kd education academy (9582701166)

Time: 5 Hour

STD 11 Science chemistry kd700+ neet target ch-7 redox reactions

[600]

Total Marks: 600

* Chemistry

1. On balancing the given redox reaction,

$$egin{split} aCr_2O_7^{2-} + bSO_3^{2-}(aq) + cH^+(aq) &
ightarrow 2aCr^{3+}(aq) + bSO_4^{2-}(aq) \ + rac{c}{2}H_2O(l) \end{split}$$

the coefficients a, b and c are found to be, respectively-

- (A) 8,1,3
- (B) 1,3,8
- (C) 3.8.1
- (D) 1,8,3

2. The oxidation state of Cr in Cr_2O_6 is

(A) -6

(B) +12

(C) +6

(D) +4

3. For the redox reaction

$$\mathrm{MnO_4^-} + \mathrm{C_2O_4^{2-}} + \mathrm{H^+} \longrightarrow \mathrm{Mn^{2+}} + \mathrm{CO_2} + \mathrm{H_2O}$$

the correct coefficients of the reactants for the balanced equation are

$${
m MnO_4^-} \ {
m C_2O_4^{2-}} \ {
m H^+} \ {
m (A)} \ {
m 16} \ {
m 5} \ {
m 2} \ {
m KULDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \ {
m SUDDEEP VERMA SIR} \ {
m M. 9582701160} \$$

- (C) 2
- One Day 9th & 10 MATH D Subjects 16 4. In acidic medium, H_2O_2 changes $Cr_2O_7^{2-}$ sto CrO_5 which has two (-O-O-)

bonds. Oxidation state of Cr in CrO_5 is a NEET NDA, CUET

- (A) +5
- SLASS- 101 BOARD CRSE

 95% Mar(sB) CM 3
- "We Believe on result **(C)** r**+6**n promises...." नोट १ KD SIR की अर्जी है आगे आपकी यर्जी है।
- (D) -10

5. Max. number of moles of electrons taken up by one mole of NO_3^- when it is reduced to

- (A) NH_3
- (B) NH_2OH
- (C) NO

(D) NO_2

6. When Sn^{2+} changes to Sn^{4+} in a reaction

(A) It loses two electrons

(B) It gains two electrons

(C) It loses two protons

(D) It gains two protons

7. In the following reaction, $4P+3KOH+3H_2O \rightarrow 3KH_2PO_2+PH_3$

- (A) P is oxidized as well as reduced
- (B) P is reduced only
- (C) P is oxidised only
- (D) None of these

8. The conversion of sugar $C_{12}H_{22}O_{11} \rightarrow CO_2$ is

- (A) Oxidation
- (B) Reduction

	(C) Neither oxidation nor reduction						
	(D) Both oxidation and reduction						
9.	The oxidation number	of Ba in barium perox	ride is				
	(A) +6	(B) $+2$	(C) +1	(D) 4			
10.	Chlorine is in $+1$ oxida	ation state in					
	(A) HCl	(B) $HClO_4$	(C) ICl	(D) Cl_2O			
11.	When $K_2Cr_2O_7$ is conchromium is	nverted to $K_2CrO_4,$ th	e change in the oxida	ation state of			
	(A) 0	(B) 6	(C) 4	(D) 3			
12.	Oxidation number of	N in $(NH_4)_2SO_4$ is					
	(A) $-1/3$	(B) −1	(C) +1	(D) -3			
13.	Oxidation state of chl	orine in perchloric acid	is				
	(A) −1	(B) 0	(C) −7	(D) +7			
14.	Oxidation number of	oxygen in \mathcal{O}_2 molecule	is				
	(A) +1	(B) 0 KULDEEP VERMA SIR	(C) +2 M. 9582701166	(D) -2			
15.	Carbon is in the lower	st oxidation state in					
	(A) <i>CH</i> ₄	(B) CCl _{4ne Day} 1st to 8t 9th & 10 MATH	CF_4	(D) <i>CO</i> ₂			
16.	The oxidation states of	of phosphorus vary from	11^{&} 12th CHEMISTRY, (By KD Sir)				
	(A) -3 to $+5$	(B) -1 to +1 III- JEE, NE	(C) -3 to +3	(D) -5 to $+1$			
17.	The oxidation number	Have in Every Subjects 0 to F and	lt rather than promises" जी हे डाहो आएको सर्जी है।				
	(A) $+2$ Graduat From No. 5 YE.	Add- Gali No- 21, A-1 Block Near Gupta Hard	(C) +6 iware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	(D) +7			
18.	The oxidation state of	_					
	(A) $+\frac{1}{3}$	(B) $+3$	(C) −1	(D) $-\frac{1}{3}$			
19.	Sulphur has highest o						
	(A) SO_2	(B) H_2SO_4	(C) $Na_2S_2O_3$	(D) $Na_2S_4O_6$			
20.		of Fe and S in iron py					
	(A) $4,-2$	(B) $2,-1$	(C) $3, -1.5$	(D) $3,-1$			
21.		owing has the highest o					
	(A) KI_3	(B) <i>KI</i>	(C) IF_5	(D) KIO_4			
22.	The oxidation number	· ·					
	(A) -3	(B) -2	(C) −1	(D) +2			
23.	In which of the fol maximum	lowing compounds th	ne oxidation number	of carbon is			
	(A) HCHO	(B) CHCl ₃	(C) CH_3OH	(D) $C_{12}H_{22}O_{11}$			

