EEE-6512: Image Processing and Computer Vision

November 17, 2017
Lecture #11: Model-Fitting
Damon L. Woodard
Dept. of Electrical and Computer
Engineering
dwoodard@ece.ufl.edu

Outline

- Overview
- Fitting Lines
- Fitting Curves
- Addressing Noise
- Fitting Multiple Models

Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting: Main idea

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Fitting

Choose a *parametric model* to represent a set of features

simple model: lines

simple model: circles

complicated model: face shape

complicated model: car

Fitting -Design challenges

- Design a suitable goodness of fit measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
- Design an optimization method
 - Avoid local optima
 - Find best parameters quickly

Fitting: Issues

Case study: Line detection

- **Noise** in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Overview (cont.)

 If we know which points belong to the line, how do we find the "optimal" line parameters?

Least squares

• What if there are outliers? Robust fitting, RANSAC

What if there are many lines?

Voting methods: RANSAC, Hough transform

Questions?

Slide Credits

Some slides from Dr. Stanley Birchfield, Dr. Kristen Grauman, Dr. Svetlana Lazebnik, Dr. Jia-Bin Huang