Question 1:

You observe that the presence of three specific words—study, free, and money—can help distinguish between spam and regular emails. This insight leads you to model the problem using a Naive Bayes classifier and construct the following dataset. (1 means the word is present in the email, 0 means the word is not present in the email.)

Calculate the probability that an email containing the words—study=0, free=1, and money=1 is classified as spam.

C	P(C)	
Spam	7/n	= 1/3
Regular	1/12	= 1/3

Study	Free	Money	Category
1	0	0	Regular
0	0	1	Regular
1	0	0	Regular
1	1	0	Regular
0	1	0	Spam
0	1	0	Spam
0	1	0	Spam
0	1	0	Spam
0	1	1	Spam
0	1	1	Spam
0	1	1	Spam
0	1	1	Spam

С	Free	P(Free C)
Spam	1	1
Spam	0	0
Regular	1	1/4
Regular	0	3/4

С	Study	P(Study C)
Spam	1	0
Spam	0	(
Regular	1	3/4
Regular	0	1/4

C	Mny	P(Mny C)
Spam	1	1/2
Spam	0	1/2
Regular	1	1)4
Regular	0	3/4

 $P(C \mid study=0, free=1, money=1) =$

P(c|s,F,M)

P(C) P(SIC) · P(FIC) · P(MIC)

Question 2: The joint distribution P(A, B, C, D) is equal to the product of these probability distribution tables.

P(A,B,C,D) = P(A) · P(BIA) · P(CIB) · P(DIC)

		A	В	P(B A)	В	С	P(C B)	С	D	P(D C)
A	P(A)	+a	+b	0.9	+b	+c	0.8	+c	+d	0.25
+a	0.8	+a	-b	0.1	+b	-с	0.2	+c	-d	0.75
-a	0.2	-a	+b	0.6	-b	+c	0.8	<u>-с</u>	+d	0.5
		-a	-b	0.4	-b	-c	0.2	<u>-с</u>	-d	0.5

Draw Bayes Net that represent a distribution consistent with the table. Ensure that the network has the **minimal number of edges.**

Question 3: Consider a simple Bayes Net shown below. A and B both can take on only the values true and false $(A \in \{true, false\})$ and $B \in \{true, false\})$.

Find the value of the **p** in the conditional probability table above, if you are told that the $P(B=true) = \frac{3}{4}$

Question 4: Find values for the probabilities and bin joint probability table below so that the binary variables X and Y are independent.

X	Y	P(X,Y)
((t)	3/5
(t)	f	1/5
f	\bigcirc	a
f	f	b

Independent:
$$P(Y|X) = P(Y)$$
.

$$\frac{3}{5} + \frac{1}{5} + a + b = 1 \quad \text{(Total prob must sum to 1)}$$

$$P(x=t) = \frac{3}{5} + \frac{1}{5} = \frac{4}{5}$$
 $P(y=t) = \frac{3}{5} + 6$
 $P(x=t) = \frac{3}{5} + 6$
 $P(y=t) = \frac{3}{5} + 6$

Orlestion 5: Aliens can be friendly or not; 75% are friendly. Friendly aliens arrive during the cay property of the three white ordinardly and always arrive at pight. I an alien a rives at the lit, how likely is it to be friendly?

$$P(X=+,Y=+) = P(X=+)P(Y=+) = (\frac{1}{2})(\frac{3}{5}+a) = \frac{3}{2}$$

$$a = 0.15 \longrightarrow (\frac{3}{10})$$

$$\frac{3}{10} + 6 = \frac{1}{5} \longrightarrow b = \frac{1}{10}$$

$$a = \frac{3}{10}$$

Question 5: Aliens can be friendly or not; 75% are friendly. Friendly aliens arrive during the day 90% of the time, while unfriendly ones always arrive at night. If an alien arrives at night, how likely is it to be friendly?

Alian P(f)

$$f$$
 viantly 0.45

 d + d + f 0.9

 d not friendly 0.25

 d + d + f 0.1

 d + d - f 0.1

 d + d - d 0.1

 d - d - d 1

 d - d - d 1

 d - d - d - d - d 1

 d - d

Question 6: (Repeat with Laplace smoothing with $\lambda = 1$)

You observe that the presence of three specific words—*study*, *free*, and *money*—can help distinguish between spam and regular emails. This insight leads you to model the problem using a Naive Bayes classifier and construct the following dataset. (1 means the word is present in the email, 0 means the word is not present in the email.)

Calculate the probability that an email containing the words—study=0, free=1, and money=1 is classified as spam.

C	P(C)	
Spam	8/12 -	8+1 12+1(2) = 9/14
Regular	71-	4+1 12+1(1) = 5/14

Study	Free	Money	Category
1	0	0	Regular
0	0	1	Regular
1	0	0	Regular
1	1	0	Regular
0	1	0	Spam
0	1	0	Spam
0	1	0	Spam
0	1	0	Spam
0	1	1	Spam
0	1	1	Spam
0	1	1	Spam
0	1	1	Spam

С	Free	P(Free C)
Spam	1 %	- 1/10
Spam	0	1/10
Regular	1 1/4 -	1+1 4+1(v) = 3
Regular	0	2/3

С	Study	P(Study C)
Spam	1 %	→ <u> </u>
Spam	0 8	The
Regular	1 1/4 -	$\frac{4}{6} = \frac{2}{3}$
Regular	0 1/4 -	· 2 = 1/3

C	Mny	P(Mny C)
Spam	1 + -	· 5/10= 1/h
Spam	0	1/2
Regular	1 1/4	- 1/3
Regular	0	2/3

 $P(C \mid study=0, free=1, money=1) =$