

R.D.&S.H NATIONAL COLLEGE & S.WA. SCIENCE COLLEGE

Bandra, Mumbai - 400050

DEPARTMENTOF COMPUTERSCIENCE

M.Sc. Computer Science - Semester III

Data Visualization

JOURNAL 2024-2025

Seat	No.		
Juli	110.		

R.D. & S.H. NATIONAL COLLEGE & S. W.A. SCIENCE COLLEGE,

Bandra, Mumbai - 400050.

Department of Computer Science

CERTIFICATE

III) class has satisfactor	Mr. Zubair Javed Qureshi rily completed <u>IX</u> Practicals M.Sc. Degree Course in Com 5.	s in the subject of Data
Date of Submission:		
Faculty Incharge		Co-ordinator, nent of Computer Science

Signature of External Examiner

Data-Visualization Journal

Sr. No.	Practical	Pg. No	Date	Sign
1	Create Charts and Reports in Power BI.	2		
2	Time Intelligence and data analysis Functions with DAX	6		
3	Create one-dimensional data using series and perform various operations on it	12		
4	Perform Reshaping of the hierarchical data and pivoting data frame data	14		
5	Connecting and extracting with various data resources in tableau and Perform calculations and creating parameters in Tableau.	17		
6	Designing Tableau Dashboards for different displays and devices	22		
7	Create a Trend model using data, Analyse-it and use it for forecasting.	28		
8	Creating Geospatial feature maps in Tableau using Geospatial Data.	33		
9	Create Dashboard and Storytelling using tableau.	36		

Practical: Creating Charts and Reports in Power BI

Objective: Learn to create basic charts and reports in Power BI by connecting to a dataset, transforming data, and building simple visuals.

Dataset: Sample Sales Data

Provide students with a sample dataset (like an Excel file or .csv) with the following columns:

- **Date**: Transaction date
- **Product Category**: Category of products (e.g., Electronics, Apparel)
- **Product Name**: Name of the product
- **Region**: Region of sales (e.g., North, South)
- Sales Amount: Total sales amount for the transaction
- Units Sold: Number of units sold

Step 1: Import Data into Power BI

- 1. Open Power BI Desktop.
- 2. Get Data:
 - \circ Go to **Home** > **Get Data** > **Excel** (or **CSV**).
 - o Browse and select the sample dataset file, then click **Load**.

3. **Preview the Data**:

o Verify that the data is loaded correctly by navigating to the **Data** view in Power BI.

Step 2: Data Cleaning (Optional)

- Check if the data needs cleaning. For example, look for any missing values or errors.
- If required, go to **Transform Data** to remove any unnecessary rows or columns or rename columns if needed.

Step 3: Create Simple Visuals

Chart 1: Sales by Product Category (Column Chart)

- 1. Go to the **Report** view.
- 2. In the **Fields** pane, check **Sales Amount** and **Product Category**.
- 3. Power BI will automatically create a bar chart. Change it to a column chart by selecting the **Clustered Column Chart** icon in the **Visualizations** pane.
- 4. Customize the chart:
 - Drag Sales Amount to the Y-axis and Product Category to the X-axis.
 - o In the **Visualizations** pane, adjust formatting options like **Data Labels** for easy viewing of values.

Chart 2: Sales Trend Over Time (Line Chart)

- 1. In the **Fields** pane, check **Date** and **Sales Amount**.
- 2. In the **Visualizations** pane, select the **Line Chart** icon.
- 3. Customize the chart:
 - o Drag Date to the X-axis and Sales Amount to the Y-axis.
 - o Under **Formatting**, enable **Data Labels** and format the chart as needed.

Chart 3: Regional Sales Distribution (Map)

- 1. Check **Region** and **Sales Amount** in the **Fields** pane.
- 2. Select the **Map** visualization icon in the **Visualizations** pane.

3. Customize the map:

- o Drag Region to the Location field and Sales Amount to Size.
- o Enable **Location Data** in the settings to let Power BI recognize the regions.

Step 4: Create a Slicer (Filter)

- 1. Select the **Slicer** visualization from the **Visualizations** pane.
- 2. Drag the **Product Category** field to the **Field** section of the slicer.
- 3. Place the slicer above the charts. This allows users to filter the report based on the selected product category.

Step 5: Design the Report Layout

- 1. Arrange visuals neatly on the report canvas for a clean, organized look.
- 2. Customize titles, background colors, and font sizes under **Formatting** to match your desired style.

Step 6: Add a Summary Card (Optional)

- 1. Select the **Card** visualization from the **Visualizations** pane.
- 2. Drag Sales Amount into the card to show total sales.
- 3. Customize the card with a descriptive title, such as **Total Sales**.

