Cambio de monedas con programación dinámica

Cambio de monedas con programación dinámica

Entrada

Dada una serie de denominaciones (valores enteros positivos) $d_1, d_2, \dots d_N$ ordenados ascendentemente que compone el sistema monetario y una cantidad entera positiva M.

Salida

Serie r_1 , r_2 , r_N tal que $\sum_{i=1}^n r_i * d_i = M$ minimizando $\sum_{i=1}^N r_i$

Ejemplo: $d = \{11, 5, 1\} \text{ y } M = 15$

Solución mediante programación dinámica

¿Qué forma debería tener la solución óptima de un subproblema?

Considerando las denominaciones en orden ascendente, y dados las primeras i denominaciones y una cantidad j a cambiar, la solución óptima $A_{i,j}$ para ese subproblema consistiría en elegir una de las dos siguientes opciones:

- 1. Emplear una unidad de la denominación *i*, sumar 1 a la mínima cantidad de monedas obtenida al restarle *i* a *j*
- 2. No emplear una unidad de la denominación *i*, y quedarse con la mínima cantidad de monedas obtenida con las *i-1* denominaciones restantes

Solución mediante programación dinámica

```
for i = 0 to N:
   A_{i,0} = 0
for j = 1 to M:
   A_{0,i} = inf
for i = 1 to N:
   for j = 1 to M:
       if d_i \leftarrow j:
           k = j - d_i
           A_{i,i} = MIN(1 + A_{i,k}, A_{i-1,i})
       else:
           A_{i,j} = A_{i-1,j}
print(A_{N,M})
Ejemplo: para d = \{1, 4, 6\}, M = 8\}
```

Denominaciones – que puedo escoger

¿Cuál es la eficiencia de este algoritmo?

O(NM), peor que O(N) de la solución greedy, pero mucho mejor la complejidad exponencial de la solución por búsqueda exhaustiva

	J Cantidad a cambiar									
		0	1	2	3	4	5	6	7	8
	0	0	8	8	8	∞	∞	8	8	8
	1	0	1	2	3	4	5	6	7	8
	4	0	1	2	3	1	2	3	4	2
	6	0	1	2	3	1	2	1	2	2

Contided a sembler