Introduction to Algorithms

Dynamic Programming

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (optimal substructure)
- Algorithm finds solutions to subproblems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again

Optimal Substructure Property

Definition:

■ If S is an optimal solution to a problem, then the components of S are optimal solutions to subproblems

• Examples:

- True for knapsack
- True for coin-changing
- True for single-source shortest path
- Not true for longest-simple-path

Dynamic Programming

- Works "bottom-up"
 - Finds solutions to small sub-problems first
 - Stores them
 - Combines them somehow to find a solution to a slightly larger subproblem
- Compare to greedy approach
 - Also requires optimal substructure
 - But greedy makes choice first, then solves

Problems Solved with Dyn. Prog.

- Coin changing
- Multiplying a sequence of matrices
 - Can do in various orders: (AB)C vs. A(BC)
 - Pick order that does fewest number of scalar multiplications
- Longest common subsequence
- All-pairs shortest paths (Floyd's algorithm)
- Constructing optimal binary search trees
- Knapsack problems (we'll do 0/1)

Remember Fibonacci numbers?

• Recursive code:

```
long fib(int n) {
   assert(n >= 0);
   if ( n == 0 ) return 0;
   if ( n == 1 ) return 1;
   return fib(n-1) + fib(n-2);
}
```

- What's the problem?
 - Repeatedly solves the same subproblems
 - Exponential time complexity

Memorization

- Before talking about dynamic programming, another general technique:
 Memoization
 - AKA using a *memory function*
- Simple idea:
 - Calculate and store solutions to subproblems
 - Before solving it (again), look to see if you've remembered it

Memorization

- Use a Table abstract data type
 - Lookup key: whatever identifies a subproblem
 - Value stored: the solution
- Could be an array/vector
 - E.g. for Fibonacci, store **fib(n)** using index **n**
 - Need to initialize the array
- Could use a map / hash-table

Memorization and Fibonacci

 Before recursive code below called, must initialize results[] so all values are -1

```
long fib mem(int n, long results[]) {
  if (results[n]!= -1)
     return results[n]; // return stored value
  long val;
  if (n == 0 || n == 1)
     val = n; // odd but right
  else
     val = fib mem(n-1, results)
           + fib mem(n-2, results);
  results[n] = \overline{val}; // store calculated value
  return val;
```

Observations on fib_mem()

- Same elegant top-down, recursive approach based on definition
 - Without repeated subproblems
- Memory function: a function that remembers
 - Save time by using extra space
- Can show this runs in $\Theta(n)$

General Strategy of Dyn. Prog.

- 1. Structure: What's the structure of an optimal solution in terms of solutions to its subproblems?
- 2. Give a recursive definition of an optimal solution in terms of optimal solutions to smaller problems
 - Usually using min or max
- 3. Use a data structure (often a table) to store smaller solutions in a bottom-up fashion
 - Optimal value found in the table
- 4. (If needed) Reconstruct the optimal solution
 - I.e. what produced the optimal value

Dyn. Prog. vs. Divide and Conquer

- Remember D & C?
 - Divide into subproblems. Solve each. Combine.
- Good when subproblems do not overlap, when they're independent
 - No need to repeat them
- Divide and conquer: top-down
- Dynamic programming: bottom-up

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

$$Ex: X = \{A B C B D A B\}, Y = \{B D C A B A\}$$

Longest Common Subsequence:

$$X = AB$$
 C $BDAB$

$$Y = BDCABA$$

Brute force algorithm would compare each subsequence of X with the symbols in Y

LCS Algorithm

- if |X| = m, |Y| = n, then there are 2^m subsequences of X; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is O(n 2^m)
- Notice that the LCS problem has *optimal substructure*: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of prefixes of X and Y"

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i , Y_j to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- First case: x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of LCS(X_i, Y_j) is the same as before (i.e. maximum of LCS(X_i, Y_{j-1}) and LCS(X_{i-1}, Y_j)

Why not just take the length of $LCS(X_{i-1}, Y_{j-1})$?

