Chapter 4 - Operation Manual

Main Window

The module's operation window is shown as in the image below:

Main operation window of ETE Section

The module's main button bar contains following buttons.

The feature of each command button is shown below:

Create a new ETE Section task

Open an existing ETE Section model (*.sec)

Save the ETE Section model (*.sec)

gen	General Setting: Parameter setting for analysis, such as number of envelope nodes for P-M and M-M analysis
	Material Setting: Modify the constitutive model of the material including concrete, reinforcement, and steel
3	Print
	Pan view
e	Zoom to fit
€	Zoom in
✐	Zoom out
7	Re-draw the section
V	Modify the display settings, such as show/hide outline of the section, or rebars, etc.
	Generate outline of the concrete section and layout of reinforcement bars based on input parameters
I	Generate outline of the steel section based on input parameters
	Meshing the section
x I	Delete all the concrete section, steel section, and reinforcement bars
$\Xi_{\mathbf{x}}$	Delete all the steel section
×	Delete all the mesh
/	Import AutoCAD file
⇒ DXF	Export model to .dxf file
DXF	Import section from .dxf file
1	Generate P-M or M-M curve
=	Import internal forces of member
	Generate .csv file of the model
A.	Select reinforcement bars
+*	Add a single reinforcement bar
• • •	Add multiple reinforcement bars
•	Modify diameter of reinforcement bars
_•	Delete selected reinforcement bar

Build Typical Section

Click the button **Build Typical Section** to create concrete section with pre-defined shapes. The window below will pop-up. Click the button **Gen Section** to generate the concrete section as the parameters input.

Build typical section operation window

ETE-Section provides several pre-defined section shapes. The key parameters to define a shape are explained in the table below:

Rebar Distance d1 Distance from reinforcement bars to the edge of concrete

Circle Section Mesh Num Number of mesh cells for meshing circular section

Typical Rebar Diameter Diameter of rebars

Rotation Angle Rotational angle based on default orientation of the

section

ETE-Section parameter setting examples to typical rectangular beam/column, or circular column is as following:

X-Dir Rebar Number of layers, number of rebars per layer, and

diameter for the rebars in global X direction

Y-Dir Rebar Number of layers, number of rebars per layer, and

diameter for the rebars in global Y direction

Top Rebar Number of layers, number of rebars per layer, and

diameter for the rebars at the top side

Bot Rebar Number of layers, number of rebars per layer, and

diameter for the rebars at the bottom side

CornerNumber of rebars and diameter for the rebars at the corner **Row Spacer**Distance between adjacent two layers of reinforcement

1-16 section types are listed below:

Build Steel Section

Click the button **Build Steel Section** to create steel section. The following window will pop-up. Click the button **Gen Section** to generate the steel section as the parameters input.

Build steel section operation window

ETE-Section has 10 types of pre-defined steel section shape as shown in the figure below:

Section Mesh Operation

Meshing settings in the main operation window

Click the button **Fibre Section Mesh** to create fibre meshing for the cross-section, so that the user can carry out P-M-M analysis.

Concrete Grade Material grade of concrete (C20~C100)

Rebar Grade Material grade of reinforcement bars (Steel1~Steel5)

Steel Grade Material grade of steel sections (Steel1~Steel5)

Mesh Size Control size of mesh (default is 100mm)

After meshing, the program automatically computes the area by material type and reinforcement ratio

Section Area Area of concrete cross-section (mm2)

Rebar AreaTotal area of reinforcement in cross-section (mm2) **Steel Area**Total area of steel section in cross-section (mm2)

Rebar Ratio Reinforcement ratio

Steel Ratio Steel ratio

Import Member Internal Force

Click the button to import the internal forces of the element, including the information of load combination numbers and names, axial forces, x-x and y-y bending moments. The information imported should be saved as .csv format.

Import column internal force operation window

LoadComb - Load combination names

P - Axial force of the member (unit: kN, +ve as tension, -ve as compression)

Mxx - Bending moment about x-x axis (kNm)

Myy - Bending moment about y-y axis (kNm)

LoadFraction - The redundancy of the given cross-section under the load. If the load fraction is greater than 1.0, then the member is safe; if less than 1.0, the capacity of the cross-section is not enough.

Critical Load Comb - The most adverse load combination, which has the lowest value in load fraction

Check Member - Check the capacity of the section under imported load combinations, and computes the load fraction values

Clear Table - Clear the data in the table

Modify - Modify the value in the table

Import CSV File - Import .csv file

Export CSV File - Export .csv file

Print Report - Generate the calculation report file in .pdf format

P-M-M Section Analysis

Click the button to carry out the section analysis. The window as below will pop-up. User can use this function to calculate and obtain the P-Mx, P-My. or P-Mx-My curves with load combination conditions overlaid on the diagram.

P-M-M analysis operation window

P-M Curve Analysis - Settings for P-M curve display. Select Mxx to display P-Mxx curve; Select Myy to display P-Myy curve; Select M with Angle to display rotated P-M curve; Moment Angle is the angle to rotate the axis

Myy-Mxx Curve Analysis - Parameter for M-M curve display. Axial Force(kN) is the level of axial force to trim the Mxx-Myy curve from P-M-M profile

Text Output - Display the data of the P-M curve or M-M curve

Show Section Image - Display the brief image of the cross-section

Run P-M Analysis - Calculate and display P-M curve

Run Mxx-Myy Analysis - Calculate and display Mxx-Myy curve

Print PMM Report - Generate P-M-M analysis report in .pdf format

CriticalLoadComb - The number of the most adverse load combination

CombName - The name of the most adverse load combination

Axial Force P[kN] - Axial force under the most adverse load combination

Moment Mxx[kNm] - Bending moment about x-x axis under the most adverse load combination

Moment Myy[kNm] - Bending moment about y-y axis under the most adverse load combination

Critical LoadComb - Display the point of the most adverse load combination overlaid to the P-M curve diagram

All LoadComb - Display the points of all the load combinations overlaid to the P-M curve diagram

Export CSV - The program output the content in "Text Ouput" to a .csv file

Click the button **Print PMM Report** to create the calculation report in .pdf format as the example below:

Typical report generated by ETE Section

Chapter 5 - Tutorial

Example 1: L Shape Shear Wall Section Analysis

Example Specification:

To create a L shape concrete section with control parameter of 2000(D)x2200(W)x350(T)x400(t). Concrete material grade is C35, reinforcement strength is fy=500MPa, reinforcement layout is 26T32 as shown in the diagram below. And reinforcement ratio is 1.46%.

