Basic Data Structures: Dynamic Arrays and Amortized Analysis

Outline

① Dynamic Arrays

2 Amortized Analysis—Aggregate Method

Problem <mark>:</mark>	static	arrays	are	static	ļ

int my_array[100];

```
Problem: static arrays are static!
int my_array[100];
Semi-solution: dynamically-allocated arrays:
int *my_array = new int[size];
    cin>>size:
    new int[size]
```

Problem: might not know max size when allocating an array

All problems in computer science can be solved by another level of indirection.

Solution: dynamic arrays (also known as resizable arrays)
Idea: store a pointer to a dynamically allocated array, and replace it with a newly-allocated array as needed.

Definition

An abstract data type is defined by its Dynamic Array: An abstract data type is defined by its behavior from the point of view of a user

Abstract data type with the following operations (at a minimum):

- Get(i): returns element at location i^*
- Set(i, val): Sets element i to val^*
- PushBack(val): Adds val to the end
- Remove(i): Removes element at location i
- Size(): the number of elements

*must be constant time

Implementation

Store:

- arr: dynamically-allocated array
- capacity: size of the dynamically-allocated array
- size: number of elements currently in the array

PushBack(a)

PushBack(a)

PushBack(b)

PushBack(b)

PushBack(e)

```
arr size: 4 capacity: 8
```

PushBack(e)

```
arr size: 5 capacity: 8
```

PushBack(e)

Get(i)

return arr[i]

```
if i < 0 or i \ge size:
ERROR: index out of range
```

Set(i, val)

if i < 0 or $i \ge size$:

arr[i] = val

ERROR: index out of range

PushBack(*val*)

```
if size = capacity:

allocate new\_arr[2 \times capacity]

for i from 0 to size - 1:

new\_arr[i] \leftarrow arr[i]
```

free *arr*

 $arr[size] \leftarrow val$

 $size \leftarrow size + 1$

 $arr \leftarrow new_arr$; capacity $\leftarrow 2 \times capacity$

```
Remove(i)
```

ERROR: index out of range

for j from i to size - 2:

 $arr[j] \leftarrow arr[j+1]$

 $size \leftarrow size - 1$

```
if i < 0 or i \ge size:
```

Size()

return size

Common Implementations

- C++: vector
- Java: ArrayList
- Python: list (the only kind of array)

Runtimes

```
egin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, val) & O(1) \\ \operatorname{PushBack}(val) & O(n) \\ \operatorname{Remove}(i) & O(n) \\ \operatorname{Size}() & O(1) \\ \end{array}
```

Summary

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted—at most half.

Outline

① Dynamic Arrays

2 Amortized Analysis—Aggregate Method

Sometimes, looking at the individual worst-case may be too severe. We may want to know the total worst-case cost for a

sequence of operations.

Dynamic Array

We only resize every so often.

Many O(1) operations are followed by an O(n) operations.

What is the total cost of inserting many elements?

Definition

Amortized cost: Given a sequence of *n* operations, the amortized cost is:

 $\frac{\mathsf{Cost}(n \text{ operations})}{}$

n

Dynamic array: n calls to PushBack

$$c_i = 1 + \left\{ \right.$$

$$c_i = 1 + \begin{cases} i-1 & \text{if } i-1 \text{ is a power of 2} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + \begin{cases} i - 1 & \text{if } i - 1 \text{ is a power of 2} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n}$$

$$c_i = 1 + \begin{cases} i-1 & \text{if } i-1 \text{ is a power of 2} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \\ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n} = \frac{O(n)}{n}$$

$$c_i = 1 + \begin{cases} i - 1 & \text{if } i - 1 \text{ is a power of 2} \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_{i}}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_{2}(n-1) \rfloor} 2^{j}}{n} = \frac{O(n)}{n} = O(1)$$