# Dictionary Analysis

#### Riccardo Ruta

### 5/2022

#### Contents

| Di | ictionary analysis                                                                                                                  | 1  |
|----|-------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Create the dictionary                                                                                                               | 1  |
|    | Decadri_Boussalis_Grundl                                                                                                            | 4  |
|    | Rooduijn_Pauwels_Italian                                                                                                            | 19 |
|    | $\label{lem:cond_def} Grundl\_Italian\_adapted \ \ldots \ $ | 22 |
|    | Compare the general level of populism over time for the dictionaries $\dots \dots \dots \dots \dots$                                | 25 |
|    | DA SISTEMARE LA COMPARAZIONE TRA DIZIONARI!                                                                                         | 25 |
|    | Compare how the dictionaries score for the most populist parliamentary group                                                        | 25 |

# Dictionary analysis

At the level of political parties, which ones make most use of populist rhetoric? I use 3 dictionaries to perform the analysis

- Rooduijn & Pauwels: Rooduijn, M., and T. Pauwels. 2011. "Measuring Populism: Comparing Two Methods of Content Analysis." West European Politics 34 (6): 1272–1283.
- Grundl: Gründl J. Populist ideas on social media: A dictionary-based measurement of populist communication. New Media & Society. December 2020.
- Decadri & Boussalis: Decadri, S., & Boussalis, C. (2020). Populism, party membership, and language complexity in the Italian chamber of deputies. Journal of Elections, Public Opinion and Parties, 30(4), 484-503.
- This previous dictionary is used in the version colled "Decadri & Boussalis + Grundl": that is simply a more extended version of the D&B dictionary, which also contains some terms taken from Grundl.

#### Create the dictionary

I imported the excel file with the words for the dictionaries, excluding NA's.

```
# import dictionaries file
dict <- read_excel("data/populism_dictionaries.xlsx")
variable.names(dict)</pre>
```

```
## [1] "Rooduijn_Pauwels_Italian"
## [2] "Grundl_Italian_adapted"
## [3] "Decadri Boussalis"
## [4] "Decadri_Boussalis_Grundl_People"
## [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri Boussalis Grundl Elite"
# create the dictionary
Rooduijn_Pauwels_Italian <-
  dictionary(list(populism =
                    (dict$Rooduijn_Pauwels_Italian
                      [!is.na(dict$Rooduijn Pauwels Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                    dict$Grundl_Italian_adapted
                  [!is.na(dict$Grundl Italian adapted)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
                    dict$Decadri_Boussalis_Grundl_People
                  [!is.na(dict$Decadri_Boussalis_Grundl_People)],
                  common will =
                    dict$`Decadri_Boussalis_Grundl_Common Will`
                  [!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
                    dict$Decadri Boussalis Grundl Elite
                  [!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
dictionaries <- c("Rooduijn_Pauwels_Italian", "Grundl_Italian_adapted"
                  ,"Decadri_Boussalis_Grundl")
n.words <- c(
  length(Rooduijn_Pauwels_Italian$populism),
  length(Grundl Italian adapted$populism),
  (length(Decadri_Boussalis_Grundl$people)+
     length(Decadri_Boussalis_Grundl$common_will)+
     length(Decadri_Boussalis_Grundl$elite))
number_of_words <- data.frame(dictionaries,n.words)</pre>
kable(number_of_words)
```

| dictionaries             | n.words |
|--------------------------|---------|
| Rooduijn_Pauwels_Italian | 18      |
| Grundl_Italian_adapted   | 135     |
| Decadri_Boussalis_Grundl | 77      |

#### Group and weight the dfm

```
# By party & quarter
dfm_weigh_p_quart <- dfm_group(DFM, groups = interaction(party_id, quarter))%>%
    dfm_weight(scheme = "prop")
```

#### Apply the dictionaries

### $Decadri\_Boussalis\_Grundl$

```
# Dictionary analysis with Decadri_Boussalis_Grundl
# By quarter
dfm_dict1 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Decadri_Boussalis_Grundl)</pre>
```

#### Transform the DFM into an ordinary dataframe

```
data_dict1 <- dfm_dict1 %>%
  quanteda::convert(to = "data.frame") %>%
  cbind(docvars(dfm_dict1))

# Add variable with general level of populism
data_dict1 <- data_dict1 %>% mutate(populism = (people + common_will + elite) * 100)
```

