高级工程数学 2122(1)

沈超敏 计算机科学与技术学院 cmshen@cs.ecnu.edu.cn

Three acronyms:

- FONC (First Order Necessary Condition)
- SONC (Second Order Necessary Condition)
- SOSC (Second Order Sufficient Condition)

★ Conditions for Local Minimizers

- Global minimizer $x^*: f(x) \geqslant f(x^*) \quad \forall x \in \Omega \setminus \{x^*\}$
- Strict global minimizer $x^*: f(x) > f\left(x^*\right) \quad \forall x \in \Omega \backslash \left\{x^*\right\}$
- ullet Mathematically, "near" can be characterized as $\|oldsymbol{x} oldsymbol{x}^*\| < arepsilon$
- x^* is a local minimizer if $\exists \varepsilon > 0$, s.t.

$$f(\boldsymbol{x}) \geqslant f(\boldsymbol{x}^*) \quad \forall \boldsymbol{x} \in \Omega \backslash \{\boldsymbol{x}^*\} \& \|\boldsymbol{x} - \boldsymbol{x}^*\| < \varepsilon$$

★ First Order Necessary Condition

Theorem. x^* is a local minimizer of f over Ω . Then for any feasible direction d at x^* , we have

$$\nabla f(\boldsymbol{x}^*) \cdot \boldsymbol{d} \geqslant 0$$

Explanation. ① feasible direction d at a point $x \in \Omega$ is a direction so that: starting from x and moving towards d remains in Ω .

Math language: $\exists \alpha_0 > 0 \text{ s.t. } \boldsymbol{x} + \alpha \boldsymbol{d} \in \Omega, \forall \alpha \in [0, \alpha_0]$

② $\nabla f(\mathbf{x}^*) \cdot \mathbf{d}$: inner product of two vectors.

Also write as $\boldsymbol{d}^{\top}\nabla f\left(\boldsymbol{x}^{*}\right)$ or $\left(\nabla f\left(\boldsymbol{x}^{*}\right),\boldsymbol{d}\right),$ $\left\langle \nabla f(\boldsymbol{x}^{*}),\boldsymbol{d}\right\rangle$

 $\frac{\partial f}{\partial d} \triangleq \nabla f \cdot d$ is the directional derivative when ||d|| = 1

• 3) Define $\phi(\alpha) = f(x^* + \alpha d)$ for $\alpha \in [0, \alpha_0]$, then

$$\phi'(0) = \begin{cases} \lim_{\alpha \to 0^+} \frac{\phi(\alpha) - \phi(0)}{\alpha} = \lim_{\alpha \to 0^+} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha} & \text{Def} \\ \nabla f(x^*) \cdot d & \text{Chain rule} \end{cases}$$

• Proof. Let $m{d}$ be any feasible direction at $m{x}^*$. Define $\phi(\alpha) = f\left(m{x}^* + \alpha m{d}\right)$ Then $f\left(m{x}^* + \alpha m{d}\right) - f\left(m{x}^*\right) = \phi(\alpha) - \phi(0) = \phi'(0)\alpha + o(\alpha)$. $= \langle \nabla f\left(m{x}^*\right) \cdot m{d} \rangle \alpha + o(\alpha)$ If $m{x}^*$ is a local minimizer.

If x^* is a local minimizer,

(i.e.,
$$\exists \varepsilon$$
, s.t. $f(\boldsymbol{x}) \geqslant f(\boldsymbol{x}^*)$, $\forall \boldsymbol{x} \in \Omega \backslash \{\boldsymbol{x}^*\} \& \|\boldsymbol{x} - \boldsymbol{x}^*\| < \varepsilon$) for sufficiently small α (e.g. $\|\alpha \boldsymbol{d}\| < \varepsilon$), $f(\boldsymbol{x}^* + \alpha d) - f(\boldsymbol{x}^*) \geqslant 0$ then $\phi'(0) = \nabla f(\boldsymbol{x}^*) \cdot \boldsymbol{d} \geqslant 0$

ullet FONC Two possibilities for a given feasible direction d.

$$\left\{ \begin{array}{l} \nabla f\left(\boldsymbol{x}^{*}\right) \cdot \boldsymbol{d} > 0 \text{ then } f\left(\boldsymbol{x}^{*} + \alpha \boldsymbol{d}\right) > f\left(\boldsymbol{x}^{*}\right) \text{ for all sufficienty small } \alpha > 0 \\ \nabla f\left(\boldsymbol{x}^{*}\right) \cdot \boldsymbol{d} = 0 \text{ . check second-order derivative} \end{array} \right.$$

★ Second Order Necessary Condition

• Theorem If \boldsymbol{x}^* is a local minimizer of f over Ω , and there exists a feasible direction \boldsymbol{d} at \boldsymbol{x}^* s.t. $\nabla f\left(\boldsymbol{x}^*\right)\cdot\boldsymbol{d}=0$, then

$$\mathbf{d}^{\top} \nabla^2 f(\mathbf{x}^*) \mathbf{d} \geqslant 0$$

• Proof Consider $\phi(\alpha) = f\left({m x}^* + \alpha {m d} \right)$ and its Taylor series at $\alpha = 0$

$$\phi(\alpha) = \phi(0) + \phi'(0)\alpha + \frac{1}{2}\phi''(0)\alpha^2 + o\left(\alpha^2\right).$$

as
$$\phi'(0) = \nabla f(\boldsymbol{x}^*) \cdot \boldsymbol{d} = 0$$

So we have $\phi(\alpha) - \phi(0) = \frac{1}{2}\phi''(0)\alpha^2 + o(\alpha^2)$. Written in terms f is $f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \frac{\alpha^2}{2} \mathbf{d}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2)$.

If $d^{\top}\nabla^2 f(x^*) d < 0$, then for sufficiently small α (how small?) which contradicts that x^* is a local minimizer. so, $d^{\top}\nabla^2 f(x^*) d > 0$.

- ullet Corollary $oldsymbol{x}^*$ is an interior local minimizer of f. Then
- FONC $\nabla f(\mathbf{x}^*) = 0$
- SONC $d^{\top} \nabla^2 f(x^*) d \geqslant 0$, $\forall d \in \mathbb{R}^n$

Examples. 6.3 (p.86), 6.5 (p.89)

Necessary conditions are not sufficient

Video 32 结束

★ Second Order Sufficient Condition

if α is sufficiently small.

• Th 6.3 (SOSC) $f \in C^2(\Omega), x^* \in \Omega$ is an interior point. Suppose that (1) $\nabla f(x^*) = 0$; (2) $\nabla^2 f(x^*) > 0$. Then x^* is a strict local minimizer of f. Pf. $\nabla^2 f(x^*) \succ 0 \Leftrightarrow \lambda_{\min} (\nabla^2 f(x^*)) > 0$ (Prove by diagonaligation of $\nabla^2 f(\boldsymbol{x}^*) = Q^\top \wedge Q$) For a feasible direction ${m d} \neq 0$, define $\phi(\alpha) = f\left({{{m x}^*} + \alpha {m d}} \right)$ $f(\boldsymbol{x}^* + \alpha \boldsymbol{d}) - f(\boldsymbol{x}^*) = \phi(\alpha) - \phi(0) = \frac{1}{2}\phi''(0)\alpha^2 + o(\alpha^2)$ $= \frac{1}{2} \boldsymbol{d}^{\top} \nabla^{2} f(\boldsymbol{x}^{*}) \, \boldsymbol{d} \alpha^{2} + o\left(\alpha^{2}\right)$ $\geqslant \frac{1}{2}\lambda_{\min}\|d\|^2\alpha^2 + o\left(\alpha^2\right) > 0$

9/29

Necessary
$$\begin{array}{c|c} \textbf{X*} & \text{is a local minimizer of } \textbf{f} \\ \hline \\ \textbf{Necessary} & \textbf{Sufficient} \\ \hline \\ \text{interior pt} & \nabla f\left(\boldsymbol{x}^*\right) = 0, \nabla^2 f\left(\boldsymbol{x}^*\right) \geqslant 0 & \nabla f\left(\boldsymbol{x}^*\right) \\ \text{general pt} & \nabla f\left(\boldsymbol{x}^*\right) \cdot \boldsymbol{d} \geqslant 0 & \forall d \\ \hline \\ \text{If } \nabla f\left(\boldsymbol{x}^*\right) \cdot \boldsymbol{d} = 0 \text{ for some } \boldsymbol{d}, \boldsymbol{d}^\top \nabla^2 f\left(\boldsymbol{x}^*\right) \boldsymbol{d} \geqslant 0 \\ \hline \end{array}$$

Video 33 结束

Figure 7.1 Unimodal function.

