İşletim Sistemleri

İşletim Sistemlerine Giriş

Bilgisayar Sistemi

İşletim Sistemi

• çekirdek (kernel) = işletim sistemi

- donanımı kullanılabilir yapan yazılımdır
 - bilgisayar kaynaklarını:
 - denetler,
 - paylaştırır
- üzerinde program geliştirme ve çalıştırma ortamı sunar

İşletim Sistemi

- doğrudan donanıma erişmeyi engeller (güncel işletim sistemleri)
 - kullanıcı modu x çekirdek modu
- donanımın doğrudan kullanımının zorluklarını gizler
- kullanıcı ve donanım arasında arayüz oluşturur
 - sistem çağrıları aracılığıyla

Sistem Çağrıları

- sistem çağrıları:
 - kullanıcı programların işletim sistemi ile etkileşimi için,
 - kullanıcı programların işletim sisteminden iş isteği için kullanılır
- sistem çağrıları kütüphane rutinleri aracılığıyla gerçeklenir

İşletim Sisteminin Temel Görevleri

- kaynak paylaşımı
- 2) görüntü makina sağlanması

1. Kaynak Paylaşımı

- kaynak paylaşımının kapsamı:
 - kullanıcılar arasında ortak kullanım
 - kullanıcıların birbirinden yalıtılması (güvenlik)
- paylaşılan kaynaklar:
 - işlemci
 - bellek
 - G / Ç birimleri
 - veriler

1. Kaynak Paylaşımı

- kaynak paylaşımının temel amaçları:
 - kaynakların kullanım oranını yükseltmek (utilization)
 - bilgisayar sisteminin kullanılabilirliğini arttırmak (availability)

Kaynak Paylaşımı

- işletim sisteminin kaynak paylaşımına yönelik sunduğu hizmetler:
 - kullanıcı arayüzünün tanımlanması
 - çok kullanıcılı sistemlerde donanımın paylaştırılması ve kullanımın düzenlenmesi
 - kaynak paylaşımının kaynak tiplerine göre düzenlenmesi
 - örnek:
 - yazıcı paylaşılamaz bir kaynak
 - sabit disk paylaşılabilir bir kaynak

Kaynak Paylaşımı

- (işletim sisteminin kaynak paylaşımına yönelik sunduğu hizmetler devam)
 - veri paylaşımının sağlanması (paylaşılan bellek bölgeleri)
 - kaynak paylaşımının sıralanması (scheduling)
 - G/Ç işlemlerinin düzenlenmesi
 - hata durumlarının kotarılması

- temel amaçlar:
 - donanımın kullanılabilir hale getirilmesi
 - kaynak paylaşımının kullanıcıya şeffaf olması

- görüntü makinanın özellikleri fiziksel makinadan aşağıdaki açılardan <u>farklı</u> olabilir:
 - G/Ç
 - bellek
 - dosya sistemi
 - koruma ve hata kotarma
 - program etkileşimi
 - program denetimi

- G/Ç
 - donanıma yakın proramlama gerekir
 - işletim sistemi G/Ç birimlerinin kullanımını kolaylaştırır
 - aygıt sürücüler aracılığıyla
 - örnek: diskten / disketten okuma

bellek

- fiziksel bellekten farklı kapasitede görüntü makina sunulması
 - disk de kullanılarak daha büyük bellek alanı
 - veya kullanıcılar arasında paylaştırılarak daha küçük bellek alanı

- dosya sistemi
 - bilgilere erişimde fiziksel adresler yerine simgeler kullanılır
 - isimlendirme hizmeti

- koruma ve hata kotarma
 - çok kullanıcılı sistemlerde kullanıcıların birbirlerinin hatalarından etkilenmemesinin sağlanması

- program etkileşimi
 - çalışma anında programların birbirleriyle etkileşmesinin sağlanması
 - örnek: bir programın ürettiği çıkış, diğer bir programın giriş verisi olabilir

