Identifying biological markers for insulin resistance using high-throughput sequencing data (RNA-seq) from dermal endothelial cells to establish a safe diagnostic test

Varun Ullanat (varunullanat.bt17@rvce.edu.in)

1. Introduction

With the emergence of RNA sequencing (RNA-seq) technologies, RNA-based biomolecules hold expanded promise for their diagnostic, prognostic and therapeutic applicability in various diseases, including cancers and infectious diseases. Detection of gene fusions and differential expression of known disease-causing transcripts by RNA-seq represent some of the most immediate opportunities. Here, I propose a novel diagnostic technique for insulin resistance (Type II diabetes) based on differential gene expression of RNA-seq data from dermal endothelial cells. Endothelial cells are easily extractable from human skin and modern procedures have made it a relatively painless process.

2. Experimental Setup

3. Results

3.1 Differential Gene Expression

Fig 1. Volcano plot (Red genes are significanty expressed)

Fig 2. MA plot (Red genes are significantly expressed)

Fig 3. Heatmap of top 20 differentially expresed genes

3.2 Over-representation analysis

Table 1. Significant pathways from KEGG database (Top 5)

S.No	Database	Pathway	Genes
1	KEGG	Cytokine-cytokine	TNFRSF18;IL1RN;TNFRSF19;ACKR3;CCL27;CXCL14;IL17RE;IL20;IL
		receptor interaction	20RA;IL20RB;IL22RA1;BMPR1A;CD4;IL18;CCL20;IL10RA;IL7;LIF;IL 1B;TNF
2	KEGG	Signaling pathways	DLX5;ISL1;OTX1;ID4;LIF;FGFR2;FGFR3;AXIN2;FZD10;WNT10B;FZD
		regulating	7;WNT16;WNT5B;WNT4;WNT3;BMPR1A
		pluripotency of stem	
		cells	
3	KEGG	Cell adhesion	CDH3;CNTN1;NLGN4Y;NEO1;PVRL1;PTPRF;SDC4;CLDN4;CLDN8;S
		molecules (CAMs)	DC1;CD4;CD86;CLDN1;CDH1;VCAM1;ITGA4
4	KEGG	Transcriptional	HPGD;PAX3;BCL11B;UTY;SPINT1;ARNT2;MAF;CEBPA;JUP;SPI1;W
		misregulation in	NT16;CD86
		cancer	
5	KEGG	PI3K-Akt signaling	MYB;IL7;LPAR3;NTF3;NTF4;PPP2R2C;LPAR5;THBS2;THBS4;ERBB4;
		pathway	LAMB4;COL4A6;LPAR1;ERBB3;ITGB6;FGF18;FN1;ITGA4;FGFR2;FG
			FR3;BCL2;PDGFC

Table 2. Significant pathways from REACTOME database (Top 5)

S.No	Database	Pathway	Genes
1	REACTOME	Formation of the cornified envelope	CSTA;DSC1;DSC3;PRSS8;SPINK5;PKP3;KLK8;KRT80;EVPL;CASP14; KRT1;KRT10;KRT15;KRT19;KRT31;ST14;PERP;KRT5;KRT14;DSG1;D SG3;PKP1;JUP
2	REACTOME	Metabolism of amino acids and derivatives	DCT;PHGDH;PSAT1;HAL;PRODH;TYR;TYRP1;BBOX1;CRYM;HAAO;CKB;CKMT1B;ASPA;CKMT1A;FOLH1;FOLH1;GATM;ASPG;DUOX1;MAT1A;SLC7A5
3	REACTOME	Signaling by Receptor Tyrosine Kinases	MST1R;NTF3;PDGFC;THBS4;SPINT1;SPINT2;PTPN3;NTF4;TNS4;ESR P2;FGFBP1;THBS2;JUP;NCF2;ESRP1;PTK6;COL27A1;APOE;VAV3;S1 00B;ERBB3;NRG1;NRG2;ERBB4;FGFR2;FGFR3;FGF18;FN1
4	REACTOME	Gap junction assembly	GJB6;GJB4;GJA4;GJB1;GJB3;GJB5;TUBB4A
5	REACTOME	Creatine metabolism	CKB;CKMT1B;GATM;CKMT1A

3.3 Cellular response to hypoxia versus insulin resistance

The differentially expressed genes obtained from 3.1 were analysed to see if any of the genes were involved in cellular response to hypoxia. After the analysis using the Gene Ontology (GO) database, the following genes were determined to be differentially expressed in diabetes and involved in tissue hypoxia. In total, 12 genes were obtained.

Table 3. Differentially expressed genes in insulin resistance involved in cellular response to hypoxia (First 5)

S.No	Gene	Description	Function of interest
1	ADAM8	Disintegrin and metalloproteinase domain-	cellular response to hypoxia
		containing protein 8	
2	AQP3	Aquaporin-3	cellular response to oxygen-glucose deprivation
3	ARNT2	Aryl hydrocarbon receptor nuclear translocator 2	response to hypoxia
4	BCL2	Bcl2-associated agonist of cell death	cellular response to hypoxia
5	CRYAB	Alpha-crystallin B chain	response to hypoxia