

Opinion dynamics on networks with community structure

Panagiotis Andreou & Mariana Olvera-Cravioto

Introduction

- Goal: study opinion evolution on a social network.
- Our approach: incorporate random graph theory by letting the opinion process evolve on a directed Stochastic Block Model (dSBM).
- Key insight: as the graph gets denser, individuals aren't really interacting but rather update their beliefs based on an "average" opinion.
- Technical tools: mean-field approximation, strong couplings

The Network

- dSBM $G(V_n, E_n)$ with n nodes and K communities.
- Each node $i \in V_n$ has a community label $J_i \in \{1, \ldots, K\}$.
- Kernel: $K \times K$ symmetric matrix κ with larger diagonal values
- Connection probability of nodes i, j: $p_{ij}^{(n)} = \frac{\kappa(J_i, J_j)\theta_n}{n} \wedge 1, p_{ii}^{(n)} = 0$

The Model

- $\mathbf{R}_{i}^{(k)} \in [-1,1]^{\ell}$: the opinion that node i holds at time k on ℓ topics.
- $\mathbf{W}_i^{(k)} \in [-d,d]^{\ell}$: media signals that node *i* receives at time *k* on ℓ topics.
- The weight node i puts in j's opinion:

$$C_{ij} = \frac{B_{ij}1(j \to i)}{\sum_{r=1}^{n} B_{ir}1(r \to i)} 1 \left(D_i^- > 0, i \neq j\right),$$

where B_{ij} 's distribution depends only on the communities of i and j.

• Update opinions according to the recursion

$$\mathbf{R}_{i}^{(k)} = c \sum_{j=1}^{n} C_{ij} \mathbf{R}_{j}^{(k-1)} + \mathbf{W}_{i}^{(k)} + (1 - c - d) \mathbf{R}_{i}^{(k-1)}, \tag{1}$$

where the $\{ \mathbf{W}_{i}^{(k)} : k \geq 0 \}$ are i.i.d. and $0 < c + d \leq 1$.

- Our model takes into account two key-elements in opinion formation:
- 1. Confirmation Bias (people's tendency to listen to similar opinions as their current opinions): the weights B_{ij} depend only on the communities.
- 2. Selective Exposure (people's tendency to follow targeted media signals): the media distribution depends only on the community belongings.
- Our model can capture both polarization and consensus.

Figure 1: Initial opinions on 2 topics. No clear pattern between nodes from different communities.

Figure 2: After receiving targeted media signals, the two communities polarize.

Mean-Field Approximation

- Intuition: too many individual interactions, so instead update opinions based only on the average interaction.
- In (1), replace the contribution of the neighbors' opinions with their mean:

$$\mathbf{\mathcal{R}}_i^{(k)} pprox c \, \mathbb{E}_n \left[\sum_{j=1}^n C_{ij} \mathbb{E}_n \left[\mathbf{R}_j^{(k-1)} \right] \right] + \mathbf{W}_i^{(k)} + (1 - c - d) \mathbf{\mathcal{R}}_i^{(k-1)}.$$

Main Result

Theorem. Suppose $\theta_n \geq (6H\Lambda_n)^2 \Delta_n \log n$. Then, there exists a constant $\Gamma < \infty$ such that

$$\sup_{k\geq 0} \mathbb{E}_n \left[\left\| R^{(k)} - \mathcal{R}^{(k)} \right\|_{\infty} \right] \leq \Gamma \left(\sqrt{\frac{\log n}{\theta_n}} + \mathcal{E}_n \right), \tag{2}$$

where $\mathcal{E}_n := \max_{1 \leq r,s \leq K} \left| \frac{\pi_s^{(n)} \pi_r - \pi_s \pi_r^{(n)}}{\pi_r^{(n)} \pi_s} \right|$. Moreover, for any sequence θ_n satisfying $\theta_n \to \infty$ as $n \to \infty$,

$$\sup_{k>0} \max_{i \in V_n} \mathbb{E}_n \left[\left\| \mathbf{R}_i^{(k)} - \boldsymbol{\mathcal{R}}_i^{(k)} \right\|_1 \right] \xrightarrow{P} 0, \tag{3}$$

as $n \to \infty$.

Remarks:

- The components of the limiting process $\{\mathcal{R}^{(k)}: k \geq 1\}$ are independent, so the system exhibits *propagation of chaos*.
- Individuals essentially don't interact, but rather update their opinion based on the average opinion in the system.

Proof ideas:

- Construct an intermediate process \tilde{R} by replacing the random weights C_{ij} with their expectations (loosely speaking).
- Show that the processes \tilde{R} and \mathcal{R} are close regardless of the density regime.
- In the supercritical regime, use concentration inequalities to prove closeness of R and \tilde{R} .
- In the subcritical regime, there is not enough averaging to guarantee independence, so use sparse approximation by coupling with a Galton-Watson tree. The branching process gives conditional independence.