24.	If HNO_3 changes into	N_2O , the oxidation nu	mber is changed by					
	(A) +2	(B) −1	(C) 0	(D) +4				
25. In which one of the following changes there are transfer of five electrons (A) $MnO_4^- o Mn^{2+}$ (B) $CrO_4^2 o Cr^{3+}$								
	(C) $MnO_4^{2-} ightarrow MnO_2$							
	(D) $Cr_2O_7^{2-} ightarrow 2Cr^{3+}$							
26.	The oxidation number	r of hydrogen in MH_2 is	i					
	(A) +1	(B) −1	(C) +2	(D) -2				
27.	_	state of Mn is shown	-					
	(A) K_2MnO_4	(B) $KMnO_4$	(C) MnO_2	(D) Mn_2O_2				
28.		f an element which sho						
	(A) 13	(B) 32	(C) 33	(D) 17				
	Oxidation state of oxy		(O) N. 0500704400	(D)				
	(A) +1	(B) +2 (ULDEEP VERMA SIR f nitrogen is highest in	ION ACADEMY	(D) -2				
30.				(D) MII				
	(A) N_3H	(B) NH2OH 9th & 10 MATH	n & 12th	(D) NH_3				
31.	Sulphur has lowest ox		CHEMISTRY, (By KD Sir) ECO, POLITY, GEOGRAPHY	(D) II C				
22	(A) H_2SO_3	Marks in Every Subjects SS- 10th BOARD CBSE	H_2SO_4 . The state of the s	(D) H_2S				
32.	The oxidation number and covalency of sulphur in the sulphur molecule (S ₈) are respectively Add: Gall No. 21, Art Block Near Guida Hardware Bancali Colony, Sant Nasar, Burari, Delhi-110084							
	(A) 0 and 2	Add- Gali No- 21, A-1 Block Near Gupta Har (B) 6 and 8	dware Bangali Colony, Sant Nagar, Burari, Delhi-110084 (C) 0 and 8	(D) 6 and 2				
33		n sulphate oxidation nu		(2) 2 3				
55.	(A) $+3$	(B) +2	(C) +1	(D) -2				
34.	4. A compound is in its low oxidation state. Then its will be(A) Highly acidic(B) Highly basic							
	(C) Highest oxidising property							
	(D) Half acidic, half basic							
35.	The oxidation number (A) $+7$	r of Mn in $KMnO_4$ is (B) -7	(C) +1	(D) -1				
36.	Oxygen has oxidation	states of $+2$ in the						
	(A) H_2O_2	(B) <i>CO</i> ₂	(C) H_2O	(D) OF_2				
37.	Carbon has zero oxid	ation number in						

	(A) CO	(B) CH_4	(C) CH_2Cl_2	(D) CH_3Cl
38.	Nitrogen show differe	ent oxidation states in t	he range	
	(A) 0 to $+5$	(B) -3 to $+5$	(C) -5 to $+3$	(D) -3 to $+3$
39.	Oxidation number of	Mn in K_2MnO_4 and M	nSO_4 are respectively	
	(A) $+7, +2$	(B) $+6, +2$	(C) $+5, +2$	(D) $+2,+6$
40.	Oxidation number of	N in NH_3 is		
	(A) -3	(B) +3	(C) 0	(D) $+5$
41.	The oxidation number	of sulphur in H_2S is		
	(A) -2	(B) +3	(C) $+2$	(D) -3
42.	The oxidation state of	$^{ au}I$ in IPO_4 is		
	(A) +1	(B) +3	(C) +5	(D) +7
43.	In the equation H_2 s hydrogen sulphide is	$G+2HNO_3 ightarrow 2H_2O+2M_3$	NO_2+S . The equival	ent weight of
	(A) 16	(B) 68	(C) 34	(D) 17
44.	- · · · · · · · · · · · · · · · · · · ·	ce 1.12 <i>litre</i> hydrogen a metal would be		e and pressure
	(A) 12	(B) 24 One Day 1st to 8t	h (C) 1.2s÷ 11.2	(D) $1.2 imes 11.2$
45.	In which of the follow	ring rea <mark>ctions there is r</mark>		
	(A) $4KClO_3 \rightarrow 3KClO_3$	4+KCl BIOLOGY, HISTORY,,	CHEMISTRY, (By KD Sir) ECO, POLITY, GEOGRAPHY ET. NDA. CUET	
	(B) Cl_2	Marks in Every Subjects S- 10th BOARD CBSE Marks in (PCM) "We Believe on resu		
		$BaSO_4^++H_2O_2^-$ KD SIR কী প্রস্ক $H_2O_2^-$ Add- Gall No-21, A-1 Block Near Gupta Har	डों) हे डाह्ये डाप्टहों सडों है। dware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	
	(D) $2BaO+O_2 ightarrow 2Ba$	O_2	maic Bangan Golony, Gair Ragai, Baran, Benii: 110004	
46.	What is the equivalen	t mass of IO_4^- when it	is converted into I_2 in	acid medium
	(A) $M/6$	(B) $M/7$	(C) $M/5$	(D) $M/4$
47.	In the reaction $I_2 + 2$ equal to	$2S_2O_3^{} o 2I^- + S_4O_6^{}$	equivalent weight of	iodine will be
	(A) $1/2$ of molecular $ m v$	veight	(B) Molecular weight	
	(C) $1/4$ of molecular v	veight	(D) None	
48.	The equivalent	weight of	KIO_3 in th	e reaction
	$2Cr(OH)_3 + 4OH + KI$	$O_3 o 2 CrO_4^{2-} + 5 H_2 O +$	KI is	
	(A) $Molewt$.			
	(B) $\frac{\text{Mol.wt.}}{6}$			
	(C) $\frac{\text{Mol.wt.}}{2}$			
	(D) $\frac{\text{Mol.wt.}}{3}$			

49.	Match List I with	List II	and	select	the	correct	answer	using	the	codes	given
	below the lists										

List I (Compound)	$List \ II \ (Oxidation \ state \ of \ N)$
$(A) NO_2$	(1) + 5
(B) HNO	(2) - 3
$(C) NH_3$	(3) + 4
$(D) N_2 O_5$	(4) + 1

code: ABCD

(A) 2 3 4 1

(B) 3 1 2 4

(C) 3 4 2 1

(D) 2 3 1 4

50. M^{+3} ion loses $3e^-$. Its oxidation number will be

(A) 0

(B) +3

(C) +6

(D) -3

51. Oxidation number of oxygen in potassium super oxide (KO_2) is

(A) -2

(B) -1

(C) -1/2

(D) -1/4

52. Consider the following statements:

In the chemical reaction $MnO_2 + 4HCl
ightarrow MnCl_2 + 2H_2O + Cl_2$ DICATION ACADEMY (1) Manganese ion is oxidised

