Hollow Man 概率论要点提要

常用高散型分布。				
1、0-1分布	X	0		(0 <p<1)< th=""></p<1)<>
	P	1-P	P	(伯努利分布、西点分布
2. 二顶分布:有	放回,	1重伯	妈利证	式验.
X~ B(n, P)	(0 <p< td=""><td><1)</td><td></td><td></td></p<>	<1)		
P(X=k) =	Ch pk ($-p)^{n-k}$	(k=0	o, 1,2, ···, n)
3. 几何分布: PU	47=7,	X表示	事件A	首次出现时的试验次数
P(x=n)=	9 n-1. P	, n=	1,2,	q = 1 - p.
4. 泊松分布: 记为	P(Z).			
		(k =	2,1,2	,) . λ>0.
	-		4.5	·顶分布 B(n,p) 可以近似计
算,它的逼近分布是	珀松分	布 PC	٢, (١	to 2≈np.
1.均匀分布				
X的密度函数为于	(m = 5 7	b-a	a < x <	: b
	J	0	其他	
其中a,b为两个参数	b,且a<	b,并	记为X	$(\sim R(a,b)$.
2. 指数分布		,		
X的密度函数为	f(x) = (λe ^{-λx}	X70	
,	1	0	其他	
其中270为常数,	记为 X -	~ E(ス)	•	
3.正态分布				
f(x) = \frac{1}{\sqrt{2\pi} \delta} e^{-\frac{(x-2)}{2}}	<u>μ</u> , (μ,	5都是	常数	, あ70) , 记者N(μ, 5²)

可加性:

1. 泊松分布: X~P(Zi),Y~P(Zz)且X,Y相互独立, 则 X+Y~ P(Zi+Zz)

2. 二顶分布: X~B(m,p),Y~B(n,p),且X,Y相互独立,则 X+Y~B(m+n,p)

3. 正态分布: X~N(μ, δι²), Y~N(μ2, δι²) 且X,Y相互独立, 则 X+Y~N(μ,+μ2, δι²+ δι²)

X-Y~N(µ1-42, 512+52)

3.

2. 二项分布: X~B(n,P)

$$EX = np$$
, $DX = np(1-p)$

3. 泊松分布: X~P(2)

$$EX = \lambda$$
, $DX = \lambda$

4. 指数分布: X~ E(2)

$$EX = \frac{1}{\lambda}$$
, $DX = \frac{1}{\lambda^2}$

5·正态分布: X~N(μ, δ²)

$$EX = \mu$$
, $DX = \delta^2$

数学期望:

- 1. E(c)=c, c为常数
- 2. E(aX+bY) = aEX+bEY, a,b为常数
- 3. 如X,Y独立,则EXY=EX·EY.

方差和协方差:

- 1. D(c)=0, c为常数
- 2. P(aX)= a2pX, a为常数
- 3. D(X±Y) = DX ± 2 cov(X,Y) + DY 当 X, Y相互独立时, cov(X,Y) = 0
- 4. $cov(X,Y) = EXY EX \cdot EY = E[(X-EX)(Y-EY)]$ $DX = EX^2 - (EX)^2 = E[(X-EX)^2](二阶中心矩)$.

初、E(Xk)为X的人阶原点矩,称E[(X-EX)k]为X的人阶中心矩相关系数:

$$\rho_{X,Y} = \frac{cov(X,Y)}{\delta(X)\delta(Y)}$$

- 1. | Px, y | ≤ 1
 - 2. ρχ,γ=0,称之为X与Y不相关
 - 3. | px, y | = 1, 称之为 X与 Y 完全相关

 ◆ 存在常数 a, b, 使得 p(Y = aX+b) = 1

5.

