # plt.ylabel('Return on Investment (%)')
          # plt.xlabel('Genre')
          # # Show the plot
          # plt.show()
```

As we can see there is an evident high ROI with the Horror movies.

Let's consider looking at the df_im_movie_basics dataset to see if we can get a larger quantity of movies and thus get more reliable results

In [46]:
 df_tn.rename({'title':'primary_title'},inplace=True,axis=1)

In [47]:

df_im_movie_basics

Out[47]:		movie_id	primary_title	original_title	start_year	runtime_minutes	
	0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,
	1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biog
	2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	
	3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Со
	4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,D
	•••						
	146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	
	146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN]
	146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	
	146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	
	146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	NaN	I

146144 rows × 6 columns

Let's drop potential duplicates of df_im_movie_basics

In [48]: df_im_movie_basics.drop_duplicates(subset=['primary_title'], inplace=True)

```
In [49]:
           df_im_movie_basics['genres'] = df_im_movie_basics['genres'].str.split(',')
In [50]:
           df_im_movie_basics = df_im_movie_basics.explode('genres')
           df_im_movie_basics
Out[50]:
                    movie_id
                               primary_title original_title start_year
                                                                       runtime_minutes
                                                                                               gen
                   tt0063540
                                  Sunghursh
                                                Sunghursh
                                                                2013
                                                                                  175.0
                                                                                               Act
                                                                                                Cri
                    tt0063540
                                 Sunghursh
                                                Sunghursh
                                                                2013
                                                                                  175.0
                    tt0063540
                                  Sunghursh
                                                                2013
                                                                                  175.0
                                                                                               Dra
                                                Sunghursh
                                   One Day
                                              Ashad Ka Ek
                    tt0066787
                                  Before the
                                                                2019
                                                                                  114.0
                                                                                            Biograp
                                                      Din
                               Rainy Season
                                   One Day
                                              Ashad Ka Ek
                    tt0066787
                                                                2019
                                  Before the
                                                                                  114.0
                                                                                               Dra
                                                      Din
                               Rainy Season
                                Kuambil Lagi
                                              Kuambil Lagi
           146139 tt9916538
                                                                2019
                                                                                  123.0
                                                                                               Dra
                                     Hatiku
                                                   Hatiku
                                  Rodolpho
                                                Rodolpho
                                Teóphilo - O
                                              Teóphilo - O
          146140 tt9916622
                                                                2015
                                                                                         Document
                                                                                   NaN
                                  Legado de
                                                Legado de
                                um Pioneiro
                                              um Pioneiro
                                  Dankyavar
                                                Dankyavar
          146141
                   tt9916706
                                                                2013
                                                                                   NaN
                                                                                             Come
                                     Danka
                                                    Danka
           146142 tt9916730
                                     6 Gunn
                                                   6 Gunn
                                                                2017
                                                                                  116.0
                                                                                                Nc
                                      Chico
                                                    Chico
          146143 tt9916754
                               Albuquerque
                                             Albuquerque
                                                                2013
                                                                                   NaN
                                                                                         Document
                                - Revelações
                                              - Revelações
          218557 rows × 6 columns
In [51]:
           df_question1 = df_im_movie_basics.merge(df_tn, on='primary_title', how='inner
           df_question1
Out[51]:
                  movie id
                            primary_title original_title start_year runtime_minutes
                                                                                            genres
                 tt0249516
                               Foodfight!
                                              Foodfight!
                                                              2012
                                                                                 91.0
                                                                                             Action
                 tt0249516
                                Foodfight!
                                              Foodfight!
                                                              2012
                                                                                 91.0
                                                                                         Animation
                 tt0249516
                                Foodfight!
                                              Foodfight!
                                                              2012
                                                                                 91.0
                                                                                           Comedy
                                   Mortal
                                                 Mortal
                                                              2021
                 tt0293429
                                                                                NaN
                                                                                             Action
                                  Kombat
                                                Kombat
```

4	tt0293429	Mortal Kombat	Mortal Kombat	2021	NaN	Adventure
•••	•••	•••	•••	•••		••
5450	tt9805168	Traitor	Traitor	2015	110.0	Actior
5451	tt9805168	Traitor	Traitor	2015	110.0	Drama
5452	tt9805168	Traitor	Traitor	2015	110.0	Romance
5453	tt9844102	Ray	Ray	2018	111.0	Crime
5454	tt9893078	Sublime	Sublime	2019	NaN	Documentary

5455 rows × 9 columns

Given that we have more movies in the merging of df_tn with df_im_movie_basics than in the merging of df_tn with df_tmdb (by 2000 approximately), we will consider the df_im_movie_basics dataset

In [52]: df_question1['original_title'].nunique()

Out[52]: 2309

In [53]: df_question1.groupby('genres').count().sort_values('movie_id', ascending=False

Out[53]: movie_id primary_title original_title start_year runtime_minutes proc genres **Drama** Comedy **Action Adventure Thriller** Crime Horror **Romance Documentary Biography** Sci-Fi Mystery **Fantasy**

,					
Family	135	135	135	135	128
Animation	122	122	122	122	116
Music	66	66	66	66	63
History	63	63	63	63	63
Sport	50	50	50	50	46
War	31	31	31	31	29
Musical	18	18	18	18	14
Western	16	16	16	16	14
News	1	1	1	1	1

We are going to disregard all the genres that have less than 150 records to try to get solid conclusions

```
In [54]: df_question1 = df_question1[~df_question1['genres'].isin(['Family','Animation']
In [55]: df_question1_results = df_question1.groupby('genres').mean()[['ROI_%']].sort_v
df_question1_results
```

		_question1_re	
Out[55]:		genres	ROI_%
	0	Crime	119.298971
	1	Sci-Fi	205.257557
	2	Adventure	205.808357
	3	Action	212.421946
	4	Drama	229.395798
	5	Fantasy	236.153506
	6	Comedy	245.242827
	7	Romance	248.701199
	8	Documentary	317.799894
	9	Biography	445.263352
	10	Thriller	462.887526
	11	Mystery	702.271897
	12	Horror	769.228264

25 de 43

In [56]: nlt.figure(figsize=(18. 8)) # Set the figure size

```
bar_plot = sns.barplot(
    x='genres', # Set genre_name on the y-axis
    y='ROI_%', # Set ROI_% on the x-axis
    data=df_question1_results,
    palette='muted', # Color palette
    ci=None # Disable confidence interval
)

# Set title and labels for axes
plt.title('ROI by Genre')
plt.ylabel('Return on Investment (%)')
plt.xlabel('Genre')

# Show the plot
plt.show()
```


As we can see there is an evident high ROI with the Horror and Mystery because they have more than 700% in ROI.

3.5.8 Second Question: Study the relationship of run-time with ROI and Production Cost

Let's look at IM dataset

We look at the table movie_basics of the im dataset as it contains information about the run-times

```
In [57]:
    route_db = r"C:\\Users\\Usuario\\Desktop\\FlatIron\\DataScience_FlatIron_Curso
    conn = sqlite3.connect(route_db)
    df_im_movie_basics = pd.read_sql_query("SELECT * FROM MOVIE_BASICS", conn)
    df_im_movie_basics
```

Out[57]: movie_id primary_title original_title start_year runtime_minutes

Action,	175.0	2013	Sunghursh	Sunghursh	tt0063540	0
Biog	114.0	2019	Ashad Ka Ek Din	One Day Before the Rainy Season	tt0066787	1
	122.0	2018	The Other Side of the Wind	The Other Side of the Wind	tt0069049	2
Со	NaN	2018	Sabse Bada Sukh	Sabse Bada Sukh	tt0069204	3
Comedy,D	80.0	2017	La Telenovela Errante	The Wandering Soap Opera	tt0100275	4
						•••
	123.0	2019	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	tt9916538	146139
J	NaN	2015	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	tt9916622	146140
	NaN	2013	Dankyavar Danka	Dankyavar Danka	tt9916706	146141
	116.0	2017	6 Gunn	6 Gunn	tt9916730	146142
1	NaN	2013	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	tt9916754	146143

146144 rows × 6 columns

Let's start by droping columns that we're not going to need.

