验证讲义中定义的 \mathbb{F}_p 上的加法和乘法运算良定,并且使 \mathbb{F}_p 构成域.

Proof: Let $+: \mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p, \overline{x} + \overline{y} \mapsto \overline{x+y}$, and $\cdot: \mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times}, \overline{x} \cdot \overline{y} \mapsto \overline{xy}$. For any $\overline{x} = \overline{u}$ and $\overline{y} = \overline{v}$, $x+y \equiv u+v \pmod{p}$ and $xy \equiv uv \pmod{p}$, hence $+, \cdot$ are well-defined.

Obviously $+,\cdot$ are both associative and communicative, (since so is addition and multiplication on \mathbb{Z}), and $\bar{0}+\bar{x}=\bar{x}$, $\bar{1}\cdot\bar{x}=\bar{x}$, $\overline{-x}+\bar{x}=\bar{0}$. The existence of multiplicative inverse comes from Bezout's theorem: for any $x\in\mathbb{Z}$ such that $\bar{x}\neq\bar{0}$, there exists $u,v\in\mathbb{Z}$ such that xu+vp=1, i.e. $\bar{x}\cdot\bar{u}=\bar{1}$.

For any $x,y,z\in\mathbb{Z}$, $\overline{x}\cdot(\overline{y}+\overline{z})=\overline{x}\cdot\overline{y+z}=\overline{x(y+z)}=\overline{xy}+\overline{xz}.$ Hence $(\mathbb{F}_p,+,\cdot)$ forms a (finite) field.