Learning from Data 4. Classification: Nearest Neighbor

© Prakash Ishwar Spring 2017

Classification

- Supervised (preditive) learning: given examples with labels, predict labels for all unseen examples
 - Classification:
 - label = category,
 - $y \in \mathcal{Y} = \{1, \dots, m\}, m = \text{number of classes}$
 - $\ell(\mathbf{x}, y, h) = 1(h(\mathbf{x}) \neq y)$, Risk = $P(Y \neq h(\mathbf{X})) = P(\text{Error})$

x = facial geometry featuresy = gender label

k-Nearest Neighbor (NN) Classifier

- Discriminative classifier: only p(y|x) estimated
- Non-parametric: no parametric model for $p(y|\mathbf{x})$
- Example of memory-based learning
- Need 2 ingredients to specify classifier:
 - 1. k: number of nearest neighbors, typically chosen to be not a multiple of m (the number of classes)
 - 2. $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$, a measure of "nearness" $d(\mathbf{x}, \mathbf{x}')$ between \mathbf{x} and \mathbf{x} "
 - typically, d is chosen to be a metric, i.e., it is positive, definite, i.e., = 0 if, and only if, $\mathbf{x} = \mathbf{x}'$, symmetric, i.e., $d(\mathbf{x}, \mathbf{x}') = d(\mathbf{x}', \mathbf{x})$, and satisfies the triangle inequality, i.e., $d(\mathbf{x}_1, \mathbf{x}_3) \le d(\mathbf{x}_1, \mathbf{x}_2) + d(\mathbf{x}_2, \mathbf{x}_3)$ for any three points

k-Nearest Neighbor Classifier

• Classifier description in words: $h_{k-NN}(\mathbf{x}) = \text{most}$ abundant label (majority vote) among the labels of the k nearest training examples of \mathbf{x} (breaking ties in some way)

k-Nearest Neighbor Classifier

- Formal description: Given labeled training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$ and a test point \mathbf{x}
- Let $\{(\mathbf{x}_{(1)},y_{(1)}),...,(\mathbf{x}_{(n)},y_{(n)})\}$ be a re-ordering of training data such that

$$d(\mathbf{x}, \mathbf{x}_{(1)}) \le d(\mathbf{x}, \mathbf{x}_{(2)}), ..., d(\mathbf{x}, \mathbf{x}_{(n)})$$

• Then,

$$h_{k-\mathrm{NN}}(\mathbf{x}) = \arg\max_{y=1,...,m}$$

$$\sum_{j=1}^{k} 1(y_{(j)} = y)$$
 number of k NNs of \mathbf{x} with label $=y$

k-Nearest Neighbor Classifier

Discriminative model based interpretation:

$$p_{k-\text{NN}}(y|\mathbf{x}) = \underbrace{\frac{1}{k} \sum_{j=1}^{k} 1(y_{(j)} = y)}_{\text{fraction of } k \text{ NNs of } \mathbf{x} \text{ with label } = y}$$

- This is a non-parametric estimate of $p(y|\mathbf{x})$, since the number of parameters = n grows with training data
- k-NN classifier = MPE/MAP rule with the above non-parametric estimate of $p(y|\mathbf{x})$.

Common distance functions

• ℓ_p distance:

$$\|\mathbf{x} - \mathbf{x}'\|_p \coloneqq \left(\sum_{i=1}^d |x_i - x_i'|^p\right)^{\frac{1}{p}}$$

- can prove that this is a norm-distance for all $p \ge 1$
- Euclidean or ℓ_2 distance: ℓ_p distance with p=2
- taxi-cab or city-block or Manhattan or ℓ_1 distance: ℓ_p distance with p=1
- max norm or ℓ_{∞} distance: limit of ℓ_p as $p \to \infty$. Can be shown to be equal to: $\max_{1 \le i \le d} |x_i x_i'|$
- Mahalanobis distance: $\sqrt[2]{(\mathbf{x}-\mathbf{x}')^T\Sigma^{-1}(\mathbf{x}-\mathbf{x}')}$ with Σ a positive definite square matrix

Common distance functions

Contours of constant p-norms (distance from origin) in 2 dimensions (d=2) for different p

• Voronoi region of a training point x_j = all points in feature space that are closer to x_j than to any other training point:

$$\mathcal{V}(\mathbf{x}_j) := \{\mathbf{x} : d(\mathbf{x}, \mathbf{x}_j) \le d(\mathbf{x}, \mathbf{x}_{j'}), \forall j' \ne j\}$$

- ⇒The 1-NN classifier will assign all points in V(x_j)
 the same class label as that of x_j
- The Voronoi tessellation is a partition of the feature space into the Voronoi regions of the training points
- If the distance function is a norm induced by an inner product, e.g., $||x|| = \sqrt{\langle x, x \rangle}$, then the Voronoi regions are convex, i.e., for any two points in the region, the entire line segment joining them is also entirely in the region.

 Voronoi tessellation of the 2-dim plane induced by the 1-NN classifier based on Euclidean distance

Voronoi tessellation based on:

Euclidean distance versus Manhattan distance

(convex)

2-point Voronoi diagram for Manhattan distance

Remarks

- Asymptotic performance guarantees:
 - as $n \to \infty$, risk of 1-NN classifier (for 0-1 loss) ≤ $2R_{\text{Bayes}}$ for all "nice" data distributions and distance functions!
 - If as $n \to \infty$,
 - $k_n \to \infty$...(ensures more training examples in majority vote)
 - $\frac{k_n}{n} \to 0$... (ensures the k_n NNs get closer to any test point)

then, risk of k_n -NN classifier (for 0-1) loss $\rightarrow R_{\text{Bayes}}$ for all "nice" data distributions and distance functions!!

 In practice, the best value of k is determined via cross-validation

Remarks

- Useful observation: Euclidean distances can be computed via inner products: $\|\mathbf{x} \mathbf{x}'\|_2^2 = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}', \mathbf{x}' \rangle 2\langle \mathbf{x}, \mathbf{x}' \rangle$
- Let X = [x₁,...,x_n], diag(A) = column vector of the main diagonal elements of square matrix A, and 1 = column vector of all ones. Then the square Euclidean distance matrix (EDM) is given by:

$$EDM(X) = \mathbf{1} * diag(X^{T}X)^{T} - 2X^{T}X + diag(X^{T}X) * \mathbf{1}^{T}$$

$$EDM(X)(i,j) = \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2}$$

• Note: $rank(EDM(X)) \le d + 2$

Curse of dimensionality

- NN classifiers break down if d is large
- Suppose training points uniformly distributed in ddimensional unit sphere centered at origin
- To "capture" a fraction f of all training points, the distance r from the origin that one needs to travel is given by: $\frac{r^d}{1^d} = f \Rightarrow r = f^{\frac{1}{d}}$
- Say d = 10 (modest).
 - $f=0.1 \Rightarrow r=0.8$, i.e., to capture 10% of samples, need to traverse 80% of range! Samples that are so far from a point (non-local) are typically not good predictors of behavior at that point
 - f = 0.01 ⇒ r = 0.63, i.e., to capture only 1% of samples, still need to traverse 63% of range!
 - Seen another way, to keep decision making local, if we fix $r = 0.1 \Rightarrow$ number of points used for classification = $nr^d = n10^{-10} \Rightarrow$ will need a HUMONGOUS amount of training data to make a reliable decision

Curse of dimensionality

- Turns out that in high dimensions, most points are far from each other!
- Also turns out that in high dimensions, most points are almost orthogonal to each other!! ...Weird things happen in high dimensions