微算機原理及應用

單元六:8051的計時器

授課老師: 林淵翔 老師

大綱

- 8051 的計時器/計數器(8051 Timer/Counter)
- 8051 計時器的暫存器(8051 Timer Registers)
- 8051 計時器之程式設計(Programming for Timer)
- 8051 計數器之程式設計(Programming for Counter)
- 8051 計時器之C語言程式設計(Programming Timer in C)

大綱

• 範例一:計時器

• 範例二:計頻器

• 參考文獻

單元六:8051的計時器

PART A

- 8051 有兩個16位元的計時器(16-bit timers): Timer 0 和 Timer 1。
- 兩個都可以作為計時器(timers)或是事件計數器(event counters)。
- 基本的運作是由兩個暫存器THx 和 TLx (x= 0, 1)組成。
- 共有四種工作模式(Mode 0~3)。

• 模式0 (Mode 0): 13-bit Timer mode

- Timer的時脈來源(clock source)
 - 當 C/T = 0, 8051的震盪器頻率(Fosc)為Timer的時脈來源。
 - 此時的Timer輸入頻率為震盪器頻率除以12(Fosc/12)。

- (a) $1/12 \times 12$ MHz = 1 MHz and T = 1/1 MHz = 1 μ s
- (b) $1/12 \times 16 \text{ MHz} = 1.333 \text{ MHz}$ and T = $1/1.333 \text{ MHz} = 0.75 \,\mu\text{s}$
- (c) $1/12 \times 11.0592$ MHz = 951.6 KHz and T = 1/921.6 KHz = $1.085 \,\mu s$

- Timer的時脈來源(clock source)
 - 當 C/T = 1, Timer 0 的時脈來源為外部接腳T0。
 - 當 C/T = 1, Timer 1 的時脈來源為外部接腳T1。

• 模式1(Mode 1): 16-bit Timer mode

• 模式2(Mode 2): 8-bit Timer with Auto-Reload

• Timer 0 模式3(Mode 3): Two 8-bit Timers mode

- Timer 1模式3(Mode 3): Halt
 - 把 Timer 1 設成 Mode 3 會造成它暫停並保留其計數值。
 - 一當 TR1 無法拿來控制的時候,這可以用來暫停 Timer 1, 例如 Timer 0 工作在Mode 3的時候。

單元六:8051的計時器

PART B

6.2 8051計時器的暫存器

- ・ TCON 暫存器
 - Timer/Counter Control Register
- TMOD 暫存器
 - Timer/Counter 0 and 1 Modes
- TH0 and TL0 暫存器
 - Timer 0 High Byte and Low Byte Register
- TH1 and TL1 暫存器
 - Timer 1 High Byte and Low Byte Register

6.2 8051計時器的暫存器

6.2.1 TCON Register

- 計時器溢位旗標
 - 每個 Timer 有一個溢位旗標,那就是 Timer overflowflag TF0 or TF1。
 - 這個旗標每次當計時器/計數器發生溢位時會被設成 1。要自己清為0。

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
Bit Number	Bit Mnemonic	Description							
7	TF1	Cleared by h	Timer 1 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on timer/counter overflow, when the timer 1 register overflows.						
6	TR1	Clear to turn	Fimer 1 Run Control Bit Clear to turn off timer/counter 1. Set to turn on timer/counter 1.						
5	TF0	Cleared by h	Timer 0 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on timer/counter overflow, when the timer 0 register overflows.						
4	TR0	Clear to turn	Timer 0 Run Control Bit Clear to turn off timer/counter 0. Set to turn on timer/counter 0.						
3	IE1	Cleared by h	Interrupt 1 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT1). Set by hardware when external interrupt is detected on INT1# pin.						
2	IT1	Clear to sele	Interrupt 1 Type Control Bit Clear to select low level active (level triggered) for external interrupt 1 (INT1#). Set to select falling edge active (edge triggered) for external interrupt 1.						
1	IE0	Cleared by h	Interrupt 0 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT0). Set by hardware when external interrupt is detected on INT0# pin.						
0	IT0	Clear to sele	nterrupt 0 Type Control Bit Clear to select low level active (level triggered) for external interrupt 0 (INT0#). Set to select falling edge active (edge triggered) for external interrupt 0.						

