nome do autor

TÍTULO DO TRABalho

Patos de Minas 2020

SUMÁRIO

1	INTRODUÇÃO A ENGENHARIA DE MICRO-ONDAS 2
1.1	Ocupação do espectro eletromagnético
1.2	As frequências de micro-ondas
1.3	Limitações dos elementos de circuitos em micro ondas
1.3.1	Resistor Real
1.3.2	Indutor Real
1.3.3	Capacitor Real
2	RESSONADORES EM MICRO-ONDAS
2.1	Cavidades Ressonantes
2.2	Fator de mérito nas cavidades ressonantes
3	ANÁLISE DE REDES DE MICRO-ONDAS
	REFERÊNCIAS

1 INTRODUÇÃO A ENGENHARIA DE MICRO-ONDAS

1.1 Ocupação do espectro eletromagnético

Espectro eletromagnético é o conjunto de todas as frequências da energia eletromagnética.

As **bandas de frequências** ou **faixas** são subdivisões de frequências do espectro. A divisão é dada, pela Comitiva Internacional de Telecomunicações (CCIR), pela relação

$$0.3 \times 10^{N} \le f \le 3 \times 10^{N} \tag{1.1}$$

onde

f é a frequência;

N é uma constante que caracteriza o grupo da divisão.

1.2 As frequências de micro-ondas

A faixa de radiofrequência (RF) apresenta limite superior de 300 MHz. Nesta faixa os sinais eletromagnéticos apresentam comprimentos de ondas muito curtos ($\lambda=1$ m).

A faixa de micro-ondas apresenta limite inferior de 300 MHz e superior de 300 GHZ ($\lambda=1\times10^{-3}$ m), estando entre os sinais de RF e o infravermelho. Nesta faixa os sinais eletromagnéticos apresentam comprimentos de ondas ultra curtos.

Contudo, não é possível equipamento cobrirem toda esta faixa, então estes são projetados para operar em uma determinada **faixa prática**. Estão foram definidas como

Limites (GHz)
0,30 -3,00
1,00 -1,55
1,00 -3,95
3,95 -5,85
3,95 -8,20
5,30 -8,20
7,05 -10,0

Χ	8,20 -12,4
M	10,0 -15,0
K_{U}	12,4 -18,0
K	18,0 -26,5
K_{U}	26,5 -40,0
Q	23,0 -46,0
U	40,0 -60,0
V	40,0 -80,0
Е	60,0 -90,0
W	58,0 -110
F	90,0 -140
N	80,0 -170
D	110 -170

As vantagens desta faixa são eficiência do processo de multiplexação, grande diretividade das antenas, grandes larguras de faixas, confiabilidade do sistema, fácil instalação e custos compensados.

1.3 Limitações dos elementos de circuitos em micro ondas

Para um resistor real, a tensão v é dada por

$$v = iR ag{1.2}$$

onde

R é a resistência nominal; i é a corrente.

Para um indutor real, a tensão v é dada por

$$v = L \frac{di}{dt} \tag{1.3}$$

onde

L é a indutância nominal.

O indutor ainda apresenta uma reatância indutiva X_L dada por

$$X_L = \omega L = 2\pi f L \tag{1.4}$$

onde

 ω é a frequência angular.

Para um capacitor real, a tensão v é dada por

$$i = C\frac{dv}{dt} \tag{1.5}$$

onde

C é a capacitância nominal.

O capacitor ainda apresenta uma reatância capacitiva $X_{\mathcal{C}}$ dada por

$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} \tag{1.6}$$

1.3.1 Resistor Real

Para altas frequências, um resistor real pode ser representado como

Fonte: o autor.

onde

 R_r é a resistência especifica;

 R_f é a resistência nos terminais;

 L_r é a indutância parasita dos terminais;

 C_r é a capacitância decorrente dos contatos metálicos com um meio dielétrico de separação.

A **condição de ressonância** (quando aparte imaginaria da impedância assume valor zero) para o resistor real ocorre quando a frequência é igual a

$$f_{0res} = \frac{\sqrt{1 - R_t^2 \left(\frac{C_r}{L_r}\right)}}{2\pi \sqrt{L_r C_r}} \tag{1.7}$$

onde

$$R_t = R_r + R_f \tag{1.8}$$

Esta relação é obtida encontrando a impedância equivalente do circuito, separando a parte imaginaria, igualando-a a zero e finalmente isolando a frequência.