- program denetimi
 - kullanıcıya yüksek düzeyli bir komut kümesi sunulması
 - kabuk (shell) komutları aracılığıyla
 - kabuk:
 - bir komut yorumlayıcıdır
 - işletim sistemi içinde değildir
 - sistem çağrılarını yoğun kullanır

İşletim Sistemi Türleri

- Anaçatı işletim sistemleri (mainframe)
- Sunucu (server) işletim sistemleri
- Çok işlemcili işletim sistemleri
- Kişisel bilgisayar işletim sistemleri
- Gerçek zamanlı (real-time) işletim sistemleri
- Gömülü (embedded) işletim sistemleri
- Akıllı-kart (smart card) işletim sistemleri

Anaçatı İşletim Sistemleri

- yoğun G/Ç işlemi gerektiren çok sayıda görev çalıştırmaya yönelik sistemler için
- üç temel hizmet sunulur:
 - batch modda çalışma
 - örnek: bir sigorta şirketinde sigorta tazminatı isteklerinin işlenmesi
 - 2. birim-iş (transaction) işleme
 - örnek: havayollarında rezervasyon sistemi
 - 3. zaman paylaşımlı çalışma
 - örnek: veri tabanı sorgulaması
- Örnek: OS/390

Sunucu İşletim Sistemleri

- sunucular üzerinde çalışır
 - büyük kaynak kapasiteli kişisel bilgisayarlar
 - iş istasyonları
 - anaçatı sistemler
- bilgisayar ağı üzerinden çok sayıda kullanıcıya hizmet verilir
 - donanım ve yazılım paylaştırma
 - örnek: yazıcı hizmeti, dosya paylaştırma, web erişimi, ...
- örnek: UNIX, Windows 2000

Çok İşlemcili İşletim Sistemleri

- birden fazla işlemcili bilgisayar sistemlerinde kullanılır
- amaç: işlem gücünü arttırma
- işlemcilerin bağlantı türüne göre sistemlerin gruplanması:
 - paralel sistemler
 - birbirine bağlı, birden fazla bilgisayardan oluşan sistemler
 - çok işlemcili sistemler
- özel işletim sistemi gereklidir
 - tasarım hedefleri sunucu işletim sistemlerindekilere benzer
 - işlemciler arası bağlaşım ve iletişim için ek özellikler sunulmalı

Kişisel Bilgisayar İşletim Sistemleri

- kullanıcıya etkin ve kolay kullanılır bir arayüz sunma amaçlıdır
- genellikle ofis uygulamalarına yönelik özellikler içerir
- örnek:
 - Windows 98, 2000, XP
 - MacOS
 - Linux

Gerçek Zamanlı İşletim Sistemleri

- endüstriyel kontrol sistemlerinde kullanılır
 - örnek: toplanan verilerin sisteme verilerek bir yanıt üretilmesi (geri-besleme)
- zaman kısıtları önem kazanır
- iki tip sistem:
 - katı-gerçek-zamanlı (hard real-time)
 - örnek: araba üretim bandındaki üretim robotlarının kontrolü
 - gevşek-gerçek-zamanlı (soft-real-time)
 - örnek: çoğulortam sistemleri
- örnek: VxWorks ve QNX

Gömülü İşletim Sistemleri

- avuç-içi bilgisayarlar ve gömülü sistemlere yönelik tasarlanmıştır
- kısıtlı ve özel amaçlı işlevler içerir
- örnek: TV, mikrodalga fırın, cep telefonları için geliştirilmiş sistemler
- bazı sistemlerde boyut, bellek ve güç harcama kısıtları vardır
- örnek: PalmOS, Windows CE

