=Q

下载APP

03 | 如何设置合适的安全强度?

2020-11-27 范学雷

实用密码学 进入课程》

讲述: 范学雷

时长 12:38 大小 11.58M

你好,我是范学雷。

上一讲,我们讨论了单向散列函数,以及它是怎么解决数据完整性问题的。你还记得它解决问题的背后逻辑吗?就是因为单向散列函数有两个重要的特点:逆向运算困难和构造碰撞困难。

这两个特点使得我们仅仅修改数据中的一位,所得到的散列值和之前的相比,就会发生很大的变化。所以我们说,这两个困难也决定了一个单向散列函数的破解难度。

逆向运算越困难,破解难度越难;构造碰撞越困难,破解难度也越难。这点你应该懂了,但是,你有没有想过,困难程度要多大,才算困难?有什么指标可以衡量单向散列函数的破解难度?

一下出现这么多问题,是不是有点意外?其实,**密码学就是在和干奇百怪的问题的纠缠中 获得进展的**。这一次,我们来讨论困难有多难以及和破解难度相关的问题。

困难要有多难?

我们要探讨的第一个问题就是,一个单向散列函数的逆向运算和构造碰撞要困难到什么程度,它才能算是一个合格的单向散列函数呢?如果凭感觉,在密码学的实践中,我们心中"完美"的单向散列函数,应该困难到没有人可以逆向运算,也没有人可以构造碰撞。

可是,只要有人发现了有那么一对数据具有相同的散列值,不管这个人什么出身、什么来历,也不管这对数据有多么的干奇百怪,更不管破解方式是多么的不合常理,这个结果就意味着这个单向散列函数被破解了,不再安全了。

比如说,下面的两段数据具有相同的 MD5 算法散列值 (MD5 是一个单向散列函数)。

细心看的话,你会注意到例子中的 afbfa202 和 afbfa200,以及 6da0d1d5 和 6da0d155 这两段数据是有差异的,但是结果显示,它们的散列值却是相同的。在这个例子里,我们并不需要深入了解破解 MD5 的具体算法和实现,我们只需要知道 MD5 被破解了, MD5 就不能够继续使用了。

我所了解的**现代单向散列函数在算法意义上的破解,都是通过宣布找到一对散列值碰撞的 数据的形式发布的**。还记得什么是散列值碰撞吧?就是指两份散列值的数据是相同的。

只有当你找到了这样的一对碰撞,你才能验证破解算法的有效性,算法的破解才能让人信服。

不过,话说回来,这固然是一个好的办法,可是对于还没有被破解的算法,有没有更直观的指标让我们感受它有多安全呢?对于已经破解的算法,有没有直观的指标让我们感受它有多脆弱呢?

在密码学这么讲究量化的领域,当然不会缺少了这样的指标。其中,最常用的指标就是安全强度(Security Strength)。

什么是安全强度?

在密码学中,安全强度通常使用"位" (字节位)来表述。比如说,安全强度是32位。这里的"位"是什么意思? N 位的安全强度表示破解一个算法需要2^N(2 的 N 次方)次的运算。

为什么要使用"位"来表示安全强度? 因为这样的话,我们就可以很方便地比较不同算法的安全级别,在同一个安全级别上组合不同的安全算法。比如说,MD5 的安全强度是不大于 18 位,1024 位的 RSA 密钥的安全强度是 80 位, SHA-256 算法的安全强度是 128 位。

在这里给你出个小问题,如果我们把上面这几个算法安排成一个组合,这个组合的强度是怎样的?这个组合的强度并不高,因为**组合的强度,由最弱的算法和密钥决定**。所以,把它们安排成一个组合,不是一个好的想法。你可以先记下来,我们后面会再讨论算法组合的基本原则。

回到安全强度这个话题,谈论单向散列函数算法之前,让我们先来感受一下安全强度。比如 MD5,我们说了,它的安全强度最多 18 位,也就是说,我们运算 2^18=262144 次就可以破解,按现在的计算机一毫秒一次运算的速度计算,需要 262144 毫秒,折合 4.34 分钟。

