Processing - Honeycombs.

- · aluminum honey combs
- · paper resin honor combs
- · Kerlar honey cambs.
- · note inclined walls, t vertical walls, 2t

Corrugation process

- · flat sheet fed through shaped wheel to form 1/2 hexagonal sheets which are then bonded together
 - · inclined walls t vertical walls 2t

- aluminum/metals

Honeycombs: expansion and corrugation

Image by MIT OpenCourseWare.

Honeycombs

- · extrusion process
 - · Ceramic honeycombs made by extrusion of a ceramic slurry through a Lie
- · lapid prototyping
 · 3D printing
 - · Scan photo sensitive polymer with laxer.
- · casting . Silicone rubber honey cambs made by casting liquid rubber into a mold
- · bio carbon template . wood has honey comb-like structure (with cell size " Soum x " I mm)
 - · biocarbon template replicates wood structure
 - · Wood is pyrolized at 800°C in an inert atmosphere (biocarbon lemplate) · Structure is maintained, although significant shinkage (~30%)

 - · carbon replica can then be further processed
 - e.g. infiltrate with goseous Si to form SiC wood replica
 - · possible applications: high temperature filters, catalyst carriers
 - · small cell size gives high surface area/volume

Honeycomb extrusion

Image © Fraunhofer-Gesellschaft. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

www.ikts.fraunhofer.de

Printing honeycomb specimens

Square honeycomb

Hexagonal honeycomb

Triangular honeycomb

200 µm nozzle 6 mm/s nozzle speed 126 psi

Brett Compton and Jennifer Lewis, Harvard

Biocarbon template

Zollfrank and Sieber (2004) J Europ Ceram Soc 24 495

Source: Vogli, E., H. Sieber, and P. Griel. "Biomorphic SiC-ceramic Prepared by Si-vapor Phaseinfiltration of Wood." Journal of the European Ceramic Society 22 (2002): 2663. Courtesy of Elsevier. Used with permission.

Foams

- · différent techniques for différent types of solids Polymer foans
 - · introduce gas bubbles into liquid monomer or hot polymer allow bubbles to grow & stabilize & solidify by cross-linking or cooling
 - · gas introduced by either mechanical stirring or mixing blowing agent into the polyner
 - · physical blowing agents (eq. CO2, N2) forced into solution in hot polymer at high pressure + expanded into bubbles by reducing pressure
 - · Or, low melting point liquids (eq. methyl chloride) mixed into polymer + volatilize on heating to form vapour bubbles
 - · chemical blowing agents: either decompose an heating or combine to release gas
 - · open/closed cell structure depends on theology + surface lension of melt
 - · syntactic foams: thin-walled hollow microspheres in polymer

Polymer foams

- · polymer foams sometimes have "stirn" on surfaces
- · In some cases, process is controlled to give sufficiently thick skin so that it acts like a sandwich structure = m creased stiffness+ strength/weight.

Metal foams

- · bubbling gas into molten Al, stabilized by SiC or Alz O3 particles
 - · particles in crease the viscosity of the melt, reducing drainage from gravity, + stabilizing bubbles until solidification occurs
- · consolidation of metal powder (eq. Al) with particulate Tilly, followed by heating; Tiltz releases Itz gas expanding the material
- . or, Titz can be stirred into mother metal & then pressure controlled during
- · In filtration of metal into open cell mold; fill open cell polymerkink cooling sand; burn off fram; infilhate with metal; remove sand.

 · Vapour phase deposition or electrodeposition of metal anto polymer fram
- precursor (which is subsequently burned out)
- · trapping of high pressure met gas in pores by powder hot isostatiz pressing, followed by expansion of gas at elevated temperature

Bubbling of gas into molten Al

Figure removed due to copyright restrictions. See Figure 2.2: Ashby, M. F., A. Evans, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Combine metal and TiH₂ powder, consolidate and heat

Figure removed due to copyright restrictions. See Figure 2.4: Ashby, M. F., A. Evans, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (2000) Metal Foams: A Design Guide, Butterworth

Heinemann

TiH₂ powder in molten Al

Figure removed due to copyright restrictions. See Figure 2.3: Ashby, M. F., A. Evans, N. A. Fleck, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (2000) Metal Foams: A Design Guide, Butterworth Heinemann

Replication by casting

Figure removed due to copyright restrictions. See Figure 2.5: Ashby, M. F., A. Evans, N. A. Fleck, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Replication by vapour deposition

Figure removed due to copyright restrictions. See Figure 2.6: Ashby, M. F., A. Evans, N. A. Fleck, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Entrapped gas expansion

Figure removed due to copyright restrictions. See Figure 2.7: Ashby, M. F., A. Evans, N. A. Fleck, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (2000) Metal Foams: A Design Guide, Butterworth Heinemann

Hollow sphere synthesis and sintering

Figure removed due to copyright restrictions. See Figure 2.8: Ashby, M. F., A. Evans, N. A. Fleck, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Fugitive phase with leachable particles

Figure removed due to copyright restrictions. See Figure 2.9: Ashby, M. F., A. Evans, N. A. Fleck, et al. *Metal Foams: A Design Guide*. Butterworth Heinemann, 2000.

Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (2000) Metal Foams: A Design Guide, Butterworth Heinemann

Metal foams

- · Sintering of hollow metal spheres
- · fugitive phase methods
 - Compaction of metal + leachable powders followed by leading (eg. Albalt)
 - pressure infiltration of a bed of leachable particles by liquid metal, followed by leachings
- · dissolution of gas in liquid metal under pressure, with controlled release during solidification.

Carbon foams

· heat polymer foam to high knup in in ext atmosphere - smiler to bio carbon knuplate of word (or making carbon fibers)

Ceramic foams

- · infiltrate open-cell polymer from with ceranic slurry + fire; polymer burns off leaving hollowcell walls
- · chemical vapour deposition anto open-cull carbon form

Glass foams

· processes similar to polymer foams

6

Lattice materials

Polymer la Hices

- · injection molding
- · 3D printing
- · snap-fit 2D trusses
- · micro-truss from self propagating polymer waveguides
 - · photosensitive monomer below mask with holes
 - . Shine collimated UV light through holes in mask
 - · as light shines through, polymerization -> solidifies
 - · Solid polymer acts as vaveguide to transmit light deeper into the photosensitive monomer

Metal la Hices

· infiltrate polymer lattice with ceranic, then burn off polymer + infiltrate metal.

Lattice materials: snap fit trusses

Source: Chen, K., A. Neugebauer, et al. "Mechanical and Thermal Performance of Aerogel-filled Sandwich Panels for Building Insulation." *Energy and Buildings* 76 (2014): 336–46. Courtesy of Elsevier. Used with permission.

Chen K, Neugebauer A, Goutierre T, Tang A, Glicksman L and Gibson LJ (2014) Energy and Buildings 76, 336-346

Micro-truss from self-propagating polymer waveguides

Fig. 1. (a) Schematic of the set-up for creating micro-truss structures with an interconnected array of self-propagating waveguides and (b) the top view of the mask with a hexagonal pattern of circular apertures.

Jacobsen, Barvosa-Carter and Nutt (2008) Acta Mat. 56, 2540

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications $\mbox{Spring 2015}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.