Step1 - Build Typical Section

Click the button [Build Typical Section], then select [Angle Section [6]] as section shape. Input the section dimension 2000x2200x350x400, finally click the button [Gen Section] to generate L shape concrete section.

Build typical section settings

Step2 - Build Reinforcement

Click the **Rebar** from the menu panel, use the tools in the sub-menu to draw the reinforcement arrangement as shown in the diagram below, 26T32.

Chapter 5 - Tutorial

The appearance of the built L-shape section

Step3 - Section Meshing

In the operation panel on the right, **Mesh Size** to be set as 100mm; Select Steel1 for **Rebar Grade**, which is the reinforcement property having strength fy=500MPa; Select C35 for **Concrete Grade**. Then click **Fiber Section Mesh** button to mesh the section.

Step4 - Import Member Internal Force

Click **Import member internal force** button, to import the internal forces of multiple load combinations for the member.

Click **Import csv file** to load the .csv format of internal forces into the program. Below is an example of 42 load combinations being loaded.

Click **Check Member** to calculate the load fractions based on the internal forces for all the load combinations. In the example below, the program automatically found the most adverse load combination is the 27th, which has an axial force of -5424.694 kN, Mx of -2597.945 kNm, and My of -5195.889 kNm. The minimum load fraction value is 1.032, which is just slightly above 1.0 and the member is safe.

Click **Print Report** button, then the program will automatically generate the report of the load fraction calculation for all the load combinations.

Chapter 5 – Tutorial 21

Import column internal force operation window

Step5 - Generate P-Mx Curve and P-My Curve

Click the button Run PMM Analysis, the P-M-M analysis window will pop-up

Select Mx-x to carry out analysis for P-Mxx curve, the obtained curve is shown as below

Select My-y to carry out analysis for P-Myy curve

Select M with Angle, then input 45 for the **Moment Angle** which means that the program will generate the M-M curve by trimming the P-M-M envelope with the plane rotated about the axis of axial force P by the angle of input 45 degree

Step6 - Generate Mx-My Curve

User could input axial force at **Axial Force[kN]**, for example 5424kN, to obtain the Mx-My curve when the axial force is 5424kN.

Step7 - Print PDF Report

Click the button **Print PMM Report** to generate the calculation report in .pdf format. The report includes the calculation of load fraction value, cross-sectional properties, P-M curve and/or M-M.

22 Chapter 5 - Tutorial

P-M-M analysis operation window of P-Mx plot under user defined internal forces

Chapter 5 – Tutorial 23

Chapter 6 - Interpretation of Analysis and Design Results

Explanation of P-M, M-M Analysis Report

Typical analysis report from ETE Section

- 1. Brief diagram of cross-sectional geometry
- 2. Material properties used for the cross-section, such as concrete grade, reinforcement grade, steel grade
- 3. Cross-sectional properties, such as area of concrete, area of reinforcement, reinforcement ratio
- 4. Summarisation of capacity check shows the most adverse internal forces and the load fraction value
- 5. P-Mx curve (could overlay multiple points represent load combinations)
- 6. P-My curve (could overlay multiple points represent load combinations)
- 7. The P-M curve with user defined exerting angle (could overlay multiple points represent load combinations)
- 8. Mx-My curve under user defined axial force (could overlay multiple points represent load combinations)

Chapter 7 - Program Verification

Example 1 P-M and M-M Curve Analysis for Rectangular Column

Task description:

Concrete grade is C35; Cross-sectional dimension is 500X800; Distance from the reinforcement bars to the edge of concrete is 50mm; material strength for reinforcement is 460MPa; Reinforcement bars are arranged as 16T25; Reinforcement ratio is 1.96%. The following charts are the comparison of the results between ETE Section and Oasys AdSec.

b) P-My curve

c) P-M curve (with 45 degree angle)

d) P-M curve (with axial force 4500kN)

Example 2 P-M and M-M Curve Analysis for Circular Column

Task description:

Concrete grade is C40; Cross-sectional dimension is 1200mm diameter; Distance from the reinforcement bars to the edge of concrete is 40mm; material strength for reinforcement is 460MPa; Reinforcement bars are arranged as 12T25; Reinforcement ratio is 0.53%. The following charts are the comparison of the results between ETE Section and Oasys AdSec.

Example 3 P-M and M-M Curve Analysis for L-shape Wall

Task description:

Concrete grade is C50; Cross-sectional dimension is 2000x2200x300x350; Distance from the reinforcement bars to the edge of concrete is 35mm; Material strength for reinforcement is 460MPa; Reinforcement bars are arranged as 6T25 + 22T20; Reinforcement ratio is 0.79%. The following charts are the comparison of the results between ETE Section and Oasys AdSec.

ETE Section Oasys AdSec

a) P-Mx curve b) P-My curve

c) P-M curve (with 45 degree angle)

d) Mx-My curve (with axial force 14500kN)