Série 7

Exercice 1. L'espace est muni d'un repère. Dans chacun des cas suivants, écrire des équations paramétriques et cartésiennes de la droite d définie par les données.

a.
$$A(2,0,-5)$$
 et $\vec{v} \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$.

d.
$$A(3,-1,2)$$
 et $B(2,1,2)$.

b. A(1,-1,-3), et parallèle à :

e. A(-1,2,3) et parallèle à :

$$g: \left\{ \begin{aligned} x &= -1 + 3t \\ y &= 3 - 2t \\ z &= 2 + 5t \end{aligned} \right., t \in \mathbb{R}.$$

$$g: x = 1, \frac{y+2}{2} = \frac{z+1}{-1}.$$

f. A(2,-5,3) et $\vec{v} \begin{pmatrix} 0\\1\\0 \end{pmatrix}$.

c.
$$A(1,0,1)$$
 et $B(2,-1,3)$.

Solution:

a. D'après les données, on peut écrire directement :

$$\begin{cases} x = 2 + 2t \\ y = -3t \\ z = -5 + 5t \end{cases}, t \in \mathbb{R}.$$

En éliminant le paramètre t, on trouve des équations cartésiennes de d:

$$\frac{x-2}{2} = \frac{y}{-3} = \frac{z+5}{5}.$$

b. D'après les données, on peut écrire directement :

$$\begin{cases} x = 1 + 3t \\ y = -1 - 2t, t \in \mathbb{R}. \\ z = -3 + 5t \end{cases}$$

En éliminant le paramètre t, on trouve des équations cartésiennes de d:

$$\frac{x-1}{3} = \frac{y+1}{-2} = \frac{z+3}{5}.$$

c. La droite cherchée est dirigée par $\overrightarrow{AB}\left(\begin{smallmatrix}1\\-1\\2\end{smallmatrix}\right)$. Elle a donc pour équations paramétriques :

$$\begin{cases} x = 1 + t \\ y = -t \\ z = 1 + 2t \end{cases}, t \in \mathbb{R}.$$

En éliminant le paramètre t, on trouve des équations cartésiennes de d:

$$x - 1 = -y = \frac{z - 1}{2}.$$

d. La droite cherchée est dirigée par $\overrightarrow{AB} \left(\begin{smallmatrix} -1 \\ 2 \\ 0 \end{smallmatrix} \right)$. Elle a donc pour équations paramétriques :

$$\begin{cases} x = 3 - t \\ y = -1 + 2t, t \in \mathbb{R}. \\ z = 2 \end{cases}$$

En éliminant le paramètre t, on trouve des équations cartésiennes de d:

$$3-x=\frac{y+1}{2}, z=2.$$

e. Cherchons un vecteur directeur de la droite d'équations cartésiennes :

$$x = 1, \frac{y+2}{2} = \frac{z+1}{-1}.$$

Pour cela, on considère deux points B et C sur cette droite, par exemple B(1,2,-3) et C(1,4,-4). Le vecteur $\overrightarrow{BC}\begin{pmatrix} 0\\2\\-1 \end{pmatrix}$ est donc directeur de la droite recherchée, qui a donc pour équations paramétriques :

$$\begin{cases} x = -1 \\ y = 2 + 2t, t \in \mathbb{R}. \\ z = 3 - t \end{cases}$$

En éliminant le paramètre t, on trouve des équations cartésiennes de d:

$$x = -1, \frac{y-2}{2} = 3 - z.$$

f. D'après les données, on peut écrire directement :

$$\begin{cases} x = 2 \\ y = -5 + t, t \in \mathbb{R}. \\ z = 3 \end{cases}$$

En éliminant le paramètre t, on trouve des équations cartésiennes de d:

$$x = 2, z = 3.$$

Exercice 2. On munit l'espace d'un repère. Dans chacun des cas suivants, déterminer la position relative des droites d et g. Lorsqu'elles sont sécantes, identifier le point d'intersection.

a.
$$d: -2x + 8 = -y = 2z + 4$$
 et $g: \begin{cases} x = 7 + t \\ y = -t \\ z = -2 + \frac{t}{2} \end{cases}$, $t \in \mathbb{R}$.

b. d passe par $A\left(-4,2,1\right)$ et $B\left(-1,1,3\right),\,g$ par $C\left(0,5,-2\right)$ et $D\left(9,2,4\right)$

c. d passe par A(8,0,3) et est dirigée par $\vec{v}\left(\frac{5}{-2}2\right)$ et $g: \frac{x}{8} = \frac{y}{3} = \frac{-z+5}{7}$.

