Signalverarbeitung auf dem STEMlab

Dieses Projekt realisiert ein System zur Messung von analogen Signalen vom Kilohertzbis in den unteren Megahertz-Bereich. Dazu wird ein Red Pitaya STEMlab zur Erfassung und Verarbeitung des Signals und ein Computer zur Visualisierung verwendet.

Idee

Ziel ist, teure Laborgeräte wie Oszilloskop und Spectrum Analyzer durch eine günstigere Lösung zu ersetzen. Dafür wird ein Red Pitaya STEMlab mit integriertem FPGA verwendet.

Red Pitaya STEMlab (Quelle: elektor.com)

Zur Übertragung via Netzwerk müssen die Daten aus dem ADC

Zweck implementiert dieses Projekt ein neues Filtersystem sowie eine neue Applikation zur Visual-

isierung der Daten. Die Filter sind

als Kaskaden auf dem FPGA des

Für diesen

Die grafische Darstellung erfolgt via Web-Applikation, womit Kompatibilität über verschiedene Plattformen erreicht wird.

Zeit- und Frequenzbereich vor Durchlauf der Filterketten

Zeit- und Frequenzbereich nach Durchlauf der Filterketten (vereinfacht)

Resultat

Es sind sechs Dezimationsketten vorhanden, welche Abtastraten zwischen 50 kHz und 25 MHz er-Wichtige Einstellungen lauben. können direkt aus der Applikation im Browser vorgenommen werden. Die Software erlaubt sowohl den direkten Export von Daten als auch die Anbindung von Dritt-Applikationen für besondere Anforderungen. Das gesamte Projekt ist Open Source, womit bei Bedarf weitere Änderungen und Ergänzungen vorgenommen werden können.

Screenshot des Oszilloskops

Eckdaten

dezimiert werden.

Konzept

Filter-Typen: FIR und CIC

STEMlab implementiert.

Sampling-Frequenzen Ausgang: sechs Stufen zwischen und 50 kHz 25 MHz

Dämpfung im Stopband: minimum 60 dB **SNR:** bis 84 dB, je nach Signal und Filterkette

Project Team: Raphael Frey,

Noah Hüsser

Coaches: Prof. Dr. Richard Gut,

Michael Pichler

Expert: Dr. Jürg Stettbacher