

16/10/2022

The National Higher School of Artificial Intelligence

Objectives

- In this chapter, students will learn:
 - The main characteristics of entity relationship components
 - How relationships between entities are defined, refined,
 and incorporated into the database design process
 - How ERD components affect database design and implementation
 - That real-world database design often requires the reconciliation of conflicting goals

DATABASES

Chapter 3 - Entity Relationship Modeling

Pr. Kamel BOUKHALFA

Slides From the Textbook : Carlos Coronel and Steven Morris, Database Systems: Design, Implementation, and Management

Database Systems, 10th Edition

2

ensia

ensia The National Higher Soliton Co. Artificial Higher Soliton Co. Artificial Higher Soliton Co.

The Entity Relationship Model (ERM)

- · ER model forms the basis of an ER diagram
- · ERD represents conceptual database as viewed by end user
- ERDs depict database's main components:
 - Entities
 - Attributes
 - Relationships

Entities

- Refers to entity set and not to single entity occurrence
- Corresponds to table and not to row in relational environment
- In Chen and Crow's Foot models, entity is represented by rectangle with entity's name
- · The entity name, a noun, is written in capital letters

Attributes

- Characteristics of entities
- Chen notation: attributes represented by ovals connected to entity rectangle with a line
 - Each oval contains the name of attribute it represents
- Crow's Foot notation: attributes written in attribute box below entity rectangle

Database Systems, 10th Edition 16/10/2022

Database Systems, 10th Edition

16/10/2022

Attributes (cont'd.)

- Required attribute: must have a value
- Optional attribute: may be left empty
- Domain: set of possible values for an attribute
 - Attributes may share a domain
- Identifiers: one or more attributes that uniquely identify each entity instance
- Composite identifier: primary key composed of more than one attribute

Attributes (cont'd.)

- Composite attribute can be subdivided
- Simple attribute cannot be subdivided
- Single-value attribute can have only a single value
- · Multivalued attributes can have many values

Database Systems, 10th Edition

9

Database Systems, 10th Edition

10

ensia

- M:N relationships and multivalued attributes should not be implemented
 - Create several new attributes for each of the original multivalued attributes' components
 - Create new entity composed of original multivalued attributes' components
- Derived attribute: value may be calculated from other attributes
 - Need not be physically stored within database

	DERIVED ATTRIBUTE	
	STORED	NOT STORED
Advantage	Saves CPU processing cycles Saves data access time Data value is readily available Can be used to keep track of historical data	Saves storage space Computation always yields current value
Disadvantage	Requires constant maintenance to ensure derived value is current, especially if any values used in the calculation change	Uses CPU processing cycles Increases data access time Adds coding complexity to queries

ensia

Relationships

- Association between entities
- Participants are entities that participate in a relationship
- Relationships between entities always operate in both directions
- Relationship can be classified as 1:M
- Relationship classification is difficult to establish if only one side of the relationship is known

Connectivity and Cardinality

- Connectivity
 - Describes the relationship classification
- Cardinality
 - Expresses minimum and maximum number of entity occurrences associated with one occurrence of related entity
- Established by very concise statements known as business rules

Database Systems, 10th Edition 16/10/2022

13

Database Systems, 10th Edition 16/10/2022

14

ensia

15

Existence Dependence

- Existence dependence
 - Entity exists in database only when it is associated with another related entity occurrence
- Existence independence
 - Entity can exist apart from one or more related entities
 - Sometimes such an entity is referred to as a strong or regular entity

Relationship Strength

- · Weak (non-identifying) relationships
 - Exists if PK of related entity does not contain PK component of parent entity
- Strong (identifying) relationships
 - Exists when PK of related entity contains PK component of parent entity

A weak (non-identifying) relationship between COURSE and CLASS CLASS COURSE CLASS CODE PK CRS CODE DEPT CODE CLASS SECTION CRS_DESCRIPTION CLASS TIME CRS_CREDIT ROOM_CODE PROF NUM Table name: COURSE Database name: Ch04_TinyCollege CRS_CODE | DEPT_CODE CRS_DESCRIPTION CRS_CREDIT ACCT-212 ACCT Accounting II CIS-220 Intro. to Microcomputing Database Design and Implementation MATH-243 MATH Mathematics for Managers QM-261 Intro. to Statistics CLASS_CODE | CRS_CODE | CLASS_SECTION | CLASS_TIME | ROOM_CODE | PROF_NUM M/VF 8:00-8:50 a.m. ACCT-211 M/VF 9:00-9:50 a.m. BUS200 ACCT-211 TTh 2:30-3:45 p.m. ACCT-212 M/VF 10:00-10:50 a.m. 10016 ACCT-212 Th 6:00-8:40 p.m. BUS252 CIS-220 M/VF 9:00-9:50 a.m. 10018 CIS-220 MAE 9:00-9:50 a.m. KI R211 114 M/VF 10:00-10:50 a.m. KLR209 vV 6:00-8:40 p.m. 10021 QM-261 MVVF 8:00-8:50 a.m. QM-261 TTh 1:00-2:15 p.m. QM-362 MAVF 11:00-11:50 a.m. KLR200 10024 QM-362 TTh 2:30-3:45 p.m. KLR200 162 Th 6:00-8:40 p.m.

Database Systems, 10th Edition

17

19

Database Systems, 10th Edition

18

ensið

Weak Entities

- Weak entity meets two conditions
 - Existence-dependent
 - Primary key partially or totally derived from parent entity in relationship
- Database designer determines whether an entity is weak based on business rules

FIGURE A weak entity in a strong relationship 4.11 Table name: EMPLOYEE Database name: Ch04_ShortCo EMP_NUM EMP_LNAME EMP_FNAME EMP_INITIAL EMP_DOB EMP_HIREDATE 1001 Callifante 12-Mar-64 25-May-97 Jeanine 1002 Smithson 23-Nov-70 28-May-97 1003 Washington 28-May-97 Herman 15-Aug-68 1004 Chen Lydia 23-Mar-74 15-Oct-98 1005 Johnson Melanie 28-Sep-66 20-Dec-98 1006 Ortega Jorge 12-Jul-79 05-Jan-02 1007 O'Donnell Peter 10-Jun-71 23-Jun-02 1008 Brzenski Barbara 12-Feb-70 01-Nov-03 Table name: DEPENDENT EMP_NUM | DEP_NUM | DEP_FNAME | DEP_DOB 1 Annelise 30-Sep-02 1001 2 Jorge 1003 1 Suzanne 25-Jan-04 1006 1 Carlos 25-May-01 1008 1 Michael 19-Feb-95 1008 27-Jun-98 2 George 1008 3 Katherine 18-Aug-03 SOURCE: Course Technology/Cengage Learning

Database Systems, 10th Edition 16/10/2022

21

Database Systems, 10th Edition

22

ensið

Relationship Participation

- Optional participation
 - One entity occurrence does not require corresponding entity occurrence in particular relationship
- Mandatory participation
 - One entity occurrence requires corresponding entity occurrence in particular relationship

Relationship Degree

- Indicates number of entities or participants associated with a relationship
- Unary relationship
 - Association is maintained within single entity
- Binary relationship
 - Two entities are associated
- Ternary relationship
 - Three entities are associated

Database Systems, 10th Edition 16/10/2022

25

Database Systems, 10th Edition

26

Unary relationship

Unary relationship

PROFESSOR

Ternary relationship (Conceptual)

DOCTOR

PATIENT

Ternary relationship (Logical)

PRESCRIPTION

PRESCRIPTION

PRESCRIPTION

PATIENT

PRESCRIPTION

PATIENT

PRESCRIPTION

PRE

Recursive Relationships

- Relationship can exist between occurrences of the same entity set
 - Naturally found within unary relationship

