1. [35pts] Support Vector Machine

(1) Recall that the soft margin support vector machine solves the problem:

$$min \quad \frac{1}{2}w^{\top}w + C\sum_{i} \varepsilon_{i}$$

s.t. $y_{i}(w^{\top}x_{i} + b) \ge 1 - \varepsilon_{i}, \quad \varepsilon_{i} \ge 0.$

- a) [10pts] Derive its dual problem using the method of Lagrange multipliers.
- b) [10pts] Further simplify the dual problem when at its saddle point to prove

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \, \alpha_{j} y_{i} y_{j} x_{i}^{\intercal} x_{j}$$

$$\text{s.t. } C \, \geq \alpha_i \geq 0, \quad \sum_i \alpha_i \, y_i = 0,$$

is equivalent to the primal problem.

a) We can write down its dual problem by applying the method of Lagrange multipliers easily

$$L(w,b,\epsilon,\alpha,\mu) = \frac{1}{2}w^{\mathsf{T}}w + C\sum_{i}\epsilon_{i} - \sum_{i}\alpha_{i}\left[y_{i}(w^{\mathsf{T}}x_{i} + b) - 1 + \epsilon_{i}\right] - \sum_{i}\mu_{i}\epsilon_{i} \tag{1}$$

Then from Lagrange duality, we know dual problem is as follows

$$\max_{\alpha,\mu} \min_{w,b,\epsilon} L(w,b,\epsilon,\alpha,\mu) \tag{2}$$

$$s.t. \ \alpha_i \ge 0, \ \mu_i \ge 0 \tag{3}$$

b) In order to solve the dual problem, we need to find the minimum of $L(w,b,\epsilon,\alpha,\mu)$ to w, b, ϵ first, and then find the maximum to α .

Find the partial derivatives of L with respect to w, b and ϵ_i respectively, and set them equal to zero

$$\frac{\partial L}{\partial w} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0$$

$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_{i} y_{i} = 0$$

$$\frac{\partial L}{\partial \epsilon_{i}} = C - \alpha_{i} - \mu_{i} = 0$$

Obtain that

$$w = \sum_{i} \alpha_i y_i x_i \tag{4}$$

$$\sum_{i} \alpha_i y_i = 0 \tag{5}$$

$$C - \alpha_i - \mu_i = 0 \tag{6}$$

Substitute (4) (5) (6) them into (2), obtain

$$\min_{w,b,\epsilon} L(w,b,\epsilon,\alpha,\mu) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j + \sum_{i} \alpha_i$$
 (7)

The dual problem can be obtained by finding the maximum value of α for $\min_{w,b,\epsilon} L(w,b,\epsilon,\alpha,\mu)$,

$$\max \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j} \tag{8}$$

$$s.t.\sum_{i}\alpha_{i}y_{i}=0$$
(9)

$$C - \alpha_i - \mu_i = 0 \tag{10}$$

$$\alpha_i \ge 0, \mu_i \ge 0 \tag{11}$$

From (11) (10), we know that $0 \le \alpha_i = C - \mu_i \le C$. Finally,

$$\max \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}$$
$$s.t. \sum_{i} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C_{i}$$

Is proved to be equivalent to the primal problem.

- (2) [15pts] Given the XOR sample points as below, we train an SVM with a quadratic kernel,
- i.e. our kernel function is a polynomial kernel of degree 2: $\kappa(x_i, x_j) = (x_i^T x_j)^d$, d = 2.
- (a) [5pts] what is the corresponding mapping function $\phi(x)$?

- (b) [5pts] Use the following code to generate XOR data, and according to the answer of (a), map the data with $\phi(x)$ to see if it can be linearly separable.
- (c) [5pts] Could we get a reasonable model with hard margin? If yes, draw the decision boundary in the figure (original feature space), otherwise state reasons.

(a) Polynomial kernel is $\kappa(x_i, x_j) = (\gamma \cdot x_i^T x_j + r)^d$, and here, we specify that d = 2. Now we need to find the corresponding feature space \mathcal{H} and mapping $\phi(x): R^2 \to \mathcal{H}$.

