Q.1 a. Solution

Q.2 Solution

Present State	Next State	
	Input a	Input b
→ Q ₀	Q_1	Q ₅
Q_1	Q ₆	*Q2
*Q2	Q ₀	*Q2
Q_4	\mathbf{Q}_7	Q ₅
Q ₅	*Q2	Q ₆
Q ₆	Q ₆	Q ₄
Q ₇	Q ₆	*Q2

Step-3: Find out equivalent sets:

0-Equivalent Set: $\left[Q_0,\,Q_1,\,Q_4,\,Q_5\,,\,Q_6,\,Q_7\right]\,\left[Q_2\right]$

1-Equivalent Set: [Q_0 , Q_4 , Q_6] [Q_1 , Q_7] [Q_5] [Q_2]

2-Equivalent Set: $[Q_0, Q_4]$ $[Q_6]$ $[Q_1, Q_7]$ $[Q_5]$ $[Q_2]$

3-Equivalent Set: $\left[Q_0,\,Q_4\right]\,\left[Q_6\right]\,\left[Q_1,\,Q_7\right]\,\left[Q_5\right]\,\left[Q_2\right]$

Q3. Solution

Part A. In line iii., Bilal did wrong split of w. As 0 is finite in w, therefore cannot be pumped and hence invalidate the proof. In another words, Bilal is not permitted to pick a specific split of w.

Part B. In line iii, Amjad didn't split s correctly. Since the given language is regular with $p \ge 2$, therefore, we can write $s=0^{2p}$ as $s=\epsilon \ 00 \ 0^{2(p-1)}$ ($x=\epsilon, \ y=00, \ z=0^{2(p-1)}$). We have $|\epsilon 00| \le p$, |00| > 1 and $(00)^i 0^{2(p-1)} \in L$ for all $i \ge 0$.

Q. 5 Solution

- i. $S--> aSb|aaS|Sbb|\Delta$
- ii. S-->aSb|aaa
- iii. Language is not CFL