实验二 模型机中组合部件的实现 (一)

一、实验目的

- 1. 了解简易模型机的内部结构和工作原理。
- 2. 熟悉译码器、运算器的工作原理。
- 3. 分析模型机的功能,设计指令译码器。
- 4. 分析模型机的功能,设计 ALU。

二、实验背景

1. 指令译码器

指令译码器是根据指令系统表中的指令编码,对输入的 8 位指令进行解析,判定是哪条指令,则对应指令的输出为 1,否则输出为 0。

表 1 指令系统表

汇编符号	功能	编码
MOV R1, R2	(R2) → R1	1100 R1 R2
MOV M, R2	(R2) → (C)	1100 11 R2
MOV R1, M	((C)) →R1	1100 R1 11
ADD R1, R2	$(R1) + (R2) \rightarrow R1$	1001 R1 R2
SUB R1, R2	$(R1) - (R2) \rightarrow R1$	0110 R1 R2
AND R1, R2	$(R1) & (R2) \rightarrow R1$	1011 R1 R2
NOT R1	$/ (R1) \rightarrow R1$	0101 R1 XX
RSR R1	(R1)循环右移一位→ R1	1010 R1 00
RSL R1	(R1)循环左移一位→ R1	1010 R1 11
JMP add	add → PC	0011 00 00, address
JZ add	结果为 0 时 add → PC	0011 00 01, address
JC add	结果有进位时 add → PC	0011 00 10, address
IN R1	(开关 7-0) → R1	0010 R1 XX
OUT R2	(R2) → 发光二极管 7-0	0100 XX R2
NOP		0111 00 00
HALT	停机	1000 00 00

指令译码器的输入输出引脚如上图所示。en 为使能信号, ir[7..0]是 8 位指令编码, 输出是对应的 16 条指令。引脚之间的相互关系如下表所示:

表 2 指令译码器引脚关系

en	ir[70]	16 个输出信号
1	8位的指令编码	指令编码对应的指令输出为1,其它输出为0
0	8位的指令编码	不管 ir 为何值, 16 个输出全为 0

2. ALU

算术逻辑运算类指令:

ADD R1, R2

SUB R1, R2

AND R1, R2

NOT R1

这类指令的执行过程为:

由R2的编码通过RAA1、RAA0从通用寄存器组A口读出R2的内容,由R1的编码通过RWBA1、RWBA0从通用寄存器组B口读出R1的内容,在S3~S0和M的控制下,实现运算,经移位逻辑送入总线BUS;由/WE控制和R1的编码选择RWBA1、RWBA0,将BUS上的数据写入通用寄存器R1。其中ADD和SUB指令影响状态位Cf和Zf。

指令具体功能如下:

汇编符号	功能	编码
ADD R1, R2	$(R1) + (R2) \rightarrow R1$	1001 R1 R2
SUB R1, R2	$(R1) - (R2) \rightarrow R1$	0110 R1 R2

AND R1, R2	(R1) & (R2) → R1	1011 R1 R2
NOT R1	$/ (R1) \rightarrow R1$	0101 R1 XX

ALU除了要完成 ADD、SUB、AND、NOT 运算外,还需在 MOVA、MOVB、RSR、RSL 和 OUT 五条指令执行时,提供将数据传送至总线的数据通路。ALU模块的输入输出引脚如下图所示:

其中m和s[3..0]是控制信号,控制a[7..0]和b[7..0]输入的数据进行什么操作,并将产生的结果输出到t[7..0]、cf和zf。各引脚间的相互关系如下表所示:

m	s[30]	t[70]	cf	zf
1	1001	t=a+b	有进位, cf=1	和为零,zf=1
1	1001	t=a+v	无进位, cf=0	和不为零, zf=0
1	0110	t-b o	有借位, cf=1	差为零,zf=1
1	0110	t=b-a	无借位, cf=0	差不为零, zf=0
1	1011	t=a&b	不影响	不影响
1	0101	t=/b(注: b 相反)	不影响	不影响
0	1010	t=b	不影响	不影响
0	1100 或 0100	t=a	不影响	不影响

表 3 ALU 引脚关系

三、实验内容

- 1. 用 VERILOG 语言设计指令译码器:
- 2. 用 VERILOG 语言设计 ALU。

四、实验要求

- 1. 完成学习通平台的实验作业。
- 2. 采用VERILOG语言设计逻辑电路,再利用波形编辑区进行仿真验证,以此验证电路的正确性。
 - 3. 在Tool下用netlist viewer查看RTL viewer, 了解语句描述对应的RTL视图。

- 4. 最后撰写实验报告,提交至学习通平台,做得好的同学将在学习通平台分享设计。
- 5. 指令译码器的文件名为ins_decode.v,接口信号名称必须严格按照下图命名(区分大小写),文件名、接口信号名称不合要求将会判为0分。

6. ALU的文件名为simple.v,接口信号名称必须按照下图命名(区分大小写), 文件名、接口信号名称不合要求将会判为0分。

五、思考题

- 1. 指令译码器必须要 16 个输出吗?可否将一些输出合并,哪些可以合并,为什么?
 - 2. ALU 中的 S[3..0]控制信号是来自哪里或者说与什么信息相同?
- 3、为何 S[3..0]等于 1100 时将输入 a 传给 t, S[3..0]等于 1010 或 0100 时将输入 b 传给 t?