Teorija mere Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Teorija mere v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

L	Uvodna motivacija	4
2	Kolobar množic	5
3	Mera	9
1	Kompletna mera	14

1 Uvodna motivacija

Za motivacijo bomo obravnavali en primer, pred tem pa bomo na hitro povzeli definicijo Riemannovega integrala. Naj bo $f:[a,b]\to\mathbb{R}$ realna, zvezna in omejena funkcija ter naj bo $D=\{x_0,x_1,\ldots,x_n\}$ delitev intervala [a,b]. Označimo $\Delta x_i=x_i-x_{i-1}$ ter z vsakega intervala $[x_{i-1},x_i]$ izberemo neko poljubno točko \acute{x}_i . Vsoto $\sigma_n=\sum_{i=1}^n f(\acute{x}_i)\Delta x_i$ imenujemo Riemannova vsota. Če obstaja limita $\lim_{|\Delta x_i|\to 0}\sigma_n$ in je neodvisna od izbire delitve D in testnih točk na podintervalih, ki jih določa D, ji pravimo Riemannov integral funkcije f na [a,b]. Riemannov integral lahko posplošimo za računanje integralov funkcij večih spremenljivk, pri tem pa uporabljamo t. i. Jordanovo mero. Motivacijski primer bo pokazal, da ima konstrukcija s to mero nekatere pomanjkljivosti.

Zgled 1: Naj bo $R = \mathbb{Q} \cap \mathbb{R} = \{r_1, r_2, \ldots\}$ in definiramo funkcije $f_k : [0, 1] \to [0, 1]$ s predpisi

$$f_1(x) = \begin{cases} 1; & x = r_1 \\ 0; & x \neq r_1 \end{cases}, \ f_2(x) = \begin{cases} 1; & x = r_1 \lor x = r_2 \\ 0; & x \in R \setminus \{r_1, r_2\} \end{cases}$$

itd. Vidimo, da zaporedje $\{f_k\}$ konvergira k Dirichletovi funkciji

$$f_D(x) = \begin{cases} 1; & x \in \mathbb{Q} \\ 0; & x \notin \mathbb{Q} \end{cases}$$
 in dodatno opazimo, da je $\int_0^1 f_k(x) dx = 0 \forall k$, daj gre

limita Riemannovih vrst za vsako funkcijo zaporedja proti 0. To pa ne drži za Dirichletovo funkcijo. Če vse \acute{x}_i pripadajo \mathbb{Q} , bo $\sigma_n=1$, če so izbrane točke \acute{x}_i iracionalne, pa je $\sigma_n=0$. Limita Riemannovih vsot torej ni neodvisna od izbire delitve in testnih točk, torej integral f_D ne obstaja.

Francoski matematik Lebesgue se je pa problema lotil drugače: Najprej razdelimo zalogo vrednosti omejene zvezne funkcije f z delitvijo $\{y_0,y_1,\ldots,y_n\}$ in sestavimo množice $E_k=\{x\in[a,b];f(x)y_k\}$. Prepoznamo, da so $E_k\times\{y_k\}$ vodoravne daljice od $(f^{-1}(y_k),y_k)$ do (b,y_k) . Posledično z $|E_k|$ označimo dolžino daljice E_k . Potem je ploščina pod grafom funkcije f približno enaka vsoti $\sum_{k=1}^n (y_k-y_{k-1})|E_k|$. Izkaže pa se, da so lahko v splošnem množice E_k takšne, da koncept dolžine in prostornine za obravnavo več ne zadošča. Zato uvedemo koncept mere.

2 Kolobar množic

Začnimo ta odsek z definicijo.

Definicija 1: Naj bo X poljubna neprazna množica. Množica K podmnožic množice X je kolobar, če:

- $\forall A, B \in K : A \cup B \in K$
- $\forall A, B \in K : A \setminus B \in K$

Trditev 1. Če je K kolobar množic na X velja:

- 1. $\forall A, B \in K : A \triangle B \in K$
- $2. \ \forall A, B \in K : A \cap B \in K$
- $3. \emptyset \in K$

Dokaz. 1. Ta trditev sledi neposredno iz definicije kolobarja množice

2. Upoštevamo, da lahko zapišemo $A \cap B = (A \cup B) \setminus (A \triangle B)$ in potem ta trditev sledi po prejšnji.

3. Upoštevamo, da je $\emptyset = a \setminus A$.

Definicija 2:

- 1. Pravimo, da je množica E
 enota kolobarja K,če za $\forall A \in K$ velj
a $A \cap E = A.$
- 2. Kolobarju z enoto pravimo algebra.

Zgled 2:

- 1. Če je K kolobar nad X in je $X \in K$, potem je X enota kolobarja K.
- 2. Naj bo K kolobar vseh končnih podmnožic iz \mathbb{R} . Kolobar K nima enote. To lahko vidimo tako, da predpostavimo, da obstaja enota $E \in K$. Po definiciji K obstaja neko število $n_0 \in \mathbb{N}$, da je $|E| = n_0$. Sedaj vzamemo množico, $A \in K$ z močjo $n > n_0$. Ker je, po definiciji enote, $A \cap E = A$, sledi, da je $A \subseteq E$, torej je $|E| \ge n$. Sledi, da je $|E| > n_0$, kar nas pa privede v protislovje.

Definicija 3: Naj bo $\{A_k\}_{k=1}^{\infty}$ poljubno zaporedje množic.

- Pravimo, da je množica \overline{A} zgornja limita zaporedja $\{A_k\}_{k=1}^{\infty}$, če za $\forall x \in \overline{A} \exists \{k_i\}_{i=1}^{\infty} : x \in A_{k_i} \forall i \in \mathbb{N}.$
- Pravimo, da je \underline{A} spodnja limita zaporedja $\{A_k\}_{k=1}^{\infty}$, če za $\forall x \in \underline{A} \ \exists k_0 \in \mathbb{N} : x \in A_k \forall k \geq k_0$

Pišemo: $\overline{A} = \overline{\lim_{n \to \infty}} A_n$ in $\underline{A} = \lim_{n \to \infty} A_n$

Zgled 3: Poglejmo si zaporedje množic $a_n = \begin{cases} [0, 1 + \frac{1}{n}]; & n \text{ je sodo} \\ [1 - \frac{1}{n}, 2]; & n \text{ je liho} \end{cases}$. Vidimo, da je $\overline{A} = [0, 2]$ in $A = \{1\}$.

