Agenda

- The distinction between the *real* and the *nominal* interest rate.
- The role of expectations in financial markets.
- The role of expectations in consumption and investment decisions.
- Material: Blanchard, Chapters 14, 15, and 16.

Chapter 14

Nominal Vs Real Interest Rate

The real interest rate is equal to the nominal interest rate minus the expected inflation.

$$r_t = i_t - \pi^e_{t+1}$$

- Nominal rate might be low, but we need to look at the real rate to check for economy's health.

- Nominal rate might be low, but we need to look at the real rate to check for economy's health.
- Aren't low rates and low inflation good for economy?

Why Deflation Can Be Devastating

	Unemployment	Output Growth	One-Year Nominal	Inflation	One-Year Real
Year	Rate (%)	Rate (%)	Interest Rate (%) i	Rate (%) π	Interest Rate (%) r
1929	3.2	-9.8	5.3	0.0	5.3
1930	8.7	-7.6	4.4	- 2.5	6.9
1931	15.9	- 14.7	3.1	-9.2	12.3
1932	23.6	-1.8	4.0	- 10.8	14.8
1933	24.9	9.1	2.6	- 5.2	7.8

- In 1933, the US economy was stuck in a **deflation trap**.
- Among other things, rising real rates led to worsening of the situation.

The IS — LM Model Revisited

- Investments and consumption are determined by the **real interest rates**.
- The rate that the RBI announces is the **nominal interest rate**.
- Therefore, the impact of monetary policy on output

The IS — LM Model Revisited

- Investments and consumption are determined by the **real interest rates**.
- The rate that the RBI announces is the **nominal interest rate**.
- Therefore, the impact of monetary policy on output depends upon how nominal rates affect real rates.

Two key features: real or nominal; short or long run.

1 **SR:** \uparrow Money Growth $\Rightarrow \downarrow$ Nominal Interest Rate

Two key features: real or nominal; short or long run.

- 1 **SR:** ↑Money Growth ⇒ ↓Nominal Interest Rate
- 2 MR: ↑Money Growth ⇒ ↑Nominal Interest Rate

Two key features: real or nominal; short or long run.

- 1 **SR:** \uparrow Money Growth $\Rightarrow \downarrow$ Nominal Interest Rate
- **2 MR:** \uparrow Money Growth $\Rightarrow \uparrow$ Nominal Interest Rate
- 3 **SR:** \uparrow Money Growth $\Rightarrow \downarrow$ Real Interest Rate

Two key features: real or nominal; short or long run.

- 1 **SR:** \uparrow Money Growth $\Rightarrow \downarrow$ Nominal Interest Rate
- **2 MR:** \uparrow Money Growth \Rightarrow \uparrow Nominal Interest Rate
- 3 **SR:** \uparrow Money Growth $\Rightarrow \downarrow$ Real Interest Rate
- **4 MR:** \uparrow Money Growth $\Rightarrow \leftrightarrow$ Real Interest Rate

The Short Run

- The feature of the model is:

The Short Run

- The feature of the model is: prices do not adjust quickly.
- People and firms do not revise their inflation expectations immediately.
- So, short-run monetary policy story is a happy story.

The Medium Run

The rate of inflation = the rate of money growth

- Everything in the medium run is benchmarked against the "natural" value.

The Medium Run

The rate of inflation = the rate of money growth

- Everything in the medium run is benchmarked against the "natural" value.
- We also know that

$$i = r + \pi^e$$

- Because inflation is equal to money growth, we get:

$$i=r+g_M$$

The Medium Run

The rate of inflation = the rate of money growth

- Everything in the medium run is benchmarked against the "natural" value.
- We also know that

$$i = r + \pi^e$$

- Because inflation is equal to money growth, we get:

$$i = r + g_M$$

- A 5% increase in money growth leads to a 5% rise in inflation and a 5% rise in nominal rates.
- This is known as the **Fisher hypothesis**.

```
- \downarrowInterest Rate \Rightarrow \uparrowOutput
```

- ↓Interest Rate ⇒ ↑Output
- Over time: inflationary pressure sets in.

- \downarrow Interest Rate \Rightarrow \uparrow Output
- Over time: inflationary pressure sets in.
- Real money stock goes down.

- \downarrow Interest Rate \Rightarrow \uparrow Output
- Over time: inflationary pressure sets in.
- Real money stock goes down.
- ↑Interest Rate.

- \downarrow Interest Rate \Rightarrow \uparrow Output
- Over time: inflationary pressure sets in.
- Real money stock goes down.
- ↑Interest Rate.

