

Содержание

I неравенство Чебышева (HЧI)	3
II неравенство Чебышева (HЧII)	3
Сходимость последовательности СВ	3
Закон больших чисел (ЗБЧ) ЗБЧ в форме Чебышева (ЗБЧЧ)	4 4 4 4
Центральная предельная теорема (ЦПТ)	4
Интегральная теорема Муавра-Лапласа	5
Случайная выборка	5
Выборка	5
Вариационный ряд (ВР)	5
Функция распределения вероятности случайной выборки	5
Функции распределения вероятности крайних членов ВР	6
Начальный выборочный момент порядка k (\mathbf{HM}_K) Выборочное среднее (\overline{X})	6
Центральный выборочный момент порядка k (ЦМ $_K$) Выборочная дисперсия	6
Эмпирическая функция распределения (ЭФР)	6
Выборочная функция распределения (ВФР) Теорема о сходимости ВФР	6 7
Интервальный статистический ряд (ИСР)	7
Эмпирическая плотность	7
Гистограмма	7
Полигон частот	7
Задача идентификации неизвестных параметров ЗР СВ	7
Точечная оценка Несмещённая точечная оценка Смещённость выборочной дисперсии Состоятельная оценка Эффективная оценка Теорема о единственности эффективной оценки Класс линейных оценок Метод моментов	8 8 8 8 8 8 9

Метод максимального правдоподобия	10
Цетральная статистика	11
γ -доверительный интервал	11
Алгоритм построения для скалярного параметра	11
Алгоритм построения для МО НСВ при известной дисперсии	11
Алгоритм построения для МО НСВ при неизвестной дисперсии	12
Алгоритм построения для Д НСВ	12
Количество информации по Фишеру	13
Неравенство Рао-Крамера	13

І неравенство Чебышева (НЧІ)

```
Если: X - \operatorname{CB} \\ P\{X < 0\} = 0 \\ \exists MX Тогда \forall \varepsilon > 0: P\{X \ge \varepsilon\} \le \frac{MX}{\varepsilon} < (1)DEF: MX = \int_{-\infty}^{\infty} xf(x)dx (2)f(x) = 0 \text{ , при } x < 0 (1)\text{и}(2) => MX = \int_{-0}^{\varepsilon} xf(x)dx + \int_{\varepsilon}^{\infty} xf(x)dx MX \ge \int_{\varepsilon}^{\infty} xf(x)dx MX \ge \varepsilon \int_{\varepsilon}^{\infty} f(x)dx = \varepsilon P\{X \ge \varepsilon\}
```

II неравенство Чебышева (НЧII)

Сходимость последовательности СВ

Если:

 $X_1,...,X_n,...$ - последовательность CB на одном вероятностном пространстве $\forall \varepsilon>0: P\{|X_n-Z|\geq \varepsilon\} \xrightarrow[n\to\infty]{} 0$

Тогда:

последовательность сходится по вероятности к СВ Z

Если:

 $X_1, ..., X_n, ...$ - последовательность СВ на одном вероятностном пространстве $\forall x \in R : F_Z$ непрерывна в х, $F_{X_1}(x), ..., F_{X_n}(x), ...$ сходится к $F_Z(x)$

Тогда:

последовательность слабо сходится к СВ Z

Закон больших чисел (ЗБЧ)

Если:

 $X_1,...,X_n,...$ - последовательность СВ на одном вероятностном пространстве $\forall i \in N : \exists M X_i = m_i$ $\forall \varepsilon > 0 : P\{|\frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n m_i| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$

$$\forall \varepsilon > 0 : P\{\left|\frac{1}{n}\sum_{i=1}^{n} X_i - \frac{1}{n}\sum_{i=1}^{n} m_i\right| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

Тогда:

последовательность удовлетворяет ЗБЧ

ЗБЧ в форме Чебышева (ЗБЧЧ)

Если:

 $X_1, ..., X_n, ...$ - последовательность независимых СВ $\forall i \in N : \exists MX_i = m_i, DX_i = \sigma_i^2$ $\exists C > 0 : \forall i \in N : DX_i \leq C$

Тогда:

последовательность удовлетворяет ЗБЧ в форме Чебышева

$$\begin{array}{l} \leq \\ \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \\ X_i - \text{ независимы: } M\overline{X}_n = \frac{1}{n} \sum_{i=1}^n m_i, D\overline{X}_n = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \\ \text{НЧІІ: } P\{|\overline{X}_n - M\overline{X}_n| \geq \varepsilon\} \leq \frac{D\overline{X}_n}{\varepsilon^2} \\ P\{|\frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n m_i| \geq \varepsilon\} \leq \frac{\sum_{i=1}^n \sigma_i^2}{\varepsilon^2 n^2} \leq \frac{C}{\varepsilon^2 n} \\ \lim_{x \to \infty} \frac{C}{n\varepsilon} = 0 \end{array}$$

Следствие ЗБЧ в форме Чебышева (СЗБЧЧ)

Если:

 $X_1,...,X_n,...$ - одинаково распределённые СВ, удовлетворяющие ЗБЧЧ $\forall i \in N : MX_i = m$

Тогда:

$$\forall \varepsilon > 0 : P\{|\frac{1}{n} \sum_{i=1}^{n} X_i - m| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

$$< M\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} m_i = m$$

$$>$$

Закон больших чисел в форме Бернулли (ЗБЧБ)

Если:

$$p$$
 - вероятность успеха, $q=1-p$ - вероятность неудачи ч $_n=\frac{\text{число успехов в первых n экспериментах}}{n}$ - наблюдаемая частота успеха

Тогда:

$$X_i = egin{aligned} \mathbf{q}_n & \xrightarrow[n o \infty]{} p \\ X_i &= \begin{cases} 1 \text{ , в і испытании успех} \\ 0 \text{ , иначе} \\ MX_i &= p, DX_i = pq \end{aligned}$$

последовательность удовлетворяет ЗБЧЧ и следствию I, поэтому

$$\forall \varepsilon > 0 : P\{|\frac{1}{n} \sum_{i=1}^{n} X_i - p| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

$$\mathbf{q}_n \xrightarrow{P} p$$

Центральная предельная теорема (ЦПТ)

Если:

 $X_1,...,X_n,...$ - одинаково распределённые СВ, удовлетворяющие ЗБЧЧ и следствию $\overline{X}_n=rac{1}{n}\sum_{i=1}^n X_i$ $Y_n=rac{\overline{X}_n-M\overline{X}_n}{\sqrt{D\overline{X}_n}}=rac{\frac{1}{n}\sum_{i=1}^n X_i-m}{\frac{\sigma}{\sqrt{n}}}$

Тогда:

последовательность СВ Y_n слабо сходится к СВ $Z \sim N(0,1)$, т.е.

