Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung

BRP

Februar 2016

Angewandte Mathematik

Teil A

Korrekturheft

Vergnügungspark

Möglicher Lösungsweg

a)
$$4.1 = 9 - x^2$$

 $x^2 = 4.9$
 $x = \pm 2.213...$

Der Festwagen darf rund 4,42 m breit sein.

$$\int_{3}^{3} (9 - x^2) dx = 36$$

Der Flächeninhalt der benötigten Folie beträgt 36 m².

 b) Diese Polynomfunktion hat im dargestellten Intervall 2 lokale Extremstellen. Somit muss die 1. Ableitung dieser Funktion 2 Nullstellen haben, also mindestens eine Polynomfunktion 2. Grades sein. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

oder:

Eine Gerade parallel zur x-Achse hat 3 Schnittpunkte mit dem Graphen der Funktion. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

oder:

Der Graph ist keine Gerade und keine Parabel. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

c) rechtwinkeliges Dreieck *FPS*: $tan(\beta) = \frac{\overline{SP}}{a} \Rightarrow \overline{SP} = a \cdot tan(\beta)$

rechtwinkeliges Dreieck FQS: $tan(\alpha) = \frac{\overline{SQ}}{a} \Rightarrow \overline{SQ} = a \cdot tan(\alpha)$

$$h = \overline{SP} - \overline{SQ}$$

$$h = a \cdot \tan(\beta) - a \cdot \tan(\alpha) = a \cdot (\tan(\beta) - \tan(\alpha))$$

- a) 1 × B1: für die richtige Berechnung der Breite b
 - 1 × B2: für die richtige Berechnung des Flächeninhalts
- b) 1 × D: für eine richtige Erklärung
- c) 1 × A: für das richtige Erstellen der Formel

Luftdruck - Höhenformel

Möglicher Lösungsweg

a) $p(0) = p_0 \cdot e^{-\frac{0}{7991}} = p_0 \cdot 1 = p_0$

$$\frac{p_0}{2} = p_0 \cdot e^{-\frac{h}{7991}}$$

$$h = 7991 \cdot \ln(2) = 5538,9...$$

Bei einer Seehöhe von rund 5539 m beträgt der Luftdruck genau die Hälfte von p_0 .

b)
$$f(h) = 1013 - \frac{1}{10} \cdot h$$

c) Modellierung durch eine lineare Funktion g mit $g(x) = a \cdot x + b$:

$$1040 = a \cdot 990 + b$$

$$930 = a \cdot 1980 + b$$

$$g(x) = -\frac{1}{9} \cdot x + 1150$$

$$g(1\,300) = \frac{9\,050}{9} \approx 1\,006$$

Der Luftdruck in einer Höhe von 1300 m über dem Meeresspiegel beträgt rund 1006 hPa.

- a) 1 × D: für einen richtigen Nachweis
 - 1 × A: für den richtigen Lösungsansatz zur Berechnung
 - 1 × B: für die richtige Berechnung der Seehöhe
- b) 1 × A: für das richtige Aufstellen der Funktion
- c) 1 × A: für einen richtigen Ansatz (z.B. mithilfe einer linearen Funktion bzw. ähnlicher Dreiecke)
 - 1 × B: für die richtige Bestimmung des Luftdrucks

Produktion von Rucksäcken

Möglicher Lösungsweg

- a) Es wird die Wahrscheinlichkeit für das Ereignis berechnet, dass ein zufällig kontrollierter Rucksack Nahtfehler, aber keine der beiden anderen Fehlerarten aufweist.
- b) $P(\text{"mindestens 1 Fehler"}) = 1 P(\text{"kein Fehler"}) = 1 0.98 \cdot 0.97 \cdot 0.99 = 0.0589... \approx 5.9 \%$

Bei der Berechnung der Wahrscheinlichkeit, dass ein zufällig ausgewählter Rucksack mindestens 1 dieser 3 Fehler aufweist, muss bei der Verwendung der Gegenwahrscheinlichkeit nur 1 Ereignis, nämlich das Ereignis, dass kein Fehler auftritt, betrachtet werden. Bei einer direkten Berechnung müssten die Wahrscheinlichkeiten für eine Vielzahl von Ereignissen berechnet und addiert werden.

c) Berechnung mittels Binomialverteilung: n = 100 und p = 0.03 $P(X < 3) = 0.41977... \approx 41.98 \%$

- a) 1 x C: für die richtige Angabe des Ereignisses (es muss auch klar erkennbar sein, dass die beiden anderen Fehlerarten nicht auftreten)
- b) 1 x B: für die richtige Berechnung der Wahrscheinlichkeit
 - 1 × D: für die richtige Erklärung zur Gegenwahrscheinlichkeit
- c) 1 × A: für das Erkennen des richtigen Wahrscheinlichkeitsmodells (Binomialverteilung)
 - 1 × B: für die richtige Berechnung der Wahrscheinlichkeit

Tennis

Möglicher Lösungsweg

a) Aufschlaggeschwindigkeit, die von 25 % der Teilnehmer nicht übertroffen wurde: 120 km/h

Quartilsabstand: 30 km/h

b) ähnliche Dreiecke:

$$\frac{2,3}{6,4+6,4+5,5} = \frac{h}{6,4}$$

$$h = 0.80... \text{ m} \approx 0.8 \text{ m}$$

Der Ball ist beim Netz in einer Höhe von rund 0,8 m. Somit geht der Ball ins Netz.

c) $f'(0) = \frac{2}{5}$ $\arctan(\frac{2}{5}) = 21,801...^{\circ} \approx 21,80^{\circ}$

Der Ball befindet sich im Abschlagpunkt in einer Höhe von $\frac{21}{50}$ Metern.

Lösungsschlüssel

a) $1 \times C1$: für das richtige Ablesen der Aufschlaggeschwindigkeit

 $1 \times C2$: für das richtige Ablesen des Quartilsabstands

- b) 1 × D: für die richtige Überprüfung
- c) $1 \times B$: für die richtige Berechnung des Steigungswinkels

1 × C: für die richtige Interpretation der Zahl $\frac{21}{50}$

Leistung einer Solaranlage

Möglicher Lösungsweg

a)
$$P'(6) = 0$$

$$0 = \frac{7}{162} \cdot 6^3 - \frac{7}{9} \cdot 6^2 + 2 \cdot a \cdot 6$$

$$a = \frac{14}{9}$$

b)
$$\int_0^{12} (0,007 \cdot t^4 - 0,165 \cdot t^3 + 0,972 \cdot t^2 + 1,221) dt = 67,5288$$

Die Solaranlage liefert an diesem Tag rund 67,53 kWh Energie.

c) An der Wendestelle x_0 einer Funktion f gilt stets: $f''(x_0) = 0$. Die 2. Ableitung einer Polynomfunktion 3. Grades ist eine lineare Funktion, die genau 1 Nullstelle mit Vorzeichenwechsel hat. Daher hat die Polynomfunktion 3. Grades genau 1 Wendestelle.

- a) 1 × A: für den richtigen Ansatz zur Berechnung des Koeffizienten a
 - 1 × B: für die richtige Berechnung des Koeffizienten a
- b) 1 × B: für die richtige Berechnung des Integrals
- c) 1 × D: für eine richtige Begründung