CS-AD 220 – Spring 2016

Natural Language Processing

Session 18: 5-Apr-16

Prof. Nizar Habash

NYUAD Course CS-AD 220 – Spring 2016 Natural Language Processing Assignment #3: POS Tagging and Parsing Assigned Mar 31, 2016 / Due Apr 17, 2016 (11:59pm)

I. Grading & Submission

This assignment is about the development of a dependency parser and a part-of-speech (POS) tagger for English. The assignment accounts for 15% of the full grade. It consists of five exercises. **There is also a bonus exercise that can count for up to 5% of the full grade**. The additional exercise consists of a parsing competition on an unseen test set. Participation earns 2%. The first, second and third ranked systems earn additional 3%, 2% and 1%, respectively.

Assignment #3 posted on NYU Classes

START EARLY!

DEADLINE PUSHED FORWARD TO APR 17

Grades in Class So Far

Grades are posted on NYU Classes

Types of Syntactic Analyses

- Phrase Structure Parsing
 - aka constituency parsing
 - CKY Parser
- Dependency Parsing
 - MaltParser
- Chunking
 - Base-phrase chunking

Revisiting CKY Parser

Book the flight through Houston

CKY Parser

```
for j \leftarrow from 1 to LENGTH(words) do
    table[j-1,j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}
    for i \leftarrow from j - 2 downto 0 do
        for k \leftarrow i+1 to j-1 do
            table[i,j] \leftarrow table[i,j] \cup
```


Cell[i,j]contains all constituents (non-terminals) covering words i+1 through j

 $B \in table[i,k],$ $C \in table[k, j]$

CKY Parser

CKY Parser

Syntactic Ambiguity

- The algorithm we discussed just produces all possible parse trees.
- Does not address the important issue of ambiguity resolution.

Probabilistic CFG (PCFG)

```
S \rightarrow NP VP 0.9
S \rightarrow VP 0.1
VP \rightarrow V NP = 0.5
VP \rightarrow V 0.1
VP \rightarrow V @VP V 0.3
VP \rightarrow VPP 0.1
@VP_V \rightarrow NP PP 1.0
NP \rightarrow NP NP 0.1
NP \rightarrow NP PP 0.2
NP \rightarrow N 0.7
PP \rightarrow P NP 1.0
```

$$N \rightarrow people \ 0.5$$
 $N \rightarrow fish \ 0.2$
 $N \rightarrow tanks \ 0.2$
 $N \rightarrow rods \ 0.1$
 $V \rightarrow people \ 0.1$
 $V \rightarrow fish \ 0.6$
 $V \rightarrow tanks \ 0.3$
 $P \rightarrow with \ 1.0$

$S \rightarrow NP VP$	0.9	0	fish	1 people	2 fish 3	3 tanks 4
$S \rightarrow VP$ $VP \rightarrow V NP$ $VP \rightarrow V$	0.1 0.5	N - V - NP	→ fish 0.2 → fish 0.6 • → N 0.14	$NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$ 0.105	$NP \rightarrow NP NP$ 0.0000686 $VP \rightarrow V NP$ 0.00147	$NP \rightarrow NP NP$ 0.0000009604 $VP \rightarrow V NP$ 0.00002058
$VP \rightarrow V @VP_V$			→ V 0.06 → VP 0.006	S → VP 0.0105	S → NP VP 0.000882	S → NP VP 0.00018522
$VP \rightarrow VPP$ $@VP_V \rightarrow NPF$ $NP \rightarrow NPNP$	0.1 PP 1. 0.1	0		$N \rightarrow \text{people } 0.5$ $V \rightarrow \text{people } 0.1$ $NP \rightarrow N \ 0.35$	$NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$ 0.007	$NP \rightarrow NP NP$ 0.0000686 $VP \rightarrow V NP$ 0.000098
$NP \rightarrow NP PP$ $NP \rightarrow N$	0.2 0.7	2		$VP \rightarrow V \ 0.01$ $S \rightarrow VP \ 0.001$	$S \rightarrow NP VP$ 0.0189	S → NP VP 0.01323
$PP \rightarrow P NP$	1.0				$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$	$ \begin{array}{c} NP \rightarrow NP \ NP \\ 0.00196 \\ VP \rightarrow V \ NP \end{array} $
$N \rightarrow people$ $N \rightarrow fish$	0.5 0.2	3			$VP \rightarrow V 0.06$ S \rightarrow VP 0.006	$S \rightarrow VP$ 0.0042
$N \rightarrow tanks$ $N \rightarrow rods$	0.1					N → tanks 0.2 V → tanks 0.1
$V \rightarrow people$ $V \rightarrow fish$	0.1 0.6	4				$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.03$ $S \rightarrow VP \ 0.003$
$V \rightarrow tanks$ $P \rightarrow with$	0.3 1.0	4				3 77 0.003

