index

\	adaptation in SA 172–175
A2C (advantage actor-critic) 472	adaptive black hole algorithm 60
A2C (advantage actor-critic) algorithm	adaptive GA 298
balancing CartPole using 473	adaptive memory 197
A2C (advantage actor-critic) architecture 459	adaptive tuning 206
AA (alliance algorithm) 60	addition 343
A (adjacency matrix) 410	adjacency-based problems 283
A* algorithm 105	adjacency list 286
for routing 149	age-based selection 260
bc_algorithm function 390	AI (artificial intelligence) 243, 398
ABC (artificial bee colony) 59, 235, 322, 324, 362	AI-empowered daily routines 398
ABC (artificial bee colony) algorithm 384, 385	ALBP (assembly line balancing
cceleration coefficients 332	problem) 221–230
cceptance probability 165–167	algorithms
Ackley function 178	genetic algorithms
ACO (ant colony optimization) 59, 235, 266, 322,	solving traveling salesman problem 300–304
324, 362, 365–369, 393	nature-inspired algorithms 59
simple ACO 370	search algorithms 20
solving TSP with 376	unsupervised machine learning 438–441 alleles 241
variants of 369	
.copy.Colony object 381	alliance algorithm (AA) 60 amortized optimization 427–432
copy library 380	ANN (artificial neural network) 422, 449
copy solver 382	annealing process 168
ACS (ant colony system) algorithm 374	ant colony optimization 363–366
ction-value function 456	ant colony optimization (ACO) 59, 324
Actor class 474	ant colony optimization (ACO) 33, 324 ant colony system (ACS) algorithm 374
ctor-critic methods 459	ant colony system (Acs) algorithm 374 ant cycle model 369
cyclic graph 66	ant density model 368
Adam ontimizer 431 475	and defisity model 300

ant quantity model 368	batch_size parameter 435
ant system (AS) algorithm 373	BBBC (big-bang big-crunch) 60
ant_tour function 377	BBO (biogeography-based optimization) 60
A-PSO (asynchronous PSO) 331	beam search 105
argmax 359	for routing 148
artificial bee colony (ABC) 59, 324	beam search algorithm 121-124
artificial bee colony (ABC) algorithm 385	best_distance variable 382
artificial bee colony algorithm 383–385	best_path variable 382
artificial intelligence (AI) 243	BFO (bacterial foraging optimization
artificial neural network (ANN) 422	algorithm) 60, 324
ASA-GS (adaptive simulated annealing with	BFS (breadth-first search) 73
greedy search) 174	BFS (breadth-first search) 74–83
A* search algorithm	BGA (binary-coded GA) 250
CH query phase 135	BGA (binary genetic algorithm) function 264
A* search algorithm 124–131	BH (black hole algorithm) 60
CH example 136–144	BHMO (black hole mechanics optimization) 60
CH preprocessing phase 131–135	bias term 351
ASF (augmented scalarization function) 296	bidirectional Dijkstra search 96
aspiration criteria 205	big-bang big-crunch (BBBC) 60
aspiration criterion 198	big O notation 80, 81, 82
assembly line balancing problem 221–230	bill_depth_mm variable 354
Atkinson–Shiffrin model 201	bill_length_mm variable 354, 360
ATSP (asymmetric TSP) 27	binary bridge experiment 365
attention mechanisms 416	binary PSO 340–342
overview 416	bin() function 262
augmented graph 131	biogeography-based optimization (BBO) 60
autocatalytic behavior 366	bird flocking 326
autonomous coordination in mobile networks	black hole algorithm (BH) 60
using PPO 481–485	black hole mechanics optimization (BHMO) 60
AverageMeter class 443, 446	blind search algorithms 62, 104
_	graph search 72
<u>B</u>	shortest path algorithms
BA (bat algorithm) 59, 235, 324	bidirectional Dijkstra search 96
backpropagation 353	UCS 94
backtracking algorithm 182	blind search algorithms
bacterial foraging optimization algorithm	applying to routing problem 98–101
(BFO) 60, 324	graphs 63–72
bacterial swarming algorithm (BSA) 60, 324	graph traversal algorithms 74–89
balancing	breadth-first search 74–83
CartPole using A2C and PPO 473	depth-first search 84–89
banana function 387	shortest path algorithms 89–97
basic units 45	Dijkstra's search 90–94
bat algorithm (BA) 59, 324	BMU (best matching unit) 422
batch_data 444	BOA (butterfly optimization algorithm) 59
batch_labels 444	body_mass_g variable 354
batch_lengths 444	Bohachevsky function 178
batch size 435	Borůvka's algorithm 105
batch_size 443	boundary mutation 278

BPSO (binary PSO) 340	cognitive parameter 359
brainstorm optimization algorithm (BSO) 60	COIN-OR branch and cut (Cbc) 184
bridges with non-equal lengths experiment 366	combinations 26
BSA (bacterial swarming algorithm) 60, 324	combined criteria 307
BS (bidirectional search) 74	competitive learning 422
BSO (brainstorm optimization algorithm) 60	computational intelligence (CI) 243
BSs (base stations) 481	constrained depth-first search 89
Bukin function 178	constraints 14, 37–45
butterfly optimization algorithm (BOA) 59	constraint-satisfaction problems (CSPs) 13
7 1	constraint satisfaction problems (CSPs)
C	solving with tabu search 207–213
CA (cultural algorithm) 245	context 470
CA (cultural algorithms) 59, 234	contextual bandits
can_attack function 35	truck selection problem, solving using 485-490
CartPole	continuous optimization
balancing using A2C and PPO 473	function optimization 175–180
cat swarm optimization (CSO) 59	continuous problems
Cauchy distribution 278	solving 213
Cauchy mutation 278	continuous PSO 326
c-convex class 429	algorithm 326
c_convex functions 431, 432	contraction hierarchies
c_convex objects 430	for routing 151–153
celestial coordinate system 428	control problems 48
celestial_to_euclidean() function 427	convl layer 413
CH (contraction hierarchies) 105, 154	conv2 layer 413
CH (contraction hierarchies) algorithm	convex hull
query phase 135	finding 441
CH (contraction hierarchies) algorithm	ConvexHull function 447
example 136–144	ConvexNet model 443, 444, 447
preprocessing phase 131–135	convolution operation 409
CH (contraction hierarchy) 105	cooling_alpha parameter 179
chromosome_length argument 262	cooling_schedule parameter 179
chromosomes 241	Cora dataset 412
CI (computational intelligence) 243	cost function 10
cities dictionary 376	cost_function 376
classification 402	cost property 382
closed-loop system 305	criterion function 10
CLT (central limit theorem) 235	Critic class 475
clustering 402	Crook's pencil-and-paper algorithm 182
CMAB (contextual multi-armed bandit) 452, 470,	cross-entropy loss 352
486	cross-in-tray function 178
CNNs (convolutional neural networks) 402, 409	crossover function 264
COA (cuckoo optimization algorithm) 59	crossover methods
CoE (co-evolution) 59, 234, 245	permutation-based genetic algorithms
co-evolution (CoE) 59	cycle crossover 288
cognitive acceleration coefficient 349	edge crossover 286
cognitive component 329, 346	order 1 crossover 287
G 1 , 7	partially mapped crossover 283

crossover methods	deterministic algorithms 50
permutation-based genetic algorithms 283-289	deterministic tuning 205
crossover operator 244	device 435
crossover parameter 281	device variable 443
crossover_prob argument 264	DFS (depth-first search) 73
crossover rate 318	DFS (depth-first search) 84–89
CSA (classical simulated annealing) 164	differential evolution (DE) 59
CS (cuckoo search) 59	dijkstra_path function 100
CSO (cat swarm optimization) 59	Dijkstra's search 90–94
CSP (constraint-satisfaction problem) 181	dimensions 349
CSPs (constraint-satisfaction problems) 13, 33	directed graph 64
CSPs (constraint satisfaction problems)	Disp class 442
solving with tabu search 207-213	Disp_results helper function 445
cuckoo optimization algorithm (COA) 59	distance_callback function 216, 217
cuckoo search (CS) 59	distance_matrix 215
CUDA_DEVICE_ORDER environment	distance_matrix dictionary 376
variable 434	districts 45
CUDA_VISIBLE_DEVICES environment	diversification 20
variable 434	DL-assisted heuristic tree search (DLTS) 426
cultural algorithms (CA) 59	DL (deep learning) 403
CurveFittingProblem class 281	DLS (depth-limited search) 73
CVRP (capacitated vehicle routing problem) 29,	DLX (Dancing links) 182
471	DNA (deoxyribonucleic acid) 241
cycle 66, 288	DNNs (deep neural networks) 426
cycle crossover 288	dolphin partner optimization (DPO) 59
	dolphin swarm optimization algorithm
D	(DSOA) 59
DA (dragonfly algorithm) 59	(DSOA) 59 Domingos, Pedro 399, 400
	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135
DA (dragonfly algorithm) 59	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28
DA (dragonfly algorithm) 59 Data class 442	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9 decision variables 9	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204 E EasyGA 267
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9 decision variables number and type of 26–32 DE (differential evolution) 59, 234, 245, 266	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204 E EasyGA 267 EC (evolutionary computation) 243
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9 decision variables 9 decision variables 9 decision variables 19 DE (differential evolution) 59, 234, 245, 266 DeepFreight 471	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204 E EasyGA 267 EC (evolutionary computation) 243 EC (evolutionary computation) algorithms 234
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9 decision variables 9 decision variables number and type of 26–32 DE (differential evolution) 59, 234, 245, 266 DeepFreight 471 DeepPool 471	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204 E EasyGA 267 EC (evolutionary computation) 243 EC (evolutionary computation) algorithms 234 ED (edge difference) 151
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9 decision variables 9 decision variables number and type of 26–32 DE (differential evolution) 59, 234, 245, 266 DeepFreight 471 DeepPool 471 DefaultRoutingSearchParameters() method 217	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204 E EasyGA 267 EC (evolutionary computation) 243 EC (evolutionary computation) algorithms 234 ED (edge difference) 151 edge crossover 286
DA (dragonfly algorithm) 59 Data class 442 DataParallel 436 dataset object 436 dataset path 435 data.train_mask 414 DBSCAN (density-based spatial clustering) 402 DDPG (deep deterministic policy gradient) 472 DEAP (Distributed Evolutionary Algorithms in Python) 266 debug parameter 179 decision science 9 decision variables 9 decision variables number and type of 26–32 DE (differential evolution) 59, 234, 245, 266 DeepFreight 471 DeepPool 471	(DSOA) 59 Domingos, Pedro 399, 400 downward graph 135 DP (dynamic programming) 28 DPO (dolphin partner optimization) 59 DQN (deep Q network) 472 dragonfly algorithm (DA) 59 drop wave function 178 DSOA (dolphin swarm optimization algorithm) 59 dual_annealing() function 176 dynamic programming algorithms 19 dynamic tabu tenure 204 E EasyGA 267 EC (evolutionary computation) 243 EC (evolutionary computation) algorithms 234 ED (edge difference) 151

edge table 286	feedforward method 353
Eggholder function 178	Ffield 280
ElementwiseProblem class 302	FIFO (first in, first out) 75
eliminate_duplicates parameter 281, 295	filename parameter 435
elitism 252	final temperature 172
elitist selection 261	final_temp parameter 178
employed bees 386	find_cycle() method 111
ENC(v) encoder 407	finding convex hull 441
end-to-end learning 425	finite catenary problem 44
enumerate function 487	firefly algorithm (FA) 59, 324
EPA (Environmental Protection Agency) 12	fish school search (FSS) 59
EP (evolutionary programming) 59, 234, 245	fit function 55
episode_rewards list 477	fitness function 244, 249
epsilon_greedy(epsilon) function 468	fitness-proportionate selection 253
epsilon-greedy strategy 466	fitness_score function 262
error calculation 353	fitness update 330
escape mechanism 207	flipper_length_mm variable 354, 360
ES (evolutionary strategies) 59, 234, 245	FloatRandomSampling 310
estimated time of arrival (ETA) 404	FloatRandomSampling class 268, 269
ETA (estimated time of arrival) 404	FloatRandomSampling operator 281
eta parameter 295	flower pollination algorithm (FPA) 60
euclidean_to_celestial() function 427	FLP (facility location problem) 42
eureka 53	FNNs (feedforward neural networks) 402
evaluation criteria 16	FOA (forest optimization algorithm) 60
evolutionary computation	folium library 71
biology fundamentals 241	forest optimization algorithm (FOA) 60
theory of evolution 242	forgetting problem 416
evolutionary computation 241–246	forward function 413
evolutionary computation 243-246	forward method 474
evolutionary programming (EP) 59	forward_prop function 357
evolutionary strategies (ES) 59	forward(xyz) method 429
expectation operator 463	FPA (flower pollination algorithm) 60
exploitation 20	FPS (fitness-proportionate selection) 253, 261
exploitation search dilemma 22	frequency-based memory 201
exploit_only_greedy() function 468	FSA (fast simulated annealing) 164
exploit-only greedy strategy 466	FSS (fish school search) 59
exploration 20	function optimization 175-180
exploration search dilemma 22	solving using machine learning 427-432
explore_only() function 468	solving using supervised machine
explore-only strategy 466	learning 427–432
exponential cooling schedule 171	Furuta Pendulum Robot 472
F	G

FA (firefly algorithm) 59, 235, 324

far-sighted 456

feasible solution 199

feasible solutions 7

feasible states 16

G0 point 44 GA class 281 GA (genetic algorithm) 59, 234, 245 building blocks 246 fitness function 249

reproduction operators	crossover methods 275
crossover 257	simple arithmetic crossover method 276
mutation 259	simulated binary crossover method 278
new population 259	single arithmetic crossover method 276
selection operators	whole arithmetic crossover method 277
elitism 252	genetic algorithms
fitness-proportionate selection 253	evolutionary computation 241–246
random selection 257	evolutionary computation 243-246
rank-based selection 254	Gray-coded genetic algorithms 272-274
stochastic universal sampling 255	implementing in Python 262-269
tournament selection 256	multi-objective optimization 291–298
survivor selection 260	permutation-based genetic algorithms 282–291
representation schemes 249-251	crossover methods 283–289
reproduction operators 257–260	political districting problem 312-318
PID tuning problem 304–312	population-based metaheuristic
GA (genetic algorithm) class 268	algorithms 234–241
GA (genetic algorithms)	real-valued genetic algorithms 275-282
solving traveling salesman problem 300–304	mutation methods 278–282
galaxy-based search algorithm (GSA) 60	solving traveling salesman problem 300-304
GALBPs (generalized assembly line balancing	traveling salesman problem 300-304
problems) 222	genetic algorithms (GAs)
GAT (graph attention network) 416	adaptive GA 298
Gaussian mutation 278	genetic operators 244
gbest PSO (global best PSO) 333	genetic programming (GP) 59
GbSA (spiral galaxy-based search algorithm) 60	genotype 241
GCNConv layers 413	geometric cooling schedule 170
GCNs (graph convolutional networks) 408	geometric deep learning 403
GDL (geometric deep learning) 407, 449	geometric deep learning (GDL) 407
generate_combinations function 487	gerrymandering 46
generational GA 260	get_routes() function 218
GENERIC_TABU_SEARCH 217	gi function 45
GENERIC_TABU_SEARCH method 217	globalBest PSO 360
genes 241	global minimum 8
genetic algorithm (GA) 59	global optimum 8
genetic algorithms 233	global search 50
evolutionary computation	GML (graph machine learning) 407, 409, 449
biology fundamentals 241	GNN (graph neural networks) 408
theory of evolution 242	Gn point 44
permutation-based genetic algorithms	goal 16
crossover methods	GP (genetic programming) 59, 234, 245
cycle crossover 288	gradient ascent 117
edge crossover 286	gradient descent 354
order 1 crossover 287	gradient descent algorithm 117
partially mapped crossover 283	Gramacy & Lee function 178
mutation methods 290	graph embedding 407
Python packages for 265	graph machine learning 432–438
real-valued genetic algorithms	supervised 432–438

graph machine learning (GML) 407	hyperedges 67
graphs	hypergraph 67
machine learning with 404	
graphs 63–72	I
graph search 72	IAE (integral absolute error) 307
graph traversal algorithms 74-89	IBH (improved black hole algorithm) 60
breadth-first search 74-83	ICNN'95 (IEEE International conference on
depth-first search 84–89	neural networks) 494
Gray code 272	IDDFS (iterative deepening depth-first search) 73
Gray-coded genetic algorithms 272–274	ideal points 296
GREEDY_DESCENT method 217	IDS (iterative deepening search) 73
grey wolf optimizer (GWO) 59	immediate reaction mechanism 207
Griewank 1D, 2D, and 3D functions 178	improved black hole algorithm (IBH) 60
Griewank function 178	Index routing variable 216
GRUs (gated recurrent units) 421	inductive embedding 408
GSA (galaxy-based search algorithm) 60	inductive learning 409
GSA (generalized simulated annealing) 164	inertia component 328
gSDE (Generalized state dependent	inertia weight 332, 344, 349, 359
exploration) 472	informed search algorithms 103, 104
GTA (Greater Toronto Area) 28, 190	for routing problems
GWO (grey wolf optimizer) 59	A* for routing 149
gym-electric-motor environment 472	beam search for routing 148
gym library 474	hill climbing for routing 146
gymnasium 482	introduction to 104
	informed search algorithms
H	for routing problems 146–153
Hamming cliff effect 272	contraction hierarchies for routing 151–153
Hamming cliff problem 273	MST (minimum spanning tree)
Hamming cliff problem 273 hashmap 214	MST (minimum spanning tree) algorithms 105–114
Hamming cliff problem 273 hashmap 214 haversine distance formula 376	algorithms 105–114
hashmap 214 haversine distance formula 376	algorithms 105–114 shortest path algorithms 114–146
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146
hashmap 214 haversine distance formula 376	algorithms 105–114 shortest path algorithms 114–146
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146 hill climbing algorithm 115–121	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266 integral term 305
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146 hill climbing algorithm 115–121 hill climbing (HC) 105	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266 integral term 305 intensification 20
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146 hill climbing algorithm 115–121 hill climbing (HC) 105 Himmelblau function 213	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266 integral term 305 intensification 20 ints list 262
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146 hill climbing algorithm 115–121 hill climbing (HC) 105 Himmelblau function 213 HNR (highway-node routing) 105	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266 integral term 305 intensification 20 ints list 262 invasive weed optimization (IWO) 60
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146 hill climbing algorithm 115–121 hill climbing (HC) 105 Himmelblau function 213 HNR (highway-node routing) 105 hu embedding 411	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266 integral term 305 intensification 20 ints list 262 invasive weed optimization (IWO) 60 inversion mutation 290
hashmap 214 haversine distance formula 376 H (embedding or latent space) 407 HER (hindsight experience replay) 472 heuristic function 53 heuristics and metaheuristics 52–58 HHs (highway hierarchies) 105 highway-env environment 472 hill climbing for routing 146 hill climbing algorithm 115–121 hill climbing (HC) 105 Himmelblau function 213 HNR (highway-node routing) 105 hu embedding 411 hv0 embedding 412	algorithms 105–114 shortest path algorithms 114–146 A* search algorithm 124–146 beam search algorithm 121–124 hill climbing algorithm 115–121 initial temperature 169 initial_temp parameter 178 init_pop function 262 insert mutation 290 Inspyred (Bio-inspired Algorithms in Python) 266 integral term 305 intensification 20 ints list 262 invasive weed optimization (IWO) 60 inversion mutation 290 IPython.display 482

ITAE (integral time absolute error) 307 iterations at each temperature 172 ITSE (integral time square error) 307 IWO (invasive weed optimization) 60	levy flight black hole (LBH) 60 Levy function 178 LIFO (last in, first out) 84 linear-inverse cooling schedule 170 links 404
J	LOA (lion optimization algorithm) 59
Jarník-Prim's algorithm 105 jMetalPy 266	local search 50, 196, 198 locus 241 logarithmic cooling schedule 171
K	log function 352
KH (krill herd) 59	log_interval 443
k-hop neighborhood 412	log_pointer_scores 447
KL (Kullback-Leibler) divergence 461	Lorentz distribution 278
knapsack problem 202	lower bound 53
knapsack problem (KP) 426	LPG (policy gradient loss) 457 lr (learning rate) 443
knn strategy 435	LS (local search) 196, 197
knn_strat parameter 436	LSTM (long short-term memory) 402, 419
Kohonen map 422	LTV (linear time varying) method 345
krill herd (KH) 59	El v (inical time varying) metroa o ro
Kruskal's algorithm 105	M
Kullback-Leibler (KL) divergence 461	MAB (multi-armed bandit) 451, 464
	machine learning
<u>L</u>	machine learning with graphs 404
L2 norm 427	machine learning wan graphs 101
Lagrange function 38	demystifying 399–403
Lagrange multipliers 38	unreasonable effectiveness of data 400–403
landscape and number of objective	machine learning for optimization
functions 32–37	problems 424–427
Langermann function 178	solving TSP using unsupervised machine
Laplace domain 308	learning 438–441
large language models (LLMs) 427	unsupervised machine learning 438–441
Latin hypercube sampling 237	machine learning (ML) 351
Latin square 180, 181	machine learning (ML)
lazy updates 133	supervised learning 427–432
lbest PSO (local best PSO) 334	function optimization using 427–432
LBH (levy flight black hole) 60	magic squares 181
LB (lower bound) 250	make_dataset method 436
LDS (Sobol low-discrepancy sequence) 237	management science 9
learning	Markov chain (MC) 161
solving TSP using unsupervised machine	MAVs (micro aerial vehicles) 49
learning 438–441	
supervised	MaxCut (maximum cut) 471
summary 449, 495	maximal clique (MC) 426
unsupervised	maximal independent set (MIS) 426
summary 449, 495	maximum coverage problem (MCP) 426
unsupervised machine learning 438–441	maximum cut (MaxCut) 426
learning to configure algorithms 425	max_iter parameter 178

max_iter_per_temp parameter 178	model 414, 435, 444, 446
max-min ant system 375	model-based RL (MBRL) 458
max_samples 442	model-free RL (MFRL) 458
MC (Markov chain) 161	model object 392
MDP (Markov decision process) 451, 452	model variable 436
reinforcement learning 453	module attribute 436
MEALPY 176	MOEA/D (multi-objective evolutionary algorithm
MEALPY library 392	based on decomposition) 266, 293
MEALPY (population-based meta-heuristic	MOEAs (multi-objective evolutionary
algorithms) 267	algorithms) 267
mealpy.swarm_based.ABC module 392	monkey search lion optimization algorithm
memory structure 201–205	(LOA) 59
merit function 10	mono-objective optimization problem 12
message passing 410, 411	motion equations 328
metaheuristic algorithms 158	MSE (mean squared error) 279, 352
metaheuristics 53	MST (minimum spanning tree) 104, 106
Metaheuristics	MST (minimum spanning tree) algorithm 72
From Design to Implementation (Talbi) 235	MST (minimum spanning tree)
midpoint attribute 151	algorithms 105–114
MineProbe wheel design problem 43	multigraph 64
minimize function 38, 268, 281	multi-objective optimization 291–298
minimum spanning tree (MST) algorithm 72	multi-objective optimization algorithms 293
minimum vertex cover (MVC) 426	multi-objective optimization problem 12
Minkowski distance 349	multiple population levy black hole (MLBH) 60
min_samples 442	multiplication 342
MIS (maximal independent set) 471	multi-store model 201
Mitchell, Thomas 399	mutate method 191
ML4CO (Machine Learning for Combinatorial	mutation 259
Optimization) 427	mutation function 264
MLBH (multiple population levy black hole) 60	mutation methods 290
ML in conjunction with optimization	mutation methods 278-282
algorithms 426	mutation operator 244
ML (machine learning) 351, 399	mutation parameter 281
ML (machine learning)	mutation_prob argument 264
supervised graph machine learning 432-438	myopic 456
MLP (multilayer perceptron) 478	
MLP (multilayer perceptron) policy 482	N
MlpPolicy 478, 482	n_actions 475
MLPs (multilayer perceptrons) 402	nadir points 296
Mlrose (Machine Learning, Randomized	natural selection 243
Optimization and Search) 267	nature-inspired algorithms 59, 61
MMAS (max-min ant system) 375	navarijal.board.chunks_3 355
MMAS (max-min ant system) algorithm 375	near-optimal solutions 7
mobile_env 482	negation transformation 249
mobile networks	negative log likelihood (NLL) 352
autonomous coordination in using	neighborhood function 423

neighborhoods

PSO 333

PPO 481-485

modal model 201

neighborhood size 333	0
neighborhood structure 196	objective functions 10
neighbors 435	landscape and number of 32–37
neighbors parameter 435, 436	off-policy RL methods 458
n_epochs (number of training epochs) 443	online delayed pheromone update 369
NetLogo 367	onlooker bees 386
networkx library 380	on-policy RL methods 458
neural combinatorial optimization 424	operations research (OR) 9
neural networks	operator (successor) 16
with PSO 351-360	optalgotools package 76
neural networks (NNs) 60	optimal solutions 7
NeurIPS (Neural Information Processing	optimization
Systems) conference 427	ingredients of optimization problems
New optimization techniques in engineering	constraints 14
Studies in fuzziness and soft computing	decision variables 9
(Clerc) 494	PSO (particle swarm optimization)
NLL (negative log likelihood) 352	neighborhoods 333
NLP (nonlinear programming problem) 42	search algorithms 20
NLTV (nonlinear time varying) method 345	optimization
nn.Module 430	heuristics and metaheuristics 52–58
nn.Module class 474, 475	ingredients of optimization problems 7–15
NNs (neural networks) 60	objective functions 10–13
nn.TransformerEncoderLayer 443	machine learning for optimization
NodeIndex 216	problems 424–427
nodes 404	well-structured problems vs. ill-structured
nondominated solutions 292	problems 15–19
nonlinear functions 351	with reinforcement learning 470–472
np.argmax() function 468	optimization algorithms
n_particles 349	classification of 52
NPGA (niched-Pareto genetic algorithm) 293	simulated annealing
n-point crossover 258	solving Sudoku 180–184
n-queen CSP (constraint-satisfaction problem) 34	optimization by prompting (OPRO) 427
n-queen problem 13, 33	optimization problems
NSGA-III (non-dominated sorting genetic	classifying 24–50
algorithm) 266	constraints 37–45
NSGA-II (non-dominated sorting genetic	expected quality and permissible time for
algorithm) 266	solution 45–50
NSGA-II (nondominated sorting genetic	landscape and number of objective
algorithm) 293	functions 32–37
NS-PSO (non-dominated sorting particle swarm	number and type of decision variables 26–32
optimization) 266	optimization techniques 9
nucleus 241	options dictionary 349
number of samples 435	opts class 434
num_parents argument 263	order 1 crossover 287
numpy arrays 55	OriginalABC class 392
num_samples parameter 436	OR (operations research) 9
num_workers parameter 436	OSM (OpenStreetMap) 70
	Com (Openoneemap) 10

