1. Множества. Операции с множества

Галина Люцканова

20 август 2013 г.

Интуитивно, множеството представлява съвкупност от обекти. Обектите на едно множество се наричат негови елементи и се казва, че принадлежат на множеството. Обикновено множествата се бележат с главни латински букви, а елементите им с малки латински букви. Например, числото 1 е елемент на множеството на естествените числа (естествени числа - това са числата, с които броим - 1, 2, 3,; множеството на естествените числа се означава \mathbb{N}). Следователно $1 \in \mathbb{N}$, което еквивалентно може да се запише като $\mathbb{N} \ni 1$. Числото 0.5 не е елемент на множеството на естествените числа - пишем $0.5 \notin \mathbb{N}$. Друг пример е Мария принадлежи на множеството на всички женски имена.

Горната дефиниция, не е напълно коректна, защото използва понятието съвкупност, без да го дефинира. Всеки опит за точно дефиниране на съвкупност би довел до кръгова дефиниция. Поради това в математиката понятието множество се приема за първично и не се дефинират строго.

Множествата в математиката се задават по няколко начина:

- 1. чрез изброяване на всички елементи множеството Примерно $A = \{1, 2, 3\}$
- 2. чрез условие, което удовлетворяват всички елементи на множеството

 Примерно $A = \{x \in \mathbb{N} | x = 2k, k \in \mathbb{N}\}$ ка пето знакат '|' се иете при
 - Примерно $A=\{x\in\mathbb{N}|x=2k,k\in\mathbb{N}\},$ където знакът '|' се чете при условие че.
- 3. чрез изброяване на първите няколко елемента Примерно $Alphabet = \{a, b, c, d, ...\}$. Надявам се, че виждате, че мно-

жеството е латинската азбука, тъй като не ми се пишат 26 букви, затова съм изброила първите 4.

Елементите на множествата са неповтарящи се. Нека да разгледаме множеството $D = \{a, a, a, b, b, c\}$, то се състои от елементите a, b, c. Следователно $D = \{a, b, c\}$ понеже в множествата няма значение колко пъти се появява даден елемент. Също така при множествата няма значение наредбата следователно $D = \{c, b, a\}$

Множеството A се нарича подмножество на множеството B, когато всеки елемент на A е и елемент и на B. Сега ще го напишем с математически означения:

Определение: Ако $\forall x \in A \Rightarrow x \in B$, то казваме че A е подмножество на B и бележим $A \subseteq B$.

Множеството, което няма нито един елемент, се нарича празното множество. Бележим го с \emptyset . То е подмножество на всяко множество - прието е по този начин.

Определение: Казваме, че множествата A и B са еквивалентни (или още съвпадат), когато двете множества се състоят от едни и същи елементи. Бележим с A=B.

Определение: Казваме че A е съществено подмножество на B, ако A не е празното множество и $A \neq B$.

Наричаме A съществено, защото ние знаем, че $\emptyset \subseteq B$ и $B \subseteq B$, каквото и множество B да изберем. Също така казваме, че \emptyset и B са тривиални подмножества на B.

Сега ще докажем интуитивна теорема:

Теорема: $A \subseteq B$ и $B \subseteq A \iff A = B$.

Доказателство:

Преди да докажем теоремата да си представим как ще изглеждат нещата.

Понеже $B\subseteq A$, то е изпълнено едновремено и

Следователно е изпълнено

Това е да се покаже само на интуитивно ниво, че е изпълнена теоремата, а сега ще я докажем.

Първо ще докажем правата посока, т.е. от $A\subseteq B$ и $B\subseteq A\Longrightarrow A=B$. Да допуснем противното, т.е. $A\subseteq B$ и $B\subseteq A\Longrightarrow A\ne B$ следователно без ограничение на общността можем да приемем, че съществува х: $x\in A, x\notin B$ (Може би се чудите, защо разглеждаме само случая "съществува х: $x\in A, x\notin B$ ", а не "съществува х: $x\notin A, x\in B$ ". Отговорът е понеже двата случая се правят по абсолютно един и за да обозначим, че ще направим само единият случай пишем без ограничение на общността и си спестяваме малко работа). Но тъй като $A\subseteq B$, следователно ако $x\in A$, то $x\in B$ и тук достигаме до противоречие с допускането. С това доказахме първата част.

