2P CAT 1: CC+CA

1.1: El circuito de la figura tiene una llave doble K1 y una llave simple K2. En el modo M1 la llave K1 está cerrada y K2 está abierta; en el modo M2 la llave K1 está abierta y K2 está cerrada. En ambos modos la resistencia R3 disipa una potencia P_{R3}=2W. Entonces, para los valores de los elementos pasivos y activos que se dan a continuación, dos opciones son correctas.

(V_R se refiere a la diferencia de potencial en la

resistencia R, $\mathcal{E}(t)$ se refiere a la tensión de pico, ω_0 a la pulsación de resonancia)

R1=60 Ω R2=50 Ω R3=200 Ω C=100 μ F $E(t)=E_0$ sen (500s ⁻¹ t + τ	:/6)V
---	-------

1	En modo M1, i_{CIRC} = 0,1 A	6	En modo M2, L < 40 mH
2	En modo M1, $P_{R2} = 4P_{R3}$	7	En modo M2, $Z = 330 \Omega$
3	En modo M1, $i_{R1} = i_{R3}$	8	En modo M2, L ≈ 270 mH
4	En modo M1, $V_{R_3}=2V_{R_2}$	9	En modo M2, ω<ω0
5	Sin conocer V no puede calcularse nada	10	En modo M2, i adelanta a ϵ

1.2: El circuito de la figura tiene una llave doble K1 y una llave simple K2. En el modo M1 la llave K1 está cerrada y K2 está abierta; en el modo M2 la llave K1 está abierta y K2 está cerrada. En ambos modos la resistencia R3 disipa una potencia P_{R3}=2W. Entonces, para los valores de los elementos pasivos y activos que se dan a continuación, dos opciones son correctas.

(V_R se refiere a la diferencia de potencial en la

resistencia R, $\mathcal{E}(t)$ se refiere a la tensión de pico, ω_0 a la pulsación de resonancia)

R1=60
$$\Omega$$
 R2=50 Ω R3=200 Ω C=100 μ F $\mathcal{E}(t)=\mathcal{E}_0 \text{ sen } (500 \text{s}^{-1} \text{ t } +\pi/6) \text{V}$

1	En modo M1, V= 50V	6	En modo M2, $X \approx 273\Omega$
2	En modo M1, $P_{R_3} = 4 P_{R_2}$	7	En modo M2, Z se anula para ω=ω _o
3	En modo M1, $i_{R1} = i_{R2} = i_{R3}$	8	En modo M2, L≈170 mH
4	En modo M1, V_{R2} = $4V_{R3}$	9	En modo M2, $\omega > \omega 0$
5	En modo M1, Req=310 Ω	10	En modo M2, $\varepsilon_{o} \approx 23V$

1.3: El circuito de la figura tiene una llave doble K1 y una llave simple K2. En el modo M1 la llave K1 está cerrada y K2 está abierta; en el modo M2 la llave K1 está abierta y K2 está cerrada. En ambos modos la resistencia R3 disipa una potencia P_{R3}=3W. Entonces, para los valores de los elementos pasivos y activos que se dan a continuación, dos opciones son correctas.

(V_R se refiere a la diferencia de potencial en la

resistencia R, $\mathcal{E}(t)$ se refiere a la tensión de pico, ω_0 a la pulsación de resonancia)

$$\label{eq:R1=100} \textbf{R1=100} \boldsymbol{\Omega} \quad \textbf{R2=150} \boldsymbol{\Omega} \quad \textbf{R3=300} \boldsymbol{\Omega} \quad \textbf{C=10} \\ \boldsymbol{\mu} \textbf{F} \quad \boldsymbol{\xi}(\textbf{t}) = \boldsymbol{\xi}_0 \text{ sen } (500 \\ \textbf{s}^{-1} \ \textbf{t} - \pi/6) \textbf{V}$$

