Relative Frequency

- $f_k(n) = \frac{N_k(n)}{n} \leftarrow$ Relative Frequency -k is the outcome $-N_k(n)$ is the number of times outcome k
- $\lim_{n\to\infty} f_k(n) = p_k \leftarrow \textbf{Statistical Regularity}$ p_k is the probability of event k occurring

Properties of Relative Frequencies

- 1. $f_k(n) = \frac{N_k(n)}{n}$ 2. $0 \le N_k(n) \le n$ 3. $0 \le f_k(n) \le 1 = \frac{0}{n} \le \frac{N_k(n)}{n} \le \frac{n}{n}$ 4. $\sum_{k=1}^k f_k(n) = \sum_{k=1}^k \frac{N_k(n)}{n} = \frac{\sum_{k=1}^k N_k(n)}{n} = \frac{n}{n} = 1$ 5. $\sum_{k=1}^k f_k(n) = 1$ 6. If events A and B are disjoint and event C is "A or B", then $F_C = F_A(n) + F_B(n)$