

电机与拖动课件之七

同步电机及同步电动机 的电力拖动

- 6.1 同步电机的基本工作原理与结构
- 6.2 同步发电机的空载运行
- 6.3 同步发电机的电枢反应
- 6.4 同步发电机的负载运行
- 6.5 同步发电机的并联运行
- 6.6 同步电动机和同步调相机
- 6.7 同步电动机的电力拖动

6.3 同步发电机的电枢反应

同步发电机带负载运行时,设保持转子转速和励磁电流不变,发电机端电压会随着负载性质的不同而发生变化。

空载运行时

- ▶ 气隙中仅存在一个以同步转速旋转的主极磁场;
- ➤ 励磁磁动势Ff0产生的励磁磁场;
- ightharpoonup 在定子绕组中感应出空载电动势: $\vec{F}_{f0}
 ightharpoonup \dot{E}_{0}$

接三相对称负载运行时

- \rightarrow 转子上主磁极直流励磁的磁动势 F_{m} ;
- \triangleright 定子上交流励磁的磁动势 F_a ;
- \triangleright 以相同的转速同向旋转,合成气隙磁动势 F_{δ} 。

电枢反应: 电机带负载后, 电枢磁动势的基波在气隙中使气隙磁通的大小及位置均发生变化, 这种影响为电枢反应。

电枢反应的性质取决于电枢磁动势和励磁磁动势之间的相对位置,与励磁电动势 \dot{E}_0 和电枢(定子)电流 \dot{I} 之间的夹角 ψ 有关。 ψ 定义为内功率因数角,与负载性质有关。

励磁磁动势 F_m 和电枢磁动势 F_s 的区别

	基波波形	大小	位置	转速	转向
励磁磁动势 $F_{ m f0}$	正弦波	恒定,由励磁电流决定	由转子位置决定	由原动机的转速决定	由原动机决定
电枢磁动势 $F_{\rm a}$	正弦波	恒定,由电枢电流决定	由电流瞬时值决定	由磁极对数和电流频率决定	由电流相序决定

 \succ $\dot{E_0}$ 滞后于 $\dot{\Phi}_0$ 90°, \dot{I} 与 $\dot{E_0}$ 同向。

空间矢量图中

- ightharpoonup 励磁磁动势 F_{fl} 与d轴同方向;
- ightharpoonup 电枢磁动势 F_a 的方向位于U相绕组的轴线上,即q轴上。
- $ightharpoonup F_a滞后<math>F_{fl}$ 90°,为交轴电枢磁动势,用 F_{aq} 表示。
- ▶ 电枢反应性质:交轴电枢反应。
- \triangleright 将 $F_{\rm fl}$ 与 $F_{\rm a}$ 矢量相加得到合成的磁动势 F_{δ} 。

- $\succ F_{\rm fl}$ 与 Φ_0 位于同一方向,即d轴上。
- │ ▶ Fa与I都在q轴上。
 - ▶ 磁动势与相应的磁通、电流在同一方向。

ightarrow \dot{E}_0 滞后于 $\dot{\Phi}_0$ 90°, \dot{I} 滞后 \dot{E}_0 90°。

空间矢量图中

- \triangleright 电枢磁动势 F_a 的方向与 F_f 的方向相反。
- F_a 称为直轴电枢磁动势,用 F_{ad} 表示。
- ▶ 电枢反应性质: 直轴去磁电枢反应。

- $ightharpoonup F_{\mathrm{fl}}$ 与 $oldsymbol{arrho}_0$ 位于同一方向,即 d 轴上。
- F_a 与 I 都在d轴上。
 - $ightharpoonup F_a 与 F_f$ 方向相反。

 $ightharpoonup \dot{E}_0$ 滞后于 $\dot{\Phi}_0$ 90°, \dot{I} 超前 \dot{E}_0 90°。

空间矢量图中

- \triangleright 电枢磁动势 F_a 的方向与 F_{fl} 的方向相同。
- $ightharpoonup F_a$ 称为直轴电枢磁动势,用 F_{ad} 表示
- ▶ 电枢反应性质: 直轴助磁电枢反应。

 $ightarrow F_{
m fl}$ 与 $arPhi_0$ 位于同一方向,即m d轴上。

- F_a 与 I 都在d轴上。
 - F_a 与 F_{fl} 方向相同。

 $\succ \dot{E_0}$ 滞后于 $\dot{\Phi}_0$ 90°, \dot{I} 滞后 $\dot{E_0}$ 一个锐角。

空间矢量图中

- ▶ 电枢磁动势 F_a 的滞后 $F_{fl}\Psi+90$ °。
- $ightharpoonup 把F_a分解成直轴电枢反应磁动势F_ad和交轴电枢反应磁动势F_ad两个分量。$
- 电枢反应性质: 既有交轴,还有直轴去 磁电枢反应

