9:23

2022年5月14日

● 反向传播

NO. / / Date. / /

$$\frac{\partial C}{\partial b_{i}^{i}} = \frac{\partial C}{\partial 2 \cdot j} \cdot \frac{\partial Z_{i}^{i}}{\partial b_{i}^{i}}$$
 $= S_{i}^{i}$
 $\frac{\partial C}{\partial b_{i}^{i}} = \frac{\partial C}{\partial 2 \cdot j} \cdot \frac{\partial Z_{i}^{i}}{\partial b_{i}^{i}}$
 $= S_{i}^{i}$

● BN层计算

● BN层反向传播

$$\frac{\partial L}{\partial \lambda_{1}} = \frac{\partial L}{\partial \lambda_{2}} \cdot \frac{\partial \lambda_{2}}{\partial \lambda_{2}} + \frac{\partial L}{\partial \mu} \cdot \frac{\partial L}{\partial \lambda_{2}} + \frac{\partial L}{\partial \theta} \cdot \frac{\partial \theta}{\partial \lambda_{2}}$$

$$\frac{\partial G}{\partial \lambda_{2}} = \frac{2}{m} (\lambda_{2} - \mu)$$

$$\frac{\partial G}{\partial \lambda_{2}} = \frac{1}{m} \frac{\partial G}{\partial \lambda_{2}} = \frac{1}{\sqrt{B+C}}$$

● L2正则化 (防止过拟合)

● L2正则化服从高斯分布

● L1正则化服从拉普拉斯分布

● 逻辑回归 (预测函数、损失函数、梯度更新)

```
• 12年前年,核天创教、林崖更新
  D. LR的存在历史为场性图片,加入3 5gmod 刘菡特连续值
  既到为0分1.
 Q. Symost dika:
      g(2) = 1
                   9(2) = 9(3) (1-9(2))
 ② 【处理】山麓:
              ho(x) = g(\theta^T x)
 图 加强年至5世:
       pri= 1x) = horx) => prixx) = how thehow
        PLY=OIX) = 1- hOLX)
图· 极大似然出态:
    LLO) = I PLY=y(E) / X(E))
        = 13 holx(6), y(1) . LI-ho(x(6)))
①· log 級無由数:
Lie) = 篇 y lo(x lo(x lo)) + (1-y lo)·(1-ho(x lo))
          = Ey hog choxx)+ (1-42log (1-hocx))
```

$$\frac{\partial \log x}{\partial \theta} = \frac{\partial \log x}{\partial h \partial x} \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{1}{y \cdot h \partial x} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{1}{y \cdot h \partial x} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{1}{y \cdot h \partial x} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{1}{y \cdot h \partial x} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{1}{y \cdot h \partial x} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{1}{y \cdot h \partial x} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - U \cdot y\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h \partial x}{\partial \theta} - \frac{\partial h \partial x}{\partial \theta}\right) \cdot \frac{\partial h \partial x}{\partial \theta}$$

$$= \left(y \cdot \frac{\partial h$$

● SVM (原形式、对偶形式)

| 1 () | 1

**NO. / / Date. / / D

AdaBoost

ika.
Ro.
PL GM(TH) + 45)
ent 2nv
Gmitted
光傳 8
i

1 in rai	Gm H (7)
①. 构建	所有基词器的房性组成
	fix) = = 2 am. Gm(t)
@· 58到 {	長冬名業器:
	GLO = sign (fit)

● GBDT (梯度提升决策树)

Q. 183	12)zhzt	, ,	NO.	, , , , ,	Date.	1 1
	fin	M J	Cmj II	BERMj)	
TL %, 6	9)= }	E Cj IIX	ERj)			

● 泰勒展开式

NO. / / Date. / / /

(大力) =
$$\frac{1}{1!}$$
 (大力) + $\frac{1}{1!}$ (大力) + $\frac{1}{1!}$ (大力) + $\frac{1}{1!}$ (大力)

(大力)