

Capitolo 2 Linguaggi e Grammatiche

Corso di Laurea Magistrale in Ingegneria Informatica

Prof. ENRICO DENTI

Dipartimento di Informatica – Scienza e Ingegneria (DISI)

COS'È UN LINGUAGGIO?

Dice il dizionario:

"Un linguaggio è un *insieme di parole* e di *metodi di* combinazione delle parole usate e comprese da una comunità di persone."

È una definizione poco precisa:

- non evita le ambiguità dei linguaggi naturali
- non si presta a descrivere processi computazionali meccanizzabili
- non aiuta a stabilire proprietà

LA NOZIONE DI LINGUAGGIO

- Occorre una nozione di linguaggio più precisa
- Linguaggio come sistema formale che consenta di risponde a domande come:
 - quali sono le frasi lecite?
 - si può stabilire se una frase appartiene al linguaggio?
 - come si stabilisce il significato di una frase?
 - quali elementi linguistici primitivi ?

SINTASSI & SEMANTICA

- Sintassi: l'insieme di *regole formali* per la scrittura di frasi corrette («programmi») in un linguaggio, che dettano le *modalità per costruire frasi corrette* nel linguaggio stesso.
- Semantica: l'insieme dei significati da attribuire alle frasi (sintatticamente corrette) del linguaggio.

MA:

Una frase può essere sintatticamente corretta e tuttavia non avere significato!

SINTASSI & SEMANTICA ©

Una frase può essere sintatticamente corretta e tuttavia non avere significato!

SINTASSI & SEMANTICA

- La sintassi è solitamente espressa tramite notazioni formali come
 - BNF, EBNF
 - diagrammi sintattici
- La semantica è esprimibile:
 - a parole (poco precisa e ambigua)
 - mediante azioni
 - → semantica operazionale
 - mediante funzioni matematiche
 - → semantica denotazionale
 - mediante formule logiche
 - → semantica assiomatica

INTERPRETAZIONE vs COMPILAZIONE

Un *interprete* per un linguaggio L:

- accetta in ingresso le singole frasi di L
- e le esegue una per volta.

Il risultato è la *valutazione* della frase.

Un compilatore per un linguaggio L, invece:

- accetta in ingresso un intero programma scritto in L
- e lo riscrive in un altro linguaggio (più semplice).

Il risultato è dunque una *riscrittura* della "macro-frase".

A volte la differenza è più sfumata di quel che si può pensare..

ANALISI LESSICALE & SINTATTICA

- L'analisi lessicale consiste nella individuazione delle singole parole (token) di una frase
 - L'analizzatore lessicale (detto *scanner* o *lexer*), data una sequenza di <u>caratteri</u>, li aggrega in <u>token</u> di opportune <u>categorie</u> (nomi, parole chiave, simboli di punteggiatura, etc.)
- L'analisi sintattica consiste nella verifica che la frase, intesa come sequenza di token, rispetti le regole grammaticali del linguaggio.
 - L' analizzatore sintattico (detto *parser*), data la sequenza di <u>token</u> prodotta dallo scanner, genera una <u>rappresentazione interna</u> della frase solitamente sotto forma di *opportuno albero*.

ANALISI SEMANTICA

- L'analisi semantica consiste nel determinare il significato di una frase
 - L'analizzatore semantico, data la rappresentazione intermedia prodotta dal parser, controlla la coerenza logica della frase
 - se le variabili sono usate solo dopo essere state definite
 - se sono rispettate le regole di compatibilità in tipo
 - ...
 - Può anche trasformare ulteriormente la rappresentazione delle frasi in una forma più adatta alla generazione finale di codice.
- Già, ma... cos'è il "significato" di una frase?

SIGNIFICATO DI UNA FRASE

- Chiedersi quale sia il significato di una frase significa associare a quella frase un concetto nella nostra mente
 - Lo facciamo in base alla nostra cultura ed esperienza di vita

Ad esempio, se siamo italiani la stringa "spaghetti pomodoro e basilico" (frase) verrà probabilmente associata dalla nostra mente al *concetto* di

SIGNIFICATO DI UNA FRASE

- Per farlo, nella nostra mente deve evidentemente esserci una funzione che associa a ogni frase
 - cioè a ogni stringa di caratteri lecita nel linguaggio
- un concetto
 - cioè un elemento di un qualche dominio

Ad esempio, se il dominio è la *matematica*, la funzione potrebbe essere:

SIGNIFICATO DI UNA FRASE

- Tale funzione deve quindi dare significato:
 - prima a ogni simbolo (carattere dell'alfabeto)
 - poi a ogni parola (sequenza lecita di caratteri)
 - infine a ogni frase (sequenza lecita di parole).
- Nel caso dell'esempio:
 - l'alfabeto potrebbe consistere nei simboli "1", "2", ... "9"
 <u>se consideriamo la nostra cultura attuale</u>
 → ma Giulio Cesare avrebbe scelto "I", "V", "X", ...
 - le parole potrebbero essere sequenze di tali simboli, come "51", da intendersi ovviamente secondo la nostra cultura
 - "51" per noi rappresenta il concetto cinquantuno...
 - ...ma per Giulio Cesare "VI" avrebbe rappresentato l'entità sei!

DEFINIZIONI

Alfabeto

 un alfabeto A è un insieme finito e non vuoto di simboli atomici. Esempio: A = { a, b }

Stringa

- un stringa è una sequenza di simboli, ossia un elemento del prodotto cartesiano Aⁿ.
 Esempi: a ab aba bb ...
- Lunghezza di una stringa: il numero di simboli che la compongono.
- Stringa vuota ε : stringa di lunghezza zero.
 ⇒ Si noti che A⁰ = { ε }

DESCRIZIONE DI UN LINGUAGGIO

Linguaggio L su un alfabeto A

- Un linguaggio L è un insieme di stringhe su A
- Frase (sentence) di un linguaggio: una stringa appartenente a quel linguaggio.
- Cardinalità di un linguaggio: il numero delle frasi del linguaggio
 - linguaggio finito: ha cardinalità finita
 - linguaggio infinito: ha cardinalità infinita

Esempi:

```
L1 = { aa, baa } Iinguaggio a cardinalità finita

L2 = { a^n, n primo } Iinguaggio a cardinalità infinita

L3 = { a^nb^n, n>0 } Iinguaggio a cardinalità infinita
```


DESCRIZIONE DI UN LINGUAGGIO

Chiusura A* di un alfabeto A (o ling. universale su A)

• È l'insieme *infinito* di tutte le stringhe composte con simboli di A:

$$\mathbf{A}^* = \mathbf{A}^0 \cup \mathbf{A}^1 \cup \mathbf{A}^2 \cup \dots$$

Chiusura positiva A+ di un alfabeto A

• È l'insieme *infinito* di tutte le stringhe *non nulle* composte con simboli di A:

$$A^+ = A^* - \{ \epsilon \}$$

SPECIFICA DI UN LINGUAGGIO

- Problema: come specificare il sotto-insieme di A* che definisce uno specifico linguaggio?
 - per specificare un linguaggio finito,
 basta ovviamente elencarne tutte le frasi
 - per specificare un linguaggio *infinito*, invece, serve una qualche *notazione* capace di descrivere in modo *finito* un *insieme infinito* di elementi.
 - Nasce così la nozione di grammatica formale

GRAMMATICA FORMALE

Una *Grammatica* è una *notazione formale* con cui esprimere in modo rigoroso la *sintassi* di un linguaggio.

Una grammatica è una *quadrupla* (VT,VN,P,S) dove:

- VT è un insieme finito di simboli terminali
- VN è un insieme finito di simboli non terminali
- P è un insieme finito di produzioni, ossia di regole di riscrittura $\alpha \rightarrow \beta$ dove α e β sono stringhe: $\alpha \in V^+$, $\beta \in V^*$
 - ogni regola esprime una trasformazione lecita che permette di scrivere, *nel contesto di una frase data,* una stringa β al posto di un'altra stringa α.
- S è un particolare simbolo non-terminale detto simbolo iniziale o scopo della grammatica.

GRAMMATICA FORMALE

Una *Grammatica* è una in modo rigoroso la sinta

I simboli terminali sono caratteri o stringhe su un alfabeto A.

Una grammatica è una quadrupla (VT,VN,P,

- VT è un insieme finito di simboli terminali
- VN è un insieme finito di simboli non terminali
- P è un *insieme finito di prod*i, ossia di *regole di*

I simboli *non terminali* sono dei *meta-simboli* che rappresentano le diverse categorie sintattiche.

 $\alpha \in V^+$, $\beta \in V^*$ che permette di oro, nor comedie ar ana mace data, and otringa β al posto di

e

- Gli insiemi VT e VN devono essere disgiunti: VT ∩ VN = Ø
- L'unione VT ∪ VN si dice vocabolario della grammatica.

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

GRAMMATICHE: CONVENZIONI

CONVENZIONI SUI SIMBOLI

Nelle formule teoriche, per comodità:

- i simboli *terminali* si indicano con lettere minuscole
- i meta-simboli si indicano con lettere MAIUSCOLE
- le lettere greche indicano stringhe mixed di terminali e meta-simboli

CONVENZIONI SULLE PRODUZIONI

una produzione α -> β riscrive una stringa <u>non nulla</u> α∈V⁺ sotto forma della nuova stringa (eventualmente anche nulla) β∈V^{*}

FRASI (sentences) vs. FORME DI FRASI (sentential forms)

- Si dice <u>forma di frase</u> (sentential form) una qualsiasi stringa <u>comprendente sia simboli terminali sia meta-simboli,</u> ottenibile dallo scopo applicando una o più regole di produzione.
 - una sentential form è un prodotto intermedio, in cui alcune parti della (futura) frase sono già finali, mentre altre sono ancora "in itinere", soggette a ulteriori trasformazioni.
- Si dice <u>frase</u> una forma di frase <u>comprendente solo</u> simboli terminali.
 - una sentence è invece un prodotto finale, in cui tutte le parti "in itinere" sono state ormai trasformate e non c'è più nulla di ulteriormente trasformabile.

DERIVAZIONE

Siano α , β due stringhe \in (VN \cup VT)*, $\alpha \neq \epsilon$

Si dice che β deriva direttamente da α ($\alpha \rightarrow \beta$) se

• le stringhe α , β si possono decomporre in

$$\alpha = \eta A \delta$$
 $\beta = \eta \gamma \delta$

• ed esiste la produzione $A \rightarrow \gamma$.

