

Formularium

Academiejaar 2024 - 2025

Timo Vandevenne

Dit document is nog niet klaar, als we nieuwe formules zien zal ik deze toevoegen.

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	P Druk
	V Volume
	R Gasconstante
	T Temperatuur [K]
$\Delta U = q + w$	ΔU Verandering van interne energie
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie
$\Delta H_{rxn}^0 = \sum_{i} i \Delta H_f^0(prod.) - \sum_{i} j \Delta H_f^0(reag.)$	$(\Delta H_{rxn}^0 > 0)$: endotherme reactie
· ·	$\mathbf{H_f^0}$ Standaardvormingsenthalpie
	i, j coefficiënten in reactievergelijking
$q = ms\Delta T$	m massa [g]
	s Specifieke warmte $\left[\frac{J}{g^{\circ}C}\right]$
$q = C\Delta T$	ΔT Temperatuurverandering
	C Warmtecapaciteit
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	-
$q_{rxn} = n\Delta H_{rxn}^0$	
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\nu = h\frac{c}{\lambda}}$	E Enougia [1]
$E = n \mathbf{v} = n \frac{1}{\lambda}$	E Energie [J]
	h constante van Planck = $6.62 \cdot 10^{-34}$ Js
	ν frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
T 1 III	λ Golflengte [m]
$E_{kin,e^-} = h\mathbf{v} - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
Da Baradian) h h	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	$\mathbf{p} \text{ Impuls } \left[\frac{kg \cdot m}{s} \right]$
	m Massa bewegend deeltje [kg]
W. D. L. D. D.	u Snelheid
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
W. D. L. D. D.	y _i Molfractie gas [%]
Wet van Raoult: $P_i = x_i P_i^0$	$\mathbf{x_i}$ Molfractie vloeistof [%]
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	$\mathbf{C_i}$ Concentratie
	$\mathbf{H_{i}}$ Henry constante
	\mathbf{k} gegeven constante bij bep. temp

$$K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

Principe van Le Châtelier

 $aA{+}bB \rightleftharpoons cC{+}dD$

 ${\bf K}$ Even wichtsconstante (K>1: Even wicht naar rechts)

 $[\mathbf{X}]$ Concentratie van stof X

Systeem compenseert uitwendige stress gedeeltelijk

- Concentratieverandering
- \bullet Druk & volume verandering
- $\bullet \ {\bf Temperatuurs verandering}$