University of California Irvine – Heart Disease Dataset

This paper uses the UCI heart disease dataset to illustrate various techniques and facets in an AI project.

This document will be regularly updated as new approaches are uncovered.

Data Definition

The original database had 76 attributes. However, 14 attributes were eventually made available, in particular the Cleveland database. The following definitions have been provided:

Attribute	Туре	Measurement
age	Integer	Years
Sex	Categorical	0: female
		1: male
Cp (chest pain)	Categorical	1: typical angina
		2: atypical angina
		3: non-anginal pain
		4: asymptomatic
trestbps (resting blood pressure (on	Integer	mm Hg
admission to the hospital)		
Chol (Serum cholesterol)	Integer	mg/dl
Fbs (fasting blood sugar > 120 mg/dl)	Categorical	0: False
		1: True
Restecg	Categorical	0: normal
		1: having ST-T wave abnormality
		2: showing probable or definite
		left ventricular hypertrophy by
		Estes' criteria
Thalach (maximum heart rate achieved)	Integer	
Exang (exercise induced angina)	Categorical	0: No
		1: Yes
Oldpeak (ST depression induced by exercise relative to rest)	Integer	
Slope (the slope of the peak exercise ST	Categorical	1: upsloping
segment)		2: flat
		3: down sloping
Ca (number of major vessels (0-3) coloured	Integer	
by fluoroscopy)		
Thal	Categorical	3: normal
		6: fixed defect
		7: reversible defect
Num (Number of blocked vessels with	Integer	0: No blockage > 50%
blockage > 50%)		1 to 4: Number of blockage's >
		50%

Problem Statement

Use the above data to determine if the subject will have one or more blockages greater than 50%. Accordingly, the last attribute *Num (Number of blocked vessels)* will be the dependant variable – to be determined based on the first thirteen attributes which are deemed to be features.

It was felt that as a first pass it would perhaps be best to frame this as a binary classification problem i.e.

0: patient has NO arteries > 50% blockage

1: patient has one or more arteries > 50% blockage

Accessing the Data

A Jupyter Python notebook with various popular libraries in the python eco-system has been used for this analysis.

UCI have provided a package to access the database. The Python code is displayed below:

```
## Import various packages that will be used in the analysis and building of the model
# PKGUTIL is a utilities package.
import pkgutil
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
## ACCESSING THE DATA (provided by UCI)
# The package UCIMLREPO is required to access the UCI repository
if pkgutil.find_loader('ucimlrepo') is None:
# install package for UCI ML repository if not already installed
    !pip3 install -U ucimlrepo
from ucimlrepo import fetch_ucirepo
# fetch dataset
heart_disease = fetch_ucirepo(id=45)
# Read data (as pandas dataframes)
X = heart_disease.data.features
y = heart disease.data.targets
```

This creates two data frames:

X which has the features

y which has the labels – in this case, number of blockages

Exploratory Data Analysis

Data read into the Pandas data frames was analysed as illustrated below:

```
## EXPLORATORY DATA ANALYSIS
# Number of entries
print('Number of Entries')
print(f'There are {X.shape[0]} entries with {X.shape[1]} features')
print(f'There are corresponding {y.shape[0]} labels')
# Data Set Feature Types
print('\n\nFeature Details\n')
print( X.info() )
#Display Statistical Summary
print('\n\nStatistical Summary\n')
print(X.describe(include='all'))
#Display first five records
print('\n\nFirst Few Records from the Feature Dataset')
print(X.head())
#Analysis of Categorical Values
print('\n\nCategorical Values of Various Fields')
print(f'Sex: {X.sex.unique()}' )
print(f'chest pain: {X.cp.unique()}' )
print(f'Fasting Blood Sugar: {X.fbs.unique()}')
print(f'Rest ecg: {X.restecg.unique()}' )
print(| Nest etg. {X. restetg. unique()} print(f'slope: {X. slope.unique()}' )
print(f'thal: {X. thal.unique()}' )
print(f'exang: {X. exang.unique()}' )
#Number of Rows with Null Values
print(f'\n\nRows with null values: {X.isnull().any(axis=1).sum()}')
#Number of unique classes (blockages)
print(f'\n\nNumber of blockages: {y.num.unique()}')
```

This gave the following results:

```
Number of Entries
There are 303 entries with 13 features
There are corresponding 303 labels
Feature Details
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):
# Column
             Non-Null Count Dtype
    age
               303 non-null
0
               303 non-null
                                int64
 1
    sex
               303 non-null
                                int64
 3 trestbps 303 non-null
                                int64
4 chol
5 fbs
               303 non-null
                                int64
               303 non-null
                                int64
 6 restecg 303 non-null
                                int64
7 thalach 303 non-null
8 exang 303 non-null
9 oldpeak 303 non-null
                                int64
                                int64
                                float64
                                int64
 10 slope
               303 non-null
 11 ca
               299 non-null
                                float64
 12 thal
               301 non-null
                                float64
dtypes: float64(3), int64(10)
memory usage: 30.9 KB
None
```

Statistical Summary

	age	sex	ср	trestbps	chol	fbs	\
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	
mean	54.438944	0.679868	3.158416	131.689769	246.693069	0.148515	
std	9.038662	0.467299	0.960126	17.599748	51.776918	0.356198	
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.000000	
25%	48.000000	0.000000	3.000000	120.000000	211.000000	0.000000	
50%	56.000000	1.000000	3.000000	130.000000	241.000000	0.000000	
75%	61.000000	1.000000	4.000000	140.000000	275.000000	0.000000	
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.000000	
	restecg	thalach	exang	oldpeak	slope	ca	\
count	303.000000	303.000000	303.000000	303.000000	303.000000	299.000000	
mean	0.990099	149.607261	0.326733	1.039604	1.600660	0.672241	
std	0.994971	22.875003	0.469794	1.161075	0.616226	0.937438	
min	0.000000	71.000000	0.000000	0.000000	1.000000	0.000000	
25%	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	
50%	1.000000	153.000000	0.000000	0.800000	2.000000	0.000000	
75%	2.000000	166.000000	1.000000	1.600000	2.000000	1.000000	
max	2.000000	202.000000	1.000000	6.200000	3.000000	3.000000	
	thal						
count	301.000000						
mean	4.734219						
std	1.939706						
min	3.000000						
25%	3.000000						
50%	3.000000						
75%	7.000000						
max	7.000000						

There are a total of 303 patient records. The attribute *ca (Chest angina)* has four missing entries and the attribute *thal* has two missing entries.

```
First Few Records from the Feature Dataset
  age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \
                    145 233
160 286
                                                                 2.3
                   160 286 0
120 229 0
130 250 0
130 204 0
        1 4
                                                         1
                                                                 1.5
                                                                 2.6
   41
    ca thal
  0.0
       6.0
  3.0
        3.0
2 2.0 7.0
3 0.0
        3.0
4 0.0 3.0
Categorical Values of Various Fields
Sex: [1 0]
chest pain: [1 4 3 2]
Fasting Blood Sugar: [1 0]
Rest ecg: [2 0 1]
slope: [3 2 1]
thal: [ 6. 3. 7. nan]
exang: [0 1]
Rows with null values: 6
Number of blockages: [0 2 1 3 4]
```

Handling Missing Values

From the above analysis we note that 6 patient records have missing data (*Rows with some null value*). It was felt that it is best to ignore these records. Accordingly, these records were dropped.

Check Any dependencies between features

```
#
## Check for Any Correlation between the features
#
corr_matrix = features.corr()
#set Size
plt.figure(figsize = (8,6))

#Plot the Heatmap
sns.heatmap(corr_matrix, annot = True, cmap = 'coolwarm', fmt = ".2f")
plt.title('Correlation Heatmap')
plt.show()
```

The above code snippet generates a heatmap as seen below:

From the above it is quite evident that the features are independent and do not exhibit any strong collinearity. Accordingly, all of the attributes have been considered in the model.

Model Implementation

Train/Test Split

The data set was split into a training and test data set in a 80/20 split.

The random seed '42' ensures that the results are consistent and reproducible.

Also note that 1-d vector of labels has been converted into an array using the np.ravel() function.

Data Normalization

The exploratory data analysis reveals that different features have different measurement scales. Accordingly, all of them have been normalized using the popular MIN/MAX scaler which has the effect of scaling all features to [0,1].

Note that the Normalization is done *after* splitting separately on the Train/Test data set.

```
#
## DATA NORMALIZATION
#
column_names = [i for i in features.columns.values]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_x[column_names] = scaler.fit_transform(train_x[column_names])
test_x[column_names] = scaler.transform(test_x[column_names])
```

Implementing Logistics Regression

Logistics Regression is a popular choice for classification problems. Accordingly, this was chosen as the initial predictive model.

```
# ##LOGISTICS REGRESSION
# from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score ## To check accuracy

# Replace Labels as 0,1. All values greater than 0 are converted to 1. This then becomes a binary classification problem!
test_y[test_y > 0] = 1
train_y[train_y > 0] = 1

lrModel = LogisticRegression(random_state=42 )
lrModel.fit(train_X, train_y)
lrPredictions = lrModel.predict(test_X)
lrAccuracy = accuracy_score(test_y , lrPredictions )
print(f"The accuracy score for LR Model is: {lrAccuracy}")
num_classes = len(lrModel.classes_)
print(f"Number of classes: {num_classes}")
```

We have converted the target to 0/1. This then becomes a binary classification problem:

0: No blockages

1: One or more blockages > 50%

```
The accuracy score for LR Model is: 0.9 Number of classes: 2
```

This simple model has an accuracy of 90%!