

Application of MAVT for Car Decision Making

Assignment 2 Group C

Leo Pekkarinen Valtteri Lausala Dung Tran

29.05.2024 27E01000 - DMCB

Table of Contents

1 Intr	oduction	1
2 Pro	blem Formulation	2
2.1	Fundamental Objectives	2
2.2	Attributes	3
2.3	Decision Alternatives	4
3 Pro	blem Solving	5
3.1	Elicitation of attributes' partial values	5
3.2	Elicitation of objectives' weights	6
3.3	Results	7
4 Dis	cussion & Conclusion	9
4.1	Theoretic assumptions and violations	9
4.2	Behavioural issues	9
4.2	.1 Biases related to generating objectives and alternatives	9
4.2		
4.2		
4.3	Limitations	
List of		
	Figures	
	Fundamental objectives	2
Figure 1:		
Figure 1: Figure 2:	Fundamental objectives	4
Figure 1: Figure 2: Figure 3: Figure 4	Fundamental objectives Decision Alternatives Weights MAV scores	4 7
Figure 1: Figure 2: Figure 3: Figure 4	Fundamental objectives Decision Alternatives Weights	4 7
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5	Fundamental objectives Decision Alternatives Weights MAV scores	4 7
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5	Fundamental objectives Decision Alternatives Weights MAV scores Alternatives - Result	4 7 8

1 Introduction

The decision maker (DM) named V has a 3-person family and is seeking a long-term solution for their daily transportation needs. Given their regular commutes (to work, school, grocery stores, etc.), DM quickly identified that buying a car is the best and most necessary choice for the family, instead of renting cars, using public transportation, or cycling. Hence, DM's decision problem is to determine the most suitable car for their family, based on a comprehensive evaluation of fundamental objectives and below constraints set by DM.

Constraints are:

- Seating Capacity: The car must have adequate seating for at least three people, providing sufficient legroom and comfort.
- Primary Usage: The car should be highly suitable and fuel-efficient for city driving, as the primary usage involves regular, short-distance commutes.
- Fuel Type: Given the absence of DM's home charging pole for electric vehicles, the car should be a fuel-powered vehicle (gasoline).

Based on these constraints, our alternatives include only 4-seat fuel-powered cars, with a focus on fuel efficiency for city driving rather than highway driving.

The analysis begins with shortlisting fundamental objectives, followed by developing attributes for each objective. It then involves searching for different decision alternatives. Finally, the analysis compares the alternatives based on their values and the weights of each objective using the SWING method. The analysis concludes by recommending the best car choice and discussing the limitations of the analysis.

2 Problem Formulation

2.1 Fundamental Objectives

Given the family's requirements, fundamental objectives were mapped with value focused thinking approach. The following hierarchy was generated through the discussions:

Figure 1: Fundamental objectives

2.2 Attributes

In the table below, we have outlined all the key attributes used in our model and why they are included along with the range of possible values for each attribute.

Table 1: Attributes

Attribute	Range	Importance
	(worst xo –	
	best x1)	
Price	€16,000 -	A key factor in budget constraints and
	€14,000	overall affordability.
Consumption	10-3	Indicates fuel efficiency of city driving,
(l/100km)		directly impacting running costs.
Repairs	€3000-€200	Represents maintenance costs,
		affecting the long-term financial
		burden.
Age	10-0 years	Reflects the expected lifespan and
		reliability of the vehicle.
Driven (km)	120,000-	Shows the extent of usage; higher
	20,000	kilometers can indicate more wear
		and potential for future issues.
Reliability ratings	0-99	Provides an overall reliability score,
		essential for predicting future
		performance and satisfaction.
Performance	90-150 HP	Determines the vehicle's power and
(Horsepower)		ability to meet performance
		expectations.
Acceleration (o-	20-6 seconds	Important for assessing the vehicle's
100 time)		responsiveness and suitability for
		different driving conditions.
Braking distance	50–10 meters	A crucial safety feature, indicating
		how quickly the vehicle can come to a
		stop.

Cargo space in	700-2,000	Essential for evaluating the vehicle's
liters	liters	capacity to carry goods, important for
		utility and practical use.
Car type	o (=Hatchback	Specific to target user preference,
	H)–1(=Farmer	ensuring the vehicle meets the needs
	F)	of its primary user group.
Environment	150-95 g/km	Reflects the vehicle's environmental
impact (CO2		footprint, important for sustainability
emission)		and regulatory compliance.

2.3 Decision Alternatives

By reflecting to our problem statement and using the acceptable ranges of different attributes, we went online to a Finnish used car company's website (Kamux), and filtered cars according to the acceptable ranges. Dataset was formed from the cars and enriched with data from Caredge.com and J.D Power for repair cost, and reliability estimators. Following table resulted:

Alternatives	Ford Fiesta 2019	Scoda Octavia - 2017a	Mini one	Seat Leon	Volkswagen Polo - 2018	Volkswagen Polo - 2017	Scoda Octavia - 2017b	Audi A1	Ford Fiesta - 2017	Mini Cooper
Price (EUR)	14400	15400	14390	14900	14890	15200	15780	14800	15790	14800
Consumption	4.90	5.25	4.50	4.60	5.15	5.15	5.25	4.35	5.75	4.75
Average Repair Cost (EUR)	7967.20	5172.24	6213.68	5897.20	4972.60	4972.60	5172.24	8312.20	7967.20	6237.60
Age (years)	5	7	7	6	6	7	7	7	7	7
Driven (km)	43000	108000	52000	81000	89000	66000	114000	82000	38000	95000
Reliability Rating	73	80	79	76	72	73	80	77	73	79
Horsepower	101	116	102	116	95	95	116	95	101	136
Acceleration (seconds)	9.40	8.60	10.50	10.00	10.80	10.80	8.60	10.80	11.20	8.00
Braking distance (meters)	34	34	36	35	37	37	34	37	37	35
Туре	Н	F	Н	Н	Н	Н	F	Н	Н	Н
Cargo space	1093	1718	941	1210	1125	1125	1718	920	1093	963
CO2 emissions (g/km)	118	119	108	113	120	118	119	127	108	125

Figure 2: Decision Alternatives

3 Problem Solving

3.1 Elicitation of attributes' partial values

Here we have a table of the attributes and how they are scaled:

Table 2: Attributes' value functions

Attribute	Value Function	Reasoning
Price	Linear	The linear value function is used for
		price because the change in value is
		consistent and straightforward over
		the specified range.
Consumption	Linear	A linear value function is applied
(l/100km)		here as fuel consumption changes
		are perceived consistently over the
		range.
Repairs	Bisection method	The bisection method is used due to
		the non-linear perception of repair
		costs, as major repair costs are
		perceived with significant jumps in
		impact.
Age	Linear	Age is assumed to have a linear
		effect on the cars reliability.
Kilometers	Bisection method	The bisection method reflects non-
		linear perceptions, with critical
		levels defined at 80,000, 100,000,
		and 50,000 km.
Reliability ratings	Bisection method	The bisection method is suitable
		due to the non-linear perception of
		reliability ratings.
Performance	Linear	A linear function is appropriate as
(Horsepower)		the changes in horsepower are

ied as
eived
itical
ance
t to car
uitable
;
the
es:
on is
n CO2
istently

3.2 Elicitation of objectives' weights

First, DM assigned scores on objective levels (DM chose the objective i that he would first like to change and assigned score 100 for this objective. Repeat the same for the rest). Then, for each objective, DM assigned scores for each attribute j within the objective.

Objective i Attribute j		Attribute swung from worst to best	Consequence to compare			Wi	Rank for		
		Benchmark	€16 000, 10I, €3 000, 10 years, 120 000 km, 0 ratings, 90 HP, 20 seconds, 50 meters, 700 liters, Hatchback, 150 g/km)	Rank for objective	SWING score		each attribute within the objective	Wj	w _{ij} (= W _i * w _j)
	Price (j = 1)		(€14 000, 101, €3 000)				100	0.417	0.139
Economic to drive (i=1)	Consumption (j = 2)	(\$16 000, 101, \$3 000)	(€16 000, 31, €3 000)	1	100	0.333	80	0.333	0.111
` '	Average Repair Cost (j = 3)	, , , , ,	(€16 000, 3I, €200)				60	0.250	0.083
	Age (j = 4)		(0 years, 120 000 km, 0 ratings)	2	80	0.267	80	0.333	0.089
Reliability (i=2)	Driven (j = 5)	(10 years, 120 000 km, 0 ratings)	(10 years, 20 000 km, 0 ratings)				100	0.417	0.111
	Reliability Rating (j = 6)		(10 years, 120 000 km, 99 ratings)				60	0.250	0.067
	Horsepower (j = 7)		(150 HP, 20 seconds, 50 meters)	4	40	0.133	60	0.250	0.033
Enough performance (i=3)	Acceleration (j = 8)	(90 HP, 20 seconds, 50 meters)	(90 HP, 6 seconds, 50 meters)				100	0.417	0.056
	Braking distance (j = 9)		(90 HP, 20 seconds, 10 meters)				80	0.333	0.044
Enough appea (i=4)	Cargo space (j = 10)	(700 liters, Hatchback)	(2000 liters, Hatchback)	3	60	0.200	80	0.444	0.089
Enough space (i=4)	Type (j= 11)	(700 titers, matchidack)	(700 liters, Farmer)	ν	00	0.200	100	0.556	0.111
Good for the environment (i=5)	CO2 emissions (j = 12)	150 g/km	(95 g/km)	5	20	0.067	100	1.000	0.067
_				Total	300	1	1000		1

Figure 3: Weights

3.3 Results

After scaling the attributes and eliciting weights with swing, the final step was to calculate MAV scores for each car.

	Ford Fiesta	Scoda Octavia -			Volkswagen	Volkswagen	Scoda Octavia -		Ford Fiesta -	Mini	
Alternatives	2019	2017a	Mini one	Seat Leon	Polo-2018	Polo - 2017	2017b	Audi A1	2017	Cooper	Weight
Price (EUR)	0.800	0.300	0.805	0.550	0.555	0.400	0.110	0.600	0.105	0.600	0.139
Consumption	0.729	0.679	0.786	0.771	0.693	0.693	0.679	0.807	0.607	0.750	0.111
Average Repair Cost (EUR)	0.363	0.833	0.664	0.716	0.864	0.864	0.833	0.302	0.363	0.660	0.083
Age (years)	0.500	0.300	0.300	0.400	0.400	0.300	0.300	0.300	0.300	0.300	0.089
Driven (km)	0.983	0.150	0.733	0.488	0.388	0.617	0.075	0.475	1.400	0.313	0.111
Reliability Rating	0.507	0.661	0.642	0.580	0.480	0.507	0.661	0.602	0.507	0.642	0.067
Horsepower	0.183	0.433	0.200	0.433	0.083	0.083	0.433	0.083	0.183	0.767	0.033
Acceleration (seconds)	0.575	0.675	0.479	0.500	0.467	0.467	0.675	0.467	0.450	0.750	0.056
Braking distance (meters)	0.400	0.400	0.350	0.375	0.325	0.325	0.400	0.325	0.325	0.375	0.044
Туре	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.089
Cargo space	0.302	0.783	0.185	0.392	0.327	0.327	0.783	0.169	0.302	0.202	0.111
CO2 emissions (g/km)	0.582	0.564	0.764	0.673	0.545	0.582	0.564	0.418	0.764	0.455	0.067
MAV	0.531	0.562	0.521	0.488	0.445	0.444	0.527	0.404	0.451	0.458	

Figure 4: MAV scores

After calculating the values, following ranking resulted. Based on this result, DM decided to choose "Scoda Octavia – 2017a".

Figure 5 : Alternatives - Result

4 Discussion & Conclusion

This section aims to provide a holistic review of our entire decision-making process by discussing theoretic assumptions, behavioural issues, and limitations.

4.1 Theoretic assumptions and violations

To effectively utilize an additive-linear multi-attribute model for this decision problem, we must prove that several key assumptions hold true.

• Mutual Preference Independence (PI):

DM stated that his preference for any attribute does not depend on the level of the remaining attributes. For example, his preference for a car with a high safety rating remains consistent regardless of its cost, fuel efficiency, etc. Hence, we can confirm that all attributes are mutually PI.

• <u>Difference Independence (DI):</u>

DM's preference between changes in one attribute should be independent of the levels of other attributes. However, in practice, this assumption does not hold, as the evaluation of a price reduction depends on other factors i.e. car mileage. For example, V valued a price reduction of i.e. 500 EUR more if the car has fewer mileage (less kilometres driven).

4.2 Behavioural issues

DM is subject to below biases during decision-making process.

4.2.1 Biases related to generating objectives and alternatives

Identifying the potentially good alternatives is crucial in decision-making. However, in practice, DM's loyalty/preference for certain brands can overshadow the objective and limit the set of car alternatives (desirability bias). As we can see in this case, most car alternatives are Ford, Scoda, Volkswagen – which indeed is DM's personal favourite brands.

Omission bias can happen during the process of identifying fundamental objectives, as these objectives were listed solely by DM, without involving other stakeholders, such as his family. Due to the absence of his family participation in generating fundamental objectives process, some important objectives (based on their point of view) can be left out i.e. aesthetic preference (color/design), child-friendly features/ accessibility (child safety locks, rear seat entertainment with a screen, in-car WiFi, etc.)

Also, DM is subject to anchoring bias, especially on the price when shortlisting alternatives and define the range for 'price' attribute. DM tends to anchor over the price of his previous car – around 14000-15000 EUR and only consider alternatives falling within/near this price range.

4.2.2 Biases related to attribute scaling

To mitigate scaling biases, natural attributes were utilized whenever possible, with most data retrieved from manufacturers' websites to minimize subjectivity. For ambiguous objectives such as 'Reliability', reliability rating attribute was also referenced from external website ¹ to minimizing DM's tendency to use all parts of the scale equally.

4.2.3 Biases related to attribute weights

Recognizing the potential for splitting bias, our team aimed to maintain balance within objectives by limiting attributes to 2-3 per objective. This approach prevents any single objective from being overweighted due to an abundance of attributes. Additionally, to avoid equalizing bias, we employed the SWING method to assign weights, guiding DM to prioritize the most impactful attribute changes and avoid arbitrarily equal weights.

4.3 Limitations

Our data collection for attribute values relied primarily on manufacturers' websites. However, as our alternatives primarily consist of second-hand cars, the specifications provided by manufacturers may not accurately reflect the current condition, particularly in attributes like acceleration.

Additionally, our reliance on external sources for obtaining reliability ratings introduces potential biases and variability into our analysis. Ratings sourced from consumer reports or automotive industry assessments are often subjective in nature, derived from a limited sample of consumers or experts. This subjectivity may not fully capture the nuances of real-world reliability experiences.

-

¹ https://www.jdpower.com/cars/ratings

To address this issue, we could incorporate more objective measures or diversify our data sources by including manufacturer recalls, warranty claims, and independent testing agencies. Also, utilizing quantitative metrics, such as Mean Time Between Failure/failure rates, could provide, and enhance the credibility of our analysis.