实验 7 等强度梁应力测量实验报告

姓名: 邹佳驹

学号: 12012127

同组人: 刘鸿磊

1.实验目的

测定等强度悬臂梁上下表面的应力, 验证梁的弯曲理论, 计算泊松比。

2.实验仪器设备和工具

- 1) 材料力学组合实验台中等强度悬臂梁实验装置与部件
- 2) 力&应变综合参数测试仪
- 3) 游标卡尺、钢板尺

3.实验原理和方法

将试件固定在实验台架上,梁在纯弯曲时,同一截面上表面产生压应变,下表面产生拉应变,上下表面产生的拉压应变绝对值相等。计算公式为:

$$\varepsilon = \frac{6FL}{Ebh^2}$$

F 为梁上所加的载荷, L 为载荷作用点到测试点的距离, E 为弹性模量, b 为梁的宽度, h 为梁的厚度

在梁的上下表面分别粘贴上应变片 R1、R2、R3、R4 和 R5,如图所示,当对梁施加载荷 P时,梁产生弯曲变形,在梁内引起应力。

图 1 等强度梁外形图及布片图

4.实验步骤

- 1) 设计好本实验所需的各类数据表格;
- 2) 测量悬臂梁的有关尺寸,确定试件有关参数;

3) 拟定加载方案。选取适当的初载荷 P_0 =20N 左右,估算最大载荷 Pmax(该实验载荷范围 ≤100N),一般分 5 级加载;

估算最大载荷:

$$F.S = \frac{\sigma_{fail}}{\sigma_{allow}} = \frac{\sigma_{fail}}{\frac{M}{W}} = \frac{\sigma_{fail}}{\frac{PL}{bh^2/6}} = 4.5$$

$$P_{max} = \frac{\sigma_{fail} \times bh^2}{6L \times F.S} = \frac{355 \times 10^6 \times 0.048 \times 0.008^2}{6 \times 0.4 \times 4.5} = 101N$$

- 4) 实验采用多点测量中半桥单臂公共补偿接线法。将悬臂梁上两点应变片按序号接到电阻 应变仪测试通道上,温度补偿片接电阻应变仪公共补偿端。
- 5) 按实验要求接好线, 调整好仪器, 检查整个系统是否处于正常工作状态。
- 6) 实验加载。用均匀慢速加载至初载荷 P_0 。记下各点应变片初读数,然后逐级加载,每增加一级载荷,依次记录各点电阻应变仪读数,直到最终载荷。实验至少重复三次。
- 7) 作完试验后, 卸掉载荷, 关闭电源, 整理好所用仪器设备, 清理实验现场将所用仪器设备 复原, 实验资料交指导教师检查签字。

5.实验数据记录与处理

1)表 1 试件测量表

梁的高度h(mm)	8.05
梁的宽度b(mm)	48.04
载荷作用点到测试点的距离L(mm)	250、300
弹性模量E	210GPa
泊松比μ	0.28

2)表 2 实验数据表

(με)	P(N)	-20	-36	-52	-68	-84	-100
	ε1	-75	-135	-190	-250	-304	-361
	ε2	-73	-135	-188	-251	-305	-364
1/4桥应变	ε3	20	38	52	69	85	102
	ε4	73	137	192	251	309	368
	ε5	74	134	189	250	306	365
*************************************	ε1-4	150	272	380	500	622	736
が自士が	ε2-5	-150	-270	-377	-498	-618	-731
 対臂半桥	ε1-2	-146	-271	-378	-495	-620	-730
A) 月十171	ε4-5	149	278	388	506	634	746
四臂全桥	ε1-2-4-5	-296	-542	-777	-1005	-1249	-1465
串联双臂半桥	ε1_4-2_5	-153	-270	-387	-512	-627	-744

3)实验结果处理

a) 应力, $\sigma = E\varepsilon$;

	P(N)	-20	-36	-52	-68	-84	-100
	σ1(MPa)	-15.75	-28.35	-39.9	-52.5	-63.84	-75.81
	σ2(MPa)	-15.33	-28.35	-39.48	-52.71	-64.05	-76.44
1/4桥应变	σ3(MPa)	4.2	7.98	10.92	14.49	17.85	21.42
	σ4(MPa)	15.33	28.77	40.32	52.71	64.89	77.28
	σ5(MPa)	15.54	28.14	39.69	52.5	64.26	76.65

b) 应力理论解, $\sigma = \frac{M}{W} = \frac{6\Delta PL}{bh^2}$

P(N)	-20	-36	-52	-68	-84	-100
σ1(MPa)	-15.42	-27.75	-40.09	-52.42	-64.76	-77.09
σ2(MPa)	-15.42	-27.75	-40.09	-52.42	-64.76	-77.09
O(MAD)					/	
σ3(MPa)						
σ3(MPa) σ4(MPa)	15.42	27.75	40.09	52.42	64.76	77.09

c) 理论值与实验值比较

$$e = \frac{|\sigma_{li} - \sigma_{shi}|}{\sigma_{shi}} \times 100\%$$

P(N)	-20	-36	-52	-68	-84	-100
Error σ1	2.10%	2.10%	0.47%	0.15%	1.44%	1.69%
Error σ2	0.58%	2.10%	1.54%	0.54%	1.11%	0.85%
Error σ3						
Error σ4	0.58%	3.53%	0.57%	0.54%	0.20%	0.24%

d) 分析 6.4 节中不同的测量桥路中,应变显示值与测点应变的关系。

(με)	P(N)	-20	-36	-52	-68	-84	-100
	ε1	-75	-135	-190	-250	-304	-361
l	ε2	-73	-135	-188	-251	-305	-364
1/4桥应变	ε3	20	38	52	69	85	102
	ε4	73	137	192	251	309	368
	ε5	74	134	189	250	306	365
 邻臂半桥	ε1-4	150	272	380	500	622	736
か自士が	ε2-5	-150	-270	-377	-498	-618	-731
 对臂半桥	ε1-2	-146	-271	-378	-495	-620	-730
^1 月十17「 	ε4-5	149	278	388	506	634	746
四臂全桥	ε1-2-4-5	-296	-542	-777	-1005	-1249	-1465
串联双臂半桥	ε1_4-2_5	-153	-270	-387	-512	-627	-744

1/4 桥应变: 应变显示值即为测点应变 ε_1 、 ε_2 、 ε_4 、 ε_5 邻臂半桥: 邻臂相减, 应变显示值为 ε_4 – ε_1 、 ε_2 – ε_5 对臂半桥: 对臂相加, 应变显示值为 ε_1 + ε_2 、 ε_4 + ε_5

四臂全桥: 应变显示值为 $\varepsilon_1 - \varepsilon_4 + \varepsilon_2 - \varepsilon_5$ 串联双臂半桥: 应变显示值为 $\varepsilon_1 + \varepsilon_2$

4)计算泊松比

计算所得材料泊松比为 0.2803

6.思考题

1) 设计特定尺寸材料的试件,在自重作用下,试件在悬臂梁条件下自身破坏; 选取本实验中所用材料,E=210GPa,屈服强度355MPa,

2) 将 6.3 节中的载荷加载方向旋转 90 度,相应的,悬臂梁实验件的 b、h 对换;考虑到实际情况下,固定端支持加强,以距离固定端边界 100mm 处的屈服强度(45#钢,360MPa)为判定准则,通过理论和有限元计算比较试件承载能力的变化,同时注意需要理论计算、有限元模型需要实验的验证。

$$\sigma_{max} = \frac{PL\frac{h}{2}}{\frac{1}{12}bh^3} = \frac{6PL}{bh^2}$$

$$P_{max} = \frac{\sigma_{max}bh^2}{6L}$$

6.3 节中 b=48.04mm, h=8.05mm

设定安全系数 F.S=6, 距固定边界 100mm, 即 L=300mm

$$P_{max} = \frac{\sigma_{max}bh^2}{6L \times F.S} = \frac{360 \times 10^6 \times 0.04804 \times 0.00805^2}{6 \times 0.3 \times 6} = 103.77N$$

载荷方向旋转 90 度, 相应的, 悬臂梁实验件的 b、h 对换:

$$P_{max} = \frac{\sigma_{max}bh^2}{6L \times F.S} = \frac{360 \times 10^6 \times 0.00805 \times 0.04804^2}{6 \times 0.3 \times 6} = 619.27N$$

在安全系数为 6 的情况下, 理论计算得出, 试件承载能力提高 515.5N

有限元计算 设定材料为#45 钢

1	Contents of Engineering Data		Source	te l	Description		
2	□ Material						
3		▼ 🖪	9	D			
4	🔊 Structural Steel		e	G Fatigue Data at zero mea Code, Section 8, Div 2, Ta	n stress comes from 1998 A able 5-110.1	ASME B	PV
*	Click here to add a new material						
Propert	es of Outline Row 3: 45#					•	дX
	A			В	С	D	E
1	A Property			B Value	C Unit		E (p)
1 2					_		
	Property			Value	Unit		
2	Property Material Field Variables			Value Table	Unit	8	
2	Property ☑ Material Field Variables ☑ Density			Value Table	Unit kg m^-3	▼	
2 3 4	Property ☑ Material Field Variables ☑ Density ☑ Isotropic Elasticity			Value Table 7890	Unit kg m^-3	▼	
2 3 4 5	Property Material Field Variables Density Solve Elasticity Derive from			Value Table 7890 Young's Modulus and	Unit kg m^-3		()
2 3 4 5 6	Property Material Field Variables Density Solve Isotropic Elasticity Derive from Young's Modulus			Value Table 7890 Young's Modulus and ▼ 2.09E+11	Unit kg m^-3		
2 3 4 5 6 7	Property Material Field Variables Density Isotropic Elasticity Derive from Young's Modulus Poisson's Ratio Bulk Modulus Shear Modulus			Value Table 7890 Young's Modulus and 2.09E+11 0.269	Unit kg m^-3 Pa		()
2 3 4 5 6 7 8	Property Material Field Variables Density Isotropic Elasticity Derive from Young's Modulus Poisson's Ratio Bulk Modulus			Value ☐ Table 7890 Young's Modulus and ▼ 2.09E+11 0.269 1.5079E+11	Unit kg m^-3 Pa Pa		

模型长宽高分别为 300mm、48.04mm、8.05mm

设定边界条件

计算 100N 载荷下,最大应力为 58.455MPa

设定安全系数为6,考虑线性弹性形变

$$P_{max} = \frac{P_{100N}}{\sigma_{100N}} \times \sigma_{yield} \times \frac{1}{F.S} = \frac{100}{58.455} \times 360 \times \frac{1}{6} = 102.643N$$

将载荷方向旋转 90 度后

同理,设定安全系数为6,考虑线性弹性形变

$$P_{max} = \frac{P_{100N}}{\sigma_{100N}} \times \sigma_{yield} \times \frac{1}{F.S} = \frac{100}{13.855} \times 360 \times \frac{1}{6} = 433.057N$$

该结果与理论计算所得(619.27N)结果不同,原因在于理论计算考虑的是连接处应力最大而发生破坏,但在该情况下,最大应力出现在载荷作用点处,该处将最先被破坏。

与载荷旋转 90 度前相比、试件承载能力在安全系数为 6 的条件下、提高了 330.414N。