

MATH-UH-3413-001 (Spring 2022)

Numerical Methods

Yuefan Deng | yuefan.deng@nyu.edu | https://nyu.zoom.us/my/ydeng007

Homework Set 06

Due: 11:59 pm on Sunday April 17, 2022

Notes:

- 1. Do all assigned problems
- 2. The set is worth 100 points evenly distributed among problems for the entire set. All HW sets will contribute 25 credits of the 100-credit system for the semester.
- 3. No late HW is accepted
- 4. Please be reminded of the lectured material (the shaded text is not used for composing this HW set):

Lecture15	03/15	7-week finals	
Lecture16	03/17	Spring break	
Lecture17	03/22	Spring break	
Lecture18	03/24	Midterm	
Lecture19	03/29	Trigonometric interpolation	Ch10
Lecture20	03/31	FFT	Ch10
Lecture21	04/05	ODEs	Ch6
Lecture22	04/07	ODEs	Ch6
Lecture23	04/12	ODEs	Ch6
Lecture24	04/14	Boundary value problems: Shooting method	Ch7
Lecture25	04/19	BVP: Finite difference methods	Ch7
Lecture26	04/21	PDEs: Hyperbolic Eq	Ch8
Lecture27	04/26	PDEs: Parabolic eq	Ch8
Lecture28	04/28	PDEs: Elliptic eq	Ch8
Lecture29	05/03	Using 05/06 (Friday): More PDE's	Ch8
Lecture30	05/05	No class	
Lecture31	05/10	Final presentations	
Lecture32	05/12	Final presentations	

Note 1: Suggested solution reports' contents:

For this and all future HW sets, please include the following four parts for a self-contained report:

- (1) Problem description for each problem. This could be copied from the problem assignment.
- (2) Algorithm description and pseudo-code describing the main structure of your program(s).
- (3) Results (numbers, figures, and tables) as requested by the assignments.
- (4) Brief comments of your program performance (fast, correct, etc)

Note 2: Your HW report should be consolidated as one PDF (for each HW set) which include the 4 parts stated above. If the source code is too long, a Google Drive link is OK too. How long is too long, you are the judge.

Problem 6.1: Given the following 8 data points

		_						
t	0	1	2	3	4	5 8	6	7
		_	_	_	_	_	_	_
		8	8	8	8	8	8	8
х	1	-1	1	-1	1	-1	1	-1

which can be plotted as (although we do not know the values in-between the points):

Please find the trigonometric interpolating function (and plot your function with these 8 points shown).

Problem 6.2: Given the following function

$$f(t) = e^{-\frac{|t|}{T}}$$

where T is some positive number and, for convenience, please set it as T = 0.1984. The function looks like

Evenly select $N=1024=2^{10}$, in $t_i\in[-2,2]$, to evaluate $f(t_i)$ where i=0,1,2...,N-1. (1) Perform DFT on this vector of N dimensions whose elements are $f(t_0)$, $f(t_1)$, $f(t_2)$, ...

- (2) Perform FFT on the same vector as in (1).
- (3) Plot your vector in the Fourier space for both cases.

Hint: Analytically, we know the FT should be

$$F(\omega) = \frac{2T}{1 + (\omega T)^2}$$

and it looks like

and your FT should not been too far off.

Problem 6.3: The following is the exchange rate of EUR/USD for the past \sim 15 years. It has some interesting patterns and, certainly, it appears oscillatory.

At the following web site, you can find the daily rates for an entire past year: https://finance.yahoo.com/quote/EURUSD%3DX/history?p=EURUSD%3DX

Please glean the exchanges for the last day of the months in the following table:

Time	Last day	EUR/USD	
"t"	of month	"x"	
0	04/2021		
1	05		
2	06		
3	07		
4	08		
5	09		
6	10		
7	11		
8	12		
9	01/2022		
10	02		
11	03		

Find the trigonometric interpolating function for the rates in these 12 months.