R2 Find
$$Z\left\{\left(\frac{1}{3}\right)^{|K|}\right\}$$

R4 Find inverse Z transjourn of
$$F(z) = 1$$
 if $R \cdot 0 \cdot C$ is
$$(Z-3)(Z-2)$$

Z-Transform is given by:-
$$Z \{f(K)\} = \sum_{K=0}^{\infty} f(K) \cdot Z \qquad (:: K \ge 0)$$

$$Z\{1\} = \sum_{K=0}^{\infty} (1)Z^{K} = 1 + 1 + 1 + 1 + 1 + 1 + \cdots$$

$$F(Z) = Z$$

Now,
$$Z\left\{K^2f(k)\right\} = \left(-Zd\right)^2 F(z)$$
.

 $f(K) = \begin{cases} (\frac{1}{3})^K & K > 0 \\ (\frac{1}{3})^{-K} & K < 0 \end{cases}$ ANS 2 Z-transjourn is given by: $Z\{f(K)\} = \sum_{k=0}^{\infty} f(K) \cdot z^{-K}$ $= \frac{1}{\sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^{k}} z^{-k} + \sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^{k} z^{-k}$ $= \left[\frac{1}{3} \right]^3 z^3 + \left(\frac{1}{3} \right)^2 z^2 + \left(\frac{1}{3} \right)^2 z^3$ $+ \left[1 + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots \right]$ $3Z (3z)^{2} (3z)^{3}$ $= \frac{z}{z} \left[\frac{1}{3} + \frac{z}{3} + \left(\frac{z}{3} \right)^{2} + \cdots \right] + \left[\frac{1}{3z} + \frac{1}{(3z)^{2}} + \frac{1}{(3z)^{3}} \right]$ $1 + x + x^2 + x^3 + \dots = 1$ $= \frac{z}{3-z} + \frac{3z}{3z-1}$ $= 3z^2 - z + 9z - 3z^2$ 1 4 121 4 3 (3-2)(3z-1): z {f(K)} = 8z (3-z)(3z-1)FOR EDUCATIONAL USE Sundaram

ANS 3	$f(K) = \frac{1}{3^K} \qquad ; \qquad g(K) = \frac{1}{7^K} \qquad K > 0$	
	3 K	
	By convolution theoxem,	
	$Z\{f(K) * g(K)\} = Z\{f(K)\} * Z\{g(K)\} - 0$	
	00 C(1) -K	
	Now, $Z \{f(K)\} = \sum_{K=0}^{\infty} f(K) z^{-K} : K \geqslant 0$	
	$= \sum_{K=0}^{\infty} \frac{1}{3^K}$	
	N=O	
	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right)^{K} = \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right]$	
	$: Z \{f(K)\} = \sum_{K=0}^{\infty} \left(\frac{1}{3z}\right)^{K} = \left[1 + \frac{1}{3z} + \frac{1}{3z} + \frac{1}{3z}\right]^{3} $	
	$1 + x + x^2 + x^3 + \dots = 1$	
	$\therefore Z \{f(K)\} = 1$ $1 - \frac{1}{32}$ $3z$	
	- 1/3z 3z	
	$Z\{f(K)\} = 3z$	
	3z-1 3	
	Let $F(z) = 3z$ 1 < z — 2	
	3z - 1 3	
	Now,	
	$Z\{g(K)\} = \sum_{k=0}^{\infty} g(K) z^{k} : K \ge 0$	
	K=0	
	$= \sum_{K=0}^{\infty} \frac{1}{7^K} Z^{-K}$	
	$= \sum_{K=0}^{\infty} \frac{1}{(7z)^K}$	
	K=0 (12)	

3

(Sundaram)

$$F(z) = -1 \left[1 + \frac{z}{3} + \left(\frac{z}{3} \right)^{2} + \left(\frac{z}{3} \right)^{3} + \cdots \right]$$

$$+ \frac{1}{2} \left[1 + \frac{z}{2} + \left(\frac{z}{2} \right)^{2} + \left(\frac{z}{2} \right)^{3} + \cdots \right]$$

$$= - \left[\frac{1}{3} + \frac{z}{3^{2}} + \frac{z^{2}}{3^{3}} \right] + \left[\frac{1}{2} + \frac{z}{2} + \frac{z^{2}}{2^{3}} + \frac{z^{3}}{2^{4}} \right]$$

: Coefficient of
$$z^{k}$$
 is $(-3^{-k-1} + 2^{-k-1})$ $k \ge 0$
: coefficient of z^{-k} is $(-3^{-k-1} + 2^{-k-1})$ $k \le 0$
: $z^{-1} \{F(z)\} = 2^{k-1} - 3^{k-1}$ where $k \le 0$

$$F(z) = -1 \quad 1 \quad -1 \quad 1$$

$$3 \quad (1 - \frac{z}{3}) \quad 2 \quad (1 - \frac{z}{2})$$

"
$$(1-n)^{-1} = 1 + n + n^2 + n^3 + \dots$$

$$F(z) = -1 \left[1 + \frac{z}{3} + \left(\frac{z}{3} \right)^{2} + \left(\frac{z}{3} \right)^{3} + \cdots \right] - \frac{1}{2} \left[1 + \frac{z}{2} + \left(\frac{z}{2} \right)^{2} + \left(\frac{z}{2} \right)^{3} + \cdots \right]$$

$$= -\left[\frac{1}{3} \left(1 + \frac{z}{3} + \left(\frac{z}{3} \right)^{2} + \left(\frac{z}{3} \right)^{3} + \cdots \right) \right] + \frac{1}{2} \left(1 + \frac{z}{2} + \left(\frac{z}{2} \right)^{2} + \left(\frac{z}{2} \right)^{3} + \cdots \right)$$

$$= \left\{ \begin{bmatrix} 1 + Z + Z^{2} + Z^{3} + \cdots \\ 3 & 3^{2} & 3^{3} \end{bmatrix} + \begin{bmatrix} 1 + 2 + 2^{2} + 2^{3} + \cdots \\ Z & Z^{2} \end{bmatrix} \right\}$$

∴ coefficient of
$$z^{k}$$
 in joint series is -3^{-k-1} | $k \ge 0$

∴ coefficient of z^{-k} in joint series is -2^{k-1} | $k \ge 1$

∴ coefficient of z^{-k} in joint series is -3^{k-1} | $k \le 0$

∴ $z^{-1}[f(z)] = \begin{cases} -3^{k-1} & k \le 0 \\ -2^{k-1} & k \ge 1 \end{cases}$

$$\frac{2}{2^{K-1}} = \frac{3^{K-1}}{1 - 2^{K-1}} = \frac{1}{1 - 2^{K-1}} = \frac{$$

4

(iii)
$$|z| > 3$$

 $|z| > 3 > 2$ $|z| > 2$
 $|z| > 1$
 $|z| > 1$
 $|z| > 1$
 $|z| > 1$

:.
$$F(2) = 1$$
 (1) - 1 (1) Z (1-2/z)

$$= \frac{1}{z} \left(\frac{1 - 3/z}{z} \right) - \frac{1}{z} \left(\frac{1 - 2/z}{z} \right)^{-1}$$

$$(1-n)^{-1} = 1 + n + n^2 + n^3 + \cdots$$

Coefficient of
$$z^{-k}$$
 in 1^{st} series is 3^{k-1} $k \ge 1$
Coefficient of z^{-k} in 2^{nd} series is -2^{k-1} $k \ge 1$

$$Z^{-1} \{ F(z) \} = 3^{K-1} - 2^{K-1} \times K > 1$$

ANS 5
$$f(m) = 4^{K} U(K)$$
 $g(K) = 5^{K} U(K)$ $K > 0$

Sundaram

Z-transform is given by
$$Z\{f(K)\} = \sum_{K=-\infty}^{\infty} f(K).Z^{-K}$$

$$Z\{u(k)\} = \sum_{k=0}^{\infty} z^{-k}$$

$$= 1 + 1 + 1 + 1 + \cdots$$
 $= 2 + 2^2 + 2^3$

$$(1-n)^{-1} = 1 + n + n^2 + n^3 + \cdots$$

$$z\{u(k)\} = z = F(z)$$
 |z| > 1

Now,
$$Z\{a^k f(k)\} = F(z)$$

$$= F\left(\frac{z}{4}\right)$$

$$= \frac{z/y}{z/y-1} \qquad \left| \frac{z}{y} \right| > 1$$

$$F(z) = z \qquad |z| > 4 - C$$