Demand Estimation

MIXTAPE SESSION

Jeff Gortmaker and Ariel Pakes

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} \overbrace{(\delta_{jt} - x'_{jt}\beta)}^{\xi_{jt}(\theta)} \cdot z_{jt}$$

$$\text{subject to} \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp[\delta_{jt} + \mu_{ijt}(\theta)]}{1 + \sum_{k \in \mathcal{J}_t} \exp[\delta_{kt} + \mu_{ikt}(\theta)]}$$

• On day 2, adding preference heterogeneity μ_{ijt} gave more realistic substitution patterns.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} \underbrace{(\delta_{jt} - x'_{jt}\beta)}_{(\delta_{jt} - x'_{jt}\beta)} \cdot z_{jt}$$

$$\text{subject to} \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp[\delta_{jt} + x'_{jt}(\Sigma \nu_{it} + \Pi y_{it})]}{1 + \sum_{k \in \mathcal{J}_t} \exp[\delta_{kt} + x'_{kt}(\Sigma \nu_{it} + \Pi y_{it})]}$$

- On day 2, adding preference heterogeneity μ_{ijt} gave more realistic substitution patterns.
 - \to Most common form is $\mu_{ijt}=x'_{jt}(\Sigma\nu_{it}+\Pi y_{it})$ for $\nu_{it}\sim N(0,I)$ and y_{it} from census data.
 - ightarrow Implements random coefficients $eta_{it} \sim N(eta + \Pi y_{it}, \Sigma \Sigma')$ on characteristics x_{jt} in utility.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} \underbrace{(\delta_{jt} - x'_{jt}\beta)}_{(\delta_{jt} - x'_{jt}\beta)} \cdot z_{jt}$$

$$\text{subject to} \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp[\delta_{jt} + x'_{jt}(\Sigma \nu_{it} + \Pi y_{it})]}{1 + \sum_{k \in \mathcal{J}_t} \exp[\delta_{kt} + x'_{kt}(\Sigma \nu_{it} + \Pi y_{it})]}$$

- On day 2, adding preference heterogeneity μ_{ijt} gave more realistic substitution patterns.
 - ightarrow Most common form is $\mu_{ijt}=x'_{jt}(\Sigma \nu_{it}+\Pi y_{it})$ for $\nu_{it}\sim N(0,I)$ and y_{it} from census data.
 - \rightarrow Implements random coefficients $\beta_{it} \sim N(\beta + \Pi y_{it}, \Sigma \Sigma')$ on characteristics x_{jt} in utility.
- ullet This required adding consumer type i data to supplement our product j data from day 1.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} \underbrace{(\delta_{jt} - x'_{jt}\beta)}_{(\delta_{jt} - x'_{jt}\beta)} \cdot z_{jt}$$

$$\text{subject to} \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp[\delta_{jt} + x'_{jt}(\Sigma \nu_{it} + \Pi y_{it})]}{1 + \sum_{k \in \mathcal{J}_t} \exp[\delta_{kt} + x'_{kt}(\Sigma \nu_{it} + \Pi y_{it})]}$$

- On day 2, adding preference heterogeneity μ_{ijt} gave more realistic substitution patterns.
 - \rightarrow Most common form is $\mu_{ijt}=x'_{jt}(\Sigma\nu_{it}+\Pi y_{it})$ for $\nu_{it}\sim N(0,I)$ and y_{it} from census data.
 - \rightarrow Implements random coefficients $\beta_{it} \sim N(\beta + \Pi y_{it}, \Sigma \Sigma')$ on characteristics x_{jt} in utility.
- ullet This required adding consumer type i data to supplement our product j data from day 1.
- Let's go over your second coding exercise.

- The price cut exercise seems more reasonable with random coefficients.
 - → Consumers substitute from similar products, particularly along the price dimension.

- The price cut exercise seems more reasonable with random coefficients.
 - → Consumers substitute from similar products, particularly along the price dimension.
- But which random coefficients we can add is limited by variation in our data.
 - ightarrow Recall the linear regression intuition from the last class.

- The price cut exercise seems more reasonable with random coefficients.
 - → Consumers substitute from similar products, particularly along the price dimension.
- But which random coefficients we can add is limited by variation in our data.
 - \rightarrow Recall the linear regression intuition from the last class.
- Can't credibly estimate a standard deviation in Σ on the mushy dummy.

 - ightarrow Results in unrealistically limited substitution between similar cereals.

- The price cut exercise seems more reasonable with random coefficients.
 - → Consumers substitute from similar products, particularly along the price dimension.
- But which random coefficients we can add is limited by variation in our data.
 - ightarrow Recall the linear regression intuition from the last class.
- Can't credibly estimate a standard deviation in Σ on the mushy dummy.
 - → Same cereals in each market, so no choice set variation along mushy dimension.
 - → Results in unrealistically limited substitution between similar cereals.
- Also can't estimate a parameter in Π on log income alone.
 - ightarrow Market fixed effects are collinear with market-level income means.
 - $\,\rightarrow\,$ Unrealistic that overall cereal preference doesn't vary with income.

Within-Market Variation

• Without much cross-market variation, what we really want is within-market variation.

Within-Market Variation

- Without much cross-market variation, what we really want is within-market variation.
- "Micro data" has information about individual choices, not just market-level quantities.

Within-Market Variation

- Without much cross-market variation, what we really want is within-market variation.
- "Micro data" has information about individual choices, not just market-level quantities.
- Typical example is consumer survey data.
 - ightarrow Internal surveys conducted by firms.
 - → Ad-hoc surveys conducted by academics.
 - \rightarrow Marketing research datasets (e.g. NielsenIQ's Consumer Panel).
 - → Regulatory agencies like the UK's antitrust authority (Reynolds and Walters, 2008).

