Parallel Computing with GPUs

Wayne Franz Comp 4510 Nov. 2016

Schedule

Week 1		GPU Fundamentals			
1.	(Mon)	Introduction to GPUs			
2.	(Wed)	GPU Architecture			
	(Fri)	(Remembrance Day)			
We	ek Z	Solving Problems on the GPU			
W 6	ek Z (Mon)	Solving Problems on the GPU Programming in CUDA			

1. Introduction to GPUs

Standard (Wikipedia) definition:

"The process of generating an image from a 2D or 3D model."

© Eg. (2D):

© Eg. (3D)

Model

Projection

Rotation, translation

- Historically done on the CPU
 - **Problems:**
 - Computationally intensive
 - CPU also does other things
 - Requires a hard deadline: refresh rate
 - **Solution:**
 - Use an accelerator!

- O Graphics rendering tasks:
 - translation
 - rotation
 - projection

- GPUs have evolved to accelerate <u>data-parallel</u> computation
- Data-parallelism can be found in areas other than just graphics...

- General Purpose GPU Computing (GPGPU)
 - Larson & McCallister, Fast Matrix Multiplies using Graphics Hardware, 2001

3rd slice of A multi-textured with 3rd slice of B

C = 3rd slice added to 1st, 2nd, and 4th slices

- Results:
 - Less than stellar...
 - Data transfer time > Compute time

- Take-away:
 - Obtaining any benefit from the GPU requires *programming with the hardware in mind*.

"Compute Unified Device Architecture" (CUDA)

- Nvidia, 2006
- C-like language
- Can operate on arrays instead of images / vertices
- Finer-grained control over GPU

Today

Multiple platforms for GPGPU

Today

 GPU Architecture increasingly tailored for <u>general purpose</u> computation

Today

Why should we care?

Device	Theoretical Max. Throughput (SP FP)
Intel Xeon (Broadwell) E5-2699 (v4)	~774 GFLOPS
Nvidia P100	~10,609 GFLOPS

But ...

Trade-offs

- Sacrifices are made for the GPU's throughput...
 - CPUs and GPUs are designed to do very different things.

Trade-offs

	CPUs	GPUs			
Purpose	General purpose computing	Data-parallel (i.e. graphics) computing			
Taxonomy	MIMD	SIMD			
Strengths	Multitasking (context switching)I/O	ThroughputPower efficiency (per FLOP)			
Weaknesses	Throughput (sort of)Memory wall (requires caches)	Context switchingBranchingI/O			

2. GPU Architecture

Architectural Synopsis

	Clock Rate	Cores	Memory Bandwidth	Cache levels	Power Requirements	
Intel Xeon (Broadwell) E5-2699 (v4)	2.2 - 3.6 GHz	22	76.8 GB/s	L1: 64 KB (per core) L2: 256 KB (per core) L3: 55 MB (per CPU)	145 W	
Nvidia P100	1.3 - 1.5 GHz	3584	720 GB/s	L1: 64 KB (per 64 cores) L2: 4096 KB (per GPU)	300 W	

What's in a core?

- Modern CPU cores
 - Like multiple "independent" sub-processors
 - Tailored for high-frequency execution of multiple, independent tasks
- Several large, complex cores:

Intel Broadwell

What's in a core?

- GPUs
 - O Not much!
 - Tailored for exploiting the maximum amount of parallelism in a single task
- Many small, simple cores:

Nvidia P100

GPU Core organization

- Cores are grouped together
 - Groups of 32
 - Perform same instruction in lockstep
- Streaming Multiprocessors (SMs)
 - Contain 2 groups of 32 cores
 - The "instruction control unit"

Hardware Threads

Hardware threads are run in groups of 32"Warp"

- © Each SM has 2 x 32 cores
 - Can run 2 warps simultaneously

Instruction Cache

	Instruction Cache														
Instruction Buffer						Instruction Buffer									
	Warp Scheduler							Warp Scheduler							
	Dispatch Unit Dispatch Unit						Dispatch Unit			Dispatch Unit					
Register File (32,768 x 32-bit)					Register File (32,768 x 32-bit)										
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	Unit	LD/ST	SFU	Core	Core	Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Unit	Core	Core	DP Unit	LD/ST	SFU
	Texture / L1 Cache														
	Tex						Тех								

64KB Shared Memory

How many SMs?

Memory System

Memory System

- © GPUs have several types of memory:
 - 1. Global
 - 2. Shared
 - 3. Constant/Texture
 - 4. Register

1. Global Memory

Capacity:	16 GB
Cache	L1, L2
Access:	GPU-wide
Latency:	200-400 cycles ● Most instructions take ~20-30

2. Shared Memory

Capacity:	64 KB / SM
Cache	None
Access:	SM-wide
Latency:	1 cycle (!)

3. Constant Memory

Capacity:	64 KB / SM
Cache	Special cache
Access:	GPU-wide (but cached on each SM)
Latency:	1 cycle (hit) 200 - 400 cycles (miss)

4. Register Memory

Capacity:	256 KB / SM
Cache	None
Access:	Private to each thread
Latency:	1 cycle

Accessing Memory

- The way we access memory matters.
- On the GPU, we often work with arrays
 - If each thread reads one element...
 - …lots of reads (at once!)
- O How close together are these reads?
 - Spatial Locality...

- Organized into 32 banks
- A bank can handle only 1 request at a time

Suppose we have an array:

```
__shared__ float array[64];
```

Deing accessed by a warp of threads:

1. float my_val = array[id];

Best case:

32 values in 1 cycle!

2. float my_val = array[id * 2];

Bank conflict:

16 values on cycle 1 16 values on cycle 2

Warp

3. float my_val = array[15];

Broadcast feature: 32 bytes in 1 cycle.

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Why?

© Consider a parallel sum reduction:

What if everybody needs the result?

- © Global memory is accessed in wide swaths:
 - 32, 64, or 128 byte segments

Global Memory:

32 byte segments 64 byte segments 128 byte segments

Warp of threads

1. All threads access consecutive 4 byte chunks:

32 byte segments64 byte segments128 byte segments

1 transaction: 64-byte segment

Warp of threads

- **2.** All threads access 4 bytes out of order
 - 1 transaction: 64-byte segment

Global memory coalescing

 h/w recognizes all threads are within single 64-byte addressable segment; only 1 transaction is performed

- **3.** All threads access 4 bytes widely spaced
 - 2 transactions: 32-byte, 128-byte segments

32 byte segments 64 byte segments 128 byte segments

Final Comments

"Premature optimization is the root of all evil."
-Tony Hoare

- 1. Get it working
- 2. Make it fast
 - Try to arrange your data so that accesses by different threads are close together
 - b. Try to partition the work you need to do so that you can give independent tasks to each SM

3. Programming in CUDA

Words you should know:

"Host"

"Device"

"Kernel"

Introduction to CUDA

- CUDA Language
 - C/C++-like syntax with some minor extensions
 - We'll use the C-subset
- GPUs are accelerators
 - Can't run regular code
 - Invoked only for compute-intensive tasks
- How it works:
 - We write a <u>Host program</u>
 - Call CUDA API functions to control the GPU

Anatomy of a CUDA Program

Example - Vector Addition

1. Starting Out

Host

Device

Starting Out

```
int main(int argc, char *argv[]) {
  // grab n from command line
   const int n = parse args(argc, argv);
  // allocate host buffers
  float *host a = (float *) malloc(n * sizeof(float));
  float *host b = (float *) malloc(n * sizeof(float));
  float *host c = (float *) malloc(n * sizeof(float));
  // fill A and B with random floats
   init vec(host a);
   init vec(host b);
  return EXIT SUCCESS;
```

2. Buffers & Transferring Data

Allocating Device Buffers

```
// cpu
float *host_a = (float *) malloc(n * sizeof(float));
// gpu
float *dev_a;
cudaError_t status;
status = cudaMalloc(&dev_a, n * sizeof(float));
```

- dev_a now points to a buffer in GPU's global memory
 - Do the same to create dev_b, dev_c

Transferring data

Same for dev_b

Transferring data

- © cudaMemcpy() is blocking
 - o Like MPI_Send()
 - Host waits...

