GATE: CH - 58.2022

EE23BTECH11224 - Sri Krishna Prabhas Yadla*

Question: In the block diagram shown in the figure, the transfer function $G = \frac{K}{\tau s + 1}$ with K > 0 and $\tau > 0$. The maximum value of K below which the system remains stable is _____(rounded off to two decimal places) (GATE CH 2022)

Solution:

Parameter	Value	Description	
G	$\frac{K}{\tau s+1}$	Transfer function shown in blocks	
Y		Laplace transform of y(output)	
U		Laplace transform of u(input)	
X,Z		Laplace transform of x and z	
T	$\frac{Y}{U}$	Transfer function of complete system	

TABLE 1 Parameters

Fig. 1. Block Diagram

$$X = XG^2 + YG \tag{1}$$

$$\implies X = \frac{YG}{1 - G^2} \tag{2}$$

$$Z = XG \tag{3}$$

$$Y = Z + UG \tag{4}$$

$$Y = XG + UG \tag{5}$$

$$Y = \frac{YG^2}{1 - G^2} + UG \tag{6}$$

$$\implies Y = \frac{UG(1 - G^2)}{1 - 2G^2} \tag{7}$$

From Table 1,

$$T = \frac{G(1 - G^2)}{1 - 2G^2} \tag{8}$$

$$= \frac{K\left(1 - \frac{K^2}{(\tau s + 1)^2}\right)}{\left(1 - \frac{2K^2}{(\tau s + 1)^2}\right)(\tau s + 1)}$$
(9)

$$=\frac{K(\tau^2 s^2 + 2\tau s + 1 - K^2)}{\tau^3 s^3 + 3\tau^2 s^2 + (3\tau - 2K^2\tau)s + 1 - 2K^2}$$
(10)

So, Characteristic equation : $1 - 2G^2 = 0$

$$1 - 2\frac{K^2}{(\tau s + 1)^2} = 0 \tag{11}$$

$$\implies \tau^2 s^2 + 2\tau s + 1 - 2K^2 = 0 \tag{12}$$

For a characteristic equation $a_0s^n + a_1s^{n-1} + a_2s^{n-2} + ... a_n = 0$,

s^n	a_0	a_2	a_4			
s^{n-1}	a_1	a_3	a_5			
s^{n-2}	$b_1 = \frac{a_1 a_2 - a_3 a_0}{a_1}$	$b_2 = \frac{a_1 a_4 - a_5 a_0}{a_1}$				
s^{n-3}	$c_1 = \frac{b_1 a_3 - b_2 a_1}{b_1}$:				
÷	:	:				
s^1	:	:				
s^0	a_n					
	TABLE 2					

ROUTH ARRAY

From Table 2:

s^3	$ au^3$	$3\tau - 2K^2\tau$		
s^2	$3\tau^2$	$1 - 2K^2$		
s^1	$\frac{8}{3}\tau(1-K^2)$	0		
s^0	$1 - 2K^2$			
TABLE 3				

Given $\tau > 0$ and K > 0, for system to be stable,

$$1 - K^2 > 0 \tag{13}$$

$$1 - 2K^2 > 0 \tag{14}$$

$$\implies 0 < K < \frac{1}{\sqrt{2}}$$

$$K_{max} \approx 0.71$$
(15)

$$K_{max} \approx 0.71$$
 (16)