Grunnatriði og Ad hoc

Bergur Snorrason

15. janúar 2021

▶ Í grunninn snýst forritun um gögn.

- ▶ Í grunninn snýst forritun um gögn.
- ▶ Þegar við forritum flokkum við gögnin okkar með *tögum*.

- ▶ Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- ▶ Dæmi um tög í C/C++ eru int og double.

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- Dæmi um tög í C/C++ eru int og double.
- ► Helstu tögin í C/C++ eru (yfirleitt):

Heiti	Lýsing	Skorður
int	Heiltala	Á bilinu $[-2^{31}, 2^{31} - 1]$
unsigned int	Heiltala	Á bilinu $[0,2^{32}-1]$
long long	Heiltala	Á bilinu $[-2^{63}, 2^{63} - 1]$
unsigned long long	Heiltala	Á bilinu $[0,2^{64}-1]$
double	Fleytitala	Takmörkuð nákvæmni
char	Heiltala	Á bilinu $[-128, 127]$

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
from math import factorial print (factorial (100))
```

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
from math import factorial print (factorial (100))
```

 $93326215443944152681699238856266700490715968264381621\\46859296389521759999322991560894146397615651828625369\\79208272237582511852109168640000000000000000000000000$

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
from math import factorial print (factorial (100))
```

```
93326215443944152681699238856266700490715968264381621
46859296389521759999322991560894146397615651828625369
7920827223758251185210916864000000000000000000000000
```

Það er einnig hægt að nota fractions pakkann í Python til að vinna með fleytitölur án þess að tapa nákvæmni.

➤ Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).

- Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- ightharpoonup Petta tag býður upp á að nota tölur á bilinu $[-2^{127},2^{127}-1].$

- Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- ▶ Þetta tag býður upp á að nota tölur á bilinu $[-2^{127}, 2^{127} 1]$.
- Þetta þarf ekki að nota oft.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

.	Forritunarmál	Röðun
	С	qsort()
	C++	sort()
	Python	this.sort() eða sorted()

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

	Forritunarmál	Röðun
•	С	qsort()
	C++	sort()
	Python	this.sort() eða sorted()

Skoðum nú hvert forritunarmál til að sjá nánar hvernig föllin eru notuð.

▶ Í grunninn tekur sort(...) við tveimur gildum.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- ▶ Við getum raða nær öllum ílátum með sort.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raða nær öllum ílátum með sort.
- Ef við erum með eitthva ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raða nær öllum ílátum með sort.
- Ef við erum með eitthva ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raða nær öllum ílátum með sort.
- Ef við erum með eitthva ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.
- ▶ Það kemur þá í stað "minna eða samasem" samanburðarins sem er sjálfgefinn.

► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- ► Gerum ráð fyrir að listinn okkar heiti a.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- ► Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- ► Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.
- ► Pað er einnig inntak sem heitir reverse sem er Boole gildi sem leyfir auðveldlega að raða öfugt.

► Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.

- ► Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).

- ► Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Þetta er stærð hvers staks í fylkinu okkar (í bætum).

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Þetta er stærð hvers staks í fylkinu okkar (í bætum).
 - ▶ int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.

Röðun í C

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Þetta er stærð hvers staks í fylkinu okkar (í bætum).
 - ▶ int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.

Röðun í C

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Þetta er stærð hvers staks í fylkinu okkar (í bætum).
 - ▶ int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.
- Þetta er fallabendir (e. function pointer) ef þið viljið kynna ykkur það frekar.

Röðun í C

