# 305 Lecture 9.1 - Expected Utility

**Brian Weatherson** 

#### **Plan**

- Today we're going to talk about the role of probability in decision making.
- And to do this, we need to introduce a new concept, Expected
   Value.



Odds and Ends, chapter 11; though like with chapter 8 I'm going to take a different path through the material to the book.

#### **Random Variables**

- A random variable is simply a variable that takes different numerical values in different states.
- In other words, it is a function from possibilities to numbers.
- It need not be 'random' in any familiar sense.
- The function from possible situations to the value of 2 + 2 in that situation is a random variable, albeit a constant one.
- It's just a slightly confusing term for any variable that takes different, numerical, values in different situations.

#### Labels

- Typically, random variables are denoted by capital letters.
- So we might have a random variable X whose value is the age of the next President of the United States, and his or her inauguration.
- Or we might have a random variable Y that is the number of children you will have in your lifetime.
- Basically any mapping from possibilities to numbers can be a random variable.

### An Example

- You've asked each of your friends who will win the Lakers v Clippers game.
- 12 said the Lakers will win.
- 7 said the Clippers will win.

### An Example

- You've asked each of your friends who will win the Lakers v Clippers game.
- 12 said the Lakers will win.
- 7 said the Clippers will win.
- Then we can let X be a random variable measuring the number of your friends who correctly predicted the result of the game.

$$X = \begin{bmatrix} 12, & \text{if Lakers win,} \\ 7, & \text{if Clippers win.} \end{bmatrix}$$

### **Expected Value**

- Given a random variable X and a probability function Pr, we can work out the expected value of that random variable with respect to that probability function.
- Intuitively, the expected value of X is a weighted average of the
  possible values of X, where the weights are given by the
  probability (according to Pr) of each value coming about.

## **Calculating Expected Value**

- More formally, we work out the expected value of X this way.
- For each possibility, we multiply the value of X in that case by the probability of the possibility obtaining.
- Then we sum the numbers we've got, and the result is the expected value of X.
- We'll write the expected value of X as Exp(X).

### **Back to the Example**

 So if the probability that the Lakers win is 0.7, and the probability that the Clippers win is 0.3, then

$$Exp(X) = 12 \times 0.7 + 7 \times 0.3$$
$$= 8.4 + 2.1$$
$$= 10.5$$

#### **Notes**

- 1. The expected value of X isn't in any sense the value that we expect X to take. It's more like an average.
- 2. If this kind of situation recurs a lot, you would expect the long run average value X takes to be roundabout the expected value.
- 3. That's a better way of conceptualising what expected values are.



• We will look at how to formally model a decision problem.