

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Considere os conjuntos A, B e C num universo U.

Sabendo que $A\!\subset\! B$, pode concluir-se que $\left(A\cup C\right)\!\cap\!\left(\overline{B\cap\overline{C}}\right)$ é igual a:

- (A) $A \cup C$
- (B) $A \cap \overline{B}$
- (C) C
- (D) U
- **2.** No desenvolvimento de $(a+b)^n$, sabe-se que um dos seus termos é $k(a\times b)^{2023}$, com $a,b\in\mathbb{R},\ n,k\in\mathbb{N}$. Qual é o valor de k?
 - (A) $^{4046}C_{2023}$
- **(B)** $^{4045}C_{2023}$
- (C) $^{4046}C_{2024}$
- (D) $^{4046}C_{2023} + ^{4046}C_{2024}$

- 3. Considere os algarismos de 1 a 9.
 - **3.1.** Nesta alínea, considere todos os números naturais de quatro algarismos que se podem escrever com os algarismos de 1 a 9.

Quantos desses números são inferiores a 3300 e têm os algarismos todos diferentes?

78

- **(A)** 1296
- **(B)** 648
- **(C)** 756
- **(D)** 378
- **3.2.** Considere agora todos os números naturais de cinco algarismos diferentes que se podem escrever com os algarismos de 1 a 9.

Determine a probabilidade de o algarismo das unidades e o das dezenas serem ambos primos.

Apresente o resultado na forma de fração irredutível.

3.3. Nesta alínea, considere todos os números naturais de sete algarismos que se podem escrever com os algarismos de 1 a 9.

Determine a probabilidade de esse número ser ímpar e ter exatamente três algarismos iguais a 5.

Apresente o resultado na forma de dízima, com três casas decimais.

4. Num pavilhão, existem *n* janelas.

> O diretor de instalações afirmou que, para o pavilhão ficar minimamente iluminado, é necessário abrir, pelo menos, duas janelas.

> Sabendo que existem 262 125 maneiras de o pavilhão ficar minimamente iluminado, qual das equações a seguir traduz o problema para determinar o número de janelas existentes no pavilhão?

(A)
$$^{n+1}C_3 = 262\ 126$$

(B)
$$2^n + n = 524 \ 252$$

(C)
$$^{n}C_{2} = 262\ 126$$

(D)
$$2^n = n + 262 \ 126$$

- 5. A Silvana gosta de pintar as unhas das mãos de várias cores, dispondo para isso de 8 cores diferentes. Cada unha fica pintada com uma só cor.
 - De quantas maneiras pode a Silvana pintar as unhas se as unhas adjacentes não estiverem pintadas da mesma cor? **(D)** $^{10}A_{\rm o}$

- 5.2. De quantas maneiras pode a Silvana pintar as unhas se numa mão usar apenas uma cor e, na outra mão, tiver as cinco unhas pintadas com 5 das outras 7 cores?
- **5.3.** Suponha agora que a Silvana pretende pintar 4 unhas de cor verde, 3 unhas de amarelo e 3 de rosa. Determine a probabilidade de os dois polegares ficarem pintados de rosa. Apresente o resultado na forma de fração irredutível.
- 6. A Team Jumbo-Visma é uma equipa neerlandesa de ciclismo profissional.
 - **6.1.** Para uma sessão fotográfica, apareceram 23 ciclistas.
 - **6.1.1.** Para essa sessão, os ciclistas vão ser colocados em duas filas: 10 na fila da frente e 13 na fila de trás.

Sabe-se que, na fila da frente, têm de ficar os três melhores ciclistas da equipa, Jonas Vingegaard, Primož Roglič e Sepp Kuss, juntos e por qualquer ordem.

De quantas maneiras se podem dispor os ciclistas?

Apresente o resultado na forma $a \times 10^n$, com a arredondado às centésimas e $n \in \mathbb{N}$.

6.1.2. De entre os 23 ciclistas, há 11 neerlandeses, dos quais 3 são veteranos.

De quantas maneiras podem ser escolhidos 5 ciclistas ao acaso de modo que apenas 3 deles sejam neerlandeses e haja, no máximo, 1 ciclista veterano?

Uma resposta para este problema é $\left(3\times{}^{8}C_{2}+{}^{8}C_{3}\right)\times{}^{12}C_{2}$.

Elabore uma pequena composição na qual explique o raciocínio que conduziu a essa resposta.

6.2. Numa corrida de treino da Team Jumbo-Visma, participaram 10 ciclistas, sendo 4 belgas.

Admitindo que os ciclistas chegaram à meta um de cada vez, qual é a probabilidade de não ter havido ciclistas belgas em lugares consecutivos?

Apresente o resultado na forma de fração irredutível.

7. Seja Ω , conjunto finito, o espaço amostral associado a uma dada experiência aleatória.

Sejam A e B dois acontecimentos equiprováveis ($A \subset \Omega$ e $B \subset \Omega$).

Sabe-se que:

- $P(\bar{B}) = 0.3$;
- $P(\overline{A} \cap \overline{B}) = 0, 2$.

Calcule $P(\overline{A} \cap B)$.

8. Considere um baralho de cartas incompleto, constituído por várias cartas dos quatro naipes habituais: espadas, paus, copas e ouros.

Extrai-se, ao acaso, uma carta desse baralho.

Sabe-se que:

- 5 em 18 cartas do baralho são de copas;
- 1 em 12 cartas são ases;
- 1 em 3 cartas são de copas ou são ases.

Determine a probabilidade de a carta retirada não ser de copas ou não ser um Ás e, partir deste valor, indique o número de cartas de copas que tem o baralho de cartas incompleto.

9. Resolva, em $\mathbb{N} \setminus \{1,2,3\}$, a equação $\frac{5 \times {}^{n+1}A_3}{n!} = \frac{{}^{n+1}C_5}{(n^2-n)(n-2)!}$.

FIM

COTAÇÕES

	ltem														
	Cotação (em pontos)														
1.	2.	3.1.	3.2.	3.3.	4.	5.1.	5.2.	5.3.	6.1.1.	6.1.2.	6.2.	7.	8.	9.	
8	8	8	16	18	8	8	13	18	13	16	16	16	16	18	200