Insurance_data_r_score Analysis with various

Algorithms

Regression Algorithm	criterion/n_estimators	splitter	r_score	Best one??
Decision_tree	poisson	random	0.778559307	
Decision_tree	poisson	best	0.699926721	
Decision_tree	friedman_mse	best	0.68764324	
Decision_tree	friedman_mse	random	0.747454709	
Decision_tree	absolute_error	random	0.691489966	
Decision_tree	absolute_error	best	0.68924996	
Decision_tree	squared_error	random	0.680316145	
Decision_tree	squared_error	best	0.69444049	
Random_Forest	n_estimators=100	random_state=0	0.857655311	Best one
Multiple_Linear_regresssion			0.786510809	

1.) Identify your problem statement

Machine Learning (stage 1)
Supervised Learning (Stage2)
Regression (Stage3)

2.) Tell basic info about the dataset (Total number of rows, columns)

1338 rows × 6 columns

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

dataset=pd.get_dummies(dataset,drop_first=True)

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

Random_Forest is the best and final model

5.) All the research values (r2_score of the models) should be documented.

(You can make tabulation or screenshot of the results.)

Yes documented, shown in above Data format

6.) Mention your final model, justify why u have chosen the same.

Random_Forest is the best and final model, because r_score value 0.85 is coming, so it is best modewl