Bioconductor's PADOG package

Adi L. Tarca^{1,2,3}

October 13, 2014

1 Overview

This package implements the *Pathway Analysis with Down-weighting of Overlapping Genes* (PADOG) algorithm described in Tarca et al. (2012). The method can be applied to analyze any type of gene sets yet in here it is illustarted using KEGG pathways. The method computes a gene set score as the mean of absolute values of weighted moderated gene *t*-scores. The gene weights are chosen to favor genes appearing in few pathways versus genes that appear in many pathways. The significance of pathway scores is evaluated using sample/array labels permutation that preserve the gene-gene correlation structure. The package also contains a benchmark for gene set analysis in general and allows a new gene set analysis method to be benchmarked against PADOG or other exsisting methods (e.g. GSA). The benchmark uses 24 different data sets, each involving a disease (e.g. Colorectal Cancer) for which there is a KEGG pathway with the same name. The only assumption we make (proven to hold in Tarca et al. (2012)) is that the KEGG's pathway with the same name as the disease under the study should be found significant and/or ranked near the top by gene set analysis methods when analyzing a dataset that compares normal with diseased samples.

2 Pathway / gene set analysis with PADOG package

This document provides basic introduction on how to use the PADOG package. For extended description of the methods used by this package please consult Tarca et al. (2012).

We demonstrate the functionality of this package using a colorectal cancer dataset obtained using Affymetrix GeneChip technology and available through GEO (GSE9348) and incorporated in the KEGGdzPathwaysGEO package. This experiment contains 12 normal samples and 70 colorectal cancer samples and is described in Hong et al. (2010). The RMA preprocessed data using the affy package is the entry point for the padog function:

- > library(KEGGdzPathwaysGEO)
- > library(PADOG)
- > set.seed(1)

¹Department of Computer Science, Wayne State University

²Bioinformatics and Computational Biology Unit of the NIH Perinatology Research Branch

³Center for Molecular Medicine and Genetics, Wayne State University

```
> set="GSE9348"
> data(list=set,package="KEGGdzPathwaysGEO")
> x=get(set)
> #Extract from the dataset the required info
> exp=experimentData(x);
> dataset= exp@name
> dat.m=exprs(x)
> ano=pData(x)
> design= notes(exp)$design
> annotation= paste(x@annotation,".db",sep="")
> targetGeneSets= notes(exp)$targetGeneSets
> #run padog function on KEGG pathways
> #use NI=1000 for accurate results
> myr=padog(
+ esetm=dat.m,
+ group=ano$Group,
+ paired=design=="Paired",
+ block=ano$Block,
+ targetgs=targetGeneSets,
+ annotation=annotation,
+ gslist="KEGG.db",
+ organism="hsa",
+ verbose=FALSE,
+ Nmin=3,
+ NI=50,
+ plots=TRUE)
> myr[1:15,-c(4,5)]
```

	Name	ID	Size	${\tt PmeanAbsT}$	Ppadog
04110	Cell cycle	04110	122	0.0002	2e-04
03008	Ribosome biogenesis in eukaryotes	03008	70	0.0002	2e-04
00230	Purine metabolism	00230	153	0.0002	2e-04
04976	Bile secretion	04976	71	0.0002	2e-04
00071	Fatty acid metabolism	00071	42	0.0200	2e-04
00062	Fatty acid elongation in mitochondria	00062	7	0.0002	2e-04
00460	Cyanoamino acid metabolism	00460	7	0.0002	2e-04
04964	Proximal tubule bicarbonate reclamation	04964	23	0.0800	2e-02
00920	Sulfur metabolism	00920	11	0.1400	2e-02
05210	Colorectal cancer	05210	62	0.1800	2e-02
05223	Non-small cell lung cancer	05223	54	0.2600	2e-02
03013	RNA transport	03013	139	0.0400	4e-02
00500	Starch and sucrose metabolism	00500	37	0.0600	4e-02
00983	Drug metabolism - other enzymes	00983	38	0.0600	4e-02
05222	Small cell lung cancer	05222	85	0.0400	4e-02

PADOG after first standardization

ABSmT scores second standardization

PADOG after second standardization

Note that for this colorectal cancer dataset it is reasonbale to expect that the KEGG's Colorectal cancer pathway will be found significant and/or ranked close to the top. PmeanAbsT corresponds to the p-value obtained without using gene weights and hence the result is worse (higher p-value) compared to Ppadog obtained by using the gene weights that are inversly related to how often the genes apear accross all gene sets to be analyzed. The plot created when plots=TRUE in the call to padog shows how gene weighting improves the gene set analysis for the traget pathway set via the targetgs argument. Figure above shows the distribution of pathway/gene set scores (y axis) for PADOG and ABSmT (which is PADOG without weights) after the first standardization (row randomization) and after second standardization (between gene sets standardization). The x axis represents the number of iterations. Iteration 0 uses true class labels, all others used randomly permuted labels. The target pathway (set via the targetgs argument) in this dataset is the Colorectal Cancer pathway (KEGG ID 05210). Its score is shown with a red bullet throughout all 4 panels, and a red horizontal line marks its level when obtained with the true class labels (ite = 0, x-axis). The box plots of scores obtained with the true class labels are also highlighted in blue. With PADOG, after the second standardization, the target pathway scores obtained from permutations are less frequently above the red line (0/20) (more extreme) than for ABSmT (5/20). Over 1,000 iterations, p_{PADOG} was estimated to be 0.013 while p_{ABSmT} worse, i.e. 0.135.

Table 1: The 24 datasets used in the benchmark of pathway analysis methods

				p		
	EOID	Pubmed	Ref.	Disease/Target pathway	KEGGID	Tissue
GSE	21297	14769913	Blalock et al. (2004)	Alzheimer's Disease	hsa05010	Hippocamp
GSE	5281	17077275	Liang et al. (2007)	Alzheimer's Disease	hsa05010	Brain, Ento
GSE	5281	17077275	Liang et al. (2007)	Alzheimer's Disease	hsa05010	Brain, hipp
GSE	5281	17077275	Liang et al. (2007)	Alzheimer's Disease	hsa05010	Brain, Prin
GSE2	20153	20926834	Zheng et al. (2010)	Parkinson's disease	hsa05012	Lymphobla
GSE2	20291	15965975	Zhang et al. (2005)	Parkinson's disease	hsa05012	Postmorten
GSE	28762	17724341	Runne et al. (2007)	Huntington's disease	hsa05016	Lymphocyt
GSE	54107	17317818	Hong et al. (2007)	Colorectal Cancer	hsa05210	Mucosa
GSE	28671	18171984	Sabates-Bellver et al. (2007)	Colorectal Cancer	hsa05210	Colon
GSE	29348	20143136	Hong et al. (2010)	Colorectal Cancer	hsa05210	Colon
GSE1	14762	19252501	Wang et al. (2009)	Renal Cancer	hsa05211	Kidney
GS	E781	14641932	Lenburg et al. (2003)	Renal Cancer	hsa05211	Kidney
GSE1	15471	19260470	Badea et al. (2008)	Pancreatic Cancer	hsa05212	Pancreas
GSE1	16515	19732725	Pei et al. (2009)	Pancreatic Cancer	hsa05212	Pancreas
GSE1	19728		-	Glioma	hsa05214	Brain
GSE2	21354		-	Glioma	hsa05214	Brain, Spin
GSE	6956	18245496	Wallace et al. (2008)	Prostate Cancer	hsa05215	Prostate
GSE	6956	18245496	Wallace et al. (2008)	Prostate Cancer	hsa05215	Prostate
GSE	23467	16365291	He et al. (2005)	Thyroid Cancer	hsa05216	Thyroid
GSE	23678		-	Thyroid Cancer	hsa05216	Thyroid
GSE	09476	17910043	Stirewalt et al. (2008)	Acute myeloid leukemia	hsa05221	Blood, Bon
GSE1	18842	20878980	Sanchez-Palencia et al. (2010)	Non-Small Cell Lung Cancer	hsa05223	Lung
GSE1	19188	20421987	Hou et al. (2010)	Non-Small Cell Lung Cancer	hsa05223	Lung
GSE	23585	17045896	Barth et al. (2006)	Dilated cardiomyopathy	hsa05414	Heart

The 24 datasets used to compare the pathway analysis methods were obtained from GEO.

3 Benchmark of gene set analysis methods

The entire collection of 24 datasets available in KEGGdzPathwaysGEO package that can be used to benchmark PADOG against existing approaches is given in Table 1:

To illustrate how to compare PADOG against a user defined gene set analysis method we create a function called randomF that assignes random uniform P-values to gene sets. The user defined function has to take in 3 arguments:

- 1. set: the name of a dataset available in from the KEGGdzPathwaysGEO package;
- 2. mygslist: a list with elements being vectors of gene ids for a given geneset
- 3. minsize: minimum number of genes in a geneset to be considered for analysis

