2017 年北京市信息学冬令营 练习赛

竞赛时间: 1月16日上午9:00-12:00

试题名称	Matrix	Cards	Lift and Throw
可执行文件名	matrix	cards	lift
输入文件名	matrix.in	cards.in	lift.in
输出文件名	matrix.out	cards.out	lift.out
每个测试点时限	1秒	1秒	1秒
内存限制	256 MB	256 MB	256 MB
测试点个数	10	10	10
每个测试点分值	10	10	10
题目类型	传统	传统	传统

Matrix

【题目描述】

生活中,我们常常用 233 表示情感。实际上,我们也会说 2333,23333,等等。于是问题来了:

定义一种矩阵,称为 233 矩阵。矩阵的第一行依次是 23, 233, 2333, 23333,等。此外,对矩阵的第 i 行、第 j 列的元素有 a[i][j] = a[i-1][j] + a[i][j-1],若 i, j 均大于 1。

告诉了你矩阵第一列的第 2~n 个元素, 你能否算出矩阵的第 n 行、第 m 列的元素呢?

【输入格式】

输入文件包含多组数据(不超过3组),每组数据的格式如下:

第一行,两个整数 n, m。

第二行,n-1 个整数,依次是 a[2][1], a[3][1], ..., a[n][1],表示矩阵第一列的第 2~n个元素。(而 a[1][1]=23,a[1][2]=233,a[1][3]=2333,以此类推)

【输出格式】

输出若干行,每行一个整数,依次表示每组数据的答案模 10000007 后的结果。

【样例输入】

2 2

1

3 3

0 0

4 8

23 47 16

【样例输出】

234

2799

72937

【样例解释】

第1组数据, a[2][2] = a[1][2] + a[2][1] = 233 + 1 = 234.

【数据范围】

50% 的测试数据, 1 <= m <= 106.

100% 的测试数据,1 <= n <= 11, 2 <= m <= 10⁹, 0 <= a[i][1] <= 10⁸.

Cards

【题目描述】

有 N 类卡片。每类卡片有若干张。每张卡片上都写了一个数。你要从中选择恰好 K 张 卡片。对你选出的每张卡片,设卡片上的数为 x,检查它是否满足以下四种规则:

- 1. x 是质数;
- 2. x 的约数的个数是质数;
- 3. x 的所有约数的和是质数;
- 4. x 的所有约数的乘积是完全平方数。

每选出一张卡片,这样计算你的得分。若卡片上的数 x 满足规则 i, 你的得分就会增加 pi (i=1...4)。其中 p1...p4 是已知的数。若 x 同时满足多个规则,则分别累加得分。

当你选完 K 张卡片后,检查你是否选过满足每种规则的数。若你选的所有卡片上的数都不满足规则 i (i = 1..4),你会得到 ci 的奖励得分。

问你能得到的最大和最小得分分别是多少。

【输入格式】

- 第 1 行,两个整数 N 和 K.
- 第 2~N+1 行,每行两个整数 ai, bi,分别表示每类卡片上的数和这类卡片的数目。
- 第 N+2 行, 四个整数 p1...p4。
- 第 N+3 行, 四个整数 c1...c4。

【输出格式】

输出一行,两个整数,依次表示能得到的最大得分和最小得分。

【样例输入】

- 5 3
- 1 1
- 2 1
- 3 1
- 4 1
- 5 1
- 1 1 1 1
- 1234

【样例输出】

115

【样例解释】

五类卡片各一张。

- 数 1 满足规则 4, 得分为 1;
- 数 2 满足规则 1, 2, 3, 得分为 3;
- 数 3 满足规则 1, 2, 得分为 2;
- 数 4 满足规则 2, 3, 得分为 2;

数 5 满足规则 1, 2, 得分为 2。

- 一种得分最大的策略是选择三张标有数 2,3,4 的卡片。
- 一种得分最小的策略是选择三张标有数 1,4,5 的卡片。

【数据范围】

20% 的数据满足 卡片的总数不超过 20。

40% 的数据满足 1 <= N, K, bi <= 50, 1 <= ai <= 1,000.

70% 的数据满足 1 <= N <= 10^3 , 1 <= K <= 10^4 。

另有 20% 的数据满足 p4 = c4 = 0。

100% 的数据满足 1 <= N <= 10^4 , 1 <= K <= 10^9 , 1 <= ai, bi <= 10^6 , 0 <= |pi|, |ci| <= 10^6 , K 不超过卡片总数。

Lift and Throw

【题目描述】

在 x 轴上有 3 个人, 第 i 个人的位置为 xi。最初他们的位置均不同。

每个人可以进行下列三种操作至多各一次:移动;将另一个人举起来;将举起的人扔出一段距离。操作须遵守下列规则:

- 1. 每个人只能移动到(或被投掷到)此刻无人占据的位置而且必须是整数点;
- 2. 第 i 个人一次移动的距离不超过 mi;
- 3. 被举起的人不能进行任何操作;
- 4. 正在举着别人的人不能移动;
- 5. 当且仅当两个人 A 与 B 相邻 (即距离等于 1), 且 B 没有被其他人举起, 且 A 能操作时, A 可以举起 B, 此时 B 自动移动到 A 所在的位置;
- 6. 第 i 个人的投掷距离不能超过 ti;
- 7. 可以出现 A 举起 B 的同时 C 举起 A 的情况。此时 B 和 A 都不能操作。请你计算,根据上述规则,这三个人能够到达的位置坐标的最大值。

【输入格式】

输入共三行,每行描述一个人的信息。

每一行为三个整数 xi, mi, ti (0 <= xi, mi, ti <= 10),依次表示这个人的初始坐标,最大移动距离,最大投掷距离。ti = 0 表示将别人举起来后无法扔出。

【输出格式】

输出一行,为一个整数,表示三个人的任何一个能到达的坐标的最大值。

【样例输入】

- 933
- 4 3 1
- 233

【样例输出】

15

【样例解释】

初始时刻 A 在位置 9, B 在 4, C 在 2。

第一步, A 移动到 6, 注意移动时可以经过别的人;

第二步, C 移动到位置 5:

第三步, C 举起 B:

第四步, A 举起 C;

第五步, A 用尽全力把 C 扔到位置 9, 注意 B 仍然被 C 举着;

第六步, C 用尽全力把 B 扔到位置 12;

第七步, B 移动到位置 15。