

Ministério da Educação Universidade Tecnológica Federal do Paraná - UTFPR Campus Toledo

Apostila

Matrizes, Determinantes e Sistemas Lineares

Adriana Camila Braga
Araceli Ciotti de Marins
Daniela Trentin
Dione Milani
Gustavo Henrique Dalposso
Marcio Paulo de Oliveira
Rodolfo Eduardo Vertuan
Suellen Ribeiro Pardo
Sérgio Schimith
Vanderlei Galina

1. Matrizes

1.1 Definição

As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência e da engenharia. Várias operações realizadas por computadores são através de matrizes. Vejamos um exemplo. Considere a tabela abaixo que apresenta o peso, a idade e a altura de 5 pessoas.

Nome	Peso(kg)	Idade(anos)	Altura(m)
Ricardo	70	23	1,70
José	60	42	1,60
João	55	21	1,65
Pedro	50	18	1,72
Augusto	66	30	1,68

O conjunto ordenado dos números que formam a tabela é denominado **matriz** e cada número é chamado **elemento** da matriz.

Neste exemplo temos uma matriz de ordem 5 x 3 (lê-se: cinco por três), isto é, uma matriz formada por 5 linhas e 3 colunas. Representa-se uma matriz colocando-se seus elementos entre parênteses ou entre colchetes.

Exemplos:

$$\begin{bmatrix} 2 & 3 & 1 \\ 7 & 6 & 8 \end{bmatrix}$$
: matriz de ordem 2 x 3 (2 linhas e 3 colunas)

[4 1 3]: matriz de ordem 1 x 3 (1 linha e 3 colunas)

$$\begin{bmatrix} 0,4\\ \frac{3}{5} \end{bmatrix}$$
: matriz de ordem 2 x 1 (2 linhas e 1 coluna)

1.2 Representação Algébrica

Utilizamos letras maiúsculas para indicar matrizes genéricas e letras minúsculas correspondentes para os elementos. Algebricamente, uma matriz pode ser representada por:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \text{com} men \in \mathbb{N}^*$$

Pode-se abreviadamente representar a matriz acima por $A = (a_{ij})_{n \times m}$

$$a_{ij} = i - linha$$

 $j - coluna$

 $a_{42} = 18$ (lê-se: a quatro dois é igual a dezoito)

(na tabela significa a idade de Pedro 18)

Exemplo: Achar os elementos da matriz $A = (a_{ij})_{3 \times 2}$ em que $a_{ij} = 3i - j$.

Resolução: A representação genérica da matriz é:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}_{3x2}$$

$$a_{ij} = 3i - j$$

$$a_{11} = 3 \cdot 1 - 1 = 2$$

$$a_{12} = 3 \cdot 1 - 2 = 1$$

$$a_{21} = 3 \cdot 2 - 1 = 5$$

$$a_{22} = 3 \cdot 2 - 2 = 4$$

$$a_{31} = 3 \cdot 3 - 1 = 8$$

$$a_{32} = 3 \cdot 3 - 2 = 7$$

$$\begin{vmatrix} 2 & 1 \\ 5 & 4 \\ 8 & 7 \end{vmatrix}$$

1.3 Matriz Quadrada

Se o número de linhas de uma matriz for igual ao número de colunas, a matriz é dita quadrada.

Exemplo:

$$A = \begin{bmatrix} 3 & 4 \\ -1 & 0 \end{bmatrix}$$
 é uma matriz quadrada de ordem 2

Observações:

- 1ª) Quando todos os elementos de uma matriz forem iguais a zero, dizemos que é uma matriz nula.
- 2^a) Os elementos de uma matriz quadrada, em que i = j, formam uma diagonal denominada **diagonal principal**. A outra diagonal é chamada **diagonal secundária**.

Resolva:

- 1) Ache os elementos da matriz A = (a_{ij}) de ordem 3, em que $a_{ii} = i^2 + j^2$
- 2) Escreva os elementos da matriz A = (a_{ij}) de ordem 3, definida por $a_{ij} = \begin{cases} (-1)^{i+j}, se \ i \neq j \\ 0, se \ i = j \end{cases}$
- 3) Escreva os elementos da matriz A = $(a_{ij})_{4x2}$, definida por $a_{ij} = \begin{cases} i+j, se \ i \leq j \\ i-j, se \ i > j \end{cases}$

1.4 Matriz unidade ou matriz identidade

A matriz quadrada de ordem n, em que todos os elementos da diagonal principal são iguais a 1 e os demais elementos são iguais a 0, é denominada **matriz unidade ou matriz identidade.** Representa-se a matriz unidade por I_n.

Exemplo:

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1.5 Matriz tranposta

Se A é uma matriz de ordem m x n, denominamos transposta de A a matriz de ordem n x m obtida pela troca ordenada das linhas pelas colunas. Representa-se a matriz transposta de A por A^t .

Exemplo:
$$A = \begin{bmatrix} 2 & 1 \\ 5 & 4 \\ 8 & 7 \end{bmatrix}$$
 a sua transposta é $A^t = \begin{bmatrix} 2 & 5 & 8 \\ 1 & 4 & 7 \end{bmatrix}$

1.6 Igualdade de Matrizes

Sejam as matrizes A e B de mesma ordem. Se cada elemento de A for igual ao elemento correspondente de B, as matrizes A e B são ditas iguais.

$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{mxn} \qquad B = \begin{bmatrix} b_{ij} \end{bmatrix}_{mxn}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}_{2x3} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}_{2x3}$$

$$A = B \Leftrightarrow a_{ii} = b_{ii}$$

Exemplo: Dadas as matrizes $A = \begin{pmatrix} 2 & 5 \\ 10 & 1 \end{pmatrix} e$ $B = \begin{pmatrix} x+y & 5 \\ 3x-y & 1 \end{pmatrix}$, calcular x e y para que

A = B.

Resolução:

$$\begin{cases} x + y = 2 \\ 3x - y = 10 \end{cases}$$

$$4x = 12$$

$$x = 3 \Rightarrow 3 + y = 2 \Rightarrow y = 2 - 3 \Rightarrow y = -1$$

$$Solução: x = 3 e y = -1$$

Resolva:

1) Determine x e y, sabendo que
$$\binom{2x+3y}{3x-y} = \binom{7}{16}$$

2) Determine a, b, x e y, sabendo que
$$\begin{pmatrix} x+y & 2a+b \\ 2x-y & a-b \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 0 & 7 \end{pmatrix}$$

3) Dada as matrizes
$$A = \begin{pmatrix} 0 & \sqrt{2} & 4 \\ -6 & 3 & y \\ 5 & 1 & 2 \end{pmatrix} e B = \begin{pmatrix} 0 & -6 & 5 \\ x & 3 & 1 \\ 4 & 8 & z \end{pmatrix}$$
, calcule x, y e z para que

 $B = A^t$.

4) Sejam
$$A = \begin{pmatrix} \frac{1}{16} & a^2 \\ -27 & \log_3 \frac{1}{81} \end{pmatrix} e B = \begin{pmatrix} 2^b & 9 \\ a^3 & c \end{pmatrix}$$
 calcule a, b e c para que A=B.

1.7 Operações com matrizes

Adição e Subtração: a adição e subtração de duas matrizes do mesmo tipo é efetuada somando-se ou subtraindo-se os seus elementos correspondentes.

Exemplo:

$$C = A + B$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$C = \begin{pmatrix} sen^2\alpha & \cos^2\alpha \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} \cos^2\alpha & -\cos^2\alpha \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} sen^2\alpha + \cos^2\alpha & 0 \\ 2 & 5 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 \\ 2 & 5 \end{pmatrix}$$

Matriz oposta: denomina-se matriz oposta de uma matriz A a matriz – A cujos elementos são os simétricos dos elementos correspondentes de A

Exemplo:

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 5 \end{pmatrix} \Rightarrow -A = \begin{pmatrix} -1 & 0 \\ -2 & -5 \end{pmatrix}$$

Propriedades da Adição:

Comutativa: A + B = B + A

Associativa: A + (B + C) = (A + B) + C

Elemento Neutro: A + 0 = A

Elemento Oposto: A + (-A) = 0

Exemplo: Dadas as matrizes $A = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 2 & 5 \end{bmatrix}$ $e \ C = \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}$, calcule:

a)
$$A + B = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -1 & 9 \end{bmatrix}$$

b)
$$A - B^t - C = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ -1 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -8 & -2 \end{bmatrix}$$

Exemplo: Dadas as matrizes $A = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} eB = \begin{bmatrix} -1 \\ -4 \\ 2 \end{bmatrix}$, calcular a matriz X tal que

$$X - A + B = 0$$

O segundo membro da equação é uma matriz nula de ordem 3 x 1.

Se
$$X - A + B = 0 \Rightarrow X = A - B = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} - \begin{bmatrix} -1 \\ -4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$$

Resolva:

1) Dada a matriz
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & -2 \end{bmatrix}$$
, obtenha a matriz X tal que $X = A + A^{t}$

2) Sendo A = $(a_{ij})_{1x3}$ tal que $a_{ij} = 2i - j$ e B = $(b_{ij})_{1x3}$ tal que $b_{ij} = -i + j + 1$, calcule A+B.

