Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling

Noisy Channel Intuition

Noisy Channel

- We see an observation x of a misspelled word
- Find the correct word w

$$\hat{w} = \underset{w \mid V}{\operatorname{argmax}} P(w \mid x)$$

$$= \underset{w \mid V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$

$$= \underset{w \mid V}{\operatorname{argmax}} P(x \mid w)P(w)$$

$$= \underset{w \mid V}{\operatorname{argmax}} P(x \mid w)P(w)$$

History: Noisy channel for spelling proposed around 1990

IBM

Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991.
 Context based spelling correction. *Information Processing and Management*, 23(5), 517–522

AT&T Bell Labs

 Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

Non-word spelling error example

acress

Candidate generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition of two adjacent letters

Words within 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	-	deletion
acress	cress	-	а	insertion
acress	caress	ca	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	insertion
acress	acres	-	S	insertion

Candidate generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

- Also allow insertion of space or hyphen
 - thisidea → this idea
 - inlaw → in-law

Language Model

- Use any of the language modeling algorithms we've learned
- Unigram, bigram, trigram
- Web-scale spelling correction
 - Stupid backoff

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.0000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel model probability

- Error model probability, Edit probability
- Kernighan, Church, Gale 1990

- Misspelled word $x = x_1, x_2, x_3... x_m$
- Correct word $w = w_1, w_2, w_3, ..., w_n$

- P(x|w) = probability of the edit
 - (deletion/insertion/substitution/transposition)

Computing error probability: confusion matrix

del[x,y]: count(xy typed as x)

ins[x,y]: count(x typed as xy)

sub[x,y]: count(x typed as y)

trans[x,y]: count(xy typed as yx)

Insertion and deletion conditioned on previous character

Confusion matrix for spelling errors

sub[X, Y] = Substitution of X (incorrect) for Y (correct)

X										Y	(co	rrect))			•		ŕ								
	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	х	У	Z,
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	I	0	0	8	0	0	0
С	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
С	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	- 5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Generating the confusion matrix

- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors

Channel model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}, x_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

Channel model for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	-	а	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	elo	.0000093
acres	-	S	es e	.0000321
acres	-	S	ss s	.0000342

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	elo	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.00000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	e	elo	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) = .000021 P(whose|across) = .000006

- P("versatile actress whose") = $.000021*.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10^{-10}$

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006

- P("versatile actress whose") = $.000021*.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10^{-10}$

Evaluation

- Some spelling error test sets
 - Wikipedia's list of common English misspelling
 - Aspell filtered version of that list
 - Birkbeck spelling error corpus
 - Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)

Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling