Automated Machine Learning for Earth Observation AutoAl4EO

Julia Wąsala – December 9. 2022

In collaboration with:

Dr. Mitra Baratchi (LIACS)
Prof.dr. Holger Hoos (LIACS)
Dr. Bram Maasakkers (SRON)
Prof.dr. Ilse Aben (SRON)
Dr. Rochelle Schneider (ESA Phi-Lab)

The methane problem

Detecting methane plumes

- TROPOMI
- Challenges:
 - Water
 - Noise
 - Terrain
 - Resolution
 - Wind direction

Pipeline Plume Not plume CNN ••••

Research questions

- What kind of improvements can be achieved with AutoML?
- Which techniques are most suitable for this problem?
- Do you really need all of the additional data/features?

Optimise pipeline using AutoML techniques

- 1. Optimize SVC
 - Hyperparameter tuning (SMAC)
 - Model selection (auto-sklearn, hyperopt-sklearn, etc)
- 2. Optimize CNN
 - AutoKeras
 - Auto-pytorch
- 3. End-to-end AutoML pipeline
 - Additional features necessary?

Outlook

- Outlook: AutoML system for data fusion applicable to different tasks
 - Automatically create neural networks to combine different modalities
 - For instance: Sentinel-2 /Sentinel-1 fusion for vegetation height mapping, TROPOMI/windfield/albedo for plume detection

Source: Li et al. (2022). Deep learning in multimodal remote sensing data fusion: A comprehensive review.

Thank you!

- j.wasala@liacs.leidenuniv.nl
- Twitter: @AutoAl4EO / @WasalaJulia