MAE 158 Lecture 6 Fall 2024

Announcements: Mathab + Solidworks quides
For drag, project posted
under "Resources"

- Miltern Thursday Week 5

Todays Objectives: Compressibility Drag

Lost Time: Mach # = M = V/a & a = VTRT

 $\frac{1}{2} \cos \theta = \frac{1}{2} \left[\left(\frac{1}{2} \right)^{\frac{1}{2}} \right]$

Ex: Determine the true airspeed in compressible conditions

		M,V			<u></u>				-	ρ	Hot	tube	ne	asu	res	
				Pt =	860		ft ^z								6/fts	
				\	2						·					
	_	at	MOS	; ph	er'c	-	Con	12:4	rón	کہ	are	•	Suc	; h	00 ff	
		+	hat	-	11	pre	55we	a	ltita	rde	(=	h	= 39	5,0	00ff	
						•									_	
		&	+	emp	era°	ture	2	کا	10) °F	- a	bove	Sta	nda	سرا	
									_	;+	is	the	al	414	ide	
	_	"P	re 55	we	al	74:4	ude	'' ())	a	+	th	e c	\ ~ e.	de ssur	
		l		th	at	is	th	e	Sav	ue	a	2	the		local	
			(Pre	SSW	re		-	tha	.+-	al	f; hi	de	8	1	
				1			لے									
									- f + h - a	Cton	dard A	tmosp	here	Ar	op. A	

424 Characteristics of the Standard Atmosphere

TABLE A.2 CHARACTERISTICS OF THE STANDARD ATMOSPHERE (ENGLISH UNITS)

Altitude,	Temperature, T, °R	Pressure, p, lb/ft²	Density ρ , lb s ² /ft ⁴ (slugs/ft ³)	Speed of sound, ft/s	Kinematic viscosity, ft ² /s
34,000	397.64	523.47	7.6696	977.52	3.9348
35,000	394.08	499.34	7.3820	973.14	4.0575
36,000	390.53	476.12	7.1028-4	968.75	4.1852-4
37,000	389,99	453.86	6.7800	968.08	4.3794

P, = 499.34 lb/c+2 T = 394.08 °R + 10°F = 404.08 °R

- if you reed p b P = PRT true airspeed $M_{1} = \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)^{\gamma - 1}$ $= \sqrt{\frac{2}{\gamma - 1}} \left(\frac{P_{7}}{P_{1}} \right)$ = 0.85 V = MJVRT 404°R 1.4 (1718 fflb) = 840 Pt/s Compressibility Drag Ch. 12

- 65	Himate	&CD,C				
$\mathcal{M}_{\mathbf{w}}$		ML				
←						
٨٨	= 0	act cai	41	Mach #	- →	
	M,	=1,0	a (h# i	air foil	
		-			, , , , , ,	
M_{\star}	$\dot{\mathbf{w}} = \frac{1}{2}$	Drag d	iverge	nce M	ach #	
Ľ						
	\mathcal{M}_{D}	u is H	e fre	estreau	n Mac	h#
	u	here	an a	brupt o	drag rise	•
	(ccurs			U	
		7400	Whe	re the	drag	
		COLH	1 clent	increase	2 who h	Q A A / A
		w, rp-	Kanı K	Mereus	es ~ 0.0	ןטע

() = free stream properties
() = local properties on the airfoil

$$Pt = (1 + \frac{Y-1}{2}Mn^2)^{\frac{1}{2}} + \frac{1}{2}(lecture S)$$

$$Pt = (1 + \frac{Y-1}{2}Mn^2)^{\frac{1}$$

increase Mcc with Sweep Sweep theory: 1 = sweep angle unswept swept "sees" effective values Wing Voreffective = Vos Cos 1

Mos effective = Mos cos1 $M_{CC} = \frac{M_{CC} \Lambda = 0^{\circ}}{COS \Lambda}$ because q effective $< 9 \infty$ case L> Need higher Cn, Cp
L> effectively lowers
Mcc 2 by a bit ... overall effect is sweep 7. Mcc Mccs = Mccs = 0°
cos ms
account for lift
effects

M Shevell Fig 12,9 use Jafa to estimate DCDC given Mccs & 1 SCD,C 12.13 Shevell MW Mccs

