PREDISM: Pre-Disaster Modeling With CNN Ensembles for At-Risk Communities

Vishal Anand vishal.anand@columbia.edu

Yuki Miura yuki.miura@columbia.edu

NeurIPS: Tackling Climate Change with Machine Learning, 2021

Natural Hazards amidst Climate Change

Natural Hazards amidst Climate Change

PreDisM

Pre-Disaster Modeling of Damages to Civilization

Problem Introduction and Motivation

Model

Model Usage

Data

HAZARD TYPE	LOCATION/NAME	YEAR
EARTHQUAKE	MEXICO CITY	2017
Wildfire	SANTA ROSA, CA PINERY PORTUGAL WOOLSEY, CA	2017 2015 2017 2018
FLOOD	Midwest, US Nepal	2019 2017
Hurricane	FLORENCE HARVEY MATTHEW MICHAEL	2018 2017 2016 2018
TORNADO	Joplin, MO Moore, OK Tuscaloosa, AL	2011 2013 2011
TSUNAMI	Palu, Indonesia Sunda, Indonesia	2018 2018
VOLCANIC ERUPTION	GUATEMALA LOWER PUNA	2018 2018

Hazard Level Metric

Hazard Levels as a function of attributes

ATTRIBUTES	HAZARD LEVEL				
	5	4	3	2	1
Fatality	>10000	>1000	>100	>10	>1
Injury	>100000	>10000	>1000	>100	>10
Land Impaired (km ²)	>500	>100	>50	>10	>1
Direct Damage (billion USD)	>100	>10	>1	>0.1	>0.01
Indirect Damage (billion USD)	>100	>10	>1	>0.1	>0.01
Water Disruption (days)	>30	>14	>7	>3	>1
Energy Disruption (days)	>30	>14	>7	>3	>1

Example of Model Output

Qualitative flooding damage prediction (x = lat, y = lng) without earlier disasters: Nepal

Results

MODEL	Loss-Function	ACCURACY
PREDISM _{RESNET-18}	Cross-Entropy	78.38 %
PREDISM _{RESNET-34}	Cross-Entropy	79.24 %
Chen _{post}	Cross-Entropy Ordinal Cross-Entropy	59.50 % 64.20 %

Prediction inference on non-disaster images

Takeaways

PreDisM can help society prepare for future hazards amidst climate change (stakeholders, residents, insurance, among others)

Future Work

- 1. Adding protective strategies will quantifiably minimize loss
- 2. Ablation studies on pre-disaster image sets spread across decades
- 3. Add crowd-sourced data to better process geographical features

PREDISM: Pre-Disaster Modelling With CNN Ensembles for At-Risk Communities

Yuki Miura yuki.miura@columbia.edu

NeurIPS: Tackling Climate Change with Machine Learning, 2021