

Sequence to sequence, Attention, Transformer

Nguyễn Quốc Thái

Applications

Source: The Unreasonable Effectiveness of Recurrent Neural Networks

Applications

Image Captioning
Machine Translation
Using RNNs

Problem?

Machine Translation

Problem?

- Neural machine translation
- > Some difficulties remain
 - Maintaining context over longer text
 - Out-of-vocabulary words
 - Low-resource language pair
 - Domain mismatch between train, validation and test data

- ...

Encoder-Decoder model

- > Take a sequence as input, predict a sequence as output
- Encoder: encoding the inputs into state
- > Decoder: the state is passed into the decoder to generate the outputs

Encoder-Decoder model

- > Input and output maybe the same or different length
- Applications: chatbot, text generation, question answering, machine translation,...

Sequence to sequence

- Based on encoder-decoder model
- > Transform an input sequence (source) to a new sequence (target)
- > Both sequences can be of arbitrary lengths

Ref

Machine Translation

Prepare dataset

"tôi yêu bạn" => "i love you"

"tôi đang học tiếng anh" => "i am learning english"

"buổi tối an lành" => "good evening"

Input encoder	Input decoder	Target decoder
tôi yêu bạn	<start> i love you</start>	i love you <end></end>
tôi đang học tiếng anh	<start> i am learning english</start>	i am learning english <end></end>
buổi tối an lành	<start> good evening</start>	good evening <end></end>

Neural Machine Translation

- Neural Machine Translation using Seq2Seq
- Training English <END> learning am J_5 \hat{y}_4 y₅ **Encoder LSTM** Thought →LSTM → LSTM →LSTM-→ LSTM LSTM-→LSTM-→LSTM-→ LSTM Decoder LSTM 0 0 0 00000 **Embedding** 0 0 0 0 0 0 tiếng <START> learning tôi English đang học anh am

Input Sequence (Source)

Output Sequence (Target)

Neural Machine Translation

Neural Machine Translation using Seq2Seq

Neural Machine Translation

Neural Machine Translation using Seq2Seq

```
encoder inputs = Input(shape=(vi max len,))
encoder embedding = Embedding(vi vocab size,
                              embedding dim,
                              mask zero=True)(encoder inputs)
encoder outputs, state h, state c = LSTM(hidden size,
                                         return state=True)(encoder embedding)
encoder states = [state h, state c]
decoder inputs = Input(shape=(en max len,))
decoder embedding = Embedding(en_vocab_size,
                              embedding dim,
                              mask zero=True)(decoder inputs)
decoder lstm = LSTM(hidden size,
                    return state=True,
                    return sequences=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding,
                                     initial state=encoder states)
decoder dense = Dense(en vocab size, activation="softmax")
output = decoder_dense(decoder_outputs)
seq2seq model = Model([encoder inputs, decoder inputs], output )
seq2seq model.summary()
```

Model: "model"

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 100)]	0	[]
input_2 (InputLayer)	[(None, 80)]	0	[]
embedding (Embedding)	(None, 100, 200)	3211000	['input_1[0][0]']
embedding_1 (Embedding)	(None, 80, 200)	7251200	['input_2[0][0]']
lstm (LSTM)	[(None, 256), (None, 256), (None, 256)]	467968	['embedding[0][0]']
lstm_1 (LSTM)	[(None, 80, 256), (None, 256), (None, 256)]	467968	['embedding_1[0][0]', 'lstm[0][1]', 'lstm[0][2]']
dense (Dense)	(None, 80, 36256)	9317792	['lstm_1[0][0]']

Total params: 20,715,928 Trainable params: 20,715,928 Non-trainable params: 0

The bottleneck problem

Thought vector: capture all information of input sentence

The bottleneck problem

Thought vector: capture all information of input sentence

⇒ Information bottleneck

Solutions: each step of the decoder, directly connected to the components of the encoder

