Entraı̂nement : conception d'algorithme (partie 1)

Les solutions peuvent être rédigées en **pseudo-code**, **python**, **C**, **C++ ou Java**. La syntaxe du langage n'a pas d'importance tant que celle-ci reste **cohérente** et **compréhensible**. (Dans les exemples, les solutions sont données en pseudo-code).

Grille d'évaluation

A (20)	Les deux algorithmes répondent correctement aux problèmes posés, ils					
	sont écrits de façon claire et compacte et sont de complexité optimale.					
B (16)	Le principe général des deux algorithmes est le bon pour obtenir une					
	complexité optimale cependant certains cas ont été oubliés ou des éléments					
	non essentiels rajoutés (tests inutiles, écriture compliquée) ou bien on					
	trouve des "petites" erreurs type indice, signes, etc. Ou alors, un seul					
	algorithme a été trouvé mais c'est le cas "difficile".					
C (11)	Le principe général du premier algorithme est le bon pour obtenir une					
	complexité optimale mais pas le second.					
D (8)	Il y a une tentative de réponse sur au moins le premier algorithme avec					
	une tentative de complexité améliorée mais la solution est fausse ou la					
	complexité non optimale.					
E (1)	Soit les deux algorithmes sont faux ou manquant soit ils sont justes mais					
	avec une complexité non optimale sans aucune tentative d'amélioration.					

Exercice 1.

Donner les deux algorithmes suivant avec complexité optimale. (Le second ne compte que si vous avez écrit le premier)

- (1) Un algorithme qui prend en entrée le tableau trié T de taille n et un entier v et qui renvoie le plus petit indice i tel que T[i] > v. Par exemple, pour le tableau ci-dessus et v = 160, l'algorithme répond 4. Si toutes les valeurs sont plus inférieures ou égales à v, l'algorithme renvoie n.
- (2) Un algorithme qui prend en entrée le tableau trié T et deux entiers min et max et qui renvoie le nombre de valeurs v du tableau telle que $min < v \le max$. Par exemple, pour min = 200 et max = 300, l'algorithme doit répondre 2. Pour min = 0 et max = 1000, l'algorithme doit répondre 10.

Solution

(Remarque: je donne la solution itérative mais ça marche aussi en récursif)

```
Algo1
Input : Un tableau d'entier trié T de taille n, un entier v  \begin{array}{l} \text{Proc\'ed\'e} : \\ i <- 0 \\ j <- n \\ \text{Tant que } i < j : \\ m <- (i+j)/2 \\ \text{Si } v < T[m] : \\ \text{Si } m = 0 \text{ ou } T[m-1] <= v : \\ \text{Retourner } m \end{array}
```

```
j <- m
Sinon:
    i <- m+1
Retourner n

Algo2
Input: Un tableau d'entier trié T de taille n, deux entiers min et max
Procédé:
    a <- Algo1(T, min)
    b <- Algo1(T, max)
    Retourner b - a
```

La complexité optimale est donc O(log(n)), on résout le problème par dichotomie.

Exemple de "petites" erreurs type B: vous avez oublié de retourner n à la fin, vous avez oublié de tester m=0, vous avez inversé les comparaisons.

Exercice 2.

Le problème est le suivant : on a accès en lecture à un certain tableau de données qui contient une suite de 0 suivi d'une suite de 1. Exemple : un tableau de taille 10 qui contiendrait trois 0 suivi de sept 1. Une fois qu'on a lu un 1, il n'y aura plus que des 1. On cherche à connaître la position du premier 1.

Pour les deux cas suivant, donnez un algorithme optimal qui donne la position du premier 1.

(1) **Premier cas** : on prend entier le tableau Tab ainsi qu'un entier n qu'on suppose être la taille du tableau. Les positions sont indexées à partir de 0.

Cas particuliers : si le tableau ne continent que des 0, on retourne sa taille, s'il ne contient que des 1, on retourne 0.

(2) **Deuxième cas** : on considère que le tableau est de taille infinie, c'est-à-dire que Tab[i] donne toujours une valeur, même si i est très grand.

Cas particulier : si le tableau ne contient que des 1, on retourne 0. On a la certitude que le tableau ne contient pas que des 0.

Solution

```
Algo1
Input: Tab, n
Procédé :
    i < -0
    j <- n
    Tant que i < j:
        m < - (i+j)/2
        Si T[m] = 1:
            Si m = 0 ou T[m-1] = 0
                 Retourner m
            j < - m
        Sinon:
            i <- m+1
    Retourner n
Algo2
Input : Tab
Procédé :
    i <- 1
    Tant que Tab[i] = 0:
        i < -i*2
```

```
Retourner Algo1 (Tab, i)
```

Remarque : dans les deux cas la complexité est O(log(n)).

