MON-0301.ST25.txt SEQUENCE LISTING

<110> Monell Chemical Senses Center Li, Xia Li, Weihua Reed, Danielle R. Bachmanov, Alexander A. Brand, Joseph G.	
<120> TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT	
<130> MON-0301	
<150> US 60/554,751	
<150> US 60/482,992 <151> 2003-06-27	
<160> 99	
<170> PatentIn version 3.2	
<210> 1 <211> 2569 <212> DNA <213> Felis catus	
<400> 1 atgcccggcc tcgctctcct gggcctcacg gctctcctgg gcctcacggc tctcttggac	60
cacggggagg gcgcaacgtc ctgcttgtca cagcagctca ggatgcaggg ggactatgtg	120
ctgggtgggc tcttccctct gggctctgcc gagggtacag gtcttggcga cgggctgcag	180
cccaatgcca ccgtgtgcac caggttctcg tctctgggcc tgctctgggc gctggccgtg	240
aagatggegg tggaggagat caacaacggg teggeeetge tgeeeggget geacetggge	300
tatgacctct ttgacacgtg ttcagagccc atggtggcca tgaagcccag cctcgtgttc	360
atggccaaag caggcagctg cagcattgcc gcctactgca attacacaca gtaccagccc	420
cgcgtgctgg ccgtcatcgg gccccactcg tctgagctcg ccctcgtcac cggcaagttc	480
ttcagcttct tccttgtgcc tcaggtcagc tacggcgcca gcaccgaccg gctgagcaac	540
cgggagatet tecegteett etteegeacg gtgeecageg accaggtgea ggtggeggee	600
atggtggagc tgctggagga gctcggctgg aactgggtgg cggcggtggg tagtgacgac	660
gagtatggcc ggcagggcct gagcctcttc tccggcctgg ccagcgccag gggcatctgc	720
atcgcgcatg agggcctggt gccactgccg ccaggcagcc tgcggctggg cgccctacag	780
ggcctgctgc gccaggtgaa ccagagcagc gtgcaggtgg tggtgctgtt ctcctccgcc	840
cacgcggccc gcaccctctt cagctacagc atccgctgca agetetcacc caaggtgtgg	900
gtggccageg aggcctggct gacctcagac ctggtcatga cgctgcccgg catgcctggg	960
gtgggcaccg tgctgggctt cctgcagcag ggcgccccga tgccggagtt cccatcctac 1	.020
gtgcggaccc gcctggccct ggccgctgac cctgccttct gcgcctcgct ggacgctgaa 1	.080
cagccaggee tggaggagea cgtggtgggg ccacgctgce eccaatgtga ecaegtcaeg 1	140
ctagagaacc tatctgcggg gctgctgcac caccagacct tcgctgccta cgcggctgtg 1	200
tatggcgtgg cccaagccct tcacaacaca ctgcgctgca atgcctcggg ctgccccagg 1	260

MON-0301.ST25.txt

cgggagcctg tgcggccctg	gcagctccta	gagaacatgt	acaacgtgag	cttccgtgct	1320
cgcggcctgg cactgcagtt	cgacgccagc	gggaacgtga	acgtggatta	cgacctgaaa	1380
ctgtgggtgt ggcaggaccc	gacgcccgag	ctgcgcaccg	taggcacctt	caagggccgc	1440
ctggagetet ggegetetea	gatgtgctgg	cacacgccgg	ggaagcagca	gcccgtgtcc	1500
cagtgctccc ggcagtgcaa	ggaaggccag	gtgcgccgcg	tgaagggctt	ccactcttgc	1560
tgttacaact gcgtggactg	caaggcgggc	agttatcagc	gcaacccaga	tgacctcctc	1620
tgcacccagt gtgaccagga	ccagtggtcc	ccagaccgga	gcacacgctg	cttcgcccgc	1680
aagcccatgt tcctggcatg	gggggagcca	gctgtgctgc	tactgctcgc	gctgctggct	1740
ctggcgctgg gcctggcgct	ggcagccctg	gggctcttcc	tctggcactc	ggacagcccg	1800
ctggttcagg cctcaggtgg	gccacgggcc	tgctttggcc	tggcttgcct	gggcctggtc	1860
tgcctcagtg tcctcctgtt	ccctggccag	ccaggccctg	ccagctgcct	ggcccagcag	1920
ccactgttcc acctcccact	cactggctgc	ctgagcacgt	ttttcctgca	agcggccgag	1980
atatttgtgg ggtcggagct	gccaccaagc	tgggctgaga	agatgcgtgg	ccgcctgcgg	2040
gggccctggg cctggctggt	ggtgctgctt	gctatgctgg	cagaagccgc	attgtgtgcc	2100
tggtacctgg tagccttccc	gccagaggtg	gtgacggact	ggcgggtact	gcccacagag	2160
gcgctggtgc actgccacgt	gcactcctgg	atcagcttcg	gcctggtgca	tgccactaac	2220
gccatgctgg ccttcctctg	cttcctgggc	actttcctgg	tgcagagccg	gccaggccgc	2280
tacaatggtg cccgcggcct	cacctttgcc	atgctggcct	acttcatcac	ctggatctcc	2340
tttgtgcccc tctttgccaa	tgtgcacgtg	gcctaccagc	ctgccgtgca	gatgggcacc	2400
atcctcctct gtgccctggg	tatcctagcc	accttccacc	tgcccaagtg	ctacctgctg	2460
ctgcagcggc cggagctcaa	cacccctgag	ttcttcctgg	aagacaatgc	cagagcacag	2520
ggcagcagtt gggggcaggg	gaggggagaa	tcggggcaaa	aacaagtga		2569

<210> 2 <211> 865 <212> PRT <213> Felis catus

<400> 2

Met Pro Gly Leu Ala Leu Leu Gly Leu Thr Ala Leu Leu Gly Leu Thr

Ala Leu Leu Asp His Gly Glu Gly Ala Thr Ser Cys Leu Ser Gln Gln 20 25 30

Leu Arg Met Gln Gly Asp Tyr Val Leu Gly Gly Leu Phe Pro Leu Gly

Ser Ala Glu Gly Thr Gly Leu Gly Asp Gly Leu Gln Pro Asn Ala Thr

Val Cys Thr Arg Phe Ser Ser Leu Gly Leu Leu Trp Ala Leu Ala Val Page 2

MON-0301.ST25.txt 70 65 80 Lys Met Ala Val Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu His Leu Gly Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Met Val 1.05 Ala Met Lys Pro Ser Leu Val Phe Met Ala Lys Ala Gly Ser Cys Ser Ile Ala Ala Tyr Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro His Ser Ser Glu Leu Ala Leu Val Thr Gly Lys Phe Phe Ser Phe Phe Leu Val Pro Gln Val Ser Tyr Gly Ala Ser Thr Asp 170 Arg Leu Ser Asn Arg Glu Ile Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Gln Val Gln Val Ala Ala Met Val Glu Leu Leu Glu Glu Leu Gly Trp Asn Trp Val Ala Ala Val Gly Ser Asp Asp Glu Tyr Gly Arg Gln Gly Leu Ser Leu Phe Ser Gly Leu Ala Ser Ala Arg Gly Ile Cys Ile Ala His Glu Gly Leu Val Pro Leu Pro Pro Gly Ser Leu Arg Leu Gly Ala Leu Gln Gly Leu Leu Arg Gln Val Asn Gln Ser Ser Val Gln Val Val Val Leu Phe Ser Ser Ala His Ala Ala Arg Thr Leu Phe Ser Tyr Ser Ile Arg Cys Lys Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ala Trp Leu Thr Ser Asp Leu Val Met Thr Leu Pro Gly Met Pro Gly 310 Val Gly Thr Val Leu Gly Phe Leu Gln Gln Gly Ala Pro Met Pro Glu

Phe Pro Ser Tyr Val Arg Thr Arg Leu Ala Leu Ala Ala Asp Pro Ala 340 345 350

330

Phe	Cvs	Ala	Ser	Leu	Asp	Ala	Glu	Gln	Pro	Gly	Leu	${\tt Glu}$	Glu	His	Val
	-1 -	355			-		360					365			

- Val Gly Pro Arg Cys Pro Gln Cys Asp His Val Thr Leu Glu Asn Leu 370 375 380
- Ser Ala Gly Leu Leu His His Gln Thr Phe Ala Ala Tyr Ala Ala Val 385 390 395 400
- Tyr Gly Val Ala Gln Ala Leu His Asn Thr Leu Arg Cys Asn Ala Ser 405 410 415
- Gly Cys Pro Arg Arg Glu Pro Val Arg Pro Trp Gln Leu Leu Glu Asn 420 425 430
- Met Tyr Asn Val Ser Phe Arg Ala Arg Gly Leu Ala Leu Gln Phe Asp 435
- Ala Ser Gly Asn Val Asn Val Asp Tyr Asp Leu Lys Leu Trp Val Trp 450 450 460
- Gln Asp Pro Thr Pro Glu Leu Arg Thr Val Gly Thr Phe Lys Gly Arg 465 470 475
- Leu Glu Leu Trp Arg Ser Gln Met Cys Trp His Thr Pro Gly Lys Gln 485 490 490
- Gln Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Glu Gly Gln Val Arg 500 505 510
- Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asn Cys Val Asp Cys Lys 515 520 525
- Ala Gly Ser Tyr Gln Arg Asn Pro Asp Asp Leu Leu Cys Thr Gln Cys 530 535
- Asp Gln Asp Gln Trp Ser Pro Asp Arg Ser Thr Arg Cys Phe Ala Arg 545 550 555 560
- Lys Pro Met Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu 565 570 575
- Ala Leu Ala Leu Ala Leu Gly Leu Ala Leu Ala Ala Leu Gly Leu 580 585 590
- Phe Leu Trp His Ser Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro 595 600 605
- Arg Ala Cys Phe Gly Leu Ala Cys Leu Gly Leu Val Cys Leu Ser Val 610 620
- Leu Leu Phe Pro Gly Gln Pro Gly Pro Ala Ser Cys Leu Ala Gln Gln Page 4

Pro Leu Phe His Leu Pro Leu Thr Gly Cys Leu Ser Thr Phe Phe Leu

Gln Ala Ala Glu Ile Phe Val Gly Ser Glu Leu Pro Pro Ser Trp Ala

Glu Lys Met Arg Gly Arg Leu Arg Gly Pro Trp Ala Trp Leu Val Val

Leu Leu Ala Met Leu Ala Glu Ala Ala Leu Cys Ala Trp Tyr Leu Val 695

Ala Phe Pro Pro Glu Val Val Thr Asp Trp Arg Val Leu Pro Thr Glu

Ala Leu Val His Cys His Val His Ser Trp Ile Ser Phe Gly Leu Val

His Ala Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe

Leu Val Gln Ser Arg Pro Gly Arg Tyr Asn Gly Ala Arg Gly Leu Thr

Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Ile Ser Phe Val Pro Leu

Phe Ala Asn Val His Val Ala Tyr Gln Pro Ala Val Gln Met Gly Thr

Ile Leu Cys Ala Leu Gly Ile Leu Ala Thr Phe His Leu Pro Lys

Cys Tyr Leu Leu Gln Arg Pro Glu Leu Asn Thr Pro Glu Phe Phe . 825

Leu Glu Asp Asn Ala Arg Ala Gln Gly Ser Ser Trp Gly Gln Gly Arg

Gly Glu Ser Gly Gln Lys Gln Val Thr Pro Asp Pro Val Thr Ser Pro 855

Gln 865

625

<210> 3

<211> 2532 <212> DNA

<213> Mus musculus

atgggacccc aggcgaggac actccatttg ctgtttctcc tgctgcatgc tctgcctaag

PCT/US2004/015136

			22021 000			
ccagtcatgc	tggtagggaa	ctccgacttt	cacctggctg	gggactacct	cctgggtggc	120
ctctttaccc	tccatgccaa	cgtgaagagc	gtctctcacc	tcagctacct	gcaggtgccc	180
aagtgcaatg	agtacaacat	gaaggtcttg	ggctacaacc	tcatgcaggc	catgcgattc	240
gccgtggagg	aaatcaacaa	ctgtagctct	ctgctgcccg	gcgtgctgct	cggctacgag	300
atggtggatg	tctgctacct	ctccaacaat	atccagcctg	ggctctactt	cctgtcacag	360
atagatgact	tcctgcccat	cctcaaagac	tacagccagt	acaggcccca	agtggtggcc	420
gtcattggcc	cagacaactc	tgagtccgcc	atcaccgtgt	ccaacattct	ctcctacttc	480
ctcgtgccac	aggtcacata	tagcgccatc	accgacaagc	tgcgagacaa	gcggcgcttc	540
cctgccatgc	tgcgcactgt	gcccagcgcc	acccaccaca	tcgaggccat	ggtgcaactg	600
atggttcact	tccagtggaa	ctggatcgtg	gtgctggtga	gcgatgacga	ttatggccga	660
gagaacagcc	acctgctgag	ccagcgtctg	accaacactg	gcgatatctg	cattgccttc	720
caggaggttc	tgcctgtacc	agaacccaac	caggccgtga	ggcctgagga	gcaggaccaa	780
ctggacaaca	tcctggacaa	gctgcggcgg	acctcggcgc	gtgtggtggt	gatattctcg	840
ccagagctga	gcctgcacaa	cttcttccgc	gaggtgctgc	gctggaactt	cacaggcttt	900
gtgtggattg	cctctgagtc	ctgggccatc	gaccctgttc	tacacaacct	cacagagctg	960
cgccacacgg	gcactttcct	gggcgtcacc	atccagaggg	tgtccatccc	tggcttcagc	1020
cagttccgag	tgcgccacga	caagccagag	tatcccatgc	ctaacgagac	cagcctgagg	1080
actacctgta	accaggactg	tgacgcctgc	atgaacatca	ccgagtcctt	taacaacgtt	1140
ctcatgcttt	cgggggagcg	tgtggtctac	agtgtgtact	cggccgtcta	cgcggtagcc	1200
cacaccctcc	acagactcct	ccactgcaac	caggtccgct	gcaccaagca	aatcgtctat	1260
ccatggcagc	tactcaggga	gatctggcat	gtcaacttca	cgctcctggg	caaccagctc	1320
ttcttcgacg	aacaagggga	catgccgatg	ctcctggaca	tcatccagtg	gcaatggggc	1380
ctgagccaga	accccttcca	aagcatcgcc	tcctactccc	ccaccgagac	gaggctgacc	1440
tacattagca	atgtgtcctg	gtacaccccc	aacaacacgg	tccccatatc	catgtgttct	1500
aagagttgcc	agcctgggca	aatgaaaaaa	cccataggcc	tccacccgtg	ctgcttcgag	1560
tgtgtggact	gtccgccggg	cacctacctc	aaccgatcag	tagatgagtt	taactgtctg	1620
tcctgcccgg	gttccatgtg	gtcttacaag	aacaacatcg	cttgcttcaa	gcggcggctg	1680
gccttcctgg	agtggcacga	agtgcccact	atcgtggtga	ccatcctggc	cgccctgggc	1740
ttcatcagta	cgctggccat	tctgctcatc	ttctggagac	atttccagac	gcccatggtg	1800
cgctcggcgg	gcggccccat	gtgcttcctg	atgctggtgc	ccctgctgct	ggcgttcggg	1860
atggtccccg	tgtatgtggg	ccccccacg	gtcttctcct	gtttctgccg	ccaggctttc	1920
ttcaccgttt	gcttctccgt	ctgcctctcc	tgcatcacgg	tgcgctcctt	ccagattgtg	1980
tgcgtcttca	agatggccag	acgcctgcca	agegeetacg	gtttctggat	gcgttaccac	2040
gggccctacg	tctttgtggc	cttcatcacg	gccgtcaagg	tggccctggt	ggcaggcaac	2100
atgctggcca	ccaccatcaa	ccccattggc	cggaccgacc	ccgatgaccc	caatatcata	2160

. Page 6

atcctctcct	gccaccctaa	ctaccgcaac	gggctactct	tcaacaccag	catggacttg	2220
ctgctgtccg	tgctgggttt	cagcttcgcg	tacgtgggca	aggaactgcc	caccaactac	2280
aacgaagcca	agttcatcac	cctcagcatg	accttctcct	tcacctcctc	catctccctc	2340
tgcacgttca	tgtctgtcca	cgatggcgtg	ctggtcacca	tcatggatct	cctggtcact	2400
gtgctcaact	ttctggccat	cggcttgggg	tactttggcc	ccaagtgtta	catgatcctt	2460
ttctacccgg	agcgcaacac	ttcagcttat	ttcaatagca	tgattcaggg	ctacacgatg	2520
aggaagagct	ag					2532
) tus rattus					
<400> 4 atgggtcccc	aggcaaggac	actctgcttg	ctgtctctcc	tgctgcatgt	tctgcctaag	60
ccaggcaagc	tggtagagaa	ctctgacttc	cacctggccg	gggactacct	cctgggtggc	120
ctctttaccc	tccatgccaa	cgtgaagagc	atctcccacc	tcagctacct	gcaggtgccc	180
aagtgcaatg	agttcaccat	gaaggtgttg	ggctacaacc	tcatgcaggc	catgcgtttc	240
gctgtggagg	agatcaacaa	ctgtagctcc	ctgctacccg	gcgtgctgct	cggctacgag	300
atggtggatg	tctgttacct	ctccaacaat	atccaccctg	ggctctactt	cctggcacag	360
gacgacgacc	tcctgcccat	cctcaaagac	tacagccagt	acatgcccca	cgtggtggct	420
gtcattggcc	ccgacaactc	tgagtccgcc	attaccgtgt	ccaacattct	ctctcatttc	480
ctcatcccac	agatcacata	cagcgccatc	tccgacaagc	tgcgggacaa	gcggcacttc	540
cctagcatgc	tacgcacagt	gcccagcgcc	acccaccaca	tcgaggccat	ggtgcagctg	600
atggttcact	tccaatggaa	ctggattgtg	gtgctggtga	gcgacgacga	ttacggccgc	660
gagaacagcc	acctgttgag	ccagcgtctg	accaaaacga	gcgacatctg	cattgccttc	720
caggaggttc	tgcccatacc	tgagtccagc	caggtcatga	ggtccgagga	gcagagacaa	780
ctggacaaca	tcctggacaa	gctgcggcgg	acctcggcgc	gcgtcgtggt	ggtgttctcg	840
cccgagctga	gcctgtatag	cttctttcac	gaggtgctcc	gctggaactt	cacgggtttt	900
gtgtggatcg	cctctgagtc	ctgggctatc	gacccagttc	tgcataacct	cacggagctg	960
cgccacacgg	gtacttttct	gggcgtcacc	atccagaggg	tgtccatccc	tggcttcagt	1020
cagttccgag	tgcgccgtga	caagccaggg	tatcccgtgc	ctaacacgac	caacctgcgg	1080
acgacctgca	accaggactg	tgacgcctgc	ttgaacacca	ccaagtcctt	caacaacatc	1140
cttatacttt	cgggggagcg	cgtggtctac	agcgtgtact	cggcagttta	cgcggtggcc	1200
catgccctcc	acagactcct	cggctgtaac	cgggtccgct	gcaccaagca	aaaggtctac	1260
ccgtggcagc	tactcaggga	gatctggcac	gtcaacttca	cgctcctggg	taaccggctc	1320
ttctttgacc	aacaagggga	catgccgatg	ctcttggaca	tcatccagtg	gcagtgggac	1380

