Дебильник по предмету: «Математическая логика» Четвертый семестр.

Специальность 02.03.03.
Математическое обеспечение и администрирование информационных систем.
Преподаватель - Григорьева Татьяна Матвеевна.
Группа 244.
Санкт-Петербург 2020.

Фомина В.В. Набрано в **№Т_ЕХ**

Дата изменения: 21 июня 2020 г. 20:38

Содержание

1	Пропозициональные формулы. Таблицы истинности. Равносильные формулы. Основные равносильности. Тавтологии и противоречия.	
2	Теоремы о представимости пропозициональной формулы с помощью формул, содержащих только три, две или одну логическую связку.	
3	Теоремы о ДНФ и КНФ. Полином Жегалкина.	5
4	Понятия исчисления и формальной теории. Вывод, выводимая формула, полнота и непротиворечивость. Допустимое правило.	6
5	Секвенциальное исчисление высказываний. Допустимые правила секвенциального исчисления высказываний.	6
6	Теоремы о семантическом обосновании секвенциального исчисления высказываний.	6
7	Полнота и непротиворечивость секвенциального исчисления высказываний.	6
8	Метод резолюций для исчисления высказываний. Обоснование доказательства следования $A1,\dots,An\Rightarrow B1,\dots,Bk.$	6
9	Предикатные формулы: терм, атомарная формула, предикатная формула. Область действия квантора, свободные и связанные вхож дения предметной переменной в формулу. Терм, свободный для подстановки в формулу вместо свободных вхождений предметной переменной.	ζ-
10	Интерпретации. Общезначимые и выполнимые формулы, противоречия.	9
11	Смысл формулы с n свободными переменными в заданной интерпретации.	10
12	Секвенциальное исчисление предикатов. Необходимость соблюдения ограничений на кванторные правила (примеры).	11
13	Полнота и непротиворечивость секвенциального исчисления предикатов.	11
14	Метод резолюций для исчисления предикатов. Обоснование доказательства следствия $A1, \dots, An \Rightarrow B1, \dots, Bk$.	11

15	Понятие формальной теории. Формальные теории с равенством (примеры). Аксиомы для равенства и аксиомы согласования с равенством.	11
16	Формальная арифметика (аксиоматическая теория чисел).	12
17	Первая теорема Геделя.	13
18	Вторая теорема Геделя.	14
	Консервативность расширения формальной арифметики бесконечно большими числами.	14
20	Парадокс Рассела в наивной теории множеств. Его отсутствие в аксиоматических теориях множеств.	14
21	Теория типов Рассела.	15
22	Аксиоматическая теория множеств Цермело-Френкеля.	15
23	Ординальные числа.	15
24	Конструктивные объекты. Формулы Бэкуса.	15
25	Примеры математических понятий алгоритма.	15

1 Пропозициональные формулы. Таблицы истинности. Равносильные формулы. Основные равносильности. Тавтологии и противоречия.

Определение 1.1 (Высказывание).

Высказыванием называется утверждение, относительно которого можно однозначно сказать истинно оно или ложно.

Определение 1.2 (Пропозициональная переменная).

Пропозициональные переменные – переменные для высказываний.

Имеют два значения: истина или ложь.

Определение 1.3 (Пропозициональные формулы).

- пропозициональная переменная
- A пропозициональная формула $\rightarrow \neg A$ пропозициональная формула
- $A,\ B$ пропозициональные формулы, * бинарная связка $\to A*B$ пропозициональная формула

Замечание 1.1 (Основные равносильности (не самые очевидные)).

• Склеивание

$$A \& B \lor \neg A \& C \Leftrightarrow A \& B \lor \neg A \& C \lor B \& C$$
$$(A \lor B) \& (\neg A \lor C) \Leftrightarrow (A \lor B) \& (\neg A \lor C) \& (B \lor C)$$

- $A \leftrightarrow B \Leftrightarrow (A \to B) \& (B \to A) \Leftrightarrow (\neg A \lor B) \& (\neg B \lor A) \Leftrightarrow$ $\Leftrightarrow \neg A \& (\neg B \lor A) \lor B \& (\neg B \lor A) \Leftrightarrow (\neg A \& \neg B) \lor (B \& A)$
- $A \oplus B \Leftrightarrow \neg (A \leftrightarrow B)$
- $A \mid B \Leftrightarrow \neg (A \& B)$
- $A \downarrow B \Leftrightarrow \neg (A \lor B)$
- 2 Теоремы о представимости пропозициональной формулы с помощью формул, содержащих только три, две или одну логическую связку.

Теорема 2.1.

По всякой пропозициональной формуле можно построить равносильную ей, содержащую только связки из одного множества:

- {&, ∨, ¬}
- {∨, ¬}
- { | }
- { ↓ }

3 Теоремы о ДНФ и КНФ. Полином Жегалкина.

Теорема 3.1 (Теорема о ДН Φ).

По всякой пропозициональной формуле, не являющейся противоречием, можно построить равносильную ей ДНФ.

Теорема 3.2 (Теорема о полиноме Жегалкина). По всякой пропозициональной формуле можно построить полином Жегалкина.

Обозначение 3.1. Для всякой пропозициональной формулы полином Жегалкина ровно один с точностью до перестановки слагаемых (ДНФ и КНФ могут быть разные).

Теорема 3.3 (Теорема о КН Φ).

По всякой пропозициональной формуле, не являющейся тавтологией, можно построить равносильную ей КНФ.

- 4 Понятия исчисления и формальной теории. Вывод, выводимая формула, полнота и непротиворечивость. Допустимое правило.
- 5 Секвенциальное исчисление высказываний. Допустимые правила секвенциального исчисления высказываний.
- 6 Теоремы о семантическом обосновании секвенциального исчисления высказываний.
- 7 Полнота и непротиворечивость секвенциального исчисления высказываний.
- 8 Метод резолюций для исчисления высказываний. Обоснование доказательства следования $A1, \dots, An \Rightarrow B1, \dots, Bk.$

9 Предикатные формулы: терм, атомарная формула, предикатная формула. Область действия квантора, свободные и связанные вхождения предметной переменной в формулу. Терм, свободный для подстановки в формулу вместо свободных вхождений предметной переменной.

Определение 9.1.

Предметная константа - имя предмета.

Определение 9.2.

Предметная переменная - переменная, которая в качестве своих значений может принимать предметные константы.

Определение 9.3.

Символ F в формальном языке является функциональным символом, если для любого символа, представляющий объект в языке, F(X) снова является символом, представляющим объект на этом языке

Определение 9.4 (Терм).

- 1. Предметная константа является термом.
- 2. Предметная переменная является термом.
- 3. Если t_1, \ldots, t_n термы, f-n-местный функциональный символ, то выражение $f(t_1, \ldots, t_n)$ является термом.
- 4. Никакие выражения, кроме полученных в результате применения п.п. 1-3 этого определения, не являются термом.

Определение 9.5 (Атомарная формула).

- 1. Если t_1, \ldots, t_n термы, P-n-местный предикатный символ, то $P(t_1, \ldots, t_n)$ является атомарной формулой.
- 2. Никакие выражения, кроме полученных в результате применения п. 1 этого определения не являются атомарной формулой.

Определение 9.6 (Предикатная формула).

- 1. Атомарная формула является предикатной формулой.
- 2. Если A предикатная формула, то $\neg A$ является предикатной формулой.
- 3. Если A, B предикатные формулы, * бинарная логическая связка, то (A*B) является предикатной формулой.

- 4. Если A предикатная формула, x предметная переменная, то $\forall x A$ и $\exists x A$ являются предикатными формулами.
- 5. Никакие выражения, кроме полученных в результате применения п.п. 1-4 этого определения, не являются предикатными формулами.

Определение 9.7.

Кванторным комплексом называется выражение вида $\forall x$ или $\exists x$, где x – имя предметной переменной.

Определение 9.8.

Областью действия квантора называется формула, стоящая непосредственно вслед за кванторным комплексом, содержащим это вхождение квантора.

Пример 9.1.

$$\forall x \left(P\left(x, \ y, \ z \right) \ \rightarrow \ \exists y \ \forall z \ \underbrace{Q\left(x, \ y, \ z \right)}_{3} \right)$$

Цифрами 1, 2, и 3 отмечены области действия соответсвенно квантора всеобщности по переменной x, квантора существования по переменное y и квантора всеобщности по переменной z.

Определение 9.9.

Вхождение предметной переменной в формулу называется **связанным**, если оно находится в кванторном комплексе или в области действия квантора по этой переменной.

Определение 9.10.

Вхождения предметных переменных, не являющиеся связанными, называются свободными.

Пример 9.2.

Переменные, связанные одним и тем же квантором подчёркнуты одинаково.

$$\forall \underline{x}(P(\underline{x},\ y,\ z)) \rightarrow \ \exists \underline{y} \forall \underline{\underline{z}} Q(\underline{x},\ \underline{y},\ \underline{\underline{z}})$$

Первые два вхождения предметных переменных y и z являются свободными.

Определение 9.11.

Терм t называется **свободным для подстанвки в формулу F вместо свободных вхождений предметной переменной** x, если t не содержит переменных, в области действия кванторов по которым имеется свободное вхождение переменной x.

Определение 9.12.

Формула без свободных переменных называется замкнутой.

Определение 9.13.

Формула, у которой ни одна переменная не имеет как свободных, так и связанных вхождений, называется **чистой**.

10 Интерпретации. Общезначимые и выполнимые формулы, противоречия.

Значение предикатной формулы можно вычислить, проинтерпретировав входящие в неё символы, т.е. задав содержательный смысл предметным константам, функциональным и предикатным символам.

Определение 10.1.

Для того, чтобы задать интерпретацию формулы достаточно

- задать область интерпретации D множество констант;
- каждому n-местному функциональному символу f поставить в соответсвие конкретную функцию из D^n в D.
- каждому n-местному предикатному символу P поставить в соотвествие конкретное отношение над D^n .

Значение атомарной формулы в заданной интерпретаци на заданном наборе значений входящих в неё свободных переменных вычисляется в соответствии с заданной интерпретацией.

Если вычислены значения формул A и B в заданной интерпретации на заданном наборе значений входящих в них свободных переменных, то значения формул $\neg A$ и A*B вычисляются в соответсвие с таблицами истинности для логических связок \neg и *.

Если x, y_1, \ldots, y_m — список (быть может пустой) всех свободных переменных, входящих в формулу $P(x, y_1, \ldots, y_m)$, то для вычисления значения формулы $\forall x P(x, y_1, \ldots, y_m)$ ($\exists x P(x, y_1, \ldots, y_m)$) на наборе значений b_1, \ldots, b_m свободных переменных y_1, \ldots, y_m достаточно вычислить значения $P(a, b_1, \ldots, b_m)$ при $a \in D$. Если при всех значениях $a \in D$ эти формулы истинны, то $\forall x P(x, b_1, \ldots, b_m)$ истинна, в противном случае она ложна (соответсвенно если при всех значениях $a \in D$ эти формулы ложны, то $\exists x P(x, b_1, \ldots, b_m)$ ложна, в противном случае она истина).

Следствие 10.1.

Из способа вычисления значения предикатной формулы следует, что оно зависит только от значений свободных переменных.

Определение 10.2.

Формула называется **истинной (ложной)** в заданной интерпретации, если она истинна (ложна) на всех наборах значений из области интерпретации, подставляемых вместо свободных вхождений переменных этой формулы.

Определение 10.3. Формула называется **выполнимой** в заданной интерпретации, если она истинна хоть на одном наборе значений из области интерпретации, подставляемых вместо свободных вхождений предметных переменных этой формулы.

Определение 10.4.

Формула называется **общезначимой (противоречием)**, если она истинна (ложна) в любой интерпретации.

Определение 10.5.

Формула называется **выполнимой**, если она выполнима хоть в одной интерпретации.

То есть формула выполнима, если хоть в одной интерпретации хоть на одном наборе значений свободных переменных из области интерпретации она истинна.

Определение 10.6.

Формула B логически следует из формул A_1, \ldots, A_n , если в любой интерпретации на любом наборе значений свободных переменных, для которых все формулы A_1, \ldots, A_n истинны, формула B тоже истинна.

Обозначение 10.1. $A_1, ..., A_n \Rightarrow B$

При этом $(A_1, \ldots, A_n \Rightarrow B) \Leftrightarrow (A_1 \& \ldots \& A_n \to B)$ общезначима).

Обозначение 10.2.

 $[P]_t^x$ – результат подстановки терма t в формулу P вместо всех свободных вхождений переменной x.

11 Смысл формулы с n свободными переменными в заданной интерпретации.

Определение 11.1 (Высказывание).

Высказыванием называется утверждение, относительно которого можно сказать истинно оно или ложно.

Значение предикатной формулы зависит только от значений свободных переменных.

Определение 11.2 (Замкнутая формула).

Формула без свободных переменных называется замкнутой.

- замкнутая формула задаёт высказывание
- ullet формула с одной свободной переменной задаёт свойство объектов из D
- \bullet формула с n свободными переменными задат n-местное отношение между объектами из D

- 12 Секвенциальное исчисление предикатов. Необходимость соблюдения ограничений на кванторные правила (примеры).
- 13 Полнота и непротиворечивость секвенциального исчисления предикатов.

Теорема 13.1 (Выводимость чистой секвенции).

Чистая секвенция выводима в секвенциальном исчислении предикатов, тогда и только тогда, когда её формульный образ общезначим.

Следствие 13.1.

Секвенциальное исчисление предикатов, в котором используются только чистые формулы, полно и непротиворечиво.

- 14 Метод резолюций для исчисления предикатов. Обоснование доказательства следствия $A1, \dots, An \Rightarrow B1, \dots, Bk.$
- 15 Понятие формальной теории. Формальные теории с равенством (примеры). Аксиомы для равенства и аксиомы согласования с равенством.

Определение 15.1 (Формальная теория).

Для того, чтобы задать формальную теорию, достаточно

• задать её сигнатуру < D, F, P>, где

D – конечное множество констант

F – конечное множество функциональных символов

Р – конечное множество предикатных символов

- задать собственные аксиомы ΦT (если равенство входит в P, то аксиомы для равенства)
- выбрать исчисления, в которых будем строить вывод

Определение 15.2 (Формальная теория с равенством).

Формальная теория называется формальной теорией с равенством, если в ней имеется выделенный двухместный предикат = и выполнимы следующие аксиомы

• ER $\forall x (x = x)$

•
$$ES$$
 $\forall xy (x = y \rightarrow y = x)$

•
$$ET$$
 $\forall xyz \ (x = y \& y = z \rightarrow x = z)$

Аксиома 15.1 (Аксиомы согласования с равенством).

•
$$\forall xy (x = y \to (P(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) \leftrightarrow P(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n))$$

•
$$\forall xy \ (x = y \to (f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) \leftrightarrow f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n))$$

Пример 15.1 (Примеры формальных теорий с равенством).

- формальная арифметика
- теория групп (равенство элементов)
- геометрия (равенство точек)

16 Формальная арифметика (аксиоматическая теория чисел).

- FA формальная теория в сигнатуре < 0; $S, +, *, \wedge; =>$
- аксиомы согласования с равенством:

$$- \ \forall xy \ (x = y \ \rightarrow \ S(x) = S(y))$$

$$- \forall xya \ (x = y \rightarrow x + a = y + a)$$

$$- \forall xya \ (x = y \rightarrow a + x = a + y)$$

Аналогично для * и ∧.

$$\bullet \ \forall xyz \ (x = y \ \& \ y = z \ \to \ (x * y) * z = x * (y * z))$$

•
$$\forall xya \ (x = y \rightarrow x * a = y * a)$$

•
$$\forall xya \ (x = y \rightarrow a * x = a * y)$$

Аксиома 16.1 (Собственные аксиомы арифметики).

1.
$$\forall x \neg (S(x) = 0)$$

2. Однозначность

$$\forall xy \ (S(x) = S(y) \ \to \ x = y)$$

3. Определение сложения

$$\forall x \ (x+0=x)$$

$$\forall xy \ (x + S(y) = S(x + y))$$

4. Определение умножения

$$\forall x \ (x * 0 = 0)$$
$$\forall xy \ (x * S(y) = x * y + x)$$

5.
$$\forall x \ (x^0 = S(0))$$
$$\forall xy \ x^{S(y)} = x^y * x$$

6. Аксиома индукции:

для всякой формулы A(x) со свободной переменной x:

$$A(0) \ \& \ \forall x \ (A(x) \ \to \ A(S(x))) \ \to \ \forall x \ A(x)$$

17 Первая теорема Геделя.

