Contextual Combinatorial Cascading Bandits

Authors: Shuai Li, Baoxiang Wang, Shengyu Zhang, Wei Chen

(ICML'16: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, June 2016)

Instructor: Dr. Chicheng Zhang

Presenter: Rupal Jain

Multi-Armed Bandits Problem

- System of base arms, **K**
- Reward of each arm *i* are random samples from unknown distributions with unknown means.
 - o best arm $\mu^* = \max \mu_i \text{ (mean } = \mu_i)$
- In each round t, the learning agent selects one arm i_t to play and observe the reward, $R_t(i_t)$
- Regret after playing T rounds: Regret $= T\mu^* \mathbb{E}[\sum_{t=1}^{T} R_t(i_t)]$

Goal: Minimize the Cumulative regret

Problem of MAB: dealing with trade-off between exploitation and exploration

Feedbacks

At every time step, a learning agent chooses a subset of ground items (super arm) under certain combinatorial constraints.

- 1. Bandit feedback: only reward of chosen super arm is obtained
- 2. **Semi-bandit feedback**: observe outcomes of the individual base arms in super arm
- 3. Cascading feedback: can obtain the reward of the super arm and the weights of some base arms in the chosen subset of arm, according to some stopping criterion.

Related Work

Contextual Combinatorial Multi-Armed Bandit

- Involves Semi-bandit feedback and nonlinear reward
- May have other combinatorial constraints

Ref: Oin et al., 2014

Cascading Bandit

- Feasible action is Sequential list
- Stopping at first satisfactory item from the list
- Feedback is recorded as Clicks
- Disjunctive objective: reward of an action is 1 if there is at least one "good" item in the list

Ref: Kveton et al. 2015a

Machine Learning

About 2.230.000.000 results (0.37 seconds)

https://en.wikipedia.org > wiki > Machine_learning :

Machine learning

Machine learning (ML) is a field of study in artificial intelligence concerned with t development and study of statistical algorithms that can effectively ...

Outline of machine learning · Timeline · Machine Learning (journal) · Data mining

https://www.ibm.com > topics > machine-learning :

What is Machine Learning?

Machine learning is a branch of artificial intelligence (AI) and computer scient on the use of data and algorithms to imitate the way that ...

What is machine learning? Machine Learning vs. Deep...

https://mitsloan.mit.edu > ideas-made-to-matter > mac...

Machine learning, explained

Apr 21, 2021 — Machine learning is a subfield of artificial intelligence that ability to learn without explicitly being programmed. "In ...

Why It Matters - How Businesses Are Using ... - How Machine Learning Wor

https://www.sas.com > SAS Insights > Analitika

Machine Learning: What it is and why it matters

Machine learning is a method of data analysis that automates analytical m branch of artificial intelligence based on the idea that ...

Machine Learning In Today's... Learn More About Industries... How It Wo

Related Work - Cont.

Position Discount

- Combes et al. 2015a considered a cascading model with a particular case of **contextual information**,
- User is recommended with **K** items
- The position discounts introduced makes the recommended set in the decreasing order of UCBs, which is more realistic
- Considered in the list order, so that the agent's reward is discounted depending on the position where the stopping criterion is met.

Recommended For You

Wei zhuang zhe (TV series 2015-)

Kai Wang, Dong Jin, Ge Hu

The Terminator (1984) R 1 h 47 min - Action | Sci-Fi

Metascore Arnold Schwarzenegger, Linda Hamilton, Michael Biehn

Back to the Future (1985) PG 1 h 56 min - Adventure | Comed...

Metascore Michael J. Fox, Christopher Lloyd, Lea Thompson

Breaking Bad (TV series 2008-2013) 49 min - Crime | Drama | Thriller

+95 Bryan Cranston, Aaron Paul, Anna...

Related Work - Cont.

Combinatorial Cascading Multi-Armed Bandit

- Feasible action is subset of items under combinatorial constraints
- Can involve Semi-bandit feedback
- Conjunctive objective: reward of an action is 1 if all the items are "good" in the list
- Challenges:
 - Exponential number of actions
 - Offline optimization may already be hard

Ref: Kveton et al., 2015c

Recommended For You

Wei zhuang zhe (TV series 2015-) Drama

Kai Wang, Dong Jin, Ge Hu

The Terminator (1984) R 1 h 47 min - Action | Sci-Fi

Metascore Arnold Schwarzenegger, Linda Hamilton, Michael Biehn

Back to the Future (1985)

PG 1 h 56 min - Adventure | Comed...

