Lecture 24: Linear Regression Part I

Chapter 7.1-7.2

Questions for Today

Say we have the height/weight of 50 individuals and we display the scatterplot/bivariate plot of the seemingly linear relationship:

Questions for Today

Say we have the height/weight of 50 individuals and we display the scatterplot/bivariate plot of the seemingly linear relationship:

Questions:

- ▶ What is the "best" fitting line through these points?
- ▶ What do we mean by "best"?

Regression

There are many types of regression, all in order to estimate the relationship between variables.

Example of Non-Linear Relationship

At first as you plant more corn plants, you have higher yield, but past a certain point plants fight for limited resources and they die.

Example of Non-Linear Relationship

At first as you plant more corn plants, you have higher yield, but past a certain point plants fight for limited resources and they die.

Modeling x and y Linearly

Procedure

Fitted Value

Here $\hat{y} = 100 + 0.99x$. Thus for x = 73, $\hat{y} = 173.22$:

Residuals

Residual Plot

Residual plots: take previous plot and flatten the red line by subtracting \hat{y} from y.

Correlation Coefficient

The correlation coefficient R is a value between [-1,1] that measures the strength of the linear relationship between x and y.

Correlation Coefficient

The correlation coefficient R is a value between [-1,1] that measures the strength of the linear relationship between x and y.

What does "best fitting line" mean?

Consider ANY point x_i for i = 1, ..., 50 (in blue).

Now consider this point's deviation from the regression line

Do this for another point x_i ...

Do this for another point x_i ...

The regression line minimizes the sum of the squared arrow lengths.

Least Squares

Conditions for Simple Linear Regression

Behavior of Residuals: 3 Examples

Sample data + regression on top, residual plots on bottom.

Behavior of Residuals: 3 Examples

Sample data + regression on top, residual plots on bottom.

▶ Plots 1 and 3 are roughly linear.

Behavior of Residuals: 3 Examples

Sample data + regression on top, residual plots on bottom.

- ▶ Plots 1 and 3 are roughly linear.
- ▶ Plots 1 and 3 have roughly constant variability, but the 3rd plot has higher variability

Finding the Least Squares Line

Finding the Point Estimate of the Intercept b_0

Measuring the Strength of a Fit

If R = -1 or R = 1 we have a perfect linear fit between x and y, if R = 0 then there is no fit.

Measuring the Strength of a Fit

If R = -1 or R = 1 we have a perfect linear fit between x and y, if R = 0 then there is no fit.

However \mathbb{R}^2 is a more commonly used measure of the strength of fit. For SLR, it is correlation coefficient squared, but not for other kinds of regression.

Measuring the Strength of a Fit

If R = -1 or R = 1 we have a perfect linear fit between x and y, if R = 0 then there is no fit.

However R^2 is a more commonly used measure of the strength of fit. For SLR, it is correlation coefficient squared, but not for other kinds of regression.

 R^2 of a linear model describes the proportion of the total variation in y that is explained by the least squares line.

Next Time

- ▶ How to interpret regression line parameter estimates
- ► Categorical Variable for x: male vs female, new vs used, etc.
- Inference for linear regression