

Autor: Jitka Kreslíková

© 2020

Ústav informačních systémů

Fakulta informačních technologií Vysoké učení technické v Brně

Řízení projektů

- □ Co je síťová analýza?
- □ Síťový diagram
- Pravidla pro sestavování diagramu
- CPM metoda kritické cesty
- Metoda Pert

- Síťová analýza je vhodným nástrojem řízení a kontroly průběhu složitých návazných procesů.
- Složitý návazný proces je nutno chápat jako komplex prací nebo činností, které je třeba navzájem koordinovat k dosažení jednoho společného cíle.
- Grafické znázornění projektu provádíme pomocí síťového diagramu.
- Síťový diagram je:
 - konečný, souvislý, orientovaný, acyklický, ohodnocený graf s jedním počátečním a jedním koncovým uzlem.

- uzel časový okamžik, v němž některé činnosti začínají a jiné končí.
 - jde o prvek projektu, který nespotřebovává čas ani zdroje.

- činnost (aktivita) element popisu procesu prováděného v rámci realizace projektu nebo nějakého byznys procesu.
 - je to operace nebo sekvence operací, která nějak mění předmětnou realitu s určitým záměrem,
 - může mít očekávanou dobu trvání, očekávané náklady a očekávané požadavky na zdroje,
 - jejím výsledkem může být dílčí výstup nebo produkt,

- větší činnosti bývají nazývány kroky,
- prvky nejjemnějšího členění bývají nazývány úkoly/úkony,
- hranově nebo uzlově orientovaný (definovaný) síťový graf se skládá z aktivit/činností,
- každá činnost má jeden uzel jako svůj počátek a druhý jako konec,
- žádná činnost nemůže začít dříve, dokud nebylo dosaženo jí předcházejícího uzlu,
- činnost označujeme šipkou.

- počáteční uzel uzel, jemuž nepředchází žádná činnost (jde o zahájení projektu),
- □ koncový uzel uzel, na který žádná činnost nenavazuje (jde o konec projektu).

☐ **fiktivní činnost** - hrana v hranově definovaných síťových grafech, která propojuje stavy, které jsou z hlediska pokračování procesu identické. Neklade nárok na čas ani na zdroje. V grafech se znázorňuje čárkovanou čarou zakončenou šipkou.

Slouží jako pomůcka při vyjadřování závislosti či vztahu mezi činnostmi, _{fiktivní činnost}

Pravidla pro sestavování diagramu

□ síťový diagram nesmí obsahovat cyklus (*žádný* uzel nesmí předcházet sám sebe),

Pravidla pro sestavování diagramu

dvě nebo více činností nesmějí začínat a končit ve stejných uzlech

je třeba použít fiktivních činností, přičemž nezáleží, zařadíme-li fiktivní činnost před nebo

za reálnou činnost,

Pravidla pro sestavování diagramu

- síťový diagram má vždy jeden uzel počáteční a jeden koncový
 - není-li tomu tak, pak je třeba z uzlů vybrat jeden, který s ostatními počátečními (koncovými) uzly spojíme fiktivní činností.

CPM - metoda kritické cesty

- metoda CPM spočívá v provedení těchto kroků:
 - sestavení síťového diagramu
 - transformace síťového diagramu do deterministického matematického modelu:
 - o provedení časových propočtů v projektu,
 - o vyhledání kritické cesty a její analýza,
 - o stanovení časových rezerv.

Sestavení síťového diagramu

- Při sestavování síťového diagramu musíme pro každou reálnou činnost stanovit její dobu trvání, kterou pro činnost (i,j) označíme y_{ii}.
- □ Tuto dobu považujeme v metodě CPM za pevně danou.
- Doby trvání činností musí být udány ve stejných časových jednotkách (hodiny, dny, dekády, měsíce, roky) a připisují se ke každé činnosti síťového diagramu.

Sestavení síťového diagramu

Je třeba dbát, aby graf byl přehledný.

