Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Artem Gorodilov Naměřeno: 23. listopadu 2023

Obor: Astrofyzika Skupina: Čt 8:00 Testováno:

Úloha č. 10: Polarizace světla

 $T=21.7~^{\circ}\text{C}$ p=982~hPa

 $\varphi = 39 \%$

1. Zadání

Změřte index lomu roztoků sacharózy o různých koncentracích.

Změřte specifickou stáčivost roztoků.

Změřte polarizovatelnost skutečného polaroidu pomocí Mazulova zákona.

2. Teorie

2.1. Optická aktivita látek

Opticky aktivní látky, jako jsou některé pevné materiály a kapaliny s asymetrickým uhlíkem, například vodný roztok sacharózy, vykazují schopnost ohýbat rovinu lineární polarizace světla. V závislosti na směru natočení vibrační roviny se klasifikují jako pravotočivé nebo levotočivé vzhledem ke směru šíření světla. Úhel natočení roviny kmitání po průchodu opticky aktivní látkou popisuje rovnice:

$$\alpha = [\alpha]d\tag{1}$$

kde $[\alpha]$ je specifická specifická stáčivost zkoumané látky a dje je tlošťka látky.

Teplota a vlnová délka světla určují hodnotu $[\alpha]$. Specifická stáčivost $[\alpha]$ je definována jako:

$$[\alpha] = \frac{\alpha}{cd} \tag{2}$$

kde c je koncentrace roztoku.

Závislost úhlu lomu n na malé (do 20%) koncentraci c popisuje následující vzorec:

$$n(c) = n_{voda} + (0.00140 \pm 0.00003)c$$
 (3)

Figure (1) Polarimetr.

kde n_0 je index lomu čistého rozpouštědla a A je koeficient úměrnosti.

2.2. Malusův zákon

Prvky jsou znázorněny na schématu (1): A - analyzátor a P - polarizátor. I_0 - intenzita přirozeného světla dopadajícího na polarizátor. I_0' je intenzita světla po průchodu polarizátorem. Dále I je intenzita paprsku po průchodu analyzátorem A a α je úhel mezi rovinami kmitání vektoru \overrightarrow{E} před průchodem analyzátorem a po něm obrazek (2).

Nechť amplituda vektoru \overrightarrow{E} před průchodem je a_0 a po průchodu je a. Pak platí následující:

$$a = a_0 cos \alpha \tag{4}$$

Intenzita prošlá analyzátorem je určena Malusovým zákonem:

$$I = I_0 cos^2 \alpha \tag{5}$$

Figure (2) Shéma Malusova pokusu.

3. Měření

3.1. Optická aktivita látek

Refraktometrem byly změřeny indexy lomu n pro diionizovanou vodu a pro 5%, 10% a 15% concentrace c roztoku sacharózy v této vodě. Výsledky jsou uvedeny v tabulce (1).

$c_0 \ [\%]$	$c \ [\%]$	n
0	-0.1(3)	1.332(1)
5	4.1(3)	1.339(2)
10	7.8(4)	1.346(1)
15	14.2(4)	1.354(1)

Table (1) Indexy lomu n pro různé naměřené koncentrace sacharózy c odpovídající očekávaným koncentracím c_0 .

Dále jsme vykreslili závislost indexu lomu na koncentraci roztoku a lineárně ji aproximovali, čímž jsme získali hodnotu A. Výsledky jsou uvedeny na obrázku (3).

Figure (3) Závislost indexu lomu n na koncentraci roztoku sacharózy c.

$$A = 0.0016(1), \quad n_{voda} = 1.3324(1)$$

Odtud jsme získali přesnější hodnotu úhlu lomu čisté vody n_{voda} . Na základě této hodnoty úhlu lomu pak vypočítáme koncentraci roztoku c podle vzorce (3):

n	$c_0 \ [\%]$	$c_{vypo\check{c}.}$ [%]
1.332(1)	0	-0.4(7)
1.339(2)	5	5(1)
1.346(1)	10	9.8(8)
1.354(1)	15	15.5(8)

Table (2) koncentrace $c_{vypo\check{c}}$. vypočítané z naměřených hodnot indexu lomu n.