#### Level of populism in time

# Populism level over quarters of the 'people' component



# Populism level over quarters of the 'common will' component



# Populism level over quarters of the 'elite' component



```
########
# compare the levels
p <- ggplot() +</pre>
  # plot people
  geom_line(data = data_quarter_people, aes(x = Group.1, y = perc, color = "people"), size = 2) +
  # plot common will
  geom_line(data = data_quarter_common, aes(x = Group.1, y = perc, color = "common will"), size = 2) +
  # plot elite
  geom_line(data = data_quarter_elite, aes(x = Group.1, y = perc, color = "elite"), size = 2) +
  scale_color_manual(name='Legend',
                     breaks=c('people', 'elite', 'common will'),
                     values=c('people'='red', 'elite'='blue', 'common will'='green'))+
  scale_x_continuous("Quarters", labels = as.character(data_quarter_people$Group.1), breaks = data_quar
  ylab("Percentage of populist words")+
  labs(title = " Compare the 3 components of the populism level")
p
```

# Compare the 3 components of the populism level





#### Frequencies of the 3 components of populism for each parliamentary group



#### Ranking of parliamentary groups according to their level of populism

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.799 |
| M5S          | 0.763 |
| LEGA         | 0.696 |
| MISTO        | 0.637 |
| FI           | 0.618 |
| PD           | 0.604 |
| LEU          | 0.591 |
| CI           | 0.499 |
| IV           | 0.484 |
| INDIPENDENTE | 0.462 |
| REG_LEAGUES  | 0.418 |
|              |       |

```
ggplot(data=data_party, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  geom_jitter(width=0.15)+
  theme(axis.text.x = element_text(angle = 45, hjust=1))+
  ylab("Percentage of populist words") +
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM")
```

## LEVEL OF POPULISM



```
# PEOPLE
data_party_people <- aggregate(x = data_dict1$people, # Specify data column</pre>
```

```
by = list(data_dict1$party_id), # Specify group indicator
    FUN = mean) # Specify function (i.e. mean)
data_party_people$perc <- round(data_party_people$x * 100,3)
kable(data_party_people %>% select(Group.1, perc)%>% arrange(desc(perc)))
```

| Group.1      | perc  |
|--------------|-------|
| M5S          | 0.539 |
| FDI          | 0.487 |
| INDIPENDENTE | 0.454 |
| FI           | 0.449 |
| CI           | 0.444 |
| MISTO        | 0.423 |
| LEGA         | 0.422 |
| PD           | 0.421 |
| IV           | 0.417 |
| LEU          | 0.392 |
| REG_LEAGUES  | 0.335 |

```
ggplot(data=data_party_people, aes(x=Group.1, y=perc)) +
geom_bar(stat="identity", fill="steelblue")+
geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
theme_minimal()+
geom_jitter(width=0.15)+
theme(axis.text.x = element_text(angle = 45, hjust=1))+
ylab("Percentage of populist words - people")+
xlab("Parliamentary groups")+
labs(title = "LEVEL OF POPULISM: PEOPLE COMPONENT")
```

## LEVEL OF POPULISM: PEOPLE COMPONENT



## Parliamentary groups

| Group.1      | perc  |
|--------------|-------|
| LEGA         | 0.048 |
| M5S          | 0.044 |
| FI           | 0.040 |
| MISTO        | 0.039 |
| LEU          | 0.030 |
| PD           | 0.027 |
| FDI          | 0.025 |
| IV           | 0.010 |
| CI           | 0.008 |
| INDIPENDENTE | 0.004 |
| REG_LEAGUES  | 0.000 |

```
ggplot(data=data_party_common, aes(x=Group.1, y=perc)) +
geom_bar(stat="identity", fill="steelblue")+
geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
theme_minimal()+
geom_jitter(width=0.15)+
```

```
theme(axis.text.x = element_text(angle = 45, hjust=1))+
ylab("Percentage of populist words - common will")+
xlab("Parliamentary groups")+
labs(title = "LEVEL OF POPULISM: COMMON WILL COMPONENT")
```

# LEVEL OF POPULISM: COMMON WILL COMPONENT



Parliamentary groups

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.287 |
| LEGA         | 0.225 |
| M5S          | 0.179 |
| MISTO        | 0.175 |
| LEU          | 0.168 |
| PD           | 0.157 |
| FI           | 0.129 |
| REG_LEAGUES  | 0.083 |
| IV           | 0.057 |
| CI           | 0.048 |
| INDIPENDENTE | 0.004 |

```
ggplot(data=data_party_elite, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  geom_jitter(width=0.15)+
  theme(axis.text.x = element_text(angle = 45, hjust=1))+
  ylab("Percentage of populist words - elite")+
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM: ELITE COMPONENT")
```

## LEVEL OF POPULISM: ELITE COMPONENT



Are the average values of populism for each party statistically different from each other? The reference category is PD

```
# bivariate regression for check t-test
data_dict1$factor_party <- as.factor(data_dict1$party_id)
data_dict1$factor_party <- relevel(data_dict1$factor_party, ref = "PD")

data_dict1$factor_quarter <- as.factor(data_dict1$quarter)
data_dict1$factor_quarter <- relevel(data_dict1$factor_quarter, ref = "8")

a3 <- lm(populism ~ factor_quarter + factor_party, data_dict1)

summary(a3)</pre>
```

```
##
## Call:
```

```
## lm(formula = populism ~ factor_quarter + factor_party, data = data_dict1)
##
## Residuals:
##
                     Median
                                  3Q
       Min
                 1Q
                                          Max
## -0.30617 -0.06571 0.00588 0.05535 0.32599
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           0.60934
                                     0.05058 12.046 < 2e-16 ***
                                      ## factor_quarter1
                           0.04082
## factor_quarter2
                          -0.09418
                                      0.05058 -1.862 0.065878 .
                                      0.05058 2.690 0.008522 **
## factor_quarter3
                           0.13606
## factor_quarter4
                          -0.04390
                                      0.05058 -0.868 0.387769
## factor_quarter5
                          -0.10164 0.05058 -2.009 0.047500 *
                          -0.07861
                                      0.05058 -1.554 0.123684
## factor_quarter6
## factor_quarter7
                           0.04596
                                      0.05058
                                               0.909 0.365971
                                      0.05058
## factor_quarter9
                           0.09022
                                              1.783 0.077879 .
## factor_quarter10
                          -0.04369
                                      0.05058 -0.864 0.390079
## factor_partyCI
                           -0.10503
                                      0.05305 -1.980 0.050793 .
## factor_partyFDI
                           0.19458
                                      0.05305
                                               3.668 0.000414 ***
## factor_partyFI
                           0.01356
                                      0.05305 0.256 0.798859
                                      0.05305 -2.683 0.008687 **
## factor_partyINDIPENDENTE -0.14233
## factor_partyIV
                                      0.05305 -2.277 0.025184 *
                           -0.12078
## factor_partyLEGA
                           0.09147
                                      0.05305
                                               1.724 0.088134 .
## factor_partyLEU
                           -0.01339
                                      0.05305 -0.252 0.801282
## factor_partyM5S
                           0.15814
                                      0.05305
                                              2.981 0.003698 **
                           0.03265
                                      0.05305
                                              0.615 0.539799
## factor_partyMISTO
## factor_partyREG_LEAGUES -0.18644
                                      0.05305 -3.514 0.000693 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1186 on 90 degrees of freedom
## Multiple R-squared: 0.6326, Adjusted R-squared: 0.5551
## F-statistic: 8.157 on 19 and 90 DF, p-value: 1.35e-12
```

Trends in the level of populism for each parliamentary group over time

```
#By party & time (quarters)
parties_time <- data_dict1 %>% select(populism, party_id, quarter)

right_party <- data_dict1 %>% select(populism, party_id, quarter) %>%
    filter(party_id == "FDI"|party_id =="FI"|party_id =="LEGA")
left_party <- data_dict1 %>% select(populism, party_id, quarter) %>%
    filter(party_id == "LEU"|party_id =="M5S"|party_id =="PD"|party_id =="IV")

# Left parties in time
ggplot(left_party, aes(x=quarter, y=populism, color=party_id)) +
    geom_line(size=1.5)+
    scale_x_continuous("Quarters", labels = as.character(left_party$quarter), breaks = left_party$quarter
    ylab("Percentage of populist words")+
    ggtitle("Level of populism over time for left-wing parties")
```

