Curs 8

Cuprins

- Forma normală conjunctivă și forma clauzală
- 2 Literali, clauze, mulțimi de clauze
- Rezoluția în calculul propozițional (recap.)
- 4 Rezoluția în logica de ordinul I

Forma normală conjunctivă și forma clauzală

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

 $literal := p \mid \neg p$ unde p este variabilă propozițională

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$

unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n)$$
 unde $P \in \mathbf{R}, \textit{ari}(P) = n$, și t_1, \dots, t_n sunt termeni.

 \square Pentru un literal L vom nota cu L^c literalul complement.

De exemplu, dacă $L = \neg P(x)$ atunci $L^c = P(x)$ și invers.

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$

unde
$$P \in \mathbf{R}$$
, $ari(P) = n$, și t_1, \ldots, t_n sunt termeni.

 \square Pentru un literal L vom nota cu L^c literalul complement.

De exemplu, dacă
$$L = \neg P(x)$$
 atunci $L^c = P(x)$ și invers.

O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.

 \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{\mathit{fc}}$.

- \square Pentru orice formulă α există o FNC $\alpha^{\it fc}$ astfel încât $\alpha \bowtie \alpha^{\it fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \forall \forall

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- ☐ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \forall \forall

4 distributivitatea

$$\varphi \lor (\psi \land \chi) \quad \exists \quad (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\psi \land \chi) \lor \varphi \quad \exists \quad (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Exemplu

$$(\neg p \to \neg q) \to (p \to q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg(\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\boxminus (\neg p \land q) \lor (\neg p \lor q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg(\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\boxminus (\neg p \land q) \lor (\neg p \lor q)$$

$$\exists \; (\neg p \vee \neg p \vee q) \wedge (q \vee \neg p \vee q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\boxminus (\neg p \land q) \lor (\neg p \lor q)$$

$$\exists (\neg p \lor \neg p \lor q) \land (q \lor \neg p \lor q)$$

$$\boxminus (\neg p \lor q) \land (q \lor \neg p)$$

□ O formulă este formă normală conjunctivă prenex (FNCP) dacă □ este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall, \exists\}$ oricare i) □ ψ este FNC

- □ O formulă este formă normală conjunctivă prenex (FNCP) dacă
 - \square este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall, \exists\}$ oricare i)
 - \square ψ este FNC
- □ O formulă este formă clauzală dacă este enunț universal și FNCP:

$$\forall x_1 \dots \forall x_n \psi$$
 unde ψ este FNC

Exempli

- □ O formulă este formă normală conjunctivă prenex (FNCP) dacă
 - este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall,\exists\}$ oricare i)
 - \square ψ este FNC
- □ O formulă este formă clauzală dacă este enunț universal și FNCP:

$$\forall x_1 \dots \forall x_n \psi$$
 unde ψ este FNC

Exemplu

- $\Box \forall y \forall z ((P(f(y)) \lor Q(z)) \land (\neg Q(z) \lor \neg P(g(z)) \lor Q(y)))$ este formă clauzală

 \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\rm fc}$ astfel încât

arphi este satisfiabilă dacă și numai dacă $arphi^{\mathit{fc}}$ este satisfiabilă

- \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - se determină forma Skolem

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - arphi este satisfiabilă dacă și numai dacă $arphi^{fc}$ este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

5 se determină o FNC ψ' astfel încât $\psi \bowtie \psi'$

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - 3 se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

- **5** se determină o FNC ψ' astfel încât $\psi \vDash \psi'$
- **6** φ^{fc} este $\forall x_1 \dots \forall x_n \psi'$

Literali, clauze, mulțimi de clauze

□ O clauză este o disjuncție de literali.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

□ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.

- O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n=0 obținem clauza vidă, care se notează \square

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n = 0 obţinem clauza vidă, care se notează \square
- ☐ Prin definiție, clauza ☐ nu este satisfiabilă.

Forma clauzală

☐ Observăm că o FNC este o conjuncție de clauze.

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- □ Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

FNC = mulțime de clauze

 \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă

- □ Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulțimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.
 - $\{\}$ este satisfiabilă, dar $\{\Box\}$ nu este satisfiabilă

 \square Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{\mathit{fc}} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali

- \square Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- \square Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{\mathit{fc}} = \forall x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

- \square Dacă arphi este o formulă în calculul propozițional, atunci $arphi^{fc} = igwedge_{i=1}^k igvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{\mathit{fc}} = \forall x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

arphi este satisfiabilă dacă și numai dacă $arphi^{fc} \text{ este satisfiabilă dacă și numai dacă} \{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\} \text{ este satisfiabilă}$

Exemplu

 \square În calculul propozițional: pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$

Exempli

 \square În calculul propozițional: pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$

Exemplu

Exempli

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$
 - și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$
- ☐ În logica de ordinul I:

pentru a verifica satisfiabilitatea formulei

$$\varphi := orall y orall z ((P(f(y)) \lor Q(z)) \land (Q(z)
ightarrow (\lnot P(g(z)) \lor Q(y))))$$

Exempli

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$
 - și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}$.
- ☐ În logica de ordinul I:

$$\varphi := \forall y \forall z ((P(f(y)) \vee Q(z)) \wedge (Q(z) \rightarrow (\neg P(g(z)) \vee Q(y))))$$

determinăm

$$\varphi^{fc} := \forall y \forall z ((P(f(y)) \vee Q(z)) \wedge (\neg Q(z) \vee \neg P(g(z)) \vee Q(y)))$$

Exemple

- - și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$

 $\{\{P(f(y)), Q(z)\}, \{\neg Q(z), \neg P(g(z)), Q(y)\}\}$

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_{\mathit{n}}\} \vDash \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\vDash \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1, \dots, \varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\models \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\models \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

$$\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \varphi$$
 este satisfiabilă

Pentru a cerceta satisfiabilitatea este suficient să studiem forme clauzale

$$\{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\}$$

atât în logica propozițională, cât și în calculul cu predicate.

Rezoluție

Rezoluția este o metodă de verificare a satisfiabilității formelor clauzale.

Rezoluție

Rezoluția este o metodă de verificare a satisfiabilității formelor clauzale.

- □ Rezoluția în calculul propozițional (recap.)
- Rezoluția în logica de ordinul I
 - cazul clauzelor fără variabile
 - cazul general

Rezoluția în calculul propozițional (recap.)

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Exempli

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Exemplu

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

Este mulțimea de clauze $\{\{p, \neg q\}, \{\neg p, q\}\}$ satisfiabilă?

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

```
Fie \mathcal{C}=\{\{\neg q, \neg p\}, \{q\}, \{p\}\}\} o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este C_1 = \{\neg q, \neg p\} C_2 = \{q\} C_3 = \{\neg p\} \qquad (Rez, C_1, C_2) C_4 = \{p\} C_5 = \square \qquad (Rez, C_3, C_4)
```

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

 $C_5 = \square$

Fie
$$\mathcal{C}=\{\{\neg q, \neg p\}, \{q\}, \{p\}\}\}$$
 o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este $C_1=\{\neg q, \neg p\}$ $C_2=\{q\}$ $C_3=\{\neg p\}$ (Rez, C_1, C_2) $C_4=\{p\}$

 (Rez, C_3, C_4)

Teorema de completitudine

 $\models \varphi$ dacă și numai dacă există o derivare prin rezoluție a lui \square din $(\neg \varphi)^{fc}$.

Procedura Davis-Putnam DPP (informal)

$\textbf{Intrare:} \ \ o \ \ mul \\ time \ \mathcal{C} \ \ de \ clauze$
Se repetă următorii pași:
se elimină clauzele triviale
□ se alege o variabilă <i>p</i>
\square se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
\square se șterg toate clauzele care conțin p sau $\neg p$
leșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă altfel $\mathcal C$ este satisfiabilă.

Exemplu

Este $C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$ satisfiabilă?

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă? 
Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}. Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\}; Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\}
```

Exemplu

 $C_1 := \{\{q, p\}, \{q, \neg p\}\}$

```
Este \mathcal{C}_0=\{\{p,\neg r\},\{q,p\},\{q,\neg p,r\},\{q,\neg r\}\} satisfiabilă? 
Alegem variabila r și selectăm \mathcal{C}_0^r:=\{\{q,\neg p,r\}\}, \mathcal{C}_0^{\neg r}:=\{\{p,\neg r\},\{q,\neg r\}\}. 
Mulțimea rezolvenților posibili este \mathcal{R}_0:=\{\{q,\neg p,p\},\{q,\neg p\}\}; 
Se observă că p,\neg p\in\{q,\neg p,p\} deci \mathcal{R}_0:=\{\{q,\neg p\}\} 
Se elimină clauzele în care apare r și se adaugă noii rezolvenți
```

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă? 
Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}. 
Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\}; 
Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\} 
Se elimină clauzele în care apare r și se adaugă noii rezolvenți \mathcal{C}_1 := \{\{q, p\}, \{q, \neg p\}\} 
Alegem variabila q și selectăm \mathcal{C}_1^q := \{\{q, p\}, \{q, \neg p\}\}, \mathcal{C}_1^{\neg q} := \emptyset.
```

Mulţimea rezolvenţilor posibili este vidă $\mathcal{R}_1 := \emptyset$.

