Aufgabenblatt 05

11. November 2021

Aufgabe 05.1

Wie steil muss ein Abhang mindestens sein (gesucht: Winkel α gegen die Waagrechte), damit eine Skifahrerin (Masse $M=65\,\mathrm{kg}$) die Endgeschwindigkeit $v_\infty=100\,\mathrm{km/h}$ erreichen kann? Daten: tiefe Hocke mit Querschnittsfläche $A=0,50\,\mathrm{m}^2$ und $c_w=0,65$, Luftdichte $\rho_L=1,20\,\mathrm{kg/m}^3$, Gleitreibung Ski–Schnee $\mu_G=0,12$.

Hinweis: Für jeden beliebigen Winkel φ gilt immer: $(\sin \varphi)^2 + (\cos \varphi)^2 = 1$.

Tipp: Während des Rechnens können Sie z. B. $\cos \alpha = x$ setzen.

Aufgabe 05.2

In einem Saal hängt ein großer Lautsprecher (Masse $M=25\,\mathrm{kg}$) an drei Seilen (als masselos anzunehmen), die an Wandhaken befestigt sind. Er befindet sich genau mittig zwischen den beiden seitlichen Wänden und ist $s_2=5,0\,\mathrm{m}$ von der mittleren Wand entfernt (siehe Skizze) und ist um $\Delta H=75\,\mathrm{cm}$ tiefer als die Wandhaken. Die Richtungen der drei Seile – von oben gesehen – entnehmen Sie der Skizze. Welche Kräfte wirken auf die drei Wandhaken? Weitere Skizzen erforderlich!

Aufgabe 05.3

mit dem Kurvenradius R=8,00 m fahren, die um $\alpha_1=7,50^\circ$ nach außen geneigt ist? Haftreibungszahl Reifen-Boden: $\mu_H=0,550$.

Aufgabe 05.4

Vom Düsseldorfer Rheinturm (Höhe der Terrasse: $H=169\,\mathrm{m}$) wird ein Fußball fallen gelassen (Durchmesser $D=22,\,5\,\mathrm{cm}$, Masse $M=430\,\mathrm{g}$). Mit welchem Tempo schlägt er unten auf

und wie lange dauert das? Vergleichen Sie die Ergebnisse für Tempo und Dauer mit freiem Fall über gleiche Höhe im Vakuum! Luftdichte: $\rho_L=1,204\,\mathrm{kg/m^3},\,c_w=0,400$ (Kugel). Hinweise: Wenn Sie zum Integrieren Stammfunktionen brauchen, die Sie nicht kennen, finden Sie diese in Integraltafeln" in Mathe-Büchern oder am Netz. Machen Sie sich mit den

auftretenden Funktionen vertraut, damit Sie damit rechnen können!