SERIE 1

Exercice 1

Soit (Ω, \mathcal{F}) un espace probabilisable, montrer que

- 1) $\emptyset \in \mathcal{F}$
- 2) Si $(A_i)_{i\in I}$ est une famille (finie ou infinie) d'évènements de \mathcal{F} ,

alors $\bigcap_{i \in I} A_i \in \mathcal{F}$.

3) Si $A \in \mathcal{F}$ et $B \in \mathcal{F}$, alors $A \setminus B \in \mathcal{F}$ et $A \Delta B \in \mathcal{F}$.

Exercice 2

Montrer que l'intersection de deux tribus est une tribu, mais la réunion de deux tribus n'est pas en général une tribu.

Exercice 3

Soit (Ω, \mathcal{F}, P) un espace probabilisé, soit X une v.a. définie sur (Ω, \mathcal{F}) .

- 1) Montrer que X^2 et $\frac{1}{X}$ (si $\{X=0=\varnothing\}$) sont aussi des v.a.
- 2) Soient a et b des constantes réelles. Montrer que aX + b est une v.a. sur (Ω, \mathcal{F}) . Soit F_X la fonction de répartition de X, calculer les fonctions de répartition de X et X et

Exercice 4

Soit (Ω, \mathcal{F}, P) un espace probabilisé, on définit la v.a. I_A , indicatrice d'un évènement $A, A \in \mathcal{F}$, par

$$I_{A}(\omega) = \begin{cases} 1 & si \ \omega \in A \\ 0 & si \ \omega \notin A \end{cases}$$

Donner la fonction de répartition de l'indicatrice d'un évènement A, dont la probabilité est égale à p.

Exercice 5

On donne la v.a. continue X, de densité f_X . On considère la v.a.

Y = kX, avec k > 0. Trouver la densité f_Y de Y.

Exercice 6

On supose que X représente le résultat du lancer d'un dé parfait.

Quelle est la loi de probabilité et la fonction de répartition de

la v.a. $Y = 2 + X^2$