## UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA

### CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS



MEMORIA DEL TRABAJO FINAL

# Módulo de conectividad WiFi/Bluetooth para electrodoméstico

### Autor: Ing. Matías Nicolás Brignone

Director: Esp. Ing. Diego Fernández (FIUBA)

Jurados: Mg. Ing. Gonzalo Sánchez (FIUBA, FAA) Esp. Ing. Matías Álvarez (FIUBA) Esp. Ing. Santiago Germino (FIUBA)

Este trabajo fue realizado en la ciudad de Córdoba, entre marzo de 2019 y abril de 2020.

### Resumen

En la presente memoria se describe el desarrollo de un módulo que permite dotar de conectividad WiFi y Bluetooth a un electrodoméstico, a los fines de permitir su manejo remoto por parte del usuario final. También permite la recopilación de información de uso y estado por parte del fabricante del electrodoméstico. Con el objetivo de agilizar el desarrollo, el electrodoméstico a controlar se emula utilizando un microcontrolador con el que se comunica el módulo.

Para desarrollar el trabajo se utilizaron un sistema operativo de tiempo real, diferentes protocolos de comunicación en distintas capas (WiFi/Bluetooth para la capa física, HTTPS/MQTT para la capa de aplicación, entre otros), sistemas de control de versiones y herramientas de gestión de proyectos.

## Agradecimientos

A mi familia, por su constante apoyo.

A mis amigos y colegas, por acompañarme en este camino.

## Índice general

| Re | umen                                                                                                                                                          | III                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1. | Introducción General  1.1. Internet de las Cosas  1.2. Estado del arte  1.3. Motivación  1.4. Objetivos y alcance  1.4.1. Objetivos generales  1.4.2. Alcance | 1<br>3<br>4<br>5<br>5                  |
| 2. | 2.4. Requerimientos                                                                                                                                           | 7<br>9<br>10<br>11                     |
| 3. | 3.1. Entorno de desarrollo                                                                                                                                    | 15<br>15<br>15<br>15<br>15<br>15       |
| 4. | 4.1. Pruebas funcionales                                                                                                                                      | 17<br>17<br>17<br>17<br>17<br>17<br>17 |
|    | 5.1. Conclusiones generales                                                                                                                                   | 19<br>19<br>19<br>21                   |

## Índice de figuras

| 1.1. | Proyecciones del valor de mercado a nivel mundial de la Internet |    |
|------|------------------------------------------------------------------|----|
|      | de las Cosas                                                     | 2  |
| 1.2. | Plataformas de hardware ofrecidas por Particle                   | 3  |
|      | _                                                                |    |
| 2.1. | Diagrama general del sistema implementado                        | 7  |
| 2.2. | Capas del modelo TCP/IP                                          | 10 |
| 2.3. | Diagrama Activity On Node Parte 1                                | 12 |
| 2.4. | Diagrama Activity On Node Parte 2                                | 12 |
| 2.5. | Diagrama Activity On Node Parte 3                                | 13 |

## Índice de Tablas

Dedicado a mi familia.

### Introducción General

En este capítulo se realiza una introducción al concepto de Internet de las Cosas, se describe la motivación del trabajo realizado y se presentan sus objetivos y alcance.

#### 1.1. Internet de las Cosas

Desde la aparición de Internet a finales del siglo pasado, ha quedado demostrado lo útil que es contar con un dispositivo capaz de conectarse a la red. Los beneficios de que una computadora o un teléfono inteligente puedan conectarse a Internet son evidentes, y esos beneficios también se encuentran presentes al conectar cualquier otro objeto a Internet, y es allí donde surge el concepto de Internet de las Cosas (IoT, por sus siglas en inglés correspondientes a *Internet of Things*).

La Internet de las Cosas consiste en extender el potencial de Internet y la conectividad más allá de las computadoras y celulares, e incorporar a todos los objetos (cosas) de la vida cotidiana y que se encuentran presentes en el entorno de una persona. Así se permite tanto la comunicación e interacción entre sí de estos objetos, como así también el monitoreo y control en forma remota.