Solution:

a. L'intersection de d et g correspond au(x) réel(s) t tels que :

$$-2(7+t)+8=t=2(-2+\frac{t}{2})+4$$
 autrement dit $t=-2$.

Les droites d et g sont donc sécantes et leur point d'intersection a pour coordonnées (5, 2, -3).

- b. Les vecteurs $\overrightarrow{AB}\begin{pmatrix} 3\\-1\\2\\ \overrightarrow{AC}\begin{pmatrix} 4\\3\\-3\\ \end{aligned}$ et $\overrightarrow{CD}\begin{pmatrix} 9\\-3\\6\\ \end{aligned}$ sont colinéaires. Les droites d et g ont donc la même direction. De plus, le vecteur $\overrightarrow{AC}\begin{pmatrix} 4\\3\\-3\\ \end{aligned}$ n'est pas colinéaire à \overrightarrow{AB} , ce qui montre que le point C n'appartient pas à d. Les droites d et g sont donc parallèles et non confondues.
- c. La droite d est dirigée par $\vec{v} \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ et la droite g est dirigée par $\vec{w} \begin{pmatrix} 8 \\ 3 \\ -7 \end{pmatrix}$. Ces deux vecteurs n'étant pas colinéaires, on en déduit que d et g sont soit gauches, soit sécantes. Pour décider dans quel cas on se trouve, écrivons des équations paramétriques de d:

$$\begin{cases} x = 8 + 5t \\ y = -2t \\ z = 3 + t \end{cases}, t \in \mathbb{R}.$$

L'intersection de d et g correspond alors au(x) réels(s) t tels que :

$$\frac{8+5t}{8} = \frac{-2t}{3} = \frac{2-t}{7}.$$

On montre alors que ces équations n'ont pas de solution. Par conséquent, d et g ne s'intersectent pas, elles sont donc gauches.

Exercice 3. Soit ABCD un tétraèdre, et I, J, K, L les points milieux des arêtes AB, CD, AC, BD.

- a. Écrire les équations vectorielles des droites (IJ) et (KL) vues depuis le point A, en fonction des vecteurs $\overrightarrow{AB}, \overrightarrow{AC}$ et \overrightarrow{AD} .
- b. Montrer que les droites (IJ) et (KL) s'intersectent en un point N.
- c. Vérifier que N est le milieu des segments IJ et KL.

Solution: Figure d'étude :

a. On a:

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}, \ \overrightarrow{AJ} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}, \ \text{et donc} \ \overrightarrow{IJ} = \overrightarrow{AJ} - \overrightarrow{AI} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}.$$

La droite (IJ) possède donc pour équation vectorielle :

$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + t(-\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}), t \in \mathbb{R}.$$

De la même façon, on obtient:

$$\overrightarrow{AK} = \frac{1}{2}\overrightarrow{AC}, \overrightarrow{AL} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}, \text{ et donc } \overrightarrow{KL} = \overrightarrow{AL} - \overrightarrow{AK} = \frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}.$$

La droite (KL) possède donc pour équation vectorielle :

$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AC} + t(\frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}), t \in \mathbb{R}.$$

b. Les droites (IJ) et (KL) s'intersectent en un point si et seulement s'il existe deux réels s, t tels que :

$$\frac{1}{2}\overrightarrow{AB} + s(-\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}) = \frac{1}{2}\overrightarrow{AC} + t(\frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}).$$

Comme les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont linéairement indépendants, cette condition est équivalente à demander que le système suivant possède une solution :

$$\begin{cases} \frac{1}{2} - \frac{1}{2}s = \frac{1}{2}t \\ \frac{1}{2}s = \frac{1}{2} - \frac{1}{2}t \\ \frac{1}{2}s = \frac{1}{2}t \end{cases}$$

On montre alors que $s=t=\frac{1}{2}$ est l'unique solution de ce système. Par conséquent, les droites (IJ) et (KL) se coupent en un unique point N, qui vérifie :

$$\overrightarrow{AN} = \frac{1}{4}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}).$$

c. Grâce aux égalités vectorielles établies aux questions a. et b., on trouve :

$$\overrightarrow{AN} = \frac{1}{2}(\overrightarrow{AI} + \overrightarrow{AJ}) = \frac{1}{2}(\overrightarrow{AK} + \overrightarrow{AL}).$$

Par conséquent, N est le milieu de IJ et aussi le milieu de KL.

Exercice 4. On donne un tétraèdre ABCD dans l'espace. Dans chacun des cas suivants, écrire une équation vectorielle de l'objet géométrique donné vu depuis le point A, en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AC} , et \overrightarrow{AD} .

- a. la droite (CD).
- b. le plan passant par B, C et D.
- c. le plan passant par les milieux des côtés AB, AD et CD.
- d. le segment BC.

Solution:

a. La droite (CD) passe par le point C et est dirigée par le vecteur $\overrightarrow{CD} = -\overrightarrow{AC} + \overrightarrow{AD}$. Elle admet donc pour équation vectorielle :

$$(CD): \overrightarrow{AM} = \overrightarrow{AC} + t(-\overrightarrow{AC} + \overrightarrow{AD}), t \in \mathbb{R}.$$

b. Le plan passant par B, C, D est dirigé par les deux vecteurs :

$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$
 et $\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB}$

Il admet donc pour équation vectorielle :

$$(BCD): \overrightarrow{AM} = \overrightarrow{AB} + s(\overrightarrow{AC} - \overrightarrow{AB}) + t(\overrightarrow{AD} - \overrightarrow{AB}), s, t \in \mathbb{R}.$$

c. Notons I, J, K les milieux de AB, AD et CD. On a donc :

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}, \overrightarrow{AJ} = \frac{1}{2}\overrightarrow{AD} \text{ et } \overrightarrow{AK} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD}).$$

Le plan passant par I, J, K est dirigé par les deux vecteurs :

$$\overrightarrow{IJ} = \overrightarrow{AJ} - \overrightarrow{AI} = \frac{1}{2}(\overrightarrow{AD} - \overrightarrow{AB}) \text{ et } \overrightarrow{IK} = \overrightarrow{AK} - \overrightarrow{AI} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD} - \overrightarrow{AB}).$$

Il admet donc pour équation vectorielle :

$$(IJK):\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}+\frac{s}{2}(\overrightarrow{AD}-\overrightarrow{AB})+\frac{t}{2}(\overrightarrow{AC}+\overrightarrow{AD}-\overrightarrow{AB}),\,s,t\in\mathbb{R}.$$

d. L'équation vectorielle recherchée est :

$$\overrightarrow{AM} = \overrightarrow{AB} + t(\overrightarrow{AC} - \overrightarrow{AB}), t \in [0, 1].$$

Exercice 5. L'espace est muni d'un repère. Dans chacun des cas suivants, exliquer pourquoi les données permettent de définir un plan π et donner des équations paramétriques et cartésiennes de π .

a.
$$A(3,4,-5)$$
, $\vec{u} \begin{pmatrix} 3\\1\\-1 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$.

e.
$$d: \frac{x-1}{-2} = \frac{y-2}{3} = \frac{z-1}{-1}$$
 et :

b.
$$A(3,-1,2)$$
, $B(4,-1,-1)$, $C(2,0,2)$

c.
$$A(2,-1,3), d: \frac{x-1}{3} = \frac{y-2}{2} = \frac{z+3}{2}$$
.

d.
$$A(3, -2, -7)$$
, et parallèle au plan $\rho : 2x - 3z + 5 = 0$.

$$g: \begin{cases} x = 2 - t \\ y = 1 + 2t, t \in \mathbb{R}. \\ z = 5 + 3t \end{cases}$$

Solution:

a. Les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires. Par conséquent, il existe un unique plan passant par A et possédant \vec{u} et \vec{v} comme vecteurs directeurs. On peut écrire directement :

$$\pi: \begin{cases} x = 3 + 3s + t \\ y = 4 + s - 2t , s, t \in \mathbb{R}. \\ z = -5 - s + t \end{cases}$$

On trouve une équation cartésienne de π en éliminant les paramètres. Eliminons d'abord s :

$$\pi: \left\{ \begin{array}{l} x - 3y = -9 + 7t \\ y + z = -1 - t \end{array} \right., t \in \mathbb{R}.$$

