Contents

- I. 清空环境变量及命令
- II. 变量命令规则
- III. MATLAB数据类型
- IV. MATLAB矩阵操作
- V. MATLAB逻辑与流程控制
- VI. MATLAB脚本与函数文件
- VII. MATLAB基本绘图操作
- VIII. MATLAB文件导入

I. 清空环境变量及命令

clear all% 清除Workspace中的所有变量clc% 清除Command Window中的所有命令

Ⅱ. 变量命令规则

1. 变量名区分大小写

A = 2 a = 3

A =

2

a =

3

- 2. 变量名长度不超过63位 ABCDEFGHIJKLMNOPQRSTUVWXYZ123456ABCDEFGHIJKLMNOPQRSTUVWXYZ123456 = 3
- 3. 变量名以字母开头,可以由字母、数字和下划线组成,但不能使用标点 3A = 4.a = 5/b = 5

```
a_2 = 3
% a.2 = 4
```

 $a_2 =$

3

4. 变量名应简洁明了,通过变量名可以直观看出变量所表示的物理意义

```
A = rand(3,5)
rows = size(A, 1)
cols = size(A, 2)
```

```
A =

0.0577  0.5950  0.1930  0.3907  0.3971
0.9798  0.9622  0.3416  0.2732  0.3747
0.2848  0.1858  0.9329  0.1519  0.1311

rows =

3
```

III. MATLAB数据类型

1. 数字

cols =

5

```
2 + 4

10 - 7

3 * 5

8 / 2
```

```
ans =
6
ans =
3
ans =
15
ans =
```

2. 字符与字符串

```
s = 'a'
abs(s)
char(65)
num2str(65)

str = 'I Love MATLAB & Machine Learning.'
length(str)
```

doc num2str

```
s =
a
ans =
    97
ans =
A
ans =
65
str =
I Love MATLAB & Machine Learning.
ans =
    33
```

3. 矩阵

```
A = [1 2 3; 4 5 2; 3 2 7]
B = A'
C = A(:)
D = inv(A)
A * D

E = zeros(10,5,3)
E(:,:,1) = rand(10,5)
E(:,:,2) = randi(5, 10,5)
E(:,:,3) = randn(10,5)
```

```
1
    4
    3
    2
    5
    2
    3
    2
    7
D =
  -0.9118
         0.2353 0.3235
  0.6471
         0.0588 -0.2941
   0.2059 -0.1176
                 0.0882
ans =
         0.0000
   1.0000
                  -0.0000
   0.0000
         1.0000
                  -0.0000
   0.0000
           0.0000
                   1.0000
E(:,:,1) =
    0
        0
             0
                  0
                       0
    0
       0
            0
                  0
                       0
    0
        0
             0
                  0
        0
             0
    0
       0
             0
                  0
                       0
    0
        0
             0
                  0
                       0
    0
        0
             0
                  0
                       0
    0
        0
             0
                       0
                  0
    0
        0
             0
                       0
    0 0
             0
                  0
E(:,:,2) =
   0
        0
             0
                  0
                       0
    0
        0
             0
                  0
                        0
    0
       0
             0
                  0
                       0
    0
       0
             0
                  0
    0
       0
             0
                  0
    0
       0
             0
                  0
                       0
    0
        0
             0
                  0
                       0
        0
                  0
    0
             0
                       0
    0
        0
             0
                  0
                        0
    0
      0
             0
                        0
E(:,:,3) =
    0
        0
             0
                  0
                        0
    0
        0
             0
                  0
                        0
        0
             0
                  0
    0
                       0
    0
        0
             0
                  0
                       0
    0
        0
                  0
             0
    0
        0
             0
                  0
                       0
    0
        0
             0
                  0
                        0
```

C =

	0	0	0	0	0	
	0	0	0	0	0	
E(:,:,1) =						
0.4350		0.4963	0.9	0.9573		
0.0915		0.6423 0.6		5203		

0.4350	0.4963	0.9573	0.2299	0.5566
0.0915	0.6423	0.6203	0.5761	0.5294
0.6146	0.2213	0.6003	0.8106	0.8300
0.0110	0.8371	0.1726	0.4038	0.8588
0.5733	0.9711	0.0903	0.9884	0.7890
0.7897	0.8464	0.2553	0.0900	0.3178
0.2354	0.5060	0.8586	0.3209	0.4522
0.4480	0.2789	0.9111	0.5114	0.7522
0.5694	0.7466	0.6996	0.0606	0.1099
0.0614	0.2369	0.7252	0.7257	0.1097

E(:,:,1) =				
0.4350	0.4963	0.9573	0.2299	0.5566
0.0915	0.6423	0.6203	0.5761	0.5294
0.6146	0.2213	0.6003	0.8106	0.8300
0.0110	0.8371	0.1726	0.4038	0.8588
0.5733	0.9711	0.0903	0.9884	0.7890
0.7897	0.8464	0.2553	0.0900	0.3178
0.2354	0.5060	0.8586	0.3209	0.4522
0.4480	0.2789	0.9111	0.5114	0.7522
0.5694	0.7466	0.6996	0.0606	0.1099
0.0614	0.2369	0.7252	0.7257	0.1097

E(:,:,2) =							
2	2	1	2	3	3		
3	3	5	5	5	4		
	5	3	4	3	5		

4	5	2	1	2	
2	1	2	1	4	
2	3	1	5	5	
5	2	4	3	1	
5	5	3	2	3	
4	1	1	4	3	
2	3	1	2	2	
,:,3) =					
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0 0	0	0 0	0 0	0 0	
0	O	0	O	U	
,:,1) =					
0.4350		0.4963	0.	9573	0.2299
0.0915		0.6423		6203	0.5761
0.6146		0.2213	0.	6003	0.8106
0.0110		0.8371		1726	0.4038
0.5733		0.9711		0903	0.9884
0.7897		0.8464		2553	0.0900
0.2354 0.4480		0.5060 0.2789		8586 9111	0.3209 0.5114
0.5694		0.7466		6996	0.0606
0.0614		0.2369		7252	0.7257
,:,2) =					
2	1	2	3	3	
3	5	5	5	4	
5	3	4	3	5	
4	5	2	1	2	
2	1	2	1	4	

2 3 1 5 5 5 2 4 3 1

1

-0.0056

1.1072

-0.1856

-1.1214

0.2464

1.5610

-1.1966

-0.2423

1.0048

-1.9201

1

5 3 2 3

4

2

0.6254

0.7530

0.2135

-0.7702

-0.0071

0.0932

0.9353

0.6635

-0.3502

1.6199

3

2

-0.0508

-0.8127

-0.4384

0.8586

0.1952

0.8889

0.0692

2.4868

-1.6656

-0.4159

-0.0842

0.0893

1.4561

0.2195

-0.1149

0.0686

0.7515

-0.6894

0.4508

-1.5650

0.5566 0.5294 0.8300 0.8588 0.7890 0.3178 0.4522 0.7522 0.1099 0.1097

E(:

E(:

E(:

5

1

3

4

2

E(:,:,3) =

-0.8320

0.4979

2.3156

-0.7938

0.5410

-0.5591

1.9766

0.5447

-0.1379

0.6199

4. 元胞数组

```
A = cell(1, 6)
A{2} = eye(3)
A{5} = magic(5)
B = A{5}
```

```
Α =
  []
     Α =
 []
      [3x3 double] [] [] []
Α =
  []
      [3x3 double] [] [5x5 double] []
  17
      24
         1
              8
                  15
          7
  23
      5
              14
                  16
  4
      6
          13
              20
                  22
  10
      12
          19
              21
                  3
      18
              2
  11
          25
                 9
```

5. 结构体

```
books = struct('name',{{'Machine Learning','Data Mining'}},'price',[30 40])
books.name
books.name(1)
books.name{1}
```

```
books =
    name: {'Machine Learning' 'Data Mining'}
    price: [30 40]

ans =
    'Machine Learning' 'Data Mining'

ans =
    'Machine Learning'

ans =

Machine Learning'
```

IV. MATLAB矩阵操作

1. 矩阵的定义与构造

```
A = [1 2 3 5 8 5 4 6]
B = 1:2:9
C = repmat(B, 3, 1)
D = ones(2, 4)
```

```
Α =
 1 2 3 5 8 5 4 6
B =
1 3 5 7 9
C =
    3
        5
  1
      5 7 9
5 7 9
  1
    3
  1
    3
       5
          7
             9
```


2. 矩阵的四则运算

```
A =

1 2 3 4 5 6 7 8

B =

1 1 2 2 2 2 1 1
```

C =	:			
	2	3	5	6
	7	8	8	9

```
D =

0 1 1 2
3 4 6 7

E =
```

17 13 41 37

1 2 6 8 10 12 7 8

G =

1.8333 -0.1667
3.1667 1.1667

1.0000 2.0000 1.5000 2.0000 2.5000 3.0000 7.0000 8.0000

3. 矩阵的下标

B =

H =

A = magic(5)
B = A(2,3)
C = A(3,:)
D = A(:,4)
[m, n] = find(A > 20)

A = 17 24 1 8 15 23 5 16 7 14 20 22 4 6 13 10 12 19 21 3

 4
 6
 13
 20
 22

 10
 12
 19
 21
 3

 11
 18
 25
 2
 9

7 C =

4 6 13 20 22

D =

8

```
14
20
21
2

m =

2
1
5
4
3

n =

1
2
3
4
5
```

V. MATLAB逻辑与流程控制

1. if ... else ... end

```
A = rand(1,10)
limit = 0.75;

B = (A > limit);  % B is a vector of logical values
if any(B)
  fprintf('Indices of values > %4.2f: \n', limit);
  disp(find(B))
else
  disp('All values are below the limit.')
end
```

```
A =

Columns 1 through 7

0.4785  0.2568  0.3691  0.6618  0.1696  0.2788  0.1982

Columns 8 through 10

0.1951  0.3268  0.8803

Indices of values > 0.75:
10
```

2. for ... end

```
hilbert(m,n) = 1/(m+n -1);
end
end
hilbert
```

```
Columns 1 through 7
```

hilbert =

```
1.0000
         0.5000
                   0.3333
                             0.2500
                                       0.2000
                                                 0.1667
                                                           0.1429
0.5000
         0.3333
                   0.2500
                             0.2000
                                       0.1667
                                                 0.1429
                                                           0.1250
0.3333
         0.2500
                   0.2000
                             0.1667
                                       0.1429
                                                 0.1250
                                                           0.1111
0.2500
         0.2000
                   0.1667
                             0.1429
                                       0.1250
                                                 0.1111
                                                           0.1000
0.2000
       0.1667
                   0.1429
                             0.1250
                                       0.1111
                                                 0.1000
                                                           0.0909
0.1667
         0.1429
                   0.1250
                             0.1111
                                       0.1000
                                                 0.0909
                                                           0.0833
0.1429
        0.1250
                   0.1111
                             0.1000
                                       0.0909
                                                 0.0833
                                                           0.0769
0.1250
                   0.1000
                             0.0909
                                       0.0833
                                                 0.0769
                                                           0.0714
         0.1111
0.1111
         0.1000
                   0.0909
                             0.0833
                                       0.0769
                                                 0.0714
                                                           0.0667
0.1000
         0.0909
                   0.0833
                             0.0769
                                       0.0714
                                                 0.0667
                                                           0.0625
```

Columns 8 through 10

```
0.1250
       0.1111
                 0.1000
      0.1000
               0.0909
0.1111
       0.0909
0.1000
                 0.0833
0.0909
        0.0833
                 0.0769
       0.0769
0.0833
                 0.0714
0.0769
      0.0714
                 0.0667
0.0714
      0.0667
               0.0625
0.0667
      0.0625
               0.0588
0.0625
      0.0588
                 0.0556
      0.0556
                 0.0526
0.0588
```

3. while ... end

```
n = 1;
nFactorial = 1;
while nFactorial < 1e100
    n = n + 1;
    nFactorial = nFactorial * n;
end
n
factorial(69)
factorial(70)
prod(1:69)
prod(1:70)</pre>
```

```
n = 70
ans = 1.7112e+98
```

```
ans =

1.1979e+100

ans =

1.7112e+98

ans =

1.1979e+100
```

4. switch ... case ... end

```
mynumber = input('Enter a number:');

switch mynumber
    case -1
        disp('negative one');
    case 0
        disp('zero');
    case 1
        disp('positive one');
    otherwise
        disp('other value');
end
```

```
Error using input
Cannot call INPUT from EVALC.

Error in Example_1 (line 151)
mynumber = input('Enter a number:');
```

VI. MATLAB脚本与函数文件

1. 脚本文件

```
myScript
```

2. 函数文件

```
mynumber = input('Enter a number:');
output = myFunction(mynumber)
```

VII. MATLAB基本绘图操作

1. 二维平面绘图

```
x = 0:0.01:2*pi;
y = sin(x);
figure
plot(x, y)
title('y = sin(x)')
xlabel('x')
```

```
ylabel('sin(x)')
xlim([0 2*pi])

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
figure
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');
set(get(AX(1),'Ylabel'),'String','Slow Decay')
set(get(AX(2),'Ylabel'),'String','Fast Decay')
xlabel('Time (\musec)')
title('Multiple Decay Rates')
set(H1,'LineStyle','--')
set(H2,'LineStyle',':')
```

2. 三维立体绘图

```
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
xlabel('sin(t)')
ylabel('cos(t)')
zlabel('t')
grid on
axis square
```

3. 图形的保存与导出

```
% (1) Edit → Copy Figure
% (2) Toolbar → Save
% (3) print('-depsc','-tiff','-r300','picture1')
% (4) File → Export Setup
```

VIII. MATLAB文件导入

1. mat格式

```
save data.mat x y1 y2
clear all
load data.mat
```

2. txt格式

```
M = importdata('myfile.txt');

S = M.data;
save 'data.txt' S -ascii
T = load('data.txt');
isequal(S, T)
```

3. xls格式

```
xlswrite('data.xls',S)
W = xlsread('data.xls');
isequal(S, W)
```

```
xlswrite('data.xlsx',S)
U = xlsread('data.xlsx');
isequal(S, U)
```

4. csv格式

```
csvwrite('data.csv',S)
V = csvread('data.csv');
isequal(S, V)
```

Published with MATLAB® 7.14