日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 8月11日

出 願 番 号 Application Number:

特願2004-234547

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-234547

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

株式会社村田製作所

Applicant(s):

2005年

8月31日

光質學

特許庁長官 Commissioner, Japan Patent Office

百块口】 1寸 訂 渊 【整理番号】 DP040136 【提出日】 平成16年 8月11日 【あて先】 特許庁長官殿 【国際特許分類】 H03H 9/25 【発明者】 【住所又は居所】 京都府長岡京市天神二丁目26番10号 株式会社村田製作所内 【氏名】 表 良一 【特許出願人】 【識別番号】 000006231 【住所又は居所】 京都府長岡京市天神二丁目26番10号 【氏名又は名称】 株式会社村田製作所 【代理人】 【識別番号】 100086597 【弁理士】 【氏名又は名称】 宮▼崎▲ 主税 【手数料の表示】 【予納台帳番号】 004776 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書 1

【物件名】

【物件名】

【包括委任状番号】

図面 1

要約書]

9004892

【官規句】付訂硝小ツ靶四

【請求項1】

複数の弾性表面波共振子をラダー型回路を構成するように接続してなる送信側帯域フィルタ及び受信側帯域フィルタを備えるデュプレクサであって、

前記弾性表面波共振子が、4.7°~5.8°回転YカットのX伝搬 $LiNbO_3$ 基板と、前記 $LiNbO_3$ 基板上に形成されたIDT電極とを有し、

前記 I D T 電極が、L i N b O 3 基板上に形成されたT i 下地電極層と、T i 下地電極層上に形成されたA 1 電極層とを有し、A 1 電極層の(1 1 1) 面と、T i 下地電極層の(0 0 1) 面もしくは(1 0 0) 面と、L i N b O 3 基板の(0 0 1) 面とが平行とされていることを特徴とする、デュプレクサ。

【請求項2】

前記Ti下地電極層が前記LiNb〇3基板上にエピタキシャル成長されたものであり、かつ前記Al電極層が前記Ti下地電極層上にエピタキシャル成長されたものであることを特徴とする、請求項1に記載のデュプレクサ。

【請求項3】

受信側帯域フィルタにおいて、複数の弾性表面波共振子のうち、ラダー型回路の直列腕に接続されている少なくとも1つの直列腕共振子に並列に第1のインダクタンスが挿入されており、前記送信側帯域フィルタにおいて、複数の弾性表面波共振子のうち、ラダー型回路の並列腕に接続されている並列腕共振子とグランド電位との間に第2のインダクタンスが挿入されている、請求項1または2に記載のデュプレクサ。

【請求項4】

前記第1のインダクタンス及び前記第2のインダクタンスが、前記デュプレクサにおいて電気的接続に用いられているワイヤーボンディング及び前記デュプレクサに内蔵された線路の少なくとも一方によりそれぞれ構成されていることを特徴とする、請求項3に記載のデュプレクサ。

【請求項5】

請求項1~4のいずれか1項に記載のデュプレクサを有する通信装置であって、

前記デュプレクサがアンテナ端子を有し、該アンテナ端子とアンテナとの間に第3のインダクタンスが挿入されており、該第3のインダクタンスとアンテナとの間の接続点とグランド電位との間に接続されたコンデンサをさらに備えることを特徴とする、通信装置。

【盲想句】 奶刚盲

【発明の名称】デュプレクサ及び通信装置

【技術分野】

[0001]

本発明は、通信機器に用いられるデュプレクサ及び通信装置に関し、より詳細には、複数の弾性表面波共振子をラダー型回路を構成するように接続してなる帯域フィルタを備えたデュプレクサ及び通信装置に関する。

【背景技術】

[0002]

弾性表面波素子では、圧電基板上に複数の電極指を有するインターデジタル電極(ID T電極)が形成されている。IDT電極の電極指は細く、電極指ピッチは非常に小さい。 従って、大きな電力を投入した場合、電極指同士が短絡したり、電極指が断線したりする ことがある。よって、弾性表面波素子では、耐電力性の向上が強く求められている。

[0003]

下記の特許文献 1 には、耐電力性が高められた弾性表面波素子が開示されている。ここでは、64 $^{\circ}$ Y-X カットのLi Nb O_3 基板上に、エピタキシャル成長により形成された Ti 下地電極層とTi 下地電極層上にさらにエピタキシャル成長により形成された A1 電極層とを積層してなる ID T 電極が形成されている。A1 電極層の結晶の(111)面と、Ti 下地電極層の結晶の(001)面もしくは(100)面と、Li Ta O_3 基板の(001)面が平行とされており、それによって耐電力性が高められるとされている。

[0004]

他方、W-CDMA方式の携帯電話などに用いられているデュブレクサにおいては、複数の弾性表面波素子を接続することにより、受信側帯域フィルタ及び送信側帯域フィルタが構成されている。このような従来のデュプレクサの回路の一例を図19に示す。図19において破線で囲まれた部分がデュプレクサ201を構成している。デュブレクサ201はアンテナ端子201aを有する。アンテナ端子201aがアンテナ202に接続されている。また、アンテナ端子201aと、アンテナ202との間には外付けのインダクタンス203及びコンデンサ204が接続されている。具体的には、インダクタンス203は、アンテナ端子201aとアンテナ202との間に挿入されており、コンデンサ204は、アンテナ202とインダクタンス203との間の接続点とグランド電位との間に接続されている。

[0005]

他方、デュプレクサ201は、送信側帯域フィルタ201Aと受信側帯域フィルタ201Bとを有する。送信側帯域フィルタ201Aでは、複数の直列腕共振子Sa~Scと、並列腕共振子Pa,Pbとがラダー型回路を構成するように接続されている。ここでは、最終段の直列腕共振子Scに並列にインダクタンス素子205が並列に接続されている。また、受信側帯域フィルタ201Bにおいても、複数の直列腕共振子Sd~Sfと、複数の並列腕共振子Pc、Pdとがラダー型回路を実現するように接続されている。ここでは、中央の直列腕共振子Seと並列にインダクタンス206が接続されている。

[0006]

また、送信側帯域フィルタの並列腕共振子Pa, Pbとグランド電位との間には、インダクタンス素子207,208がそれぞれ外付けされている。

【特許文献1】特開2002-353768号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

特許文献1に記載の電極構造を有する弾性表面波素子では、前述したように耐電力性を高めることができる。しかしながら、図19に示したデュプレクサ201の直列腕共振子Sa~Sc、並列腕共振子Pa,Pb、直列腕共振子Sd~Sf及び並列腕共振子Pc,Pdとして、特許文献1に記載されている弾性表面波素子を用いた場合、耐電力性は高め

つれるもいい、田坝八呱衣里ルーカではなく、ガラノコノレーション村はも底刻でないことがわかった。これを、図20~図22を参照して説明する。

[0008]

上記直列腕共振子 $Sa\sim Sc$, $Sd\sim Sf$ 及び並列腕共振子 $Pa\sim Pd$ として、特許文献 1 に記載の電極構造を有する弾性表面波素子を用い、64 の転 1 回転 1 の 1 の 1 と 1 の 1 を 1 を 1 を 1 を 1 を 1 と 1 を 1 を 1 と

[0009]

W-CDMA方式の携帯電話のデュプレクサでは、受信側帯域フィルタにおける通過帯域の高域側近傍における減衰量は、少なくとも40dB以上であることが求められている。そこで、図19に示した送信側帯域フィルタ201Aでは、インダクタンス205を直列腕共振子Scに接続することにより、通過帯域高域側に減衰極を設けて減衰量の拡大が図られている。しかしながら、図20から明らかなように、上記減衰極を形成したとしても、通過帯域の高域側における減衰量はかろうじて40dBを満たす程度でしかなかった

[0010]

また、図22に示すように、アイソレーション特性においても受信側通過帯域において、減衰量は40dB程度にすぎなかった。他方、デュプレクサ20lの特性は温度によって変動する。従って、デュプレクサ20lが使用される温度範囲にわたり確実に受信側通過帯域における減衰量を40dB以上とすることができないことがわかる。

$[0\ 0\ 1\ 1]$

本発明の目的は、上述した従来技術の現状に鑑み、複数の弾性表面波素子を用いて構成されたデュプレクサにおいて、耐電力性を高めるだけでなく、帯域外減衰量及びアイソレーション特性を十分な大きさとすることを可能とするデュプレクサ及び該デュプレクサを用いた通信装置を提供することにある。

【課題を解決するための手段】

$[0\ 0\ 1\ 2]$

本発明は、複数の弾性表面波共振子をラダー型回路を構成するように接続してなる送信側帯域フィルタ及び受信側帯域フィルタを備えるデュプレクサであって、前記弾性表面波共振子が、 $4.7^\circ\sim5.8^\circ$ 回転 Y カットの X 伝般 L i N b O $_3$ 基板と、前記 L i N b O $_3$ 基板上に形成された I D T 電極とを有し、前記 I D T 電極が、 L i N b O $_3$ 基板上に形成された T i 下地電極層と、 T i 下地電極層上に形成された A 1 電極層とを有し、 A 1 電極層の (111) 面と、 T i 下地電極層の (001) 面もしくは (100) 面と、 L i N b O $_3$ 基板の (001) 面とが平行とされていることを特徴とする。

[0013]

本発明に係るデュプレクサのある特定の局面では、前記Ti下地電極層が前記LiNbO3基板上にエピタキシャル成長されたものであり、かつ前記Al電極層が前記Ti下地電極層上にエピタキシャル成長されたものである。

$[0\ 0\ 1\ 4\]$

本発明に係るデュブレクサの他の特定の局面では、受信側帯域フィルタにおいて、複数の弾性表面波共振子のうち、ラダー型回路の直列腕に接続されている少なくとも1つの直列腕共振子に並列に第1のインダクタンスが挿入されており、前記送信側帯域フィルタにおいて、複数の弾性表面波共振子のうち、ラダー型回路の並列腕に接続されている並列腕共振子とグランド電位との間に第2のインダクタンスが挿入されている。

[0015]

本発明に係るデュプレクサの他の特定の局面では、前記第1のインダクタンス及び前記 第2のインダクタンスが、前記デュプレクサにおいて電気的接続に用いられているワイヤ ーホン・1 インノ及び則配・ユノレノッに内蔵でALに豚歯のフなくとも一刀によってALでAL構成されていることを特徴とする。

[0016]

本発明に係る通信装置は、本発明に従って構成されたデュプレクサを有し、該デュプレクサがアンテナ端子を有し、該アンテナ端子とアンテナとの間に第3のインダクタンス素子が挿入されており、該第3のインダクタンスとアンテナとの間の接続点とグランド電位との間にコンデンサが接続されている。

【発明の効果】

[0017]

