

1.
$$a = \cos 0 + \cos \frac{\pi}{3} + \cos \frac{2\pi}{3} = 1 + \frac{1}{2} - \frac{1}{2} = 1$$

$$b = \cos\left(0 + \frac{\pi}{3} + \frac{2\pi}{3}\right) = \cos\pi = -1$$

Resposta: (B) a + b = 0

2.

2.1. Por aplicação da lei dos senos:

$$\frac{\sin 65^{\circ}}{40} = \frac{\sin 35^{\circ}}{\overline{AC}} = \frac{\sin 80^{\circ}}{\overline{BC}}$$

Daqui resulta:

$$\overline{AC} = \frac{40\sin 35^{\circ}}{\sin 65^{\circ}} \quad \text{e} \quad \overline{BC} = \frac{40\sin 80^{\circ}}{\sin 65^{\circ}}$$

Seja *P* o perímetro do triângulo.

$$P = 40 + \frac{40\sin 35^{\circ}}{\sin 65^{\circ}} + \frac{40\sin 80^{\circ}}{\sin 65^{\circ}} \approx 108,77947$$

Resposta: 108,8

Alternativa à aplicação direta da lei dos senos.

Sugestão:

- Interpretar a **figura 1** e determinar \overline{AD} e \overline{AC} (por esta ordem).
- Interpretar a **figura 2** e determinar \overline{CE} e \overline{BC} (por esta ordem).

Figura 1

Figura 2

- Calcular o perímetro que é dado por: $40 + \overline{AC} + \overline{BC}$
- **2.2.** Sabe-se que $\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{1}{3}$.

Novo Espaço - Matemática A, 11.º ano

Proposta de resolução do teste de avaliação [novembro - 2021]

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha = -\frac{1}{3}.$$

Então,
$$\sin \alpha = \frac{1}{3}$$
, com $\alpha \in \left[0, \frac{\pi}{2}\right]$

Simplificando o que é pedido, tem-se:

$$\sin\left(-\frac{9\pi}{2} - \alpha\right) + \tan\left(\alpha - 3\pi\right) = -\sin\left(\frac{\pi}{2} + \alpha\right) + \tan\alpha = -\cos\alpha + \tan\alpha \quad (1)$$

Sabe-se que: $\sin^2 \alpha + \cos^2 \alpha = 1$

Então:
$$\frac{1}{9} + \cos^2 \alpha = 1 \Leftrightarrow \cos^2 \alpha = \frac{8}{9}$$

Como
$$\alpha \in \left]0, \frac{\pi}{2}\right[$$
, então $\cos \alpha = \frac{2\sqrt{2}}{3}$.

Como
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, então $\tan \alpha = \frac{1}{3} \times \frac{3}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$.

Substituindo em (1):
$$-\cos \alpha + \tan \alpha = -\frac{2\sqrt{2}}{3} + \frac{\sqrt{2}}{4} = -\frac{5\sqrt{2}}{12}$$

Resposta:
$$-\frac{5\sqrt{2}}{12}$$

3. Medida da área do trapézio [*ABCD*]:

$$\frac{\overline{AB} + \overline{CD}}{2} \times \overline{OC} = \frac{2 + \cos\left(\frac{\pi}{3}\right)}{2} \times \sin\left(\frac{\pi}{3}\right) = \frac{2 + \frac{1}{2}}{2} \times \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{8}$$

Resposta: (A)
$$\frac{5\sqrt{3}}{8}$$

4.

4.1. As abcissas dos pontos A e C são soluções da equação f(x) = 2,75.

Novo Espaço - Matemática A, 11.º ano

Proposta de resolução do teste de avaliação [novembro - 2021]

$$f(x) = 2,75 \Leftrightarrow 2,5+0,5\sin x = 2,75 \Leftrightarrow \sin x = \frac{1}{2} \Leftrightarrow$$
$$\Leftrightarrow x = \frac{\pi}{6} + 2k\pi \lor x = \frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}$$

Considerando as soluções positivas, por ordem crescente, as abcissas de A e de C, são, respetivamente, a segunda e a terceira soluções.

Assim:

Abcissa do ponto *A*:
$$\frac{5\pi}{6}$$

Abcissa do ponto
$$C$$
: $\frac{13\pi}{6}$

A diferença entre as abcissas de
$$C$$
 e de A é:
$$\frac{13\pi}{6} - \frac{5\pi}{6} = \frac{8\pi}{6} = \frac{4\pi}{3}$$

Resposta:
$$\frac{4\pi}{3}$$

4.2. A abcissa do ponto B é solução da equação f(x) = 2,25.

$$f(x) = 2,25 \Leftrightarrow 2,5+0,5\sin x = 2,25 \Leftrightarrow \sin x = -\frac{1}{2} \Leftrightarrow x = -\frac{\pi}{6} + 2k\pi \quad \forall \quad x = \frac{7\pi}{6} + 2k\pi, k \in \mathbb{Z}$$

Considerando as soluções positivas, a abcissa do ponto *B* é a segunda solução:

A abcissa do ponto $B \notin \frac{11\pi}{6}$.

Resposta:
$$\frac{11\pi}{6}$$

5.
$$3 + 5\cos\left(x - \frac{\pi}{2}\right) = 0 \Leftrightarrow 3 + 5\sin x = 0 \Leftrightarrow \sin x = -\frac{3}{5}$$

A equação $\sin x = -\frac{3}{5}$ no intervalo $\left] -\frac{3\pi}{2}, 0 \right[$ tem duas soluções: uma no

intervalo
$$\left] -\pi, -\frac{\pi}{2} \right[$$
 e outra no intervalo $\left] -\frac{\pi}{2}, 0 \right[$.

6. A amplitude, em graus, do ângulo formado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} é dada por:

$$\frac{360-2\times60}{2}$$
, ou seja, 120° .

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AD}\| \times \cos(120^\circ) = 4 \times 4 \times \left(-\frac{1}{2}\right) = -8$$

Resposta: (C) -8

7.

7.1.
$$f(k) = \frac{3}{8} \Leftrightarrow \sin(k)\cos(k) = \frac{3}{8}$$

 $(\sin(k) + \cos(k))^2 = \sin^2(k) + \cos^2(k) + 2\sin(k)\cos(k) = 1 + 2 \times \frac{3}{8} = \frac{7}{4}$

Resposta: $\frac{7}{4}$

7.2.
$$\tan(x) f(x) = \frac{3}{4} \land x \in \left] 0, \frac{\pi}{2} \right[\Leftrightarrow \frac{\sin(x)}{\cos(x)} \times \sin(x) \cos(x) = \frac{3}{4} \land x \in \left] 0, \frac{\pi}{2} \right[\Leftrightarrow \frac{\pi}{2} = \frac{\pi}{2}$$

$$\Leftrightarrow \sin^2(x) = \frac{3}{4} \land x \in \left]0, \frac{\pi}{2}\right[\Leftrightarrow \sin(x) = \pm \frac{\sqrt{3}}{2} \land x \in \left]0, \frac{\pi}{2}\right[\Leftrightarrow x = \frac{\pi}{3}$$

Resposta: Conjunto-solução: $\left\{\frac{\pi}{3}\right\}$

7.3. $f(\alpha) = \sin(\alpha)\cos(\alpha)$

A área sombreada é dada pela diferença entre a área do triângulo [PQR] e a área do triângulo [PQO].

Área do triângulo [
$$PQR$$
]:
$$\frac{\overline{PQ} \times \overline{RM}}{2} = \frac{2\cos(\alpha) \times 2\sin(\alpha)}{2} = 2\sin(\alpha)\cos(\alpha)$$

Área do triângulo [
$$PQO$$
]:
$$\frac{\overline{PQ} \times \overline{OM}}{2} = \frac{2\cos(\alpha)\sin(\alpha)}{2} = \cos(\alpha)\sin(\alpha)$$

Área da região sombreada: $2\sin(\alpha)\cos(\alpha) - \sin(\alpha)\cos(\alpha) = \sin(\alpha)\cos(\alpha)$

Conclui-se que a área da região sombreada é dada por $f(\alpha)$.

Novo Espaço - Matemática A, 11.º ano

7.4.
$$f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$$

A medida da área máxima é $\frac{1}{2}$.

80% de
$$\frac{1}{2}$$
 é $0.8 \times \frac{1}{2}$, ou seja, 0.4.

Recorrendo às capacidades gráficas da calculadora basta resolver graficamente a equação f(x) = 0.4.

Resposta: $\alpha = 0.46$; $\alpha = 1.11$

8.
$$y = \frac{1}{2}x + b, b < 0$$

As coordenadas do ponto A são (0,b).

A abcissa do ponto $B \in x$ tal que $0 = \frac{1}{2}x + b$.

$$0 = \frac{1}{2}x + b \iff x = -2b$$

As coordenadas do ponto B são (-2b,0).

$$\overrightarrow{AO} = O - A = (0,b)$$
 e $\overrightarrow{AB} = B - A = (-2b,-b)$

$$\overrightarrow{AO} \cdot \overrightarrow{AB} = (0,-b) \cdot (-2b,-b) = 0 + b^2 = b^2$$

Resposta: $\overrightarrow{AO} \cdot \overrightarrow{AB} = b^2$