## UNCLASSIFIED

# AD 404 113

Reproduced
by the

DEFENSE DOCUMENTATION CENTER

**FOR** 

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA



## UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.



SP-1181/000/00

Confidence Bands in Straight

MAY 2 U 1953

Line Regression

A. V. Gafarian

17 April 1963

(SP Series)



SP-1181/000/00

Confidence Bands in Straight
Line Regression

bу

Λ. V. Gafarian

17 April 1963

SYSTEM DEVELOPMENT CORPORATION, SANTA MONICA, CALIFORNIA

Confidence Bands in Straight Line Regression

bу

A. V. Gafarian

#### ABSTRACT

This paper develops a method for obtaining confidence bands in polynomial regression when the observations are independently distributed with constant but unknown variance. The bands may be obtained, in principle, over arbitrary sets of the independent variable with exact preassigned confidence coefficients. In general, difficult distribution problems result when specific applications are attempted. The major portion of this paper is concerned with first degree polynomials since some progress has been made here. A table is provided to obtain a constant width confidence band which contains the true but unknown straight regression line for values of the independent variable in some arbitrarily selected interval with an exact preassigned confidence coefficient. The present method is compared with the classical hyperbolic band for the whole regression line.

The author wishes to express his indebtedness to Mr. Vance A. Griffitts who did all the programming for the table.

#### 1. INTRODUCTION AND SUMMARY

The basic problem considered in this paper is the following. Suppose for every  $t \in (-\infty,\infty)$ ,  $Y_t$  is a normal random variable with unknown variance  $\sigma^2$  and mean value  $m_t$  given by a polynomial of known degree  $r \geq 1$  and unknown coefficients. Let I be a subset of interest in  $(-\infty,\infty)$ . Based on mutually independent observations it is desired to construct simultaneous confidence intervals for  $m_t$ , teI, with preassigned probability  $1-\alpha$ . It should be pointed out that the material discussed here is close to methods called "multiple comparisons" in other contexts.

A well known result occurs when the set I contains only one point, Graybill [1, pp. 121-122]. It must be emphasized that if intervals are computed by that technique for every t, no confidence statement may be made about the resulting band (a hyperbola for r=1) containing the unknown regression line, i.e., that method does not provide simultaneous coverage of the ordinates of the regression line. Less known is the work of Working and Hotelling [2] in which a hyperbolic confidence band is obtained for the whole regression line when it is assumed the variance is known. The method is easily extended to the unknown variance case and provides a hyperbolic band valid for the whole regression line, Scheffé [3, pp. 52,53]. Hoel [4] extends the method of Working and Hotelling for the straight line regression in such a way as to make it possible to find an optimum confidence band. The optimum band is defined to be that band of an admissible class of bands such that its expected total area is a minimum. Also, in [4] the case of polynomial regression of degree two or higher is considered and a procedure similar to the first degree case is outlined. However, in these cases the confidence bands possess confidence coefficients  $\geq 1$  - lpha

The present study was undertaken to extend some of the results described above. Ordinarily an experimenter is not interested in coverage of the whole regression curve. On the contrary, interest lies in only a bounded interval or even a finite set of points. The restriction of the above described bands to bounded sets of interest yield confidence coefficients  $\geq 1$  -  $\alpha$  (even in the first degree case). A method for providing a band that is valid only for the set of interest may yield a more efficient band. Secondly, it would be desirable to maintain a uniform degree of accuracy over the set of interest, i.e., the width of the band is the same for all values of the independent variable t in the set of interest.

This paper develops a general method for obtaining confidence bands of arbitrary shape and over any arbitrary subset of the line when the observations are independently normally distributed. The shape is arbitrary in the sense that if w is any positive function defined over the subset I of interest in  $(-\infty,\infty)$ , then the width of the band for tell is proportional to w(t). Thus, by selecting w(t) = 1, tell, the resulting band has the same width for every tell.

In general, difficult distribution problems result when specific applications are attempted. The major portion of this paper is concerned with first degree polynomials since some progress has been made here. A table is provided to obtain a confidence band which contains the true regression line for values of the independent variable in an arbitrarily selected interval of interest [a,b] with an exact confidence coefficient. The band has the same width for all values  $t \in [a,b]$ . The table is constructed for use in the following situation: (1) The sample size n is even; (2) If observations are made at the values

 $t_1, t_2, \ldots, t_n$  of the independent variable then  $\overline{t} = \frac{1}{n} \sum_{i=1}^{n} t_i = \frac{a+b}{2}$ . Defining [A,B] as the interval in which observations are permissible a best solution obtains if in addition (3)  $\frac{A+B}{2} = \frac{a+b}{2}$ , i.e., the observation interval [A,B] is symmetrically located with respect to the interval of interest [a,b]; (4) (2) is realized by making half the observations at A and half at B. The solution is best in the sense that for a given n, (B-A)/(b-a), and probability of coverage this particular experimental configuration achieves the smallest bandwidth.

The important feature of the band provided by the present method is that it is uniformly wide over [a,b]. In order to get some idea of its efficiency it was compared to the band that arises by merely considering the restriction of the hyperbolic one to the interval [a,b], though in this case the probability of coverage is no longer  $1-\alpha$  but  $> 1-\alpha$ . The comparison was made in terms of the areas of the bands. To be more specific for a given n, (B-A)/(b-a), and probability of coverage, the best band (i.e., minimum area) was computed by the present method. The experimental configuration to achieve this also provides the minimum area over [a,b] for the hyperbolic band. The ratio of the two areas was then considered as a measure of the efficiency. Roughly, the result is that for (B-A)/(b-a) > 3/2 the present method is more efficient and for (B-A)/(b-a) < 3/2 the restriction of the hyperbolic band to [a,b] yields smaller areas. More specific calculations will be presented in a later section of the paper.

#### 2. GENERAL TECHNIQUE

Suppose that for every  $t \in (-\infty,\infty)$ ,  $Y_t$  is a normal random variable with unknown variance  $\sigma^2$  and expectation given by a polynomial  $\beta_0 + \beta_1 t + \dots + \beta_r t^r$  of unknown coefficients and known degree r. Let  $I \subset (-\infty,\infty)$  be the set of interest. For preassigned confidence coefficient  $1-\alpha$  and positive function w defined on I it is desired to obtain simultaneous confidence intervals for  $E[Y_t] = m_t$ ,  $t \in I$ , such that the length of the interval for each  $t \in I$  is proportional to w(t).

Suppose independent observations are made at the time points  $t_1, t_2, \ldots, t_n$  where the number of distinct observation points is  $\geq r+1$  and the number of observations is  $\geq r+1$  (this ensures that  $\sigma^2$  may be estimated since only r+1 distinct points are needed for the estimability of the linear parameters). Let  $\hat{\beta}' = (\hat{\beta}_0 \ \hat{\beta}_1 \ \ldots \ \hat{\beta}_r)$  denote the vector of least squares estimates for  $\beta' = (\beta_0 \ \beta_1 \ \ldots \ \beta_r)$  given by

$$\hat{\beta} = (T'T)^{-1}T'Y$$

where

$$\mathbf{T} = \begin{pmatrix} 1 & \mathbf{t}_{1} & \mathbf{t}_{1}^{2} & \dots & \mathbf{t}_{1}^{r} \\ 1 & \mathbf{t}_{2} & \mathbf{t}_{2}^{2} & \dots & \mathbf{t}_{2}^{r} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & \mathbf{t}_{n} & \mathbf{t}_{n}^{2} & \dots & \mathbf{t}_{n}^{r} \end{pmatrix}$$

and Y' =  $(y_1 y_2 \dots y_n)$  is the vector of observations at the points  $t_1, t_2, \dots, t_n$ .

Denote by

$$\hat{\sigma}^2 = \frac{1}{n-r-1} (Y-T\hat{\beta})'(Y-T\hat{\beta})$$

the independent unbiased estimator of  $\sigma^2$  based on n-r-1 degrees of freedom. Let  $\widehat{m}_t$  be the best linear estimate of  $m_t$  given by  $\sum_{j=0}^{T} \widehat{\beta}_j t^j$ . From the function

$$\frac{m_t - m_t}{w(t)\theta}$$

and for any pair of numbers  $(\delta_1, \delta_2)$  with  $\delta_1 < \delta_2$  let

$$V(\delta_1, \delta_2) = \left\{ \frac{\widehat{\beta} - \beta}{\widehat{\sigma}} : \delta_1 < \frac{\widehat{m}_t - m_t}{w(t)\widehat{\sigma}} < \delta_2, t \in I \right\}$$

in the space of the random vector  $\frac{\hat{\beta}-\beta}{\delta}$ , whose distribution is parameter free and calculable [5]. These are sufficient conditions to obtain

$$[\hat{m}_t - \delta_2 w(t)\hat{\sigma}, \hat{m}_t - \delta_1 w(t)\hat{\sigma}], t \in I$$

as simultaneous confidence intervals of confidence coefficient  $P[V(\delta_1, \delta_2)]$  [6]. The width of the band for any  $t \in I$  is  $(\delta_2 - \delta_1)$   $w(t) \hat{\sigma}$ .

To insure the existence of at least one pair  $(\delta_1,\delta_2)$  to acquire the probability 1- $\alpha$ , an additional restriction must be imposed on the function w. The set  $V(\delta_1,\delta_2)$  may be written as

$$\bigcap_{\mathbf{t}\in\mathbf{I}}\left\{\frac{\underline{\beta}-\underline{\beta}}{\widehat{\sigma}}:\ \delta_1<\frac{\widehat{m}_{\mathbf{t}}^{-..m}\underline{t}}{w(\mathbf{t})\widehat{\sigma}}<\delta_2\right\}\;.$$

Since

$$\frac{\hat{m}_t - m_t}{w(t)\hat{\sigma}} = \frac{1}{w(t)} (1 t t^2 \dots t^r) \left( \frac{\hat{\beta} - \beta}{\hat{\sigma}} \right)$$

it follows that each set in the above intersection consists of the points between two parallel hyperplanes which are perpendicular to (1 t ... t<sup>r</sup>)' and are at distances  $(w(t)|\delta_2|)/(\frac{r}{j\sum_0}|t|^j)^{1/2}$  and  $(w(t)|\delta_1|)/(\frac{r}{j\sum_0}|t|^j)^{1/2}$  from the origin. Hence, if there exist constants m > 0 and M > 0 such that m  $\leq w(t)/(\frac{r}{j\sum_0}|t|^j)^{1/2} \leq M$  for tell then and only then does there exist a pair  $(\alpha_1,\alpha_2)$  (actually many pairs) such that the required probability is attained.

It is conjectured that optimum confidence intervals are obtained whenever  $\delta_2$  is taken > 0 and  $\delta_1$  =  $-\delta_2$ . The optimum is in the sense that for a given confidence coefficient 1- $\alpha$  the difference  $\delta_2$ - $\delta_1$ , and hence the length of the confidence intervals, will be minimized. This conjecture is based on: (1) The fact that the density function for the random vector  $\frac{\hat{\beta}-\beta}{\hat{\sigma}}$  is constant on concentric (r+1) - dimensional ellipsoids with center at origin and decreases monotonely with distance from the origin, and (2) The set  $V(\alpha_1,\alpha_2)$  in this situation is symmetrical with respect to the origin and probably has a maximum volume for any fixed difference  $\delta_2$ - $\delta_1$ .

It should be emphasized again that the real difficulty here is the calculation of  $\delta_1$  and  $\delta_2$  to achieve probability 1- $\alpha$  when any specific applications are attempted. Progress has been made for the case r=1, I an interval, and w(t) = 1 for teI, i.e., a band which has the same width over the interval of interest. The major portion of the remainder of the paper is devoted to this problem.

However, for some special examples the general case specializes properly to well known results. E.g., if I is a single point only, say  $t_o$ ,  $w(t_o) = 1$ ,  $\delta_1 = -\delta_2$ , and  $\delta_2 > 0$ , it can be shown that

$$\delta_2 = t_{\frac{\alpha}{2}; n-r-1} [(1 t_0 \dots t_0^r)(T'T)^{-1}(1 t_0 \dots t_0^r)']^{1/2},$$

where t is the upper  $\alpha/2$  point of a t-variable with n-r-l degrees of  $\frac{\alpha}{2}$ ;n-r-l freedom, so that

$$P\left[\sum_{j=0}^{r} \hat{\beta}_{j} t_{o}^{j} - \delta_{2} \hat{\sigma} \leq \sum_{j=0}^{r} \beta_{j} t_{o}^{j} \leq \sum_{j=0}^{r} \hat{\beta}_{j} t_{o}^{j} + \delta_{2} \hat{\sigma}\right] = 1 - \alpha ,$$

[1, p. 122]. Similarly, consider the set of all linear combinations  $\{\beta_0 u_0 + \ldots + \beta_r u_r \colon (u_0 u_1 \ldots u_r) \in E_{r+1}\}.$  Setting  $\delta_1 = -\delta_2$  and  $\delta_2 > 0$  and defining w for any  $(u_0 u_1 \ldots u_r)$  to equal

$$[(u_0 u_1 \dots u_r)(T'T)^{-1}(u_0 u_1 \dots u_r)']^{1/2}$$

gives that

$$\delta_2 = (r+1) F_{\alpha;r+1, n-r-1}$$

where  $F_{\alpha;r+1, n-r-1}$  is the upper  $\alpha$  point of a F-variable with r+1 and n-r-1 degrees of freedom. This then gives

$$\begin{split} & \mathbb{P}[\left| \sum_{j=0}^{r} \hat{\beta}_{j}^{u_{j}} - \sum_{j=0}^{r} \beta_{j}^{u_{j}} \right| \leq (r+1) \mathbb{F}_{\alpha; r+1, n-r-1} \\ & \times ((u_{o} \ u_{1} \ \dots \ u_{r}) (T'T)^{-1} (u_{o} \ u_{1} \ \dots \ u_{r})')^{1/2} \ \hat{\sigma} : (u_{o} \ u_{1} \ \dots \ u_{r}) \in \mathbb{E}_{r+1}] = 1-\alpha \end{split}$$

[6]. An infinite subset of the above intervals is then a confidence band of confidence coefficient  $\geq 1 - \alpha$  for the mean curve. For r=1 this gives a band for the whole line with exact confidence coefficient 1- $\alpha$ . A little calculation shows this to be the hyperbolic band referred to in Section 1.

#### STRAIGHT LINE REGRESSION

This section contains the analysis in detail of the straight line regression case. For convenience the regression line is written in the form

$$m_t = \beta_0 + \beta_1(t-\overline{t})$$

where  $\overline{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$ , n > 2. The  $t_i$ 's are observation points such that at least two are distinct. The observation at  $t_i$  is denoted by  $y_i$ . It is supposed that observations may be made only in an interval [A,B] and that a uniformly wide confidence band is required for the interval [a,b], i.e., w(t) = 1 for  $t \in [a,b]$ .

Proceeding as outlined in Section 2, form the function

$$\frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}} + \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}} (t - \bar{t}) ,$$

where

$$\hat{\beta}_{o} = \frac{1}{n} \sum_{i=1}^{n} y_{i},$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (t_i - \overline{t}) y_i}{\sum_{i=1}^{n} (t_i - \overline{t})^2} ,$$

$$\hat{\boldsymbol{\sigma}}^2 = \frac{1}{n-2} \sum_{i=1}^n [\boldsymbol{y}_i - \hat{\boldsymbol{\beta}}_o - \hat{\boldsymbol{\beta}}_1 (\boldsymbol{t}_i - \overline{\boldsymbol{t}})]^2$$

are stochastically independent. Determine for  $\delta > 0$ 

$$V(-\delta,\delta) = \left\{ \left( \frac{\hat{\beta}_{o} - \beta_{o}}{\hat{\sigma}}, \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\sigma}} \right) : -\delta < \frac{\hat{\beta}_{o} - \beta_{o}}{\hat{\sigma}} + \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\sigma}} (t - \overline{t}) < \delta, t \in [a,b] \right\},$$

or equivalently the image  $V^1(-\delta,\delta)$  of  $V(-\delta,\delta)$  in the plane of t-variables of n-2 degrees of freedom

$$u = \sqrt{n} \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}}, \quad v = \sqrt{ns} \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}}$$

where

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (t_1 - \bar{t})^2$$
.

The resulting set is a parallelogram and is shown in Fig. 1. The density functiong of (u,v) is given



Figure 1

by

$$g(u,v) = \frac{1}{2\pi} \left[ 1 + \frac{u^2 + v^2}{n-2} \right]^{-\frac{1}{2}n}$$

From symmetry of the density function we need to consider only the probability of the triangle  $T(-\delta, \delta)$  in the upper half plane.

An examination of Fig. 1 illustrates the fact that for a fixed [a,b], [A,B],  $\delta$ , and n, different values of  $\overline{t}$  and s result in different confidence coefficients.

The problem of maximizing the confidence coefficient is now investigated.

For a given  $\overline{t}$  the claim is that the confidence coefficient is maximized when the variance of the observation points is maximized. For  $\overline{t}$  such that the apex of the triangle is in  $[-\sqrt{n}\delta,\sqrt{n}\delta]$ , this is clear from the fact that if  $s_2^2 > s_1^2$  are the variances of two configurations with corresponding triangles  $T_2(-\delta,\delta)$  and  $T_1(-\delta,\delta)$  respectively, then  $T_2(-\delta,\delta) \supset T_1(-\delta,\delta)$ . If  $\overline{t}$  is such that the apex of  $T(-\delta,\delta)$  lies in the complement of  $[-\sqrt{n}\delta,\sqrt{n}\delta]$ , it is not patently clear that the probability increases with s. That this, however, is the case is shown as follows. Let  $h(\xi,\eta) = P[T(-\delta,\delta)]$ , where  $\xi$  and  $\eta$  are the u and v coordinates of the apex. Then

$$h(\xi,\eta) = \int_{0}^{\eta} dv \int_{\alpha_{1}(\xi,\eta)}^{\alpha_{2}(\xi,\eta)} du \frac{1}{2\pi} \left[ 1 + \frac{u^{2} + v^{2}}{n-2} \right]^{-\frac{1}{2}n},$$

where

$$\alpha_1(\xi,\eta) = \frac{\xi + \sqrt{n\delta}}{\eta} v - \delta \sqrt{n}$$
,

$$\alpha_2(\xi,\eta) = \frac{\xi - \sqrt{n\delta}}{\eta} v + \delta \sqrt{n}$$
.

Hence

$$2\pi\eta^2 \frac{\partial}{\partial \eta} h(\xi, \eta) = \xi(I_1 - I_2) + 2\sqrt{n\delta} (I_1 + I_2),$$

where

$$I_{1} = \int_{0}^{\eta} dv \ v \left[ 1 + \frac{\alpha_{1}^{2}(\xi, \eta) + v^{2}}{n-2} \right]^{-\frac{n}{2}},$$

$$I_2 = \int_0^{\eta} dv \ v \left[ 1 + \frac{\alpha_2^2(\xi, \eta) + v^2}{n-2} \right]^{-\frac{n}{2}}$$

But  $I_1 \ge I_2$  for  $\xi \ge 0$  since

$$\alpha_2^2(\xi,\eta) - \alpha_1^2(\xi,\eta) = \frac{4\xi \sqrt{n\delta v}}{\eta} \left[1 - \frac{v}{\eta}\right] \geq 0 , \quad 0 \leq v \leq \eta .$$

Thus for  $\xi \geq 0$  (and by symmetry for  $\xi \leq 0$ )

$$2\pi \frac{\partial}{\partial n} h(\xi,\eta) \geq 0$$
.

This proves that for a given  $\overline{t}$ ,  $A \leq \overline{t} \leq B$ , the variance of the n observation points must be maximized. Intuitively, this is what one would expect.

It can be shown (Appendix) that for any  $\overline{t}$ ,  $A \leq \overline{t} \leq B$ , the corresponding maximum  $s^2$  which may be attained by the observation points  $\{t_1, t_2, \ldots, t_n\}$  is  $(B-A)^2$   $f^2(\tau)$ , where

$$f^{2}(\tau) = \frac{k + (n\tau - k)^{2}}{n} - \tau^{2}$$
,  $\frac{k}{n} \le \tau \le \frac{k+1}{n}$ ,  $k=0,1,\ldots,n-1$ ,

and

$$\tau = \frac{\overline{t} - A}{B - A}.$$

The configuration of observation points to obtain this maximum occurs with k  $t_i$ 's at B, 1  $t_i$  at  $n(\overline{t}-A)$  - k(B-A) + A, and n - (k+1)  $t_i$ 's at A. Thus for a fixed  $\overline{t}$ , the maximum confidence coefficient for the band of width  $2\delta \hat{\sigma}$  is achieved when the coordinates of the apex are

$$u = 2\sqrt{n\delta \ell(\tau - e)},$$

$$v = \ell \sqrt{n\delta \ell} f(\tau)$$
,

where

$$\ell = \frac{B-A}{b-a} ,$$

and

$$e = \frac{a+b}{2} - A$$

Plots of the loci of the apex are shown in Figures 2 and 3 for an even and an odd sample size respectively. Each section of the curve corresponds to the range

$$\frac{k}{n} \leq \tau = \frac{\overline{t-A}}{B-A} \leq \frac{k+1}{n} \ , \qquad k=0,1,\ldots,n-1 \ .$$



Figure 2



Due to the symmetry of the problem, it may always be assumed that  $-\infty < e \le \frac{1}{2}$ , i.e., the midpoint of the interval [a,b] is always to the left of the midpoint of [A,B]. Whenever  $e=\frac{1}{2}$ , i.e., [A,B] and [a,b] have the same midpoint. The

17 April 1963 16 SP-1181/000/00

contours are symmetrical with respect to the v-axis. For  $e < \frac{1}{2}$ , the contours are shifted to the right by the amount  $2\sqrt{n8} \ell(\frac{1}{2} - e)$ .