Exempli

Este
$$\mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$$
 satisfiabilă?
Alegem variabila r și selectăm $\mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$
Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$
Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Exemplu

Este
$$\mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$$
 satisfiabilă?
Alegem variabila r și selectăm $\mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$
Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$
Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $\mathcal{C}_1^q := \{\{q,p\}, \{q,\neg p\}\}, \ \mathcal{C}_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Deoarece $\{\}$ este satisfiabilă, rezultă că \mathcal{C}_0 este satisfiabilă.

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă? 
Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}. 
Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\}; 
Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\}
```

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Deoarece $\{\}$ este satisfiabilă, rezultă că \mathcal{C}_0 este satisfiabilă.

Atenție! La fiecare pas se alege pentru prelucrare o singură variabilă.

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to \mathit{Trm}_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to \mathit{Trm}_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to \mathit{Trm}_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta:V\to T_{\mathcal{L}}$ such that $C'=\theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(C) \mid C \in \mathcal{C}, \theta : V \to T_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_C$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C}, \theta : \mathcal{V} \to \mathcal{T}_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

Teoremă

O mulțime de clauze $\mathcal C$ este satisfiabilă dacă și numai dacă $\mathcal H(\mathcal C)$ este satisfiabilă. O mulțime de clauze $\mathcal C$ este nesatisfiabilă dacă și numai dacă există o submulțime finită a lui $\mathcal H(\mathcal C)$ care este nesatisfiabilă.

Exempli

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\} \subseteq \mathcal{H}(\mathcal{C}).$$

Exemplu

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\} \subseteq \mathcal{H}(C).$$

Considerăm toate valorile de adevăr pentru P(c) și Q(c):

P(c)	Q(c)	$(\neg P(c) \lor Q(c)) \land P(c) \land \neg Q(c)$
0	0	0
0	1	0
1	0	0
1	1	0

Exempli

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\} \subseteq \mathcal{H}(C).$$

Considerăm toate valorile de adevăr pentru P(c) și Q(c):

P(c)	Q(c)	$ (\neg P(c) \lor Q(c)) \land P(c) \land \neg Q(c) $
0	0	0
0	1	0
1	0	0
1	1	0

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\}\$$
 este nesatisfiabilă, deci \mathcal{C} este nesatisfiabilă.

Putem gândi formulele atomice închise ca variabile propoziționale.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{L\}, C_2 \cup \{\neg L\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{L\}, C_2 \cup \{\neg L\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Teoremă

Fie φ o formulă arbitrară în logica de ordinul I. Atunci $\vDash \varphi$ dacă și numai dacă există o derivare pentru \Box din $\mathcal{H}(\mathcal{C})$ folosind Rez , unde \mathcal{C} este mulțimea de clauze asociată lui $(\neg \varphi)^{\mathit{fc}}$.

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Determinăm forma clauzală:

$$C = \{ \{ \neg P(x), Q(f(x)) \}, \{ P(g(x)) \}, \{ \neg Q(x) \} \}$$

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Determinăm forma clauzală:

$$C = \{ \{ \neg P(x), Q(f(x)) \}, \{ P(g(x)) \}, \{ \neg Q(x) \} \}$$

Pentru c o constantă obținem următoarea derivare:

$$\begin{array}{lll} C_1 = & \{\neg P(g(c)), \, Q(f(g(c)))\} \\ C_2 = & \{P(g(c))\} \\ C_3 = & \{Q(f(g(c)))\} & \textit{Rez}, \, C_1, \, C_2 \\ C_4 = & \{\neg Q(f(g(c)))\} \\ C_5 = & \Box & \textit{Rez}, \, C_3, \, C_4 \end{array}$$

Rezoluția pe clauze arbitrare

Observații:

☐ Unificarea literalilor revine la unificarea argumentelor

Dacă $\sigma:V \to \mathit{Trm}_{\mathcal{L}}$ o substituție, atunci sunt echivalente

Rezoluția pe clauze arbitrare

Observații:

☐ Unificarea literalilor revine la unificarea argumentelor

Dacă $\sigma:V \to \mathit{Trm}_{\mathcal{L}}$ o substituție, atunci sunt echivalente

- □ Redenumirea variabilelor în clauze păstrează validitatea

Deoarece
$$\forall x (\varphi \land \psi) \exists (\forall x \varphi) \land (\forall x \psi)$$
 obţinem

$$\forall x ((P_1(x) \vee P_2(x)) \wedge (Q_1(x) \vee Q_2(x)))$$

$$\exists \ (\forall x (P_1(x) \lor P_2(x))) \land (\forall x (Q_1(x) \lor Q_2(x)))$$

$$\exists \ (\forall x (P_1(x) \vee P_2(x))) \wedge (\forall y (Q_1(y) \vee Q_2(y)))$$

$$\exists \forall x \forall y (P_1(x) \vee P_2(x)) \wedge (Q_1(y) \vee Q_2(y))$$

Rezoluția pe clauze arbitrare

Regula rezoluției pentru clauze arbitrare

$$\textit{Rez } \frac{\textit{C}_{1},\textit{C}_{2}}{\left(\sigma\textit{C}_{1}\setminus\sigma\textit{Lit}_{1}\right)\cup\left(\sigma\textit{C}_{2}\setminus\sigma\textit{Lit}_{2}\right)}$$

dacă următoarele condiții sunt satisfăcute:

- C_1 , C_2 clauze care nu au variabile comune,
- 2 $Lit_1 \subseteq C_1$ și $Lit_2 \subseteq C_2$ sunt mulțimi de literali,
- σ este un cgu pentru Lit_1 și Lit_2^c , adică σ unifică toți literalii din Lit_1 și Lit_2^c .

O clauză C se numește rezolvent pentru C_1 și C_2 dacă există o redenumire de variabile $\theta: V \to V$ astfel încât C_1 și θC_2 nu au variabile comune și C se obține din C_1 și θC_2 prin Rez.

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

□ redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- redenumim variabilele pentru a satisface condițiile din *Rez* $\theta C_2 = \{ \neg P(f(f(a)), g(z)), Q(f(a), g(z)) \}$ unde $\theta = \{ y \leftarrow z \}$
- determinăm Lit_1 și Lit_2 $Lit_1 = \{ P(f(x), g(y)) \}$ și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- redenumim variabilele pentru a satisface condițiile din *Rez* $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$
- □ determinăm Lit₁ și Lit₂

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

 \square găsim un cgu σ care este unificator pentru

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2^c = \{ P(f(f(a)), g(z)) \}$
 $\sigma = \{ x \leftarrow f(a), y \leftarrow z \}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- □ redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$
- □ determinăm *Lit*₁ și *Lit*₂

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

 \square găsim un cgu σ care este unificator pentru

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2^c = \{ P(f(f(a)), g(z)) \}$
 $\sigma = \{ x \leftarrow f(a), y \leftarrow z \}$

Rezolventul este $C = (\sigma C_1 \setminus \sigma Lit_1) \cup (\sigma(\theta C_2) \setminus \sigma Lit_2)$ $C = \{Q(f(a), z), Q(f(a), g(z))\}$

□ Fie $\mathcal C$ o mulţime de clauze. O derivare prin rezoluţie din mulţimea $\mathcal C$ pentru o clauză $\mathcal C$ este o secvenţă $\mathcal C_1,\ldots,\mathcal C_n$ astfel încât $\mathcal C_n=\mathcal C$ şi, pentru fiecare $i\in\{1,\ldots,n\},\ \mathcal C_i\in\mathcal C$ sau $\mathcal C_i$ este un rezolvent pentru două cauze $\mathcal C_i,\mathcal C_k$ cu j,k< i.

□ Fie \mathcal{C} o mulțime de clauze. O derivare prin rezoluție din mulțimea \mathcal{C} pentru o clauză \mathcal{C} este o secvență $\mathcal{C}_1, \ldots, \mathcal{C}_n$ astfel încât $\mathcal{C}_n = \mathcal{C}$ și, pentru fiecare $i \in \{1, \ldots, n\}$, $\mathcal{C}_i \in \mathcal{C}$ sau \mathcal{C}_i este un rezolvent pentru două cauze \mathcal{C}_i , \mathcal{C}_k cu j, k < i.

Teoremă

O mulțime de clauze $\mathcal C$ este nesatisfiabilă dacă și numai dacă există o derivare a clauzei vide \square din $\mathcal C$ prin Rez.

Rezoluția este corectă și completă în calculul cu predicate, dar nu este procedură de decizie.

Exemplu

Găsiți o derivare a \Box din $C = \{C_1, C_2, C_3, C_4\}$ unde: $C_1 = \{ \neg P(x, y), P(y, x) \}$ $C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}$ $C_3 = \{ P(x, f(x)) \}$ $C_4 = \{ \neg P(x, x) \}$

