Statystyczna analiza danych

Skład grupy: Weronika Belniak, 249048 Jakub Kudryk, 259434 Bartosz Matysiak, 252757 Mateusz Śmigielski, 260457

Spis treści

Nasz zbiór danych

02 Analiza danych

03 Ewaluacja modelu

Najciekawsze elementy kursu

O5 Czego brakowało?

1. Nasz zbiór danych

- Dane o zanieczyszczeniach powietrza
- Pochodzą z projektu Edukacyjnej Sieci Antysmogowej (ESA)
- Sieć czujników mierzących poziomy zanieczyszczeń PM2.5 oraz PM10 jest zainstalowana na szkołach w całej Polsce
- Czujniki są zainstalowane na ponad dwóch tysiącach szkół w całym kraju

1. Nasz zbiór danych

- Plik POSE-205.xlsx
- Odczyty pomiarów z danego dnia dla danej placówki

			_		
date 🔽 r	spo 🔽 city	▼ name	dew_point_avg	▼ humidity_avg	▼ pm10_avg
01.01.2022	8723 WEJHEROWO	SZKOŁA PODSTAWOWA NR 8 IM. MARTYROLOGII PIAŚNICY W WEJHEROWIE	0	67.7657070707071	33.1169696969697
01.01.2022	11470 GDYNIA	SZKOŁA PODSTAWOWA NR 48 W GDYNI	0	100	9.4109435261708
01.01.2022	15250 PRZYBOROWO	SZKOŁA PODSTAWOWA IM. ARKADEGO FIEDLERA W PRZYBOROWIE		92.7208333333333	5.8875
01.01.2022	22227 POBIEDZISKA LETNISKO	ZESPÓŁ SZKÓŁ IM. KONSTYTUCJI 3 MAJA W POBIEDZISKACH LETNISKU		93.5378472222222	11.0361111111111
01.01.2022	30660 MODRZE	ZESPÓŁ SZKOLNO-PRZEDSZKOLNY W MODRZU		4.22361111111111	50.8701388888889
01.01.2022	31112 PŁOCK	SZKOŁA PODSTAWOWA NR 5 IM. WŁADYSŁAWA BRONIEWSKIEGO W PŁOCKU	0	59.7949494949495	24.2722853535354
01.01.2022	34711 JEZIORKI	SZKOŁA PODSTAWOWA IM. PRZYJACIÓŁ WIELKOPOLSKI W JEZIORKACH		94.156944444444	19.0861111111111
01.01.2022	38778 PŁOCK	SZKOŁA PODSTAWOWA NR 20 IM. WŁADYSŁAWA BRONIEWSKIEGO W PŁOCKU	0	48.967803030303	16.4508207070707
01.01.2022	44065 BABOROWO	SZKOŁA PODSTAWOWA IM. PPŁK. MAKSYMILIANA CIĘŻKIEGO W BABOROWIE		93.590277777778	4.20625
01.01.2022	59645 POBIEDZISKA	SZKOŁA PODSTAWOWA IM. KAZIMIERZA ODNOWICIELA W POBIEDZISKACH		95.321527777778	10.4333333333333
01.01.2022	70077 KÓRNIK	SZKOŁA PODSTAWOWA NR 2 IM. TEOFILI Z DZIAŁYŃSKICH SZOŁDRSKIEJ-POTULICKIEJ W KÓRNIK	Ü	95.796527777778	23.3298611111111

['date', 'rspo', 'city', 'name', 'dew_point_avg', 'humidity_avg', 'pm10_avg', 'pm25_avg', 'pressure_avg', 'temperature_avg', 'humidity_min', 'humidity_max', 'pm10_min', 'pm10_max', 'pm25_min', 'pm25_max', 'pressure_min', 'pressure_max',

'temperature_min', 'temperature_max', 'dew_point_min', 'dew_point_max']

1. Nasz zbiór danych

- Plik rspo_data.json
- Dane szkół z Rejestru Szkół i Placówek Oświatowych

Problem z danymi: wartości "rspo" w pliku .xlsx, miały odpowiadać wartościom z pliku .json, ale jakiekolwiek próby połączenie tych danych ze sobą kończyły się porażką.

2. Analiza danych

rspo

name

dew_point_avg

_avg

_avg _avg avg

temperature pressure

humidity_min

humidity_max pm10

Ē _max

pm25_min

m. max

pressure

pressure

- 0.6

- 0.4

- 0.2

0.0

dew_point_max

dew_point_min

temperature_

Rozmieszczenie placówek pomiarowych

Patroni szkół

Analiza poprzez zastosowanie NLP do danych

- 'Jan Paweł II': 56,
- 'Mikołaj Kopernik': 45,
- Maria Konopnicka': 42,
- 'Adam Mickiewicz': 19,
- 'Janusz Korczak': 16,
- 'Jan Kochanowski': 16,
- 'Jan Twardowski': 14,
- Kornel Makuszyński: 14,
- Stefan Wyszyński: 13,
- 'Henryk Sienkiewicz': 13

```
import spacy
                   Nie można rozpoznać importu "spacy".
   from collections import Counter
   nlp = spacy.load("pl_core_news_lg")
   doc = nlp(' | '.join(df2['name']).title())
   person lemmas = []
   for ent in doc.ents:
       if ent.label_ == 'persName':
           person_lemmas.append(ent.lemma_)
   person lemmas = [x.title() for x in person lemmas if len(x) > 3]
   # get the most common names
   most_common = dict(Counter(person_lemmas).most_common(10))
   if 'Jan Paweł Ii W' in most common:
       most_common['Jan Paweł II'] = most_common['Jan Paweł Ii W']
       most_common.pop('Jan Paweł Ii W')
   most common = dict(sorted(most common.items(), key=lambda item: item[1], reverse=True))
   for k, v in most_common.items():
       print(f'{k}: {v}')

√ 4.0s

Jan Paweł II: 56
Mikołaj Kopernik: 45
Maria Konopnicka: 42
Adam Mickiewicz: 19
Janusz Korczak: 16
Jan Kochanowski: 16
Jan Twardowski: 14
Kornel Makuszyński: 14
Stefan Wyszyński: 13
Henryk Sienkiewicz: 13
```


Redukcja wymiarów

3. Ewaluacja modelu

- Wybrano modele XGBoost,
 DecisionTrees i ARIMA.
- Modele przewidują wartości zanieczyszczeń PM10 i PM25.

DecisionTreeRegressor(PM10)

XGBRegressor(PM10)

Porównanie pm25

DecisionTreeRegressor

XGBRegressor

Porównanie predykcji dla atrybutu PM10.

Porównanie predykcji dla atrybutu PM25.

Model ARIMA

Na podstawie jednego punktu pomiarowego

4. Najciekawsze elementy kursu

- Współpraca
- Wiele sposobów patrzenia na te same dane
- Temat wyjaśnialności modeli

5. Czego brakowało?

 W pewnym momencie integralność danych (a w zasadzie jej brak) okazała się przeszkodą do realizacji części naszych celów.

Dziękujemy za uwagę!

