

Retail-Giant Sales Forecasting Case Study - Time Series

PRESENTATION

Group Members Name:

- 1. Thanigachalam TamizhSelvam
- 2. Swati Bansal
- 3. Rajanish Mirajkar

Problem Statement

"Global Mart" is an online store super giant having worldwide operations. It takes orders and delivers across the globe and deals with all the major product categories - consumer, corporate & home office

Now as a sales/operations manager, need to finalize the plan for the next 6 months. So, want to forecast the sales and the demand for the next 6 months, that would help to manage the revenue and inventory accordingly.

Business Objective

The "Global Mart" caters to 7 different market segments and in 3 major categories. We want to forecast at this granular level, into 21 (7*3) buckets.

Important from the store's point of view is need to find out 2 most profitable (and consistent) segment from these 21 and forecast the sales and demand for these segments.

Identifying 2 most profitable (and consistent) segment from these 21 and forecast the sales and demand for these segments

Business
Objective
Understanding

Data Understanding –
Explore data

Data Preparation

- Create 21 MarketSegment buckets
- Aggregate buckets by Sales, Profit, Quantity
- Calculate Coefficient of Variation(CV)
- Pick Top 2 Segments based on CV & Time series analysis for profit data.
- Aggregate data by Market-Segment & Order Month on subset of Top 2 segments Modeling

Modelling

- Create time series of top Aggregated Data
- Smoothen time series to identify trend & seasonality
- Creating train & validation sets of size
 42 & 6 months
- Build Model 1: Regression Model Build Model 2: Auto ARMA Model

Model Evaluation

- Evaluate model on validation set using Auto ARMA Model
- Choose best model out of Model 1 & Model 2 using Auto ARMA
- For Auto ARIMA plot ACF of residuals to check it resembles white noise

Forecasting

- Use best model to forecast future 6 months Sales.
- Repeat same for both Market-Segments separately for Sales & Quantity
- Prepare forecasts for top 2 segments by Sales & Quantity

Data Clean Up Activity

Performed the following data clean up:-

Source File: 'Global Superstore.csv'

- 1. Converted categorical columns has a vector type
- 2. Validated for NA values, and found 80 percentage of data is NA for Postal Code column, not considered this for analysis.
- 3. Formated date column to ensure all the column date values in same formate (Order.Date)
- 4. created derived columns (Market.Segment and Market.Category)

Analysis of All Market and all Category Data

The below graph shows office supply is the major category across all market place

Analysis of All Market and all Category Data

With stack chart it is observed that office supply is major category across all market place

Analysis of All Market and all Category Data by Year

Analysis of Market Data by Month and Year

Analysis of Market Data by Month and Year (Continued)

Analysis of Market Data by Month and Year (Stack Chart)

Analysis on Market data by month and year%

EDA – Market by Category

EDA - Africa, APAC and Canada for all category

EDA – Market by Category

EDA - EMEA, EU and LATAM for all category

EDA – Market by Category

EDA - US for all category

EDA – Market by Segment

EDA - Africa, APAC and US for all Segment

EDA – Market by Segment

EDA - EU, EMEA and LATAM for all Segment

EDA – Market by Segment

EDA - Canada for all Segment

Data Preparation

You would need to first segment the whole dataset into the 21 subsets based on the market and the customer segment level. Next, comes the most important data preparation step. That is to convert the transaction-level data into a time series. Thus, you would need to aggregate the 3 attributes - Sales, Quantity & Profit, over the Order Date to arrive at monthly values for these attributes. Once, you arrive at these 3 time series for each of the 21 segments, we need to find the 2 most profitable and consistently profitable segments. For this, the metric that you can use is the coefficient of variation of the Profit for all 21 market segments. If you wish to know more about the coefficient of variation

ant.b

Data Preparation – Time Series Plot by Profit

Time Series Plot for Africa and APAC consumer

Data Preparation – Time Series Plot by Profit

Time Series Plot for Canada and EMEA consumer

Data Preparation – Time Series Plot by Profit

Time Series Plot for EU and LATAM consumer

Data Preparation – Time Series Plot by Profit

Time Series Plot for US consumer

Data Preparation – COV on Profit

Below table shows the COV on Profit for All Market segment

Market.Segment	cov
EU-Consumer	0.624305
APAC-Consumer	0.632132
LATAM-Consumer	0.661483
APAC-Corporate	0.698087
EU-Corporate	0.763807
LATAM-Corporate	0.811122
US-Corporate	1.002409
US-Consumer	1.01239
APAC-Home Office	1.045978
US-Home Office	1.096147
EU-Home Office	1.116507
LATAM-Home Office	1.175698
Africa-Consumer	1.319585
Canada-Consumer	1.395312
Canada-Corporate	1.552775
Africa-Corporate	1.776105
Africa-Home Office	1.789996
EMEA-Consumer	2.188271
Canada-Home Office	2.243461
EMEA-Corporate	4.467102
EMEA-Home Office	5.880747

Below table shows Top 5 COV based on EDA and COV will be using

Top 2 i.e EU-Consumer and APAC-Consumer for our Model

Market.Segment	cov
EU-Consumer	0.624305
APAC-Consumer	0.632132
LATAM-Consumer	0.661483
APAC-Corporate	0.698087
EU-Corporate	0.763807

Model Building

Model building:

Once you arrive at the 2 most profitable segments, the next challenge is to forecast the sales and quantity for the next 6 months. You are supposed to use classical decomposition and auto ARIMA for forecasting. Also, it is advised that you smoothen the data before you perform classical decomposition.

Model building: EU Consumer Sales
EU Consumer Quantity
APAC Consumer Sales
APAC Consumer Quantity

Model evaluation: EU Consumer Sales

After Smoothening and building model, Classical Decomposition and ARIMA has achieved MAPE of 34.35 approx

Plotting the predictions along with original values. The left graph represent classical decomposition and right graph shows ARIMA fit for the future 6 months

Next 6 months sales

10070.430

9500.265

10535.857

13261.886

17334.104

22044.010

Diagnostic Plot For Time series

ACF of Residuals

p values for Ljung-Box statistic

Model evaluation: EU Consumer Quantity

After Smoothening and building model, Classical Decomposition and ARIMA has achieved MAPE of 33.24 approx

The below Graph blue line shows the global trend

Next 6 months Quantity

160.1148

163.8136

174.0631

194.1950

224.5899

262.0422

Diagnostic Plot For Time series

ACF of Residuals

Time

p values for Ljung-Box statistic

Stationarity:

In this we can see that the plot is stationary since the most of the data in Sales and Quantity for APAC Consumer is between standard deviation and mean values.

APAC Consumer Total Sales

APAC Consumer Total Sales

APAC Consumer Total Quantity

APAC Consumer Total Quantity

Finding linear trend for Sales and Quantity

ACF and PACF plots to identify the cuts off values of the trend

HoltWinters Smoothing: Total Sales and Quantity

Holt-Winters filtering for Sales

Holt-Winters filtering for Quantity

Exponential smoothing forecasts for Total Sales

Exponential smoothing forecasts for Total Quantity

Decomposition : Applied decompose to find the moving average for Sales

Decomposition of additive time series

Decomposition: Applied decompose to find the moving average for Quantity

Decomposition of additive time series

stl used the lowest smoothness

stl: lowest smooth for Sales

In this above chart dot line indicate significant correlation below the blue line data observation are not correlated

Forecast: APAC-Consumer sales and quantity

Forcasts from Mean - APAC_Consumer Sales

Forcasts from Mean - APAC_Consumer Quantity

Forcasts from Navi - APAC_Consumer Sales

Forcasts from Navi - APAC_Consumer Quantity

Forecasts from Random walk with drift - APAC_Consumer Sales Forecasts from Random walk with drift - APAC_Consumer Quantity

Forecasts from Seasonal naive method - APAC_Consumer Sales

Forecasts from Seasonal naive method - APAC_Consumer Quantity

Forecasts from ARIMA(0,0,0)(1,1,0)[12] with drift

Sales

Forecasts from ARIMA(0,0,0)(1,1,0)[12] with drift

Model evaluation - APAC-Consumer Segment

Forecasted Sales

Forecasts from ARIMA(0,0,0)(1,1,0)[12] with drift

Forecasted Quantity

Forecasts from ARIMA(0,0,0)(1,1,0)[12] with drift

Conclusion

- 1. Based on data provided we identified as APAC Consumer and EU Consumer are 2 most profitable market segments for "Global Mart" online store.
- 2. Below is summary of 4 key forecasts on test data(Jan June 2015):
 - a. APAC Consumer Sales is likely to rise in next 6 months with small fluctuations.
 - b. APAC Consumer is also likely to rise steeply in coming 6 months.
 - c. EU Consumer Sales may show slow rise in coming months.
 - d. EU Consumer Quantity is likely to drop during initial 1 or 2 months & then rise rapidly in next 3 months, eventually reaching a plateau.