氣球大小與內部氣壓之關係

風力發電

探究與實作報告

第八組 | 2930313233 |

大綱

看看就好,不太重要

氣球

- 1. 實驗過程
- 2. 數據&分析
- 3. 檢討&改進

- 1. 實驗過程
- 2. 數據&分析
- 3. 檢討&改進

實驗中注意的一點

氣球大小與內部氣壓之關係

先把氣球吹大, 再把氣球放氣縮小。

我們發現,氣球吹大再放氣後,相同直徑可能有不同的內部氣壓。

→推測:氣球皮拉大之後會變鬆。

→固定變因:先讓他變得最鬆垮,再慢慢地放氣&量測。

實驗中注意的一點

氣球大小與內部氣壓之關係

因為使用的氣球,上方的皮比下方厚。 →打氣時,若沒有先捏住氣球皮接近下緣側,

上方膨不起來,形狀與球形相差甚遠,不易量測。

測量數據

氣球大小與內部氣壓之關係

直徑(cm)	13.8	13.3	12.5	12.7	11.8	11.6	11.5	11.2	10.7	10.3	9.7	10
水柱高 (cm)	26.1	22.2	19.5	18.2	16.4	15.3	14.8	13.7	13.3	15	13.5	12.8
直徑(cm)	9.6	9.4	9	9.3	8.7	8.5	8.2	7.7	7.2	6.3	5.9	5
水柱高 (cm)	13.4	13	13.4	15.9	17.3	16.5	19.2	18.4	20.5	21	22.2	15.8

估計值為小數點後一位——因為不易量測, 所以採此估計值

測量數據 - 圖表

氣球大小與內部氣壓之關係

水柱高(水壓)與直徑之關係

※註:圖使用四次冪多項式。

我們推測,這也許受到材質本身的彈性係數所影響。且應該有兩個冪次有關球表面積 $S(r) = 4\pi r^2$ 為何水柱高 ≈ 水壓?P: 壓力 | F: 重量 | A: 面積 | D: 密度 | M: 質量 | V: 體積 已知 [P = F/A] & [D = M/V]地球上,[M ≈ F], 所以 [D ≈ F/V] [D*h ≈ F/V*h = F*h/V = F/A = P] ⇒ [P ≈ D*h]

因此, [水壓 ≈ 水密度*水柱高 = 1*水柱高 = 水柱高]

測量數據 - 圖表 - 向前後推測

氣球大小與內部氣壓之關係

水柱高(水壓)與直徑之關係

※註:圖使用四次冪多項式。

處理數據時,我們將趨勢線正推 5.0 週期、逆推 1.5 週期,發現大約在氣球直徑 4cm & 18.5cm 時交於 水壓=0 之直線。我們認為也許他們分別為氣球 [只充極少的氣時撐起未延展時] 以及 [即將爆炸之臨界點] (當然或許後者是爆炸之後)。 礙於原先並未測量兩種上述情況,並無法驗證猜想。

檢討&改進

氣球大小與內部氣壓之關係

改測量直徑 為氣球之實際體積

因為氣球在體積不同時,形狀不同(非正球體),故我們認為也許可以將其改為「放於水中,測量體積變化」再將其乘以 3/4,除以3.14並開三次方根再乘以 2,而非直接使用直徑。尤其在於直徑量測不易精準,感覺此方式更好。V = 4/3 * pi * (r^3)

=> 即換數據中的直徑 = 2r 為 ((V * 3/4 / pi) ^ (1/3)) * 2

※註:極度不精準、極度不可靠 沒有臍帶,沒有比較,沒有傷害

實驗過程中的發現

風力發電

1. 測量電壓/電阻的時候, 扇葉旋轉的速度會減慢

推測:

因為三用電錶也是電阻,所以放上去之後會使電阻加大。 可能逆向電阻大->磁力不易轉動->移動阻力增加(原 動->磁->電)

測量數據 - 圖表

風力發電

註:使用二次幂多項式 由於數據嚴重不足(OS才五個欸),且誤差非常嚴重, 所以看不太出趨勢。 勉強似乎有二次式的規律,但是我們不甚明白

測量數據

風速 (m/s)	輸入功率 (w)	電阻 (ohm)	電壓V(v)	輸出功率 (w)	轉換效率(%)
3.0	4.676	1.9	0.8	0.337	7.20
3.5	7.425	1.9	1.2	0.758	10.21
4.0	11.084	1.9	1.4	1.032	9.31
4.5	15.781	1.9	1.5	1.184	7.50
5.0	21.648	1.9	1.4	1.032	4.77

測量數據 - 圖表

檢討

- 1. 風扇速度不穩
- 2. 零件品質不佳
- 3. 時間不足
- 4. -->數據不足

- 1. 測試風速不穩, 時快時慢。也許未來砸錢升級
- 2. 組裝的零件大小不精準,且有部分已經損壞 (例如接口處過細,早已斷裂)

謝制用今那憲

這個橘子氣球:30鄭鈞澤

這報告的背景: 29 潘仰祐

分工 總結

%	29	30	31	32	33
操作	25	25	25	15	10
言己錄	25	20	35	10	10
簡報	60	10	20	5	5
報告	10	10	10	60	10

※註:報告所指為全組共同回家作業(上傳 Google Classroom) 每一橫排之總和為100%