1	En modo M1, Req ≈136Ω	6	En modo M2, X≈173Ω
2	En modo M1, $P_{R2} = 4P_{R3}$	7	En modo M2, L≈170 mH
3	En modo M1, $i_{R1} = i_{R2} = i_{R3}$	8	En modo M2, L \approx 630 mH
4	En modo M1, $V_{R1} = V_{R2} = V_{R3}$	9	En modo M2, $\omega_0 \approx 1361 \text{ s}^{-1}$
5	En modo M1, $i_{R1} = 0,1A$	10	En modo M2, $ \mathcal{E} $ adelanta respecto a $ i $

2P CAT 2: Inducción y autoinducción

2.1: Por el alambre recto de la figura circula una corriente i_1 (t). Este alambre coincide con el eje de revolución de una bobina de espiras circulares, plana, cuya densidad de espiras es n, su área es A y su longitud ℓ , por la que circula una corriente de intensidad $i_P(t)$ El coeficiente de autoinducción de la bobina es L. En estas condiciones, siendo N el número total de espiras de la bobina, si \mathcal{E} es la fem

total inducida en la bobina,

1	$\mathcal{E}(t) = 0$	6	$\ell = \frac{L}{n^2 \mu_0 A}$ sólo si $\ell^2 >>> A$
2	$\mathcal{E}(t) = -L\frac{di_{PROPIA}}{dt} - \frac{\mu_0 i_1 A}{2\pi R}$	7	$\ell = \frac{n^2 \mu_0 A}{L}$ Cualquiera sea ℓ
3	$\mathcal{E}(t) = -L \frac{di_{PROPIA}}{dt} \hat{e}_z - \frac{\mu_0 i_1 A}{2 \pi R} \hat{e}_{\phi}$	8	$\ell = \frac{L}{N^2 \mu_0 A}$
4	$\mathcal{E}(t) = -L\frac{di_P}{dt}$	9	El coeficiente <i>L</i> depende del valor de la tensión de la fuente que genera la corriente propia.
5	E(t) no puede calcularse porque el solenoide no es infinito	10	El coeficiente <i>L</i> sólo tiene sentido si el solenoide es infinito.

2.2: La espira de la figura consta de dos semicircunferencias de igual radio R, perpendiculares entre sí (o sea, es una circunferencia doblada en forma de L por uno de sus diámetros). Está inmersa en un campo magnético uniforme $\vec{B} = B_x \hat{e}_x + B_y \hat{e}_y$ que en un dado instante se apaga. Si CM significa campo magnético, $i_{\rm IND}$ es la corriente inducida en la espira, indique las dos sentencias verdaderas

1	$\phi = \pi R^2 B_{x}$	6	En el momento en que se apaga el CM, $i_{IND}=0$	
2	$\phi = \frac{\pi R^2 B_x}{2}$	7	En el momento en que se apaga el CM, i_{ND} circula el sentido horario	
3	$\phi = \pi R^2 (B_x + B_y)/2$	8	Con el CM encendido, i _{IND} =0	
4	$\phi = \pi R^2 B_y$	9	Con el CM encendido, $i_{ m ND}$ circula en sentido antihorario	
5	$\phi = 0$	10	Ni antes ni después de apagar el CM circula $i_{ exttt{ND}}$	

2.3: La barra horizontal superior de la figura asciende con velocidad constante mediante la acción de la fuerza \vec{F} . La barra desliza sin rozamiento, tiene masa m, longitud ℓ , resistencia eléctrica R, y el cuadro completo se halla inmerso en una región del espacio en la que existe un campo magnético uniforme de intensidad B_{EXT} . En la figura se marca la corriente inducida en el cuadro (i_{ND}) . Si $F_{M, IND}$ es la fuerza magnética inducida, F el módulo de la fuerza \vec{F} , indique las dos sentencias verdaderas

