Отчёт по лабораторной работе №7

Шифр гаммирования

Булаев Максим Александрович НПИбд-01-19

Содержание

1	Цель работы								
2	Теоретические сведения 2.1 Шифр гаммирования	5							
3	Выполнение работы 3.1 Реализация шифратора и дешифратора Python	7 7 9							
4	Выводы	10							
Сп	исок литературы	11							

List of Figures

3.1	Работа алгоритма гаммирования										Ç

1 Цель работы

Изучение алгоритма шифрования гаммированием.

2 Теоретические сведения

2.1 Шифр гаммирования

Гаммирование – это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, т.е. последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных.

Принцип шифрования гаммированием заключается в генерации гаммы шифра с помощью датчика псевдослучайных чисел и наложении полученной гаммы шифра на открытые данные обратимым образом (например, используя операцию сложения по модулю 2). Процесс дешифрования сводится к повторной генерации гаммы шифра при известном ключе и наложении такой же гаммы на зашифрованные данные. Полученный зашифрованный текст является достаточно трудным для раскрытия в том случае, если гамма шифра не содержит повторяющихся битовых последовательностей и изменяется случайным образом для каждого шифруемого слова. Если период гаммы превышает длину всего зашифрованного текста и неизвестна никакая часть исходного текста, то шифр можно раскрыть только прямым перебором (подбором ключа). В этом случае криптостойкость определяется размером ключа.

Метод гаммирования становится бессильным, если известен фрагмент исходного текста и соответствующая ему шифрограмма. В этом случае простым вычитанием по модулю 2 получается отрезок псевдослучайной последовательности и по нему восстанавливается вся эта последовательность.

Метод гаммирования с обратной связью заключается в том, что для получения сегмента гаммы используется контрольная сумма определенного участка шифруемых данных. Например, если рассматривать гамму шифра как объединение непересекающихся множеств H(j), то процесс шифрования можно пердставить следующими шагами:

- 1. Генерация сегмента гаммы H(1) и наложение его на соответствующий участок шифруемых данных.
- 2. Подсчёт контрольной суммы участка, соответствующего сегменту гаммы H(1).
- 3. Генерация с учетом контрольной суммы уже зашифрованного участка данных следующего сегмента гамм H(2).
- 4. Подсчёт контрольной суммы участка данных, соответствующего сегменту данных H(2) и т.д.

3 Выполнение работы

3.1 Реализация шифратора и дешифратора Python

```
def main():
    #создаем алфавит
    dict = {"a" :1, "б" :2 , "в" :3 ,"г" :4 ,"д" :5 ,"е" :6 ,"ё" :7 ,"ж": 8, "з":
            "M": 14, "H": 15, "o": 16, "n": 17,
            "р": 18, "с": 19, "т": 20, "у": 21, "ф": 22, "х": 23, "ц": 24, "ч": 2
            "ы": 29, "ь": 30, "э": 31, "ю": 32, "я": 32
            }
    # меняем местами ключ и значение, такой словарь понадобится в будущем
    dict2 = {v: k for k, v in dict.items()}
    gamma = input("Введите гамму(на русском языке! Да и пробелы тоже нельзя! Корс
    text = input("Введите текст для шифрования").lower()
    listofdigitsoftext = list() #сюда будем записывать числа букв из текста
    listofdigitsofgamma = list() #для гаммы
    #запишем числа в список
    for i in text:
        listofdigitsoftext.append(dict[i])
    print("Числа текста", listofdigitsoftext)
    #то же самое сделаем с гаммой
    for i in gamma:
        listofdigitsofgamma.append(dict[i])
```

```
print("числа гаммы", listofdigitsofgamma)
listofdigitsresult = list() #сюда будем записывать результат
ch = 0
for i in text:
    try:
        a = dict[i] + listofdigitsofgamma[ch]
    except:
        ch=0
        a = dict[i] + listofdigitsofgamma[ch]
    if a > = 33:
        a = a\%33
    ch+=1
    listofdigitsresult.append(a)
print("Числа зашифрованного текста", listofdigitsresult)
# теперь обратно числа представим в виде букв
textencrypted=""
for i in listofdigitsresult:
    textencrypted+=dict2[i]
print("Зашифрованный текст: ", textencrypted)
#теперь приступим к реализации алгоритма дешифровки
listofdigits = list()
for i in textencrypted:
    listofdigits.append(dict[i])
ch = 0
listofdigits1 = list()
for i in listofdigits:
    a = i - listofdigitsofgamma[ch]
    #проблемы тут могут быть
    if a < 1:
```

```
a = 33 + a
listofdigits1.append(a)
ch+=1
textdecrypted = ""
for i in listofdigits1:
   textdecrypted+=dict2[i]
print("Decrypted text", textdecrypted)
```

3.2 Контрольный пример

```
In [6]: main()
          Введите текст гаммы линукслинукс
          Введите текст для шифровкибезопасность
          Числа текста [2, 6, 9, 16, 17, 1, 19, 15, 16, 19, 20, 30]
Числа гаммы [13, 10, 15, 21, 12, 19, 13, 10, 15, 21, 12, 19]
          Числа шифротекста [15]
          шифротекст н
рассшифровка б
Числа шифротекста [15, 16]
          шифротекст но
рассшифровка бе
Числа шифротекста [15, 16, 24]
          шифротекст ноц
рассшифровка без
Числа шифротекста [15, 16, 24, 4]
          шифротекст ноцг
          рассшифровка безо
Числа шифротекста [15, 16, 24, 4, 29]
          рассшифровка безоп
Числа шифротекста [15, 16, 24, 4, 29, 20]
          шифротекст ноцгыт
          рассшифровка безопа
Числа шифротекста [15, 16, 24, 4, 29, 20, 32]
          шифротекст ноцгытя
          рассшифровка безопас
Числа шифротекста [15, 16, 24, 4, 29, 20, 32, 25]
          шифротекст ноцгытяч
          рассшифровка безопасн
Числа шифротекста [15, 16, 24, 4, 29, 20, 32, 25, 31]
          рассшифровка безопасно
          Числа шифротекста [15, 16, 24, 4, 29, 20, 32, 25, 31, 7]
          рассшифровка безопаснос
          Числа шифротекста [15, 16, 24, 4, 29, 20, 32, 25, 31, 7, 32]
          шифротекст ноцгытячэёя
          рассшифровка безопасност
Числа шифротекста [15, 16, 24, 4, 29, 20, 32, 25, 31, 7, 32, 16]
          шифротекст ноцгытячэёяо
          рассшифровка безопасность
```

Figure 3.1: Работа алгоритма гаммирования

4 Выводы

Таким образом, в ходе выполнения лабораторной работы я изучил алгоритм шифрования с помощью гаммирования.

Список литературы

- 1. Шифрование методом гаммирования
- 2. Режим гаммирования в блочном алгоритме шифрования