Contents

S1 $\Pr(\alpha(\theta,k))$ formula and figure 1
S2 Open syncmer proofs 2
S3 Proof of random minimizer probability vector 4
S4 Proof of (a,b,m)-words method probability vector 5
S5 Comparing $\Pr(f)$ 7
S6 Defining W_4,W_8 7

S1 $Pr(\alpha(\theta, k))$ formula and figure

Theorem S1.1. For 2k-1 i.i.d Bernoulli trials with success probability $1-\theta$ and $0 \le \beta \le k-1$,

$$Pr(\alpha(\theta, k) = \beta + 1) = Pr(Longest \ run \ of \ successes \ is \ k + \beta)$$

$$=\sum_{k=0}^{k-\beta-2} T_k(\beta,b)(1-\theta)^{k+\beta+b} \cdot \theta^{k-\beta-b-1}$$

where

$$T_k(\beta, b) = 2\binom{k - 2 - \beta}{b} + (k - \beta - 2)\binom{k - 3 - \beta}{b}$$

and binomial coefficients with negative parameters are 0. For $\beta = k-1$, the probability of 2k-1 successes is just $(1-\theta)^{2k-1}$.

Proof. Suppose $\beta < k-1$. If the maximum successful run is of length $k+\beta$ in 2k-1 trials, this must be the only run of $k+\beta$ successes in a row. Label the start and end of this sequence by positions $i,j \in \{1,...,2k-1\}$, where $j=i+k+\beta-1$. The possible positions of i are $i \in \{1,...,k-\beta\}$. We calculate $\sum_{k=1}^{k-\beta} \Pr(k+\beta \text{ successes in a row}, i=k)$.

Case 1: if i = 1 or $i = k - \beta$, then trial i + 1 or i - 1 has to be a failure respectively, otherwise the run is longer than $k + \beta$. There are $2k - 1 - (k + \beta + 1) = k - \beta - 2$ remaining trials which can be either successes for failures. Letting b be the number of successes in the rest of the trials and conditioning on b, we get the probability of i = 1 or i = k - 1 as

$$2\sum_{b=0}^{k-\beta-2} {k-2-\beta \choose b} (1-\theta)^{k+\beta+b} \theta^{k-\beta-b-1}.$$

Case 2: if $i \neq 1$ and $i \neq k - \beta$, then both of the trials i-1 and j+1 have to be failures. This leaves us with $k-\beta-3$ remaining trials. Conditioning on b again, we get the probability of i=2,...,k-2 as

$$(k-\beta-2)\sum_{b=0}^{k-\beta-3} {k-\beta-3 \choose b} (1-\theta)^{k+\beta+b} \theta^{k-\beta-b-1}.$$

Summing the probabilities together yields the result when $\beta < k-1$. If $\beta = k-1$ then clearly the probability is just $(1-\theta)^{2k-1}$.

Figure 1: $\Pr(\alpha(\theta, k)) = [\Pr(\alpha(\theta, k) = 1), ..., \Pr(\alpha(\theta, k) = k)]$ for various values of θ and k.

S2 Open syncmer proofs

Theorem S2.1 (Successful permutations for open syncmers). Using parameters k, s, t as defined in the definition of open syncmers let $\tau = t - 1$ and $OS(\alpha, k, s, t)$ be the number of permutations in $S_{k-s+\alpha}$ such that for some window $[\sigma(i), ..., \sigma(i+k-s)]$ the smallest element is $\sigma(i+\tau)$. Define $\ell_1 = \tau, \ell_2 = k - s - \tau$. Then

$$OS(\alpha, k, s, t) = \alpha(k - s + \alpha - 1)! + R(\alpha, k, s, t, \ell_1) + R(\alpha, k, s, t, \ell_2).$$

We define $R(\alpha, k, s, t, \ell)$ as

$$R(\alpha, k, s, t, \ell) = \sum_{\beta=1}^{\ell} (k - s + \alpha - 1)_{\beta-1} OS(\alpha - \beta, k, s, t)$$

where the subscript indicates falling factorial, and $OS(\alpha - \beta, k, s, t) = 0$ if $\beta \ge \alpha$.

This is proved in the Appendix.

Proof. We condition on the position of the smallest element, i.e. the index β for which $\sigma(\beta) = 1$. Let the set $A_{\tau} = \{\tau + 1, \tau + 2, ..., \tau + \alpha\}$

(Case 1 - if $\beta \in A_{\tau}$). In this case, the window

$$[\sigma(\beta-\tau),...,\sigma(\beta-\tau+(k-s))]$$

is valid and has the desired property that $\sigma((\beta + -\tau) + (\tau)) = \sigma(\beta)$ is the smallest integer in the window, so these permutations all satisfy condition 2 above. There are $\alpha(k - s + \alpha - 1)!$ such permutations.

(Case 2 - if $\beta < \tau + 1$). In this case, β is left of position t. Notice that for all windows containing position β will never be successful since the first window contains β at position $< \tau + 1$, and the relative position of β in subsequent windows will be $< \tau + 1$ as well.

The remaining windows which may still satisfy condition 2 lie are sub-windows of $[\sigma(\beta+1)...\sigma(k-s+\alpha)]$, which may be considered a permutation in $S_{k-s+\alpha-\beta}$ after relabelling elements to be in $\{1,...,k-s+\alpha-\beta\}$ to preserve the relative order.

This new permutation has to satisfy condition 2, and the number of such permutations is exactly $OS(\alpha - \beta, k, s, t)$. We have to multiply by an additional $(k - s + \alpha - 1)_{\beta - 1}$ to count the possible values for the $\beta - 1$ entries to the left of β , each of which give the same permutation in S_{w+a-b} after relabelling. Summing over $b = 1, ..., \tau = \ell_1$ gives the $R(\alpha, k, s, t, \ell_1)$ term.

(Case 3 - if $\beta > \tau + \alpha$). This case is identical to case 2 and the same argument works after flipping directions. This works by summing over the $\ell_2 = k - s - \tau$ possible positions $\beta \in \{k - s + \alpha, k - s + \alpha - 1, ..., \tau + 1 + \alpha\}$ and using a the same relabelling after cutting off a portion of the permutation. The number of permutations for $\beta = k - s + \alpha - i$ is the same as for $\beta = i$ by symmetry. Using this correspondence gives the $R(\alpha, k, s, t, \ell_2)$ term and completes the proof.

We now prove the following theorem.

Theorem S2.2. Let $\hat{t} = \lceil \frac{k-s+1}{2} \rceil$. Then $OS(\alpha, k, s, \hat{t}) \ge OS(\alpha, k, s, t)$ for any valid choice of t.

Lemma S2.3. Fix k, s, t, α and define $(k - s + \alpha - \beta - 1)_{\beta-1}OS(\alpha - \beta, k, s, t) = \overline{OS}(\alpha, \beta, t)$. If $\gamma \geq \beta$, for any t, we have

$$\overline{OS}(\alpha, \beta, t) \ge \overline{OS}(\alpha, \gamma, t).$$

Proof of Lemma. We show $\overline{OS}(\alpha, \beta - 1, t) \ge \overline{OS}(\alpha, \beta, t)$ for any β , which implies the result. This is equivalent to showing that

$$OS(\alpha - \beta + 1, k, s, t) \ge \frac{(k - s + \alpha - 1)_{\beta - 1}}{(k - s + \alpha - 1)_{\beta - 2}} OS(\alpha - \beta, k, s, t)$$
$$= (k - s + \alpha - \beta + 1) OS(\alpha - \beta, k, s, t).$$

Notice that

$$OS(\alpha - \beta + 1, k, s, t)/(k - s + \alpha - \beta + 1)! = \Pr(f, \alpha - \beta + 1)$$

and

$$OS(\alpha - \beta, k, s, t)/(k - s + \alpha - \beta)! = Pr(f, \alpha - \beta)$$

when f is an open syncmer method with fixed parameters k, s, t from our correspondence between random permutations and the event a k-mer is selected by f. By definition, $\Pr(f, \alpha - \beta + 1) \ge$ $\Pr(f, \alpha - \beta)$. Technically, the correspondence is only true up to a small error due to the chance of repeated k-mers appearing in a window, but one can make OS(x, k, s, t) arbitrarily close to $\Pr(f, x)$ by letting the alphabet be very large, making repeats unlikely (see the Section 2.3.1 in [1]). Then

$$OS(\alpha - \beta + 1, k, s, t) \ge (k - s + \alpha - \beta + 1)OS(\alpha - \beta, k, s, t)$$

follows from $\Pr(f, \alpha - \beta + 1) \ge \Pr(f, \alpha - \beta)$, and we're done.

Proof of Theorem S2.2. We use the similar notation as Lemma S2.3 for \overline{OS} . Observe that

$$OS(\alpha, k, s, t) = OS(\alpha, k, s, k - s + 2 - t)$$

since this just swaps the ℓ_1, ℓ_2 in the definition. Since $k - s + 2 - \hat{t} = \hat{t}$ or $\hat{t} + 1$ depending on if k - s + 1 is odd or even, we only need to prove that this inequality holds for $t < \hat{t}$. We will assume k - s + 1 is odd for exposition since the indices are easier to handle, but the result holds either way after a slight modification.

We proceed by induction on α for $OS(\alpha, k, s, t)$. For the base case $\alpha = 1$, notice that clearly $OS(1, k, s, t) = OS(1, k, s, \hat{t}) = (k - s)!$. Let $\hat{\tau} = \hat{t} - 1$ and $\tau = t - 1$. Therefore we want the following term to be positive:

$$OS(\alpha, k, s, \hat{t}) - OS(\alpha, k, s, t) = \sum_{\beta=1}^{\tau} [\overline{OS}(\alpha, \beta, \hat{t}) - \overline{OS}(\alpha, \beta, t)]$$

$$+ \sum_{\beta=1}^{k-s-\hat{\tau}} [\overline{OS}(\alpha, \beta, \hat{t}) - \overline{OS}(\alpha, \beta, t)]$$

$$+ \sum_{\beta=\tau+1}^{\hat{\tau}} \overline{OS}(\alpha, \beta, \hat{t}) - \sum_{\beta=k-s-\hat{\tau}+1}^{k-s-\tau} \overline{OS}(\alpha, \beta, t)$$

$$(1)$$

By the induction assumption the first two sums are ≥ 0 since $OS(\alpha - \beta, k, s, \hat{t}) \geq OS(\alpha - \beta, k, s, t)$ for $\beta \geq 1$. For the last term, k - s + 1 odd gives us $k - s - \hat{\tau} = \hat{\tau}$. We can rewrite the last line as

$$\sum_{j=1}^{\hat{\tau}-\tau} \overline{OS}(\alpha, (\hat{\tau}-j+1), \hat{t}) - \overline{OS}(\alpha, (\hat{\tau}+j), t).$$

By the induction assumption, $\overline{OS}(\alpha, (\hat{\tau} - j + 1), \hat{t}) \ge \overline{OS}(\alpha, (\hat{\tau} - j + 1), t)$ and using Lemma S2.3 finishes the proof because $\hat{\tau} - j + 1 \le \hat{\tau} + j$ for all $j \ge 1$.

We show in Figure 2 what Pr(f) looks like for syncmer methods over a range of t.

S3 Proof of random minimizer probability vector

Theorem S3.1 (Successful permutations for random minimizers). Given parameters (n, w, α, p) with $p + \alpha - 1 \le n$, let $M(n, w, \alpha, p)$ be the number of permutations in S_n such that for some window $[\sigma(i), ..., \sigma(i+w-1)]$, the smallest element is one of $\sigma(p), \sigma(p+1), ..., \sigma(p+\alpha-1)$. Then

$$M(n,w,\alpha,p) = \left\{ \begin{array}{ll} (a)(n-1)! + \tilde{R}(n,w,\alpha,\tilde{\ell_1}) + \tilde{R}(n,w,a,\tilde{\ell_2}) & \textit{for } w \leq n \\ 0 & \textit{for } w > n \end{array} \right\}$$

where $\tilde{\ell_1} = p - 1$, $\tilde{\ell_2} = n - (p + \alpha - 1)$ and using $(x)_n$ to mean the falling factorial,

$$\tilde{R}(n, w, \alpha, \ell) = \sum_{\beta=1}^{\tilde{\ell}} M(n - \beta, w, \alpha, \tilde{\ell} - \beta + 1) \cdot (n - 1)_{\beta-1}.$$

Proof. As in the proof of Theorem S2.1, we condition on the position of the smallest element, i.e. the index β for which $\sigma(\beta) = 1$. Let the set $A_p = \{p, p+1, ..., p+\alpha-1\}$.

Figure 2: The probability vector for open syncmers with varying t parameters (k, s) = (17, 10). The s parameter for the closed syncmer was chosen so that the densities are equal. We only evaluate for $t \le 4$ because $t \mapsto k - s + 2 - t$ gives the same probabilities for open syncmers by Theorem S2.1.

(Case 1 - if $\beta \in A_p$). This permutation clearly is successful. There are $\alpha(n-1)!$ such permutations.

(Case 2 - if $\beta < p$). In this case, β is left of position p. All windows containing position β will never be successful since $\beta \notin A_p$ and $\sigma(\beta)$ is the smallest element in the window. The only possible successful windows are the sub-windows of $[\sigma(\beta+1)...\sigma(n)]$. We can relabel the positions after shifting by β and consider this as a new permutation on $1,...,n-\beta$ after relabelling $\sigma(i)$ while preserving relative order. This sub-problem is exactly counted by $(n-1)_{\beta-1}M(n-\beta,w,\alpha,p-\beta)$ after multiplying by the $(n-1)_{\beta-1}$ possible values for $\sigma(i)$, $i < \beta$. Notice that if $n-\beta < w$, then there are no windows that satisfy our requirement, so $M(n-\beta,w,a,p-\beta)=0$. Summing over $\beta < p$ gives

$$\sum_{\beta=1}^{p-1} (n-1)_{\beta-1} M(n-\beta, w, \alpha, p-\beta).$$

(Case 3 - if $\beta > p + \alpha - 1$). The exactly same argument follows as in case 2. We see that successful windows must be sub-windows of $[\sigma(1), ..., \sigma(\beta - 1)]$, so this is almost counted by $(n-1)_{n-\beta}M(\beta-1, w, \alpha, p)$ over all $\beta > p + \alpha - 1$. We can shift indices to get

$$\sum_{\beta=p+\alpha}^{n} (n-1)_{n-\beta} M(\beta-1, w, \alpha, p) = \sum_{\beta=1}^{n-(p+\alpha-1)} M(n-\beta, w, \alpha, p) (n-1)_{\beta-1}.$$

To rewrite the equation to be in a similar form to case 2, one can see that $M(n-\beta, w, \alpha, p) = M(n-\beta, w, \alpha, (n-\beta) - (p+\alpha-1) + 1)$ which corresponds to "flipping' the permutation on $S_{n-\beta}$ so that position $i \mapsto n-\beta-i+1$. This completes the proof.

S4 Proof of (a, b, m)-words method probability vector

Theorem S4.1. Pr $(f, \alpha - 1)$ under the (a, b, n)-words method is

$$\sum_{i=1}^{\alpha} (-1)^{i+1} \frac{3^{ni}}{4^{i(n+1)}} \binom{\alpha - n(i-1)}{i}$$

where
$$\binom{x}{y} = 0$$
 if $x < 0$.

We first prove an intermediate combinatorial lemma.

Lemma S4.2. Given a set of of α elements labelled $\{1,...,\alpha\}$, the number of ways c(n+1,i) to choose i elements $x_1,...,x_i$ where we order $x_j < x_{j+1}$ for j=1,...,i-1 and $|x_j - x_{j+1}| \ge (n+1)$ for all j is

$$\binom{\alpha - n(i-1)}{i}$$
.

Proof. Let $y_0 = x_1 - 1$, $y_1 = x_2 - x_1 - 1$, ..., $y_i = \alpha - x_i$. The y_i s represent the gaps between x_i s and also the endpoints. A valid choice of x_i s corresponds exactly to a choice of y_i s such that each $y_i \ge n$ for i = 1, ..., i - 1 and $y_0, y_i \ge 0$. Furthermore,

$$\sum_{i=0}^{i} y_i = \sum_{i=1}^{i-1} (x_{i+1} - x_i - 1) + \alpha - x_i + x_1 - 1 = \alpha - i$$

We can take $z_j = y_j - n$ for i = 1, ... i - 1 and $z_j = y_j$ otherwise to get the equivalent problem of finding z_j all ≥ 0 such that

$$\sum_{j=0}^{i} z_{j} = \alpha - i - (i-1)n.$$

This problem is equivalent to putting $\alpha - i - (i-1)n$ indistinct balls into i+1 distinct jars represented by the variables z_i . The solution is

$$\binom{[i+1]+[\alpha-i-(i-1)n]-1}{\alpha-i-(i-1)n} = \binom{\alpha-n(i-1)}{i}$$

as desired.

Proof of Theorem S4.1. The probability that at least one of the k-mers is selected is

$$\Pr(\bigcup_{i=1}^{\alpha} E_i)$$

where E_i is the event that the i-th k-mer is selected. By inclusion-exclusion, we get

$$\Pr(\bigcup_{i=1}^{\alpha} E_i) = \sum_{I \subset \{1, \dots, \alpha\}} (-1)^{|I|+1} \Pr(E_I) = \sum_{i=1}^{\alpha} (-1)^{i+1} \sum_{I \subset \{1, \dots, \alpha\}, |I|=i} \Pr(E_I)$$

where $E_I = \bigcup_{i \in I} E_i$. Now note that the probability that $E_\alpha \cap E_\beta$ for $|\alpha - \beta| < n$ occurs is 0; k-mers with prefix abbb... may not be within distance n+1 from each other. If the i k-mers are all distance $\geq n+1$ apart, then the probability of that event occurring is just $(\frac{3^n}{4 \cdot 4^n})^i$ because this is just the sequence abbb... appearing i times in a string of i.i.d random letters. Therefore, denoting c(i, n+1) to be the number of ways to select i elements from $\{1, ..., \alpha\}$ such that each element is at least pairwise distance n+1 apart, we get

$$\sum_{i=1}^{\alpha} (-1)^{i+1} \sum_{I \subset \{1, \dots, \alpha\}, |I|=i} \Pr(E_I) = \sum_{i=1}^{\alpha} (-1)^{i+1} c(n+1, i) \frac{3^{ni}}{(4^{n+1})^i}.$$

Plugging in the above lemma finishes the proof.

S5 Comparing Pr(f)

In Figure 3, we plot all Pr(f) and UB(d) where all methods have density d=1/7 except for the words method, which has density $9/64 \sim 1/7.11$. This is due to the limited range of parameters choices for the methods.

Figure 3: Comparison of Pr(f) for all methods with exact distributions derived. Note that the density for the words method is slightly smaller.

S6 Defining W_4, W_8

We take the words set W_4 as

$$W_{4} = \{rrrrry, rryrry, rryryy, ryrrrr, ryrrry, ryryry, ryyrry, ryyryr, ryyryy, ryyyry, ryyyyy, ryrrry, ryrryy, ryyrrr, ryyrry\}.$$

$$(2)$$

Here $r = \{A, G\}$ and $y = \{C, T\}$ and we mean rryrry to be all 6-mers that satisfy this condition. This set leads to a d = 1/4 method, and was found by an optimization algorithm [2]. We take the words set W_8 as

$$W_{8} = \{rrrrrry, rryrrryy, ryrrrryr, ryrrrryy, \\ ryrrryry, yrrrrry, yrrrrryr, yrrrrryy, \\ yrrryry, yrryrryr, yrryrryy, yryrrryy, \\ yryrryry, yryrryyr, yryrryyy, yryrryyr, \\ yyrrryyy, yyrrryry, yyrrryry, yyrrryry, \\ yyrryyy, yyrryryr, yyrryryy, yyrryyy, \\ yyryyryy, yyrryyyy, yyryyyy, yyryyyy, \\ yyryyryy, yyyryyyr, yyyryyyy, yyyyyyyy,$$

$$(3)$$

Here $r = \{A, G\}$ and $y = \{C, T\}$ and we mean rryrry to be all 6-mers that satisfy this condition. This set leads to a d = 1/8 method, and was found by an optimization algorithm [2].

References

- [1] H. Zheng, C. Kingsford, and G. Marçais, "Improved design and analysis of practical minimizers," *Bioinformatics*, vol. 36, pp. i119–i127, July 2020.
- [2] M. C. Frith, L. Noé, and G. Kucherov, "Minimally-overlapping words for sequence similarity search," *Bioinformatics (Oxford, England)*, Dec. 2020.