UIN: 927001565

I have tried the assignment in both SAS and Python.

SAS

UIN: 927001565

UIN: 927001565

UIN: 927001565

Analysis of Variance

	Sui	m of			
Source	DF	Squares	Mean Square	F Value	e Pr > F
Model	39	5201467	133371	117.20	<.0001
Error	5609	6382649	1137.929910		
Corrected T	otal 5648	11584	116		

Model Fit Statistics

R-Square 0.4490 Adj R-Sq 0.4452 AIC 39791.6788 BIC 39794.3113 SBC 40057.2481 C(p) 35.6781

Type 3 Analysis of Effects

Sum of										
Effect	DF	Squ	ares	FV	Value	Pr > 1	F			
Region			51.69				001			
TextCluster_SVD		1	2247	2.52	282	19.75	<.0001			
TextCluster_SVD		1	1553	21.3	325	136.49	<.0001			
TextCluster_SVD	13	1	2986	9.27	704	26.25	<.0001			
TextCluster_SVD	14	1	7260).76	82	6.38	0.0116			
TextCluster_SVD	15	1	8669	9.31	07	7.62	0.0058			
TextCluster_SVD	16	1	1224	8.83	335	10.76	0.0010			
TextCluster_SVD	19	1	5243	3.65	27	4.61	0.0319			
TextCluster_SVD2	2	1	29937	7.31	03	26.31	<.0001			
TextCluster SVD2	20	1	2275	3.01	170	20.00	<.0001			
TextCluster_SVD2	21	1	5506	4.63	377	48.39	<.0001			
TextCluster SVD2		1	2393	4.48	366	21.03	<.0001			
TextCluster SVD2	24	1	2110	8.99	920	18.55	<.0001			
TextCluster SVD:	30	1	4109	9.78	396	36.12	<.0001			
TextCluster SVD:		1	2044	3.04	118	17.97	<.0001			
TextCluster SVD:	39	1	6250	0.18	02	5.49	0.0191			
TextCluster SVD4	4	1	80277	7.81	17	70.55	<.0001			
TextCluster SVD4	41	1	4878	3.41	34	4.29	0.0384			
TextCluster SVD4	45	1	5186	5.35	24	4.56	0.0328			
TextCluster SVD:	5	1	85720).19	18	75.33	<.0001			
TextCluster SVD		1	4649	.417	78	4.09	0.0433			
TextCluster SVD	8	1	33321	.79	04	29.28	<.0001			
TextCluster SVD		1	18171	.19	86	15.97	<.0001			
points			36.61		259.78	<.00				

Analysis of Maximum Likelihood Estimates

Parameter	D	F		andard imate	Error	t Va	lue Pr	> t
Intercept	1		-490.	.8 15.	.1580	-32.38	8 <.00	001
Region	California Other		1	-5.117	8 3.4	856	-1.47	0.1421
Region	Central Coast		1	-0.9603	3.22	287	-0.30	0.7662
Region	Central Valley		1	-8.8512	2 4.3	218	-2.05	0.0406

UIN: 927001565

Region	Clear Lake	1	10.3801	31.9057	0.33	0.7449
Region	High Valley	1	-2.7591	18.5902	-0.15	0.8820
Region	Lake County	1	-3.9944	6.1981	-0.64	0.5193
Region	Mendocino	1	-7.2383	6.5186	-1.11	0.2669
Region	Mendocino County		1 -12.19			
Region	Mendocino Ridge		1 9.702			
Region	Mendocino/Lake C			0 .		
Region	Napa					3.0001
Region	Napa-Sonoma	1				0.0398
Region	North Coast	1	-9.2420	4.5830	-2.02	0.0438
Region	Red Hills Lake Cou		1 -7.52			
Region	Redwood Valley		1 -12.775			
Region	Sierra Foothills	1	-5.7533	5.0568	-1.14	0.2553
Region	Sonoma	1	0.6190	3.1954	0.19	0.8464
TextCluster_SV		1	14.8329	3.3378	4.44	<.0001
TextCluster SV		1	40.9614	3.5060	11.68	<.0001
TextCluster SV		1	18.0297	3.5191	5.12	<.0001
TextCluster SV		1	9.0717	3.5913	2.53	0.0116
TextCluster_SV	D15	1	9.9472	3.6038	2.76	0.0058
TextCluster_SV		1	-12.0296	3.6666	-3.28	0.0010
TextCluster_SV		1	7.9600	3.7081	2.15	0.0319
TextCluster_SV	⁷ D2	1	-10.7025	2.0866	-5.13	<.0001
TextCluster_SV	D20	1	16.6686	3.7277	4.47	<.0001
TextCluster_SV	D21	1	26.4049	3.7958	6.96	<.0001
TextCluster_SV	D23	1	17.6138	3.8406	4.59	<.0001
TextCluster_SV	⁷ D24	1	16.1919	3.7594	4.31	<.0001
TextCluster_SV	'D30	1	23.3678	3.8883	6.01	<.0001
TextCluster_SV		1	-17.8783	4.2180	-4.24	<.0001
TextCluster_SV	'D39	1	9.9056	4.2266	2.34	0.0191
TextCluster_SV	'D4	1	-23.6416	2.8147	-8.40	<.0001
TextCluster_SV	/D41	1	-8.6404	4.1730	-2.07	0.0384
TextCluster_SV		1	9.0801	4.2532	2.13	0.0328
TextCluster_SV	'D5	1	25.7882	2.9712	8.68	<.0001
TextCluster_SV		1	-6.3382	3.1356	-2.02	0.0433
TextCluster_SV		1	18.6213	3.4412	5.41	<.0001
TextCluster_SV	'D9	1	13.4913	3.3761	4.00	<.0001
points	1	6.01	89 0.169	96 35.49	<.000)1

PYTHON

```
import string
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.stem.snowball import SnowballStemmer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet as wn
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.decomposition import LatentDirichletAllocation
```

UIN: 927001565

```
# nltk.download('punkt')
# my analyzer replaces both the preprocessor and tokenizer
# it also replaces stop word removal and ngram constructions
def my analyzer(s):
  syns = {'veh': 'vehicle', 'car': 'vehicle', 'chev': 'cheverolet', \
  s = s.lower()
  s = s.replace(',', ', ')
  tokens = word tokenize(s)
  tokens = [word.replace(',', ") for word in tokens]
  tokens = [word for word in tokens if ('*' not in word) and \
        (""" != word) and ("``" != word) and \
        (word != 'description') and (word != 'dtype') \
        and (word != 'object') and (word != "'s")]
  for i in range(len(tokens)):
    if tokens[i] in syns:
       tokens[i] = syns[tokens[i]]
  # Remove stop words
  punctuation = list(string.punctuation) + ['..', '...']
  pronouns = ['i', 'he', 'she', 'it', 'him', 'they', 'we', 'us', 'them']
  stop = stopwords.words('english') + punctuation + pronouns
  filtered_terms = [word for word in tokens if (word not in stop) and \
             (len(word) > 1) and (not word.replace('.', ", 1).isnumeric()) \
             and (not word.replace("", ", 2).isnumeric())]
  # Since lemmatization requires POS need to set POS
  tagged words = pos tag(filtered terms, lang='eng')
  # Stemming with for terms without WordNet POS
  stemmer = SnowballStemmer("english")
  wn_tags = {'N': wn.NOUN, 'J': wn.ADJ, 'V': wn.VERB, 'R': wn.ADV}
  wnl = WordNetLemmatizer()
  stemmed tokens = []
  for tagged token in tagged words:
    term = tagged token[0]
    pos = tagged token[1]
    pos = pos[0]
       pos = wn tags[pos]
       stemmed tokens.append(wnl.lemmatize(term, pos=pos))
```

```
stemmed tokens.append(stemmer.stem(term))
  return stemmed tokens
# Further Customization of Stopping and Stemming using NLTK
def my preprocessor(s):
  # Vectorizer sends one string at a time
  s = s.lower()
  s = s.replace(', ', ', ')
  print("preprocessor")
  return (s)
def my_tokenizer(s):
  print("Tokenizer")
  tokens = word tokenize(s)
  tokens = [word.replace(',', ") for word in tokens]
tokens = [word for word in tokens if word.find('*') != True and \
        and word != 'dtype']
  return tokens
# Increase Pandas column width to let pandas read large text columns
pd.set option('max colwidth', 32000)
df = pd.read excel("wine.xlsx")
# Setup simple constants
n_docs = len(df['description'])
n \text{ samples} = n \text{ docs}
m_features = None
s words = 'english'
ngram = (1,2)
# Setup reviews in list 'discussions'
discussions = []
for i in range(n samples):
  discussions.append(("%s" %df['description'].iloc[i]))
cv = CountVectorizer(max df=0.95, min df=2, max features=m features,\
             analyzer=my_analyzer, ngram_range=ngram)
tf = cv.fit transform(discussions)
print("\nVectorizer Parameters\n", cv, "\n")
# LDA For Term Frequency x Doc Matrix
n_topics = 15
max_iter = 5
learning offset = 20.
learning method = 'online'
# In sklearn, LDA is synonymous with SVD (according to their doc)
```

UIN: 927001565

```
learning_offset, \
                 random state=12345)
lda.fit transform(tf)
print('\{\frac{1}{22s}\{\frac{1}{2s}\}\).format("Number of Reviews", tf.shape[0]))
tf features = cv.get feature names()
max words = 15
for topic idx, topic in enumerate(lda.components):
    message = "Topic #%d: " %topic idx
    message += " ".join([tf_features[i]
               for i in topic.argsort()[:-max words - 1:-1]])
    print(message)
# LDA for TF-IDF x Doc Matrix
# First Create Term-Frequency/Inverse Doc Frequency by Review Matrix
# This requires constructing Term Freq. x Doc. matrix first
tf idf = TfidfTransformer()
print("\nTF-IDF Parameters\n", tf_idf.get_params(),"\n")
tf idf = tf idf.fit transform(tf)
tfidf vect = TfidfVectorizer(max df=0.95, min df=2, max features=m features,\
               analyzer=my analyzer, ngram range=ngram)
tf idf = tfidf vect.fit transform(discussions)
print("\nTF IDF Vectorizer Parameters\n", tfidf vect, "\n")
lda = LatentDirichletAllocation(n components=n topics, max iter=max iter,\
                 learning method=learning method, \
                 learning offset=learning offset, \
                 random state=12345)
lda.fit transform(tf idf)
print('{:.<22s}{:>6d}'.format("Number of Reviews", tf.shape[0]))
print("\nTopics Identified using LDA with TF IDF")
tf features = cv.get feature names()
max words = 15
for topic idx, topic in enumerate(lda.components):
    message = "Topic #%d: " % topic_idx
    message += " ".join([tf_features[i]
               for i in topic.argsort()[:-max words - 1:-1]])
    print()
```

Vectorizer Parameters

```
CountVectorizer(analyzer=<function my_analyzer at 0x100561e18>, binary=False, decode_error='strict', dtype=<class 'numpy.int64'>, encoding='utf-8', input='content', lowercase=True, max_df=0.95, max_features=None, min_df=2, ngram_range=(1, 2), preprocessor=None, stop_words=None, strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b', tokenizer=None, vocabulary=None)
```

Number of Reviews..... 13135 Number of Terms...... 6263

UIN: 927001565

Topics Identified using LDA

Topic #0: nose caramel palate vanilla rather bottle blueberry roast reserve peak aroma element bake atlas one-dimensional

Topic #1: interesting chewy tangy luxurious several raisins site seamlessly problem saddle burst marry eucalyptus super two

Topic #2: flavor blackberry cherry wine oak dry tannin soft drink finish black currant ripe fruit cabernet

