数学問題

【必答問題】	次の[1],	2, 3	は全問解答せよ。
--------	--------	------	----------

- 1 次の を正しくうめよ。ただし、解答欄には答えのみを記入せよ。

 - (2) $(x+2)(x-2)(x^2+4)$ を展開し、整理すると (4) となる。
 - (3) 1以上 15 以下の整数の集合を U とし,U の部分集合 A,B を $A = \{3n \mid n$ は整数 $\}$, $B = \{2n \mid n$ は整数 $\}$ とするとき,集合 $A \cap B$ の要素を書き並べて表すと, $A \cap B = \{ b \}$ である。
 - (4) 2次方程式 $x^2+x+k+1=0$ (kは定数) が重解をもつとき, k= 四 である。
- (5) 2次関数 $y=2x^2+8x+11$ のグラフは, 2次関数 $y=2x^2$ のグラフをx軸方向に y 軸方向に y か だけ平行移動したものである。 (配点 20)

2 xについての2次不等式

$$x^2 - 2x - 8 > 0 \cdots 1$$
, $(x-1)(x-4a) < 0 \cdots 2$

がある。ただし,αは定数とする。

- (1) 不等式①を解け。 X < -2, $A \subset X$
- '(2) $a>\frac{1}{4}$ のとき,不等式②を解け。またこのとき,不等式①,②を同時に満たすxが存在するようなaの値の範囲を求めよ。 $\left(\frown \mathcal{L} \subset \mathcal{A} \right)$
 - (3) $a = \frac{1}{4}$ とする。不等式①,②を同時に満たす整数xが1つだけ存在するようなaの値の範囲を求めよ。 $\frac{1}{4} \left(Q \leq \frac{3}{2} \right) \left(\leq Q \leq -\frac{3}{4} \right)$ (配点 20)

(3) $a-1 \le x \le a+1$ の範囲における $f(x)$ の最大値を M とする。 $M>0$ であるような a の 値の範囲を求めよ。 $ \bigcirc $
【選択問題】 次の 4, 5, 6, 7 のうちから2題を選んで解答せよ。
4 AB=5, BC=7, $\cos B = \frac{3}{5}$ の \triangle ABC がある。また、 \triangle ABC の外接円の中心を O
とする。
(1) 辺ACの長さを求めよ。 $AC = 4G$
(2) 線分 OA の長さを求めよ。また、 $\angle AOB$ の大きさを求めよ。 $DA = \frac{502}{2}$ 、 $\angle AOB = \frac{6}{2}$
(3) 直線 AC に関して点 B と反対側に、点 P を AP = AC となるようにとる。 △APC の
面積が $\triangle OAB$ の面積の $\frac{8}{5}$ 倍となるとき, $tan \angle PAC$ の値を求めよ。 (配点 20)
面積が $\triangle OAB$ の面積の $\frac{8}{5}$ 倍となるとき, $tan \angle PAC$ の値を求めよ。 (配点 20) $ + C = 2\sqrt{39} $
5 座標平面上に点 P があり、次の規則にしたがって点 P が移動する操作を繰り返し行う。
初め、点Pは原点にある。
【規則】
1個のさいころを投げて,
(ア) 1, 2, 3 のいずれかの目が出たときは、x 軸方向に1 だけ移動する。
(イ) 4,5のいずれかの目が出たときは、y軸方向に1だけ移動する。
(ウ) 6の目が出たときは、y軸方向に2だけ移動する。
(1) 3回の操作で,点Pが点(3,0)に到達する確率を求めよ。 (1)
(2) 3回の操作で, 点 P が点 (2, 1) に到達する確率を求めよ。また, 4回の操作で, 点 P が
点 $(2, 2)$ に到達する確率を求めよ。 $\sqrt{2}$ (3) ちょうど 5 回目の操作で,点 P の y 座標が初めて 3 以上になる確率を求めよ。 $\sqrt{2}$
(配点 20)
(問題は次ページに続く。)
- 3 -

2次関数 $f(x) = -x^2 + ax - 3a + 8$ がある。ただし、a は定数とする。

- **6** 10 進法で表された自然数 N がある。
 - (1) N を 5 進法で表すと,2324 $_{(5)}$ となった。このとき,N の値を求めよ。 $\sqrt{-339}$
 - (2) N を 5 進法で表すと 4 桁で表された。このような N のうち,最大の数と最小の数をそれぞれ求めよ。 M んな 624 , M の Q
- (3) 5進法で表すと 4桁で表される N のうち、9の倍数であり、かつ 5進法で表したときの各位の数の和が 4 の倍数になるものを考える。このような N のうち、最大の数と最小の数をそれぞれ求めよ。 M の

- **7** 右の図のように、AB=5、BC=6、CA=4 である △ABC があり、∠BAC の二等分線と辺 BC の交点を D とする。
- (1) 線分BDの長さを求めよ。 $3D = \frac{10}{3}$

(2) 点 A を通り点 D で辺 BC に接する円と, 辺 AB との交点のうち A でない方を E とする。線分 BE

(3) (2)のとき、 $\frac{AF}{FD}$ の値を求めよ。また、 $\triangle FCG$ の面積を S_1 、 $\triangle FCD$ の面積を S_2 とする。

$$\frac{S_1}{S_2}$$
の値を求めよ。
$$\frac{AF}{FD} = \frac{45}{6}$$

$$\frac{S_1}{S_2} = \frac{45}{41}$$
 (配点 20)