A, B, C,	D, E, F, G	, +1	
[0,0,2,	1 , 2 , 2,	2, 2]	
We will also ke	ep track of	the nodes wi	th in-degree of D with a quave, and we will decrease
the integree	of all af	fectual modes	. Begin:
Queve: A,B >	Move A	cto top sor	+ > top sort = A, in-degree of C =1
			sort = A, B, in -degree of C=0
Queve: C> Mo	ie C to 3	top sort -> Top s	sort = A, B, C, in -degree of D, E =0
			A, B, C, in-degree of D, E=0
Queve: C > Mon Queve: D, E > N	Hove O to		A, B, C, D, in-degree of F=1
Queve: D, E > N	Hove 0 to		A, B, C, D, in-degree of F=1 A,B, C, D, E, indegree of F=0
Queve:D, E > N	dove 0 to		A, B, C, D, in-degree of F=1 A,B, C, D, E, indegree of F=0 A, B, C, D, E, F, in-degree of G, H=0
Queue: D, E -> N E -> F ->	Hove 0 to	top sort ~?	A, B, C, D, in-degree of F=1 A,B,C,D,E, indegree of F=0 A,B,C,D,E,F, in-degree of G, H=0 A,B,C,D,E,F,G
Queue: D, E > N E > F > G, H >	Hove D to	+ + + + + + + + + + + + + + + + + + +	A, B, C, D, in-degree of F=1 A,B, C, D, E, indegree of F=0 A, B, C, D, E, F, in-degree of G, H=0

5. `

a. For each C_i (i in [1, k])

For each v in C_i

Map[v]=i

Run time of O(n)

b. For each C_i (i in [1, k])

For each v in C_i up until the number of edges in C_i or m

Find some node x that is connected to some node v by an edge

If Map[v] != Map[x]

Add $v \rightarrow x$ into L

Run time on O(m)

c. Extra: Remove all dependencies that satisfy the condition $u \to v$ is a duplicate to $x \to y$ if v is a different node from y and Map[u] == Map[x] and Map[v] == Map[y]

- a. If r is a root, then the in-degree must be zero. This is because we have 2 presumptions here: 1) the root must be able to reach every V in the graph 2) G is acyclic.
 - Counterexample: Suppose there is an edge that connects v to r. This implies that there is a path from v to r. Similarly, we already know that r must have a path to v as the condition states that the root must be able to reach every V in the graph. Hence, we are creating a path from r to v and one from v to r. This is a cycle and would break our second condition that G is acyclic, meaning we cannot have a root with any incoming edges, only outgoing.
- b. If r can reach any vertex in the graph, and r has an in-degree of 0, then no other point can have an in-degree of 0. This is because if some v has an in-degree of 0, then r will not be able to reach it (as there are no incoming edges). If r cannot reach v, then r and v cannot be roots as they have no connection, thus breaking the second condition.
- c. If there is more than one node with an in-degree of 0, this will imply that r is not a root and that the graph is somehow disconnected. If the graph is connected and r has an in-degree of 0, this implies that r can reach every other node by some path, meaning that r must be a root, as stated by the first condition.

7.

- a. It is important to note that a path in G is called k-alternating if it changes color *at least* k times (not necessarily exactly k).
 - i. Run a topological sorting algorithm such that the runtime is O(|V| + |E|) (Kahn)
 - ii. Run DFS starting on the first node with in-degree = 0

 During DFS: If a node in the path changes the color from the starting color, increment a counter variable associated with that particular tree branch. (Cross edges will already be accounted for)
 - iii. Suppose i is the number of tree branches

If i > 1

For 0 to i-1

m[v] = max(counter at branch i, counter at branch i+1)

Return m[v] >= k //boolean

- b. An arbitrary graph implies that there could a cycle(s) in the graph.
 - i. Therefore, run the SCC algorithm
 - ii. If a particular SCC contains 2 or more nodes with different colors, then return true. This is because we know that there a cycle in each SCC, and we can achieve at least k by just remaining in the loop. Once k is achieved, we continue to our path.
 - iii. Else if all of the nodes in the SCC have the same color, check for a k-alternating path the same way we did in part a.

8.

- a. First run reverse topological sort so that you can begin with the largest value
- b. Run the following algorithm similar to the one presented in class with the coin problem

P[v] is the max number off stones what can be on a path starting at v N[u] is the number of stones on a particular spot

```
for i in reverse [0..n)

u \leftarrow TopSort[i]

m \leftarrow 0

for each v \in Sccessor(u) do

if P[v] > m then m \leftarrow min(P[v], c(e)), where e is the edge from v

to its successor

P[u] \leftarrow N[u] + m
```

c. However, c(e) must be considered. If c(e) is less than P[v] at a particular edge, then we must drop stones until we can cross the edge.

- a. Run a Depth-First Search algorithm on some node that need not be a root with runtime O(|V| + |E|). If there is more than one tree in the DFS forest, this must mean that there is a particular intersection that we cannot reach from some point on a different tree using only one-way streets.
- b. Run a DFS with runtime O(|V| + |E|) starting on the node with the smallest in-degree (if possible)
 If all nodes are connected by tree edges, then the root of the tree is privileged
 If there is a back edge from a node to the root, then all of the nodes including and above that node will also be privileged
- c. First, compute G^T
 Then, call DFS(G^T), and order the nodes 1, . . . , n in order of decreasing finishing time (as in DFSTopSort)
 Lastly, call DFS(G) but in the top-level loop, process in the order 1, . . . , n
 The result will be all the safe spaces or Strongly Connected Components
 This will run in time O(|V| + |E|).