LA E χ 02

isagila

Собрано 09.06.2023 в 06:14

Содержание

1.	Лин	ейная алгебра	3
	1.1.	Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово	
		пространство	3
	1.2.	Ортонормированный базис, ортогонализация базиса. Матрица Грама	3
	1.3.	Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора	3
	1.4.	Задача о перпендикуляре	3
	1.5.	Линейный оператор: определение, основные свойства.	3
	1.6.	Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.	3
	1.7.	Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.	3
	1.8.	Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора	3
	1.9.	Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения,	
		основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.	3
		Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора	3
		Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное	
		преобразование.	3
		Билинейные формы: определения, свойства. Матрица билинейной формы.	3
		Квадратичная форма: определения, приведение к каноническому виду	3
		Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.	3
	1.11.	опакоопределенность квадрати той формы: неооходимые и достато тыс. условии. перитерии ставыестра.	0
2 .	Диф	оференциальные уравнения	4
	2.1.	Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении	
		тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.	4
	2.2.	Уравнение с разделяющимися переменными	4
	2.3.	Однородное уравнение.	4
	2.4.	Уравнение в полных дифференциалах.	4
	2.5.	Линейное уравнение первого порядка. Метод Лагранжа	4
	2.6.	Теорема существования и единственности решения задачи Коши. Особые решения	4
	2.7.	Уравнения п-ого порядка, допускающие понижение порядка	4
	2.8.	Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ ₂ с посто-	
		янными коэффициентами для случая различных вещественных корней характеристического уравнения.	4
	2.9.	Решение ЛОДУ ₂ с постоянными коэффициентами для случая вещественных кратных корней характери-	
		стического уравнения.	4
		Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического	
		уравнения.	4
		Свойства решений ЛОД $У_2$: линейная независимость решений, определитель Вронского. Теоремы 1,2	4
		Свойства решений ЛОДУ ₂ : линейная комбинация решений, линейная зависимость решений. Определитель	
		Вронского. Теоремы о вронскиане.	4
		Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о	
		структуре общего решения ЛОДУ ₂ . Фундаментальная система решений (определение)	4
		Свойства решений ЛНДУ ₂ : теоремы о структуре общего решения и решении ДУ с суммой правых частей.	4
		Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы	
		решений по корням характеристического уравнения.	4
		Решение ЛНУ ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения	
		методом неопределенных коэффициентов	4
		Решение ЛНУ $_2$: метод вариации произвольных постоянных (Лагранжа)	4
		Системы дифференциальных уравнений: определения, решение методом исключения.	4
		Системы дифференциальных уравнений: определения, решение матричным методом в случае различных	_
		вещественных собственных чисел	4
	2.20.	Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.	
		Примеры устойчивого и неустойчивого решения	4

1. Линейная алгебра

- 1.1. Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово пространство.
- 1.2. Ортонормированный базис, ортогонализация базиса. Матрица Грама.
- 1.3. Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора.
- 1.4. Задача о перпендикуляре.
- 1.5. Линейный оператор: определение, основные свойства.
- 1.6. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.
- 1.7. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.
- 1.8. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора.
- 1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.
- 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора.
- 1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование.
- 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы.
- 1.13. Квадратичная форма: определения, приведение к каноническому виду.
- 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.

2. Дифференциальные уравнения

- 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.
- 2.2. Уравнение с разделяющимися переменными.
- 2.3. Однородное уравнение.
- 2.4. Уравнение в полных дифференциалах.
- 2.5. Линейное уравнение первого порядка. Метод Лагранжа.
- 2.6. Теорема существования и единственности решения задачи Коши. Особые решения.
- 2.7. Уравнения п-ого порядка, допускающие понижение порядка.
- 2.8. Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.
- **2.9.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.
- **2.10.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая комплексных корней характеристического уравнения.
- **2.11.** Свойства решений $\Pi O \Pi Y_2$: линейная независимость решений, определитель Вронского. Теоремы 1,2.
- **2.12.** Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане.
- 2.13. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение).
- **2.14.** Свойства решений $\Pi H \Pi V_2$: теоремы о структуре общего решения и решении ΠV_2 с суммой правых частей.
- 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения.
- **2.16.** Решение ЛНУ $_2$ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов.
- **2.17.** Решение $\Pi H Y_2$: метод вариации произвольных постоянных (Лагранжа).
- 2.18. Системы дифференциальных уравнений: определения, решение методом исключения.
- 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел.
- **2.20.** Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. Примеры устойчивого и неустойчивого решения