

Предсказание дохода заемщика Практический семинар

Сергей Афанасьев, Светлана Малько КБ «Ренессанс Кредит» 13 марта 2019 г. **МШЭ МГУ, Москва**

Коротко о нас и наших планах

Афанасьев Сергей

Начальник управления статистического анализа Начальник управления расследования мошенничества

Малько Светлана

Начальник отдела разработки и анализа эффективности скоринговых систем

10:40 - 11:20

- Как устроен банковский бизнес?
- Задача предсказания дохода клиента: постановка и решение

11:30 - 12:10

 Решение задачи в R с помощью многомерной регрессии

Вопросы и ответы

Как устроен банковский бизнес

Процентная маржа снижается

% по кредитам - % по депозитам (свыше 1 года)

Источник: www.cbr.ru

Data Science в банке

	Risk, Antifraud	Collection	CRM	CC, TM, CS	IT, IT Security	Other
	Credit Scoring	Collection Scoring	Recommender System		Biometrics	AML
.	- Application scoring	- Модели Recovery Rate	- Модели отклика на		- Keystroke Dynamics & Mouse Movements	- AML правила и моделі
Classical	- Behavioral scoring		коммуникацию		- Device Print для ИБ/МБ	Time Normalization
Machine	Anti-fraud Models		Targeted Advertising		Error Detection	· - Оптимальная загрузка
Learning	Внутренний фродВнешний фрод	 	- Таргетирование рекламы на сайте банка		- Выявление сбоев в	массовых подразделені І
	- Транзакционный фрод	 -	Churn Prediction		системах Банка	Staff Recruitment
			- Модели оттока			- Отбор резюме по ключевым словам
	Voice Recognition	Text-To-Speech	Recommender System	Speech recognition	Security Text Mining	Post Mail Classifier
Matumal	- Аутентификация	- Голосовой коллектор	 - Анализ транзакции с помощью RNN для построения моделей 	CS Text Mining	- Проверка email-писем	- Распределение почты
Natural	клиентов по голосу			- Извлечение инфо	на утечку информации	по тематикам
Language	Fraud Text Mining		отклика	- Анализ тональности	Topic Model	HR Text Mining
Processing	 - Анализ корпоративной переписки 			- Чат-боты (сайт, ИБ/МБ)	- Распределение заявок в HD по тематикам	- Анализ переписки и выявление проблем в работе сотрудников
		i		Text-To-Speech	в по по тематикам	
				- Синтез речи		
	Photo Biometrics		 	OCR (Text recognition)		Photo Biometrics
	- Вход в ИБ/МБ	 	I I	- Перевод скан.копий		- Аутентификация
Computer Vision	- Вход в системы Банка			документов в текст.		∣ клиентов в ДО/ККО
	Object Detection		İ			для сотрудников
	- Скоринг по фото - Проверка фото ТТ		I I			:
	Spoofing	l I	I I			l I
	- Выявление подделок		I	!		I

Некоторые требования регулятора

- Формирование резервов под кредитные потери (дефолты)
- Ограничения на ежемесячные платежи клиентов (PTI)
- Подтверждение дохода клиента (справки 2-НДФЛ и т.п.)

Справка о доходе 2-НДФЛ

2-НДФЛ увеличивают риски

Нашлось 185 млн результатов Дать объявление Показать все

Найти

~**1,5-2** тыс. руб.

с подтверждением при телефонной проверке!

Многомерная регрессия

Многомерная линейная регрессия

 $f_1(x), ..., f_n(x)$ — числовые признаки;

Модель многомерной линейной регрессии:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_{j} f_{j}(x), \qquad \alpha \in \mathbb{R}^{n}$$

Матричные обозначения:

$$F = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_l) & f_n(x_l) \end{pmatrix}, \qquad y = \begin{pmatrix} y_1 \\ \dots \\ y_l \end{pmatrix}, \qquad \alpha = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_l \end{pmatrix}$$

Функционал квадрата ошибки:

$$Q(\alpha, X^{T}) = \sum_{i=1}^{T} (f(x_{i}, \alpha) - y_{i})^{2} = \|F\alpha - y\|^{2} \rightarrow \min_{\alpha}$$

Нормальная система уравнений

Необходимое условие минимума в матричном виде:

$$\frac{\partial Q}{\partial \alpha}(\alpha) = 2F^T (F\alpha - y) = 0$$
,

откуда следует нормальная система задачи МНК:

$$F^T F \alpha = F^T y$$
,

где $F^TF - n \times n$ -матрица

Решение системы: $\alpha^* = (F^T F)^{-1} F^T y = F^+ y$.

