7.11 1) Désignons par x et y la longueur et la largeur du rectangle.

Son aire vaut f(x, y) = x y.

- 2) Le théorème de Pythagore donne $x^2 + y^2 = 4$.
- 3) On en tire $y = \sqrt{4 x^2}$.

(La possibilité $y=-\sqrt{4-x^2}$ est à écarter, vu que la largeur y du rectangle ne saurait être négative.)

Par suite, l'aire du rectangle est donnée par $f(x) = x\sqrt{4-x^2}$.

Pour que les dimensions du rectangle restent positives, on a $D_f = [0; 2]$.

4) Puisque l'aire du rectangle est positive et que la fonction $x \mapsto x^2$ est croissante sur \mathbb{R}_+ , il revient au même de maximiser l'aire du rectangle ou de maximiser le carré de l'aire du rectangle.

On recherche ainsi le maximum de la fonction $f^2(x) = x^2 (4 - x^2)$ sur l'intervalle $D_f = [0; 2]$.

$$(f^{2}(x))' = (x^{2}(4-x^{2}))' = (4x^{2}-x^{4})' = 8x - 4x^{3} = 4x(2-x^{2})$$
$$= 4x(\sqrt{2}+x)(\sqrt{2}-x)$$
$$-\sqrt{2} \qquad 0 \qquad \sqrt{2}$$

	$-\sqrt{2}$ 0 $\sqrt{2}$			
4x	_	- 0	+	+
$\sqrt{2} + x$	- () +	+	+
$\sqrt{2}-x$	+	+	+ 0	_
$(f^2)'$	+ () — (+ 0	_
f^2	7 m	ax 🔀 mi	in 7 ma	ıx 🔀

$$f(\sqrt{2}) = \sqrt{2}\sqrt{4 - (\sqrt{2})^2} = \sqrt{2}\sqrt{2} = 2$$

$$f(0) = 0\sqrt{4 - 0^2} = 0$$

$$f(2) = 2\sqrt{4 - 2^2} = 0$$

5) L'aire du rectangle est maximale si sa longueur vaut $x = \sqrt{2}$.

Sa largeur vaut alors $y = \sqrt{4 - (\sqrt{2})^2} = \sqrt{2}$.

On remarque que le rectangle d'aire maximale que l'on peut inscrire dans un cercle est un carré.