Lay 4.5

Math~2210Q

Question 1 If a vector space V has a basis consisting of 5 vectors then for $\vec{v}_i \in V$,

Multiple Choice:

- (a) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6\}$ is linearly dependent. \checkmark
- (b) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6\}$ is linearly independent.

Question 2 If a vector space V has a basis consisting of 5 vectors then for $\vec{v}_i \in V$,

Multiple Choice:

- (a) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ spans V.
- (b) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ does not span $V.\checkmark$

Question 3 Determine the dimensions of Nul A and Col A.

$$A = \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\dim \operatorname{Nul} A = \boxed{1}$

 $\dim\operatorname{Col} A=\boxed{2}$

Question 4 Determine the dimensions of Nul A and Col A.

$$A = \begin{bmatrix} 5 & 4 & 1 & 5 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 8 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

 $\dim\operatorname{Nul}A=\boxed{0}$

 $\dim \operatorname{Col} A = \boxed{4}$

Lay 4.5 Math 2210Q

Question 5 Determine the dimensions of Nul A and Col A.

$$A = \begin{bmatrix} 5 & 4 & 5 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\dim \operatorname{Nul} A = \boxed{0}$

 $\dim \operatorname{Col} A = \boxed{3}$

Question 6 Determine the dimensions of Nul A and Col A.

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\dim \operatorname{Nul} A = \boxed{2}$

 $\dim \operatorname{Col} A = \boxed{1}$

Question 7 True/False: A plane in ${f R^3}$ is a two dimensional subspace of ${f R^3}$

Multiple Choice:

- (a) True
- (b) False ✓

Hint: A plane in \mathbb{R}^3 that doesn't intersect the origin is not a subspace, so couldn't be a subspace of dimension 2.

Question 8 True/False: If $\dim V = n$ and S is a linearly independent set with n vectors, then S is a basis fo V.

Multiple Choice:

Lay 4.5 Math 2210Q

- (a) True ✓
- (b) False