Hybrid Precoding in Millimeter-Wave Massive MIMO Systems

Ph.D. Comprehensive Examination

Pranav Jha

Student ID: 40081750

Supervisor: Dr. Wei-Ping Zhu

Department of Electrical and Computer Engineering

March 12, 2023

Outline

Technical Background

Problem Statement

Problem and Methodology I

Problem and Methodology II

Critical Review

References

- High frequency (30-300 GHz)
 - Larger bandwidth: $20 \text{ MHz} \rightarrow 2 \text{ GHz}$

- High frequency (30-300 GHz)
 - Larger bandwidth: 20 MHz → 2 GHz
- Short wavelength (1-10 mm)
 - Enable large antenna array (massive MIMO): At 70 GHz
 - → Maximum #Antennas 1024 and 64 (BSs and UEs)
 - → Maximum #RF chains 32 and 8 (BSs and UEs)

- High frequency (30-300 GHz)
 - Larger bandwidth: 20 MHz → 2 GHz
- Short wavelength (1-10 mm)
 - Enable large antenna array (massive MIMO): At 70 GHz
 - \rightarrow Maximum #Antennas 1024 and 64 (BSs and UEs)
 - → Maximum #RF chains 32 and 8 (BSs and UEs)
- Serious path-loss and blockage
 - Massive MIMO provides sufficient gains to compensate the serious path-loss by using precoding
 - Avoid multi-cell interference, more appropriate for small cell

Precoding for Mm-Wave Massive MIMO

Traditional Precoding

- Preformed in digital domain with optimized performance
- One RF chain is required to support one transmit antenna
- Impractical in energy consumption for mm-Wave massive MIMO systems
 - 250 mW per RF chain, and 16 W for 64 antennas¹

¹P. V. Amadori and C. Masouros, "Low RF-Complexity Millimeter-Wave Beamspace-MIMO Systems by Beam Selection," in IEEE Transactions on Communications, vol. 63, no. 6, pp. 2212-2223, June 2015 [1]

Precoding for Mm-Wave Massive MIMO

Traditional Precoding

- Preformed in digital domain with optimized performance
- One RF chain is required to support one transmit antenna
- Impractical in energy consumption for mm-Wave massive MIMO systems
 - 250 mW per RF chain, and 16 W for 64 antennas¹

Hybrid Analog and Digital Precoding

- Actual degree of freedom (i.e., number of users) is much smaller than number of antennas
- Divide digital precoding with large size into:
 - Digital precoding with small size
 - Analog precoding with large size (realized by phase shifter, PS)
- Significantly reduced number of RF chains
- Power-efficient, low complexity, without obvious performance loss

¹P. V. Amadori and C. Masouros, "Low RF-Complexity Millimeter-Wave Beamspace-MIMO Systems by Beam Selection," in IEEE Transactions on Communications, vol. 63, no. 6, pp. 2212-2223, June 2015 [1]

Hybrid Precoding Architectures

Fully-connected Architecture

- RF chain is fully connected to all antennas
 - Large number of PSs (N^2M)
 - Near-optimal but energy-intensive
- Spatially sparse precoding [2]
- Codebook-based hybrid precoding [3]

²O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014

³W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," in IEEE Communications Magazine, vol. 52, no. 2, pp. 106-113, February 2014

Hybrid Precoding Architectures

Fully-connected Architecture

- RF chain is fully connected to all antennas
 - Large number of PSs (N²M)
 - Near-optimal but energy-intensive
- Spatially sparse precoding [2]
- Codebook-based hybrid precoding [3]

Sub-connected Architecture

- RF chain is partially connected to a subset of antennas
 - Smaller number of PSs (NM)
 - More energy-efficient

2 3

²O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014

³W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," in IEEE Communications Magazine, vol. 52, no. 2, pp. 106-113, February 2014

Problem Statement

Hybrid Precoder Design

- Coupling between analog and baseband counterpart → Nonlinear
- The analog precoder rely on a phase-shifters network, which imposes a constant modulus constraint → Non-convex
- Quantization of the phase shifters → Combinatorial

Problem Statement

Hybrid Precoder Design

- Coupling between analog and baseband counterpart → Nonlinear
- The analog precoder rely on a phase-shifters network, which imposes a constant modulus constraint → Non-convex
- Quantization of the phase shifters → Combinatorial

Traditional Methods

- Based on SVD → complicated bit-allocation
- Based on GMD → brings great challenge in addressing non-convex constraints and exploiting sparsity statistics
- High computational complexity
- Traditional low-complexity schemes realization cost → Hybrid precoding performance degradation

Problem Statement

Hybrid Precoder Design

- Coupling between analog and baseband counterpart → Nonlinear
- The analog precoder rely on a phase-shifters network, which imposes a constant modulus constraint → Non-convex
- Quantization of the phase shifters → Combinatorial

Traditional Methods

- Based on SVD → complicated bit-allocation
- Based on GMD → brings great challenge in addressing non-convex constraints and exploiting sparsity statistics
- High computational complexity
- Traditional low-complexity schemes realization cost → Hybrid precoding performance degradation

Aim

- To develop a low-complex energy-efficient solution for the hybrid precoder design problem
- To consider the application of deep learning (DL) to develop optimal hybrid precoder

Problem and Methodology I

Problem Formulation 4

System Model

$$\mathbf{y} = \sqrt{\rho} \mathbf{H} \mathbf{A} \mathbf{D} \mathbf{s} + \mathbf{n} = \sqrt{\rho} \mathbf{H} \mathbf{P} \mathbf{s} + \mathbf{n}$$

Total achievable rate

$$R = \log_2\left(\left|\mathbf{I}_K + \frac{\rho}{N\sigma^2}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\right|\right)$$

⁴X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mm-wave mimo systems with large antenna arrays", *IEEE Journal on Selected Areas in Communications*, vol. 34, no. 4, pp. 998–1000 Concordia 2016 [4]

Problem and Methodology I

Problem Formulation 4

System Model

$$\mathbf{y} = \sqrt{\rho} \mathbf{H} \mathbf{A} \mathbf{D} \mathbf{s} + \mathbf{n} = \sqrt{\rho} \mathbf{H} \mathbf{P} \mathbf{s} + \mathbf{n}$$

Total achievable rate

$$R = \log_2\left(\left|\mathbf{I}_K + \frac{\rho}{N\sigma^2}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\right|\right)$$

- Target
 - Jointly design A and D to maximize the achievable rate

⁴X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mm-wave mimo systems with large antenna arrays", *IEEE Journal on Selected Areas in Communications*, vol. 34, no. 4, pp. 998–1000 Concordia 2016 [4]

Problem and Methodology I

Problem Formulation 4

System Model

$$\mathbf{y} = \sqrt{\rho}\mathbf{H}\mathbf{A}\mathbf{D}\mathbf{s} + \mathbf{n} = \sqrt{\rho}\mathbf{H}\mathbf{P}\mathbf{s} + \mathbf{n}$$

Total achievable rate

$$R = \log_2\left(\left|\mathbf{I}_K + \frac{\rho}{N\sigma^2}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\right|\right)$$

- Target
 - Jointly design A and D to maximize the achievable rate
- Three non-convex constraints
 - Structure constraint: $\mathbf{P} = \mathbf{A}\mathbf{D} = \operatorname{diag}\{\bar{\mathbf{a}}_1, ..., \bar{\mathbf{a}}_N\} \cdot \operatorname{diag}\{d_1, ..., d_N\}$
 - Amplitude constraint: The amplitude of non-zero elements of the analog precoding matrix **A** is fixed to $1/\sqrt{M}$
 - Power constraint: $\|\mathbf{P}\|_F \leq N$

⁴X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mm-wave mimo systems with large antenna arrays", *IEEE Journal on Selected Areas in Communications*, vol. 34, no. 4, pp. 998–1000 Concordia 2016 [4]

SIC-based Hybrid Precoding

■ The total rate R can be decomposed as

$$R = \sum_{n=1}^{N} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \mathbf{p}_n^H \mathbf{H}^H \mathbf{T}_{n-1}^{-1} \mathbf{H} \mathbf{p}_n \right)$$

where \mathbf{p}_n be the N-th column of \mathbf{P} , $\mathbf{T}_n = \mathbf{I}_K + \frac{\rho}{N\sigma^2}\mathbf{H}\mathbf{P}_n\mathbf{P}_n^H\mathbf{H}^H$ and $\mathbf{T}_0 = \mathbf{I}_N$

SIC-based Hybrid Precoding

■ The total rate R can be decomposed as

$$R = \sum_{n=1}^{N} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \mathbf{p}_n^H \mathbf{H}^H \mathbf{T}_{n-1}^{-1} \mathbf{H} \mathbf{p}_n \right)$$

where \mathbf{p}_n be the N-th column of \mathbf{P} , $\mathbf{T}_n = \mathbf{I}_K + \frac{\rho}{N\sigma^2}\mathbf{H}\mathbf{P}_n\mathbf{P}_n^H\mathbf{H}^H$ and $\mathbf{T}_0 = \mathbf{I}_N$

- SIC-based hybrid precoding
 - Total rate \rightarrow sub-rate of sub-antenna array
 - Optimize the sub-rate of each sub-antenna array one by one by exploiting the concept of SIC for multi-user detection