The output should be a dataframe with columns: ID, P, Rank, Dataset, Method for the geneset(s) considered to be relevant in that dataset (targetGeneSets).

```
> randomF=function(set,mygslist,minsize){
+ set.seed(1)
+ #this loads the dataset in an ExpressionSet object called x
+ data(list=set,package="KEGGdzPathwaysGEO")
+ x=get(set)
+ #Extract from the dataset the required info to be passed to padog
+ exp=experimentData(x);
+ dat.m=exprs(x)
+ ano=pData(x)
+ dataset= exp@name
+ design= notes(exp)$design
+ annotation= paste(x@annotation, ".db", sep="")
+ targetGeneSets= notes(exp)$targetGeneSets
+ #get rid of duplicates probesets per ENTREZ ID by keeping the probeset
+ #with smallest p-value (computed using limma)
+ aT1=filteranot(esetm=dat.m,group=ano$Group,paired=(design=="Paired"),
+ block=ano$Block,annotation=annotation)
+ #create an output dataframe for this toy method with random gene set p-values
+ mygslistSize=unlist(lapply(mygslist,function(x){length(intersect(aT1$ENTREZID,x))}))
+ res=data.frame(ID=names(mygslist),P=runif(length(mygslist)),
+ Size=mygslistSize, stringsAsFactors=FALSE)
+ res$FDR=p.adjust(res$P, "fdr")
+ #drop genesets with less than minsize genes in the current dataset
+ res=res[res$Size>=minsize,]
+ #compute ranks
+ res$Rank=rank(res$P)/dim(res)[1]*100
+ #needed to compare ranks between methods; must be the same as given
+ #in mymethods argument "list(myRand="
+ res$Method="myRand";
+ #needed because comparisons of ranks between methods is paired at dataset level
+ res$Dataset<-dataset;
+ #output only result for the targetGeneSets
+ #which are gene sets expected to be relevant in this dataset
+ return(res[res$ID %in% targetGeneSets,])
> #run the analysis on all 24 datasets and compare the new method "myRand" with
> #PADOG and GSA (if installed) (chosen as reference since is listed first in the existingMethology
> #if the package parallel is installed datasets are analyzed in parallel.
> #out=compPADOG(datasets=NULL,existingMethods=c("GSA","PADOG"),
> #mymethods=list(myRand=randomF),
> #gslist="KEGG.db",Nmin=3,NI=1000,plots=TRUE,verbose=FALSE)
```

```
> #compare myRand against PADOG on 4 datasets only
> #mysets=data(package="KEGGdzPathwaysGEO")$results[,"Item"]
> mysets=c("GSE9348","GSE8671","GSE1297")
> out=compPADOG(datasets=mysets,existingMethods=c("PADOG"),
+ mymethods=list(myRand=randomF),
+ gslist="KEGG.db",Nmin=3,NI=40,plots=TRUE,verbose=FALSE)
> print(out)
```

\$summary

Method p geomean p med % p.value<0.05 % q.value<0.05 rank mean rank med
1 PADOG 0.006786044 0.025 66.67 33.33 5.611275 5.752212
2 myRand 0.1675201 0.5995658 33.33 0 39.97116 59.73451
p Wilcox. p LME coef. LME
1 1.0000000 0.00000
2 0.875 0.8379292 34.35988

\$ranks

\$ranks\$PADOG

[1] 5.752212 6.637168 4.444444

\$ranks\$myRand

[1] 59.7345133 59.7345133 0.4444444

\$pvalues

\$pvalues\$PADOG

[1] 0.02500 0.00025 0.05000

\$pvalues\$myRand

[1] 0.59956583 0.59956583 0.01307758

\$qvalues

\$qvalues\$PADOG

[1] 0.40357143 0.00353125 0.75000000

\$qvalues\$myRand

[1] 0.9691438 0.9691438 0.9691438

>

Details about the meaning of the columns in the out table are given in Tarca et al. (2012). The better the method, the smaller the p-values and ranks for the target pathways, since these are supposted to be significant to their respective datasets.

References

- L. Badea, V. Herlea, S. O. Dima, T. Dumitrascu, and I. Popescu. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. *Hepatogastroenterology*, 55:2016–2027, 2008.
- A. S. Barth, R. Kuner, A. Buness, M. Ruschhaupt, S. Merk, L. Zwermann, S. Kaab, E. Kreuzer, G. Steinbeck, U. Mansmann, A. Poustka, M. Nabauer, and H. Sultmann. Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. J. Am. Coll. Cardiol., 48:1610–1617, Oct 2006.
- E. M. Blalock, J. W. Geddes, K. C. Chen, N. M. Porter, W. R. Markesbery, and P. W. Landfield. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. *Proc. Natl. Acad. Sci. U.S.A.*, 101:2173–2178, Feb 2004.

