Water quality prediction

DATA 606
Capstone in Data Science

Project by: Rashmitha Challa(IZ48096)

rchalla1@umbc.edu

Supervised by: Chaojie (Jay) Wang, D.Sc.

Why classify water?

- Basic necessity for all human life
- Process of water testing is time consuming: water collection and laboratory testing
- Costly

Can machine learning improve the process of water classification?

Predicting Water Potability

- Can we predict water potability?
- Which machine learning algorithms can yield the most efficient and accurate results?
- Can the parameters within the ML algorithms be tuned to yield the best results?
- Are the parameters within the dataset affective in water quality prediction?
- Should there be other parameters to consider?
- How confident are we in our findings?

The Dataset

https://www.kaggle.com/datasets/adityakadiwal/water-potability/

Approach

EDA: Visual Analyses ·

Portability Value Counts

Water Quality Distribution

EDA: Visual Analyses

0.2

Missing Values

Outlier Detection

Class Imbalance

 Up-sampling the minority class to balance the data for training to prevent bias to the majority class

Principle Component Analysis

 Exploring dimensionality reduction using PCA tells us that all the variables are independent from each other and further confirms our previous observations from the heatmap

Modelling algorithms

Algorithm Comparison 1st Iteration

M od el	Accuracy	Precision	Recall	F1 Score	
3	Random Forest	0.843264	0.838275	0.836022	0.837147
2	Decision Tree	0.794041	0.738255	0.887097	0.805861
5	XGBoost	0.792746	0.754808	0.844086	0.796954
4	Support Vector	0.659326	0.640103	0.669355	0.654402
1	KNN Regression	0.648964	0.622871	0.688172	0.653895
0	Logistic Regression	0.485751	0.470998	0.545699	0.505604

Algorithm Comparison 2nd Iteration

Mo del	Accuracy	Precisi on	Recall	F1 Score	
3	Random	0.848	0.840	0.846	0.843
	Forest	446	000	774	373
4	Support	0.822	0.844	0.774	0.807
	Vector	539	575	194	854
5	XGBoost	0.816 062	0.780 488	0.860 215	0.818 414
2	Decision	0.787	0.734	0.876	0.799
	Tree	565	234	344	020
1	KNN	0.774	0.722	0.862	0.786
	Regression	611	973	903	765
0	Logistic	0.485	0.470	0.545	0.505
	Regression	751	998	699	604

Performance of Models -- Second Iteration

Model Evaluation

Model	2nd Iteration	1st Iteration	in
Logistic Regression	48.58%	48.58%	0.00%
KNN Regression	77.46%	64.90%	12.56%
Decision Tree	78.76%	79.40%	-0.65%
Random Forest	84.84%	84.33%	0.52%
Support Vector	82.25%	65.93%	16.32%
XGBoost	81.61%	79.27%	2.33%

Cross Validation

Algorithm	Mean Accuracy Score	Standard Deviation	
Random Forest	85.28%	1.84%	
SVM	87.98%	1.91%	
XGBoost	80.73%	1.77%	

Interpretation & Recommendations

- After 2nd iteration and hyper-tunning parameters,
 SVM performed with the greatest accuracy 82.25%
- After k-Fold cross validation, SVM's accuracy increased to 87.98%
- Increasing parameters: coliforms and heavy metals
- Explore deeper machine learning such as ANN (artificial neural network

Conclusions

Can we predict water potability?

Which machine learning algorithms can yield the most efficient and accurate results?

Can the parameters within the ML algorithms be tuned to yield the best results?

Are the parameters within the dataset affective in water quality prediction?

Should there be other parameters to consider?

How confident are we in our findings?

- ✓ Using ML it is possible to predict water potability
- ✓ Support Vector Machine Classifier best performance 87.98% accuracy
- ✓ Hyper-tunning did increased accuracy in modeling for most of the algorithms
- ✓ The parameters within the dataset were affective in prediction although had low correlation
- ✓ Through research from other studies, additional attributes such as coliform and heavy metals should be included
- ✓ Confident in our findings but room for improvement

ANY QUESTIONS?