The problem of choosing the best  $\overline{t}$  for a fixed [A,B], [a,b] n, and  $\delta$  is now considered. The best  $\overline{t}$  is defined as the one that yields the maximum confidence coefficient when its corresponding maximum variance configuration is used (or equivalently minimizes  $\delta$  for a given confidence coefficient  $1-\alpha$ , [A,B], [a,b], and n). Intuitively one would expect the best  $\overline{t}$  to be the one whose corresponding maximum variance configuration possesses the highest possible variance of the observation points. This has been proved for the following situations:

1. n even and  $\geq 6$ ,  $\frac{1}{2}(\frac{n-2}{n-1}) \leq e \leq \frac{1}{2}$ . First it is shown that the maximum confidence coefficient must be attained for some point on the apex-contour-curve between the first peak to the left of the v-axis and the highest peak to the right of the v-axis. This follows from the fact that  $\frac{\partial}{\partial \eta} h(\xi,\eta) \geq 0$ , and that

$$2\pi\eta\ \frac{\partial}{\partial\xi}\ h(\xi\,,\!\eta)\ =\ I_2\ -\ I_1\le 0\,,\quad \xi\ge 0\ .$$

This last equation merely states that the probability in the triangle decreases as its apex moves away from the v-axis along a horizontal line. Next observe that each section has an axis of symmetry for a distance (which may be 0, such as for the first and last sections) on either side of a vertical which passes through the point having a horizontal tangent (see the arc AB, k=1, in Fig. 2). Hence if the v-axis intersects any section to the right of the axis of symmetry, the maximum probability of a triangle whose apex lies anywhere on the section occurs when the apex is at or to the right of the v-axis. This is the situation

(see Fig. 2) when  $\frac{1}{2}(\frac{n-2}{n-1}) \le e \le \frac{1}{2}$ , which means that the v-axis intersects the first section somewhere on the arc CE.

Now as the apex moves from the v-axis toward the peak, the probability in the triangle, which is one half the confidence coefficient, increases. This follows by writing the confidence coefficient as a function of  $\tau = \frac{\overline{t} - A}{B - A}$  in the iterated integral

$$p[V'(-8,8)] = 2 \int_{0}^{\infty} dv \int_{v_{1}(\tau)}^{v_{2}(\tau)} du \frac{1}{2\pi} \left[1 + \frac{u^{2} + v^{2}}{n-2}\right]^{-\frac{n}{2}},$$

where

$$v_1(\tau) = \frac{2\ell(\tau - e) + 1}{2\ell f(\tau)} v - \sqrt{n\delta},$$

$$v_2(\tau) = \frac{2\ell(\tau - e) - 1}{2\ell f(\tau)} v + \sqrt{n\delta} ,$$

and

$$\varphi(\tau) = 2\sqrt{n\delta\ell}f(\tau) .$$

Differentiating with respect to  $\tau$  gives

$$2\pi\ell f^{2}(\tau) \frac{\partial}{\partial \tau} P[V'(-\delta, \delta)] = \frac{2\ell}{f(\tau)} \left[\tau((n-1)e^{-k}) + \frac{k}{n}(1 + \frac{k}{n})^{-ke}\right] (J_{2}^{-J_{1}}) + f'(\tau) (J_{1}^{+J_{2}})$$

where

$$J_{1} = \int_{0}^{\phi(\tau)} dv \ v \left[ 1 + \frac{v_{1}^{2}(\tau) + v^{2}}{n-2} \right]^{-\frac{n}{2}},$$

$$J_{2} = \int_{0}^{\phi(\tau)} dv \ v \left[ 1 + \frac{v_{2}^{2}(\tau) + v^{2}}{n-2} \right]^{-\frac{n}{2}}.$$

As the apex moves from the v-axis toward the peak (along arc DE on Fig. 2),  $\tau$  varies from e to  $\frac{1}{2}$ ,  $k=\frac{n}{2}-1$ ,  $f'(\tau)>0$ , and  $J_2-J_1\leq 0$ . But for n=6,8,10,... the coefficient of  $J_2-J_1$  is < 0 along the arc DE and hence  $\frac{\partial}{\partial \tau}$  P[V'(-8,8)] > 0. This means that the maximum confidence coefficient is attained when the apex of the triangle is at the point E.

- 2. n odd and  $\geq 3$ ,  $\frac{n-1}{2n} \leq e \leq \frac{1}{2}$ . In this case the v-axis lies somewhere on arc EG, say F, Fig. 3. The maximum probability is then on arc EF. As the apex moves from E to F,  $\tau$  varies from  $\frac{n-1}{2n}$  to e,  $k = \frac{n-1}{2}$ ,  $f'(\tau) < 0$ , and  $J_2 J_1 \geq 0$ . But the coefficient of  $J_2 J_1$  is < 0 along EG and hence  $\frac{\partial}{\partial \tau}$  P[V'(-8,8)] < 0. Thus the maximum confidence coefficient occurs when the apex of the triangle is at E.
- 3. n odd and  $\geq 7$ ,  $\frac{n-3}{2(n-1)} \leq e \leq \frac{n-1}{2\,n}$ . Now the v-axis would lie on CE, say D, in Fig. 3, and the maximum probability would lie somewhere on arc DE. As the apex moves from D to E,  $\tau$  varies from e to  $\frac{n-1}{2n}$ ,  $k = \frac{n-3}{2}$ ,  $f'(\tau) > 0$ , and  $J_2 J_1 \leq 0$ . But the coefficient of  $J_2 J_1$  is < 0 along DE and  $\frac{\partial}{\partial \tau} P[V(-\delta, \delta)] > 0$ , i.e., the maximum confidence coefficient occurs at E.

#### 4. TABLE

From the above it is seen that in general, the maximum confidence coefficient for a band of width  $2\delta\sigma$  depends on the parameters  $\ell=\frac{B-A}{b-a}$ ,  $e=\frac{\frac{a+b}{2}-A}{B-A}$ , and n. Hence, a table which could handle all possible experimental situations would

17 April 1963 19 SP-1181/000/00

have to contain the value of the confidence coefficient for a range of values of the parameters  $\delta$ ,  $\ell$ , e, and n. This seemed too extensive an undertaking at this time.

The table presented in this paper is constructed for use in the following situation:

(1) n even, specifically, n = 4(2)20(10)30(20)50,  $\infty$ .

(2)  $\frac{1}{t} = \frac{a+b}{2}$ , so that an optimum solution is possible only if  $\frac{a+b}{2} = \frac{A+B}{2}$ .

Hence the problem is essentially to compute the integral of the function

$$g(u,v) = \frac{1}{2\pi} \left[ 1 + \frac{u^2 + v^2}{n-2} \right]^{-\frac{1}{2}} n$$

over the triangle shown in Fig. 4.



Figure 4

The table consists of 13 pages. At the top of each page are listed two values of a number c = 1(.1)2(.2)3(.4)5(1)6(2)10(10)20,  $\infty$ . When the maximum variance configuration is used, i.e.,  $\frac{n}{2}$  observations at A and  $\frac{n}{2}$  observations at B,  $c = \frac{B-A}{b-a} = \ell$ . If any other configuration of observation points is used, still maintaining  $\overline{t} = \frac{a+b}{2}$ , then  $c = \frac{2s}{b-a}$  where s is the variance of the observation points. For each value of c, the confidence coefficient is computed for all combinations of n = 4(2)20(10)30(20)50,  $\infty$  and  $d = \sqrt{n\delta} = 1(.05)2.5(.1)4(.2)5(.5)7(1)10(5)20(10)50.* The confidence coefficient is entered into the body of the table without a decimal point. Each entry is correct to 3 significant figures and a blank space corresponds to a rounding off to 1.$ 

It should be noted that the table is not restricted to those values of  $c \ge 1$ . Because of the symmetry of the density function g, it follows that for any c < 1, the table with heading 1/c may be used. In this case the values in the column  $d = \sqrt{n}\delta$  must be multiplied by 1/c.

This table was computed using an expression derived by a technique similar to that of Dunnett and Sobel [5]. The confidence coefficient 1- $\alpha$  may be written as

$$\frac{1}{4}(1-\alpha) = \frac{n-2}{2\pi} \int_{0}^{\pi/2} d\theta \int_{0}^{r(\theta)} d\phi (1+\phi^{2})^{-\frac{n}{2}}$$

$$= \frac{1}{4} - \frac{1}{2\pi} \int_{\tan^{-1}c}^{\pi/2} d\phi [1 + k^{2} \csc^{2}\phi]^{-\frac{n}{2} + 1}$$

The table is composed of computer print-out and thus the letters c,n, and d appear as capitals.

where

$$\rho^{2} = \frac{u^{2}}{n-2} + \frac{v^{2}}{n-2} = \delta \sqrt{\frac{n}{n-2}} \frac{\sin \psi}{\sin(\theta + \psi)},$$

$$\theta = \tan^{-1} \frac{v}{u},$$

$$\psi = \tan^{-1} c,$$

$$k^{2} = \frac{\delta^{2} c^{2} n}{(n-2)(1+c^{2})},$$

$$c = \frac{2s}{b-a},$$

$$\phi = \theta + \psi.$$

Define

$$Q_{\frac{n}{2}} = \frac{1}{2\pi} \int_{\tan^{-1}c}^{\frac{\pi}{2} + \tan^{-1}c} d\varphi [1 + k^{2} \csc^{2}\varphi]^{-\frac{n}{2} + 1}$$

and consider

$$Q_{\frac{n}{2}} - Q_{\frac{n}{2} - 1} = -\frac{1}{2\pi} \int_{\tan^{-1}c}^{\frac{\pi}{2} + \tan^{-1}c} d\varphi [1 + k^{2} \csc^{2}\varphi] - \frac{n}{2} + 1 k^{2} \csc^{2}\varphi.$$

Making use of the change of variable

$$y = \frac{1}{1 + \left(1 + \frac{1}{k^2}\right) \tan^2 \varphi}$$

it is seen after some calculation that

$$Q_{\underline{n}} - Q_{\underline{n}-1} = -\frac{k(1+k^2)^{-\frac{1}{2}(n-3)}}{4\pi} \left\{ B_{f_1(c,k)} \left[ \frac{1}{2}, \frac{1}{2}(n-3) \right] + B_{f_2(c,k)} \left[ \frac{1}{2}, \frac{1}{2}(n-3) \right] \right\}$$

where

$$f_1(c,k) = \frac{1}{1 + \left(1 + \frac{1}{k^2}\right)c^2}$$

$$f_2(c,k) = \frac{1}{1 + \left(1 + \frac{1}{k^2}\right)\frac{1}{c^2}}$$

and  $B_z[p,q] = \int_0^z t^{p-1} (1-t)^{q-1} dt$  is the incomplete beta function.

Now for the case that n is odd and  $\geq 3$ 

$$1-\alpha = 1 - 4Q_{\underline{n}}$$

$$= 1-4[(Q_{\frac{n}{2}} - Q_{\frac{n}{2}} - 1) + (Q_{\frac{n}{2}} - 1 - Q_{\frac{n}{2}} - 2) + \dots + (Q_{\frac{5}{2}} - Q_{\frac{3}{2}}) + Q_{\frac{3}{2}}].$$

But

$$Q_{\frac{3}{2}} = \frac{1}{2\pi} \left[ \sin^{-1} \frac{1}{\sqrt{1 + (1 + n\delta^2)c^2}} + \sin^{-1} \frac{c}{\sqrt{1 + (1 + n\delta^2)c^2}} \right]$$

so that finally, in terms of the incomplete beta function ratio  $I_z[p,q] = B_z[p,q]/B_1[p,q]$ ,

$$1-\overset{\circ}{\alpha} = 1 - \frac{2}{\pi} \left[ \sin^{-1} \frac{1}{\sqrt{1 + (1 + n\delta^{2})c^{2}}} + \sin^{-1} \frac{c}{\sqrt{1 + (1 + n\delta^{2})c^{2}}} \right]$$

$$+ \frac{2k}{\pi} \left[ \sum_{j=1}^{\frac{1}{2}(n-3)} \frac{4^{j-1} [(j-1)i]^{2}}{(1 + k^{2})^{j} (2j-1)i} \left( \mathbf{I}_{f_{1}}(c,k) \left[ \frac{1}{2}, j \right] + \mathbf{I}_{f_{2}}(c,k) \left[ \frac{1}{2}, j \right] \right) \right],$$

$$= 1 - \frac{2}{\pi} \left[ \sin^{-1} \frac{1}{\sqrt{1 + (1 + n\delta^{2})c^{2}}} + \sin^{-1} \frac{c}{\sqrt{1 + (1 + n\delta^{2})c^{2}}} \right], \quad n=3.$$

$$(1)$$

The formula

$$I_z(\frac{1}{2}, j) = \sqrt{z} \sum_{i=0}^{j-1} \frac{(2i)!}{4^i(i!)^2} (1-z^i)$$

is used for calculating the incomplete beta function ratios in (1).

For n even and  $\geq 4$ 

$$1-\alpha = 1-4 \, Q_{\frac{n}{2}}$$

$$= 1-4[(Q_{\frac{n}{2}} - Q_{\frac{n}{2}} - 1) + (Q_{\frac{n}{2}} - 1 - Q_{\frac{n}{2}} - 2) + \dots + (Q_{2}-Q_{1}) + Q_{1}].$$

But  $Q_1 = \frac{1}{4}$ . Hence after some calculation

$$1-\alpha = k \sum_{j=1}^{\frac{n}{2}-1} \frac{(2j-2)!}{(1+k^2)^{j-\frac{1}{2}[(j-1)!]^2 4^{j-1}}} \left( I_{f_1(c,k)} \left[ \frac{1}{2}, j-\frac{1}{2} \right] + I_{f_2(c,k)} \left[ \frac{1}{2}, j-\frac{1}{2} \right] \right) (2)$$

$$n=4,6,8,\dots$$

The formula

$$I_z(\frac{1}{2}, j-\frac{1}{2}) = \frac{2}{\pi} \tan^{-1} \sqrt{\frac{z}{1-z}} + \frac{2}{\pi} \sqrt{z(1-z)} \sum_{i=0}^{j-2} \frac{4^i(i!)^2}{(2i+1)!} (1-z)^i$$

is used for evaluating the incomplete beta function ratios appearing in (2).

The actual computations were performed on a Philco 2000 digital computer using equations (1) and (2). For  $n \le 50$ , which is the range of finite n in the table, an error analysis showed that the resulting probabilities could be off at most by seven digits in the 7th place. To reduce the size of the table, however, these were rounded off to three figures. This should be sufficient for most applications.

Now

$$\lim_{n\to\infty} g(u,v) = \frac{1}{2\pi} e^{-\frac{1}{2}(u^2 + v^2)},$$
(3)

which is the uncorrelated bivariate normal distribution with zero means and unit variances. To make the calculation for  $n=\infty$ , which amounts to the integral of (3) over the triangle of Fig. 4, a method outlined by Owen [7] was used. For  $1 \le c < \infty$  this gives

$$1-\alpha = 1-4(E+F)$$

where

$$E = T\left(x, \frac{1}{c}\right),$$

$$F = \frac{1}{2} \left[ G(x) + G(y) \right] - \left[ G(x)G(y) + T(y, \frac{1}{c}) \right],$$

$$x = \frac{c(\delta \sqrt{n})}{\sqrt{1 + c^2}},$$

$$y = \frac{c^2(\delta \sqrt{n})}{\sqrt{1 + c^2}},$$

$$T(h,z) = \frac{1}{2\pi} \left( \tan^{-1}z - \sum_{j=0}^{\infty} c_j z^{2j+1} \right),$$

$$c_j = (-1)^j \frac{1}{2j+1} \left[ 1 - e^{-\frac{h^2}{2}} \sum_{i=0}^j \frac{(\frac{h^2}{2})^i}{i!} \right],$$

$$G(x) = \frac{1}{2\pi} \int_{-\infty}^{x} e^{-\frac{1}{2}\xi^2} d\xi.$$

For c=∞, E=0 and

$$F = \frac{1}{2}[1-G(x)]$$

where

$$x = (\delta \sqrt{n}) .$$

These again were performed on the Philco 2000 and the computations were such that the resulting confidence coefficients are correct to three significant figures.

One additional observation is that, as  $c + \infty$  for a fixed  $\delta \sqrt{n}$ , the confidence

coefficient is the area of the function g over an infinite strip parallel to the v-axis. Hence, the values in the table with c=∞ could have been obtained from a t-table. Each column corresponds to a t-variable whose degrees of freedom is two less than the sample size heading.

### 5. EFFICIENCY

In Scheffé [3, pp. 52, 53], it is seen that a 1- $\alpha$  confidence band for the true line consists of all points (t,y) satisfying

$$\left[y-\widehat{\alpha}-\widehat{\beta}(t-\overline{t})\right]^{2} \leq F_{\alpha;2,n-2} \widehat{\sigma}\left[\frac{1}{n} + \frac{(t-\overline{t})^{2}}{ns^{2}}\right].$$

This gives a band about the fitted line, bounded by the two branches of a hyperbola. In order to use this for comparison purposes with the method of this paper, it is restricted to just the interval [a,b]. The confidence coefficient of this band is, of course, no longer  $1-\alpha$  but  $\geq 1-\alpha$ .

The area  $A_1$  of the hyperbolic band over the interval [a,b] is given by

$$A_1 = 2\hat{\sigma} \sqrt{2F_{\alpha;2,n-2}} \int_a^b dt \left[ \frac{1}{n} + \frac{(t-\bar{t})^2}{ns^2} \right]^{\frac{1}{2}}$$

It is clear that this area is minimized when  $\overline{t} = \frac{a+b}{2}$  and  $s^2$  is maximized. Thus if  $\frac{a+b}{2} = \frac{A+B}{2}$ ,  $s^2$  is maximized for n even when  $\frac{n}{2}$  observations are at A and  $\frac{n}{2}$  observations are at B. In this case  $s^2 = \frac{1}{4}(B-A)^2$ . Thus

$$A_{1} = \hat{\sigma}(b-a)c \sqrt{\frac{2F_{\alpha;2,n-2}}{n}} \int_{0}^{\frac{1}{c}} \left[1+\xi^{2}\right]^{\frac{1}{2}} d\xi$$

$$= \hat{\sigma}(b-a) \sqrt{\frac{2F_{\alpha;2,n-2}}{n}} \left[ \left(1 + \frac{1}{c^{2}}\right)^{\frac{1}{2}} + c \log \frac{\sqrt{1+c^{2}+1}}{c} \right],$$

where  $c = \frac{B-A}{b-a}$ . The area  $A_2$  of our band is  $28\hat{\sigma}(b-a)$ . Hence, the ratio  $A_1/A_2$ , which will be referred to as the efficiency of our method, is given by

$$\frac{A_1}{A_2} = \frac{\sqrt{2F_{\alpha;2,n-2}}}{(\delta \sqrt{n})} \quad \frac{1}{2} \left[ \left( 1 + \frac{1}{c^2} \right)^{\frac{1}{2}} + c \log \frac{\sqrt{1+c^2}+1}{c} \right]. \tag{4}$$

Eq. (4) is valid for any  $0 < c < \infty$ . It was noted in Section 4 that  $\lim_{c \to \infty} (\delta \sqrt{n}) = t$ . But  $\frac{\alpha}{2}$ ; n-2

$$\lim_{c \to \infty} c \log \frac{\sqrt{1+c^2}+1}{c} = 1.$$

Hence

$$\lim_{c\to\infty}\frac{A_1}{A_2}=\frac{\sqrt{2F_{\alpha;n-2}}}{\frac{c}{2};n-2}.$$
 (5)

The symmetry of the function g means that  $\lim_{c\to 0} c\delta \sqrt{n} = t$ . Also  $\frac{\alpha}{2}$ ; n-2

$$\lim_{c \to 0} c^2 \log \frac{\sqrt{c^2 + 1} + 1}{c} = 0$$

Hence

$$\lim_{c\to\infty}\frac{A_1}{A_2}=\frac{1}{2}\frac{\sqrt{2F_{\alpha;n-2}}}{\frac{c}{2;n-2}}.$$
 (6)

Eqs. (4), (5), and (6) summarize the results of this section. Fig. 5 is a graph of the efficiency, for each of three values of n, as a function of c. The confidence coefficient selected is .95.



Pigure 5.