Optimize achievable rate of the nth sub-antenna array

$$\mathbf{p}_n^{\text{opt}} = \underset{\mathbf{p}_n \in \mathscr{F}}{\text{arg max }} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \mathbf{p}_n^H \mathbf{G}_{n-1} \mathbf{p}_n \right)$$

where $G_{n-1} = \mathbf{H}^H \mathbf{T}_{n-1}^{-1} \mathbf{H}$, \mathscr{F} is the set of all feasible vectors which satisfy all the three constraints

Optimize achievable rate of the nth sub-antenna array

$$\mathbf{p}_n^{\text{opt}} = \underset{\mathbf{p}_n \in \mathscr{F}}{\text{arg max }} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \mathbf{p}_n^H \mathbf{G}_{n-1} \mathbf{p}_n \right)$$

where $G_{n-1} = \mathbf{H}^H \mathbf{T}_{n-1}^{-1} \mathbf{H}$, \mathscr{F} is the set of all feasible vectors which satisfy all the three constraints

Considering non-zero elements, it is equivalent to a simplified problem as

$$\bar{\mathbf{p}}_n^{\text{opt}} = \underset{\bar{\mathbf{p}}_n \in \widehat{\mathscr{F}}}{\text{arg max}} \ \log_2 \left(1 + \frac{\rho}{N\sigma^2} \bar{\mathbf{p}}_n^H \bar{\mathbf{G}}_{n-1} \bar{\mathbf{p}}_n \right)$$

where $\bar{\mathbf{G}}_{n-1} = \mathbf{R}\mathbf{G}_{n-1}\mathbf{R}^H$, $\mathbf{R} = [\mathbf{0}_{M\times M(n-1)}\ \mathbf{I}_M\ \mathbf{0}_{M\times M(N-n)}]$ is the corresponding selection matrix

Optimize achievable rate of the nth sub-antenna array

$$\mathbf{p}_n^{\text{opt}} = \underset{\mathbf{p}_n \in \mathscr{F}}{\text{arg max }} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \mathbf{p}_n^H \mathbf{G}_{n-1} \mathbf{p}_n \right)$$

where $G_{n-1} = \mathbf{H}^H \mathbf{T}_{n-1}^{-1} \mathbf{H}$, \mathscr{F} is the set of all feasible vectors which satisfy all the three constraints

Considering non-zero elements, it is equivalent to a simplified problem as

$$\bar{\mathbf{p}}_n^{\text{opt}} = \underset{\bar{\mathbf{p}}_n \in \widehat{\mathscr{F}}}{\text{max}} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \bar{\mathbf{p}}_n^H \bar{\mathbf{G}}_{n-1} \bar{\mathbf{p}}_n \right)$$

where $\bar{\mathbf{G}}_{n-1} = \mathbf{R}\mathbf{G}_{n-1}\mathbf{R}^H$, $\mathbf{R} = [\mathbf{0}_{M\times M(n-1)}\ \mathbf{I}_M\ \mathbf{0}_{M\times M(N-n)}]$ is the corresponding selection matrix

■ Simplify the optimization problem $\bar{\mathbf{p}}_n^{\text{opt}} = \underset{\bar{\mathbf{p}}_n \in \bar{\mathcal{F}}}{\arg \min} \|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2$, where \mathbf{v}_1 is the first right singular vector of $\bar{\mathbf{G}}_{n-1}$

Optimize achievable rate of the nth sub-antenna array

$$\mathbf{p}_n^{\text{opt}} = \underset{\mathbf{p}_n \in \mathscr{F}}{\text{arg max }} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \mathbf{p}_n^H \mathbf{G}_{n-1} \mathbf{p}_n \right)$$

where $G_{n-1} = \mathbf{H}^H \mathbf{T}_{n-1}^{-1} \mathbf{H}$, \mathscr{F} is the set of all feasible vectors which satisfy all the three constraints

Considering non-zero elements, it is equivalent to a simplified problem as

$$\bar{\mathbf{p}}_n^{\text{opt}} = \underset{\bar{\mathbf{p}}_n \in \widehat{\mathscr{F}}}{\text{max}} \log_2 \left(1 + \frac{\rho}{N\sigma^2} \bar{\mathbf{p}}_n^H \bar{\mathbf{G}}_{n-1} \bar{\mathbf{p}}_n \right)$$

where $\bar{\mathbf{G}}_{n-1} = \mathbf{R}\mathbf{G}_{n-1}\mathbf{R}^H$, $\mathbf{R} = [\mathbf{0}_{M\times M(n-1)}\ \mathbf{I}_M\ \mathbf{0}_{M\times M(N-n)}]$ is the corresponding selection matrix

