Wireless Technology

Lecture 1: Introduction

Dr. Ruki Harwahyu, ST. MT. MSc.

Computer Engineering
Department of Electrical Engineering
Faculty of Engineering
Universitas Indonesia

Course Learning Objectives (CLO)

- Learn the basics of wireless technologies including how it works, techniques, and standardizing on wireless network and mobile.
- Able to explain the basics of wireless technology, techniques in wireless networks, wireless communication standard IEEE 802.11, 802.15 and cellular, and capable of analyzing projections of future wireless technologies.

Contents

- Wireless fundamentals
 - Channel properties, fading, diversity, ...
- Techniques, Design, Engineering
 - Telephony/cellular, computer networks, device's networks
 - RC toys, TV, radio, satellite, maritime, aerospace
- Standards Evolution
 - IEEE 802.11 families
 - 1G, 2G, 3G, 4G, 5G

About the lecture

Prerequisites:

- Computer Networks + Lab.
- Telecommunication Network & Lab.

Online Course: at Emas.ui.ac.id

Assessment

40% Assignments
30% Assignments
30% Mid-term exam
30% Mid-term exam
40% Programming task

- Cheating = score penalty 50-100%
- Late submission = no submission
- Corrupted file submission = no submission

Suggestions

- Be active (bonus points)
- English difficulty? Ask!
- Sufficient attendance
- Manage your time!
- Be self-motivated, responsible, respectful, honest

About Lecturer

- Undergraduate: Computer Engineering 2007
- Master: UI+NTUST
- Doctoral: NTUST
- Related certifications:
 - IEEE Wireless Engineering Professional
 - Huawei Certified Associate Instructor

- Office: Networking Lab., DTE 2nd floor
- Email: ruki.h@ui.ac.id

References

- Rappaport, "Wireless Communication Principles and Practice",
 2nd Ed., Prentice Hall, 2002
- Walke et. al., "IEEE 802 Wireless Systems", Wiley, England,
 2006
- Iti Saha Misra, "Wireless Communications and Networks 3G And Beyond", 2nd Ed., McGraw Hill Edu., India, 2013
- Kurose and Ross, "Computer Networking A Top Down Approach", 5th Ed., Pearson, 2010

Class Rep.?

Chat group?

WIRELESS TECHNOLOGY

Chart of the Electromagnetic Spectrum

Copyrighted images used with permission. Rev2C 6-June-2005

Research Association (8)

Networking Options

Wired	Wireless
Not flexible	Flexible
Expensive labor	Easy installation
Unfriendly to interior	Friendly to interiors
Cheap price	Higher price
Low profit Opportunity	Good profit another opportunity

Bolt Bangkrut

Wireless Tech. Limitations

"Performance" of wireless network: CCQ

- Coverage: radius, mobility
- Capacity: data rate
- Quality: error rate

Communication Standard Evolution

Source: LG

Communication Standard Evolution

Radio Spectrum

Radio Transmission

Radio Spectrum

Radio Spectrum

Tricking The Propagation Delay

CDMA

CDMA

CDMA

Digital Communication System

- Why digital?
- 2 main steps in converting analog signal to digital signal?

Radio Propagation

CONVENTION OF POWER UNIT

dB, dBm, dBW, dBi

- **decibel** (dB) is a unit of measurement used to express the <u>ratio</u> of one magnitude to another on a logarithmic scale.
- dBm (sometimes dB_{mW} or decibel-milliwatts) is <u>unit</u>
 of level used to indicate that a power ratio is expressed
 in decibels (dB) with reference to one milliwatt (mW).
- dBW is like dBm but the reference is one watt.
- **dBi** is a measure of *gain*, referenced to isotropic antenna.

dBm

The power in decibel-milliwatts ($P_{(dBm)}$) is equal to 10 times base 10 logarithm of the power in milliwatts ($P_{(mW)}$):

$$P_{\text{(dBm)}} = 10 \cdot \log_{10}(P_{\text{(mW)}} / 1\text{mW})$$

The power in milliwatts ($P_{(mW)}$) is equal to 1mW times 10 raised by the power in decibel-milliwatts ($P_{(dBm)}$) divided by 10:

$$P_{\text{(mW)}} = 1 \text{mW} \cdot 10^{(P_{\text{(dBm)}}/10)}$$

1 milliwatt is equal to 0 dBm:

$$1 \text{mW} = 0 \text{dBm}$$

1 watt is equal to 30dBm:

$$1W = 1000 \text{mW} = 30 \text{dBm}$$

Wireless Communication Environment

- Time-varying transmission channel
- Path loss/shadowing
- Multipath fading
- Doppler effect
- Propagation delay
- Security issue

Radio Propagation

Path Loss & Shadowing

→ Adjust transmitter power or receiver gain

Multipath Fading

- The result of multipath propagation
- Constructive and destructive interference
- Location dependent
- Time dependent

Multi-path Propagation

Multipath Fading

Received signal

Doppler Effect

- MS movement
- Environmental change
- Fast fading
- Slow fading

Propagation Delay

How BS & MS can have synchronized clock?

Timing advance: BS timing is respected

 Path attenuation is usually proportional to the logarithm of the mobile to base station distance (if there is no terrain obstacles)

Radio propagation scenarios

- For other environments (suburban, ruralquasi-open), the path loss per decade remains the same, but the unit loss is reduced by a certain amount.
- The smaller the cells, the more important are the details of e.g. the building structure within the cell.

Free space propagation rarely occurs in reality, due to:

- Obstructions in the propagation path.
 - This is particularly frequent in the case of mobile propagation because of the low height of the mobile antenna.
- Obstructions in the first Fresnel zone.
 - Since the mobile station is so low, the first Fresnel zone is almost always interrupted by the ground, even if line of sight conditions apply.
- Reflections from the ground and other objects.
 - Reflections combine in and out of phase to vary the signal received.

Security

Security issue

- Preventing eavesdropping
- User authentication
- Data encryption

Challenge in designing wireless communication system

- Performance evaluation with realistic channel models
- Transceiver system responding to dynamic channel conditions
- Evaluating the combined effects of
 - Fading channels
 - Interfering signals
 - Non-linearity of front-end receivers
 - Phase noise, Frequency offset, Timing mismatch, IQ imbalance
 - Channel estimation & Equalization
 - Antenna arrays & directional propagation
 - Beamforming & beam steering
 -

SOME BASICS IN WIRELESS COMMUNICATION SYSTEM

Frequencies

Frequency: How often an RF wave cycles per second.

Examples:

- 20 Hz = 20 cycles/second
- 900 MHz = 900 million cycles/second
- 2.4 GHz = 2.4 billion cycles/second

Higher Frequency

Lower Frequency

Waves

Wavelength: 360° movement of an RF wave, called a Hertz (Hz)

Amplitude: Power level of an RF wave. In Wi-Fi, typically measured in milliwatts (mW) or decibels relative to 1 mW (0 dBm)

<u>Period</u>: The distance between two identical points on an RF wave

<u>Phase</u>: the relationship between two signals based on when their alternative current levels are rising and falling

Channels (2.4 GHz) 802.11b/g/n 802.11b/g/n 802.11b/g/n Channel 1 Channel 6 Channel 11 22/20 MHz 2400 2.4 GHz band Channel 11 12 13 14 10 Center Frequency 2412 2417 2422 2427 2432 2457 2462 2467 2472 2484 (MHz)

- 14 total channels worldwide (not available everywhere)
- Channels are separated by 5 MHz based on center frequency
- Active Wi-Fi signals are 20-22 MHz wide

WiFi Analyzer

Cellular Analyzer

Tugas: Install dan coba:

- WiFi analyzer
- Network Cell Info Lite

RF Measurements

- RSSI
- Noise Floor
- SNR

8 mW = 9 dBm

Relative Power Measurement

1W = 1000 mW = 30 dBm

- Measured in gain or loss
- Measured in decibels (dB)
- Gain/Loss Examples:
 - -3 = 1/2 the original power
 - +3 = 2 times the original power
 - -10 = 1/10th the original power
 - +10 = 10 times the orinal power
- Component Examples:
 - Antennas & amplifiers introduce gain
 - Connectors & cables introduce loss

Interference

- RF Interference When an external modulated (data-carrying) or unmodulated (non data-carrying)
 RF influence affects the ability of an RF receiver to interpret a data signal
 - Higher data rates use more complex waveforms, which are more susceptible to error
 - Low signal strength and external RF interference sources are problematic for high data rates
- Interference happens at the receiver
- Low duty cycle interference can often be tolerated
- High duty cycle interference can wreak havoc on a channel