

AA

(19) Canadian Intellectual Property Office
An Agency of Industry Canada

Office de la Propriété Intellectuelle du Canada
Un organisme d'Industrie Canada

(11) CA 2 374 220 (13) A1

(40) 21.12.2000
(43) 21.12.2000

(12)

(21) 2 374 220

(51) Int. Cl.?: B01J 2/04, B01J 2/16,
B01D 1/18

(22) 06.06.2000

(85) 14.12.2001

(86) PCT/EP00/05183

(87) WO00/76650

(30) 199 27 537.8 DE 16.06.1999

(72) DUTTER, JEAN-MARC (FR).
SCHWARZ, EUGEN (DE).
RUTZLER, HANSPETER (DE).
MOSCHL, GERNOT (DE).

(71) MERCK PATENT GESELLSCHAFT MIT
BESCHRANKTER HAFTUNG,
Frankfurter Strasse 250
D-64293, DARMSTADT, XX (DE).

(74) FETHERSTONHAUGH & CO.

(54) INSTALLATION DE SECHAGE PAR PULVERISATION ET SON PROCEDE D'UTILISATION
(54) SPRAY-DRYING PLANT, AND PROCESS FOR THE USE THEREOF

(57)

The invention relates to fluidised bed apparatus with an integrated spray-drying device and to a method for using the same. The invention also relates to a method for producing spray-dried powder material, whose product characteristics can be specifically adapted according to the ulterior use of said material.

BEST AVAILABLE COPY

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2374220 A1 2000/12/21

(21) 2 374 220

(12) DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

(13) A1

(86) Date de dépôt PCT/PCT Filing Date: 2000/06/06
(87) Date publication PCT/PCT Publication Date: 2000/12/21
(85) Entrée phase nationale/National Entry: 2001/12/14
(88) N° demande PCT/PCT Application No.: EP 2000/005183
(87) N° publication PCT/PCT Publication No.: 2000/076650
(30) Priorité/Priority: 1999/06/16 (199 27 537.8) DE

(51) Cl.Int⁷/Int.Cl.⁷ B01J 2/04, B01D 1/18, B01J 2/16

(71) Demandeur/Applicant:
MERCK PATENT GESELLSCHAFT MIT
BESCHRANKTER HAFTUNG, DE

(72) Inventeurs/Inventors:
SCHWARZ, EUGEN, DE;
MOSCHL, GERNOT, DE;
RUTZLER, HANSPETER, DE;
DUTTER, JEAN-MARC, FR

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : INSTALLATION DE SECHAGE PAR PULVERISATION ET SON PROCEDE D'UTILISATION
(54) Title: SPRAY-DRYING PLANT, AND PROCESS FOR THE USE THEREOF

(57) Abrégé/Abstract:

The invention relates to fluidised bed apparatus with an integrated spray-drying device and to a method for using the same. The invention also relates to a method for producing spray-dried powder material, whose product characteristics can be specifically adapted according to the ulterior use of said material.

Canada

<http://opic.gc.ca> • Ottawa-Hull K1A 0C9 • <http://cipo.gc.ca>

OPIC · CIPO 191

OPIC CIPO

Abstract

The invention relates to fluidised bed apparatus with an integrated spray-drying device and to a method for using the same. The invention also relates to a method for producing spray-dried powder material, whose product characteristics can be specifically adapted according to the ulterior use of said material.

WO 00/76650

- 1 -

PCT/EP00/05183

5

Spray-drying plant, and process for the use thereof

10 The invention relates to a fluidized-bed apparatus with integrated spray drying and to a process for the use thereof. The invention also relates to a process for the production of spray-dried powder material whose product properties can be varied in a targeted manner depending on the further use.

15 Commercially available granular materials are usually produced by spraying a solution or suspension of one or more components into a spray tower charged with hot gas. In the stream of hot gas, the liquid components evaporate, and solid particles which have a more or 20 less random shape form.

