2 باك علوم فيزيائية و علوم الحياة و الأرض ذ: توفيق بنعمرو

دراسة دالة عحدية

$\cdot D_f \cap \mathbb{R}^+$ يكفي دراسة f على	متماثل بالنّسبة لمحور الأراتيب (C_f)	$(\forall x \in D_f) : (-x \in D_f \circ f(-x) = f(x))$	زوجية f
$D_f \cap \mathbb{R}^+$ يكفي دراسة f على	متماثل بالنّسبة لأصل المعلم (C_f)	$(\forall x \in D_f) : (-x \in D_f \ \mathfrak{g} \ f(-x) = -f(x))$	فردية f

$D_f\cap [lpha,+\infty[$ على ا $A_f\cap [lpha,+\infty]$ يكفي دراسة	$(\forall x \in D_f) : \; ((2\alpha - x) \in D_f \text{o} f(2\alpha - x) = f(x))$	(Δ) : x = $lpha$: له محور تماثل (C_f)
$D_f \cap [a,+\infty[$ على الماء والماء f على يكفي دراسة	$(\forall x \in D_f): ((2a-x) \in D_f \ \ \ \ \ f(2a-x) = 2b-f(x))$	$\Omega(a,b)$:له مركز تماتل (C_f)
T على مجال سِعَتُه T .	$(\forall x \in D_f) \colon ((x+T) \in D_f \ \ \text{g} \ (x-T) \in D_f \ \ \text{g} \ f(x+T) = f(x))$	(T>0) دورية: دورها f

$$a^+$$
 نصف مماس مو از المحور الأراتيب a^+ $\lim_{x \to a+} \frac{f(x) - f(a)}{x - a} = +\infty$ $\lim_{x \to a+} \frac{f(x) - f(a)}{x - a} = -\infty$ $\lim_{x \to a-} \frac{f(x) - f(a)}{x - a} = +\infty$ $\lim_{x \to a-} \frac{f(x) - f(a)}{x - a} = +\infty$ $\lim_{x \to a-} \frac{f(x) - f(a)}{x - a} = -\infty$

 $y = f'(a) \cdot (x-a) + f(a)$ هي: $A(a\,,\,f(a))$ هي a معادلة المماس في a معادلة المماس في a هي a قابلة للاشتقاق في a^+ نصف المماس على اليمين في a هي: a هي: a هي a^+ و a و a^+ و a قابلة للاشتقاق في a^- نصف المماس على اليسار في a اليسار في a^+ هي: a قابلة للاشتقاق في a^- نصف المماس على اليسار في a متصلة في a و العكس ليس دائماً صحيح. a إذا كانت a قابلة للاشتقاق في a فإنّ a فإنّ a متصلة في a و العكس ليس دائماً صحيح a عند a قابلة للاشتقاق في a فإنّ a فإنّ a عند a

I كلّ دالة متّصلة على مجال I تقبل دالة أصلية على

 $\sin^{\prime}(x) = \cos(x)$

 $\cos^{\prime}(x) = -\sin(x)$

 $\tan^{/}(x) = 1 + \tan^{2}(x)$

f''(x)

 (C_f)

 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

 $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

بالتونيق

 $(\sin(u(x)))' = u'(x) \times \cos(u(x))$ $(\cos(u(x)))' = -u'(x) \times \sin(u(x))$ $(\tan(u(x)))' = u'(x) \times (1 + \tan^2(u(x)))$

$$(x)$$
 0 $+$ $f''(x)$ $+$ 0 $f''(x)$ $+$ 0 $f''(x)$ $+$ 0 $f''(x)$ f

 $r \in \mathbb{Q}^* : (x^r)^r = r \times (x)^{r-1}$

 $(\frac{1}{r})^{/} = -\frac{1}{r^2}$

$$\lim_{x \to a} [f(x) - (ax + b)] = 0 \Leftrightarrow -\infty \text{ All } C_f \cup A$$

 $\lim_{t\to\infty} [f(x)-(ax+b)]=0 \iff +\infty \text{ for } x=ax+b$