```
In [58]:
    drop_list = ['genres', 'start_year', 'original_title']
    df_im_movie_basics_updated = df_im_movie_basics.drop(drop_list, axis=1)
    df_im_movie_basics_updated
```

Out[58]:	movie_id	primary_title	runtime_minutes
	0 tt0063540	Sunghursh	175.0
	1 tt0066787	One Day Before the Rainy Season	114.0
	2 tt0069049	The Other Side of the Wind	122.0
	3 tt0069204	Sabse Bada Sukh	NaN
	4 tt0100275	The Wandering Soap Opera	80.0

123.0	Kuambil Lagi Hatiku	tt9916538	146139
NaN	Rodolpho Teóphilo - O Legado de um Pioneiro	tt9916622	146140
NaN	Dankyavar Danka	tt9916706	146141
116.0	6 Gunn	tt9916730	146142
NaN	Chico Albuquerque - Revelações	tt9916754	146143

146144 rows × 3 columns

Let's drop duplicated movies

```
In [59]:
    df_im_movie_basics_updated.drop_duplicates(['primary_title'], inplace=True)
```

Let's look at the NaN values of the column runtime_minutes

```
In [60]: (df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].isna().sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(df_im_movie_basics_updated['runtime_minutes'].sum()/len(d
```

Out[60]: 21.660015727083653

We decide to drop the NaN rows

In [61]:	<pre>df_im_movie_basics_updated = df_im_movie_basics_updated[df_im_movie_basics_updated]</pre>
	df_im_movie_basics_updated

Out[61]:	movie_id	primary_title	runtime_minutes
0	tt0063540	Sunghursh	175.0
1	tt0066787	One Day Before the Rainy Season	114.0
2	tt0069049	The Other Side of the Wind	122.0
4	tt0100275	The Wandering Soap Opera	80.0
5	tt0111414	A Thin Life	75.0
•••			
146133	tt9916132	The Mystery of a Buryat Lama	94.0
146136	tt9916186	Illenau - die Geschichte einer ehemaligen Heil	84.0
146137	tt9916190	Safeguard	90.0
146139	tt9916538	Kuambil Lagi Hatiku	123.0
146142	tt9916730	6 Gunn	116.0

