

Product Overview

The DW1000 is a fully integrated single chip Ultra Wideband (UWB) low-power low-cost transceiver IC compliant to IEEE802.15.4-2011. It can be used in 2-way ranging or TDOA location systems to locate assets to a precision of 10 cm. It also supports data transfer at rates up to 6.8 Mbps

Key Features

- IEEE802.15.4-2011 UWB compliant
- Supports 6 RF bands from 3.5 GHz to 6.5 GHz
- Programmable transmitter output power
- Fully coherent receiver for maximum range and accuracy
- Complies with FCC & ETSI UWB spectral masks
- Supply voltage 2.8 V to 3.6 V
- Low power consumption
- SLEEP mode current 2 uA
- DEEP SLEEP mode current 100 nA
- Data rates of 110 kbps, 850 kbps, 6.8 Mbps
- Maximum packet length of 1023 bytes for high data throughput applications
- Integrated MAC support features
- Supports 2-way ranging and TDOA
- SPI interface to host processor
- 6 mm x 6 mm 48-pin QFN package
- Small number of external components

Key Benefits

- Supports precision location and data transfer concurrently
- Asset location to a precision of 10 cm
- Extended communications range up to 290 m @ 110 kbps 10% PER minimises required infrastructure in RTLS
- High multipath fading immunity
- Supports high tag densities in RTLS
- Small PCB footprint allows costeffective hardware implementations
- Long battery life minimises system lifetime cost

Applications

- Precision real time location systems (RTLS) using two-way ranging or TDOA schemes in a variety of markets: -
 - Healthcare
 - o Consumer
 - Industrial
 - Other
- Location aware wireless sensor networks

DW1000 IEEE802.15.4-2011 UWB Transceiver

Table of Contents

1	IC DES	CRIPTION 5	ŗ	5.12.4	Automatic Acknowledge	
2	PIN CC	ONNECTIONS 6	5	5.12.5	Double Receive Buffer	
_			5.1	.3	EXTERNAL SYNCHRONIZATION	25
		n Numbering6	5.1	.4	CALIBRATION AND SPECTRAL TUNING OF T	HE
	2.2 Pii	N DESCRIPTIONS6		/1000		
3	FLECTI	RICAL SPECIFICATIONS 10	5	5.14.1	Introduction	
,	LLLCII	MICAL SI LCII ICATIONS10	5	5.14.2	Crystal Oscillator Trim	
	3.1 No	OMINAL OPERATING CONDITIONS 10	ŗ	5.14.3	Transmitter Calibration	26
		C CHARACTERISTICS10	ŗ	5.14.4	Antenna Delay Calibration	26
		CEIVER AC CHARACTERISTICS 10	6 (JDED V	TIONAL STATES AND POWER	
	3.4 RE	CEIVER SENSITIVITY CHARACTERISTICS 11			IENT	27
	3.5 RE	FERENCE CLOCK AC CHARACTERISTICS 11	IVIAIN	AGLIV	LIVI	27
	3.5.1	Reference Frequency11	6.1		/ERVIEW	
	3.6 TR	ANSMITTER AC CHARACTERISTICS 12	6.2	OF	ERATING STATES AND THEIR EFFECT ON PO	WER
	3.7 TE	MPERATURE AND VOLTAGE MONITOR	CON	NSUMP	TION	27
	CHARACTE	RISTICS	6.3	TR	ANSMIT AND RECEIVE POWER PROFILES	28
	3.8 AE	BSOLUTE MAXIMUM RATINGS 12	ϵ	5.3.1	Typical transmit profile	31
4	TVDIC	AL PERFORMANCE 13	ϵ	5.3.2	Typical receive profiles	31
4	TTPICA	AL PERFORIVIANCE 15	7 .		R SUPPLY	22
5	FUNCT	TIONAL DESCRIPTION 17	7 F	OWE	R SUPPLY	32
	E 1 D.	nycion Layer Mones	7.1	Po	WER SUPPLY CONNECTIONS	32
		HYSICAL LAYER MODES	7.2	Us	E OF EXTERNAL DC / DC CONVERTER	32
	5.1.1	Supported Channels and Bandwidths			ATION INCORNATION	22
	5 4 2	17	8 4	APPLIC	ATION INFORMATION	33
	5.1.2	Supported Bit Rates and Pulse	8.1	. A P	PLICATION CIRCUIT DIAGRAM	33
	-	tion Frequencies (PRF)17	8.2	RE	COMMENDED COMPONENTS	33
	5.1.3	Frame Format	8.3	AP	PLICATION CIRCUIT LAYOUT	34
	5.1.4	Symbol Timings	8	3.3.1	PCB Stack	34
	5.1.5	Proprietary Long Frames 18	8	3.3.2	RF Traces	34
	5.1.6	Turnaround Times 18	8	3.3.3	PLL Loop Filter Layout	
	5.1.7	Frame Filter	8	3.3.4	Decoupling Layout	
	5.1.8	Frame Check Sequence (FCS) 19		3.3.5	Layout Guidance	
		FERENCE CRYSTAL OSCILLATOR			•	
		NTHESIZER	9 F	PACKA	GING & ORDERING INFORMATION	36
		CEIVER	9.1	. Pa	CKAGE DIMENSIONS	36
	5.4.1	Bandwidth setting 19	9.2	DE	VICE PACKAGE MARKING	36
	5.4.2	Automatic Gain Control (AGC) 19	9.3	Tr	AY INFORMATION	37
		ANSMITTER	9.4		PE & REEL INFORMATION	
	5.5.1	Transmit Output Power	g	9.4.1	Tape Orientation and Dimensions	
	5.5.2	Transmit Bandwidth Setting 19	g	9.4.2	Reel Information: 330 mm Reel	38
		OWER UP	g	9.4.3	Reel Information: 180 mm reel	
		DLTAGE/TEMPERATURE MONITORS	9.5	OF	DERING INFORMATION	
		OST CONTROLLER INTERFACE	40			
	5.8.1	Configuring the SPI Mode22	10	GLO	SSARY	40
	5.8.2	SPI Signal Timing23	11	REFE	RENCES	42
		ENERAL PURPOSE INPUT OUTPUT (GPIO) 23	4.5			
	-	MEMORY	12	DOC	UMENT HISTORY	43
	5.10.1	Receive and Transmit data buffers	13	MAJ	OR CHANGES	43
		24	4.5			
	5.10.2	•	14	ABO	UT DECAWAVE	43
	5.10.3	, ,				
		ation Memory24				
		INTERRUPTS AND DEVICE STATUS24				
		MAC FEATURES 24				
	5.12.1	Timestamping 24				
	5.12.2	3				
	5.12.3	Automatic Frame Filtering 24				

List of Figures

FIGURE 1: IC BLOCK DIAGRAM5	FIGURE 22: DW1000SPIPHA=1 TRANSFER PROTOCOL. 21
FIGURE 2: DW1000 PIN ASSIGNMENTS6	FIGURE 23: SPI BYTE FORMATTING21
FIGURE 3: RX INTERFERER IMMUNITY ON CHANNEL 2 13	FIGURE 24: SPI CONNECTIONS22
FIGURE 4: TX OUTPUT POWER OVER TEMP & VOLTAGE 13	FIGURE 25: DW1000 SPI TIMING DIAGRAM23
FIGURE 5: RECEIVER SENSITIVITY CHANNEL 5 110K DATA	FIGURE 26: DW1000 SPI DETAILED TIMING DIAGRAM 23
RATE 16M PRF 2048 PREAMBLE SYMBOLS 13	FIGURE 27: SYNC SIGNAL TIMING RELATIVE TO XTAL1 25
FIGURE 6: RECEIVER SENSITIVITY CHANNEL 5 110K DATA	FIGURE 28: TYPICAL DEVICE CRYSTAL TRIM PPM
RATE 64M PRF 2048 PREAMBLE SYMBOLS 14	ADJUSTMENT26
FIGURE 7: RECEIVER SENSITIVITY CHANNEL 5 850K DATA	FIGURE 29: SLEEP OPTIONS BETWEEN OPERATIONS 28
RATE 16M PRF 1024 PREAMBLE SYMBOLS 14	FIGURE 30: TYPICAL RANGE VERSUS TX AVERAGE CURRENT
FIGURE 8: RECEIVER SENSITIVITY CHANNEL 5 850K DATA	(CHANNEL 2)30
RATE 64M PRF 1024 PREAMBLE SYMBOLS 14	FIGURE 31: TYPICAL TX POWER PROFILE31
FIGURE 9: RECEIVER SENSITIVITY CHANNEL 5 6.81M DATA	FIGURE 32: TYPICAL RX POWER PROFILE31
RATE 16M PRF 256 PREAMBLE SYMBOLS	FIGURE 33: TYPICAL RX POWER PROFILE USING SNIFF
FIGURE 10: RECEIVER SENSITIVITY CHANNEL 5 6.81M DATA	MODE31
RATE 64M PRF 1256 PREAMBLE SYMBOLS 15	FIGURE 34: POWER SUPPLY CONNECTIONS
FIGURE 11: TYPICAL PROBABILITY DISTRIBUTION OF LINE OF	FIGURE 35: SWITCHING REGULATOR CONNECTION 32
SIGHT 2-WAY RANGING PERFORMANCE	FIGURE 36: DW1000 APPLICATION CIRCUIT33
FIGURE 12: TX SPECTRUM CHANNEL 1	FIGURE 37: PCB LAYER STACK FOR 4-LAYER BOARD 34
FIGURE 13: TX SPECTRUM CHANNEL 2	FIGURE 38: DW1000 RF TRACES LAYOUT35
FIGURE 14: TX SPECTRUM CHANNEL 3	FIGURE 39: DEVICE PACKAGE MECHANICAL SPECIFICATIONS
FIGURE 15: TX SPECTRUM CHANNEL 4	36
FIGURE 16: TX SPECTRUM CHANNEL 5	FIGURE 40: DEVICE PACKAGE MARKINGS36
FIGURE 17: TX SPECTRUM CHANNEL 7	FIGURE 41: TRAY ORIENTATION
FIGURE 18: IEEE802.15.4-2011 PPDU STRUCTURE 18	FIGURE 42: TAPE & REEL ORIENTATION
FIGURE 19: IEEE802.15.4-2011 MAC FRAME FORMAT	FIGURE 43: TAPE DIMENSIONS
18	FIGURE 44: 330 MM REEL DIMENSIONS
FIGURE 20: DW1000 POWER-UP SEQUENCE	FIGURE 45: 180 MM REEL DIMENSIONS
FIGURE 21: DW1000 SPIPHA=0 TRANSFER PROTOCOL 21	
l jet of	Tables
List of	Tables
TABLE 1: DW1000 PIN FUNCTIONS	TABLE 15: DW1000 POWER-UP TIMINGS20
TABLE 2: EXPLANATION OF ABBREVIATIONS	Table 16: DW1000 SPI Mode Configuration22
TABLE 3: DW1000 OPERATING CONDITIONS	TABLE 17: DW1000 SPI TIMING PARAMETERS23
TABLE 4: DW1000 DC CHARACTERISTICS	Table 18: Transmit & Receive Buffer Memory Size 24
TABLE 5: DW1000 RECEIVER AC CHARACTERISTICS 10	Table 19: Accumulator Memory Size24
TABLE 6: TYPICAL RECEIVER SENSITIVITY CHARACTERISTICS11	TABLE 20: OTP CALIBRATION MEMORY24
TABLE 7: DW1000 REFERENCE CLOCK AC CHARACTERISTICS	TABLE 21: SYNC SIGNAL TIMING RELATIVE TO XTAL 25
11	TABLE 22: OPERATING STATES27
TABLE 8: DW1000 TRANSMITTER AC CHARACTERISTICS. 12	TABLE 23: OPERATING STATES AND THEIR EFFECT ON POWER
TABLE 9: DW1000 TEMPERATURE AND VOLTAGE MONITOR	CONSUMPTION27
CHARACTERISTICS	Table 24: Operational Modes
TABLE 10: DW1000 ABSOLUTE MAXIMUM RATINGS 12	TABLE 25: TYPICAL TX CURRENT CONSUMPTION 29
TABLE 11: UWB IEEE802.15.4-2011 UWB CHANNELS	Table 26: Typical RX Current Consumption 29
SUPPORTED BY THE DW100017	TABLE 27: LOWEST POWER AND LONGEST RANGE MODES OF
TABLE 12: UWB IEEE802.15.4-2011 [1] UWB BIT RATES	OPERATION30
AND PRF MODES SUPPORTED BY THE DW1000 17	Table 28: Device ordering information
TABLE 13: DW1000 SYMBOL DURATIONS	Table 29: Glossary of Terms
TABLE 14: TURN-AROUND TIMES	Table 30: Document History43

DOCUMENT INFORMATION

Disclaimer

DecaWave reserves the right to change product specifications without notice. As far as possible changes to functionality and specifications will be issued in product specific errata sheets or in new versions of this document. Customers are advised to check with DecaWave for the most recent updates on this product.

Copyright © 2014 DecaWave Ltd

LIFE SUPPORT POLICY

DecaWave products are not authorized for use in safety-critical applications (such as life support) where a failure of the DecaWave product would reasonably be expected to cause severe personal injury or death. DecaWave customers using or selling DecaWave products in such a manner do so entirely at their own risk and agree to fully indemnify DecaWave and its representatives against any damages arising out of the use of DecaWave products in such safety-critical applications.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

REGULATORY APPROVALS

The DW1000, as supplied from DecaWave, has not been certified for use in any particular geographic region by the appropriate regulatory body governing radio emissions in that region although it is capable of such certification depending on the region and the manner in which it is used.

All products developed by the user incorporating the DW1000 must be approved by the relevant authority governing radio emissions in any given jurisdiction prior to the marketing or sale of such products in that jurisdiction and user bears all responsibility for obtaining such approval as needed from the appropriate authorities.

1 IC DESCRIPTION

Figure 1: IC Block Diagram

DW1000 is a fully integrated low-power, single chip CMOS RF transceiver IC compliant with the IEEE802.15.4-2011 [1] UWB standard.

DW1000 consists of an analog front end containing a receiver and a transmitter and a digital back end that interfaces to an off-chip host processor. A TX/RX switch is used to connect the receiver or transmitter to the antenna port. Temperature and voltage monitors are provided on-chip

The receiver consists of an RF front end which amplifies the received signal in a low-noise amplifier before down-converting it directly to baseband. The receiver is optimized for wide bandwidth, linearity and noise figure. This allows each of the supported IEEE802.15.4-2011 [1] UWB channels to be down converted with minimum additional noise and distortion. The baseband signal is demodulated and the resulting received data is made available to the host controller via SPI.

The transmit pulse train is generated by applying digitally encoded transmit data to the analog pulse generator. The pulse train is up-converted by a double balanced mixer to a carrier generated by the synthesizer and centered on one of the permitted IEEE802.15.4-2011 [1] UWB channels. The modulated RF waveform is amplified before transmission from the external antenna.

The IC has an on-chip One-Time Programmable (OTP) memory. This memory can be used to store calibration data such as TX power level, crystal

initial frequency error adjustment, and range accuracy adjustment. These adjustment values can be automatically retrieved when needed. See section 5.14 for more details.

The Always-On (AON) memory can be used to retain DW1000 configuration data during the lowest power operational states when the on-chip voltage regulators are disabled. This data is uploaded and downloaded automatically. Use of DW1000 AON memory is configurable.

The DW1000 clocking scheme is based around 3 main circuits; Crystal Oscillator, Clock PLL and RF PLL. The on-chip oscillator is designed to operate at a frequency of 38.4 MHz using an external crystal. An external 38.4 MHz clock signal may be applied in place of the crystal if an appropriately stable clock is available elsewhere in the user's system. This 38.4 MHz clock is used as the reference clock input to the two on-chip PLLs. The clock PLL (denoted CLKPLL) generates the clock required by the digital back end for signal The RF PLL generates the downprocessing. conversion local oscillator (LO) for the receive chain and the up-conversion LO for the transmit chain. An internal 13 kHz oscillator is provided for use in the SLEEP state.

The host interface includes a slave-only SPI for device communications and configuration. A number of MAC features are implemented including CRC generation, CRC checking and receive frame filtering.

2 PIN CONNECTIONS

2.1 Pin Numbering

QFN-48 package with pin assignments as follows: -

Figure 2: DW1000 Pin Assignments

2.2 Pin Descriptions

Table 1: DW1000 Pin functions

SIGNAL NAME	PIN	I/O (default)	DESCRIPTION				
			Crystal Interface				
EXTCLK / XTAL1	3	Al	Reference crystal input or external reference overdrive pin.				
XTAL2	4	Al	Reference crystal input.				
	Digital Interface						
SPICLK	41	DI	SPI clock				
SPIMISO	40	DO (O-L)	SPI data output. Refer to section 5.8.				
SPIMOSI	39	DI	SPI data input. Refer to section 5.8.				
SPICSn	24	DI	SPI chip select. This is an active low enable input. The high-to-low transition on SPICSn signals the start of a new SPI transaction. SPICSn can also act as a wake-up signal to bring DW1000 out of either SLEEP or DEEPSLEEP states. Refer to section 6.				
SYNC / GPIO7	29	DIO (I)	The SYNC input pin is used for external synchronization (see section 5.13). When the SYNC input functionality is not being used this pin may be reconfigured as a general purpose I/O pin, GPIO7.				
WAKEUP	23	DI	When asserted into its active high state, the WAKEUP pin brings the DW1000 out of SLEEP or DEEPSLEEP states into operational mode.				

SIGNAL NAME	PIN	I/O (default)	DESCRIPTION						
EXTON	21	DO (O-L)	External device enable. Asserted during wake up process and held active until device enters sleep mode. Can be used to control external DC-DC converters or other circuits that are not required when the device is in sleep mode so as to minimize power consumption. Refer to sections 5.5.1 & 7.						
FORCEON	22	DI	Not used in normal operation. Must be connected to ground						
IRQ / GPIO8	45	DIO (O-L)	Interrupt Request output from the DW1000 to the host processor. By default IRQ is an active-high output but may be configured to be active low if required. For correct operation in SLEEP and DEEPSLEEP modes it should be configured for active high operation. This pin will float in SLEEP and DEEPSLEEP states and may cause spurious interrupts unless pulled low. When the IRQ functionality is not being used the pin may be reconfigured as a general purpose I/O line, GPIO8.						
GPIO6 / EXTRXE / SPIPOL	30	DIO (I)	General purpose I/O pin. On power-up it acts as the SPIPOL (SPI polarity selection) pin for configuring the SPI operation mode. For details of this please refer to section 5.8. After power-up, the pin will default to a General Purpose I/O pin. It may be configured for use as EXTRXE (External Receiver Enable). This pin goes high when the DW1000 is in receive mode.						
GPIO5 / EXTTXE / SPIPHA	33	DIO (I)	General purpose I/O pin. On power-up it acts as the SPIPHA (SPI phase selection) pin for configuring the SPI mode of operation. Refer to section 5.8 for further information. After power-up, the pin will default to a General Purpose I/O pin. It may be configured for use as EXTTXE (External Transmit Enable). This pin goes high when the DW1000 is in transmit mode.						
GPIO4 / EXTPA	34	DIO (I)	General purpose I/O pin. It may be configured for use as EXTPA (External Power Amplifier). This pin can enable an external Power Amplifier.						
GPIO3 / TXLED	35	DIO (I)	General purpose I/O pin. It may be configured for use as a TXLED driving pin that can be used to light a LED following a transmission. Refer to the DW1000 User Manual [2] for details of LED use.						
GPIO2 / RXLED	36	DIO (I)	General purpose I/O pin. It may be configured for use as a RXLED driving pin that can be used to light a LED during receive mode. Refer to the DW1000 User Manual [2] for details of LED use.						
GPIO1 / SFDLED	37	DIO (I)	General purpose I/O pin. It may be configured for use as a SFDLED driving pin that can be used to light a LED when SFD (Start Frame Delimiter) is found by the receiver. Refer to the DW1000 User Manual [2] for details of LED use.						
GPIO0 / RXOKLED	38	DIO (I)	General purpose I/O pin. It may be configured for use as a RXOKLED driving pin that can be used to light a LED on reception of a good frame. Refer to the DW1000 User Manual [2] for details of LED use.						
RSTn	27	DIO (O-H)	Reset pin. Active Low Output. May be pulled low by external open drain driver to reset the DW1000. Must not be pulled high by external source. Refer to section 5.6.						
TESTMODE	46	DI	Not used in normal operation. Must be connected to ground.						
	ı		Reference voltages						
VREF	5	AIO	Used for on-chip reference current generation. Must be connected to an 11 k Ω (1% tolerance) resistor to ground.						
	Digital Power Supplies								
VDDLDOD	26	Р	External supply for digital circuits.						

SIGNAL NAME	PIN	1/0	DESCRIPTION			
\(\(\text{DDIG}\)		(default)				
VDDIOA	28	Р	External supply for digital IO ring.			
VSSIO 32 43 G		G	Negative I/O ring supply. Must be connected to ground.			
Digital Decoupling	I					
VDDREG	20	PD	Output of on-chip regulator. Connect to VDDDIG on PCB.			
VDDDIG	44	PD	Output of on-chip regulator. Connect to VDDREG on PCB.			
VDDIO	31 42	PD	Digital IO Ring Decoupling.			
			RF Interface			
RF_P	16	AIO	Positive pin of the 100 Ω differential RF pair. Should be AC coupled.			
RF_N	17	AIO	Negative pin of the 100 $\boldsymbol{\Omega}$ differential RF pair. Should be AC coupled.			
			PLL Interface			
CLKTUNE	8	AIO	Clock PLL loop filter connection to off-chip filter components. Referenced to VDDCLK.			
VCOTUNE	12	AIO	RF PLL loop filter connection to off-chip filter components. Referenced to VDDVCO.			
			Analog Power Supplies			
VDDAON	25	Р	External supply for the Always-On (AON) portion of the chip.			
VDDPA1	18	Р	External supply to the transmitter power amplifier.			
VDDPA2	19	Р	External supply to the transmitter power amplifier.			
VDDLNA	15	Р	External supply to the receiver LNA.			
VDDLDOA	48	Р	External supply to analog circuits.			
VDDBATT	47	Р	External supply to all other on-chip circuits.			
			Analog Supply Decoupling			
VDDCLK	9	PD	Output of on-chip regulator to off-chip decoupling capacitor.			
VDDIF	7	PD	Output of on-chip regulator to off-chip decoupling capacitor.			
VDDMS	6	PD	Output of on-chip regulator to off-chip decoupling capacitor.			
VDDSYN	10	PD	Output of on-chip regulator to off-chip decoupling capacitor.			
VDDVCO	11	PD	Output of on-chip regulator to off-chip decoupling capacitor.			
			Ground Paddle			
GND	49	G	Ground Paddle on underside of package. Must be soldered to the PCB ground plane for thermal and RF performance.			
			Others			
NC 1 2 NC 13 14			Not used in normal operation. Do not connect.			

Table 2: Explanation of Abbreviations

ABBREVIATION	EXPLANATION					
Al	Analog Input					
AIO	Analog Input / Output					
AO	Analog Output					
DI	Digital Input					
DIO	Digital Input / Output					
DO	Digital Output					
G	Ground					

ABBREVIATION	EXPLANATION					
Р	Power Supply					
PD Power Decoupling						
NC	No Connect					
O-L	Defaults to output, low level after reset					
O-H	Defaults to output, high level after reset					
I	Defaults to input.					
Note: Any signal with	Note: Any signal with the suffix 'n' indicates an active low signal.					

3 ELECTRICAL SPECIFICATIONS

3.1 Nominal Operating Conditions

Table 3: DW1000 Operating Conditions

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Operating temperature	-40		+85	°C	
Supply voltage VDDIOA	2.8	3.3	3.6	V	
Supply voltage VDDBATT, VDDAON, VDDLNA, VDDPA	2.8	3.3	3.6	٧	
Supply voltage VDDLDOA, VDDLDOD	1.6	1.8	3.6	V	See section 7.2
Optional: Supply voltage VDDIO	3.7	3.8	3.9	V	Only to be used if programming the OTP memory. See the DW1000 User Manual [2] for details.

Note: Unit operation is guaranteed by design when operating within these ranges

3.2 DC Characteristics

T_{amb} = 25 °C, all supplies centered on typical values

Table 4: DW1000 DC Characteristics

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Supply current DEEP SLEEP mode		50		nA	
Supply current SLEEP mode		1		μA	Total current drawn from all
Supply current IDLE mode		18		mA	3.3 V and 1.8 V supplies.
Supply current INIT mode		4		mA	
TX: 3.3 V supplies (VDDBAT, VDDPA1, VDDPA2, VDDLNA, VDDAON, VDDIOA)			70	mA	Channel 5 TX Power = MAX mean
TX : 1.8 V supplies (VDDLDOA, VDDLDOD)			90*	mA	(-9.3 dBm/500 MHz)
RX: 3.3 V supplies (VDDBAT, VDDPA1, VDDPA2, VDDLNA, VDDAON, VDDIOA)			30	mA	Channel 5
RX : 1.8 V supplies (VDDLDOA, VDDLDOD)			210*	mA	
Digital input voltage high	0.7*VDDIO			V	
Digital input voltage low			0.3*VDDIO	V	
Digital output voltage high	0.7*VDDIO			V	Assumes 500 Ω load.
Digital output voltage low			0.3*VDDIO	V	Assumes 500 Ω load.
Digital Output Drive Current					
GPIOx, IRQ	4	6		mA	
SPIMISO	8	10		IIIA	
* These currents are on the 1.8 V supp	3	4			

^{*} These currents are on the 1.8 V supplies, not referenced back to the 3.3 V supply

3.3 Receiver AC Characteristics

T_{amb} = 25 °C, all supplies centered on nominal values

Table 5: DW1000 Receiver AC Characteristics

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Frequency range	3244		6999	MHz	
Channel bandwidths		500 900		MHz	Channel 1,2,3 and 5 Channel 4 and 7

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Input P1dB compression point			-39	dBm	Measured at balun input
In-band blocking level		30		dBc	Continuous wave interferer
Out-of-band blocking level		55		dBc	Continuous wave interferer
Relative velocity between Receiver &	0		5	m/s	4096 preamble 110k, 128 bytes
Transmitter	0		500	m/s	64 preamble 6.8 M, 12 bytes

3.4 Receiver Sensitivity Characteristics

 T_{amb} = 25 °C, all supplies centered on typical values. 20 byte payload

Table 6: Typical Receiver Sensitivity Characteristics

Packet Error Rate	Data Rate	Receiver Sensitivity	Units	Condition/Note					
1%	110 kbps	-106	dBm/500 MHz	Preamble 2048	Carrier frequency	All measurements performed on Channel 5, PRF 16 MHz			
10%	110 kbps	-107	dBm/500 MHz	Preamble 2048	offset ±1 ppm				
	110 kbps	-102	dBm/500 MHz	Preamble 2048					
1%	850 kbps	-101	dBm/500 MHz	Preamble 1024	Carrier				
	6.8 Mbps	-93 (*-97)	dBm/500 MHz	Preamble 256	frequency				
	110 kbps	-106	dBm/500 MHz	Preamble 2048	offset				
10%	850 kbps	-102	dBm/500 MHz	Preamble 1024	±10 ppm				
	6.8 Mbps	-94 (*-98)	dBm/500 MHz	Preamble 256					

^{*}equivalent sensitivity with Smart TX Power enabled

3.5 Reference Clock AC Characteristics

T_{amb} = 25 °C, all supplies centered on typical values

3.5.1 Reference Frequency

Table 7: DW1000 Reference Clock AC Characteristics

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Crystal oscillator reference frequency		38.4		MHz	A 38.4 MHz signal can be provided from an external reference in place of a crystal if desired. See Figure 36
Crystal specifications					
Load capacitance	0		35	pF	Depends on crystal used and PCB parasitics
Shunt capacitance	0		4	pF	
Drive level			200	μW	Depends on crystal & load capacitance used
Equivalent Series Resistance (ESR)			60	Ω	
Frequency tolerance			±20	ppm	DW1000 includes circuitry to trim the crystal oscillator to reduce the initial frequency offset.
Crystal trimming range		±25		ppm	Trimming range provided by on-chip circuitry. Depends on the crystal used and PCB design.
External Reference					
Amplitude	8.0			V_{pp}	Must be AC coupled.
SSB phase noise power density			-132	dBc/Hz	@1 kHz offset.
SSB phase noise power density			-145	dBc/Hz	@10 kHz offset.
Duty Cycle	40		60	%	
Low Power RC Oscillator	5	12	15	kHz	

3.6 Transmitter AC Characteristics

T_{amb} = 25 °C, all supplies centered on typical values

Table 8: DW1000 Transmitter AC Characteristics

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Frequency range	3244		6999	MHz	
Channel Bandwidths 500 900		MHz	Channel 1, 2, 3 and 5 Channel 4 and 7		
Output power spectral density (programmable)		-39	-35	dBm/MHz	See Section 5.5
Load impedance		100		Ω	Differential
Power level range		37		dB	
Coarse Power level step		3		dB	
Fine Power level step		0.5		dB	
Output power variation with temperature		0.05		dB/ ^o C	
Output power variation with voltage		2.73 3.34	dB/V		Channel 2 Channel 5

3.7 Temperature and Voltage Monitor Characteristics

Table 9: DW1000 Temperature and Voltage Monitor Characteristics

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Voltage Monitor Range	2.4		3.75	V	
Voltage Monitor Precision		20		mV	
Voltage Monitor Accuracy		140		mV	
Temperature Monitor Range	-40		+100	°C	
Temperature Monitor Precision		0.9		°C	
Temperature Monitor Accuracy		2		°C	

3.8 Absolute Maximum Ratings

Table 10: DW1000 Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Voltage VDDPA / VDDLNA / VDDLDOD / VDDLDOA / VDDBATT / VDDIOA / VDDAON / VDDIO	-0.3	4.0	٧
Receiver Power		0	dBm
Temperature - Storage temperature	-65	+150	°C
Temperature - Operating temperature	-40	+85	°C
ESD (Human Body Model)		2000	V

Stresses beyond those listed in this table may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions beyond those indicated in the operating conditions of the specification is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

4 TYPICAL PERFORMANCE

Figure 3: RX Interferer Immunity on Channel 2

Figure 4: TX output Power over Temp & Voltage (note that 2.5 volt data points are shown for information only)

Figure 5: Receiver Sensitivity Channel 5 110K Data Rate 16M PRF 2048 Preamble Symbols

Figure 6: Receiver Sensitivity Channel 5 110K Data Rate 64M PRF 2048 Preamble Symbols

Figure 7: Receiver Sensitivity Channel 5 850K Data Rate 16M PRF 1024 Preamble Symbols

Figure 8: Receiver Sensitivity Channel 5 850K Data Rate 64M PRF 1024 Preamble Symbols

Figure 9: Receiver Sensitivity Channel 5 6.81M Data Rate 16M PRF 256 Preamble Symbols

Figure 10: Receiver Sensitivity Channel 5 6.81M Data Rate 64M PRF 1256 Preamble Symbols

Figure 11: Typical probability distribution of Line of Sight 2-way ranging performance

Date: 25.SEP.2013 15:47:44

Figure 12: TX Spectrum Channel 1

Figure 13: TX Spectrum Channel 2

Date: 25.SEP.2013 16:09:23

Date: 25.SEP.2013 16:10:30

Figure 14: TX Spectrum Channel 3

Date: 25.SEP.2013 15:49:33

Date: 25.SEP.2013 16:20:23

Figure 15: TX Spectrum Channel 4

Figure 16: TX Spectrum Channel 5

Figure 17: TX Spectrum Channel 7

5 FUNCTIONAL DESCRIPTION

5.1 Physical Layer Modes

Please refer to IEEE802.15.4-2011 [1] for the PHY specification.

5.1.1 Supported Channels and Bandwidths

The DW1000 supports the following six IEEE802.15.4-2011 [1] UWB channels: -

Table 11: UWB IEEE802.15.4-2011 UWB channels supported by the DW1000

UWB Channel Number	Centre Frequency (MHz)	Band (MHz)	Bandwidth (MHz)
1	3494.4	3244.8 – 3744	499.2
2	3993.6	3774 – 4243.2	499.2
3	4492.8	4243.2 – 4742.4	499.2
4	3993.6	3328 – 4659.2	1331.2*
5	6489.6	6240 - 6739.2	499.2
7	6489.6	5980.3 - 6998.9	1081.6*

^{*}DW1000 maximum receiver bandwidth is approximately 900 MHz

5.1.2 Supported Bit Rates and Pulse Repetition Frequencies (PRF)

The DW1000 supports IEEE802.15.4-2011 [1] UWB standard bit rates of 110 kbps, 850 kbps and 6.81 Mbps and nominal PRF values of 16 and 64 MHz.

Table 12: UWB IEEE802.15.4-2011 [1] UWB bit rates and PRF modes supported by the DW1000

PRF* (MHz)	Data Rate (Mbps)
16	0.11
16	0.85
16	6.81
64	0.11
64	0.85
64	6.81

^{*}Actual PRF mean values are slightly higher for SYNC as opposed to the other portions of a frame. Mean PRF values are 16.1/15.6 MHz and 62.89/62.4 MHz, nominally referred to as 16 and 64MHz in this document. Refer to [1] for full details of peak and mean PRFs.

Generally speaking, lower data rates give increased receiver sensitivity, increased link margin and longer range but due to longer frame lengths for a given number of data bytes they result in increased air occupancy per frame and a reduction in the number of individual transmissions that can take place per unit time.

16 MHz PRF gives a marginal reduction in transmitter power consumption over 64 MHz PRF. 16 MHz and 64 MHz PRF can coexist on the same physical channel without interfering.

5.1.3 Frame Format

IEEE802.15.4-2011 [1] frames are structured as shown in Figure 18. Detailed descriptions of the frame format are given in the standard [1]. The frame consists of a synchronisation header (SHR) which includes the preamble symbols and start frame delimiter (SFD), followed by the PHY header (PHR) and data. The data frame is usually specified in number of bytes and the frame format will include 48 Reed-Solomon parity bits following each block of 330 data bits (or less).

The maximum standard frame length is 127 bytes, including the 2-byte FCS.

Figure 18: IEEE802.15.4-2011 PPDU Structure

5.1.4 Symbol Timings

Timing durations in IEEE802.15.4-2011 [1] are expressed in an integer number of symbols. This convention is adopted in DW1000 documentation. Symbol times vary depending on the data rate and PRF configuration of the device and the part of the frame. See Table 13: DW1000 Symbol Durations, for all symbol timings supported by DW1000.

PRF **Data Rate** PHR (ns) SHR (ns) Data (ns) (MHz) (Mbps) 0.11 993.59 8205.13 8205.13 16 0.85 993.59 1025.64 1025.64 16 16 6.81 993.59 1025.64 128.21 64 0.11 1017.63 8205.13 8205.13 64 0.85 1017.63 1025.64 1025.64 64 6.81 1017.63 1025.64 128.21

Table 13: DW1000 Symbol Durations

5.1.5 Proprietary Long Frames

The DW1000 offers a proprietary long frame mode where frames of up to 1023 bytes may be transferred. This requires a non-standard PHR encoding and so cannot be used in a standard system. Refer to the DW1000 User Manual for full details [2].

5.1.6 Turnaround Times

Turn-around times given in the table below are as defined in [1].

Table 14: Turn-around Times

Parameter	Min.	Тур.	Max.	Units	Condition/Note
Turn-around time RX to TX*.		10		μs	Achievable turnaround time depends on device configuration and frame
Turn-around time TX to RX*.	around time TX to RX*.			μs	parameters and on external host controller.

5.1.7 Frame Filter

A standard frame filtering format is defined in IEEE802.15.4-2011 [1]. An overview of the MAC frame format is given in Figure 19. Note that the Auxiliary Security Header is not processed in DW1000 hardware.

PHY Service Data Unit (PSDU)

Figure 19: IEEE802.15.4-2011 MAC Frame Format

Frame filtering allows the receiver to automatically discard frames that do not match a defined set of criteria. The DW1000 has a number of separately configurable frame filtering criteria to allow selection of the frame types to accept or discard. See IEEE802.15.4-2011 [1] for filtering field definition and acceptance rules.

5.1.8 Frame Check Sequence (FCS)

The FCS is also known as the MAC Footer (MFR). It is a 2-byte CRC appended to frames. See IEEE802.15.4-2011 [1] for information on FCS generation.

5.2 Reference Crystal Oscillator

The on-chip crystal oscillator generates the reference frequency for the integrated frequency synthesizers RFPLL and CLKPLL. The oscillator operates at a frequency of 38.4 MHz.

DW1000 provides the facility to trim out initial frequency error in the 38.4 MHz reference crystal, see section 5.14. The trimming range depends on the crystal chosen and the loading capacitors used. Typically a trimming range of ±25 ppm is possible. Loading capacitors should be chosen such that minimum frequency error (from the channel center frequency) is achieved when the trim value is approximately mid-range.

In applications that require tighter frequency tolerance (maximum range) an external oscillator such a TCXO can be used to drive the XTAL1 pin directly.

5.3 Synthesizer

DW1000 contains 2 frequency synthesizers, RFPLL which is used as a local oscillator (LO) for the TX and RX and CLKPLL which is used as a system clock. Both of these synthesizers are fully integrated apart from external passive 2nd order loop filters. The component values for these loop filters do not change regardless of the RF channel used. The register programming values for these synthesizers is contained in the user manual [2]

5.4 Receiver

5.4.1 Bandwidth setting

The receiver can be configured to operate in one of two bandwidth modes; 500 MHz or 900 MHz. The selection of a particular bandwidth mode is made by register settings and is described in the DW1000 User Manual [2].

5.4.2 Automatic Gain Control (AGC)

Automatic Gain Control is provided to ensure optimum receiver performance by adjusting receiver gain for changing signal and environmental conditions. The DW1000 monitors the received signal level and makes appropriate automatic adjustments to ensure optimum receiver performance is maintained.

5.5 Transmitter

5.5.1 Transmit Output Power

DW1000 transmit power is fully adjustable as is the transmit spectrum width ensuring that applicable regulatory standards such as FCC [4] and ETSI [3] can be met. For maximum range the transmit power should be set such that the EIRP at the antenna is as close as possible to the maximum allowed, -41.3 dBm/MHz in most regions. See section 5.14.3 for more details.

5.5.2 Transmit Bandwidth Setting

The transmitter can be configured to operate over a wide range of bandwidths. The selection of a particular bandwidth mode is made by register settings and is described in the DW1000 User Manual [2].

Transmit spectral shape can also be adjusted to compensate for PCB and external components in order to give an optimal transmit spectral mask.

5.6 Power Up

 V_{ON}

 $T_{\text{EXT_ON}}$

T_{DIG} ON

Figure 20: DW1000 Power-up Sequence

When power is applied to the DW1000, RSTn is driven low by the DW1000 internal circuitry as part of its power up sequence. See Figure 20 above. RSTn remains low until the XTAL oscillator has powered up and its output is suitable for use by the rest of the device. Once that time is reached the DW1000 de-asserts RSTn.

Nominal Value Parameter Description Units V Voltage threshold to enable power up. 20 Time taken for oscillator to start up and stabilise. 1.5 Tosc_on ms

Table 15: DW1000 Power-up Timings

RSTn may be used as an output to reset external circuitry as part of an orderly bring up of a system as power is applied.

EXTON goes high this long before RSTn is released.

RSTn held low by internal reset circuit / driven low by

external reset circuit.

An external circuit can reset the DW1000 by asserting RSTn for a minimum of 10 ns. RSTn is an asynchronous input. DW1000 initialization will proceed when the pin is released to high impedance.

An external source should open-drain the RSTn pin once the DW1000 has been reset. When in DEEPSLEEP mode, the DW1000 drives RSTn to ground. This can result in current flowing if RSTn is driven high externally.

RSTn may be used as an interrupt input to the external host to indicate that the DW1000 has entered the INIT state. When RSTn is used in this way care should be taken to ensure that the interrupt pin of the external host does not pull-up the RSTn signal which should be left open-drain. Refer to Table 1 and Figure 36.

RSTn should never be driven high by an external source.

Voltage/Temperature Monitors

The on-chip voltage and temperature monitors allow the host to read the voltage on the VDDAON pin and the internal die temperature information from the DW1000. See Table 9 for characteristics.

5.8 Host Controller Interface

The DW1000 host communications interface is a slave-only SPI. Both clock polarities (SPIPOL=0/1) and phases (SPIPHA=0/1) are supported. The data transfer protocol supports single and multiple byte read/writes accesses. All bytes are transferred MSB first and LSB last. A transfer is initiated by asserting SPICSn low and terminated when SPICSn is deasserted high.

The DW1000 transfer protocols for each SPIPOL and SPIPHA setting are given in Figure 21 and Figure 22.

Note: Figure 21 and Figure 22 detail the SPI protocol as defined for SPICLK polarities and phases. The sampling and launch edges used by the SPI bus master are shown. DW1000 is a SPI slave device and will comply with the protocol by ensuring that the SPIMISO data is valid on the required SPICLK edge

2

2

ms

ms

with setup and hold times as given by Table 17.

Figure 21: DW1000 SPIPHA=0 Transfer Protocol

Figure 22: DW1000SPIPHA=1 Transfer Protocol

The MSB of the first byte is the read/write indicator, a low bit indicates a read access and a high bit indicates a write access. The second bit, bit 6 of the first byte, indicates whether a sub address byte will be included in the SPI access, a high bit indicates a further address byte to follow the initial byte and a low bit indicating that the bytes to follow the first byte are data. The 6 LSBs of the first byte contain an access address.

The second byte of a transfer command, if included, gives the sub address being accessed. If the MSB of this optional second byte is high, it indicates a second sub address byte to follow in the third transfer byte. The 7 LSBs of this second byte give the 7 LSBs of the sub address.

The third byte of a transfer command, if included give the 8 MSBs of the sub address.

The number of data bytes to follow the 1-3 command bytes is not limited by the DW1000 transfer protocol.

Figure 23: SPI Byte Formatting

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Read/Write	Sub address						
Command	0 – Read	0 – no sub address 6-bit access address						
	1 – Write	1 – sub address present						
Sub Address 0 (Optional)	Extended sub address 0 – 1 byte sub address 1 – 2 byte sub address 7-bits of sub address. These will be the LSBs if more bits are to follow.							
Sub Address 1 (Optional)	8 bits of sub address. These will form the MSBs, bits [14:7] of the 15-bit sub address.							
Data	8-bit read/write bytes (va	ariable number).						

The SPIMISO line may be connected to multiple slave SPI devices each of which is required to go open-drain when their respective SPICSn lines are de-asserted.

The DW1000 has internal pull up and pull down circuits to ensure safe operation in the event of the host interface signals being disconnected. These are for internal use only, and should not be used to pull an external signal high or low.

Internal pull-down resistance values are in the range 34 k Ω – 90 k Ω , internal pull-up resistance values are in the range 40 k Ω - 90 k Ω .

Figure 24: SPI Connections

More details of the protocol used for data transfer, the description of the accessible registers and the description of the bit functions of those registers are published in the DW1000 User Manual [2].

5.8.1 Configuring the SPI Mode

The SPI interface supports a number of different clock polarity and clock / data phase modes of operation. These modes are selected using GPIO5 & 6 as follows: -

GPIO 5 (SPIPOL)	GPIO 6 (SPIPHA)	SPI Mode	Description
0	0	0	Data is sampled on the rising (first) edge of the clock and launched on the falling (second) edge.
0	1	1	Data is sampled on the falling (second) edge of the clock and launched on the rising (first) edge.
1	0	2	Data is sampled on the falling (first) edge of the clock and launched on the rising (second) edge.
1	1	3	Data is sampled on the rising (second) edge of the clock and launched on the falling (first) edge.
Note: The 0 on	the GPIO pins car	n either be o	pen circuit or a pull down to ground. The 1 on the GPIO pins is a pull up to VDDIO.

Table 16: DW1000 SPI Mode Configuration

GPIO 5 / 6 are sampled / latched on the rising edge of the RSTn pin to determine the SPI mode. They are internally pulled low to configure a default SPI mode 0 without the use of external components. If a mode other 0 is required then they should be pulled up using an external resistor of value no greater than 10 k Ω to the VDDIO output supply.

If GPIO5 / 6 are also being used to control an external transmit / receive switch then external pull-up resistors of no less than 1 k Ω should be used so that the DW1000 can correctly drive these outputs in normal operation after the reset sequence / SPI configuration operation is complete.

The recommended range of resistance values to pull-up GPIO 5 / 6 is in the range of 1-10 k Ω . If it is required to pull-down GPIO 5 / 6, such as in the case where the signal is also pulled high at the input to an external IC, the resistor value chosen needs to take account of the DW1000 internal pull-down resistor values as well as those of any connected external pull-up resistors.

It is possible to set the SPI mode using the DW1000's one-time programmable configuration block to avoid the need for external components and to leave the GPIO free for use. This is a one-time activity and cannot be reversed so care must be taken to ensure that the desired SPI mode is set. Please refer to the DW1000 User Manual [2] for details of OTP use and configuration.

5.8.2 SPI Signal Timing

Figure 25: DW1000 SPI Timing Diagram

Figure 26: DW1000 SPI Detailed Timing Diagram

Parameter	Min	Тур	Max	Unit	Description
SPICLK Period	50			ns	The maximum SPI frequency is 20 MHz when the CLKPLL is locked, otherwise the maximum SPI frequency is 3 MHz.
t ₁			38	ns	SPICSn select asserted low to valid slave output data
t_2	12			ns SPICLK low to valid slave output data	
t ₃	10			ns	Master data setup time
t ₄	10			ns	Master data hold time
t ₅	32			ns	LSB last byte to MSB next byte
t ₆			10	ns	SPICSn de-asserted high to SPIMISO tri-state
t ₇	16			ns	Start time; time from select asserted to first SPICLK
t ₈	40			ns	Idle time between consecutive accesses
t ₉	40			ns	Last SPICLK to SPICSn de-asserted

Table 17: DW1000 SPI Timing Parameters

5.9 General Purpose Input Output (GPIO)

The DW1000 provides 8 user-configurable I/O pins.

On reset, all GPIO pins default to input. GPIO inputs, when appropriately configured, are capable of generating interrupts to the host processor via the IRQ signal. Some GPIO lines have multiple functions as described in 2.2 above.

GPIO0, 1, 2, & 3, as one of their optional functions, can drive LEDs to indicate the status of various chip operations. Any GPIO line being used to drive an LED in this way should be connected as shown. GPIO5 & 6 are used to configure the operating mode of the SPI as described in 5.8.1. GPIO4, 5 & 6 may be optionally used to implement a scheme with an external power amplifier to provide a transmit power level in excess of that provided by the DW1000.

The DW1000 User Manual [2] provides details of the configuration and use of the GPIO lines.