```
Găsiți o derivare a \Box din C = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
C'_3 = \{ P(x_1, f(x_1)) \}
C_5 = \{ P(f(x), x) \}
redenumire în C_3
Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x) \}, C_1, C'_3
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{\neg P(x,y), P(y,x)\}
C_2 = \{\neg P(x,y), \neg P(y,z), P(x,z)\}
C_3 = \{P(x,f(x))\}
C_4 = \{\neg P(x,x)\}
C'_3 = \{P(x_1,f(x_1))\} redenumire în C_3
C_5 = \{P(f(x),x)\} Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C'_3
C''_3 = \{P(x_2,f(x_2))\} redenumire în C_3
C_6 = \{\neg P(f(x),z), P(x,z)\} Rez, \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C''_3
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde:
C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
  C'_{3} = \{ P(x_{1}, f(x_{1})) \}
                                               redenumire în C_3
  C_5 = \{ P(f(x), x) \}
                                               Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C'_2
  C_2'' = \{ P(x_2, f(x_2)) \}
                                               redenumire în C_3
  C_6 = \{ \neg P(f(x), z), P(x, z) \}
                                               Rez, \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_2''
  C_{\rm E}' = \{ P(f(x_3), x_3) \}
                                               redenumire în C_5
  C_7 = \{ P(x, x) \}
                                               Rez, \sigma = \{x_3 \leftarrow x, z \leftarrow x\}, C_6, C_6'
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde:
C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
  C'_{3} = \{ P(x_{1}, f(x_{1})) \}
                                               redenumire în C_3
  C_5 = \{ P(f(x), x) \}
                                                Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C'_2
  C_2'' = \{ P(x_2, f(x_2)) \}
                                               redenumire în C_3
  C_6 = \{ \neg P(f(x), z), P(x, z) \}
                                               Rez, \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_2''
  C_{5}' = \{ P(f(x_3), x_3) \}
                                               redenumire în C_5
  C_7 = \{ P(x, x) \}
                                                Rez, \sigma = \{x_3 \leftarrow x, z \leftarrow x\}, C_6, C_5'
  C_4' = \{ \neg P(x_4, x_4) \}
                                               redenumire în C₄
  C_5 = \square
                                                Rez, \sigma = \{x_4 \leftarrow x\}, C_7, C'_4
```

Exemplu

Cercetați dacă din ipotezele (i1)-(i6) se deduce (c), unde

- (i1) Jack owns a dog.
- (i2) Anyone who owns a dog is a lover of animals.
- (i3) Lovers of animals do not kill animals.
- (i4) Either Jack killed Tuna or curiosity killed Tuna.
- (i5) Tuna is a cat.
- (i6) All cats are animals.
- (c) Curiosity killed Tuna.

Exemplu

Cercetați dacă din ipotezele (i1)-(i6) se deduce (c), unde

- (i1) Jack owns a dog.
- (i2) Anyone who owns a dog is a lover of animals.
- (i3) Lovers of animals do not kill animals.
- (i4) Either Jack killed Tuna or curiosity killed Tuna.
- (i5) Tuna is a cat.
- (i6) All cats are animals.
- (c) Curiosity killed Tuna.

Vom formaliza ipotezele și concluzia în logica de ordinul I si vom face demonstrația folosind rezoluția.

Exemplu

Formalizăm ipotezele și determinăm forma clauzală:

(i1) Jack owns a dog.

$$\exists x (D(x) \land O(jack, x))$$

$$\mathbf{R} = \{D, O\}, \mathbf{C} = \{jack\}$$

$$D(dog) \wedge O(jack, dog)$$

Skolemizare

$$\mathbf{R} = \{D,O\}, \mathbf{C} = \{\textit{jack}, \textit{dog}\}$$

Exemplu

(i2) Anyone who owns a dog is a lover_of_animals.

$$\forall x (\exists y (D(y) \land O(x,y))) \rightarrow L(x)) \qquad \mathbf{R} = \{D, O, L\}, \mathbf{C} = \{jack, dog\}$$

Exempli

(i2) Anyone who owns a dog is a lover_of_animals.

$$\forall x (\exists y (D(y) \land O(x, y))) \rightarrow L(x)) \qquad \mathbf{R} = \{D, O, L\}, \mathbf{C} = \{jack, dog\} \}$$

$$\forall x ((\neg(\exists y (D(y) \land O(x, y))) \lor L(x))$$

$$\forall x ((\forall y (\neg D(y) \lor \neg O(x, y))) \lor L(x))$$

$$\forall x \forall y (\neg D(y) \lor \neg O(x, y)) \lor L(x)$$

$$\neg D(y) \lor \neg O(x, y)) \lor L(x)$$

Exemplu

(i3) Lovers_of_animals do not kill animals.

$$\forall x (L(x) \to (\forall y A(y) \to \neg K(x, y)))$$

$$\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog\}$$

Exemplu

(i3) Lovers_of_animals do not kill animals.

$$\forall x (L(x) \to (\forall y A(y) \to \neg K(x, y)))$$

$$\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog\}$$

$$\forall x (\neg L(x) \lor (\forall y \neg A(y) \lor \neg K(x, y)))$$

$$\forall x \forall y (\neg L(x) \lor \neg A(y) \lor \neg K(x, y))$$

$$\neg L(x) \lor \neg A(y) \lor \neg K(x, y)$$

Exemplu

(i4) Either Jack killed Tuna or curiosity killed Tuna.

$$K(jack, tuna) \lor K(curiosity, tuna)$$

 $R = \{D, O, L, A, K\}, C = \{jack, dog, tuna, curiosity\}$

Exemplu

(i4) Either Jack killed Tuna or curiosity killed Tuna.

$$K(jack, tuna) \lor K(curiosity, tuna)$$

 $R = \{D, O, L, A, K\}, C = \{jack, dog, tuna, curiosity\}$

(i5) Tuna is a cat.

$$C(tuna)$$

$$\mathbf{R} = \{D, O, L, A, K, C\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$$

Exemplu

(i4) Either Jack killed Tuna or curiosity killed Tuna.

$$K(jack, tuna) \lor K(curiosity, tuna)$$

 $\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$

(i5) Tuna is a cat.

$$C(tuna)$$

$$\mathbf{R} = \{D, O, L, A, K, C\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$$

(i6) All cats are animals.

$$\forall x \ C(x) \to A(x)$$
$$\neg C(x) \lor A(x)$$

- (i1) $D(dog) \wedge O(jack, dog)$
- (i2) $\neg D(y) \lor \neg O(x,y) \lor L(x)$
- (i3) $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$
- (i4) $K(jack, tuna) \vee K(curiosity, tuna)$
- (i5) *C*(tuna)
- (i6) $\neg C(x) \lor A(x)$
- (c) K(curiosity, tuna)

- (i1) D(dog)
- (i1) O(jack, dog)
- (i2) $\neg D(y) \lor \neg O(x,y) \lor L(x)$
- (i3) $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$
- (i4) $K(jack, tuna) \vee K(curiosity, tuna)$
- (i5) *C*(tuna)
- (i6) $\neg C(x) \lor A(x)$
- $(\neg c) \neg K(curiosity, tuna)$

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna) \lor K(curiosity, tuna)
C(tuna)
\neg C(x) \lor A(x)
\neg K(curiosity, tuna)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna)
C(tuna)
\neg C(x) \lor A(x)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna)
C(tuna)
\neg C(x) \lor A(x) \{x \leftarrow tuna\}
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna)
A(tuna)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y) \{y \leftarrow tuna\}
K(jack, tuna)
A(tuna)
```

Exempli

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(x, y) \lor L(x)

\neg L(x) \lor \neg K(x, tuna)

K(jack, tuna)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg K(x, tuna) \{x \leftarrow jack\}
K(jack, tuna)
```

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(x, y) \lor L(x)

\neg L(jack)
```

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(x, y) \lor L(x) \{x \leftarrow jack\}

\neg L(jack)
```

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(jack, y)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(jack, y) \{y \leftarrow dog\}
```

"Curiosity killed the cat!"

Exemplu

O(jack, dog)

 $\neg O(jack, dog)$

"Curiosity killed the cat!"

Exemplu

O(jack, dog)

 $\neg O(jack, dog)$

"Curiosity killed the cat!"

Exemplu

$$O(jack, dog)$$

 $\neg O(jack, dog)$

Г

În concluzie, am arătat că

$$\{(i1),(i2),(i3),(i4),(i5),(i6)\} \vDash (c)$$

Pe săptămâna viitoare!