lab 4. Investigation of electroplate fields Theory. An electric field flerounds charged particles and sepresents the force per senit charged felt by other charged particles in that field. If the electric field does not charge in time, then the force felt by charged particles in the electric field is given by: F = F(P) . q 9 E- electric field vector at postion is q- energe being affected by the electric field. portive © negative charge. 9 f = 4me. $\frac{q_1 q_2}{r^2}$ \Rightarrow locumbs faw $60 = 8,85488482 \cdot 60^{-12} \frac{A^{\frac{2}{5}}}{m^3 \text{ ug}}$ | permittivity of free p) a, 92 - charges of the 2 particles $K = \frac{1}{4 \pi \epsilon_0} = 8,984551924 \cdot 10^9 \frac{N \cdot m}{c^2}$ $F = \frac{1}{4\pi\epsilon_0} \cdot \frac{2121}{r^2} \cdot \hat{r} \qquad \stackrel{?}{=} \frac{1}{4\pi\epsilon_0} \cdot \frac{2i}{r_1^2} \cdot \hat{r}$ i'- pen't vector of the displacement vector.

in moving	lential is the an object.	nyahre	of the	work done	6
V=	lential is the an object. -W = - S	$\frac{f}{g}$ dr	1000	Turbull's	6
	1 . Qa.			tall to be the	5
V=	S HAGO.	R dr			0
V=	- 4760 F	R A ST		projection of the	6
If the is positive	charge is nego	whive, then	the cleetric	c potential	-
	2				- 3
Aul	S:		J. J.	incl k_ d	(
		at positive	e charge Anyte chevy	and terminate	
1. Alld on negative to infinity	kines Hart re charges an			and terminak e continue to a field	
1. Acid on negative to infinity d. Verbor in hine at	hines Hart re charges an E is directed any its point is equal o	t along for proportion	he fangent	to a field	e (
1. Acid on negative to infinity 2. Verbor in the at	hines Hart re charges an E is directed any its point	t along for proportion	he fangent	to a field	e (
1. Acid on negative to infinity 2. Verbor in the at	hines Hart re charges an E is directed any its point is equal o	t along for proportional	he fangent al to the	to a field	e (
L. Alld on negative to infinity 2. Verbor I have at	hines Hart re charges an E is directed any it point is equal o E= -grad En= av an	t along f or proportional	he fangent al to the	to a field	e (

E = 1 xp1 $E_{X_1} = \left| \frac{14 - 10}{4, 5 - 3, 2} \right| = \left| \frac{4}{1, 3 \cdot 10^{-2}} \right| = 308 \ V/m$ $E_{Y_1} = \left| \frac{14 - 10}{0 - 8} \right| = \left| \frac{4}{-8 \cdot 10^{-2}} \right| = 60 \ V/m$ E1 = 13082 + 502 = 312 V/m $E_{x_2} = \left| \frac{12-8}{10-0.5} \right| = 44 \text{ V/m}$ $E_{x_3} = \left| \frac{1-4}{0.349} \right| = 45 \text{ V/m}$ $E_{x_2} = \left| \frac{12-8}{3-8} \right| = 400 \text{ V/m}$ $E_{x_3} = \left| \frac{9-4}{3-6} \right| = 400 \text{ V/m}$ $E_{X2} = \begin{vmatrix} \frac{12-8}{10-0.5} \end{vmatrix} = 44 \text{ V/m} \qquad E_{X3} = \begin{vmatrix} \frac{9-4}{1.5+9} \end{vmatrix} = 43 \text{ V/m}$ $E_{X2} = \begin{vmatrix} \frac{12-8}{3-8} \end{vmatrix} = 40 \text{ V/m} \qquad E_{X3} = \begin{vmatrix} \frac{9-4}{3-6} \end{vmatrix} = 400 \text{ V/m}$ $E_{2} = \frac{141^{2} + 20^{2}}{3-8} = 90 \text{ V/m} \qquad E_{3} = \frac{145^{2} + 200^{4}}{3-6} = 405 \text{ V/m}$ Conclusion: In this tab I understood New to work with elutrostatic fields. Also I knew about how electric fields are produced and their effect on charged object. I have how to theteh field and posintial passers. To, this eab for me was very with.