Opomba 1: Opazimo, da velja tudi $\underline{A} \subseteq \overline{A}$. Da se prepričamo, da je to res, vzamemo poljubno zaporedje množic $\{A_n\}_{n=1}^{\infty}$ in nek poljuben $x \in \underline{A}$. Po definiciji te množice potem $\exists n_0 \in \mathbb{N}$, da je $x \in A_n$ za vse $n \geq n_0$. Izmed teh $n \geq n_0$ izberemo poljubno neskončno podzaporedje $\{l_k\}_{k=1}^{\infty}$ in potem velja $x \in A_{l_k} \forall k \in \mathbb{N}$. Potem je pa $x \in \overline{A}$.

Trditev 2. Za vsako zaporedje množic $\{A_n\}_{n=1}^{\infty}$ velja:

a)
$$\overline{A} = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$$

b)
$$\underline{A} = \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_m$$

Dokaz. a) Najprej bomo pokazali inkluzijo v desno, nato pa še v levo:

- \subseteq): Naj bo $x \in \overline{A}$. Potem obstaja neko zaporedje indeksov $\{k_i\}_{i=1}^{\infty}$, da je $x \in A_{k_i} \forall i \in \mathbb{N}$. Potem bo pa $x \in \bigcup_{m=k}^{\infty} A_m$ za vsak $k \in \mathbb{N}$. Posledično, je $x \in \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$.
- ⊇): Denimo, da je $x \in \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$ in izberimo poljuben indeks k_1 . Potem je $x \in \bigcup_{m=k_1}^{\infty} A_m$, kar pa pomeni, da obstaja nek $l_1 \geq k_1$, da je $x \in A_{l_1}$. Sedaj izberemo nov indeks $k_2 \geq l_1$ in ponovimo prejšnji postopek ter tako pridobimo l_2 . Postopek nadaljujemo in tako tvorimo zaporedje indeksov $\{l_i\}_{i=1}^{\infty}$, za katerega velja $x \in A_{l_i} \forall i \in \mathbb{N}$, torej je $x \in \overline{A}$.
- b) Podobno kot pri prejšnji točki, bomo najprej bomo pokazali inkluzijo v desno, nato pa še v levo:
 - \subseteq): Naj bo $x \in \underline{A}$. Potem obstaja nek indeks k_0 , da je $x \in A_k \forall k \geq k_0$. Potem je pa $x \in \bigcap_{m=k_0}^{\infty} A_m$, torej je tudi $x \in \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_m$.
 - ⊇) : Denimo, da je $x \in \bigcup_{k=1}^{\infty} \bigcap_{m=k}^{\infty} A_m$. Potem obstaja indeks k_0 , da je $x \in \bigcap_{m=k_0}^{\infty} A_m$, kar pa pomeni, da je $x \in A_k \forall k \geq k_0$, torej je $x \in \underline{A}$.

Definicija 4: Pravimo, da je zaporedje množic $\{A_k\}_{k=1}^{\infty}$ monotono, če velja:

- $A_1 \subseteq A_2 \subseteq \dots$ (naraščajoče)
- $A_1 \supseteq A_2 \supseteq \dots$ (padajoče)

Definicija 5: Pravimo, da zaporedje množic $\{A_k\}_{k=1}^{\infty}$ <u>konvergira</u> proti množici A, če je $\underline{A} = A = \overline{A}$.

Trditev 3. Vsako monotono zaporedje $\{A_k\}_{k=1}^{\infty}$ konvergira, pri čemer velja:

- a) Če je $\{A_k\}_{k=1}^{\infty}$ naraščajoče, je $\lim_{k\to\infty} A_k = A = \bigcup_{k=1}^{\infty} A_k$
- b) Če je $\{A_k\}_{k=1}^{\infty}$ padajoče, je $\lim_{k\to\infty} A_k = A = \bigcap_{k=1}^{\infty} A_k$

Dokaz. a) Naj bo $\{A_k\}_{k=1}^{\infty}$ naraščajoče zaporedje množic in preverimo, da je $\underline{A} = \overline{A}$. Pri tem bomo uporabili trditev 2. Po eni strani vemo, da je $\overline{A} = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m$. Ko upoštevamo, da je $\{A_k\}_{k=1}^{\infty}$ naraščajoče, vidimo, da je $A = \bigcap_{k=1}^{\infty} \bigcup_{m=k}^{\infty} A_m = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} A_m = \bigcup_{m=1}^{\infty} A_m$. Zadnja enakost sledi iz tega, da so množice v preseku neodvisne od indeksov, po katerih delamo presek (v A_m ne nastopa indeks A_m). Ker A_m in narašča, velja tudi A_m in A_m

b) Pokažemo na podoben način.