Focus on all timestep in the encoder

Nguyễn Quốc Thái

Note: With Dot-Product Attention, attention score is normalized to length of s (key), called Scaled dot product attention

Note: With Dot-Product Attention, attention score is normalized to length of s (key), called Scaled dot product attention

AI VIET NAM @aivietnam.edu.vn Attention output Attention distribution α_3 α_2 α_{5} α_1 α_4 Attention $s_1^T h_3 \quad s_1^T h_3$ $s_1^T h_2$ $s_1^T h_1$ Score Encoder đang tiếng Tôi anh <start>

Attention

Attention

```
def scaled dot product attention( q, k, v, mask=None):
           dk = tf.cast(tf.shape(k)[-1], tf.float32)
           attention scores = tf.matmul(q, k, transpose b=True) / tf.math.sqrt(dk)
           if mask is not None:
               attention scores += (mask * -1e9)
           attention weights = tf.nn.softmax(attention scores, axis=-1)
           output = tf.matmul(attention weights, v)
           return output, attention weights, attention scores
   import tensorflow as tf
   input = tf.constant([[0.3, 0.5, 0.2, 0.1],
                      [0.4, 0.5, 0.1, 0.2],
                      [0.2, 0.6, 0.5, 0.6],
                      [0.1, 0.2, 0.3, 0.1],
                      [0.2, 0.6, 0.5, 0.2]]
   input
array([[0.3, 0.5, 0.2, 0.1],
          [0.4, 0.5, 0.1, 0.2],
          [0.2, 0.6, 0.5, 0.6],
          [0.1, 0.2, 0.3, 0.1],
          [0.2, 0.6, 0.5, 0.2]], dtype=float32)>
```

```
scaled dot product attention(input, input, input)
(<tf.Tensor: shape=(5, 4), dtvpe=float32, numpv=
     array([[0.24194102, 0.48778105, 0.32396913, 0.24687952],
            [0.2428891, 0.48836532, 0.32299504, 0.24765417],
            [0.23951267, 0.49354896, 0.33351758, 0.25972563],
            [0.23946747, 0.48449475, 0.32505167, 0.24576576],
            [0.23998849, 0.49056447, 0.32979524, 0.25222978]], dtype=float32)>,
     <tf.Tensor: shape=(5, 5), dtype=float32, numpy=
     array([[0.19870403, 0.20070107, 0.21204881, 0.18069609, 0.20784996],
            [0.19904016, 0.20407887, 0.21347219, 0.17830697, 0.20510183],
            [0.1871119, 0.18993972, 0.23905815, 0.17186458, 0.21202557],
            [0.19589609, 0.19491905, 0.21115328, 0.19105938, 0.20697217],
            [0.19303995, 0.19207716, 0.22316182, 0.17730956, 0.21441151]],
           dtype=float32)>,
     <tf.Tensor: shape=(5, 5), dtype=float32, numpy=</pre>
                      , 0.20500001, 0.26
     array([[0.195
                                              , 0.1
                                                          , 0.24000001],
            [0.20500001, 0.23
                                  , 0.275
                                              , 0.09500001, 0.23500001],
            [0.26
                      , 0.275
                                , 0.505
                                              , 0.17500001, 0.385
            [0.1
                      , 0.09500001, 0.17500001, 0.075
                                                          , 0.155
                                                                      1,
            [0.24000001, 0.23500001, 0.385
                                              , 0.155
                                                          , 0.345
                                                                      11,
           dtype=float32)>)
```

Attention Variants

Compute $e \in \mathbb{R}^N$ from $h_1, h_2, ..., h_N \in \mathbb{R}^{d_1}$ and $s \in \mathbb{R}^{d_2}$

- ightharpoonup Dot-product attention $e_i = s^T h_i$ $d_1 = d_2$
- Multiplicative attention $e_i = s^T W h_i$ $W \in \mathbb{R}^{d_2 \times d_1}$
- Additive attention $e_i = v^T \tanh(W_1 h_i + W_2 s)$ $W_1 \in \mathbb{R}^{d_3 \times d_1}, W_2 \in \mathbb{R}^{d_3 \times d_2}, v \in \mathbb{R}^{d_3}$

