E-commerce SQL Analysis

Problem Statement

Analyzing the sales, product, and customer data for an e-commerce company getting various insights and calculating various KPI and data with SQL in Big Query.

Data Dictionary and Schema:

Demographic table

Variable	Description
HOUSEHOLD_KEY	Uniquely identifies each household
AGE_DESC	Estimated age range
MARITAL_STATUS_CODE	Marital Status (A - Married, B- Single, U - Unknown)
INCOME_DESC	Household income
HOMEOWNER_DESC	Homeowner, renter, etc.
HH_COMP_DESC	Household composition
HOUSEHOLD_SIZE_DESC	Size of household up to 5+
KID_CATEGORY_DESC	Number of children present up to 3+

⊞	hh_der	mographic	Q QUEF	RY + +	SHARE	COF
	SCHEMA	DETAILS	PREVIEW	TAB	LE EXPLORER	PREVIE
	∓ Filter	Enter property na	me or value			
	F	ield name		Туре	Mode	Ke
		AGE_DESC		STRING	NULLABLE	-
		MARITAL_STATUS_	CODE	STRING	NULLABLE	-
		INCOME_DESC		STRING	NULLABLE	-
		HOMEOWNER_DES	С	STRING	NULLABLE	-
		HH_COMP_DESC		STRING	NULLABLE	-
		HOUSEHOLD_SIZE_	DESC	STRING	NULLABLE	-
		KID_CATEGORY_DE	sc	STRING	NULLABLE	-
		household_key		INTEGER	NULLABLE	-

Transaction table:

Variable	Description
HOUSEHOLD_KEY	Uniquely identifies each household
BASKET_ID	Uniquely identifies a purchase occasion
DAY	Day when transaction occurred
PRODUCT_ID	Uniquely identifies each product
QUANTITY	Number of the products purchased during the trip
SALES_VALUE	Amount of dollars retailer receives from sale
STORE_ID	Identifies unique stores
COUPON_MATCH_DISC	Discount applied due to retailer's match of manufacturer coupon
COUPON_DISC	Discount applied due to manufacturer coupon
RETAIL_DISC	Discount applied due to retailer's loyalty card program
TRANS_TIME	Time of day when the transaction occurred
WEEK_NO	Week of the transaction. Ranges 1 - 102

⊞	transaction_data		Q QUERY ▼	* SHARE	С
S	СНЕМА	DETAILS	PREVIEW	TABLE EXPLORER	PRE
		int64_field_0	INTEGE	R NULLABLE	-
		household_key	INTEGE	R NULLABLE	-
		BASKET_ID	INTEGE	R NULLABLE	-
		DAY	INTEGE	R NULLABLE	-
		PRODUCT_ID	INTEGE	R NULLABLE	-
		QUANTITY	INTEGE	R NULLABLE	-
		SALES_VALUE	FLOAT	NULLABLE	-
		STORE_ID	INTEGE	R NULLABLE	-
		RETAIL_DISC	FLOAT	NULLABLE	-
		TRANS_TIME	INTEGE	R NULLABLE	-
		WEEK_NO	INTEGE	R NULLABLE	-
		COUPON_DISC	FLOAT	NULLABLE	-
		COUPON_MATCH_I	DISC FLOAT	NULLABLE	-

Products Table:

Variable	Description
PRODUCT_ID	Number that uniquely identifies each product
DEPARTMENT	Groups similar products together
COMMODITY_DESC	Groups similar products together at a lower level
SUB_COMMODITY_DESC	Groups similar products together at the lowest level
MANUFACTURER	Code that links products with same manufacturer together
BRAND	Indicates Private or National label brand
CURR_SIZE_OF_PRODUCT	Indicates package size (not available for all products)

KPI:

1. Total Sales:

```
1 select sum(SALES_VALUE) as Total_Sales
2 from <u>`Ecommerce.transaction_data`</u>

Row Total_Sales ▼

1 4029338.410022...
```

Inference: Total Sales =\$4029338

2. Total Transactions:

Inference: Total number of transactions=233356

3. Average Order Value:

```
with cte as
(select sum(SALES_VALUE) as Total_Sales,count(distinct(BASKET_ID)) as Total_transactions
from `Ecommerce.transaction_data`)

select cte.Total_Sales/cte.Total_transactions as Average_order_value
from cte

JOB INFORMATION RE

Row Average_order_value

1 17.26691582827...
```

Average Order Value=17.2 \$

4.Total Number of Households:

select count(distinct(household_key)) as Total_households
from `Ecommerce.transaction_data`

Inference: Total Number of households= 2500

5.Total Revenue

```
with cte2 as
(select sum(SALES_VALUE) as Total_sales, sum(RETAIL_DISC) as Retail_Discount, sum(COUPON_DISC) as Coupon_Discount, sum(COUPON_MATCH_DISC) as
Coupon_Match_Discount
from `Ecommerce.transaction_data`)

select cte2.Total_Sales+cte2.Retail_Discount+cte2.Coupon_Discount+cte2.Coupon_Match_Discount as Total_Revenue
from cte2
```

Query results

Inference: Total Revenue= 3304975 \$

Analysis:

Question 1:

Find the number of orders that have small, medium or large order value (small:0-10 dollars, medium:10-20 dollars, large:20+)

Answer:

```
#Find the number of orders that have small, medium or large order value (small:0-10 dollars, medium:10-20 dollars, large:20+)
with cte3 as
(select *,sum(SALES_VALUE) over(partition by BASKET_ID) as Total_order_value
from __`Ecommerce.transaction_data`)
,cte4 as
(select *,
case
    when Total_order_value<10 then "small"
    when Total_order_value>=10 and Total_order_value<=20 then "medium"
    when Total_order_value>20 then "large"
end as Type_of_order
from cte3)
select type_of_order,count(distinct(BASKET_ID)) as count_of_order
from cte4
group by type_of_order
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	type_of_order ▼	6	count_of_order	· /·
1	large		6730	9
2	small		11504	5
3	medium		5100	2

Inference:

There 67309 large(20+\$) value orders,51002(10-20\$) orders and 115045 small(less than 10\$) orders. The majority of orders are of small value.

Question 2:

Find the number of orders that are small, medium or large order value(small:0-5 dollars, medium:5-10 dollars, large:10+)

Answer:

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	type_of_order ▼	<i>[.</i>	count_of_order	▼ /
1	medium		4666	5
2	large		11693	9
3	small		6975	52

Inference:

There 116939 large(10+\$) value orders,46665(5-10\$) orders and 69752small(less than 5\$) orders. The majority of orders are of large value.

Question 3: Find top 3 stores with highest foot traffic for each week (Foot traffic: number of customers transacting)

```
#Question 3: Find top 3 stores with highest foot traffic for each week (Foot traffic: number of custo
with cte6 as
(select STORE_ID, WEEK_NO, count(distinct(household_key)) as number_of_customer
from 'Ecommerce.transaction_data'
group by STORE_ID, WEEK_NO
order by 2 asc,3 desc)
,cte7 as
(select *,dense_rank() over(partition by WEEK_NO order by cte6.number_of_customer desc) as rnk
from cte6)
select * from
cte7
where rnk<=3</pre>
```

JOB INFORMATION		RESULTS CH	ART JSON	EXECUTION DET
ow //	STORE_ID ▼ 32004	WEEK_NO ▼ ↑	number_of_custome	rnk ▼
23	356	3	8	3
24	367	4	17	1
25	32004	4	11	2
26	446	4	8	3
27	367	5	15	1
28	32004	5	13	2
29	292	5	8	3
30	361	5	8	3
31	32004	6	21	1

The various stores with high sales each week can be seen. Here store number 367 and 32004 have consistently been having high sales.

Question 4:

Create a basic customer profiling with first, last visit, number of visits, average money spent per visit and total money spent order by highest avg money

Answer:

```
#Question 4: Create a basic customer profiling with first, last visit, number of visits, average money spent per visit and total money spent order by highest avg money

select distinct(d.household_key),min(day) over (partition by d.household_key) as first_visit,max(day) over (partition by d.household_key) as last_visit,count(distinct(BASKET_ID)) over(partition by d.household_key) as number_of_visit,sum(SALES_VALUE) over(partition by d.household_key)

as total_spent,(sum(SALES_VALUE) over(partition by d.household_key))/(count(distinct(BASKET_ID)) over(partition by d.household_key)) as Ave_money_per_visit

