2.3 FUNCTIONS

FUNCTIONS

- A function f from a set X to a set Y is a relationship between elements of X and elements of Y such that each element of X is related to a unique element of Y, and is denoted $f: X \to Y$.
- The set X is called the domain of f and Y is called the co-domain of f.
- Functions are sometimes also called mappings and transformations.

REMARK

The unique element y of Y that is related to x by f is denoted f(x) and is called

```
the value of f at x,

or

the image of x under f
```

ARROW DIAGRAM OF A FUNCTION

- The definition of a function implies that the arrow diagram for a function f has the following two properties:
 - I. Every element of X has an arrow coming out of it
 - 2. No two elements of X has two arrows coming out of it that point to two different elements of Y.

EXAMPLE

- Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$.
- ▶ Define a function f from X to Y by the arrow diagram.

$$f(a) = 2$$
, $f(b) = 4$, and $f(c) = 2$ OR
image of $a = 2$, image of $b = 4$, image of $c = 2$

NONFUNCTIONS

 $X = \{2, 4, 5\} \text{ to } Y = \{1, 2, 4, 6\}$

NOT A FUNCTION

NOT A FUNCTION

RANGE OF A FUNCTION

- Let $f: X \rightarrow Y$. The range of f consists of those elements of Y that are images of elements of X.
- Symbolically:

Range of f

=
$$\{y \in Y \mid y = f(x), \text{ for some } x \in X\}$$

REMARKS

- The range of a function f is always a subset of the codomain of f.
- ▶ The range of $f: X \rightarrow Y$ is also called the image of X under f.
- When y = f(x), then x is called the pre-image of y.
- The set of all elements of X, that are related to some $y \in Y$ is called the inverse image of y.

Determine the range of the functions f, g, h from $X = \{2, 4, 5\}$ to $Y = \{1, 2, 4, 6\}$ defined as:

f

- $2. g = \{ (2,6), (4,2), (5,1) \}$
- $ightharpoonup 3. \quad h(2) = 4, \qquad h(4) = 4, \qquad h(5) = 1$

SOLUTION

- I. Range of $f = \{1, 6\}$
- 2. Range of $g = \{1, 2, 6\}$
- 3. Range of $h = \{1, 4\}$

GRAPH OF A FUNCTION

Let f be a real-valued function of a real variable. i.e. $f: R \rightarrow R$. The graph of f is the set of all points (x, y) in the Cartesian coordinate plane with the property that x is in the domain of f and y = f(x).

EXAMPLE

We have the function

$$y = x^2$$

From set of real numbers to set of real numbers.

y=f(x)
9
4
1
0
1
4
9

VERTICAL LINE TEST FOR THE GRAPH OF A FUNCTION

For a graph to be the graph of a function, any given vertical line in its domain intersects the graph in at most one point. For $y = x^2$

So, it's the graph of a function.

Define a binary relation P from R to R as follows: for all real numbers x and y $(x, y) \in P \Leftrightarrow x = y^2$ Is P a function?

This is not a graph of a function.

- Find all functions from X = { a, b } to Y = { u, v }
- **SOLUTION**

2.

Find all functions from X = { a, b } to Y = { u, v }

- Find four binary relations from X = { a, b }to Y = { u, v } that are not functions.
- **SOLUTION** 1.

a. b.

X

2. a. ____u ____ b. __.v

Y

X

How many functions are there from a set with three elements to a set with four elements?

SOLUTION

Let
$$X = \{x_1, x_2, x_3\}$$
 and $Y = \{y_1, y_2, y_3, y_4\}$

- \triangleright x_1 may be related to any of the four elements y_1, y_2, y_3, y_4 of Y.
- x₁ has four possibilities.
- \triangleright x_2 has four possibilities.
- \triangleright x_3 has four possibilities.

Total number of function = $4 \times 4 \times 4 = 64$

- Suppose A is a set with m elements and B is a set with n elements.
 - ▶ How many functions are there from A to B?

SOLUTION:

Number of functions from

```
A to B = n.n.n. ... .n (m times)
= n^m
```

FUNCTIONS NOT WELL DEFINED

Determine whether f is a function from Z to R if

a.
$$f(n) = \pm n$$
 b. $f(n) = \frac{1}{n^2 - 4}$

c.
$$f(n) = \sqrt{n} \qquad d. \qquad f(n) = \sqrt{n^2 + 1}$$

SOLUTION

- a) f is NOT well defined since each integer n has two images +n and -n.
- b) f is **NOT** well defined since f(2) and f(-2) are not defined.
- c) f is NOT defined for n < 0 since f then results in imaginary values (not real).
- d) f is well defined because each integer has unique (one and only one) image in R under f.

▶ Student B tries to define a function $h : Q \rightarrow Q$ by the rule.

$$h\left(\frac{m}{n}\right) = \frac{m^2}{n}$$

- for all integers m and n with $n \neq 0$
- Students C claims that h is not well defined. Justify Student C's claim.

SOLUTION

The function h is well defined if each rational number has a unique (one and only one) image.

Consider
$$\frac{1}{2} \in Q$$

$$h\left(\frac{1}{2}\right) = \frac{1^2}{2} = \frac{1}{2}$$

Now
$$\frac{1}{2} = \frac{2}{4}$$
 and

$$h\left(\frac{2}{4}\right) = \frac{2^2}{4} = \frac{4}{4} = 1$$

Hence, an element of 'h' has more than two images so not a function.

Hence an element of Q has more than one images under h. Accordingly h is not well defined.

REMARK

▶ <u>Mathematical Formulation of Function's Properties:</u>

 \blacktriangleright A function $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ is well defined iff

$$\forall x_1, x_2 \in X$$

if
$$x_1 = x_2$$
 then $f(x_1) = f(x_2)$

Means an element can not have two images. Rephrase the properties of function.

- ▶ Let g: $R \rightarrow R$ + be defined by $g(x) = x^2 + I$
 - I. Determine g is well defined?
 - 2. Determine the domain, co-domain and range of g.

SOLUTION:

Domain of g = R (set of real numbers)

Co-domain of $g = R^+$ (set of positive real numbers)

Cont...

▶ The range of g consists of those elements of R⁺ that appear as image points.

Since
$$x^2 \ge 0$$
 $\forall x \in R$
 $x^2 + 1 \ge 1$ $\forall x \in R$
i.e. $g(x) = x^2 + 1 \ge 1$ $\forall x \in R$

Hence the range of g is all real number greater than or equal to 1.

i.e [1, ∞)

SOLUTION: (we take two elements of R, and suppose these two elements are equal, by the definition of function we will prove that their images are also equal.)

Let
$$x_1, x_2 \in R$$
 and suppose $x_1 = x_2$
 $\Rightarrow x_1^2 = x_2^2$ (squaring both sides)
 $\Rightarrow x_1^2 + 1 = x_2^2 + 1$ (adding I on both sides)
 $\Rightarrow g(x_1) = g(x_2)$ (by definition of g)

Thus if $x_1 = x_2$ then $g(x_1) = g(x_2)$. Accordingly $g:R \to R+$ is well defined.