

Modelización de Materiales 2018

MEF 02: Ensamble de Matrices (parte 1)

Mariano Forti - Ruben Weht

ruweht@cnea.gov.ar marianodforti@gmail.com

www.tandar.cnea.gov.ar/~weht/Modelizacion

https://mdforti.github.io/Modelizacion/

Ejemplo: Problema de la Ménsula

Indexación de los grados de libertad

Nodo	grados de libertad	
1	u ₁ , u ₂	
2	$U_3^{}$, $U_4^{}$	
3	$U_5^{}$, $U_6^{}$	

$$F = \begin{vmatrix} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \end{vmatrix}$$

Matrices descriptivas del sistema

Es conveniente definir algunas variables descriptivas...

Matriz de Nodos

Guarda las coordenadas de los nodos con el orden de la numeración

$$MN = \begin{bmatrix} 0 & 0 & 0 \\ L & 0 & 0 \\ L & L & 0 \end{bmatrix}$$

Dimensionalidad y grados de libertad

Dimension ≠ grados de libertad por nodo(glxn)

Matriz de Conectividad

una fila por elemento, y para cada elemento la lista de nodos que lo conforman

$$MC = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$$

Indexación y trazabilidad de nodos

$$n_i = MC(e, i)$$

$$x_i^e = MN(MC(e,i),1); y_i^e = MN(MC(e,i),2)$$

$$\theta_{e} = arctg_{2} \left(\frac{x_{2}^{e} - x_{1}^{e}}{y_{2}^{e} - y_{1}^{e}} \right)$$

$$L_{e} = \sqrt{\left(x_{2}^{e} - x_{1}^{e}\right)^{2} + \left(y_{2}^{e} - y_{1}^{e}\right)^{2}}$$

Matriz de Rigidez

A partir de las matrices de nodos y de conectividad...

$$[K]_{e} = k_{e} \begin{vmatrix} c^{2} & cs & -c^{2} & -cs \\ cs & s^{2} & -cs & -s^{2} \\ -c^{2} & -cs & c^{2} & cs \\ -cs & -s^{2} & cs & s^{2} \end{vmatrix}$$

Matrices de rigidez elementales

Ecuación global para el elemento 1

$$MC = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 3 \\ 3 & 1 \end{bmatrix}$$

		1	2	3	4	5	6	,	1 1
	1	k_1		0	-k1	O	0	0	$ u_1 $
$F^{(1)} = \frac{1}{1}$	2	0		0	0	0	0	0	$ u_2 $
	3	-k	1	0	<i>k</i> 1	0	0	0	$ u_3 $
	4	0		0	0	0	0	0	$ u_4 $
	5	0		0	0	0	0	$\overline{0}$	$ u_5 $
	6	0		0	0	0	0	0	$ u_6 $
		1						1	

Ecuación global para el elemento 2

	3	4	5	6
3	0	0	0	0
4	0	k_1	0	$-k_1$
5	0	0	0	0
6	0	$-k_1$	0	k_1

				l.				
		1	2	3	4	5	6	1 1
	1	0	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$
	2	0	0	0	0	0	0	$ u_2 $
	3	0	0	0	0	0	0	u_3
	4	0	0	0	k_1	0	$0 \\ -k_1$	$\begin{bmatrix} u_3 \\ u_4 \end{bmatrix}$
_	5	0	0	0	0	0	0	u_5
	•	\cap	\cap	\mathbf{O}	1-	\mathbf{O}	1-	

Ecuación global para el elemento 3

$$MC = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ \hline 3 & 1 \end{bmatrix}$$

$$M^3 = k_3$$

Ecuación Global

$$F = F^{(1)} + F^{(2)} + F^{(3)}$$

$$F = (M^{(1)} + M^{(2)} + M^{(3)})X$$

$$F = M X$$

$$M = M^{(1)} + M^{(2)} + M^{(3)}$$

$$E=300 \, GPa$$
 ; $A=1\times 10^{-4} \, m^2$

Resolución del sistema

Por último:

$$K_{r,r'}$$
 $u_{r'} = F_r - K_{r,s} u_s$

Que se resuelve rápidamente:

$$u_{r'} = K_{r',r}^{-1} \left[F_r - K_{r,s} u_s \right]$$

Una vez que se conocen todos los u_i se pueden recuperar las fuerzas de vínculo:

$$F_s = K_{s,j} u_j$$

Modelización de Materiales 2018

Ensamble de Matrices: Generalización

Grados de Libertad locales y globales

$$MC = \begin{pmatrix} \vdots & \vdots \\ n_i & n_j \\ \vdots & \vdots \end{pmatrix} \quad \text{Elemento } e$$

Matriz elemental

Matriz Global

Rangos de índices de Matrices Locales

Nodo elemental (cumna de la matriz de conectividad)	índices de los grados de libertad			
1	1:glxn			
2	glxn+1:2glxn			
3	2glxn+1:3glxn			
4	3glxn+1:4 glxn			
i	(i-1)glxn-1 : i glxn			

Bloques de matrices locales

$$k_e^{i,j} = k_e[(i-1)\cdot glxn + 1:i\cdot glxn; (j-1)\cdot glxn + 1:j\cdot glxn]$$

Bloques de Matrices Globales

Ensamble de Matrices

$$MC = \begin{pmatrix} \vdots & \vdots \\ n_i & n_j \\ \vdots & \vdots \end{pmatrix}$$
 Elemento i-ésimo

Matriz elemental

 n_i

$$M\left((n_i-1)glxn+1:n_iglxn, (n_j-1)glxn+1:n_jglxn\right)$$

Volviendo al ejemplo de la ménsula