from

'Ecommerce.hh_demographic' d

left join 'Ecommerce.transaction_data' t
on d.household_key=t.household_key
order by 6 desc
```


JOB IN	IFORMATION	RESULTS CHA	ART JSON	EXECUTION DETA	AILS EXECUTI	ON GRAPH
Row	household_key ▼	first_visit ▼	last_visit ▼	number_of_visit ▼	total_spent ▼	Ave_money_per_visit
1	973	95	710	80	6875.89	85.948625
2	1899	20	705	69	5789.59	83.90710144927
3	2479	111	706	111	6954.64	62.65441441441
4	248	29	704	53	3090.89	58.31867924528
5	688	70	692	27	1558.95	57.73888888888
6	1864	103	710	148	8537.28	57.68432432432
7	1848	105	706	97	5561.56	57.33567010309
8	888	12	706	76	4299.36	56.57052631578
9	392	75	709	103	5657.72	54.92932038834
10	1662	85	702	79	4329.22	54.80025316455
11	0104	20	711	0.4	4600.01	C470/C47/1004

Customer with household key number 973 has the highest average money spent per visit with 85.9\$ even though the number of visits is an average value.

Question 5:

Do a single customer analysis selecting most spending customer for whom we have demographic information(because not all customers in transaction data are present in demographic table)(show the demographic as well as total spent)

```
select household_key, sum(SALES_VALUE) as total_spend
from `Ecommerce.transaction_data`
group by 1
order by 2 desc
```

Query results

JOB IN	FORMATION	RESULTS	CHART
Row	household_key 🔻	total_spend	▼
1	1023	18901.0900	0000
2	1609	13804.3799	9999
3	2322	11934.6599	9999
4	1453	10720.7199	9999

From above we can see customer with household_key=1023 has highest total spend of \$18901. But there is no information about this customer in demographic table.

So we take the next highest customer with household_key=1609

```
select * from
   `Ecommerce.hh_demographic` d
5 inner join `Ecommerce.transaction_data` t
6 on d.household_key=t.household_key
   where t.household_key=1609
 Query results
                                                                                         JOB INFORMATION
                                                             EXECUTION GRAPH
     HOMEOWNER_DESC ▼ HH_COMP_DESC ▼
                                                                  KID_CATEGORY_DESC ▼
                                                                                     household_key ▼ int64_field_0 ▼
                          2 Adults Kids
                                                                  3+
                                              5+
                                                                  3+
                                                                                             1609
                                                                                                         3440
                          2 Adults Kids
                                             5+
                                                                  3+
                                                                                                         3464
                                             5+
                                                                  3+
                                                                                                         3496
                                             5+
                                                                                                         3683
                                             5+
                                                                                                         4073
                          2 Adults Kids
                          2 Adults Kids
                          2 Adults Kids
```

Inference:

2 Adults Kids

The most spending customer with other demographic details is customer with household key value 1609. The customer is in the age group of 45-54 and has high income of 125-149K \$. They are married and have 3 kids.

Question 6:

Find products(product table : SUB_COMMODITY_DESC) which are most frequently bought together and the count of each combination bought together. do not print a combination twice (A-B / B-A)

```
#Question 6: Find products(product table : SUB_COMMODITY_DESC) which are most frequently bought together and the count of each combination bought together. do not print a combination twice ( A-B / B-A)

with cte8 as
(select t.PRODUCT_ID,p.COMMODITY_DESC,p.SUB_COMMODITY_DESC,t.BASKET_ID

from 'Ecommerce.product' p
inner join 'Ecommerce.transaction_data' t
on p.PRODUCT_ID=t.PRODUCT_ID)

select t1.SUB_COMMODITY_DESC, t2.SUB_COMMODITY_DESC, count(distinct t1.BASKET_ID) as count_orders