Nominal Inte

- Let interest rate be *i* and investment be ₹1.
- Discount factor: $\frac{1}{(1+i)}$.

- Let interest rate be *i* and investment be ₹1.
- Discount factor: $\frac{1}{(1+i)}$.
- The present discounted value in today's rupees V_t

$$V_t = z_t + \frac{1}{(1+i)}z_{t+1} + \frac{1}{(1+i)^2}z_{t+2} + \dots$$

- Let interest rate be i and investment be ₹1.
- Discount factor: $\frac{1}{(1+i)}$.
- The present discounted value in today's rupees V_t

$$V_t = z_t + \frac{1}{(1+i)}z_{t+1} + \frac{1}{(1+i)^2}z_{t+2} + \dots$$

- Example: Let i = 0.1, the weight on payment 20 years later will be

- Let interest rate be i and investment be ₹1.
- Discount factor: $\frac{1}{(1+i)}$.
- The present discounted value in today's rupees V_t

$$V_t = z_t + \frac{1}{(1+i)}z_{t+1} + \frac{1}{(1+i)^2}z_{t+2} + \dots$$

- Example: Let i = 0.1, the weight on payment 20 years later will be 0.148.
- So, a payment of ₹1000 in 20 years will be worth ₹148.6 today.

A typical mortgage requires constant payment over a fixed time period.

- The present discounted value in today's rupees V_t

$$V_{t} = z \left[1 + \frac{1}{(1+i)} + \frac{1}{(1+i)^{2}} + \dots \right]$$

A typical mortgage requires constant payment over a fixed time period.

- The present discounted value in today's rupees V_t

$$V_t = z \left[1 + \frac{1}{(1+i)} + \frac{1}{(1+i)^2} + \dots \right]$$

- The above is a sum of a GP.

$$V_t = z \frac{1 - [1/(1+i)^n]}{1 - [1/(1+i)]}$$

- Example: interest rate = 5%, annual payment = ₹10,000, time = 20 years.

Constant Interest Rate and Payment Forever

- The present value would be

$$V_t = \frac{z}{i}$$

- Example: i = 5%, z = 100.

Chapter 15

Bonds vary across two variables:

- 1 Default Risk
- **2** Maturity

Bonds vary across two variables:

- 1 Default Risk
- **2** Maturity

Let's focus on maturity.

- Yield:

Bonds vary across two variables:

- 1 Default Risk
- **2** Maturity

Let's focus on maturity.

- Yield: The interest rate associated with the bond.
- Yield and maturity are tied together. We call it the **term structure of interest rates**.

Bonds vary across two variables:

- 1 Default Risk
- **2** Maturity

Let's focus on maturity.

- Yield: The interest rate associated with the bond.
- Yield and maturity are tied together. We call it the **term structure of interest rates**.
- Let's think about
 - 1 Bond prices
 - 2 Examine the determinants of the yield curve.
 - 3 The relationship between short-term and long-term interest rates.

Bond Prices and Present Value

Two bonds: one-year and two-years.

- The price of one-year bond is

$$P_{1t} = \frac{100}{1 + i_{1t}}$$

- The price of two-years bond is

$$P_{2t} = \frac{100}{(1+i_{1t})(1+i_{2t})}$$

NOTE: Interest rate is nominal one.

Arbitrage and Bond Prices

- Assumption: Investors care about **expected returns**.
- Consequence: The two bonds must offer the same expected one-year returns.

Arbitrage and Bond Prices

- Assumption: Investors care about **expected returns**.
- Consequence: The two bonds must offer the same expected one-year returns.
- If the above doesn't hold true, market for one bond will vanish.

Arbitrage and Bond Prices

- Assumption: Investors care about expected returns.
- Consequence: The two bonds must offer the same expected one-year returns.
- If the above doesn't hold true, market for one bond will vanish.
- Arbitrage between the two bonds implies that the price of two years bond is the present value of the payment in two years.

$$P_{2t} = \frac{100}{(1+i_{1t})(1+i_{1t+1}^e)}$$

Bond Prices and Bond Yields

- **Yield to Maturity**: Constant interest rate that makes bond price equal to the present value of future payments on the bond.

Bond Prices and Bond Yields

 Yield to Maturity: Constant interest rate that makes bond price equal to the present value of future payments on the bond.

$$P_{2t} = \frac{100}{(1+i_{2t})^2}$$

19 / 1

Bond Prices and Bond Yields

 Yield to Maturity: Constant interest rate that makes bond price equal to the present value of future payments on the bond.

$$P_{2t} = \frac{100}{(1+i_{2t})^2}$$

- Some maths later:

$$i_{2t} = \frac{1}{2}(i_{1t} + i_{1t+1}^e)$$

The two year interest rate is the average of the current one year interest rate and next year's expected one-year interest rate.

