Supervised and Un-supervised learning

- Learning from data
- Using the supervision signals

- Seeking the pattern in dataset
- Without supervision signals

Reinforcement Learning Learning to take actions: Al plays Atari Games

- Rules of the game are unknown
- Learn from interactive game-play
- Pick actions on joystick, see pixels and scores

Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint arXiv:1312.5602, 2013.

AlphaGo vs. the world's 'Go' champion

Rating List 2016

is, check the History page. There is also a History of top ladies.

	Rank	Name	\$ 우	Flag	Elo
	1	Ke Jie	\$	*)	3621
	2	Park Jungwhan	\$	*• *	3569
	3	Iyama Yuta	\$	•	3546
<	4	Google AlphaGo		>	3533
	5	Lee Sedol	\$	*• *	3521
	6	Shi Yue	\$	*)	3509
	7	Park Yeonghun	\$	**	3509
	8	Kim Jiseok	\$	*• *	3504
	9	Mi Yuting	\$	*)	3501
	10	Zhou Ruiyang	\$	*)	3498
	11	Kang Dongyun	\$	*• *	3498
	12	Tang Weixing	\$	*)	3479
	13	<u>Lian Xiao</u>	\$	*)	3475
	14	Chen Yaoye	\$	*)	3472
	15	<u>Gu Zihao</u>	\$	*)	3468
	16	<u>Gu Li</u>	\$	*)	3455
	17	Huang Yunsong	\$	*)	3452
	18	Jiana Weiiie	*	*)	3448

http://www.goratings.org/

Coulom, Rémi. "Whole-history rating: A bayesian rating system for players of time-varying strength." Computers and games. Springer Berlin Heidelberg, 2008. 113-124.

ChatGPT

OpenAI. "Training language models to follow instructions with human feedback.".

Robotics

- Perception of the environment
- Taking actions by control systems
- Learn from interactive

https://github.com/avisingh599/reward-learning-rlhttps://sites.google.com/view/inverse-event

Content

- Reinforcement Learning (Definition and Value-based methods)
 - The model-based methods
 - Markov Decision Process
 - Planning by Dynamic Programming
 - The model-free methods
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - On-policy SARSA and off-policy Q-learning
- Deep Reinforcement Learning

Reinforcement Learning

learning to take actions over an environment so as to maximize some numerical value which represents a long-term objective (goal).

- At each step t, the agent
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}

• t increments at each environment step

 Markov decision processes (MDPs) provide a mathematical framework for modeling decision making.

- MDPs formally describe an environment for RL
 - where the environment is FULLY observable

Markov Property

"The future is independent of the past given the present"

$$H_t = O_1, R_1, A_1, O_2, R_2, A_2, \dots, O_{t-1}, R_{t-1}, A_{t-1}, O_t, R_t$$

- Definition
 - A state S_t is Markov if and only if $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,\ldots,S_t]$
- Properties
 - The state captures all relevant information from the history
 - Why Markov? Allow us to throw away history once state is known!

- A Markov decision process is a tuple $(S, A, \{P_{sa}\}, \gamma, R)$
- S is the set of states
 - E.g., location in a maze, or current screen in an Atari game
- A is the set of actions
 - E.g., move N, E, S, W, or the direction of the joystick and the buttons
- P_{sa} are the state transition probabilities
 - For each state $s \in S$ and action $a \in A$, P_{sa} is a distribution over the next state in S
- $\gamma \in [0,1]$ is the discount factor for the future reward
- $R: S \times A \mapsto \mathbb{R}$ is the reward function
 - Sometimes the reward is only assigned to state

The dynamics of an MDP proceeds as

- Start in a state s₀
 - E.g., location in a maze, or current screen in an Atari game
- The agent chooses some action $a_0 \in A$
 - E.g., move N, E, S, W, or the direction of the joystick and the buttons

- State: agent's location
- Action: N,E,S,W

$$(s_2,a_2)+\cdots$$

The dynamics of an MDP proceeds as

• MDP randomly transits to some successor state $s_1 \sim P_{s_0 a_0}$

• State: agent's location

Action: N,E,S,W

- State transition: move to the next grid according to the action
 - No move if the action is to the wall

The dynamics of an MDP proceeds as

- Start in a state s₀
 - E.g., location in a maze, or current screen in an Atari game
- The agent chooses some action $a_0 \in A$
 - E.g., move N, E, S, W, or the direction of the joystick and the buttons
- The agent gets the reward $R(s_0, a_0)$
- MDP randomly transits to some successor state $s_1 \sim P_{s_0 a_0}$
- This proceeds iteratively

$$s_0 \xrightarrow[R(s_0,a_0)]{a_0} s_1 \xrightarrow[R(s_1,a_1)]{a_1} s_2 \xrightarrow[R(s_2,a_2)]{a_2} s_3 \cdots$$

- Until a terminal state s_T or proceeds with no end
- The total payoff of the agent is $R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$

Maze Example

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

MDP Goal and How to Get Policy

The goal is to choose actions over time to maximize the expected cumulated reward

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$$

- $\gamma \in [0,1]$ is the discount factor for the future reward, which makes the agent prefer immediate reward to future reward (care less about the rewards of states that are further in future)
 - In finance case, today's \$1 is more valuable than \$1 in tomorrow
- Given a particular policy $\pi(s): S \mapsto A$
 - i.e. take the action $a=\pi(s)$ at state s
- Define the value function for π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots + |s_0| = s, \pi]$$

ullet i.e. expected cumulated reward given the start state and taking actions according to π

Maze Example

- State: agent's location
- Action: N,E,S,W
- State transition: move to the next grid according to the action
- Reward: -1 per time step

- Given a policy as shown above
 - Arrows represent policy $\pi(s)$ for each state s

Maze Example

• State: agent's location

Action: N,E,S,W

- State transition: move to the next grid according to the action
- Reward: -1 per time step

• Numbers represent value $v_{\pi}(s)$ of each state s expected cumulated reward $V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s(\pi)]$

Content

- Reinforcement Learning (Definition and Value-based methods)
 - The model-based methods
 - Markov Decision Process
 - Planning by Dynamic Programming: Value Iteration and Policy Iteration
 - The model-free methods
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - On-policy SARSA and off-policy Q-learning
- Deep Reinforcement Learning

Value Function

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). *Dynamic programming and optimal control* (Vol. 1, No. 2). Belmont, MA: Athena scientific.

Optimal Value Function

 The optimal value function for each state s is best possible sum of discounted rewards that can be attained by any policy

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

The Bellman's optimality equation for optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

The optimal policy

$$\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

For every state s and every policy

$$V^*(s) = V^{\pi^*}(s) \ge V^{\pi}(s)$$

Dynamic Programming

Note that the value function and policy are correlated

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s')V^{\pi}(s')$$
$$\pi(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V^{\pi}(s')$$

- It is feasible to perform iterative update towards the optimal value function and optimal policy – dynamic programming
 - Value iteration
 - Policy iteration

Value Iteration – Bellman Optimality Function

For an MDP with finite state and action spaces

$$|S| < \infty, |A| < \infty$$

Value iteration is performed as

bellmen optimal function

1. For each state s, initialize V(s) = 0.

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V^*(s')$$

Repeat until convergence {

For each state, update V by bellmen optimal function

$$V(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$$

Note that there is no explicit policy in above calculation

Value Iteration Example: Shortest Path

Value Iteration Example: Shortest Path

Value Iteration Example: Shortest Path

Policy Iteration

- For an MDP with finite state and action spaces
- 1. Evaluate V by current policy

$$|S| < \infty, |A| < \infty$$

Policy iteration is performed as

 $V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$
 belimen expectation

1. Initialize π randomly

- function: two steps
- 2. Get the best policy based on current V

- 2. Repeat until convergence { $V:=V^{\pi}$
 - Evaluate value function by bellman expectation equation
 - b) For each state, update

$$\pi(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

The step of value function update could be time-consuming

Policy Iteration

- Policy evaluation
 - Estimate V^{π}
 - Iterative policy evaluation
- Policy improvement
 - Generate $\pi' \geq \pi$
 - Greedy policy improvement

Evaluating a Random Policy in the Small Gridworld

$$r = -1$$
 on all transitions

- Undiscounted episodic MDP ($\gamma=1$)
- Nonterminal states 1,...,14
- Two terminal states (shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows a uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Evaluating a Random Policy in the Small Gridworld

 V_k for the random policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

K=2

Greedy policy w.r.t. V_k

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$egin{aligned} V^\pi(s) &= R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^\pi(s') \ \pi(s) &= rg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^\pi(s') \end{aligned}$$

Random policy

- Initialize π randomly
- Repeat until convergence { $V:=V^{\pi}$
 - Evaluate value function by a) bellman expectation equation
 - b) For each state, update

