

4. Merkmalsextraktion

4.1 Einführung

4.1.1 Zweck der Merkmalsextraktion

<u>Ziel</u>: Extraktion der für die Klassifikation bedeutsamen Merkmale eines Musters.

4.1.2 Behandelte Aufgabenstellungen

Kennzeichen:

Zusammenhängende Bildflächen (= Regionen)

Die zusammenhängenden <u>Bildflächen</u> (*Silhouette*, *Aussen-/Innenkontur*) beinhalten die relevante Information.

→ regionenbasierte Verfahren

Kennzeichen:

Zusammenhängende Bildflächen sind nicht ohne weiteres extrahierbar.

Nicht die zusammenhängenden Bildflächen stellen nicht die relevante Information dar, sondern die <u>Kanten</u>.

→ kantenbasierte Verfahren

4.1.3 Regionenbasierte Verfahren

4.1.4 Kantenbasierte Verfahren

4.2 Regionenbasierte Verfahren anhand von Konturen

4.2.1 Konturextraktion aus Binärbildern

Ziel der Konturextraktion ist es, eine <u>Liste von Objektpunkten</u> zu erhalten, die <u>auf der Randlinie des Objektes</u> liegen.

Algorithmus 1:

1. Suche zeilenweise nach dem ersten Objektpunkt. Dies ist der Startpunkt ...

- 3. **if**(Objektpunkt gefunden)
- 5. else
- 6. biege nach rechts ab
- 7. **endif**
- 8. **while** (aktueller Punkt NOT Startpunkt)

ÜBUNG: Konturextraktion 1

Zeigen Sie, wie Konturalgorithmus 1 die Kontur findet. Geben Sie die Liste der extrahierte Punkte an (Anm.: Bildursprung oben links).

Wo könnten Probleme entstehen?

Algorithmus 2 (Pavlidis):

```
Suche zeilenweise nach dem ersten Objektpunkt. Dies ist der Startpunkt A.
     Setze: aktuellen Punkt C = A, Suchrichtung S = 6, Flag first = true.
     while (C != A \ OR \ first == true) // ein Umlauf um das Objekt
3.
           Setze: Flag found = false.
4.
5.
           while (found == false) // suche in verschiedene Richtungen nach Objektpunkt
                      if (in Richtung(S-1) ist ein Objektpunkt (B_{S-1}))
6.
                                  Setze: C = B_{S-1}, S = Richtung(S-2), found = true.
7.
                      else if (in Richtung(S) ist ein Objektpunkt (B_S))
8.
9.
                                  Setze: C = B_s, found = true.
                      else if (in Richtung(S+1) ist ein Objektpunkt (B_{S+1}))
10.
11.
                                  Setze: C = B_{S+1}, found = true.
12.
                      else
13.
                                  Setze: S = Richtung(S+2)
                      endif
14.
15.
           end while
16.
           Setze: first = false.
                                                                             3
17. end while
                                                                             4
```

Anm.: Richtung(S) { return (S+8) mod 8 }

Suchrichtung S

ÜBUNG: Konturextraktion 2

Zeigen Sie, wie Konturalgorithmus 2 die Kontur findet. Geben Sie die Liste der extrahierte Punkte an (Anm.: Bildursprung oben links).

Wo könnten Probleme entstehen?

4.2.2 Maßnahmen zur Konturverbesserung

4.2.2.1 Resampling = äquidistante Unterabtastung

Für die nachfolgende Verarbeitung kann es von Nachteil sein, dass die Konturpunkte nicht äquidistant sind :

> Abstand horizontaler/vertikaler Nachbarn: Abstand diagonaler Nachbarn

$$\sqrt{2}:1 \approx 1.4:1 = 7:5$$

Einen (fast) äquidistanten Konturpunktabstand erhält man Unterteilung der

- horizontalen/vertikalen Konturschritte in <u>5 Unterschritte</u>

und der

diagonalen Konturschritte in

7 Unterschritte .

Die T unterabgetasteten Punkte zwischen 2 Punkten erhält man mit:

4.2.2.2 Konturglättung

Zur Glättung der Kontur können die (zyklisierten) x- und y-Konturwerte mit einem (1-dimensionalen) Gauss-Kernel gefaltet werden.

äquidistant neu abgetastete Konturliste

geglättete Konturliste (13-Element-Gausskernel)

4.2.3 Konturbeschreibung

4.2.3.1 Einführende Gedanken

Für die weitere Verarbeitung (Merkmalsextraktion) werden die Konturpunkte i. Allg. in andere Darstellungsweisen umgewandelt.

4.2.3.2 Chaincode

Beginnend bei einem Startpunkt S, wird lediglich die Richtung des jeweils nächsten Punktes angegeben (8-er Nachbarschaft). Pro Punkt sind somit nur 3 bit (Werte: 0...7) notwendig.

3	2	1
4	С	0
5	6	7

Suchrichtung S

Beispiel: Chaincode

 $0\,0\,6\,6\,0\,0\,0\,1\,2\,0\,6\,6\,6\,4\,4\,5\,6\,7\,0\,0\,...$

4.2.3.3 Polygonbeschreibung

Für viele Anwendungsfälle (z.B. Konturidentifikation) ist es wünschenswert, die Konturpunktmenge <u>stückweise linear</u> so zu <u>approximieren</u>, dass ein vorgegebener <u>Maximalfehler nicht überschritten</u> wird (→ Split & Merge - Algorithmus).

Für die Gleichung einer Gerade zwischen zwei Punkten (x_j,y_j) und (x_k,y_k) gilt:

$$x(y_{j} - y_{k}) + y(x_{k} - x_{j}) + y_{k} \cdot x_{j} - y_{j} \cdot x_{k} = 0$$
(1)

Für den Abstand eines Punktes (u,v) zu dieser Geraden gilt:

$$d = \frac{u(y_j - y_k) + v(x_k - x_j) + y_k \cdot x_j - y_j \cdot x_k}{\sqrt{(y_j - y_k)^2 + (x_k - x_j)^2}}$$

(2)

Polygonapproximation durch Zerlegung (Split)

- 1. Bestimme: Anfangspunkt (x_a, y_a) und Endpunkt (x_e, y_e) der ersten Geraden.
- 2. WHILE (Fehler mindestens einer Gerade größer F_{max})
- 3. FOR EACH (Gerade mit zu großem Fehler)
- 4. Ermittele den Punkt P mit dem größten Abstand zur Geraden
- 5. Ersetze die alte Gerade durch zwei neue Geraden durch P
- 6. END
- 7. END WHILE

Verbesserte Polygonapproximation (Split & Merge)

Bei komplexeren Konturen führt die Polygonapproximation durch das Splittingverfahren häufig

- zu einer zu großen Anzahl von Segmenten und
- die Zerlegung ist stark abhängig vom (zufälligen) Startpunkt.

Eine deutliche Verbesserung bringt der folgende Algorithmus:

- 1. Führe eine Anfangszerlegung durch Splitting durch.
- 2. Vereinige alle Geradenpaare, deren Vereinigung unter Beibehaltung des max. erlaubten Fehlers möglich ist.

ÜBUNG: Math. Beschreibung von Geraden in der Ebene 1

- 1. Diskutieren / interpretieren Sie verschiedene Varianten der Geradenbeschreibung:
 - a) Steigungs-Achsenabschnittsform

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$Ax + By = 1$$

y = mx + b

b) Achsenabschnittsform

d) Hesse'sche Normalform

$$x(y_j - y_k) + y(x_k - x_j) + y_k \cdot x_j - y_j \cdot x_k = 0$$

$$r = x \cdot \cos \Theta + y \cdot \sin \Theta$$

- 2. Wie lautet die Geradengleichung der nebenstehenden Gerade
 - a) in der Achsenabschnittsform
 - b) in der Steigungs-Achsenabschnittsform?

ÜBUNG: Math. Beschreibung von Geraden in der Ebene 2

- s. Tafel: kurze Wiederholung zu Vektoren
- 3. Leiten Sie die "2-Punkte-Form der Geradengleichung" her, also :

$$x(y_j - y_k) + y(x_k - x_j) + y_k \cdot x_j - y_j \cdot x_k = 0$$

- 4. Eine Gerade geht durch die Punkte $(x_1, y_1) = (1,3)$ und $(x_2, y_2) = (6, 8)$.
 - a) Geben Sie die "2-Punkte-Form der Geradengleichung" an.
 - b) Beschreiben Sie die Gerade in der Form y=mx+b.
 - c) Wie weit ist der Punkt (u, v) = (2, 6) von der Gerade entfernt?

ÜBUNG: Math. Beschreibung von Geraden in der Ebene 3

5 . Leiten Sie die "Hesse'sche Normalform der Geradengleichung" her, also :

$$r = x \cdot \cos \theta + y \cdot \sin \theta$$

- 6. Gegeben ist eine Gerade y = -2x+4.
 - a) Beschreiben Sie die Gerade in der Form Ax+By=1.
 - b) Beschreiben Sie die Gerade in der Hesse`schen Normalform.

