Statistics

Trong Truong

November 29, 2018

1 Conditional probability

If the conditional probability of A given B is equal to the (unconditional) probability of B, we say that A and B are statistically independent. This means occurrence of B does not change the probability of A occurring. This means that

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $P(A)P(B) = P(A \cap B)$ (Law of multiplication).

2 Mendel's Laws of Heredity

It is amazing that you can deduce a law about the *discrete* nature of heredity (genes) from the statistics of plant breeding, specifically from the proportion

$$0.749 \approx 0.75 = \frac{3}{4}$$

of offspring of hybrid peas showing dominant traits. Whenever such neat ratios are found in nature, they almost surely indicate a discreteness in the underlying phenomenon.

3 General Law of Addition / Inclusion Exclusion Principle

Theorem 1 (Inclusion Exclusion Principle). Let E_1, \ldots, E_n be any events. Then

$$P(E_1 + \dots + E_n) = \sum_{i} P(E_i) - \sum_{i < j} P(E_i E_j) + \sum_{i < j < k} P(E_i E_j E_k) - \dots (-1)^{n-1} P(E_1 \dots E_n).$$

Proposition 2. Let E_1, \ldots, E_n be any events. Then

$$\sum_{i} P(E_i) - \sum_{i < j} P(E_i E_j) \le P(E_1 + \dots + E_n) \le \sum_{i} P(E_i).$$

Note 3. Note that $E_1 + \cdots + E_n$ is the event where at least one of the E_i 's occurs.

Proof. This is obvious if we think of the events E_i as regions in a plane and P as the area function. For example, in this case $P(E_1 + \cdots + E_n)$ represents the area A covered by all the E_i 's; $\sum_i P(E_i) - \sum_{i < j} P(E_i E_j)$ represents the area covered by all the E_i 's except the intersections of any pair E_i , E_j , which is clearly a smaller area than A.

Definition 4 (Pairwise and mutual independence). The events E_1, \ldots, E_n are called pairwise independent if

$$P(E_i E_j) = P(E_i) P(E_j)$$

for any pair $i \neq j$. They are called mutually independent if they also satisfy

$$P(E_i E_j E_k) = P(E_i) P(E_j) P(E_k)$$

$$\cdots$$

$$P(E_1 \cdots E_n) = P(E_1) \cdots P(E_n)$$

for any set of distinct i, j, \ldots

Example 5. Pairwise independence does not imply mutual independence. E.g. Consider the experiment of throwing two dice, one red and one black, and let E_1, E_2, E_3 be the events of throwing odd on red, odd on black, and an odd sum on both dice, respectively. Then it's easy to verify that E_i are pairwise independent, but they are not mutually independent because

$$P(E_1E_2E_3) = 0 \neq \frac{1}{8} = P(E_1)P(E_2)P(E_3).$$

4 Random Variables and Probability Distribution