El concepto de «cosa» es sumamente amplio, ya que contempla desde lámparas, cerraduras y termostatos en el hogar, hasta maquinaria industrial y sistemas de riego para agricultura, pasando por vehículos autónomos, sistemas de iluminación y sensores para estacionamiento público en una ciudad. El objeto conectado incluso puede ser un monitor cardíaco en el interior de una persona o un chip insertado en un animal de granja. Gracias a la existencia de sensores y microcontroladores cada vez más potentes, más pequeños y de menor costo, es posible lograr que prácticamente cualquier dispositivo forme parte del ecosistema IoT.

Los beneficios que la Internet de las Cosas ofrece tanto a empresas como a personas individuales son innumerables. Desde un punto de vista económico, les da la posibilidad a las empresas de conocer y monitorear mejor sus procesos, para así hacerlos más eficientes y posibilitar mejores tomas de decisiones y acciones como mantenimiento predictivo de maquinaria. Todo eso se traduce en definitiva en un ahorro de dinero y tiempo para la organización. Con respecto a un individuo particular, la Internet de las Cosas le permite mejorar su calidad de vida y su comodidad en el día a día con automatizaciones en el hogar (domótica), como así también beneficios a la salud con, por ejemplo, implantes inteligentes que permiten un cuidadoso monitoreo.

Las empresas, las personas y el mercado en general hace ya varios años que se han dado cuenta de la importancia de la Internet de las Cosas. Es prueba de ello la gran cantidad de dispositivos conectados que existen, y las proyecciones que indican que estos números seguirán aumentando notablemente. En 2017 ya había 27 mil millones de dispositivos IoT conectados, cifra que aumentará a un ritmo de un 12 % anual hasta llegar a 125 mil millones para 2030 [1]. Por otra parte, en la figura 1.1 se puede observar cómo el mercado mundial de la Internet de las Cosas ya maneja cantidades de dinero superiores a los USD 200.000.000.000, y cómo esa cifra aumentará sustancialmente a lo largo de los próximos años [2], lo cual supone una enorme oportunidad de negocio para muchas empresas.



FIGURA 1.1: Proyecciones del valor de mercado a nivel mundial de la Internet de las Cosas.<sup>1</sup>

Por último, un punto que a menudo es pasado por alto al momento de hablar de la Internet de las Cosas, son todos los problemas asociados a la seguridad y la privacidad. Tener un mayor número de dispositivos conectados, muchos de los cuales recolectan información sumamente sensible, expande la superficie de ataque considerablemente, y deja tanto a empresas como a personas más vulnerables frente a posibles ciberdelincuentes. Existen incontables ejemplos de vulnerabilidades en dispositivos IoT que salieron a la luz, como una gigantesca *botnet* formada por dispositivos IoT [3], televisores inteligentes que espían conversaciones privadas [4], e incluso ataques dirigidos a dispositivos conectados en entornos industriales [5]. Estos hechos ocurren principalmente porque la seguridad y la privacidad a menudo son vistas como costos extra en los que no vale la pena incurrir. Incluso en ocasiones la propia empresa utiliza de manera poco ética esos

<sup>&</sup>lt;sup>1</sup>Gráfico replicado en base al que se muestra en https://www.statista.com/statistics/976313/global-iot-market-size/.

1.2. Estado del arte

agujeros de seguridad para obtener datos de los usuarios y sacar algún tipo de provecho económico a partir de ellos.

Las consecuencias de una falla de seguridad en un dispositivo IoT pueden ser muy graves, por lo que al momento de desarrollar una solución en el segmento del Internet de las Cosas, los aspectos de seguridad deben ser tenidos en consideración desde un principio, aún cuando ello implique desarrollar un producto más costoso o complejo.

#### 1.2. Estado del arte

En la actualidad, existe una enorme cantidad de dispositivos conectados que pertenecen a muy diversos ámbitos, por lo que resultaría poco práctico brindar un panorama general del estado del arte en todos ellos. Por lo tanto, el foco estará en aquellos productos que ofrezcan soluciones orientadas a dispositivos que ya cuentan con cierto nivel de "inteligencia" (como maquinaria industrial/agrícola o artefactos del hogar), a los fines de dotarlos de conectividad y de todo un entorno que permita procesar y analizar los datos generados por ellos.