Si dice che β deriva da α (anche non direttamente) se

• esiste una sequenza di N derivazioni dirette che da α possono infine produrre β

$$\alpha = \alpha 0 \rightarrow \alpha 1 \rightarrow \alpha 2 \rightarrow ... \rightarrow \alpha N = \beta$$

SEQUENZA DI DERIVAZIONE

Si dice sequenza di derivazione la sequenza di passi che producono una forma di frase o dallo scopo S.

$$S \Rightarrow \sigma$$

σ deriva da S con <u>una sola</u> applicazione di produzioni (in <u>un solo</u> passo)

$$S \stackrel{+}{\Rightarrow} \sigma$$

σ deriva da S con <u>una o più</u> applicazioni di produzioni (in <u>uno o più</u> passi)

$$S \stackrel{*}{\Rightarrow} \sigma$$

σ deriva da S con <u>zero o più</u> applicazioni di produzioni (in <u>zero o più</u> passi)

GRAMMATICA & LINGUAGGIO

Data una grammatica G, si dice perciò Linguaggio L_G generato da G

l'insieme delle frasi

- derivabili dal simbolo iniziale S
- applicando le produzioni P

ossia

$$L_G = \{ s \in VT^* \text{ tale che } S \stackrel{*}{\Rightarrow} s \}$$

ESEMPIO 1

Il linguaggio $L = \{ a^n b^n, n>0 \}$ può essere descritto dalla grammatica $G = \langle VT, VN, P, S \rangle$ dove:

- VT = { a, b}VN = { E }
- VN = { F }
- S ∈ VN = F
- $P = \{$ $F \rightarrow a \ b$ $F \rightarrow a F \ b$

- <u>La prima regola</u> stabilisce che F può essere riscritto come ab: è la frase più corta di L.
- <u>La seconda regola</u> stabilisce che lo scopo F può essere riscritto come aFb; data la presenza di F nella forma di frase, è possibile proseguire con un nuovo passo generativo – di nuovo scegliendo *una* qualsiasi delle due regole:
 - se si sceglie la prima, si avrà aabb
 - se si sceglie la seconda, si avrà aaFbb, che apre la porta a un terzo passo.. e così via.
- Il linguaggio contiene dunque infinite frasi, tutte della forma aa...bb con egual numero di a e b.

GRAMMATICHE EQUIVALENTI

- Una grammatica G1 è equivalente a una grammatica G2 se generano lo stesso linguaggio
 - una grammatica potrebbe però essere preferibile a un'altra ad essa equivalente al punto di vista dell'analisi sintattica
- Purtroppo, stabilire se due grammatiche sono equivalenti è in generale un problema indecidibile
 - le faccenda cambia se ci si restringe a *tipi particolari* di grammatiche, aventi regole di produzione "sufficientemente semplici".

GRAMMATICHE, LINGUAGGI & AUTOMI RICONOSCITORI

Grammatiche di diversa struttura

comportano

linguaggi con diverse proprietà

e implicano

automi di diversa "potenza computazionale"

per riconoscere tali linguaggi.

CLASSIFICAZIONE DI CHOMSKY TIPO 0

Le grammatiche sono classificate in 4 tipi in base alla struttura delle produzioni

 Tipo 0: nessuna restrizione sulle produzioni

In particolare, le regole possono specificare riscritture che <u>accorciano</u> la forma di frase corrente.

Esempio (grammatica di tipo 0)

 $S \rightarrow aSBC CB \rightarrow BC SB \rightarrow bF FB \rightarrow bF$

 $FC \rightarrow cG$ $GC \rightarrow cG$ $G \rightarrow \varepsilon$

Possibile derivazione: S → aSBC → abFC → abcG → abc

lung=4 lung=3

CLASSIFICAZIONE DI CHOMSKY TIPO 1

Le grammatiche sono classificate in *4 tipi* in base alla *struttura delle produzioni*

 Tipo 1 (dipendenti dal contesto): produzioni vincolate alla forma:

$$\beta A \delta \rightarrow \beta \alpha \delta$$

con β , δ , $\alpha \in (VT \cup VN)^*$, $A \in VN$, $\alpha \neq \epsilon$

Quindi, A può essere sostituita da α solo <u>nel contesto β A δ </u>

Le riscritture non accorciano mai la forma di frase corrente.

Una definizione alternativa equivalente (a parte la generazione della stringa vuota) prevede infatti produzioni della forma $\alpha \to \beta$ con $|\beta| \ge |\alpha|$

ESEMPIO

Esempio (grammatica di tipo 1)

$$S \rightarrow aBC \mid aSBC$$

$$CB \rightarrow DB$$
 $DB \rightarrow DC$ $DC \rightarrow BC$

$$aB \rightarrow ab$$
 $bB \rightarrow bb$ $bC \rightarrow bc$ $cC \rightarrow cc$

Infatti, secondo la definizione $\beta A \delta \rightarrow \beta \alpha \delta$ si può trasformare un metasimbolo per volta (A), lasciando intatto ciò che gli sta intorno:

Osserva: la lunghezza del lato destro delle produzioni non è mai inferiore a quella del lato sinistro.

$$S \rightarrow aBC \mid aSBC$$

$$CB \rightarrow DB$$

$$DB \rightarrow DC$$

$$DC \rightarrow BC$$

$$aB \rightarrow ab$$

$$bB \rightarrow bb$$

$$bC \rightarrow bc$$

$$CC \rightarrow cc$$

$$\beta = \varepsilon$$

$$\beta = \varepsilon$$

$$\beta = 0$$

OSSERVAZIONE

La definizione di Chomsky: $\beta A \delta \rightarrow \beta \alpha \delta$

fa capire perché queste grammatiche siano definite dipendenti dal contesto (o contestuali).

LA DEFINIZIONE ALTERNATIVA: $\alpha \rightarrow \beta$ con $|\beta| \geq |\alpha|$

esprime lo stesso concetto in modo *più pratico*, ma non esplicita più l'idea di contesto.

Formalmente, essa *ammette produzioni vietate dalla definizione di Chomsky,* come ad esempio BC → CB

tuttavia, esiste sempre una grammatica equivalente che rispetta la definizione di Chomsky, ad esempio BC → BD ; BD → CD ; CD → CB

quindi i due formalismi sono equivalenti

[purché la definizione originale non venga arricchita ammettendo la produzione $S \rightarrow \varepsilon$, che la definizione alternativa non può esprimere].

CLASSIFICAZIONE DI CHOMSKY TIPO 2

Le grammatiche sono classificate in *4 tipi* in base alla *struttura delle produzioni*

 Tipo 2 (libere dal contesto): produzioni vincolate alla forma:

 $A \rightarrow \alpha$

Attenzione: non c'è

con $\alpha \in (VT \cup VN)^*, A \in VN$

più il vincolo $\alpha \neq \epsilon$

Qui A può <u>sempre</u> essere sostituita da α, *indipendentemente* dal contesto, giacché non esiste più l'idea stessa di contesto.

CASO PARTICOLARE: se α ha la forma u oppure u B v, con u,v \in VT* e B \in VN, la grammatica si dice *lineare*.

CLASSIFICAZIONE DI CHOMSKY TIPO 3

Le grammatiche sono classificate in 4 tipi in base alla struttura delle produzioni

 Tipo 3 (grammatiche regolari): produzioni vincolate alle <u>forme lineari</u>:

si sviluppano solo a destra o sinistra

lineare a destra

$$A \rightarrow \sigma$$

$$A \rightarrow \sigma B$$

con A,B \in VN, e $\sigma \in$ VT*

lineare a sinistra

$$A \rightarrow \sigma$$

$$A \rightarrow B \sigma$$

IMPORTANTE: le produzioni di una data grammatica devono essere o *tutte* lineari a destra, o *tutte* lineari a sinistra – non mischiate.

Si noti che anche qui σ può essere ε .

QUALI MACCHINE PER QUALI LINGUAGGI?

Chi riconosce i diversi tipi di linguaggi?

GRAMMATICHE	AUTOMI RICONOSCITORI
• Tipo 0	 Se L(G) è riconoscibile, serve una Macchina di Turing
• Tipo 1	 Macchina di Turing (con nastro di lunghezza proporzionale alla frase da riconoscere)
• Tipo 2 (context-free)	 Push-Down Automaton (PDA) (cioè ASF + stack)
• Tipo 3 (regolari)	Automa a Stati Finiti (ASF)

GRAMMATICHE REGOLARI CASO PARTICOLARE

Per grammatiche regolari, è sempre possibile e spesso conveniente trasformare la grammatica in forma strettamente lineare

non più σ ∈ VT* (σ è una stringa di caratteri)

lineare a destra lineare a sinistra

 $A \rightarrow \sigma$

 $A \rightarrow \sigma$

 $A \rightarrow \sigma B$

 $A \rightarrow B \sigma$

ma bensì a ∈ VT (a è un singolo carattere)

lineare a destra lineare a sinistra

 $X \rightarrow a$

 $X \rightarrow a$

 $X \rightarrow a Y$

 $X \rightarrow Y a$

GRAMMATICHE LINEARI: ESEMPI

$$VT = \{ a, +, - \}, VN = \{ S \}$$

Grammatica G1 (lineare a sinistra: A → B y, con y ∈ VT*)

$$S \rightarrow a$$

$$S \rightarrow S + a$$

$$S \rightarrow a$$
 $S \rightarrow S + a$ $S \rightarrow S - a$

• Grammatica G2 (lineare a destra: $A \rightarrow x B$, con $x \in VT^*$)

$$S \rightarrow a$$

$$S \rightarrow a + S$$

$$S \rightarrow a$$
 $S \rightarrow a + S$ $S \rightarrow a - S$

• Grammatica G3 (G2 resa strettamente lineare a destra)

diventa una regola a singolo carattere

$$S \rightarrow a$$

$$S \rightarrow a$$
 $S \rightarrow a A$ $A \rightarrow + S$ $A \rightarrow - S$

$$A \rightarrow + S$$

$$A \rightarrow -S$$

Grammatica G4 (lineare a destra e anche a sinistra)

Grammatica G5 (G4 resa strettamente lineare a destra)

$$S \rightarrow c T$$

$$\mathsf{T} o \mathsf{i} \; \mathsf{U}$$

$$S \rightarrow c T \qquad T \rightarrow i U \qquad U \rightarrow a V \qquad V \rightarrow o$$

$$V \rightarrow 0$$

RELAZIONE GERARCHICA

Le grammatiche sono in relazione gerarchica:

- una grammatica regolare (Tipo 3) è un caso particolare di grammatica context-free (Tipo 2),
- che a sua volta è un caso particolare di grammatica contextdependent (Tipo 1),
- che a sua volta è ovviamente un caso particolare di grammatica qualsiasi (Tipo 0).

NB: poiché le grammatiche di tipo 2 (e quindi di tipo 3) possono generare la stringa vuota ϵ , la relazione di inclusione vale solo se si conviene di ammettere nelle grammatiche tipo 1 anche la produzione S $\rightarrow \epsilon$

CLASSIFICAZIONE DI CHOMSKY IL PROBLEMA DELLA STRINGA VUOTA

Nella classificazione di Chomsky,

 Le grammatiche di Tipo 1 <u>non ammettono</u> la stringa vuota ε sul lato destro delle produzioni:

$$\beta A \delta \rightarrow \beta \alpha \delta$$
 $\alpha \neq \varepsilon$

Viceversa, le grammatiche di Tipo 2 <u>la ammettono</u>:

```
A \rightarrow \alpha \alpha \in V^* (\alpha può essere \epsilon)
```

• e lo stesso vale per le grammatiche di <u>Tipo 3</u>:

```
lin. a destra lin. a sinistra A \to \sigma \qquad A \to \sigma A \to \sigma \qquad A \to B \qquad \sigma \in VT^* \ (\sigma \text{ può essere } \epsilon)
```

MA COME? NON C'È CONTRADDIZIONE??

CLASSIFICAZIONE DI CHOMSKY IL PROBLEMA DELLA STRINGA VUOTA

COME È POSSIBILE che

- le grammatiche siano in relazione gerarchica tra loro
- ma al contempo la stringa vuota non sia ammessa nel Tipo
 1 e sia invece ammessa nei Tipi 2 e 3 ?

Sembrerebbe esserci una evidente contraddizione.

L'assenza di contraddizione è dovuta al seguente

TEOREMA

le produzioni di grammatiche di Tipo 2 (e quindi anche 3) possono sempre essere riscritte in modo da evitare la stringa vuota: al più, possono contenere la regola $S \rightarrow \epsilon$

CLASSIFICAZIONE DI CHOMSKY IL PROBLEMA DELLA STRINGA VUOTA

TEOREMA

quindi dal tipo 2 in p

- Se G è una grammatica context free con produzioni della forma $A \to \alpha$, con $\alpha \in V^*$ (cioè, α può essere ϵ)
- allora esiste una grammatica context free G' che genera lo stesso linguaggio L(G) ma le cui produzioni hanno o la forma $A \to \alpha$, con $\alpha \in V^+$ (α non è ϵ) oppure la forma $S \to \epsilon$, ed S non compare sulla destra in nessuna produzione.

In pratica, il teorema assicura che la **sola differenza** fra una grammatica context free **con o senza** ε -rules è che il linguaggio generato dalla prima include la stringa vuota.

I linguaggi di programmazione (Pascal, C, ...) hanno spesso produzioni che ammettono la stringa vuota, di solito per descrivere parti *opzionali*.

ELIMINAZIONE DELLE E-RULES

Come determinare la grammatica equivalente G'?

Siano

- YESε l'insieme dei metasimboli A₁..A_k da cui si può ricavare ε
- NOε l'insieme dei metasimboli B₁..B_m da cui <u>non si può</u> ricavare ε

Allora:

- se G contiene la regola $S \to \varepsilon$, anche G' contiene tale regola
- se G contiene altre regole della forma x → ε , G' non le contiene
- se G contiene una produzione della forma X → C₁ C₂ ... C_r (r≥1),
 G' contiene la produzione X → α₁ α₂ ... α_r dove:

$$\alpha_{i} = C_{i}$$
 se $C_{i} \in VT \cup NO\epsilon$
 $\alpha_{i} = C_{i} \mid \epsilon$ se $C_{i} \in YES\epsilon$

con il *vincolo* che non tutti gli α_i possono essere ϵ .

ESEMPIO 1

Si consideri l'esempio a lato.

Qui YES
$$\varepsilon = \{A\}$$
 e NO $\varepsilon = \{S, B\}$.

- G non contiene la regola S → ε quindi neppure G' la contiene.
- G contiene una regola della forma X → ε
 È la regola A → ε, che va quindi tolta.
- Al suo posto, poiché A∈YESε, ogni
 occorrenza di A va sostituita da (A | ε)
- Nel caso della regola S → A B | B ciò non ha effetti, poiché (A | ε) B riproduce A B | B
- Invece, $A \rightarrow a A$ diventa $A \rightarrow a (A \mid \epsilon)$
- Semplificando e riscrivendo si ottiene la nuova grammatica G'

```
Grammatica G (con \epsilon -rules)

S \rightarrow A B | B

A \rightarrow a A | \epsilon
```

 $B \rightarrow b B I$

```
Grammatica G'
S \rightarrow A B \mid B
A \rightarrow a (A \mid \epsilon)
B \rightarrow b B \mid c
```

```
Grammatica G'
S \rightarrow A B \mid B
A \rightarrow a A \mid a
B \rightarrow b B \mid c
```

La nuova grammatica non genera mai la stringa vuota.

ESEMPIO 2

```
Grammatica G (con \epsilon -rules)
S \rightarrow A B
A \rightarrow a A \mid \epsilon
B \rightarrow b B \mid \epsilon
```

```
Grammatica G'
S \rightarrow (A|\epsilon) (B|\epsilon)
A \rightarrow a (A|\epsilon)
B \rightarrow b (B|\epsilon)
```

```
Grammatica G'
S \rightarrow A B \mid B \mid A \mid \epsilon
A \rightarrow a A \mid a
B \rightarrow b B \mid b
```

- La nuova grammatica può generare la stringa vuota solo al primo passo della derivazione (regola $S \rightarrow \epsilon$), ma non nei passi intermedi
- Ergo, il linguaggio in sé comprende la stringa vuota,
 ma le forme di frase non possono comunque accorciarsi.

GRAMMATICHE e LINGUAGGI

- Poiché le grammatiche sono in relazione gerarchica, può accadere che un linguaggio possa essere generato da più grammatiche, anche di tipo diverso
 - un linguaggio di Tipo 3 potrebbe in realtà essere generato anche da grammatiche di Tipo 2, Tipo 1, Tipo 0
 - un linguaggio di Tipo 2 potrebbe in realtà essere generato anche da grammatiche di Tipo 1, Tipo 0
 - un linguaggio di Tipo 1 potrebbe in realtà essere generato anche da grammatiche di Tipo 0

Non è detto infatti che la prima grammatica che si trova per generare un dato linguaggio sia necessariamente la migliore (più semplice)

CONSEGUENZA

- Il tipo del linguaggio può non coincidere col tipo della grammatica che lo genera
 - il linguaggio generato potrebbe essere di *un tipo più semplice* della sua grammatica
- D'ora in poi, dicendo che un linguaggio è di un certo tipo intenderemo che è *il tipo della grammatica più semplice* in grado di generarlo
 - per linguaggi dipendenti da contesto (o di Tipo 1) si intendono linguaggi
 che richiedono come minimo una grammatica di Tipo 1 per essere generati
 - analogamente, per linguaggi liberi da contesto (o di Tipo 2) si intendono linguaggi che richiedono come minimo una grammatica di Tipo 2..
 - .. e lo stesso vale per i *linguaggi regolari* (o di Tipo 3)

ESEMPIO $a^n b^n c^n$ (1/3)

Il linguaggio L = { aⁿ bⁿ cⁿ, n≥0} è (almeno) di Tipo 1 in quanto esiste una grammatica di Tipo 1 che lo genera:

S
$$\rightarrow$$
 aBC | aSBC
CB \rightarrow DB DB \rightarrow DC DC \rightarrow BC
aB \rightarrow ab bB \rightarrow bb bC \rightarrow bc cC \rightarrow cc

La grammatica diventa *più compatta* se espressa con la *definizione alternativa* di grammatica di Tipo 1, che ammette lo scambio:

S
$$\rightarrow$$
 aBC | aSBC
CB \rightarrow BC
aB \rightarrow ab bB \rightarrow bb bC \rightarrow bc cC \rightarrow cc

Il linguaggio sarebbe però generabile anche da una grammatica di Tipo 0, come ad esempio quella mostrata in precedenza:

ESEMPIO $a^n b^n c^n$ (2/3)

Una grammatica ancora più semplice potrebbe essere:

S
$$\rightarrow$$
 abc | aBSc
Ba \rightarrow aB
Bb \rightarrow bb

DUBBI & DOMANDE

- Ci si potrebbe quindi chiedere se non esista per questo linguag-gio una grammatica ancora più semplice, magari di Tipo2
- Più in generale, ci si potrebbe chiedere se ci sia un modo generale per capire se una grammatica più semplice esista.. e magari trovarla.

Risponderemo presto a entrambe le domande ©

ESEMPIO $a^n b^n c^n$ (3/3)

Derivazione della frase aabbcc

Grammatica G2:

$$S \rightarrow aBC \mid aSBC$$

$$CB \rightarrow BC$$

$$aB \rightarrow ab$$

$$bB \rightarrow bb$$

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

Grammatica G3:

Ba
$$\rightarrow$$
 aB

$$Bb \rightarrow bb$$

Derivazione:

$$S \rightarrow aSBC \rightarrow aaBCBC \rightarrow aaBBCC \rightarrow$$

$$\rightarrow$$
 aabBCC \rightarrow aabbcC \rightarrow aabbcc

Derivazione:

$$S \rightarrow aBSc \rightarrow aBabcc \rightarrow aaBbcc \rightarrow aabbcc$$

RAMI DI DERIVAZIONE "MORTI"

- Nelle grammatiche di Tipo 1 non è garantito che qualunque sequenza di derivazione porti a una frase
 - Può succedere di trovarsi in una strada chiusa, impossibilitati a proseguire perché non ci sono regole di produzione applicabili
 - Questo non succede mai nel Tipo 2 e nel Tipo 3

Esempio

Grammatica G2:

 $S \rightarrow aBC \mid aSBC$

 $CB \rightarrow BC$

 $aB \rightarrow ab$

 $bB \rightarrow bb$

 $bC \rightarrow bc$

 $cC \rightarrow cc$

Derivazione su ramo morto:

 $S \rightarrow aSBC \rightarrow aaBCBC \rightarrow aabCBC \rightarrow$ $\Rightarrow aabcBC \rightarrow ???????$

GRAMMATICHE DI TIPO 1 e DI TIPO 2

C'è dunque una *caratteristica cruciale* che discri-mina una grammatica di Tipo 1 da una di Tipo 2 ?

Dice Chomsky:

Tipo 1: produzioni della forma $\sigma A \delta \rightarrow \alpha$

Tipo 2: produzioni della forma $A \rightarrow \alpha$

In particulare, il Tipo 1 ammette produzioni della forma BC → CB

che scambiano due simboli

- Questa caratteristica è impossibile da esprimere nel Tipo 2
- Per esprimerla occorre infatti poter scrivere due elementi sul lato sinistro della produzione, ma il Tipo 2 ammette in tale posizione un unico metasimbolo!

GRAMMATICHE DI TIPO 2 e DI TIPO 3

Analogamente, c'è una *caratteristica* che distin-gue una grammatica di Tipo 2 da una di Tipo 3 ? Dice Chomsky:

Tipo 2: produzioni della forma A $\rightarrow \alpha$ dove α può contenere più metasimboli, in qualsiasi posizione [$\alpha \in (VT \cup VN)^*, A \in VN$]

```
Tipo 3: produzioni lineari, della forma A \to \sigma \ o \ A \to \sigma \ B \ (a \ destra) \ oppure A \to \sigma \ o \ A \to B \ \sigma \ (a \ sinistra) dove ci \ pu\`o \ essere \ un \ solo \ metasimbolo, \ \underline{o \ in \ testa \ o \ in \ coda} [\ A,B \in VN, \ \sigma \in VT^*\ ]
```


GRAMMATICHE DI TIPO 2 e DI TIPO 3

Analogamente, c'è una *caratteristica* che distin-gue una grammatica di Tipo 2 da una di Tipo 3 ? Dice Chomsky:

SELF - EMBEDDING

Una grammatica contiene self-embedding quando una o più produzioni hanno la forma

$$A \stackrel{*}{\Rightarrow} \alpha_1 A \alpha_2$$
 (con $\alpha_1, \alpha_2 \in V^+$)

TEOREMA: una grammatica di Tipo 2 che non contenga self-embedding genera un linguaggio regolare

Dunque, è il self-embedding la caratteristica cruciale di una grammatica di Tipo 2, che la differenzia da una di Tipo 3.

- Se non c'è self-embedding in nessuna produzione, esiste una grammatica equivalente di Tipo 3, quindi il linguaggio generato è regolare.
- Non vale necessariamente il viceversa: una grammatica con self-embedding potrebbe comunque generare un linguaggio regolare, se il self-embedding è "finto" (ovvero, "disattivato" da altre regole)

SELF-EMBEDDING: ESEMPIO

La grammatica G:

$$S \rightarrow aSc$$
 $S \rightarrow A$ $A \rightarrow bAc$ $A \rightarrow \epsilon$

presenta self-embedding e genera il linguaggio L(G):

$$L(G) = \{ a^n b^m c^{n+m} \quad n,m \ge 0 \}$$

Il ruolo del self-embedding è introdurre una ricorsione in cui *si* aggiungono <u>contemporaneamente</u> simboli a sini-stra e a destra, garantendo di procedere "di pari passo".

È essenziale per definire linguaggi le cui frasi devono contenere <u>simboli bilanciati</u>, come ad esempio le parentesi:

$$S \rightarrow (S)$$
 $S \rightarrow a$

Questa grammatica genera il linguaggio L(G) = { (na)n n≥0 }

"FINTO" SELF - EMBEDDING (1/4)

Nonostante la presenza di self-embedding, il linguaggio generato può essere regolare se la regola con self-embedding è disattivata da altre regole meno restrittive, che vanificano il vincolo che il self-embedding vorrebbe imporre

- Identificare casi del genere non è banale
 - Riferimento: "Self-embedded context-free grammars with regular counterparts", by S.Andrei, W.Chin, S.Cavadini; Acta Informatica 40, 349-365, 2004, Springer
- Ci limiteremo a illustrarlo tramite alcuni esempi.

"FINTO" SELF - EMBEDDING (2/4)

ESEMPIO 1

$$S \rightarrow a S a | X$$

 $X \rightarrow a X | b X | a | b$

- Sembrerebbe che le frasi dovessero avere la forma an Y an ...
- .. ma la parte centrale X si espande in una sequenza qualunque di a e b, vanificando il vincolo che le a in testa e in coda siano in egual numero.
- Risultato: L(G) è regolare, in quanto comprende qualunque sequenza di a e b

"FINTO" SELF - EMBEDDING (3/4)

ESEMPIO 2

$S \rightarrow abSba|aba$

- In questo esempio, il self-embedding viene disattivato in un modo particolarmente subdolo e sottile
- Apparentemente i due lati "sinistro" e "destro" crescono in parallelo, producendo un numero identico di gruppi (a b)^k e (b a)^k ...
- .. ma sul più bello, nel mezzo viene piazzato un a b a che spariglia le carte e "distrugge i confini" fra i due gruppi (a b)^k e (b a)^k rendendoli indistinguibili

- Risultato: la frase è una sequenza di una quantità dispari di gruppi a b, seguiti da una a finale –un linguaggio regolare: L(G) = { (a b)²ⁿ⁺¹ a , n ≥0 }
- Grammatica di Tipo 3 equivalente: S → X a
 X → a b | X a b a b

"FINTO" SELF - EMBEDDING (4/5)

ESEMPIO 3

$$S \rightarrow a S a \mid \varepsilon$$

$$L(G) = \{ (a \ a)^n, n \ge 0 \}$$

- Qui il self-embedding, più che disattivato, è inutile, perché con un alfabeto di un solo carattere si possono generare solo frasi estremamente semplici
- In effeti, è impossibile distinguere un "gruppo di sinistra" da un "gruppo di destra" se sono fatti tutti solo da un unico possibile simbolo!
- Grammatica di Tipo 3 equivalente : $S \rightarrow a \ a \ S \mid \epsilon$

L'osservazione precedente è generalizzata dal seguente

TEOREMA: ogni linguaggio *context-free di alfabeto unitario* è in realtà un *linguaggio regolare*.

RICONOSCIBILITÀ DEI LINGUAGGI

- I linguaggi generati da grammatiche di Tipo 0 possono in generale NON essere riconoscibili (decidibili)
 - Non è garantita l'esistenza di una MdT capace di decidere se una frase appartiene o meno al linguaggio
- Al contrario, i linguaggi generati da grammatiche di Tipo 1 (e quindi di Tipo 2 e 3) SONO riconoscibili
 - Esiste sempre una MdT capace di decidere se una frase appartiene o meno al linguaggio
 - L'efficienza del processo di riconoscimento, però, è un'altra faccenda...

RICONOSCIBILITÀ DEI LINGUAGGI

- Per ottenere un traduttore efficiente occorre adottare linguaggi generati da (classi speciali di) grammatiche di Tipo 2
 - Tutti i linguaggi di programmazione sono infatti context free
 - Il riconoscitore prende il nome di PARSER

parser e scanner sono ovviamente due componenti separati, non monolite

- Per ottenere <u>particolare efficienza</u> in sotto-parti di uso <u>estremamente frequente</u>, si adottano spesso per esse linguaggi generati da grammatiche di Tipo 3
 - identificatori & numeri
 - Il riconoscitore prende il nome di SCANNER (o lexer)

QUALI MACCHINE PER QUALI LINGUAGGI?

Chi riconosce i diversi tipi di linguaggi?

GRAMMATICHE	AUTOMI RICONOSCITORI
• Tipo 0	 Se L(G) è riconoscibile, serve una Macchina di Turing
• Tipo 1 da qui ci si concentra dal tipo 2 in giu	Macchina di Turing (con nastro di lunghezza proporzionale alla frase da riconoscere)
• Tipo 2 (context-free)	 Push-Down Automaton (PDA) (cioè ASF + stack)
• Tipo 3 (regolari)	Automa a Stati Finiti (ASF)

NOTAZIONI PER GRAMMATICHE DI TIPO 2

- Alla luce del discorso precedente, d'ora in poi ci concentreremo sulle grammatiche di Tipo 2 (e 3)
- Passando dalla teoria alla pratica, è opportuno modificare le notazioni fin qui utilizzate
 - non è pratico utilizzare lettere greche
 - non è il caso di continuare a riservare le lettere maiuscole ai metasimboli, perché vogliamo poterle usare nelle frasi (e dunque nell'alfabeto terminale)
 - → serve un nuovo modo per indicare i metasimboli
 - nelle tastiere e nei font "di base", non ci sono frecce e altri simboli particolari -> sarebbe meglio farne senza

GRAMMATICHE B.N.F.

In una Grammatica BNF

::= rappresenta una freccia

- le regole di produzione hanno la forma $\alpha := \beta$ con $\alpha \in V^+$, $\beta \in V^*$
- i meta-simboli X∈VN hanno la forma (nome)
- il meta-simbolo | indica l'alternativa

Questa estensione permette di esprimere un *insieme di* regole aventi la stessa parte sinistra:

$$X := A_1$$

. . . .

$$X := A_N$$

in forma compatta:

$$X ::= A_1 | A_2 | ... | A_N$$

ESEMPIO 2

```
G = \langle VT, VN, P, S \rangle, dove:
VT = { il, gatto, topo, sasso, mangia, beve }
VN = { <frase>, <soggetto>, <verbo>, meta simboli
        <compl-ogg>, <articolo>, <nome> }
S = <frase>
P = {
         P definisce la struttura per i meta siml
    <frase> ::= <soggetto> <verbo> <compl-ogg>
    <soggetto> ::= <articolo><nome>
    <articolo> ::= il
    <nome> ::= gatto | topo | sasso
    <verbo> ::= mangia | beve
    <compl-ogg> ::= <articolo> <nome>
```


ESEMPIO 2: DERIVAZIONE

ESEMPIO: derivazione della frase

"il gatto mangia il topo"

(ammesso che tale frase sia derivabile)

<frase>

- → <<u>soggetto</u>> <verbo> <compl-ogg>
- → <articolo > <nome > <verbo > <compl-ogg >
- → il <nome> <verbo> <compl-ogg>
- → il gatto <verbo> <compl-ogg>
- → il gatto mangia <<u>compl-ogg</u>>
- → il gatto mangia <articolo><nome>
- → il gatto mangia il <nome>
- → il gatto mangia il topo

EXTENDED B.N.F. (EBNF)

La notazione EBNF è una forma estesa della notazione B.N.F., rispetto a cui introduce alcune notazioni compatte per alleggerire la scrittura delle regole di produzione

	Forma EBNF	BNF equivalente	significato
1	X ::= [a] B	X ::= B aB	a può comparire 0 o 1 volta
2	X ::= {a}n B	X ::= B aB a ⁿ B	a può comparire da 0 a n volte
3	X ::= {a} B	X ::= B aX	a può comparire 0 o più volte

a opzionale

la differenza tra 2 e 3 sta nel numero finito (n) o infinito di a (nel 3 si usa una regola ricorsiva per ottenere infinite a)

NOTA: la produzione X ::= B | aX è ricorsiva (a destra).