Сега да докажем обратната посока, т.е. ако A=B, то $A\subseteq B$ и $B\subseteq A$. Понеже A=B, то ако $x\in A\Longrightarrow x\in B$. Но това показва, че $A\in B$ подмножество на B или $A\subseteq B$. Аналогично $B\subseteq A$.

Операции с множества Ще разгледаме операциите обединение, сечение, разлика и симетрична разлика на множества. Те са операции, които ще взимат две множества и връщат множество.

Ще започнем с един общ за всички операции пример. Нека да разгледаме множествата $A = \{1, 2, 3...\}, B = \{1, 3, 5...\}, C = \{2, 4, 6...\}$

Обединение (събиране) на множества Обединение на 2 множества A и B наричаме такова множество C, което се състои от елементите на множес-

твото А или множеството В. Много важно е да не забравяме, че не трябва да оставяме повтарящи се елементи, т.е. ако нещо се среща и в двете множества, го пишем веднъж.

Съкратено се записва като $A \cup B = \{x | x \in A$ или $x \in B\}$ За примера: $A \cup B = A, \ A \cup C = A, \ B \cup C = A$

Сечение на множества Сечение на 2 множества А и В наричаме такова множество С, което се състои от елементите принадлежащи едновременно на множеството А и множеството В.

Съкратено се записва като $A\cap B=\{x|x\in A$ и $x\in B\}.$ За примера: $A\cap B=B, A\cap C=C, B\cap C=\emptyset$

Разлика на множества Разлика на множеството A с множеството B наричаме такова множество C, което съдържа всички елементи от A, които в същото време не са елементи от B.

Съкратено се записва като $A\setminus B=\{x|x\in A$ и $x\notin B\}$ Аналогично $B\setminus A=\{x|x\notin A$ и $x\in B\}$

За примера:

$$A \setminus B = C, A \setminus C = B$$

 $B \setminus A = \emptyset, B \setminus C = B$

$$C \setminus A = \emptyset, C \setminus B = C$$

Симетрична разлика на множества Симетричната разлика на множеството A с множеството В наричаме такова множество C, което съдържа всич-

ки елементи от A, които в същото време не са елементи от B, и едновременно всички елементи от B, които в същото време не се елементи от A. Съкратено се записва като $A \triangle B = (A \setminus B) \cup (B \setminus A)$

За примера:
$$A \triangle B = C$$

$$A \triangle C = B$$

$$B \triangle C = A$$

Свойства

1.
$$A \cup B = B \cup A$$

$$2. \ (A \cup B) \cup C = A \cup (B \cup C)$$

3.
$$A \cup \emptyset = A$$

$$4. \ A \cup A = A$$

5.
$$A \cap B = B \cap A$$

6.
$$(A \cap B) \cap C = A \cap (B \cap C)$$

7.
$$A \cap \emptyset = \emptyset$$

8.
$$A \cap A = A$$

9.
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

10.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

11.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

12.
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

Тези свойства се доказват по един и същ начин. Взимаме x, което да удовлетворява дясната страна, и доказваме, че удовлетворява и лявата страна и обратно взимаме x, удовлетворяващо лявата страна и доказваме, че удовлетворява и дясната страна. Съветвам да се опитате да докажете някои от свойствата сами. По-долу са доказателствата на 1, 2, 9 и 11.

