		1	٠.		1 1
Roll					1 1
No	1				

End Semester Examination 2024

Name of the Course: BCA		Semester: _II
Name of the Paper. Introduction to	•	Paper Code: TBC201
Data Structures		

Time: 3 Hour's

Maximum Marks: 100

Note:

- (i) All Questions are compulsory.
- (ii) Answer any two sub questions among a, b and c in each main question.
- (iii) Total marks in each main question are twenty.
- (iv) Each question carries 10 marks.

Q1)	(10 X2 = 20 Marks)						
(a)	Define Algorithm and its characteristics. Develop an algorithm to linearly find an						
<	element in an array. Assume suitable algorithmic notations.						
(b)	What is recursion? Give and illustrate recursive algorithm to solve Tower of						
	Hanoi problem with 3 disks.						
(c)	What is 2-D array? How it can be stored in memory? Given an						
	array A[110][115] with a base address of 100 and the size of each element is 1 Byte in memory. Find the address of A[8][6] with the help of Row-major						
	order and Column-major order.						
(Q2)	(10 X2 = 20 Marks)						
(a)	Write a C Program to illustrate PUSH and POP operations over stack using						
4	linked list representation.						
(b)	Write a program in C to insert an element in circular queue represented using	•					
	array. Also illustrate dry run that includes all cases.						
(c)	Write algorithm/function to convert infix expression to postfix. Convert 27 / (8 -						
1	3) + 5 * (3 + 7) - 5 to postfix notation and then evaluate the equivalent postfix						
	expression using tabular method (STACK).						
Q3	(10 X2 = 20 Marks)						
(a)	What are the benefits of using 2-way linked list? Write a pseudo code to delete a	CO3					
	node from doubly linked list.						
(b)	What are the advantages of circular linked list over singly linked list? Write						
1 /	pseudo code to add node at the end in circular linked list.	•					
.r(c)	Define the structure of a node in singly linked list. Assume that you have a single						
	linked list, write a C function to count the nodes having data value as the prime						
	number.						
Q4	(10 X2 = 20 Marks)						
(a)	Describe the steps to sort the following elements using Bubble sort in ascending	CO2 &					
	order: 37, 35, 75, 26, 55, 36, 72, 57, 77, 63, 45, 10, 15.						
(b)	Write the algorithm for insertion sort and explain with the help of an example?	CO4					
(c)	Write short notes on following.						
'	(i) Hash function and collision resolution techniques.						
	(ii) Priority Queue and its applications.						
	(iii) Double Ended Queue and its types.						
Q5	(10 X2 = 20 Marks)						
(a)	Write an algorithm for pre-order traversal and post-order traversal in a Binary	CO5					
	tree and explain with an example.	COS					
(b)	If the in-order traversal of a binary tree is B, I, D, A, C, G, E, H, F and its post						
	order traversal is I, D, B, G, C, H, F, E, A. Determine the binary tree.	٠.					