1 TEORIA DOS NÚMEROS

A **teoria dos números** é o ramo da Matemática pura que estuda as propriedades dos números em geral, e em particular as propriedades dos números inteiros. Além disso, estuda-se as diversas classes de problemas que surge no seu estudo.

1.1 Divisibilidade

Uma equação do tipo ax = b pode ou não ter solução no conjunto dos números inteiros; isso dependerá dos coeficientes a e b da equação. Quando tal solução existe, diz-se que **b** é divisível por **a**. Mais precisamente:

Definição: Sejam a e b inteiros. Dizemos que **a divide b**, denotado por $a \mid b$, se existe um inteiros c tal que $b = a \cdot c$.

Se a|b também se diz que **a é um divisor de b**, que **b é um múltiplo de a**, que **a é um fator de b** ou que **b é divisível por a**.

Observações:

- 1. se a não divide b escrevemos $a \nmid b$;
- 2. | é um símbolo de relação e não de operação.

Exemplos:

- 1. $2 \mid 6$, pois existe $3 \in \mathbb{Z}$ tal que $6 = 2 \cdot 3$;
- 2. $-5 \mid 30$, pois existe $-6 \in \mathbb{Z}$ tal que $30 = (-5) \cdot (-6)$;
- 3. $3 \mid 0$, pois existe $0 \in \mathbb{Z}$ tal que $0 = 3 \cdot 0$;
- 4. $3 \nmid 10$, pois não existe $c \in \mathbb{Z}$ tal que $10 = 3 \cdot c$;

Observação: Se $a \neq 0$, o inteiros c nas condições da definição é único.

PROVA

Suponha que existe outro inteiro c' tal que b=ac'. Daí, temos ac=ac' e como $a\neq 0$, pela propriedades do cancelamento, c=c'. Logo, c é único.

O inteiro assim definido chama-se **quociente** de *b* por *a* e indicado por

$$c = \frac{b}{a}$$
.

Nota: $0 \mid b$, se e somente se, b = 0.

Observe que neste caso o quociente não é único, pois $0 = 0 \cdot c$, para todo $c \in \mathbb{Z}$. Por causa disso, costuma-se excluir o caso em que o divisor é nulo.

Observações: Se a é divisor de b, então -a também é divisor de b. Assim, os divisores de um inteiro qualquer são dois a dois iguais em valor absoluto e de sinais opostos.

Proposição. Se $a \mid b$ e $b \neq 0$, então |a| < |b|

Corolários.

- 1. Os únicos divisores de 1 são 1 e -1;
- 2. Se $a \mid b$ e $b \mid a$, então $a = \pm b$.

Proposição. Quaisquer que $a, b, c, d \in \mathbb{Z}$, valem:

- 1. $a \mid 0, 1 \mid a \in a \mid a;$
- 2. Se $a \mid b \in b \mid c$, então $a \mid c$;
- 3. Se $a \mid b \in c \mid d$, então $ac \mid bd$;
- 4. Se $a \mid b$ e $a \mid c$, então $a \mid (b+c)$;
- 5. Se $a \mid b$, então para todo $m \in \mathbb{Z}$, tem-se que $ac \mid mb$;
- 6. Se $a \mid b$ e $a \mid c$, então para todo $m, n \in \mathbb{Z}$ tem-se que $a \mid (mb + nc)$;
- 7. Se c | a, c | b e a < b, então c | (b a);
- 8. Seja a = b + c e suponhamos que $d \mid b$. Então $d \mid a$ se, e somente se, $d \mid c$.

Exercícios. Demonstrar as proposições acima que foram demonstradas em aula.

1.2 Algoritmo da Divisão

É evidente que há infinitos casos de pares de inteiros tais que nenhum dos dois é divisor do outro. Por exemplo, $2 \nmid 3$ nem $3 \nmid 2$. O algoritmo da divisão estabelece uma "divisão com resto" e é a base da teoria dos números.

Algoritmo da Divisão. Sejam a e d inteiros com d > 0. Então existem inteiros q e r, únicos, com $0 \le r < d$, tais que a = dq + r. Os elementos a, d, q e r são chamados, respectivamente, dividendo, divisor, quociente e resto.

Teorema. Sejam a e d inteiros com $d \neq 0$. Então existem inteiros q e r, únicos, com $0 \leq r < |d|$, tais que a = dq + r.

Exemplo. Temos que $20 = 3 \cdot 6 + 2$ e $-20 = (-4) \cdot 6 + 4$, ou seja, o resto da divisão de 20 por 6 é 2 e o resto da divisão de -20 por 6 é 4. Note que o resto não pode ser negativo.

1.3 Paridade de um inteiro

Na divisão de um inteiro qualquer $a \neq 0$ por d = 2 os possíveis restos são r = 0 e r = 1. Se r = 0, então o inteiro a = 2q e é denominado **par**; se r = 1, então o inteiro a = 2q + 1 e é denominado **impar**.

Proposição. Na divisão do quadrado de um inteiro qualquer a por 4 o resto é 0 ou 1.

Exercício. Mostre que o quadrado de qualquer inteiro ímpar é da forma 8k + 1

1.4 Máximo divisor comum de dois inteiros

Definição. Sejam a e b dois inteiros, não simultaneamente nulos, chama-se **máximo divisor comum de a** e **b** e, indica-se por mdc(a,b), o inteiro positivo d (d>0) que satisfaz as seguintes condições:

- (i) $d \mid a \in d \mid b$;
- (ii) Se $c \mid a$ e se $c \mid b$, então $c \leq d$.