Exercice 3 (Partiel 2017-18).

Problème : tester si un entier n est un carré parfait, c'est-à-dire est-ce qu'il existe k tel quel $k \times k = n$. Par exemple : 0, 1, 4, 9 et 16 sont des carrés parfait mais pas 2 et 5.

Donner **deux** algorithmes qui répondent au problème (seules les opérations mathématiques de base sur des entiers sont autorisées). Les deux doivent avoir une complexité **sous-linéaire**, c'est-à-dire inférieure stricte à O(n). Cependant l'un des deux sera beaucoup plus efficace que l'autre.

Remarque : si n n'est pas un carré parfait, il existera k tel que $k \times k < n$ et $(k+1) \times (k+1) > n$.

Solution

Algorithme 1 en $O(\sqrt{n})$

```
Algo1:
    i <- 0
Tant que i*i < n:
        i <- i+1
Si i*i = n:
        Retourner Vrai
Retourner Faux
```

Algorithme 2 en $O(\log(n))$

On cherche l'entier k tel que $k \times k = n$ dans les entiers plus petits ou égaux à n: on peut utiliser la dichotomie.

```
Algo2
i <- 0
j <- n+1
Tant que i < j:
    m <- (i+j) /2
    Si m*m = n:
        Retourner Vrai
    Si m*m < n:
        i <- m+1
    Sinon:
        j <- m
Retourner Faux
```

Question donnée au partiel 1 2017-2018, résultats obtenus :

A	В	С	D	Е
9.5%	9.5%	62%	19%	0%

 $\overline{2}$ étudiants ont obtenu A: ils ont donné les deux algos. 2 étudiants ont obtenu B: ils ont donné l'algo 2 dichotomique mais pas pas l'algo 1 (remarque: ce cas ne faisait pas partie du barème d'origine, je l'ai rajouté). Les étudiants qui ont obtenu C sont ceux qui ont donné une version "plus ou moins" correcte de l'algo 1. Les étudiants qui ont obtenus D ont soit donné un algorithme linéaire, soit un algorithme avec une erreur qui ne me permettait pas de décider si la complexité finale de l'algo corrigé serait O(n) ou $O(\sqrt{n})$.

Exemple d'un algorithme qui ne marche pas mais qui obtient C:

```
Retourner Faux
Sinon :
Retourner Vrai
```

La boucle s'arrête au bon moment cependant le test final ne marche pas (l'algo renvoie toujours "Faux"). Le principe général pour obtenir une complexité $O(\sqrt{n})$ est bien là malgré l'erreur : l'étudiant obtient C.

Exemple de deux algorithmes qui obtiennent D:

```
Algo1:
Pour i allant de 0 à n/2:
Si i*i = n:
Retourner Vrai
Retourner Faux
```

Quand n n'est pas un carré parfait, cet algorithme a une complexité O(n), il est donc linéaire. On teste de nombreuses valeurs "inutiles" car une fois que i * i > n, ça ne sert plus à rien de continuer la boucle.

```
Algo1
Pour i allant de 0 à n/2:
Si (i*i < n) et ((i+1)*(i+1)) > n:
Retourner Faux
Sinon
Retourner Vrai
```

Dans ce cas, la boucle s'arrête immédiatement. Il est impossible de savoir si la version corrigée effectuerait la boucle jusqu'au bout ou non, donc le "principe général" n'est pas bon.

Exercice 4 (Partiel 2018-2019).

On cherche à évaluer une donnée numérique non entière x > 1 par un entier (le plus grand entier n tel que n < x). On ne peut pas lire directement la donnée, on n'a seulement accès à la fonction suivante :

```
\inf X(k) : Renvoie True si k est strictement inférieur à la donnée x et False sinon.
```

- (1) **Premier cas**: on sait que x est compris entre deux entiers v1 < x < v2. Écrivez un algorithme optimal qui prend en paramètre v1 et v2 et renvoie k, l'estimation entière de x. **Donnez sa complexité.** (On suppose que infX a une complexité O(1)).
- (2) **Deuxième cas** : on ne sait rien de la donnée x. Écrivez un algorithme optimal qui renvoie k, l'estimation entière de x. **Donnez sa complexité.**

Remarque : vous avez le droit d'utiliser la première question pour résoudre la deuxième. Solution

```
Algo2:
k <- 1
Tant que infX(k):
k <- k*2
Renvoyer Algo1(k/2,K)
```

Complexité des 2 algorithmes : $O(\log(x))$.

Question donnée au partiel 1 2018-2019, résultats obtenus :

A	В	С	D	Е
18%	27%	40%	13%	0%