

Hung Le and Cuong Than

University of Massachusetts at Amherst

June 27, 2022

Spanner

Definition

A t-spanner of a graph G = (V, E, w) is a subgraph $H = (V, E_H, w)$ such that for every pair $(u, v) \in V^2$:

$$d_G(u,v) \leq d_H(u,v) \leq t \cdot d_G(u,v)$$

Parameter *t* is called the stretch of the spanner.

Spanner

Definition

A t-spanner of a graph G = (V, E, w) is a subgraph $H = (V, E_H, w)$ such that for every pair $(u, v) \in V^2$:

$$d_G(u,v) \leq d_H(u,v) \leq t \cdot d_G(u,v)$$

Parameter *t* is called the stretch of the spanner.

Given a set of point P in \mathbb{R}^d . In our paper, we focus on the spanner of the graph $G = (P, \binom{P}{2}, ||\cdot||_2)$.

Applications

Complexity of Network Synchronization

BARUCH AWERBUCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

(a) Distributed Computing

EXPLORING PROTEIN FOLDING TRAJECTORIES USING GEOMETRIC SPANNERS

D. RUSSEL and L. GUIBAS

(c) Computational Biology

On Light Spanners, Low-treewidth Embeddings and Efficient Traversing in Minor-free Graphs

Vincent Cohen-Addad¹, Arnold Filtser², Philip N. Klein³, and Hung Le⁴

(b) Approximation Algorithm

Near Optimal Multicriteria Spanner Constructions in Wireless Ad-Hoc Networks

Hanan Shpungin, Member, IEEE, and Michael Segal, Senior Member, IEEE

(d) Wireless Sensor Network

Figure: Applications of spanners

Separator

Definition

A (balanced) separator S is a subset of the vertex set of the graph G=(V,E) such that each connected component of G[V/S] has at most $\frac{2}{3}n$ vertices.

Figure: A separator S of G

Greedy Spanner

Algorithm Greedy(G = (V, E, w), t)

- 1: sort edges in *E* in increasing order
- 2: $H = (V, \emptyset, w)$
- 3: **for** $e = (u, v) \in E$ in sorted order **do**
- 4: if $d_H(u, v) > t \cdot w(u, v)$ then
- 5: $E_H = E_H \cup \{e\}$
- 6: end if
- 7: end for
- 8: **return** *H*

Results on Separators of Spanners

- Abam and Har-Peled (2010) constructed a $(1 + \epsilon)$ -spanner with a separator of size $O(n^{1-1/d})$ for point set in Euclidean space with maximum degree $O(\log^2 n)$.
 - ▶ **Open question**: Constructing a spanner with a sublinear separator and a constant maximum degree in metrics of constant doubling dimensions.

Results on Separators of Spanners

- Abam and Har-Peled (2010) constructed a $(1 + \epsilon)$ -spanner with a separator of size $O(n^{1-1/d})$ for point set in Euclidean space with maximum degree $O(\log^2 n)$.
 - ▶ **Open question**: Constructing a spanner with a sublinear separator and a constant maximum degree in metrics of constant doubling dimensions.
- Recently, Eppstein and Khodabandeh (2021) showed that the greedy spanner for point sets in \mathbb{R}^2 admits a separator of size $O(\sqrt{n})$.
 - ▶ **Open question**: Do greedy spanners for point sets in \mathbb{R}^d admit separator of size $O(n^{1-1/d})$?

Results on Separators of Spanners

- Abam and Har-Peled (2010) constructed a $(1 + \epsilon)$ -spanner with a separator of size $O(n^{1-1/d})$ for point set in Euclidean space with maximum degree $O(\log^2 n)$.
 - ▶ **Open question**: Constructing a spanner with a sublinear separator and a constant maximum degree in metrics of constant doubling dimensions.
- Recently, Eppstein and Khodabandeh (2021) showed that the greedy spanner for point sets in \mathbb{R}^2 admits a separator of size $O(\sqrt{n})$.
 - ▶ **Open question**: Do greedy spanners for point sets in \mathbb{R}^d admit separator of size $O(n^{1-1/d})$?

...

Introduce τ -lanky - a criterion of graphs admitting sublinear separators and bounded degree.

Introduce τ -lanky - a criterion of graphs admitting sublinear separators and bounded degree.

Definition (Informal)

A graph G = (V, E) in a \mathbb{R}^d is τ -lanky if any ball $\mathbf{B}(x, r)$ of radius r is cut by at most τ edges of length at least r.

- Introduce τ -lanky a criterion of graphs admitting sublinear separators and bounded degree.
- ightharpoonup au-lanky implies bounded degree and sublinear separator in strong sense, i.e. every subgraph admits sublinear separator.

- Introduce τ -lanky a criterion of graphs admitting sublinear separators and bounded degree.
- au-lanky implies bounded degree and sublinear separator in strong sense, i.e. every subgraph admits sublinear separator.

Theorem

Let G=(V,E) be an n-vertex graph in \mathbb{R}^d such that G is τ -lanky. Then, G has a balanced separator S such that $|S|=O(\tau n^{1-1/d})$ when $d\geq 2$ and the maximum degree of G is τ .

- Introduce τ -lanky a criterion of graphs admitting sublinear separators and bounded degree.
- ightharpoonup au-lanky implies bounded degree and sublinear separator in strong sense, i.e. every subgraph admits sublinear separator.
- ▶ The criterion is simple, can be applied to non-spanner graphs.

• Greedy spanner in \mathbb{R}^d is $O(\epsilon^{1-2d})$ -lanky.

- Greedy spanner in \mathbb{R}^d is $O(\epsilon^{1-2d})$ -lanky.
 - ▶ Greedy spanner has separator of size $O(n^{1-1/d})$. This resolves the open question in Eppstein and Khodabandeh (2021).

- ▶ Greedy spanner in \mathbb{R}^d is $O(\epsilon^{1-2d})$ -lanky.
 - ▶ Greedy spanner has separator of size $O(n^{1-1/d})$. This resolves the open question in Eppstein and Khodabandeh (2021).
- Prove that a spanner in Chan et al. (2016) is $e^{-O(d)}$ -lanky, resolve the open question in Abam and Har-Peled (2010).

Outline

au – lanky

Spanners in Euclidean Spaces

Spanners in Doubling Metrics

Conclusion

au-lanky

Definition

A graph G=(V,E) in \mathbb{R}^d is τ -lanky if for any non-negative r, and for any ball $\mathbf{B}(x,r)$ of radius r centered at a vertex $x\in V$, there are at most τ edges of length at least r that are cut by $\mathbf{B}(x,r)$.

au-lanky

Definition

A graph G=(V,E) in \mathbb{R}^d is τ -lanky if for any non-negative r, and for any ball $\mathbf{B}(x,r)$ of radius r centered at a vertex $x\in V$, there are at most τ edges of length at least r that are cut by $\mathbf{B}(x,r)$.

Figure: A ball with radius r is cut by 8 edges with length at least r

au-lanky

Definition

A graph G = (V, E) in \mathbb{R}^d is τ -lanky if for any non-negative r, and for any ball $\mathbf{B}(x, r)$ of radius r centered at a vertex $x \in V$, there are at most τ edges of length at least r that are cut by $\mathbf{B}(x, r)$.

There is nothing special about the length r. In fact, any length cr with c is a positive constant does the trick.

Implications

Lemma

A τ -lanky graph G has maximum degree τ .

Prove by looking at a ball $(u, d_{min}/2)$ for every vertex u of G.

Implications

Theorem

Let G be an n-vertex graph in \mathbb{R}^d such that G is τ -lanky. Then, G has a balanced separator S such that $|S| = O(\tau n^{1-1/d})$ when $d \ge 2$ and $|S| = O(\tau \log n)$ when d = 1. Furthermore, S can be found in $O(\tau n)$ expected time.

▶ Find a smallest ball $\mathbf{B}(v,r)$ that contains $\frac{n}{2^{d+1}}$ vertices. Hence, $\mathbf{B}(v,2r)$ contains at most $\frac{n}{2}$ vertices.

► Choose a random radius r^* uniformly in [r, 2r]. The expected number of edges with length $rn^{-1/d}$ cutting $\mathbf{B}(v, r^*)$ is $O(n^{1-1/d})$.