3) Ache m, n, p e q, de modo que:
$$\begin{bmatrix} m & 2m \\ p & p \end{bmatrix} + \begin{bmatrix} n & -n \\ q & -3q \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 1 & 5 \end{bmatrix}$$

4) Calcule a matriz X, sabendo que
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 5 & 1 & 3 \\ -2 & 0 & 2 \end{bmatrix} e (X + A)^T = B$$

Multiplicação de um número real por uma matriz

Para multiplicar um número real por uma matriz multiplicamos o número por todos os elementos da matriz, e o resultado é uma matriz do mesmo tipo.

$$A = (a_{ij})$$
 $K = número real$

$$B = (b_{ij})$$
, onde, $b_{ij} = K.a_{ij}$

$$i\in\{1,2,\ldots,m\}$$

$$j \in \{1, 2, \dots, n\}$$

Exemplo:

1.
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & -2 & 0 \\ -3 & 1 & -1 \end{bmatrix}$

a)
$$2X + A - B = 0$$

$$2X = +(-A) + B \Leftrightarrow X = \frac{B + (-A)}{2}$$

$$X = \frac{1}{2} \cdot \left\{ \begin{bmatrix} 4 & -2 & 0 \\ -3 & 1 & -1 \end{bmatrix} + \begin{bmatrix} -3 & -2 & 1 \\ 0 & 5 & -4 \end{bmatrix} \right\} = \frac{1}{2} \cdot \begin{bmatrix} 1 & -4 & 1 \\ -3 & 6 & -5 \end{bmatrix}$$

$$X = \begin{bmatrix} 1/2 & /2 & 1/2 \\ -3/2 & 3 & -5/2 \end{bmatrix}$$

b)
$$3X - 2A + B = 0$$

$$3X = 2A + (-B) \Leftrightarrow X = \frac{1}{3} \cdot [2A + (-B)]$$

$$X = \frac{1}{3} \cdot \left\{ \begin{bmatrix} 6 & 4 & -2 \\ 0 & -10 & 8 \end{bmatrix} + \begin{bmatrix} -4 & 2 & 0 \\ 3 & -1 & 1 \end{bmatrix} \right\} = \frac{1}{3} \cdot \begin{bmatrix} 2 & 6 & -2 \\ 3 & -11 & 9 \end{bmatrix}$$

$$X = \begin{bmatrix} 2/3 & 2 & -2/3 \\ 1 & -11/3 & 3 \end{bmatrix}$$

Resolva:

1) Para
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & -2 & 0 \\ -3 & 1 & -1 \end{bmatrix}$ Resolva $X + 2A - B = 0$

2) Para
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & -2 & 0 \\ -3 & 1 & -1 \end{bmatrix}$ Resolva $\frac{X}{3} + 2A = B$

3) Resolva o sistema
$$\begin{cases} X + Y = A + B \\ X - Y = 2A - B \end{cases}$$
, sendo $A = \begin{bmatrix} 3 \\ -2 \end{bmatrix} e B = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$.

Multiplicação de Matrizes

Não é uma operação tão simples como as anteriores; não basta multiplicar os elementos correspondentes. Vejamos a seguinte situação.

Durante a 1ª fase da Copa do Mundo de 1998 (França), o grupo do Brasil era formado também pela escócia, Marrocos e Noruega. Os resultados estão registrados abaixo em uma matriz A, de ordem 4 x 3.

País	Vitória	Empate	Derrota
Brasil	2	0	1
Escócia	0	1	2
Marrocos	1	1	1
Noruega	1	2	0

Então:
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

A pontuação pode ser descrita pela matriz B, de ordem 3 x 1

Número de Pontos		
Vitória	3	
Empate	1	
Derrota	0	

Então:
$$B = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

Terminada a 1ª fase a pontuação é obtida com o total de pontos feitos por cada país. Essa pontuação pode ser registrada numa matriz que é representada por AB (produto de A por B). Veja como é obtida a classificação:

$$Brasil: 2 \cdot 3 + 0 \cdot 1 + 1 \cdot 0 = 6$$

$$Esc\'{o}cia: 0 \cdot 3 + 1 \cdot 1 + 2 \cdot 0 = 1$$

$$Marro \cos: 1 \cdot 3 + 1 \cdot 1 + 1 \cdot 0 = 4$$

$$Noruega: 1 \cdot 3 + 2 \cdot 1 + 0 \cdot 0 = 5$$

$$AB = \begin{bmatrix} 6 \\ 1 \\ 4 \\ 5 \end{bmatrix}$$

Esse exemplo sugere como deve ser feita a multiplicação de matrizes. Observe a relação que existe entre as ordens das matrizes:

$$A_{4x3} \cdot B_{3x1} = AB_{4x1}$$

Observe que definimos o produto AB de duas matrizes quando o número de colunas de A for igual ao de linhas de B; além disso, notamos que o produto AB possui o número de linhas de A e o número de colunas de B.

$$A_{m\times n}\cdot B_{n\times p}=AB_{m\times p}$$

Exemplo 1:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -2 \end{pmatrix}_{2x3} e B = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 2 & -1 \end{pmatrix}_{3x2}$$

A matriz existe se n = p (o número de coluna de A é igual o número de linha da B.)

$$C = \begin{pmatrix} 1.(2) + 2.(-1) + 1.(2) & 1.(3) + 2(4) + 1.(-1) \\ 2.(2) + 3.(-1) - 2.(2) & 2.(3) + 3.(4) - 2.(-1) \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 10 \\ -3 & 20 \end{pmatrix}_{3x^2}$$

Exemplo 2:

Dada as matrizes:

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Calcule:

a)
$$A.B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2+0 & 1+0 \\ 4+0 & 2+1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$

b) B.A =
$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2+2 & 0+1 \\ 0+2 & 0+1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix}$$

c) A.C =
$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2+0 & 0+0 \\ 4+0 & 0+2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}$$

d)
$$C.A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2+0 & 0+0 \\ 0+4 & 0+2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}$$

Observação: 1ªPropriedade Comutativa A.B=B.A, **não** é valida na multiplicação de matrizes.

Exemplo 3:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

Calcule:

$$A.B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1-1 & 1-1 \\ 1-1 & 1-1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Observação: Se A e B são matrizes tais que AB = 0 (matriz nula), não podemos garantir que uma delas (A ou B) seja nula.

Exemplo 4:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A.B = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1+2+0 & 2+2+0 & 3+(-2)+0 \\ 1+1+0 & 2+1+0 & 3+(-1)+0 \\ -1+4+0 & -2+4+0 & -3-4+0 \end{pmatrix}$$

$$A.B = \begin{pmatrix} 3 & 4 & 1 \\ 2 & 3 & 2 \\ 3 & 2 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1+2+0 & 2+2+0 & 3+(-2)+0 \\ 1+1+0 & 2+1+0 & 3+(-1)+0 \\ -1+4+0 & -2+4+0 & -3-4+0 \end{pmatrix}$$

$$A.C = \begin{pmatrix} 3 & 4 & 1 \\ 2 & 3 & 2 \\ 3 & 2 & -7 \end{pmatrix}$$

Observação: A.B = A.C, $B \neq C$. – na álgebra $a.b = a.c \Leftrightarrow b = c$

3ª Propriedade: o cancelamento do produto de matrizes não é válido.

Propriedades:

- Distributiva: A.(B + C) = A.B + A.C

- Associativa: A.(B.C) = (A.B).C

- Elemento neutro: A.In = A

Resolva:

1) Efetue:

a)
$$\begin{bmatrix} 5 & -3 \\ -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

$$\mathbf{c}) \begin{bmatrix} 5 & 2 \\ -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$$

2) Dada a matriz
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, calcule A^2 .

3) Sabendo que
$$M = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} e N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
, calcule MN-NM.

Matriz Transposta

Seja A uma matriz m x n. Denomina-se matriz transposta de A (indica-se A^t) a matriz n x m cujas linhas são ordenadamente, as colunas de A.

Exemplos

$$A = \begin{bmatrix} 2 & -2 \\ 0 & -2 \end{bmatrix} \Rightarrow A^{t} = \begin{bmatrix} 2 & 0 \\ -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 10 & -1 \\ 0 & -2 & 6 \end{bmatrix} \Rightarrow A^{t} = \begin{bmatrix} 3 & 0 \\ 10 & -2 \\ -1 & 6 \end{bmatrix}$$

Propriedades da Transposta:

- $A = B \Leftrightarrow A^t = B^t$
- $\bullet \quad \left(A^t\right)^t = A$
- $(K.A)^t = K.A^t$ (K real)
- $\bullet \quad (A+B)^t = A^t + B^t$
- $(A.B)^t = B^t.A^t$ (no produto de A.B, inverte a ordem)

Resolva:

1) Sendo A =
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 e B = $\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$, mostre que $(A.B)^t = B^t.A^t$.

Matriz simétrica

Quando $A = A^t$ dizemos que A é matriz simétrica.

Exemplo:

$$A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & 4 & 8 \\ 5 & 8 & -9 \end{bmatrix} \qquad A^{t} = \begin{bmatrix} 2 & 3 & 5 \\ 3 & 4 & 8 \\ 5 & 8 & -9 \end{bmatrix}$$

Matriz anti-simétrica

Quando $A = -A^t$ dizemos que A é matriz anti-simétrica.

Exemplo:

$$A = \begin{bmatrix} 0 & 4 & -5 \\ -4 & 0 & 8 \\ 5 & -8 & 0 \end{bmatrix} \qquad A^t = \begin{bmatrix} 0 & -4 & 5 \\ 4 & 0 & -8 \\ -5 & 8 & 0 \end{bmatrix}$$

Matriz Inversa

Dada uma matriz quadrada \mathbf{A} , de ordem \mathbf{n} , se \mathbf{X} é uma matriz tal que $AX = I_n$ e $XA = I_n$, então \mathbf{X} é denominada matriz inversa de \mathbf{A} e é indicada por \mathbf{A}^{-1} . Quando existe a matriz inversa de \mathbf{A} , dizemos que \mathbf{A} é uma matriz inversível ou não-singular.

Exemplo: Verifique se existe e, em caso afirmativo, determine a matriz inversa de $A = \begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix}$.

Resolução: Pela definição temos,

$$\begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 5a + 8c & 5b + 8d \\ 2a + 3c & 2b + 3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Pela igualdade de matrizes, temos os sistemas,

$$\begin{cases} 5a + 8c = 1 \\ 2a + 3c = 0 \end{cases} \Rightarrow a = -3 \ e \ c = 2$$

$$\begin{cases} 5b + 8d = 0 \\ 2b + 3d = 1 \end{cases} \Rightarrow b = 8 \ e \ d = -5$$

Então
$$X = \begin{bmatrix} -3 & 8 \\ 2 & -5 \end{bmatrix}$$
, para $AX = I_2$.

A seguir verificamos se $XA = I_2$.

$$\begin{bmatrix} -3 & 8 \\ 2 & -5 \end{bmatrix} \cdot \begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3.5+8.2 & -3.8+8.3 \\ 2.5+-5.2 & 2.8+-5.3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} OK$$

Então
$$\begin{bmatrix} -3 & 8 \\ 2 & -5 \end{bmatrix}$$
 é a matriz inversa de $\begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix}$.

$$A^{-1} = \begin{bmatrix} -3 & 8 \\ 2 & -5 \end{bmatrix}$$

1) Determine a inversa das matrizes:

a)
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 0 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

Equações matriciais do tipo AX = B ou XA = B, para A inversível.

