無機化学

第Ⅰ部	非金属元素	2
1	水素	2
1.1	同位体	2
1.2	製法	2
1.3	反応	2
2	貴ガス	2
2.1	性質	2
2.2	生成	2
2.3	ヘリウム He	2
2.4	ネオン Ne	2
2.5	アルゴン Ar	2
3	ハロゲン	3
3.1	単体	3
3.2	ハロゲン化水素	4
3.3	ハロゲン化銀	5
3.4	次亜塩素酸塩	5
3.5	水素酸カリウム	5
4	酸素	6
4.1	酸素原子	6
4.2	酸素	6
4.3	オゾン	6
4.4	酸化物の分類	7
4.5	水の特異性	7
5	硫黄	8
5.1	硫黄	8
5.2	硫化水素	8
5.3	二酸化硫黄(亜硫酸ガス)	8
5.4	硫酸	8
5.5	チオ硫酸ナトリウム(ハイポ)	8
6	窒素	8
第Ⅱ部	金属元素	9

無機化学 1/9

第I部

非金属元素

1 水素

<u>無色無臭</u>の気体*1 <u>最も軽く</u>、水に溶け<u>にくい</u>

1.1 同位体

 1 H 99% 以上 2 H (\underline{D})0.015% 3 H (\underline{T}) 微量

1.2 製法

- ナフサの電気分解 工業的製法
- 赤熱した $\frac{\mathbf{J} \rho \mathbf{Z}}{\mathbf{Z}}$ に $\frac{\mathbf{X} \mathbf{X} \mathbf{S}}{\mathbf{S}}$ を吹き付ける $\boxed{\mathbf{T} \mathbf{X} \mathbf{S} \mathbf{S}}$ $\mathbf{C} + \mathbf{H}_2 \mathbf{O} \longrightarrow \mathbf{H}_2 + \mathbf{C} \mathbf{O}$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- イオン化傾向がH₂ より大きい金属と希薄強酸
 - \P Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow
 - $\bigcirc \mathbb{N}$ Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

1.3 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2\,\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow \mathrm{H}_2\mathrm{O}$
- 加熱した酸化銅(II)と水素 $CuO + H_2 \longrightarrow Cu + H_2O$
- 水酸化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

- 無色・無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い。
- イオン化エネルギーが極めて大きい。
- 電子親和力は極めて小さい(ほぼ0)。
- 電気陰性度は定義されない。

2.2 牛成

⁴⁰K の電子捕獲

 $^{40}\mathrm{K} + \mathrm{e}^{-} \longrightarrow ^{40}\mathrm{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 N_2 , O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

無機化学 2/9

^{*1} 融点 14K 沸点 20K

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	${ m I}_2$
分子量	小	\longleftrightarrow		大
分子間力 (反応性)	弱(強)	\leftarrow	\rightarrow	強(弱)
沸点・融点	低	\	\rightarrow	高
常温での状態	<u>気体</u>	<u>気体</u>	液体	固体
色	<u>淡黄</u> 色	黄緑色	赤褐色	<u>黒紫</u> 色
特徴	<u>特異</u> 臭	刺激臭	揮発性	昇華性
Hっとの反応	<u>冷暗所</u> でも	<u>常温</u> でも <u>光</u> で	<u>加熱</u> して	高温で平衡状態
11 ₂ 2 0) X / U	爆発的に反応	爆発的に反応	<u>触媒</u> により反応	<u>加熱</u> して <u>触媒</u> により一部反応
水との反応	水を酸化して酸素を発生	一部とけて反応	一部とけて反応	反応しない
八との人人	激しく反応			KIaq には可溶
用途	保存が困難	<u>ClO</u> -による	C=C ❖	<u>ヨウ素デンプン</u> 反応で
用处	Kr や Xe と反応	<u>殺菌・漂白</u> 作用	C≡C の検出	<u>青紫</u> 色

