3. Généralités sur les fonctions, corrigé

Exercice 1.

1) f_1 est définie sur \mathbb{R} . Pour obtenir son graphe, il faut translater le graphe de sin de $-\frac{\pi}{4}$ vers la gauche (selon l'axe (Ox)).

2) f_2 est définie sur \mathbb{R} . Pour obtenir son graphe, il faut translater le graphe de $x \mapsto x^2$ de -2 vers la gauche (selon l'axe (Ox)).

3) f_3 est définie sur \mathbb{R} et $f_3(x) = (1-x)^2 = (x-1)^2$. On obtient donc son graphe en translatant celui de $x \mapsto x^2$ de 1 vers la droite (selon l'axe (Ox)).

4) f_4 est définie sur $\mathbb{R} \setminus \{-1/2\}$. Puisque $f_4(x) = \frac{2}{x+1/2} + 3$, pour obtenir son graphe, on décale le graphe de $x \mapsto 1/x$ de 1/2 vers la gauche, puis on dilate selon l'axe (Oy) d'un rapport 2 et ensuite on translate de 3 vers le haut (selon l'axe (Oy)).

5) f_5 est définie sur $\left[\frac{2}{3}, +\infty\right[$. Puisque $f_5(x) = \sqrt{3}\sqrt{x-2/3}-1$, on part du graphe de $x \mapsto \sqrt{x}$ en décalant de 2/3 vers la droite, puis on dilate d'un facteur $\sqrt{3}$ selon l'axe (Oy) et ensuite on translate de 1 vers le bas.

6) f_6 est définie sur $]-\infty, 3[$. Pour x dans cet ensemble, $f_6(x) = -2\ln(3-x)$. Pour obtenir son graphe, on part de celui de $x \mapsto \ln(x)$, on effectue une symétrie par rapport à $x = \frac{3}{2}$, on dilate d'un rapport 2 et on effectue la symétrie par rapport à l'axe (Ox).

Exercice 2. Puisque $x \mapsto \cos(x)$ est 2π périodique, alors $x \mapsto \cos(12x)$ est $\frac{\pi}{6}$ -périodique.

Exercice 3. Soit $x \in \mathbb{R}$. Alors:

$$f(x+30\pi) = \cos\left(\frac{x}{5} + 6\pi\right) + \sin\left(\frac{x}{3} + 10\pi\right)$$
$$= \cos\left(\frac{x}{5}\right) + \sin\left(\frac{x}{3}\right)$$
$$= f(x).$$

f est donc périodique (de période 30π). Cela ne veut pas dire qu'il s'agit forcément de la plus petite période!

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $f \circ f$ soit croissante et $f \circ f \circ f$ strictement décroissante. Supposons par l'absurde que f ne soit pas strictement décroissante.

Il existe alors $x, y \in \mathbb{R}$ tel que x < y et $f(x) \ge f(y)$. Par croissance de $f \circ f$, on en déduit alors que :

$$f(f(f(x))) \ge f(f(f(y))).$$

Or, ceci contredit la stricte croissance de $f \circ f \circ f$: absurde ! On a donc bien f strictement décroissante.

Exercice 6. Montrons que si $f: \mathbb{R} \to \mathbb{R}$ est périodique croissante, alors elle est constante. Par l'absurde, supposons f non constante. Il existe donc $a, b \in \mathbb{R}$, avec $a \neq b$ tels que $f(a) \neq f(b)$. Sans perte de généralités, supposons a < b. Puisque f est croissante, on a donc $f(a) \leq f(b)$ et par hypothèse, on a $f(a) \neq f(b)$. On a donc f(a) < f(b).

Notons T > 0 la période de f. Puisque la suite $(a + nT)_{n \in \mathbb{N}}$ tend vers $+\infty$ quand n tend vers $+\infty$, il existe $n_0 \in \mathbb{N}$ tel que $b < a + n_0T$. On a alors :

$$\begin{array}{lcl} f(b) & \leq & f(a+n_0T) & & (\operatorname{car} f \ \operatorname{est} \ \operatorname{croissante}) \\ & \leq & f(a) & & (\operatorname{car} f \ \operatorname{est} \ T\text{-p\'eriodique}). \end{array}$$

Ceci est absurde car on a f(a) < f(b).