# Level of populism over time for left-wing parties



```
# Right parties in time
ggplot(right_party, aes(x=quarter, y=populism, color=party_id)) +
  geom_line(size=1.5)+
  scale_x_continuous("Quarters", labels = as.character(right_party$quarter), breaks = right_party$quart
  ylab("Percentage of populist words")+
  ggtitle("Level of populism over time for right-wing parties")
```





## Rooduijn\_Pauwels\_Italian

```
# Dictionary analysis with Rooduijn_Pauwels_Italian
# By quarter
dfm_dict2 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Rooduijn_Pauwels_Italian)

data_dict2 <- dfm_dict2 %>%
    quanteda::convert(to = "data.frame") %>%
    cbind(docvars(dfm_dict2))

# Add variable with general level of populism
#data_dict2 <- data_dict2 %>% mutate(populism = (people + common_will + elite) * 100)
```

#### Level of populism over time





## Ranking of parliamentary groups according their populism level

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.274 |
| LEGA         | 0.216 |
| LEU          | 0.160 |
| MISTO        | 0.157 |
| PD           | 0.149 |
| M5S          | 0.145 |
| FI           | 0.116 |
| REG_LEAGUES  | 0.083 |
| IV           | 0.057 |
| CI           | 0.041 |
| INDIPENDENTE | 0.003 |

```
ggplot(data=data_party2, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  ylab("Percentage of populist words")+
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM")
```

# LEVEL OF POPULISM



## Grundl\_Italian\_adapted

```
# Dictionary analysis with Rooduijn_Pauwels_Italian
# By quarter
dfm_dict3 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Grundl_Italian_adapted)

data_dict3 <- dfm_dict3 %>%
    quanteda::convert(to = "data.frame") %>%
    cbind(docvars(dfm_dict3))

# Add variable with general level of populism
#data_dict2 <- data_dict2 %>% mutate(populism = (people + common_will + elite) * 100)
```

#### Level of populism in time





#### Most populist parliamentary group

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.255 |
| M5S          | 0.232 |
| MISTO        | 0.227 |
| LEGA         | 0.224 |
| FI           | 0.193 |
| LEU          | 0.188 |
| PD           | 0.174 |
| CI           | 0.160 |
| REG_LEAGUES  | 0.109 |
| INDIPENDENTE | 0.105 |
| IV           | 0.081 |

```
ggplot(data=data_party3, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  ylab("Percentage of populist words")+
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM")
```

# LEVEL OF POPULISM



Compare the general level of populism over time for the dictionaries

# Compare how the different dictionaries score



#### DA SISTEMARE LA COMPARAZIONE TRA DIZIONARI!

Compare how the dictionaries score for the most populist parliamentary group

```
rank_dict_1 <- (dfm_dict1_tstat_party_filtered %>% filter(group == i ) %>% .$my_rank)
  rank_dict_2 <- (dfm_dict2_tstat_party %>% filter(group == i ) %>% .$my_rank)
  rank_dict_3 <- (dict_3_tstat_party %>% filter(group == i ) %>% .$my_rank)
  rank_dict_4 <- (dict_4_tstat_party %% filter(group == i ) %% .$my_rank)</pre>
  party <- (i)</pre>
  party_rank <- rbind(party_rank, cbind(party, rank_dict_1, rank_dict_2,</pre>
                                          rank dict 3, rank dict 4))
}
# change the format of the columns in numeric
party_rank$rank_dict_1 <- as.numeric(party_rank$rank_dict_1)</pre>
party_rank$rank_dict_2 <- as.numeric(party_rank$rank_dict_2)</pre>
party_rank$rank_dict_3 <- as.numeric(party_rank$rank_dict_3)</pre>
party_rank$rank_dict_4 <- as.numeric(party_rank$rank_dict_4)</pre>
# Create the column with the sum of the single score
party_rank$total_score <- rowSums(party_rank[,-1])</pre>
kable(party_rank %>% arrange(desc(total_score)), col.names = c("Party",
                                                                   "Dec_Bous_Grun",
                                                                   "Rood_Pau_it",
                                                                   "Grun_it",
                                                                   "Dec Bous",
                                                                   "Total"))
```