```
In [62]:
    bins = [0,90,120,float('inf')]
    df_im_movie_basics_updated['runtime_minutes'] = pd.cut(df_im_movie_basics_updated
    df_im_movie_basics_updated
```

<ipython-input-62-d846936a5a81>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

df_im_movie_basics_updated['runtime_minutes'] = pd.cut(df_im_movie_basics_upd
ated['runtime_minutes'],labels=['short','medium','long'],bins=bins,right=False)

Out[62]:	movie_id		primary_title	runtime_minutes
	0	tt0063540	Sunghursh	long
	1	tt0066787	One Day Before the Rainy Season	medium
	2	tt0069049	The Other Side of the Wind	long
	4	tt0100275	The Wandering Soap Opera	short
	5	tt0111414	A Thin Life	short
	•••			
	146133	tt9916132	The Mystery of a Buryat Lama	medium
	146136	tt9916186	Illenau - die Geschichte einer ehemaligen Heil	short
	146137	tt9916190	Safeguard	medium
	146139	tt9916538	Kuambil Lagi Hatiku	long
	146142	tt9916730	6 Gunn	medium

106598 rows × 3 columns

We are going to do the merge of df_im_movie_basics_updated with df_tn.

In [63]: df_tn

Out[63]:		primary_title	production_budget	worldwide_gross	ROI_%
	0	Avatar	425000000.0	2.776345e+09	553.26
	1	Pirates of the Caribbean: On Stranger Tides	410600000.0	1.045664e+09	154.67
	2	Dark Phoenix	350000000.0	1.497624e+08	-57.21
	3	Avengers: Age of Ultron	330600000.0	1.403014e+09	324.38
	4	Star Wars Ep. VIII: The Last Jedi	317000000.0	1.316722e+09	315.37
	•••				

5777	Red 11	7000.0	0.000000e+00	-100.00
5778	Following	6000.0	2.404950e+05	3908.25
5779	Return to the Land of Wonders	5000.0	1.338000e+03	-73.24
5780	A Plague So Pleasant	1400.0	0.000000e+00	-100.00
5781	My Date With Drew	1100.0	1.810410e+05	16358.27

5782 rows × 4 columns

In [64]:

df_question2 = df_im_movie_basics_updated.merge(df_tn, on='primary_title', how
df_question2

Out[64]:		movie_id	primary_title	runtime_minutes	production_budget	worldwide_gross
	0	tt0249516	Foodfight!	medium	45000000.0	73706.0
	1	tt0326592	The Overnight	short	200000.0	1165996.0
	2	tt0337692	On the Road	long	25000000.0	9313302.0
	3	tt0359950	The Secret Life of Walter Mitty	medium	91000000.0	187861183.0
	4	tt0365907	A Walk Among the Tombstones	medium	28000000.0	62108587.0
	•••		•••			
2	191	tt9275702	Salvador	short	4500000.0	1500000.0
2	192	tt9313936	Stay Alive	short	20000000.0	23187506.0
2	193	tt9607270	The Blue Bird	short	1200000.0	887000.0
2	194	tt9805168	Traitor	medium	22000000.0	27882226.0
2	195	tt9844102	Ray	medium	40000000.0	124823094.0

2196 rows × 6 columns

Let's do a count by groupby in runtime_minutes to see what the distribution is of each runtime_minutes group

```
In [65]: df_question2.groupby('runtime_minutes').count()
```

Out [65]: movie_id primary_title production_budget worldwide_gross ROI_% runtime_minutes

short	477	477	477	477	477
medium	1334	1334	1334	1334	1334
long	385	385	385	385	385

Now, we will calculate the mean of production_budget and ROI_% for each movie

```
In [66]:
    df_question2_result = df_question2.groupby('runtime_minutes').agg({'production
    df_question2_result
```

```
        Out[66]:
        runtime_minutes
        production_budget
        ROI_%

        0
        short
        2.078161e+07
        510.192013

        1
        medium
        3.272034e+07
        217.293778

        2
        long
        6.910003e+07
        359.420987
```

We will now do a representation of each metric

```
In [67]:
          plt.figure(figsize=(18, 8)) # Set the figure size
          bar_plot = sns.barplot(
              x='runtime_minutes',
              y='production_budget',
              data=df_question2_result,
              palette='muted', # Color palette
              ci=None
                                # Disable confidence interval
          )
          # Set title and labels for axes
          plt.title('Production Budget by Run Time')
          plt.ylabel('Production Budget ($)')
          plt.xlabel('Run Time Group')
          ax2 = plt.twinx()
          # Let's create a second plot with a line graph that shows the ROI_%
          line plot = sns.lineplot(
              x='runtime_minutes',
              y='ROI_%',
              data=df_question2_result,
              color='red', # Line color
              marker='o', # Marker style
              sort=False, # Avoids sorting to keep the order of the x-axis
                          # Plot against the secondary y-axis
              ax=ax2
          )
          # Show the plot
          plt.show()
```


With the graph above, we've reached the conclusion that the short films (ie those that have a run_time less than 90 minutes) are very interesting to invest on as they have the highest ROI_% and the shortest production budgets

3.5.9 Third Question: Study the relationship of director with ROI and Production Cost

To be able to answer the third question we're going to need the following tables of IM: movie_ratings, movie_basics, directors, and persons

Out[68]:		person_id	primary_name	movie_id	primary_title	averagerating	numvot
	0	nm8353804	Sukh Sanghera	tt10356526	Laiye Je Yaarian	8.3	
	1	nm8353804	Sukh Sanghera	tt10356526	Laiye Je Yaarian	8.3	

C--l--

2	nm9250842	Caoian Robertson	tt10384606	Borderless	8.9	5
3	nm9932562	George Llewelyn-John	tt10384606	Borderless	8.9	5
4	nm1915232	Marcel Grant	tt1042974	Just Inès	6.4	
•••						
181382	nm0849465	Gorô Taniguchi	tt9844256	Code Geass: Lelouch of the Rebellion - Glorifi	7.5	
181383	nm0849465	Gorô Taniguchi	tt9844256	Code Geass: Lelouch of the Rebellion - Glorifi	7.5	
181384	nm1272773	Prachya Pinkaew	tt9851050	Sisters	4.7	
181385	nm0001206	Abel Ferrara	tt9886934	The Projectionist	7.0	
181386	nm10529107	Naveen Nanjundan	tt9894098	Sathru	6.3	1

181387 rows × 6 columns

Let's start by looking at potential duplicates

