Convex Optimization for Communications and Signal Processing

Fall 2020

Institute of Communications Engineering

Department of Electrical Engineering

National Tsing Hua University

Homework #2 – Solution

Coverage: chapter 1–3

Due date: 25 November, 2020

Instructor: Chong-Yung Chi

TAs: Wei-Bang Wang & Meng-Syuan Lin

Problem 1. (10 points) Let $S \in \mathbb{R}^n$ be a compact set. Let $N : \mathbb{R}^n \to \mathbb{R}$ and $D : \mathbb{R}^n \to \mathbb{R}$ be continuous functions of \mathbf{x} , and $D(\mathbf{x}) > 0$ for all $\mathbf{x} \in S$. Show that the function F, defined as

$$F(t) = \max \{ N(\mathbf{x}) - tD(\mathbf{x}) \mid \mathbf{x} \in S \}, \text{ dom } F = \mathbb{R},$$

is convex.

Solution:

Let \mathbf{x}_0 maximize $F(\theta t_1 + (1 - \theta)t_2)$, where $t_1, t_2 \in \mathbb{R}$ and $\theta \in [0, 1]$. Then

$$F(\theta t_1 + (1 - \theta)t_2) = N(\mathbf{x}_0) - (\theta t_1 + (1 - \theta)t_2)D(\mathbf{x}_0)$$

$$= \theta(N(\mathbf{x}_0) - t_1D(\mathbf{x}_0)) + (1 - \theta)(N(\mathbf{x}_0) - t_2D(\mathbf{x}_0))$$

$$\leq \theta \cdot \max\{N(\mathbf{x}) - t_1D(\mathbf{x}) \mid \mathbf{x} \in S\} + (1 - \theta) \cdot \max\{N(\mathbf{x}) - t_2D(\mathbf{x}) \mid \mathbf{x} \in S\}$$

$$= \theta F(t_1) + (1 - \theta)F(t_2).$$

Therefore, we prove that function F is convex.

Problem 2. (10 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is convex and differentiable, with $\mathbb{R}_+ \subseteq \operatorname{dom} f$. Show that the function F, defined as

$$F(x) = \frac{1}{x} \int_0^x f(t)dt, \quad \mathbf{dom} \ F = \mathbb{R}_{++},$$

is convex.

Solution:

$$\begin{split} F'(x) &= -\Big(\frac{1}{x^2}\Big) \int_0^x f(t)dt + \frac{f(x)}{x} \\ F''(x) &= \Big(\frac{2}{x^3}\Big) \int_0^x f(t)dt - 2\frac{f(x)}{x^2} + \frac{f'(x)}{x} \\ &= \Big(\frac{2}{x^3}\Big) \left(\int_0^x f(t)dt - xf(x) + \frac{x^2f'(x)}{2}\right) \\ &= \Big(\frac{2}{x^3}\Big) \left(\int_0^x f(t)dt - xf(x) + x^2f'(x) - \frac{1}{2}x^2f'(x)\right) \\ &= \Big(\frac{2}{x^3}\Big) \int_0^x (f(t) - f(x) - f'(x)(t-x))dt. \end{split}$$

Convexity now follow the fact that

$$f(t) > f(x) + f'(x)(t - x)$$

for all $x, t \in \mathbf{dom} \ f$, which implies $F''(x) \geq 0$.

Problem 3. (10 points) Prove that a function $f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex *if and only if* for all $\mathbf{x} \in \operatorname{dom} f$ and for all \mathbf{v} , the function $g(t) = f(\mathbf{x} + t\mathbf{v})$ is quasiconvex on its domain $\{t \mid \mathbf{x} + t\mathbf{v} \in \operatorname{dom} f\}$.

Solution:

Let us prove the necessity followed by sufficiency.

• Necessity: By contradiction, assume g(t) is non-quasiconvex for some \mathbf{x} and \mathbf{v} . There exist $t_1, t_2 \in \operatorname{dom} g$ (and $\mathbf{x} + t_1 \mathbf{v}, \mathbf{x} + t_2 \mathbf{v} \in \operatorname{dom} f$) such that

$$g(\theta t_1 + (1 - \theta)t_2) > \max\{g(t_1), g(t_2)\}, \quad \theta \in [0, 1],$$

by the modified Jensen's inequality, implying

$$f(\theta(\mathbf{x} + t_1\mathbf{v}) + (1 - \theta)(\mathbf{x} + t_2\mathbf{v})) > \max\{f(\mathbf{x} + t_1\mathbf{v}), f(\mathbf{x} + t_2\mathbf{v})\}.$$

Therefore, f is not quasiconvex (contradiction with "f is quasiconvex"). Hence g is quasiconvex.