- 7.1 Introduction
- 7.2 Golden Section Search
- 7.3 Fibonacci Method
- 7.4 Bisection Method
- 7.5 Newton's Method
- 7.6 Secant Method
- 7.7 Bracketing
- 7.8 Line Search in Multidimensional Optimization

§ 2 单 因 素

我们知道,得要用某种化学元素来加强基强度,太少不好,太多也不好。例如,碳太多了成为生铁、碳太少了成为熟铁,都不成钢材,每吨要加多少碳才能达到强度最高。假定已 从理论上算出)每吨在1000克到2000克之间。普通的方法是加1001克,1002克,……,做下去,做了一千次以后,才能发现最好的选择,这种方法称为均分法。做一千次实验既很贵时间 又很费原材料,为了迅速找出最优方案,我们建议以下的"折连纸条法"。

请牢记一个数0.618.

用一个有刻度的纸条表达1000~2000克,在这纸条长度的0.618的地方划一条线,在这条线所指示的刻度做一次实验,也就是按1618克做一次实验.

然后把纸条对中迭起,前一线落在另一层上的地方,再划一条线,这条线在1382克处,再按1382克做一次实验.

两次实验进行比较,如果1382克的好一些,我们在1618处把纸条的右边一段剪掉,得:

(如果1618克比较好,则在1382克处剪掉左边一段).再依中对折起来,又可划出一条线在1236克处。

依1236克做实验,再和1382克的结果比较.如果,仍然是1382克好,则在1236处剪掉左边。

再依中对折,找出一个试点是1472,按1472克做实验,做出后再剪掉一段,等等. 注意每次留下的纸条的长度是上次长度的0. 618(留下的纸条长=0. 618×上次长),

就这样,实验、分析、再实验、再分析,矛盾的解决和又出现的过程中,一次比一次地更加接近所需要的加入量,直到所能达到的精度。

Figure 7.4 Finding value of ρ resulting in only one new evaluation of

Video 34 结束

7.3 Fibonacci Method

Figure 7.4 Finding value of ρ resulting in only one new evaluation of

7.4 Bisection Method

Video 35 结束

Topic 3: Ch 8. Gradient Methods

 $\nabla f(x)$ is the direction of maximum rate of increase of f at x.

 $-\nabla f(x)$ is the direction of maximum rate of decrease of f at x.

Lemma: (Cauchy-Schwarz inequality) For $oldsymbol{a}, oldsymbol{b} \in \mathbb{R}^n$

$$a \cdot b = (a, b) = \sum_{i=1}^{n} a_i b_i \leqslant \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}} = \|a\| \cdot \|b\|$$

Apply to
$$(\nabla f, \mathbf{d}) \leq \|\nabla f\| \cdot \|\mathbf{d}\| = \|\nabla f\|$$
 if $\|\mathbf{d}\| = 1$

Equality holds
$$\Leftrightarrow d = rac{
abla f}{\|
abla f\|}$$

Therefore $-\nabla f(\boldsymbol{x})$ is the max-rate descending direction. When $\nabla f(\boldsymbol{x}) \neq \mathbf{0}$, for α sufficiently small, $f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) < f(\boldsymbol{x})$.

Gradient Descent Algorithm:

Start from x^0 for $k = 0, 1, 2, \cdots$ till converge

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha_k \nabla f\left(\boldsymbol{x}^k\right)$$

Ideal condition:
$$\left\|\nabla f\left(\boldsymbol{x}^{k}\right)\right\|=0$$

Practical conditions:

gradient condition
$$\left\| \nabla f\left(oldsymbol{x}^{k}
ight)
ight\| < arepsilon$$

success objective condition
$$\frac{\left|f(x^{k+1}) - f(x^k)\right|}{\left|f(x^k)\right|} < \varepsilon$$

successive point difference
$$\frac{\left\|x^{k+1}-x^{k}\right\|}{\left\|x^{k}\right\|}$$

Replace denominator by $\max\left\{1,|f\left(\pmb{x}^k\right)|\right\}$ or $\max\{1,\|\pmb{x}^k\|\}$ to avoid division by tiny numbers.

