Introdução à Otimização: modelagem

Prof. Marcone J. F. Souza Prof. Túlio A. M. Toffolo

marcone.freitas@yahoo.com.br

Departamento de Computação Universidade Federal de Ouro Preto

Pesquisa Operacional Aplicada à Mineração

Prof. Marcone Jamilson Freitas Souza

Departamento de Computação Universidade Federal de Ouro Preto www.decom.ufop.br/prof/marcone marcone.freitas@yahoo.com.br

Prof. Túlio Ângelo Machado Toffolo

Departamento de Computação
Universidade Federal de Ouro Preto
www.decom.ufop.br/toffolo
tulio@toffolo.com.br

Roteiro

- Problema de Transporte
- Problema de Alocação de Ordens de Serviço
- Problema de Dimensionamento de Lotes
- Problema das p-medianas não Capacitado
- Problema das p-medianas Capacitado
- Problema dos p-centros
- Problema de Alocação Dinâmica de Caminhões

PROBLEMA DE TRANSPORTE

- Há um conjunto de minas produtoras de minério
- Há um conjunto de usinas que processam os minérios provenientes das minas
- Há um custo de transporte de minério de uma mina para uma usina
- Cada mina tem uma capacidade de produção mensal
- Cada usina tem uma demanda mensal
- Cada mina tem um custo fixo se for usada
- Determinar a estratégia ótima de transporte

Mina		Usinas	Сар	Custo	
	1	2	3	(t/mês)	(\$)
1	10	8	13	11500	50000
2	7	9	14	14500	40000
3	6,5	10,8	12,4	13000	30000
4	8,5	12,7	9,8	12300	25500
Demanda (t/mês)	10000	15400	13300	-	-

Dados de entrada:

- Minas = Conjunto de minas
- Usinas = Conjunto de usinas
- cap_i = capacidade de produção, em toneladas/mês, da mina i
- dem_j = quantidade de minério demandado pela usina j, em ton/mês
- f_i = custo fixo de uso da mina i, em \$
- c_{ij} = custo de transporte de minério proveniente da mina i para abastecer a usina j, em \$/tonelada/mês

Variáveis de decisão:

- x_{ij} = Quantidade de minério, em toneladas/mês, a ser transportado da mina *i* para abastecer a usina *j*
- $y_i = 1$ se a mina *i* for usada e 0, caso contrário

- Como oferta (minas) > demanda (usinas):
 - Toda a demanda será atendida

 Função objetivo: minimizar o custo de transporte mais o custo fixo pelo uso das minas usadas

$$\min \sum_{i \in Minas} \sum_{j \in Usinas} c_{ij} x_{ij} + \sum_{i \in Minas} f_i y_i$$

A capacidade de produção das minas deve ser respeitada

$$\sum_{j \in \text{Usinas}} x_{ij} \le cap_i \quad \forall i \in Minas$$

Toda a demanda é atendida (oferta > demanda)

$$\sum_{i \in Minas} x_{ij} = dem_j \quad \forall j \in Usinas$$

Uma mina só pode ser usada se houver produção

$$y_{i} \ge \frac{\sum_{j \in \text{Usinas}} x_{ij}}{cap_{i}} \quad \forall i \in Minas$$

Não negatividade e integralidade

$$y_i \in \{0,1\} \ \forall i \in Minas$$

 $x_{ij} \ge 0 \ \forall i \in Minas, \ \forall j \in Usinas$

Relativamente ao problema anterior, supor que <u>se</u> <u>houver transporte</u> de minério de uma mina *i* para uma usina *j*, então a quantidade *x_{ij}* transportada não pode ser inferior a *transpmin*.

