Exercices d'électromagnétisme

Martin Andrieux

Physique sur un lac

Les eaux d'un lac (de masse volumique μ) s'abaissent d'une hauteur $h=1\,\mathrm{m}$. Calculer la variation Δg qu'enregistre un gravimètre placé :

- Sur des pilotis, au milieu du lac, juste au dessus de la surface (avant qu'il ne baisse),
- à bord d'une barque ancrée au milieu du lac.

La rayon terrestre est $R=6400\,\mathrm{km}$, et le champ de pesanteur à l'altitude du lac est $g=9.8\,\mathrm{m\,s^{-2}}$

$$\Delta g = -2\pi G \mu h = -0.42 \times 10^{-6} \, \mathrm{m \, s^{-2}}$$

$$\Delta g' = \Delta g + \frac{2gh}{R} = 2.64 \times 10^{-6} \,\mathrm{m \, s^{-2}}$$

Répartition surfacique de dipôles sur un disque

Un disque de centre O et de rayon R porte, répartis uniformément sur sa surface, des dipôles électriques dont les moments dipolaires lui sont orthogonaux. Soit $\mu = \frac{dp}{dS}$ la densité surfacique de moment dipolaire. Calculer le champ et le potentiel en tout point de l'axe de révolution Oz du disque (plusieures méthodes sont possibles). Que deviennent ces résultats pour $z \gg R$?

$$V(z) = \frac{\mu}{2\epsilon_0} \left(\frac{z}{|z|} - \frac{z}{\sqrt{z^2 + R^2}} \right)$$

$$E(z) = \frac{\mu R^2}{2\epsilon_0} \left(r^2 + R^2\right)^{-\frac{3}{2}}$$

Ecpérience de Nichols

Un métal contient par unité de volume lorsqu'il est immobile \mathfrak{n}_0 ions positifs de charge e et \mathfrak{n}_0 électrons libres de charge -e et de masse \mathfrak{m} . Un long cylindre de ce métal, de rayon \mathfrak{a} , est mis en rotation autour de son axe de révolution Oz avec la vitesse angulaire constante ω . À l'équilibre, les ions et les électrons sont entraînés à la vitesse de rotation ω , et n'ont donc pas de mouvement par rapport au métal. À l'équilibre, il apparaît une densité volumique de charge $\rho(r)$ dans le cylindre, ainsi qu'une densité surfacique σ à la surface de celui-ci. En coordonnées cylindriques, on a pour un champ radial : div $\overrightarrow{E} = \frac{1}{r} \frac{d(rE_r)}{dr}$.

- Calculer le champ électrique dans le métal, et en déduire la différe,ce de potentiel U entre l'axe du cylindre et sa périphérie.
- \bullet En déduire la densité $\mathfrak{n}(r)$ des électrons libres dans le volume du métal, et le charge surfacique σ .

$$U = \frac{m\omega^2 a^2}{2e}$$

$$n(r)=n_0-\frac{2m\epsilon_0\omega^2}{e^2}$$

$$\sigma = -\frac{m\epsilon_0 \omega^2 \alpha}{e}$$