S06 T01

November 11, 2021

1 S06 T01: Tasca mètodes de mostreig

```
import numpy as np
from numpy import random
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
```

1.0.1 Exercici 1: Agafa un conjunt de dades de tema esportiu que t'agradi. Realitza un mostreig de les dades generant una mostra aleatòria simple i una mostra sistemàtica.

El dataset escollit és sobre els Jocs Olímpics de Tokyo 2020. S'hi pot veure el detall de totes les competicions que van tenir lloc, juntament amb l'edat, nacionalitat, classificació i medalles de cada atleta

Columnes: - Unnamed: 0 : # de fila - Code: codi únic de cada atleta - Name: nom de l'atleta (COGNOM Nom) - Gender: Male o Female - Age: edat dels atletes - NOC: Comité Olímpic Nacional (206 en total) - Country: país (206 en total) - Discipline: cada codi indica una disciplina específica (46 en total) - Sport: esport equivalent al codi de la columna anterior (46 en total) - Event: tipus de competició (per equips, individual, masculina, femenina, etc.) - Rank: classificacio de cada 'Event', sent 1 la 1a posició. - Medal: medalla (Gold, Silver, Bronze o NaN)

```
[2]: # Carreguem el dataset i eliminem columnes que no volem:

olympics = pd.read_csv('/Users/deliagonzalezmata/Downloads/
→2020_Olympics_Dataset.csv', encoding = 'latin-1')

olympics = olympics.drop('Unnamed: 0', 1)
olympics = olympics.drop('Code', 1) # la columna Name conté els mateixos unics_
→valors que Code
olympics = olympics.drop('NOC', 1) # la columna Country conté la mateixa_
→informació de forma més clara
```

/var/folders/f1/1k69t1011n32zcq6vt7pt73c0000gn/T/ipykernel_1007/3270594272.py:5: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

olympics = olympics.drop('Unnamed: 0', 1)

/var/folders/f1/1k69t1011n32zcq6vt7pt73c0000gn/T/ipykernel_1007/3270594272.py:6: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

olympics = olympics.drop('Code', 1) # la columna Name conté els mateixos unics valors que Code

/var/folders/f1/1k69t1011n32zcq6vt7pt73c0000gn/T/ipykernel_1007/3270594272.py:7: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

olympics = olympics.drop('NOC', 1) #la columna Country conté la mateixa informació de forma més clara

/var/folders/f1/1k69t1011n32zcq6vt7pt73c0000gn/T/ipykernel_1007/3270594272.py:8: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

olympics = olympics.drop('Discipline', 1) #la columna Sport conté la mateixa informació de forma més clara

[2]:		Name	Gender	Age	Cor	ıntry	Sport	\
	12931	TAMURA Norika	Female	30	30 Japar		Fencing	
	537	ANDRUSENKO Veronika	Female	30	Rı	ıssia	Swimming	
	11017	REID Zac	Male	21	New Zea	aland	Swimming	
	7143	LAFONT Marie-Zelia	.e-Zelia Female 34 France				Canoe Slalom	
	14249	WEGER Svenja	Female	27	Ger	rmany	Sailing	
					Event	Rank	Medal	
	12931	Wom	en's Sabr	e Ind	NaN			
	537	Women's 4 x 100m	Freestyl	NaN				
	11017		Men's 400m Freestyle NaN NaM					
	7143	Women's Kayak 14.0 NaN Women's One Person Dinghy - Laser Radial 16.0 NaN						
	14249							

[3]: olympics.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15121 entries, 0 to 15120
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Name	15121 non-null	object
1	Gender	15121 non-null	object

```
2
     Age
              15121 non-null
                               int64
 3
     Country
              15121 non-null
                               object
 4
     Sport
              15121 non-null
                               object
 5
     Event
              15121 non-null
                               object
 6
     Rank
              11355 non-null
                               float64
     Medal
              2449 non-null
                               object
dtypes: float64(1), int64(1), object(6)
memory usage: 945.2+ KB
```

[4]: round(olympics.describe(), 2)

```
[4]:
                             Rank
                   Age
             15121.00
                        11355.00
     count
                26.77
                            10.75
     mean
     std
                 5.61
                            10.68
     min
                12.00
                             1.00
     25%
                23.00
                             4.00
     50%
                26.00
                             8.00
     75%
                30.00
                            13.00
                66.00
                            85.00
     max
```

[5]: olympics.Rank.isna().sum()

[5]: 3766

Amb la funció "describe" ja podem veure algunes dades interessants del nostre Dataset, com per exemple que l'atleta més jove té 12 anys vs. l'atleta més gran en té 66. També veiem que la Classificació va d' 1 fins a 85 i que hi ha 3.766 entrades sense classificació.

```
[6]: values=olympics.Age.value_counts().sort_index()

#sns.set(style="darkgrid")
plt.figure(figsize=(13, 5), dpi=80)
plt.xticks (range(11,67))
sns.boxplot(x = olympics.Age, )
plt.show()
```


1112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566

Anem a generar informació d'aquelles columnes que no son numèriques (variables categòriques), per fer-nos una millor idea del que podem trobar en el nostre conjunt de dades:

```
[7]: non_number = olympics [['Gender', 'Country', 'Sport', 'Event', 'Medal']]
non_number.describe()
```

[7]:		Gender	Country	Sport	Event	Medal
	count	15121	15121	15121	15121	2449
	unique	2	206	46	306	3
	top	Male	United States	Athletics	Men Team	Bronze
	freq	7855	856	2318	1425	867

Aquí igualment la funció "describe" ens proporciona dades interessants sobre la nostra població, tals com: - han participat més homes que dones als Jocs Olímpics de Tokyo - el país que ha portat més atletes és Estats Units - l'esport on han participat més atletes és "Athletics" - extranyament, s'han donat més medalles de Bronze que de qualsevol altre metall.

Gender

```
[8]: olympics.Gender.value_counts()
```

[8]: Male 7855 Female 7266

Name: Gender, dtype: int64

```
[9]: male = (7855 / 15121)*100
female = (7266 / 15121)*100

names = olympics.Gender.unique()
size = [female, male]

my_circle = plt.Circle((0,0), 0.7, color='white')
```

```
plt.pie(size, labels=names, colors=['salmon','skyblue'], autopct = '%.2f')
p = plt.gcf()
p.gca().add_artist(my_circle)
plt.show()
```


Country Veiem els 20 països amb més atletes als JJ.OO. de Tokyo:

```
[10]: names = olympics.Country.value_counts()[:20].index.tolist()
    values=olympics.Country.value_counts()[:20].values.tolist()

from matplotlib.pyplot import figure

figure(figsize=(8, 6), dpi=80)

# The horizontal plot is made using the hline function
    plt.hlines(y=names, xmin=0, xmax=values, color='skyblue')
    plt.plot(values, names, "o")
    plt.ylim(-1,20)

# Add titles and axis names
    plt.yticks( names)
    plt.title("països amb més atletes", loc='left')
    plt.xlabel('núm. atletess')
```

```
plt.ylabel('Pais')

# Show the plot
plt.show()
```


Sport

[11]: olympics.Sport.value_counts()[:10]

[11]:	Athletics	2318
	Swimming	1634
	Artistic Gymnastics	1061
	Football	608
	Shooting	577
	Rowing	526
	Judo	516
	Hockey	432
	Cycling Track	426
	Equestrian	420
	Name: Sport, dtype:	int64

```
[12]: # Analitzem la diferència de gènere a cada esport mitjançant un gràfic:

gender_by_sport = olympics.groupby(['Sport', 'Gender']).size()
colors = ["#69b3a2", "#4374B3"]
sns.set_palette(sns.color_palette(colors))
gender_by_sport.unstack().plot(kind='bar', stacked=True, figsize=(10,6))
plt.show()
```


Event Hem vist amb la funció describe que hi ha 306 diferents tipus d'Events. Veiem els 10 amb més participants:

```
Women's Individual 155
Men's Individual 151
Baseball Team 144
Men's Team 132
Women's Team 132
Name: Event, dtype: int64
```

Medal

```
[14]: olympics.Medal.unique()
```

```
[14]: array([nan, 'Gold', 'Silver', 'Bronze'], dtype=object)
```

```
[15]: olympics.Medal.value_counts()
```

```
[15]: Bronze 867
Gold 800
Silver 782
```

Name: Medal, dtype: int64

1.0.2 Mostra aleatoria Simple

En un mostreig aleatori simple, tots els elements que formen la població tenen idèntica probabilitat de ser escollits per la mostra. És un procés equivalent a fer un sorteig.