Akıllı-Kart İşletim Sistemleri

- en küçük işletim sistemi türüdür
- kredi kartı boyutlarında, üzerinde işlemci olan kartlarda çalışır
- çok katı işlemci ve bellek kısıtları vardır
- işlevsel tasarım açısından:
 - tek işleve yönelik tasarlanan sistemler (örnek: elektronik ödemeler)
 - birden fazla işlev içeren sistemler
- çoğunlukla özel firmalar trafından geliştirilen özel sistemlerdir
- bazıları JAVA tabanlı (JVM var)
 - küçük JAVA programları (applet) yüklenip çalıştırılır
 - bazı kartlar birden fazla program (applet) çalıştırabilir
 - çoklu-programlama, iş sıralama ve kaynak yönetimi ve koruması gerçeklenir

Temel İşletim Sistemi Yapıları

- Monolitik işletim sistemleri
- Modüler çekirdekli işletim sistemleri
- Katmanlı yapılı işletim sistemleri
- Sanal makinalar
- Dış-çekirdek (exo-kernel)
- Sunucu-İstemci Modeli

Monolitik İşletim Sistemleri

- genel bir yapı yok
- işlevlerin tamamı işletim sistemi içinde yer alır
- işlevleri gerçekleyen tüm prosedürler
 - aynı seviyede ve
 - birbirleri ile etkileşimli çalışabilir
- büyük çekirdek yapısı

Modüler Çekirdekli İşletim Sistemleri

- işlevsel olarak minimal çekirdek
- gerekli servisler çalışma anında modül olarak çekirdeğe eklenir
 - örnek: aygıt sürücüler
- küçük çekirdek yapısı
- daha yavaş

Katmanlı Yapılı İşletim Sistemleri

- işletim sistemi katmanlı yapıda
 - hiyerarşik katmanlar
- örnek: THE işletim sistemi

5	operatör
4	kullanıcı programları
3	G/Ç yönetimi
2	operatör-proses iletişimi
1	bellek ve tambur yönetimi
0	işlemci paylaştırma ve çoklu-programlama

- katman 0 işlemciyi prosesler arası paylaştrır (iş sıralama)
- katman 1 bellek yönetimini yapar (bellek ve tambur arası)
- ...

Her katman altındakinin yaptıklarıyla ilgilenmez. Örnek: 2. katmandaki işlemler için prosesin bellek veya tamburda olması önemli değil.

Sanal Makina

• VM/370

- VM donanım üzerinde koşar
- çoklu programlama yapar
- birden fazla sanal makina sunar
- sanal makinaların her biri donanımın
- her sanal makinada farklı işletim sistemi

Dış-Çekirdek (Exo-Kernel)

- MIT'de geliştirilmiş
- sanal makina benzeri
 - her kullanıcıya sistemin bir kopyasını sunar
 - fark: her sanal makinaya kaynakların birer alt kümesini tahsis eder
 - dönüşüm gerekmez; her makinaya ayrılan kaynakların başısonu belli
- dış çekirdek var
 - görevi: sanal makinaların kendilerine ayrılan kaynaklar dışına çıkmamasını kontrol eder
- her sanal makinada farklı işletim sistemi olabilir

Sunucu-İstemci Modeli

- çekirdek işlevsel olarak minimal (mikro-çekirdek)
- işletim sisteminin çoğu kullanıcı modunda
- sunucular ve istemci prosesler var
 - örnek:dosya okuma işleminde
 - adım 1: istemci proses sunucudan istekte bulunur
 - adım 2: sunucu işlemi yürütür
 - adım 3: sunucu yanıtı istemciye verir
- çekirdek sunucu ve istemciler arası iletişimi yönetir

Sunucu-İstemci Modeli

- sunucular kullanıcı modunda çalışır
 - dosya sunucusu
 - proses sunucusu
 - terminal sunucusu
 - bellek sunucusu
- işletim sisemi alt birimlerden oluştuğu için:
 - yönetimi kolay
 - bir birimdeki hata tüm sistemi çökertmez (birimler donanıma doğrudan ulaşamaz)
 - gerçeklemede sorunlar var: özellikle G/Ç aygıtlarının yönetiminin tamamen kullanıcı düzeyinde yapılması mümkün değil
- dağıtık sistemlerde kullanılmaya çok elverişli bir yapıdır

Sunucu-İstemci Modeli

