

# Ouvrons la boîte à outils du Data Scientist pour analyser les données du SNDS

**Martin PRODEL** 

« Data Scientist » (Ingé, PhD) chez HEVA

Meetup SNDS #3

## Différents Concepts







**DATA SCIENCE** 

Sur les banc de l'école ou la fiche de poste



INTELLIGENCE ARTIFICIELLE

Le maxi buzz word



**BIG DATA** 

SNDS, what else?



**DATA MINING** 

La philosophie



**DEEP LEARNING** 

Boîte à outils n° 1



MACHINE LEARINING

Boîte à outils n° 2 → ma préférée



### La mise en pratique du Machine Learning

- Profilage de patients avec la Classification
- Les parcours de traitements avec le Clustering

# Mise en œuvre de 2 approches sur un cas d'étude : données SNIIRAM



≈ 96 500 PV.VIH\* en 2013



dont 3 373 incidents

Rétrospective de 5 ans pour étudier les comorbidités et suivi 1 an pour étudier les coûts recours aux soins

→ Question : présence de sous-profils atypiques au regard des coûts ?

<u>Suivi 2 ans</u> afin de détecter **leurs** 

#### délivrances d'antirétroviraux (ART) :

Monothérapie / bithérapie / trithérapie



→ Question : présence de trajectoires de soins types, de switch dans les traitements, durées sous traitements ?

#### Question 1: utilisons un algorithme de Machine Learning qui ...



SÉLECTIONNE AUTOMATIQUEMENT POUR CRÉER AUTANT **EN FONCTION** LES VARIABLES PERTINENTES D'UN **OBJECTIF** PRÉCIS DE **PROFILS PATIENTS** QUE BESOIN PARMI LES DIZAINES DISPONIBLES Expliquer le coût PRÉSENCE D'INFECTIONS NON CLASSANTES VIH (Ou encore mesurer des risques : ré-hospitalisations ou NON complications) സ്ന N = 26706N = 21920Nombre de 1540 € / p 8688€/p doses reçues Diagnostics PRÉSENCE D'UNE D'UNE COMMORBIDITÉ INFECTION BACTÉRIENNE **ENDOCRINO-METABOLIQUE EXEMPLE D'UN PROFIL PATIENT** Genre 19 078 (63%) NON OUI OUI Présence d'un N = 25369N = 1337'N = 19 078 cancer 1420 € / p 3680€/p 2388€/p COÛT MOYEN **PROFIL 1** 2 388 € CARACTÉRISTIQUES: NON **PRÉSENCE DOSES REÇUES** 1. Présence d'infections  $^{\circ}N = 2842$ **ENTRE 5 ÉT 10** D'UN CANCER Âge de la 6300€/p non classables VIH maladie 2. Présence d'une comorbidité Âge du patient NON NON endocrino-metabolique N = 21980N = 11701280 € / p 4 540 € / p Coûts

OUI

N = 167 9 510 € / p

OUI

N = 3389

140 € / p

Date

#### Question 2 : analyser les parcours thérapeutiques



But : Comprendre les enchainement possibles des traitements chez les patients d'une cohorte (les incidents) dans les 2 après leur inclusion

- 1. Pour l'ensemble la cohorte
- 2. En ayant une vision temporelle précise
- 3. De manière lisible

#### Evènements repérables dans le SNDS :

Délivrances des traitements du VIH



Exemple de 3 patients vectorisés



#### Méthodologie : utiliser la technique de Machine Learning « TAK\*»





- Recherche d'enchaînements communs et clustering de trajectoires similaires
- Rendu graphique complet grâce au TAK

<sup>\*</sup> Time sequence Analysis through K-clustering, by HEVA.

#### **Solutions possibles:**



#### « Sankey Diagram »



- ✓ 1. Exhaustif
- × 2. Manque de précision dans la temporalité
- × 3. Manque de lisibilité

#### « TraMineR »



- X 1. Seuls 34% de la cohorte sont représentés
- ✓ 2. Précis sur la temporalité
- ✓ 3. Lisible

## **Autre solution**



#### Le graphe « soleil »



TRIT

BIT

QUADRIT OU +

MONOT

DRUG HOLIDAYS

DÉCÈS



du sunburst et les patients décédés du groupe D du sunburst.

#### **TAK:** La technique

• Patients non ordonnés

 Patients ordonnés selon leur similarités

Dégage les tendances

• Image lissée

Améliore la lisibilité







#### Technique:

- Modélisation vectorielle
- Discrétisation du temps



Technique: *Hierarchical Agglomerative Clustering* 

→ Machine Learning



Technique: ModeFilter

→ Image processing





10





#### Le retour d'expérience d'un data scientist SNDS

- Très important : poser une question d'étude précise
- Les données sont là : SNDS
- La technologie « Machine Learning » est disponible pour tous
  - → Les outils sont là, il manque le data scientist (l'orfèvre des temps modernes)
  - → Plus de monde = plus de publications = démocratisation
- La technologie seule ne vaut rien  $\rightarrow$  comité scientifique et médical



# Merci de votre attention Des questions?

*Tak : merci (Danois) Tack : merci (Suédois) Takk : merci (Norvégien)* 

Tusen takk : Milles mercis (Norvégien)