Forma EBNF	BNF equivalente	significato
X ::= (a b) D c	X ::= a D b D c	raggruppa cate- gorie sintattiche

ESEMPIO 3: NUMERI NATURALI

```
G = \langle VT, VN, P, S \rangle
dove:
VT = \{ 0,1,2,3,4,5,6,7,8,9 \}
VN = { <num>, <cifra>, <cifra-non-nulla> }
S = \langle num \rangle
                                                             EBNF
P = {
     <num>::= <cifra> | <cifra-non-nulla> {<cifra>}
     <cifra> ::= 0 | <cifra-non-nulla>
     <cifra-non-nulla> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
           non si puo' usare per scrivere "03" (nei linguaggi perche' 0 se
           per ottale e 0x per esadecimale
```


ESEMPIO 3: NUMERI NATURALI

La stessa sintassi può essere espressa tramite un diagramma sintattico

ESEMPIO 4: NUMERI INTERI

- Sintassi analoga alla precedente
- ma con la possibilità di mettere un segno (+,-) davanti al numero naturale

Quindi:

- stesse regole di produzione più una (al top level) per generare il segno
- stesso alfabeto terminale più i due simboli + e -

ESEMPIO 4: NUMERI INTERI

```
G = \langle VT, VN, P, S \rangle, dove:
VT = \{ 0,1,2,3,4,5,6,7,8,9,+,- \}
VN = {<int>, <num>,
        <cifra>, <cifra-non-nulla> }
P = {
                                     Lo scopo ora è <int>,
                                       non più <num>
    <int> ::= [+|-] <num>
    <num>::= <cifra> | <cifra-non-nulla> {<cifra>}
    <cifra> ::= 0 | <cifra-non-nulla>
    <cifra-non-nulla> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```


ESEMPIO 5: IDENTIFICATORI

Nell'uso pratico si danno di solito solo le regole di produzione, definendo VT, VN e S *implicitamente*

- i non-terminali hanno la forma BNF <...>
- il primo di essi è il simbolo iniziale

ALBERI DI DERIVAZIONE

Per le sole grammatiche di Tipo 2 si introduce il concetto di *albero di derivazione*

- ogni nodo dell'albero è associato a un simbolo del vocabolario V = VT ∪ VN
- la radice dell'albero coincide con lo scopo S
- se a₁, a₂, ..., a_k sono i k figli ordinati di un dato nodo X
 (associato al simbolo X∈VN), significa che la grammatica
 contiene la produzione

$$X ::= A_1 A_2 \dots A_k$$

dove A_i è il simbolo associato al nodo a_i

Si noti che *l'albero di derivazione non può esistere per grammatiche di Tipo 1 e 0* perché in esse il lato sinistro delle produzioni ha *più di un simbolo* e dunque i nodi figli avrebbero *più di un padre* (ergo non si otterrebbe più un albero, ma un generico grafo).

RIPRENDENDO L'ESEMPIO 2

```
G = \langle VT, VN, P, S \rangle con
VT = { il, gatto, topo, sasso, mangia, beve }
VN = { <frase>, <soggetto>, <verbo>,
         <compl-ogg>, <articolo>, <nome> }
S = <frase>
P = {
     <frase> ::= <soggetto> <verbo> <compl-ogg>
     <soggetto> ::= <articolo><nome>
     <articolo> ::= il
     <nome> ::= gatto | topo | sasso
     <verbo> ::= mangia | beve
     <compl-ogg> ::= <articolo> <nome>
```


Derivazione della frase

"il gatto mangia il topo"

(ammesso che tale frase sia derivabile)


```
G = \langle VT, VN, P, S \rangle, dove:
VT = \{ 0,1,2,3,4,5,6,7,8,9,+,- \}
VN = {<int>, <num>,
        <cifra>, <cifra-non-nulla> }
P = {
                                                  EBNF
    <int> ::= [+|-] <num>
    <num>::= <cifra> | <cifra-non-nulla> {<cifra>}
    <cifra> ::= 0 | <cifra-non-nulla>
    <cifra-non-nulla> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```


- Qui una regola è scritta in EBNF (Extended BNF), che non è direttamente mappabile su un albero.
- Occorre perciò riscriverla in BNF standard, ricordando le equivalenze:

$$X ::= \{a\} B \leftrightarrow X ::= B \mid aX$$

$$X ::= B \{a\} \longleftrightarrow X ::= B \mid Xa$$

Dunque, la regola:

```
<num> ::= <cifra-non-nulla> {<cifra>}
```

va riscritta come:

```
<num>::= <cifra-non-nulla> | <num> <cifra>
```


Albero di derivazione del numero intero -3457:

DERIVAZIONI CANONICHE

DERIVAZIONE "LEFT-MOST" (deriv. canonica sinistra)

• A partire dallo scopo della grammatica, si riscrive sempre il simbolo non-terminale più a sinistra.

DERIVAZIONE "RIGHT-MOST" (deriv. canonica destra)

• A partire dallo scopo della grammatica, si riscrive sempre il simbolo non-terminale più a destra.

AMBIGUITÀ

- Una grammatica è ambigua se esiste almeno una frase che ammette due o più derivazioni canoniche sinistre distinte (i.e. per cui esistono almeno due alberi sintattici distinti).
 - Grado di ambiguità = numero di alberi sintattici distinti
- L'ambiguità è una caratteristica indesiderabile.

due percorsi diversi per arrivare allo stes<mark>so pu</mark>

ESEMPIO

A := A + A

A ::= a

La frase a+a+a è *ambigua*:

ambigua per via di processi di derivazione diversi che conducono allo stesso risultato

AMBIGUITÀ

- Purtroppo, stabilire se una grammatica di Tipo 2 sia ambigua è un problema indecidibile
 - però, in pratica, un certo numero di derivazioni è spesso sufficiente per "convincersi" della (non per dimostrare la) ambiguità di G
- Se una grammatica è ambigua, spesso se ne può trovare un'altra che non lo sia – ma non sempre.
- Un linguaggio si dice intrinsecamente ambiguo se tutte le grammatiche che lo generano sono ambigue come detto a lezione, sono
 - ESEMPIO: L = { aⁿ bⁿ c^{*} } ∪ { a^{*} bⁿ cⁿ } , con n≥0
 Intuitivamente, tutte le frasi della forma aⁿ bⁿ cⁿ appartengono a entrambi i sotto-linguaggi, quindi esistono due derivazioni distinte
 - ESEMPIO: L = { aⁿ bⁿ c^m d^m } ∪ { aⁿ b^m c^m dⁿ } , con m,n≥1
 Come sopra, almeno alcune frasi della forma aⁿ bⁿ cⁿ dⁿ ammettono due derivazioni distinte

LA STRINGA VUOTA

- La stringa vuota <u>può</u> far parte delle frasi generate da una <u>grammatica di Tipo 0</u>, poiché la generica regole di produzione α -> β prevede α∈V+, β∈V*
 - le forme di frase possono accorciarsi durante la riscrittura
- La stringa vuota invece <u>non può</u> far parte delle frasi generate da una grammatica di Tipo 1 (e quindi neanche di tipo 2 e 3) perché lì vige la condizione α≠ε e perciò la generica forma di frase <u>non può mai</u> accorciarsi.

RICORDA: questo <u>non è in contraddizione</u> con il fatto che le produzioni di grammatiche di Tipo 2 e 3 possano "apparentemente" ammettere ε sul lato destro delle produzioni, perché esiste sempre una grammatica equivalente senza ε -rules (escluso al più S).

LA STRINGA VUOTA

- Talora però *farebbe comodo* avere la stringa vuota ε nel linguaggio, per esprimere *parti opzionali*
- È possibile farlo senza alterare il tipo della grammatica purché se ne ammetta la presenza nella sola produzione di top-level S → ε ed S non compaia altrove.
 - in questo modo, il solo caso in cui ε entra in gioco è se è scelta all'inizio, *al primo passo di derivazione*
 - tutte le altre stringhe sono generate da S usando regole diverse, che non contengono ε: ergo, le forme di frase non possono comunque accorciarsi.
- Questa proprietà è catturata dal seguente teorema:

LA STRINGA VUOTA

TEOREMA

- Dato un linguaggio L di tipo 0, 1, 2, o 3
- i linguaggi $L \cup \{\epsilon\}$ e $L \{\epsilon\}$ sono dello stesso tipo.

Ad esempio, le produzioni:

```
S ::= \varepsilon \mid X
```

$$X ::= ab \mid a X b$$

definiscono il linguaggio (context-free) $L = \{ a^n b^n, n \ge 0 \}$

(Vale ovviamente la convenzione $\mathbf{a}^0 = \mathbf{b}^0 = \boldsymbol{\varepsilon}$)

FORME NORMALI

Un linguaggio di tipo 2 *non vuoto* può essere sempre generato da una grammatica di tipo 2 in cui:

- ogni simbolo, terminale o non terminale, compare nella derivazione di qualche frase di L
 - ossia, non esistono simboli o meta-simboli inutili
- non ci sono produzioni della forma A → B con A,B∈VN
 - ossia non esistono produzioni che "cambiano solo nome" a un meta-simbolo
- se il linguaggio non comprende la stringa vuota ($\epsilon \notin L$) allora *non ci sono* produzioni della forma $A \to \epsilon$.

FORME NORMALI

In particolare si può fare in modo che tutte le produzioni abbiano una forma ben precisa:

- forma normale di Chomsky
 produzioni della forma A → B C | a
 con A,B,C∈VN, a∈VT ∪ ε
- forma normale di Greibach (per linguaggi privi di ε)
 produzioni della forma A → a α
 con A∈VN, a∈VT, α∈VN*

La forma normale di Greibach facilita, come si vedrà, la costruzione di riconoscitori.

Esiste un algoritmo che trasforma ogni grammatica di tipo 2 in forma normale di Chomsky.

Qui lo vediamo solo applicato a un esempio.

Grammatica data:

$$S \rightarrow dA$$
 | cB
A \rightarrow dAA | cS | c
B \rightarrow cBB | dS | d

Forma normale di Chomsky

```
S \rightarrow MA \mid NB M \rightarrow d N \rightarrow c A \rightarrow MP \mid NS \mid c P \rightarrow AA B \rightarrow NQ \mid MS \mid d Q \rightarrow BB
```

La trasformazione in forma di Greibach richiede alcune tecniche extra.

TRASFORMAZIONI IMPORTANTI

- Per facilitare la costruzione dei riconoscitori, è spesso rilevante poter trasformare la struttura delle regole di produzione per renderle più adatte allo scopo.
- Alcune trasformazioni particolarmente importanti sono
 - la sostituzione
 - il raccoglimento a fattor comune
 - la eliminazione della ricorsione sinistra.

Tra gli altri usi, queste trasformazioni sono la base per trasformare una qualsiasi grammatica di tipo 2 in forma normale di Greibach.

TRASFORMAZIONI IMPORTANTI

- Per facilitare la costruzione dei riconoscitori, è spesso rilevante poter trasformare la struttura delle regole di produzione per renderle *più adatte* allo scopo.
- Alcune trasformazioni particolarmente importanti sono

- la sostituzione

Banali, analoghe
all'algebra

il raccoglimento a fattor comune

Importante, ma con conseguenze

la eliminazione della ricorsione sinistra.

Tra gli altri usi, queste trasformazioni sono la base per trasformare una qualsiasi grammatica di tipo 2 in forma normale di Greibach.

IL PROBLEMA DELLA RICORSIONE SINISTRA

La ricorsione sinistra bad

$$X \rightarrow X \ a \ c \mid p$$

- nasconde l'iniziale delle frasi prodotte, che si può determinare solo guardando altre regole
 - nell'esempio sopra, tutte le frasi iniziano per p,
 ma questo non si vede dalla regola ricorsiva X → X a c
 - non è così nella ricorsione destra, che invece evidenzia proprio l'iniziale delle produzioni: X → r X | a
- La buona notizia è che, tecnicamente, si può sempre sostituire la ricorsione sinistra con una destra.
- La cattiva notizia è che spesso non ci potremo permettere il lusso di farlo, a causa delle conseguenze.

esempio 13-4-5

ricors

equivalente, ma la ricorsione a destra pone il problema della semantica: le operaizoni sono associative a sinistra, quindi prima faccio 12.4, poi 0.5 acc. se parte de destra

MA MATER STUDIORUM Prima de la DESTRAL Significa espandere prima 4 e

SOSTITUZIONE

La sostituzione consiste nell' espandere un simbolo non terminale che compare nella parte destra di una regola di produzione, sfruttando a tale scopo un'altra regola di produzione.

Nella grammatica a lato è possibile sostituire il metasimbolo s nella seconda produzione, usando a tale scopo la prima produzione.

ESEMPIO $S \rightarrow X a$ $X \rightarrow b Q \mid S c \mid d$

Espandiamo quindi s come indicato: la nuova regola per x non contiene più alcun riferimento a s

ESEMPIO $S \rightarrow X$ a $X \rightarrow b$ Q | X a c | d

IL RACCOGLIMENTO A FATTOR COMUNE

Il raccoglimento a fattor comune consiste nell' isolare il prefisso più lungo comune a due produzioni.

ipotesi A: appena ottieni un carattere, il "compilatore" deve sapere quale regola applicare, senda aspettare, questo significa che nel primo esempio bisogna per forza tirare a caso

Nella grammatica a lato è possibile isolare il prefisso a s comune alle prime due produzioni.

ESEMPIO

 $S \rightarrow a S b \mid a S c$

Raccogliamo quindi a fattore comune il prefisso comune a S ...

ESEMPIO

 $S \rightarrow a S (b \mid c)$

...e introduciamo un nuovo meta-simbolo **x** per esprimere *la parte che segue* il prefisso comune.

ESEMPIO

 $S \rightarrow a S X$ $X \rightarrow b \mid c$

la x serve per efficientare il programma: con X succede che quando si arriva a X si e' certi: rel primo caso invece sotto ipotesi A si sarebbe dovuto "indovinare" la

regola giusta, causando una cascata di "tiri di monetine" che causano irrimediabilmente errori

ELIMINAZIONE DELLA RICORSIONE SINISTRA

E' una trasformazione *sempre possibile*, articolata in due passi:

- Fase 1: eliminazione dei cicli ricorsivi a sinistra
- Fase 2: eliminazione della ricorsione sinistra diretta.

Fase preliminare

- si stabilisce una relazione d'ordine fra i metasimboli coinvolti del ciclo ricorsivo
- Nel nostro caso, sia dunque C > B > A

ESEMPIO

 $A \rightarrow B$ a $B \rightarrow C$ b $C \rightarrow A$ c | p

Fase 1

si modificano tutte le produzioni del tipo
 Y → Xα in cui Y > X, sostituendo a X le forme di frase stabilite dalle produzioni relative a X

Si ottiene quindi:

 $A \rightarrow B$ a $B \rightarrow C$ b $C \rightarrow C$ b a c | p

Fase 2

le produzioni ricorsive dirette x → x α | p si modificano introducendo un metasimbolo z e scrivendo x → p | p z e z → α | α z

Ergo,
$$C \rightarrow C$$
 b a c | p diventa

$$C \rightarrow p \mid p Z$$

 $Z \rightarrow b a c \mid b a c Z$

ELIMINAZIONE DELLA RICORSIONE SINISTRA

- Perché, dunque, potremmo non poterlo (volerlo) fare?
 - Sostituendo la ricorsione sinistra con una destra, si generano le stesse frasi, ma con regole (dichiaratamente!) diverse
 - Ergo, se interessa solo il risultato finale «ai morsetti», rimpiazzare la ricorsione sinistra con una destra è lecito e privo di conseguenze
 - se, invece, interessa anche *come ci si è arrivati* (ossia, la sequenza di derivazione), allora il rimpiazzo non è lecito perché cambiando le regole cambia anche la sequenza di derivazione.
- In un puro riconoscitore, che deve solo dire «sì o no», eliminare la ricorsione sinistra è fattibile senza conseguenze
- In un vero parser, che deve anche dare significato alle frasi (lecite), regole diverse tipicamente implicano significato diverso per alcune frasi, con ciò alterando il liguaggio

- Nelle espressioni aritmetiche, la cultura matematica diffusa nei secoli richiede associatività sinistra:
 - in matematica, 13-5-4 ha il significato di (13-5) -4 cioè quattro
 - non sarebbe la stessa cosa se fosse 13- (5-4) cioè dodici
- Sfortunatamente, ciò richiede regole grammaticali con ricorsione a sua volta sinistra:

$$E \rightarrow E + t \mid E - t \mid t$$

- Sostituirle con la ricorsione destra è possibile, ma porta a un albero di derivazione con associatività destra, che dà alle espressioni in significato totalmente diverso!
 - tecnicamente fattibile
 - culturalmente improponibile

Queste trasformazioni consentono di trasformare una grammatica in forma normale di Greibach.

Qui lo vediamo solo applicato a un esempio.

Grammatica data:

$$S \rightarrow X a$$

 $X \rightarrow b S | S c | d$

- Forma normale di Greibach (A \rightarrow p α , A \in VN, p \in VT, $\alpha \in$ VN*)
 - eliminazione ciclo ricorsivo a sinistra
 - eliminazione ricorsione sinistra diretta
 - sostituzione
 - ridenominazione dei terminali tramite non-terminali ausiliari

Fase 1

 relazione d'ordine fra i simboli non terminali coinvolti del ciclo ricorsivo: x > s

Grammatica data:

 $S \rightarrow X$ a $X \rightarrow b$ S | S c | d

Fase 2

 modifica della produzione x → s c sostituendo a s la produzione s → x a

Si ottiene quindi:

 $S \rightarrow X a$ $X \rightarrow (b S \mid d) \mid X a c$

Fase 3

eliminazione ricorsione sinistra x→ x α | p, qui con p = (bs | d), introducendo il nuovo simbolo z tale che z → α | α z e x ::= p z | p

da cui:

 $S \rightarrow X$ a $Z \rightarrow a$ c | a c Z $X \rightarrow (bS \mid d) Z \mid (bS \mid d)$

Fase 4

sostituzione del simbolo x nella prima regola

$$S \rightarrow bSa \mid bSZa \mid dZa \mid da$$

 $Z \rightarrow ac \mid ac Z$

Fase 5

• introduzione dei non-terminali ausiliari A e C per rappresentare a e c dove appropriato

$$S \rightarrow bSA | bSZA | dZA | dA$$

 $Z \rightarrow aC \mid aCZ$

 $A \rightarrow a$

 $C \rightarrow c$

COME CAPIRE SE UN LINGUAGGIO (NON) È DI TIPO 2 (3) ?

- Capire se un linguaggio è di Tipo 2 (o di Tipo 3)
 "solo guardandolo" in generale non è banale
 - interessante
 - non basta "immaginare" come possano essere le produzioni, perché nessuno assicura che le immaginiamo "bene"
- Il PUMPING LEMMA dà una condizione necessaria, ma non sufficiente, perché un linguaggio sia di Tipo 2 (o 3)
 - può quindi essere usato per dimostrare "in negativo"
 che un linguaggio non è di Tipo 2 (o di Tipo 3)...
 - .. ma purtroppo non per affermarlo "in positivo"

IL PUMPING LEMMA (o "lemma del pompaggio")

L'IDEA DI FONDO

- in un linguaggio infinito, ogni stringa sufficientemente lunga deve avere una parte che si ripete
- ergo, essa può essere "pompata" un qualunque numero di volte ottenendo sempre altre stringhe del linguaggio
 - E con questo lemma che si dimostra, ad esempio, che:
 L1 = {aⁿ bⁿ cⁿ} non è di Tipo 2 (quindi è almeno di Tipo 1)
 L2 = {a^p, p primo} non è di Tipo 3 (quindi è almeno di Tipo 2)^(*)

La formulazione è leggermente diversa a seconda che si tratti di linguaggi di Tipo 2 o 3, ma la sostanza non cambia.

