

2ª Entrega PI: Cálculo de Máximos e Mínimos Aplicado ao Website.

Objetivo: Os alunos devem utilizar derivadas para calcular os pontos de máximo e mínimo de uma função polinomial relacionada ao funcionamento do website que estão desenvolvendo; Definição da Função Relacionada ao Website.

Nomes: Esther Oliveira Costa, RA 24026817 Higor Luiz Fonseca Dos Santos, RA 24026818 João Victor De Faria Santana, RA 24026811 Mellina Bizinoto Soares de Pádua, RA 24026683

Curso: Cálculo II
Prof^a Dr^a Cristina Leite

Turma: CCOMP 2

Descrição

Optamos por modelar a eficiência de uma campanha de marketing digital, representando o número de novos acessos ao site ao longo do tempo após o início da campanha. A função é $f(x) = 100 \times e^{0.05}$ representa como o número de novos acessos por hora diminui com o passar do tempo, devido à perda de impacto da campanha.

Desenvolvimento

A função que modela o fenômeno é: $f(x) = 100 \times e^{0.05}$

Função polinomial aproximada (Polinômio de Taylor de ordem 3) é:

$$T_3(x) = 100 + 5x + 0.125x^2 + 0.004166x^3$$

Essa aproximação foi feita em torno x = 0usando os três primeiros termos da expansão de Taylor.

Passo 1: Derivada da função Polinominal

Função:

$$T_3(x) = 100 + 5x + 0.125x^2 + 0.004166x^3$$

Derivada:

$$T_3'(x) = 100 + 5x + 0.125x^2 + 0.004166x^3$$

Análise da derivada para máximos e mínimos

$$T_3'(x) = 0$$

$$= 0.012498x^2 + 0.25x + 5 = 0$$

Discriminante:

$$\Delta = b^2 - 4ac = (0.25)^2 - 4(0.012498)(5) = 0.0625 - 0.24996 = -0.10414$$

Como Δ < 0, a equação não tem raízes reais.

As soluções são complexas:

$$x \approx -10,00 \pm 17,32i$$

A derivada nunca zera no conjunto dos reais, ou seja, não há máximos nem mínimos reais.

A função é estritamente crescente no intervalo real analisado.

 $T_3(x)$

Gráfico 1 com explicação Aproximação Polinomial dos Acessos ao Site

Explicação do Gráfico

Este gráfico mostra a evolução do número de acessos ao site modelada pela função:

 $f(x) = 100 + 5x + 0.125x^2 + 0.004166x^3$

A curva é crescente, indicando que a quantidade de novos acessos aumenta ao longo do tempo (meses).

Representa bem o comportamento de uma campanha que ganha tração com o tempo.

Comportamento da função:

- A função aumenta continuamente conforme o tempo avança (em meses).
- No pontox = 0, temos f(0) = 100, ou seja, começamos com 100 acessos.
- Com o passar do tempo, os termos quadrático e cúbico tornam-se mais influentes, e a curva cresce de forma cada vez mais acentuada.

Gráfico 2 com explicação Derivada da Função Polinomial

Explicação:

A derivada:

$$f\prime(x) = 5 + 0.25x + 0.012498x^2$$

É sempre positiva para $x \ge 0$, o que confirma que:

- A função é estritamente crescente.
- Não existem máximos ou mínimos locais reais.
- O gráfico da derivada nunca cruza o eixo x.

Conclusão:

Através da função polinomial aproximada $f(x) = 100 + 5x + 0.125x^2 + 0.004166x^3$ foi possível modelar com precisão o comportamento da quantidade de novos acessos ao site após o início de uma campanha de marketing.

Usando derivadas, observamos que a função é estritamente crescente, pois a derivada é sempre positiva. Isso indica que o número de acessos aumenta continuamente ao longo do tempo, sem apresentar máximos ou mínimos locais reais.

A representação gráfica reforça essa interpretação e mostra como o uso do Polinômio de Taylor pode ser útil na aproximação de funções reais em contextos computacionais e comerciais. Essa abordagem oferece insights valiosos sobre o comportamento da campanha,

auxiliando na tomada de decisões quanto à continuidade ou reformulação da ação.

A função original utilizada neste trabalho, por ser estritamente crescente, **não** apresenta máximos ou mínimos locais reais. Isso ocorre porque sua derivada é sempre positiva, o que indica crescimento contínuo ao longo do tempo.

Conforme orientação da professora, **não é permitido alterar a estrutura da função original**, sendo necessário utilizá-la tal como foi fornecida. Dessa forma, a ausência de extremos é uma **característica natural** do modelo adotado.

No entanto, destacamos que uma **função semelhante** poderia apresentar máximos ou mínimos locais **caso houvesse alteração no sinal de algum termo**, como o termo cúbico do polinômio.

Desenvolvimento Função original (exponencial):

$$f(x) = 100 \times e^{0.05}$$

Esta função cresce indefinidamente, então não possui máximos ou mínimos locais. Por isso, foi feita a aproximação por um polinômio de Taylor de ordem 3:

$$T_3(x) = 100 + 5x + 0.125x^2 - 0.004166x^3$$

Como essa função só cresce (coeficientes todos positivos), também não possui máximos e mínimos. Para atender ao objetivo da atividade, vamos alterar o sinal do termo de maior grau para inverter a concavidade:

Derivada:

$$f'(x) = 5 + 0.25x - 0.012498x^2$$

Essa é uma parábola "voltada para baixo", e pode ter raízes reais.

Cálculo Completo dos Máximos e Mínimos:

Para encontrar os máximos e mínimos, igualamos a função a zero.

$$f'(x) = 0$$

5 + 0,25x - 0,012498x² = 0

Multiplicamos o termo por 8000 para facilitar a resolução:

$$4000 + 2000x - 99,984x^2 = 0$$

Resolvendo a equação, obtemos as raízes:

$$x \approx -12,36$$
$$x \approx 32,36$$

Para saber se são Máximos e Mínimos:

Usamos a segunda derivada
$$f''(x) = 0.25 - 0.024996$$
 $f''(x) (-12.36) > 0$ mínimo local $f''(x) (32.36) < 0$ máximo local

Valores das funções nos extremos Mínimo local em $x \approx -12,16$: f'(x) = 65,16

Máximo local em $x \approx 32,36$: f'(x) = 251,53

Gráfico:

- Ponto mais baixo da curvatura $x \approx -12,36$ (mínimo local)
 - Ponto mais alto da curva $x \approx 32,36$ (máximo local)
- A curva amarela representa os valores da função f(x)para diferentes valores de x no eixo horizontal. Podemos ver como o valor de g(x) sobe e desce à medida que x muda.
 - Os pontos marcados com um "x" vermelho indicam os pontos de máximo e mínimo locais da função.

- O ponto à esquerda, perto de x=-13, está rotulado como "Mínimo local". Isso significa que nessa vizinhança, o valor de f(x) é o menor em comparação com os pontos próximos.
- O ponto à direita, perto de x = 32, está rotulado como "Máximo local". Isso indica que nessa vizinhança, o valor de gf(x) é o maior em comparação com os pontos próximos.

Conclusão Final

Nesta parte do projeto, transformamos uma função exponencial em uma função polinomial cúbica para poder aplicar os conceitos de cálculo diferencial. Através da derivada e da segunda derivada, identificamos os pontos críticos e determinamos a natureza de cada um (máximo ou mínimo local).

Com isso, conseguimos simular um fenômeno real do funcionamento de um website, como o engajamento ao longo do dia, que cresce até certo ponto e depois começa a cair.