OBSERVACION DE BACTERIAS DEL YOGUR

Las bacterias, junto con las cianobacterias (antiguas algas cianofíceas) constituyen el Reino de las Móneras. Todos son organismos procarióticos unicelulares.

Las células procarióticas tienen un origen anterior a las eucarióticas en la evolución.

Se diferencian de las eucarióticas en que:

- * No tienen núcleo diferenciado: su material hereditario no está separado del citoplasma por una membrana.
- * Carecen de muchos orgánulos propios de las células eucarióticas
- * Su tamaño es menor: Las bacterias miden de 0,2 a 5 micrómetros y las células eucarióticas de 1 a 20 micrómetros.

Dentro de las bacterias se pueden distinguir diferentes tipos:

- Según su nutrición hay bacterias...

. Autótrofas:

- * Fotosintetizantes
- * Quimiosintetizantes

. Heterótrofas:

- * Saprofitas, que descomponen la materia orgánica mediante putrefaccciones y fermentaciones.
- * Simbióticas, en simbiosis con otros organismos, como las de nuestra flora intestinal o el Rhizobium de la raiz de las leguminosas.
- * Parásitas, que povoan enfermedades, como la tuberculosis, cólera, tifus, tétanos, etc.

Todas las heterótrofas, según que utilicen oxígeno puro o no lo usen, se pueden dividir en aerobias (que lo usan) y anaerobias (que no lo usan; para algunas de estas el oxígeno es un veneno).

- Según su forma se distinguen:
 - *Cocos: con forma esférica, que pueden aparecer aislados: micrococos; • • en parejas: diplococos: alineados: estreptococos: o en racimos: estafilococos
- *Bacilos: con forma alargada. A veces se encuentran en cadenas : estreptobacilos
- *Vibrios o vibriones: cortos y curvados, en forma de coma 🕡 💫
- * Espirilos: con forma de hélice 🛭 🛊 🕶 🛊 🐨

Las bacterias tienen una gran importancia, no solo porque hay algunas perjudiciales, sino por las que son beneficiosas e incluso necesarias.

Las bacterias de la putrefacción y algunas quimiosintetizantes (las del nitrógeno, por ejemplo) son pasos importantes en la circulación o reciclaje de la materia en la naturaleza.

Muchas bacterias son utilizadas por la humanidad con fines industriales, como las de las fermentaciones (fabricación de yogur y vinagre); fabricación de acetona, butanol, caucho; fabricación de medicamentos como antibióticos o vitaminas, etc.

También se utilizan en investigación genética. Ingeniería genética que ya comienza a experimentarse para curar enfermedades.

En esta actividad **pretendemos** ponerte en contacto con el mundo de las bacterias, que las observes al microscopio y, a la vez, que realices un tipo de preparación microscopica completa (frotis) incluyendo los pasos más característicos de la técnica microscopica: fijación y tinción.

El pequeño tamaño de las bacterias exige el empleo de grandes aumentos para verlas. Por otra parte, su resistencia al paso de la luz es semejante a la del medio en que se encuentran, por lo cual deberá destacarse su presencia mediante el empleo de un colorante que las tiña, dejando, a la vez, incoloro al medio circundante.

Se deberá emplear, pues, **el mayor aumento posible** con el microscopio óptico. Ello se logra mediante un objetivo especial que se emplea con su lente frontal sumergida en un aceite especial. Se llama **"Objetivo de inmersión"**, produce 100 aumentos y no todos los microscopios lo tienen.

Para realizar la tinción deberá realizarse primero la **fijación** del material, muerte y estabilización del mismo, lo cual permitirá que no se modifique con las manipulaciones posteriores y que el colorante penetre adecuadamente en la muestra. **Realizaremos la fijación mediante calor**.

La grasa, abundante en el material que se va a emplear, dificultará la llegada del colorante a la célula, pues se usará azul de metileno en solución acuosa, por lo que será necesario eliminarlas mediante un disolvente. Utilizaremos etanol (alcohol).

PROCEDIMIENTO

- 1.- Asegurarse de que el porta esté limpio.
- 2.- Tomar una pequeña cantidad de yogur con un palillo y extenderlo por la zona central del porta.
- 3.- Fijación por calor: tomando el porta con dos dedos por el borde, con la muestra hacia arriba y en posición horizontal, pasarlo por la llama del mechero de modo se se pueda tocar con él el dorso de la mano sin quemarse. Repetir la operación, siempre probando y sin quemarse, hasta que se haya secado la muestra.
- 4.- Eliminación de grasas. Colocar la preparación sobre una placa de Petri y poner unas gotas de etanol sobre la muestra fijada. Esperar unos minutos. Lavar con agua y escurrir.
- 5.- Tinción. Colocar nuevamente la preparación sobre la placa de Petri y poner unas gotas de **azul de metileno**. Esperar cinco minutos. **Lavar** con abundante agua. Colocar un **cubre**. Secar la preparación con papel de filtro.

6 Observación al microscopio, con el máximo aumento disponible.

Realiza un dibujo representando lo que ves al microscopio:

Haz una breve redacción explicando el procedimiento que has seguido:					
				,	