Vectors Exercises

Dr Jon Shiach

Semester 1

3.1 The points U, V and W have the following position vectors:

$$\mathbf{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \qquad \mathbf{v} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \qquad \mathbf{w} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}.$$

Find:

- (a) $2\mathbf{u} + \mathbf{w}$
- (b) $\mathbf{w} \mathbf{u}$
- (c) a unit vector pointing in the same direction of **u**
- (d) a unit vector pointing in the opposite direction of \mathbf{v}
- (e) a vector pointing in the same direction as \mathbf{v} but half its length
- (f) the vector pointing from U to V
- (g) the vector pointing from U to W
- (h) $\mathbf{u} \cdot \mathbf{w}$
- (i) the angle $\angle VUW$
- (j) show that \mathbf{u} is at right angles to \mathbf{v}
- (k) $\mathbf{v} \times \mathbf{w}$
- 3.2 Write $\mathbf{u} = (2, 7, 1)^{\mathsf{T}}$ as:
 - (a) a linear combination of \mathbf{i} , \mathbf{j} and \mathbf{k}
 - (b) a linear combination of vectors $\mathbf{f}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\mathbf{f}_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$ and $\mathbf{f}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$
- 3.3 Find k such that the vectors \mathbf{u} and \mathbf{v} are perpendicular:

(a)
$$\mathbf{u} = \begin{pmatrix} 1 \\ k \\ -2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 2 \\ -5 \\ 4 \end{pmatrix}$ in \mathbb{R}^3

(b)
$$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ k+2 \\ -1 \\ 2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ k \\ -2 \\ 1 \\ 2 \end{pmatrix}$ in \mathbb{R}^5

3.4 Which pair of the following vectors is perpendicular? For the remaining pairs, what is the angle between them?

1

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad \mathbf{v} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \qquad \mathbf{w} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}.$$