Master Thesis: Choice set Size effect on contracting in Supply chain

Author: Diego Arinze Uchendu

221616

Supervisor: Prof. Dr. Sven Müller

Chair of Operations Management

WW

FACULTY OF ECONOMICS AND MANAGEMENT

Master Degree in Operations Research and Business Analytics

OUTLINE

How choice set cardinality as an attribute effect contract alternatives.

INTRODUCTION

Reduce Choice Overload.

Aim to Maximize the Expected Profit of the supplier while ensuring that a buyer selects a contract among contract alternatives.

WORK FLOW

Data

- Convert from MATLAB to R
- Automate 'to accept other different values.
- Write to Excel

Result

- Extract from Excel File.
- Performed Visualization.
- Used Shiny to Make sense of results.

Modelling

- Write Algebraic Model, both MINLP and MILP.
- Translate to GAMS and Write Results to Excel

SUPPLY CHAIN(DATA)

Buyer Types

Supply Chain between seller and buyer

Contract Menu (Unique Contracts)

Capacity Reservation Contract

BUYER TYPES

Supplier has 2 types of buyers

- Low type buyer: demand d is less or equal to the Average market demand $\mu=2.$
- High type buyer: $d > \mu$.

Buyer has no Incentive to reveal her private forecast information ξ .

- Supplier considers ξ zero mean U~[-1,1].
- Supplier knows her prior probability distribution $p(\xi) = 0.5$.

Demand uncertainty ϵ , lying in interval U~[-1,1].

SUPPLY CHAIN BETWEEN A BUYER AND SELLER

Supplier Profit: π^s Buyer Profit π^b

Contract Menu

• Taiwan Semiconductor manufacturing company (TSMC) prepares list of unique contracts.

CAPACITY RESERVATION CONTRACT

- TSMC finds Optimum Menu contracts (K_j, Z_l) from this list that Maximizes his Profit π^s .
 - $K_j = \text{Capacity Level } K_j = \{0,1,2,...,4\}, |K| = 5$
 - Z_l = Reservation Fee K_j = {0,0.25,0.5,..., 4.5,4.75,5}, |Z| = 21
- The Apple Inc chooses one contract from (K_j, Z_l) that Maximizes her Profit π^b . In doing so, she reveals ξ_i her Forecast Information.
- ullet Apple Inc Observes the demand D and places an Order.
- TSMC produces min(D, K).

MODELING

Previous Work

$$v_{i,j,l} = \beta_{\pi^b} \cdot \pi^b \big(\mathit{K}_j, \mathit{Z}_l, \xi_i \big)$$
 Profit

MINLP

MILP

$$v_{i,j,l} = \beta_{\pi^b} \cdot \pi^b \big(K_j, Z_l, \xi_i \big) - \beta_m M$$

Buyers' Utility Function

PREVIOUS WORK

- This Thesis is an extension of A Choice Based Optimization Approach for Contracting in Supply Chains by Römer et al (2020).
- In Choosing a contract, Only the buyer's profit was considered.
- Opt-out utility $\overline{v_i} = 0$
- Utility of choosing contract $v_{i,j,l} = \beta_{\pi^b} \cdot \pi^b(K_j, Z_l, \xi_i)$

Profit Estimate

Buyers' Profit

BUYERS'S UTILITY FUNCTION

• Opt-out utility $\overline{v_i}=0$

Choice set Estimate

Choice Set Cardinality

• Utility of choosing contract $v_{i,j,l} = \beta_{\pi^b} \cdot \pi^b (K_j, Z_l, \xi_i) - \beta_m M$

Obs	Buyer_Profit $\pi^b(K_j, Z_l, \xi_i)$	Choice Card (M)	Contract (K_j, Z_l)
1	3.25	4	(4,1.25)
2	-3.75	3	(4,4.5)
3	-0.50	2	(3,4)