The Yield Curve

- Rearrange the interest rate equation to get

$$i_{1t+1}^e = 2i_{2t} - i_{1t}$$

- Let one year interest rate be 4% and two-year rate be 5%.
- The interest rate in one year's time are supposed to be up by 6%.

Expectations Versus Reality: US Circa 2001

Expectations Versus Reality: US Circa 2001

Expectations Versus Reality: US Circa 2001

Adverse shift in spending Nominal interest rate, LM' **Monetary** expansion IS ÎS" (realized) Output, Y

Try explaining the difference.

- Stock markets act as one source of firm finance.

- Stock markets act as one source of firm finance.
- Stocks pay dividends in an amount decided by the firm.

- Stock markets act as one source of firm finance.
- Stocks pay dividends in an amount decided by the firm.
- How do stock prices respond to macro-policy?

- Stock markets act as one source of firm finance.
- Stocks pay dividends in an amount decided by the firm.
- How do stock prices respond to macro-policy?
- The real stock price is the present value of future dividends, discounted by interest rates.

- Stock markets act as one source of firm finance.
- Stocks pay dividends in an amount decided by the firm.
- How do stock prices respond to macro-policy?
- The real stock price is the present value of future dividends, discounted by interest rates.
- ↑Future dividends ⇒ ↑real stock price.
- ↑Future expected real interest rates ⇒ ↓real stock prices.

Stock Market and Monetary Policy

- Let there be an unexpected monetary expansion.
- Lower interest rate, and higher output (higher dividends).
- A rise in stock prices.

Stock Market and Monetary Policy

- Let there be an unexpected monetary expansion.
- Lower interest rate, and higher output (higher dividends).
- A rise in stock prices.

Stock Market and Consumer Spending

- Let there be rise in consumer spending.
- Higher output (higher dividends).
- A rise in stock prices.

Stock Market and Consumer Spending

- Let there be rise in consumer spending.
- Higher output (higher dividends).
- A rise in stock prices.
- Incomplete story.

Stock Market and Consumer Spending

- Let there be rise in consumer spending.
- Higher output (higher dividends).
- A rise in stock prices.
- Incomplete story.

- In 1994 a Russian "financier" Sergei Mavrodi, created a company called MMM and proceeded to sell shares, promising shareholders a rate of return of at least 3,000% per year.
- This was an instant hit.
- The price of MMM shares increased from 1,600 rubles (then worth \$1) to in February to 105,000 rubles (then worth \$51) in July.
- The number of "shareholders" in July: millions.
- The company wasn't involved in any real activity.

- In 1994 a Russian "financier" Sergei Mavrodi, created a company called MMM and proceeded to sell shares, promising shareholders a rate of return of at least 3,000% per year.
- This was an instant hit.
- The price of MMM shares increased from 1,600 rubles (then worth \$1) to in February to 105,000 rubles (then worth \$51) in July.
- The number of "shareholders" in July: millions.
- The company wasn't involved in any real activity.
- The guy who ran this scam later ran for Parliament....

- In 1994 a Russian "financier" Sergei Mavrodi, created a company called MMM and proceeded to sell shares, promising shareholders a rate of return of at least 3,000% per year.
- This was an instant hit.
- The price of MMM shares increased from 1,600 rubles (then worth \$1) to in February to 105,000 rubles (then worth \$51) in July.
- The number of "shareholders" in July: millions.
- The company wasn't involved in any real activity.
- The guy who ran this scam later ran for Parliament....and won!

Three distinctive features of markets may give rise to bubbles:

- 1 Resale value: A person may buy a house both for the rental income and also to make gains by holding on to the house and reselling it later.
- 2 Ease of trading: You can switch between being a buyer and being a seller.
- 3 Ease of borrowing to finance purchases: If market participants can borrow to increase their demand for an asset that they believe will increase in price, well, we are staring at a possible bubble.

Risks. Bubbles, and Fads Others believe P Others believe has risen above the rise in P its fundamental signals it will value rise further Price falls to a As a result. Demand rises level somewhat Demand rises demand goes above its initial up and P PA PA level and rises further stabilizes Good news Good news about future about future profits profits Beliefs dampen price rises Beliefs amplify price rises: a bubble

Chapter 16

Agenda

- Embed expectations into consumption decision.
- Show that investments are function of expected interest rate.