```
In [69]: df_im.duplicated().sum()
```

Out[69]: 95357

We proceed to drop them

In [70]: df_im.drop_duplicates(inplace=True)
 df_im

Out[70]:		person_id	primary_name	movie_id	primary_title	averagerating	numvot
	0	nm8353804	Sukh Sanghera	tt10356526	Laiye Je Yaarian	8.3	
	2	nm9250842	Caolan Robertson	tt10384606	Borderless	8.9	5
	3	nm9932562	George Llewelyn-John	tt10384606	Borderless	8.9	5
	4	nm1915232	Marcel Grant	tt1042974	Just Inès	6.4	
					The Legend		

5	nm0001317	Renny Harlin	tt1043726	of Hercules	4.2	503
•••						
181381	nm3828616	Alexandru Mavrodineanu	tt9805820	Caisa	8.1	
181382	nm0849465	Gorô Taniguchi	tt9844256	Code Geass: Lelouch of the Rebellion - Glorifi	7.5	
181384	nm1272773	Prachya Pinkaew	tt9851050	Sisters	4.7	
181385	nm0001206	Abel Ferrara	tt9886934	The Projectionist	7.0	
181386	nm10529107	Naveen Nanjundan	tt9894098	Sathru	6.3	1

86030 rows × 6 columns

We would like to see the distribution of averagerating

We will now look at the distribution of numvotes

In [72]: df_im.describe()

Out[72]:		averagerating	numvotes
	count	86030.000000	8.603000e+04
	mean	6.340112	3.370315e+03
	std	1.475066	2.945046e+04

```
      min
      1.000000
      5.000000e+00

      25%
      5.500000
      1.400000e+01

      50%
      6.500000
      4.700000e+01

      75%
      7.400000
      2.640000e+02

      max
      10.000000
      1.841066e+06
```

```
In [73]: plt.hist(df_im[df_im['numvotes']<250]['numvotes'], bins=100);</pre>
```



```
In [74]: plt.boxplot(df_im[df_im['numvotes']<250]['numvotes']);</pre>
```


We will carry on by on by eliminating outliers. For that we've decided to disregard anything under the 10% percentile and over the 90% percentile

