Support Vector Regression

Mingmin Chi School of Computer Science Fudan University

Support Vector Classifier: Revisit

Support Vector Regression

- SVM was first introduced in 1992 [1]
- SVM is related to statistical learning theory [2]
- SVM becomes popular because of its success in handwritten digit recognition
 - 1.1% test error rate for SVM. This is the same as the error rates of a carefully constructed neural network, LeNet 4.
- SVM is now regarded as an important example of "kernel methods", one of the key area in machine learning
 - Note: the meaning of "kernel" is different from the "kernel" function for Parzen windows

^[1] B.E. Boser *et al.* A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory 5 144-152, Pittsburgh, 1992.

^{[2] [3]} V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.

Example

- Suppose we have 5 1D data points
 - x_1 =1, x_2 =2, x_3 =4, x_4 =5, x_5 =6, with 1, 2, 6 as class 1 and 4, 5 as class 2 \Rightarrow y_1 =1, y_2 =1, y_3 =-1, y_4 =-1, y_5 =1
- We use the polynomial kernel of degree 2
 - $K(x,y) = (xy+1)^2$
 - C is set to 100
- We first find a_i (*i*=1, ..., 5) by

max.
$$\sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2$$
 subject to $100 \ge \alpha_i \ge 0, \sum_{i=1}^{5} \alpha_i y_i = 0$

Example

- By using a QP solver, we get
 - a_1 =0, a_2 =2.5, a_3 =0, a_4 =7.333, a_5 =4.833
 - Note that the constraints are indeed satisfied
 - The support vectors are $\{x_2=2, x_4=5, x_5=6\}$
- The discriminant function is f(z)
- $= 2.5(1)(2z+1)^{2} + 7.333(-1)(5z+1)^{2} + 4.833(1)(6z+1)^{2} + b$ $= 0.6667z^{2} 5.333z + b$
- b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, as x_2 and x_5 lie on the line $\phi(\mathbf{w})^T \phi(\mathbf{x}) + b = 1$ and x_4 lies on the line $\phi(\mathbf{w})^T \phi(\mathbf{x}) + b = -1$
- •All three give b=9 $\longrightarrow f(z) = 0.6667z^2 5.333z + 9$

Justification of SVM

- Large margin classifier
- Structural Risk Minimization (SRM) vs ERM
- Ridge regression: the term ½||w||² "shrinks" the parameters towards zero to avoid overfitting
- The term ½||w||² can also be viewed as imposing a weight-decay prior on the weight vector, and we find the MAP estimate

Choosing the Kernel Function

- Kernel function describes the correlation or similarity between two data points
- Probably the most tricky part of using SVM
- The kernel function is important because it creates the kernel matrix, which summarizes all the data
- In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try
- Note that SVM with RBF kernel is closely related to RBF neural networks, with the centers of the radial basis functions automatically chosen for SVM

Summary: Steps for Classification

- Prepare the pattern matrix
- Select the kernel function to use
- Select the parameter of the kernel function and the value of C
 - You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- Execute the training algorithm and obtain the a_i
- Unseen data can be classified using the a_i and the support vectors

Strengths and Weaknesses of SVM

Strengths

- Training is relatively easy
 - No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly
- Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors

Weaknesses

- Need to choose a "good" kernel function
- Suffer from out-of memory probem with huge amount of training dataset

Other Types of Kernel Methods

- A lesson learnt in SVM: a linear algorithm in the feature space is equivalent to a non-linear algorithm in the input space
- Standard linear algorithms can be generalized to its nonlinear version by going to the feature space
 - Kernel principal component analysis
 - kernel independent component analysis
 - kernel canonical correlation analysis
 - kernel k-means

...

- SVM is a useful alternative to multi-layer perceptron neural networks
- Two key concepts of SVM:
 - maximize the margin and
 - the kernel trick

SUPPORT VECTOR REGRESSION

The Regression Task

- Given training data: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \Re^d$
- Find function: $f: \Re^{d} \to \Re$

"best function" = the expected error on *unseen* data $(x_{n+1}, y_{n+1}), \dots, (x_{n+k}, y_{n+k})$ is minimal

- Existing techniques to solve the classification task:
 - Classical (Linear) Regression
 - Ridge Regression
 - NN

Given variables:

- person's age
- income group
- season
- holiday duration
- location
- number of children
- etc. (12 variables)

Predict:

the level of holiday Expenditures

Data collected by Erasmus University Rotterdam in 2003

"Lazy case" (underfitting)

"Suspiciously smart case" (overfitting)

"Compromise case", SVR (good generalizability)

The epsilon-insensitive loss function

$$y = w_1 x + b$$
$$w_1 = 0$$
$$b = 2.5$$

$$|y_i - f(\mathbf{x}_i)|_{\epsilon} \equiv \max\{0, |y_i - f(\mathbf{x}_i)| - \epsilon \}$$

The thinner the "tube", the more complex the model

Map the data into a *higher*-dimensional space:

$$x \to \Phi(x) = (\sqrt{x}, \sqrt{2}x^2)$$

Age $\to \Phi(\text{Age})$
Age $\to (\sqrt{\text{Age}}, \sqrt{2} \text{ Age}^2)$

$$y = w_1 x + b$$

$$y = w_1\sqrt{x} + w_2\sqrt{2}x^2 + b$$

Map the data into a *higher*-dimensional space:

$$x \to \Phi(x) = (\sqrt{x}, \sqrt{2}x^2)$$

Age $\to \Phi(\text{Age})$
Age $\to (\sqrt{\text{Age}}, \sqrt{2} \text{ Age}^2)$

$$y = \mathbf{w}'\Phi(x) + b$$

$$y = w_1\sqrt{x} + w_2\sqrt{2}x^2 + b$$

Finding the value of a new point:

$$y = \mathbf{w}'\Phi(x) + b$$

$$y = w_1\sqrt{x} + w_2\sqrt{2}x^2 + b \pm \epsilon$$

Linear SVR: derivation

- Given training data $\{x_i, y_i\}_{i=1}^n$
- Find: w_1 , b such that $y = w_1 x + b$ optimally describes the data:

Linear SVR: derivation

$$|w_1|$$
 vs. $\sum_i (\xi_i + \xi_i^*)$

Complexity Sum of errors

$$\min_{w_1, b, \xi_i, \xi_i^*} \frac{1}{2} w_1^2 + C \sum_i (\xi_i + \xi_i^*)$$

Case I:
$$w_1 \downarrow \longrightarrow \text{``tube''} \longrightarrow \text{complexity} \downarrow \longrightarrow \sum_i (\xi_i + \xi_i^*) \uparrow$$

Case II:
$$w_1 \uparrow \longrightarrow \text{``tube''} \downarrow \longrightarrow \text{complexity} \uparrow \longrightarrow \sum_i (\xi_i + \xi_i^*) \downarrow$$

Linear SVR: derivation

$$\min_{w_1, b, \xi_i, \xi_i^*} \frac{1}{2} w_1^2 + C \sum_{i} (\xi_i + \xi_i^*)$$

■ The role of *C*

Case I:
$$w_1 \downarrow \longrightarrow \text{``tube'} \uparrow \longrightarrow \text{complexity} \downarrow \longrightarrow \sum_i (\xi_i + \xi_i^*) \uparrow$$

Case II:
$$w_1 \uparrow \longrightarrow \text{``tube''} \downarrow \longrightarrow \text{complexity} \uparrow \longrightarrow \sum_i (\xi_i + \xi_i^*) \downarrow$$

$$y = w_1 x + b$$

$$\min_{w_1, b, \xi_i, \xi_i^*} \frac{1}{2} w_1^2 + C \sum_i (\xi_i + \xi_i^*)$$

Subject to:

$$y_i - (w_1 x_{i1}) - b \le \epsilon + \xi_i \setminus \setminus \setminus (w_1 x_{i1}) + b - y_i \le \epsilon + \xi_i^* \mid \mid \mid \mid$$

 $\xi_i, \xi_i^* \ge 0 \quad i = 1, 2, ..., n$

Non-linear SVR: derivation

$$y = \mathbf{w}'\Phi(x) + b$$

$$\min_{w_1, b, \xi_i, \xi_i^*} \frac{w_1^2 + w_2^2}{2} + C \sum_i (\xi_i + \xi_i^*)$$

Subject to:

$$y_i - (\mathbf{w}'\phi(x_{i1})) - b \le \epsilon + \xi_i$$

 $(\mathbf{w}'\phi(x_{i1})) + b - y_i \le \epsilon + \xi_i^*$
 $\xi_i, \xi_i^* \ge 0$ $i = 1, 2, ..., n$

Non-linear SVR: derivation

$$\min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i} (\xi_i + \xi_i^*)$$

Subject to:

$$y_i - (\mathbf{w}'\phi(\mathbf{x}_i)) - b \le \epsilon + \xi_i$$
$$(\mathbf{w}'\phi(\mathbf{x}_i)) + b - y_i \le \epsilon + \xi_i^*$$
$$\xi_i, \xi_i^* \ge 0 \qquad i = 1, 2, \dots, n$$

$$L := \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i} (\xi_i + \xi_i^*) - \sum_{i} (\eta_i \xi_i + \eta_i^* \xi_i^*)$$
$$- \sum_{i} \alpha_i (\epsilon + \xi_i - y_i + \mathbf{w}' \phi(\mathbf{x}_i) + b) - \sum_{i} \alpha_i^* (\epsilon + \xi_i^* + y_i - \mathbf{w}' \phi(\mathbf{x}_i)) - b)$$

Saddle point of *L* has to be found:

 $\begin{array}{ll} \text{min with respect to} & \mathbf{w}, b, \xi_i, \xi_i^* \\ \text{max with respect to} & \alpha_i, \alpha_i^*, \eta_i, \eta_i^* \end{array}$

Non-linear SVR: derivation

$$L := \frac{1}{2} \| \mathbf{w} \|^{2} + C \sum_{i} (\xi_{i} + \xi_{i}^{*}) - \sum_{i} (\eta_{i} \xi_{i} + \eta_{i}^{*} \xi_{i}^{*})$$
$$- \sum_{i} \alpha_{i} (\epsilon + \xi_{i} - y_{i} + \mathbf{w}' \phi(\mathbf{x}_{i}) + b) - \sum_{i} \alpha_{i}^{*} (\epsilon + \xi_{i}^{*} + y_{i} - \mathbf{w}' \phi(\mathbf{x}_{i})) - b)$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i) = 0$$

$$f(\mathbf{x}) = \mathbf{w}'\phi(\mathbf{x}) + b$$

$$f(\mathbf{x}) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*})(\phi(\mathbf{x}_{i})'\phi(\mathbf{x})) + b$$

$$f(\mathbf{x}) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*})k(\mathbf{x}_{i}, \mathbf{x}) + b$$

Strengths of SVR:

- No local minima
- It scales relatively well to high dimensional data
- Trade-off between classifier complexity and error can be controlled explicitly via C and epsilon
- Overfitting is avoided (for any fixed C and epsilon)
- Robustness of the results
- The "curse of dimensionality" is avoided

Weaknesses of SVR:

What is the best trade-off parameter *C* and best *epsilon*?

What is a good transformation of the original space

The end!