Практика №6 по курсу «Дискретная математика» «Перестановки. Принцип включения исключения»

Группы ФТ-203

Перестановкой элементов конечного множества A называется биекция $f:A\mapsto A$, для которой $f(a_k)=a_{i_k}$. Принято записывать перестановки n-элементного множества как последовательность из n чисел, где i-ое число соответствует новой позиции i-го элемента в исходном порядке. Например, биекции множества $A=\{a,b,c,d\}$ такой, что f(a)=b,f(b)=c,f(c)=a,f(d)=d соответствует перестановка (2,3,1,4).

Можно достаточно естественно ввести операцию композиции двух перестановок как результат последовательного применения пары перестановок σ_1 и σ_2 одного и того же множества. Таким образом $\sigma_1 \circ \sigma_2$ также является перестановкой и $(\sigma_1 \circ \sigma_2)(x) = \sigma_1(\sigma_2(x))$, то есть для $\sigma_1 = (2,1,3,4)$ и $\sigma_2 = (1,2,4,3)$ композиция будет равна $\sigma_1 \circ \sigma_2 = (2,1,4,3)$.

Вопрос 1. Видно, что для пары $\sigma_1 = (2, 1, 3, 4)$ и $\sigma_2 = (1, 2, 4, 3)$ операция композиции (умножения) является коммутативной. Существуют ли примеры некоммутативных перестановок?

Естественным образом можно определить обратную перестановку σ^{-1} такую, что $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = e$, где $e = (1, 2, 3, \dots, n)$ — тождественная перестановка. Так, перестановка $\sigma^{-1} = (3, 1, 2, 4)$ является обратной для $\sigma = (2, 3, 1, 4)$.

Перестановки можно представлять в виде матрицы $n \times n$ с n единицами и $n^2 - n$ нулями, где элементу a_i такому, что $f(a_i) = a_j$ соответсвует единица в i-ой строке и j-ой колонке. Пример матрицы, для перестановки $\sigma = (2, 3, 1, 4)$:

$$\sigma \approx \Sigma = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \sigma^{-1} \approx \Sigma^{T} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Однако чаще пригождается интерпретация перестановок в виде графа, который представляет из себя объединение некотороо числа простых циклов:

Вопрос 2. Сколько существует перестановок n-элементного множества, у которых каждый цикл имеет размер ровно 2?

Для интерпретации через циклы существуют компактная запись для перестановок, которая перечисляет все циклы, где в каждом цикле элементв перечисляются в соответствующем графу порядке. То есть $\sigma = (312)(4)$. Запись также бывает удобно сократить, опустив в ней единичные циклы.

Транспозицией называется перестановка, которая меняет местами пару элементов и оставляет на месте все остальные. Сокращённая циклическая запись такой перестановки состоит из одного цикла: $\sigma' = (ij)$.

Вопрос 3. Сколько транспозиций всегда достаточно, чтобы из них можно было бы получить любую перестановки длины n?

Вопрос 4. Определите минимальную степень k перестановки $\sigma = (8, 5, 2, 1, 3, 9, 4, 7, 6)$ такую, что $\sigma^k = e$.

Числом Стирлинга первого рода (беззнаковым) называется число перестановок n-элементного множества с ровно k циклами и обозначается как $\binom{n}{k}$. На лекции было выведено соотношение $\binom{n}{k} = \binom{n-1}{k-1} + (n-1)\binom{n-1}{k}$.

Вопрос 5. Чему равна сумма $\sum_{k=1}^{n} {n \brack k}$?

Вопрос 6. Чему равно значение $\binom{n}{n-1}$?

Принципе включения исключения позволяет вычислить размер объединения пересекающихся множеств:

$$|\bigcup_{i=1}^{n} A_i| = \sum_{X \subseteq [1..n], X \neq \emptyset} (-1)^{|X|-1} |\bigcap_{i \in X} A_i|$$

Воспользуемся ПВИ чтобы решить следующие задачи:

Задание 7. Найдите число натуральных чисел не превосходящих 1000 и не делящихся ни на одно из чисел: 3, 5, 7.

Задание 8. Сколько существует простых чисел, не превосходящих 250?

Задание 9. В неравном бою из 100 пиратов 90 потеряли руку, 80 — ногу, 70 — глаз. Определить наименьшее количество пиратов, потерявших одновременно руку, ногу и глаз.

Задание 10. Сколько существует таких паролей из 8 символов, содержащих только буквы A, B, C, что каждая буква встречается хотя бы один раз?

Задание 11. Определим функцию $\phi(n) = |\{k \mid 1 \le k \le n \land GCD(n, k) = 1\}|$ (функция Эйлера). Выведите с помощью принципа включения-исключения формулу для вычисления $\phi(n)$ при $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$:

$$\phi(n) = n \prod_{i=1}^{r} (1 - \frac{1}{p_i})$$

Задания для самостоятельного решения

Задание 1. Какое минимальное число транспозиций необходимо, чтобы отсортировать перестановку из n элементов σ , состоящую из k циклов?

Задание 2. Сколько существует перестановок n-элементного множества, у которых каждый цикл имеет размер ровно 3?

Задание 3. Назовем натуральное число примитивным, если оно не является степенью меньшего натурального числа. Сколько чисел из диапазона [1...10000] примитивно?

Задание 4. Сколько существует решений уравнения $x_1 + x_2 + x_3 = 50$ таких, что $x_i \in \mathbb{Z}$ и $0 \le x_i \le 19$?