TP Nº1

Modulation & Démodulation d'Amplitude

On dispose de deux maquettes :

- La maquette 736 201 de modulation d'amplitude,
- La maquette 736 221 de démodulation d'amplitude.

Partic I: Modulation d'amplitude

- Etudier et donner le rôle des différents blocs de la maquette de modulation.
- Prendre S=2 V et F=2 kHz.

1- Modulation DSB-TC

- Visualiser à l'oscilloscope le signal modulant s(t) sur la voie 1 et le signal modulé c(t) sur la voie 2 puis faire varier la fréquence et l'amplitude du signal modulant s(t). Que remarquez-vous.
- Représentez pour plusieurs valeurs de m le signal modulé e(t) (m<1, m=1 et m>1). Donner une méthode pour la mesure de m et les comparez avec les valeurs théoriques.
- Mettez l'oscilloscope à la position XY et faire varier l'amplitude du signal modulant. Que remarquez-vous.
- Représentez pour plusieurs valeurs de m le signal modulé e(t) (m≤1, m=1 et m>1). Donner une méthode de mesure de m et les comparez avec les valeurs théoriques.
- Représentez le spectre fréquentiel du signal modulé. Déduire la bande de fréquence du signal modulé.

2- Modulation DSB-SC

- Visualiser à l'oscilloscope le signal modulant s(t) sur la voie 1 et le signal modulé e(t) sur la voie 2 puis faire varier la fréquence et l'amplitude du signal modulant s(t). Que remarquezvous.
- Mettez l'oscilloscope à la position XY et faire varier l'amplitude du signal modulant. Que remarquez-vous.
- Représentez le spectre fréquentiel du signal modulé. Déduire la bande de fréquence du signal modulé.

3- Modulation SSB-SC

Refaire les mêmes questions que dans la modulation DSB-SC. Il s'agit de l'USB ou de l'LSB?

4- Modulation SSB-TC

Refaire les mêmes questions que dans la modulation DSB-TC

Partie II: Démodulation d'amplitude

Etudier et donner le rôle des différents blocs de la maquette de démodulation. De quel type de démodulation AM s'agit-il?

1- Démodulation DSB-TC

- Connecter la sortie du modulateur directement à l'entrée du démodulateur (sans passer par le mitre CH2) et connecter le signal de porteuse du module de transmission (avant le déphaseur) à la deuxième entrée du démodulateur. Visualiser à l'oscilloscope le signal modulant s(t) et le signal démodulé.
- Etudier l'influence du déphasage q entre la porteuse du signal modulé et celle du signal démodulé. Prendre S=2 V et F=2kHz et complétez le tableau suivant, puis tracez la courbe E_D/E_{Dmax} en fonction du déphasage φ.

φ (°)	E _D (V)	E _D /E _{Dmax}	Cos φ
0			
18			
36			
54			
72			
90		Margar Mills	dere.
108			

Hante-Briguere

 Etude de la VCO de la PLL. Complétez le tableau suivant et tracez la courbe l'veo en fonction de la tension de commande (U_F).

$U_F(V)$	Fyco (kHz)
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	

 Utiliser maintenant la PLL pour la démodulation. Comparez le signal de la porteuse de modulation et celui de la démodulation.

2- Démodulation DSB-SC

- Positionner l'interrupteur modulateur sur la position CARRIER OFF puis visualiser à l'oscilloscope le signal modulant s(t) et le signal démodulé avec et sans PLL (utiliser f_φ avant le déphaseur et faire varier φ).
- Déterminer les conditions d'une bonne démodulation.

2- Démodulation SSB-RC (porteuse atténuée)

- Positionner l'interrupteur modulateur sur la position CARRIER ON puis visualiser à l'oscilloscope le signal modulant s(t) et le signal modulé à la sortie du filtre CH2. Faire varier l'amplitude et la fréquence du signal modulant. Que remarquez-vous.
- Déconnecter le signal modulant et mesurer les tensions à l'entée et à la sortie du filtre CH2 puis calculer l'atténuation de la porteuse (E_{oRC}/E_o).
- Visualiser le signal démodulé à l'oscilloscope.

2- Démodulation SSB-SC

 Positionner l'interrupteur modulateur sur la position CARRIER OFF puis visualiser à l'oscilloscope le signal modulant s(t) et le signal démodulé.