• Sufficiency: By contradiction, suppose that $f(\mathbf{x})$ is not quasiconvex. Then, there exist $\mathbf{x}_1, \mathbf{x}_2 \in \operatorname{dom} f$ and some $\theta \in (0, 1)$ such that

$$f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) > \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}.$$

Now $g(t) = f(\mathbf{x} + t\mathbf{v})$ must be a quasiconvex function. Let $\mathbf{x} = \mathbf{x}_1$ and $\mathbf{v} = \mathbf{x}_2 - \mathbf{x}_1$. Thus $0, 1 \in \operatorname{\mathbf{dom}} g$ and also $[0, 1] \subset \operatorname{\mathbf{dom}} g$ since $\operatorname{\mathbf{dom}} g$ is a convex set. Then we have

$$g(1 - \theta) = f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2)$$

$$> \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$$

$$= \max\{g(0), g(1)\}$$

Therefore, g(t) is not quasiconvex (contradiction with the premise of g(t) is quasiconvex). Thus $f(\mathbf{x})$ must be quasiconvex.

Problem 4. (25 points) Show that the following functions are convex/concave:

- (a) (5 points) $f(\mathbf{X}) = \sup_{\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{\|\mathbf{X}\mathbf{v}\|_2}{\|\mathbf{v}\|_2}$ on $\mathbb{R}^{m \times n}$.
- (b) (5 points) $f(\mathbf{x}, \mathbf{Y}) = \mathbf{x}^T \mathbf{Y}^{-1} \mathbf{x}$ on $\mathbb{R}^n \times \mathbb{S}_{++}^n$.
- (c) (7 points) $f(\mathbf{X}) = (\det(\mathbf{X}))^{1/m}$ with $\operatorname{\mathbf{dom}} f = \mathbb{S}_{++}^m$.
- (d) (8 points) $f(\mathbf{x}) = (\det(\mathbf{A}_0 + x_1\mathbf{A}_1 + \dots + x_n\mathbf{A}_n))^{1/m}$, on $\{\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n | \mathbf{A}_0 + x_1\mathbf{A}_1 + \dots + x_n\mathbf{A}_n \succ 0\}$, where $\mathbf{A}_i \in \mathbb{S}^m$.

Solution:

(a) Consider the function $g_{\mathbf{v}}(\mathbf{X}) = \frac{\|\mathbf{X}\mathbf{v}\|_2}{\|\mathbf{v}\|_2}$ with $\mathbf{dom}\ g_{\mathbf{v}} = \mathbb{R}^{m \times n}$ for any $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. The domain of $g_{\mathbf{v}}(\cdot)$ is convex. Furthermore, for any $\theta \in [0,1]$ and $\mathbf{X}_1, \mathbf{X}_2 \in \mathbf{dom}\ g_{\mathbf{v}}$, we have

$$g_{\mathbf{v}}(\theta \mathbf{X}_{1} + (1 - \theta)\mathbf{X}_{2}) = \frac{\|\theta \mathbf{X}_{1}\mathbf{v} + (1 - \theta)\mathbf{X}_{2}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}}$$

$$\leq \frac{\|\theta \mathbf{X}_{1}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}} + \frac{\|(1 - \theta)\mathbf{X}_{2}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}} \quad \text{(by triangle inequality)}$$

$$= \theta g_{\mathbf{v}}(\mathbf{X}_{1}) + (1 - \theta)g_{\mathbf{v}}(\mathbf{X}_{2}) \quad \text{(by the positive homogeneity of a norm)}.$$

Therefore, $g_{\mathbf{v}}$ is convex for any $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. Thus, the function $f(\mathbf{X}) = \sup_{\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} g_{\mathbf{v}}(\mathbf{X})$, which is the pointwise supremum of convex functions, is a convex function.

(b) The epigraph of $f(\mathbf{x}, \mathbf{Y})$ is given by

$$\begin{aligned} \mathbf{epi} \ f &= \{ (\mathbf{x}, \mathbf{Y}, t) | \ \mathbf{x}^T \mathbf{Y}^{-1} \mathbf{x} \leq t, \ (\mathbf{x}, \mathbf{Y}) \in \mathbb{R}^n \times \mathbb{S}_{++}^n \} \\ &= \left\{ (\mathbf{x}, \mathbf{Y}, t) | \ \begin{bmatrix} \mathbf{Y} & \mathbf{x} \\ \mathbf{x}^T & t \end{bmatrix} \succeq \mathbf{0}, \ (\mathbf{x}, \mathbf{Y}) \in \mathbb{R}^n \times \mathbb{S}_{++}^n \right\}, \end{aligned}$$

which is convex. Therefore, $f(\mathbf{x}, \mathbf{Y})$ is convex.

(c) To see that $f(\mathbf{X})$ is concave on \mathbb{S}^n_{++} , we restrict $f(\mathbf{X})$ to a line and prove that $g(t) = (\det(\mathbf{Z} + t\mathbf{V}))^{1/m}$ is concave:

$$g(t) = (\det(\mathbf{Z} + t\mathbf{V}))^{1/m}$$

$$= (\det \mathbf{Z})^{1/m} \left(\det \left(\mathbf{I} + t\mathbf{Z}^{-1/2}\mathbf{V}\mathbf{Z}^{-1/2} \right) \right)^{1/m}$$

$$= (\det \mathbf{Z})^{1/m} \left(\prod_{i=1}^{m} (1 + t\lambda_i) \right)^{1/m},$$

where $\lambda_1, \ldots, \lambda_m$ denote the eigenvalues of $\mathbf{Z}^{-1/2}\mathbf{V}\mathbf{Z}^{-1/2}$. We have expressed g as the product of a positive constant and the geometric mean of $1 + t\lambda_i > 0, i = 1, \ldots, m$ (since: $\mathbf{Z} + t\mathbf{V} \in \mathbb{S}^n_{++}$). Therefore, g is concave.

(d) Suppose that $\mathbf{a} = [a_1, \dots, a_n]^T \in \mathbf{dom} \ f, \ \mathbf{b} = [b_1, \dots, b_n]^T \in \mathbf{dom} \ f.$ Then, for $0 \le \theta \le 1$,

$$\mathbf{A}_0 + (\theta a_1 + (1 - \theta)b_1)\mathbf{A}_1 + \dots + (\theta a_n + (1 - \theta)b_n)\mathbf{A}_n$$

$$= \theta(\mathbf{A}_0 + a_1\mathbf{A}_1 + \dots + a_n\mathbf{A}_n) + (1 - \theta)(\mathbf{A}_0 + b_1\mathbf{A}_1 + \dots + b_n\mathbf{A}_n) \succ 0$$

$$\Rightarrow \theta \mathbf{a} + (1 - \theta)\mathbf{b} \in \mathbf{dom} \ f$$

$$\Rightarrow \mathbf{dom} \ f \text{ is convex.}$$

Let,

$$\mathbf{A} = \mathbf{A}_0 + a_1 \mathbf{A}_1 + \dots + a_n \mathbf{A}_n$$
$$\mathbf{B} = \mathbf{A}_0 + b_1 \mathbf{A}_1 + \dots + b_n \mathbf{A}_n$$

$$f(\theta \mathbf{a} + (1 - \theta)\mathbf{b}) = (\det(\theta \mathbf{A} + (1 - \theta)\mathbf{B}))^{1/m}$$
(2a)

$$\geq \theta \left(\det \left(\mathbf{A} \right) \right)^{1/m} + (1 - \theta) \left(\det \left(\mathbf{B} \right) \right)^{1/m} \tag{2b}$$

$$= \theta f(\mathbf{a}) + (1 - \theta) f(\mathbf{b}). \tag{2c}$$

The inequality (2b) is obtained from the fact that $(\det(\mathbf{X}))^{1/m} \triangleq h(g(\mathbf{X}))$ is a concave function on \mathbb{S}^n_{++} , because $g(\mathbf{X}) = \det(\mathbf{X})$ is concave on \mathbb{S}^n_{++} , $h(x) = x^{1/m}$ is non-decreasing and concave on x > 0. Therefore, $f(\mathbf{x})$ is a concave function.

Problem 5. (15 points) Let $f(\mathbf{X}) = \operatorname{rank}(\mathbf{X})$, with dom $f \triangleq \mathcal{B} = {\mathbf{X} \in \mathbb{R}^{M \times N} \mid \|\mathbf{X}\|_* = \|\mathbf{X}\|_{\mathcal{A}} \leq 1} = \mathbf{conv} \ \mathcal{A}$, where \mathcal{A} is the set of rank-1 matrices. Prove that the convex envelope of f can be shown to be

$$g_f(\mathbf{X}) = \|\mathbf{X}\|_* = \sum_{i=1}^{\operatorname{rank}(\mathbf{X})} \sigma_i(\mathbf{X}), \quad \mathbf{X} \in \mathcal{B}.$$

Solution:

According to the definition of epigraph, we have: epi $f = \{(\mathbf{X}, t) \mid \operatorname{rank}(\mathbf{X}) \leq t, \mathbf{X} \in \mathcal{B}\}$. Let

$$\begin{array}{lcl} B_0 & = & \{(\mathbf{0}_{M\times N}, t_0) \mid t_0 \geq 0\} \subset \mathbf{epi} \ f, \\ B_1 & = & \{(\mathbf{A}, t) \mid \mathbf{A} \in \mathcal{A}, t \geq 1\} \subset \mathbf{epi} \ f, \end{array}$$

then, for any $\theta_i \in [0,1]$ and $\sum_{i=0}^k \theta_i = 1, k \in \mathbb{Z}_{++}$, we have

$$\mathbf{conv} \ (B_0 \cup B_1) = \{ (\mathbf{X}, t) \mid \mathbf{X} = \sum_{i=1}^k \theta_i \mathbf{A}_i, t = \theta_0 t_0 + \sum_{i=1}^k \theta_i t_i, (\mathbf{A}_i, t_i) \in B_1 \}$$
$$= \{ (\mathbf{X}, t) \mid \|\mathbf{X}\|_* \le t, \mathbf{X} \in \mathcal{B} \} = \mathbf{epi} \ \|\mathbf{X}\|_*, \ \mathbf{X} \in \mathcal{B} \subseteq \mathbf{conv} \ (\mathbf{epi} \ f),$$

where the second equality is obtained due to

$$0 \leq \|\sum_{i=1}^{k} \theta_{i} \mathbf{A}_{i}\|_{*} \leq \sum_{i=1}^{k} \theta_{i} \|\mathbf{A}_{i}\|_{*} = 1 - \theta_{0} \text{(i.e. } \mathbf{X} \in \mathcal{B})$$
$$\leq \theta_{0} t_{0} + \sum_{i=1}^{k} \theta_{i} t_{i} = t.$$

Furthermore, since $\|\mathbf{X}\|_* \leq \operatorname{rank}(\mathbf{X}) \leq t$ for $\mathbf{X} \in \mathcal{B}$, we have **epi** $f \subseteq \operatorname{\mathbf{epi}} \|\mathbf{X}\|_* \implies \operatorname{\mathbf{conv}} (\operatorname{\mathbf{epi}} f) \subseteq \operatorname{\mathbf{conv}} (\operatorname{\mathbf{epi}} \|\mathbf{X}\|_*) = \operatorname{\mathbf{epi}} \|\mathbf{X}\|_*$.

Thus we have
$$\operatorname{epi} \|\mathbf{X}\|_* = \operatorname{conv} (\operatorname{epi} f) = \operatorname{epi} g_f$$
, i.e., $g_f(\mathbf{X}) = \|\mathbf{X}\|_*$ for $\mathbf{X} \in \mathcal{B}$.

Problem 6. (15 points) Let $K \subseteq \mathbb{R}^m$ be a proper cone with associated generalized inequality \leq_K , and let $f: \mathbb{R}^n \to \mathbb{R}^m$. For $\alpha \in \mathbb{R}^m$, the α -sublevel set of f (with respect to \leq_K) is defined as

$$C_{\alpha} = \{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \leq_K \alpha \}.$$

The epigraph of f, with respect to \leq_K , is defined as the set

$$\mathbf{epi}_K \ f = \{(\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n+m} \mid f(\mathbf{x}) \leq_K \mathbf{t} \}.$$

Show the following:

- (a) (4 points) If f is K-convex, then its sublevel sets C_{α} are convex for all α .
- (b) (5 points) f is K-convex if and only if $\mathbf{epi}_K f$ is a convex set.
- (c) (6 points) $\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ is \mathbb{S}_+^k -convex on $\{(\mathbf{A}, \mathbf{B}) \in \mathbb{S}_{++}^k \times \mathbb{R}^{k \times (n-k)}\}$.