Por un lado, existen numerosas plataformas que solamente ofrecen la etapa de procesamiento, análisis y visualización de datos. Estas plataformas asumen que el cliente cuenta con el hardware necesario para enviarles la información relevante, y ellas se encargan de analizarla y presentarla de manera conveniente mediante tableros o *dashboards*, que le permiten al usuario ver el estado de los dispositivos y actuar sobre ellos. La mayoría de estas plataformas poseen características similares tales como administración de dispositivos, visualización de datos y soporte a múltiples protocolos de comunicación. Algunos ejemplos de esta clase de plataformas son ThingBoard [6], Thinger [7] y Ubidots [8], además de los servicios específicamente orientados a IoT de Amazon Web Services, de Google Cloud Platform y de Microsoft Azure.

Por otra parte, existen también plataformas de hardware que ofrecen soluciones genéricas de conectividad, junto con plataformas para analizar y visualizar los datos obtenidos, con características similares a las mencionadas anteriormente.

En este último segmento hay diferentes grados de especialización. Por ejemplo, existen empresas que ofrecen soluciones orientadas exclusivamente al ámbito industrial, como ThingWorx de la empresa PTC [9], mientras que otras brindan soluciones más genéricas con una plataforma de hardware y un entorno de análisis y visualización, como el caso de Particle (figura 1.2) [10].



FIGURA 1.2: Plataformas de hardware ofrecidas por Particle.<sup>2</sup>

#### 1.3. Motivación

Un sector fundamental en el ámbito del Internet de las Cosas es el de la domótica, es decir el conjunto de tecnologías que permite el control y la automatización inteligente de una vivienda, a los fines de lograr una gestión eficiente y brindar mayor comodidad y seguridad a quienes la habitan [11].

A su vez, dentro de la domótica, un campo de especial interés es el de los electrodomésticos inteligentes (o *smart appliances*), tales como televisores, heladeras, hornos, lavarropas o microondas.

Una característica primordial de un electrodoméstico inteligente es su capacidad de estar conectado y ser manejado o accedido de forma remota, ya sea mediante una plataforma web, una aplicación en el celular, comandos de voz o cualquier otro medio. Esta capacidad brinda grandes ventajas con respecto a un artefacto convencional, ya que no solamente ofrece una mayor comodidad al momento de usarlo, sino que también permite programar acciones (como preparar un café a una determinada hora) y ahorrar energía al hacer más eficiente su uso.

Actualmente existen ya en el mercado numerosos ejemplos de electrodomésticos inteligentes que permiten llevar a cabo diferentes acciones:

- Encender el horno mediante un comando de voz, incluso con integración con los asistentes de voz más comunes.
- Consultar el contenido de la heladera mediante una aplicación en el celular.
- Recibir una notificación cuando el ciclo de lavado del lavarropas finaliza.
- Diagnosticar automáticamente la causa de una falla.

Gracias a las ventajas que ofrecen, la demanda de electrodomésticos inteligentes es cada vez más mayor, por lo que aquellas empresas o fabricantes que no se modernicen y comiencen a incorporar características *smart* a sus dispositivos, se encontrarán en clara desventaja al competir en el mercado con aquellas que sí lo hagan.

Como se puede apreciar en la sección 1.2, existen ya en el mercado numerosas soluciones orientadas a la Internet de las Cosas. Cada una de ellas ofrece diferentes características y cubre diferentes mercados. Dentro de las soluciones que ofrecen una plataforma tanto de hardware como de software, no existe un sector consolidado que esté orientado a dotar de conectividad a electrodomésticos en el hogar, y es allí donde surge la importancia del presente trabajo. Lo que se busca es cubrir justamente ese sector y ofrecer una solución personalizada a los fabricantes para que puedan lograr que los electrodomésticos que ya fabrican se conviertan en electrodomésticos inteligentes.

<sup>&</sup>lt;sup>2</sup>Imagen extraída de https://store.particle.io/pages/prototyping-hardware.