6 1010	0.0		3 tanks 4
$S \rightarrow NP VP$	0.9	$0 \\ N \rightarrow \text{fish } 0.2 \qquad NP \rightarrow NP NP \qquad NP \rightarrow NP NP$	$NP \rightarrow NP NP$
$S \rightarrow VP$	0.1	$V \rightarrow \text{fish } 0.6$ 0.00049 0.0000686	0.0000009604
$VP \rightarrow V NP$	0.5	$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ NP$ $VP \rightarrow V \ NP$	VP → V NP
$VP \rightarrow V$	0.1	$VP \rightarrow V \ 0.06$ 0.105 0.00147	0.00002058
$VP \rightarrow V @VP_V$	V 0.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S → NP VP 0.00018522
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people } 0.5$ NP \rightarrow NP NP	NP → NP NP
$@VP_V \rightarrow NPI$	PP 1.0	$V \rightarrow \text{people } 0.1$	0.0000686
$NP \rightarrow NP NP$	0.1	$NP \rightarrow N \ 0.35$ $VP \rightarrow V \ NP$ 0.007	$VP \rightarrow V NP$ 0.000098
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$ $S \rightarrow NP VP$	$S \rightarrow NP VP$
$NP \rightarrow N$	0.7	2 $S \rightarrow VP 0.001$ 0.0189	0.01323
$PP \rightarrow P NP$	1.0	$N \rightarrow fish 0.2$	$NP \rightarrow NP NP$
		V → fish 0.6	0.00196 VP → V NP
N -> noonlo	0.5	$NP \rightarrow N \ 0.14$	0.042
$N \rightarrow people$		$VP \rightarrow V 0.06$	$S \rightarrow VP$
$N \rightarrow fish$	0.2	$S \rightarrow VP 0.006$	0.0042
$N \rightarrow tanks$	0.2		N → tanks 0.2
$N \rightarrow rods$	0.1	NP NP	V → tanks 0.1
$V \rightarrow people$	0.1		NP → N 0.14
V → fish	0.6	N N V N	$VP \rightarrow V 0.03$
V → tanks	0.3	4 fish people fish tanks	$S \rightarrow VP 0.003$
$P \rightarrow with$	1.0		

Types of Syntactic Analyses

- Phrase Structure Parsing
 - aka constituency parsing
 - CKY Parser
- Dependency Parsing
 - MaltParser
- Chunking
 - Base-phrase chunking

Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric relations ("arrows") called dependencies

The arrows are commonly typed with the name of grammatical relations (subject, prepositional object, apposition, etc.)

Dependency Relations

Argument Dependencies	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier Dependencies	Description
tmod	temporal modifier
appos	appositional modifier
det	determiner
prep	prepositional modifier

Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric relations ("arrows") called dependencies

The arrow connects a head (governor, superior, regent) with a dependent (modifier, inferior, subordinate)

Usually, dependencies form a tree (connected, acyclic, single-head)

Relation between phrase structure and dependency structure

- A dependency grammar has a notion of a head. Officially, CFGs don't.
- But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, ...) do, via hand-written phrasal "head rules":
 - The head of a Noun Phrase is a noun/number/adj/...
 - The head of a Verb Phrase is a verb/modal/....
- The head rules can be used to extract a dependency parse from a CFG parse