#### APPENDIX

Let  $\{z_1, z_2, \dots, z_n\}$  be n points in the unit interval [0,1]. For a fixed  $z = \frac{1}{n} \sum_{i=1}^{n} z_i$  in [0,1] the problem is to maximize

$$ns^{2} = \sum_{i=1}^{n} (z_{1} - \overline{z})^{2} = \sum_{i=1}^{n} z_{i}^{2} - n\overline{z}^{2}.$$

The claim is that, to maximize set each  $z_i$  equal to 0 or to 1, except for one, keeping  $\sum_{i=1}^{n} z_i = n\overline{z}$ . For suppose, without loss of generality,  $0 < z_1 \le z_2 < 1$ . Then there exists  $\delta > 0$  such that

$$0 \le z_1 - \delta \le 1$$
,

$$0 \le z_2 + \delta \le 1 ,$$

and

$$(z_1-\delta)^2 + (z_2+\delta)^2 = z_1^2+z_2^2+2\delta^2 + 2\delta(z_2-z_1) > z_1^2+z_2^2$$
,

i.e.,  $ns^2$  may be increased. The actual configuration for any  $\overline{z}$  such that  $\frac{k}{n} \leq \overline{z} \leq \frac{k+1}{n}$ ,  $k=0,1,\ldots,n-1$  is  $k z_i$ 's at 1,  $1 z_i$  at  $n\overline{z}-k$ , and  $n-(k+1) z_i$ 's at 0. The resulting maximum variance is

$$\frac{k+(nz-k)^2}{2}-z^2.$$

Thus for  $\{t_1, t_2, \dots, t_n\} \subset [A, B]$ , the maximum variance configuration for a fixed  $\overline{t}$ , such that

$$\frac{k}{n} \leq \tau = \frac{\overline{t}-A}{B-A} \leq \frac{k+1}{n} , \qquad k=0,1,\ldots,n-1 ,$$

• is given by  $k t_i$ 's at B,  $1 t_i$  at  $n(\overline{t}-A) - k(B-A) + A$ , and  $n-(k+1) t_i$ 's at A. The maximum variance is

$$(B-A)^2 \left[ \frac{k+(n\tau-k)^2}{n} - \tau^2 \right].$$

#### REFERENCES

- [1] Graybill, Franklin A. An Introduction to Linear Statistical Models. New York: McGraw-Hill Book Co., Inc., 1961.
- [2] Working, Holbrook and Hotelling, Harold, "Applications of the Theory of Error to the Interpretation of Trends," <u>Journal of the American Statistical Association</u>, 24(1929), 73-85.
- [3] Scheffé, Henry, The Analysis of Variance, New York: John Wiley & Sons, Inc., 1959.
- [4] Hoel, Paul G., "Confidence Regions for Linear Regression," <u>Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability.</u>
  University of California Press, (1951), 75-81.
- [5] Dunnett, Charles W. and Sobel, Milton, "A Bivariate Generalization of Student's t-Distribution, with Tables for Certain Special Cases," <u>Biometrika</u>, 41 (1954), 153-169.
- [6] Roy, S. N. and Bose, R. C., "Simultaneous Confidence Interval Estimation," Annals of Mathematical Statistics, 24(1953), 513-536.
- [7] Owen, Donald B., "Tables for Computing Bivariate Normal Probabilities,"

  <u>Annals of Mathematical Statistics</u>, 27(1956), 1075-1090.

| C = 1,0                                 |                                 |                                 |                                 |                                 |                                 |                                         |                                  |                                 |                                 |                                 |                                 |                                 | C • 1.1 |                                         |                                  |                      |                                 |                                 |                                 |                          |                                 |                                 |                                 |                                 |                                 |                                 |
|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------|-----------------------------------------|----------------------------------|----------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2                                       | 4                               | 6                               | 8                               | 10                              | 12                              | 14                                      | 16                               | 18                              | 20                              | 30                              | 50                              | INF                             |         | 7 2                                     | •                                | 6                    | 8                               | 10                              | 12                              | 14                       | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |
| 1.05                                    | 258<br>276<br>293               | 2/4<br>294<br>315               | 280                             | 284<br>305<br>327               |                                 | 287<br>309<br>332                       |                                  | 334                             | 289<br>312                      |                                 |                                 | 341                             |         | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 313                              | 295<br>316<br>337    | 280<br>302<br>324<br>346<br>369 | 283<br>306<br>328<br>351<br>374 | 308<br>331<br>354               |                          | 334<br>358                      | 288<br>311<br>335<br>359<br>343 |                                 | 290<br>314<br>338<br>363<br>367 |                                 | 293<br>318<br>342<br>367<br>392 |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 346<br>363                      | 295                             | 407<br>428                      | 414                             | 374<br>396<br>418<br>440<br>461 | 421<br>443                              | 378<br>401<br>423<br>445<br>467  | 402<br>425<br>447               | 426<br>448                      | 383<br>406<br>429<br>452<br>4/5 | 409<br>437<br>455               | 436                             |         |                                         | 368<br>385<br>402                | 440                  | 456                             | 397<br>419<br>442<br>464<br>485 | 446                             | 427<br>450<br>472        | 452                             | 454                             | 408<br>431<br>455<br>478<br>501 | 411<br>435<br>459<br>483<br>506 | 462                             | 417<br>442<br>466<br>491<br>515 |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 444                             | 453<br>471<br>490<br>507<br>525 | 488<br>508<br>527               | 51A<br>537                      |                                 | 507<br>528<br>548                       | 552                              | 554                             | 556                             | 497<br>519<br>541<br>562<br>582 | 501<br>523<br>545<br>566<br>587 | 506<br>528<br>551<br>573<br>594 |         | 1.50<br>1.55<br>1.60<br>1.65            | 467                              | 617                  | 497<br>517<br>537<br>556<br>574 | 506<br>527<br>547<br>567<br>586 | 534                             | 559<br>579               |                                 | 522<br>544<br>565<br>586<br>606 | 567                             |                                 | 533<br>555<br>577<br>599<br>620 | 538<br>561<br>584<br>406<br>628 |
| 1.75<br>1.60<br>1.65<br>1.90            | 502<br>516<br>529               | 542<br>556<br>574<br>590<br>605 | 581<br>598<br>514               | 593<br>611<br>628               | 019                             | 606<br>625<br>642                       | 610                              | 632<br>63()                     | 434<br>452                      | 603<br>622<br>641<br>660<br>678 | 647<br>666                      | 635<br>655<br>674               |         | 1.75<br>1.85<br>1.85<br>1.90            | 525<br>539<br>552                | 5 85<br>4 4 1        | ^27                             | 641                             | 632<br>649<br>667               | 637<br>655<br>673        | 642<br>660<br>677               | 626<br>645<br>663<br>681<br>698 | 664<br>684                      | 492                             | 674                             | 488<br>707                      |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.26    | 566<br>578<br>589               | 619<br>633<br>647<br>660<br>673 | 546<br>561<br>576<br>589<br>703 | 441                             | 670<br>685<br>/01<br>/15<br>/30 | 747<br>722                              | 712                              | 716                             | 719                             | 695<br>712<br>728<br>743<br>758 | 134                             | 744                             |         | 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | +0n                              | 446                  | 1/03                            | 690<br>705<br>719<br>733<br>747 | 730                             | 737<br>751               | 742                             | 715<br>730<br>746<br>760<br>774 | 749<br>763                      |                                 | 733<br>749<br>765<br>780<br>794 |                                 |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 621<br>631<br>641               | 720                             | 716<br>726<br>741<br>752<br>763 | /33<br>745<br>758<br>770<br>781 | 769<br>761                      | 776<br>788                              | 756<br>764<br>782<br>794<br>F 05 | 146<br>148                      | 763<br>776<br>789<br>rg1<br>h13 | 772<br>765<br>798<br>P11<br>A22 | H06<br>H1H                      | /89<br>883<br>816<br>829<br>841 |         | 2.35                                    | 643<br>652<br>662                | 722<br>733<br>743    | 754<br>766<br>777               | 759<br>772<br>783<br>795<br>805 | 783<br>795<br>406               | r14                      | 783<br>796<br>80A<br>619<br>630 | 623                             | H15                             | 800<br>813<br>825<br>837<br>847 |                                 | 218<br>231<br>443<br>255<br>266 |
| 2.50<br>2.60<br>2.70<br>2.80<br>2.90    | 676<br>693<br>708               | 741<br>760<br>7/8<br>794<br>810 | 774<br>794<br>412<br>829<br>844 | 7¥2<br>812<br>830<br>847<br>862 | 442                             | #11<br>#50<br>#66<br>#62                | ×55                              | 521<br>541<br>560<br>576<br>591 | 624<br>63<br>60<br>695          | 834<br>854<br>873<br>889<br>904 | 497                             | H92<br>H91<br>H91<br>VU7<br>V21 |         | 2.50<br>2.60<br>2.70<br>2.80<br>2.90    | 712<br>726                       | 749<br>814           | 797<br>116<br>133<br>149<br>863 | d15<br>834<br>852<br>857<br>8d1 | -79                             | 471<br>486               | #40<br>#59<br>#76<br>#92<br>905 | 545<br>564<br>561<br>596<br>909 | 199                             | 858<br>477<br>893<br>908<br>921 | H65<br>H84<br>901<br>V15<br>V2H | #76<br>#94<br>911<br>925<br>937 |
| 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | 74A<br>759<br>77h               | 253                             | *58<br>*71<br>*62<br>-63<br>703 | 876<br>849<br>700<br>710<br>719 | 587<br>700<br>711<br>721<br>720 | 5 y 5<br>307<br>y 1 P<br>6 2 P<br>9 3 P | 900<br>912<br>923<br>933<br>941  | 905<br>916<br>927<br>936<br>944 | 988<br>928<br>939<br>939<br>947 | 917<br>92H<br>93H<br>947<br>955 | 445                             | 933<br>044<br>953<br>961<br>968 |         | 3.10<br>3.10<br>3.20<br>3.30<br>3.40    | 765<br>775                       | F54<br>F65<br>F75    | 476<br>487<br>498<br>407<br>416 | H94<br>905<br>915<br>924<br>932 | 704<br>915<br>925<br>934<br>942 | 732<br>940               | 917<br>928<br>937<br>945<br>952 | 940<br>948                      | 943<br>943                      | 933<br>943<br>951<br>959<br>965 | 939<br>949<br>957<br>964<br>970 | 948<br>957<br>965<br>971<br>976 |
| 3.50<br>3.60<br>3.70<br>3.60<br>3.60    | 600<br>60A<br>616               | F 45                            | 424                             | 928<br>935<br>942<br>948<br>953 | 744<br>751                      | 744<br>750<br>756<br>762<br>766         | 461<br>466                       | 403<br>404                      | 968<br>965<br>970               | 476                             | 972<br>977<br>981               | 973<br>978<br>982<br>986<br>988 |         | 3.60<br>3.70<br>3.66                    | E 05<br>F14<br>F22<br>F30<br>F37 | \$UR<br>\$UR<br>\$14 | 124<br>131<br>137<br>943<br>148 | 439<br>445<br>452<br>457<br>461 |                                 | 960<br>965<br>970        | 473                             |                                 | 969<br>974<br>977               |                                 | 975<br>979<br>983<br>986<br>986 | 986                             |
| 4,40                                    | +31<br>+44<br>+56<br>+67<br>+76 | 924<br>936<br>944               | 761<br>767                      | 958<br>966<br>972<br>978<br>982 |                                 | 970<br>977<br>982<br>986<br>981         | 780<br>785<br>789                |                                 | 791                             | 994                             | 991<br>994<br>996               | 444                             |         | 4.20                                    | +67<br>+77                       | 93A<br>944<br>951    | ¥53<br>¥61<br>₹67<br>₹73<br>₹77 | 965<br>972<br>974<br>946<br>946 | 787                             |                          | 980<br>985<br>980<br>992<br>994 | 907<br>997                      | 948<br>991<br>994               | 988<br>991<br>994<br>996<br>997 |                                 | 994<br>996<br>999<br>999        |
| 1 6.00                                  | 903<br>917<br>928               | 914                             | 990                             | 985<br>991<br>995<br>997<br>998 | 997                             | 492<br>496<br>499<br>499                | 997<br>998<br>999                | 995<br>997<br>999<br>999        | 445<br>498<br>749               | 947<br>949                      | 99H                             | J99                             |         | 5.00<br>5.50<br>4.JC<br>6.50<br>7.00    | 410<br>924<br>934                | 9/2<br>9/7<br>984    | 781<br>788<br>792<br>794<br>796 | 396                             | 992<br>995<br>999<br>999        | 994<br>997<br>998<br>999 | 995<br>994<br>999               | 996<br>998<br>990               | 997<br>999<br>999               | 99A<br>999                      | 999                             |                                 |
| 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 961<br>948<br>944               | 594                             | 967<br>969                      |                                 |                                 |                                         |                                  |                                 |                                 |                                 |                                 |                                 |         | 9.00<br>9.00<br>10.00<br>15.00<br>20.00 | 965<br>971<br>987                | 695<br>697           | 160<br>160<br>164               | 949                             |                                 |                          |                                 |                                 |                                 |                                 |                                 |                                 |
| 30.00<br>40.00<br>50.00                 | 49B                             |                                 |                                 |                                 |                                 |                                         |                                  |                                 |                                 |                                 |                                 |                                 |         | 30.00<br>40.00<br>50.00                 | 498                              |                      |                                 |                                 |                                 |                          |                                 |                                 |                                 |                                 |                                 |                                 |
| <u> </u>                                |                                 | 1                               | <u> </u>                        | <u> </u>                        | 1                               |                                         | <u> </u>                         |                                 |                                 | <u></u>                         | <u> </u>                        | <u> </u>                        | l       | L                                       | <u> </u>                         | <u> </u>             | L                               |                                 | L                               |                          | <u> </u>                        | <u> </u>                        |                                 | <u> </u>                        |                                 | <u> </u>                        |

|                                                |                   |                                 |                                 |                                 | C =                             | 1,2                             |                                 |                                 |                                 |                                 |                                 |                                 |   |                                      |                   |                                 |                                 |                                 | C •                             | 1.                              |                                 |                                 |                                 |                                 |                   |                                 |
|------------------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|--------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|
| 2 2                                            | 4                 | ه                               | Ą                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |   | " 2                                  | 4                 | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                | INF                             |
| 1.05 2<br>1.10 3<br>1.15 3                     | 93                | 14                              | 322                             | 326<br>35n<br>374               | 329<br>353                      | 355<br>380                      | 381                             | 333<br>358                      | 359                             | 361<br>386                      | 312<br>338<br>363<br>369<br>414 | 392                             |   |                                      | 30A<br>32A<br>34A | 209<br>232<br>255<br>277<br>299 | 317<br>341<br>365<br>389<br>412 | 321<br>346<br>370<br>395<br>419 | 374<br>399                      | 401                             | 403                             | 327<br>353<br>379<br>4u4<br>430 | 354<br>380<br>406               | 330<br>357<br>383<br>409<br>435 | 385<br>411        | 334<br>361<br>388<br>415<br>441 |
| 1.30 3                                         | 87<br>05          | 423<br>443<br>464               | 137<br>459<br>480               | 467<br>489                      | 425<br>449<br>472<br>495<br>517 | 499                             | 501                             | 456<br>480<br>504               | 433<br>457<br>482<br>505<br>528 | 437<br>461<br>486<br>510<br>534 | 448<br>465<br>489<br>514<br>538 | 469<br>494<br>519               |   | 1.25<br>1.30<br>1.35<br>1.40<br>1.45 | 404               | 464                             | 435<br>458<br>481<br>503<br>524 | 498                             | 472<br>495                      | 451<br>475<br>499<br>522<br>545 | 478<br>502<br>525               | 455<br>480<br>504<br>528<br>551 |                                 | 460<br>486<br>510<br>535<br>559 | 539               | 520<br>545                      |
|                                                | 72<br>87<br>03    | 522<br>541<br>559               | 542<br>562<br>581               | 574<br>594                      | 539<br>560<br>581<br>501<br>621 | 586                             | 547<br>569<br>590<br>611<br>631 | 543<br>614                      | 595                             | 601                             | 561<br>584<br>606<br>628<br>649 | 567<br>591<br>613<br>635<br>657 |   | 1.50<br>1.55<br>1.60<br>1.65         | 521               | 524<br>543<br>562<br>580<br>597 | 545<br>565<br>585<br>404<br>422 | 556<br>577<br>597<br>617<br>636 |                                 | 610                             | 614                             | 596                             | 576<br>598<br>620<br>640<br>660 | 582<br>605<br>626<br>648<br>668 | 632<br>653        | 593<br>617<br>639<br>661<br>682 |
| 1.75 5<br>1.60 5<br>1.85 5<br>1.90 5           | 45                | 4U9                             | 135                             | 649<br>666<br>683               | 640<br>658<br>676<br>693<br>709 | 664<br>682<br>699               | 487                             | 672<br>690<br>708               | 443                             | 663<br>683<br>701<br>719<br>736 |                                 | 6/7<br>697<br>716<br>735<br>752 |   | 1.75<br>1.60<br>1.65<br>1.90         | 576<br>589<br>602 | 445<br>660                      | 640<br>657<br>673<br>689<br>704 | /05                             | 715<br>730                      | 721<br>737                      | 710<br>726<br>743               | 746                             | 716<br>733                      | 725<br>742<br>758               | 731<br>749<br>765 | 702<br>722<br>740<br>758<br>775 |
| 2.10                                           | 19<br>30          | 442<br>445<br>709               |                                 | 714<br>729<br>743<br>756<br>769 | 724<br>739<br>754<br>767<br>780 | 731<br>746<br>761<br>7/5<br>7/8 | 736<br>752<br>766<br>780<br>793 |                                 |                                 | 752<br>768<br>743<br>747<br>810 |                                 | 769<br>765<br>P00<br>H14<br>P25 |   | 2.00<br>2.05<br>2.10<br>2.15<br>2.20 | 625<br>647        | 688<br>701<br>714<br>726<br>738 | /19<br>/32<br>746<br>756<br>771 | 735<br>749<br>763<br>776<br>788 | 746<br>760<br>774<br>787<br>799 |                                 | 758<br>773<br>787<br>400<br>612 | 791<br>804                      | 794                             | 803                             | 810<br>824        |                                 |
| 2.30                                           | 70                | 742<br>753<br>763               | 764<br>775<br>786<br>797<br>n07 | 782<br>793<br>804<br>815<br>825 | 793<br>404<br>416<br>426<br>636 | F23                             | 429                             | H44                             | 137<br>147                      | 823<br>835<br>846<br>857<br>867 | 54<br>864                       |                                 |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45 | 495               | 76n<br>7/n<br>789               | 782<br>793<br>#04<br>#14<br>#23 | 800<br>811<br>822<br>832<br>841 | H43                             | 841<br>851                      | A36                             | 529<br>540<br>551<br>861<br>870 | P54                             |                                 | #60<br>P71<br>#81 | P81                             |
| 2.60 7                                         | 713               | 8 U O                           | #16<br>#34<br>#50<br>#65<br>#79 | 168                             | 446<br>864<br>880<br>894<br>906 | 854<br>#71<br>#87<br>901<br>914 | #59<br>#77<br>#93<br>407<br>919 |                                 | H67<br>F85<br>900<br>914<br>926 | 877<br>894<br>909<br>923<br>934 | 429                             | 994<br>711<br>726<br>738<br>749 |   | 2.50<br>2.60<br>2.60<br>2.90         | 1/22              | 844                             | 432<br>449<br>464<br>478<br>450 | 850<br>867<br>882<br>895<br>907 | <b>#93</b>                      | 869<br>866<br>900<br>913<br>924 | 875<br>491<br>906<br>91<br>929  | 879<br>895<br>909<br>922<br>933 | 425                             | 892<br>908<br>921<br>934<br>944 | 928<br>940        | 949<br>937<br>949<br>958        |
| 3.00 7<br>3.10 7<br>3.20 7<br>3.30 7<br>3.40 8 | 779<br>789<br>799 | P / F                           | 490<br>900<br>910<br>919<br>926 | 907<br>917<br>926<br>934<br>942 | 936<br>944                      | 943<br>950                      | 947                             | 933<br>942<br>950<br>957<br>963 | 453                             | 953<br>960                      | 950<br>958<br>965<br>971<br>976 | 966<br>972                      |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40 | 791<br>801<br>810 | 848                             | 901<br>911<br>920<br>927<br>935 | 918<br>927<br>935<br>943<br>949 | 928<br>937<br>944<br>951<br>957 |                                 | 939<br>947<br>955<br>961<br>967 | 942<br>951<br>958<br>964<br>969 |                                 | 953<br>960<br>967<br>972<br>977 | 972<br>977        | 978<br>982                      |
| 3.50 8<br>3.60 8<br>3.70 8<br>3.80 8           | H2A<br>H33<br>H41 | 917<br>923                      | 933<br>940<br>945<br>951<br>955 | 948<br>954<br>959<br>963<br>967 | 967                             | 962<br>967<br>971<br>975<br>979 | 966<br>971<br>975<br>978<br>981 | 977<br>980                      | 479                             | 977<br>980<br>984<br>986<br>989 | 981<br>984<br>987<br>989<br>991 | v91                             |   | 3.50<br>3.70<br>3.80<br>3.90         | #36<br>#43<br>#50 | 919<br>925<br>930               | 947<br>947<br>952<br>956<br>961 | 955<br>960<br>964<br>968<br>972 | ¥75                             | 968<br>972<br>976<br>979<br>982 | 971<br>975<br>979<br>982<br>985 | 974<br>978<br>981<br>984<br>986 | 980<br>983                      | 981<br>984<br>987<br>989<br>991 | 99U<br>992        | 995                             |
| 4.00<br>4.20<br>4.40<br>4.40<br>4.60           | +76<br>+85        | 950                             | 177                             |                                 | 385<br>385                      | 989                             | 984<br>988<br>991<br>994<br>995 | 990<br>995                      | 995                             |                                 | 793<br>796<br>797<br>794<br>797 | 444                             |   | 4.00<br>4.20<br>4.40<br>4.60<br>4.60 | 673<br>683<br>682 | 955                             | 964<br>971<br>976<br>980<br>983 | 975<br>980<br>984<br>988<br>990 |                                 | 984<br>988<br>941<br>993<br>995 |                                 | 988<br>992<br>994<br>996<br>997 | 990<br>993<br>995<br>996<br>997 | 993<br>995<br>997<br>998<br>999 |                   | 997<br>998<br>999<br>999        |
| 5.50 S                                         | 517<br>929<br>939 | 967<br>976<br>982<br>986<br>990 | 793                             | 297                             | 997<br>394<br>999               | 994<br>999                      | 49K<br>54H<br>54G               |                                 | 999                             |                                 | 599                             |                                 |   | 5.00<br>5.50<br>6.00<br>6.50<br>7.00 | 922<br>934<br>943 | 9/0<br>9/8<br>984<br>984<br>991 | 1                               | 992<br>995<br>997<br>998<br>999 | 495<br>997<br>998<br>499        | 976<br>978<br>790               | 497<br>499<br>999               | 998<br>999                      | 99A<br>499                      | 999                             |                   |                                 |
| 20.00                                          | 973<br>Gpa        | SYA                             | 796<br>790                      | 1                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |   | 8.00<br>9.00<br>19.00<br>20.00       | 969<br>975<br>989 | 994<br>996<br>998<br>999        |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                   |                                 |
| 30.00<br>40.00<br>50.00                        | 597<br>998<br>559 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |   | 30.00<br>40.00<br>50.00              | 998               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                   |                                 |
| $\sqcup$                                       |                   |                                 |                                 | <u></u>                         | L                               |                                 |                                 | Щ.                              |                                 |                                 |                                 | <u> </u>                        | J |                                      | Ц                 | Ь                               | Щ                               | Ц                               |                                 | L                               |                                 |                                 | L                               | Щ.                              | ш                 |                                 |

34

|                                      |                   |                                 |                                 |                                 | C ·                                | 1,                              | <u> </u>                        |                                 |                                 |                                 |                                 |                                 |   |                                      |                          |                                 |                                 |                                 | C •                             | 1,                              | <u></u>                         |                                 |                                 |                                 |                                 |                                 |
|--------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|--------------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2                                    | 4                 | 6                               | 8                               | 10                              | 12                                 | 14                              | 16                              | 14                              | 20                              | 30                              | 50                              | INF                             |   | 2                                    | 4                        | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |
| 1.05<br>1.05<br>1.10<br>1.15<br>1.20 | 323<br>343<br>363 | 372                             | 583<br>407                      | 338<br>364<br>389<br>414<br>439 | 367<br>393<br>418                  | 343<br>369<br>395<br>421<br>446 | 397                             | 346<br>372<br>398<br>425<br>450 |                                 | 349<br>376<br>403<br>429<br>456 |                                 | 381<br>409<br>436               |   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20 | 377                      | 788<br>411                      | 349<br>375<br>400<br>425<br>449 | 406<br>432                      | 358<br>384<br>410<br>436<br>462 | 413<br>439                      | 415                             | 417                             | 363<br>391<br>418<br>445<br>471 | 421<br>448                      | 368<br>396<br>424<br>451<br>479 | 371<br>399<br>428<br>456<br>483 |
| 1.25<br>1.30<br>1.35<br>1.40         | 454               | 462                             | 701<br>723                      | 510                             | 539                                | 472<br>496<br>520<br>544<br>567 | <b>523</b>                      | 526                             | 478<br>503<br>527<br>552<br>575 | 506<br>533                      | 485<br>511<br>537<br>562<br>586 | 517<br>542                      |   | 1.30                                 | 453                      | 4/8<br>500<br>521               | 473<br>496<br>519<br>541<br>562 | 481<br>505<br>529<br>552<br>574 | 511<br>535<br>558               | 540<br>563                      | 518<br>543<br>567               | 545                             | 522<br>547<br>571               | 527<br>553<br>577               | 531<br>557<br>582               | 563                             |
| 1.50<br>1.55<br>1.60<br>1.55<br>1.70 | 521<br>537        | 562<br>581<br>598               | 405<br>h23                      | 518<br>637                      | 625<br>626<br>646                  | 652                             | 593<br>615<br>636<br>656<br>675 | 639                             | -20<br>-41                      | 669                             | 609<br>632<br>654<br>675<br>695 | 462                             |   | 1.50<br>1.55<br>1.60<br>1.65<br>1.70 | 5 5 1                    | 560<br>579<br>597<br>615<br>632 | 1441                            | 414<br>636<br>655               | 644                             | 650                             | 634<br>654<br>674               | 658<br>678<br>697               | 639<br>660<br>681               | 646<br>668<br>688               | 694<br>714                      | 182<br>703                      |
| 1.75<br>1.80<br>1.85<br>1.90         | 579<br>592<br>604 | 663<br>677                      | 707                             | 723                             | /01                                | 741                             | 694<br>712<br>729<br>746<br>761 | 756                             | 701<br>719<br>736<br>753<br>768 | 749<br>727<br>745<br>761<br>777 | 76t                             | 724<br>743<br>761<br>778<br>794 |   | 1.75<br>1.80<br>1.85<br>1.90<br>1.95 | - 05                     | 4/8<br>493                      | 70£                             |                                 | 734<br>750<br>765               | 757<br>772                      | /62<br>777                      | 716<br>733<br>750<br>766<br>781 | 753<br>769<br>784               | 762<br>778<br>793               | 751<br>769<br>785<br>HOD        | 742<br>761<br>778<br>795<br>H10 |
| 2.05<br>2.10<br>2.15<br>2.20         | 649<br>650<br>661 | 718                             | 736<br>750<br>762<br>775<br>786 |                                 | 764<br>777<br>791<br>403<br>H15    |                                 | 776<br>790<br>204<br>216<br>428 | 808<br>820                      | 783<br>798<br>711<br>724<br>736 | A20                             | #25<br>#40                      | +24<br>438                      |   | 2.00<br>2.05<br>2.10<br>2.15<br>2.20 | 652<br>673               | 744                             | 777                             | 768<br>782<br>794<br>806<br>517 | P 0 5                           | 766<br>egg<br>#13<br>#25<br>#36 | 792<br>#05<br>P16<br>#30<br>b42 | 796<br>809<br>822<br>834<br>846 |                                 | A22<br>A35<br>A47               | 815<br>#29<br>#42<br>#54<br>#66 | 464                             |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45 | 499<br>708        | 774<br>764<br>773               | -27                             | H46                             | 526<br>57<br>57<br>57<br>57<br>866 | 155                             | #40<br>#50<br>#60<br>#70<br>#79 | 844<br>855<br>865<br>874<br>883 | 847<br>858<br>868<br>877<br>886 | 817<br>887                      | ⊬84<br>₽ <b>94</b>              | 685<br>×95                      |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45 | 702<br>711<br>719<br>727 | 767<br>796<br>805               | 130<br>139<br>146               | 848<br>857<br>866               | 149<br>159<br>165<br>177        | 067<br>476<br>484               | +61<br>R89                      | 676<br>465<br>693               | H79<br>H8R<br>FY7               | 897<br>906                      | #76<br>#86<br>#96<br>904<br>912 | 905<br>914<br>922               |
| 2.50<br>2.60<br>2.70<br>2.60<br>2.90 | 739<br>753<br>767 | P42                             | 145<br>161<br>175<br>188<br>199 | 863<br>879<br>893<br>905<br>916 |                                    | 911<br>922                      |                                 |                                 | 894<br>909<br>923<br>934<br>944 | 931                             |                                 | 934<br>946<br>956               |   | 2.50<br>2.60<br>2.60<br>2.60         | 750<br>764<br>776        | 851<br>864                      | +97                             | #74<br>489<br>902<br>913<br>924 | 885<br>499<br>912<br>923<br>933 | 919                             |                                 | 426<br>476                      | 918<br>930<br>941<br>950        | 939<br>949<br>957               | 945<br>954                      | 929<br>942<br>953<br>962<br>969 |
| 3.00<br>3.10<br>3.20<br>3.30<br>3.40 | ₹61<br>611<br>729 | 8/8<br>849<br>847<br>945<br>912 | 910<br>919<br>927<br>934<br>941 | 949                             | 951<br>957                         | v57                             | 946<br>954<br>961<br>966<br>971 | 964                             | 952<br>950<br>966<br>971<br>976 | 972                             | 476                             | 486                             |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40 | 619<br>619<br>828        | 904                             | 933                             | 948                             | 462                             | 961                             | 970<br>975                      | 955<br>962<br>968<br>973<br>977 | 964<br>970                      | 964<br>9/1<br>976<br>980<br>984 | 984                             | 976<br>981<br>985<br>988<br>991 |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90 | 744<br>751<br>757 | 919<br>925<br>931<br>936<br>941 | 947<br>952<br>957<br>961<br>965 | 965<br>965<br>969<br>972<br>975 | 967<br>979<br>975<br>974<br>981    |                                 | 975<br>979<br>982<br>985<br>987 | 978<br>981<br>984<br>987<br>989 | CHS                             | 984<br>987<br>989<br>991<br>993 |                                 | 795                             |   | 3.50<br>3.60<br>3.70<br>3.60<br>3.60 | 651<br>654<br>664        | 931<br>934<br>941               | 952<br>957<br>961<br>965<br>968 | 964<br>968<br>972<br>975<br>978 | 975<br>978                      | 984                             | 944                             | 986<br>990                      | 991                             | 941                             |                                 | 995<br>995<br>994<br>997<br>998 |
| 4.00<br>4.20<br>4.40<br>4.60<br>4.60 | 49 A              | 965                             | 968<br>974<br>979<br>982<br>985 | 189                             | 984<br>967<br>990<br>993<br>994    | 993<br>995                      | 446                             | 993<br>993<br>995<br>997<br>996 | 691<br>494<br>495<br>497<br>498 | 994<br>996<br>997<br>998<br>998 | 996<br>997<br>998<br>999<br>999 |                                 |   | 4.00<br>4.20<br>4.40<br>4.60<br>4.80 | 68A<br>465<br>603        | 956<br>962<br>967               | 984                             |                                 | 986<br>989<br>992<br>994<br>995 | 989<br>992<br>994<br>995<br>997 | 990<br>993<br>995<br>996<br>997 | 992<br>994<br>996<br>997<br>998 |                                 |                                 | 997<br>998<br>499<br>999        | 998<br>999<br>999               |
| 5.00<br>5.50<br>4.00<br>6.50<br>7.00 | 926<br>937<br>946 | 584<br>584                      | 1795                            | 99A                             | 996<br>999<br>999                  |                                 | 99A<br>499                      | 995                             | 499<br>499                      | 999                             |                                 |                                 |   | 5.00<br>5.50<br>6.00<br>6.50<br>7.00 | 930<br>940<br>949        | 987<br>990                      | 489<br>493<br>495<br>497<br>498 | 994<br>997<br>998<br>999<br>999 |                                 | 997<br>999<br>999               | 998<br>999                      | 999<br>999                      | 699                             | 999                             |                                 |                                 |
| 0.00<br>10.00<br>15.00<br>20.00      | 971<br>974<br>989 | 547                             | 499<br>499                      |                                 |                                    |                                 |                                 |                                 |                                 |                                 |                                 |                                 |   | 0.00<br>15.00<br>15.00<br>20.00      | 573<br>578<br>590<br>594 | 547                             | 999<br>259                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 30.00<br>40.00<br>50.00              | 999               |                                 |                                 |                                 |                                    |                                 |                                 |                                 |                                 |                                 |                                 |                                 |   | 30,00<br>40.00<br>50.00              | 499                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
|                                      |                   | _                               |                                 |                                 |                                    |                                 |                                 |                                 |                                 |                                 |                                 |                                 | • |                                      |                          |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |

|                                         |                                     |                                 |                                   | _L                                        | C .                             | 1,6                             | <u></u>                         |                                 |                                 |                                 |                                 |                                 |   |                                         |                                 |                                 |                                 | <u> </u>                        | C =                             | نىد                             | <u>」</u>                        |                                 |                                 |                                 |                                 |                                 |
|-----------------------------------------|-------------------------------------|---------------------------------|-----------------------------------|-------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2                                       | 4                                   | 6                               | 6                                 | 10                                        | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |   | 2                                       | 4                               | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 50                              | 30                              | 50                              | 1 NF                            |
| 1.10                                    | 34A<br>369<br>340                   | 378<br>402<br>426               | 415                               | 370<br>396<br>422<br>448<br>473           | 373<br>400<br>427<br>453<br>479 |                                 | 377<br>405<br>432<br>459<br>465 | 3/8<br>406<br>433<br>460<br>487 | 379<br>407<br>435<br>462<br>488 | 438<br>466                      | 384<br>413<br>441<br>469<br>497 | 445                             |   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 401                             | 416                             | 436                             | 384<br>411<br>437<br>463<br>488 | 387<br>415<br>442<br>468<br>494 | 390<br>418<br>445<br>472<br>498 | 392<br>420<br>447<br>474<br>501 | 393<br>421<br>449<br>476<br>503 | 394<br>422<br>450<br>478<br>504 | 397<br>426<br>454<br>482<br>509 | 457<br>485                      | 403<br>433<br>462<br>490<br>518 |
| 1.30                                    | 448                                 | 515                             | 489<br>512<br>535<br>57           | 4 y 8<br>5 2 2<br>5 4 6<br>5 6 8<br>5 9 0 | 528<br>528<br>552<br>576<br>578 | >57                             | 511<br>536<br>560<br>584<br>407 | 513<br>538<br>563<br>567<br>510 | 515<br>540<br>565<br>589<br>612 | 520<br>546<br>571<br>575<br>619 | 523<br>550<br>575<br>600<br>624 | 529<br>556<br>582<br>587<br>531 | i | 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 496                             | 250                             | 527<br>550<br>572               | 513<br>537<br>561<br>584<br>605 | 519<br>544<br>568<br>591<br>513 | 524<br>546<br>573<br>596<br>619 |                                 | 5/9                             | 531<br>556<br>581<br>605<br>628 | 611                             | 540<br>566<br>592<br>616<br>640 | 546<br>572<br>598<br>623<br>648 |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 533<br>549<br>563                   | 594<br>F12                      | 438                               | 012<br>642<br>632<br>671<br>689           |                                 | 625<br>646<br>667<br>686<br>705 | 629<br>671<br>671<br>691<br>710 | 632<br>654<br>674<br>694<br>713 | 635<br>656<br>677<br>697<br>716 | 642<br>664<br>685<br>705<br>724 | 647<br>469<br>691<br>711<br>731 | 699<br>720                      |   | 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 545<br>560<br>575               | 589<br>408<br>425<br>442<br>459 | ^33<br>^52                      | 626<br>647<br>666<br>685<br>702 | 675                             | 640<br>661<br>681<br>700<br>/19 | 644<br>666<br>686<br>705<br>723 | 489                             | 650<br>671<br>692<br>711<br>730 | 657<br>679<br>700<br>719<br>738 | 465                             | 671<br>693<br>714<br>735<br>754 |
| 1.75                                    | 592<br>+ 05<br>+ 17<br>+ 17<br>+ 42 | 477<br>492<br>706               | 691<br>707<br>722<br>737<br>751   | 706<br>723<br>738<br>753<br>768           | 749                             | 723<br>740<br>756<br>7/1<br>/86 | 727<br>745<br>761<br>776<br>791 | 731<br>748<br>765<br>780<br>795 | 734<br>751<br>769<br>783<br>783 | 743<br>760<br>777<br>742<br>807 | 749<br>767<br>783<br>799<br>P14 | 758<br>776<br>793<br>FU9<br>H24 |   | 1.75<br>1.80<br>1.85<br>1.90<br>1.95    | 616<br>628<br>640               | 675<br>690<br>704<br>718<br>731 | 704<br>719<br>734<br>749<br>762 | 719<br>736<br>751<br>766<br>779 | 729<br>746<br>761<br>776<br>790 | 736<br>753<br>768<br>783<br>797 | 741<br>758<br>773<br>768<br>603 | 117<br>172                      | 748<br>764<br>780<br>795<br>810 | 756<br>773<br>789<br>804<br>819 | 763<br>780<br>796<br>811<br>826 | 772<br>789<br>806<br>821<br>836 |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 653<br>664<br>674<br>684            | 732<br>744<br>756<br>767        | 764<br>777<br>789<br>- 00<br>- 11 | 781<br>794<br>806<br>418<br>429           | /92<br>d05<br>417<br>429<br>440 | 799<br>812<br>825<br>836<br>847 | +05<br>+18<br>+30<br>-42<br>+53 | 809<br>822<br>834<br>846<br>857 | *12<br>,25<br>+37<br>+49<br>+60 | 821<br>834<br>847<br>858<br>869 | H28<br>H41<br>H54<br>H65<br>d76 | 75d<br>751<br>764<br>75         |   | 2.00<br>2.05<br>2.10<br>2.15<br>2.40    | r#4                             | 743<br>755<br>767<br>777<br>786 | 775<br>788<br>799<br>510        | 793<br>H05<br>H17<br>H28<br>R39 | 403<br>816<br>428<br>439<br>449 | e11<br>e23<br>e35<br>e46<br>e57 | H16<br>E24<br>H40<br>H52<br>H62 | 820<br>833<br>845<br>856<br>866 | +23<br>+36<br>+48<br>+59<br>+69 | 832<br>845<br>857<br>858<br>878 |                                 | 149<br>162<br>144<br>185        |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 7113                                | 768<br>778                      | "21<br>-31<br>-40<br>-49<br>-57   | #39<br>#49<br>#58<br>#67<br>#75           | 550<br>569<br>879<br>886        | #58<br>#67<br>676<br>#85<br>#85 | #63<br>#73<br>#82<br>#90<br>698 | 886<br>894                      | 170<br>180<br>189<br>197<br>505 | 906                             | 913                             |                                 |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 713<br>721<br>730<br>/34<br>745 | 797<br>807<br>816<br>824<br>832 | -31<br>:40<br>:49<br>:57<br>:65 | 548<br>458<br>667<br>475<br>483 | 459<br>469<br>477<br>486<br>493 | 667<br>876<br>885<br>843<br>900 | +72<br>+81<br>+90<br>+98<br>405 | 8/6<br>885<br>894<br>902<br>909 | +79<br>+88<br>+97<br>905<br>912 | 886<br>847<br>946<br>913<br>921 | 595<br>904<br>912<br>920<br>927 | 905<br>913<br>921<br>929<br>936 |
| 2.50<br>2.60<br>2.70<br>2.60<br>2.60    | 745<br>/59<br>772<br>785<br>796     | 832<br>846<br>860<br>8/2<br>883 | ~65<br>~79<br>%59<br>904<br>914   | 883<br>497<br>909<br>920<br>930           | n93<br>707<br>919<br>930<br>939 | >00<br>>14<br>>26<br>>36<br>>45 | 906<br>919<br>931<br>941<br>949 | 909<br>923<br>934<br>944<br>953 |                                 | 921<br>934<br>945<br>954<br>952 | 450                             | 736<br>948<br>956<br>967<br>973 | • | 2.50<br>2.40<br>2.70<br>2.80<br>2.90    | 753<br>747<br>780<br>792<br>803 | P54                             |                                 | 890<br>903<br>915<br>926<br>935 | 900<br>914<br>925<br>935<br>944 | 907<br>920<br>931<br>941<br>950 | 912<br>925<br>936<br>946<br>954 | 916<br>929<br>940<br>949<br>957 | 919<br>932<br>942<br>951<br>959 |                                 | 963                             | 942<br>953<br>963<br>970<br>976 |
| 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | ~26                                 | 893<br>901<br>910<br>917<br>924 | 123<br>731<br>738<br>745<br>750   | 938<br>946<br>952<br>958<br>963           | 765                             | ¥65                             | 957<br>963<br>969<br>973<br>978 | 966<br>971<br>976               | 462<br>548<br>573<br>578<br>581 | 974<br>979<br>983               | 478<br>482<br>486               | 983<br>987                      |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | +23<br>+32                      | 848<br>907<br>915<br>942<br>948 | 928<br>936<br>943<br>949<br>954 | 943<br>950<br>956<br>961<br>966 | 958<br>958<br>963<br>968<br>973 | 957<br>963<br>966<br>973<br>977 | 961<br>967<br>972<br>976<br>980 | 47A                             | 966<br>971<br>976<br>980<br>983 | 972<br>977<br>981<br>984<br>987 | 976<br>981<br>984<br>988<br>990 | 981<br>986<br>989<br>991<br>993 |
| 3.50<br>3.60<br>3.7n<br>3.80<br>3.90    | 157<br>143                          | 930<br>935<br>949<br>945<br>949 | 956<br>960<br>964<br>964<br>971   | 967<br>171<br>175<br>178<br>178           |                                 | 976<br>981<br>984<br>986<br>988 | 981<br>984<br>986<br>988<br>990 | 988<br>990                      |                                 | 991<br>992<br>994               | 994<br>996                      | 994<br>996<br>997<br>997<br>998 |   | 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 169<br>174                      | 934<br>939<br>944<br>948<br>952 | 959<br>963<br>967<br>970<br>973 | 970<br>974<br>177<br>980<br>982 | 976<br>980<br>982<br>985<br>987 | 980<br>986<br>986<br>989        | 983<br>986<br>988<br>990<br>991 | 989                             | 988<br>990<br>992<br>993        | 990<br>992<br>993<br>995<br>996 | 994<br>994<br>995<br>996<br>997 | 995<br>996<br>997<br>998<br>998 |
| 4.00<br>4.20<br>4.40<br>4.60            |                                     | 953<br>959<br>965<br>970<br>974 |                                   | 983<br>986<br>989<br>992<br>993           | 994                             | 995                             | 994<br>996<br>997<br>998        | 49B                             | 994<br>996<br>997<br>998<br>999 | 996<br>997<br>998<br>999<br>999 | 797<br>798<br>799<br>799        | 999                             |   | 4.00<br>4.20<br>4.40<br>4.60<br>4.60    | 685<br>695<br>903<br>911<br>717 | 956<br>962<br>967<br>972<br>975 | 976<br>980<br>984<br>987<br>989 | 984<br>988<br>990<br>992<br>994 | 988<br>991<br>993<br>995<br>996 | 991<br>993<br>995<br>996<br>997 | 993<br>995<br>996<br>997<br>998 | 994<br>996<br>997<br>998<br>999 | 995<br>996<br>997<br>998<br>999 | 947<br>948<br>949<br>949<br>949 | 999<br>999<br>998               | 999                             |
| 5.80<br>5.50<br>6.00<br>6.00<br>7.00    | 933<br>943                          | 9/7<br>983<br>988<br>991<br>993 | 996                               | 995<br>997<br>998<br>999                  | 997<br>998<br>999               | 949                             | 59A                             |                                 | 599                             |                                 |                                 |                                 |   | 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 923<br>936<br>945<br>953<br>959 | 979<br>984<br>989<br>991<br>993 | 991<br>994<br>996<br>998<br>998 | 995<br>997<br>998<br>999<br>999 | 997<br>999<br><del>99</del> 9   | 998<br>999                      | 699<br>699                      | ,99                             | <b>,9</b> 9                     |                                 |                                 |                                 |
| 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 974<br>979<br>990                   | 947<br>948                      | ĺ                                 |                                           |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |   | 5.00<br>9.00<br>10.00<br>15.00<br>20.00 | 975<br>980                      | 947                             | 459                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 30,00<br>40.00<br>50.00                 | 449                                 |                                 |                                   |                                           |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |   | 30.00<br>40.00<br>50.00                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |

|                                         |                                 |                   |                                   |                                 | c •                             | 1.0               |                                 | _                 |            |                                 |                   |                                 |   |                                      |                   |                                 |                                 |                                 | C =                             | 1.                              | <u>.                                    </u> |                                 |                                 |                                 |                   |                                 |
|-----------------------------------------|---------------------------------|-------------------|-----------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------|---------------------------------|-------------------|---------------------------------|---|--------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|
| 2 2                                     | 4                               | 6                 | B                                 | 10                              | 12                              | 14                | 16                              | 18                | 20         | 50                              | 50                | INF                             |   | ٦                                    | 4                 | 6                               | e                               | 10                              | 12                              | 14                              | 16                                           | 16                              | 20                              | 30                              | 50                | INF                             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 370                             | 404<br>428<br>452 | 443<br>-68                        | 451                             | 482                             | 459<br>486        | 405<br>434<br>461<br>489<br>515 | 435<br>463<br>491 | 492        |                                 |                   | 418<br>447<br>477<br>506<br>534 |   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20 | 380<br>402<br>422 | 464                             | 402<br>429<br>455<br>481<br>505 | 409<br>436<br>463<br>490<br>515 | 413<br>441<br>468<br>495<br>521 | 472                             |                                              | 420<br>448<br>476<br>504<br>531 | 478<br>506                      | 424<br>454<br>482<br>510<br>538 | 457<br>486        | 519                             |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45    |                                 | 520<br>542<br>562 | 563                               | 575                             | 582<br>505                      |                   | 590<br>614                      | 517               | 595        | 602                             | A31               | 561<br>588<br>613<br>662        |   | 1.25<br>1.30<br>1.35<br>1.40<br>1.45 | 481<br>499<br>516 | 510<br>532<br>553<br>574<br>593 | 529<br>533<br>575<br>597<br>618 | 540<br>564<br>587<br>609<br>631 | 546<br>571<br>594<br>617<br>639 | 623                             | 554<br>579<br>603<br>627<br>649              | 629                             | 559<br>584<br>608<br>632<br>654 | 564<br>570<br>615<br>639<br>662 |                   | 575<br>601<br>627<br>651<br>675 |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 540<br>555<br>571<br>585<br>599 | 620               | 626<br>646<br>664<br>682<br>699   | 479                             | 66H<br>68H<br>706               | 674               | 699<br>718                      | 721               | 485<br>705 | 732                             | 498<br>719        | 665<br>707<br>728<br>747<br>766 |   | 1.50<br>1.55<br>1.60<br>1.65         | 565<br>580<br>594 | 664                             | A75                             | 690                             |                                 | 706                             | 710                                          | 694<br>714<br>732               | 716                             | 683<br>784<br>724<br>743<br>761 | /31               |                                 |
| 1.75<br>1.60<br>1.85<br>1.90            | <b>1</b> € 5 ∩                  | 700<br>715<br>724 | /15<br>/31<br>/45<br>/59<br>/73   |                                 | 741<br>/57<br>/72<br>787<br>+00 |                   | 784<br>799                      | 173               | 791<br>H05 | 768<br>745<br>800<br>815<br>829 |                   | r17                             |   | 1.75<br>1.60<br>1.65<br>1.90         | 65A               | 71 n<br>724<br>737              | 725<br>740<br>755<br>769<br>782 | 772<br>765                      | /51<br>767<br>782<br>796<br>909 | 774<br>789<br>803               | 779<br>794<br>408                            | 767<br>763<br>796<br>812<br>H25 | 601<br>615                      | 810                             | H1/<br>H31        | F26                             |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 653<br>653<br>703               | 765<br>776<br>786 | 797<br>≃08<br>≃19                 |                                 |                                 | 244               | +3A<br>+49<br>+60               | H64               |            | 842<br>854<br>856<br>876<br>886 |                   |                                 |   | 2.00<br>2.05<br>2.10<br>2.15<br>2.20 | 701<br>710        | 774                             |                                 | 811<br>623<br>834<br>844<br>854 | 445                             | 452                             | P57                                          | 461<br>471                      | F 74                            | 850<br>862<br>873<br>883<br>893 | 480               |                                 |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 729<br>734                      | P 24<br>P 37      | :39<br>:48<br>:57<br>:465<br>:472 | 456<br>465<br>474<br>482<br>889 |                                 | ×42               | #80<br>#88<br>#97<br>904<br>912 | 405<br>405        |            | 895<br>904<br>912<br>920<br>926 | 410               | 920<br>927<br>935               |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45 | 737<br>745<br>752 | 930<br>938                      | 446<br>#55<br>#63<br>#71<br>#78 | 880                             | 874<br>883<br>891<br>898<br>905 | 490                             | 695<br>903<br>910                            | 890<br>898<br>906<br>914<br>920 | +93<br>+01<br>909<br>917<br>923 | 902<br>910<br>918<br>925<br>931 | 924               | 917<br>925<br>933<br>939<br>945 |
| 2.50<br>2.60<br>2.70<br>2.80<br>2.90    | 774<br>787<br>749               | A / 3             | #80<br>#93<br>904<br>915<br>924   | 696<br>969<br>920<br>930<br>939 | 907<br>919<br>930<br>939<br>948 | 93A               | 941<br>950                      | 944               |            | 944                             | 956<br>959<br>967 | 947<br>957<br>966<br>973<br>979 |   | 2.50<br>2.60<br>2.70<br>2.40<br>2.50 | 793<br>264        | PIA                             | 185<br>194<br>104<br>119<br>128 | 902<br>914<br>925<br>934<br>943 | 912<br>924<br>934<br>943<br>951 | 918<br>930<br>940<br>949<br>956 | 945                                          | 44H                             | 930<br>941<br>950<br>958<br>965 | 937<br>948<br>957<br>965<br>971 | 969               | 951<br>961<br>969<br>975<br>981 |
| 3.uc<br>3.10<br>3.20<br>3.30<br>3.40    | 729<br>538<br>546               | 259               | 432<br>740<br>946<br>952<br>957   | 947<br>953<br>959<br>964<br>968 |                                 | 971               | 978                             | 47E               |            | 983                             | 486               | 990                             |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40 | #34<br>#42<br>#50 | 929                             | +36<br>+43<br>+49<br>+55<br>+59 | 950<br>956<br>962<br>965<br>970 | 458<br>464<br>469<br>473<br>477 | 963<br>968<br>973<br>977<br>980 | 976<br>980                                   | 982                             | 989                             | 976<br>981<br>984<br>987<br>990 | 487<br>490        | 985<br>989<br>991<br>993<br>995 |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | ⊁67<br>873<br>879               | 947<br>947        | 961<br>965<br>969<br>972<br>975   | 479                             | 978<br>981<br>984<br>986<br>988 | 987<br>989        | 767<br>989<br>991               | 442               |            | 945                             |                   | 996<br>997<br>998<br>198<br>099 |   | 3.50<br>3.60<br>3.70<br>3.60<br>3.90 | +71<br>+77        | 945                             | 164<br>167<br>171<br>174<br>176 | 980                             | 980<br>983<br>985<br>987<br>989 | SER                             | 990                                          | 449                             | 489<br>491<br>492<br>494<br>495 | 992<br>993<br>995<br>996<br>997 | 466               | 997<br>997<br>998<br>999        |
| 4.10<br>4.20<br>4.40<br>4.60<br>4.60    | 448<br>904<br>914               | 964<br>969<br>973 | 48 A                              | 985<br>989<br>991<br>993        | 196                             | 554<br>556<br>557 | 995<br>997<br>998               | 775<br>777<br>798 |            | 947<br>948<br>949<br>944        | 799<br>799        | 999                             |   | 4.00<br>4.20<br>4.40<br>4.60<br>4.60 | 904<br>914        |                                 | 979<br>983<br>986<br>989<br>991 | 986<br>989<br>992<br>994<br>995 | 990<br>993<br>995<br>996<br>997 | 993<br>995<br>996<br>997<br>998 | 994<br>996<br>997<br>998<br>998              | 995<br>997<br>998<br>998        | 996<br>997<br>998<br>999        | 947<br>948<br>949<br>949        | 998<br>999<br>999 | 999                             |
| 9.4.6                                   | 947<br>955                      | 985<br>989<br>992 | 497                               | 996<br>999<br>999<br>999        | 499                             | 350<br>350        |                                 | 749               | 999        |                                 |                   |                                 |   | 5.00<br>5.5r<br>6.00<br>6.50<br>7.00 | 549<br>554        | ç y n                           | /92<br>-95<br>                  | 996<br>999<br>999               | 998<br>499<br>499               | 958<br>959                      | 949                                          | 499                             | 099                             |                                 |                   |                                 |
| 8.00<br>9.00<br>10.00<br>15.60<br>20.00 | 97A<br>980<br>991               | 1                 | <b>499</b>                        |                                 |                                 |                   |                                 |                   |            |                                 |                   |                                 |   | 8.00<br>9.00<br>19.00<br>19.00       | 917<br>981<br>991 |                                 | 999                             |                                 |                                 |                                 |                                              |                                 |                                 |                                 |                   |                                 |
| 30.00<br>40.00<br>50.00                 | 599<br>599                      |                   |                                   |                                 |                                 |                   |                                 |                   |            |                                 |                   |                                 |   | 30.00<br>40.00<br>50.00              | 999               |                                 |                                 |                                 |                                 |                                 |                                              |                                 |                                 |                                 |                   |                                 |
| <u> </u>                                | <u> </u>                        |                   |                                   |                                 |                                 |                   |                                 |                   |            |                                 | <u> </u>          |                                 | j |                                      |                   |                                 |                                 |                                 |                                 | <u> </u>                        |                                              | <u></u>                         |                                 | <u>_</u>                        |                   |                                 |

|                                      |                                |                                 |                                 |                                 | c •                             | 2,0                             |                                 |                   |                                 |                                 |                                 |                                 |   |                                         |                   |                                 |                                 |                                 | C ·                             | 2,                              | 2                               |                                 |                   |            |                                           |                                 |
|--------------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|-----------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|------------|-------------------------------------------|---------------------------------|
| 7/                                   | 4                              | 6                               | 6                               | 10                              | 12                              | 14                              | 16                              | 18                | 20                              | 30                              | 50                              | INF                             |   | 7                                       | 4                 | 6                               | н                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                | 30         | <b>5</b> 0                                | INF                             |
| 1.05                                 | 389                            | 426<br>451<br>475               | 492                             | 701                             | 425<br>453<br>480<br>507<br>533 | 511                             | 514                             | 466<br>489<br>516 | 433<br>462<br>490<br>518<br>545 | 466<br>495<br>523               | 440<br>469<br>498<br>527<br>554 | 503                             |   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 427<br>448        | 419<br>445<br>470<br>494<br>517 | 487                             | 496                             | 446<br>474<br>501<br>526<br>554 | 505                             | 451<br>480<br>508<br>535<br>562 | 453<br>452<br>510<br>538<br>564 | 512<br>539        | 545        | 462<br>491<br>521<br>549<br>576           | 526                             |
| 1.35                                 | 490<br>508                     | 543<br>564                      | 586                             | 598                             | 686<br>528                      | 611<br>634                      | 638                             | 544<br>618        | 643                             | 627<br>650                      | 632<br>656                      | 587<br>414<br>439<br>463<br>486 |   | 1.25<br>1.35<br>1.40<br>1.45            | 524<br>541        | 540<br>561<br>582<br>602<br>621 | 405<br>426                      | 5/2<br>595<br>518<br>540<br>560 | 579<br>583<br>625<br>648<br>669 | 653                             | 587<br>612<br>635<br>658<br>679 |                                 | 640               | 647        | 602<br>628<br>652<br>676<br>698           | 660<br>683                      |
| 1.55                                 | 574<br>589<br>603              | 411                             | 67<br>685                       | 662<br>661<br>700<br>718<br>735 | 591<br>709<br>727               | 677<br>697<br>716<br>734<br>751 | 720                             |                   | 687<br>707<br>727<br>745<br>763 | 735<br>753                      | 700<br>721<br>741<br>760<br>777 | /09<br>730<br>750<br>769<br>767 | İ | 1,50<br>1,55<br>1,60<br>1,65<br>1,70    | 61H               | 640<br>657<br>674<br>690<br>705 | A66<br>A84<br>702<br>/19<br>735 | 680<br>699<br>717<br>734<br>751 | 689<br>748<br>727<br>744<br>760 | 695<br>715<br>733<br>751<br>767 | 700<br>719<br>738<br>755<br>772 | 703<br>723<br>741<br>759<br>776 | 744               | 752        | /19<br>739<br>758<br>776<br>793           |                                 |
| 1.85                                 | 642<br>654<br>666              | 732                             | 734<br>749<br>763<br>777<br>789 | 751<br>766<br>780<br>794<br>H06 | 790<br>HU4                      | 703                             | r02                             | 792<br>806<br>#20 | + 0 9<br>+ 2 3                  | 788<br>803<br>818<br>832<br>845 | 125<br>139                      | HU3<br>H19<br>H34<br>H48<br>H61 |   | 1.75<br>1,60<br>1,75<br>1.90<br>1.95    | 679               | 747                             | 77H<br>/91                      | 807                             | 805                             | 811<br>825                      | "16                             | #33                             | H09               | 845        | H09<br>H24<br>H3H<br>H52<br>R64           | H48                             |
| 2.10                                 | 79#<br>708<br>717              | Pu1                             | 13<br>124<br>134<br>134         | 819<br>430<br>441<br>451<br>460 | H29<br>R41<br>851<br>861<br>H71 | +e4                             | 841<br>853<br>864<br>874<br>883 | 86 P              | 871<br>F81                      | 857<br>869<br>879<br>889<br>889 | 86<br>896                       | 873<br>485<br>895<br>905<br>914 |   | 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 720               | 782<br>793<br>803<br>813<br>822 |                                 | A52                             | 463                             | 648<br>#59<br>#69<br>#79<br>688 | ×75                             |                                 | H71<br>H81<br>H91 | 990        | H/5<br>HB6<br>H96<br>905<br>914           | 405                             |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45 | 743                            | 240<br>244<br>244<br>252        |                                 | #69<br>878<br>486<br>493<br>900 | 496<br>403                      | 403<br>410                      | ~92<br>900<br>908<br>915<br>921 |                   | +99<br>+07<br>+14<br>921<br>+28 | 353                             | 913<br>921<br>928<br>935<br>941 | 922<br>930<br>937<br>943<br>949 |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 762<br>769        | P54                             | ~65                             | 679<br>887<br>895<br>902<br>908 | 911                             | 896<br>904<br>911<br>918<br>924 |                                 | 926                             | 415<br>422<br>429 | 936        | 936<br>942                                |                                 |
| 2.40                                 | 7/3<br>786<br>798<br>209<br>20 | e5A<br>P/1<br>e83<br>P93<br>943 | A90<br>903<br>913<br>923<br>932 | 907<br>918<br>929<br>938<br>946 | 93A                             |                                 | 927<br>938<br>948<br>956<br>963 | 959<br>959        | 934<br>944<br>953<br>961<br>967 | 960                             | 947<br>957<br>965<br>972<br>977 | 954<br>964<br>971<br>977<br>982 |   | 2.56<br>2.60<br>2.70<br>2.50<br>2.50    | 207<br>218        | 868<br>880<br>891<br>901<br>909 | 799<br>710<br>720<br>729<br>737 | 914<br>925<br>935<br>943<br>951 | 951                             | 940<br>940<br>949<br>957<br>963 |                                 | 937<br>947<br>956<br>963<br>969 | 958<br>958<br>965 | 964<br>971 | 953<br>961<br>969<br>975<br>980           | 968<br>975<br>980<br>985        |
| 3.40<br>3.10<br>3.20<br>3.30<br>3.40 | + 3A                           | 926                             |                                 | 256                             |                                 | 910<br>915<br>910               | 969<br>973<br>978<br>981<br>984 | 976<br>980<br>983 |                                 | 982<br>986<br>988               |                                 | 992                             |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | #46<br>#54<br>#61 | 931<br>937                      | 750<br>756<br>761<br>765        | 957<br>962<br>967<br>971<br>975 | 974<br>977                      | 969<br>974<br>976<br>981<br>984 | ¥83                             | 982                             | 484<br>484<br>487 | 940        | 98 K U 99 A | 793                             |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90 | 474<br>480                     | 943<br>947<br>952<br>955<br>959 | 766<br>969<br>972<br>975<br>978 | 981                             | 784<br>786<br>788               | 987<br>989<br>991               | 987<br>989<br>991<br>992<br>993 | 992               | 493                             | 945                             | 497<br>497                      |                                 |   | 3.50<br>3.60<br>3.70<br>3.60<br>3.60    | +86<br>+91        | 955                             | 769<br>772<br>975<br>778<br>980 | 978<br>781<br>983<br>985<br>987 | 988<br>989                      | 946<br>988<br>990<br>992<br>993 | 492                             | 493                             | 993<br>994<br>995 | 946<br>947 | 995<br>996<br>997<br>998<br>998           | 497<br>498<br>499<br>499<br>499 |
| 4.00<br>4.20<br>4.40<br>4.60<br>4.80 | 912<br>919                     | 962<br>967<br>972<br>974<br>979 | 980<br>984<br>987<br>989<br>991 | 987<br>990<br>992<br>994<br>995 | 995                             |                                 | 994<br>996<br>997<br>998<br>999 | 997<br>998        | 996<br>997<br>998<br>999        | 949                             | 998<br>999<br>999               | 999                             |   | 4.00<br>4.20<br>4.40<br>4.60<br>4.60    | 909<br>916<br>923 | 965<br>970<br>974<br>978<br>981 | 785<br>785<br>788<br>790<br>790 | 989<br>991<br>993<br>995<br>996 | 997                             | 454<br>956<br>997<br>998<br>998 | 995<br>997<br>998<br>998<br>999 |                                 | 498               | 1          | 999<br>999                                | ¥ 4 9                           |
| 5.00<br>5.50<br>6.00<br>6.50<br>7.00 | 942<br>950<br>957              | 540                             | 197                             | 999                             | 799                             | 949                             | <b>,,9</b>                      | <b>499</b>        | 590                             |                                 |                                 |                                 |   | 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 953<br>960        | 983<br>988<br>991<br>993<br>995 | 493<br>496<br>497<br>498<br>999 | 997<br>998<br>999<br>999        | 999<br>999                      | 99 <b>9</b><br>999              | 999                             | ¥99                             |                   |            |                                           |                                 |
| 9.00<br>10.00<br>15.00<br>20.60      | 977<br>982<br>992              | 697<br>698<br>699               | 999                             |                                 |                                 |                                 |                                 |                   |                                 |                                 |                                 |                                 |   | 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 982<br>992        | 998                             | 499                             |                                 |                                 |                                 |                                 |                                 |                   |            |                                           |                                 |
| 30.00<br>40.00<br>50.00              | 999                            |                                 |                                 |                                 |                                 |                                 |                                 |                   |                                 |                                 |                                 |                                 |   | 30.00<br>40.00<br>50.00                 | 499               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                   |            |                                           |                                 |
|                                      | _                              |                                 |                                 | Ĺ.                              | _                               |                                 |                                 |                   | <u> </u>                        |                                 |                                 |                                 |   |                                         | _                 |                                 |                                 | İ                               |                                 | <u> </u>                        |                                 |                                 |                   |            |                                           |                                 |

|                                      |                                 |                       |                                 |                   | Ç =                             | ě,                              | <u> </u>                        |                                 | _                 |                                 |                                 |                         |   |                                         |                           |                   |                                 | $\underline{\mathbb{L}}$ | c •                             | 2.                              | <u>.                                    </u> |                                 |                   |                                 |                                 |                                 |
|--------------------------------------|---------------------------------|-----------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|-------------------------|---|-----------------------------------------|---------------------------|-------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|----------------------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|
| 2                                    | 4                               | 6                     | 8                               | 10                | 12                              | 14                              | 16                              | 18                              | 20                | 30                              | <b>5</b> U                      | INF                     |   | 7                                       | 4                         | 6                 | 8                               | 10                       | 12                              | 14                              | 16                                           | 18                              | 50                | 30                              | 50                              | TNF                             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20 | 441                             | 401                   | 504                             | 486<br>513        | 519                             | 467<br>496<br>523<br>550<br>576 | 526                             | 529                             | 530<br>558        | 535                             |                                 | 516<br>545<br>573       |   | 1.05<br>1.10<br>1.15<br>1.20            | 432<br>454<br>474         | 4/6<br>500<br>524 | 519<br>544                      | 529<br>554               | 479<br>509<br>535<br>561<br>586 | 511<br>539<br>565               | 514                                          |                                 | 518<br>546<br>573 | 494<br>523<br>551<br>579<br>6U5 |                                 | 561<br>589                      |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45 | 520<br>538<br>555               | 577<br>597<br>417     | 142                             | 634               | 596<br>620<br>642<br>664<br>684 | 4/0                             | 604<br>629<br>652<br>674<br>695 | 655                             |                   | 64U<br>664<br>686               | 669                             | 677<br>700              |   | 1.35                                    | 532<br>549<br>566         | 590<br>611<br>630 | 591<br>514<br>535<br>555<br>575 | 426<br>448<br>469        | 610<br>634<br>656<br>677<br>697 | 639<br>661<br>663               | 643<br>665<br>687                            | 622<br>646<br>669<br>690<br>711 | 648<br>671        | 6/8<br>700                      | 635<br>660<br>683<br>705<br>726 | 467<br>491<br>713               |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70 | 416<br>430                      | 471<br>688<br>703     | 481<br>499<br>716<br>732<br>748 | 748               | 704<br>723<br>741<br>757<br>773 | 764                             | 715<br>734<br>752<br>769<br>785 | /18<br>/37<br>/55<br>7/2<br>788 | 758<br>775        | 766<br>783                      |                                 | 781<br>798              |   | 1.50<br>1.55<br>1.60<br>1.65            | 613<br>627<br>640         | 714               | 793<br>711<br>728<br>743<br>758 | 759                      | 717<br>735<br>752<br>768<br>784 | 775                             | 763<br>780                                   | 730<br>749<br>767<br>763<br>799 | 769               |                                 | 746<br>765<br>783<br>600<br>816 | 774<br>792                      |
| 1.75<br>1.86<br>1.85<br>1.90<br>1.95 | 769<br>690<br>701               | 7/1                   | 762<br>776<br>789<br>402<br>413 | 792<br>806<br>818 | #16<br>#28<br>#40               | 23<br>235<br>247                | #14<br>#28<br>#40<br>#52        | 544                             | + 34<br>+ 47      | 843<br>855                      | 821<br>436<br>449<br>462<br>474 | H71                     |   | 1./5<br>1.60<br>1.65<br>1.90            | 678<br>489<br>701         | 756<br>768<br>780 | 773<br>786<br>799<br>411<br>#22 | 415<br>#27               | /98<br>812<br>825<br>837<br>848 | 832<br>444                      | H24                                          | #40<br>#52                      | 143<br>155        | 854                             | 858                             | 467<br>467                      |
| 2,00<br>2,05<br>2.10<br>2.15<br>2.20 | 721<br>730<br>739               | *13<br>*22            | 1445                            | 1461              | 471                             | #6H<br>#/A                      | +73<br>+83<br>+92<br>400        | 877<br>567                      | 680<br>690        | AVA                             | ¥04                             | 73<br>713<br>721<br>729 |   | 2.05<br>2.10<br>2.15<br>2.20            | 738<br>747                | 821<br>830        | 152                             | 969<br>H77               | 674                             | 225                             | 671<br>681<br>698<br>698<br>906              | #84<br>893                      | 487<br>896<br>905 | 904                             | 910<br>919                      | 927                             |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45 | 763<br>771<br>779               | 647<br>P55<br>P62     | 493                             | 902<br>908        | 897<br>904<br>911<br>914<br>924 | 918<br>924                      | 915<br>922<br>928               | 712<br>919<br>925<br>932<br>937 | 922<br>928<br>934 | 929<br>929<br>936<br>941<br>947 | 941<br>947                      | 943                     |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 771<br>778<br>765         | P54<br>P61<br>E69 | 498                             | 900<br>907<br>914        | 917                             | 915<br>923<br>929               | 421<br>427<br>433                            | 936                             | 933               | 927<br>934<br>940<br>946<br>951 | 945<br>951                      | 947<br>953<br>958               |
| 2.50<br>2.60<br>2.70<br>2.80<br>2.90 | Pn4<br>F15<br>F25               | # 84<br># 97<br>9 U A | 734                             | 940               | 729<br>939<br>948<br>755<br>762 | 960                             | 457<br>464                      | 943<br>952<br>960<br>966<br>972 | 962               | 961<br>968                      | 978                             | 978<br>983              |   | 2.50<br>2.70<br>2.80<br>2.90            | +21<br>+31                | 942<br>942<br>911 | +10<br>+21<br>+30<br>+38<br>+45 | 943                      | 951<br>958                      | 939<br>949<br>956<br>963<br>969 | 966<br>966                                   | 947<br>955<br>963<br>969<br>974 | 971               | 955<br>964<br>970<br>976<br>981 | 966<br>968<br>974<br>980<br>984 | 967<br>974<br>980<br>984<br>988 |
| 3.10<br>3.20<br>3.30                 | 844<br>852<br>660<br>867<br>874 | 929<br>935<br>941     | 964                             | 975<br>976<br>974 | 967<br>972<br>976<br>979<br>962 | 78G                             | 979<br>982<br>985               | 781<br>784                      | 445               | 986                             | 991<br>993                      | 996                     |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | +57<br>+65<br>+72         | 933<br>939<br>944 | 462                             | 468<br>472<br>476        | 47A                             | 781<br>784                      | 777<br>980<br>984<br>986<br>989              | 985<br>985                      | 987<br>989        | 990                             | 994                             | 996                             |
| 1 3.20                               | 186<br>191<br>194               | 554<br>554<br>561     | 1277                            | 783<br>985<br>987 | 985<br>987<br>987<br>990<br>992 | 991<br>993                      | 991<br>993<br>994               | 997<br>994<br>995               | 493<br>495<br>496 |                                 |                                 | 499                     |   | 3.50<br>3.60<br>3.70<br>3.60<br>3.60    | #90<br><b>*</b> 95<br>400 | 957<br>961<br>963 |                                 | 984<br>986               |                                 | 990                             | 991<br>992<br>993<br>995<br>995              | 793<br>774                      | 495<br>446        | 946                             |                                 | 949                             |
| 4.40                                 | 905<br>913<br>920<br>926<br>932 | 5/2<br>5/4<br>5/9     | 991                             | 992               | 995<br>996<br>997               | 556<br>558                      | 997<br>999                      | 994<br>994                      | 999               | 646                             |                                 |                         |   | 4.40<br>4.40<br>4.40<br>4.60<br>4.80    | 416<br>423<br>429         | 9/4<br>9/7<br>980 | 985<br>187<br>198<br>198<br>193 | 994<br>196               | 193<br>195<br>194<br>197<br>198 |                                 | 996<br>997<br>998<br>999                     | 999                             |                   | 343<br>348<br>348               | 999                             |                                 |
| 6.50                                 | 937<br>947<br>955<br>961<br>967 | 944                   | 139H                            | 999               | 799                             |                                 | 999                             | 444                             |                   |                                 |                                 |                         |   | 5.00<br>5.50<br>6.00<br>6.56<br>7.90    | 949<br>957<br>963         | 989<br>992        | 194<br>197<br>198<br>199<br>199 | 397<br>399<br>199<br>499 | 444<br>446                      | 999                             | 994                                          |                                 |                   |                                 |                                 |                                 |
|                                      | 974<br>979<br>983<br>992<br>996 | 948                   | İ                               |                   |                                 |                                 |                                 |                                 |                   |                                 |                                 |                         |   | 0.00<br>9.00<br>10.00<br>15.00<br>20.00 | 981<br>984<br>093         | ÇVA               |                                 |                          |                                 |                                 |                                              |                                 |                   |                                 |                                 |                                 |
| 30.00<br>40.00<br>50.00              | 999                             |                       |                                 |                   |                                 |                                 |                                 |                                 |                   |                                 |                                 |                         |   | 30.00<br>40.00<br>50.00                 | 499                       |                   |                                 |                          |                                 |                                 |                                              |                                 |                   |                                 |                                 |                                 |
|                                      | <u></u>                         |                       |                                 |                   |                                 |                                 |                                 |                                 |                   |                                 |                                 |                         | ] |                                         |                           |                   |                                 |                          |                                 |                                 | <u> </u>                                     |                                 |                   |                                 |                                 |                                 |