MINLP

Sets, Parameters Variables	
Sets	
I Set of different private information iJ Set of different capacity levels j	$m{L}$ Set of different reservation fee levels l
Parameters	
$\pi^s(K_j,Z_l,\xi_i)$ Profit of the supplier if a buyer chooses contract (K_j,Z_l) given the buyer's private forecast information ξ_i . $\pi^b(K_j,Z_l,\xi_i)$ Profit of buyer for choosing contract (K_j,Z_l) given the buyer's private forecast information ξ_i . M Choice set cardinality for buyer b_i β_{π^b} Profit estimate of for buyer profit $\pi^b(K_j,Z_l,\xi_i)$	$m{eta}_m$ Choice set cardinality estimate for choice set cardinality $m{M}$ $m{p}(\xi_i)$ A prior probability that buyer b_i has private forecast information ξ_i . $v_{i,j,l}$ Deterministic utility for buyer b_i choosing contract (K_j, Z_l) . \overline{v}_i Opt-out utility for buyer b_i choosing no contract. Z_l Contract Reservation fee in level l .
Variables	
$m{X_{i,j,l}}$ Choice Probability of a buyer b_i choosing a contract (K_j, Z_l) . $m{Y_{i,j,l}}$ 1 if the contract (K_j, Z_l) is offered, otherwise 0.	$\pmb{E}[\pmb{\pi}^{\pmb{s}}]$ Expected profit of the Supplier (Objective function)
	13

MINLP

Subject to.

$$\max E[\pi^{s}] = \sum_{i=1}^{I} p(\xi_{i}) \sum_{j=1}^{J} \sum_{l=1}^{L} X_{i,j,l} \cdot, \xi_{i}) \pi^{s}(K_{j}, Z_{l}(1))$$

(1). Maximize Supplier's expected Profit.

$$X_{i,j,l} = \frac{e^{v_{i,j,l}} \cdot Y_{j,l}}{\sum_{j'=1}^{J} \sum_{l'=1}^{L} e^{v_{i,j',l'}} \cdot Y_{j,l} + e^{\overline{v_i}}} \quad \forall i,j,l$$
 (2)

$$\sum_{j=1}^{J} Y_{j,l} \le 1 \quad \forall l \tag{3}$$

$$\sum_{l=1}^{L} Y_{j,l} \le 1 \quad \forall j \tag{4}$$

$$\sum_{i=1}^{J} \sum_{l=1}^{L} Y_{j,l} \le M \qquad \forall l \quad (5)$$

$$X_{i,j,l} \ge 0 \qquad \forall i,j,l \quad (6)$$

$$Y_{j,l} \in \{0,1\} \qquad \forall j,l \ (7)$$

- (3) Select a contract from capacity levels.
- (4) Select a contract from Reservation fee levels.
- (5) Choice set Size constraint.
- (6) And (7) domain contraints

Slide 14

DU1

Diego Uchendu, 06/05/2021

MINLP (Objective Function)

$$\max E[\pi^s] = \sum_{\{i=1\}}^{I} p_{(\xi_i)} \sum_{\{j=1\}}^{J} \sum_{\{l=1\}}^{l} X_{\{i,j,l\}} \cdot \pi^s(K_j, Z_l, \xi_i)$$

MINLP (OFFERED CONTRACT)

J,L	j=1	j=2	j=3	j= K	ı
					$\sum_{j=1}^{J} Y_{j,l} \le 1$
l=1	Y ₁₁	Y_{21}	Y ₃₁	$Y_{ K 1}$	$\sum_{j=1}^{J} Y_{j,1} \le 1$
l=2	Y ₁₂	Y_{22}	Y_{32}	$Y_{ K 2}$	$\sum_{j=1}^{J} Y_{j,2} \le 1$
I=3	Y_{13}	Y_{23}	Y_{33}	$Y_{ K 3}$	$\sum_{j=1}^{J} Y_{j,3} \le 1$
I= Z	$Y_{1 Z }$	$Y_{2 Z }$	$Y_{3 Z }$	$Y_{ K Z }$	$\sum_{j=1}^J Y_{j, Z } \le 1$
$\sum_{l=1}^{L} Y_{j,l} \leq 1$	$\sum_{l=1}^{L} Y_{1,l} \le 1$	$\sum_{l=1}^{L} Y_{2,l} \le 1$	$\sum_{l=1}^{L} Y_{3,l} \le 1$	$\sum_{l=1}^{L} Y_{ K ,l} \le 1$	$\sum_{j=1}^{J} \sum_{l=1}^{L} Y_{j,l} \le M$

Euations (3), (4) and (5) (3) Select a contract from capacity levels. (4) Select a contract from Reservation fee levels. (5) Choice set Size constraint.

