An Approximate and Iterative Posit Multiplier

Group 33				
Saketh Jooluri	IMT2022528			
Sai Swaraj Pachipala	IMT2022581			
Likithkumar Rachaputi	MT2024528			

Introduction:

Posit number system is an emerging number system which aims to be a competitor to the existing IEEE floating-point number system.

Figure 1. Generic posit format for an n-bit number

$$value = (-1) * (useed) * (2)^{exp} * (1 + frac)$$

 $useed = (2)^{(2^es)}$

Methodology:

- 1) First, we extracted the sign, regime, exponent, and mantissa bits from the given 32-bit numbers. This step is referred to as *decoding*.
- 2) The decoding process was performed for both numbers that we need to multiply.
- 3) Using the sign, regime, and exponent of the two numbers, we calculated the sign, regime, and exponent of the result based on the <u>reference paper</u>.
- 4) Using the mantissas of the two numbers, we computed the mantissa of the result using an iterative approach, as described in the <u>reference paper</u>.
- 5) Finally, using the result's sign, regime, and exponent (from step 3) and the mantissa (from step 4), we reconstructed the final result. This step is called *encoding*.

Figure 2: Datapath of the proposed multiplier circuit

Once we implemented the design in Verilog, we successfully simulated and verified the results. However, during synthesis, we encountered the following issues:

- 1. **Non-synthesizable loop variables**: To resolve this, we replaced the loop variable with its maximum value and used a conditional if statement within the loop to eliminate the error.
- 2. Unsupported break statement in Verilog: Since the break statement is not supported in Verilog, we replaced it with i = -1; which causes the loop to exit as intended.

- ✓ 🚡 Simulation (2 errors)

 ✓ 🚡 sim_1 (2 errors)
 - [VRFC 10-2989] 'break' is not declared [posit_multiplier_top.v:158]
 - [XSIM 43-3322] Static elaboration of top level Verilog design unit(s) in library work failed.

Figure 3: Error screenshot during synthesis in Vivado

Results:

a) Max Clock Frequency Achieved:

		Wa	veform	Period (ns)	Frequency (M	1Hz)
		{0.0	000 2.250}	4.500	222	2.222
esign Timing Summary						
Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	0.130 ns	Worst Hold Slack (WHS):	0.075 ns	Worst Pulse Width S	ack (WPWS):	1.000 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Ne	egative Slack (TPWS):	0.000 ns
	0	North and Failing Faderia	· 0	Manufacture of Failing Fo		0
Number of Failing Endpoints:	U	Number of Failing Endpoint	.5. 0	Number of Failing E	napoints:	U

$$Max Freq = \frac{1}{Tclk - WNS} = \frac{1}{(4.5 - 0.13)ns} = 228.23MHz$$

b) Resource Utilization:

Comparison with floating point (from reference paper)

Format	SPFP
Architecture	Iterative
Device	xcvu190
f_{max} (MHz)	450
LUT	685
FF	241

c) Latency of Computation:

Behavioural and Post Implementation simulation Result

No latency

d) Implemented Layout Diagram:

e) Max throughput achievable:

$$Max\ throughput = rac{1}{Tclk*Max\ Utilization\ percentage}$$
 $Max\ throughput = rac{1}{4.5ns*36.22}*100$
 $Max\ throughput = 6.13*10^6 Hz$

Maximum achievable throughput = 6.13 MHz

f) Bitstream Result on ILA

g) Error Calculation

Error calculation is performed using a Python program

```
:\Users\racha\OneDrive - iiit-b\Documents\VSCode\Python> & C:/Users/racha/AppData/Local/Programs/Python/Python312/python.exe - iiit-b\Documents\VSCode/Python/posit.py"
Enter space-separated n and es: 32 3

Rgm_a = -2 \\
exp_a = 6

fraction_a = 1.28125
Posit number_a = 0.001251220703125

\begin{array}{rcl}
Rgm_b &= & -1 \\
exp_b &= & 7
\end{array}

fraction_b = 1.126953125
Posit number_b = 0.5634765625
SignO = 0
RgmO = -2
ExpO = 5
Multiplication Result 0:
0001101011100011010010000000000
Error = -0.22974172549351143
PS C:\Users\racha\OneDrive - iiit-b\Documents\VSCode\Python>
```

GitHub Link