编译原理第六章(二)

李鹏辉

2018年12月9日

1.(6.3.1)确定下列声明序列中各个标志符的类型和相对地址

```
1 float x;
2 record {float x; float y} p;
3 record {int tag; float x; float y} q;
```

	id	type	offset
(0)	X	float	0
(1)	x	float	0
	у	float	8
	p	record	8
(3)	tag	float	0
	x	float	4
	у	float	12
	q	record	20

2.(6.4.3)使用图6-22的翻译方案翻译下列赋值语句

1) x = a[i] + b[j] 假设a,b为int类型

Figure 1: 翻译x = a[i] + b[j]

三地址代码如下:

 $t_1 = 4 * i$

 $t_2 = 4 * j$

 $t_3 = a[t_1]$

 $t_4 = b[t_2]$

 $t_5 = t_3 + t_4$

 $x = t_5$

2) x = a[i][j] + b[i][j] 假设a,b为int类型

Figure 2: 翻译x = a[i][j] + b[i][j]

三地址代码如下:

 $t_1 = 4 * n' * i$

 $t_2 = 4 * j$

 $t_3 = t_1 + t_2$

 $t_4 = a[t_3]$

 $t_5 = 4 * n'' * i$

 $t_6 = 4 * j$

 $t_7 = t_5 + t_6$

 $t_8 = a[t_7]$

 $t_9 = t_8 + t_4$

 $x = t_9$

3.(6.5.1)假定图6-26中函数widen可以处理图6-25a的层次结构中的所有类型,翻译下列表达式。假定c和d是字符型,s和t是短整型,i和j是整型,x是浮点型.

 $char \ c, \ d; short \ s, \ t; int \ i, \ j; float \ x;$

1)
$$x = s + c$$

 $tmp_1 = s + (short)c$
 $x = (flost)tmp_1$

$$2) \ i = s + c$$

$$tmp_1 = s + (short)c$$

$$i = (int)tmp_1$$

3)
$$x = (s+c)*(t+d)$$

 $tmp_1 = s + (short)c$
 $tmp_2 = t + (short)d$
 $x = (float)tmp_1 * tmp_2$