Metascore Michael J. Fox, Christopher Lloyd, Lea Thompson

Breaking Bad (TV series 2008-2013)

49 min - Crime | Drama | Thriller

*95 Bryan Cranston, Aaron Paul, Anna...

- 2 h - Riography I Drama I History 6

Author's Contribution

- Formulate the **Contextual Combinatorial Cascading Bandits** problem which handles
 - contextual information
 - cascading feedback
 - position discount
 - general reward function (non-linear)
- Proposed C³ Algorithm
- Satisfy Monotonicity and Lipschitz continuity conditions

	context	cascading	Position Discount	General Reward
Combinatorial UCB ¹	No	Yes	No	Yes
Contextual Combinatorial UCB ²	Yes	No	No	Yes
Comb- Cascade ³	No	Yes	No	No
C³-UCB	Yes	Yes	Yes	Yes

Ref:

- 1: Chen et al. 2016
- 2: Qin et al., 2014
- 3: Kveton et al., 2015c

Learning Protocol

- $E=\{1,...,L\}$: set of base arms
- Action $A = (a_1, ..., a_k)$: $a_1, ..., a_k \in E$; a sequence of base arms (each with length of k)
 - There is a feasible action set S with length at most K
- At each time $t \ge 1$
 - set of contexts $\{x_{t,a}\}_{a \in E}$ are given (e.g. user/keyword features) and is ≤ 1
 - learning agent recommends a feasible action to user, $A_t = (a_1^t, \ldots, a_{|A_t|}^t) \in \mathcal{S}$
 - Cascading Feedback Model: The user checks from the first item and stops at O_{r} -th item.
 - Feedback: observe weights ("quality") of first O_t items in A_t at time t, $w_t(a_k^t)$, $k \le O_t$.

$$\mathbb{E}[w_t(a)|H_t] = \theta_*^T x_{t,a} = w_{t,a}$$
Fixed but unknown

Learning Protocol - Cont.

- Assume the expected reward of an action A is a function $f(A, w_t)$ of expected weight, $w_t = \{w_{t,a}\}_{a \in E} = (\theta_*^T x_{t,a})_{a \in E}$ of each base arm.
- Satisfy the following assumptions:
 - **Monotonicity:** expected reward function f(A, w) is a non-decreasing with respect to w: for any $w, w' \in [0, 1]^E$, if w(a) < w'(a), we have f(A, w) < f(A, w').
 - **Lipschitz continuity:** The expected reward function f(A, w) is B-Lipschitz continuous with respect to w together with position discount parameters $\gamma_k \subseteq [0,1]$, $k \le K$. For any

$$w,w' \in [0,1]^{E}$$
, we find $|f(A,w) - f(A,w')| \le B \sum_{k=1}^{|A|} \gamma_{k} |w(a_{k}) - w'(a_{k})|$ where $A = (a_{1}, \ldots, a_{|A|})$.

Learning Protocol - Cont.

- An Oracle $\mathscr{O}_{\mathcal{S}}(w)$ is called an α -approximation oracle for some $\alpha \leq 1$, if on given input w, the oracle returns an action $\mathbf{A} = \mathscr{O}_{\mathcal{S}}(w) \subseteq \mathcal{S}$ satisfying $f(A, w) \geq \alpha f(A^*, w)$ where $A = \operatorname{argmax}_{A \in \mathcal{S}} f(A, w)$
- Regret in **T** rounds

Regret =
$$\sum_{t=1}^{T} f_{t}^{*} - \mathbb{E} \left[\sum_{t=1}^{T} f(A_{t}, w_{t}) \right]$$
Best cumulative reward

 f_t^* : max expected reward in round t

Example - Movie Recommendation

- Each Movie i has a feature vector m_i.
- At time t,
 - \circ A random user comes with feature vector \mathbf{u}_{t}
 - Use $\mathbf{x}_{i,t} = \mathbf{g}(\mathbf{m}_i, \mathbf{u}_t)$, a function of \mathbf{m}_i and \mathbf{u}_t , as context
 - \circ The learning agent recommends a list of movies A_t .
 - The user checks from the first movie and stops at the attractive one.
 - The learning agent received reward γ_k if the user stops at position k.

$$1 = \gamma_k \ge \ldots \ge \gamma_k \ge \theta$$

Algorithm

- To estimate the expected reward, we get an estimate θ_* using ridge regression problem on context vector \mathbf{x} and observed rewards \mathbf{w} .
- We get an l^2 -regularized least-squares estimation of θ_* with regularization parameter, $\lambda > 0$ $\hat{\theta}_t = \left(X_t^T X_t + \lambda I\right)^{-1} X_t^T Y_t$