Hi ha dos tipus de mostreig aleatori simple: - amb reposició: quan un idndividu de la població pot ser escollit més d'1 vegada per formar part de la mostra. - sense reposició: quan un individu de la població NO pot aparèixer més d'un cop a la mostra.

Atés que la mida de la nostra població (N) és bastant gran, es recomana fer mostreig aleatori simple amb reposició. és per això que dins la nostra mostra podriem trobar el mateix atleta repetit varies vegades.

Un cop hem definit quin tipus de Mostreig realitzarem, hem de calcular el tamany òptim de la nostra mostra per a garantitzar que no se supera el marge d'error que desitgem (en aquest cas i el més comú és un 5%).

```
[16]: # Mida de la població
mida_poblacio = olympics.shape[0]
mida_poblacio
```

[16]: 15121

Mida de la mostra:

Per calcular el tamany òptim de la mostra sabem que existeix la fòrmula seguent:

```
[17]: from IPython import display display.Image("/Users/deliagonzalezmata/Desktop/tamany_mostra.png", width=100, ⊔ → height=100)
```

[17]:

$$n = \frac{k^2 qpN}{e^2(N-1)+k^2pq}$$

on n és el tamany mostral,

N el tamany de la població,

e el marge d'error, que fixarem al 5%,

k el Zscore donat un nivell de confiança(NC) que fixarem al 95% i, per tant, k = 1.96,

p és la probabilitat d'èxit, que com que no la sabem la fixarem al 50%,

i q és la probabilitat de fracàs. És a dir, 1-p.

```
[18]: # Mida de la mostra

N = mida_poblacio
e = 0.05
k = 1.96
p = 0.5
q = 1-p

mida_mostra = (N*p*q*(k**2))/((e**2)*(N-1)+(k**2)*p*q)
round(mida_mostra,2)
```

[18]: 374.67

3288	DOO Hoi Kem	Female 24 Hong Kong, China	
1547	BORGES Felipe	Male 36 Brazil	
8339	MATSUSHITA Momotaro	Male 33 Japan	
	Sport	Event	Rank \
12430	Boxing	Men's Fly (48-52kg)	17.0
8748	Artistic Gymnastics	Men's Rings	NaN
9936	Swimming	Men's 50m Freestyle	NaN
12581	Shooting	Trap Women	5.0
3979	Swimming	Women's 4 x 200m Freestyle Relay Team	2.0
•••	•••		
13518	Archery	Men's Team	9.0
6848	Athletics	Women's 4 x 100m Relay Team	4.0
3288	Table Tennis	Women's Singles	5.0
1547	Handball	Men Team	10.0
8339	Canoe Sprint	Men's Kayak Single 200m	16.0
	Medal		
12430	NaN		
8748	NaN		
9936	NaN		
12581	NaN		
3979	Silver		
•••	•••		
13518	NaN		
6848	NaN		
3288	NaN		
1547	NaN		
8339	NaN		

[375 rows x 8 columns]

1.0.3 Mostra aleatoria Sistemàtica

Consisteix en escollir un individu inicial de forma aleatoria entre la població i, a continuació, escollir els individus restants mitjançant la successió aritmètica a partir del 1r individu escollit.

si $\bf A$ és la posició que ocupa el primer individu dins la població, podem calcular la resta d'individus que formaran també part de la mostra de la següent forma:

• A, A+K, A+2K, A+3K,, A+(n-1)K.

on ${\bf K}$ és el coeficient d'elevació o interval i que, alhora, podem calcular de la següent forma:

• K = N / n

on ${\bf N}$ és el tamany de la població i ${\bf n}$ el tamany de la mostra

[20]: # definim interval K:

```
K = int(N/n)
K
```

[20]: 40

Això ens indica que el primer individu de la mostra ha d'estar entre la posició 1 i 40 de la població i, a partir d'aquí anar sumant de 40 en 40 fins a trobar-los tots.

```
[21]: # 1r individu aleatori
      A = np.random.randint(0, K)
      #resta d'individus:
      mostra_sistematica = olympics[A:N:K]
      mostra_sistematica
```