Methods of Dependency Parsing

- 1. Dynamic programming (like in the CKY algorithm)
 You can do it similarly to lexicalized PCFG parsing: an O(n⁵) algorithm
 Eisner (1996) gives a clever algorithm that reduces the complexity to O(n³)
- 2. Graph algorithms

You create a Maximum Spanning Tree for a sentence McDonald et al.'s (2005) MSTParser scores dependencies independently using a ML classifier (he uses MIRA, for online learning, but it could be MaxEnt)

- 3. Constraint Satisfaction
 - Edges are eliminated that don't satisfy hard constraints. Karlsson (1990), etc.
- 4. "Deterministic parsing"

Greedy choice of attachments guided by machine learning classifiers MaltParser (Nivre et al. 2008) – discussed next [Assignment #3 uses this approach]

Dependency Conditioning Preferences

What are the sources of information for dependency parsing?

- 1. Bilexical affinities [issues \rightarrow the] is plausible
- 2. Dependency distance mostly with nearby words
- 3. Intervening material

 Dependencies rarely span intervening verbs or punctuation
- 4. Valency of heads

How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed.

Dependency Parse

An inventory of syntactic functions is taken to be primitive.

Dependency Parse

Dependency Parse

CONLL Format

ID	Word	CPOS	FPOS		ParentID	Relation
1	The _	DET	DT	_	4	det
2	luxury _	NOUN	NN	_	4	compmod
3	auto _	NOUN	NN	_	4	compmod
4	maker _	NOUN	NN	_	7	nsubj
5	last _	ADJ	JJ	_	6	amod
6	year _	NOUN	NN	_	7	nmod
7	sold _	VERB	VBD	_	0	ROOT
8	1,214 _	NUM	CD	_	9	num
9	cars _	NOUN	NNS	_	7	dobj
10	in _	ADP	IN	_	7	adpmod
11	the _	DET	DT	_	12	det
12	U.S	NOUN	NNP	_	10	adpobj

MaltParser

[Nivre et al. 2008]

- A simple form of greedy discriminative dependency parser
- The parser does a sequence of bottom up actions
 - "shift", "reduce", "left-arc", "right-arc"
- The parser has:
 - a stack σ, written with top to the right
 - which starts with the ROOT symbol
 - a buffer β, written with top to the left
 - which starts with the input sentence
 - a set of dependency arcs A
 - which starts off empty
 - a set of actions

Transition-based Dependency Parser

Actions	Stack σ	Buffer β	Arcs A r(head,dep)	Pre-conditions
<start></start>	[ROOT]	$W_1,, W_n$	Ø	none
Shift	σ	$w_i \beta$	A	
→	σw_i	β	A	
Reduce	σw_i	β	A	$r'(w_k, w_i) \subseteq A$
→	σ	β	Α	
Left-Arc _r	σ w _i	$w_j \beta$	A	$r'(w_k, w_i) \notin A, w_i \neq ROOT$
→	σ	$ w_j \beta$	$A \cup \{r(w_i, w_i)\}$	e.g., children - want
Right-Arc _r	σw_i	$w_j \beta$	A	
→	$ \sigma w_i w_j$	β	$A \cup \{r(w_i, w_j)\}$	e.g., want - toys
<finish></finish>		Ø		

This is the common "arc-eager" variant: a head can immediately take a right dependent, before its dependents are found

Example

Actions	Stack σ	Buffer β	Arcs A	Pre-conditions
Shift	σ	$w_i \beta$	Α	
→	σw_i	β	Α	
Reduce	σw_i	β	Α	$r'(w_k, w_i) \subseteq A$
→	σ	β	Α	
Left-Arc _r	σ <i>w_i</i>	$w_j \beta$	Α	$r'(w_k, w_i) \in A, w_i \neq ROOT$
→	σ	<i>w_j</i> β	$A \cup \{r(w_j, w_i)\}$	e.g., children - want
Right-Arc _r	σw_i	$w_j \beta$	Α	
→	$\sigma w_i w_j$	β	A∪{r(w _i ,w _j)}	e.g., want - toys

Happy children like to play with their friends.

