8.8 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

$$A = \begin{pmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & a_3 & b_3 & c_3 \\ & \ddots & \ddots & \ddots \\ & & a_{n-2} & b_{n-2} & c_{n-2} \\ & & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & & a_n & b_n \end{pmatrix}.$$

Define the sequence

$$\delta_0 = 1$$
, $\delta_1 = b_1$, $\delta_k = b_k \delta_{k-1} - a_k c_{k-1} \delta_{k-2}$, $2 \le k \le n$.

Proposition 8.7. If A is the tridiagonal matrix above, then $\delta_k = \det(A(1:k,1:k))$ for $k = 1, \ldots, n$.

Proof. By expanding $\det(A(1:k,1:k))$ with respect to its last row, the proposition follows by induction on k.

Theorem 8.8. If A is the tridiagonal matrix above and $\delta_k \neq 0$ for k = 1, ..., n, then A has the following LU-factorization:

$$A = \begin{pmatrix} 1 & & & & \\ a_2 \frac{\delta_0}{\delta_1} & 1 & & & \\ & a_3 \frac{\delta_1}{\delta_2} & 1 & & \\ & & \ddots & \ddots & \\ & & a_{n-1} \frac{\delta_{n-3}}{\delta_{n-2}} & 1 \\ & & & a_n \frac{\delta_{n-2}}{\delta_{n-1}} & 1 \end{pmatrix} \begin{pmatrix} \frac{\delta_1}{\delta_0} & c_1 & & & \\ & \frac{\delta_2}{\delta_1} & c_2 & & & \\ & & \frac{\delta_3}{\delta_2} & c_3 & & \\ & & & \ddots & \ddots & \\ & & & \frac{\delta_{n-1}}{\delta_{n-2}} & c_{n-1} \\ & & & & \frac{\delta_n}{\delta_{n-1}} \end{pmatrix}.$$

Proof. Since $\delta_k = \det(A(1:k,1:k)) \neq 0$ for k = 1, ..., n, by Theorem 8.5 (and Proposition 8.2), we know that A has a unique LU-factorization. Therefore, it suffices to check that the proposed factorization works. We easily check that

$$(LU)_{k\,k+1} = c_k, \quad 1 \le k \le n-1$$

$$(LU)_{k\,k-1} = a_k, \quad 2 \le k \le n$$

$$(LU)_{k\,l} = 0, \quad |k-l| \ge 2$$

$$(LU)_{1\,1} = \frac{\delta_1}{\delta_0} = b_1$$

$$(LU)_{k\,k} = \frac{a_k c_{k-1} \delta_{k-2} + \delta_k}{\delta_{k-1}} = b_k, \quad 2 \le k \le n,$$