# **GROMACS**

Groningen Machine for Chemical Simulations



## USER MANUAL

Version 5.0.2

### GROMACS USER MANUAL

#### Version 5.0.2

#### Contributions from

Emile Apol, Rossen Apostolov, Herman J.C. Berendsen, Aldert van Buuren, Pär Bjelkmar, Rudi van Drunen, Anton Feenstra, Sebastian Fritsch, Gerrit Groenhof, Christoph Junghans, Jochen Hub, Peter Kasson, Carsten Kutzner, Brad Lambeth, Per Larsson, Justin A. Lemkul, Erik Marklund, Peiter Meulenhoff, Teemu Murtola, Szilárd Páll, Sander Pronk, Roland Schulz, Michael Shirts, Alfons Sijbers, Peter Tieleman, Christian Wennberg and Maarten Wolf.

Mark Abraham, Berk Hess, David van der Spoel, and Erik Lindahl.

© 1991–2000: Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4, 9747 AG Groningen, The Netherlands.

© 2001–2014: The GROMACS development teams at the Royal Institute of Technology and Uppsala University, Sweden.

More information can be found on our website: www.gromacs.org.

#### **Preface & Disclaimer**

This manual is not complete and has no pretention to be so due to lack of time of the contributors – our first priority is to improve the software. It is worked on continuously, which in some cases might mean the information is not entirely correct.

Comments on form and content are welcome, please send them to one of the mailing lists (see www.gromacs.org), or open an issue at redmine.gromacs.org. Corrections can also be made in the GROMACS git source repository and uploaded to gerrit.gromacs.org.

We release an updated version of the manual whenever we release a new version of the software, so in general it is a good idea to use a manual with the same major and minor release number as your GROMACS installation.

#### On-line Resources

You can find more documentation and other material at our homepage www.gromacs.org. Among other things there is an on-line reference, several GROMACS mailing lists with archives and contributed topologies/force fields.

#### Citation information

When citing this document in any scientific publication please refer to it as:

M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, *GROMACS User Manual version 5.0.2*, www.gromacs.org (2014)

However, we prefer that you cite (some of) the GROMACS papers [1, 2, 3, 4, 5, 6] when you publish your results. Any future development depends on academic research grants, since the package is distributed as free software!

#### **GROMACS** is *Free Software*

The entire GROMACS package is available under the GNU Lesser General Public License, version 2.1. This means it's free as in free speech, not just that you can use it without paying us money. For details, check the COPYING file in the source code or consult http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.

The GROMACS source code and and selected set of binary packages are available on our homepage, www.gromacs.org. Have fun.

| 1 | Intro | oduction                                                              | 1  |
|---|-------|-----------------------------------------------------------------------|----|
|   | 1.1   | Computational Chemistry and Molecular Modeling                        | 1  |
|   | 1.2   | Molecular Dynamics Simulations                                        | 2  |
|   | 1.3   | Energy Minimization and Search Methods                                | 5  |
| 2 | Defi  | initions and Units                                                    | 7  |
|   | 2.1   | Notation                                                              | 7  |
|   | 2.2   | MD units                                                              | 7  |
|   | 2.3   | Reduced units                                                         | 9  |
| 3 | Algo  | orithms                                                               | 11 |
|   | 3.1   | Introduction                                                          | 11 |
|   | 3.2   | Periodic boundary conditions                                          | 11 |
|   |       | 3.2.1 Some useful box types                                           | 13 |
|   |       | 3.2.2 Cut-off restrictions                                            | 14 |
|   | 3.3   | The group concept                                                     | 14 |
|   | 3.4   | Molecular Dynamics                                                    | 15 |
|   |       | 3.4.1 Initial conditions                                              | 17 |
|   |       | 3.4.2 Neighbor searching                                              | 18 |
|   |       | 3.4.3 Compute forces                                                  | 25 |
|   |       | 3.4.4 The leap-frog integrator                                        | 27 |
|   |       | 3.4.5 The velocity Verlet integrator                                  | 27 |
|   |       | 3.4.6 Understanding reversible integrators: The Trotter decomposition | 28 |
|   |       | 3.4.7 Twin-range cut-offs                                             | 30 |
|   |       | 3.4.8 Temperature coupling                                            | 31 |
|   |       | 3 4 9 Pressure counting                                               | 37 |

Vi

|   |       | 3.4.10 The complete update algorithm                       | 43 |
|---|-------|------------------------------------------------------------|----|
|   |       | 3.4.11 Output step                                         | 45 |
|   | 3.5   | Shell molecular dynamics                                   | 45 |
|   |       | 3.5.1 Optimization of the shell positions                  | 45 |
|   | 3.6   | Constraint algorithms                                      | 46 |
|   |       | 3.6.1 SHAKE                                                | 46 |
|   |       | 3.6.2 LINCS                                                | 47 |
|   | 3.7   | Simulated Annealing                                        | 49 |
|   | 3.8   | Stochastic Dynamics                                        | 50 |
|   | 3.9   | Brownian Dynamics                                          | 51 |
|   | 3.10  | Energy Minimization                                        | 51 |
|   |       | 3.10.1 Steepest Descent                                    | 52 |
|   |       | 3.10.2 Conjugate Gradient                                  | 52 |
|   |       | 3.10.3 L-BFGS                                              | 52 |
|   | 3.11  | Normal-Mode Analysis                                       | 53 |
|   | 3.12  | Free energy calculations                                   | 54 |
|   |       | 3.12.1 Slow-growth methods                                 | 54 |
|   |       | 3.12.2 Thermodynamic integration                           | 56 |
|   | 3.13  | Replica exchange                                           | 56 |
|   | 3.14  | Essential Dynamics sampling                                | 57 |
|   | 3.15  | Expanded Ensemble                                          | 58 |
|   | 3.16  | Parallelization                                            | 58 |
|   | 3.17  | Domain decomposition                                       | 59 |
|   |       | 3.17.1 Coordinate and force communication                  | 59 |
|   |       | 3.17.2 Dynamic load balancing                              | 59 |
|   |       | 3.17.3 Constraints in parallel                             | 60 |
|   |       | 3.17.4 Interaction ranges                                  | 61 |
|   |       | 3.17.5 Multiple-Program, Multiple-Data PME parallelization | 62 |
|   |       | 3.17.6 Domain decomposition flow chart                     | 64 |
|   | 3.18  | Implicit solvation                                         | 64 |
| 4 | Inter | raction function and force fields                          | 67 |
|   | 4.1   | Non-bonded interactions                                    | 67 |
|   |       | 4.1.1 The Lennard-Iones interaction                        | 68 |

|     | 4.1.2   | Buckingham potential                                   |
|-----|---------|--------------------------------------------------------|
|     | 4.1.3   | Coulomb interaction                                    |
|     | 4.1.4   | Coulomb interaction with reaction field                |
|     | 4.1.5   | Modified non-bonded interactions                       |
|     | 4.1.6   | Modified short-range interactions with Ewald summation |
| 4.2 | Bonde   | d interactions                                         |
|     | 4.2.1   | Bond stretching                                        |
|     | 4.2.2   | Morse potential bond stretching                        |
|     | 4.2.3   | Cubic bond stretching potential                        |
|     | 4.2.4   | FENE bond stretching potential                         |
|     | 4.2.5   | Harmonic angle potential                               |
|     | 4.2.6   | Cosine based angle potential                           |
|     | 4.2.7   | Restricted bending potential                           |
|     | 4.2.8   | Urey-Bradley potential                                 |
|     | 4.2.9   | Bond-Bond cross term                                   |
|     | 4.2.10  | Bond-Angle cross term                                  |
|     | 4.2.11  | Quartic angle potential                                |
|     | 4.2.12  | Improper dihedrals                                     |
|     | 4.2.13  | Proper dihedrals                                       |
|     | 4.2.14  | Tabulated bonded interaction functions                 |
| 4.3 | Restrai | nts                                                    |
|     | 4.3.1   | Position restraints                                    |
|     | 4.3.2   | Flat-bottomed position restraints                      |
|     | 4.3.3   | Angle restraints                                       |
|     | 4.3.4   | Dihedral restraints                                    |
|     | 4.3.5   | Distance restraints                                    |
|     | 4.3.6   | Orientation restraints                                 |
| 4.4 | Polariz | ation                                                  |
|     | 4.4.1   | Simple polarization                                    |
|     | 4.4.2   | Water polarization                                     |
|     | 4.4.3   | Thole polarization                                     |
| 4.5 | Free er | nergy interactions                                     |
|     | 4.5.1   | Soft-core interactions                                 |
| 4.6 | Method  | ds                                                     |

