Aayush Arya

(Submitted: September 7, 2021)

 $\rm PHY350~Lab~Report$

Practical No: 2 Registration No.: 11912610 Section: G2903

Aim

To measure the charge to mass ratio of ...

Methods

We performed the experiment in silico using a virtual platform¹ (see Figure 1).

Figure 1: The virtual platform.

Results

The measurements done are summarized below.

The mean e/m was found to be 1.82×10^{11} C kg⁻¹. This is off the true value of 1.76×10^{11} by 3.64%.

 $^{^{1} \}rm https://virtuelle-experimente.de/en/b-feld/e-m-bestimmung/edurchm.php$

$V_{ m a}$ in V	$\Rightarrow v_0 ext{ in} rac{ ext{m}}{ ext{s}}$	coil current $I \text{ in A}$	$\Rightarrow B \text{ in T}$	Radius <i>r</i> in cm	$rac{e}{m}=rac{2\cdot V_{ m a}}{(B\cdot r)^2}~{ m in}rac{ m C}{ m kg}$
125	$6.630\cdot 10^6$	1.00	$7.48\cdot 10^{-4}$	4.95	$1.82\cdot 10^{11}$
200	$8.386\cdot 10^6$	1.25	$9.35\cdot 10^{-4}$	5.0	$1.83\cdot 10^{11}$
225	$8.895\cdot 10^6$	1.50	$1.12\cdot 10^{-3}$	4.45	$1.81\cdot 10^{11}$
250	$9.376\cdot 10^6$	1.5	$1.12\cdot 10^{-3}$	4.65	$1.84\cdot 10^{11}$
275	$9.834\cdot 10^6$	1.75	$1.31\cdot 10^{-3}$	4.2	$1.82\cdot 10^{11}$