- Simplify the optimization problem $\bar{\mathbf{p}}_n^{\text{opt}} = \underset{\bar{\mathbf{p}}_n \in \tilde{\mathscr{F}}}{\arg\min} \|\mathbf{v}_1 \bar{\mathbf{p}}_n\|_2^2$, where \mathbf{v}_1 is the first right singular vector of $\bar{\mathbf{G}}_{n-1}$
- Find a feasible precoding vector $\bar{\mathbf{p}}_n$, sufficiently close to \mathbf{v}_1 , to maximize the achievable sub-rate

Design of Analog and Digital Precoder

Problem

• As we have $\bar{\mathbf{p}}_n = d_n \bar{\mathbf{a}}_n$, $\|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2$ equals to

$$\|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2 = (d_n - \text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n))^2 + (1 - [\text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n)]^2)$$

Design of Analog and Digital Precoder

■ Problem

• As we have $\bar{\mathbf{p}}_n = d_n \bar{\mathbf{a}}_n$, $\|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2$ equals to

$$\|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2 = (d_n - \text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n))^2 + (1 - [\text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n)]^2)$$

Solution

- Analog precoder: $\bar{\mathbf{a}}_n^{\text{opt}} = \frac{1}{\sqrt{M}} e^{j \text{angle}(\mathbf{v}_1)}$
- Digital precoder: $d_n^{\text{opt}} = \text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n) = \frac{1}{\sqrt{M}} \text{Re}(\mathbf{v}_1^H e^{j \text{angle}(\mathbf{v}_1)}) = \frac{\|\mathbf{v}_1\|_1}{\sqrt{M}}$
- Hybrid precoder: $\bar{\mathbf{p}}_n^{\text{opt}} = \frac{1}{M} \|\mathbf{v}_1\|_1 e^{j \text{angle}(\mathbf{v}_1)}$
- All the three constraints are satisfied

Design of Analog and Digital Precoder

Problem

• As we have $\bar{\mathbf{p}}_n = d_n \bar{\mathbf{a}}_n$, $\|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2$ equals to

$$\|\mathbf{v}_1 - \bar{\mathbf{p}}_n\|_2^2 = (d_n - \text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n))^2 + (1 - [\text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n)]^2)$$

Solution

- Analog precoder: $\bar{\mathbf{a}}_n^{\text{opt}} = \frac{1}{\sqrt{M}} e^{j \text{angle}(\mathbf{v}_1)}$
- Digital precoder: $d_n^{\text{opt}} = \text{Re}(\mathbf{v}_1^H \bar{\mathbf{a}}_n) = \frac{1}{\sqrt{M}} \text{Re}(\mathbf{v}_1^H e^{j \text{angle}(\mathbf{v}_1)}) = \frac{\|\mathbf{v}_1\|_1}{\sqrt{M}}$
- Hybrid precoder: $\bar{\mathbf{p}}_n^{\text{opt}} = \frac{1}{M} \|\mathbf{v}_1\|_1 e^{j \text{angle}(\mathbf{v}_1)}$
- All the three constraints are satisfied

Summary

- SVD of \$\bar{\mathbf{G}}_{n-1}\$ to obtain \$\mathbf{v}_1\$
 Compute \$\bar{\mathbf{p}}_n^{\text{opt}} = \frac{1}{M} ||\mathbf{v}_1||_1 e^{j\text{angle}(\mathbf{v}_1)}\$ for the \$n\$-th sub-antenna array
- Update $\bar{\mathbf{G}}_n$ for the (n+1)-th sub-antenna array

- Computation of v₁
 - Only the first right singular vector of $\bar{\mathbf{G}}_{n-1}$ is required
 - Realized by power iteration algorithm with complexity $O(M^2)$

⁵O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014 [2]

- Computation of v₁
 - Only the first right singular vector of $\bar{\mathbf{G}}_{n-1}$ is required
 - Realized by power iteration algorithm with complexity $O(M^2)$
- Acquire the optimal hybrid precoder
 - The complexity is only $O(M^2)$ to obtain $\bar{\mathbf{p}}_n^{\text{opt}} = \frac{1}{M} \|\mathbf{v}_1\|_1 e^{j \text{angle}(\mathbf{v}_1)}$

⁵O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014 [2]

- Computation of v₁
 - Only the first right singular vector of $\bar{\mathbf{G}}_{n-1}$ is required
 - Realized by power iteration algorithm with complexity $O(M^2)$
- Acquire the optimal hybrid precoder
 - The complexity is only $O(M^2)$ to obtain $\bar{\mathbf{p}}_n^{\text{opt}} = \frac{1}{M} \|\mathbf{v}_1\|_1 e^{j \text{angle}(\mathbf{v}_1)}$
- Update $\bar{\mathbf{G}}_n$
 - The calculation can be simplified as

$$\bar{\mathbf{G}}_n \approx \bar{\mathbf{G}}_{n-1} - \frac{\frac{\rho}{N\sigma^2} \Sigma_1^2 \mathbf{v}_1 \mathbf{v}_1^H}{1 + \frac{\rho}{N\sigma^2} \Sigma_1}$$

where Σ_1 is the largest singular value of $\bar{\mathbf{G}}_{n-1}$

• Corresponding complexity is $O(M^2)$

⁵O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014 [2]

