Algorithm Design and Analysis

CS240

Spring 2024

Rui Fan

Course info

- Assoc. Prof. Rui Fan / 范睿
 - □ Email: <u>fanrui@shanghaitech.edu.cn</u>
 - □ Office: SIST 1A-504E
 - □ Office hours Thursdays 3-4PM.
 - My research is parallel and distributed computing.
- Lecture notes on Blackboard, discussions on Piazza, grading on GradeScope.
- References
 - □ Algorithm Design. Kleinberg, Tardos.
 - □ Introduction to Algorithms, 3rd edition. Cormen, Leiserson, Rivest, Stein.

Grading

Problem sets	Project	Midterm	Final exam
35%	15%	20%	30%
~6 problem sets	Due end of week 16	Week 7 in class	

Recitations

- □ Problem set solutions and discussions.
- ☐ TAs, recitation time / place TBA.

Project

□ Write programs to solve programming contest style algorithm problems with time and memory limits.

Random number gen	erator		Reference cou		Dandomizad algorithms
Fuclid's algorithm	Markov chain Monte	Carlo	cursive functions		Randomized algorithms
COUNTY AND THE REST OF		Acke	rmann function		Power iteration
Binary search	Polynomial time A* s	earch	l Public key encry	Intion	
Quantum algorithms	Fast Fourier Transform	m '		140	eed-Solomon codes
Chinese remain	der theorem Huffma	n encodin	Ig Sieve of Erato	inear progr	amming
NP-completeness					Graph isomorphism
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Strassen's algorith	m Painte	er's algorithm	Precondition	ning Austion algorithms
Deep learning	Computation	onal biolo	gy	Divide and	Auction algorithms
1 q Interior point met	nods Zero knowled	ge proofs			Cuthill-Mckee
Traveling salesman pro	THE RESERVE OF THE PROPERTY OF		TCP/IP		curve factorization
18 2 3 4	Johnson-	Lindenstr	auss theorem	建物设计	le component analysis
Spline interpolati		rimal-dua	l algorithms		Newton's method
DNA sequence alignmen	t Satisfiability Parall	el algoriti	nms List sched	uling 1	icksort 200
o voronoi diagra	1000	Stron	gly connected 🐧	1000	ctor machines 1
Convex hulls Extern	al memory algorithms	comp	onents	Maximum	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Branch and bound	Quad Dynamic programmin	itrees Se	ecret sharing		ogorov complexity
	Bavesian in		Red-black tre	es	0 10
Dijkstra's algorithm			rogramming		coloring 111
Splay trees LRU ca	ching Lamport clock	S	Mut	t <mark>ual exclus</mark> i	on Discrete logarithms
Minimum spanning tree	iviaxir		pendent set	AKS prima	ality test
Streaming algorithm	ns Online alg	orithms	laam filtara	相侧的	Davis-Putnam algorithm
B-trees	MPEG compressio	n B	loom filters Sim	plex algorit	him
Approximation algorithm	ns Union-find Clock s	ynchroniz	zation	Byzantine	agreement
Ellipsoid algorithm		njugate g	radient Chaitir	's algorith	n Topological sort
VC dimension	finito automata		D. 600 N. S.	N-bc	ody problems
Neural networks	PageRank		algorithms Ray	tracing	Perfect hashing

M

Course content

- Analysis of algorithms
- Divide and conquer
- Greedy algorithms
- Dynamic programming
- Network flow
- NP and complexity
- Overcoming intractability
- Randomized algorithms
- Approximation algorithms

What is an algorithm?

- A precise, step-by-step procedure for solving a problem.
 - ☐ Take an input (an instance of the problem).
 - □ Perform a sequence of operations on data from the instance.
 - □ Produce an output (solution to the instance).

Expressing algorithms

- An algorithm is a method for solving a given problem.
- A program expresses the algorithm in a way a computer can understand.
 - □ Can use many different languages (C / C++ / Java / Python / ...) to express the same algorithm.
- Data structures are different ways to store data used by an algorithm.
 - □ Ex A dictionary can be stored as linked list, array, tree, etc.
 - Using the right data structure makes an algorithm more efficient.