Topic #3: green get thin ageability graphite sip pepper sweetly note star minty bouquet decent fruit glass

Topic #4: slightly may form within expect richly slight level textured layered herbal alcohol cool lushness wine

Topic #5: mountain wine fruit mark need vineyard time beyond come big tannin anoth together powerful satisfy

Topic #6: new mineral want vintage real cab french oak opulent sour great value price wine acidic

Topic #7: cocoa appeal power concentration bitter old density sizable tightly couple never blackcurrant herbaceous world wound

Topic #8: blackberry flavor cabernet currant year wine tannin dry oak rich black drink ripe cab show

Topic #9: solid sweetness case paso linger vanilla production core produce roble focus spice backbone intensely forest

Topic #10: black wine valley palate show dark fruit tannin vineyard cedar nose red cherry olive napa

Topic #11: fine bottle complexity year develop frame oakville great sonoma three reward pie beautiful next additional

Topic #12: especially opulence fleshy velvet firmly iron record consider track create special fist glove fat gracefully

Topic #13: like taste flavor sweet cherry blackberry wine alcohol soft seem fruit raisin almost hot little

Topic #14: wine cabernet merlot blend verdot tannin petit finish red black juicy franc oak sauvignon soft

TF-IDF Parameters

{'norm': '12', 'smooth idf': True, 'sublinear tf': False, 'use idf': True}

TF IDF Vectorizer Parameters

TfidfVectorizer(analyzer=<function my_analyzer at 0x100561e18>, binary=False, decode_error='strict', dtype=<class 'numpy.int64'>, encoding='utf-8', input='content', lowercase=True, max_df=0.95, max_features=None, min_df=2, ngram_range=(1, 2), norm='l2', preprocessor=None, smooth_idf=True, stop_words=None, strip_accents=None, sublinear_tf=False, token_pattern='(?u)\\b\\w\\w+\\b', tokenizer=None, use_idf=True, vocabulary=None)

Number of Reviews..... 13135 Number of Terms...... 6263 Topics Identified using LDA with TF_IDF

Topic #0: muscular small-production breadth asian red-cherry mixed longtime mountain-grown penetrate crowd-pleasing meatiness michael lip-smacking beaulieu float

Topic #1: richer orange section zest rosé alongsid toughly brushy roundness olallieberry cloves elongate slow program verging

Topic #2: flavor blackberry wine cherry dry currant cabernet oak tannin drink ripe year sweet rich cab

Topic #3: bean join farm sultry distinctive black-olive western crack affordably fruit-driven plushness neighbor suggestive restrained boisterous

Topic #4: rusticity dustiness astringently unevenly thread multiple cabernet-like tannin-acid concord handsome ginger stubborn cloud 2023–2033 punchy

Topic #5: porty barely harsh eucalyptus acceptable compost cough dot vegetal heavily likable delight heavy-handed echo tiny-production

Topic #6: tad flat showcasing damp cake bay memorable spent abundance disjoint shin grapy greet philippe tread

Topic #7: george beckstoffer vibrancy impart umami rhubarb iii stemmy midway six-plus stretch risk ahead red-fruit quaff

Topic #8: today opposite lightness luxuriously terribly gooey seduces separate exploration belies medium-length 2009–2015 praiseworthy loud backbon

Topic #9: pairing own pliant ferment oak-like oregano zin reviewer william sea state foley mustiness slide condense

Topic #10: light-bodied graceful somehow quiet recall black-plum capture abundant softens aging darkly unfurl la stewy urge

Topic #11: lend gamy conveys sport high-elevation nick goldschmidt weedy drinker land tightness akin indicate intertwine vanilla-tinged

Topic #12: sweaty refresh pillowy unctuous brother funky celebration chile status deserves withstand similarly positive sister daou

Topic #13: cardamom overshadow black-fruit associate nickel tamp son baldacci masculine company disturb phelps whatev tingle vision

Topic #14: wine black tannin finish fruit palate flavor cabernet red cherry oak cedar soft dry blackberry

Process finished with exit code 0