- 1) Un vigile del fuoco, che si trova ad una distanza d=23m da un edificio in fiamme, dirige il getto d'acqua del suo idrante ad un angolo $\alpha=40^{\circ}$ rispetto all'orizzontale. Nell'ipotesi che l'acqua colpisca le finestre dell'edificio ad un'altezza h=15m dal suolo, calcolare il valore della velocità iniziale del getto. Determinare, quindi, il valore della velocità con cui l'acqua colpisce l'edificio.
- 2) Dato un sistema di riferimento in cui le unità di misura delle distanze sugli assi sono espresse in metri, calcolare il lavoro fatto da una forza $\vec{F}=(6,-2,0)$ nello spostare una particella di $\Delta \vec{r}=(3,1,0)$. Determinare il valore dell'angolo compreso fra \vec{F} e $\Delta \vec{r}$. Supponendo che l'energia cinetica finale sia $E_f=20J$, calcolare il rapporto fra la velocità iniziale e quella finale V_i/V_f .

ES 1:
$$d = 23 \, \text{m}$$
 $d = 40^{\circ}$ $h = 15 \, \text{m}$ $V_0 = ?$ $V_f = ?$

$$\begin{cases} \chi(t) = V_0 \chi t \\ y(t) = V_0 \chi t - \frac{1}{2} g t^2 \end{cases}$$

$$\begin{cases} V_0 \chi = V_0 \cos \lambda \\ V_0 \chi = V_0 \sin \lambda \end{cases}$$

$$= 0 \quad t = \frac{\chi}{V_0 \cos \lambda}$$

=D
$$y(x) = tand x - \frac{Q}{2Vo^2 cos^2 d} x^2$$
 Conosciamo $x = d e y(d) = 15 m$

Risolviamo per
$$V_0 = 0$$
 $\frac{2}{2 V_0^2 G_0 s^2 \lambda} x^2 = \tan x - h - 0$ $V_0^2 (\tan \lambda x - h) = \frac{2}{2 G_0 s^2 \lambda} x^2$

$$-0 \quad V_0 = \sqrt{\frac{2}{(\tan \lambda) x - h}} \frac{x^2}{(\tan \lambda) x - h} = \frac{32 \text{ m/s}}{V_0}$$

$$= 0 \quad \frac{1}{2} \ln V_0^2 = \ln 2 h + \frac{1}{2} \ln V_0^2$$

$$Q_2 \quad V_f = ? \quad V_0 + G_0 = V_f + G_f$$

Problema 2

$$Q_1 \angle = \int_{\overrightarrow{F}} dS = \overrightarrow{F} \cdot \overrightarrow{c} = (6\hat{i} - 2\hat{j}) \cdot (3\hat{i} + \hat{j}) = 18 - 2 = 16 \text{ Joule}$$

$$\begin{cases} F_X = F \cos \lambda & \begin{cases} T_X = T \cos \varphi \\ F_Y = F \sin \lambda \end{cases} & \begin{cases} T_Y = T \sin \varphi \end{cases} \end{cases}$$

$$\frac{Fy}{Fx}$$
 = ton d $\frac{Ty}{Tx}$ = ton d

$$\begin{cases} d = ton^{-1} \left(\frac{Fy}{Fx} \right) = -18.43^{\circ} \\ \varphi = ton^{-1} \left(\frac{Cy}{\pi x} \right) = 18.43^{\circ} \end{cases}$$

Q2 Alternativo
$$L = |\vec{F}| |A\vec{z}| \cos \lambda = 0 \cos \lambda = \frac{L}{\vec{F} \cdot A\vec{z}}$$

$$|\vec{F}| = \sqrt{6^2 + z^2} = 2\sqrt{10} , |\vec{z}| = \sqrt{10}$$

Q3 Se
$$\mathcal{E}_f = 20$$
 joile $\frac{V_i}{V_f}$ =0 $V_0 + G_0 = V_f + G_f$

$$\angle = \underbrace{\left(\frac{1}{2}mV_{f}^{2}\right)}_{\mathcal{E}_{f}} - \frac{1}{2}mV_{o}^{2} = D\underbrace{\left(\frac{1}{2}mV_{f}^{2}\right)}_{\mathcal{E}_{f}} \left(1 - \frac{V_{o}^{2}}{V_{f}^{2}}\right) = \angle$$

$$= D \quad 1 - \frac{Vo^2}{Vf^2} = \frac{L}{\mathcal{E}f} = D \quad \frac{V_0}{Vf} = \sqrt{1 - \frac{L}{\mathcal{E}f}} = 0.45$$

Time 15'

UNIVERSITA' DEGLI STUDI DEL SANNIO

ING. INFORMATICA ED ING. ELETTRONICA

Corso di FISICA - 12 CFU - (prof. A. Feoli) A. A. 2018-2019

Prova scritta d'esame del 1/04/2019

N.B. I compiti privi di spiegazioni sul procedimento non saranno valutati.

- 1) Una particella di massa m=3kg si muove nel piano xy con una velocità: $\vec{V}=(6+2t,4+t,0)m/s$. Trovare il modulo e la direzione (angolo rispetto all'asse x del sistema di riferimento) della corrispondente accelerazione della particella. Calcolare, infine, l'energia cinetica della particella al tempo t=5sec.
- 2) Il rapporto fra il tempo t_1 impiegato da un corpo per scendere di una distanza d lungo un piano inclinato con attrito e il tempo t_2 impiegato dallo stesso corpo per scendere della stessa distanza d lungo lo stesso piano inclinato, ma privo di attrito è

 $\frac{t_1}{t_2} = \frac{4}{3}$

$$m = 3 \text{ kg}$$
 piano xy $\sqrt{v} = [(6 + 2t)\hat{i}, (4+t)\hat{j}, 0) \text{ m/s}$

Q1 Modulo e direzione dell'accelerazione

$$\vec{a} = \frac{d}{dt} \vec{S} \qquad = 0 \qquad \vec{a} = 2\hat{i} + \hat{j} \qquad = 0$$

$$\begin{cases} a_x = a \cos \theta \\ a_y = a \sin \theta \end{cases} = b + t \sin \theta = \frac{a_y}{a_x} = b + 0 = a \tan \left(\frac{a_y}{a_x}\right) = \frac{26.56}{a_{xx}}$$
 Ans 1

$$|\bar{a}| = \sqrt{1 + 2^2} = \sqrt{5} \text{ m/s}^2$$

Qz:
$$\mathcal{E}_{cin} \alpha t = 5$$
" $\mathcal{E}_{cin} = \frac{1}{2} m v^2$, $m = 3 \kappa q$

Siccome
$$N = (6+2t)\hat{i} + (4+t)\hat{j} = \nabla V(5'') = 16\hat{i} + 9\hat{j} = \nabla V(5) = \sqrt{16^2 + 9^2}$$

$$= \nabla \mathcal{E}_{cin} = \frac{1}{2} m V^2 = \frac{1}{2} m (\sqrt{16^2 + 9^2})^2 = \frac{1}{2} m (16^2 + 9^2) = 505.5 \text{ Joule}$$

$$V = \sqrt{\cdots}$$

Tempo 15

Esercizio 2:

$$\frac{t_1}{t_2} = \frac{4}{3}$$

t1 = tempo per percorrere d Senza attrito

Q Trovare µ dato 2=45°

$$d = \frac{1}{2}at^{2} = 0 \qquad \frac{2d}{t^{2}} = 0 \qquad Q\left(\sin 2 - \mu \cos 4\right) = \frac{2d}{t_{4}^{2}}$$

$$-D \qquad t_{4} = \sqrt{\frac{2d}{g\left(\sin 2 - \mu \cos 2\right)}} = \lambda \cdot 4''$$

masind= m.a2 =0 asind= a -0 asind=
$$\frac{2d}{t_2^2}$$

$$=0 \quad t_2 = \sqrt{\frac{2d}{2\sin 2}} = K \cdot 3''$$

$$=0 \quad \frac{t_1}{t_2} = \frac{4 \cdot x}{3 \cdot x} = \frac{\sqrt{\frac{2d}{g(\text{sind-}\mu \cos d)}}}{\sqrt{\frac{2d}{g \cdot \sin d}}} = \frac{2d}{g(\text{sind-}\mu \cos d)} = \frac{2d}{g(\text{sind-}\mu \cos d)} = \frac{16}{9}$$

$$= D \frac{\sin d}{\sin d} - \frac{16}{9} = D \frac{t_1}{t_2} = \frac{4}{3} = \sqrt{\frac{\sin 2}{\sin d} - \mu \cos d}$$
Sind- $\mu \cos d$

Se
$$\lambda = 45^{\circ} = 0 \sqrt{\frac{\sqrt{2}}{2}} = \frac{4}{3} - 0 \sqrt{\frac{\sqrt{2}}{2}} = \frac{4}{3}$$

$$= 0 \sqrt{\frac{1}{1-\mu}} = \frac{4}{3} = 0 \qquad \frac{1}{1-\mu} = \frac{16}{9} = 0 \qquad 1-\mu = \frac{9}{16}$$

$$= 0 \qquad \mu = 1 - \frac{9}{16} = \frac{7}{16} \qquad \mu$$

Processo Alternativo

$$\frac{\sin 2}{16} \cdot 9 = \sin 4 - \mu \cos 4 = 0 \quad \mu \cos 4 = \sin 4 - \frac{9}{16} \sin 2 = 0 \quad \mu = \frac{7}{16}$$

$$= 0 \quad \mu = \frac{7}{16}$$

Esercizio 3

$$Q = 10^{-9} C$$
 $R = 2 m$

$$\bar{\Phi} = \int_{S}^{-\hat{o}} \hat{n} dS = \frac{Q}{\varepsilon_{o}}$$
For main Tegrale

$$\nabla E = \int_{E_0}^{-0.00}$$
 Forma differenziale

$$-p = \frac{dQ}{dV}$$

 $-D P = \frac{dQ}{dV} \qquad OVVERO \quad DENSITA' DI CARICA VOLUMETRICA$

=D
$$V_{Sfera} = \frac{4}{3}\pi R^3 = 0$$
 $f = \frac{10^9 c}{\frac{4}{3}\pi R^3} = 0$ $\nabla E = \frac{310^{-9} c}{4\pi R^3 E_0} = 3.37 \frac{N}{Cm}$

 $Q_2 | F_c |$ Subita da un protone $q = 1.6 \times 10^{-19} C$ d = 5 m

