1 Прямая задача

Конфигурация описывается набором параметров переходов от i-й СК к i+1-й (i от 1 до количества джоинтов): - d_i - смещение вдоль z_i - θ_i - поворот вокруг z_i , после которого x_i стало бы параллельной x_{i+1} - a_i - поворот вокруг x_{i+1} , после которого z_i стало бы параллельной z_{i+1} - a_i - смещение вдоль x_{i+1}

Поворотные joint-ы тоже вращаются вокруг оси z_i , потому между θ_i у углами поворотов joint-ов (j_i) есть связь. Например в fanuc-е: - j_1, j_4, j_5, j_6 переходят в $\theta_1, \theta_4, \theta_5, \theta_6$ без изменений - у j_2 направление вращение противоположно z_2 , а также начальный угол смещен на $\frac{\pi}{2} \Rightarrow \theta_2 = -j + \frac{\pi}{2}$ - j_3 показывает угол наклона относительно земли, что достигается связью j_3 с $j_2 \Rightarrow \theta_3 = j_3 + j_2$

Однородная матрица перехода - произведение 4 однородных матриц:

$$A_{i} = R_{z,\theta_{i}} \operatorname{Trans}_{z,d_{i}} \operatorname{Trans}_{z,a_{i}} R_{x,\alpha_{i}} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $s_{\theta} = \sin(\theta), c_{\theta} = \cos(\theta),$ то же с α (подробнее - здесь)

Матрица, описывающая положение TCP: $H = A_1 \cdots A_n$ - тоже однородная, т.е. имеет вид:

$$\begin{bmatrix} R & x \\ y \\ z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

R - матрица поворота, x,y,z - вектор смещения. Из R вытаскиваются фиксированные углы w,p,r (yaW, Pitch, Roll; видео про WPR в Fanuc) по формулам:

$$p = arctan2(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$$
 $w = arctan2(r_{32}/\cos(p), r_{33}/\cos(p))$ $r = arctan2(r_{21}/\cos(p), r_{11}/\cos(p))$ (чуть подробнее о формулах)