Examenul de bacalaureat național 2019

Proba E. c)

Matematică *M_mate-info*

Clasa a XI-a BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	В	5p
2.	$oldsymbol{A}$	5p
3.	C	5p
4.	D	5p
5.	$oldsymbol{A}$	5p
6.	A	5р

SUBIECTUL al II-lea

(30 de puncte)

1.a)	0 2 1	
	$D(0,1) = \begin{vmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 2 & 3 & 1 \end{vmatrix} =$	2 p
	=0+0+4-0-0-0=4	3 p
b)	$D(a,1) = \begin{vmatrix} a & 2 & 1 \\ a & a & 1 \\ 2 & 3 & 1 \end{vmatrix} = a^2 - 4a + 4 =$	3p
	$=(a-2)^2 \ge 0$, pentru orice număr real a	2p
c)	$D(m,n) = m^2 + m + 4n^2 - 5mn$, unde m și n sunt numere întregi impare	2 p
	Cum m şi n sunt numere întregi impare, m^2 este impar, $4n^2$ este par şi $5mn$ este impar, deci numărul întreg $D(m,n)$ este impar, de unde obținem că $D(m,n) \neq 0$	3 p
2.a)	$A(-x) + A(x) = \begin{pmatrix} -x & 1 & x \\ 1 & 0 & 1 \\ x & 1 & -x \end{pmatrix} + \begin{pmatrix} x & 1 & -x \\ 1 & 0 & 1 \\ -x & 1 & x \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = 2A(0), \text{ pentru orice număr real } x$	2p
	$A(x)A(y) = \begin{pmatrix} 2xy+1 & 0 & -2xy+1 \\ 0 & 2 & 0 \\ -2xy+1 & 0 & 2xy+1 \end{pmatrix}, A(2xy) = \begin{pmatrix} 2xy & 1 & -2xy \\ 1 & 0 & 1 \\ -2xy & 1 & 2xy \end{pmatrix}, \text{ pentru orice numere}$ reale $x \neq y$	2p

	$A(x)A(y) - A(2xy) = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(x)A(y) - A(2xy)) = \begin{vmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{vmatrix} = 0, \text{ pentru}$ orice numere reale x şi y	3р
c)	$A(x)A\left(\frac{1}{2x}\right) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I_3, \text{ pentru orice număr real nenul } x$	3p
	$\underbrace{2I_3 + 2I_3 + \ldots + 2I_3}_{\text{de 2019 ori } 2I_3} = 4038I_3, \text{ deci } m = 4038$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x+1}{x+2} = \lim_{x \to +\infty} \frac{x\left(1+\frac{1}{x}\right)}{x\left(1+\frac{2}{x}\right)} =$	3p
	$= \lim_{x \to +\infty} \frac{1 + \frac{1}{x}}{1 + \frac{2}{x}} = 1$	2p
b)	$a_n = \frac{n+1}{n+2}$, deci $a_n > 0$, pentru orice număr natural n , $n \ge 1$	2p
	Cum $a_n = 1 - \frac{1}{n+2} < 1$, pentru orice număr natural n , $n \ge 1$, șirul $(a_n)_{n \ge 1}$ este mărginit	3 p
c)	c) $\lim_{n \to +\infty} n\left(\sqrt{f(n)} - 1\right) = \lim_{n \to +\infty} \frac{n\left(f(n) - 1\right)}{\sqrt{f(n)} + 1} = \lim_{n \to +\infty} \frac{n\left(\frac{n+1}{n+2} - 1\right)}{\sqrt{f(n)} + 1} =$	2p
	$= \lim_{n \to +\infty} \frac{-n}{(n+2)\left(\sqrt{f(n)} + 1\right)} = -\frac{1}{2}$	3p
2.a)	Pentru orice număr real a , funcția f este continuă pe $(-\infty,0)$ și pe $(0,+\infty)$	2p
	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} \left(a + \frac{\sin x}{x} \right) = a + 1, \lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \sqrt{x^2 + 2x} = 0 \text{ si } f(0) = 0, \text{ deci funcția}$ $f \text{ este continuă pe } \mathbb{R} \Leftrightarrow a = -1$	3 p
b)	$a = 1 \Rightarrow f(x) = 1 + \frac{\sin x}{x}, \ x \in (-\infty, 0)$	1p
	$\left \frac{\sin x}{x} \right \le \frac{1}{ x } \text{si } \lim_{x \to -\infty} \frac{1}{ x } = 0$	2p
	Obținem $\lim_{x \to -\infty} f(x) = 1$, deci dreapta de ecuație $y = 1$ este asimptotă orizontală spre $-\infty$ la	2
	graficul funcției f	2p
c)	$f(0) = 0$, $\lim_{x \to +\infty} f(x) = +\infty$ și f este continuă pe $[0, +\infty)$, deci mulțimea valorilor funcției	3p
	f conține intervalul $[0,+\infty)$ Cum pentru orice număr real a , $ a \in [0,+\infty)$, ecuația $f(x) = a $ are cel puțin o soluție	2p
	1	-P