# **Redes Neuronales**



#### Generalidades

- Aproximación a la inteligencia artificial que parte de tratar de modelar el funcionamiento físico del cerebro.
- Cerebro está compuesto por millones de millones de elementos computacionales simples (neuronas).
- Neuronas son lentas! Su velocidad no se ha incrementado evolutivamente.
- Capacidad computacional del cerebro proviene de paralelismo masivo.
- Es un computador no convencional, diseñado para realizar bien ciertas tareas:
  - ? Percepción y representación del mundo. ? Inferencia probabilística.
  - ? Manejar información conflictiva. ? Formar conceptos.

#### Inteligencia artificial - Breve reseña histórica

**1888** Ramon y Cajal: Sistema Nervioso compuesto por células interconectadas.

1936 Alan Turing: Funcionamiento del cerebro humano como apx. para computación

**1943** McCulloch y Pitts: Modelo de RNA simple con circuitos eléctricos. Propiedades Neuro – lógicas de conexiones entre neuronas, actividad de una neurona influenciado por otras.

**1949** Hebb: Aprendizaje por refuerzo en individuos (redes neuronales biológicas), modificación de sinapsis. Dos neuronas se activan a la vez, se debe reforzar su conexión.

1958 Rosenblatt: Perceptron, APROXIMADOR UNIVERSAL

1960 Widrow: Red ADALINE (ADAptative LINear Elements)

1969 Minsky y Papert: Perceptron no es capaz de resolver problemas no lineales. XOr

....?....

1982 Kohonen: Mapas auto-organizativos

#### Inteligencia artificial - Breve reseña histórica

1985 Hopfield: Entrenamiento Perceptron Multicapa

**1986** Rumelhart y Hinton: Redescubrimiento Algoritmo Backpropagation Rumelhart, Hinton y Williams (1986), Parker (1985), LeCun (1985) (Werbos,1974).

1988 Broomehead y Lowed: Funciones de Base Radial

**1998** Teoría de generalización en redes neuronales

# Biológico-Artificial: Neurona Artificial



# Biológico-Artificial: Neurona Artificial



#### Redes neuronales - Neurona Artificial

- Nivel de Actividad: Señal de disparo.
- Conexiones de entrada: sinapsis.
- Peso de la conexión:
  - Positiva (excitatoria).
  - Cero
  - Negativa (inhibitoria).
- Conexión de salida: axón.
- Nivel de actividad de axones entrantes se multiplica por el peso de la sinapsis y determina el nivel de actividad en la salida



#### Redes neuronales - Modelo general



Funciones de activación: Dependiendo de su entrada su salida puede ser excitatoria o inhibitoria.



Artículo muy bueno para entenderlas:

https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

#### Redes neuronales - Neurona Artificial

Se comporta como una AND o una OR?



#### Redes neuronales - Fortaleza

- Computador masivamente paralelo.
- Neuronas efectúan operaciones muy básicas.
- Operación distribuida.
- Conocimiento adquirido a través de un proceso de aprendizaje.
- Capacidad de generalización.
- Conocimiento almacenado en fortaleza de conexiones sinápticas.
- Caja negra??? Para un sistema de decisión que parte tuvo la mayor influencia en la decisión?

# Redes neuronales - Comparación cerebro

#### Redes neuronales

- Uno o dos tipos de neuronas.
- 1 100's de neuronas.
- 10 1000's de conexiones.
- 1 3 capas.

#### Cerebro

- 10^9 Neuronas.
- 10<sup>1</sup>1 Conexiones.
- Muchas Clases de Neuronas.

#### Redes neuronales - Partes



$$y_i(t) = \sum_{j=1}^N w_{ij} X_j(t)$$

$$u_i(t) = f(y_i(t))$$

Normalmente el desempeño está relacionado con el número de neuronas de la capa oculta.

# Redes neuronales - Experimento

#### The "one learning algorithm" hypothesis







Seeing with your tongue

#### Redes neuronales - Proceso

Fase de Aprendizaje: Conexiones sinápticas son modificadas

- A priori (condiciones iniciales).
- Algoritmo de aprendizaje.

Fase de Reconocimiento: Información inicial produce un patrón de salida.

- Computación distribuida.
- Comportamiento complejo.

#### Redes neuronales - Modelo de una neurona

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}^T$$

$$\mathbf{w} = \begin{bmatrix} w_1 & w_2 & \dots & w_d \end{bmatrix}^T$$

$$g(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0$$

$$y = f_{LD}(g(\mathbf{x})) = f_{LD}(\mathbf{w}^T \mathbf{x} + w_0)$$



#### Redes neuronales - Problema de aprendizaje

- Tenemos un conjunto de datos  $\{\mathbf{x}_i, y_i\}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{0, 1\}.$
- Queremos encontrar w que nos de una buena regla de clasificación para datos futuros.
- Si  $z_i = f_{LD}(g(\mathbf{w}, \mathbf{x}_i))$ , el objetivo es minimizar:

$$\mathbb{P}\{y_i \neq z_i\}$$

- En general, no podemos calcular  $\mathbb{P}\{y_i \neq z_i\}$ !
- Estrategia: minimizar función de error en los datos que sea calculable.

#### Redes neuronales - Problema de aprendizaje

- Algoritmo LMS
  - Widrow y Hoff (1960)
  - Adaptive linear networks (ADALINE).
- Algoritmo del Perceptrón
  - Rosemblatt (1962).
  - Prueba de convergencia.
- Perceptrón con bolsillo
  - Gallant (1986)
  - Para datos no linealmente separables.

Función de error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - g(\mathbf{w}, \mathbf{x}_i))^2$$
$$= \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Problema de minimización:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$$

Para el caso de una neurona, este problema admite una solución analítica.

Defina:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T & \mathbf{x}_2^T & \cdots & \mathbf{x}_n^T \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & \mathbf{y}_n \end{bmatrix}^T$$

• Entonces, para una solución con  $E(\mathbf{w}) = 0$  se requiere:

$$Xw = y$$

- Es decir, y debe ser una combinación lineal de las columnas de X.
- En general, no existe w que cumpla esta condición.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{n} ((\mathbf{w}^{T} \mathbf{x}_{i})^{2} - 2y_{i} \mathbf{w}^{T} \mathbf{x}_{i} + y_{i}^{2})$$

$$= \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{w} - 2y_{i} \mathbf{w}^{T} \mathbf{x}_{i} + y_{i}^{2})$$

$$= \frac{1}{2} \mathbf{w}^{T} \mathbf{H} \mathbf{w} - \mathbf{b}^{T} \mathbf{w} + c$$

$$\mathbf{H} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{b} = \sum_{i=1}^{n} \mathbf{x}_{i} y_{i}$$

$$c = \frac{1}{2} \sum_{i=1}^{n} y_{i}$$

• El mínimo de  $E(\mathbf{w})$  ocurre donde  $\nabla_{\mathbf{w}}E=0$ :

$$\nabla_{\mathbf{w}} E = \mathbf{H} \mathbf{w} - \mathbf{b} = 0$$
$$\hat{\mathbf{w}} = \mathbf{H}^{-1} \mathbf{b}$$

- Se requiere invertir H, que puede no ser invertible o ser mal condicionada.
- LMS: solución iterativa.

- Procedimiento iterativo:
  - 1. Comenzar en un punto (aleatorio):

$$\mathbf{w}_0 = \mathsf{random}$$

2. Búsqueda de gradiente: Ir "hacia abajo de la colina".

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mu \nabla_{\mathbf{w}} E|_{\mathbf{w}_k}$$

•  $\nabla_{\mathbf{w}} E|_{\mathbf{w}_k}$  no se calcula exactamente.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i))^2$$
$$\nabla_{\mathbf{w}} E = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i$$

- $\nabla_{\mathbf{w}} E|_{\mathbf{w}_k}$  se estima a partir de un subconjunto de los datos.
- · Varias pasadas por los datos.
- Usualmente se usa un solo dato:

$$\nabla_{\mathbf{w}} E \approx (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i$$
$$= e_i \mathbf{x}_i$$

- Procedimiento iterativo:
  - 1. Comenzar en un punto (aleatorio):

$$\label{eq:w0} \mathbf{w}_0 = \text{random} \\ \mathbf{w}_0 \text{ a valores peque\~nos}.$$

Búsqueda de gradiente: Ir "hacia abajo de la colina".

#### 

# Redes neuronales - Perceptron

Conjunto de datos:

$$\{\mathbf{x}_i, y_i\}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

•  $(\mathbf{x}_i, y_i)$  es clasificado correctamente si:

$$g(\mathbf{w}, \mathbf{x}_i) y_i > 0$$
$$(\mathbf{w}^T \mathbf{x}_i) y_i > 0$$

Criterio de error del perceptrón:

$$E(\mathbf{w}) = -\sum_{\mathbf{x}_i \in \mathcal{M}} (\mathbf{w}^T \mathbf{x}_i) y_i, \quad \mathcal{M} = \{ \mathbf{x}_i : (\mathbf{w}^T \mathbf{x}_i) y_i < 0 \}$$

# Redes neuronales - Perceptron

- Procedimiento iterativo:
  - 1. Comenzar en:

$$\mathbf{w}_0 = 0$$

2. Búsqueda de gradiente: Ir "hacia abajo de la colina".

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \nabla_{\mathbf{w}} E|_{\mathbf{w}_k}$$

• Nuevamente,  $\nabla_{\mathbf{w}} E|_{\mathbf{w}_k}$  no se calcula exactamente:

$$\mathcal{M} = \{\mathbf{x}_i : (\mathbf{w}^T \mathbf{x}_i) y_i < 0\}$$
 Los datos que están mal clasificados 
$$\nabla_{\mathbf{w}} E = \sum_{\mathbf{x}_i \in \mathcal{M}} \mathbf{x}_i y_i$$
 
$$\approx \ \, \mathbf{\neg} \mathbf{x}_i y_i$$
 +Si se espera +1 - Si se espera -1

Incialize  $\mathbf{w}_0 = 0$ repeat Escoja  $(\mathbf{x}_i, y_i)$  al azar if  $(\mathbf{w}^T \mathbf{x}_i) y_i < 0$  then  $\mathbf{w}_{k+1} = \mathbf{w}_k + \mathbf{x}_i y_i$ end if until Convergencia.

• Cuando no hay separabilidad, el algoritmo oscila y no termina.

# Redes neuronales - Perceptron con bolsillo

#### •PERCEPTRON: Clasificación binaria

$$E(\mathbf{w}) = -\sum_{\mathbf{x}_i \in \mathcal{M}} (\mathbf{w}^T \mathbf{x}_i) y_i, \quad \mathcal{M} = \{\mathbf{x}_i : (\mathbf{w}^T \mathbf{x}_i) y_i < 0\}$$
Los datos que están mal clasificados

#### •LMS: SALIDA NO BINARIA

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

# Redes neuronales - Perceptron con bolsillo

