Optimization & Gradient Descent

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Data

- Input: x (tensor)
- Output: y

Model

- Structure: e.g. Linear,
 Logistic or multinomial
 logistic regression
- Parameters: θ (e.g. w, b)

Loss function

• Loss:
$$L(\theta) = \sum_{i} \ell(\theta \mid \mathbf{x}_{i}, y_{i})$$

Gradients

- L2 $\ell(\hat{y}, y) = \frac{1}{2} ||\hat{y} y||^2$ where $\hat{y} = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$ • $\nabla_{\mathbf{w}} \ell(\hat{y}, y) = (\hat{y} - y) \mathbf{x}$ • $\nabla_{b} \ell(\hat{y}, y) = \hat{y} - y$
- Sigmoid $\ell(o, y) = -\log p(y|o)$ where $o = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$
 - $\nabla_{\mathbf{w}} \ell(o, y) = (\sigma(o) y)\mathbf{x}$ $\nabla_{b} \ell(o, y) = \sigma(o) y$
- Softmax $\ell(\mathbf{o}, y) = -\log p(y | \mathbf{o})$ where $\mathbf{o} = \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$
 - $\nabla_{\mathbf{W}_i} \mathcal{E}(\mathbf{o}, y) = (\operatorname{softmax}(\mathbf{o})_i [y = i])\mathbf{x}$ $\nabla_{\mathbf{b}_i} \mathcal{E}(\mathbf{o}, y) = \operatorname{softmax}(\mathbf{o})_i - [y = i]$

Optimization

- ullet Find parameters heta
- With lowest loss $L(\theta)$

Gradient descent

• Start at random θ

• Update:
$$\theta' = \theta - \epsilon \frac{\partial L(\theta)}{\partial \theta}$$

• Update:
$$\theta' = \theta - \epsilon \frac{\partial L(\theta)}{\partial \theta}$$

• $L(\theta') < L(\theta)$ if $\frac{\partial L(\theta)}{\partial \theta}! = 0$

and ϵ small enough

Gradient descent algorithm

• Randomly initialize θ

• for n iterations

- compute loss $L(\theta)$ and gradient $g = \frac{\partial L(\theta)}{\partial \theta}$
- Update: $\theta = \epsilon g$

Gradient descent in action

loss

Learning rate matters

