

جامعة الملك سعود كلية العلوم — قسم الإحصاء وبحوث العمليات

الاختبار الفصلي الأول 100 بحث (مقدمة في بحوث العمليات) الفصل الدراسي الأول للعام 1438-1439هـ

الطالب: الرقم الجامعي:	الرقم الجامعي:
متاذ المقرر: الدرجة:	الدرجة:

برجاء كتابة الرمز المناسب للاجابة في الخانة المقابلة في الجدول الاتي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
C	D	C	C	C	В	C	A	D	C	C	C	A	В	D

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	D	D	D	D	A	D	В	C	A	В	В	A	C	В

السوال الأول:

شركة مقاولات تريد بناء عدة مباني سكنية على قطعة أرض بحيث تكون بعض هذه المباني ذات خمس أدوار و البعض الآخر ذات دورين و ذلك بغرض استيعاب أكبر عدد من السكان مع العلم أن المبلغ المالي المتوفر لهذا المشروع هو 18000000 ريالا و ساعات العمل المتوفرة 4500 ساعة و أن مساحة الأرض تبلغ 42000 مترا مربعا. الجدول التالي يبين معطيات إضافية للمسألة:

عدد السكان في المبنى الواحد	المساحة اللازمة لكل مبنى	ساعات العمل اللازمة لكل مبنى	تكلفة المبنى الواحد	عدد الأدوار
30	800	120	600,000	5
12	600	60	200,000	2

1. متغيرات القرار هي: (A) عدد ساعات العمل اللازمة لكل مبنى (B) عدد المساكن في كل مبنى (C) عدد الأدوار في كل مبنى كل مبنى عدد المباني ذات خمس أدوار و عدد المباني ذات دورين التي سيتم بناؤها.

2. دالة الهدف هي:

$$z = 5x_1 + 2x_2$$
 (C) $z = 30x_1 + 12x_2$ (B) $z = 600000x_1 + 200000x_2$ (A)

(D) ليس من الإجابات السابقة

3. هل المسألة هي

4. من قيود البرنامج الخطى

800
$$x_1 + 600x_2 \le 42000$$
 (C) (B) $800x_1 + 800x_2 \le 120$ $800x_1 + 120x_2 \le 30$

(D) ليس من الإجابات السابقة

5. من قيود البرنامج الخطي (C) (B) (A)
$$120 x_1 + 60 x_2 \le 4500$$
 $12x_1 + 600 x_2 \le 60$ $600 x_1 + 60 x_2 \le 12$

(D) ليس من الإجابات السابقة

6. من قيود البرنامج الخطى

(C) (B) (A)
$$600000x_1 + 200000x_2 \le 18000000$$
 $600x_1 + 200x_2 \ge 18000$ $800x_1 + 600x_2 \le 18000$

(D) ليس من الإجابات السابقة

7. النموذج الرياضى (البرنامج الخطى) للمسألة هو:

$$\begin{aligned} \textit{Min} \ z &= 600000x_1 + \ 200000x_2 \\ s.t &: \ 800x_1 + 600x_2 \ge 42000 \\ 120 \ x_1 + 60x_2 \ge 4500 \\ x_1 \ge 0 \ , \ x_2 \ge 0 \end{aligned} \qquad \begin{aligned} \textit{Max} \ z &= \ z = \ 600000x_1 + \ 200000x_2 \\ s.t &: \ 800x_1 + 600x_2 \le 42000 \\ 120 \ x_1 + 60x_2 \le 4500 \\ x_1 \ge 0 \ , \ x_2 \ge 0 \end{aligned}$$

السوال الثاني:

خالد يريد شراء تمر وتفاح بأقل تكلفة و لديه البيانات التالية:

تكلفة الكيلو	ات الفيتامين (وحدة/كيلو)		
(رىيال/كىلو)	فيتامين "ب"	فيتامين "أ"	
7	1	3	تمر
1	1	1	تفاح

خالد يحتاج يوميا على الأقل إلى 12 وحدة من فيتامين " أ " و على الأكثر إلى 6 وحدات من الفيتامين " ب".

