



## 0.1 Lecture-1



## Information of the Subject:

- Teaching Staff
- Description, Subject learning objectives
- Course Information, Lectures and Tutorial
- Quiz, Group project, Exam and marks

## Lecturer: Introduction of the Subject

2 activities

#### Tutorial:

- with cameras in ROS
- Matlab tutorial, Read/Show/Save images using Matlab
- Write your code to convert RGB image to greyscale



## 0.2 Activity 2



## Group discussion

Fetch Robot Navigation and Grasping



## 0.2 Activity 2



\* How many problems involved in this application?

What sensors and control methods are used in each problem?



## 0.2 Activity 2



## Problem 1: Navigation/Localization

- Robot needs to go from the starting point to the table
- Sensors: 2D laser and/or RGB-D camera

## Problem 2: Object recognition

- Robot needs to recognize the object, and estimate the pose
- Sensors: RGB-D camera

## Problem 3: Visual Servoing

- Control the robot art to pick up the object
- Sensors: RGB-D camera, force sensor







## 1. Lecture-2



#### Sensors:

- Cameras
- RGB-D Cameras
- ToF sensors



Fundamental

Data and Processing











#### 1. Lecture-2



#### Lecture:

- Introduction to different sensors
- Camera: Geometry
- Camera: Calibration
- Image Processing: Convolution

#### \* Active hands on:

- Camera Calibration Toolbox
- Convolution with different Kernels



#### Sensors - Definition:

- is a transducer that receives an input signal or stimulus and responds with an electrical signal bearing a known relationship to the input
- Handbook of modern sensors: Physics, Design and Applications, Fraden J., Berlin, Springer Verlag, 2003

#### Transducer:

A device that converts input energy into an output energy

## Biological sensors:

Five senses: sight, hearing, smell, taste and touch





#### Five senses:

- Sight: Our eyes are only capable of sensing a very narrow band
- Hearing: Our ears have a limited capability to sense vibration (20Hz 20kHz)
- Smell, taste and touch depends on the proximity\_



EM spectrum







#### Five senses:

- Sight: Our eyes are only capable of sensing a very narrow band
- Hearing: Our ears have a limited capability to sense vibration (20Hz 20kHz)

 Smell, taste and touch depends on the proximity









[X:121, Y:121, Z:105, Time:7/12], value:32



## Active/Passive senses:

- Active sensors require their own source of illumination: eg. Radars, laser range finders, sonars
- Passive sensors rely on natural conditions. Eg. cameras





## 2.2 Sensors: Sonars



## Sonars (Sound Navigation and Ranging)

 Titanic disaster and World Wars prompted to use acoustic technology for object detection

 In World War II, pencil beam sonars were used to detect submarines with a range of 2500 yards

## Operation

- Generating a short burst of sound (a ping)
- Listening for the echo
- Distance is calculated based on the elapsed time





## 2.2 Sensors: Sonars



## Sonar applications

- Depth measurement
- Fish finding
- Mapping sea beds
- Water pipe diameter estimation
- Mine detection
- Underwater communication
- Robotics



Beam pattern







## 2.3 Sensors: Laser



## Laser range finders

## Operating principal

- Measuring the time of flight of laser light pulses
- The pulsed laser beam is deflected by an internal rotating mirror
- The measurement data is available in real time via serial interface













## 2.3 Sensors: Laser



## Laser range finder applications

- Surveying
- Mapping
- Area monitoring
- Localization
- Object tracking
- Robotics
- Intruder detection









## 2.4 Sensors: Radars



#### Radars

- Heinrich Hertz, generated Hertzian between 1885-1889. He showed through several experiments those waves travelled at the speed of light and could reflect, refract and polarize
- Guglielmo Marconi, 1901, transmitted 3500km
- First was reported in 1904 (ship detection by Huelsmeyer)
- Nichola Tesla, 1917 detected position and speed of a vessel
- After the WWII the development slowed down
- 1980s mass production began







## 2.4 Sensors: Radars



## Radars applications

- Aircraft detection
- Missile guidance
- Weather forecasting
- Automotive industry
- Ground penetration radarsGeology
- GIS systems
- Sky and sea monitoring





## 2.5 Sensors: Cameras



#### Cameras

- Technology has developed significantly
- An image contains called pixels
- Each pixel can contain three basic colours RGB, can have several million different colours
- Typical image sizes:
  - 3MP (Largest image size: 2048 x 1536)
  - 4MP (2272 x 1712 )
  - 5MP (2592 x 1944)











Original

10x Optical

10x Digital

http://photo.net/equipment/digital/basics/



## 2.5 Sensors: Cameras



## Image formats:

- JPEG (Joint Photo Experts Group): Compress images with loss on information
- TIFF (Tagged Image File Format): Lossless compression
- RAW (Canon) Lossless compression
- NEF (Nikon) Lossless compression



#### Interfaces:

- Analogue Frame grabbers needed (old technology)
- USB Cheapest solution
- Camera Link good quality, frame gabbers needed
- Fire Wire most popular in robotics
- Gigabit Ethernet (GigE) Fast image transfer with low cost cables





## 2.5 Sensors: Infra Red Camera



## Infra Red Imaging :

- IR radiation was discovered in 1800 by Sir William Herschel
- Thermopile created using thermocouples, 1881
- Bolometer 1878, converts changes in temperature into changes in resistance
- IR photography 1960, cooled detectors produced line images
- 1970s uncooled detectors





## Applications:

- Body temperature measurements
- Airport thermal scanning
- Fire fighting (hot spot detection)
- Aircraft and missile detection
- Surveillance
- Medical applications







- Single View Geometry
- Pinhole model







## Central projection





$$X = [x, y, z]'$$

$$[x, y, z]' \rightarrow [f \frac{x}{z}, f \frac{y}{z}]' = x$$

principle point, image plane, principal axis, camera centre





## Central projection with principle point offset



 $[p_x, p_y]$  is the coordinates of the principle point in image plane





## Central projection with principle point offset

$$[x, y, z]' \rightarrow [f \frac{x}{z}, f \frac{y}{z}]' = x$$

$$[x, y, z]' \rightarrow [f\frac{x}{z} + p_x, f\frac{y}{z} + p_y]' = x$$



## Central projection with principle point offset

$$\begin{bmatrix} fx + zp_x \\ fy + zp_y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & p_x & 0 \\ 0 & f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 $\left[p_{x},p_{y}\right]$  is the coordinates of the principle points in image plane

$$\mathbf{X} = \mathbf{K}[\mathbf{IM}]\mathbf{X}_{\text{cam}} \qquad K = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$$
homogeneous

K is camera calibration matrix; X\_cam is in camera coordinate frame





#### Camera rotation and translation



World coordinate frame

Camera is on a moving vehicle. Object is in a global reference frame.





## General camera projection

$$\mathbf{x} = \mathbf{K}[\mathbf{IM}]\mathbf{X}_{cam}$$

$$= \mathbf{K}[\mathbf{IM}]\begin{bmatrix} R & -R\overline{C} \\ 0 & 1 \end{bmatrix}\mathbf{X}$$

$$x = KR[IMC]X$$

$$= PX P = KR[IMC]$$

P is camera projection matrix

K: camera intrinsic parameters; R,C: camera extrinsic parameters





## The Projection "Chain"





## Activity 1

- Image resulotion: 1024\*768
- Principle point: (520,389)
- Focal length: 935
- 3D Point in camera frame (15,10,80)
- Image point (u,v)?









# Limitations of the pin hole model







2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred. (B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.







## Distortion





Camera lens



Geometric distortion



## 4. Cameras: Calibration



#### What to calibrate:

 the camera intrinsic (4 or more) and extrinsic parameters (6) using only observed camera data

## General strategy:

- view calibration object
- identify image points
- obtain camera matrix by minimizing error
- obtain intrinsic parameters from camera matrix



## 4. Cameras: Calibration



#### Multi-Plane Calibration

- Hybrid method:Photogrammetric and Self-Calibration
- Uses a planar pattern imaged multiple times (inexpensive).
- Used widely in practice and there are many implementations.
- Based on a group of projective transformations called homographies.

## Paper: Z. Zhang

 A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

## Matlab implementation:

http://www.vision.caltech.edu/bouguetj/calib\_doc/index.html



## 4. Cameras: Calibration



## Matlab implementation:

http://www.vision.caltech.edu/bouguetj/calib\_doc/index.html







Modify the pixels in an image based on some function of a local neighborhood of the pixels



- Linear case is simplest and most useful
  - Replace each pixel with a linear combination of its neighbors.
  - The prescription for the linear combination is called the convolution kernel.



Modify the pixels in an image based on some function of a local neighborhood of the pixels

| 10 | 5 | 3 | Some function |   |  |
|----|---|---|---------------|---|--|
| 4  | 5 | 1 | <b>—</b>      | 7 |  |
| 1  | 1 | 7 |               |   |  |

| 10 | 5 | 3 |
|----|---|---|
| 4  | 5 | 1 |
| 1  | 1 | 7 |



= 7

kernel



## Convolution: Blurring













| Operation      | Kernel                                                                      | Image result |
|----------------|-----------------------------------------------------------------------------|--------------|
| Identity       | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$         |              |
|                | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$       |              |
| Edge detection | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$        |              |
|                | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ |              |





| Sharpen                             | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$                                                                                      |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Box blur<br>(normalized)            | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$                                                                              |  |
| Gaussian blur 3 × 3 (approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$                                                                             |  |
| Gaussian blur 5 × 5 (approximation) | $\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$ |  |





## Activity 2

$$\begin{bmatrix} 0 & 25 & 50 & 100 \\ 25 & 50 & 100 & 50 \\ 50 & 100 & 50 & 25 \\ 100 & 50 & 25 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} = ?$$



## Activity 2

$$\begin{bmatrix} 0 & 25 & 50 & 100 \\ 25 & 50 & 100 & 50 \\ 50 & 100 & 50 & 25 \\ 100 & 50 & 25 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 50 & -200 \\ -200 & 50 \end{bmatrix}$$





## **6. Next Lectures**



#### Sensors:

- Cameras
- RGB-D Cameras
- ToF sensors



Fundamental

Data and Processing













## THANK YOU

**Questions?** 

