Number Systems

Number systems

- As humans, we prefer base 10 a.k.a. decimal.
- For reasons we will discuss, computers prefer different number systems...
 - Binary (base 2)
 - Hexadecimal (base 16)
- Its easy to understand these other number systems if we analyze how base 10 works.

Base 10

- For every base, the value of each digit depends position in the number.
- Decimal uses 10 digits, 0-9

7423
-is-
$$(7 * 10^3) + (4 * 10^2) + (2 * 10^1) + (3 * 10^0)$$
-or-
7000 + 400 + 20 + 3

Base 10

- For every base, the value of each digit depends position in the number.
- Decimal uses 10 digits, 0-9

7423
-is-
$$(7 * 10^3) + (4 * 10^2) + (2 * 10^1) + (3 * 10^0)$$
-or-
7000 + 400 + 20 + 3

• Assuming 'w' represents the 'width' of the number and 'x' represents the number itself, we can generalize and convert any base to decimal as follows....

$$\sum_{i=0}^{w-1} x_i \cdot base^i$$

Base 2

■ Binary uses 2 digits, 0-1

1101
-is-
$$(1 * 2^{3}) + (1 * 2^{2}) + (0 * 2^{1}) + (1 * 2^{0})$$
-or-
$$8 + 4 + 0 + 1 = 13_{10}$$

Base 2

Binary uses 2 digits, 0-1

```
1101
-is-
(1 * 2^{3}) + (1 * 2^{2}) + (0 * 2^{1}) + (1 * 2^{0})
-or-
8 + 4 + 0 + 1 = 13_{10}
```

- You should be able to do this by hand! I have provided a way to check.
- See *decimal_to_binary.c*

Base 16

• Hexadecimal uses 16 digits 0-9, A-F (A=10, B=11, etc.)

```
742A
-is-
(7 * 16^{3}) + (4 * 16^{2}) + (2 * 16^{1}) + (10 * 16^{0})
-or-
28672 + 1024 + 32 + 10 = 29738_{10}
```

- You can see that the higher the base, the fewer digits it takes to express some value.
- Hexadecimal is used often notate memory addresses (among other things)

Relative expressiveness of systems

- Hexadecimal is useful because its often more convenient to write one digit as opposed to than four.
 - In other words, since a single digit in hexadecimal can represent 16 values, it can hold as much information as 4 bits.
- This chart here you should attempt to commit to memory, or at least be able to work out relatively quickly.

Hex	Dec i	inal Binary
0	0	0000

•	•	
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Representing Information as Bits

Everything is bits

- Each bit is 0 or 1
- Everything on a computer is encoded as sets of binary digits, or bits
 - All programs running on disk and running in memory are represented as sets of bits
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic implementation
 - Easy to store on bistable elements (an electronic circuit that has two stable states)
 - Reliably transmitted on noisy and inaccurate wires.

Everything is bits con't

- Again, the basic unit of information in computing is the bit.
- A single bit denotes two states "on or off"
- Note that values with more than two states require multiple bits.
 - A collection of two bits has four possible states
 - Ex. 00, 01, 10, 11
 - A collection of three bits has eight possible states
 - Ex. 000, 001, 010, 011, 100, 101, 110, 111
 - A collection of w bits has 2^w possible states.
- We call a collection of bits a **'bit vector'**

*Bytes

- Byte = 8 bits
 - So how many different values can it represent?
- It is the smallest addressable unit of memory in most computer architectures.
- Range of representation (non-negative integers)
 - Binary: 000000002 to 1111111112
 - Decimal: 010 to 25510
 - Hexadecimal: 0016 to FF16
 - By the way, we can write hexadecimal numbers in C as
 - 0xFF or 0xff
 - See *hex.c*

⁺Data types in C in bytes

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	4	4
double	8	8
pointer	4	8

MB, KB, GB....

- In some contexts, what is meant by a KB, MB, or GB differ.
 - Depends on number base, 2 or 10
- The true names for these things are mebibyte, kebibyte, gibibyte, etc..
 - You can read in detail here https://en.wikipedia.org/wiki/Kibibyte
- In computers we love base 2 so we will be using the binary semantics of the 'mega', 'kilo', etc. prefixes.

Binary	Decimal
1 KB (1KiB) = 2^10 bytes = 1,024 bytes	1 KB = 10^3 bytes = 1,000 bytes
1MB (1MiB) = 2^20 bytes = 1,048,576 bytes	1 MB = 10^6 bytes = 1,000,000 bytes
1GB (1GiB) = 2^30 bytes = 1,073,741,824 bytes	1 GB = 10^9 bytes = 1,000,000,000 bytes
1TB (1TiB) = 2^40 bytes = 1,099,511,627,776 bytes	1 TB = 10^12 bytes = 1,000,000,000,000 bytes

Bit-level manipulations

Boolean Algebra

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

AlB = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

Not

 $\sim A = 1$ when A = 0

Exclusive-Or (Xor)

 $A^B = 1$ when either A = 1 or B = 1, but not both

٨	0	1
0	0	1
1	1	0

Boolean Algebra con't

- We can use this algebra to operate on bit vectors
 - Operations applied bitwise

	01000001		01111101		00111100		10101010	
&	01010101	1	01010101	^_	01010101	~	01010101	
	01101001		01101001		01101001			

- All the properties of Boolean Algebra apply.
- We have these operators in C, they are called *bitwise* operators.

Bit-level operations in C

- Operations &, I, ~, ^ available in C
 - Apply to any "integral" data type (long, int, short, char, unsigned)
 - View arguments as bit vectors, arguments applied bit-wise

• See bit_flipping.c

Example: representing & manipulating sets

- "Bit sets", very useful in practice
 - Width w bit vector represents subsets of $\{0, ..., w-1\}$
 - $a_j = 1$ if $j \in A$

01010101 represents set { 0, 2, 4, 6 } Set B

Operations

& Intersection (A & B)
 Union (A | B)
 O10000001
 (0,6)
 Union (A | B)
 O11111101
 (0,2,3,4,5,6)
 Symmetric difference (A ^ B)
 Complement (~B)
 10101010
 (1,3,5,7)

Contrast: logical operators

- These operators in some cases looks the same but have very different effects.
- **&&**, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - All expressions with these operators always return 0 or 1
 - Early termination a.k.a. "short circuiting"
- Example mistake:
 - 1010 & 0101 \rightarrow 0000 (false)
 - $1010 \&\& 0101 \rightarrow 0001$ (true)
- See *bitwise_vs_boolean.c*

Shift operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: $x \gg y$
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or \ge width of type
- See bit_shifting.c

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	<i>11</i> 101000

Swapping values using XOR

- Swapping values of two variables normally requires a temporary storage
- Using the bitwise exclusive or operator we can actually do this using only the storage of the two bit-vectors
- See xor_swap.c

Integer Encoding

Two Types of Integers

Unsigned

- positive numbers and 0
- unsigned char has a range of 0-255

Signed

- negative numbers as well as positive numbers and 0
- *signed char* has a range of -128-127
- Signed and unsigned have the same cardinality, but different ranges of values!
- If **unsigned** keyword used type is unsigned, if not defaults to signed.

*Unsigned Integers

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

- B2U stands for binary-to-unsigned
- X is a binary number, a bit pattern
- w is the 'width' of the binary number (i.e. number of bits)
- Take the sum of every i'th position of X multiplied by 2ⁱ

*Unsigned Integers con't

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Signed integers

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
sign bit

- B2T stands for binary-to-twos-complement
- Same as equation for binary-to-unsigned, with one modification.
- For 2's complement *most significant bit* indicates *sign*, gets special treatment
 - 0 indicates a nonnegative number
 - 1 indicates a negative number

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
sign bit

$$10111011$$

$$-128 032168021 = -69_{10}$$

Signed integers con't

- Again....
 - With n bits, we have 2ⁿ distinct values.
 - Assign about half to positive integers and about half to negative
 - non-negative integers
 - if 0 in most significant bit, behave like unsigned:
 0101 = 5
 - Negative integers
 - If 1 in most significant bit, use two's complement form:
 1101 = -3

Numeric ranges

Unsigned

- Umin = 0
- $Umax = 2^{w}-1$
- Example
 - Assume w = 5
 - Smallest unsigned $00000_2 = 0_{10}$
 - Largest unsigned
 11111₂ = 31₁₀

- $Tmin = -2^{w-1}$
- $Tmin = 2^{w-1} 1$
- Example
 - Assume w = 5
 - Smallest signed $10000_2 = -16_{10}$
 - Largest signed $01111_2 = 15_{10}$

Umax, Tmin, Tmax for standard widths

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations:

- For a given value of wUmax = 2 * Tmax + 1
- Range of two's complement not symmetric

$$|Tmin| = |Tmax| + 1$$

- In C...
 - These ranges are system specific.
 Therefore, to reference them we must #includelimits.h>
 - Declares constants, e.g.,
 - UINT_MAX
 - INT_MAX
 - INT_MIN
 - See *limits.c*

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

• Equivalence

- Same encodings for non-negative values.
- +/- 16 for negative two's complement and positive unsigned 4-bit values.

Uniqueness

- Every bit pattern represents a unique integer value.
- Ever integer has a unique bit pattern.