MILP

Sets, parameters and variables	
Sets:	
$\it M$ Set of different Choice set cardinality $\it m$	
Parameters:	
$v_{i,j,l,m}$ utility component of buyer type b_i choosing contract $(K_{j,}Z_l)$ with a choice set cardinality m .	C Maximum Choice set cardinality of contracts offered, $C= M $ $Ratio_{i,j,l,m}$ Helps ensure IIA property is implemented
Variables:	
$X_{i,j,l,m}$ Choice probability of buyer type b_i choosing contract (K_j,Z_l) given a choice set cardinality m . \overline{X}_i Opt-out choice probability for buyer type b_i	$Y_{j,l,m}$ 1 if contract (K_j,Z_l) is chosen at choice set cardinality m . $E[\pi^s]$ Expected profit of the supplier.

MILP

Subject to.

$$\max E[\pi^{s}] = \sum_{i=1}^{I} p(\xi_{i}) \sum_{j=1}^{J} \sum_{l=1}^{L} \pi^{s} (K_{j}, Z_{l}, \xi_{i}) \sum_{m=1}^{M} X_{i,j,l,m}$$
 (8)

(8). Maximize Supplier's expected Profit.

Probabilities contraint

(9) Sum of

not at all.

$$\bar{X}_i + \sum_{j=1}^J \sum_{l=1}^L \sum_{m=1}^M X_{i,j,l,m} \le 1$$
 $\forall i$ (9)

$$X_{i,j,l,m} \le Y_{j,l,m} \qquad \forall i,j,l,m \tag{10}$$

$$X_{i,j,l,m} \leq I_{j,l,m}$$
 (10) Choice prob, less $X_{i,j,l,m} \leq \frac{a_{i,j,l,m}}{\overline{a_i}} \ \overline{X_i}$ $\forall i,j,l,m$ (11) or equ selected contract.

$$\sum_{j=1}^{J} \sum_{m=1}^{M} Y_{j,l,m} \le 1 \qquad \forall l$$
 (12)

$$\sum_{l=1}^{L} \sum_{m=1}^{M} Y_{j,l,m} \le 1$$
 $\forall j$ (13)

(11) Ratio between choice and opt-out probs is obeyed. (12)(13) Ensures a contract is established in one cardinality or 18

MILP

$$\sum_{i=1}^{J} \sum_{l=1}^{L} \sum_{m=1}^{M} Y_{j,l,m} = C$$

$$\sum_{m=1}^{M} m \cdot Y_{j,l,m} = C$$

$$X_{i,j,l,m} \geq 0$$

$$Y_{j,l,m} \in \{0,1\}$$

$$Y_{j,l,m} \in \{0,1\}$$
ensures that a number of contracts C are established.

$$Y_{j,l} = X_{j,l,m} =$$

(14) And (15)

MILP(OBJECTIVE FUNCTION)

$$\max E[\pi^s] = \sum_{\{i=1\}}^{I} p_{(\xi_i)} \sum_{\{j=1\}}^{J} \sum_{\{l=1\}}^{l} \pi^s(K_j, Z_l, \xi_i) \sum_{\{m=1\}}^{m} X_{\{i,j,l,m\}}$$

Eq.(8)

MILP (Probabilities)

•
$$\bar{X}_i + \sum_{\{j=1\}}^J \sum_{\{l=1\}}^L \sum_{\{m=1\}}^M X_{i,j,l,m} \le 1 \quad \forall i$$

• $M = 4 \ \beta_m = 1$

(9) Choice probability and Opt-out probability.

MILP (CONTRACT RATIO CONSTRAINT)

•
$$X_{i,j,l,m} \le \frac{a_{ij,l,m}}{\overline{a_i}} \ \overline{X_i}$$
 $\forall i,j,l,m$ (11)

- Ensures that ratio of contract probability are obeyed
- $a_{ij,l,m} = e^{v_{i,j,l,m}}$
- $\overline{a_i} = e^{\overline{v_i}}$
- therefore $Ratio_{i,j,l,m} = \frac{a_{i,j,l,m}}{\overline{a_i}} = \frac{e^{v_{i,j,l,m}}}{e^{\overline{v_i}}}$.
- This exploits the IIA(Independence from irrelevant Alternative) property

MILP (CONTRACT ESTABLISHMENT CONTRAINTS)

eqn (12)	J=1, m=1	J=1,m=2	J=2,m=1	J=2,m=2	
					$\sum_{j=1}^{J} \sum_{m=1}^{M} Y_{j,l,m} \leq 1$
l=1	Y _{1,1,1}	Y _{1,1,2}	Y _{2,1,1}	Y _{2,1,2}	$\sum_{j=1}^{J} \sum_{m=1}^{M} Y_{j,1,m} \le 1$
l=2	Y _{1,2,1}	Y _{1,2,2}	Y _{2,2,1}	Y _{2,2,2}	$\sum_{j=1}^{J} \sum_{m=1}^{M} Y_{j,2,m} \le 1$
					,
eqn(13)	l=1, m=1	l=1,m=2	l=2,m=1	I=2,m=2	$\sum_{l=1}^L \sum_{m=1}^M Y_{j,l,m} \leq 1$
eqn(13) j=1	I=1, m=1 Y _{1,1,1}	I=1,m=2 Y _{1,1,2}	I=2,m=1 Y _{1,2,1}	I=2,m=2 Y _{1,2,2}	

