CHIMIE DES SOLUTIONS AQUEUSES

Chapitre 5: Réactions d'oxydo-réduction (2^{ème} partie)

4 Titrages par oxydo-réduction

 $\underline{\text{Exemple}}: \text{titrage d'une solution d'ions } Fe^{2+} \text{ par une solution d'ions } Ce^{4+}.$

$$\overline{E^o(Fe^{3+}/Fe^{2+})} = 0.77 \text{ V et } E^o(Ce^{4+}/Ce^{3+}) = 1.74 \text{ V}.$$

Le suivi de la réaction peut s'effectuer par **potentiométrie** en utilisant une électrode de mesure et une électrode de référence. L'équivalence sera alors repérée par un **saut de potentiel** ou un changement de couleur de la solution.

4.1 Types d'électrodes

On rencontre différents types d'électrodes selon la nature du conducteur métallique et des espèces oxydantes ou réductrices.

* Électrode de première espèce :

* Électrode de deuxième espèce :

* Électrode de troisième espèce :

4.2 Suivi potentiométrique

On utilise une électrode de platine comme électrode de mesure et une électrode au calomel saturé comme l'électrode de référence.

 $\underline{\text{Exemple}}$: titrage cérimétrique des ions Fe^{2+} , évolution du potentiel d'électrode de platine en fonction E en fonction du volume V de Ce^{4+} versé.

4.3 Suivi colorimétrique

L'équivalence peut être repérée par un indicateur coloré d'oxydo-réduction introduit en faible quantité. Il s'agit d'un couple Ox / Red dont les deux formes ont des couleurs différentes. Il est caractérisé par son potentiel standard E^o . Un indicateur coloré d'oxydo-réduction est adapté à un titrage si le potentiel à l'équivalence est proche de son potentiel standard.

Indicateur	$E_{/ESH}^{o}$ (V) à 25°C et $pH = 0$	Couleur oxydant	Couleur réducteur
Ferroïne	1,06	bleu	rouge
2,6-dichloroindophénol	0,67	bleu	incolore
Bleu de méthylène	0,53	bleu	incolore

Exemple : dosage de Fe^{2+} par Ce^{4+} . Utilisation de l'orthophénanthroline ferreuse : passage du rouge au bleu à l'équivalence. $E^o(Fe(ophen)_3^{3+}/Fe(ophen)_3^{2+})=1,04\ V$.

 $\underline{\text{Exemple}}$: dosage du diode par une solution de thiosulfate en présence d'empois d'amidon (ou thiodène) : décoloration (bleu \rightarrow incolore) à l'équivalence.

Leçons abordées dans ce chapitre :

 \rightarrow LC 5 : Oxydants et réducteurs

→ LC 6 : Chimie analytique quantitative et fiabilité

→ LC 7 : Évolution spontanée d'un système chimique

→ LC 20 : Détermination de constantes d'équilibre

→ LC 22 : Évolution et équilibre