Introduction logique AL: logique de description de base Famille des logiques de descriptions Logiques de descriptions : langage des ontologies Raisonnement en logique de description Complexité du raisonnement

Introduction au WEB Sémantique Cours 3 : Introduction aux logiques de description

Odile PAPINI

POLYTECH

Université d'Aix-Marseille odile.papini@univ-amu.fr

http://odile.papini.perso.esil.univmed.fr/sources/sources/WEBSEM.html

Plan du cours

- Introduction
- 2 logique AL: logique de description de base
 - Langage
 - sémantique
- 3 Famille des logiques de descriptions
- 4 Logiques de description : langage des ontologies
- 5 Raisonnement en logique de description
- 6 Complexité du raisonnement

Bibliographie I

Supports de cours :

F. Baader, F. Calvanese & al

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge university press. 2002

Amedeo Napoli INRIA Nancy

Une introduction aux logiques de description Rapport INRIA 3314. 1997

http://hal.inria.fr/inria-00073375/en/

Bibliographie II

Michel Gagnon

Logiques descriptives et OWL http://www.cours.polymtl.ca/inf6410/Documents/logique_descriptive

Tutoriaux

http://dl.kr.org/courses.html

Introduction

logique AL: logique de description de base Famille des logiques de descriptions Logiques de description : langage des ontologies Raisonnement en logique de description Complexité du raisonnement

Le Web sémantique : Approche par couches

Le web sémantique : structuration

Le Web sémantique : Approche par couches

- couche Logique
 - évolution des langages pour les ontologies
 - applications spécifique pour des connaissances déclaratives
- couche Contrôle
 - génération de contrôles, validation
- couche Sécurisation
 - signatures numériques
 - recommandations, · · ·

Introduction

logique AL: logique de description de base Famille des logiques de descriptions Logiques de description : langage des ontologies Raisonnement en logique de description Complexité du raisonnement

TBox, ABox

F. Baader, W. Nutt

Vocabulaire

```
• Constantes : \top, \bot
```

```
• A, B, C, D; · · · : concepts
```

```
• R : relations binaires (rôles)
```

```
onstructeurs : ¬, □, .
```

Procédé de formation des concepts

- ullet \top : concept universel
- ullet : concept impossible
- A : concept atomique
- $\neg A$: négation d'un concept atomique
- $C \sqcap D$: intersection de concepts quelconques
- $\forall R.C$: restriction de valeurs pour des concepts quelconques
- $\exists R. \top$: quantification existentielle limitée

Procédé de formation des concepts : exemples

- concepts atomiques : Personne, Homme
- rôles atomique : aEnfant
- femme : *Personne* □ ¬*Homme*
- personnes qui ont au moins un enfant :
 Personne □ ∃aEnfant. □
- personnes dont tous les enfants sont des hommes : Personne $\sqcap \exists aEnfant. \top \sqcap \forall aEnfant. Homme$
- personne qui n'a pas d'enfant : $Personne \sqcap \forall a Enfant. \bot$

AL: logique de description de base : Axiomes

Axiomes pour les TBox

- **Subsomption** : $C \sqsubseteq D$ avec C et D : concepts
- Equivalence : $C \equiv D$ avec C et D : concepts

Assertions pour les *ABox*

- C(a) avec C: concept et a: individu
- R(a, b) avec R: rôle, a, b: individus

Base de connaissances

 $BC = TBox \cup ABox$

exemples

```
• concepts atomiques : Personne, Homme
```

• rôles atomique : aEnfant

individus : anne, paul

axiomes:

- Personne $\sqsubseteq \top$ Homme \sqsubseteq Personne
- Femme \equiv Personne $\sqcap \neg$ Homme

assertions:

- Femme(anne)
- aEnfant(anne, paul)

exemples : définition de concepts

- concepts atomiques : Homme
- rôles atomique : aEnfant, marieAvec
- Femme ≡?
- Mere =?
- Parent ≡?
- ParentDeFemme ≡?
- Celibataire ≡?
- HommeMarie ≡?