$$z_{ij} \ge \frac{x_{ij}}{cap_i} \quad \forall i \in Minas, \forall j \in Usinas$$

$$x_{ij} \ge transpmin \cdot z_{ij} \quad \forall i \in Minas, \forall j \in Usinas$$

$$z_{ij} \in \{0,1\} \ \forall i \in Minas, \forall j \in Usinas$$

Se oferta (minas) < demanda (usinas):</p>

$$\min \sum_{i \in \mathit{Minas}} \sum_{j \in \mathit{Usinas}} c_{ij} x_{ij} + \sum_{i \in \mathit{Minas}} f_i \\ \sum_{j \in \mathit{Usinas}} x_{ij} = cap_i \quad \forall i \in \mathit{Minas} \\ \\ \sum_{j \in \mathit{Usinas}} x_{ij} = cap_i \quad \forall j \in \mathit{Usinas} \\ \\ \\ \\ \text{Nem toda a demanda \'e atendida} \\ \\ \\ \text{Nem toda a demanda \'e atendida} \\ \\ \\ \text{Nem toda a demanda \'e atendida} \\ \\ \\ \text{Nem toda a demanda \'e atendida} \\ \\ \\ \text{Nem toda a demanda \'e atendida} \\ \\ \text{Nem toda \'e atendida} \\$$

$$x_{ij} \ge 0 \ \forall i \in Minas, \ \forall j \in Usinas$$

ALOCAÇÃO DE ORDENS DE SERVIÇO

- Deseja-se executar um conjunto de ordens de serviço (Servicos) em um conjunto de dias (Dias).
- Cada ordem de serviço $i \in Servicos$ demanda d_i horas de serviço e a ela está associada uma prioridade $p_i \in [1, 5]$, sendo que quanto maior o valor de p_i , maior a prioridade.
- Conhecendo-se a quantidade cap_j disponível de horas de serviço por dia, determinar a <u>alocação diária de ordens</u> de serviço cujo somatório das prioridades seja máxima.

Serviços	Duração	Prioridade		Dias	
s1	2	4	Seg	Ter	Qua
s2	3	3	16	15	16
s3	5	1			
s4	4	4			
s5	6	1			
s6	3	2			
s7	10	4			
s8	8	3			
s9	7	4			
s10	4	1			

Dados de entrada:

- • d_i = duração do serviço i
- • p_i = prioridade do serviço i
- $cap_i = número de horas de serviço disponíveis no dia j$

Variáveis:

 $\bullet x_{ij} = 1$ se o serviço j for executado no dia i ou zero caso contrário

$$\max \sum_{i \in Servicos} \sum_{j \in Dias} p_i x_{ij}$$

$$\sum_{j \in Dias} \mathbf{x}_{ij} \leq 1 \quad \forall i \in \mathbf{Servicos}$$
 Um serviço i , se executado deve ser realizado em um único dia;

Um serviço i, se executado, único dia;

$$\sum_{i \in Servicos} d_i X_{ij} \le cap_j \quad \forall j \in Dias$$
 Em um dado dia j os servicos executados têm que respeitar a disponibilidade de horas

disponibilidade de horas

$$x_{ij} \in \{0,1\} \ \forall i \in Servicos,$$
 As variáveis envolvidas são binárias (0 ou 1)

Reescreva a função objetivo para que as ordens de serviço de maior prioridade sejam realizadas nos dias iniciais do horizonte de planejamento.

PROBLEMA DE DIMENSIONAMENTO DE LOTES

- Empresas precisam produzir diversos tipos de produtos solicitados por diferentes clientes
- Produtos devem estar prontos em datas previamente agendadas
- A capacidade de produção é limitada (máquinas, mãode-obra, etc)
- Necessário se faz planejar a produção
- Decidir <u>o quê produzir</u>, <u>quanto produzir</u>, isto é, dimensionar os lotes de produção, e <u>quando produzir</u> (em cada período do horizonte de planejamento)

- A necessidade de antecipação da fabricação de produtos (estocados de um período para outro) acarreta custos de estocagem e algumas dificuldades operacionais
- No planejamento da produção deseja-se determinar o tamanho dos lotes de produção para atender a demanda na data solicitada, de modo que a soma dos custos de produção e estocagem seja <u>mínima</u>.

