SIMD-RAYTRACING MITTELS SINGLE SLAB HIERARCHY

Vortrag zur Bachelorarbeit Christian Woizischke 05. September 2008

Beschleunigungsstrukturen

- Aufteilung des Raums
 - Uniform Grid
 - Octree
 - BSP / kd-Tree
- Aufteilung der Geometrieliste
 - Bounding Volume Hierarchy
 - Single Slab Hierarchy

Single Slab Hierarchy

- Beschleunigungsstruktur
- Abgeleitet von BVH
- Binärbaum
- Idee: AABB Seiten redundant
- Eine Seite der AABB
 - Als Ebene
- Schlechtere Approximation der Geometrie
 - Mehr Schnitttests zwischen Strahl und Knoten/Geometrie
- Schnellerer Schnittest pro Knoten als bei BVH
- Traversierung mithilfe eines "aktiven Strahlintervalls"

Aufgaben

- Iterative Traversierung
- Walkthrough-Modus
- Beleuchtungseffekte
- Praktischer Vergleich der SSH mit einer BVH

Iterative Traversierung

- Schleife
 - Schneide Strahl mit aktuellem Knoten
 - Durchlaufe Kindknoten 1 im nächsten Durchlauf
 - Setze Kindknoten 2 inkl. Strahlintervall auf einen Stack
 - Hole Knoten und Intervall vom Stack wenn
 - Aktueller Knoten nicht vom Strahl getroffen
 - Blattknoten erreicht und Dreiecke getestet
- Vorteile
 - Kein Overhead durch Funktionsaufrufe
 - Szenenkomplexität bzw. Höhe des Baums
 - Nicht mehr durch Größe des Call-Stacks begrenzt
 - durch Hauptspeicher begrenzt
- Nachteil
 - Software-Stack langsamer als Call-Stack

Walkthrough-Modus

- GLUT
- Verfahren zur Bildübertragung an Grafikkarte
 - glDrawPixels
 - glTexlmage2D
 - Texture Quad
 - Pixel Buffer Object
 - glMapBuffer, glTexSubImage2D
 - Texture Quad
 - Schnellstes Verfahren

Phong

- □ Ambient, Diffuse, Specular
- SIMD
- □ Blinn

Reflexion und Transmission

Snelliussches Brechungsgesetz

$$n_1 \cdot \sin(\alpha) = n_2 \cdot \sin(\beta)$$

Fresnel

$$r_{p} = \frac{n_{2} \cdot \cos(\alpha) - n_{1} \cdot \cos(\beta)}{n_{2} \cdot \cos(\alpha) + n_{1} \cdot \cos(\beta)}$$

$$r_s = \frac{n_1 \cdot \cos(\alpha) - n_2 \cdot \cos(\beta)}{n_1 \cdot \cos(\alpha) + n_2 \cdot \cos(\beta)}$$

$$r = \frac{r_s + r_p}{2} \qquad t = 1-r$$

□ SIMD

Licht

- Lichtquellen
 - Punktlicht
 - Paralleles Licht
 - Flächenlicht
 - Scheibe mit random sampling
 - Rechteck mit uniform sampling

Tests

- 27 Testszenen ausgewertet
 - □ 3500 bis 28mio Dreiecke
- Geordnete Traversierung
 - Knoten nahe der Strahlquelle (z.B. Kamera) zuerst
 - Abbruch wenn Strahlintervall hinter Schnittpunkt beginnt
- Optimiert durch den Compiler
 - □ O3
 - SSE
 - Prozessorarchitektur
- Kein Shading, nur Primärstrahlen
- Aktuelles System (Quad Core CPU, 4GB RAM)

Testergebnisse

- □ Geschwindigkeitsunterschied ±30%, Ø 0%
- □ Speicherverbrauch 28,6% bzw. 37,5%

```
struct SshNode

{
    float slab;
    unsigned long flagsAndChilds;
}

64bit:
4 Byte + 8 Byte = 12 Byte

32bit:
4 Byte + 4 Byte = 8 Byte

struct BvhNode
{
    float min[3];
    float max[3];
    unsigned long flagsAndChilds;
}

64bit:
6*4 Byte + 8 Byte = 32 Byte
```

Testergebnisse

- □ Bei der SSH werden 1,5-2,7 Mal so viele Schnitttests (Strahl vs. Knoten) durchgeführt wie bei der BVH
 - Nicht 6 Mal so viele, obwohl nur $\frac{1}{6}$ der Informationen pro Knoten
 - □ Gründe:
 - Mindestens die Hälfte der AABB Seiten redundant
 - Oft wird der Baum bis zu den Blattknoten durchlaufen
 - Bei gleicher Anzahl an Knoten und gleicher Baumhöhe
- Bei der SSH werden in gleicher Zeit doppelt so viele
 Schnitttests (Strahl vs. Knoten) durchgeführt wie bei der BVH
 - Grund: Schnitttest besteht nicht nur aus Test gegen Ebene/Box

Fragen?

Vielen Dank für die Aufmerksamkeit

