

PROFESIONALES CLÍNICOS

Líquidos y Electrolitos en Terapia Nutricional Enteral

Objetivos

- Describir la distribución de los líquidos en la composición corporal y su contenido electrolítico.
- Detallar los componentes del balance hídrico y la importancia que representa para el paciente hospitalizado.
- Determinar la composición y volumen de las secreciones gastrointestinales.
- Conocer las principales funciones del sodio y el potasio y los trastornos electrolíticos más frecuentes.

¿Preguntémonos si?

- ¿En la práctica clínica calculamos requerimiento de líquidos y electrolitos?
- ¿Qué guía o pautas, si las hay, utiliza para la hidratación?
- ¿Cuál es la recomendación actual para la ingesta de líquidos y electrolitos por día?
- ¿Cómo identificaría si un paciente en alimentación enteral está deshidratado?
- ¿Qué método utiliza para administrar líquidos a un paciente que depende únicamente de la alimentación enteral?

Agua

- Componente esencial del organismo
- Hace posible todas las funciones del organismo
- Solvente Universal para los iones, electrolitos, oxígeno, CO2
- Compuesto estable, inerte, excelente transportador, estabilizador temperatura corporal

Cambios en el volumen de agua corporal total según la edad (ACT)

J.F. Patiño, Metabolismo y nutrición y Shock en el paciente quirúrgico. Tercera edición

Distribución del agua corporal total

Ejercicio

- Paciente hombre de 75 años, peso 85 kg
- 1. Calcule ACT
- 2. Calcule el agua en el espacio intracelular, extracelular
- LCT = 85 * 0,5 = 42.5

• Agua extracelular =
$$42.5 * 23\% = 9.7 L$$
 Agua intravascular = $42.5 * 5\% = 2 L$ Líquido intersticial = $42.5 * 15\% = 6.3 L$ Líquido transcelular = $42.5 * 3\% = 1.27 L$

Composición iónica de los líquidos corporales

		L	LIC	
		PLASMA	Liq Intersticial	
- 10	Na ⁺	142 meq/l	139 meq/L	14 meq/l
NE	K ⁺	4.2 meq/l	4.0 meq/l	140 meq/l
CATIONES	Mg ⁺	0.8 meq/l	0.7 meq/L	20 meq/l
Ŭ	Ca ⁺	1.3 meq/l	1.2 meq/l	0 meq/l
102	Cl-	108 meq/l	108 meq/L	4 meq/l
NES	HCO ₃ -	24 meq/l	28.3 meq/l	10 meq/l
ANIONES	Fosfatos	4	4	75
4	Aminoácidos	30 mg/dl	30 mg/dl	200 mg/dl
	Glucosa	90 mg/dl	90 mg/dl	0 a 20 mg/dl

Balance fisiológico diario de agua (Absorción y eliminación)

Balance hídrico = 0

Balance hídrico: ingreso

Balance hídrico: ingreso

Balance hídrico: egresos

Líquidos que egresan del paciente como:

Balance líquido en la enfermedad y la injuria

S Evolución	Enfermería Signos Vitales 🔝 Balance Hídrico	Parámetros Ventilator
Fecha	Ingresos / Egresos	TOTAL
21.05.2019	INGRESO - NUTRICION PARENTERAL	1.686,40
21.05.2019	INGRESO - FENTANILO	230,00
21.05.2019	INGRESO - DIPIRONA	252,00
21.05.2019	INGRESO - MANTENIMIENTO	105,00
21.05.2019	INGRESO - MCM IV	400,00
21.05.2019	INGRESO - REP POTASIO	580,00
21.05.2019	INGRESO - SSN 0,9%	500,00
21.05.2019	INGRESO - ANFOTERICINA	583,10
21.05.2019	INGRESO - NUTRICION ENTERAL	260,00
21.05.2019	INGRESO - IRRIGACION SNG	150,00
21.05.2019	TOTAL Ingresos	4.746,50
21.05.2019		0,00
21.05.2019	EGRESO -	3.900,00
21.05.2019	EGRESO - ILEOSTOMIA	400,00
21.05.2019	EGRESO - SNG LIBRE DRENAJE	150,00
21.05.2019		0,00
21.05.2019	TOTAL Egresos	4.450,00
21.05.2019	BALANCE HIDRICO	296,50

Aporte de agua en nutrición enteral

Fórmulas con 1 Kcal/ml = 850 ml agua/l.

Aporte para lavado de sonda y administración

Observar rutinariamente estado de hidratación:

- Balance Ingresos / Egresos
- Piel
- Mucosas

Líquidos y Electrolitos en Terapia Nutricional Enteral

Mecanismos que regulan la ingesta y excreción de agua

Pérdida de agua aumenta la Osmolaridad plasmática

La ADH se secreta y ocasiona disminución en el volumen urinario Aumento de la concentración orgánica y estimula el centro de la SED

Exceso de agua
disminuye
Osmolaridad
plasmática, se
suspende
secreción de ADH

2

Fenómenos
Osmóticos y No
osmóticos

Osmóticos Osmoreceptores para la sed

están en el Hipotálamo

No osmóticos Sistema Renina-Angiotensinjaaldosterona

1,

Sensación de sed Hormona antidiurética (ADH)

Clasificación de la deshidratación en el adulto

GRADOS	CARACTERISTICAS	DÉFICIT DE ACT	COMPARTIMIENTO COMPROMETIDO	TRATAMIENTO	
I	Sed	3 – 5%	Ninguno	Vía oral	
II	Aumento de frecuencia cardíaca, aumento de la frecuencia respiratoria, disminución de la presión de pulso ^y , aumento de , mucosas secas, enoftalmos y pcentrar liegue cutáneo.	6 – 8%	Líquido intersticial	Cristaloides	
III	Ortostatismo [,] Oliguria, ansiedad	9 – 10%	Líquido intravascular	Cristaloides	
IV (Choque)	Disminución de TAS y signos de hipoperfusión	> 10%	Líquido intracelular	Cristaloides y considerar el uso de coloides	

Líquidos y Electrolitos en Terapia Nutricional Enteral

Ecuaciones documentadas y fuentes para la estimación de los requerimientos de agua

Ecuaciones (con estimaciones de requerimientos de agua para una Mujer 66 kg	Declarado de origen
30 ml / kg (1980, ml)	Chidester y Spangler (adultos mayores)
30–35 ml / kg	Fuente no ofrecida
Joven adulto activo de 16–30 años: 35–40 ml Adulto 25-55 años: 30–35 ml / kg Adulto 56–65 años: 30 ml / kg Adultos > 65 años: 25 ml / kg	Zeman
35–45 ml / kg (2310–2970 ml)	Mahan y Escott-Stump realidad indican 35 ml / kg (adultos, edad no especificada)
100 ml / kg (primeros 10 kg) 50 ml / kg (próximos 10 kg) 20 ml / kg (hasta 40 kg) (1900, ml)	Fuente no ofrecida
1 ml / kcal	Chidester y Spangler (adultos mayores, 65–100 años)
Superficie corporal (ml / m ²)	Gasper refiere a 1500 ml / día

European Journal of Clinical Nutrition volumen 66, páginas 1282 - 1289 (2012)

Líquidos y Electrolitos en Terapia Nutricional Enteral

Requerimientos diarios de electrolitos en adultos

Electrolito	Enteral	Parenteral
Sodio, mmol	500 mg (22 mEq)	1 - 2 mEq/kg
Potasio, mmol	2 g (51 mEq)	1 - 2 mEq/kg
Cloro, mmol	750 mg (21 mEq)	
Calcio, mmol	1200 mg (60 mEq)	10 –15 mEq
Magnesio, mmol	420 mg (35 mEq)	8 – 20 mEq
Fósforo, mmol	700 mg (23 mmol)	20 – 40 mmol

Composición y volumen de las secreciones gastrointestinales

Tipo	Volumen (ml/día)	Na (meq/L)	K (meq/L)	CI (meq/L)	HCO₃ (meq/L)
Saliva	1 500	10	26	15	30
Gástrica	1 500	60-100	10	130	0
Intestino	3 000	140	5	104	30
Colon	200	60	30	40	-
Páncreas	800	140	5	75	115
Tracto biliar	Hasta 800	145	5	100	35

Tabla tomada de Schwartz S, Shires T, Spencer F. Atención hidroelectrolítica y nutricional del paciente quirúrgico. Principios de cirugía.