ÜBUNG: Anwendung in der "Bildmesstechnik"

Gegeben ist das abgebildete Werkstück (Kantenrauhigkeit übertrieben gezeichnet).

- a) Zu bestimmen ist der kürzeste Abstand d₁ zwischen der Verbindungsgeraden P_A-P_B (Bohrungszentren) und dem Kantenpunkt P_{K1}.
- b) Zu bestimmen ist der kürzeste Abstand d₂ zwischen der Ausgleichsgeraden durch die Kantenpunkte und dem Bohrungszentrum P_A.
- Zu bestimmen ist der Winkel zwischen den beiden Ausgleichsgeraden K und L.

Skizzieren und diskutieren Sie die Lösungen.

4.2.3.4 Periodische Konturfunktionen

Für die <u>Objektidentifikation</u> ist die Umwandlung der Konturliste in eine *periodische Konturfunktion* vorteilhaft.

Grundidee:

- 1. Kontur in eine eindimensionale, periodische Funktion umwandeln.
- 2. Beschreibung der periodischen Funktion durch die Fourierkoeffizienten.

Beispiel 2: Krümmungsfunktion κ

$$\kappa = \frac{x' \cdot y'' - x'' \cdot y'}{(x'^2 + y'^2)^{3/2}}$$

mit den Ableitungen

$$x'(n) = \frac{1}{2} \cdot \left[x(n+1) - x(n-1) \right]$$

$$x''(n) = x(n+1) - 2x(n) + x(n-1)$$

geglättete Kontur

Krümmungsfunktion mit Krümmungswendepunkten (Zerocrossings)

4.2.3.5 Konturidentifikation

Anforderungen:

Ähnliche Konturen müssen ähnliche Ergebnisse erzeugen!

Die Identifikation muss unabhängig sein von/vom

- Bildmaßstab (Skalierungsinvarianz)
- Verdrehung im Bild (*Rotationsinvarianz*)
- Verschiebung im Bild (*Translationsinvarianz*)

Anwendungen:

Anwendbar auf alle geschlossenen Konturen.

Eine Möglichkeit - Konturidentifikation nach Zahn und Roskies

Eine Verfahrensvariante (Verfahren von Zahn & Roskies) basiert auf dem sog. "kumulativen Tangentialwinkel," (=periodische Konturfunktion).

p(l): absoluter Tangentialwinkel

 $\psi(l)$: kumulativer Tangentialwinkel

: Bogenlänge der Kontur, vom Startpunkt aus

C: Gesamtkonturlänge

$$\psi(l) = \varphi(l) - \varphi(0)$$

Für ein Umlauf gilt dann: $\psi(L) = -2\pi$

BEISPIEL: Kumulativer Tangentialwinkel

Entwicklung einer periodischen Konturfunktion $\psi^*(l)$

1. Bogenlänge l durch die *normierte Bogenlänge* $\hat{l}=\frac{l}{L}\cdot 2\pi$ ersetzen. Für einen Umlauf gilt dann: $\hat{l}_{Uml}=2\pi$

2. Addition der normierten Bogenlänge zum kumulativen Tangentialwinkel:

$$\psi^*(\hat{l}) = \psi(\hat{l}) + \hat{l}$$

ightarrow periodische Funktion, für die gilt: $\psi^*(0) = \psi^*(2\pi) = 0$

ÜBUNG: Kumulativer Tangentialwinkel und Konturfunktion $\psi^*(\hat{l})$

Zeichnen Sie den kumulativen Tangentialwinkel und die Konturfunktion.

Wie ändert sich die Funktion

- a) bei Rotation,
- b) bei Skalierung,
- c) bei Verschiebung des Objektes,
- d) bei Startpunktverschiebung.

Fourierzerlegung der Konturfunktion

 $\psi^*(\hat{l})$ ist <u>invariant</u> gegen <u>Translation</u>, <u>Rotation</u> und <u>Skalierung</u> der Kontur.

Es besteht lediglich eine Startpunktabhängigkeit.

Da $\psi^*(\hat{l})$ eine periodische Funktion ist, kann sie als Fourierreihe dargestellt werden:

$$\psi^{*}(\hat{l}) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} (a_{n} \cos n\hat{l} + b_{n} \sin n\hat{l}) \quad \text{mit} \quad A_{n} = \sqrt{a_{n}^{2} + b_{n}^{2}}$$

$$= A_{0} + \sum_{n=1}^{\infty} A_{n} \cos(n\hat{l} - \beta_{n})$$

$$= A_{0} + \sum_{n=1}^{\infty} A_{n} \cos(n\hat{l} - \beta_{n})$$

Die <u>Form der Kontur</u> kann daher <u>durch wenige Kennzahlen</u> (A_n, β_n) , die sog. *Fourierdeskriptoren,* <u>dargestellt</u> werden.

Eine Startpunktverschiebung wirkt sich nur auf A_0 und die Winkel β_n aus.

Rekonstruktion der Kontur aus den Fourierkoeffizienten

Berechnung der Fourierdeskriptoren aus polygonalen Konturfunktionen

Liegt die Konturbeschreibung als Polygonzug vor, so lassen sich die Fourierkoeffizienten (bzw. F.-Deskriptoren) besonders einfach berechnen/implementieren (o. Bew.):

$$a_n = -\frac{1}{n\pi} \sum_{j=1}^m \Delta \psi_j \cdot \sin(n \cdot \hat{l}_j)$$

$$b_n = +\frac{1}{n\pi} \sum_{j=1}^{m} \Delta \psi_j \cdot \cos\left(n \cdot \hat{l}_j\right)$$

$$A_n = \sqrt{a_n^2 + b_n^2}$$

m: Gesamtzahl der Segmente

$$\operatorname{mit} \qquad \hat{l}_{j} = \sum_{i=1}^{j} \Delta \hat{l}_{i}$$

→ normierte Teilkonturlänge

ÜBUNG: Fourierdeskriptoren

Schreiben Sie ein C-Programm zur Berechnung der Fourierdeskriptoren.

Berechnen Sie damit zu folgender Kontur (Längenangabe in Pixel) die Werte der ersten 15 Fourierkoeffizienten.

Variieren Sie die Längen- und Winkel geringfügig.

Ergebnis: Kumulativer Tangentialwinkel

$$\psi^*(\hat{l}) = \frac{1}{4}\pi - \frac{1}{2}\sin(4\hat{l}) - \frac{1}{4}\sin(8\hat{l}) - \frac{1}{6}\sin(12\hat{l}) - \frac{1}{8}\sin(16\hat{l}) - \frac{1}{10}\sin(20\hat{l})$$

4.2.3.5 Spezielle Konturen: Kegelschnitte

Kegelschnitte beschreiben

- Geraden
- Parabeln
- Kreise und Ellipsen
- Hyperbeln

Ein Kegelschnitt wird beschrieben durch:

$$a \cdot x^2 + b \cdot xy + c \cdot y^2 + d \cdot x + e \cdot y + f = 0$$

ÜBUNG: Kegelschnittgleichung

$$x^2 - \frac{4}{3} \cdot xy + y^2 - \frac{5}{3} \cdot x - \frac{5}{3} \cdot y + \frac{8}{3} = 0$$

- a) Ändert sich die Ellipse, wenn die Kegelschnittparameter mit einer Zahl k≠0 multipliziert wird?
- b) Es ist zu zeigen, dass die obige Kegelschnittgleichung die dargestellte Ellipse beschreibt.

Beispiel: Berechnung der Kegelschnittparameter aus 5 Punkten

Gegeben sind 5 Punkte, die auf einer unbekannten Ellipse liegen.

$$\mathbf{x}_1 = (1,2)^T$$
 $\mathbf{x}_2 = (2,1)^T$ $\mathbf{x}_3 = (4,3)^T$ $\mathbf{x}_4 = (4,4)^T$ $\mathbf{x}_5 = (3,4)^T$

Die Parameter a....f der Ellipse sollen bestimmt werden:

$$a \cdot x^2 + b \cdot xy + c \cdot y^2 + d \cdot x + e \cdot y + f = 0$$

Durch Division der Gleichung durch a wird aus der Kegelschnittgleichung:.

$$b^* \cdot xy + c^* \cdot y^2 + d^* \cdot x + e^* \cdot y + f^* = -x^2$$

Für 5 Punkte und in Matrixform erhält man:

$$\begin{bmatrix} x_{1}y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\ x_{2}y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\ x_{3}y_{3} & y_{3}^{2} & x_{3} & y_{3} & 1 \\ x_{4}y_{4} & y_{4}^{2} & x_{4} & y_{4} & 1 \\ x_{5}y_{5} & y_{5}^{2} & x_{5} & y_{5} & 1 \end{bmatrix} \cdot \begin{pmatrix} b^{*} \\ c^{*} \\ d^{*} \\ e^{*} \\ f^{*} \end{pmatrix} = -\begin{pmatrix} x_{1}^{2} \\ x_{2}^{2} \\ x_{3}^{2} \\ x_{4}^{2} \\ x_{5}^{2} \end{pmatrix} \longrightarrow \begin{bmatrix} 2 & 4 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 & 1 \\ 12 & 9 & 4 & 3 & 1 \\ 16 & 16 & 4 & 4 & 1 \\ 12 & 16 & 3 & 4 & 1 \end{bmatrix} \cdot \begin{pmatrix} b^{*} \\ c^{*} \\ d^{*} \\ e^{*} \\ f^{*} \end{pmatrix} = \begin{pmatrix} -1 \\ -4 \\ -16 \\ -9 \end{pmatrix}$$

Durch Lösen des Gleichungssystems erhält man für $b^* \dots f^*$

$$\left[-\frac{4}{3} + 1 - \frac{5}{3} - \frac{5}{3} + \frac{8}{3} \right]$$

Die Kegelschnittgleichung ist damit:

$$x^2 - \frac{4}{3} \cdot xy + y^2 - \frac{5}{3} \cdot x - \frac{5}{3} \cdot y + \frac{8}{3} = 0$$

ÜBUNG: Kreis

1. Zeigen Sie den Zusammenhang zwischen der Kreisgleichung

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

und der Kegelschnittgleichung:

$$a \cdot x^2 + b \cdot xy + c \cdot y^2 + d \cdot x + e \cdot y + f = 0$$

2. Geben Sie die Parameter x_0, y_0, r desjenigen Kreises an, der durch die Punkte (2,1), (-1,1) und (0, -3) geht.

4.3 Regionenbasierte anhand von zusammenhängenden Flächen

4.3.1 Flächenextraktion in Binärbildern

4.3.1.1 Connected Components Labeling

Ziel: Identifikation zusammenhängender Bildregionen in Binärbildern

□ = 0 ■ = 1

<u>Def.:</u> Nbr = Nachbarn in folgenden Richtungen

Algorithmus: Initiales Labeling (1. Schritt)

- 1. Label = 0
- **2. for** y = 0 **to** rows-1
- 3. **for** x = 0 **to** columns -1
- 4. **if** $Q[x][y] \neq 0$ (Objektpunkt gefunden)
- 5. **if** alle 4 Nbr = 0
- 6. Label = Label +1
- 7. Q[x][y] = Label
- 8. **else if** Nbr \neq 0 und NbrLabel gleich
- 9. Q[x][y] = Label von Nbr
- 10. else Nbr $\neq 0$ und NbrLabel verschieden
- 11. Q[x][y] = Label von einem Nbr
- 12. die anderen Labels als "äquivalent" merken
- 13. end if
- 14. end if
- 15. end for
- 16. end for

nach Ablauf des Algorithmus

	_
2	
2	
2	
	2 2 2

Lab2=Lab3

Lab1=Lab3

Jetzt: Ersetzen äquivalenter Label <u>durch ein Label</u> in 3 Schritten:

Schritt 1: Eintragen der Label-Äquivalenzen in die Äquivalenz-Matrix (L).

Schritt 2: Auflösen der Äquivalenzen mit dem "Floyd-Warshall-Algorithmus".

Algorithmus: Äquivalenzen auflösen (2. Schritt: Floyd-Warshall-Alg.)

1. **for**
$$j = 1$$
 to n

2. **for**
$$i = 1$$
 to n

3. **if**
$$L_{ii} = 1$$

4. **for**
$$k = 1$$
 to n

5.
$$L_{ki} = L_{ki} OR L_{ki}$$

6. **end for**

7. end if

8. **end for**

9. **end for**

Algorithmus in Worten:

Wenn ein Punkt L_{ji}=1 ist, dann werden die <u>gesetzten</u> Felder (Wert=1) der Spalte **j** in die Felder der Spalte **i** kopiert.

nach	FW-A	Igorithmus
	nach	nach FW-A

	1	2	3	4	5
1	1	1₩	-1		
2	1	1 <	-1		
3	1	1 <	-1		
4				1	
5					

nach Schritt 2

Schritt 3: Ersetze im initial gelabelten Bild die alten Bildpunktlabel j durch die neuen Label i mit Hilfe der Funktion "Ersetze Labelwert j_durch_i (j)"

 $\begin{array}{ll} \textit{1.} & \textit{Ersetze_Labelwert_j_durch_i} \; (\; j\;) \; \{ \\ 2. & \textbf{for} \; i = 1 \; \textbf{to} \; n \\ 3. & \textbf{if} \; L_{ji} = 1 \\ 4. & \textbf{return} \; i \\ 5. & \textbf{end} \; \textbf{if} \end{array}$

end for

6.7. }

ÜBUNG: Floyd-Warshall-Algorithmus

Berechnen Sie die Äquivalenzmatrix mit Hilfe des FW-Algorithmus wenn folgende Äquivalenzen gegeben sind:

Lab 1 = Lab 3 Lab 2 = Lab 5 Lab 3 = Lab 4 Lab 5 = Lab 7 Lab 4 = Lab 8 Lab 7 = Lab 6

								→ 1
	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

4.3.2 Flächenmerkmale

4.3.2.1 Geometrische Momente

Geometrische Momente werden in der Mechanik zur <u>Beschreibung mechanischer</u> <u>Eigenschaften</u> verwendet, die aus Querschnittsflächen abgeleitet werden können (Beispiel: Flächenträgheitsmoment).

Das Konzept der <u>Flächenbeschreibung</u> durch <u>geom. Momente</u> lässt sich für die (einfache) <u>Mustererklassifikation</u> zweidimensionaler Objekte nutzen.

Vorteil dieses Ansatzes ist, das einige dieser Momente (Schwerpunkt, Flächenträgheitsmoment) anschaulich interpretiert werden können.

4.3.2.2 Definition der geometrischen Momente

Ein *geometrisches Moment* eines zweidimensionalen Objektes der Ordnung (p,q) ist definiert als:

$$m_{pq} = \sum_{x} \sum_{y} f(x, y) \cdot x^{p} \cdot y^{q}$$
 mit $f(x, y)$: Grauwert an der Stelle (x, y) x, y : Koordinaten des Objektbildpunktes

So ist der Schwerpunkt $\begin{pmatrix} - \\ x, y \end{pmatrix}$ eines zweidimensionalen Objektes:

$$\bar{x} = \frac{m_{10}}{m_{00}} \qquad \bar{y} = \frac{m_{01}}{m_{00}}$$

Die so definierten Momente sind jedoch <u>abhängig vom Ort</u> des zweidimensionalen Objektes (d.h. <u>nicht translationsinvariant</u>). → Zentralmomente

ÜBUNG: Berechnung des Objektschwerpunktes

a) Geben Sie des Schwerpunkt des Objektes an.

b) Geben Sie das Moment m₂₀ des Objektes an.

4.3.2.3 Definition der Zentralmomente

Ein *Zentralmoment* der Ordnung (p,q) ist definiert als:

$$\mu_{pq} = \sum_{x} \sum_{y} f(x, y) \cdot \left(x - \overline{x}\right)^{p} \cdot \left(y - \overline{y}\right)^{q} \quad \text{mit}$$

f(x,y): Grauwert an der Stelle (x,y)

x,y : Koordinaten des Objektbildpunktes

x,y: Objektschwerpunkt

Die Zentralmomente sind translationsinvariant, aber <u>nicht</u> rotations- und skalierungsinvariant.

→ normalisierte Zentralmomente

4.3.2.4 Definition der normalisierten Zentralmomente

Die *normalisierten Zentralmomente* der Ordnung (p,q) sind definiert als:

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}, \qquad \gamma = \frac{p+q}{2} + 1$$

Die <u>normalisierten Zentralmomente sind translations- und skalierungsinvariant</u>, aber <u>nicht</u> rotationsinvariant (o.Bew.).

→ invarianten Momente (Hu, 1962)

4.3.2.5 Definition der invarianten Momente

Hu (1962) hat sieben Momente definiert, mit deren Hilfe sich geometrische Eigenschaften von Bildregionen <u>translations-, skalierungs- und rotationsinvariant</u> darstellen lassen.

$$p + q = 2$$

$$\phi_1 = \eta_{20} + \eta_{02}$$

$$\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$$

$$p + q = 3$$

Formeln z.B. aus:

- (1) Gonzalez/Woods, Digital Image Processing, Prentice Hall
- (2) Theodoridis/Koutroumbas, Pattern Recognition, Academic Press

$$\phi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (\eta_{03} - 3\eta_{21})^{2}$$

$$\phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{03} + \eta_{21})^{2}$$

$$\phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (\eta_{03} - 3\eta_{21})(\eta_{03} + \eta_{21})[(\eta_{03} + \eta_{21})^{2} - 3(\eta_{12} + \eta_{30})^{2}]$$

$$\phi_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{03} + \eta_{21})$$

$$\phi_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[(\eta_{03} + \eta_{21})^{2} - 3(\eta_{30} + \eta_{12})^{2}]$$

