Change in Ultrasonic Backscattered Energy for Temperature Imaging: I. Simulation with Multiple Scatterers II. Measurements from *In Vivo* Images

R. Martin Arthur¹, Jason W. Trobaugh¹, William L. Straube², Jesse Parry², Yuzheng Guo¹, and Eduardo G. Moros³

¹Electrical & Systems Engineering ²Radiation Oncology Washington University in St. Louis. St. Louis, MO, 63130, USA ³Radiation Oncology, University of Arkansas

Supported by NIH Grants R21 CA90531, R01 CA107558 and the Wilkinson Trust at Washington University

Objective of Ultrasonic Thermometry

- To develop a method to produce 3D temperature maps in soft tissue during hyperthermia cancer treatment
- > non-invasively, conveniently at low cost with a single view from standard equipment
- > with at least 0.5°C accuracy & 1 cm³ resolution

R. M. Arthur 2 of 19

Change in backscattered energy (CBE) as a monotonic temperature-dependent parameter

- CBE single-scatterer prediction U Med & Bio, 20:915-922, 1994
- CBE from isolated echoes in 1D Medical Physics, 30:1021-1029, 2003
- CBE over selected regions in 2D IEEE UFFC, 52:1644-1652, 2005

Bovine Liver

Change in backscattered energy (CBE) as a monotonic temperature-dependent parameter

- CBE in selected regions in 2D in 4 liver, 2turkey & 1 pork samples
- Null tests
 - -No heating (<±0.2 dB)
 - -Heating effects on the transducer (<±0.1 dB)
 - -Positioning (<±0.05 dB)
- CBE in simulations of scatterer collections

I. Simulation of Scatterer Collections

- To provide a theoretical representation for images of multiple scatterers to extend our single-scatterer model
- · To study effects of noise
- To establish calibration procedures
- To determine limits on spatial resolution and temperature accuracy

Simulation Methods

Discrete-Scatterer Model

- Superposition of point-spread-functions
- Temperature dependence of individual scatterers from single-scatterer model

Simulated images for heating of 500 lipid and 1000 aqueous temperature-dependent scatterers randomly placed in a liver-like medium

Trobaugh & Arthur, IEEE Trans. UFFC, 48:1594-1605, 2001

Simulated and Measured CBE

CBE from simulated images computed in the same manner used for actual images
Increase in BE (red) Decrease in BE (blue)

CBE measured in bovine liver

Single vs Multiple Scatterers

Numerical Simulation
Multiple sub-wavelength
scatterers
(500 lipid, 1000 aqueous)

Analytic Prediction
Single sub-wavelength
scatterers

Effect of Noise in Simulated Images

Washington University in St. Louis

I Image with Noise Level

2N

25 Images with Noise Level

R. M. Arthur 9 of 19

31st UI&TC Arlington, VA 5/24/06

Calibration & Estimation

Calibration Curve
Second-degree Polynomial Fit
to CBE from Simulated
Images with Noise

Temperature Estimation Calibration from

- Images with 1500 scatterers with
 - · Noise over a
- · 0.3 cm³ tissue volume

II. CBE In Vivo

In vivo Experimental Configuration

Terason 2000 (Teratech, Corp., Burlington, MA)

- 128 Element 7 MHz Linear Array
- Control of temperature from 37 to 45°C and image acquisition with AutoIt®
- Access to RF signals

Measurement of Backscattered Images

In Vitro Ultrasonic Image of Bovine Liver

Motion was compensated over multiple subregions

Added Problems for in vivo application of CBE temperature estimation include

- · CBE in living tissue
- · Perfusion effects
- Added motion

R. M. Arthur 12 of 19

In Vivo Studies > Performed on nude mice

- - attached to submerged angled traybilaterally implanted HT29 tumors

 - + RTD thermistor in contralateral tumor
- In vitro procedure followed
 → from 37.0 to 45.0°C in 0.5°C steps
 - + for an experiment of 0.5 hours
- > Mice euthanized without recovery
- > Images analyzed in a manner similar to that for *in vitro* experiments

Non-Rigid Motion

- Arrow lengths are 50 X actual motion field
- · Represented as interpolation over image
- · Estimated using conventional optimization

Change in Backscattered Energy in Motion-Compensated Images

Images after Non-Rigid Motion Compensation

CBE Increasing - Red Decreasing - Blue

CBE with Temperature In Vivo

Measured CBE in mice

Predicted CBE in subwavelength scatterers

CBE with Temperature

- > CBE is nearly monotonic with temperature
- > Calibration of CBE may enable temperature imaging

Summary & Conclusions

- Change in backscattered energy (CBE) was nearly monotonic and consistent in magnitude in
 - > Predictions
 - >Single-scatterer model
 - > Multiple-scatterer simulations
 - > Measured values
 - ▶1D isolated sites in *in vitro* beef liver, turkey breast & pork muscle specimens
 - >2D motion-compensated images in *in vitro* beef liver, turkey breast & pork muscle specimens
 - >2D motion-compensated images in vivo in mice

We expect CBE to enable noninvasive temperature imaging for hyperthermia

Future Directions for Thermometry Based on Ultrasonic CBE

- > Refinement of the CBE model
 - Histological study of scatterer distribution
 - Evaluation of images & CBE using simulation
- Estimation of temperature from simulations and measurements
- Development of clinically relevant heating and measurement systems
 - + Small Animal Heating with Ultrasound
 - Scanning Ultrasound Reflector
 Linear Array