Step size:

- 1. Exact line search. Expensive and not worth
- 2. Fixed estimate value.
- 3. Line search (Ch. 7).

具体地

1. Exact or "best" for $\phi_k(\alpha) = f(x_k - \alpha \nabla f(x_k))$

$$\alpha_k = \operatorname*{arg\,min}_{\alpha > 0} \phi_k(\alpha)$$

This is called Steepest Descent method.

2. Based on properties of f, choose a fixed value

small: converges slow

large: may diverge faster

convergence efficiency

- 3. Several practical line search algorithms
- Golden section Newton's method
- Fibonacci Secant method
- Bisection Bracketing

Quadratic Programming

For a symmetric and positive definite (SPD) matrix Q, i.e., Q>0,

we can define a new norm
$$\| {m x} \|_Q = \left({m x}^{ op} Q {m x} \right)^{\frac{1}{2}}$$
 and a new inner product $({m x}, {m y})_Q riangleq (Q {m x}, {m y}) = ({m x}, Q {m y}) = {m y}^T Q {m x}$

Let $f(x)=\frac{1}{2}\|x\|_Q^2-(b,x)$. Consider non-constrained, convex, and smooth optimization problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

$$\nabla f(\mathbf{x}) = Q\mathbf{x} - \mathbf{b}, \quad \nabla^2 f(\mathbf{x}) = Q > 0$$

Topic 3: Quadratic Programming

As f is strictly convex, the global minimum pt is $\nabla f(x) = \mathbf{0}$

Solve Qx - b = 0 to get the solution $x = Q^{-1}b$.

Why not computing $Q^{-1}\boldsymbol{b}$ directly?

- 1. Q^{-1} is expensive, $O(n^3)$ complexity.
- 2. Want a method for more general problems.

Steepest descent for quadratic programming

$$\begin{split} \phi_k(\alpha) &= f\left(\boldsymbol{x}_k - \alpha \nabla f\left(\boldsymbol{x}_k\right)\right), \quad \alpha_k = \underset{\alpha}{\arg\min} \phi_k(\alpha) \quad \phi_k'\left(\alpha_k\right) = 0 \\ \phi_k'(\alpha) &= \left\langle \nabla f(\boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k)), -\nabla f\left(\boldsymbol{x}_k\right) \right\rangle \\ &= \left\langle Q\left(\boldsymbol{x}_k - \alpha \nabla f\left(\boldsymbol{x}_k\right)\right) - \boldsymbol{b}, -\nabla f\left(\boldsymbol{x}_k\right) \right\rangle \\ &= \alpha \|\nabla f(\boldsymbol{x}_k)\|_Q^2 - \left\langle Q\boldsymbol{x}_k - \boldsymbol{b}, \nabla f\left(\boldsymbol{x}_k\right) \right\rangle = \alpha \|\nabla f\left(\boldsymbol{x}_k\right)\|_Q^2 - \|\nabla f\left(\boldsymbol{x}_k\right)\|^2 \end{split}$$

Video 36 结束

Topic 3: Quadratic Programming

If we denote by $g_k = \nabla f(x_k)$, then we can write as

$$\alpha_k = \|\boldsymbol{g}_k\|^2 / \|\boldsymbol{g}_k\|_Q^2$$

As
$$\lambda_{\min} \| oldsymbol{v} \|^2 \leqslant oldsymbol{v}^ op Q oldsymbol{v} \leqslant \lambda_{\max} \| oldsymbol{v} \|^2$$

(which can be proved first for diagonal matrix and then $Q=U^T\Lambda U$)

so
$$\frac{1}{\lambda_{\max}} \leqslant \alpha_k \leqslant \frac{1}{\lambda_{\min}}$$

Video 37 结束

Figure 8.7 Steepest descent method in search for minimizer in a narrow valley.

Topic 4: Newton's method