

Variabel Kompleks (VARKOM)

Pertemuan 17 : Deret MacLaurin, Deret Taylor, dan Deret Laurent (Bagian III)
Oleh : Team Dosen Varkom S1-TT

Versi: Oktober 2018

Faculty of Electrical Engineering, Telkom University

Tujuan Perkuliahan

- 1 Mempelajari ekspansi Laurent
- 2 Mengekspansi dengan fungsi rasional dengan deret Laurent area kekonvergenannya

Daftar Isi

1 Titik Singular dan Deret Laurent

Titik singular

Pada fungsi rasional

$$f(z) = \frac{P(z)}{Q(z)}$$

nilai z yang menyebabkan Q(z) = 0 disebut titik singular. Ekspansi Taylor tidak dapat dilakukan pada titik singular ini.

Contoh:

 $f(z) = \frac{1}{1-z}$ memiliki titik singular : z = 1. Dengan demikian, f(z) tidak dapat diekspansi pada z = 1 ini.

Titik singular dan deret di sekitar titik tersebut

Ekspansi MacLaurin dari $f(z) = \frac{1}{1-z}$ adalah:

$$f(z) = 1 + z + z^2 + z^3 + \cdots$$

dengan |z| < 1

Titik singular dan deret di sekitar titik tersebut

Deret Laurent memungkinkan mengekspansi $f(z) = \frac{1}{1-z}$ dengan area kekonvergenan |z| > 1 seperti gambar

yakni dengan mengekpansi $\frac{1}{z}$ dari f(z) tersebut. Ini dicapai dengan menulis f(z) dalam bentuk $\frac{1}{z}$. Perhatikan contoh berikut:

Contoh: tentukan ekspansi Laurent dari $f(z) = \frac{1}{1-z}$ dengan daerah kekonvergenan |z| > 1.

Jawab: Oleh karena daerah kekonvergenan |z| > 1 (tanda lebih besar), maka f(z) harus ditulis dalam suku $\frac{1}{z}$:

$$f(z) = \frac{1}{1-z} = \frac{\frac{1}{z}}{\frac{1}{z}-1} = \frac{-\frac{1}{z}}{1-\frac{1}{z}}$$

ekspansi suku $\frac{1}{z}$:

$$\frac{-\frac{1}{z}}{1-\frac{1}{z}} = -\frac{1}{z} \left(1 + \frac{1}{z} + \left(\frac{1}{z} \right)^2 + \left(\frac{1}{z} \right)^+ \dots + \right)$$

dengan area kekonvergenan: $\left|\frac{1}{z}\right| < 1$ atau |z| > 1

Contoh: tentukan ekspansi Laurent dari $f(z) = \frac{1}{1-2z}$ dengan daerah kekonvergenan $|z| > \frac{1}{2}$.

Jawab: Oleh karena daerah kekonvergenan $|z| > \frac{1}{2}$ (tanda lebih besar), maka f(z) harus ditulis dalam suku $\frac{1}{z}$:

$$f(z) = \frac{1}{1 - 2z} = \frac{\frac{1}{2z}}{\frac{1}{2z} - 1} = \frac{\frac{\cdots}{\cdots}}{1 - \frac{\cdots}{\cdots}}$$

ekspansi suku $\frac{1}{2z}$:

$$\frac{\vdots}{1-\vdots}=(\cdots\cdots+\cdots\cdots+\cdots\cdots+\cdots\cdots)$$

dengan area kekonvergenan: $\left|\frac{1}{2z}\right| < 1$ atau |2z| > 1 atau $|z| > \frac{1}{2}$

Contoh: tentukan ekspansi Laurent dari $f(z) = \frac{5}{2z-3}$ dengan daerah kekonvergenan $|z| > \frac{3}{2}$.