• Imagine surveying people at the supermarket who purchased cereal.

- Imagine surveying people at the supermarket who purchased cereal.
- "What was your annual income last year?"
 - \rightarrow Should be informative about a parameter in Π on log income alone.
 - ightarrow Mean income of cereal purchasers targets how income shifts cereal preference.

- Imagine surveying people at the supermarket who purchased cereal.
- "What was your annual income last year?"
 - ightarrow Should be informative about a parameter in Π on log income alone.
 - ightarrow Mean income of cereal purchasers targets how income shifts cereal preference.
- "Would you have purchased another mushy cereal if your first choice wasn't available?"
 - ightarrow Should be informative about a standard deviation in Σ on the mushy dummy.
 - ightarrow Within-mushy substitution is precisely what we hope this parameter will increase!

- Imagine surveying people at the supermarket who purchased cereal.
- "What was your annual income last year?"
 - ightarrow Should be informative about a parameter in Π on log income alone.
 - ightarrow Mean income of cereal purchasers targets how income shifts cereal preference.
- "Would you have purchased another mushy cereal if your first choice wasn't available?"
 - ightarrow Should be informative about a standard deviation in Σ on the mushy dummy.
 - ightarrow Within-mushy substitution is precisely what we hope this parameter will increase!
- Let's incorporate answers to these questions into estimation.
 - ightarrow We'll set up a general framework and come back to these when we have notation to do so.

Roadmap

Micro BLP Estimation

Choosing Micro Moments

Using More Information

Coding Exercise 3

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt}$$

We can extend our BLP estimator by matching statistics from consumer surveys.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ \overline{v}_1 - v_1(\theta) \end{bmatrix}$$

- We can extend our BLP estimator by matching statistics from consumer surveys.
 - 1. \overline{v}_1 : Mean income of cereal purchasers. Matched to the model's prediction $v_1(\theta)$.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ \overline{v}_1 - v_1(\theta) \\ \overline{v}_2 - v_2(\theta) \end{bmatrix}$$

- We can extend our BLP estimator by matching statistics from consumer surveys.
 - 1. \overline{v}_1 : Mean income of cereal purchasers. Matched to the model's prediction $v_1(\theta)$.
 - 2. \overline{v}_2 : Share of cereal purchasers who chose a mushy cereal and would choose another mushy cereal if their first choice wasn't available. Model analogue is $v_2(\theta)$.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ \overline{v} - v(\theta) \end{bmatrix}$$

- We can extend our BLP estimator by matching statistics from consumer surveys.
 - 1. \overline{v}_1 : Mean income of cereal purchasers. Matched to the model's prediction $v_1(\theta)$.
 - 2. \overline{v}_2 : Share of cereal purchasers who chose a mushy cereal and would choose another mushy cereal if their first choice wasn't available. Model analogue is $v_2(\theta)$.
- Denote the vector of matched statistics by $\overline{v} = [\overline{v}_1, \overline{v}_2]'$.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ f(\overline{v}) - f(v(\theta)) \end{bmatrix}$$

- We can extend our BLP estimator by matching statistics from consumer surveys.
 - 1. \overline{v}_1 : Mean income of cereal purchasers. Matched to the model's prediction $v_1(\theta)$.
 - 2. \overline{v}_2 : Share of cereal purchasers who chose a mushy cereal and would choose another mushy cereal if their first choice wasn't available. Model analogue is $v_2(\theta)$.
- Denote the vector of matched statistics by $\overline{v} = [\overline{v}_1, \overline{v}_2]'$.
- Don't have to be averages \overline{v} . Can match any smooth function $f(\overline{v})$.
 - ightarrow Ratios (e.g. mean income given mushy), correlations (e.g. between income and price), etc.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ f(\overline{v}) - f(v(\theta)) \end{bmatrix}$$

- We can extend our BLP estimator by matching statistics from consumer surveys.
 - 1. \overline{v}_1 : Mean income of cereal purchasers. Matched to the model's prediction $v_1(\theta)$.
 - 2. \overline{v}_2 : Share of cereal purchasers who chose a mushy cereal and would choose another mushy cereal if their first choice wasn't available. Model analogue is $v_2(\theta)$.
- Denote the vector of matched statistics by $\overline{v} = [\overline{v}_1, \overline{v}_2]'$.
- Don't have to be averages \overline{v} . Can match any smooth function $f(\overline{v})$.
 - ightarrow Ratios (e.g. mean income given mushy), correlations (e.g. between income and price), etc.
- The resulting "micro BLP" estimator is used a lot in industrial organization.

Micro BLP Popularity

• First popularized by Petrin (2002) and BLP (2004).