[21]:		Name	Gende	r Age	Country	Sport	\
	36	ABDELSALAM Nour	Femal	e 28	Egypt	Taekwondo	
	76	ABELVIK ROED Magnus	Mal	e 24	Norway	Handball	
	116	ACHIUWA Precious	Mal	e 21	Nigeria	Basketball	
	156	AFANADOR Brian	Mal	e 24	Puerto Rico	Table Tennis	
	196	AHMED Enas	Femal	e 32	Egypt	Wrestling	
		•••			•••	•••	
	14956	ZEID Josh	Mal	e 34	Israel	Baseball/Softball	
	14996	ZHANG Jin	Femal	e 20	China	Artistic Gymnastics	
	15036	ZHAO Zhonghao	Mal	e 26	China	Shooting	
	15076	ZIRK Kregor	Mal	e 22	Estonia	Swimming	
	15116	ZWOLINSKA Klaudia	Femal	e 22	Poland	Canoe Slalom	
			Event	Rank l	Medal		
	36	Women	-49kg	11.0	NaN		
	76	Men	Team	7.0	NaN		
	116	Men	Team	10.0	NaN		
	156	Men's Si	ngles	49.0	NaN		
	196	Women's Freestyle	68kg	14.0	NaN		
	•••			•••			
	14956	Baseball	Team	5.0	NaN		
	14996	Women's Uneven	Bars	NaN	NaN		

 ${\tt NaN}$

5.0

NaN

NaN

NaN

[378 rows x 8 columns]

50m Rifle 3 Positions Men 11.0

Men's 400m Freestyle

Women's Kayak

15036

15076

15116

1.0.4 Exercici 2: Continua amb el conjunt de dades de tema esportiu i genera una mostra estratificada i una mostra utilitzant SMOTE (Synthetic Minority Oversampling Technique).

1.0.5 Mostra aleatoria Estratificada

Aquesta tècnica, abans de començar el procés de mostreig divideix tota la població en diferents subpoblacions o estrats.

- Cada individu només pot pertanyer a un estrat.
- Els estrats solen ser grups homogenis d'individus, que al mateix temps son heterogenis entre diferents grups. Per exemple, definir els Estrats per sexe, edat, classe social, religió, zona geogràfica, etc.

Un cop definits els estrats i els individus que pertanyen a cada estrat, la mostra es crea seleccionant per separat individus de cada estrat, empleant la tècnica de mostreig aleatori simple.

En aquest cas, definirem els estrats en funció del Gènere. Per tant, generarem una mostra de tamany n=374, que idealment tindrà el mateix número d'homes que de dones.

```
[22]: mostra_estratificada = olympics.groupby('Gender', group_keys=False).

→apply(lambda x: x.sample(int(374/2)))

mostra_estratificada
```

[22]:		Name	Gender	Age	(Country	Sport	\
	2519	COATANEA Pauline	Female	28		France	Handball	
	7731	LONGHI Giulia	Female	28		Italy	Baseball/Softball	
	11270	ROOSKRANTZ Caitlin	Female	19	South	Africa	Artistic Gymnastics	
	9775	OLEKSIAK Penny	Female	21		Canada	Swimming	
	12479	SORRIBES TORMO Sara	Female	24		Spain	Tennis	
		•••			•••	•	•••	
	6904	KOVACS Benedek	Male	23	I	Hungary	Swimming	
	1441	BOATENG Bismark	Male	29		Canada	Athletics	
	8723	MIGUEL Aveni	Male	18		Angola	Athletics	
	3081	DENDY Marquis	Male	28	United	States	Athletics	
	928	BALTACI Ozkan	Male	27		Turkey	Athletics	
				Event	Rank	Medal		
	2519		Women	n Team	1.0	Gold		
	7731		Softbal	l Team	6.0	NaN		
	11270	Wome	n's All-	Around	l NaN	NaN		
	9775	Women's 4 x 100m Med	ley Rela	y Team	a 3.0	Bronze		
	12479	W	omen's S	ingles	9.0	NaN		
	6904	Mixed 4 x 100m Med	ley Rela	y Team	n NaN	NaN		
	1441	Men's 4 x 1	00m Rela	y Team	a 3.0	Bronze		
	8723		Men':	s 100m	n NaN	NaN		
	3081	M	en's Long	g Jump	NaN	NaN		
	928	Men'	s Hammer	Throw	n NaN	NaN		