viii Contents

|   |      | 4.6.1   | Exclusions and 1-4 Interactions                    | 01       |
|---|------|---------|----------------------------------------------------|----------|
|   |      | 4.6.2   | Charge Groups                                      | 02       |
|   |      | 4.6.3   | Treatment of Cut-offs in the group scheme          | 02       |
|   | 4.7  | Virtual | interaction sites                                  | 03       |
|   | 4.8  | Long R  | Range Electrostatics                               | 07       |
|   |      | 4.8.1   | Ewald summation                                    | 07       |
|   |      | 4.8.2   | PME 10                                             | 08       |
|   |      | 4.8.3   | P3M-AD                                             | 09       |
|   |      | 4.8.4   | Optimizing Fourier transforms and PME calculations | 09       |
|   | 4.9  | Long R  | Range Van der Waals interactions                   | 09       |
|   |      | 4.9.1   | Dispersion correction                              | 09       |
|   |      | 4.9.2   | Lennard-Jones PME                                  | 11       |
|   | 4.10 | Force f | ield                                               | 14       |
|   |      | 4.10.1  | GROMOS-96                                          | 15       |
|   |      | 4.10.2  | OPLS/AA                                            | 16       |
|   |      | 4.10.3  | AMBER 1                                            | 16       |
|   |      | 4.10.4  | CHARMM                                             | 16       |
|   |      | 4.10.5  | Coarse-grained force fields                        | 17       |
|   |      | 4.10.6  | MARTINI                                            | 17       |
|   |      | 4.10.7  | PLUM 1                                             | 17       |
| 5 | Tono | ologies | 1 <sup>1</sup>                                     | 19       |
| • | 5.1  | •       |                                                    | 19       |
|   | 5.2  |         |                                                    | 19       |
|   | 5.2  |         |                                                    | 20       |
|   |      | 5.2.2   |                                                    | 20       |
|   | 5.3  |         |                                                    | 20<br>22 |
|   | 3.3  | 5.3.1   |                                                    | 22<br>22 |
|   |      | 5.3.2   |                                                    | 22       |
|   |      | 5.3.3   | 1                                                  | 23       |
|   |      | 5.3.4   | 1                                                  | 23<br>24 |
|   |      | 5.3.5   | •                                                  | 25<br>25 |
|   | 5.4  |         |                                                    | 25<br>26 |
|   | 5.5  |         |                                                    | 26<br>26 |
|   | 5.5  | Consul  |                                                    | _0       |

|   | 5.6        | pdb2gmx input files                           | 27     |
|---|------------|-----------------------------------------------|--------|
|   |            | 5.6.1 Residue database                        | 28     |
|   |            | 5.6.2 Residue to building block database      | 29     |
|   |            | 5.6.3 Atom renaming database                  | 30     |
|   |            | 5.6.4 Hydrogen database                       | 31     |
|   |            | 5.6.5 Termini database                        | 32     |
|   |            | 5.6.6 Virtual site database                   | 34     |
|   |            | 5.6.7 Special bonds                           | 35     |
|   | 5.7        | File formats                                  | 36     |
|   |            | 5.7.1 Topology file                           | 36     |
|   |            | 5.7.2 Molecule.itp file                       | 45     |
|   |            | 5.7.3 Ifdef statements                        | 46     |
|   |            | 5.7.4 Topologies for free energy calculations | 47     |
|   |            | 5.7.5 Constraint forces                       | 49     |
|   |            | 5.7.6 Coordinate file                         | 50     |
|   | 5.8        | Force field organization                      | 51     |
|   |            | 5.8.1 Force-field files                       | 51     |
|   |            | 5.8.2 Changing force-field parameters         | 52     |
|   |            | 5.8.3 Adding atom types                       | 52     |
|   | •          |                                               |        |
| ô |            | cial Topics 15                                |        |
|   | 6.1        |                                               | 53     |
|   | 6.2        |                                               | 54<br> |
|   | 6.3        |                                               | 55     |
|   | 6.4        | •                                             | 55     |
|   | 6.5        |                                               | 58     |
|   |            |                                               | 58     |
|   |            |                                               | 63     |
|   |            |                                               | 66     |
|   | 6.6        |                                               | 69     |
|   | - <b>-</b> |                                               | 69     |
|   | 6.7        | 2 2                                           | 72     |
|   | 6.8        |                                               | 72     |
|   |            | 6.8.1 Hydrogen bond-angle vibrations          | 73     |

|   |      | 6.8.2   | Out-of-plane vibrations in aromatic groups       |
|---|------|---------|--------------------------------------------------|
|   | 6.9  | Viscosi | ity calculation                                  |
|   | 6.10 | Tabulat | ted interaction functions                        |
|   |      | 6.10.1  | Cubic splines for potentials                     |
|   |      | 6.10.2  | User-specified potential functions               |
|   | 6.11 | Mixed   | Quantum-Classical simulation techniques          |
|   |      | 6.11.1  | Overview                                         |
|   |      | 6.11.2  | Usage                                            |
|   |      | 6.11.3  | Output                                           |
|   |      | 6.11.4  | Future developments                              |
|   | 6.12 | Adapti  | ve Resolution Scheme                             |
|   |      | 6.12.1  | Example: Adaptive resolution simulation of water |
|   | 6.13 | Using ' | VMD plug-ins for trajectory file I/O             |
|   | 6.14 | Interac | tive Molecular Dynamics                          |
|   |      | 6.14.1  | Simulation input preparation                     |
|   |      | 6.14.2  | Starting the simulation                          |
|   |      | 6.14.3  | Connecting from VMD                              |
| _ | D    |         | atoms and Bus manus                              |
| 7 |      | -       | eters and Programs 191                           |
|   | 7.1  |         | e and HTML manuals                               |
|   | 7.2  | • •     | pes                                              |
|   | 7.3  |         | rameters                                         |
|   |      | 7.3.1   | General                                          |
|   |      | 7.3.2   | Preprocessing                                    |
|   |      |         | Run control                                      |
|   |      | 7.3.4   | Langevin dynamics                                |
|   |      | 7.3.5   | Energy minimization                              |
|   |      | 7.3.6   | Shell Molecular Dynamics                         |
|   |      | 7.3.7   | Test particle insertion                          |
|   |      | 7.3.8   | Output control                                   |
|   |      | 7.3.9   | Neighbor searching                               |
|   |      | 7.3.10  | Electrostatics                                   |
|   |      |         | VdW                                              |
|   |      | 7.3.12  | Tables                                           |