A impedância se torna puramente resistiva, com valor dado por

$$R_{0res} = \frac{R_t^2 + (\omega_0 L_r)^2}{R_t} = R_t \left(1 + Q_r^2 \right)$$
 (1.9)

onde

 ω_0 é a frequência angular na ressonância;

 Q_r é o fator de mérito do resistor na ressonância, dado por

$$Q_r = \frac{\omega_0 L_r}{R_t} \tag{1.10}$$

1.3.2 Indutor Real

Para altas frequências, um indutor real pode ser representado como

Fonte: o autor.

onde

 L_b é a indutância especifica;

 R_b é a resistência devido à condutividade finita do material usado na construção do componente, aumentada pelo efeito pelicular e pelo efeito de aproximação das espiras; C_b é a capacitância distribuídas entre as espiras e entre suas extremidades.

A **condição de ressonância** para o resistor real ocorre quando a frequência é igual a

$$f_{0ind} = \frac{\sqrt{1 - R_b^2 \left(\frac{C_b}{L_b}\right)}}{2\pi\sqrt{L_b C_b}} \tag{1.11}$$

Esta relação é obtida encontrando a impedância equivalente do circuito, separando a parte imaginaria, igualando-a a zero e finalmente isolando a frequência.

A impedância se torna puramente resistiva na ressonância, assumindo o valor

$$R_{0ind} = \frac{R_b^2 + (\omega_0 L_b)^2}{R_b} = R_b \left(1 + Q_b^2 \right)$$
 (1.12)

onde

 Q_b é o fator de mérito do indutor na ressonância, dado por

$$Q_b = \frac{\omega_0 L_b}{R_b} \tag{1.13}$$

1.3.3 Capacitor Real

Para altas frequências, um capacitor real pode ser representado como

Fonte: o autor.

onde

 C_c é a capacitância especifica;

 R_d é a resistência de perdas no dielétrico;

 L_c é a indutância parasita associada aos terminas;

 R_c é a resistência parasita associada aos terminas.

A **condição de ressonância** para o resistor real ocorre quando a frequência é igual a

$$f_{0cap} = \frac{\sqrt{1 - G_d^2 \left(\frac{L_c}{C_c}\right)}}{2\pi\sqrt{L_c C_c}} \tag{1.14}$$

onde

 G_d é dado por

$$G_d = \frac{1}{R_d} \tag{1.15}$$

Esta relação é obtida encontrando a impedância equivalente do circuito, separando a parte imaginaria, igualando-a a zero e finalmente isolando a frequência.

A impedância se torna puramente resistiva na ressonância, assumindo o valor

$$R_{0cap} = R_c + \frac{R_d}{1 + (\omega_0 R_d C_c)^2} = R_c \left(1 + Q_c^2 \right)$$
(1.16)

onde

 Q_c é o fator de mérito do capacitor na ressonância, dado por

$$Q_c = \frac{\omega_0 C_c}{G_d} \tag{1.17}$$

2 RESSONADORES EM MICRO-ONDAS

2.1 Cavidades Ressonantes

Um **ressonador** é um dispositivo que exibe ressonância, ou seja, apresenta um fenômeno em que um sistema vibratório conduz outro sistema a oscilar com a maior amplitude em frequências especificas conhecidas como frequências ressonantes ou frequências naturais do sistema.

Circuitos ressonantes podem ser usados em filtros, osciladores, medidores de frequência e amplificadores sintonizados. Para baixas frequências, são construídos apartir de resistores, capacitores e indutores. Para as frequências de 30 MHz até 3 GHz são criados usando trechos de linhas de transmissão. Acima de 3 GHz, usa-se trechos de guias do ondas.

Uma **cavidade** pe um volume envolvido por uma superfície condutora, apresentando a possibilidade de excitação de um campo eletromagnético em seu interior.

Considerando a cavidade retangular abaixo

Fonte: ver [1].

esta, opera em modo TE_{mn} , ou seja, ??, com o campo elétrico da onda concentrado no plano transversal com eixo de propagação sendo **z** e limitada por z=0 e z=d.

O campo elétrico transversal é caraterizado por

$$E_t = 2A_i \mathrm{sen}\left(\frac{p\pi z}{d}\right) \mathrm{sen}\left(\omega t\right) \tag{2.1}$$

onde

 A_i é a amplitude do campo incidente;

p é uma constante que indica o número de máximos de campo (semi-períodos da senoide) na direção paralela ao eixo longitudinal;

z é a posição sobre o eixo z;

t é um instante de tempo.

Assim, o campo elétrico varia no tempo de forma senoidal no tempo e na distância longitudinal.

A frequência de ressonância de uma cavidade retangular é dado por

$$f_0 = \frac{c\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}}{2\pi}$$
 (2.2)

onde

m e n, assim como p, são os índices em modos TE e TM.

A frequência de corte de uma cavidade retangular é dado por

$$f_c = \frac{c\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}}{2\pi} \tag{2.3}$$

Um modo pode ser representado como $\mathsf{TM}_{mnp}/\mathsf{TE}_{mnp}$, onde os índices $m, n \in p$ assumem valores inteiros positivos e estão ligados diretamente com o período forma de onda do campo eletromagnético. O período dos componentes em função do eixo x é determinada por m, eixo y por n e eixo z por p, onde, a frequência de oscilação da onda no eixo será maior, quanto maior por o seu respectivo índice.

As dimensões de um guia $(a,b \ e \ d)$ normalmente apresentam a relação a > d > b. Critérios de proporcionalidade das dimensões foram propostos para reduzir as perdas de potência em frequências próximas de f_0 , sendo elas

$$a = \frac{3c}{4f_0}$$
$$b = \frac{3c}{8f_0}$$
$$d = \frac{3c}{2\sqrt{5}f_0}$$

2.2 Fator de mérito nas cavidades ressonantes

O fator de mérito Q_0 é a razão entre a energia armazenada (U_{mx}) e dissipada (P_d) .

A potência dissipada é a soma das dissipações no meio dentro da cavidade (P_m) e nas suas paredes (P_c) . Então,

$$Q_0 = \frac{\omega_0 U_{mx}}{P_d}$$

$$Q_0 = \frac{\omega_0 U_{mx}}{P_m + P_c}$$

$$Q_0 = \frac{1}{\frac{P_m}{\omega_0 U_{mx}} + \frac{P_c}{\omega_0 U_{mx}}}$$

$$Q_0 = \frac{1}{\frac{1}{Q_d} + \frac{1}{Q_c}}$$

$$Q_0 = \frac{Q_c Q_d}{Q_c + Q_d}$$

onde:

 ω_0 é a frequência angular de ressonância;

 Q_c é o fator de mérito para a cavidade isolada;

 Q_d é o fator de mérito devido ao meio dentro da cavidade.

A energia máxima armazenada na frequência de ressonância é dada por

$$U_{mx} = \frac{\varepsilon abd\eta^2 H_0}{8} \left(\frac{f_0^2}{f_c^2}\right) \tag{2.4}$$

onde a impedância intrínseca do material dentro da cavidade (η) é definida como

$$\eta = \sqrt{\frac{i\omega_0\mu}{\sigma_d + i\omega_0\varepsilon}} \tag{2.5}$$

onde:

 μ é ??;

 σ_d é ??;

 ε é a permissividade dielétrica.

O fator de mérito devido o meio dentro da cavidade, também pode ser calculado por

$$Q_d = \frac{\varepsilon'}{\varepsilon''} = \frac{1}{\tan\left(\delta_d\right)}$$

onde:

 ε' é a parte real da permissividade dielétrica ε ;

 ε'' é a parte imaginaria da permissividade dielétrica ε ;

 δ_d é conhecido como fator ou tangente de perdas do meio.

O fator de mérito devido às perdas nas paredes apresenta cinco definições que dependem do modo eletromagnético e dos valores de m, n e p. Para os modos TE_{m0p}

$$Q_{c_{TEm0p}} = \left(\frac{\lambda_0}{\delta_c}\right) \left(\frac{abd}{2}\right) \left[\frac{\sqrt{\left(s^2 + r^2\right)^3}}{s^2 d\left(a + 2b\right) + r^2 a\left(d + 2b\right)}\right]$$

Para os modos TE_{0np}

$$Q_{c_{TE0np}} = \left(\frac{\lambda_0}{\delta_c}\right) \left(\frac{abd}{2}\right) \left[\frac{\sqrt{(q^2 + r^2)^3}}{q^2 d \left(b + 2a\right) + r^2 b \left(d + 2a\right)}\right]$$

