Calculus III Lecture 15

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Parallelotopes

Variable Changes in Multivariable Integrals

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

- Let **o** be a marked point. If omitted, we assume **o** is the origin.
- Let $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_k = (v_{k1}, \dots, v_{kn})$ be k vectors in n-dimensional space, $k \le n$.
- Let \mathcal{R} be region spanned by the vectors at \mathbf{o} , coefficients in [0,1].
- $\mathcal{R} = \{ \mathbf{0} + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_k \mathbf{v}_k | t_1 \in [0, 1], \dots, t_k \in [0, 1] \}.$

Definition (parallelotope at o)

We call a region \mathcal{R} of the above form a k-dimensional parallelotope at the point \mathbf{o} in n-dimensional space.

 When k, n, o are clear from context we can omit them.

we can only them.			
k	n	parallelotope name	
1	any	segment (in <i>n</i> -dim space)	
2	2	parallelogram	
2	3	parallelogram in space	
3	3	parallelepiped	

- Let $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_n = (v_{n1}, \dots, v_{nn})$ be n-vectors in n-dimensional space.
- Let \mathcal{R}_k be parallelotope spanned by $\mathbf{v}_1, \dots, \mathbf{v}_k$.
- \mathcal{R}_k can be regarded as "prism" with base \mathcal{R}_{k-1} .
- Let h_k be the height from \mathbf{v}_k to the base \mathcal{R}_{k-1} .

Definition (*k*-volume of a parallelotope)

Define $Vol_1(\mathcal{R}_1) = |\mathbf{v}_1|$. For k > 1, define $Vol_k(\mathcal{R}_k) = h_k Vol_{k-1}(\mathcal{R}_{k-1})$.

- Let the height vector \mathbf{h}_k be the vector of the form $\mathbf{h}_k = \mathbf{v}_k + a_1\mathbf{v}_1 + \dots a_{k-1}\mathbf{v}_{k-1}$ for which $\mathbf{h}_k \cdot \mathbf{v}_1 = 0, \dots, \mathbf{h}_k \cdot \mathbf{v}_{k-1} = 0$.
- Then h_k is computed as the length of \mathbf{h}_k .
- For the largest parallelotope \mathcal{R}_n , we already have definition of volume: the integral of 1 over \mathcal{R}_n .
- We will see that $Vol_n(\mathcal{R}_n)$ equals that integral.

Todor Milev 2020

Length, Surface Area, Volume as k-volumes

- Let $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_n = (v_{n1}, \dots, v_{nn})$ be *n*-vectors in *n*-dimensional space.
- Let \mathcal{R}_k be the parallelotope spanned by $\mathbf{v}_1, \dots, \mathbf{v}_k$.
- Let h_k be the height of \mathcal{R}_k with base \mathcal{R}_{k-1} .

Definition (*k*-volume of a parallelotope)

Define $Vol_1(\mathcal{R}_1) = |\mathbf{v}_1|$. For k > 1, define $Vol_k(\mathcal{R}_k) = h_k Vol_{k-1}(\mathcal{R}_{k-1})$.

spanned by
$$\operatorname{Vol}_k(\mathcal{R}_k)$$
 volume name \mathcal{R}_1 \mathbf{v}_1 $h_1 = |\mathbf{v}_1|$ length \mathcal{R}_2 $\mathbf{v}_1, \mathbf{v}_2$ $h_1 h_2$ (surface) area \mathcal{R}_2 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ $h_1 h_2 h_3$ volume \vdots \vdots \vdots \vdots \mathcal{R}_k $\mathbf{v}_1, \dots, \mathbf{v}_k$ $h_1 \dots h_k$ k -volume

Integral and Algebraic Volume Definitions Agree

- Let $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_n = (v_{n1}, \dots, v_{nn})$ be n-vectors in n-dimensional space.
- Let \mathcal{R}_k be the parallelotope spanned by $\mathbf{v}_1, \dots, \mathbf{v}_k$.
- \rightarrow Let h_k be the height of \mathcal{R}_k with base \mathcal{R}_{k-1} .

Theorem

$$Vol_n(\mathcal{R}_n) = h_n Vol_{n-1}(\mathcal{R}_{n-1}) = \int \cdots \int_{\mathcal{R}_n} 1 \cdot dx_1 \dots dx_n.$$

- Right hand side: approx. vol. with boxes, sides along coord. axes.
- Left hand side: approximate volume with slabs parallel to base.
- Theorem is fully intuitive but its proof is surprisingly laborious.

- Let $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_n = (v_{n1}, \dots, v_{nn})$ be *n*-vectors.
- Let \mathcal{R}_k be the parallelotope spanned by $\mathbf{v}_1, \dots, \mathbf{v}_k$.
- Recall that $\mathbf{v}_i \cdot \mathbf{v}_j = v_{i1}v_{j1} + \cdots + v_{in}v_{jn}$.

Theorem (k-volume = Gram determinant)

$$\mathsf{Vol}_k(\mathcal{R}_k) = \sqrt{ \begin{vmatrix} \mathbf{v}_1 \cdot \mathbf{v}_1 & \dots & \mathbf{v}_1 \cdot \mathbf{v}_k \\ \vdots & \dots & \vdots \\ \mathbf{v}_k \cdot \mathbf{v}_1 & \dots & \mathbf{v}_k \cdot \mathbf{v}_k \end{vmatrix} }.$$

Proof: studied in Linear algebra (Vol_k - defined by algebra only). $Vol_n(\mathcal{R}_n)$ is a perfect square for all n.

Theorem

$$\mathsf{Vol}_n(\mathcal{R}_n) = \pm \left| egin{array}{ccc} v_{11} & \dots & v_{n1} \ dots & \dots & dots \ v_{1n} & \dots & v_{nn} \end{array}
ight|.$$

Properties of determinants

 Multiplying a column of a matrix by a number changes multiplies the determinant by the same number. In precise notation:

Lemma

$$\begin{vmatrix} a_{11} & \dots & xa_{1k} & \dots & a_{1n} \\ a_{21} & \dots & xa_{2k} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{n1} & \dots & xa_{nk} & \dots & a_{nn} \end{vmatrix} = x \begin{vmatrix} a_{11} & \dots & a_{1k} & \dots & a_{1n} \\ a_{21} & \dots & a_{2k} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{n1} & \dots & a_{nk} & \dots & a_{nn} \end{vmatrix}$$

Find the 1-dimensional volume (length) of the segment through the origin spanned by $\mathbf{v} = (1, 2, 3)$.

Find the 1-dimensional volume (length) of the segment \mathcal{R}_1 through the origin spanned by $\mathbf{v} = (v_1, v_2, v_3)$.

$$\operatorname{Vol}_1 = \sqrt{\underbrace{{\boldsymbol v} \cdot {\boldsymbol v}}_{1 \times 1 \text{ Gram determinant}}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Let \mathcal{R}_2 be the parallelogram in 2-dimensional space spanned by $\mathbf{v}_1=(2,3),\,\mathbf{v}_2=(5,7).$ Find the area of $\mathcal{R}_2.$

Let \mathcal{R}_2 be the parallelogram in 2-dimensional space spanned by $\mathbf{v}_1 = (v_{11}, v_{12})$, $\mathbf{v}_2 = (v_{21}, v_{22})$. Find the area of \mathcal{R}_2 .

$$Vol_{2} = \pm \begin{vmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{vmatrix}$$

$$Vol_{2} = \sqrt{\begin{vmatrix} \mathbf{v}_{1} \cdot \mathbf{v}_{1} & \mathbf{v}_{1} \cdot \mathbf{v}_{2} \\ \mathbf{v}_{2} \cdot \mathbf{v}_{1} & \mathbf{v}_{2} \cdot \mathbf{v}_{2} \end{vmatrix}}$$

Find the surface area of the parallelogram spanned by $\mathbf{v}_1=(1,2,3)$ and $\mathbf{v}_2=(5,7,11)$.

$$\mathsf{Vol}_2 = \sqrt{\left| \begin{array}{ccc} \textbf{v}_1 \cdot \textbf{v}_1 & \textbf{v}_1 \cdot \textbf{v}_2 \\ \textbf{v}_2 \cdot \textbf{v}_1 & \textbf{v}_2 \cdot \textbf{v}_2 \end{array} \right|} = \sqrt{\left| \begin{array}{ccc} 14 & 52 \\ 52 & 195 \end{array} \right|} = \sqrt{26}.$$

Find the surface area of the parallelogram spanned by

$$\mathbf{v}_1 = (v_{11}, v_{12}, v_{13})$$
 and $\mathbf{v}_2 = (v_{21}, v_{22}, v_{23})$.

Find the volume of the parallelepiped with vertex at the origin and spanned by $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (3, 5, 7)$, $\mathbf{v}_3 = (5, 7, 11)$.

$$\mathsf{Vol}_3 = \left| \det \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 5 & 7 & 11 \end{array} \right) \right| = |-2| = 2.$$

Find the volume of the parallelepiped spanned by $\mathbf{v}_1 = (v_{11}, v_{12}, v_{13}),$ $\mathbf{v}_2 = (v_{21}, v_{22}, v_{23}), \mathbf{v}_3 = (v_{31}, v_{32}, v_{33}).$

Recall the polar coordinate variable change

$$\begin{array}{rcl}
x & = & r\cos\theta \\
y & = & r\sin\theta.
\end{array}$$

- This variable change can be thought of as two functions: $x = h(r, \theta) = r \cos \theta$ and $y = g(r, \theta) = r \sin \theta$.
- The functions h, g map the two-dimensional plane with coordinates r, θ into the two-dimensional plane with coordinates x, y.
- Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ be an infinitely differentiable map.
- In other words, f takes n scalar inputs and produces n scalar outputs.

Definition (Infinitely Smooth Variable Change)

An infinitely differentiable map $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is called an (infinitely) smooth variable change.

Definition (Infinitely Smooth Variable Change)

An infinitely differentiable map $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is called an (infinitely) smooth variable change.

• Variable change $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is given by f-ns f_1, \dots, f_n . We write:

$$\mathbf{f}: \begin{vmatrix} x_1 = f_1(y_1, \dots, y_n) \\ \vdots \\ x_n = f_n(y_1, \dots, y_n) \end{vmatrix}.$$

- The variables y_1, \dots, y_n denote coordinates in the domain of f.
- We may include vars. x_1, \ldots, x_n denoting coords. in codomain of f.
- Fix y_2, \ldots, y_n and view **f** as curve with respect to y_1 ; plot.
- Do similarly with respect to the remaining variables.

$$\mathbf{f}: \begin{vmatrix} \mathbf{x}_1 = \mathbf{f}_1(y_1, \dots, y_n) \\ \vdots \\ \mathbf{x}_n = \mathbf{f}_n(y_1, \dots, y_n) \end{vmatrix}.$$

Definition (Jacobian matrix)

The Jacobian matrix of a variable change **f** is defined as the matrix

$$J_{\mathbf{f}} = \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial y_1} & \cdots & \frac{\partial f_n}{\partial y_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{pmatrix}$$

- Consider curve given by **f** with parameter y_1 (other y_i 's-fixed).
- Then the tangent vector of that curve is $\left(\frac{\partial x_1}{\partial y_1}, \dots, \frac{\partial x_n}{\partial y_1}\right)$.
- Similar considerations hold for y_2, \ldots, y_n .

$$\mathbf{f}: \begin{vmatrix} x_1 = f_1(y_1, \dots, y_n) \\ \vdots \\ x_n = f_n(y_1, \dots, y_n) \\ \end{bmatrix}$$

$$J_{\mathbf{f}} = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{pmatrix}$$

- Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be basis vectors. Fix point $\mathbf{y} = (y_1, \dots, y_n)$.
- Let $\Delta y_1, \ldots, \Delta y_n$ be small numbers. Construct small box B with corner \mathbf{y} spanned by the vectors $\Delta y_1 \mathbf{e}_1, \ldots, \Delta y_n \mathbf{e}_n$.
- The point **y** and the corners $\mathbf{y} + \Delta y_1 \mathbf{e}_1, \dots, \mathbf{y} + \Delta y_n \mathbf{e}_n$ suffice to identify B.
- $Vol(B) = \Delta y_1 \dots \Delta y_n$.
- Let the image of B be f(B) = C. C is a "curvilinear box".
- Let E be the parrallelotope at f(y) spanned by images of the corners of B. Then Vol(C) ≈ Vol_n(E).

$$\mathbf{f}: \begin{vmatrix} x_1 = f_1(y_1, \dots, y_n) \\ \vdots \\ x_n = f_n(y_1, \dots, y_n) \\ \vdots \\ \frac{\partial x_1}{\partial y_1} \cdots \frac{\partial x_1}{\partial y_n} \\ \vdots \\ \frac{\partial x_n}{\partial y_1} \cdots \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

- $Vol(C) \approx Vol_n(E)$.
- The first edge of *E* corresponds to the vector

$$\mathbf{f}(\mathbf{y} + \Delta y_1 \mathbf{e}_1) - \mathbf{f}(\mathbf{y}) \approx \Delta y_1 \left(D_{\mathbf{e}_1} \left(\mathbf{f}(\mathbf{y}) \right) \right) = \Delta y_1 \frac{\partial \mathbf{f}}{\partial y_1} \\
= \Delta y_1 \left(\frac{\partial x_1}{\partial y_1}, \dots, \frac{\partial x_n}{\partial y_1} \right) = \left(\Delta y_1 \frac{\partial x_1}{\partial y_1}, \dots, \Delta y_1 \frac{\partial x_n}{\partial y_1} \right).$$

- Similar considerations holds for the other edges of E.
- Let J be the parallelotope at $\mathbf{f}(\mathbf{y})$ spanned by the vectors $\Delta y_1 \left(\frac{\partial x_1}{\partial y_1}, \dots, \frac{\partial x_n}{\partial y_1} \right), \dots \Delta y_n \left(\frac{\partial x_1}{\partial y_n}, \dots, \frac{\partial x_n}{\partial y_n} \right)$.
- Then $Vol(C) \approx Vol_n(E) \approx Vol_n(J)$.

$$\mathbf{f}: \begin{vmatrix} x_1 = f_1(y_1, \dots, y_n) \\ \vdots \\ x_n = f_n(y_1, \dots, y_n) \\ \vdots \\ \frac{\partial x_1}{\partial y_1} \cdots \frac{\partial x_1}{\partial y_n} \\ \vdots \\ \frac{\partial x_n}{\partial y_1} \cdots \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

$$\triangle y_2$$

- Let J be the parallelotope at $\mathbf{f}(\mathbf{y})$ spanned by the vectors $\Delta y_1 \left(\frac{\partial x_1}{\partial y_1}, \dots, \frac{\partial x_n}{\partial y_1} \right), \dots, \Delta y_n \left(\frac{\partial x_1}{\partial y_n}, \dots, \frac{\partial x_n}{\partial y_n} \right)$. Suppose $\det J_{\mathbf{f}} \geq 0$.
- $Vol(C) \approx Vol_n(E) \approx Vol_n(J) = \det J_f \Delta y_1 \dots \Delta y_n$

$$Vol_{n}(J) = \pm \begin{vmatrix} \Delta y_{1} \frac{\partial x_{1}}{\partial y_{1}} & \cdots & \Delta y_{n} \frac{\partial x_{1}}{\partial y_{n}} \\ \vdots & \ddots & \vdots \\ \Delta y_{1} \frac{\partial x_{n}}{\partial y_{1}} & \cdots & \Delta y_{n} \frac{\partial x_{n}}{\partial y_{n}} \end{vmatrix} = \pm \Delta y_{1} \dots \Delta y_{n} \begin{vmatrix} \frac{\partial x_{1}}{\partial y_{1}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_{n}}{\partial y_{1}} & \cdots & \frac{\partial x_{n}}{\partial y_{n}} \end{vmatrix} = \pm \det (J_{\mathbf{f}}) \Delta y_{1} \dots \Delta y_{n}$$

- Regard **y** as a variable and let it traverse a rectangular mesh.
- Sum over the rectangular mesh.
- Let $\Delta y_1 \rightarrow 0, \ldots, \Delta y_n \rightarrow 0$.

$$\mathbf{f}: \begin{vmatrix} x_1 = f_1(y_1, \dots, y_n) & & & \\ \vdots & & & \\ x_n = f_n(y_1, \dots, y_n) & & & \\ \end{bmatrix}$$

$$J_{\mathbf{f}} = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_n} & \cdots & \frac{\partial x_n}{\partial y_n} \end{pmatrix}$$

Theorem (Variable change in multivariable integrals)

Let **f** be a smooth one to one variable change. Let $\mathbf{f}(\mathcal{R}) = \mathcal{S}$. Let h be an integrable function. Then

$$\int \cdots \int h(x_1, \dots, x_n) dx_1 \dots dx_n = \int \cdots \int h(f_1, \dots, f_n) \det (J_f(\mathbf{y})) dy_1 \dots dy_n,$$
provided that $\det (J_f(\mathbf{y})) \geq 0$ for all $\mathbf{y} \in \mathcal{R}$.

Find the volume of a ball of radius r.

Find the volume of a spherical curvilinear box, given by the spherical coordinate inequalities

$$\rho_{\min} \leq \rho \leq \rho_{\max},$$
 $\phi_{\min} \leq \phi \leq \phi_{\max},$
 $\theta_{\min} < \theta < \theta_{\max}.$

Find the volume of a toroid T (the inside of a torus S) with major radius R and minor radius r.

$$S: \begin{cases} x = (R + r\cos\theta)\cos\phi \\ y = (R + r\cos\theta)\sin\phi \\ z = r\sin\theta \end{cases}$$

Suppose the toroid sits in space as drawn. Let $P(x, y, z) \in S$. Let P be the plane through the z-axis and P.

Let H be the heel of the perpendicular from P to the x, y-plane. Let C be the center of the circle cross-section of P with T. Let ϕ and θ be

the indicated angles. We have $\frac{|PC|}{|PH|}$

$$|OC| = R$$
 $|PC| = r$
 $|PH| = r \sin \theta$
 $|OH| = R + r \cos \theta$

Find the volume of a toroid T (the inside of a torus S) with major radius R and minor radius r.

$$S: \begin{vmatrix} x = (R + r \cos \theta) \cos \phi \\ y = (R + r \cos \theta) \sin \phi \\ z = r \sin \theta \end{vmatrix}$$

$$T: \begin{cases} x = (R + \rho \cos \theta) \cos \phi \\ y = (R + \rho \cos \theta) \sin \phi & \rho \in [0, ?r], \phi \in [0, ?2\pi), \theta \in [0, ?2\pi). \\ z = \rho \sin \theta \end{cases}$$

Let f be the map participating in the parametrization of T.

$$Vol(T) = \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=2\pi} \int_{\rho=0}^{\rho=r} \det(J_{\mathbf{f}}) \, \mathrm{d}\rho \mathrm{d}\phi \mathrm{d}\theta$$

Find volume of toroid T, major radius R minor radius r.

$$\mathbf{f}: \begin{vmatrix} x = (R + \rho \cos \theta) \cos \phi \\ y = (R + \rho \cos \theta) \sin \phi \\ z = \rho \sin \theta \end{vmatrix}$$

$$J_{f} = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{pmatrix}$$

$$Vol(T) = \int_{\theta=0}^{\theta=2\pi} \int_{\rho=0}^{\phi=2\pi} \int_{\rho=0}^{\rho=r} \det(J_{f}) d\rho d\phi d\theta = \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{r} \rho A d\rho d\phi d\theta$$

$$J_{f} = \begin{pmatrix} \cos\theta\cos\phi & -A\sin\phi & -\rho\sin\theta\cos\phi \\ \cos\theta\sin\phi & A\cos\phi & -\rho\sin\theta\sin\phi \\ \sin\theta & 0 & \rho\cos\theta \end{pmatrix}$$

where we have set $A = R + \rho \cos \theta$.