ctgagccaga atcccttcca aagcatcgcc tcctattctc ccaccagcaa gaggctaacc 1440

aagagetgee agecaggea aatgaaaaag tetgtgggee tecaecettg ttgettegag 1566 tgettggatt gtatgeeagg cacetacete aacegeeteag cagatgagtt taactgtetg 1621 tectgeecgg gtteeatgtg gteetacaag aacgacatea ettgetteea geggeggeet 1686 acetteetgg agtggeaega agtgeecaee ategtggtgg ceatactgge tgeectggge 1746 ttetteagta cactggeeat tettteate ttetggagae atteeagae acecatggtg 1800 egeteggeeg gtggeeceat gtgetteetg atgetegtge cectggetg ggegtttggg 1860 atggtgeeeg tgtatgtggg geeceeaeg gtetteteat gettetgeeg acaggettte 1920 tteaecgtet getteteeat etgeetace ggegteetet ecagategtg 1800 tgtgtettea agatggeeag aegectgeea agtgeetaca gtttttggat gegttaceae 2040 gggeectatg tetteege etteateagg ecaateaagg tggeeteetg ggtgggeaeae 2100 atgetggeea ecaceateaa eccaetagg eggeaegaeae gggataceae eaacataatg 2166 atcetteegt geoacectaa etaecgeaae gggetactgt teaacaceag eatggaettg 2220 etgetgtetg tgetgggtt eagetteget taataggea agggatgee eaacaataatg 2166 atcetteegt geoacectaa etaecgeaae gggetactgt teaacaceag eatggaettg 2220 etgetgtetg tgetgggtt eagetteget taataggea aggagetgee eaacaacaae 2286 aacgaageaa agtteateae teteagaatg acetteteet teaacaceag eatggaettg 2220 etgetgtetg tgetgggat eagettggga taetttggee eaagtgtta eatgateett 2460 tgeacettea tgetgtgea eggeggtgg tggteaeae teatgggae eatggaeae 2400 tgggeetaaae teetggeaae eggetagga taetttggee eaagtgtta eatgateett 2460 ttetaecegg agegeaaeae eteageeta tteaatagge tggateaegg etaeaeaegg 2520 e211> 2520 e211> 2520 e212> DNA e213> Homo sapiens 4400> 5 atgggggeea actggaagg eattgtteae etggtgtetee teetaggge eatggtgaag 246 gagateaaaa atgaaagga eatggtacaa ettaaactee tgeagggee eatggtgaag 246 gagateaaa atgaacagaag eatggtacaa etcaacacea etcaagaag eatggggae 246 gagateaaa atgaacagaag eatggtaca etggtgage tggtggggetggggggaace etggtgeaae etggateaeae etaaactee ggggggaaaaeae etcaagaaga eatggtgae eatgaetgae eagagaeaeae etaeacaaeae eaga	*****	005/005400					101/0
tgettggatt ghatgocagg cactacetc aaccgectoag cagatgagtt taactgtctg tectgocogg gitceatgig gitceacaga aacgacatca citgetteca geggeggeet 16800 accticetgg agtgecaga agtgeccace ategtgggg catactgge tgeoetgggg 17400 tetteteaga cactggecat tettiteate tettggagae attecagae acceatgggg 18000 cgettgggeeg gitgecceat gitgetteetg atgetegge ceetgetggg gegittggg 18000 atggggeegg gitgeggg gececace gitgetteeta getteteagae accaatggtg 18000 cgettggeeg gitgetteeta etgeateaceg gitgeteetg gegittggg 18000 atggggeegg gitgetteeta etgeateaceg gitgeteetg aacggettee 19200 tetteacagte gitgetetta agatggeegg acceetageg gitgeteeta agggeegatgggggggeeggggggggggggg	tacattaaca	atgtgtcctg	gtacaccccc			catgtgttcc	1500
tectgocogg gitceatgig gicciacaa aacgacatca citgetteea geggeggeet 16888 accitectegg agtggeacag agtgeecace ategtggtg ceatactgge tgeectggge 1746 teteteagta cactggeet tetetteate tetetggagae attecagae acceatggtg 1800 egeteggeeg gitggeeet tetetteet atgetgeege eetgetget ggegittegg 1860 atggtgeeeg gitggeeet gitgetteetg atgeteetg eetgeteetg gegettegg 1860 atggtgeeeg gitgeteeta etgeetaeeg geetteetge acaggettee 1920 teteaceget getteteea agatggeea acgeetaee etgeateaeg tgegeteett eeagategtg 1930 teteacegtet getteteea agatggeea acgeetgeea agggeetaea gitggeeetgi gggggeaae 2040 gggeeetatg tetteggge etteateaeg geacateaag tggeeetgi ggtggeaae 2100 atggeggeea eeaceataa eeeeattgge eggacegaee eggatgaeee eacacataetg 2160 atggegeea eeaceataa eeeeattgge eggacegaee eggatggeea eacgaggeeggeeggeeggeeggeeggeeggeeggeegge	aagagctgcc	agccagggca	aatgaaaaag	tctgtgggcc	tccacccttg	ttgcttcgag	1560
accettectgg agtggcacga agtgccacc atcgtggtgg coatactggc tgccctgggc 1744 ttettcagta cactggcat tcttttcatc ttetggagac attccagac acccatggtg 1800 cgctcggcog gtggcccat gtgcttcctg atgctcgtg ccctgctgct ggcgtttggg 1860 atggtgcccg tgtatgtggg gcccccaccg gtcttctcat gcttctgccg acaggctttc 1920 ttcaccgtct gcttctccat ctgcctatcc tgcatcaccg tgcgctcctt ccagatcgtg 1980 tgtgtcttca agatggccag acgcctgcca agtgcctaca gtttttggat gcgttaccac 2040 gggccctatg tcttcgtggc cttcatcacg gccatcaagg tggccctggt ggtggcaac 2100 atgctggcca ccaccatca ccccattggc cggaccgacc cggatgaccc caacatcatg 2160 atcctctcgt gccaccctaa ctaccgcaac gggctactgt tcaacaccag catggacttg 2220 ctgctgtctg tgctgggtt cagcttcgct tacatgggca aggagctgc caccaactac 2280 aacgaagcca agttcatcac tctcagcatg accttctcct tcacctcctc catctccctc 2340 tgcaccttca tgctgggat cagcgcggt ctggtcacca tcatggacct cctggtcact 2400 gtgctcaact tcctggccat cggcttggga tactttggcc ccaagtgtta catgatcctt 2400 gtgctcaact tcctggccat cggcttggga tacttttcct tcctatggg ctacaccatg 2520 aggaagagc 2520 <210> 5 <211> 520 <212> DNA <213> Romo sapiens 2520 <212> DNA <213> Romo sapiens 260 ccagctgaga actcgaaca catgatgcc catggtgga catggtgga 240 gagataaaca atgacagag catggtcac ctacaccac cgggggatga catggtggg catggtgga 240 gagatcaaca tctccaacaa tgtccagcc gtgtgtcac tcctggctgg catggtgga 240 gagatcaaca tctccaacaa tgtccagcc gtgtgtctac tcctgggag catggtgga 240 gagatcaaca tctccaacaa tgtccagcc gtgtgctcatc tcctggaga catggtgac ccaagagcac ccaacacac ccaagaga catagatga catagatac tcctctcca tccaagaga catagatac tcctctcca tccaagaga cacacaca gtgcagaca cggggacaca cggggacaca cacacacaca	tgcttggatt	gtatgccagg	cacctacctc	aaccgctcag	cagatgagtt	taactgtctg	1620
tetetecagta cactegocat tetettecate tetetgagac attecagac acceategity coctogocogy giggococat gigettecty atgettecty atgettecty gigettety gigettitygy atgiggococ tetatygy gigettety gigettety gigettety gigettety gigettety gigettety gigettety atgigettety gigettety gigettety giggococcate gigettetecat cocyatecty gigettette agategy gigettette agategy gigettette agategy gigettette agategy giggococcate gigettette agategy giggococcate gigettette agategy giggococcate giggococtaty tettedygig citcateacy giggococcate giggococcate giggococcate giggococcate acceateaty giggococcate giggococcate coccateacy coccateacy giggococcate giggococcate coccateacy giggococcate giggococcate giggococcate coccateacy giggococcate giggococcatea coccateacy giggococcatea g	tcctgcccgg	gttccatgtg	gtcctacaag	aacgacatca	cttgcttcca	gcggcggcct	1680
cgctcggccg gtggcccat gtgcttctg atgctcgtc ccctgctgct ggcgtttggg atgggttgcc tgtatgtggg gcccccac gtcttctcat gcttctcat gcttctccat ctgcctatc tgcatcac gtcgctctt ccagactgtg 1986 tgtgtgttta agatggccag acgcctgca agtgcctaca gtttttggat gcgttacac 2046 gggccctatg tcttcqtggc cttcatcacg gccatcaag tggccctgt ggtgggcaac 2100 atgctggca ccaccatcaa ccccattggc cggaccgac cggatgaccc caccatcatg 2166 atccttcgt gccaccataa ctaccgaac gggtactgt tcaacacag catggacttg 2220 ctgctgtctg tgctgggttt cagcttcgt tacatggca aggagtcgc caccaactac 2286 acacgaagaca agttcatcac tctcagcatg accttctct tcacctcctc catctccctc tgcaccttaa tgtctggca cgacggggg ctggtacaca tcatggacc caccaactac 2286 gtgctcacat tctcagcat cgggtgga tactttggc ccaagtgta catgatcct 2460 gtgctcacat tcctggcaac cggcgtgga tactttggc ccaagtgta catgatcct 2460 gtgctcacat tcctggcaac ctcagcctat ttcaatagca tgatcaggg ctaccacatg 2520 c212 > DNA c213 > Bnow sapiens catgggacta catggaggag catggttaca actggaggag actggtgaag actggtgaa actggtgaa aggatgaa aggatgaag catggttaca ctcaggag catggtgaa aggatgaaa atgaaggag catggtcaaca ctcatgaaca ctcatgaaca atgaaggag cctggtcga gtgggataca ctcaggaga catggtgaa aggatacaaca atgaaggag catggtcaca ctcatgaag catggtgaa aggatacaaca atgaaggag catggtcaca ctcatgaag catggtgaa aggatacaaca atgaaggag catggtcaca ctcatgaaga ctccttcca tccaagaaga ctccaacaaa atgacagcag ctcgctcaacacaca ctcatgaaga ctccaacacaa atgacagcag ctcgctcaca ctcatgaaga catggtgaa aggatacaaca atgacagaa ctcaacacaa atgacagca ctcagcaca ctcatgacaa ctcaacacaa atgacagaa catagaaga ctcaacacaa atgacagcaa ctcaacacaa atgacagaa ctcaacacaa atgacagcaa catagaaga ctcaacacaa atgacagcaa ctcaacacaa ctcaacacaa atgacagcaa caacacaaca	accttcctgg	agtggcacga	agtgcccacc	atcgtggtgg	ccatactggc	tgccctgggc	1740
atggtgcccg tgtatgtggg gcccccacg gtcttctcat gcttctgcg acaggcttte ttcaccgtct gcttctccat ctgcctatcc tgcatcacg tgcgctcctt cagatcgtg 1980 tgtgtcttca agatggccag acgcctgca agtgcctaca gtttttggat gcgttaccac 2040 gggccctatg tcttcgtggc cttcatcacg gccatcacag tggccctggt ggtggccac 2100 atgctggca caccatcaa cccattggc cggaccacc cggatgaccc caccatcatg 2160 atcctctcgt gccacctaa ctaccgcaac gggctactgt tcaacaccag catggacttg 2200 ctgctgtctg tgctgggtt cagcttcgct tacatgggca aggagctgc caccaactac 2280 aacgaagcca agttatcac tctcagcatg accttctcct tcacctcc catcaccct 2240 tgcaccttca tgctgtgca cgacggggg ctgggcacca tcatggacct cotggtcact tcatacccg aggagaagac 2200 tggtcacact tcctggccat cggctggga tactttggc caaggtgta catggacct cotggtcact 2400 gtgtcacact tcctggccat cggctggga tactttggc caaggtgta catgatcctt 2400 gtgtcacact tcctggccat cggctggga tactttggc caaggtgta catgatcctt 2400 gtgtcacact tcctggccat cggcttgga tactttggc caaggtgta catgatcctt 2400 gtgtcacact tcctggccat cggcttgga tactttggc caaggtgta catgatcctt 2400 gtgtcacact tcctggcaac cccacacacac 2220 nnA c212> nnA c213> n	ttcttcagta	cactggccat	tctttcatc	ttctggagac	atttccagac	acccatggtg	1800
tecacegate gettetecat etgectatee tgeateaceg tgegetectt ceagateggg 1986 tgtgtettea agategeegg acceptagea aggecteca aggecteda getteteggg cetteateaceg geoateaagg tggecetggt ggtgggeaac 2106 atgettege ceaceateaa cecattgge eggacegace eggatgace caacateatgg 2226 etgetteteg tgetgggtt cacectaca cacecategge tacategge aggaggetge eaceactaca 2286 acceptatetg tgetgggtt caggetteget tacatgggea aggaggtgee caceaactac 2286 acceptatetg tgetgggat caggagggggggggggggggggggggggggggg	cgctcggccg	gtggccccat	gtgcttcctg	atgctcgtgc	ccctgctgct	ggcgtttggg	1860
tgtgtcttca agatggccag acgcctgca aggcctaca gtttttggat gcgttacac 2040 gggccctatg tcttcgtggc cttcatcacg gccatcaagg tggcctggt ggtgggcaac 2100 atgctggca ccaccatcaa cccattggc cggaccgacc cggatgacc caaccatcatg 2160 atcctctcgt gccaccctaa ctaccgcaac gggctactgt tcaacaccag catggacttg 2220 ctgctgtctg tggtggttt cagcttcgct tacatggca aggagctgcc caccaactac 2280 aacgaagacca agttcatcac tctcagcatg accttctcct tcacctcctc catctccctc 2340 tgcaccttca tgtctgtgca cgacggcgtg ctggtcacca tcatggacct cctggtcact 2400 gtgctcaact tcctggcaat cggcttggga tacttggcc ccaagtgtta catgatcctt 2400 gtgctcaact tcctggcaat cggcttggga tacttggcc ccaagtgtta catgatcctt 2400 gtgctcaact tcctggcaat cdgcctat ttcaatagca tgatccaggg ctacaccatg 2520 aggaagagc 2522 <2110	atggtgcccg	tgtatgtggg	gcccccacg	gtcttctcat	gcttctgccg	acaggctttc	1920
gggccctatg tettegtgge ctteateagg gcateaagg tggccctggt ggtgggcaac 2100 atgctggca caacatataa ccccattgge cggaccgacc cggatgaccc caacatcatg 2160 atcctecgt gcaccctaa ctaccgcaac gggctactgt tcaacaccag catggacttg 2220 ctgctgtetg tgctgggttt cagcttcgt tacatgggca aggactgcc caccaactac 2280 aacgaagcca agttcatcac tctcagcatg accttctcct tcacctcctc catctccctc 2340 tgcaccttca tgtctgtgca cgaccggcgtg ctggtcacca tcatggacct cctggtcact 2400 gtgctcaact tcctggcaat cggcttggga tactttggcc ccaagtgtta catgatcctt 2400 gtgctcaact tcctggcaat cggcttggga tactttggcc ccaagtgtta catgatcctt 2400 gtgctcaact tcctggcaat cdcagcctat ttcaatagca tgatccaggg ctacaccatg 2520 aggaagagac 2522	ttcaccgtct	gcttctccat	ctgcctatcc	tgcatcaccg	tgcgctcctt	ccagatcgtg	1980
atgetggeca ceaceateaa ecceattgge eggacegace eggatgacee caacateatg 2160 atcetetegt gecacectaa etacegeaac gggetactgt teaacaceag catggacttg 2220 ctgetgetg tgetgggtt cagetteget tacatggea aggagetgee caccaactae 2280 aacgaageca agtteateac teteageatg acetteteet teaceteete catetecete 2340 tgeacettea tgetgtgea eggetggga tacettggee ceacgagtgta catgateett 2460 tgeaceate teetggecat eggetgga tacettggee ceaagtgtta catgateett 2460 ttetaceceg agegeaacac eteagectat tteaatagea tgatecaggg etacaceatg 2520 aggaagage 2520 verified 2520 v	tgtgtcttca	agatggccag	acgcctgcca	agtgcctaca	gtttttggat	gcgttaccac	2040
attectetegt gecaecetaa etaecgeaac gggetaetgt teaacaccag catggaettg 2220 etgetgtetg tgetgggttt cagetteget tacatggea aggactgee caccaactac 2280 aacgaageea agtteateac teteageatg acetteteet teaceteete catetecete 2340 tgeaecettea tgetgtgea eggetgggg etggtacca teatggaeet cetggteaet 2400 gtgeteaact teetggeea eggetggga tactteggee ceaagtgtta catgateett 2460 teetaecegg agegeaacac eteageetat tteaatagea tgatecaggg etaeaccatg 2520 aggaagagage 2520 etgles bNA etalor bNA et	gggccctatg	tcttcgtggc	cttcatcacg	gccatcaagg	tggccctggt	ggtgggcaac	2100
ctgctgtctg tgctgggttt cagcttcgct tacatgggca aggactgcc caccaactac 2280 aacgaagcca agttcatcac tctcagcatg accttctect tcacctcctc catctccctc 2340 tgcaccttca tgtctgtgca cgacggcgtg ctggtcacca tcatggacct cctggtcact 2400 gtgctcaact tcctggccat cggcttggga tactttggcc ccaagtgtta catgatcctt 2460 ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 2520 aggaagagc 2522	atgctggcca	ccaccatcaa	ccccattggc	cggaccgacc	cggatgaccc	caacatcatg	2160
aacgaagcca agttcatcac totcagcatg accttctcct toacctcctc catetccetc 2340 tgcaccttca tgtctgtca cgacggcgtg ctggtcacca tcatggacct cctggtcacct 2400 gtgctcaact tcctggccat cggcttggga tactttggcc ccaagtgtta catgatcctt 2460 ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 2520 aggaagagc 2520 NA <211> 2520 <212> DNA <213> Homo sapiens 2400> 5 atggggcca acctggacct ctacctgcct ggggattacc tcctgggtgg cctcttctcc 120 ctccatgca acatgaagg cattgttcac cttaacttcc tgcaggtgg cctcttctcc 120 ctccatgca acatgaaggg cattgttcac cttaacttcc tgcaggtgg cctcttctcc 120 ctccatgca acatgaaggg cattgttcac cttaacttcc tgcaggtgc cattgtgaag 180 gagatagaag tgaaggtgat aggctacaac ctcatgcagg ccatggctt ggcgggag 240 gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tggggtatag gatcgtgga 300 gtgtggctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttccca tccaagagga ctacagtac tacattccc gtgtggtgg tgtcattgg 420 cctgacaact ccgagtcgt catgacgga ctacagtac tacattccc gtgtggtggc tgtcattggc 420 cctgacaact ccgagtcgt catgacgga ctgcaacttcc tctccctatt tctccttcca 480 cagatcacca caccagcgc cgaccaccac gtcgagcac tggtggcgc cgacaatggc 660 cagctgcttg gcgagcgcg ggcccagcgc gacaattgc cctatggccg cgacaatggc 660 cagctgcttg gcgagcgcg ggcccagcgc gacaactgc tcaggagcac ccaaccacg ggagacacca acaccacga gaccaccac gacaccaca gacaccacac gacaccacac gacaccacac gacaccacac gacaccacac gacaccacac gacaccacac gacacaccac gacaccacac gacaccacac gacaccacac gacaccacac gacaccacac gacacaccac gacaccacac gacaccacac gacacaccac gacaccacac gacaccacac gacacaccac gacaccacac gacacaccac gacaccacac gacaccacac gacacaccac gacacac	atcctctcgt	gccaccctaa	ctaccgcaac	gggctactgt	tcaacaccag	catggacttg	2220
tgcaccttca tgtctgtgca cgacggcgtg ctggtcacca tcatggacct cctggtcact 2400 gtgctcaact tcctggcoat cggcttgga tactttggcc ccaagtgtta catgatcctt 2460 ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 2520 aggaagagc 2522	ctgctgtctg	tgctgggttt	cagcttcgct	tacatgggca	aggagctgcc	caccaactac	2280
gtgctcaact tcctggccat cggcttggga tactttggcc ccaagtgtta catgatcett ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 2526 aggaagagc 2529 <2210	aacgaagcca	agttcatcac	tctcagcatg	accttctcct	tcacctcctc	catctccctc	2340
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 2520 aggaagagc 2520 <210 > 5 <211 > 2520 <212 > DNA <213 > Homo sapiens <400 > 5 atgggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag cctctctcc tccatgcag actcggat actcggat ctacctgct ggggattacc tcctgggtgg cctcttctcc tccatgcaa acatgaagg cattgttcac cttaacttcc tgcaggtgc catgggaga gaggatagag tgaaggtgat aggctacaac ctcatgcag ccatggctt cgggggaggagatcaaca atgacagag cctgctgct ggtgtgctgc tgggctatga gatcgtggat 300 gggatcaaca atgacagaa cctgcact ggtgtgctgc tgggctatga gatcgtggat 300 gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttcca tccaagagga ctacagtaac tacattccc gtgtgtggg tgtcattggc 420 cctgacaact ccgagtctgt catgactgg gccaacttcc tctccctatt tctcctcca 480 cagatcacca caccagcgc cgaccaccac gtcgaggca aggtgcgct cgacaatggc 660 cagctggtaca actggatcat tgtgctggt agcaggaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgcg ggcccgccg gacatctgca tcgccttcca ggagaccgt 720 ccacacctgc agcccaacca gaacatgacg tcagaggacg gccagcct ggtgaccatt 720 cccacactgc agcccaacca gaacatgacg tcagaggacg gccagcct ggtgaccatt 720 cccacactgc agcccaacca gaacatgacg tcagaggacg gccaggcct ggtgaccatt 720 cccacacactgc agcccaacca gaacatgacg tcagaggacg gccaggcct ggtgaccatt 720 cccacactgc agcccaacca gaacatgacg tcagaggacg gccaggcct ggtgaccatt 720	tgcaccttca	tgtctgtgca	cgacggcgtg	ctggtcacca	tcatggacct	cctggtcact	2400
<pre>2529 2529 2520 211> 2520 212> DNA 2213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc 120 ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag 180 gagatatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgggagg 240 gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatcgtggat 300 gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttccca tccaagagga ctacagtaca tacatttcc gtgtggtgg tgtcattggc 420 cctgacaact ccgagtctgt catgactgg gccaacttcc tctccctatt tctcctcca 480 cctgacaact ccgagtctgt catgactgg gccaacttcc tctccctatt tctcctcca 480 ctgcgtacca cacccagegc cgaccacca gtcgaggca aggtgcgct gatgctgcac 600 cttccgctgga actggatcat tgtgctggt agcaggcaa cctatggccg cgacaatggc 660 ccagctgcttg gcgagcgcgt ggcccggcg gacatctga tcgccttcca ggagacgctg 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagcct ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagccct ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagcct ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagccct ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagcct ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagccct ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagccc ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagccc ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcagaggacg gccagcaccacca ggtgaccatt 720 ccacacctgc agoccaacca gaacatgacg tcacaccac gccacaccac ggcacaccacac</pre>	gtgctcaact	tcctggccat	cggcttggga	tactttggcc	ccaagtgtta	catgatcctt	2460
<pre><210> 5 <211> 2520 <212> DNA <213> Homo sapiens </pre> <pre><400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catggcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatggcgt cgcggtggag gagatcaaca atgacagcag cctgctgcct ggtggtgctgc tgggctatga gatcgtggat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctgggaca cgaggacaac ctccttccca tccaagagga ctacagtac tacattccc gtgtggtgc tgtcattggc cctgacaact ccgagtctg catgactgtg gccaacttcc tctccctatt tctcctcca cagatcacct acagcgccat cagcgatgag ctgcgagaca aggtgcgct cccggctttg cctgctacac caccagcgc cgaccaccac gtcgagaca aggtgcgct cccggctttg ctgcgtacca caccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac cagctgtg actggatcat tgtgctggt agcagcgca cctatggccg cgacaatggc cagctgcttg gcgagcgcgt ggcccggcgc gacatctgca tcgccttcca ggagaccgt cccaccactgc agcccaacca gacaatgacg tcagaggacg gccagcgcct ggtgaccatt 720 cccaccactgc agcccaacca gacaatgacg tcagaggacg gccagcgcc ggcacactt 720 cccaccactgc agcccaacca gacaatgacg tcagaggacg gccagcgcc ggcacactt 720 cccaccactgc agcccaacca gacaatgacg tcagaggacg 720 cccaccacctgc agccacacca gacaatgacg tcagaggacg 720 cccaccactgc agccacacca gacaatgacg 720 ccca</pre>	ttctacccgg	agcgcaacac	ctcagcctat	ttcaatagca	tgatccaggg	ctacaccatg	2520
<pre><211> 2520 <212> DNA <213> Homo sapiens </pre> <pre><400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatcgtggat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacagtaca tacatttcc gtgtggtggc tgtcattggc cctgacaact ccgagtctg catgactgg gccaacttcc tctcctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcagaca aggtgcgct cccggctttg ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccttcct gcagatcact tgtgctggt agcaggcaa cctatggccg cgacaatggc cagctgctgg actggatcat tgtgctggt agcaggcaa cctatggccg cgacaatggc cagctgcttg gcgagcgcgt ggcccggcgc gacactcga tcgcettcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggac gccagcgcct ggtgaccatt 780 cccacactgc agcccaacca gaacatgac tcagaggac gccagccct ggtgaccatt 780 cccacactgc agcccaacca gaacatgacg tcagaggac gccagccct ggtgaccatt 780 cccacactgc agcccaacca gaacatgacg tcagaggac gccagccct ggtgaccatt 780 cccacactgc agcccaacca gaacatgacg tcagaggacg gccagccct ggtgaccatt 780 cccacactgc agccaaccac gaacacacac gcacacaccac ggtgacaccac ggggacaccaccaccaccaccaccaccaccaccaccacca</pre>	aggaagagc						2529
atggggcca gggcaaagac catctgcte ctgttcttce tcctatggt cctggctgag ccggctgag actcggctgag actcggctt ctacctgcct ggggattacc tcctgggtgg cctcttctcc 120 ctccatgca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag 180 gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag 240 gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatcgtggat 300 gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttccca tccaagagga ctacagtaac tacatttccc gtgtggtggc tgtcattggc 420 cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcagacaa aggtgcgct cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccgctgga actggatcat tggtgctggc gacaattgc cagcggcgc gacaattgc cagcgcgcg gacaattgc gggagcgct gggagcgctg cccaccac gtcgaggaca tcgccttcaa ggagacgctg 720 cccacactgc agccaacca gaccagcac tcagaggac gccagcgct ggtgaccatt 780 cccacactgc agccaacca gaccaccac gccagaggac gccagcgct ggtgaccatt 780 cccacactgc agccaaccac gaccaccac gccagaggac gccagcgct ggtgaccatt 780 cccacactgc agccaacca gaccaccac gaccaccac gccagcgcc ggccagcgct ggtgaccatt 780 cccacactgc agccaaccac gaccaccac gccagaggac gccagcgcc ggtgaccatt 780 cccacactgc agccaaccac gaccaccac gaccaccac gccagcgcc ggccagcgcc ggccagcgcc ggtgaccatt 780 cccacactgc agccaaccac gaccaccac gaccaccac gccagcgcc ggccagcgcc ggccagcgcc ggccagcgcc ggccagcgcc ggccagcgcc ggccaccaccac ggccagcgcc ggccagcgcc ggccagcgcc ggccaccaccac ggccaccaccac ggccagcgcc ggccagcgcc ggccaccaccac ggccaccaccac gccagcgcc ggccagcgcc ggccaccaccac ggccaccaccaccaccaccaccaccaccaccaccaccacc	<211> 2520 <212> DNA <213> Homo						
ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag 180 gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag 240 gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatcgtggat 300 gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttccca tccaagagga ctacagtaac tacatttccc gtgtggtggc tgtcattggc 420 cctgacaact ccgaggtctgt catgactgtg gccaacttcc tctccctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcaggaca aggtgcgctt cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccgctga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgct ggcccggcgc gacatctgca tcgccttcca ggagaccgct 780 cccacactgc agcccaacca gaccaggag gccagggcc ggccagcgcc ggtgaccatt 780 cccacactgc agcccaacca gaccatgac gccagggcc ggccagcgcc ggtgaccatt		gggcaaagac	catctgctcc	ctgttcttcc	tcctatgggt	cctggctgag	60
gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag 240 gagatcaaca atgacagcag cctgctgct ggtgtgctgc tgggctatga gatcgtggat 300 gtgtgctaca tetecaacaa tgtecagecg gtgctctact teetggcaca cgaggacaac 360 ctcettecca teeaagagga ctacagtaac tacattteec gtgtggtggc tgtcattggc 420 cctgacaact eegagtctgt catgactgtg gecaacttee tetecetatt tetectteca 480 cagatcacet acagegecat cagegatgag etgegagaca aggtgegett eeeggetttg 540 ctgegtacca caccagege egaccaceae gtegaggeca tggtgaget gatgetgeae 600 cteeggtgga actggateat tgtgetggtg ageagegaca ectatggeeg egacaatgge 660 cagetgettg gegageget ggeeeggeg gacatetgea tegeetteea ggagaegetg 720 cecacactge ageccaacea gaacatgaeg teagaggae gecageget ggtgaecatt 780 cecacactge ageccaacea gaacatgaeg teagaggae gecageget ggtgaecatt	ccggctgaga	actcggactt	ctacctgcct	ggggattacc	tcctgggtgg	cctcttctcc	120
gagatcaaca atgacagcag cctgctgct ggtgtgctgc tgggctatga gatcgtggat 300 gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttccca tccaagagga ctacagtaac tacatttccc gtgtggtggc tgtcattggc 420 cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcgagaca aggtgcgctt cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgct ggcccggcg gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggac gccagcgct ggtgaccatt 780 cccacactgc agcccaacca gaacatgacg tcagaggac gccagcgct ggtgaccatt	ctccatgcca	acatgaaggg	cattgttcac	cttaacttcc	tgcaggtgcc	catgtgcaag	180
gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 360 ctccttccca tccaagagga ctacagtaac tacatttccc gtgtggtggc tgtcattggc 420 cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcgagaca aggtgcgctt cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgct ggccggcg gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgct ggtgaccatt 780	gagtatgaag	tgaaggtgat	aggctacaac	ctcatgcagg	ccatgcgctt	cgcggtggag	240
ctccttccca tccaagaga ctacagtaac tacattccc gtgtggtggc tgtcattggc 420 cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcgagaca aggtgcgctt cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgct ggcccggcg gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgct ggtgaccatt 780	gagatcaaca	atgacagcag	cctgctgcct	ggtgtgctgc	tgggctatga	gatcgtggat	300
cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca 480 cagatcacct acagcgccat cagcgatgag ctgcgagaca aggtgcgctt cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 cttccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgct ggcccggcgc gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgct ggtgaccatt 780	gtgtgctaca	tctccaacaa	tgtccagccg	gtgctctact	tcctggcaca	cgaggacaac	360
cagatcacet acagcgccat cagcgatgag ctgcgagaca aggtgcgett cccggctttg 540 ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ctccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgcgt ggcccggcgc gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgct ggtgaccatt 780	ctccttccca	tccaagagga	ctacagtaac	tacatttccc	gtgtggtggc	tgtcattggc	420
ctgcgtacca caccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac 600 ttccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgcgt ggcccggcgc gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgcct ggtgaccatt 780	cctgacaact	ccgagtctgt	catgactgtg	gccaacttcc	tctccctatt	tctccttcca	480
ttccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc 660 cagctgcttg gcgagcgct ggcccggcgc gacatctgca tcgccttcca ggagacgctg 720 cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgct ggtgaccatt 780	cagatcacct	acagcgccat	cagcgatgag	ctgcgagaca	aggtgcgctt	cccggctttg	540
cagctgcttg gcgagcgcgt ggcccggcgc gacatctgca tcgccttcca ggagacgctg cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgcct ggtgaccatt 780	ctgcgtacca	cacccagcgc	cgaccaccac	gtcgaggcca	tggtgcagct	gatgctgcac	600
cccacactgc agcccaacca gaacatgacg tcagaggagc gccagcgcct ggtgaccatt 780	ttccgctgga	actggatcat	tgtgctggtg	agcagcgaca	cctatggccg	cgacaatggc	660
	cagctgcttg	gcgagcgcgt	ggcccggcgc	gacatctgca	tcgccttcca	ggagacgctg	720
Page 8	cccacactgc	agcccaacca	gaacatgacg	tcagaggagc	gccagcgcct	ggtgaccatt	780
Itago U				Pa	age 8		

PCT/US2004/015136

WO 2005/005480

at aas as saa	+~~~~~~~	G2G2GGGGG	at agt agt ag	+	agaaataaaa	840
	tgcagcagag					
ctgtaccact	tcttcaatga	ggtgctgcgc	cagaacttca	cgggcgccgt	gtggatcgcc	900
tccgagtcct	gggccatcga	cccggtcctg	cacaacctca	cggagctggg	ccacttgggc	960
accttcctgg	gcatcaccat	ccagagcgtg	cccatcccgg	gcttcagtga	gttccgcgag	1020
tggggcccac	aggctgggcc	gccacccctc	agcaggacca	gccagagcta	tacctgcaac	1080
caggagtgcg	acaactgcct	gaacgccacc	ttgtccttca	acaccattct	caggctctct	1140
ggggagcgtg	tcgtctacag	cgtgtactct	gcggtctatg	ctgtggccca	tgccctgcac	1200
agcctcctcg	gctgtgacaa	aagcacctgc	accaagaggg	tggtctaccc	ctggcagctg	1260
cttgaggaga	tctggaaggt	caacttcact	ctcctggacc	accaaatctt	cttcgacccg	1320
caaggggacg	tggctctgca	cttggagatt	gtccagtggc	aatgggaccg	gagccagaat	1380
cccttccaga	gcgtcgcctc	ctactacccc	ctgcagcgac	agctgaagaa	catccaagac	1440
atctcctggc	acaccgtcaa	caacacgatc	cctatgtcca	tgtgttccaa	gaggtgccag	1500
tcagggcaaa	agaagaagcc	tgtgggcatc	cacgtctgct	gcttcgagtg	catcgactgc	1560
cttcccggca	ccttcctcaa	ccacactgaa	gatgaatatg	aatgccaggc	ctgcccgaat	1620
aacgagtggt	cctaccagag	tgagacctcc	tgcttcaagc	ggcagctggt	cttcctggaa	1680
tggcatgagg	cacccaccat	cgctgtggcc	ctgctggccg	ccctgggctt	cctcagcacc	1740
ctggccatcc	tggtgatatt	ctggaggcac	ttccagacac	ccatagttcg	ctcggctggg	1800
ggccccatgt	gcttcctgat	gctgacactg	ctgctggtgg	catacatggt	ggtcccggtg	1860
tacgtggggc	cgcccaaggt	ctccacctgc	ctctgccgcc	aggccctctt	tcccctctgc	1920
ttcacaattt	gcatctcctg	tatcgccgtg	cgttctttcc	agatcgtctg	cgccttcaag	1980
atggccagcc	gcttcccacg	cgcctacagc	tactgggtcc	gctaccaggg	gccctacgtc	2040
tctatggcat	ttatcacggt	actcaaaatg	gtcattgtgg	taattggcat	gctggccacg	2100
ggcctcagtc	ccaccacccg	tactgacccc	gatgacccca	agatcacaat	tgtctcctgt	2160
aaccccaact	accgcaacag	cctgctgttc	aacaccagcc	tggacctgct	gctctcagtg	2220
gtgggtttca	gcttcgccta	catgggcaaa	gagctgccca	ccaactacaa	cgaggccaag	2280
ttcatcaccc	tcagcatgac	cttctatttc	acctcatccg	tctccctctg	caccttcatg	2340
tctgcctaca	gcggggtgct	ggtcaccatc	gtggacctct	tggtcactgt	gctcaacctc	2400
ctggccatca	gcctgggcta	cttcggcccc	aagtgctaca	tgatcctctt	ctacccggag	2460
cgcaacacgc	ccgcctactt	caacagcatg	atccagggct	acaccatgag	gagggactag	2520

<210> 6 <211> 2529 <212> DNA <213> Mus musculus

<400> 6 atgettttet gggcagetea ectgetgete ageetgeage tggeegttge ttactgetgg 60 gctttcagct gccaaaggac agaatcctct ccaggtttca gcctccctgg ggacttcctc 120

WO 2005/005480	PCT/US2004/015136
MON-0301.ST25.txt atcageaect trgteridal brack toget aggaactge eggagaacta taacgaagee	2280
aaatgtgtca ccttcagcct gctcctccac ttcgtatcct ggatcgcttt cttcaccatg	2340
tccagcattt accagggcag ctacctaccc gcggtcaatg tgctggcagg gctggccact	2400
ctgagtggcg gcttcagcgg ctatttcctc cctaaatgct acgtgattct ctgccgtcca	2460
gaactcaaca acacagaaca ctttcaggcc tccatccagg actacacgag gcgctgcggc	2520
actacctga	2529
<210> 7 <211> 2520 <212> DNA <213> Rattus rattus	
<400> 7 atgetettet gggetgetea cetgetgete ageetgeagt tggtetaetg etgggettte	60
agctgccaaa ggacagagtc ctctccaggc ttcagccttc ctggggactt cctccttgca	120
ggtctgttct ccctccatgg tgactgtctg caggtgagac acagacctct ggtgacaagt	180
tgtgacaggc ccgacagctt caacggccat ggctaccacc tcttccaagc catgcggttc	240
actgttgagg agataaacaa ctcctcggcc ctgcttccca acatcaccct ggggtatgag	300
ctgtacgacg tgtgctcaga atctgccaat gtgtatgcca ccctgagggt gcttgccctg	360
caagggcccc gccacataga gatacagaaa gaccttcgca accactcctc caaggtggtg	420
gccttcatcg ggcctgacaa cactgaccac gctgtcacta ccgctgcctt gctgggtcct	480
ttcctgatgc ccctggtcag ctatgaggca agcagcgtgg tactcagtgc caagcgcaag	540
ttcccgtctt tccttcgtac cgtccccagt gaccggcacc aggtggaggt catggtgcag	600
ctgctgcaga gttttgggtg ggtgtggatc tcgctcattg gcagctacgg tgattacggg	660
cagctgggtg tgcaggcgct ggaggagctg gccgtgcccc ggggcatctg cgtcgccttc	720
aaggacatcg tgcctttctc tgcccgggtg ggtgacccga ggatgcagag catgatgcag	780
catctggctc aggccaggac caccgtggtt gtggtcttct ctaaccggca cctggctaga	840
gtgttcttca ggtccgtggt gctggccaac ctgactggca aagtgtgggt cgcctcagaa	900
gactgggcca tetecaegta cateaecage gtgactggga tecaaggeat tgggaeggtg	960
ctcggtgtgg ccgtccagca gagacaagtc cctgggctga aggagtttga ggagtcttat	1020
gtcagggctg taacagctgc tcccagcgct tgcccggagg ggtcctggtg cagcactaac	1080
cagetgtgcc gggagtgcca caegttcaeg actegtaaca tgeccaeget tggageette	1140
tccatgagtg ccgcctacag agtgtatgag gctgtgtacg ctgtggccca cggcctccac	1200
cageteetgg gatgtaette tgagatetgt teeagaggee cagtetaece etggeagett	1260
cttcagcaga tctacaaggt gaattttctt ctacatgaga atactgtggc atttgatgac	1320
aacggggaca ctctaggtta ctacgacatc atcgcctggg actggaatgg acctgaatgg	1380
acctttgaga tcattggctc tgcctcactg tctccagttc atctggacat aaataagaca	1440
aaaatccagt ggcacgggaa gaacaatcag gtgcctgtgt cagtgtgtac cacggactgt	1500
ctggcagggc accacagggt ggttgtgggt tcccaccact gctgctttga gtgtgtgccc	1560

<213> Homo sap	piens				
<400> 8 atgctgctct gcac	eggeteg eetggtegge	ctgcagcttc	tcatttcctg	ctgctgggcc	60
tttgcctgcc atag	gcacgga gtcttctcct	gacttcaccc	tccccggaga	ttacctcctg	120
gcaggcctgt tccc	tctcca ttctggctgt	ctgcaggtga	ggcacagacc	cgaggtgacc	180
ctgtgtgaca ggtc	ttgtag cttcaatgag	catggctacc	acctcttcca	ggctatgcgg	240
cttggggttg agga	igataaa caactccacg	gccctgctgc	ccaacatcac	cctggggtac	300
cagetgtatg atgt	gtgttc tgactctgcc	aatgtgtatg	ccacgctgag	agtgctctcc	360
ctgccagggc aaca	ccacat agagetecaa	ggagaccttc	tccactattc	ccctacggtg	420
ctggcagtga ttgg	gcctga cagcaccaac	cgtgctgcca	ccacagccgc	cctgctgagc	480
cctttcctgg tgcc	catgat tagctatgcg	gccagcagcg	agacgctcag	cgtgaagcgg	540
cagtatccct cttt	cctgcg caccatcccc	aatgacaagt	accaggtgga	gaccatggtg	600
ctgctgctgc agaa	gttcgg gtggacctgg	atctctctgg	ttggcagcag	tgacgactat	660
gggcagctag gggt	gcaggc actggagaac	caggccactg	gtcaggggat	ctgcattgct	720
ttcaaggaca tcat	gccctt ctctgcccag	gtgggcgatg	agaggatgca	gtgcctcatg	780
cgccacctgg ccca	ggccgg ggccaccgtc	gtggttgttt	tttccagccg	gcagttggcc	840
agggtgtttt tcga	gtccgt ggtgctgacc	aacctgactg	gcaaggtgtg	ggtcgcctca	900

Page 12

WO 2005/005480	PCT/US2004/015136
MON-0301.ST25.txt gaagdetbggg cedterelagygeagetagetggggtgeeeg ggatecageg cattgggatg	960
gtgctgggcg tggccatcca gaagagggct gtccctggcc tgaaggcgtt tgaagaagcc	1020
tatgcccggg cagacaagaa ggcccctagg ccttgccaca agggctcctg gtgcagcagc	1080
aatcagctct gcagagaatg ccaagctttc atggcacaca cgatgcccaa gctcaaagcc	1140
ttctccatga gttctgccta caacgcatac cgggctgtgt atgcggtggc ccatggcctc	1200
caccagetee tgggetgtge etetggaget tgttecaggg geegagteta eccetggeag	1260
cttttggagc agatccacaa ggtgcatttc cttctacaca aggacactgt ggcgtttaat	1320
gacaacagag atcccctcag tagctataac ataattgcct gggactggaa tggacccaag	1380
tggaccttca cggtcctcgg ttcctccaca tggtctccag ttcagctaaa cataaatgag	1440
accaaaatcc agtggcacgg aaaggacaac caggtgccta agtctgtgtg ttccagcgac	1500
tgtcttgaag ggcaccagcg agtggttacg ggtttccatc actgctgctt tgagtgtgtg	1560
ccctgtgggg ctgggacctt cctcaacaag agtgacctct acagatgcca gccttgtggg	1620
aaagaagagt gggcacctga gggaagccag acctgcttcc cgcgcactgt ggtgtttttg	1680
getttgegtg ageaeacete ttgggtgetg etggeageta acaegetget getgetgetg	1740
ctgcttggga ctgctggcct gtttgcctgg cacctagaca cccctgtggt gaggtcagca	1800
gggggccgcc tgtgctttct tatgctgggc tccctggcag caggtagtgg cagcctctat	1860
ggettetttg gggaacccae aaggeetgeg tgettgetae geeaggeeet etttgeeett	1920
ggtttcacca tcttcctgtc ctgcctgaca gttcgctcat tccaactaat catcatcttc	1980
aagttttcca ccaaggtace tacattctac cacgeetggg tecaaaacca eggtgetgge	2040
ctgtttgtga tgatcagctc agcggcccag ctgcttatct gtctaacttg gctggtggtg	2100
tggaccccac tgcctgctag ggaataccag cgcttccccc atctggtgat gcttgagtgc	2160
acagagacca actocotggg cttcatactg gccttcctct acaatggcct cctctccatc	2220
agtgcctttg cctgcagcta cctgggtaag gacttgccag agaactacaa cgaggccaaa	2280
tgtgtcacct tcagcctgct cttcaacttc gtgtcctgga tcgccttctt caccacggcc	2340
agegtetacg aeggeaagta eetgeetgeg gecaacatga tggetggget gageageetg	2400
agcagegget teggtgggta ttttetgeet aagtgetaeg tgateetetg eegeceagae	2460
ctcaacagca cagagcactt ccaggcctcc attcaggact acacgaggcg ctgcggctcc	2520 ·
acctga	2526
<210> 9 <211> 2577 <212> DNA <213> Mus musculus	
<400> 9 atgccagctt tggctatcat gggtctcagc ctggctgctt tcctggagct tgggatgggg	60
gcctctttgt gtctgtcaca gcaattcaag gcacaagggg actacatact gggcgggcta	120
tttcccctgg gctcaaccga ggaggccact ctcaaccaga gaacacaacc caacagcatc	180
ccgtgcaaca ggttctcacc ccttggtttg ttcctggcca tggctatgaa gatggctgtg	240

Page 13

PCT/US2004/015136

WO 2005/005480

W O 2003/003480					PC1/C
		MON-030	1.ST25.txt		
gtctcttttg tgcccctcct	ggccaatgtg	caggtggcct	accagccagc	tgtgcagatg	2400
ggtgctatcc tagtctgtgc	cctgggcatc	ctggtcacct	tccacctgcc	caagtgctat	2460
gtgcttcttt ggctgccaaa	gctcaacacc	caggagttct	tcctgggaag	gaatgccaag	2520
aaagcagcag atgagaacag	tggcggtggt	gaggcagctc	agggacacaa	tgaatga	2577
<210> 10 <211> 2577 <212> DNA <213> Rattus rattus					
<400> 10 atgccgggtt tggctatctt	gggcctcagt	ctggctgctt	tcctggagct	tgggatgggg	60
tcctctttgt gtctgtcaca					120
tttcccctgg gcacaactga					180
ctatgtacca ggttctcgcc					240
gaggagatca acaatggatc					300
gacacatgct cagagccagt					360
ggaagtcaaa gcattgctgc					420
gtcattggtc cccactcatc					480
ctcatgccac aggtcagcta					540
ccatccttct tccgcacagt	gcccagtgac	cgggtgcagc	tgcaggccgt	tgtgacactg	600
ttgcagaatt tcagctggaa	ctgggtggct	gccttaggta	gtgatgatga	ctatggccgg	660
gaaggtetga geatettte	tggtctggcc	aactcacgag	gtatctgcat	tgcacacgag	720
ggcctggtgc cacaacatga	cactagtggc	caacaattgg	gcaaggtggt	ggatgtgcta	780
cgccaagtga accaaagcaa	agtacaggtg	gtggtgctgt	ttgcatctgc	ccgtgctgtc	840
tactcccttt ttagctacag	catccttcat	gacctctcac	ccaaggtatg	ggtggccagt	900
gagtcctggc tgacctctga	cctggtcatg	acacttccca	atattgcccg	tgtgggcact	960
gttcttgggt ttctgcagcg	cggtgcccta	ctgcctgaat	tttcccatta	tgtggagact	1020
cgccttgccc tagctgctga	cccaacattc	tgtgcctccc	tgaaagctga	gttggatctg	1080
gaggagegeg tgatggggee	acgctgttca	caatgtgact	acatcatgct	acagaacctg	1140
tcatctgggc tgatgcagaa	cctatcagct	gggcagttgc	accaccaaat	atttgcaacc	1200
tatgcagctg tgtacagtgt	ggctcaggcc	cttcacaaca	ccctgcagtg	caatgtctca	1260
cattgccaca catcagagcc	tgttcaaccc	tggcagctcc	tggagaacat	gtacaatatg	1320
agtttccgtg ctcgagactt	gacactgcag	tttgatgcca	aagggagtgt	agacatggaa	1380
tatgacctga agatgtgggt	gtggcagagc	cctacacctg	tactacatac	tgtaggcacc	1440
ttcaacggca cccttcagct	gcagcactcg	aaaatgtatt	ggccaggcaa	ccaggtgcca	1500
gtctcccagt gctcccggca	gtgcaaagat	ggccaggtgc	gcagagtaaa	gggctttcat	1560
tcctgctgct atgactgtgt	ggactgcaag	gcagggagct	accggaagca	tccagatgac	1620

PCT/US2004/015136

WO 2005/005480

WO 2005/005480					PCT/US2004/015136
ttcacctgta ctccatgtgg	caaggatcag		1.ST25.txt aaaaaagcac	aacctgctta	1680
cctcgcaggc ccaagtttct	ggcttggggg	gagccagctg	tgctgtcact	tctcctgctg	1740
ctttgcctgg tgctgggcct	gacactggct	gccctggggc	tctttgtcca	ctactgggac	1800
agccctcttg ttcaggcctc	aggtgggtca	ctgttctgct	ttggcctgat	ctgcctaggc	1860
ctcttctgcc tcagtgtcct	tctgttccca	ggacgaccac	gctctgccag	ctgccttgcc	1920
caacaaccaa tggctcacct	ccctctcaca	ggctgcctga	gcacactctt	cctgcaagca	1980
gccgagatct ttgtggagtc	tgagctgcca	ctgagttggg	caaactggct	ctgcagctac	2040
cttcggggcc cctgggcttg	gctggtggta	ctgctggcca	ctcttgtgga	ggctgcacta	2100
tgtgcctggt acttgatggc	tttccctcca	gaggtggtga	cagattggca	ggtgctgccc	2160
acggaggtac tggaacactg	ccgcatgcgt	tcctgggtca	gcctgggctt	ggtgcacatc	2220
accaatgcag tgttagcttt	cctctgcttt	ctgggcactt	tcctggtaca	gagccagcct	2280
ggtcgctata accgtgcccg	tggcctcacc	ttcgccatgc	tagcttattt	catcatctgg	2340
gtctcttttg tgcccctcct	ggctaatgtg	caggtggcct	accagccagc	tgtgcagatg	2400
ggtgctatct tattctgtgc	cctgggcatc	ctggccacct	tccacctgcc	caaatgctat	2460
gtacttctgt ggctgccaga	gctcaacacc	caggagttct	tcctgggaag	gagccccaag	2520
gaagcatcag atgggaatag	tggtagtagt	gaggcaactc	ggggacacag	tgaatga	2577
<210> 11 <211> 2559 <212> DNA <213> Homo sapiens <400> 11					
atgctgggcc ctgctgtcct	gggcctcagc	ctctgggctc	tcctgcaccc	tgggacgggg	60
gccccattgt gcctgtcaca	gcaacttagg	atgaaggggg	actacgtgct	gggggggctg	120
ttccccctgg gcgaggccga	ggaggctggc	ctccgcagcc	ggacacggcc	cagcageeet	180
gtgtgcacca ggttctcctc	aaacggcctg	ctctgggcac	tggccatgaa	aatggccgtg	240
gaggagatca acaacaagtc	ggatctgctg	cccgggctgc	gcċtgggcta	cgacctcttt	300
gatacgtgct cggagcctgt	ggtggccatg	aagcccagcc	tcatgttcct	ggccaaggca	360
ggcagccgcg acatcgccgc	ctactgcaac	tacacgcagt	accagccccg	tgtgctggct	420
gtcatcgggc cccactcgtc	agagctcgcc	atggtcaccg	gcaagttctt	cagcttcttc	480
ctcatgcccc aggtcagcta	cggtgctagc	atggagctgc	tgagcgcccg	ggagaccttc	540
ccctccttct tccgcaccgt	gcccagcgac	cgtgtgcagc	tgacggccgc	cgcggagctg	600
ctgcaggagt tcggctggaa	ctgggtggcc	gccctgggca	gcgacgacga	gtacggccgg	660
cagggcctga gcatcttctc	ggccctggcc	gcggcacgcg	gcatctgcat	cgcgcacgag	720
ggcctggtgc cgctgccccg	tgccgatgac	tegeggetgg	ggaaggtgca	ggacgtcctg	780
caccaggtga accagagcag	cgtgcaggtg	gtgctgctgt	tcgcctccgt	gcacgccgcc	840
cacgccctct tcaactacag	catcagcagc	aggctctcgc	ccaaggtgtg	ggtggccagc	900
gaggcctggc tgacctctga	cctggtcatg	gggctgcccg	gcatggccca	gatgggcacg	960