Solution:

(a) For all $\mathbf{x}, \mathbf{y} \in C_{\alpha}$,

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}) \le \theta \alpha + (1 - \theta)\alpha = \alpha.$$

Hence C_{α} is a convex set.

(b) (\Rightarrow) Suppose that f is K-convex, $(\mathbf{x}_1, \mathbf{t}_1) \in \mathbf{epi}_K f$, and $(\mathbf{x}_2, \mathbf{t}_2) \in \mathbf{epi}_K f$. Then,

$$f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) \leq_K \theta f(\mathbf{x}_1) + (1 - \theta)f(\mathbf{x}_2)$$

$$\leq_K \theta \mathbf{t}_1 + (1 - \theta)\mathbf{t}_2$$

$$\theta(\mathbf{x}_1, \mathbf{t}_1) + (1 - \theta)(\mathbf{x}_2, \mathbf{t}_2) = (\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2, \theta \mathbf{t}_1 + (1 - \theta)\mathbf{t}_2) \in \mathbf{epi}_K f$$

$$\Rightarrow \mathbf{epi}_K f \text{ is convex.}$$

 (\Leftarrow) Suppose that $\mathbf{epi}_K f$ is convex. And, it is obvious that $(\mathbf{x}_1, f(\mathbf{x}_1)) \in \mathbf{epi}_K f$ and $(\mathbf{x}_2, f(\mathbf{x}_2)) \in \mathbf{epi}_K f$, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{dom} f$. Therefore,

$$(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2, \theta f(\mathbf{x}_1) + (1 - \theta)f(\mathbf{x}_2)) \in \mathbf{epi}_K f$$
, for $\theta \in [0, 1]$.

By the definition of \mathbf{epi}_K ,

$$f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) \leq_K \theta f(\mathbf{x}_1) + (1 - \theta)f(\mathbf{x}_2) \text{ for } \theta \in [0, 1],$$

therefore, f is K-convex.

(c) Let $K = \mathbb{S}^k_+$ Define $f(\mathbf{A}, \mathbf{B}) = \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ with dom $f = \mathbb{S}^k_{++} \times \mathbb{R}^{k \times (n-k)}$. Then, the epigraph of f is

$$\begin{aligned} \operatorname{epi}_{K} f &= \left\{ (\mathbf{A}, \mathbf{B}, \mathbf{T}) | \ \mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B} \preceq_{K} \mathbf{T}, \ \mathbf{A} \in \mathbb{S}_{++}^{k}, \ \mathbf{B} \in \mathbb{R}^{k \times (n-k)} \right\} \\ &= \left\{ (\mathbf{A}, \mathbf{B}, \mathbf{T}) \left| \begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{T} & \mathbf{T} \end{array} \right| \succeq_{K} \mathbf{0}, \ \mathbf{A} \in \mathbb{S}_{++}^{k}, \ \mathbf{B} \in \mathbb{R}^{n \times (n-k)} \right\}, \end{aligned}$$

where the second equality comes from the property of $Schur \ complement$. It can be observed that $\operatorname{epi}_K f$ is convex. Thus, f is K-convex.

Problem 7. (15 points) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. Prove the following.

- (a) (10 points) If f and g are convex, both nonincreasing (or nondecreasing), and positive function on an interval, then the product of two functions fg is convex.
- (b) (5 points) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and positive, then the ratio of two functions f/g is convex.

Solution:

(a) We prove the result by verifying Jensen's inequality. f and g are positive and convex, hence for $\theta \in [0,1]$,

$$f(\theta x + (1 - \theta)y)g(\theta x + (1 - \theta)y) \le (\theta f(x) + (1 - \theta)f(y))(\theta g(x) + (1 - \theta)g(y))$$

= $\theta f(x)g(x) + (1 - \theta)f(y)g(y) + \theta(1 - \theta)(f(y) - f(x))(g(x) - g(y)).$

Since f and g are both nonincreasing or both nondecreasing, the term (f(y) - f(x))(g(x) - g(y)) is less than or equal to zero. Therefore

$$f(\theta x + (1 - \theta)y)g(\theta x + (1 - \theta)y) < \theta f(x)g(x) + (1 - \theta)f(y)g(y).$$

(b) It suffice to note that 1/q is convex, positive and increasing, so the result follows from part (a).