AG seminar-M. Gallet tly geometry too kinematics Platform

Leas - hexapod or

Stewart-Gogh platforn

Base

Spherical joints Goal & classify all mobile hexagons ? Method here; use aly, yeon. Main idea: config. spaces are subset 0 + SE3 (not cpt.) -> get a proj. model of S63

-> Fobini quadric in IP bras dont
quaternions to ombed it -> but the equations of the legs turn out to be quadratic -> Should lineasize -> 4: SE3 -> (7:6) 3.7+4 -> (2m;3,24;1,22,5,h) where x = - 17 ty

7 5 (x, x)= < y, y> U honog, parameter -let X:= q(503). we get; - dimks 6, leg x = 40, X = SC3 UB where B = X n 2 h = 63 -> linear leg conditions also

Def. Given hexapod IT, we get lin. space 17 from leg conds. Define KI = X1/1
Ruk General legs => kn = (40 pts ovos ¢)
Main iden: if To mobile, then kn is a corve, furthernore intersects bdoy => KTNB:=Bn not enpty
- note result: B has only cox pts, except one seal one ("t(pof cone"), but that 15 not a realisable config.
-> we get a partition?
Junearity Pts all pts butterfly pts all pts collinearity except one collineary the collineary
-interesting uentrivial case are Inversion & similarity
-> pts of base are similar or inversions of the pts of platform. -Mibros photogeometry: \$\frac{1}{17} \cdot \frac{1}{15} \text{Mos6} \\ 15 P'us & & & & & & & & & & & & & & & & & & &

-to som ope mobility => Mibios curves of base & pitform intersect - Idea. Munufacture Möbis cornes w lots of pts In Common Construction: 1) take general 6-tpl. A in R3 11) let (:= += (P') = hose (4) (15 a suftamul Bextic corre (turns out) In Mose = IT

Cubic 3-fold

(V) ideal of C: I(C) = (ot Ot, Q2).

Eero set Y In Mose SIP4 h) has degree 6 - liaison theory! deg C-deg D= L(Pa(b)-Pa(D)) so if Disred, it is rational vu) D='(B(P') vin) (10 = 2 14 pts3 Ruk pts in COD correspond to pls in B. IK) pick leg length's s.t. Km (B with mult 23 => we get (Br) 23.14=42740