24 春- 数理统计(回忆版)

February 14, 2025

1. (20') 判断题

- (1) 只基于充分统计量的非退化统计量的密度函数一定包含总体参数 heta
- (2) 因子分解定理找出的极小充分统计量唯一 ×
- (3) 指数型分布族的充分统计量一定完备
- (4) 给定单参数分布族, 若充分统计量为二维向量, 则其一定不完备 ✓
- (5) 极大似然估计一定是充分统计量的函数 ✓
- (6) 给定参数为 θ 的分布族,则 $(\hat{\theta}^2)_{ML} = (\hat{\theta}^2_{ML})^2$
- (7) 参数 θ 的极大似然估计一定是 θ 的相合估计 ×
- (8) 统计量 T 为 θ 的无偏估计,则 T^2 为 θ^2 的无偏估计 \times
- (9) 可估参数 $g(\theta)$ 的 UNMVUE 若存在,则一定为极大似然估计的函数 ✓
- (10) 总体 X 为含参数 θ 的单参数正则分布族,则 θ 的 UMVUE 一定达到了 C-R 下界 \times
- 2. (30') 设 $X_1, \dots, X_n, Y_1, \dots, Y_m \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, 定义

$$S_{1,n}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2, \quad S_{2,m}^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y})^2$$

- (1) 叙述 χ^2 分布, t 分布, F 分布的定义
- (2) 求 $((n-1)S_{1,n}^2 + (m-1)S_{2,m}^2)/\sigma^2$ 的分布
- (3) 求 $\sqrt{\frac{mn}{m+n}} \frac{\bar{Y} \bar{X}}{S_{1,n}}$ 的分布
- (4) $\mu = 0$, 求 $\frac{m\sum_{i=1}^{n} X_{i}^{2}}{n\sum_{i=1}^{m} Y_{i}^{2}}$ 的分布
- (5) $\sigma^2 = 1, \mu = 0$,求证

$$(n-1)S_n^2 - (X_1 - \bar{X})^2 \frac{n}{n-1}$$

服从参数为 n-2 的 χ^2 分布

3.~(50') 设 X_1,\cdots,X_n 为来自双参数指数型总体 X 的简单随机样本,即密度函数为

$$f(x, \lambda, \mu) = \lambda e^{-\lambda(x-\mu)} \mathbb{1}_{x>\mu}$$

其中 $\mu \in \mathbb{R}, \lambda > 0$

- (a) 求 (λ, μ) 的充分统计量
- (b) 当 $\lambda = 1$ 时,
 - (1) 求 μ 的极大似然估计 $\hat{\mu}_{ML}$
 - (2) 求 μ 的 UMVUE
 - (3) 证明 $\hat{\mu}_{ML}$ 为 μ 的强相合估计,问是否 L^2 相合?
 - (4) 基于 $X_{(1)}$ 给出 μ 的置信水平为 $1-\alpha$ 的最短置信区间
- (c) 当 $\mu = 0$ 时
 - (1) 求 λ 的矩估计 $\hat{\lambda}_M$
 - (2) 求 $e^{-\lambda t}$ 的 UMVUE, t > 0
 - (3) 求 λ 和 $e^{-\lambda}$ 的 C-R 下界
- 4. 设 $X_1, \cdots, X_n \overset{IID}{\sim} U(\theta, 2\theta), \ \theta < x < 2\theta, \ \theta > 0, \ 求 \ \theta$ 的充分统计量并说明此统计量是否完备