Дата: 23.05.2022

Клас: 11-А

Тема: Повторення. Підготовка до ЗНО. Логарифми

$log_ab -$

показник степеня до якого необхідно піднести а, щоб отримати **b**

$$log_a b = c \longrightarrow a^c = b$$

OД3:
$$\begin{cases} a > 0 \\ a \neq 1 \\ b > 0 \end{cases}$$

ВЛАСТИВОСТІ ЛОГАРИФМІВ

1. Основна логарифмічна тотожність $a^{log_ab} = b$.

$$2. \log_a a = 1$$

$$3. \log_a 1 = 0$$

$$4. \log_a xy = \log_a x + \log_a y \quad (x > 0, y > 0)$$

$$5. \log_a \frac{x}{y} = \log_a x - \log_a y \quad (x > 0, y > 0)$$

6.
$$\log_a x^p = \operatorname{plog}_a x (x>\theta)$$
 7. $\log_a p x = \frac{1}{p} \log_a x (x>\theta)$

8.
$$log_a b = \frac{log_c b}{log_c a}$$
 - перехід до іншої основи!!!

ОСНОВНІ ТИПИ ЛОГАРИФМІЧНИХ РІВНЯНЬ

тип рівняння	спость розвоязання за означенням $a^c = x$.		
1. logax=c			
2. logax=logay	x=y		
$3. \mathbf{m} \log_a^2 \mathbf{x} + \mathbf{b} \log_a \mathbf{x} + \mathbf{c} = 0$	заміна $log_a \mathbf{x} = \mathbf{t} \rightarrow \mathbf{k}$ вадратне рівнянн		
$4. x^{\log_a x + m} = c$	логарифмування лівої і правої частини рівняння $log_a x^{log_a x+m} = log_a c \rightarrow (log_a x+m) log_a x = log_a c \rightarrow p$ -ння 3.		

Обов»язкова перевірка отриманих коренів!!!

УВАГА! При використанні властивості $log_a x^p = plog_a x$ (p- парие натуральне число) можна втратити корені!

СХЕМА РОЗВ»ЯЗУВАННЯ ЛОГАРИФМІЧНОЇ НЕРІВНОСТІ

- OД3
- 2. Розв»язування нерівності

(див. основні типи логарифмічних нерівностей)

3. Спільне п.1 і п.2

Примітка

- а) розв'язкок $t \in (-\infty; a) \cup (b; +\infty) \to \begin{bmatrix} t < a \\ t > b \end{bmatrix}$ це об»еднання!!! б)) розв'язкок $t \in (a; b) \to \begin{cases} t > a \\ t < b \end{cases}$ це переріз (спільне)!!!

ОСНОВНІ ТИПИ ЛОГАРИФМІЧНИХ НЕРІВНОСТЕЙ

тип нерівностей	СПОСІБ РОЗВ»ЯЗАННЯ			
1. logax > logay	x>y (якшо а>1), x <y (якшо="" 0<a<1)<="" td=""></y>			
2. logax>c	$log_a x > c \cdot 1 \rightarrow log_a x > c \cdot log_a a \rightarrow log_a x > log_a a^c \rightarrow$ перехід до нерівності 1.			
$3.\text{m}log_a^2x + \text{b}log_ax + \text{c} < (>)0$	заміна $log_a \mathbf{x} = \mathbf{t}$, перехід до квадратичної нерівності			
$4. x^{\log_a x + m} > c$	логарифмуваня: $log_a x^{log_a x+m} > log_a c \rightarrow (log_a x+m)log_a x > log_a c$ (якщо $a>1$) $log_a x^{log_a x+m} < log_a c \rightarrow (log_a x+m)log_a x < log_a c$ (якщо $\theta < a < 1$) перехід до нерівності 3.			

3HO-2007

Обчисліть
$$\log_{\frac{1}{25}} \sqrt{5}$$

A	Б	В	Г	Д
$-\frac{1}{4}$	$-\frac{1}{2}$	-2	1 2	1

Розв'язания.

$$log_{\frac{1}{25}}\sqrt{5} = log_{\binom{1}{5}}^{2}(5)^{\frac{1}{2}} = \frac{1}{2}log_{\binom{1}{5}}^{2}5 = \frac{1}{2} \cdot \frac{1}{2}log_{\frac{1}{5}}5 = \frac{1}{2} \cdot \frac{1}{2} \cdot (-1) = -\frac{1}{4}$$

Відповідь. А

3HO-2007

Розв'яжіть нерівність $\log_{0.1} 10 < \log_{0.1} x$

A	Б	В	Γ	Д
(10; +∞)	(0; 10)	(0,1; 10)	(-10; 0)	(-∞; 10)

- 1. ОДЗ х>0
- 2. Оскільки 0 < 0, 1 < 1, то 10 > x.
- 3. Спільне п.1 і п.2.

Відповідь. Б

3HO-2007

Обчисліть log₃4·log₄5·log₅7·log₇81

Розв'язання.

Використаємо властивість логарифмів (перехід до іншої основи). Основу вибираємо довільну.

$$log_3 4 \cdot log_4 5 \cdot log_5 7 \cdot log_7 81 = \frac{log_2 4}{log_2 3} \cdot \frac{log_2 5}{log_2 4} \cdot \frac{log_2 7}{log_2 5} \cdot \frac{log_2 81}{log_2 7} = \frac{log_2 81}{log_2 3} = log_3 81 = 4$$

Відповідь. 4

Домашнє завдання

Повторити все про логарифми та виконати завдання

https://naurok.com.ua/test/join?gamecode=7974371