- 8. متغيرات القرار هي: (A) كمية التمر و التفاح التي يحتاجها خالد يوميا (B) عدد وحدات الفيتامينات في التمر و التفاح (C) عدد الوحدات من الفيتامينات "أ " و "ب " التي يحتاجها خالد يوميا (D) ليس من الإجابات السابقة
 - 9. دالة الهدف هي:

ليس من الإجابات السابقة (D)
$$z=7x_1+x_2$$
 (C) $z=x_1+x_2$ (B) $z=3x_1+x_2$ (A)

- 10. هل المسألة هي
- (A) تكبير دالة الهدف (B) تصغير دالة الهدف
 - 11. من قيود البرنامج الخطي

12. من قيود البرنامج الخطى

(D)
$$(C)$$
 (C) (B) (C) (B) (A) (C) (B) (A) (C) (B) (A) (C) (B) (C) (B) (C) (D) (D)

13. النموذج الرياضي (البرنامج الخطي) للمسألة هو:

$$\mathbf{(C)} \tag{B}$$

Min
$$z = 7x_1 + x_2$$
 Min $z = x_1 + 7x_2$
 Min $z = x_1 + 7x_2$

 s.t: $3x_1 + x_2 \ge 12$
 s.t: $3x_1 + x_2 \le 12$
 s.t: $3x_1 + x_2 \le 6$
 $x_1 + x_2 \le 6$
 $x_1 + x_2 \ge 12$
 $x_1 + x_2 \le 6$
 $x_1 \ge 0, x_2 \ge 0$
 $x_1 \ge 0, x_2 \ge 0$
 $x_1 \ge 0, x_2 \ge 0$

(D) ليس من الإجابات السابقة

السؤال الثالث: ليكن البرنامج الخطي التالي:

 $s.t: 18x_1 + 9x_2 \ge 54$ (1)

$$-6x_1 + 4x_2 \le 0 \quad (2)$$

$$x_1 \le 6 \tag{3}$$

$$x_2 \le 6 \tag{4}$$

$$x_1 \ge 0$$
, $x_2 \ge 0$ (5)

14. المستقيم الذي يوافق القيد (1) في الرسم هو:

- (d) **(D)**
- (c) (C)
- **(b) (B)**
- (a) (A)

15. المستقيم الذي يوافق القيد (2) في الرسم هو:

- (d) (D)
- (c) (C)
- **(b) (B)**
- (a) (A)

16. المستقيم الذي يوافق القيد (3) في الرسم هو:

- (d) (D)
- (c) (C)
- **(b) (B)**
- (a) (A)

17. ظلل فضاء الحل الممكن في الرسم. المنطقة المظللة هي المضلع

- ACG (D) CDEFG (C)
- BCD (B)
- ABC (A)

18. الحل الذي تمثله النقطة F حل

- (D) ليس من الإجابات السابقة
- (C) أمثل
- (B) غير ممكنة
- (<u>A</u>) ممكن

19. الحل الأمثل للبرنامج الخطي هو الممثل بالنقطة:

- **A** (**D**)
- **B** (**C**)
- **C** (**B**)
- **E** (A)

20. الحل الأمثل هو:

$$x_1 = 2,57, x_2 = 1.71$$
 (C) $x_1 = 12/7, x_2 = 18/7$ (B) $x_1 = 6, x_2 = 6$ (A)

$$x_1 = 3, \ x_2 = 0$$
 (**D**)

21. القيمة المثلى لدالة الهدف هي:

22. لو افترضنا أن المسألة أصبحت تكبير دالة الهدف بدلا من التصغير. في هذه الحالة فإن الحل الأمثل سيكون النقطة

$$C$$
 (D) E (C) D (B) F (A)

23. القيمة المثلى لدالة الهدف طبقا للفقرة 22 هي:

$$\infty$$
 (D) 26 (C) 36 (B) 30 (A)

$$Max z = 50x_1 + 18x_2$$

 $s.t: 2x_1 + x_2 \ge 60$ (1)
 $x_1 + x_2 \ge 50$ (2)
 $x_1 \ge 0$, $x_2 \ge 0$

24. ظلل فضاء الحل الممكن في الرسم. المنطقة المظللة هو المضلع

- 25. الحل الذي تمثله النقطة E حل
- (A) ممكن (B) غير ممكنة (C) أمثل (D) ليس من الإجابات السابقة

(D) ليس من الإجابات السابقة	E	(C) C	G (A)
$x_1 = 50, \ x_2 = 0$ (C	$x_1 = 10, x$	- , , ,	27 . الحل الأمثل هو : $x_1=60,\; x_2=60 { m (A)}$ ليس من الإجابات السابق ${ m (D)}$
∞ (D)	2500 (C)	هي : 1220 (B)	28. القيمة المثلى لدالة الهدف (A) 4080
ه الحالة فإن الحل الأمثل سيكون النقطة \mathbf{D} (\mathbf{D})	بدلا من التكبير . في هذ G (C)		29. لو افترضنا أن المسألة أصب E (A)
2500 (D)	4080 (C)	•	30. القيمة المثلى لدالة الهدف (A) 1080

26. الحل الأمثل للبرنامج الخطي هو الممثل بالنقطة: