Section 2.4: The Precise Definition of a Limit (part 2)

Goal

We will continue to explore the $\epsilon - \delta$ definition of the limit and do a few more examples.

Recall

First, let's remind ourselves what the precise definition of the limit is.

Definition 1. Let f(x) be a function defined on some open interval that contains the number a, except possibly a itself. Then we say that the *limit of* f(x) as x approaches a is L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon > 0$, there is a number $\delta > 0$ such that

$$|f(x) - L| < \underline{\hspace{1cm}}$$

whenever

$$|x-a| < \underline{\hspace{1cm}}$$

Once again, here's the picture:

Important Note 2.

- (1) Remember that δ depends on ϵ . When ϵ gets smaller, δ needs to get smaller.
- (2) Once you've found a δ that works for a given ϵ , you can always choose a smaller δ .
- (3) The goal is to form a 2ϵ by 2δ window around the point (a, L) such that the graph goes out the sides of the box (not the top or bottom; the corners are fine).

So far, we have only looked at examples where ϵ is a particular small positive value. But to prove that the limit of f(x) as x approaches a is L, we need to show that for **every** ϵ , we can find a δ that "works."

Written by D.C. Ernst

More examples

Example 3. Using the $\epsilon - \delta$ definition of the limit, prove that $\lim_{x\to 3} \frac{x^2 - 9}{x - 3} = 6$.

Example 4. Using the $\epsilon - \delta$ definition of the limit, prove that $\lim_{x \to 1} x^2 - x + 2 = 2$.

(Hint for Exercise 39: Suppose the limit does exist and has limit L. Let $\epsilon = 1/2$. If the limit exists, there should be a $\delta > 0$ such that |f(x) - L| < 1/2 whenever $|x - 0| < \delta$. Show that for any $\delta > 0$, there is always at least one x-value satisfying $|x - 0| < \delta$, but |f(x) - L| < 1/2; this is a contradiction.)

Written by D.C. Ernst