PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

NeighbourNet: Enhancing Community Connection with Machine Learning

Student ID	Group Members
21107003	Sumit Samanta
21107032	Janvi Sharma
21107065	Shreyas Revankar
21107013	Devansh Kopra

Project Guide Prof. Anagha Aher

1. Introduction

NeighbourNet is a platform aimed at enhancing accessibility to community services through the application of machine learning.

Motivation

- Many citizens encounter challenges in accessing essential community services due to official processes, long wait times, and complex procedures.
- Machine learning offers opportunities to automate and optimize processes, potentially improving the delivery of community services.

1. Introduction

Objectives

- To Develop user-friendly interfaces and platforms that facilitate easy access to community services.
- Ensure that community services are accessible to a wider range of citizens, including those with limited technological proficiency.
- To continuously refine and enhance NeighbourNet's features based on user feedback and evolving technological advancements.

Sr	Title	Author	Year	Outcomes	Methodology	Result
No.						
1	[1] Classifying	Evaristus	2023	Most of the	Using random	Using Random
	Crowdsourced	D.		Feedback	forest algorithm,If	Forest Algorithm
	Citizen	Madyatmad		analysis uses	the predictions	it provides more
	Complaints	ja,		Naive Bayers	from individual	accurate analysis
	through Data	Corinthians		algorithm which	trees are not	and it is more
	Mining:	P.M.		provide bais	perfectly	reliable.
	Accuracy	Sianipar,		output	correlated, some	
	Testing of	Cristofer			trees will be	
	kNearest	Wijaya and			wrong, but many	
	Neighbors,	David J. M.			will be right; thus,	
	Random Forest,	Sembiring.			as a group, the	
	Support Vector				trees	
	Machine, and				are able to move	
	AdaRoost "				in the correct	

Sr	Title	Author	Year	Outcomes	Methodology	Result
No.						
2	[2] Chat	N.T.	2023	inability to	Whatsapp chat	analyze and
	Analysis on	Renukadevi		handle	analysis by	categorize chat
	WhatsApp using	, S.		unstructured data	leveraging pattern	content
	Machine	Nanthitha,		efficiently,	recognition	accurately,
	Learning	K.		leading to	through urlextract,	enabling deeper
		Saraswathi,		challenges in	creating	understanding
		S. Shobika,		extracting	interactive	and actionable
		R.T.		meaningful	visualizations	insights from the
		Karthika		insights from	with Streamlit,	conversations.
				large volumes of	and conducting	
				text	statistical analysis	
					and data	
					visualization	
					using Seaborn and	

Sr No.	Title	Author	Year	Outcomes	Methodology	Result
3	[3] Secure On- Demand Routing Protocol for MANET using Genetic Algorithm.	D. Suresh Kumar, K.Manikan dan, M.A.Salee m Durai.	2011	Allocation of service on short time is a task an cannot be handled manually.	Evolving optimal or near- optimal routing plans through a process of selection, crossover, and mutation based on predefined fitness criteria and constraints.	By using genetic algorithm we can find the shortest path for sending request.

Sr	Title	Author	Year	Outcomes	Methodology	Result
No						
•						
4	[4] Implementatio	Tarun	2018	Government	Training a model	Easy
	n of a Chatbot	Lalwani,		websites usually	on large datasets of	Communication
	System using AI	Shashank		lacks for an	conversational data	and Hassle free
	and NLP.	Bhalotia,		another user	to understand	web
		Ashish		interface where	user input,	application.
		Pal,		user can directed	generating	
		Vasudhara		get the result	appropriate	
		Rathod.		rather than	responses, and	
				browsing through	continuously	
				the webpage.	refining the model	
					through iterative	
					learning processes.	

3. Limitations of existing systems

- Community systems face limitations due to unequal access to technology, creating disparities in citizen participation and access to services.
- Community systems are vulnerable to cyber threats like hacking and data breaches, necessitating constant investment in robust cybersecurity measures to safeguard citizen information.
- Complex interfaces and usability issues hinder citizen engagement, especially for those with limited digital literacy or disabilities, underscoring the need for improved accessibility and user-friendliness.

4. Problem statement

- To help people access important community services more easily by making the process simpler and faster, and by spreading awareness about the services available.
- To help community agencies better handle citizen feedback and complaints so they can respond quickly and resolve issues effectively, rebuilding public trust in community services.
- Old methods and outdated systems make it hard for community services to grow and work efficiently.

5. System Design

- NeighbourNet is a web application.
- In NeighbourNet's homepage, user will get four options: Register, Services, About Us, and Contact Us. In Services there are four main features of our system citizen feedback, whatsapp chat analysis, request routing and chatbot.
- In Citizen Feedback, the user can give feedback for garbage, road and sewage based on which visualization will be provided.

5. System Design

- In chatbot, the user enters his questions and suggestions are provided on the same.
- In Request Routing, taking service request from the user and alloting it to the specific department who handles that service.
- In WhatsApp Chat Analysis, users have to select a particular contact, for which person we have to analysis the text.

6. Technologies and methodologies

Front-End:

- HTML 5
- CSS 3

Middleware:

- Python 3.11.3
- Flask 3.0.2

Datasets:

• Dataset_feedback.csv(50,5)

Algorithms Used:

- Random Forest
- Genetic Algorithm

Homepage:

We have the best services available for you!

Services:

Feedback Que	estions
Question 1. How satisfied are you with the service	provided?
† (Very DrossRafed).	
Question 2: Delittle worker service on time?	
† (Very Dissakefect)	
Question 3: Was the quality of work sutrafactory?	
1 (Very Drossbefort)	
Question 4. How likely are you to recommend our	pervice to others?
1 (Very Dissatisfied)	
Question S. Oyersk, how satisfied are you with ou	nerves?
† (Very Dissahafest)	
Any additional comments or suggestions?	

8. Conclusion

- NeighbourNet strives to make accessing community services easier and more efficient for everyone. By providing features like citizen feedback, whatsapp chat analysis, request routing, and chatbot assistance, NeighbourNet aims to improve transparency, responsiveness, and trust in community services.
- Through innovation and technology, NeighbourNet seeks to empower citizens and community agencies alike, fostering a more connected and responsive community.

9. References

- [1] Madyatmadja, Evaristus D., et al. "Classifying Crowdsourced Citizen Complaints through Data Mining: Accuracy Testing of k-Nearest Neighbors, Random Forest, Support Vector Machine, and AdaBoost." Informatics. Vol. 10. No. 4. MDPI, 2023.
- [2] Renukadevi, N. T., et al. "WhatsApp Group Chat Analysis by using Machine Learning." 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). IEEE, 2023.
- [3] Manikandan, K., Saleem Durai, and Suresh Kumar D. MA. "Secure On-Demand Routing Protocol for MANET using Genetic Algorithm." International journal of computer applications 975, 2011.
- [4] Lalwani, Tarun, et al. "Implementation of a Chatbot System using AI and NLP." International Journal of Innovative Research in Computer Science & Technology (IJIRCST) Volume-6, Issue-3,2018.

Thank You!!