[374 rows x 8 columns]

comprovem que efectivament la mostra aleatoria ha tingut en compte 50% d'homes i 50% dones:

```
[23]: mostra_estratificada.Gender.value_counts()
```

[23]: Female 187 Male 187

Name: Gender, dtype: int64

1.0.6 SMOTE (Synthetic Minority Oversampling Technique)

Per realitzar el mostreig amb la tècnica SMOTE hem dividit l'edat dels atletes en 2 subgrups en una nova columna "grup_edat" i amb els següents codis: - assignem **0** a aquells atletes amb 30 anys o menys. - assignem **1** a aquells atletes amb més de 30 anys.

```
[24]: olympics['grup_edat'] = [0 if x <= 30 else 1 for x in olympics.Age]
olympics.head()</pre>
```

```
[24]:
                            Gender
                                    Age Country
                                                                  Sport
                     Name
         AALERUD Katrine
                            Female
                                     26
                                          Norway
                                                          Cycling Road
         AALERUD Katrine
                                          Norway
                                                          Cycling Road
      1
                            Female
                                     26
      2
             ABAD Nestor
                              Male
                                                   Artistic Gymnastics
                                     28
                                           Spain
      3
                                                   Artistic Gymnastics
              ABAD Nestor
                              Male
                                     28
                                           Spain
      4
              ABAD Nestor
                              Male
                                     28
                                           Spain
                                                   Artistic Gymnastics
                                   Event
                                           Rank Medal
                                                        grup_edat
      0
                      Women's Road Race
                                           37.0
                                                   NaN
                                                                 0
      1
         Women's Individual Time Trial
                                           20.0
                                                   NaN
                                                                 0
      2
                       Men's All-Around
                                                                 0
                                            NaN
                                                   NaN
      3
                   Men's Floor Exercise
                                                                 0
                                            {\tt NaN}
                                                   NaN
      4
                     Men's Pommel Horse
                                                                 0
                                            NaN
                                                   NaN
```

Un cop tenim els 2 grups d'edat, veiem en un gràfic quina és la representació de cada un dels grups (menors de 30 i majors de 30) dins la nostra població/dataset i observarem que hi ha una gran diferència entre la quantitat d'individus d'un grup i de l'altre.

Un dels problemes més comuns de treballar amb un conjunt de dades desequilibrat és que el model esdevé esbiaixat a favor de la classe dominant.

el mètode SMOTE és una tècnica de sobremostreig que ens permet generar mostres sintètiques de la categoria minoritaria. Aquesta creació de noves instàncies es fa interpolant els valors de les instancies minoritaries més pròximes:

nou SMOTE dataset Counter({0: 11870, 1: 11870})

```
[28]: sns.countplot(x=y_sm) plt.xticks([0,1], ['<= 30', '>30']);
```


un cop utilitzada la tècnica SMOTE hem comprovat que existeix el mateix nombre d'atletes majors i menors de 30 anys.

```
[29]: smote_sample.head()
```

```
[29]:
          Rank
                        grup_edat
                  Age
       0
          37.0
                   26
          20.0
       1
                   26
                                 0
       2
            NaN
                   28
                                 0
                                 0
       3
            NaN
                   28
       4
                                 0
            NaN
                   28
```

1.0.7 Exercici 3: Continua amb el conjunt de dades de tema esportiu i genera una mostra utilitzant el mètode Reservoir sampling.

en el mètode reservoir sampling és important definir 1 paràmetre: - k= tamany de la mostra que volem

A banda, sabem que: - n = quantitat d'elements vists fins el moment - la probabilitat (p) de que un element estigui dins la mostra es defineix com: p = k/n

el mètode funciona de la següent forma: 1. els primers "k" elements s'emmagatzemen tots dins la mostra. 2. a partir de l'element k+1: calculem la p=k/n 3. generem un nombre aleatori(r) entre

