The University for world-class professionals

Deadlock Detection and Recovery

Emma Norling
John Dalton room E128

Email: E.Norling@mmu.ac.uk

Telephone: 0161 247 3884

Aims

By the end of this podcast, you should be able to:

- Explain the principle of deadlock detection and recovery
- Explain how to detect a deadlock
- Discuss deadlock detection strategies
- Discuss different recovery strategies

Deadlock Detection and Recovery

- Resource requests are granted whenever possible
- If deadlock arises, something is done about it

Checking for Deadlock

- A check for deadlock can be made as frequently as each resource request or, less frequently, depending on how likely it is for a deadlock to occur
 - the algorithm is relatively simple
 - frequent checks consume considerable processor time

Resource Allocation Graphs

Example

Figure 6.1 (b) Deadlock

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Wait-For Graph

Resource allocation graph

Wait-for graph

Using a Wait-For Graph

- When, and how often should it be invoked?
 - How often is a deadlock likely?
 - Infrequent invocation could obscure the original deadlock

Recovering from Deadlock

Three main alternatives:

- Process termination
- Resource pre-emption
- Backup to a checkpoint

Process Termination

- Abort all processes?
- Abort individual processes until deadlock eliminated?
 - In which order? Possibilities:
 - 1. Priority of the process
 - 2. How long process has computed, and how much longer to completion
 - 3. Resources the process has used
 - 4. Resources process needs to complete
 - 5. How many processes will need to be terminated
 - 6. Is process interactive or batch?

Resource Pre-emption

- Which process?
- How to rollback?
- Can cause starvation.

Backup

- Revert the entire system to a "safe" state
- Restart

Summary

- Deadlock detection and recovery makes good use of available resources
 - particular if deadlock is infrequent
- Detecting deadlock is simple but inefficient
 - RAGs/wait-for graphs
- Three alternative recovery strategies
 - Process termination
 - Resource pre-emption
 - Backup

What Next?

- Read the relevant section in the textbook (6.4)
- This concludes the podcasts for this week.