1	$\vec{B}_{EXT} = B_{EXT} \; \hat{e}_{y}$	6	Si se invierte el sentido de B _{EXT} , la barra desciende
2	$\vec{B}_{EXT} = B_{EXT} \left(-\hat{e}_{x} \right)$	7	Si se invierte el sentido de B _{EXT} , se invierte el sentido de i_{IND}
3	$\vec{B}_{EXT} = B_{EXT} \left(-\hat{e}_z \right)$	8	$\vec{F}_{M,IND} = F_{M,IND} \; \hat{e}_{y}$
4	$\vec{B}_{EXT} = B_{EXT} \; \hat{e}_z$	9	$F = mg + \frac{B_{EXT} \ell v}{R}$
5	F = mg	10	$F = mg - \frac{B_{EXT}^2 \ell^2 v}{R}$

2P CAT 3: Magnetostática

3.1: La configuración de la figura consiste en tres alambres, uno curvado en forma de tres cuartos de circunferencia de radio R, y los otros dos son cables rectos, que pueden considerarse semiinfinitos, que transportan la corriente i. En el punto C (el punto central del tramo circular) se coloca una carga q, en reposo. Si B(C) es el campo magnético de la configuración en el punto C, \overline{F} es la fuerza que siente la carga q en ese punto, A es el punto

medio entre los alambres horizontales, en $r_A=(6 \text{ R}: 0; 0)$ y B(A) el campo magnético en ese punto, dos sentencias son correctas

1	$B(C) = 3\mu_0 i/8R$	6	$\vec{B}(A) \approx \mu_0 i / \pi R \ (\hat{e}_z)$
2	$B(C) > 3 \mu_0 i / 8 R$	7	B(A)=0
3	$\vec{F} = qB(C)\hat{e}_{x}$	8	$ \vec{B}(A) < 2\mu_0 i/\pi R \ (-\hat{e}_z)$
4	$\vec{F} = qB(C)\hat{e}_z$	9	$\vec{B}(A) \approx \mu_0 i / 2\pi R \ (-\hat{e}_z)$
5	$B(C) < \frac{\mu_0 i}{R} \left(\frac{3}{8} + \frac{1}{4\pi} \right)$	10	La fuerza entre los alambres horizontales es repulsiva

3.2: La figura muestra un alambre de masa M doblado en forma de Ω , esto es, una semicircunferencia

de radio R y dos alambres rectos de longitud ℓ . El alambre está circulado por una corriente i, que es transportada hacia y desde la Ω por dos cables de masa nula que no alteran el equilibrio. El conjunto está en equilibrio mediante la acción de un campo magnético externo, $\textbf{\textit{B}}_{\text{EXT}}$. El campo magnético de todo el conjunto de cables y alambre en el origen de coordenadas tiene sólo componente en Z. Si C se refiere al origen del sistema de coordenadas, los cables se refiere a los conductores que transportan la corriente i hacia la Ω , dos sentencias son correctas, indique cuáles son

1	$\vec{B}(C) = \left(\frac{\mu_0 i}{4R} + B_{EXT}\right) \hat{e}_z$	6	Los cables pueden estar en cualquier dirección porque al tener masa nula no afectan el equilibrio.
2	$M = 4i\pi R/g$	7	El sistema se desplaza hacia la derecha
3	$M = i\pi R/g$	8	Los cables son paralelos al eje Z
4	$\vec{B}(C) = \left(\frac{\mu_0 i}{4R} - B_{EXT}\right) \hat{e}_z$	9	Si se invierte la corriente i el equilibrio sólo es posible si se invierte el sentido de ${\sf B}_{\sf EXT}$
5	$\vec{B}(C) = \mu_0 i / 4R \hat{e}_z$	10	Es imposible alcanzar el equilibrio