Pseudocode

- We'll mostly write our algorithms in pseudocode.
- Precisely captures main ideas of algorithm without getting bogged down in details.
- You should practice translating between pseudocode and real code.

```
MAX-HEAPIFY (A, i)

1  l = \text{Left}(i)

2  r = \text{Right}(i)

3  \text{if } l \leq A.\text{heap-size} \text{ and } A[l] > A[i]

4  largest = l

5  \text{else } largest = i

6  \text{if } r \leq A.\text{heap-size} \text{ and } A[r] > A[largest]

7  largest = r

8  \text{if } largest \neq i

9  \text{exchange } A[i] \text{ with } A[largest]

10  \text{MAX-HEAPIFY } (A, largest)
```

Comparing algorithms

- A problem can be solved by many different algorithms.
 - □ Some algorithms are better than others.
- We focus on the time and memory complexity of an algorithm.
 - ☐ The less time and memory an algorithm uses, the better.
 - Other important measures include speed on real hardware, parallelism, energy use, simplicity and elegance, etc.
 - □ Can also compare amount of randomness needed, approximation ratio, competitive ratio, etc.
- Good algorithms are the key to efficiency.
 - Ex Use two algorithms to sort 10M numbers, on a processor which takes 1 billion steps per second.

	Algorithm A	Algorithm B
Complexity	n^2	$n\log_2 n$
Sorting time	$\frac{(10^7)^2}{10^9} \approx 28 \text{ hours}$	$\frac{10^7 * \log_2 10^7}{10^9} \approx 0.024 \text{ seconds}$

- Better algorithms are more important than faster hardware.
 - □ Ex Even if processor speed doubles every year, in 10 years algorithm A would still take ~100 seconds.

Time complexity

- Time complexity of an algorithm is the number of steps it performs until it terminates.
- A good complexity measure needs to address several issues.
- Issue 1 Complexity depends on input.
- Solution Analyze complexity as a function of input size.
 - \square Ex Adding two n digit numbers takes n steps.
 - \square Ex Multiplying two n digit numbers takes n^2 steps.
- Issue 2 For fixed input size, running time can still vary.
- Solution For a given input size, consider worst case, i.e. maximum possible number of steps.
 - \square Ex Finding item in a size n linked list takes at most n steps.
- Sometimes also consider average case complexity, i.e. average number of steps, over all inputs of certain size.
 - □ But this depends on knowing how likely each input is.
 - An algorithm tuned for one input distribution may perform poorly on another.

re.

Time complexity

- Issue 3 Number of steps depends on language and hardware details.
 - Ex Processor A does one arithmetic operation per step.
 Processor B does an add and multiply each step.
 - □ Computing $\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$ takes 2n steps on processor A and n steps on processor B.
- Solution Ignore constant factors in time complexity.
 - \square Ex Count 2n, n, 100n and 0.01n as the same thing.
 - \square Ex But n^2 and n are different, because they differ by nonconstant factor.
- Issue 4 Speeds of two algorithms can flip as inputs get larger.
 - Ex Algorithm A is faster than algorithm B for small inputs, but slower for big inputs.
- Solution Focus on asymptotic complexity, i.e. very large inputs.

Asymptotic analysis

- Compare sizes of functions f(n) and g(n) when ignoring constant factors and small inputs.
- Sometimes called "big O notation".

Notation	Intuitive meaning	Formal definition
f(n) = O(g(n))	$f \leq g$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$
$f(n) = \Omega(g(n))$	$f \ge g$	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 $
$f(n) = \Theta(g(n))$	f = g	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, \ 0 < c < \infty$
f(n) = o(g(n))	f < g	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 $
$f(n) = \omega(g(n))$	f > g	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty $

M

Big O pictorially

Source: Introduction to Algorithms
Cormen, Leiserson, Rivest, Stein

NA.

Examples 1

Example	Proof
n = O(2n)	$\lim_{n\to\infty} \frac{n}{2n} = \frac{1}{2} < \infty$
$10n^2 = O(n^2)$	$\lim_{n\to\infty} \frac{10n^2}{n^2} = 10 < \infty$
$n = O(n^2)$	$\lim_{n\to\infty} \frac{n}{n^2} = 0 < \infty$
$n^2 = O(2^n)$	$\lim_{n\to\infty} \frac{n^2}{2^n} = 0 < \infty$
$n \neq O(\sqrt{n})$	$\lim_{n\to\infty} \frac{n}{\sqrt{n}} = \lim_{n\to\infty} \sqrt{n} = \infty$

Ŋ.

Examples 2

Example	Proof
$n = \Omega(2n)$	$\lim_{n\to\infty} \frac{n}{2n} = \frac{1}{2} > 0$
$10n^2 = \Omega(n^2)$	$\lim_{n \to \infty} \frac{10n^2}{n^2} = 10 > 0$
$n^2 = \Omega(n)$	$\lim_{n\to\infty} \frac{n^2}{n} = \infty > 0$
$n = \Omega(\log n)$	$\lim_{n \to \infty} \frac{n}{\log n} = \infty > 0$
$n^2 \neq \Omega(2^n)$	$\lim_{n\to\infty} \frac{n^2}{2^n} = 0$

100

Examples 3

Example	Proof
$n = \Theta(2n)$	$\lim_{n\to\infty} \frac{n}{2n} = \frac{1}{2}$
$10n^2 = \Theta(n^2)$	$\lim_{n \to \infty} \frac{10n^2}{n^2} = 10$
$n^2 \neq \Theta(n)$	$\lim_{n\to\infty} \frac{n^2}{n} = \infty$
$n^2 \neq \Theta(2^n)$	$\lim_{n\to\infty} \frac{n^2}{2^n} = 0$

Ŋ.

Big O properties

- If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$.
- lacksquare O, Ω, Θ are transitive.
 - \square Ex If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

```
Proof. Since f(n) = O(g(n)), we have \lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty. Also, since g(n) = O(h(n)), we have \lim_{n\to\infty} \frac{g(n)}{h(n)} = c' < \infty. Thus, \lim_{n\to\infty} \frac{f(n)}{h(n)} = (\lim_{n\to\infty} \frac{f(n)}{g(n)})(\lim_{n\to\infty} \frac{g(n)}{h(n)}) = cc' < \infty, and so f(n) = O(h(n)).
```

- Θ is symmetric.
 - \square l.e. if $f(n) = \Theta(g(n))$, then $g(n) = \Theta(f(n))$.
- O(1) is the set of constants.
 - □ I.e. any c = O(1).

Analyzing complexity

- All programs can be written using loops, ifelse structures, and recursion.
- Analyze the complexity of each of type of structure.

Loops

- For and while loops.
 - □ Loops can be nested.
- Count everything in inner loop as one step.
 - Assume no function calls in inner loop.
 - □ There's constant number of steps in inner loop, i.e. O(1) steps.
- **Ex** Complexity is O(n).
- Ex Complexity is $1 + 2 + \dots + (n-1) = \frac{n(n-1)}{2} = O(n^2)$.
- **Ex** Complexity is $\lceil \log_2 n \rceil = O(\log n)$.
 - □ After $\lceil \log_2 n \rceil$ steps, $i = 2^{\lceil \log_2 n \rceil} \ge n$, so the loop terminates.

```
for(i=0; i<n; i++) {
    j = j+i;
    k = k*j;
}</pre>
```

```
for(i=0; i<n; i++) {
   for(j=0; j<i; j++) {
     printf("*");
   }
   printf("\n");
}</pre>
```

```
*
**

**

***

****
```

```
i=1;
while (i<n) {
   i=i*2;
   // do stuff
}</pre>
```


if-else statements

- We don't know which branch we'll run.
- Since want worst case complexity, assume the longest branch runs.
- Ex Branch 1 does n steps, branch 2 does n^2 steps. Since $n^2 \ge n$, step complexity is n^2 .

```
if (x==1)
  // do stuff A
else if (x==2)
  // do stuff B
...
else
  // do stuff Z
```

```
if (x==1)
  for(i=0;i<n;i++) {
    // do stuff
  }
else if (x==2)
  for(i=0;i<n;i++)
    for(j=0;j<n;j++) {
        // do stuff
    }</pre>
```