$$\forall x \in R : F_{Y_n}(x) \xrightarrow[n \to \infty]{} F_Z(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

Интегральная теорема Муавра-Лапласа

Если:

$$k$$
 - число успехов в серии из n

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$$

Тогда:

$$P\{k_1 \le k \le k_2\} \approx \Phi_0(x_2) - \Phi_0(x_1)$$

Рассметриваем СВ $X_i = \begin{cases} 1 \text{ , в і испытании успех} \\ 0 \text{ , иначе} \end{cases}$

$$MX_i = p$$

$$DX_i = pq$$

По ЦПТ:

$$P\{k_{1} \leq k \leq k_{2}\} = P\{k_{1} \leq \sum_{i=1}^{n} X_{i} \leq k_{2}\} = P\{\frac{\frac{1}{n}k_{1} - p}{\sqrt{pq}}\sqrt{n} \leq \frac{\frac{1}{n}\sum_{i=1}^{n} X_{i} - p}{\sqrt{pq}}\sqrt{n} \leq \frac{\frac{1}{n}k_{2} - p}{\sqrt{pq}}\sqrt{n}\}$$

$$= P\{\frac{k_{1} - np}{\sqrt{npq}} \leq \frac{\sum_{i=1}^{n} X_{i} - np}{\sqrt{npq}} \leq \frac{k_{2} - np}{\sqrt{npq}}\}$$
>

Случайная выборка

Случайная выборка объёма n из генеральной совокупности X - случайный вектор:

$$\overrightarrow{X}_n = (X_1, ..., X_n)$$

 $X_1,...,X_n$ - независимые в совокупности СВ, распределённые как X

Выборка

Выборка объёма n - любая возможная реализация случайной выборки \overrightarrow{X}_n : $\overrightarrow{x}_n = (x_1,...,x_n)$

Вариационный ряд (ВР)

Вариационный ряд выборки \overrightarrow{x}_n - неубывающая последовательность компонент \overrightarrow{x}_n : $x_{(1)},...,x_{(n)}$

Функция распределения вероятности случайной выборки

ФР случайной выборки:

$$F_{\overrightarrow{X}_n}(x_1, ..., x_n) = P\{X_1 < x_1, ..., X_n < x_n\}$$

Так как $X_1, ..., X_n$ - независимые в совокупности СВ, распределённые как X (F(x) - их ΦP):

$$F_{\overrightarrow{X}_n}(x_1,...,x_n) = F(x_1) * ... * F(x_n)$$

Функции распределения вероятности крайних членов ВР

Функция распределения первого члена ВР:

$$F_{X_{(1)}}(x) = P\{X_{(1)} < x\} = 1 - P\{X_{(1)} \ge x\} = 1 - P\{X_1 \ge x, ..., X_n \ge x\}$$

Так как $X_1,...,X_n$ - независимые в совокупности СВ, распределённые как X (F(x) - их ФР):

$$F_{X_{(1)}}(x) = 1 - (1 - F(x))^n$$

Функция распределения последнего члена ВР:

$$F_{X_{(n)}}(x) = P\{X_{(n)} < x\} = P\{X_1 < x, ..., X_n < x\}$$

Так как $X_1,...,X_n$ - независимые в совокупности СВ, распределённые как X (F(x) - их ΦP):

$$F_{X_{(n)}}(x) = (F(x))^n$$

Начальный выборочный момент порядка k (HM_K)

Начальный выборочный момент порядка k:

$$\hat{\mu}_k(\overrightarrow{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Выборочное среднее (\overline{X})

Выборочное среднее - НМ₁:

$$\overline{X} = \overline{X}_n = \hat{\mu}_1(\overline{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

Центральный выборочный момент порядка k (Ц \mathbf{M}_K)

Центральный выборочный момент порядка k:

$$\hat{\nu}_k(\overrightarrow{X}_n) = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$

Выборочная дисперсия

Выборочная дисперсия -
$$\coprod M_2$$
:
$$\hat{\sigma}^2(\overrightarrow{X}_n) = \hat{\nu}_2(\overrightarrow{X}_n) = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Эмпирическая функция распределения (ЭФР)

Эмпирическая функция распределения - функция вида $F_n: R \to R$:

$$F_n(x)=rac{n(x,\overrightarrow{x}_n)}{n}$$
 , где $n(x,\overrightarrow{x}_n)$ - количество результатов выборки, меньших x

Выборочная функция распределения (ВФР)

Выборочная функция распределения:

 $\hat{F}(x,\overrightarrow{X}_n)=rac{n(x,\overrightarrow{X}_n)}{n}$, где $n(x,\overrightarrow{X}_n)$ - количество элементов случаной выборки \overrightarrow{X}_n , меньших x

Теорема о сходимости ВФР

 $\forall x$ последовательность $\hat{F}(x,\overrightarrow{X}_n)$ сходится по вероятности к $F_X(x)$, т.е.

$$\hat{F}(x, \overrightarrow{X}_n) \xrightarrow[n \to \infty]{P} F_X(x)$$

При фиксированном $x \hat{F}(x, \overrightarrow{X}_n)$ равна относительной частоте реализации успеха в серии из n испытаний по схеме Бернулли (под успехом понимается X < x; вероятность успеха: $F_X(x)$)

3B 4B:
$$\hat{F}(x, \overrightarrow{X}_n) \xrightarrow[n \to \infty]{P} F_X(x)$$

Интервальный статистический ряд (ИСР)

Интервальный статистический ряд, отвечающий выборке \overrightarrow{x} - таблица:

$$\begin{array}{c|cccc}
J_1 & \dots & J_m \\
\hline
n_1 & \dots & n_m
\end{array}$$

 n_i - количество элементов выбоки \overrightarrow{x} , попавших в $J_i = [a_i, a_{i+1}) \; (J_m = [a_m, a_{m+1}]$ - исключение)

Эмпирическая плотность

Эмпирическая плотность, отвечающая выборке \overrightarrow{x} - функция:

$$f_n(x) = egin{cases} rac{n_i}{n\Delta_i} \ , \ x \in J_i \ 0 \ , \$$
иначе Δ_i - ширина i - го интервала

Гистограмма

Гистограмма - график кусочно-постоянной функции $f_n(x)$ (эмпирической плотности)

Полигон частот

Полигон частот - ломанная, звенья которой соединяют середины верхних сторон "прямоугольников" гистограммы

*иначе: p_i - середина интервала J_i . Полигон частот проходит через точки $(p_i,f_n(p_i))$, $i=\overline{1,m}$

Задача идентификации неизвестных параметров ЗР СВ

Если:

X - CB, закон распределения которой известен с точностью до вектора $\overrightarrow{\theta} = (\theta_1,...,\theta_n)$ неизвестных параметров (известна Φ Р $X:F(x,\overrightarrow{\theta})$). Если задать значение $\overrightarrow{\theta}$, то $\Phi P X$ будет известная полностью

Задача:

По известным реализациям СВ X оценить значение $\overline{\theta}$

Точечная оценка

Точечная оценка параметра θ - статистика $\hat{\theta}(\overrightarrow{X})$, выборочное значение которой принимается в качестве значения θ ($\theta := \hat{\theta}(\overrightarrow{x})$)

Несмещённая точечная оценка

Несмещённая точечная оценка $\hat{\theta}(\overrightarrow{X})$ параметра θ - такая, что $\exists M[\hat{\theta}(\overrightarrow{X})] = \theta$

Смещённость выборочной дисперсии

Смещённость выборочной дисперсии
$$M[\sigma^2(\overrightarrow{X})] = \frac{1}{n} \sum_{i=1}^n M[(X_i - \frac{1}{n} \sum_{j=1}^n X_j)^2] = \frac{1}{n} \sum_{i=1}^n M[((X_i - m) - \frac{1}{n} \sum_{j=1}^n (X_j - m))^2] = \frac{1}{n} \sum_{i=1}^n M[(X_i - m)^2 - \frac{2}{n} \sum_{j=1}^n (X_i - m)(X_j - m) + \frac{1}{n^2} \sum_{j=1}^n (X_j - m)^2 + \frac{1}{n} \sum_{k=1}^n \sum_{j=1j \neq k}^n (X_k - m)(X_j - m)]$$

$$M[(X_i - m)^2] = \sigma^2$$

$$\frac{1}{n^2} \sum_{j=1}^n M[(X_j - m)^2] = \frac{\sigma^2}{n}$$

$$M[(X_k - m)(X_j - m)] = cov(X_k, X_j) , \text{ (т.к. } X_k \text{ и } X_j \text{ - независимы})$$

$$\frac{2}{n} \sum_{j=1}^n M[(X_i - m)(X_j - m)] = \frac{2\sigma^2}{n}$$
Таким образом:

 $M[\sigma^2(\overrightarrow{X})] = \frac{1}{n}\sum_{i=1}^n [\sigma^2 + \frac{\sigma^2}{n} - \frac{2\sigma^2}{n}] = \frac{n-1}{n}\sigma^2 \neq \sigma^2$ Исправленная (несмещённая) оценка дисперсии:

$$S^2(\overrightarrow{X}) = \frac{n}{n-1}\sigma^2(\overrightarrow{X})$$

Состоятельная оценка

Состоятельная точечная оценка $\hat{\theta}(\overrightarrow{X})$ параметра θ - такая, что $\hat{\theta}(\overrightarrow{X}) \xrightarrow{P} \theta$

Эффективная оценка

Если:

$$\hat{\theta}_1(\overrightarrow{X}), \hat{\theta}_2(\overrightarrow{X})$$
 - несмещённые ТО $\exists D\hat{\theta}_1(\overrightarrow{X})$, $\exists D\hat{\theta}_2(\overrightarrow{X})$ $D\hat{\theta}_1(\overrightarrow{X}) < D\hat{\theta}_2(\overrightarrow{X})$

Тогда:

 $\hat{ heta}_1(\overrightarrow{X})$ более эффективная, чем $\hat{ heta}_2(\overrightarrow{X})$

Несмещённая оценка $\hat{\theta}(\overrightarrow{X})$ называется эффективной, если обладает наименьшей дисперсией среди несмещённых оценок

Теорема о единственности эффективной оценки

Если:

$$Y$$
 - наблюдаемая СВ $F_Y(x,\beta)$ - функция (закон) р-я Y , зависящая от β $\beta_1(\overrightarrow{Y_n})$ и $\beta_2(\overrightarrow{Y_n})$ - эффективные оценки β :

Тогда:

$$P\{\beta_1(\overrightarrow{Y_n}) \neq \beta_2(\overrightarrow{Y_n})\} = 0$$

$$\beta_3(\overrightarrow{Y_n}) = \frac{1}{2}(\beta_1(\overrightarrow{Y_n}) + \beta_2(\overrightarrow{Y_n}))$$

$$M[\beta_3(\overrightarrow{Y_n})] = \beta \text{ - несмещённая оценка}$$

$$D[\beta_3(\overrightarrow{Y_n})] = \frac{1}{4}(D[\beta_1(\overrightarrow{Y_n})] + D[\beta_2(\overrightarrow{Y_n})] + 2cov[\beta_1(\overrightarrow{Y_n}); \beta_2(\overrightarrow{Y_n})])$$

$$D[\beta_2(\overrightarrow{Y_n})] = \frac{1}{2}(\sigma^2 + cov[\beta_1(\overrightarrow{Y_n}); \beta_2(\overrightarrow{Y_n})])$$

$$cov[\beta_1(\overrightarrow{Y_n}); \beta_2(\overrightarrow{Y_n})] \leq \sqrt{\beta_1(\overrightarrow{Y_n})\beta_2(\overrightarrow{Y_n})} = \sigma^2$$

$$D[\beta_3(\overrightarrow{Y_n})] \leq \sigma^2 \text{ - эффективная оценка}$$

$$cov[\beta_1(\overrightarrow{Y_n}); \beta_2(\overrightarrow{Y_n})] = \sigma^2 => \beta_1(\overrightarrow{Y_n}) = \alpha\beta_2(\overrightarrow{Y_n}) + \gamma$$

 Оценки $\beta_1(\overrightarrow{Y_n})$ и $\beta_2(\overrightarrow{Y_n})$ несмещённые и эффективные $=> \alpha = 1; \gamma = 0$

Класс линейных оценок

Оценка
$$\hat{ heta}(\overrightarrow{X}) = \lambda_1 X_1 + ... + \lambda_n X_n$$
 - линейная

$$X$$
 - CB $\exists MX = m$

Тогда:

$$m_1(\overrightarrow{X}) = \overline{X}$$
 - эффективная оценка в классе линейных несмещённых оценок

Т.к. $\hat{m}(\overrightarrow{X})$ - несмещённая:

$$M[\hat{m}] = m \sum_{i=1}^{n} \lambda_i = m$$

 $\sum_{i=1}^{n} \lambda_i = 1$

$$\sum_{i=1}^{n} \lambda_i = 1$$

Дисперсия \hat{m} :

$$D[\hat{m}] = \sigma^2 \sum_{i=1}^n \lambda_i^2$$

Для нахождения коэффициентов λ_i эффективной оценки требуется решить:

$$\begin{cases} \sum_{i=1}^{n} \lambda_i^2 \longrightarrow min \\ \sum_{i=1}^{n} \lambda_i = 1 \end{cases}$$
 Функция Лагранжа:

$$L(\lambda_1, ..., \lambda_n, \mu) = \sum_{i=1}^n \lambda_i^2 - \mu(\sum_{i=1}^n \lambda_i - 1) \longrightarrow min$$

