Ogniwo słoneczne

Miron Markowski, Łukasz Nawojowski 11 października 2016

1 Cel ćwiczenia

Zapoznanie się z działaniem ogniwa słonecznego i wyznaczenie:

- charakterystyk prądowo-napięciowych dla różnych rodzajów ogniw przy ustalonym oświetleniu
- Zależności gęstości prądu ogniwa jako funkcji napięcia na sekcję
- Sprawności badanych ogniw

2 Przebieg ćwiczenia

2.1 Układ doświadczalny

Skonstruowano obwód z rys.1a i układ jak na rys. 1b.

(a) Obwód z ogniwem

(b) Lampa i ogniwo słoneczne

Rysunek 1: Układ doświadczalny

2.2 Wyniki pomiarów

Tabela 1: Natężenie światła

$\phi [W/m^2]$	$\phi \text{ śr. } [W/m^2]$
60,0(4,0)	58,9(3,9)
65,2(4,3)	
54,5(3,7)	
55,8(3,8)	

Tabela 2: Ogniwo polikrystaliczne - stałe

N	$S[cm^2]$	$N*S [cm^2]$
8	7,8(1)	62,4(1)

Tabela 3: Ogniwo polikrystaliczne - pomiary

I[mA]	U [V]	P [mW]	U/N[V]	$I/S [A/m^2]$
0,1243(20)	2,63(13)	0,33(2)	0,33(2)	0,159(4)
0,1694(30)	2,62(13)	0,44(2)	0,33(2)	0.217(4)
0,20(10)	2,61(13)	0,52(27)	0,33(2)	0,26(13)
0,60(11)	2,53(13)	1,52(28)	0,32(2)	0.77(14)
1,00(11)	2,46(12)	2,46(30)	0,31(2)	1,28(14)
1,43(11)	2,37(12)	3,39(32)	0,30(2)	1,83(15)
1,63(12)	2,33(12)	3,80(34)	0,29(2)	2,09(15)
1,85(12)	2,28(12)	4,22(35)	0,29(2)	2,37(15)
2,00(12)	2,25(12)	4,50(36)	0,28(2)	2,56(16)
2,24(12)	2,18(12)	4,88(38)	0,27(2)	2,87(16)
2,43(12)	2,12(12)	5,15(40)	0,27(2)	3,12(16)
2,69(13)	2,05(12)	5,51(42)	0,26(2)	3,45(17)
2,99(13)	1,966(30)	5,88(27)	0,246(4)	3,83(17)
3,22(13)	1,892(29)	6,09(27)	0,237(4)	4,13(18)
3,37(13)	1,89(12)	6,37(47)	0,24(1)	4,32(18)
3,55(14)	1,735(27)	6,16(25)	0,217(3)	4,55(18)
3,59(14)	1,80(12)	6,46(49)	0,23(1)	4,60(18)
3,87(14)	1,515(25)	5,86(23)	0.189(3)	4,96(19)
4,07(14)	1,329(23)	5,41(21)	0,166(3)	5,22(19)
4,25(14)	1,109(21)	4,71(18)	0,139(3)	5,45(20)
4,41(14)	0,793(18)	3,50(14)	0,099(2)	5,65(20)
4,51(15)	0,671(17)	3,03(12)	0,084(2)	5,78(20)
4,69(15)	0,530(15)	2,49(11)	0,066(2)	6,01(20)

Tabela 4: Ogniwo monokrystaliczne - stałe

N	$S[cm^2]$	$N*S [cm^2]$
1	63,0(1)	63,0(1)

Tabela 5: Ogniwo monokrystaliczne - pomiary

I [mA]	U [V]	P[mW]	U/N [V]	$I/S [A/m^2]$
0.6(1.0)	0,46(1)	0.27(46)	0,46(1)	0,10(16)
1,0(1,0)	0,46(1)	0,46(46)	0,46(1)	0,16(16)
1,7(1,0)	0,46(1)	0,78(47)	0,46(1)	0.27(16)
2,2(1,0)	0,46(1)	1,01(47)	0,46(1)	0.35(16)
3,6(1,0)	0,46(1)	1,64(48)	0,46(1)	0.57(16)
5,2(1,1)	0,45(1)	2,36(48)	0,45(1)	0,83(17)
7,1(1,1)	0,45(1)	3,21(49)	0,45(1)	1,13(17)
10,6(1,1)	0,45(1)	4,76(52)	0,45(1)	1,68(18)
15,7(1,1)	0,44(1)	6,96(56)	0,44(1)	2,49(18)

Zależność gęstości prądu od napięcia na sekcję

2.3 Omówienie wyników

Pomiar napięcia i natężenia dla ogniwa polikrystalicznego dał o wiele ciekawszą krzywą, mówiącą więcej o ogólnym kształcie funkcji niż dla ogniwa monokrystalicznego, gdyż zakres oporu jakim dysponowaliśmy nie pozwolił na znaczne zmiany napięcia na tym ogniwie (różnica 0,02 V między napięciami na najmniejszym a największym możliwym oporze). Dlatego też choć maksymalna moc dla obu ogniw jest podobna, około 7 mW, można podejrzewać, że maksimum mocy dla ogniwa monokrystalicznego można zaobserwować dla oporu mniejszego niż najmniejszy dostępny przy oporniku, którym dysponowaliśmy.