Provedení časových propočtů v projektu

Zjišťujeme nejkratší možnou dobu trvání celého projektu. Víme, že všechny činnosti v daném projektu musí být provedeny, proto nejkratší doba trvání celého projektu bude určena cestou s **nejdelší dobou trvání**.

Zjišťování kritické cesty

Zjišťování kritické cesty provádíme pomocí časových propočtů:

```
t<sub>ii</sub>(0) ... nejdříve možný začátek činnosti (i,j)
```

```
k<sub>ii</sub>(0) ... nejdříve možný konec činnosti (i,j)
```

T_i(0) ... nejdříve možný termín realizace i-tého uzlu

```
t<sub>ii</sub>(1) ... nejpozději přípustný začátek činnosti (i,j)
```

- k_{ii}(1) ... nejpozději přípustný konec činnosti (i,j)
- T_i(1) ... nejpozději přípustný termín realizace i-tého uzlu

Zjišťování kritické cesty

Vypočtené hodnoty časů zapisujeme do uzlů podle obrázku:

Zjišťování kritické cesty

- Nejdříve možné časové pojmy jsou odvozeny od času zahájení projektu a jsou určovány předcházejícími činnostmi.
- Nejpozději přípustné časové pojmy jsou odvozovány zpětně od plánovaného času ukončení projektu, jsou tedy určovány následujícími činnostmi.
- □ Výpočet časových pojmů činností a uzlů a zjištění kritické cesty lze provádět dvěma způsoby:
 - přímo v síťovém diagramu
 - pomocí incidenční matice

- stanovení nejdříve možných časů
 - nejdříve možný konec

nejdříve možný začátek

- stanovení nejpozději přípustných časů
 - nejpozději přípustný začátek

nejpozději přípustný konec

kritická cesta

Celková časová rezerva:

$$CR_{ij} = T_j(^1) - T_i(^0) - y_{ij} \ge 0$$

Udává o kolik časových jednotek lze prodloužit dobu trvání činnosti, aniž prodloužíme konečný termín výstavby celého projektu.

celková časová rezerva

Volně použitelná časová rezerva:

$$VR_{ij} = T_j(0) - T_i(0) - y_{ij} \ge 0$$

Udává o kolik časových jednotek lze prodloužit trvání nebo posunout lhůtu nejdříve možného začátku činnosti, aniž se tím ohrozí nejdříve možné začátky následujících činností.

volně použitelná čas. rezer.

Nezávislá časová rezerva:

$$NR_{ij} = T_j(^0) - T_i(^1) - y_{ij}$$

Udává o kolik časových jednotek lze prodloužit dobu trvání nebo posunout dobu nejdříve možného začátku činnosti nezávisle na využití časových rezerv předcházejících a následujících činností,

nezávislá časová rezerva

Praktický význam má pouze nezáporná nezávislá časová rezerva.

Závislá časová rezerva:

$$ZR_{ij} = T_j(^1) - T_i(^1) - y_{ij} \ge 0$$

Udává o kolik časových jednotek lze prodloužit dobu trvání činnosti nebo oddálit nejdříve možný začátek, jestliže všechny předchozí činnosti skončí v nejpozději přípustných koncích a všechny následující činnosti začnou v nejpozději přípustných začátcích.

závislá časová rezerva

vzniká tehdy, jestliže z i-tého uzlu vychází ještě další činnosti s dřívějšími nejpozději přípustnými začátky.

Kritická časová rezerva:

$$KR_i = T_i(^1) - T_i(^0)$$

Vztahuje se k i-tému uzlu a ke všem činnostem bezprostředně předcházejícím a následujícím tomuto uzlu.

kritická časová rezerva

Pro uzel, ležící na kritické cestě = 0.