3.1.2 製法

- フッ化水素ナトリウム ${
 m KHF}_2$ のフッ化水素 ${
 m HF}$ 溶液 の電気分解 ${
 m T業的製法}$ ${
 m KHF}_2 \longrightarrow {
 m KF} + {
 m HF}$
- 水酸化ナトリウム</mark>の電気分解 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 酸化マンガン(IV)に<u>濃硫酸</u>を加えて加熱 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$
- <u>高度さらし粉</u>と<u>塩酸</u> ${\rm Ca(ClO)_2 \cdot 2\, H_2O} + 4\, {\rm HCl} \longrightarrow {\rm CaCl_2} + 2\, {\rm Cl_2} \uparrow + 4\, {\rm H_2O}$
- <u>さらし粉</u>と<u>塩酸</u> ${\rm CaCl}({\rm ClO}) \cdot {\rm H_2O} + 2 \, {\rm HCl} \, \longrightarrow \, {\rm CaCl_2} + {\rm Cl_2} \uparrow \, + \\ 2 \, {\rm H_2O}$
- 臭化マグネシウムと塩素 $\mathrm{MgBr_2} + \mathrm{Cl_2} \longrightarrow \mathrm{MgCl_2} + \mathrm{Br_2}$
- ヨウ化カリウムと塩素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- 塩素と水素 $\begin{array}{l} \mathbf{H}_2 + \mathrm{Cl}_2 \xrightarrow{\mathcal{H}^{e_3} \mathsf{Ta} \mathsf{S} \mathsf{L}} \mathbf{g}^{\underline{\mathsf{R}} \mathsf{S} \mathsf{h} \mathsf{l} \mathsf{L} \mathsf{D} \mathsf{C}} \\ \end{array} \mathbf{2} \, \mathbf{H} \mathbf{Cl} \\ \mathbf{1} \end{array}$
- 臭素と水素 ${\rm H_2} + {\rm Br_2} \xrightarrow{\bar{\rm Ala}^{\rm TC}\bar{\rm CC}^{\rm L}} 2\,{\rm HBr}$
- ヨウ素と水素 $\mathbf{H}_2 + \mathbf{I}_2 \xrightarrow{\frac{\mathbf{G} \mathbb{H} \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}}{\mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}}} 2\,\mathbf{H} \mathbf{I}$
- フッ素と水 $2\,F_2 + 2\,H_2O \longrightarrow 4\,HF + O_2$
- 塩素と水 $\operatorname{Cl}_2 + \operatorname{H}_2\operatorname{O} \Longrightarrow \operatorname{HCl} + \operatorname{HClO}$
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 $\mathbf{I_2} + \mathbf{I^-} \longrightarrow \mathbf{I_3}^-$

無機化学 3/9

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}\ \mathrm{Cl_2,HCl,H_2O}$ \downarrow <u>水</u> に通す (HCl の除去) $\mathrm{Cl_2,H_2O}$ \downarrow <u>濃硫酸</u>に通す (H_2O の除去) $\mathrm{Cl_2}$

3.1.5 塩素のオキソ酸

オキソ酸 ・・・酸素を含む酸性物質

+ VII	$\frac{\mathrm{HClO}_4}{}$	過塩素酸	$\begin{bmatrix} O \\ \\ H - O - Cl - O \\ \\ O \end{bmatrix}$
			O
+ V	$\frac{\mathrm{HClO}_{3}}{}$	塩素酸	H - O - Cl - O
+ III	HClO_2	亜塩素酸	H-O-Cl-O
+ I	HClO	次亜塩素酸	H - O - Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI
色・臭い				
沸点	20°C	$-85^{\circ}\mathrm{C}$	−67°C	−35°C
水との反応	よく溶ける			
水溶液	フッ化水素酸	塩酸	臭化水素酸	ヨウ化水素酸
(強弱)	弱酸 ≪ 強酸 < 強酸 < 強酸			
用途	<mark>ガラス</mark> と反応	<mark>アンモニア</mark> の検出	半導体加工	インジウムスズ
加壓	⇒ ポリエチレン瓶	各種工業	下海肸加工	酸化物の加工

3.2.2 製法

- <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱(<u>弱酸遊離</u>) $\text{CaF}_2 + \text{H}_2\text{SO}_4 \xrightarrow{\triangle} \text{CaSO}_4 + 2\,\text{HF} \uparrow$
- 水素と塩素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2 HCl \uparrow$

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

無機化学 4/9

3.3 ハロゲン化銀 3 ハロゲン

• <u>塩化水素</u>による<u>アンモニア</u>の検出 $AgO_2 + 2HF \longrightarrow 2AgF + H_2O$

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	黄褐色	<u>白</u> 色	淡黄色	黄色
水との反応	水との反応 よく溶ける		んど溶けな	ない
光との反応	感光	感光性(→ <u>Ag</u>)		g)

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 ${\rm Ag_2O+2\,HF} \longrightarrow 2\,{\rm AgF} + {\rm H_2O}$
- ハロゲン化水素イオンを含む水溶液と<mark>硝酸銀水溶液</code> $\mathrm{Ag^+} + \mathrm{X^-} \longrightarrow \mathrm{AgX} \downarrow$ </mark>

