ÁRVORES DE DECISÃO

Allan Dieguez Al Researcher | Data Scientist

Director, Data Science

BAIN & COMPANY

LinkedIn: @allandieguez

E-Mail: allandieguez@gmail.com

AGENDA

- Mapeando Regras em Decisões
 Fundamentos de árvores de decisão
- Árvores de Classificação
 Cálculo de pureza e entropia
- Árvores de Regressão
 Cálculo de médias e resíduos
- Regularização em Árvores
 Técnicas para evitar o overfit

MAPEANDO REGRAS EM DECISÕES

Fundamentos de árvores de decisão

ALGORITMO

Sequência finita de regras que, aplicada a um número finito de dados, permite solucionar classes semelhantes de problemas.

Pode ser representado por um gráfico, chamado **fluxograma**. As **decisões** do tipo **IF/ELSE** são

As **decisões** do tipo **IF/ELSE** são representadas por **losangos**.

ÁRVORES DE DECISÃO

Fonte: Wikipedia Commons

DECISÕES BINÁRIAS

Para facilitar a **implementação**, árvores de decisão do tipo **CART*** são **sempre binárias**. Além de tornar mais simples a construção, **qualquer outro** tipo de partição pode ser representado por **um conjunto de partições binárias**.

INTERPRETAÇÃO

Cada **nó de decisão** é facilmente relacionado com uma decisão do tipo **IF/ELSE**. Os **nós-folha** representam uma **condição de parada**.

OUTROS TIPOS

Existem outros tipos de modelos **baseados em árvores não binárias**, como o **CHAID***, que permite que um nó-pai tenha mais de dois nós filhos

^{*} CART: Classification And Regression Trees

^{**} CHAID: Chi-square Automated Interaction Detection

VANTAGENS

DE USAR ÁRVORES DE DECISÃO

- Fáceis de interpretar como regras IF/ELSE
- Seleção de features é parte da construção da árvore, não sendo necessário aplicar outra metodologia
- Escala bem mesmo em datasets massivos

DESVANTAGENS

DE USAR ÁRVORES DE DECISÃO

- A performance normalmente é mais baixa quando comparadas com outros modelos mais complexos
- São modelos muito sensíveis a outliers, sofrendo bastante com alta variância

ÁRVORES DE CLASSIFICAÇÃO

Cálculo de pureza e entropia

ÁRVORES DE CLASSIFICAÇÃO

RUÍDO

INFORMAÇÃO

GRAU DE PUREZA

HOMOGENEIDADE DE UM NÓ

A **principal métrica de qualidade** para um nó da árvore de decisão é a **função de homogeneidade**. Na classificação, a homogeneidade é análoga à **pureza** de um conjunto de dados dentro de um nó.

RESPOSTA DA ÁRVORE

A resposta de um nó-folha é dada pela **classe de maior representação** dentro do nó. Quanto **mais homogênea** a composição do nó-folha, **maior a certeza** da resposta do classificador.

INCERTEZA DA RESPOSTA

Como a resposta do nó-folha é dada com base em um **conjunto de elementos**, pode-se calcular a **probabilidade** do nó pertencer a cada classe.

Quantidade de elementos por classe

$$\mathbf{N}_{\text{Classe 0}} = 188$$
 $\mathbf{N}_{\text{Classe 1}} = 646$
 $\mathbf{N}_{\text{Total}} = 834$

$$P_{\text{Classe 0}} = N_{\text{Classe 0}}/N_{\text{Total}} = 0.23$$
 $P_{\text{Classe 1}} = N_{\text{Classe 1}}/N_{\text{Total}} = 0.77$

ELEMENTOS DO NÓ DE DECISÃO

Todo nó de uma **árvore de classificação** computa as **quantidades de elementos** de cada classe.

A **proporção** de elementos por classe é a base do cálculo dos **índices de impureza**.

MEDIDAS DE IMPUREZA

Fórmulas

Gini:

$$\mathbf{H}_{\mathtt{Gini}} = 1 - \sum_{\mathbf{k}} \mathbf{P_k}^2$$

Entropia:

 $\mathbf{H}_{\mathbf{Entropy}} = -\sum_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} \log_2 (\mathbf{P}_{\mathbf{k}})$

MÉTRICAS MAIS UTILIZADAS

As métricas mais utilizadas para classificação são a de **Impureza de Gini** e a **Entropia**. Ambas seguem o princípio de que quanto **menor o valor**, **maior a qualidade** do nó.

GINI

A medida de **Impureza de Gini** é uma métrica que descreve a **probabilidade** de um elemento ser **aleatoriamente classificado de forma errada**. Um valor **zero** indica que o nó é puro, i.e. composto apenas por elementos de uma classe.

ENTROPIA

A **entropia** é uma métrica de **desordem** de um dado sistema. Um valor de **zero** indica que o nó é **completamente ordenado,** ou seja, não há dúvidas sobre a informação que contém.

CONSTRUÇÃO DA ÁRVORE

O treinamento do modelo consiste em selecionar as features mais promissoras em cada nó de decisão e avaliar a possibilidade de 1) criar um **nó-folha** ou 2) continuar expandindo a árvore.

O **primeiro passo**, porém, é a **escolha da Raiz** da árvore.

Ι

PASSO 1

Seleção da feature mais informativa

PASSO 1

Seleção da feature mais informativa

PASSO 2

Criação da árvore com a **regra criada**

<i>feature</i> candidata	Homogeneidade (Função H_{A})
height	0.492
age	0.333
gender	0.613

· · · · · · · · · · · · · · · · · · ·					
		A			
		classe 0	classe 1		
		388	446		
	age	< 43	age >	-= 43	
	1				/
C	;			I	
classe 0	classe :	1		classe 0	classe 1
288	58			120	368

Seleção da feature mais informativa

PASSO 2

Criação da árvore com a **regra criada**

PASSO 3

Seleção de *feature* no **nó-filho A**

Racional:

Se
$$H_A > G_A$$
:

split é válido

Senão:

Nó é Folha

Função G:

$$G_A = (N_{FE}.H_{FE} + N_{FD}.H_{FD})/N_A$$

A		
classe 0	classe 1	
388	446	

С			
classe 0	classe 1		
288	58		

D			
classe 0	classe 1		
120	368		

 $N_{3} = 854$

 $H_{3} = 0.498$

 $N_{c} = 346$

 $H_c = 0.279$

 $N_{D} = 488$

 $H_{D} = 0.371$

$$G_{A} = (N_{C}.H_{C}+N_{D}.H_{D})/N_{A} = 0.333$$

Então: $H_{\lambda} > G_{\lambda}$ É válido o split

PASSO 1

Seleção da feature mais informativa

PASSO 2

Criação da árvore com a regra criada

PASSO 3

Seleção de feature no nó-filho A

PASSO 4

Decisão: split ou nó-folha

ÁRVORES DE REGRESSÃO

Cálculo de médias e resíduos

ÁRVORES DE REGRESSÃO

HOMOGENEIDADE DE UM NÓ

A função de homogeneidade para a regressão está relacionada à distância média entre os valores dos elementos dentro do nó. Quanto mais próximos em valor são os elementos, menor a distância destes à média.

RESPOSTA DA ÁRVORE

A resposta de um nó-folha é dada pela **média dos valores** dos elementos que o compõem. Quanto **menor a distância** dos elementos à média, **mais assertiva** é a resposta do regressor.

INCERTEZA DA RESPOSTA

Como a resposta do nó-folha é dada com base em um **conjunto de elementos**, pode-se calcular a **variância** da resposta em torno da média.

Nó de Decisão		
Número de Elementos	755.0	
Média dos Valores	47.8	
Métrica de Distância	1223.7	

ELEMENTOS DO NÓ DE DECISÃO

Os componentes do nó de uma **árvore de regressão** descrevem, além do **número total** de elementos, a sua **média** e uma **métrica de distância** a essa média.

Essa métrica de distância é calculada sobre os **resíduos** da regressão. Por esse motivo, algumas vezes é referenciado como **erro** de predição.

MÉTRICA RSS

A **métrica mais utilizada** em árvores de regressão é o **RSS** (*Residual Sum of Squares*), um valor que sumariza de forma absoluta a **distância à média** de todos os elementos dentro de um nó.

Assim como na Impureza de Gini e na Entropia, quanto menor o RSS, maior a qualidade de um conjunto de valores.

CONSTRUÇÃO DA ÁRVORE

O treinamento do modelo segue **o mesmo passo-a-passo** da construção da árvore de classificação, com a única diferença sendo o uso do **RSS** como função de homogeneidade.

OUTRA REPRESENTAÇÃO DOS SPLITS

age

REGULARIZAÇÃO EMÁRVORES

Técnicas para evitar o overfit

OVERFIT EM ÁRVORES

OVERFIT

Árvores de decisão também estão expostas ao **overfit**, falha de generalização em que o modelo aprende somente **características intrínsecas** aos dados de treinamento, não conseguindo ter bom desempenho em outros dados.

ÁRVORE INFINITA

Caso não haja uma **limitação explícita** no treinamento, uma árvore de decisão pode **criar um nó-folha por elemento** da massa de treino. Quando isso ocorre, há um *overfit* claro do modelo.

REGULARIZAÇÃO

Existem alguns **hiper-parâmetros** que podem ser usados para controlar a **altura da árvore** e a **quantidade de elementos** nas folhas. Também podem ser usados métodos de **poda de árvore**.

PARÂMETROS DE REGULARIZAÇÃO

Controle do *split* por **arquitetura**

max_depth: altura máxima permitida para a árvore

max_leaf_node: máximo de folhas permitido

min_samples_split: mínimo de elementos para permitir um split

min_samples_leaf: mínimo de elementos para criação de nó-folha

Controle do *split* por **regras de decisão**

max_features: máximo de features a serem observadas em cada *split*

min_impurity_decrease: permite *split* apenas se função *H* tiver um valor abaixo de um mínimo

min_weight_fraction_leaf: controle para o caso de usar pesos (weights) nas folhas

Controle da **poda de árvores**

ccp_alpha: parâmetro de complexidade do método Minimal Cost-Complexity Pruning

```
f1 table = pd.DataFrame()
for max depth in range(1, 20):
                                                         Efeito do parâmetro
   model = DecisionTreeClassifier(max depth=max depth)
   model.fit(X train, y train)
                                                         max_depth no overfit
   f1 tr = f1 score(y train, model.predict(X train))
   f1_te = f1_score(y_test, model.predict(X_test))
   f1 table = f1 table.append(
       pd.DataFrame(
           index=pd.Index(
                                                        train
                                            0.95
               name='max depth',
                                                        test
                                            0.90
               data=[max depth]
           ),
                                            0.85
           columns=['train', 'test'],
                                            0.80
           data=[[f1 tr, f1 te]]
                                            0.75
                                            0.70
f1 table.plot(grid=True)
plt.ylabel('$F_1 Score$')
                                            0.65
                                            0.60
                                                            5.0
                                                                                     15.0 17.5
                                                                         10.0
                                                                               12.5
```

max depth

PODA EM ÁRVORES

RACIONAL

A poda de árvores serve para **reduzir a complexidade** final da árvore treinada. É uma técnica de **compressão de informação** muito utilizada em algoritmos de busca e em *machine learning*.

DIREÇÃO

A poda pode acontecer tanto da raiz para as folhas (**top-down**) quanto na direção contrária (**bottom-up**). Em ambos os casos, **nós de decisão** são avaliados em **termos de relevância** e, reprovados, são **substituídos por nós-folha**.

ALGORITMOS

O algoritmo *reduced error pruning* é o mais comum: substitui aleatoriamente sub-árvores pela classe mais provável e só reverte caso haja queda de performance relevante. A versão mais complexa é o *cost complexity pruning*: usa estimativa de custo para selecionar as sub-árvores.

RESUMO DA AULA

T

TAKEAWAY #1

A árvore de decisão é uma forma de representar os passos necessários para a resolução de um problema.

TAKEAWAY #2

Sempre treinamos a árvore de classificação com os conceitos de pureza e entropia.

O que fazemos é ver qual é a melhor divisão de dados em grupos que estão nos nós-folhas e que vão trazer o mínimo de ruído com o máximo de informação, tornando a árvore muito eficiente para a tomada de decisão.

TAKEAWAY #3

Para as árvores de regressão, nos focamos em média e resíduos.

Logo, queremos uma árvore de decisão que contenha as médias mais próximas dos elementos que compõem esta média.

TAKEAWAY #4

Por fim, quanto à regularização de árvores, vimos técnicas para evitar overfit, percebendo que não podemos deixar uma árvore livre para crescer para qualquer lado.

