Versuch 101 Das Trägheitsmoment TU Dortmund, Fakultät Physik

Anfänger-Praktikum

Marc Posorske

Fabian Lehmann

marc.posorske@tu-dortmund.de

fabian.lehmann@tu-dortmund.de

22.November 2012

Inhaltsverzeichnis

4	Diskussion	5		
3	0	3 3 4		
2	2 Durchführung			
1	Theorie	3		

1 Theorie

2 Durchführung

3 Auswertung

3.1 Winkelrichtgröße und Eigenträgheitsmoment der Drillachse

Radius [cm]	Auslenkwinkel [°]	Kraft [N]	Winkelrichtgröße $[rac{Nm}{\circ}*10^{-4}]$
5,9	40	0,4	5,900
5,9	75	0,5	3,933
5,9	33	0,2	3,576
10,1	12	0,1	8,417
10,1	33	0,2	6,121
10,1	53	0,3	5,717
10,1	70	0,4	5,771
10,1	95	0,5	5,316
10,1	112	0,6	5,411
11,9	60	0,3	5,950
11,9	40	0,2	5,950

Tabelle 3.1: Auslenkwinkel der Drillachse in Abhängigkeit von kraft und Radius

Zur Bestimmung der Winkelrichtgröße wird für jedes Wertepaar die Winkelrichtgröße $D=\frac{F*r}{\omega}$ bestimmt. Siehe Tabelle 3.1. Als Mittelwert ergibt sich

$$D = (5,642 \pm 1,247) * 10^{-4} \frac{F * r}{\varphi}$$

Das Eigenträgheitsmoment der Drillachse wird Graphisch bestimmt. Dazu wird T^2 gegen a^2 (Tab. 3.2) aufgetragen. Aus Graphik 1 ergibt sich ein y-Achsen Schnitt bei $y(0)=3,926\pm0,181$.

Aus Gleichung ?? und dem Steinerschen Satz ?? lässt sich das Trägheitsmoment bestimmen

$$I_{DS} = \frac{T^2 * D}{4\pi^2} = (5,611 \pm 1,268) * 10^{-5} kgm^2$$
 (1)

In I_{DS} ist allerdings nicht nur das Trägheitsmoment der Drillachse, sondern auch das, des Stabes enthalten. Dieses lässt sich nach \ref{loop} berechenen und von I_{SD} abziehen. Mit m=96,3q und l=60cm ergibt sich

$$I_D = I_{DS} - I_{St} = I_{DS} - \frac{ml^2}{12} = (-2,833 \pm 0,013) * 10^{-3} kg * m^2$$
 (2)

Abstand $a+0,014$	Periodendauert $T*3$	Abstand a^2	Periodendauer T^2
0,0438	6,32	8,8804E-4	4,4380444444445
0,06	6,81	0,002116	5,1529
0,08	7,86	0,004356	6,8644
0,1	8,6	0,007396	8,2177777777777
0,12	9,84	0,011236	10,7584
0,14	10,8	0,015876	12,96
0,16	12,3	0,021316	16,81
0,18	13,5	0,027556	20,25
0,2	14,66	0,034596	23,8795111111111
0,22	16,35	0,042436	29,7025

Tabelle 3.2: Werte zur Bestimmung des Eigenträgheitsmomentes

Abbildung 1: Graphische Bestimmung des Eigenträgheitsmoment

als Eigendrehmoment der Drillachse.

3.2 Trägheitsmoment einer Kugel und eines Zylinders

Kugel T [s]	Scheibe T [s]
1,813	1,830
1,820	1,803
1,813	1,823
1,810	1,843
1,850	1,833

Tabelle 3.3: Periodendauer der Kugel und Scheibe

4 Diskussion