1. Definitii

gramatica gramatica independenta de context limbaj independent de context

2. Forme normale

definitie

exemple

aducerea la forma normala Chomsky

- 3. Lema de pompare
- 4. Operatii de inchidere

 \mathcal{L}_2 este inchisa la reuniune, concatenare, operatia *, omomorfism

 \mathcal{L}_2 nu este inchisa la intersectie si complementara

- $\{0^n1^n \mid n \ge 0\}$
- memoria <u>finita</u> a unui AFD nu poate memora numere n foarte mari.
- gramaticile independente de context (GIC)
- structura recursiva
- Domenii de utilizare a GIC:
 - studiul limbilor naturale,
- Domenii de aplicabilitate
 - specificarea si compilarea limbajelor de programare
 - sintaxa unui limbaj de programnare
 - parsere

Reamintim ca:

- Limbajele generate / descrise de G.I.C. se numesc L.I.C.;
- 2. Clasa $\mathcal{L}_2 \supset \mathcal{L}_3$;
- 3. Un mecanism, care s-a dovedit a fi echivalent cu cel al G.I.C., este constituit de APD.

Definitia 1

Gramatica = (V, Σ, P, S) unde:

- V = multime finita, nevida, ale carei elemente se numesc <u>variabile</u> sau <u>neterminale</u>;
- Σ = multime finita, nevida, numita <u>alfabet de</u> <u>intrare</u>, ale carei elemente se numesc <u>terminale</u>; $V \cap \Sigma = \emptyset$;
- P = multime finita, nevida, ale carei elemente se numesc <u>productii</u> sau <u>reguli de substitutie</u>;
- S∈V se numeste <u>variabila</u> (<u>simbolul</u>) <u>de start.</u>

Exemplu

$$G_1=(\{A,B\}, \{0,1,\#\}, \{A \rightarrow 0A1 \mid B, B \rightarrow \#\}, A)$$

Reprezentarea derivarilor:

linear:

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 0^{3}B1^{3} \Rightarrow 0^{3}\#1^{3}$

sintetic:

$$A_G \Rightarrow * 0^3 \# 1^3$$

arbore de derivare:

Definitia 2

Gramatica independenta de context = (V, Σ, P, S) a.i. $\forall \alpha \rightarrow \beta \in P$: $|\alpha|=1$ si $\alpha \in V$.

Definitia 3

Limbaj independent de context = L.I.C. =
$$L(G)=\{ w \in \Sigma^* \mid \exists S_G \Rightarrow^* w \text{ si } G=G.I.C. \}$$

Exemplu

$$\begin{split} G_2 &= (\{S\}, \{a,b\}, \{S \to aSb \mid \lambda\}, \, S) \Rightarrow L_2 = \{a^nb^n \mid n \geq 0\}. \\ G_3 &= (\{S\}, \, \{a,b\}, \, \{S \to aSb \mid SS \mid \lambda\}, \, S) \Rightarrow \\ L_3 &= \{\lambda, \, ab, \, a^nb^n, \, a^nbab^n, \, a^n(ba)^kb^n, \, \dots \, \}. \end{split}$$

1. Definitii

gramatica gramatica independenta de context limbaj independent de context

2. Forme normale

definitie exemple

aducerea la forma normala Chomsky

- 3. Lema de pompare
- 4. Operatii de inchidere

 \mathcal{L}_2 este inchisa la reuniune, concatenare, operatia *, omomorfism

L2 nu este inchisa la intersectie si complementara

Definitia 4

```
G ∈ G.I.C. se afla in forma normala GREIBACH (FNG) ⇔
```

$$\forall p \in P, p : A \rightarrow aB, unde:$$

$$A \in V$$
,

$$a \in \Sigma$$

$$B \in (V \cup \Sigma)^*$$
.

Teorema 1

 \forall L=L(G) \in L.I.C., $\lambda \notin$ L: \exists G' in FNG a.i. L=L(G').

Definitia 5

```
G ∈ G.I.C. se afla in forma normala CHOMSKY (FNC) ⇔
```

$$\forall$$
 p \in P, p: A \rightarrow BC sau A \rightarrow a, unde: A,B,C \in V, B \neq S \neq C, a \in Σ ,

In plus, $S \rightarrow \lambda \in P$.

Teorema 2

 $L=L(G) \in L.I.C.: \exists G' \text{ in FNC a.i. } L=L(G').$

- 1. Definitii
 - gramatica gramatica independenta de context limbaj independent de context
- 2. Forme normale

definitie

exemple

aducerea la forma normala Chomsky

- 3. Lema de pompare
- 4. Operatii de inchidere

 \mathcal{L}_2 este inchisa la reuniune, concatenare, operatia *, omomorfism

 \mathcal{L}_2 nu este inchisa la intersectie si complementara

Lema de pompare pentru L.I.C.

```
Fie A \subseteq \Sigma^*, A \in L.I.C. =>

\exists p \in N (constanta=lungimea de pompare) a.i.

\forall s \in A, |s| \ge p \rightarrow \exists u,v,x,y,z \in \Sigma^* cu proprietatile:
```

- (i) s = uvxyz,
- (ii) $\forall i \geq o$: $uv^i x y^i z \in A$,
- (iii) |vy| > 0,
- (iv) $|vxy| \leq p$.