Значение функционала: $Q(\alpha^*) = \|P_F y - y\|^2$,

где
$$P_F = FF^+ = F(F^TF)^{-1}F^T$$
 — проекционная матрица.

Сингулярное разложение

Произвольная $l \times n$ -матрица представима в виде сингулярного разложения (singular value decomposition, SVD): $F = VDU^T$

Основные свойства сингулярного разложения:

- $l \times n$ -матрица $V = (v_1, ..., v_n)$ ортогональна, $V^T V = I_n$, столбцы v_i собственные векторы матрицы FF^T ;
- lacktriangledown n imes n -матрица $U = (u_1, ..., u_n)$ ортогональна, $U^T U = I_n$, столбцы u_i собственные векторы матрицы $F^T F$;
- $n \times n$ -матрица D диагональна, $D = diag\left(\sqrt{\lambda_1},...,\sqrt{\lambda_n}\right)$, $\lambda_j \geq 0$ собственные значения матриц F^TF и FF^T , $\sqrt{\lambda_j}$ сингулярные числа матрицы F.

Решение МНК через сингулярное разложение

Псевдообратная F^+ , вектор МНК-решения α^* , МНК-аппроксимация целевого вектора $F\alpha^*$:

$$F^{+} = (UDV^{T}VDU^{T})^{-1}UDV^{T} = UD^{-1}V^{T} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{T};$$

$$\alpha^* = F^+ y = UD^{-1}V^T y = \sum_{j=1}^n \frac{1}{\sqrt{\lambda_j}} u_j (v_j^T y);$$

$$F\alpha^* = P_F y = (VDU^T)UD^{-1}V^T y = VV^T y = \sum_{j=1}^n v_j(v_j^T y);$$

$$\|\alpha^*\|^2 = \|D^{-1}V^Ty\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j} (v_j^Ty)^2.$$

Проблема: мультиколлинеарность при $\lambda_i o 0$.

Проблема мультиколлинеарности и переобучения

Если имеются сингулярные числа, близкие к нулю, то

- матрица ∑ = F^TF плохо обусловлена;
- решение неустойчивое и неинтерпретируемое, большие коэффициенты $\|\alpha^*\|$ разных знаков;
- возникает переобучение: на обучении $Q(\alpha^*, X^I) = \left\| F\alpha^* - y \right\|^2$ мало; на контроле $Q(\alpha^*, X^k) = \left\| F'\alpha^* - y' \right\|^2$ велико.

Устранение мультиколлинеарности и переобучения:

- отбор признаков: $f_1,...,f_n \to f_i,...,f_i$, m << n
- регуляризация: $\|\alpha\| \to \min$;
- преобразование признаков: $f_1,...,f_n \to g_1,...,g_m$, m << n

Резюме

- Задача многомерной линейной регрессии может быть решена через сингулярное разложение;
- Мультиколлинеарность приводит к плохой обусловленности, неустойчивости и переобучению;
- Методы устранения мультиколлинеарности также связаны с сингулярным разложением (гребневая регрессия, метод главных компонент)

Постановка задачи

Прогнозирование дохода клиента

Схема разработки модели (pipeline)

Подготовка данных

Создание модели

Валидация модели

- Сборка данных
- Исследование данных
- Предварительная подготовка

- Выбор метода
- Конфигурация модели
- Отбор лучших переменных

Оценка качества

ДАННЫЕ — ключевая составляющая любой аналитической модели!