Consumption

Consumption decision can take the following forms:

- $C_t = C(\text{total wealth}_t)$.
- $C_t = C(\text{total wealth}_t, Y_{Lt} T_t)$.

Consumption

Consumption decision can take the following forms:

- $C_t = C(\text{total wealth}_t)$.
- $C_t = C(\text{total wealth}_t, Y_{Lt} T_t)$.

Expectations impact consumption in two ways:

- 1 In order to compute future wealth, people form expectations about taxation, interest rate, etc.
- 2 Stocks, bonds, and housing affect consumption indirectly.

Consumption

Consumption decision can take the following forms:

- $C_t = C(\text{total wealth}_t)$.
- $C_t = C(\text{total wealth}_t, Y_{Lt} T_t)$.

Expectations impact consumption in two ways:

- 1 In order to compute future wealth, people form expectations about taxation, interest rate, etc.
- 2 Stocks, bonds, and housing affect consumption indirectly.

Implications:

- 1 There may not be a one-to-one correspondence in current income and consumption movements.
- 2 Consumption may rise even when there is no change in current income.

A Model of Consumption

- People like to consumption smooth
- Let initial wealth = W, R be number of working years, $Y_{Lt} T_t$ is the annual income.
- Let there be L years in life.

-
$$C = \frac{W + R(Y_{Lt} - T_t)}{L}$$

A Model of Consumption

- People like to consumption smooth
- Let initial wealth = W, R be number of working years, $Y_{Lt} T_t$ is the annual income.
- Let there be L years in life.

-
$$C = \frac{W + R(Y_{Lt} - T_t)}{L}$$

- APC
$$= \frac{C}{Y}$$

A Model of Consumption

- People like to consumption smooth
- Let initial wealth = W, R be number of working years, $Y_{Lt} T_t$ is the annual income.
- Let there be L years in life.

-
$$C = \frac{W + R(Y_{Lt} - T_t)}{L}$$

- APC = $\frac{C}{Y}$
- In short run, average propensity to consume falls when income rises.
- In long run, average propensity to consume doesn't change when income increases.

Investment

- Investments depend upon on the expected present value of future profits per unit capital.

Investment

- Investments depend upon on the expected present value of future profits per unit capital.
- Present value of expected profits

$$V(\Pi_t^e) = \frac{1}{1 + r_t} \Pi_{t+1}^e + \frac{1}{(1 + r_t)(1 + r_{t+1}^e)} (1 - \delta) \Pi_{t+2}^e$$

- Investments depend upon on the expected present value of future profits per unit capital.
- Present value of expected profits

$$V(\Pi_t^e) = \frac{1}{1+r_t} \Pi_{t+1}^e + \frac{1}{(1+r_t)(1+r_{t+1}^e)} (1-\delta) \Pi_{t+2}^e$$

- We can simplify the above equation by assuming future profits and interest rates to be same:

- Investments depend upon on the expected present value of future profits per unit capital.
- Present value of expected profits

$$V(\Pi_t^e) = \frac{1}{1 + r_t} \Pi_{t+1}^e + \frac{1}{(1 + r_t)(1 + r_{t+1}^e)} (1 - \delta) \Pi_{t+2}^e$$

- We can simplify the above equation by assuming future profits and interest rates to be same:
- Under this assumption:

$$V(\Pi_t^e) = \frac{\Pi_t}{r+\delta}$$

- Investment can be written as

$$I_t = I\left(\frac{\Pi_t}{r+\delta}\right)$$

- Investment can be written as

$$I_{t} = I\left(\frac{\Pi_{t}}{r+\delta}\right)$$

- $r + \delta$: user cost or the rental cost of capital.

- Investment can be written as

$$I_t = I\left(\frac{\Pi_t}{r+\delta}\right)$$

- $r + \delta$: user cost or the rental cost of capital.

-
$$\Pi_t = \Pi\left(rac{\mathsf{Y}_t}{\mathsf{K}_t}
ight)$$

Investment and the Stock Market

- Stock prices reflect incentives to invest
 - \uparrow prices $\Rightarrow \uparrow$ investment
 - \downarrow prices $\Rightarrow \downarrow$ investment

Investment and the Stock Market

- Stock prices reflect incentives to invest
 - \uparrow prices $\Rightarrow \uparrow$ investment
 - \downarrow prices \Rightarrow \downarrow investment
- Tobin's q:

$$q = rac{ ext{Market Value of capital}}{ ext{Replacement value of capital}}$$

- In English: q is basically the ratio of market to book value.

Investment and the Stock Market

- Stock prices reflect incentives to invest
 - \uparrow prices $\Rightarrow \uparrow$ investment
 - \downarrow prices $\Rightarrow \downarrow$ investment
- Tobin's q:

$$q = \frac{\text{Market Value of capital}}{\text{Replacement value of capital}}$$

- In English: q is basically the ratio of market to book value.
- If q < 1, then don't invest.
- If q > 1, then invest.

Chapter 17

Agenda

- Bring expectation effects into IS LM.
- Discuss monetary and fiscal policies.
- Material: Blanchard, Chapter 17.

Expectations and the IS Relation

- We define aggregate private spending as:

$$A(Y,T,r) = C(Y-T) + I(Y,r)$$

Expectations and the IS Relation

- We define aggregate private spending as:

$$A(Y, T, r) = C(Y - T) + I(Y, r)$$

- Output now depends upon current and expected future parameters

$$Y = A(Y, T, r, Y^e, T^e, r^e) + G$$

Expectations and the IS Curve

- A fall in current interest rate does not have much impact on spending.
 - A fall in current interest rate doesn't shift the present value.
 - Firms are not likely to change their investment plans until the expectations shift.
- The multiplier is going to be smaller.

Expectations and the IS Curve

- A fall in current interest rate does not have much impact on spending.
 - A fall in current interest rate doesn't shift the present value.
 - Firms are not likely to change their investment plans until the expectations shift.
- The multiplier is going to be smaller.

The LM Curve Revisited

- Decision to hold money is a myopic one.
 - Depends upon current income and current interest rate.
 - Doesn't depend upon future expected nominal interest rate.
- The multiplier is going to be smaller.

Expectations and the IS Curve

- IS:

$$\mathbf{Y} = \mathbf{A}(\mathbf{Y},\mathbf{T},\mathbf{r},\mathbf{Y}^{\mathbf{e}},\mathbf{T}^{\mathbf{e}},\mathbf{r}^{\mathbf{e}}) + \mathbf{G}$$

- LM:

$$\frac{M}{P} = YL(r)$$

Expectations and the IS Curve

- IS:

$$Y = A(Y, T, r, Y^e, T^e, r^e) + G$$

- LM:

$$\frac{M}{P} = YL(r)$$

 Money supply goes up ⇒ Output shift may be larger. Why?

- Money supply goes up ⇒ Output shift may be larger. Why?
- The answer depends upon what firms and consumers expect.

- Money supply goes up ⇒ Output shift may be larger. Why?
- The answer depends upon what firms and consumers expect.
- These expectations are NOT random.

- Money supply goes up ⇒ Output shift may be larger. Why?
- The answer depends upon what firms and consumers expect.
- These expectations are NOT random.

The Liquidity Trap, QE, and Expectations

Three channels through which QE may affect the economy.

- 1 Arbitrage may not hold. By buying assets, the central bank can replace risk-averse investors.
 - The price of the asset rise (interest rate falls).
 - The central bank may even finance some of the borrowers

The Liquidity Trap, QE, and Expectations

Three channels through which QE may affect the economy.

- 1 Arbitrage may not hold. By buying assets, the central bank can replace risk-averse investors.
 - The price of the asset rise (interest rate falls).
 - The central bank may even finance some of the borrowers
- 2 Expectations of future nominal interest rates.
 - If expansionary monetary policy signals future expansionary policies, signal may be +ve.
 - Future nominal rates go up \Rightarrow Spending goes up.

The Liquidity Trap, QE, and Expectations

Three channels through which QE may affect the economy.

- 1 Arbitrage may not hold. By buying assets, the central bank can replace risk-averse investors.
 - The price of the asset rise (interest rate falls).
 - The central bank may even finance some of the borrowers
- 2 Expectations of future nominal interest rates.
 - If expansionary monetary policy signals future expansionary policies, signal may be +ve.
 - Future nominal rates go up \Rightarrow Spending goes up.
- 3 Expectations of inflation.
 - Higher expected inflation $\Rightarrow \downarrow$ current (and future) expected real interest rates.

 Lower public spending means higher private spending. (Spending = Public + Private)

- Lower public spending means higher private spending. (Spending = Public + Private)
- Higher private spending requires lower interest rates.

- Lower public spending means higher private spending. (Spending = Public + Private)
- Higher private spending requires lower interest rates.
- The expected future interest rate goes down, stimulating spending and increasing output.

- Lower public spending means higher private spending. (Spending = Public + Private)
- Higher private spending requires lower interest rates.
- The expected future interest rate goes down, stimulating spending and increasing output.