(2) Manganese ion is reduced Day-1 9th & 10 MATHS, SCIE

(3) Chloride ion is oxidised

(4)Chloride ion is reduced. Which of these statements are correct

(A) 1 and 3

(B) 1 and भेड़: KD SIR की अर्जा (C) 12 and 3 नि है।

(D) 2 and 4

53. Oxidation number of S in Na_2SO_4 is

(A) -2

(B) 2

(C) -6

(D) 6

54. In alkaline condition $KMnO_4$ reacts as $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$. The equivalent weight of $KMnO_4$ would be (Atomic mass of K=39, Mn=55, O = 16)

(A) 158

(B) 79

(C) 52.7

(D) 31.6

55. In acidic medium, equivalent weight of $K_2Cr_2O_7$ (mol. wt.=M) is

(A) M/3

(B) M/4

(C) M/6

(D) M/2

56. In Which of the following process nitrogen undergoes in oxidation process

(A) $N_2 \rightarrow HN_3$

(B) $N_2\,O_4\,
ightarrow\,2NO_2$ (C) $NO_3^-\,
ightarrow\,N_2O_5$

(D) $N_2O \rightarrow NO$

57. The oxidation number of sulphur in S_8, S_2F_2 and H_2S respectively are

(A) 0, +1, -2

(B) +2,+1,-2

(C) 0, +1, +2

(D) -2, +1, -2

58. In acidic medium, H_2O_2 changes $Cr_2O_7^{-2}$ to CrO_5 which has two (-O-O) bonds. Oxidation state of Cr in CrO_5 is

	(A) 5	(B) 3	(C) 6	(D) 10
59.	Oxidation numbers of respectively	of P in PO_4^{3-},S in SO_4^{3-}	\mathcal{O}_4^{2-} and that of Cr in	n $Cr_2O_7^{2-}$ are
	(A) $-3,+6$ and $+6$	(B) $+5,+6$ and $+6$	(C) $+3,+6$ and $+5$	(D) $+5,+3$ and $+6$
60.	Oxidation number of	C in HNC is		
	(A) +2	(B) -3	(C) +3	(D) 0
61.	In which pair of specie	es the oxidation numbe	er of chlorine is same	
	(A) $ClO^{-1}, HClO_3$	(B) $ICl, NaCl$	(C) $NaCl, NaClO_3$	(D) ICl, ClF_3
62.	The oxidation number	of H in KH, MgH_2 and	d $NaOH$ are respective	ly
	(A) $-1, -1, +1$	(B) $+1, +1, +1$	(C) $+2, +11, -2$	(D) $-2, -3, -1$
63.	The correct set of oxid	dation number of N in	NH_4NO_2 is	
	(A) $-3, +5$	(B) $+5, -3$	(C) $-3, -3$	(D) $-3, +3$
64.	In the reaction $8Al + 3Fe_3O_4 ightarrow 4Al_2O_3$ the number of moles	3+9Fe of electrons transfered	d by $1mol$ of reductant	
	(A) 24	(B) 8 K.D. EDUCAT	IC913ACADEMY	(D) 12
65.	$KMnO_4$ is $(Mn=55)$	lic acid to CO in acidic 9th & 10 MATH	CAMedium then equivalus, SCIENCE & S.ST	
	(A) 158	(B) 31.6 MATHS, PHYSICS, BIOLOGY, HISTORY,, I		(D) 52.67
66.	95% CLAS:	Main ammonium nitrate Marks in (PCM) 8-12th BOARD CBSE		(D)
	Graduati From Ha	on (B.SC Electronics Hons, Regular) nsraj College (B.U.) Add Colli No. 24, A.4 Ploof, Noor Curren Horri	Ware Bangali Colony, Sant Nagar, Burari, Delhi-110084	(D) +5
6/.	present in this molecu		+5 how many peroxy	linkages are
	(A) 4	(B) 3	(C) 5	(D) 2
68	Which of the following		(), -	(-, -
00.	(A) Na_2O_2	(B) CaO_2	(C) <i>PbO</i> ₂	(D) H_2O_2
69.	Which of the following	g can act both as an ox	kidising as well as reduc	cing agent ?
	(A) HNO_2	(B) $KMnO_4$	(C) H_2S	(D) H_2SO_4
70.	Which one of the fol oxidation state	lowing does not have	an underlined atom v	vith fractional
	(A) \underline{Fe}_3O_4	(B) \underline{N}_3H	(C) $K\underline{O}_2$	(D) $Na_2 \underline{S}_2 O_3$
71.	In which of the follow (A) $SO_3^{2-}+Cr_2O_7^{2-}\longrightarrow$	ing reaction element so $SO_4^{2-}+Cr^{+3}$	ulphur get reduced	
	(B) $H_2S + MnO_4^- \longrightarrow I$	$Mn^{+2}+S$		
	(C) $H_2SO_4 + I^- \longrightarrow I_2$	$+SO_2$		

