Undergraduate Complexity Theory Lecture 22: BPP

Marcythm

July 24, 2022

1 Lecture Notes

Definition 1.1. BPP, bounded error probabilistic computation (two sided-error prob poly time), $L \in \mathsf{BPP}$ if $\exists \mathsf{PTM}\ N$ s.t.

$$x \in L \implies \mathbf{Pr}[N(x) \text{ accept}] \ge 2/3$$

 $x \notin L \implies \mathbf{Pr}[N(x) \text{ accept}] \le 1/3$

current hierarchy: $P \subseteq \mathsf{ZPP} \subseteq \mathsf{RP}, \mathsf{coRP} \subseteq \mathsf{RP} \cup \mathsf{coRP} \subseteq \mathsf{BPP},$ all these are believed to be equal! Alternative View: DTM M(x,r) with input x and a random tape input r.

Lemma 1.2. BPP \subseteq EXP.

Corollary 1.3. $BPP \subseteq PSPACE$.

 $\mathsf{BPP} \subset \mathsf{NP}$? not known. Even cannot separate BPP from NEXP .

Theorem 1.4. $P = NP \implies P = BPP$ (contra: $P \neq BPP \implies P \neq NP$).

Definition 1.5. P/poly is the class of languages with a circuit family of poly size deciding it.

Theorem 1.6. $BPP \subseteq P/poly$.

Proof. $L \in \mathsf{BPP}$, $\exists \mathsf{DTM}\ M$, M(x,r) acc with $p \geq 1 - 2^{-2|x|}$ if $x \in L$, acc with $p \leq 2^{-2|x|}$ if $x \notin L$ in poly time. M can be translated into poly size circuit C_M , which has two kinds of inputs, x and r. The r input is what we should get rid of.

For each fixed $x \in \{0,1\}^n$, all but $1/4^n$ of random coins r yield correct answer. Since only 2^n possible x and $1/4^n$ bad r for each, there are at most $1/2^n$ rs are bad for some x, i.e. most of rs are simultaneously good for all x, so find them and hardwire them into circuit.

Derandomization:

Theorem 1.7 ('98). If 3SAT requires circuit family of size $2^{\delta n}$ for some $\delta > 0$, then P = BPP.

two major steps: (worst-case hardness) to (strong average-case hardness) to (PRNG)

2 Reading

2.1 sipser 10.2 (Probabilistic Algorithms)

2.1.1 Read-Once Branching Programs

proof of $EQ_{\mathsf{ROBP}} \in \mathsf{BPP}$: construct polynomial, randomly select an element in finite field.