Computational Grammar

Week 7: Syntactic Parsing of Tweets

Rob van der Goot r.van.der.goot@rug.nl

25-02-2019

Outline

- Lexical Normalization
- Constituency Parsing
- Opendency Parsing
- 4 Future/Current work

Lexical normalization

- No word reordering
- But can include multi-word replacements

Datasets:

Corpus	Words	Lang.	%normed	1-N	Caps
GhentNorm	12,901	NL	4.8	+	+
TweetNorm	13,542	ES	6.3	+	+
LexNorm1.2	10,576	ΕN	11.6	_	_
LiLiu	40,560	EN	10.5	_	+
LexNorm2015	73,806	ΕN	9.1	+	_
Janes-Norm	75,276	SL	15.0	_	+
ReLDI-hr	89,052	HR	9.0	_	+
ReLDI-sr	91,738	SR	8.0	_	+

```
nee ! :-D kzal nog es vriendenlijk doen lol
nee ! :-D ik zal nog eens vriendelijk doen lol
```

tgaat goed , vdg rustig aaan .

Het gaat goed , vandaag rustig aan .

social ppl r anoying social people are annoying

digo buenoo madrugara aaah esqe pa qe este jajaja ah digo bueno es que para qué madrugará este jajaja

nekomu je sarkazm detektor crknu nekomu je sarkazem detektor crknil

Other data used:

- Aspell dictionaries
- Wikipedia dumps
- Tweets (for South Slavic languages web crawl data)

Mo'Noise

- Detect anomalies
- Generate normalization candidates (add original word)
- Rank normalization candidates

original word	mostt	social	ppl	r	troublesome
candidates	most misty	media	pol people	ri rnt	troublesome trouble some bothersome troubles

Table: Example of Candidate Generation

Generation:

- Original word
- Aspell
- Word embeddings
- Lookup list
- word.*
- split

Aspell

- Based on edit distances (character/phonetic)
- Available for 92 languages

Word embeddings:

- word2vec
- Place words in N-dimensional space
- Based on co-occurences (context)

Male-Female

Verb tense

Not found:

		1				
GhentNorm		LexNorm1.2		LexNorm2015		
neeneenee	nee nee nee	sowi	sorry	trynna	trying to	
zijt	bent	neb	nebraska	skepta	sunglasses	
bij	die	mo'd	mowed	satnite	saturday night	
bwoaja	ja	sumwer	somewhere	tbf	to be fair	
jana's	jana 's	thuur	thursday	wada	water	

Ranking:

Candidate	Feat1	Feat2	Feat3	 Gold label
ppl	1.0	0.01	0.42	 0
pol	0.0	0.00	0.03	 0
people	1.0 0.0 0.0 0.0	0.24	0.12	 1
ppl pol people pple	0.0	0.05	0.42 0.03 0.12 0.08	 0

Features:

- From generation modules
- N-gram probabilities (based on Wikipedia/Twitter data)
- Dictionary lookup (1/0)
- Character order
- Length
- ContainsAlpha
- OrigWord

Classifier to predict whether gold label = 1:

- Random forest classifier
- Rank based on confidence score

Comparison to previous work:

Corpus	Prev. state-of-the-art	Metric	Prev.	MoNoise
LexNorm1.2	Li and Liu (2015)	Accuracy	87.58	87.63
LexNorm2015	Jin (2015)	F1	84.21	86.61
GhentNorm	Schulz et al. (2016)	WER	3.2	1.36
TweetNorm	Porta and Sancho (2013)	OOV-Precision	63.4	70.57
Janes L1	Ljubešic et al. (2016)	CER	0.38	0.55
Janes L3	Ljubešic et al. (2016)	CER	1.58	2.38

At least 7 different evaluation metrics!

- F1: unclear, what to do with words which are normalized wrongly?
- BLEU: but word order is known
- WER: but word order is known
- Accuracy over OOVs: detection is not included
- Precision over OOVs: detection is not included
- CER: some words are much more important (lol)
- Accuracy: clear

Accuracy:

- For one corpus, clear
- For multiple corpora: is a score of 96 good?

Accuracy:

- For one corpus, clear
- For multiple corpora: is a score of 96 good?
- So normalize for number of replacements (size of problem)

Baseline:

- leave-as-is
- identity
- copy

 $Acurracy_{baseline} = \frac{notnormalizedwords}{allwords}$

$$ERR = \frac{Accuracy_{system} - Accuracy_{baseline}}{1.0 - Accuracy_{baseline}} \tag{1}$$

- Easy to interpret: shows percentage of problem solved
- Compare across corpora
- Evaluate the complete normalization task (for more detail, complementary methods can be used)

Corpus	ERR	Precision	Recall
GhentNorm	44.62	86.84	50.77
TweetNorm	35.86	90.05	37.09
* LexNorm1.2	60.61	78.03	79.12
LexNorm2015	76.15	91.98	80.58
─ Janes-Norm	67.15	89.62	70.81
= ReLDI-hr	51.73	92.17	54.23
ReLDI-sr	57.48	86.43	60.78

Table: Results of MoNoise on the test data.

Results of ranking:

Errors (rough average over all datasets):

- 25%: Normalized wrong word
- 65%: Too conservative (correct word second, original word kept)
- 9%: Not found
- 1%: Ranked wrong

Task

Task

www.let.rug.nl/rob/monoise

Task

Conclusion:

- Modular system is sensible: state-of-the-art for multiple languages
- The generation modules cover almost all cases
- N-gram probabilities are good features
- Bottleneck: decide when to normalize
- Evaluation: many metrics are used, but ERR is better

Outline

- Lexical Normalization
- Constituency Parsing
- Dependency Parsing
- 4 Future/Current work

Dataset:

- Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner, Joseph Le Roux, Joakim Nivre, Deirdre Hogan and Josef van Genabith, 2011. From News to Comment: Resources and Benchmarks for Parsing the Language of Web 2.0.
- 519 tweets (250-269)
- Constituency trees (EWT)
- Less noisy compared to normalization corpora

- Berkeley parser (CYK, PCFG-LA)
- Reaches ¿90% F1 on WSJ
- Trained on EWT and WSJ

taken from Petrov and Klein (2007)

Two strategies:

- UNK: Only attempt to normalize unknown words (not in training treebank)
- ALL: Attempt to normalize all words

- Nice improvement,
- but:

- Nice improvement,
- but:
- Normalization is not perfect
- Information is lost

- Bar-hilel (1961)
- "The intersection of a context-free language with a regular language is again a context-free language"

- Bar-hilel (1961)
- "The intersection of a context-free language with a regular language is again a context-free language"
- Ability to find optimal parse tree over a word graph

In practice:

Treat words as constituents

Best norm: 0 this (1.0) 1 as (1.0) 2 nice (1.0) 3

UNK:

this
$$(0.5)$$
 as (0.5) nice (0.7)

this (0.3) is (0.4) nive (0.2) arice (0.1) 3

thus (0.2) 1 s (0.1) 2 rice (0.1) 3

ALL:

Adjust normalization weight:

$$P_{chart} = (1 + \beta^2) * \frac{P_{norm} * P_{pos}}{(\beta^2 * P_{norm}) + P_{pos}}$$
(2)

Emperically:

$$\beta = 2 \tag{3}$$

Emperically:

$$\beta = 2 \tag{3}$$

Normalization gets a higher weight than POS tagger

Evaluation

Development data:

Evaluation

Test data:

Parser	dev	test
Stanford parser Berkeley parser	66.05 70.85	61.95 66.52
Best norm. seq. Integrated norm.	72.03 73.14*	67.06 67.36*
Gold POS tags	74.98	71.80

Conclusion

- Normalization improves performance of PCFG-LA parser for tweets
- Integrating normalization leads to further improvement

Outline

- Lexical Normalization
- Constituency Parsing
- Opendency Parsing
- 4 Future/Current work

	format	noisy	size
tweebank	Dependency adapted	+-	929
Denoised web treebank	CoNLL-2008	+	500
EWT	UD	-	16,622
Foster	ptb (constituency)	-	1,000
Foreebank	ptb (constituency)	-	1,000

Why?