Definicija 6: Naj bo X poljubna množica. Množica $\mathcal M$ podmnožic X je σ -algebra na X, če velja:

- 1. $\emptyset, X \in \mathcal{M}$
- 2. $\forall A \in \mathcal{M} : A^c \in \mathcal{M}$
- 3. $\forall \{A_k\}_{k=1}^{\infty}; A_k \in \mathcal{M} \ \forall i \in \mathbb{N} : \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$

Zgled 4:

- 1. Naj bo X neka množica in $\mathcal{M} = \{\emptyset, X\}$. Vidimo, da je \mathcal{M} σ -algebra .
- 2. Naj bo $X = \{a, b, c\}$. Ali je $\mathcal{P}(X)$ σ -algebra ? Da. V resnici je $\mathcal{P}(X)$ σ -algebra za poljubno množico X.
- 3. Naj bo X poljubna množica in $\mathcal{M} = \{A \subseteq X; A \text{ je kvečjemu števna ali pa je } A^c \text{ kvečjemu števna} \}$. Tudi ta \mathcal{M} je σ -algebra . To bomo tudi na hitro premislili.
 - Očitno \mathcal{M} vsebuje \emptyset in X.
 - Denimo sedaj, da je $A \in \mathcal{M}$. Če je A kvečjemu števna, potem je $A^c \in \mathcal{M}$, saj je $A = (A^c)^c$ kvečjemu števna. Če pa A ni kvečjemu števna avtomatsko sledi, da je A^c kvečjemu števna, torej je $A^c \in \mathcal{M}$.
 - Naj bo $\{A_k\}_{k=1}^{\infty}$ nek nabor množic, pri čemer je $A_k \in \mathcal{M} \ \forall k \in \mathbb{N}$. Če so vse množice A_k kvečjemu števne, je tudi $\bigcup_{k=1}^{\infty} A_k$ kvečjemu števna in torej pripada \mathcal{M} . Denimo torej, da $\exists k_0 \in \mathbb{N}$, da A_{k_0} ni kvečjemu števna, je pa $A_{k_0}^c$. V tem primeru pogledamo $(\bigcup_{k=1}^{\infty} A_k)^c = \bigcap_{k=1}^{\infty} A_k^c$. Ker vemo, da je A_{k_0} kvečjemu števna, je potem tudi presek $\bigcap_{k=1}^{\infty} A_k^c$ kvečjemu števna množica, torej je $\bigcap_{k=1}^{\infty} A_k^c \in \mathcal{M}$ in posledično je $\bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$.

Trditev 4. Naj bo \mathcal{M} σ -algebra na X. Potem velja:

- $a) \ \forall A, B \in \mathcal{M} : A \cup B \in \mathcal{M}$
- b) $\forall \{A_k\}_{k=1}^{\infty}; A_K \in \mathcal{M} \ \forall i \in \mathbb{N} : \bigcap_{k=1}^{\infty} A_k \in \mathcal{M}$
- c) $\forall A, B \in \mathcal{M} : A \cap B \in \mathcal{M}$
- $d) \ \forall A, B \in \mathcal{M} : A \setminus B \in \mathcal{M}$

Dokaz.a) Naj bodo $A_1=A,A_2=B$ in $A_k=\emptyset \ \forall k\geq 3.$ Potem je $A\cup B=\bigcup_{k=1}^\infty A_k\in \mathcal{M}$ po definiciji $\sigma-$ algeber.

- b) Uporabimo, da je σ -algebra po definiciji zaprta za komplimente. Torej, za vsak $A_k \in \mathcal{M}$ je tudi $A_k^c \in \mathcal{M}$. Potem pa sestavimo zaporedje $\{A_k^c\}_{k=1}^\infty$ in po definiciji σ -algebre je potem $\bigcup_{k=1}^\infty A_k^c \in \mathcal{M}$ ter posledično še $(\bigcup_{k=1}^\infty A_k^c)^c = \bigcap_{k=1}^\infty (A_k^c)^c = \bigcap_{k=1}^\infty A_k^c \in \mathcal{M}$.
- c) Vzamemo $A_1=A, A_2=B$ in $A_k=X \ \forall k\geq 3$. Potem je $A\cap B=\bigcap_{k=1}^\infty A_k\in\mathcal{M},$ po prejšnji točki.

d) $A \setminus B = A \cap B^c \in \mathcal{M}$ po prejšnji trditvi, ker sta $A, B^c \in \mathcal{M}$.

Posledica 1. σ -algebra je kolobar množic.

Posledica 2. σ -algebra je algebra množic.

3 Mera

Definicija 7: Naj bo K kolobar množic na X. Funkcija $m:K\to [0,+\infty)$ je mera na X, če za njo velja:

$$\forall A, B \in K; A \cap B = \emptyset : m(A \cup B) = m(A) + m(B)$$

Trditev 5. Za poljubno mero m na kolobarju K podmnožic množice X velja:

- 1. $m(\emptyset) = 0$
- 2. $A \subseteq B \Rightarrow m(B) = m(A) + m(B \setminus A)$
- 3. $A \subseteq B \Rightarrow m(A) \le m(B)$
- 4. $m(A \cup B) = m(A) + m(B) m(A \cap B)$
- 5. Naj bodo $A_1, A_2, \dots A_n \in K$ in $A_i \cap A_j = \emptyset$ za $i \neq j$. Potem je $m(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n m(A_k)$.
- 6. Naj bodo $A_1, A_2, ... A_n \in K$. Potem je $m(\bigcup_{k=1}^n A_k) \le \sum_{k=1}^n m(A_k)$.
- 7. Naj bodo $A, A_k \in K \ \forall k \in \mathbb{N} \ in \ A_i \cap A_j = \emptyset \ za \ i \neq j$. Dodatno, naj velja $\bigcup_{k=1}^n A_k \subseteq A$. Potem $je \sum_{k=1}^\infty m(A_k) \leq m(A)$.
- Dokaz. 1. $m(\emptyset) = m(\emptyset \cup \emptyset) = m(\emptyset) + m(\emptyset)$, torej je $2m(\emptyset) = m(\emptyset)$. To je možno le, ko je $m(\emptyset) = 0$.
 - 2. Denimo, da je $A \subseteq B$. Potem je $B = A \cup (B \setminus A)$ in $A \cap (B \setminus A) = \emptyset$. Po definiciji mere je potem $m(B) = m(A \cup (B \setminus A)) = m(A) + m(B \setminus A)$.
 - 3. Sledi po prejšnji točki.
 - 4. Pišemo: $A \cup B = A \cup (B \setminus (A \cap B))$. Ker je $A \cap (B \setminus (A \cap B)) = \emptyset$ je $m(A \cup B) = m(A) + m(B \setminus (A \cap B))$. Ker je $A \cap B \subseteq B$ lahko uporabimo formulo iz druge točke: $m(B) = m(A \cap B) + m(B \setminus (A \cap B))$ oz. $m(B \setminus (A \cap B)) = m(B) m(A \cap B)$. Sledi, da je $m(A \cup B) = m(A) + m(B) m(A \cap B)$.
 - 5. Točko bomo dokazali z indukcijo po številu množic. Za = 2 že vemo, saj to velja po definiciji mere. Denimo torej, da velja trditev za nek $k \in \mathbb{N}$ in dokažimo za n = k+1. Denimo, da imamo paroma disjunktne množice $A_1, A_2, \ldots, A_k, A_{k+1}$. Označimo $B = \bigcup_{i=1}^k A_i$. Potem je $\bigcup_{i=1}^{k+1} A_i = B \cup A_{k+1}$ in $B \cap A_{k+1} = \emptyset$. Sledi, da je $m(B \cup A_{k+1}) = m(B) + m(A_{k+1}) = \sum_{i=1}^k m(A_i) + m(A_{k+1}) = \sum_{i=1}^{k+1} m(A_i)$.
 - 6. Za primer n=2 že vemo, saj je to direktna posledica četrte trditve. Denimo torej, da trditev velja za nek $k \in \mathbb{N}$ in dokažimo, da potem velja tudi za k+1: Ponovno označimo $B = \bigcup_{i=1}^k A_i$ in potem je $\bigcup_{i=1}^{k+1} A_i = B \cup A_{k+1}$. Po četrti točki sklepamo, da je $m(B \cup A_{k+1}) \leq m(B) + m(A_{k+1})$. Dodatno, upoštevamo indukcijsko predpostavko, da je $m(B) = m(\bigcup_{i=1}^k A_i) \leq \sum_{i=1}^k m(A_i)$. Potem je pa $m(\bigcup_{i=1}^{k+1} A_i) \leq \sum_{i=1}^{k+1} m(A_i)$

7. Naj bodo $A, A_k \in K \ \forall k \in \mathbb{N} \ \text{in} \ A_i \cap A_j = \emptyset \ \text{za} \ i \neq j$. Naj bo $\bigcup_{k=1}^n A_k \subseteq A_k \subseteq A_k$ A. Potem bo za $\forall l \in \mathbb{N}$ tudi $\bigcap_{k=1}^{l} A_k \subseteq A$ in po tretji točki potem velja $m(\bigcup_{k=1}^l A_k) \leq m(A)$. Ker so množice A_k paroma disjunktne, po peti točki sledi $m(\bigcup_{k=1}^{l} A_k) = \sum_{k=1}^{l} m(A_k)$. Ker to velja za $\forall l \in \mathbb{N}$, je $\sum_{k=1}^{\infty} m(A_k) = \lim_{l \to \infty} \sum_{k=1}^{l} m(A_k) \leq m(A)$.

Definicija 8: Naj bo m mera na kolobarju množic K. Pravimo, da je mera m:

- $\underline{\sigma}$ -aditivna na K, če velja sklep: $A = \bigcup_{i=1}^{\infty} A_i$; $A, A_i \in K \ \forall i \in \mathbb{N} \land A_i \cap A_j = \emptyset$, če je $i \neq j \Rightarrow m(A) = \sum_{i=1}^{\infty} m(A_i)$
- $\underline{\sigma\text{-poladitivna}}$ na K, če velja sklep: $A \subseteq \bigcup_{i=1}^{\infty} A_i; A, A_i \in K \ \forall i \in \mathbb{N} \Rightarrow m(A) \leq \sum_{i=1}^{\infty} m(A_i)$
- zvezna na K, če za vsako monotono zaporedje množic $\{A_i\}_{i=1}^{\infty}; A_i \in K$ z limito $\lim_{i\to\infty} A_i = A \in K$ velja: $\lim_{i\to\infty} m(A_i) = m(A)$

Izrek 1. Naj bo K kolobar množic (na neki množici X) in m poljubna mera na njem. Lastnost σ -aditivnosti, σ -poladitivnosti in zveznosti so ekvivalentne.

Dokaz. Najprej bomo dokazali ekvivalenco σ -aditivnosti in σ -poladitivnosti, nato pa bomo dokazali ekvivalenco σ -aditivnosti in zveznosti.

- 1. Dokazujemo, da je mera m je σ -aditivna \iff mera m je σ -poladitivna:
 - $\Rightarrow)$: Naj bodo $A,A_i\in K\ \forall i\in\mathbb{N}$ in naj bo $A\subseteq\bigcup_{i=1}^\infty A_i.$ Označimo $B_1 = A \cap A_1, B_2 = (A \cap A_2) \setminus B_1, \dots, B_k = (A \cap A_k) \setminus (\bigcup_{i=1}^{k-1} B_i)$ in pokažimo, da velja $B_i \cap B_j = \emptyset$ za $i \neq j$. Brez škode za splošnost predpostavimo, da je i < j in denimo, da imamo nek $x \in B_i \cap B_j$. Po definiciji preseka sledi $x \in B_i$ & $x \in B_j$. Po drugi strani, pa je $B_j = (A \cap A_j) \setminus (\bigcup_{k=1}^{j-1} B_k)$. Ker je i < j je $B_i \subseteq \bigcup_{k=1}^{j-1} B_k$. Ker je $x \in B_i$ potem sledi, da $x \notin B_j$. Prišli smo v protislovje, torej je res $B_i \cap B_j = \emptyset$ za $i \neq j$. Sedaj bomo pokazali, da je $A = \bigcup_{k=1}^{\infty} B_k$.
 - \subseteq): Naj bo $x \in A$. Ker je $A \subseteq \bigcup_{i=1}^{\infty} A_i$ obstaja neko število $k_0 \in$ \mathbb{N} in neko zaporedje indeksov $\{k_i\}_{i=1}^{\infty}; k_i > k_0 \ \forall i \in \mathbb{N}, \ da je <math>x \in A_{k_1}, x \in A_{k_2}, \ldots$ Potem posledično velja $x \notin B_k$ za $k < k_0$, od tod pa sledi, da je $x \in B_{k_0} = (A \cap A_{k_0}) \setminus (\bigcup_{k=1}^{k_0-1} B_k)$. Ker smo za poljubni $x \in A$ našli neko množico B_k , da je $x \in B_k$, potem očitno velja $A \subseteq \bigcup_{k=1}^{\infty} B_k$.
 - ⊇) : Naj bo sedaj $x \in \bigcup_{k=1}^{\infty} B_k$ in naj bo k_0 najmanjši indeks, taki, da je $x \in B_{k_0} = (A \cap A_{k_0}) \setminus (\bigcup_{k=1}^{k_0-1} B_k)$. Iz tega, da je izbrani k_0 najmanjši izmed vseh, ki zadoščajo prejšnjemu pogoju, sledi $x \notin \bigcup_{k=1}^{k_0-1} B_k$, torej je $x \in A \cap A_{k_0}$. Sledi, da je $x \in A$ Ker to velja za vsak $x \in \bigcup_{k=1}^{\infty} B_k$ sledi $\bigcup_{k=1}^{\infty} B_k \subseteq A$

Pokazali smo torej, da je $A = \bigcup_{k=1}^{\infty} B_k$. Sedaj lahko uporabimo σ -aditivnost:

$$m(A = m(A = \bigcup_{k=1}^{\infty} B_k)) = \sum_{k=1}^{\infty} m(B_k)$$

- Ker je $m(B_k) \leq m(A_k) \ \forall k \in \mathbb{N}$ je potem $m(A) \leq \sum_{k=1}^{\infty} m(A_k)$ in s tem je pokazana σ -poladitivnost.
- \Leftarrow :) Naj bo sedaj $A = \bigcup_{k=1}^{\infty} A_k$; $A, A_k \in K \ \forall k \in \mathbb{N}$, in $A_i \cap A_j = \emptyset$ za $i \neq j$. Ker je $A \subseteq \bigcup_{k=1}^{\infty} A_k$, je po σ-poladitivnosti $m(A) \leq \sum_{k=1}^{\infty} m(A_k)$. Po drugi strani je pa $A \supseteq \bigcup_{k=1}^{\infty} A_k$ in posledično je $m(A) \geq \sum_{k=1}^{\infty} m(A_k)$. Sledi, da je $m(A) = \sum_{k=1}^{\infty} m(A_k)$, torej je m σ-aditivna.
- 2. Dokazujemo, da je mera m σ -aditivna \iff mera m je zvezna:
 - \Rightarrow) : Denimo, da imamo monotono zaporedje množic $\{A_k\}_{k=1}^\infty$ z limito $A=\lim_{k\to\infty}A_k.$
 - Če $\{A_k\}_{k=1}^{\infty}$ narašča je $A = \bigcup_{k=1}^{\infty} A_k$. Določimo $A_0 = \emptyset$ in opazimo, da je, za $i \leq j$, $m(A_i) \leq m(A_j)$, ker je $A_i \subseteq A_j$. Označimo $B_1 = A_1 \setminus A_0, B_2 = A_2 \setminus A_1, \dots B_k = A_k \setminus A_{k-1}$ in vidimo, da je $B_i \cap B_j = \emptyset$ za $i \neq j$, ter da je $A = \bigcup_{k=1}^{\infty} B_k$. Potem je

$$m(A) = m(\bigcup_{k=1}^{\infty} B_k) = \sum_{k=1}^{\infty} m(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} m(B_k)$$

$$= \lim_{n \to \infty} (m(B_1) + m(B_2) + \dots + m(B_n))$$

$$= \lim_{n \to \infty} (m(A_1 \setminus A_0) + m(A_2 \setminus A_1) + \dots + m(A_n \setminus A_{n-1}))$$

$$= \lim_{n \to \infty} (m(A_1) - m(A_0) + m(A_2) - m(A_1) + \dots + m(A_n) - m(A_{n-1}))$$

$$= \lim_{n \to \infty} (m(\emptyset) + m(A_n)) = \lim_{n \to \infty} m(A_n)$$

– Če $\{A_k\}_{k=1}^{\infty}$ pada je $A = \bigcap_{k=1}^{\infty} A_k$. Označimo $B_1 = A_1 \setminus A_2, B_2 = A_1 \setminus A_3, \dots, B_k = A_1 \setminus A_{k+1}$. Opazimo, da je zaporedje $\{B_k\}_{k=1}^{\infty}$ naraščajoče, torej je $\lim_{k \to \infty} B_k = \bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} (A_1 \setminus A_{k+1}) = A_1 \setminus \bigcap_{k=2}^{\infty} A_k$. Ko upoštevamo, da $\{A_k\}_{k=1}^{\infty}$ pada, vidimo, da je $\bigcap_{k=2}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k = A$, torej je $\lim_{k \to \infty} B_k = A_1 \setminus A$. Sledi, da je $m(\lim_{k \to \infty} B_k) = m(A_1 \setminus A) = m(A_1) - m(A)$. Ker zaporedje $\{B_k\}_{k=1}^{\infty}$ narašča, se pa lahko skličemo na prejšnjo točko in vidimo, da je

$$m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k) = \lim_{k \to \infty} m(A_1 \setminus A_{k+1})$$
$$= \lim_{k \to \infty} (m(A_1) - m(A_{k+1}))$$
$$= m(A_1) - \lim_{k \to \infty} m(A_{k+1})$$

Posledično je $m(A) = \lim_{k \to \infty} m(A_k)$, torej je m zvezna.

⇐): Denimo, da je m zvezna mera in naj bo $A = \bigcup_{k=1}^{\infty} A_k$, kjer so $A, A_k \in K \ \forall k \in \mathbb{N} \ \text{in} \ A_i \cap A_j = \emptyset \ \text{za} \ i \neq j$. Naj bo $B_k = \bigcup_{i=1}^k A_i$. Vidimo, da je zaporedje $\{B_k\}_{k=1}^{\infty}$ naraščajoče in potem je $\lim_{k \to \infty} B_k = \bigcup_{i=1}^k A_i$.

