Lecture 22. HMMs and Message Passing

COMP90051 Statistical Machine Learning

Lecturer: Ben Rubinstein

This lecture

- Hidden Markov models detailed PGM case study
 - Brief recap of model
 - * "Evaluation": Forward-Background Algorithm = elimination
 - "Learning": Baum Welch = MLE
 - * "Decoding": Viterbi = elimination variant with sum → max
- Message passing
 - Sum-product generalises elimination algorithm
 - * Variants for ring operators, max-product for Viterbi
 - Factor graphs

Hidden Markov Models

Model of choice for sequential data. A form of clustering (or dimensionality reduction) for discrete time series.

HMM Formulation

- Formulated as directed PGM
 - * therefore joint expressed as

$$P(\mathbf{o}, \mathbf{q}) = P(q_1)P(o_1|q_1)\prod_{i=2}^{r} P(q_i|q_{i-1})P(o_i|q_i)$$

- * **bold** variables are shorthand for vector of *T* values
- Parameters (for homogenous HMM)

$$\begin{array}{ll} A = \{a_{ij}\} & \text{transition probability matrix; } \forall i: \sum_{j} a_{ij} = 1 \\ B = \{b_i(o_k)\} & \text{output probability matrix; } \forall i: \sum_{k} b_i(o_k) = 1 \\ \Pi = \{\pi_i\} & \text{the initial state distribution; } \sum_{i} \pi_i = 1 \end{array}$$

Fundamental HMM Tasks

HMM Task	PGM Task
Evaluation. Given an HMM μ and observation sequence o , determine likelihood $\Pr(o \mu)$	Probabilistic inference
Decoding. Given an HMM μ and observation sequence o , determine most probable hidden state sequence q	MAP point estimate
Learning. Given an observation sequence o and set of states, learn parameters A, B, Π	Statistical inference

"Evaluation" a.k.a. marginalisation

Compute prob. of observations o by summing out q

$$P(\mathbf{o}|\mu) = \sum_{\mathbf{q}} P(\mathbf{o}, \mathbf{q}|\mu)$$

$$= \sum_{q_1} \sum_{q_2} \dots \sum_{q_T} P(q_1) P(o_1|q_1) P(q_2|q_1) P(o_2|q_2) \dots P(q_T|q_{T-1}) P(o_T|q_T)$$

Make this more efficient by moving the sums

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(q_1)P(o_1|q_1) \sum_{q_2} P(q_2|q_1)P(o_2|q_2) \dots \sum_{q_T} P(q_T|q_{T-1})P(o_T|q_T)$$

Déjà vu? Maybe we could do var. elimination...

Elimination = Backward Algorithm

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(q_1)P(o_1|q_1) \sum_{q_2} P(q_2|q_1)P(o_2|q_2) \dots \sum_{q_T} P(q_T|q_{T-1})P(o_T|q_T)$$

Eliminate q_{τ}

 $m_{T \to T-1}(q_{T-1})$

• • •

Eliminate q_2

"Eliminate" q_1

$$m_{2\rightarrow 1}(q_1)$$

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(q_1)P(o_1|q_1)m_{2\to 1}(q_1)$$

"Eliminate" q_{τ}

Elimination = Forward Algorithm

$$P(\mathbf{o}|\mu) = \sum_{q_T} P(o_T|q_T) \sum_{q_{T-1}} P(q_T|q_{T-1}) P(o_T|q_T) \dots \sum_{q_1} P(q_2|q_1) P(q_1) P(o_1|q_1)$$
 Eliminate q_1
$$m_{1 \to 2}(q_2)$$
 ...
$$m_{T-1 \to T}(q_T)$$

$$P(\mathbf{o}|\mu) = \sum_{q_1} P(o_T|q_T) m_{T-1 \to T}(q_T)$$

Variable elimination perspective

- Both algorithms are just variable elimination using different orderings
 - * $q_T \dots q_1 \rightarrow$ backward algorithm
 - * $q_1 \dots q_T \rightarrow$ forward algorithm
 - both have time complexity O(TL²)
 for L the label set size

- Can use either to compute P(o)
- Even though these are just instances of elimination, they pre-date general PGM inference.
 - * E.g. called the "forward-background algorithm"
 - Both directions useful in statistical inference (next)

Mini Summary

- HMM
 - Powerful and versatile model
 - * "Algorithms" for HMM just instances of PGM machinery
- Evaluation by Forward / Backward
 - Just elimination by two different orderings

Next: Statistical inference (learning) example of EM

Statistical Inference (Learning)

- Learn parameters μ = (A, B, π), given observation sequence o
- Called "Baum Welch" algorithm which uses EM* to approximate MLE, argmax_{μ} P($\mathbf{o} \mid \mu$):
 - 1. initialise μ^1 , let j=1
 - 2. compute expected marginal distributions E step $P(q_t|\mathbf{o}, \boldsymbol{\mu}^j)$ for all t; and $P(q_{t-1}, q_t|\mathbf{o}, \boldsymbol{\mu}^j)$ for t=2...T
 - 3. fit model μ^{j+1} based on expectations M step
 - 4. repeat from step 2, with j=j+1
 - Expectations (2) computed using forward-backward

^{*} Expectation-Maximisation (EM) is coming up

Forward-Backward for $P(q_i|\mathbf{o})$

- Forward-Backward gives: messages, P(o)
- Bayes rule: $P(q_i|\mathbf{o}) = \frac{P(q_i,\mathbf{o})}{P(\mathbf{o})}$
- Marginalisation: $P(q_i, \mathbf{o}) = \sum_{q_1, \dots, q_{i-1}, q_{i+1}, \dots, q_T} P(\mathbf{q}, \mathbf{o})$

$$= \left(\sum_{q_1, \dots, q_{i-1}} P(o_1, \dots, o_{i-1}, q_1, \dots, q_i)\right) P(o_i|q_i) \left(\sum_{q_{i+1}, \dots, q_T} P(o_{i+1}, \dots, o_T, q_{i+1}, \dots, q_T|q_i)\right)$$

$$= m_{i-1 \to i}(q_i) P(o_i|q_i) m_{i+1 \to i}(q_i)$$

$$P(q_i|\mathbf{o}) = rac{1}{P(\mathbf{o})} m_{i-1 o i}(q_i) P(o_i|q_i) m_{i+1 o i}(q_i)$$
 forward backward

Forward-Backward for $P(q_{i-1}, q_i | \mathbf{o})$

- Similar pattern: $P(q_{i-1}, q_i | \mathbf{o}) = \frac{P(q_{i-1}, q_i, \mathbf{o})}{P(\mathbf{o})}$
- Marginalisation: $P(q_{i-1}, q_i, \mathbf{o}) = \sum_{q_1, \dots, q_{i-2}, q_{i+1}, \dots, q_T} P(\mathbf{q}, \mathbf{o})$

$$= \left(\sum_{q_1, \dots, q_{i-2}} P(o_1, \dots, o_{i-2}, q_1, \dots, q_{i-1}) \right) P(o_{i-1}|q_{i-1}) P(q_i|q_{i-1}) P(o_i|q_i) \left(\sum_{q_{i+1}, \dots, q_T} P(o_{i+1}, \dots, o_T, q_{i+1}, \dots, q_T|q_i) \right)$$

$$= m_{i-2 \to i-1} (q_{i-1}) P(o_{i-1}|q_{i-1}) P(q_i|q_{i-1}) P(o_i|q_i) m_{i+1 \to i} (q_i)$$

$$\frac{1}{P(\mathbf{o})} m_{i-2 \to i-1}(q_{i-1}) P(o_{i-1}|q_{i-1}) P(q_i|q_{i-1}) P(o_i|q_i) m_{i+1 \to i}(q_i)$$
forward

backward

Mini Summary

- Statistical inference for HMMs
 - "Just" learning or MLE as we're frequentist here
 - Unobserved random variables means: EM (more later on)
 - Maximisation step: looks like MLE nothing new
 - * Expectation step: achieved by forward-backward messages
- "Baum-Welch" is the original name of this algorithm

Next: Message passing a little more generally

Message Passing

Sum-product algorithm for efficiently computing marginal distributions over trees. An extension of variable elimination algorithm.

Inference as message passing

- Each m can be considered as a message which summarises the effect of the rest of the graph on the current node marginal.
 - * Inference = passing messages between all nodes

Inference as message passing

- Messages vector valued, i.e., function of target label
- Messages defined recursively: left to right, or right to left for the HMM

Sum-product algorithm

Message passing in more general graphs

* applies to chains, trees and poly-trees (D-PGMs with >1 parent)

- * 'sum-product' derives from:
 - **product** = product of incoming messages
 - **sum** = summing out the effect of rv(s) aka elimination

- * e.g., max-product, swapping **sum** for **max**
- * Viterbi algorithm is the max-product variant of forward algorithm, solves the argmax_q $P(\mathbf{q} | \mathbf{o})$

Public domain

^{*} A ring is an algebraic structure generalizing addition/multiplication on reals. Semi-ring relaxes requirement of additive inverse.

Summary

- HMMs as example PGMs
 - formulation as PGM
 - independence assumptions
 - probabilistic inference using forward-backward
 - statistical inference using expectation-maximization
 - decoding as max-product
- Message passing: general inference method for U-PGMs
 - * sum-product & max-product
 - * factor graphs

Next time: Gaussian mixture models and EM