2011 PH 40-52

AI24BTECH11031 - Shivram S

	1)	The	isospir	n and	the	strangeness	of	Ω^{-}	baryon	are
--	----	-----	---------	-------	-----	-------------	----	--------------	--------	-----

a) 1, -3

b) 0, -3

c) 1.3

d) 0.3

2) The lifetime of an atomic state is 1 nanosecond. The natural line width of the spectral line in the emission spectrum of this state is of the order of

a) 10^{-10} eV

b) 10^{-9} eV

c) 10⁻⁶ eV d) 10⁻⁴ eV

3) The degeneracy of an excited state of nitrogen atom having electronic configuration $1s^22s^22p^23d^1$ is

a) 6

b) 10

c) 15

d) 150

4) The far infrared rotational absorption spectrum of a diatomic molecule shows equidistant lines with spacing 20 cm⁻¹. The position of the first Stokes line in the rotational Raman spectrum of this molecule is

a) 20 cm^{-1}

b) 40 cm^{-1} c) 60 cm^{-1}

d) 120 cm^{-1}

5) A metal with body centered cubic (bcc) structure shows the first (i.e. smallest angle) diffraction peak at a Bragg angle of $\theta = 30^{\circ}$. The wavelength of X-ray used is 2.1 Å. The volume of the primitive unit cell of the metal is

a) $26.2 (\text{Å})^3$ b) $13.1 (\text{Å})^3$ c) $9.3 (\text{Å})^3$ d) $4.6 (\text{Å})^3$

6) In the following circuit, Tr1 and Tr2 are identical transistors having $V_{BE} = 0.7 \text{ V}$. The current passing through the transistor Tr2 is

1

- a) 57 mA
- b) 50 mA
- c) 48 mA
- d) 43 mA

7) The following Boolean expression

$$Y = A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot C \cdot D + \overline{A} \cdot B \cdot C \cdot D + A \cdot \overline{B} \cdot \overline{C} \cdot D$$
 can be simplified to

a) $\overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{D}$

c) $A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot D$ d) $A \cdot \overline{B} \cdot C + \overline{A} \cdot D$

b) $\overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{D}$

- 8) Consider the following circuit.

Which of the following correctly represents the output V_{out} corresponding to the input V_{in} ?

Common Data for Questions 9 and 10:

Consider a function $f(z) = \frac{z \sin z}{(z-\pi)^2}$ of a complex variable z.

- 9) Which of the following statements is **TRUE** for the function f(z)?
 - a) f(z) is analytic everywhere in the complex plane
 - b) f(z) has a zero at $z = \pi$
 - c) f(z) has a pole of order 2 at $z = \pi$
 - d) f(z) has a simple pole at $z = \pi$
- 10) Consider a counterclockwise circular contour |z| = 1 about the origin. The integral $\oint f(z) dz$ over this contour is
 - a) $-i\pi$
- b) zero
- c) $i\pi$

d) $2i\pi$

Common Data for Questions 11 and 12:

The tight binding energy dispersion (E - k) relation for electrons in a one-dimensional array of atoms having lattice constant a and total length L is

$$E = E_0 - \beta - 2\gamma \cos(ka),$$

where E_0 , β , and γ are constants and k is the wave-vector.

- 11) The density of states of electrons (including spin degeneracy) in the band is given

 - a) $\frac{L}{\pi ya \sin(ka)}$ b) $\frac{L}{2\pi ya \sin(ka)}$ c) $\frac{L}{2\pi ya \cos(ka)}$ d) $\frac{L}{\pi ya \cos(ka)}$
- 12) The effective mass of electrons in the band is given by
 - a) $\frac{\hbar^2}{\gamma a^2 \cos(ka)}$
- b) $\frac{\hbar^2}{2\gamma a^2\cos(ka)}$ c) $\frac{\hbar^2}{\gamma a^2\sin(ka)}$ d) $\frac{\hbar^2}{2\gamma a^2\sin(ka)}$

Statement for Linked Answer Questions 13 and 53:

In a one-dimensional harmonic oscillator, φ_0 , φ_1 , and φ_2 are respectively the ground, first, and second excited states. These three states are normalized and are orthogonal to one another. ψ_1 and ψ_2 are two states defined by

$$\psi_1 = \varphi_0 - 2\varphi_1 + 3\varphi_2$$

$$\psi_2 = \varphi_0 - \varphi_1 + \alpha \varphi_2$$

where α is a constant.

- 13) The value of α for which ψ_2 is orthogonal to ψ_1 is
 - a) $\hbar\omega$

b) $\frac{3\hbar\omega}{2}$

- c) $3\hbar\omega$
- d) $\frac{9\hbar\omega}{2}$