

ISP-DEMOSAICKING (中)

目录 CONTENTS

01. 算法原理精讲

02. 算法代码实现

>>> 算法精讲-方向加权法

RB缺失的G通道的插值 1.2.5.4 16日上版 = 1

		Ran)					5
B ₀₀	G ₀₁	B ₀₂	G 03	B ₀₄	G ₀₅	B ₀₆	G ₀₇	B ₀₈
G ₁₀	R ₁₁	G ₁₂	R ₁₃	G ₁₄	R ₁₅	G ₁₆	R ₁₇	G ₁₈
Pa	G ₂₁	P ₂₂	G ₂₃	B ₂₄	G ₂₅	B ₂₆	G ₂₇	B ₂₈
G ₃₀	R ₃₁	G	R ₃₃	\234	· ·	G ₃₆		G ₃₈
B ₄₀	G ₄₁	B ₄₂	G		3	B ₄₆	G ₄₇	B ₄₈
G ₅₀	R ₅₁	G ₅₂	R ₅₃	G ₅₄	R ₅₅	146	R ₅₇	G ₅₈
B ₆₀	G ₆₁	B ₆₂	11/ G ₆₃	B ₆₄	G ₆₅	B ₆₆	G ₆₇	B ₆₈
G ₇₀	R ₇₁	G ₇₂	R ₇₃	G ₇₄	R ₇₅	G ₇₆	R ₇₇	G ₇₈
B ₈₀	G ₈₁	B ₈₂	G ₈₃	B ₈₄	G ₈₅	B ₈₆	G ₈₇	B ₈₈

019	n ~0.3		3		
n	v_n	h_n	n	v_n	h_n
1	0	-1	2	-1	0
3	0	+1	4	+1	0
5	-1	-2	6	-2	-1
7	- 2	+1	8	-1	+2
9	+1	+2	10	+2	+1
11	+2	-1	12	+1	-2

Kn (|P(4,3) - P(4,5)|+|P(4,2) - P(4,4)|)

$$I_{s}(4.4) = k_{n}(|P(3,2) - P(s,6)| + |P(2,0) - P(4,4) + P(2,0)| + |P(2,0) - P(4,4) + P(2,0)|$$
(2 行前 In $K_{n}=0.5$) Where $J_{n}=0.5$ Where $J_{n}=0.5$ Where $J_{n}=0.5$

算法精讲-方向加权法

RB缺失的G通道的插值

B ₀₀	G ₀₁	B ₀₂	G ₀₃	B ₀₄	G ₀₅	B ₀₆	G ₀₇	B ₀₈
G ₁₀	R ₁₁	G ₁₂	R ₁₃	G ₁₄	R ₁₅	G ₁₆	R ₁₇	G ₁₈
B ₂₀	G ₂₁	B ₂₂	G ₂₃	B ₂₄	G ₂₅	B ₂₆	G ₂₇	B ₂₈
G ₃₀	R ₃₁	G ₂	R ₃₃	G ₃₄ /	R ₃₅	G ₃₆	R ₃₇	G ₃₈
B ₄₀	G ₄₁	В	CHI	C	G ₄₅	B ₄₆	G ₄₇	B ₄₈
G ₅₀	R ₅₁	12 G ₅₂	R ₅₃	G ₅₄	R ₅₅	G ₅₆	R ₅₇	
B ₆₀	G ₆₁	B ₆₂	G ₆₃	В ₆₄	G ₆₅	B ₆₆	G ₆₇	B ₆₈
G ₇₀	R ₇₁	G ₇₂	R ₇₃	G ₇₄	R ₇₅	G ₇₆	R ₇₇	G ₇₈
B ₈₀	G ₈₁	B ₈₂	G ₈₃	B ₈₄	G ₈₅		G ₈₇	B ₈₈

B上的G的超值

	R -	>		(
n	v_n	h_n	n	v_n	h_n
1	0	-1	2	-1	0
3	0	+1	4	+1	0
5	-1	-2	6	-2	-1
7	-2	+1	8	-1	+2
9	+1	+2	10	+2	+1
11	+2	-1	12	+1	-2

算法精讲-方向加权法

RB缺失的BR的插值

BOD	R	=>	B	(Row)
-----	---	----	---	---	------

TABLE 2. POSITIONS OF NEARBY SAMPLES IN STEP 2.							
n	v'_n	h'_n	n	v'_n	h'_n		
1	-1	-1	2	-1	+1		
3	+1	+1	4	+1	-1		

Inci, j1 = abs[P(i+
$$\frac{1}{2}$$
) - $\frac{1}{2}$ | $\frac{1}{2}$

算法精讲-方向加权法

• G缺失的BR的插值

n	v_n	h_n	n	v_n	h_n
1	0	-1	2	-1	0
3	0	+1	4	+1	0
5	-1	-2	6	-2	-1
7	-2	+1	8	-1	+2
9	+1	+2	10	+2	+1
11	+2	-1	12	+1	-2

$$I_{n}(i,j) = \kappa_{n}(abs(P(i+v_{n}, j+h_{n}) - P(i-v_{n}, j-h_{n})) + abs(P(i+2v_{n}, j+2h_{n}) - P(i, j)))$$

$$w_n(i,j) = \left(\frac{1}{1 + I_n(i,j)}\right) / \sum_{n=1}^{12} \frac{1}{1 + I_n(i,j)}$$

$$R(i,j) = G(i,j) - \sum_{n=1}^{12} w_n(i,j) * K_{r,n}(i+v_n,j+h_n),$$

$B_{0,0}$	$G_{0,1}$	$B_{0,2}$	$G_{0,3}$	$B_{0,4}$	$G_{0,5}$
G _{1,0}	R _{1,1}	G _{1,2}	R _{1,3}	G _{1,4}	R _{1,5}
$B_{2,0}$	G _{2,1}	$B_{2,2}$	$G_{2,3}$	$B_{2,4}$	G _{2,5}
G _{3,0}	R _{3,1}	G _{3,2}	R _{3,3}	$G_{3,4}$	R _{3,5}
$B_{4,0}$	G _{4,1}	$B_{4,2}$	G _{4,3}	B _{4,4}	G _{4,5}
G _{5,0}	R _{5,1}	<i>G</i> _{5,2}	R _{5,3}	G _{5,4}	R _{5,5}

算法精讲-基于边缘检测的方法

• 计算缺失的G

>>> 算法精讲-基于边缘检测的方法

计算缺失的RB

$$B_{0,0}$$
 $G_{0,1}$
 $B_{0,2}$
 $G_{0,3}$
 $B_{0,4}$
 $G_{0,5}$
 $G_{1,0}$
 $R_{1,1}$
 $G_{1,2}$
 $R_{1,3}$
 $G_{1,4}$
 $R_{1,5}$
 $B_{2,0}$
 $G_{2,1}$
 $B_{2,2}$
 $G_{2,3}$
 $B_{2,4}$
 $G_{2,5}$
 $G_{3,0}$
 $R_{3,1}$
 $G_{3,2}$
 $R_{3,3}$
 $G_{3,4}$
 $R_{3,5}$
 $B_{4,0}$
 $G_{4,1}$
 $B_{4,2}$
 $G_{4,3}$
 $B_{4,4}$
 $G_{4,5}$
 $G_{5,0}$
 $R_{5,1}$
 $G_{5,2}$
 $R_{5,3}$
 $G_{5,4}$
 $R_{5,5}$

计算缺失的G

$$B_{0,0}$$
 $G_{0,1}$
 $B_{0,2}$
 $G_{0,3}$
 $B_{0,4}$
 $G_{0,5}$
 $G_{1,0}$
 $R_{1,1}$
 $G_{1,2}$
 $R_{1,3}$
 $G_{1,4}$
 $R_{1,5}$
 $B_{2,0}$
 $G_{2,1}$
 $B_{2,2}$
 $G_{2,3}$
 $G_{2,5}$
 $G_{2,5}$
 $G_{3,0}$
 $R_{3,1}$
 $G_{3,2}$
 $R_{3,3}$
 $G_{3,3}$
 $G_{3,4}$
 $G_{3,5}$
 $B_{4,0}$
 $G_{4,1}$
 $G_{4,2}$
 $G_{4,3}$
 $G_{5,4}$
 $G_{5,5}$
 $G_{5,0}$
 $R_{5,1}$
 $G_{5,2}$
 $R_{5,3}$
 $G_{5,4}$
 $R_{5,5}$

计算缺失的G

$$B_{0,0}$$
 $G_{0,1}$
 $B_{0,2}$
 $G_{0,3}$
 $B_{0,4}$
 $G_{0,5}$
 $G_{1,0}$
 $R_{1,1}$
 $G_{1,2}$
 $R_{1,3}$
 $G_{1,4}$
 $R_{1,5}$
 $B_{2,0}$
 $G_{2,1}$
 $B_{2,2}$
 $G_{2,3}$
 $B_{2,4}$
 $G_{2,5}$
 $G_{3,0}$
 $R_{3,1}$
 $G_{3,2}$
 $R_{3,3}$
 $G_{3,4}$
 $R_{3,5}$
 $B_{4,0}$
 $G_{4,1}$
 $B_{4,2}$
 $G_{4,3}$
 $B_{4,4}$
 $G_{4,5}$
 $G_{5,0}$
 $R_{5,1}$
 $G_{5,2}$
 $R_{5,3}$
 $G_{5,4}$
 $R_{5,5}$

计算缺失的RB

$$B_{0,0}$$
 $G_{0,1}$
 $B_{0,2}$
 $G_{0,3}$
 $B_{0,4}$
 $G_{0,5}$
 $G_{1,0}$
 $R_{1,1}$
 $G_{1,2}$
 $R_{1,3}$
 $G_{1,4}$
 $R_{1,5}$
 $B_{2,0}$
 $G_{2,1}$
 $B_{2,2}$
 $G_{2,3}$
 $B_{2,4}$
 $G_{2,5}$
 $G_{3,0}$
 $R_{3,1}$
 $G_{3,2}$
 $R_{3,3}$
 $G_{3,4}$
 $R_{3,5}$
 $B_{4,0}$
 $G_{4,1}$
 $B_{4,2}$
 $G_{4,3}$
 $B_{4,4}$
 $G_{4,5}$
 $G_{5,0}$
 $R_{5,1}$
 $G_{5,2}$
 $R_{5,3}$
 $G_{5,4}$
 $R_{5,5}$

计算缺失的RB

$B_{0,0}$	G _{0,1}	$B_{0,2}$	G _{0,3}	$B_{0,4}$	<i>G</i> _{0,5}
G _{1,0}	R _{1,1}	G _{1,2}	R _{1,3}	G _{1,4}	R _{1,5}
$B_{2,0}$	$G_{2,1}$	$B_{2,2}$	G 2,3	$B_{2,4}$	G _{2,5}
G _{3,0}	R _{3,1}	G _{3,2}	R _{3,3}	$G_{3,4}$	$R_{3,5}$
$B_{4,0}$	G _{4,1}	$B_{4,2}$	$G_{4,3}$	$B_{4,4}$	$G_{4,5}$
G _{5,0}	R _{5,1}	G _{5,2}	R _{5,3}	G _{5,4}	R _{5,5}

$$RB(i,j) = \frac{1}{2}(RB(i-i,j) + RB(i+i,j)$$

$$+ \frac{1}{2}G(i,j) - \frac{1}{8}[(G(i-i,j-i))$$

$$+ G(i-i,j+i) + G(i+i,j-i) + G(i+i,j+i)]$$

$$= \frac{1}{2}(RB(i,j+i) + RB(i,j-i)$$

$$+ G(i,j) - \frac{1}{2}(g(i,j+i) + g(i,j-i))$$

$$= \frac{1}{2}(g(i,j+i) + g(i,j-i))$$

02 算法代码实现

食鱼者

202203

wtzhu13

https://gitee.com/wtzhul3

猪猪爱吃鱼

wtzhu__13

扫一扫上面的二维码图案,加我微信

See You!