Problem Set 1: Sets and Categories

14.08.2021

0.1 Naive Set Theory

1. Define a relation \sim on the set \mathbb{R} of real numbers by setting $a \sim b \iff b-a \in \mathbb{Z}$. Prove that this is an equivalence relation, and find a 'compelling' description for \mathbb{R}/\sim . Do the same for relation \approx on the plane $\mathbb{R} \times \mathbb{R}$ defined by declaring $(a_1, a_2) \approx (b_1, b_2) \iff b_1 - a_1 \in \mathbb{Z}$ and $b_2 - a_2 \in \mathbb{Z}$. [Aluffi Exercise 1.6]

0.2 Functions on Sets

- 2. Prove that the inverse of a bijection is a bijection and that the composition of two bijections is a bijection. [Aluffi Exercise 2.3]
- 3. Show that if $A' \cong A''$ and $B' \cong B''$, and further $A' \cap B' = \emptyset$ and $A'' \cap B'' = \emptyset$, then $A' \cap B' \cong A'' \cup B''$. Conclude that the operation $A \cup B$ is well-defined up to isomorphism [Aluffi Exercise 2.9]

0.3 Categories

- 3. Let C be a category. Consider a structure C^{op} with
 - $Obj(C^{op}) := Obj(C);$
 - for A,B objects of C^{op} (hence objects of C), $Hom_{C^{op}}(A,B) := Hom_C(B,A)$.

Show how to make this into a category. [Aluffi Exercise 3.1]

- 4. Define a category V by taking $\mathrm{Obj}(V) = \mathbb{N}$ and letting $Hom_V(n.m) =$ the set of $m \times n$ matrices with real entires, for all $m.n \in \mathbb{N}$. Use matrix multiplication to define composition. Does this category "feel" familiar? [Aluffi Exercise 3.6]
- 5. Draw the relevant diagrams and define composition and identities for category $C^{A,B}$, mentioned in Example 3.9. Do the same for category $C^{\alpha,\beta}$ mentioned in Example 3.10. [Aluffi Exercise 3.11]

0.4 Morphisms

- 6. Let A, B be objects of a category C, and let $f \in Hom_C(A, B)$ be a morphism.
 - \bullet Prove that if f has a right-inverse, then f is an epimorphism.
 - Show that the converse doesn't hold, by giving an explicit example of a category and an epimorphism without a right inverse.

[Aluffi Exercise 4.3]

0.5 Universal Properties

- 7. Show that in every category C the produts $A \times B$ and $B \times A$ are isomorphic, if they exist. [Aluffi Exercise 5.8]
- 8. Let C be a category with products. Find a reasonable candidate for the universal property that the product $A \times B \times C$ of three objects of C ought to satisfy, and prove that both $(A \times B) \times C$ and $A \times (B \times C)$ satisfy this universal property. Deduce that $(A \times B) \times C$ and $A \times (B \times C)$ are necessarily isomorphic. [Aluffi Exercise 5.9]