Equation (12) and (13) Ensures that a contract is exactly in one cardinality or not at all

MILP (MAXIMUM CONTRACT CONSTRAINTS)

•
$$\sum_{j=1}^{J}\sum_{l=1}^{L}\sum_{m=1}^{M}Y_{j,l,m}=C$$
 Equations (14) and (15)
$$\sum_{m=1}^{M}m\cdot Y_{j,l,m}=C$$
 $\forall j,l$

• Ensures that not more than number of contracts C are established.

RESULTS

Model Comparison

Contracts Offered

Expected Supplier Profit

Probability

Supply Chain Profit

Current vs Previous Model

RESULTS (MODEL COMPARISON)

- When both MINLP and MILP are tested, it yields approximately same results, with MILP faster than MINLP.
- Increase in Choice set Size
 M, results in more delayed
 time in computation.
- $\beta_{\pi^b} = 1$ and $\beta_{\pi^b} = 1$

M	MINLP	MILP	MINLP	MILP	
	(CPU(s))	(CPU(s))	$E[\pi^s]$	$E[\pi^s]$	
1	7.1	3.6	1.369	1.369	
5	18.0	6.16	0.341,	0.343	
10	35.27	6.7	0.004	0.004	
15	44.7	9.7	0.000031	0.000027	

RESULTS (CONTRACTS OFFERED)

- Assuming that Choice Set cardinality M=4 and it's estimate is $eta_m=1$, $\;eta_{\pi^b}=1$
- Assuming TSMC Does not Know the Buyer types, he offers the buyer all the contract below.
- But lets say that Apple Inc, is high type buyer, so the last 2 contract is offered.

K_j	Z_{I}	Buyer Profit(ξ = -1)	Buyer Profit($\xi = 1$)	Supplier Profit($\xi = -1$)	Supplier Profit($\xi = 1$)
1	1.5	-0.375	0.000	1.75	2.00
2	1	0.500	2.000	1.00	2.00
3	0.75	0.750	3.375	0.25	2.00
4	1.25	0.250	3.250	0.25	2.25

RESULT (EXPECTED SUPPLIER PROFIT)

• The inclusion of Choice set size M as an attribute, reduces the choice probability of buyer $X_{i,i,l}$, this effects the $E[\pi^s]$ as seen in equation (1).

RESULT (PROBABILITY)

ullet Thus, Higher the offered Contract M, lowers $X_{i,j,l}$.

RESULT (SUPPLY CHAIN PROFIT)

- Due to this effect, the mathematical model (MINLP or MILP) tries to maximize $E[\pi^s]$ by selecting contracts (K, Z) with higher buyers' profit $\pi^b(K_j, Z_l, \xi_i)$ to increase $X_{i,j,l}$ at the same time maximizing $E[\pi^s]$.
- As the supply chain profit $E[\pi^{sc}] = E[\pi^b] + E[\pi^s]$ remains constant, TSMC will show a more balanced contract to Apple Inc.

RESULT (Current vs Previous model)

Search:

0.595

Show 10 v entries

Expected Supplier Profit

$$v_{i,j,l} = \beta_{\pi^b} \cdot \pi^b(K_j, Z_l, \xi_i) - \beta_m M$$

3.95

Expected Supplier Profit

 $v_{i,j,l} = \beta_{\pi^b} \cdot \pi^b (K_j, Z_l, \xi_i)$

			Jeach.													
_	K	Z∳	Buyer profit(Low \$ Forecast)	Buyer profit(high Forecast)	Supplier profit(Low Forecast)	Supplier profit(high Forecast)	Supply Chain \$ profit(Low)	Supply Chain profit(High)	K \$	Z 🏺	Buyer profit(Low \$ Forecast)	Buyer profit(high + Forecast)	Supplier profit(Low + Forecast)	Supplier profit(high + Forecast)	Supply Chain (Supply Chain (profit(High)
	1 1	1.5	-0.375	0	1.75	2	1.375	2 1	1	4.25	-3.125	-2.75	4.5	4.75	1.375	2
	2 2	1	0.5	2	1	2	1.5	4 2	2	5	-3.5	-2	5	6	1.5	4
	3 3	0.75	0.75	3.375	0.25	2	1	5.375 3	3	4.5	-3	-0.375	4	5.75	1	5.375
	4 4	1.25	0.25	3.25	0.25	2.25	0.5	5.5 4	4	4.75	-3.25	-0.25	3.75	5.75	0.5	31 5.5

DEMO

Contract Menu generation in R Shiny.