Препроцессинг данных

id id	AGE ■	GENDER	10 TARGET_TOTAL_INCOME
1904	32	1	40000.00
1905	33	2	18000.00
1906	-2019	1	35000.00
1907	22	2	53000.00
1908	24	1	0.00
1909	28		70000.00
1910	44	1	30000000000.00
1912	62	2	16000.00
1912	62	2	16000.00
1913	33	1	40000.00
1914	38	1	60000.00
1915	32	2	100000.00
1916	31	2	70000.00
1917	34	1	80000.00
1918	33	2	35000.00
1919	28	2	18000.00

- Обработка пропущенных значений
- 2 Определение и обработка выбросов

Стратегии

- Сохранить
- Удалить
- Заменить

Методы определения выбросов

	Simple Statistics					
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
TARGET_TOTAL_INCOME	5000	45962	39402	229811317	0	1000000
GENDER	4977	1.56078	0.49634	7768	1.00000	2.00000
AGE	5000	38.71260	12.01817	193563	18.00000	74.00000
EDUCATION	5000	5.23900	1.57771	26195	1.00000	7.00000
EMAIL_FLAG	5000	0.26500	0.44138	1325	0	1.00000
PRIMARY_INCOME_CURR	5000	40156	36864	200781922	0	1000000
CNT_CONTRACT_ALL	5000	8.31640	8.43069	41582	1.00000	148.00000
MICRO_CREDIT_SUM	976	57148	122191	55776138	435.00000	1531760
LIMIT_SUM	5000	723968	1277711	3619840796	0	32321849
LIMIT_MAX	5000	308581	601953	1542905493	0	21750000
LIMIT_MIN	5000	22917	105931	114582657	0	2886800
LIMIT_CC_AVG	3363	48073	50843	161669861	0	695000
COUNT_DELINQUENCY_30PL	4980	9.43795	16.84773	47001	0	213.00000
PAYMENT_NEXT_MAX	4813	12424	48260	59798226	0	1237804
PAYMENT_NEXT_AVG	4813	6933	22390	33366790	0	625402
COUNT_ACTIVE_CONTRACT	5000	1.84700	1.80395	9235	0	16.00000
REPAYMENT_SUM	4426	437619	840052	1936901216	0	16360000

- Статистические
- Гистограмма
- Расчет станд. отклонения (Z-score)

TARGET_TOTAL_INCOME

- Форма распределения отлична от нормальной
- Наличие выбросов

Moments						
N	5000	Sum Weights	5000			
Mean	45962.2634	Sum Observations	229811317			
Std Deviation	39401.6684	Variance	1552491475			
Skewness	9.86994354	Kurtosis	185.924229			
Uncorrected SS	1.83236E13	Corrected SS	7.7609E12			
Coeff Variation	85.7261273	Std Error Mean	557.223739			

Basic Statistical Measures						
Location Variability						
Mean	45962.26	Std Deviation	39402			
Median	38000.00	Variance	1552491475			
Mode	30000.00	Range	1000000			
		Interquartile Range	24450			

)	Level	Quantile
7	100% Max	1000000
)	99%	170000
)	95%	100000
	90%	79950
,	75% Q3	52000
	50% Median	38000
	25% Q1	27550
	10%	20000
	5%	16000
	1%	12000
	0% Min	0

Quantiles (Definition 5)

LOG трансформация

Любая трансформация данных делает вашу модель **менее интерпретируемой**

	Moments						
N	4997	Sum Weights	4997				
Mean	10.5661338	Sum Observations	52798.9706				
Std Deviation	0.54678528	Variance	0.29897415				
Skewness	0.46875384	Kurtosis	1.43665905				
Uncorrected SS	559374.664	Corrected SS	1493.67483				
Coeff Variation	5.17488509	Std Error Mean	0.00773503				

Basic Statistical Measures						
Loc	ation	Variability				
Mean	10.56613	Std Deviation	0.54679			
Median	10.54534	Variance	0.29897			
Mode	10.30895	Range	5.00565			
		Interquartile Range	0.61904			

Quantiles (Definition 5)					
Level	Quantile				
100% Max	13.81551				
99%	12.04355				
95%	11.51293				
90%	11.28978				
75% Q3	10.85900				
50% Median	10.54534				
25% Q1	10.23996				
10%	9.90349				
5%	9.68034				
1%	9.39266				
0% Min	8.80986				

