Machine Learning Approaches to the Blockchain

Jean-Paul Ebejer

Supervisor: Dr Zhivago

Co-supervisor: Dr Who

March, 2022

Submitted in partial fulfilment of the requirements for the degree of Some Degree.

Acknowledgements

Abstract

Contents

1	Intro	oduction	1
	1.1	Motivation	1
	1.2	Proposed Solution	1
		1.2.1 Showing the Use of Acronyms	2
	1.3	Document Structure	2
2	Bacl	kground & Literature Overview	3
	2.1	An Example of an Equation	3
	2.2	An Example of a Numbered List	4
	2.3	An Example of a Bulleted List	4
	2.4	An Example of a Figure	5
	2.5	An Example of a Side-by-Side Figure	6
	2.6	An Example of a Table	6
	2.7	An Example of a Long Table	7
	2.8	A Landscape Table Example	9
	2.9	A Theorem Example	11
	2.10	A Lemma Example	11
	2.11	. A Proof Example	12
	2.12	A Listing Example	13
	2.13	An Algorithm Example	14
	2.14	Some Technique One	14
		2.14.1 Some Sub-technique One	15
	2.15	Some Technique Two	16
	2.16	Evaluation Criteria	17
	2.17	Related Work	17
	2.18	An Example of Suppressing Page Numbers on A Float Page	17
	2.19	Summary	18

CONTENTS

3	Materials & Methods	20
	3.1 Summary	20
4	Results & Discussion	21
	4.1 An Example of a Table Spanning Multiple Pages	22
	4.2 Summary	22
5	Evaluation	23
	5.1 Summary	24
6	Conclusions	25
	6.1 Revisiting the Aims and Objectives	25
	6.2 Critique and Limitations	
	6.3 Future Work	26
	6.4 Final Remarks	26
Аp	ppendix A Media Content	27
Аp	ppendix B Installation Instructions	29
Аp	ppendix C User Manual	32
Re	eferences	34

List of Figures

2.1	This is the short caption for List of Figures	5
2.2	Short Caption	6
2.3	Short Random Caption	19

List of Tables

2.1	A Beautiful and Complex Table	7
2.2	Performance of Ligity in HTS mode against the Ligity-compatible DUD-E targets	7
2.3	A landscape table	10

List of Abbreviations

CDMA Code Division Multiple Access	. 2
GSM Global System for Mobile communication	. 2
TDMA Time Division Multiple Access	. 2
UA Used Acronym	.2

Chapter 1

Introduction

Note that you may have multiple \include statements here, e.g. one for each subsection.

1.1 Motivation

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

1.2 Proposed Solution

1.2.1 Showing the Use of Acronyms

In the early nineties, GSM was deployed in many European countries. Global System for Mobile communication (GSM) offered for the first time international roaming for mobile subscribers. The GSM's use of Time Division Multiple Access (TDMA) as its communication standard was debated at length. And every now and then there are big discussion whether Code Division Multiple Access (CDMA) should have been chosen over TDMA.

If you want to know more about Global System for Mobile communication (GSM), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) and other acronyms, just read a book about mobile communication. Just to mention it: There is another Used Acronym (UA), for testing.

1.3 Document Structure

Chapter 2

Background & Literature Overview

In this section you need to explain all the theory required to understand your dissertation (i.e. the following chapters). But really in this chapter I am going to show you some examples.

2.1 An Example of an Equation

The following is the most beautiful equation in maths, Euler's Identity (Equation 2.1).

$$e^{i\pi} + 1 = 0 (2.1)$$

where:

e =the constant

i = of complex fame

 $\pi = \text{not of the apple variety}$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected

font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.2 An Example of a Numbered List

This is an example of a numbered list:

- 1. This is my first point
- 2. My second
- 3. My third!
- 4. And my fourth?

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.3 An Example of a Bulleted List

This is an example of a bulleted list:

- This is my first point
- My second
- My third!
- · And my fourth?

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected

font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.4 An Example of a Figure

A test figure is shown in Figure 2.1.

Figure 2.1: A test figure. This caption is huge, but in the list of figures only the smaller version in the square brackets will appear.

2.5 An Example of a Side-by-Side Figure

Two figures shown side-by-side are shown in Figure 2.2.

Figure 2.2: The same super saiyan. Two times.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.6 An Example of a Table

A beautiful table is shown in Table 2.1, data from Ebejer et al. (2012) (when citing as part of text, otherwise use parentheses (Ebejer et al., 2012) version).

		w = 8		w = 16						
	t = 0	t = 1	t = 2	t	=0	t = 1	t = 2			
dir = 1										
С	0.0790	0.1692	0.2945	0.3	8670	0.7187	3.1815			
С	-0.8651	50.0476	5.9384	-9.0	714	297.0923	46.2143			
С	124.2756	-50.9612	-14.2721	128.2	265	-630.5455	-381.0930			
dir = 0										
С	0.0357	1.2473	0.2119	0.3	3593	-0.2755	2.1764			
С	-17.9048	-37.1111	8.8591	-30.7	'381	-9.5952	-3.0000			
С	105.5518	232.1160	-94.7351	100.2	497	141.2778	-259.7326			

Table 2.1: A Beautiful and Complex Table

2.7 An Example of a Long Table

The following is an example of a table (Table 2.2) spanning multiple pages.

Table 2.2: Performance of Ligity in HTS mode against the Ligity-compatible DUD-E targets. The mean (and standard deviation in parentheses) values of ROC AUC using Tanimoto is 0.622 (± 0.132), while for Tversky it is 0.671 (± 0.142); the mean EF $_{1\%}$ using Tanimoto is 5.648 (± 8.668), while for EF $_{1\%}$ using Tversky it is 9.047 (± 12.713).

Target	No. of	No. of	ROC	ROC	BEDROC	BEDROC	EF _{1%}	EF _{1%}
	Ac-	De-	AUC	AUC	Tani-	Tversky	Tani-	Tversky
	tives	coys	Tani-	Tversky	moto		moto	
			moto					
ABL1	182	10,750	0.563	0.473	0.077	0.077	1.653	2.204
ACE	281	16,877	0.787	0.787	0.336	0.401	12.425	19.525
ACES	453	26,242	0.634	0.645	0.077	0.155	1.766	5.518
ADA	93	5,450	0.724	0.660	0.149	0.147	3.251	3.251
ADA17	532	35,898	0.638	0.728	0.103	0.283	1.317	9.030
ADRB1	247	15,850	0.523	0.647	0.065	0.129	1.619	5.262
ADRB2	231	14,999	0.523	0.589	0.052	0.040	1.735	0.000
AKT1	293	16,450	0.386	0.548	0.039	0.107	2.737	3.080
AKT2	117	6,900	0.511	0.685	0.140	0.194	8.568	8.568
ALDR	159	8,988	0.574	0.610	0.202	0.172	10.747	6.322
AMPC	48	2.845	0.521	0.541	0.049	0.023	0.000	0.000
ANDR	269	14.349	0.722	0.742	0.194	0.354	4.839	24.938
AOFB	121	6,875	0.422	0.464	0.045	0.027	1.652	0.000
BACE1	283	18,100	0.441	0.775	0.017	0.310	0.000	13.062
BRAF	152	9,950	0.612	0.639	0.208	0.165	12.502	5.264
CASP3	199	10.694	0.600	0.734	0.068	0.258	0.502	7.031
CDK2	474	27,838	0.467	0.507	0.021	0.048	0.000	1.055

(continued...)

CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW

COMT	Target	No. of	No. of	ROC	ROC	BEDROC	BEDROC	EF _{1%}	EF _{1%}
COMT		Ac-	De-	AUC	AUC	Tani-	Tversky		
COMT		tives	coys	Tani-	Tversky	moto		moto	
CP2C9 120 7,449 0.518 0.634 0.052 0.056 0.483 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.134 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 1.2665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.134 12.068 0.000 DH1 330 19,348 0.481 0.595 0.022 0.037 10.786 15.689 DH1 330 19,348 0.481 0.595 0.021 0.379 10.786 15.689 DH1 330 19,348 0.481 0.595 0.089 0.042 2.422 1211 DPDA 334 0.644 0.758 0.210 0.332 6.042 2.511 ESR1 367 20,199 0.844 0.758 0.210 0.332 6.103 3.44				moto					
CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.136 0.155 6.031 7.238 CXCR4 40 3.405 0.575 0.722 0.217 0.134 12,665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15,689 DHI1 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.4941 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.841 0.527 0.594 31,281 39,101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,644 6.740 0.537 0.538 0.210 0.330 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.841 0.527 0.594 31,281 39,101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,644 6.741 0.537 28,324 0.564 0.674 0.058 0.118 0.332 6.105 8.721 FABP4 47 2.749 0.762 0.889 0.210 0.332 6.105 8.721 FABP4 47 2.749 0.786 0.744 0.011 0.276 0.000 1.0637 0.761 0.76									
CSF1R 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12,656 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15,689 DH11 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3,937 DRD3 480 34,048 0.484 0.481 0.0595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3,937 DRD3 480 34,048 0.484 0.481 0.0595 0.089 0.064 1.251 0.626 DVR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 0.581 0.581 383 20,683 0.838 0.861 0.527 0.594 31,281 39,101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6.249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 1.623 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8.842 0.917 0.985 0.323 0.776 2.360 36,581 GGR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GGR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GGR 258 14,998 0.805 0.834 0.244 0.324 3.092 1.873 1.1240 GRIA 1.184 0.662 0.684 0.248 0.154 1.139 5.696 GRIK1 1.01 6.547 0.656 0.668 0.203 0.102 7.978 1.1995 1.190 0.804 0.819 1.104 0.490 0.640 0.819 0.102 0.377 2.946 8.250 1.190 0.000 0.000 0.000 0.676 0.734 0.187 0.000 0.187 2.3898 1.194 0.449 0.640 0.819 0.102 0.377 2.946 8.250 1.194 0.490 0.490 0.817 0.995 0.000 0.0					0.634	0.058	0.186		
CXCR4 40 3,405 0.575 0.722 0.217 0.134 12,665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10,786 15,689 DHHI 333 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPPA 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.004 1.251 0.626 EGFR 542 35,047 0.573 0.491 0.054 0.037 0.922 0.000 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.31 1.011 0.055 0.020 0.544 2.301 5.22 0.036 0.188 0.210 3.32 6.105 8.721 FABPA 47 2,749 0.786 0.744 0.051 0.019 0.000 10.623 FABPA		1/0			0.493 0.542				2.345 7.238
DEF			3,405	0.575	0.722	0.217	0.134		
DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3,937 DRD3 480 34,048 0.484 0.484 0.441 0.043 0.046 1.251 0.626 DVR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28.324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6.249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5.350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8.842 0.917 0.985 0.323 0.776 2.340 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.16 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.16 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.16 GCR 154 1.006 0.674 0.665 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6.547 0.656 0.668 0.203 0.102 0.772 1.373 11.240 GRIK1 101 6.547 0.656 0.668 0.203 0.102 0.778 1.995 HDAC2 185 10.300 0.676 0.879 0.030 0.116 0.000 3.018 HIVRT 338 18.884 0.495 0.475 0.120 0.300 0.116 0.000 3.018 HIVRT 338 18.884 0.495 0.475 0.120 0.300 0.116 0.000 3.436 HIVRT 338 18.884 0.495 0.475 0.120 0.370 0.985 0.000 0.0			5,699	0.732	0.833	0.212	0.379	10.786	
DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DVR 231 17.196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8.842 0.917 0.885 0.323 0.776 2.360 36.581 FPPS 85 8.842 0.917 0.885 0.323 0.776 2.360 36.581 GGRA 2.58 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GICM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIAZ 158 11,842 0.662 0.684 0.248 0.154 1.392 5.696 GRIK1 101 6.547 0.656 0.668 0.203 0.102 7.978 1.995 FNDACE 185 10,300 0.676 0.734 0.187 0.201 3.77 2.946 8.250 HIVNIT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.436 HIVNIT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.436 HIVNIT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.438 HIVRT 338 18.884 0.495 0.475 0.124 0.085 4.443 1.777 1.875 0.480 0.884 0.495 0.495 0.495 0.393 0.000 0.187 2.3898 HIVRT 338 18.884 0.495 0.495 0.495 0.037 0.490 0.187 2.3898 HIVRT 338 18.884 0.495 0.495 0.495 0.030 0.116 0.000 3.436 0.484 0.495 0.495 0.495 0.495 0.030 0.116 0.000 3.436 0.484 0.495 0.495 0.495 0.495 0.030 0.116 0.000 3.436 0.484 0.495		330 533			0.595 0.591	0.089			
DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.885 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 1.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.075 0.124 0.085 2.358 HIVRT 38 18,884 0.495 0.475 0.124 0.085 4.433 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HIVRT 38 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HIVRT 138 8,800 0.619 0.465 0.060 0.068 0.652 2.358 35,963 HIVRT 138 8,800 0.619 0.465 0.060 0.068 0.652 2.358 35,963 HIVRT 138 8,800 0.619 0.465 0.006 0.068 0.008 0.554 0.000 0.000 ITAL 138 8,500 0.490 0.555 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.490 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.490 0.495 0.375 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.030 0.116 0.000 3.318 HIVRT 166 10,449 0.463 0.437 0.045 0.030 0.116 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.030 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.030 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.030 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.030 0.000 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.031 0.1049 0.041 0.045 0.000 0.000 ITAL 140 0.460 0.488 0.489 0.020 0.031 0.962 0.000 0			- /		0.371			1.251	
ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20.199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6.249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2.749 0.786 0.744 0.191 0.276 0.000 1.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8.842 0.917 0.885 0.042 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GILCM 54 3,790 0.667 0.885 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.884 0.248 0.154 11.392 5.696 GRIK1 101 6.547 0.656 0.668 0.203 0.102 7.778 1.995 HDAC2 185 10.300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 2.3898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8.750 0.480 0.906 0.068 0.652 2.358 35,963 HSPA 8.850 0.619 0.465 0.096 0.008 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 2.3898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8.750 0.480 0.906 0.068 0.652 2.358 35,963 HSPA 8.850 0.619 0.465 0.037 0.065 0.000 0.728 KIF11 116 6.850 0.755 0.810 0.499 0.118 2.807 1.4941 KIF1 116 6.850 0.755 0.781 0.149 0.219 4.289 2.574 KIF1 116 6.850 0.755 0.810 0.499 0.129 0.238 8.923 1.2641 KIT 166 10.449 0.463 0.497 0.045 0.030 0.116 0.000 0.000 KITH 57 2.850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 133 8.699 0.753 0.813 0.220 0.338 8.923 1.2641 KIR 1 166 10.449 0.463 0.437 0.045 0.030 0.000 0.728 KIPCB 133 8.699 0.753 0.813 0.220 0.338 8.923 1.2641 KIR 1 166 10.449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2.850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 133 8.699 0.753 0.813 0.220 0.338 8.923 1.2641 KIR 1 166 10.449 0.463 0.483 0.497 0.045 0.030 0.000 0.000 KITH 57 2.850 0.649 0.838 0.221 0.404 0.409 0.404 0.409 0.404 0.409 0.404 0.409 0.404 0.409 0.40	DYR	231		0.694	0.758	0.210	0.230	6.504	7.371
ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10,623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 0.741 0.776 0.000 1.623 0.751 0.162 0.164 1.115 0.799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 0.787 0.767 0.58 0.781 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 0.676 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.885 0.182 0.279 1.873 11.240 0.6RIA2 158 11.842 0.662 0.884 0.248 0.154 11.392 5.696 GRIK1 101 6.547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDACB 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINIT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35.724 0.663 0.872 0.072 0.490 0.187 2.3898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.490 0.554 0.030 0.116 0.000 3.018 GFF18 148 9,300 0.502 0.575 0.057 0.189 0.037 15.192 9.766 0.724 1.138 8.500 0.490 0.555 0.057 0.096 0.085 4.443 1.777 1.144 1.38 8.500 0.490 0.502 0.575 0.057 0.189 2.037 14.941 1.144 1.138 8.500 0.490 0.502 0.575 0.057 0.189 2.037 14.941 1.144 1.138 8.500 0.490 0.502 0.575 0.057 0.189 2.037 14.941 1.144 1.138 8.500 0.490 0.502 0.575 0.057 0.189 0.037 15.192 9.766 0.658 0.358 0.000 0.308 0.000 0.728 1.342 1.07 6.500 0.472 0.475 0.031 0.045 0.000 0.000 0.000 0.001 1.14 0.000 0.000 0.000 0.001 1.14 0.000 0.000 0.000 0.001 1.14 0.000 0	EGFR ECD1				0.491				0.000
FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6.249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2.749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8.842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.885 0.823 0.776 2.360 36.581 0.124 0.152 0.									
FABP4 47 2,749 0,786 0,744 0,191 0,276 0,000 10,623 FAK1 100 5,350 0,642 0,531 0,111 0,206 2,2019 0,000 FGFR1 139 8,698 0,511 0,522 0,036 0,088 0,722 1,445 FKB1A 111 5,799 0,605 0,751 0,162 0,164 8,122 3,610 FNTA 592 51,493 0,411 0,625 0,012 0,132 0,000 4,053 FPPS 85 8,842 0,917 0,985 0,323 0,776 2,360 36,581 GCR 258 14,998 0,805 0,834 0,244 0,324 3,092 8,116 GLCM 54 3,790 0,667 0,885 0,182 0,279 1,873 11,240 GRIA2 158 11,842 0,662 0,884 0,248 0,154 11,392 5,696 GRIK1 101 6,547 0,656 0,668 0,203 0,102 7,978 1,995 HDAC2 185 10,300 0,676 0,734 0,187 0,201 4,318 4,318 HDAC2 185 10,300 0,676 0,734 0,187 0,201 4,318 4,318 HDAC3 170 10,449 0,640 0,819 0,120 0,377 2,946 8,250 HIVINT 100 6,640 0,390 0,554 0,030 0,116 0,000 3,018 HIVPR 535 35,724 0,663 0,872 0,072 0,490 0,187 23,898 HIVRT 388 18,884 0,495 0,475 0,124 0,085 4,443 1,777 HMDH 170 8,750 0,480 0,906 0,068 0,652 2,358 35,963 HS90A 88 4,850 0,635 0,506 0,996 0,083 0,000 3,436 HKK4 92 4,700 0,662 0,803 0,206 0,307 15,192 9,766 ISH1R 48 9,300 0,502 0,575 0,031 0,045 0,000 0,000 ITAL 138 8,500 0,619 0,465 0,037 0,065 0,000 0,000 ITAL 138 8,500 0,619 0,465 0,037 0,065 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,118 2,807 6,549 KIFT1 166 10,449 0,640 0,472 0,475 0,073 0,118 2,807 6,549 KIFT1 166 10,449 0,463 0,437 0,045 0,030 0,000 0,000 KITH 57 2,850 0,451 0,451 0,452 0,030 0,000 0,000 KITH 57 2,850 0,649 0,838 0,226 0,709 14,049 47,483 0,753 0,813 0,220 0,338 8,923 12,641 LCK 419 27,391 0,471 0,437 0,031 0,043 0,000 1,910 LKHA4 171 9,448 0,718 0,649 0,753 0,813 0,220 0,338 8,923 12,641 LCK 419 27,391 0,471 0,437 0,031 0,045 0,030 0,000 0,000 KITH 578 3,548 0,000 0,488 0,488 0,225 0,750 0,451 0,049 0,046 0,049 0,046 0,030 0,000 0,000 KITH 579 4,550 0,518 0,602 0,175 0,057 0,189 0,033 0,000 0,000 0,000 KITH 579 4,550 0,518 0,602 0,175 0,051 0,000 0,000 0,000 KITH 579 4,550 0,518 0,602 0,175 0,051 0,000	FA10	537	28,324	0.564	0.674	0.058	0.118	0.930	2.232
FAR1 100 5.350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8.842 0.917 0.985 0.323 0.776 2.360 3.6581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.885 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6.547 0.656 0.688 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HSY0A 8 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.037 0.189 2.037 14.941 INHAA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.074 0.189 2.037 14.941 INHAA 43 2,300 0.493 0.575 0.037 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 KITT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 KITT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.6						0.210	0.332		8.721
FGRR1 139 8,698 0,511 0,522 0,036 0,088 0,722 1,445 FKB1A 111 5,799 0,605 0,751 0,162 0,164 8,122 3,610 FNTA 592 51,493 0,411 0,625 0,012 0,132 0,000 4,053 FPPS 85 8,842 0,917 0,985 0,323 0,776 2,360 36,581 GCR 258 14,998 0,805 0,834 0,244 0,324 3,092 8,116 GLCM 54 3,790 0,667 0,685 0,182 0,279 1,873 11,240 GRIA2 158 11,842 0,662 0,684 0,248 0,154 11,392 5,696 GRIK1 101 6,547 0,656 0,668 0,203 0,102 7,978 1,995 HDAC2 185 10,300 0,676 0,734 0,187 0,201 4,318 4,318 HDAC8 170 10,449 0,640 0,819 0,120 0,377 2,946 8,250 HIVINT 100 6,640 0,390 0,554 0,030 0,116 0,000 3,018 HIVPR 535 35,724 0,663 0,872 0,072 0,490 0,187 23,898 HIVRT 338 18,884 0,495 0,475 0,124 0,085 4,443 1,777 HMDH 170 8,750 0,480 0,906 0,068 0,652 2,358 35,963 HS90A 88 4,850 0,635 0,506 0,906 0,083 0,000 3,436 HXK4 92 4,700 0,662 0,803 0,206 0,337 15,192 9,766 IGF1R 148 9,300 0,502 0,575 0,057 0,189 2,037 14,941 NIHAA 43 2,300 0,493 0,575 0,031 0,045 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,124 0,085 4,443 1,777 HMDH 138 8,500 0,619 0,465 0,037 0,045 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,031 0,045 0,000 0,000 ITAL 138 8,500 0,619 0,465 0,037 0,045 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,031 0,045 0,000 0,000 ITAL 138 8,500 0,619 0,465 0,037 0,045 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,118 2,807 6,549 KIFT1 166 10,449 0,463 0,437 0,045 0,030 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,118 2,807 6,549 KIFT1 166 10,449 0,463 0,437 0,045 0,030 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,728 JAK2 107 6,500 0,472 0,475 0,073 0,045 0,300 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,			2,749 5,350						