WO 2005/005480		PCT/US2004/015136
	MON-0301.ST25.txt	

gtgcttggct	tcctccagag	gggtgcccag	ctgcacgagt	tcccccagta	cgtgaagacg	1020
cacctggccc	tggccaccga	cccggccttc	tgctctgccc	tgggcgagag	ggagcagggt	1080
ctggaggagg	acgtggtggg	ccagcgctgc	ccgcagtgtg	actgcatcac	gctgcagaac	1140
gtgagcgcag	ggctaaatca	ccaccagacg	ttctctgtct	acgcagctgt	gtatagcgtg	1200
gcccaggccc	tgcacaacac	tcttcagtgc	aacgcctcag	gctgccccgc	gcaggacccc	1260
gtgaagccct	ggcagctcct	ggagaacatg	tacaacctga	ccttccacgt	gggcgggctg	1320
ccgctgcggt	tcgacagcag	cggaaacgtg	gacatggagt	acgacctgaa	gctgtgggtg	1380
tggcagggct	cagtgcccag	gctccacgac	gtgggcaggt	tcaacggcag	cctcaggaca	1440
gagcgcctga	agatccgctg	gcacacgtct	gacaaccaga	agcccgtgtc	ccggtgctcg	1500
cggcagtgcc	aggagggcca	ggtgcgccgg	gtcaaggggt	tccactcctg	ctgctacgac	1560
tgtgtggact	gcgaggcggg	cagctaccgg	caaaacccag	acgacatcgc	ctgcaccttt	1620
tgtggccagg	atgagtggtc	cccggagcga	agcacacgct	gcttccgccg	caggtctcgg	1680
ttcctggcat	ggggcgagcc	ggctgtgctg	ctgctgctcc	tgctgctgag	cctggcgctg	1740
ggccttgtgc	tggctgcttt	ggggctgttc	gttcaccatc	gggacagccc	actggttcag	1800
gcctcggggg	ggcccctggc	ctgctttggc	ctggtgtgcc	tgggcctggt	ctgcctcagc	1860
gtcctcctgt	tccctggcca	gcccagccct	gcccgatgcc	tggcccagca	gcccttgtcc	1920
cacctcccgc	tcacgggctg	cctgagcaca	ctcttcctgc	aggcggccga	gatcttcgtg	1980
gagtcagaac	tgcctctgag	ctgggcagac	cggctgagtg	gctgcctgcg	ggggccctgg	2040
gcctggctgg	tggtgctgct	ggccatgctg	gtggaggtcg	cactgtgcac	ctggtacctg	2100
gtggccttcc	cgccggaggt	ggtgacggac	tggcacatgc	tgcccacgga	ggcgctggtg	2160
cactgccgca	cacgctcctg	ggtcagcttc	ggcctagcgc	acgccaccaa	tgccacgctg	2220
gcctttctct	gcttcctggg	cactttcctg	gtgcggagcc	agccgggccg	ctacaaccgt	2280
gcccgtggcc	tcacctttgc	catgctggcc	tacttcatca	cctgggtctc	ctttgtgccc	2340
ctcctggcca	atgtgcaggt	ggtcctcagg	cccgccgtgc	agatgggcgc	cctcctgctc	2400
tgtgtcctgg	gcatcctggc	tgccttccac	ctgcccaggt	gttacctgct	catgcggcag	2460
ccagggctca	acacccccga	gttcttcctg	ggaggggcc	ctggggatgc	ccaaggccag	2520
aatgacggga	acacaggaaa	tcaggggaaa	catgagtga			2559

<210> 12 <211> 852 <212> PRT <213> Homo sapiens

<400> 12

Met Leu Gly Pro Ala Val Leu Gly Leu Ser Leu Trp Ala Leu Leu His

Pro Gly Thr Gly Ala Pro Leu Cys Leu Ser Gln Gln Leu Arg Met Lys 20 25 30

Gly	Asp	Tyr	Val	Leu	Gly	Gly	Leu	Phe	Pro	Leu	Gly	Glu	Ala	Glu	Glu
		35					40					45			

- Ala Gly Leu Arg Ser Arg Thr Arg Pro Ser Ser Pro Val Cys Thr Arg 50 55 60
- Phe Ser Ser Asn Gly Leu Leu Trp Ala Leu Ala Met Lys Met Ala Val 65 70 75 80
- Glu Glu Ile Asn Asn Lys Ser Asp Leu Leu Pro Gly Leu Arg Leu Gly
 85 90 95
- Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Ala Met Lys Pro 100 $$. 105 $$ 110
- Ser Leu Met Phe Leu Ala Lys Ala Gly Ser Arg Asp Ile Ala Ala Tyr 115 120 125
- Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
 130 140
- His Ser Ser Glu Leu Ala Met Val Thr Gly Lys Phe Phe Ser Phe Phe 145 150 155 160
- Leu Met Pro Gln Val Ser Tyr Gly Ala Ser Met Glu Leu Leu Ser Ala 165 170 175
- Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val 180 185 190
- Gln Leu Thr Ala Ala Ala Glu Leu Leu Gln Glu Phe Gly Trp Asn Trp
 195 200 205
- Val Ala Ala Leu Gly Ser Asp Asp Glu Tyr Gly Arg Gln Gly Leu Ser 210 220
- Ile Phe Ser Ala Leu Ala Ala Ala Arg Gly Ile Cys Ile Ala His Glu 225 230 235 240
- Gly Leu Val Pro Leu Pro Arg Ala Asp Asp Ser Arg Leu Gly Lys Val
- Gln Asp Val Leu His Gln Val Asn Gln Ser Ser Val Gln Val Leu 260 265 270
- Leu Phe Ala Ser Val His Ala Ala His Ala Leu Phe Asn Tyr Ser Ile 275 280 280
- Ser Ser Arg Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ala Trp Leu 290 295 300
- Thr Ser Asp Leu Val Met Gly Leu Pro Gly Met Ala Gln Met Gly Thr
 Page 18

Val Leu Gly Phe Leu Gln Arg Gly Ala Gln Leu His Glu Phe Pro Gln 325

Tyr Val Lys Thr His Leu Ala Leu Ala Thr Asp Pro Ala Phe Cys Ser

305

Ala Leu Gly Glu Arg Glu Gln Gly Leu Glu Glu Asp Val Val Gly Gln

Arg Cys Pro Gln Cys Asp Cys Ile Thr Leu Gln Asn Val Ser Ala Gly 370 375 380

Leu Asn His His Gln Thr Phe Ser Val Tyr Ala Ala Val Tyr Ser Val 385 390 395 400

Ala Gln Ala Leu His Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro 405 410 415

Ala Gln Asp Pro Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn 420 425 430

Leu Thr Phe His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly $^{\circ}$ 435 $^{\circ}$ 440 $^{\circ}$ 445

Asn Val Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser 450 455 460

Val Pro Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr 465 470 475

Glu Arg Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Lys Pro Val 485 490 495

Ser Arg Cys Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys 500 505 510

Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser 515 520 525

Tyr Arg Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp 530 540

Glu Trp Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser Arg 545 550 555 560

Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu Leu 565 570 575

Ser Leu Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu Phe Val His 580 585 590

MON-0301.ST25.txt

His Arg Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro Leu Ala Cys 595 600 605

Phe Gly Leu Val Cys Leu Gly Leu Val Cys Leu Ser Val Leu Leu Phe 610 620

Pro Gly Gln Pro Ser Pro Ala Arg Cys Leu Ala Gln Gln Pro Leu Ser 625 630 635 640

His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu Phe Leu Gln Ala Ala 645 650 655

Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser Trp Ala Asp Arg Leu 660 665 670

Ser Gly Cys Leu Arg Gly Pro Trp Ala Trp Leu Val Val Leu Leu Ala 675 680 685

Met Leu Val Glu Val Ala Leu Cys Thr Trp Tyr Leu Val Ala Phe Pro 690 695 700

Pro Glu Val Val Thr Asp Trp His Met Leu Pro Thr Glu Ala Leu Val 705 710 715 720

His Cys Arg Thr Arg Ser Trp Val Ser Phe Gly Leu Ala His Ala Thr 725 730 735

Asn Ala Thr Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe Leu Val Arg 740 745 750

Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly Leu Thr Phe Ala Met 755 760 765

Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val Pro Leu Leu Ala Asn 770 780

Val Gln Val Val Leu Arg Pro Ala Val Gln Met Gly Ala Leu Leu 785 790 795 800

Cys Val Leu Gly Ile Leu Ala Ala Phe His Leu Pro Arg Cys Tyr Leu 805 810 810

Leu Met Arg Gln Pro Gly Leu Asn Thr Pro Glu Phe Phe Leu Gly Gly 820 825 830

Gly Lys His Glu 850

<210> 13

<211> 858 <212> PRT <213> Mus musculus

<400> 13

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu

Leu Gly Met Gly Ala Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Ser Thr Glu Glu

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Ser Ile Pro Cys Asn Arg

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Ser

Ser Leu Met Phe Leu Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp

Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser

Ile Phe Ser Ser Leu Ala Asn Ala Arg Gly Ile Cys Ile Ala His Glu

Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val

Leu Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val Val 260 265 270

Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile 275 280 285

His His Gly Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu 290 295 300

Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr 305 310 315 320

Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His 325 330 335

Tyr Val Glu Thr His Leu Ala Leu Ala Ala Asp Pro Ala Phe Cys Ala 340 345 350

Ser Leu Asn Ala Glu Leu Asp Leu Glu Glu His Val Met Gly Gln Arg 355 360 365

Cys Pro Arg Cys Asp Asp Ile Met Leu Gln Asn Leu Ser Ser Gly Leu 370 380

Leu Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr 385 390 395 400

Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln 405 410 415

Cys Asn Val Ser His Cys His Val Ser Glu His Val Leu Pro Trp Gln 420 425 430

Leu Leu Glu Asn Met Tyr Asn Met Ser Phe His Ala Arg Asp Leu Thr 435 440 445

Leu Gln Phe Asp Ala Glu Gly Asn Val Asp Met Glu Tyr Asp Leu Lys 450 450 460

Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr 465 470 475 480

Phe Asn Gly Thr Leu Gln Leu Gln Gln Ser Lys Met Tyr Trp Pro Gly 485 490 495

Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln 500 505 510

Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp 515 520 525

Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr 530 540

Pro Cys Asn	Gln Asp	Gln	Trp	Ser	Pro	Glu	Lys	Ser	Thr	Ala	Cvs	Leu
545		550					555				-1-	560

- Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Val Val Leu Ser 565 570
- Leu Leu Leu Cys Leu Val Leu Gly Leu Ala Leu Ala Leu 580 585 590
- Gly Leu Ser Val His His Trp Asp Ser Pro Leu Val Gln Ala Ser Gly
 595 600 605
- Gly Ser Gln Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu 610 610 620
- Ser Val Leu Leu Phe Pro Gly Arg Pro Ser Ser Ala Ser Cys Leu Ala 625 630 635
- Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu 645 650
- Phe Leu Gln Ala Ala Glu Thr Phe Val Glu Ser Glu Leu Pro Leu Ser 660 665 670
- Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Leu Trp Ala Trp Leu 675 680 685
- Val Val Leu Leu Ala Thr Phe Val Glu Ala Ala Leu Cys Ala Trp Tyr 690 695 700
- Leu Ile Ala Phe Pro Pro Glu Val Val Thr Asp Trp Ser Val Leu Pro 705 710 715 720
- Thr Glu Val Leu Glu His Cys His Val Arg Ser Trp Val Ser Leu Gly $725 \hspace{1cm} 730 \hspace{1cm} 735$
- Leu Val His Ile Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly 740 745 750
- Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly 755 760 765
- Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val 770 780
- Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met 785 790 795 800
- Gly Ala Ile Leu Val Cys Ala Leu Gly Ile Leu Val Thr Phe His Leu 805 810 815

Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Lys Leu Asn Thr Gln Glu 820 825 830

Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly

Gly Gly Glu Ala Ala Gln Gly His Asn Glu

<210> 14 <211> 858 <212> PRT

<213> Rattus rattus

<400> 14

Met Pro Gly Leu Ala Ile Leu Gly Leu Ser Leu Ala Ala Phe Leu Glu

Leu Gly Met Gly Ser Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Thr Thr Glu Glu

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Gly Ile Leu Cys Thr Arg

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Pro

Ser Leu Met Phe Met Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro 135

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser'Asp Arg Val

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp 200

									MON	-030	I.ST	25.t	Xτ		
Val	Ala 210	Ala	Leu	Gly	Ser	Asp 215	Asp	Asp	Tyr	Gly	Arg 220	Glu	Gly	Leu	Ser
Ile 225	Phe	Ser	Gly	Leu	Ala 230	Asn	Ser	Arg	Gly	Ile 235	Суз	Ile	Ala	His	Glu 240
Gly	Leu	Val	Pro	Gln 245	His	Asp	Thr	Ser	Gly 250	Gln	Gln	Leu	Gly	Lys 255	Val
Val	Asp	Val	Leu 260	Arg	Gln	Val	Asn	Gln 265	Ser	Lys	Val	Gln	Val 270	Val	Val
Leu	Phe	Ala 275	Ser	Ala	Arg	Ala	Val 280	Tyr	Ser	Leu	Phe	Ser 285	Tyr	Ser	Ile
Leu	His 290	Asp	Leu	Ser	Pro	Lys 295	Val	Trp	Val	Ala	Ser 300	Glu	Ser	Trp	Leu
Thr 305	Ser	Asp	Leu	Val	Met 310	Thr	Leu	Pro	Asn	Ile 315	Ala	Arg	Val	Gly	Thr 320
Val	Leu	Gly	Phe	Leu 325	Gln	Arg	Gly	Ala	Leu 330	Leu	Pro	Glu	Phe	Ser 335	His
Tyr	Val	Glu	Thr 340	Arg	Leu	Ala	Leu	Ala 345	Ala	Asp	Pro	Thr	Phe 350	Суз	Ala
Ser	Leu	Lys 355	Ala	Glu	Leu	Asp	Leu 360	Glu	Glu	Arg	Val	Met 365	Gly	Pro	Arg
Cys	Ser 370	Gln	Cys	Asp	Tyr	Ile 375	Met	Leu	Gln	Asn	Leu 380	Ser	Ser	Gly	Leu
Met 385	Gln	Asn	Leu	Ser	Ala 390	Gly	Gln	Leu	His	His 395	Gln	Ile	Phe	Ala	Thr 400
Tyr	Ala	Ala	Val	Tyr 405	Ser	Val	Ala	Gln	Ala 410		His	Asn	Thr	Leu 415	Gln
Cys	Asn	Val	Ser 420	His	Cys	His	Thr	Ser 425	Glu	Pro	Val	Gln	Pro 430	Trp	Gln
Leu	Leu	Glu 435	Asn	Met	Tyr	Asn	Met 440	Ser	Phe	Arg	Ala	Arg 445	Asp	Leu	Thr
Leu	Gln 450	Phe	Asp	Ala	Lys	Gly 455	Ser	Val	Asp	Met	Glu 460	Tyr	Asp	Leu	Lys
Met 465	Trp	Val	Trp	Gln	Ser 470	Pro	Thr	Pro	Val	Leu 475	His	Thr	Val	Gly	Thr 480
Phe	Asn	Gly	Thr	Leu	Gln	Leu	Gln	His	Ser		Met age 2		Trp	Pro	Gly

WO 2005/005480

485

MON-0301.ST25.txt

495

. :

Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln 500 505 510

Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp

Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr

Pro Cys Gly Lys Asp Gln Trp Ser Pro Glu Lys Ser Thr Thr Cys Leu

Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Ser

Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Thr Leu Ala Ala Leu

Gly Leu Phe Val His Tyr Trp Asp Ser Pro Leu Val Gln Ala Ser Gly

Gly Ser Leu Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu

Ser Val Leu Leu Phe Pro Gly Arg Pro Arg Ser Ala Ser Cys Leu Ala

Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu

Phe Leu Gln Ala Ala Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser

Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Pro Trp Ala Trp Leu

Val Val Leu Leu Ala Thr Leu Val Glu Ala Ala Leu Cys Ala Trp Tyr

Leu Met Ala Phe Pro Pro Glu Val Val Thr Asp Trp Gln Val Leu Pro

Thr Glu Val Leu Glu His Cys Arg Met Arg Ser Trp Val Ser Leu Gly

Leu Val His Ile Thr Asn Ala Val Leu Ala Phe Leu Cys Phe Leu Gly

Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly

Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Ile Trp Val Ser Phe Val

Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met

Gly Ala Ile Leu Phe Cys Ala Leu Gly Ile Leu Ala Thr Phe His Leu

Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Glu Leu Asn Thr Gln Glu 820

Phe Phe Leu Gly Arg Ser Pro Lys Glu Ala Ser Asp Gly Asn Ser Gly

Ser Ser Glu Ala Thr Arg Gly His Ser Glu

<210> 15 <211> 842 <212> PRT

<213> Mus musculus

<400> 15

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Ala Val

Ala Tyr Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly

Phe Ser Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His

Ala Asp Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp

Arg Ser Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met

Arg Phe Thr Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn

Ile Thr Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ser Asn

Val Tyr Ala Thr Leu Arg Val Leu Ala Gln Gln Gly Thr Gly His Leu

Glu Met Gln Arg Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Leu 135

Ile Gly Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu 150

PCT/US2004/015136

MON-0301.ST25.txt

Ser	Pro	Phe	Leu	Met	Pro	Leu	Val	Ser	Tyr	Glu	Ala	Ser	Ser	Val	Ile
				165					170					175	

Leu Ser Gly Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Ile Pro Ser 180 185 190

Asp Lys Tyr Gln Val Glu Val Ile Val Arg Leu Leu Gln Ser Phe Gly 195 200

Trp Val Trp Ile Ser Leu Val Gly Ser Tyr Gly Asp Tyr Gly Gln Leu 210 215 220

Gly Val Gln Ala Leu Glu Glu Leu Ala Thr Pro Arg Gly Ile Cys Val 225 230 235 240

Ala Phe Lys Asp Val Val Pro Leu Ser Ala Gln Ala Gly Asp Pro Arg 245 250 255

Met Gln Arg Met Met Leu Arg Leu Ala Arg Ala Arg Thr Thr Val Val 260 265 270

Val Val Phe Ser Asn Arg His Leu Ala Gly Val Phe Phe Arg Ser Val 275 280 285

Val Leu Ala Asn Leu Thr Gly Lys Val Trp Ile Ala Ser Glu Asp Trp 290 295 300

Ala Ile Ser Thr Tyr Ile Thr Asn Val Pro Gly Ile Gln Gly Ile Gly 305 310 315 320

Thr Val Leu Gly Val Ala Ile Gln Gln Arg Gln Val Pro Gly Leu Lys 325 330 335

Glu Phe Glu Glu Ser Tyr Val Gln Ala Val Met Gly Ala Pro Arg Thr 340 . 345 . 350

Cys Pro Glu Gly Ser Trp Cys Gly Thr Asn Gln Leu Cys Arg Glu Cys 355 360 365

His Ala Phe Thr Trp Asn Met Pro Glu Leu Gly Ala Phe Ser Met 370 380

Ser Ala Ala Tyr Asn Val Tyr Glu Ala Val Tyr Ala Val Ala His Gly 385 390 395

Leu His Gln Leu Gly Cys Thr Ser Gly Thr Cys Ala Arg Gly Pro $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$

Val Tyr Pro Trp Gln Leu Leu Gln Gln Ile Tyr Lys Val Asn Phe Leu 420 425 430

MON-0301.ST25.txt
Leu His Lys Lys Thr Val Ala Phe Asp Asp Lys Gly Asp Pro Leu Gly
435
440
445

Tyr Tyr Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe 450 455

Glu Val Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn 465 470 475 480

Lys Thr Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser 485 490 495

Val Cys Thr Arg Asp Cys Leu Glu Gly His His Arg Leu Val Met Gly 500 505 510

Ser His His Cys Cys Phe Glu Cys Met Pro Cys Glu Ala Gly Thr Phe 515 520 525

Leu Asn Thr Ser Glu Leu His Thr Cys Gln Pro Cys Gly Thr Glu Glu 530 535 540

Trp Ala Pro Glu Gly Ser Ser Ala Cys Phe Ser Arg Thr Val Glu Phe 545 550 555 560

Leu Gly Trp His Glu Pro Ile Ser Leu Val Leu Leu Ala Ala Asn Thr 565 570

Leu Leu Leu Leu Ile Gly Thr Ala Gly Leu Phe Ala Trp Arg 580 585 590

Leu His Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu 595 600 605

Met Leu Gly Ser Leu Val Ala Gly Ser Cys Ser Leu Tyr Ser Phe Phe 610 615 620

Gly Lys Pro Thr Val Pro Ala Cys Leu Leu Arg Gln Pro Leu Phe Ser 625 630 635 640

Leu Gly Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln 645 650

Leu Val Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr His 660 670

Thr Trp Ala Gln Asn His Gly Ala Gly Ile Phe Val Ile Val Ser Ser 675 680 685

Thr Val His Leu Phe Leu Cys Leu Thr Trp Leu Ala Met Trp Thr Pro 690 695 700

Arg Pro Thr Arg Glu Tyr Gln Arg Phe Pro His Leu Val Ile Leu Glu 705 710 715 720

MON-0301.ST25.txt

Cys Thr Glu Val Asn Ser Val Gly Phe Leu Val Ala Phe Ala His Asn

Ile Leu Leu Ser Ile Ser Thr Phe Val Cys Ser Tyr Leu Gly Lys Glu 745

Leu Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu

Leu His Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ser Ser Ile Tyr

Gln Gly Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Ala Thr

Leu Ser Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile

Leu Cys Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile

Gln Asp Tyr Thr Arg Arg Cys Gly Thr Thr

<210> 16

<211> 840

<212> PRT <213> Rattus rattus

<400> 16

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Val Tyr

Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly Phe Ser

Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His Gly Asp

Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp Arg Pro

Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met Arg Phe

Thr Val Glu Glu Ile Asn Asn Ser Ser Ala Leu Leu Pro Asn Ile Thr 90

Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ala Asn Val Tyr

Ala Thr Leu Arg Val Leu Ala Leu Gln Gly Pro Arg His Ile Glu Ile Page 30

MON-0301.ST25.txt 115 120 125

Gln Lys Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Phe Ile Gly 135 Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu Gly Pro Phe Leu Met Pro Leu Val Ser Tyr Glu Ala Ser Ser Val Val Leu Ser Ala Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Val Pro Ser Asp Arg His Gln Val Glu Val Met Val Gln Leu Leu Gln Ser Phe Gly Trp Val 200 Trp Ile Ser Leu Ile Gly Ser Tyr Gly Asp Tyr Gly Gln Leu Gly Val Gln Ala Leu Glu Glu Leu Ala Val Pro Arg Gly Ile Cys Val Ala Phe Lys Asp Ile Val Pro Phe Ser Ala Arg Val Gly Asp Pro Arg Met Gln Ser Met Met Gln His Leu Ala Gln Ala Arg Thr Thr Val Val Val Val 265 Phe Ser Asn Arg His Leu Ala Arg Val Phe Phe Arg Ser Val Val Leu 285 Ala Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Asp Trp Ala Ile Ser Thr Tyr Ile Thr Ser Val Thr Gly Ile Gln Gly Ile Gly Thr Val Leu Gly Val Ala Val Gln Gln Arg Gln Val Pro Gly Leu Lys Glu Phe Glu Glu Ser Tyr Val Arg Ala Val Thr Ala Ala Pro Ser Ala Cys Pro Glu Gly Ser Trp Cys Ser Thr Asn Gln Leu Cys Arg Glu Cys His Thr Phe Thr Thr Arg Asn Met Pro Thr Leu Gly Ala Phe Ser Met Ser Ala

Ala Tyr Arg Val Tyr Glu Ala Val Tyr Ala Val Ala His Gly Leu His

Gln	Leu	Leu	Gly	Cys	Thr	Ser	Glu	Ile	Cys	Ser	Arg	Gly	Pro	Val	Tyr
				405					410			-		415	_

- Glu Asn Thr Val Ala Phe Asp Asp Asn Gly Asp Thr Leu Gly Tyr Tyr 435 440 445
- Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe Glu Ile 450 460
- Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn Lys Thr 465 470 475
- Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser Val Cys 485 490 495
- Thr Thr Asp Cys Leu Ala Gly His His Arg Val Val Gly Ser His 500 505 510
- His Cys Cys Phe Glu Cys Val Pro Cys Glu Ala Gly Thr Phe Leu Asn 515 520 525
- Met Ser Glu Leu His Ile Cys Gln Pro Cys Gly Thr Glu Glu Trp Ala 530 535
- Pro Lys Glu Ser Thr Thr Cys Phe Pro Arg Thr Val Glu Phe Leu Ala 545 550 555 560
- Trp His Glu Pro Ile Ser Leu Val Leu Ile Ala Ala Asn Thr Leu Leu 565 570 575
- Leu Leu Leu Val Gly Thr Ala Gly Leu Phe Ala Trp His Phe His 580 585 590
- Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met Leu 595 600 605
- Gly Ser Leu Val Ala Gly Ser Cys Ser Phe Tyr Ser Phe Phe Gly Glu 610 615 . 620
- Pro Thr Val Pro Ala Cys Leu Leu Arg Gln Pro Leu Phe Ser Leu Gly 625 630 635
- Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln Leu Val 645 650 655
- Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr Arg Thr Trp 660 665 670
- Ala Gl
n Asn His Gly Ala Gly Leu Phe Val Ile Val Ser Ser Thr Val
 Page 32 $\,$

His Leu Leu Ile Cys Leu Thr Trp Leu Val Met Trp Thr Pro Arg Pro

Thr Arg Glu Tyr Gln Arg Phe Pro His Leu Val Ile Leu Glu Cys Thr

Glu Val Asn Ser Val Gly Phe Leu Leu Ala Phe Thr His Asn Ile Leu

Leu Ser Ile Ser Thr Phe Val Cys Ser Tyr Leu Gly Lys Glu Leu Pro

Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Leu Asn

Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ala Ser Ile Tyr Gln Gly

Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Thr Thr Leu Ser

Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu Cys

Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile Gln Asp 825

Tyr Thr Arg Arg Cys Gly Thr Thr 835

<210> 17

<211> 841 <212> PRT <213> Homo sapiens

<400> 17

Met Leu Leu Cys Thr Ala Arg Leu Val Gly Leu Gln Leu Leu Ile Ser

Cys Cys Trp Ala Phe Ala Cys His Ser Thr Glu Ser Ser Pro Asp Phe

Thr Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser

Gly Cys Leu Gln Val Arg His Arg Pro Glu Val Thr Leu Cys Asp Arg

Ser Cys Ser Phe Asn Glu His Gly Tyr His Leu Phe Gln Ala Met Arg

Leu Gly Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Ile 85 90 95

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Asp Ser Ala Asn Val 100 105 110

Tyr Ala Thr Leu Arg Val Leu Ser Leu Pro Gly Gln His His Ile Glu 115 120 125

Leu Gln Gly Asp Leu Leu His Tyr Ser Pro Thr Val Leu Ala Val Ile 130 140

Gly Pro Asp Ser Thr Asn Arg Ala Ala Thr Thr Ala Ala Leu Leu Ser 145 150 155

Pro Phe Leu Val Pro Met Ile Ser Tyr Ala Ala Ser Ser Glu Thr Leu 165 170 175

Ser Val Lys Arg Gln Tyr Pro Ser Phe Leu Arg Thr Ile Pro Asn Asp 180 185 190

Lys Tyr Gln Val Glu Thr Met Val Leu Leu Gln Lys Phe Gly Trp 195 200 205

Thr Trp Ile Ser Leu Val Gly Ser Ser Asp Asp Tyr Gly Gln Leu Gly 210 220

Val Gln Ala Leu Glu Asn Gln Ala Thr Gly Gln Gly Ile Cys Ile Ala 225 230 235 240

Phe Lys Asp Ile Met Pro Phe Ser Ala Gln Val Gly Asp Glu Arg Met 245 250 255

Gln Cys Leu Met Arg His Leu Ala Gln Ala Gly Ala Thr Val Val Val 260 265 270

Val Phe Ser Ser Arg Gln Leu Ala Arg Val Phe Phe Glu Ser Val Val 275 280 285

Leu Thr Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Ala Trp Ala 290 295 300

Leu Ser Arg His Ile Thr Gly Val Pro Gly Ile Gln Arg Ile Gly Met 305 310 315

Val Leu Gly Val Ala Ile Gln Lys Arg Ala Val Pro Gly Leu Lys Ala 325 330 335

Phe Glu Glu Ala Tyr Ala Arg Ala Asp Lys Lys Ala Pro Arg Pro Cys 340 345 350

His Lys Gly Ser Trp Cys Ser Ser Asn Gln Leu Cys Arg Glu Cys Gln 355 360 365

WO 2005/005480

PCT/US2004/015136

Ala	Phe	Met	Ala	His	\mathtt{Thr}	Met	Pro	Lys	Leu	Lys	Ala	Phe	Ser	Met	Ser
	370					375					380				

- Ser Ala Tyr Asn Ala Tyr Arg Ala Val Tyr Ala Val Ala His Gly Leu 385 390 395 400
- His Gln Leu Leu Gly Cys Ala Ser Gly Ala Cys Ser Arg Gly Arg Val
 405 410 415
- Tyr Pro Trp Gln Leu Leu Glu Gln Ile His Lys Val His Phe Leu Leu 420 425 430
- His Lys Asp Thr Val Ala Phe Asn Asp Asn Arg Asp Pro Leu Ser Ser 435 440 445
- Tyr Asn Ile Ile Ala Trp Asp Trp Asn Gly Pro Lys Trp Thr Phe Thr 450 460
- Val Leu Gly Ser Ser Thr Trp Ser Pro Val Gln Leu Asn Ile Asn Glu 465 470 475 480
- Thr Lys Ile Gln Trp His Gly Lys Asp Asn Gln Val Pro Lys Ser Val
 485 490 495
- Cys Ser Ser Asp Cys Leu Glu Gly His Gln Arg Val Val Thr Gly Phe 500 505 510
- His His Cys Cys Phe Glu Cys Val Pro Cys Gly Ala Gly Thr Phe Leu 515 520 525
- Asn Lys Ser Asp Leu Tyr Arg Cys Gln Pro Cys Gly Lys Glu Glu Trp 530 540
- Ala Pro Glu Gly Ser Gln Thr Cys Phe Pro Arg Thr Val Val Phe Leu 545 550 555
- Ala Leu Arg Glu His Thr Ser Trp Val Leu Leu Ala Ala Asn Thr Leu
 565 570 575
- Leu Leu Leu Leu Gly Thr Ala Gly Leu Phe Ala Trp His Leu 580 585 590
- Asp Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met 595 600 605
- Leu Gly Ser Leu Ala Ala Gly Ser Gly Ser Leu Tyr Gly Phe Phe Gly 610 620
- Glu Pro Thr Arg Pro Ala Cys Leu Leu Arg Gln Ala Leu Phe Ala Leu 625 630 635

MON-0301.ST25.txt Gly Phe Thr Ile Phe Leu Ser Cys Leu Thr Val Arg Ser Phe Gln Leu

Ile Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr His Ala

Trp Val Gln Asn His Gly Ala Gly Leu Phe Val Met Ile Ser Ser Ala

Ala Gln Leu Leu Ile Cys Leu Thr Trp Leu Val Val Trp Thr Pro Leu

Pro Ala Arg Glu Tyr Gln Arg Phe Pro His Leu Val Met Leu Glu Cys 710

Thr Glu Thr Asn Ser Leu Gly Phe Ile Leu Ala Phe Leu Tyr Asn Gly

Leu Leu Ser Ile Ser Ala Phe Ala Cys Ser Tyr Leu Gly Lys Asp Leu

Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Phe

Asn Phe Val Ser Trp Ile Ala Phe Phe Thr Thr Ala Ser Val Tyr Asp

Gly Lys Tyr Leu Pro Ala Ala Asn Met Met Ala Gly Leu Ser Ser Leu 790

Ser Ser Gly Phe Gly Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu

Cys Arg Pro Asp Leu Asn Ser Thr Glu His Phe Gln Ala Ser Ile Gln 825

Asp Tyr Thr Arg Arg Cys Gly Ser Thr 835

<210> 18 <211> 843 <212> PRT

<213> Mus musculus

<400> 18

Met Gly Pro Gln Ala Arg Thr Leu His Leu Leu Phe Leu Leu Leu His

Ala Leu Pro Lys Pro Val Met Leu Val Gly Asn Ser Asp Phe His Leu

Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val

WO 2005/005480 PCT/US2004/015136

Lys	Ser	Val	Ser	His	Leu	Ser	Tyr	Leu	Gln	Val	Pro	Lys	Cvs	Asn	Glu
	50					55					60	-	3		

- Tyr Asn Met Lys Val Leu Gly Tyr Asn Leu Met Gln Ala Met Arg Phe 65 70 75 80
- Ala Val Glu Glu Ile Asn Asn Cys Ser Ser Leu Leu Pro Gly Val Leu 85 90 95
- Leu Gly Tyr Glu Met Val Asp Val Cys Tyr Leu Ser Asn Asn Ile Gln 100 105 110
- Pro Gly Leu Tyr Phe Leu Ser Gln Ile Asp Asp Phe Leu Pro Ile Leu 115 120 125
- Lys Asp Tyr Ser Gln Tyr Arg Pro Gln Val Val Ala Val Ile Gly Pro 130 140
- Leu Val Pro Gln Val Thr Tyr Ser Ala Ile Thr Asp Lys Leu Arg Asp 165 170 175
- Lys Arg Arg Phe Pro Ala Met Leu Arg Thr Val Pro Ser Ala Thr His 180 185 190
- His Ile Glu Ala Met Val Gln Leu Met Val His Phe Gln Trp Asn Trp 195 200 205
- Ile Val Val Leu Val Ser Asp Asp Tyr Gly Arg Glu Asn Ser His 210 215 220
- Leu Leu Ser Gln Arg Leu Thr Asn Thr Gly Asp Ile Cys Ile Ala Phe 225 230 235
- Gln Glu Val Leu Pro Val Pro Glu Pro Asn Gln Ala Val Arg Pro Glu 245 250 255
- Glu Gln Asp Gln Leu Asp Asn Ile Leu Asp Lys Leu Arg Arg Thr Ser 260 265 270
- Ala Arg Val Val Ile Phe Ser Pro Glu Leu Ser Leu His Asn Phe 275 280 285
- Phe Arg Glu Val Leu Arg Trp Asn Phe Thr Gly Phe Val Trp Ile Ala 290 295 300
- Ser Glu Ser Trp Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu 305 310 315
- Arg His Thr Gly Thr Phe Leu Gly Val Thr Ile Gln Arg Val Ser Ile
 Page 37

				325				•	МОМ 330	-030	1.ST	25.t	xt	335	
Pro	Gly	Phe	Ser 340	Gln	Phe	Arg	Val	Arg 345	His	Asp	Lys	Pro	Glu 350	Tyr	Pro
Met	Pro	Asn 355	Glu	Thr	Ser	Leu	Arg 360	Thr	Thr	Суз	Asn	Gln 365	Asp	Cys	Asp
Ala	Cys 370	Met	Asn	Ile	Thr	Glu 375	Ser	Phe	Asn	Asn	Val 380	Leu	Met	Leu	Ser
Gly 385	Glu	Arg	Val	Val	Tyr 390	Ser	Val	Tyr	Ser	Ala 395	Val	Tyr	Ala	Val	Ala 400
His	Thr	Leu	His	Arg 405	Leu	Leu	His	Cys	Asn 410	Gln	Val	Arg	Суз	Thr 415	Lys
Gln	Ile	Val	Tyr 420	Pro	Trp	Gln	Leu	Leu 425	Arg	Glu	Ile	Trp	His 430	Val	Asn
Phe	Thr	Leu 435	Leu	Gly	Asn	Gln	Leu 440	Phe	Phe	Asp	Glu	Gln 445	Gly	Asp	Met
Pro	Met 450	Leu	Leu	Asp	Ile	Ile 455	Gln	Trp	Gln	Trp	Gly 460	Leu	Ser	Gln	Asn
Pro 465	Phe	Gln	Ser	Ile	Ala 470	Ser	Tyr	Ser	Pro	Thr 475	Glu	Thr	Arg	Leu	Thr 480
Tyr	Ile	Ser	Asn	Val 485	Ser	Trp	Tyr	Thr	Pro 490	Asn	Asn	Thr	Val	Pro 495	Ile
Ser	Met	Cys	Ser 500	Lys	Ser	Cys	Gln	Pro 505	Gly	Gln	Met	Lys	Lys 510	Pro	Ile
Gly	Leu	His 515	Pro	Cys	Суз	Phe	Glu 520	Cys	Val	Asp	Cys	Pro 525	Pro	Gly	Thr
Tyr	Leu 530	Asn	Arg	Ser	Val	Asp 535	Glu	Phe	Asn	Cys	Leu 540	Ser	Cys	Pro	Gly
Ser 545	Met	Trp	Ser		Lys 550	Asn	Asn	Ile	Ala	Cys 555	Phe	Lys	Arg	Arg	Leu 560
Ala	Phe	Leu	Glu	Trp 565	His	Glu	Val	Pro	Thr 570	Ile	Val	Val	Thr	Ile 575	Leu
Ala	Ala	Leu	Gly 580	Phe	Ile	Ser	Thr	Leu 585	Ala	Ile	Leu	Leu	Ile 590	Phe	Trp
Arg	His	Phe 595	Gln	Thr	Pro	Met	Val 600	Arg	Ser	Ala	Gly	Gly 605	Pro	Met	Cys

WO 2005/005480 PCT/US2004/015136

MON-0301.ST25.txt

Phe Leu Met Leu Val Pro Leu Leu Leu Ala Phe Gly Met Val Pro Val 61.5

Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe

Phe Thr Val Cys Phe Ser Val Cys Leu Ser Cys Ile Thr Val Arg Ser

Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala 665

Tyr Gly Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe

Ile Thr Ala Val Lys Val Ala Leu Val Ala Gly Asn Met Leu Ala Thr

Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Pro Asn Ile Ile

Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr

Ser Met Asp Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Val

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys 810

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser

<210> 19

<211> 843 <212> PRT

<213> Rattus rattus

<400> 19

Met Gly Pro Gln Ala Arg Thr Leu Cys Leu Leu Ser Leu Leu Leu His 10

Page 39

Val	Leu	Pro	Lys 20	Pro	Gly	Lys	Leu	Val 25	Glu	Asn	Ser	Asp	Phe 30	His	Leu
Ala	Gly	Asp 35	Tyr	Leu	Leu	Gly	Gly 40	Leu	Phe	Thr	Leu	His 45	Ala	Asn	Val
Lys	Ser 50	Ile	Ser	His	Leu	Ser 55	Tyr	Leu	Gln	Val	Pro 60	Lys	Cys	Asn	Glu
Phe 65	Thr	Met	Lys	Val	Leu 70	Gly	Tyr	Asn	Leu	Met 75	Gln	Ala	Met	Arg	Phe 80
Ala	Val	Glu	Glu	Ile 85	Asn	Asn	Cys	Ser	Ser 90	Leu	Leu	Pro	Gly	Val 95	Leu
Leu	Gly	Tyr	Glu 100	Met	Val	Asp	Val	Cys 105	Tyr	Leu	Ser	Asn	Asn 110	Ile	His
Pro	Gly	Leu 115	Tyr	Phe	Leu	Ala	Gln 120	Asp	Asp	Asp	Leu	Leu 125	Pro	Ile	Leu
Lys	Asp 130	Tyr	Ser	Gln	Tyr	Met 135	Pro	His	Val	Val	Ala 140	Val	Ile	Gly	Pro
Asp 145	Asn	Ser	Glu	Ser	Ala 150	Ile	Thr	Val	Ser	Asn 155	Ile	Leu	Ser	His	Phe 160
Leu	Ile	Pro	Gln	Ile 165	Thr	Tyr	Ser	Ala	Ile 170	Ser	Asp	Lys	Leu	Arg 175	Asp
Lys	Arg	His	Phe 180	Pro	Ser	Met	Leu	Arg 185	Thr	Val	Pro	Ser	Ala 190	Thr	His
His	Ile	Glu 195	Ala	Met	Val	Gln	Leu 200	Met	Val	His	Phe	Gln 205	Trp	Asn	Trp
Ile	Val 210	Val	Leu	Val	Ser	Asp 215	Asp	Asp	Туг	GŢĀ	Arg 220	Glu	Asn	Ser	His
Leu 225	Leu	Ser	Gln	Arg	Leu 230	Thr	Ьуз	Thr	Ser	Asp 235	Ile	Cys	Ile	Ala	Phe 240
Gln	Glu	Val	Leu	Pro 245	Ile	Pro	Glu	Ser	Ser 250	Gln	Val	Met	Arg	Ser 255	Glu
Glu	Gln	Arg	Gln 260	Leu	Asp	Asn	Ile	Leu 265	Asp	Lys	Leu	Arg	Arg 270	Thr	Ser
Ala	Arg	Val 275	Val	Val	Val	Phe	Ser 280	Pro	Glu	Leu	Ser	Leu 285	Tyr	Ser	Phe

MON-0301.ST25.txt
Phe His Glu Val Leu Arg Trp Asn Phe Thr Gly Phe Val Trp Ile Ala
290 295 300

Ser Glu Ser Trp Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu 305 310 . 315

Arg His Thr Gly Thr Phe Leu Gly Val Thr Ile Gln Arg Val Ser Ile 325 330 335

Pro Gly Phe Ser Gln Phe Arg Val Arg Arg Asp Lys Pro Gly Tyr Pro 340 345 350

Val Pro Asn Thr Thr Asn Leu Arg Thr Thr Cys Asn Gln Asp Cys Asp 355 360 365

Ala Cys Leu Asn Thr Thr Lys Ser Phe Asn Asn Ile Leu Ile Leu Ser 370 380

Gly Glu Arg Val Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala 385 390 395 400

His Ala Leu His Arg Leu Leu Gly Cys Asn Arg Val Arg Cys Thr Lys 405 410 415

Gln Lys Val Tyr Pro Trp Gln Leu Leu Arg Glu Ile Trp His Val Asn 420 . 425 . 430

Phe Thr Leu Leu Gly Asn Arg Leu Phe Phe Asp Gln Gln Gly Asp Met 435 440 445

Pro Met Leu Leu Asp Ile Ile Gln Trp Gln Trp Asp Leu Ser Gln Asn 450 455 460

Pro Phe Gln Ser Ile Ala Ser Tyr Ser Pro Thr Ser Lys Arg Leu Thr 465 470 475 480

Tyr Ile Asn Asn Val Ser Trp Tyr Thr Pro Asn Asn Thr Val Pro Val 485 490 495

Ser Met Cys Ser Lys Ser Cys Gln Pro Gly Gln Met Lys Lys Ser Val 500 505 510

Gly Leu His Pro Cys Cys Phe Glu Cys Leu Asp Cys Met Pro Gly Thr 515 520 525

Tyr Leu Asn Arg Ser Ala Asp Glu Phe Asn Cys Leu Ser Cys Pro Gly 530 535 . 540

Ser Met Trp Ser Tyr Lys Asn Asp Ile Thr Cys Phe Gln Arg Arg Pro 545 550 555

Thr Phe Leu Glu Trp His Glu Val Pro Thr Ile Val Val Ala Ile Leu 565 570 575

Page 41

Ala Ala Leu Gly Phe Phe Ser Thr Leu Ala Ile Leu Phe Ile Phe Trp 580 585

Arg His Phe Gln Thr Pro Met Val Arg Ser Ala Gly Gly Pro Met Cys 595 600 605

Phe Leu Met Leu Val Pro Leu Leu Ala Phe Gly Met Val Pro Val 610 615 620

Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe 625 630 635

Phe Thr Val Cys Phe Ser Ile Cys Leu Ser Cys Ile Thr Val Arg Ser 645 650 655

Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala 660 665 670

Tyr Ser Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe 675 680 685

Ile Thr Ala Ile Lys Val Ala Leu Val Val Gly Asn Met Leu Ala Thr 690 695

Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Asp Pro Asn Ile Met 705 710 715 720

Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr 725 730 735

Ser Met Asp Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Met 740 745 750

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu 755 760 765

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met 770 780

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr 785 790 795

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys 805 810 815

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn 820 825 830

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser 835 840 WO 2005/005480 PCT/US2004/015136 MON-0301.ST25.txt

<210> 20 <211> 839 <212> PRT

<213> Homo sapiens

<400> 20

Met Gly Pro Arg Ala Lys Thr Ile Cys Ser Leu Phe Phe Leu Leu Trp

Val Leu Ala Glu Pro Ala Glu Asn Ser Asp Phe Tyr Leu Pro Gly Asp

Tyr Leu Leu Gly Gly Leu Phe Ser Leu His Ala Asn Met Lys Gly Ile

Val His Leu Asn Phe Leu Gln Val Pro Met Cys Lys Glu Tyr Glu Val

Lys Val Ile Gly Tyr Asn Leu Met Gln Ala Met Arg Phe Ala Val Glu 70

Glu Ile Asn Asn Asp Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr

Glu Ile Val Asp Val Cys Tyr Ile Ser Asn Asn Val Gln Pro Val Leu 105

Tyr Phe Leu Ala His Glu Asp Asn Leu Leu Pro Ile Gln Glu Asp Tyr

Ser Asn Tyr Ile Ser Arg Val Val Ala Val Ile Gly Pro Asp Asn Ser 135 140

Glu Ser Val Met Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro 150

Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg

Phe Pro Ala Leu Leu Arg Thr Thr Pro Ser Ala Asp His His Val Glu

Ala Met Val Gln Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val

Leu Val Ser Ser Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly

Glu Arg Val Ala Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu

Pro Thr Leu Gln Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg 250

Leu Val Thr Ile Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val 260 265 270

Val Val Phe Ser Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val 275 280 285

Leu Arg Gln Asn Phe Thr Gly Ala Val Trp Ile Ala Ser Glu Ser Trp 290 295 300

Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu Gly His Leu Gly 305 310 315 320

Thr Phe Leu Gly Ile Thr Ile Gln Ser Val Pro Ile Pro Gly Phe Ser 325 330 335

Glu Phe Arg Glu Trp Gly Pro Gln Ala Gly Pro Pro Pro Leu Ser Arg 340 345 350

Thr Ser Gln Ser Tyr Thr Cys Asn Gln Glu Cys Asp Asn Cys Leu Asn 355 360 365

Ala Thr Leu Ser Phe Asn Thr Ile Leu Arg Leu Ser Gly Glu Arg Val 370 375 380

Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala His Ala Leu His 385 390 395 400