Условия экстремума

$$\begin{cases} \frac{\delta L}{\delta \lambda_i} = 0 , i = \overline{1, n} \\ \frac{\delta L}{\mu} = 0 \\ \begin{cases} \lambda_i = \frac{\mu}{2} , i = \overline{1, n} \\ \mu = \frac{2}{n} \end{cases} \\ \lambda_i = \frac{1}{n} , i = \overline{1, n} \\ \hat{m}(\overline{X}) = \lambda_1 X_1 + \dots + \lambda_n X_n = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} \end{cases}$$

Метод моментов

Если:

 ξ - наблюдаемая СВ

 $f_{\xi}(x,\beta)$ - её ФПРВ, зависящая от параметра β

 $m_k(eta)=M[\xi^k]=\int_{-\infty}^{\infty}x^kf_{eta}(x,eta)dx$ - начальный момент порядка k

$$\mathring{m}_k(\beta)=M[(\xi-M[\xi])^k]=\int_{-\infty}^{\infty}(x-M[\xi])^kf_{\beta}(x,\beta)dx$$
 - центральный момент порядка

k

Тогда:

Метод моментов заключается в решении системы уравний типа $m_k(\beta) = \mu_k(\overrightarrow{\xi_n})$ и $\mathring{m}_k(\beta) = \nu_k(\overrightarrow{\xi_n})$, где требуемые выборочные моменты получены на основе выборки $\overrightarrow{\xi_n}$

Теоретические моменты приравниваются к выборочным, решением составленной системы уравнений является выборочное значение (точечная оценка, выраженная через выборочные моменты) параметра/параметров закона распределения

Пример:

 ξ - CB, меющая гамма-распределение с параметрами α, λ :

$$f_{\xi}(x,\alpha,\lambda) = \begin{cases} \frac{\lambda^{\alpha}x^{\alpha-1}}{\Gamma(\alpha)}e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$$

$$m_{1}(\alpha,\lambda) = \int_{0}^{\infty} x \frac{\lambda^{\alpha}x^{\alpha-1}}{\Gamma(\alpha)}e^{-\lambda x} dx = \frac{1}{\lambda\Gamma(\alpha)} \int_{0}^{\infty} (x\lambda)^{\alpha}e^{-x\lambda} d(x\lambda) = \frac{\Gamma(\alpha+1)}{\lambda\Gamma(\alpha)} = \frac{\alpha\Gamma(\alpha)}{\lambda\Gamma(\alpha)} = \frac{\alpha}{\lambda}$$

$$m_{2}(\alpha,\lambda) = \int_{0}^{\infty} x^{2} \frac{\lambda^{\alpha}x^{\alpha-1}}{\Gamma(\alpha)}e^{-\lambda x} dx = \frac{1}{\lambda^{2}\Gamma(\alpha)} \int_{0}^{\infty} (x\lambda)^{\alpha+1}e^{-x\lambda} d(x\lambda) = \frac{\Gamma(\alpha+2)}{\lambda^{2}\Gamma(\alpha)} = \frac{(\alpha+1)\alpha\Gamma(\alpha)}{\lambda^{2}\Gamma(\alpha)} = \frac{(\alpha+1)\alpha}{\lambda^{2}\Gamma(\alpha)}$$

$$\mu_{1}(\overrightarrow{\xi_{n}}) = \overrightarrow{\xi_{n}}$$

$$\nu_{2}(\overrightarrow{\xi_{n}}) = \hat{\sigma}^{2}(\overrightarrow{\xi_{n}})$$

Можно показать, что:

$$\mathring{m}_2(\alpha,\lambda) = m_2(\alpha,\lambda) - m_1^2(\alpha,\lambda)$$

Поэтому:

$$\mathring{m}_2(\alpha,\lambda) = \frac{(\alpha+1)\alpha}{\lambda^2} - \frac{\alpha^2}{\lambda^2} == \frac{\alpha}{\lambda^2}$$
 По методу моментов имеем:

$$\begin{cases} \frac{\alpha}{\lambda} = \overline{\xi_n} \\ \frac{\alpha}{\lambda^2} = \hat{\sigma}^2(\overline{\xi_n}) \end{cases}$$

$$\alpha = \frac{(\overline{\xi_n})^2}{\hat{\sigma}^2(\overline{\xi_n})}$$

$$\lambda = \frac{\overline{\xi_n}}{\hat{\sigma}^2(\overline{\xi_n})}$$

Метод максимального правдоподобия

Функция правдоподобия случайной выборки \overrightarrow{X} :

$$\mathcal{L}(\overrightarrow{X},\overrightarrow{\theta}) = p(X_1,\overrightarrow{\theta}) * ... * p(X_n,\overrightarrow{\theta})$$
 $p(x,\overrightarrow{\theta}) = \begin{cases} P\{X=x\} \ , \ X \ - \ \text{дискретная CB} \\ f_X(x,\overrightarrow{\theta}) \ , \ X \ - \ \text{непрерывная CB} \end{cases}$

Метод заключается в использовании в качестве оценки вектора $\overrightarrow{\theta}$ такого его значения, при котором значение $\mathcal{L}(\overrightarrow{X})$ максимально, т.е.

$$\mathcal{L}(\overrightarrow{X}, \overrightarrow{\theta}) \longrightarrow max$$

или

$$ln\mathcal{L}(\overrightarrow{X}, \overrightarrow{\theta}) \longrightarrow max$$

Если:

$$\mathcal{L}(\overrightarrow{X},\overrightarrow{\theta})$$
 и $ln\mathcal{L}(\overrightarrow{X},\overrightarrow{\theta})$ дифференцируемы по $\theta_1,...,\theta_k$

Тогда необходимые условия экстремума:

$$\begin{cases} \frac{\delta \mathcal{L}}{\delta \theta_1} = 0 \\ \dots \\ \frac{\delta \mathcal{L}}{\delta \theta_k} = 0 \\ \text{ил и} \\ \begin{cases} \frac{\delta \ln \mathcal{L}}{\delta \theta_1} = 0 \\ \dots \\ \frac{\delta \ln \mathcal{L}}{\delta \theta_k} = 0 \end{cases} \\ \text{Пример:} \\ X \sim \Pi(\lambda) \ , \ P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} \ , \ k = 0, 1, 2, \dots \\ \mathcal{L}(\overrightarrow{X}_n, \lambda) = \frac{e^{-n\lambda} \lambda^{X_1 + \dots + X_n}}{X_1! * \dots * X_n!} \\ \ln \mathcal{L}(\overrightarrow{X}_n, \lambda) = -n\lambda + (X_1 + \dots + X_n) \ln(\lambda) - \ln(X_1! * \dots * X_n!) \\ \frac{\delta \ln \mathcal{L}}{\delta \lambda} = \sum_{i=1}^n \frac{X_i}{\lambda^2} - n \\ \frac{\delta^2 \ln \mathcal{L}}{\delta \lambda^2} = -\sum_{i=1}^n \frac{X_i}{\lambda^2} \\ \Pi_{\text{ри}} \ \hat{\lambda}(\overrightarrow{X}_n) = \overrightarrow{X}_n : \\ \frac{\delta \ln \mathcal{L}}{\delta \lambda} = 0 \\ \frac{\delta^2 \ln \mathcal{L}}{\delta \lambda^2} < 0 \\ \text{T.e. функция правдоподобия имеет максимум.} \end{cases}$$

Цетральная статистика

Статистика $g(\overrightarrow{X}, \theta)$ называется центральной, если закон её распределения не зависит от θ

γ -доверительный интервал

 γ -доверительным интервалом параметра θ называется интервал $(\underline{\theta}(\overrightarrow{X}), \overline{\theta}(\overrightarrow{X}))$ такой, что $P\{\theta \in (\theta(\overrightarrow{X}), \overline{\theta}(\overrightarrow{X}))\} = \gamma$

Алгоритм построения для скалярного параметра

Если:

$$g(\overrightarrow{X}, \theta)$$
 - центральная статистика $g(\overrightarrow{X}, \theta)$ - монотонная по θ $\alpha+\beta=1-\gamma$

 q_{α} - квантиль уровная α распределения g

Тогда:

$$\gamma = P\{q_{\alpha} < g(\overrightarrow{X}, \theta) < q_{1-\beta}\} = \begin{cases} P\{g^{-1}(\overrightarrow{X}, q_{\alpha}) < \theta < g^{-1}(\overrightarrow{X}, q_{1-\beta})\}, \ g \text{ - возр. по } \theta \\ P\{g^{-1}(\overrightarrow{X}, q_{\alpha}) > \theta > g^{-1}(\overrightarrow{X}, q_{1-\beta})\}, \ g \text{ - убыв. по } \theta \end{cases}$$

ицы интервала.
$$\underline{\theta}(\overrightarrow{X}) = \begin{cases} g^{-1}(\overrightarrow{X}, q_{\alpha}), \ g \text{ - возр. по } \theta \\ g^{-1}(\overrightarrow{X}, q_{1-\beta}), \ g \text{ - убыв. по } \theta \end{cases}$$

$$\overline{\theta}(\overrightarrow{X}) = \begin{cases} g^{-1}(\overrightarrow{X}, q_{1-\beta}), \ g \text{ - возр. по } \theta \\ g^{-1}(\overrightarrow{X}, q_{\alpha}), \ g \text{ - убыв. по } \theta \end{cases}$$

Алгоритм построения для МО НСВ при известной дисперсии Алгоритм построения для МО НСВ при неизвестной дисперсии Алгоритм построения для Д НСВ

Количество информации по Фишеру

Количество информации по Фишеру в n наблюдениях:

$$I(\theta) = M\{ \left[\frac{\delta \ln \mathcal{L}(\overrightarrow{X}, \theta)}{\delta \theta} \right]^2 \}$$

Неравенство Рао-Крамера

Если:

Рассматриваемая параметрическая модель - регулярная $\hat{ heta}(\overrightarrow{X})$ - несмещённая точечная оценка heta

Тогда:

$$D[\hat{\theta}(\overrightarrow{X})] \ge \frac{1}{I(\theta)}$$

 $D[\hat{\theta}(\overrightarrow{X})] \geq \frac{1}{I(\theta)}$ Показатель эффективности точечной оценки по Рао-Крамеру: $e(\hat{\theta}) = \frac{1}{I(\theta)D[\hat{\theta}]}$

$$e(\hat{\theta}) = \frac{1}{I(\theta)D[\hat{\theta}]}$$

Оценка, для которой $e(\hat{\theta})=1$ - эффективная по Рао-Крамеру

Построение доверительных интервалов *

Общий вид закона распр. ген. сов. X	Параметры	Центральная статистика и ее закон распределения
$N(\mu, \sigma^2)$	μ – неизв., σ – изв. Оценить μ . μ – изв., σ – неизв. Оценить σ .	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$
	μ – неизв., σ – неизв. Оценить μ .	$\frac{\mu - \overline{X}}{S(\overline{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$
	μ – неизв., σ – неизв. Оценить σ .	$\frac{S^2(\vec{X}_n)}{\sigma^2}(n-1) \sim \chi^2(n-1)$
$\operatorname{Exp}(\lambda)$	λ – неизв. Оценить λ .	$2\lambda n\overline{X} \sim \chi^2(2n)$

Проверка статистических гипотез *

для нормально распределенной генеральной совокупности $X \sim \mathrm{N}(\mu, \sigma^2)$

	Основная гипотеза H_0	Конкур. гипотеза H_1	Статистика $T(\vec{X}_n)$ и ее закон распределения при H_0	Условие, определяющее критическую область W	
Ι σ изв.	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\mu_0 - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$	$T(\vec{X}_n) \geqslant u_{1-\alpha}$ $T(\vec{X}_n) \leqslant -u_{1-\alpha}$ $\left T(\vec{X}_n) \right \geqslant u_{1-\alpha/2}$	
II. о неизв.	$\mu=\mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\mu_0 - \overline{X}}{S(\overline{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$	$T(\vec{X}_n) \geqslant t_{1-\alpha}$ $T(\vec{X}_n) \leqslant -t_{1-\alpha}$ $\left T(\vec{X}_n) \right \geqslant t_{1-\alpha/2}$	
III. о1 и о2 изв.	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$ $\mu_1 \neq \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} \sim N(0, 1)$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant u_{1-lpha}$ $\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant u_{1-lpha/2}$	
52 неизв.	<i>u</i> – <i>u</i>	$\mu_1 > \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\overline{X} - \overline{Y}}{\sqrt{1/n_1 + 1/n_2}} \times \sqrt{n_1 + n_2 - 2}$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant t_{1-lpha}$	
IV. оіи о2	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$\times \frac{\sqrt{n_1 + n_2 - 2}}{\sqrt{(n_1 - 1)S^2(\vec{X}_{n_1}) + (n_2 - 1)S^2(\vec{Y}_{n_2})}}$ $\sim \operatorname{St}(n_1 + n_2 - 2)$	$\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant t_{1-\alpha/2}$	
v.	a-a	$\sigma > \sigma_0$	$S^{2}(\vec{X}_{n})_{(n-1)} \chi^{2}_{2}(n-1)$	$T(\vec{X}_n) \geqslant h_{1-\alpha}$	
>	$\sigma = \sigma_0$	$\sigma < \sigma_0$ $\sigma \neq \sigma_0$	$\frac{S^2(X_n)}{\sigma_0^2}(n-1) \sim \mathcal{X}^2(n-1)$	$T(\vec{X}_n) \leqslant h_{\alpha/2}$ $\left[T \leqslant h_{\alpha/2}\right] \lor \left[T \geqslant h_{1-\alpha/2}\right]$	
		$\sigma_1 > \sigma_2$ $\sigma_1 < \sigma_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \max_{\mathbf{x} \in \mathcal{C}^2(\vec{\mathbf{Y}}_{n_1})} \mathbf{C}^2(\vec{\mathbf{Y}}_{n_2})$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant F_{1-\alpha}(n_1 - 1, n_2 - 1)$	
VI.	$\sigma_1 = \sigma_2$	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	$= \frac{\max\left\{S_1^2(\vec{X}_{n_1}), S_2^2(\vec{Y}_{n_2})\right\}}{\min\left\{S_1^2(\vec{X}_{n_1}), S_2^2(\vec{Y}_{n_2})\right\}} \sim F(n_1 - 1, n_2 - 1)$	$T \geqslant F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$

^{*} \overline{X} – выборочное среднее, S^2 – исправленная выборочная дисперсия, α – уровень значимости критерия, u_q , t_q , h_q , F_q – квантили уровня q соответствующих распределений.

Значение функции $\Phi_0(x)=rac{1}{\sqrt{2\pi}}\int\limits_0^x e^{-rac{t^2}{2}}\,dt$

x	0	1	2	3	4	5	6	7	8	9
				Co	отые ,	доли	\boldsymbol{x}			
0,0	0,0000	0040	0080	0112	0160	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0754
0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2258	2291	2324	2357	2389	2422	2454	2486	2518	2549
0,7	2580	2612	2642	2673	2704	2734	2764	2794	2823	2852
0,8	2881	2910	2939	2967	2996	3023	3051	3079	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3438	3461	3485	3508	3531	3553	3577	3599	3621
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4430	4441
1,6	4452	4463	4474	4485	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4700	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4762	4767
					сятые					
2,	4773	4821	4861	4893	4918	4938		4965	1	_
3,	4987	4990	4993	4995	4997	4998	4998	4999	4999	5000^{8}

Φ	(x)	$=\frac{1}{\sqrt{2\pi}}$	Š	e - t²/2	d <i>t</i>
Φ	(x)	$=\frac{1}{\sqrt{2\pi}}$	7	e -12/2	d <i>t</i>

x	Φ (x)	x	Φ (x)	x	Φ (x)
0,00 0,05 0,10 0,20 0,25 0,30 0,45 0,50 0,65 0,65 0,70 0,75 0,80 0,85 0,90 0,95	0,500000 0,519939 0,539828 0,559618 0,579260 0,589706 0,617911 0,636831 0,655422 0,673645 0,691463 0,708840 0,725747 0,742154 0,758036 0,773373 0,788145 0,802338 0,815940 0,828944	1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50 1,65 1,70 1,75 1,80 1,85 1,90 1,95	0,841345 0,853141 0,864334 0,874928 0,884930 0,894350 0,903200 0,911492 0,919243 0,926471 0,933193 0,939429 0,945201 0,95528 0,95528 0,955434 0,959941 0,964070 0,967843 0,971283 0,974412	2,00 2,05 2,10 2,15 2,20 2,25 2,35 2,40 2,45 2,50 2,65 2,70 2,75 2,80 2,85 2,90 2,95 3,00	0,977250 0,979818 0,982136 0,984222 0,986097 0,987776 0,990613 0,991802 0,992857 0,993790 0,994614 0,995339 0,995975 0,996533 0,997020 0,997445 0,997814 0,998134 0,998411 0,998650

Таблица 3. Квантили распределения t(v)