Composición de líquidos endovenosos

CRISTALOIDE	OSMOLARIDAD (mOsm Kg)	PH	Na +	K +	HCO3 -	CL -	Ca+
0.9 % SALINA	300	5	150			150	
HARTMAN	280	6.5	131	5	29	111	2
3 % SALINA	1025		513			513	
7.5 % SALINA	2400		1250			1250	
5 % DESTROXA	278	4					

¿Cómo se establecen las necesidades de fluidos y electrolitos?

- Historia clínica del paciente:
- Ingesta, sed, pérdidas anormales de fluidos, comorbilidades
- Examen clínico:
- Presión sanguínea (< 100mm), recarga capilar (>2 segundos), hipotensión postural, latido cardíaco (pulso>90'), frecuencia respiratoria (>20 respiraciones por minuto), edema (periférico/pulmonar)
- Monitorización clínica:
- Balance de fluidos
- Peso corporal.
- Parámetros bioquímicos:
- Urea, creatinina, electrolitos
- Hematocrito

Ejemplo: Hombre de 20 años de 70 Kg de peso, quien se encuentra en pos-operatorio de Laparotomía mediana con abdomen abierto por peritonitis generalizada secundaria a apendicitis aguda perforada. Actualmente con picos febriles de 38,5 ° C . Con ausencia de ruidos intestinales y drenaje por sonda nasogástrica de 1000 cc en las últimas 24 horas.

Calculo de líquidos básales: 50 ml x 70 Kg = 3500 ml.

Pérdidas medibles: Drenaje por SNG = 1000 ml.

Estimación de pérdidas:

No medibles: Fiebre persistente (20%) = 700 ml.

Abdomen abierto (10%) = 350 ml.

Total de basales: 5550 ml / día.

Requerimientos de Potasio: Basales = 1 mEq x 70 Kg = 70 mEq.

Pérdidas = 1 litro SNG = 10 mEq.

Total de potasio: 80 mEq / día.

Orden médica: SSN al 0.9% + dextrosa al 5 o 10% + cloruro de potasio .

Sodio

- Principal catión extracelular:
 - Ingesta diaria 3-5 g/d (50-90 mEq)
 - Requerimientos diarios 2 mEq/Kg/d
 - Excreción renal

VN: 135 a 145 mEq/l Equivalencias del sodio 1 mmol = 1 mEq = 23 mg

- Responsable de funciones vitales:
 - Mantener la presión osmótica en el líquido extracelular
 - Factor importante en la capacidad del riñón para retener agua

American Journal of Therapeutics 0, 1-6 (2017) Intravenous Fluid Therapy in Hospitalized Patients

Líquidos y Electrolitos en Terapia Nutricional Enteral

Causas hiponatremia

Diuréticos tiazídicos

Hipotiroidismo

SIADH: cáncer (pulmonar, mediastinal), alteraciones SNC (masas, hemorragias, traumas)

Medicamentos

(nicotina, antidepresivos, anti psicóticos, anticonvulsivantes)

Alteraciones pulmonares (neumonía, ventilación mecánica)

Dieta baja en sodio Excesiva ingesta de agua

Hipernatremia > 145 mmol/l

> Síntomas:

 Depleción de volumen (taquicardia, hipotensión, letargia, agitación, mucosas secas)

> Causas:

- Diuréticos
- Administración iatrogénica
- Pérdida de agua sin Na: sudoración, diuresis, SNG

TRATAMIENTO

- ➤ Corregir el déficit de agua
- ➤ Metas:
 - Disminuir máximo 1 meq/h y 12 meq/d
- ➤ Complicación: edema cerebral

Potasio

- ➤ Principal catión intracelular
- ➤Ingesta 50-100 meq/d
- ➤ Requerimientos 0.75 meq/Kg/d
- >Excreción renal principalmente