Seja A uma matriz tal que exista A^{-1} . Sabendo que AX = B, vamos demonstrar que $X = A^{-1}B$.

$$AX = B$$

$$A^{-1}(AX) = A^{-1}B$$

$$(A^{-1}A)X = A^{-1}B$$

$$IX = A^{-1}B$$

$$\therefore X = A^{-1}B$$

O mesmo também é válido para $XA = B \Rightarrow X = BA^{-1}$

1) Sabendo que
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} e B = \begin{bmatrix} 2 & 5 \\ 3 & -1 \end{bmatrix}$$

a) verifique se
$$A^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

b) determine X tal que AX = B

Exercícios

1. Construa a matriz real quadrada A de ordem 3, definida por: $a_{ij} = \begin{cases} 2^{i+j} \sec i < j \\ i^2 - j + 1 \sec i \ge j \end{cases}$

Resposta:
$$\begin{pmatrix} 1 & 8 & 16 \\ 4 & 3 & 32 \\ 9 & 8 & 7 \end{pmatrix}$$

2. Sendo
$$M = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & -2 \\ 4 & -3 & 5 \end{pmatrix}$$
, $N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ e $P = \begin{pmatrix} 0 & -1 & 1 \\ -2 & 0 & 1 \\ -3 & 2 & 0 \end{pmatrix}$, calcule:

- a) N-P+M
- b) 2M 3N P
- c) N-2(M-P)
- d)

Resposta: a)
$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 1 & -3 \\ 7 & -5 & 6 \end{pmatrix}$$
 b) $\begin{pmatrix} -1 & 5 & 5 \\ 0 & -3 & -5 \\ 11 & -8 & 7 \end{pmatrix}$ c) $\begin{pmatrix} -1 & -6 & -4 \\ -2 & 1 & 6 \\ -14 & -10 & -9 \end{pmatrix}$

3. Calcule a matriz X, sabendo que
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 4 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 1 & 3 \\ -2 & 0 & 2 \end{pmatrix}$ e $(X + A)^t = B$.

Resposta:
$$X = \begin{pmatrix} 4 & -4 \\ 2 & 0 \\ -1 & -1 \end{pmatrix}$$

4. Dadas as matrizes
$$A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$, determine a e b , de modo que $AB = I$, em que I é a matriz identidade.

Resposta: a = 1 e b = 0

5. Dadas as matrizes
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix}$. Calcule:

- a) A^2
- b) A³
- c) A²B
- d) $A^2 + 3B$

Resposta: a)
$$\begin{pmatrix} 1 & -8 \\ 0 & 9 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -26 \\ 0 & 27 \end{pmatrix}$ c) $\begin{pmatrix} 15 & -3 \\ 18 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 4 & -17 \\ 6 & 9 \end{pmatrix}$

6. Dadas as matrizes
$$A = \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}$, calcule $AB + B^t$

Resposta:
$$\begin{pmatrix} 8 & 11 \\ 9 & 3 \end{pmatrix}$$

7. Resolva a equação:

$$\begin{pmatrix} 2x & -3 \\ x-1 & y \end{pmatrix} \begin{pmatrix} 2 & x \\ -1 & y \end{pmatrix} = \begin{pmatrix} 11 & 2x^2 - 3y \\ 2x - y - 2 & 11 \end{pmatrix}$$

Resposta: $V = \{(2,3),(2,-3)\}$

8. Sendo $A = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$, $P = \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix}$ e $B = \frac{1}{13} \begin{pmatrix} a & 10 \\ 75 & b \end{pmatrix}$, determine os valores de a e b, tais que $B = P.A.P^{-1}$.

Resposta: a = 24 e b = -11

9. Determine os valores de x, y e z na igualdade abaixo, envolvendo matrizes reais 2 x 2:

$$\begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x - y & 0 \\ x & z \end{pmatrix} + \begin{pmatrix} z - y & 0 \\ y - z & 0 \end{pmatrix}$$

Resposta: x = 0, y = 0 e z = 0 ou x = 3, y = 6, z = 9

- 10. Dada a matriz $A = (a_{ij})_{2x2}$, tal que $a_{ij} = \begin{cases} sen(\frac{\pi}{2}i) \text{ se } i = j \\ cos(\pi j) \text{ se } i \neq j \end{cases}$, determine:
 - a) A^{i}
 - b) A²
 - c) A^{-1}

Resposta: a)
$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Testes:

- 11. A é uma matriz m x n e B é uma matriz m x p. A afirmação falsa é:
 - a) A + B existe se, e somente se, n = p.
 - b) $A = A^t$ implies m = n
 - c) A.B existe se, e somente se, n = p
 - d) $A.B^t$ existe se, e somente se, n = p.
 - e) $A^t.B$ sempre existe.

Resposta: letra C

12. Seja $A = (a_{ij})$ a matriz real quadrada de ordem 2, definida por $a_{ij} = \begin{cases} 2^{i+j} \operatorname{para} i < j \\ i^2 + 1 \operatorname{para} i \ge j \end{cases}$.

Então:

a)
$$A = \begin{pmatrix} 2 & 8 \\ 5 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & 8 \\ 5 & 6 \end{pmatrix}$ c) $A = \begin{pmatrix} 2 & 4 \\ 8 & 5 \end{pmatrix}$ d) $A = \begin{pmatrix} 2 & 8 \\ 2 & 5 \end{pmatrix}$ e) n.d.a.

Resposta: letra A

13. Dadas as matrizes
$$A = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$$
 e $B = \begin{pmatrix} 2 & -\frac{1}{2} \\ 3 & 1 \end{pmatrix}$, então a matriz -2AB é igual a:

a)
$$\begin{pmatrix} 8 & -2 \\ 14 & 7 \end{pmatrix}$$
 b) $\begin{pmatrix} -8 & -2 \\ 14 & 7 \end{pmatrix}$ c) $\begin{pmatrix} -8 & -2 \\ -14 & -7 \end{pmatrix}$ d) $\begin{pmatrix} 8 & 2 \\ 14 & 7 \end{pmatrix}$ e) $\begin{pmatrix} -8 & 2 \\ -14 & -7 \end{pmatrix}$

Resposta: letra E

14. Considere as matrizes:

$$A = (a_{ij})$$
, 4 x 7 onde $a_{ij} = i - j$
 $B = (b_{ij})$, 7 x 9 onde $b_{ij} = i$
 $C = (c_{ii})$, tal que $C = AB$.

O elemento C_{63} :

- a) é -112.
- b) é -18.
- c) é -9.
- d) é 112.
- e) não existe.

Resposta: letra E

15. Dadas as matrizes
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$, para A.B temos:

a)
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ e) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Resposta: letra B

16. O produto M.N da matriz
$$M = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 pela matriz $N = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$;

- a) não se define.
- b) É a matriz identidade de ordem 3
- c) É uma matriz de uma linha e uma coluna.
- d) É uma matriz quadrada de ordem 3.
- e) Não é uma matriz quadrada.

Resposta: letra D

17. A inversa da matriz
$$\begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix}$$
 é:

a)
$$\begin{pmatrix} \frac{1}{4} & \frac{1}{3} \\ 1 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -3 \\ -1 & 4 \end{pmatrix}$ c) Inexistente. d) $\begin{pmatrix} -\frac{1}{4} & \frac{1}{3} \\ 1 & -1 \end{pmatrix}$ e) $\begin{pmatrix} -4 & 3 \\ -1 & 1 \end{pmatrix}$

Resposta: letra B

18. Se
$$\begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$$
, então:

a)
$$x = 5 \text{ e } y = -7$$

b)
$$x = -7 \text{ e } y = -5$$

c)
$$x = -5 \text{ e } y = -7$$

d)
$$x = -7 \text{ e } y = 5$$

e)
$$x = 7 \text{ e } y = -5$$

Resposta: letra B

19. Sendo
$$A = \begin{bmatrix} -1 & 7 \\ -2 & 4 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & -1 \\ 4 & 0 \end{bmatrix}$, então a matriz X, tal que $\frac{X - A}{2} = \frac{X + 2B}{3}$, é

igual a:

a)
$$\begin{pmatrix} -1 & 4 \\ 3 & 7 \end{pmatrix}$$
 b) $\begin{pmatrix} -7 & 9 \\ 0 & -8 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 2 \\ 4 & 9 \end{pmatrix}$ d) $\begin{pmatrix} 9 & 17 \\ 10 & 12 \end{pmatrix}$ e) $\begin{pmatrix} -7 & -8 \\ 9 & 12 \end{pmatrix}$

Resposta: letra D

20. Se A e B são matrizes tais que:
$$A = \begin{bmatrix} 2 \\ 1 \\ x \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, então a matriz $Y = A^t . B$ será nula

para:

a)
$$x = 0$$

b)
$$x = -1$$

c)
$$x = -2$$

d)
$$x = -3$$

e)
$$x = -4$$

Resposta: letra E

21. A Matriz
$$\begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix}$$
, na qual x é um número real, é inversível se, e somente se:

a)
$$x \neq 0$$
 b) $x \neq 1$ c) $x \neq \frac{1}{2}$ d) $x \neq -\frac{1}{2} e x \neq \frac{1}{2}$ e) $x \neq -1 e x \neq 1$

Resposta: letra E

22. A solução da equação matricial
$$\begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & -2 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 é a matriz:

a)
$$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$ c) $\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ d) $\begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$ e) $\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$

Resposta: letra B

23. Considere as seguintes matrizes:
$$A = \begin{bmatrix} 4-3x & 7-x \\ 0 & -10 \\ -5 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -4 \\ 5 & 0 \\ 2 & 2 \end{bmatrix}$, $C = \begin{bmatrix} x & x+1 \\ 1 & x-1 \end{bmatrix}$ e

$$D = \begin{bmatrix} 0 & 10 \\ 10 & 5 \\ 1 & 4 \end{bmatrix}$$
. O valor de x para que se tenha: A + BC = D é:

Resposta: letra C

- 24. As matrizes abaixo comutam, $\begin{bmatrix} a & a \\ a & 2 \end{bmatrix}$ e $\begin{bmatrix} 0 & 3 \\ 3 & 3 \end{bmatrix}$. O valor de a é:
 - a) 1
 - b) 0
 - c) 2
 - d) -1
 - e) 3

Resposta: letra A

2. Determinantes

2.1 Definição

Determinante é um número real que se associa a uma matriz quadrada.

2.2 Determinate de uma matriz quadrada de 2ª ordem

Dada a matriz de 2ª ordem $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, chama-se determinante associado a matriz

A (ou determinante de 2ª ordem) o número real obtido pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.

Então, determinante de $A = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

Indica-se det
$$A = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Observação: Dada a matriz A de ordem 1, define-se como determinante de A o seu próprio elemento, isto é:

$$\det A = |A| = a_{11}$$

Exemplo:
$$\begin{vmatrix} 2 & 4 \\ 3 & 1 \end{vmatrix}_{2x2}$$

$$\det A = 2.1 - 3.4 = 2 - 12$$

$$\det A = -10$$

Resolva:

1) Resolva a equação:
$$\begin{vmatrix} x+3 & 2 \\ x-1 & 5 \end{vmatrix} = 0$$

Resposta:
$$S = \left\{-\frac{17}{3}\right\}$$

2) Resolva a equação:
$$\begin{vmatrix} x+3 & 5 \\ 1 & x-1 \end{vmatrix} = 0$$

Resposta:
$$S = \{-4, 2\}$$

3) Resolva a inequação:
$$\begin{vmatrix} x & 3 \\ 2 & x \end{vmatrix} \ge -x$$

Resposta:
$$S = \{x \in R \mid x \le -3 \text{ ou } x \ge 2\}$$

4) Sendo
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} e B = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$
, calcule det(AB).

Resposta: -12

2.3 Menor Complementar

O menor complementar D_{ij} do elemento a_{ij} da matriz quadrada A, é o determinante que se obtém de A, eliminando—se dela a linha "i" e a coluna "j", ou seja, eliminando a linha e a coluna que contém o elemento a_{ij} considerado.

Exemplo:

Dada a matriz
$$A = \begin{vmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \\ 5 & -2 & 1 \end{vmatrix}$$
, calcular D_{11} , D_{12} , D_{13} , D_{21} , e D_{32} .

Resolução:

$$D_{11} = \begin{vmatrix} 1 & 4 \\ -2 & 1 \end{vmatrix} = 1 + 8 = 9 \qquad D_{12} = \begin{vmatrix} 0 & 4 \\ 5 & 1 \end{vmatrix} = -20 \qquad D_{13} = \begin{vmatrix} 0 & 1 \\ 5 & -2 \end{vmatrix} = -5$$

$$D_{21} = \begin{vmatrix} -1 & 3 \\ -2 & 1 \end{vmatrix} = -1 + 6 = 5 \qquad D_{32} = \begin{vmatrix} 2 & 3 \\ 0 & 4 \end{vmatrix} = 8$$

2.4 Cofator

Consideremos a matriz quadrada de 3ª ordem A =
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Chama-se Cofator do elemento a_{ij} da matriz quadrada o número real que se obtém multiplicando-se $(-1)^{i+j}$ pelo menor complementar de a_{ij} e que é representado por $A_{ii} = (-1)^{i+j}.D_{ii}$.

Exemplo: Dada a matriz $A = \begin{bmatrix} 3 & 1 & -2 \\ 4 & 0 & 2 \\ 3 & 7 & 8 \end{bmatrix}$, calcular:

a)
$$A_{11}$$
 b) A_{13} c) A_{32}

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 0 & 2 \\ 7 & 8 \end{vmatrix} = 1 \cdot (-14) = -14$$

$$A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 4 & 0 \\ 3 & 7 \end{vmatrix} = 1 \cdot (28) = 28$$

$$A_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 3 & -2 \\ 4 & 2 \end{vmatrix} = -1 \cdot (6+8) = -14$$

Resolva: Dada a matriz $A = \begin{bmatrix} 0 & -1 & 2 \\ 3 & 4 & 5 \\ -2 & 7 & 1 \end{bmatrix}$ determine A_{13} , A_{21} , A_{32} e A_{33} .

Resposta: $A_{13} = 29$, $A_{21} = 15$, $A_{32} = 6$ e $A_{33} = 3$.

2.5 Definição de Laplace

O determinante associado a uma matriz quadrada A de ordem $n \ge 2$ é o número que se obtém pela soma dos produtos dos elementos de uma linha (ou de uma coluna) qualquer pelos respectivos cofatores. Exemplo:

Sendo $A = \begin{bmatrix} 2 & 3 & -1 \\ 5 & 2 & 0 \\ 1 & 4 & -3 \end{bmatrix}$ uma matriz de ordem 3, podemos calcular o det A a partir de

determinantes de ordem 2 e da definição de Laplace. Escolhendo os elementos da primeira linha temos:

$$\det A = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13} =$$

$$= 2 \cdot (-1)^{1+1} \cdot \begin{vmatrix} 2 & 0 \\ 4 & -3 \end{vmatrix} + 3 \cdot (-1)^{1+2} \cdot \begin{vmatrix} 5 & 0 \\ 1 & -3 \end{vmatrix} + (-1) \cdot (-1)^{1+3} \cdot \begin{vmatrix} 5 & 2 \\ 1 & 4 \end{vmatrix} =$$

$$= 2 \cdot (-6) + (-3) \cdot (-15) + (-1) \cdot 18 = -12 + 45 - 18 = 15$$

Observação: Para se aplicar esse método é melhor escolher a linha ou coluna que tiver o maior número de zeros.

Resolva: Calcule o determinante da matriz A utilizando a definição de Laplace:

a)
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & 4 \\ -1 & 0 & 3 \end{bmatrix}$$

Resposta: $\det A = 11$

b)
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 5 \\ 6 & -2 & 1 \end{bmatrix}$$

Resposta: $\det A = -74$

2.6 Regra de Sarrus (regra prática para calcular determinantes de ordem 3)

Seja a matriz $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$, repetimos as duas primeiras colunas à direita e efetuamos as

seis multiplicações em diagonal. Os produtos obtidos na direção da diagonal principal permanecem com o mesmo sinal. Os produtos obtidos da diagonal secundária mudam de sinal. O determinante é a soma dos valores obtidos.

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 0 & 2 & 1 \\ 4 & 2 & 1 & 4 & 2 \end{vmatrix} \Leftrightarrow \det A = (1 \cdot 1 \cdot 1) + (2 \cdot 0 \cdot 4) + (3 \cdot 2 \cdot 2) - (3 \cdot 1 \cdot 4) - (1 \cdot 0 \cdot 2) - (2 \cdot 2 \cdot 1) =$$

$$= 1 + 0 + 12 - 12 - 0 - 4 = -3$$

Resolva:

a) Calcule o determinante da matriz
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 5 & 2 & 0 \\ 1 & 4 & -3 \end{bmatrix}$$

Resposta: $\det A = 15$

b) Resolva a equação
$$\begin{vmatrix} x & 3 & 5 \\ x+1 & 2 & 1 \\ 3 & 2 & 4 \end{vmatrix} = 0$$

Resposta: $x = \frac{23}{4}$

c) Dada as matrizes
$$A = \begin{bmatrix} 2 & x \\ 3 & 9 \end{bmatrix} e B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & x \\ -1 & 2 & 1 \end{bmatrix}$$
, determine x para que det A = det B

Resposta: $x = \frac{13}{2}$

d) Resolva a equação
$$\begin{vmatrix} x & x & x \\ x & x & 4 \\ x & 4 & 4 \end{vmatrix} = 0$$

Resposta: $S = \{0,4\}$

e) Seja M = (m_{ij}) a matriz quadrada de ordem 3, em que: $m_{ij} = \begin{cases} 0, se \ i < j \\ i+j, se \ i=j \end{cases}$. Ache o valor do determinante de M.

Resposta: 48

f) Calcule o determinante da matriz P^2 , em que P é a matriz $P = \begin{bmatrix} \sqrt{2} & -1 & 1 \\ \sqrt{2} & 1 & -1 \\ 0 & \sqrt{2} & \sqrt{2} \end{bmatrix}$

Resposta: 64

2.7 Determinante de uma matriz quadrada de ordem n>3

Seja a matriz quadrada de ordem $4 A = \begin{bmatrix} 2 & 3 & -1 & 0 \\ 4 & -2 & 1 & 3 \\ 1 & -5 & 2 & 1 \\ 0 & 3 & -2 & 6 \end{bmatrix}$, vamos calcular o determinante de

A. Para tanto, aplicaremos o teorema de Laplace, até chegarmos a um determinate de 3ª ordem, e depois empregaremos a regra de Sarrus. Assim, desenvolvendo o determinate acima, segundo os elementos da 1ª linha, temos:

$$det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + a_{14}A_{14}$$
 (1)

$$a_{11}A_{11} = 2 \cdot (-1)^{1+1} \cdot \begin{vmatrix} -2 & 1 & 3 \\ -5 & 2 & 1 \\ 3 & -2 & 6 \end{vmatrix} = 2 \cdot 17 = 34$$

$$a_{12}A_{12} = 3 \cdot (-1)^{1+2} \cdot \begin{vmatrix} 4 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & -2 & 6 \end{vmatrix} = -3 \cdot 44 = -132$$

$$a_{13}A_{13} = -1 \cdot (-1)^{1+3} \cdot \begin{vmatrix} 4 & -2 & 3 \\ 1 & -5 & 1 \\ 0 & 3 & 6 \end{vmatrix} = -1 \cdot -111 = 111$$

$$a_{14}A_{14} = 0 \cdot (-1)^{1+4} \cdot \begin{vmatrix} 4 & -2 & 1 \\ 1 & -5 & 2 \\ 0 & 3 & -2 \end{vmatrix} = 0$$

Substituindo em (1) temos: det A = 34 - 132 + 111 = 13

Resolva: Calcule o determinante a seguir, desenvolvendo-o segundo os elementos da 1ª linha.

$$\begin{vmatrix} 2 & 1 & 3 & 1 \\ 4 & 3 & 1 & 4 \\ -1 & 5 & -2 & 1 \\ 1 & 3 & -2 & -1 \end{vmatrix}$$

Resposta: -180

2.8 Propriedade dos Determinantes

 1^a propriedade: Se todos os elementos de uma linha ou coluna de uma matriz quadrada A forem iguais a zero, seu determinante será nulo, isto é, det A = 0.

Exemplo:
$$\begin{vmatrix} 0 & 48 \\ 0 & -\frac{1}{3} \end{vmatrix} = 0 \cdot -\frac{1}{3} - 48 \cdot 0 = 0$$

 2^a propriedade: Se os elementos correspondentes de duas linhas (ou de duas colunas) de uma matriz quadrada A forem iguais, seu determinante será nulo, isto é, det A = 0

Exemplo:
$$\begin{vmatrix} 4 & 5 \\ 4 & 5 \end{vmatrix} = 4 \cdot 5 - 5 \cdot 4 = 0$$

 ${\bf 3^a}$ propriedade: Se uma matriz quadrada A possui duas linhas (ou colunas) proporcionais, seu determinante será nulo, isto é , det A=0

Exemplo:
$$\begin{vmatrix} 3 & 7 \\ 9 & 21 \end{vmatrix} = 3 \cdot 21 - 7 \cdot 9 = 0$$

4ª propriedade: Se todos os elementos de uma linha (ou de uma coluna) de uma matriz quadrada são multiplicados por um mesmo número real k, então seu determinante fica multiplicado por k.