out dictionary 280	PID (proportional integral derivative) controller
overlay graph 131	parameters 275
	PID (proportional integral derivative) tuning
P	problem 304–312
PaDE (parameter adaptive differential	PID tuning problem 307
evolution) 266	pk (selection probability) 253
PAES (Pareto archived evolution strategy) 266, 292	planning problems 47
Pandana library 153	Platypus 267
parallel edges 64	PLP (plant layout problem) 42
parameter tuning 205	P-metaheuristics 159
parents argument 264	P-metaheuristics (population-based metaheuristic
parent selection method 244	algorithms) 234
Pareto frontier 13	PMF (probability mass function) 488
Pareto optimal solutions 292	PointCrossover class 268, 269
Pareto optimization 292	pointer_argmaxs 447
Pareto optimization approach 13	pointer networks 419
partially mapped crossover 283	points of interest (POI) 69
particle position initialization 332	POI (points of interest) 69
particle swarm optimization 321	POIs (points of interest) 190
particle swarm optimization	policy gradient 457
traveling salesman problem	policy gradient methods 456
solving with PSO 348-351	policy iteration methods 456
particle swarm optimization (PSO) 59, 324	political districting problem 312–318
particle velocity initialization 332	polynomial mutation 278
path_indices list 381	PolynomialMutation class 268, 269
paths array 378	PolynomialMutation operator 281
PCA (principal component analysis) 402, 424	POMDP (partially observable Markov decision
PCA (principle component analysis) 414	process) 454
PDFs (probability density functions) 461	pop_size argument 262
peak overshoot 306	pop_size parameter 281, 295
penguins.owl.owl.chunks_1 354	population argument 263, 264
permutation-based genetic algorithms	population-based algorithms 158
crossover methods	population-based metaheuristic
cycle crossover 288	algorithms 234–241
edge crossover 286	population of individuals 244
order 1 crossover 287	potential energy 44
partially mapped crossover 283	PPO-clip 462
mutation methods 290	PPO-penalty 461
permutation-based genetic algorithms 282–291	PPO (proximal policy optimization) 460, 472
crossover methods 283–289	PPO-clip 462
permutation-based PSO 342	PPO-penalty 461
permutations 26	PPO (proximal policy optimization)
personal best position initialization 332	autonomous coordination in mobile networks
phenotype 241	using 481–485
physical annealing 159	PPO (proximal policy optimization)
PIDProblem class 310	algorithm 479, 484
PID (proportional integral derivative)	balancing CartPole using 473
controller 271, 305, 308	preprocessing phase 130

principal component analysis (PCA) 424 print function 38 print_solution() function 217 priority term 133 Problem class 268 problem_dict 392 problems class 193	Python packages for genetic algorithms in 265 Python implementing genetic algorithms in 262–269 pywrapcp module 217 Q
probs array 358	
proportional term Kpe(t) 305	qa194.tsp 440 QAP (quadratic assignment problem) 42
pseudo-random proportional action rule 374	QA (quantum annealing) 60, 164
PSO (particle swarm optimization) 59, 235, 266,	QEA (quantum-inspired evolutionary algorithm) 60
322, 324, 362, 393	QGA (quantum-inspired genetic algorithm) 60
adaptive	qk (cumulative probability) 253
adaptive PSO	QoE (quality of experience) 481
cognitive component 346	QP (quadratic programming) 42
inertia weight 344	QPSO (quantum-inspired particle swarm
social components 346	optimization) 60
continuous PSO 326	Q-Q plot 354
algorithm 326	QSE (quantum swarm evolutionary algorithm) 60
fitness update 330	quadratic complexity 80
initialization 332	quantum annealing (QA) 60
motion equations 328	quantum-inspired evolutionary algorithm
neighborhoods 333	(QEA) 60
permutation-based PSO 342	quantum-inspired genetic algorithm (QGA) 60
PSO (particle swarm optimization)	quantum-inspired particle swarm optimization
adaptive 343–348	(QPSO) 60
binary PSO 340–342 neural network training 351–360	quantum swarm evolutionary algorithm (QSE) 60
solving TSP with 348–351	query phase 130
swarm intelligence 322–325	quiet 489
ptr_net class 442	B
Ptr-Net (pointer network) 419, 449	R
ptr_net.py class 443	random.choices function 377
PuLP (Python Linear Programming) library 184	random.gauss() function 175
p-value 349	random-restart hill climbing 117
PyBullet Gym 472	random selection 257
pyDOE (Design of Experiments) 237	rank-based selection 254
Pyevolve 267	Rastrigin function 178
PyGAD (Python Genetic Algorithm) 266	ray optimization (RO) 60
PyGMO (Python Parallel Global Multi-objective	real-valued genetic algorithms
Optimizer) 266	crossover methods 275
PyG (PyTorch Geometric) 413	simple arithmetic crossover method 276
pymoo 239	simulated binary crossover method 278 single arithmetic crossover method 276
pymoo library 267	whole arithmetic crossover method 277
Pymoo (Multi-objective Optimization in	real-valued genetic algorithms 275
Python) 266	mutation methods 278–282
pymoo.operators.selection class 257 Pyrosm library 153	recency-based memory 201

reciprocal transformation 249	RL (reinforcement learning)
RegisterTransitCallback() method 217	optimization with 470–472
regression 402	RNN (recurrent neural network) 419, 441
reinforcement learning 450	RNNs (recurrent neural networks) 402
balancing CartPole using A2C and PPO 473	RO (ray optimization) 60
combinatorial optimization problems 491	rosenbrock_function 389
Markov decision process 452	Rosenbrock's function 178
multi-armed bandit 464	RoundingRepair class 268, 269
overview 451	Route variable 382
summary 496	RoutingIndexManager class 217
reinforcement learning	RoutingIndexManager object 217
autonomous coordination in mobile networks	RoutingModel object 217
using PPO 481-485	routing problem
truck selection problem, solving using	blind search algorithms and 98-101
contextual bandits 485-490	routing problems
reinforcement learning (RL) 450	informed search algorithms for
relaxing node 135	A* for routing 149
relu activation function 413	beam search for routing 148
ReLu (rectified linear unit) 354	hill climbing for routing 146
ReLU (rectified linear unit) 352	routing problems
Repair class 302	informed search algorithms for 146-153
repeated solution construction heuristic 57	contraction hierarchies for routing 151-153
repeated solution modification heuristic 58	solving using tabu search 215–221
repeated solution recombination heuristic 58	RoutingSearchParameters class 217
repetition argument 189	RS (random selection) method 345
representation schemes 249–251	run_ACO function 378
reproduction operators	
crossover 257	S
mutation 259	SAC (soft actor-critic) 472
new population 259	SALBP-1 (type 1 simple assembly line balancing
reproduction operators 257–260	problem) 224
reshape() function 335	SALBP-2 (type 2 simple assembly line balancing
resource or time-constrained problems 282	problem) 224
responsive exploration 197	SALBPs (simple assembly line balancing
results_sb directory 482	problems) 222
ride-sharing problem 47	sample_payoff 467
rise time 306	sample_payoff() function 468
RL Baselines3 Zoo 472	sample_truck_pmf function 488
RLOR (reinforcement learning for routing	sampling parameter 281
problems) 471	SA (simulated annealing) 59, 158
RL Reach 472	algorithm
RL (reinforcement learning) 403, 450	annealing process
actor-critic methods 459	final temperature 172
MDP (Markov decision process) to 453	initial temperature 169
model-based versus model-free RL 458	iterations at each temperature 172
proximal policy optimization 460	temperature decrement 170
PPO-clip 462	physical annealing 159
PPO-penalty 461	

SA (simulated annealing)	stochastic universal sampling 255
algorithm 159–175	tournament selection 256
acceptance probability 165–167	selection operators 252–257
adaptation in 172–175	select_parent function 263, 265
annealing process 168–172	self-adaptive tuning 206
pseudocode 161–165	semi-truck routing problem 190–193
semi-truck routing problem 190–193	sensory memory 201
satisfiability problem (SAT) 426	separable function 178
SAT (satisfiability problem) 471	Seq2Seq (sequence-to-sequence) 402
SB3 (Stable Baselines3) 478	seq2seq (sequence-to-sequence) model 419
SB3 (Stable-Baselines3) 472	sequential ML
SBX operator 281	pointer networks 419
SBX (simulated binary crossover) 278	SetArcCostEvaluatorOfAllVehicles() method 217
Scatter2DDataset class 442	settling time 306
Schaffer function 178	SFLA (shuffled frog leaping algorithm) 59
Schwefel function 178	shortcut edges 145
scipy.optimize 38	shortest path algorithms
scipy.optimize.anneal 176	bidirectional Dijkstra search 96
scout bees 386	UCS 94
scramble mutation 290	shortest path algorithms 89, 114
SDS (stochastic diffusion search) 60	A* search algorithm 124–146
seaborn library 474	beam search algorithm 121–124
search	Dijkstra's search 90–94
ingredients of optimization problems	hill climbing algorithm 115–121
constraints 14	shortest_path function 191
decision variables 9	short-term memory 201
search	shuffled frog leaping algorithm (SFLA) 59
heuristics and metaheuristics 52–58	side information 470
ingredients of optimization problems 7-15	sigmoid function 352
objective functions 10–13	simple arithmetic crossover method 276
search algorithms 20	simple hill climbing 117
search algorithms	simulated annealing 157
classification of 50–52	trajectory-based optimization 158
search and optimization 3, 23	simulated annealing
going from toy problems to real world 6	function optimization 175–180
reasons for caring about 5	solving Sudoku 180–184
search and optimization	SIMULATED_ANNEALING method 217
well-structured problems vs. ill-structured	simulated annealing (SA) 59
problems 15–19	simulated annealing (SA)
search and optimization algorithms	traveling salesman problem and 185-189
nature-inspired algorithms 59	simulated binary crossover method 278
seed parameter 281	single arithmetic crossover method 276
selection operators	SinglePointCrossover class 268
elitism 252	singleton array 335
fitness-proportionate selection 253	SI (smoothing index) 224
random selection 257	SI (swarm intelligence) algorithms 235
rank-based selection 254	size-1 array 335

sliding-block problem 75	stopping criteria 16
slot machine 464	strong local minimum 8
smallest_width_first heuristic 56	strs list 262
S-metaheuristic algorithms 234	STSP (symmetric TSP) 27
S-metaheuristics 159	subtraction 343
SMS-EMOA (multi-objective selection based on	Sudoku 180–184
dominated hypervolume) 293	SUMO-RL 472
social acceleration coefficient 349	supervised and unsupervised learning 397
social component 329, 346	supervised graph machine learning 432–438
social parameter 359	supervised learning 402
social spider optimization (SSO) 59, 324	AI-empowered daily routines 398
SOFM (self-organizing feature map) 422	attention mechanisms 416
softmax activation function 355	finding convex hull 441
softmax function 352	graph embedding 407
solution object 76	machine learning with graphs 404
solution/path 16	sequential ML
solve method 381	pointer networks 419
solve() method 392	supervised learning
SolveWithParameters() method 217	function optimization using 427–432
SOMs (self-organizing maps) 402, 422–424, 449	graph machine learning 432–438
space complexity 89	machine learning for optimization
SPEA2 (strength Pareto evolutionary	problems 424–427
algorithm) 266, 293	self-organizing maps 422–424
species {{{PIPE}}} penguin example 354	summary 449, 495
sphere_dist(x, y) function 429	supervised machine learning
spiral galaxy-based search algorithm (GbSA) 60	unsupervised machine learning 438–441
spring_layout() method 111	supervised parameter 436
S-PSO (synchronous PSO) 330	survival methods 244
SSO (social spider optimization) 59, 324	survival of the fittest 243
Stable Baselines3 (SB3) 478	survivor selection 260
stagnation 205	swap mutation 290
State class 76, 85	swarm intelligence 322–325
state_dim 475	swarm intelligence algorithms 362
state-value function 456	ACO
static tabu tenure 204	simple ACO 370
stats dictionary 477	ACO (ant colony optimization)
steady state 270	solving TSP with 376
steady-state error 306	ant colony system 374
steady-state GA 260	artificial bee colony algorithm 385
steepest-ascent hill climbing 117	max-min ant system 375
stigmergy 364	swarm intelligence algorithms
stirling function 31	ant colony optimization 363–366
stochastic algorithms 51	ant colony optimization (ACO) 366–369
stochastic diffusion search (SDS) 60	artificial bee colony algorithm 383–385
stochastic hill climbing 117	swarm size 333
stochastic policy 454	SymPy 39
stochastic universal sampling (SUS) 255	sympy.stats.DiscreteMarkovChain class 162

Т	truck selection problem, solving using contextual
tabu-active moves 203	bandits 485–490
tabu search 195	TSC (traffic signal control) 471
algorithm 198	tsp class 215
solving continuous problems 213	tsp_cost function 349
TABU_SEARCH 217	tsp_distance function 349
tabu search	tsp object 215
solving constraint satisfaction	TSP (traveling salesman problem) 18, 27, 200,
problems 207–213	271,340
solving TSP and routing problems 215–221	TSP (traveling salesman problem)
tabu search (TS) 60	SA and 185–189
tabu tenure 204	solving using tabu search 215–221
tactile-gym 472	solving with genetic algorithms 300–304
TD3 (twin delayed DDPG) 472	solving with PSO 348–351
temperature decrement 170	supervised graph machine learning 432–438
tensorboard logdir 482	unsupervised machine learning 438–441
TicketPrice problem 268	TSP (traveling salesperson problem)
tile-puzzle problem 75	solving with ACO 376
time complexity 80, 89	TS (tabu search) 60, 195
TNR (transit-node routing) 105	algorithm
TOKENS dictionary 442	aspiration criteria 205
to_numpy() function 359	local search 196
torch library 474	TS (tabu search)
torch.nn.DataParallel 436	algorithm 197–207
torch.nn.Dropout layer 413	adaptation in TS 205–207
torch.nn.functional 474	memory structure 201–205
torch.nn module 474	assembly line balancing problem 221–230
torch.optim 474	TwoPointCrossover class 268
to_undirected function 113	
tournament selection 256	U
tour object 382	UAV_Navigation_DRL_AirSim 472
tqdm library 474	UAVs (unmanned aerial vehicles) 49
tqdm progress bar 431	UB (upper bound) 250
training	ucb(c) function 469
neural networks with PSO 351-360	UCB (upper confidence bound) strategy 466
train_loader dataset 444	UCS (uniform-cost search) 74, 89, 94
trajectory 454	UEs (user equipment) 481
trajectory-based algorithms 158	UGVs (unmanned ground vehicles) 43
trajectory-based optimization 158	uniform crossover 258
transductive embedding 408	uniform search 73
transductive learning 409	unlabeled data set 354
TravelingSalesman class 302	unsupervised learning 402
traveling salesman problem (TSP)	AI-empowered daily routines 398
SA and 185–189	attention mechanisms 416
treasure-hunting mission 52	finding convex hull 441
TRPO (trust region policy optimization) 461	graph embedding 407
	machine learning with graphs 404

unsupervised learning
machine learning for optimization
problems 424–427
self-organizing maps 422–424
summary 449, 495
unsupervised machine learning 438–441
update_pheromones function 378
update_velocity function 337
upward graph 135
use_cuda 435
utility function 10

V

val_dataset 444
valley function 387
val_loader dataset 444
variables
decision variables 9
vehicular routing problem (VRP) 426
velocity clamping 360
verbose parameter 281
vertices 404
visualize function 76
VLSI (very large-scale integration) 23
Von Neumann model 334
Vowpal Wabbit (VW) 470

VRP (vehicle routing problem) 471 vtype parameter 280 VW (Vowpal Wabbit) 470, 486

W

water cycle algorithm (WCA) 60
water flow-like algorithm (WFA) 60
WCA (water cycle algorithm) 60
weak local minimum 8
weighted graph 68
WFA (water flow-like algorithm) 60
wheel topology 334
whole arithmetic crossover method 277
WIP (work in progress) 222
witness path 131
wolf search algorithm (WSA) 59
working memory 201
WSA (wolf search algorithm) 59, 235
WSPs (well-structured problems) 15
WSP (well-structured problem) 75

X

XOR (exclusive OR) gates 272

Z

zfill() method 262