3. Writing & Calling Kernels

Threads in CUDA

- Thread grid
 - Contains all threads executing on GPU
 - Sub-divided into thread blocks

Threads in CUDA

- Why is the grid split into blocks?
 - GPU is made up of multiple SMs.
 - Each block runs on a separate SM.

Threads in CUDA

- CUDA gives us thread id and block id
- Must use them to calculate global id

In kernel functions, we have access to:

global_id = blockIdx.x * blockDim.x + threadIdx.x

Grid / Block Dimensionality

Thread grid can also be 2Dor 3D...

Grid / Block Dimensionality

Why?

Picking a grid and block size

Let's use a 1D grid and blocks. To write our kernel, we need to know:

- 1. How many threads do we need in our grid?
 int threads = n;
- 2. How many threads in a block?
 - use max threads per block (max parallelism)
 - 512 on our GPU
- 3. How many blocks?

```
int blocks = threads / 512 + (threads \% 512 > 0 ? 1 : 0);
```

Note: This means we may have more threads than we need...

Launching the Kernel

- "Launching": calling a kernel function from the host
- Like a C function call...
 - plus some syntax to tell CUDA how many threads & blocks to use!

Writing a Kernel Function

```
global__ void vec_add(float *a, float *b, float *c, int n)
{
  int global_id = blockIdx.x * blockDim.x + threadIdx.x;
  if (global_id < n)
  {
    c[global_id] = a[global_id] + b[global_id];
  }
}</pre>
```

Writing a Kernel Function

```
global___ void vec_add(float *a, float *b, float *c, int n)
{
  int global_id = blockIdx.x * blockDim.x + threadIdx.x;
  if (global_id < n)
  {
    c[global_id] = a[global_id] + b[global_id];
  }
}</pre>
```

Marks this as a kernel function

```
global__ void vec_add(float *a, float *b, float *c, int n)

int global_id = blockIdx.x * blockDim.x + threadIdx.x;

if (global_id < n)
{
    c[global_id] = a[global_id] + b[global_id];
}</pre>
```

- Kernel functions can't return anything
 - All communication between host & device done through data transfers

```
_global__ void vec_add(float *a, float *b, float *c, int n)
{
   int global_id = blockIdx.x * blockDim.x + threadIdx.x;
   if (global_id < n)
   {
      c[global_id] = a[global_id] + b[global_id];
   }
}</pre>
```

© Function name

```
global__ void vec_add(float *a, float *b, float *c, int n)
{
  int global_id = blockIdx.x * blockDim.x + threadIdx.x;
  if (global_id < n)
  {
    c[global_id] = a[global_id] + b[global_id];
  }
}</pre>
```

- Args are passed using "call by copy"
 - Pointers are shallow-copied
 - Args on stack are copied
 - Placed in constant memory (limit 4KB)

```
_global__ void vec_add(float *a, float *b, float *c, int n)

int global_id = blockIdx.x * blockDim.x + threadIdx.x;

if (global_id < n)
{
    c[global_id] = a[global_id] + b[global_id];
}</pre>
```

Calculate global ID

```
_global__ void vec_add(float *a, float *b, float *c, int n)
{
   int global_id = blockIdx.x * blockDim.x + threadIdx.x;
   if (global_id < n)
   {
      c[global_id] = a[global_id] + b[global_id];
   }
}</pre>
```

- Recall: we may have more threads than we need
 - last block...

```
_global__ void vec_add(float *a, float *b, float *c, int n)
int global_id = blockIdx.x * blockDim.x + threadIdx.x;
if (global_id < n)</pre>
  c[global_id] = a[global_id] + b[global_id];

    global_id used to index vector

                 Each thread adds one column of vectors
```

Result written to c (in dev memory)

4. Retrieving the Result

Synchronization

- Mernel calls are non-blocking!
 - Host program continues on to next instruction
 - Can sync up at end using:
 - cudaDeviceSynchronize(), OR
 - 2. Issuing a (blocking) cudaMemcpy()

Preferred method if you need results back (avoids redundant sync)

```
vec_add<<<bloomledge</pre>
// dev_a, dev_b, dev_c, n);
// host continues immediately...
```

Retrieving the Result

5. Back on Host...

Example Code

- Full vector sum code up on course website
- GPUs available on cuckoo machines
 - See "Programming Environments" doc for which machine to log into!
 - No qsub...

- DEMO -

4. Case Study: Sum Reduction

Sum Reduction

- Adding up the elements of an array
 - O MPI_Reduce()
 - #pragma omp parallel for reduction(+:sum)

CPU Reduction

Simple OpenMP implementation (2-cores)

$$o n = 2^{25}$$

Approach	Throughput (MFLOPS)	
CPU	558	

When do we stop? Threads == 0, or (equivalently) Stride == n

- What's the index of each left number?
 - 0 0, 2, 4, 6
- Say we're thread 1. How can we calculate our left index from our id?
 - Multiply by 2
- © Generalizing, if we're thread id:
 - o left = id * 2

Level 0

- What are the left indices at level 1?
 - 0 0, 4
- Our pattern is left = id * 2. Does it work
 here?
 - o No.

 - o left = id * 4

A General Formula

- We have:
 - \circ level 0: left = id * 2
 - \circ level 1: left = id * 4
- What changes between levels?
 - Stride:
 - At level 0, stride = 1
 - At level 1, stride = 2

```
left = id * (stride * 2)
```


So we have:

```
left = id * (stride * 2)
```

- What about a formula for the right index?
 - o If we know left, then:

```
right = left + stride
```

Writing a Kernel

```
global__ void reduce(float *array, int n) {
int global id = blockIdx.x * blockDim.x + threadIdx.x;
int threads;
int stride;
int left, right;
threads = n / 2;
for (stride = 1; stride < n; stride *= 2, threads /= 2) {</pre>
   if (global id < threads) {</pre>
      left = global id * (stride * 2);
      right = left + stride;
      array[left] = array[left] + array[right];
     syncthreads();
```

How many threads?

- O If we have n elements
 - Need n / 2 threads
- O How many blocks?
 - Our kernel assumes we can run all of the threads we need
 - Problem: Max block size is 512
 - Current code will only work for n <= 2 * 512 = 1024
- Solution: break array into chunks of size 1024
 - Use multiple blocks!

0. Initial Approach

- Problem: need to sync after each block-level
 - Can't synchronize thread blocks in CUDA
 - Except by returning control to host...
- Solution: launch kernel multiple times
 - Once for each block-level
 - Use a loop on the host
 - Data stays in global memory between launches

Host code

```
int threads = n / 2;
int blocks = threads / 512 + (threads \% 512 > 0 ? 1 : 0);
int remaining = n;
while (remaining > 1) {
    // launch kernel
    reduce<<<br/>blocks, 512>>>(input buf, output buf, remaining);
    // recalculate num threads & blocks for next iteration
    remaining = blocks;
    threads = remaining / 2;
    blocks = threads / 512 + (threads % 512 > 0 ? 1 : 0);
    // if we'll do another iteration, output becomes input
    if (remaining > 1) {
       float *temp = input_buf;
       input buf = output buf;
       output_buf = temp;
```

Kernel Changes

0. Initial Approach - Results

Approach	Throughput (MFLOPS)	Improvement (factor)
CPU	558	
0. Initial Approach	500	-58 (0.9x)

- Worse than CPU! What is going on?
 - We know memory access patterns matter
 - O What do our kernel's look like?

Access Pattern

Reads & Writes: Active Locations

Wide gaps! Leads to poor global memory performance!

How can we fix it?

- Observation: addition is *commutative*
 - Order doesn't matter...
- We can choose which elements we add first
 - Can we eliminate the gaps?

$$x + y = y + x$$

1. Global Memory Coalescing

Reads & Writes: Active Locations

1. Global Memory Coalescing - Results

Approach	Throughput (MFLOPS)	Improvement (factor)
CPU	558	
0. Initial Approach	500	-58 (0.9x)
1. Global Memory Coalescing	604	+104 (1.2x)

- Finally better than the CPU!
- © Can we do more?
 - Useful question: How is our execution time being used?

2. Using Pinned Memory

- OS uses virtual memory
 - Memory is segmented into "pages"
 - Can be "swapped out" to disk
 - Disk is slow (up to two orders of magnitude)
- Our array is large
 - May not all be in RAM...

TAM LATENCY 83 NANOSECONDS -18 Hornet 1,190 MPH DISK LATENCY 13 MILLISECONDS
BANANA SLUG 0.007 MPH

2. Using Pinned Memory

Memory pinning: forcing a buffer to stay resident in host memory.

Regular Data Transfer

Pinned Data Transfer

How?

- Instead of malloc()ing host buffers, use
 cudaMallocHost()
- Instead of free(), use
 cudaFree()

2. Using Pinned Memory - Results

Approach	Throughput (MFLOPS)	Improvement (factor)
CPU	558	
0. Initial Approach	500	-58 (0.9x)
1. Global Memory Coalescing	604	+104 (1.2x)
2. Using Pinned Memory	1041	+437 (1.7x)

- Wow!
- Transfer time still outweighs kernel time though...

Stream: a queue containing pending CUDA calls

We can create multiple streams...

```
cudaStream_t stream0;
status = cudaCreateStream(&stream0);
```


...and issue our CUDA calls into them

O How?

```
cudaMemcpyAsync(dest, src, size, cudaMemCpyHostToDevice, stream0);
reduce<<<<bloom>512, 0, stream1>>>(input_buf, output_buf, remaining);
```

- Both calls are non-blocking
 - Host will deposit call into stream and carry on

- GPU scheduler examines items in each stream
 - Picks up to 1 data transfer & 1 kernel to do next
- GPU <u>can</u> run data transfer & kernel concurrently!
 - Right now it doesn't...
 - o To run kernel, all dependencies must be met
- O How can we fix this?

Idea: Partition the Transfer

O Instead of one big transfer:

Rinse & Repeat

O Instead of using only two chunks:

```
Stream 0 n / 2 elements reduce()

Stream 1 n / 2 elements reduce() ...
```

Try using four:

Using Streams - Results

Throughput (MFLOPS) vs. Chunks

Using Streams - Results

3. Using Streams - Results

Approach	Throughput (MFLOPS)	Improvement (factor)
CPU	558	
0. Initial Approach	500	-58 (0.9x)
1. Global Memory Coalescing	604	+104 (1.2x)
2. Using Pinned Memory	1041	+437 (1.7x)
3. Using Streams	1265	+224 (1.2x)

What about shared memory?

4. Using Shared Memory

Right now, We're using Global Memory:

Lots of global memory hits!

Idea

- Shared Mem doesn't stick around between kernel launches
 - o copy back partial results after each host iteration

4. Using Shared Memory - Results

Approach	Throughput (MFLOPS)	Improvement (factor)
CPU	558	
0. Initial Approach	500	-58 (0.9x)
1. Global Memory Coalescing	604	+104 (1.2x)
2. Using Pinned Memory	1041	+437 (1.7x)
3. Using Streams	1265	+224 (1.2x)
4. Using Shared Memory	1270	+5 (1.004x)

Small improvement!

Optimization Summary

Note: We could keep going...

Final Thoughts

- 1. Computers are (in a sense) "towers of abstractions"
 - o multiple layers...
 - As programmers we often tend to ignore anything below our level (software)
 - But as we've seen knowing about hardware makes a difference!
- 2. Parallel computing deals with the *interaction between* these levels of abstraction (h/w & s/w)

More information

- Nvidia's CUDA-C Programming Guide, esp. "Performance Guidelines" section
- Course materials made available by various Universities
- Nvidia Parallel Forall blog (lots of applications of GPGPU)
- More sum reduction optimizations (loop unrolling)

Image Sources

- http://images.anandtech.com/doci/10222/P100_678x452.jpg
- http://www.stoimen.com/blog/wp-content/uploads/2012/11/3.-Matrix-Multiplication.png
- http://cdn.wccftech.com/wp-content/uploads/2014/10/27151 1 intel rejects the idea that they are going bga only full.jpg
- http://www.nvidia.com/docs/IO/59921/NV_CUDA_2D_Color_large.jpg
- http://www.opencl.org/opencl_logo.jpg
- http://www.nvidia.co.uk/content/EMEAI/images/tesla/openacc-logo.png
- https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
- https://en.wikichip.org/wiki/File:broadwell_block_diagram.svg
- http://images.anandtech.com/doci/7793/cudacore.jpg
- http://cms.ipressroom.com.s3.amazonaws.com/219/files/20149/NVIDIA_CUDA_V_2C_r.jpg
- http://caig.cs.nctu.edu.tw/course/CG2007/images/ex1_wireframe.jpg
- https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Utah_teapot_simple_2.png/220px-Utah_teapot_simple_2.png
- http://images.clipartpanda.com/eye-clip-art-1384151134.png
- http://www.techspot.com/articles-info/650/images/ibm-pc-mda.jpg
- http://blog.biipmi.com/wp-content/uploads/2013/01/balanced_scale_of_justice.png
- http://static.betazeta.com/www.fayerwayer.com/up/2009/12/intel48coreprocessor_5-960x623.jpg
- http://i.imgur.com/gO8ueXc.png?1?fb
- http://images.clipartpanda.com/screen-clipart-bcvLd8zcL.jpeg
- http://news.sciencemag.org/sites/default/files/styles/thumb_article_l/public/media/sn-memory.jpg?itok=vz4-1TiX
- http://petful.supercopyeditors.netdna-cdn.com/wp-content/uploads/2012/06/why-is-cat-scared-rain-thunder.png
- https://blogs.nvidia.com/wp-content/uploads/2015/03/cudablock.jpg
- http://sbel.wisc.edu/Courses/ME964/2013/Lectures/lecture1011.pdf
- http://www.flixist.com/ul/206006-12-best-jackie-chan-fight-scenes/jackie-chan-best-fight-scenes-future-620x.jpg
- http://image.slidesharecdn.com/s0514-gtc2012-gpu-performance-analysis-140731021114-phpapp02/95/gpu-performance-analysis-26-638.jpg?cb=1406772984
- http://openclipart.org
- http://il-news.softpedia-static.com/images/news2/CES-2015-NVIDIA-GeForce-GTX-960-Graphics-Card-468509-2.jpg
- http://www.colorfulchildhoodstore.com/v/vspfiles/photos/Wall%20Fabric%20-%20Tree%20of%20Wisdom-3.jpg
- © https://www.rspb.org.uk/Images/cuckoo_grey_tcm9-58729.jpg?width=530&crop=(596,980,2608,2112)
- http://roulerenligne.com/wp-content/uploads/2015/07/fin.jpg
- https://devblogs.nvidia.com/parallelforall/wp-content/uploads/2012/12/pinned-1024x541.jpg
- http://blog.scoutapp.com/articles/2011/02/10/understanding-disk-i-o-when-should-you-be-worried

Information Sources

- Nvidia CUDA-C Programming Guide, 2016
 - o https://docs.nvidia.com/cuda/cuda-c-programming-guide/
- Dan Negrut, University of Wisconsin-Madison, High Performance Computing for Engineering Applications (Course lecture notes), 2013
 - http://sbel.wisc.edu/Courses/ME964/2013/Lectures/lecture1011.pdf
- Others:
 - https://www.microway.com/hpc-tech-tips/intel-xeon-e5-2600-v3-haswell-processor-review/
 - https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
 - http://on-demand.gputechconf.com/gtc-express/2011/presentations/NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.pdf
 - http://ubiquity.acm.org/article.cfm?id=1513451
 - https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

High Bandwidth (Stacked) Memory

Scheduling

2 / 27 SMs occupied

Scheduling