And Results in R shiny.

CONCLUSION

Buyers' choice overload can be reduced by this model if buyers' choice set size effect is captured.

it is also worth finding how other attributes of a contracts and characteristics of a buyer affects the buyer's choice probability.

THANKS YOU

REFERENCES

- BASOV, S. (2009). Monopolistic Screening with Boundedly Rational Consumers. Economic Record, 85, S29–S34.
- Haase K, Müller S (2014) A comparison of linear reformulations for multinomial logit choice probabilities in facility location models. Eur J Oper Res 232(3):689–691
- Haynes GA. (2009) Testing the boundaries of the choice overload phenomenon: The effect of number of options and time pressure on decision difficulty and satisfaction. Psychology & Marketing, 26(3):204-12.
- Jeet. (2021). Apple to account for 53% of TSMC 5nm chips production in 2021. Available: https://www.gizmochina.com/2021/02/08/apple-tsmc-5nm-chips-2021/. Last accessed 10th April 2021.
- Koppelman F.S., Bhat C.R (2006) A self instructing course in mode choice modeling: multinomial and nested logit models. Prepared for U.S. Department of Transportation Federal Transit Administration.
- Krohn, R., Müller, S., & Haase, K. (2020). Preventive healthcare facility location planning with quality-conscious clients. OR Spectrum
- Özalp Özer, Wei Wei, (2006) Strategic Commitments for an Optimal Capacity Decision Under Asymmetric Forecast Information. Management Science 52(8):1238-1257
- Römer, N., Voigt, G., Müller, S.(2020). A Choice-Based Optimization Approach for Contracting in Supply Chains. Working Paper.

Explaining Equation 5 slide 14

- Equation 5 takes into account what was selected in equations (3) and (4).
- M was used as a Parameter in my model, assuming M is a variable, GAMS will always give you M=1, since this will yield the maximum value of $E[\pi^s]$, this is because of $v_{i,j,l}=\beta_{\pi^b}\cdot\pi^b(K_j,Z_l,\xi_i)-\beta_m M$.
- If M = 0, No contract is selected.

Equation 14 Table (Selected Contracts in Red)

J,L	j=1	j=2	j=3	j= K	,
					$\sum_{j=1}^J Y_{j,l} \leq 1$
l=1	Y ₁₁	Y ₂₁	Y_{31}	$Y_{ K 1}$	$\sum_{j=1}^J Y_{j,1} \le 1$
I=2	Y ₁₂	Y ₂₂	Y ₃₂	$Y_{ K 2}$	$\sum_{j=1}^{J} Y_{j,2} \le 1$
I=3	Y ₁₃	Y ₂₃	<i>Y</i> ₃₃	$Y_{ K 3}$	$\sum_{j=1}^{J} Y_{j,3} \le 1$
I= Z	$Y_{1 Z }$	$Y_{2 Z }$	$Y_{3 Z }$	$Y_{ K Z }$	$\sum_{j=1}^J Y_{j, Z } \leq 1$
$\sum_{l=1}^{L} Y_{j,l} \leq 1$	$\sum_{l=1}^{L} Y_{1,l} \le 1$	$\sum_{l=1}^{L} Y_{2,l} \le 1$	$\sum_{l=1}^{L} Y_{3,l} \le 1$	$\sum_{l=1}^{L} Y_{ K ,l} \leq 1$	$\sum_{j=1}^{J} \sum_{l=1}^{L} Y_{j,l} \le M$

- Assuming $y_{\{1,2\}}$, $y_{\{21\}}$, $y_{\{3,3\}}$, $y_{\{|K|,|Z|\}}$ where selected.
- $y_{\{1,2\}} + y_{\{21\}} + y_{\{3,3\}} + y_{\{|K|,|Z|\}} = 4$
- This is equivalent to choosing contracts {(0, 0.25), (1,0), (2,0.5), (5,21)} using the step side explained in slide 9.