数学分析

程笛 2023012317

Week 1

题目 1.

证明. 任取 $x \in \mathbb{B}(a, \delta)$, 有 $d(x, a) < \delta$, 存在 $\varepsilon < 0$ 使得 $d(x, a) + \varepsilon < \delta$, 则 $\mathbb{B}(x, \varepsilon) \subseteq \mathbb{B}(x, \delta)$, 这是因为任取 $y \in \mathbb{B}(x, \varepsilon)$, 有

$$d(a,y) < d(a,x) + d(x,y) < \delta$$

故 $\mathbb{B}(x,\delta)$ 是 \mathbb{R}^n 中的开集.

题目 2.

证明. $\diamondsuit x, y \in \mathbb{R}^n$, 则

$$(\max |x^{i} - y^{i}|)^{p \cdot \frac{1}{p}} \le (\sum_{i=1}^{n} |x^{i} - y^{i}|^{p})^{\frac{1}{p}} \le n^{\frac{1}{p}} \max |x^{i} - y^{i}|$$

即

$$d_{\infty}(x,y) \le d_p(x,y) \le n^{\frac{1}{p}} d_{\infty}(x,y)$$

于是

$$\mathbb{B}_{\infty}(x, \frac{\delta}{n^{\frac{1}{p}}}) \subseteq \mathbb{B}_{p}(x, \delta) \subseteq \mathbb{B}_{\infty}(x, \delta)$$

结合开集定义,有任何度量空间 (\mathbb{R}^n, d_∞) 中的开集 U 中包含开球 $\mathbb{B}_p(x, \delta)$,反之亦然,故它们诱导的拓扑相同.

题目 2 的注记. 我们这里证明 \mathbb{K}^n 上所有范数的等价性. 我们以欧式范数为桥, 下述中的连续性是指在欧式范数诱导的拓扑上的连续性.

我们记欧式范数 |-|, 设某个范数 ||-||.

$$||x|| = \left\| \sum_{i=1}^{n} x_i \varepsilon_i \right\| \le \sum_{i=1}^{n} |x_i| ||\varepsilon_i|| \le C_0 |x|$$

这里我们用了 $|x_i| \leq |x|$, 并令 $C_0 = \sum_{i=1}^n ||\varepsilon_i||$

于是我们证明了 $\|\cdot\|$ 的连续性. 欧式范数的连续性是显然的 $(|||x||_2 - ||y||_2| \le ||x||_2 - ||y||_2)$ 我们令 $S := \{x \in \mathbb{K}^n; |x| = 1\}$,由欧式范数连续,知原像集 S 是闭集,显然 S 是有界的,于是 S 是紧集. 于是 S 在 $\|\cdot\|$ 下的像可以取到最小值 m,任意的 $x \in U$ 有

$$0 < m \le ||x||$$

最后, 令 $x \in \mathbb{K}^n \setminus \{0\}$, $\frac{x}{|x|} \in S$,

$$m|x| \leq ||x||$$

至此, 我们得到了

$$C^{-1}|x| \le ||x|| \le C|x|$$

with $C := \max\{\frac{1}{m}, C_0\}.$

题目 3.

解答. 根据 \mathbb{Q} 在 \mathbb{R} 中的稠密性, 任何 $x \in Q$ 的邻域中存在 $\mathbb{R} \setminus \mathbb{Q}$ 中的点, 反之亦然. 于是

$$\mathring{A} = \emptyset, \quad (A^c)^\circ = \emptyset, \quad \partial A = \mathbb{Q}^2$$

题目 4.

证明.

(i)

$$x \in (A \cap B)^{\circ} \implies \exists \mathbb{B}(x, \delta) \subseteq A \cap B \implies (\mathbb{B}(x, \delta) \subseteq A) \land (\exists \mathbb{B}(x, \delta) \subseteq B)$$
$$\implies (x \in A) \land (x \in B) \implies x \in \mathring{A} \cap \mathring{B}$$

另一方面,

$$x \in \mathring{A} \cap \mathring{B} \implies \exists \mathbb{B}(x, \delta_1) \subset \mathring{A}, \exists \mathbb{B}(x, \delta_2) \subset \mathring{B},$$

$$\mathbb{B}(x,\delta) \subset A \cap B$$
,

故 $x \in (A \cap B)^{\circ}$.

(ii) 引理: 设度量空间 X, A 是其子集, 则 $(A^{\circ})^c = \overline{(A^c)}$

证明: 不失一般性假设 A 非空, 设 $x \in \overline{A^c} \iff \forall \delta > 0, \mathbb{B}(x,\delta) \cap A^c \neq \emptyset \iff x \notin A^c \iff x \in (A^c)^c$

根据 (i),

$$(A^c \cap B^c)^{\circ} = (A^c)^{\circ} \cap (B^c)^{\circ}$$

两边同取补集, 由引理, 结合 de Morgan 律, 我们得到

$$\overline{(A \cup B)} = ((A^c))^c \cup ((B^c))^c = \overline{A} \cup \overline{B}$$

题目 5.

证明.

$$x \in \bigcup_{\alpha \in I} \mathring{A_{\alpha}} \implies \exists \alpha, \exists \mathbb{B}(x, \delta(\alpha)) \subset A_{\alpha} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$$

故 $x \in (\bigcup_{\alpha \in I} A_{\alpha})^{\tilde{}}$. 在 \mathbb{R} 中令 $A := (-\infty, 0], B := (0, \infty), 则 <math>0 \in (A \cup B)^{\tilde{}}$ 且 $0 \notin A^{\tilde{}}, 0 \notin B^{\tilde{}}$. 结合上问引理, 对结论应用 de Morgan 律得到

$$\overline{\bigcap_{\alpha \in I} A_{\alpha}} \subset \bigcap_{\alpha \in I} \overline{A_{\alpha}}$$

题目 6.

证明. (i)

$$(\partial E)^c = E \cup (E^c)^\circ$$

是开集, 故 ∂E 是闭集.

(ii) E 是闭集当且仅当 $E \cup \partial E = E$ 当且仅当 $\partial E \subset E$.

题目 7.

证明. 用反证法, 若存在 $x \in A \cap \overline{B}$, 由题意知, $A \cap B = \emptyset$, 于是 $x \in \partial B$, 任取 x 的邻域 O, 有 $O \cap B \neq \emptyset$, 同时 $x \in A \Longrightarrow O \cap A \neq \emptyset$, 这与 A, B 不相交矛盾.

题目 8.

证明. 设 $U \subseteq R^2$ 是开集,则对于任意 $(x,y) \in U$,存在 $\mathbb{B}_{(\mathbb{R}^2,d_\infty)}((x,y),\delta) \subseteq U$,根据 d_∞ 的定义知 $|x_1-x_2| \leq d_\infty((x_1,y_1),(x_2,y_2))$,故 $\mathbb{B}_{(\mathbb{R},d)}(x,\delta) \subseteq P(U)$,故 P(U) 是开集. 令 $V := (0,1) \times \mathbb{R}$,显然是闭集,此时 P(V) = (0,1) 是开集.

举反例不会...

题目 8 的注记. 反例之一 $\{(x,y); xy \ge 0\}$, 给我细细地品鉴三回啊三回.

题目 9. 《高等代数学. 第四版》6.1.5

解答. (a) 该集合有界且闭, 是紧的.

- (b) 该集合无界, 不是紧致集.
- (c) 该集合无界, 不是紧致集.
- (d) 序列 $(x_n) := n \in \mathbb{N}$, 则 $(e^{-x_n} \cos x_n, e^{-x_n} \sin x_n)$ 收敛到 (0,0), 然而 (0,0) 不在该集合中, 利用后题结论, 故不是紧集.

题目 9 的注记. 一个有界闭不紧的例子, 考虑 $\mathbb{K}^{\mathbb{N}}$ 中的有界闭集

$$X := \{(x_n) \in \mathbb{K}^{\mathbb{N}}; pr_i(x_n) = \delta_{in}\}$$

X 不紧是平凡的.

题目 10.

证明. 令 $\bigcup_{i=1}^n O_i$ 是 A 的有限开覆盖, 结合题 8, $\bigcup_{i=1}^n P(O_i)$ 是 P(A) 的有限开覆盖. 故 取 P(A) 的任意开覆盖 $\bigcup_{\alpha} A_{\alpha}$, 则 $\bigcup_{\alpha} (A_{\alpha} \times \mathbb{R})$ 是 A 的开覆盖, 由此得到对应的有限开覆盖 A, 以及 P(A) 是 P(A) 的有限子覆盖, 故 A 紧.

题目 11.

证明. 必要性由上问直接得出. 下证充分性: 记 $A \times B$ 的任意覆盖 $\bigcup_{i \in I}^n O_i$, 则将 O_i 投影 到 A, B 得 A_i, B_i , 则得到 A, B 的开覆盖 $\bigcup_{i \in I} A_i$, $\bigcup_{i \in I} B_i$, 由 A, B 紧,得到有限子覆盖 $\bigcup_{i = 1}^n A_i$, $\bigcup_{i = 1}^n B_i$, 得到 $A \times B \subseteq \prod_{i,j = 1}^n A_i \times B_j$ 是 $A \times B$ 的有限子覆盖,故 $A \times B$ 紧.

题目 12.

