□ Calculate the wavelength of laser emitted from an extrinsic semiconductor laser, if the band gap is 0.02eV. To which region of EM spectrum does it belong?

Sol: wkt
$$\lambda = \frac{hc}{\Delta E}$$
 Given Data: $\Delta E = 0.02 \text{eV}$ $\lambda = \frac{(6.625X10^{-34}) X (3X10^8)}{0.02}$ $\lambda = ?$ $\lambda = (6.21X10^{-5}) \text{ m}$ $\lambda = (0.621X10^{-6}) \text{ m}$ or $\lambda = 0.621 \mu \text{m}$

The wavelength of light emitted from this semiconductor laser is lies in the FARINFRARED region of EM spectrum.

☐ A pulsed laser emits photons of wavelength 780nm with 20mW average power /pulse. Calculate the number of photons contained in each pulse if the pulse duration is 10ns.

Sol: wkt
$$\Delta E = \frac{hc}{\lambda}$$

$$\Delta E = \frac{(6.625X10^{-34}) X (3X10^8)}{780 X 10^{-9}}$$

$$\Delta E = 2.548 X 10^{-19} J$$

Now, we have energy of each pulse,

E = Power X Duration of each pulse

$$E = P X t = 20 X 10^{-3} X 10 X 10^{-9}$$

$$E = 2 X 10^{-10} J$$

Given Data:

Wavelength of light $\lambda = 780 \times 10^{-9} \text{ m}$

Power of each pulse $P = 20 \times 10^{-3} \text{ J/s}$

Duration of each pulse $t = 10 \times 10^{-9} \text{ s}$

No. of photons in each pulse N = ?

If N is the number of photons (each of energy ΔE) in the pulse,

Then,
$$\mathbf{E} = \mathbf{N} \mathbf{X} \Delta \mathbf{E}$$

$$N = \frac{E}{h/E} = \frac{2 \times 10^{-10}}{2.548 \times 10^{-19}} = 7.849 \times 10^{8}$$

No. of photons in each pulse is 7.849×10^8

A laser operating at 632.8nm emits 3.182 x **10**¹⁶ photons per second. Calculate the output power of the laser if the input power is 100 watt. Also find the percentage power converted into coherent light energy.

Sol: Energy of each photon

$$E = \frac{h c}{\lambda}$$

$$E = \frac{(6.625X10^{-34}) \, X \, (3X10^8)}{632.8X10^{-9}}$$

$$E = 3.140X10^{-19} J$$

O/P Power = Energy emitted per second

Given Data:

Wavelength of light $\lambda = 632.8 \times 10^{-9}$ m

No. of photons emitted $n = 3.182X10^{16}$

I/P power $P_{in} = 100 \text{ W}$

% of power efficiency $P_E = ?$ (Laser light energy)

O/P Power = [No. of photons emitted per second] X Energy of each photon

$$= n E = 3.182X10^{16} X 3.140X10^{-19}$$

O/P Power = 0.009 W

% of power efficiency
$$P_E = \frac{Output\ power\ in\ laser}{Input\ power} \times 100$$

$$= \frac{0.009}{100} \times 100$$

$$= 0.009$$

% of power converted into light energy = 0.009

☐ The average output power of laser source emitting a laser beam of wavelength 632.8 nm is 5mW. Find the number of photons emitted per second by the laser source.

 \square A lase beam with power per pulse is 1mW lasts 10ns, if the number of photons emitted per pulse is 3.941 X 10⁷, calculate the wavelength of laser.

Sol: Energy of each pulse,

$$E = P X t = 1 X 10^{-3} X 10 X 10^{-9}$$

$$E = 10^{-11} J$$

Energy of each photon

$$\Delta E = \frac{h c}{\lambda} = \frac{(6.625X10^{-34}) X (3X10^8)}{\lambda}$$

$$\Delta E = \frac{19.875 \times 10^{-26}}{\lambda}$$

Given Data:

Power of each pulse $P = 1 \times 10^{-3}$ W

Duration of each pulse $t = 10 \times 10^{-9} \text{ s}$

No. of photons in each pulse $N = 3.941 \times 10^7$

Wavelength of light $\lambda = ?$

Let N be the no. of photons in the pulse,

Then
$$E = N X \Delta E \Rightarrow N = \frac{E}{\Delta E} = \frac{10^{-11}}{\frac{19.875 \times 10^{-26}}{\lambda}} \Rightarrow \frac{10^{-11} X \lambda}{19.875 \times 10^{-26}}$$

$$\lambda = 19.875 \times 10^{-26} \times 3.941 \times 10^{7} \times 10^{11}$$

$$\lambda = 783.2 \text{ nm}$$

☐ Find the number of modes of the standing waves and their frequency of separation in a resonant cavity of length 1m of He-Ne laser operating at a wavelength 632.8nm.

Sol: For laser cavity

$$\lambda = \frac{2L}{n}$$

$$n = \frac{2L}{\lambda} = \frac{2 X 1}{632.8 \times 10^{-9}}$$

$$n = 3.160 \times 10^6$$

Given Data:

Length of cavity L = 1 m

Wavelength of light $\lambda = 632.8 \times 10^{-9} \text{ m}$

No. of modes N = ?

Frequency separation $v_n - v_{n-1} = ?$

Wkt
$$\lambda = \frac{C}{v} \Rightarrow \frac{C}{v} = \frac{2L}{n}$$

$$v = \frac{nC}{2L} \Rightarrow v_n = \frac{nC}{2L}$$

$$v_{n-1} = \frac{(n-1)C}{2L} \Rightarrow$$

$$v_n - v_{n-1} = \frac{c}{2L} = \frac{3.X \cdot 10^8}{2 \cdot X \cdot 1} = 1.5 \cdot X \cdot 10^8 \text{ Hz}$$