- Imagine o atendimento a uma encomenda para entregar um produto ao longo de um período de tempo. São dados, para cada mês:
 - Demanda
 - Custo de produção
 - Custo de estocagem
- Considere que o estoque inicial seja de 3 unidades
- Elabore um modelo de PLI que minimize o custo total de produção e estocagem.

Mês	Cap. Produção (unid)	Demanda (unid.)	Custo de estocagem (R\$)	Custo de prod. (R\$)
1	7	10	3	5
2	7	2	2	3
3	7	9	3	7
4	7	6	2	4
5	7	8	3	5
6	7	7	2	9

Dados de entrada:

- meses = conjunto dos meses de produção
- cprod_t = custo de produção no mês t
- cest_t = custo de estoque no mês t
- demanda_t = demanda no mês t
- cap_t = capacidade de produção no mês t
- estinicial = estoque inicial

Variáveis de decisão:

- x_t = quantidade do produto a ser produzida no mês t
- e_t = quantidade do produto a ser estocada no mês t

Função objetivo: minimizar os custos de produção e de estocagem

$$\min \sum_{t \in Meses} (cprod_t x_t + cest_t e_t)$$

Conservação de fluxo no final do mês 1:

$$e_1 = estinicial + x_1 - demanda_1$$

• Conservação de fluxo em ao final de cada mês t > 1:

$$e_t = e_{t-1} + x_t - demanda_t \forall t \in Meses \mid t > 1$$

Respeito à capacidade de produção em cada mês:

$$x_t \leq cap_t \ \forall t \in Meses$$

$$\min \sum_{t \in Meses} (cprod_t x_t + cest_t e_t)$$

$$e_1 = estinicial + x_1 - demanda_1$$

$$e_t = e_{t-1} + x_t - demanda_t$$

 $\forall t \in Meses | t > 1$

$$x_t \le cap_t \ \forall t \in Meses$$

$$e_t \ge 0, x_t \ge 0 \ \forall t \in Meses$$

Conservação de fluxo no final do mês 1:

Conservação de fluxo em ao final de cada mês t > 1:

Capacidade de produção

Não-negatividade

DIMENSIONAMENTO DE LOTES COM VÁRIOS PRODUTOS

Dimensionamento de Lotes (n produtos)

- Considere uma empresa que fabrica <u>n</u> produtos e deseja programar sua produção nos próximos T períodos de tempo.
- É conhecida a demanda de cada produto em cada período do horizonte de planejamento.
- Em cada período, os recursos necessários para a produção são limitados e renováveis, isto é, uma quantidade de recursos está sempre disponível (mão-de-obra, horas-de-máquina, etc.).
- Há a possibilidade de estocagem de produtos de um período para outro

Dimensionamento de Lotes (n produtos)

Dados de entrada:

- demanda_{it}: demanda do item i no período t
- cap_t: disponibilidade de recursos no período t
- consumo; quantidade de recursos necessários para a produção de uma unidade do item i
- cprod_{it}: custo de produzir uma unidade de i no período t
- cest_{it}: custo de estocar uma unidade de i no período t

Estoques iniciais e_{io} são dados

Dimensionamento de Lotes (n produtos)

Variáveis de decisão:

- x_{it}: número de itens do tipo i produzidos no período t
- e_{it}: número de itens do tipo i em estoque no final do período t

$$\min \sum_{i \in Itens} \sum_{t \in Meses} (cprod_{it} x_{it} + cest_{it} e_{it})$$

$$e_{it} = e_{i, t-1} + x_{it} - demanda_{it}$$

 $\forall i \in Itens, \ \forall t \in Meses | t > 1$

$$\sum_{i=1}^{n} consumo_{i} x_{it} \leq cap_{t} \ \forall t \in Meses$$

$$e_{it} \in Z^+, x_{it} \in Z^+$$

 $\forall i \in Itens, \forall t \in Meses$

Conservação de fluxo em ao final de cada mês t > 1:

Restrições de capacidade

Integralidade das variáveis

PROBLEMA DAS P-MEDIANAS

 Problema de localização de facilidades: dado um número n de clientes (pontos de demanda), encontrar os p pontos de suprimento que minimizem o custo de cada

ponto de demanda a seu respectivo ponto de suprimento.

