

21MES102L Engineering Graphics and Design School of Mechanical Engineering

Dr.R.SANTHANAKRISHANAN M.E., Ph.D., Associate Professor, Department of Mechanical Engineering, SRM IST, Kattankulathur.

Disclaimer

The content prepared in the presentation are from various sources, only used for education purpose. Thanks to all the sources.

21MES102L Engineering Graphic and Design

E3 Projection of Points and Straight Lines Inclined to One Plane

Topics Covered

- ➤ Principles of Projection
- Types of Projection, First angle and Third angle Projection
- ➤ Principles of Projection of Straight line
- ➤ Projection of Straight Lines Inclined to one Plane and Parallel to another Plane

Quadrants

Principles of Projection

Principles of Projection

Projection: Projecting the image of an object to the Plane is known as **Projection**.

Plane of Projection: The Plane on which the Projection of object is obtained is called **Plane of Projection**.

Projector: The Straight Line from the object to the Plane of Projection is called **Projector**.

Principles of Projection

Orthographic Projection: Projecting the image of an object by drawing Projectors from the Corners Parallel to each other & Perpendicular to the Plane of Projection is called as Orthographic Projection.

Conventions to be Observed in Projections

- In Orthographic Projections Space is divided into Four Quadrants.
- By two Reference **VP** (Floor) and **HP** (Wall).
- Point may be situated in any one of these Quadrants.

Conventions to be Observed in Projections

- It may also be on any one of the References.
- To Obtain the **Orthographic views** in a single plane Always **ROTATE** the **Horizontal Plane** for 90° only in **CLOCK WISE** direction.
- The **Top Views** are to be represented by **Lower case** Letters (a,b...)
- The Front Views are to be represented by Lower case letters with dashes (a', b'...).

Types of Projections

First Angle Projection

First Angle Projection

- ➤ In First Angle Projection the object is assumed to be placed in First Quadrant i.e Above **Horizontal Plane** (**HP**) & in Front of **Vertical Plane** (**VP**)
- > The Object is lying between **Observer & Plane of Projection**.
- The **Top View** of the object is projected on to the **HP**.
- > The Front View of the object is projected on to the VP.
- The **Top View** appears **below** the **Front View**.
- > The Left side View appears on Right side of the Front View.

Third Angle Projection

- ➤ In **Third** Angle Projection the object is assumed to be placed in **Third** Quadrant i.e Below **HP** & Behind **VP**
- > The Plane of Projection is lying between Observer & Object.
- The **Top View** of the object is Projected on to the **HP**.
- The Front View of the object is Projected on to the VP.
- The **Top View** appears **above** the **Front View**.
- > The Left side View appears on Left side of the Front View.

Projection of Points

- Point has simply position but no Magnitude
- > Generally represented by a very small **circle** or a **dot**.

Location of Points

- ➤ Point situated **above Floor (HP)** and **in front of Wall (VP)** is in **First Quadrant**.
- Point situated above Floor and behind Wall is in Second Quadrant.
- Point situated below Floor and behind Wall is in Third Quadrant.
- Point situated below Floor and in front of Wall is in Fourth Quadrant.

Projection of Point in First Quadrant.

A POINT A is located h mm ABOVE HP & d mm in FRONT of VP

- ➤ As the Point A is situated above Floor (HP) and in front of Wall (VP) so the point is in First Quadrant.
- The FRONT VIEW of the point A is viewed h mm above HP to be denoted as a'
- The **TOP VIEW** of the point **A** is viewed **d** mm in front of **VP** to be denoted as **a**

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- > Use **POINT** command to locate the a', h mm **ABOVE** the Reference line **XY**.
- ➤ Use LINE command (ORTHO ON) to draw a Vertical line downward from a' for the given (h+d) mm distance.
- > Use **POINT** command to locate a at the end of the vertical line.
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to **a**' & line **XY** to **a**

Projection of Point in Second Quadrant

A POINT B is located h mm ABOVE HP & d mm BEHIND VP

- ➤ As the Point **B** is situated above Floor (**HP**) and behind the Wall (**VP**) so the point is in **Second Quadrant**.
- The FRONT VIEW of the point B is viewed h mm above HP to be denoted as b'
- The **TOP VIEW** of the point **B** is viewed **d** mm behind **VP** to be denoted as **b**

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **b'**, **h** mm **ABOVE** the Reference line **XY**.
- ➤ Use LINE command (ORTHO ON) to draw a Vertical line upward from b'for the given (d-h) mm distance.
- > Use **POINT** command to locate **b** at the end of the vertical line.
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to **b**' & line **XY** to **b**

Projection of Point in Third Quadrant

A POINT C is located h mm BELOW HP & d mm BEHIND VP

A POINT C is located h mm BELOW HP & d mm BEHIND VP

- As the Point C is situated below the Floor (HP) and behind the Wall (VP) so the point is in Third Quadrant.
- The FRONT VIEW of the point C is viewed h mm below HP to be denoted as c'
- The **TOP VIEW** of the point **c** is viewed **d** mm behind **VP** to be denoted as **c**

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- > Use **POINT** command to locate the **c'**, **h** mm **BELOW** the Reference line **XY**.
- ➤ Use LINE command (ORTHO ON) to draw a Vertical line upward from c' for the given (d+h) mm distance.
- > Use **POINT** command to locate c at the end of the vertical line.
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to **c**' & line **XY** to **c**

Projection of Point in Fourth Quadrant

A POINT D is located h mm BELOW HP & d mm in FRONT of VP

- ➤ As the Point **D** is situated **below the Floor (HP)** and **in front of the Wall (VP)** so the point is in **Fourth Quadrant**.
- The FRONT VIEW of the point **D** is viewed **h** mm **below HP** to be denoted as **d**'
- The **TOP VIEW** of the point **D** is viewed **d** mm **in front of VP** to be denoted as **d**

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- > Use **POINT** command to locate the **d'**, **h** mm **BELOW** the Reference line **XY**.
- ➤ Use LINE command (ORTHO ON) to draw a Vertical line downward from d' for the given (d-h) mm distance.
- > Use **POINT** command to locate d at the end of the vertical line.
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to **d**' & line **XY** to **d**

Projection of Straight Lines

- A Straight Line is the shortest distance between two points.
- Projections of the ends of any Line can be drawn using the Principles of **Projections of Points**.
- The Line in space may be **Parallel**, **Perpendicular** or **Inclined** to **Either** the **Floor** or the **Wall** or **Both Floor** & **Wall**

Straight Line Parallel to Both HP & VP

When a line AB is Parallel to both HP & VP

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **a'**, **h** mm above the Reference line & From **a'** draw a Horizontal line for given True length & name the end point as **b'**
- ➤ Use LINE command (ORTHO ON) to draw Vertical lines (Projector) downward from a' & b' for the given (h+d) mm distance & the end points of the lines named as a & b

- ➤ Use LINE command (ORTHO ON) to connect the end points a & b.
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to **a'** & line **a'** to **b'** & **XY** to **a**

Straight Line Parallel to HP & Perpendicular to VP

When a line AB is Parallel to HP & Perpendicular to VP

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the (a')b', h mm above the Reference line & From b' draw a Vertical line downward to locate a for given (h+d) mm distance.
- ➤ Use LINE command (ORTHO ON) to draw Vertical line downward from **a** for the given True length & name the end point as **b**.
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to (a')b' & line **XY** to a & a to b

Straight Line Parallel to VP & Perpendicular to HP

When a line AB is Parallel to VP & Perpendicular to HP

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **a' h** mm above the Reference line & From **a'** draw a Vertical line for given True length upward to locate **b'**.
- ➤ Use LINE command (ORTHO ON) to draw Vertical line downward from a' for the given (h+d) mm & name the end point as b(a).
- ➤ Use **Annotation** tool bar to mark the dimensions between reference line **XY** to **a'** & **a'** to **b'** & line **XY** to **b(a)**

Straight Line Inclined to HP & to Parallel VP

When a line AB is Inclined to HP & to Parallel VP

- Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **a'**, **h** mm above the Reference line & From **a'** draw a Vertical line downward (**h+d**) mm to locate **a**.
- For the given θ & name the end point as b'

- ➤ Use LINE command (ORTHO ON) draw a horizontal line from a & vertical line downward from b' to intersect the horizontal line drawn from a & name the intersecting point as b .
- ➤ Use Annotation tool bar to mark the dimensions between reference line XY to a' & a' to b' & measure the inclination angle of line a'b' wrt. XY line & XY to a.

Straight Line Inclined to VP & to Parallel to HP

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - >Type UN or UNITS
 - > Set the Precision for 0
 - Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - > Specify the Lower Left Corner as 0,0 Press Enter
 - > Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **a'**, **h** mm above the Reference line & From **a'** draw a Vertical line downward (**h+d**) mm to locate **a**.
- ➤ Use LINE command (ORTHO OFF) to draw inclined line from a for the given Ø & name the end point as b

- ➤ Use LINE command (ORTHO ON) draw a horizontal line from a' & vertical line upward from b to intersect the horizontal line drawn from a' & name the intersecting point as b'.
- ➤ Use Annotation tool bar to mark the dimensions between reference line XY to a' & a to b & measure the inclination angle of line a b wrt. XY line & XY to a.

REFERENCE BOOKS

- ➤ JEYAPOOVAN T, "ENGINEERING GRAPHICS AND DESIGN", 2023, Vikas Publishing House Pvt Ltd,
- K.V.NATARAJAN, "Engineering Graphics", 2015,Dhanalakshmi Publishers.