```
#include <stdio.h>
#include <stdlib.h>
int cmp(const void* p1, const void* p2)
    return *(int*)p1 - *(int*)p2;
int rcmp(const void* p1, const void* p2)
    return *(int*)p2 - *(int*)p1:
int main()
{
    int n, i;
    scanf("%d", &n);
    int a[n];
    for (i = 0; i < n; i++) scanf("%d", &a[i]);
    qsort(a, n, sizeof(a[0]), cmp);
    for (i = 0; i < n; i++) printf("%d ", a[i]);
    printf("\n"):
    qsort(a, n, sizeof(a[0]), rcmp);
    for (i = 0; i < n; i++) printf("%d ", a[i]);
    printf("\n");
    return 0:
}
```

Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.
- Þeir eru líka lengsti hluti dæmisins.

A Different Problem

Write a program that computes the difference between non-negative integers.

Input

Each line of the input consists of a pair of integers. Each integer is between 0 and 10^{15} (inclusive). The input is terminated by end of file.

Output

For each pair of integers in the input, output one line, containing the absolute value of their difference.

Sample Input 1

Sample Output 1

10 12	4
71293781758123 72784	
1 12345677654321	

Röng lausn. Hver er villan?

```
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int a, b;
    while (cin >> a >> b)
    {
        cout << abs(a - b) << endl;
    }
}</pre>
```

Rétt lausn

```
#include <bits/stdc++.h>
using namespace std;

int main()
{
    long long a, b;
    while (cin >> a >> b)
    {
        cout << abs(a - b) << endl;
    }
}</pre>
```

▶ Þurfum við þó alltaf að skrifa long long?

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.
- Við notum einfaldlega typedef <gamla> <nýja>;.

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.
- Við notum einfaldlega typedef <gamla> <nýja>;.
- Venjan í keppnisforritun er að nota typedef long long ll;.

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.
- Við notum einfaldlega typedef <gamla> <nýja>;.
- Venjan í keppnisforritun er að nota typedef long long ll;.
- Við munum nota typedef aftur.

Rétt lausn með typedef

```
#include < bits/stdc++.h>
using namespace std;
typedef long long II;

int main()
{
    Il a, b;
    while (cin >> a >> b)
    {
        cout << abs(a - b) << endl;
    }
}</pre>
```

► Hvernig vitum að lausnin okkar sé of hæg?

- ► Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar munu þekkja tímaflækjar og önnur ekki.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar munu þekkja tímaflækjar og önnur ekki.
- Skoðum fyrst hvað tímaflækjur eru í grófum dráttum.

► Keyrslutími forrits er háður stærðinni á inntakinu.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast þegar inntakið skalast.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast þegar inntakið skalast.
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins of f þegar n vex.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast þegar inntakið skalast.
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins of f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju $\mathcal{O}(n)$ þá tvöfaldast keyrslutími þegar inntakið tvöfaldast (í versta falli).

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast þegar inntakið skalast.
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins of f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju $\mathcal{O}(n)$ þá tvöfaldast keyrslutími þegar inntakið tvöfaldast (í versta falli).
- ightharpoonup Hér gerum við ráð fyrir að grunnaðgerðirnar okkar taki fastann tíma, eða séu með tímaflækju $\mathcal{O}(1)$.

▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Petta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- ▶ Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n)$

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- ▶ Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n)+\mathcal{O}(n)=\mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- ▶ Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.
- ► Til dæmis er $\mathcal{O}(n+n+n+n+n^2) = \mathcal{O}(n^2)$.

Stærðfræði

▶ Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \leq c \cdot f(x)$$

fyrir öll $x > x_0$.

Stærðfræði

▶ Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $k \cdot f(x)$.

Stærðfræði

▶ Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

- ▶ Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $k \cdot f(x)$.
- Pessi lýsing undirstrikar betur að f(x) er efra mat á g(x), og er því að segja að g(x) hagi sér ekki verr en f(x).

Þekktar tímaflækjur

► Tímaflækjur algrengra aðgerða eru:

Þekktar tímaflækjur

► Tímaflækjur algrengra aðgerða eru:

Aðgerð	Lýsing	Tímaflækja
 Línulega leit	Almenn leit í fylki	O(n)
Helmingunarleit	Leit í röðuðu fylki	$O(\log n)$
Röðun á heiltölum	Röðun á heiltalna fylki	$\mathcal{O}(n \log n)$
Almenn röðun	Röðun með $\mathcal{O}(T(n))$ samanburð	$\mathcal{O}(T(n) \cdot n \log n)$

10^8 reglan

Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- ▶ Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- lacktriangle Í keppnisforritun notum við 10^8 regluna:

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ightharpoonup Í keppnisforritun notum við 10^8 regluna:
 - $\,\blacktriangleright\,$ Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með $10^8.$

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ightharpoonup Í keppnisforritun notum við 10^8 regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- Í keppnisforritun notum við 10^8 regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 10^8 .
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- ightharpoonup Pessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 10^8 aðgerðir á sekúndu".

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ightharpoonup Í keppnisforritun notum við 10^8 regluna:
 - $\,\blacktriangleright\,$ Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með $10^8.$
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- ightharpoonup Pessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 10^8 aðgerðir á sekúndu".
- Pessi regla er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ightharpoonup Í keppnisforritun notum við 10^8 regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 10^8 .
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- ightharpoonup Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 10^8 aðgerðir á sekúndu".
- ▶ Pessi regla er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.
- Með þetta í huga fáum við eftirfarandi töflu.

S	tærð n	Versta tímaflækja	Dæmi
_	[10	$\mathcal{O}(n!)$	TSP með heildstærðri leit
<	15	$\mathcal{O}(n^2 2^n)$	TSP með kvikri bestun
<	20	$\mathcal{O}(n2^n)$	Kvik bestun yfir hlutmengi
<	100	$\mathcal{O}(n^4)$	Almenn spyrðingar
<	400	$\mathcal{O}(n^3)$	Floyd-Warshall
<	10^4	$\mathcal{O}(n^2)$	Lengsti sameiginlegi hlutstrengur
<	10^5	$\mathcal{O}(n\sqrt{n})$	Reiknirit sem byggja á rótarþáttun
<	10^6	$\mathcal{O}(n \log n)$	Of mikið til að þora að taka dæmi
<	10^{7}	$\mathcal{O}(n)$	Næsta tala sem er stærri (NGE)
<	(2^{10^7})	$\mathcal{O}(\log n)$	Helmingunarleit
>	10^{7}	$\mathcal{O}(1)$	Ad hoc

► Grunnur C++ býr yfir mörgum sterkum gagnagrindum.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.
- Við munum bara fjalla um gagnagrindurnar í grófum dráttum.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.
- Við munum bara fjalla um gagnagrindurnar í grófum dráttum.
- Það er hægt að finna ítarlegra efni og dæmi um notkun á netinu.

Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.
- lacktriangle Petta leyfir manni að vísa í fylkið í $\mathcal{O}(1)$.

Aðgerð	Tímaflækja
Lesa eða skrifa ótiltekið stak	$\mathcal{O}(1)$
Bæta staki aftast	$\mathcal{O}(n)$
Skeyta saman tveimur fylkum	$\mathcal{O}(n)$

vector

► Gagnagrindin vector er að mestu leiti eins og fylki.

vector

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.

vector

- Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.
- Margir nota bara vector og aldrei fylki sem slík.

Aðgerð	Tímaflækja
Lesa eða skrifa ótiltekið stak	$\mathcal{O}(1)$
Bæta staki aftast	$\mathcal{O}(1)$
Skeyta saman tveimur fylkum	$\mathcal{O}(n)$

list

► Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.

list

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.

list

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.
- Aftur á móti er hægt að gera smávægilegar breytingar á list sem er ekki hægt að gera á fylkjum.

Aðgerð	Tímaflækja
Finna stak	$\mathcal{O}(n)$
Bæta staki aftast	$\mathcal{O}(1)$
Bæta staki fremst	$\mathcal{O}(1)$
Bæta staki fyrir aftan tiltekið stak	$\mathcal{O}(1)$
Bæta staki fyrir framan tiltekið stak	$\mathcal{O}(1)$
Skeyta saman tveimur list	$\mathcal{O}(1)$

stack

 Gagnagrindin stack geymir gögn og leyfir aðgang að síðasta staki sem var bætt við.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(n)$ $\mathcal{O}(1)$
Lesa nýjasta stakið	$\mathcal{O}(1)$
Fjarlægja nýjasta stakið	$\mathcal{O}(1)$

queue

► Gagnagrindin queue geymir gögn og leyfir aðgang að fyrsta stakinu sem var bætt við.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(n)$
Lesa elsta stakið	$\mathcal{O}(1)$
Fjarlægja elsta stakið	$\mathcal{O}(1)$

stack

 Gagnagrindin set geymir gögn án endurtekninga og leyfir hraða uppflettingu.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(\log n)$
Gá hvort staki hafi verið bætt við	$\mathcal{O}(\log n)$

Lausnar aðferðir

Lausnir okkar má flokka í fjóra flokka:

Lausnar aðferðir

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.

Lausnar aðferðir

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - Gráðugar lausnir.

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - ► Gráðugar lausnir.
 - ▶ Deila og drottna (D&C).

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - Gráðugar lausnir.
 - ▶ Deila og drottna (D&C).
 - Kvik bestun (DP).

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - Gráðugar lausnir.
 - ▶ Deila og drottna (D&C).
 - Kvik bestun (DP).
- Pessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).
 - Kvik bestun (DP).
- Pessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.
- Til dæmis má færa rök fyrir því að gráðugar lausnir og D&C séu sértilfelli af kvikri bestun.

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - Gráðugar lausnir.
 - ▶ Deila og drottna (D&C).
 - Kvik bestun (DP).
- Þessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.
- Til dæmis má færa rök fyrir því að gráðugar lausnir og D&C séu sértilfelli af kvikri bestun.
- Við munum byrja á því að fjalla almennt um þessar aðferðir og fara svo í sértækara efni.

- Lausnir okkar má flokka í fjóra flokka:
 - Ad hoc.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).
 - Kvik bestun (DP).
- Þessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.
- Til dæmis má færa rök fyrir því að gráðugar lausnir og D&C séu sértilfelli af kvikri bestun.
- Við munum byrja á því að fjalla almennt um þessar aðferðir og fara svo í sértækara efni.
- Þá er oft gott að hafa í huga hvernig flokka megi reikniritin.

► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Þetta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.
- Ad hoc dæmi flokkast oft til léttari dæma í keppnum.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Þetta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.
- Ad hoc dæmi flokkast oft til léttari dæma í keppnum.
- ► Áðurnefnt NCPC dæmi er þó aftur undanteking, því engin keppandi náði að leysa það dæmi.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.
- Ad hoc dæmi flokkast oft til léttari dæma í keppnum.
- Áðurnefnt NCPC dæmi er þó aftur undanteking, því engin keppandi náði að leysa það dæmi.
- ➤ Samkvæmt skilgreiningu getum við ekki rætt Ad hoc dæmi ítarlega. Tökum því nokkur dæmi.

▶ Þú átt að breyta almennu broti í blandað brot.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið $a\ b/c$ tákna sömu töluna ef p/q=a+b/c.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið $a\ b/c$ tákna sömu töluna ef p/q=a+b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið $a\ b/c$ tákna sömu töluna ef p/q=a+b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið $a\ b/c$ tákna sömu töluna ef p/q=a+b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.
- ▶ Inntakið inniheldur tvær heiltölur $1 \le p, q \le 10^9$.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið $a\ b/c$ tákna sömu töluna ef p/q=a+b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.
- ▶ Inntakið inniheldur tvær heiltölur $1 \le p, q \le 10^9$.
- lacktriangle Úttakið skal innihalda blandaða brotið sem svarar til p/q.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið $a\ b/c$ tákna sömu töluna ef p/q=a+b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.
- ▶ Inntakið inniheldur tvær heiltölur $1 \le p, q \le 10^9$.
- lackbox Úttakið skal innihalda blandaða brotið sem svarar til p/q.

		Inntak	Úttak
•	Sýnidæmi 1		2 3 / 12
	Sýnidæmi 2	2460000 98400	25 0 / 98400
	Sýnidæmi 3	3 4000	0 3 / 4000

Test