- $ightharpoonup F_{\mathrm{fl}}$ 与 $oldsymbol{arPhi_0}$ 位于同一方向,即 d 轴上。
- $ightharpoonup F_a$ 与 I 的方向在q轴与d轴反方向之间。

此种情况下

		$\frac{1}{E} \cdot \frac{1}{E}$	\overline{F}_a			响	$\psi \approx \varphi$	
	F _a 位置	F _f F _a 夹角	记作	性质	\overline{F}_{δ}	n(f)	U	, 负载性质
$\psi = 0^{0}$	q轴		\overline{F}_{aq}	交轴	波形畸 变	下降		R
$\psi = 90^{0}$	d轴	$\psi + 90^{\circ}$	\overline{F}_{ad}	直轴去磁	削弱	不变	下降	L
$\psi = -90^{0}$	d轴		\overline{F}_{ad}	直轴助磁	增强	不变	上升	С
$0^{\circ} < \psi < 90^{\circ}$	d、q轴		$\overline{F}_{ad} + \overline{F}_{aq}$	交轴直轴 去磁	削弱	下降	下降	R、L
$-90^{\circ} < \psi < 0^{\circ}$	d、q轴		$\overline{F}_{ad} + \overline{F}_{aq}$	交轴直轴 助磁	增强	下降	上升	R, C

电枢反应的意义

- 同步电机在负载运行时的重要物理现象;
- ➤ 不仅是引起端电压变化的主要原因(直轴);
- ▶ 也是电机实现机—电能量转换的枢纽(交轴)。

1、交轴电枢反应

- \Rightarrow 当 ψ =0°时,交轴电枢反应磁动势是与空载电动势同相的 I_q 产生的, I_q 可以认为是 I 的有功分量。
- \blacktriangleright 交轴的电枢反应磁场与励磁电流共同作用,在转轴上产生<mark>制动性质</mark>的电磁转矩 $T_{\rm em}$ 。

 $\Psi=0^{\circ}$

发电机要输出有功功率,原动机就必须克服由Iq所引起的阻力转矩。

输出有功功率 \uparrow o 有功电流 $I_{
m q}$ \uparrow o 交轴电枢反应 \uparrow o $T_{
m em}$ \uparrow o 原动机输入转矩 \uparrow ,维持电机的转速不变。

> 交轴电枢反应的存在是实现机——电能量转换的关键。

2、直轴电枢反应

- \rightarrow 当 ψ =90° (或-90°) 时,直轴电枢反应磁动势是与 E_0 成90°的 I_d 产生的,可以认为 I_d 是 I 的无功分量。
- ▶ 直轴电枢反应磁场与励磁电流共同作用,在励磁绕组上产生电磁力,但不能形成电磁转矩。
- 说明发电机带感性(或容性)无功负载时,不需要原动机增加能量。
- 》 但是直轴去磁(或助磁)电枢反应对气隙磁场有去磁(或助磁)作用,致使电压下降(或上升)。为维持电压恒定所需的励磁电流也需要相应增加(或减小)。

3、一般情况下

- ▶ 一般情况下,发电机既带有功负载,又带感性无功负载,既有交轴电枢反映,也有直轴电枢反映;
- 有功电流的变化影响发电机的转速及频率,无功电流的变化影响发电机的电压。

为了保持发电机的频率和电压的稳定,必须随负载变化及时调节原动机的输入功率和励磁电流!

小结

励磁磁动势 F_0 和电枢磁动势 F_a 的区别

1、两个磁动势

	基波波形	大小	位置	转速	转向
励磁磁动势F	正弦波	恒定,由励磁电流决定	由转子位置决定	由原动机的转速决定	由原动机决定
电枢磁动势F	正弦波	恒定, 由电枢电流决定	由电流瞬时值决定	由磁极对数和电流频率决定	由电流相序决定

电枢反应的性质取决于**电枢磁动势**和励磁磁动势之间的相对位置,与励磁电动势Εο和电枢(定子)电流 / 之间的夹角ψ 2、电枢反应的性质 有关。ψ定义为内功率因数角,与负载性质有关。

电枢反应

3、电枢反应的意义 ▶ 电枢反应不仅是引起端电压变化的主要原因(直轴);也是电机实现机—电能量转换的枢纽(交轴)。

交轴电枢反应—有功分量—频率—原动机 (机电能量转换) 直轴电枢反应—无功分量—电压—励磁电流