Graph Algorithms

Peter Lammich

3. Februar 2020

Outline

- 1 Directed Graphs
- 2 Graph Traversal Algorithms
- Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

Outline

Directed Graphs

- **2** Graph Traversal Algorithms
- Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

Outline

- Directed Graphs
- 2 Graph Traversal Algorithms
- 3 Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

Dijkstra's Algorithm

• Relax node = relax outgoing edges

```
procedure RELAX(u)
for all v with w(u, v) \neq \infty do RELAX(u, v)
procedure DIJKSTRA(s)
F \leftarrow \emptyset, \ D \leftarrow \text{INITESTIMATE}(s)
while V \setminus F \neq \emptyset do
u \leftarrow \text{Some } u \in V \setminus F, \ D(u) \text{ minimal}
P \leftarrow F \cup \{u\}
\text{RELAX}(u)
return D
```

Dijkstra's Algorithm

- Relax node = relax outgoing edges
- Assume weights are positive: w(u, v) > 0

```
procedure RELAX(u)
for all v with w(u,v) \neq \infty do RELAX(u,v)
procedure DIJKSTRA(s)
F \leftarrow \emptyset, \ D \leftarrow \text{INITESTIMATE}(s)
while V \setminus F \neq \emptyset do
u \leftarrow \text{Some } u \in V \setminus F, \ D(u) \text{ minimal}
P \leftarrow F \cup \{u\}
\text{RELAX}(u)
return D
```

Dijkstra's Algorithm

- Relax node = relax outgoing edges
- Assume weights are positive: w(u, v) > 0
- Relax node with minimal estimate. Iterate until all nodes relaxed.

```
procedure RELAX(u)
for all v with w(u,v) \neq \infty do RELAX(u,v)
procedure DIJKSTRA(s)
F \leftarrow \emptyset, \ D \leftarrow \text{INITESTIMATE}(s)
while V \setminus F \neq \emptyset do
u \leftarrow \text{Some } u \in V \setminus F, \ D(u) \text{ minimal}
P \leftarrow F \cup \{u\}
\text{RELAX}(u)
return D
```


Dijkstra's Algorithm: Correctness

Dijkstra's Algorithm: Correctness

- Idea: Relaxed nodes have precise estimate
- As invariant: For all u ∈ F
 - $D(u) = \delta(u)$ (precise)
 - $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))
 - $\forall u \in V. \ D(u) \geq \delta(u)$ (over-estimate)
- Initially: $F = \emptyset$, holds trivially!
- First iteration: Relaxes s, and D(s) = 0 is precise
- Further iterations: See next slide!
- Finally: $F \supseteq V$, thus D precise for all nodes!

Dijkstra Algorithm: Invariant preservation

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

Dijkstra Algorithm: Invariant preservation

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

Dijkstra Algorithm: Invariant preservation

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

To show: D(v) precise (i.e. $D(v) = \delta(v)$)

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
```

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
Thus, \delta(v) = \delta(u) + w(u, v) \ge D(v)
```

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
Thus, \delta(v) = \delta(u) + w(u, v) \ge D(v)
```

Show (*): Shortest path from $s \in F$ to $v \notin F$ leaves F

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
Thus, \delta(v) = \delta(u) + w(u, v) \geq D(v)
```

Show (*): Shortest path from $s \in F$ to $v \notin F$ leaves F Let $(u', v') \in F \times (V \setminus F)$ be first edge leaving F

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
Thus, \delta(v) = \delta(u) + w(u, v) \ge D(v)
```

Show (*): Shortest path from $s \in F$ to $v \notin F$ leaves F Let $(u', v') \in F \times (V \setminus F)$ be first edge leaving F Assume $v' \neq v$, i.e., shortest path has form $sp_1u'v'p_2v$

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
Thus, \delta(v) = \delta(u) + w(u, v) \ge D(v)
```

