ANALISIS KEBUTUHAN BISNIS DAN TEKNIS UNTUK MERANCANG DATA WAREHOUSE PADA INDUSTRI RIDE-HAILING OKI (OJEK KAMPUS ITERA)

Anggota Kelompok 26:

1.	Muhammad Rendy Saputra	121450045
2.	Asa Do'a Uyi	122450005
3.	Tessa Kania Sagala	122450040
4.	Presilia	122450081
5.	Ahmad Rizqi	122450138

RINGKASAN KEBUTUHAN DARI MISI

A. Layanan Transportasi OKI (Ojek Kampus ITERA)

OKI adalah sistem transportasi aplikasi yang melayani mobilitas dalam kampus itera. Dengan integrasi gps, pembayaran digital, dan algoritma pencocokan permintaan, OKI beroperasi tanpa armada sendiri dan mengandalkan efisiensi sistem serta fleksibilitas kerja. Model ini memungkinkan layanan yang lebih responsif dan terjangkau. Namun, OKI menghadapi sejumlah tantangan seperti sulitnya memprediksi lonjakan permintaan, keterbatasan sistem pelaporan terpusat, rendahnya visibilitas terhadap kinerja operasional, serta belum optimalnya deteksi terhadap anomali atau potensi *fraud*. Kebutuhan utama bisnis ini adalah sistem data yang mendukung pengambilan keputusan secara akurat, *real-time*, dan terintegrasi. Maka dari itu berikut adalah tabel ringkasan kebutuhan sistem atas permasalahan yang ada:

1. Kebutuhan berdasarkan masalah bisnis

Masalah Utama	Kebutuhan Sistem
Prediksi permintaan tidak akurat	Sistem prediksi permintaan berbasis AI untuk alokasi pengemudi real-time
Laporan lambat dan tidak sinkron	Dashboard laporan terpusat dengan integrasi data dan update real-time
Visibilitas operasional rendah	Sistem pemantauan KPI menyeluruh: waktu tunggu, performa driver, dan kepuasan user
Deteksi fraud lambat/manual	Sistem deteksi anomali otomatis berbasi machine learning

2. Kebutuhan berdasarkan stakeholder

Stakeholder	Kebutuhan
Pengguna	Layanan cepat, aman, mudah bayar, dan harga wajar
Mitra Pengemudi	Pendapatan stabil, fleksibilitas, dan proteksi asuransi
Regulator	Compliance hukum, perlindungan data, dan kontribusi pajak

Investor	Pertumbuhan user, profitabilitas, dan scalability
Manajemen Teknis	Sistem analitik real-time, integrasi data dan deteksi fraud otomatis

Jenis data yang mungkin diperlukan dalam membangun data warehouse untuk sistem ini adalah data permintaan perjalanan (waktu, lokasi, dan frekuensi penggunaan), data pengemudi (lokasi dan performa), serta data transaksi dan perjalanan (waktu tempuh, metode pembayaran, dan *status trip*). Selain itu, histori penggunaan dan feedback pengguna juga relevan untuk mendukung prediksi permintaan, evaluasi kinerja, pelaporan terpusat, serta deteksi anomali secara otomatis.

SKEMA KONSEPTUAL MULTIDIMENSI

A. Diagram Star Schema (Fakta-Dimensi)

Diagram *star schema* berikut menggambarkan hubungan antara tabel fakta dan dimensi dalam data warehouse OKI. Tabel fakta seperti *Trip Fact Table* menyimpan metrik utama (misalnya, kepuasan dan *surge multiplier*), sementara dimensi seperti *Time* dan *Location* memberikan konteks untuk analisis, mendukung pengambilan keputusan yang lebih baik sesuai kebutuhan bisnis.