W punkcie największej zmierzonej mocy ogniwo monokrystaliczne ma większe napięcie na sekcję, zaś ogniwo polikrystaliczne ma większą gęstość prądu.

Sprawność ogniwa wynosi: $\eta = \frac{P}{P_{\text{źródła}}} = \frac{P}{\phi \times S}$ zatem dla ogniwa:

• polikrystalicznego:
$$\eta = \frac{6,46\times 10^{-3}W}{58,9\frac{W}{m^2}\times 62,4\times 10^{-4}m^2} \approx 1,76(18)\%$$

• monokrystalicznego:
$$\eta = \frac{6,96 \times 10^{-3} W}{58,9 \frac{W}{m^2} \times 62,4 \times 10^{-4} m^2} \approx 1,88(20)\%$$

Tak niska sprawność może wynikać np. z faktu, że ogniwo jest już stare i zużyte, może mieć też zanieczyszczoną powierzchnię, ponadto światło lampy mogło mieć niewłaściwą długość fali, przez co efekt fotowoltaiczny nie był odpowiednio wydajny.

2.4 Dyskusja niepewności i błędów

Na używanych elektronicznych przyrządach pomiarowych nie naniesiono informacji o ich dokładności, dlatego niepewności oszacowano na podstawie obserwacji działania przyrządów w trakcie wykonywania pomiarów (np. porównanie zbliżonych wartości pomiaru na różnych zakresach) i typowych charakterystyk przyrządów pomiarowych danego typu. Niepewności pomiaru napięcia oraz natężenia prądu, a także natężenia światła obliczono zgodnie z wzorem:

$$u(x) = \frac{\Delta x}{\sqrt{3}}$$
, $\Delta x = C_1 \times x + C_2 \times r^x$, gdzie: C_1, C_2 - stałe przyrządu, r^x - zakres miernika

Zakresy mierników podane są w arkuszu z wynikami pomiarów, natomiast stałe C_1 oraz C_2 dobrano jak następuje:

• amperomierz:
$$C_1^I = 1\%, C_2^I = 0, 5\%$$

• woltomierz:
$$C_1^U = 1\%, C_2^U = 0,5\%$$

• luksomierz:
$$C_1^{\phi} = 5\%, C_2^{\phi} = 0, 5\%$$

Ostateczna wartość natężenia światła ϕ jest średnią z czterech pomiarów, jednak każdy z nich został wykonany przy innym boku ogniwa, dlatego nie potraktowano ich jako serii statystycznej jednej wielkości, lecz zastosowano oszacowanie niepewności typu B do uzyskanej wartości średniej, tak jakby to ona była wynikiem pomiaru.

Całkowita powierzchnia ogniwa S była dana na płytce z ogniwem bez informacji o dokładności, zatem za jej niepewność przyjęto ostatnia podaną cyfrę.

Niepewności obliczono według następujących wzorów:

$$u(I) = \frac{1}{\sqrt{3}} (C_1^I \times I + C_2^I \times r^I)$$

$$u(U) = \frac{1}{\sqrt{3}} (C_1^U \times U + C_2^U \times r^U)$$

$$u(\phi) = \frac{1}{\sqrt{3}} (C_1^{\phi} \times \phi + C_2^{\phi} \times r^{\phi})$$

$$u_c(P) = u_c(U \times I) = \sqrt{(I \times u(U))^2 + (U \times u(I))^2}$$

$$u(U/N) = u(U)/N$$

$$u_c(I/S) = \sqrt{((1/S) \times u(I))^2 + ((I/S^2) \times u(S))^2}$$

$$u_c(\eta) = u_c(P/(\phi \times S))$$

$$= \sqrt{((1/(\phi \times S) \times u_c(P))^2 + (P/(\phi^2 \times S) \times u(\phi))^2 + (P/(\phi \times S^2) \times u(S))^2}$$

Należy odnotować, że opornik na płytce z ogniwem monokrystalicznym był rozstrojony, tzn. przy kręceniu jego gałką regulującą, rezystancja rosła zgodnie z oczekiwaniami, w pewnym momencie gwałtownie malała, a potem znów gwałtownie rosła, by powrócić do poziomu sprzed spadku. Z tego powodu część wyników pomiaru odrzucono jako nieweryfikowalne bez użycia innego opornika. Również dlatego zakres amperomierza użyty przy pomiarach na ogniwie monokrystalicznym jest nieadekwatny w stosunku do nieodrzuconej części zmierzonych natężeń, przez co ich niepewności są stosunkowo duże.