Data-efficient Deep Learning for Earth Observation

Deep Learning Recap

Michael Mommert

Earth observation data are highly complex (unstructured, multi-modal).

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Deep Learning offers the **scalability** to analyze large amounts of data.

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Deep Learning offers the **scalability** to analyze large amounts of data.

Deep Learning also offers the **flexibility** to deal with a range of different tasks.

Classification

Segmentation

Regression

Object Detection

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Deep Learning offers the **scalability** to analyze large amounts of data.

Deep Learning also offers the **flexibility** to deal with a range of different tasks.

How does it work?

Classification

Segmentation

Regression

Object Detection

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, f, that maps input data, x, to the output, y.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, f, that maps input data, x, to the output, y.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

How does the model learn?

• Sample batch (input data x and target data y) from training dataset:

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate
 - Repeat for all batches

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate
 - Repeat for all batches
- Repeat for a number of epochs, monitor training and validation loss + metrics

1 epoch

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate
 - Repeat for all batches
- Repeat for a number of epochs, monitor training and validation loss + metrics
- Stop before overfitting sets in

1 epoch

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, f, that maps input data, x, to the output, y.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

The availability of annotations typically represents the most important **bottleneck** in supervised learning.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weight that represent the learned knowledge.

The availability of annotations typically represents the most important **bottleneck** in supervised learning.

Can we force the model to use the available annotations more **efficiently**?

Can we take advantage of the vast amounts of **unannotated data**?

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weight that represent the learned knowledge.

output laye

• Data augmentations

• Data augmentations

- Data augmentations
- Data Fusion

- Data augmentations
- Data Fusion

- Data augmentations
- Data Fusion
- Multi-task Learning

- Data augmentations
- Data Fusion
- Multi-task Learning

Joëlle will talk about this in the next session

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

Can we pretrain a model from unannotated data?

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

Can we pretrain a model from unannotated data?

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

other dataset

Can we pretrain a model from unannotated data?

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

Can we pretrain a model from unannotated data?

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

Can we pretrain a model from unannotated data?

other dataset

Any Task

We initialize our model with the **pre-trained** model weights; training starts not from scratch!

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

Can we pretrain a model from unannotated data?

other dataset

We initialize our model with the **pre-trained** model weights; training starts not from scratch!

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

→ Task

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

→ Task

other dataset

In SSL, we pretrain our model in a **self-supervised way** (no labels required) and then apply transfer learning to learn our actual task more efficiently.

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

→ Task

other dataset

In SSL, we pretrain our model in a **self-supervised way** (no labels required) and then apply transfer learning to learn our actual task more efficiently.

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

other dataset

Damian and Linus will talk about this later

In SSL, we pretrain our model in a **self-supervised way** (no labels required) and then apply transfer learning to learn our actual task more efficiently.

Data-efficient Deep Learning for Earth Observation

Data Fusion

Michael Mommert

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

LU/LC (e.g., Corine, Esa WorldCover)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

LU/LC (e.g., Corine, Esa WorldCover)

Meta Data (e.g., weather data, observation circumstances)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

Elevation data (Copernicus DEM GLO-30)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities. For more details, check out https://github.com/HSG-AIML/ben-ge

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities. For more details, check out https://github.com/HSG-AIML/ben-ge

We will use a subset of ben-ge, ben-ge-800, in this tutorial.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities: Come and see our ben-ge presentation: WE2.R10.31 presentation: WE2.Rm 101

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities. For more details, check out https://github.com/HSG-AIML/ben-ge

We will use a subset of ben-ge, ben-ge-800, in this tutorial.

What data modalities are available in ben-ge?

What data modalities are available in ben-ge?

Sentinel-2 Multispectral

12 bands Level-2A

What data modalities are available in ben-ge?

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

What data modalities are available in ben-ge?

BigEarthNet-MM

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ben-ge: a truly multimodel dataset for EO

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ESA WorldCover LU/LC

8/11 classes

ben-ge: a truly multimodel dataset for EO

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ESA WorldCover LU/LC

8/11 classes

Meta Data

ERA-5 weather Climate zones Seasonality

ben-ge: a truly multimodel dataset for EO

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ESA WorldCover LU/LC

8/11 classes

Meta Data

ERA-5 weather Climate zones Seasonality

10m resolution

Data Fusion for Deep Learning

How can we leverage Data Fusion in Deep Learning?

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Data 1

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Data 1

Data 2

Different data modalities

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

data modalities

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Concatenation: stack data (all of the same shape) along the channel axis

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Sentinel-2

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

But: how to combine Sentinel-2 data (12 channels x 120 px x 120 px) with patch-global seasonality (scalar value in the range [0, 1]) data?

Blow-up patch: same height and width as Sentinel-2; each "pixel" equals the global value (0.65)

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

Backbones might be completely separate, or have shared weights.

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

Backbones might be completely separate, or have shared weights.

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

Backbones might be completely separate, or have shared weights.

Let's get our hands dirty

We will now implement a few Data Fusion methods in our first Notebook.

Specifically, we will implement the following:

- Supervised baseline model (Sentinel-2)
- Early Fusion (Sentinel1 and Sentinel-2)
- Early Fusion with blow-up patches (Sentinel-1, Sentinel-2 and Season)
- Late Fusion (Sentinel-1 and Sentinel-2)