On en déduit qu'une fonction périodique croissante définie sur $\mathbb R$ est nécessairement constante.

Exercice 8. Soient $x, y \ge 0$. Posons $a = \sqrt{x+y}$ et $b = \sqrt{x} + \sqrt{y}$, qui sont tous les deux des réels positifs. Comparons a^2 et b^2 . On a :

$$b^{2} - a^{2} = (\sqrt{x} + \sqrt{y})^{2} - (\sqrt{x+y})^{2}$$

$$= x + 2\sqrt{xy} + y - (x+y)$$
 (car x et y sont positifs)
$$= 2\sqrt{xy}$$

$$\geq 0.$$

On a donc $b^2 \geq a^2$. Puisque la fonction $x \mapsto \sqrt{x}$ est croissante de \mathbb{R}_+ dans \mathbb{R} , on en déduit que $\sqrt{b^2} \geq \sqrt{a^2}$. Puisque a et b sont positifs, on en déduit que $b \geq a$, ce qui entraine que $\sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$.

On aurait aussi pu partir de l'inégalité à démontrer et élever au carré en utilisant des équivalences (ce que l'on justifie en disant que la fonction $x \mapsto x^2$ est strictement croissante sur \mathbb{R}_+ .

Exercice 14. Attention sur vos dessins de graphe à bien faire apparaitre les tangentes horizontales (point où la dérivée s'annule) à l'aide d'un ↔ (non représenté sur les graphes du corrigé). L'important n'est pas d'avoir un graphe précis au millimètre près (sauf si c'est explicitement demandé) mais de faire ressortir les points intéressants de la fonction.

1) Soit $f_1: x \mapsto x^3 - 3x$. f_1 est définie sur \mathbb{R} , infiniment dérivable sur son ensemble de définition. On a $\forall x \in \mathbb{R}$, $f_1'(x) = 3(x-1)(x+1)$. On en déduit le tableau de signes de f_1' et le tableau de variations de f_1 :

x	$-\infty$		-1		1		$+\infty$
$f_1'(x)$		+	0	_	0	+	
f_1	$-\infty$		× 2 \		-2		+∞

De plus f tend vers $+\infty$ en $+\infty$ et vers $-\infty$ en $-\infty$. On remarque que f est impaire. On en déduit son graphe :

2) Soit $f_2: x \mapsto x^2 + \frac{2}{x}$. f_2 est définie sur \mathbb{R}^* et infiniment dérivable sur son ensemble de définition. On a pour tout $x \in \mathbb{R}^*$:

$$f_2'(x) = 2x - \frac{2}{x^2}$$

= $2 \cdot \frac{x^3 - 1}{x^2}$.

On en déduit le tableau de signes de f_2' et le tableau de variations de f_2 .

x	$-\infty$ ()	1	$+\infty$
$f_2'(x)$	_	_	0 +	
f_2	$+\infty$ $-\infty$	$+\infty$	3	$+\infty$

Les limites s'obtiennent ici sans difficulté (pas de formes indéterminées). Voici le graphe de f_2 :

3) Soit $f_3: x \mapsto \frac{x}{x^2-1}$. f_3 est définie sur $\mathbb{R} \setminus \{-1,1\}$ et est infiniment dérivable sur son ensemble de définition. On a pour tout $x \in \mathbb{R} \setminus \{-1,1\}$:

$$f_3'(x) = \frac{1}{x^2 - 1} - \frac{2x^2}{(x^2 - 1)^2}$$
$$= -\frac{x^2 + 1}{(x^2 - 1)^2}.$$

On en déduit le tableau de signes de f_3' et le tableau de variations de f_3 :

x	$-\infty$ –	·1 1	1 +∞
$f_3'(x)$	_	_	_
f_3	0	+∞	$+\infty$ 0

Les limites de f_3 en $\pm \infty$ sont 0 (on peut diviser le numérateur et le dénominateur par x pour le voir plus facilement). Puisque $f_3(x) = \frac{x}{x-1} \cdot \frac{1}{x+1}$, on en déduit que $\lim_{\substack{x \to -1 \\ x < -1}} f(x) = -\infty$ et que