Transformer

Nguyễn Quốc Thái

Transformer

> Machine translation result

[Ref] - Attention is all you need

Model	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}

Transformer

- Transformer Architecture
 - N Encoder layer
 - N Decoder layer
- Core technique: attention
- Loss function: cross-entropy

Ref

- To learn the relationship between word in the sentence
- Transformer encoder:
 - Input Embedding
 - Positional Encoding
 - N encoder layer:

Multi-Head Attention

Normalization Layer

Feed Forward Layer

Embedding layer 0.3 0.3 0.1 0.1 0.1 0.2 0.2 0.4 0.2 0.3 d_model 0.3 0.1 0.3 0.3 0.5 0.8 0.1 0.3 0.4 0.4 0.5 0.5 0.6 0.1 0.5 **Embedding Layer** tiếng tôi đang học anh

Positional Encoding: describe the position of an entity in a sequence as unique representation – each position is mapped to a vector

Sequence Index of token Positional Encoding Matrix

- Positional Encoding: describe the position of an entity in a sequence as unique representation each position is mapped to a vector
- > Attention: position insensitive
- Some solutions:

Learned positional embedding (as learned token embedding)
Sinusoid

> Sinusoid

$$PE_{(pos,2i)} = sin(\frac{pos}{n^{\overline{d}_{model}}})$$

$$PE_{(pos,2i+1)} = cos(\frac{pos}{\frac{2i}{n^{d_{model}}}})$$

- pos: position of an entity in input sentence, $0 \Rightarrow L/2$
- d_model: dimension of the output embedding space
- n = 10000 (recommend)
- d_model: dimension of the output embedding space

> Sinusoid:

Example: $d_model = 5$, n=100

Sequence Ind

Index of token

$$P_{00} = \sin(\frac{0}{100^{\frac{2*0}{5}}})$$

Positional Encoding Matrix

> Sinusoid:

Example: $d_{model} = 5$, n=100

Sequence Inc

Index of token

$$P_{00} = \sin(\frac{0}{100^{\frac{2*0}{5}}})$$

$$P_{01} = \cos(\frac{0}{100^{\frac{2*0}{5}}})$$

Positional Encoding Matrix

$$i=0$$
 $i=0$

> Sinusoid:

Example: $d_model = 5$, n=100

Sequence

Index of token

$$P_{00} = \sin(\frac{0}{100^{\frac{2*0}{5}}})$$

$$P_{01} = \cos(\frac{0}{100^{\frac{2*0}{5}}})$$

Positional Encoding Matrix

> Sinusoid:

Example: $d_{model} = 5$, n=100

$P_{00} = 0$	$P_{01} = 1$	$P_{02} = 0$	$P_{03} = 1$	$P_{04} = 0$
$P_{10} = 0.84$	P ₁₁ =0.54	P ₁₂ =0.16	P ₁₃ =0.99	P ₁₄ =0.025
$P_{20} = 0.91$	P ₂₁ =-0.42	P ₂₂ =0.31	P ₂₃ =0.95	P ₂₄ =0.05
$P_{30} = 0.14$	P ₃₁ =-0.99	P ₃₂ =0.46	P ₃₃ =0.89	P ₃₄ =0.141
$P_{40} = -0.76$	P ₄₁ =-0.65	P ₄₂ =0.59	P ₄₃ =0.81	P _{4d} =0.1

Positional encoding

Token embedding with positional embedding $z_i = WE(i) + PE(i)$

$$z_i = WE(i) + PE(i)$$

		0.1	0.2	0.3	0.4	0.5
tôi đang]	0.3	0.2	0.1	0.8	0.6
	_	0.1	0.4	0.3	0.1	0.5
		0.3	0.2	0.3	0.3	0.1
học		0.1	0.3	0.5	0.4	0.5
tiếng		0	1	0	1	0
anh		0.84	0.54	0.16	0.99	0.025
		0.91	-0.416	0.311	0.95	0.05
		0.141	-0.99	0.46	0.89	0.07
·		-0.76	-0.65	0.59	0.81	0.1

