22-Step Collisions for SHA-2

Somitra Kumar Sanadhya* and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,
India 700108.
somitra_r@isical.ac.in, palash@isical.ac.in

 8^{th} March, 2008

Abstract. In this note, we provide the first 22-step collisions for SHA-256 and SHA-512. Detailed technique of generating these collisions will be provided in the next revision of this note.

1 Introduction

SHA-256 and SHA-512 are the next generation hash functions designed and standardized by NIST in 2002 [1]. In this note, we provide message pairs colliding for 22-step SHA-256 and 22-step SHA-512. This is the first attack on 22-step SHA-2 family. The success probability of our attack is around 2^{-5} in average case and around 2^{-9} in the worst case. Both these probability figures are experimental. Details of the attack will be provided in the next revision of this note.

2 Message pairs colliding for 22-step SHA-2

Table 1. Colliding message pair for 22-step SHA-256 with standard IV. These message pairs follow the differential path given in Table 3.

W_1	0-7	a0263fa5	707425fb	618cd8d2	7d58f729	1eb9a964	19f88f1c	34e35071	f28d40e3
	8-15	b43e29b8	1871a949	e2e01390	aaf3823e	8d41a28e	7f22ee02	7c625999	183e603f
W_2	0-7	a0263fa5	707425fb	618cd8d2	7d58f729	1eb9a964	19f88f1c	34e35071	f28d40e3
	8-15	b43e29b9	1871a948	defe7410	aaf5223e	8d41a28e	7f22ee02	7c625999	00000000

Table 2. Colliding message pair for 22-step SHA-512 with standard IV.

W_1	0-3	3ffb91948b327337	95f3c893b2356b98	506c68760abf51e9	fab877b7eef3aaa2
	4-7	55d5b38ec34340cf	daa006ef3f677afa	a5a01d9f1c67d9c8	5b219ee6f447480b
	8-11	52af39ff1ecfb48e	5cff9ae5d4d60a40	db6c1a412c9b4d4d	aaf3823c2a004b1f
	12 - 15	8d41a28b0d847693	7f212e01c4e96937	7eeeca5c84ba3bda	1acad103aa814e0e
W_2	0-3	3ffb91948b327337	95f3c893b2356b98	506c68760abf51e9	fab877b7eef3aaa2
	4-7	55d5b38ec34340cf	daa006ef3f677afa	a5a01d9f1c67d9c8	5b219ee6f447480b
	8-11	52af39ff1ecfb48f	5cff9ae5d4d60a3f	db687a412d1b4d65	aaf3623c2a004b07
	12 - 15	8d41a28b0d847693	7f212e01c4e96937	7eeeca5c84ba3bda	0000000000000000

^{*} This author is supported by the Ministry of Information Technology, Govt. of India.

Table 3. Differential path followed by the message pairs given in Table 1. The differential path for the message pair of Table 2 is different but similar looking. If the register values for the first message W_1 are denoted by $\{a_i, b_i, \ldots h_i\}$ and those for the second message W_2 are denoted by $\{a_i', b_i', \ldots h_i'\}$, then δX stands for X' - X, where X could be any register value. The 22 steps are indexed from 0 to 21.

Step	δa_i	δb_i	δc_i	δd_i	δe_i	δf_i	δg_i	δh_i
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	00000001	0	0	0	00000001	0	0	0
9	0	00000001	0	0	ffffffff	00000001	0	0
10	0	0	00000001	0	ffffffff	ffffffff	00000001	0
11	0	0	0	00000001	0	ffffffff	ffffffff	0000001
12	0	0	0	0	00000001	0	ffffffff	ffffffff
13	0	0	0	0	0	00000001	0	ffffffff
14	0	0	0	0	0	0	00000001	0
15	0	0	0	0	0	0	0	0000001
16	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0

References

Secure Hash Standard. Federal Information Processing Standard Publication 180-2.
 U.S. Department of Commerce, National Institute of Standards and Technology(NIST), 2002. Available at http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.