 $\lim_{\substack{x \to -1 \\ x > -1}} f(x) = +\infty$. On en déduit de même les limites au voisinage de 1. On en déduit le graphe suivant

(les traits de discontinuité ne sont en pratique pas à tracer bien $\hat{\sup}\,!)$:

4) Soit $f_4: x \mapsto xe^x$. f_4 est définie sur \mathbb{R} , infiniment dérivable sur son ensemble de définition. On a $\forall x \in \mathbb{R}, f'_4(x) = (x+1)e^x$. On en déduit, à l'aide du tableau de variations, que f_2 est décroissante sur $]-\infty, -1]$ et croissante sur $[-1, +\infty[$. f tend vers 0 en $-\infty$ par croissance comparée et vers $+\infty$ en $+\infty$. On en déduit son graphe :

5) Soit $f_5: x \mapsto x \ln(x)$. f_3 est définie sur \mathbb{R}_+^* , infiniment dérivable sur son ensemble de définition. On a $\forall x \in \mathbb{R}_+^*$, $f_5'(x) = 1 + \ln(x)$. On en déduit le tableau de signes de f_5' et le tableau de variations de f_5 :

x	($\frac{1}{e}$	$+\infty$
$f_5'(x)$		- 0 +	
f_5		0 $-\frac{1}{e}$	$+\infty$

Par croissance comparée, f_5 tend vers 0 en 0 et tend vers $+\infty$ en $+\infty$. On en déduit son graphe :

6) Soit $f_6: x \mapsto \cos(x) + \sin(x)$. f_6 est définie et infiniment dérivable sur \mathbb{R} . On remarque qu'elle est 2π périodique, ce qui nous permet de l'étudier sur $[0,2\pi]$. On a $\forall x \in [0,2\pi]$, $f_6'(x) = -\sin(x) + \cos(x)$. Les zéros de la dérivée sur $[0,2\pi]$ sont quand $\sin(x) = \cos(x)$, c'est à dire en $\frac{\pi}{4}$ et $\frac{5\pi}{4}$. Il reste ensuite à trouver le signe de f_6' entre les zéros, ce qui se fait à l'aide du cercle trigonométrique. On peut donc en déduire le tableau de signe de f_6' et le tableau de variations de f_6 :

x	0	$\frac{\pi}{4}$		$\frac{5\pi}{4}$		2π
$f_6'(x)$		+ 0	_	0	+	
f_6	1	$\sqrt{2}$		$-\sqrt{2}$, 1

On en déduit alors le graphe de f_6 sur $[0,2\pi],$ que l'on prolonge par 2π -périodicité :

On aurait pu étudier f_6 plus rapidement en simplifiant son expression à l'aide de formules de trigonométries. En effet, on a pour tout $x \in \mathbb{R}$:

$$f_6(x) = \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{2} \cdot (\cos(x) + \sin(x))$$

$$= \frac{2}{\sqrt{2}} \cdot \left(\cos\left(\frac{\pi}{4}\right)\cos(x) + \sin\left(\frac{\pi}{4}\right)\sin(x)\right)$$

$$= \sqrt{2}\cos\left(x - \frac{\pi}{4}\right).$$

On déduit alors le graphe de f₆ de celui du cosinus en effectuant une translation et une dilatation.

Exercice 18. Soit $f: \left\{ egin{array}{ll} \mathbb{R}^* & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{x} \end{array} \right.$ Cette fonction est infiniment dérivable comme quotient de fonctions infiniment dérivables sur \mathbb{R}^* . En calculant les premières valeurs, on peut supposer que :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^*, \ f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}.$$

Ce résultat est vrai pour n=0 et n=1. On le montre sans difficulté par récurrence puisque, si on fixe $n \in \mathbb{N}$ et que l'on suppose notre hypothèse vraie au rang n, alors on a :

$$f^{(n+1)}(x) = -\frac{(-1)^n n! \times (n+1) x^n}{x^{2n+2}} = \frac{(-1)^{n+1} (n+1)!}{x^{n+2}}.$$