- \blacksquare Computation of \mathbf{v}_1
 - Only the first right singular vector of $\bar{\mathbf{G}}_{n-1}$ is required
 - Realized by power iteration algorithm with complexity $O(M^2)$
- Acquire the optimal hybrid precoder
 - The complexity is only $O(M^2)$ to obtain $\bar{\mathbf{p}}_n^{\text{opt}} = \frac{1}{M} \|\mathbf{v}_1\|_1 e^{j \text{angle}(\mathbf{v}_1)}$
- Update $\bar{\mathbf{G}}_n$
 - The calculation can be simplified as

$$\bar{\mathbf{G}}_n \approx \bar{\mathbf{G}}_{n-1} - \frac{\frac{\rho}{N\sigma^2} \Sigma_1^2 \mathbf{v}_1 \mathbf{v}_1^H}{1 + \frac{\rho}{N\sigma^2} \Sigma_1}$$

where Σ_1 is the largest singular value of $\bar{\mathbf{G}}_{n-1}$

- Corresponding complexity is $O(M^2)$
- Total complexity $O(M^2(NS+K))$
 - Only 10% of SVD-based spatially sparse precoding⁵

⁵O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014 [2]

Achievable Rate

- Simulation Setup
 - Antenna: (1) $NM \times K = 64 \times 16$ (2) $NM \times K = 128 \times 32$
 - RF chains: (1) N = 8 (2) N = 16
 - Channel: Geometric Saleh-Valenzuela model

12/23

Achievable Rate

■ Simulation Setup

• Antenna: (1) $NM \times K = 64 \times 16$ (2) $NM \times K = 128 \times 32$

• RF chains: (1) N = 8 (2) N = 16

• Channel: Geometric Saleh-Valenzuela model

Achievable Rate

Simulation Setup

• Antenna: (1) $NM \times K = 64 \times 16$ (2) $NM \times K = 128 \times 32$

• RF chains: (1) N = 8 (2) N = 16

• Channel: Geometric Saleh-Valenzuela model

SIC-based hybrid precoding is near-optimal!

Energy Efficiency

 Both the SIC-based precoding and the spatially sparse precoding⁶ can achieve higher energy-efficiency than the optimal unconstrained precoding.

⁶O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014 [2]

Energy Efficiency

 Both the SIC-based precoding and the spatially sparse precoding⁶ can achieve higher energy-efficiency than the optimal unconstrained precoding.

SIC-based hybrid precoding is more energy-efficient!

⁶O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, March 2014 [2]

Problem and Methodology II

Problem Formulation 7

System Model

$$\mathbf{x} = \mathbf{D}\mathbf{s}$$
$$\mathbf{y} = \mathbf{B}^H \mathbf{H} \mathbf{x} + \mathbf{B}^H \mathbf{n}$$

 $\blacksquare \text{ Here, } \mathbf{D} = \mathbf{D}_{A}\mathbf{D}_{D} \text{ and } \mathbf{B} = \mathbf{B}_{A}\mathbf{B}_{D}$

⁷H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, "Deep-learning-based millimeter-wave massive mimo for hybrid precoding", *IEEE Transactions on Vehicular Technology*, vol. 68,no. 3, pp. 3027–3032, 2019 [5]

Problem and Methodology II

Problem Formulation 7

System Model

$$\mathbf{x} = \mathbf{D}\mathbf{s}$$
$$\mathbf{y} = \mathbf{B}^H \mathbf{H} \mathbf{x} + \mathbf{B}^H \mathbf{n}$$

- $\blacksquare \text{ Here, } \mathbf{D} = \mathbf{D}_{\mathcal{A}} \mathbf{D}_{\mathcal{D}} \text{ and } \mathbf{B} = \mathbf{B}_{\mathcal{A}} \mathbf{B}_{\mathcal{D}}$
- Transmit power constraint:

$$\operatorname{tr}\{\mathbf{D}\mathbf{D}^H\} \leq N_s$$

⁷H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, "Deep-learning-based millimeter-wave massive mimo for hybrid precoding", *IEEE Transactions on Vehicular Technology*, vol. 68,no. 3, pp. 3027–3032, 2019 [5]

Problem and Methodology II

Problem Formulation 7

System Model

$$\mathbf{x} = \mathbf{D}\mathbf{s}$$
$$\mathbf{y} = \mathbf{B}^H \mathbf{H} \mathbf{x} + \mathbf{B}^H \mathbf{n}$$

- lacksquare Here, $\mathbf{D} = \mathbf{D}_{\mathcal{A}}\mathbf{D}_{\mathcal{D}}$ and $\mathbf{B} = \mathbf{B}_{\mathcal{A}}\mathbf{B}_{\mathcal{D}}$
- Transmit power constraint:

$$\operatorname{tr}\{\mathbf{D}\mathbf{D}^H\} \leq N_s$$

Constraints on the elements of \mathbf{D}_A and \mathbf{B}_A :

$$|\{\mathbf{D}_A\}_{i,j}| = \frac{1}{\sqrt{N_t}}, \ |\{\mathbf{B}_A\}_{i,j}| = \frac{1}{\sqrt{N_r}}$$

⁷H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, "Deep-learning-based millimeter-wave massive mimo for hybrid precoding", *IEEE Transactions on Vehicular Technology*, vol. 68,no. 3, pp. 3027–3032, 2019 [5]

Deep-Neural Network

DNN Framework

■ Input Layer: 128 units

■ Hidden Layers: 400 units and 256 units

■ Noise Layer: 200 units

■ Hidden Layers: 128 units and 64 units

Output Layer: Deployed to generate output signals

■ Input and hidden layers activation: ReLU

Output layer activation:

$$f(\mathbf{s}) = \min(\max(\mathbf{s}, \mathbf{0}), N_{\mathbf{s}})$$

■ Decompose **H** using GMD as

$$\mathbf{H} = \mathbf{W}\mathbf{Q}\mathbf{R}^H = \begin{bmatrix} \mathbf{W}_1, \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_1 & * \\ \mathbf{0} & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1^H \\ \mathbf{R}_2^H \end{bmatrix}$$

■ The largest N_s singular values: $q_{i,i} = (\delta_1, \delta_2, ..., \delta_{N_s})^{\frac{1}{N_s}} \in \bar{\mathbf{q}} \ \forall i$

■ Decompose **H** using GMD as

$$\mathbf{H} = \mathbf{W}\mathbf{Q}\mathbf{R}^H = \begin{bmatrix} \mathbf{W}_1, \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_1 & * \\ \mathbf{0} & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1^H \\ \mathbf{R}_2^H \end{bmatrix}$$

- The largest N_s singular values: $q_{i,i} = (\delta_1, \delta_2, ..., \delta_{N_s})^{\frac{1}{N_s}} \in \bar{\mathbf{q}} \ \forall i$
- The received signal is given as

$$\mathbf{y} = \mathbf{W}_1^H \mathbf{H} \mathbf{R}_1 \mathbf{s} + \mathbf{W}_1^H \mathbf{n}$$
$$= \mathbf{Q}_1 \mathbf{s} + \mathbf{W}_1^H \mathbf{n}$$

■ Decompose **H** using GMD as

$$\mathbf{H} = \mathbf{W}\mathbf{Q}\mathbf{R}^H = \begin{bmatrix} \mathbf{W}_1, \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_1 & * \\ \mathbf{0} & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1^H \\ \mathbf{R}_2^H \end{bmatrix}$$

- The largest N_s singular values: $q_{i,i} = (\delta_1, \delta_2, ..., \delta_{N_s})^{\frac{1}{N_s}} \in \bar{\mathbf{q}} \ \forall i$
- The received signal is given as

$$\mathbf{y} = \mathbf{W}_1^H \mathbf{H} \mathbf{R}_1 \mathbf{s} + \mathbf{W}_1^H \mathbf{n}$$
$$= \mathbf{Q}_1 \mathbf{s} + \mathbf{W}_1^H \mathbf{n}$$

■ The loss function is given as

$$loss = \|\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D\|_F = \sqrt{\sum_{i=1}^{\min\{N_t, N_s\}} \delta_i^2 (\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)}$$

where \mathbf{R}_A and \mathbf{R}_D are the GMD-based analog and digital precoder, respectively and $\delta_i(\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)$ implies the singular values of matrix $(\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)$

■ Decompose **H** using GMD as

$$\mathbf{H} = \mathbf{W}\mathbf{Q}\mathbf{R}^H = \begin{bmatrix} \mathbf{W}_1, \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_1 & * \\ \mathbf{0} & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1^H \\ \mathbf{R}_2^H \end{bmatrix}$$

- The largest N_s singular values: $q_{i,i} = (\delta_1, \delta_2, ..., \delta_{N_s})^{\frac{1}{N_s}} \in \bar{\mathbf{q}} \ \forall i$
- The received signal is given as

$$\mathbf{y} = \mathbf{W}_1^H \mathbf{H} \mathbf{R}_1 \mathbf{s} + \mathbf{W}_1^H \mathbf{n}$$
$$= \mathbf{Q}_1 \mathbf{s} + \mathbf{W}_1^H \mathbf{n}$$

