What is claimed is:

5	1.	A MOS array having at least one polygate supporting a plurality of
		sources and drains connected in parallel, wherein the polygate has
		a non-uniform length along its width.
	2.	A MOS array of claim 1, wherein the array includes a common
		drain interconnect and a common source interconnect.
10	3.	A MOS array of claim 2, wherein the drain and source
		interconnects have a comb-like configuration.
	4.	A MOS array of claim 3, wherein, the drain and source
		interconnects are opposed and staggered to define alternating drain
		and source regions on either side of the polygate and extending
15		substantially along the width of the polygate.
	5.	A MOS array of claim 2, wherein the drain interconnect and source
		interconnect each have at least one metal contact with the length of
		the polygate being shorter at greater distances from the at least one
		contact.
20	6.	A MOS array of claim 5, wherein the array has only one drain
		contact and one source contact if the drain and source regions do
		not alternate.
	7.	A MOS array of claim 5, wherein the array has a drain contact on
		each side of the polygate and a source contact on each side of the
25		polygate to support staggered drain and source regions.
	8.	A MOS array of claim 5, wherein each drain contact is located in
		the middle of a drain interconnect and each source contact is
		located in the middle of a source interconnect.
	9.	A MOS array of claim 8, wherein the polygate is longer in the
30		middle and gets shorter towards the ends.

	10.	A MOS array of claim 1, wherein the change in length of the polygate is non-linear.
	11.	A MOS array of claim 9, wherein the change in length of the polygate is non-linear.
5	12.	A MOS array of claim 10, wherein the decrease in length of the polygate further away from the drain and source contacts corresponds to the increase in resistance along the interconnect as
10	13.	one moves further from the drain and source contacts. A MOS array of claim 11, wherein the decrease in length of the polygate further away from the drain and source contacts corresponds to the increase in resistance along the interconnect as one moves further from the drain and source contacts.
15		
20		

25