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

31

Evaluating a Random Policy in the Small Gridworld

Value Iteration vs. Policy Iteration

Remarks:

- 1. Value iteration is a greedy update strategy
- 2. In policy iteration, the value function update by Bellman equation is costly
- 3. For small-space MDPs, policy iteration is often very fast and converges quickly
- 4. For large-space MDPs, value iteration is more practical (efficient)

Content

- Reinforcement Learning (Definition and Value-based methods)
 - The model-based methods
 - Markov Decision Process
 - Planning by Dynamic Programming
 - The model-free methods
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - On-policy SARSA and off-policy Q-learning
- Deep Reinforcement Learning

Value Function

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). *Dynamic programming and optimal control* (Vol. 1, No. 2). Belmont, MA: Athena scientific.

Learning an MDP Model

- So far we have been focused on
 - Calculating the optimal value function
 - Learning the optimal policy

given a known MDP model

- i.e. the state transition $P_{sa}(s')$ and reward function R(s) are explicitly given
- In realistic problems, often the state transition and reward function are not explicitly given
 - For example, we have only observed some episodes

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{a_0^{(2)}} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{a_1^{(2)}} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{a_2^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

Learning an MDP Model

- Learn an MDP model from "experience"
 - Learning state transition probabilities $P_{sa}(s')$

$$P_{sa}(s') = \frac{\# ext{times we took action } a ext{ in state } s ext{ and got to state } s'}{\# ext{times we took action } a ext{ in state } s}$$

• Learning reward R(s), i.e. the expected immediate reward

$$R(s) = \operatorname{average}\left\{R(s)^{(i)}\right\}$$

- Algorithm
 - 1. Initialize π randomly.
 - Repeat until convergence {
 - a) Execute π in the MDP for some number of trials
 - b) Using the accumulated experience in the MDP, update our estimates for P_{sa} and R
 - c) Apply value iteration with the estimated P_{sa} and R to get the new estimated value function V
 - d) Update π to be the greedy policy w.r.t. V

Model-free Reinforcement Learning

- In realistic problems, often the state transition and reward function are not explicitly given
 - For example, we have only observed some episodes

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(2)}]{} s_1^{(1)} \xrightarrow[R(s_1)^{(2)}]{} s_2^{(1)} \xrightarrow[R(s_2)^{(2)}]{} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2: $s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{} s_2^{(2)} \xrightarrow[R(s_1)^{(2)}]{} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{} s_3^{(2)} \cdots s_T^{(2)}$

- Model-free RL is to directly learning value & policy from experience without building a model
- Key steps: (1) estimate value function; (2) optimize policy

Value Function Estimation

 In model-based RL (MDP), the value function is calculated by dynamic programming

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

= $R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$

- Now in model-free RL
 - We cannot directly know P_{sq} and R
 - But we have a list of experiences to estimate the values

Episode 1:
$$s_0^{(1)} \xrightarrow[R(s_0)^{(1)}]{a_0^{(1)}} s_1^{(1)} \xrightarrow[R(s_1)^{(1)}]{a_1^{(1)}} s_2^{(1)} \xrightarrow[R(s_2)^{(1)}]{a_2^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode 2:
$$s_0^{(2)} \xrightarrow[R(s_0)^{(2)}]{} s_1^{(2)} \xrightarrow[R(s_1)^{(2)}]{} s_2^{(2)} \xrightarrow[R(s_2)^{(2)}]{} s_3^{(2)} \cdots s_T^{(2)}$$

Monte-Carlo Methods

- Monte-Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- For example, to calculate the circle's surface

 $Circle\ Surface = Square\ Surface \times \frac{\#points\ in\ circle}{\#points\ in\ total}$

Monte-Carlo Methods

Go Game: to estimate the winning rate given the current state

Win Rate(s) = $\frac{\text{# win simulation cases started from s}}{\text{# simulation cases started from s in total}}$

Monte-Carlo Value Estimation

Goal: learn V^{π} from episodes of experience under policy π

$$s_0^{(i)} \xrightarrow[R_1^{(i)}]{a_0^{(i)}} s_1^{(i)} \xrightarrow[R_2^{(i)}]{a_1^{(i)}} s_2^{(i)} \xrightarrow[R_3^{(i)}]{a_2^{(i)}} s_3^{(i)} \cdots s_T^{(i)} \sim \pi$$

Recall that the return is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots \gamma^{T-1} R_T$$