Beispiel: Invariante Momente von Binärobjekten

Moments	0°	Scaled	180°	15°	Mirror	90°
ϕ_1	93.13	91.76	93.13	94.28	93.13	93.13
ϕ_2	58.13	56.60	58.13	58.59	58.13	58.13
ϕ_3	26.70	25.06	26.70	27.00	26.70	26.70
ϕ_4	15.92	14.78	15.92	15.83	15.92	15.92
ϕ_5	3.24	2.80	3.24	3.22	3.24	3.24
ϕ_6	10.70	9.71	10.70	10.57	10.70	10.70
ϕ_7	0.53	0.46	0.53	0.56	-0.53	0.53

Beispiel aus:

Theodoridis/Koutroumbas, Pattern Recognition, Academic Press

Beispiel: Invariante Momente von Grauwertbildern

Invariant (Log)	Original	Half Size	Mirrored	Rotated 2°	Rotated 45°
ϕ_1	6.249	6.226	6.919	6.253	6.318
ϕ_2	17.180	16.954	19.955	17.270	16.803
ϕ_3	22.655	23.531	26.689	22.836	19.724
ϕ_4	22.919	24.236	26.901	23.130	20.437
ϕ_5	45.749	48.349	53.724	46.136	40.525
ϕ_6	31.830	32.916	37.134	32.068	29.315
φ ₇	45.589	48.343	53.590	46.017	40.470

Beispiel aus: Gonzalez/Woods, Digital Image Processing, Prentice Hall

4.3.2.6 Beispielanwendungen (aus Literatur)

- Lesen chinesischer Schriftzeichen
- Inhaltsbezogender Zugriff auf Bilddatenbanken
- Bestimmung der Bewegungsparameter von Blutkörperchen
- Gestenerkennung
- Lageregelung für Helikopter anhand von Landemarkierungen (auf Schiffen)

4.4 Kantenbasierte Verfahren

4.4.1 Geradenextraktion in Grauwertbildern durch Houghtransformation

Ziel der Houghtransformation ist die <u>Detektion und Lokalisierung</u> von <u>linearen</u> <u>Bildstrukturen</u>, z.B. Objektkanten.

Grauwertbild

Gradientenbild (Sobel) invers dargestellt

Extrahierte Bildstrecken mit Houghtransformation

Mathematische Grundlagen

Grundlage der Houghtransformation ist die *Hesse'sche Normalform* der Geradengleichung.

Interpretation: Alle Punkte (x_p, y_p) , die auf der Gerade (rot) liegen, genügen der Hesse'schen Normalform. Die Gerade lässt sich durch die beiden Werte (r, θ) eindeutig beschreiben.

ÜBUNG: Hessesche Normalform 1

Prüfen Sie, welche Punkte auf der Gerade mit den folgenden Parametern liegen:

$$r = \frac{5}{\sqrt{2}}, \quad \theta = 45^{\circ}$$

- a) $(x_1,y_1) = (1, 4)$
- b) $(x_2,y_2) = (2, 2)$
- c) $(x_3,y_3) = (3, 2)$

ÜBUNG: Hessesche Normalform 2

Skizzieren Sie für folgende Geraden den Parameterraum (Houghraum).

ÜBUNG: Liniendetektion – Diskussion der Aufgabenstellung

Folgende Aufgabenstellung sei gegeben:

In einem Bild sind einzelne Bildpunkte gesetzt (sw). Es ist zu prüfen, ob mehrere dieser Punkte auf einer Gerade liegen. Diskutieren Sie Lösungsmöglichkeiten.

Hintergrund:

Diese Aufgabenstellung liegt z.B. dann vor, wenn die Kanten von geradlinig begrenzten Bildobjekten zu bestimmen sind.

Durch <u>Kantenfilterung</u> lässt sich die in der Aufgabenstellung beschriebene Situation herstellen.

ÜBUNG: Detektion kollinearer Bildpunkte mit Hilfe des Parameterraumes

Welche Einträge erzeugen die Bildpunkte auf folgenden Geraden im Parameterraum ? Wie könnte man den vollständigen Parameterraum bestimmen?

Gesamtheit aller durch einen Punkt gehenden Geraden

Zusammenfassung

Die Menge <u>aller durch einen Punkt (x_1,y_1) gehenden Geraden</u>, wird beschrieben durch die Gleichung

$$r = x_1 \cdot \cos \theta + y_1 \cdot \sin \theta$$

mit

$$\theta \in [\theta_{\text{max}} - \pi/2, \theta_{\text{max}} + \pi/2]$$

 $\theta_{\text{max}} = \arctan(y_1/x_1)$

71

11.06.2013 Meisel

ÜBUNG: Houghtransformation

Zeichen Sie den Parameterraum (Houghraum) und tragen Sie für die beiden gegebenen Punkte die Menge aller durch diese Punkte möglichen Geraden ein:

73

Algorithmische Umsetzung der Houghtransformation (1)

Problem: Ein kontinuierlicher Houghraum (R) ist nicht realisierbar.