- Manually corrected train data
- Gold normalization available
- Data should be non-canonical
- UD format

- Pre-filtered to contain non-standard words
- Data from Li and Liu (2015): Owoputi and LexNorm
- 600 Tweets / 10,000 words
- UD2.1 format

Experimental setup:

• Train: English Web Treebank

• Dev: Owoputi

Test: Lexnorm

Made simultaneously:

- Tweebank 2.0: Liu et al. (2018)
- UD-TwitterAAE: Blodgett et al. (2018)

Neural networks:

- No manual feature engineering
- Optimizes N features per word
- Words can be represented with a vector of floats

Configuration:

Taken from Kiperwasser and Goldberg (2016)

UUparser 2.0 (de Lhoneux et al., 2017)

- Performs well
- Relatively easy to adapt
- No POS tags
- Characters + external embeddings

Neural Network parser

External embeddings:

- trained using word2vec
- 760,744,676 tweets

Neural Network parser

new pix comming tomorroe

new		pix		comming		tomoroe	
new	0.9466	pix	0.7944	coming	0.5684	tomorrow	0.5451
news	0.0315	selfies	0.0882	comming	0.4314	tomoroe	0.3946
knew	0.0111	pictures	0.0559	combing	0.0002	tomorrow's	0.0191
now	0.0063	photos	0.0449	comping	< 0.0001	Tagore	0.0174
newt	0.0045	pic	0.0165	common	< 0.0001	tomorrows	0.0173

$$\vec{w}_i = \sum_{j=0}^n P_{ij} * \vec{n}_{ij}$$

$$\vec{w}_1 = (\vec{new} * 0.9466) + (\vec{new} * 0.0315) + (\vec{knew} * 0.0111) + (\vec{now} * 0.0063) + (\vec{new} * 0.0045)$$

Test data:

Model	UAS	LAS
raw	70.47	60.16
normalization-		
direct	71.03*	61.83*
integrated	71.15	62.30*
gold	71.45	63.16*

Table: *indicates statistical significance compared to previous entry.

But what about in-domain performance?

Conclusions:

- Normalization is still helpful on top of character and external embeddings
- Integrating normalization leads to a small but consistent/significant improvement
- Performance +-60% from using gold normalization
- New dataset is publicly available, provides a nice benchmark for domain adaptation

Outline

- Lexical Normalization
- Constituency Parsing
- Opendency Parsing
- 4 Future/Current work

Analysis of effect of different types of replacements on parsing:

Independent UD annotation:

	F1 score
Tokens	97.64
Sentences	100.00
Words	97.52
UPOS	90.31
UAS	76.23
LAS	69.40

Ma. theses:

- Lexical normalization and POS tagging for Dutch
- Predicting normalization categories (cross-corpus & cross-language)
- Distant supervision for normalization (* 2)

Bibliography

- Su Lin Blodgett, Johnny Wei, and Brendan O'Connor. Twitter universal dependency parsing for African-American and mainstream American English. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1415–1425, Melbourne, Australia, 2018. Association for Computational Linguistics.
- Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg, and Joakim Nivre. From raw text to universal dependencies look, no tags! In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*, pages 207–217, Vancouver, Canada, August 2017. Association for Computational Linguistics.
- Ning Jin. NCSU-SAS-Ning: Candidate generation and feature engineering for supervised lexical normalization. In *Proceedings of the Workshop on Noisy User-generated Text*, pages 87–92, Beijing, China July 2015. Association for Computational Linguistics