The group G is isomorphic to the group labelled by [40, 8] in the Small Groups library. Ordinary character table of $G\cong (\text{C10 x C2})$: C2:

Trivial source character table of $G \cong (C10 \times C2) : C2$ at $p = 5$:										
Normalisers N_i	N_1					N_2				
p-subgroups of G up to conjugacy in G	P_1					P_2				
Representatives $n_j \in N_i$	1a	2a	2b	2c	4a	1a	2b	2a	4a	2c
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13}$	5	1	5	5	1	0	0	0	0	0
$ \left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} \ \right $	5	-1	-5	5	1	0	0	0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} \ \right $	5	-1	5	5	-1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	5	1	-5	5	-1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	10	0	0	-10	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	-1	-1	1	1	1	-1	-1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	-1	1	-1	1	-1	1	-1	1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} \ \right $	1	-1	1	1	-1	1	1	-1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	0	0	-2	0	2	0	0	0	-2

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 20, 5, 28, 12)(2, 24, 8, 32, 16)(3, 26, 10, 34, 18)(4, 27, 11, 35, 19)(6, 30, 14, 37, 22)(7, 31, 15, 38, 23)(9, 33, 17, 39, 25)(13, 36, 21, 40, 29)]) \cong C5$

 $N_1 = Group([(1,2)(3,13)(4,7)(5,32)(6,9)(8,28)(10,40)(11,38)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(19,31)(21,34)(22,33)(23,27)(25,30)(26,29), \\ (1,2)(3,13)(4,7)(5,32)(6,14,22,33)(23,27)(25,30)(26,29), \\ (1,3)(2,3)(2,3)(2,3)(23,27)(25,30)(26,29), \\ (1,2)(3,13)(4,7)(5,32)(6,14,22,33)(23,27)(25,30)(26,29), \\ (1,3)(2,3)(2,3)(23,27)(25,30)(26,29), \\ (1,3)(2,3)(2,3)(23,27)(25,30)(26,29), \\ (2,3)(3,13)(4,7)(5,32)(3,32)(23,27)(25,30)(26,29), \\ (3,13)(4,2)(2,33)(23,27)(25,30)(26,29), \\ (3,13)(4,2)(2,23)(23,23)(23,27)(25,29), \\ (3,13)(4,2)(2,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)(23,23)($

 $\begin{vmatrix} \chi_{13} \\ \chi_{13} \end{vmatrix} 2 \quad 0 \quad 2 \quad 2 \quad E(5) + E(5)^4 \quad 0 \quad E(5) + E(5)^4 \quad E(5) + E(5)^4 \quad E(5) + E(5)^3 \quad E(5) + E(5)^3 \quad E(5)^2 + E(5)^2 + E(5)^3 \quad E(5)^2 + E(5)^2$