$\alpha [^{o}]$						
-0.1 [%]	4.1 [%]	7.8 [%]	14.2 [%]			
-0.05(1)	3.10(1)	6.25(1)	10.15(1)			
-0.05(1)	3.10(1)	6.35(1)	10.20(1)			
-0.05(1)	3.05(1)	6.25(1)	10.20(1)			
-0.05(1)	3.05(1)	6.25(1)	10.20(1)			
-0.05(1)	3.10(1)	6.35(1)	10.10(1)			

Table (3) Úhly natočení roviny kmitání α pro deionizovanou vodu a pro tři roztoky sacharózy.

Dále jsme pomocí polarimetru změřili úhel natočení roviny kmitání α pro deionizovanou vodu a pro tři roztoky sacharózy. Výsledky jsou uvedeny v tabulce (2).

Úhly natočení roviny kmitání pro diionizovanou vodu a pro tři roztoky sacharózy jsou pak následující:

$$\alpha_{H_2O} = -0.05(1)^o$$
 $\alpha_{5\%} = 3.13(8)^o$
 $\alpha_{10\%} = 6.3(2)^o$
 $\alpha_{15\%} = 10.2(2)^o$

Odtud podle vzorce (3) zjistíme hodnoty specifické stáčivosti $[\alpha]$ pro jednotlivé roztoky sacharózy:

$$[\alpha]_{5\%} = 75(7) \frac{{}^{\circ} cm^{3}}{g \ dm}$$
$$[\alpha]_{10\%} = 80(5) \frac{{}^{\circ} cm^{3}}{g \ dm}$$
$$[\alpha]_{15\%} = 72(2) \frac{{}^{\circ} cm^{3}}{g \ dm}$$

3.2. Malusův zákon

Pro zjištění stupně polarizace V měříme závislost intenzity světla I dopadajícího na detektor na úhlu natočení polarizátoru α . Výsledky měření jsou uvedeny v tabulce (3).

Získané hodnoty pak vyneseme do graf, obrazek (4):

$\alpha [^o]$	$I [\mu V]$	$\alpha [^o]$	$I [\mu V]$	$\alpha [^{o}]$	$I [\mu V]$
0	0.71	120	0.16	240	0.27
10	0.72	130	0.27	250	0.17
20	0.67	140	0.40	260	0.09
30	0.60	150	0.54	270	0.05
40	0.49	160	0.64	280	0.05
50	0.38	170	0.73	290	0.09
60	0.27	180	0.77	300	0.16
70	0.16	190	0.77	310	0.27
80	0.09	200	0.73	320	0.40
90	0.05	210	0.65	330	0.52
100	0.05	220	0.54	340	0.62
110	0.08	230	0.40	350	0.69

Table (4) Závislost intenzity světla I dopadajícího na detektor na úhlu natočení polarizátoru α .

Figure (4) Závislost intenzity světla I dopadajícího na detektor na úhlu natočení polarizátoru α .

Z grafu byly získány následující hodnoty maximálních a minimálních intenzit I_{max} a I_{min} :

$$I_{max} = 0.77(1) \mu V$$

 $I_{min} = 0.05(1) \mu V$

Hodnota stupně polarizace se zjistí podle vzorce (6):

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{6}$$

Pak dostaneme:

$$V = 0.88(2)$$

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Kód je přiložen k protokolu. Chyby byly rozšířeny o Studentův koeficient (2-Tail Confidence Level) s ohledem na stupně volnosti pro každou hodnotu, pro interval spolehlivosti 99%.

4. Závěr

4.1. Optická aktivita látek

Byly změřeny indexy lomu n pro diionizovanou vodu a pro -0.1% $n_{0\%}=1.3324(1),\ 5\%$ $n_{5\%}=1.339(2),\ 10\%$ $n_{10\%}=1.346(1)$ a 15% $n_{15\%}=1.354(1).$

Zmeřili jsme concentrační závislost indexu lomu n a lineárně ji aproximovali, čímž jsme získali hodnotu A = 0.0016(1). Dále jsme získali hodnotu úhlu lomu čisté vody $n_{voda} = 1.3324(1)$.

Na základě této hodnoty úhlu lomu jsme vypočítali koncentrace $c_{vypoč}$. vypočítané z naměřených hodnot indexu lomu n: -0.4(7)%, 5(1)%, 9.8(8)% a 15.5(8)%.

Dále byla změřena specifická stáčivost $[\alpha]$ pro jednotlivé roztoky sacharózy: $[\alpha]_{5\%} = 75(7) \frac{^o cm^3}{g \ dm}$, $[\alpha]_{10\%} = 80(5) \frac{^o cm^3}{g \ dm}$ a $[\alpha]_{15\%} = 72(2) \frac{^o cm^3}{g \ dm}$.

4.2. Malusův zákon

Byla změřena závislost intenzity světla I dopadajícího na detektor na úhlu natočení polarizátoru α . Z grafu byly získány následující hodnoty maximálních a minimálních intenzit I_{max} a I_{min} : $I_{max} = 0.77(1)~\mu V$ a $I_{min} = 0.05(1)~\mu V$. Hodnota stupně polarizace je V = 0.88(2).

K výpočtu chyb byl použit následující kód:

```
#Importing the libraries
import matplotlib.pyplot as plt
import matplotlib.pyplot as pit
import numpy as np
import pandas as pd
from scipy import stats
from scipy.stats import t as t
from scipy.optimize import curve_fit
from uncertainties import *
from uncertainties.umath import *
#Reading data
zero = pd.read_excel('data/0.xlsx')
five = pd.read_excel('data/5.xlsx')
ten = pd.read_excel('data/10.xlsx')
fifteen = pd.read_excel('data/15.xlsx')
alpha = pd.read_excel('data/alpha.xlsx')
int = pd.read_excel('data/int.xlsx')
out = pd.read_excel('data/out.xlsx')
# Constants and values
d = 0.01 \#dm
A_c = ufloat(0.0014, 0.00003)
 \begin{array}{l} \textbf{def uncert}(\texttt{data\_input}\,,\,\,\texttt{uncert\_inst})\colon\\ &\texttt{t\_coeff}=\texttt{t.ppf}((1\,+\,0.99)/2\,,\,\,\textbf{len}(\texttt{data\_input})-1)\\ &\textbf{return np.sqrt}((\texttt{np.std}(\texttt{data\_input})/\texttt{np.sqrt}(\texttt{len}(\texttt{data\_input})))**2\,+\,\,\texttt{uncert\_inst}**2)*t\_coeff \end{array} 
# Calculation
# Calculation
\begin{array}{lll} c\_list \ = \ [\ zero\_c \ , & five\_c \ , & ten\_c \ , & fifteen\_c \ ] \\ n\_list \ = \ [\ zero\_n \ , & five\_n \ , & ten\_n \ , & fifteen\_n \ ] \end{array}
out['c'] = c_list
out['n'] = n_list
alpha_list = [alpha_0, alpha_5, alpha_10, alpha_15]
out['alpha'] = alpha_list
out['alpha_corr'] = out['alpha'] - out['alpha'][0]
out['alpha_prime'] = out['alpha_corr'] / (d*out['c_corr'])
print (out)
\begin{array}{lll} I\_{max} = & \text{ufloat} \left( \text{np.max} (\text{int} \left[ \begin{subarray}{c} 'I' \end{subarray} \right] \right), & 0.01 \end{subarray} \\ I\_{min} = & \text{ufloat} \left( \text{np.min} (\text{int} \left[ \begin{subarray}{c} 'I' \end{subarray} \right] \right), & 0.01 \end{subarray} \end{array}
\#Linear\ fitting
#Best_fit_line best_fit_line = slope * np.array(out['c'].apply(lambda x: x.nominal_value)) + intercept
#Calculation of concentration
out['c_calc'] = (out['n'] - n_0_fit) / A_c
print (out)
```