PENJELASAN TIAP KOMPONEN

A. Transaction Fact

Atribut Utama:

Transaction_ID	Identifikasi unik untuk setiap transaksi			
Time_ID	Foreign Key yang merujuk ke dimensi Time (waktu transaksi)			
Rider_ID	Foreign Key yang merujuk ke dimensi Rider (pengguna)			

Payment_Method_ID	Foreign Key yang merujuk ke dimensi Payment_Method (metode pembayaran)
Trip_ID	Foreign Key yang merujuk ke dimensi Trip (Informasi perjalanan terkait)
Transaction_Amount	Jumlah nominal transaksi (Dalam IDR)
Fraud_Probability_Score	Skor probabilitas kecurangan transaksi (skala 0-100)
Transaction_Frequency	Frekuensi transaksi dalam periode tertentu

Contoh Data:

Transaction_ID ▼	Time_ID ▼	Rider_ID ▼	Payment_Method_ID ▼	Trip_ID ▼	Transaction_Amount	Fraud_Probability_Score	Transaction_Frequency •
TR001	2025010101	R001	P001	T001	155	2	1
TR002	2025010102	R002	P002	T002	20	15	2

Pentingnya dalam analisis:

- Prediksi Permintaan Tidak Akurat & Alokasi Pengemudi *Real-Time*: *Data Time_ID* dan *Transaction_Frequency* membantu memprediksi permintaan berdasarkan waktu dan frekuensi transaksi, mendukung alokasi pengemudi secara efisien.
- Laporan Lambat dan Tidak Sinkron & Dashboard Terpusat: *Transaction_Amount* memungkinkan pelaporan pendapatan *real-time*, sedangkan *Fraud_Probability_Score* mendukung integrasi data untuk dashboard terpusat yang mendeteksi kecurangan.
- Visibilitas Operasional Rendah & Sistem Pemantauan KPI: Data ini memungkinkan pemantauan KPI seperti total transaksi dan potensi fraud, meningkatkan visibilitas operasional

B. Trip Fact

Atribut Utama:

Trip_ID	Identifikasi unik untuk setiap perjalanan
Time_ID	Foreign Key yang merujuk ke dimensi Time (waktu perjalanan)
Pickup_Location_ID	Foreign Key yang merujuk ke dimensi Location (lokasi penjemputan)
Dropoff_Location_ID	Foreign Key yang merujuk ke dimensi Location (lokasi penurunan)
Rider_ID	Foreign Key yang merujuk ke dimensi Rider (Pengguna)
Driver_ID	Foreign Key yang merujuk ke dimensi Driver (pengemudi)
Vehicle_Type_ID Foreign Key yang merujuk ke dimensi Vehicle_Type (tipe ke	
Payment_Method_ID	Foreign Key yang merujuk ke dimensi Payment_Method (metode pembayaran)
Trip_Revenue	Pendapatan dari perjalanan (dalam IDR)
Trip_Distance	Jarak perjalanan (dalam km)

Wait_Time	Waktu tunggu pengguna (dalam menit)
Rider_Satisfaction	Skor kepuasan pengguna (skala 0-5)
Driver_Satisfaction	Skor kepuasan pengemudi (skala 0-5)
Surge_Multiplier	Faktor pengali tarif saat permintaan tinggi
Trip_Cancellation	Status pembatalan perjalanan (Y/N)

Contoh Data:

Trip_ID ▼	Time_ID ▼	Pickup_Location_ID ▼	Dropoff_Location_ID <	Rider_ID ▼	Driver_ID ▼	Vehicle_Type_ID ▼	Payment_Method_ID *	Trip_Revenue ▼	Trip_Distance ▼	Wait_Time ▼
T001	2025010101	L001	L002	R001	D001	V001	P001	155	52	35
T002	2025010102	L003	L004	R002	D002	V002	P002	20	78	4

Pentingnya dalam Analysis:

- Prediksi Permintaan Tidak Akurat & Alokasi Pengemudi Real-Time: *Data Time_ID*, *Pickup_Location_ID*, dan *Dropoff_Location_ID* membantu memprediksi permintaan berdasarkan waktu dan lokasi, mendukung alokasi pengemudi.
- Visibilitas Operasional Rendah & Sistem Pemantauan KPI: *Trip_Revenue, Wait_Time, Rider_Satisfaction*, dan *Driver_Satisfaction* memungkinkan pemantauan KPI seperti pendapatan, waktu tunggu, dan kepuasan pengguna/pengemudi.
- Kebutuhan Stakeholder (Pengguna & Mitra Pengemudi): Pengguna mendapat layanan cepat dan aman (via *Wait_Time* dan *Rider_Satisfaction*), sementara mitra pengemudi mendapat stabilitas pendapatan (via *Trip Revenue* dan *Driver Satisfaction*).

PENJELASAN KOMPONEN DIMENSI

A. Time Dimension (Dimensi Waktu)

Hirarki: Jam \rightarrow Hari \rightarrow Bulan \rightarrow Kuartal. Contoh Atribut: Day_of_week (untuk analisis pola mingguan) dan Month (untuk laporan bulanan)

B. Location Dimension (Dimensi Lokasi)

Hirarki: Koordinat \rightarrow Kota \rightarrow Zona (Urban vs Airport). Contoh Atribut: *City* (untuk segmentasi lokasi layanan) dan *Latitude & Longitude* (untuk pemetaan dan analisis spasial)

C. Rider Dimension (Dimensi Pengguna)

Hirarki: Gender \rightarrow Kelompok Umur \rightarrow Rider. Contoh Atribut: *Gender* (analisis pengguna berdasarkan gender) dan *Age Group* (untuk segmentasi pengguna)

D. Driver Dimension(Dimensi Pengemudi)

Hirarki: Kota Operasi → Status Pekerja → Driver. Contoh Atribut: *City_of_operation* (lokasi pengemudi beroperasi, dapat digunakan untuk pemetaan layanan) dan *In_Full_Time*: untuk menunjukkan status kerja waktu (penuh atau tidak).

E. Vehicle Type Dimension (Dimensi Kendaraan)

Hirarki: Kategori Kendaraan → Jenis Kendaraan. Contoh Atribut: *Capacity* (jumlah penumpang maksimal, ini relevan untuk layanan bersama) dan *Is_Electric*: untuk menunjukkan apakah kendaraan listrik.

F. Payment_Method_Dimension (Dimensi Metode Pembayaran)

Hirarki: Tipe Pembayaran → Jenis Kartu. Contoh Atribut: *Payment_type* (metode pembayaran seperti tunai, e-wallet, dan lain-lain) dan *Card type* (jenis kartu seperti debit/kredit)

JUSTIFIKASI DESAIN KONSEPTUAL

A. Alasan Pemilihan Star Schema Ini

Skema yang digunakan dalam data warehouse OKI adalah *Star Schema*, yang mengorganisasi data menjadi tabel fakta (misalnya transaksi, kepuasan pengguna) dan tabel dimensi (misalnya waktu, lokasi, pengemudi). Desain ini memudahkan pemantauan data penting, analisis cepat, dan pengambilan keputusan yang lebih efisien. **Contoh Argumen:** *Trip Fact Table* menyimpan informasi seperti rating penumpang dan harga perjalanan. Data ini bisa dianalisis berdasarkan *Time* (waktu) dan *Location* (lokasi), untuk membantu OKI memprediksi permintaan di waktu tertentu atau di lokasi tertentu. Hal ini menjawab masalah prediksi permintaan yang tidak akurat.

B. Kesesuaian dengan Kebutuhan Bisnis

Misi 1 mengidentifikasi masalah OKI, seperti prediksi permintaan yang sulit dan sistem laporan yang buruk. Skema ini mengatasi masalah tersebut dengan:

- 1. Prediksi Permintaan: Data dari *Trip Fact Table* membantu OKI memprediksi permintaan tinggi, memungkinkan alokasi pengemudi yang lebih efisien.
- 2. Skalabilitas Laporan: Data terpusat dalam *Star Schema* mempercepat pembuatan laporan yang akurat.
- 3. Visibilitas Kinerja: Data operasional pengemudi memungkinkan pemantauan kinerja dan kepuasan pengguna secara real-time.
- 4. Deteksi *Anomali/Fraud*: Skor *fraud* di *Transaction Fact Table* memungkinkan deteksi otomatis transaksi mencurigakan.