from cte8 t1 join

| cte8 t2
| on t1.BASKET_ID = t2.BASKET_ID and
| t1.SUB_COMMODITY_DESC < t2.SUB_COMMODITY_DESC
group by t1.SUB_COMMODITY_DESC, t2.SUB_COMMODITY_DESC
order by count_orders desc;
```

JOB IN	FORMATION RESULTS	CHA	RT JS0	ON E	EXECUTION DETAILS	EX
Row	SUB_COMMODITY_DESC ▼	SUB_CC	OMMODITY_DES	C_1 ▼	count_orders ▼	
1	BANANAS	FLUID N	IILK WHITE ONI	Y	4131	
2	FLUID MILK WHITE ONLY	MAINS	TREAM WHITE E	BREAD	3753	
3	FLUID MILK WHITE ONLY	SOFT D	RINKS 12/18&1	5PK CA	3328	
4	FLUID MILK WHITE ONLY	SHREDI	DED CHEESE		3155	
5	FLUID MILK WHITE ONLY	YOGUR	T NOT MULTI-PA	CKS	2805	
6	DAIRY CASE 100% PURE JUICE	E FLUID N	IILK WHITE ONI	Υ	2682	
7	FLUID MILK WHITE ONLY	SFT DR	NK 2 LITER BTL	CARB I	2579	
8	FLUID MILK WHITE ONLY	KIDS CE	EREAL		2554	
9	FLUID MILK WHITE ONLY	POTATO	CHIPS		2200	
10	EGGS - LARGE	FLUID N	IILK WHITE ONI	Υ	1952	
11	BANANAS	YOGUR	T NOT MULTI-PA	CKS	1931	

Inference:

The combination of Bananas with Fluid milk white is the highest selling combination with it being bought together 4131 times by customers.

Question 7:

Find the weekly change in Revenue Per Account (RPA) (difference in spending by each customer compared to last week)(use lag function)

#Question 7: Find the weekly change in Revenue Per Account (RPA) (difference in spending by each customer compared to last week)(use lag function)
with cte9 as
(select household_key,week_no,sum(SALES_VALUE) as current_week_spend
from 'Ecommerce.transaction_data'
group by household_key,WEEK_NO
order by 1,2)
,cte10 as
(select *,lag(cte9.current_week_spend) over(partition by household_key order by week_no) as prev_week_spend
from cte9
order by household_key,week_no)
select *,current_week_spend-prev_week_spend as Spend_diff
from cte10

JOB IN	FORMATION		RESULTS	СНА	RT JSON	EXECUTION DETA	AILS EXECUTION GRAP
Row	household_key	√ /,	week_no ▼	1.	current_week_spend	prev_week_spend 🔻	Spend_diff ▼
1		1		8	42.58	null	null
2		1		10	14.01	42.58	-28.57
3		1		13	14.03000000000	14.01	0.020000000000
4		1		14	25.71	14.03000000000	11.68
5		1		15	10.98	25.71	-14.73
6		1		16	9.09	10.98	-1.89000000000
7		1		17	13.98	9.09	4.890000000000
8		1		19	47.35000000000	13.98	33.37000000000
9		1		20	31.77	47.35000000000	-15.5800000000
10		1		22	38.98000000000	31.77	7.210000000000
11		1		23	26.36	38.98000000000	-12.6200000000

From the above we cans see that the spendings keep varying with each week while some weeks have high spends most of the other weeks there are lower amount spend.

Question 8:

Which week has maximum sale?

```
#Q 8:Which week has maximum sales?
select week_no, sum(sales_value) as Total_sales
from `Ecommerce.transaction_data`
group by WEEK_NO
order by 2 desc
```

JOB IN	FORMATION		RESULTS	CHART
Row	week_no ▼	1.	Total_sales	▼
1		92	57721.89999	9999
2		99	50361.01999	9999
3		85	49506.66999	9999
4		98	49447.69999	9999
5		94	49079.32999	9999
6		68	48781.50999	9999
7		72	48733.54999	9999
8		46	48189.51999	9999
9		59	48115.44999	9999
10		90	46635.18999	9999

Inference:

The weeks 92,99,98,94 etc as shown above has high sales. Thus company needs to ensure adequate inventory is available on those weeks.

Question 9:

Which are the top 10 products bought by consumers.

