# 联合省选 2025

## CQYC 新春模拟赛

| 题目名称      | 石头        | 爱情               | 玩梗       |
|-----------|-----------|------------------|----------|
| 题目类型      | 传统型       | 传统型              | 传统型      |
| 可执行文件名    | stone     | nim              | life     |
| 输入文件名     | stone.in  | nim.in           | life.in  |
| 输出文件名     | stone.out | nim.out          | life.out |
| 每个测试点时限   | 2000 ms   | 1000 ms          | 3000 ms  |
| 内存限制      | 512 MB    | $512\mathrm{MB}$ | 512 MB   |
| 提交源程序文件名  | stone.cpp | nim.cpp          | love.cpp |
| 子任务/测试点数目 | 5         | 8                | 6        |
| 是否等分      | 否         | 否                | 否        |

**编译选项:** -1m -02 -std=c++14

## 注意事项

- 1. C++ 中函数 main 的返回值类型必须是 int ,程序正常返回时的返回值必须是 0。
- 2. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 3. 选手提交的程序代码文件无须建立子目录。
- 4. 选手提交的程序源文件必须不大于  $100~{\rm KB}$ 。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 使用 std::deque 等 STL 容器时,请注意其内存空间消耗。
- 7. 评测时采用的机器配置为 CPU为 Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz,内存 16 GiB。上述时限以此配置为准。
- 8. 评测在最新版本的 NOI Linux 下进行。若在 windows 平台进行比赛,请自行承担测试平台不同的时空差异带给比赛的不良体验。

# 石头(stone)

#### 题目背景

(跳起来双手挥舞) 我是妮妮, 迷拉星\*石头部落的公主, 未来的女酋长, 有什么可以帮到你的吗?

\*: 迷拉星球是熊星域中最有生命力的星球,因为起源之力的作用,这里孕育出各型各类的奇异植物和各种各样的飞禽走兽。地面世界的原始部落生机勃勃,地下世界的古城遗迹中神秘的族群在出没;地心最深处的野人蠢蠢欲动。

### 题目描述

妮妮正在自家部落里面用彩蛋枪涂颜色,她选择了一排方块进行涂色,但妮妮觉得玩也要规则的玩,不 然不符合公主的气质,于是她在留言板上写了一些区间,同时妮妮也会加入一些区间或删去一些区间。

所以她想要知道,从她的留言板中选择一些区间接着把选择的区间 [l,r] 从坐标 l 到 r 中所有的方块都涂色(所以涂色的方块数是 r-l 个)。因为被多次涂色的方块很不好看,所以妮妮想让所有方块都尽量不被涂满颜色,但这很可能是办不到的,所以你需要最小化涂满所有选择区间颜色的方块数量。而且为了减少污染,妮妮想要在上述条件下,能包含所有被染色的方块的区间长度的最小值

因为妮妮忙着跟卡卡一起玩,所以请你输出在满足上述条件下最小被涂过颜色方块的数量。

#### 形式化题面

对于一个序列 A (初始为 0)你可以进行任意次操作。每次操作选择一个区间 [l,r) 并使得  $A_l$  到  $A_{r-1}$  内的所有元素增加 1。假设你一共进行了 k 次操作,需要最小化  $\sum\limits_{i=1}^\infty [A_i=k]$  并在此前提下最小化

$$\max_{i=1}^\infty i[A_i>0]-\min_{i=1}^\infty i[A_i>0]+1$$
。输出满足上述条件下最小化的  $\max_{i=1}^\infty i[A_i>0]-\min_{i=1}^\infty i[A_i>0]+1$ 的值。你需要支持动态加入删除区间并且给出答案。

### 输入格式

第一行一个正整数 Q,表示将会发生的事件的个数。接下来 Q 行,每行描述一个事件,格式如下:

- A l r:添加一个区间 [l, r] 到妮妮的留言板中。
- R l r: 从妮妮的留言板中移除一个区间 [l,r],保证这个区间在她的留言板中存在,且移除后她的留言板非空。

## 输出格式

输出 Q 行,每行一个正整数表示每个事件发生后 Altina 会选择的集合 S 的最小公共超区间的长度。

#### 输入输出样例

#### 样例输入#1

```
5
A 1 5
A 2 7
A 4 6
A 6 8
```

# 样例输出#1

4 6 5 4 7

# 说明/提示

#### 样例解释#1

加入[1,5], 选择[1,5]最优, 答案为 4。

加入 [2,7], 选择 [1,5], [2,7] 最优, 答案为 7-1=6。

对于 100% 的数据,保证  $1 \leq Q \leq 5 imes 10^5$ ,  $1 \leq l,r \leq 10^6$ 。

| 子任务编<br>号     | Q                     | 特殊性质                                                               | 分值 |
|---------------|-----------------------|--------------------------------------------------------------------|----|
| Subtask<br>#1 | $\leq 500$            | 无                                                                  | 15 |
| Subtask<br>#2 | $\leq 1.2 	imes 10^4$ | 无                                                                  | 25 |
| Subtask<br>#3 | $\leq 5	imes 10^4$    | 无                                                                  | 20 |
| Subtask<br>#4 | $\leq 5	imes 10^5$    | 对于任两个区间 $(l_1,r_1)$ 和 $(l_2,r_2)$ ,保证 $r_1 < l_2$ 或者 $r_2 < l_1$ 。 | 20 |
| Subtask<br>#5 | $\leq 5	imes 10^5$    | 无                                                                  | 20 |

# 爱情(nim)

### 题面背景

"Bob, 其实陪你玩了这么多游戏, 我觉的你是一个很有趣的人呢。"

"Alice......你不要这样子说话,我会很难为情的......"

"其实我为你准备了一份大礼,就藏在这个城市的角落。"

"就让我们, 玩最后一次游戏吧。之后, 你可就要叫我 wife 了。"

Alice 紧紧抱住 Bob, 轻轻说。

#### 题目描述

Alice 和 Bob 又在一起玩游戏。

他们的城市可以看作一棵 n 个点的树,编号由 1 到 n 。Alice 为了让 Bob 发现她埋藏的大礼,所以准备了这样一个游戏:

游戏从x点开始。他们共同驾驶一台超高速悬浮炫酷汽车,Alice 先驾驶,Bob 后驾驶。

- Alice 可以选择沿着恰好 A 条从未走过的道路行驶。
- Bob 可以选择沿着至多 B 条道路行驶(当然他也可以选择不驾驶)。

当某一轮 Alice 无法移动时,Bob 只能选择至多 B 条从未走过的道路行驶(当然他也可以选择不驾驶),然后游戏结束。

Alice 想要最大化游戏结束时所在的城市编号,Bob 想要最小化结束时所在的城市编号。那么,当两人操作都为最优时,游戏结束时他们所在城市的编号是多少?

## 输入格式

第一行四个整数 n, x, A, B 。

接下来 n-1 行 两个整数表示树上的一条边。

### 输出格式

输出游戏结束时他们所在城市的编号是多少

### 输入输出样例

### 样例输入#1

```
9 6 2 1
1 3
1 6
2 4
2 5
2 7
3 9
4 6
4 8
```

2

#### 样例输入#2

7 2 3 2

2 7

7 3

3 1

1 4

4 5

5 6

# 样例输出#2

3

# 说明/提示

#### 样例解释 #1

在 Alice 的第一回合中,她有三个选择: 前往城市  $2 \times 3$  或 8。

如果 Alice 前往城市 2, Bob 可以在他的回合中不走任何道路。这样一来,Alice 就无法沿两条从未走过的新道路行驶,因此游戏进入最终阶段。在最终阶段,Bob可以选择不走任何道路,从而结束在城市 2。

如果Alice前往城市 3,Bob可以选择从城市 1 走一条道路。这样一来,Alice 就无法沿两条从未走过的新道路行驶,因此游戏进入最终阶段。在最终阶段,Bob 唯一的选择是不走任何道路,从而结束在城市 1

如果 Alice 前往城市 8,Bob 可以选择从城市4走一条道路。然后,Alice 可以前往城市 5 或 7 中的任意一个。在两种情况下,Bob 都可以从城市 2 走一条道路。Alice 无法再沿两条从未走过的新道路行驶,因此游戏进入最终阶段。在最终阶段,Bob 可以选择不走任何道路,从而结束在城市 2。

在所有情况下,Bob 都可以使游戏结束在城市 1 或 2。因此在最佳情况下,游戏结束在城市 2。

对于任意数据满足  $2 < n < 10^5, 1 < A, B, x < n$ 

| 测试点编号      | n                   | 特殊性质                    | 分值 |
|------------|---------------------|-------------------------|----|
| Subtask #1 | $\leq 10^5$         | $A \leq B$              | 5  |
| Subtask #2 | $\leq 6$            | 无                       | 10 |
| Subtask #3 | $\leq 10^5$         | 保证 $x$ 的度数为 $1$ ,且树为一条链 | 15 |
| Subtask #4 | $\leq 300$          | 无                       | 15 |
| Subtask #5 | $\leq 3000$         | 无                       | 15 |
| Subtask #6 | $\leq 10^5$         | $B \leq 10$             | 15 |
| Subtask #7 | $\leq 5 	imes 10^4$ | 无                       | 10 |

| 测试点编号      | n           | 特殊性质 | 分值 |
|------------|-------------|------|----|
| Subtask #8 | $\leq 10^5$ | 无    | 15 |

# 玩梗(life)

### 题面背景

- 什么, 你说数据没有满足题面不是一个排列?
- 什么, 你说题解里面算出来答案是 2401?
- 什么, 你说出题人把 Library Checker 搬到了模拟赛里?
- 什么, 你说菜鱼中学的模拟赛打一个小时就下播?

真是太好玩梗了。

### 题目描述

可以把菜鱼中学的模拟赛看作一颗 n 个点的树,作为菜鱼中学出题组的你可以选择树上的一些模拟赛**有梗**,而选手会选择树上一条节点数为 k 的链对模拟赛细细品尝。为了让选手不那么无聊,你需要让在树上选择任何合法路径都包含**有梗**的模拟赛,但为了保护学校形象,你还需要满足任何合法的路径的**有梗**的模拟赛至多出现一次。

你需要求出所有的满足条件的**有梗**模拟赛集合的数量,并输出其对 $10^9 + 7$ 取模的答案。

### 输入格式

第一行一个两个整数 n, k

接下来 n-1 行每行两个整数 u,v 表示树上的一条边。

#### 输出格式

第一行一个字符串,如果存在输出 YES,否则输出 NO。

第二行输出一个整数,表示满足条件的有梗模拟赛集合个数,如果不存在,输出0。

# 输入输出样例

#### 样例输入#1

- 4 2
- 3 4
- 3 1
- 2 3

#### 样例输出#1

YES

2

## 说明/提示



满足条件的子集有: $\{3\}$ , $\{1,2,4\}$ 。

#### 请注意常数因子对代码运行时间的影响

对于所有的数据保证:  $2 \leq k \leq n \leq 1.5 imes 10^6$  。

| 子任务编号      | n                     | 特殊性质    | 分值 |
|------------|-----------------------|---------|----|
| Subtask #1 | $\leq 5	imes 10^5$    | 保证树为一条链 | 10 |
| Subtask #2 | $\leq 18$             | 无       | 15 |
| Subtask #3 | $\leq 200$            | 无       | 20 |
| Subtask #4 | $\leq 10^4$           | 无       | 20 |
| Subtask #5 | $\leq 5	imes 10^5$    | 无       | 15 |
| Subtask #6 | $\leq 1.5 	imes 10^6$ | 无       | 20 |