$egin{aligned} G &$ 平面上の 2 点 P , Q の距離を d(P,Q) と表すことにする.平面上に点 O を中心とする一辺の長さが 1000 の正三角形 $\triangle A_1A_2A_3$ がある. $\triangle A_1A_2A_3$ の内部に 3 点 B_1 , B_2 , B_3 を , $d(A_n,B_n)=1$ (n=1,2,3) となるようにとる.また ,

$$\overrightarrow{a_1} = \overrightarrow{A_1}\overrightarrow{A_2}$$
 , $\overrightarrow{a_2} = \overrightarrow{A_2}\overrightarrow{A_3}$, $\overrightarrow{a_3} = \overrightarrow{A_3}\overrightarrow{A_1}$

$$\overrightarrow{e_1} = \overrightarrow{A_1}\overrightarrow{B_1}$$
 , $\overrightarrow{e_2} = \overrightarrow{A_2}\overrightarrow{B_2}$, $\overrightarrow{e_3} = \overrightarrow{A_3}\overrightarrow{B_3}$

とおく.n=1,2,3 のそれぞれに対して,時刻 0 に A_n を出発し, $\overrightarrow{e_n}$ の向きに速さ 1 で 直進する点を考え,時刻 t におけるその位置を $P_n(t)$ と表すことにする.

- (1) ある時刻 t で $d(P_1(t),P_2(t)) \le 1$ が成立した.ベクトル $\overrightarrow{e_1} \overrightarrow{e_2}$ と,ベクトル $\overrightarrow{a_1}$ とのなす角度を θ とおく.このとき $|\sin\theta| \le \frac{1}{1000}$ となることを示せ.
- (2) 角度 θ_1 , θ_2 , θ_3 を $\theta_1 = \angle B_1 A_1 A_2$, $\theta_2 = \angle B_2 A_2 A_3$, $\theta_3 = \angle B_3 A_3 A_1$ によって 定義する. α を $0 < \alpha < \frac{\pi}{2}$ かつ $\sin \alpha = \frac{1}{1000}$ をみたす実数とする. (1) と同じ仮 定のもとで, $\theta_1 + \theta_2$ の値のとる範囲を α を用いて表せ.
- (3) 時刻 t_1 , t_2 , t_3 のそれぞれにおいて,次が成立した.

$$d(P_2(t_1), P_3(t_1)) \le 1$$
, $d(P_3(t_2), P_1(t_2)) \le 1$, $d(P_1(t_3), P_2(t_3)) \le 1$

このとき , 時刻
$$T=rac{1000}{\sqrt{3}}$$
 において同時に

$$d(P_1(T), O) \le 3$$
, $d(P_2(T), O) \le 3$, $d(P_3(T), O) \le 3$

が成立することを示せ.

