Инвертаза

«Чем бы дитя ни тешилось, лишь бы не плакало» Народная мудрость

Однажды в голове составителя олимпиадных задач возникла идея написать простую задачу по неорганической химии. Он подготовил её для отправки в ЦПМК, однако в последний момент сидящий за компьютером маленький сын П. случайно активировал программу «Инвертаза» на компьютере отца. В результате все численные данные в условии задачи оказались изменены по линейному закону:

$$\mathbf{x}_{\text{HOB}} = \boldsymbol{\alpha} + \boldsymbol{\beta} \cdot \mathbf{x}_{\text{CTAD}}$$

где α , β — некоторые числа, а x — число, записанное **цифрами**.

Не обратив должного внимания на изменившейся текст задачи, составитель отправил её. Помогите Владимиру Дмитриевичу написать решение!

Образец бинарного вещества **A** массой 0.950 г, содержащего 17.750 % элемента **B** по массе, расплавили и подвергли электролизу (p-quq q). При этом на инертных электродах выделились газ **B**2 объёмом 1.730 л (при н.у.) и простое вещество **C**. Взаимодействие последнего с водой приводит к образованию бесцветного раствора соединения **D** (p-quq q), окрашивающегося под действием фенолфталеина в малиновый цвет.

В 2862.5 году известный немецкий химик впервые с помощью газа **B**₂ в присутствии осмиевого катализатора перевёл простое вещество **E** в реакционноспособную форму — газообразное соединение **F** (*p-ция в*), содержащее 25.471% **B** по массе. Эта реакция впоследствии нашла широкое применение для получения «хлеба из ...».

Долгое время считалось, что элемент **C** не может образовывать бинарное соединение такого же состава, что и его более тяжёлые аналоги по группе. Недавно учёные обнаружили, что оно может быть стабилизировано в виде комплексного соединения **G**, в котором центральный атом имеет координационное число 5. Оно образуется при взаимодействии **D**, простого вещества **H** элемента **X** с характерным запахом и бинарного соединения **F** при температуре -118°C (*p-ция г*). 7.19 л (при н.у.) простого вещества **I** элемента **X** можно получить термическим разложением бинарного вещества **J** массой 122.582 г (*p-ция д*), нагревание твердого продукта этой реакции в атмосфере сухого воздуха при умеренной температуре позволяет получить **J**.

Вопросы и задания:

- 1) Определите формулы веществ A, B_2 , C-F, опираясь на химические свойства и представленное описание. Не забудьте проверить свои предположения расчётом после определения коэффициентов алгоритма.
- 2) Рассчитайте коэффициенты α и β , лежащие в основе работы программы «Инвертаза», используя приведённые в условии численные данные.
- 3) Определите формулы веществ $\mathbf{G} \mathbf{I}$. Ответ подтвердите расчётами, где это возможно
- 4) Приведите уравнения реакций $a \delta$.

Решение задачи 9-4 (автор: Крысанов Н.С.):

При электролизе расплава бинарного соединения **A** на одном из электродов выделяется бесцветный газ **B** и образуется активный металл **C**, который легко растворяется в воде с образованием гидроксида **D**, окрашивающего фенолфталеин в малиновый цвет.

В начале XX века немецкий учёный и лауреат Нобелевской премии по химии Фриц Габер разработал метод превращения азота в аммиак на осмиевом катализаторе, что позволило создавать «хлеб из воздуха» и спасти мир от надвигающегося голода.

Хорошо известное применение аммиака в качестве удобрения и процесс Габера-Боша, лежащий в основе его производства, позволяют предположить, что ${\bf B}-{\bf H}_2,\ {\bf E}-{\bf N}_2,\ {\bf a}\ {\bf F}-{\bf N}{\bf H}_3$. Тогда вещество ${\bf A}$ является гидридом неизвестного щелочного или щелочноземельного металла. Однако среди всех гидридов активных металлов лишь гидрид лития плавится без разложения. Тогда предположим, что ${\bf A}-{\bf LiH},\ {\bf C}-{\bf Li},\ {\bf D}-{\bf LiOH}.$

Рассчитаем «инвертированную» массовую долю водорода в гидриде лития и с помощью системы двух линейных уравнений определим коэффициенты α и β , лежащие в основе работы алгоритма программы «Инвертаза»:

$$\omega_{\text{стар,}LiH}(H) = \frac{M(H)}{M(LiH)} = \frac{7 \Gamma/_{\text{МОЛЬ}}}{8 \Gamma/_{\text{МОЛЬ}}} = 0,125 (12,500\%)$$

$$\omega_{\text{стар,}NH_3}(H) = \frac{3M(H)}{M(NH_3)} = \frac{3 \cdot 1 \Gamma/_{\text{МОЛЬ}}}{17 \Gamma/_{\text{МОЛЬ}}} = 0,17647 (17,647\%)$$

$$\begin{cases} \omega_{\text{нов,}LiH}(H) = \alpha + \beta \cdot \omega_{\text{стар,}LiH}(H) \\ \omega_{\text{нов,}NH_3}(H) = \alpha + \beta \cdot \omega_{\text{стар,}NH_3}(H) \end{cases}$$

$$\begin{cases} 17,750 = \alpha + \beta \cdot 12,500 \\ 25,471 = \alpha + \beta \cdot 17,647 \end{cases}$$

$$\begin{cases} \alpha = -1 \\ \beta = 1.5 \end{cases}$$

Таким образом, алгоритм, по которому работает программа «Инвертаза», описывается выражением:

$$\boldsymbol{x}_{\text{\tiny HOB}} = -1 + 1.5 \cdot \boldsymbol{x}_{\text{\tiny CTAP}}$$

