- 1) a) Coloring: {1: '(B)', 2: '(B)', 3: '(R)', 4: '(B)', 5: '(R)', 6: '(R)', 7: '(R)', 8: '(B)'}
 - 1(B) + 2(B) = 3(R)
 - 1(B) + 3(R) = 4(B)
 - 1(B) + 4(B) = 5(R)
 - 1(B) + 5(R) = 6(R)
 - 1(B) + 6(R) = 7(R)
 - 1(B) + 7(R) = 8(B)
 - 2(B) + 3(R) = 5(R)
 - 2(B) + 4(B) = 6(R)
 - 2(B) + 5(R) = 7(R)
 - 2(B) + 6(R) = 8(B)
 - 3(R) + 4(B) = 7(R)
 - 3(R) + 5(R) = 8(B)
 - b) inputToDemacs(9) Python code

Fazit: Ab 9 Zahlen ist es unsatisfiable!

Code ist weiter unten im Dokument.

- 4) Zu zeigen ist, dass die Folge $\phi \vdash \psi$ valid ist genau unter der Bedingung, dass die Formel $\phi \rightarrow \psi$ ein Theorem ist. Folgende zwei Bedingungen müssen gezeigt werden.
 - 1. Gilt die Folge $\varphi \vdash \psi$, so ist die Formel $\varphi \rightarrow \psi$ ein Theorem.
 - 2. Wenn die Formel $\phi \rightarrow \psi$ ein Theorem ist, dann gilt die Folge $\phi \vdash \psi$.

Für die erste Bedingung müssen wir zeigen, dass jede True Anweisung von ϕ auch für ψ gilt. Wir nehmen an, dass die Bedingung $\phi \to \psi$ kein Theorem ist. Daraus folgt, dass es eine True Anweisung in ϕ gibt welche nicht ψ zutrifft. Allerdings durch die Bedingung, dass $\phi \vdash \psi$ gilt, kann so ein Fall nicht eintreten. \Rightarrow wir haben einen Wiederspruch. Daher gilt die Aussage, dass $\phi \to \psi$ kein Theorem ist nicht!

Die zweite Bedingung besagt, dass wenn die Formel $\phi \to \psi$ ein Satz ist, die Folge $\phi \vdash \psi$ gelten muss. Wenn $\phi \to \psi$ ein Theorem ist kann man daraus schlussfolgern, dass jeder True wert, der $\phi \to \psi$ erfüllt, auch ϕ und ψ erfüllt. Da allerdings $\phi \to \psi$ äquivalent mit $\phi \vdash \psi$ ist, wissen wir dass jeder True Wert der für ϕ gilt auch für ψ gelten muss, was wiederum bedeutet, dass $\phi \vdash \psi$ valid ist.

2) a) 1 28 -> 4 mornine 2	1
3 / n mum -> 2 2, 5	1
3/4 -> 1,4	
$\begin{cases} (n \rightarrow 1) \Rightarrow (1 \rightarrow 1) \end{cases}$	5
b) 1 1 m 1 1 g membre	-
379 127	
5 a an un	
3 1 N onen	
9 1 Ve 4-8	
10 7 (2 va) 7 i 4 - 9/	


```
1
 2 coloring = {}
 3
 4 #Anzahl der Zahlen angeben -> CNF wird generiert
 5 def inputToDemacs(countTo):
 6
 7
       counter = 0
 8
       for i in range(1, countTo):
           for j in range(i+1, countTo):
 9
10
               summe = i + j
               if summe < countTo+1:</pre>
11
                    #print(f"{i} + {j} = {summe}".format(
12
  i=i, j=j, summe=summe))
13
                    print(f"{i} {j} {summe} 0".format(i=i
   , j=j, summe=summe))
                    print(f"-{i} -{j} -{summe} 0".format(
14
   i=i, j=j, summe=summe))
15
                    counter += 2
16
17
       print(f"p cnf {countTo} {counter}".format(countTo
   =countTo, counter=counter))
18
19
20 #generiert den Farbcode für die jeweilige Zahl, je
   nach signum
21 def inputToDict(src):
       for num in src:
22
23
           if num > 0:
24
               coloring.update({abs(num): '(R)'})
25
           else:
               coloring.update({abs(num): '(B)'})
26
27
       print(coloring)
28
29
30 #gib Liste Lösungen des SAT Solvers an und erhalte
   den Color Code inklusive aller Rechnungen
31 def demacsToNatural(src):
       length = len(src)
32
33
34
       inputToDict(src)
35
```

```
File - C:\Users\Elias\PycharmProjects\pythonProject\main.py
        for i in range(1, length):
36
37
            for j in range(i+1, length):
38
                 summe = i + j
39
40
                 if summe < length+1:</pre>
                     if coloring[i] == coloring[j] and
41
   coloring[j] == coloring[summe]:
42
                          print("ERROR!")
43
44
                     else:
45
                          print("{i}{Vali} + {j}{Valj} = {
   summe}{Valsumme}".format(i=i, Vali = coloring[i], j=j
    , Valj = coloring[j], summe=summe, Valsumme = coloring
    [summe]))
46
47 #EXAMPE WITH NUMBERS 1-8
48 #inputToDemacs(8)
49 #demacsToNatural((-1, -2, 3, -4, 5, 6, 7, -8))
```