6.2.1 TCON Register

- 計時器溢位旗標
 - 計時器中斷可以被致能,使用IEO暫存器的ETx bit。
 - 全部的中斷可以由IEO暫存器的EA bit來致能。

6.2.2 TMOD Register

GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00		
Bit Number	Bit Mnemonic	Description							
7	GATE1	Clear to enable timer 1	ner 1 Gating Control Bit ear to enable timer 1 whenever the TR1 bit is set. It to enable timer 1 only while the INT1# pin is high and TR1 bit is set.						
6	C/T1#	Clear for timer operation	ner 1 Counter/Timer Select Bit ear for timer operation: timer 1 counts the divided-down system clock. It for Counter operation: timer 1 counts negative transitions on external pin T1.						
5	M11	Timer 1 Mode Select E							
4	M01	0 0 Mode 0 1 Mode 1 0 Mode	1: 16-bit timer/coun	timer/counter (TL1)		H1 at overflow.			
3	GATE0	Timer 0 Gating Contro Clear to enable timer 0 Set to enable timer/cou	whenever the TR0		and the TR0 bit is s	et.			
2	C/T0#	Clear for timer operation	Filmer 0 Counter/Timer Select Bit Clear for timer operation: timer 0 counts the divided-down system clock. Set for counter operation: timer 0 counts negative transitions on external pin T0.						
1	M10	Timer 0 Mode Select E	•••						
0	М00	0 0 Mode 0 1 Mode 1 0 Mode	1: 16-bit timer/coun 2: 8-bit auto-reload 3: TL0 is an 8-bit tir	timer/counter (TL0) ner/counter.	` '	10 at overflow.			

6.2.3 TH0 and TL0

TH0

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		High Byte o	f Timer 0.				

Reset Value = 0000 0000b

• TL0

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		Low Byte of	Timer 0.				

6.2.4 TH1 and TL1

• TH1

7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		High Byte o	f Timer 1.				

Reset Value = 0000 0000b

• TL1

				 -	
Bit Number	Bit Mnemonic	Description			
7:0		Low Byte of	Timer 1.		

範例

- · 如果Timer 0要設在以下條件,請問TMOD要設為?
 - ✓ Mode 2
 - ✓ 使用 8051 XTAL 當時脈來源
 - ✓ 使用指令去開關Timer

Solution:

單元六:8051的計時器

PART C

- 程式化Mode 1 (16-bit timer)的步驟
 - 1. 設定 TMOD 暫存器以選擇 Timer 0 或 Timer 1,並且選擇工作模式1
 - 2. 載入計時器的初始值到 TLx 和 THx 暫存器
 - 3. 啟動計時器
 - 4. 監控 TFx 旗標 (JNB TFx, target),當TFx=1時離開監控迴圈
 - 5. 停止計時器
 - 6. 清除TFx旗標,準備下一輪計時
 - 7. 回到步驟2, 重新載入計時器的初始值到 TLx 和 THx 暫存器

• 以計時器完成Time delay計算(XTAL = 11.059MHz)

(a) 十六進制: Time delay = (FFFF - YYXX + 1) × 1.085 μs

YYXX 分別是 TH 和 TL 的十六進制初始值

(b) 十進制: Time delay = (65536-NNNNN) × 1.085 μs

NNNNN 是把 TH 和 TL 的十六進制初始值 YYXX 轉換成十進制的值

範例:使用Timer 0 產生一Time delay,在P1.0輸出一工作週期50%的方波。

	MOV	TMOD,#01	;Timer 0, mode 1 (16-bit mode)
HERE:	MOV	TL0,#0F2H	;TL0 = F2H, the Low byte
	MOV	TH0,#0FFH	;TH0 = FFH, the High byte
	CPL	P1.0	;toggle P1.0

CPL P1.0 ACALL DELAY

SJMP HERE ;load TH, TL again

;-----delay using Timer 0

DELAY:

SETB TR0 ;start Timer 0

AGAIN: JNB TF0,AGAIN ;monitor Timer 0 flag until

;it rolls over

CLR TR0 ;stop Timer 0 CLR TF0 ;clear Timer 0 flag

RET

上面的程式步驟如下:

- 1. TMOD 設定
- 2. 將FFF2H 載入 TH0 和 TL0
- 3. P1.0 反相
- 4. Call DELAY 副程式
- 5. DELAY 副程式中用 "SETB TRO" 啟動Timer 0
- 6. Timer 0 開始上數

- 7.Timer 0 用 "CLR TRO" 停止
- 8.回步驟2

假設XTAL = 11.0592 MHz,使用Timer 1 產生一Time delay,並在P1.7輸出一工作週期50%的方波。請問此方波頻率為?(不算Overhead)

	MOV	TMOD,#10H	;Timer 1, mode 1(16-bit)
AGAIN:	MOV	TL1,#34H	;TL1 = 34H, Low byte
	MOV	TH1,#76H	;TH1 = 76H, High byte
			;(7634H = timer value)
	SETB	TR1	start Timer 1
BACK:	JNB	TF1,BACK	stay until timer rolls ove;
	CLR	TR1	;stop Timer 1
	CPL	P1.7	comp. P1.7 to get hi, lo
	CLR	TF1	;clear Timer 1 flag
	SJMP	AGAIN	;is not auto-reload

FFFFH-7634H+1 = 89CCH = 35276D, 35276×1.085 μ s = 38274 μ s Freq = 1/(38274 + 38274) = 13.06 Hz

假設XTAL = 11.0592 MHz,如果要用Timer 0產生一 time delay = 5ms, 使P2.5送出一脈波寬度為5ms的脈波信號。Timer如何設定? ;clear P2.5 CLR P2.5 ;Timer 0, mode 1(16-bit mode) TMOD,#01 MOV **HERE:** MOV TL0,#0 TL0 = 0, Low byte MOV TH0,#0EEH ;TH0 = EE(hex), High byte SETB P2.5 ;set P2.5 high SETB TR0 ;start Timer 0 **AGAIN:** ;monitor Timer 0 flag JNB TF0,AGAIN until it rolls over CLR P2.5 ;clear P2.5 CLR TR0 ;stop Timer 0 CLR ;clear Timer 0 flag TF0

5000/1.085 = 4608, 65536 - 4608 = 60928D = EE00H

以下程式的time delay 為多少? 不考慮迴圈內這些指令的overhead。

```
MOV
                   TMOD,#10H
                                       ;Timer 1, mode 1(16-bit mode)
         MOV
                   R4,#200
                                       counter for multiple delay
         MOV
                                       TL1 = 08, Low byte
AGAIN:
                   TL1.#08H
         MOV
                   TH1,#01H
                                       ;TH1 = 01, High byte
         SETB
                   TR1
                                       :start Timer 1
```

BACK: JNB TF1,BACK ;stay until timer rolls over

CLR TR1 ;stop Timer 1

CLR TF1 ;clear Timer 1 flag

DJNZ R4,AGAIN ;reload timer

Time delay = $200 \times (FFFFH-0108H+1) \times 1.085 \mu s = 14.16 sec$

- 程式化Mode 2 (8-bit Timer with auto-reload)的步驟
 - 1. 設定 TMOD 暫存器以選擇 Timer 0 或 Timer 1, 並且選擇工作模式2
 - 2. 載入計時器的初始值到 THx 暫存器
 - 3. 啟動計時器
 - 4. 監控 TFx 旗標 (JNB TFx, target),當TFx=1時離開監控迴圈
 - 5. 清除 TFx 旗標・準備下一輪計時
 - 6. 回到步驟4, 因為會自動載入計時器的初始值到 TLx 暫存器