3.3: La figura representa dos tramos de conductores de longitud ℓ (no se muestra el resto de los circuitos del que forman parte) que transportan corriente de intensidad i_2 e i_3 , respectivamente, y que están ubicados en el plano XY, al igual que un conductor rectilíneo, a los efectos prácticos infinito, por el que circula otra corriente, de intensidad i_1 . Si F_{12} representa la fuerza del alambre infinito sobre el alambre finito vertical, F_{13} representa la fuerza del alambre infinito sobre el alambre finito horizontal, F_{23} representa la fuerza entre los alambres finitos (sin tener en cuenta el alambre infinito),

$\vec{F}_{12} = \frac{\mu_0 i_1 i_2}{2\pi} ln \left(1 + \frac{\ell}{a} \right) \hat{e}_x$	$ec{F}_{13} = rac{\mu_0 i_1 i_3}{2\pi a} \; \hat{e}_y$
$\vec{F}_{12} = \frac{\mu_0 i_1 i_2}{2\pi} ln \left(1 - \frac{\ell}{a} \right) \hat{e}_x$	F23 es nula porque a la altura <i>a,</i> el CM generado por el alambre vertical es nulo
$\vec{F}_{12} = \frac{\mu_0 i_1 i_2}{2\pi} ln \left(1 + \frac{\ell}{a} \right) \hat{e}_y$	La fuerza entre los alambres horizontales es repulsiva
$F_{12}=0$	F23 no es nula y $\vec{F}_{23} = F_{23}\hat{e}_z$
F12 y F13 no pueden calcularse porque los alambres no son infinitos	F23 es nula porque entre alambres finitos la fuerza magnética es nula

2P CAT 4: CA

4.1: El diagrama de fases corresponde a un circuito RLC serie de corriente alterna. Opera a 100Hz y disipa 40 W. Dos de las siguientes opciones son correctas. Indíquelas.

 $(\xi_X$ se refiere a la caída de tensión en la reactancia, ϕ se refiere a la diferencia de fase)

1	El circuito tiene carácter inductivo	6	Si C=10μF ⇒ L ≈ 229mH
2	$\mathcal{E} = \mathcal{E}_{R} + \mathcal{E}_{X}$	7	El diagrama de tensiones correcto es (a)
3	R= 25Ω	8	El diagrama de tensiones correcto es (b)
4	φ ≈ − 66°	9	El diagrama de tensiones correcto es (c)
5	Si C=10μF ⇒ L ≈ 277 mH	10	El diagrama de tensiones correcto es (d)

4.2: El diagrama de fases corresponde a un circuito RLC serie de corriente alterna. Opera a 100Hz y disipa 40 W.

Dos de las siguientes opciones son correctas. Indíquelas.

 $(\mathcal{E}_X$ se refiere a la caída de tensión en la reactancia, ϕ se refiere a la diferencia de fase)

1	El circuito tiene carácter capacitivo	6	Si C=10μF ⇒ L≈229mH
2	$X = 25\Omega$	7	El diagrama de tensiones correcto es (a)
3	R= 25Ω	8	El diagrama de tensiones correcto es (b)
4	φ≈ -37°	9	El diagrama de tensiones correcto es (c)
5	Si C=10μF ⇒ L ≈ 277 mH	10	El diagrama de tensiones correcto es (d)

4.3: El diagrama de fases corresponde a un circuito RLC serie de corriente alterna. Opera a 100Hz y disipa 40 W.

Dos de las siguientes opciones son correctas. Indíquelas.

