a compound having the formula:

(I)

$$Ar_{1}$$
 $X$ 
 $Ar_{3}$ 
 $Y$ 
 $CH_{2})_{n}$ 
 $R_{1}$ 
 $Ar_{2}$ 

32

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

n is 0, 1, 2, 3 or 4;

X is absent,  $(C_1-C_3)$  alkyl,  $(C_1-C_3)$  alkenyl, or  $(C_1-C_3)$  alkynyl;

Y is C, N, P, Si or Ge;

 $R_1$  is absent, -halo, -R, -OR, -SR, -NR<sub>2</sub>, -ONR<sub>2</sub>, -NO<sub>2</sub>, -CN, -C(O)R, -C(S)R, -C(O)OR, -C(S)OR, -C(O)SR, -C(S)SR, -C(O)NR<sub>2</sub>, -C(S)NR<sub>2</sub>, -C(O)NR(OR), -C(S)NR(OR), -C(O)NR(SR), C(S)NR(SR), -CH(CN)<sub>2</sub>, -CH[C(O)R]<sub>2</sub>, -CH[C(O)OR]<sub>2</sub>, -CH[C(S)OR]<sub>2</sub>, -CH[C(O)SR]<sub>2</sub>, -CH[C(S)SR]<sub>2</sub> or aryl;

Ar<sub>1</sub> is aryl, substituted aryl, heteroaryl other than imidazole, nitroimidazole and triazole, heteroarylium other than imidazolium, nitroimidazolium and triazolium, (C<sub>5</sub>-C<sub>8</sub>) cycloalkyl or (C<sub>5</sub>-C<sub>8</sub>) heterocycloalkyl;

Ar<sub>2</sub> is aryl or substituted aryl;

Ar<sub>3</sub> is aryl, substituted aryl, biaryl or heteroaryl other than imidazole, nitroimidazole and triazole; each R is independently selected from the group consisting of -H, (C<sub>1</sub>-C<sub>6</sub>) alkyl, substituted (C<sub>1</sub>-C<sub>6</sub>) alkyl, (C<sub>1</sub>-C<sub>6</sub>) alkenyl, substituted (C<sub>1</sub>-C<sub>6</sub>) alkynyl, substituted (C<sub>1</sub>-C<sub>6</sub>) alkynyl, and (C<sub>1</sub>-C<sub>6</sub>) alkoxy;

the aryl substituents are each independently selected from the group consisting of -halo, trihalomethyl, -R, -R', -OR', -SR', NR'<sub>2</sub>, -NO<sub>2</sub>, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR' and -C(S)SR';

the alkyl, alkenyl and alkynyl substituents are each independently selected from the group consisting of -halo, -R', -OR', -SR', NR'<sub>2</sub>, -NO<sub>2</sub>, -CN, -C(O)R', -C(O)OR', -C(O)O

each R' is independently selected from the group consisting of -H,  $(C_1-C_6)$  alkyl,  $(C_1-C_6)$  alkenyl and  $(C_1-C_6)$  alkynyl.

| TABLE A Exemplary Compounds |              |                                                             |
|-----------------------------|--------------|-------------------------------------------------------------|
| SI-CH₂CH₂CH₂CH₂OH           | C-CH₂CH₂CO₂H | 0<br>C-C-NH <sub>2</sub><br>CI                              |
| (73)                        | (74)         | (75)                                                        |
| Si S                        | Ge-OH        | O<br>C − CH <sub>2</sub> CH <sub>2</sub> -C-NH <sub>2</sub> |
| (76)                        | (77)         | (78)                                                        |
| O                           | C-CO₂H<br>CI | осн3                                                        |
| (79)                        | (80)         | (81)                                                        |