Should multiple choice items be used to assess mathematical knowledge?

- (a) Always
- (b) Mostly
- (c) Never

Ian Jones
Mathematics Education Centre
Loughborough University

Christopher Sangwin School of Mathematics University of Edinburgh

Rasch Day 2017, Coventry

Should multiple choice items be used to assess mathematical knowledge?

- (a) Always
- (b) Mostly
- (c) Never

Ian Jones
Mathematics Education Centre
Loughborough University

Christopher Sangwin School of Mathematics University of Edinburgh

Rasch Day 2017, Coventry

How to cheat an MC item

Factor: $45m^2 - 20$.

(a)
$$(7m-5)(7m+5)$$

(b)
$$5(9m-4)(9m+4)$$

(c)
$$5(3m-4)(3m+4)$$

(d)
$$5(3m-2)(3m+2)$$

Direct & inverse processes

Direct	Inverse
Multiplication of numbers	Prime factoring of integers
Laws of exponents	Laws of logarithms
Expanding brackets	Algebraic factoring
Single fraction	Partial fraction
Differentiation	Symbolic integration
Verify a solution	Solve an equation

Hypothesis

When faced with a task involving the inverse direction of a reversible mathematical process, students solve a multiple choice version by verifying the answers by the direct method, not by undertaking the actual inverse calculation.

Method

- 116 Foundation programme students
- Online test: 20 MC and 20 CR items
- Every item appeared twice, once in each version
- Cronbach's $\alpha = .91$

Process	Direct	Inverse
Expand/factor	5	5
Evaluate/solve	4	6

Students & items

Items by format

2 (format) × 2 (direction) within subjects ANOVA.

2 (format) × 2 (direction) within subjects ANOVA.

Main effect of format with CR harder than MC, F(1, 115) = 102.37, p < .001, $\eta^2 = .47$.

2 (format) × 2 (direction) within subjects ANOVA.

Main effect of format with CR harder than MC, F(1, 115) = 102.37, p < .001, $\eta^2 = .47$.

Significant format × direction interaction, $F(1, 115) = 6.89, p = .010, \eta^2 = .06.$

Direct items across format

Direct items across format

Direct items more difficult in CR format,

$$t(115) = 5.46, p < .001$$
(paired).

Direct items across format

Direct items more difficult in CR format,

$$t(115) = 5.46, p < .001$$
 (paired).

Reverse items across format

Reverse items across format

Reverse items more difficult in CR format, t(115) = 10.01, p < .001 (paired).

Reverse items across format

Reverse items more difficult in CR format,

$$t(115) = 10.01$$
, $p < .001$ (paired).

Is the difference greater for reverse items?

Is the difference greater for reverse items?

Direct: mean difference = 0.59, SD = 0.99. Reverse: mean difference = 0.89, SD = 1.31.

Difference is greater for reverse items, t(115) = -2.54, p = .012.

Was every reverse item easier in MC?

Was every reverse item easier in MC?

Harder in MC format

```
What is the solution set: 2(x-3) = 5x - 3(x+2)?

Select one:

a. {all real numbers}

b. {0}

c. {6}

d. {12}

e. No solutions.
```

Solve for x in the equation $2 \cdot (x-3) = 5 \cdot x - 3 \cdot (x+3)$. Replace ? in the curly brackets with your solution.

{?}

Type in $\{R\}$ if there is more than one solution, and $\{\}$ if there are no solutions.

Never use MC?

Never use MC?

Circle the number that is **not** a factor of 36

4

6

8

9

AQA, Foundation GCSE, June 2015

Never use MC?

- 9. If a function is always increasing, then what must be true about its derivative?
- (a) The derivative is never negative.
- (b) The derivative is always positive.
- (c) The derivative is sometimes positive.
- (d) The derivative is negative.
- (e) We can not conclude anything about the derivative.

Adapted from Epstein (2013).

Thank you

lan Jones <u>l.Jones@lboro.ac.uk</u>