■ The loss function is given as

$$loss = \|\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D\|_F = \sqrt{\sum_{i=1}^{\min\{N_t, N_s\}} \delta_i^2 (\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)}$$

where \mathbf{R}_A and \mathbf{R}_D are the GMD-based analog and digital precoder, respectively and $\delta_i(\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)$ implies the singular values of matrix $(\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)$

■ These constraints need to be satisfied:

$$|\{\mathbf{R}_A\}_{i,j}| = \frac{1}{\sqrt{N_t}}, \operatorname{tr}(\mathbf{R}_A \mathbf{R}_D \mathbf{R}_D^H \mathbf{R}_A^H) \le N_s$$

Autoencoder

 To construct an autoencoder, the deep-neaural network (DNN) framework is employed as

$$\mathbf{R}_1 = f(\mathbf{R}_A \mathbf{R}_D; \Omega)$$

where Ω is the dataset of the samples and $f(\cdot)$ is the mapping relation.

Autoencoder

 To construct an autoencoder, the deep-neaural network (DNN) framework is employed as

$$\mathbf{R}_1 = f(\mathbf{R}_A \mathbf{R}_D; \Omega)$$

where Ω is the dataset of the samples and $f(\cdot)$ is the mapping relation.

- Training Procedure:
 - \mathbf{R}_A , \mathbf{R}_D Empty matrices
 - The DNN is trained with the input data sequences
 - Update \mathbf{R}_A , \mathbf{R}_D
 - AoA θ_p^r , AoD θ_p^t generated randomly
 - Bias between \mathbf{R}_1 and $\mathbf{R}_A \mathbf{R}_D$ from the output layer
- The training set Ω is obtained

Stochastic Gradient Descent

■ SGD algorithm with momentum to process the loss function

$$\mathbf{R}_{\mathbf{A}}^{j+1} = \mathbf{R}_{\mathbf{A}}^{j} + v \tag{1}$$

$$\mathbf{R}_D^{j+1} = \mathbf{R}_D^j + v \tag{2}$$

where v is the velocity for facilitating the gradient element and j represents the iteration

Stochastic Gradient Descent

■ SGD algorithm with momentum to process the loss function

$$\mathbf{R}_{\mathbf{A}}^{j+1} = \mathbf{R}_{\mathbf{A}}^{j} + \mathbf{v} \tag{1}$$

$$\mathbf{R}_D^{j+1} = \mathbf{R}_D^j + V \tag{2}$$

where v is the velocity for facilitating the gradient element and j represents the iteration

■ The update procedure of v can be given as

$$v = \alpha v - \varepsilon g$$

$$= \alpha v - \varepsilon \frac{1}{N} \nabla_{\mathbf{R}_A, \mathbf{R}_D} \sqrt{\Sigma_{i=1}^{\min\{N_t, N_s\}} \delta_i^2 (\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)}, \tag{3}$$

where α is the momentum parameter and ε is the learning rate. Also, g and N are the gradient element and the number of samples, respectively

Stochastic Gradient Descent

■ SGD algorithm with momentum to process the loss function

$$\mathbf{R}_A^{j+1} = \mathbf{R}_A^j + \mathbf{v} \tag{1}$$

$$\mathbf{R}_D^{j+1} = \mathbf{R}_D^j + v \tag{2}$$

where v is the velocity for facilitating the gradient element and j represents the iteration

■ The update procedure of v can be given as

$$v = \alpha v - \varepsilon g$$

$$= \alpha v - \varepsilon \frac{1}{N} \nabla_{\mathbf{R}_A, \mathbf{R}_D} \sqrt{\Sigma_{i=1}^{\min\{N_t, N_s\}} \delta_i^2 (\mathbf{R}_1 - \mathbf{R}_A \mathbf{R}_D)}, \tag{3}$$

where α is the momentum parameter and ε is the learning rate. Also, g and N are the gradient element and the number of samples, respectively

■ DL-based scheme has the lowest complexity, where the number of multiplications and divisions are $O(N_sN_t^2)$ and $O(L^2)$, respectively

Numerical Results

■ Simulation Setup

- Channel: Geometric Saleh-Valenzuela (SV) model with P=3 at 28 GHz
- Angles are generated randomly in $\{-\pi/2, \pi/2\}$
- To generate channel measurements: Environment simulator
- To construct and process the DNN framework: Keras
- Learning rate 0.001, momentum of 0.85

Numerical Results

■ Simulation Setup

- Channel: Geometric Saleh-Valenzuela (SV) model with P=3 at 28 GHz
- Angles are generated randomly in $\{-\pi/2, \pi/2\}$
- To generate channel measurements: Environment simulator
- To construct and process the DNN framework: Keras
- Learning rate 0.001, momentum of 0.85