Exemplo:
$$7\begin{vmatrix} 3 & -5 \\ 4 & 9 \end{vmatrix} = 7 \cdot (3 \cdot 9 - (-5) \cdot 4) = 7 \cdot (27 + 20) = 7 \cdot 47 = 329$$

$$\begin{vmatrix} 21 & -35 \\ 4 & 9 \end{vmatrix} = 21 \cdot 9 - (-35) \cdot 4 = 189 + 140 = 329$$

 5^a **propriedade:** Se uma matriz quadrada A de ordem n é multiplicada por um número real k, o seu determinante fica multiplicado por k^n , isto é: $det(kA_n) = k^n \cdot det A_n$

Exemplo:
$$A = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} \Rightarrow \det A = 15 - 8 = 7$$

$$5A = \begin{bmatrix} 15 & 20 \\ 10 & 25 \end{bmatrix} \Rightarrow \det 5A = 375 - 200 = 175 = 5^2 \cdot 7$$

 6^a propriedade: O determinante de uma matriz quadrada A é igual ao determinante de sua transposta, isto é, det $A = \det A^t$.

Exemplo:
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} e A^t = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

$$det A = a \cdot d - b \cdot c \ e \ det A^t = a \cdot d - c \cdot b$$

7ª propriedade: Se trocarmos de posição entre si duas linhas (ou colunas) de uma matriz quadrada A, o determinante da nova matriz obtida é o oposto do determinante da matriz anterior.

Exemplo:
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 5 & 3 & 0 \\ 2 & -2 & 5 \end{bmatrix} det A = 15 + 0 + 10 + 6 + 0 - 50 = -19$$

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 5 & 0 \\ -2 & 2 & 5 \end{bmatrix} det A = 50 + 0 - 6 - 10 + 0 - 15 = 19$$

8ª propriedade: O determinante de uma matriz triangular é igual ao produto dos elementos da diagonal principal.

Exemplo:
$$A = \begin{bmatrix} 5 & 0 & 0 \\ -1 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix} det A = 5 \cdot 2 \cdot 4 = 40$$

 9^a propriedade: Sendo A e B duas matrizes quadradas de mesma ordem e AB a matrizproduto, então $\det AB = \det A \cdot \det B$ (teorema de Binet)

Exemplo:
$$A = \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix} \quad det \, A = -3 - 10 = -13 \qquad B = \begin{bmatrix} 0 & 2 \\ 3 & 4 \end{bmatrix} \quad det \, B = -6$$

$$AB = \begin{bmatrix} 0 + 6 & 6 + 8 \\ 0 - 3 & 10 - 4 \end{bmatrix} = \begin{bmatrix} 6 & 14 \\ -3 & 6 \end{bmatrix} \quad det \, AB = 36 + 42 = 78 = (-13) \cdot (-6)$$

10ª propriedade: Seja A uma matriz quadrada. Se multiplicarmos todos os elementos de uma linha (ou coluna) pelo mesmo número e somarmos os resultados aos elementos correspondentes de outra linha (ou coluna), formando uma matriz B, então det A=det B (Teorema de Jacobi).

Exemplo:
$$A = \begin{bmatrix} 1 & 5 \\ 4 & 9 \end{bmatrix}$$
 $\det A = 9 - 20 = -11$

Multiplicando a 1ª linha por -2 e somando os resultados à 2ª linha obtemos:

$$A = \begin{bmatrix} 1 & 5 \\ 2 & -1 \end{bmatrix} \quad det A = -1 - 10 = -11$$

2.9 Exercícios:

1. Dadas as matrizes $A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix}$, calcule:

- a) det (A2)
- b) det (B2)
- c) $\det (A^2 + B^2)$

Resp: a) 1 b) 4 c) 18

2. (Faap – SP) Resolva a inequação $\begin{vmatrix} x & 3x \\ 4 & 2x \end{vmatrix} < 14$.

Resposta: $\{x \in R/-1 < x < 7\}$

3. Determine a solução da equação $\begin{vmatrix} x & \sqrt[3]{8} \\ -2 & -x \end{vmatrix} = 0$

Resposta: {-2,2}

- 4. Sendo $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$, dê o valor de:
- a) det (A). det(B)
- b) det (A.B)

Resposta: a) -10 b) -10

5. Seja a matriz A = (a_{ij}) de ordem 3, tal que: $a_{ij} = \begin{cases} 1, \text{ se } i < j \\ k, \text{ se } i = j \text{ e } k \in R \end{cases}$. Calcule k, -1 se i > j

de modo que o determinante da matriz A seja nulo.

Resposta: k = 0

6. (UFPR) Considere as matrizes
$$A = \begin{pmatrix} x & y & z \\ z & y & x \\ y & z & x \end{pmatrix}$$
 e $B = \begin{pmatrix} x+y & x+z \\ z-y & z-x \end{pmatrix}$ e $C = \begin{pmatrix} 4 & 6 \\ 2 & 4 \end{pmatrix}$.

Sabendo que a matriz B é igual à matriz C. Calcule o determinante da matriz A. Resposta: 72

7. Calcule o determinante da matriz M = (AB). C, sendo
$$A = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 3 & 5 \end{pmatrix}$ e

$$C = \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \\ 3 & -1 & 4 \end{pmatrix}.$$

Resposta: zero

2.10 Testes:

- 1. (UEL PR) A soma dos determinantes $\begin{vmatrix} a & b \\ b & a \end{vmatrix} + \begin{vmatrix} -a & -b \\ b & a \end{vmatrix}$ é igual a zero.
- a) quaisquer que sejam os valores reais de a e de b.
- b) se e somente se a = b.
- c) se e somente se a = -b.
- d) se e somente se a = 0.
- e) se e somente se a = b = 1.

Resp: a)

2. (FMU – SP) O determinante da matriz
$$\begin{pmatrix} senx & cos x \\ -2cos x & 2senx \end{pmatrix}$$
 é igual a:

- a) sen 2x
- b) 2
- d) $2 \operatorname{sen}^2 x$
- e) $\cos 2x$

Resposta: b)

3. (Mack – SP) A solução da equação
$$\begin{vmatrix} 1 & 2 & 3 \\ x & -1 & 5 \\ 2/3 & -1/2 & 0 \end{vmatrix} = 0$$

- a) 1
- b) 58 c) -58
- e) 2

Resposta: d)

4.	(Mack – SP) Sendo A = (a_{ij}) uma matriz quadrada de ordem 2 e $a_{ij} = \mathbf{j} - \mathbf{i}^2$, o determinante
	da matriz A é:

- a) 0
- b) 11
- c) 2
- d) 3
- e) 4

Resposta: d)

5. (Fatec – SP) Determine x, de modo que
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & -3 & x \\ 4 & 9 & x^2 \end{vmatrix} > 0.$$

- a) x < -3 ou x > 2 b) -3 < x < 2 c) Não existe $x \in R$ d)Para todo $x \in R$
 - f) N.D.A.

Resposta: b)

6. (PUC – RS) A equação
$$\begin{vmatrix} 2 & 1 & 3 \\ 4 & -1 & n-1 \\ n & 0 & n \end{vmatrix} = 12$$
 tem como conjunto verdade:

- a) {-6, 2} b) {-2, 6} c) {2, 6} d) {-6, 6} e) {-2, 2}

Resposta: b)

7. (PUC – SP) O determinante da matriz
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 3 \\ 2 & 3 & 6 & 5 \\ 2 & 1 & 4 & 0 \end{pmatrix}$$
 vale:

- b) -3
- b) 6
- c) 0
- d) 1
- e) -1

Resp: a)

8. (FGV – SP) Seja
$$a$$
 a raiz da equação
$$\begin{vmatrix} x & 0 & 0 & 0 \\ 1 & x & 1 & 2 \\ 2 & 0 & x & 3 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 16$$
; então o valor de a^2 é:

- a) 16
- b) 4
- c) 0
- d) 1
- e) 64

Resposta: b)

9. (PUC – RS) A solução da equação
$$\begin{vmatrix} 2x & 9 \\ 2 & x \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3-x \\ 2 & 3 & 1 \\ 3 & 1 & 2+x \end{vmatrix}$$
 é:

c)
$$\{0, 3\}$$

d)
$$\{0, 6\}$$

Resposta: {0,3}

3 Sistemas Lineares

3.1 Equação Linear

Toda equação da forma $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ é denominada **equação linear**, em que:

 $a_1, a_2, ..., a_n$ são coeficientes

 $x_1, x_2, ..., x_n$ são as incógnitas

é um termo independente

Exemplos:

- a) $2x_1 3x_2 + x_3 = 5$ é uma equação linear de três incógnitas.
- b) x + y z + t = -1 é uma equação linear de quatro incógnitas.

Observações:

- 1°) Quando o termo independente b for igual a zero, a equação linear denomina-se equação **linear homogênea.** Por exemplo: 5x + y = 0.
- 2°) Uma equação linear não apresenta termos da forma x_1^2 , x_1 . x_2 etc., isto é, cada termo da equação tem uma única incógnita, cujo expoente é sempre 1.

As equações $3x_1^2 + 2x_2 = -3$ e $4x \cdot y + z = \sqrt{2}$ não são lineares.

- 3°) A solução de uma equação linear a *n* incógnitas é a seqüência de números reais ou **ênupla** $(\alpha_1, \alpha_2, ..., \alpha_n)$, que, colocados respectivamente no lugar de $x_1, x_2, ..., x_n$, tornam verdadeira a igualdade dada.
- 4°) Uma solução evidente da equação linear homogênea 3x + y = 0 é a dupla (0,0).

Vejamos alguns exemplos:

 1° exemplo: Dada a equação 3x - 2y = 5, determinar α para que a dupla $(-1, \alpha)$ seja solução da equação.

