SWE223: Digital Electronics Fall 2015

Lecture 4 Tanjila Farah (TF)

Textbooks

M. Moris Mano "Digital Logic and Computer Design", Prentice Hall.

Overview

Comparator

Design example: two-bit comparator

$$LT = A'B'D + A'C + B'CD$$

 $EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD' = (A xnor C) \bullet (B xnor D)$
 $GT = BC'D' + AC' + ABD'$

Half Adder (1-bit)

Α	В	S(um)	C(arry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder (1-bit)

А	В	S(um)	C(arry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{AB} + A\overline{B} = A \oplus B$$

$$C = AB$$

Full Adder

Cin	А	В	S(um)	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

AB Cin	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = Cin \overline{AB} + \overline{Cin} \overline{AB} + Cin \overline{AB} + \overline{Cin} \overline{AB}$$

$$= Cin(\overline{AB} + AB) + \overline{Cin}(\overline{AB} + A\overline{B})$$

$$= Cin(A \oplus B) + Cin(A \oplus B)$$

$$= Cin \oplus A \oplus B$$

AB				
Cin	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$Cout = CinB + CinA + AB$$

Cin	Α	В	S(um)	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$Cout = AB + Cin(\overline{AB} + A\overline{B}) = AB + Cin(A \oplus B)$$

Full adder alternative circuit

Constructing a Full Adder using Half Adders (cont.)

Sum Boolean expression of a full adder:

```
sum = a'b'c_{in} + a'bc_{in}' + ab'c_{in}' + abc_{in}
sum = c_{in}(a'b' + ab) + c_{in}' (a'b + ab')
sum = c_{in}(a \oplus b)' + c_{in}' (a \oplus b)
sum = (a \oplus b) \oplus c
```

C_{out} Boolean expression of a full adder:

Constructing a Full Adder using Half Adders (cont.)

Circuit diagram of a full adder (which is made up of 2 half adders and 1 OR gate):

Full Adder

$$S = Cin \oplus A \oplus B$$

$$Cout = AB + Cin(A \oplus B)$$

Full Adder

$$S = Cin \oplus A \oplus B$$

$$Cout = AB + Cin(A \oplus B)$$

4-bit Ripple Adder using Full Adder

Issue of 4-bit Ripple Adder

Issue of Ripple Adder

- Carry propagation is the main issue in an N-bit ripple adder
- A faster adder needs to address the serial propagation of the carry bit
- Let's re-examine the equation for full adders

Carry Generate & Propagate

$$\begin{split} &C_{i+1} = A_i B_i + C_i (A_i + B_i) \\ &g_i = A_i B_i \qquad (generate) \\ &p_i = A_i + B_i \quad (prop \, agate) \\ &C_{i+1} = g_i + p_i C_i \\ &C_1 = g_0 + p_0 C_0 \\ &C_2 = g_1 + p_1 C_1 = g_1 + p_1 g_0 + p_1 p_0 C_0 \\ &C_3 = g_2 + p_2 C_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0 \\ &C_4 = g_3 + p_3 C_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0 \end{split}$$

Note that all the carry's are only dependent on input A and B and C

4-bit Carry-Lookahead Adder (CLA)

Inefficient Implementation of Carry Lookahead Logic

Implementation of Carry Lookahead Logic

Carry Lookahead Logic

$$\mathbf{C}_1 = \mathbf{g}_0 + \mathbf{p}_0 \mathbf{C}_0$$

$$C_2 = g_1 + p_1C_1 = g_1 + p_1g_0 + p_1p_0C_0$$

$$C_3 = g_2 + p_2C_2 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0C_0$$

$$C_4 = g_3 + p_3 C_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0$$

Only 3 Gate Delay for each Carry Ci

 $= D_{AND} + 2*D_{OR}$

4 Gate Delay for each Sum Si

 $= D_{AND} + 2*D_{OR} + D_{XOR}$

Cascading CLA

Similar to ripple adder, but different latency

Unsigned Binary Multiply

```
101 (5)
X 111 (7)
-----
101
101
101
-----
100011 (35)
```


Unsigned Integer Multiplier (2-bit)

N-to-M-Line Decoder $(2^N \ge M)$

A1	AO	D3	D2	D1	DO
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

2-to-4-Line Decoder

A1	AO	D3	D2	D1	DO
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$D_0 = \overline{A_1} \overline{A_0}$$

$$D_1 = \overline{A_1} A_0$$

$$D_1 = \overline{A_1} A_0$$

$$D_2 = A_1 \overline{A_0}$$

$$D_3 = A_1 A_0$$

How about if no one should be enabled?