Recursive functions

- Recursive functions can call themselves.
- Many problems are "self reducible", i.e. we can solve the problem by first solving smaller instances of the problem.
- Natural to use recursive algorithm to solve these problems.
- There must be a base case that's solvable directly, without using recursion.
- Ex Let sum(n)=1+2+...+n.
 - □ Then sum(n) = n + sum(n-1).
 - □ The base case is n=1, for which sum(1)=1.

```
int sum(int n) {
   if (n==1)
     return 1;
   else
     return n+sum(n-1);
}
```


Analyzing recursive algorithms

- Two main steps.
 - □ Find a recurrence relation for the time complexity.
 - □ Solve the recurrence relation.
- Several ways to solve a recurrence relation.
 - ☐ Solve it directly, e.g. based on a guess.
 - □ Substitution method.
 - □ Recursion tree.
 - Master method.
- For first three methods, need to prove solution is correct using mathematical induction.

100

Finding a recurrence relation

- Given a function, let S(n) be the (worst case) number of steps it takes on an input of size n.
- The recurrence relation expresses S(n) as a function of itself.
 - \square Also need a base case when n is small.
- \blacksquare Ex S(n) = 1 + S(n-1)
 - □ Base case S(1) = 1, since we just do return when n = 1.
 - □ For n > 1, we do one step (+), then call sum(n-1), which takes S(n-1) steps.
- $\blacksquare \quad \mathsf{Ex} \ S(n) = n + S(n-2)$
 - □ Base cases S(0) = S(1) = 1.
 - □ For n > 1, we do n steps in the for loop. Then we call foo(n-2), which takes S(n-2) steps.

```
int sum(int n) {
   if (n==1)
     return 1;
   else
     return n+sum(n-1);
}
```

```
void foo(int n) {
   if (n<=1)
      return;
   for(i=0; i<n; i++) {
      // do stuff }
   return foo(n-2);
}</pre>
```


Direct solution

- First guess a solution (based on a pattern), then prove it using mathematical induction.
- \blacksquare Ex S(n) = n + S(n-2), S(0) = S(1) = 1.
 - □ Consider odd n = 2m 1. Even case similar.
 - S(1) = 1, S(3) = 4, S(5) = 9, S(7) = 16, etc.
 - \square So we guess $S(n) = m^2$.
- Prove this by induction.
 - □ Base case S(1) = 1 = 1.
 - \square Assume we proved it up to n = 2m 1.
 - \square For next odd n, we have

$$S(n+2) = S(2(m+1)-1) = n+2+S(n) = 2m+1+m^2 = (m+1)2.$$

Second equality is the recurrence relation.
 Third equality is the inductive hypothesis.

```
void foo(int n) {
   if (n<=1)
      return;
   for(i=0; i<n; i++) {
      // do stuff }
   return foo(n-2);
}</pre>
```


Substitution method

- First define the recurrence relation.
 - \square Let S(n) be number of steps bar(n) takes.
 - □ Base case S(1) = 1.
 - \square For n > 1, S(n) = 1 + S(n/2).
- To solve for S(n), keep substituting the recurrence relation into itself.
- S(n) = 1 + S(n/2).
 - Main recurrence relation.
- S(n/2) = 1 + S(n/4).
 - □ By substituting n/2 into the main relation.
- S(n/4) = 1 + S(n/8).
 - □ By substituting n/4 into the main relation.
- Etc.

```
int bar(int n) {
   if (n<=1)
     return 0;
   return 1+bar(n/2);
}</pre>
```

Ŋ.

