CS630 Graduate Algorithms

October 31, 2024 by Dora Erdos and Jeffrey Considine

- Hash tables
- Power of two choices

Hash Tables

Interface:

- A hash table is a data structure implementing a key-value mapping.
 - Insert
 - Lookup / search
 - Delete
- A common variant: skip values to implement a set interface.

Internals:

- Uses a "hash" function to evenly map keys across an array...
- Array entries are often called buckets.
- Bucket implementation details vary a lot to get different behaviors.

What are some examples of hash tables that you've used when programming?

Hash Tables

Values in hash table are phone numbers.

Image source: https://en.wikipedia.org/wiki/Hash_table

Hashing with Separate Chaining

Handle collisions with a linked list from each bucket.

- Usually analysis assumes adding to the end.
- Easiest variant to analyze
- Less space efficient from linked list overhead and memory management

Linear Probing

- If collision on h(x), try h(x) + 1, h(x) + 2, h(x) + 3, ... until an empty bucket is found.
 - Memory locality is great.
- What happens if the hash table is full?
 - If the hash table is full, then this will loop forever.
 - Will get really slow when almost full.
- Primary clustering problem
 - Collisions create short runs of full buckets.
 - But if those short runs catch up to another run of full buckets, they combine.
- Leads to insertion times of $\Theta\left(\frac{1}{(1-\alpha)^2}\right)$
- Searches for items not in hash table take the same time.
- . Searches for items in hash table somewhat faster $\Theta\left(\frac{1}{1-\alpha}\right)$

Average Case Performance So Far

For a hash table with m items inserted into n buckets, so load factor $\alpha = m/n$...

	Separate Chaining	Linear Probing
Insert / Delete	$1 + \alpha$	$1 + \frac{1}{(1-\alpha)^2}$
Search (successful)	$1 + \alpha$	$1 + \frac{1}{1 - \alpha}$
Search (unsuccessful)	$1 + \alpha$	$1 + \frac{1}{(1-\alpha)^2}$

Average Case Performance So Far

For a hash table with m items inserted into n buckets, so load factor $\alpha = m/n$...

Insertion

If collision on h(x), try $h(x) + 1^2$, $h(x) + 2^2$, $h(x) + 3^2$, ... until an empty bucket is found.

- If collision on h(x), try $h(x) + 1^2$, $h(x) + 2^2$, $h(x) + 3^2$, ... until an empty bucket is found.
- Avoid primary clustering problem of linear probing.

- If collision on h(x), try $h(x) + 1^2$, $h(x) + 2^2$, $h(x) + 3^2$, ... until an empty bucket is found.
- Avoid primary clustering problem of linear probing.
- TRIVIA: If alternating signs used, this even gives a permutation through all buckets.

- If collision on h(x), try $h(x) + 1^2$, $h(x) + 2^2$, $h(x) + 3^2$, ... until an empty bucket is found.
- Avoid primary clustering problem of linear probing.
- TRIVIA: If alternating signs used, this even gives a permutation through all buckets.
- Memory locality not as good as linear probing because of increasing gaps.

- If collision on h(x), try $h(x) + 1^2$, $h(x) + 2^2$, $h(x) + 3^2$, ... until an empty bucket is found.
- Avoid primary clustering problem of linear probing.
- TRIVIA: If alternating signs used, this even gives a permutation through all buckets.
- Memory locality not as good as linear probing because of increasing gaps.
- Complexity???

Double Hashing

- If collision on h(x), try $h(x) + h_2(x)$, $h(x) + 2h_2(x)$, $h(x) + 3h_2(x)$, ... until an empty bucket is found.
- Avoids primary clustering problem with one extra hash function evaluation.
- Both searches and insertions take

$$\Theta\left(1 + \frac{1}{1 - \alpha}\right) \text{ expected time (2007)}$$

Average Case Performance So Far

For a hash table with m items inserted into n buckets, so load factor $\alpha = m/n$...

	Separate Chaining	Linear Probing	Quadratic Probing	Double Hashing
Insert / Delete	$1 + \alpha$	$1 + \frac{1}{(1-\alpha)^2}$???	$1 + \frac{1}{1 - \alpha}$
Search (successful)	$1 + \alpha$	$1 + \frac{1}{1 - \alpha}$???	$1 + \frac{1}{1 - \alpha}$
Search (unsuccessful)	$1 + \alpha$	$1 + \frac{1}{(1-\alpha)^2}$???	$1 + \frac{1}{1 - \alpha}$

Resizing Hash Tables

Usual answer to high load factors is resizing the hash table.

- Works if not too memory constrained.
- And can wait for rebuild.
- Or can handle memory overhead of building a second copy in parallel.
- Better if you can get the size right the first time.

Cuckoo Hashing

Insertion

- Check two buckets $h_1(x)$ and $h_2(x)$.
- If $h_1(x)$ is empty,
 - Place item at $h_1(x)$ and stop.
- If $h_2(x)$ is empty,
 - Place item at $h_2(x)$ and stop.
- Otherwise,
 - Remove old item x' from $h_2(x)$.
 - Place new item at $h_2(x)$.
 - Recursively place old item x'.

Recursive placements need to push old items to the position indicated by the other hash function.

Cuckoo Hashing as a Random Graph

Cuckoo Hashing as a Random Graph

Cuckoo Hashing as a Random Graph

Cuckoo Hashing with Two Tables

The original version used two tables... the analysis is essentially the same.

Figure 1: (a) Key x is successfully inserted by moving keys y and z to the other table.

(b) Key x cannot be accommodated and a rehash is necessary.

Image source: Cuckoo Hashing by Pagh and Rodler (2001)

Cuckoo Hashing

Insertion

- Assume $n/2 \ge m(1+\epsilon)$ (so $\alpha < 1/2$)
- No loop with probability 1 1/n
- Assuming no loop, $O(1 + 1/\epsilon)$ expected time.

So expected constant time if you pick a maximum α below 1/2.

Must resize to maintain this!

Top Hat

Which of the following statements are true about cuckoo hashing?

- 1. Search takes $\Theta(1 + 1/\epsilon)$ expected time.
- 2. Search takes $\Theta(1)$ expected time.
- 3. Search takes $\Theta(1)$ worst case time.

Cuckoo Hashing

Search:

• Check $h_1(x)$ and $h_2(x)$.

Cuckoo Hashing

Delete:

• Check $h_1(x)$ and $h_2(x)$ and delete if found.

Average Case Performance So Far

For a hash table with m items inserted into n buckets, so load factor $\alpha = m/n$...

	Separate Chaining	Linear Probing	Quadratic Probing	Double Hashing	Cuckoo Hashing
Insert / Delete	$1 + \alpha$	$1 + \frac{1}{(1-\alpha)^2}$???	$1 + \frac{1}{1 - \alpha}$	$1 + \frac{1}{\epsilon}$
Search (successful)	$1 + \alpha$	$1 + \frac{1}{1 - \alpha}$???	$1 + \frac{1}{1 - \alpha}$	1
Search (unsuccessful)	$1 + \alpha$	$1 + \frac{1}{(1-\alpha)^2}$???	$1 + \frac{1}{1 - \alpha}$	1

Balls and Bins Problems

Given n balls inserted into n bins, assigning balls to bins uniformly at random, what is the worst case load?

Balls and Bins Problems

Given n balls inserted into n bins, assigning balls to bins uniformly at random, what is the worst case load?

- $\Theta(\log n/\log\log n)$
- Same as randomized load balancing and hashing with separate chaining.

Power of Two Choices

Given *n* balls inserted into *n* bins as follows -

- For each ball sequentially,
 - Pick two bins uniformly.
 - Put the ball in the least loaded bin breaking ties arbitrarily.

What is the maximum case load?

Image source: The Power of Two Random Choices - A Survey of Techniques and Results by Mitzenmacher, Richa, Sitaraman (2001)

Power of Two Choices

Given *n* balls inserted into *n* bins as follows -

- For each ball sequentially,
 - Pick two bins uniformly.
 - Put the ball in the least loaded bin breaking ties arbitrarily.

What is the maximum case load?

• With probability at least 1 - 1/n, the maximum load is $\ln \ln n/2 + O(1)$.

Power of Two Choices

Given *n* balls inserted into *n* bins as follows -

- For each ball sequentially,
 - Pick two bins uniformly.
 - Put the ball in the least loaded bin breaking ties arbitrarily.

What is the maximum case load?

• With probability at least 1 - 1/n, the maximum load is $\ln \ln n / \ln 2 + O(1)$.

If d choices instead of 2, then

• With probability at least 1 - 1/n, the maximum load is $\ln \ln n / \ln d + O(1)$.

For $i \geq 1$, let β_i be a bound on the number of bins with load at least i w.h.p.

• w.h.p. = "With high probability" = probability at least 1 - 1/n

For $i \ge 1$, let β_i be a bound on the number of bins with load at least i w.h.p.

• w.h.p. = "With high probability" = probability at least 1 - 1/n

For example,

• $\beta_1 \le 0.9n$ (compare to (1-1/e)n expected bins with at least one ball)

For $i \geq 1$, let β_i be a bound on the number of bins with load at least i w.h.p.

w.h.p. = "With high probability" = probability at least 1 - 1/n

For example,

• $\beta_1 \le 0.9n$ (compare to (1-1/e)n expected bins with at least one ball)

How can we bound β_{i+1} given β_i ?

