

Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment Analysis

Teng Sun†, Wenjie Wang§, Liqiang Jing†, Yiran Cui†, Xuemeng Song†, Liqiang Nie†

†Shandong University, Shandong, China, §National University of Singapore, Singapore, Singapore

Presenter: Liqiang Jing

jingliqiang6@gmail.com

Outline

Background

Users tend to present their opinions on social media platforms.

How Many Tweet Sent Per Day of 2013-2022					
Years	Average Number of Tweets (in million)				
2012	340				
2013	500				
2014	546				
2015	592				
2016	634				
2017	683				
2018	729				
2019	775				
2020	821				
2021-2022	867				

https://www.renolon.com/number-of-tweets-per-day/

Background

Sentiment Analysis

Being named captain of the New York Yankees was one of the greatest honors of my career. #TheCaptain (2)

Textual Tweet

.@derekjeter's 3,000th hit game was iconic

#TheCaptain ?

翻译推文

Multimodal Tweet

Task Definition

Multimodal Sentiment Analysis (MSA)
Predict the sentiment label based on three modalities (i.e., text, video, and audio).

Outline

Related Work

Outline

Motivations

Existing studies usually suffer from fitting the spurious correlations in textual modality.

Distribution of the most frequent words in MOSEI dataset.

Task Definition

OOD MSA Task

Construct the OOD testing set for each biased dataset, with significantly different word-sentiment correlations from the training one.

(a) Distribution of the most frequent words in the training set.

(b) Distribution of the most frequent words in the OOD testing set.

Keys

- Disentangling the good and bad effects of textual modality on the model prediction.
- ➤ Mitigating the bad effect for stronger out-of-distribution (OOD) generalization.
- Utilizing multimodal cues to alleviate the textual correlations.

Outline

Preliminary

The causal graph of the admission outcome, where the admission outcome of graduate (O) is directly affected by the experience (E) and publication (P).

Structural Equations

$$P_e = p = f_P(E = e), O_{e,p} = f_O(E = e, P = p),$$

Total Effect

$$\begin{cases} \text{TE} = O_{e,p} - O_{e^*,p^*} = f_O(E = e, P = p) - f_O(E = e^*, P = p^*), \\ p^* = P_{e^*} = f_P(E = e^*), \end{cases}$$

Preliminary

The causal graph of the admission outcome, where the admission outcome of graduate (O) is directly affected by the experience (E) and publication (P).

Natural Direct Effect

NDE =
$$O_{e,p^*} - O_{e^*,p^*}$$
,

Total Indirect Effect

$$TE = NDE + TIE.$$

$$TIE = TE - NDE = O_{e,p} - O_{e,p^*}.$$

Causal Graph of MSA

T: Text. V: Video. A: Audio. M: Multimodal representation. Y: Model prediction.

- (a) The causal graph in the MSA. (b) The illustration of counterfactual inference.
- Casual Relationships

$$\begin{cases} Y_{t,m} = f_Y(T = t, M = m), \\ m = f_M(T = t, A = a, V = v). \end{cases}$$

TE of Textual Modality

$$TE = Y_{t,m} - Y_{t^*,m^*} = f_Y(T = t, M = m) - f_Y(T = t^*, M = m^*),$$

Causal Graph of MSA

T: Text. V: Video. A: Audio. M: Multimodal representation. Y: Model prediction.

- (a) The causal graph in the MSA. (b) The illustration of counterfactual inference.
- NDE of Textual Modality

$$Y_{t,m^*} - Y_{t^*,m^*} = f_Y(T = t, M = m^*) - f_Y(T = t^*, M = m^*),$$

TIE of Textual Modality

$$TIE = TE - NDE = Y_{t,m} - Y_{t,m^*},$$

CLUE

Implementation

$$Y_m = f_M(T = t, A = a, V = v)$$

$$Y_{t,m} = f_Y(T = t, M = m) = h(Y_t, Y_m) = SUM(Y_t, Y_m) = \log \sigma(Y_t + Y_m),$$

CLUE

Training

$$\mathcal{L}_{CE} = \alpha * \text{CE}(Y_{t,m}, y) + \beta * \text{CE}(Y_{t,m^*}, y),$$

Testing

TIE =
$$Y_{t,m} - \tau * Y_{t,m^*} = h(Y_t, Y_m) - \tau * h(Y_t, Y_{m^*}),$$

Outline

ODD Dataset Construction

Algorithm 1 IID and OOD Set Construction.

```
Input: The whole dataset \mathcal{D}, the pre-defined distribution
difference \phi_{\Lambda}, the number of iterations n, simulated annealing
temperature \tau, and the temperature decay rate \alpha.
 Output: IID set \mathcal{D}_{iid} and OOD set \mathcal{D}_{ood}.
  1: Get an IID set \mathcal{D}_{iid} and OOD set \mathcal{D}_{ood} by random splitting \mathcal{D}.
  2: Compute distributions \phi_{iid} and \phi_{ood} of all words over different
      sentiment categories in \mathcal{D}_{iid} and \mathcal{D}_{ood}, respectively.
  3: Set V = ||abs(\boldsymbol{\phi}_{iid} - \boldsymbol{\phi}_{ood}) - abs(\boldsymbol{\phi}_{\Lambda})||_1.
  4: repeat
  5:
          repeat
              Randomly swap samples between \mathcal{D}_{iid} and \mathcal{D}_{ood} by
              perturbation strategies<sup>2</sup> to a new IID set \hat{\mathcal{D}}_{iid} and OOD
              set \hat{\mathcal{D}}_{ood}.
              Calculate \hat{\phi}_{iid} (\hat{\phi}_{ood}) with \hat{\mathcal{D}}_{iid} (\hat{\mathcal{D}}_{ood}), respectively.
  7:
              Set \hat{V} = ||abs(\hat{\boldsymbol{\phi}}_{iid} - \hat{\boldsymbol{\phi}}_{ood}) - abs(\boldsymbol{\phi}_{\Lambda})||_1.
              Get a random number R and 0 \le R < 1.
              if V \geq \hat{V} then
 10:
                 Set \mathcal{D}_{iid}, \mathcal{D}_{ood}, V = \hat{\mathcal{D}}_{iid}, \hat{\mathcal{D}}_{ood}, \hat{V}.
 11:
              else if exp((\hat{V} - V)/\tau) > R then
 12:
                  Set \mathcal{D}_{iid}, \mathcal{D}_{ood}, V = \hat{\mathcal{D}}_{iid}, \hat{\mathcal{D}}_{ood}, \hat{V}.
 13:
              end if
 14:
          until Swapping times reach n.
          Set \tau = \tau * \alpha.
 16:
17: until Iteration times reach n.
```

On Model Comparison

Table 1: OOD testing performance (%) comparison among different methods on MOSEI and MOSI datasets. For *Acc-2* and *F1*, "*" is calculated as "negative/non-negative" and "§" is calculated as "negative/positive". The best result of each pair of the original MSA model and the model with CLUE is highlighted in bold.

MOSEI					MOSI				
2-class				7-class	2-class				7-class
Acc-2*	F1*	Acc-2§	F1 [§]	Acc-7	Acc-2*	F1*	Acc-2 [§]	F1 [§]	Acc-7
71.23	70.46	69.76	69.02	41.05	73.02	72.93	74.62	74.56	32.95
68.16	68.31	69.58	69.58	31.11	73.54	73.40	75.27	75.18	29.10
72.56	72.44	73.73	73.58	40.58	75.00	74.75	76.72	76.52	29.80
74.59	74.48	76.41	76.27	45.88	75.57	75.52	77.28	77.26	39.85
78.34 ^{+3.75}	78.23 +3.75	80.51 ^{+4.10}	80.46 ^{+4.19}	48.66 ^{+2.78}	77.25 ^{+1.68}	77.46 ^{+1.94}	78.65 ^{+1.37}	78.83 ^{+1.57}	40.75 ^{+0.90}
74.48	74.39	76.45	76.33	43.15	75.90	75.82	77.39	77.35	38.05
77.17 ^{+2.69}	77.08 ^{+2.69}	78.77 ^{+2.32}	78.74 ^{+2.41}	46.86 ^{+3.71}	78.25 ^{+2.35}	78.28 ^{+2.46}	79.17 ^{+1.78}	79.19 ^{+1.84}	42.25 ^{+4.20}
74.68	74.33	74.50	74.22	45.81	76.70	76.68	78.12	78.13	40.25
77.76 ^{+3.08}	77.72 ^{+3.39}	79.48 ^{+4.98}	79.47 ^{+5.25}	48.09 ^{+2.28}	78.75 ^{+2.05}	78.75 ^{+2.07}	79.94 ^{+1.82}	79.93 ^{+1.80}	41.75 ^{+1.50}
	71.23 68.16 72.56 74.59 78.34 ^{+3.75} 74.48 77.17 ^{+2.69} 74.68	Acc-2* F1* 71.23 70.46 68.16 68.31 72.56 72.44 74.59 74.48 78.34 ^{+3.75} 78.23 ^{+3.75} 74.48 74.39 77.17 ^{+2.69} 77.08 ^{+2.69} 74.68 74.33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