3.4 次亜塩素酸塩

3.4.1 性質

<u>酸化</u>剤として反応(<u>殺菌・漂白</u>作用 $ClO^- + 2H^+ + 2e^- \longrightarrow H_2O + Cl^-$

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素 $2\,\mathrm{NaOH} + \mathrm{Cl_2} \longrightarrow \mathrm{NaCl} + \mathrm{NaClO} + \mathrm{H_2O}$
- 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O}$

3.5 水素酸カリウム

化学式: KClO₃

3.5.1 性質

<u>酸素</u>の生成(<u>二酸化マンガン</u>を触媒に加熱) $2 \, \text{KClO}_3 \, \xrightarrow{\text{MnO}_2} 2 \, \text{KClO} + 3 \, \text{O}_2 \, \uparrow$

無機化学 5/9

4 酸素

4.1 酸素原子

同<u>位</u>体:酸素 (O_2) ,<u>オゾン</u> (O_3) 地球の地殻に<mark>最も多く</mark>存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 無色無臭の気体
- 沸点 -183°C

4.2.2 製法

- 液体空気の分留 工業的製法
- 水 (水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 \uparrow + \operatorname{O}_2 \uparrow$
- <u>過酸化水素水</u> (<u>オキシドール</u>) の分解 $2 \operatorname{H}_2 \operatorname{O}_2 \xrightarrow{\operatorname{MnO}_2} \operatorname{O}_2 \uparrow + 2 \operatorname{H}_2 \operatorname{O}$
- $\frac{$ 塩素酸カリウム} $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KClO} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: O_3

4.3.1 性質

- ニンニク臭(<mark>特異</mark>臭)を持つ<mark>淡青</mark>色の<mark>気体</mark>(常温)
- 水に少し溶ける
- 殺菌・脱臭作用

オゾンにおける酸素原子の運動・

4.3.2 製法

酸素中で<u>無声放電</u>/強い<mark>紫外線</mark>を当てる $3O_2 \longrightarrow 2O_3$

4.3.3 反応

- 酸化剤としての反応 $O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$
- 湿らせたヨウ化カリウムでんぷん紙を青色に変色
- 酸化カルシウムと水 ${
 m CaO_2 + H_2O \longrightarrow Ca(OH)_2}$
- 二酸化窒素と水 $NO_2 + H_2O \longrightarrow NO(OH)_2$
- 酸化銅(II)と水 ${\rm CuO} + {\rm H_2O} \longrightarrow {\rm Cu(OH)_2}$
- 酸化アルミニウムと硫酸 ${\rm Al_2O_3} + 3\,{\rm H_2SO_4} \longrightarrow {\rm Al_2(SO_4)_3} + 3\,{\rm H_2O}$
- 酸化アルミニウムと水酸化ナトリウム水溶液 Al₂O₃ + NaOH →

4.4 酸化物の分類 4 酸素

4.4 酸化物の分類

	塩基性酸化物	両性酸化物	酸性酸化物
元素	<u>陽性</u> の <u>大き</u> い <u>金属</u> 元素	<u>陽性</u> の <u>小さ</u> い <u>金属</u> 元素	非金属元素
水との反応	塩基性	ほとんど溶けない	<u>酸性</u> (⇒ <u>オキソ酸</u>)
中和	酸と反応	<u>酸・塩基</u> と反応	<u>塩基</u> と反応

両性酸化物 \cdots $\underline{\mathit{PNS}}$ $\underline{\mathit{PL}}$ $\underline{\mathit{PNS}}$ $\underline{$

4.5 水の特異性

● 極性分子

● 周りの4つの分子と水素結合

● 異常に<mark>高い</mark>沸点

<u>隙間の多い</u>結晶構造(密度:固体液体)

● 特異な<mark>融解曲線</mark>

無機化学 7/9

 st^2 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

	斜方硫黄	単斜硫黄	ゴム状硫黄
化学式	$\underline{\mathrm{S}_8}$	S_8	$\underline{\mathrm{S}_x}$
色	<u>黄</u> 色	<u>黄</u> 色	<u>黄</u> 色
構造	塊状結晶	<u>針状</u> 結晶	不定形 固体
融点	113°C	119°C	不定
構造	S S S S		S S S S S S S S S S S S S S S S S S
CS_2 との反応	溶ける	溶ける	溶けない

CS₂··· 無色・芳香性・揮発性 ⇒<mark>無極性</mark>触媒

5.1.2 反応

- 高温で多くの金属(Au、Pt を除く)との反応
- 空気中で青色の炎を上げて燃焼
- 5.2 硫化水素
- 5.3 二酸化硫黄 (亜硫酸ガス)
- 5.4 硫酸
- 5.5 チオ硫酸ナトリウム (ハイポ)
- 6 窒素

無機化学 8/9

第Ⅱ部

金属元素

無機化学 9/9