

Rajshahi University of Engineering & Technology Department of Computer Science & Engineering

Human Segregation from Detected Moving Objects Using Histogram of Oriented Gradients

PRESENTED BY

Md. Nahiduzzaman Rose

Roll No. 103034

Dept. of CSE, RUET.

SUPERVISED BY

Prof. Dr. MD. Rabiul Islam

Dept. of CSE, RUET

Outlines

- Objective
- Related Works
- Proposed Methodology
- Implementation
- Experimental Result
- Limitation
- Further Works
- Conclusion
- References

Objective

- Video surveillance
- Distinguish human from other moving objects
- Develop an advance and intelligent security system

Existing Works

- Human detection approach
 - Histogram of Oriented Gradients for Human Detection(HOG) [1]
 - Derview of this Method:

Fig.1. Original work [1]

Existing Works (Cont'd)

- Human detection approach
 - Pedestrian detector using infrared images and histogram of oriented gradients.[4]
 - Pedestrian detector using histograms of oriented gradients and SVM classifier.[5]

Existing Works (Cont'd)

- Moving object detection approach
 - Improved adaptive Gaussian mixture model for background subtraction.[2]
 - Adaptive Background Mixture model for Real-time tracking with shadow detection. using Mixture of Gaussian. [3]

Proposed Methodology

Fig. 2. Procedure of propose method

Implementation

Proposed methodology indicates two decent algorithm.

- Mixture of Gaussian (MOG) for Background Subtraction.
- Histogram of Oriented Gradients (HOG).

Mixture of Gaussian (MOG)

- MOG is common technique, that has been used for background subtraction.
- Every pixel's intensity values in the video can be modeled using a Gaussian mixture model.

Fig. 2. Sum of two Gaussian distribution [6]

Mixture of Gaussian (Cont'd)

Background model creation

Original frame

Background Model

Fig. 3. Background model creation [8]

Histogram of Oriented Gradients

- HOG is a type of feature descriptor.
- It uses global feature to describe a person.
- The whole person is used as a feature vector.

Histogram of Oriented Gradients (Cont'

- *How HOG descriptor works?
 - HOG uses 64 x 128 detection window

Fig. 5. 64 x 128 detection window

Steps of HOG

Feature extraction:

For a 64 x 128 window,

- Compute gradient orientation and magnitude.
- Divide image into 16 x 16,50% overlap block.
- Each block consists 2x2 cells with size.
- Quantize the gradient orientation in 9 bin histogram.
- Concatenate histogram.

Steps of HOG (Cont'd)

Blocks

- Blocks and Cells:
 - ☐ Total 7 x 15=105 blocks
 - Two adjacent blockoverlaps each other by 50%.
 - Each block has 2x2 cells with size 8x8 pixel.

Fig 6-Blocks and cells[7]

Steps of HOG (Cont'd)

Calculating Gradient Vector

- Gradient vector is calculated for each pixels in 8x8 cells.
- Every pixel provides gradient magnitude and orientation.
- So we will have 64 gradients in one cell (8x8 size).

Calculating Gradient Vector

Notice the gray scale value of N₄(P) of the desired (colored in "Blue") pixel.

Fig. 7. (a) Operating pixel(blue color), (b) Grayscale value of N4(P)

Gradient orientation and magnitude (Cont'd)

Calculation Gradient of the pixel:

Change in X direction:

$$128-84 = 44$$

Change in Y direction:

$$161-54 = 107$$

Gradient Vector:

$$\nabla f = 44 \,\hat{\imath} + 107 \hat{\jmath}$$

Magnitude:

$$\sqrt{44^2 + 107^2} = 115.69$$

Orientation:

$$\Theta = \tan^{-1}\left(\frac{107}{44}\right) = 73.33^{\circ}$$

Normalization:

$$\widehat{u} = \frac{\nabla f}{|\nabla f|} = 0.38 \,\widehat{x} + 0.92 \,\widehat{y}$$

Gradient orientation and magnitude (Cont'd)

After Increasing Brightness by 50

Change in X direction:

$$178-134 = 44$$

Change in Y direction:

$$211-104 = 107$$

Gradient Vector:

$$\nabla f = 44 \,\hat{\imath} + 107 \hat{\jmath}$$

Magnitude:

$$\sqrt{44^2 + 107^2} = 115.69$$

Orientation:

$$\Theta = \tan^{-1}\left(\frac{107}{44}\right) = 73.33^{\circ}$$

Normalization:

$$\widehat{u} = \frac{\nabla f}{|\nabla f|} = 0.38\,\widehat{x} + 0.92\,\widehat{y}$$

Gradient orientation and magnitude(Cont'd)

After Increasing Contrast by 1.5

Change in X direction:

$$192-126 = 66$$

Change in Y direction:

$$242 - 81 = 161$$

Gradient Vector:

$$\nabla f = 66 \,\hat{\imath} + 161 \hat{\jmath}$$

Magnitude:

$$\sqrt{66^2 + 161^2} = 174.00$$

Orientation:

$$\Theta = \tan^{-1}\left(\frac{161}{66}\right) = 67.70^{\circ}$$

Normalization:

$$\widehat{u} = \frac{\nabla f}{|\nabla f|} = 0.38\,\widehat{x} + 0.92\,\widehat{y}$$

Quantizing Histogram

- Histogram contains 9 bins and ranges 0 to 180 degree.
- Each bin is contributed by the magnitudes of the gradient vector.
- Each histogram represents a cell of size 8x8.So one block contains 4 histogram.

Fig. 8. Quantizing histogram

Quantizing Histogram (Cont'd)

Interpolation:

- Suppose an orientation of 85 degree.
- Split 85 between two nearest neighbors bins.
- Distance of '85' from bin center '70' and '80' are 15 and 5 respectively.
- So shares of the magnitude are 15/20=3/4 and 5/20=1/4 for 90 and 80

Fig. 9. Interpolation

Final Descriptor Size

- Concatenating Histogram:
 - Every block with 4 histograms gives
 - $4 \times 9 \text{ bin} = 36 \text{ components}$
 - \Box Total 7 x 15= 105 blocks. So there are,
 - $\sqrt{3}$ 7x15x36= 3,780 components
 - Concatenation of histograms produces,
 - 1 D matrix of dimension 3,780

Fig. 10. Final feature vector

23/28

Experimental Result

Fig. 11. a. Input image ,b. Object detection, c. Final result [7]

Limitations

- Limitations of proposed method
 - Very slow frame rate.
 - Noise sensitive.
 - False shape detection.
 - Humans far from the camera (small size) are hard to detect.

Further Works

- Access control of moving objects and tracking their positions.
- Evaluate performance of proposed methodology.

Conclusion

- A method of distinguish human and also keep detecting the other moving objects is has been proposed here
- Detection is always a challenging task. There are always room for improving the method.

References

27/28

- [1] Dalal and Triggs: "Histograms of oriented gradients for human detection". In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Volume: 1)25-25 June 2005 Page(s):886 893 vol. 1
- [2] Z Zivkovic: "Improved adaptive Gaussian mixture model for background subtraction". Published in: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on (Volume: 2) 23-26 Aug. 2004 Page(s):28 31 Vol.2
- [3] KaewTraKulPong and R. Bowden: "An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection". Vision and Virtual Reality group, Department of Systems Engineering, Brunel University, and Middlesex, UB8 3PH.
- [4] Suard, F.; Centre Nat. de la recherche scientifique, INSA Rouen, Saint Etienne; Rakotomamonjy, A.; Bensrhair, A.; Broggi: "A Pedestrian Detection using Infrared images and Histograms of Oriented Gradients" Intelligent Vehicles Symposium, 2006 IEEE Page(s):206 212
- [5] Bertozzi, M.; Univ.a di Parma, Parma; Broggi, A; Del Rose, M.; Felisa, M.more authors: A Pedestrian Detector Using Histograms of Oriented Gradients and a Support Vector Machine Classifier. In: Intelligent Transportation Systems Conference, 2007. ITSC 2007. IEEE, Page(s):143 148

References (Cont'd)

28/28

- [6] Gaussian mixture model image. Available at: http://www.mathworks.com/matlabcentral/fileexchange/screenshots/3544/original.jpg (Access on: 03-08-15)
- [7] Output screenshot from experimental dataset video footage. Available at: http://www.dailymotion.com/video/x12l3e6_traffic-moves-along-a-busy-road-in bangkok_travel (Access on: 07-08-15)
- [8] Background model creation output screenshot. Available at: http://code.opencv.org/issues/1931 (Access on: 07-08-15)

Thank You. Any Question?