FNTA 592 51,493 0,411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.885 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4.850 0.635 0.506 0.096 0.086 0.652 2.358 35.963 HS90A 88 4.850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2.300 0.479 0.479 0.057 0.057 0.189 2.037 14.941 INHA 43 2.300 0.479 0.465 0.037 0.065 0.000 0.728 JAK2 107 6.500 0.472 0.475 0.031 0.045 0.000 0.000 ITAL 138 8.500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8.500 0.619 0.465 0.037 0.045 0.000 0.000 ITAL 138 8.500 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8.699 0.755 0.781 0.149 0.219 4.289 2.574 INHA 171 9.448 0.7463 0.437 0.045 0.030 0.000 0.000 ITAL 138 8.690 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8.699 0.755 0.781 0.149 0.219 4.289 2.574 MITH 57 2.850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8.699 0.755 0.781 0.149 0.219 4.289 2.574 MITH 57 2.850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8.699 0.755 0.781 0.149 0.219 4.289 2.574 MITH 57 2.850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8.699 0.753 0.813 0.220 0.338 8.923 12.641 ICK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 IKHAH 171 9.448 0.766 0.531 0.130 0.065 6.032 0.003 0.000 0.000 MITH 57 8.850 0.660 0.570 0.714 0.199 5.88 3.992 MCR 94 5.149 0.816 0.888 0.215 0.454 6.436 19.307 MFTH 124 0.4660 0.483 0.489 0.020 0.031 0.962 0.962 MK14 578 35.847 0.511 0.889 0.040 0.0664 0.173 0.519 MMP13 572 37.199 0.648 0.565 0.569 0.187 0.058 3.293 0.		139			0.522	0.036	0.088		1.445
FPPS						0.162			
GCR GLCM 54 3,790 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6.547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.018 2.897 4.941 INHA 43 2.300 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6.850 0.7755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8.699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6.148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MK10 104 6.600 0.488 0.489 0.020 0.031 0.065 6.032 0.603 MK01 79 4,555 0.518 0.602 0.121 0.045 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6.148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,555 0.518 0.602 0.121 0.026 5.095 3.821 MK10 104 6.600 0.488 0.489 0.020 0.031 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6.600 0.883 0.483 0.451 0.109 0.041 3.071 0.006 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.512 MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8.146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8.028 0.483 0.451 0.109 0.041 3.071 0.000 0.000 0.		592 85				0.012		2 360	4.053 36.581
GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6.547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8.750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6.850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6.148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.995 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.913 MR01 79 4,550 0.518 0.602 0.121 0.206 5.995 3.821 MMPI3 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000		258		0.805	0.834	0.244	0.324	3.092	8.116
GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.419 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8,923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.603 NCAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARPI 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.0					0.685	0.182		1.873	
HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6.640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15,192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14,941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14,069 47,483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.774 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19,307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.813 0.220 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.819 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.819 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050				0.662 0.656	0.684 0.668				
HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HSVR1 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14,941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF1 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8,923 12.641 LCK 419 27,391 0.471 0.437 0.31 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.774 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.064 9.957 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK10 194 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.813 0.200 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.859 0.342 0.290 11.221 3.060 PAZGA 99 5,550 0.793 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.00						0.187	0.201		4.318
HIVPR		170	10,449	0.640	0.819	0.120	0.377	2.946	8.250
HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9,766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14,941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPR2 101 6,148 0.660 0.670 0.174 0.199 5,988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050									3.018
HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.753 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.055		338	18,884	0.495		0.124			1.777
HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MPZK1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PAZGA 99 5,150 0.793 0.645 0.637 0.077 0.100 0.000 2.050		170	8,750	0.480	0.906	0.068		2.358	
IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHAA									
INHA			9,300						
JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MCR 101 6,148 0.660 0.670 0.174 0.199 5,988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET			2,300						
KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.671 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK10									
KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK10 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10									
KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MP2K1		166	10,449	0.463	0.437	0.045	0.030	0.000	
LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910 LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1					0.838 0.813				
LKHA4 171 9,448 0.718 0.694 0.238 0.150 8.203 1.758 MAPK2 101 6,148 0.660 0.670 0.174 0.199 5.988 3.992 MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.									
MCR 94 5,149 0.816 0.888 0.215 0.454 6.436 19.307 MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1	LKHA4		9,448	0.718	0.694	0.238	0.150	8.203	
MET 166 11,249 0.566 0.531 0.130 0.065 6.032 0.603 MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1		101 04		0.660 0.816					
MK01 79 4,550 0.518 0.602 0.121 0.206 5.095 3.821 MK10 104 6,600 0.488 0.489 0.020 0.031 0.962 0.962 MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1			11,249						
MK14 578 35,847 0.511 0.589 0.040 0.064 0.173 0.519 MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050	MK01	79	4,550	0.518	0.602	0.121			3.821
MMP13 572 37,199 0.648 0.753 0.134 0.268 2.446 9.957 MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050									
MP2K1 121 8,146 0.669 0.569 0.187 0.058 3.293 0.823 NOS1 98 8,028 0.483 0.451 0.109 0.041 3.071 0.000 NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050						0.134			
NRAM 98 6,200 0.853 0.859 0.342 0.290 11.221 3.060 PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050	MP2K1	121	8,146	0.669	0.569	0.187	0.058	3.293	0.823
PA2GA 99 5,150 0.793 0.756 0.225 0.153 1.020 3.059 PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050									
PARP1 508 30,029 0.635 0.692 0.215 0.231 11.234 7.884 PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050			5,200						
PGH1 195 10,798 0.645 0.637 0.077 0.100 0.000 2.050	PARP1	508	30,029	0.635	0.692	0.215	0.231	11.234	7.884
	PGH1 PGH2	195 435	10,798 23,139	0.645 0.716	0.637 0.780	0.077 0.166	0.100 0.291	0.000 3.444	2.050 9.874
PLK1 107 6,800 0.658 0.531 0.123 0.048 1.871 0.000									

(continued...)

Target	et No. of No. of		ROC	ROC	BEDROC	BEDROC	EF _{1%}	EF _{1%}	
	Ac-	De-	AUC	AUC	Tani-	Tversky	Tani-	Tversky	
	tives	coys	Tani-	Tversky	moto		moto		
			moto						
PNPH	103	6,946	0.575	0.578	0.161	0.181	4.888	8.799	
PPARA	373	19,399	0.783	0.778	0.262	0.280	6.693	7.764	
PPARD	240	12,250	0.547	0.544	0.078	0.098	1.665	2.498	
PPARG	484	25,299	0.515	0.605	0.055	0.118	0.619	4.955	
PRGR	293	15,648	0.740	0.793	0.142	0.318	2.053	14.714	
PTN1	130	7,249	0.398	0.538	0.055	0.090	0.000	3.068	
PUR2	50	2,700	0.851	0.837	0.281	0.255	7.857	1.964	
PYGM	77	3,944	0.403	0.492	0.016	0.137	0.000	3.917	
PYRD	111	6,449	0.682	0.710	0.462	0.413	34.027	16.118	
RENI	104	6,956	0.720	0.789	0.043	0.138	0.000	0.000	
ROCK1	100	6,300	0.347	0.449	0.020	0.084	1.000	4.000	
RXRA	131	6,950	0.788	0.900	0.219	0.596	6.091	27.407	
SAHH	63	3,450	0.874	0.852	0.598	0.542	35.050	27.084	
SRC	524	34,500	0.565	0.477	0.065	0.050	0.382	0.573	
TGFR1	133	8,499	0.609	0.639	0.147	0.154	10.565	4.528	
THB	103	7,450	0.794	0.762	0.238	0.150	10.614	0.965	
THRB	461	27,000	0.605	0.706	0.063	0.166	2.166	5.632	
TRY1	449	25,975	0.711	0.815	0.147	0.280	2.898	6.688	
TRYB1	148	7,650	0.670	0.670	0.153	0.132	3.378	3.378	
TYSY	109	6,745	0.594	0.725	0.071	0.226	0.911	5.468	
UROK	162	9,850	0.525	0.650	0.036	0.120	0.000	1.854	
VGFR2	409	24,948	0.632	0.578	0.083	0.093	1.465	1.465	
WEE1	102	6,150	0.934	0.929	0.789	0.797	59.348	61.294	
XIAP	100	5,150	0.752	0.974	0.190	0.897	8.077	51.490	