v	P									
	0.9	0,95	0,975	0,99	0,995	0,9975	0,999	0,9995	V	
1	3,0777	6,3138	12,706	31,821	63,657	127,32	318,31	636,62		
2	1,8856	2,9200	4,3027	6,9646	9,9248	14,089	22,327	31,599		
2 3	1,6377	2,3534	3,1824	4,5407	5,8409	7,4533	10,215	12,924		
4	1.5332	2,1318	2,7764	3,7469	4,6041	5,5976	7,1732	8,6103	- 19	
5	1,4759	2,0150	2,5706	3,3649	4,0321	4,7733	5,8934	6,8688		
6 7	1,4398	1,9432	2,4469	3,1427	3,7074	4,3168	5,2076	5,9588		
7	1,4149	1,8946	2,3646	2,9980	3,4995	4,0293	4,7853	5,4079		
8	1,3968	1,8595	2,3060	2,8965	3,3554	3,8325	4,5008	5,0413		
9	1,3830	1,8331	2,2622	2,8214	3,2498	3,6897	4,2968	4,7809		
10	1,3722	1,8125	2,2281	2,7638	3,1693	3,5814	4,1437	4,5869	1	
11	1,3634	1,7959	2,2010	2,7181	3,1058	3,4966	4,0247	4.4370	1	
12	1,3562	1,7823	2,1788	2,6810	3,0545	3,4284	3,9296	4,3178	1	
13	1,3502	1,7709	2,1604	2,6503	3,0123	3,3725	3,8520	4,2208	1	
14	1,3450	1,7613	2,1448	2,6245	2,9768	3,3257	3,7874	4,1405	1	
15	1,3406	1,7531	2,1314	2,6025	2,9467	3,2860	3,7328	4,0728	1	
16	1,3368	1.7459	2,1199	2,5835	2,9208	3,2520	3,6862	4,0150	1	
17	1,3334	1,7396	2,1098	2,5669	2,8982	3,2224	3,6458	3,9651	1	
18	1,3304	1,7341	2,1009	2,5524	2,8784	3,1966	3,6105	3,9216	1	
19	1,3277	1,7291	2,0930	2,5395	2,8609	3,1737	3,5794	3,8834	1	
20	1,3253	1,7247	2,0860	2,5280	2,8453	3,1534	3,5518	3,8495	2	
21 22	1,3232	1,7207	2,0796	2,5176	2,8314	3,1352	3,5272	3,8193	2	
22	1,3212	1,7171	2,0739	2,5083	2,8188	3,1188	3,5050	3,7921	2	
23	1,3195	1,7139	2,0687	2,4999	2,8073	3,1040	3,4850	3,7676	2	
24	1,3178	1,7109	2,0639	2,4922	2,7969	3,0905	3,4668	3,7454	2	
25	1,3163	1,7081	2,0595	2,4851	2,7874	3,0782	3,4502	3,7251	2	
26	1,3150	1,7056	2,0555	2,4786	2,7787	3,0669	3,4350	3,7066	2	
27	1,3137	1,7033	2,0518	2,4727	2,7707	3,0565	3,4210	3,6896	2	
28	1,3125	1,7011	2,0484	2,4671	2,7633	3,0469	3,4082	3,6739	2	
29	1,3114	1,6991	2,0452	2,4620	2,7564	3,0380	3,3962	3,6594	2	
30	1,3104	1,6973	2,0423	2,4573	2,7500	3,0298	3,3852	3,6459	3	
31	1,3095	1,6955	2,0395	2,4528	2,7440	3,0221	3,3749	3,6334	3	
32	1,3086	1,6939	2,0369	2,4487	2,7385	3,0150	3,3653	3,6218	17.	
33	1,3077	1,6924	2,0345	2,4448	2,7333	3,0082	3,3563	3,6109	3	
34	1,3070 1,3062	1,6909 1,6896	2,0322 2,0301	2,4411 2,4377	2,7284 2,7238	3,0020 2,9960	3,3479 3,3400	3,6007 3,5911	3	
		100000000000000000000000000000000000000		24245	27105	2,0005	2 2226	3,5821	3	
36 37	1,3055 1,3049	1,6883 1,6871	2,0281 2,0262	2,4345 2,4314	2,7195 2,7154	2,9905 2,9852	3,3326 3,3256	3,5737	3	
38	1,3049	1,6860	2,0262	2,4286	2,7116	2,9803	3,3190	3,5657	3	
39	1,3042	1,6849	2,0244	2,4258	2,7079	2,9803	3,3128	3,5581	3 73	
40	1,3031	1,6839	2,0211	2,4233	2,7045	2,9712	3,3069	3,5510	4	
41	1,3025	1,6829	2,0195	2,4208	2,7012	2,9670	3,3013	3,5442	4	
42	1,3020	1,6820	2,0181	2,4185	2,6981	2,9630	3,2960	3,5377	4	
43	1,3016	1,6811	2,0167	2,4162	2,6951	2,9592	3,2909	3,5316	4	
44	1,3011	1,6802	2,0154	2,4141	2,6923	2,9555	3,2861	3,5258	4	
45	1,3006	1,6794	2,0141	2,4121	2,6896	2,9521	3,2815	3,5202	4	
46	1,3002	1,6787	2,0129	2,4102	2,6870	2,9488	3,2771	3,5150	4	
47	1,2998	1,6779	2,0117	2,4083	2,6846	2,9456	3,2729	3,5099	4	
48	1,2994	1,6772	2,0106	2,4066	2,6822	2,9426	3,2689	3,5051	4	
49	1,2991	1,6766	2,0096	2,4049	2,6800	2,9397	3,2651	3,5004	4	
50	1,2987	1,6759	2,0086	2,4033	2,6778	2,9370	3,2614	3,4960	5	