- Critical Points
 - Single user scenario

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs
- The channel model as a narrowband mm-Wave channel

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs
- The channel model as a narrowband mm-Wave channel
- Further, SGD with momentum is good for computation in less time, but not reliable

Critical Points

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs
- The channel model as a narrowband mm-Wave channel
- Further, SGD with momentum is good for computation in less time, but not reliable

■ Future Work

- Design of optimal hybrid precoders for multi-user systems
- To address the high energy consumption problem, the usage of low-resolution PSs [6, 7] and low-resolution DACs/ADCs [8, 9, 10]

Critical Points

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs
- The channel model as a narrowband mm-Wave channel
- Further, SGD with momentum is good for computation in less time, but not reliable

■ Future Work

- Design of optimal hybrid precoders for multi-user systems
- To address the high energy consumption problem, the usage of low-resolution PSs [6, 7] and low-resolution DACs/ADCs [8, 9, 10]
- An appropriate trade-off between energy efficiency and system sum-rate for a wideband mm-Wave channel is still an open research problem

Critical Points

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs
- The channel model as a narrowband mm-Wave channel
- Further, SGD with momentum is good for computation in less time, but not reliable

■ Future Work

- Design of optimal hybrid precoders for multi-user systems
- To address the high energy consumption problem, the usage of low-resolution PSs [6, 7] and low-resolution DACs/ADCs [8, 9, 10]
- An appropriate trade-off between energy efficiency and system sum-rate for a wideband mm-Wave channel is still an open research problem
- To solve the design of finding the best hybrid precoder the idea of cross-entropy optimization (CEO) in deep learning solutions [11]

Critical Points

- Single user scenario
- Infinite or high-resolution phase shifters (PSs)
- The number of RF chains with high-resolution DACs/ADCs
- The channel model as a narrowband mm-Wave channel
- Further, SGD with momentum is good for computation in less time, but not reliable

■ Future Work

- Design of optimal hybrid precoders for multi-user systems
- To address the high energy consumption problem, the usage of low-resolution PSs [6, 7] and low-resolution DACs/ADCs [8, 9, 10]
- An appropriate trade-off between energy efficiency and system sum-rate for a wideband mm-Wave channel is still an open research problem
- To solve the design of finding the best hybrid precoder the idea of cross-entropy optimization (CEO) in deep learning solutions [11]

It could be more practical and of great benefit to leverage deep learning (DL) in mm-Wave massive MIMO systems!

References I

P. V. Amadori and C. Masouros, "Low rf-complexity millimeter-wave beamspace-mimo systems by beam selection," *IEEE Transactions on Communications*, vol. 63, no. 6, pp. 2212–2223, 2015.

O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially sparse precoding in millimeter wave mimo systems," *IEEE transactions on wireless communications*, vol. 13, no. 3, pp. 1499–1513, 2014.

W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results," *IEEE communications magazine*, vol. 52, no. 2, pp. 106–113, 2014.

X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays," *IEEE Journal on Selected Areas in Communications*, vol. 34, no. 4, pp. 998–1009, 2016.

H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, "Deep-learning-based millimeter-wave massive mimo for hybrid precoding," *IEEE Transactions on Vehicular Technology*, vol. 68, no. 3, pp. 3027–3032, 2019.

X. Gao, L. Dai, Y. Sun, S. Han, and I. Chih-Lin, "Machine learning inspired energy-efficient hybrid precoding for mmwave massive mimo systems," 2017 IEEE International Conference on Communications (ICC), pp. 1–6, 2017.

References II

S. Gao, Y. Dong, C. Chen, and Y. Jin, "Hierarchical beam selection in mmwave multiuser mimo systems with one-bit analog phase shifters," 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1–5, 2016.

Y. Dong and L. Qiu, "Spectral efficiency of massive mimo systems with low-resolution adcs and mmse receiver," *IEEE Communications Letters*, vol. 21, no. 8, pp. 1771–1774, 2017.

J. Zhang, L. Dai, S. Sun, and Z. Wang, "On the spectral efficiency of massive mimo systems with low-resolution ades," *IEEE Communications Letters*, vol. 20, no. 5, pp. 842–845, 2016.

C. Kong, C. Zhong, S. Jin, S. Yang, H. Lin, and Z. Zhang, "Full-duplex massive mimo relaying systems with low-resolution adcs," *IEEE Transactions on Wireless Communications*, vol. 16, no. 8, pp. 5033–5047, 2017.

R. Y. Rubinstein and D. P. Kroese, "Simulation and the monte carlo method," *John Wiley & Sons*, vol. 10, 2016.

Thank You