Show (*): Shortest path from $s \in F$ to $v \notin F$ leaves F Let $(u', v') \in F \times (V \setminus F)$ be first edge leaving F Assume $v' \neq v$, i.e., shortest path has form $sp_1u'v'p_2v$ We have $D(v) \geq \delta(v) > \delta(v') = \delta(u') + w(u', v') \geq D(v')$

Assume $s \in F$ and for all $u \in F$

- $D(u) = \delta(u)$ (precise)
- $\forall v. \ D(v) \leq \delta(u) + w(u, v)$ (relaxed with precise D(u))

We now relax $v \in V \setminus F$, with minimal D(v)

```
To show: D(v) precise (i.e. D(v) = \delta(v))
For last edge (u, v) of shortest path to v, we have u \in F (*)
Thus, \delta(v) = \delta(u) + w(u, v) \ge D(v)
Show (*): Shortest path from s \in F to v \notin F leaves F
```

Let $(u', v') \in F \times (V \setminus F)$ be first edge leaving FAssume $v' \neq v$, i.e., shortest path has form $sp_1u'v'p_2v$ We have $D(v) \geq \delta(v) > \delta(v') = \delta(u') + w(u', v') \geq D(v')$ Thus, we would have picked v' instead of v!

Implementing Dijkstra

- Use priority queue for nodes not yet relaxed
 - relaxation: priority of node already in queue may decrease
 - requires decrease-key operation
- Instead of adding all nodes to PQ initially, add nodes as they are discovered
 - unreachable nodes won't be explored
 - no ∞ in PQ required
- Use predecessor map to compute actual paths

Heaps with Decrease-Key

- Recall min-heaps.
- sift-up restores heap-property for element with too small priority
 - e.g. after we decreased its priority
 - needs index of element in heap!
- To find index of node in heap:
 - maintain map from node names to index in heap!

Complexity

- Operations:
 - every edge relaxed at most once,
 - every node added and extracted from PQ at most once
- Cost of relaxation, addition, and extraction: $O(\log |V|)$.
- Thus: $O((|E| + |V|) \log |V|)$

Outline

- ① Directed Graphs
- 2 Graph Traversal Algorithms
- Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

• Dikstra's Algorithm finds shortest paths to all nodes

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map
 - for route to London, also route to Edinburgh will be computed!

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map
 - for route to London, also route to Edinburgh will be computed!
- A*-Algorithm

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map
 - for route to London, also route to Edinburgh will be computed!
- A*-Algorithm
 - heuristics h(u) estimates distance to target

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map
 - for route to London, also route to Edinburgh will be computed!
- A*-Algorithm
 - heuristics h(u) estimates distance to target
 - relax node with minimal D(u) + h(u)

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map
 - for route to London, also route to Edinburgh will be computed!
- A*-Algorithm
 - heuristics h(u) estimates distance to target
 - relax node with minimal D(u) + h(u)
 - stop when t has been relaxed

- Dikstra's Algorithm finds shortest paths to all nodes
 - for routing, we only need paths between two nodes
 - Dijkstra computes useless information
- Stop Dijkstra when target node is relaxed
 - still computes useless information!
 - for all nodes with shorter paths than target node
 - even if they go into the opposite direction on the map
 - for route to London, also route to Edinburgh will be computed!
- A*-Algorithm
 - heuristics h(u) estimates distance to target
 - relax node with minimal D(u) + h(u)
 - stop when t has been relaxed
 - recall: Dijkstra relaxes node with minimal D(u)

Pseudocode

```
procedure ASTAR(s,t)
F \leftarrow \emptyset, \ D \leftarrow INITESTIMATE(s)
while V \setminus F \neq \emptyset do
u \leftarrow Some \ u \in V \setminus F, \ D(u) + h(u) \ minimal
P \leftarrow F \cup \{u\}
if u = t then return D(t)
RELAX(u)
```

• Let s be source, and t be target node

- Let s be source, and t be target node
- Admissible: distance never over-estimated

- Let s be source, and t be target node
- Admissible: distance never over-estimated
 - for all nodes u. $h(u) \le \delta(u, t)$