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1,2984 1,2980 1,2977 1,2974 1,2971 1,2969 1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949 1,2947	0.95 1,6753 1,6747 1,6741 1,6736 1,6730 1,6725 1,6720 1,6716 1,6711 1,6706	0.975 2.0076 2.0066 2,0057 2,0049 2,0040 2,0032 2,0025 2,0017 2,0010 2,0003 1,9996	0,99 2,4017 2,4002 2,3988 2,3974 2,3961 2,3948 2,3936 2,3924 2,3912 2,3901	0,995 2,6757 2,6737 2,6718 2,6700 2,6682 2,6665 2,6649 2,6633	0,9975 2,9343 2,9318 2,9293 2,9270 2,9247 2,9225 2,9204	3,2579 3,2545 3,2513 3,2481 3,2451 3,2423 3,2395	0,9995 3,4918 3,4877 3,4838 3,4800 3,4764 3,4729 3,4696	5 5: 5: 5: 5: 5: 5:
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1,2980 1,2977 1,2974 1,2971 1,2969 1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6747 1,6741 1,6736 1,6730 1,6725 1,6720 1,6716 1,6711 1,6706	2,0066 2,0057 2,0049 2,0040 2,0032 2,0025 2,0017 2,0010 2,0003	2,4002 2,3988 2,3974 2,3961 2,3948 2,3936 2,3924 2,3912	2,6737 2,6718 2,6700 2,6682 2,6665 2,6649 2,6633	2,9318 2,9293 2,9270 2,9247 2,9225 2,9204	3,2545 3,2513 3,2481 3,2451 3,2423 3,2395	3,4877 3,4838 3,4800 3,4764 3,4729	5: 5: 5: 5: 5:
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1,2980 1,2977 1,2974 1,2971 1,2969 1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6747 1,6741 1,6736 1,6730 1,6725 1,6720 1,6716 1,6711 1,6706	2,0066 2,0057 2,0049 2,0040 2,0032 2,0025 2,0017 2,0010 2,0003	2,4002 2,3988 2,3974 2,3961 2,3948 2,3936 2,3924 2,3912	2,6737 2,6718 2,6700 2,6682 2,6665 2,6649 2,6633	2,9318 2,9293 2,9270 2,9247 2,9225 2,9204	3,2545 3,2513 3,2481 3,2451 3,2423 3,2395	3,4877 3,4838 3,4800 3,4764 3,4729	5: 5: 5: 5: 5:
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1,2977 1,2974 1,2971 1,2969 1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6741 1,6736 1,6730 1,6725 1,6720 1,6716 1,6711 1,6706	2,0057 2,0049 2,0040 2,0032 2,0025 2,0017 2,0010 2,0003	2,3988 2,3974 2,3961 2,3948 2,3936 2,3924 2,3912	2,6718 2,6700 2,6682 2,6665 2,6649 2,6633	2,9293 2,9270 2,9247 2,9225 2,9204	3,2513 3,2481 3,2451 3,2423 3,2395	3,4838 3,4800 3,4764 3,4729	5 5 5
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1,2974 1,2971 1,2969 1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6736 1,6730 1,6725 1,6720 1,6716 1,6711 1,6706	2,0049 2,0040 2,0032 2,0025 2,0017 2,0010 2,0003	2,3974 2,3961 2,3948 2,3936 2,3924 2,3912	2,6682 2,6665 2,6649 2,6633	2,9270 2,9247 2,9225 2,9204	3,2481 3,2451 3,2423 3,2395	3,4800 3,4764 3,4729	5 5
55 56 57 58 59 60 61 62 63 64 65 66 67 68	1,2971 1,2969 1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6730 1,6725 1,6720 1,6716 1,6711 1,6706 1,6702 1,6698	2,0040 2,0032 2,0025 2,0017 2,0010 2,0003	2,3948 2,3936 2,3924 2,3912	2,6682 2,6665 2,6649 2,6633	2,9247 2,9225 2,9204	3,2451 3,2423 3,2395	3,4764	5
57 58 59 60 61 62 63 64 65 66 67 68	1,2966 1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6720 1,6716 1,6711 1,6706 1,6702 1,6698	2,0025 2,0017 2,0010 2,0003	2,3936 2,3924 2,3912	2,6649 2,6633	2,9204	3,2395		5
57 58 59 60 61 62 63 64 65 66 67 68	1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6720 1,6716 1,6711 1,6706 1,6702 1,6698	2,0017 2,0010 2,0003	2,3924 2,3912	2,6633			3,4696	- 5
58 59 60 61 62 63 64 65 66 67 68	1,2963 1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6716 1,6711 1,6706 1,6702 1,6698	2,0017 2,0010 2,0003	2,3924 2,3912	2,6633	20101			-
59 60 61 62 63 64 65 66 67 68	1,2961 1,2958 1,2956 1,2954 1,2951 1,2949	1,6711 1,6706 1,6702 1,6698	2,0010 2,0003	2,3912		2,9184	3,2368	3,4663	5
60 61 62 63 64 65 66 67 68	1,2958 1,2956 1,2954 1,2951 1,2949	1,6706 1,6702 1,6698	2,0003		2,6618	2,9164	3,2342	3,4632	5
62 63 64 65 66 67 68	1,2954 1,2951 1,2949	1,6698	1,9996		2,6603	2,9146	3,2317	3,4602	6
63 64 65 66 67 68	1,2951			2,3890	2,6589	2,9127	3,2293	3,4573	6
64 65 66 67 68	1,2949	1 6604	1,9990	2,3880	2,6575	2,9110	3,2270	3,4545	6
65 66 67 68		1,6694	1,9983	2,3870	2,6561	2,9093	3,2247	3,4518	- 6
65 66 67 68		1,6690	1,9977	2,3860	2,6549	2,9076	3,2225	3,4491	6
67 68		1,6686	1,9971	2,3851	2,6536	2,9060	3,2204	3,4466	6
68	1,2945	1,6683	1.9966	2,3842	2,6524	2,9045	3,2184	3,4441	6
68	1,2943	1,6679	1,9960	2,3833	2,6512	2,9030	3,2164	3,4417	6
	1,2941	1,6676	1,9955	2,3824	2,6501	2,9015	3,2145	3,4394	.6
69	1,2939 .	1,6672	1,9949	2,3816	2,6490	2,9001	3,2126	3,4372	6
70	1,2938	1,6669	1,9944	2,3808	2,6479	2,8987	3,2108	3,4350	7
71	1,2936	1,6666	1,9939	2,3800	2,6469	2,8974	3,2090	3,4329	7
72	1,2934	1,6663	1,9935	2,3793	2,6459	2,8961	3,2073	3,4308	7
73	1,2933	1,6660	1,9930	2,3785	2,6449	2,8949	3,2057	3,4289	7
74	1,2931	1,6657	1,9925	2,3778	2,6439	2,8936	3,2041	3,4269	7
75	1,2929	1,6654	1,9921	2,3771	2,6430	2,8924	3,2025	3,4250	7
76	1,2928	1,6652	1,9917	2,3764	2,6421	2,8913	3,2010	3,4232	7
77	1,2926	1,6649	1,9913	2,3758	2,6412	2,8902	3,1995	3,4214	7
78	1,2925	1,6646	1,9908	2,3751	2,6403	2,8891	3,1980	3,4197	7
79	1,2924	1,6644	1,9905	2,3745	2,6395	2,8880	3,1966	3,4180	7
80	1,2922	1,6641	1,9901	2,3739	2,6387	2,8870	3,1953	3,4163	
81	1,2921	1,6639	1,9897	2,3733	2,6379	2,8860	3,1939	3,4147	8
82	1,2920	1,6636	1,9893	2,3727	2,6371	2,8850	3,1926	3,4132	
83	1,2918	1,6634	1,9890	2,3721	2,6364	2,8840	3,1913	3,4116	8
84	1,2917 1,2916	1,6632 1,6630	1,9886 1,9883	2,3716 2,3710	2,6356 2,6349	2,8831 2,8822	3,1901 3,1889	3,4102 3,4087	
5250	(Assertion	The second state of	Mic III	1355	1/5		10		
86	1,2915	1,6628	1,9879	2,3705	2,6342	2,8813	3,1877	3,4073	1
87	1,2914	1,6626	1,9876	2,3700	2,6335	2,8804	3,1866	3,4059	1
88	1,2912	1,6624	1,9873	2,3695	2,6329	2,8795	3,1854	3,4045	
89	1,2911	1,6622	1,9870	2,3690	2,6322	2,8787	3,1843	3,4032	1
90	1,2910	1,6620	1,9867	2,3685	2,6316	2,8779	3,1833	3,4019	
91	1,2909	1,6618	1,9864	2,3680	2,6309	2,8771	3,1822	3,4007	
92	1,2908	1,6616	1,9861	2,3676	2,6303	2,8763	3,1812	3,3994	
93	1,2907	1,6614	1,9858	2,3671	2,6297	2,8755	3,1802	3,3982	9
94	1,2906 1,2905	1,6612	1,9855 1,9853	2,3667 2,3662	2,6291 2,6286	2,8748 2,8741	3,1792 3,1782	3,3971 3,3959	
	271					2,8734	3,1773	3,3948	- 3
96	1,2904	1,6609	1,9850	2,3658	2,6280	2,8727	3,1764	3,3937	
97	1,2903	1,6607	1,9847	2,3654	2,6275	2,8720	3,1755	3,3926	
98	1,2902	1,6606	1,9845	2,3650	2,6269		3,1746	3,3915	
100	1,2902	1,6604 1,6602	1,9842	2,3646 2,3642	2,6264 2,6259	2,8713 2,8707	3,1737	3,3905	1

The table below gives the value x_0^2 for which $P[x^2 < x_0^2] = P$ for a given number of degrees of freedom and a given value of P.

Degrees of Freedom	Values of P											
	0.005	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990	0.998		
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879		
2	0.01	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.59		
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.83		
4	0.207	0 297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.86		
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.75		
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.54		
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.27		
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.95		
9	1 735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.58		
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.18		
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.75		
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.30		
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.81		
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.31		
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.80		
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.26		
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.71		
18	6.265	7.015	8.231	9.390	10.865	25,989	28 869	31.526	34.805	37.15		
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.58		
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.99		