(\mathcal{E}_X se refiere a la caída de tensión en la reactancia, ϕ se refiere a la diferencia de fase)

1	El factor de potencia es 40	6	Si C=10μF ⇒ L≈10H
2	$X = 15\Omega$	7	El diagrama de tensiones correcto es (a)
3	R= 25Ω	8	El diagrama de tensiones correcto es (b)
4	φ≈ 53°	9	El diagrama de tensiones correcto es (c)
5	El circuito resuena en 100Hz	10	El diagrama de tensiones correcto es (d)

2P CAT 5 Conceptos generales

5.1: Dos de las siguientes opciones son correctas. Marque cuáles son (CC \equiv corriente continua; CA \equiv corriente alterna; CM \equiv campo magnético)

1	Las líneas de CM son cerradas sólo si las corrientes que los producen circulan por alambres infinitos.		
2	En un circuito RLC serie en CA, capacitivo, la reactancia es mayor que la reactancia inductiva.		
3	R1=R2 en serie disipan dos veces la potencia que disipan conectadas en paralelo a la misma fuente de		
	CC.		
4	\oiint B ·dS = o indica que el número de monopolos magnéticos encerrados por cualquier superficie		
	cerrada es nulo.		
5	Si una onda es longitudinal no puede saberse si es mecánica o electromagnética.		
6	El teorema de Ampere sólo es válido para configuraciones de corriente de muy alta simetría.		
7	Si el CM generado por dos corrientes rectilíneas paralelas se anula en un punto, ese punto está en la		
	región entre las corrientes.		
8	Un rayo no cambia de color al pasar a otro medio óptico porque no cambia su longitud de onda		
9	El signo negativo de la ley de Faraday indica que B _{INDUCIDO} se opone siempre a B _{EXTERNO} .		
10	Para considerar infinito a un solenoide de longitud ℓ y radio R, alcanza con que R sea pequeño.		

5.2: Dos de las siguientes opciones son correctas. Marque cuáles son (CC \equiv corriente continua; CA \equiv corriente alterna; CM \equiv campo magnético)

1	Al cambiar de medio óptico la radiación conserva su fase porque su longitud de onda es constante.	
2	El signo negativo de la ley de Faraday indica la validez del principio de conservación de la energía.	
3	$\mathcal{E}_{\text{IND}} = 0 \Rightarrow \iint \mathbf{B} \cdot d\mathbf{S} = 0$	
4	Una resistencia R disipa la misma potencia conectada a una fuente de CC de potencial V que la que	
	disipa en un circuito RLC serie cuya fuente tenga igual valor de pico (εο=V)	
5	El CM de un solenoide es uniforme en todo punto de su interior	
6	En resonancia la potencia activa que entrega un circuito RLC serie en CA es máxima.	
7	Si un onda es transversal, entonces es mecánica	
8	La única ventana electromagnética planetaria se halla centrada en la región del visible.	
9	El signo negativo de la ley de Faraday indica que $i_{INDUCIDA}$ se opone siempre a $i_{EXTERNA}$.	
10	Para considerar infinito a un solenoide de longitud ℓ y radio R, alcanza con que ℓ sea grande.	

5.3: Dos de las siguientes opciones son correctas. Marque cuáles son (CC \equiv corriente continua; CA \equiv corriente alterna; CM \equiv campo magnético)

1	Si un onda es transversal, entonces es electromagnética.
2	En resonancia, la impedancia de un circuito RLC serie de CA es nula.
3	Si el CM generado por dos corrientes rectilíneas antiparalelas se anula en un punto, ese punto está en la región interna entre las corrientes.
4	R1=R2 conectadas en paralelo disipan dos veces la potencia que disipan conectadas en serie a la misma fuente de CC.
5	La longitud de onda de un rayo verde se acorta al pasar del aire al agua.
6	$\mathcal{E}_{\text{IND}}=0 \Leftrightarrow \iint \mathbf{B} \cdot d\mathbf{S} = \text{constante}.$
7	El signo negativo de la ley de Faraday indica la validez del principio de acción y reacción de Newton.
8	Un CM uniforme es incapaz de ejercer fuerza alguna sobre un alambre por el que circula una corriente también uniforme.
9	Para que circule corriente por un circuito de CC ideal , la pila debe suministrar mayor potencia que la que disipan las resistencias.
10	La frecuencia de ciclotrón es la inversa de la pulsación de ciclotrón y es independiente de la masa de la partícula.