Substitution method

- Assume first $n = 2^k$ for some k.
- Base case $S(n/2^k) = S(1) = 1$.
- Now do back substitution.

```
S(n) = 1 + S\left(\frac{n}{2}\right) = 1 + 1 + S\left(\frac{n}{4}\right) = 1 + 1 + 1 + S\left(\frac{n}{8}\right) = \dots = 1 + 1 + \dots + 1 + 1 + \dots + 1
S(1) = 1 + 1 + \dots + 1.
```

- □ There are k + 1 1's in the final expression, so S(n) = k + 1.
- Since $n = 2^k$, then $k = \log_2 n$, and $S(n) = \log_2 n + 1$.
- General case is similar. Show that $S(n) = \lfloor \log_2 n \rfloor + 1$.

```
int bar(int n) {
   if (n<=1)
     return 0;
   return 1+bar(n/2);
}</pre>
```


Recursion tree method

- Used for recursive algorithms that split into many branches.
- Ex Mergesort algorithm to sort an array of n numbers.
- Divide the array into two subarrays of size n/2.
- Recursively sort each subarray.
 - ☐ If array size = 1, just return the array.
- Merge two sorted subarrays into one sorted array.
 - □ Merging lists of size n and m takes O(n + m) time.
- Let S(n) be time complexity of mergesort. Then

$$S(n) = 2S\left(\frac{n}{2}\right) + O(n), S(1) = 1.$$

Source: Wikipedia

Recursion tree method

```
void mergesort(n) {
  if (n==1)
    return;
  else {
    L=mergesort(n/2);
    R=mergesort(n/2);
  }
  // takes O(n) time
  merge(R,L);
}
```

- ☐ Visualize the recursive calls that occur during mergesort(n).
- \square There are $\log_2 n$ levels in the recursion tree.
- \square At level *i*, there are 2^i recursive calls mergesort($n/2^i$).
- \square Each call does $n/2^i$ work in merge function.
 - \square So total work at level i is n.
- \square So total work overall is $S(n) = n \log_2 n$.

Source: http://www.comscigate.com/ cs/IntroSedgewick/40adt/42sort/images/nlogn.png

NA.

Master theorem

- "Plug and play" method for solving a common type of recurrence.
 - □ Based on comparing the nonrecursive complexity f(n) with $n^{\log_b a}$.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = O(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a})$ g n).
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Source: Introduction to Algorithms, Cormen et al

M.

Master theorem examples

- - $\Box a = 9, b = 3, f(n) = n, \log_b a = 2.$
 - \square Check $f(n) = O(n^{2-\epsilon})$, so use case 1 of Master theorem.
 - \square So $T(n) = \Theta(n^2)$.
- - $\Box a = 1, b = \frac{3}{2}, f(n) = 1, \log_b a = 0.$
 - $\Box f(n) = \Theta(n^0)$, so use case 2 of theorem.
 - \square So $T(n) = n^0 \log n = \Theta(\log n)$.
- - $\Box a = 3, b = 4, f(n) = n \log n, \log_b a \approx 0.793.$
 - $\Box f(n) = \Omega(n^{0.793+\epsilon})$, so use case 3 of theorem.
 - \square So $T(n) = \Theta(n \log n)$.

re.

Master theorem caveats

- Note in cases 1 and 3, f(n) needs to be smaller (resp. larger) than $n^{\log_b a}$ by a polynomial factor n^{ϵ} .
 - □ If this doesn't hold, we can't use the theorem.
- - $\Box a = 2, b = 2, f(n) = n \log n, \log_b a = 1.$
 - □ However, case 2 of the Master theorem doesn't apply, since $f(n) \neq \Theta(n)$.
 - □ Case 3 also doesn't apply, since $n \log n \neq \Theta(n^{1+\epsilon})$ for any $\epsilon > 0$.
 - So we can't use the Master theorem to solve this recurrence.
- For a proof of the Master theorem, see Section 4.5 in Cormen et al.
 - □ Proof basically formalizes the recursion tree method.