Recall that the value function is the expected return

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots + |s_0| = s, \pi]$$

= \mathbb{E}[G_t | s_t = s, \pi]

$$\simeq \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$$

- $\simeq \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$ Sample N episodes from state s using policy π
 - · Calculate the average of cumulated reward
- Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Value Estimation

- Implementation
 - Sample episodes policy π

$$s_0^{(i)} \xrightarrow[R_1^{(i)}]{a_0^{(i)}} s_1^{(i)} \xrightarrow[R_2^{(i)}]{a_1^{(i)}} s_2^{(i)} \xrightarrow[R_3^{(i)}]{a_2^{(i)}} s_3^{(i)} \cdots s_T^{(i)} \sim \pi$$

- Every time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return V(s) = S(s)/N(s)
 - By law of large numbers $V(s) \to V^{\pi}(s)$ as $N(s) \to \infty$

Monte-Carlo Value Estimation

Idea:
$$V(S_t) \simeq rac{1}{N} \sum_{i=1}^N G_t^{(i)}$$

Implementation: $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping (discussed later)
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Bellman Equation for Value Function

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \underbrace{\gamma R(s_1) + \gamma^2 R(s_2) + \cdots}_{\gamma V^{\pi}(s_1)} | s_0 = s, \pi]$$

$$= R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s') \qquad \text{Bellman Equation}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \uparrow \qquad \downarrow \qquad \downarrow$$
Immediate State Value of transition the next state
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow$$
Time decay

Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). *Dynamic programming and optimal control* (Vol. 1, No. 2). Belmont, MA: Athena scientific.

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping

Sutton, Richard S. "Learning to predict by the methods of temporal differences." *Machine learning* 3.1 (1988): 9-44.

Monte Carlo vs. Temporal Difference

- The same goal: learn V^{π} from episodes of experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest temporal-difference learning algorithm: TD(1)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$
TD undates a gue

TD updates a guess towards a guess

- TD target: $R_{t+1} + \gamma V(S_{t+1})$
- TD error: $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ gues

Advantages and Disadvantages of MC vs. TD

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known

- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Advantages and Disadvantages of MC vs. TD (2)

- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD converges to $V^{\pi}(S_t)$
 - (but not always with function approximation)
 - More sensitive to initial value then MC

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})]$$

Content

- Reinforcement Learning
 - The model-based methods
 - Markov Decision Process
 - Planning by Dynamic Programming
 - The model-free methods
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control (Evaluation and Improvement)
 - On-policy SARSA and off-policy Q-learning

State Value and Action Value

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots \gamma^{T-1} R_T$$

- State value
 - The state-value function $V^{\pi}(s)$ of an MDP is the expected return starting from state s and then following policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

- State-Action value
 - The action-value function $Q^{\pi}(s,a)$ of an MDP is the expected return starting from state s, taking action a, and then following policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

State Value and Action Value

56

Bellman Equation

Bellman expectation equation

$$Q_{\pi}(s, a) = \mathcal{R}^{a}_{s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \sum_{a' \in \mathcal{A}} \pi\left(a' \mid s'\right) Q_{\pi}\left(s', a'
ight)$$

Bellman optimality equation

$$Q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} Q_*\left(s',a'
ight)$$

Optimal Value Function

- The optimal value function for each state s is best possible sum of discounted rewards that can be attained by any policy $V^*(s) = \max_{x} V^{\pi}(s)$
- The Bellman's equation for optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V^*(s')$$

The optimal policy

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

For every state s and every policy

$$V^*(s) = V^{\pi^*}(s) \ge V^{\pi}(s)$$

Generalized Policy Iteration with Action-Value Function

- One maintains both an approximate policy and an approximate value function.
- Value function updated for the current policy, while the policy is improved with respect to the current value function
- however assume policy evaluation operates on an infinite number of episodes

- Policy evaluation: Monte-Carlo/TD policy evaluation, $Q = Q^{\pi}$
- Policy improvement: $argmax/\varepsilon$ -greedy policy improvement

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon & \text{if } a^* = \arg\max_{a \in A} Q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

On- and Off-Policy Learning

Two categories of model-free RL

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from another policy μ

SARSA (On-Policy TD Control)

For each State-Action-Reward-State-Action by the current policy

Bellman expectation equation

$$Q_{\pi}(s, a) = \mathcal{R}^{a}_{s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \sum_{a' \in \mathcal{A}} \pi\left(a' \mid s'\right) Q_{\pi}\left(s', a'
ight)$$

