Emulate-IO v1.0

IP User Guide (Beta Release)

November 20, 2023

Contents

IP Summary	2
Overview	3
Emulate-IO	3
Licensing	4
IP Specification	5
Overview	5
Standards	6
IP Support Details	7
Resource Utilization	7
Port List	8
Parameters	9
Registers Address Space	9
Design Flow	10
IP Customization and Generation	10
EIO Debug Subsystem	12
The Generated EIO Core Wrapper	12
EIO Debug Subsystem	12
Example Design	13
Test Bench	14
Release	15
Revision History	15

IP Summary

Introduction

The Emulate-IO core is an AXI4-Lite compliant IP that offers input and output probes to sample and drive signals on FPGA fabric. The core provides an AXI4-slave interface that can be used to control the emulated IOs in real time. A total of 1024 probes are provided by the core, half of which can be set as inputs and the other half can be set as outputs.

Features

The EIO IP provides the following features to the user:

- AXI4-Lite slave interface for reading the sampled input probes and driving the output probes.
- Configurable data width of AXI4-Lite bus (32/64 bits).
- Up to sixteen 32-bit or eight 64-bit wide dedicated registers for storing sampled inputs.
- Up to sixteen 32-bit or eight 64-bit wide dedicated registers for storing output values to be driven on output probes.
- Separate input and output clocks for registering inputs and outputs.

Overview

Emulate-IO

The EIO core can be configured through its AXI-Lite slave interface. The core provides input and output probes to virtually drive logic blocks and verify their functionality. An overview of the IP in a practical use case is shown in figure-1.

Figure 1. EIO core use case.

Licensing

Copyright (c) 2022 RapidSilicon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR- TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

IP Specification

Overview

The figure-2 shows the internal block diagram of EIO core. The core includes a control register which will is reserved and currently does not provide any functionality. The number of input and output probes can be varied between 1 and 512. The probe are named from the perspective of the core. This means that input probes refer to the probes that are fed to the inputs port of the core (outputs *of* the DUT). Similarly, output probes refer to the probes that originate from the output ports of the core (inputs *to* the DUT).

The core has three clock inputs: AXIL, input and output clock. The AXIL clock drives the AXI-Lite logic. All of the input probes are sampled on the rising edge of the input clock. Similarly all outputs are driven using the output clock as well. All three clocks can be synchronous or asynchronous but this information must be passed to Raptor while generating the IP.

Figure 2. EIO core block diagram.

The state of IO probes, 1 or 0, is stored in internal registers that are accessible through the AXI-Lite interface. The width of these registers is the same as the configured AXIL data bus width. The number of these registers depends on the number of probes. For example, a single 32-bit bit input register is sufficient to store data from up to 32 input probes and same goes for output registers. It is also possible to partially fill a register, for example if the number of input probes is selected to be 90 with 64-bit AXIL data width then two input registers will be generated. The first register will store the least significant 64 bits and the second register will store the most significant 26 bits. The remaining 38 bits of the second register will be initialized with zeros and will always be read as zero. The same

logic is followed for output registers as well. Further details about the register space can be found in the *'Register Space'* section.

Standards

The AXI4-Lite Slave interface is compliant with the AMBA® AXI Protocol Specification.

IP Support Details

The table below presents the specifics of IP support for the EIO IP Core, including pertinent information such as synthesis, simulation and source details.

Com	Compliance IP Resources Tool Flow						
Device	Interface	Source Files	Constraint File	Testbench	Analysis and Elaboration	Simulation	Synthesis
Gemini	AXI4-Lite	Verilog	SDC	Systemverilog	Raptor	Raptor	Raptor

Table 1. EIO support details.

Resource Utilization

Tool	Raptor Design Suite				
FPGA Device	Gemini				
	Configuration	Resource Utilization			
	Options	Configuration	Resources	Utilized	
	Number of input probes	1	LUT	53	
) ·	Number of output probes	1	DFF	73	
Minimum Resource	AXIL bus data width	32	BRAM	0	
	AXIL and input clock sync	Yes	DSP	0	
	AXIL and output clock sync	Yes			
	Options	Configuration	Resources	Utilized	
	Number of input probes	512	LUT	302	
Maximum	Number of output probes	512	DFF	3718	
	AXIL bus data width	64	BRAM	0	
Resource	AXIL and input clock sync	No	DSP	0	
	AXIL and output clock sync	No			

Table 2. EIO resource utilization.

Ports

Table 4 lists the top interface ports of the EIO core.