Final Embedding

	0.1	1.2	0.3	1.4	0.5
	1.14	0.74	0.26	1.79	0.625
•	1.01	-0.016	0.611	1.05	0.55
	0.44	-0.79	0.76	1.12	0.176
	-0.65	-0.35	1.09	1.21	0.6

 \triangleright Token embedding with positional embedding $z_i = WE(i) + PE(i)$

```
[ ] we = tf.constant([[0.1, 0.2, 0.3, 0.4, 0.5],
                   [0.3, 0.2, 0.1, 0.8, 0.6],
                   [0.1, 0.4, 0.3, 0.1, 0.5],
                   [0.3, 0.2, 0.3, 0.3, 0.1],
                   [0.1, 0.3, 0.5, 0.4, 0.5]
    we
    <tf.Tensor: shape=(5, 5), dtype=float32, numpy=</pre>
    array([[0.1, 0.2, 0.3, 0.4, 0.5],
           [0.3, 0.2, 0.1, 0.8, 0.6],
           [0.1, 0.4, 0.3, 0.1, 0.5],
           [0.3, 0.2, 0.3, 0.3, 0.1],
           [0.1, 0.3, 0.5, 0.4, 0.5]], dtype=float32)>
  pe = positional encoding(5, 5)
  pe
  <tf.Tensor: shape=(1, 5, 5), dtype=float32, numpy=</pre>
  array([[[ 0. , 1. , 0. , 1.
         [ 0.84147096, 0.5403023 , 0.15782665, 0.9874668 ,
            0.02511622],
          [ 0.9092974 , -0.41614684, 0.31169716, 0.9501815 ,
            0.0502166 ],
          [ 0.14112 , -0.9899925 , 0.45775455, 0.8890786 ,
            0.07528529],
           [-0.7568025 , -0.6536436 , 0.5923377 , 0.80568975,
            0.10030649]]], dtype=float32)>
```

```
e = pe + we
<tf.Tensor: shape=(1, 5, 5), dtype=float32, numpy=</p>
   array([[[ 0.1 , 1.2
                                  , 0.3
           [ 1.1414709 , 0.74030226, 0.25782666, 1.7874668 ,
             0.6251162 ],
           [ 1.0092974 , -0.01614684, 0.6116972 , 1.0501815 ,
             0.5502166 ],
            0.44112003, -0.7899925, 0.75775456, 1.1890786,
             0.1752853 ],
           [-0.6568025 , -0.3536436 , 1.0923377 , 1.2056898 ,
             0.6003065 ]]], dtype=float32)>
```


Multi-head Attention:

Linear layers and split into heads

Scaled dot-product attention

Concat output

Final linear layer

- Linear layers and split into heads:
- 3 linear layers for query, key and value
- Input passed through 3 linear layers to produce the Q, K, V matrices
- Split into the multiple attention heads Each head process independently

- Linear layers and split into heads:
- 3 linear layers for query, key and value
- Input passed through 3 linear layers to produce the Q, K, V matrices
- Split into the multiple attention heads Each head process independently

Linear layers and split into heads

Linear layers and split into heads

Linear layers and split into heads

- > Review scaled dot product attention
- Query (Q), Key (K), Value (V)

- Learn to represent a token in a sentence based on the surrounding tokens
- Embedding of a token as query, key and value