Where $X_t \in \mathbb{R}^{(\sum_{s=1}^t O_s).d}$: matrix with rows as $\gamma_k x_{s,a_k}^T$ and Y_t : column vector with elements as $\gamma_k w_s(a_k^s), k \in [O_s], s \in [t]$

• Let V_t is a symmetric positive definite matrix, $\in \mathbb{R}^{d \times d}$

$$V_t = X_t^T X_t + \lambda I = \lambda I + \sum_{s=1}^t \sum_{k=1}^{o_s} \gamma_k^2 x_{s,a_k^s} x_{s,a_k^s}^T$$

Algorithm

• Lemma 1: $\beta_t(\delta) = R\sqrt{\ln(\frac{\det(V_t)}{\lambda^d\delta^2})} + \sqrt{\lambda}$. For any $\delta > 0$, with probability at least 1- δ , for all t > 0, we have $||\boldsymbol{\theta}|_t^{\wedge} - \boldsymbol{\theta}_*||_{V_t} \leq B_t(\delta)$

Proof: By theorem 2 in (Abbasi-Yadkori et al., 2011), we can obtain a good estimate of difference between θ_* and $\theta_*^{^{\wedge}}$.

Interpretation: With high probability, the estimate θ^{\wedge} lies in the ellipsoid centered at θ_* with confidence radius β_* (δ) under V_* norm.

• The upper confidence bound (UCB) of the expected weight for each base arms:

$$U_{t}(a) = \min \left\{ \widehat{\theta}_{t-1}^{T} x_{t,a} + \beta_{t-1}(\delta) \left| \left| x_{t,a} \right| \right|_{V_{t-1}^{-1}}, 1 \right\}$$

• Lemma 2: When $\|\boldsymbol{\theta}_{t}^{\wedge} - \boldsymbol{\theta}_{*}\|_{V_{t}} \leq B_{t}(\delta)$ holds for time t-1, we have

$$0 \le U_t(a) - w_{t,a} \le 2\beta_{t-1}(\delta)||x_{t,a}||_{V_{t-1}^{-1}}$$

Proof: Note $w_{t,a} = (\theta_*^T x_{t,a})$

By Holder's inequality

$$\begin{aligned} |\hat{\theta}_{t-1}^{T} x_{t,a} - \theta_{*}^{T} x_{t,a}| &= |[V_{t-1}^{1/2} (\hat{\theta}_{t-1}^{T} - \theta_{*}]^{T} (V_{t-1}^{-1/2} x_{t,a})| \\ &\leq ||V_{t-1}^{1/2} (\hat{\theta}_{t-1} - \theta_{*}||_{2} ||V_{t-1}^{-1/2} x_{t,a}||_{2} \\ &= ||\hat{\theta}_{t-1} - \theta_{*}||_{V_{t-1}} ||x_{t,a}||_{V_{t-1}^{-1}} \\ &\leq \beta_{t-1}(\delta) ||x_{t,a}||_{V_{t-1}^{-1}} \end{aligned}$$

Because $1 - \theta_*^T x_{t,a} \geq 0$ and

$$0 \le (\hat{\theta}_{t-1}^T x_{t,a} + \beta_{t-1}(\delta)||x_{t,a}||_{V_{t-1}^{-1}}) - \theta_*^T x_{t,a}$$

$$\le 2\beta_{t-1}(\delta)||x_{t,a}||_{V_{t-1}^{-1}}$$

Claimed result is obtained...

Algorithm

- 1. Learning agent computer (UCBs), $U_t \in [0,1]^E$ for expected weights of all base arms in E.
- 2. Uses U_t to select an action
 - $A=(a_1^t,...,a_{|At|}^t)$ User selects from the first base arm in A_t and stops at O_t -th base arm,

