ADVANCED REVISION SHEET

LCD MATHEMATICS

Part – 1 (One Option Correct)

- The value of $\lim_{x \to \frac{\sqrt{3}}{2}} \frac{\frac{\pi}{3} \sin^{-1}(2x\sqrt{1 x^2})}{x \frac{\sqrt{3}}{2}}$ is 1.

- (A) 1 (B) 2 (C) 3 (D) 4 If $f(x) = \frac{1}{3} \left(f(x+1) + \frac{5}{f(x+2)} \right)$, f(x) > 0 $0 \forall x \in R$ and $\lim_{x \to \infty} f(x)$ exist finitely then $\lim_{x \to \infty} f(x) = 1$ 2.
 - (A) 0
- (B) $\sqrt{\frac{2}{5}}$

- The value of $\lim_{n\to\infty} \left(\frac{\sin\left\{\frac{2}{n}\right\}}{\left[2n\tan\frac{1}{n}\right]\left(\tan\frac{1}{n}\right)} + \frac{1}{n^2 + \cos n} \right)^{n^2}$ where [.] = GIF and {.} = FPF, is 3.

- The number of real valued continuous functions f(with domain R) such that if x is rational then f(x) is 4. (B) 2 (D) Infinite
- Set of all values of x such that $\lim_{n\to\infty} \frac{1}{1+\left(\frac{4\tan^{-1}2x}{\pi}\right)^{2n}}$ is non-zero and finite number, where n \square N, is 5. (A) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (B) $\left[0, \frac{1}{2}\right]$ (C) (-1, 1) (D) $\left[-\frac{1}{2}, 0\right]$ Range of the function y = h(x) is (A) $\left[0, \frac{\pi}{2}\right]$ (B) $\left[-\frac{\pi}{2}, 0\right]$ (C) R (D) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

- 6.

- 7. If $f(x) = [x] (\sin kx)^p$ is continuous for real x, then
 - (A) $k \in \{n\pi, n \in I\}, p > 0$

- (B) $k \in \{2n\pi, n \in I\}, p > 0$
- (C) $k \in \{n\pi, n \in I\}, p \in R \{0\}$
- (D) $k \in \{n\pi, n \in I, n \neq 0\}, p \in R \{0\}$
- A function $f: R \to R$ is defined as f(x) = 15 |x 10|8.
 - The number of points at which the function g(x) = f(f(x)) is not differentiable is

The graph of the function $f(x) = \lim_{t \to 0} \left(\frac{2x}{\pi} \cot^{-1} \frac{x}{t^2} \right)$, is 9.

Part – 2 (One or More than One Option Correct)

10. Let
$$f(x) = \frac{3}{4}x + 1$$
 and $f^{n+1}(x) = f(f^n(x)) \ \forall n \ge 1, n \in n$. If $\lim_{n \to \infty} f^n(x) = \lambda$, then

(A) λ is independent of x.

- (C) line $y = \lambda$ has slope 0.
- (D) line $4y = \lambda$ touches a circle of unit radius with centre at origin.

11. If
$$f(x) = \lim_{x \to \infty} x \sin b \ln \left(\frac{\sin a + \frac{1}{x}}{\sin a} \right)$$
 where $a, b \in \left(0, \frac{\pi}{2} \right)$, then $f(x)$ can take value(s)

- (D) 5

12.
$$\lim_{x \to \infty} \left(\frac{ax+3}{bx+2} \right)^{bx}$$
 is equal to (a and b are positive)

- (B) e if a = b
- (C) ∞ if a > b
- (D) 1 if a > b

13. If
$$f(x) = [4x] + \{3x\}$$
 where [.] denotes GIF and $\{.\}$ denotes FPF then for $x \in [0, 5]$

- (A) number of points of discontinuity of f(x) are 25
- (B) f'(0) = 0

(C) f'(x) = 3 wherever defined

(D) f(x) < 20

14. If
$$p = \lim_{n \to \infty} n^{-n^2} \{(n+2^\circ)(n+2^{-1})(n+2^{-2})...(n+2^{-n+1})\}^n$$
 then which of the following is true?

