Linear Regression

Peter von Rohr

2024-02-26

Goal

Assessment of relationship between

- a given variable (response) and
- other measurements or observations (predictors) on the same animal

Example

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Diagram

Observations

- relationship between breast circumference and body weight: heavier animals tend to have larger values for breast circumference
- lacktriangle same relationship across whole range ightarrow linear relationship

Regression Model

- quantify relationship between body weight and breast circumference
- practical application: measure band for animals

Created by Agniraj Chatterji from Noun Project

Created by Agniraj Chatterji from Noun Project

Model Building

lacktriangle expected body weight (E(y) in kg) based on an observed value of x cm for breast circumference

$$E(y) = b_0 + b_1 * x$$

- $\blacktriangleright b_0$ and b_1 are unknown parameters of the model
- lacktriangleright model is linear function of parameters ightarrow linear model

Parameter Estimation

- \blacktriangleright How to find values for b_0 and b_1
- several techniques available: start with Least Squares

Least Squares

Estimators

Find values \hat{b}_0 and \hat{b}_1 such that

$$\mathbf{e}^T\mathbf{e} = \sum_{i=1}^N e_i^2 = \sum_{i=1}^N \left[y_i - E(e_i)\right]^2 = \sum_{i=1}^N \left[y_i - b_0 - b_1 * x_i\right]^2$$

is minimal

Minimization

$$\begin{split} \frac{\partial \mathbf{e}^T \mathbf{e}}{\partial b_0} &= -2 \sum_{i=1}^N \left[y_i - b_0 - b_1 x_i \right] \\ &= -2 \left[\sum_{i=1}^N y_i - N b_0 - b_1 \sum_{i=1}^N x_i \right] \end{split}$$

$$\begin{split} \frac{\partial \mathbf{e}^T \mathbf{e}}{\partial b_1} &= -2 \sum_{i=1}^N x_i \left[y_i - b_0 - b_1 x_i \right] \\ &= -2 \left[\sum_{i=1}^N x_i y_i - b_0 \sum_{i=1}^N x_i - b_1 \sum_{i=1}^N x_i^2 \right] \end{split}$$

Minimization II

- Expressions $\frac{\partial \mathbf{e}^T \mathbf{e}}{\partial b_0}$ and $\frac{\partial \mathbf{e}^T \mathbf{e}}{\partial b_1}$ both set to 0
- lacksquare Solutions obtained will be called $\widehat{b_0}$ and $\widehat{b_1}$
- First introduce simplifying notation

Notation

$$x. = \sum_{i=1}^N x_i \quad \text{and} \quad \bar{x}. = \frac{x}{N}$$

$$y. = \sum_{i=1}^N y_i \quad \text{and} \quad \bar{y}. = \frac{y}{N}$$

$$(x^2). = \sum_{i=1}^N x_i^2$$

 $(xy). = \sum_{i=1}^{N} x_i y_i$

Normal Equations

$$N\widehat{b_0} + \widehat{b_1}x. = y.$$

$$\widehat{b_0}x. + \widehat{b_1}(x^2). = (xy).$$

Solutions

$$\hat{b}_0 = \bar{y}. - \hat{b}_1 \bar{x}.$$

$$\hat{b}_1 = \frac{(xy). - N\bar{x}.\bar{y}.}{(x^2). - N\bar{x}.^2}$$

Example Dataset

$$N = 10, \ \bar{x}. = 179.9, \ \bar{y}. = 495.2$$

$$(xy)$$
. = 8.91393 × 10⁵, (x^2) . = 3.23701 × 10⁵

$$\hat{b}_1 = \frac{8.91393 \times 10^5 - 10 * 179.9 * 495.2}{3.23701 \times 10^5 - 10 * 179.9^2} = 8.673$$

$$\hat{b}_0 = 495.2 - 8.6732348 * 179.9 = -1065.115$$

Estimates in R

```
summary(lm_bw_bc)
Call:
lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl reg)
Residuals:
    Min
             10 Median
                              30
                                      Max
-17.3941 -6.5525 -0.0673 9.3707 13.2594
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -1065.115 255.483 -4.169 0.003126 **
`Breast Circumference` 8.673 1.420 6.108 0.000287 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11.08 on 8 degrees of freedom
Multiple R-squared: 0.8234. Adjusted R-squared: 0.8014
F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```

lm_bw_bc <- lm(`Body Weight` ~ `Breast Circumference`, data = tbl_reg)</pre>

General Case

- More x variables ...
- Matrix Vector Notation

$$\mathbf{X} = \begin{bmatrix} x_{10} & x_{11} & x_{12} \\ x_{20} & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ x_{N0} & x_{N1} & x_{N2} \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \ \mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_N \end{bmatrix} \ \text{and} \ \mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$