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.8 A Landscape Table Example

Next is an example of a wide table on a landscape oriented paper (Table 2.3).

Table 2.3: A table in landscape orientation.

m	x	y	Z	а	A_m	В	С	x	y	z	а	A_m	В	С
1	16.128	+8.872	16.128	1.402	1.373	-146.6	-137.6	16.128	+8.872	16.128	1.402	1.373	-146.6	-137.6
2	3.442	-2.509	3.442	0.299	0.343	133.2	152.4	3.442	-2.509	3.442	0.299	0.343	133.2	152.4
3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
4	0.993	-0.429	0.993	0.086	0.08	25.6	90	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
5	1.29	+0.099	1.29	0.112	0.097	-175.6	-114.7	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
6	0.483	-0.183	0.483	0.042	0.063	22.3	122.5	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
7	0.766	-0.475	0.766	0.067	0.039	141.6	-122	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
8	0.624	+0.365	0.624	0.054	0.04	-35.7	90	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
9	0.641	-0.466	0.641	0.056	0.045	133.3	-106.3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
10	0.45	+0.421	0.45	0.039	0.034	-69.4	110.9	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
_11	0.598	-0.597	0.598	0.052	0.025	92.3	-109.3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.9 A Theorem Example

Theorem 1. Let f be a function whose derivative exists in every point, then f is a continuous function.

Theorem 2 (Pythagorean theorem). This is a theorem about right triangles and can be summarised in the next equation

$$x^2 + y^2 = z^2$$

And a consequence of Theorem 2 is the statement in the next corollary.

Corollary 1. There's no right rectangle whose sides measure 3 cm, 4 cm, and 6 cm.

You can reference theorems such as 2 when a label is assigned.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.10 A Lemma Example

Lemma 1. Given two line segments whose lengths are a and b respectively there is a real number r such that b = ra.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest

gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.11 A Proof Example

Lemma 2. Given two line segments whose lengths are a and b respectively there is a real number r such that b = ra.

<u>Proof:</u> To prove it by contradiction try and assume that the statement is false, proceed from there and at some point you will arrive to a contradiction.

2.12 A Listing Example

```
1 import numpy as np
2
3 def incmatrix(genl1,genl2):
   m = len(genl1)
    n = len(gen12)
    M = None #to become the incidence matrix
    VT = np.zeros((n*m,1), int) #dummy variable
8
9
    #compute the bitwise xor matrix
10
    M1 = bitxormatrix(genl1)
11
    M2 = np.triu(bitxormatrix(genl2),1)
12
    for i in range (m-1):
13
     for j in range(i+1, m):
14
15
        [r,c] = np.where(M2 == M1[i,j])
16
        for k in range(len(r)):
         VT[(i)*n + r[k]] = 1;
17
18
          VT[(i)*n + c[k]] = 1;
19
          VT[(j)*n + r[k]] = 1;
          VT[(j)*n + c[k]] = 1;
20
21
22
          if M is None:
23
           M = np.copy(VT)
          else:
24
25
           M = np.concatenate((M, VT), 1)
27
          VT = np.zeros((n*m,1), int)
28
    return M
```

Listing 2.1: My Listing Caption

Algorithm 1 An algorithm with caption

```
Require: n \ge 0
Ensure: y = x^n
y \leftarrow 1
X \leftarrow x
N \leftarrow n
while N \ne 0 do
if N is even then
X \leftarrow X \times X
N \leftarrow \frac{N}{2}
else if N is odd then
y \leftarrow y \times X
N \leftarrow N - 1
end if
end while
```

2.13 An Algorithm Example

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.14 Some Technique One

2.14.1 Some Sub-technique One

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.14.1.1 Some Sub-sub-technique One

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.15 Some Technique Two with Super Long Title Which Will Overrun In Header

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain

all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Imagine some colourful description on Some Technique Three.

2.16 Evaluation Criteria

This section should contain information on the metrics and background used to evaluate your work.

2.17 Related Work

In this section you need to explain (and reference) similar work in literature. Make sure to:

- Give a systematic overview of papers with related/similar work
- Highlight similarities/differences to your work (perhaps in the form of a table)

For references use IEEE style (IEEE Ref. Guide) or Harvard style (Harvard Ref. Guide). Note that this section may be sectioned based on the different aspects of your dissertation. Some referenced text, as an example (Arrighi, 2003; Ebejer et al., 2016; Withers-Martinez et al., 2012).

2.18 An Example of Suppressing Page Numbers on A Float Page

Refer to Figure 2.3.

2.19 Summary

Figure 2.3: Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Chapter 3

Materials & Methods

This section should include a recipe of what you did (explain what you have done so if someone wants to reproduce the experiment, they can). A flow chart is typically helpful. Also, make sure to define all software that you used including version numbers and OS. Should also include a description of statistical methods used (if any).¹

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

3.1 Summary

¹For more information see: http://rc.rcjournal.com/content/49/10/1229.short

Chapter 4

Results & Discussion

Should include a reiteration of the experiments, and their outcome. Together with a description (discussion). Preamble should include a reminder of the aims and objectives together with a list of experiments to achieve these. Should include many charts and other visualization with appropriate descriptions.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet

and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

After this fourth paragraph, we start a new paragraph sequence. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4.1 An Example of a Table Spanning Multiple Pages

4.2 Summary

Chapter 5

Evaluation

In an ideal world, you should have two kind of evaluations. The first is against some ground truth (perhaps a random model?). The second kind of evaluation is against other people's work (accuracy, speed, etc.). Any dimension which is of interest, should be evaluated. Evaluation should be statistically sound.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

After this fourth paragraph, we start a new paragraph sequence. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the

letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

5.1 Summary

Chapter 6

Conclusions

This section should have a summary of the whole project. The original aims and objective and whether these have been met should be discussed. It should include a section with a critique and a list of limitations of your proposed solutions. Future work should be described, and this should not be marginal or silly (e.g. add machine learning models). It is always good to end on a positive note (i.e. 'Final Remarks').

6.1 Revisiting the Aims and Objectives

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6.2 Critique and Limitations

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain

all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6.3 Future Work

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6.4 Final Remarks

Appendix A

Media Content

If the dissertation has a DVD or pendrive attached to it, you will need a section which explains what is on the media (structure, files, data, etc.). This could be a table with filename and description.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look

like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Appendix B

Installation Instructions

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected

font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is

APPENDIX B. INSTALLATION INSTRUCTIONS

Appendix C

User Manual

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

After this fourth paragraph, we start a new paragraph sequence. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will

get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

References

- Arrighi, P. Quantum computation explained to my mother. arXiv preprint quant-ph/0305045, 2003.
- Ebejer, J.-P., Morris, G. M., and Deane, C. M. Freely available conformer generation methods: How good are they? *J. Chem. Inf. Model.*, 52(5):1146–1158, 2012.
- Ebejer, J.-P., Charlton, M. H., and Finn, P. W. Are the physicochemical properties of antibacterial compounds really different from other drugs? *Journal of Cheminformatics*, 8(1), 2016.
- Harvard Ref. Guide. Harvard References Style. https://www.um.edu.mt/__data/assets/pdf_file/0007/353662/Harvard_Guide.pdf. Last Accessed: March 18th, 2022.
- **IEEE Ref. Guide. IEEE References Style.** https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf. Last Accessed: March 17th, 2022.
- Withers-Martinez, C., Suarez, C., Fulle, S., Kher, S., Penzo, M., Ebejer, J.-P., Koussis, K., Hackett, F., Jirgensons, A., Finn, P., and Blackman, M. J. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target. *International Journal for Parasitology*, 42(6):597–612, 2012.