C. Keunggulan Pendekatan Multidimensional

- 1. Sederhana dan Cepat : Mempermudah pengambilan data dan pengelolaan data.
- 2. Analisis Fleksibel : Memungkinkan analisis berdasarkan waktu, lokasi, atau pengemudi sesuai kebutuhan OKI.
- 3. Efisien: Mempercepat pencarian data penting untuk bisnis yang bergerak cepat.

D. Kesesuaian Fakta, Dimensi, dan Analisis

Skema ini cocok dikarenakan:

- 1. Fakta: Informasi penting seperti jumlah pengemudi, kepuasan penumpang, dan transaksi relevan dengan OKI.
- 2. Dimensi: Menyediakan konteks (waktu, lokasi, *rider*, pengemudi) untuk analisis yang lebih jelas.
- 3. Analisis yang Diharapkan: Memungkinkan OKI untuk menganalisis data secara cepat dan mendalam.

Contoh: Dengan *Trip Fact Table* dan dimensi seperti *Time* dan *Location*, OKI dapat menganalisis kepuasan dan performa pengemudi berdasarkan waktu dan lokasi, sehingga keputusan dapat diambil lebih cepat dan tepat.

KESESUAIAN DENGAN SUMBER DATA

Tabel Fakta

Komponen	Asal Data	Penjelasan		
Transaction_Fact	Log transaksi	Saat transaksi terjadi, server secara otomatis mencatat		
	sistem backend	timestamp dan data transaksi diambil dari pencatatan		
	OKI	transaksi digital OKI. Sistem deteksi anomali berbasis		
		ML menghasilkan skor fraud.		
Trip_Fact Sistem pelacakan		Modul GPS pengemudi dan server aplikasi		
	perjalanan & GPS	mengumpulkan informasi tentang perjalanan, termasuk		
		waktu, jarak tempuh, dan lokasi penjemputan dan		
		penurunan. Waktu menunggu dihitung dari perbedaan		
		waktu antara permintaan dan penjemputan. Laporan		
		pengguna dan sistem rating setelah trip selesai		
		menghasilkan data pendapatan dan skor kepuasan.		

Tabel Dimensi

Dimensi	Asal Data	Penjelasan
Time_Dimension	Timestamp server	Timestamp aplikasi digunakan otomatis untuk menghasilkan data waktu selama transaksi dan perjalanan. Jam, hari, bulan, dan kuartal dihitung dari data ini.
Location_Dimension	1 00	Saat perjalanan dimulai dan berakhir, koordinat GPS digunakan untuk menentukan lokasi penjemputan dan penurunan. Untuk agregasi analitik, data diubah menjadi zona atau kota.
Rider_Dimension	1 00	Usia, gender, dan histori penggunaan pengguna dikumpulkan dari formulir pendaftaran aplikasi.
Driver_Dimension	Database pengemudi OKI	Informasi driver seperti kota operasi dan status kerja diperoleh saat proses pendaftaran dan di-update secara berkala oleh sistem manajemen mitra pengemudi.
Vehicle_Type_Dimension	_	Saat pendaftaran driver, jenis kendaraan dan kapasitasnya dimasukkan. Aplikasi juga dapat memberikan informasi tentang kendaraan listrik.

Payment_Method_Dimension	Gateway	Pembayaran digital gateway seperti e-wallet,
	pembayaran	kartu, dan tunai menyediakan informasi
		metode pembayaran. Dengan
		mengintegrasikan sistem ke penyedia
		pembayaran, jenis kartu terdeteksi otomatis.