 Aplicações na localização de fábricas, usinas, centros de distribuição, centros de saúde, etc.

Dados de entrada:

- Locais: Conjunto de locais
- Facilidades: Conjunto de possíveis locais para instalação de facilidades
- p = número de facilidades a serem instaladas
- c_{ij} = custo de atendimento de um local j por uma facilidade instalada em i
- demanda_i = demanda do local j
- f_i = custo de instalação da facilidade no local i

Problema das p-medianas capacitado

Variáveis de decisão:

- $x_{ij} = 1$ se o local j for atendido pela facilidade instalada em i e zero caso contrário.
- $y_i = 1$ se a facilidade for instalada em i e zero caso contrário.

Problema das p-medianas capacitado

Função objetivo:

$$\min \sum_{i \in \textit{Facilidades}} \sum_{j \in \textit{Locais}} c_{ij} x_{ij} + \sum_{i \in \textit{Facilidades}} f_i y_i$$

Cada local é atendido por uma única facilidade:

$$\sum_{i \in Facilidades} x_{ij} = 1 \ \forall j \in Locais$$

Devem ser instaladas p facilidades:

$$\sum_{i \in Facilidades} y_i = p$$

Um local só pode ser atendido por uma facilidade i se ela tiver sido instalada:

$$x_{ij} \le y_i \ \forall i \in Facilidades, \forall j \in Locais$$

As variáveis de decisão (x_{ii} e y_i) devem ser binárias:

$$x_{ij} \in \{0,1\} \quad \forall i \in Facilidades, \forall j \in Locais$$

 $y_i \in \{0,1\} \quad \forall i \in Facilidades$

$$\min \sum_{i \in \textit{Facilidades}} \sum_{j \in \textit{Locais}} c_{ij} x_{ij} + \sum_{i \in \textit{Facilidades}} f_i y_i$$

$$\sum_{i \in Facilidades} x_{ij} = 1 \ \forall j \in Locais$$

$$\sum y_i = p$$

i∈ Facilidades

$$x_{ij} \le y_i \quad \forall i \in \textit{Facilidades}, \forall j \in \textit{Locais}$$

$$x_{ij} \in \{0,1\} \ \forall i \in Facilidades, \forall j \in Locais$$

$$y_i \in \{0,1\} \ \forall i \in Facilidades$$

PROBLEMA DAS P-MEDIANAS CAPACITADO

Problema das p-medianas capacitado

Dados de Entrada Adicionais:

- cap_i = capacidade (recursos) da facilidade i
- demanda_i = demanda de recursos do local j

Função objetivo: (idêntica ao problema não capacitado)

$$\min \sum_{i \in \textit{Facilidades } j \in \textit{Locais}} \sum_{i \in \textit{Facilidades}} f_i y_i$$

Problema das p-medianas capacitado

A demanda de um local j só pode ser atendida por uma facilidade i que comporte este atendimento:

$$\sum_{j \in Locais} demanda_j x_{ij} \le cap_i y_i \ \forall i \in Facilidades$$

$$\min \sum_{i \in \textit{Facilidades}} \sum_{j \in \textit{Locais}} c_{ij} x_{ij} + \sum_{i \in \textit{Facilidades}} f_i y_i$$

$$\sum_{j \in Locais} demanda_j x_{ij} \leq cap_i y_i \ \forall i \in Facilidades$$

$$\sum_{i \in Facilidades} x_{ij} = 1 \ \forall j \in Locais$$

$$\sum_{i \in Facilidades} y_i = p$$

$$x_{ij} \le y_i \quad \forall i \in Facilidades, \forall j \in Locais$$

$$x_{ij} \in \{0,1\} \ \forall i \in Facilidades, \forall j \in Locais$$

$$y_i \in \{0,1\} \ \forall i \in Facilidades$$

PROBLEMA DOS P-CENTROS

- Objetivo é o de minimizar a distância máxima entre um local j e a facilidade i a ele designada.
- Minimizar r, onde r é a maior distância entre uma facilidade e seu local de atendimento:

 $d_{ij}x_{ij} \le r \ \forall i \in Facilidades, \ \forall j \in Locais$

min r

$$d_{ij}x_{ij} \le r \ \forall i \in Facilidades, \ \forall j \in Locais$$

$$\sum_{i \in Facilidades} x_{ij} = 1 \ \forall j \in Locais$$

$$\sum_{i \in Facilidades} y_i = p$$

$$x_{ij} \le y_i \quad \forall i \in Facilidades, \forall j \in Locais$$

$$x_{ij} \in \{0,1\} \ \forall i \in Facilidades, \forall j \in Locais$$

$$y_i \in \{0,1\} \ \forall i \in Facilidades$$

min r

$$\sum_{i \in \textit{Facilidades}} d_{ij} x_{ij} \leq r \ \forall j \in \textit{Locais}$$

$$\sum_{i \in Facilidades} x_{ij} = 1 \ \forall j \in Locais$$

$$\sum_{i \in Facilidades} y_i = p$$

$$x_{ij} \le y_i \quad \forall i \in \textit{Facilidades}, \forall j \in \textit{Locais}$$

$$x_{ij} \in \{0,1\} \quad \forall i \in Facilidades, \forall j \in Locais$$

$$y_i \in \{0,1\} \ \forall i \in Facilidades$$

PROBLEMA DA ALOCAÇÃO DINÂMICA DE CAMINHÕES

Dados de entrada (1):

- t_{ij}: Teor do parâmetro j na frente i (%);
- tl_i: Teor mínimo admissível para o parâmetro j (%);
- tu_i: Teor máximo admissível para o parâmetro j (%);
- tr_i: Teor recomendado para o parâmetro j (%);
- wnm_i: Peso por desvio negativo para o parâmetro j;
- wpm_i: Peso por desvio positivo para o parâmetro j;
- wpp: Peso por desvio positivo de produção;
- wnp: Peso por desvio negativo de produção;

Dados de entrada (2):

- Qu_i: Massa disponível na frente i (t);
- tempCiclo_i: Tempo de ciclo de caminhões para a frente i;
- estMin_i: Se a frente i é de minério (1) ou estéril (0);
- Cu_k: Produção máxima da carregadeira k (t/h);
- Cl_k: Produção mínima da carregadeira k (t/h);
- capCam_I: Capacidade do caminhão I (t);
- comp_{lk}: Se o caminhão l é compatível (1) ou não (0) com a carregadeira k;
- rem: Relação estéril/minério.

Variáveis de decisão:

- x_i: Ritmo de lavra para a frente i (t/h);
- y_{ik}: 1 se a carregadeira k opera na frente i e 0 c.c.;
- usou₁ = 1 se o caminhão I for usado e 0 caso contrário;
- n_{li}: Viagens que o caminhão I realiza à frente i;
- dnm_j e dpm_j: Desvios negativo e positivo da meta do parâmetro j (t/h);
- dnu_l e dpu_l: Desvios negativo e positivo de utilização do caminhão l;
- dnp e dpp: Desvios negativo e positivo de produção;

Função objetivo

$$\min \sum_{j \in Parametros} \left(wnm_{j}dnm_{j} + wpm_{j}dpm_{j} \right) + wnp \cdot dnp + wnp \cdot dpp + \sum_{l \in Caminhoes} CapCam_{l}usou_{l}$$

Problema da Mistura expandido

• Admite-se que haja falta (dnm_j) ou excesso (dpm_j) do parâmetro j na mistura em relação à meta de qualidade

$$\sum_{\substack{i \in \textit{Frentes} \\ | \textit{estMin}_i = 1}} \left(t_{ij} - tr_j \right) \textit{X}_i + dnm_j - dpm_j = 0 \ \forall j \in \textit{Parametros}$$

• Os desvios dnm_j e dpm_j devem ser penalizados na função objetivo.

