Chern number for two "parameters"

$$(\lambda_x, \lambda_y) \Rightarrow (k, \lambda) \Rightarrow (k_x, k_y)$$

Parametric Hamiltonian of molecule Hamiltonian of chain with one control parameter

Hamiltonian of 2D insulator

Quantum charge pump

Quantum anomalous Hall insulator

Berry curvature in the Brillouin zone

$$\Omega_z(\mathbf{k}) = -2\mathrm{Im} \left\langle \left. \frac{du}{dk_x} \right| \left. \frac{du}{dk_y} \right\rangle \right.$$

$$\int_{\text{BZ}} \Omega_z(\mathbf{k}) \, d^2 k \, = 2\pi C$$

Chern number

- - Always if non-magnetic
 - Usually otherwise
- But what if it is not?

Ordinary Hall conductivity

Measure σ_{xy} in presence of *B*-field

Quantum Hall effect

Quantum Hall effect

Hall effects: The big picture

Induced by Ferromagnetic **B-field** sample **Ordinary** Hall (1879)Quantum **Topological** Hall (1980)

Metal

insulator

Anomalous Hall conductivity (AHC)

Measure σ_{xy} in <u>absence</u> of *B*-field

Hall effects: The big picture

Induced by B-field

Ferromagnetic sample

Metal

Ordinary Hall (1879) Anomalous Hall (1881)

Topological insulator

Quantum Hall (1980) Quantum Anomalous Hall

QAH insulator

$$\Omega_z(\mathbf{k}) = -2\operatorname{Im} \left\langle \left. \frac{du}{dk_x} \right| \left. \frac{du}{dk_y} \right\rangle \right.$$

$$\int_{\rm BZ} \Omega_z(\mathbf{k}) \, d^2k \, = 2\pi C$$

Quantum Anomalous Hall:

$$\sigma_{xy}=rac{-e^2}{h}C$$

Chern number