Definitii 6

$$\begin{split} \forall L_1, L_2 &\subseteq \Sigma^* : \\ L_1 \cup L_2 &= \{ w \in \Sigma^* | \ w \in L_1 \ \text{sau} \ w \in L_2 \}, \\ L_1 \cap L_2 &= \{ w \in \Sigma^* | \ w \in L_1 \ \text{si} \ w \in L_2 \}, \\ L_1 \setminus L_2 &= \{ w \in \Sigma^* | \ w \in L_1 \ \text{si} \ w \not\in L_2 \}, \\ L_1 \circ L_2 &= \{ w_1 w_2 \in \Sigma^* | \ w \in L_1 \ \text{si} \ w \in L_2 \}, \\ mi(L) &= \{ mi(w) | \ w \in L \}. \end{split}$$

$$\overline{L} = \{ w \in \Sigma^* \mid w \notin L \} = \Sigma^* \setminus L,$$

$$L^n : \begin{cases} L^0 = \lambda \quad si \\ L^{n+1} = L \cdot L^n = L \cdot L^n, \forall n \in \mathbb{N}, \\ L \cdot \emptyset = \emptyset \cdot L = \emptyset, \\ L \cdot \{\lambda\} = \{\lambda\} \cdot L = L, \end{cases}$$

$$L^* = \sum_{i=0}^{\infty} L^i, \quad L^+ = \sum_{i=1}^{\infty} L^i.$$

Lema 3

L.I.C. este inchisa la reuniune, concatenare si operatia *.

Lema 4

L.I.C. este inchisa la operatia mirror si la omomorfism.

Lema 5

L.I.C. NU este inchisa la intersectie si complementara.

1. Definitii

gramatica gramatica independenta de context limbaj indpendent de context

2. Forme normale

definitie

exemple

aducerea la forma normala Chomsky

- 3. Lema de pompare
- 4. Operatii de inchidere

 \mathcal{L}_2 este inchisa la reuniune, concatenare, operatia *, omomorfism

 \mathcal{L}_2 nu este inchisa la intersectie si complementara

APD reprezinta un nou model de calculabilitate Stiva

Observatii

 $AFD \Leftrightarrow AFN$

APDN ≥ APD

 $\{0^{n}1^{n} | n \ge 0\}$: APDN, APD;

 $\{ww^r \mid w \in \{0,1\}^*\}: APDN.$

Deosebiri intre APD si AFD:

- (i) Doua alfabete, Σ si Γ
- (ii) dom(δ) = Q x ($\Sigma \cup \{\lambda\}$) x ($\Gamma \cup \{\lambda\}$)
- (iii) $codom(\delta) = \mathcal{P}(Q \times (\Gamma \cup \{\lambda\})).$

Definitia 7

Automat pushdown=APD=(Q, Σ , Γ , δ , q₀, F), unde:

Q = multime finita, nevida, ale carei elemente se numesc stari;

 Σ = multime finita, nevida, numita <u>alfabet de intrare</u>, ale carei elemente se numesc <u>simboluri</u>, $(\Sigma_{\lambda} = \Sigma \cup {\lambda})$;

 Γ = multime finita, nevida, numita <u>alfabetul stivei</u>, $(\Gamma_{\lambda} = \Gamma \cup \{\lambda\})$;

 $\delta: Q \times \Sigma_{\lambda} \times \Gamma_{\lambda} \rightarrow \mathcal{P}(Q \times \Gamma_{\lambda}), \text{ numita functia de tranzitie};$

q₀ ∈Q, numita <u>starea initiala</u>;

F⊆Q numita multimea starilor finale.

Notatie

Observatie

- (i) Metoda standard de testare a vidarii stivei: \$ ∈ Γ;
- (ii) Metoda standard de testare a terminarii secventei de intrare: trecerea intr-o stare finala.

Teorema 3

```
Fie L \subseteq \Sigma^*; \exists G \in G.I.C.: L=L(G) \Leftrightarrow \exists A \in APD: L=L(A).
```

Demonstratie "⇒"

Fie L \in LIC $\Rightarrow \exists$ G=(V, Σ ,P,S) \in GIC ai. L=L(G); putem defini un APD R=(Q, Σ_{λ} , Γ_{λ} , δ , q₀, F) cu ajutorul lui G astfel:

$$Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$$
:

E = multimea starilor auxiliare necesare implementarii depunerii in stiva a secventelor intermediare din derivarea $S \Rightarrow^* w, w \in L$;

 Σ_{λ} , Γ_{λ} depind de limbajul L considerat;

$$q_0 = q_{start};$$
 $F = \{q_{accept}\};$

 $\mathsf{q}_{\mathsf{loop}}$

 λ ,\$ $\rightarrow \lambda$

$$\begin{split} \delta: Q \times \Sigma_{\lambda} \times \Gamma_{\lambda} &\rightarrow P(Q \times \Gamma_{\lambda}) \text{ definita prin:} \\ \delta(q_{start}, \lambda, \lambda) &= \{(q_{loop}, S\$)\} \\ \delta(q_{loop}, \lambda, A) &= \{(q_{loop}, w) \mid \exists A \rightarrow w \in P \} \\ \delta(q_{loop}, a, a) &= \{(q_{loop}, \lambda)\} \\ \delta(q_{loop}, \lambda, \$) &= \{(q_{accept}, \lambda)\} \end{split}$$

 $\lambda, \lambda \rightarrow S$ \$

 $\mathbf{q}_{\text{start}}$

q_{accept}

1. Definitii

gramatica gramatica independenta de context limbaj independent de context

2. Forme normale

definitie

exemple

aducerea la forma normala Chomsky

- 3. Lema de pompare
- 4. Operatii de inchidere

 \mathcal{L}_2 este inchisa la reuniune, concatenare, operatia *, omomorfism

L₂ nu este inchisa la intersectie si complementara