Paper	Industry	Country	Years
Petrin (2002)	Automobiles	United States	1981-1993
Berry, Levinsohn, and Pakes (2004)	Automobiles	United States	1993
Thomadsen (2005)	Fast Food	United States	1999
Goeree (2008)	Personal Computers	United States	1996 - 1998
Ciliberto and Kuminoff (2010)	Cigarettes	United States	1993 - 2002
Nakamura and Zerom (2010)	Coffee	United States	2000 - 2004
Beresteanu and Li (2011)	Automobiles	United States	1999-2006
Li (2012)	Automobiles	United States	1999 - 2006
Copeland (2014)	Automobiles	United States	1999 - 2008
Starc (2014)	Health Insurance	United States	2004-2008
Ching, Hayashi, and Wang (2015)	Nursing Homes	United States	1999
Li, Xiao, and Liu (2015)	Automobiles	China	2004-2009
Nurski and Verboven (2016)	Automobiles	Belgium	2010 - 2011
Barwick, Cao, and Li (2017)	Automobiles	China	2009 - 2011
Murry (2017)	Automobiles	United States	2007 - 2011
Wollmann (2018)	Commercial Vehicles	United States	1986 - 2012
Li (2018)	Automobiles	China	2008-2012
Li, Gordon, and Netzer (2018)	Digital Cameras	United States	2007 - 2010
Backus, Conlon, and Sinkinson (2021)	Cereal	United States	2007 - 2016
Grieco, Murry, and Yurukoglu (2021)	Automobiles	United States	1980 - 2018
Neilson (2021)	Primary Schools	Chile	2005 - 2016
Armitage and Pinter (2022)	Automobiles	United States	2009 - 2017
Döpper, MacKay, Miller, and Stiebale (2022)	Retail	United States	2006 - 2019
Durrmeyer (2022)	Automobiles	France	2003-2008
Weber (2022)	Trucks	United States	2010 - 2018
Bodéré (2023)	Preschools	United States	2010-2018
Montag (2023)	Laundry Machines	United States	2005 - 2015
Conlon and Rao (2023)	Distilled Spirits	United States	2007 - 2013

Micro BLP Popularity

- First popularized by Petrin (2002) and BLP (2004).
- Used a lot. But each paper has different notation.

Paper	Industry	Country	Years
Petrin (2002)	Automobiles	United States	1981-1993
Berry, Levinsohn, and Pakes (2004)	Automobiles	United States	1993
Thomadsen (2005)	Fast Food	United States	1999
Goeree (2008)	Personal Computers	United States	1996 - 1998
Ciliberto and Kuminoff (2010)	Cigarettes	United States	1993-2002
Nakamura and Zerom (2010)	Coffee	United States	2000-2004
Beresteanu and Li (2011)	Automobiles	United States	1999-2006
Li (2012)	Automobiles	United States	1999-2006
Copeland (2014)	Automobiles	United States	1999-2008
Starc (2014)	Health Insurance	United States	2004-2008
Ching, Hayashi, and Wang (2015)	Nursing Homes	United States	1999
Li, Xiao, and Liu (2015)	Automobiles	China	2004-2009
Nurski and Verboven (2016)	Automobiles	Belgium	2010 - 2011
Barwick, Cao, and Li (2017)	Automobiles	China	2009-2011
Murry (2017)	Automobiles	United States	2007 - 2011
Wollmann (2018)	Commercial Vehicles	United States	1986 - 2012
Li (2018)	Automobiles	China	2008-2012
Li, Gordon, and Netzer (2018)	Digital Cameras	United States	2007-2010
Backus, Conlon, and Sinkinson (2021)	Cereal	United States	2007-2016
Grieco, Murry, and Yurukoglu (2021)	Automobiles	United States	1980-2018
Neilson (2021)	Primary Schools	Chile	2005-2016
Armitage and Pinter (2022)	Automobiles	United States	2009-2017
Döpper, MacKay, Miller, and Stiebale (2022)	Retail	United States	2006-2019
Durrmeyer (2022)	Automobiles	France	2003-2008
Weber (2022)	Trucks	United States	2010-2018
Bodéré (2023)	Preschools	United States	2010-2018
Montag (2023)	Laundry Machines	United States	2005-2015
Conlon and Rao (2023)	Distilled Spirits	United States	2007-2013

Micro BLP Popularity

- First popularized by Petrin (2002) and BLP (2004).
- Used a lot. But each paper has different notation.
- We'll use the standardized framework for PyBLP from Conlon and Gortmaker (2025).

Paper	Industry	Country	Years
Petrin (2002)	Automobiles	United States	1981-1993
Berry, Levinsohn, and Pakes (2004)	Automobiles	United States	1993
Thomadsen (2005)	Fast Food	United States	1999
Goeree (2008)	Personal Computers	United States	1996 - 1998
Ciliberto and Kuminoff (2010)	Cigarettes	United States	1993 - 2002
Nakamura and Zerom (2010)	Coffee	United States	2000-2004
Beresteanu and Li (2011)	Automobiles	United States	1999-2006
Li (2012)	Automobiles	United States	1999-2006
Copeland (2014)	Automobiles	United States	1999-2008
Starc (2014)	Health Insurance	United States	2004-2008
Ching, Hayashi, and Wang (2015)	Nursing Homes	United States	1999
Li, Xiao, and Liu (2015)	Automobiles	China	2004-2009
Nurski and Verboven (2016)	Automobiles	Belgium	2010 - 2011
Barwick, Cao, and Li (2017)	Automobiles	China	2009 - 2011
Murry (2017)	Automobiles	United States	2007 - 2011
Wollmann (2018)	Commercial Vehicles	United States	1986 - 2012
Li (2018)	Automobiles	China	2008-2012
Li, Gordon, and Netzer (2018)	Digital Cameras	United States	2007 - 2010
Backus, Conlon, and Sinkinson (2021)	Cereal	United States	2007 - 2016
Grieco, Murry, and Yurukoglu (2021)	Automobiles	United States	1980 - 2018
Neilson (2021)	Primary Schools	Chile	2005 - 2016
Armitage and Pinter (2022)	Automobiles	United States	2009 - 2017
Döpper, MacKay, Miller, and Stiebale (2022)	Retail	United States	2006-2019
Durrmeyer (2022)	Automobiles	France	2003-2008
Weber (2022)	Trucks	United States	2010-2018
Bodéré (2023)	Preschools	United States	2010-2018
Montag (2023)	Laundry Machines	United States	2005 - 2015
Conlon and Rao (2023)	Distilled Spirits	United States	2007 - 2013

Micro Moments

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ f(\overline{v}) - f(v(\theta)) \end{bmatrix}$$

- There are two new components.
 - 1. Micro statistics $f(\overline{v}) = [f_1(\overline{v}), \dots, f_M(\overline{v})]'$.
 - 2. Their model analogues $f(v(\theta)) = [f_1(v(\theta)), \dots, f_M(v(\theta))]'$.