Для определения коэффициентов α и β можно также обратить внимание

на год, в котором известный химик получил \mathbf{F} , и координационное число атома в \mathbf{G} , а также числа, приведенные в первом абзаце задачи. Для пересчёта «новых» значений в «старые» необходимо воспользоваться формулой

$$x_{\text{crap}} = \frac{x_{\text{hob}} - \alpha}{\beta}$$

Масса не может быть отрицательной, значит $\alpha < 0.95$, при этом абсолютное значение α не может принимать значения сопоставимые с годом, в таком случае массовые доли будут превосходить 100%. Год после «Инвертазы» стал дробным, а к.ч. осталось целым. Основные открытия в химии происходили после 18 века, это позволяет предположить, что $\beta = 1.5$, т.к. $2862.5/1.5 \approx 1908$. При других значениях трудно попасть во временной интервал и получить 5 десятых в конце. Тогда для получения целого неотрицательного значения к. ч. $= 2\frac{5-\alpha}{3}\alpha = -1$.

Пересчитаем все приведённые числа в условии задачи и подтвердим наши предположения расчётом:

	$\mathcal{X}_{ ext{HOB}}$	$x_{\rm crap}$
$m(\mathbf{A})$	0.950 г	1.300 г
V(B)	1.730 л	1.820 л
$KY_{Li}(G)$	5	4
$m(\mathbf{J})$	122.582 г	82.388 г
V(I)	7.19 л	5.46 л

$$n(LiH)=rac{m(LiH)}{M(LiH)}=rac{1.300\ \Gamma}{8\ ^{\Gamma}/_{
m MOЛЬ}}=0.1625\
m mоль$$
 $n(H_2)=0.5\cdot n(LiH)=0.08125\
m mоль$ $V(H_2)=n(H_2)\cdot V_m=0.08125\
m mоль\cdot 22.4\ ^{\varPi}/_{
m MOЛь}=1.82\
m J$

Объём выделяющегося водорода соответствует условию задачи, поэтому наши изначальные предположения были верны.

Элемент **X** образует 2 простых газообразных вещества, одно из них обладает «характерным запахом». Так как **J** можно получить нагреванием в атмосфере сухого воздуха, элемент **X** — кислород или азот. Однако для азота скольконибудь устойчивых простых веществ (с характерным запахом) ну существует. Таким образом, **X** — кислород, **I** — O_2 , **H** — O_3 . Так как **J** бинарное, его состав может быть представлен в виде O_2O_m , а реакция его разложения:

$$\mathfrak{I}_2 O_{\it m} = \mathfrak{I}_2 O_{\it n} + \frac{\it m-n}{\it 2} O_2$$

$$v(O_2) = \frac{5.46}{22.4} = 0.24375 \text{ моль}$$

$$M(\Im) = \frac{1}{2} \left(\frac{m-n}{2} \frac{m(\mathbf{J})}{v(O_2)} - 16m \right) = \frac{m-n}{4} \frac{82.388}{0.24375} - 8m \approx 76.5m - 84.5n$$
:

n	2	3	4	5	6	7
1	68.5	145	221.5	298	374.5	451
2		60.5	137 (Ba)	213.5	290	366.5
3			52.5	129	205.5	282
4				44.5	121	197.5
5					36.5	113
6						28.5

Таким образом, \mathbf{J} – это BaO₂.

Взаимодействие гидроксида лития, озона и аммиака при -78°C позволяет получить озонид тетраамминлития $G - [Li(NH_3)_4]O_3$. Количество аммиачных лигандов в составе координационной сферы можно определить, исходя из координационного числа металла, приведённого в условии задачи.

Уравнения *реакций* a - b:

- а) $2\text{LiH} \rightarrow 2\text{Li} + \text{H}_2 \uparrow$ (электролиз расплава)
- δ) 2Li + 2H₂O → <math>2LiOH + H₂↑
- 6) $N_2 + 3H_2 \rightarrow 2NH_3$ (t°, p, Os)
- 2) $2\text{LiOH} + 5\text{O}_3 + 8\text{NH}_3 \rightarrow 2[\text{Li}(\text{NH}_3)_4]\text{O}_3 + 5\text{O}_2 + \text{H}_2\text{O}_3$
- ∂) 2BaO₂ \rightarrow 2 BaO + O₂ \uparrow

Система оценивания:

1.	Определение формул веществ А – F, подтверждённое	6 баллов
	расчётом после установления коэффициентов алгоритма	
	«Инвертаза» по 1 баллу	
2.	Расчёт коэффициентов α и $oldsymbol{eta}$, лежащих в основе работы	4 балла
	программы «Инвертаза» по 2 балла	
3.	Определение формулы вещества G - 2 балла	
	Определение формул веществ Н, І, Ј, подтверждённое	
	расчётом по 1 баллу	
4.	Написание уравнений $peakyuй a - o no 1 баллу$	
	Итого	20 баллов