Topic 8 Classification Part 2

Classical NLP

...

Many other options for classification

- SVM
- Logistic Regression
- KNN
- Decision tree
- Random Forest
- XGBoost
- etc.

Decision Trees

- Decision trees are a popular machine learning algorithm for classification and regression tasks
- They are easy to interpret and visualize, and can handle both categorical and numerical features
- However, they can easily overfit to the training data, leading to poor performance on new data

Decision Trees

Decision Trees

https://www.datacamp.com/tutorial/decision-tree-classification-python

Decision making for splitting

Split	Left Branch	Right Branch	Gini Gain
x = 0.4	•	• • • • • •	0.083
x = 0.8	• •	•••••	0.048
x = 1.1	• • • •	• • • •	0.133
x = 1.3	• • • •	• • • •	0.233
x=2	• • • • •	• • •	0.333
x = 2.4	• • • • • •	• •	0.191
x = 2.8	•••••	•	0.083
y = 0.8	•	• • • • • •	0.083
y = 1.2	• • •	• • • • •	0.111
y = 1.8	• • • •	• • • •	0.233
y = 2.1	••••	• • • •	0.233
y = 2.4	• • • • •	• • •	0.111
y = 2.7	• • • • • •	• •	0.048
y=2.9	•••••	•	0.083

Random Forest

- A bunch of Decision Trees
- Decisions are made by ensembling the decisions of these trees together

Bagging (Bootstrap Aggregating)

- 1. Sample, with replacement, *n* training examples from the dataset.
- 2. Train a decision tree on the *n* samples.
- 3. Repeat *t* times, for some *t*.

Bagged Decision Trees predicting color

Next time

- Sentiment analysis
 - Rule-based and ML/DL solutions