

Этикетка

КСНЛ.431271.015 ЭТ

Микросхема 1564ЛЕ1Т1ЭП

Микросхема интегральная 1564ЛЕ1Т1ЭП Функциональное назначение: четыре логических элемента «2ИЛИ-НЕ»

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение	
вывода	вывода	вывода	вывода	вывода	вывода	
1	Y1	Выход	8	В3	Вход	
2	A1	Вход	9	A3	Вход	
3	B1	Вход	10	Y3	Выход	
4	Y2	Выход	11	B4	Вход	
5	A2	Вход	12	A4	Вход	
6	B2	Вход	13	Y4	Выход	
7	0V	Общий	14	V_{cc}	Питание	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	мерения Буквенное		Норма	
	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_{O} = 20 mkA	$U_{OL\;max}$	-	0,10	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} =20 mkA		-	0,10	
при:				
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0.9 \text{ B}, U_{IH} = 3.15 \text{ B}, I_{O} = 4.0 \text{ mA}$		-	0,26	
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}, I_0 = 5.2 \text{ mA}$		-	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
U_{CC} =2,0 B, U_{IH} =0,3 B, I_{O} = 20 мкА	U_{OHmin}	1,9	-	
U_{CC} =4,5 B, U_{IH} =0,9 B, I_{O} = 20 мкА		4,4	-	
U_{CC} =6,0 B, U_{IH} = 1,2 B, I_0 = 20 mkA		5,9	-	
при:				
$U_{CC} = 4.5 \text{ B}, U_{IH} = 0.9 \text{ B}, I_{O} = 4.0 \text{ mA}$		3,98	-	
$U_{CC} = 6.0 \text{ B}, U_{IH} = 1.2 \text{ B}, I_{O} = 5.2 \text{ mA}$		5,48	-	
3. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/	

4. Входной ток высокого уровня, мкА, при: $U_{CC} = 6,0 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	2,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, f} = 10 \text{ M}\Gamma \text{ц}$	I _{occ}	-	12
7. Время задержки распространения при	$t_{\mathrm{PHL},}$		
включении и выключении, нс, при:	$t_{\rm PLH}$		
$U_{CC} = 2,0 B, C_L = 50 п\Phi$		-	90
$U_{CC} = 4,5 B, C_L = 50 п\Phi$		-	18
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	15
8. Входная емкость, п Φ $U_{CC} = 0$ В	C_1	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро г.

в том числе:

золото г/мм

на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-11ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛЕ1Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-11ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	-
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по $\underline{\hspace{1cm}}$ (извещение, акт и др.) от $\underline{\hspace{1cm}}$ (дата)	_
Место для штампа ОТК	Место для штампа ПЗ
<u>Цена договорная</u>	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): выход – общий, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.