本発明に係るデュプレクサでは、複数の弾性表面波共振子がラダー型回路を構成するように接続されてなる、送信側及び受信側帯域フィルタを備える。そして、各弾性表面波共振子が、 $LiNbO_3$ 基板上に形成されたTi下地電極層と、Ti下地電極層上に形成されたA1電極層とを有し、A1電極層の(111)面と、Ti下地電極層の(001)面もしくは(100)面と、 $LiNbO_3$ 基板の(001)面とが平行とされているため、各弾性表面波共振子が十分な耐電力性を有する。従って、デュプレクサの耐電力性を高めることができる。

[0018]

しかも、 4.7° ~ 5.8° 回転Y カットのX 伝搬 $LiNbO_3$ 基板を用いているため、後述の実験例から明らかなように、耐電力性を高め得るだけでなく、通過帯域高域側における減衰量を十分な大きさとすることができ、かつアイソレーション特性も効果的に改善することが可能とされている。

[0019]

よって、本発明によれば、例えばW-CDMA方式の携帯電話機のデュブレクサとして 好適に用いられ、耐電力性に優れ、大きな減衰量及びアイソレーション特性を有するデュ プレクサを提供することが可能となる。

[0020]

[0021]

受信側帯域フィルタにおいて、ラダー型に接続されている複数の弾性表面波共振子のうち、直列腕に接続されている少なくとも1つの直列腕共振子に並列に第1のインダクタンスが挿入されており、送信側帯域フィルタにおいて、ラダー型回路の並列腕に接続されている並列腕共振子とグランド電位との間に第2のインダクタンスが挿入されている場合には、帯域外減衰量をより一層大きくすることができる。

[0022]

受信側帯域フィルタの直列腕共振子に並列に接続された上記第1のインダクタンスと、送信側帯域フィルタの並列腕共振子とグランド端子との間に接続された上記第2のインダクタンスとが、デュプレクサにおいて電気的接続に用いられているワイヤーボンディング及びデュプレクサに内蔵されたインダクタンス線路の少なくとも一方によりそれぞれ構成されている場合には、外付けの部品や他の部品を要することなく、第1,第2のインダクタンスを構成することができる。従って、デュプレクサの部品点数の増大を招くことなく、本発明のデュプレクサを提供することができる。

[0023]

本発明に係る通信装置は、本発明に従って構成されたデュプレクサを有し、アンテナ端子とアンテナとの間に第3のインダクタンスが挿入されており、該第3のインダクタンスとアンテナとの間の接続点とグランド電位との間にコンデンサが接続されている。従って、通過帯域外減衰量及びアイソレーション特性をより一層効果的に改善することが可能となる。

【北明で大肥りるにのの取取の形態】

[0024]

以下図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。

[0025]

図 1 は、本発明の第 1 の実施形態に係るデュプレクサの回路構成を説明するための回路 図である。なお、図 1 において破線で囲まれた部分が本実施形態のデュプレクサ部分であ る。

[0026]

デュプレクサ1は、アンテナ端子1aを有する。アンテナ端子1aに、送信側帯域フィルタ1A及び受信側帯域フィルタ1Bが接続されている。送信側帯域フィルタ1Aは送信端子3に接続されており、受信側帯域フィルタ1Bは受信端子4に接続されている。

[0027]

送信側帯域フィルタ1Aでは、複数の弾性表面波共振子がラダー型回路を実現するように接続されている。すなわち、送信側帯域フィルタ1Aは、それぞれが表面波共振子からなる複数の直列腕共振子S1~S3及び並列腕共振子P1,P2を有する。並列腕共振子P1,P2とグランド電位との間には、インダクタンス5,6が接続されている。インダクタンス5,6は、本発明における第2のインダクタンスを構成している。なお、本実施形態では、インダクタンス5,6は、デュプレクサ1内に配置されているワイヤーボンディングや線路により構成されていている。

[0028]

他方、受信側帯域フィルタ1Bは、複数の弾性表面波共振子をラダー型回路を構成するように接続した構造を有する。ここでは、複数の直列腕共振子S4~S6と、複数の並列腕共振子P3,P4とが備えられている。そして、最終段の直列腕共振子S6と並列に第1のインダクタンス7が接続されている。第1のインダクタンス7を接続することにより、受信側帯域フィルタにおいて、通過帯域低域側に減衰極が形成され、それによって受信側帯域フィルタ1Bの通過帯域低域側の減衰量の拡大が図られている。

[0029]

第1,第2のインダクタンス5~7は、外付けのコイル部品により構成されてもよい。

[0030]

もっとも、第1,第2のインダクタンス5,6,7は、好ましくは、デュプレクサ内のワイヤーボンディング及び線路の少なくとも一方により構成される。その場合には、コイル部品などの外付けの部品を別途必要としない。従って、部品点数の増加を招くことなく、第1,第2のインダクタンス5~7を構成することができる。

[0031]

他方、アンテナ端子 1 a とアンテナ 2 との間には、第 3 のインダクタンス 8 が接続されている。また、第 3 のインダクタンス 8 とアンテナ 2 との間の接続点とグランド電位との間にコンデンサ 9 が接続されている。第 3 のインダクタンス 8 及びコンデンサ 9 は、デュプレクサ 1 に外付けの部品で構成される。このような外付けの部品としては、チップ型コイルやチップ型コンデンサなどを挙げることができる。

[0032]

本実施形態では、上記のように、第1,第2のインダクタンス5~7が、デュプレクサ内のワイヤーボンディング及び/または線路により構成されているため、相当の従来品に対して、パッケージ面積を90.25%、実装面積を80%と小さくすることができた。

[0033]

[0034]

次に、本実施形態のデュプレクサ1の具体的な構造を説明する。

[0035]

図2は、第1の実施形態に係るデュプレクサの具体的な平面図であり、図3は、その中間高さ位置の平面断面図である。

[0036]

デュプレクサ1は、バッケージ31を有する。パッケージ31は、アルミナなどの絶縁性セラミックスを用いて構成された多層バッケージ基板により構成されている。すなわち、図4に模式的断面図で示すように、バッケージ31は、複数の絶縁性セラミック層を積層した多層パッケージ基板である。

[0037]

パッケージ31は、上方に開いた開口31aを有する。図4に示すように、凹部31a は、蓋材32により閉成されている。図2では、上記蓋材32の図示は省略されている。 図2に示すように、凹部31a内には、弾性表面波素子チップ33が収納されている。

[0038]

弾性表面波素子チップ33を、図5(a)に平面図で示す。弾性表面波素子チップ33は、矩形の $LiNbO_3$ 基板11を用いて構成されている。前述したように、第1の実施形態では、 $LiNbO_3$ 基板11として、550 回転Yカットの $LiNbO_3$ 基板が用いられている。

[0039]

[0040]

なお、他の直列腕共振子S3、S5及び並列腕共振子P1~P4も、同様にIDT電極の表面波伝搬方向両側に反射器が配置された1端子対弾性表面波共振子により構成されている。他方、図5(c)に示すように、直列腕共振子S2については、一対のIDT電極が並列に接続されたIDT電極38と、該IDT電極38の表面波伝搬方向両側に配置された反射器39,40とを備える。すなわち、直列腕共振子S2は、2個の直列腕共振子S2a,S2bが接続された構造を有する。同様に、直列腕共振子S1及び直列腕共振子S4についても、直列腕共振子S1a,S1b及びS4a,S4bが接続された構造とされている。

[0041]

もっとも、本発明において、ラダー型回路を構成する直列腕共振子または並列腕共振子は、一段構成または任意の段数の複数段構成の弾性表面波共振子で構成され得る。

[0042]

図 5 (a)に示すように、 $LiNbO_3$ 基板 11 上に、上記直列腕共振子 $S1\sim S6$ 及び並列腕共振子 $P1\sim P4$ が形成されており、それぞれ、送信側帯域フィルタ1A 及び受信側帯域フィルタ1B を構成するように電気的に接続されている。すなわち、図1に示し

によりに、区間間形域ノイルノIAにおいて、自力脱六級」の1~の3及び型力脱六級」 P1, P2が梯子型回路を形成するように電気的に接続されている。同様に、受信側帯域フィルタ1Bにおいては、直列腕共振子S4~S6及び並列腕共振子P1, P2がラダー型回路を構成するように電気的に接続されている。

[0043]

さらに、第1の実施形態では、第2のインダクタンス5,6が、パッケージ内に形成されたコイルバターンとボンディングワイヤーにより構成されていたが、より具体的には、図3に示すように、パッケージ31の中間高さ位置に形成されたコイルパターン5a,6aと、図4に示すボンディングワイヤー41,42などによりインダクタンス5,6が構成されている。また、第1のインダクタンス7は、図2に示すコイルバターン7aと、パッケージ内のボンディングワイヤーとにより構成されている。このように、パッケージ内に設けられコイルバターン5a,6a,7aとボンディングワイヤー41,42などを用いることにより、部品点数を増加させることなく第1,第2のインダクタンス5,6,7を構成することができる。

[0044]

本実施形態のデュプレクサ1は、耐電力性に優れているだけでなく、 $47^\circ\sim58^\circ$ 回転YカットのX伝搬の $LiNbO_3$ 基板11を用いて構成されているため、帯域外減衰量が十分に大きく、アイソレーション特性も良好である。これを具体的な実験例に基づき説明する。

[0045]

上記直列腕共振子S1~S6及び並列腕共振子P1~P4を、55°回転YカットのX伝搬LiNbO3基板11上に上記構造のIDT電極を形成してなる弾性表面波共振子により構成した。なお、Ti下地電極層の厚みは10nm、A1電極層の厚みは92nmとした。

[0046]

直列腕共振子S1~S6及び並列腕共振子P1~P4の仕様は下記の表1及び表2に示す。下記の表1,表2には、反射器の電極指の本数、IDT電極のデューィー比、IDTと反射器とのギャップの大きさ、IDT電極の交差幅及び電極指の対数、並びに波長入を示す。

【0047】 【表1】

	反射器の 本数	デューティ比	キ* ャップ	交叉幅	I D T 対数	λ
S 1	15	0.4	0.5	40	140	2.1743
P1	15	0.4	0.45	40	80	2.3016
S2a	15	0.4	0. 5	55	200	2.1533
S2b	15	0.4	0. 5	55	200	2.1533
P2	15	0.4	0. 45	40	80	2. 2957
S3a	15	0.4	0. 5	40	160	2.1743
S3b	15	0.4	0. 5	40	160	2.1743

[0048]

	反射器の 本数	デューティ比	ギ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	交叉幅	IDT対 数	λ
S4a	15	0.4	0.5	40	65	1.9648
S4b	15	0.4	0. 5	40	65	1.9648
P3	15	0.4	0.45	65	70	2.1146
S5	15	0.4	0.5	50	80	1.9703
P4	15	0.4	0.45	55	70	2.1146
S6	15	0.4	0.5	50	85	2.0057