Interprétation

• \mathcal{I} interprétation : $(\Delta^{\mathcal{I}}, f_{A^{\mathcal{I}}}, f_{R^{\mathcal{I}}})$

ullet $\Delta^{\mathcal{I}}$: domaine

• fonction $f_{\Delta^{\mathcal{I}}} \colon A \to A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$

• fonction $f_{R^{\mathcal{I}}} \colon R \to R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

extension à la description de concepts

$$\bullet$$
 $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$

$$\bullet$$
 $\perp^{\mathcal{I}} = \emptyset$

$$\bullet \ (\neg A)^{\mathcal{I}} = \Delta^{\mathcal{I}} \backslash A^{\mathcal{I}}$$

$$\bullet \ (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

•
$$\forall R.C = \{x \in \Delta^{\mathcal{I}} | \forall y, (x, y) \in R^{\mathcal{I}} \rightarrow C(y) \in C^{\mathcal{I}} \}$$

$$\bullet \ \exists R. \top = \{ x \in \Delta^{\mathcal{I}} | \ \exists y, (x, y) \in R^{\mathcal{I}} \}$$

exemple

Soit l'interprétation ${\mathcal I}$:

- $\bullet \ \Delta^{\mathcal{I}} = \{a, b, c, d, e, f, g\}$
- $Homme^{\mathcal{I}} = \{a, b, c, g\}$
- $aEnfant^{\mathcal{I}} = \{(a, c), (b, d), (b, e), (c, g)\}$
- $marieAvec^{\mathcal{I}} = \{(b, f), (f, b)\}$

Quelles sont les interprétations des concepts suivants :

- Parent $^{\mathcal{I}} = ?$
- $ParentDeFemme^{\mathcal{I}} = ?$
- Celibataire $^{\mathcal{I}}=?$
- HommeMarie $^{\mathcal{I}}=?$

sémantique des axiomes et assertions

- \mathcal{I} satisfait $C \sqsubseteq D$ ssi $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- \mathcal{I} satisfait $C \equiv D$ ssi $C^{\mathcal{I}} = D^{\mathcal{I}}$
- \mathcal{I} satisfait C(a) ssi $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- \mathcal{I} satisfait R(a,b) ssi $(a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}}$

Les logiques de description de la famille AL

Constructeur d'union \mathcal{U}

Union de concepts

ALU

syntaxe

 $C \sqcup D$

sémantique

$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

exemple

• $Personne \equiv Homme \sqcup Femme$

Constructeur de négation sans restriction ${\mathcal E}$

quantification existentielle complète

syntaxe

 $\exists R.C$

sémantique

$$(\exists R.C)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} | \exists y, (x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \}$$

exemple

∃aEnfant.Homme

Les logiques de description de la famille AL

Constructeur de négation sans restriction ${\cal C}$

négation de concept

 \mathcal{C}

syntaxe

 $\neg C$

sémantique

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

exemples

- ¬∃aEnfant.⊤
- ¬∃aEnfant.Homme

$\mathcal{A}L$ + Constructeurs \mathcal{U} , \mathcal{C}

propriétés

- $\bullet \perp \equiv C \sqcap \neg C$
- $\bullet \ \top \equiv C \sqcup \neg C$
- $\bullet C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$
- $\neg (C \sqcup D) \equiv (\neg C \sqcap \neg D)$
- $\neg (C \sqcap D) \equiv (\neg C \sqcup \neg D)$
- $\bullet \neg \neg C \equiv C$

$\mathcal{A}L$ + Constructeurs \mathcal{E} , \mathcal{C}

propriétés

- \bullet $\exists R \equiv \exists R. \top$
- $\bullet \ \exists R.C \equiv \neg(\forall R.\neg C)$
- $\neg \exists R.C \equiv \forall R. \neg C$
- $\bullet \neg \forall R.C \equiv \exists R.\neg C$

exemple

 $\bullet \neg \exists a Enfant. Homme \equiv \forall a Enfant. \neg Homme$

Les logiques de description de la famille AL

$\mathcal{A}L + \mathsf{Constructeur}\; \mathcal{C}: \mathsf{logique}\; \mathsf{de}\; \mathsf{description}\; \mathcal{ALC}$

