SL No.	Part B-Test Questions	M	BT	СО
1.a	Explain Model-based reflex agents and Goal-based agents with pseudocodes and diagrams.	10	L2	CO2
2.a	Discuss the three ways to represent the states and transition between them	5	L2	CO1
2.b	Consider the graph below.	5	L3	CO4

Academic year 2023-2024 (Odd Sem)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING/ INFORMATION SCIENCE AND ENGINEERING

Date	30/4/2024	Maximum Marks	10+50			
Course Code	22MCEA1T	Duration	120min			
Sem	I	CIE II				
ARTIFIC	IAL INTELLIGENCE	AND MACHINE LEAF	RNING			

Q. No.			M	BT	CC			
			PART	A				
1.1	List the assu	imptions made i	in order specify	a learning pro	olem for the BRUTE-	2	2	1
	FORCE MA	P LEARNING	algorithm			·		
1.2	Write LIST-	THEN-ELIMIN	NATE algorithm	n.		2	2	2
1.3	Define conc	ept learning.				1	1	1
1.4	Amy has two	o bags. Bag I ha	as 7 red and 4 b	lue balls and ba	g II has 5 red and 9	2	3	2
	blue balls. A	my draws a bal	l at random and	d it turns out to	be red. Determine			
	the probabil	ity that the ball	was from the ba	ag I.				
1.5	The Inductiv	ve bias of CANI	DIDATE-ELIM	IINATION algo	orithm states that the	1	1	1
	······							
1.6	List any fou	r appropriate pr			ng	2	1	2
			PART					
2					and Predict fruit has	10	4	4
	1	g properties the		f the fruit it is				
	Fruit = {Ye	llow, Sweet, Lo	ong}	-				
	Frequency 7	Table:		-		i Stu		
	Fruit	Yellow	Sweet	Long	Total			
	Mango	350	450	0	650			
	Banana	400	300	350	400			
	Others	50	100	50	150			
	Total	800	850	400	1200			
3	Discuss the Minimum description length principle and Maximum likelihood						2	3
	Estimation n	nethods with su	itable examples	3.				
4	Construct th	e final design	for a checkers	learning proble	em by indicating the	10	2	2
	steps used in	a learning syst	em					
5	Discuss Find	d-S algorithm ar	nd consider the	dataset given a	nd answer the	10	3	4
	following qu	estions.						
	a) How man	y concepts are p	oossible for this	instance space	?			
	b) How man	y hypotheses ca	in be expressed	by the hypothe	sis language?			
	c) Apply Fin	d-S algorithm						

Go, change the world

Academic year 2023-2024 (Odd Sem)

	EXAMPLE	COLOR	OUGHNESS	FUNGUS	APPEARANCE	POISONOUS				
	1.	GREEN	HARD	NO	WRINKELD	YES				
	2.	GREEN	HARD	YES	SMOOTH	NO				
	3,	BROWN	SOFT	NO	WRINKLED	. NO				
	4.	ORANGE	HARD	NO	WRINKLED	YES				
• • •	5.	GREEN	'''soff	yes .	SMOOTH	* YES *		· · · ·	: 57.1	
	6.	GREEN	HARD	YES	WRINKLED	YES				
	Compage, 135, 35-	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HARD	NO	WRINKLED	YES			4 7	
	72	ORANGE	TARU		A MARKED					
6	Construct	1427.5.2.2.2.2	124032	Marie Carlos	Sent House of the sec	se the concep	pt of Entropy	10	3	3
6		a decision t	ree for the	e followin	g dataset. Us		pt of Entropy	10	3	3
6		a decision t	ree for the	e followin	Sent House of the sec		pt of Entropy Diagnosis	10	3	3
6	and Inform	a decision to mation gain Sore	ree for the	e followin e best attri	g dataset. Us ibute for spli	t	Diagnosis Strep throat	10	3	3
6	and Inform Patient ID#	a decision t mation gain Sore Throat	ree for the to find the	e followin e best attr Swollen Glands	g dataset. Us ibute for spli Congestion	t Headache	Diagnosis Strep throat Allergy	10	3	3
6	and Inform Patient ID#	a decision to mation gain Sore Throat Yes	ree for the to find the Fever	e followin e best attr Swollen Glands Yes	g dataset. Us ibute for spli Congestion Yes Yes Yes	t Headache Yes Yes No	Diagnosis Strep throat Allergy Cold	10	3	3
6	and Information Patient ID#	a decision to mation gain Sore Throat Yes No	ree for the to find the Fever Yes No	e following best attri	g dataset. Us ibute for spli Congestion Yes Yes Yes No	t Headache Yes Yes No No	Diagnosis Strep throat Allergy Cold Strep throat	10	3	3
6	and Inform Patient ID#	a decision to mation gain Sore Throat Yes No Yes	ree for the to find the Fever Yes No Yes No Yes No Yes	e following best attri Swollen Glands Yes No No Yes No	g dataset. Us ibute for spli Congestion Yes Yes Yes No Yes	t Headache Yes Yes No No No	Diagnosis Strep throat Allergy Cold Strep throat Cold	10	3	3
6	and Information Patient ID#	a decision to mation gain Sore Throat Yes No Yes Yes No No No	ree for the to find the Fever Yes No Yes No Yes No Yes No	e following best attribute best attribute. Swollen Glands Yes No No Yes No No No	g dataset. Us ibute for spli Congestion Yes Yes Yes No Yes Yes	t Headache Yes Yes No No No No	Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy	10	3	3
6	and Information Patient ID#	a decision to mation gain Sore Throat Yes No Yes Yes No Yes No	ree for the to find the Fever Yes No Yes No Yes No Yes No No	e following best attribute best attribute. Swollen Glands Yes No No Yes No No Yes No No Yes	g dataset. Us ibute for spli Congestion Yes Yes Yes No Yes Yes No	t Headache Yes Yes No No No No No	Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy Strep throat	10	3	3
6	and Information Patient ID# 1 2 3 4 5 6 7 8	a decision to mation gain Sore Throat Yes No Yes Yes No No No No No Yes	ree for the to find the Fever Yes No Yes No Yes No No No	e following best attribute best attribute. Swollen Glands Yes No No Yes No No Yes No No Yes No	g dataset. Us ibute for spli Congestion Yes Yes Yes No Yes Yes No Yes	t Headache Yes Yes No No No No No No No No Yes	Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy Strep throat Allergy	10	3	3
6	and Information Patient ID# 1 2 3 4 5 6 7	a decision to mation gain Sore Throat Yes No Yes Yes No No No No	ree for the to find the Fever Yes No Yes No Yes No Yes No No	e following best attribute best attribute. Swollen Glands Yes No No Yes No No Yes No No Yes	g dataset. Us ibute for spli Congestion Yes Yes Yes No Yes Yes No	t Headache Yes Yes No No No No No	Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy Strep throat	10	3	3

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date	14 May 2024	Maximum Marks	10+50
Course Code		IVIAXIIIIUIII IVIAI KS	
	22MCE1A1T	Duration *	120 Min
Sem	T		
	FICIAL INTELLIGEN	CIE - III	

SL No	Part A- Quiz	M	BT	СО
1.1	Define Bayesian Belief network?	1	L2	COI
1.2	Give the concept of k - nearest neighbour in Machine learning?	2	L2	CO2
1.3	Give the concept of PAC learnability	2	L2	CO2
1.4	Define EM Algorithm?	2	L1	CO1
1.5	Define VC dimension?	2	L1	CO1
1.6	Represent Mistake bound Model?	1	L2	COl

SL No	Part B -Test	M	BT	СО
2	Illustrate with an example, EM Algorithm?	10	L3	CO2
3	Define Reinforcement Learning. Illustrate learning task and analyze how learning problem in Reinforcement learning differs from other function approximation tasks?	10	L4	CO3
4	Infer how an agent learns optimal policy using Q-learning? Discuss Q-learning	10	L4	CO4
5	Algorithm in detail Interpret the representation and inference in Bayesian belief networks with suitable	10	L3	CO2
6	example Illustrate the concept of temporal- difference learning and explain non deterministic rewards and actions in Q-learning.	10	L3	CO3

	the students will be able to: -
Course (Outcomes: After completing the course, the students will be able to: -
CO 1	Dutcomes: After completing the course, the students will be able to: 2 Explore the fundamentals of Artificial intelligence technology and Machine learning algorithms Apply the working of various searching algorithms, games, pruning, inferencing, etc. with
00.2	Apply the working of various searching argorithms, 5
	suitable examples.
CO3	suitable examples. Analyze and determine appropriate algorithms and techniques for AI and ML applications. Evaluate AI and ML based solutions for classical problems
CO 4	Evaluate AI and ML based solutions for every

varuutt :	BT-E	Blooms T	axonon	ıy, CO-	Course	Outcon	nes, M-	Marks L2	L3	L4	L5	L6	
Marks Distribution	Parti	culars Max Marks	CO1	CO2	20	10	4	6	30	20	-	-	