```
#Q 9:Which product is bought maximum?
select p.sub_commodity_desc,sum(SALES_VALUE) as Total_Sales from
`Ecommerce.transaction_data` t
inner join
`Ecommerce.product`p
on t.PRODUCT_ID=p.product_id
group by p.sub_commodity_desc
order by 2 desc
```

JOB IN	FORMATION	RESULTS	CHART	JSON	EXEC
Row	sub_commodity_	desc ▼	Total_Sales ▼	6	
1	GASOLINE-REG U	INLEADED	315997.090000	00	
2	FLUID MILK WHIT	TE ONLY	80754.4400000	00	
3	SOFT DRINKS 12	/18&15PK CA	79214.4399999	99	
4	BEERALEMALT L	IQUORS	75036.1800000	00	
5	CIGARETTES		48179.1500000	00	
6	CHOICE BEEF		38382.0899999	99	
7	SHREDDED CHEE	SE	34252.7799999	99	
8	PRIMAL		32829.3300000	00	
9	PREMIUM		32537.0400000	00	
10	BABY DIAPERS		30421.6300000	00	
11	TOILET TISSUE		29433.6400000	00	

The product that is sold the most is Gasoline -reg unleaded.

Question 10:

Which are the top 10 department and which product category contributes most to it.

JOB IN	FORMATION	RESULTS	CHART	JSON	EXECUTION DET
ow /	department ▼	6	Total_Sales ▼	6	
1	GROCERY		2046695.129995	•••	
2	DRUG GM		527588.6499997		
3	PRODUCE		279720.3899998		
4	MEAT		274036.3199999		
5	KIOSK-GAS		269461.6700000		
6	MEAT-PCKGD		206491.7099999		
7	DELI		130322.2600000		
8	MISC SALES TRA	N	62633.94999999		
9	PASTRY		61786.55999999		
10	NUTRITION		48840.38999999		

Inference:

The department with high sales are Grocery, Drug, Produce, Meat etc.

JOB IN	FORMATION RESULTS	CHART JSON	EXECUTION DETAILS
Row	department ▼	commodity_desc ▼	Total_sales ▼
1	KIOSK-GAS	COUPON/MISC ITEMS	254675.6000000
2	GROCERY	SOFT DRINKS	164139.5999999
3	MEAT	BEEF	156390.7799999
4	MISC SALES TRAN	COUPON/MISC ITEMS	62633.94999999
5	DELI	DELI MEATS	52911.36999999
6	DRUG GM	CIGARETTES	48176.29000000
7	MEAT-PCKGD	LUNCHMEAT	46214.309999999
8	SEAFOOD-PCKGD	SEAFOOD - FROZEN	25285.80000000
9	PRODUCE	POTATOES	22683.46000000
10	PASTRY	CAKES	19836.69000000
11	SALAD BAR	SALAD BAR	15709.85000000
4.0	· · · · · · · · · · · · · · · · · · ·	DECRICED ATER	*****

The product category with highest sales are seen above under respective departments.

Question 11:

Which are the top 10 store that has the highest sale?

```
# Q 11:Which store has the highest sales?
select store_id, sum(sales_value) as Total_sales
from `Ecommerce.transaction_data`
group by STORE_ID
order by 2 desc
```


The stores with high sales are shown above.

Question 12:

Which stores have the lowest sales?

```
# Q 12:Which stores has the lowest sales?
select store_id,sum(sales_value) as Total_sales
from `Ecommerce.transaction_data`
group by STORE_ID
order by 2
```

JOB IN	IFORMATION		RESULTS	CHA	ART	JS
Row	store_id ▼	6	Total_sales	▼		
1		1235		0.0		
2		3932		0.25		
3		681		0.4		
4		564		0.41		
5		256		0.76		
6		2825	0.87000000	0000		
7		3073		0.95		
8		765		1.0		
9		2760		1.0		
10		2743		1.0		

Inference:

The stores with low sales are shown above. Need to check on why these stores have least sales. Whether they are recently opened or not. If they are older stores then why the sale has been low. Then management needs to take decision on whether to add promotions or close the store.

Question 13:

Analyze Spend by Marital Status.

```
# Sales by Marital Status
select marital_status_code, sum(sales_value) as Total_sales
from `Ecommerce.transaction_data` t
inner join `Ecommerce.hh_demographic` d
on t.household_key=d.household_key
group by 1
order by 2 desc
```


Inference:

The married people are the ones with the highest spend.

Question 14:

Analyze Spend by Age.

```
# Sales by Age group
select AGE_DESC, sum(sales_value) as Total_sales
from `Ecommerce.transaction_data` t
inner join `Ecommerce.hh_demographic` d
on t.household_key=d.household_key
group by 1
order by 2 desc
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	AGE_DESC ▼	6	Total_sales ▼	6
1	45-54		827984.8999995	
2	35-44		622164.3499997	
3	25-34		389545.1699998	
4	65+		151606.8100000	
5	55-64		150371.2700000	
6	19-24		108404.3500000	

Inference:

The age group 45-54 has the highest sales since they are the ones with higher income.

Question 14:

Analyze Spend by Homeowner Description.

```
# Sales by Homeowner Desc
select Homeowner_DESC, sum(sales_value) as Total_sales
from `Ecommerce.transaction_data` t
inner join `Ecommerce.hh_demographic` d
on t.household_key=d.household_key
group by 1
order by 2 desc
```

JOB INFORMATION		RESULTS	CHART	JS(
Row	Homeowner_DESC	· •	Total_sales ▼	1.
1	Homeowner		1519166.589998.	
2	Unknown		561266.7799997.	
3	Renter		118735.7700000.	
4	Probable Owner		27236.49000000.	
5	Probable Renter		23671.22000000.	