|                                         |                                 |                                 |                                 |                                 | c •                             | 2.6                                |                                 |                          |                                 |                                 |                                 |                                 |  |                                         |                          |                                 |                                 |                                 | c •                             | 3.                              |                                 |                                 |                                 |                                 |                                 |                                 |
|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|-----------------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2                                       | 4                               | 4                               | 8                               | 10                              | 12                              | 14                                 | 16                              | 18                       | 20                              | 30                              | 50                              | INF                             |  | 0/2                                     | •                        | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 443                             | 488                             | 506<br>531<br>556               |                                 | 521<br>548<br>574               | 552                                | 499<br>528<br>555<br>582<br>607 | 530<br>558<br>564<br>610 | 532<br>560<br>586               | 537<br>565                      | 569<br>596                      | Au3                             |  | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 474                      | 523<br>547                      | 490<br>517<br>543<br>567<br>591 | 499<br>527<br>553<br>578<br>503 |                                 | 509<br>537<br>564<br>590<br>615 | 567<br>593                      |                                 | 544<br>571<br>598               | 577                             |                                 | 587<br>614                      |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 524<br>542<br>559<br>576<br>592 | 641                             | 646                             |                                 | 646<br>668<br>688               | 673                                | 632<br>655<br>677<br>698<br>718 | 680                      | 683                             | 643<br>667<br>689<br>711<br>732 | 695                             | 655<br>679<br>7u2<br>724<br>745 |  | 1.30<br>1.35<br>1.40<br>1.45            | 551<br>568<br>585<br>601 | 431<br>650                      | 614<br>635<br>656<br>676<br>695 | 626<br>648<br>669<br>690<br>709 | 633<br>656<br>678<br>698<br>717 | 683<br>704                      | 687<br>708                      | 690<br>711                      | 647<br>670<br>693<br>713<br>733 | 677<br>699<br>721               | 682<br>705<br>726               | 665<br>689<br>712<br>734<br>754 |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 607<br>622<br>636<br>649<br>662 | 709<br>724                      | 704<br>721<br>737<br>753<br>767 | 718<br>736<br>752<br>768<br>783 | 162                             | 168<br>784                         | 738<br>756<br>773<br>769<br>EQ4 | 776<br>792               | 779                             | 787<br>8u3                      | 757<br>775<br>793<br>809<br>824 | 801<br>#18                      |  | 1.55<br>1.60<br>1.65<br>1.70            | 670                      | 717                             | 712<br>729<br>745<br>761<br>775 | 727<br>744<br>760<br>776<br>790 | 736<br>753<br>770<br>785<br>600 | 742<br>759<br>776<br>752<br>606 | 781<br>796                      |                                 | 770<br>787                      | 795<br>210                      | 800                             | 773<br>792<br>809<br>825<br>840 |
| 1.75<br>1.80<br>1.85<br>1.90<br>1.95    | 708                             | 751<br>754<br>776<br>788<br>799 | 781<br>794<br>807<br>418<br>429 | /97<br>810<br>823<br>834<br>845 | H33                             | 639<br>651                         | 844                             |                          | 450                             | 833<br>846<br>859<br>870<br>881 | A65                             | 473<br>665                      |  | 1.75<br>1.80<br>1.85<br>1.90            | 704<br>714               | 783                             | *13                             | 804<br>417<br>829<br>841<br>851 | H39                             | #33<br>#45<br>#57               | 450<br>462                      | 829<br>542<br>854<br>865<br>876 | ¥57                             | A52<br>A65<br>A76               | 471<br>482                      | #54<br>#67<br>#79<br>#90<br>901 |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 727<br>737<br>746<br>754<br>762 | #2#<br>#36                      | 449<br>459<br>467<br>875        | 475<br>983                      | #66<br>#75<br>#84<br>#93<br>900 | 899                                | H77<br>H86<br>H95<br>G04<br>V11 | 870<br>449<br>447        | HB3<br>H93<br>902<br>910<br>917 | 919                             | 697<br>907<br>915<br>923<br>930 | 906<br>915<br>923<br>931<br>938 |  | 2.00<br>2.15<br>2.15<br>2.20            | 743<br>752<br>760        | #24<br>833                      | #64<br>#72                      | 861<br>H71<br>H79<br>Hd8<br>H95 | 871<br>880<br>889<br>897<br>905 |                                 | 900<br>908                      | 903                             | 688<br>698<br>906<br>914<br>921 | 914<br>921                      |                                 | 919<br>919<br>927<br>935<br>942 |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 784<br>791                      | 252<br>260<br>267<br>273<br>280 | 483<br>890<br>897<br>703<br>909 | 912                             |                                 |                                    | 918<br>925<br>931<br>937<br>942 | 92R<br>934<br>940        | 924<br>931<br>937<br>942<br>947 | 932<br>938<br>944<br>944<br>954 | 949<br>954                      | 945<br>951<br>956<br>961<br>965 |  | 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 794                      | #65<br>8/1<br>F/A               | 567<br>494<br>701<br>707<br>713 | 916<br>921                      | 912<br>918<br>924<br>930<br>935 | 930                             | 929<br>934<br>940               |                                 | 928<br>934<br>940<br>945<br>950 | 947<br>952                      | 944<br>952<br>957<br>961        | 948<br>953<br>959<br>963<br>967 |
| 2.50<br>2.60<br>2.70<br>2.40<br>2.40    | +14<br>+26<br>+36               | SUA                             | 914<br>924<br>933<br>941<br>948 | 929<br>938<br>946<br>954<br>960 | 937<br>946<br>954<br>961<br>966 | 755                                | 947<br>955<br>963<br>969<br>974 | ¥65<br>¥71               | 952<br>960<br>967<br>973<br>978 | 978                             | 963<br>970<br>976<br>981<br>985 | 946                             |  | 3.00<br>3.00<br>5.00<br>5.00            | +21<br>+31<br>+41        | 890<br>900<br>909<br>919<br>925 | 918<br>928<br>936<br>944<br>950 | 932<br>941<br>949<br>956<br>962 | 740<br>749<br>756<br>763<br>768 | 946<br>954<br>961<br>967<br>972 | 965<br>970                      | 952<br>960<br>967<br>973<br>977 | 954<br>962<br>969<br>974<br>979 | 974                             | 978                             | 971<br>978<br>983<br>987<br>990 |
| 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | 162<br>176                      | 934<br>941                      | 954<br>959<br>964<br>968<br>971 |                                 | 971<br>976<br>979<br>982<br>985 | 9/5<br>9/9<br>98/2<br>98/5<br>98/8 | 474<br>982<br>985<br>987<br>989 | 780<br>784               | 982<br>985<br>985<br>986<br>982 |                                 | 493                             | 775                             |  | 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | ++5<br>+72<br>-79        | 944                             | 456<br>461<br>465<br>469<br>473 | 967<br>971<br>975<br>978<br>981 | 973<br>977<br>980<br>983<br>986 | 9/7<br>980<br>984<br>986<br>988 | 986<br>988                      | 781<br>785<br>787<br>790<br>771 |                                 |                                 | 489<br>492<br>493<br>995<br>944 | 992<br>994<br>996<br>997<br>998 |
| 3.70                                    | 193                             | 562                             | 774<br>477<br>780<br>782<br>484 | 983<br>985<br>987<br>988<br>990 | 987<br>989<br>990<br>992<br>993 | 990<br>991<br>993<br>994           | 994                             | 995<br>996               | 993<br>994<br>996<br>996<br>997 | 945<br>946<br>948<br>948        | 998<br>998<br>998<br>999        | 998<br>999<br>999               |  | 3.50<br>3.70<br>3.70<br>3.80<br>3.90    | 75A                      | 964<br>967                      | 976<br>978<br>981<br>983<br>985 |                                 | 988<br>989<br>991<br>992<br>993 | 690<br>992<br>993<br>694<br>699 | 493<br>994                      |                                 | 495                             | 996<br>997<br>997<br>998<br>998 | 997<br>998<br>998<br>999<br>999 | 998<br>999<br>999<br>999        |
| 4.00<br>4.20<br>4.40<br>4.60<br>4.60    | 919<br>929<br>931               | 975<br>978                      | ve5<br>-68<br>-90<br>-92<br>-94 |                                 | 994<br>995<br>997<br>998<br>998 | 998<br>997<br>998<br>998<br>999    |                                 | 998<br>999               | 998<br>999<br>999<br>999        |                                 | 499                             |                                 |  | 4.00<br>4.20<br>4.46<br>4.60<br>4.60    | 421<br>427<br>433        | 9/2<br>976<br>9/9<br>982<br>985 | 186<br>189<br>191<br>193<br>194 | 992<br>994<br>995<br>995<br>997 | 994<br>996<br>997<br>998<br>998 | 956<br>957<br>556<br>558<br>999 | 997<br>998<br>998<br>999<br>999 | 997<br>998<br>999<br>999        | 998<br>999<br>999<br>999        | 33A                             | 494                             |                                 |
| 6.00                                    | 451                             | 540<br>543                      | 166                             | 498<br>499<br>499               | 499<br>499                      | ***                                | <b>,,,</b>                      |                          |                                 |                                 |                                 |                                 |  | 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 559<br>565               | 987<br>990<br>993<br>994<br>994 | 495<br>497<br>498<br>199<br>499 | 999<br>999                      | 999<br>999                      | 959                             | 999                             |                                 |                                 |                                 |                                 |                                 |
| 6.00<br>9.00<br>10.00<br>15.00<br>20.00 | 981<br>984<br>993               | 648                             |                                 |                                 |                                 |                                    |                                 |                          |                                 |                                 |                                 |                                 |  | 9.00<br>9.00<br>10.00<br>15.00<br>20.00 | 581<br>585<br>993        | 998<br>698<br>699               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 30.00                                   | 999                             |                                 |                                 |                                 |                                 |                                    |                                 |                          |                                 |                                 |                                 |                                 |  | 30.00<br>40.00<br>50.00                 | 999                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| L                                       | <u></u>                         | <u> </u>                        | <u> </u>                        | <u></u>                         | <u> </u>                        | <u> </u>                           | l                               | <u> </u>                 | <u> </u>                        | L                               | Ц                               | 1                               |  |                                         | Ц                        | Ц_                              |                                 | L                               |                                 | L                               |                                 |                                 | L                               | نـــا                           | <u>i</u>                        |                                 |

|                                         |                    |                                 |                                 | _[                              | C =                             | ٠, ق                             |                   |                                 |                                 |                                 |                                       |                                 |    |                                      |                                 |                   |                                         |                                 | C =                                    | 3.                | 8                                                       |                                 |                   |                                 |                          |                                 |
|-----------------------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------|----|--------------------------------------|---------------------------------|-------------------|-----------------------------------------|---------------------------------|----------------------------------------|-------------------|---------------------------------------------------------|---------------------------------|-------------------|---------------------------------|--------------------------|---------------------------------|
| 2 2                                     | 4                  | 6                               | 8                               | 10                              | 12                              | 14                               | 16                | 18                              | 20                              | <b>3</b> U                      | 50                                    | INF                             |    | /,                                   | 4                               | 6                 | 8                                       | 10                              | 12                                     | 14                | 16                                                      | 18                              | 50                | 30                              | 50                       | INF                             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 490                | 517<br>541                      | 510<br>535<br>561<br>585<br>609 | 572                             | 552<br>578<br>683               | 556                              | 559<br>586<br>412 | 588                             | 563<br>590                      | 955<br>269                      | 5/3                                   | 406<br>433                      |    | 1.05<br>1.05<br>1.10<br>1.15<br>1.26 | 4#2<br>563<br>523               | 555               | 551<br>576<br>599                       | 534<br>561<br>586<br>611<br>634 | 593<br>618                             | 597<br>622        | 574<br>601<br>626                                       | 62H                             | 579<br>605<br>630 | 611                             |                          | 593<br>521<br>647               |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 564<br>563<br>569  | 647<br>647                      | +31<br>+52<br>572<br>+91<br>710 | 643<br>665<br>685<br>705<br>724 | 5/3<br>594<br>713               | 674<br>699<br>719                | 703<br>723        | 6 d 5                           | 665<br>647<br>708<br>729<br>740 | 736                             | A99                                   | 728<br>749                      | !  | 1.35                                 | f 11                            | 641<br>677        | 165<br>164<br>703                       | 656<br>677<br>698<br>717<br>735 | 106                                    | 711<br>/31        | 695<br>715                                              | 676<br>697<br>718<br>738<br>757 | 740               | 684<br>706<br>727<br>747<br>766 | 711                      | 71A<br>740                      |
| 1.50<br>1.55<br>1.60<br>1.65            | 644<br>657<br>670  | 715                             | 759<br>713                      | 773                             | 767<br>763<br>79H               | 129                              | 777<br>793        | 764<br>781<br>797<br>F12<br>F26 | 749<br>115                      |                                 | 796<br>613<br>426                     | 787<br>~05<br>~21<br>~30<br>~51 |    | 1.56<br>1.55<br>1.65<br>1.65         | 454<br>467<br>680               | 726<br>741<br>754 | 754<br>769<br>783                       | 768                             | 761<br>777<br>792<br>eu7<br>+20        | 763<br>758<br>613 | 771<br>767<br>+ 03<br>+17<br>431                        | 806<br>821                      | 409<br>423        | 784<br>801<br>816<br>831<br>845 | +37                      | 714<br>730                      |
| 1./5<br>1.40<br>1.85<br>1.90            | 714                | 763<br>794<br>Pu5               | *00<br>*12<br>#24<br>#35<br>#45 | 439                             | 144                             | e31<br>e44<br>+55<br>+66<br>e76  | -61<br>-71        | H39<br>H32<br>H63<br>H44        | ×77                             | H20<br>H02<br>H14<br>Hd5<br>H45 | # # # # # # # # # # # # # # # # # # # |                                 |    | 1.75<br>1.80<br>1.80<br>1.90         | 734                             | 791<br>803<br>813 | *32                                     | 458                             | 254<br>267                             | # <b>6</b> 3      | 044<br>856<br>867<br>878<br>887                         |                                 | #73<br>484        | 858<br>8/0<br>881<br>891<br>901 | 48A                      | ~¥4                             |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 762<br>770         | F34<br>F42                      | -72                             | 870<br>379<br>437<br>495<br>402 | +79<br>^80<br>^97<br>+04<br>+11 | ee5<br>195<br>903<br>910<br>717  | 41 E              | 902<br>910<br>918               | 613<br>628                      | 904<br>912<br>920<br>928<br>934 | 918<br>926<br>933                     | 926<br>933<br>940               |    | 2.40<br>2.45<br>2.15<br>2.25         | 761<br>270<br>277               | 649<br>837        | -7U<br>-78<br>-24                       | 177<br>185<br>893<br>901<br>968 | 303                                    | >08<br>>15        | 420                                                     | 916<br>916                      | 910<br>918        | 925                             | 930                      | 738<br>744                      |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | 192<br>757<br>155  | 173                             | .07                             | 727                             | 918<br>924<br>730<br>735<br>740 | 435                              |                   |                                 | 945                             | 946                             | 956<br>961                            | 962                             |    |                                      | 752<br>759<br>*15<br>*12        | 264<br>290        | *0A<br>*12<br>*17                       | 914<br>920<br>926<br>931<br>936 | 934                                    | 439               | 932<br>938<br>943<br>948<br>952                         | 946                             | 948<br>953        | 944<br>950<br>954<br>959<br>963 | 454                      | 465                             |
| 2.40<br>2.40<br>2.40                    | F2*<br>F3#<br>F4#  | 944<br>915<br>923               | -40                             | 945<br>945<br>953<br>959<br>955 | 745<br>753<br>761<br>764<br>7/1 | *51<br>*57<br>*64<br>*/11<br>*/5 | 173               | 996<br>964<br>976<br>975<br>979 | 956<br>972<br>977               | 4/7                             | 775<br>786<br>784                     | 4/4<br>480<br>185<br>486<br>471 | 1  | 2.50<br>2.50<br>2.50                 | 634<br>644<br>653               | 910<br>919<br>927 | 44                                      | 949<br>956<br>952<br>967        | 948<br>956<br>968<br>968<br>973        |                   | 957<br>964<br>970<br>975<br>979                         | 966<br>972<br>977<br>981        | 974<br>978        | 967<br>973<br>978<br>943<br>986 | 287<br>282<br>282        | 976<br>982<br>986<br>989<br>989 |
| 3.00<br>3.10<br>3.40<br>3.30<br>3.40    | #71<br>F7A<br>F84  | 947<br>952                      | " e #                           | 469<br>473<br>477<br>980<br>483 | 175<br>175<br>187<br>185<br>185 |                                  | 447<br>449        | 763<br>764<br>764<br>777<br>772 |                                 | 940                             | 994<br>996                            | 993<br>995<br>997<br>997        |    | 3.40                                 | +69<br>+76<br>+82<br>+83<br>+44 | 951<br>954<br>958 |                                         |                                 | 777<br>780<br>783<br>786<br>984        | 48¢               | 98 6 8 0 0 2<br>9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 949<br>991                      | 990<br>992        | 989<br>991<br>993<br>995<br>996 | 444                      | 994<br>996<br>997<br>998<br>998 |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 9411<br>905<br>910 | 564                             | 181<br>24<br>24                 |                                 | 797<br>797<br>793<br>794        | 991<br>993<br>994<br>995         | 495               | 994<br>995<br>994<br>997<br>997 | 994<br>995<br>994<br>997        |                                 | 199<br>199<br>199                     | -99<br>-99<br>-99               | ١  | 3.50<br>3.61<br>3.70<br>3.80<br>3.90 | 600<br>913                      | 905<br>90°<br>910 | -79<br>/21<br>/83<br>/84<br>/F/         | 786<br>744<br>743<br>743<br>743 | 790<br>791<br>792<br>794<br>795        | , y 4<br>, y 5    |                                                         | 997                             | 496<br>497<br>497 | 997<br>997<br>998<br>998<br>998 | 998<br>994<br>999<br>999 | 999                             |
| 4.00<br>4.20<br>4.40<br>4.60<br>4.60    | 425<br>431<br>435  | 9/7<br>981                      | 193                             | 794<br>796                      | #¥5<br>#¥4<br>#¥7<br>#¥4<br>#¥4 | 95A<br>957<br>956<br>950<br>950  | 999<br>999        | 446<br>446                      | 099                             | 949                             | 494                                   |                                 |    | 4,4r<br>4,61                         | 921<br>927<br>933<br>939<br>943 | 579<br>582<br>584 | 8 9 9 4 5<br>9 4 5 6 8<br>8 9 9 4 5     | 193<br>195<br>196<br>197<br>198 | 195<br>197<br>197<br>197<br>198<br>199 |                   | 997<br>999<br>999<br>999                                | 499                             |                   | 949<br>949                      | 494                      |                                 |
| 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 954<br>961<br>967  | 588<br>591<br>593<br>598<br>598 | 1,99                            | 299                             | 490<br>490                      | 356                              |                   |                                 |                                 |                                 |                                       |                                 |    | 5.00<br>5.50<br>6.50<br>7.00         | 554<br>543<br>544               | 542<br>544<br>545 | 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 999<br>999<br>994               | 499<br>499                             | 775               |                                                         |                                 |                   |                                 |                          |                                 |
| 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 462<br>466<br>564  | 649                             |                                 |                                 |                                 |                                  |                   |                                 |                                 |                                 |                                       |                                 | 1  | 6.00<br>9.00<br>0.00<br>5.00         | 983<br>984<br>994               |                   |                                         |                                 |                                        |                   |                                                         |                                 |                   |                                 |                          |                                 |
| 30.00<br>40.00<br>50.00                 | 449                |                                 |                                 |                                 |                                 |                                  |                   |                                 |                                 |                                 |                                       |                                 | 14 | 0.00<br>0.00<br>0.00                 | 999                             |                   |                                         |                                 |                                        |                   |                                                         |                                 |                   |                                 |                          |                                 |
| <u></u>                                 | <u> </u>           | <u>l</u>                        |                                 | <u> </u>                        |                                 | <u> </u>                         | <u> </u>          | <u> </u>                        | <u> </u>                        |                                 |                                       | <u> </u>                        | L  |                                      |                                 |                   |                                         |                                 |                                        |                   |                                                         |                                 |                   |                                 |                          | <u> </u>                        |

|                                         |                   |                                 |                                 |                                 | C ·                             | 4.2                                    |                                 |                                 |                                 |                                 |                                 |                                 |   |                                          |                                 |                                 |                                 |                                 | C =                             | 4,0                             | <u></u>                         |                                 |                                 |                                 |                                 |                                 |
|-----------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2 2                                     | 4                 | 6                               | 8                               | 10                              | 12                              | 14                                     | 16                              | 18                              | 20                              | <b>3</b> 0                      | <b>5</b> 0                      | INF                             |   | 7                                        | •                               | 6                               | 9                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 443               | 549                             | 563<br>587<br>511               | 573<br>598<br>622               | 579<br>605<br>629               | 557<br>583<br>609<br>634<br>657        |                                 | 589                             | 591<br>617                      | 568<br>596<br>622<br>647<br>672 | 572<br>600<br>426<br>652<br>676 |                                 |   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20     | 542                             | 529<br>553<br>576<br>598<br>620 | 547<br>572<br>597<br>620<br>642 | 607                             | 614<br>638                      | 567<br>593<br>619<br>643<br>666 |                                 | 599                             | 574<br>600<br>626<br>651<br>674 | 5/9<br>646<br>632<br>657<br>680 | 582<br>610<br>636<br>661<br>685 | 642<br>667                      |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 588<br>604<br>620 |                                 | h75<br>h94<br>712               |                                 | 715<br>734                      | 679<br>701<br>721<br>740<br>758        | 725<br>744                      |                                 | 688<br>710<br>730<br>749<br>768 | 694<br>716<br>737<br>756<br>775 | 699<br>721<br>742<br>762<br>780 | 706<br>728<br>749<br>769<br>768 |   | 1.25<br>1.30<br>1.35<br>1.40<br>1.45     | 579<br>596<br>612<br>628<br>642 | 640<br>659<br>677<br>694<br>711 | 702                             | 715                             | 683<br>703<br>723<br>742<br>/59 | 668<br>709<br>729<br>747<br>765 |                                 | 715<br>735                      | 696<br>718<br>738<br>757<br>775 | 7u3<br>724<br>744<br>763<br>782 | 707<br>729<br>749<br>769<br>787 | 714<br>736<br>757<br>776<br>794 |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 663<br>676<br>688 | 749                             | 746<br>762<br>776<br>790<br>803 | 760<br>776<br>791<br>805<br>818 | H00                             | 7/5<br>7/1<br>006<br>200<br>203<br>303 |                                 | 814<br>828                      |                                 | 792<br>808<br>824<br>838<br>851 | 797<br>814<br>829<br>843<br>857 | ⊬37<br>⊬51                      |   | 1.50<br>1.55<br>1.60<br>1.65             | e70                             | 755                             | 753<br>768<br>783<br>796<br>#09 | 797<br>811                      | 776<br>791<br>806<br>820<br>833 | 782<br>797<br>812<br>819<br>839 | #16<br>#30                      | 789<br>805<br>820<br>833<br>846 | 791<br>807<br>#22<br>#36<br>#49 | R43                             | A35                             | 812<br>828<br>843<br>857<br>870 |
| 1.75<br>1.60<br>1.65<br>1.95            | /41               | 787<br>798<br>649<br>819<br>829 | *16<br>*27<br>*38<br>*48<br>*58 | 831<br>442<br>0>3<br>463<br>473 |                                 | #46<br>#57<br>#68<br>#7#<br>#8R        | 473                             | 054<br>865<br>876<br>886<br>895 | 556<br>568<br>579<br>689<br>889 | 886                             | 669<br>#81<br>892<br>902<br>911 | 699                             |   | 1.75<br>1.80<br>1.85<br>1.90             | 717<br>728<br>738<br>747<br>756 | 793<br>804<br>814<br>824<br>834 | H43                             | 458                             | 845<br>856<br>867<br>877<br>886 |                                 | 877                             | 859<br>870<br>880<br>890<br>899 | 661<br>872<br>883<br>893<br>902 |                                 | 874<br>#85<br>896<br>905<br>914 | 403                             |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 776<br>784        | 838<br>844<br>855<br>862<br>869 | 467<br>475<br>483<br>490<br>497 | 882<br>890<br>898<br>905<br>912 | 891<br>499<br>906<br>913<br>920 | 412<br>419                             |                                 | 912<br>920<br>926               | 907<br>915<br>922<br>929<br>935 | 914<br>922<br>929<br>935<br>942 | 919<br>927<br>934<br>941<br>946 | 927<br>934<br>941<br>947<br>953 |   | 2.00<br>2.05<br>2.10<br>2.15<br>2.20     | 765<br>773<br>781<br>789<br>786 | 659<br>865                      | 471<br>479<br>487<br>494<br>901 | 901<br>908                      | 894<br>902<br>910<br>917<br>923 | 900<br>908<br>915<br>922<br>929 | 904<br>912<br>920<br>926<br>932 | 923<br>929                      | 918<br>918<br>925<br>932<br>938 | 917<br>925<br>932<br>938<br>944 | 922<br>930<br>937<br>943<br>949 | 930<br>937<br>944<br>950<br>955 |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | P04               | 8/6<br>P89<br>P89<br>E94<br>P99 | 404<br>910<br>916<br>921<br>926 | 918<br>924<br>929<br>934<br>939 | 926<br>932<br>937<br>942<br>946 | y47                                    | 936<br>941<br>946<br>951<br>955 | 749                             | 741<br>746<br>751<br>755<br>760 | 947<br>952<br>957<br>961<br>965 | 952<br>957<br>961<br>965<br>965 | 958<br>963<br>967<br>971<br>975 | ı | 2.30<br>2.35<br>2.40<br>2.45             | 602<br>PU9<br>515<br>521<br>P27 | 880<br>886<br>897<br>897<br>903 | 907<br>913<br>918<br>924<br>928 | 932                             | 929<br>934<br>940<br>944<br>949 | 934<br>940<br>945<br>949<br>953 | 948                             | 941<br>946<br>951<br>955<br>959 | 457                             | 959<br>963                      | 954<br>959<br>963<br>967<br>971 | 960<br>969<br>969<br>973<br>976 |
| 2.50<br>2.60<br>2.70<br>2.80<br>2.60    | #39<br>#48        | 905<br>914<br>922<br>929<br>936 | 930<br>939<br>946<br>953        | 943<br>951<br>958<br>968        | 951<br>958<br>964<br>970<br>974 | 464                                    | 959<br>966<br>971<br>976<br>980 | 968                             | 963<br>970<br>975<br>983        | 969<br>975<br>980<br>984<br>987 | 972<br>976<br>983<br>987<br>990 | 978<br>983<br>987<br>990<br>993 |   | 2.50<br>2.60<br>2.70<br>2.80<br>2.90     | #32<br>#43<br>#52<br>#61<br>#68 | \$25<br>\$32                    | 933<br>941<br>948<br>954<br>960 | 959<br>965                      | 966<br>971                      | 957<br>964<br>970<br>975<br>979 | 961<br>967<br>973<br>977<br>981 | 963<br>969<br>975<br>979<br>983 | 971<br>976<br>981               | 981<br>985                      | 974<br>979<br>984<br>987<br>990 | 979<br>984<br>988<br>991<br>993 |
| 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | <b>+60</b>        | 942<br>947<br>952<br>956<br>960 | 963<br>967<br>971<br>974<br>977 | 973<br>976<br>981<br>982<br>985 | 978<br>981<br>984<br>987<br>989 |                                        |                                 | 988<br>996                      | 989<br>989<br>991<br>993<br>994 | 990<br>992<br>994<br>995<br>996 | 992<br>994<br>995<br>995<br>997 | 995<br>996<br>997<br>998<br>998 |   | 3.00<br>3.10<br>3.20<br>3.30<br>3.40     | 465                             | 944<br>949<br>953<br>958<br>961 | 965<br>969<br>972<br>975<br>975 | 974<br>977<br>981<br>983<br>985 | y87                             | 982<br>985<br>985<br>985<br>981 | 984<br>987<br>989<br>991<br>993 | 991                             | 990<br>992<br>993               | 990<br>992<br>994<br>995<br>996 | 992<br>994<br>996<br>997<br>997 | 995<br>996<br>997<br>998<br>999 |
| 3.50<br>3.60<br>3.70<br>3.60<br>3.60    | 912               | 963<br>966<br>969<br>972<br>974 | 980<br>982<br>984<br>986<br>987 | 987<br>988<br>990<br>991<br>992 | 993<br>994                      | 992<br>994<br>995<br>995<br>996        | 994<br>995<br>996<br>996<br>997 |                                 | 495<br>496<br>497<br>497<br>798 |                                 | 998<br>996<br>999<br>999        | 999<br>999<br>999               |   | 3.50<br>3.60<br>3.70<br>3.80<br>3.80     | 918                             | 965<br>968<br>970<br>973<br>975 | 981<br>983<br>985<br>986<br>988 | 992                             | 993                             | 993<br>994<br>995<br>996        | 994<br>995<br>996<br>997        | 995<br>994<br>997<br>997<br>998 | 997                             | 947<br>948<br>948<br>999<br>999 | 686<br>686<br>686<br>686        | 999<br>999                      |
| 4.00<br>4.20<br>4.60<br>4.60            | 940               | 976<br>983<br>983<br>985<br>987 | 489<br>491<br>493<br>494<br>495 | 993<br>995<br>996<br>997<br>998 | 996<br>997<br>998<br>998<br>999 | 757<br>794<br>754<br>794<br>794        | 998<br>998<br>999<br>999        | 999<br>999<br>999<br>999        | 498<br>499<br>493               | 999                             |                                 |                                 |   | 4.20<br>4.40<br>4.60<br>4.80             | 925<br>931<br>937<br>942<br>946 | 9/7<br>980<br>983<br>986<br>987 | 689<br>691<br>993<br>994<br>695 | 994<br>995<br>996<br>997<br>998 | 996<br>997<br>998<br>998<br>999 | 957<br>598<br>558<br>559<br>559 | 998<br>999<br>999<br>999        | 998<br>999<br>999<br>999        | 998<br>999<br>999               | 999                             |                                 |                                 |
| 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 957<br>964<br>969 | 594                             | 196<br>198<br>198<br>199<br>199 | 998<br>999<br>999               | ¥99                             | 099                                    |                                 |                                 |                                 |                                 |                                 |                                 |   | 5.00<br>5.50<br>6.00<br>6.50<br>7.00     | 950<br>959<br>965<br>970<br>974 | 989<br>942<br>944<br>946<br>997 | 996<br>998<br>998<br>999<br>999 | 998<br>999<br>999               | <b>999</b>                      | 549                             |                                 |                                 |                                 |                                 |                                 |                                 |
| 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 964<br>967<br>994 | 599                             |                                 |                                 |                                 |                                        |                                 |                                 |                                 |                                 |                                 |                                 |   | #. 90<br>9.00<br>10.00<br>15.00<br>20.00 | 987                             | 549                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 30.00<br>40.00<br>50.00                 | 699               |                                 |                                 |                                 |                                 |                                        |                                 |                                 |                                 |                                 |                                 |                                 |   | 30.u0<br>40.00<br>50.00                  | 499<br>999<br>999               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |

|                                         |                                 |                                 |                                 |                                 | C =                             | 5.0                             | <u> </u>                        |                                 |                                         |                                 |                                 |                                 |  |                                         |                                 |                                      |                                 | ᆫ                               | C ·                             | 6.0                             | <u> </u>                        |                                 |                                 |                                 |                                 |                                 |
|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|-----------------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 2                                       | 4                               | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                                      | 30                              | <b>5</b> 0                      | INF                             |  | 2                                       | 4                               | 6                                    | A                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 510<br>530                      | 561<br>584<br>606               | 581<br>605<br>627               | 591<br>515<br>639               | 646                             | 601                             | 654                             | 580<br>607<br>632<br>656<br>679 | 609<br>634                              | 587<br>614<br>639<br>664<br>687 | 591<br>618<br>644<br>668<br>692 | ^50                             |  | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 544                             | 553<br>576<br>599<br>620<br>641      | 571<br>596<br>619<br>642<br>663 |                                 | 612<br>637<br>660               | 041                             | 644<br>668                      | 647<br>670                      | 649                             | 654                             | 458                             | 612<br>638<br>664<br>688<br>712 |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 586<br>683<br>619<br>634<br>648 | 647<br>666<br>684<br>701<br>717 | 670<br>690<br>709<br>726<br>743 | 702                             | 729                             | 715<br>735<br>753               | 719<br>739                      | 742                             | 724<br>744                              | 710<br>731<br>751<br>769<br>747 | 714<br>736<br>756<br>775<br>792 | 721<br>742<br>763<br>782<br>900 |  | 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 631                             | 644                                  | 721                             | 645<br>715<br>733<br>751<br>768 | 741                             | 72A<br>747<br>764               | 711<br>731<br>750<br>768<br>785 | 753<br>771                      | 716<br>736<br>756<br>774<br>791 | 722<br>743<br>762<br>780<br>797 |                                 | 734<br>754<br>774<br>793<br>810 |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 468                             | 747                             | 759<br>774<br>788<br>-01<br>-14 | 78H<br>H02<br>H16               | /61<br>/47<br>611<br>624<br>437 | 617<br>617<br>630<br>643        | 521<br>535<br>547               | H24                             | #12<br>#27<br>840                       | 814<br>819<br>834<br>845<br>860 |                                 |                                 |  | 1.70                                    | 711                             | 743<br>757<br>771<br>783<br>795      | 769<br>784<br>798<br>P10<br>P23 | 783<br>798<br>812<br>825<br>837 | /91<br>886<br>820<br>833<br>845 | 797<br>412<br>426<br>839<br>851 | 801<br>416<br>430<br>443<br>455 | 713<br>746                      | +07<br>+22<br>+36<br>549<br>461 | 814<br>829<br>843<br>856<br>868 | 619<br>+34<br>+46<br>=61<br>+73 | 50<br>541<br>456<br>469<br>881  |
| 1.75<br>1.80<br>1.85<br>1.90<br>1.95    | 722<br>733<br>743<br>752<br>761 | e () A<br>A 1 Q<br>A 2 Q        | *26<br>*37<br>*47<br>*57<br>*66 | 462                             | 049<br>*60<br>*70<br>*80<br>489 | *65<br>+/6<br>886               |                                 | #74<br>#84<br>893               | +76<br>HH6<br>H96                       | 903                             | 408<br>499                      | #97<br>907<br>916<br>924        |  | 1.75<br>1.80<br>1.85<br>1.90<br>1.95    | 1761                            | 806<br>117<br>127<br>134<br>145      | n34<br>n45<br>n54<br>464<br>473 | 848<br>559<br>469<br>478<br>887 | 657<br>867<br>477<br>487<br>489 | 443<br>442                      | 867<br>277<br>296<br>905        | 400<br>900                      | 672<br>683<br>693<br>902<br>918 | 900                             | 905<br>914                      | 492<br>903<br>912<br>921<br>929 |
| 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 777<br>765<br>793               | 846<br>855<br>867<br>876<br>876 | F74<br>482<br>490<br>997<br>704 | 589<br>R97<br>704<br>911<br>917 | 912                             | 903<br>911<br>918<br>925<br>921 | 922                             |                                 | 427                                     | 920<br>927<br>934<br>940<br>946 | 925<br>932<br>939<br>945<br>951 | 932<br>939<br>946<br>952<br>957 |  | 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 743                             | F69                                  | 464                             | 495<br>902<br>909<br>916<br>922 | 903<br>911<br>917<br>924<br>930 |                                 | 913<br>920<br>927<br>933<br>939 | 93C                             | 918<br>925<br>932<br>938<br>944 | 238                             | 943                             | 937<br>943<br>950<br>955<br>960 |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | P13                             | 883<br>889<br>885<br>845<br>845 | 910<br>915<br>921<br>926<br>931 | 929<br>934<br>939               |                                 | 736<br>742<br>747<br>751<br>755 | 454                             | 953<br>757                      |                                         | 951<br>956<br>950<br>954<br>968 |                                 | 962<br>966<br>970<br>974<br>977 |  | 2.25<br>2.36<br>2.35<br>2.40<br>2.45    | #26<br>#31                      | 505                                  | 715<br>720<br>725<br>730<br>734 | 928<br>933<br>938<br>942<br>946 | 935<br>940<br>945<br>949<br>953 | 950<br>954                      | 944<br>949<br>953<br>957<br>961 | 947<br>951<br>956<br>960<br>963 | 949<br>953<br>958<br>962<br>965 | 963<br>967                      | 959<br>963<br>967<br>971<br>974 | 969<br>969<br>973<br>976<br>979 |
| 2.50<br>2.60<br>2.70<br>2.60<br>2.60    | 655<br>653                      | 910<br>919<br>927<br>934<br>940 | 935<br>943<br>950<br>956<br>961 |                                 | 954<br>961<br>967<br>972<br>976 | 959<br>965<br>971<br>976<br>980 | 978                             | 45U                             |                                         | 9/1<br>9/7<br>9d2<br>9d5<br>9d6 | 975<br>980<br>984<br>985<br>993 | 780<br>785<br>786<br>791<br>793 |  | 2.50<br>2.70<br>2.70<br>2.80<br>2.90    | 452<br>461<br>469               | 914<br>923<br>930<br>937<br>943      | 737<br>746<br>753<br>758<br>763 | 950<br>957<br>963<br>968<br>973 | 957<br>964<br>969<br>974<br>978 | 973<br>977                      |                                 | 478                             |                                 | 983<br>986                      |                                 | 981<br>986<br>989<br>992<br>994 |
| 3.00<br>3.19<br>3.20<br>3.30<br>3.40    | +65<br>+91<br>+97               | 945<br>950<br>955<br>959<br>962 | 966<br>978<br>973<br>976<br>979 | 77H<br>781<br>784               | 48 t                            | yes.                            | 989<br>989<br>990<br>992<br>993 | 987<br>989<br>791<br>793<br>794 | 988<br>990<br>992<br>993<br>995         | 941<br>943<br>994<br>945<br>946 |                                 |                                 |  | 3.40<br>3.10<br>3.20<br>3.30<br>3.40    | #69<br>#65<br>901               |                                      | 168<br>172<br>175<br>178<br>180 |                                 | 481                             | 969<br>971                      | 991<br>992                      | 745<br>745<br>746<br>746        | 993                             |                                 | 993<br>995<br>994<br>997<br>996 | 996<br>997<br>998<br>998<br>998 |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 42n                             | 966<br>968<br>971<br>973<br>976 | y81<br>y83<br>y85<br>y87<br>y87 | 988<br>989<br>991<br>992<br>993 | 991<br>992<br>994<br>995        | 793<br>794<br>795<br>796<br>797 | 994<br>995<br>996<br>997<br>997 | 795<br>796<br>797<br>797<br>798 | 996<br>097<br>997<br>996<br>698         | 947<br>948<br>948<br>949<br>949 | 994<br>994<br>994<br>994        | 99<br>99                        |  | 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 911<br>915<br>919<br>923<br>925 | \$67<br>\$70<br>\$73<br>\$75<br>\$77 | 784<br>784<br>784<br>789<br>789 | 989<br>990<br>991<br>993        | 995                             |                                 | 995<br>996<br>996<br>996<br>998 | 998                             | 496<br>947<br>947<br>498<br>948 | 998<br>948<br>948<br>949<br>949 | 999<br>999<br>999<br>999        | 999<br>999                      |
| 4.00<br>4.20<br>4.40<br>4.60<br>4.60    | 933<br>938<br>943               | 97F<br>981<br>984<br>98F<br>98F |                                 | 995                             | 596<br>997<br>998<br>998<br>999 | 747<br>744<br>749<br>759<br>766 | 49H<br>49A<br>49Q<br>699        | 994<br>999<br>999               | 433<br>433<br>433                       | 944                             |                                 |                                 |  | 4.00<br>4.20<br>4.40<br>4.60<br>4.80    | 930<br>936<br>941<br>945<br>950 | 587                                  | 492<br>494<br>495<br>495        | 994<br>996<br>997<br>997<br>998 | 996<br>999                      | 997<br>998<br>999<br>999<br>999 | 999<br>999<br>999               | 799                             | 699<br>999<br>999               | 949                             |                                 |                                 |
| 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 959<br>966<br>971               | 589<br>592<br>595<br>596<br>597 | 496<br>998<br>999<br>499<br>499 | 999<br>999                      | 190                             | ,,,                             |                                 |                                 |                                         |                                 | i                               |                                 |  | 5.00<br>5.00<br>6.00<br>6.50<br>7.00    | 967                             | 594                                  | +97<br>+94<br>+99<br>+99<br>+99 | 999<br>999                      | 949                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 6.00<br>9.00<br>10.00<br>15.00<br>20.00 | 984<br>987<br>994               | 5 4 8<br>5 4 9                  |                                 |                                 |                                 |                                 |                                 |                                 |                                         |                                 |                                 |                                 |  | 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 455                             |                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 30.00<br>40.00<br>50.00                 | 499                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                         |                                 |                                 |                                 |  | 30.00<br>40.00<br>50.00                 | 499<br>499                      |                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
|                                         | <u> </u>                        | <u>L</u>                        |                                 | <u> </u>                        |                                 | <u></u>                         |                                 | <u> </u>                        | لــــــــــــــــــــــــــــــــــــــ |                                 |                                 | <u> </u>                        |  |                                         | L                               |                                      | <u> </u>                        |                                 | L                               |                                 |                                 | L                               |                                 |                                 | لببا                            |                                 |