2-to-4-Line Decoder w/ Enable

En	A1	AO	D 3	D 2	D 1	D 0
0	X	Χ	O	O	O	0
1	0	0	0	0	O	1
1	0	1	O	O	1	0
1	1	0	O	1	O	0
1	1	1	1	0	0	0

$$D_0 = \operatorname{En} \overline{A_1} \overline{A_0}$$

$$D_1 = \operatorname{En} \overline{A_1} A_0$$

$$D_2 = \operatorname{En} A_1 \overline{A_0}$$

$$D_3 = \operatorname{En} A_1 A_0$$

2-to-4-Line Decoder w/ Enable

En	A1	AO	D 3	D 2	D 1	D 0
О	Χ	Х	O	0	O	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	O	1	O	0
1	1	1	1	0	0	0

$$D_0 = \operatorname{En} \overline{A_1} \overline{A_0}$$

$$D_1 = \operatorname{En} \overline{A_1} A_0$$

$$D_2 = EnA_1 \overline{A_0}$$

$$D_3 = EnA_1A_0$$

3-to-8-Line Decoder

	Truth Table									
A2	A1	AO	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

3-to-8-Line Decoder

	Truth Table									
A2	A1	AO	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

3-to-8-Line Decoder

A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	DO
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Implementing Logic w/ Decoder

Decoder as a Logic Building Block

Decoder Generates Appropriate Minterm based on Control Signals

Example Function:

Decoder as a Logic Building Block

Multiplexers (Mux)

- Functionality: Selection of a particular input
- Noute I of N inputs (A) to the output F
- Require log_2^N selection bits (S)
- En(able) bit can disable the route and set F to 0

Multiplexers (Mux) w/out Enable

S1	SO	A3	A2	A1	AO	F
0	0	X	X	X	0	0
0	1	X	X	0	X	0
1	0	X	0	X	X	0
1	1	0	X	X	X	0
0	0	X	X	X	1	1
0	1	X	X	1	X	1
1	0	X	1	X	X	1
1	1	1	X	X	X	1

Multiplexers (Mux) w/out Enable

S1	S0	F
0	0	AO
0	1	A1
1	0	A2
1	1	A3

$$F = \overline{S_1S_0}A_0 + \overline{S_1S_0}A_1 + S_1\overline{S_0}A_2 + S_1S_0A_3$$

Logic Diagram of a 4-to-1 Mux

Multiplexers (Mux) w/ Enable

En	S1	SO	F
0	X	Χ	0
1	0	0	AO
1	0	1	A1
1	1	0	A2
1	1	1	A3

$$F = \operatorname{En} \cdot (\overline{S_1} \overline{S_0} A_0 + \overline{S_1} \overline{S_0} A_1 + S_1 \overline{S_0} A_2 + S_1 S_0 A_3)$$

$$= \operatorname{En} \overline{S_1} \overline{S_0} A_0 + \operatorname{En} \overline{S_1} \overline{S_0} A_1 + \operatorname{En} S_1 \overline{S_0} A_2 + \operatorname{En} S_1 S_0 A_3$$

4-to-1 Mux w/ Enable Logic

$$F(A,B,C) = ABC + ABC + ABC + ABC$$

$$F(A,B,C) = \sum m(1,2,6,7)$$

Each input in a MUX is a minterm

$$F(A,B,C) = \sum m(1,2,6,7)$$

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Α	В	F
0	0	
0	1	
1	0	
1	1	

$$F = \sum_{m=0}^{\infty} m(1, 2, 6, 7)$$
$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F = \sum_{m=0}^{\infty} m(1, 2, 6, 7)$$
$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Implement a function using MUX

A combinational circuit is specified by the following Boolean function:

$$F(A,B,C,D) = \Sigma(0,2,6,7,8)$$

Implement the circuit using ONE 4:1 multiplexer and other necessary gates. Use A and B as MUX selection inputs. Only uncomplemented inputs are available.

Derroiemultiplexers can be implemented by cascaded smaller ones

Alternative 8:1 Mux Implementation

Control signals B and C simultaneously choose one of I0-I3 and I4-I7

Control signal A chooses which of the upper or lower MUX's output to gate to Z

Large multiplexers can be made by cascading smaller ones

control signals B and C simultaneously choose one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the upper or lower mux's output to gate to Z

Multiplexers/Selectors as General Purpose Blocks

2ⁿ⁻¹:1 multiplexer can implement any function of n variables

n-1 control variables; remaining variable is a data input to the mux E_{xample} : F(A,B,C) = m0 + m2 + m6 + m7

$$= A' B' (C') + A' B (C') + A B' (0) + A B (1)$$

			•
1 —	0		
0 —	1		
1 —	2		F
0 —	3	8:1	
0 —	4	MUX	
0 —	5		
1	6		
1	7	S2 S1 S0	
'		А В С	

	Α	В	С	F	
•	0	0	0	1	
	0	0	1	0	_
	0	1	0	1	$\overline{\mathbf{c}}$
	0	1	1	0	C
•	1	0	0	0	_
	1	0	1	0	U
•	1	1	0	1	_ _
	1	1	1	1	ı
			'		

"Lookup Table"

Realize F = B'CD' + ABC' with a 4:1 multiplexer and a minimum of other gates:

