Signals & System

- 1. Introduction to Python
- 2. Basic Plotting of Signals
 - a. Unit Step
 - b. Unit Impulse
 - c. Ramp
 - d. Periodic Sinusoidal Sequences.
 - e. Periodic Rectangular Pulse
 - f. Asymmetric Sawtooth Waveform
 - **g.** Periodic Gaussian Pulse Plot all the sequences.
- 3. Basic operation of signal
 - a. Addition & Subtraction
 - **b.** Multiplication & Division
 - c. Time reversal, Scaling, and Shifting

Lab 1. Introduction to Python

- 1. Basics: Input, Output
- 2. List: Slicing, Append, Length
- 3. Range
- 4. Loops
- 5. sum(), items(), enumerate(), reversed(), sorted()
- 6. Dictionary: Dictionaries are used to store data values in key:value pairs
- 7. Function: To declare a function: def <function name>(parameter list):
- 8. Numpy package:
 - a. Import numpy as np
 - b. np.array(), np.sin(), np.cos(), np.exp(), np.arange(), np.sort()
 - c. Dimension of array: a.ndim
 - d. Shape of array: a.shape -> (2,3)
 - e. Reshape an array: a.reshape(4,3)
- 9. Matplotlib function:
 - a. import matplotlib.pyplot as plt
 - b. plt.plot(x, y)
 - c. plt.xlabel(), ylabel()
 - d. plt.title()
 - e. plt.xlim(), ylim()
 - f. plt.grid()
 - g. plt.figure(figsize = (20,20))
 - h. plt.subplot(total rows, total columns, plot no.)
 - i. plt.show()
- 10. Codes of Unit Step and Unit impulse with different starting points.
- 11. Plot 2 graphs and then add them and show the graph.

Lab 2. Basic Plotting of Signals

1. Unit Step Function:

$$u(t) = \begin{cases} 1; t < 0 \\ 0; t \ge 0 \end{cases}$$

2. Unit Impulse Function:

$$\delta(t) = \begin{cases} 1; t = 0 \\ 0; t \neq 0 \end{cases}$$

$$\delta(t) = \frac{du(t)}{dt} = \lim_{\Delta t \to 0} \frac{u(t + \Delta t) - u(t)}{\Delta t}$$

3. Ramp Function:

$$r(t) = \begin{cases} 1; \ t \ge 0 \\ 0; \ t < 0 \end{cases}$$

$$r(t) = \int_{0}^{t} u(t)dt$$

4. Periodic Sinusoidal Sequences:

 $y = sin(\omega t) or cos(\omega t)$

 $y = sin(\omega t + \phi) or cos(\omega t + \phi)$

5. Periodic Rectangular Pulse:

$$p(t) = \sum\limits_{n=-\infty}^{\infty} A{\cdot}rect(rac{t-nT}{Tp})$$
 where

$$rect(x) = \begin{cases} 1; |x| \le 0.5 \\ 0; \text{ otherwise} \end{cases}$$

6. Asymmetric Sawtooth Waveform:

$$s(t) = A(t - nT) \, for \, nT \leq t < (n + 1)T$$

7. Periodic Gaussian Pulse:

$$g_{p}(t) = \sum_{n=-\infty}^{\infty} A \cdot e(\frac{t-nT}{Tp})^{-\frac{(t-nT)^{2}}{2\sigma^{2}}}$$

Lab 3. Basic Operation of Signal

$$x(t) = \begin{cases} 1, & 0 \le t < 5 \\ 2, & 5 \le t < 8 \\ 5, & 8 \le t < 12 \\ 0, t < 0 \text{ or } t \ge 12 \end{cases}$$
$$y(t) = \begin{cases} 2, & 0 \le t < 7 \\ 0, & 7 \le t < 10 \\ 7, & 10 \le t < 15 \\ 0, & t < 0 \text{ or } t \ge 15 \end{cases}$$

1. Generate x and y and perform

a.
$$x(t) + y(t)$$
,

b.
$$x(t) - y(t)$$
,

c.
$$x(t) * y(t)$$
,

d.
$$\frac{x(t)}{2} + \frac{y(t)}{3}$$
,

e.
$$x(-t)$$
,

f.
$$y(-t)$$
,

g.
$$x(2t)$$
,

h.
$$x(-2t+5)$$
,

i.
$$x(0.5t - 5)$$

j.
$$x(-0.5t - 5)$$

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

