

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 특허출원 2003년 제 0088878 호
Application Number 10-2003-0088878

출 원 년 월 일 : 2003년 12월 09일
Date of Application DEC 09, 2003

출 원 인 : 월지이노텍 주식회사
Applicant(s) LG INNOTECH CO., LTD.

2004년 12월 27일

특 허 청
COMMISSIONER

[서지사항]

【류명】 특허 출원 서
【장소구분】 특허
【수신처】 특허청장
【발조번호】 0001
【제출일자】 2003.12.09
【국제특허분류】 H02P
【발명의 명칭】 스텝링 모터 구조
【발명의 영문명칭】 Structure of Stepping Motor
【출원인】 엘지이노텍 주식회사
【출원인코드】 1-1998-000285-5
【대리인】
【설명】 허용록
【대리인코드】 9-1998-000616-9
【포괄위임등록번호】 2002-038994-0
【발명자】
【성명】 양응모
【성명의 국문표기】 YANG,Eung Mo
【주민등록번호】 710228-1628413
【우편번호】 506-765
【주소】 광주광역시 광산구 운남동 주공4단지 405동 1704호
【국적】 KR
【영자】
【성명의 국문표기】 손영규
【성명의 영문표기】 SON,Young Kyu
【주민등록번호】 641111-1683613
【우편번호】 506-772
【주소】 광주광역시 광산구 월계동 선경아파트 108동 503호
【국적】 KR
【사정구】 청구
【부지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사 를 청구합니다. 대리인
허용록 (인)

【수료】

【기본출원료】	17	면	29,000 원
【가산출원료】	0	면	0 원
【우선권주장료】	0	건	0 원
【심사첨구료】	17	항	653,000 원
【합계】	682,000 원		
【부서류】	1. 요약서·명세서(도면)_1종		

【요약서】

1. 【요약】

본 발명에 따른 스텝핑 모터 구조는 일축에 개구부를 형성하고, 타측에 베어링 치들 축방향으로 가이드할 수 있도록 하는 가이드부를 형성한 하우징과; 상기 하우징 내부에 설치되어 자기장을 형성하는 스테이터와; 일단부가 상기 스테이터 내부에 일정 공극을 갖도록 삽입되고, 상기 베어링장치에 회전 가능하게 지지되는 로터와; 기 로터의 일단부가 삽입, 판통되고 상기 하우징의 개구면과 접합되는 제2거치부와, 상기 제1거치부를 관통한 로터의 타단이 회전 가능하게 지지되는 제2거치부를 갖는 브라켓을 포함하여 구성되는 것을 특징으로 한다.

본 발명은 축 지지구조의 단순화를 통해 부품간의 조립정밀도를 높이는 효과와, 어링 가이드를 하우징에 일체로 형성함으로써, 스텝핑 모터의 부품 수를 줄이고, 텁공경을 단순화시키는 효과를 갖는다.

【표도】

도 3

【명세서】

발명의 명칭】

스텝핑 모터 구조{Structure of Stepping Motor}

E면의 간단한 설명】

도 1은 종래의 스텝핑 모터 구조를 보인 개략단면도

도 2는 종래의 스텝핑 모터 하우징 조립구조를 보인 확대단면도

도 3은 본 발명의 스텝핑 모터 구조를 보인 개략단면도

도 4는 본 발명의 스텝핑 모터 하우징 조립구조를 보인 확대단면도

•도면의 주요부분에 대한 부호의 설명•

110: 하우징 111: 베어링 가이드부

113: 개구부 115: 중공부

120: 스테이터 121a, 121b: 코일

123a, 123b: 보빈 125a, 125b, 125c, 125d: 투스요크

130: 로터 131: 사프트

131a: 리드 스크류 131b: 고정단

133: 마그네트 140: 브라켓

141: 제1거치부 141a: 축 관통홀

142: 제2거치부 151: 축 지지부재

160: 축 지지부 171: 트러스트 베어링

발명의 상세한 설명】

【발명의 목적】

발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 슬립형 스텝핑 모터의 구조에 관한 것이다.