嗯, MD5 现在就是这么弱。其实, 在 2006 年, 就有研究者宣布研究成功, 即使是那时候的笔记本电脑, 在一分钟之内也可以找到一对散列值碰撞的数据了。

那 128 位的安全强度呢?假设我们现在有一台速度快 1000 倍的计算机,它能做到 1 纳秒运算一次。如果我们做类似上面的运算,即使我们同时使用 10 亿台计算机,破解它也需要一千万个十亿年。80 位的安全强度,同样的条件,破解大概需要 38 年。

从上面的计算,相信你可以感受到,只是稍微增加几十位的安全强度,破解难度就有巨大的提升。因为,破解难度是安全强度位数的指数(2^N)。所以,**在实践中,我们应该优先选择安全强度足够高的算法。**

安全强度会变吗?

每一个密码算法诞生的时候,都有一个**理论上的设计安全强度**。注意,理论上的意思就是有可能与实际情况不符。比如单向散列函数 SHA-1 在 1993 年发布的时候,它的设计安全强度是 80 位。

12 年后,在 2005 年 2 月,中国密码学家王小云教授带领的研究团队发现,SHA-1 的安全强度小于 69 位,远远小于设计的 80 位。从此,SHA-1 的安全强度开始一路衰减。很快,2005 年 8 月,王小云教授的团队又改进了破解算法,发现 SHA-1 的安全强度只有63 位了。

2015 年 10 月,密码学家马克·史蒂文斯(Marc Stevens),皮埃尔·卡普曼(Pierre Karpman)和托马斯·佩林(Thomas Peyrin)的研究团队发现 SHA-1 的安全强度只有57.5 位。

更要紧的是,他们估算,如果使用云计算,按照 2015 年亚马逊 EC2 云计算的定价和算力,**57 位的安全强度,2015 年的破解成本大致是 10 万美元**,你可以感受下密码强度和破解成本的数字。

2020 年 1 月,密码学家盖坦·勒伦(GaëtanLeurent)和托马斯·佩林(Thomas Peyrin) 又发现, SHA-1 的攻击复杂度是 63.4 位,攻击成本大约为 4.5 万美元。

根据上面的数字,我们可以感受到,一个 64 位安全强度的密码算法,它现在的破解成本大概是 5 万美元左右。不同类型的算法,破解成本也许有很大偏差,但是我们依然可以大致估算攻击成本。5 万美元,无论是对于一个有组织的研究机构,还是犯罪集团,都是一个很小的数目。

这可以说明什么?如果一个系统的安全强度低于64位,它的安全性几乎形同虚设。

通过 SHA-1 的例子, 我想强调的就是, **一个算法的安全强度不是一成不变的。随着安全分析的进步, 几乎所有密码学算法的安全强度都会衰减**。今天看起来安全的算法, 明天也许

就有破解的办法。所以,**一个好的安全协议,应该考虑备份计划和应急计划**(参见极客时间 **②《代码精进之路》**专栏第 41 讲,"预案,代码的主动风险管理"里提到的双引擎和降落伞设计)。

使用多大的安全强度?

现在,我们已经知道了什么是安全强度,也感受了一下不同密码算法的安全强度,知道了安全强度是会变的。那么,我们今天要讨论的最后一个话题是,我们该使用多少位的安全强度?

多少位的安全强度算是安全的呢?其实,我们要是想找到一个确切的答案,我们不仅要看具体的使用场景,还要综合考虑性能和安全强度。是不是觉得会有点复杂和困难?

不过,我可以给你一个建议,就是参考、遵循常用的推荐指标。

业界内最新推荐的三个常用指标分别是:

美国的 NIST (国家标准技术研究所);

德国的 BSI (联邦信息安全办公室);

欧洲的 ECRYPT-CSA (欧洲卓越密码网络)。

为了让你更直观地了解这三个指标,我还给你做了一个小结。

4			L
安全强度(位)	NIST 建议	BSI 建议	ECRYPT-CSA 建议
80	仅遗留系统可以使用 不建议用于新系统	不推荐	仅遗留系统可以使用 不建议用于新系统
112	仅可用于2030年之前	不推荐	不推荐
128	可以用于2030年之后	可以用于2020年之后	可以用于2028年之前
256	可以用于2030年之后	可以用于2020年之后	可以用于2068年之前