1. 样本均值:
$$X = \frac{1}{n} \sum_{i=1}^{n} X_i$$
2. 样本方差: $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$S_*^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

6. 全概率公式, 贝叶斯公式, 古典概型的计算, 抽象计算 全概率公式:

设事件 A_1, A_2, \dots, A_n 两两互斥,且 $P(A_i) > 0, 1 \le i \le n$. 又事件 B 满足

$$B = \bigcup_{i=1}^{n} BA_{i}, \tag{7}$$

则有

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$
 (8)

贝叶斯公式:

设事件 A_1, A_2, \dots, A_n 互斥,且 $P(A_i) > 0, i = 1, \dots, n$,事件 B 满足条件

$$B = \bigcup_{i=1}^{n} BA_{i},$$

且 P(B) > 0,则对任 $-1 \le i \le n$,有

$$P(A_{i}|B) = \frac{P(A_{i})P(B|A_{i})}{\sum_{k=1}^{n} P(A_{k})P(B|A_{k})}.$$
 (9)

抽象计算

1. 已知随机事件 A 的概率 P(A) = 0.5,随机事件 B 的概率 P(B) = 0.6 及条件概率 $P(B \mid A) = 0.8$,试求 P(AB) 及 $P(\overline{AB})$.

$$P(AB) = P(A)P(B \mid A) = 0.5 \times 0.8 = 0.4,$$

$$P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB)$$

$$= 1 - 0.5 - 0.6 + 0.4 = 0.3.$$

7.

已知二维随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} k(1-x)y, \ 0 < x < 1, 0 < y < x, \\ 0, \\$ 其他. 求:

- (1) 常数 k;
- (2) 分别求关于 X 及关于 Y 的边缘密度函数;
- (3) X 与 Y 是否独立, 为什么.

5(1)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = \int_{-\infty}^{+\infty} f(x,y) dy dx = \int_{-\infty}^{+\infty} f(x,y) dx = \int_{-\infty}^{+\infty} f(x,y)$$

8. 压缩映像原理(解题例题)

设随机变量 X 服从 (1,2) 上的均匀分布, 写出 $Y = e^{2X}$ 的分布函数和密度函数。

设随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1, \\ 0, & \text{其他.} \end{cases}$$

求 EX, EXY, $E(X^2 + Y^2)$, DX.

(要写出具体解题过程)

3.
$$\frac{1}{1+\frac{1}{2}} = \frac{1}{2} = \frac{1$$

- (1) 设 $(X_1, X_2 X_3, X_4)$ 是取自总体 $X \sim N(0, \sigma^2)$ 的样本, 则统计量 $Y = \frac{(X_1 + X_2)^2}{(X_3 X_4)^2}$ 的分布为? 自由度为?
- (2) 设 $(X_1, X_2 X_3, X_4)$ 是取自总体 $X \sim N(\mu, \sigma^2)$ 的样本,则统计量 $Y = \frac{(X_3 X_4)^2}{\sqrt{\sum_{i=1}^2 (X_i \mu)^2}}$ 的分布为? 自由度为? (写出具体推导过程)

5·(1)
$$Y = \frac{(X_1 + X_2)^2}{(X_3 - X_1)^2}$$
 $E(X_1 + X_2) = 0$ $D(X_1 + X_2) = 26^2$ $E(X_3 - X_4) = 0$ $D(X_3 - X_4) = 26^2$ $E(X_3 - X_4) = 0$ $E(X_3 - X_4) = 26^2$ $E(X_3 - X_4) = 0$ $E(X_3 - X_4) =$

- $I. \chi^2$ 分布:设 $X_1, ..., X_n$ 为独立标准正态变量,积随机变量 $U = X_1^2 + ... + X_n^2$ 的分布为自由度为n的 χ^2 分布,记 为 $U \sim \chi^2(n)$,且EU = n,DU = 2n.
- 2. 七分布: 岩随机变量 X 与 Y 相互独立,且 X ~ N(0,1), Y ~ $\chi^2(n)$,则称 $T = \frac{X}{\sqrt{Y/n}}$ 的分布为自由度为 n 的 t 分布,记为 $T \sim t(n)$
- 3. F分布: 若随机变量 U与 V相互独立,且 U~χ²(n), V~χ²(m), 称 F= U/n 的分布为自由度(n,m)的 F分布,记为 F~F(n,m).

问 6.1 对于连续型随机变量 $X \sim f_X(x)$, Y = g(X) 的密度函数为什么是 $f_Y(y) = f_X(h(y)) |h'(y)|$? 这里 y = g(x) 是一单调可导函数, x = h(y) 是 y = g(x) 的反函数.