Linear layers and split into heads => self-attention

Linear layers and split into heads => self-attention => concat

Emb

Linear layers and split into heads => self-attention => concat

Emb

```
class MultiHeadAttention(tf.keras.layers.Layer):
   def __init (self, d model, num heads):
        super(MultiHeadAttention, self). init ()
        self.d model = d model
        self.num heads = num heads
        assert d model % num heads == 0
        self.depth = d model // self.num heads
        self.wq = tf.keras.layers.Dense(d model)
        self.wk = tf.keras.layers.Dense(d model)
        self.wv = tf.keras.layers.Dense(d model)
        self.dense = tf.keras.layers.Dense(d model)
   def scaled dot product attention(self, q, k, v, mask=None):
        dk = tf.cast(tf.shape(k)[-1], tf.float32)
        attention scores = tf.matmul(q, k, transpose b=True) / tf.math.sqrt(dk)
       if mask is not None:
            attention scores += (mask * -1e9)
        attention weights = tf.nn.softmax(attention scores, axis=-1)
        output = tf.matmul(attention weights, v)
       return output, attention weights
```

```
def split heads(self, x, batch size):
    x = tf.reshape(x, (batch size, -1, self.num heads, self.depth)) #depth = d model // num heads
    return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, q, k, v, mask=None):
    batch size = tf.shape(q)[0]
    qw = self.wq(q) # (batch size, seq len, d model)
    kw = self.wk(k) # (batch size, seq len, d model)
    vw = self.wv(v) # (batch size, seq_len, d_model)
    heads qw = self.split heads(qw, batch size) # (batch size, num heads, seq len q, depth)
    heads kw = self.split heads(kw, batch size) # (batch size, num heads, seq len k, depth)
    heads_vw = self.split_heads(vw, batch size) # (batch size, num heads, seq len v, depth)
    # scaled attention.shape == (batch size, num heads, seq len q, depth)
    # attention weights.shape == (batch size, num heads, seq len q, seq len k)
    scaled attention, attention weights = self.scaled dot product attention(heads qw, heads kw, heads vw, mask)
    scaled attention = tf.transpose(scaled attention, perm=[0, 2, 1, 3]) # (batch size, seq len q, num heads, depth)
    concat attention = tf.reshape(scaled attention, (batch size, -1, self.d model)) # (batch size, seq len q, d model)
    attention output = self.dense(concat attention) # (batch size, seq len q, d model)
    return attention output, attention weights
```


Transformer Encoder

Layer Normalization

$$\mu_i = rac{1}{m} \sum_{j=1}^m x_{ij}$$

$$\sigma_i^2 = rac{1}{m}\sum_{j=1}^m (x_{ij}-\mu_i)^2$$

$$\hat{x}_{ij} = rac{(x_{ij} - \mu_i)}{\sqrt{\sigma_i^2 + \epsilon}}$$

Transformer Encoder

Point wise feed forward network

- As language model, learn to the token relationship with history token (Masked multi head attention)
- Predict next token based on the history token
- Transformer decoder:

Embedding

N decoder layer

Linear classifier

Embedding

Token embedding

Positional encoding

Masked Multi-head Attention

Masking the future in self-attention

	<start></start>	Ι	am	learning	English
<start></start>	1.2	-inf	-inf	-inf	-inf
I	2.3	1.5	-inf	-inf	-inf
am	0.5	1.4	1.6	-inf	-inf
learning	0.6	1.8	2.4	0.3	-inf
English	2.1	2.3	0.2	2.0	2.5

Masked Multi-head Attention

Masking the future in self-attention

1.2	-inf	-inf	-inf	-inf
2.3	1.5	-inf	-inf	-inf
0.5	1.4	1.6	-inf	-inf
0.6	1.8	2.4	0.3	-inf
2.1	2.3	0.2	2.0	2.5

Softmax

1.0	0.0	0.0	0.0	0.0
0.69	0.31	0.0	0.0	0.0
0.15	0.38	0.46	0.0	0.0
0.6	1.8	2.4	0.3	0.0
2.1	2.3	0.2	2.0	2.5

Masked Multi-head Attention

Masking the future in self-attention

Multiple head attention, layer normalization, feed forward: the same transformer encoder

Transformer Decoder Training

Thanks!

Any questions?