使用Timer 1 的Mode 2產生一Time delay,在P1.0輸出一工作週期50%的方波。

```
MOV
                             TMOD,#20H
                                                 ;Timer 1, mode 2(8-bit, auto-reload)
                   MOV
                             TH1,#0
                                                 :TH1 = 0
AGAIN:
                   MOV
                             R5,#250
                                                 ;count for multiple delay
                   ACALL
                             DELAY
                   CPL
                             P1.0
                                                 ;toggle P1.0
                   SJMP
                             AGAIN
                                                 repeat:
DELAY:
                   SETB
                             TR1
                                                 :start Timer 1
BACK:
                   JNB
                             TF1,BACK
                                                 ;stay until timer rolls over
                   CLR
                             TR1
                                                 ;stop Timer 1
                   CLR
                             TF1
                                                 :clear TF for next round
                   DJNZ
                             R5,DELAY
                   RET
```

T = 2 × (250 × 256 × 1.085 μ s) = 138.88 ms, and frequency = 7.2 Hz

單元六:8051的計時器

PART D

6.4 8051 計數器之程式設計

6.4 8051 計數器之程式設計

• TMOD 暫存器的C/T bit

- 如果 C/T = 0 · Timer 的時脈來源是crystal 。
- 相對地,當C/T = 1,Timer 的時脈來源是8051的外部輸入腳,且Timer 當作計數器。
- 因此,當 C/T = 1,計數器會隨著Pin 14和15輸入的脈波上數。

Pin	Port Pin	Function	Description
14	P3.4	ТО	Timer/Counter 0 external input
15	P3.5	T1	Timer/Counter 1 external input

6.4 8051 計數器之程式設計

• 假設clock 脈波輸入到Pin T1,請寫一程式讓計數器1工作在Mode 2去計算輸入的脈波個數(TL1 count)並將結果放到 P2。

	MOV	TMOD,#01100000E	;Timer 1, mode 2, C/T = 1 ;external pulses	
	MOV	TH1,#0	;clear TH1	
	SETB	P3.5	;make T1 input	
AGAIN:	SETB	TR1	start the counter	
BACK:	MOV	A,TL1	get copy of count TL1	
	MOV	P2,A	;display it on port 2	
	JNB	TF1,BACK	;keep doing it if TF = 0	
	CLR	TR1	;stop the counter 1	- - -
	CLR	TF1	;make TF = 0	To LEDs
	SJMP	AGAIN	;keep doing it	-
				-

6.4 8051 計數器之程式設計

C/T = 1

6.4 8051 計數器之程式設計

- TMOD的GATE = 1的情況
 - 計時器0的開始和停止由外部的INT0(P3.2)控制。
 - 計時器1的開始和停止由外部的INT1(P3.3)控制。

6.5 8051 計時器之C語言程式設計

- 連續在P1送出55H和AAH的交替訊號
- 以Timer 0的16-bit mode 產生 time delay.

To

LEDs

6.5 8051 計時器之C語言程式設計

- 使用Timer 1 · Mode 2 作時間延遲
 - · 產生-2500 Hz 方波在P2.7。

1/2500Hz = 400μ s, 400μ s/2 = 200μ s, 200μ s/1.085 μ s = 184

6.5 8051 計時器之C語言程式設計

- 將 Timer 1 設計成計數器(Counter)
 - 外部輸入一 1Hz 脈波到 Pin T1 (P3.5)。
 - 將 Timer 1 規劃成 Counter , Mode 2
 (8-bit auto reload) 去計數並顯示 TL1 的 計數值在 P1。
 - 從 OH 開始計數。


```
#include <REGX51.H>
sbit T1 = P3^5;
void main(void)
  T1 = 1:
                           //make T1 and input
  TMOD = 0x60;
                           // set Timer 1 in mode 2
  TH1 = 0;
                           //set count to 0
  while(1)
                           //repeat forever
               do
                            TR1 = 1;
                                         //start timer
                            P1 = TL1;
                                         //place value on pins
               while(TF1 == 0);
                                         //wait here
               TR1 = 0;
                                         //stop timer
               TF1 = 0;
                                         //clear flag
```

