Mathe Übung 12

Pascal Diller, Timo Rieke

January 21, 2025

Aufgabe 1

(i)

$$\lim_{n \to \infty} \frac{7n^{3/2} - n^{-2}\sqrt{n}}{(\sqrt{n})^3 + n^{1/2} + n}.$$

Im Zähler dominiert $7n^{3/2}$, da $n^{-2}\sqrt{n}$ für $n\to\infty$ vernachlässigbar ist. Im Nenner dominiert n, da $n>n^{3/2}>n^{1/2}$ für große n. Es ergibt sich:

$$\lim_{n \to \infty} \frac{7n^{3/2}}{n} = 7\sqrt{n} \to \infty.$$

(ii)

$$\lim_{n \to \infty} \sqrt{n^4 + n^2 + 1} - \sqrt{n^2 - 1}.$$

$$\sqrt{n^4 + n^2 + 1} - \sqrt{n^2 - 1} = \frac{(n^4 + n^2 + 1) - (n^2 - 1)}{\sqrt{n^4 + n^2 + 1} + \sqrt{n^2 - 1}}.$$

$$n^4 + n^2 + 1 - n^2 + 1 = n^4 + 2.$$

Im Nenner dominiert $\sqrt{n^4} = n^2$, daher:

$$\frac{n^4+2}{\sqrt{n^4+n^2+1}+\sqrt{n^2-1}}\sim \frac{n^4}{2n^2}=\frac{n^2}{2}.$$

(iii)

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^5 + 4n}}.$$

Im Nenner dominiert $\sqrt{n^5} = n^{5/2}$. Somit:

$$\frac{n}{\sqrt{n^5+4n}} \sim \frac{n}{n^{5/2}} = n^{-3/2}.$$

Daraus folgt:

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^5 + 4n}} = 0.$$

(iv)

$$\lim_{n\to\infty} \left(\frac{\sqrt{n}-1}{n}\right)^n.$$

Sei $L = \left(\frac{\sqrt{n}-1}{n}\right)^n$, Logarithmieren:

$$\ln L = n \ln \left(\frac{\sqrt{n} - 1}{n} \right).$$

Annäherung:

$$\ln\left(\frac{\sqrt{n}-1}{n}\right) = \ln(\sqrt{n}-1) - \ln(n) \sim \ln(\sqrt{n}) - \ln(n) = -\frac{\ln(n)}{2}.$$

Somit:

$$\ln L = n \cdot \left(-\frac{\ln(n)}{2} \right) = -\frac{n \ln(n)}{2} \to -\infty.$$

Daraus folgt:

$$L \to 0$$
.

Aufgabe 2

$$a_1 = 0$$
, $a_{n+1} = \frac{1}{2}a_n + \frac{1}{2}$.

(i)

Zu zeigen: $a_n \leq 1$ für alle $n \in \mathbb{N}$.

Induktionsanfang: Für n=1 gilt $a_1=0\leq 1$.

Induktionsschritt: Angenommen, $a_n \leq 1$. Dann folgt:

$$a_{n+1} = \frac{1}{2}a_n + \frac{1}{2} \le \frac{1}{2}(1) + \frac{1}{2} = 1.$$

Damit ist $a_n \leq 1$ für alle n.

(ii)

Zu zeigen: $a_{n+1} \ge a_n$.

$$a_{n+1} - a_n = \frac{1}{2}a_n + \frac{1}{2} - a_n = \frac{1}{2}(1 - a_n).$$

Da $a_n \leq 1$, ist $1 - a_n \geq 0$ und somit $a_{n+1} \geq a_n$. Somit ist $(a_n)_{n \in \mathbb{N}}$ weiter monton wachsend.

(iii)

Da die Folge beschränkt und monoton wachsend ist folgt, dass a_n konvergiert. Sei:

$$\lim_{n \to \infty} a_n = L.$$

Im Limes gilt:

$$L = \frac{1}{2}L + \frac{1}{2}.$$

Umstellen ergibt:

$$L=1.$$

Die Folge a_n konvergiert gegen den Grenzwert 1.

Aufgabe 3

(i)

Zu zeigen: $\forall a,b \in \mathbb{R} \exists q \in \mathbb{Q} : a < \sqrt{2} + q < b$ Da \mathbb{Q} dicht in \mathbb{R} ist, gilt: a < q < b und da $\sqrt{2} \in \mathbb{R}$: $a + \sqrt{2} < q + \sqrt{2} < b + \sqrt{2}$. Da alle Summanden reelle Zahlen sind gilt die Aussage und somit auch $a < \sqrt{2} + q < b$

(ii)

Angenommen, es gilt: $\exists q \in \mathbb{Q} : \sqrt{2} + q \in \mathbb{Q}$.

Sei $r = \sqrt{2} + q$, dann würde gelten: $\sqrt{2} = r - q$, mit $r, q \in \mathbb{Q}$.

Das widerspricht jedoch der Tatsache, dass $\sqrt{2}$ irrational ist. Da Summe aus einer irrationalen und einer rationalen Zahl irrational ist, muss auch $\sqrt{2}+q$ mit $q\in\mathbb{Q}$ irrational sein.

(iii)

Die Menge M besteht aus Zahlen der Form $\sqrt{2}+q$ mit $q\in\mathbb{Q}$. Da \mathbb{Q} abzählbar ist, gibt es eine bijektive Abbildung von \mathbb{N} auf \mathbb{Q} . Daher gibt es auch eine bijektive Abbildung von \mathbb{N} auf M. Deshalb muss M ebenfalls abzählbar sein.

Aufgabe 4

Zu zeigen: $|a_m - a_n| < \epsilon$ mit $\epsilon > 0$. Für m > n:

$$|a_m - a_n| = |(a_m - a_{m-1}) + (a_{m-1} - a_{m-2}) + \dots + (a_{n+1} - a_n)|$$

Mit der Dreiecksgleichung:

$$|a_m - a_n| \le |a_m - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_n|$$

Verwendung der Schranke: $|a_{k+1} - a_k| \le 2^{-k}$:

$$|a_m - a_n| \le 2^{-n} + 2^{-(n+1)} + 2^{-(n+2)} + \dots + 2^{-(m-1)}$$

Diese Summe ist eine geometrische Reihe mit dem ersten Term 2^{-n} und dem Quotienten $\frac{1}{2}$.

$$|a_m - a_n| \le 2^{-n} (1 + \frac{1}{2} + \frac{1}{4} + \dots)$$

 $\sum_{k=0}^{\infty}(\frac{1}{2})^k$ konvergiert gegen $\frac{1}{1-\frac{1}{2}}=2$

$$|a_m - a_n| \le 2^{-n} \cdot 2 = 2^{-(n-1)}$$

Für ein $\epsilon>0$ wählen wir n so, dass: $2^{-(n-1)}<\epsilon$. Für hinreichend großes n ist dies erfüllt.

Also:

$$|a_m - a_n| < 2^{-(n-1)} < \epsilon \implies |a_m - a_n| < \epsilon$$