そして、送信側帯域フィルタ 1 Aの中心周波数は 1 9 4 5 MH z 、受信側帯域フィルタ 1 Bの中心周波数は 2 1 4 0 MH z となるように、送信側帯域フィルタ 1 A 及び受信側帯域フィルタ 1 B を作製した。コイルパターンとして 2 . 7 n Hのインダクタンスのコイルパターンを形成し、該コイルパターンと 0 . 6 n Hのインダクタンスのボンディングワイヤーにより 3 . 3 n Hのインダクタンスとなるように第 2 のインダクタンス 5 , 6 を構成した。また、第 1 のインダクタンス 7 についても、コイルパターンのインダクタンス値を 0 . 8 n Hとし、ボンディングワイヤーによるインダクタンス値を 1 . 2 n Hとすることにより、第 1 のインダクタンス 1 の 1

[0049]

第3のインダクタンス8の値は3.3 n Hとし、コンデンサ9の容量は1.3 p F とした。このようにして作製された本実施形態のデュプレクサ1の周波数特性を測定した。結果を図6~図8に示す。また、送信側帯域フィルタ1Aの通過帯域は1920~1980MH z であり、受信側帯域フィルタ1Bの通過帯域は2110~2170MH z である。

[0050]

図6は、送信側帯域フィルタ1Aの周波数特性を、図7は、受信側帯域フィルタ1Bの周波数特性を、図8は、デュプレクサ1のアイソレーション特性を示す。なお、図6及び図7の下方の特性は、通過帯域の周波数特性を図6及び図7の右側のスケールに従って拡大した特性である。

[0051]

図6から明らかなように、送信側帯域フィルタ1Aにおいて、通過帯域高域側(受信側帯域)の減衰量が47dBとなり、要求特性である40dBを大きく上回っていることがわかる。同様に図7及び図8から明らかなように、受信側帯域フィルタ1B通過帯域において、アイソレーション特性の減衰量も48dB以上得られていることがわかる。

[0052]

すなわち、図6~図8から明らかなように、デュプレクサ1では、耐電力性が高められているだけでなく、帯域外減衰量、特に送信側帯域フィルタ1Aの通過帯域高域側における減衰量を大幅に改善することができ、かつアイソレーション特性についても大幅に改善され得ることがわかる。

[0053]

上記のように、デュプレクサ 1 において、帯域外減衰量及びアイソレーション特性が大幅に改善されるのは、上記L i N b O 3 基板 1 1 として、4 7° ~58° の範囲内のカット角のL i N b O 3 基板を用いていることによる。これを具体的な実験例に基づき説明する。前述した図 2 0 ~図 2 2 に示した従来品の特性は、L i N b O 3 基板のカット角が 6 4° であること、及び直列腕共振子S 1 ~S 3 ,4 ~S 6 及び並列腕共振子P 1 ,P 2 ,P 3 ,P 4 が下記の表 3 及び表 4 に示すように構成されていることを除いては、上記第 1 の実施形態と同様にして構成されたデュプレクサの特性である。ここで、基板のカット角が異なっていると、最適特性(低損失でかつ高減衰の特性)を得ることができるデューティ比や交叉幅等の値は、当然のことながら異ならせる必要がある。従って、カット角での特性比較を行うためには、5 5° 回転 1 の 1 N 1 の 1 公 1 を 1 の 1 以 1 の 1 を 1 を 1 の 1 を 1 の 1 の 1 の 1 の 1 の 1 を 1 の 1

[0054]

【表3】

	反射器の 本数	テ゚ューティ比	キ* ャップ°	交叉幅	I D T 対数	λ
S1	14	0. 390	0.5	60	196	2. 1450
P1	14	0. 347	0.5	54.3	92	2. 2525
S2a	14	0. 390	0.5	32.5	200	2.1450
S2b	14	0. 390	0. 5	92	200	2. 1450
P2a	14	0. 347	0. 5	41.9	90	2. 2526
P2b	14	0. 347	0. 5	41.9	90	2. 2526
S3a	14	0.390	0. 5	40	165	2. 1450
S3b	14	0. 390	0. 5	36	165	2. 1450

[0055]

【表4】

	反射器の 本数	デューティ比	‡° ヤッフ°	交叉幅	I DT対 数	λ
S4a	14	0. 389	0.5	31.5	125	1.9559
S4b	14	0. 389	0.5	35	125	1.9559
S4c	14	0. 389	0. 5	40	125	1.9559
P3	14	0. 361	0. 5	41.2	114	2. 0896
S5	14	0.390	0. 5	28	116	1.9967
P4	14	0.361	0. 5	41.2	114	2. 0896
S6a	14	0.390	0. 5	75	165	1.9967
S6b	14	0.390	0.5	53	165	1.9967

他方、さらに比較のために、 $LiNbO_3$ 基板のカット角が4.5°であることを除いては、上記実施形態と同様にして構成されたデュプレクサを作製し、その周波数特性を測定した。結果を図9~図11に示す。

[0056]

図9は、比較例のデュプレクサの送信側帯域フィルタの周波数特性を、図10は受信側帯域フィルタの周波数特性を、図11はアイソレーション特性をそれぞれ示す。なお、図9及び図10における下方の周波数特性は、通過帯域における周波数特性を右側のスケールに従って拡大した特性である。