일반적으로 스텝핑 모터는 플로피 디스크나 프린터, 자동체어 공작기계 등의 수
은 분야에 이용되고 있는 것으로서, 대체적으로 사프트의 일단에 리드 스크류가 형
되고 상기 리드 스크류에 이송부재가 결합되어 모터구동에 의해 축 방향으로의 이
이 이루어져도록 한 것이다.

도 1은 종래의 스텝핑 모터 구조를 보인 단면도이고, 도 2는 종래의 스텝핑 모
하우징 조립구조를 보인 확대단면도로서, 등 도면에 도시된 바와 같이, 종래의 스
팅 모터 구조는 하우징 결합체(10), 스테이터(20), 로터(30), 브라켓(40), 제1축
지부(50), 제2축 지지부(60)로 구성된다.

상기 본 발명을 구성하는 각 구성 요소들에 대해 보다 자세히 설명하면 다음과
다.

먼저, 상기 하우징 결합체(10)는 제 1하우징(11) 및 제 2하우징(13)의 정합으로
성된다.

그리고, 상기 스테이터 (20)는 상기 하우징 결합체 (10) 내부에 설치되어 자가력 형성시킬 수 있도록, 코일 (21a, 21b)이 권선된 한 쌍의 보빈 (23a, 23b)과 서로 치합하는 두 쌍의 투스 요크 (25a, 25b, 25c, 25d)로 구성된다.

그리고, 상기 로터 (30)는 속 표면을 따라 리드 스크류 (31a)를 형성한 샤프트 1)와, 상기 샤프트 (31) 일 속단에 상기 스테이터 (20)에 대응하는 마그네트 (33)를 함하여 구성된다.

이때, 상기 로터 (30)는 스테이터 (20) 내에 일정 공극을 유지시켜 설치된다.

그리고, 상기 브라켓 (40)은 제1거치부 (41) 및 제2거치부 (42)를 일체로 형성하는 상기 제1거치부 (41)에는 제2하우징 (13)이 접합된다.

이때, 상기 제1거치부 (41)에 형성된 속 관통홀 (41a)을 통해 로터 (30)의 샤프트 1)가 관통되도록 하고 있는데, 만약, 상기 접합과정에서 속 일치가 제대로 이루어 지 않게 되면, 스템핑 모터의 회전성능이 떨어지게 될 뿐더러, 부품간의 간섭으로 한 마찰로 인해 제품의 특성이 저하되고, 수명을 단축시키는 문제를 낳게 된다.

따라서, 상기 제2하우징 (13) 접합과정에는 반드시 이를 뒷받침할 수 있는 속 일 수단 또는 지지부재가 뒤따라야 한다.

그리고, 상기 제1속 지지부 (50)는 트러스트베어링 (51)과 클베어링 (53) 및 제1하 징 (11)과 융접되어 상기 트러스트베어링 (51)을 가이드하도록 된 가이드 베 (55)와, 상기 트러스트베어링 (51) 가이드 커버 (55)에 탄력적으로 지지되도록 하 스프링 (57)로 구성된다.

그리고, 상기 축 지지부(60)는 피봇 베어링(61)과 블 베어링(63)으로 구성되고, 기 로터(30)의 동축 유지를 위해 브라켓(40) 제2거치부(42)의 축 관통 훈(42a)에 차된다.

그러나, 상기와 같은 종래 스템핑 모터는 제2하우징(13)과 브라켓(40)이 융접되는 과정, 제1하우징(11)과 가이드 커버(55)가 융접되는 과정, 그리고, 상기 제2하우징(13)과 제1하우징(11)이 융접되는 과정을 거치게 되는데, 상기 과정을 거치는 동안 휘곡오차가 쌓이게 되고, 이러한 누적오차로 인해, 동축 유지가 힘들어지게 되고, 히 미세한 공극을 유지시켜야 하는 스테이터(20)와 로터(30)의 마그네트(33) 사이 간섭이 발생하여 모터의 회전성능을 크게 저하시키게 될 뿐 아니라, 더 나아가 모터가 작동하지 않는 계큼 불량으로 이어지는 문제가 있다.

그리고, 제1하우징(11) 및 제2하우징(13), 가이드 커버(55), 트러스트베어링 1), 블 베어링(53), 스프링부재(57)로 이루어지는 복잡한 부품관리로 인해 부품비가 증가되고, 조립공정이 늘어나며, 이로 인한 작업능률이 저하되는 문제가 있다. 또한, 높은 정밀도를 유지시키기 위해서는 반드시 고가의 조립설비가 뒷받침되어야 하는 것으로서, 경제적 부담이 발생된다.

따라서, 축 지지구조를 개선하여 보다 쉽고 정밀하게 스템핑 모터를 조립할 수 있고, 제조원가를 절감할 수 있도록 하는 스템핑 모터의 제안이 시급히 요구되고 있다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 상기와 같은 문제점을 해결하고자 제안된 것으로서, 본 발명의 목적 베어링 가이드의 기능을 하우징에 일체로 형성함으로써, 스텝핑 모터의 부품 수를 낮이고, 조립공정을 단순화할 수 있도록 하는 스텝핑 모터 구조를 제공하는데 그 목적이 있다.

그리고, 즉, 지지구조의 단순화를 통해 부품간의 조립정밀도를 높이도록 하는 스텝 모터 구조를 제공하는데 다른 목적이 있다.

또한, 일체형 하우징 내에 루스 요크를 조립함으로써, 루스 요크 간의 중심 정도를 높이기 위해 로터의 치짐 현상을 개선하여 등속도 유지 및 고 토크의 모터 능력을 발휘할 수 있도록 하는 스텝핑 모터 구조를 제공하는데 있다.

【발명의 구성 및 작용】

상기의 목적을 달성하기 위한 본 발명에 따른 스텝핑 모터 구조는 일축에 개구를 형성하고, 타측에 베어링 장치를 축방향으로 가이드할 수 있도록 하는 가이드부 형성한 하우징과; 상기 하우징 내부에 설치되어 자기장을 형성하는 스테이터와; 단부가 상기 스테이터 내부에서 일정 공극을 갖도록 삽입되고, 상기 베어링장치에 전기능하게 지지되는 로터와; 상기 로터의 일단부가 삽입, 판통되고 상기 하우징의 구면과 접합되는 제1거치부와, 상기 제1거치부를 판통한 로터의 타단이 회전 가능하게 지지되는 제2거치부를 갖는 브라켓을 포함하여 구성되는 것을 특징으로 한다.

여기서, 상기 하우징의 가이드부는 딥 드로잉으로 제작되는 것을 특징으로 한다.

여기서, 상기 하우징의 가이드부에 의해 가이드되는 베어링장치는 스프링, 트러트 베어링, 로터 일축단과 접촉하는 블을 포함하는 것을 특징으로 한다.

여기서, 상기 스프링은 쿄일 스프링인 것을 특징으로 한다.

여기서, 상기 트러스트 베어링은 합성수지재인 것을 특징으로 한다.

여기서, 상기 하우징의 가이드부 끝단에 스토퍼를 결합시켜 스프링 및 트러스트 베어링이 이탈되는 것을 방지하도록 된 것을 특징으로 한다.

여기서, 상기 스토퍼는 캡 형상으로 제작되는 것을 특징으로 한다.

여기서, 상기 스토퍼는 가이드부에 압입하여 결합시키는 것을 특징으로 한다.

여기서, 상기 스토퍼는 가이드부에 본딩하여 결합시키는 것을 특징으로 한다.

여기서, 상기 스토퍼 내측면에 포켓을 형성시켜 가이드부와의 압입 및 본딩 시. 물질이 유입되는 것을 방지하도록 된 것을 특징으로 한다.

여기서, 상기 로터는 샤프트와 상기 샤프트의 일단부에 고정된 마그네트를 포함하며, 상기 마그네트는 서로 분리된 한 쌍으로 구성된 것을 특징으로 한다.

