Circuitos Lógicos: SDI-11322 Práctica 1. Decodificador y Multiplexor

Departamento Académico de Sistemas Digitales Instituto Tecnológico Autónomo de México

Otoño 2018

1. Objetivos

Que el alumno:

- Aplique el álgebra de Boole en el diseño de un circuito combinacional
- Implemente un circuito combinacional simple mediante circuitos integrados
- Implemente un circuito combinacional simple para codificar datos
- Implemente un circuito combinacional simple para selección de datos

2. Problema

Se requiere realizar la implementación de un decodificador 2-4 y un multiplexor 2-1 para implementar el circuito mostrado en la figura 1.

3. Esbozo de solución

A continuación se detallan algunos aspectos sobre los componentes necesarios para implementar el circuito de la figura 1.

3.1. Decodificador

Un circuito decodificador recibe de entrada un vector de n bits y saca un vector de m bits donde $n \leq m \leq 2^n$. Para este circuito, el decodificador recibe una entrada de 2 bits y devuelve 4 bits de acuerdo a la tabla 1.

Figura 1: Circuito a implementar

$\underline{\text{Entrada}}$		$\underline{\text{Salida}}$			
S_0	S_1	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Tabla 1: Tabla de verdad para el decodificador 2 a 4

<u>Selección</u>	$\underline{\mathrm{Ent}}$	rada	$\underline{\text{Salida}}$
S	I_0	I_1	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Tabla 2: Tabla de verdad para el multiplexor 2 a $1\,$

3.2. Multiplexor

Un multiplexor es un circuito que tiene n entradas y mediante una señal de selección se especifica cuál entrada se redirige a la salida. La tabla de verdad para el multiplexor 2 a 1 que se requiere implementar se muestra en la tabla 2.

4. Aspectos técnicos de implementación

A continuación se detallan los componentes necesarios para realizar el circuito:

- Protoboard
- \blacksquare CI de compuertas AND~7408
- \blacksquare CI de compuertas OR 7432
- ullet CI de compuertas NOT 7404
- Transistor NPN
- LED
- Resistencias
- Dip switch
- Cables para fuente de voltaje

5. Validación

Es conveniente validar cada componente (cada una de sus salidas) antes de comenzar a implementar el siguiente. Si la salida del circuito no es la deseada, se debe verificar que se implementó la ecuación lógica correcta. Adicionalmente, algunas posibles fuentes de error son:

- Falta polarizar las compuertas lógicas.
- Componentes conectados al revés.
- Mal contacto con la protoboard.