FIGURE Implementation of the M:N recursive relationship "PART contains PART" 4.20 Table name: COMPONENT Database name: Ch04_PartCo COMP_CODE | PART_CODE | COMP_PARTS_NEEDED AA21-6 C-130 AB-121 C-130 E129 C-131A2 E129 C-130 X10 C-131A2 X10 C-130 X34AW C-131A2 X34AVV Table name: PART PART_CODE PART_DESCRIPTION PART_IN_STOCK AA21-6 2.5 cm, washer, 1.0 mm, rim AB-121 Cotter pin, copper 1034 C-130 Rotor assembly 36 E129 2.5 cm. steel shank 128 X10 10.25 cm. rotor blade 345 X34AW 2.5 cm, hex nut SOURCE: Course Technology/Cengage Learning

Database Systems, 10th Edition 16/10/2022

29

31

Database Systems, 10th Edition 16/10/2022

30

Associative (Composite) Entities

- Also known as bridge entities
- Used to implement M:N relationships
- · Composed of primary keys of each of the entities to be connected
- May also contain additional attributes that play no role in connective process

Database Systems, 10th Edition

33

Database Systems, 10th Edition

34

Developing an ER Diagram

- Database design is an iterative process
 - Create detailed narrative of organization's description of operations
 - Identify business rules based on description of operations
 - Identify main entities and relationships from business rules
 - Develop initial ERD
 - Identify attributes and primary keys that adequately describe entities
 - Revise and review ERD

ensia

FIGURE The fourth Tiny College ERD segment 4.29 DEPARTMENT PROFESSOR DEPT_CODE PROF NUM PROF_NUM FK1 DEPT_CODE PROF_SPECIALTY DEPT_NAME PROF_RANK PROF_LNAME PROF_FNAME PROF_INITIAL
PROF_EMAIL SOURCE: Course Technology/Cengage Learning

Database Systems, 10th Edition 16/10/2022

37

Database Systems, 10th Edition 16/10/2022

38

ensia

Database Systems, 10th Edition 16/10/2022

41

43

Database Systems, 10th Edition

ENTITY	RELATIONSHIP	CONNECTIVITY	ENTITY
SCHOOL	operates	1:M	DEPARTMENT
DEPARTMENT	has	1:M	STUDENT
DEPARTMENT	employs	1:M	PROFESSOR
DEPARTMENT	offers	1:M	COURSE
COURSE	generates	1:M	CLASS
PROFESSOR	is dean of	1:1	SCHOOL
PROFESSOR	chairs	1:1	DEPARTMENT
PROFESSOR	teaches	1:M	CLASS
PROFESSOR	advises	1:M	STUDENT
STUDENT	enrolls in	M:N	CLASS
BUILDING	contains	1:M	ROOM
ROOM	is used for	1:M	CLASS

Database Systems, 10th Edition 16/10/2022

45

Database Systems, 10th Edition 16/10/2022

46

Database Design Challenges: Conflicting Goals

- Database designers must make design compromises
 - Conflicting goals: design standards, processing speed, information requirements
- Important to meet logical requirements and design conventions
- Design is of little value unless it delivers all specified query and reporting requirements
- Some design and implementation problems do not yield "clean" solutions

 Database Systems, 10th Edition

ensia

ensia The National Higher Echool of Artificial Intelligence

Summary

- Entity relationship (ER) model
 - Uses ERD to represent conceptual database as viewed by end user
 - ERM's main components:
 - Entities
 - Relationships
 - Attributes
 - Includes connectivity and cardinality notations

Summary (cont'd.)

- Connectivities and cardinalities are based on business rules
- M:N relationship is valid at conceptual level
 - Must be mapped to a set of 1:M relationships
- ERDs may be based on many different ERMs
- UML class diagrams are used to represent the static data structures in a data model
- Database designers are often forced to make design compromises

Database Systems, 10th Edition 16/10/2022

49

Database Systems, 10th Edition