 $\bigcup_{i=1}^{\infty} A_i = A$ in posledično sklepamo, da je

$$m(A) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k) = \lim_{k \to \infty} m(\bigcup_{i=1}^k A_i)$$
$$= \lim_{k \to \infty} \sum_{i=1}^k m(A_i) = \sum_{i=1}^\infty m(A_i)$$

Torej je m σ -aditivna.

Trditev 6. Naj bo $\{\mathcal{M}_{\alpha}\}_{{\alpha}\in I}$ družina σ -algeber na poljubno množico X. Tedaj je $\mathcal{M} = \bigcap_{{\alpha}\in I} \mathcal{M}_{\alpha}$ tudi σ -algebra na X.

Dokaz. Preverimo, da \mathcal{M} ustreza vsem aksiomom σ -algebre.

- Ker sta $\emptyset, X \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, očitno velja $\emptyset, X \in \mathcal{M} = \bigcap_{\alpha \in I} \mathcal{M}_{\alpha}$.
- Naj bo $A \in \mathcal{M}$. Potem je $A \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, torej je $A^c \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, torej je $A^c \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$,
- Naj bo $\{A_i\}_{i=1}^{\infty}$ zaporedje množic vsebovano v \mathcal{M} . Potem je to zaporedje vsebovano tudi v $\mathcal{M}_{\alpha} \ \forall \alpha \in I$. Od tod sledi, da je $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}_{\alpha} \ \forall \alpha \in I$, torej je $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$.

Definicija 9: Naj bo \mathbb{A} družina podmnožic X. Najmanjšo σ -algebro, ki vsebuje \mathbb{A} , označimo z $\mathcal{M}_{\mathbb{A}}$ in jo imenujemo σ -algebra generirana z \mathbb{A} .

Trditev 7. Za \mathcal{A} obstaja najmanjša σ -algebra, ki vsebuje \mathcal{A} .

Dokaz. Vemo, da obstaja vsaj ena σ-algebra, ki vsebuje \mathcal{A} . Naj bo $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$ družina vseh σ-algeber, ki vsebujejo \mathcal{A} . Tedaj je $\mathcal{M}_{\mathcal{A}} = \bigcap_{\alpha\in I} \mathcal{M}_{\alpha}$ najmanjša taka σ-algebra, ki vsebuje \mathcal{A} .

Zgled 5: Vzemimo
$$X = \mathbb{R}$$
 in $A = \{\{1\}, \{2\}\}$. Potem je $\mathcal{M}_{A} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \mathbb{R} \setminus \{1\}, \mathbb{R} \setminus \{2\}, \mathbb{R} \setminus \{1, 2\}, \mathbb{R}\}$

Definicija 10: Naj bo (X,d) metrični prostor. Najmanjšo σ -algebro, ki vsebuje vse odprte množice (X,d) imenujemo Borelova σ -algebra in jo označimo z \mathcal{B}_X . Elemente Borelove σ -algebre imenujemo Borelove množice.

Zgled 6:

- Odprte, zaprte množice
- Končne množice
- polzaprti intervali $[a,b) = \bigcap_{n=1}^{\infty} (a \frac{1}{n}, b)$

Definicija 11: Mera na σ -algebri M je funkcija $\mu: M \to [0, \infty]$, za katero velja:

- 1. $\mu(\emptyset) = 0$
- 2. Za vsako zaporedje $\{A_i\}_{i=1}^{\infty}\subseteq M$ disjunktnih množic je $\mu(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mu(A_i)$

Opomba 2: Spomnimo se, da je σ -algebra poseben primer kolobarja, torej so na M σ -aditivnost, σ -poladitivnost in zveznost mere ekvivalentne.

Izrek 2. Naj bo (X, \mathcal{M}, μ) prostor z mero in $\{A_i\}_{i=1}^{\infty}$ zaporedje v M. Velja:

1.
$$\mu(\overline{\lim}_{i\to\infty}A_i) \ge \overline{\lim}_{i\to\infty}\mu(A_i) = \limsup_{i\to\infty}\mu(A_i) = \inf_{1\le i}\sup_{i\le m}A_m$$
.

2.
$$\mu(\underline{\lim}_{i \to \infty} A_i) \le \underline{\lim}_{i \to \infty} \mu(A_i) = \underline{\lim} \inf_{i \to \infty} \mu(A_i) = \underline{\sup}_{1 \le i} \inf_{i \le m} A_m$$
.

3.
$$\lim_{i\to\infty} A_i = A \Rightarrow \lim_{i\to\infty} \mu(A_i) = \mu(A)$$
.

Dokaz. Naj bo $\{A_i\}_{i=1}^{\infty}$ zaporedje v M

- 1. Vemo, da je $\overline{\lim}_{i \to \infty} A_i = \underline{\bigcap}_{i=1}^{\infty} \bigcup_{k=i}^{\infty} A_k$ in za vsak $i \in \mathbb{N}$ označimo $B_i = \bigcup_{k=i}^{\infty} A_k$. Potem je $\overline{\lim}_{i \to \infty} A_i = \bigcap_{i=1}^{\infty} B_i$, kjer je $\{B_i\}_{i=1}^{\infty}$ padajoče zaporedje. Sledi, da je $\lim_{i \to \infty} B_i = \bigcap_{i=1}^{\infty} B_i = \overline{\lim}_{i \to \infty} A_i$. Ker je μ zvezna in je zaporedje $\{B_i\}_{i=1}^{\infty}$ padajoče, je $\mu(\overline{\lim}_{i \to \infty} A_i) = \overline{\lim}_{i \to \infty} \mu(B_i)$. Sledi, da je $\{\mu(A_i)\}_{i=1}^{\infty}$ zaporedje števil in obstaja $\overline{\lim}_{i \to \infty} \mu(A_i) = \overline{a}$. Posledično obstaja neko podzaporedje $\{A_{i_k}\}_{k=1}^{\infty}$, da je $\overline{\lim}_{k \to \infty} \mu(A_{i_k}) = \overline{a} = \overline{\lim}_{i \to \infty} \mu(A_i)$. Ker je μ monotona in $\forall k \in \mathbb{N} A_k \subseteq B_k$, je tudi $\mu(A_k) \le \mu(B_k)$ in potem je $\mu(\overline{\lim}_{i \to \infty} A_i) = \overline{\lim}_{i \to \infty} \mu(B_i) = \overline{\lim}_{k \to \infty} \mu(B_{i_k}) \le \overline{\lim}_{k \to \infty} \mu(A_{i_k}) = \overline{\lim}_{i \to \infty} \mu(A_i)$.
- 2. Vemo, da je $\lim_{i\to\infty}A_i=\bigcup_{i=1}^\infty\bigcap_{k=i}^\infty A_k$ in za vsak $i\in\mathbb{N}$ označimo $B_i=\bigcap_{k=i}^\infty A_k$. Opazimo, da je $\{B_i\}_{i=1}^\infty$ naraščajoče zaporedje in potem je $\lim_{i\to\infty}B_i=\bigcup_{k=i}^\infty B_i=\underline{\lim}_{i\to\infty}A_i$. Ker je μ zvezna je potem $\mu(\underline{\lim}_{i\to\infty}A_i)=\mu(\lim_{i\to\infty}B_i)=\lim_{i\to\infty}\mu(B_i)$. Ker je $\{\mu(A_i)\}_{i=1}^\infty$ zaporedje števil, obstaja $\underline{\lim}_{i\to\infty}\mu(A_i)=\bar{b}$ in potem obstaja podzaporedje $\{A_{i_k}\}_{k=1}^\infty$, da je $\lim_{k\to\infty}\mu(A_{i_k})=\bar{b}=\underline{\lim}_{i\to\infty}\mu(A_i)$. Ker je $\forall i\in\mathbb{N}B_i\subseteq A_i$ je tudi $\mu(B_i)\leq\mu(A_i)\forall i\in\mathbb{N}$ in posledično $\mu(B_{i_k})\leq\mu(A_{\lceil i_k\rceil})\forall k\in\mathbb{N}$. Sledi, da je

$$\mu(\underline{\lim}_{i\to\infty}A_i) = \lim_{i\to\infty}\mu(B_i) = \lim_{k\to\infty}\mu(B_{i_k}) \le \lim_{k\to\infty}\mu(A_{i_k}) = \underline{\lim}_{i\to\infty}\mu(A_i)$$

3. Denimo, da je $A = \lim_{i \to \infty} A_i$. Potem je $\overline{\lim}_{i \to \infty} A_i = \underline{\lim}_{i \to \infty} A_i = \lim_{i \to \infty} A_i = \lim_{i \to \infty} A_i = A$. Po prvi točki izreka je $\mu(A) = \underline{\mu}(\overline{\lim}_{i \to \infty} A_i) \ge \overline{\lim}_{i \to \infty} \mu(A_i)$, hkrati pa je vedno res, da je $\underline{\lim}_{i \to \infty} \mu(A_i) \le \overline{\lim}_{i \to \infty} \mu(A_i)$. Sledi, da je

$$\lim_{i \to \infty} \mu(A_i) = \overline{\lim}_{i \to \infty} \mu(A_i) = \underline{\lim}_{i \to \infty} \mu(A_i) = \mu(A) = \mu(\lim_{i \to \infty} A_i)$$

4 Kompletna mera

Naj bo (X, \mathcal{M}, μ) prostor z mero.

Definicija 12: Mera μ je <u>polna</u> oz. <u>kompletna</u>, če $\forall A \in \mathcal{M}$ in $\forall B \subseteq A$ velja: $\mu(A) = 0 \Rightarrow B \in \mathcal{M}$.

Izrek 3. Naj bo $\Omega = \{N \in \mathcal{M}; \ \mu(N) = 0\} \ in \ \overline{\mathcal{M}} = \{A \subseteq X; \ A = E \cup F; E \in \mathcal{M} \ \& \ F \subseteq N \in \Omega\}. \ Tedaj je \ \overline{\mathcal{M}} \ \sigma\text{-algebra}.$

Dokaz. 1. Ker je $\emptyset = \emptyset \cup \emptyset$ in $\emptyset \in \mathcal{M} \cap \Omega$, je $\emptyset \in \overline{\mathcal{M}}$

- 2. Naj bo $A \in \overline{\mathcal{M}}$ in $A = E \cup F$ za $E \in \mathcal{M}$ in $F \subseteq N \in \Omega$. Potem je $A^c = (E \cup F)^c$ in upoštevamo, da je $F^c = N^c \cup (N \setminus F) = N^c \cup (F^c \cap N)$. Posledično je $A^c = E^c \cap F^c = (E^c \cap N^c) \cup (E^c \cap (F^c \cap N))$. Pri tem je $(E^c \cap N^c) \in \mathcal{M}$ in $(E^c \cap (F^c \cap N)) \subseteq N \in \Omega$. Posledično je $A^c \in \overline{\mathcal{M}}$.
- 3. Naj bo $\{A_i\}_{i=1}^{\infty}$ zaporedje v $\overline{\mathcal{M}}$. Potem $\forall i \in \mathbb{N} A_i = E_i \cup F_i$ za $\{E_i\}_{i=1}^{\infty}$ zaporedje v \mathcal{M} in $F_i \subseteq N_i \in \Omega \forall i \in \mathbb{N}$. Posledično je $\bigcup_{i=1}^{\infty} \bigcup_{i=1}^{\infty} (E_i \cup F_i) = \bigcup_{i=1}^{\infty} E_i \cup \bigcup_{i=1}^{\infty} F_i$. Najprej upoštevamo, da je \mathcal{M} σ -algebra , torej je $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$. Poleg tega, ker je $F_i \subseteq N_i \forall i \in \mathbb{N}$, je $\bigcup_{i=1}^{\infty} F_i \subseteq \bigcup_{i=1}^{\infty} N_i$ in ker je $N_i \in \Omega \forall i \in \mathbb{N}$, je $\mu(\bigcup_{i=1}^{\infty} N_i) \subseteq \sum_{i=1}^{\infty} \mu(N_i) = 0$, torej je $\mu(\bigcup_{i=1}^{\infty} N_i) = 0$ oz. $\bigcup_{i=1}^{\infty} N_i \in \Omega$. Sledi, da je $\bigcup_{i=1}^{\infty} A_i \in \overline{\mathcal{M}}$.

Izrek 4. Naj bo $\overline{\mathcal{M}}$ razširitev σ -algebre \mathcal{M} . Definiramo $\bar{\mu}: \overline{\mathcal{M}} \to [0, \infty]$, za katero velja $\forall A \in \overline{\mathcal{M}}; A = E \cup F$ za neka $E \in \mathcal{M}, F \subseteq N \in \Omega$: $\bar{\mu}(A) = \mu(E)$. Tedaj je $\bar{\mu}$ mera na $\overline{\mathcal{M}}$ in jo imenujemo razširitev mere μ .

Dokaz. Najprej preverimo, da je $\bar{\mu}$ dobro definirana, nato pa še, da je mera. Naj bo $A=E\cup F=E_1\cup F_1$ za $E,E_1\in \mathcal{M}$ in $F\subseteq N,F_1\subseteq N_1,N,N_1\in \Omega$. $E_1\subseteq E\cup F\subseteq E\cup N$, torej je $\mu(E_1)\leq \mu(E\cup N)\leq \mu(E)+\mu(N)=\mu(E)$. Po drugi strani pa je $E\subseteq E_1\cup F_1\subseteq E_1\cup N_1$ ter zato velja $\mu(E)\leq \mu(E_1\cup N_1)\leq \mu(E_1)+\mu(N_1)=\mu(E_1)$. Posledično je $\mu(E)=\mu(E_1)$, torej je $\bar{\mu}$ dobro definirana. Preverimo še, da je mera.

- $\bar{\mu}(\emptyset) = \mu(\emptyset) = 0$
- Naj bo $\{A_i\}_{i=1}^{\infty}$ zaporedje v $\overline{\mathcal{M}}$ in $\forall i \in \mathbb{N} : A_i = E_i \cup F_i$, da je $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$ in $F_i \subseteq N_i \in \Omega \forall i \in \mathbb{N}$. Potem je $\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} E_i \cup \bigcap_{i=1}^{\infty} F_i$ za $\bigcap_{i=1}^{\infty} E_i \in \mathcal{M}$ in $\bigcap_{i=1}^{\infty} F_i \subseteq \bigcap_{i=1}^{\infty} N_i \in \Omega$. Posledično je $\bar{\mu}(\bigcap_{i=1}^{\infty} A_i) = \mu(\bigcap_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} \bar{\mu}(A_i)$.

Izrek 5. Mera $\bar{\mu}$ je enolična razširitev mere μ do polne mere na $\overline{\mathcal{M}}$.

Dokaz. Najprej bomo pokazali polnost, nato pa še enoličnost. Naj bo $A \in \overline{\mathcal{M}}$ taka, da je $\overline{\mu}(A) = 0$ in naj bo $B \subseteq A$. Pišemo $A = E \cup F$ za neka $E \in \mathcal{M}$ in $F \subseteq N \in \Omega$. Velja, da je $\overline{\mu}(A) = \mu(E) = 0$. Hkrati je tudi $B \subseteq A = E \cup F \subseteq E \cup N$, torej je $\mu(E \cup N) \le \mu(E) + \mu(N) = 0$, torej je $\mu(E \cup N) = 0$ oz. $E \cup N \in \Omega$. Posledično lahko zapišemo B kot unijo $\emptyset \in \mathcal{M}$ in $B \subseteq (E \cup N) \in \Omega$, torej je $B \in \overline{\mathcal{M}}$. Sledi, da je $\overline{\mu}$ polna mera.

Denimo sedaj, da je ν polna mera na $\overline{\mathcal{M}}$ in $\nu(H) = \mu(H) \forall H \in \mathcal{M}$. Naj bo $A = E \cup F$ za $E \in \mathcal{M}$ in $F \subseteq N \in \Omega$. Potem je $\nu(A) = \nu(E \cup F) = \nu(E \cup (F \setminus E))$.

Ker je $(F \setminus E) \subseteq N \in \Omega$ in $F \setminus E = \emptyset \cup (F \setminus E)$, je $F \setminus E \in \overline{\mathcal{M}}$. Potem je pa $\nu(A) = \nu(E \cup (F \setminus E)) = \nu(E) + \nu(F \setminus E)$ in ker je $F \setminus E \subseteq N \in \Omega$ je $\nu(F \setminus E) = 0$, torej je $\nu(A) = \nu(E) + 0 = \nu(E) = \overline{\mu}(A)$.

Izrek 6. Naj bo (X, \mathcal{M}, μ) prostor z mero. Potem obstaja enolična razširitev mere μ do polne mere $\bar{\mu}$ na $\overline{\mathcal{M}}$. Prostor $(X, \overline{\mathcal{M}}, \bar{\mu})$ imenujemo napolnitev prostora (X, \mathcal{M}, μ) .

Zgled 7: Naj bo $\mathcal{M} = \{\emptyset, X\}$ in $\mu(A) = \begin{cases} 0 & ; \ A = \emptyset \\ 1 & ; \ A = X \end{cases}$. Potem je $\overline{\mathcal{M}} = \mathcal{M}$. Če vzamemo enak \mathcal{M} in $\mathring{\mu}(A) = 0 \forall A \in \mathcal{M}$, je potem $\overline{\mathcal{M}} = \mathcal{P}(X)$.