Jawab:

Fungsi rasional dengan bentuk:

$$f(z) = \frac{P(z)}{(z - z_a)(z - z_b)} = \frac{A}{z - z_a} + \frac{B}{z - z_b}$$

memiliki dua titik singular: z_a dan z_b . Terdapat 3 daerah kekonvergenan yang mungkin:

- $|z| < z_a \operatorname{dan} |z| < z_b$ (sebut saja Area I)
- $z_a < |z| < z_b$ (sebut saja Area II)
- $|z| > z_a \operatorname{dan} |z| > z_b$ (sebut saja Area III)

Fungsi rasional dengan bentuk:

$$f(z) = \frac{P(z)}{(z - z_a)(z - z_b)} = \frac{A}{z - z_a} + \frac{B}{z - z_b}$$

- untuk Area I, suku A/(z-z_a) dan
 B/(z-z_b) diuraikan dalam z
- untuk Area II, suku A/(Z-Za)
 diuraikan dalam 1/Z dan suku
 B/(Z-Zb)
 diuraikan dalam z
- untuk Area III, suku $\frac{A}{z-z_a}$ dan $\frac{B}{z-z_b}$ diuraikan dalam $\frac{1}{z}$

Contoh: lakukan ekspansi Laurent dari

$$f(z) = \frac{1}{(z-1)(z-2)}$$

dengan daerah kekonvergenan < 1 |z| < 2

Jawab: Sederhanakan
$$f(z)$$
: $f(z) = \frac{A}{z-1} + \frac{B}{z-2} = \frac{-1}{z-1} + \frac{1}{z-2}$

• untuk < 1 |z| < 2 (Area II), suku $\frac{-1}{z-1}$ diuraikan dalam $\frac{1}{z}$ dan suku $\frac{1}{z-2}$ diuraikan dalam z:

$$f(z) = \frac{-1}{z - 1} + \frac{1}{z - 2}$$
$$= \frac{1}{1 - z} + \frac{\frac{1}{1}}{1 - \frac{2}{z}}$$

Lanjutan Contoh:

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{1}{z-2}$$

$$= \frac{1}{1-z} + \frac{\frac{1}{z}}{1-\frac{2}{z}}$$

$$= \left[1 + z + z^2 + z^3 + \cdots\right] + \frac{1}{z} \left[1 + \frac{2}{z} + \left(\frac{2}{z}\right)^2 + \left(\frac{2}{z}\right)^3 + \cdots\right]$$

daerah kekonvergenan: |z| < 1 dan $\left|\frac{2}{z}\right| < 1$

Contoh: lakukan ekspansi Laurent dari $f(z) = \frac{1}{(z-1)(z-2)}$ dengan daerah kekonvergenan |z| > 2

Jawab : Sederhanakan $f(z): f(z) = \frac{A}{z-1} + \frac{B}{z-2} = \frac{-1}{z-1} + \frac{1}{z-2}$

Daerah kekonvergenan : |z| > 2 atau (|z| > 1 dan |z| > 2) karena itu, suku $\frac{-1}{z-1}$ dan $\frac{1}{z-2}$ harus diekspansi dalam $\frac{1}{z}$.

$$f(z) = \frac{-1}{z - 1} + \frac{1}{z - 2} = \frac{-\frac{1}{z}}{1 - \frac{1}{z}} + \frac{\frac{1}{z}}{1 - \frac{2}{z}}$$
$$= -\frac{1}{z} \left[1 + \frac{1}{z} + \left(\frac{1}{z}\right)^2 + \cdots \right] + \frac{1}{z} \left[1 + \frac{2}{z} + \left(\frac{2}{z}\right)^2 + \cdots \right]$$

dengan area kekonvergenan: $\left|\frac{1}{7}\right| < 1$ dan $\left|\frac{2}{7}\right| < 1$

Contoh: lakukan ekspansi Laurent dari $f(z) = \frac{5}{z^2 + 5z + 4}$ dengan daerah kekonvergenan 1 < |z| < 4

Jawab:...

Contoh: lakukan ekspansi Laurent dari $f(z) = \frac{1}{z} + \frac{2}{z+2} + \frac{3}{z+3}$ dengan daerah kekonvergenan 2 < |z| < 3

Jawab: ...

Latihan

Lakukan ekspansi Laurent dari deret berikut dengan daerah kekonvergenan yang diberikan:

1
$$f(z) = \frac{1}{z+5}$$
 pada $|z| > 5$

2
$$f(z) = \frac{4}{2z+5}$$
 pada $|z| > 5/2$

3
$$f(z) = \frac{1}{z(z+1)}$$
 dengan $0 < |z| < 1$

6
$$f(z) = \frac{z}{z^2 + 3z + 2}$$
 1 < $|z| < 2$