• •

|                                         |                                 |                                 |                                 | L                               | C =                             | e.(                             |                                 |                                 |                                 |                                 |                                 |                                 |                                         |                                 |                                 |                                 | L                               | C =                                    | 10,                             |                                    |                                 |                                 |                                 |                                 |                                 |
|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| , z                                     | 4                               | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                              | 30                              | 50                              | INF                             | 2                                       | 4                               | 6                               | 8                               | 10                              | 12                                     | 14                              | 16                                 | 18                              | 20                              | 30                              | 50                              | INF                             |
| 1.05<br>1.10<br>1.15                    | 543<br>562                      | 595<br>617<br>438               | 591<br>414<br>437<br>459<br>680 | 670                             | 431<br>654                      | 610<br>635<br>659<br>681<br>703 | 613<br>638<br>662<br>685<br>706 |                                 | 617<br>642<br>666<br>689<br>711 | 622<br>647<br>672<br>695<br>717 | 625<br>651<br>676<br>699<br>721 | 631<br>457<br>681<br>705<br>727 | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 533<br>554<br>573<br>591<br>608 | 583<br>606<br>627<br>448<br>667 | 602<br>525<br>548<br>669<br>689 | 680                             | 617<br>642<br>665<br>687<br>707        | 621<br>646<br>669<br>691<br>712 | 624<br>649<br>672<br>694<br>716    | 651<br>675                      | 628<br>653<br>676<br>699<br>720 | 633<br>658<br>682<br>704<br>726 | 636<br>662<br>686<br>709<br>730 | 642<br>667<br>692<br>715<br>737 |
| 1,40                                    | 615<br>631<br>647<br>661<br>675 | 694<br>711                      | /35                             | 711<br>730<br>748<br>765<br>780 |                                 | 761                             | 727<br>746<br>764<br>782<br>798 | 729<br>749<br>767<br>784<br>801 | 732<br>751<br>769<br>787<br>603 | 738<br>757<br>776<br>793<br>818 | 742<br>762<br>781<br>798<br>#15 | 749<br>769<br>788<br>605<br>822 | 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 625<br>641<br>656<br>670<br>683 | 686<br>703<br>720<br>735<br>750 | 708<br>726<br>743<br>760<br>775 |                                 | 727<br>746<br>764<br>780<br>796        | 732<br>751<br>769<br>785<br>801 | 736<br>755<br>772<br>789<br>805    | 738<br>757<br>775<br>792<br>808 | 740<br>759<br>777<br>794<br>810 | 746<br>766<br>784<br>801<br>817 | 751<br>770<br>788<br>806<br>822 | 757<br>777<br>795<br>812<br>829 |
| 1.60                                    | 688<br>700<br>712<br>723<br>734 |                                 | #89<br>#21                      | 795<br>609<br>823<br>435<br>447 |                                 | 837<br>849                      | 013<br>827<br>841<br>853<br>865 | 844<br>856                      | 618<br>633<br>846<br>859<br>870 | 853                             |                                 | A37<br>H52<br>A65<br>A78<br>A89 | 1.50<br>1.55<br>1.60<br>1.65            | 696<br>708<br>720<br>731<br>741 |                                 | 789<br>803<br>416<br>827<br>439 |                                 | 810<br>824<br>837<br>849<br>860        | 816<br>830<br>843<br>855<br>866 |                                    | 823<br>837<br>850<br>862<br>873 |                                 | 859<br>871                      | 637<br>651<br>864<br>876<br>887 | 844<br>#58<br>871<br>#83        |
| 1.85                                    | 744<br>754<br>763<br>772<br>780 | 817<br>827<br>836<br>845<br>854 | 844<br>454<br>463<br>472<br>480 | 557<br>568<br>677<br>886<br>894 | 566<br>576<br>#85<br>#94<br>902 |                                 | 875<br>886<br>895<br>904<br>912 | 8/9<br>889<br>896<br>907<br>915 | 881<br>891<br>900<br>909<br>917 | 888<br>898<br>907<br>915<br>923 | 693<br>913<br>912<br>920<br>928 | 900<br>410<br>919<br>927<br>935 | 1.75<br>1.60<br>1.65<br>1.90            | 751<br>761<br>770<br>778<br>786 | 823<br>633<br>842<br>851<br>859 | H49<br>H59<br>H68<br>H77<br>H85 | 863<br>873<br>882<br>890<br>898 | 871<br>881<br>890<br>898<br>966        | 876<br>886<br>895<br>904<br>912 | H90<br>H99<br>906                  | 883<br>893<br>902<br>910<br>918 | 495<br>404<br>913               | 892<br>902<br>911<br>919<br>927 | H97<br>907<br>916<br>924<br>931 | 905<br>914<br>923<br>931<br>938 |
| 2.00<br>2.05<br>2.10<br>2.15            | 788<br>79A<br>603<br>616        |                                 | #88<br>#96<br>402<br>409<br>415 | 909<br>915<br>922<br>927        | 923                             | 915<br>922<br>928<br>934<br>940 | 919<br>926<br>932<br>938<br>943 | 929<br>929<br>935<br>941<br>946 | 924<br>931<br>937<br>943<br>948 | 930<br>937<br>943<br>949<br>954 | 948<br>953                      | 942<br>948<br>954<br>959<br>964 | 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | 794<br>601<br>608<br>615<br>821 | 281                             | 892<br>900<br>906<br>912<br>918 | 906<br>912<br>919<br>925<br>930 | V13<br>V20<br>927<br>V32<br>V38        | 919<br>925<br>932<br>937<br>943 | \$22<br>929<br>935<br>\$41<br>\$46 |                                 | 927<br>934<br>940<br>945<br>950 | 934<br>940<br>946<br>951<br>956 | 938<br>945<br>950<br>955<br>960 | 945<br>951<br>956<br>966        |
| 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | <b>#39</b>                      | 901                             | 920<br>925<br>930<br>935<br>935 | 933<br>938<br>942<br>946<br>950 | 945<br>945<br>949<br>953<br>957 | 945<br>949<br>954<br>958<br>961 | 948<br>953<br>957<br>961<br>964 | 951<br>955<br>959<br>963<br>966 | 953<br>557<br>561<br>565<br>568 | 958<br>963<br>966<br>970<br>973 | 962<br>966<br>970<br>973<br>976 | 96A<br>972<br>975<br>978<br>981 | 2.45<br>2.30<br>2.35<br>2.40<br>2.45    | H27<br>H33<br>H39<br>H44<br>H49 | 609                             | 423<br>426<br>433<br>437<br>941 | 935<br>940<br>945<br>949<br>952 | 943<br>947<br>951<br>955<br>959        | 947<br>952<br>956<br>960<br>963 | 951<br>955<br>959<br>963<br>966    | 761<br>765                      | 959                             | 968                             | 964<br>968<br>972<br>975<br>978 | 973<br>973<br>977<br>979<br>982 |
| 2.50<br>2.60<br>2.70<br>2.80<br>2.90    | E 75                            | 920<br>928<br>935<br>941<br>947 | 943<br>950<br>956<br>961<br>966 | 954<br>960<br>966<br>971<br>975 | 960<br>966<br>972<br>976<br>980 | 965<br>970<br>979<br>983        | 967<br>973<br>978<br>982<br>985 | 975<br>980<br>983<br>986        | 971<br>977<br>981<br>944<br>987 | 976<br>981<br>985<br>988<br>940 | 979<br>984<br>987<br>990<br>992 | 983<br>987<br>990<br>993<br>995 | 2.50<br>2.40<br>2.70<br>2.60<br>2.90    | 254<br>263<br>271<br>879<br>286 | 923<br>930<br>937<br>943<br>949 | 745<br>752<br>754<br>763<br>768 |                                 | 962<br>968<br>973<br>977<br>981        | 966<br>972<br>976<br>980<br>984 | 969<br>974<br>979<br>983<br>986    | 981<br>984                      | 973<br>978<br>982<br>985<br>988 | 977<br>982<br>985<br>988<br>991 | 984<br>984<br>984<br>991<br>993 | 984<br>988<br>991<br>993<br>995 |
| 3.40<br>3.10<br>3.20<br>3.30<br>3.40    | +89<br>+95<br>901<br>906<br>911 | 952<br>956<br>960<br>964<br>967 | 970<br>974<br>977<br>979<br>982 | 978<br>981<br>984<br>986<br>988 | 983<br>985<br>986<br>990<br>991 | 946<br>948<br>990<br>992<br>993 | 967<br>990<br>992<br>993<br>994 | 989<br>991<br>993<br>994<br>995 | 996<br>995<br>995               | 992<br>994<br>995<br>996<br>997 | 994<br>996<br>997<br>997<br>998 | 996<br>997<br>998<br>999<br>999 | 3.00<br>3.10<br>3.20<br>3.30<br>3.40    | H92<br>H9R<br>904<br>909<br>913 | 553<br>558<br>562<br>565<br>568 | 971<br>975<br>978<br>980<br>983 |                                 | 984<br>986<br>986<br>988<br>990<br>992 | 986<br>989<br>991<br>992<br>993 | 988<br>990<br>992<br>993<br>995    | 989<br>991<br>993<br>994<br>995 |                                 | 993<br>994<br>996<br>997<br>997 | 994<br>996<br>997<br>998<br>998 | 996<br>797<br>998<br>999        |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 923<br>927                      | 975                             | 984<br>986<br>987<br>989<br>190 | 990<br>991<br>992<br>993        | 993<br>994<br>995<br>995        | 994<br>995<br>996<br>997<br>997 | 995<br>994<br>997<br>997<br>998 | 996<br>997<br>997<br>998<br>998 | 997<br>997<br>998<br>998        | 99H<br>99B<br>990<br>999        | 999<br>999<br>999               | 999                             | 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 918<br>922<br>925<br>929<br>932 | 976<br>978                      | 985<br>986<br>988<br>989<br>990 | 994                             | 993<br>994<br>995<br>996<br>996        | 995<br>995<br>996<br>997<br>997 | 996<br>996<br>997<br>998           | 996<br>997<br>998<br>998        | 997<br>997<br>998<br>998        | 998<br>998<br>999<br>999        | 999<br>999<br>999               | 999                             |
| 4.00<br>4.20<br>4.49<br>4.60<br>4.80    | 948                             | 983<br>986<br>984               | 991<br>993<br>994<br>995        | 995<br>996<br>997<br>998<br>998 | 997<br>998<br>998<br>999        | 998<br>998<br>999<br>999        | 998<br>999<br>999<br>999        | 999<br>999                      | 999<br>999                      | 949                             |                                 |                                 | 4.00<br>4.20<br>4.40<br>4.60<br>4.60    | 935<br>941<br>946<br>950<br>954 | 984                             | 991<br>993<br>994<br>996        | 995<br>996<br>997<br>998<br>998 | 498                                    | 998<br>999<br>999<br>999        | 998<br>999<br>999<br>999           | 999                             | 999<br>999                      | 949                             |                                 |                                 |
| 5.00<br>5.50<br>6.00<br>6.50<br>7.00    | 956<br>963<br>969<br>973<br>977 | 995<br>996                      | 997<br>998<br>999<br>999        | 999                             | 449                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 5.00<br>5.50<br>6.00<br>4.50<br>7.00    | 957<br>964<br>970<br>974<br>978 | 995<br>997                      | 997<br>998<br>999<br>999        | 999                             | 999                                    |                                 |                                    |                                 |                                 |                                 |                                 |                                 |
| 8.00<br>9.00<br>10.00<br>15.00<br>20.00 |                                 | 99A<br>999<br>999               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 983<br>996<br>989<br>995<br>997 | 546<br>549<br>540               |                                 |                                 |                                        |                                 |                                    |                                 |                                 |                                 |                                 |                                 |
| 30.00<br>40.00<br>50.00                 | 999<br>9 <del>9</del> 9         |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 30,00<br>40.00<br>50.00                 | 990<br>999                      |                                 |                                 |                                 |                                        |                                 |                                    |                                 |                                 |                                 |                                 |                                 |
|                                         |                                 | <u> </u>                        |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 | L_                              |                                         |                                 | <u> </u>                        |                                 |                                 |                                        |                                 |                                    |                                 | <u></u>                         |                                 |                                 |                                 |

45 (last page)

|                                      |                   |                                          |                                 |                                 | C .                             | 20,0                            |                   |                                 |                                 |                                 |                                 |                                 |   |                                         |                   |                                 |                                 |                                 | C ·                             | INF                             |                                 |                                 |                   |                                 |                   |                |
|--------------------------------------|-------------------|------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|-----------------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|----------------|
| 2 2                                  | 4                 | 6                                        | В                               | 10                              | 12                              | 14                              | 16                | 18                              | 20                              | <b>5</b> U                      | <b>5</b> u                      | INF                             |   | 2                                       | 4                 | 6                               | 8                               | 10                              | 12                              | 14                              | 16                              | 18                              | 20                | 30                              | 50                | IN             |
| 1.00<br>1.05<br>1.10<br>1.15<br>1.20 | 575<br>594<br>611 | 627<br>648<br>667                        | 623<br>646<br>668<br>688<br>787 | 499                             | 662<br>684<br>705               | 669<br>710                      | 492<br>713        |                                 | 696                             | 654<br>678<br>701<br>723<br>743 |                                 | 463<br>587<br>711<br>733<br>754 |   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20    | 631               | £67                             | 644<br>666<br>687<br>706<br>725 | 697                             | 659<br>682<br>703<br>723<br>742 | 727                             |                                 | 668<br>691<br>712<br>733<br>752 | 692<br>714        | 719<br>740                      | 701<br>723        | 70<br>72<br>74 |
| 1.25<br>1.30<br>1.35<br>1.40<br>1.45 | 659<br>673<br>687 | 736<br>751                               | 726<br>743<br>759<br>775<br>789 | 787                             |                                 | 767<br>784<br>200               | 788<br>⊬03        | /55<br>773<br>790<br>806<br>821 | 792<br>608                      | A15                             | 767<br>786<br>803<br>219<br>835 | 774<br>/92<br>410<br>426<br>441 |   | 1.25<br>1.30<br>1.35<br>1.40<br>1.45    | 677<br>690<br>704 | 721<br>737<br>752<br>766<br>779 | 789                             | 786<br>801                      | 760<br>777<br>793<br>HUR<br>H22 | 765<br>782<br>796<br>813<br>827 |                                 | 771<br>788<br>604<br>819<br>634 | #21               | 796<br>812<br>828               | H17               | H2             |
| 1.50<br>1.55<br>1.60<br>1.65<br>1.70 | 724<br>735<br>745 | 791<br>803<br>814                        | 103<br>114<br>123<br>135<br>150 | 416<br>429<br>441<br>452<br>463 | 623<br>436<br>449<br>460<br>471 | +54<br>+65                      | #46<br>#58<br>969 |                                 | H74                             | 869                             | H49<br>H62<br>H74<br>H86<br>H96 | 456<br>469<br>481<br>492<br>903 |   | 1.50<br>1.55<br>1.60<br>1.65<br>1.70    | 739<br>749<br>759 | 742<br>844<br>815<br>826<br>836 |                                 | 152                             | 459<br>470                      | 864<br>875                      |                                 | 659<br>671<br>662               | ×84               | 868<br>879                      | H84               | 87<br>29       |
| 1.75<br>1.80<br>1.85<br>1.90         | 774<br>782        | 834<br>844<br>852<br>861<br>861          | 260<br>469<br>278<br>486<br>493 | 873<br>882<br>890<br>899<br>906 |                                 | 866<br>195<br>103<br>111<br>119 | 707<br>715        | H¥2<br>¥U2<br>¥10<br>¥18<br>¥25 |                                 |                                 | 923                             | 913<br>921<br>930<br>937<br>944 | ! | 1.75<br>1.86<br>1.85<br>1.90<br>1.95    | 794<br>F02        | 854<br>862<br>870               | +78<br>+86                      | 906                             | 889<br>898<br>906<br>913<br>920 | 911<br>918                      | 914<br>922                      | 901<br>909<br>917<br>924<br>931 | 911               | 932                             | 937               | 92<br>93<br>94 |
| 2.40<br>2.10<br>2.15<br>2.40         | 113<br>119<br>126 | 889<br>889<br>895                        | 913                             | 913<br>919<br>925<br>931<br>936 | 43H                             | 943                             | 941               | 73A                             | 934<br>940<br>945<br>950<br>955 | 945<br>951<br>956               | 944<br>950<br>955<br>969<br>964 | 950<br>955<br>961<br>965<br>969 | ! | 2.00<br>2.05<br>2.10<br>2.15<br>2.20    | #23<br>#29<br>#35 | +44                             | 90A<br>914<br>920<br>925<br>930 | 931                             |                                 | 942<br>947                      | 935<br>940<br>946<br>950<br>955 | 94B<br>953                      | 450               |                                 | 963               | 46             |
| 2.30                                 | M43<br>H48<br>M53 | 916                                      | y38                             | 949                             | 947<br>952<br>956<br>959<br>963 | 960                             | 959<br>963<br>966 | 957<br>961<br>965<br>968<br>971 | 967                             | 968<br>971<br>974               | 475                             | 775<br>776<br>779<br>782<br>784 |   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45    | +52<br>+57<br>+62 | 921<br>926                      | 935<br>939<br>943<br>947<br>950 | 953<br>957                      | 963                             | 963<br>966                      |                                 | 961<br>965<br>968<br>971<br>974 | 473               | 9/1                             | 977<br>980        | 97<br>98<br>98 |
| 2.50<br>2.70<br>2.50                 | #71<br>879<br>#86 | 935                                      | 461                             | 960<br>965<br>970<br>975<br>978 | 966<br>971<br>975<br>979<br>983 | 974                             | 977<br>981<br>984 | 974<br>979<br>983<br>986<br>988 |                                 | 984                             | 962<br>986<br>989<br>992<br>994 | 786<br>789<br>942<br>794<br>796 |   | 2.50<br>2.60<br>2.70<br>2.60<br>2.90    | 47A<br>48A<br>493 | 646                             | 164                             | 963<br>968<br>973<br>977<br>980 | ¥81                             | 781<br>784                      | 975<br>979<br>983<br>986<br>988 | 981<br>984                      | 985<br>988        | 981<br>985<br>988<br>991<br>993 | 988               | 99             |
| 3.10<br>3.20<br>3.30<br>3.40         | 914               |                                          |                                 | 984<br>986<br>988               |                                 | 948<br>940<br>943<br>948        | 993               |                                 | 991<br>993<br>994<br>996<br>996 |                                 | 995<br>996<br>997<br>998<br>998 | 997<br>998<br>998<br>999        |   | 3.10<br>3.20<br>3.30<br>3.40            | 910<br>915<br>919 | 967<br>970                      | 984                             | 447                             | 987<br>989<br>991<br>992<br>993 | 951<br>992<br>994               | 994                             | 994                             | 994               | 994<br>996<br>997<br>997<br>998 |                   | 99             |
| 3.50<br>3.60<br>3.70<br>3.80<br>3.90 | 926<br>931<br>933 | 9/3<br>978<br>9/7<br>9/9<br>981          | 344                             | 994                             | CAV                             | 995<br>996<br>997<br>997<br>998 | 997<br>998        | 997<br>997<br>996<br>996        | 997<br>998<br>998<br>999<br>999 | 999                             | 499<br>499<br>499               | 499                             |   | 3.50<br>3.60<br>3.70<br>3.80<br>3.90    | 931<br>934<br>937 | 5/9<br>581                      | 991                             | 994                             | 994<br>995<br>996<br>997<br>997 | 997                             |                                 | 998<br>998                      | 998<br>998<br>999 | 949<br>949<br>949               | 999<br>999<br>999 |                |
| 4.00<br>4.20<br>4.40<br>4.66<br>4.66 | 944<br>949<br>953 | 587<br>589                               | 994<br>995<br>996               | 997                             | 997<br>998<br>999<br>999        | 644                             | 499<br>499        | 444                             | 999                             |                                 |                                 |                                 |   | 4.00<br>4.20<br>4.40<br>4.60<br>4.80    | 948<br>952<br>956 | 986<br>988<br>980               | 495                             | 998<br>998                      | 449                             | 996<br>996<br>996<br>996        | 499<br>499<br>499               | 999<br>999                      | 499<br>499        |                                 |                   |                |
| 5.00<br>5.50<br>6.00<br>6.50<br>7.00 | 965<br>972<br>976 | 5 92<br>5 9 4<br>5 9 A<br>5 9 7<br>5 9 R | 999                             |                                 | 499                             |                                 |                   |                                 |                                 |                                 |                                 |                                 |   | 5.00<br>5.50<br>6.50<br>7.00            | 969<br>973<br>977 | SYA                             | 998<br>998<br>999<br>999        | 999<br>999                      | 999                             |                                 |                                 |                                 |                   |                                 |                   |                |
| 8.UC<br>9.00<br>10.00<br>15.00       | 547<br>589<br>595 | CUO                                      |                                 |                                 |                                 |                                 |                   |                                 |                                 |                                 |                                 |                                 |   | 8.00<br>9.00<br>10.00<br>15.00<br>20.00 | 444<br>444<br>444 | 648<br>648                      |                                 |                                 |                                 |                                 |                                 |                                 |                   |                                 |                   |                |
| 30.00<br>40.00<br>50.00              | 999               |                                          |                                 |                                 | 1                               |                                 |                   |                                 |                                 |                                 |                                 |                                 |   | 30.00<br>40.00<br>50.00                 | 999               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                   |                                 |                   |                |

## UNCLASSIFIED

System Development Corporation, Santa Monica, California CONFIDENCE BANDS IN STRAIGHT LINE REGRESSION. Scientific rept., SP-1181/000/00, by A. V. Gafarian. 17 April 1963, 45p., 7 refs., 5 figs.

Unclassified report

DESCRIPTORS: Statistical Distribution. Statistical Functions.

Develops a method for obtaining confidence bands in polynomial regression when the observations

UNCLASSIFIED

are independently distributed with constant but unknown variance. Reports that the bands may be obtained over arbitrary sets of the independent variable with exact preassigned confident coefficients. Also reports that difficult distribution problems result when specific applications are attempted. Discusses first degree polynomials since some progress has been made here. Provides a table that obtains a constant width confidence band which contains the true but unknown straight regression line for values of the independent variable in some arbitrarily selected interval with an exact preassigned confident coefficient. Compares the present method with the classical hyperbolic band for the whole regression line.

UNCLASSIFIED

UNCLASSIFIED