單元六:8051的計時器

PART E

微算機原理及應用實習

範例一:計時器實驗

範例說明

• 實驗目的:

瞭解8051之計時器控制方法,並練習使用計時器實作時間延遲副程式。

• 功能說明:

使用計時器實作1秒的時間延遲副程式,並由AT89S51的 Port 0輸出控制七段顯示器,使其每一秒依序從0~9上數並顯示。

IO應用電路板(Task board 1)

Timer 0 的 Mode 1

Timer 0 的 Mode 1

- 使用 11.0592 MHz crystal, Fosc = 11.0592 MHz, 所以進入Timer的頻率為 11.0592MHz/12 = 921.6 KHz, T = 1.08507μs
- 設計一個1秒的Time delay,使用 50ms跑20次(50ms×20=1000ms)
- 50ms/1.08507μs = 46080 次

```
DELAY1S:
                        ;計數20次, 共1秒鐘
       MOV R1,#20
       MOV TH0,#HIGH(65536-46080);計數46080次,共50ms
LOOP:
       MOV TL0,#LOW(65536-46080)
       SETB TR0
                        :啟動計時器
                        ;TF0不等於1(計時溢位)時繼續此行
       JNB TF0.$
       CLR TR0
                        ;停止計時器
       CLR TF0
                        ;清除溢位旗標
       DJNZ R1,LOOP
                                          ASM
       RET
```

電路圖

程式流程圖

程式碼(組合語言)

END

ORG 0 **JMP START** START: MOV R0.#0 :上數初始值 MOV DPTR,#TABLE :建立七段解碼表 MOV TMOD,#11H ;設定計時器模式 **DISPLAY:** ;將上數值R0給A MOV A,R0 MOVC A,@A+DPTR :利用A查表 MOV P0,A :輸出至P0 INC R0 :上數值加1 CALL DELAY1S :呼叫延遲副程式 **CJNE** :上數值超過9? R0,#10,DISPLAY MOV ;超過9上數值歸0 R0,#0 **JMP DISPLAY** :重複執行迴圈

DELAY1S: MOVR1,#20 LOOP: MOV TH0,#(65536-46080)/256;設定計時初始值 MOV TL0,#(65536-46080) MOD 256 ;計時器開始計時 **SETB** TR0 :計時是否溢位? JNB **TF0.\$** CLR TR0 ;停止計時器 CLR TF0 :清除溢位旗標 **DJNZ** R1,LOOP ;重複迴圈 RET ;七段顯示器解碼 TABLE: DB 3FH, 06H, 5BH, 4FH, 66H; DB 6DH, 7CH, 07H, 7FH, 67H;

程式碼(C語言)

```
#include <REGX51.H>
// ------宣告變數與常數------
code char SEG table[]=\{0x3f,0x06,0x5b,0x4f,0x66,
 0x6d,0x7c,0x07,0x7f,0x67};
// ------宣告副程式-------
void Timer Delay 1s(void);
// ------主程式開始-------
main(void)
 char xi=0;
                 //上數計數值
 TMOD=0x11;
                 //Timer0 設定為mode1,16bit
                  //無窮迴圈
 while(1)
   P0=SEG table[xi]; //查表並顯示上數值
                 //上數值加1
   Xi++;
   Timer Delay 1s(); //呼叫延遲副程式
              //如果超過上數值9就歸0
   if(xi>9) xi=0:
```

```
#define T0Val (65536-46080)
//Tsys=12/Fosc=12/11.0592MHz=1.085069444us
//計數Timer值 = 50ms/Tsys = 46080
void Timer Delay 1s(void)
 char i:
                //迴圈做20次50ms=1s
 for(i=20;i>0;i--)
   TH0=T0Val/256;
                 //設定計時值
   TL0=T0Val%256;
                //計時器開始計時
   TR0=1:
   while(TF0==0); //檢查旗標並等待計時
   TR0=0: //停止計時器
   TF0=0;
                //清除溢位旗標
```