	[ROOT]	[Happy, children,]	Ø
Shift	[ROOT, Happy]	[children, like,]	Ø
LA_{amod}	[ROOT]	[children, like,]	$\{amod(children, happy)\} = A_1$
Shift	[ROOT, children]	[like, to,]	A_1
LA_{nsubj}	[ROOT]	[like, to,]	$A_1 \cup \{\text{nsubj(like, children)}\} = A_2$
RA_{root}	[ROOT, like]	[to, play,]	$A_2 \cup \{root(ROOT, like) = A_3\}$
Shift	[ROOT, like, to]	[play, with,]	A_3
LA_{aux}	[ROOT, like]	[play, with,]	$A_3 \cup \{aux(play, to) = A_4\}$
RA_{xcomp}	[ROOT, like, play]	[with their,]	$A_4 \cup \{xcomp(like, play) = A_5\}$

Example

Actions	Stack σ	Buffer β	Arcs A	Pre-conditions
Shift	σ	$w_i \beta$	Α	
→	σw_i	β	Α	
Reduce	σw_i	β	Α	$r'(w_k, w_i) \subseteq A$
→	σ	β	Α	
Left-Arc _r	σ <i>w_i</i>	$w_j \beta$	Α	$r'(w_k, w_i) \notin A, w_i \neq ROOT$
→	σ	<i>w_j</i> β	$A \cup \{r(w_j, w_i)\}$	e.g., children - want
Right-Arc _r	σw_i	$w_j \beta$	Α	
→	$\sigma w_i w_j$	β	$A \cup \{r(w_i, w_j)\}$	e.g., want - toys

Happy children like to play with their friends.

RA_{xcomp}	[ROOT, like, play]	[with th	eir,	.] $A_4 \cup \{xcomp(like, play) = A_5\}$
RA_{prep}	[ROOT, like, play, with]	[their, f	riend	s,] $A_5 \cup \{\text{prep(play, with)} = A_6$
Shift	[ROOT, like, play, with, their]	[friends	, .]	A_6
LA_{poss}	[ROOT, like, play, with]	[friends	, .]	$A_6 \cup \{poss(friends, their) = A_7$
RA_{pobj}	[ROOT, like, play, with, friends	s][.] A ₇ (J{po	oj(with, friends) = A ₈
Reduce	[ROOT, like, play, with]	[.]	A_8	
Reduce	[ROOT, like, play]	[.]	A_8	
Reduce	[ROOT, like]	[.]	A_8	
RA_{punc}	[ROOT, like, .]	[]	A_8 \cup	$I_{\text{punc(like, .)}} = A_9$
Termina	ite as soon as the buffer is emp	ty. Depe	nden	cies = A ₉

MaltParser

[Nivre et al. 2008]

- We have left to explain how we choose the next action
- Each action is predicted by a discriminative classifier (e.g. Support Vector Machine, maxent classifier, etc.) over each legal move
 - Max of 4 untyped choices, max of |R| × 2 + 2 when typed
 - Features: top of stack word, POS; first in buffer word, POS; etc.
- There is NO search (in the simplest and usual form)
- The model's accuracy is slightly below the best LPCFGs (Lexicalized Probabilistic CFGs) when evaluated on dependencies, but...
- It provides close to state-of-the-art parsing performance
- It provides VERY fast linear time parsing

Evaluation: Dependency Accuracy

Go	old		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	dobj

Pa	rse	d	
1	2	She	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

UAS = Unlabeled Attachment Score

LAS = Labeled Attachment Score

Evaluation: Dependency Accuracy

$$UAS = 4 / 5 = 80\%$$

 $LAS = 2 / 5 = 40\%$

Go	old		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	dobj

Parsed			
1	2	She	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

UAS = Unlabeled Attachment Score

LAS = Labeled Attachment Score

Next Time

- Read J+M Chap 25 (intro up to 25.5)
- Come with questions about Assignment #3