# Multi Layer Perceptron (MLP)

## Multi Layer Networks



### What is MLP?

A Multilayer Perceptron (MLP) is a type of artificial neural network that consists of multiple layers of nodes (or neurons), typically organized into three layers:

- 1. **Input Layer**: Takes in the features of the data.
- 2. **Hidden Layers**: One or more layers where the data undergoes transformations through weighted connections and activation functions. This is where the model "learns" complex patterns.
- 3. **Output Layer**: Produces the final output, which could represent class probabilities (in classification tasks) or continuous values (in regression tasks).

### The XOR Problem

A Perceptron cannot represent Exclusive OR since it is not linearly separable.





#### Non-Linear Data



What is a good decision boundary?

### Layers in MLP





1st layer draws linear boundaries

2nd layer combines the boundaries

3rd layer can generate arbitrarily complex boundaries

### Backpropagation

#### **Backpropagation has two phases:**

- Forward pass phase: computes 'functional signal', feed forward propagation of input pattern signals through network
- Backward pass phase: computes 'error signal', *propagates* the error *backwards* through network starting at output units (where the error is the difference between actual and desired output values)

### Steps in MLP

- 1. Forward pass
- 2. Backpropagation

# Forward Propagation of Activity

- Step 1: Initialise weights at random, choose a learning rate η
- Until network is trained:
- For each training example i.e. input pattern and target output(s):
- Step 2: Do forward pass through net (with fixed weights) to produce output(s)
  - i.e., in Forward Direction, layer by layer:
    - · Inputs applied
    - Multiplied by weights
    - Summed
    - 'Squashed' by sigmoid activation function
    - Output passed to each neuron in next layer
  - Repeat above until network output(s) produced

### Step 3. Back-propagation of error

- Compute error (delta or local gradient) for each output unit  $\delta k$
- Layer-by-layer, compute error (delta or localgradient) for each hidden unit  $\delta j$  by backpropagating errors
- **Step 4**: Next, update all the weights  $\Delta wij$  by gradient descent, and go back to Step 2
- The overall MLP learning algorithm, involving forward pass and backpropagation of error (until the network training completion), is known as the Back Propagation (BP) algorithm

# MLP/BP Example



#### Current state:

- Weights on arrows e.g.
   w<sub>13</sub> = 3, w<sub>35</sub> = 2, w<sub>24</sub> = 5
- Bias weights, e.g.
   bias for unit 4 (u<sub>4</sub>) is w<sub>04</sub>= -6

Training example (e.g. for logical OR problem):

- Input pattern is x<sub>1</sub>=1, x<sub>2</sub>=0
- Target output is y<sub>target</sub>=1

## **Example: Forward Pass**



Output for any neuron/unit j can be calculated from:

$$a_j = \sum_i w_{ij} x_i$$

$$y_j = f(a_j) = \frac{1}{1 + e^{-a_j}}$$

e.g Calculating output for Neuron/unit 3 in hidden layer:

$$a_3 = 1*1 + 3*1 + 4*0 = 4$$
  
 $y_3 = f(4) = \frac{1}{1+e^{-4}} = 0.982$ 

# **Example: Forward Pass**



## Example: Backward Pass



Now compute delta values starting at the output:

$$\delta_5 = y_5(1 - y_5) (y_{\text{target -}} y_5)$$
  
= 0.51(1 - 0.51) x 0.49  
= **0.1225**

Then for hidden units:

$$\delta_4 = y_4(1 - y_4) w_{45} \delta_5$$
  
= 0.5(1 - 0.5) x 4 x 0.1225  
= **0.1225**

$$\delta_3 = y_3(1 - y_3) w_{35} \delta_5$$
  
= 0.982(1-0.982) x 2 x 0.1225  
= **0.0043**

# Example: Update Weights Using Generalized Delta Rule (BP)



Set learning rate η = 0.1
 Change weights by:

$$\Delta W_{ij} = \eta \delta_j y_i$$

◆ e.g.bias weight on u<sub>3</sub>:

$$\Delta w_{03} = \eta \delta_3 x_0$$
  
= 0.1\*0.0043\*1  
= 0.0004

So, new 
$$w_{03} \times w_{03}$$
  
 $w_{03}(old) + \Delta w_{03}$   
=1+0.0004=1.0004

and likewise:

$$w_{13} \boxtimes 3 + 0.0004$$

## Similarly for the all weights wij:

| i | j | $W_{ij}$ | $\delta_{\mathbf{j}}$ | $\mathbf{y}_{i}$ | Updated w <sub>ij</sub> |
|---|---|----------|-----------------------|------------------|-------------------------|
| 0 | 3 | 1        | 0.0043                | 1.0              | 1.0004                  |
| 1 | 3 | 3        | 0.0043                | 1.0              | 3.0004                  |
| 2 | 3 | 4        | 0.0043                | 0.0              | 4.0000                  |
| 0 | 4 | -6       | 0.1225                | 1.0              | -5.9878                 |
| 1 | 4 | 6        | 0.1225                | 1.0              | 6.0123                  |
| 2 | 4 | 5        | 0.1225                | 0.0              | 5.0000                  |
| 0 | 5 | -3.92    | 0.1225                | 1.0              | -3.9078                 |
| 3 | 5 | 2        | 0.1225                | 0.9820           | 2.0120                  |
| 4 | 5 | 4        | 0.1225                | 0.5              | 4.0061                  |