```
In [75]: max_value = np.percentile(df_im['numvotes'], 90)
    max_value

Out[75]: 1494.0
```

```
In [76]:
           min_value = np.percentile(df_im['numvotes'], 10)
           min value
Out[76]: 7.0
In [77]:
           df im = df im[df im['numvotes'].between(min value, max value)]
           df_im
Out[77]:
                                 primary_name
                                                   movie_id primary_title averagerating
                      person_id
                                                                                           numvot
                                                                   Laiye Je
                0
                     nm8353804
                                  Sukh Sanghera tt10356526
                                                                                       8.3
                                                                   Yaarian
                                         Caolan
                     nm9250842
                                                 tt10384606
                                                                Borderless
                                                                                                 5
                2
                                                                                       8.9
                                      Robertson
                                         George
                                                                                                 5
                3
                     nm9932562
                                                 tt10384606
                                                                 Borderless
                                                                                       8.9
                                   Llewelyn-John
                     nm1915232
                                    Marcel Grant
                                                  tt1042974
                                                                  Just Inès
                                                                                       6.4
                                       Carlos M.
                     nm1926349
                                                  tt1060240
                                                                                       6.5
                9
                                                                Até Onde?
                                          Barros
                                                                  Bangkok
           181380
                     nm8393857
                                     Alwa Ritsila
                                                  tt9783738
                                                                                       7.4
                                                                 Dark Tales
                                      Alexandru
                                                  tt9805820
                                                                                       8.1
           181381
                     nm3828616
                                                                     Caisa
                                  Mavrodineanu
                                                               Code Geass:
                                                                Lelouch of
           181382
                     nm0849465
                                  Gorô Taniguchi
                                                  tt9844256
                                                                                       7.5
                                                              the Rebellion
                                                                  - Glorifi...
                                        Prachya
           181384
                                                  tt9851050
                                                                                       4.7
                     nm1272773
                                                                    Sisters
                                        Pinkaew
                                         Naveen
           181386 nm10529107
                                                  tt9894098
                                                                    Sathru
                                                                                       6.3
                                                                                                 1
                                     Nanjundan
          70988 rows × 6 columns
          Let's look again at the distribution of numvotes
In [78]:
           df_im.describe()
Out[78]:
                  averagerating
                                     numvotes
                   70988.000000
                                 70988.000000
           count
                       6.295291
                                    162.141630
           mean
```

std	1.497798	269.656327
min	1.000000	7.000000
25%	5.400000	16.000000
50%	6.500000	44.000000
75 %	7.300000	170.000000
max	10.000000	1494.000000

As can be seen there is still a considerable number of outliers. However, we disregard eliminating again registrations as we would consider it necessary to have a large number of registrations

Now let's check if there are NaN of the column averagerating and numvotes

