Uitwerking van opgave 7 bij paragraaf 5.3 van Huth&Ryan

We bewijzen stelling 5.14 voor geval B (symmetrie), dat wil zeggen
--

Het schema $\phi \to \Box \Diamond \phi$ is geldig in een frame $\mathcal{F} = (W, R)$ \iff R is symmetrisch

(a) We bewijzen eerst dat het schema $\phi \to \Box \Diamond \phi$ geldig is in een frame als de relatie van het frame symmetrisch is.

We nemen aan dat R symmetrisch is. Neem nu een valuatie functie L en een verzameling werelden W zodat $\mathcal{M} = (W, R, L)$ een model is. We laten zien dat $\mathcal{M} \Vdash \phi \to \Box \Diamond \phi$.

Kies een willekeurige x uit W en neem aan dat $x \Vdash \phi$. We zien nu dat $y \Vdash \Diamond \phi$ voor iedere y met R(x,y):

Omdat R symmetrisch is, hebben we ook R(y,x). En omdat $x \Vdash \phi$ (onze aanname) volgt hieruit dat $y \Vdash \Diamond \phi$.

Hieruit volt $x \Vdash \phi \to \Box \Diamond \phi$ en omdat x willekeurig is ook $\mathcal{M} \Vdash \phi \to \Box \Diamond \phi$.

Merk op dat we niets aangenomen hebben over \mathcal{M} , behalve dat R symmetrisch is. Dus is $\phi \to \Box \Diamond \phi$ waar in ieder model op ieder frame met een symmetrische relatie en dus geldig in al deze frames.

(b) We bewijzen vervolgens dat het schema $\phi \to \Box \Diamond \phi$ niet geldig is in een frame als de relatie van het frame niet symmetrisch is.

Neem een willekeurig frame $\mathcal{F} = (W, R)$ dat niet symmetrisch is. Dan zijn er dus twee werelden x en y in W zodat R(x, y) en niet R(y, x)¹.

We laten nu zien dat $\phi \to \Box \Diamond \phi$ niet geldig is in \mathcal{F} . Daartoe kiezen we een valuatie functie L zodat $\mathcal{M} = (W, R, L)$ een model is met:

p is waar in wereld x (en nergens anders)

Nu hebben we $x \Vdash p$, maar ook $y \not\Vdash \Diamond p$. Want stel dat $y \Vdash \Diamond p$, dan moet er een wereld z zijn met R(y,z) en $z \Vdash p$. Dit kan echter niet, want de enige wereld waar p waar is is wereld x en we weten dat niet R(y,x).

Hieruit volgt dat we niet voor alle werelden u met R(x,u) $u \Vdash \Diamond p$ hebben en dus $x \not\Vdash \Box \Diamond p$. Samen met $x \Vdash p$ betekent dit dat $x \not\Vdash p \to \Box \Diamond p$. Dit is een instantie van het schema en dus weten we ook dat $x \not\Vdash \phi \to \Box \Diamond \phi$.

Hiermee hebben we laten zien dat er een wereld in een model op \mathcal{F} is waar $\phi \to \Box \Diamond \phi$ niet waar is dus dat $\phi \to \Box \Diamond \phi$ niet geldig is in \mathcal{F} .

¹Merk op dat dit niet de enige werelden in W en paren in R hoeven te zijn. We weten echter wel dat tenminste x en y bestaan, dat R(x,y) en dat zeker niet R(y,x).