(*) in realtà non è neppure di Tipo 2, come si dimostra ri-applicando il lemma.

IL PUMPING LEMMA per linguaggi context-free

Se L è un linguaggio di Tipo 2, esiste un intero N tale che, per ogni stringa z di lunghezza almeno pari a N:

```
• z è decomponibile in 5 parti: z = uvwxy |z| \ge N
```

• la parte centrale vwx ha lunghezza limitata: $|vwx| \le N$

```
• v e x non sono entrambi nulle: |vx| \ge 1
```

- la 2^a e la 4^a parte possono essere "pompate" quanto si vuole ottenendo sempre altre frasi del linguaggio; ovvero, uvⁱwxⁱy ∈ L ∀ i ≥ 0
- Il numero N (lunghezza minima delle stringhe decomponibili in 5 parti di cui 2 pompabili) dipende dallo specifico linguaggio
- La dimostrazione si basa sulle lunghezze dei cammini nell'albero di derivazione associato (cfr. Hopcroft/Motwani/Ullman, p. 292)

IL PUMPING LEMMA per linguaggi regolari

Se L è un linguaggio di Tipo 3, esiste un intero N tale che, per ogni stringa z di lunghezza almeno pari a N:

• z può essere riscritta come: z = xyw

 $|z| \ge N$

la parte centrale xy ha lunghezza limitata:

 $|xy| \leq N$

• y non è nulla:

 $|y| \ge 1$

 la parte centrale può essere pompata quanto si vuole ottenendo sempre altre frasi del linguaggio; ovvero, xyⁱw ∈ L ∀ i ≥ 0

- Il numero N dipende caso per caso dallo specifico linguaggio
- La dimostrazione si basa sull'automa a stati associato (cfr. Hopcroft/Motwani/Ullman, p. 135)

L = {a^p, p primo} non è un linguaggio regolare.

- -se L fosse regolare, esisterebbe un intero N in grado di soddisfare il pumping lemma; sia allora P un primo ≥ N+2 (che esiste perché i numeri primi sono infiniti): consideriamo allora la stringa z = a^P
- scomponiamo ora **z** nei tre pezzi **xyw, con** |y| = r; r quindi rappresenta la lunghezza del pezzo di y ne segue che |xw| = p r
- in base al lemma, se L fosse regolare, la nuova stringa xy^{p-r}w dovrebbe anch'essa appartenere al linguaggio, ma…
- la lunghezza di tale stringa sarebbe: $|xy^{p-r}w| = |xw| + (p-r)|y| = (p-r) + (p-r)|y| = (p-r)(1+|y|) = (p-r)(1+r)$ **ovvero non un numero primo**
- pertanto, essa non appartiene a L e dunque esso non è regolare.

ESEMPIO 2 (1)

$L = \{a^n b^n c^n\}$ non è context-free

- se L fosse context-free, esisterebbe un intero N in grado di soddisfare il pumping lemma; consideriamo allora la stringa z = a^N b^N c^N
- scomponiamo z nei cinque pezzi uvwxy, con |vwx| ≤ N
- poiché fra l'ultima "a" e la prima "c" ci sono N posizioni, il pezzo centrale "vwx" non può contenere sia "a" sia "c", perché se contiene le une, non è abbastanza lungo da contenere le altre. Quindi, delle due:
 - o "vwx" non contiene "c": allora "vx" è fatta solo di "a" e "b".
 Ma allora "uwy", che in base al pumping lemma dovrebbe appartenere a L, ha tutte le "c" (che sono N) ma meno "a" o meno "b" del necessario, ergo non appartiene a L → assurdo
 - 2. **o "vwx" non contiene "a"**: allora"vx" è fatta solo di "b" e "c", dunque "uwy" ha N "a" ma meno "b" o meno "c" del necessario, ergo non appartiene a L → assurdo.

ESEMPIO 2 (2)

ESEMPIO: $N=6 \rightarrow z = "aaaaaaabbbbbbbcccccc"$

Scomponiamo z nei cinque pezzi uvwxy, con |vwx| ≤ N

- si può fare in vari modi, dipende da *come* e *dove* si prende **vwx**
- supponiamo di prenderla lunga 5 (comunque, al più 6): la suddivisione può quindi essere una delle seguenti illustrate in tabella:

u	vwx	у
aaaaa	abbbb	bbccccc
aaaaaa	bbbbb	bccccc
aaaaaab	bbbbb	ccccc
aaaaaabb	bbbbc	cccc

– come si vede, vwx non può contenere sia "a" sia "c": se contiene le une, per evidenti motivi di lunghezza non può contenere le altre.

ESEMPIO 2 (3)

- supponiamo, per fissare le idee, che la scelta sia questa:

u	vwx	у
aaaaa	abbbb	bbccccc

- alla luce di ciò, la sotto-stringa vx, lunga almeno 1 ma priva del pezzo centrale w, a sua volta è fatta solo di "a" e "b"
- qual è il pezzo centrale w in " abbbb"? di nuovo, ci sono più possibilità:

V	w	X
а	bbbb	(vuota)
(vuota)	abbb	b
ab	bbb	(vuota)
(vuota)	abb	bb

– ora, fra le altre stringhe del linguaggio, della forma uviwxiy, c'è anche quella per cui i=0, ossia in cui v e x mancano: è la stringa uwy, ossia...

ESEMPIO 2 (4)

- ..ossia, dato che u e y sono quelle scelte da noi poco fa:

u	vwx	у
aaaaa	abbbb	bbccccc

– e che il pezzo centrale w è uno di questi:

V	W	x
a	bbbb	(vuota)
(vuota)	abbb	b
ab	bbb	(vuota)
(vuota)	abb	bb

- la stringa uwy risulta "aaaaa" + w + "bbcccccc", ovvero ha tutte le sei "c" previste in fondo, ma meno "a" e/o meno "b" del necessario, perché alcune sono state "mangiate" dalla sotto-stringa vx
- ergo, la stringa uwy non appartiene al linguaggio, violando l'ipotesi.

ESEMPIO 2 (6)

$L = \{a^n b^n c^n\}$ non è context-free

- in alternativa si può dare una dimostrazione analoga all'Esempio 1
- consideriamo allora la stringa $z = a^{N} b^{N} c^{N}$
- scomponiamo z nei cinque pezzi uvwxy, con |vwx| ≤ N: sia vwx = b^N
- in particolare, sia |v| = p, $|x| = q \rightarrow |w| = N-p-q$
- in base al lemma, se L fosse context free, la nuova stringa uv²wx²y dovrebbe anch'essa appartenere al linguaggio..
- -... ma tale stringa sarebbe: $\mathbf{a^N} \mathbf{b^{2p}} \mathbf{b^{N-p-q}} \mathbf{b^{2q}} \mathbf{c^N} = \mathbf{a^N} \mathbf{b^{2p+N-p-q+2q}} \mathbf{c^N}$ ovvero $\mathbf{a^N} \mathbf{b^{N+p+q}} \mathbf{c^N}$ che *non avrebbe la forma richiesta*
- pertanto, essa non appartiene a L e dunque esso non è context-free.

ESPRESSIONI REGOLARI

il prof fa un mega discorso sul fatto di usare il pumping lemma per escludere, in caso, il tipo 3. a quel punto sempre in qualc (forse sempre col PL) afferma che non sono neanche di tipo 0 o 1, quindi puo' essere, solo 2. nonostante a quanto pare non scondizione sufficiente ma solo necessaria sto teorema. [non sicuro]

ESPRESSIONI REGOLARI

Un formalismo di particolare interesse [per descrivere linguaggi] è quello delle *espressioni regolari*.

Le espressioni regolari sono *tutte e sole le espressioni* ottenibili tramite le seguenti regole:

- *la stringa vuota \varepsilon* è una espressione regolare
- dato un alfabeto A,
 ogni elemento a∈A è una espressione regolare
- se X e Y sono espressioni regolari, lo sono anche:

```
X+Y (unione)
```

X•Y (concatenazione)

X* (chiusura)

definite come segue:

ESPRESSIONI REGOLARI

```
[definizione delle tre operazioni]
Unione (+)
                                                             (operatore meno prioritario)
   X + Y = \{ x \mid x \in X \lor x \in Y \}
Concatenazione (•)
                                                      (associativa ma non commutativa)
   X \bullet Y = \{ x \mid x = a b, a \in X \land b \in Y \}
  {} • X = {} per qualsiasi X
Chiusura(*)
                                                                (operatore più prioritario)
  X^* = X^0 \cup X^1 \cup X^2 \cup ...
  dove X^0 = \varepsilon
  e X^k = X^{k-1} \bullet X
```


UN PRIMO ESEMPIO

ESEMPIO

```
 \begin{array}{l} X1 = \{00,\,11\} \\ X2 = \{01,\,10\} \\ X1 + X2 = \{00,\,11,\,01,\,10\} \\ X1 \bullet X2 = \{0001,\,1101,\,0010,\,1110\} \\ X2 \bullet X1 = \{0100,\,0111,\,1000,\,1011\} \\ X1^* = \{\epsilon\,,\,00,11,\,\,0000,0011,1100,1111,\,\,000000,\,000011,\,001100,\,\,001111,\,\,110000,\,\,110011,\,\,111100,\,\,11111,\,\,\dots\,\} \end{array}
```

ATTENZIONE: uno stesso linguaggio può essere descritto da *molte espressioni regolari diverse*!

ALTRI ESEMPI

Con riferimento a linguaggi:

- ε denota il linguaggio vuoto
- un elemento a∈A denota il linguaggio {a}
- R1+R2 denota l'unione dei linguaggi denotati da R1 e R2
- R1•R2 denota la concatenazione dei linguaggi denotati da R1 e R2
- R* denota il risultato dell'operatore di chiusura applicato al linguaggio denotato da R.

```
ESEMPIO sull'alfabeto A = \{ 0, 1 \}
0 + 1^* = \{ 0, \epsilon, 1, 11, 111, 1111, 11111, \dots \}
(0 + 1)^* = \{ 0 + 1, \epsilon, (0 + 1)(0 + 1), (0 + 1)(0 + 1), \dots \} =
= \{ \epsilon, 0, 1, 00, 10, 01, 11, 000, 010, 001, 011, 100, 110, 101, 1111, \dots \}
= A^*
(10 \bullet 01)^* = (1001)^* = \{ \epsilon, 1001, 10011001, 100110011001, \dots \}
```


ESPRESSIONI vs LINGUAGGI REGOLARI

- Ma perché ci interessa tutto questo?
- Cosa hanno a che fare queste curiose espressioni con le grammatiche e i linguaggi?

La risposta è nel seguente

TEOREMA

i linguaggi generati da *grammatiche regolari* coincidono

con i linguaggi descritti da espressioni regolari.

Grammatiche ed espressioni regolari sono quindi due rappresenta-zioni diverse della stessa realtà:

- una è costruttiva dice COME si fa, ma non COSA si ottiene
- l'altra descrittiva dice COSA si ottiene, ma non COME si ottiene

RAPPRESENTAZIONI DIVERSE DELLA STESSA REALTÀ

GRAMMATICA

- rappresentazione costruttiva
- dice COME si fa
- non COSA si ottiene

ESP. REGOLARE

- rappresentazione descrittiva
- dice COSA si ottiene
- non COME si fa

sintetizza anche le regole

Grammatica

$$S \rightarrow a S \mid b$$

qui definisce il percorso in modo singolare: spiega punto per pula

sintetizza la logica

Espressione regolare

$$L = \{ \mathbf{a}^* \mathbf{b} \}$$

qui spiega la "soluzione" senza dirti come, le regole qui non sono chiare

Si può passare dall'una dall'altra?

PASSAGGI FRA RAPPRESENTAZIONI

Dalla grammatica all'espressione regolare

• si risolvono le cosiddette equazioni sintattiche

Dall'espressione regolare alla grammatica

 si interpretano gli operatori dell'espressione regolare in base alla loro semantica (sequenza, ripetizione, alternativa) mappandoli in opportune regole

DALLA GRAMMATICA ALL'ESPRESSIONE REGOLARE

Per passare dalla grammatica all'espressione regolare si interpretano le produzioni come *equazioni sintattiche*, in cui

- i simboli terminali sono i termini noti,
- i linguaggi generati da ogni simbolo non terminale sono le incognite e si risolvono con le normali regole algebriche.

ESEMPIO: la grammatica lineare a destra vista in precedenza:

$$S \rightarrow a \mid a + S \mid a - S$$

può essere letta come un'equazione con

- tre termini noti: a, +, -
- una incognita,

che impone il vincolo *(usiamo per l'unione il simbolo ∪ anziché* +)

$$L_S = a \cup (a + L_S) \cup (a - L_S) = (a + \cup a -) L_S \cup a$$

la cui soluzione, come vedremo ora, è l'espressione regolare

$$S = (a + \cup a -)^* a$$

SOLUZIONE DI EQUAZIONI SINTATTICHE

- Le equazioni sintattiche si risolvono tramite un algoritmo, che esiste in due versioni:
 - per grammatiche regolari <u>a destra</u>
 - per grammatiche regolari <u>a sinistra</u>
- Le due versioni differiscono però solo per un raccoglimento a fattor comune, in cui l'elemento raccolto:
 - nelle grammatiche regolari a destra, è raccolto a destra
 - nelle grammatiche regolari <u>a sinistra</u>, è raccolto <u>a sinistra</u>

e nella conseguente posizione dei termini nell'espressione risultante.

ALGORITMO (grammatiche regolari a destra)

- 1. Riscrivere ogni gruppo di produzioni del tipo $X \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$ come $X = \alpha_1 + \alpha_2 + \dots + \alpha_n$
- 2. Poiché la grammatica è lineare a <u>destra</u>, ogni α_k ha la forma uX_k dove $X_k \in VN \cup \epsilon$, $u \in VT^*$

Ergo, si raccolgano a <u>destra</u> i simboli non-terminali dei vari $\alpha_1 \dots \alpha_n$ scrivendo $X = (u_1 + u_2 + \dots) X_1 \cup \dots \cup (z_1 + z_2 + \dots) X_n$ dove $X_k \in VN$, $u_k, z_k \in VT^*$

Ciò porta a un sistema di M equazioni in M incognite dove M è la cardinalità dell'alfabeto VN (cioè il numero di simboli non terminali)

3. Eliminare dalle equazioni le ricorsioni dirette, data l'equivalenza

$$X = u X \cup \delta \longleftrightarrow X = (u)^* \delta$$

Ognuna delle forme di frase δ conterrà altre incognite, ma non X.

- **4. Risolvere il sistema rispetto a S per eliminazioni successive** (metodo di Gauss), eventualmente ri-applicando (2) e (3) per trasformare le equazioni via via ottenute.
- 5. La soluzione del sistema è il linguaggio regolare cercato.

ALGORITMO (grammatiche regolari a sinistra)

- 1. Riscrivere ogni gruppo di produzioni del tipo $X \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$ come $X = \alpha_1 + \alpha_2 + \dots + \alpha_n$
- 2. Poiché la grammatica è lineare a <u>sinistra</u>, ogni α_k ha la forma $X_k u$ dove $X_k \in VN \cup \epsilon$, $u \in VT^*$

Ergo, si raccolgano a <u>sinistra</u> i simboli non-terminali dei vari $\alpha_1 \dots \alpha_n$ scrivendo $X = X_1 (u_1 + u_2 + \dots) + \dots + X_n (z_1 + z_2 + \dots)$ dove $X_k \in VN$, $u_k, z_k \in VT^*$

Ciò porta a un sistema di M equazioni in M incognite dove M è la cardinalità dell'alfabeto VN (cioè il numero di simboli non terminali)

3. Eliminare dalle equazioni le ricorsioni dirette, data l'equivalenza

$$X = X u \cup \delta \qquad \leftrightarrow \qquad X = \delta (u)^*$$

Ognuna delle forme di frase δ conterrà altre incognite, ma non X.

- **4. Risolvere il sistema rispetto a S per eliminazioni successive** (metodo di Gauss), eventualmente ri-applicando (2) e (3) per trasformare le equazioni via via ottenute.
- 5. La soluzione del sistema è il linguaggio regolare cercato.

ESEMPIO (grammatica lineare a destra)

Fase 1

scrittura di un'equazione per ogni regola:

Grammatica data:

 $S \rightarrow a B \mid a S$ $B \rightarrow d S \mid b$

Fase 2

• eventuali raccoglimenti a fattore comune per evidenziare suffissi: *qui non ce ne sono*

Equazioni:

$$S = a B + a S$$

 $B = d S + b$

Fase 3

• eliminare la ricorsione diretta $\mathbf{x} = \mathbf{u} \mathbf{x} + \mathbf{\delta}$ riscrivendola come $\mathbf{x} = \mathbf{u}^* \mathbf{\delta}$ (qui $\mathbf{\delta} = \mathbf{a} \mathbf{B}$)

$$S = a^* a B$$

 $B = d S + b$

Fase 4

 sostituzione della 2^a equazione nella 1^a e sviluppo dei relativi calcoli

$$S = a^* a (d S + b) =$$

= $a^* a d S + a^* a b$

Fase 5

 nuova eliminazione della ricorsione introdotta al punto precedente: risultato finale.

$$S = a^* a d S + a^* a b$$

 $S = (a^* a d)^* a^* a b$

ESEMPIO – VARIANTE

Fase 1

• scrittura di un'equazione per ogni regola:

Grammatica data:

 $S \rightarrow a B \mid a S$ $B \rightarrow d S \mid b$

Fase 2

 se ora eliminiamo subito B, sostituendo la 2^a equazione nella 1^a e raccogliamo S:

Equazioni:

S = a B + a SB = d S + b

Fase 3

• eliminando ora la ricorsione $\mathbf{x} = \mathbf{u} \mathbf{x} + \mathbf{\delta}$ riscrivendola come $\mathbf{x} = \mathbf{u}^* \mathbf{\delta}$ (qui $\mathbf{\delta} = \mathbf{a} \mathbf{b}$)

$$S = a (d S + b) + a S =$$

= $(a d + a) S + a b$

 che costituisce già una espressione regolare (risultato finale)

$$S = (a d + a)^* a b$$

Poco fa però avevamo ottenuto:

$$S = (a^* a d)^* a^* a b$$

non sembra affatto la stessa cosa.. 😕

RIFLESSIONE

LA PRIMA ESPRESSIONE ottenuta: $S = (a^* a d)^* a^* a b$

LA SECONDA ESPRESSIONE ottenuta: $S = (a d + a)^* a b$

Denoteranno lo stesso linguaggio? si spera..!

Una terza espressione (deterministica) equivalente:

$$S = a (d a + a)^* b$$

Frasi del linguaggio:

ab, adab, aab, aadadab, ...

ossia tutte le frasi che iniziano per "a", terminano per "b", e hanno eventualmente in mezzo "a" o "da" ripetuti un numero arbitrario di volte.

In generale, uno stesso linguaggio può essere denotato da più espressioni regolari equivalenti.

RIFLESSIONE

Come si possono ottenere espressioni equivalenti?

- manipolando algebricamente quelle di partenza
 - la manipolazione algebrica diretta è ardua perché gli operatori hanno poche proprietà e quindi trasformare è faticoso e difficile
 - occorre capire "con fantasia" quale trasformazione applicare
- operando sulle "corrispondenti macchine"
 - lì esistono algoritmi pratici per trasformare macchine in altre macchine
 - il risultato finale può essere ri-trasformato in espressione regolare ©

Espressioni regolari in Java [package java.util.regex]

- un'istanza della classe Pattern rappresenta un'espressione regolare, ossia descrive il linguaggio (metodo Pattern.compile)
- un'istanza della classe Matcher fa match con una stringa data, ossia riconosce se la stringa data appartiene al linguaggio denotato dall'espressione regolare medesima.

DALL'ESPRESSIONE REGOLARE **ALLA GRAMMATICA**

Per passare dall'espressione regolare alla grammatica si interpretano gli operatori in base alla loro semantica

- sequenza → simboli accostati nella grammatica
- operatore + → simbolo di alternativa nella grammatica (regole distinte)
- operatore * → regola ricorsiva nella grammatica (ciclo)

ESEMPIO: l'espressione regolare vista in precedenza

$$L = \{ a^* b \}$$

Tutte le frasi di L sono composte dal prefisso a* (che può mancare) e dal suffisso **b** (che invece c'è sempre)

$$S \rightarrow A b \mid b$$

Il prefisso a* può essere prodotto da una regola ricorsiva, del tipo:

$$A \rightarrow A a$$

$$A \rightarrow A$$
 a o anche $A \rightarrow a$ A