Para os modos TE_{mnp}

$$Q_{c_{TEmnp}} = \left(\frac{\lambda_0}{\delta_c}\right) \left(\frac{abd}{4}\right) \left[\frac{\left(s^2 + q^2\right) \sqrt{\left(s^2 + q^2 + r^2\right)^3}}{ad \left[s^2 r^2 + \left(s^2 + q^2\right)^2\right] + bd \left[q^2 r^2 + \left(s^2 + q^2\right)^2\right] + abr^2 \left(s^2 + q^2\right)}\right]$$

Para os modos TM_{mn0}

$$Q_{c_{TMmn0}} = \left(\frac{\lambda_0}{\delta_c}\right) \left(\frac{abd}{2}\right) \left[\frac{\sqrt{\left(s^2 + q^2\right)^3}}{s^2 b \left(a + 2d\right) + q^2 a \left(b + 2d\right)}\right]$$

Para os modos TM_{mnp}

$$Q_{c_{TMmnp}} = \left(\frac{\lambda_0}{\delta_c}\right) \left(\frac{abd}{4}\right) \left[\frac{\left(s^2 + q^2\right) \sqrt{\left(s^2 + q^2 + r^2\right)^3}}{s^2 b \left(a + d\right) + q^2 a \left(b + d\right)}\right]$$

Os fatores comprimento de onda na ressonância (λ_0), efeito pelicular (δ_c), permeabilidade magnética no vácuo (μ_c), s, q e r são definidos como

$$\lambda_0 = \frac{c}{f_0}$$

$$\delta_c = \frac{1}{\pi f_0 \mu_c \sigma_c}$$

$$\mu_c = 4\pi \times 10^{-7}$$

$$s = \frac{m}{a}$$

$$q = \frac{n}{b}$$

$$r = \frac{p}{d}$$

onde:

 σ_c é ??;

O fator de mérito para a cavidade isolada (Q_e) é dado por

$$Q_e = \frac{Q_0}{\xi}$$

onde ξ é o O coeficiente de acoplamento, relação entre a potência aproveitada no circuito externo e a potência dissipada na cavidade.

Quando $\xi=1$ tem-se acoplamento crítico, $\xi>1$ tem-se acoplamento sobrecrítico e para $\xi<1$ tem-se acoplamento subcrítico

O fator de mérito com carga (Q_L) , que avalia a energia eletromagnética será transferida para o circuito externo, é definida por

$$Q_L = \frac{Q_0 Q_e}{Q_0 + Q_e} = \frac{Q_0}{\xi + 1}$$

3 ANÁLISE DE REDES DE MICRO-ONDAS

A figura abaixo apresenta uma rede (ou junção) de micro-ondas de porta N arbitrária.

Fonte: ver [1].

A matriz de impedância [Z] relaciona as tensões e correntes, por

$$Z_{ij} = rac{V_i}{I_j}|_{I_k=0}$$
 para $_{k
eq j}$

 Z_{ij} pode ser encontrado alimentando a porta j com a corrente I_j , V_1^- , I_1^- abrindo o circuito de todas as outras portas (então $I_k = 0A$ para $k \neq j$, onde k representam as outras portas) e medindo a tensão de circuito aberto na porta i.

A matriz de admitância [Y] é definida como

$$[Y] = [Z]^{-1}$$

com seus termos dadas por

$$Y_{ij} = rac{I_i}{V_j}|_{V_k=0 ext{ para } k
eq j}$$

 Y_{ij} pode ser encontrado alimentando a porta j com a tensão V_j , medindo a corrente do circuito na porta i para todas as outras portas em curto-circuito (então $V_k = 0V$ para $k \neq j$).

Uma rede recíproca apresenta nenhum dispositivo ativo ou meio não recíproco, como ferritas ou plasmas. Neste tipo de rede, matrizes de impedância e admitância são simétricas, ou seja, $Z_{ij} = Z_{ji}$ e $Y_{ij} = Y_{ji}$, consequentemente, $[Z] = [Z]^t$ e $[Y] = [Y]^t$.

REFERÊNCIAS

[1] RIBEIRO, J. *Engenharia De Microondas: FUNDAMENTOS E APLICAÇÕES*. ERICA, 2009. ISBN 9788536502090. Disponível em: https://books.google.com.br/books?id=D-iHPgAACAAJ. Citado 2 vezes nas páginas 8 e 13.