Let
$$x_i = \left(x_i^{(1)}, x_i^{(2)}, \cdots, x_i^{(n)}\right)^{\mathsf{T}} \ x_j = \left(x_i^{(1)}, x_i^{(2)}, \cdots, x_i^{(n)}\right)^{\mathsf{T}}$$
, then

$$\begin{split} & \left(\gamma \cdot x_{i}^{\top} x_{j} + r \right)^{2} = \gamma^{2} \left(x_{i}^{\top} x_{j} \right)^{2} + 2r \gamma x_{i}^{\top} x_{j} + r^{2} \\ & = \gamma^{2} \sum_{m} \sum_{n} x_{i}^{(m)} x_{j}^{(n)} x_{i}^{(m)} x_{j}^{(n)} + 2r \gamma \sum_{k} x_{i}^{(k)} x_{j}^{(k)} + r^{2} \\ & = \left(\gamma x_{i}^{(1)^{2}}, \gamma x_{i}^{(1)} x_{i}^{(2)}, \gamma x_{i}^{(1)} x_{i}^{(3)} \cdots, x_{i}^{(n)^{2}}, \sqrt{2r \gamma} x_{i}^{(1)}, \sqrt{2r \gamma} x_{i}^{(2)}, \cdots, \sqrt{2r \gamma} x_{i}^{(n)}, r \right)^{\top} \\ & \cdot \left(\gamma x_{j}^{(1)^{2}}, \gamma x_{j}^{(1)} x_{j}^{(2)}, \gamma x_{j}^{(1)} x_{j}^{(3)} \cdots, x_{j}^{(n)^{2}}, \sqrt{2r \gamma} x_{j}^{(1)}, \sqrt{2r \gamma} x_{j}^{(2)}, \cdots, \sqrt{2r \gamma} x_{j}^{(n)}, r \right) \\ & = \phi(x_{i}) \cdot \phi(x_{j}) \end{split}$$

Therefore,

$$\phi(x) = (\gamma x^{(1)^2}, \gamma x^{(1)} x^{(2)}, \gamma x^{(1)} x^{(3)} \cdots, x^{(n)^2}, \sqrt{2r\gamma} x^{(1)}, \sqrt{2r\gamma} x^{(2)}, \cdots, \sqrt{2r\gamma} x^{(n)}, r)$$

(b) After applying the mapping function $\phi(x)$ above, we can obtain the following figure which shows that $\phi(x)$ is linearly separable.

(c) Yes, we can get a reasonable hard margin. Here are two possible instances.

2. [30pts] Kernel Functions

- (1) **[15 pts]** 对于 $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$,考虑函数 $\kappa(x, y) = \tanh(a\boldsymbol{x}^{\top}\boldsymbol{y} + b)$,其中 a, b 是任意实数。试说明 $a \geq 0, b \geq 0$ 是 κ 为核函数的必要条件。
- (2) **[15 pts]** 考虑 \mathbb{R}^N 上的函数 $\kappa(x,y) = (x^\top y + c)^d$,其中 c 是任意实数,d,N 是任意正整数。试分析函数 κ 何时是核函数,何时不是核函数,并说明理由。

说明: 该核函数是多项式核的更一般的形式。

(第(3)小题是 extra 部分,可选)

- (3) **[10 pts]** 当上一小问中的函数是核函数时,考虑 d=2 的情况,此时 κ 将 N 维数据映射到了什么空间中?具体的映射函数是什么?更一般的,对 d 不加限制时, κ 将 N 维数据映射到了什么空间中?(本小问的最后一问可以只写结果)
- (1) Recall the definition of a positive definite kernel

Let $X \subset \mathbb{R}^n$, $\kappa(x,z)$ be a symmetric function defined on $X \times X$. If the Gram matrix

$$K = \left[\kappa(x_i, x_j)\right]_{m \times m}$$

corresponding to any $x_i \in X$, $i = 1,2, \dots, m$. $\kappa(x,z)$ is a semi-positive definite matrix, then $\kappa(x,z)$ is a positive definite kernel.

Now, consider m=1 and $x=(x,0,\cdots,0)$, then Gram matrix is $K=[\tanh ax^2+b]$. Since $\tanh y\geq 0$, if and only if $y\geq 0$, we know that the necessary condition for κ be kernel function is $ax^2+b\geq 0$. When a=0, if and only if $b\geq 0$, the original equality holds. When $a\neq 0$, note that $\Delta=-4ab$, hence if and only if a>0 and $b\geq 0$, the original equality holds. In conclusion, $a\geq 0$ and $b\geq 0$ is necessary condition for κ be kernel function.