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m
                          // for all X<sub>i</sub>
6. for i = 1 to n
                                      // for all Y<sub>i</sub>
7.
            if(X_i == Y_i)
                   c[i,j] = c[i-1,j-1] + 1
8.
            else c[i,j] = max(c[i-1,j],c[i,j-1])
9.
10. return c[m,n] // return LCS length for X and Y
```

LCS Example

We'll see how LCS algorithm works on the following example:

$$\bullet$$
 X = ABCB

$$LCS(X, Y) = BCB$$

 $X = AB$ C B
 $Y = BDCAB$

LCS Example (0)

ABCB 3 **BDCAB** Yj \boldsymbol{C} \boldsymbol{B} \boldsymbol{D} \boldsymbol{B} Xi \boldsymbol{B} \boldsymbol{B}

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array $c[5,6]$

LCS Example (1)

ABCB 0 **BDCAB** Yj \boldsymbol{B} D \boldsymbol{B} Xi 0 0 0 0 0 0 0 \boldsymbol{B} 0 0

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

 \boldsymbol{B}

LCS Example (2)

ABCB RDCAR

i	j	0 Yj	(B)	2 D	3 C	4 A	5 B
0	Xi	0		0	0	0	0
1	A	0	• 0				
2	В	0					
3	C	0					
4	В	0					

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (3)

ABCB

BDCAB

	j	0	1	2	3	4	5
i		Y j	В	D	C	\boldsymbol{A}	В
0	Xi	0	0	0	0	0	0
1	\boldsymbol{A}	0	0	0	0		
2	В	0					
3	\boldsymbol{C}	0					
4	В	0					

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (4)

ABCB BDCAB

	j	0	1	2	3	4	5	BD
i		Yj	В	D	<i>C</i>	(A)	В	
0	Xi	0	0	0	0	0	0	
1	(A)	0	0	0	0	1		
2	В	0						
3	\boldsymbol{C}	0						
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (5)

	\boldsymbol{j}	0	1	2	3	4	5	BDCAB
i		Yj	В	D	<i>C</i>	\boldsymbol{A}	(B)	
0	Xi	0	0	0	0	0	θ	
1	\bigcirc A	0	0	0	0	1 -	1	
2	В	0						
3	C	0						
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (6)

	j	0	1	2	3	4	5	B DCAB
i		Yj	(B)	\boldsymbol{D}	\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{B}	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	$\bigcirc B$	0	1					
3	C	0						
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (7)

	$oldsymbol{j}$	0	1	2	3	4	5	BDC A
i		Yj	В	D	<i>C</i>	A	$\supset B$	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	$\bigcirc B$	0	1	1 -	1	1		
3	C	0						
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (8)

i	j	0 Yj	1 B	2 D	3 C	4 A	(B)	BDCAB
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	$\bigcirc B$	0	1	1	1	1	2	
3	\boldsymbol{C}	0						
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (10)

	$oldsymbol{j}$	0	1	2	3	4	5	BDCAB
i		Yj	B) C	\boldsymbol{A}	В	
0	Xi	0	0	0	0	0	0	
1	\boldsymbol{A}	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	(c)	0	1 -	+ 1				
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (11)

	j	0	1	2	3	4	5	BDC AB
i		Yj	В	D	(C)	A	В	٦
0	Xi	0	0	0	0	0	0	
1	\boldsymbol{A}	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2			
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(\ c[i-1,j],\ c[i,j-1])$

LCS Example (12)

	j	0	1	2	3	4	5_	BDCAB
\boldsymbol{i}		Yj	В	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	\boldsymbol{A}	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	(c)	0	1	1	2 -	2 -	2	
4	В	0						

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (13)

	j	0	1	2	3	4	5	B DCAB
i		Yj	(B)	D	<i>C</i>	\boldsymbol{A}	В	
0	Xi	0	0	0	0	0	0	
1	\boldsymbol{A}	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2	2	2	
4	(B)	0	1					

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (14)

	•	0	1		2	4		BDCAB
•	J	0	I	2	3	4	5	
i	,	Yj	В	D	<i>C</i>	A	$\supset B$	1
0	Xi	0	0	0	0	0	0	
1	\boldsymbol{A}	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2	2	2	
4	$\bigcirc B$	0	1 -	* ¹	* ₂ -	2		

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (15)

	i	0	1	2	3	4	5	ABCB
i	J	Yj	\boldsymbol{B}	D	C	$\stackrel{\cdot}{A}$	B	BDCAB
0	Xi	0	0	0	0	0	0	
1	\boldsymbol{A}	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2	2	2	
4	$\bigcirc B$	0	1	1	2	2	3	

$$if(X_i == Y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
 $else\ c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time? O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

How to find actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

For example, here
$$c[i,j] = c[i-1,j-1] + 1 = 2+1=3$$

How to find actual LCS - continued

Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m,n] and go backwards
- Look first to see if 2nd case above was true
- If not, then c[i,j] = c[i-1, j-1]+1, so remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Algorithm to find actual LCS

• Here's a recursive algorithm to do this:

```
LCS print(x, m, n, c) {
 if (c[m][n] == c[m-1][n]) // go up?
   LCS print(x, m-1, n, c);
 else if (c[m][n] == c[m][n-1] // go left?
   LCS print(x, m, n-1, c);
 else { // it was a match!
   LCS print(x, m-1, n-1, c);
   print(x[m]); // print after recursive call
```

Finding LCS

	$oldsymbol{j}$	0	1	2	3	4	5
i		Yj	\boldsymbol{B}	D	\boldsymbol{C}	\boldsymbol{A}	В
0	Xi	0	0	0	0	0	0
1	\boldsymbol{A}	0	0	0	0	1	1
2	В	0	<i>1</i> ←	- 1	1	1	2
3	C	0	1	1	2 ←	- 2 _K	2
4	B	0	1	1	2	2	3

Finding LCS (2)

LCS (reversed order): B C B

LCS (straight order): B C B (this string turned out to be a palindrome)

Review: Dynamic programming

- DP is a method for solving certain kind of problems
- DP can be applied when the solution of a problem includes solutions to subproblems
- We need to find a recursive formula for the solution
- We can recursively solve subproblems, starting from the trivial case, and save their solutions in memory
- In the end we'll get the solution of the whole problem

Properties of a problem that can be solved with dynamic programming

- Simple Subproblems
 - We should be able to break the original problem to smaller subproblems that have the same structure
- Optimal Substructure of the problems
 - The solution to the problem must be a composition of subproblem solutions
- Subproblem Overlap
 - Optimal subproblems to unrelated problems can contain subproblems in common

Review: Longest Common Subsequence (LCS)

- Problem: how to find the longest pattern of characters that is common to two text strings X and Y
- Dynamic programming algorithm: solve subproblems until we get the final solution
- Subproblem: first find the LCS of prefixes of X and Y.
- this problem has *optimal substructure*: LCS of two prefixes is always a part of LCS of bigger strings

Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- Running time (Dynamic Programming algorithm vs. naïve algorithm):
 - LCS: O(m*n) vs. O(n * 2^m)
 - 0-1 Knapsack problem: O(W*n) vs. O(2ⁿ)