	(D) $H_2SO_4 + 2NaOH$ —	$ ightarrow Na_{2}SO_{4}+2H_{2}O$					
72.	. What is the equivalent weight of hydrochloric acid in given redox reaction $MnO_2+4HCl o MnCl_2+2H_2O+Cl_2$ If molar mass of hydrochloric acid is $M.$						
	(A) M	(B) $M/2$	(C) $3M/4$	(D) $2M$			
73.	$2 mole $ of N_2H_4 loses 1 X . Assuming that all oxidation state of $'N'$ i	of the N appears i	3	•			
	(A) −1	(B) -2	(C) +2	(D) +4			
74.	The stability order of of (A) Normal oxide > Per (B) Peroxide > Normal (C) Superoxide > Normal (D) None of these	roxide > Superoxide I oxide > Superoxide	iperoxide of alkalir	ne metals is			
75.	Which of the following	is not a redox reacti	on				
	$ \begin{array}{c} \text{(A)} \ 2Rb + 2H_2O \rightarrow 2RbO \\ \text{(B)} \ 2CuI_2 \rightarrow 2CuI + I_2 \\ \text{(C)} \ 2H_2O_2 \rightarrow 2H_2O + O_2 \\ \text{(D)} \ 4KCN + Fe(CN)_2 - O_2 \end{array} $	OH + H2 KIDLE VERMA SIR K.D. EDUCA One Day Day-1 11st to 8	M. 9582701166 TON ACADEMY Oth All Subjects HS, SCIENCE & S.ST h & 12th G, CHEMISTRY, (By KD Sir)				
76.	$P_4 + 3NaOH + 3H_2O$		is an example of				
	(A) Inter molecular	10th BOARD CBSE					
	(B) Intra molecular Re	(B.SC Electronics Hons, Regular)					
	(C) Disproportionation	Redox reaction					
	(D) None of these						
77.	Assign A,B,C,D $XeF_4+H_2O\longrightarrow Xe+X$ (A) for disproportiona (B) for comproportion	$feO_3 + HF + O_2$ tion reaction.	en type	of reaction.			
	(C) for either intermol		or displacement re	eaction.			
	(D) for either thermal reaction.	combination redox re	action or thermal	decomposition redox			
78.	Number of moles of K (A) $1/3$	$C_2Cr_2O_7$ reduced by or (B) 3	ne mole of Sn^{2+} ion (C) 1.6	ns is (D) 6			
79.	The number of moles sulphite ion into sulph		$ ho_4$ required to cor	nvert one mole of			