• Atendimento aos limites de especificação (obrigatório):

$$\sum_{\substack{i \in \textit{Frentes} \\ | \textit{estMin}_i = 1}} \left(t_{ij} - t u_j \right) x_i \leq 0 \ \forall j \in \textit{Parametros}$$

$$\sum_{\substack{i \in \textit{Frentes} \\ | \textit{estMin}_i = 1}} \left(t_{ij} - t I_j \right) \textbf{\textit{x}}_i \geq 0 \ \forall j \in \textit{Parametros}$$

A produção deve respeitar o máximo admitido:

$$\sum_{\substack{i \in Frentes \\ |estMin_i = 1}} x_i \le pu$$

A produção deve respeitar o mínimo admitido:

$$\sum_{\substack{i \in Frentes \\ |estMin_i = 1}} x_i \ge pl$$

A meta de produção deve ser buscada sempre que possível.

$$\sum_{\substack{i \in Frentes \\ |estMin_i = 1}} x_i + dnp - dpp = pr$$

A relação estéril/minério deve ser atendida:

$$\sum_{\substack{i \in Frentes \\ |estMin_i = 0}} x_i - rem \sum_{\substack{i \in Frentes \\ |estMin_i = 1}} x_i \ge 0$$

No máximo uma carregadeira operando em cada frente

$$\sum_{k \in \textit{Carregadeiras}} y_{ik} \leq 1 \ \forall i \in \textit{Frentes}$$

 Cada carregadeira deve operar em no máximo uma frente.

$$\sum_{i \in \mathit{Frentes}} y_{ik} \leq 1 \ \forall k \in \mathit{Carregadeiras}$$

 O ritmo de lavra da frente i deve ser maior do que a produtividade mínima da carregadeira k alocada à frente

$$x_i \ge \sum_{k \in Carregadeiras} Cl_k y_{ik} \ \forall i \in Frentes$$

 O ritmo de lavra da frente i deve ser menor do que a produtividade máxima da carregadeira k alocada à frente

$$x_i \leq \sum_{k \in Carregadeiras} Cu_k y_{ik} \ \forall i \in Frentes$$

 Cada caminhão I deve realizar viagens apenas à uma frente i que esteja alocada uma carregadeira compatível

$$n_{il}$$
 temp $Ciclo_i \le \sum_{\substack{k \in \textit{Carregadeiras} \ |\textit{comp}_{lk}=1}} 60 \, y_{ik} \, \, \forall i \in \textit{Frentes}, \, \forall I \in \textit{Caminhoes}$

 $n_{il} \in \mathbb{Z}^+ \ \forall i \in Frentes, \ \forall l \in Caminhoes$

Cada caminhão I deve operar no máximo 60 minutos

$$\sum_{i \in \mathit{Frentes}} n_{il} \mathit{tempCiclo}_i \leq 60 \ \forall \mathit{I} \in \mathit{Caminhoes}$$

 O ritmo de lavra da frente i deve ser igual à produção realizada pelos caminhões alocados à frente

$$x_i = \sum_{l \in Caminhoes} n_{il} capCam_l \ \forall i \in Frentes$$

 Um caminhão é usado se ele faz alguma viagem a alguma frente

$$\sum_{\substack{l \in \textit{Frentes} \\ 60}} \textit{tempCiclo}_{i} \; n_{il}$$

$$\textit{usou}_{l} \geq \frac{\textit{i} \in \textit{Frentes}}{60} \quad \forall \textit{l} \in \textit{Caminhoes}$$

$$\textit{usou}_{l} \in \{0,1\} \; \forall \textit{l} \in \textit{Caminhoes}$$