En éliminant t, on trouve maintenant une équation cartésienne de π :

$$\pi: x + 4y + 7z = -16.$$

b. Les vecteurs $\overrightarrow{AB}\begin{pmatrix} 1\\0\\-3 \end{pmatrix}$ et $\overrightarrow{AC}\begin{pmatrix} -1\\1\\0 \end{pmatrix}$ ne sont pas colinéaires. Par conséquent, les points A,B,C ne sont pas alignés. Ils définissent donc bien un unique plan π . Ce plan passe par A(3,-1,2) et est dirigé par les vecteurs $\overrightarrow{AB}\begin{pmatrix} 1\\0\\-3 \end{pmatrix}$ et $\overrightarrow{AC}\begin{pmatrix} -1\\1\\0 \end{pmatrix}$. Il admet donc pour équations paramétriques :

$$\pi: \begin{cases} x = 3 + s - t \\ y = -1 + t \\ z = 2 - 3s \end{cases}, s, t \in \mathbb{R}.$$

On trouve une équation cartésienne de π en éliminant les paramètres. Eliminons d'abord s:

$$\pi: \left\{ \begin{aligned} 3x + z &= 11 - 3t \\ y &= -1 + t \end{aligned} \right., t \in \mathbb{R}.$$

En éliminant t, on trouve maintenant une équation cartésienne de π :

$$\pi : 3x + 3y + z = 8.$$

c. Le point A n'est pas sur la droite d, car $\frac{2-1}{-2} \neq \frac{-1-2}{2}$. Par conséquent, il existe un unique plan contenant le point A et la droite d. La droite d passe par le point B(1,2,-3) et est dirigée par le vecteur $\vec{u} \begin{pmatrix} \frac{3}{2} \\ -2 \end{pmatrix}$. Par conséquent, le plan π passe par A(2,-1,3) et est dirigé par \vec{u} et $\overrightarrow{AB} \begin{pmatrix} -1 \\ 3 \\ -6 \end{pmatrix}$. Il admet donc comme équations paramétriques :

$$\pi: \begin{cases} x = 2 + 3s - t \\ y = -1 + 2s + 3t, s, t \in \mathbb{R}. \\ z = 3 - 2s - 6t \end{cases}$$

On trouve une équation cartésienne de π en éliminant les paramètres. Eliminons d'abord s:

$$\pi: \begin{cases} 2x - 3y = 7 - 11t \\ y + z = 2 - 3t \end{cases}, t \in \mathbb{R}.$$

En éliminant t, on trouve maintenant une équation cartésienne de π :

$$\pi: 6x - 20y - 11z + 1 = 0.$$

d. Par un point donné, il ne passe qu'un unique plan parallèle à un plan donné. Par conséquent, π est bien défini. π étant parallèle à ρ , il admet une équation cartésienne dont la partie variable est 2x-3z. Comme il passe par A(3,-2,-7), il admet donc comme équation cartésienne :

$$\pi: 2x - 3z = 27.$$

Les vecteurs directeurs de π sont les vecteurs de composantes $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ vérifiant 2x - 3z = 0. Ainsi, les vecteurs $\vec{u} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ sont directeurs de π , et ce plan admet donc pour équations paramétriques :

$$\pi : \begin{cases} x = 3 + 3s \\ y = -2 + t \\ z = -7 + 2s \end{cases}, s, t \in \mathbb{R}.$$

e. Un calcul d'intersection révèle que les droites d et g sont sécantes au point A de coordonnées (3, -1, 2). Par conséquent, elles définissent bien un unique plan, à savoir le plan passant par A et dirigé par les vecteurs $\vec{u} \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$ (directeur de d) et $\vec{v} \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$ (directeur de g). On en déduit :

$$\pi: \begin{cases} x = 3 - 2s - t \\ y = -1 + 3s + 2t, \ s, t \in \mathbb{R}. \\ z = 2 - s + 3t \end{cases}$$

On trouve une équation cartésienne de π en éliminant les paramètres. Eliminons d'abord s:

$$\pi: \begin{cases} 3x + 2y = 7 + t \\ y + 3z = 5 + 11t \end{cases}, t \in \mathbb{R}.$$

En éliminant t, on trouve maintenant une équation cartésienne de π :

$$\pi: 11x + 7y - z = 24.$$