- Simplest temporal-difference learning algorithm: TD(1)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

Updating action-value functions with Sarsa

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma Q(s',a') - Q(s,a))$$

• This is on-policy, as it learns about the value function of π from experience sampled from π

On-Policy Control with SARSA

Every time-step and update for a single state:

- Policy evaluation: Sarsa $Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma Q(s',a') Q(s,a))$
- Policy improvement: ε -greedy policy improvement

SARSA Algorithm

Sarsa: An on-policy TD control algorithm

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \epsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \epsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

NOTE: on-policy TD control sample actions by the current policy, i.e.,
 the two 'A's in SARSA are both chosen by the current policy

Q-Learning

- Q-learning is trying to estimate optimal state-action value function, based on the optimal Bellman equation
 - Bellman optimality equation

$$Q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} Q_*\left(s',a'
ight)$$

Q-learning update rule is:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

 Q-learning is an off-policy control, the behavior policy and target policy are different

Q-Learning

- Q-learning is trying to estimate optimal state-action value function, based on the Bellman optimality equation
 - Bellman optimality equation

$$Q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} Q_*\left(s',a'
ight)$$

• Q-learning update rule is:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Off-Policy Control with Q-Learning

• The target policy π is greedy w.r.t. Q(s,a)

$$\pi(s_{t+1}) = \arg\max_{a'} Q(s_{t+1}, a')$$

- The behavior policy μ is e.g. ε -greedy policy w.r.t. Q(s,a)
- Q-learning is an off-policy control
 - Learning from SARS generated by another policy μ
 - The first action a and the corresponding reward r are from μ
 - The next action a' is picked by the target policy
- Why no importance sampling?
 - Bellman optimality function instead of expectation function
 - Bellman optimality equation

$$Q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} Q_*\left(s',a'
ight)$$

Off-Policy Control with Q-Learning

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
until S is terminal
```

Relationship Between DP and TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation Equation for $V^{\pi}(s)$	$V^{\pi}(s) \leftarrow s$ $V^{\pi}(s') \leftarrow s'$	s, a r s' s' s', a'
	Iterative Policy Evaluation	TD Learning
Bellman Expectation Equation for $Q^{\pi}(s,a)$	$Q^{\pi}(s,a) \longleftrightarrow s,a$ r S' $Q^{\pi}(s',a') \longleftrightarrow s',a$ Q -Policy Iteration	s, a r s' s', a' SARSA
Bellman Optimality Equation for $Q^*(s,a)$	$Q^*(s,a) \leftrightarrow s,a$ p $Q^*(s',a') \leftrightarrow s',a'$ Q -Value Iteration	S, a r s' s' S' Q-Learning

Relationship Between DP and TD

Full Backup (DP)	Sample Backup (TD)
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}[r + \gamma V(s') s]$	$V(s) \xleftarrow{lpha} r + \gamma V(s')$
Q-Policy Iteration	SARSA
$Q(s, a) \leftarrow \mathbb{E}[r + \gamma Q(s', a') s, a]$	$Q(s,a) \xleftarrow{lpha} r + \gamma Q(s',a')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\Big[r + \gamma \max_{a'} Q(s', a') s, a\Big]$	$Q(s,a) \xleftarrow{\alpha} r + \gamma \max_{a'} Q(s',a')$
	where $x \overset{lpha}{\leftarrow} y \equiv x \leftarrow x + lpha(y-x)$

68

Content

- Reinforcement Learning
 - The model-based methods
 - Markov Decision Process
 - Planning by Dynamic Programming
 - The model-free methods
 - Model-free Prediction
 - Monte-Carlo and Temporal Difference
 - Model-free Control
 - SARSA and Q-learning
- Deep Reinforcement Learning

Deep Q-learning

- However, in many cases, it is not practical as
 - Action x State space is very large
 - lacking generalisation
- Q function is commonly approximated by a function, either linear or non-linear

 $Q(s, a; q) \gg Q^*(s, a)$ where q is model parameter

• It can be trained by minimising a sequence of loss function $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$

$$L_{i}(\theta_{i}) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\underbrace{(r + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) \rightarrow Q(s,a;\theta_{i})}^{2} \right]^{2} \text{ where } U(D) \text{ is sample distribution from a pool of stored samples and } q_{i}^{-} \text{ only updates every C steps}$$

Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay

end for

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t=1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
          Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
        Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
    end for
```

Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

DQN results on atari games

