Two-Stage Clustering on PCB Image for Automatic Extraction of Test Pad Coordinates

Contents

- Brief Background
- Literature Review
- Business Understanding
- Data Understanding
- Data Preparation
- Modelling
- Evaluation
- Deployment & Industry Application
- Conclusion

Brief Background

- A Data Mining Approach on Retrieving Test-Pad Location for Printed Circuit Board Maintenance And Testing
- Establish a Structure & Effective Method to aid PCB Maintenance & Testing Using Data mining Techniques
- Performing Cluster analysis using IBM SPSS Modeler
 - K-Means
 - Two-Step
- Using CRISP-DM Framework

Literature Review

- Data mining approach to identify PCB defects

 Kusiak and Kurasek (2001)
 - Use of Decision Tree to predict solder defects
 - Feasible use of Data mining techniques on PCB maintenance
- Overview of Flying Probe Tester
 Hoenle (2015)
 - Basic Understanding of a Flying Probe Tester
 - Uses X-Y Coordinates as guide for probes
- Automatic Optical Inspection on PCB Using Neural Network Fanni (2000)
 - Uses machine learning to recognize contact points on PCB image
 - Machine compares with image reference

Business Understanding

- Printed Circuit Boards (PCBs)
- Main Structure & Key Component of electronics products
- PCB bear the brunt of external forces (Heat, Vibrations, Dropping etc.)
- Damaged PCBs requires troubleshooting by Engineers using a schematic or layout of the PCB.

Business Understanding

- Flying Probe Tester
- Automated solution for Engineers
- Requires Computer-Aided Design data
- Uses X-Y Coordinates

What if there are no schematics or CAD data of the PCB?

Business Understanding

Business Objective

"To aid Engineers in their testing and maintenance of PCBs that do not have schematics or CAD data and to reduce their manhours needed."

Data mining Objective

"Identify and Locate test-points on the PCB using data mining techniques and to provide CAD data to Flying Probe Testers"

Data Understanding

- Data Source
 - Digital Image of PCB Converted Using Java Script Application
- Variables
 - X-Y Coordinates
 - Intensity of Red, Green, Blue and Alpha (RGBA)
 - Ranges from '0' to '255'
- Each entry represents one pixel on the digital image
- Image has 71,040 pixels

Data Preparation

- Data Exploration
 - Very Good Quality
 - No missing values
 - 'Alpha' not useful and filtered out

Modelling

- Modelling Phase Involves 2 Stages
 - Stage 1: Identify Grey Pixels on Image
 - Grey pixels represent the test-pads which the Flying Probe Tester need to contact to test the circuitry of the PCB
 - Grey pixels' RGB values have to be about the same
 - Using a Online Color Picker
 - Stage 2: Creating Test-pad Clusters
 - Cluster the identified grey pixels into clusters of test-pads
 - Using X-Y coordinates of the grey pixels
 - Ideally to have one clusters to each test-pad
 - 120 test-pads on PCB image

Modelling: Identify Grey Pixels

- K-Means & TwoStep model explored
- K-Means found to be best model
- 2 Clusters found with average RGB values close to 'Grey'

cluster-6	cluster-10	cluster-9	cluster-8	cluster-5	cluster-1	cluster-7	cluster-3
Dark Grey	Green	Green	Green	Green	White	Green	Grey
5.8%	5.4%	5.4%	4.8%	4.3%	4.1%	3.9%	3.1%
(4089)	(3854)	(3846)	(3436)	(3071)	(2933)	(2781)	
B	B	B	B	B	B	B	B
114.59	118.73	223.36	174.22	197.33	252.90	142.09	152.93
G	G	G	G	G	G	G	G
112.91	146.39	246.91	189.62	221.14	254.07	175.16	146.61
R	R	R	R	R	R	R	R
92,82	95.04	205.81	153.72	178.00	250.78	120.28	131.12

Modelling: Identify Grey Pixels

• X-Y Coordinates of identified grey pixels plotted.

Modelling: Identify Grey Pixels

- RGB Values Filtered Out
- Cluster Analysis Performed on X-Y Coordinates
- TwoStep Model found to be best model for task
- To take into consideration sporadic pixels, 170 Clusters created
- Forces model to split up test-pads that are close together

• X-Y values of each cluster aggregated to obtain the mean and center point

• Clusters with 10 or less Record Counts removed to cleanup nontest-pad related clusters

- ➤ 120 Test-pads on PCB
- ➤ 128 Cluster points found after cleanup
- Only 5 non-testpad related clusters
- ➤ 3 others are duplicates

Evaluation

- Basing on visual reference and comparison, method of X-Y coordinate retrieval is very accurate
- All Test-pads Locations Retrieved
 - 93.75% accurate
 - Remaining 6.25% due to 3 duplicates & 5 non-testpad points
- Error negligible as it only means the Flying Probe Tester contacting on the areas of the PCB which has no test-pad.

Concluding Remarks

- Deployment in Industry
 - Military Electronics
 - Obsolete But Still Heavily Used Equipment
- Potentially save man-hours of Engineers
- Time Focused on the Actual Repair and Maintenance Work
- Potentially integration with AOI Systems

End of Presentation