Web 2.0

Lecture 2: Cloud Architectures

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • http://vitvar.com

Czech Technical University in Prague
Faculty of Information Technologies • Software and Web Engineering • http://vitvar.com/courses/w20

Modified: Sun Mar 01 2020, 22:34:50 Humla v0.3

Overview

- Introduction
- Cloud Architecture
- Infrastructure as a Service

Terminology

- Cloud computing
- *aaS
- DevOps
- Cloud Native, Microservices
- Serverless

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 3 -

What is a Cloud?

- A different way of thinking
 - Got your grand mum's savings under your pillow?
 - → probably not, you better have them in your bank
 - Data is your major asset
 - you better have them in a "bank" too
 - Someone can abuse your data?
 - banks bankrupt too, sometimes it is a risk you take
 - there is a market and a competition
- Outsourcing of application infrastructure
 - Reliability and availability
 - Low costs pay-per-use
 - Elasticity can dynamically grow with your apps

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 4 -

What is a Cloud?

- Any app you access over the web?
- A datacenter?
 - Offers virtualization
 - Any company having a datacenter wants to move to
- Cloud provider should also offer services, such as:
 - scalability, storage
 - Possible to configure programmatically
 - → integration to enterprise administration processes
 - \rightarrow usually REST interface

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 5 -

Traditional Solution to Infrastructure

- Traditional hardware model
 - *Up-front hardware investments*
 - Hardware not optimally utilized

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 6

Good Performance - Cloud Solution

• Cloud Computing model

- No up-front hardware investments
- Hardware optimally utilized

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

-7-

Cloud Computing Concepts

• Resource Pooling

- Resources reused by multiple tenants (multitenancy)
- Resources: CPU, memory, storage, network

On-demand and Self-service

- Resources are provisioned as they are requested and when they are required
- No human interaction, automatic

• Scalability and Elasticity

- Infrastructure may grow and shrink according to needs
- Automatic or manual

Pay-per-use

- Consumers only pay for resources when they use them

Cloud Computing Concepts (Cont.)

- Service Models (aka Cloud Layers)
 - IaaS Infrastructure as a Service
 - PaaS Platform as a Service, Serverless
 - \rightarrow MWaaS, DBaaS, ...
 - \rightarrow FaaS
 - SaaS Software as a Service
- Deployment Models
 - Public Cloud
 - Private Cloud
 - Hybrid Cloud

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 9 -

Cloud Provider Example - Amazon AWS

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

– 10 –

Overview

- Introduction
- Cloud Architecture
 - Service Models
 - Multitenancy
- Infrastructure as a Service

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

_ 11 _

IaaS: Infrastructure as a Service

- Provides basic computing resources and services for application providers
 - Services for application providers
 - A consumer is able to deploy and run arbitrary software
- Infrastructure implications
 - Exposing of infrastructure resources through abstraction
 - Support for infrastructure resources compute (hardware/OS/VM), storage, network, etc.
 - Supports isolation for multitenant environments

IaaS: Infrastructure as a Service

Usage

- Predefined machine instances (micro, small, large, extra-large)
 - → Linux OS, 613 MB of memory, 30 GB of Storage, Load Balancer, etc.
- Pay-per-use pay for resources you use (time or amount); no up-front costs

• IaaS Services Examples

- Elastic Storage
- Monitoring resources
 - \rightarrow Amazon CloudWatch)
- Auto Scalling of running instances
- Load Balancing distributing incoming traffic across multiple instances

IaaS providers

- Amazon EC2, GoGrid, Rackspace, OpenNebula, Oracle OCI, ...

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 13 -

PaaS: Platform as a Service

• Provides scalable platform for applications

- Services for application providers
- No costs of buying and managing underlying infrastructure
 - \rightarrow hardware and software

• Infrastructure implications

- Scalable platform, deploy on-demand
- Self service interface to deploy applications and services
- Support for monitoring and measuring platform usage
- Model supporting isolation in multi-tenant environments

PaaS: Platform as a Service

Usage

- Choose software platform, e.g., JEE, .NET, Python, etc.
- Pay-per-use pay for the resources you use; no up-front costs

PaaS features

- Auto Scalling and Load Balancing of applications
- Persistent Storage usually NoSQL database
- Local development environment
- Backends for app instances with higher CPU
 and memory demands

 Administration
 Web API
- Administration APIs for its services

PaaS providers

- Google App Engine, Heroku, Windows Azure, etc.

