hw_vasicek_calibration

February 14, 2019

1 Vasicek model calibration

Ref Chapter 7 of [Hir13]

Our goal is to design pricing engine and calirate vasicek model from data

1.1 Pricing formula for Vasicek model

Notations: - P(t, T): zero coupon bond price - L(t, T): LIBOR rate - s(t, T, N): swap rate with N terms on [t, T]

The relation to the pricing formulas are

$$L(t,T) = \frac{100}{T-t} (\frac{1}{P(t,T)} - 1)$$

and

$$s(t, T, N) = 100 \frac{1 - P(t, T)}{\Delta \sum_{j=1}^{N} P(t, t + j\Delta)}$$
, where $\Delta = \frac{T - t}{N}$.

If we further assume Vasicek model for the short rates with parameter $\theta = (\kappa, \mu, \sigma, r_0)$, i.e.

$$dr_t = \kappa(\mu - r_t)dt + \sigma dW_t$$
, with r_0 ,

the rate has its explicit form given by

$$r_t = r_0 e^{-\kappa t} + \mu (1 - e^{-\kappa t}) + \sigma e^{-\kappa t} \int_0^t e^{-\kappa s} dW_s.$$

Todo

Verify the above explicit form r_t as the solution to the original vasicek model.

Todo

Design pricing engine of ZCB P(0, T) using the above explicit formula. (Hint) ZCB value is determined by

$$P(0,T) = \mathbb{E}[e^{-\int_0^T r_t dt}] = e^{A(0,T) - B(0,T)r_0}$$

with

$$B(t,T) = \frac{1 - e^{-\kappa(T-t)}}{\kappa}, \quad A(t,T) = (\mu - \frac{\sigma^2}{2\kappa^2})[B(t,T) - (T-t)] - \frac{\sigma^2}{4\kappa}B^2(t,T).$$

Todo

Design alternative pricing engine of ZCB P(0, T) using exact sampling.

(hint) $R(T) = \int_0^T r_t dt$ follows a normal distribution with

$$\mathbb{E}R_T = \mu T + (r_0 - \mu) \frac{1 - e^{-\kappa T}}{\kappa}$$

and

$$Var(R_T) = \frac{\sigma^2}{2\kappa^3} (2\kappa T - 3 + 4e^{-\kappa T} - e^{-2\kappa T}).$$

Todo

Compute ZCB P(0,1) Libor L(0,1) with the following parameters using above two different pricing engines.

```
In [1]: '''=====paras======'''
theta = [.1, .05, .003, .03]
kappa, mu, sigma, r0 = theta
```

Todo

find 10 term swap rates with term length 1/2 year, i.e s(t = 0, T = 5, N = 10).

Todo

Pick a date, and using Libor market data of that data, callibrate Vasicek model. - Then compare market rate and calibrated rate in a plot. - You may use SSRE - You may do calibration twice using two pricing engines, and see which one is better. - You may use the following provided market data too.

In [4]: dfLiborRate

Out[4]:	20081029 rate(%)	20110214 rate(%)	maturity	(months)
0	3.1175	0.2647		1
1	3.2738	0.2890		2
2	3.4200	0.3140		3
3	3.4275	0.4657		6
4	3.4213	0.7975		12

Todo

Pick a date, and using swap market data of that data, callibrate Vasicek model. - Then compare market rate and calibrated rate in a plot. - You may use SSRE - You may do calibration twice using two pricing engines, and see which one is better. - You may use the following provided market data too.

In [6]: dfSwapRate

Out[6]:	20081029 rate(%)	20110214 rate(%)	term (year)
0	2.6967	1.0481	2
1	3.1557	1.5577	3
2	3.8111	2.5569	5
3	4.1497	3.1850	7
4	4.3638	3.7225	10
5	4.3753	4.1683	15
6	4.2772	4.4407	30