TRANSFORMASI LINEAR

TK13023 COMPUTATION II

KELAS A DAN C

DOSEN: LELY HIRYANTO

Pengantar Transformasi Linear

• Transformasi linear adalah sebuah fungsi T() yang menghasilkan vektor ${\bf w}$ dari peubah vektor ${\bf v}$

$$\mathbf{w} = T(\mathbf{v})$$

- Transformasi linear diterapkan di bidang teknik, ilmu sosial, dan berbagai cabang matematika.
- **Definisi.** Jika $T:V \to W$ adalah sebuah fungsi dari ruang vektor V ke dalam ruang vektor W, maka T dinamakan transformasi linear jika
 - a. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ untuk semua vektor \mathbf{u} dan \mathbf{v} di V
 - b. $T(k\mathbf{u}) = kT(\mathbf{u})$ untuk semua vektor \mathbf{u} di dalam V dan untuk semua skalar k

Contoh 1: Transformasi Linear

Apakah fungsi T(x,y) = (x,y+1) adalah transformasi linear?

- a. Diketahui $\mathbf{u} = (1,2)$ dan $\mathbf{v} = (4,5)$
- b. $\operatorname{cek} T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ T((1+4,2+5)) = T(5,7) = (5,7+1) = (5,8) $T(1,2) + T(4,5) = (1,3) + (4,6) = (5,9) \neq (5,9)$
- c. Tidak perlu cek syarat kedua $T(k\mathbf{u}) = kT(\mathbf{u})!$

Contoh 2: Transformasi Linear

Apakah fungsi T(x,y) = (2x + y, x - y) adalah transformasi linear?

- a. Diketahui $\mathbf{u} = (1,2) \text{ dan } \mathbf{v} = (4,5), k = 3$
- b. $\operatorname{cek} T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ T((1+4,2+5)) = T(5,7) = ((2)(5)+7,5-7) = (17,-2) T(1,2) + T(4,5) = ((2)(1)+2,1-2) + ((2)(4)+5,4-5) = (17,-2)
- c. cek syarat kedua $T(k\mathbf{u}) = kT(\mathbf{u})$ $T(k\mathbf{u}) = T(2(1.2)) - T((2.6)) - ((2)(2) + 6.2 - 6)$

$$T(k\mathbf{u}) = T(3(1,2)) = T((3,6)) = ((2)(3) + 6,3 - 6)) = (12, -3)$$

 $kT(\mathbf{u}) = 3T(1,2) = 3((2)(1) + 2,1 - 2) = 3(4, -1) = (12, -3)$

T(x,y) = (2x + y, x - y) adalah transformasi linear!

Operasi Pencerminan

- Vektor 2 Dimensi :
 - Pencerminan terhadap sumbu y :

$$x' = -x$$

$$y' = y$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Pencerminan terhadap sumbu x:

$$x' = x$$

 $y' = -y$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- Pencerminan terhadap garis y = x :

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- Vektor 3 Dimensi
- Pencerminan terhadap bidang xy:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- Pencerminan terhadap bidang xz:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Pencerminan terhadap bidang yz:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Operasi Proyeksi

- Vektor 2 Dimensi
- Proyeksi Ortogonal pada sumbu x : x' = xy' = 0

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

- Proyeksi Ortogonal pada sumbu y:

$$x' = 0$$

 $y' = y$

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- Vektor 3 Dimensi
- Proyeksi Ortogonal pada bidang xy:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- Proyeksi Ortogonal pada bidang xz:

$$x' = x$$
 $y' = 0$
 $z' = z$

$\lceil 1 \rceil$	0	0
0	0	0
0	0	1

- Proyeksi Ortogonal pada bidang yz:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Operasi Rotasi

- Vektor 2 Dimensi
- Rotasi dengan Sudut θ:

$$x' = x\cos\theta - y\sin\theta$$

 $y' = x\sin\theta + y\cos\theta$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Operasi Rotasi...

- Vektor 3 Dimensi
- Rotasi berlawanan dengan jarum jam terhadap sumbu x positif dengan sudut θ:

$$x' = x$$

 $y' = y\cos\theta - z\sin\theta$
 $z' = y\sin\theta + z\cos\theta$
Matriks Standar

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

Operasi Rotasi...

- Rotasi berlawanan dengan jarum jam terhadap sumbu y positif dengan sudut θ:

$$x' = x\cos\theta + z\sin\theta$$
 $y' = y$
 $z' = -x\sin\theta + z\cos\theta$
Matriks Standar

$$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Operasi Rotasi...

- Rotasi berlawanan dengan jarum jam terhadap sumbu z positif dengan sudut θ:

$$x' = x\cos\theta - y\sin\theta$$

 $y' = x\sin\theta + y\cos\theta$
 $z' = z$
Matriks Standar

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Dilatasi

- Vektor 2 Dimensi
- Penyempitan dan Pelebaran dengan faktor k:

$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

Dilatasi...

- Vektor 3 Dimensi
- Penyempitan dan Pelebaran dengan faktor k :

$$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

Latihan Soal

- 1. (20 poin) Diketahui fungsi $f = R^2 \rightarrow R^3$ yang didefinisikan dengan f(x,y) = (y,-5x+13y,-7x+16y). Tunjukkan bahwa fungsi tersebut merupakan transformasi linier.
- 2. (20 poin) Diketahui tiga titik $P_1 = (0,1)$, $P_2 = (2,1)$, dan $P_3 = (1,3)$ ditransformasikan ke R^3 dengan fungsi di no.1. Selanjutnya setiap titik direfleksikan (dicerminkan) terhadap bidang xz dan dirotasikan berlawanan dengan jarum jam terhadap sumbu y dengan sudut 45° .