```
In [80]:
    df_im['averagerating'].isna().any()
```

Out[80]: False

In [81]: df_im['numvotes'].isna().any()

Out[81]: False

We will now proceed to group by director and carry on the analysis

In [82]:	df_im

Out[82]:		person_id	primary_name	movie_id	primary_title	averagerating	numvot
	0	nm8353804	Sukh Sanghera	tt10356526	Laiye Je Yaarian	8.3	

				Idditati		
2	nm9250842	Caolan Robertson	tt10384606	Borderless	8.9	5
3	nm9932562	George Llewelyn-John	tt10384606	Borderless	8.9	5
4	nm1915232	Marcel Grant	tt1042974	Just Inès	6.4	
9	nm1926349	Carlos M. Barros	tt1060240	Até Onde?	6.5	
•••						
181380	nm8393857	Alwa Ritsila	tt9783738	Bangkok Dark Tales	7.4	
181381	nm3828616	Alexandru Mavrodineanu	tt9805820	Caisa	8.1	
181382	nm0849465	Gorô Taniguchi	tt9844256	Code Geass: Lelouch of the Rebellion - Glorifi	7.5	
181384	nm1272773	Prachya Pinkaew	tt9851050	Sisters	4.7	
181386	nm10529107	Naveen Nanjundan	tt9894098	Sathru	6.3	1

70988 rows × 6 columns

In [83]:	<pre>df_im.groupby('primary_name').count().sort_values('numvotes', ascending=False)</pre>	

Out[83]:		person_id	movie_id	primary_title	averagerating	numvotes
	primary_name					
	Sergey A.	39	39	39	39	39
	Nayato Fio Nuala	34	34	34	34	34
	Larry Rosen	34	34	34	34	34
	Dustin Ferguson	30	30	30	30	30
	Paul T.T. Easter	28	28	28	28	28
	•••					
	Ivan Hurzeler	1	1	1	1	1
	Ivan Kavanagh	1	1	1	1	1
	Ivan Kitaev	1	1	1	1	1
	Ivan Kraljevic	1	1	1	1	1

		Þórdur Bragi Jónsson	1	1	1	1	1
	49277 rov	ws × 5 colum	ns				
In [84]:	counts	= df_im.gro	upby('primary_	name')['pe	erson_id'].cou	unt()	
	We will o	only consider	directors who ha	ave done at	least 4 movies		
In [85]:	filtere	ed_names = c	ounts[counts>=	4].index			
In [86]:	df_im = df_im	= df_im[df_i	m['primary_nam	e'].isin(f	Filtered_names	5)]	
Out[86]:		person_id	primary_name	movie_id	primary_title	averagerating	numvotes
	85	nm2310557	Andrey Iskanov	tt1323962	Andrey Iskanov's Ingression	5.1	101
	143	nm0135724	Antonio Capuano	tt1438493	Dark Love	6.3	86
	144	nm1564826	David Verbeek	tt1443518	R U There	5.5	297
	148	nm1494245	Omar Shargawi	tt1450750	My Father from Haifa	8.6	27
	190	nm0084819	Claus Bjerre	tt1512893	Father of Four - In Japanese Mode	3.4	212
	•••			•••			•••
	181351	nm3406099	Donatas Ulvydas	tt9575726	Ir visi ju vyrai	7.7	161
	181353	nm2418217	Gilles Perret	tt9576110	J'veux du soleil	6.8	65
	181359	nm2209378	Lu Zhang	tt9619016	Fukuoka	7.0	27
	181371	nm4070848	Meng Zhang	tt9690762	On the Balcony	5.6	37
	181382	nm0849465	Gorô Taniguchi	tt9844256	Code Geass: Lelouch of the Rebellion - Glorifi	7.5	24
	11392 rov	ws × 6 colum	ns				

Now we're going to look at the averagerating of each director

In [87]: df_averagerating_director = df_im.groupby('primary_name').agg({'averagerating'
df_averagerating_director

Out[87]: averagerating

9.100000
8.940000
8.883333
8.825000
8.800000
 1.342857
 1.342857 1.285714
1.285714

2019 rows × 1 columns

Now we have to merge df_im with df_tn so as to be able to see per director their average rating, their average production_budget, ROI_%

In [88]: df_tn

Out[88]:		primary_title	production_budget	worldwide_gross	ROI_%	
	0	Avatar	425000000.0	2.776345e+09	553.26	
	1	Pirates of the Caribbean: On Stranger Tides	410600000.0	1.045664e+09	154.67	
	2	Dark Phoenix	350000000.0	1.497624e+08	-57.21	
	3	Avengers: Age of Ultron	330600000.0	1.403014e+09	324.38	
	4	Star Wars Ep. VIII: The Last Jedi	317000000.0	1.316722e+09	315.37	
	•••					
	5777	Red 11	7000.0	0.000000e+00	-100.00	
	5778	Following	6000.0	2.404950e+05	3908.25	

ر

5779	Return to the Land of Wonders	5000.0	1.338000e+03	-73.24
5780	A Plague So Pleasant	1400.0	0.000000e+00	-100.00
5781	My Date With Drew	1100.0	1.810410e+05	16358.27

5782 rows × 4 columns