- (A) p is irrational
- (B) integer nearest to p is 7 (C) $p > \lim_{x \to \infty} \left(\frac{1+x}{x}\right)^{\ln x-x}$ (D) all of these

15. If
$$f(x) = ||\sin(|x|-1)| - 2|$$
 then

(A) f(x) is continuous at x = 2

(B) f(x) is differentiable at x = 2

(C) $f'(2) = \cos 1$

(D) f(x) is non-differentiable at x = 0

16. If
$$f(x) = \begin{cases} \frac{1}{x^2} - \frac{1}{x^2}, & x < 0 \\ \sin^{-1}(x+b), & x \ge 0 \end{cases}$$
 then at $x = 0$, $f(x)$ is

(A) continuous if b = 0

(B) discontinuous for any areal b

(C) differentiable for $b = \pm 1$

(D) non-differentiable for any real b

17. If
$$f(x) =\begin{cases} \frac{[\tan x]}{[x]}, & [x] \neq 0 \\ 0, & [x] = 0 \end{cases}$$
, where [.]. = GIF, then

(A) $\lim_{x \to 0^{-}} f(x) = 1$ (B) $\lim_{x \to 0^{+}} f(x) = 1$ (C) $\lim_{x \to 0^{+}} f(x) = 0$ (D) $f(x) = 0$

18. If
$$x = a$$
 satisfies equation $\tan^{-1}(x+2) + \cot^{-1}\sqrt{4x+20}$ $\lim_{x \to \frac{\pi}{2}} \frac{\sin(x \cos x)}{\cos(x \sin x)}$ and $\lim_{x \to 0} \frac{\sqrt[4]{1+x} - \frac{(1+x)^{\frac{1}{x}}}{e} - bx}{5x + kx^2 + x^3} = 0$ then

(A) $a = 2$ (B) $ab = 3$ (C) $a = 1, b = 3$ (D) $k \in \mathbb{R}$

- (A) a = 2

19.
$$\lim_{x\to 0} \left[m \frac{\sin x}{x} \right]$$
, where $m \in I$ and [.] denotes greatest integer function, is

- (B) m 1 if m > 0 (C) m 1 if m < 0 (D) m if m > 0

20.
$$f(x) = \frac{[x]+1}{\{x\}+1}$$
 for $f: [0, \frac{5}{2}) \rightarrow (\frac{1}{2}, 3]$, where [.] represents greatest integer function and {.} represents

fractional part of x, then which of the following is true.

- (A) f (x) is injective discontinuous function
- (B) f (x) is surjective non differentiable function

(C) $\min \left(\lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{+}} f(x) \right) = f(1)$

(D) max (x values of point of discoutinuity) = f(1)

Given $f(x) = \begin{bmatrix} 3 - \left[\cot^{-1}\left(\frac{2x^3 - 3}{x^2}\right)\right] & \text{for } x > 0 \\ \left\{x^2\right\} \cos\left(e^{1/x}\right) & \text{for } x < 0 \end{bmatrix}$ where $\{\}$ & [] denotes the fractional part and the integral part 21.

functions respectively, then which of the following statement does not hold good.

(A)
$$f(0^{-}) = 0$$

(B)
$$f(0^+) = 3$$

(C)
$$f(0) = 0 \Rightarrow$$
 continuity of f at $x = 0$

Part – 3 (Paragraph Type Question)

Comprehension # 2

Let $f(x) = \lim_{n \to \infty} \left(\cos \sqrt{\frac{x}{n}} \right)^n$, $g(x) = \lim_{n \to \infty} \left(1 - x + x \sqrt[n]{e} \right)^n$. Now, consider the function y = h(x), where h(x) = h(x) $\tan^{-1}(g^{-1}f^{-1}(x)).$

- $\lim_{x \to 0} \frac{\ln (f(x))}{\ln (g(x))}$ is equal to 22.

24.

- (C) 0

(D) 1

- Domain of the function y = h(x) is 23.
 - $(A) (0, \infty)$
- (B) R

- (C)(0,1)
- (D) [0, 1]

Part – 4 (Matrix Match Type Question)

Column - I Number of points of discontinuity of (A)

$$f(x) = \tan^2 x - \sec^2 x \text{ in } (0, 2\pi) \text{ is}$$

(q) 2

(p) 1

Column - II

Number of points at which (B) $f(x) = \sin^{-1} x + \tan^{-1} x + \cot^{-1} x$ is

$$f(x) = \sin^{-1} x + \tan^{-1} x + \cot^{-1} x$$
 is
non-differentiable in (-1, 1) is

- (C) Number of points of discontinuity of $y = [\sin x], x \in [0, 2\pi)$ where [.]
 - represents greatest integer function
 - Number of points where $y = |(x-1)^3| + |(x-2)^5| + |(x-3)|$

(s) 3

(p) 0

(r) 0

is non-differentiable 25. Column - I

(D)

Column - II

- Number of points where the function (A)
 - $f(x) = \begin{cases} 1 + \left\lfloor \cos \frac{\pi x}{2} \right\rfloor & 1 < x \le 2 \\ 1 \{x\} & 0 \le x < 1 \text{ and } f(1) = 0 \text{ is} \\ |\sin \pi x| & -1 \le x < 0 \end{cases}$

continuous but non-differentiable

 $f(x) = \begin{cases} x^2 e^{1/x} &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}, \text{ then } f'(0^-) =$ (B)

(q) 1

(r) 2

The number of points at which $g(x) = \frac{1}{1 + \frac{2}{f(x)}}$ is not (C)

differentiable where $f(x) = \frac{1}{1 + \frac{1}{x}}$, is

- (D) Number of points where tangent does not exist for the curve $y = sgn(x^2 1)$
- (s) 3

26. Column – I

For $x \in R$,

- (A) $f(x) = {\sin(px)}$ is discontinuous for $x \in$
- (p) [0, 1)

Column - II

(B) $g(x) = \left\{ \frac{\sin x}{x} \right\}$ is discontinuous for $x \in$

- (q) {1, 2}
- (C) $h(x) = \frac{\{\sin x\}}{\{x\}}$ is non-differentiable for $x \in$
- (r) {0}
- (D) $u(x) = \frac{(\sin x)}{[x]}$ is discontinuous function for $x \in$
- (s) $\left\{\frac{1}{2}\right\}$

27. Column – I

Column - II

- (A) Point of discontinuity of $y = \frac{1}{t^2 t 2}$ where $t = \frac{1}{x + 1}$
- (p) $-\frac{1}{2}$

(B) Points of continuity of y = [x] + [-x]

(q) -2

(C) $y = [\sin(\pi x)]$ is non differentiable at

- (r) 1
- (D) f(x) = |2x + 1| + |x + 2| |x + 1| |x 4|is non differentiable at
- (s) 4

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	С	Α	A	A	D	A	D	С	ACD
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	BD	AC	AC	ABCD	ABD	AD	ABD	BD	AB	ABD
Que.	21	22	23	24	25	26	27			
Ans.	BD	В	С	$(A) \rightarrow (q),$	$(A) \rightarrow (q),$	$(A) \rightarrow (r, s),$	$(A) \rightarrow p,q,r),$			
				$(B) \rightarrow (r),$	$(B) \rightarrow (p),$	$(B) \rightarrow (r),$	$(B) \rightarrow (p),$			
				$(C) \rightarrow (q),$	$(C) \rightarrow (s),$	$(C) \rightarrow (q, r),$	$(C) \rightarrow (q,r,s),$			
				$(D) \rightarrow (s)$	$(D) \rightarrow (p)$	$(D) \rightarrow (p,q,r)$	$(D) \rightarrow (p,q,r,s)$			