1. Graph the equation below.

$$f(x) = -(x+2)^2 - 16$$

Α.

C.

D.

В.

E. None of the above.

2. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$36x^2 + 61x + 20$$

A. $a \in [7, 14], b \in [4, 5], c \in [3.26, 4.33], and <math>d \in [3, 9]$

B. $a \in [-3, 2], b \in [15, 19], c \in [-0.27, 1.45], and <math>d \in [41, 52]$

C. $a \in [3, 8], b \in [4, 5], c \in [7.89, 8.53], and <math>d \in [3, 9]$

D. $a \in [27, 29], b \in [4, 5], c \in [-0.27, 1.45], and <math>d \in [3, 9]$

E. None of the above.

3. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$24x^2 - 10x - 25$$

- A. $a \in [7.89, 8.65], b \in [-8, -4], c \in [1.8, 4.8], and <math>d \in [1, 6]$
- B. $a \in [-1.13, 1.53], b \in [-30, -28], c \in [0.5, 1.7], and d \in [19, 23]$
- C. $a \in [2.93, 4.07], b \in [-8, -4], c \in [4.8, 8.9], and <math>d \in [1, 6]$
- D. $a \in [1.83, 3.68], b \in [-8, -4], c \in [11.5, 14.6], and <math>d \in [1, 6]$
- E. None of the above.
- 4. Graph the equation below.

$$f(x) = (x+1)^2 - 17$$

Ó

5

D.

- В.
- E. None of the above.
- 5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$14x^2 - 11x - 8 = 0$$

- A. $x_1 \in [-7.7, -6.2]$ and $x_2 \in [16.4, 19.3]$
- B. $x_1 \in [-1.5, -1.1]$ and $x_2 \in [-1.2, 1.1]$

Progress Quiz 6 Version C

- C. $x_1 \in [-0.9, -0.3]$ and $x_2 \in [0.8, 2.2]$
- D. $x_1 \in [-24, -22.8]$ and $x_2 \in [24, 24.8]$
- E. There are no Real solutions.
- 6. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$16x^2 - 11x - 4 = 0$$

- A. $x_1 \in [-20, -17.4]$ and $x_2 \in [18.69, 19.94]$
- B. $x_1 \in [-4.9, -3.6]$ and $x_2 \in [14.49, 15.55]$
- C. $x_1 \in [-2.4, -0.6]$ and $x_2 \in [0.04, 0.59]$
- D. $x_1 \in [-0.8, 2.1]$ and $x_2 \in [0.65, 1.04]$
- E. There are no Real solutions.
- 7. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 60x + 36 = 0$$

- A. $x_1 \in [0.29, 0.54]$ and $x_2 \in [3.38, 4.56]$
- B. $x_1 \in [1.08, 1.81]$ and $x_2 \in [0.27, 1.73]$
- C. $x_1 \in [0.51, 0.78]$ and $x_2 \in [1.98, 3.55]$
- D. $x_1 \in [0.21, 0.38]$ and $x_2 \in [5.11, 7.21]$
- E. $x_1 \in [29.71, 30.02]$ and $x_2 \in [29.92, 30.47]$
- 8. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 65x + 36 = 0$$

A. $x_1 \in [0.51, 0.61]$ and $x_2 \in [1.82, 3.36]$

4563-7456 Summer C 2021

Progress Quiz 6

- B. $x_1 \in [0.78, 0.86]$ and $x_2 \in [1.62, 2.15]$
- C. $x_1 \in [0.39, 0.46]$ and $x_2 \in [2.81, 3.66]$
- D. $x_1 \in [19.95, 20.11]$ and $x_2 \in [44.95, 45.23]$
- E. $x_1 \in [0.33, 0.37]$ and $x_2 \in [3.73, 4.59]$
- 9. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [-2, 0], b \in [-12, -7], \text{ and } c \in [-26, -22]$
- B. $a \in [0, 4], b \in [-12, -7], \text{ and } c \in [24, 25]$
- C. $a \in [-2, 0], b \in [7, 9], and c \in [-9, -6]$
- D. $a \in [0, 4], b \in [7, 9], and c \in [24, 25]$
- E. $a \in [-2, 0], b \in [-12, -7], \text{ and } c \in [-9, -6]$
- 10. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [-1.6, -0.7], b \in [5, 11], \text{ and } c \in [-15, -11]$
- B. $a \in [-1.6, -0.7], b \in [-8, -7], \text{ and } c \in [-15, -11]$
- C. $a \in [0.3, 2], b \in [5, 11], and <math>c \in [18, 21]$
- D. $a \in [-1.6, -0.7], b \in [-8, -7], \text{ and } c \in [-22, -19]$
- E. $a \in [0.3, 2], b \in [-8, -7], \text{ and } c \in [18, 21]$

4563-7456 Summer C 2021