Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 850 637 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

01.07.1998 Bulletin 1998/27

(51) Int Cl.6: A61K 7/13

(11)

(21) Numéro de dépôt: 97402848.2

(22) Date de dépôt: 26.11.1997

(84) Etats contractants désignés:

AT BE CH DE DK ES $\overline{\text{FI}}$ FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés:

AL LT LV MK RO SI

(30) Priorité: 23.12.1996 FR 9615891

(71) Demandeur: L'OREAL 75008 Paris (FR)

(72) Inventeurs:

 Rondeau, Christine 18500 Sartrouville (FR) Cotteret, Jean 78480 Verneuil Sur Seine (FR)

 De La Mettrie, Roland 78110 Le Vesinet (FR)

(74) Mandataire: Miszputen, Laurent

L'OREAL

Département Propriété Industrielle Centre Charles Zviak 90, rue du Général Roguet 92583 Clichy Cédex (FR)

(54) Composition de teinture d'oxydation des fibres kératiniques et procédé de teinture mettant en oeuvre cette composition

(57) L'invention a pour objet une composition prête à l'emploi pour la teinture d'oxydation des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, comprenant au moins une base d'oxydation choisie parmi les paraphénylènediamines

et les bis-phénylalkylènediamines, en association avec au moins un coupleur choisi parmi les méta-diphénols, au moins un colorant direct cationique sélectionné et au moins un agent oxydant, ainsi que le procédé de teinture mettant en oeuvre cette composition.

Description

5

10

15

20

25

30

35

40

45

50

La présente invention a pour objet une composition prête à l'emploi pour la teinture d'oxydation des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, comprenant, dans un milieu approprié pour la teinture, au moins une base d'oxydation choisie parmi les paraphénylènediamines et les bis-phénylalkylènediamines, en association avec au moins un coupleur choisi parmi les méta-diphénols, au moins un colorant direct cationique sélectionné et au moins un agent oxydant, ainsi que le procédé de teinture mettant en oeuvre cette composition. Elle concerne également un kit de coloration pour la préparation d'une telle composition prête à l'emploi.

Il est connu de teindre les fibres kératiniques et en particulier les cheveux humains avec des compositions tinctoriales contenant des précurseurs de colorant d'oxydation, en particulier des ortho ou paraphénylènediamines, des ortho ou paraaminophénols, appelés généralement bases d'oxydation. Les précurseurs de colorants d'oxydation, ou bases d'oxydation, sont des composés incolores ou faiblement colorés qui, associés à des produits oxydants, peuvent donner naissance par un processus de condensation oxydative à des composés colorés et colorants.

On sait également que l'on peut faire varier les nuances obtenues avec ces bases d'oxydation en les associant à des coupleurs ou modificateurs de coloration, ces derniers étant choisis notamment parmi les métadiamines aromatiques, les métadinphénols, les métadiphénols et certains composés hétérocycliques.

La variété des molécules mises en jeu au niveau des bases d'oxydation et des coupleurs, permet l'obtention d'une riche palette de couleurs.

Il est également connu que pour faire encore varier les nuances obtenues et leur donner des reflets, on peut utiliser, en association avec les précurseurs de colorants d'oxydation et les coupleurs, des colorants directs, c'est à dire des substances colorées qui apportent une coloration en l'absence d'agent oxydant.

La coloration dite "permanente" obtenue grâce à ces colorants d'oxydation, doit par ailleurs satisfaire un certain nombre d'exigences. Ainsi, elle doit permettre d'obtenir des nuances dans l'intensité souhaitée et présenter une bonne tenue face aux agents extérieurs (lumière, intempéries, lavage, ondulation permanente, transpiration, frottements).

Les colorants directs appartiennent pour leur très grande majorité à la famille des composés nitrés de la série benzénique et ont l'inconvénient, lorsqu'ils sont incorporés dans des compositions tinctoriales, de conduire à des colorations présentant une ténacité insuffisante, en particulier vis-à-vis des shampooings.

La présente invention vise à proposer de nouvelles compositions pour la coloration d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux qui permettent d'aboutir à des colorations lumineuses présentant de bonne propriétés de ténacité.

Ainsi, la demanderesse vient en effet de découvrir qu'il est possible d'obtenir de nouvelles teintures à la fois lumineuses et tenaces en associant :

- au moins une base d'oxydation choisie parmi les paraphénylènediamines et les bis-phénylalkylènediamines, et leur sels d'addition avec un acide,
- au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide,
- au moins un colorant direct cationique choisi parmi les composés de formules (I), (I') et (II) ci-après, et
- au moins un agent oxydant.

L'invention a donc pour premier objet une composition prête à l'emploi pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisée par le fait qu'elle comprend, dans un milieu approprié pour la teinture :

- au moins une base d'oxydation choisie parmi les paraphénylènediamines et les bis-phénylalkylènediamines, et leur sels d'addition avec un acide.
- au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide,
- au moins un colorant direct cationique choisi parmi :

a) les composés de formules (I) et (I') suivantes :

$$A - D_1 = D_2 - (N)_m - R_1$$

$$X - R_3$$
(I)

$$A-D_1=D_2$$

$$X \cdot R_5 \quad N$$

$$R_4 \quad (I')$$

dans lesquelles :

5

10

15

20

25

30

35

40

45

R₁ représente un atome d'hydrogène, un radical alcoxy en C₁-C₄, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor ou un radical amino,

 $\rm R_2$ représente un atome d'hydrogène, un radical alkyle en $\rm C_1$ - $\rm C_4$ ou forme avec un atome de carbone du cycle benzénique un hétérocycle éventuellement oxygéné et/ou substitué par un ou plusieurs groupements alkyle en $\rm C_1$ - $\rm C_4$,

R₃ représente un atome d'hydrogène ou d'halogène tel que le brome, le chlore, l'iode ou le fluor,

R₄ et R₅, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄,

 $\mathsf{D_1}$ et $\mathsf{D_2}$, identiques ou différents, représentent un atome d'azote ou le groupement -CH,

m = 0 ou 1,

étant entendu que lorsque R_1 représente un groupement amino non substitué, alors D_1 et D_2 représentent simultanément un groupement -CH et m=0,

X · représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

A représente un groupement choisi par les structures A1 à A8 suivantes :

A1

50

15

20

25

30

dans lesquels R' représente un radical alkyle en C_1 - C_4 ;

lorsque m=0 et que D_1 représente un atome d'azote, alors A peut également désigner un groupement de structure A9 suivante :

35

45

40

dans lequel R' représente un radical alkyle en C₁-C₄;

b) les composés de formule (II) suivante :

50

$$B-N=N$$

$$X$$

$$R_{9}$$

$$R_{7}$$

$$R_{7}$$

$$R_{9}$$

$$R_{1}$$

dans laquelle :

5

10

15

20

25

R₆ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄,

 $\rm R_7$ représente un atome d'hydrogène, un radical alkyle pouvant être substitué par un radical -CN ou un groupement amino, un radical 4'-aminophényle ou forme avec $\rm R_6$ un hétérocycle éventuellement oxygéné et/ou azoté pouvant être substitué par un ou plusieurs groupements alkyle en $\rm C_1$ - $\rm C_4$,

 R_8 et R_9 , identiques ou différents, représentent un atome d'hydrogène, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor, un radical alkyle en C_1 - C_4 , alcoxy en C_1 - C_4 ou un radical -CN,

X - représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

B représente un groupement choisi par les structures B1 à B11 suivantes :

$$R_{10}$$
 R_{10}
 R

dans lesquelles R_{10} représente un radical alkyle en C_1 - C_4 , R_{11} et R_{12} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C_1 - C_4 ; lorsque R_6 et R_7 forment un hétérocycle azoté, ou lorsque R_8 et R_9 représentent simultanément un radical alcoxy en C_1 - C_4 , ou lorsque R_7 représente un radical 4'-aminophényle, alors B peut également représenter un groupement de structure B12 suivante :

dans laquelle R₁₀ a la même signification que celle indiquée ci-dessus pour les structures B1 à B11 ; et

au moins un agent oxydant.

Les compositions tinctoriales prêtes à l'emploi conformes à l'invention permettent d'aboutir à des colorations dans des nuances naturelles dorées, cendrées ou nacrées présentant une bonne résistance aux différents traitements que peuvent subir les cheveux et en particulier vis-à-vis des shampooings.

L'invention a également pour objet un procédé de teinture d'oxydation des fibres kératiniques mettant en oeuvre cette composition tinctoriale prête à l'emploi.

Les paraphénylènediamines utilisables à titre de base d'oxydation dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention sont de préférence choisies parmi les composés de formule (III) suivante, et leur sels d'addition avec un acide :

55

5

10

15

20

25

30

35

40

45

$$R_{16} \xrightarrow{NR_{13}R_{14}} R_{15}$$

$$R_{16} \xrightarrow{NH_2} R_{15}$$

$$(III)$$

dans laquelle :

5

10

15

20

25

30

35

40

45

50

55

 R_{13} représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 , phényle, 4'-aminophényle ou alcoxy(C_1 - C_4)alkyle en C_1 - C_4 ,

 R_{14} représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 ou polyhydroxyalkyle en C_2 - C_4 ,

 R_{15} représente un atome d'hydrogène, un atome d'halogène tel qu'un atome de chlore, de brome, d'iode ou de fluor, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , hydroxyalcoxy en C_1 - C_4 , mésylaminoalcoxy en C_1 - C_4 , carbamoylaminoalcoxy en C_1 - C_4 ou acétylaminoalcoxy en C_1 - C_4 ,

R₁₆ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄.

Parmi les paraphénylènediamines de formule (III) ci-dessus, on peut plus particulièrement citer la paraphénylènediamine, la paratoluylènediamine, la 2-chloro paraphénylènediamine, la 2,3-diméthyl paraphénylènediamine, la 2,6-diéthyl paraphénylènediamine, la 2,5-diméthyl paraphénylènediamine, la N,N-diméthyl paraphénylènediamine, la N,N-diméthyl paraphénylènediamine, la N,N-dipropyl paraphénylènediamine, la 4-amino N,N-diéthyl 3-méthyl aniline, la N,N-bis-(β -hydroxyéthyl) paraphénylènediamine, la 4-amino N,N-bis-(β -hydroxyéthyl) aniline, la 2- β -hydroxyéthyl paraphénylènediamine, la 2-fluoro paraphénylènediamine, la 2-isopropyl paraphénylènediamine, la N-(β -hydroxymethyl paraphénylènediamine, la N-diméthyl 3-méthyl paraphénylènediamine, la N,N-(éthyl, β -hydroxyéthyl) paraphénylènediamine, la N-(β -hydroxyéthyloxy paraphénylènediamine, la 2- β -hydroxyéthyloxy paraphénylènediamine, la 2- β -hydroxyéthyloxy paraphénylènediamine, la 2- β -acétylaminoéthyloxy paraphénylènediamine, et leurs sels d'addition avec un acide.

Parmi les paraphénylènediamines de formule (III) ci-dessus, on préfère tout particulièrement la paraphénylènediamine, la paratoluylènediamine, la 2-isopropyl paraphénylènediamine, la 2-β-hydroxyéthyl paraphénylènediamine, la 2-β-hydroxyéthyloxy paraphénylènediamine, la 2,6-diméthyl paraphénylènediamine, la 2,6-diéthyl paraphénylènediamine, la 2,3-diméthyl paraphénylènediamine, la 2-chloro paraphénylènediamine, et leurs sels d'addition avec un acide.

Les bis-phénylalkylènediamines utilisables à titre de base d'oxydation dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention sont de préférence choisies parmi les composés de formule (IV) suivante, et leurs sels d'addition avec un acide :

$$R_{18} = R_{19} \qquad (IV)$$

$$R_{17} = R_{17} - CH_{2} - Y - CH_{2} - N - R_{17}$$

dans laquelle :

 Z_1 et Z_2 , identiques ou différents, représentent un radical hydroxyle ou NHR₂₀ dans lequel R₂₀ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄,

 R_{17} représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 ou aminoalkyle en C_1 - C_4 dont le reste amino peut être substitué,

R₁₈ et R₁₉, identiques ou différents, représentent un atome d'hydrogène ou d'halogène ou un radical alkyle en C₁-

Y représente un radical pris dans le groupe constitué par les radicaux suivants :

 $(CH_2)_n^-$; $-(CH_2)_m$ -O- $(CH_2)_m$ $-(CH_2)_m$ -CHOH- $(CH_2)_m$ et

$$-(CH_2)_{m}^{-}N-(CH_2)_{m}^{-};$$

 CH_3

10

dans lesquels n est un nombre entier compris entre 0 et 8 inclusivement et m est un nombre entier compris entre 0 et 4 inclusivement.

15

20

5

Parmi les bis-phénylalkylènediamines de formule (IV) ci-dessus, on peut plus particulièrement citer le N,N¹-bis-(βhydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthylaminophényl) tétraméthylènediamine, la N,N'-bis-(éthyl) N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, et leurs sels d'addition avec un acide.

Parmi ces bis-phénylalkylènediamines de formule (IV), le N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol ou l'un de ses sels d'addition avec un acide sont particulièrement préférés.

Les méta-diphénols utilisables à titre de coupleur dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, sont de préférence choisis parmi les composés de formule (V) suivante, et leurs sels d'addition avec un acide:

25

$$\begin{array}{c|c}
OH \\
R_{21} \\
OH
\end{array}$$

35

30

dans laquelle :

40

45

R₂₁ et R₂₂, identiques ou différents, représente un atome d'hydrogène, un radical alkyle en C₁-C₄ ou un atome d'halogène choisi parmi le chlore, le brome ou le fluor.

Parmi les méta-diphénols de formule (V) ci-dessus, on peut plus particulièrement citer le 1,3-dihydroxy benzène, le 2-méthyl 1,3-dihydroxy benzène, le 4-chloro 1,3-dihydroxy benzène, le 2-chloro 1,3-dihydroxybenzène, et leurs sels d'addition avec un acide. Les colorants directs cationiques de formule (I), (I') et (II) utilisables dans les compositions tinctoriales prêtes à

l'emploi conformes à l'invention, sont des composés connus et sont décrits par exemple dans les demandes de brevets WO 95/01772, WO 95/15144 et EP-A-0 714 954.

Parmi les colorants directs cationiques de formule (I), utilisables dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (I1) à (I18) suivantes:

55

$$\begin{array}{c} S \\ \downarrow \\ CH_3 \end{array} CH = N - N - \begin{array}{c} \\ \\ CH_3 \end{array} CI$$
 (11)

$$H_3C$$
 N
 $CH=N$
 $CH=N$
 CH_3
 $CH=N$
 CH_3
 $CH=N$
 CH_3

$$H_3C$$

$$N+CH=N-N$$

$$CH=N-N$$

$$CH=N$$

$$CH=N$$

$$CH=N$$

$$H_3C-N+ CH=N-N-CH_3SO_4 (14)$$

$$H_3C-N+$$
 $CH=N-N$
 CH_3
 $CI^ CH_3$
 $CI^ CH_3$

$$H_3C-N+ CH=N-N CH_3SO_4 (16)$$

$$CH_3$$
 CH_3
 CH_3

$$_{30}$$
 H_3C-N+ $CH=N-N CH_3$ CI^- (18)

$$H_3C - N + CH = N - N - CI - CI - (19)$$

$$CH_3$$

$$CH=N-N$$

$$CH_3$$

$$CH_3SO_4$$

$$CH_3$$

$$CH_3$$

$$CH=N-N$$

$$CH_3SO_4$$

$$CH_3$$

$$CH_3$$

$$CH = N - N - CI \quad CH_3SO_4 \quad (112)$$

$$CH_3$$

$$H_3C-N+ \longrightarrow CH=N-N- OCH_3 CH_3SO_4 (I13)$$

25

$$H_3C-N+$$
 $CH=CH NH_2$ CH_3COO (116)

10

15

5

$$H_3C-N+$$
 $CH=N-N$
 CH_3
 CI^-
(117)

CI -

(118)

20 et

30

35

Parmi les colorants directs cationiques de formule (l'), utilisables dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (l'1) à (l'3) suivantes :

40

45

$$N = N$$
 CH_3
 NH
 CH_3
 CI
 $(I'1)$

.

55

50

$$CH_3-N+$$
 $CH=CH$
 NH
 CI^- (I'2)

et

5

10

30

Parmi les colorants directs cationiques de formule (II), utilisables dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (II1) à (II26) suivantes:

$$CH_3$$
 $N = N$
 $N = N$
 NH_2
 CI
 MH_2
 CI
 MH_3

$$H_3C$$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$CH_3-N+ \longrightarrow N=N \longrightarrow CH_3 \qquad CI \qquad (II4)$$

$$N = N = N$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$H_3C$$
 $N+$
 CH_3
 CH_3
 CH_3
 CH_3

.

ĊH₃

;

$$CH_3$$
 $N+$
 $N=N CH_3$
 CH_3
 CH_3
 CH_3
 CH_3

$$CH_3$$
 $N+$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$CH_3$$
 $N+$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3

$$H_3C$$
 $N+$
 $N=N$
 CH_3
 $CH_$

$$CH_3$$
 $N+$
 $N=N CH_3$
 CH_3
 CH

$$C_2H_5$$
 $N+$
 $N=N$
 CH_3
 CH_3SO_4 (II16)

$$H_3C$$
 $N+$
 $N=N$
 CH_3
 CH_3SO_4
 CH_3SO_4

$$CH_3$$
 $N+$
 $N=N$
 CH_2 - CH_2 - CN
 CH_3
 CH_3

$$CH_3$$
 $O-CH_3$ $N+$ $N=N NH_2$ CI^- (II22)

et

5

10

25

30

35

40

45

Parmi les composés particuliers de structures (I1) à (I18) décrits ci-dessus, on préfère tout particulièrement les composés répondant aux structures (14), (15) et (I13).

Parmi les composés particuliers de structures (II1) à (II26) décrits ci-dessus, on préfère tout particulièrement le composé répondant à la structure (II1).

Les sels d'addition avec un acide utilisables dans le cadre des compositions tinctoriales de l'invention sont notamment choisis parmi les chlorhydrates, les carbonates, les bromhydrates, les sulfates et les tartrates.

L'agent oxydant présent dans la composition tinctoriale est choisi parmi les agents oxydants classiquement utilisés en coloration d'oxydation et de préférence parmi le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels tels que les perborates et persulfates. Le peroxyde d'hydrogène est particulièrement préféré.

Le ou les colorants directs cationiques de formules (I) et/ou (I') et/ou (II) conformes à l'invention, représentent de préférence de 0,001 à 10 % en poids environ du poids total de la composition tinctoriale prête à l'emploi et encore plus préférentiellement de 0,05 à 2 % en poids environ de ce poids.

La ou les bases d'oxydation conformes à l'invention, c'est à dire la ou les paraphénylènediamines de formule (III) et/ou la ou les bis-phénylalkylènediamines de formule (IV) représentent de préférence de 0,0001 à 10 % en poids environ du poids total de la composition tinctoriale prête à l'emploi et encore plus préférentiellement de 0,001 à 5 % en poids environ de ce poids.

Le ou les méta-diphénols de formule (V) conformes à l'invention représentent de préférence de 0,0001 à 5 % en poids environ du poids total de la composition tinctoriale prête à l'emploi et encore plus préférentiellement de 0,005 à 3 % en poids environ de ce poids.

Le pH de la composition tinctoriale telle que définie précédemment est généralement compris entre 5 et 12 environ. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques.

Parmi les agents acidifiants, on peut citer, à titre d'exemples, les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, les acides carboxyliques comme l'acide tartrique, l'acide citrique, l'acide lactique, les acides sulfoniques.

Parmi les agents alcalinisants, on peut citer, à titre d'exemples, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (VI) suivante:

55

$$R_{23}$$
 $N-R-N$ R_{25} R_{24} R_{26}

dans laquelle R est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C_1 - C_4 ; R_{23} , $R_{24/}$, R_{25} et R_{26} , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_4 ou hydroxyalkyle en C_1 - C_4 .

La composition tinctoriale conforme à l'invention peut encore contenir, en plus des colorants définis ci-dessus, d'autres coupleurs et/ou des colorants directs, notamment pour modifier les nuances ou les enrichir en reflets.

Le milieu approprié pour la teinture (ou support) de la composition tinctoriale prête à l'emploi conforme à l'invention est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols inférieurs en C₁-C₄, tels que l'éthanol et l'isopropanol; le glycérol; les glycols et éthers de glycols comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther de propylèneglycol, le monométhyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, les produits analogues et leurs mélanges.

Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40 % en poids environ par rapport au poids total de la composition tinctoriale, et encore plus préférentiellement entre 5 et 30 % en poids environ.

Les compositions tinctoriales prêtes à l'emploi conformes à l'invention peuvent également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux, tels que des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères, ou leurs mélanges, des polymères anioniques, cationiques, non-ioniques, amphotères, ou leurs mélanges, des agents épaississants minéraux ou organiques, des agents antioxydants, des agents de pénétration, des agents séquestrants, des parfums, des tampons, des agents dispersants, des agents de conditionnement, des agents filmogènes, des agents conservateurs, des agents opacifiants.

Bien entendu, l'homme de l'art veillera à choisir le ou les éventuels composés complémentaires mentionnés ciavant de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition tinctoriale prête à l'emploi conforme à l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

Les compositions tinctoriales prêtes à l'emploi conformes à l'invention peuvent se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

L'invention a également pour objet un procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux mettant en oeuvre la composition tinctoriale prête à l'emploi telle que définie précédemment.

Selon ce procédé, on applique sur les fibres la composition tinctoriale prête à l'emploi telle que définie précédemment, et on laisse poser pendant 3 à 40 minutes environ, de préférence 5 à 30 minutes environ, après quoi on rince, on lave éventuellement au shampooing, on rince à nouveau et on sèche.

Selon une première forme de réalisation préférée, le procédé comporte une étape préliminaire consistant à stocker sous forme séparée, d'une part, une composition (A) comprenant, dans un milieu approprié pour la teinture, au moins une base d'oxydation choisie parmi les paraphénylènediamines, les bis-phénylalkylènediamines, et leurs sels d'addition avec un acide, au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide et au moins un colorant direct cationique choisi parmi les composés de formules (I), (I') et (II) telles que définies précédemment et, d'autre part, une composition (B) renfermant, dans un milieu approprié pour la teinture, au moins un agent oxydant tel que défini précédemment, et à procéder à leur mélange au moment de l'emploi avant d'appliquer ce mélange sur les fibres kératiniques.

Selon une deuxième forme de réalisation préférée, le procédé comporte une étape préliminaire consistant à stocker sous forme séparée, d'une part, une composition (A) comprenant, dans un milieu approprié pour la teinture au moins une base d'oxydation choisie parmi les paraphénylènediamines, les bis-phénylalkylènediamines, et leurs sels d'addition avec un acide, au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide; d'autre part une composition (A') comprenant, dans un milieu approprié pour la teinture, au moins un colorant direct cationique choisi parmi les composés de formules (I), (I') et (II) telles que définies précédemment; et enfin, une composition (B) renfermant, dans un milieu approprié pour la teinture, au moins un agent oxydant tel que défini précédemment, et à procéder à leur mélange au moment de l'emploi avant d'appliquer ce mélange sur les fibres kératiniques.

La composition (A') utilisée selon cette deuxième variante du procédé conforme à l'invention, peut éventuellement

5

10

15

20

25

30

35

40

45

50

se présenter sous forme de poudre, le ou les colorants directs cationiques de formules (I) et/ou (I') et/ou (II) conformes à l'invention constituant alors à lui (eux) seul(s) la totalité de ladite composition (A') ou étant éventuellement dispersé (s) dans un excipient pulvérulent organique et/ou minéral.

Lorsqu'il est présent dans la composition A', l'excipient organique peut être d'origine synthétique ou végétale et est choisi notamment parmi les polymères synthétiques réticulés et non réticulés, les polysaccharides comme les celluloses et les amidons modifiés ou non ainsi que les produits naturels les renfermant tels que la sciure de bois et les gommes végétales (guar, caroube, xanthane, etc...).

Lorsqu'il est présent dans la composition (A'), l'excipient minéral peut être constitué par des oxydes métalliques tels que les oxydes de titane, les oxydes d'aluminium, le kaolin, le talc, les silicates, le mica et les silices. Un excipient avantageusement préféré selon l'invention est la sciure de bois.

La composition (A') en poudre peut encore renfermer des liants ou des produits d'enrobage dans une quantité ne dépassant pas de préférence 3% en poids environ du poids total de ladite composition (A').

Ces liants sont de préférence choisis parmi les huiles et les corps gras liquides d'origine minérale, synthétique, animale ou végétale.

La composition (A') peut éventuellement encore contenir d'autres adjuvants, à l'état de poudre, en particulier des tensio-actifs de toute nature, des agents de conditionnement du cheveu comme par exemple des polymères cationiques, etc...

Un autre objet de l'invention est un dispositif à plusieurs compartiments ou "kit" de teinture ou tout autre système de conditionnement à plusieurs compartiments dont un premier compartiment renferme la composition (A) telle que définie ci-dessus, un second compartiment éventuel renferme la composition (A') telle que définie ci-dessus lorsqu'elle est présente et un troisième compartiment renferme la composition oxydante (B) telle que définie ci-dessus. Ces dispositifs peuvent être équipés d'un moyen permettant de délivrer sur les cheveux le mélange souhaité, tel que les dispositifs décrits dans le brevet FR-2 586 913 au nom de la demanderesse.

Les exemples qui suivent sont destinés à illustrer l'invention sans pour autant en limiter la portée.

EXEMPLES

5

10

15

20

25

30

35

40

45

50

55

EXEMPLES 1 et 2

On a préparé les compositions 1 (A) et 2 (A), conformes à l'invention, suivantes (teneurs en grammes):

COMPOSITION	1 (A)	2 (A)
Paraphénylènediamine	1,0	0,70
1,3-dihydroxy benzène	0,5	0,5
Colorant cationique de structure (II1)	0,25	_
Colorant cationique de structure (I4)	0,20	-
Colorant cationique de structure (I13)		0,10
Support de teinture commun (*)	(*)	(*)
Eau q.s.p.	100 g	100 g

(*) support de teinture commun:

- Alcool oléique polyglycérolé à 2 moles de glycérol 4,0 g
- Alcool oléique polyglycérolé à 4 moles de glycérol, à 78 % de matières actives (M.A.) 5,69 g M.A.
- 3,0 g Acide oléique
- Amine oléique à 2 moles d'oxyde d'éthylène vendue sous la dénomination commerciale ETHOMEEN 012 par la société AKZO 7,0 g
 - Laurylamino succinamate de diéthylaminopropyle, sel de sodium, à 55 % de M.A. 3,0 g M.A.
- Alcool oléique 5,0 g
- Diéthanolamide d'acide oléique 12,0 g
- Propylèneglycol 3.5 g
- Alcool éthylique 7,0 g

10

15

20

25

30

35

40

45

50

55

- Dipropylèneglycol 0,5 g
- Monométhyléther de propylèneglycol 9,0 g
- Métabisulfite de sodium en solution aqueuse, à 35 % de M.A. 0.455 a M.A.
- 0,8 g Acétate d'ammonium
- Antioxydant, séquestrant q.s.
 - Parfum, conservateur q.s.
 - Ammoniaque à 20 % de NH₃ 10,0 g

Au moment de l'emploi, on a mélangé chacune de ces compositions 1 (A) à 2 (A) avec une quantité égale d'une composition (B) constituée par une solution de peroxyde d'hydrogène à 20 volumes (6 % en poids).

Chaque composition résultante (composition prête à l'emploi conforme à l'invention) a été appliquée pendant 30 minutes sur des mèches de cheveux gris naturels à 90 % de blancs. Les mèches de cheveux ont ensuite été rincées, lavées avec un shampooing standard puis séchées.

Les mèches de cheveux ont été teintes dans les nuances figurant dans le tableau ci-dessous :

EXEMPLE [COMPOSITION]	NUANCE OBTENUE	
1 [1 (A)]	Châtain foncé Châtain	
2 [2 (A)]		

Les nuances obtenues ont présenté une très bonne ténacité aux shampooings ultérieurs.

Selon une variante de l'invention, les colorants directs cationiques peuvent être incorporés dans les compositions colorantes 1 (A) ou 2 (A) au moment de l'emploi.

EXEMPLE 3

On a préparé la composition 3 (A) suivante :

- Sulfate de paratoluylènediamine 1,25 g
- 0,50 g 2-méthyl 1,3-dihydroxybenzène
- (*) Support de teinture commun tel que décrit précédemment pour les exemples 1 à 2
- Eau déminéralisée q.s.p. 100 g

On a préparé la composition 3 (A') suivante :

- Colorant cationique de structure (II1) 1 9
- Polyammonium quaternaire vendu sous la dénomination commerciale CELQUAT SC-240 par la société National Starch 10 g
- 100 g Sciure de bois q.s.p.

Au moment de l'emploi, on a mélangé une partie en poids de la composition 3 (A) ci-dessus avec 0,1 partie en poids de la composition 3 (A') et avec une partie en poids d'une composition (B) constituée par une solution de peroxyde d'hydrogène à 20 volumes (6 % en poids).

La composition résultante a été appliquée pendant 30 minutes sur des mèches de cheveux gris naturels à 90 % de blancs. Les cheveux ont ensuite été rincées, lavées avec un shampooing standard puis séchées.

Les cheveux ont été teints dans une nuance châtain cendré nacré résistant très bien aux shampooings ultérieurs.

Revendications

5

10

15

25

30

35

40

45

50

- 1. Composition prête à l'emploi pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux caractérisée par le fait qu'elle comprend, dans un milieu approprié pour la teinture :
 - au moins une base d'oxydation choisie parmi les paraphénylènediamines et les bis-phénylalkylènediamines, et leur sels d'addition avec un acide,
- au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide,
 - au moins un colorant direct cationique choisi parmi :
 - a) les composés de formules (I) et (I') suivantes :

 $A - D_1 = D_2 - (N)_m$ $X \qquad \qquad R_3$

(1)

 $A-D_1=D_2$ $X \cdot \bigcup_{R_5} \bigcup_{R_4} \bigcup_{(I')} \bigcup_{R_4} \bigcup_{R_5} \bigcup_{$

dans lesquelles :

R₁ représente un atome d'hydrogène, un radical alcoxy en C₁-C₄, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor ou un radical amino,

R₂ représente un atome d'hydrogène, un radical alkyle en C₁-C₄ ou forme avec un atome de carbone du cycle benzénique un hétérocycle éventuellement oxygéné et/ou substitué par un ou plusieurs groupements alkyle en C₁-C₄,

R₃ représente un atome d'hydrogène ou d'halogène tel que le brome, le chlore, l'iode ou le fluor,

R₄ et R₅, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄,

D₁ et D₂, identiques ou différents, représentent un atome d'azote ou le groupement -CH,

m = 0 ou 1,

étant entendu que lorsque R_1 représente un groupement amino non substitué, alors D_1 et D_2 représentent simultanément un groupement -CH et m=0,

X · représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

A représente un groupement choisi par les structures A1 à A8 suivantes :

10

5

А3

25

30

35

40

dans lesquels R' représente un radical alkyle en C₁-C₄;

lorsque m=0 et que D_1 représente un atome d'azote, alors A peut également désigner un groupement de structure A9 suivante :

45

50

55

dans lequel R' représente un radical alkyle en C1-C4;

b) les composés de formule (II) suivante :

dans laquelle :

5

10

15

20

25

30

35

40

45

50

R₆ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄,

 $\rm R_7$ représente un atome d'hydrogène, un radical alkyle pouvant être substitué par un radical -CN ou un groupement amino, un radical 4'-aminophényle ou forme avec $\rm R_6$ un hétérocycle éventuellement oxygéné et/ou azoté pouvant être substitué par un ou plusieurs groupements alkyle en $\rm C_1$ - $\rm C_4$,

 R_8 et R_9 , identiques ou différents, représentent un atome d'hydrogène, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor, un radical alkyle en C_1 - C_4 , alcoxy en C_1 - C_4 ou un radical -CN,

X - représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

B représente un groupement choisi par les structures B1 à B11 suivantes :

$$R_{10}$$
 N_{+}
 R_{10}
 $R_$

$$R_{11} \xrightarrow{N} S \xrightarrow{R_{10}} S \xrightarrow{N+} R_{10} \xrightarrow{N+} R_{10}$$

B4 B5 B6

dans lesquelles R_{10} représente un radical alkyle en C_1 - C_4 , R_{11} et R_{12} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C_1 - C_4 ; lorsque R_6 et R_7 forment un hétérocycle azoté, ou lorsque R_8 et R_9 représentent simultanément un radical alcoxy en C_1 - C_4 , ou lorsque R_7 représente un radical 4'-aminophényle, alors B peut également représenter un groupement de structure B12 suivante :

dans laquelle R₁₀ a la même signification que celle indiquée ci-dessus pour les structures B1 à B11 ; et

- au moins un agent oxydant.
- 2. Composition selon la revendication 1, caractérisée par le fait que les paraphénylènediamines sont choisies parmi les composés de formule (III) suivante, et leur sels d'addition avec un acide :

$$R_{16} \xrightarrow{NR_{13}R_{14}} R_{15}$$

$$R_{16} \xrightarrow{NH_2} R_{15}$$

$$(III)$$

10

15

20

25

30

5

dans laquelle:

 R_{13} représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 , phényle, 4'-aminophényle ou alcoxy(C_1 - C_4)alkyle en C_1 - C_4 ,

 R_{14} représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 ou polyhydroxyalkyle en C_2 - C_4 ,

 R_{15} représente un atome d'hydrogène, un atome d'halogène tel qu'un atome de chlore, de brome, d'iode ou de fluor, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , hydroxyalcoxy en C_1 - C_4 , mésylaminoalcoxy en C_1 - C_4 , carbamoylaminoalcoxy en C_1 - C_4 , ou acétylaminoalcoxy en C_1 - C_4 ,

R₁₆ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄.

3. Composition selon la revendication 2, caractérisée par le fait que les paraphénylènediamines de formule (III) sont choisies parmi la paraphénylènediamine, la paratoluylènediamine, la 2-chloro paraphénylènediamine, la 2,3-diméthyl paraphénylènediamine, la 2,6-diéthyl paraphénylènediamine, la 2,5-diméthyl paraphénylènediamine, la 1,8-diméthyl paraphénylènediamine, la 1,8-diéthyl paraphénylènediamine, la 1,8-diméthyl paraphénylènediamine, la 1,8-diéthyl paraphénylènediamine, la 1,8-dipropyl paraphénylènediamine, la 4-amino 1,8-diéthyl 3-méthyl aniline, la 1,8-dipropyl paraphénylènediamine, la 4-amino 1,8-dipropyl paraphénylènediamine, la 2-fluoro paraphénylènediamine, la 2-isopropyl paraphénylènediamine, la 1,8-dipropyl paraphénylènediamine, la 2-hydroxyméthyl paraphénylènediamine, la 1,8-dipropyl paraphénylènediamine, la 1,8-dipropyl paraphénylènediamine, la 1,8-dipropyl paraphénylènediamine, la 1,8-dipropyl paraphénylènediamine, la 1,9-dipropyl paraphénylènediamine, la 2,9-acétylaminoéthyloxy paraphénylènediamine, et leurs sels d'addition avec un acide.

35

4. Composition selon la revendication 1, caractérisée par le fait que les bis-phénylalkylènediamines sont choisies parmi les composés de formule (IV) suivante, et leurs sels d'addition avec un acide :

40

45

dans laquelle:

50

55

 Z_1 et Z_2 , identiques ou différents, représentent un radical hydroxyle ou NHR $_{20}$ dans lequel R $_{20}$ représente un atome d'hydrogène ou un radical alkyle en C_1 - C_4 ,

 R_{17} représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 ou aminoalkyle en C_1 - C_4 dont le reste amino peut être substitué,

R₁₈ et R₁₉, identiques ou différents, représentent un atome d'hydrogène ou d'halogène ou un radical alkyle en C₁-C₄,

Y représente un radical pris dans le groupe constitué par les radicaux suivants :

 $(CH_2)_n^-$; $-(CH_2)_m$ -O- $(CH_2)_m$ $-(CH_2)_m$ -CHOH- $(CH_2)_m$ et

- dans lesquels n est un nombre entier compris entre 0 et 8 inclusivement et m est un nombre entier compris entre 0 et 4 inclusivement.
- 5. Composition selon la revendication 4, caractérisée par le fait que les bis-phénylalkylènediamines de formule (IV) sont choisies parmi le N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthylaminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthylaminophényl) tétraméthylènediamine, la N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, et leurs sels d'addition avec un acide.
- 6. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les méta-diphénols sont choisis parmi les composés de formule (V) suivante, et leurs sels d'addition avec un acide :

$$\begin{array}{c} \text{OH} \\ \\ \\ \\ \text{OH} \end{array} \qquad \text{(V)}$$

dans laquelle :

- R₂₁ et R₂₂, identiques ou différents, représente un atome d'hydrogène, un radical alkyle en C₁-C₄ ou un atome d'halogène choisi parmi le chlore, le brome ou le fluor.
- 7. Composition selon la revendication 6, caractérisée par le fait que les méta-diphénols de formule (V) sont choisis parmi le 1,3-dihydroxy benzène, le 2-méthyl 1,3-dihydroxy benzène, le 4-chloro 1,3-dihydroxy benzène, le 2-chloro 1,3-dihydroxybenzène, et leurs sels d'addition avec un acide.
 - 8. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les colorants directs cationiques de formule (I) sont choisis parmi les composés répondant aux structures (I1) à (I18) suivantes:

$$CH = N - N - CH_3$$

$$CH_3$$

$$CH_3$$

$$CI$$

$$CH_3$$

55

5

10

15

20

25

30

35

45

$$H_3C$$
 $N+$
 $CH=N-N$
 $CH=N$
 $CH=N$

$$H_3C$$
 N
 CH_3
 $CH=N-N$
 CH_3
 C

$$H_3C-N+$$
 $CH=N-N$
 CH_3SO_4 (14)

$$H_3C-N+ \longrightarrow CH=N-N- \longrightarrow OCH_3 \qquad CI \qquad (15)$$

$$H_3C-N+$$
 $CH=N-N$
 CH_3SO_4 (16)

$$CH_3$$
 CH_3
 CH_3

$$H_3C-N+ CH=N-N-CH_3 CI \qquad (18)$$

$$H_3C-N+$$
 $CH=N-N CH_3$
 CI CI CI (19)

$$CH=N-N-CH_3$$

$$CH_3SO_4$$

$$CH_3SO_4$$

$$CH_3$$

$$CH=N-N$$

$$CH_3SO_4$$

$$CH_3$$

$$CH_3$$

$$CH = N - N - CI \quad CH_3SO_4 \quad (I12)$$

$$CH_3$$

$$H_3C-N+ CH=N-N-CH_3 CH_3SO_4 CH_3SO_4 (113)$$

$$CH = CH - CH_{2} CH_{3}COO$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$H_3C-N+$$
 $CH=CH NH_2$ CH_3COO^- (116)

$$H_3C-N+ \longrightarrow CH=N-N- \longrightarrow CI \qquad (I17)$$

et

 $CI \longrightarrow N = N \longrightarrow CI^{-}$ (I18) $H_3C \longrightarrow N + \bigcup_{CH_3}$

9. Composition selon l'une quelconque des revendications 1 à 7, caractérisée par le fait que les colorants directs cationiques de formule (l') sont choisis parmi les composés répondant aux structures (l'1) à (l'3) suivantes :

et

5
$$N+N+N=N$$
 CI $(I'3)$

10. Composition selon l'une quelconque des revendications 1 à 7, caractérisée par le fait que les colorants directs cationiques de formule (II) sont choisis parmi les composés répondant aux structures (II1) à (II26) suivantes :

$$CH_3$$
 $N = N$
 $N = N$
 NH_2
 CI
 CH_3
 CH_3

$$H_3C$$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3

$$N+$$
 $N+$
 CH_3
 CH_3
 CH_3
 CH_3

$$N=N$$
 $N+$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$N \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow CH_3$$
 CI (II7)

$$CH_3$$
 $N+$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3

$$CH_3$$
 $N+$
 $N=N$
 CH_3
 $CH_$

$$CH_3$$
 $N+$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$CH_3$$
 $N+$
 $N=N$
 CH_3
 CH_3
 CH_3
 CH_3

$$S$$
 CH_3
 $CH_$

$$CH_3$$
 $N+$
 $N=N$
 CI
 CH_3
 CI
 CH_3

$$H_3C$$
 $N+$
 $N+$
 $N=N$
 CH_3
 CH_3SO_4
 CH_3SO_4
 CH_3

$$CH_3$$
 $N+$
 $N=$
 $N=$
 N
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$CH_3$$
 $N+$
 $N=N CH_3$
 CH_3SO_4 (II20)
 CH_3

$$CH_3$$
 $N+$
 CH_2 - CH_2 - CN
 CH_3
 CH_3
 CH_3

$$CH_3$$
 $O-CH_3$ $O-CH_3$

$$CH_3$$
 CH_3 CH_3

et

5

10

30

- 25 11. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les sels d'addition avec un acide sont choisis parmi les chlorhydrates, les carbonates, les bromhydrates, les sulfates et les tartrates.
 - 12. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'agent oxydant est choisi parmi le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels tels que les perborates et persulfates.
 - 13. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les colorants directs cationiques de formules (I) et/ou (II) représentent de 0,001 à 10 % en poids du poids total de la composition tinctoriale prête à l'emploi.
 - 14. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que la ou les paraphénylènediamines de formule (III) et/ou la ou les bis-phénylalkylènediamines de formule (IV) représentent de 0,0001 à 10 % en poids du poids total de la composition tinctoriale prête à l'emploi.
- 40 15. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les métadiphénols de formule (V) représentent de 0,0001 à 5 % en poids du poids total de la composition tinctoriale prête à l'emploi.
- 16. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle présente un pH compris entre 5 et 12.
 - 17. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le milieu approprié pour la teinture est constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique.
- 18. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux caractérisé par le fait que l'on applique sur ces fibres au moins une composition tinctoriale telle que définie dans l'une quelconque des revendications 1 à 17.
- 19. Procédé selon la revendication 18, caractérisé par le fait qu'il comporte une étape préliminaire consistant à stocker sous forme séparée, d'une part, une composition (A) comprenant, dans un milieu approprié pour la teinture, au moins une base d'oxydation choisie parmi les paraphénylènediamines, les bis-phénylalkylènediamines, et leurs sels d'addition avec un acide, au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide, et au moins un colorant direct cationique choisi parmi les composés de formules (I), (I') et (II) tels que

définis dans la revendication 1 et d'autre part, une composition (B) renfermant, dans un milieu approprié pour la teinture, au moins un agent oxydant, et à procéder à leur mélange au moment de l'emploi avant d'appliquer ce mélange sur les fibres kératiniques.

- 20. Procédé de teinture selon la revendication 18, caractérisé par le fait qu'il comporte une étape préliminaire consistant à stocker sous forme séparée, d'une part, une composition (A) comprenant, dans un milieu approprié pour la teinture au moins une base d'oxydation choisie parmi les paraphénylènediamines, les bis-phénylalkylènediamines, et leurs sels d'addition avec un acide, au moins un coupleur choisi parmi les méta-diphénols, et leurs sels d'addition avec un acide; d'autre part une composition (A') comprenant, dans un milieu approprié pour la teinture, au moins un colorant direct cationique choisi parmi les composés de formules (I), (I') et (II) telles que définies dans la revendication 1; et enfin, une composition (B) renfermant, dans un milieu approprié pour la teinture, au moins un agent oxydant et à procéder à leur mélange au moment de l'emploi avant d'appliquer ce mélange sur les fibres kératiniques.
- 21. Procédé selon la revendication 20, caractérisé par le fait que la composition (A') se présente sous forme de poudre.
 - 22. Dispositif à plusieurs compartiments ou "kit" de teinture, caractérisé par le fait qu'un premier compartiment renferme la composition (A) telle que définie à la revendication 19 et un second compartiment renferme une composition oxydante (B).
 - 23. Dispositif à plusieurs compartiments ou "kit" de teinture, caractérisé par le fait qu'un premier compartiment renferme une composition (A) telle que définie à la revendication 20, un second compartiment referme une composition (A) telle que définie à la revendication 20 ou 21 et un troisième compartiment renferme une composition oxydante (B).

40

20

25

30

35

40

45

50

Office européen RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 97 40 2848

atégori e	Citation du document avec ind des parties pertinen		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)
(<pre>US 4 025 301 A (G.LAN * revendications 1,12 * colonne 3, ligne 43 * exemples Q,AK *</pre>	-14 *	1-3,6,7, 11-18	A61K7/13
(EP 0 739 622 A (WELLA * revendications 1,4, * page 3, ligne 20-34 * page 4, ligne 17-23	12,13 *	1-3,6,7,12-18	
				DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
				A61K
Le p	présent rapport a été établi pour tout			Examinaleur
	LA HAYE	Date d'achèvement de la recherch	1	eters, J
X:pa Y:pa au A:an	CATEGORIE DES DOCUMENTS CITES T : Théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date particulièrement pertinent en combinaison avec un autre document de la même catégorie arrière-plan technologique divulgation non-écrite document intercalaire T : Théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons ### Invention ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons #### Invention ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons		Finvention nais publié à la le	