Module – 1 OVERVIEW of IT INDUSTRY THEORY EXCERISE

1. What is a program?

Ans. = A program is a sequence of instructions written using a programming language to perform a specific task or solve a particular problem. These instructions are executed by a computer's processor in a step-by-step manner.

2. What is programming?

Ans. = Programming is the process of writing instructions that a computer can understand and follow to do a specific task.

- It's how we communicate with computers using special languages like Python, Java, or C++.
- These instructions are called a program.

3. What is key steps in programming process?

Ans. = The programming process involves several important steps to go from an idea to a working computer program.

- Define the Problem
- Plan the Solution
- Write the Code
- Test the Program
- Debug and Improve
- Document the Code
- Maintain the Program

4. Different between high level and low level languages?

Feature	High-Level Language	Low-Level Language
Definition	A language that is easy for humans	A language that is close to machine
	to read and write	code
Examples Python, Java, C++, JavaScript		Assembly language, Machine
		language

Readability	Easy to understand	Hard to read; uses symbols and
	numbers	
Abstraction Level	High (closer to human thinking)	Low (closer to hardware)
Speed of	Slower (needs translation to	Faster (runs closer to the hardware)
Execution	machine code)	
Ease of	Easier to write and debug	Difficult; requires deep hardware
Programming		knowledge
Portability Portable across different systems		Not portable; specific to one type
		of CPU
Use Case	Application development, web,	Writing device drivers, embedded
	mobile apps, etc.	systems, OS parts

5. Roles of the client and server in web communication?

3. Roles of the Chefft and Server in Web Communication :	
Ans. = 1. Client	
Role:	
☐ The client is usually a web browser (like Chrome, Firefox, or Safari).	
☐ It sends requests to the server and displays the response (like a web page).
Example:	
When you visit www.example.com your browser (the client) asks the server page.	for that
2. Server	
Role:	
☐ The server is a computer or system that stores and serves web content.	
☐ It responds to client requests with the needed data.	
Example:	
The server receives the request for www.example.com finds the page, and sends the browser.	it back to

6. Function of the TCP/IP model and its layers?

Ans. = The TCP/IP model is the foundation of how devices communicate over the internet. It defines how data is sent, received, and routed between computers.

❖ Layers of the TCP/IP Model

- I. Application Layer
- II. Transport Layer
- III. Internet Layer
- IV. Network Access Layer

7. Explain client server communication?

Ans. = Client-server communication is a model in which:

- client (like a web browser or app) sends requests for data or services.
- A server (a powerful computer or system) responds with the requested information or action.
- They communicate over a network, usually using the Internet.

8. How does broadband differ from fiber optic internet?

Ans. =

Feature	Feature Broadband Fiber Optic Internet		
Definition	A general term for high-speed internet	A type of broadband that uses light	
	that can use various technologies	signals through thin glass or plastic	
	(DSL, cable, satellite, fiber, etc.)	fibers to transmit data	
Technology	Can be DSL (copper wires), cable	Uses fiber optic cables made of	
Used	(coaxial), satellite, or fiber	glass/plastic strands	
Speed	Varies widely depending on type; often	Extremely fast, often ranging from	
	slower than fiber (e.g., DSL up to 100	100 Mbps to 10 Gbps and beyond	
	Mbps, cable faster)		
Latency	Higher latency, especially with satellite	Very low latency — great for	
(Delay)	or DSL	gaming, video calls, streaming	
Reliability	Can be affected by distance (DSL),	Very reliable and stable connection,	
	weather (satellite), or cable quality	less prone to interference	
Distance	Performance can degrade over longer	Can transmit data over long distances	
Limitations	distances (DSL especially)	without loss	
Availability	Widely available, even in rural areas	Increasingly available but mostly in	
	through DSL or satellite	ellite urban/suburban areas	
Cost	Generally cheaper, but varies by	Usually more expensive to install but	
	technology and provider	prices are dropping	

9. What are the different between HTTP and HTTPS protocols?

Ans. =

Feature	HTTP (HyperText Transfer	HTTPS (HTTP Secure)
	Protocol)	
Full Form	HyperText Transfer Protocol	HyperText Transfer Protocol Secure
Security	Not secure — data is sent in	Secure — data is encrypted using SSL/TLS
	plain text	
Port Number	Uses port 80	Uses port 443
Encryption	No encryption; data can be	Encrypts data to protect it from hackers
	intercepted easily	
Use Case	General web browsing where	Online banking, shopping, login pages —
	security isn't critical	where security is essential
Performance	Slightly faster since no	Slightly slower due to encryption but
	encryption overhead	usually unnoticeable
URL Prefix	Starts with http://	Starts with https://
Trust	No padlock icon in browsers	Shows padlock icon in browsers indicating
Indicator		secure connection

10. Role of encryption in securing applications.

Ans. = Encryption is the process of converting data into a coded form that only authorized parties can understand. It protects sensitive information from being read by unauthorized users.

- Protects Data Privacy
- Secures Communication
- Maintains Data Integrity
- Authenticates Users and Systems
- Builds User Trust
- Compliance with Regulations

11. System software vs application software.

Feature	System Software	Application Software
Purpose	Manages and controls computer hardware	Helps users perform specific
	and provides a platform for running	tasks or applications
	application software	
Examples	Operating Systems (Windows, macOS,	Word processors, Web
	Linux), Utility programs, Device drivers	browsers, Games, Media
	players	
Function	Runs in the background and manages	Directly used by the user for
	system resources	tasks like writing, browsing, or

		gaming
Dependency	Runs independently and allows application	Depends on system software to
	software to function	run
Interface	Usually runs without direct user interaction,	Has a graphical user interface
	mostly works behind the scenes	(GUI) for user interaction
Installation	Comes pre-installed or installed during OS	Installed by users as needed
	setup	
Examples of	File management, memory management,	Creating documents, editing
Tasks	hardware control	photos, playing music

12. Significance of modularity In software architecture.

Ans. = Modularity means designing software as a collection of separate, independent modules (or components), each responsible for a specific part of the functionality.

- Improves Maintainability
- Enhances Reusability
- Simplifies Development
- Supports Scalability
- Increases Reliability

Layer

• Facilitates Understanding

13. Important layer in software architecture?

Ans. = In layered software architecture, the system is divided into logical layers, each with a specific responsibility. This makes the software easier to build, test, maintain, and scale.

Role / Function

Presentation Layer (UI Layer)

 Application Layer (Service Layer)
 Contains business logic

 Business Logic Layer

 Defines the core operations of the application

 Data Access Layer (DAL)

 Manages communication with databases

 Database Layer (Data Layer)

 Stores actual data in database

14. Importance of a development environment.

Ans. = A development environment is the set of tools, software, and systems that developers use to write, test, and debug code.

- Code editor or IDE (e.g., VS Code, IntelliJ)
- Compiler or interpreter
- Debugger
- Version control tools (e.g., Git)
- Testing tools
- Simulators or emulators

15. Source code vs machine code.

Ans. =

Aspect	Source Code	Machine Code
Definition	Human-readable instructions written	Binary code (0s and 1s) that the
	by a programmer using a programming	computer's processor understands
	language	directly
Written In	High-level languages like Python,	Low-level binary format specific
	Java, C++	to the CPU
Readability	Easy for humans to read and edit	Not readable by humans (pure
		binary)
Execution	Needs to be compiled or interpreted	Executed directly by the
		computer's CPU
Example	Print ("Hello, world!")	01001000 01100101 01101100
		01101100 01101111
Modifiability	Easy to change and update	Difficult to change directly
Role in	Starting point of software development	Final product after compilation or
Programming		interpretation

16. Importance of version control.

Ans. = Version Control is a system that helps developers track, manage, and control changes to source code or project files over time.

The most popular version control system is **Git**, often used with platforms like **GitHub**, **GitLab**, or **Bitbucket**.

- Tracks Every Change
- Enables Team Collaboration
- Supports Rollback and Recovery

- Manages Different Versions (Branching)
- Improves Code Quality
- Facilitates Continuous Integration/Deployment (CI/CD)
- Documentation of Project Progress

17. Benefits of using github for students.

Ans. = GitHub is more than just a place to store code — it's a powerful tool that offers real-world experience, collaboration opportunities, and career advantages for students learning programming or software development.

- Real-World Version Control Experience
- Portfolio Building
- Collaboration and Teamwork
- Learning from Open Source Projects
- Free Student Benefits (GitHub Student Pack)
- Backup and Cloud Storage
- Issue Tracking and Documentation Practice
- Community and Networking

18. Open source vs proprietary software.

Feature	Open Source Software	Proprietary Software
Source Code	Public — anyone can view, use,	Closed — only the owner/company
Access	modify, and share it	has access
Cost	Usually free to use	Often requires payment or license
Control	Users have full control over	Control is limited to what the
	features and changes	developer allows
Customization	Highly customizable by anyone	Customization is limited or not
		allowed
Support	Community-driven (forums,	Official support from the vendor (may
	contributors)	cost extra)
Examples	Linux, Firefox, LibreOffice, GIMP Windows, Microsoft Office, A	
		Photoshop
Security	Code is open — more people can	Security depends on the vendor;
	find & fix bugs quickly	issues may take time to patch
Licensing	Licensed under open licenses like	Licensed under strict terms by the
	GPL, MIT software company	
Development	Collaborative — often by	Centralized — developed and
Model	communities or developers	maintained by a single organization
	worldwide	

19. How git improve collaboration.

Ans. = Git is a distributed version control system that makes it easy for multiple people to work on the same project whether it's code, documentation, or any other file.

- Tracks Every Change
- Enables Teamwork with Branches
- Supports Safe Merging
- Detects and Resolves Conflicts
- Works Offline
- Enables Code Reviews
- Keeps Backups of Code
- Integrates with CI/CD Tools

20. Role of application software in businesses.

Ans. = Application software is any program designed to perform specific tasks for the user — such as writing reports, managing inventory, or analyzing data.

- Improves Productivity
- Enhances Communication
- Automates Business Processes
- Manages Business Operations
- Supports Decision-Making
- Improves Customer Service
- Enhances Data Management
- Enables Online Presence & Sales
- Ensures Financial Accuracy
- Supports Remote Work

21. Main stages of the software development process.

Ans. = The Software Development Life Cycle (SDLC) is a step-by-step process used to design, develop, test, and maintain software.

- Requirement Gathering & Analysis
- System Design
- Implementation (Coding)
- Testing

- Deployment
- Maintenance & Updates

22. Importance of requrirement analysis.

Ans. = Requirement analysis is the process of understanding, documenting, and validating what the client, end-users, or stakeholders need from a software system before development begins.

It's the foundation of a successful software project.

- Defines Clear Goals
- Avoids Miscommunication
- Helps Create Better Design
- Saves Time and Money
- Improves Quality
- Supports Testing
- Enables Better Project Planning
- Prepares for Change

23. Role of software analysis.

Ans. = Software Analysis is the process of studying and understanding the requirements and problems that the software aims to solve. It acts as a bridge between the user needs and the software design.

- Understanding User Needs
- Problem Identification
- Requirement Specification
- Feasibility Study
- Foundation for Design
- Risk Reduction
- Improves Communication
- Supports Testing and Validation

24. Key elements of system design.

Ans. = System design is the phase where the blueprint of the software system is created based on requirements. It defines how the system will work, its components, and interactions.

- Architecture Design
- Data Design
- Interface Design
- Component Design
- Security Design
- Performance Design
- Error Handling and Recovery
- Deployment Design
- Documentation

25. Importance of software testing.

Ans. = Software testing is the process of evaluating and verifying that a software application or system meets the specified requirements and works as expected without defects.

- Ensures Quality
- Detects Bugs Early
- Improves Security
- Enhances User Experience
- Saves Time and Money
- Verifies Requirements
- Facilitates Maintenance
- Builds Customer Confidence

26. Types of software maintenance.

Ans. = Software maintenance is the process of modifying and updating software after it is released to correct issues, improve performance, or adapt it to a new environment.

