OFDM Final Project

EE-442: Wireless Device Algorithms

20.12.2022

Outline

Introduction

- System Design
- Implementations

Demonstration

- Image Transmission
- Problems Encountered & Solutions

Analysis

- Experiment Results
- Model Evaluations
- Future Work & Areas of Improvement

Introduction

CP

BPSK Preamble

- MATLAB-based implementation of an OFDM (Orthogonal Frequency Division Multiplexing) acoustic transmission system
- Two audio speakers + microphone

CP

Training

Symbol

CP

QPSK OFDM

Symbol

CP

Some number of OFDM symbols before another training symbol

QPSK OFDM

Symbol

Training Types

Block Pilot Training

$$\widehat{h_l} = argmin_{\widehat{h_l}} \left\{ |y_l - H_l T_l|^2 \right\} = \frac{y_l}{T_l}$$

Comb Pilot Training

One Frame

$$\widehat{h} = (TF_{N \times L})^{\dagger} Y = (F_{N \times L}^{H} T^{H} TF_{N \times L})^{-1} F_{N \times L}^{H} T^{H} Y$$

Exp Fading + AWGN

SNR = 1 dB, #taps = 8


```
% Apply fading channel
g = exp(-(0:n_taps-1));
g = g/norm(g);
x_s_noise_fading = conv(x_s_noise,g,'same');
```


Exp Fading + AWGN

SNR = **10** dB, #taps = 8

Rayleigh Fading + AWGN

SNR = 1 dB, #taps = 8

Rayleigh Fading + AWGN

SNR = 10 dB, #taps = 8

Model Comparisons: Rayleigh Fading Strength vs. BER

Doppler Shift (Hz) vs. BER

Delay(s) vs. BER

Comb Pilot is better than block pilot.

Model Comparisons: With Rayleigh

Rayleigh Fading Channel Parameters:

```
sampleRate = 48000;
maxDopplerShift = 1;
delayVector = [0.01 0.02];
gainVector = [-1 -1];
```

SNR vs. BER

Number of Taps vs. BER

Demonstration: Microphone Transmission

Input: 44 x 51, gray-scaled uint8 image

Audio duration: around 25 seconds

Noise: a repeated piece of music

Microphone	BER (Block)	BER (Comb)
No Movement	0.0003	0.0
Slight Movement	0.0432	0.0013
Strong Movement	0.3215	0.0549

Demonstration: Channel Correction Ability

Demonstration: Distribution of Training Symbols

Train-Data Ratio: (number of train sub-carriers : data sub-carriers)

Microphone were slightly moving

Train-Data Ratio	BER (Block)	BER (Comb)
1:1	0.0432	0.0013
1:2	0.2931	0.0021
1:4	0.4707	0.0076

Demonstration: Block Pilot Channel Estimation

Block Pilot

Demonstration: Comb Pilot Channel Estimation

Comb pilot with channel length = 6

Comb pilot with channel length = 80

Demonstration: Channel length

$$\sigma_{\tau} = \sqrt{\frac{\sum (\tau_i - \overline{\tau})^2 |h_i|^2}{\sum |h_i|^2}} \quad \overline{\tau} = \frac{\sum \tau_i |h|_i}{\sum |h_i|} \quad \Delta \tau = \frac{1}{N \cdot T} = 0.00078 \quad x_{\tau} = \sigma_{\tau} \cdot v_s$$

$$\overline{\tau} = \frac{\sum \tau_i |h|_i}{\sum |h_i|}$$

$$\Delta \tau = \frac{1}{N \cdot T} = 0.00078$$

$$x_{\tau} = \sigma_{\tau} \cdot v_s$$

$$\sigma_{\tau}$$
 = 0.0006 s

$$x_{\tau}$$
 = 0.21 m

$$\sigma_{\tau}$$
 = 0.0032 x_{τ} = 1.10 m

$$x_{\tau}$$
 = 1.10 m

$$\sigma_{\tau}$$
 = 0.0238 x_{τ} = 8.16 m

Problems Encountered & Solutions

AGWN and exponential PDP fading are not sufficient

Add Rayleigh fading channel to analyze performance

Long computation times for tx() and rx() Solution

- Only use small (50 x 50) gray-scale images to shorten the input data length

Padding and data chunks not dividing evenly

Rigorous debugging

Difficult to control variables in real acoustic systems

Modulate SNR vs. BER with Rayleigh fading

Problems with Viterbi Viterbi

More debugging

Optimal Model & Efficiency Calculations

picture bits in total = 103 * 103 * 8 = 84872 bits

$$\frac{\left(\frac{picture\ bits\ in\ total}{256*2}\right)}{\left(\left(\frac{picture\ bits\ in\ total}{256*2}*\frac{1}{3}\right) + \frac{picture\ bits\ in\ total}{256*2}\right)*1.5 + 4000}$$

$$= \frac{165}{(165 * \frac{1}{3} + 165) * 1.5 + 100}$$
$$= 0.384 = 38.4\%$$

Default Parameters for audiotrans.m

Sampling Rate	48000
Symbol Rate	100
Modulation Order	QPSK
Carrier Frequency	8000
# Sub-carriers	256
" Gub Guilloig	200
Sample Spacing	4.6875
Sample Spacing	4.6875