HW 3

Dana Nikolaeva Chambourova

February 15, 2016

Problem 1. homomorphism $h: \epsilon \implies \Delta^*$ if $h(w) = \{\epsilon, \text{ if } w = \epsilon\}$ $h(a)h(\mu)$, if w = an where $a \in \Sigma$, $\mu \in \Sigma^*$ $h^*(L) = \{h(w)|w \in L\}$ where $L \subseteq \Sigma^*$ $h^{-1} = \{h(w)|h(w) \in L\}$ $\Sigma = \{a, b\}, \ h(a) = 01$ $\Delta = \{0, 1\}, \ h(b) = 10$ a) $h^{-1}(\{0101\}) = (ab)$ $h^{-1}(\{00\}) = \emptyset$ $h^{-1}(\{001\}) = \emptyset$ $h^{-1}(\{1001\}) = (ba)$ **b**) $L = L((00+1)^*)$ $h^{-1}(L) = (ba)^*$ $h(h^{-1}(L)) = h((ba)^*) = (1001)^*$

Problem 2. Regular language are closed under inverse homomorphic images if $h: \Sigma \Longrightarrow \Delta^*$ and $L \subseteq \Delta^*$ is regular than h^{-1} is regular **a)** $w \in \Sigma^*$, $d_n^*(s'w) = \delta_M^*(s, h(w))$

b) Prove the correctness statement by induction on the length w

Proof. We will do induction on |w| Base Case: When |w|, $w = \epsilon$ $\delta_M^*(s', w) = \delta_M^*(\delta, h(w))$ $\delta_M^*(s', w) = \delta_M^*(\delta, h(\epsilon))$ Since $s'^* = s$ $\delta_M^*(s, \epsilon) = \delta_M^*(s, h(\epsilon))$ By definition of a homomorphism

$$\begin{split} h(\epsilon) &= \epsilon \\ \delta_M^*(s,\epsilon) &= \delta_M^*(s,\epsilon) \end{split}$$

Inductive Hypothesis: $\forall w$ where |w| < n , $\delta_M^*(s,w) = \delta_M^*(s',h(w))$ Induction Step:

 $\overline{\text{Let w be a string such that } |w| = \mu$

And as we know s = s' then

$$\delta_M^*(s,w) = \delta_M^*(s,h(w)) =$$

Let
$$w = an, a \in \Sigma, \mu \in \Sigma^*$$

$$\delta_M^*(s, a*m) = \delta_M^*(s, h(a)*h(\mu))$$

$$\begin{split} & \delta_{M}^{*}(s,w) = \delta_{M}^{*}(s,h(w)) = \\ & \text{Let } w = an, \ a \in \Sigma, \ \mu \in \Sigma^{*} \\ & \delta_{M}^{*}(s,a*m) = \delta_{M}^{*}(s,h(a)*h(\mu)) \\ & \delta_{M}^{*}(\delta(s,a),\mu) = \delta_{M}^{*}(\delta_{M}^{*}(s,h(a),h(\mu))) \\ & \delta_{M}^{*}(\delta(s,a),\mu) = \delta_{M}^{*}(\delta_{M}^{*}(s,a),\mu) \end{split}$$

$$\delta_M^*(\delta(s,a),\mu) = \delta_M^*(\delta_M^*(s,a),\mu)$$