Санкт-Петербургский национально исследовательский университет информационных технологий, механики и оптики Факультет программной инженерии и компьютерной техники

Лабораторная работа №7 Работа с системой компьютерной вёрстки ТЕХ Вариант 4

> Выполнила Бострикова Д.К. Р3101 Преподаватель Балакшин П.В.

таблицы. Какова предпологаемая точность ваших предсказаний (в процентах)? Универсальная газовая постоянная R=8,31 Дж/(моль*K).

 $\Phi 712.$ Небольшой шарик дви-

жется с постоянной скоро-

cmью $\overline{v_0}$ по гладкой горизон-

тальной поверхности и попада-

ет в точке А в цилиндрический

вертикальный колодец глубины

Н и радиуса R. Вектор скоро-

сти шарика составляет угол α

с диаметром колодиа, проведен-

ным в точку A (puc. 1). При

каком соотношении $\overline{v_0}$, H, R u

 α шарик после упругих соударе-

ний со стенками и дном смо-

жет "выбраться"из колодца?

Теперь можно легко заполнить оставшиеся пустыми клеточки таблицы: для железа $A{\approx}56$ г/моль; для магния $c{\approx}1,04$ Дж/(r^*K). Приведем экспериментальные значения молярной теплоемкости этих металлов: для железа $C{=}25,02$ Дж/(моль *K);

	Cepe6po	Алюминий	Золото	Висмут	Кобальт	Медъ	Железо	Литий	Магний	Никель	Платина	Титан	Ванадий
с, Дж/(г*К)	0,238	0,90	0,128	0,122	0,417	0,343	0,447	3,52		0,43	0,131		0,484
А, г/моль	107	127	197	209	59	64		7	24	60	196	48	51
С, Дж/(моль*К)	25,47	24,31	25,22	25,5	24,6	24,5		24,6		25,8	25,7		24,7

для магния C=24,6 Дж/(моль*K); для титана C=25,02 Дж/(моль*K);

Е.Сурков

На рисунке 1 приведен вид сверху на траекторию движения шарика.

Поскольку соударения шарика со стенкой и дном колодца упругие, абсолютное значение горизонтальной проекции скорости шарика остается неизменным и равным v_0 . Расстояния по горизонтали между точками, в которых происходят два последовательных соударения равны $|AA_1|=|A_1A_2|=|A_2A_3|=\ldots=2\mathrm{Rcos}\alpha$. Время между двумя последовательными соударениями шарика со стенкой равно $t_1=2\mathrm{Rcos}\alpha/v_0$.

Вертикальная проекция скорости шарика при соударениях со стенкой не изменяется, а при соударении с дном меняет знак на противоположный. Абсолютное значение вертикальной проекции при первом ударе равно $\sqrt{2gH}$; время движения от вершины колодца до дна равно $t_2 = \sqrt{2H/g}$. На рисунке 2 представленная вертикальная развертка многогранника $A_1A_2A_3\dots$ Следы траектории на такой развертке - параболы (целые параболы - следы траектории между последовательными ударами о дно). Понятно, что шарик сможет "выбраться"из колодца, если момент максимального подъема по параболе совпадет с моментом соударения со стенкой (то есть в момент максимального подъема шарик окажется в точке A_n на границе колодца). Это означает, что времена t_1 и t_2 должны быть связаны

Рис. 1:

Рис. 2: