Exercise (\square 5.1). Any non incident line and point in \mathbb{E}^3 determine exactly one plane. (a Line and point are incident if the point is a subset of a line.)

Answer: Case 1: suppose an ordinary line l with ideal point P[l] and an ordinary point A. Let k be the ordinary line through A with ideal point P[k] such that P[k] = P[l]. By definition $l \parallel k$ so we can construct a line j that is perpendicular to both l and k which determines a plane.

Case 2: Suppose an Ideal line l and a non incident ideal point A. Note that by definition this determines the ideal plane α_{∞} .

Case 3: Suppose an ideal line l and an ordinary point A. Consider the Ideal plane $P[\![\alpha]\!]$ that contains point A.

Exercise ($\square 5.2$). Any three non-collinear points in \mathbb{E}^3 determine exactly one plane.

Answer: Case 1: Three non-collinear ideal points, by definition determine the ideal plane, α_{∞} .

Case 2:

Exercise ($\square 3$ Monson (p.7)). Answer: \square

Exercise ($\Box 1$ Monson (p.21)). Answer: