DSC530-302 Data Exploration and Analysis

Author: Chitramoy Mukherjee

Date: 05/11/2023

Title: "DSC530-302 Week-05 Assignment- 11.1, 11.3 and 11.4"

```
from os.path import basename, exists
In [13]:
         def download(url):
             filename = basename(url)
             if not exists(filename):
                  from urllib.request import urlretrieve
                  local, = urlretrieve(url, filename)
                  print("Downloaded " + local)
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkstats2.py")
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkplot.py")
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/nsfg.py")
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/first.py")
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dct")
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dat.g
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemResp.dct")
          download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemResp.dat.g
          import numpy as np
          import pandas as pd
          import nsfg
          import thinkstats2
          import thinkplot
```

Exercise 11-1: Suppose one of your co-workers is expecting a baby and you are participating in an office pool to predict the date of birth. Assuming that bets are placed during the 30th week of pregnancy, what variables could you use to make the best prediction? You should limit yourself to variables that are known before the birth, and likely to be available to the people in the pool.

```
import first
live, firsts, others = first.MakeFrames()
live = live[live.prglngth>30]

# Below variables have statistically significant effect on pregnancy length.

import statsmodels.formula.api as smf
model = smf.ols('prglngth ~ birthord==1 + race==2 + nbrnaliv>1', data=live)
```

```
results = model.fit()
results.summary()
```

Out[8]:

	OLS Regression		
Dep. Variable:	prglngth	R-squared:	0.011
Model:	OLS	Adj. R-squared:	0.011
Method:	Least Squares	F-statistic:	34.28
Date:	Sun, 14 May 2023	Prob (F-statistic):	5.09e-22
Time:	08:26:21	Log-Likelihood:	-18247.
No. Observations:	8884	AIC:	3.650e+04
Df Residuals:	8880	BIC:	3.653e+04
Df Model:	3		
Covariance Type:	nonrobust		

OLS Regression Results

	coef	std err	t	P> t	[0.025	0.975]
Intercept	38.7617	0.039	1006.410	0.000	38.686	38.837
birthord == 1[T.True]	0.1015	0.040	2.528	0.011	0.023	0.180
race == 2[T.True]	0.1390	0.042	3.311	0.001	0.057	0.221
nbrnaliv > 1[T.True]	-1.4944	0.164	-9.086	0.000	-1.817	-1.172

1.619	Durbin-Watson:	1587.470	Omnibus:
6160.751	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	-0.852	Skew:
10.9	Cond. No.	6.707	Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Exercise 11-3: If the quantity you want to predict is a count, you can use Poisson regression, which is implemented in StatsModels with a function called poisson. It works the same way as ols and logit. As an exercise, let's use it to predict how many children a woman has born; in the NSFG dataset, this variable is called numbabes. Suppose you meet a woman who is 35 years old, black, and a college graduate whose annual household income exceeds \$75,000. How many children would you predict she has born?

```
In [16]: # Define nonlinear model of age

live = live[live.prglngth>30]
resp = nsfg.ReadFemResp()
resp.index = resp.caseid
join = live.join(resp, on='caseid', rsuffix='_r')
join.shape
```

```
MukherjeeChitramoyDSC-530-302-Week-09
join.numbabes.replace([97], np.nan, inplace=True)
join['age2'] = join.age_r**2
formula = 'numbabes ~ age r + age2 + age3 + C(race) + totincr + educat'
formula = 'numbabes ~ age_r + age2 + C(race) + totincr + educat'
model = smf.poisson(formula, data=join)
results = model.fit()
results.summary()
C:\Users\14024\AppData\Local\Temp\ipykernel_23100\2554845168.py:8: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.inse
rt` many times, which has poor performance. Consider joining all columns at once usi
ng pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.cop
y()`
  join['age2'] = join.age_r**2
Optimization terminated successfully.
         Current function value: 1.677002
         Iterations 7
                 Poisson Regression Results
```

Out[16]:

Dep. Variable:	numbabes	No. Observations:	8884
Model:	Poisson	Df Residuals:	8877
Method:	MLE	Df Model:	6
Date:	Sun, 14 May 2023	Pseudo R-squ.:	0.03686
Time:	08:40:01	Log-Likelihood:	-14898.
converged:	True	LL-Null:	-15469.
Covariance Type:	nonrobust	LLR p-value:	3.681e-243

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-1.0324	0.169	-6.098	0.000	-1.364	-0.701
C(race)[T.2]	-0.1401	0.015	-9.479	0.000	-0.169	-0.111
C(race)[T.3]	-0.0991	0.025	-4.029	0.000	-0.147	-0.051
age_r	0.1556	0.010	15.006	0.000	0.135	0.176
age2	-0.0020	0.000	-13.102	0.000	-0.002	-0.002
totincr	-0.0187	0.002	-9.830	0.000	-0.022	-0.015
educat	-0.0471	0.003	-16.076	0.000	-0.053	-0.041

```
In [17]: # Predict the number of children for a woman who is 35 years old, black, and a college
columns = ['age_r', 'age2', 'age3', 'race', 'totincr', 'educat']
new = pd.DataFrame([[35, 35**2, 35**3, 1, 14, 16]], columns=columns)
results.predict(new)
# number of children for woman who is 35 years old, black, and a college graduate who
```

Out[17]: 0 2.496802 dtype: float64

```
In []: Exercise: If the quantity you want to predict is categorical, you can use multinomial implemented in StatsModels with a function called mnlogit. As an exercise, let's use i cohabitating, widowed, divorced, separated, or never married; in the NSFG dataset, mar called rmarital.Suppose you meet a woman who is 25 years old, white, and a high school income is about $45,000. What is the probability that she is married, cohabitating, et

In [18]: # Here's the best model I could find.

formula='rmarital ~ age_r + age2 + C(race) + totincr + educat' model = smf.mnlogit(formula, data=join) results = model.fit() results.summary()

Optimization terminated successfully.
```

Optimization terminated successfully.

Current function value: 1.084053

Iterations 8

Out[18]:

MNLogit Regression Results

Dep. Variable: rmarital No. Observations:					: 8884	
Model:		MNLogit		Df R	: 8849	
Method:		MLE		Df Model:		: 30
	Date: Sui	n, 14 May	n, 14 May 2023		Pseudo R-squ.:	
Т	ime:	08:59:16		Log-Lil	: -9630.7	
conver	ged:	True			: -11579	
Covariance T	уре:	nonrobust		LLR	0.000	
rmarital=2	coef	std err	z	P> z	[0.025	0.975]
Intercept	9.0156	0.805	11.199	0.000	7.438	10.593
C(race)[T.2]	-0.9237	0.089	-10.418	0.000	-1.097	-0.750
C(race)[T.3]	-0.6179	0.136	-4.536	0.000	-0.885	-0.351
age_r	-0.3635	0.051	-7.150	0.000	-0.463	-0.264
age2	0.0048	0.001	6.103	0.000	0.003	0.006
totincr	-0.1310	0.012	-11.337	0.000	-0.154	-0.108
educat	-0.1953	0.019	-10.424	0.000	-0.232	-0.159
rmarital=3	coef	std err	z	P> z	[0.025	0.975]
Intercept	2.9570	3.020	0.979	0.328	-2.963	8.877
C(race)[T.2]	-0.4411	0.237	-1.863	0.062	-0.905	0.023
C(race)[T.3]	0.0591	0.336	0.176	0.860	-0.600	0.718
age_r	-0.3177	0.177	-1.798	0.072	-0.664	0.029
age2	0.0064	0.003	2.528	0.011	0.001	0.011
totincr	-0.3258	0.032	-10.175	0.000	-0.389	-0.263
educat	-0.0991	0.048	-2.050	0.040	-0.194	-0.004
rmarital=4	coef	std err	z	P> z	[0.025	0.975]
Intercept	-3.5238	1.205	-2.924	0.003	-5.886	-1.162
C(race)[T.2]	-0.3213	0.093	-3.445	0.001	-0.504	-0.139
C(race)[T.3]	-0.7706	0.171	-4.509	0.000	-1.106	-0.436
age_r	0.1155	0.071	1.626	0.104	-0.024	0.255
age2	-0.0007	0.001	-0.701	0.483	-0.003	0.001
totincr	-0.2276	0.012	-19.621	0.000	-0.250	-0.205
educat	0.0667	0.017	3.995	0.000	0.034	0.099
rmarital=5	coef	std err	z	P> z	[0.025	0.975]
Intercept	-2.8963	1.305	-2.220	0.026	-5.453	-0.339
C(race)[T.2]	-1.0407	0.104	-10.038	0.000	-1.244	-0.837

```
-3.635 0.000
C(race)[T.3] -0.5661
                      0.156
                                           -0.871 -0.261
     age_r 0.2411
                      0.079
                              3.038 0.002
                                             0.086
                                                    0.397
     age2 -0.0035
                             -2.977 0.003
                                            -0.006
                      0.001
                                                   -0.001
    totincr -0.2932
                      0.015 -20.159 0.000
                                            -0.322
                                                   -0.265
    educat -0.0174
                      0.021
                             -0.813 0.416
                                           -0.059
                                                    0.025
rmarital=6
              coef std err
                                  z P>|z| [0.025 0.975]
  Intercept 8.0533
                      0.814
                              9.890 0.000
                                            6.457
                                                    9.649
C(race)[T.2] -2.1871
                      0.080 -27.211 0.000
                                           -2.345 -2.030
C(race)[T.3] -1.9611
                      0.138 -14.188 0.000
                                           -2.232 -1.690
     age_r -0.2127
                             -4.122 0.000
                                            -0.314 -0.112
                      0.052
     age2 0.0019
                      0.001
                              2.321 0.020
                                             0.000
                                                   0.003
    totincr -0.2945
                      0.012 -25.320 0.000
                                            -0.317 -0.272
    educat -0.0742
                      0.018
                             -4.169 0.000
                                           -0.109 -0.039
```

```
In [19]: # Make a prediction for a woman who is 25 years old, white, and a high school graduate
columns = ['age_r', 'age2', 'race', 'totincr', 'educat']
new = pd.DataFrame([[25, 25**2, 2, 11, 12]], columns=columns)
results.predict(new)
```

Out[19]: 0 1 2 3 4 5

0 0.750028 0.126397 0.001564 0.033403 0.021485 0.067122