Signal Name	I/O	Description		
Clocks				
S_IP_CLK	I	Clock for sampling input probes		
S_OP_CLK	I	Clock for updating output probes		
AXI Clock and Reset				
S_AXI_ACLK	I	AXI4-Lite Clock		
S_AXI_ARESETN	I	AXI4-Lite RESET		
AXI WRITE ADDRESS C	HANNE			
s_axil_awvalid	I	AXI4-Lite write address valid		
s_axil_awready	O	AXI4-Lite write address ready		
s_axil_awaddr	I	AXI4-Lite write address		
s_axil_awprot	I	AXI4-Lite protection type		
AXI WRITE DATA CHAN	INEL			
s_axil_wvalid	I	AXI4-Lite write valid		
s_axil_wready	0	AXI4-Lite write ready.		
s_axil_wdata	I	AXI4-Lite write data		
s_axil_wstrb	I	AXI4-Lite write strobes		
AXI WRITE RESPONSE	CHANN	EL		
s_axil_bvalid	O	AXI4-Lite write response valid		
s_axil_bready	I	AXI4-Lite response ready		
s_axil_bresp	O	AXI4-Lite write response		
AXI READ ADDRESS CH	ANNEL			
s_axil_arvalid	I	AXI4-Lite read address valid		
s_axil_arready	O	AXI4-Lite read address ready		
s_axil_araddr	I	AXI4-Lite read address		
s_axil_arprot	I	AXI4-Lite protection type		
AXI READ DATA CHANNEL				
s_axil_rvalid	I	AXI4-Lite read valid		
s_axil_rready	O	AXI4-Lite read ready		
s_axil_rresp	I	AXI4-Lite read data		
s_axil_rdata	O	AXI4-Lite read response		
EIO PORTS				
probe_in	I	EIO input probes (up to 512)		
probe_out	I	EIO output probes (up to 512)		

Table 4. EIO AXIL interface.

Parameters

Table 5 lists the parameters of the EIO core.

Parameter	Values	Default Value	Description
AXIL DATA WIDTH	32/64	32	Sets the width of AXIL bus.
NO. OF INPUT PROBES	1512	8	Sets the number of input probes.
NO. OF OUTPUT PROBES	1512	8	Sets the number of output probes.
AXI AND INPUT	True or False	False	Sets whether the AXI and INPUT clock are synchronized
CLOCK SYNC		1 4150	or not.
AXI AND OUTPUT	True or False	False	Sets whether the AXI and OUTPUT clock are synchro-
CLOCK SYNC	True of False	raise	nized or not.

Table 5. EIO configurable parameters.

Registers Address Space

Table 6 lists the configuration registers of the EIO.

Name	Register ID	Bits	Access	Offset	Default Value	Description
Control Register	CTRL	32	RW	0x00	0x00000000	Control register (Reserved)
IP Type Register	IP_TYPE	32	RO	0x04	"EIO"	IP Type Register
IP Version Register	IP_VERSION	32	RO	0x08	0x00000001	Define version of IP
IP ID Register	IP_ID	32	RO	0x0C	0x00000000	Unique identifier for IP
Input Probe Reg- ister	AXI_DAT_IN	32/64	WO	0x10/0x14	0x00000000	Data at the input probes of EIO (received from the DUT)
Output Probe Register	AXI_DAT_O UT	32/64	RO	0x10/0x14	0x00000000	Data at the output probes of EIO (sent to the DUT)

Table 6. EIO register space.

Design Flow

IP Customization and Generation

The EIO IP core is a part of the Raptor Design Suite Software. A customized EIO core can be generated from the Raptor's IP configurator window.

Figure 3. EIO core in Raptor IP Suite.

Parameters Customization: From the IP configuration window, the parameters of the EIO can be configured and EIO features can be enabled for generating a customized EIO IP core that suits the user application requirement.

Figure 4. Configuration options for EIO.

EIO Debug Subsystem

The Generated EIO Core Wrapper

The IP customization and generation step is followed by the availability of a top wrapper and all source files for the user. The generated top wrapper file for the EIO (see figure 5) comprises of three distinct clock domains: input clock, output clock and AXI clock.

The signals of the design that are intended to be sampled are connected to the input probes of the EIO core. Similarly, the signals of the design that are intended to be driven are connected to the output probes of EIO core.

For configuring the EIO core and reading/driving data, the AXI-Lite slave interface must be connected to an AXI bus.

Figure 5. EIO top wrapper.

EIO Debug Subsystem

The EIO core is primarily used for providing inputs to a design under test while capturing its outputs as well. This mimics the behaviours of IOs without actually having to use dedicated IOs for the design. Since this IP is essentially used for debugging of a design, it can be integrated with the JTAG-to-AXI core for runtime configurations of EIO core through a JTAG host.

Example Design

This IP has no example design.

Test Bench

This IP has no test bench.

Revision History

Date	Version	Revisions
November 20, 2023	0.01	Initial version of EIO User Guide Document