

In memory analytics with Spark: Introduction

K V Subramaniam

Computer Science and Engineering

Overview of lecture – Spark Introduction

- Why Spark the motivation?
- Moving to in memory compute
- Distribute data in memory
- Handling fault tolerance
- Programming model Operations in Spark
- Handling key-value based operations
- Putting it all together : Word count in Spark

Motivation for Spark

Spark: Motivation

Most current cluster programming models are based on *acyclic data flow* from stable storage to stable storage

Hadoop → reads data from persistent storage in *Map* step

Writes data back to persistent store (HDFS) in reduce

Advantage – dynamically decide machines/handle failures

Issues?

PES UNIVERSITY ONLINE

Consider the page rank exercise we did in the last unit?

What are the <u>issues</u> that we see with this?

Challenges

- Acyclic data flow
 - consider operating on a data working set
 - Working set: same set of data reused
 - in page rank, we keep computing importance vector and reusing in next iteration.
 - Hadoop inefficient in such cases.
- Example of use
 - Where we need to *iterate*
 - Graph processing
 - Machine Learning
 - Where we need to do interactive analysis
 - Python, R
- On every iteration, storing/reloading of data from persistent storage is time consuming.

In Memory Computation

Recap: Word count in scala

Each operation creates
A data value that can be kept in
Memory and reused.

Doing in memory processing – Iterative processing

Doing in memory processing – interactive processing

Challenges of in memory processing

PES UNIVERSITY

- How do we distribute the data among the DRAM of the cluster?
- What happens if this memory is not sufficient?
- How do we handle failures because memory is volatile?

Distributed Dataset

Example: Log Processing

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(startsWithERROR())
messages = errors.map(split("\t"),2)
cachedMsgs = messages.cache()

cachedMsgs.filter(containsfoo()).count()
cachedMsgs.filter(containsbar()).count()
```

Courtesy: Zaharia et al, "Spark: Fast, Interactive, Language-Integrated Cluster Computing", www.spark-project.org

Example: Log Processing

Loads a file to an in memory struct called an RDD (think of it as a collection of strings)

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(startsWithERROR())
messages = errors.map(split("\tau"),2)
cachedMsgs = messages.cache()
```

```
cachedMsgs.filter(containsfoo()).count()
cachedMsgs.filter(containsbar()).count()
```

those lines with an error.

Creates another RDD

Applies a function to each element(string) in RDD and produces a new RDD

Keep it in memory as it will be reused

Counts #objects in the RDD

Java and Scala: Spot the differences


```
lines = spark.textFile("hdfs://...")
errors = lines.filter(startsWithERROR())
messages = errors.map(split("\t"),2)
cachedMsgs = messages.cache()
```


Block 3

Adding fault tolerance – The RDD

Handling fault tolerance

Consider the following code:

Step1: Read in the file to an in memory RDD

Step2: remove all lines that don't contain the term

Step3: split the

line

ERROR

map(func)	Return a new distributed dataset formed by passing each element of the source through a function <i>func</i> .
filter(func)	Return a new dataset formed by selecting those elements of the source on which func returns true.

Handling fault tolerance

Ex:

What is an RDD?

- When we add lineage information to the concept of a Distributed Dataset
 - We add ability to recreate it in case of failure
 - So, this data is now resilient to failures.
 - Hence called an *RDD*: Resilient Distributed Dataset

How is lineage information stored

- Lineage information is stored by keeping track of
 - Operations that are performed on
 - An RDD
 - That results in another RDD
 - What types of operations are supported?

RDD Operations: Transformations and Actions

Types of Operations

- Operations are of two types
 - Transformations
 - Actions

Transformation

PES UNIVERSITY ONLINE

- Are operations that create a <u>new dataset</u> from an existing dataset
- For example:
 - map() is a transformation
 - Each line on input RDD is passed through the map() function
 - result of *map()* function applied on each value is stored in the output RDD.
- Note it is similar to the Map of map-reduce, but is more generic.

