# **5240 Workshop 09**

Digvijay Jondhale 0862899

## Loading the Data ...

```
library(tidyr)
library(ggplot2)
football <- read.csv(file = 'footballweights.csv')

str(football)

'data.frame': 17 obs. of 5 variables:
$ cowboys : int 258 263 263 272 258 273 253 260 274 254 ...
$ packers : int 260 271 258 263 267 254 255 250 248 240 ...
$ broncos : int 270 250 281 273 257 264 233 254 268 252 ...
$ dolphins : int 260 255 265 257 268 263 247 253 251 252 ...
$ fortyniners: int 247 249 255 247 244 245 249 260 217 208 ...</pre>
```

## a) Converting to longer format

```
long_football <- pivot_longer(
  football,
  cols = everything(),
  names_to = "team",
  values_to = "weights"
)</pre>
```

```
str(long_football)
```

```
tibble [85 x 2] (S3: tbl_df/tbl/data.frame)
$ team : chr [1:85] "cowboys" "packers" "broncos" "dolphins" ...
$ weights: int [1:85] 258 260 270 260 247 263 271 250 255 249 ...
```

## b) Box Plot

```
ggplot(long_football, aes(x = team, y = weights)) +
  geom_boxplot(fill = c("#780000","#c1121f","#fdf0d5","#003049","#669bbc"), col="black") +
  labs(
    title = "Team Player's Weights Distribution",
    x = "Team",
    y = "Weight"
  ) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

# Team Player's Weights Distribution



## c) ANOVA

Ho: All Teams have same mean weights of players. Ha: At least one Team has different mean weight of players.

```
anova_result <- aov(weights~team, data = long_football)
summary(anova_result)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)

team 4 2851 712.7 2.742 0.0341 *

Residuals 80 20795 259.9

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

As the p-values (0.03) from the anova is < 0.05, we have to reject the null hypothesis and conclude that at least one team has a different mean weight. To find the teams who has different mean weight, we can perform Tukey's Honestly Significant Difference Test.

## d) Tukey's Honestly Significant Difference Test

### TukeyHSD(anova\_result)

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

Fit: aov(formula = weights ~ team, data = long\_football)

#### \$team

|                      | diff        | lwr        | upr        | p adj     |
|----------------------|-------------|------------|------------|-----------|
| cowboys-broncos      | 0.8823529   | -14.551681 | 16.3163866 | 0.9998513 |
| dolphins-broncos     | -5.2352941  | -20.669328 | 10.1987396 | 0.8776395 |
| fortyniners-broncos  | -15.2941176 | -30.728151 | 0.1399160  | 0.0533123 |
| packers-broncos      | -3.2941176  | -18.728151 | 12.1399160 | 0.9753589 |
| dolphins-cowboys     | -6.1176471  | -21.551681 | 9.3163866  | 0.8027693 |
| fortyniners-cowboys  | -16.1764706 | -31.610504 | -0.7424369 | 0.0352373 |
| packers-cowboys      | -4.1764706  | -19.610504 | 11.2575631 | 0.9424607 |
| fortyniners-dolphins | -10.0588235 | -25.492857 | 5.3752102  | 0.3700418 |
| packers-dolphins     | 1.9411765   | -13.492857 | 17.3752102 | 0.9966796 |
| packers-fortyniners  | 12.0000000  | -3.434034  | 27.4340337 | 0.2017663 |

### Results

For tyniners and cowboys are the teams , who has significant difference in their mean weights with for tyniners mean score significantly lower than cowboys by 16.17 units.