Resolução:
$$(-1,\alpha)$$
 \Rightarrow $x = -1$ \Rightarrow $x = -1$

Resposta: $\alpha = -4$

Exercícios Propostos:

- 1. Determine m para que (-1,1,-2) seja solução da equação mx + y 2z = 6. Resposta: -1
- 2. Dada a equação $\frac{x}{2} + \frac{y}{3} = -1$, ache α para que $(\alpha, \alpha + 1)$ torne a sentença verdadeira. Resposta: -8/5

3.2 Sistema linear.

Denomina-se sistema linear de m equações nas n incógnitas $x_1, x_2, ..., x_n$ todo sistema da forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \rightarrow a_{11}, a_{12}, \dots, a_{1n}, b_1, b_2, \dots, b_m \text{ são números reais.} \\ \dots & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Se o conjunto ordenado de números reais $(\alpha_1, \alpha_2, ..., \alpha_n)$ satisfizer a todas as equações do sistema, será denominado solução do sistema linear.

Observações:

1^a) Se o termo independente de todas as equações do sistema for nulo, isto é, $b_1 = b_{\cdot 2} = ... = b_{\cdot n} = 0$, o sistema linear será dito **homogêneo**. Veja o exemplo:

$$\begin{cases} 2x + y - z = 0 \\ x + y + 4z = 0 \\ 5x - 2y + 3z = 0 \end{cases}$$

Uma solução evidente do sistema linear homogêneo é x = y = z = 0.

Esta solução chama-se solução trivial do sistema homogêneo. Se o sistema homogêneo admitir outra solução em que as incógnitas não são todas nulas, a solução será chamada solução nãotrivial.

 2^a) Se dois sistemas lineares, S_1 e S_2 , admitem a mesma solução, eles são ditos sistemas equivalentes.

Exercícios Propostos:

1. Seja o sistema
$$S_1$$
:
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 - 2x_2 + x_3 = 5 \\ -x_1 + x_2 + x_3 = -2 \end{cases}$$

- a) Verifique se (2, -1, 1) é solução de S.
- b) Verifique se (0,0,0) é solução de S.Resposta: a) é b) não é
- 2. Seja o sistema: $\begin{cases} 3x + y = k^2 9 \\ x 2y = k + 3 \end{cases}$. Calcule *k* para que o sistema seja homogêneo.
- 3. Resposta: k = -3
- 4. Calcular m e n de modo que sejam equivalentes os sistemas: $\begin{cases} x y = 1 \\ 2x + y = 5 \end{cases}$ e $\begin{cases} mx ny = -1 \\ nx + my = 2 \end{cases}$. Resposta: m = 0 e n = 1

3.3 Expressão matricial de um sistema de equações lineares.

Dentre suas diferentes aplicações, as matrizes são utilizadas na resolução de um sistema de equações lineares.

Seja o sistema linear:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

Utilizando matrizes, podemos representar este sistema da seguinte forma:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad . \qquad \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
matriz constituída matriz coluna matriz coluna pelos coeficientes constituída pelas dos termos das incógnitas incógnitas independentes

Observe que se você efetuar a multiplicação das matrizes indicadas irá obter o sistema dado. Veja também que, a multiplicação é perfeitamente possível (justifique).

Se a matriz constituída pelos coeficientes das incógnitas for quadrada, o seu determinante é dito determinante do sistema.

Exemplo:

Seja o sistema:
$$\begin{cases} 2x_1+5x_2-x_3=0\\ 4x_1-3x_2+6x_3=-1. \text{ Ele pode ser representado por meio de matrizes, da}\\ 7x_1+x_2-2x_3=8 \end{cases}$$

seguinte forma:

$$\begin{bmatrix} 2 & 5 & -1 \\ 4 & -3 & 6 \\ 7 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 8 \end{bmatrix}$$

3.4 Classificação dos sistemas lineares

Os sistemas lineares são classificados, quanto ao número de soluções, da seguinte forma:

$$SISTEMA\\ LINEAR \begin{cases} POSSÍVEL OU COMPATÍVEL\\ quando admite solução \end{cases} \begin{cases} DETERMINADO\\ Admite uma única solução \\ INDETERMINADO\\ Admite infinitas soluções \\ IMPOSSÍVEL OU INCOMPATÍVEL\\ quando não admite solução \end{cases}$$

3.5 Regra de Cramer

A regra de Cramer consiste num método para se resolver um sistema linear.

$$\text{Seja o sistema}: \begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\ ... \\ ... \\ a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_n \end{cases}$$

Vamos determinar a matriz A dos coeficientes das incógnitas:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ \dots & & & & \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Vamos determinar agora a matriz A_{x1} , que se obtém a partir da matriz A, substituindo-se a coluna dos coeficientes de x_1 pela coluna dos termos independentes.

$$A_{x1} = \begin{bmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ \dots & & & & \\ b_n & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Pela regra de Cramer: $x_1 = \frac{\det A_{x1}}{\det A}$

De maneira análoga podemos determinar os valores das demais incógnitas:

$$A_{x2} = \begin{bmatrix} a_{11} & b_{1} & \dots & a_{1n} \\ a_{21} & b_{2} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & b_{n} & \dots & a_{mn} \end{bmatrix} \Leftrightarrow x_{2} = \frac{\det A_{x2}}{\det A}$$

$$A_{xn} = \begin{bmatrix} a_{11} & a_{12} & \dots & b_{1} \\ a_{21} & a_{22} & \dots & b_{2} \\ \dots & & & & \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & b_{n} \end{bmatrix} \Leftrightarrow x_{n} = \frac{\det A_{xn}}{\det A}$$

Generalizando, num sistema linear o valor da incógnita x₁ é dado pela expressão:

$$x_i = \frac{\det A_i}{\det A} \rightarrow \begin{cases} A \notin \text{a matriz incompleta do sistema.} \\ A_i \notin \text{a matriz obtida de A substituin do-se} \\ \text{as colunas dos coeficientes de } x_i \\ \text{pela coluna dos termos independentes.} \end{cases}$$

Vejamos alguns exemplos.

1º Exemplo: Resolver o sistema
$$\begin{cases} x + y = 5 \\ -x - y = 2 \end{cases}$$

Resolução:
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \Rightarrow det A = 0$$

$$A_{x} = \begin{bmatrix} 5 & 1 \\ 2 & -1 \end{bmatrix} \Rightarrow \det A_{x} = -7$$

$$A_{y} = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} \Rightarrow \det A_{y} = 7$$

$$x = \frac{\det A_x}{\det A} = \frac{-7}{0}$$
 impossível $y = \frac{\det A_y}{\det A} = \frac{7}{0}$ impossível

Resposta: $S = \phi$

2º Exemplo: Resolver o sistema
$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 3x_1 - 4x_2 + 5x_3 = 10 \\ x_1 + x_2 + x_3 = 1 \end{cases}$$

Resolução:

1°) Cálculo do determinante da matriz incompleta.

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -4 & 5 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow \det A = -4 + 10 - 3 - 4 - 5 - 6 = -12$$

2°) Cálculo do determinante das incógnitas.

$$A_{1} = \begin{bmatrix} 0 & 2 & -1 \\ 10 & -4 & 5 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow \det A_{1} = 0 + 10 - 10 - 4 + 0 - 20 = -24$$

$$A_2 = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 10 & 5 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow det A_2 = 10 + 0 - 3 + 10 - 5 + 0 = 12$$

$$A_3 = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 10 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow \det A_3 = -4 + 20 + 0 + 0 - 10 - 6 = 0$$

3°) Cálculo das incógnitas.

$$x_1 = \frac{\det A_1}{\det A} = \frac{-24}{-12} = 2$$

$$x_2 = \frac{\det A_2}{\det A} = \frac{12}{-12} = -1$$

$$x_3 = \frac{\det A_3}{\det A} = \frac{0}{-12} = 0$$

Resposta: $S = \{(2,-1,0)\}$ Sistema Possível e Determinado.

Exercícios Propostos:

1. Solucione os sistemas a seguir, utilizando a regra de Cramer.

a)
$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$

Resposta: $\{(1,2)\}$

b)
$$\begin{cases} 3x - 4y = 1 \\ x + 3y = 9 \end{cases}$$

Resposta: $\{(3,2)\}$

2. Calcule os valores de x, y e z nos sistemas:

a)
$$\begin{cases} x + 2y - z = 2 \\ 2x - y + 3z = 9 \\ 3x + 3y - 2z = 3 \end{cases}$$

Resposta: $\{(1,2,3)\}$

$$(3x + 3y - 2z = 3$$

$$\begin{cases} x + y - 10 = 0 \\ y - z - 5 = 0 \end{cases}$$

Resposta: $\{(6,4,1)\}$

b)
$$\begin{cases} x + y - 10 = 0 \\ x - z - 5 = 0 \\ y - z - 3 = 0 \end{cases}$$

3. Resolva as equações matriciais:

a)
$$\begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 9 \\ -13 \end{pmatrix}$$

Resposta: $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 3 & 6 \\ 5 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}$$

Resposta: $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

4.5 Discussão de um sistema linear

Seja o sistema linear de n equações a n incógnitas.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Discutir o sistema é saber se ele é **possível**, **impossível** ou **determinado**.

Utilizando a regra de Cramer, temos:

$$x_1 = \frac{\det A_1}{\det A}, x_2 = \frac{\det A_2}{\det A}, ..., x_n = \frac{\det A_n}{\det A}$$

Possível e Determinado $\Rightarrow det A \neq 0$

Possível e Indeterminado
$$\Rightarrow \begin{cases} det A = 0 \\ e \\ det A_1 = det A_2 = ... = det A_n = 0 \end{cases}$$
Impossível $\Rightarrow \begin{cases} det A = 0 \\ e \\ pelo menos um $det A_n \neq 0 \end{cases}$$

Vejamos alguns exemplos:

1°) **Exemplo:** Discutir o sistema
$$\begin{cases} 3x + my = 2 \\ x - y = 1 \end{cases}$$
.

Resolução: Vamos calcular o valor dos determinantes:

$$A = \begin{bmatrix} 3 & m \\ 1 & -1 \end{bmatrix} \Rightarrow \det A = -3 - m$$

$$A_1 = \begin{bmatrix} 2 & m \\ 1 & -1 \end{bmatrix} \Rightarrow \det A_1 = -2 - m$$

$$A_2 = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \Rightarrow \det A_2 = 1$$

Fazendo:
$$\det A = 0 \Rightarrow -3 - m = 0 \Rightarrow m = -3$$

 $\det A_1 = 0 \Rightarrow -2 - m = 0 \Rightarrow m = -2$

Resposta: SPD $\Rightarrow m \neq -3$ (sistema possível e determinado)

SPI $\Rightarrow \exists m$ (sistema possível e indeterminado), pois det $A_2 = 1$ para qualquer valor de m SI $\Rightarrow m = -3$ (sistema impossível)

2°) Exemplo: Determinar
$$m$$
, de modo que o sistema
$$\begin{cases} x - y = 2 \\ x + my + z = 0 \end{cases}$$
 seja incompatível.
$$-x + y - z = 4$$

Resolução:
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & m & 1 \\ -1 & 1 & -1 \end{bmatrix} \Rightarrow det A = -m-1$$

$$A_{x} = \begin{bmatrix} 2 & -1 & 0 \\ 0 & m & 1 \\ 4 & 1 & -1 \end{bmatrix} \Rightarrow det A_{x} = -2m - 6$$

$$A_{y} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ -1 & 4 & -1 \end{bmatrix} \Rightarrow det A_{y} = -4$$

$$A_z = \begin{bmatrix} 1 & -1 & 2 \\ 1 & m & 0 \\ -1 & 1 & 4 \end{bmatrix} \Rightarrow det A_z = 6m + 6$$

Fazendo:
$$det A = 0 \Rightarrow -m-1 = 0 \Rightarrow m = -1$$

$$det A_x = 0 \Rightarrow -2m - 6 = 0 \Rightarrow m = -3$$

$$det A_{z} = 0 \Longrightarrow 6m + 6 = 0 \Longrightarrow m = -1$$

Para
$$m = -1$$
, teremos: $x = -\frac{4}{0}$ (impossível) $y = -\frac{4}{0}$ (impossível) $z = \frac{0}{0}$ (indeterminado).

Resposta: SI \Rightarrow m = -1

3°) Exemplo: Verificar se o sistema $\begin{cases} 3x - 2y = 0 \\ x + y = 0 \end{cases}$ é determinado ou indeterminado.

Resolução: Vamos calcular o valor dos determinantes:

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix} \det A = 5 \qquad A_x = \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \det A_x = 0 \qquad A_y = \begin{bmatrix} 3 & 0 \\ 1 & 0 \end{bmatrix} \det A_y = 0$$

Como det $A = 5 \neq 0$, o sistema é determinado.

Vamos achar a solução:

$$x = \frac{\det A_x}{\det A} = \frac{0}{5} = 0$$
 e $y = \frac{\det A_y}{\det A} = \frac{0}{5} = 0$
 $S = \{(0,0)\}$

Resposta: O sistema é determinado e $S = \{(0,0)\}$.

Observação:

Todo sistema homogêneo é sempre possível, pois admite a solução (0, 0,.., 0) chamada solução trivial.

Observe que para um sistema homogêneo teremos sempre $\det A_1 = 0$, $\det A_2 = 0$,..., $\det A_n = 0$

Portanto, para a discussão de um sistema linear homogêneo, é suficiente o estudo do determinante dos coeficientes das incógnitas.

Determinado
$$\Rightarrow \det A \neq 0$$

Indeterminado
$$\Rightarrow$$
 det $A = 0$

4º)Exemplo: Calcular o valor de *a* para que o sistema $\begin{cases} ax + y = 0 \\ ax + ay = 0 \end{cases}$ tenha soluções diferentes da trivial.

Resolução: Neste caso, o sistema deve ser indeterminado, e teremos det A=0.

$$A = \begin{bmatrix} a & 1 \\ a & a \end{bmatrix} \Rightarrow \det A = a^2 - a = 0 \Rightarrow a.(a-1) = 0 \Rightarrow a = 0 \text{ ou } a = 1$$

Resposta: {0,1}

Exercícios Propostos:

1. Discuta os sistemas:

a)
$$\begin{cases} mx + y = 2 \\ x - y = m \end{cases}$$

b)
$$\begin{cases} kx + y = 1\\ x + y = 2 \end{cases}$$

a)
$$\begin{cases} mx + y = 2 \\ x - y = m \end{cases}$$
 b) $\begin{cases} kx + y = 1 \\ x + y = 2 \end{cases}$ c) $\begin{cases} 7x + y - 3z = 10 \\ x + y + z = 6 \\ 4x + y + pz = q \end{cases}$

2. Classifique, quanto ao número de soluções, os seguintes sistemas homogêneos.

a)
$$\begin{cases} 3x_1 - 4x_2 = 0 \\ -6x_1 + 8x_2 = 0 \end{cases}$$

a)
$$\begin{cases} 3x_1 - 4x_2 = 0 \\ -6x_1 + 8x_2 = 0 \end{cases}$$
 b)
$$\begin{cases} x + y + z = 0 \\ 2x + 2y + 4z = 0 \\ x + y + 3z = 0 \end{cases}$$
 c)
$$\begin{cases} x + y + 2z = 0 \\ x - y - 3z = 0 \\ x + 4y = 0 \end{cases}$$

c)
$$\begin{cases} x + y + 2z = 0 \\ x - y - 3z = 0 \\ x + 4y = 0 \end{cases}$$

40

- 3. Determine a e b para que o sistema $\begin{cases} 6x + ay = 12 \\ 4x + 4y = b \end{cases}$ seja indeterminado.
- 4. Calcule os valores de *a* para que o sistema $\begin{cases} 3x + 2y = 1 \\ ax 4y = 0 \end{cases}$ seja compatível e determinado.

5. Dê o valor de
$$a$$
 para que o sistema
$$\begin{cases} ax + y + 2 = 0 \\ 2x - y + z - a = 0 \end{cases}$$
 seja impossível.
$$4x + y + az + 5 = 0$$

6. Determine o valor de
$$k$$
 para que o sistema
$$\begin{cases} 3z - 4y = 1\\ 4x - 2z = 2\\ 2y - 3x = 3 - k \end{cases}$$
 seja indeterminado.

7. Qual o valor de
$$p$$
 para que o sistema
$$\begin{cases} px + y - z = 4 \\ x + py + z = 0 \end{cases}$$
 admita uma solução única?
$$\begin{cases} x - y = 2 \end{cases}$$

8. (Fuvest-SP) Para quais valores de
$$k$$
 o sistema linear
$$\begin{cases} x + y + z = 1 \\ 3x - y + 2z = 3 \text{ \'e compatível e} \\ y + kz = -2 \end{cases}$$
 determinado?

Respostas exercícios propostos:

1. Discussão de um Sistema Linear.

- 1. a) SPD se $m \neq -1$ SI se m = -1
 - b) SPD se $k \neq 1$ SI se k = 1

c) SPD se
$$p \ne -1$$
; SPI se $p = -1$ e $q = 8$; SI se $p = -1$ e $q \ne 8$

- 2. a) indeterminado.
 - b) indeterminado.
 - c) determinado

3.
$$a = 6 e b = 8$$

4.
$$a \neq -6$$

5.
$$a = -4$$
 ou $a = 1$

6.
$$k = 5$$

7.
$$\{p \in R / p \neq -1\}$$

$$8. \quad \left\{ k \in R / k \neq \frac{1}{4} \right\}$$

4.6 Escalonamento de Sistemas Lineares

Considerando um sistema genérico m x n, dizemos que ele está escalonado quando os coeficientes a_{ij} , com i > j, são todos nulos.

Exemplos:

$$\begin{cases} x - 2y + 5z = 7 \\ 3y + 2z = 1 \\ 4z = 8 \end{cases} \begin{cases} 3x + 2y + 7z = 11 \\ 4y + 5z = -4 \end{cases} \begin{cases} x + 2y + z + t = 9 \\ 4z + 5t = 10 \end{cases}$$

Classificação e resolução de sistemas lineares escalonados

$$1^{\circ} \begin{cases} 3x - 2y + z = -6 \\ 4y - 2z = 0 \\ 5z = 10 \end{cases}$$

Sistema 3 x 3 já escalonado (número de equações = número de incógnitas)

Da 3^a equação tiramos z = 2

Da 2^a equação, fazendo z = 2, tiramos y = 1

Fazendo y =1 e z = 2 na 1^a equação tiramos x = -2

Podemos concluir que o sistema é possível e determinado, com $S=\{(-2,1,2)\}$

$$2^{\circ} \begin{cases} 9x - 2y + 3z - w = 1 \\ y - 2z + 4w = 6 \\ 5z + 2w = 3 \\ 0w = 9 \end{cases}$$

Sistema 4 x 4 já escalonado.

A 4ª equação permite dizer que o sistema é impossível, logo S = Ø

$$3^{\mathbf{a}} \begin{cases} x+y+z=0 \\ 3y-6z=0 \end{cases}$$

Sistema 2 x 3 já escalonado (número de equações < número de incógnitas)

Quando um sistema escalonado tem mais incógnitas do que equações e pelo menos um coeficiente não nulo em cada equação, ele é possível e indeterminado. A variável que não aparece no começo das equações é chamada variável livre. Nesse exemplo z é a variável livre. Fazemos z = k, com $k \in R$, para descobrir a solução geral do sistema.

Da 2^a equação, temos $3y - 6z = 0 \Rightarrow y = 2k$.

Usando z = k e y = 2k, temos $x + 2k + k = 0 \Rightarrow x = -3k$.

Portanto, o sistema é possível e indeterminado e sua solução geral é (-3k, 2k, k).

$$4^{\circ} \begin{cases} 2x - y + z - t = 2 \\ 2z + 3t = 1 \end{cases}$$

Aqui o sistema é possível e indeterminado (está escalonado e tem 2 equações e 4 incógnitas) e duas são variáveis livres (y e t).

Fazemos $y = \alpha \ e \ t = \beta, com \ \alpha \in R \ e \ \beta \in R$.

Substituindo nas equações:

$$2z + 3\beta = 1 \Rightarrow 2z = 1 - 3\beta \Rightarrow z = \frac{1 - 3\beta}{2}$$

$$2x - \alpha + \frac{1 - 3\beta}{2} - \beta = 2 \Rightarrow 4x = 2\alpha - 1 + 3\beta + 2\beta + 4 \Rightarrow$$

$$\Rightarrow 4x = 2\alpha + 5\beta + 3 \Rightarrow x = \frac{2\alpha + 5\beta + 3}{4}$$
Solução geral: $\left(\frac{2\alpha + 5\beta + 3}{4}, \alpha, \frac{1 - 3\beta}{2}, \beta\right)$

Exercício: Classifique e resolva os sistemas lineares escalonados:

a)
$$\begin{cases} 2x - y + 3z = 0 \\ 2y - z = 1 \\ 2z = -6 \end{cases}$$
 b)
$$\begin{cases} a + 2b - c + d = 2 \\ c - d = 0 \end{cases}$$

4.7 Processo para escalonamento de um sistema linear

Para escalonar um sistema linear e depois classificá-lo e resolvê-lo, alguns procedimentos podem ser feitos:

- 1°) Eliminamos uma equação que tenha todos os coeficientes e o termo independente nulos. Por exemplo: 0x + 0y + 0z = 0 pode ser eliminada, pois todos os termos de números reais são soluções:
- 2º) Podemos trocar a posição das equações. Exemplo:

$$\begin{cases} 3x - 2y = 6 \\ x + 4y = 1 \end{cases} \Rightarrow \begin{cases} x + 4y = 1 \\ 3x - 2y = 6 \end{cases}$$

3º) Podemos multiplicar todos os termos de uma equação pelo mesmo número real diferente de zero:

$$3x - y + z = 5 \Longrightarrow 6x - 2y + 2z = 10$$

Podemos multiplicar os 2 membros de uma equação por um mesmo número real diferente de zero e somarmos aos membros correspondentes da outra equação. Regra de Chio de matrizes = 10^a propriedade. Exemplo:

$$\begin{cases} x - 2y + 4z = 7 & \cdot (-3) \\ 3x - 5y + 9z = 25 & \bot + \end{cases} \Rightarrow \begin{cases} x - 2y + 4z = 7 \\ y - 3z = 4 \end{cases}$$

4°) Se no processo de escalonamento obtivermos uma equação com todos os coeficientes nulos e o termo independente diferente de zero, esta equação é suficiente para afirmar que o sistema é impossível., isto é, $S = \emptyset$.

Exemplo 1:

$$\begin{cases} x + 2y + z = 7 & \cdot (-2) & \cdot 3 \\ 2x + 7y + z = 21 & \bot + & \downarrow \Rightarrow \begin{cases} x + 2y + z = 7 \\ 3y - z = 7 \Rightarrow \end{cases} \begin{cases} x + 2y + z = 7 \\ y + 5z = 13 & \cdot (-3) \\ 3y - z = 7 & \bot + \end{cases}$$

$$\begin{cases} x + 2y + z = 7 \\ y + 5z = 13 \end{cases}$$

$$\begin{cases} x + 2y + z = 7 \\ y + 5z = 13 \end{cases}$$

$$\begin{cases} x + 2y + z = 7 \\ y + 5z = 13 \end{cases}$$

$$-16z = -32$$

O sistema obtido está escalonado e é equivalente ao sistema dado. Podemos agora resolver:

$$z = \frac{32}{16} = 2$$

$$y + 5 \cdot 2 = 13 \Rightarrow y = 3$$

$$x + 2 \cdot 3 + 2 = 7 \Rightarrow x = -1$$

Sistema possível e determinado, com $S = \{(-1,3,2)\}$

Exemplo 2

$$\begin{cases} x+2y-z=3 & \cdot (-3) & \cdot (-2) \\ 3x-y+z=1 & \downarrow + & \downarrow \Rightarrow \\ 2x+4y-2z=6 & \downarrow + & \Rightarrow \\ x+2y-z=3 \\ 0x+0y+0z=0 \ (eliminar) \end{cases} \Rightarrow$$

$$\begin{cases} x+2y-z=3 \\ -7y+4z=-8 \end{cases}$$

Sistema possível e indeterminado (escalonado e 2 x 3). Variável livre: z.

$$z = \alpha \Rightarrow -7y + 4\alpha = -8 \Rightarrow$$

$$y = \frac{8 + 4\alpha}{7}$$

$$x + 2 \cdot \left(\frac{8 + 4\alpha}{7}\right) - \alpha = 3 \Rightarrow x = \frac{5 - \alpha}{7}$$
Solução geral: $\left(\frac{5 - \alpha}{7}, \frac{8 + 4\alpha}{7}, \alpha\right)$

Exercícios propostos:

1) Escalone, classifique e resolva os sistemas lineares abaixo:

a)
$$\begin{cases} 2x+3y+z=1\\ 3x-3y+z=8\\ 2y+z=0 \end{cases}$$
 Resp: Sistema possível e determinado, com S = {(1,-1,2)}

b)
$$\begin{cases} x+y-z=2\\ 2x+3y+2z=5 \end{cases}$$
 Resp: Sistema possível e indeterminado, com S = {(1+5k, 1-4k, 1-4k

3.8 Testes

- 1. (FMU SP) O valor de *a* para que o sistema $\begin{cases} x + 2y = 18 \\ 3x ay = 54 \end{cases}$ seja possível e indeterminado é:
 - a) -6 b) 6
- c) 2
- d) -2
- e) 3/2

Resposta: a)

2. (FGV – SP) O sistema
$$\begin{cases} 2x + 3y - z = 0 \\ x + 2y + 4z = 0 \text{ \'e:} \\ x - 14z = 0 \end{cases}$$

- a) determinado.
- b) Impossível
- c) Determinado e admite como solução (1, 1, 1).
- d) Indeterminado.
- e) N.D.A.

Resposta: d)

- 3. (UFRN) A solução do sistema $\begin{cases} x+y+z=6\\ 4x+2y-z=5 & \text{\'e}:\\ x+3y+2z=13 \end{cases}$
 - a) (-2, 7, 1)
- b) (4, -3, 5) c) (0, 1, 5) d) (2, 3, 1) e) (1, 2, 3)

Resposta: e)

4. (Osec – SP) O sistema linear
$$\begin{cases} x - y + 2z = 2\\ 2x + 3y + 4z = 9\\ x + 4y + 2z = 7 \end{cases}$$

- a) admite solução única;
- b) admite infinitas soluções;
- c) admite apenas duas soluções;
- d) não admite solução;
- e) N.D.A.

Resposta: b)

- 5. (Efoa MG) O sistema de equações $\begin{cases} ax + 5y = 5 \\ bx + y = 0 \end{cases}$, terá uma única solução se:
 - a) a = 5b
 - b) a + 5b = 0
 - c) $a-5b \neq 0$
 - d) 5ab = 0

e)
$$5ab \neq 0$$

Resposta: c)

6. (Faap – SP) Para que o sistema linear $\begin{cases} ax - by = 7 \\ 2x + 5y = 1 \end{cases}$ admita uma única solução, é necessário que:

a)
$$a \neq \frac{-2l}{5}$$

a)
$$a \neq \frac{-2b}{5}$$
 b) $a = \frac{-2b}{5}$ c) $a \neq \frac{-5b}{2}$ d) $a \neq \frac{2b}{5}$ c) $a = \frac{-5b}{2}$

c)
$$a \neq \frac{-5l}{2}$$

d)
$$a \neq \frac{2b}{5}$$

c)
$$a = \frac{-5b}{2}$$

Resposta: a)

7. (FCC – BA) O sistema linear $\begin{cases} x + y = a \\ a^2x + y = 1 \end{cases}$ é impossível se e somente se:

a)
$$a \ne 1$$
 e $a \ne -1$ b) $a = 1$ ou $a = -1$ c) $a = 1$ d) $a = -1$ e) $a \notin R$

b)
$$a = 1$$
 ou $a = -1$

c)
$$a = 1$$

d)
$$a = -1$$
 e) $a \notin R$

Resposta: d)

Resposia. u)

8. (FEI – SP) Se x = A, y = B e z = C são as soluções do sistema $\begin{cases} x - y = 3 \\ x + z = 4 \\ y + 4z = 10 \end{cases}$, então

ABC vale:

- a) -5
- b) 8
- c) -6 d) -10
- e) 5

Resposta: c)

9. (UFRS) O sistema sobre R $\begin{cases} x-2y+3z=-1\\ 2x-y-z=b\\ -x-4y+11z=-11 \end{cases}$, terá solução apenas se o valor de b

for igual a:

- a) 6
- b) 4
- c) 1
- d) -11 e) -12

Resposta: b)

- 10. (Mack SP) O sistema $\begin{cases} 2x + y = k \\ 4x + my = 2 \end{cases}$ é indeterminado. Então k + m vale:
 - a) 1/2
- b) 1
- c) 3/2 d) 2

Resposta: e)

- $\int mx 2y z = 0$ 11. (UFSC) Para qual valor de m o sistema $\begin{cases} x - my - 2z = 0 \text{ admite infinitas soluções?} \\ 3x - 2y = 0 \end{cases}$
 - a) m = 0

- b) $m \neq 0$ c) m = 2 d) m = 10 e) m = 1

Resposta: c)

- 12. (FCC BA) O sistema $\begin{cases} k^2x y = 0 \\ x + ky = 0 \end{cases}$ nas incógnitas x e y:
 - a) é impossível se $k \neq -1$

- b) admite apenas a solução trivial se k = 1
- c) é possível e indeterminado se k = -1
- d) é impossível para todo k real
- e) admite apenas a solução trivial para todo k real.

Resposta: c)

13. (Cesgranrio) O sistema
$$\begin{cases} ax + y - z = 0 \\ x - ay + z = 1 \end{cases}$$
 tem uma infinidade de soluções. Então, sobre
$$\begin{cases} x + y = b \end{cases}$$

os valores dos parâmetros a e b, podemos concluir que:

- a) a = 1 e *b* arbitrário
- b) $a = 1 e b \neq 0$
- c) a = 1 e b = 1
- d) a = 0 e b = 1
- e) a = 0 e b = 0

Resposta: d)

14. (Fuvest – SP) O sistema linear:
$$\begin{cases} x + \alpha y - 2z = 0 \\ x + y + z = 1 \\ x - y - z = 3 \end{cases}$$
 não admite solução se α for igual a:

- a) 0
- b) 1
- c) -1 d) 2
- e) -2

Resposta: e)

- 15. (PUC SP) Certo dia, numa mesma casa de câmbio, Sassa trocou 40 dólares e 20 euros por R\$ 225,00 e Lili trocou 50 dólares e 40 euros por R\$ 336,00. Nesse dia, 1 euro estava cotado em:
 - a) R\$ 3,80
- b) R\$ 3,75
- c) R\$ 3,70
- d) R\$ 3,68
- e) 3,65

Resposta: e)

- 16. (UPF RS) A empresa brinque muito realizou uma grande doação de brinquedos para um orfanato. Essa doação compreendeu 535 brinquedos, entre bolas e bonecas, 370 brinquedos, entre bonecas e carimbos, e o total de doação entre bolas e carimbos foi de 455 brinquedos. É possível afirmar que, para realizar a doação, a empresa produziu:
 - a) 320 bolas
 - b) 145 carimbos
 - c) 235 bonecas
 - d) 780 brinquedos
 - e) 1350 brinquedos