Classmate

Date ______
Page ____

Q2.
$$[B] = B[B][A] - \sigma[B]$$
 — (i)

$$[A] = -B [B] [A] + r[B] - (11)$$

$$[A] + [B] = N.$$
 — (111)

$$0 = -\beta [B]^2 + \beta [B] - \gamma [B]$$

$$0 = -\beta \left(\beta \right)^2 + \left(\beta \right) \left(\beta - \gamma\right)$$

$$\frac{B[B7^2 = CB][B-v]}{N}$$
 When $[B7] = 0$

$$\begin{bmatrix} B7 = N \begin{pmatrix} 1 - \gamma \\ \hline B \end{pmatrix}$$

$$B7 = N \left(1 - 1 \right)$$

94	Page
()	A Clording to the fixed point, Non-zero fixed point $\ddot{b}^* = N - N$ $\ddot{\kappa}_{\circ}$
	Non-zero fined point B* = N-N Ko
	Stability of the fixed points.
•	Finding the Tacobian of the equations
	$J = \begin{cases} f_{\text{CA}}(\text{CA}7, \text{CB}7) & f_{\text{CB}7}(\text{CA}7, \text{CB}7) \end{cases}$
	(A7, [B7) 9[B] (CA7, [B])
	where $f_{EAT}(AI,(BJ)) = \frac{\partial(DAI)}{\partial(AI)} f_{EBI}(AI,(BJ)) = \frac{\partial}{\partial(AI)}$
	$g_{A7}(A7, (B7) = \partial(B7) \qquad g_{B7}(A1, B) = \partial(B) \qquad \partial(B)$
	$J = \begin{bmatrix} -\beta & [B] \end{bmatrix} - B & [A] + \gamma \end{bmatrix}$
	B[B] B[A] -r

at (N, 0)

0 - B+8 0 3-8 J(N,0)

at N/Ko, N(1-1/Ro) (A*, B*)

J(A*, B*)= 0

Finding the Eigen natures.

 $A - \lambda 1 = 0$.

FOY J (N, 0)

-B+8 =

-B-8-A 0

 $\begin{array}{c} (\lambda) \left(\beta - \gamma - \lambda\right) = 0 \\ \text{When } \lambda! = 0 \\ \beta - \gamma - \lambda = 0 \\ \lambda = \beta - \gamma \end{array}$