Micro Moments

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \begin{bmatrix} \frac{1}{N} \sum_{j,t} (\delta_{jt}(\theta) - x'_{jt}\beta) \cdot z_{jt} \\ f(\overline{v}) - f(v(\theta)) \end{bmatrix}$$

- There are two new components.
 - 1. Micro statistics $f(\overline{v}) = [f_1(\overline{v}), \dots, f_M(\overline{v})]'$.
 - 2. Their model analogues $f(v(\theta)) = [f_1(v(\theta)), \dots, f_M(v(\theta))]'$.
- Statistically, we need $f(\overline{v}) \to f(v(\theta_0))$ as the micro dataset expands.
 - \rightarrow This gives what we'll call $m=1,\ldots,M$ different "micro moments."
 - ightarrow A bit different from our "aggregate moments" $\mathbb{E}[\xi_{jt}\cdot z_{jt}]=0$.

• Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...
 - 1. ... be from each market $t_n \in \mathcal{T}$ with equal probability.

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...
 - 1. ... be from each market $t_n \in \mathcal{T}$ with equal probability.
 - 2. ... be of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$. Same individual type weight as before.

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...
 - 1. ... be from each market $t_n \in \mathcal{T}$ with equal probability.
 - 2. ... be of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$. Same individual type weight as before.
 - 3. ... choose $j_n \in \mathcal{J}_{t_n} \cup \{0\}$ with probability $s_{i_n j_n t_n}$. Same logit choice probability as before.

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...
 - 1. ... be from each market $t_n \in \mathcal{T}$ with equal probability.
 - 2. ... be of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$. Same individual type weight as before.
 - 3. ... choose $j_n \in \mathcal{J}_{t_n} \cup \{0\}$ with probability $s_{i_n j_n t_n}$. Same logit choice probability as before.
 - 4. ... be selected into the survey with known probability $w_{din into}$. Often choice-based.

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...
 - 1. ... be from each market $t_n \in \mathcal{T}$ with equal probability.
 - 2. ... be of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$. Same individual type weight as before.
 - 3. ... choose $j_n \in \mathcal{J}_{t_n} \cup \{0\}$ with probability $s_{i_n j_n t_n}$. Same logit choice probability as before.
 - 4. ... be selected into the survey with known probability $w_{din into}$. Often choice-based.
- Micro statistics $f_m(\overline{v})$ are smooth functions of $p=1,\ldots,P$ "micro part" averages:

$$\overline{v}_p = \frac{1}{N_d} \sum_{n \in \mathcal{N}_d} v_{pi_n j_n t_n}$$

- Each micro statistic $f_m(\overline{v})$ is a summary statistic computed on a micro dataset.
- Micro datasets $d \in \mathcal{D}$ consist of surveyed consumers $n \in \mathcal{N}_d$ who could ...
 - 1. ... be from each market $t_n \in \mathcal{T}$ with equal probability.
 - 2. ... be of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$. Same individual type weight as before.
 - 3. ... choose $j_n \in \mathcal{J}_{t_n} \cup \{0\}$ with probability $s_{i_n j_n t_n}$. Same logit choice probability as before.
 - 4. ... be selected into the survey with known probability $w_{din into}$. Often choice-based.
- Micro statistics $f_m(\overline{v})$ are smooth functions of $p=1,\ldots,P$ "micro part" averages:

$$\overline{v}_p = \frac{1}{N_d} \sum_{n \in \mathcal{N}_d} v_{pi_n j_n t_n}$$

• Different weights w_{dijt} , values v_{pijt} , and functions $f_m(\cdot)$ support most summary stats.

• To match \overline{v}_1 , the mean income of cereal purchasers, PyBLP needs some info.

- To match \overline{v}_1 , the mean income of cereal purchasers, PyBLP needs some info.
- First, you need to define your micro dataset d.
 - \rightarrow Sampling weights $w_{dijt} = 1\{j \neq 0\}$ imply only cereal purchasers were surveyed.
 - \rightarrow In practice, you specify a function to compute a matrix of weights for each market t.
 - ightarrow You also need to specify the number of survey observations $N_d = |\mathcal{N}_d|$.

- To match \overline{v}_1 , the mean income of cereal purchasers, PyBLP needs some info.
- First, you need to define your micro dataset d.
 - \rightarrow Sampling weights $w_{dijt} = 1\{j \neq 0\}$ imply only cereal purchasers were surveyed.
 - ightarrow In practice, you specify a function to compute a matrix of weights for each market t.
 - ightarrow You also need to specify the number of survey observations $N_d = |\mathcal{N}_d|$.
- Second, you need to define your micro part p.
 - ightarrow Micro values $v_{pijt}=$ income $_{it}$ means \overline{v}_{p} is mean surveyed income.
 - ightarrow In practice, you specify a second function to compute a matrix of values for each market t.

- To match \overline{v}_1 , the mean income of cereal purchasers, PyBLP needs some info.
- First, you need to define your micro dataset d.
 - \rightarrow Sampling weights $w_{dijt} = 1\{j \neq 0\}$ imply only cereal purchasers were surveyed.
 - \rightarrow In practice, you specify a function to compute a matrix of weights for each market t.
 - ightarrow You also need to specify the number of survey observations $N_d = |\mathcal{N}_d|$.
- Second, you need to define your micro part p.
 - ightarrow Micro values $v_{pijt}=$ income $_{it}$ means \overline{v}_{p} is mean surveyed income.
 - ightarrow In practice, you specify a second function to compute a matrix of values for each market t.
- Lastly, you need to define your micro moment m.
 - \rightarrow The identity function $f_m(\overline{v}_p) = \overline{v}_p$ just matches the mean surveyed income.
 - ightarrow You also need to specify the actual value of the micro statistic \overline{v}_1 .

$$f_m(\overline{v}_p) \to f_m(v_p(\theta_0))$$

• For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.

$$f_m\left(\frac{1}{N_d}\sum_{n\in\mathcal{N}_d}v_{pi_nj_nt_n}\right)\to f_m\left(\frac{\cdots v_{pijt}}{\cdots}\right)$$

- For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.
- The model analogue $v_p(\theta)$ of a micro part \overline{v}_p is a conditional expectation.
 - \rightarrow Expected micro value $v_{pi_nj_nt_n}$ divided by the probability of being selected.

$$f_m\left(\frac{1}{N_d}\sum_{n\in\mathcal{N}_d}v_{pi_nj_nt_n}\right)\to f_m\left(\frac{\cdots v_{pijt}}{\cdots}\right)$$

- For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.
- The model analogue $v_p(\theta)$ of a micro part \overline{v}_p is a conditional expectation.
 - ightarrow Expected micro value $v_{pi_nj_nt_n}$ divided by the probability of being selected.
- Recall the data generating process for surveyed consumers $n \in \mathcal{N}_d$.

$$f_m\left(\frac{1}{N_d}\sum_{n\in\mathcal{N}_d}v_{pi_nj_nt_n}\right)\to f_m\left(\frac{\sum_{t\in\mathcal{T}}\cdots v_{pijt}}{\sum_{t\in\mathcal{T}}\cdots}\right)$$

- For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.
- The model analogue $v_p(\theta)$ of a micro part \overline{v}_p is a conditional expectation.
 - ightarrow Expected micro value $v_{pi_nj_nt_n}$ divided by the probability of being selected.
- Recall the data generating process for surveyed consumers $n \in \mathcal{N}_d$.
 - 1. In market $t_n \in \mathcal{T}$ with equal probability.

$$f_m\left(\frac{1}{N_d}\sum_{n\in\mathcal{N}_d}v_{pi_nj_nt_n}\right)\to f_m\left(\frac{\sum_{t\in\mathcal{T}}\sum_{i\in\mathcal{I}_t}w_{it}\cdots v_{pijt}}{\sum_{t\in\mathcal{T}}\sum_{i\in\mathcal{I}_t}w_{it}\cdots}\right)$$

- For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.
- The model analogue $v_p(\theta)$ of a micro part \overline{v}_p is a conditional expectation.
 - ightarrow Expected micro value $v_{pi_nj_nt_n}$ divided by the probability of being selected.
- Recall the data generating process for surveyed consumers $n \in \mathcal{N}_d$.
 - 1. In market $t_n \in \mathcal{T}$ with equal probability.
 - 2. Of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$.

$$f_m\left(\frac{1}{N_d}\sum_{n\in\mathcal{N}_d}v_{pi_nj_nt_n}\right)\to f_m\left(\frac{\sum_{t\in\mathcal{T}}\sum_{i\in\mathcal{I}_t}\sum_{j\in\mathcal{J}_t\cup\{0\}}w_{it}\cdot s_{ijt}(\theta_0)\cdots v_{pijt}}{\sum_{t\in\mathcal{T}}\sum_{i\in\mathcal{I}_t}\sum_{j\in\mathcal{J}_t\cup\{0\}}w_{it}\cdot s_{ijt}(\theta_0)\cdots}\right)$$

- For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.
- The model analogue $v_p(\theta)$ of a micro part \overline{v}_p is a conditional expectation.
 - ightarrow Expected micro value $v_{pi_nj_nt_n}$ divided by the probability of being selected.
- Recall the data generating process for surveyed consumers $n \in \mathcal{N}_d$.
 - 1. In market $t_n \in \mathcal{T}$ with equal probability.
 - 2. Of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$.
 - 3. Chooses $j_n \in \mathcal{J}_{t_n}$ with probability $s_{i_n j_n t_n}$.

$$f_m\bigg(\frac{1}{N_d}\sum_{n\in\mathcal{N}_d}v_{pi_nj_nt_n}\bigg)\to f_m\bigg(\frac{\sum_{t\in\mathcal{T}}\sum_{i\in\mathcal{I}_t}\sum_{j\in\mathcal{J}_t\cup\{0\}}w_{it}\cdot s_{ijt}(\theta_0)\cdot w_{dijt}\cdot v_{pijt}}{\sum_{t\in\mathcal{T}}\sum_{i\in\mathcal{I}_t}\sum_{j\in\mathcal{J}_t\cup\{0\}}w_{it}\cdot s_{ijt}(\theta_0)\cdot w_{dijt}}\bigg)$$

- For each guess of θ , PyBLP will compute the model analogue $f_m(v_p(\theta))$.
- The model analogue $v_p(\theta)$ of a micro part \overline{v}_p is a conditional expectation.
 - ightarrow Expected micro value $v_{pi_nj_nt_n}$ divided by the probability of being selected.
- Recall the data generating process for surveyed consumers $n \in \mathcal{N}_d$.
 - 1. In market $t_n \in \mathcal{T}$ with equal probability.
 - 2. Of type $i_n \in \mathcal{I}_{t_n}$ with probability $w_{i_n t_n}$.
 - 3. Chooses $j_n \in \mathcal{J}_{t_n}$ with probability $s_{i_n j_n t_n}$.
 - 4. Selected to be in the survey with known probability $w_{di_nj_nt_n}$.