Z-score

Значения отклоняющиеся от среднего более чем на +/- **3*Sigma** удаляются из обучающей выборки

	Moments							
N	4997	Sum Weights	4997	I				
Mean	0	Sum Observations	0	•				
Std Deviation	1	Variance	1	9				
Skewness	0.46875384	Kurtosis	1.43665905	9				
Uncorrected SS	4996	Corrected SS	4996	9				
Coeff Variation		Std Error Mean	0.01414638	7				

	Basic Statistical Measures						
Loc	ation	Variability					
Mean 0.00000		Std Deviation	1.00000				
Median	-0.03803	Variance	1.00000				
Mode	-0.47035	Range	9.15469				
		Interquartile Range	1.13214				

Quantities (Dennition 3)					
Level	Quantile				
100% Max	5.9426924				
99%	2.7020111				
95%	1.7315602				
90%	1.3234594				
75% Q3	0.5356128				
50% Median	-0.0380266				
25% Q1	-0.5965304				
10%	-1.2118948				
5%	-1.6199957				
1%	-2.1461292				
0% Min	-3.2119939				

Quantiles (Definition 5)

Построение модели

343007

21818

3021

LIMIT MAX

LIMIT MIN

The CORR Procedure 4 Variables: TARGET TOTAL INCOME LIMIT SUM LIMIT MAX LIMIT MIN Simple Statistics Sum Minimum Maximum Label Variable Mean Std Dev TARGET TOTAL INCOME 5000 42714 49357 213571256 2500036 TOTAL INCOME CURR LIMIT SUM 803236 1471075 2426577231 36734657 3021

758892 1036222659

65913193

92138

20000000

3187500

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations										
TARGET_TOTAL_INCOME LIMIT_SUM LIMIT_MAX LIMIT										
TARGET_TOTAL_INCOME	1.00000	0.22889	0.19330	0.02565						
		<.0001	<.0001	0.1587						
TOTAL_INCOME_CURR	5000	3021	3021	3021						
LIMIT_SUM	0.22889	1.00000	0.88834	0.07931						
	<.0001		<.0001	<.0001						
	3021	3021	3021	3021						
LIMIT_MAX	0.19330	0.88834	1.00000	0.13256						
	<.0001	<.0001		<.0001						
	3021	3021	3021	3021						
LIMIT_MIN	0.02565	0.07931	0.13256	1.00000						
	0.1587	<.0001	<.0001							

Переменные с сильной корреляцией должны быть исключены из модели

3021

3021

3021

3021

Самостоятельная работа

Пример модели

Scorecard Model Editor: Variables - Model_inc_V2.mb

Score Bin Plot & Table Model inc V2 score, setID: train

Model inc V2 score, setID: test

Исключаем:

- . PRIMARY_INCOME_CURR (целевая)
- 2. LIMIT_MAX (корреляция)
- 3. PAYMENT_NEXT_AVG (корреляция)
- 4. DATE (дата)

Добавляем:

1. REPAYMENT2LIMIT (отношение)

Summary Score Statistics

setID	Score Variable	R-Squared	RMSE	NSSE
train	Model_inc_V2_score	0,333	0,424	0,667
test	Model_inc_V2_score	0,321	0,433	0,679

