Bandits

Exercise 1

(1) At the beginning, every choice is non-epsilon, but $A_1 = 1$ was made.

$$Q_2(1)=1,\,Q_2(2)=Q_2(3)=Q_2(4)=0$$
 but chosen action was $A_2=2$

$$Q_3(1)=Q_3(2)=1,\,Q_3(3)=Q_3(4)=0$$
 both $A_3=1$ and $A_3=2$ can be chosen

$$Q_5(1) = 1, Q_5(2) = 5/3 = 1.7$$
 and $Q_5(3) = Q_5(4) = 0$ but chosen action was $A_5 = 3$

Definitely, choices 2 and 5 were ϵ choices

(2) Choices 1 and 3 could have been ϵ choices

Exercise 2

(3) The ϵ -greedy method improves slower, but to a better average reward:

(4) We can use initialization with optimistic values to force exploration on the initial stages. Also Upper-Confidence-Bound action selection is shown to perform better than ϵ -greedy search, because it takes into account the uncertainty of the value of the chosen action - more frequently chosen actions are have lower uncertainty.