Roadmap

Micro BLP Estimation

Choosing Micro Moments

Using More Information

Coding Exercise 3

Adding Micro Moments

- Recall my advice from last class about adding instruments.
 - \rightarrow For each new parameter, we need another instrument.
 - ightarrow Start by choosing a single instrument that "targets" that parameter.

Adding Micro Moments

- Recall my advice from last class about adding instruments.
 - \rightarrow For each new parameter, we need another instrument.
 - ightarrow Start by choosing a single instrument that "targets" that parameter.
- My advice for adding micro moments is similar.
 - \rightarrow For each new parameter without an instrument, we need a micro moment.
 - ightarrow Start by choosing a single micro moment that "targets" the parameter.

Adding Micro Moments

- Recall my advice from last class about adding instruments.
 - \rightarrow For each new parameter, we need another instrument.
 - ightarrow Start by choosing a single instrument that "targets" that parameter.
- My advice for adding micro moments is similar.
 - \rightarrow For each new parameter without an instrument, we need a micro moment.
 - → Start by choosing a single micro moment that "targets" the parameter.
- What if you could estimate a parameter with either aggregate or micro variation?
 - ightarrow Could just choose the variation that seems more "credible." Often the micro moment.
 - $\,$ Can use both. Micro moments can reduce large SEs from limited aggregate variation.

$$u_{ijt} = \beta_1 + \pi_1 y_{it} + (\beta_x + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

$$u_{ijt} = \beta_1 + \pi_1 y_{it} + (\beta_x + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- In our example, matching a " $\mathbb{E}[y_{it} \mid j \neq 0]$ " micro moment targets π_1 .
 - ightarrow Mean income of cereal purchasers targets how income shifts cereal preference.

$$u_{ijt} = \beta_1 + \pi_1 y_{it} + (\beta_x + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- In our example, matching a " $\mathbb{E}[y_{it} \mid j \neq 0]$ " micro moment targets π_1 .
 - ightarrow Mean income of cereal purchasers targets how income shifts cereal preference.
- To target π_x , you can match " $\mathbb{E}[y_{it} \cdot x_{jt} \mid j \neq 0]$ " or similar, e.g. " $\mathbb{C}(y_{it}, x_{jt} \mid j \neq 0)$."
 - ightarrow Relationship between income and price targets how income shifts price sensitivity.
 - ightarrow Other common examples include " $\mathbb{E}[y_{it} \mid x_{jt} < \overline{x}]$ " and " $\mathbb{E}[x_{jt} \mid y_{it} < \overline{y}]$."

$$u_{ijt} = \beta_1 + \pi_1 y_{it} + (\beta_x + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- In our example, matching a " $\mathbb{E}[y_{it} \mid j \neq 0]$ " micro moment targets π_1 .
 - ightarrow Mean income of cereal purchasers targets how income shifts cereal preference.
- To target π_x , you can match " $\mathbb{E}[y_{it} \cdot x_{jt} \mid j \neq 0]$ " or similar, e.g. " $\mathbb{C}(y_{it}, x_{jt} \mid j \neq 0)$."
 - ightarrow Relationship between income and price targets how income shifts price sensitivity.
 - ightarrow Other common examples include " $\mathbb{E}[y_{it} \mid x_{jt} < \overline{x}]$ " and " $\mathbb{E}[x_{jt} \mid y_{it} < \overline{y}]$."
- Micro data is not directly informative about "linear parameters" β_1 or β_x .
 - ightarrow Mean utility $\delta_{jt}=\beta_1+\beta_x x_{jt}+\xi_{jt}$ is already pinned down by market shares s_{jt} .

Second Choice Data

• What about targeting unobserved preference heterogeneity parameters in Σ ?

Second Choice Data

- What about targeting unobserved preference heterogeneity parameters in Σ ?
- The literature has had success with incorporating second choice data (e.g. BLP, 2004).
 - \rightarrow Survey asks consumers which $k_n \neq j_n$ they'd choose if their first choice weren't available.
 - ightarrow Micro weights and values now just have an extra index: w_{dijkt} and v_{pijkt} .

Second Choice Data

- What about targeting unobserved preference heterogeneity parameters in Σ ?
- The literature has had success with incorporating second choice data (e.g. BLP, 2004).
 - \rightarrow Survey asks consumers which $k_n \neq j_n$ they'd choose if their first choice weren't available.
 - ightarrow Micro weights and values now just have an extra index: w_{dijkt} and v_{pijkt} .
- Direct measures of substitution are very informative about Σ .
 - \rightarrow Recall the red bus/blue bus example that motivated adding preference heterogeneity.
 - ightarrow Each second choice is like observing a new market with the first choice removed.

$$u_{ijt} = \beta_1 + \sigma_1 \nu_{1it} + \pi_1 y_{it} + (\beta_x + \sigma_x \nu_{2it} + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

$$u_{ijt} = \beta_1 + \sigma_1 \nu_{1it} + \pi_1 y_{it} + (\beta_x + \sigma_x \nu_{2it} + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- To target σ_x , want a measure of how much people substitute within x_{jt} .
 - ightarrow In your exercise, you'll match the share " $\mathbb{P}(\mathsf{mushy}_{jt} \ \mathsf{and} \ \mathsf{mushy}_{kt} \ | \ j
 eq 0)$."
 - \rightarrow For non-binary x_{jt} , can also match " $\mathbb{C}(x_{jt}, x_{kt} \mid j, k \neq 0)$ " or similar.