Also known is granulation in a fluidized bed, in which the stream of process air flows through a specially shaped feed base, generating a fluidized bed of solid 25 starting material. The spray liquid enters the fluidizing space in finely divided form through a nozzle system. The fluidizing particles are wetted, the surface is partially dissolved, and the particles adhere together. At the end of the fluidized bed, solid 30 is removed continuously. At the same time, a smaller amount of solid finely divided in the spray liquid is fed in at the inlet. A filter system prevents dust leaving the fluidized bed and ensures that only granular material particles having a minimum size are 35 removed at the outlet. Solid particles with a more less random shape likewise form in a fluidized bed of this type.

It is therefore an object of the invention to provide a 40 suitable plant and a process for operating the plant with the aid of which properties of spray-dried or granulated, pulverulent products can be varied as

- 2 -

5 desired with respect to particle size, particle size distribution, moisture content and tabletting ability.

The object is achieved by a spray-drying plant which has

- 10 a) a spray-drying unit (B)
- b) a fluidized bed (A)
- c) one or more additional spray or atomization nozzles for liquid media (C)
- e) a powder metering device (D)
- 15 f) a powder return (9) with fan (E).

In the spray-drying unit of the spray-drying plant according to the invention, (B) liquid medium (5), spray air (6), pulverulent material (9) and hot air (4) 20 are combined.

A particular embodiment consists in that a spray-drying unit (B) is located vertically above a downstream fluidized bed in a spray tower.

25 In a specific embodiment, the spray-drying unit (B) of the plant can comprise a spray system which consists of a two-component spray nozzle heated by hot water with coaxially arranged powder return and hot-gas 30 surrounding flow.

The object is achieved, in particular, by a plant in which one or more additional spray or atomization nozzles for liquid media (C) can be installed in the 35 fluidized bed at variable locations. In accordance with the present invention, the fluidized bed is followed by a powder metering device (D), which is separated off by a paddle valve (F) and is fed by an overflow (8).

40 Some of the product formed can, in accordance with the invention, be returned, if desired after comminution, into the spray-drying unit (B) via a fly conveyor, in which a fan (E) serves as conveying element. The fan

- 3 -

5 (E) acting as conveying element can simultaneously serve as comminution unit for the returned powder.

The object is also achieved by a process for the production of spray-dried powder material in which

10 a) in a first step, a liquid medium, spray gas, pulverulent material and hot air are combined,

b) the pulverulent product formed falls into a fluidized bed, is taken up, fluidized and transported further,

15 c) in one or more granulation step(s), is sprayed with further liquid medium, dried and conveyed in the fluidized bed toward the powder metering device, from which

d) some of the pulverulent material is returned into

20 the process.

The liquid medium is a solution, a dispersion or a suspension.

25 A particular variant of the process consists in that the returned pulverulent material is comminuted before return.

30 The spray gas, carrier gas and heating gas used can be air or an inert gas selected from the group consisting of N₂ and CO₂. The gas can, in accordance with the invention, be circulated, in which case it is freed from particles by means of filters or with the aid of dynamic filters and fed back to the spray nozzles or

35 heated and introduced into the fluidized bed.

In accordance with the invention, liquid media used at various points of the plant can have different compositions.

40 The present object is also achieved, in particular, by allowing particle sizes of from 50 to 1000 µm to become established specifically by varying the parameters

- 4 -

5 spray pressure, amount of liquid, amount of powder returned, hot-air stream and temperature of the hot air.

In order to carry out the process, the plant is charged
10 at the beginning with pulverulent starting material via the fill port (3). A stream of air is generated in the spray-drying space via the chambers (1). The starting material introduced is fluidized by this stream of air and moves toward the discharge flap (F). The stream of
15 powder is given this movement direction on generation of the stream of air by an appropriate perforation of the Conidur base. The fluidized product can be discharged by simply opening the paddle valve (F). At this point of the plant, devices are provided which
20 enable the product to be fed either into a powder metering device or via a fly conveyor to the spray-drying unit. An overflow (8) for the finished product is located at the outlet above the powder metering device. The fan (E) of the spray-drying unit serves
25 both as conveying means for the product and as comminution unit for powder material to be returned. Through a particular design of the spray-drying nozzle, returned powder material from the return line (9) is combined with the corresponding media liquid (5), spray
30 air (6) and hot air (4). The powder or granular material formed is taken up by the fluidized bed and transported further as already described above. On passing through the granulation nozzles (C), further medium, which may have a different composition to the
35 medium introduced into the spray nozzle with powder return, is sprayed onto the particles formed. Further granulation and re-setting of the particle size distribution take place. Air introduced from the chambers (1) via the Conidur bases will dry the product to the desired final moisture content. A dynamic filter
40 (G) integrated into the plant will prevent discharge of powder particles into the environment.

- 5 -

5 Instead of the three granulation nozzles (C), as shown
in figure 1, one or more spray nozzles or spray-drying
nozzles or alternatively only one, two or more than
three granulation nozzles may be installed at the
corresponding point of the plant. These additional
10 nozzles can be located directly at the beginning of the
fluidized bed or moved further to the back. The choice
of the location at which the powder material originally
formed is re-sprayed once or more than once is also
dependent, inter alia, on the residual moisture content
15 that the desired product is intended to have. It goes
without saying that a product having a particularly low
residual moisture content requires a longer residence
time in the fluidized bed after the final spraying than
one with a relatively high residual moisture content.

20 If desired, different compositions can be applied
through the various nozzles to the particle surfaces
already formed, enabling particles having a layered
structure to be obtained. However, it can also serve to
25 achieve a more uniform particle size distribution.

Furthermore, the plant according to the invention can
be operated not only with air as carrier medium, but it
is also possible to operate the entire plant in
30 circulation with an inert gas, such as, for example,
nitrogen, or with carbon dioxide gas.

The plant is designed in such a way that the parameters
amount of liquid, spray pressure, amount of powder
35 returned, amount of hot gas, hot-gas temperature,
amount of warm air and warm-air temperature can be
regulated individually. The properties of the end
product can be adjusted as desired with respect to the
moisture content, the particle size and the particle
40 size distribution through the amount of powder
returned, the amount of liquid fed in and the spray
pressure. Pulverulent products having particle sizes of
from 50 to 1000 μm can be produced as desired in the

- 6 -

5 plant described. Depending on the mode of operation,
the particles can consist of a single chemical
substance or exhibit a layered structure of different
substances or, depending on the process parameters
selected, have a more or less crystalline or
10 predominantly amorphous structure, where, in the latter
case, the particles can consist either of one component
or a mixture of different components.

15 The formation of the particles is controlled, in
particular, by a spray nozzle suitable for the
production of spray-dried granular materials which is
integrated into the plant. A corresponding embodiment
of a spray nozzle of this type is shown in fig. 2.

20 This spray nozzle is a spray system which consists of a
two-component spray nozzle [(1), (2), (3)] which can be
heated with hot water and is in turn fitted with a
coaxially arranged powder return (4) and a hot-gas
surrounding flow (5).

25 The advantage of this spray system is that the powder
comes into contact directly at the outlet with the
liquid droplets produced via the atomization air and is
granulated or agglomerated. In order that the granules
30 do not stick together and the surface moisture can be
removed, the spray and powder parts are enclosed in a
stream of hot gas, where the requisite energy for
evaporating the liquid is converted directly.
Subsequent drying takes place in the fluidized bed.

35 In particular also through incorporation of this spray-
drying system, it is possible to achieve specific
particle sizes.

40 A particular advantage of this spray-drying plant
therefore consists in that very different products can
be produced in a single plant depending on the process
parameters set and on the liquid media to be sprayed.

5

For better understanding and for illustration, a general flow chart (fig. 1) of the spray-drying plant described and examples which come within the scope of protection of the present invention, but are not suitable for restricting the invention to these examples, are given below.

Fig. 1 shows a generalized flow chart of a possible embodiment of a spray-drying plant of this type, in which the numerals and/or letters given have the following meanings:

- 1 Air introduction chambers
- 2 Air outlet chambers
- 20 3 Fill port
- 4 Hot-air feed
- 5 Liquid feed
- 6 Spray air
- 7 Heating medium
- 25 8 Product
- 9 Powder
- A Fluidized-bed apparatus
- B Spray-drying unit
- C Granulation nozzles
- 30 D Powder metering device
- E Fan for powder return
- F Paddle valve
- G Dynamic filter

35 With reference to the components mentioned in the description and given in the flow chart, it is readily possible for the person skilled in the art to construct a corresponding plant by selecting commercially available individual components. It goes without saying
40 to the person skilled in the art working in the specialist area that both additional electrical and mechanical control units must be incorporated for

- 8 -

- 5 operating the plant in order to be able to regulate and vary the process parameters, as described.