CLUE consistently surpasses all the baselines, exhibiting the effectiveness of the proposed scheme.

On Model Comparison

Table 2: IID testing performance (%) comparison among different methods on MOSEI and MOSI datasets. *Acc-2* and *F1* are calculated as "negative/non-negative". We omitted the similar results of "negative/positive" to save space.

					_		
		MOSEI		MOSI			
Model	2-class		7-class	2-class		7-class	
	Acc-2	F1	Acc-7	Acc-2	F1	Acc-7	
TFN	81.59	81.54	52.11	80.24	80.31	40.07	
LMF	79.59	80.34	48.27	79.85	79.95	35.04	
MulT	81.05	81.44	53.21	79.61	79.71	35.19	
MAG-BERT	82.82	83.19	53.52	83.91	83.96	46.97	
+CLUE (Ours)	84.62	85.46	53.68	84.37	84.28	48.84	
MISA	82.17	82.61	53.26	83.52	83.58	45.26	
+CLUE (Ours)	84.51	85.28	53.15	84.07	84.16	46.31	
Self-MM	83.71	83.80	53.31	84.14	84.17	48.74	
+CLUE (Ours)	84.52	84.46	53.42	84.31	84.38	48.04	

CLUE consistently surpasses all the baselines, exhibiting the effectiveness of the proposed scheme.

On Ablation Study

Table 3: Ablation study results (%) for the binary classification (negative/non-negative) of our proposed CLUE on MOSEI. The best results are highlighted in boldface.

Madal	IID te	esting	OOD testing		
Model	Acc-2	F1	Acc-2	F1	
MAG-BERT+CLUE	84.62	85.46	78.34	78.23	
w/o-MSA model	80.31	81.52	65.49	68.01	
w/o-text model	85.09	85.60	74.37	74.83	
w/o-KL loss	84.55	84.45	78.28	78.17	
MISA+CLUE	84.51	85.28	77.17	77.08	
w/o-MSA model	80.31	81.52	65.49	68.01	
w/o-text model	84.31	85.26	74.53	75.78	
w/o-KL loss	84.69	85.44	76.75	76.77	
Self-MM+CLUE	84.52	84.46	77.76	77.72	
w/o-MSA model	80.31	81.52	65.49	68.01	
w/o-text model	84.52	85.41	73.51	74.12	
w/o-KL loss	84.63	84.53	77.41	77.43	

CLUE obtains the best performance, which verifies these components are significant in our model.

Conclusion

- ➤ We define a novel **OOD** MSA task, which points out the **spurious correlations** in textual modality and highlights the necessity of strong OOD **generalization** abilities.
- ➤ We devise a **model-agnostic CLUE** framework. It strengthens the existing MSA models via capturing **the causal relationships** in the training set and **mitigating the bad effect** of textual modality by the counterfactual inference.
- ➤ We conduct extensive experiments on two benchmark datasets, and the results demonstrate the **superior effectiveness and generalization ability** of CLUE.

Thanks for your listening.

Codes are available!

On Case Study

Cases of the binary classification by self-MM and CLUE.