Complex Analysis

Youming Zhao

Email: youming0.zhao@gmail.com

First draft: January 1, 2022 Last update: December 21, 2023

Contents

1 Basics 1

1 Basics

Let \mathbb{C} be a set of complex numbers with a distance (metric space). We normally choose the absolute value, defined by $|a| = \sqrt{\alpha^2 + \beta^2}$ for $a = \alpha + \beta i \in \mathbb{C}$, as the distance.

The following three statements are equivalent:

- 1. A sequence $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ is convergent to $a\in\mathbb{C}$.
- 2. the sequence $(|z_n a|)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is convergent to 0.
- 3. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N : |z_n a| < \epsilon.$

An ϵ -ball around $a \in \mathbb{C}$ is defined as

$$B_{\epsilon}(a) := \{ w \in \mathbb{C} \mid |w - a| < \epsilon \}. \tag{1}$$

A function $f: \mathbb{C} \to \mathbb{C}$ is continuous at $z_0 \in \mathbb{C}$ if for all sequences $(z_n)_{n \in \mathbb{N}} \subseteq \mathbb{C}$ satisfying $\lim_{n \to \infty} z_n = z_0$, then $\lim_{n \to \infty} f(z_n) = f(z_0)$.

The domain of a complex-valued function $f: \mathbb{C} \to \mathbb{C}$ is supposed to be an open set. A set $U \subseteq \mathbb{C}$ is called open if $\forall u \in U, \exists \epsilon > 0 \colon B_{\epsilon}(z) \subseteq U$.

Given an open set $U \subseteq \mathbb{C}$ and $z_0 \in U$, $f: U \to \mathbb{C}$ is called (complex) differentiable if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \tag{2}$$

exists. This limit, denoted $f'(z_0)$, is called the (complex) derivative of f at z_0 .

Example: For the function f(z) = mz + c, $m, z, c \in \mathbb{C}$, its derivative at z_0 is given by $f'(z_0) = m$.

Example: Not all functions are differentiable, such as $f(z) = \bar{z}$. To see this, for $z_0 = 0$, the limit

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} \frac{\bar{z}}{z} \tag{3}$$

does not exist. \Box

Definition 1. Given an open set $U \subseteq \mathbb{C}$, $f: U \to \mathbb{C}$ is *holomorphic* on U if f is differentiable at every $z_0 \in \mathbb{C}$. If $U = \mathbb{C}$, then the holomorphic function f is called *entire*.

The holomorphic functions have some nice properties as follows:

- 1. f is holomorphic $\Longrightarrow f$ is continuous.
- 2. f and g are holomorphic $\Longrightarrow f+g$ and $f\cdot g$ are holomorphic.
- 3. the sum rule, product rule, quotient rule and chain rule for derivatives hold.

Example:

- 1. A polynomial is an entire function. More specifically, $f(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0$ with $a_m, \dots, a_0 \in \mathbb{C}$. Its first derivative is $f'(z) = m a_m z^{m-1} + \dots + a_1$.
- 2. $f: \mathbb{C}\backslash\{0\} \to \mathbb{C}$, $f(z) = \frac{1}{z}$ is holomorphic.
- 3. Let $S = \{z \in \mathbb{C} \mid q(z) = 0\}$, then $f(z) = \frac{p(z)}{q(z)}$ is defined on $\mathbb{C}\backslash S$ where p(z) and q(z) are polynomials. Then f is holomorphic.