Linearization Framework for Collision Attacks: Application to CubeHash and MD6

Eric Brier¹, Shahram Khazaei², Willi Meier³ and Thomas Peyrin¹

¹Ingenico, France ²EPFL, Switzerland ³FHNW, Switzerland

Asiacrypt 2009, Tokyo, Japan - December 10th

Outline

- State of the art of the Hash functions
- Description of CubeHash and MD6
- Attack overview
 - Finding differential paths
 - linearization
 - Finding conforming message
 - condition function
 - dependency table
 - backtracking
- Results
- Conclusion

Hash Function

Properties

collision resistance: $O(2^{n/2})$ preimage resistance: $O(2^n)$

second preimage resistance: $O(2^n)$

State of the art of hash Function

Real collisions

MD4, MD5, SHA-0

Expected to be cracked next

SHA-1: 2⁶⁰

Currently used

SHA-2 family

Under review

SHA-3 candidates

Our targets

MD6

SHA-3 first round candidate (along with 50 others)

Internal state: 5696 bits (89 64-bit words)

hash output size: up to 512 bits

Operations: \oplus , \ll , \gg , \wedge

CubeHash

SHA-3 second round candidate (along with 13 others)

Internal state size: 1024 bits (32 32-bit words)

hash output: up to 512 bits

Operations: ⊕, ≪, ⊞

CubeHash-r/b

padded message: $M_0 || M_1 || \dots || M_{t-1}$ $M_0(b \text{ bytes}) \qquad M_1(b \text{ bytes}) \qquad M_{t-1}(b \text{ bytes})$ $round \qquad round \qquad ro$

CubeHash-r/b

Speed

25r/b cycles/byte on a Core 2 Duo in 32-bit mode 20r/b cycles/byte on a Core 2 Duo in 64-bit mode

padded message: $M_0 || M_1 || \dots || M_{t-1}$

Official instances

Original SHA-3 proposal: CubeHash-8/1

Tweaked proposal: CubeHash-16/32 — ×16 faster

CubeHash round function

- Add S_i into $S_{i\oplus 16}$, for $0 \le i \le 15$.
- ► Rotate S_i to the left by seven bits, for $0 \le i \le 15$.
- ▶ Swap S_i and $S_{i \oplus 8}$, for $0 \le i \le 7$.
- ► XOR $S_{i \oplus 16}$ into S_i , for $0 \le i \le 15$.
- ► Swap S_i and $S_{i\oplus 2}$, for $i \in \{16, 17, 20, 21, 24, 25, 28, 29\}$.
- Add S_i into $S_{i\oplus 16}$, for $0 \le i \le 15$.
- Rotate S_i to the left by eleven bits, for $0 \le i \le 15$.
- ► Swap S_i and $S_{i\oplus 4}$, for $i \in \{0, 1, 2, 3, 8, 9, 10, 11\}$.
- ▶ XOR $S_{i\oplus 16}$ into S_i , for $0 \le i \le 15$.
- ► Swap S_i and $S_{i\oplus 1}$, for $i \in \{16, 18, 20, 22, 24, 26, 28, 30\}$.

MD6

Compression function

r = 80 for 160-bit digests

r = 168 for 512-bit digests

Permutation

How to find collisions?

Find M and M' such that H(M) = H(M').

Find Δ s.t. $H(M) = H(M \oplus \Delta)$ with high probability: Linearization.

Given Δ how to find M? Random search?

Better solution

Construct a Condition function such that:

Condition_{$$\Delta$$}(M) = 0 \Longrightarrow $H(M) = H(M \oplus \Delta)$

► Find preimages of Condition_∆ function under zero efficently.

Linearization

Linearization

Linearization

Constructing Condition function

Let *n* denote the wordsize and $\delta = 2^i$, $0 \le i \le n - 2$.

Let $C = (A \boxplus B) \oplus A \oplus B$ denote the carry word of A and B.

Constructing Condition function

Let *n* denote the wordsize and $\delta = 2^i$, $0 \le i \le n - 2$.

Let $C = (A \boxplus B) \oplus A \oplus B$ denote the carry word of A and B.

$$B_i \oplus C_i = 0$$

Constructing Condition function

Let *n* denote the wordsize and $\delta = 2^i$, $0 \le i \le n - 2$.

Let $C = (A \boxplus B) \oplus A \oplus B$ denote the carry word of A and B.

$$A_i \oplus B_i \oplus 1 = 0$$

MD6: Linearization and condition function

MD6: Linearization and condition function

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

Y:

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

 $Y: egin{array}{c} \mathcal{M}_1 \ \mathcal{Y}_1 \end{array}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

$$Y = \mathsf{Condition}_{\Delta}(M) = 0$$

If Condition function is complex enough $\Longrightarrow 2^{|Y|}$

$$\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_\ell$$
 and $\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_\ell$

- 1. $\mathcal{M}_1 \Longrightarrow \mathcal{Y}_1$
- 2. $\mathcal{M}_1, \mathcal{M}_2 \Longrightarrow \mathcal{Y}_2$
- 3. :
- 4. $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_\ell \Longrightarrow \mathcal{Y}_\ell$

Complexity =
$$\sum_{i=0}^{\ell} 2^{q_i}$$

 $q_{i-1} = |\mathcal{Y}_{i-1}| + \max(0, q_i - |\mathcal{M}_i|)$
for $i = \ell, \ell - 1, \dots, 1$ with $q_{\ell} = |\mathcal{Y}_{\ell}|$

Dependency table ...

0 0 0

CubeHash: differential paths probability

Table: \log_2 probability of the best path

$r \setminus b$	1	2	3	4	8	12	16	32	48	64
1	1225	221	46	32	32	-	-	-	_	-
2	1225	221	46	32	32	-	-	-	_	-
3	4238	1881	798	478	478	400	400	400	364	65
4	2614	964	195	189	189	156	156	156	130	130
5	10221	4579	2433	1517	1517	1244	1244	1244	1244	205
6	4238	1881	798	478	478	400	400	400	351	351
7	13365	5820	3028	2124	2124	1748	1748	1748	1748	447
8	2614	2614	1022	1009	1009	830	830	830	637	637

- ▶ $Pr > 2^{-512} \Rightarrow$ second pre-image attack
- ▶ $Pr > 2^{-256} \Rightarrow trivial collision attack$

CubeHash: Collision attacks complexity

Table: \log_2 complexities of the best attack

$r \setminus b$	1	2	3	4	8	12	16	32	48	64
1	1121.0	135.1	24.0	15.0	7.6	-	_	-	-	-
2	1177.0	179.1	27.0	17.0	7.9	_	_	-	-	-
3	4214.0	1793.0	720.0	380.1	292.6	153.5	102.0	55.6	53.3	9.4
4	2598.0	924.0	163.0	138.4	105.3	67.5	60.7	54.7	30.7	28.8
5	10085.0	4460.0	2345.0	1397.0	1286.0	946.0	868.0	588.2	425.0	71.7
6	4230.0	1841.0	760.6	422.1	374.4	260.4	222.6	182.1	147.7	144.0
7	13261.0	5709.0	2940.0	2004.0	1892.0	1423.0	1323.0	978.0	706.0	203.0
8	2606.0	2590.0	982.0	953.0	889.0	699.0	662.0	524.3	313.0	304.4

Our results on MD6

We found a differential path with probability 2^{-90} for 16-round.

The 90 condition bits can be fulfilled in 2^{30} rather than 2^{90} .

r	16	17	18	19		
	collision	near-collision	near-collision	near-collision		
		(63)	(144)	(270)		

The output of the compression function is 1024-bit long.

The proposed number of rounds varies from r = 80 to r = 168 for digests of size 160 to 512 bits.

Conclusions

- Have introduced the concept of Condition function
- Useful when combined with linear differential cryptanalysis
- Applied to reduced-round variants of CubeHash and MD6

Thank you!