Лабораторная работа №8

Модель конкуренции двух фирм

Демидова Е. А.

26 марта 2024

Российский университет дружбы народов, Москва, Россия

Докладчик

- Демидова Екатерина Алексеевна
- студентка группы НКНбд-01-21
- Российский университет дружбы народов
- · https://github.com/eademidova

Вводная часть

Исследовать простейшую математическую модель конкуренции двух фирм.

Случай 1.

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2, \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2, \end{cases}$$

Случай 2.

$$\begin{cases} \frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.0013) M_1 M_2 - \frac{a_1}{c_1} M_1^2, \\ \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2, \end{cases}$$

где
$$a_1=\frac{p_{cr}}{(\tau_1^2\tilde{p_1}Nq)}$$
, $a_2=\frac{p_{cr}}{(\tau_2^2*\tilde{p_2}Nq)}$, $b=\frac{p_{cr}}{(\tau_1^2\tau_2^2\tilde{p_1}^2\tilde{p_2}^2Nq)}$, $c_1=\frac{(p_{cr}-p_1)}{(\tau_1\tilde{p_1})}$, $c_2=\frac{(p_{cr}-p_2)}{(\tau_2\tilde{p_2})}$.

Формулировка задачи

Для обоих случаев рассмотри задачу со следующими начальными условиями: $M_0^1=7.1$, $M_0^2=8.1$.

И параметрами:
$$p_{cr}=44$$
, $N=77$, $q=1$, $au_1=26$, $au_2=21$, $ilde{p}_1=11$, $ilde{p}_1=8.7$

- $\cdot N$ число потребителей производимого продукта.
- au длительность производственного цикла
- $\cdot \; p$ рыночная цена товара
- \cdot $ilde{p}$ себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- $\cdot \,\, q$ максимальная потребность одного человека в продукте в единицу времени
- \cdot $\, heta = rac{t}{c_1} \,$ безразмерное время

Формулировка задачи

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Материалы и методы

- · Язык программирования Julia
- Библиотеки
 - · OrdinaryDiffEq
 - · Plots
- · Язык программирования OpenModelica

Выполнение лабораторной работы

Julia. Программная реализация модели

//Начальные условия и параметры

```
p_cr = 44 #критическая стоимость продукта
tau1 = 26 #длительность производственного цикла фирмы 1
p1 = 11 #себестоимость продукта у фирмы 1
tau2 = 21 #длительность производственного цикла фирмы 2
p2 = 8.7 #себестоимость продукта у фирмы 2
N = 77 #число потребителей производимого продукта
q = 1 #максимальная потребность одного человека в продукте в единицу времени
```

Julia. Программная реализация модели

```
a1 = p cr/(tau1*tau1*p1*p1*N*q)
a2 = p cr/(tau2*tau2*p2*p2*N*g)
b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p_cr-p1)/(tau1*p1)
c2 = (p cr-p2)/(tau2*p2)
constant1 = 0
constant2 = 0.0013
p1 = [a1.a2.b.c1.c2.constant1]
p2 = [a1.a2.b.c1.c2.constant2]
tspan = (0,20);
u0=[7.1;8.1]; #начальное значение объема оборотных средств x1 и x2
```

```
function syst(du,u,p,t)
    a1, a2, b, c1, c2, constant = p
    du[1] = u[1] - (a1/c1)*u[1]*u[1] - (b/c1+constant)*u[1]*u[2]
    du[2] = (c2/c1)*u[2] - (a2/c1)*u[2]*u[2] - (b/c1)*u[1]*u[2]
end
```

```
prob1 = ODEProblem(syst, u0, tspan, p1)
solution1 = solve(prob1, Tsit5(), saveat = 0.001)
plot(solution1, labels = ["Фирма 1" "Фирма 2"])
prob2 = ODEProblem(syst, u0, tspan, p2)
solution2 = solve(prob2, Tsit5(), saveat = 0.001)
plot(solution2, labels = ["Фирма 1" "Фирма 2"])
```

```
Real M1(start=7.1):
Real M2(start=8.1):
parameter Real p cr = 44; //критическая стоимость продукта
parameter Real tau1 = 26; //длительность производственного цикла фирмы 1
parameter Real p1 = 11; //себестоимость продукта у фирмы 1
parameter Real tau2 = 21; //длительность производственного цикла фирмы 2
parameter Real p2 = 8.7: //себестоимость продукта у фирмы 2
parameter Real N = 77; //число потребителей производимого продукта
parameter Real q = 1; //максимальная потребность одного человека в продукте в
```

```
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
parameter Real c1 = (p_cr-p1)/(tau1*p1);
parameter Real c2 = (p_cr-p2)/(tau2*p2);
```

equation

```
 \begin{split} \text{der}(\text{M1}) &= (\text{c1/c1})*\text{M1} - (\text{a1/c1})*\text{M1}*\text{M1} - (\text{b/c1})*\text{M1}*\text{M2}; \\ \text{der}(\text{M2}) &= (\text{c2/c1})*\text{M2} - (\text{a2/c1})*\text{M2}*\text{M2} - (\text{b/c1})*\text{M1}*\text{M2}; \end{split}
```

equation

```
 \begin{split} \text{der}(M1) &= (\text{c1/c1})*\text{M1} - (\text{a1/c1})*\text{M1}*\text{M1} - (\text{b/c1} + 0.0013)*\text{M1}*\text{M2}; \\ \text{der}(M2) &= (\text{c2/c1})*\text{M2} - (\text{a2/c1})*\text{M2}*\text{M2} - (\text{b/c1})*\text{M1}*\text{M2}; \end{split}
```


Рис. 1: График изменения оборотных средств для первого случая. OpenModelica

Рис. 2: График изменения оборотных средств для первого случая. Julia

Рис. 3: График изменения оборотных средств для второго случая. OpenModelica

Графики

Рис. 4: График изменения оборотных средств для второго случая. Julia

Рис. 5: Приближеннй график изменения оборотных средств для второго случая. Julia

Выводы

Построили математическую модель конкуренции двух фирм.

Список литературы

Список литературы

1. Малыхин В.И. Математическое моделирование экономики. М., УРАО, 1998. 160 с.