Problem FC-1 (4 parts)

Branches, Jumps, Loops

Part A Write a MIPS code fragment that jumps to instruction address 0x8A6B9C2C.

lui \$1, 0x8A6B	# load 8A6B into upper 16 bits of \$1
ori \$1, \$1, 0x9C2C	# place 9C2C in the lower 16 bits
jr \$1	<pre># jump to address in \$1</pre>

Part B Write a two instruction MIPS code fragment that branches to label Target if register \$4 is less than or equal to \$5.

slt \$3, \$5, \$4	# is \$5 < \$4?
beq \$3, \$0, Target	# if not, branch to Target

Part C Write a C code fragment equivalent to the following MIPS code. Register \$2 holds the variable "N" and \$4 holds the variable "S".

.text					Equivalent C code:
Foo:	addi	\$4,	\$0 ,	0	int $S = 0$; // # of ones
Loop:	andi	\$5,	\$2,	1	do {
	add	\$4,	\$4,	\$5	S += N & 1;
	srl	\$2,	\$2,	1	N >>= 1;
	bne	\$2,	\$0,	Loop	<pre>} while (N);</pre>

Part D Briefly describe what the code fragment in Part C computes.

This routine counts the number of ones in the binary representation of N.