LISTING OF THE CLAIMS

Claims 1-15 (Cancelled).

Claim 16 (Previously presented): A β -lactamase resistant cephalosporin ester compound and salts thereof represented by formula (I) as follows:

RCONH
$$S$$
 $C=O$
 $C+O$
 $C+O$
 $C+O$
 $C+O$
 $C+O$

wherein,

when R is
$$CH$$
— , R₁ is CH_3 (YR-1)

when R is
$$R_1$$
 is R_2 (YR-2) R_3 R_4 is R_4 is R_5 R_6 R_6 R_7 R_8 R_8 R_8 R_9 $R_$

when R is
$$CH_3$$
 (YR-3) when R is CH_3 (YR-4) CH_3 (YR-4) CH_3 (YR-4) CH_3 (YR-5) or, when R is CH_3 (YR-6).

Claim 17 (Previously presented): A pharmaceutical salt of the β-lactamase resistant cephalosporin ester compound according to claim 16.

Claim 18 (Previously presented): The pharmaceutical salt of the β-lactamase resistant cephalosporin ester compound according to claim 17, wherein the pharmaceutical salt is an inorganic salt or an organic acid salt.

Claim 19 (Previously presented): The pharmaceutical salt of the β -lactamase resistant cephalosporin ester compound according to claim 18, wherein the inorganic salt or organic acid salt is at least one of a hydrochloride, a sulphate, a p-toluenesulfonate, a tartrate, a maleate Response After Final Rejection (10/580,561)

and a lactate.

Claim 20 (Previously presented): A method for treating infection, comprising:

administering orally to a patient in need of treatment, an effective amount of a composition comprising the β -lactamase resistant cephalosporin ester compound according to claim 16 as an effective ingredient.

Claim 21 (Previously presented): A composition, comprising:

the β-lactamase resistant cephalosporin ester compound according to claim 16; and a physiologically acceptable carrier.

Claim 22 (Previously presented): A method for treating infection, comprising:

administering orally to a patient in need of treatment, an effective amount of a composition comprising the pharmaceutical salt according to claim 17 as an effective ingredient.

Claim 23 (Previously presented): A composition, comprising:

the pharmaceutical salt according to claim 17; and

a physiologically acceptable carrier.

Claim 24 (Previously presented): A intermediate compound represented by formula (IV) as follows:

$$\begin{array}{c} R_2CHCONH \\ N \\ CH \\ C=O \\ \end{array}$$
 (IV) wherein, $R_1=CH_3$ or CI ; $R_2=$, or CH_2

Claim 25 (Previously presented): A pharmaceutical salt of a β -lactamase resistant cephalosporin ester compound in which the a β -lactamase resistant cephalosporin ester compound is represented by formula (I) as follows:

RCONH
$$S$$
 $C=0$
 $C+0$
 $C+1$
 $C+1$

wherein,

when R is
$$CH$$
— , R_1 is CH_3 (YR-1) NH_2

when R is
$$R_1$$
 is R_2 (YR-2) R_2 R_3 R_4 is R_4 is R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_9 $R_$

when R is
$$CH_3$$
 , R₁ is CH_3 (YR-3)

when R is
$$CH-$$
 , R₁ is CH_3 (YR-4)

when R is
$$HO \longrightarrow CH - CH_3$$
 (YR-5) NH_2

or, when R is
$$H_2N$$
 S $NOCH_3$, R_1 is $-CI$ (YR-6), and

wherein the pharmaceutical salt is an inorganic salt or an organic acid salt of the β lactamase resistant cephalosporin ester compound represented by formula (I) and is at least one of a hydrochloride, a sulphate, a p-toluenesulfonate, a tartrate, a maleate and a lactate.

Claim 26 (Previously presented): A method for treating infection, comprising:

administering orally to a patient in need of treatment, an effective amount of an antibiotic composition comprising the pharmaceutical salt according to claim 25 as an effective ingredient.

Claim 27 (Previously presented): An antibiotic composition, comprising: the pharmaceutical salt according to claim 25; and an incipient suitable for oral administration.