Analysis of Clocked Sequential Circuits

Sequential Circuit Analysis

- The behavior of a clocked sequential circuit is determined from
 - The inputs
 - The outputs
 - The state of its flip-flops
- The outputs and the next state are both a function of the inputs and the present state
- To analyze a sequential circuit, we can use
 - State equations
 - State table
 - State diagram
 - Flip-Flop input equations

State Equations

- Specify the next state as a function of the present state and inputs
 - Also called transition equation
- Analyze the combinational part directly
- EX:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'(t) x(t)$$

$$B(t+1) = A'x$$

$$y(t)=[A(t)+B(t)] x(t)$$

$$y=(A+B)x'$$

State Table

- Enumerate the time sequence of inputs, outputs, and flip-flop states
 - Also called transition table
 - Similar to list the truth table of state equations
- Consist of four sections
 - Present state, input, next state, and output
- A sequential circuit with m flip-flops and n inputs need 2^{m+n} rows in the state table

	sent ate	input		ext ate	output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Second Form of State Table

- The state table has only three section: present state, next state, and output
- The input conditions are enumerated under next state and output sections

Pres	sent	Next State Outpu					
Sta	ate	X=	=0	X=	=1	X=0	X=1
Α	В	Α	В	Α	В	Υ	Υ
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	1 0		0
1	1	0	0	1	1 0		0

State Diagram

- Graphically represent the information in a state table
 - Circle: a state (with its state value inside)
 - Directed lines: state transitions (with inputs/outputs above)
- Ex: starting from state 00
 - If the input is 0, it stays at state 00 with output=0
 - If the input is 1, it goes to state 01 with output=0
- The state table is easier to derive from a given logic diagram and state equations
- The state diagram is suitable for human interpretation

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

Flip-Flop Input Equations

- To draw the logic diagram of a sequential circuit, we need
 - The type of flip-flops
 - A list of Boolean expressions of the combinational circuits
- The Boolean functions for the circuit that generates external outputs is called output equations
- The Boolean functions for the circuit that generates the inputs to flip-flops is flip-flop input equations
 - Sometimes called excitation equations
- The flip-flop input equations provide a convenient form for specifying the logic diagram of a sequential circuit

Input:

Output:

$$D_{\Delta} = Ax + Bx$$

$$y=(A+B)x'$$

$$D_B = A'x$$

Analysis with D Flip-Flop

■ Input equation: D_A=A⊕x⊕y

(a) Circuit diagram

Present state	Inp	outs	Next state
A	x	у	A
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1
	1	1	1

(b) State table

(c) State diagram

Fig. 5-17 Sequential Circuit with D Flip-Flop

Analysis with Other Flip-Flops

- The sequential circuit using other flip-flops such as JK or T type can be analyzed as follows
 - Determine the flip-flop input equations in terms of the present state and input variables
 - List the binary values of each input equation
 - Use the corresponding flip-flop characteristic table to determine the next state values in the state table

Analysis with JK Flip-Flops (1/2)

Step 1: input equations

$$J_A=B K_A=Bx' J_B=x' K_B=A \oplus x'$$

Step 2: state equations

$$A(t+1)= JA' + K'A$$

$$= BA' + (Bx')'A$$

$$= A'B + AB' + Ax$$

$$B(t+1) = JB' + K'B$$

= $x'B' + (A \oplus x)'B$
= $B'x' + ABx + A'Bx'$

Fig. 5-18 Sequential Circuit with JK Flip-Flop

Analysis with JK Flip-Flops (2/2)

Step 3: state table

	esent tate	Input		ext ate	Flip-Flop Inputs				
Α	В	X	Α	В	J _A	KA	J _B	K _B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

Step 4: state diagram

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

Analysis with T Flip-Flops (1/2)

(a) Circuit diagram

Step 1: input equations

$$T_A=Bx$$
 $T_B=x$ $y=AB$

Step 2: state equations

$$A(t+1) = T'A + TA'$$

= $(Bx)'A + (Bx)A'$
= $AB' + Ax' + A'Bx$
 $B(t+1) = T'B + TB'$
= $x'B + xB'$

Analysis with T Flip-Flops (2/2)

Step 3: state table

	sent ate	Input		ext ate	Output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1 1		1
1	1	1	0	0	1

Step 4: state diagram

(b) State diagram

Mealy and Moore Model

- Mealy model :
 - The output is a function of **both** the present state and input
 - The output may change if the inputs change during a clock cycle

- Moore model :
 - The output is a function of the present state only
 - The output are synchronized with the clock

State Reduction

State Reduction

- Reducing the number of states in a state table, while keeping the external input-output requirements unchanged
- Example:
 - Total 7 states
 - A sequence as follows

	state	a	a	b	С	d	е	f	f	g	f	g	a
72	input	0	1	0	1	0	1	1	0	1	0	0	
	output	0	0	0	0	0	1	1	0	1	0	0	

Fig. 5-22 State Diagram

State Reduction Rules

 Two states are said to be equivalent if, for every possible inputs, they give exactly the same output and have equivalent next state

Present	Next	State	Output			
State	X=0	X=1	X=0	X=1		
а	а	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	f	0	1		
e	a	f	0			
f	g	f	0	1		
9	а	f	0	1		

Present	Next	State	Output			
State	X=0	X=1	X=0	X=1		
а	a	b	0	0		
b	С	d	0	0		
С	а	d	0	0		
d	е	f	0	1		
e	a	f	0	1		
f	e	f	0	1		

delete state g and replaced with state e

Further State Reduction

- After the first reduction, we can see that state d and state f will have the same output and next state for both x=0 and x=1
 - Further reduce one state

Present	Next	State	Output				
State	X=0	X=1	X=0	X=1			
a	a	b	0	0			
b	С	d	0	0			
С	a	d	0	0			
d	е	f	0	4			
е	a	f	0	1			
f	е	f	0	1			

Present	Next	State				
State	X=0	X=1	X=0	X=1		
a	a	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	a	0	1		
е	a	0	0	1		

delete state f and replaced with state d

Reduced State Diagram

 After reduction, the circuit has only 5 states with same input/output requirements

Original output sequence:

state	a	a	b	С	d	е	f	f	g	f	g	a
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

Reduced output sequence:

state	a	a	b	С	d	e	d	d	е	d	e	a
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

Fig. 5-23 Reduced State Diagram