5.10 Memory

The DW1000 includes a number of user accessible memories: -

5.10.1 Receive and Transmit data buffers

Buffers used to store received data to be read from the DW1000 by the host controller and data for transmission written into the DW1000 by the host controller. These are sized as follows: -

Table 18: Transmit & Receive Buffer Memory Size

Memory	Size (bits)	Description
Tx Buffer	1024 x 8	Transmit data buffer. Contains data written by the host processor to be transmitted via the transmitter
Rx Buffer	1024 x 8 x 2	Receive data buffer. Contains data received via the receiver to be read by the host processor via the SPI interface. Double buffered so that the receiver can receive a second packet while the first is being read by the host controller

5.10.2 Accumulator memory

The accumulator memory is used to store the channel impulse response estimate.

Table 19: Accumulator Memory Size

Memory	Size (bits)	Description
Accumulator	1016 x 32	Accumulator buffer. Used to store channel impulse response estimate data to be optionally read by the host controller

5.10.3 One Time Programmable (OTP) Calibration Memory

The DW1000 contains a small amount of user programmable OTP memory that is used to store per chip calibration information. When programming the OTP, the user should ensure that the VDDIO pins are supplied with 3.7 V minimum. If the VDDIO pin is unavailable, then the VDDIOA pin should be driven instead.

Table 20: OTP calibration memory

Memory	Size (bits)	Description
Calibration	56 x 32	One time programmable area of memory used for storing calibration data.

5.11 Interrupts and Device Status

DW1000 has a number of interrupt events that can be configured to drive the IRQ output pin. The default IRQ pin polarity is active high. A number of status registers are provided in the system to monitor and report data of interest. See DW1000 User Manual [2] for a full description of system interrupts and their configuration and status registers.

5.12 MAC Features

5.12.1 Timestamping

DW1000 generates transmit timestamps and captures receive timestamps. These timestamps are 40-bit values at a nominal 64 GHz resolution, for approximately 15 ps event timing precision. These timestamps enable ranging calculations.

DW1000 allows antenna delay values to be programmed for automatic adjustment of timestamps. See the DW1000 User Manual [2] for more details of DW1000 implementation and IEEE802.15.4-2011 [1] for details of definitions and required precision of timestamps and antenna delay values.

5.12.2 FCS Generation and Checking

DW1000 will automatically append a 2-byte FCS to transmitted frames and check received frames' FCS. The DW1000 can be used to send frames with a host-generated FCS, if desired.

5.12.3 Automatic Frame Filtering

Automatic frame filtering can be carried out using the DW1000. Incoming frames can be rejected automatically if they fail frame type or destination address checks. See the DW1000 User Manual [2] for details.

5.12.4 Automatic Acknowledge

The DW1000 can be configured to automatically acknowledge received frames requesting acknowledgement. See the DW1000 User Manual [2] for details.

Note that RX-TX turnaround is optimised for Automatic Acknowledge and is typically ~6.5 µs, but depends on the configured frame parameters. The delay applied between frames is programmable in preamble symbol durations to allow compliance with IEEE802.15.4-2011 [1] SIFS and LIFS requirements.

5.12.5 Double Receive Buffer

The DW1000 has two receive buffers to allow the device to receive another frame whilst the host is accessing a previously received frame. Achievable throughput is increased by this feature. See the DW1000 User Manual [2] for details.

5.13 External Synchronization

The DW1000 provides a SYNC input. This allows: -

- Synchronization of multiple DW1000 timestamps.
- Transmission synchronous to an external reference.
- Receive timestamping synchronous to an external counter.

As shown in Figure 27 the SYNC input must be source synchronous with the external frequency reference. The SYNC input from the host system provides a common reference point in time to synchronise all the devices with the accuracy necessary to achieve high resolution location estimation.

Figure 27: SYNC signal timing relative to XTAL1

Table 21: SYNC signal timing relative to XTAL

Parameter	Min	Тур	Max	Unit	Description
t _{sync_su}	10			ns	SYNC signal setup time before XTAL1 rising edge
t _{SYNC_HD}	10			ns	SYNC signal hold time after XTAL1 rising edge

Further details on wired and wireless synchronization are available from DecaWave.

5.14 Calibration and Spectral Tuning of the DW1000

5.14.1 Introduction

Depending on the end use application and the system design, certain internal settings in the DW1000 may need to be tuned. To help with this tuning a number of built in functions such as continuous wave TX and continuous packet transmission can be enabled. See the DW1000 User Manual [2] for further details on the sections described below.

5.14.2 Crystal Oscillator Trim

Minimising the carrier frequency offset between different DW1000 devices improves receiver sensitivity. The DW1000 allows trimming to reduce crystal initial frequency error. The simplest way to measure this frequency error is to observe the output of the transmitter at an expected known frequency using a spectrum analyzer or frequency counter.

To adjust the frequency offset, the device is configured to transmit a CW signal at a particular channel frequency (e.g. 6.5 GHz). By accurately measuring the actual center frequency of the transmission the difference between it and the desired frequency can be determined. The trim value is then adjusted until the smallest frequency offset from the desired center frequency is obtained. Figure 28 gives the relationship between crystal trim code and crystal ppm offset.

If required, crystal trimming should be carried out on each DW1000 unit or module.

Figure 28: Typical Device Crystal Trim PPM Adjustment

The type of crystal used and the value of the loading capacitors will affect the crystal trim step size and the total trimming range. The total trim range and frequency step per trim code in ppm can be approximated using the following formula:

$$\label{eq:Total trim range in ppm} \begin{array}{ll} Trim_Range = 10^6 \left[\frac{c_M}{2*(C_0 + C_L + C_{TRIM})}\right] \left[\frac{c_{TRIM}}{c_L + c_{TRIM}}\right] \\ \\ Trim\ step\ size\ in\ ppm & Trim_Step = \frac{Trim_Range}{31} \end{array}$$

Where C_M and C_o are derived from the crystal model shown below, which is available from the crystal manufacturer. C_L is the external load capacitance including PCB parasitic and C_{TRIM} = 7.75 pF, which is the maximum internal trimming capacitance in DW1000.

5.14.3 Transmitter Calibration

In order to maximise range DW1000 transmit power spectral density (PSD) should be set to the maximum allowable for the geographic region. For most regions this is -41.3 dBm/MHz.

The DW1000 provides the facility to adjust the transmit power in coarse and fine steps; 3 dB and 0.5 dB nominally. It also provides the ability to adjust the spectral bandwidth. These adjustments can be used to maximise transmit power whilst meeting regulatory spectral mask.

If required, transmit calibration should be carried out on each DW1000 PCB / module.

5.14.4 Antenna Delay Calibration

In order to measure range accurately, precise calculation of timestamps is required. To do this the antenna delay must be known. The DW1000 allows this delay to be calibrated and provides the facility to compensate for delays introduced by PCB, external components, antenna and internal DW1000 delays.

To calibrate the antenna delay, range is measured at a known distance using 2 DW1000 systems. Antenna delay is adjusted until the known distance and report range agree. The antenna delay can be stored in OTP memory.

Antenna delay calibration must be carried out as a once off measurement for each DW1000 design implementation. If required, for greater accuracy, antenna delay calibration should be carried out on each DW1000 PCB / module.

6 OPERATIONAL STATES AND POWER MANAGEMENT

6.1 Overview

The DW1000 has a number of basic operating states as follows: -

Table 22: Operating States

Name	Description
OFF	The chip is powered down
INIT	This is the lowest power state that allows external micro-controller access. In this state the DW1000 host interface clock is running off the 38.4 MHz reference clock. In this mode the SPICLK frequency can be no greater than 3 MHz.
IDLE	In this state the internal clock generator is running and ready for use. The analog receiver and transmitter are powered down. Full speed SPI accesses may be used in this state.
DEEPSLEEP	This is the lowest power state apart from the OFF state. In this state SPI communication is not possible. This state requires an external pin to be driven (can be SPICSn held low or WAKEUP held high) for a minimum of 500 µs to indicate a wake up condition. Once the device has detected the wake up condition, the EXTON pin will be asserted and internal reference oscillator (38.4 MHz) is enabled.
SLEEP	In this state the DW1000 will wake up after a programmed sleep count. The low power oscillator is running and the internal sleep counter is active. The sleep counter allows for periods from approximately 300 ms to 450 hours before the DW1000 wakes up.
RX	The DW1000 is actively looking for preamble or receiving a packet
RX PREAMBLE SNIFF	In this state the DW1000 periodically enters the RX state, searches for preamble and if no preamble is found returns to the IDLE state. If preamble is detected it will stay in the RX state and demodulate the packet. Can be used to lower overall power consumption.
TX	The DW1000 is actively transmitting a packet

For more information on operating states please refer to the user manual [2].

6.2 Operating States and their effect on power consumption

The DW1000 can be configured to return to any one of the states, IDLE, INIT, SLEEP or DEEPSLEEP between active transmit and receive states. This choice has implications for overall system power consumption and timing, see table below.

Table 23: Operating States and their effect on power consumption

	DEVICE STATE							
	IDLE	INIT	SLEEP	DEEPSLEEP	OFF			
Entry to State	Host controller command or previous operation completion	Host controller command	Host controller command or previous operation completion	Host controller command or previous operation completion	External supplies are off			
Exit from State	Host controller command	Host controller Sleep counter command timeout		SPICSn held low Or WAKEUP held high for 500 µs	External 3.3 V supply on			
Next state	Various	IDLE	INIT	INIT	INIT			
Current Consumption	18 mA (No DC/DC) 12 mA (with DC/DC)	4 mA	1 μΑ	50 nA	0			
Configuration	Maintained	Maintained	Maintained	Maintained	Not maintained			
Time before RX State Ready	Immediate	5 μs	3 ms	3 ms	3 ms			
Time before TX State Ready	Immediate	5 μs	3 ms	3 ms	3 ms			

In the SLEEP, DEEPSLEEP and OFF states, it is necessary to wait for the main on-board crystal oscillator to power up and stabilize before the DW1000 can be used. This introduces a delay of up to 3 ms each time the DW1000 exits SLEEP, DEEPSLEEP and OFF states.

6.3 Transmit and Receive power profiles

Figure 29: Sleep options between operations

The tables below show typical configurations of the DW1000 and their associated power profiles.

Table 24: Operational Modes

Mode	Data Rate	PRF (MHz)	Preamble (Symbols)	Data Length (Bytes)	Packet Duration (μs)	Typical Use Case (Refer to DW1000 user manual for further information)
Mode 1	110 kbps	16	1024	12	2084	RTLS, TDOA Scheme, Long Range, Low Density
Mode 2	6.8 Mbps	16	128	12	152	RTLS, TDOA Scheme, Short Range, High Density
Mode 3	110 kbps	16	1024	30	3487	RTLS, 2-way ranging scheme, Long Range, Low Density
Mode 4	6.8 Mbps	16	128	30	173	RTLS, 2-way ranging scheme, Short Range, High Density
Mode 5	6.8 Mbps	16	1024	1023	1339	Data transfer, Short Range, Long Payload
Mode 6	6.8 Mbps	16	128	127	287	Data transfer, Short Range, Short Payload
Mode 7	110 kbps	16	1024	1023	78099	Data transfer, Long Range, Long Payload
Mode 8	110 kbps	16	1024	127	10730	Data transfer, Long Range, Short Payload
Mode 9	110 kbps	64	1024	12	2084	As Mode 1 using 64 MHz PRF
Mode 10	6.8 Mbps	64	128	12	152	As Mode 2 using 64 MHz PRF
Mode 11	110 kbps	64	1024	30	3487	As Mode 3 using 64 MHz PRF
Mode 12	6.8 Mbps	64	128	30	173	As Mode 4 using 64 MHz PRF
Mode 13	6.8 Mbps	64	1024	1023	1339	As Mode 5 using 64 MHz PRF
Mode 14	6.8 Mbps	64	128	127	287	As Mode 6 using 64 MHz PRF
Mode 15	110 kbps	64	1024	1023	78099	As Mode 7 using 64 MHz PRF
Mode 16	110 kbps	64	1024	127	10730	As Mode 8 using 64 MHz PRF
Note: Other	modes are po	ssible				

Table 25: Typical TX Current Consumption

	TX I _{AVG (mA)}							
Mode		Channel 2			Units			
Name	Avg	Preamble	Data	Avg	Preamble	Data		
Mode 1	48	68	35	56	74	42	mA	
Mode 2	68	68	50	69	74	57	mA	
Mode 3	44	68	35	50	74	42	mA	
Mode 4	60	68	51	67	74	58	mA	
Mode 5	50	68	51	56	74	58	mA	
Mode 6	56	68	51	62	74	58	mA	
Mode 7	35	68	35	42	74	42	mA	
Mode 8	38	68	35	44	74	42	mA	
Mode 9	61	83	40	67	89	46	mA	
Mode 10	79	83	52	85	89	59	mA	
Mode 11	52	83	40	59	89	46	mA	
Mode 12	75	83	52	82	89	59	mA	
Mode 13	53	83	52	60	89	59	mA	
Mode 14	65	83	52	72	89	59	mA	
Mode 15	40	83	40	46	89	46	mA	
Mode 16	43	83	40	50	89	46	mA	

Table 26: Typical RX Current Consumption

	RX I _{AVG (mA)}							
Mode		Channel 2			Units			
Name	Avg	Preamble	Data Demod	Avg	Preamble	Data Demod	Omis	
Mode 1	86	113	59	92	118	62	mA	
Mode 2	115	113	118	122	118	123	mA	
Mode 3	76	113	59	81	118	62	mA	
Mode 4	115	113	115	123	118	123	mA	
Mode 5	118	113	118	126	118	126	mA	
Mode 6	113	113	113	125	118	126	mA	
Mode 7	57	113	59	65	118	62	mA	
Mode 8	62	113	59	70	118	62	mA	
Mode 9	90	113	72	94	118	75	mA	
Mode 10	112	113	118	117	118	123	mA	
Mode 11	82	113	72	85	118	75	mA	
Mode 12	112	113	118	118	118	123	mA	
Mode 13	114	113	118	120	118	123	mA	
Mode 14	113	113	118	119	118	123	mA	
Mode 15	72	113	72	76	118	75	mA	
Mode 16	76	113	72	80	118	75	mA	

 T_{amb} = 25 °C, All supplies centered on typical values. All currents referenced to 3.3 V(VDDLDOA, VDDLDOD supplies fed via a 1.6V 90% efficient DC/DC converter)

From Table 24, Table 25 and Table 26 above it is clear that there is a trade-off between communications range and power consumption. Lower data rates allow longer range communication but consume more power. Higher data rates consume less power but have a reduced communications range.

For a given payload length, the following table shows two configurations of the DW1000. The first achieves minimum power consumption (not including DEEPSLEEP, SLEEP, INIT & IDLE) and the second achieves longest communication range.

Table 27: Lowest power and longest range modes of operation

Mode	Data Rate	Channel	PRF (MHz)	Preamble (Symbols)	Data Length (Bytes)	Rx PAC (Symbols)	Notes (Refer to DW1000 user manual for further information)
Lowest Power 2 options	6.8 Mbps with gating gain		16	64	As short	8	Using "tight" gearing tables and a TCXO as the source of the 38.4 MHz clock at each node
based on hardware configuration	6.8 Mbps with gating gain	1	16	128	as possible		Using "standard" gearing tables and an XTAL as the source of the 38.4 MHz clock at each node
Longest Range	110 Kbps		16	2048	All supported lengths	32	3.5 GHz centre frequency gives best propagation

The graph below shows typical range and average transmitter current consumption per frame with the transmitter running at -41.3 dBm/MHz output power and using 0 dBi gain antennas for channel 2.

Figure 30: Typical Range versus TX average current (channel 2)

 T_{amb} = 25 °C, All supplies centered on typical values. All currents referenced to 3.3 V(VDDLDOA, VDDLDOD supplies fed via a 1.6V 90% efficient DC/DC converter)

6.3.1 Typical transmit profile

Figure 31: Typical TX Power Profile

6.3.2 Typical receive profiles

Figure 32: Typical RX Power Profile

Figure 33: Typical RX Power Profile using SNIFF mode

7 POWER SUPPLY

7.1 Power Supply Connections

There are a number of different power supply connections to the DW1000.

The chip operates from a nominal 3.3 V supply. Some circuits in the chip are directly connected to the external 3.3 V supply. Other circuits are fed from a number of on-chip low-dropout regulators. The outputs of these LDO regulators are brought out to pins of the chip for decoupling purposes. Refer to Figure 34 for further details.

The majority of the supplies are used in the analog & RF section of the chip where it is important to maintain supply isolation between individual circuits to achieve the required performance.

Figure 34: Power Supply Connections

7.2 Use of External DC / DC Converter

The DW1000 supports the use of external switching regulators to reduce overall power consumption from the power source. Using switching regulators can reduce system power consumption. The EXTON pin can be used to further reduce power by disabling the external regulator when the DW1000 is in the SLEEP or DEEPSLEEP states (provided the EXTON turn on time is sufficient).

Figure 35: Switching Regulator Connection

8 APPLICATION INFORMATION

8.1 Application Circuit Diagram

Figure 36: DW1000 Application Circuit

8.2 Recommended Components

Function	Manufacturer	Part No	Ref	Web Link
Antenna	Taiyo Yuden	AH086M555003		www.yuden.co.jp
Antenna	Partron	ACS5200HFAUWB		www.partron.co.kr
SMT UWB Balun 3-8 GHz	TDK Corporation	HHM1595A1	T1	http://www.tdk.co.jp/
Capacitors	Murata	GRM155 series		www.murata.com
(Non polarized)	KEMET	C0805C476M9PACTU	47 µF	capacitoredge.kemet.com
Crystal	Rakon	HDD10RSX-10 509344		www.rakon.com
(38.4 MHz +/-10ppm)	Geyer	KX-5T (need to request tight tolerance option)	X1	www.geyer-electronic.de
DC/DC	Murata	LXDC2HL_18A	U2	www.murata.com
Resistors	ROHM	MCR01MZPF		www.rohm.com

Function	Manufacturer	Part No	Ref	Web Link
TCXO (optional use in	Rakon	IT2200K 3.3V 38.4MHz	X2	www.rakon.com
Anchor nodes. 38.4MHz)	Geyer	KXO-84	\Z	www.geyer-electronic.de

8.3 Application Circuit Layout

8.3.1 PCB Stack

To achieve optimum performance a 4-layer PCB with the following layer-stack, copper deposition and thicknesses is recommended.

Figure 37: PCB Layer Stack for 4-layer board

8.3.2 RF Traces

As with all high frequency designs, particular care should be taken with the routing and matching of the RF sections of the PCB layout. All RF traces should be kept as short as possible and where possible impedance discontinuities should be avoided. Where possible RF traces should cover component land patterns.

Poor RF matching of signals to/from the antenna will degrade system performance. A 100 Ω differential impedance should be presented to the RF_P and RF_N pins of DW1000 for optimal performance. This can be realised as either 100 Ω differential RF traces or as 2 single-ended 50 Ω traces depending on the PCB layout. In most cases a single-ended antenna will be used and a wideband balun will be required to convert from 100 Ω differential to 50 Ω single-ended.

Figure 38 gives an example of a suggested RF section layout. In this example traces to the 12 pF series capacitors from the RF_P and RF_N pins are realised as 100 Ω differential RF traces referenced to inner layer 1. After the 12 pF capacitors the traces are realized as 50 Ω micro-strip traces again referenced to inner layer 1. Using this method, thin traces can be used to connect to DW1000 and then wider traces can be used to connect to the antenna.

Figure 38: DW1000 RF Traces Layout

8.3.3 PLL Loop Filter Layout

The components associated with the loop filters of the on-chip PLLs should be placed as close as possible to the chip connection pins to minimize noise pick-up on these lines.

8.3.4 Decoupling Layout

All decoupling capacitors should be kept as close to their respective pins of the chip as possible to minimize trace inductance and maximize their effectiveness.

8.3.5 Layout Guidance

An application note is available from DecaWave together with a set of DXF files to assist customers in reproducing the optimum layout for the DW1000. Contact DecaWave for more information.

9 Packaging & Ordering Information

9.1 Package Dimensions

Figure 39: Device Package mechanical specifications

9.2 Device Package Marking

The diagram below shows the package markings for DW1000.

Figure 40: Device Package Markings

Legend:	
ECXXXXXX	10 digit product number
LLLLLLL	8 digit lot ID
MMM	3 digit mask ID
SS	Assembly location
YY	2 digit year number
WW	2 digit week number

9.3 Tray Information

The general orientation of the 48QFN package in the tray is as shown in Figure 41.

Figure 41: Tray Orientation

The white dot marking in the chips top left hand corner aligns with the chamfered edge of the tray.

9.4 Tape & Reel Information

9.4.1 Tape Orientation and Dimensions

The general orientation of the 48QFN package in the tape is as shown in Figure 42.

User Direction of Feed

Figure 42: Tape & Reel orientation

- NOTES:
 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
 2. CAMBER IN COPPLIANCE WITH ETA 481
 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

Figure 43: Tape dimensions

9.4.2 Reel Information: 330 mm Reel

High Impact Polystyrene with Integrated Antistatic Additive Base material: Surface resistivity: Antistatic with surface resistivity less than 1 x 10e¹² Ohms per square

Figure 44: 330 mm reel dimensions

All dimensions and tolerances are fully compliant with EIA- 481-C and are specified in millimetres.

Reel Information: 180 mm reel 9.4.3

Base material:

High impact polystyrene with integrated antistatic additive. Antistatic with surface resistivity less than 1 x $10e^{12}$ Ohms per square. Surface resistivity:

Figure 45: 180 mm reel dimensions

All dimensions and tolerances are fully compliant with EIA- 481-C and are specified in millimetres.

9.5 Ordering Information

The standard qualification for the DW1000 is industrial temperature range: -40 °C to +85 °C, packaged in a 48pin QFN package.

Table 28: Device ordering information

Ordering Codes:

High Volume

Ordering code	Status	Package Type	Package Qty	Note
DW1000-I	Active	Tray	490	Available
DW1000-ITR7	Active	Tape & Reel	1000	Available
DW1000-ITR13	Active	Tape & Reel	4000	Available

Samples

Ordering Code	Status	Package Type	Package Qty	Note
DW1000-I	Active	Tray	10-490	Available
DW1000-ITR7	Active	Tape & Reel	100 - 1000	Available
DW1000-ITR13	Active	Tape & Reel	100 - 4000	Available

All IC's are packaged in a 48-pin QFN package which is Pb free, RoHS, Green, NiPd lead finish, MSL level 3 IC Operation Temperature -40 °C to +85 °C.

10 GLOSSARY

Table 29: Glossary of Terms

Abbreviation	Full Title	Explanation
EIRP	Equivalent Isotropically Radiated Power	The amount of power that a theoretical isotropic antenna (which evenly distributes power in all directions) would emit to produce the peak power density observed in the direction of maximum gain of the antenna being used.
ETSI	European Telecommunication Standards Institute	Regulatory body in the EU charged with the management of the radio spectrum and the setting of regulations for devices that use it
FCC	Federal Communications Commission	Regulatory body in the USA charged with the management of the radio spectrum and the setting of regulations for devices that use it.
FFD	Full Function Device	Defined in the context of the IEEE802.15.4-2011 [1] standard.
GPIO	General Purpose Input / Output	Pin of an IC that can be configured as an input or output under software control and has no specifically identified function.
IEEE	Institute of Electrical and Electronic Engineers	Is the world's largest technical professional society. It is designed to serve professionals involved in all aspects of the electrical, electronic and computing fields and related areas of science and technology.
LIFS	Long Inter-Frame Spacing	Defined in the context of the IEEE802.15.4-2011 [1] standard.
LNA	Low Noise Amplifier	Circuit normally found at the front-end of a radio receiver designed to amplify very low level signals while keeping any added noise to as low a level as possible
LOS	Line of Sight	Physical radio channel configuration in which there is a direct line of sight between the transmitter and the receiver.
Open Drain	Open Drain	A technique allowing a signal to be driven by more than one device. Generally, each device is permitted to pull the signal to ground but when not doing so it must allow the signal to float. Devices should not drive the signal high so as to prevent contention with devices attempting to pull it low.
NLOS	Non Line of Sight	Physical radio channel configuration in which there is no direct line of sight between the transmitter and the receiver.
PGA	Programmable Gain Amplifier	Amplifier whose gain can be set / changed via a control mechanism usually by changing register values.
PLL	Phase Locked Loop	Circuit designed to generate a signal at a particular frequency whose phase is related to an incoming "reference" signal.
PPM	Parts Per Million	Used to quantify very small relative proportions. Just as 1% is one out of a hundred, 1 ppm is one part in a million.
RF	Radio Frequency	Generally used to refer to signals in the range of 3 kHz to 300 GHz. In the context of a radio receiver, the term is generally used to refer to circuits in a receiver before down-conversion takes place and in a transmitter after up-conversion takes place.
RFD	Reduced Function Device	Defined in the context of the IEEE802.15.4-2011 [1] standard.
RTLS	Real Time Location System	System intended to provide information on the location of various items in real-time.
SFD	Start of Frame Delimiter	Defined in the context of the IEEE802.15.4-2011 [1] standard.
SIFS	Short Inter-Frame Spacing	Defined in the context of the IEEE802.15.4-2011 [1] standard.
SPI	Serial Peripheral Interface	An industry standard method for interfacing between IC's using a synchronous serial scheme first introduced by Motorola.
тсхо	Temperature Controlled Crystal Oscillator	A crystal oscillator whose output frequency is very accurately maintained at its specified value over its specified temperature range of operation.
TWR	Two Way Ranging	Method of measuring the physical distance between two radio units by exchanging messages between the units and noting the times of transmission and reception. Refer to DecaWave's website for further information.
TDOA	Time Difference of Arrival	Method of deriving information on the location of a transmitter. The time of arrival of a transmission at two physically different locations whose clocks are synchronized is noted and the difference in the arrival times provides information on the location of the transmitter. A number of such TDOA measurements at different locations can be used to uniquely determine the position of the transmitter. Refer to DecaWave's website for further information.
UWB	Ultra Wideband	A radio scheme employing channel bandwidths of, or in excess of, 500 MHz.

Abbreviation	Full Title	Explanation
WSN	Wireless Sensor Network	A network of wireless nodes intended to enable the monitoring and control of the physical environment.

11 REFERENCES

- [1] IEEE802.15.4-2011 or "IEEE Std 802.15.4™-2011" (Revision of IEEE Std 802.15.4-2006). IEEE Standard for Local and metropolitan area networks Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer Society Sponsored by the LAN/MAN Standards Committee. Available from http://standards.ieee.org/
- [2] DecaWave DW1000 User Manual www.decawave.com
- [3] www.etsi.org
- [4] www.fcc.gov
- [5] EIA-481-C Standard

12 DOCUMENT HISTORY

Revision	Date	Description
2.00	7 th November 2012	Initial release for production device.
2.01	31 st March, 2014	Scheduled update
2.02	8 th July 2014	Scheduled update
2.03	30 th September 2014	Scheduled update

Table 30: Document History

13 MAJOR CHANGES

Revision 2.03

Page	Change Description		
All	Update of version number to 2.03		
All	Various typographical changes		
1	Addition of footnote		
16	Addition of footnote		
21	Addition of text relating to use of RSTn as indicator to external µcontroller		
35	Change to application schematic to modify value of TCXO coupling capacitor		
36	Correction of Rakon TCXO part number		
44	Addition of v2.03 to revision history table Addition of this table and section heading Modification of heading format on this page only		

14 ABOUT DECAWAVE

DecaWave is a pioneering fabless semiconductor company whose flagship product, the DW1000, is a complete, single chip CMOS Ultra-Wideband IC based on the IEEE 802.15.4-2011 [1] UWB standard. This device is the first in a family of parts that will operate at data rates of 110 kbps, 850 kbps, 6.8 Mbps.

The resulting silicon has a wide range of standards-based applications for both Real Time Location Systems (RTLS) and Ultra Low Power Wireless Transceivers in areas as diverse as manufacturing, healthcare, lighting, security, transport, inventory & supply chain management.

Further Information

For further information on this or any other DecaWave product contact a sales representative as follows: -

DecaWave Ltd Adelaide Chambers Peter Street Dublin 8 Ireland

e: sales@decawave.com w: www.decawave.com