|   |            | 7.3.13 | Ewald                                | )6         |
|---|------------|--------|--------------------------------------|------------|
|   |            | 7.3.14 | Temperature coupling                 | )7         |
|   |            | 7.3.15 | Pressure coupling                    | )8         |
|   |            | 7.3.16 | Simulated annealing                  | 10         |
|   |            | 7.3.17 | Velocity generation                  | 11         |
|   |            | 7.3.18 | Bonds                                | 11         |
|   |            | 7.3.19 | Energy group exclusions              | 13         |
|   |            | 7.3.20 | Walls                                | 13         |
|   |            | 7.3.21 | COM pulling                          | 14         |
|   |            | 7.3.22 | NMR refinement                       | 17         |
|   |            | 7.3.23 | Free energy calculations             | 18         |
|   |            | 7.3.24 | Expanded Ensemble calculations       | 22         |
|   |            | 7.3.25 | Non-equilibrium MD                   | 26         |
|   |            | 7.3.26 | Electric fields                      | 27         |
|   |            | 7.3.27 | Implicit solvent                     | 28         |
|   |            | 7.3.28 | Adaptive Resolution Simulation       | 29         |
|   |            | 7.3.29 | User defined thingies                | 31         |
| 8 | ۸na        | lysis  | 23                                   | 2          |
| 0 | 8.1        | •      |                                      |            |
|   | 0.1        |        |                                      |            |
|   |            | 8.1.1  | 1                                    |            |
|   | 0.2        | 8.1.2  |                                      |            |
|   | 8.2        |        | g at your trajectory                 |            |
|   | 8.3        |        | ll properties                        |            |
|   |            |        | distribution functions               |            |
|   | 8.5        |        | ation functions                      |            |
|   |            | 8.5.1  | Theory of correlation functions      |            |
|   |            | 8.5.2  | Using FFT for computation of the ACF |            |
|   |            | 8.5.3  | Special forms of the ACF             |            |
|   | 0.6        | 8.5.4  | Some Applications                    |            |
|   | 8.6        |        | Square Displacement                  |            |
|   | 8.7        | Bonds/ | distances, angles and dihedrals      | <b>+</b> 2 |
|   | 0 0        |        |                                      |            |
|   | 8.8<br>8.9 |        | of gyration and distances            |            |

xii Contents

|   | 8.10 | Covaria  | ance analysis                              | 246 |
|---|------|----------|--------------------------------------------|-----|
|   | 8.11 | Dihedr   | ral principal component analysis           | 248 |
|   | 8.12 | Hydrog   | gen bonds                                  | 248 |
|   | 8.13 | Protein  | n-related items                            | 250 |
|   | 8.14 | Interfac | ce-related items                           | 250 |
| A | Tech | nnical I | Details                                    | 255 |
|   | A.1  | Mixed    | or Double precision                        | 255 |
|   | A.2  | Enviro   | nment Variables                            | 256 |
|   | A.3  | Runnin   | ng GROMACS in parallel                     | 262 |
|   | A.4  | Runnin   | ng GROMACS on GPUs                         | 262 |
| В | Som  | ne impl  | ementation details                         | 265 |
|   | B.1  | Single   | Sum Virial in GROMACS                      | 265 |
|   |      | B.1.1    | Virial                                     | 265 |
|   |      | B.1.2    | Virial from non-bonded forces              | 266 |
|   |      | B.1.3    | The intra-molecular shift (mol-shift)      | 266 |
|   |      | B.1.4    | Virial from Covalent Bonds                 | 267 |
|   |      | B.1.5    | Virial from SHAKE                          | 268 |
|   | B.2  | Optimi   | izations                                   | 268 |
|   |      | B.2.1    | Inner Loops for Water                      | 268 |
|   |      | B.2.2    | Fortran Code                               | 269 |
|   | B.3  | Compu    | utation of the 1.0/sqrt function           | 269 |
|   |      | B.3.1    | Introduction                               | 269 |
|   |      | B.3.2    | General                                    | 269 |
|   |      | B.3.3    | Applied to floating-point numbers          | 270 |
|   |      | B.3.4    | Specification of the look-up table         | 271 |
|   |      | B.3.5    | Separate exponent and fraction computation | 272 |
|   |      | B.3.6    | Implementation                             | 273 |
| С | Ave  | rages a  | and fluctuations                           | 275 |
|   | C.1  | Formul   | lae for averaging                          | 275 |
|   | C.2  | Implen   | nentation                                  | 276 |
|   |      | C.2.1    | Part of a Simulation                       | 277 |
|   |      | C.2.2    | Combining two simulations                  | 277 |

| C.2.3        | Summing energy terms | 27 |
|--------------|----------------------|----|
|              |                      |    |
| Bibliography |                      | 28 |