解答. 否, 若 k 充分大时 A_k 全是空集, 则满足 $A_{k+1} \subset A_k$ 但 $\bigcap_{k=1}^{\infty} A_k = \emptyset$; 不成立, 此时一定非空. 假设 $\bigcap_{k=1}^{\infty} A_k = \emptyset$, 则 $\bigcup_{k=1}^{\infty} A_k^c = \mathbb{R}^n$ 是 \mathbb{R}^n 的一组开覆盖, 则有子覆盖 $\bigcup_{k=1}^m A_k^c = \mathbb{R}^n$, 可取 $x \in A_{m+1}, x \notin \bigcup_{k=1}^m A_k^c = \mathbb{R}^n$, 矛盾.

题目 12 的注记. 一个平凡一点的反例: $\bigcap([n, +\infty) \times \mathbb{R}^{n-1}) = \emptyset$

题目 13.

证明. 必要性平凡,下证充分性: 若分量收敛,对于任意 $\varepsilon > 0$,则存在 $N \in \mathbb{N}$,使得 $\forall k > N, x_k^i - a^i < \varepsilon$,故此时 $d_1(x_k, a) < n\varepsilon$,得到 $x \to a$.

题目 14.

证明. 由上题, 本定理是平凡的.

题目 15.

证明. 假设对于一个列紧的度量空间 (X,d), 不存在这样的 lebesgue 数, 那么, 任意的 $n \in \mathbb{N}$, 存在集合 $A_n \subseteq X$, 且 $d(A_n) < \frac{1}{n}$, 满足 $\forall i \in \mathcal{I}$, $A_n \not\subset U_i$, 则存在序列 $(x_n), x_n \in A_n$, 取一收敛子列, x_{k_n} , 记收敛到 $a \in X$, 则有 i_0 使得 $a \in U_{i_0}$. 根据开集定义, 存在 δ 使得 $\mathbb{B}(a,\delta) \subseteq U_{i_0}$, 可取 n 充分大使得 $d(a,x_{k_n}) < \frac{\delta}{2}$ 且 $\frac{1}{n} < \frac{\delta}{2}$, 则任取 $y \in A_n$, $d(a,y) < d(a,x_{k_n}) + d(x_{k_n},y) \leq \delta$. 则 $A_n \subseteq \mathbb{B}(a,\delta)$. 矛盾

题目 16.

证明. 设 X 是紧度量空间, 任取紧子集 U, 假设 U 不列紧, 即任取 U 中序列 (x_n) 在 U 中没有聚点, 定义开覆盖 $U \subseteq A$ 使得 $\forall x \in U, x \in A_x$ 包含则至多 (x_n) 中的有限项 (若做不到, 则该点 x 是一个聚点, 矛盾). 此时 A 的有限子覆盖至多包含有限项 (x_n) , 矛盾.

设 U 是列紧的,则存在 lebesgue 数 λ ,{ $\mathbb{B}(x,\lambda); x \in U$ } 是 U 的一个开覆盖,断言该覆盖存在有限子覆盖。此结论结合上问得到任何 U 的开覆盖都有有限子覆盖。下用反证法,取 $x_0 \in U, x_n \in U \setminus \bigcup_{i=0}^{n-1} \mathbb{B}(x_i,\lambda)$,若该覆盖无有限子覆盖,则 $(x_n) \in X^{\mathbb{N}}$,进而 $x_n \to a \in U$,根据 (x_n) 取法,任意两项 x_i, x_j 有 $d(x_i, x_j) > \lambda$,又对于 $\mathbb{B}(a, \frac{\lambda}{2})$,其中有任意多项 x_n ,这就得到了矛盾。

题目 17.

证明. 必要性: 设 D 可以表示为两非空不交开集并 $C \cup E$, 则由题 7, $C \cap \overline{E} = \emptyset$, $E \cap \overline{C} = \emptyset$, 则不连通.

充分性: 假设 D 不连通, 则存在 $D = A \cup B$, $A \cap \overline{B} = \emptyset$ 且 $\overline{A} \cap B = \emptyset$, 对于前者, 此时 $\forall x \in D$, 若 $x \in A$, 则 $x \notin \overline{B}$, 故 $A = D \setminus \overline{B}$ 是 D 中的开集, 同理 B 是开集, 故可表示为不交 非空开集并, 矛盾.

题目 18.

证明. 对于连通集族 A, 且 $\bigcap_{A \in \mathcal{A}} A \ni a$ 是公共点, 若 $\bigcup_{A \in \mathcal{A}} A$ 不连通, 即 $\bigcup_{A \in \mathcal{A}} A = X \cup Y$, X, Y 是不交非空开集, 则 $A = (A \cap X) \cup (A \cap Y)$, 由 A 连通, 不失一般性, 假设 $A \cap X = \emptyset$, 则 $a \notin X, a \in Y$, 则任意 A 有 $A \cap Y \neq \emptyset$, 故任意 $A, A \cap X = \emptyset$, 得到 $X = \emptyset$. 矛盾.