Expected number of bins with at least i+1 balls is at most $n\left(\frac{\beta_i}{n}\right)^a$ since the probability of all d bins having at least i balls is at most $\left(\frac{\beta_i}{n}\right)^d$.

For $i \geq 1$, let β_i be a bound on the number of bins with load at least i w.h.p.

• w.h.p. = "With high probability" = probability at least 1 - 1/n

For example,

• $\beta_1 \le 0.9n$ (compare to (1-1/e)n expected bins with at least one ball)

How can we bound β_{i+1} given β_i ?

- Expected number of bins with at least i+1 balls is at most $n\left(\frac{\beta_i}{n}\right)^d$ since the probability of all d bins having at least i balls is at most $\left(\frac{\beta_i}{n}\right)^d$.
- So we can pick c such that $\beta_{i+1} = cn\left(\frac{\beta_i}{n}\right)^d$ and β_{i+1} holds w.h.p.

For $i \geq 1$, let β_i be a bound on the number of bins with load at least i w.h.p.

• w.h.p. = "With high probability" = probability at least 1 - 1/n

For example,

• $\beta_1 \le 0.9n$ (compare to (1-1/e)n expected bins with at least one ball)

How can we bound β_{i+1} given β_i ?

- Expected number of bins with at least i+1 balls is at most $n \left(\frac{\beta_i}{n}\right)^d$ since the probability of all d bins having at least i balls is at most $\left(\frac{\beta_i}{n}\right)^d$.
- So we can pick c such that $eta_{i+1} = cn\left(rac{eta_i}{n}
 ight)^d$ and eta_{i+1} holds w.h.p.
- If we look at the sequence $\beta_1, \beta_2, \beta_3, \dots$ each step roughly squares the previous value for d=2 and it drops faster for higher d.

For $i \geq 1$, let β_i be a bound on the number of bins with load at least i w.h.p.

• w.h.p. = "With high probability" = probability at least 1 - 1/n

For example,

• $\beta_1 \le 0.9n$ (compare to (1-1/e)n expected bins with at least one ball)

How can we bound β_{i+1} given β_i ?

- Expected number of bins with at least i+1 balls is at most $n \left(\frac{\beta_i}{n}\right)^d$ since the probability of all d bins having at least i balls is at most $\left(\frac{\beta_i}{n}\right)^d$.
- So we can pick c such that $eta_{i+1} = cn\left(rac{eta_i}{n}
 ight)^d$ and eta_{i+1} holds w.h.p.
- If we look at the sequence $\beta_1, \beta_2, \beta_3, \dots$ each step roughly squares the previous value for d=2 and it drops faster for higher d.
- $\beta_j < 1$ for $j = O(\log \log n)$ so max load < j.

Power of Two Choices and Randomized Load Balancing

Original version:

• max load is $\Theta(\log n/\log \log n)$ w.h.p.

With d choices,

max load is $\ln \ln n / \ln d + O(1)$ w.h.p.

Exponentially / logarithmically smaller.

- No hidden multiplicative constant for d > 1 choices
- Just d = 2 is a big gain.

Power of Two Choices with Left Bias

Given *n* balls inserted into *n* bins as follows -

- Partition the bins into d sets of n/d and order them from left to right.
- For each ball sequentially,
 - Pick d bins, one from each partition and uniformly within each partition.
 - Put the ball in the least loaded bin breaking ties to the left most tied bin.

What is the maximum case load?

Power of Two Choices with Left Bias

Given n balls inserted into n bins as follows -

- Partition the bins into d sets of n/d and order them from left to right.
- For each ball sequentially,
 - Pick d bins, one from each partition and uniformly within each partition.
 - Put the ball in the least loaded bin breaking ties to the left most tied bin.

What is the maximum case load?

The maximum load is $\ln \ln n/(d \ln \phi_d) + O(1)$ where ϕ_d is the exponent for growth of a

generalized Fibonacci sequence...

Power of Two Choices Summary

What is the maximum load with high probability...

- For uniform random load balancing?
 - $\Theta(\log n/\log \log n)$
- For *d* uniform random choices?
 - $\ln \ln n / \ln d + O(1)$
- For d left-biased partitioned random choices?
 - $\ln \ln n/(d \ln \phi_d) + O(1)$

Power of Two Choices Applications

- Hash tables (usually separate chaining)
- Server load balancing (requires load check)
- Processor cache design (more efficient cache lines)
- Circuit routing
- Virtual connection routing
- Peer-to-peer networks (storage and lookups, uneven bins)
- * Almost any load balancing problem