- Let s be source, and t be target node
- Admissible: distance never over-estimated
 - for all nodes u. $h(u) \le \delta(u, t)$
- Monotone: estimate can't get better when taking edge

- Let s be source, and t be target node
- Admissible: distance never over-estimated
 - for all nodes u. $h(u) \le \delta(u, t)$
- Monotone: estimate can't get better when taking edge
 - for all nodes u, v. $h(u) \le w(u, v) + h(v)$

- Let s be source, and t be target node
- Admissible: distance never over-estimated
 - for all nodes u. $h(u) \le \delta(u, t)$
- Monotone: estimate can't get better when taking edge
 - for all nodes u, v. $h(u) \leq w(u, v) + h(v)$
 - triangle inequation

- Let s be source, and t be target node
- Admissible: distance never over-estimated
 - for all nodes u. $h(u) \le \delta(u, t)$
- Monotone: estimate can't get better when taking edge
 - for all nodes u, v. $h(u) \leq w(u, v) + h(v)$
 - triangle inequation

monotonicity implies admissibility

- Let s be source, and t be target node
- Admissible: distance never over-estimated
 - for all nodes u. $h(u) \le \delta(u, t)$
- Monotone: estimate can't get better when taking edge
 - for all nodes u, v. $h(u) \leq w(u, v) + h(v)$
 - triangle inequation

- monotonicity implies admissibility
 - proof by induction over shortest path from u to t.

Correctness

• We assume monotone heuristics

Correctness

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:

Correctness

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - · relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A^* on D, w

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A* on D, w
 - and we have $\forall u. \ D'(u) = D(u) + h(u)$

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A* on D, w
 - and we have $\forall u. \ D'(u) = D(u) + h(u)$
 - obviously, minimal nodes coincide!

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A* on D, w
 - and we have $\forall u. D'(u) = D(u) + h(u)$
 - obviously, minimal nodes coincide!
 - relaxation: Dijkstra relaxes D'(v) with D'(u) + w'(u, v)

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A^* on D, w
 - and we have $\forall u. \ D'(u) = D(u) + h(u)$
 - obviously, minimal nodes coincide!
 - relaxation:

Dijkstra relaxes
$$D'(v)$$
 with $D'(u) + w'(u, v)$
= $D(u) + h(u) + w(u, v) + h(v) - h(u)$

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A^* on D, w
 - and we have $\forall u. \ D'(u) = D(u) + h(u)$
 - obviously, minimal nodes coincide!
 - relaxation:

Dijkstra relaxes
$$D'(v)$$
 with $D'(u) + w'(u, v)$
= $D(u) + h(u) + w(u, v) + h(v) - h(u)$
= $D(u) + w(u, v) + h(v)$

- We assume monotone heuristics
 - for non-monotone (but admissible) heuristics:
 - relaxation may decrease estimate of finished nodes
 - those nodes must be unfinished again!
 - proof not covered in this lecture!
- Idea: Run of A* is equivalent to run of Dijkstra on modified graph
 - new weights: w'(u, v) = w(u, v) + h(v) h(u)
 - monotonicity guarantees they are positive!
 - initialization: D'(s) = h(s)
 - Dijkstra on w', D' will relax the same nodes as A^* on D, w
 - and we have $\forall u. \ D'(u) = D(u) + h(u)$
 - obviously, minimal nodes coincide!
 - relaxation:

Dijkstra relaxes
$$D'(v)$$
 with $D'(u) + w'(u, v)$
= $D(u) + h(u) + w(u, v) + h(v) - h(u)$

$$= D(u) + w(u,v) + h(v)$$

A* relaxes D(v) with D(u) + w(u, v)

Complexity

- In worst case, same as Dijkstra: $O((|V| + |E|) \log |V|)$
 - all other nodes gets relaxed before target node

Complexity

- In worst case, same as Dijkstra: $O((|V| + |E|) \log |V|)$
 - all other nodes gets relaxed before target node
- But, for practical problems, typically much better!