#### 1.4. Objetivos y alcance

#### 1.4.1. Objetivos generales

El objetivo general del presente trabajo es el diseño e implementación de un módulo capaz de dotar de conectividad WiFi y Bluetooth a un electrodoméstico convencional. Para ello, el módulo debe tener la capacidad de comunicarse con la placa del propio equipo y de recibir/enviar información a un servidor en la nube, a los fines de permitirle al usuario final un manejo remoto del aparato y conocer su estado, como así también enviar información de uso al fabricante.

El módulo no está destinado directamente al usuario final del electrodoméstico, sino a empresas o fabricantes que busquen incorporar características inteligentes a sus electrodomésticos.

A grandes rasgos, desde el punto de vista del usuario final, se debe permitir:

- Enviar por WiFi o Bluetooth un comando al electrodoméstico que dispare una acción en él, como iniciar la cocción en un horno o el lavado en un lavarropas.
- Conocer el estado del electrodoméstico mediante la recepción de información por WiFi o Bluetooth.

Por otra parte, desde el punto de vista del fabricante del electrodoméstico se debe permitir:

- Recibir y almacenar información acerca del estado de todos los dispositivos (si están o o no conectados, y en qué estado de ejecución se encuentran).
- Analizar y visualizar de manera conveniente la información de estado de los dispositivos a lo largo del tiempo.

#### 1.4.2. Alcance

El presente trabajo incluye los siguientes aspectos:

- 1. Análisis, investigación y elección del hardware a utilizar en el módulo.
- 2. Implementación del firmware del sistema.
- Comunicación con un microcontrolador que emule el comportamiento del electrodoméstico.
- 4. Desarrollo de una interfaz web mediante una plataforma ya existente, que permita enviarle comandos al electrodoméstico emulado.
- 5. Implementación de un entorno en la nube que permita analizar y visualizar los datos de los diferentes electrodomésticos conectados.

Es de especial importancia el punto 3 de la lista, en el que se define explícitamente que, a los fines de agilizar considerablemente el tiempo de desarrollo del trabajo, el prototipo no se utilizará en un electrodoméstico real. La interacción con él se emula mediante la comunicación con otro microcontrolador, que actúa como la placa de control del electrodoméstico: imita su comportamiento y sus respuestas ante diferentes estímulos.

En línea con el párrafo anterior, el presente trabajo no incluye lo siguiente:

- 1. Integración del prototipo a diferentes electrodomésticos/marcas con distintos tipos de comunicación serie y funcionalidades.
- 2. Desarrollo de una aplicación móvil desde la cual interactuar por Bluetooth con el módulo.
- 3. Diseño y fabricación de un circuito impreso. Para el trabajo se utiliza una placa de prototipo ya existente que incluye el hardware seleccionado.

## Introducción Específica

En el presente capítulo se brinda una explicación del funcionamiento general del sistema implementado, como así también una introducción a diferentes tecnologías utilizadas en el trabajo. Se presentan además los requerimientos y la planificación del trabajo.

#### 2.1. Funcionamiento general del sistema

Como se mencionó en el capítulo 1, el propósito del presente trabajo es el desarrollo de un módulo capaz de dotar de conectividad WiFi/Bluetooth a un electrodoméstico convencional. Para que ello sea posible, es necesario contar con diferentes módulos, tal como puede observarse en la figura 2.1, en la que se presenta un diagrama de bloques del sistema implementado.



FIGURA 2.1: Diagrama general del sistema implementado.

El principal componente del sistema es el microcontrolador, que se encarga de procesar los comandos recibidos y de gestionar todas las comunicaciones, para lo cual hace uso de sus interfaces de comunicación (módulos WiFi, Bluetooth y serie).

Para ilustrar el funcionamiento general del sistema, se presenta a continuación la serie de acciones que tiene lugar en un caso de uso típico del sistema, en el que el usuario desea que el electrodoméstico inicie una determinada operación (como por ejemplo, el ciclo de lavado en un lavarropas).

- El usuario final le envía un comando al electrodoméstico, desde su computadora o celular.
  - En caso de que el comando sea enviado por WiFi, la comunicación pasa a través de un servidor en la nube que recibe el comando del usuario y luego lo envía al microcontrolador.
  - En caso de que el comando sea enviado por Bluetooth, la comunicación se realiza de manera directa con el microcontrolador.
- El módulo correspondiente (módulo WiFi o Bluetooth, según sea el caso) recibe el comando y le informa al microcontrolador que hay un nuevo comando pendiente para procesar.
- El microcontrolador procesa el comando recibido y determina la acción a ejecutar.
- Si la acción a ejecutar lo requiere, el microcontrolador se comunica con la placa de control del electrodoméstico mediante una interfaz serie, a los fines de disparar en el mismo la operación deseada por el usuario.
- Dependiendo del tipo de acción, el electrodoméstico puede contestar con su información de estado, la cual es recibida por el microcontrolador y enviada de vuelta al usuario, a través de la misma interfaz desde la cual recibió el comando originalmente. Es decir, que si el usuario envió un comando por Bluetooth para consultar el estado del artefacto, el microcontrolador utiliza el módulo Bluetooth para devolverle la respuesta.

Cabe mencionar que, debido a limitaciones de hardware, las interfaces de comunicación WiFi y Bluetooth no pueden ser utilizadas en simultáneo. Por lo tanto, si se envían comandos por WiFi, el Bluetooth debe estar apagado, y viceversa al enviar comandos por Bluetooth.

De manera independiente a las acciones disparadas a partir de un comando del usuario, el microcontrolador envía periódicamente al fabricante información acerca del estado del electrodoméstico. Este envío se lleva a cabo mediante la interfaz WiFi, que se comunica con un servidor en la nube solamente accesible por el fabricante, y que se encarga de almacenar la información para luego permitir su análisis y visualización. Gracias a esta información, el fabricante puede conocer y visualizar en todo momento el estado de sus electrodomésticos, ya sea de manera individual con todo el historial de uso de cada uno, o de forma general agrupando artefactos para obtener un panorama global del estado de sus dispositivos conectados.

Además, el módulo crea y mantiene activa en todo momento una red WiFi local de corto alcance en la que se encuentra corriendo un servidor web. El usuario puede conectarse a esta red y luego acceder desde cualquier navegador de Internet al servidor web, el cual permite configurar las credenciales de la red WiFi doméstica a la cual el módulo se conectará para recibir comandos y enviar información de uso al fabricante.

#### 2.2. Tecnologías inalámbricas

En la actualidad, existen numerosas tecnologías inalámbricas que son aplicables a la Internet de las Cosas, muchas de las cuales incluso surgieron debido a la relevancia que este concepto fue tomando, como es el caso de NB-IoT [12], LoRa [13] y SigFox [14]. Muchas de estas tecnologías se caracterizan por permitir un bajo consumo de potencia y un largo alcance, a costa de una baja velocidad de transmisión, lo cual en muchas ocasiones es una relación de compromiso ideal para Internet de las Cosas.

A pesar del surgimiento de estas nuevas redes, las tecnologías tradicionales de conectividad inalámbrica, como el WiFi [15] y el Bluetooth [16], siguen siendo adecuadas para muchas aplicaciones, especialmente aquellas que requieren una interacción directa con el usuario final. Esto se debe a que son tecnologías ampliamente soportadas por la gran mayoría de los dispositivos que posee una persona, como computadoras y celulares.

Un electrodoméstico conectado interactúa de manera directa con la persona que lo utiliza en el hogar, por lo tanto el WiFi y el Bluetooth son tecnologías sumamente adecuadas para un módulo destinado a tal fin.

La tecnología WiFi permite transmitir a grandes velocidades, pero con un alcance bajo y un consumo de energía mayor. Esto último impide que el WiFi sea utilizado en, por ejemplo, sensores que funcionan a batería ubicados en lugares remotos, pero no supone un problema para un electrodoméstico que se encuentra en el hogar, con fácil acceso a una fuente de alimentación y cerca de un punto de acceso al cual conectarse.

Las especificaciones del WiFi definen una interfaz que se emplea para enviar y recibir señales entre un dispositivo inalámbrico (estación WiFi) y un punto de acceso. Si además se requiere tener acceso a Internet, es necesario conectarse también con un *router* y un módem, el cual a su vez debe estar conectado a un proveedor de servicios de Internet (ISP, por sus siglas en inglés correspondientes a *Internet Service Provider*). El módulo en el electrodoméstico actúa como una estación WiFi, es decir como un dispositivo que se conecta a la red doméstica de la casa y a través de ella obtiene una salida a Internet.

Por su parte, la tecnología Bluetooth pertenece a otro tipo de redes, denominadas Redes de Área Personal (PAN, por sus siglas en inglés) [ref]. Una conexión Bluetooth permite la comunicación directa entre dos dispositivos cercanos y su uso está sumamente masificado, ya que es fácil y económico integrarlo en muchos aparatos. Estas son características que lo convierten en una tecnología ideal para utilizar en un electrodoméstico conectado.

Su utilización en el ámbito de la Internet de las Cosas cobró verdadera importancia gracias al surgimiento del Bluetooth Low Energy (BLE) [ref], el cual fue diseñado específicamente para proporcionar un bajo consumo de energía. Esto permitió incrementar aún más la popularidad de la tecnología, extendiéndola hacia nuevos dispositivos como relojes o incluso zapatillas, lo cual fue acompañado con cada vez más modelos de computadores y celulares que también soporten la tecnología.

#### 2.3. Protocolos HTTP/S y MQTT

Para que un dispositivo pueda conectarse a Internet, necesariamente debe recurrir al modelo TCP/IP [17], cuyas diferentes capas pueden observarse en la figura 2.2.



FIGURA 2.2: Capas del modelo TCP/IP.

El protocolo a nivel de capa de acceso a la red depende del hardware y del tipo de conectividad del dispositivo, y en el caso de este trabajo está constituida por la tecnología WiFi. Las capas de Internet y de transporte utilizan, en este trabajo, los protocolos que le dan el nombre al modelo, es decir IP (*Internet Protocol*) y TCP (*Transmission Control Protocol*)) respectivamente.

La capa de aplicación, ubicada en la parte superior del modelo, es la encargada de ofrecerle a las aplicaciones de usuario la posibilidad de comunicarse con otros dispositivos a través de los servicios brindados por las demás capas.

El protocolo de aplicación más conocido es el Protocolo de Transferencia de Hipertexto (HTTP por sus siglas en inglés, correspondientes a *Hypertext Transfer Protocol*), el cual tiene una estructura cliente-servidor y permite realizar peticiones de datos y recursos [18]. Este protocolo es la base de cualquier intercambio de datos en la web, y por lo tanto es utilizado en aplicaciones de Internet de las Cosas cuando se desea que el dispositivo conectado acceda directamente a diferentes páginas web.

Existe una variante denominada Protocolo Seguro de Transferencia de Hipertexto (HTTPS por sus siglas en inglés, correspondientes a *Hypertext Transfer Protocol Secure*), que como su nombre lo indica, es una versión segura de HTTP en la que la transmisión está encriptada y el servidor autenticado [19]. En toda aplicación, siempre se debe hacer lo posible para utilizar HTTPS y no simplemente HTTP, para garantizar la seguridad y la privacidad de los datos.

Además de los protocolos HTTP y HTTPS, existen otros protocolos para la capa de aplicación con características que los hacen ideales para la Internet de las Cosas, entre los que se destaca el protocolo MQTT (*Message Queue Telemetry Transport*) [20]. Este protocolo se basa en un modelo de publicaciones y subscripciones, en el que un cliente publica mensajes en un tema o *topic*, y todos aquellos nodos que se encuentran subscriptos a ese tema, reciben el mensaje publicado. MQTT es ideal para aplicaciones de IoT, debido principalmente a que requiere un muy bajo ancho de banda, tiene un menor consumo de potencia que otras alternativas, y además es sencillo y ligero de implementar.

Por todo lo enunciado anteriormente es que se decide que el módulo desarrollado soporte los 3 protocolos: HTTP, HTTPS y MQTT.

#### 2.4. Requerimientos

A continuación se presentan los requerimientos en base a los cuales se desarrolló el presente trabajo, agrupados en cuatro categorías.

- 1. Requerimientos generales del sistema.
  - a) El módulo debe ser capaz de llevar a cabo, mediante la recepción de comandos por WiFi o Bluetooth, las mismas funciones que a través de la interfaz física del electrodoméstico.
  - b) El módulo debe ser capaz de enviar comandos por WiFi o Bluetooth, transmitiendo información de estado del electrodoméstico.
  - c) Las acciones a ejecutar de acuerdo al comando recibido dependen de cada aparato en particular, pero como mínimo se debe brindar la posibilidad de iniciar o detener la acción del electrodoméstico y consultar su estado.
  - d) El módulo debe enviar al fabricante información asociada al uso del electrodoméstico, incluyendo el envío periódico del estado en el que se encuentra.
  - *e*) El módulo debe ser capaz de crear su propia red local WiFi a los fines de permitir configurar las credenciales de de la red WiFi a conectarse.
  - *f*) El módulo debe ser capaz de enviar y recibir comandos por WiFi utilizando los protocolos HTTP, HTTPS y MQTT.
- 2. Requerimientos de hardware.
  - *a*) El módulo debe poder comunicarse utilizando el Estándar IEEE 802.11 b/g/n (WiFi).
  - b) El módulo debe poder comunicarse utilizando Bluetooth Low Energy (BLE).
  - c) El módulo debe utilizar un único chip que integre el microprocesador y la conectividad WiFi/Bluetooth.
  - d) El módulo debe contar como mínimo con interfaces de comunicación serie SPI (*Serial Peripheral Interface*), I2C (*Inter-Integrated Circuit*) y UART (*Universal Asynchronous Receiver-Transmitter*), a los fines de poder adaptarse a los distintos tipos de electrodomésticos.
- 3. Requerimientos de firmware.
  - a) El firmware del módulo debe ser programado en lenguaje C.
  - *b*) Se deben realizar pruebas manuales para cada una de las funcionalidades del firmware del módulo.
- 4. Requerimientos de gestión de proyectos.

- *a*) Se debe utilizar YouTrack [21] como herramienta de *issue tracking* y gestión de proyectos.
- *b*) Se debe usar Git como sistema de control de versiones.

Cabe mencionar en este punto que originalmente se había planteado la integración del módulo a un electrodoméstico real, lo que implicaba también el diseño y fabricación de un PCB que se adapte al mismo. Sin embargo, debido a las dificultades para acceder a un electrodoméstico sobre el cual probar el módulo, sumado a la necesidad de acelerar los tiempos de desarrollo, se decidió reemplazar dicho electrodoméstico por otro microcontrolador que emule su comportamiento.

#### 2.5. Planificación

Para mostrar la planificación del trabajo, se recurre a un diagrama *Activity On Node* (figuras 2.3, 2.4 y 2.5), en el cual cada caja o nodo representa una actividad, y las conexiones entre ellas representan una dependencia temporal en la que una debe terminarse antes que la siguiente. Además se muestra el tiempo en horas que demoraría cada una de las tareas.



FIGURA 2.3: Diagrama Activity On Node Parte 1.

Se puede observar que la primera etapa consiste en análisis e investigación, además de la planificación del trabajo propiamente dicha. Luego sigue una etapa de diseño de firmware y familiarización con las herramientas a utilizar, sin empezar aún con la implementación.

Una vez definido el diseño, se procede con el desarrollo de las diferentes funcionalidades de firmware y sus respectivas pruebas. Si bien en el diagrama (figura 2.4) el desarrollo de estas tareas se muestra en paralelo, ya que son relativamente independientes y por lo tanto podrían ejecutarse en simultáneo, al ser desarrollado por una única persona, las tareas se debieron desarrollar en serie.

Luego se integran todas las funcionalidades implementadas y se realizan pruebas generales del sistema, para posteriormente configurar las plataformas utilizadas para enviar y recibir información por WiFi y Bluetooth.

2.5. Planificación 13



FIGURA 2.4: Diagrama Activity On Node Parte 2.



FIGURA 2.5: Diagrama Activity On Node Parte 3.

Finalmente se contempla también el tiempo necesario para las actividades asociadas a la presentación del trabajo final.

## Diseño e Implementación

Párrafo introductorio.

- 3.1. Entorno de desarrollo
- 3.2. Firmware
- 3.2.1. Arquitectura MQTT
- 3.2.2. Tareas implementadas
- 3.3. Interfaz de usuario
- 3.4. Integración con Google Cloud Platform

## Ensayos y Resultados

Párrafo introductorio.

#### 4.1. Pruebas funcionales

4.1.1. Comunicación WiFi

Servidor web

- 4.1.2. Comunicación BLE
- 4.1.3. Comunicación serie con electrodoméstico
- 4.2. Integración del sistema
- 4.2.1. Visualización de datos en Google Cloud Platform

## **Conclusiones**

- 5.1. Conclusiones generales
- 5.2. Próximos pasos

## Bibliografía

- [1] IHS Markit. The Internet of Things: a movement, not a market. 2017.
- [2] Statista. Forecast end-user spending on IoT solutions worldwide from 2017 to 2025.
  - https://www.statista.com/statistics/976313/global-iot-market-size/. 2017. (Visitado 14-03-2020).
- [3] Cloudflare. What is the Mirai Botnet? https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/. (Visitado 15-03-2020).
- [4] Zack Whittaker. *CIA*, *MI5 hacked smart TVs to eavesdrop on private conversations*. https://www.zdnet.com/article/how-cia-mi5-hacked-your-smart-tv-to-spy-on-you/. 2017. (Visitado 15-03-2020).
- [5] Danny Palmer. *Ransomware, snooping and attempted shutdowns: see what hackers did to these systems left unprotected online.*https://www.zdnet.com/article/ransomware-snooping-and-attempted-shutdowns-the-state-of-this-honeypot-shows-what-hackers-do-to-systems-left-unprotected-online/. 2020. (Visitado 15-03-2020).
- [6] https://thingsboard.io/. (Visitado 18-03-2020).
- [7] https://thinger.io/. (Visitado 18-03-2020).
- [8] https://ubidots.com/. (Visitado 18-03-2020).
- [9] ThingWorx. https://www.ptc.com/-/media/Files/PDFs/IoT/ThingWorx-Connect-Product-Brief.pdf. (Visitado 18-03-2020).
- [10] https://www.particle.io/. (Visitado 18-03-2020).
- [11] Asociación Española de Domótica e Inmótica. *Qué es Domótica*. http://www.cedom.es/sobre-domotica/que-es-domotica. (Visitado 17-03-2020).
- [12] *NB-IoT, la nueva revolución del mundo conectado*. https://accent-systems.com/es/nb-iot. (Visitado 24-03-2020).
- [13] Semtech. *What is Lora?* https://www.semtech.com/lora/what-is-lora. (Visitado 24-03-2020).
- [14] Sigfox. Sigfox technology. https://www.sigfox.com/en/what-sigfox/technology. (Visitado 24-03-2020).
- [15] Wifi. https://es.wikipedia.org/wiki/Wifi. (Visitado 24-03-2020).
- [16] *Learn about Bluetooth Technology*. https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/. (Visitado 24-03-2020).
- [17] *TCP/IP*. https://es.ccm.net/contents/282-tcp-ip-que-significa-tcp-ip. (Visitado 25-03-2020).
- [18] *Generalidades del protocolo HTTP*. https://developer.mozilla.org/es/docs/Web/HTTP/Overview. (Visitado 25-03-2020).
- [19] HTTPS. https://es.ryte.com/wiki/HTTPS. (Visitado 25-03-2020).

22 Bibliografía

[20] ¿Qué es MQTT? Su importancia como protocolo IoT. https: //www.luisllamas.es/que-es-mqtt-su-importancia-como-protocolo-iot/. (Visitado 25-03-2020).

[21] *YouTrack*. https://www.jetbrains.com/es-es/youtrack/. (Visitado 22-03-2020).