[0057]

図9から明らかなように、カット角が45°のLiNbO3基板を用いた場合、受信側帯域フィルタの通過帯域高域側における減衰量が40dBを僅かに超える程度であり、上記実施形態のデュプレクサ1に比べれば減衰量が小さいことがわかる。また、図10及び図11から受信側帯域フィルタにおけるアイソレーション特性も40dBを少し上回った程度であり、十分でないことがわかる。

[0058]

図 9 ~図 1 1 に示したカット角が 4 5° のLiNb〇3基板を用いた比較例の結果、及

い 別 型 し に 四 2 2 2 2 3 2 3 2 3 2 3 2 1 1 2 3 3 2 2 3 4 3 2 1 3 2 4 3 2 4 3 5 2 5 3 5 2 5 3 5 6 3 5 6 7 6 7 8 9 2 8 8 9 2 8 9 2 8 9 2 8 9 2 8 9 2 8 9 9 2 8 9

[0059]

図9~図11に示したように、カット角が小さくなると、帯域外減衰量を十分大きくすることができなかった。これは、カット角が小さくてなると、減衰定数 α が多くなり、挿入損失が増大したり、電気機械結合係数が大きすぎるために、急峻性が得られず、減衰量が劣化したりする(帯域選択度が悪化する)ことによると考えられる。従って、温度により特性が変化することを考慮すると、十分な帯域外減衰量及びアイソレーション特性を得ることはできない。

[0060]

加えて、カット角が小さくなると、Y軸と基板の法線との間の角度が小さくなり、電極膜のエピタキシャル成長が困難となる。従って、耐電力性の高い電極を形成することも困難となる。エピタキシャル成長により電極膜を形成し得るカット角の下限は、本願発明者による実験では47°付近であった。すなわち、47°未満のカット角のLiNb〇3基板を用いた場合、エピタキシャル成長により電極膜を形成することができなかった。従って、上記のように、LiNb〇3基板のカット角の下限は47°である。

$[0\ 0\ 6\ 1]$

他方、デュプレクサの使用温度範囲を考慮すると、減衰量及びアイソレーション特性を満足し得るカット角の上限は58°である。カット角が58°を超えるLiNbO3基板を用いた場合には、帯域外減衰量を十分な大きさとすることができない。従って、例えば送信側帯域フィルタにおいて、直列腕共振子に並列に接続されたインダクタンス素子を省略することができなくなる。

[0062]

上記のように、本実施形態では、耐電力性を高める電極が4.7°~5.8°のカット角を有する回転YカットのX 伝搬の $LiNbO_3$ 基板を用いることにより、帯域外減衰量及びアイソレーション特性が効果的に改善されている。従来、弾性表面波共振子の圧電基板として、 $LiNbO_3$ 基板を用いる場合、そのカット角は大きい方が望ましいと考えられていた。図1.2 は、回転Yカットの $LiNbO_3$ 基板のカット角と、表面波の電気機械結合係数との関係を示す図である。ここでは、電極のデューティ比は0.4、電極の規格化膜厚 (H/λ) は5.15 とされている。なお、H は、電極の膜厚を、 λ は弾性表面波の波長を示す。

[0063]

図12から明らかなように、カット角が40°~60°を超之、さらに大きくなるにつれ、電気機械結合係数Kが小さくなることがわかる。従って、帯域近傍の帯域外減衰量を拡大するには、カット角を大きくし、帯域幅を小さくすることが望ましいと考えられていた。すなわち、従来、帯域外減衰量を拡大する場合には、回転YカットのLiNbO3基板のカット角は、大きければ大きいほど望ましいと考えられていた。

[0064]

また、従来、回転YカットのLiNbO3基板を用いる場合、そのカット角が大きくなるにつれて、伝搬損失 α が小さくなるため、挿入損失を小さくすることができ、かつ帯域外減衰量を拡大し得ると考えられていた。

[0065]

すなわち、従来、回転Yカットの $LiNbO_3$ 基板を用いてデュプレクサを構成する場合、帯域外減衰量を拡大するには、カット角はできるだけ大きく、すなわち60° よりも大きい方が望ましいという技術的常識に敢えて逆らって、本発明はカット角を58° 以下としたことに特徴を有する。そして、カット角を47° ~ 58 ° の特定の範囲とすること

により、間見月11日に寝れた电極を形成することができ、しかも田坝71個衣里以び / コノレーション特性を十分な大きさとすることが可能とされている。

[0066]

よって、上記実施形態によれば、十分な帯域外減衰量を得ることができるため、減衰量を確保するためのインダクタンス素子の使用数を低減することができる。すなわち、図19に示した従来のデュプレクサにおいて、送信側帯域フィルタ201Aにおいて、直列腕共振子Scに並列にインダクタンス205が接続されていたが、このようなインダクタンス205を省略することが可能となる。従って、デュプレクサの小型化を図ることができる。

[0067]

もっとも、上記実施形態のように、直列腕共振子S6に並列に第1のインダクタンス7を接続し、それによって帯域外減衰量をより一層拡大してもよい。なお、従来、60°以上のカット角のLiNb〇3基板を用いた場合であっても、実際には、十分な帯域外減衰量を得ることができないため、実際には、上記インダクタンス205を省略することはできなかった。

[0068]

図13は、本発明の第2の実施形態に係るデュプレクサを説明するための回路図である。なお、図13において破線で囲まれた部分が本実施形態のデュブレクサ構成部分である

[0069]

デュプレクサ21は、アンテナ端子21aを有する。アンテナ端子21aに送信側帯域フィルタ21A及び受信側帯域フィルタ21Bが接続されている。送信側帯域フィルタ21Aは、送信端子3に接続されており、受信側帯域フィルタ21Bは、受信端子4に接続されている。送信側帯域フィルタ21A及び受信側帯域フィルタ21Bは、いずれも、第1の実施形態における送信側帯域フィルタ1A及び受信側帯域フィルタ1Bと同様に、5個の弾性表面波共振子をラダー型回路を実現するように接続した構造を有する。従って、同一部分については、同一参照番号を付することにより、第1の実施形態の説明を援用することとする。

[0070]

第2の実施形態では、送信側帯域フィルタ21Aにおいては、並列腕共振子P1,P2 とグランド電位との間に、第2のインダクタンス25が接続されている。ここでは、第2 のインダクタンス25は、デュブレクサ21内に構成されている。

[0071]

第2のインダクタンス25は、デュプレクサ21内において用いられているワイヤーボンディングや線路により構成され得る。もっとも、第2のインダクタンス25は、デュプレクサ21に外付けの部品としてのコイル部品などにより構成されてもよい。

[0072]

また、受信側帯域フィルタ21Bでは、最終段の直列腕共振子S6と並列に第1のインダクタンス27が接続されている。第1のインダクタンス27の接続により、受信側帯域フィルタ21Bにおいて、通過帯域低域側に減衰極が形成される。それによって受信側帯域フィルタ21Bの通過帯域低域側の減衰量の拡大が図られている。

[0073]

第1のインダクタンス27は、コイル部品により構成されてもよく、あるいは、デュプレクサ内のワイヤーボンディングや線路により構成されてもよい。

[0074]

デュプレクサ21においても、アンテナ端子21aとアンテナ2との間に、第3のインダクタンス8及びコンデンサ9が第1の実施形態の場合と同様に接続されている。

[0075]

本実施形態においても、第1,第2のインダクタンス25,27は、デュプレクサ内のワイヤーポンディング及び線路の少なくとも一方により構成されている場合には、他のコ

[0076]

[0077]

上記第2の実施形態のデュプレクサ21を以下の要領で作製し、周波数特性を測定した

[0078]

直列腕共振子S1~S6及び並列腕共振子P1~P4については、下記の表5及び表6に示すように構成した。

[0079]

下記の実施形態においても、直列腕共振子S1, S2, S4については、直列腕共振子S1a, S1b、S2a, S2b及びS4a, S4bの二段構成の構造とした。

[0800]

【表5】

	反射器の 本数	デューディ比	キ゜ャップ゜	交叉幅	IDT対 数	λ
S1	15	0.4	0.5	44	120	2. 187421
P1	15	0.4	0.4	44	80	2. 322526
S2a	15	0.4	0.5	45	100	2.160974
S2b	15	0.4	0.5	45	100	2. 160974
P2	15	0.4	0.4	44	80	2. 328572
S3a	15	0.4	0.5	44	200	2. 187421
S3b	15	0.4	0.5	44	200	2. 187421

[0081]

【表 6】

	反射器の 本数	テ゚ューティ比	キ゚ ヤップ	交叉幅	IDT対 数	λ
S4a	15	0.4	0.5	35	65	1.958722
S4b	15	0.4	0.5	35	65	1.958722
Р3	15	0.4	0.45	50	90	2. 103972
S5	15	0.4	0.5	30	60	1.964194
P4	15	0.4	0. 45	45	70	2. 099018
S6	15	0. 4	0. 5	50	85	2.003944

また、第2のインダクタンス25はデュプレクサ21内のボンディングワイヤーにより構成し、そのインダクタンス値は0.6nHとした。第1のインダクタンス27については、デュプレクサ21内に形成したコイルパターンとボンディングワイヤーにより構成した。コイルパターンのインダクタンス値を0.8nHとし、ボンディングワイヤーによるインダクタンス値を1.2nHとした。すなわち、インダクタンス27については、2.0nHのインダクタンス値を有するように構成した。

[0082]

アロトロルでれるコンテンクへののコンテンクへ回はる・3 IIICし、コンテンッタの静電容量は1・3 pFとした。上記のようにして構成されたデュブレクサ21の周波数特性を図14 \sim 216 に示す。図14 は、上記デュブレクサ21の送信側帯域フィルタの周波数特性を、図16 はアイソレーション特性をそれぞれ示す。なお、図14 及び図15 における下方の周波数特性は、通過帯域における周波数特性を右側のスケールに従って拡大した特性である。

[0083]

図 1 4 から明らかなように、カット角が 5 0 ° の L i N b O 3 基板を用いた場合にも、第 1 の実施形態の場合と同様に送信側帯域フィルタの通過帯域高域側(受信側帯域)における減衰量を 4 0 d B を超える大きさとすることができることがわかる。また、図 1 5 及び図 1 6 から受信側帯域におけるアイソレーション特性も 4 0 d B を大きく上回っていることがわかる。

[0084]

図17は、第2の実施形態のデュプレクサの模式的平面図である。デュプレクサ21においても、第1の実施形態の場合と同様にバッケージ31内にコイルバターン27aを形成することにより第2のインダクタンス27を形成することができる。また、ボンディングワイヤー25aを用いて、第1のインダクタンス25を構成することができる。このように、デュプレクサ21を構成するバッケージ内のコイルバターンやボンディングワイヤーにより第2、第1のインダクタンス25、27を構成することにより、部品点数の増加を招くことなくデュプレクサ21の小型化を図ることができる。

[0085]

なお、第2の実施形態では、第1のインダクタンス27は、受信側帯域フィルタの最終 段の直列腕共振子S6に並列に接続されていたが、図18に示すように、中央の直列腕共 振子S5に並列に第1のインダクタンス27Aが接続されていてもよい。

[0086]

また、上記実施形態においては、アンテナと送信側帯域フィルタ及び受信側帯域フィルタとをインピーダンスマッチングさせるために、アンテナ端子とアンテナとの間にインダクタンスを接続し、かつアンテナとグランドの間にコンデンサを接続したマッチング回路を用いている。しかしながら、アンテナと送信側帯域フィルタ及び受信側帯域フィルタとをインピーダンスマッチングさせることができるのであれば、これ以外のマッチング回路構成でもよく、例えば、アンテナ端子とアンテナとの間にコンデンサを接続し、かつアンテナとグランドの間にインダクタンスを接続したマッチング回路や、単にアンテナとグランドの間にインダクタンスを接続したマッチング回路でもよい。

【図面の簡単な説明】

[0087]

【図1】(a)は、本発明の第1の実施形態に係るデュプレクサの回路構成を説明するための回路図、(b)はIDT電極の構造を示す部分切欠正面断面図。

【図2】第1の実施形態のデュプレクサの具体的構造を示す模式的平面図。

【図3】図2に示したデュプレクサのバッケージの中間高さ位置の構造を示す模式的平面断面図。

【図4】第1の実施形態のデュプレクサの模式的平面断面図。

【図5】(a)は、第1の実施形態で用いられる弾性表面波素子チップの平面図、(b)及び(c)は、直列腕共振子及び並列腕共振子の電極構造を示す各模式的平面図

【図6】第1の実施形態のデュプレクサの送信側帯域フィルタの周波数特性を示す図

【図7】第1の実施形態のデュプレクサの受信側帯域フィルタの周波数特性を示す図

【図8】第1の実施形態に係るデュプレクサのアイソレーション特性を示す図。

【図9】比較のために用意されたカット角が45°のLiNbO3基板を用いたデュ

ノレノリの区 后関市場ノイルノの周収奴村正で小り囚。

- 【図10】比較のために用意されたカット角が45°のLiNbОβ基板を用いたデュプレクサの受信側帯域フィルタの周波数特性を示す図。
- 【図11】カット角が45°のLiNbO3基板を用いた比較のためのデュプレクサのアイソレーション特性を示す図。
 - 【図12】 LiNbO3基板のカット角と電気機械結合係数との関係を示す図。
 - 【図13】第2の実施形態に係るデュプレクサの回路構成を説明するための回路図。
- 【図14】第2の実施形態のデュプレクサの送信側帯域フィルタの周波数特性を示す図。
- 【図15】第2の実施形態のデュブレクサの受信側帯域フィルタの周波数特性を示す図。
- 【図16】第2の実施形態のデュプレクサのアイソレーション特性を示す図。
- 【図 1 7】 第 2 の実施形態のデュプレクサの具体的構造を説明するための模式的平面図。
- 【図18】第2の実施形態のデュプレクサの変形例を説明するための回路図。
- 【図19】従来のデュプレクサの一例を説明するための回路図。
- 【図20】従来のデュプレクサの送信側帯域フィルタの周波数特性を示す図。
- 【図21】従来のデュプレクサの受信側帯域フィルタの周波数特性を示す図。
- 【図22】従来のデュプレクサのアイソレーション特性を示す図。

【符号の説明】

[0088]

- 1 … デュプレクサ
- 1 a … アンテナ端子
- 1 A…送信側帯域フィルタ
- 1B…受信側帯域フィルタ
- 2 … アンテナ
- 3 … 送信端子
- 4 … 受信端子
- 5,6…第2のインダクタンス
- 7 … 第 1 の イン ダ ク タン ス
- 8 … 第3のインダクタンス
- 9 … コンデンサ
- 1 1 ··· L i N b O 3 基板
- 12 ··· I D T 電極
- 1 2 a ··· T i 下地電極層
- 12b ··· A 1 電極層
- 21…デュプレクサ
- 21A…送信側帯域フィルタ
- 21B…受信側帯域フィルタ
- 2 1 a … アンテナ端子
- 25…第2のインダクタンス
- 27…第1のインダクタンス
- 31…パッケージ
- 3 2 a … 凹部
- 3 3 … 蓋材
- 3 4 … 弾性表面波素子チップ
- S1~S6…直列腕共振子
- P 1 ~ P 4 · · · 並列腕共振子

.

•

【図9】

【図11】

【図13】

【図15】

【図19】

【図21】

【窗烘白】女们盲

【要約】

【課題】 耐電力性に優れているだけでなく、帯域外減衰量及びアイソレーション特性が十分な大きさとされ得るデュブレクサを提供する。

【選択図】 図2

000000623119900828 新規登録

京都府長岡京市天神二丁目26番10号株式会社村田製作所00006231 20041012 住所変更

京都府長岡京市東神足1丁目10番1号株式会社村田製作所

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP2005/014500

International filing date:

08 August 2005 (08.08.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-234547

Filing date:

11 August 2004 (11.08.2004)

Date of receipt at the International Bureau: 15 September 2005 (15.09.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