Inference:

The HomeOwners have the highest purchase amount.

Question 15:

Analyze Spend by Income

```
# Sales by Income Desc
select Income_DESC, sum(sales_value) as Total_sales
from `Ecommerce.transaction_data` t
inner join `Ecommerce.hh_demographic` d
on t.household_key=d.household_key
group by 1
order by 2 desc
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXEC
Row	Income_DESC ▼	<i>(</i> :	Total_sales ▼	6	
1	50-74K	,,	547139.0499997		
2	35-49K		414471.7899999		
3	75-99K		279738.2199999		
4	25-34K		189846.9300000	l	
5	Under 15K		169160.1900000	l	
6	15-24K		151340.2800000		
7	125-149K		150464.7000000	l	
8	150-174K		126501.6900000	l	
9	100-124K		100931.4700000		

The people in the income range of 50-74k have the highest purchasing power.

Question 16:

Analyse sales by time of Day:

```
#Sale by Time of day
with cte14 as
(select *, TRANS_TIME/100 as timeofpurchase
from `Ecommerce.transaction_data`)
,cte15 as
(select basket_id, SALES_VALUE,
  when timeofpurchase>23 and timeofpurchase<=3 then "midnight"
 when timeofpurchase>3 and timeofpurchase<=6 then "early morning"
 when timeofpurchase>6 and timeofpurchase<=11 then "morning"
 when timeofpurchase>11 and timeofpurchase<=15 then "afternoon"
 when timeofpurchase>15 and timeofpurchase<=19 then "evening"
 when timeofpurchase>19 and timeofpurchase<=23 then "night"
end as Day_time_split
from cte14)
select Day_time_split,sum(sales_value)
from cte15
group by 1
```

JOB INFORMATION RESULTS		CHART	JSON	
ow /	Day_time_split ▼	/,	f0_ ▼ ↓	6
1	evening		1506469.399998	
2	afternoon 1181713.11999		99	
3	night		834832.89999	95
4	morning		403459.65999	99
5	null		86651.390000	00
6	early morning 16211.93999999		99	

Inference:

Maximum purchases are made in the evening from 3pm-7pm.

Recommendations:

.

- Inventory Management of Popular Product Categories: A large share of sales comes from five key departments: grocery, drugGM, KIOSK Gas, produce, and meat. Ensure adequate inventory of these items is maintained. Promoting these popular areas and offering appealing deals will encourage more purchases, while a broad selection and competitive pricing will meet customer demand and drive overall sales growth.
- Targeted Marketing Strategies: The majority of transactions are driven by homeowners, especially those aged 45–54 with an income between \$35K and \$74K.
 Most purchases occur in the evening. Marketing efforts should be customized to cater to this demographic. This could include creating tailored promotions, product selections, and advertising campaigns that resonate with their preferences and needs
- Cater to Married Customers: Since married customers generate the majority of total revenue, it's important to focus on meeting their needs and preferences.
 Understanding their motivations and providing personalized offers can enhance their shopping experience, leading to increased loyalty and higher sales.
- Bundled offers: Considering that the highest selling product is Gasoline-unleaded the
 company can introduce offers for other items along with gasoline so that people
 would be attracted to buy them. Also looking at the most best selling combos like
 banana and milk or bread and milk , then maybe modify to add another element to
 this combo to encourage higher purchase.
- **Placement of products:** The company can arrange the online portal based on products that sell together so that they are visible near each other. For example soft drink along with milk etc.
- Maximize Revenue from Key Age Groups: With most transactions coming from customers aged 45–54, it's essential to concentrate marketing efforts on this age

- group. Offering products and services that align with their interests can help maximize revenue from this demographic.
- Offer Personalized Deals for High Spenders: By identifying high-spending customers, such as homeowners or those in specific age groups, you can implement targeted marketing and personalized offers. Providing these customers with exclusive discounts, loyalty rewards, or special privileges can encourage repeat business and boost customer satisfaction.
- Introduce a Loyalty Program: A loyalty program that offers incentives, rewards, and exclusive deals can help drive repeat purchases and improve customer retention. Customizing loyalty programs for homeowners, married customers, and specific age groups can further enhance their effectiveness.