

CICLO IME 4 - QUÍMICA

TURMA IME-ITA

2022

DADOS

Constantes

- Aceleração da gravidade $g=9.8\,\mathrm{m\,s^{-2}}$
- \bullet Carga elementar $e=1.6\times 10^{-19}\,\mathrm{C}$
- ullet Constante de Avogadro $N_{
 m A}=6.0 imes10^{23}\,{
 m mol}^{-1}$
- \bullet Constante de Planck $h=6.6\times 10^{-34}\,\mathrm{J\,s}$
- \bullet Constante de Rydberg $\mathcal{R}_{\infty} = 1.1 \times 10^7 \, \mathrm{m}^{-1}$
- \bullet Constante dos Gases $R=8.3\,\mathrm{J\,K^{-1}\,mol^{-1}}$
- \bullet Velocidade da luz no vácuo $c=3\times 10^8\,\mathrm{m\,s^{-1}}$

Elementos

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	Ar	18	39,95
He	2	4,00	K	19	39,10
С	6	12,01	Ca	20	40,08
N	7	14,01	Cr	24	52,00
0	8	16,00	Mn	25	54,94
F	9	19,00	Fe	26	55,84
Ne	10	20,18	Cu	29	$63,\!55$
Na	11	22,99	Zn	30	$65,\!38$
Mg	12	24,31	Br	35	79,90
S	16	32,06	Pd	46	106,42
CI	17	35,45	I	53	126,90

O momento magnético, μ , é uma medida da força com que uma substância paramagnética é atraída por um campo magnético externo.

$$\mu = \mu_{\rm B} \sqrt{n(n+2)}$$

Sendo n o número de elétrons desemparelhados e $\mu_{\rm B}$, o magneton de Bohr, é uma constante.

- a) **Determine** o número atômico do tecnécio, Tc, que possui momento magnético $5{,}92\mu_B$ e cinco níveis de energia em sua distribuição eletrônica.
- b) **Apresente** a distribuição eletrônica do paládio, Pd, espécie diamagnética.
- c) Apresente a distribuição eletrônica do cromo, Cr, que possui momento magético $6.93 \mu_B$.

2ª QUESTÃO

Valor: 1,00

A reação de hidrólise alcalina de éster é de primeira ordem em relação ao éster. Em um experimento deseja-se estudar a reação do etanoato de etila, ${\rm AcOEt}$, com hidróxido de sódio formando íons acetato, ${\rm AcO}^-$, e etanol ${\rm EtOH}$.

$$AcOEt + OH^{-} \longrightarrow OAc^{-} + EtOH$$

Em um experimento para investigar a cinética dessa reação foi preparada uma solução $250\,\mathrm{mmol}\,\mathrm{L}^{-1}$ em etanoato de etila e $2.5\,\mathrm{mmol}\,\mathrm{L}^{-1}$ em hidróxido de sódio. A condutividade da solução foi medida em função do tempo:

() Tempo, t/\min	60	120	180	240	300	360	420	480
() Condutividade, $G(t)/\mathrm{mScm^{-1}}$		73	65	59	55	52	50	48
()								

Após um tempo muito longo a condutividade é $G_{\infty} = 45\,\mathrm{mS\,cm^{-1}}.$

- a) **Prove** que a concentração de íons hidróxido em um dado instante t é proporcional à $G(t) G_{\infty}$.
- b) **Determine** a ordem da reação em relação aos íons hidróxido.
- c) **Determine** a constante cinética da reação.

Dados

• ln(2) = 0.7

3ª QUESTÃO Valor: 1,00

Uma maleta contendo uma substância não identificada foi abandonada em um aeroporto. A maleta foi interceptada por militares do exército brasileiro e enviada para um laboratório de análises químicas. O laboratório realizou os seguintes procedimentos para a identificação da substância:

- 1. Uma amostra de $21.6\,\mathrm{g}$ foi dissolvida em $500\,\mathrm{g}$ de água destilada. O ponto de congelamento da solução resultante foi $-0.186\,^{\circ}\mathrm{C}$.
- 2. Uma amostra de $4{,}32\,\mathrm{g}$ da substância foi decomposta convertendo todos os átomos de cloro em ácido perclórico. O ácido perclórico formado foi titulado com $20\,\mathrm{mL}$ hidróxido de sódio $2\,\mathrm{mol}\,\mathrm{L}^{-1}$.
- 3. Uma amostra de $8,64\,\mathrm{g}$ foi colocada em um cilindro com excesso de oxigênio e ignitada. O gases de exaustão foram passados por um leito de sílica e em seguida por um leito contendo uma solução de hidróxido de sódio. A massa do primeiro leito aumentou em $3,24\,\mathrm{g}$ e a do segundo aumentou em $10,6\,\mathrm{g}$.

Análises qualitativas posteriores confirmaram que a substância era composta apenas por carbono, nitrogênio, oxigênio e cloro.

- a) Determine a massa molar da substância.
- b) Apresente as reações balanceadas referentes aos procedimentos 2 e 3.
- c) Determine a fórmula molecular da substância.

Dados

• Constante crioscópica da água, $k_c(H_2O) = 1.86 \,\mathrm{K\,kg\,mol}^{-1}$

4ª QUESTÃO Valor: 1,00

O ácido isociânico, HNCO, pode ser preparado pelo aquecimento de uma solução isocianato de sódio, NaNCO, na presença de ácido oxálico, $H_2C_2O_4$. formando oxalato de sódio como subproduto. O ácido isociânico é isolado e dissolvido em água. Em um experimento $32,5\,\mathrm{g}$ de isocianato de sódio foram misturados com $32,5\,\mathrm{g}$ de ácido oxálico. O ácido isociânico formado foi dissolvido em $600\,\mathrm{mL}$ de água

- a) Apresente a equação balanceada de preparação do ácido isociânico.
- b) **Determine** o pH da solução resultante.
- c) Determine o volume de água de deve ser adicionado para que o pH da solução dobre.

Dados

• Constante de ionização do ácido isociânico, $K_{\rm a}({\rm HNCO})=1.2\times10^{-4}$

5^a QUESTÃO Valor: 1,00

O Método de Dumas é uma técnica clássica para determinação da densidade do vapor de compostos voláteis. Neste método, uma amostra líquida é vaporizada em um recipiente de vidro mantido em temperatura constante. O recipiente é então selado, resfriado a temperatura ambiente, e pesado. Conhecida a massa da amostra, é possível determinar a densidade do vapor a uma dada temperatura e pressão. Esse método foi empregado para determinar o grau de dimerização do ácido acético em fase gasosa:

$$2 \text{ CH}_3 \text{COOH}(g) \Longrightarrow (\text{CH}_3 \text{COOH})_2(g)$$

Em um experimento realizado a $160\,^{\circ}\mathrm{C}$ e sob pressão total de $1\,\mathrm{atm}$, foram coletados $40.7\,\mathrm{mg}$ de vapor de ácido acético em um recipiente de $20\,\mathrm{mL}$. Quando o mesmo experimento é realizado a $200\,^{\circ}\mathrm{C}$, novamente com pressão total de $1\,\mathrm{atm}$, foram coletados $33.5\,\mathrm{mg}$ de vapor no mesmo recipiente de $20\,\mathrm{mL}$.

- a) **Determine** a constante de equilíbrio para a dimerização do ácido acético a 160 °C.
- b) **Determine** a constante de equilíbrio para a dimerização do ácido acético a 200 °C.
- c) **Determine** a entalpia de dimerização do ácido acético.

Dados

• $\ln(3,4) = 1,2$

6^a QUESTÃO

Valor: 1,00

Um reator de $1\,\mathrm{L}$ é carregado com tetróxido de dinitrogênio. O $\mathrm{N_2O_4}$ sofre dissociação formando dióxido de nitrogênio, um gás castanho. O sistema é mantido a $300\,\mathrm{K}$ e o equilíbrio é estabelecido.

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$
 $K = 4$

A pressão total no equilíbrio é $950\,\mathrm{torr}.$

- a) Apresente a estrutura molecular do NO_2 e do N_2O_4 .
- b) **Determine** a pressão inicial de N_2O_4 .
- c) **Determine** a pressão parcial de cada gás após a adição de $760\,\mathrm{torr}$ de gás nitrogênio ao reator.
- d) **Determine** a pressão parcial de cada gás após a duplicação do volume do reator.
- e) **Explique** o efeito do aumento da temperatura na composição do equilíbrio

7ª QUESTÃO Valor: 1,00

Um funcionário de uma fábrica de explosivos desapareceu. Acredita-se que ele caiu em um tanque de $7000\,\mathrm{L}$ contendo uma mistura sulfonítrica concentrada e foi *completamente dissolvido*. O engenheiro químico responsável pela fábrica foi encarregado de verificar a veracidade dessa hipótese. Para isso, o engenheiro verificou se a quantidade de fósforo no tanque era compatível com um corpo dissolvido pelo seguinte procedimento:

- 1. Foi coletada uma alíquota de $100\,\mathrm{mL}$ da solução no tanque.
- 2. O fósforo na alíquota foi integralmente convertido a fosfato pelo tratamento com permanganato de potássio.
- **3.** Foram adicionados $10\,\mathrm{mL}$ de uma solução $0.2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em nitrato de prata à alíquota.
- 4. O excesso de nitrato de prata foi retrotitulado com $20\,\mathrm{mL}$ de uma solução $0.1\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de potássio.
- 5. As etapas 1 a 4 foram repetidas tomando a solução de outro tanque idêntico (sem um possível corpo dissolvido). Na última etapa foram consumidos $6\,\mathrm{mL}$ da mesma solução de cloreto de potássio.
 - O funcionário pesava $70\,\mathrm{kg}$ e o corpo humano possui cerca de $0,\!62\,\%$ de fósforo.
- a) Apresente as reações iônicas balanceadas que ocorrem nas etapas 3 e 4.
- b) **Determine** a massa de fósforo no corpo do funcionário.
- c) Verifique se o funcionário pode ter sido dissolvido pela mistura sulfonítrica.

8^a QUESTÃO Valor: 1,00

Alunos do Instituto Militar de Engenharia prepararam um precursor para a síntese de fármacos de acordo com o esquema reacional:

Apresente a estrutura dos compostos A, B, C, D e E.

O elemento \mathbf{X} é de grande importância na indústria, sob a forma de diversos compostos. Além disso, também esta presente em alguns polímeros, inclusive orgânicos, como proteínas, sendo responsável pela forma espacial destes, devido à ligações intermoleculares específicas entre os átomos de \mathbf{X} . Em CNTP, \mathbf{X} apresenta-se como um sólido amarelo sob uma de suas formas cristalinas. O elemento \mathbf{X} , em excesso nas operações de fusão metalúrgica e refino do petróleo, é queimado a \mathbf{XY}_2 e \mathbf{XY}_3 , sendo \mathbf{Y} o elemento de menor raio atômico do grupo de \mathbf{X} na Tabela Periódica. Os compostos \mathbf{XY}_2 e \mathbf{XY}_3 reagem com $\mathbf{W}_2\mathbf{Y}$, gerando produtos bastante danosos ao meio ambiente. Também é possível encontrar na natureza um ácido volátil $\mathbf{W}_2\mathbf{X}$. O elemento \mathbf{X} também forma um composto \mathbf{XZ}_6 , onde \mathbf{Z} é o halogênio pertencente ao mesmo período de \mathbf{Y} na Tabela Periódica.

- a) Apresente a identidade de X, Y, Z e W.
- b) Classifique os compostos XY_2 e XY_3 quanto a sua polaridade.
- c) Compare o comprimento das ligações ${\bf X}-{\bf Y}$ nos compostos ${\bf XY}_3,\,{\bf XY}_3{}^{2-}$ e ${\bf XY}_4{}^{2-}.$
- d) Apresente a geometria molecular para a molécula XZ₆.
- a) Segundo as características apresentadas ao longo do texto, é possível identificar **X** como o enxofre (**S**). A partir dai é possível identificar a substância **Y** como o oxigênio (**O**), **Z** como o flúor (**F**) e **W** como o hidrogênio (**H**).
 - b) SO_2 e SO_3 . Analisando a estrutura atômicas dessas substâncias, temos:

Logo, temos:

$$SO_2$$
 Polar e SO_3 Apolar

c) Para resolver esse item, vamos olhar para a ordem de ligação nas estruturas pedidas. teremos:

$$OL_{SO_3} = 2$$
 $OL_{SO_3^{2-}} = \frac{4}{3}$ $OL_{SO_4^{2-}} = \frac{3}{2}$

Dessa Forma, como sabemos que o comprimento de ligação é inversamente proporcional a ordem de ligação:

$$cm_{SO_3} < cm_{SO_4^{2-}} < cm_{SO_3^{2-}}$$

10 ^a QUESTÃO	Valor: 1,00						
Apresente uma rota de síntese para o 1-[3-amino-5-cloro-4-(propan-2-il)fenil]propan-1-ol partindo do benzeno e utilizando quaisquer reagentes inorgânicos e orgânicos com até três átomos de carbono.							