答 为了说明这个结果,我们先给出 Y 的分布函数

$$F_{\gamma}(y) = P(Y \leq y) = P(g(X) \leq y).$$

当 g(x) 为单调增加函数时,可得 h'(y) > 0,且

$$F_{\gamma}(\gamma) = P(g(X) \leq \gamma) = P(X \leq h(\gamma)) = \int_{-\pi}^{h(\gamma)} f_{X}(x) dx,$$

此时 $f_{\gamma}(\gamma) = F'_{\gamma}(\gamma) = f_{\chi}(h(\gamma))h'(\gamma)$.

当 g(x) 为单调递减函数时,可得 h'(y) < 0,且

$$F_{\gamma}(\gamma) = P(g(X) \leq \gamma) = P(X \geq h(\gamma)) = \int_{h(\gamma)}^{+\infty} f_{X}(x) dx,$$

此时 $f_Y(y) = F_Y'(y) = f_X(h(y))(-h'(y))$, 即 $f_Y(y) = f_X(h(y))|h'(y)|$.

在使用这条性质时,一定要注意 y = g(x) 为单调函数且可导.

问 6.2 什么是卷积公式? 在使用卷积公式中要注意些什么?

答 随机变量 X 与 Y 独立,且 $X \sim f_X(x)$, $Y \sim f_Y(y)$,称随机变量 Z = X + Y 的密度函数的表达式 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$ 为卷积公式. 此公式给出了 X + Y 这 种简单随机变量函数的分布.

在卷积公式中,往往 $f_x(x)$, $f_y(y)$ 是分段函数,因此,须分段求积分,且分段积分的上、下限可能会与z有关,必须小心处理.

13.

五、(10 分) 某仪器由 n 个电子元件组成,每个电子元件的寿命服从[0,1000]上的均匀分布(单位:h),当有 20%的元件烧坏时,仪器便报废。求为使该仪器的寿命超过100 h 的概率不低于 0.95, n 至少为多大?

 \mathbf{R} X_i 表示第i 个电子元件的寿命, $A_i = \{X_i \ge 100\}$

$$P(A_i) = \int_{100}^{\infty} f(x) dx = \int_{100}^{1000} \frac{1}{1000} dx = 0.9$$

设Y表示n个事件 $A(i=1,2,\cdots,n)$ 中发生的个数,则

$$Y \sim b(n, 0.9)$$
。 -----5 分

查表得
$$\frac{\sqrt{n}}{3} \ge 1.645$$
, $\Rightarrow n \ge 25$ -5 分

f(x)	$\int_0^{+\infty} f(x) dx$	备注	$\int_{-\infty}^{+\infty} f(x) dx$
$x^{-\frac{1}{2}}e^{-x}$	$\sqrt{\pi}$	$\Gamma\!\!\left(\frac{1}{2}\right)$	\
e^{-x}	1	Γ(1)	\
$x^{\frac{1}{2}}e^{-x}$	$\frac{\sqrt{\pi}}{2}$	$\Gamma\left(\frac{3}{2}\right)$	\
xe ^{-x}	1	Γ(2)	\
e^{-x^2}	$\frac{\sqrt{\pi}}{2}$	$\frac{1}{2}\Gamma\!\!\left(\frac{1}{2}\right)$	$\sqrt{\pi}$
xe^{-x^2}	$\frac{1}{2}$	$\frac{1}{2}\Gamma(1)$	\
$x^2e^{-x^2}$	$\frac{\sqrt{\pi}}{4}$	$\frac{1}{2}\Gamma\!\left(\frac{3}{2}\right)$	$\frac{\sqrt{\pi}}{2}$
$e^{-\frac{1}{2}x^2}$	$\frac{\sqrt{2\pi}}{2}$	$\sqrt{2}\Gamma\left(\frac{3}{2}\right)$	$\sqrt{2\pi}$
$xe^{-\frac{1}{2}x^2}$	1	Γ(1)	\
$x^2e^{-\frac{1}{2}x^2}$	$\frac{\sqrt{2\pi}}{2}$	$\sqrt{2}\Gamma\left(\frac{3}{2}\right)$	$\sqrt{2\pi}$

		条件	置信区间(左、右端点)		
单正态总体	均值 μ 的 1-α 置信区间	σ² 已知	$\overline{X} - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$		
		σ ² 未知	$\overline{X} - t_{1-\alpha/2} (n-1) \frac{S^*}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2} (n-1) \frac{S^*}{\sqrt{n}}, \not \sqsubseteq \psi S^* =$		
			$\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}$		
	方差 σ²	μ已知	$\frac{n \widehat{\sigma^2}}{\chi^2_{1-\alpha/2}(n)}, \frac{n \widehat{\sigma^2}}{\chi^2_{\alpha/2}(n)}, \sharp + \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$		
	的 l~α 置信区间	μ未知	$\frac{nS^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{nS^2}{\chi^2_{\alpha/2}(n-1)}$		

表 11.2 正态总体均值假设检验表

	H_0 H_1		H_1	条件	拒绝域	
単正态总体	$\mu = \mu_0$		μ>μ ₀	σ^2 已知 $\left\{\frac{\sqrt{n}(\overline{x}-\mu_0)}{\sigma}>u_{1-\alpha}\right\}$		
				σ ² 未知	$\left\{\frac{\sqrt{n}(\overline{x}-\mu_0)}{s} > t_{1-\alpha}(n-1)\right\}$	
			μ<μ ₀	σ² 已知	$\left\{\frac{\sqrt{n}\left(\overline{x}-\mu_{0}\right)}{\sigma}<-u_{1-\alpha}\right\}$	
				σ² 未知	$\left\{\frac{\sqrt{n}\left(\overline{x}-\mu_{0}\right)}{s^{*}}<-t_{1-\alpha}(n-1)\right\}$	
			$\mu eq \mu_0$	σ ² 已知	$\left\{\frac{\sqrt{n} \mid \overline{x} - \mu_0 \mid}{\sigma} > u_{1 - \frac{\alpha}{2}}\right\}$	
				σ ² 未知	$\left\{\frac{\sqrt{n}\mid \overline{x}-\mu_0\mid}{s^*}>t_{1-\frac{\alpha}{2}}(n-1)\right\}$	
				·	· · · · · · · · · · · · · · · · · · ·	
H ₀ H ₁ 条件		拒绝域				
$\sigma^2 = (\sigma_0^2 \Box 2)$	$\sigma^2 > \sigma_0^2$		μ 已知 ²	$\left\{ \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma_0^2} > \chi_{1-n}^2(n) \right\}$		
			μ未知	$\left\{ \frac{\sum_{i=1}^{2} (x_i - \bar{x})^2}{\sigma_0^2} > \chi_{1-\alpha}^2 (n-1) \right\}$		
	σ_0^2	μ 已知	$\left\{\frac{\sum\limits_{i=1}^{n}(x_{i}-\mu)^{2}}{\sigma_{0}^{2}} < \chi_{\alpha}^{2}(n)\right\}$ $\left\{\frac{\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}{\sigma_{0}^{2}} < \chi_{\alpha}^{2}(n-1)\right\}$			
	知)		μ未知	$\left\{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{\sigma_0^2} < \chi_{\alpha}^2 (n-1)\right\}$		
	$\sigma^2 \neq \sigma$	μ已知	$\left\{\frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{\sigma_{0}^{2}}>\chi_{1-\frac{\alpha}{2}}^{2}(n)\stackrel{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{\sigma_{0}^{2}}<\chi_{\frac{\alpha}{2}}^{2}(n)\right\}$			
		μ	μ未知	$\left\{ \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sigma_0^2} > \chi_{1-\frac{\alpha}{2}}^2(t) \right\}$	$n-1) \ \underline{\mathfrak{R}}^{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sigma_{0}^{2} < \chi^{\frac{2}{2}}(n-1) $	

3. 设 X_1, \dots, X_n 是取自总体X的一个样本,其中X 服从区间 $(0,\theta)$ 上的均匀分布,其中 $\theta > 0$ 未知,求 θ 的矩估计量.

解
$$E(X) = \frac{\theta}{2}$$
,令 $\frac{\theta}{2} = \overline{X}$,故 θ 的矩估计量 $\hat{\theta} = 2\overline{X}$.

4. 设 X_1, \dots, X_n 是取自总体X的一个样本,X的密度函数为

$$f(x) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta, \\ 0, & \text{其他,} \end{cases}$$

其中 $\theta > 0$ 未知,求 θ 的矩估计量与最大似然估计量.

解
$$E(X) = \int_0^{\theta} x \cdot \frac{2x}{\theta^2} dx = \frac{2}{3}\theta, \diamondsuit \frac{2}{3}\theta = \overline{X}$$
,故 θ 的矩估计量为 $\hat{\theta} = \frac{3}{2}\overline{X}$.

另,似然函数为

$$\begin{split} L(\theta) &= \begin{cases} \frac{2^n}{\theta^{2n}} \prod_{i=1}^n X_i, & 0 < X_i \le \theta, i = 1, \cdots, n, \\ 0, & \text{其他} \end{cases} \\ &= \begin{cases} \frac{2^n}{\theta^{2n}} \prod_{i=1}^n X_i, & \theta \ge \max_i X_i, \\ 0, & \text{其他}, \end{cases} \end{split}$$

 $L(\theta)$ 作为 θ 的函数不连续. 当 $\theta \ge \max X_i$ 时, $L(\theta)$ 是 θ 的递减函数. 故当 $\theta =$

· 161 ·

 $\max X_i$ 时, $L(\theta)$ 达到最大值. 即 θ 的最大似然估计量为 $\hat{\theta} = \max X_i$. 18.

2. 假定某商店中一种商品的月销售量服从正态分布 $N(\mu,\sigma^2)$, σ 未知. 为了合理地确定商店对该商品的进货量,需对 μ 和 σ 作估计,为此随机抽取七个月,其销售量分别为

· 176 ·

试求 μ 的双侧 0.95 置信区间和方差 σ^2 的双侧 0.90 置信区间.

解 由于μ和σ都未知,故μ的双侧1-α置信区间为

$$\left[\, \overline{X} - t_{1-\frac{\alpha}{2}}(\, n \, - \, 1 \,) \, \frac{S^{\, \bullet}}{\sqrt{n}} \, , \, \, \overline{X} + t_{1-\frac{\alpha}{2}}(\, n \, - \, 1 \,) \, \frac{S^{\, \bullet}}{\sqrt{n}} \right] \, ,$$

 σ^2 的双侧 1 - α 置信区间为

$$\left[\frac{nS^2}{\chi^2_{1-\frac{n}{2}}(n-1)}, \frac{nS^2}{\chi^2_{\frac{n}{2}}(n-1)}\right].$$

代入数据得

$$\bar{x} = 65.14$$
, $s^2 = 108.41$, $s^* = 11.25$, $t_{0.975}(6) = 2.45$, $n = 7$, $\chi^2_{0.95}(6) = 12.592$, $\chi^2_{0.05}(6) = 1.635$.

μ 的双侧 0.95 置信区间观测值为 $\left[65.14-2.45\times\frac{11.25}{\sqrt{7}},65.14+2.45\times\right]$

- 11. 随机地从一批外径为 1 cm 的钢珠中抽取 10 只,测试其屈服强度(单位: kg),得数据 x_1 ,…, x_{10} ,并由此算得 \overline{x} = 2200, s^* = 220,已知钢珠的屈服强度服从正态分布 $N(\mu,\sigma^2)$,在显著性水平 α = 0.05 下分别检验:
 - (1) $H_0: \mu = 2000 (H_1: \mu > 2000);$
 - (2) $H_0: \sigma^2 = 200^2 (H_1: \sigma^2 > 200^2)$.

解 (1) 拒绝域
$$R = \{T > c\}$$
,其中 $c = t_{0.95}(n-1) = 1.8331$. T 的观测值为
$$t = \sqrt{10} \frac{(\bar{x} - 2000)}{s^{\bullet}} = \sqrt{10} \frac{(2200 - 2000)}{220} \approx 2.875 > c,$$

所以拒绝 Ho.

(2) 拒绝域 $R = |\chi^2 > c|$,其中

$$\chi^2 = \frac{(n-1)S^{*2}}{200^2}, \quad c = \chi^2_{1-\alpha}(n-1) = \chi^2_{0.95}(9) = 16.919.$$

今 χ^2 的观测值为 $\chi^2 = \frac{9 \times 220^2}{200^2} = \frac{435600}{200^2} = 10.89 < c$,因而不能拒绝 H_0 .