(2) $\kappa(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathsf{T}} \mathbf{y} + c)^d = (\mathbf{x}^{\mathsf{T}} \mathbf{y} + c) \cdots (\mathbf{x}^{\mathsf{T}} \mathbf{y} + c)$

When $c \ge 0$, recall some conclusions:

- If κ_1 and κ_2 are kernel functions, then $\kappa_1 \otimes \kappa_2 = \kappa_1(x,z) \cdot \kappa_2(x,z)$ is kernel function.
- If κ_1 and κ_2 are kernel functions, then for any $\gamma_1, \gamma_2 > 0$, their linear combination is kernel function.

 $\mathbf{x}^{\mathsf{T}}\mathbf{y}$ is linear kernel and c is constant kernel, hence $\mathbf{x}^{\mathsf{T}}\mathbf{y} + c$ is kernel function, hence $\kappa(\mathbf{x}, \mathbf{y})$ is kernel function.

When c<0, consider m=2 and $\pmb{x}=\left(\sqrt{-2c},0,\cdots,0\right), \pmb{y}=\left(-\sqrt{-2c},0,\cdots,0\right)$, then Gram matrix is

$$K = \begin{bmatrix} (-c)^d & (3c)^d \\ (3c)^d & (-c)^d \end{bmatrix}$$

Since $|K| = (1 - 3^{2d})c^{2d} < 0$, we know K is not semi-positive definite, thus κ is not a

kernel function.

(3) When d=2, κ maps N-dimension data into $\binom{N+2}{2}$. Let $\mathbf{x}=(x_1,\cdots,x_N)$, then mapping function is

$$\phi(x) = (x_1^2, x_1 x_2, x_1 x_3 \cdots, x_n^2, \sqrt{2c} x_1, \sqrt{2c} x_2, \cdots, \sqrt{2c} x_n, c)$$

More generally, κ maps N-dimension data into $\binom{N+d}{d}$.

3. [35 pts] Kernel Methods

请给出 kernel PCA 的推导过程。

核函数: $\kappa: R^N \times R^N \to R$,输入两个 N 维向量得到一个数值,可以看为两个变换后向量的内积,即 $\kappa(x_i,x_j) = \phi(x_i)\cdot\phi(x_j)$ 。定义去均后的向量为: $\tilde{\phi}(x) = \phi(x) - \frac{1}{N} \Sigma_i \phi(x_i)$.

则协方差矩阵为:

$$\boldsymbol{C} = \frac{1}{N} \sum_{i} \tilde{\boldsymbol{\phi}}(x_i) \tilde{\boldsymbol{\phi}}(x_i)^{\mathsf{T}} = \frac{1}{N} \tilde{\boldsymbol{\phi}}(\boldsymbol{x}) \tilde{\boldsymbol{\phi}}(\boldsymbol{x})^{\mathsf{T}}$$
(1)

kernel-PCA 指的是在进行映射后的空间内进行主成分分析,即求解

$$CW = \lambda W \tag{2}$$

中的 $W \in R^{d \times N'}$ 作为子空间的N'个正交单位基向量。而由定理:空间中的任一向量都可以由该空间中的所有样本线性表示,所以可以记 $W = \sum_i \alpha_i \widetilde{\boldsymbol{\phi}}(x_i) = \widetilde{\boldsymbol{\phi}}(\boldsymbol{x}) A$,再代入(2)中,得

$$C\widetilde{\phi}(x)A = \lambda \widetilde{\phi}(x)A \tag{3}$$

进一步,(3)式两边同时左乘 $\phi(x)$ ^T并将 C 展开

$$\frac{1}{N}\widetilde{\boldsymbol{\phi}}(x)^{\mathsf{T}}\widetilde{\boldsymbol{\phi}}(x)\widetilde{\boldsymbol{\phi}}(x)^{\mathsf{T}}\widetilde{\boldsymbol{\phi}}(x)A = \lambda\widetilde{\boldsymbol{\phi}}(x)^{\mathsf{T}}\widetilde{\boldsymbol{\phi}}(x)A \tag{4}$$

 $将\kappa = \widetilde{\boldsymbol{\phi}}(x)^{\mathsf{T}}\widetilde{\boldsymbol{\phi}}(x)$ 代入到(4)式当中,得到

$$\frac{1}{N}\kappa^2 \mathbf{A} = \lambda \kappa \mathbf{A} \tag{5}$$

为了求解(5)式,我们需要求解

$$\frac{1}{N}\kappa A = \lambda A \tag{6}$$

而(6)式就是PCA的基本形式。

4. [extra, 30pts] Surrogate Function in SVM & Bayesian Optimal Classifier

(本題可选)

在软间隔支持向量机问题中, 我们的优化目标为

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \ell_{0/1} (y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1).$$
(1)

然而 $\ell_{0/1}$ 数学性质不太好,它非凸、非连续,使得式 (1) 难以求解。实践中我们通常会将其替换为"替代损失",替代损失一般是连续的凸函数,且为 $\ell_{0/1}$ 的上界,比如 hinge 损失,指数损失,对率损失。下面我们证明在一定的条件下,这样的替换可以保证最优解不变。

我们考虑实值函数 $h: \mathcal{X} \to \mathbb{R}$ 构成的假设空间,其对应的二分类器 $f_h: \mathcal{X} \to \{+1, -1\}$ 为

$$f_h(x) = \begin{cases} +1 & \text{if } h(x) \ge 0 \\ -1 & \text{if } h(x) < 0 \end{cases}$$

h 的期望损失为 $R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[I_{f_h(x) \neq y} \right]$, 其中 I 为指示函数。设 $\eta(x) = \mathbb{P}(y = +1|x)$,则贝叶斯最优分类器当 $\eta(x) \geq \frac{1}{2}$ 时输出 1,否则输出 -1。因此可以定义贝叶斯得分 $h^*(x) = \eta(x) - \frac{1}{2}$ 和贝叶斯误差 $R^* = R(h^*)$ 。

设 $\Phi: \mathbb{R} \to \mathbb{R}$ 为非滅的凸函数且满足 $\forall u \in \mathbb{R}, 1_{u \leq 0} \leq \Phi(-u)$ 。对于样本 (x, y),定义函数 h 在该样本的 Φ -损失为 $\Phi(-yh(x))$,则 h 的期望损失为 $\mathcal{L}_{\Phi}(h) = \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\Phi(-yh(x))]$ 。定义 $L_{\Phi}(x, u) = \eta(x)\Phi(-u) + (1 - \eta(x))\Phi(u)$,设 $h_{\Phi}^{*}(x) = \underset{u \in [-\infty, +\infty]}{\operatorname{argmin}} L_{\Phi}(x, u)$, $\mathcal{L}_{\Phi}^{*} = \mathcal{L}_{\Phi}(h_{\Phi}^{*}(x))$ 。

我们考虑如下定理的证明:

若对于 Φ , 存在 $s \ge 1$ 和 c > 0 満足对 $\forall x \in \mathcal{X}$ 有

$$|h^*(x)|^s = \left|\eta(x) - \frac{1}{2}\right|^s \le c^s \left[L_{\Phi}(x, 0) - L_{\Phi}(x, h_{\Phi}^*(x))\right]$$
 (2)

则对于任何假设 h, 有如下不等式成立

$$R(h) - R^* \le 2c \left[\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^*\right]^{\frac{1}{s}}$$
(3)

(1) [5 pts] 请证明

$$\Phi(-2h^{*}(x)h(x)) \le L_{\Phi}(x, h(x))$$
 (4)

(2) [10 pts] 请证明

$$R(h) - R^* = 2 \mathbb{E}_{x \sim D_+} [|h^*(x)| 1_{h(x)h^*(x) \le 0}]$$
 (5)

提示: 先证明

$$R(h) = \mathbb{E}_{x \sim D_x} \left[2h^*(x)1_{h(x)<0} + (1 - \eta(x)) \right]$$

- (3) [10 pts] 利用式 (4) 和式 (5) 完成定理的证明。
- (4) [5 pts] 请验证对于 Hinge 损失 Φ(u) = max(0,1+u), 有 s = 1, c = ½.

(1)

$$\Phi(-2h^*(x)h(x)) = \Phi((1-2\eta(x))h(x))$$

$$= \Phi\left(\eta(x)\left(-h(x)\right) + \left(1 - \eta(x)\right)h(x)\right)$$

$$\leq \eta(x)\Phi\left(-h(x)\right) + \left(1 - \eta(x)\right)\Phi\left(h(x)\right)$$

$$= L_{\Phi}(x, h(x))$$

(2) First, we need to prove $R(h) = \mathbb{E}_{x \sim \mathcal{D}_x} [2h^*(x)I_{h(x)<0} + (1-\eta(x))]$

$$\begin{split} R(h) &= \mathbb{E}_{x \sim \mathcal{D}_{x}} \big[I_{f_{h}(x) \neq y} \big] \\ &= \mathbb{E}_{x \sim \mathcal{D}_{x}} \big[\eta(x) I_{h(x) < 0} + \big(1 - \eta(x) \big) I_{h(x) \geq 0} \big] \\ &= \mathbb{E}_{x \sim \mathcal{D}_{x}} \big[\eta(x) I_{h(x) < 0} + \big(1 - \eta(x) \big) \big(1 - I_{h(x) < 0} \big) \big] \\ &= \mathbb{E}_{x \sim \mathcal{D}_{x}} \big[(2\eta(x) - 1) I_{h(x) < 0} + \big(1 - \eta(x) \big) \big] \\ &= \mathbb{E}_{x \sim \mathcal{D}_{x}} \big[2h^{*}(x) I_{h(x) < 0} + \big(1 - \eta(x) \big) \big] \end{split}$$

Then

$$R(h) - R(h^*) = \mathbb{E}_{x \sim \mathcal{D}_x} [2h^*(x) (I_{h(x) < 0} - I_{h^*(x) < 0}]$$

$$\leq 2\mathbb{E}_{x \sim \mathcal{D}_x} [|h^*(x)| I_{h^*(x) \le 0}]$$

(3)
$$R(h) - R(h^{*}) = \mathbb{E}_{x \sim \mathcal{D}_{x}} [|2\eta(x) - 1|I_{h(x)h^{*}(x) \leq 0}]$$

$$\leq [\mathbb{E}_{x \sim \mathcal{D}_{x}} [|2\eta(x) - 1|]^{s} I_{h(x)h^{*}(x) \leq 0}]^{\frac{1}{s}} \qquad (Jensen \ unequality)$$

$$\leq 2c [\mathbb{E}_{x \sim \mathcal{D}_{x}} [\Phi(0) - L_{\Phi}(x, h_{\Phi}^{*}(x))] I_{h(x)h^{*}(x) \leq 0}]^{\frac{1}{s}} \qquad (assumption)$$

$$\leq 2c [\mathbb{E}_{x \sim \mathcal{D}_{x}} [\Phi(-2h^{*}(x)h(x)) - L_{\Phi}(x, h_{\Phi}^{*}(x))] I_{h(x)h^{*}(x) \leq 0}]^{\frac{1}{s}}$$

$$\leq 2c [\mathbb{E}_{x \sim \mathcal{D}_{x}} [L_{\Phi}(x, h(x)) - L_{\Phi}(x, h_{\Phi}^{*}(x))] I_{h(x)h^{*}(x) \leq 0}]^{\frac{1}{s}}$$

$$\leq 2c [\mathbb{E}_{x \sim \mathcal{D}_{x}} [L_{\Phi}(x, h(x)) - L_{\Phi}(x, h_{\Phi}^{*}(x))]]^{\frac{1}{s}}$$

$$= 2c [\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^{*}]^{\frac{1}{s}}$$

(4) When $\Phi(u) = \max(0.1 + u)$,

$$\begin{split} \mathcal{L}_{\Phi}(x,u) &= \eta(x) \max(0,1-u) + \left(1 - \eta(x)\right) \max(0,1+u) \\ &= \begin{cases} (1-u)\eta(x) & u < -1 \\ 1 + \left(1 + 2\eta(x)\right)u & -1 \le u < 1 \\ (1+u)\left(1 - \eta(x)\right) & u \ge 1 \end{cases} \end{split}$$

Since $h_{\Phi}^*(x) = argmin_{u \in [-\infty, +\infty]} \mathcal{L}_{\Phi}(x, u)$, when $\eta(x) > \frac{1}{2}$, $h_{\Phi}^* = 1$, $L_{\Phi}(x, h_{\Phi}^*(x)) = 2(1 - \eta(x))$; when $\eta(x) \le \frac{1}{2}$, $h_{\Phi}^* = -1$, $L_{\Phi}(x, h_{\Phi}^*(x)) = 2\eta(x)$. Moreover, $\mathcal{L}(x, 0) = \Phi(0) = 1$, so s = 1, $c = \frac{1}{2}$.