Exercice 19. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ dérivable telle que f(0) = 0 et $\forall x \in \mathbb{R}_+$, $f'(x) \leq f(x)$. Comme suggéré par l'énoncé, posons $g: x \mapsto f(x)e^{-x}$. Cette fonction est dérivable sur \mathbb{R}_+ (car f l'est et la fonction exponentielle aussi) et elle est à valeurs dans \mathbb{R}_+ (car f l'est et l'exponentielle est strictement positive). On a pour $x \in \mathbb{R}_+$:

$$g'(x) = (f'(x) - f(x))e^{-x} \le 0.$$

L'inégalité vient de la propriété vérifiée par f et le fait que l'exponentielle est positive. On en déduit que g est décroissante. Or, g(0) = f(0) = 0 et g est à valeurs dans \mathbb{R}_+ . Ceci implique que g est la fonction nulle. Puisque l'exponentielle est strictement positive, on en déduit que f est la fonction nulle sur \mathbb{R}_+ .

Exercice 20. Par tatonnement, on remarque que pour toute constante $a \in \mathbb{R}$, les fonctions $f_a : x \mapsto x + a$ et $g_a : x \mapsto -x + a$ répondent au problème demandé. On va montrer que ce sont les seules.

Analyse: Soit $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall (x,y) \in \mathbb{R}^2$, |f(x) - f(y)| = |x - y|. En appliquant cette relation en y = 0, on trouve alors que:

$$\forall x \in \mathbb{R}, \ |f(x) - f(0)| = |x|.$$

Posons a = f(0). Il nous reste à montrer que pour tout $x \in \mathbb{R}$, on a f(x) = x + a ou que pour tout $x \in \mathbb{R}$, f(x) = -x + a. Pour cela, considérons f(1). On a toujours d'après la propriété appliquée en 1 et en 0 que :

$$|f(1) - a| = 1.$$

On a donc que f(1) est à distance 1 de a. Séparons les cas selon si f(1) = a + 1 ou f(1) = a - 1.

• Supposons f(1) = a + 1. Soit $x \in \mathbb{R}^*$ (on connait déjà la valeur de f en 0). On a alors en appliquant la propriété en x et 0 que |f(x) - a| = |x|. Ceci entraîne que :

$$f(x) = a + |x|$$
 ou $f(x) = a - |x|$.

On a donc f(x) = a + x ou f(x) = a - x. Montrons que f(x) = a - x est absurde. En effet, on a dans ce cas, f(x) - a - 1 = -x - 1, ce qui entraine que |f(x) - f(1)| = |x + 1|. Or, on

a |f(x) - f(1)| = |x - 1| d'après l'hypothèse appliquée en x et en 1. On peut alors vérifier rapidement que la seule solution de |x + 1| = |x - 1| est x = 0 (faire une étude de cas). Puisque $x \neq 0$, ceci est absurde. On en déduit que f(x) = a + x.

• Supposons à présent f(1) = a - 1. Soit $x \in \mathbb{R}^*$ (on connait déjà la valeur de f en 0). On a alors en appliquant la propriété en x et 0 que |f(x) - a| = |x|. Ceci entraine que :

$$f(x) = a + |x|$$
 ou $f(x) = a - |x|$.

On a donc f(x) = a + x ou f(x) = a - x. Montrons que f(x) = a + x est absurde. En effet, on a dans ce cas, f(x) - a + 1 = x + 1, ce qui entraine que |f(x) - f(1)| = |x + 1|. Or, on a |f(x) - f(1)| = |x - 1| d'après l'hypothèse appliquée en x et en 1. De même que dans le cas précédent, puisque $x \neq 0$, ceci est absurde. On en déduit que f(x) = a - x.

On a donc montré que f est de la forme $f:x\mapsto x+a$ ou $f:x\mapsto -x+a$ où a est une constante réelle.

Synthèse : réciproquement, ces fonctions sont bien solutions de l'équation proposée. On a donc trouvées toutes les fonctions solutions de l'équation proposée.