

INTERPOLAÇÃO POLINOMIAL E AJUSTE DE CURVAS 4ª LISTA DE EXERCÍCIOS

Arredonde os valores para 4 casas decimais.

1 Considere a função y = f(x) definida pela tabela:

X	-2	0	1	2	3
F(x)	1,3	2	-2,3	-1,3	2,5

Calcule um valor aproximado para f(1,27) utilizando um polinômio de grau 3 e a fórmula de **Lagrange**.

2 Dada a tabela abaixo, calcule e^{3.12} usando um polinômio de interpolação sobre três pontos e a Fórmula de Interpolação de **Newton-Gregory.**

·			,	<u> </u>				
X	2,4	2,6	2,8	3,0	3,2	3,4	3,6	3,8
e ^x	11,02	13,46	16,44	20,08	24,53	29,96	36,59	44,70

3 As densidades do sódio para três temperaturas são dadas a seguir:

i	Temperatura T _i	Densidade □ _i
0	94°C	929 kg/m ³
1	205°C	902 kg/m ³
2	371°C	860 kg/m ³

Utilizando a Fórmula de Interpolação de **Newton**, estime o valor aproximado da densidade para T = 250°C.

4 Um paraquedista realizou seis saltos, saltando de alturas distintas em cada salto. Foi testada a precisão de seus saltos em relação a um alvo de raio de 5m, de acordo com a altura. A distância apresentada na tabela abaixo é relativa a circunferência.

ALTURA (m)	DISTÂNCIA DO ALVO (m)
1º salto: 1500	35
2º salto: 1250	25
3º salto: 1000	15
4° salto: 750	10
5° salto: 500	7

Levando em consideração os dados acima, a que provável distância do alvo cairia o páraquedista se ele saltasse de uma altura de 1125m? Utilizando a Fórmula de interpolação de **Lagrange**.

5 Durante três dias consecutivos foi tomada a temperatura (em °C) numa região de uma cidade, por quatro vezes no período das 6 às 12 horas. Determine, usando todos os dados da tabela a seguir, a média das temperaturas dos três dias às 9 horas. Utilize a Fórmula de Interpolação de **Newton.**

-		Dia				
Hora	1	2	3			
6	18	17	18			
8	18 20	20 25	21			
10 12	24	25	22			
12	28	27	23			

6 Sendo 200 candelas a intensidade de uma lâmpada, foi calculada a iluminação em casos de incidência normal sobre uma superfície situada a distâncias conhecidas, quando para cada distância a iluminação, conforme a tabela a seguir.

Distância (metros)	1,00	1,25	1,50	1,75	2,00	2,25	2,50
lluminação (lux)	200,00	128,00	88,39	65,30	50,00	39,50	32,00

Usando polinômio de 3º grau, calcule a iluminação, quando a superfície estiver situada a 1,8 m da lâmpada. Utilize a Fórmula de Interpolação de **Newton-Gregory.**

7 Seja a tabela

Х	0,15	0,20	0,25	0,30	0,35	0,40
f(x)	0,12	0,16	0,19	0,22	0,25	0,27

Usando um polinômio interpolador de grau 2, obtenha o valor estimado de x para o qual f(x)=0.285.

8 Ajuste os pontos abaixo a uma reta.

Х	-2,0	-0,4	1,2	2,1	3,2	5,4
У	4,4	5,5	3,2	1,6	0,9	-0,6

9 Ajuste os pontos abaixo a um polinômio de grau 2.

Х	-2,0	-1,0	0,0	1,0	2,0
У	0,0	0,0	1,0	1,0	2,0

10 Ajuste os pontos abaixo as curvas $y = a.b^x e y = a.e^{b.x}$. Verifique qual o melhor ajuste.

Χ	0,1	1,5	3,3	4,5	5,0
У	5,9	8,8	12,0	19,8	21,5

11 Aproximar o polinômio y = 3 - x do intervalo [1, 2] por uma função $g(x) = a_1 + a_2 \frac{1}{x}$.