Optimal Theory and Method

最优化理论与方法

程春杰 杭州电子科技大学自动化学院 科技馆512

Email: cjzhai@hdu.edu.cn

目录

- 线性与非线性规划
- 几个数学概念
- 凸集 (考)
- 凸函数 (考)

目录

- 线性与非线性规划
- 几个数学概念
- 凸集 (考)
- 凸函数 (考)

- 线性与非线性规划
- >什么是线性规划问题和非线性规划问题
- >什么是可行点、可行域(可行集)
- ➤什么是全局极小点和局部极小点

■ 线性与非线性规划

>线性规划问题

例1 生产计划问题

设某工厂用 4 种资源生产 3 种产品,每单位第 j 种产品需要第 i 种资源的数量为 a_{ij} ,可获利润为 c_{ij} ,第 i 种资源总消耗量不能超过 b_{ij} ,由于市场限制,第 j 种产品的产量不超过 d_{ij} ,试问如何安排生产才能使总利润最大?

数学模型如下:

max
$$\sum_{j=1}^{3} c_j x_j$$

s.t. $\sum_{j=1}^{3} a_{ij} x_j \leqslant b_i$, $i = 1, \dots, 4$,
 $x_j \leqslant d_j$, $j = 1, 2, 3$,
 $x_j \geqslant 0$, $j = 1, 2, 3$,

目标函数和约束中自变量的幂次全为1——线性规划问题

■ 线性与非线性规划

>非线性规划问题

例2选址问题

设有 n个市场,第 j 个市场的位置为(a_i , b_i),对某种货物的需要量为 q_i (j=1,…,n). 现计划建立 m 个货栈,第 i 个货栈的容量为 c_i (i=1,…,m).试确定货栈的位置,使各货栈到各市场的运输量与路程乘积之和最小.

数学模型如下:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} \sqrt{(x_i - a_j)^2 + (y_i - b_j)^2}$$

s.t.
$$\sum_{j=1}^n W_{ij} \leqslant c_i$$
, $i=1,\cdots,m$, $\sum_{i=1}^m W_{ij} = q_j$, $j=1,\cdots,n$, $W_{ij} \geqslant 0$, $i=1,\cdots,m, j=1,\cdots,n$.

目标函数和约束中自变量的幂次不全为1——非线性规划问题

■ 线性与非线性规划

>可行点和可行域

例1 生产计划问题

$$\max \sum_{j=1}^{3} c_{j} x_{j} \qquad \min \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} \sqrt{(x_{i} - a_{j})^{2} + (y_{i})^{2}}$$
s.t.
$$\sum_{j=1}^{3} a_{ij} x_{j} \leqslant b_{i}, \quad i = 1, \dots, 4, \quad \text{s.t.} \quad \sum_{j=1}^{n} W_{ij} \leqslant c_{i}, \quad i = 1, \dots, m,$$

$$x_{j} \leqslant d_{j}, \qquad j = 1, 2, 3, \qquad \sum_{i=1}^{m} W_{ij} = q_{i}, \quad j = 1, \dots, n,$$

$$x_{j} \geqslant 0, \qquad j = 1, 2, 3, \qquad W_{ij} \geqslant 0, \qquad i = 1, \dots, m,$$

例2选址问题

$$\sum_{j=1}^{3} c_{j} x_{j} \qquad \min \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} \sqrt{(x_{i} - a_{j})^{2} + (y_{i} - b_{j})^{2}}$$

$$\sum_{j=1}^{3} a_{ij} x_{j} \leqslant b_{i}, \quad i = 1, \dots, 4, \qquad \text{s.t.} \quad \sum_{j=1}^{n} W_{ij} \leqslant c_{i}, \quad i = 1, \dots, m,$$

$$x_{j} \leqslant d_{j}, \qquad j = 1, 2, 3, \qquad \sum_{i=1}^{m} W_{ij} = q_{j}, \quad j = 1, \dots, n,$$

$$x_{j} \geqslant 0, \qquad j = 1, 2, 3, \qquad W_{ij} \geqslant 0, \qquad i = 1, \dots, m, j = 1, \dots, n.$$

在线性和非线性规划中,满足约束的点——可行点

所有可行点组成的集合——可行域(可行集)

可行域是整个空间——无约束优化问题

■ 线性与非线性规划

>全局极小点

定义 1.2.1 设 f(x)为目标函数 ,S 为可行域 $,\bar{x} \in S$,若对每个 $x \in S$,成立 $f(x) \geqslant f(\bar{x})$,则称 \bar{x} 为 f(x)在 S 上的全局极小点 .

▶局部极小点

定义 1.2.2 设 f(x)为目标函数,S 为可行域,若存在 $\bar{x} \in S$ 的 $\varepsilon > 0$ 邻域 $N(\bar{x}, \varepsilon) = \{x \mid \|x - \bar{x}\| < \varepsilon\}$,使得对每个 $x \in S \cap N(\bar{x}, \varepsilon)$ 成立 $f(x) \geqslant f(\bar{x})$,则称 \bar{x} 为 f(x)在 S 上的一个局部极小点.

目录

- 线性与非线性规划
- 几个数学概念
- 凸集 (考)
- 凸函数 (考)

■ 几个数学概念

- →什么是向量范数
- →什么是序列的极限、聚点和柯西序列
- ▶什么是开集、闭集和紧集
- ▶什么是梯度、海塞矩阵和雅克比矩阵
- ▶什么是泰勒展开式

■ 几个数学概念

▶向量范数

定义 1.3.1 若实值函数 $|| \cdot ||$: R → R 满足下列条件:

- (1) $\| x \| \ge 0$, $\forall x \in \mathbb{R}^n$; $\| x \| = 0$ 当且仅当 x = 0;
- (2) $\| \alpha \mathbf{x} \| = |\alpha| \| \mathbf{x} \|$, $\forall \alpha \in \mathbf{R}$, $\mathbf{x} \in \mathbf{R}^n$;
- (3) $\| x+y \| \leq \| x \| + \| y \|, \forall x,y \in \mathbb{R}^n$.

则称 $\| \cdot \|$ 为向量范数.其中 \mathbb{R}^n 表示 n 维向量空间.

常用的向量范数

设 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}} \in \mathbf{R}^n$,常用的向量范数有 L_1 范数 L_2 范数和 L_∞ 范数 L_1 分别为

$$\| \boldsymbol{x} \|_{1} = \sum_{j=1}^{n} | x_{j} |,$$

$$\| \boldsymbol{x} \|_{2} = \left(\sum_{j=1}^{n} x_{j}^{2} \right)^{\frac{1}{2}},$$

$$\| \boldsymbol{x} \|_{\infty} = \max_{j=1}^{n} | x_{j} |.$$

一般地,对于 $1 \leq p \leq \infty$, L_p 范数为

$$\| \boldsymbol{x} \|_{p} = \left(\sum_{j=1}^{n} | x_{j} |^{p} \right)^{\frac{1}{p}}.$$

■ 几个数学概念

▶序列的极限、聚点和柯西序列

序列的极限

定义 1.3.4 设 $\{x^{(k)}\}$ 是 R^{r} 中一个向量序列, $\bar{x}\in R^{r}$,如果对每个任给的 $\varepsilon>0$ 存在正整数 K_{ε} ,使得当 $k>K_{\varepsilon}$ 时就有 $\|x^{(k)}-\bar{x}\|<\varepsilon$,则称序列收敛到 \bar{x} ,或称序列以 \bar{x} 为极限,记作 $\lim_{n\to\infty} x^{(k)}=\bar{x}$.

序列的聚点

定义 1.3.5 设 $\{x^{(k)}\}$ 是 R^n 中一个向量序列,如果存在一个子序列 $\{x^{(k_j)}\}$,使 $\lim_{k_i \to \infty} x^{(k_j)} = \hat{x}$,则称 \hat{x} 是序列 $\{x^{(k)}\}$ 的一个聚点.

■ 几个数学概念

▶序列的极限、聚点和柯西序列

柯西序列

定义 1.3.6 设{ $x^{(k)}$ }是**R**^{*}中一个向量序列,如果对任意给定的 $\varepsilon > 0$,总存在正整数 K_{ε} ,使得当 m, E > 0, 就有 $\|x^{(m)} - x^{(l)}\| < \varepsilon$,则{ $x^{(k)}$ }称为 Cauchy 序列.

$$\left(-\frac{1}{2}\right)^{0}$$
, $\left(-\frac{1}{2}\right)^{1}$, $\left(-\frac{1}{2}\right)^{2}$, $\left(-\frac{1}{2}\right)^{3}$... $\left(-\frac{1}{2}\right)^{l}$... $\left(-\frac{1}{2}\right)^{m}$...

柯西序列肯定有极限

■ 几个数学概念

>开集、闭集、紧集

开集

对每一点 $\hat{x} \in S$ 存在正数 ϵ ,使得 \hat{x} 的 ϵ 邻域 $N(\hat{x},\epsilon) = \{x \mid ||x-\hat{x}|| < \epsilon\} \subset S$,则称S 为开集

$$0 \le x < 2$$
 $0 \le x \le 2$ $0 < x < 2$

闭集

如果 S 中每个收敛序列的极限均属于 S ,则称 S 为闭集

$$0 \le x < \infty$$
 $0 \le x \le 2$ $0 \le x < 2$

紧集

S为有界闭集

■ 几个数学概念

▶梯度、海塞矩阵、雅克比矩阵

梯度

函数 f 在 x 处的梯度为 n 维列向量:

$$\Delta f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_1}, \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_2}, \cdots, \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_n} \right]^{\mathrm{T}}.$$

海塞矩阵

f 在 x 处的 Hesse 矩阵为 $n \times n$ 矩阵 $\Delta^2 f(x)$,第 i 行第 j 列元素为

$$[\Delta^2 f(\mathbf{x})]_{ij} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}, \quad 1 \leq i, j \leq n.$$

■ 几个数学概念

▶梯度、海塞矩阵、雅克比矩阵

雅克比矩阵

考虑向量值函数

$$h(\mathbf{x}) = (h_1(\mathbf{x}), h_2(\mathbf{x}), \dots, h_m(\mathbf{x}))^{\mathrm{T}}$$

H(x)在x处的雅克比矩阵

$$\begin{bmatrix} \frac{\partial h_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial h_{1}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial h_{1}(\mathbf{x})}{\partial x_{n}} \\ \frac{\partial h_{2}(\mathbf{x})}{\partial x_{1}} & \frac{\partial h_{2}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial h_{2}(\mathbf{x})}{\partial x_{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial h_{m}(\mathbf{x})}{\partial x_{1}} & \frac{\partial h_{m}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial h_{m}(\mathbf{x})}{\partial x_{n}} \end{bmatrix}$$

■ 几个数学概念

▶梯度、海塞矩阵、雅克比矩阵之间的关系

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

二次函数f(x)的梯度

$$\nabla f(x) = \mathbf{A}x + \mathbf{b}$$

二次函数f(x)的海塞矩阵

$$\Delta^2 f(\mathbf{x}) = \mathbf{A}$$

二次函数的梯度和海塞矩阵一定要记住——考点

■ 几个数学概念

>泰勒展开式

假设在开集 $S \subseteq \mathbf{R}^r \perp f \in C^1(S)$,给定点 $\bar{\mathbf{x}} \in S$,则 f 在点 $\bar{\mathbf{x}}$ 的一阶 Taylor 展开式为 $f(\mathbf{x}) = f(\bar{\mathbf{x}}) + \Delta f(\bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) + o(\parallel \mathbf{x} - \bar{\mathbf{x}} \parallel)$,

其中 $\delta(\|\mathbf{x} - \bar{\mathbf{x}}\|)$ 当 $\|\mathbf{x} - \bar{\mathbf{x}}\| \rightarrow 0$ 时,关于 $\|\mathbf{x} - \bar{\mathbf{x}}\|$ 是高阶无穷小量.

假设在开集 $S \subseteq \mathbf{R}^r \perp f \in \mathcal{C}^c(S)$,则 $f \in \overline{\mathbf{x}} \in S$ 的二阶 Taylor 展开式为

$$f(\mathbf{x}) = f(\bar{\mathbf{x}}) + \Delta f(\bar{\mathbf{x}})^{\mathrm{T}} (\mathbf{x} - \bar{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \bar{\mathbf{x}})^{\mathrm{T}} \Delta^{2} f(\bar{\mathbf{x}}) (\mathbf{x} - \bar{\mathbf{x}}) + o(\|\mathbf{x} - \bar{\mathbf{x}}\|^{2}),$$

其中 $\delta \| x - \bar{x} \|^2$ 当 $\| x - \bar{x} \|^2 \to 0$ 时,关于 $\| x - \bar{x} \|^2$ 是高阶无穷小量

一阶、二阶泰勒展开式一定要会写——考点

目录

- 线性与非线性规划
- 几个数学概念
- 凸集 (考)
- 凸函数 (考)

- ≻什么是凸集
- ≻什么是凸锥
- **一什么是多面集**
- **≻什么是极点**
- →什么是方向和极方向

≻凸集

定义 1.4.1 设 S 为 n 维欧氏空间**R**"中一个集合 .若对 S 中任意两点 ,联结它们的线 段仍属于 S;换言之 ,对 S 中任意两点 $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ 及每个实数 $\lambda \in [0,1]$,都有 $\lambda \mathbf{x}^{(1)} + (1-\lambda)\mathbf{x}^{(2)} \in S$.

则称 S 为凸集.

$$\lambda x^{(1)} + (1 - \lambda)x^{(2)} = x^{(2)} + \lambda(x^{(1)} - x^{(2)})$$

≻凸集

例1

验证集合 $H^- = \{ x | p^T x \leq \alpha \}$ 为凸集

解 由于对任意两点 $x^{(1)}, x^{(2)} \in H$ 及每个实数 $\lambda \in [0,1]$ 都有

$$\boldsymbol{p}^{\mathrm{T}} \left[\lambda \boldsymbol{x}^{(1)} + (1 - \lambda) \boldsymbol{x}^{(2)} \right] = \alpha,$$

因此

$$\lambda \mathbf{x}^{(1)} + (1-\lambda)\mathbf{x}^{(2)} \in H$$
.

集合 H 称为R 中的超平面,故超平面为凸集

凸集

≻凸集

课堂练习题1

$$S = \{ (x_1, x_2) | x_1^2 + x_2^2 \leq 10 \}$$

解: 对任意两点
$$x^{(1)} = (x_1^{(1)}, x_2^{(1)}), \ x^{(2)} = \left(x_1^{(2)}, x_2^{(2)}\right) \in S$$
及每个实数 $\lambda \in [0, 1]$ 都有
$$\lambda x^{(1)} + (1 - \lambda) x^{(2)} = (\lambda x_1^{(1)} + (1 - \lambda) x_1^{(2)}, \lambda x_2^{(1)} + (1 - \lambda) x_2^{(2)})$$

$$\left[\lambda x_1^{(1)} + (1 - \lambda) x_1^{(2)}\right]^2 + \left[\lambda x_2^{(1)} + (1 - \lambda) x_2^{(2)}\right]^2$$

$$= \lambda^2 \left(x_1^{(1)^2} + x_2^{(1)^2}\right) + (1 - \lambda)^2 \left(x_1^{(2)^2} + x_2^{(2)^2}\right) + 2\lambda(1 - \lambda) x_1^{(1)} x_1^{(2)} + 2\lambda(1 - \lambda) x_2^{(1)} x_2^{(2)} \leq 10(\lambda^2 + (1 - \lambda)^2) + 20\lambda(1 - \lambda) \leq 10$$
 因此, $\lambda x^{(1)} + (1 - \lambda) x^{(2)} \in S$ 集合S为凸集

≻凸锥

定义1.4.2 设有集合 $C \subseteq \mathbb{R}^n$,若对 C 中每一点 x,当 λ 取任何非负数时,都有 $\lambda x \in C$,则称 C 为锥,又若 C 为凸集,则称 C 为凸锥 .

■ 凸集

≻凸锥

例 1.4.4 向量集 $\alpha^{(1)}$, $\alpha^{(2)}$, ..., $\alpha^{(k)}$ 的所有非负线性组合构成的集合 $\left\{ \sum_{i=1}^k \lambda_i \alpha^{(i)} \, \middle| \, \lambda_i \geqslant 0, i = 1, \dots, k \right\}$

为凸锥.

证明: 取任意一点 $x = \sum \lambda_i \alpha^{(i)} \in S, \lambda_i \geq 0$

$$\lambda \lambda_i \geq 0$$
 故 $\lambda x \in S$

▶多面集

定义1.4.3 有限个半空间的交

$$\{x \mid Ax \leq b\}$$

称为**多面集**,其中A为 $m \times n$ 矩阵,b为m维向量.

例 1.4.5 集合

$$S = \{ x | x_1 + 2x_2 \leq 4, x_1 - x_2 \leq 1, x_1 \geq 0, x_2 \geq 0 \}$$

为多面集.其几何表示如图

≻极点

定义 1.4.4 设 S 为非空凸集, $x \in S$,若 x 不能表示成 S 中两个不同点的凸组合;换言之,若假设 $x = \lambda x^{(1)} + (1-\lambda)x^{(2)}(\lambda \in (0,1)), x^{(1)}, x^{(2)} \in S$, 必推得 $x = x^{(1)} = x^{(2)}$,则称 x 是凸集 S 的极点.

>方向和极方向

定义 1.4.5 设 S 为**R** 中的闭凸集 ,d 为非零向量 ,如果对 S 中的每一个 x ,都有射线 $\{x+\lambda d\mid \lambda \geq 0\} \subset S$,

则称向量 d为 S 的**方向** .又设 $d^{1)}$ 和 $d^{2)}$ 是 S 的两个方向 ,若对任何正数 λ ,有 $d^{1)} \neq \lambda d^{(2)}$,则称 $d^{(1)}$ 和 $d^{(2)}$ 是两个不同的方向 .若 S 的方向 d 不能表示成该集合的两个不同方向的正的线性组合 ,则称 d为 S 的**极方向** . $x_2 \downarrow$

有界集合不存在方向,更不存在 极方向

目录

- 线性与非线性规划
- 几个数学概念
- 凸集 (考)
- 凸函数 (考)

- **≻什么是凸函数**
- ≻凸函数有哪些性质
- ≻凸函数的判别

 $X^{(1)}$

■ 凸函数

≻凸函数

◆定义2. 2. 1 设S为Eⁿ中的非空凸集,f是 定义在S上的实函数。如果对任意的 $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in \mathbf{S}$ 及每个数 $\lambda \in (0, 1)$,都有 $f(\lambda \mathbf{x}^{(1)} + (1 - \lambda)\mathbf{x}^{(2)}) \leq \lambda f(\mathbf{x}^{(1)}) + (1 - \lambda)f(\mathbf{x}^{(2)})$ 则称f为S上的凸函数。

≻凸函数

如果对任意互不相同的 $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in \mathbf{S}$,及每一个数 $\lambda \in (0, 1)$,都有 $f(\lambda \mathbf{x}^{(1)} + (1 - \lambda)\mathbf{x}^{(2)}) < \lambda f(\mathbf{x}^{(1)}) + (1 - \lambda)f(\mathbf{x}^{(2)})$ 则称f为S上的严格凸函数。

如果一f为S上的凸函数,则称f为S上的凹函数

≻凸函数性质

◆定理2.2.1 设f是定义在凸集S上的凸函数,实数 $\lambda \ge 0$,则 λf 也是定义在S上的凸函数

◆定理2.2.2 设 f_1 和 f_2 是定义在凸集S上的凸函数,则 f_1 十 f_2 也是定义在S上的凸函数

■ 凸函数

≻凸函数

例1 一元函数 f(x) = |x| 是**R** 上的凸函数.