여기서, 상기 브라켓의 제1거치부에 속 지지부재가 결합되는 것을 특징으로 한

그리고, 상기의 목적을 달성하기 위한 본 발명에 따른 스텔링 모터의 하우징/브라켓 결합방법은 브라켓의 제1/제2거치부의 속 관통홀과 하우징의 베어링 가이드부를 결합하는 단계와: 상기 결합된 브라켓의 제1거치부면에 하우징의 개구부 단면을 결합하는 단계와: 상기 브라켓의 속 관통홀과 하우징의 베어링 가이드부에서 센터 편을 제거하는 단계를 포함하여 이루어지는 것을 특징으로 한다.

여기서, 상기 브라켓의 축 관통홀과 하우징의 베어링 가이드부 내경이 동일하게
작되는 것을 특징으로 한다.

여기서, 상기 브라켓의 축 관통홀 및 하우징의 베어링 가이드부 내경과, 이와
합되는 센터 핀의 외경이 동일하게 제작되는 것을 특징으로 한다.

여기서, 상기 브라켓의 제1거치부에 하우징을 용접시켜 결합하는 것을 특징으로
한다.

여기서, 상기 브라켓의 제1거치부에 하우징을 욕king시켜 결합하는 것을 특징으로
한다.

이하, 본 발명에 따른 바람직한 실시 예를 첨부된 도면을 참조하여 자세히 설명
면 다음과 같다.

도 3은 본 발명의 스텁핑 모터 구조를 보인 개략단면도이고, 도 4는 본 발명의
텝핑 모터 하우징 조립구조를 보인 확대단면도로서, 등 도면에 도시된 바와 같이,
발명에 따른 스텁핑 모터 구조는 브라켓(140), 하우징(110), 스테이터(120), 로터
30), 축 지지부재(151), 축 지지부(160)로 구성된다.

상기 브라켓(140)은 축 관통홀(141a) (142a)이 각각 형성된 제1거치부(141)와 제
거치부(142)가 수직방향으로 결꼭되어 일체로 형성된다.

상기 하우징(110)은 내부 증공부(115)를 형성하고, 상기 증공부(115) 일측에 브
라켓(140)의 제1거치부(141)와 끝단면이 접합되는 개구부(113)를 형성하며, 타측에
리스트 베어링(171)을 축방향으로 가이드할 수 있도록 하는 가이드부(111)를 형성
다.

상기 하우징 (110)의 가이드부 (111)는 딥 드로잉으로 제작되고, 가이드부 (111)에 스프링 (175), 트러스트 베어링 (171), 로터 (130) 일축단과 접촉하는 블 (173)이 레로 설치되며, 가이드부 (111) 끝단에 캠 형상의 스토퍼 (177)를 결합시켜 스프링 75) 및 트러스트 베어링 (171)이 이탈되는 것을 방지한다.

이때, 상기 스토퍼 (177)는 가이드부 (111)에 압입 또는, 본딩하여 결합하는데, 합 시에 하우징 (110) 내로 이물질이 유입되는 것을 방지하기 위해 스토퍼 (177) 내 원주면에 일정형상의 홈을 파도록 한 포켓 (177a)을 형성시킨다.

여기서, 상기 스프링 (175)은 코일 스프링으로 제작할 수 있고, 상기 트러스트 어링 (171)은 합성수지재로 제작이 가능하다.

그리고, 상기 스테이터 (120)는 상기 하우징 (110) 내부에 제공되어 자기장을 형성할 수 있도록, 코일 (121a, 121b)이 권선된 한 쌍의 보빈 (123a, 123b)과 서로 치환되는 두 쌍의 투스 요크 (125a, 125b, 125c, 125d)로 구성된다.

상기 로터 (130)는 한 쌍의 마그네트 (133)가 샤프트 (131) 일축 고정단 (131b)에 합되고, 상기 고정단 (131b) 타축으로 일정구간 라드 스크류 (131a)가 형성된다.

상기 축 지지부제 (151)는 브라켓 (140)의 제1거치부 (141)의 축 관통홀 (141a)에 입되어, 로터 (130)의 등축도를 향상시키고 고출력의 토오크를 가능하게 한다. 상기 축 지지부 (160)는 로터 (130)의 등축 유지를 위해 브라켓 (140) 제2거치부 42)의 축 관통 흔 (142a)에 설치되는 피봇 베어링 (161)과 블 베어링 (163)으로 구성된다.