Матрица корреляций

	TARGET_TOTAL_INCOME	GENDER	AGE	EDUCATION	EMAIL_FLAG	PRIMARY_INCOME_CURR	CNT_CONTRACT_ALL	MICRO_CREDIT_SUM	רושוב snw	LIMIT_MAX	חשוב שווע	LIMIT_CC_AVG	COUNT_DELINQUENCY_30PL	PAYMENT_NEXT_MAX	PAYMENT_NEXT_AVG	COUNT_ACTIVE_CONTRACT	REPAYMENT_SUM	PAYMENTZLIMIT
TARGET_TOTAL_INCOME	1,00	- 0,13	- 0,06	0,19	0,10	0,95	0,07	0,14	0,34	0,29	0,04	0,28	0,08	0,09	0,08	0,14	0,34	- 0,09
GENDER	- 0,13	1,00	0,17	0,06	- 0,02	- 0,15	0,07	0,09	- 0,05	- 0,06	0,00	- 0,06	0,03	- 0,03	- 0,03	0,07	- 0,05	0,01
AGE	- 0,06	0,17	1,00	- 0,08	- 0,14	- 0,10	0,19	0,12	0,10	0,04	- 0,04	0,06	0,07	0,02	0,01	0,07	0,11	0,10
EDUCATION	0,19	0,06	- 0,08	1,00	0,05	0,19	0,02	0,08	0,17	0,15	0,03	0,16	0,01	0,04	0,03	0,05	0,14	- 0,03
EMAIL_FLAG	0,10	- 0,02	- 0,14	0,05	1,00	0,10	0,04	0,08	0,05	0,05	0,00	0,06	0,06	0,04	0,03	0,10	0,04	- 0,07
PRIMARY_INCOME_CURR	0,95	- 0,15	- 0,10	0,19	0,10	1,00	0,04	0,10	0,32	0,27	0,05	0,25	0,07	0,08	0,08	0,10	0,32	- 0,07
CNT_CONTRACT_ALL	0,07	0,07	0,19	0,02	0,04	0,04	1,00	0,60	0,38	0,17	- 0,12	0,06	0,38	0,09	0,03	0,54	0,38	- 0,01
MICRO_CREDIT_SUM	0,14	0,09	0,12	0,08	0,08	0,10	0,60	1,00	0,24	0,13	0,12	0,06	0,22	0,13	0,11	0,19	0,24	0,04
LIMIT_SUM	0,34	- 0,05	0,10	0,17	0,05	0,32	0,38	0,24	1,00	0,86	0,07	0,38	0,18	0,23	0,18	0,36	0,86	- 0,13
LIMIT_MAX	0,29	- 0,06	0,04	0,15	0,05	0,27	0,17	0,13	0,86	1,00	0,16	0,33	0,08	0,19	0,18	0,22	0,60	- 0,21
LIMIT_MIN	0,04	0,00	- 0,04	0,03	0,00	0,05	- 0,12	0,12	0,07	0,16	1,00	0,22	- 0,06	0,01	0,05	- 0,07	0,07	0,04
LIMIT_CC_AVG	0,28	- 0,06	0,06	0,16	0,06	0,25	0,06	0,06	0,38	0,33	0,22	1,00	0,00	0,09	0,10	0,17	0,27	- 0,15
COUNT_DELINQUENCY_30PL	0,08	0,03	0,07	0,01	0,06	0,07	0,38	0,22	0,18	0,08	- 0,06	0,00	1,00	0,11	0,08	0,24	0,16	0,00
PAYMENT_NEXT_MAX	0,09	- 0,03	0,02	0,04	0,04	0,08	0,09	0,13	0,23	0,19	0,01	0,09	0,11	1,00	0,88	0,07	0,18	- 0,10
PAYMENT_NEXT_AVG	0,08	- 0,03	0,01	0,03	0,03	0,08	0,03	0,11	0,18	0,18	0,05	0,10	0,08	0,88	1,00	0,02	0,13	- 0,12
COUNT_ACTIVE_CONTRACT	0,14	0,07	0,07	0,05	0,10	0,10	0,54	0,19	0,36	0,22	- 0,07	0,17	0,24	0,07	0,02	1,00	0,23	- 0,45
REPAYMENT_SUM	0,34	- 0,05	0,11	0,14	0,04	0,32	0,38	0,24	0,86	0,60	0,07	0,27	0,16	0,18	0,13	0,23	1,00	0,12
PAYMENT2LIMIT	- 0,09	0,01	0,10	- 0,03	- 0,07	- 0,07	- 0,01	0,04	- 0,13	- 0,21	0,04	- 0,15	0,00	- 0,10	- 0,12	- 0,45	0,12	1

R² (test)

APPENDIX

Как бороться с мультиколлинеарностью?

Гребневая регрессия (Ridge Regression)

Штраф за увеличение нормы вектора весов $\|\alpha\|$:

$$Q_{\tau}(\alpha) = \|F\alpha - y\|^2 + \frac{\tau}{2} \|\alpha\|^2,$$

где au — неотрицательный параметр решуляризации.

Модифицированное МНК-решение ($\tau I_{,,,}$ — "гребень")

$$\alpha_{\tau}^* = \left(F^T F + \tau I_n\right)^{-1} F^T y.$$

Преимущество сингулярного разложения: можно подбирать параметр au, вычислив SVD только один раз.

Регуляризованный МНК через сингулярное разложение

Вектор регуляризованного МНК-решения α_{τ}^* и МНК-аппроксимация целевого вектора $F\alpha_{\tau}^*$:

$$\alpha_{\tau}^{*} = U(D^{2} + \mathcal{I}_{n})^{-1}DV^{T}y = \sum_{j=1}^{n} \frac{\sqrt{\lambda_{j}}}{\lambda_{j} + \tau} u_{j}(v_{j}^{T}y);$$

$$F\alpha_{\tau}^{*} = VDU^{T}\alpha_{\tau}^{*} = Vdiag\left(\frac{\sqrt{\lambda_{j}}}{\lambda_{j} + \tau}\right)V^{T}y = \sum_{j=1}^{n} \frac{\lambda_{j}}{\lambda_{j} + \tau} v_{j}(v_{j}^{T}y);$$

$$\|\alpha_{\tau}^{*}\|^{2} = \|(D^{2} + \mathcal{I}_{n})^{-1}DV^{T}y\|^{2} = \sum_{j=1}^{n} \frac{\lambda_{j}}{(\lambda_{j} + \tau)^{2}} (v_{j}^{T}y)^{2}$$

 $Flpha_{ au}^*
eq Flpha^*$, но зато решение становится гораздо устойчивее.

Выбор параметра регуляризации

Контрольная выборка: $X^k = (x_i, y_i)_{i=1}^k$:

$$F' = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_k) & \dots & f_n(x_k) \end{pmatrix}, \quad y' = \begin{pmatrix} y_1 \\ \dots \\ y_k \end{pmatrix}.$$

Вычисление функционала Q на контрольных данных T раз потребует $O\!\left(kn^2+knT\right)$ операций:

$$Q(\tau) = \left\| F' \alpha_{\tau}^* \right\|^2 = \left\| F'_{k \times n} \operatorname{diag} \left(\frac{\sqrt{\lambda_j}}{\lambda_j + \tau} \right) V_{k \times n}^T y - y' \right\|^2.$$

Зависимость $Q(\tau)$ обычно имеет характерный минимум.

Регуляризация сокращает "эффективную размерность"

Сжатие (shrinkage) или сокращение весов (weight decay):

$$\left\|\alpha_{\tau}^{*}\right\|^{2} = \sum_{j=1}^{n} \frac{\lambda_{j}}{\left(\lambda_{j} + \tau\right)^{2}} \left(v_{j}^{T} y\right)^{2} < \left\|\alpha^{*}\right\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} \left(v_{j}^{T} y\right)^{2}$$

Роль размерности играет след проекционной матрицы:

$$tr F(F^TF)^{-1}F^T = tr(F^TF)^{-1}F^TF = tr I_n = n.$$

При использовании решуляризации:

$$tr \ F(F^T F + \tau I_n)^{-1} F^T = tr \ diag\left(\frac{\lambda_j}{\lambda_j + \tau}\right) = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \tau} < n$$

Как бороться с мультиколлинеарностью?

Perpeccuя LASSO

LASSO — Least Absolute Shrinkage and Selection Operator, два эквивалентных варианта постановки задаци:

$$Q(lpha) = \left\| F lpha - y
ight\|^2
ightarrow \min_{lpha} \quad$$
при $\sum_{j=1}^n \left| lpha_j
ight| \leq \chi$;

$$Q(\alpha) = \|F\alpha - y\|^2 + \tau \sum_{j=1}^{n} |\alpha_j| \to \min_{\alpha};$$

После замены переменных

$$\begin{cases} \alpha_{j} = \alpha_{j}^{+} - \alpha_{j}^{=}; \\ |\alpha_{j}| = \alpha_{j}^{+} - \alpha_{j}^{=}; \end{cases} \quad \alpha_{j}^{+} \ge 0; \quad \alpha_{j}^{-} \ge 0.$$

ограничения принимают канонический вид:

$$\sum_{i=1}^{n} \alpha_{j}^{+} + \alpha_{j}^{-} \leq \chi ; \quad \alpha_{j}^{+} \geq 0; \quad \alpha_{j}^{-} \geq 0.$$

Чем меньше χ , тем больше j таких, что $\alpha_i^+ = \alpha_i^- = 0$.

Резюме:

LASSO обнуляет веса и приводи к отбору признаков в линейных моделях.

24

Как бороться с мультиколлинеарностью?

Метод главных компонент (РСА)

Постановка задачи PCA (principal component analysis):

$$f_1(x),...,f_n(x) \ -$$
 исходные числовые признаки
$$g_1(x),...,g_m(x) \ -$$
 новые числовые признаки, $m \le n$;

Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_{j}(x) = \sum_{s=1}^{m} g_{s}(x)u_{js}, \quad j = 1,...,n, \quad \forall x \in X,$$

как можно точнее на обучающей выборке $x_1,...,x_l$:

$$\sum_{i=1}^{l} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{s}(x_{i})\}, \{u_{j_{i}}\}}$$

Матричные обозначения

Матрицы "объекты-признаки", старая и новая

$$F = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_1) & \dots & f_n(x_1) \end{pmatrix}; \quad G = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_1) & \dots & g_m(x_1) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$\underbrace{U}_{\scriptscriptstyle{NSM}} = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix} ; \quad \hat{F} = GU^{\scriptscriptstyle{T}} \overset{\scriptscriptstyle{XOMMLM}}{\approx} F \; .$$

Найти: и новые признаки $\,G\,$, и преобразование $\,U\,$

$$\sum_{i=1}^{l} \sum_{i=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{T} - F\|^{2} \to \min_{G,U}$$

Основная теорема метода РСА

Если $m \leq rk$ F , то минимум $\left\|GU^T - F\right\|^2$ достигается, когда столбцы U — это собственные векторы матрицы F^TF , соответствующие m максимальным собственным значениям $\lambda_1, \ldots, \lambda_m$, а матрица G - FU.

При этом:

- \blacksquare матрица U ортонормированна: $U^TU = I_m$;
- матрица G ортогональна: $G^TG = \Lambda = diag(\lambda_1,...,\lambda_m)$
- $U\Lambda = F^T F U$; $G\Lambda = F F^T G$;
- $\|GU^T F\|^2 = \|F\|^2 tr \Lambda = \sum_{j=m+1}^n \lambda_j.$

Связь с сингулярным разложением

Если взять $\,m=n$, то:

- $\|GU^T F\|^2 = 0;$
- представление $\hat{F} = GU^T = F$ точное и совпадает с сингулярным разложением при $G = V \sqrt{\Lambda}$: $F = GU^T = V \sqrt{\Lambda} U^T$; $U^T U = I_-$; $V^T V = I_-$.
- lacktriangledown линейное преобразование U работает в обе стороны: $F = GU^T\;;\;\;G = FU\;.$

Поскольку новые признаки некоррелированы $\left(G^TG=\Lambda\right)$, преобразование U называется декоррелирующим (или преобразованием Карунена-Лоэва).

Эффективная размерность выборки

Упорядочим с.з. F^TF по убыванию: $\lambda_1 \geq ... \geq \lambda_n \geq 0$. Эффективная размерность выборки — это наименьшее целое m . при котором:

$$E_{m} = \frac{\left\|GU^{T} - F\right\|^{2}}{\left\|F\right\|^{2}} = \frac{\lambda_{m+1} + \ldots + \lambda_{n}}{\lambda_{1} + \ldots + \lambda_{n}} \le \varepsilon$$

Решение задачи НК для МЛР в новых признаках

Задача наименьших квадратов для МЛР: $\left\| F \alpha - y \right\|^2 o \min$.