0 i 1: - si r > p - > la mostra no canvia, el nombre NO entra a formar part de la mostra - si r < = p - > el nombre entra dins la mostra, substituïnt un dels elements que ja hi era de forma aleatoria veiem-ho en un **exemple** fàcil:

el nostre stream és [1, 8, 5, 9]

i definim una k = 3. Aleshores:

- 1. sabem que les primeres 3(=k) observacions entren dins la mostra. Per lo tant, la nostra mostra seria: mostra = [1, 8, 5]
- 2. Quan arribem al 4t element (n = 4 = k+1) , calculariem la probabilitat de que el nombre 9 estigui dins la mostra: p=3/4
- 3. Generem un nombre aleatori (r), entre 0 i 1, per evaluar si el nombre 9 entra dins la mostra:
 - si r > 3/4 -> 9 no entra a la mostra i la mostra final serà la que ja tenim
 - si r $\leq 3/4 > 9$ entra a la mostra reemplaçant un dels elements ja existents ([1, 8, 5])

Per lo tant, depenent del valor de r, la nostra mostra canviarà o no. veiem-ho en el nostre dataset:

[10847, 14669, 12940, 11287, 5472, 5663, 1058, 4445, 8321, 10000, 3298, 596, 7195, 8887, 311, 10057, 12212, 14470, 585, 13711, 6381, 6374, 2473, 7789, 2459, 1167, 1198, 8217, 13724, 12164, 8986, 7189, 9517, 7891, 8984, 13628, 3716, 5052, 7042, 13202, 4511, 12057, 2136, 5772, 3342, 8499, 11565, 13566, 149, 9959, 7412, 6169, 9641, 4073, 4022, 13263, 10988, 5841, 13732, 6801, 6108, 13532, 7129, 9223, 12806, 2482, 8506, 8303, 2089, 13461, 3808, 4484, 10001, 5514, 7727, 7855, 9530, 6630, 11691, 12577, 7594, 8242, 10484, 330, 3627, 8127, 9740, 3055, 6315, 11893, 90, 1024, 14787, 183, 9675, 5157, 618, 1049, 2374, 12366]

```
[34]: #imprimim el dataset amb els indexs obtinguts mitjançant el mètode Reservoir

→Sampling

reservoir_sampling = olympics.iloc[reservoir]

reservoir_sampling
```

[34]:		1	Vame	Gender	Age	Co	untry	\	
	10847	RADUKANOVA Mad	dlen	Female	21	Bul	garia		
	14669	YAMASAKI Erika Yuriko I	Iris	Female	33	Aust	ralia		
	12940	TANABE Y	Yuki	Female	31		Japan		
	11287	ROSE A	Alex	Male	29		Samoa		
	5472	HO-SHUE Ja	ason	Male	22	C	anada		
		•••							
	5157	HEALY Sa	arah	Female	20	Ir	eland		
	618	ARAI Chiz	zuru	Female	27		Japan		
	1049	BASIC H	Hana	Female	25	Aust	ralia		
	2374	CHINYEMBA Pati	rick	Male	20	Z	ambia		
	12366	SMITH Ha	aley	Female	27	C	anada		
		Sport			E	vent	Rank	Medal	grup_edat
	10847	Rhythmic Gymnastics	Grou	p All-Ar	cound	Team	1.0	Gold	0
	14669	Weightlifting		Won	nen's	59kg	12.0	NaN	1
	12940	Handball		V	lomen	Team	12.0	NaN	1
	11287	Athletics	M	en's Dis	cus T	'hrow	${\tt NaN}$	NaN	0
	5472	Badminton	M	en's Dou	ıbles	Team	9.0	NaN	0
	•••	•••			•••	•••		•••	
	5157	Athletics		Wome	en's 1	.500m	NaN	NaN	0
	618	Judo		Won	nen -7	'0 kg	1.0	Gold	0
	1049	Athletics		Won	nen's	100m	NaN	NaN	0
	2374	Boxing	Me	n's Fly	(48-5	2kg)	9.0	NaN	0
	12366	Cycling Mountain Bike	Wome	n's Cros	ss-cou	ntry	NaN	${\tt NaN}$	0

[100 rows x 9 columns]