MATH240 – Lecture 3

Enlai Li

January 11, 2023

1 Mathematical logic

Premise
$$\rightarrow$$
 All men are \underbrace{mortal}_{M}

$$\rightarrow \underbrace{Socrates}_{S} \text{ is a } \underbrace{man}_{H(human)}$$

Conclusion \rightarrow Therefore Socrates is mortal

All x such that x is H is M. S is H Therefore S is M

$$\forall x, H(x) \Rightarrow M(x)$$

$$H(S)$$

$$M(S)$$

2 Propositional logic (True/False)

2.1 Atomic propositions

The building block of propositional logic are propositions: statements that are either true or false.

ex:

p: 21 is a multiple of 7 (True proposition)

q: 2 + 2 = 5 (False proposition)

r: there exists an extraterrestrial life form (proposition)

2.2 Compound propositions

Atomic propositions combined with logical connectors ex

2+2=5 and "there exists and extra terrestial lifeform

$$= q \wedge r$$

2.3 Logical connectors

2.3.1 conjunction (\wedge) and

2.3.2 Negation (\neg) not

$$\neg p = \text{Not } p = \overline{p}$$

$$q = "2 + 2 = 5"$$

$$\neg q = "2 + 2 \neq 5"$$

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

2.3.3 Disjunction (\lor) or

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

2.3.4 More complex propositions

$$\neg(\neg p \land \neg q) = ?$$

p	q	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
T	Т	F	F	F	T
T F	F	F	T	F	${ m T}$
F	T	T	F	F	${ m T}$
F	F	Γ	$\mid T \mid$	T	F

2.3.5 Set laws and logical equivalence

Set laws translate into logical equivalence:

Set	Logic
\overline{U}	True
Ø	False
\cup	\wedge
\cap	V
\overline{A}	$\neg A$

Since $p \vee q$ has the same truth table as $\neg(\neg p \wedge \neg q)$, they are logically equivalent:

$$p \lor q \equiv \neg(\neg p \land \neg q)$$

2.3.6 Exclusive or (\oplus) xor

Def: $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

$$\begin{array}{c|ccc} \mathbf{p} & \mathbf{q} & p \oplus q \\ \hline \mathbf{T} & \mathbf{T} & \mathbf{F} \\ \mathbf{T} & \mathbf{F} & \mathbf{T} \\ \mathbf{F} & \mathbf{T} & \mathbf{T} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} \end{array}$$

2.3.7 Conditional (\Rightarrow)

Def: $p \Rightarrow q \equiv \neg(p \land \neg q) \equiv \neg p \lor q$ $p \Rightarrow q$: "p implies q": "if p then q" ex:

p: It rains

q: It's cloudy

 $p \Rightarrow q$: If it rains outside, then it is cloudy

p	q	$p \Rightarrow q$
Т	Τ	Τ
Τ	F	\mathbf{F}
F	Τ	${ m T}$
F	F	${ m T}$

 $p \Rightarrow q$ is always true when p is false

2.3.8 Biconditional (\iff)

 $p \iff q$: p if and only if q

Def:
$$p \iff q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

$$\equiv (p \land q) \lor (\overline{p} \land \overline{q})$$

$$\equiv \overline{p \oplus q}$$

p	\mathbf{q}	$p \Rightarrow q$	$q \Rightarrow p$	$p \iff q \equiv ((p \Rightarrow q) \land (q \Rightarrow p))$
Τ	Τ	Τ	Т	T
\mathbf{T}	F T	\mathbf{F}	T	F
			F	F
F	\mathbf{F}	${ m T}$	Т	Т

2.4 Set law in logic

• double negation:

$$\neg\neg p \equiv p$$

• idempotent:

$$p \wedge p \equiv p$$
$$p \vee p \equiv p$$

 \bullet commutative:

$$p \land q \equiv q \land p$$
$$p \lor q \equiv q \lor p$$

• absorption:

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

• association:

$$\begin{split} p \wedge (q \wedge r) &\equiv (p \wedge q) \wedge r \\ p \vee (q \vee r) &\equiv (p \vee q) \vee r \end{split}$$

• distribution:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

• De Morgan:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

• negation:

$$p \lor (\neg p) \equiv T$$
$$p \land (\neg p) \equiv F$$

• identity:

$$p \wedge T = p$$
$$p \vee F = p$$

• domination:

$$p \lor T = T$$
$$p \land F = F$$

2.5 converse, contrapositive and inverse

– statement: $p \Rightarrow q$

– converse: $q \Rightarrow p$

– contrapositive: $\neg q \Rightarrow \neg p$

– inverse: $\neg p \Rightarrow \neg q$