

Marathwada Mitra Mandal's COLLEGE OF ENGINEERING

Accredited with 'A++' Grade by NAAC, Recipient of "Best College Award 2019" by SPPU Accredited Mechanical and Electrical Departments by NBA

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

<u>INDEX</u>

SUBJECT:	
CLASS:	DIV.:

Sr. No.	Title	Page No.	Date	Remark	Sign of Faculty
	Data Wrangling, I				•
1.	Perform the following operations using Python on any open				
	source dataset (e.g.,data.csv) 1. Import all the required Python				
	Libraries. 2. Locate open source data from the web (e.g.,				
	https://www.kaggle.com). Provide a clear description of the data				
	and its source (i.e., URL of the web site). 3. Load the Dataset into				
	pandas dataframe. 4. Data Preprocessing: check for missing				
	values in the data using pandas isnull(), describe()function to get				
	some initial statistics. Provide variable descriptions. Types of				
	variables etc. Check the dimensions of the data frame. 5. Data				
	Formatting and Data Normalization: Summarize the types of				
	variables by checking the data types (i.e.,character, numeric,				
	integer, factor, and logical) of the variables in the data set. If				
	variables are not in the correct data type, apply proper type				
	conversions. 6. Turn categorical variables into quantitative				
	variables in Python. In addition to the codes and outputs, explain				
	every operation that you do in the above steps and explain				
	everything that you do to import/read/scrape the data set.				
2.	Data Wrangling II				
	Create an "Academic performance" dataset of students and				
	perform the following operations using Python. 1. Scan all				
	variables for missing values and inconsistencies. If there are				
	missing values and/or inconsistencies, use any of the suitable				
	techniques to deal with them. 2. Scan all numeric variables for				
	outliers. If there are outliers, use any of the suitable techniques				
	to deal with them. 3. Apply data transformations on at least one				

	of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better			
	one of the following reasons: to change the scale for better			
h				
, ,	understanding of the variable, to convert a non-linear relation			
	into a linear one, or to decrease the skewness and convert the			
	distribution into a normal distribution. Reason and document			
	your approach properly.			
- T	Descriptive Statistics - Measures of Central Tendency and			
	variability			
	Perform the following operations on any open source dataset			
	(e.g., data.csv) 1. Provide summary statistics (mean, median,			
	` ' '			
	minimum, maximum, standard deviation) for a Curriculum for			
	Third Year of Artificial Intelligence and Data Science (2019)			
	Course), Savitribai Phule Pune University.			
1	http://collegecirculars.unipune.ac.in/sites/documents/Syllabus2			
	022/Forms/AllItems.aspx #84/105 dataset (age, income etc.)			
	with numeric variables grouped by one of the qualitative			
1	(categorical) variable. For example, if your categorical variable			
	is age groups and quantitative variable is income, then provide			
	summary statistics of income grouped by the age groups. Create			
	a list that contains a numeric value for each response to the			
	categorical variable. 2. Write a Python program to display some			
	basic statistical details like percentile, mean, standard deviation			
1	etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris-			
I I	versicolor' of iris.csv dataset. Provide the codes with outputs and			
(explain everything that you do in this step.			
4.	Data Analytics I			
	Create a Linear Regression Model using Python/R to predict			
]	home prices using Boston Housing Dataset			
	(https://www.kaggle.com/c/boston-housing). The Boston			
	Housing dataset contains information about various houses in			
	Boston through different parameters. There are 506 samples and			
	14 feature variables in this dataset. The objective is to predict the			
	value of prices of the house using the given features.			
	Data Analytics II			
	1. Implement logistic regression using Python/R to perform			
	classification on Social Network Ads.csv dataset. 2. Compute			
	Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate,			
1	Precision, Recall on the given dataset.			
	Data Analytics III			
	1. Implement Simple Naïve Bayes classification algorithm using			
1	Python/R on iris.csv dataset. 2. Compute Confusion matrix to			
	find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on			
	the given dataset.			
r			I	l
7.	Text Analytics			

			1
	1. Extract Sample document and apply following document		
	preprocessing methods: Tokenization, POS Tagging, stop words		
	removal, Stemming and Lemmatization.		
	2. Create representation of documents by calculating Term		
	Frequency and Inverse		
	Document Frequency.		
8.	Data Visualization I		
	1. Use the inbuilt dataset 'titanic';. The dataset contains 891 rows		
	and contains information about the passengers who boarded the		
	unfortunate Titanic ship. Use the Seaborn library to see if we can		
	find any patterns in the data. 2. Write a code to check how the		
	price of the ticket (column name: 'fare') for each passenger is		
	distributed by plotting a histogram.		
9.	Data Visualization II		
	1. Use the inbuilt dataset 'titanic'; as used in the above problem.		
	Plot a box plot for distribution of age with respect to each gender		
	along with the information about whether they survived or not.		
	(Column names: 'sex'; and 'age') 2. Write observations on the		
	inference from the above statistics		
10.	Data Visualization III		
	Download the Iris flower dataset or any other dataset into a Data		
	Frame. (e.g.,https://archive.ics.uci.edu/ml/datasets/Iris). Scan		
	the dataset and give the inference as:		
	1.List down the features and their types (e.g., numeric, nominal)		
	available in the dataset. 2.Create a histogram for each feature in		
	the dataset to illustrate the feature distributions. 3.Create a		
	boxplot for each feature in the dataset. 4. Compare distributions		
	and identify outliers		
11.	Create databases and tables, insert small amounts of data, and		
	run simple queries using Impala		
12.	Design a distributed application using MapReduce which		
	processes a log file of a system.		
13.	Mini Project		

Date:/ 20	Faculty In-charge	Head of Dept.
-----------	-------------------	---------------