Пусть задан алфавит $\{a_1, \ldots, a_{p-1}\}$

 $\#a_i \stackrel{\mathrm{def}}{=} i$ – номер символа a_i

 $\#(a_{i_1}, \ldots, a_{i_n}) \stackrel{\text{def}}{=} i_1 \ldots i_n$ – число, записанное цифрами i_1, \ldots, i_n в p-ичной системе счисления.

Т.к. формула в формальной арифметике – это конечный набор символов в фиксированном алфавите, то каждое слово получает номер, по которому формула может быть восстановлена.

Т.к. вывод – конечная последовательность формул, т.е. конечное слово, то каждый вывод имеет номер и по нему однозначно восстанавливается.

Гёдель рассмотрел предикат:

 $\models (X, \# \varphi) - X$ является номером вывода формулы φ

Для него доказано, что истинность и выводимость одно и то же.

После этого была рассмотрена формула:

$$G(\#\varphi) = \forall X \ (\models (X, \#\varphi) \rightarrow \exists Y \ (Y < X \& \models (Y, \#\neg\varphi)))$$

Свойство формулы $G(\#\varphi)$. Если FA непротиворечиво, то

- если φ выводима, то $G(\#\varphi) = \Pi$.
- если φ невыводима, то $G(\#\varphi) = \mathcal{U}$.

Формула $G(\#\varphi)$ имеет номер. Обозначим его #G. Рассмотрим формулу G(#G).

Теорема 17.1 (Первая теорема Гёделя (три формулировки)). 1. Если FA непротиворечива, то она не полна (философская).

2. Если FA непротиворечива, то в ней существует замкнутая формула такая, что невыводима ни она, ни её отрицание.

3. Если FA непротиворечива, то в ней не выводимы ни G(#G), ни $\neg G(\#G)$.

Утверждение 17.1. Если FA непротиворечива, то φ выводима тогда и только тогда, когда $G(\#\varphi)$.

18 Вторая теорема Геделя.

Лемма 18.1.

FA непротиворечива тогда и только тогда, когда в ней выводима формула S(0)=0 (т.е. 1=0)

Теорема 18.1 (Вторая теорема Гёделя).

- 1. Если средствами формальной арифметики можно доказать, что она непротиворечива, то она противоречива.
- 2. Если в формальной арифметике выводима формула $\forall x \neg \models (x, \#(S(0) = 0)),$ то в ней выводима формула S(0) = 0.
- 19 Консервативность расширения формальной арифметики бесконечно большими числами.
- 20 Парадокс Рассела в наивной теории множеств. Его отсутствие в аксиоматических теориях множеств.
 - Наивная теория множеств (Георг Кантор)
 - понятие "множество" является неопределяемым понятием, которое может быть задано в виде $\{x: \varphi(x)\}$ "множество объектов, удовлетворяющих формуле $\varphi(x)$ некоторого формализованного языка"
 - $-M = \{x: \varphi(x)\}$, принадлежность ко множеству определяется эквивалентностью $\forall x \ (x \in M \leftrightarrow \varphi(x))$
 - Парадокс Рассела
 - рассмотрим множество $A = \{x : \neg (x \in x)\}$ (множества, которые не содержат себя в качестве элемента) $A \in A$ или $A \notin A$?
 - доказано, что ни то, ни другое не верно
 - $-A \in A \leftrightarrow \neg (A \in A)$ эта формула ложна, значит в наивной теории множеств доказуема ложная формула; можем для всякой формулы доказать и P, и $\neg P$, т.е. наивная теория множеств противоречива.
 - В теории типов Рассела и Аксиоматической теории множеств Цермело-Френкеля парадокса нет.

- 21 Теория типов Рассела.
- 22 Аксиоматическая теория множеств Цермело-Френкеля
- 23 Ординальные числа.
- 24 Конструктивные объекты. Формулы Бэкуса.
- 25 Примеры математических понятий алгоритма.