

Chapter 7: Optimization for Data Science Gradient Descent

TANN Chantara

Department of Applied Mathematics and Statistics Institute of Technology of Cambodia

October 8, 2022

Table of Contents

- Gradient Descent
- 2 Lipschitz Continuous Functions
- Smooth Convex Functions
- 4 Strong Convexity
- Summary

Unconstrained Optimization Problem

Unconstrained Minimization Problem

$$\min_{x\in\mathbb{R}^n} f(x) = f(x^*)$$

- $f: \mathbb{R}^n \to \mathbb{R}$ convex and differentiable.
- Necessary and sufficient conditions $\nabla f(x^*) = 0 \implies$ Set of n (nonlinear) equations with n variables

Goal: Find an approximate solution $\tilde{\mathbf{x}} \in \mathbb{R}^n$ such that

$$f(\tilde{x}) - f(x^*) < \varepsilon$$

• compute \tilde{x} iteratively via an algorithm (e.g., gradient descent)

Gradient Descent

- Iterative algorithm $x_{t+1} = x_t + v_t$
- $\bullet \ \ \text{Choose step } v_t \ \text{such that} \ f(x_{t+1}) < f(x_t) \\$
- Taylor series

$$f(x_t + v_t) = f(x_t) + \nabla f(x_t)^{\top} v_t + \underbrace{r(v_t)}_{o(\|v_t\|)} \approx f(x_t) + \nabla f(x_t)^{\top} v_t$$

- " \approx " requires step size $||v_t||$ to be small.
- want $\nabla f(x_t)^T v_t <) \implies v_t = -\nabla f(x_t)$ not small

$$\textbf{Gradient descent} \quad x_{t+1} = x_t - \gamma \nabla f(x_t)$$

- Step size $\gamma > 0$, how to choose it?
 - \bullet γ "too small" \Longrightarrow gradient descent takes long to converge.
 - \bullet γ "too large" \Longrightarrow gradient descent might overshoot.

Gradient Descent Cont'd

Example: Run of gradient descent on the quadratic function $f(x_1, x_2) = 2(x_1 - 4)^2 + 3(x_2 - 3)^2$ with global minimum $x^* = (4, 3)$; we have choose $x_0 = (0, 0), \gamma = 0.1$; dashed lines represent level sets of f (points of constant f-value).

Theoretical Analysis

Gradient descent: $x_{t+1} = x_t - \gamma \nabla f(x_t)$

Lemma 1 (Property of Gradient Descent):

$$\sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\nabla f(x_t)||^2 + \frac{1}{2\gamma} ||x_0 - x^*||^2$$

- \bullet Clearly, $\min_{t-0,\dots,T-1} f(x_t) f(x^*) \leq \frac{1}{T} \sum_{t=0}^{T-1} (f(x_t) f(x^*))$
- Dependence on $||x_0 x^*||$ to be expected (if we start far away, we need more steps).
- Need to control the gradient $||\nabla f(x_t)||^2$

Proof of Lemma 1

The gradient descent can be equivalently written as

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) \iff \nabla f(\mathbf{x}_t) = \frac{1}{\gamma} (\mathbf{x}_t - \mathbf{x}_{t+1})$$

Recall for any $v, w \in \mathbb{R}^n, 2v^Tw = ||v||^2 + ||w||^2 - ||v - w||^2$. Hence

$$\begin{split} \nabla f(x_t)^T(x_t - x^*) &= \frac{1}{\gamma}(x_t - x_{t+1})^T(x_t - x^*) \\ &= \frac{1}{2\gamma}(||x_t - x_{t+1}||^2 + ||x_t - x^*||^2 - ||x_{t+1} - x^*||^2) \\ &= \frac{\gamma}{2}||\nabla f(x_t)||^2 + \frac{1}{2\gamma}(||x_t - x^*||^2 - ||x_{t+1} - x^*||^2) \end{split}$$

Proof of Lemma 1 Cont'D

Hence, applying a telescopic sum

$$\begin{split} \sum_{t=0}^{T-1} \nabla f(x_t)^T(x_t - x^*) &= \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\nabla f(x_t)||^2 + \frac{1}{2\gamma} (||x_0 - x^*||^2 - ||x^T - x^*||^2) \\ &= \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\nabla f(x_t)||^2 + \frac{1}{2\gamma} ||x_0 - x^*||^2 \quad (\star) \end{split}$$

Since f is convex the first-order convexity conditions state

$$f(x_t) - f(x^*) \leq \nabla f(x_t)^\mathsf{T} (x_t - x^*)$$

which combined with (\star) leads to

$$\sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\nabla f(x_t)||^2 + \frac{1}{2\gamma} ||x_0 - x^*||^2$$

This proves **Lemma 1**.

Lipschitz Continuous Functions

Definition: A function $f:\mathbb{R}^n\to\mathbb{R}$ is Lipschitz continuous with Lipschitz constant I>0 if $|f(x)-f(y)|\leq I||x-y||, \forall x,y\in\mathbb{R}^n$

- f is I Lipschitz $\iff ||\nabla f(x)|| \le I, \forall x \in \mathbb{R}^n$
- Ex: $f(x) = x^2$ is not Lipschitz cont. as $\nabla f(x) = 2x$ is unbounded.

Lipschitz Continuous Functions Cont'd

Theorem (Gradient Descent for Lipschitz Function): Let $f:\mathbb{R}^n\to\mathbb{R}$ be convex and differentiable with global minimum $x^*.$ Suppose that $||x_0-x^*||\leq R$ and $||\nabla f(x)||\leq B, \forall x\in\mathbb{R}^n.$ Choosing the step size $\gamma=\frac{R}{B\sqrt{T}},$ the gradient descent yields.

$$\frac{1}{T}\sum_{t=0}^{T-1}(f(x_t)-f(x^*)\leq \frac{RB}{\sqrt{T}}$$

- For achieving $\min_{t=0,\dots,T-1} f(x_t) f(x^*) \le \varepsilon$, we need $T \ge \frac{R^2 B^2}{\varepsilon^2}$ $\implies \#$ of iterations scale as $\mathcal{O}(1/\varepsilon^2)$.
- No specific dependence on n.

Proof of Theorem

Using Lemma 1 directly leads to

$$\sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \leq \underbrace{\frac{\gamma}{2} TB^2 + \frac{1}{2\gamma} R^2}_{=:q(\gamma)},$$

which holds for any $\gamma>0.$ Solving $\min_{\gamma>0} \mathsf{q}(\gamma)$ gives the optimal step size as $\gamma^*=\frac{\mathsf{R}}{\mathsf{I}\,\sqrt{\mathsf{T}}}$ and $\mathsf{q}(\gamma^*)=\mathsf{RB}\sqrt{\mathsf{T}}.$ Hence,

$$\frac{1}{T} \sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \le \frac{RB}{\sqrt{T}}$$

which completes the proof.

- What happen if we do not know R and/or B?
- Can we improve the $\mathcal{O}(1/\varepsilon^2)$ complexity?

Smooth Convex Functions

Recall the first order convexity conditions

$$f(y) \geq f(x) + \nabla f(x)^\mathsf{T}(y-x), \forall x,y \in \mathbb{R}^n$$

Definition: Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $\mathbb{X} \subset \mathbb{R}^n$ be convex and L > 0. Then function f is called L-smooth over X, if

$$f(y) \leq f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{\mathsf{L}}{2}||y - x||^2, \forall x, y \in \mathbb{X}$$

- No convexity of f required
- Ex: $f(x) = x^2$ is smooth with L=2
- How can we easily check smoothness of a function?

11/23

Properties of Smooth Functions

Lemma: Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. The following are equivalent

- (i) f is L-smooth.
- (ii) $||\nabla f(x) \nabla f(y)|| \le L||x y||, \forall x, y \in \mathbb{R}^n$
- (iii) (ii) ⇒ (i) holds without convexity

Lemma (Smoothness Preserving Operation):

- (i) Let $f_1,...,f_m$ be smooth with parameters $L_1,...,L_m$, let $\lambda_1,...,\lambda_m>0$. Then the function $f=\sum_{i=1}^m \lambda_i f_i$ is L-smooth with $L=\sum_{i=1}^n \lambda_i L_i$ over $dom(f)=\bigcap_{i=1}^m dom(f_i)$.
- (ii) Consider $f: \mathbb{R}^n \to \mathbb{R}$ L-smooth and $g: \mathbb{R}^m \to \mathbb{R}^n$ affine, i.e., g(x) = Ax + b. Then f(g(x)) = f(Ax + b) is smooth with parameter $L||A||^2$, where ||A|| = the spectral norm.

Convergence analysis for smooth functions

Lemma 2 (Sufficient Decrease): Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex, differentiable and L-smooth. For $\gamma = 1/L$, gradient descent yields

$$f(x_{t+1}) \leq f(x_t) - \frac{1}{2L}||\nabla f(x_t)||^2, t \geq 0$$

ullet GD (with suitable stepsize γ) makes progress in function value on smooth functions in every step.

Proof:

$$f(x_{t+1}) \stackrel{L\text{-smooth}}{\leq} f(x_t) + \nabla f(x_t)^{\top} \underbrace{(x_{t+1} - x_t)}_{-1/L\nabla f(x_t)} + \underbrace{\frac{1}{2}}_{1/L^2 \|\nabla f(x_t)\|^2} \underbrace{\|x_t - x_{t+1}\|^2}_{1/L^2 \|\nabla f(x_t)\|^2}$$

$$= f(x_t) - \frac{1}{L} \|\nabla f(x_t)\|^2 + \frac{1}{2L} \|\nabla f(x_t)\|^2$$

$$= f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2$$

Convergence analysis for smooth functions Cont'd

Theorem (Gradient Descent for Smooth Functions): Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex with global minimum x^* , differentiable and L-smooth. For $\gamma = 1/L$, gradient descent yields

$$f(x_T) - f(x^*) \le \frac{1}{2L} ||x_0 - x^*||^2, \ T > 0$$

• For R = $||x_0 - x^*||$, to get $f(x_T) - f(x^*) \le \varepsilon$, we need $T \ge \frac{R^2L}{2\varepsilon}$ \Longrightarrow complexity $\mathcal{O}(1/\varepsilon)$

Lipschitz functions: Smooth functions:

$$T = \mathcal{O}(1/\varepsilon^2)$$
 $T = \mathcal{O}(1/\varepsilon)$

• Could we do even better? E.g., we could achieve $\mathcal{O}(1/\sqrt{\varepsilon})$ or $\mathcal{O}(1/\log \varepsilon)$?

Proof of Theorem

$$\sum_{t=0}^{T-1} (f(x_t) - f(x^*)) \stackrel{\text{Lemma 1}}{\leq} \frac{\gamma}{2} \sum_{t=0}^{T-1} \underbrace{\frac{\|\nabla f(x_t)\|^2}{\|\nabla f(x_t)\|^2}}_{\text{Lemma 2}} + \frac{1}{2\gamma} \|x_0 - x^*\|^2$$

$$\leq f(x_0) - f(x_T) + \frac{L}{2} \|x_0 - x^*\|^2$$

This is equivalent to

$$\sum_{t=1}^{T} (f(x_t) - f(x^*)) \le \frac{L}{2} ||x_0 - x^*||^2$$
 (1)

Recall that from Lemma 2, we know that $f(x_{t+1}) \leq f(x_t)$. Hence, take averages in (1) gives

$$f(x_T) - f(x^*) \le \sum_{t=1}^T (f(x_t) - f(x^*) \le \frac{L}{2T} ||x_0 - x^*||^2$$

4□▶ 4□▶ 4 Ē▶ 4 Ē▶ Ē 90<</p>

Acceleration for Smooth Convex Functions

Accelerated gradient descent¹:

Choose $z_0 = y_0 = x_0$ arbitrarily. For t > 0 set

$$\begin{split} y_{t+1} &= x_t - \frac{1}{L} \nabla f(x_t) \\ z_{t+1} &= z_t - \frac{t+1}{2L} \nabla f(x_t) \\ x_{t+1} &= \frac{t+1}{t+3} y_{t+1} + \frac{2}{t+3} z_{t-1} \end{split}$$

¹Yurii Nesterov 1983

Acceleration for Smooth Convex Functions Cont'd

Theorem (Accelerated Gradient Descent): Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex with global minimum x^* , differentiable and L-smooth. Accelerated gradient descent yields

$$f(y_T) - f(x^*) \leq \frac{2L||z_0 - x^*||^2}{T(T+1)}, \ T > 0$$

• To reach error ε , we need $\mathcal{O}(1/\sqrt{\varepsilon})$ steps.

An Observation

• Consider the smooth function $f(x) = x^2$. Gradient descent according to our theorem ensures.

$$f(x_T) \leq \frac{1}{T} x_0^2$$

• For $\gamma = 1/L = 1/2$, gradient descent yields

$$x_{t+1} = x_t - 1/2\nabla f(x_t) = x_t - x_t = 0$$

⇒ we converge in only one step

ullet For a suboptimal (valid) step size $\gamma=1/4$, gradient descent yields

$$x_{t+1} = x_t - 1/4\nabla f(x_t) = \frac{x_t}{2} \implies f(x_T) = f(x_0/2^T) = \frac{x_0^2}{2^{2^T}}$$

To achieve $f(x_T) \leq \varepsilon$, we require $T \approx \frac{1}{2} \log(x_0^2/\varepsilon)$

Strong Convexity

Recall the first order convexity conditions

$$f(y) \geq f(x) + \nabla f(x)^\mathsf{T} (y-x), \ \forall x,y \in \mathbb{R}^n$$

Definition: Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $\mathbb{X} \subset \mathbb{R}^n$ be convex and L > 0. The function f is called μ -strongly convex over X, if

$$f(y) \geq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{\mu}{2}||x-y||^2, \forall x,y \in \mathbb{X}$$

- Smooth and strongly convex function
- Smooth → "not too curved"
- Strongly convex → "not too flat"
- Ex: $f(x) = x^2$ is smooth and strongly convex

Smooth and Strongly Convex Case

Theorem (Smooth and Strongly Convex Function): Let $f:\mathbb{R}^n \to$

 $\mathbb R$ be μ -strongly convex with global minimum x*, differentiable and L-smooth. For a step size $\gamma=1/L$, gradient descent yields

(i)
$$||x_{t+1} - x^*||^2 \le (1 - \frac{\mu}{L})||x_t - x^*||^2, t \ge 0$$

(ii)
$$f(x_T) - f(x^*) \le \frac{L}{2} (1 - \frac{\mu}{L})^T ||x_0 - x^*||^2, T > 0$$

• For R = $||x_0 - x^*||$, to achieve $f(x_T) - f(x^*) \le \varepsilon$, using (i) one can chooseT $\log(1 - \frac{\mu}{L}) \le \log(\frac{2\varepsilon}{LR^2})$ (2) Using the bound $\log(1 - \frac{\mu}{L}) \le -\frac{\mu}{L}$, the condition (2) is implied by

$$\mathsf{T} \geq \frac{\mathsf{L}}{\mu} \log \left(\frac{\mathsf{R}^2 \mathsf{L}}{2\varepsilon} \right)$$

• Hence, the over iteration complexity is $\mathcal{O}(\log(1/\varepsilon))$.

Proof of Theorem

We first show (i):

$$\begin{split} f(x_t) - f(x^\star) + \frac{\mu}{2} \|x_t - x^\star\|^2 \\ &\stackrel{\mu \text{ strongly convex}}{\leq} \nabla f(x_t)^\top (x_t - x^\star) \\ &\stackrel{\text{Proof of Lemma 1}}{\leq} \frac{\gamma}{2} \|\nabla f(x_t)\|^2 + \frac{1}{2\gamma} (\|x_t - x^\star\|^2 - \|x_{t+1} - x^\star\|^2) \end{split}$$

Therefore,

$$f(x_t) - f(x^*) \le \frac{1}{2\gamma} (\gamma^2 \|\nabla f(x_t)\|^2 + \|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2) - \frac{\mu}{2} \|x_t - x^*\|^2,$$

which is equivalent to

$$\|x_{t+1} - x^{\star}\|^{2} \le 2\gamma(f(x_{t}) - f(x^{\star})) + \gamma^{2}\|\nabla f(x_{t})\|^{2} + (1 - \mu\gamma)\|x_{t} - x^{\star}\|^{2}$$
 (3)

Proof of Theorem

$$f(x^*) - f(x_t) \le f(x_{t+1}) - f(x_t) \stackrel{\text{Lemma 2}}{\le} -\frac{\gamma}{2} \|\nabla f(x_t)\|^2$$

$$\Rightarrow 2\gamma (f(x^{*}) - f(x_{t})) + \gamma^{2} \|\nabla f(x_{t})\|^{2} \leq 0$$

$$\stackrel{(3)}{\Longrightarrow} \|x_{t+1} - x^{*}\|^{2} \leq (1 - \mu\gamma) \|x_{t} - x^{*}\|^{2} = (1 - \frac{\mu}{L}) \|x_{t} - x^{*}\|^{2}$$

$$\Rightarrow \|x_{T} - x^{*}\|^{2} \leq (1 - \frac{\mu}{L})^{T} \|x_{0} - x^{*}\|^{2},$$

which shows (i). To show (ii), note that

$$f(x_{T}) - f(x^{\star}) \stackrel{\text{smooth}}{\leq} \nabla f(x^{\star})(x_{T} - x^{\star}) + \frac{L}{2} \|x_{T} - x^{\star}\|^{2}$$

$$\stackrel{\nabla f(x^{\star}) = 0}{=} \frac{L}{2} \|x_{T} - x^{\star}\|^{2}$$

$$\stackrel{(i)}{\leq} \frac{L}{2} (1 - \frac{\mu}{L})^{T} \|x_{0} - x^{\star}\|^{2},$$

Main Take-Away Points

- Definitions: smooth convex functions, strongly convex functions
- Iteration complexity analysis for gradient descent: For a convex function f.

	Lipschitz	smooth	smooth & strongly con.
gradient descent	$\mathcal{O}(1/\varepsilon^2)$	$\mathcal{O}(1/arepsilon)$	$\mathcal{O}(\log(1/arepsilon))$
acc. gradient desc.		$\mathcal{O}(1/\sqrt{arepsilon})$	