5

PATENT CLAIMS

1. A process for the production of spray-dried powder material, characterized in that
 - 10 a) in a first step, a liquid medium, spray gas, pulverulent material and hot air are combined,
 - b) the pulverulent product formed falls into a fluidized bed, is taken up, fluidized and transported further,
 - 15 c) in one or more granulation step(s) is sprayed with further liquid medium, dried and conveyed in the fluidized bed toward the powder metering device, from which
 - d) some of the pulverulent material is returned
- 20 into the process.
2. The process as claimed in claim 1, characterized in that the liquid medium is a solution, a dispersion or a suspension.
- 25 3. The process as claimed in claim 1, characterized in that the returned pulverulent material is comminuted before return.
- 30 4. Process as claimed in claim 1, characterized in that air or an inert gas selected from the group consisting of N₂, CO₂ or is used both as spray gas and as carrier gas and heating gas.
- 35 5. The process as claimed in claims 1 and 4, characterized in that the gas is circulated.
6. The process as claimed in claims 1, 4 and 5, characterized in that the circulated gas is freed
- 40 from particles by filters and re-fed to the spray nozzles or heated and introduced into the fluidized bed.

- 10 -

5

7. The process as claimed in claims 1 and 4 to 6, characterized in that the gas is freed from particles with the aid of dynamic filters.

10 8. The process as claimed in claims 1 and 2, characterized in that the liquid media used have different compositions at different points of the plant.

15 9. The process as claimed in claims 1 to 8, characterized in that that particle sizes of from 50 to 1000 μm can be established specifically by varying the parameters spray pressure, amount of liquid, amount of powder returned, hot-air stream and temperature of the hot air.

20
25 10. A spray-drying plant, characterized by
a) a spray-drying unit (B)
b) a fluidized bed (A)
c) one or more additional spray or atomization nozzles for liquid media (C)
e) a powder metering device (D) and
f) a powder return (9) with fan (E).

30 11. The spray-drying plant as claimed in claim 10, characterized in that liquid medium (5), spray air (6), pulverulent material (9) and hot air (4) are combined in the spray-drying unit (B).

35 12. The spray-drying plant as claimed in claim 10, characterized in that a spray-drying unit (B) is located vertically above a downstream fluidized bed in a spray tower.

40 13. The spray-drying plant as claimed in claim 10, characterized in that the spray-drying unit (B) comprises a spray system which consists of a two-component spray nozzle heated by hot water with

- 11 -

5 coaxially arranged powder return and hot-gas surrounding flow.

10 14. The spray-drying plant as claimed in claim 10, characterized in that one or more additional spray or atomization nozzles for liquid media (C) can be installed in the fluidized bed at variable locations.

15 15. The spray-drying plant as claimed in claim 10, characterized in that the fluidized bed is followed by a powder metering device (D), which is separated off by a paddle valve (F) and is fed by an overflow (8).

20 16. The spray-drying plant as claimed in claim 10, characterized in that some of the product formed is returned, if desired after comminution, into the spray-drying unit (B) via a fly conveyor, in which a fan (E) serves as conveying element.

25 17. The spray-drying plant as claimed in claim 16, characterized in that the fan (E) simultaneously serves as comminution unit for the returned powder.

30 18. A spray system consisting of a two-component spray nozzle heated by hot water with coaxially arranged powder return and hot-gas surrounding flow.

Application number/ Numéro de demande : E 000/05183

Documents of poor quality scanned
(request original documents in File Prep. Section on the 10th floor)

Documents de piètre qualité numérisés
(Pour obtenir les documents originaux, veuillez vous adresser à la Section de préparation
des dossiers, située au 10^e étage)

Fig. 1

Fig. 2

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.