Agent observes $w_t(a_k^t)$, $k \le O_t$

4. Learning agent updates V_t , X_t Y_t to get newer estimates θ_t and θ_t and new confidence
radius, $\beta_t(\delta)$

Algorithm 1 C³-UCB

- 1: Parameters:
- 2: $\{\gamma_k \in [0,1]\}_{k \le K}; \delta = \frac{1}{\sqrt{n}}; \lambda \ge C_{\gamma} = \sum_{k=1}^{K} \gamma_k^2$
- 3: Initialization:
- 4: $\hat{\theta}_0 = 0, \beta_0(\delta) = 1, V_0 = \lambda I, X_0 = \emptyset, Y_0 = \emptyset$
- 5: **for all** t = 1, 2, ..., n **do**
- 6: Obtain context $x_{t,a}$ for all $a \in E$
- 7: $\forall a \in E$, compute
- 8: $U_t(a) = \min\{\hat{\theta}_{t-1}^{\top} x_{t,a} + \beta_{t-1}(\delta) \|x_{t,a}\|_{V_{t-1}^{-1}}, 1\}$
- 9: //Choose action A_t using UCBs U_t
- 10: $A_t = (a_1^t, ..., a_{|A_t|}^t) \leftarrow \mathcal{O}_{\mathcal{S}}(U_t)$
- 11: Play A_t and observe $O_t, w_t(a_k^t), k \in [O_t]$
- 12: //Update statistics
- 13: $V_t \leftarrow V_{t-1} + \sum_{k=1}^{O_t} \gamma_k^2 x_{t, \boldsymbol{a}_k^t} x_{t, \boldsymbol{a}_k^t}^{\mathsf{T}}$
- 14: $X_t \leftarrow [X_{t-1}; \ \gamma_1 x_{t, \boldsymbol{a}_1^t}^{\mathsf{T}}; \ \dots; \ \gamma_{\boldsymbol{O}_t} x_{t, \boldsymbol{a}_{\boldsymbol{O}_t}^t}^{\mathsf{T}}]$
- 15: $Y_t \leftarrow [Y_{t-1}; \gamma_1 w_t(a_1^t); \dots; \gamma_{O_t} w_t(a_{O_t}^t)]$
- 16: $\hat{\theta}_t \leftarrow (\boldsymbol{X}_t^{\mathsf{T}} \boldsymbol{X}_t + \lambda I)^{-1} \boldsymbol{X}_t^{\mathsf{T}} \boldsymbol{Y}_t$
- 17: $\beta_t(\delta) \leftarrow R\sqrt{\ln(\det(V_t)/(\lambda^d \delta^2))} + \sqrt{\lambda}$
- 18: **end for**

Result

Theorem: Suppose the expected reward function f(A, w) is a function of expected weights and satisfies the requirements of monotonicity and B-Lipschitz continuity. Then the α -regret of \mathbb{C}^3 -UCB algorithm, satisfies

$$Regret^{lpha}(n) = O(rac{dB}{p^*}\sqrt{TK}ln(T))$$

Proof:

$$egin{aligned} R^{lpha}(n) & \leq rac{2\sqrt{2}B}{p^*}\sqrt{nKdln(1+C_{\gamma}n/(\lambda d))} \ . & (R\sqrt{ln[(1+C_{\gamma}n/(\lambda d))^dn]}+\sqrt{\lambda})+lpha\sqrt{n} \ & = O(rac{dBR}{p^*}\sqrt{nKln(C_{\gamma}n)}) \end{aligned}$$

 $\mathbf{p}_{t,A}$ be the probability of full observation of A. $\mathbf{p}^* = \min_{1 \le t \le T} \min_{\mathbf{A} \in \mathbf{S}} \mathbf{p}_{t,A}$: Minimal probability that action has all base arms observed all time.

d: dimension of latent and feature vectors;

K: largest length of the sequence

 $\mathbf{n} = \mathbf{T}$ (number of rounds)

R is the sub-Gaussian constant

 $C\gamma \le K$ (sum of discounts \le number of

positions)

$$C_{\gamma} = \sum_{k=1}^{K} \gamma_k^2 \leq K$$

THE UNIVERSITY OF ARIZONA 16

Experiment 1

Synthetic Data: compare C³-UCB to CombCascade (Combinatorial Cascading) on synthetic problems.

Setup:

- 1. The problem is a contextual cascading bandit with L = 200 items and K = 4, d = 20 where at each time t.
- 2. The agent recommends K items to the user.
- 3. At first, we randomly choose a θ in \mathbb{R}^{d-1} with $\|\boldsymbol{\theta}\|_2 = 1$ and let $\boldsymbol{\theta}_* = (\boldsymbol{\theta}/2, 1/2)$.
- 4. Then at each time t, we randomly assign $\mathbf{x'}_{t,a}$ in $\mathbf{R^{d-1}}$ with $\|\mathbf{x'}_{t,a}\|_2 = 1$ to arm \mathbf{a} and use $\mathbf{x}_{t,a} = (\mathbf{x'}_{t,a}, 1)$ to be the contextual information for arm \mathbf{a} . $\theta_*^\top x_{t,a} = \frac{1}{2}(\theta^\top x'_{t,a} + 1) \in [0, 1]$

This processing will guarantee the inner product

Next we generate the weight for arm a at time t by a random sample from the Bernoulli distribution with mean $\theta_*^T x_{ta}$

The above two settings are of disjunctive objective where the learning agent chooses a set of K items out of L ground items and observes a prefix of the chosen K items until the first one with weight 1;

The above two settings are of conjunctive objective where the learning agent chooses a set of K items out of L ground items and observes from the first item until the first one with weight 0.

Experiment 2

Movie Recommendation: evaluate C3-UCB algorithm with dataset MovieLens (Lam & Herlocker, 2015) of 2015

Problem:

- 1. There is a big sparse matrix $A = \{0, 1\}^{N1 \times N2}$ where A(i; j) = 1 denotes user i has watched movie j.
- 2. Split A as H + F according to a Bernoulli distribution ~Ber(p) for some fixed p. (H : known history "what users have watched" and F as future criterion.)
- 3. Derive feature vectors of both users and movies via SVD, $U = (u_1, ..., u_{N1})$ and $M = (m_1, ..., m_{N2})$.
- 4. At every time t, we randomly choose a user $I_t \in [N_1]$. From Li et al., 2010, use $\mathbf{x}_{t;j} = \mathbf{u}_{It} \mathbf{m}_{j}^T$ as the contextual information for each movie \mathbf{j} .
- 5. User provides cascading feedback, stopping at a movie they like and Agent receives discounted reward based on stop position.

OF ARIZONA 20

6. The real weight of movie \mathbf{j} at time \mathbf{t} , $\mathbf{w}_{\mathbf{t}}(\mathbf{j})$, is $\mathbf{F}(\mathbf{I}_{\mathbf{t}}, \mathbf{m}_{\mathbf{j}})$.

Setup:

- 1. The problem is a contextual cascading bandit with L = 400 movies and K = 4, d = 400 where at each time t.
- 2. We experiment with both $\gamma = 1$ (no position discount) and $\gamma = 0.9$, and compare our algorithm with CombCascade.

Result: The rewards of our algorithms are 3.52 and 3.736 times of those of CombCascade (for $\gamma = 1$ and 0:9, respectively), which demonstrate the advantage to involve contextual information in real applications.

. 2

Experiment 3

Network Routing Problem: evaluate C³-UCB with RocketFuel dataset (Spring et al., 2004).

Setup:

- 1. The ground set E is the set of links in the network.
- 2. Before learning, the environment randomly chooses a d-dimensional vector $\theta \in [0, 1]^d$ (d = 5)
- 3. At each time t, a pair of source and destination nodes are randomly chosen
- 4. The feasible action set S_t at time t contains all simple paths, paths without cycles, between the source and destination.
- 5. Any edge a in the set S_t is assigned with a random d-dimensional contextual information vector $\mathbf{x}_{t,a}$.

OF ARIZONA 22

Result: Both θ and x have been processed same as experiment 1, such that $\theta_*^T x \in [0, 1]$. The weight for each edge a is a sample from Bernoulli distribution with mean $\theta_*^T x_{t,a}$. Then the learning agent recommends a feasible path A to maximize the expected reward in the conjunctive objective. This experiment is on different position discounts.

Conclusion:

- Incorporating contextual information to cascading bandit with position discounts
- Each action is an ordered list and only a prefix of the action is observed each time.
- demonstrate the advantage to involve contextual information and position discounts.
- Application potential
 - Any sequential list recommendation (search, ads, mobile recommendations)
 - Need online (real time) feedback

Future Work:

• investigate on lower bounds of the regret and cascading on general graphs

References:

- https://icml.cc/2016/reviews/581.txt
- Kveton, Branislav, Wen, Zheng, Ashkan, Azin, and Szepesvari, Csaba. Combinatorial cascading bandits. Advances in Neural Information Processing Systems, 2015c.
- Kveton, Branislav, Szepesv'ari, Csaba, Wen, Zheng, and Ashkan, Azin. Cascading bandits: learning to rank in the cascade model. In Proceedings of the 32th International Conference on Machine Learning, 2015a.
- Qin, Lijing, Chen, Shouyuan, and Zhu, Xiaoyan. Contextual combinatorial bandit and its application on diversified online recommendation. In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM), 2014.
- Combes, Richard, Magureanu, Stefan, Proutiere, Alexandre, and Laroche, Cyrille. Learning to rank: Regret lower bounds and efficient algorithms. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 231–244. ACM, 2015a.

OF ARIZONA 25