- H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G. A. Calin, C. G. Liu, K. Franssila, S. Suster, R. T. Kloos, C. M. Croce, and A. de la Chapelle. The role of microRNA genes in papillary thyroid carcinoma. *Proc. Natl. Acad. Sci. U.S.A.*, 102:19075–19080, Dec 2005.
- Y. Hong, K. S. Ho, K. W. Eu, and P. Y. Cheah. A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. *Clin. Cancer Res.*, 13:1107–1114, Feb 2007.
- Y. Hong, T. Downey, K. W. Eu, P. K. Koh, and P. Y. Cheah. A 'metastasis-prone' signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. *Clin. Exp. Metastasis*, 27:83–90, Feb 2010.
- J. Hou, J. Aerts, B. den Hamer, W. van Ijcken, M. den Bakker, P. Riegman, C. van der Leest, P. van der Spek, J. A. Foekens, H. C. Hoogsteden, F. Grosveld, and S. Philipsen. Gene expressionbased classification of non-small cell lung carcinomas and survival prediction. *PLoS ONE*, 5: e10312, 2010.
- M. E. Lenburg, L. S. Liou, N. P. Gerry, G. M. Frampton, H. T. Cohen, and M. F. Christman. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. *BMC Cancer*, 3:31, Nov 2003.
- W. S. Liang, T. Dunckley, T. G. Beach, A. Grover, D. Mastroeni, D. G. Walker, R. J. Caselli, W. A. Kukull, D. McKeel, J. C. Morris, C. Hulette, D. Schmechel, G. E. Alexander, E. M. Reiman, J. Rogers, and D. A. Stephan. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. *Physiol. Genomics*, 28:311–322, Feb 2007.
- H. Pei, L. Li, B. L. Fridley, G. D. Jenkins, K. R. Kalari, W. Lingle, G. Petersen, Z. Lou, and L. Wang. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell, 16:259–266, Sep 2009.
- H. Runne, A. Kuhn, E. J. Wild, W. Pratyaksha, M. Kristiansen, J. D. Isaacs, E. Regulier, M. Delorenzi, S. J. Tabrizi, and R. Luthi-Carter. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. *Proc. Natl. Acad. Sci. U.S.A.*, 104:14424–14429, Sep 2007.
- J. Sabates-Bellver, L. G. Van der Flier, M. de Palo, E. Cattaneo, C. Maake, H. Rehrauer, E. Laczko, M. A. Kurowski, J. M. Bujnicki, M. Menigatti, J. Luz, T. V. Ranalli, V. Gomes, A. Pastorelli, R. Faggiani, M. Anti, J. Jiricny, H. Clevers, and G. Marra. Transcriptome profile of human colorectal adenomas. *Mol. Cancer Res.*, 5:1263–1275, Dec 2007.
- A. Sanchez-Palencia, M. Gomez-Morales, J. A. Gomez-Capilla, V. Pedraza, L. Boyero, R. Rosell, and M. E. Farez-Vidal. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. *Int. J. Cancer*, Sep 2010.
- D. L. Stirewalt, S. Meshinchi, K. J. Kopecky, W. Fan, E. L. Pogosova-Agadjanyan, J. H. Engel, M. R. Cronk, K. S. Dorcy, A. R. McQuary, D. Hockenbery, B. Wood, S. Heimfeld, and J. P. Radich. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer, 47:8–20, Jan 2008.

- A. L. Tarca, S. Draghici, G. Bhatti, and R. Romero. Down-weighting overlapping genes improves gene set analysis. *BMC Bionformatics*, accepted, 2012.
- T. A. Wallace, R. L. Prueitt, M. Yi, T. M. Howe, J. W. Gillespie, H. G. Yfantis, R. M. Stephens, N. E. Caporaso, C. A. Loffredo, and S. Ambs. Tumor immunobiological differences in prostate cancer between African-American and European-American men. *Cancer Res.*, 68:927–936, Feb 2008.
- Y. Wang, O. Roche, M. S. Yan, G. Finak, A. J. Evans, J. L. Metcalf, B. E. Hast, S. C. Hanna, B. Wondergem, K. A. Furge, M. S. Irwin, W. Y. Kim, B. T. Teh, S. Grinstein, M. Park, P. A. Marsden, and M. Ohh. Regulation of endocytosis via the oxygen-sensing pathway. *Nat. Med.*, 15:319–324, Mar 2009.
- Y. Zhang, M. James, F. A. Middleton, and R. L. Davis. Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. *Am. J. Med. Genet. B Neuropsychiatr. Genet.*, 137B:5–16, Aug 2005.
- B. Zheng, Z. Liao, J. J. Locascio, K. A. Lesniak, S. S. Roderick, M. L. Watt, A. C. Eklund, Y. Zhang-James, P. D. Kim, M. A. Hauser, E. Grunblatt, L. B. Moran, S. A. Mandel, P. Riederer, R. M. Miller, H. J. Federoff, U. Wullner, S. Papapetropoulos, M. B. Youdim, I. Cantuti-Castelvetri, A. B. Young, J. M. Vance, R. L. Davis, J. C. Hedreen, C. H. Adler, T. G. Beach, M. B. Graeber, F. A. Middleton, J. C. Rochet, and C. R. Scherzer. PGC-1?, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med, 2:52ra73, Oct 2010.