Часть 1. Тест.

Вопрос 1 \clubsuit Если $\mathrm{E}(X)=4$, $\mathrm{E}(Y)=3$, $\mathrm{Var}(X)=6$, $\mathrm{Var}(Y)=7$, $\mathrm{Cov}(X,Y)=-1$, то $\mathrm{Cov}(1-X+2Y,1X)$ равна

A 8

-8

G Нет верного ответа.

B 4

E -9

- C -4
- C -4 F

Вопрос 2 \clubsuit Предпосылки теоремы Гаусса-Маркова выполнены, случайные ошибки нормально распределены, уровень доверия равен 80%, критическое значение t-статистики равно 1.53, всего n наблюдений. Регрессия имеет вид $\hat{Y}_i = -4 + \mathop{5}\limits_{(3)} X_i$, в скобках указаны стандартные ошибки. Доверительный интервал

- для β_2 равен
 - A [1.94; 8.06]

- $\boxed{\mathbf{C}}$ [4.25; 5.75]
 - [4.69; 5.31]

B [3.47; 6.53]

 \boxed{D} [4.88; 5.12]

F Нет верного ответа.

Вопрос 3 \clubsuit Имеются данные по доходу жены, мужа и продолжительности брака. Доход семьи складывается из дохода жены и мужа. Вася оценил зависимость дохода семьи от продолжительности брака и получил регрессию $\hat{Y}_i = 20 + 3X_i$, Петя оценил зависимость дохода мужа от продолжительности брака и получил регрессию $\hat{Y}_i = 10 + 2X_i$. Маша оценивает зависимость дохода жены от продолжительности брака. Она получит регрессию:

- $\boxed{\mathbf{A}} \hat{Y}_i = 10 X_i$
- В недостаточно данных для ответа
- $C \hat{Y}_i = 30 + 5X_i$
- $\boxed{\mathbf{D}} \ \hat{Y}_i = 20 + 3X_i$

- $\hat{Y}_i = 10 + X_i$
- $\boxed{\mathbf{F}} \ \hat{Y}_i = 15 + 2.5X_i$
- G Нет верного ответа.

Вопрос 4 \clubsuit В парной регрессии на уровне значимости 5%-ов гипотеза H_0 : $\beta_2=2016$ не отвергается. Из этого можно сделать вывод, что на соответствующем уровне значимости

- $oxed{A}$ доверительный интервал для eta_2 не содержит ноль
- $\boxed{\mathsf{B}}\ H_0$: $\beta_2=0$ не отвергается
- $| C | H_a$: $\beta_2 \neq 0$ отвергается

- \square H_0 : $\beta_2 = 0$ отвергается
- \blacksquare H_a : $\beta_2 \neq 0$ не отвергается
- Нет верного ответа.

Вопрос 5 \clubsuit В парной регрессии величина $\bar{Y} - \hat{\beta}_1 - \hat{\beta}_2 \bar{X}$

А равна (-1)

- равна 0
- В может принимать любое положительное значение
- F может принимать любое неотрицательное зна-

- С не существует
- D равна 1

G Нет верного ответа.

Вопрос 6 ૈ	Условием теоремы Гаусса-Маркова, необходимым для несмещённости оценок коэффициен-
тов регрессии	и в модели $Y_i = eta_1 + eta_2 X_i + u_i$ является

- $E(u_i) = 0$
- В некоррелированность случайных ошибок
- $C E(u_i) \neq 0$
- П нормальность случайных ошибок

- Е гомоскедастичность случайных ошибок
- **F** гетероскедастичность случайных ошибок
- G Нет верного ответа.

Вопрос 7 \clubsuit В модели парной регрессии $R^2=0.8, TSS=200$ и 12 наблюдений. Несмещённая оценка дисперсии случайной ошибки равна

- 4
- B 4.1
- C 3.8

- D 3.9
- E 4.3
- F 4.2

- G Нет верного ответа.
- Вопрос 8 \clubsuit Если все Y_i в линейной регрессии увеличить в два раза, то оценка \hat{eta}_2
 - А помножится на 4
 - В не изменится
 - помножится на 2
 - D поделится на 2

- $[\mathbf{E}]$ изменится в произвольную сторону, в зависимости от X_i
- **F** поделится на 4
- G Нет верного ответа.

Вопрос 9 \clubsuit Если $\alpha = 0.1$ и P-значение равно 0.09, то

- $oxed{A}$ H_a не отвергается
- В недостаточно информации для ответа
- $lue{C}$ H_0 принимается
- \square H_a принимается

- H_0 отвергается
- $\boxed{\mathrm{F}}$ H_a отвергается
- G Нет верного ответа.

Вопрос 10 👫 Свободно распространяемым программным обеспечением является

R

SPSS

C Excel

- D Eviews
- E Stata
- F Matlab

G Нет верного ответа.

2/4

Часть 2. Задачи.

1. Для модели $Y_i=\beta_1+\beta_2 X_i+u_i$ выполнены все предпосылки теоремы Гаусса-Маркова, а случайные ошибки нормально распределены. Известны все значенения Y_i , все значения \hat{Y}_i и часть значений X_i

X_i	5	3		
Y_i	4	7	7	2
\hat{Y}_i	5	7	4	4

- а) Найдите МНК-оценки коэффициентов регрессии
- б) Найдите стандартную ошибку коэффициента \hat{eta}_2
- в) Постройте 95%-ый доверительный интервал для коэффициента \hat{eta}_2
- г) Проверьте гипотезу о незначимости коэффициента β_2 на уровне значимости 5%
- 2. Рассмотрим модель $Y_i=\beta_1+\beta_2 X_i+u_i$ с неслучайным регрессором. Аккуратно сформулируйте теорему Гаусса-Маркова, пояснив смысл используемых понятий
- 3. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Выведите формулу для дисперсии МНК-оценки, $Var(\hat{\beta}_1)$.
- 4. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Докажите несмещённость МНК-оценки коэффициента β_1 .
- 5. В течение 10 дней Василий записывал количество пойманных им покемонов, Y_i , и количество решённых задач по эконометрике, X_i . Оказалось, что $\sum X_i^2 = 44$, $\sum Y_i^2 = 197$, $\sum X_i = 15$, $\sum Y_i = 15$ и $\sum X_i Y_i = 44$. Василий предполагает корректность линейной модели $Y_i = \beta_1 + \beta_2 X_i + u_i$.
 - а) Найдите МНК-оценки коэффициентов регресси
 - б) Найдите RSS, ESS, TSS и R^2

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Randall Munroe, xkcd

Имя, фамилия:	
Номер группы:	

Вопрос 1 : A B C **E** F G

Вопрос 2 : A B C D **F**

Вопрос 3 : A B C D **F** G

Вопрос 4 : А В С D Е

Вопрос 5 : A B C D **F** G

Вопрос 6 : **В** С D E F G

Вопрос 7 : **В** В С D E F G

Вопрос 8 : A B D E F G

Вопрос 9 : A B C D **F** G

Вопрос 10 : **В** С D E F G