I4 - Bayesian parameter estimation in a normal model

STAT 5870 (Engineering) Iowa State University

October 4, 2024

Bayesian parameter estimation

Recall that Bayesian parameter estimation involves

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

with

- posterior $p(\theta|y)$,
- prior $p(\theta)$,
- model $p(y|\theta)$, and
- prior predictive p(y).

For this video, $\theta = (\mu, \sigma^2)$ and

$$y|\mu,\sigma^2 \sim N(\mu,\sigma^2).$$

Bayesian parameter estimation in a normal model

Let $Y_i \overset{ind}{\sim} N(\mu, \sigma^2)$ and the default prior

$$p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}.$$

Note: This "prior" is not a distribution since its integral is not finite. Nonetheless, we can still derive the following posterior

$$\mu|y\sim t_{n-1}(\overline{y},s^2/n)$$
 and $\sigma^2|y\sim IG\left(rac{n-1}{2},rac{(n-1)s^2}{2}
ight)$

where

- n is the sample size,
- $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is the sample mean, and
- $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \overline{y})^2$ is the sample variance.

Posterior for the mean

The posterior for the mean is

$$\mu|y \sim t_{n-1}(\overline{y}, s^2/n)$$

and from properties of the generalized Student's t distribution, we know

- $E[\mu|y] = \overline{y}$ for n > 2,
- $Var[\mu|y] = \frac{(n-1)s^2}{(n-3)} / n$ for n > 3,

and

$$\frac{\mu - \overline{y}}{s/\sqrt{n}} \sim t_{n-1}.$$

Credible intervals for μ

Since

$$\frac{\mu - \overline{y}}{s/\sqrt{n}} \sim t_{n-1}$$

a 100(1-a)% equal-tail credible interval is

$$\overline{y} \pm t_{n-1,a/2} \, s/\sqrt{n}$$

where $t_{n-1,a/2}$ is a t critical value such that $P(T_{n-1} < t_{n-1,a/2}) = 1 - a/2$ when $T_{n-1} \sim t_{n-1}$.

For example, $t_{10-1,0.05/2}$ is

```
n = 10

a = 0.05 # 95 \% CI

qt(1-a/2, df = n-1)
```

[1] 2.262157

Posterior for the variance

The posterior for the mean is

$$\sigma^{2}|y \sim IG\left(\frac{n-1}{2}, \frac{(n-1)s^{2}}{2}\right)$$

and from properties of the inverse Gamma distribution, we know

•
$$E[\sigma^2|y] = \frac{(n-1)s^2}{n-3}$$
 for $n > 3$,

and

$$\frac{1}{\sigma^2} \left| y \sim Ga\left(\frac{n-1}{2}, \frac{(n-1)s^2}{2}\right) \right|$$

where $(n-1)s^2/2$ is the rate parameter.

Credible intervals for σ^2

For a 100(1-a)% credible interval, we need

$$a/2 = P(\sigma^2 < L|y) = P(\sigma^2 > U|y).$$

To do this, we will find

$$a/2 = P\left(\frac{1}{\sigma^2} > \frac{1}{L} \middle| y\right) = P\left(\frac{1}{\sigma^2} < \frac{1}{U} \middle| y\right).$$

Here is a function that performs this computation

```
qinvgamma <- function(p, shape, scale = 1)
  1/qgamma(1-p, shape = shape, rate = scale)</pre>
```

Posterior for the standard deviation, σ

The variance is hard to interpret because its units are squared relative to Y_i . In contrast, the standard deviation $\sigma = \sqrt{\sigma^2}$ units are the same as Y_i .

For credible intervals (or any quantile), we can compute the square root of the endpoints since

$$P(\sigma^2 < c^2) = P(\sigma < c).$$

Find the pdf through transformations of random variables. In R code,

```
dinvgamma <- function(x, shape, scale = 1)
    dgamma(1/x, shape = shape, rate = scale)/x^2

dsqrtinvgamma = function(x, shape, scale)
    dinvgamma(x^2, shape, scale)*2*x</pre>
```

Yield data

Suppose we have a random sample of 9 lowa farms and we obtain corn yield in bushels per acre on those farms. Let Y_i be the yield for farm i in bushels/acre and assume

$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2).$$

```
yield_data <- read.csv("yield.csv")
nrow(yield_data)

[1] 9

yield_data

farm yield
1 farm1 153.5451
2 farm2 205.6999
3 farm3 178.7548
4 farm4 170.1692
5 farm5 224.7723
6 farm6 184.0806
7 farm7 169.8615
8 farm8 201.2721
9 farm9 181.6356
```

Histogram of yield

Calculate sufficient statistics

```
n = length(yield_data$yield); n

[1] 9

sample_mean = mean(yield_data$yield); sample_mean

[1] 185.5323

sample_variance = var(yield_data$yield); sample_variance

[1] 470.2817
```

Use these sufficient statistics to calculate:

- posterior densities
- posterior means
- credible intervals

Posterior density for μ

Posterior density for σ^2

Posterior means

```
# Posterior mean of population yield mean, E[mu/y]
sample_mean
[1] 185.5323
```

Posterior mean for μ is $E[\mu|y]=186$ bushels/acre.

```
# Posterior mean of population yield variance
post_mean_var = (n-1)*sample_variance / (n-3)
post_mean_var
[1] 627.0422
```

Posterior mean for σ^2 is $E[\sigma^2|y] = 627$ (bushels/acre)².

Credible intervals

```
# 95% credible interval for the population mean
a = 0.05
mean_ci = sample_mean + c(-1,1) * qt(1-a/2, df = n-1) * sqrt(sample_variance/n)
mean_ci
[1] 168.8630 202.2017
```

So a 95% credible interval for μ is (169,202) bushels/acre.

So a 95% credible interval for σ^2 is (215,1726) (bushels/acre)².

Posterior density for μ

Posterior density for σ^2

Posterior for the standard deviation, σ

```
# Posterior median and 95% CI for population yield standard deviation
sd_median = sqrt(qinvgamma(.5, shape = (n-1)/2, scale = (n-1)*sample_variance/2))
sd_median
[1] 22.63362
```

So the posterior median for σ is 23 bushels/acre.

```
# Posterior 95% CI for the population yield standard deviation
sd_ci = sqrt(var_ci)
sd_ci
[1] 14.64795 41.54537
```

So a posterior 95% credible interval for σ is (15, 42) bushels/acre.

Posterior for the standard deviation, σ

Bayesian inference in a normal model

- Prior: $p(\mu, \sigma^2) = 1/\sigma^2$
- Posterior:

$$\mu|y \sim t_{n-1}(\overline{y}, s^2/n)$$
 and $\sigma^2|y \sim IG\left(\frac{n-1}{2}, \frac{(n-1)s^2}{2}\right)$