Observações. É imediato que mdc(a,b) = mdc(b,a). Em particular:

- (i) o mdc(0,0) não existe;
- (ii) o mdc(a, 1) = 1;
- (iii) se $a \neq 0$, então o mdc(a,0) = |a|;
- (iv) se $a \mid b$, então o mdc(a,b) = |a|.

Teorema. Se k > 0, então o $mdc(ka.kb) = k \cdot mdc(a,b)$.

Corolário. Para todo $k \neq 0$, o $mdc(ka.kb) = |k| \cdot mdc(a,b)$.

Teorema de Bèzout. Se a e b são dois inteiros, não simultaneamente nulos, então existe e é único o mdc(a,b), além disso, existem inteiros x e y tais que

$$mdc(a,b) = ax + by$$
,

isto é, o mdc(a,b) é uma **combinação linear** de a e b.

Observação. O mdc(a,b) é o menor inteiro positivo da forma ax + by, isto é, que pode ser expresso como **combinação linear** de a e b. Mas esta representação não é única, pois

$$mdc(a,b) = a(x+bt) + b(y-at)$$
, qualquer que seja $t \in \mathbb{Z}$.

Exemplo. Sejam a = 6 e b = 27, temos:

$$mdc(6,27) = 3 = 6 \cdot (-4) + 27 \cdot 1.$$

Note também que $mdc(6,27) = 3 = 6 \cdot (-4 + 27t) + 27 \cdot (1 - 6t)$.

Lema. Se a = bq + r, então mdc(a,b) = mdc(b,r).

1.4.1 Algoritmo de Euclides

A ideia principal deste algoritmo é que o *mdc* pode ser calculado, recursivamente, usando o resto da divisão como entrada para o próximo passo. A ideia é embasada no Lema anterior;

$$mdc(a,b) = mdc(b,r),$$

onde r é o resto da divisão de a por b.

Além disso, como mdc(a,b) = mdc(|a|,|b|), a determinação do mdc(a,b) se reduz ao caso em que a e b são inteiros positivos distintos, tais que $b \nmid a$.

É usual o seguinte dispositivo de cálculo no emprego do algoritmo de Euclides:

• Inicialmente, efetuamos a divisão do maior inteiro pelo menor, $a = bq_1 + r_1$, e colocamos os números envolvidos no seguinte diagrama:

$$\begin{array}{c|cc} & q_1 & q_2 \\ \hline a & b & r_1 \\ \hline r_1 & r_2 & \\ \hline \end{array}$$

• A seguir, continuamos efetuando a divisão $b = r_1q_2 + r_2$ e colocamos os números envolvidos no diagrama:

• Prosseguindo até obter resto nulo:

O último resto não nulo é o máximo divisor comum procurado.

Exemplo. Determine o *mdc* de 372 e 162.

Fazendo as divisões sucessivas e usando o dispositivo prático, temos:

Portanto, o mdc(372, 162) = 6.

O algoritmo de Euclides também pode ser usado para achar a expressão do $mdc(a,b) = r_n$ como **combinação linear** de a e b. Para isso, basta eliminar sucessivamente os restos $r_{n-1}, r_{n-2}, r_{n-3}, \ldots, r_3, r_2, r_1$ entre as n primeiras igualdades anteriores.

Exemplo. Escreva o mdc(372, 162) como combinação linear de 372 e 162.

Considerando os resultados obtidos no dispositivo acima, podemos escrever:

$$6 = 18 - 1 \cdot 12$$
$$12 = 48 - 2 \cdot 18$$
$$18 = 162 - 3 \cdot 48$$
$$48 = 372 - 2 \cdot 162$$

Assim,

$$6 = 18 - 1 \cdot 12 = 18 - 1 \cdot (48 - 2 \cdot 18) = 3 \cdot 18 - 48 = 3 \cdot (162 - 3 \cdot 48) - 48 =$$

$$= 3 \cdot 162 - 10 \cdot 48 = 3 \cdot 162 - 10 \cdot (372 - 2 \cdot 162) = 23 \cdot 162 - 10 \cdot 372,$$
isto é $6 = mdc(372, 162) = 372 \cdot x + 162 \cdot y,$
onde $x = -10$ e $y = 23$.

1.5 Mínimo múltiplo comum de dois inteiros

Definição. Sejam a e b dois inteiros, não simultaneamente nulos, chama-se **mínimo múltiplo comum de a** e **b** e, indica-se por mmc(a,b), o inteiro positivo m (m>0) que satisfaz as seguintes condições:

- (i) $a \mid m \in b \mid m$;
- (ii) Se $a \mid c$ e se $b \mid c, c > 0$, então $m \le c$.

Proposição. Se $a \mid b$, então o mmc(a,b) = |b|.

1.6 Relação entre o mdc e o mmc

Teorema. Para todo par de inteiros positivos a e b subsiste a relação:

$$mdc(a,b) \cdot mmc(a,b) = a \cdot b.$$

Corolário. Para todo inteiro a>0 e b>0, o $\mathit{mmc}(a,b)=ab$ se, e somente se, o $\mathit{mdc}(a,b)=1.$