Заменим F на ее приближение $G ullet U^T$, предполагая $m \leq n$:

$$\|GU^T\alpha - y\|^2 = \|G\beta - y\|^2 \rightarrow \min_{\alpha}$$

Связь нового и старого вектора коэффициентов:

$$\beta = U^T \alpha$$
; $\alpha = U\beta$.

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^T y; \quad \alpha^* = UD^{-1}V^T y = \sum_{j=1}^m \frac{1}{\sqrt{\lambda_j}} u_j(v_j^T y);$$

$$G\beta^* = VV^T y = \sum_{j=1}^m v_j \left(v_j^T y \right)$$

Резюме:

- Метод главных компонент позволяет приближать матрицу ее низкоранговым разложением;
- Для этого достаточно взять из SVD-разложения первые
 т сингулярных чисел и векторов матрицы;
- Этот прием широко используется в анализе данных в задачах регрессии, классификации, сжатия данных и др.

Обучение

Курсы на coursera.org

Введение в машинное обучение

Воронцов К.В., Соколов Е.

National Research University Higher School of Economics, Yandex School of Data Analysis

Machine Learning

Andrew Ng Stanford University

Neural Networks and Deep Learning

Andrew Ng

deeplearning.ai

Improving Deep Neural Networks

Andrew Ng

deeplearning.ai

Structuring Machine Learning Projects

Andrew Ng

deeplearning.ai

Convolutional Neural Networks

Andrew Ng

deeplearning.ai

Sequence Models

Andrew Ng deeplearning.ai

Книги на русском языке

Введение в машинное обучение с помощью Python

Мюллер А., Гидо С.

O'Reilly Media, 2017. — 392 c.

Глубокое обучение: погружение в мир нейронных сетей

Николенко С., Кадурин А., Архангельская Е.

СПб.: Питер, 2018. — 480 с.

Глубокое обучение

Ян Гудфеллоу, Иошуа Бенджио, Аарон Курвилль

ДМК-Пресс, 2018. — 652 с.

Библиотека Keras — инструмент глубокого обучения

Антонио Джулли, Суджит Пал

ДМК-Пресс, 2017. — 296 с.

Книги на английском языке

Machine Learning: A Probabilistic Perspective Murphy K.P.

Massachusetts Institute of Technology, 2012. — 1067 p.

Weighing the Odds: A Course in Probability and Statistics

David Williams

Cambridge University Press, 2001. — 568 p.

Information Theory, Inference, and Learning Algorithms

MacKay D.J.C.

Cambridge University Press, 2003. — 640 p

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Hastie T., Tibshirani R., Friedman J.

Second Edition (corrected 5th printing). — Springer, 2009. — 763 p.

Лекции и полезные ресурсы

https://www.youtube.com/playlist?list=PLJOzdkh8 T5kp99tGTEFjH_b9zqEQiiBtC

Лекции ШАД от Константина Воронцова (д.ф.м.н. МФТИ, ВШЭ)

https://www.lektorium.tv/speaker/2691

Лекции **Сергея Николенко** (автор книги «Глубокое обучение: погружение в мир нейронных сетей»)

http://efimov-ml.com/

Сайт с лекциями Дмитрия Ефимова, а также с Python-скриптами (Jupiter Notebooks), презентациями и ссылками

http://deepbayes.ru/2017/

Лекции ВШЭ по Байесовским методам в глубинном обучении. Лекторы: Дмитрий Ветров, Дмитрий Кропотов, Евгений Соколов, Сергей Бартунов, Арсений Ашуха и др.

https://arxiv.org/

Pecypc с самыми свежими препринтами научных статей по ML/AI/DS (см. раздел Computer Science)

http://scikit-learn.org/

http://www.numpy.org/
https://pandas.pydata.org/

https://keras.io/

http://devdocs.io/tensorflow/

Подробные мануалы популярных библиотек в Python

https://stackoverflow.com/

Ресурс для обсуждения практических вопросов по программированию на **Python** и других языках

http://ods.ai/

Русскоязычное сообщество датасайнтистов