Lösung: Diskretisierung des Houghraumes (= <u>Zählerarray</u>).

$$\Delta r = 10$$

$$\Delta\theta = 18^{\circ}$$

Akkumulator

Anmerkung:

Typ. Diskretisierungen:

$$\Delta r = 1$$

$$\Delta q = 2.5^{\circ}$$

Algorithmische Umsetzung der Houghtransformation (2)

<u>Algorithmus "Houghtransformation"</u>

```
FOR j=1,n DO /* n : Anzahl der gesetzten Bildpunkte */ \theta_{\text{max}} = \arctan\left(y_{\text{j}}/x_{\text{j}}\right)

FOR \theta = \theta_{\text{max}} - \pi/2 ... \theta_{\text{max}} + \pi/2 STEP \Delta\theta DO r = \text{round}\left(x_{\text{j}}*\cos\left(\theta\right) + y_{\text{j}}*\sin\left(\theta\right)\right) A(r,\theta) = A(r,\theta)+1
```

ENDFOR

ENDFOR

Eigenschaften der Houghtransformation

Problem: Es werden <u>keine Geraden gesucht</u>, <u>sondern Bildstrukturen</u>, die <u>auf einer Gerade</u> liegen. Dieser Sachverhalt kann auch vorteilhaft sein, z.B. im Fall teilweise verdeckter Kanten.

Problematisches Bild, da nahezu auf allen möglichen Geraden nennenswerte Grauwertsummen (im kantengefilterten Bild) zustande kommen werden.

Lösung: <u>Bildrauschen</u> sollte durch eine Bildglättung <u>unterdrückt</u> werden. Durch eine geeignete Vorfilterung, sollten möglichst alle nicht-linienförmigen Bildstrukturen unterdrückt werden.

Eigenschaften der Houghtransformation

Problem: Breite Kanten führen zu mehrdeutigen Maxima.

Geraden mit unterschiedlichem r passen in die Bildkante (grau).

y x

Geraden mit unterschiedlichem θ passen in die Bildkante (grau).

Verbesserung:

Eine zur Vorverarbeitung passende Quantisierungsstufe wählen.

Houghraum im Bereich des Maximums

Verbesserungen des klassischen Ansatzes

→ Grauwert-Houghtransformation

Eine Verbesserung erreicht man dadurch, dass die Hough-Akkumulatoren für gesetzte Bildpunkte nicht einfach nur hochgezählt werden, sondern dass stattdessen die Grauwerte der kantengefilterten Bildpunkte aufsummiert werden.

→ "Inverse Houghtransformation"

- 1. WHILE (nennenswerte Maxima im Houghraum)
- 2. Es wird das absolute Maximum im Houghraum gesucht.
- 3. Die zu diesem Maximum gehörenden Bildpunkte werden aus dem Bild und aus dem Houghakkumulator entfernt.
- 4. END WHILE

Beispiele: Houghtransformation

4.5 Weitergehende Verfahren

4.5.1 Dynamische Programmierung

4.5.1.1 Aufgabenstellung

Gegeben ist ein Graph, dessen Kanten gewichtet sind.

Auf welchem Weg ist die Summe der Gewichte am kleinsten (oder größten)?

4.5.1.2 Lösungsprinzip

Anmerkung:
Ziel ist eine max.
Gewichstsumme

Schritt 1:

- 1. Gestartet wird beim linken Knoten.
- 2. Bei jedem Nachfolgeknoten wird gespeichert:
 - der Weg zum besten Vorgänger •
 - die Summe aus dem Knotenwert des besten Vorgängers und dem Verbindungsknoten.

Schritt 2: (Backtracking)

- 1. Gestartet wird beim Endknoten.
- 2. Von Knoten zu Knoten folgt man der vorgeschlagenen Richtung.

ÜBUNG: Dynamische Programmierung 1

Gegeben ist folgender Graph. Finden Sie mit Hilfe der dyn. Programmierung den Weg mit der <u>minimalen</u> Gewichtsumme.

ÜBUNG: Dynamische Programmierung 2

Gegeben ist folgender Graph. Finden Sie mit Hilfe der dyn. Programmierung den Weg von links nach rechts mit der <u>minimalen Gewichtsumme</u>.

4.5.1.3 Anwendungsbeispiel: Lesen von Autokennzeichen