1. $A \cup B = B \cup A$

Доказателство:

- (a) Нека $x \in A \cup B$. Тогава $x \in A$ или $x \in B$. Следователно $x \in B$ или $x \in A$ т.е. $x \in B \cup A$. Получихме, че $A \cup B \subseteq B \cup A$.
- (б) Нека $x \in B \cup A$. Тогава $x \in B$ или $x \in A$. Следователно $x \in A$ или $x \in B$ т.е. $x \in A \cup B$. Получихме, че $B \cup A \subseteq A \cup B$. И от теоремата следва, че $A \cup B = B \cup A$.
- $2. \ (A \cup B) \cup C = A \cup (B \cup C)$

Доказателство:

- (a) Нека $x \in (A \cup B) \cup C$. Тогава $(x \in A$ или $x \in B)$ или $x \in C$. Следователно $x \in A$ или $(x \in B)$ или $x \in C$ т.е. $x \in A$ или $x \in B \cup C$. Следователно $x \in A \cup (B \cup C)$. Така получихме, че $(A \cup B) \cup C \subseteq A \cup (B \cup C)$.
- (б) Нека $x \in A \cup (B \cup C)$. Тогава $x \in A$ или $(x \in B)$ или $x \in C$. Следователно $(x \in A)$ или $x \in B$ или $x \in C$ т.е. $x \in A$ или $x \in B \cup C$. Така получихме, че $A \cup (B \cup C) \subseteq (A \cup B) \cup C$. От теоремата получаваме, че $(A \cup B) \cup C = A \cup (B \cup C)$.
- $3. \ A \cup \emptyset = A$ очевидно
- 4. $A \cup A = A$ очевидно
- 5. $A \cap B = B \cap A$ аналогично на 1
- 6. $(A \cap B) \cap C = A \cap (B \cap C)$ аналогично на 2
- 7. $A \cap \emptyset = \emptyset$ очевидно

8. $A \cap A = A$ - очевидно

9. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

<u>Доказателство</u>: Преди самото доказателство, да видим дали интуитивно ниво изглежда вярно. Нека да разгледаме A, B и C, такива че $A \cap B \cap C \neq \emptyset$, $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$ и $C \cap B \neq \emptyset$.

Тогава $A \cup B$ е оцветено в жълт цвят:

 $(A \cup B) \cap C$ е в червено.

Разгледахме лявата страна, а сега ще разгледаме дясната. $(A \cap C)$

е обозначено в оранжево.

 $(B \cap C)$ е зелено.

 $(A \cap C) \cup (B \cap C)$ е розово.

Получихме едно и също за двете страни. А сега да минем към доказателството на свойството.

- (а) Нека $x \in (A \cup B) \cap C$. Тогава $(x \in A$ или $x \in B)$ и едновременно $x \in C$. Следователно $(x \in A$ и едновременно $x \in C)$ или $(x \in B)$ и едновременно $x \in C$ т.е. $x \in A \cap C$ или $x \in B \cap C$. Следователно $x \in (A \cap C) \cup (B \cap C)$. Така получихме, че $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$
- (б) Нека $x \in (A \cap C) \cup (B \cap C)$. Тогава ($x \in A$ и едновременно $x \in C$) или ($x \in B$ и едновременно $x \in C$). Следователно ($x \in A$

или $x \in B$) и едновременно $x \in C$ т.е. $x \in A \cup B$ и едновременно $x \in C$. Така получихме, че $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$. От теоремата получаваме, че $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

10.
$$(A\cap B)\cup C=(A\cup C)\cap (B\cup C)$$
 - аналогично на 9

11.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Доказателство:

- (a) Нека $x \in A \setminus (B \cap C)$. Тогава $x \in A$, но $(x \notin (B \cap C))$. Следователно $x \in A$, но $(x \notin B \cup x \notin C)$. Тогава излиза, че $(x \in A \text{ и } x \notin B)$ или $(x \in A \text{ и } x \notin C)$ т.е. $x \in A \setminus B$ или $x \in A \setminus C$. Следователно $x \in (A \setminus B) \cup (A \setminus C)$. Така изкарахме, че $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$
- (б) Нека $(A \setminus B) \cup (A \setminus C)$. Тогава ($x \in A$ и едновременно $x \notin B$) или ($x \in A$ и едновременно $x \notin C$). Следователно $x \in A$ и едновременно ($x \notin B$ или $x \notin C$) т.е. $x \in A$ и едновременно $x \notin (B \cap C)$. Така получихме, че $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$. От теоремата получаваме, че $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 12. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ аналогично на 11