$$u_{ijt} = \beta_1 + \sigma_1 \nu_{1it} + \pi_1 y_{it} + (\beta_x + \sigma_x \nu_{2it} + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- To target σ_x , want a measure of how much people substitute within x_{jt} .
 - ightarrow In your exercise, you'll match the share " $\mathbb{P}(\mathsf{mushy}_{jt}$ and $\mathsf{mushy}_{kt} \mid j \neq 0)$."
 - \rightarrow For non-binary x_{jt} , can also match " $\mathbb{C}(x_{jt}, x_{kt} \mid j, k \neq 0)$ " or similar.
- To target σ_1 , want a measure of how much people substitute to k=0.
 - ightarrow In your exercise, you'll match another share " $\mathbb{P}(k=0\mid j\neq 0)$."

$$u_{ijt} = \beta_1 + \sigma_1 \nu_{1it} + \pi_1 y_{it} + (\beta_x + \sigma_x \nu_{2it} + \pi_x y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- To target σ_x , want a measure of how much people substitute within x_{jt} .
 - ightarrow In your exercise, you'll match the share " $\mathbb{P}(\mathsf{mushy}_{jt} \ \mathsf{and} \ \mathsf{mushy}_{kt} \ | \ j
 eq 0)$."
 - \rightarrow For non-binary x_{jt} , can also match " $\mathbb{C}(x_{jt}, x_{kt} \mid j, k \neq 0)$ " or similar.
- To target σ_1 , want a measure of how much people substitute to k=0.
 - ightarrow In your exercise, you'll match another share " $\mathbb{P}(k=0\mid j\neq 0)$."
- Diversion ratios straightforward to interpret and collect.

Outside Substitution and Market Size

- Estimating a σ_1 is important if you're interested in inside-outside substitution.
 - \rightarrow How many consumers will stop purchasing soda if all sodas are taxed?
 - ightarrow How much larger will a market grow if innovation reduces production costs?

Outside Substitution and Market Size

- Estimating a σ_1 is important if you're interested in inside-outside substitution.
 - → How many consumers will stop purchasing soda if all sodas are taxed?
 - → How much larger will a market grow if innovation reduces production costs?
- On day 1, we discussed how choosing a market size is neither easy nor innocuous.
 - \rightarrow Assuming a small market size M_t means assuming a small outside share s_{0t} .
 - \rightarrow Typically, this results in relatively high inside qualities ξ_{jt} .

Outside Substitution and Market Size

- Estimating a σ_1 is important if you're interested in inside-outside substitution.
 - → How many consumers will stop purchasing soda if all sodas are taxed?
 - → How much larger will a market grow if innovation reduces production costs?
- On day 1, we discussed how choosing a market size is neither easy nor innocuous.
 - ightarrow Assuming a small market size M_t means assuming a small outside share s_{0t} .
 - \rightarrow Typically, this results in relatively high inside qualities ξ_{jt} .
 - ightarrow Implies little substitution to the outside good in counterfactuals.
- Directly matching an outside diversion ratio will help discipline outside substitution.
 - ightarrow If $\hat{\sigma}_1$ is large, many people will dislike all inside goods and usually choose j=0.
 - ightarrow This reduces the effective market size, helping to compensate for a too-large M_t .
 - ightarrow See Zhang (2024) for more on how σ_1 can help and other solutions.

Roadmap

Micro BLP Estimation

Choosing Micro Moments

Using More Information

Coding Exercise (

• So far we have focused on matching summary statistics. Why not use the full survey?

- So far we have focused on matching summary statistics. Why not use the full survey?
- May prefer to use summary stats for a few reasons.

- So far we have focused on matching summary statistics. Why not use the full survey?
- May prefer to use summary stats for a few reasons.
 - ightarrow Cost: More data costs more. Headline summary stats can be free.

- So far we have focused on matching summary statistics. Why not use the full survey?
- May prefer to use summary stats for a few reasons.
 - → Cost: More data costs more. Headline summary stats can be free.
 - → Confidentiality: Data providers may want to protect respondent identities.

- So far we have focused on matching summary statistics. Why not use the full survey?
- May prefer to use summary stats for a few reasons.
 - → Cost: More data costs more. Headline summary stats can be free.
 - → Confidentiality: Data providers may want to protect respondent identities.
 - → Compatibility: Aggregate and micro data may come from different sampling schemes.

- So far we have focused on matching summary statistics. Why not use the full survey?
- May prefer to use summary stats for a few reasons.
 - → Cost: More data costs more. Headline summary stats can be free.
 - → Confidentiality: Data providers may want to protect respondent identities.
 - → Compatibility: Aggregate and micro data may come from different sampling schemes.
 - → Clarity: Matching a single statistic makes it clear where identification comes from.

Information Tradeoffs

- So far we have focused on matching summary statistics. Why not use the full survey?
- May prefer to use summary stats for a few reasons.
 - \rightarrow Cost: More data costs more. Headline summary stats can be free.
 - → Confidentiality: Data providers may want to protect respondent identities.
 - → Compatibility: Aggregate and micro data may come from different sampling schemes.
 - → Clarity: Matching a single statistic makes it clear where identification comes from.
- But adding more info can greatly increase the precision of our estimates.
 - ightarrow Ideally we'd observe a complete micro dataset $\{t_n, j_n, k_n, y_{i_n t_n}\}_{n \in \mathcal{N}_d}$.

$$\log \mathcal{L}(\theta, \delta) = \sum_{n \in \mathcal{N}_d} \log \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta, \delta)$$

• If we only had micro data, we may want to just work with its log likelihood: (technically, this likelihood is conditional on the aggregate data)

$$\log \mathcal{L}(\theta, \delta) = \sum_{n \in \mathcal{N}_d} \log \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta, \delta)$$