Find volume of toroid T, major radius R, minor radius r.

$$\mathbf{f}: \begin{vmatrix} \mathbf{x} = (\mathbf{R} + \rho \cos \theta) \cos \phi \\ \mathbf{y} = (\mathbf{R} + \rho \cos \theta) \sin \phi \\ \mathbf{z} = \rho \sin \theta \end{vmatrix}$$

$$J_{\mathsf{f}} = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{pmatrix}$$

$$\begin{aligned} \text{Vol}(\textit{T}) &= \int\limits_{\theta=0}^{\theta=2\pi} \int\limits_{\phi=0}^{\phi=2\pi} \int\limits_{\rho=0}^{\rho=r} \det{(\textit{J}_{\textrm{f}})} \, \text{d}\rho \text{d}\phi \text{d}\theta = \int\limits_{0}^{2\pi} \int\limits_{0}^{2\pi} \int\limits_{0}^{r} \rho(\textit{R} + \rho\cos\theta) \text{d}\rho \text{d}\phi \text{d}\theta \\ &= \int\limits_{0}^{2\pi} \int\limits_{0}^{2\pi} \left[\frac{\textit{R}\rho^2}{2} + \frac{\rho^3}{3}\cos\theta \right]_{\rho=0}^{\rho=r} \text{d}\phi \text{d}\theta = \int\limits_{0}^{2\pi} \int\limits_{0}^{2\pi} \left(\frac{\textit{R}r^2}{2} + \frac{r^3}{3}\cos\theta \right) \text{d}\phi \text{d}\theta \\ &= 2\pi \int_{0}^{2\pi} \left(\frac{\textit{R}r^2}{2} + \frac{r^3}{3}\cos\theta \right) \text{d}\theta = 2\pi \int_{0}^{2\pi} \frac{\textit{R}r^2}{2} \text{d}\theta = 2\textit{R}r^2\pi^2 \end{aligned}$$

Find the volume of the horn given by

$$heta \in [\mathtt{0},\mathtt{2}\pi], \phi \in [\mathtt{0},\mathtt{3}\pi],
ho \in \left[\mathtt{0}, rac{\phi}{\mathtt{9}}
ight].$$

Theorem (Variable change in multivariable integrals)

 $\textit{f - smooth, one-to-one, } \textbf{f}(\mathcal{R}) = \mathcal{S}, \, \det\left(\textit{J}_{\textbf{f}}(\textbf{y})\right) \geq 0.$

$$\int \cdots \int h(x_1, \dots, x_n) dx_1 \dots dx_n = \int \cdots \int h(f_1, \dots, f_n) \det (J_f(y)) dy_1 \dots dy_n,$$

$$\mathcal{S}$$

- One-variable subst. rule: $\int_{f(a)}^{f(b)} h(x) dx = \int_{a}^{b} h(f(y)) f'(y) dy.$
- The one-variable substitution rule is valid
 - without positivity requirements (arranged by compensating with minus sign when changing boundaries of integration)
 - and without requiring that f be one to one (compensated by neutralizing contributions arising from sign changes of f'(y)).
- Similarly integration can be generalized so multivar. subst. holds
 - without positivity of $\det(J_f)$ (arranged by compensating with minus sign when changing orientation of spaces),
 - without requiring that **f** be one to one (compensated by neutralizing contributions arising from sign changes of det J_f).
- When using the above generalization of ∫, one writes