Server

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 15 -

SaaS: Software as a Service

- Software delivery model for applications hosted in the cloud
 - typically software for end-users
 - services accessed using a web browser
 - provides API for programmatic access

SaaS characteristics

- Typically build on top of IaaS or PaaS
- Configurable and customizable modern Web applications
- Usually basic version for free, need to pay for pro version
- Global availability any computer, any device
- Easy management automatic and fast updates
- Pay-per-use pay for the time you use

SaaS providers

- Google Apps, Salesforce, iCloud, Flickr, Picasa, ...

Overview

- Introduction
- Cloud Architecture
 - Service Models
 - Multitenancy
- Infrastructure as a Service

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

_ 17 _

Multitenancy

- Architectural approach where resources are shared between multiple tenants or consumers
- Implications
 - Centralization of infrastructure in locations with lower costs
 - Peak-load capacity increases
 - Utilisation and efficiency improvements for systems that are not well utilised
- Sharing options
 - Shared Everything
 - Shared Infrastructure
 - → Virtual Machines
 - → OS "virtualization"

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

_ 18 -

Shared Everything

- Resources are shared between all tenants or consumers
 - tenant: a service consumer
- Common for the SaaS model
- The application should provide tenant isolation
- Data for multiple tenants is stored in the same database tables

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

_ 19 -

Shared Infrastructure: Virtual Machines

- Infrastructure shared via virtual machines
 - each tenant has its own virtual environment
 - Isolation provided by hypervisor
 - → hypervisor: virtual machine manager, runs virtual machines
 - Resource contention depends on VM capability and configuration
 - Adds an additional layer and processes to run and manage

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 20

Shared Infrastructure: OS Virtualization

- Infrastructure shared via OS Virtualization
 - Each tenant has its own processing zone
 - Isolation provided by the operating system
 - Resource contention depends on zone configuration
 - No VMs to run and manage, no abstraction layer between app & OS

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 21 -

Overview

- Introduction
- Cloud Architecture
- Infrastructure as a Service
 - Infrastructure as Code

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

_ 22 -

Terminology (1)

- Region
 - A localized geographical area
 - A cloud provider usually has multiple regions around the world.
- Availability Domain
 - A datacenter in a region; there can be more AD in a region
- Tenancy
 - Isolated partition where a customer creates and organizes cloud resources.
- Instance
 - Compute host running in the cloud
- Bare Metal
 - Physical host that run directly on bare metal servers without hypervisor
- Shape/Class
 - Amount of computing resources allocated to the instance
 - CPUs, Memory, Local Disk, Network Bandwidth, Number of VNICs
- Image
 - A template of a virtual hard drive that defines operating system and other software for an instance.

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 23

Terminology (2)

- Instance Pool
 - A group of instances
- Virtual Cloud Network (VCN)
 - A virtual network in which instances run
 - It includes: subnets, route tables, firewall rules, gateways
- Block Volume
 - A virtual disk providing persistent storage
 - It can be used as a volume attached to the instance
- Object Storage
 - Allows to store and manage data as objects in logical containers (buckets)
 - The data can be of any type and are usually of large size
 - The data does not change frequently
 - Examples: data backup, storing unstructured data, sensor-generated data

Access and Usage

Layers

 $-\textit{Cloud Infrastructure} \rightarrow \textit{REST API} \rightarrow \textit{CLI, Web Console, other tools}$

Key pair

- Authentication mechanism using public and private key
- public key is uploaded to an instance, a client uses the private key to authenticate
- Example: ssh using key authentication to access ssh deamon running in Linux

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 25

IaaS Example

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 26

Overview

- Introduction
- Cloud Architecture
- Infrastructure as a Service
 - Infrastructure as Code

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

_ 27 _

Overview

- Definition
 - Application envs (in a cloud) managed via definition files
 - Version control, team development, scripting, etc.
- Major Technologies
 - Configuration Management Tools
 - → install and manage software on machines that already exist
 - → Examples: Ansible, Chef, Puppet
 - Abstraction of cloud infrastructure
 - \rightarrow Terraform

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

– 28 –

Terraform

- Higher-level abstraction of the datacenter and associated services
- Supports many service providers
 - Google, Microsoft, Oracle, AWS
- Steps
 - 1. Description of resources in Hashicorp Configuration Language (HCL) instances, networks, firewall rules, routing tables, etc.
 - 2. Terraform generates execution plan to reach the desired state
 - 3. Terraform executes the plan to reach the desired state; can generate incremental execution plan

Lecture 2: Cloud Architectures, CTU Summer Semester 2019/2020, @TomasVitvar

- 29 -