• This classic approach proceeds into two steps:

$$\log \mathcal{L}(\theta, \delta) = \sum_{n \in \mathcal{N}_d} \log \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta, \delta)$$

- This classic approach proceeds into two steps:
 - 1. Find the $\hat{\theta} = (\hat{\Sigma}, \hat{\Pi})$ and mean utilities $\hat{\delta}$ that maximize $\log \mathcal{L}(\theta, \delta)$.

$$\log \mathcal{L}(\theta, \delta) = \sum_{n \in \mathcal{N}_d} \log \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta, \delta)$$

- This classic approach proceeds into two steps:
 - 1. Find the $\hat{\theta} = (\hat{\Sigma}, \hat{\Pi})$ and mean utilities $\hat{\delta}$ that maximize $\log \mathcal{L}(\theta, \delta)$.
 - 2. Run an IV regression of $\hat{\delta}_{jt}$ on x_{jt} to recover linear parameters $\hat{\beta}$ like in day 1.

$$\log \mathcal{L}(\theta, \delta) = \sum_{n \in \mathcal{N}_d} \log \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta, \delta)$$

- This classic approach proceeds into two steps:
 - 1. Find the $\hat{\theta} = (\hat{\Sigma}, \hat{\Pi})$ and mean utilities $\hat{\delta}$ that maximize $\log \mathcal{L}(\theta, \delta)$.
 - 2. Run an IV regression of $\hat{\delta}_{jt}$ on x_{jt} to recover linear parameters $\hat{\beta}$ like in day 1.
- For a modern take on this "MLE" approach, see Grieco, Murry, Pinkse and Sagl (2025).
 - \rightarrow Combine 1, 2, and the likelihood for aggregate market shares into a single objective.
 - ightarrow Their Julia package Grumps.jl efficiently handles the high-dimensional $\delta=\{\delta_{jt}\}_{j,t}$.

Optimal Micro Moments

• In micro BLP, optimal micro moments match the first-order conditions in MLE:

$$f^*(\overline{v}) = \frac{1}{N_d} \sum_{n \in \mathcal{N}_d} \frac{\partial \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta)}{\partial \theta}$$

Optimal Micro Moments

In micro BLP, optimal micro moments match the first-order conditions in MLE:

$$f^*(\overline{v}) = \frac{1}{N_d} \sum_{n \in \mathcal{N}_d} \frac{\partial \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta)}{\partial \theta}$$

- These use all the information in a micro dataset (Conlon and Gortmaker, 2025).
 - \rightarrow Intuition for statistical efficiency here is just that MLE is efficient.

Optimal Micro Moments

In micro BLP, optimal micro moments match the first-order conditions in MLE:

$$f^*(\overline{v}) = \frac{1}{N_d} \sum_{n \in \mathcal{N}_d} \frac{\partial \mathbb{P}(t_n, j_n, k_n, y_{i_n t_n} \mid n \in \mathcal{N}_d; \theta)}{\partial \theta}$$

- These use all the information in a micro dataset (Conlon and Gortmaker, 2025).
 - ightarrow Intuition for statistical efficiency here is just that MLE is efficient.
- Can be a bit tricky to compute, but only a few lines of code with PyBLP.
 - $\,\rightarrow\,$ Like optimal IVs, can update along with the weighting matrix for a second GMM step.

Roadmap

Micro BLP Estimation

Choosing Micro Moments

Using More Information

- This is the end of the class, but try to do the third exercise on your own.
 - 1. Incorporating micro moments.
 - 2. Micro BLP estimation.
 - 3. Evaluating improvements to the price cut counterfactual.

- This is the end of the class, but try to do the third exercise on your own.
 - 1. Incorporating micro moments.
 - 2. Micro BLP estimation.
 - 3. Evaluating improvements to the price cut counterfactual.
- Also try to the supplemental exercises.
 - \rightarrow Varying the market size.
 - → Optimal micro moments.
 - $\rightarrow \ \ \text{Estimating a nesting parameter}.$

- This is the end of the class, but try to do the third exercise on your own.
 - 1. Incorporating micro moments.
 - 2. Micro BLP estimation.
 - 3. Evaluating improvements to the price cut counterfactual.
- Also try to the supplemental exercises.
 - \rightarrow Varying the market size.
 - → Optimal micro moments.
 - \rightarrow Estimating a nesting parameter.
- I'll post the remaining solutions today after questions.

Good luck with estimating your own demand systems!

jgortmaker@g.harvard.edu @jeff_gortmaker

References I

- **Berry, Steven, James Levinsohn, and Ariel Pakes**, "Differentiated products demand systems from a combination of micro and macro data: The new car market," *Journal of Political Economy*, 2004, *112* (1), 68–105.
- **Conlon, Christopher and Jeff Gortmaker**, "Incorporating micro data into differentiated products demand estimation with PyBLP," *Journal of Econometrics*, 2025, p. 105926.
- **Grieco, Paul LE, Charles Murry, Joris Pinkse, and Stephan Sagl**, "Optimal estimation of discrete choice demand models with consumer and product data," 2025.
- **Petrin, Amil**, "Quantifying the benefits of new products: The case of the minivan," *Journal of Political Economy*, 2002, 110 (4), 705–729.

References II

- **Pinkse, Joris and contributors**, "Grumps.jl is a package for computing random coefficients demand models using consumer and product level data." Available at https://github.com/NittanyLion/Grumps.jl.
- **Reynolds, Graeme and Chris Walters**, "The use of customer surveys for market definition and the competitive assessment of horizontal mergers," *Journal of Competition Law and Economics*, 2008, 4 (2), 411–431.
- **Zhang, Linqi**, "Identification and estimation of market size in discrete choice demand models," 2024.