解 对任意的
$$x^{(1)}, x^{(2)} \in \mathbb{R}^1$$
 及每个数 $\lambda \in (0,1)$,均有
$$f(\lambda x^{(1)} + (1-\lambda)x^{(2)}) = |\lambda x^{(1)} + (1-\lambda)x^{(2)}|$$
 $\leq \lambda |x^{(1)}| + (1-\lambda)|x^{(2)}|$
$$= \lambda f(x^{(1)}) + (1-\lambda)f(x^{(2)}),$$

■ 凸函数

≻凸函数

练习题2

$$f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^2 + x_1 + x_2;$$

解:对任意两点 $x^{(1)}=(x_1^{(1)},x_2^{(1)}),\ x^{(2)}=\left(x_1^{(2)},x_2^{(2)}\right)\in S$ 及每个实数

 $\lambda \in (0,1)$ 都有

$$\lambda x^{(1)} + (1 - \lambda)x^{(2)} = \left(\lambda x_1^{(1)} + (1 - \lambda)x_1^{(2)}, \lambda x_2^{(1)} + (1 - \lambda)x_2^{(2)}\right)$$

$$f(\lambda x^{(1)} + (1 - \lambda)x^{(2)}) \le \lambda f(x^{(1)}) + (1 - \lambda)f(x^{(2)})$$

因此,f(x)为凸函数

从定义出发进行凸函数的判断,计算量往往比较大

>一阶可微凸函数的判别

◆定理2.2.7 设S是 E^n 中非空开凸集,f(x)是定义在S上的可微函数,则f(x)为凸函数的充要条件是对任意两点 $x^{(1)},x^{(2)}$ ∈S,都有 $f(x^{(2)}) \ge f(x^{(1)}) + \nabla f(x^{(1)})^T(x^{(2)}-x^{(1)})$ 而f(x)为严格凸函数的充要条件是对任意的互不相同的 $x^{(1)},x^{(2)}$ ∈S,成立 $f(x^{(2)}) \ge f(x^{(1)}) + \nabla f(x^{(1)})^T(x^{(2)}-x^{(1)})$

>一阶可微凸函数的判别

≻二阶可微凸函数的判别

- ◆定理2.2.8 设S是 E^n 中非空开凸集,f(x)是定义在S上的二次可微函数,则f(x)为凸函数的充要条件是在每一点 $x \in S$ 处,Hessian矩阵半正定
- ◆定理2.2.9 设S是 E^n 中非空开凸集,f(x)是定义在S上的二次可微函数,如在每一点x∈S,Hessian矩阵正定,则f(x)为严格凸函数

>二阶可微凸函数的判别

如何判定一个矩阵为半正定矩阵?

判断方法**1**: 若所有特征值均不小于零,则称为半正定。

判断方法2: 所有的主子式非负。

如何判定一个矩阵为正定矩阵?

判断方法1: 若所有特征值均大于零,则称为正定。

判断方法2: 所有的顺序主子式均大于0。

■ 凸函数

▶二阶可微凸函数的判别

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -4 \\ -4 & 2 \end{bmatrix}$$

$$(2+e^{x_1+x_2})\begin{bmatrix}1&1\\1&1\end{bmatrix}$$

$$e^{-(x_1+x_2)}\begin{bmatrix} x_1-2 & x_1-1 \ x_1-1 & x_1 \end{bmatrix}$$

■ 凸函数

▶二阶可微凸函数的判别

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

 $\begin{bmatrix} 2 & -4 \\ -4 & 2 \end{bmatrix}$

半正定矩阵

不定矩阵

$$(2+e^{x_1+x_2})\begin{bmatrix}1&1\\1&1\end{bmatrix}$$

半正定矩阵

$$e^{-(x_1+x_2)}\begin{bmatrix} x_1-2 & x_1-1 \ x_1-1 & x_1 \end{bmatrix}$$

不定矩阵

■ 凸函数

≻凸函数的判别

$$f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^2 + x_1 + x_2;$$

解: 1、判断f(x)是一阶可微还是二阶可微

二阶可微

2、写出f(x)的海塞矩阵

$$f(x) = \frac{1}{2}(x_1, x_2) \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} (x_1, x_2)^T + x_1 + x_2$$

海塞矩阵
$$A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

3、判断海塞矩阵是否半正定

■ 作业

P23~24:

第1题

第9题的偶数项