Ser Leu Leu Gly Cys Asp Lys Ser Thr Cys Thr Lys Arg Val Val Tyr 405 410 415

Pro Trp Gln Leu Leu Glu Glu Ile Trp Lys Val Asn Phe Thr Leu Leu 420 425 430

Asp His Gln Ile Phe Phe Asp Pro Gln Gly Asp Val Ala Leu His Leu 435 440 445

Glu Ile Val Gln Trp Gln Trp Asp Arg Ser Gln Asn Pro Phe Gln Ser 450 460

Val Ala Ser Tyr Tyr Pro Leu Gln Arg Gln Leu Lys Asn Ile Gln Asp 465 470 . 475

Ile Ser Trp His Thr Val Asn Asn Thr Ile Pro Met Ser Met Cys Ser 485 490 495

Lys Arg Cys Gln Ser Gly Gln Lys Lys Lys Pro Val Gly Ile His Val 500 505 510

Cys Cys Phe Glu Cys Ile Asp Cys Leu Pro Gly Thr Phe Leu Asn His 515 520 525

Thr Glu Asp Glu Tyr Glu Cys Gln Ala Cys Pro Asn Asn Glu Trp Ser Page 44

WO 2005/005480MON-0301.ST25.txt

530 535

Tyr Gln Ser Glu Thr Ser Cys Phe Lys Arg Gln Leu Val Phe Leu Glu 550 Trp His Glu Ala Pro Thr Ile Ala Val Ala Leu Leu Ala Ala Leu Gly Phe Leu Ser Thr Leu Ala Ile Leu Val Ile Phe Trp Arg His Phe Gln Thr Pro Ile Val Arg Ser Ala Gly Gly Pro Met Cys Phe Leu Met Leu Thr Leu Leu Val Ala Tyr Met Val Val Pro Val Tyr Val Gly Pro Pro Lys Val Ser Thr Cys Leu Cys Arg Gln Ala Leu Phe Pro Leu Cys Phe Thr Ile Cys Ile Ser Cys Ile Ala Val Arg Ser Phe Gln Ile Val Cys Ala Phe Lys Met Ala Ser Arg Phe Pro Arg Ala Tyr Ser Tyr Trp Val Arg Tyr Gln Gly Pro Tyr Val Ser Met Ala Phe Ile Thr Val Leu Lys Met Val Ile Val Val Ile Gly Met Leu Ala Thr Gly Leu Ser Pro 695 Thr Thr Arg Thr Asp Pro Asp Pro Lys Ile Thr Ile Val Ser Cys Asn Pro Asn Tyr Arg Asn Ser Leu Leu Phe Asn Thr Ser Leu Asp Leu Leu Leu Ser Val Val Gly Phe Ser Phe Ala Tyr Met Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu Ser Met Thr Phe Tyr Phe Thr Ser Ser Val Ser Leu Cys Thr Phe Met Ser Ala Tyr Ser Gly Val Leu Val Thr Ile Val Asp Leu Leu Val Thr Val Leu Asn Leu

Leu Ala Ile Ser Leu Gly Tyr Phe Gly Pro Lys Cys Tyr Met Ile Leu

810

Phe Tyr Pro Glu Arg Asn Thr Pro Ala Tyr Phe Asn Ser Met Ile Gln 820 825 830	
Gly Tyr Thr Met Arg Arg Asp 835	
<210> 21 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Overgo probes	
<400> 21 actttgagaa catgagtaat gacg	24
<210> 22 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Overgo probes	
<400> 22 agtacccgga ctgcgtcgtc atta	24
<210> 23 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Overgo probes	
<400> 23 cactagggtc atccttgctt tcag	24
<210> 24 <211> 24 <212> DNA <213> Artificial Sequence	
<220>	
<400> 24 agtcagggtg atgggcctga aagc	24
<210> 25 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Overgo probes	
<400> 25 atgtggtgga ctggctgtac catc	24
<210> 26	

	W O 2005/005400		1 0 1/0
<211> <212>		MON-0301.ST25.txt	
<213>			
	Overgo probes		
<400> ttgaag	26 recet ecaegtgatg gtae		24
<210> <211>	24		
<212> <213>			
<220> <223>	Overgo probes		
<400> cacacg	27 gtga acaagatcac cttc		24
<210> <211>	24		
<212> <213>			
<220> <223>	Overgo probes		
<400> agtagc	28 actg ctcggagaag gtga		24
<210>	29		
<211>			
<212> <213>	DNA Artificial Sequence		
<220> <223>	Overgo probes		
<400> atctace	29 caca tggacgagga ggag		24
<210> <211>	30 24		
<212> <213>	DNA Artificial Sequence		
<220> <223>	Overgo probes		
<400> tgacca	30 ggta eggegtetee teet		24
<210>	31		
<211> <212>	24 DNA		
<213>	Artificial Sequence		
<220> <223>	Overgo probes		
<400> agcgcgt	31 ccac gctggccgac ttca		24

PCT/US2004/015136

WO 2005/005480

	MO	N-0301.ST25.txt
<210>	32 .	
<211>	24	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	32	
ttgctg	gagca cgttcttgaa gtcg	24
<210>		
<211>	- -	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	33	
cacgcc	taca aattottott taag	24
<210>	34	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Overgo probes	
<400>	34	
	ggtc catggactta aaga	0.4
	gg	24
<210>	25	
<211>	35 24	
<212>	DNA	
<213>	Artificial Sequence	
(240)	With peddelice	
<220>		
<223>	Overgo probes	
<400>	35	
cttcca	ctcc tgctgctacg actg	24
<210>	36	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	36	
	gcag tccacgcagt cgta	2.4
		24
<210>	37	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220> <223>	Overgo probes	
<400>	37	

PCT/US2004/015136

WO 2005/005480

	VO 2005/005480	MON-0301.ST25.txt	PCT/US2004/015136
aggtgcg	ccg cgtcaagggc ttcc		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
	38 agc aggagtggaa gccc		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
	39 gca tggggggagc cggc		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
	40 aca agcacageeg gete		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
<400> acagcco	41 act agttcaggcc gcag		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
	42 cggg gtccccctgc ggcc		24
<210> <211> <212> <213>	24 DNA		
<220> <223>	Overgo probes .	2 42	

WO 2005/005480		PCT/US2004/015136
	MON-0301.ST25.txt	
<400> 43 cccactggtt caggcctcgg gggg		24
<210> 44 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Overgo probes		
<400> 44 aaagcaggcc aggggccccc ccga		24
<210> 45 <211> 24 <212> DNA <213> Artificial Sequence		•
<220> <223> Overgo probes		
<400> 45 aggegetggt geaetgeege acae		24
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Overgo probes		
<400> 46 aagetgacee aggagegtgt gegg		24
<210> 47 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Overgo probes		
<400> 47 acagaggcac tggtgcactg ccgc		24
<210> 48 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Overgo probes		
<400> 48 tgatccagga gtgcacgcgg cagt		24
<210> 49 <211> 24 <212> DNA <213> Artificial Sequence		

	WO 2005/005480		PCT/US2004/015136
		MON-0301.ST25.txt	
<220> <223>	Overgo probes		
<400> accaat	49 gcca cgctggcctt tctc		24
<210> <211> <212> <213>			
<220> <223>	Overgo probes		
<400> aagtge	50 ccag gaagcagaga aagg		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
<400> tggtac	51 atgc tgccaatgcc acgc		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
<400> aagcag	52 agga aagccagcgt ggca		24
<210> <211> <212> <213>	53 24 DNA Artificial Sequence		
<220> <223>	Overgo probes		
<400> tacaac	53 cegtg eccgtggeet cace		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
<400> aggcca	54 gcat ggcgaaggtg aggc		24
<210> <211> <212>			

	WO 2005/005480		PCT/US2004/015136
<213>	Artificial Sequence	MON-0301.ST25.txt	
<220> <223>	Overgo probes		
<400> tcatca	55 cctg ggtctccttt gtgc		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
<400> acattg	56 gcca ggaggggcac aaag		24
<210> <211> <212> <213>	24 DNA		
<220> <223>	Overgo probes		
<400> tgcagat	57 Eggg tgccctcctg ctct		24
<210> <211> <212> <213>	24		
<220> <223>	Overgo probes		
	58 cca gcacacagag cagg		24
<211> <212>	59 9049 DNA Felis catus		
<222>	misc_feature (14)(14) n is a, c, g, or t		
<222>	misc_feature (47)(47) n is a, c, g, or t		
<222>	misc_feature (56)(56) n is a, c, g, or t		
<222>	misc_feature (67)(67) n is a, c, g, or t		

```
<220>
<221> misc_feature
<222> (2113)..(2113)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2121)..(2121)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (2125)..(2132)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2138)..(2138) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4198)..(4198)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4232)..(4232)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4237)..(4237)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (4256)..(4256)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (4264) ... (4264) \langle 223 \rangle n is a, c, g, or t
<221> misc_feature
<222> (427\overline{2})..(4272) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4298)..(4298) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4328)..(4328) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (434\overline{1})..(4341) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4343)..(4343)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (4354)..(4354)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (438\overline{6})...(4386)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (4389)..(4390)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (4399)..(4456)
\langle 223 \rangle n is a, c, g, or t
<400> 59
ctggaaaaaa aggngaaccc aggatgattc accccaaaat ttcagtntca gaaaantgag
                                                                          60
                                                                         120
qactqqnagq aggtcaactt aaagtcagtt tcatttggta aactgaggcc caggtaaaaa
gttctaaaac ccacagctcc cttccatatt ctgtccccca gagaagcagt gtccctgcct
                                                                         180
                                                                         240
tcctctgacc cctgcccctc aagacgcctg ggctcccttt ctgagccggg tgaagccgca
ggcaccagag cgagaacaga acccacaacc atccagaggg aggggcagcg gccaccacct
                                                                         300
                                                                         360
qqcttqcacc tgtqccttca ccctgcccag ttcctgagta ggaccgcagg cccggaaggc
                                                                         420
caaqqcaaac aqcctggttc ctacgactgg gttccagccc cacccctggc acaggcgtga
agttgggaag catctgggca gccgctgtct attctattta aacagccgag ctggtcagag
                                                                         480
                                                                         540
ggtgctggct ggccatgcca ggcacaggac ggactggcca gcatgtcact cccggcggct
                                                                          600
cacctggtcg gcctgcagct ctccctctcc tgctgctggg ctctcagctg ccacagcaca
                                                                         660
qagacgtctg ccgacttcag cctccctggg gattacctcc tcgcaggtct gttccctctg
cactctgact gtccgggcgt gaggcaccgg cccacggtga ccctctgtga caggtgagtg
                                                                         720
                                                                         780
aggggtcccg tgcctctagg acctctgccc atcctctgtc ctcctcagtg aggatccttg
qqttqttqat tgaqtqqaqt taqgqccttt tagagagctg agactctaga agctaaacca
                                                                         840
                                                                         900
cqtqttqctt tacctqtctt ccaccctgag gatcacacgt taagtgttct taccagtcaa
aattgaatat gtatcaaaca aaaataaatg gccttccatg ctgaaataac aaaaaacaga
                                                                        960
cacgcatgga gaacctactt tgtggggcgc ctgggtggcc cagtcggtta agtgtctgcc
                                                                        1020
tcttcqtttt qqctcaqqtc atqacctcgg gqttcatgag ttcgagcccc gcgtcagctc
                                                                        1080
cqtqatqaqc ctqqaqccq cttggaattc cctccccacc cccaccccc gctcatgcca · 1140
qctcgaqctc tcgctcactc tctcaaaata aacttaagag gggcgcctgg gtggcgcagt
                                                                        1200
cagttaagcg tccgacttca gccaggtcac gatcagcaca ttatttcctg gaccttccat
                                                                        1260
                                                                         1320
tctcctttcg ctgtacagag cttaacgtaa actccctggc aagacctcct ttctgatttt
agaaaqqcca qcttattqqt ttqqttcctq taataqctta aaaatagaat ccaqctgtat
                                                                        1380
caggaaacat ttaaaaaatg tatcaaggaa gacctataac agtaaaaata tttttaaatc
                                                                        1440
```

	,					
ccagagtgtt	ttcataaaga	cacaggatta		1.ST25.txt ttatttttaa	agggtttttg	1500
aaaagccgtg	tttcacttgc	catggctaat	gattataggc	atccgaatga	gcctgtggct	1560
atgacttcag	tctgttcggt	ggaaatgact	ctgatgtcat	aaactgactc	ggcttcgctg	1620
acaggaaagt	cgtacagaag	aaaagctgtt	cgagcccata	tgttggttgc	gctcaatgtc	1680
aggaaggggc	gacgtaatgt	gtgcagaaat	gggcagctgt	cgagagtgaa	gaaattggga	1740
agttggcacg	gaagaggga	ccgagtccga	gaaggctgct	ggataaagca	gagcttttgc	1800
agaagagaag	ggccggctgc	tgtccctatc	ctggtggcgg	aaccacttag	aaacaaggcg	1860
tcagaattag	agacttcggt	tcatgcaggg	agggcggccc	aggggggtgg	cgtccttgga	1920
aactctggta	agtttgagat	tgatcccagg	ggtcgtggga	tggagcctcg	catgagactc	1980
tacactgatc	gatgagaagc	agaagcccct	tgtctgtgag	gaaggggaca	cgagcagttg	2040
gcacactaaa	acgcaaggac	acgtttctac	gagaaaacgg	tacatctgtc	tgcgacacag	2100
aaagatcccc	ggnaccagtc	ntcgnnnnn	nnttccgntg	ggattccagt	cagcagttcc	2160
cgagaggcac	tgaggaacac	aggccctcac	cacgttcaca	agtgtcctga	tgagagggat	2220
actaggtaaa	cgaggttcga	caggtgtggt	ggttaatttt	atacatcaac	ctggctaggg	2280
tacggtgccc	agttgtttgg	ccaaacacca	gtctagatgg	ggctgtgaag	gttaacattt	2340
aaaccaacag	ggtgagtaaa	gcagatcgct	ttccattgtg	tgggtgggcc	tcatccaatc	2400
agttgaagac	cttaaaagaa	aagattgagg	tcccccaaa	aaggaagaaa	ttctgccttc	2460
gaactcaaca	ctgcagcttt	gaccactgag	agcatttcca	gcctgccctg	caaacgccag	2520
actcaccagc	cccacaatca	tgtgaaccaa	ttccttaaaa	taaacttctc	tttctctctc	2580
tctatccaac	tggttctgtt	tctctgcaga	accctgactc	acgcagcagg	tttccctgct	2640
acaggacttc	atcagccttt	caaccctaat	atgctcatcc	agggaggaat	ggtttgtggt	2700
ttctccaagt	tgtaaccgcc	cctcccccc	cgcccccgcc	ccccaaagg	cctgttaaca	2760
cagctgagtg	tatggtacag	ggcccacagt	gaggtcatgg	tggtagggga	cgggacagat	2820
gccctcagag	tttcctttct	acccttcccc	ccacccccga	cgccaagagg	gtctcggcaa	2880
ggccttgctc	ctctgagctc	tcagctgggc	tttctctaca	ggcccgacag	cttcaacggt	2940
cacggctacc	acctcttcca	ggccatgcgg	tttggcatcg	aggagataaa	caactccacg	3000
gccctcctgc	cgaacgtcac	cctgggatac	cagctgtacg	acgtgtgctc	ggagtctgcc	3060
aacgtgtatg	ccacactaaa	cgtgctctcc	ctgctgggga	cacatcacgt	agagatccga	3120
gcagaccctt	cccactattc	gcctgccgcc	ctggctgtca	ttgggcctga	caccaccaac	3180
cacgcagcca	ccactgcagc	cctgctgagc	cccttcctgg	tgcccctggt	gagctggagc	3240
ccgggggcct	gtccatctcc	cctgccggca	ggtccagtgt	gggctgaggg	ggtgggggg	3300
tgggcaagag	ctgccatgcc	cactctgagt	ctcctgggtg	gtcacattgc	agggggccct	3360
gcccccttca	cagtccccgc	cccagcatcc	cttcctcccc	aagtgctgca	tccagacctc	3420
cctgcctcaa	tgtcctgaga	aaaaccgtct	cctttgaaac	tgctgccctt	tgctctgccc	3480
cctccattcc	atctcctctg	tgaagaacgg	aacacccttt	gtttcccacc	tcacacactt	3540

gtccacttct	ceeegeeete	: ctccttccgg	MON-03 tetteettee	01.ST25.txt ctccctccc	gctcaggctc	3600
agaggtgtgg	tcccctccc	cctccaatgo	cgtcctcctg	ggcctcacco	teteetetge	3660
tcgtaggcct	gtcctaggct	tcctcctccg	cctataagct	ggctttacco	ctctctgtct	3720
tccaggcaco	tgtggtctta	gcgctgccct	ctctctgaac	ctcgttccgt	ggaaacttgt	3780
gcactgagct	ctctcttctt	gtttgcttct	ccctctcatc	acttgcttcc	cgggcccctg	3840
ccctgactgc	tgcaccacca	ctcctgctct	tgtgatctcc	agggctttct	agatctccag	3900
gtccagcaaa	tgcttttcag	cccttctttg	cttgacatga	cgactttgtg	acaaatttga	3960
ccagtccttc	: agtgacgctc	ttgcctcggc	atttatgacc	tgccacctcc	ctctcacttg	4020
tggtacctcc	ttctcagtct	cctttggaga	atctcctccc	cccctcttct	gaaaaagtgg	4080
atgattcccc	gagtgcagga	ccactccctt	tcccaggcag	gtgctgggag	caaacaactt	4140
tccctactct	tcaagaatct	ttctggctgg	tctaaaaata	agttgatgtg	acacaganaa	4200
aaggaaaagt	caaatcacgt	atgtacaggg	anctacnaaa	cacgaaaggt	caaganagga	4260
aagngaggct	anctgctatc	tgaactatga	acaagggnag	gggtaaattc	aaggaaagaa	4320
gaaatcanag	aaagaagagg	nanggtataa	aagntgctgg	ccatcaaaaa	tggaaggaag	4380
aattanaann	gattggagnn	nnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	4440
nnnnnnnnn	nnnnncttt	ttcccgtcac	cggtggccag	ggttaaattc	aggctgccaa	4500
gctgttttt	gggatgactc	cagcagtctc	ctagggagtt	cttcctgact	ctggtcttga	4560
gccttttcta	acacattctt	cactgaaatc	agatacaccc	ctgaaacaca	agtctgggca	4620
gattacctct	ctgcctagac	atttaagggg	ctccccaggg	cctgcagata	aagaccaagt	4680
atcttagcta	tcttggtgcc	aggagtaagg	cctcctgccc	tgaccagaca	cgcctacttt	4740
tgtgctcctt	cttccggctt	ccaacctcct	gggtcagttc	tctcactggg	tgtagctttt	4800
gttctcttcc	ccttcttctc	ccacaaacct	cccctgggt	ttctgcctct	tctttagatg	4860
tagctggtcg	gcctcctagt	ccaccagagc	tgtccttgag	agccagggct	gggaccatgt	4920
ctccctcctc	ctcgggtccc	cgcgcccaġc	acagggccag	cacttggagg	ctctgagttg	4980
aggccaaggc	cactgaagtc	gctgaactga	acccccccc	cggcccccct	ccgcagatca	5040
gctacgaggc	cagcagcgtg	acgctcggag	tgaagcggca	ttacccctcg	tttctgcgca	5100
ccatccccag	cgacaagcac	caggtggagg	ccatggtgct	gctgctgcag	agcttcgggt	5160
gggtctggat	ctcggtggtc	ggcagcgacg	gcgactacgg	gcagctgggg	gtgcaggcgc	5220
tggaggagca	ggccacccag	cagggcatct	gcgttgcctt	caaggacatc	atccccttct	5280
ctgcccggcc	gggcgacgag	aggatgcaga	gcatcatgca	ccacctggcc	cgagcgagga	5340
ccaccgttgt	ggtcgttttc	tccagcaggc	agctggccag	ggtgttcttt	gagtcggtgg	5400
tgctggccaa	cctgactgcc	aaggtgtgga	tcgcctcaga	agactgggcc	atctctagac	5460
acatcagcaa	tgtgcccggg	atccagggca	ttggcacggt	gctgggtgtg	gccatccagc	5520
agaggcttgt	ccctggcctg	aaggagtttg	aagaggccta	tgtccaggca	gataaggggg	5580
cccctgggcc	ttgctccagg	acctccgagt	gcagcagcaa	ccagctctgt	agagagtgtc	5640

			MON-030	1.ST25.txt	
gggctttcac	ggcagagcag	atgcccacgc	tcggggcatt	ctccatgage	tctqcttata

gggctttcac	ggcagagcag	atgcccacgc	tcggggcatt	ctccatgagc	tctgcttata	5700
acgcctaccg	ggcagtctac	gcagtggccc	atggcctcca	ccagctcctg	ggctgtgcct	5760
ctggagcctg	ttccagggac	cgagtctacc	cctggcaggt	aaggtagccc	agaccccggc	5820
accctgaaac	ggggtgcttt	cctaaggcaa	acagagtgat	ccctctctgg	ccaactgagt	5880
gctgggggtg	ggggacaaag	gccacccatc	agaaggctaa	ttccttctct	tgggcttcac	5940
ttctctgacc	toggcccctc	ccaccaccat	gctccagacc	cagggctaaa	aatctctggg	6000
aaacgggcct	ttttagaagc	ttcctctcac	tcaggaggcc	agttgggagg	gtcgaggggc	6060
ttccttggaa	gggagggggc	tctgaatttc	cagacagact	gaaaccaccc	aaatagaagc	6120
atttgcttcc	taagccttcc	gggtctggga	gagttgagga	ggagcagcct	gcgtcatctg	6180
tggctgctcc	atgatccccg	tttatctcag	cttctggagc	agatccgcaa	ggtgaatttc	6240
ctcctacaca	aggacaccgt	gaggtttaat	gacaacgggg	accctctcag	tggctacgac	6300
ataattgcct	gggactggag	tggccccaag	tggaacttca	gggtcattgg	ctcctccatg	6360
tggcctccag	ttcagctgga	cataaataa	accaaaatcc	ggtggcacgg	gaaggacaac	6420
caggtaatgg	agccatggtc	actcaccaag	tcaccgcctt	acgggcagcc	tggagcctga	6480
agtcactgtc	gacacagete	acacggagca	ggaggggcc	ccgggtgcca	ggccaacgtg	6540
gctctatcca	gccctgccag	ggaagcccca	cagaccgcac	ccagatggcc	ggctgcagct	6600
ggtatacaca	accaggggct	gtgccctggg	agtgagctgt	gagggcagat	gcacggagac	6660
tcccattcgc	catgtgagca	tcccttgact	tgggccactc	catgtggttc	cagaacacct	6720
gtggcttctt	gcaggtgcca	aagtctgtgt	gctccagcga	ctgcctcgaa	gggcaccagc	6780
gagtgatttc	gggtttctac	cactgttgct	ttgagtgtgt	gccctgtgag	gccgggagct	6840
tcctcaacaa	gagcggtgag	tgtccaaatg	agtgggagaa	tgactgggca	ctcccagggt	6900
ctgtatggca	gatgagggga	tctcccttgg	gccacgcacg	tgcagaacca	gagccttgct	6960
ccctctgttg	ccagttgagg	tacaggttgt	agaatatttg	ccaccagact	gagttctgat	7020
gaagcagaaa	ccaacaacca	gttgaaatcc	tcaggtcccc	tacgtctttt	actagagggc	7080
tcctgatgca	atccctgcag	atgcaatctt	atcctaaatt	caaccttttt	atgcgaacag	7140
atgtagttat	gttcccttgt	ccctcccat	gctgtctgtg	tgaagtccct	teegtegeee	7200
ctgccaaaga	cagccagcac	cttggacagc	ttggccttga	tgcagatact	attgtatccg	7260
cagacaagaa	acatagcata	ctccacccag	tgatggtgca	aggtcaagat	cagagagcaa	7320
actcaggtag	ctaagggctc	agcccagagc	tggactctgt	gagccacgtt	ctttcctttt	7380
actatctctg	tgggcgtgag	aacacatctc	ttctgttctc	agagagtcag	agaaaccaca	7440
gaatggcagc	acagataggg	ggctttgggt	aatggaagcg	ctggggagat	gaaaatgccc	7500
ttcctttggg	gctggttgct	cctgttggat	catageetea	ctggcatgtg	ggcagagcta	7560
ccagagtaag	gccctctcta	aggatetete	ggtttgcaag	ccccttctgg	gatcataagc	7620
catacagaac	ctacccaagg	gtctccagaa	tctgcaatta	acacaggcat	ctggaggaaa	7680
cacttggccg	cggggcccca	ctcagggcta	ccccctatct	cgctgtgtgc	agtaggagcc	7740

WO 2005/005480	PCT/US2004/015136
MON-0301.ST25.txt cggcttctgg ggtacagcgc tcccagcacc ttgcaggcct acatggcttc ccttcctcat	7800
tectgetetg eteatetagg eteteaggag ecceetecae etttttette eagaceteca	7860
cagetgecag cettgtggga aagaagagtg ggeaceegeg ggaagtgaaa eetgetttee	7920
acgcaccgtg gtgtttttga cttggcacga gaccatctct tgggtgctgc tggcagctaa	7980
tacgttgctg ctgctgctgg tgactgggac tgctggcctg tttgcctggc acttagacac	8040
ccctgtggtg aagtccgctg ggggccgact gtgcttcttc atgctaggct ccctggcagg	8100
gggcagctgt gggctctacg gcttttttgg ggagcccacg ctgcccacat gcttgttgcg	8160
ccaaageete ettgeeetgg gttttgeeat etteetgtee tgeetgaeea teegeteett	8220
ccaactggtc ttcatcttca agttttctgc caaggtaccc accttctacc gtgcctgggt	8280
ccaaaaccac ggtcctggcc tatttgtggt gatcagctca atggcccagc tgctcatctg	8340
tctaacttgg ctggcggtgt ggaccccact gcccaccagg gagtaccagc gcttccctca	8400
gctggtggtg cttgattgca cagaggccaa ctcaccgggc ttcatgttgg ctttcgccta	8460
caatggcctc ctgtccgtca gcgcctttgc ctgcagctac ctgggcaagg acctgccaga	8520
gaactacaac gaggecaaat gtgteacttt tagtetgetg etcaactteg tgteetggat	8580
tgccttcttc accacggcca gcgtctacca gggcaagtac ttgcccgcgg tcaacgtgct	8640
ggcggcgctg agcagcctga gtggcggctt cagcggttat ttcctcccca agtgctacgt	8700
gatectgtge egeceaaaat ttaacageae acageaette caggeeteca tecaggagta	8760
cacgaggcgc tgcggctcca cctgaccagt ggggcgggca gggcctagcc ggggaggtgg	8820
ggggtggggg gtgaaggggt agaaggtggg gtaggggggc ctcccctgcc ctgagggtcg	8880
aaggtegage gaggegageg ggeeeegege eeteegggag geettttgga eteetgtett	8940
ggctcgggta gtgtacgctc acgggagtcc agtccaggct ccgagctgcc aataaagcgg	9000
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg	9049
<210> 60 <211> 2526	
<212> DNA <213> Felis catus	
<400> 60	
atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct	60
ctcagctgcc acagcacaga gacgtctgcc gacttcagcc tccctgggga ttacctcctc	120
gcaggtctgt tecetetgca etetgaetgt eegggegtga ggeaeeggee eaeggtgaee	180
ctctgtgaca ggcccgacag cttcaacggt cacggctacc acctcttcca ggccatgcgg	240
tttggcatcg aggagataaa caactccacg geceteetge egaaegteae eetgggatae	300
cagetgtacg acgtgtgete ggagtetgee aacgtgtatg ccacactaaa cgtgetetee	360
ctgctgggga cacatcacgt agagatccga gcagaccctt cccactattc gcctgccgcc	420
ctggctgtca ttgggcctga caccaccaac cacgcagcca ccactgcagc cctgctgagc	480
cccttcctgg tgcccctgat cagctacgag gccagcagcg tgacgctcgg agtgaagcgg	540
cattacccct cgtttctgcg caccatcccc agcgacaagc accaggtgga ggccatggtg	600

Page 58

ctgctgctgc	agagcttcgg	gtgggtctgg	atctcggtgg	tcggcagcga	cggcgactac	660
gggcagctgg	gggtgcaggc	gctggaggag	caggccaccc	agcagggcat	ctgcgttgcc	720
ttcaaggaca	tcatcccctt	ctctgcccgg	ccgggcgacg	agaggatgca	gagcatcatg	780
caccacctgg	cccgagcgag	gaccaccgtt	gtggtcgttt	tctccagcag	gcagctggcc	840
agggtgttct	ttgagtcggt	ggtgctggcc	aacctgactg	ccaaggtgtg	gatcgcctca	900
gaagactggg	ccatctctag	acacatcagc	aatgtgcccg	ggatccaggg	cattggcacg	960
gtgctgggtg	tggccatcca	gcagaggctt	gtccctggcc	tgaaggagtt	tgaagaggcc	1020
tatgtccagg	cagataaggg	ggcccctggg	ccttgctcca	ggacctccga	gtgcagcagc	1080
aaccagctct	gtagagagtg	tcgggctttc	acggcagagc	agatgcccac	gctcggggca	1140
ttctccatga	gctctgctta	taacgcctac	cgggcagtct	acgcagtggc	ccatggcctc	1200
caccagetee	tgggctgtgc	ctctggagcc	tgttccaggg	accgagtcta	cccctggcag	1260
cttctggagc	agatccgcaa	ggtgaatttc	ctcctacaca	aggacaccgt	gaggtttaat	1320
gacaacgggg	accctctcag	tggctacgac	ataattgcct	gggactggag	tggccccaag	1380
tggaacttca	gggtcattgg	ctcctccatg	tggcctccag	ttcagctgga	cataaataaa	1440
accaaaatcc	ggtggcacgg	gaaggacaac	caggtgccaa	agtctgtgtg	ctccagcgac	1500
tgcctcgaag	ggcaccagcg	agtgatttcg	ggtttctacc	actgttgctt	tgagtgtgtg	1560
ccctgtgagg	ccgggagctt	cctcaacaag	agcgacctcc	acagctgcca	gccttgtggg	1620
aaagaaaagt	gggcacccgc	gggaagtgaa	acctgctttc	cacgcaccgt	ggtgtttttg	1680
acttggcacg	agaccatctc	ttgggtgctg	ctggcagcta	atacgttgct	gctgctgctg	1740
gtgactggga	ctgctggcct	gtttgcctgg	cacttagaca	cccctgtggt	gaagtccgct	1800
gggggccgac	tgtgcttctt	catgctaggc	tccctggcag	ggggcagctg	tgggctctac	1860
ggcttttttg	gggagcccac	gctgcccaca	tgcttgttgc	gccaaagcct	ccttgccctg	1920
ggttttgcca	tcttcctgtc	ctgcctgacc	atccgctcct	tccaactggt	cttcatcttc	1980
aagttttctg	ccaaggtacc	caccttctac	cgtgcctggg	tccaaaacca	cggtcctggc	2040
ctatttgtgg	tgatcagctc	aatggcccag	ctgctcatct	gtctaacttg	gctggcggtg	2100
tggaccccac	tgcccaccag	ggagtaccag	cgcttccctc	agctggtggt	gcttgattgc	2160
acagaggcca	actcaccggg	cttcatgttg	gctttcgcct	acaatggcct	cctgtccgtc	2220
agcgcctttg	cctgcagcta	cctgggcaag	gacctgccag	agaactacaa	cgaggccaaa	2280
tgtgtcactt	ttagtctgct	gctcaacttc	gtgtcctgga	ttgccttctt	caccacggcc	2340
agcgtctacc	agggcaagta	cttgcccgcg	gtcaacgtgc	tggcggcgct	gagcagcctg	2400
agtggcggct	tcagcggtta	tttcctccc	aagtgctacg	tgatcctgtg	ccgcccaaaa	2460
tttaacagca	cacagcactt	ccaggcctcc	atccaggagt	acacgaggcg	ctgcggctcc	2520
acctga		•				2526

<210> 61 <211> 841

<212> PRT <213> Felis catus

<400> 61

Met Ser Leu Pro Ala Ala His Leu Val Gly Leu Gln Leu Ser Leu Ser

Cys Cys Trp Ala Leu Ser Cys His Ser Thr Glu Thr Ser Ala Asp Phe

Ser Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser

Asp Cys Pro Gly Val Arg His Arg Pro Thr Val Thr Leu Cys Asp Arg

Pro Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met Arg

Phe Gly Ile Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Val

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Glu Ser Ala Asn Val

Tyr Ala Thr Leu Asn Val Leu Ser Leu Leu Gly Thr His His Val Glu

Ile Arg Ala Asp Pro Ser His Tyr Ser Pro Ala Ala Leu Ala Val Ile

Gly Pro Asp Thr Thr Asn His Ala Ala Thr Thr Ala Ala Leu Leu Ser

Pro Phe Leu Val Pro Leu Ile Ser Tyr Glu Ala Ser Ser Val Thr Leu

Gly Val Lys Arg His Tyr Pro Ser Phe Leu Arg Thr Ile Pro Ser Asp 185

Lys His Gln Val Glu Ala Met Val Leu Leu Gln Ser Phe Gly Trp

Val Trp Ile Ser Val Val Gly Ser Asp Gly Asp Tyr Gly Gln Leu Gly

Val Gln Ala Leu Glu Glu Gln Ala Thr Gln Gln Gly Ile Cys Val Ala

Phe Lys Asp Ile Ile Pro Phe Ser Ala Arg Pro Gly Asp Glu Arg Met 250

Gln Ser Ile Met His His Leu Ala Arg Ala Arg Thr Thr Val Val Val Page 60

MON-0301.ST25.txt 260 265 270

			260					265					270		
Val 1	Phe	Ser 275	Ser	Arg	Gln	Leu	Ala 280	Arg	Val	Phe	Phe	Glu 285	Ser	Val	Val
Leu i	Ala 290	Asn	Leu	Thr	Ala	Lys 295	Val	Trp	Ile	Ala	Ser 300	Glu	Asp	Trp	Ala
Ile :	Ser	Arg	His	Ile	Ser 310	Asn	Val	Pro	Gly	Ile 315	Gln	Gly	Ile	Gly	Thr 320
Val :	Leu	Gly	Val	Ala 325	Ile	Gln	Gln	Arg	Leu 330	Val	Pro	Gly	Leu	Lys 335	Glu
Phe (Glu	Glu	Ala 340	Tyr	Val	Gln	Ala	Asp 345	Lys	Gly	Ala	Pro	Gly 350	Pro	Суз
Ser 2	Arg	Thr 355	Ser	Glu	Cys	Ser	Ser 360	Asn	Gln	Leu	Cys	Arg 365	Glu	Cys	Arg
Ala	Phe 370	Thr	Ala	Glu	Gln	Met 375	Pro	Thr	Leu	Gly	Ala 380	Phe	Ser	Met	Ser
Ser 2 385	Ala	Tyr	Asn	Ala	Tyr 390	Arg	Ala	Val	Tyr	Ala 395	Val	Ala	His	Gly	Leu 400
His	Gln	Leu	Leu	Gly 405	Сув	Ala	Ser	Gly	Ala 410	Cys	Ser	Arg	Asp	Arg 415	Val
Tyr	Pro	Trp	Gln 420	Leu	Leu	Glu	Gln	Ile 425	Arg	Lys	Val	Asn	Phe 430	Leu	Leu
His	Lys	Asp 435	Thr	Val	Arg	Phe	Asn 440	Asp	Asn	Gly	Asp	Pro 445	Leu	Ser	Gly
Tyr .	Asp 450	Ile	Ile	Ala	Trp	Asp 455	Trp	Ser	Gly	Pro	Lys 460	Trp	Asn	Phe	Arg
Val 465	Ile	Gly	Ser	Ser	Met 470	Trp	Pro	Pro	Val	Gln 475	Leu	Asp	Ile	Asn	Lys 480
Thr	Lys	Ile	Arg	Trp 485	His	Gly	Lys	Asp	Asn 490	Gln	Val	Pro	Lys	Ser 495	Val
Cys	Ser	Ser	Asp 500	Cys	Leu	Glu	Gly	His 505	Gln	Arg	Val	Ile	Ser 510	Gly	Phe
Tyr	His	Cys 515	Суз	Phe	Glu	Cys	Val 520	Pro	Cys	Glu	Ala	Gly 525	Ser	Phe	Leu
Asn	Lys 530	Ser	Asp	Leu	His	Ser 535	Cys	Gln	Pro	Cys	Gly 540	Lys	Glu	Lys	Trp

WO 2005/005480 PCT/US2004/015136

Page 62

									MON	-030	1.ST	25.t	xt		
Ala 545	Pro	Ala	Gly	Ser	Glu 550	Thr	Суз	Phe	Pro	Arg 555	Thr	Val	Val	Phe	Leu 560
Thr	Trp	His	Glu	Thr 565	Ile	Ser	Trp	Val	Leu 570	Leu	Ala	Ala	Asn	Thr 575	Leu
Leu	Leu	Leu	Leu 580	Val	Thr	Gly	Thr	Ala 585	Gly	Leu	Phe	Ala	Trp 590	His	Leu
Asp	Thr	Pro 595	Val	Val	Lys	Ser	Ala 600	Gly	Gly	Arg	Leu	Су <i>в</i> 605	Phe	Phe	Met
Leu	Gly 610	Ser	Leu	Ala	Gly	Gly 615	Ser	Cys	Gly	Leu	Tyr 620	Gly	Phe	Phe	Gly
Glu 625	Pro	Thr	Leu	Pro	Thr 630	Cys	Leu	Leu	Arg	Gln 635	Ser	Leu	Leu	Ala	Leu 640
Gly	Phe	Ala	Ile	Phe 645	Leu	Ser	Суѕ	Leu	Thr 650	Ile	Arg	Ser	Phe	Gln 655	Leu
Val	Phe	Ile	Phe 660	Lys	Phe	Ser	Ala	Lys 665	Val	Pro	Thr	Phe	Tyr 670	Arg	Ala
Trp	Val	Gln 675	Asn	His	Gly	Pro	Gly 680	Leu	Phe	Val	Val	Ile 685	Ser	Ser	Met
Ala	Gln 690	Leu	Leu	Ile	Cys	Leu 695	Thr	Trp	Leu	Ala	Val 700	Trp	Thr	Pro	Leu
Pro 705		Arg	Glu	Tyr	Gln 710	Arg	Phe	Pro	Gln	Leu 715	Val	Val	Leu	Asp	Cys 720
Thr	Glu	Ala	Asn	Ser 725		Gly	Phe	Met	Leu 730		Phe	Ala	Tyr	Asn 735	Gly
Leu	Leu	Ser	Val 740		Ala	Phe	Ala	Cys 745	Ser	Tyr	Leu	Gly	Lys 750	Asp	Leu
Pro	Glu	Asn 755	Tyr	Asn	Glu	Ala	Lys 760		Val	Thr	Phe	Ser 765	Leu	Leu	Leu
Asn	Phe 770		. Ser	Trp	Ile	Ala 775		Phe	Thr	Thr	Ala 780	Ser	Val	Туr	Gln
Gly 785		Туг	Leu	Pro	Ala 790		Asn	Val	Leu	Ala 795	Ala	Leu	. Ser	· Ser	Leu 800
Ser	: Gly	gly	y Phe	Ser 805		Туг	Phe	Leu	910	Lys	Cys	Туг	Val	. Ile 815	Leu
Суз	arç	g Pro	Lys	Phe	a Asn	Ser	Thr	Gln	His	Phe	Gln	Ala	Ser	: Ile	Gln

MON-0301.ST25.txt 820 825 830

```
Glu Tyr Thr Arg Arg Cys Gly Ser Thr
          835
<210> 62
<211> 10607
<212> DNA
<213> Felis catus
<220>
<221> misc_feature
<222> (1604)..(1683)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (247\overline{0})..(2516) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2537)..(2537)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2560)..(2560)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2574)..(2574)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (2580)..(2580)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2599)..(2599)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2850)..(2850)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (5784)..(5830)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (751\overline{2})..(7553) \langle 223 \rangle n is a, c, g, or t
<220>
<221> misc_feature
<222>
       (862\overline{6})..(8626)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (10453)..(10453)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (10491)..(10491)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (10501)..(10501)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (10511)..(10511)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (10545)..(10545)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (10558)..(10558)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (10574)..(10574)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (10599)..(10599)
<223> n is a, c, g, or t
<400> 62
ttagctgctg aaacgctgct ttttagcaaa aggccgtgac ctcatgatgt tatacgtcgt
                                                                          60
ggagattgag aaccaggtcc tagcatctga ctatgtgctt tgagtcccca cttttgctgg
                                                                         120
ttgtgcaacc cagggtgagc ttcgtaagct tctctgtgcc tcagttttct catctgtgga
                                                                         180
atggggccgg tcatagtccc cgttattgtg atcatcgagc aagatggtga atggcgagca
cacagcatga tgcctagttc ttactggaac acctgtcctg ggtcaggggc tgtatataaa
                                                                         300
gtactacctg ccaggatcaa cttgatccgg ttctattctg tctcctgggt gagtatctgt
                                                                         360
gccctttact cccagatgtt ggaaatgtca ggggcatgag acctgtcctt aaccgagtgg
                                                                         420
cagaaggtta agtttgtgtc cgagatagca ggacatgctt tctctacctc cgcaqqqcqt
                                                                         480
teteccagae ecceaggge ecaccatgee etgetaggaa gggateatee taattetage
ctcttcttcc gccccagagt tctgaagctt ctccacctgt ccaggtgttt ccccaccct
                                                                         600
tcagccacgg caagaccgtc actatgtaaa tgtctgtgca aatcccctgg tgtcaagctg
                                                                         660
ccagctctct gatgaggcag ggccacctcc ggggacccct cacttcccag ccatgggacc
                                                                         720
ccgggccagg gaagtctgct gcttcatcat cctgccgcgg ctcctggctg agccggctga
                                                                         780
gaactcagac ttctacttgg ctggggatta cttcctcggc ggcctcttca ccctccatgc
                                                                         840
caacgtgaag ggcatcgtcc acctcaacct cctgcaggtg ccccagtgca aggagtgagt
                                                                         900
cgccaatgtg gggctggaag tggcgacggg ggcggagtgg gaagcctggg ctggtcctgt
                                                                         960
```

Page 64

WO 2005/005480 PCT/US2004/015136

gctcctcagg	ggaccacgcc	aggaccaagg	gctcaaaatg	ctcttcctca	ttcattgcca	1020
acctctcatc	ccgcattatc	cccaccggcc	tgcagggaga	ccccatgcag	ttcatgttac	1080
caaaatcttt	ggcaattgta	ttctgaaata	tggagagctg	gttgtcccgc	cgtgtgtctt	1140
aataaataaa	gagttacagg	gtacttgagc	ctggaggggt	tgtagagacc	accccacct	1200
actttgtcaa	gtggggaact	cctactgagt	ccgtgtcaag	tccaagtcta	gacaccgggg	1260
gttatgcctt	tggaaggcag	aaatgtggtt	tttcggtagc	aggttctcag	actggagggg	1320
aaggtttgca	tttctctagg	gctgtggtta	ggtgggaagg	ggtgcttcca	ggaccagaag	1380
ggatttcctc	cactcacctt	gtcccctgtg	agccctgggg	gtggctgcat	cactcaaggt	1440
tgggtgagac	acctttgtgc	aagtgcgaag	gctgggatgg	cggacccagc	gtgggatgat	1500
gagatagtga	cttgctgcag	agagggtgaa	ggcgtcctgt	gagagaggga	gagaaaaaag	1560
tctgtgacgt	cggggaagat	cacatgctgg	cttgagaatg	acgnnnnnnn	nnnnnnnn	1620
nnnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnn	1680
nnngatgtgg	aggtgatrgt	gatggcggtg	attgtgacgg	tggtatcggt	gatggtggtc	1740
acagacaacg	cagttatagt	gatggcagtg	gtgataggaa	tagtaggtgg	tgatggtcat	1800
tctggagatg	tggcaggtga	caacgatgag	atgaaaatgc	cagaatcttc	tggagtggct	1860
ccttcttgag	ccactcctcg	gctttcctat	ggcaggcaga	ggggactccc	cggctctcct	1920
gtcccttccc	cctctcactc	tggacctgcc	tctcacccca	ccccacatgg	ctcccccagg	1980
tatgaaataa	aggtgttggg	ctacgatctc	atgcaggcca	tgtgctttgc	aggggaggag	2040
atcaatagcc	agagcagcct	gctgcctggc	gtgctgctgg	gctacaaaat	ggtggatgtc	2100
agctacatct	ccaacaatgt	ccagcccgtg	ctccacttcc	cggcaaagga	ggactgttcc	2160
ttgcccatcc	aggaggacta	cagccactgt	gtgccccgtg	tggtggctgt	cattggtcct	2220
ggcaactctg	agtccactgt	gactgtggcc	cgcttcctct	ctctcttcct	ccttccacag	2280
gggaggcccc	tgggtcctgg	ggtaaggagc	tggggggcag	aggagtggtt	atccaggggg	2340
ctcacttccc	cccaccggtc	ctgggggtag	gaggaggcag	gaagtagggt	cagaatgtca	2400
accccaatcc	trggaaggca	gcccagccac	gtggttaaga	gctcaggctt	ggaggcagac	2460
agacckgggn	nnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnngcct	2520
tcagagagat	catcctntca	agggggccct	tattcctttn	cccctgggag	cccntcagtn	2580
cccaccactt	tctgcagcnc	ccattcgggt	ctccgattcc	tccaatccac	tcactcgctg	2640
tgtggctctg	gataagtgac	tgtccctctc	tgaacctcag	cgtcctcatc	tgcaaagtgg	2700
agacataaca	gcacatcaga	aggtcgcgag	aataggggcg	cctgggaggc	tcagtcggtt	2760
aagcatccga	ttctgggtcg	cggctcaggt	catgatctcc	cggttcgtga	gttcaagccc	2820
cgcatcgggc	tgtgtgctga	cagcacagan	cctgcttggg	attctgtctt	cccttctctc	2880
tgccctcac	ctgcttttgc	tctctctc	tcaaaataaa	taaataaact	ttttaaaaaa	2940
aaggaaggta	gtgagaaaaa	agcgggtgac	agagatggag	agggctccac	gcggtacctg	3000
gcatgctgcg	agccctcaga	acccgttagc	gacggaagtg	acctgtgtgc	gtcgtcacca	3060
			Pa	ge 65		

Page 66

5040

5100

5160

tgctccgcca gaacctcacg ggcgtcgtgc ggatcgcctc cgagtcctgg gccatcgacc

cggtcctgca cgacaggccc acgcgctgca cagcctcctg ggctgcaccc agaccagcag

ctccgggtcg tctatccctg gcaggtgagg ccccacccac ggagagtcgg ggccacacac

WO 2005/005480		MON-030)1.ST25.txt		PCT/US2004/015136
gcaggcgccg ccacagccct	gagtggttgc	catggagacc	actgccctgc	tctagcgtcc	5220
ccctctctgg ccgggtcctg	ggcaaactgg	cgggagaggc	caggggacgt	accctgtccc	5280
cagacacata aagccagaag	tgcttcatgg	tgacaaaact	ccttttttta	cattaatgta	5340
atcctcgcca tccaagatag	cctgtcccgg	caggagattt	gggtgaagtt	tcctggaagg	5400
aggeetggea ggeagtggge	cccctgggcc	ccctgccgtt	tctccagggt	ggcggccttg	5460
ggggaggact tctgtgttca	gctctctgag	gctctgcttt	gggtttatgc	atcttctctc	5520
gtcccaggtc tggacgattc	agaggagtaa	ggaggcaagg	agtcgcctgg	attcagacct	5580
ggaatttaaa tctgtatttt	tctgatctgc	gtgcacaccc	gcgcgtgcac	acacacac	5640
ctaaccacga agtttatgta	ggtagaagat	tttactgagg	gggcgcctgg	gtggctcagt	5700
cggttaagcg tccgacttca	gccaggtcac	gatctcgcgg	tctgtgagtt	cgagccccgc	5760
gtcaggctct gggctgatgg	ctcnnnnnn	nnnnnnnnn	מממממחמחמ	מממממממממ	5820
nnnnnnnn agcaccccga	gggcccgggg	gagggcacct	gagcccgtaa	agggaaacag	5880
gagtggcctc tgaacccagg	tgataggtct	ccgctggatg	gcagacgtga	ctcccacggg	5940
agcaggaata atgtcgacac	atcggccgga	aggggagcac	ttcctggtgt	gcagtcattg	6000
tgctaagctc ccaacattgg	gaaactcatg	cgttgcttca	gagcccggga	gacagggttt	6060
ttgttgtcct actttacaga	agaggagact	ggagctcacg	ggggttgggc	gacaggcccg	6120
aggctcagag caggtggcag	agctggtgcc	tgaacccagg	tgtgtctgac	tacagagccg	6180
gggctcccag ccgctgcctc	ccgggtgacc	acatctgcgg	tctcattgcc	cccttgtagg	6240
gatgtggaca cccagtctcg	tggggtagtc	actctccccc	ggatcgagcc	cgacttcttt	6300
ttttttttt aattttttt	tcaacgttta	tttatttttg	ggacagagag	agacagagca	6360
tgaatgggcg aggggcagag	agagagggag	acacagaatc	ggaaacaggc	tccaggctcc	6420
gagccatcag cccagagcct	gatgcggggc	tcgaactcac	ggaccgcgag	atcgtgacct	6480
ggctgaagtc ggacacttac	ccgaatgcgc	cacccagggg	cccagatcga	gcccgacttc	6540
tgacgccage gtcgcttcct	ttccctgtgg	cctcccagct	gcttcaggaa	atctggaagg	6600
tcaacttcac cctcctgggc	caccagatct	tttttgacca	gcgaggggac	ctactcatgc	6660
gcctggagat catccaggga	cggtgggacc	tgagccagaa	cctttctgga	gcgtcgcctc	6720
ctactgcccg gtgctacgac	ggctgagggc	catccgtgac	gtctcctggc	acacggccaa	6780

Page 67

6840

6900

6960

7020

7080

7140

7200

7260

caacacggtc agctctcgga gggctggtgg ggggctggga cctgggtctg ggcactggct

cgtgcagggg tggcaagggc cctgtggacc tgagatccat tatcgagcac tgatgtcatc

cctatttgtg ggtgtccctc ctcccattga ctaagcactg tggaagtcta gagctttctg

gatectcagg acccagggge teaggggget geacaaagtg aacgttaggt ggacacgtgt

gtgctaagga cttcaattct catgtcaacc ctaggaaata gagagtactg ttcctcctgt

ctttggggtt gggaaactgg aggcacagag ggggtcgcgt gacccataaa aggccacaca

gctttcgcat gtctctatac acagcattca gtctacatcc catcgattag tactcgcgtt

ttggggacag tagctgtgcc ttcacctgtg tctgacatct gtcagtctga aagctccttt

WO 2005/005480			PCT/US2004/015136
	MON-0301.S	ST25.txt	
gttttaccct cttagcttac	aagctgtcag aatggccgcg atg	gtggggaa ggtagagact	7320
cagectegtg gggaaggggg	gaggtggggg gacctaaaag tto	caaagagc cagggcacct	7380
gggtggctca gtcagttaag	catccgactc tggatctcag ct	cagtettg ateteaggte	7440
gtgagtttag acccctgtgt	agggctccgt gctgggcgcg ca	gcctactt aaaaataata	7500
aaaacaaaag cnnnnnnnn	תחתתתתתתת תחתתתתתתתת תחת	nnnnnnnn nnngatcccc	7560
gtgtccatgt gttccaagga	ctgccagcct gggcaaagga ag	aagcccgt gggtattcat	7620
ccctgctgct tcgagtgtct	cgactgcctt ccgggcacct to	ctcaacca aactgcagat	7680
gggactcaca gacccacacc	cetgecetge cetgecetge ce	cgccctgg ggctcccagg	7740

gcccttcatc tttggcaggg tctctggagt ctcatccagg ggacacaggt gtccaaaggc 7800 cagggaccat gttttgactc cgcttgtatc tccctaaccg ctggtgtaag aaaaatcttc 7860 7920 aatgctgtga gggcgtgggg gtgggagaag gaacagccct caaccaggcg aggctgtaac 7980 tgatcccctc tgcacacaca tgtagctgag ggcccagggg ggtcaggcca gagaatgtcc accggatgaa cgaacgaatg aatgaatgaa cgaacgaaca aacacacaaa tgaatgaatg 8040 tctctgtccg tagaagaaat gtttctggca gacagggcta ggatctaatt tctctctgtg 8100 gcctcccgag tgcctcgtgt agttcggagc atataatgtt tgctcagtga atgtttattg 8160 8220 agtgacatcc ttgatgagaa gaattgacat ctccccctat agatcataaa ctccaggaaa 8280 ggggggacaa tgtcatccct ccagtgttta ccacagttca ccgttggggc cgaattattt ttttttcatg acttcacaga ttagtaacta agcggttctg tacatctacc gatcagagta 8340 8400 cttacgacgt gcccagcaga gcccagggca cagggtaggt gctcaacaaa agtttgtttg

caattgatca gtagccggaa gtcagggggc tcggttttat ccacgtctgt gctctccatc

tcagatgcct atcacagtgg gtggcgctca aaaagaaact tgaataaacg gtcgaatgtc 8520 catctcacca gagggtacgg tcttggaagg gaggcattac ggttgccagg ctctgagtca 8580 8640 aggggacett ggaccacate etgeetetgt aactggtttt gtaacngeet ggaggageet cagatgccac atctgtgaaa tggggttgca gtgaggatct gatgggccgg tggatacgag 8700 8760 ggacgcagtg agaggtgcta cgaccgcagg catcgccctt ggctcgcccc ctccctaccc ctacagccgg ccgggtgcag gtgcagagga tgtgggtgcc gggaaggtgg gtgtatctga 8820 8880 tggaactgct gtgggctctt gcagacgagt ttggctgccg gccctgcccg agttgcgggt 8940 ggtcccggag gaacgacgct tcgtgcttca agcggcggct ggcctccctt gaatgacgcg

tectggtgat ettetggagg cacegecaeg egeceatggt tegeteggee gggggeecea 9060 ggtgcttccc gatgccgatg cccctgctgt ataggtgacg gtctccatgt acatcgggca 9120 gcccgcgttt ttcatgtgcc tcggccacca gaccctcttc accctctgct tcaccgtctg 9180 tatctcccgt gtcaccgtgc gctctttcca gatcgtccgc gtcttcaaca tggccaggcg 9240

cctcccgcgt gcctacggct actgggtccg ctaccacggg ccctgtgtct tcgtggcgtc

aggcaccege egtegetgtg geogtgetgt ceatectggg etecetetge accetggeea

9360 cttcacggtg ctcaagatgg tcatcgtggc gggcaacgtg ctggccgcga ccgccgagcc

8460

9000

9300

WO 2005/005480	MO	N-0301.ST25.txt		PCT/US2004/015136
cgccgcccgc cccgaccccg	atgaccccaa gatcgc	eggtt ctcgcctgca	actaccacaa	9420
cgtgctcctg ttcgacacca	gcctggaccc gcttct	gtcc gtggcgggct	tcggcttcgc	9480
ctacgtgggc aaggagctgc	ccaccaccca caacga	aggcc aagttcttca	ccttccgcat	9540
gaccttctac ttcacctctt	ccatctccct ctgtac	cette atgtetgtet	acgagggggt	9600
cctggtcacc atcctgcacc	tcgtggtggc agtgct	caac cttctgggcg	ctttggcccc	9660
tgggctactt cggccccaag	tgctgcgtgg tcctct	tcta cccggatcac	aacacgcccg	9720
tctacttcag cagcatgatt	cagggctaca ccacco	gggaa ggactagcac	tgccccctgg	9780
ctgcccaggg ggccagaggg	ctcggtactg ggagat	ggag accaggggtg	gggctggggg	9840
tggtggtgac tcattcagcc	cctgctggga gcaggg	gacac caccccgccc	tactctctga	9900
tttggcctcc ccctccaggt	tetetgeace etgged	cgttt ttacccaccc	gctggtggat	9960
gcctaaaaat acgctttccc	tgcagccgtt tggctt	tgcca ggcactgcca	cccatgctag	10020
ggaaaggagc cggggtgacc	tecetatggg teteca	aagac agagatggag	cgaagcagcc	10080
cacagtcgcc atctggtggt	cacagegggt gteeg	caggt teeggeteeg	ggcagccatg	10140

10200

10260

10320

10440

10500

10560

10607

ccccccgtc gccccaagaa agaagactgg gatcagagac ctcagcttcc atttccgcgt tgccacttct ganccgtgta ctttgggcca attctattta ctgtttcgga ncctacacgg nccctttcct naaataggaa caataaacca ggggcacctt tgacncactg tgtagtancc aatttgacga taanttttt taaaagatta aattaatcng ataaatt

ctggaaggct gggctggggc tggtgttggg ggacatctgc ccggcatcat tcactccctg

cccacgtgtc tgcgcctcac ctcccagact ccccgcccc ccagcttggg acccagcttg

ggacccagct tctctgagtc atggctgcgc ataggggctg cttcataaat gcttatgaat

aaacctccct tgggtgaaac gaaggcgttt ccttcttgtt tccagaggtt tccccctcc 10380

<210> 63 <211> 1176 <212> DNA <213> Felis catus

<400> 63 atgggacccc gggccaggga agtctgctgc ttcatcatcc tgccgcggct cctggctgag 60 ccggctgaga actcagactt ctacttggct ggggattact tcctcggcgg cctcttcacc 120 ctccatgcca acgtgaaggg catcgtccac ctcaacctcc tgcaggtgcc ccagtgcaag 180 gagtatgaaa taaaggtgtt gggctacgat ctcatgcagg ccatgtgctt tgcaggggag 240 300 gagatcaata gccagagcag cctgctgcct ggcgtgctgc tgggctacaa aatggtggat gtcagctaca tctccaacaa tgtccagccc gtgctccact tcccggcaaa ggaggactgt 360 tccttgccca tccaggagga ctacagccac tgtgtgcccc gtgtggtggc tgtcattggt 420 cctggcaact ctgagtccac tgtgactgtg gcccgcttcc tctctcttt cctccttcca 480 cagatcacct acagcgccat cagtgacgag ctacgggaca agcagcgctt cccggccctt 540 ctgcccacag cgccgggcgc cgatcaccag atcgaggcca tggtgcagct gatgttgtac 600

	•	wo 2	2005/0	00548	30												РСТ
ttee	acca	ga a	ctaa	atca	t ca	cact	.aata	age			1.ST			gacg	acagc	ϵ	60
		_			-	_				_					.cgctg	7	20
															ccatc	7	80
	_														agctg	8	340
-	_														ggatc	g	900
gcct	ccga	gt c	ctgg	gcca	ıt cg	acco	ggtc	: ctg	cacg	aca	ggcc	cacg	eg e	etgca	cagcc	S	60
tcct	gggc	tg c	acco	agac	c ag	cago	tccg	ggt	cgtc	tat	ccct	ggca	.gg t	gagg	rccca	10	20
ccca	cgga	.ga ç	ıtcgg	ggcc	a ca	.cacg	rcagg	cgc	cgcc	aca	gccc	tgag	rtg g	gttgc	catgg	10	080
agac	cact	gc c	ctgc	tcta	ıg cg	taca	cctc	: tct	ggcc	ggg	tcct	gggc	aa a	actgo	rcggga	11	40
gagg	ccag	igg g	gacgt	acco	t gt	cccc	agac	aca:	itaa							1.1	176
<210 <211 <212 <213	> 3 > E > F		s cat	us													
<400		54															
Met 1	Gly	Pro	Arg	Ala 5	Arg	Glu	Val	Cys	Cys 10	Phe	Ile	Ile	Leu	Pro 15	Arg		
Leu	Leu	Ala	Glu 20	Pro	Ala	Glu	Asn	Ser 25	Asp	Phe	Tyr	Leu	Ala 30	Gly	Asp		
Tyr	Phe	Leu 35	Gly	Gly	Leu	Phe	Thr 40	Leu	His	Ala	Asn	Val 45	Lys	Gly	Ile		
Val	His 50	Leu	Asn	Leu	Leu	Gln 55	Val	Pro	Gln	Cys	Lуs 60	Glu	Tyr	Glu	Ile		
Lys 65	Val	Leu	Gly	Туг	Asp 70	Leu	Met	Gln	Ala	Met 75	Суз	Phe	Ala	Gly	Glu 80		
Glu	Ile	Asn	Ser	Gln 85	Ser	Ser	Leu	Leu	Pro 90	Gly	Val	Leu	Leu	Gly 95	Tyr		
Lys	Met	Va1	Asp 100	Val	Ser	Tyr	Ile	Ser 105	Asn	Asn	Val	Gln	Pro 110	Val	Leu		
His	Phe	Pro 115	Ala	Lys	Glu	Asp	Cys 120	Ser	Leu	Pro	Ile	Gln 125	Glu	Asp	Tyr		
Ser	ніs 130	Cys	Val	Pro	Arg	Val 135	Val	Ala	Val	Ile	Gly 140	Pro	Gly	Asn	Ser		
Glu 145	Ser	Thr	Val	Thr	Val 150	Ala	Arg	Phe	Leu	Ser 155	Leu	Phe	Leu	Leu	Pro 160		
Gln	Ile	Thr	Tyr	Ser 165	Ala	Ile	Ser	Asp	Glu 170	Leu	Arg	Asp	Lys	Gln 175	Arg		

PCT/US2004/015136

Page 70

Phe Pro Ala Leu Leu Pro Thr Ala Pro Gly Ala Asp His Gln Ile Glu 180

Ala Met Val Gln Leu Met Leu Tyr Phe Arg Arg Asn Trp Ile Ile Ala

Leu Val Ser Ser Gly Asp Cys Gly Arg Asp Asp Ser Gln Leu Leu Ser

Asp Arg Pro Ala Gly Gly Asp Thr Cys Ile Ala Phe Arg Glu Thr Leu

Pro Met Pro Gln Pro Asn Gln Ala Val Thr Gln Trp Glu Arg Arg 245

Leu Lys Ala Ile Val Asp Glu Gln Gln Arg Gln Ser Ser Ala Arg Val

Val Val Leu Leu Ser Pro Lys Leu Val Leu His Asn Phe Phe Arg Glu

Val Leu Arg Gln Asn Leu Thr Gly Val Val Arg Ile Ala Ser Glu Ser 295

Trp Ala Ile Asp Pro Val Leu His Asp Arg Pro Thr Arg Cys Thr Ala 310

Ser Trp Ala Ala Pro Arg Pro Ala Ala Pro Gly Arg Leu Ser Leu Ala

Gly Glu Ala Pro Pro Thr Glu Ser Arg Gly His Thr Arg Arg Arg Arg

His Ser Pro Glu Trp Leu Pro Trp Arg Pro Leu Pro Cys Ser Ser Val

Pro Leu Ser Gly Arg Val Leu Gly Lys Leu Ala Gly Glu Ala Arg Gly

Arg Thr Leu Ser Pro Asp Thr

<210> 65 <211> 24 <212> DNA <213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 65

taaacaactc cacggccctg ctgc

	WO 2005/005480		PCT/US2004/015136
<210>	66	MON-0301.ST25.txt	
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
<400>	66		
cccago	ggtga tgttgggcag cagg		24
<210>	67		
<211>	24		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
<400>	67		
gergre	tatg cggtggccca tggc		24
<210>	68		
<211>	24		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
44005	60		
<400>	68 gctg gtggaggcca tggg		0.4
Jougga	goog goggaggeea eggg		24
<210>	69		
<211> <212>	24 DNA		
<213>	Artificial Sequence		
	in out of delice		
<220>			
<223>	Synthetic Construct		
<400>	69		
	ccaa cctgactggc aagg		24
<210>	70		
<211>	24 .		
<212>	DNA		
<213>	Artificial Sequence		
<0.00×			
<220> <223>	Synthetic Construct		
12207	plurierro constinct		
<400>			
tctgag	gcga cccacacett gcca		24
<210>	71		
<211>	24		
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
4400:			
<400>	71 Sago taaacataaa tgag		0.4
ccayill	Lago Ladacatada Egag		24

	WO 2005/005480	MON-0301.ST25.txt	PC1/US2004/015136
<210> <211> <212> <213>	72 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> gccact	72 ggat tttggtctca ttta		24
<210> <211> <212> <213>	73 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> agctaa	73 cacg etgetgetge tget		24
<210> <211> <212> <213>	74 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> agcagto	74 ccca agcagcagca gcag		24
<210> <211> <212> <213>	75 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> tgtgtca	75 acct tcagcctgct cttc		24
<210> <211> <212> <213>	76 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> tccagga	76 acac gaagttgaag agca		24
<210> <211> <212> <213>	77 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		

PCT/US2004/015136

WO 2005/005480

WO 2005/005480	MON-0301.ST25.txt	PCT/US2004/015136
<400> 77 tacttcggcc ccaagtgcta catg	10N V301.5125.CAL	24
<210> 78 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 78 ccgggtagaa gaggatcatg tagc		24
<210> 79 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 79 tggtcaccat cgtggacctc ttgg		24
<210> 80 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 80 aggttgagca cagtgaccaa gagg		24
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 81 accaactaca acgaggeeaa gtte		24
<210> 82 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct	•	
<400> 82 tcatgctgag ggtgatgaac ttgg		24
<pre><210> 83 <211> 24 <212> DNA <213> Artificial Sequence</pre>		
<220>		

WO 2005/005480		PCT/US2004/015136
<223> Synthetic Construct	MON-0301.ST25.txt	
<400> 83 tecgagteet gggeeatega eeeg		24
<210> 84 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 84 tgaggttgtg caggaccggg tcga		24
<210> 85 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 85 tacaacetea tgcaggeeat gege		24
<210> 86 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 86 tctcctccac cgcgaagcgc atgg		24
<210> 87 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 87 atcaccatcc agagcgtgcc catc		24
<210> 88 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 88 actcactgaa gcccgggatg ggca		24
<210> 89 <211> 24 <212> DNA <213> Artificial Sequence		

WO 2005/005480	MON-0301.ST25.txt	PCT/US2004/015136
	MON-0301.3123.CAC	
<220> <223> Synthetic Construct		
<400> 89 accaccacgt cgaggccatg gtgc		24
<210> 90 <211> 24 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 90 aagtgcagca tcagctgcac catg		24
<210> 91 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 91 torgacttot acctgootgg rga		23
<210> 92 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 92 cttcacgttg gcatggaggg		20
<210> 93 <211> 21 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 93 tacctcctgg gtggcctctt c		21
<210> 94 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Synthetic Construct		
<400> 94 tettgcacwk gggcacetge		20
<210> 95 <211> 22		

	WO 2005/005480				PCT/US2004/015136
<212> <213>	DNA Artificial Sequence	MON-030	01.ST25.txt		
<220> <223>	Synthetic Construct				
<400> aggtgt	95 tggg ctacaaccts at				22
<210> <211> <212> <213>	96 21 DNA Artificial Sequence				
<220> <223>	Synthetic Construct				
<400> gggcak	96 gtag tggctgtagt c				21
<210> <211> <212> <213>	97 22 DNA Artificial Sequence				
<220> <223>	Synthetic Construct				
<400> ggctaca	97 aacc tsatgcaggc ca				22
<210> <211> <212> <213>	98 22 DNA Artificial Sequence				
<220> <223>	Synthetic Construct				
<400> gagttgt	98 tcag ggccaatgac cg				22
<210> <211> <212> <213>	99 2598 DNA Felis catus				
<400> atgccc	99 ggcc tcgctctcct gggcctcacg	gctctcctgg	gcctcacggc	tctcttggac	60
cacgggg	gagg gcgcaacgtc ctgcttgtca	cagcagctca	ggatgcaggg	ggactatgtg	120
ctgggtg	gggc tettecetet gggetetgee	gagggtacag	gtcttggcga	cgggctgcag	180
cccaato	gcca ccgtgtgcac caggttctcg	tctctgggcc	tgctctgggc	gctggccgtg	240
aagatg	gcgg tggaggagat caacaacggg	teggeeetge	tgcccgggct	gcacctgggc	300
tatgaco	ctct ttgacacgtg ttcagagccc	atggtggcca	tgaagcccag	cctcgtgttc	360
atggcca	aaag caggcagetg cagcattgcc	gcctactgca	attacacaca	gtaccagccc	420
	etgg ccgtcatcgg gccccactcg				480
ttcagct	ttet teettgtgee teaggteage	tacggcgcca	gcaccgaccg	gctgagcaac	540

WU	2003/003460					PC1/US2004/013130
cgggagatct	tcccgtcctt	cttccgcacg		1.ST25.txt accaggtgca	ggtggcggcc	600
atggtggagc	tgctggagga	gctcggctgg	aactgggtgg	cggcggtggg	tagtgacgac	660
gagtatggcc	ggcagggcct	gagcctcttc	tccggcctgg	ccagcgccag	gggcatctgc	720
atcgcgcatg	agggcctggt	gccactgccg	ccaggcagcc	tgcggctggg	cgccctacag	780
ggcctgctgc	gccaggtgaa	ccagagcagc	gtgcaggtgg	tggtgctgtt	ctcctccgcc	840
cacgcggccc	gcaccctctt	cagctacagc	atccgctgca	agctctcacc	caaggtgtgg	900
gtggccagcg	aggcctggct	gacctcagac	ctggtcatga	cgctgcccgg	catgcctggg	960
gtgggcaccg	tgctgggctt	cctgcagcag	ggcgccccga	tgccggagtt	cccatcctac	1020
gtgcggaccc	gcctggccct	ggccgctgac	cctgccttct	gcgcctcgct	ggacgctgaa	1080
cagccaggcc	tggaggagca	cgtggtgggg	ccacgctgcc	cccaatgtga	ccacgtcacg	1140
ctagagaacc	tatctgcggg	gctgctgcac	caccagacct	tcgctgccta	cgcggctgtg	1200
tatggcgtgg	cccaagccct	tcacaacaca	ctgcgctgca	atgcctcggg	ctgccccagg	1260
cgggagcctg	tgcggccctg	gcagctccta	gagaacatgt	acaacgtgag	cttccgtgct	1320
cgcggcctgg	cactgcagtt	cgacgccagc	gggaacgtga	acgtggatta	cgacctgaaa	1380
ctgtgggtgt	ggcaggaccc	gacgcccgag	ctgcgcaccg	taggcacctt	caagggccgc	1440
ctggagctcti	ggcgctctca	gatgtgctgg	cacacgccgg	ggaagcagca	gcccgtgtcc	1500
cagtgctccc	ggcagtgcaa	ggaaggccag	gtgcgccgcg	tgaagggctt	ccactcttgc	1560
tgttacaact	gcgtggactg	caaggcgggc	agttatcagc	gcaacccaga	tgacctcctc	1620
tgcacccagt	gtgaccagga	ccagtggtcc	ccagaccgga	gcacacgctg	cttcgcccgc	1680
aagcccatgt	tcctggcatg	gggggagcca	gctgtgctgc	tactgctcgc	gctgctggct	1740 ^v
ctggcgctgg	gcctggcgct	ggcagccctg	gggctcttcc	tctggcactc	ggacagcccg	1800
ctggttcagg	cctcaggtgg	gccacgggcc	tgctttggcc	tggcttgcct	gggcctggtc	1860
tgcctcagtg	tcctcctgtt	ccctggccag	ccaggccctg	ccagctgcct	ggcccagcag	1920
ccactgttcc	acctcccact	cactggctgc	ctgagcacgt	ttttcctgca	agcggccgag	1980
atatttgtgg	ggtcggagct	gccaccaagc	tgggctgaga	agatgcgtgg	ccgcctgcgg	2040
gggccctggg	cctggctggt	ggtgctgctt	gctatgctgg	cagaagccgc	attgtgtgcc	2100
tggtacctgg	tagccttccc	gccagaggtg	gtgacggact	ggcgggtact	gcccacagag	2160
gcgctggtgc	actgccacgt	gcactcctgg	atcagcttcg	gcctggtgca	tgccactaac	2220
gccatgctgg	ccttcctctg	cttcctgggc	actttcctgg	tgcagagccg	gccaggccgc	2280
tacaatggtg	cccgcggcct	cacctttgcc	atgctggcct	acttcatcac	ctggatctcc	2340
tttgtgcccc	tctttgccaa	tgtgcacgtg	gcctaccagc	ctgccgtgca	gatgggcacc	2400
atcctcctct	gtgccctggg	tatcctagcc	accttccacc	tgcccaagtg	ctacctgctg	2460
ctgcagcggc	cggagctcaa	cacccctgag	ttcttcctgg	aagacaatgc	cagagcacag	2520
ggcagcagtt	gggggcaggg	gaggggagaa	tcggggcaaa	aacaagtgac	acccgatcca	2580
gtgacctcac	cgcagtga					2598

PCT/US2004/015136

WO 2005/005480