Centros de Homotetia

Yvens Ian

26ª Semana Olímpica - 26 de janeiro de 2023

1 Introdução

Neste material estudaremos propriedades dos centros de homotetia de duas circunferências.

Sabe-se que quaisquer duas circunferências ω_1 e ω_2 , de centros O_1 e O_2 distintos, têm dois centros de homotetia (se tiverem raios iguais, um deles é o ponto do infinito). Chamaremos o centro interno, ou seja, o que pertence ao segmento O_1O_2 , de insimilicentro (internal similitude center) e o denotaremos por I_{ω_1,ω_2} , já o externo, chamaremos de exsimilicentro (external similitude center) e o denotaremos por E_{ω_1,ω_2} .

Esses pontos aparecem em alguns problemas de olimpíadas, então é legal saber algumas propriedades sobre eles.

Teorema 1 (Teorema de Monge) Sejam $\omega_1, \omega_2, \omega_3$ circunferências no plano. Temos que:

- E_{ω_1,ω_2} , E_{ω_2,ω_3} e E_{ω_3,ω_1} são colineares;
- $O_3I_{\omega_1,\omega_2},\ O_1E_{\omega_2,\omega_3}$ e $O_2E_{\omega_3,\omega_1}$ são concorrentes;
- I_{ω_1,ω_2} , I_{ω_2,ω_3} e E_{ω_3,ω_1} são colineares;
- $O_3I_{\omega_1,\omega_2}$, $O_1I_{\omega_2,\omega_3}$ e $O_2I_{\omega_3,\omega_1}$ são concorrentes.

Lema 1 Dadas circunferências ω_1 e ω_2 de centros O_1 e O_2 e raios r_1, r_2 , temos que

$$E_{\omega_1,\omega_2} = \frac{r_1 O_2 - r_2 O_1}{r_1 - r_2} \in I_{\omega_1,\omega_2} = \frac{r_1 O_2 + r_2 O_1}{r_1 + r_2}.$$

Lema 2 Dadas circunferências ω_1 e ω_2 de centros O_1 e O_2 , temos que O_1 , O_2 , I_{ω_1,ω_2} e E_{ω_1,ω_2} formam uma quádrupla harmônica.

Lema 3 Os centros de homotetia do incírculo de do circuncírculo de um triângulo ABC são interessantes:

- a) O conjugado isogonal do ponto de Gergonne é o insimilicentro do circuncírculo e do incírculo.
- b) O conjugado isogonal do ponto de Nagel é o exsimilicentro do circuncírculo e do incírculo.

Lema 4 Uma imagem vale mais do que mil palavras:

Exemplo 1 (Canada 2007) O incírculo de ABC toca os lados BC, CA e AB em D, E e F, respectivamente. Sejam ω , ω_1 , ω_2 e ω_3 os circuncírculos dos triângulos ABC, AEF, BDF e CDE respectivamente. Além disso, ω e ω_1 intersectam em A e P, ω e ω_2 intersectam em B e Q, ω e ω_3 intersectam em C e R.

Mostre que PD, QE e RF concorrem.

Prova: Seja M o ponto médio do arco BC de (ABC) que não contém A. Como P é o Shark-Devil Point, temos um lema que diz que P, D e M são colineares, isso pode ser provado com inversão pela circunferência (BIC).

Defina $\Gamma = (DEF)$ o incírculo. Note, então, que $ID \parallel OM \perp BC \implies E_{\omega,\Gamma} = IO \cap DM = IO \cap PD$. Assim, concluímos que $E_{\omega,\Gamma} \in IO, PD, QE, RF$.

2 Problemas

Problema 1 Considere duas circunferências ω_1 e ω_2 de centros O_1 e O_2 , respectivamente. Seja R o ponto na reta O_1O_2 com potência igual a ω_1 e ω_2 . Seja Q o insimilicentro de ω_1 e ω_2 . Suponha que uma tangente comum externa de ω_1 e ω_2 os tocam em X, Y, respectivamente. Mostre que RQXY é cíclico.

Problema 2 (USA TSTST 2017) Seja ABC um triângulo de incentro I. Seja D um ponto no lado BC e sejam ω_B e ω_C os incírculos de $\triangle ABD$ e $\triangle ACD$, respectivamente. Suponha que ω_B e ω_C sejam tangentes ao segmento BC nos pontos E e F, respectivamente. Defina P como a interseção do segmento AD com a reta ligando os centros de ω_B e ω_C . Seja X o ponto de interseção das retas BI e CP e Y o ponto de interseção das retas CI e BP. Prove que as retas EX e FY se encontram no incírculo de $\triangle ABC$.

Problema 3 (ELMO SL 2011) Seja ABC um triângulo. Desenho as circunferências ω_A , ω_B , e ω_C de forma que ω_A é tangente a AB e AC, e ω_B e ω_C são definidas de forma análoga. Seja P_A um insimilicentro de ω_B e ω_C . Defina P_B e P_C de forma análoga. Prove que AP_A , BP_B , e CP_C concorrem.

Problema 4 (Olimphiada SL 2021) Seja P um ponto dentro do triângulo ABC e sejam D, E, F as interseções de AP, BP, CP com os lados do triângulo. Sejam $\omega_D, \omega_E, \omega_F$ os incírculos de FEP, DPF, PED. Se as tangentes comuns externas de ω_E e ω_F se encontram em X_A , as de ω_D e ω_F em X_B e as de ω_D e ω_E em X_C , mostre que X_A pertence a BC, X_B a AC e X_C a AB P se, e somente se, P é o ortocentro de ABC.

Problema 5 (ISL 2020) Seja ABCD um quadrilátero cíclico. Pontos K, L, M, N são escolhidos em AB, BC, CD, DA de forma que KLMN é um losango onde $KL \parallel AC$ e $LM \parallel BD$. Sejam $\omega_A, \omega_B, \omega_C, \omega_D$ incírculos de $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$.

Prove que as tangentes internas comuns a ω_A e ω_C e as tangentes internas comuns a ω_B e ω_D concorrem.

Problema 6 (IMOSL 2007) Ponto P pertence ao lado AB de um quadrilátero convexo ABCD. Seja ω o incírculo do triângulo CPD, e seja I seu incentro. Suponha que ω é tangente aos incírculos dos triângulos APD e BPC nos pontos K e L, respectivamente. Seja E o ponto de encontro das retas AC e BD, e F das retas AK e BL. Prove que os pontos E, I, e F são colineares.

Problema 7 (IMO 2008) Seja ABCD um quadrilátero convexo com $BA \neq BC$. Defina ω_1 e ω_2 como os incírculos dos triângulos ABC e ADC, respectivamente. Suponha que exista uma circunferências ω tangente à semirreta BA após A e à semirreta BC após C, que também é tangente às retas AD e CD. Prove que as tangentes externas comuns a ω_1 e ω_2 se intersectam em ω .

Problema 8 (IGO 2019) Dado um triângulo agudo não isósceles ABC de circuncírculo Γ. M é o ponto médio do segmento BC e N é o ponto médio do arco BC de Γ que não contém A. X e Y são pontos em Γ de forma que $BX \parallel CY \parallel AM$. Assuma que existe um ponto Z no segmento BC de forma que o circuncírculo de XYZ é tangente à BC. Seja ω o circuncírculo de ZMN. A reta AM encontra ω pela segunda vez em P. Seja K um ponto em ω tal que $KN \parallel AM$, ω_b um círculo que passa por B, X e é tangente à BC e ω_c um círculo que passa por C, Y e é tangente à BC. Prove que a circunferência de centro K e raio KP ié tangente às 3 circunferências ω_b , ω_c e Γ .