Sales Forecasting Report: Weekly Product Demand Prediction for a Single Store

Objective

To develop a data-driven model that accurately forecasts weekly product sales quantities, supporting better inventory planning, pricing strategy, and promotional targeting.

Approach & Methodology

1. Data Preparation

- Handle Missing Values: No missing value found
- **Handle Outliers**: Using Interquartile Range(IQR), Winsorization to cap extreme value at a define percentile
- Feature Extraction: Extract "Month" and "Week" from "Sales_Week" given

2. Feature Engineering

- Revenue-based features: reflect business value, capture price impact
- Aggregated features (mean, median, sum, count) for price and sales
- Lag-based features & rolling averages for time series: to capture temporal dependencies

3. Development

- Train-test split: train on historical data
- Regression-based Model: XGBRegressor
- Sample weights: Add weights to y_train to reduce the imbalanced of low-volume samples
- **Gain-based Feature Importance**: Identified historical product performance as the strongest driver of future sales
- Hyperparameter Tuning: Used RandomizedSearchCV rather than GridSearchCV, allowed faster experimentation across a broader range of values

4. Model Evaluation & Visualization

Evaluation Metrics

- Mean Absolute Error (MAE): The average prediction error is only 3.75% of weekly average sales, showing high practical accuracy
- Mean Absolute Percentage Error (MAPE): Predictions are off by 40.89%, which
 indicates rooms for improvement, possibly due to outliers or volatile sales weeks.
 Performs very well with 0.59% target grouping MAPE, suggesting better aggregated
 forecasting accuracy
- R² score: The model explain 89% of the variance in weekly quantity sales, captures most patterns and trends in data, indicating reliable predictions
- Error Distribution Plot (y_test-y_pred): The model prediction errors are tightly clustered around zero, with minimal bias and few extreme deviations, indicating strong and reliable performances.

- Comparison using **Baseline (4-weeks moving average):** XGBoost significantly outperformed this baseline in R², MAPE and MAE.
- Forecasting vs Actual Sales Quantity over time chart: The model closely tracks actual sales across weeks, accurately capturing fluctuations and seasonal patterns. This indicates strong generalization ability and reliability for forward-looking sales quantity forecasting.

- **Compare metrics performance** with other Regression-based Model: **XGBoost** provides the best balance of accuracy, flexibility, and explainability.
 - Its ability to model complex sales behaviour, capture non-linearity
 - Robust to handle imbalances, missing values and outliers
 - Deliver actionable feature importance made it the suitable choice for sales prediction

Metrics	XGBoost	Random	Linear	Baseline
		Forest	Regression	(4-weeks MA)
MAE (% of avg sales weekly)	3.75%	17.37%	11.43%	16.70%
MAPE (Overall)	40.89%	44.85%	54.06%	57.86%
MAPE (Target Grouping)	0.59%	2.71%	1.78%	2.60%
R ² SCORE	0.89	0.86	0.84	0.79

Model Accuracy: XGBoost > RandomForest > Linear Regression

Key Findings

- Weekly-level features and aggregation help reduced error metrics significantly
- The model closely tracks actual sales across weeks, accurately capturing fluctuations and seasonal pattern
- Limitations:
 - Overfitting Risk
 - Features Sensitivity: Performances heavily depends on input features' quality, may not generalize well if external factors change (not include promotions or holidays in training)
 - Computational Cost: Require more resources for training or tuning