0.1 Campi finiti

Sia \mathbb{K} un campo e sia $\chi_{\mathbb{K}} \colon \mathbb{Z} \to \mathbb{K}$ definita come $\chi_{\mathbb{K}}(n) = \sum_{i=1}^{n} 1_{\mathbb{K}}$ per $n \geq 0$ (si intende che $\chi_{\mathbb{K}}(0) = 0_{\mathbb{K}}$) e $\chi_{\mathbb{K}}(-n) = -\chi_{\mathbb{K}}(n)$. Allora, $\chi_{\mathbb{K}}$ è un omomorfismo di anelli, quindi $\operatorname{Im}(\chi_{\mathbb{K}}) \subseteq \mathbb{K}$ è un dominio di integrità, da cui $\ker(\chi_{\mathbb{K}}) \triangleleft \mathbb{Z}$ è un ideale primo.

Definizione

Se $\ker(\chi_{\mathbb{K}}) = \{0\}$, allora \mathbb{K} si dice di caratteristica 0, e si scrive $\operatorname{char}(\mathbb{K}) = 0$. Se $\ker(\chi_{\mathbb{K}}) \neq \{0\}$, esiste un primo p tale che $\ker(\chi_{\mathbb{K}}) = p\mathbb{Z}$; in questo caso, \mathbb{K} si dice di caratteristica p, e si scrive $\operatorname{char}(\mathbb{K}) = p$.

Fatto (lo chiamerò Lemma 2.3.3): Sia K un campo finito. Allora χ_K non può essere iniettivo, quindi K è di caratteristica p per un primo p.

(In realtà è una definizione) Se K è un campo di caratteristica $p \neq 0$, $K_0 = \text{Im}(\chi_k) \subseteq K$ è un campo detto campo primo di K, ed è isomorfo a $\mathbb{Z}/p\mathbb{Z}$.

Teorema 2.3.4

Siano E, F campi finiti tali che |E| = |F|. Allora, $E \simeq F$

Dimostrazione. Sia |E| = |F| = q. Per il Fatto, $\operatorname{char}(E) = p_1$ e $\operatorname{char}(F) = p_2$ per p_1, p_2 primi. Poiché $E_0 \subseteq E$, detto $n_1 = |E| : E_0|$, si ha che $|E| = p_1^{n_1}$. Analogamente, poiché $F_0 \subseteq F$, detto $n_2 = |F| : F_0|$ si ha che $|F| = p_2^{n_2}$. Dunque $p_1 = p_2 = p$ e $n_1 = n_2 = n$. La dimostrazione dell'isomorfismo continua dopo (dannazione è un sacco disorganizzato negli appunti

Questo teorema non è valido per i gruppi e per gli anelli. Infatti, nei gruppi $|S_3| = |\mathbb{Z}/6\mathbb{Z}| = 6$, ma uno è abeliano e l'altro no, quindi $S_3 \not\simeq \mathbb{Z}/6\mathbb{Z}$. Negli anelli, $\mathbb{Z}/4\mathbb{Z} \not\simeq \mathbb{F}_2[x]/\langle x^2 \rangle$ perché uno ha gruppo additivo ciclico e l'altro no.

Osservare come questo dice che ogni campo finito ha cardinalità p^n per un primo $p \in n > 1$. In realtà questo è un se e solo se, cioè, per ogni p^n esiste un campo di ordine p^n . Due strade: considerare lo splitting field E di $x^{p^n} - x$ su $\mathbb{Z}/p\mathbb{Z}$ e mostrare che $|E| = p^n$, oppure costruire un polinomio irriducibile f(x) di grado n in $\mathbb{F}_p[x]$ e considerare il quoziente $\mathbb{F}_p[x]/\langle f \rangle$.

Da questo segue anche che se E, F sono campi finiti tali che |E| = |F| = q, allora $E^{\times} \simeq \mathbb{Z}/(q-1)\mathbb{Z}$ (questo perché se G è un gruppo abeliano il cui esponente è $\exp(G) = |G|$, significa che G è ciclico).

Proposizione 2.3.5

Sia $A\subseteq K^{\times}$ sottoanello di K campo, $|A|<\infty.$ Allora, A è un gruppo ciclico.

Dimostrazione. Sia $n = \exp(A)$, e sia $f = x^n - 1$. Allora, $A \subseteq Z_f(K)$ (sta indicando con $Z_f(K)$ qualcosa che ha a che fare con gli zeri...) da cui $|A| \le \deg^*(f) = n = \exp(A)$. Poiché $\exp(A) \mid |A|$, deve essere $|A| = \exp(A)$, cioè A è ciclico.

Conclusione dimostrazione 2.3.4: Sia $\psi_q = (x^{q-1} - 1)x$. Allora $Z_{\psi_q}(E) = E$ e $Z_{\psi_q}(F) = F$, quindi $\psi_q(x) = \prod_{\lambda \in E} (x - \lambda) = \prod_{\mu \in F} (x - \mu)$. Dunque, E/E_0 e F/F_0 sono campi di spezzamento di $\psi_q \in \mathbb{F}_p[x]$. Dunque, per il punto (b) del Teorema 2.3.1 sappiamo che $E \simeq F$.

Notare come questo dimostra che non è ambiguo denotare con \mathbb{F}_p il campo di cardinalità p primo, perché esso è effettivamente l'unico!

Lezione del 12/11/2019 (appunti grezzi)

Definizione

Sia \mathbb{K} un campo con char $(\mathbb{K}) = p$. Allora, la mappa $F : \mathbb{K} \to \mathbb{K}$ definita come $F(x) = x^p$ è un omomorfismo di campi detto omomorfismo di Frobenius.

Osserviamo che tale mappa è effettivamente un omomorfismo. Infatti, $F(0_K) = 0_K$, $F(1_K) = 1_K$ e $F(x+y) = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k} = x^p + y^p = F(x) + F(y)$ perché $\binom{p}{k}$ è divisibile per p se 0 < k < p. Infine, è evidente che $F(xy) = (xy)^p = x^p y^p = F(x) F(y)$.

(Diventerà un Lemma) Osserviamo anche che F è iniettiva, e se $|\mathbb{K}| < \infty$ è pure un automorfismo. Infatti, sappiamo che $\ker(F) \lhd \mathbb{K}$, ed essendo $1 \not\in \ker(F)$, $\ker(F) = \{0_K\}$ perché gli unici ideali di un campo sono $\{0_K\}$ e K. Dunque F è iniettiva. Se vale anche $|K| < \infty$, essendo F iniettiva su un insieme finito, è chiaramente anche suriettiva, da cui è biettiva e quindi un automorfismo.

Proposizione

Sia K un campo finito, $p = \operatorname{char}(K)$ e $K_0 = \operatorname{Im} \chi_K$. Se $|K| = p^n$, $n = |K: K_0|$, allora $\operatorname{ord}(F) = n$, dove $\operatorname{ord}(F) = n$ è l'ordine di F pensata come elemento di $\operatorname{Sym}(K)$.

Dimostrazione. Sappiamo che K/K_0 è campo di spezzamento di $x^{p^n}-x$, cioè K è l'insieme degli zeri di $x^{p^n}-x$, il che è vero se e solo se $z^{p^n}=F^n(z)=z$ per ogni $z\in\mathbb{K}$. Dunque, $F^n=\operatorname{id}_K$. Resta da verificare che n è effettivamente il minimo intero positivo per cui F^k sia l'identità. Sia quindi $k\in\mathbb{N}^+$ con k< n tale che $F^k=\operatorname{id}_K$. Allora, $z^{p^k}=F^k(z)=z$ per ogni $z\in K$, cioè K è l'insieme degli zeri di $x^{p^k}-x$. Essendo $\operatorname{deg}^\star(x^{p^k}-x)=p^k$, tale polinomio ha al più p^k radici, cioè $|K|=|Z_K(x^{p^k}-p)|\leq p^k< p^n$, assurdo. Dunque $F^k\neq\operatorname{id}_K$.

Il grado di un'estensione si può chiamare ordine perché è l'ordine di un automorfismo (nel caso dei campi finiti).