練習題

•功能說明:

倒數計時器,由AT89S51的P2.5讀取按鈕狀態,當按下按鈕後,七段顯示器值從5開始每一秒下數一次,到0即停止。請使用計時器來做時間延遲副程式。

單元六:8051的計時器

PART F

微算機原理及應用實習

範例二:計數器實驗

範例說明

• 實驗目的:

瞭解**8051**之計數器控制方法,並練習使用計數器來量測外部訊號的頻率。

• 功能說明:

由AT89S51的P3.5輸入一外部脈波訊號,經計數器計算後,由P0輸出控制七段顯示器以顯示訊號之頻率(單位為KHz),量測範圍為0K~9KHz。

IO應用電路板(Task board 1)

Timer 1 的 Mode 1

頻率偵測原理

頻率 = 基準時間內負緣的個數/基準時間

Ex: 10/1 = 10Hz

電路圖

程式流程圖(組合語言)

程式碼(組合語言)

:設定P3.5為輸入

;設定計數模式

;設定開始計數

;計數值清為0

:計數值清為0

:開始計算頻率

;將計數值取出到A

:將七段解碼查表取出

ORG 0

START: SETB P3.5

MOV DPTR,#TABLE ;建立七段解碼表

MOV TMOD,#55H

SETB TR1

LOOP: MOV TL1,#0

MOV TH1,#0

CALL DELAY ;延遲(10ms持續計數)

MOV A,TL1

MOV B,#10

DIV AB

MOVC A,@A+DPTR

MOV P0,A ;將結果輸出

WIOV PU,A ,衍紀末期

JMP LOOP :迴圈

DELAY: MOV R6,#20 ;延遲10ms

DLOOP: MOV R7,#230

DJNZ R7,\$

DJNZ R6,DLOOP

RET

TABLE: DB 3FH, 06H, 5BH, 4FH, 66H

DB 6DH, 7CH,07H, 7FH, 67H

END

頻率 = 基準時間內負緣的個數/基準時間

程式碼(C語言)

```
#include <REGX51.H>
// ------宣告變數與常數------
code char SEG_table[]={ 0x3f,0x06,0x5b,0x4f,0x66,
        0x6d,0x7c,0x07,0x7f,0x67};
void Delay ms(int);
// -----主程式開始------
main(void)
  unsigned int xi=0;
                    //建立七段解碼索引
                    //設定P3.5為輸入
  P3 5=1;
                    //設定T1模式1,16bit 外部輸入
  TMOD=0x55:
  TR1=1;
                    //設定開始計數
  while(1)
                    //無窮迴圈
    TL1=0x00;
                    //計數值清為0
                    //計數值清為0
    TH1=0x00;
    Delay ms(10);
                    //延遲(10ms持續計數)
    xi=TL1;
                    //將計數值取出到xi
    xi=xi/10;
                    //開始計算頻率
    P0=SEG table[xi];
                    //將七段解碼錶取出結果並輸出P0
```

頻率 = 基準時間內負緣的個數/基準時間

練習題

•功能說明:

由AT89S51的P3.4輸入一外部脈波訊號,經計數器計算後,由P0輸出控制七段顯示器以顯示訊號之頻率(單位為10KHz),量測範圍為0K~90KHz。

(例如:50KHz,七段顯示器顯示5)

6.6 參考文獻

- ATMEL AT89S51 datasheet (doc2487.pdf)
- ATMEL 8051 Microcontrollers Hardware Manual (doc4316.pdf)
- ATMEL 8051 Microcontroller Instruction Set (doc0509.pdf)
- The 8051 Microcontroller and Embedded Systems Using Assembly and C, Second Edition, by Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay.