There are **4 main types of software maintenance**:

- Corrective Maintenance
- Adaptive Maintenance
- Perfective Maintenance
- Preventive Maintenance

27. Web application vs desktop application.

Ans. =

Feature	Web Application	Desktop Application
Definition	Runs in a web browser using the	Installed and runs directly on a
	internet	computer
Installation	No installation required (access	Must be installed on each device
	via URL)	
Platform	Usually cross-platform (works on	Often platform-specific (e.g.,
Dependency	any OS/browser)	Windows, macOS)
Updates	Updated centrally on the server	Must be updated manually on each
		machine
Internet	Yes, typically needs an active No (can work offline unless it	
Required	internet connection	connects to a server)
Performance	Depends on internet speed and	Usually faster and more powerful
	browser	
Security	Requires strong web security	More control over local data, but risks
	(HTTPS, auth, etc.)	if device is infected
Examples	Gmail, Google Docs, Facebook	Microsoft Word, Adobe Photoshop,
		VLC Media Player

28. Advantages of web application over desktop application.

Ans. =

- No Installation Required
- Automatic Updates
- Cross-Platform Compatibility
- Accessible from Anywhere
- Better Collaboration
- Lower Maintenance Costs
- Centralized Data Storage
- Easier Scalability
- Improved Security Control

29. Role of ui/ux design in application development .

Ans. = UI (User Interface) and UX (User Experience) design play a **crucial role** in how users interact with and feel about an application. It's not just about how the app looks — it's about how well it works for the people using it.

- Improves Usability
- Boosts User Satisfaction
- Increases User Retention
- Enhances Accessibility
- Strengthens Brand Identity
- Reduces Development Costs
- Supports Business Goals

30. Native vs hybrid mobile apps

Ans. = Both **native** and **hybrid** mobile apps are used to deliver mobile experiences — but they differ in how they're built, how they perform, and where they run.

Feature	Native App	Hybrid App
Definition	Built specifically for one	Built using web technologies (HTML, CSS,
	platform (iOS or Android)	JavaScript) and wrapped to run on multiple
		platforms
Technology Used	Swift (iOS), Kotlin/Java	Ionic, React Native, Flutter, Cordova, etc.
	(Android)	
Performance	Faster and more responsive	Slightly slower due to web layer
Platform Support	Platform-specific (iOS or	Cross-platform (iOS and Android from one
	Android)	codebase)
Access to Device	Full access to all device	Limited access; needs plugins for advanced
Features	APIs and hardware	features
	features	
User Experience	Consistent with platform	Might not feel 100% native
(UX)	standards (native look/feel)	
Development	Longer, separate codebases	Faster, one codebase for all platforms
Time	for each platform	
Maintenance	Harder to maintain two	Easier with one shared codebase
	codebases	
Examples	WhatsApp (native),	Instagram (originally hybrid), Twitter
	Instagram (native)	(partially hybrid)

31. Significance of DFDs in system analysis.

Ans. = A Data Flow Diagram (DFD) is a visual representation that shows how data moves through a system — what inputs are processed, where they go, and what outputs are produced.

In system analysis, DFDs are essential tools for understanding and designing systems before development begins.

- Clarify System Requirements
- Improve Communication
- Identify Data Sources and Destinations
- Reveal Redundancies and Inefficiencies
- Support Structured Design
- Aid in Documentation
- Helps in Testing and Validation

32. Pros and cons of desktop application.

Ans. = pros=

Advantage	Description
1. Works Offline	No internet needed once installed — can be used anytime.
2. Better Performance	Typically faster and more responsive than web apps.
3. Full Access to System	Can use hardware (like printers, scanners, GPU) more
Resources	efficiently.
4. More Feature-Rich	Can include complex functions not limited by browser
	capabilities.
5. Greater Security Control	Data can be stored and protected locally, with full user
	control.

Cons=

Disadvantage	Description
1. Requires Installation	Must be downloaded and installed on each device individually.
2. Limited Portability	Only available on the device it's installed on (unless synced).
3. Harder to Update	Users must manually install updates or patches.
4. Platform Dependent	Often works only on specific operating systems (Windows/macOS).
5. Higher Maintenance	More effort required for version control, support, and backups.

33. How flowcharts help in programming and system design.

- Visual Understanding of Logic
- Simplifies System Design
- Improves Communication
- Helps in Problem Solving

- Assists in Documentation
- Guides Development
- Useful in Testing

Common Flowchart Symbols:

- Rectangle
- Diamond
- Parallelogram
- Oval
- Arrow