Transformations

PES UNIVERSITY ONLINE

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
map()	Apply a function to each element in the RDD and return an RDD of the result.	rdd.map(x => x + 1)	{2, 3, 4, 4}
flatMap()	Apply a function to each element in the RDD and return an RDD of the contents of the iterators returned. Often used to extract words.	rdd.flatMap(x => x.to(3))	-
filter()	Return an RDD consisting of only elements that pass the condition passed to filter().	rdd.filter(x => x != 1)	{2, 3, 3}
distinct()	Remove duplicates.	rdd.distinct()	{1, 2, 3}
<pre>sample(withReplacement, fraction, [seed])</pre>	Sample an RDD, with or without replacement.	rdd.sample(false, 0.5)	Nondeterministic

Transformations

Table 3-3. Two-RDD transformations on RDDs containing {1, 2, 3} and {3, 4, 5}

Function name	Purpose	Example	Result
union()	Produce an RDD containing elements from both RDDs.	rdd.union(other)	{1, 2, 3, 3, 4, 5}
intersection()	RDD containing only elements found in both RDDs.	rdd.intersection(other)	{3}
subtract()	Remove the contents of one RDD (e.g., remove training data).	rdd.subtract(other)	{1, 2}
cartesian()	Cartesian product with the other RDD.	rdd.cartesian(other)	{(1, 3), (1, 4), (3,5)}

Actions

• Are operations that return a value

- For example:
 - Reduce() is an action
 - Aggregates all elements of a RDD to produce a result.

Actions

Table 3-4. Basic actions on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
collect()	Return all elements from the RDD.	rdd.collect()	{1, 2, 3, 3}
count()	Number of elements in the RDD.	rdd.count()	4
countByValue()	Number of times each element occurs in the RDD.	rdd.countByValue()	{(1, 1), (2, 1), (3, 2)}
take(num)	Return num elements from the RDD.	rdd.take(2)	{1, 2}

top(num)	Return the top num elements the RDD.	rdd.top(2)	{3, 3}
takeOrdered(num)(ordering)	Return num elements based on provided ordering.	rdd.takeOrdered(2)(myOrdering)	{3, 3}
<pre>takeSample(withReplacement, num, [seed])</pre>	Return num elements at random.	rdd.takeSample(false, 1)	Nondeterministic
reduce(func)	Combine the elements of the RDD together in parallel (e.g., sum).	rdd.reduce((x, y) \Rightarrow x + y)	9
fold(zero)(func)	Same as reduce() but with the provided zero value.	rdd.fold(0)((x, y) \Rightarrow x + y)	9

RDD Operations: Working with key-value pairs

Key Value Pairs

- Consider our earlier operation of map/reduce using Spark
- Worked on datasets with only single values
- Let's consider how to represent <key, value> pairs
- Spark provides
 - Separate RDDs called pair RDDs for this
 - Separate operations to function on Pair RDDs

Pair RDD Transformations

Table 4-1. Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

Function name	Purpose	Example	Result
reduceByKey(func)	Combine values with the same key.	rdd.reduceByKey({(1,
		$(x, y) \Rightarrow x + y)$	2),
			(3,
			10)}
groupByKey()	Group values with the same key.	rdd.groupByKey()	{(1,
			[2]),
			(3,
			[4,
			6])}
combineByKey(createCombiner,	Combine values with the same key using a different result	See Examples 4-12	
mergeValue, mergeCombiners,	type.	through 4-14.	
partitioner)			

Pair RDD Transformations

mapValues(func)	Apply a function to each value of a pair RDD without changing the key.	rdd.mapValues(x => x+1)	{(1, 3), (3, 5), (3, 7)}
flatMapValues(func)	Apply a function that returns an iterator to each value of a pair RDD, and for each element returned, produce a key/value entry with the old key. Often used for tokenization.	rdd.flatMapValues(x => (x to 5)	{(1, 2), (1, 3), (1, 4), (1, 5), (3, 4), (3, 5)}
keys()	Return an RDD of just the keys.	rdd.keys()	{1, 3, 3}
values()	Return an RDD of just the values.	rdd.values()	{2, 4, 6}

BIG DATAPair RDD Actions

countByKey(k, V) → returns a HashMap of (k, Int) key value pairs with count of each key

Word Count in Spark

Word Count in Spark

Create a spark context: tell Spark to create a new job

Read in text file Split it into words

```
val sc = new SparkContext(new SparkConf().setAppName("Spark Count"))
val tokenized = sc.textFile(args(0)).flatMap(_.split(" "))
val wordCounts = tokenized.map((_, 1)).reduceByKey(_ + _)
```

Each of these is an RDD

Reduce by key. Can also use countbykey

Map each word to 1

https://docs.cloudera.com/documentation/enterprise/5-13-x/topics/spark_develop_run.html

Additional References

- What is Apache Spark? Matei Zaharia
 - https://www.youtube.com/watch?v=p8FGC49N-zM
- RDD, DataFrames and Datasets
 - https://www.youtube.com/watch?v=pZQsDloGB4w

THANK YOU

K V Subramaniam, Usha Devi

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu
ushadevibg@pes.edu