Задание №1

Дан набор значений 2,4,10,12,3,20,30,11,25. Предположим количество кластеров k=3, и выбраны начальные средние значения $m_1=2$, $m_2=4$, $m_3=6$. Покажите, какие кластеры будут после первой итерации алгоритма k-средних, и рассчитайте новые значения центров кластеров для следующей итерации.

										m1	m2	m3
D:	2	4	10	12	3	20	30	11	25		2 4	6
D-m1 :	0	2	8	10	1	18	28	9	23			
D-m2 :	2	0	6	8	1	16	26	7	21			
D-m3 :	4	2	4	6	3	14	24	5	19	new		
C1:	2				3					m1:	2,5	
C2:		4								m2:	4	
C3:			10	12		20	30	11	25	m3:	18	

Задание №2

Дан набор точек x и вероятности из принадлежности к кластерам C_1 и C_2 .

х	$P(C_1 x)$	$P(C_2 x)$
2	0.9	0.1
3	0.8	0.1
7	0.3	0.7
9	0.1	0.9
2	0.9	0.1
1	0.8	0.2

Выполните следующие задание:

А. Найдите оценку максимального правдоподобия для средних µ1 и µ2

$$\boldsymbol{\mu}_i = \frac{\sum_{j=1}^n w_{ij} \cdot \mathbf{x}_j}{\sum_{j=1}^n w_{ij}} \qquad w_{ij} = P(C_i | \mathbf{x}_j)$$

x	2	3	7	9	2	1	
P(C1 x)	0,9	0,8	0,3	0,1	0,9	0,8	3,8
P(C2 x)	0,1	0,1	0,7	0,9	0,1	0,2	2,1
P(C1 x) * x	1,8	2,4	2,1	0,9	1,8	0,8	9,8
P(C2 x) * x	0,2	0,3	4,9	8,1	0,2	0,2	13,9
m1	2,5789473						
m2	6,6190476						

В. Предположим, что μ 1 = 2, μ 2 = 7 и σ 1 = σ 2 = 1. Найдите вероятности принадлежности точки x = 5 к кластерам C_1 и C_2 . Априорные вероятности каждого кластера $P(C_1)$ = $P(C_2)$ = 0.5 и P(x = 5) = 0.029

$$\boldsymbol{\mu}_i = \frac{\sum_{j=1}^n w_{ij} \cdot \mathbf{x}_j}{\sum_{j=1}^n w_{ij}}$$

$$w_{ij} = P(C_i|\mathbf{x}_j) = \frac{f(\mathbf{x}_j|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)P(C_i)}{f(\mathbf{x}_i)}$$

$$f_i(x) = f(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}$$

	i	mi	Si	P(Ci)		f(x mi, Si) * P(Ci)	P(Ci x)
ĺ	1	2	1	0,5	0,0044	0,0022	0,0759
	2	7	1	0,5	0,0540	0,0270	0,9241
						0,0292	

Задание №3

Даны категориальные данные размерности 5

Point	X_1	X_2	X_3	X_4	X_5
\mathbf{x}_1	1	0	1	1	0
\mathbf{x}_2	1	1	0	1	0
X ₃	0	0	1	1	0
\mathbf{x}_4	0	1	0	1	0
X 5	1	0	1	0	1
x ₆	0	1	1	0	0

Близость двух наблюдений определяется через количество совпадений и несовпадений значений признаков. Допустим, что n_{11} количество признаков одновременной равных 1 для наблюдений x_i и x_j , и n_{10} количество признаков равных 1 для наблюдения x_i и в то же время равных 0 для наблюдения x_j . По аналогии определяются значения n_{01} and n_{00} :

S 8	\mathbf{x}_{j}					
8		1	0			
\mathbf{x}_i	1	n_{11}	n_{10}			
	0	n_{01}	n_{00}			

Определим следующие метрики:

Коэффициент простого совпадения

$$SMC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11} + n_{00}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

Коэффициент Жаккара

$$JC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

Коэффициент Рассела и Рао

$$RC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

Постройте дендограммы полученные после иерархической кластеризации при следующих параметрах:

• Метод одиночной связи с метрикой RC

$$\delta(C_i, C_j) = \min\{\delta(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C_i, \mathbf{y} \in C_j\}$$

$$RC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

	x1	x2		х3	x4	x5
x1	-		1/6	1/3	1/3	1/6
x2		-		1/6	1/3	0
x3				-	1/3	1/6
x4					-	0
x5						-

	x1	x2x5	х3	x4
x1	-	1/6	1/3	1/3
x2x5		-	1/6	0
х3			-	1/3
x4				-

	x1	x2x5x4	x3
x1	-	1/6	1/3
x2x5x4		-	1/6
х3			-

• Метод полной связи с метрикой SMC

$$\delta(C_i, C_j) = \max\{\delta(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C_i, \mathbf{y} \in C_j\}$$

$$SMC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11} + n_{00}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

	x1	x2		х3	x4	x5
x1	-		1/3	1/2	1/2	2/3
x2		-		1/6	1/2	1/3
х3				-	1/3	1/2
x4					-	1/6
x5						-

	x1	x2x3	x4	x5
x1	-	1/2	1/2	2/3
x2x3		-	1/2	1/2
x4			-	1/6
x5				-

	x1	x2x3	x4x5
x1	-	1/2	2/3
x2x3		-	1/3
x4x5			-

Невзвешенный центроидный метод с метрикой ЈС

$$\delta(C_i, C_j) = \frac{\sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} \delta(\mathbf{x}, \mathbf{y})}{n_i \cdot n_j}$$
$$JC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

$$JC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

	x1	x2		x3	x4	x5
x1	-		1/4	2/5	2/5	1/3
x2		-		1/6	2/5	0
x3				_	1/3	1/4
x4					-	0
x5						-

	x1	x2x5	x3	x4
x1	-	7/24	2/5	2/5
x2x5		-	5/24	1/5
х3			-	1/3
x4				-

	x1	x2x5x4	х3
x1	-	1/3	2/5
x2x5x4		-	3/4
x3			-