VN: 3.5 – 5.0 mEq/l Equivalencia del potasio 1 mmol = 1 mEq = 39 mg

Catabolismo: Pierde K+ por destrucción de tejidos

Anabolismo: Se retiene K + por g de N₂ retenido

Potasio

Tratamiento

- Leve 3 3.5 meq/lt
 - Reposición oral o periférica
- Moderada 2.5 2.9meq/lt
 - Reposición por vía periférica
- Severa < 2.5 meq/lt
 - Reposición por vía central
 - Monitoreo EKG

Manejo agudo de los trastornos electrolíticos y del equilibrio ácidobase 2ª Edición M.A. de la Cal Ramírez

Hipocalemia

K < 3.5 mEq/lt

- Síntomas:
 - Arritmias cardíacas
 - Debilidad muscular
 - Íleo adinámico
- Causas:
 - Ingesta inadecuada: Dieta, LEV sin K, NPT
 - Excesiva excreción: Hiperaldosteronismo, drogas.
 - Pérdidas gastrointestinales y renales
 - Traslado intracelular

Síntomas

- Arritmias
- Bloqueo cardíaco Paro cardíaco
- Diarrea
- Vómito
- Dolor abdominal

Causas

- Aumento de ingesta/aporte
- Alteración en excreción: IECAS, AINEs, Falla renal
- Aumento en liberación: Acidosis, traumas severos

Tratamiento

- Resinas de intercambio iónico
- Glucosa + Insulina
- Bicarbonato
- Nebulizaciones con Salbutamol
- Gluconato de calcio
- Hemodiálisis

Cloro y magnesio

Hipocloremia < 90 mEq/lt

Pérdidas gástricas Dilución por líquidos hipotónicos Remplazo con cloruro de sodio

Hipercloremia > 110 mEq/lt

Exceso de administración de Cl Síntomas dependiendo de acidosis metabólica Regulación espontánea

Magnesio

Ingesta 20 mEq/d (300 mg/d) Requerimientos: 300-350 mg/d

Hipermagnesemia:

Disminuir ingesta Corregir déficit de volumen

Hipomagnesemia:

Sulfato de magnesio

Enfoque práctico para evaluar y monitoreo de la hidratación en el paciente de cuidados agudos

Nutrition issues in gastroenterology, series #186 Carol Rees Parrish, MS, RDN, Series Editor Part IV Enteral Feeding: Hydrating the Enterally-Fed Patient – It isn't Rocket Science.

Estrategias prácticas de hidratación en pacientes con alimentación enteral que están ESTABLES

Regla de oro: todos los pacientes con EN deben comenzar con un mínimo de 2 litros de agua por día. (Patologías)

Use elementos visuales y recipientes para demostrar el volumen que necesita cada día.

Aumente el volumen o la frecuencia de lavado del acceso enteral.

Aconseje a los pacientes que si tienen sed, la orina es oscura o si el volumen de orina es menor de lo normal, es posible que necesiten más agua.

Haga que los pacientes midan el volumen de agua establecido durante el día, así podrá determinar si tiene o no una adecuada hidratación.

Tener presente el aporte de agua según el producto nutricional que este recibiendo

Nutrition issues in gastroenterology, series #186 Carol Rees Parrish, MS, RDN, Series Editor Part IV Enteral Feeding: Hydrating the Enterally-Fed Patient – It isn't Rocket Science.

Conclusiones

- El agua es el principal elemento del cuerpo y desempeña varias funciones vitales. Como el organismo humano es incapaz de producir suficiente agua, debe proporcionársele cantidades adecuadas por medio de la dieta.
- Los trastornos en el equilibrio hidroelectrolítico son frecuentes en la práctica médica hospitalaria y ambulatoria, encontrándose presentes en cualquier tipo de pacientes, entorpeciendo la evolución clínica y a pesar de su reconocimiento por el equipo de salud, el inapropiado enfoque diagnóstico y terapéutico conllevan a incrementos sustanciales en la morbimortalidad generando aumentos en los costos directos e indirectos de salud.
- El juicio clínico a la hora de decidir cualquier terapia con líquidos así como en el momento de hacerle un seguimiento, es la base del éxito del manejo de líquidos en el paciente hospitalizado y cuidados crónicos.

"Hay mucha agua en el universo Sin vida, pero no hay vida sin agua ". Sylvia A. Earle