propriétés

disjonction:

$$\bullet \ \ C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$$

quantification existentielle complète :

$$\bullet \exists R.C \equiv \neg(\forall R.\neg C)$$

exemples

• $\exists a Enfant. Femme \equiv \neg(\forall a Enfant. \neg Femme)$

Exercice : petite hiérarchie

Taduire en logique de description $\mathcal{A}LC$

is-a

Exercice: Petite ontologie des repas

Les logiques de description de la famille AL

Constructeur de restriction de cardinalité ${\cal N}$

syntaxe

- $\leq nR$: au plus n dans le co-domaine de R
- $\geq nR$: au moins n dans le co-domaine du R

sémantique

$$\bullet \ (\leq nR)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}}, |y, (x, y) \in R^{\mathcal{I}}| \leq n\}$$

•
$$(\geq nR)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}}, |y, (x, y) \in R^{\mathcal{I}}| \geq n\}$$

Constructeur de restriction de cardinalité ${\cal N}$

exemples

- Homme $\sqcap > 2aEnfant$
- Homme $\sqcap \leq 2aEnfant$
- Homme $\sqcap \leq 2aEnfant \sqcap \geq 2aEnfant$

Les logiques de description de la famille AL

Constructeur de restriction de cardinalité qualifiée $\mathcal Q$

syntaxe

- $\leq nR.C$: au plus n éléments de C dans le co-domaine de R
- $\geq nR.C$: au moins n éléments de C dans le co-domaine de R

sémantique

- $(\leq nR.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}}, |y, (x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} | \leq n\}$
- $(\geq nR.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}}, |y, (x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}| \geq n\}$

Constructeur de restriction de cardinalité qualifiée $\mathcal Q$

exemples

- Homme $\sqcap \geq 2aEnfant.Femme$
- Homme $\sqcap \leq 2aEnfant.Femme$
- Homme \sqcap < 2aEnfant.Femme \sqcap > 2aEnfant.Femme

Introduction logique AL: logique de description de base Famille des logiques de descriptions Logiques de description : langage des ontologies Raisonnement en logique de description Complexité du raisonnement

Exercice

Taduire en logique de description ALCQ les exemples précédents

Constructeur d'énumération $\mathcal O$

syntaxe

si a_1, a_2, \dots, a_n sont des individus alors $\{a_1, a_2, \dots, a_n\}$ est un concept

sémantique

$$\{a_1,\cdots,a_n\}^{\mathcal{I}}=\{a_1^{\mathcal{I}},\cdots,a_n^{\mathcal{I}}\}$$

exemple:

{DPT_84, DPT_13, DPT_04, DPT_05, DPT_83, DPT_06}

Constructeur

individus reliés à un individu spécifique par une relation R

syntaxe

R:a

sémantique

$$(R:a)^{\mathcal{I}} = \{d \in \Delta | (d,a^{\mathcal{I}}) \in R^{\mathcal{I}}\}$$

exemple:

 $citoyenFrancais \equiv lieuNaissance : France \sqcup naturalisePar : France$

Les logiques de description de la famille AL

Constructeur d'inversion \mathcal{I}

syntaxe

$$R^{-}$$

sémantique

$$(R^{-})^{\mathcal{I}} = \{(y, x)|_{,}(x, y) \in R^{\mathcal{I}}\}$$

exemples

- estComposede ≡ compose[−]
- estRegarde ≡ regarde[−]

Constructeur de fonctions \mathcal{F}

rôle *R* comme une fonction

sémantique

si
$$(x,y) \in R^{\mathcal{I}}$$
 et $(x,z) \in R^{\mathcal{I}}$ alors $y=z$

exemple

• HommeMarie \equiv Homme $\sqcap \exists marieAvec. \top$

Constructeur de fonctions ${\mathcal F}$

propriétés

- \bullet > 1 $R \equiv \exists R. \top$
- \bullet > 0 $R \equiv \top$
- \bullet < 0 $R \equiv \forall R. \bot$

exemple

- $\bullet \le 1$ marie Avec $\sqsubseteq \top$
- HommeMarie \equiv Homme $\sqcap \exists$ marieAvec. $\top \sqcap \leq 1$ marieAvec

Les logiques de description de la famille AL

transitivité des rôles

R est transitif

sémantique

si
$$(x,y) \in R^{\mathcal{I}}$$
 et $(y,z) \in R^{\mathcal{I}}$ alors $(x,z) \in R^{\mathcal{I}}$

exemples

 A □ ∃estComposede.(B □ estComposede.C) est subsumé par A □ estComposede.C

Les logiques de description de la famille $\mathcal{A}L$

Hiérarchie des rôles ${\cal H}$

si R et S sont des rôles alors $R \sqsubseteq S$ est un axiome

sémantique

$$\mathcal{I}$$
 satisfait $R \sqsubseteq S$ ssi $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

exemple

- composant_de ⊑ partie_de
- parent_de ⊑ ancetre_de

Les logiques de description de la famille $\mathcal{A}L$

La famille des logiques de description selon leur expressivité

- *AL* : base
- ALC : plus expressive
- $\mathcal{A}LC + \mathcal{H} + \text{transitivit\'e des r\^oles}$: logique $\mathcal{S}H$
- SH + II + F: logique SHIF (base de OWL-Lite)
- SH + I + Q: logique SHIQ
- SH + O + I + N: logique SHOIN (base de OWL-DL)

Les logiques de description de la famille AL

Figure: source : M. Gagnon

Les logiques de description de la famille AL

Exercice ; définition des concepts :

- équipe : ensemble de personnes qui compte au moins 2 membres
- petite équipe : équipe qui compte au plus 5 membres
- équipe moderne : équipe qui compte au plus 4 membres, au moins un chef et dont tous les chefs sont des femmes
- concepts primitifs ?
- rôles?
- hiérarchies de concepts et de rôles ?
- constructeurs de la famille AL à utiliser ?
- définition des concepts dans la logique de description adéquate ?

Les logiques de description de la famille $\mathcal{A}L$

Base de connnaissances

- TBox : Terminologie
 - connaissance générique : ontologie
 - $O = \{C, R, H^C, rel, A\}$
- Abox : Assertions
 - description du monde : ensemble de faits
 - ensemble d'instances
- $BC = \{O, I, inst, instr\}$
- $BC = TBoX \cup ABox$

Raisonnement sur les TBox

- satisfaisabilité
- subsomption
- équivalence
- exclusion mutuelle

Raisonnement sur les TBox : satisfaisabilité

- Un concept est satisfaisable par rapport \mathcal{T} ssi il existe \mathcal{I} un modèle de \mathcal{T} tel que $\mathcal{C}^{\mathcal{I}} \neq \emptyset$
- si il existe $\mathcal I$ un modèle de $\mathcal T$ tel que $\mathcal C^{\mathcal I} \neq \emptyset$ alors $\mathcal I$ est un modèle de $\mathcal C$
- Un concept est insatisfaisable par rapport \mathcal{T} ssi pour tout \mathcal{I} un modèle de \mathcal{T} on a $\mathcal{C}^{\mathcal{I}} = \emptyset$

exemples

- satisfaisabilité : *Homme* □ ¬*Homme*?
- modèle de \mathcal{T} : $\Delta\{a, b, c\}$, $Homme^{\mathcal{I}} = \{a, b\}$, $aEnfant^{\mathcal{I}} = \{(a, b), (a, c)\}$
 - satisfaisabilité : Homme ?, Femme ?, aEnfant?

Raisonnement sur les TBox : subsomption

- Un concept C est subsumé par D par rapport à T ssi pour tout \mathcal{I} modèle de \mathcal{T} on a $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- on écrit : $\mathcal{T} \models C \sqsubseteq D$

exemples

• axiome de \mathcal{T} : $Mere \equiv \exists aEnfant.Personne$ subsomption : $Mere \sqsubseteq Femme$?