Čím má uzel menší kritickou časovou rezervu, tím je větší pravděpodobnost, že v průběhu realizace se dostane na kritickou cestu.

celková rezerva

volně použitelná

nezávislá rezerva

závislá rezerva

Výsledky časové analýzy

i	j.	y _{ij}	t _{ij} (0)	k _{ij} ⁽⁰⁾	t _{ij} ⁽¹⁾	k _{ij} ⁽¹⁾	T _i (0)	T _j (0)	T _i ⁽¹⁾	T _j ⁽¹⁾	CR_{ij}	VR_{ij}	NR_{ij}	ZR_{ij}
1	2	7	0	7	0	7	0	7	0	7	0	0	0	0
2	3	4	7	11	9	13	7	11	7	13	2	0	0	2
2	4	3	7	10	11	14	7	11	7	14	4	1	1	4
2	5	5	7	12	7	12	7	12	7	12	0	0	0	0
3	4	0	11	11	14	14	11	11	13	14	3	0	-2	1
3	6	3	1	14	13	16	11	16	13	16	2	2	0	0
4	6	2	11	13	14	16	11	16	14	16	3	3	0	0
5	6	4	12	16	12	16	12	16	12	16	0	0	0	0

Výsledky časové analýzy

Metoda PERT

- síťový diagram je transformován do stochastického matematického modelu,
- doba trvání činnosti je považována za náhodnou veličinu s určitým rozdělením pravděpodobnosti,
- používá se tam, kde nelze přesně stanovit doby trvání činností, lze je však přibližně odhadnout rozpětím určitého intervalu,

- pro trvání každé činnosti se udávají tři časové odhady:
 - optimistický odhad trvání činnosti (a) nejkratší doba trvání, ideální průběh činnosti, v praxi málo reálný,
 - pravděpodobný odhad trvání činnosti (m) doba trvání za reálných okolností, doba, která by se nejčastěji vyskytovala při vícenásobném opakování činnosti za stejných podmínek,
 - pesimistický odhad (b) nejdelší možná doba trvání činnosti za nejnepříznivějších podmínek,

```
Platí: a ≤ m ≤ b
m - modus, (b - a) - variační rozpětí
```

Zavedeme:

te - očekávanou (střední) dobu trvání σ²_{te} - rozptyl (variabilita rozdělení souboru náhodných hodnot kolem její střední hodnoty) směrodatná odchylka

- Zvolíme-li v intervalu (a,b) diskrétní hodnoty doby trvání zvolené činnosti a zkoumáme-li pravděpodobnost s jakou těchto hodnot nabývá, získáme rozdělení pravděpodobnosti náhodné veličiny, které je dané hustotou pravděpodobnosti neboli frekvenční funkcí.
- Průběh frekvenční funkce nejblíže vystihuje β rozdělení. Lze odvodit vztahy:

te =
$$(a + 4m + b) / 6$$

 $\sigma^2_{te} = ((b - a) / 6)^2$

□ V případě jednoznačného určení doby trvání činnosti (i,j), kdy a = m = b = y_{ij} , platí : te = $(y_{ij} + 4y_{ij} + y_{ij}) / 6 = y_{ij}$; $\sigma_{te}^2 = ((y_{ii} - y_{ii}) / 6)^2 = 0$

Výpočet očekávané střední doby trvání dané činnosti:

i	j	а	m	b	te	σ_{te}^{2}
1	2	5	7	9	7	0.44
2	3	2	4	6	4	0.44
2	4	1	3	6	3.2	0.69
2	5	1	5	7	4.7	1
3	4	0	0	0	0	0
3	6	2	3	4	3	0.11
4	6	1	2	3	2	0.11
5	6	2	4	5	3.8	0.25

- Pomocí očekávané doby trvání všech činností stanovíme v metodě PERT kritickou cestu obdobně jako u metody CPM. Navíc počítáme rozptyly:
- □ Nejdříve možné časy pro všechny činnosti vystupující z i-tého uzlu:

$$\sigma_k^2 = \sigma_{Ti}^2 + \sigma_{te}^2$$

Nejpozději přípustné časy - pro všechny činnosti vstupující do j-tého uzlu:

$$\sigma^2_{Tij} = \sigma^2_{Tj} + \sigma^2_{te}$$

Hodnota kritické časové rezervy KR_i udává očekávanou hodnotu této rezervy.

