Nome: Luís Felipe de Melo Costa Silva

Número USP: 9297961

Lista de Exercícios 2 - MAC0460

Exercício 1

a) Vamos fazer $w^T(t) \cdot x(t) = y^*(t)$. Como x(t) está classificado incorretamente, temos que os sinais de y(t) e $y^*(t)$ são diferentes, ou seja, ou y(t) = 1 e $y^*(t) = -1$ ou y(t) = -1 e $y^*(t) = 1$. Portanto, $y(t) \cdot y^*(t)$ é sempre -1 e então, $y(t) \cdot y^*(t) < 0$

b) Usando (1.3):

$$y(t)w^{T}(t+1)x(t) > y(t)w^{T}(t)x(t)$$

$$y(t)[w(t) + y(t)x(t)]^{T}x(t) > y(t)w^{T}(t)x(t)$$

$$y(t)[w^{T}(t) + [y(t)x(t)]^{T}]x(t) > y(t)w^{T}(t)x(t)$$

$$y(t)w^{T}(t)x(t) + y(t)[y(t)x(t)]^{T}x(t) > y(t)w^{T}(t)x(t)$$

$$y(t)[y(t)x(t)]^{T}x(t) > 0$$

Exercício 4

Queremos que $\epsilon(M,N,\delta) = \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}} \leq 0.05$. Teremos:

$$\begin{split} \sqrt{\frac{1}{2N}} \ln \frac{2M}{\delta} &\leq 0.05 \\ \frac{1}{2N} \ln \frac{2M}{\delta} &\leq 0.05^2 \\ \frac{1}{2N} &\leq \frac{0.05^2}{\ln \frac{2M}{\delta}} \\ 2N &\leq \frac{\ln \frac{2M}{\delta}}{0.05^2} \\ N &\leq \frac{\ln \frac{2M}{\delta}}{2 \cdot 0.05^2} \end{split}$$

Como $\delta = 0.03$:

a) Para
$$M=1$$
, $N \leq \frac{\ln \frac{2}{0.03}}{2 \cdot 0.05^2} \cong 840$

b) Para
$$M = 100$$
, $N \le \frac{\ln \frac{200}{0.03}}{2 \cdot 0.05^2} \cong 1761$

c) Para
$$M=10000,\,N\leq \frac{\ln\frac{20000}{0.03}}{2\cdot 0.05^2}\cong 2683$$