Ollestion 1 Window All Spin /2 Points] [0.5 point for each choice]

Choose the correct value for $\underline{t}(n)$ for each segment of algorithm given.

```
for (i = 1; i < n; i++)
   print("***")
for (i = 1; i < n/5; i++)
    print("***")
A. O(1)
          B. O(n)
                    C. O(n^2)
                               D. O(n \log n)
```

```
for (i - 1; i < n; i++)
   print("***")
for (j - 1; j < n; j++)
   for (k = 1; k < n; k*=2)
      print("***")
A. O(1)
         B. O(n^2)
                    C. O(n^3)
                              D. O(n log m)
```

Name A. E. Stewart S.

```
if x < y
   for (i = 1; i < n; i++)
      print("***")
else if x = y
         for (j = 1; j < n; j++)
```

Gridlings Charles Pages DESIGN LAYOUT Mode Layout Layout Zoom 100% D Page Width Navigation Pane New Arrangé Spile Show A. O(1) Wordson All B. O(n)C. $O(n^2)$ D. $O(n \log n)$ Wedgy A. O(1) B. $O(n^2)$ Missess if x < y $C. O(n^3)$

```
for (i = 1; i < n; i++)
       print("***")
else if x = y
          for (j = 1; j < n; j++)
              for (k = 1; k < j; k++)
                 print("***")
      else
          for (i = 1; i < n; i*=6)
             print("***")
A. O(1)
          B. O(n^2) | C. O(n^2 \log n) | D. O(n^3 \log n)
```

for $(i = 1; i < n^3; i++)$ print("***") for $(j = 1; j < n^2; j++)$ procedure x(j) procedure x (int x) (for $(\underline{i} = x; \underline{i} > 1; \underline{i} - 1)$ print ("***") الجواب (O(n⁴) A. O(1)B. $O(\underline{n}^n)$ $C. O(n^3)$

Question2 [/0.75 Point] [0.25 point per correct answer, Ω and Ω are also acceptable.]

Applying exhaustive search to the three problems listed below, what is the time complexity: 62

	Problems listed below, what is the ti	
1	The traveling salesman problem	Time Complexity
2	The knapsack problem	$\Theta((n-1)!)$
3		$\Theta(2^n)$
	The assignment problem	$\Theta(n!)$

$$OR \Theta(n!) OR \Theta(\frac{n}{2}!) OR \Theta(\frac{n-1}{2}!)$$

$$\underline{F(n)} = F(n-2) * 2$$

for
$$n > 1$$

$$F(0) = F(1) = 2$$

- A) What is the basic operation performed? __Multiplication by 2. __
- B) Set up and solve a recurrence relation for the number of times the algorithm's basic operation

For the number of multiplications made by this algorithm

$$M(n) = M(n-2) + 1$$
 for $n > 1$

$$\underline{\mathbf{M}}(0) = \mathbf{M}(1) = \mathbf{0}$$

To solving this recurrence, we use the method of backward substitutions:

$$\underline{M}(n) = M(n-2) + 1$$

substitute
$$M(n-2) = M(n-4) + 1$$