▶ For egdes with length in $[rn^{-1/d}, 2r]$, partition $\mathbf{B}(v, 2r)$ into smaller balls accordingly. Each edge cutting $\mathbf{B}(v, r^*)$ must also cut one small ball.

edges cut $\mathbf{B}(\mathbf{v}, \mathbf{r}^*) \leq \tau \times$ (# balls).

Number of edges with length larger than 2r cutting $\mathbf{B}(v, r^*) \leq \tau$.

▶ The separator is the set of vertices inside $\mathbf{B}(v, r^*)$ that incicdent to any edge cutting $\mathbf{B}(v, r^*)$.

Algorithmic Implications

- Unweighted optimization problems such as independent set, vertex cover, dominating set, connected dominating set, packing problems, admit a polynomial-time approximation scheme (PTAS) in a graph has polynomial expansion.
- ▶ If the *G* has bounded degree, then the vertex-weighted version of those problems admit a PTAS.

Algorithmic Implications

Theorem

Given a set of point P in \mathbb{R}^d . Then the greedy spanner G of P is ϵ^{1-2d} -lanky.

Theorem

Given a set of point P in \mathbb{R}^d . Then the greedy spanner G of P is ϵ^{1-2d} -lanky.

Proof sketch:

Theorem

Given a set of point P in \mathbb{R}^d . Then the greedy spanner G of P is ϵ^{1-2d} -lanky.

Proof sketch:

For any two subsets X and Y of P such that $dist(X,Y) \geq \frac{12}{\epsilon} diam(X)$, there are $O(\epsilon^{1-d})$ edges in G between X and Y.

Theorem

Given a set of point P in \mathbb{R}^d . Then the greedy spanner G of P is ϵ^{1-2d} -lanky.

Proof sketch:

For any two subsets X and Y of P such that $dist(X,Y) \geq \frac{12}{\epsilon} diam(X)$, there are $O(\epsilon^{1-d})$ edges in G between X and Y.

Theorem

Given a set of point P in \mathbb{R}^d . Then the greedy spanner G of P is ϵ^{1-2d} -lanky.

Proof sketch:

For any two subsets X and Y of P such that $dist(X,Y) \geq \frac{12}{\epsilon} diam(X)$, there are $O(\epsilon^{1-d})$ edges in G between X and Y.

For any ball **B** of radius r, partition **B** into smaller balls of radius $\epsilon r/48$, then each ball is cut by at most $O(\epsilon^{1-d})$ edges.

Extended Results

Theorem (Bounded fractal dimension)

Let P be a given set of n points in \mathbb{R}^d that has fractal dimension d_f , and G be the greedy $(1 + \epsilon)$ -spanner of P. Then G has a separator S of size $O(n^{1-1/d_f})$.

Extended Results

Theorem (Bounded fractal dimension)

Let P be a given set of n points in \mathbb{R}^d that has fractal dimension d_f , and G be the greedy $(1 + \epsilon)$ -spanner of P. Then G has a separator S of size $O(n^{1-1/d_f})$.

Theorem (Unit ball graphs)

Let G be the greedy $(1 + \epsilon)$ -spanner of a unit ball graph in \mathbb{R}^d . Then G has a separator S of size $O(|V(G)|^{1-1/d})$.

 $\tau\text{-lanky}\text{'s}$ implications can be extended for other metric spaces.

au-lanky's implications can be extended for other metric spaces.

Definition

A metric (X, δ) is (η, d) -packable if for any ball with radius 1, there are at most $\frac{\eta}{r^d}$ points inside such that the distance between any two points is at least r.

au-lanky's implications can be extended for other metric spaces.

Definition

A metric (X, δ) is (η, d) -packable if for any ball with radius 1, there are at most $\frac{\eta}{r^d}$ points inside such that the distance between any two points is at least r.

The Euclidean Space \mathbb{R}^d is (η, d) packable with a constant η . Moreover, the metric space with bounded doubling dimension d is also $(2^{O(d)}, d)$ packable.

Theorem

Let $G = (V, E, \delta)$ be an n-vertex graph in an (η, d) -packable metric (X, δ) such that G is τ -lanky. Then, G has a balanced separator S such that $|S| = O(\tau n^{1-1/d})$ when $d \geq 2$ and the maximum degree of G is τ .

Chan, Gupta, Maggs and Zhou (CGMZ) constructed a $(1 + \epsilon)$ -spanner with a maximum degree of $\epsilon^{-O(d)}$ for points in doubling metrics of dimension d.

▶ We prove their spanner is $\epsilon^{-O(d)}$ -lanky.

Construction

Construct a net tree N. In each level i, put all edges with length at most $(4 + \frac{32}{\epsilon})r_i$ to the spanner.

Figure: Net tree spanner

Construction

Reroute some edges of the spanner such that each edge connects vertices whose levels differ $1/\epsilon$.

Figure: Net tree spanner after rerouting

Theorem

CGMZ spanner G of a set P in doubling metrics of dimension d is $e^{-O(d)}$ -lanky.

Theorem

CGMZ spanner G of a set P in doubling metrics of dimension d is $\epsilon^{-O(d)}$ -lanky.

Proof sketch:

Theorem

CGMZ spanner G of a set P in doubling metrics of dimension d is $\epsilon^{-O(d)}$ -lanky.

Proof sketch:

▶ For any β -separated sets, there are at most $\left(\frac{4+32/\epsilon}{\beta}\right)^{2d} \epsilon^{-O(d)}$ edges in G between them.

Theorem

CGMZ spanner G of a set P in doubling metrics of dimension d is $e^{-O(d)}$ -lanky.

Proof sketch:

- ▶ For any β -separated sets, there are at most $\left(\frac{4+32/\epsilon}{\beta}\right)^{2d} \epsilon^{-O(d)}$ edges in G between them.
- ▶ Given a ball $\mathbf{B}(p,r)$, there are $\epsilon^{-O(d)}$ edges with length $[r,(4+32/\epsilon)r]$ cutting $\mathbf{B}(p,r)$. This is proven by partitioning $\mathbf{B}(p,r)$ into smaller balls.

Theorem

CGMZ spanner G of a set P in doubling metrics of dimension d is $e^{-O(d)}$ -lanky.

Proof sketch:

- ▶ For any β -separated sets, there are at most $\left(\frac{4+32/\epsilon}{\beta}\right)^{2d} \epsilon^{-O(d)}$ edges in G between them.
- ▶ Given a ball $\mathbf{B}(p,r)$, there are $e^{-O(d)}$ edges with length [r, (4+32/e)r] cutting $\mathbf{B}(p,r)$. This is proven by partitioning $\mathbf{B}(p,r)$ into smaller balls.
- For the edges with length more than $(4+32/\epsilon)r$, there are $e^{-O(d)}$ endpoints of those edges inside $\mathbf{B}(p,r) \implies$ there are $e^{-O(d)}$ edges cutting $\mathbf{B}(p,r)$ by the bounded degree.

ightharpoonup Every au-lanky graph admit bounded maximum degree and sublinear separator (in strong sense).

- ightharpoonup Every au-lanky graph admit bounded maximum degree and sublinear separator (in strong sense).
- ▶ Greedy spanner in \mathbb{R}^d is ϵ^{1-2d} -lanky.

- ightharpoonup Every au-lanky graph admit bounded maximum degree and sublinear separator (in strong sense).
- ▶ Greedy spanner in \mathbb{R}^d is e^{1-2d} -lanky.
- ▶ The bounded degree spanner in Chan et al. (2016) is $\epsilon^{-O(d)}$ -lanky.

- ightharpoonup Every au-lanky graph admit bounded maximum degree and sublinear separator (in strong sense).
- ▶ Greedy spanner in \mathbb{R}^d is ϵ^{1-2d} -lanky.
- ▶ The bounded degree spanner in Chan et al. (2016) is $\epsilon^{-O(d)}$ -lanky.
- Vising the same technique, we proved that the greedy spanner in doubling metric admit separator of size $O(n^{1-1/d} + \log{(spread)})$ with $spread = \frac{d_{max}}{d_{min}}$.

Do greedy spanners admit sublinear separators (not depend on *spread*) in doubling metrics?

References

- Abam, M. A. and Har-Peled, S. (2010). New constructions of SSPDs and their applications. SoCG'10.
- Chan, T. H., Gupta, A., Maggs, B. M., and Zhou, S. (2016). On hierarchical routing in doubling metrics. *ACM Trans. Algorithms*.
- Eppstein, D. and Khodabandeh, H. (2021). On the edge crossings of the greedy spanner. SoCG' 2021.

Thank you for listening!

Question?