看到这个表,是不是感觉还是摸不到头脑?该怎么使用这个表呢?我们一起来看一个例子。

假设,我们现在要设计一个新系统,预期寿命十年,也就是,我们要从 2020 年开始运营,运营到 2030 年结束。而且我们还要保证到 2030 年,这个系统还是足够安全的。

首先,我们按照 NIST 的建议,2030 年后,112 位的安全强度已经不能使用了,所以,如果我们遵守 NIST 的推荐指标,这个系统就不建议选择112 位安全强度的算法。

在 BSI 建议里, 2030 年之前够用的话, 我们应该选择 256 位的安全强度。

我们再看 ECRYPT-CSA 的建议, 128 位的安全强度只能用于 2028 年之前。到了 2030年, 128 位的安全强度就不能满足 ECRYPT-CSA 的建议了。所以,如果我们遵循 ECRYPT-CSA 的建议,这个系统就需要使用 256 位的安全强度。

你发现了吗,ECRYPT-CSA 的建议为什么这么保守?其实,这种保守的姿态背后,隐含了对量子计算时代来临的担忧。在量子计算时代,128 位的安全强度稍显脆弱,可是 256 位的安全强度还是足够的。虽然量子时代还没有到来,但是我们现在就要开始考虑量子时代的挑战了。

从上面的推荐,我们可以看到,**128 位的安全强度,目前来说是安全的**。不过,一个需要长期运营的系统,**如果性能瓶颈不是问题,现在就可以开始考虑使用 256 位强度的密码算 法了**。

还记得我们上面提到的安全强度不足 18 位的 MD5 函数吗?这么弱的安全强度,几乎已经没有实用价值了。那么,有哪些单向散列函数能达到 128 位,甚至 256 位的安全强度?这些问题,我们下一次来讨论。

Take Away (今日收获)

今天,通过讨论单向散列函数的"两个困难程度",我们知道了困难有多难,还分析了破解强度的计量办法、安全强度的衰减、常见的安全强度推荐指标,以及一些可以直观感受的数字。

这些直观感受的数字可以帮助你建立对密码算法安全强度的印象。比如,一个 64 位安全强度的密码算法,它现在的破解成本大概是 5 万美元左右。再比如,128 位的安全强度,按照现有的计算能力,破解它需要一千万个十亿年。

这一讲,通过对安全强度的讨论,我们要:

知道密码学安全强度通常使用位来表示;

知道 128 位的安全强度暂时还是安全的;

知道长期的系统可以考虑开始使用 256 位安全强度的算法了。

思考题

如果你能够使用你知道的所有的计算机,包括你的个人计算机和公司的计算机系统(比如亚马逊的云系统),你能不能大概估算一下,破解 64 位的安全强度、80 位的安全强度、128 位的安全强度,分别都需要多长时间?

这是一个能够帮助你建立对安全强度直观概念认知的办法。

欢迎在留言区留言,记录、讨论你的估算数据。

好的, 今天就这样, 我们下次再聊。

提建议

⑥ 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 02 | 单向散列函数:如何保证信息完整性?

下一篇 04 | 选择哈希算法应该考虑哪些因素?

精选留言(3)

Litt1eQ

2020-11-27

按照目前我能找到的最快计算机(Fugaku)的数据来说是415530TFlops, 大约是每秒4.2* 10^17次浮点运算,破解64位强度的话大约需要44s。80位的话大约需要2878395s也就是34天左右,如果是128位的话大约需要25691150168585年(注:此数据仅仅是我的一个估算,并不一定准确)

展开~

作者回复:很好的的估算。不用准确,就是帮助自己建立一个关于安全强度的印象。以后,当碰到安全强度的说法时,自己有个感觉。这些数据很棒!

solidSpoon

2020-11-27

老师安全强度和攻击复杂度是两个不同的指标吗?有什么异同呢?

作者回复: 是同一个指标的两种不同的说法,一个从正面说,一个从反面说。我应该在文章里交代 一下的,没意识到。

老师能讲一下要是怎么样一个破解的方法吗?

展开٧

作者回复: 这个不适合在专栏里讲。有的破解为了保护现有信息系统也不会公开;有公开的,破解大部分都太难了。你要是感兴趣,可以在群里留言,我找找论文发给你。

