

Digital Logic and System Design

3: Boolean Algebra and Logic Gates

COL215, I Semester 2024-2025

Venue: LHC 408

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

Processing with Binary Logic

- **Storage**: 0/1
- Processing: Operations
 - Which operation have we already used?
- Need an Algebra: Boolean Algebra
 - Set of **values:** {0, 1} or {true, false}
 - Define properties and operations

Boolean Algebra (simplified)

- Set of elements B = {0,1} and
 Operations AND (•), OR (+)
- Postulates:

1. Closure

```
if x, y \in B, then z = x + y \in B
if x, y \in B, then z = x \cdot y \in B
```

2. Identity

```
0 is identity element for \bullet (0 + x = x)
1 is identity element for \bullet (1 \bullet x = x)
```

Postulates...contd.:

3. Commutativity

- + is commutative [x + y = y + x]
- is commutative $[x \bullet y = y \bullet x]$

4. Distributivity

- + is distributive over [x (y + z) = x y + x z]
- is distributive over $+ [x + (y \cdot z) = (x + y) \cdot (x + z)]$

5. Inverse (Complement)

For every $x \in B$, $\exists x' \in B$ such that x + x' = 1 $x \cdot x' = 0$

Defining Rules for Boolean Algebra Operations

AND (•)	Operation
-------	----	-----------

×	y	x • y
0	0	0
0	1	0
1	0	0
1	1	1

OR (+) Operation

×	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

NOT (') Operation

×	x'
0	1
1	0

(Inverse/Complement Postulate)

Truth Table: What is the output for every input combination?

Basic Theorems

1.
$$x + x = x$$

2. $x + 1 = 1$

$$\sqrt{2}$$
. $x + 1 = 1$

- 3. Involution: (x')' = x
 - 4. Associativity: x + (y + z) = (x + y) + z
- 5. De Morgan: $(x + y)' = x' \cdot y'$
- 6. Absorption: $x + x \cdot y = x$

Dual (Exchange +/• and 0/1)

$$1. \quad x \bullet x = x$$

2.
$$x \bullet 0 = 0$$

3.
$$x \bullet (y \bullet z) = (x \bullet y) \bullet z$$

4.
$$(x \cdot y)' = x' + y'$$

$$5. x \bullet (x + y) = x$$

Need to be proved from Postulates

Let us prove: $\mathbf{x} + \mathbf{x} = \mathbf{x}$

Exercises

- Prove the other theorems
 - using only Postulates
- Simplification: use Truth Tables

Simplifying Boolean Expressions

- Simplify F = x'y'z + xyz + x'yz + xy'z
- Repeated application of Postulates and Basic Theorems

Develop Truth Table

- F = x'y'z
- AND of multiple variables?

Boolean Functions

- Boolean Function: Algebraic expression of
 - Boolean variables
 - Constants 0/1
 - Logic operations
- Value of a function
 - 0 or 1 for a given set of values of input variables
 - What are the domain and co-domain of a Boolean Function?

Building more complex functions

- Use AND/OR to build complex expressions
 - representing logical conditions

•
$$F = x + y'z$$

- F = 1 if
 - x = 1, OR
 - y'z = 1
 - if y' = 1 AND z = 1
 - i.e., y = 0 AND z = 1
- Else, F = 0
- F can be represented with Truth Table

F
0
1
0
0
1
1
1
1

Representing with gates

- Logic gates represent Boolean functions
 - Variables are input
 - Function value is output

Representing F = x + y'z

- Gates: Same info. as Boolean expression
 - Precedence: (), ', AND, OR
- Break down complex expression (y'z) until we have elementary gates
- Primary inputs to Boolean circuit are variables

Which representation is best?

- Expression vs Gates vs Truth Table
- Gates: diagram view
 - easier to visualise function (if simple)
- Expression: enables automation
- Truth Table: unique

Boolean manipulation

- Truth Table: no further simplification
- Expressions could be simplified
 - fewer literals (x or x' counts as 1 literal)
 - x + xy' (3 literals) = x (1 literal)
- How does simplification help?

Simplification Example

- F = x'y'z + x'yz + xy'
- Draw Gate circuit/schematic
- Simplify
- Draw Gate circuit of simplified function
- Simplification: Cost/Area reduction
- Approx. comparison: literal count
- Verify with Truth Table: How?

More Simplifications

- $\times (x' + y)$
- $\bullet x + x'y$
- $\bullet (x + y)(x + y')$

xy + x'z + yz = xy + x'z [Consensus Theorem] (x + y)(x' + z)(y + z) = (x + y)(x' + z)

$$(x + y)(x' + z)(y + z) = (x + y)(x' + z)$$

Complement of a function

- De Morgan's Theorem: (x + y)' = x'y'
- (xy)' = x' + y'

- What about (x + y + z)?
- Generalisation (A, B,... are expressions):
 - (A + B + C +...)' = A'B'C'...
 - (ABC...)' = A' + B' + C' + ...
 - Convert to **Dual**, complement literals
- Exercise: Find complement of F = (x'y'z + x'y'z)

Complementing in Truth Table

- New column for every new function (F, F')
- Complement F column to obtain F'

Canonical Forms: Minterm

- Function of 3 variables: x, y, z
- AND of 3 variables, each in normal/complemented form:
 - xyz, xyz', xy'z,... (8 terms)
 - each is a minterm
- Function F of n variables: 2ⁿ minterms
- F can be represented as **Sum of minterms**
 - Select those minterms for which F = 1

$$F = x'y'z + xy'z' + xy'z + xyz$$

Complement from Truth Table

хух	minterms	F
000	x'y'z'	0
001	x'y'z	1
010	x'yz'	0
0 1 1	x'yz	0
100	xy'z'	1
101	xy'z	1
1 1 0	xyz'	0
1 1 1	xyz	1

```
F = x'y'z + xy'z' + xy'z + xyz

Complement of F: Pick minterms corresponding to 0s
F' = x'y'z' + x'yz' + x'yz + xyz'

Invert F' to obtain F:
F = (F')' = (x'y'z' + x'yz' + x'yz + xyz')'
= (x'y'z')'(x'yz')'(x'yz)'(xyz')'
= (x + y + z)(x + y' + z)(x + y' + z')(x' + y' + z)
```

Each of (x + y + z), (x + y' + z), etc., is a **maxterm** Function F can equivalently be represented as a **product of maxterms Also canonical representation** of a function

Alternative Canonical Representations

Abbreviated Representations

Standard Forms

- Sum of Products
- Product of Sums
- 2-level implementation

Sum of Products
2 Levels: AND followed by OR

Other Logic Gates

Inverter **AND Gate OR Gate XOR (Difference) Gate NAND Gate NOR Gate -** (x+y)' $xy'+x'y=x \bigoplus y$ (x•y)′ **XNOR (Equality) Gate** $-xy+x'y'=(x \oplus y)'$

Implementing a Gate

- CMOS Technology popular today
 - Complementary Metal Oxide Semiconductor
- Transistor used as a switch
 - Digital abstraction begins here
 - transistor: physical domain
 - switch: logical domain

