Percobaan 7

Kapasitansi Pada Plat Kapasitor sebagai fungsi Dielektrik

1. Tujuan:

- Memahami metode untuk menentukan kapasitas kapasitor yang tidak diketahui melalui perbandingan pembagian tegangan kapasitif bantuan.
- 2. Menentukan nilai kapasitansi plat kapasitor dengan perubahan luas plat.

2. Teori

Kapasitor plat pararel mempunyai dua plat konduktor yang dipisahkan oleh jarak d , mempunyai luasan A dan dipisahkan dielektrik tertentu ϵ seperti pada Gambar 1.

Gambar 1. Plat kapasitor

Bila media mempunyai permittivitas ε, maka dapat diperoleh harga kapasitansinya. Bila tegangan V digunakan diantara kedua plat maka diperoleh

$$V = E d \tag{1}$$

dengan V adalah tegangan (Volt), E adalah medan listrik (N/C) dan d adalah jarak. Untuk muatan sebuah plat berlaku hukum gauss

$$Q = DA \tag{2}$$

dengan D adalah kerapatan fluks diantara plat. Sedangkan $D = \varepsilon E$ sehingga $Q = \varepsilon E A$. Untuk kapasitansi plat kapasitor adalah

$$C = \frac{Q}{V} = \frac{\varepsilon E A}{E d} = \frac{\varepsilon A}{d}$$
 (3)

dimana $\varepsilon = \varepsilon_0 \, \varepsilon_r$ permittivitas media diantara plat kapasitor Fm⁻¹

A adalah luasan plat (m²)

d adalah jarak plat (meter)

Dengan permittivitas $\varepsilon = \varepsilon_0.\varepsilon_r$ sehingga besar kapasitansi plat kapasitor adalah

$$C = \varepsilon_0 \,\varepsilon_r \frac{A}{d} \tag{3}$$

dengan $\varepsilon_0 = 8.85 \ 10^{-12} \ As/Vm$

 ε_r = permitivitas relative media antara plat.

3. Peralatan

- 1 Electrometer Amplifier
- 1 Batang ground

- 1 Capasitor 1 nF (C_2)
- 1 Pasang plat kapasitor
- 1 lembar mika
- 1 Power supply: 450 V

Electrometer supply: 12 V (AC)

Tegangan pengisian: 3 V (DC)

1 Voltmeter 3 V (DC)

Kabel Secukupnya

4. Prosedur Percobaan:

Setup Percobaan:

- Buat Rangkaian seperti Gambar 2. Sedangkan analogi rangkaian percobaan seperti Gambar 3.
- 2. Hubungkan power supply 12 V AC pada Elektrometer Amplifier.
- 3. Set tegangan 3 V DC dengan Voltmeter sebagai input rangkaian Vab seperti Gambar 3.

Gambar 2. Rangkaian Percobaan

Gambar 2. Analogi Rangkaian Percobaan

Prosedur Percobaan:

- 1. Pasang kapasitor $C_2 = 1n F$ pada soket di titik d-c.
- 2. Ambil plat besar dan pasang plat kapasitor pada titik c-e seperti Gambar 3.
- 3. Pasang plat kapasitor dengan diantara plat menggunakan dielektrik polisterin
- 4. Pasang C₂ dititik d-c dan plat kapasitor pada titik c-e seperti Gambar 3.
- 5. Hubungkan supply Vab=3 VDC pada soket pada titik a-b.
- 6. Dalam durasi waktu 2 menit catat tegangan V1 pada Tabel 1.
- Ulangi prosedur 1 hingga 5 dengan pencatatan tegangan V1 dalam durasi waktu 2 menit dengan disampling tiap 10 detik. Catat tegangan V1 pada Tabel
 1.
- 8. Ulangi prosedur 1 hingga 5 dengan mengubah dielektrik kaca. Tuliskan hasil tegangan V1 pada Tabel 1.

Tabel 1. Hasil percobaan kapasitansi kapasitor fungsi dielektrik

Dielektrik	V ₁ (t=2 menit)	V ₁ rata-rata	Cplat
Polisterin			
Kaca			

TUGAS

- Hitung kapasitansi plat kapasitor dengan perubahan dielektik polisterin dan kaca. Tuliskan hasil perhitungan kapasitansi plat kapasitor pada Tabel 1.
- 2. Bandingkan hasil no 1 dengan perhitungan plat kapasitor secara teori.