	(A) $2/5$	(B) $3/5$	(C) 4/5	(D) 1			
80.	Which of the following	ng equations is a baland	ced one ?				
	(A) $5BiO_3^- + 22H^+ + Mn^{2+} ightarrow 5Bi^{3+} + 7H_2O + MnO_4^-$						
	(B) $5BiO_3^- + 14H^+ + 2$	$2Mn^{2+} ightarrow 5Bi^{3+}+7H_2O+$	$+2MnO_4^-$				
	(C) $2BiO_3^- + 4H^+ + M$	$Tn^{2+} ightarrow 2Bi^{3+}+2H_2O+M_2$	MnO_4^-				
	(D) $6BiO_3^- + 12H^+ + 3$	$3Mn^{2+} ightarrow 6Bi^{3+}+6H_2O$ –	$+3MnO_4^-$				
81.	What will be the c	oefficients in the bala	anced form of follow	ing equation			
	$xIO_3^- + yHSO_3^- ightarrow zI$	$^{-} + pH^{+} + qSO_{4}^{-2}$					
	x y z						
	(A) 1 3 3	(B) 5 3 1	(C) 1 3 1	(D) 1 2 1			
82.	In the balanced chen	nical reaction					
	$IO_3^- + aI^- + bH^+ ightarrow c$						
	a,b,c,d respectively co	•	(C) 2 5 2 6	(D) = 6 = =			
00	(A) 5,6,3,3	(B) 5,3,6,3	(C) 3,5,3,6	(D) 5,6,5,5			
83.	The values of coefficients $C_{\infty}(OH) + CO^{-} + OH$	ents to balance the foll	owing reaction are				
	$Cr(OH)_3 + ClO^ Cr(OH)_3 - ClO^-$	$D ightarrow CrO_4^{2-} + Cl^- + H_2C$ - $CrO_4^{2-} - Cl^-$	TON ACADEMY				
	(A) $2 - 3 - 3$	One Day	th All Subjects HS, SCIENCE & S.ST				
	(B) $2 - 4 - 3 -$	11t	h & 12th , CHEMISTRY, (By KD Sir)				
	(C) $2 - 4 - 4$						
	(D) 2 - 3 - 2	ACC 424 MAARD CRCE	ult rather than promises" जीं हे आयो आपकी सर्जी है।				
84.	For the redox reaction	fuation (B.SC Electronics Hons. Regular) Hansrai College (D.U.)	rdware Bangali Colony, Sant Nagar, Burari, Delhi- 110084				
	$xP_4 + yHNO_3 ightarrow H_3PO_3$						
	(A) $x = 1, y = 5$	(B) $x = 2, y = 10$	(C) $x = 1, y = 20$	(D) $x = 1, y = 15$			
85.	In the given half read	ction $Cr_2O_7^{2-}+ZH^++e^-$	$T o C r^{3+} + H_2 O$ Find th	e value of Z ?			
	(A) 6	(B) 5	(C) 8	(D) 14			
86.	Which of the following	ng is not intramolecular	redox reaction?				
	(A) $NH_4NO_2 ightarrow N_2+1$	$2H_2O$					
	(B) $2Mn_2O_7 ightarrow 4MnO_7$	O_2+3O_2					
	(C) $2KClO_3 ightarrow 2KCl$ -	$-3O_2$					
	(D) $2H_2O_2 ightarrow 2H_2O +$	O_2					
87.	Which of the following	ng reaction is not a redo	ox reaction ?				
	(A) $SO_2 + H_2S \longrightarrow 2H$	J_2O+S					
	(B) $4KClO_3 \longrightarrow 3KCl$	O_4+KCl					
	(C) $Na_2O+H_2SO_4$ —	$ ightarrow Na_{2}SO_{4}+H_{2}O$					

(D)
$$2Na + O_2 \longrightarrow Na_2O_2$$

- 88. Assign A,B,C,D from given type of reaction. $Fe(s)+H_2O(l) \xrightarrow{Boil} Fe_3O_4+H_2 \uparrow$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 89. Assign A,B,C,D from given type of reaction. $Zn\left(s\right)+2HCl\longrightarrow ZnCl_{2}+H_{2}$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 90. Assign A,B,C,Dfrom given type of reaction.

$$PbO_2 + HCl \ (dil) \xrightarrow{Warm} PbCl_2 \downarrow + Cl_2 \uparrow + H_2O$$
(A) for disproportionation reaction.

- (B) for comproportionation reaction: h & 10 MATHS, SCIENCE & S.ST
- (C) for either intermolecular redox reaction or displacement reaction.
- (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- A,B,C, Darks Teaching EXP. from 10-21, A4 Block New given Bangali Colony, Santype ii, Delhi: 110084 of 91. Assign reaction.

$$Cr_2O_7^{2-} + H^+ + SO_3^{2-} \longrightarrow Cr^{3+} \, (aq.) + SO_4^{2-}$$

- (A) for disproportionation reaction.
- (B) for comproportionation reaction.
- (C) for either intermolecular redox reaction or displacement reaction.
- (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 92. Assign A, B, C, D from given type of reaction.

A for disproportionation reaction.

B for comproportionation reaction.

C for either intermolecular redox reaction or displacement reaction.

D for either thermal combination redox reaction or thermal decomposition redox reaction.

$$MnO_{4}^{-}+H^{+}+Br^{-}\longrightarrow Mn^{2+}$$
 $(aq.)+Br_{2}\uparrow$

(A) for disproportionation reaction.

- (B) for comproportionation reaction.(C) for either intermolecular redox reaction or displacement reaction.
- (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 93. Assign A,B,C,D from given type of reaction. Fe^{2+} $(aq.)+Cr_2O_7^{2-}+H^+\longrightarrow Fe^{3+}$ $(aq.)+Cr^{3+}$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 94. Assign A,B,C,D from given type of reaction. $I_2+S_2O_3^{2-}\longrightarrow I^-+S_4O_6^{2-}$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 95. Assign A,B,C,D from given type of reaction. $Cu^{2+}(aq.)+2I^-\longrightarrow CuI\downarrow +\frac{1}{2}I_2$
 - (A) for disproportionation reaction of history, eco, Polity, Geograph
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 96. Assign A,B,C,D from given type of reaction. $H_3PO_2+AgNO_2\longrightarrow Ag\downarrow +H_3PO_4+NO$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 97. Assign A,B,C,D from given type of reaction. $H_3PO_2+CuSO_4\longrightarrow Cu\downarrow +H_3PO_4+HNO_3$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.

- (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 98. Assign A, B, C, D from given type of reaction.

$$N_2O_3 \xrightarrow{R.T.} NO + NO_2$$

- (A) for disproportionation reaction.
- (B) for comproportionation reaction.
- (C) for either thermal combination redox reaction or thermal decomposition redox reaction.
- (D) Both (A) and (C)
- 99. Assign A,B,C,D from given type of reaction. $CO+I_2O_5(s)\longrightarrow CO_2+I_2$
 - (A) for disproportionation reaction.
 - (B) for comproportionation reaction.
 - (C) for either intermolecular redox reaction or displacement reaction.
 - (D) for either thermal combination redox reaction or thermal decomposition redox reaction.

100. Assign A,B,C,D from given type of reaction $KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2 \uparrow$

- (A) for disproportionation reaction. 9th & 10 MATHS, SCIENCE & S.ST
- (B) for comproportionation reaction. 11th & 12th
- (C) for either intermolecular redox reaction or displacement reaction.
- (D) for either thermal composition redox reaction or thermal decomposition redox reaction.

101. Assign A,B,C,D from given type of reaction. $K_2Cr_2O_7 \stackrel{\Delta}{\longrightarrow} K_2CrO_4 + Cr_2O_3 + O_2 \uparrow$

- (A) for disproportionation reaction.
- (B) for comproportionation reaction.
- (C) for either intermolecular redox reaction or displacement reaction.
- (D) for either thermal combination redox reaction or thermal decomposition redox reaction.
- 102. Assign A,B,C,D from given type of reaction.

$$(NH_4)_2Cr_2O_7 \stackrel{\Delta}{\longrightarrow} N_2 \uparrow + Cr_2O_3 \downarrow + H_2O \uparrow$$

- (A) for disproportionation reaction.
- (B) for comproportionation reaction.
- (C) for either intermolecular redox reaction or displacement reaction.
- (D) for either thermal combination redox reaction or thermal decomposition redox reaction.