상기와 같은 본 발명의 조립과정에 대해 설명하면 다음과 같다.

우선, 하우징(110)의 중공부(115) 내면에 스테이터(120)가 장착되도록 한 다음,

기 하우징(110)의 베어링 가이드부(111)와 브라켓(140)의 제1/제2거치부(141, 142)

즉 판통홀(141a, 142a)을 별도의 준비된 센터 핀(미도시)으로 즉 판통시켜 정렬한

이때, 상기 브라켓(140)의 즉 판통홀(141a, 142a)과 하우징(110)의 베어링 가이드부(111) 내경을 모두 동일하게 제작하고, 이와 정합되는 센터 핀의 외경을 모두 동일하게 제작하여 정합 상태에서 등축을 이루도록 하는 것이 바람직하다.

그런 다음, 상기 정렬된 브라켓(140)의 제1거치부(141)면에 하우징(110)의 개구(113) 단면을 용접 또는 콕킹으로 결합한다.

그리고 나서, 상기 브라켓(140)의 즉 판통홀(141a, 142a)과 하우징(110)의 베어링 가이드부(111)에서 센터 핀(미도시)을 제거한 다음 로터(130)를 정합한다.

상기 로터(130)는 리드 스크류(131a)가 형성된 샤프트(131) 일단이 브라켓(140) 제1거치부(141)의 즉 판통홀(141a)에 삽입된 즉 지지부재(151)를 판통하여 그 단면이 제2거치부(142)의 즉 판통홀(142a)에 형성되도록 한 즉 지지부(160)에 의해 즉 지되도록 하고, 상기 스테이터(120)와 일정 공극을 유지한 상태로 로터(130)의 마네트 고정단(131b)이 삽입되도록 한다.

그런 다음, 하우징(110)의 가이드부(111) 내에는 블(173), 트리스트 베어링

71), 스프링(175)이 차례로 설치한 후, 가이드부(111) 끝단에 캡 형상의 스토퍼

77)를 결합시켜 이탈이 방지되도록 한다.

이때, 상기 로터(130)의 마그네트 고정단(131b)과 블(173)이 접촉되고, 상기 블(173)은 트리스트 베어링(171)과 접촉되어 회전 운동되며, 상기 속 방향으로 전해지 하중은 스프링(175)에 의해 원충되어 최상의 동축도가 유지되도록 한다.
상기와 같은 본 발명은 하우징(110)을 단일형으로 제작한 것과, 상기 하우징(110) 일측에 베어링 장치를 가이드할 수 있도록 한 가이드부(111)를 형성한 것과, 상기 가이드부(111) 끝단을 캡 형상의 스토퍼(177)로 결합시킴으로써 가능해진다.

발명의 효과】

본 발명은 다음과 같은 효과를 갖는다.

첫째, 본 발명은 속 지지구조의 단순화를 통해 부품간의 조립정밀도를 높이는 효과를 갖는다.

둘째, 베어링 가이드의 기능을 하우징에 일체로 형성함으로써, 스텁핑 모터의 품수를 줄이고, 조립공정을 단순화시키는 효과를 갖는다.

셋째, 일체형으로 제작한 하우징 내에 투스 요크를 조립함으로써, 투스 요크 간 동심 정밀도를 높이게 되어 로터의 치짐 현상이 개선되고, 동축도 유지 및 고 토크의 모터 성능을 발휘할 수 있게되는 효과가 있다.

특허청구범위】

【구항 1】

일축에 개구부를 형성하고, 타축에 베어링 장치를 축방향으로 가이드할 수 있도록 하는 가이드부를 형성한 하우징과:

상기 하우징 내부에 설치되어 자기장을 형성하는 스테이터와;

일단부가 상기 스테이터 내부에서 일정 공극을 갖도록 삽입되고, 상기 베어링장에 회전가능하게 지지되는 로터와;

상기 로터의 일단부가 삽입, 판통되고 상기 하우징의 개구면과 접합되는 제1거부와, 상기 제1거부를 판통한 로터의 타단이 회전 가능하게 지지되는 제2거부부 갖는 브라켓을 포함하여 구성되는 것을 특징으로 하는 스텝핑 모터 구조.

【구항 2】

제 1항에 있어서,

상기 하우징의 가이드부는 딥 드로잉으로 제작되는 것을 특징으로 하는 스텝핑터 구조.

【구항 3】

제 1항에 있어서,

상기 하우징의 가이드부에 의해 가이드되는 베어링장치는 스프링, 트리스트 베링, 로터 일축단과 접촉하는 봄을 포함하는 것을 특징으로 하는 스텝핑 모터 구조.

구형 4]

제 3항에 있어서.

상기 스프링은 코일 스프링인 것을 특징으로 하는 스텝핑 모터 구조.

구형 5]

제 3항에 있어서.

상기 트러스트 베어링은 합성수지재인 것을 특징으로 하는 스텝핑 모터 구조.

구형 6]

제 3항에 있어서.

상기 하우징의 가이드부 끝단에 스토퍼를 결합시켜 스프링 및 트러스트 베어링

이탈되는 것을 방지하도록 된 것을 특징으로 하는 스텝핑 모터 구조.

구형 7]

제 6항에 있어서.

상기 스토퍼는 캡 형상으로 제작되는 것을 특징으로 하는 스텝핑 모터 구조.

구형 8]

제 6항에 있어서.

상기 스토퍼는 가이드부에 압입하여 결합시키는 것을 특징으로 하는 스텝핑 모

구조.

9구항 9]

제 6항에 있어서.

상기 스토퍼는 가이드부에 본딩하여 결합시키는 것을 특징으로 하는 스텝핑 모터 구조.

9구항 10]

제 8항 또는 9항에 있어서.

상기 스토퍼 내측면에 포켓을 형성시켜 가이드부와의 압입 및 본딩 시, 이물질 유입되는 것을 방지하도록 된 것을 특징으로 하는 스텝핑 모터 구조.

9구항 11]

제 1항에 있어서.

상기 로터는 소프트와 상기 소프트의 일단부에 고정된 마그네트를 포함하며, 상기 마그네트는 서로 분리된 한 쌍으로 구성된 것을 특징으로 하는 스텝핑 모터 구조.

9구항 12]

제 1항에 있어서.

상기 브라켓의 제1거치부에 속 지지부재가 결합되는 것을 특징으로 하는 스텝핑 모터 구조.

9구항 13]

브라켓의 제1/제2거치부의 속 관통홀과 하우징의 베어링 가이드부를 센터 핀으로
속 관통시켜 정렬하는 단계와:

상기 정렬된 브라켓의 제1거치부면에 하우징의 개구부 단면을 결합하는

제작:

상기 브라켓의 측 판통홀과 하우징의 베어링 가이드부에서 센터 핀을 제거하는

제작 포함하여 이루어지는 것을 특징으로 하는 스텝핑 모터의 하우징/브라켓 결합

법.

【구항 14】

제 13항에 있어서,

상기 브라켓의 측 판통홀과 하우징의 베어링 가이드부 내경이 동일하게 제작되

것을 특징으로 하는 스텝핑 모터의 하우징/브라켓 결합방법.

【구항 15】

제 13항에 있어서,

상기 브라켓의 측 판통홀 및 하우징의 베어링 가이드부 내경과, 이와 정합되는
터 핀의 외경이 동일하게 제작되는 것을 특징으로 하는 스텝핑 모터의 하우징/브라
결합방법.

【구항 16】

제 13항에 있어서,

상기 브라켓의 제1거치부에 하우징을 용접시켜 결합하는 것을 특징으로 하는 스
팅 모터의 하우징/브라켓 결합방법.

구항 17)

제 13항에 있어서.

상기 브라켓의 제1거치부에 하우징을 복킹시켜 결합하는 것을 특징으로 하는 스

평 모터의 하우징/브라켓 결합방법.

【도면】

1]

2]

3]

[Fig. 4]

Document made available under Patent Cooperation Treaty (PCT)

International application number: PCT/KR04/003225

International filing date: 09 December 2004 (09.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: KR

Number: 10-2003-0088878

Filing date: 09 December 2003 (09.12.2003)

Date of receipt at the International Bureau: 02 February 2005 (02.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse