

NCERT INTEXT QUESTIONS

- 9.1. Write the formulas for the following coordination compounds:
- (i) Tetraamminediaguacobalt(III) chloride
- (ii) Potassium tetracyanidonickelate(II)
- (iii) Tris(ethanp-1,2-diamine) chromium(III) chloride
- (iv) Amminebromidochloridonitrito-N- platinatc(II)
- (v) Dichloridobis(ethane-1,2-diamine) platinum (IV) nitrate
- (vi) Iron(III)hexacyanidoferrate(II)

Ans:

- (i) $[CO(NH_3)_4(H_2O)_2]Cl_3$.
- (ii) $K_2[Ni(CN)_4]$
- (iii) [Cr(en)₃]Cl₃
- (iv) [Pt (NH₃) Br Cl (NO₂)] $^{-}$
- (v) $[PtCl_2(en)_2](NO_3)_2$
- (vi) $Fe_4[Fe(CN)_6]_3$
- 9.2. Write the IUPAC names of the following coordination compounds:
- (i) $[Co(NH_3)_6]Cl_3$
- (ii) $[Co(NH_3)_5Cl]Cl_2$
- (iii) K₃[Fe(CN)₆l
- (iv) $K_3IFe(C_2O_4)_3$]
- (v) $K_2[PdCl_4]$
- (vi) [Pt(NH₃)₂Cl(NH₂CH₃)]Cl

Ans:

- (i) Hexaamminecobalt (III) chloride
- (ii) Pentaamminechloridecobalt (III) chloride
- (iii) Potassium hexacyanoferrate (III)
- (iv) Potassiumtrioxalatoferrate(III)
- (v) Potassium tetrachloridopalladate (II)
- (vi) Diamminechloride (methylamine) platinum (II) chloride
- 9.3. Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:
- (i) $K[Cr(H_2O)_2(C_2O_4)_2]$
- (ii) [CO(en)₃]Cl₃
- (iii) $[CO(NH_3)_5(NO_2)(NO_3)_2]$,.
- (iv) $[Pt(NH_3)(H_2O)Cl_2]$
- Ans: (i) (a) geometrical isomerism (cis and tram)

(b) optical isomerism of cis-form, i.e.,

Mirror images

(ii) [Co (en)₃] Cl₃ Optical isomerism:

Mirror images

9.4. Give evidence that [Co(NH $_3$) $_5$ Cl]SO $_4$ and [Co(NH $_3$) $_5$ SO $_4$]Cl are ionisation isomers.

Ans: When dissolved in water, they give different ions in solution which can be tested by adding ${\rm AgNO_3}$ solution and ${\rm BaCl_2}$ solution, i.e.

$$[\text{Co (NH}_3)_5 \text{Cl}] \text{ SO}_4(aq) + \text{BaCl}_2(aq) \rightarrow \\ \text{BaSO}_4(s) \downarrow \\ \text{ppt}$$

$$[\text{Co (NH}_3)_5 \text{Cl}] \text{ SO}_4(aq) + \text{AgNO}_3(aq) \rightarrow \\ \text{No reaction}$$

$$[\text{Co (NH}_3)_5 \text{ SO}_4] \text{ Cl}(aq) + \text{BaCl}_2(aq) \rightarrow \\ \text{No reaction}$$

$$[\text{Co (NH}_3)_5 \text{ SO}_4] \text{ Cl}(aq) + \text{AgNO}_3(aq) \rightarrow \\ \text{AgCl (s)} \downarrow \\ \text{ppt}$$

Hence, the two are ionisation isomers.

9.5. Explain on the basis of valence bond theory that $[Ni(CN_{4})]^{2-}$ ion with square planar structure is diamagnetic and the $[Ni(CN)_{4}]^{2-}$ ion with tetrahedral geometry is paramagnetic. Ans:

In [NiCl₄]²⁻, Ni is in +2 oxidation state $Ni(28): 3d^84s^2$

 $Ni^{2+}:3d^84s^0$

Cl is weak field ligand. It does not pair up e-1s. Hence, it is paramagnetic In [Ni (CO)₄], Ni is in 0 O.S.

 $Ni(28):3d^84s^2$

CO is strong field ligand, as it pairs the 4s e-1s with $3d e^{-1}$ s to give $3d^{10} 4s^0$. So, no unpaired e^{-1} and hence, the complex is diamagnetic.

9.7. $[Fe(H_2O)_6]^{3+}$ is strongly paramagnetic whereas $[Fe(CN)_6]^{3-}$ is weakly paramagnetic. Explain. Ans:

[Fe (H ₂ O) ₆] ³⁺ Fe (26): $3d^6 4s^2$ Here, Fe is in +3 state. Thus, Fe ³⁺ : $3d^5 4s^0$
3 <i>d</i> 4 <i>s</i>
H ₂ O being a weak field ligand does not pair up
the e ⁻¹ s and hence the complex is strongly
paramagnetic. [Fe (CN) ₆] ³⁻
Fe (26): $3d^6 4s^2$
Here, Fe is in +3 state, So $Fe^{3+}: 3d^5 4s^0$
3 <i>d</i> 4 <i>s</i>
111111
CN^- being a strong field ligand pairs up the $e^{-1}s$ so that we have
3 <i>d</i> 4 <i>s</i>
11 11 1
Due to only one unpaired e-, the complex is weakly paramagnetic

9.8. Explain $[CO(NH_3)_6]^{2+}$ is an inner orbital complex. whereas $[Ni(NH_3)_6]^{2+}$ is an outer orbital complex. Ans:

Co (27): $3d^7 4s^2$ Here, Co is in +3 state, so Co^{3+} : $3d^6 4s^2$
Co : 3a 4s2
3d $4s$
11 1 1 1 1
In presence of NH ₃ , two d e ⁻¹ s pair up leaving
two d-orbitals empty. Hence, hybridisation is
d^2sp^3 i.e., inner orbital complex. $[Ni(NH_3)_6]^{2+}$
Here, Ni is in +2 state. Thus,
$Ni^{2+}: 3d^8 4s^0$
3d 4s
11 11 11 1 1 1
In presence of NH ₃ , de ⁻¹ s do not pair up. The
hybridisation is sp^3d^2 i.e., outer orbital complex.
9.9. Predict the number of unpaired electrons in the square planar $[Pt(CN)_4]^{2-}$ ion.
Ans:
[Pt $(CN)_4$] ²⁻ : The outer shell electronic configuration of Pt is $5d^96s^1$.
In +2 state of Pt, it is $5d^8$, i.e.,
5 <i>d</i> 6 <i>s</i> 6 <i>p</i>
Pt- 11111111
For square planar geometry, hybridisation is dsp^2 .
Hence, the two $d e^{-1}$ s pair up to make one
For square planar geometry, hybridisation is dsp^2 . Hence, the two d e ⁻¹ s pair up to make one d -orbital empty. So, there is no unpaired e ⁻ .
Hence, the two <i>d</i> e ⁻¹ s pair up to make one <i>d</i> -orbital empty. So, there is no unpaired e ⁻ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory.
Hence, the two <i>d</i> e ⁻¹ s pair up to make one <i>d</i> -orbital empty. So, there is no unpaired e ⁻ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans:
Hence, the two <i>d</i> e ⁻¹ s pair up to make one <i>d</i> -orbital empty. So, there is no unpaired e ⁻ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺
Hence, the two <i>d</i> e ⁻¹ s pair up to make one <i>d</i> -orbital empty. So, there is no unpaired e ⁻ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻
Hence, the two $d e^{-1}s$ pair up to make one d -orbital empty. So, there is no unpaired $e^{-1}s$. 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻ In [Mn (H ₂ O) ₆] ²⁺ : Mn ²⁺ : 3 d^5
Hence, the two $d e^{-1}s$ pair up to make one d -orbital empty. So, there is no unpaired $e^{-1}s$. 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻ In [Mn (H ₂ O) ₆] ²⁺ : Mn ²⁺ : $3d^5$ H ₂ O being a weak field ligand does not pair up
Hence, the two d e ⁻¹ s pair up to make one d -orbital empty. So, there is no unpaired e ⁻ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻ In [Mn (H ₂ O) ₆] ²⁺ : Mn ²⁺ : 3 d ⁵ H ₂ O being a weak field ligand does not pair up e ⁻¹ s, so we have
Hence, the two d e ⁻¹ s pair up to make one d -orbital empty. So, there is no unpaired e ⁻ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻ In [Mn (H ₂ O) ₆] ²⁺ : Mn ²⁺ : 3 d ⁵ H ₂ O being a weak field ligand does not pair up e ⁻¹ s, so we have
Hence, the two d e ⁻¹ s pair up to make one d -orbital empty. So, there is no unpaired e ⁻¹ . 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻ In [Mn (H ₂ O) ₆] ²⁺ : Mn ²⁺ : 3d ⁵ H ₂ O being a weak field ligand does not pair up e ⁻¹ s, so we have [Mn (H ₂ O) ₆] ²⁺ : t_{2g}^3 e_g^2 i.e. all e^{-1} s are unpaired
Hence, the two d e ⁻¹ s pair up to make one d -orbital empty. So, there is no unpaired e ⁻¹ s. 9.10. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using Crystal Field Theory. Ans: Hexaaquamanganese (II) ion: [Mn (H ₂ O) ₆] ²⁺ Hexacyanomanganese (II) ion: [Mn (CN) ₆] ⁴⁻ In [Mn (H ₂ O) ₆] ²⁺ : Mn ²⁺ : 3 d ⁵ H ₂ O being a weak field ligand does not pair up e ⁻¹ s, so we have

CN⁻ being a strong field ligand pairs up the $e^{-1}s$ so that we have $[Mn (CN)_c]^{4-}: t_0^5 e_0^0$

 $[Mn (CN)_6]^{4-}$: $t_{2g}^5 e_g^0$ i.e., the t_{2g} orbital contains only one unpaired e^{-1} .

9.11. Calculate the overall complex dissociation equilibrium constant for the Cu(NH $_3$) $_4$ ²⁺ ion, given that β_4 for this complex is 2.1 x 10¹³. Ans:

Overall stability constant (β_4) = 2.1 x 10¹³.

Thus, the overall dissociation constant is

$$=\frac{1}{\beta_4}=\frac{1}{2.1\times10^{13}}=4.7\times10^{-14}.$$

******* END *******