Künstliche Intelligenz: Grundlagen und Anwendungen

Albayrak, Fricke (AOT) – Opper, Thiel (KI) Wintersemester 2016 / 2017

6. Aufgabenblatt

Abgabetermin: 18.01.2017

Aufgabe 1 – Hidden Markov-Prozess

(50%)

Hidden-Markov-Modelle werden in der Bioinformatik zur Analyse von DNA-Sequenzen eingesetzt. Eine Anwendung ist das Auffinden von CpG-Inseln in der beobachteten Sequenz $Y_t \in \{a, c, g, t\}$. Der verborgene Zustand $X_t \in \{w, f\}$ gibt an, ob das aktuelle Nukleotid zu einer CpG-Insel gehört $(X_t = w)$ oder nicht $(X_t = f)$. Für die Wahrscheinlichkeiten der einzelnen Nukleotide und die Übergangswahrscheinlichkeiten der Zustände gilt in einem stark vereinfachten Modell:

Als Anfangsbedingung wird $P(X_0 = w) = 0.5$ angenommen.

- (a) Wie wahrscheinlich ist es, eine CpG-Insel der Länge k zu finden? Geben Sie $P(X_1 = \ldots = X_k = w, X_{k+1} = f | X_0 = f)$ für $k \ge 1$ an!
- (b) Sie wollen effizient CpG-Inseln in einer DNA-Sequenz finden und berechnen hierzu die Wahrscheinlichkeit $p_t = P(X_t = w | Y_1, \dots, Y_t)$ aus p_{t-1} und Y_t . Wie sieht ein solcher Filter-Schritt für die Beobachtung $Y_t = g$ aus?
- (c) Wie hoch ist die Wahrscheinlichkeit $P(X_t|Y_1 = c, Y_2 = g)$ für eine CpG-Insel an den Positionen t = 3 und t = 4, wenn Sie nur die ersten zwei Nukleotide der DNA-Sequenz kennen?
- (d) Wie hoch ist die Wahrscheinlichkeit $P(X_1 = w | Y_1 = c, Y_2 = g)$, dass bereits das erste Nukleotid der DNA-Sequenz $Y_1 = c, Y_2 = g, \dots$ zu einer CpG-Insel gehört?
- (e) Verwenden Sie den Viterbi-Algorithmus, um die wahrscheinlichste Folge von X_t für die DNA-Sequenz $Y_1 = a, Y_2 = c, Y_3 = g, Y_4 = t$ zu finden!

Eine neuentdeckte Chamäleonart nutzt ihre Hautfarbe, um komplexe Botschaften zu kommunizieren. Wir unterscheiden zwischen einer Folge von Segmenten x_1, x_2, x_3, \ldots und der tatsächlich beobachteten Folge von Farben y_1, y_2, y_3, \ldots

x_i	x_{i+1}	$P(x_{i+1} x_i)$
Beginn	Feind	0.4
Beginn	Nahrung	0.6
Feind	Ort	1.0
Nahrung	Ort	0.2
Nahrung	Menge	0.8
Ort	Beginn	0.3
Ort	Ende	0.7
Menge	Ort	0.3
Menge	Beginn	0.2
Menge	Ende	0.5

x_i	y_i	$P(y_i x_i)$
Beginn	weiß	1.0
Feind	rot	0.6
Feind	blau	0.4
Nahrung	rot	0.7
Nahrung	grün	0.3
Ort	blau	0.8
Ort	orange	0.2
Menge	blau	0.1
Menge	grün	0.9
Ende	schwarz	1.0

Die Markovkette beginnt immer mit $x_1 = Beginn$ und endet mit $x_k = Ende$. Alle nicht angegebenen Wahrscheinlichkeiten $P(x_{i+1}|x_i)$ und $P(y_i|x_i)$ sind Null. Sie können die Segmenttypen mit großen und die Farben mit kleinen Anfangsbuchstaben abkürzen, um Platz zu sparen.

- (a) Stellen Sie das Modell für die Ausdrücke in einem Übergangsdiagramm graphisch dar! Sie brauchen keine Wahrscheinlichkeiten einzutragen.
- (b) Mit welcher Wahrscheinlichkeit tritt die Farbfolge "weiß-rot-blau-orangeschwarz" in diesem Modell auf?
- (c) Sie beobachten die Folge "weiß-rot-orange-schwarz". Ist es wahrscheinlicher, dass es um Nahrung oder Feinde geht? Wie sicher ist dies?
- (d) Wie wahrscheinlich ist eine Nachricht aus 4 Segmenten?