Raisonnement sur les TBox : équivalence

- Deux concepts C et D sont équivalents par rapport à T ssi pour tout \mathcal{I} modèle de \mathcal{T} on a $C^{\mathcal{I}} = D^{\mathcal{I}}$
- on écrit : $\mathcal{T} \models C \equiv D$

exemples

- équivalence : $Pere \equiv Homme \sqcap \exists aEnfant.Personne$?
- équivalence : $Humain \equiv Homme \sqcup Femme$?

Raisonnement sur les TBox : exclusion mutuelle

- Deux concepts C et D sont disjoints par rapport à T ssi pour tout \mathcal{I} modèle de \mathcal{T} on a $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$
- on écrit : $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$

exemples

- disjoints : Pere et Mere ?
- disjoints : Celibataire et Pere ?

Raisonnement sur les TBox : réduction à l'insatisfaisabilité

- Le concepts C est subsumé par le concept D par rapport à T ssi C □ ¬D est insatisfaisable
- Deux concepts C et D sont éqivalents par rapport à T ssi $C \sqcap \neg D$ et $\neg C \sqcap D$ sont insatisfaisables
- Deux concepts C et D sont disjoints par rapport à T ssi
 C □ D est insatisfaisable

Raisonnement sur les TBox : élimination de la TBox

- procédure de preuve : utilisation de formules indépendantes de toute terminologie
- remplacer tous les termes de la formule par leur définition dans la terminologie
- exemple : TBox : Femme ≡ Personne □ Feminin,
 Homme ≡ Personne □ ¬Femme
- démontrer l'insatisfaisabilité de : *Femme* □ *Homme* ?
- 1) Femme \sqcap Homme
- 2) Personne \sqcap Feminin \sqcap Personne \sqcap \neg Femme
- 3) Personne \sqcap Feminin \sqcap Personne $\sqcap \neg$ (Personne \sqcap Feminin)

Introduction logique AL: logique de description de base Famille des logiques de descriptions Logiques de descriptions Logiques de description : langage des ontologies Raisonnement en logique de description Complexité du raisonnement

Raisonnement

Raisonnement sur les ABox

- cohérence (consistency)
- validation d'instances (instance checking)

Raisonnement sur les ABox : cohérence

• \mathcal{A} une ABox est cohérente par rapport à \mathcal{T} ssi il existe \mathcal{I} un modèle de \mathcal{T} qui satisfait \mathcal{A}

exemple

- TBox : Femme ≡ Personne □ Feminin, Homme ≡ Personne □ ¬Femme
- $ABox : A = \{Homme(anne), Femme(anne)\}$
- cohérence de A?

Raisonnement sur les ABox : validation d'instances

- $\mathcal{A} \models \mathcal{C}(a)$ ssi toute interprétation \mathcal{I} qui satisfait \mathcal{A} satisfait aussi $\mathcal{C}(a)$
- $A \models C(a)$ ssi $A \cup \neg C(a)$ est incohérent

exemple

- TBox : Femme ≡ Personne □ Feminin
- $ABox : A = \{Femme(anne)\}$
- $A \models Feminin(anne)$?
- $A \cup \neg Feminin(anne)$ incohérent ?

Raisonnement : Monde fermé, Monde ouvert

hypothèse du monde fermé (clos)

- limitation à ce qui est énonçé
- exemple : ABox : aEnfant(anne, paul)
- anne a un seul enfant c'est paul

Logiques de Description : hypothèse du monde ouvert

- monde ouvert: pas de limitation à ce qui est énonçé
- exemple : ABox : aEnfant(anne, paul)
- rien n'exclut que anne ait d'autres enfants que paul
- spécifier que *anne* a un seul enfant : $(\leq 1aEnfant)(anne)$

Inférence par méthode des tableaux

- prouver $C \sqsubseteq D$
- $C \sqsubseteq D$ ssi $C \sqcap \neg D$ est insatisfaisable

un exemple introductif

- prouver $\exists possede.(Livre \sqcap Antiquite) \sqsubseteq (\exists possede.Livre \sqcap \exists possede.Antiquite)$
- démontrer l'insatisfaisabilité de :
 ∃possede.(Livre □ Antiquite)□
 ¬(∃possede.Livre □ ∃possede.Antiquite)

Méthode des tableaux

Pour prouver F: construction d'un arbre dont

- la racine est étiquetée par ¬F
- les noeuds sont étiquetés par des concepts
- les successeurs des noeuds sont produits par des règles d'expansion.
- ullet on ajoute \square à la fin d'un chemin $\mathcal A$ si :
 - $C(x) \in \mathcal{A}$ et $\neg C(x) \in \mathcal{A}$
 - $C(x) \in \mathcal{A}$ et $\neg C(x) \in \mathcal{A}$ et (x = y ou y = x)
 - $\perp(x) \in \mathcal{A}$

Il existe plusieurs règles d'expansion pour construire les chemins

\mathcal{A} : chemin

Règles pour la logique de description ALCN

règle-□

condition:

 \mathcal{A} contient $(C_1 \sqcap C_2)(x)$ et ne contient pas déja $C_1(x)$ et $C_2(x)$

action:

prolongation : $A' = A \cup \{C_1(x), C_2(x)\}$

\mathcal{A} : chemin

Règles pour la logique de description ALCN

condition:

 \mathcal{A} contient $(C_1 \sqcup C_2)(x)$ et ne contient aucun des $C_1(x)$ et $C_2(x)$

action:

branchement : $A' = A \cup \{C_1(x)\}$

et
$$\mathcal{A}'' = \mathcal{A} \cup \{C_2(x)\}$$

\mathcal{A} : chemin

Règles pour la logique de description $\mathcal{A}LCN$

règle-∃

condition:

 \mathcal{A} contient $(\exists R.C)(x)$ et il n'exixte aucun individu z tel que R(x,z) et C(z) sont aussi dans \mathcal{A}

action:

 $\mathcal{A}' = \mathcal{A} \cup \{R(x,y), C(y)\}$ où y est un nom d'individu qui n'existe pas déjà dans \mathcal{A}

\mathcal{A} : chemin

Règles pour la logique de description ALCN

condition:

A contient $(\forall R.C)(x)$ et R(x,y) mais ne contient pasC(y)

action:

$$\mathcal{A}' = \mathcal{A} \cup \{C(y)\}$$

 \mathcal{A} : chemin

Règles pour la logique de description ALCN

règle-
$$≥ n$$

condition:

 \mathcal{A} contient $(\geq nR.C)(x)$ et il n'y a pas dans \mathcal{A} des individus z_1, \dots, z_n qui sont tous distincts et qui sont tels que \mathcal{A} contient $R(x, z_i)$ pour tous les individus $(1 \leq i \leq n)$

action:

$$\mathcal{A}' = \mathcal{A} \cup \{ R(x, y_i) \mid 1 \le i \le n \} \cup \{ y_i \ne y_j \mid 1 \le i < j \le n \}$$

 \mathcal{A} : chemin

Règles pour la logique de description ALCN

règle-≤
$$n$$

condition:

 \mathcal{A} contient $(\leq n\,R.C)(x)$ et les énonçés $R(x,y_1),\cdots R(x,y_{n+1})$. Il n'existe aucune identité $y_i=y_j$ dans \mathcal{A} pour $(1\leq i\leq n+1)$, $(1\leq j\leq n+1),\ i\neq j$

action:

Pour chaque paire possible (y_i, y_j) d'individus parmi y_i, y_{n+1} on ajoute une nouvelle branche avec $y_i = y_i$

Méthode des tableaux

exercice

 $TBox : Parent \equiv \exists aEnfant. \top$

Montrer par la méthode des tableaux :

≥ 2aEnfant □ Parent

Méthode des tableaux

Résultats théoriques

propriétés

- terminaison
- correction
- complétude

Raisonnement en logique de description

complexité du problème de satisfaisabilité

complexité	logique de description
PTIME	AL, ALN
NP-complet	ALU, ALUN
coNP-complet	ALE
PSPACE-complet	ALC, ALCN, ALCQI
EXP-TIME	SHIQ, SHIF
NEXP-TIME	SHOIQ, SHOIN