```
In [89]:
    df_question3 = df_im.merge(df_tn, on='primary_title', how='inner')
    df_question3
```

Out[89]:		person_id	primary_name	movie_id	primary_title	averagerating	numvotes	1
	0	nm3620652	Aly Muritiba	tt7467324	Rust	6.6	377	
	1	nm0000929	Corbin Bernsen	tt1360826	Rust	5.6	404	
	2	nm0300880	Daniele Gaglianone	tt1833781	Rust	6.1	412	
	3	nm5619726	Joe Lujan	tt3490320	Rust	6.1	22	
	4	nm4110102	Raja Chanda	tt10300662	Kidnap	7.5	26	
	•••							
	199	nm0139337	Fred Carpenter	tt1653203	Jesse	4.9	96	
	200	nm3147876	Sang-woo Lee	tt4036590	Speed	5.9	9	
	201	nm1757671	Robert Conway	tt5607782	The Covenant	5.2	1359	
	202	nm0104487	Larry Brand	tt2387589	The Girl on the Train	4.4	819	
	203	nm3231736	Marcel Walz	tt2554700	Plastic	2.5	54	

204 rows × 9 columns

Let's check for NaN values

primary_name False False movie_id primary_title False averagerating False ${\tt numvotes}$ False production_budget False worldwide_gross False ROI_% False dtype: bool

Now let's group by director and see their averagerating, average production_budget and average ROI_%

In [91]:
 df_question3_result = df_question3.groupby('primary_name').agg({'averagerating
 df_question3_result

Out[91]:		averagerating	production_budget	ROI_%
	primary_name			
	Daniel Beard	8.8	90000000.0	-88.28
	Tim Van Someren	8.7	10000000.0	-78.20
	Aashiq Abu	8.6	75000000.0	-59.16
	Brett Sullivan	8.5	5000000.0	2085.07
	Larry Rosen	8.3	23000000.0	-18.90
	•••			
	Mark Steven Grove	2.8	20000000.0	79.21
	Rob Hawk	2.7	20000000.0	-100.00
	Steven M. Smith	2.6	1000000.0	1698.50
	Michael Crum	2.4	4357373.0	-72.46
	Justin Price	2.1	18000000.0	-100.00

181 rows × 3 columns

Let's filter out the directors that have a negative ROI_%

Out[92]:		averagerating	production_budget	ROI_%
	primary_name			
	Brett Sullivan	8.5	5000000.0	2085.070
	Jeremy Herrin	8.1	14000000.0	41.630
	Robert Delamere	8.1	32100000.0	230.540
	Hanung Bramantyo	8.0	7500000.0	712.625
	Nawapol Thamrongrattanarit	8.0	37500000.0	35.060
	•••			
	Daniel Armstrong	3.5	400000.0	190.500

Vince D'Amato	3.4	20000000.0	1126.520
Maurice Smith	3.0	35000000.0	147.570
Mark Steven Grove	2.8	20000000.0	79.210
Steven M. Smith	2.6	1000000.0	1698.500

89 rows × 3 columns

```
In [93]:
          fig, ax1 = plt.subplots(figsize=(22, 10))
          # Plot the 'production_budget' as a bar plot
          ax1.bar(df_question3_result.index, df_question3_result['production_budget'], ]
          # Create the secondary axis for the 'ROI_%'
          ax2 = ax1.twinx()
          # Plot the 'ROI %' as a line plot
          ax2.plot(df_question3_result.index, df_question3_result['ROI_%'], label='ROI %
          # Plot the 'averagerating' as another line plot
          ax3 = ax1.twinx()
          # Offset the second y-axis to the right
          ax3.spines['right'].set_position(('outward', 60))
          ax3.plot(df_question3_result.index, df_question3_result['averagerating'], labe
          # Set the labels and titles
          ax1.set_xlabel('Director')
          ax1.set_ylabel('Production Budget ($)', color='blue')
          ax2.set_ylabel('ROI %', color='red')
          ax3.set_ylabel('Average Rating', color='green')
          # Set the x-axis category labels (if necessary)
          ax1.set xticklabels(df question3 result.index, rotation=90)
          # Add Legends
          ax1.legend(loc='upper left')
          ax2.legend(loc='upper right')
          ax3.legend(loc='center right')
          # Show the plot
          plt.title('Production Budget, ROI%, and Average Rating for Each Director')
          plt.tight_layout() # Adjust the layout to make room for the x-axis labels
          plt.show()
        <ipython-input-93-326b5474f18b>:25: UserWarning: FixedFormatter should only be
        used together with FixedLocator
          ax1.set_xticklabels(df_question3_result.index, rotation=90)
```