125.	Oxidation number of (A) -3	carbon in CH_3-Cl is (B) -2	(C) −1	(D) 0
126		, ,		
120.	The sum of the oxida (A) $+2$	(B) 0	(C) $+4$	(D) -4
127.	Which is correctly ma Compound → O.S (A) Ferrocene → (B) Sodium Nitroprus	atched tate of $C.M.I. \ +3$ side $ ightarrow +1$		
	(C) Brown Ring comp (D) None of these	Diex $ ightarrow$ $+3$		
128.		weight of S_4O_6+2NaI is :-		the reaction
	(A) M	(B) $\frac{M}{8}$	(C) $\frac{M}{0.5}$	(D) $\frac{M}{2}$
	A compound contain $+1$ then the possible (A) xyz	formula of compound KULDEEP VERMA SIR (B) xyz_2 D. EDUCA	d is M. 958270111 (C) x_2yz	$+3, y$ is -5 and z is (D) $(xy)_2z$
	(A) 6,6,6	(B) 6,4,6 9th & 10 M.	ATHS SCIENCE & S.ST (C) 7,2,7	(D) 7,6,3
131.	What is the oxidation	ostate of osmium in 7	B and 7C, respect	0
	(A) 6,8	(B) 8,6	(C) 6,6	(D) 8,8
132.	What is the equivalent $MnO_2 + 4HCl \rightarrow MnO_2$ If molar mass of hydronical (A) M	$aCl_2+2H_2O+Cl_2$	chloric acid in gi $(C)\ 3M/4$	iven redox reaction
133	Oxidation state of $'S'$,	•	
133.	(A) $+6, +5, 0$	(B) $+6,+6,+6$		(D) $+6, +2, 0$
134.	In following reaction are	$n y M n O_4^- + x H^+ + C_2 O$	$g_4^- o yMn^{++} + 2CC$	$\partial_2 + rac{x}{2} H_2 O$, $\ x$ and $\ y$
	(A) 2 and 16	(B) 16 and 2	(C) 8 and 16	(D) 5 and 2
135.	1 mole of $H_2C_2O_4$ is mole of $NaHC_2O_4$ is	oxidised by x mole of oxidised by y mole of	-	

<i>1</i> E	(A) Boron	(B) Oxygen	(C) Chlorine	(D) Fluorine
15	14/1 777.5			
43.			oxidising agent and ເ then the number of electro	ultimately forms ons transferred in
	(A) 4,3,1,5	(B) 1,5,3,7	(C) 1,3,4,5	(D) $3,5,7,1$
46.	•	ely in $400\ ml\ No$	sted completely and SO_2 aOH solution. If only 50% Nac	•
	(A) $\frac{5}{3}M$		(B) $rac{10}{3}M$	
	(C) $\frac{5}{6}M$		(D) $\frac{20}{3}M$	
47.	Define the oxidation $3K_2MnO_4 + 2H_2O +$		in product of the given react $Y + 4KHCO_3$	ion
	(A) $+7, +4$	(B) $+6, +3$	(C) $+7, +2$	(D) $+5, +5$
48.	When ${\it CrI}_3$ oxidises	to $Cr_2O_7^{-2}$ and	IO_4^- , equivalent mass of Crl	T_3 will be :-
	(A) $\frac{M}{33}$	(B) $\frac{M}{27}$	(C) $\frac{M}{28}$	(D) $\frac{M}{24}$
49.	•		$+2MnO_2+2OH$ (Fe_3O_4 in the above equation	
	(A) M	(B) $\frac{3M}{8}$	9th & 10 MATHS (SCIED ME & S.ST)	(D) $\frac{M}{6}$
50.	(A) $x=2, y=5, z=1$ (C) $x=2, y=5, z=8$	HINO3 and HIM CLASS-10th BOADD CBSE Ord International Silver Olympia (17 Bash) comittant from Bash (18 Bash) Crandation (B.S. Electronics Nan. Regular) From Reserve (Claspia) S YEARS TEACHING EXP. Add-Gali II	MATHS, PHYSICS, CHEMISTRY, (By KD Sir) OLOGY, HISTORY, ECO, POLITY, GEOGRAPHY nO_4+b $Pb(NO_3)_2+c$ H_2O Believe on result rather than promises" 3.8 KD SIR $color color co$	
	Don	t be alraid to	fail, be afraid not to try"	