Step 7: Publish and Share the Report

- 1. **Save** your Power BI report locally.
- 2. Click on **Publish** in the top-right corner to share it to Power BI Service (cloud).
- 3. Choose your workspace, then click **Select**.
- 4. In Power BI Service, you can share the report link or embed it in websites, if needed.

Practical: Time Intelligence and data analysis Functions with DAX

Step: Importing Data Set

- 1. Load Dataset into Power BI
 - Open Power BI Desktop.
 - Click on Get Data > Excel and load your dataset.

Step 2: Creating a Date Table

Time Intelligence functions require a Date table. If not already available, create a Date table in Power BI:

- 1. Go to **Modeling** > **New Table**.
- 2. Enter the DAX formula below to create a Date table with date ranges.

DAX

DateTable =

CALENDAR(DATE(2023, 1, 1), DATE(2024, 12, 31))

3. Add calculated columns for **Year**, **Month**, **Quarter**, and **Month Name** for grouping data by these time periods:

DateTable =

ADDCOLUMNS(

```
CALENDAR(DATE(2023, 1, 1), DATE(2024, 12, 31)),
```

"Year", YEAR([Date]),

"Month", MONTH([Date]),

"Quarter", QUARTER([Date]),

"MonthName", FORMAT([Date], "MMMM")

)

4. Mark this table as the Date Table by selecting it in **Modeling > Mark as Date Table**.

Step 3: Calculating Year-To-Date Sales

- 1. Go to the **Modeling** tab > **New Measure**.
- 2. Enter the following DAX formula to calculate Year-To-Date (YTD) sales:

DAX

Measure 2 =

TOTALYTD(SUM(Sample_Sales_Data[Sales Amount]), DateTable[Date])

3. Use **Sales YTD** in a visual, such as a line chart or table, to see cumulative sales over the year.

Step 4: Calculating Month-To-Date and Quarter-To-Date Sales

1. Create two more measures to calculate MTD and QTD sales.

DAX

Sales MTD =

TOTALMTD(SUM(Sample_Sales_Data[Sales Amount]), DateTable[Date])

Sales QTD =

TOTALQTD(SUM(Sample_Sales_Data[Sales Amount]), DateTable[Date])

2. Use these measures to see how sales accumulate over months and quarters.

Step 5: Year-Over-Year (YoY) Comparison

1. Create a measure to calculate the prior year's sales for comparison.

DAX

Sales Previous Year =

CALCULATE(SUM(Sample_Sales_Data[Sales Amount]), SAMEPERIODLASTYEAR(DateTable[Date]))

2. Create a Year-over-Year growth measure.

DAX

YoY Growth =

DIVIDE([Sales YTD] - [Sales Previous Year], [Sales Previous Year], 0)

3. Add YoY Growth to a visual alongside Sales YTD and Sales Previous Year to show growth percentages.

Step 6: Using DATEADD for Custom Time Shifts

1. The DATEADD function is flexible for shifting dates by any period (days, months, quarters, years).

DAX

Sales Last Month =

CALCULATE(SUM(Sales[SalesAmount]), DATEADD(DateTable[Date], -1, MONTH))

2. This formula shifts the date back one month to calculate sales for the previous month.

Step 7: ParallelPeriod for Period Offset Comparisons

1. PARALLELPERIOD allows offsets similar to DATEADD, often used to compare the same period across different years.

DAX

Sales Two Years Ago =

CALCULATE(SUM(Sales[SalesAmount]), PARALLELPERIOD(DateTable[Date], -2, YEAR))

2. This formula shifts the date back by two years to calculate sales from two years ago.

Step 8: Custom Period Aggregations with CALCULATE and FILTER

Sometimes, custom calculations don't fit predefined DAX functions. Use CALCULATE and FILTER to create custom aggregations.

1. **Rolling 3-Month Sales**: Calculate the last three months' sales dynamically.

DAX

Sales Last 3 Months =

CALCULATE(SUM(Sales[SalesAmount]),

DATESINPERIOD(DateTable[Date],

LASTDATE(DateTable[Date]), -3, MONTH))

Step 9: Adding These Measures to a Power BI Report

- 1. Visualize each measure in Power BI:
 - o Sales YTD, MTD, QTD: Use line charts for trend analysis.
 - o Sales Previous Year and YoY Growth: Use bar or line and bar combo charts.
 - o Rolling 3-Month Sales: A line chart or KPI card for insights on recent sales trends.
- 2. Encourage students to customize visuals by adding slicers for Year, Quarter, and Month.

Step 10: Recap and Analysis

Encourage students to use their DAX measures to analyze:

- Seasonal trends, such as quarterly and monthly performance.
- Long-term growth by examining YoY Growth.
- Recent changes in performance with rolling averages.

Practical: Create one-dimensional data using series and perform various operations on it

Step 1: Open Power BI go to Get data and click more

Step 2: Search python and click connect

Step 3: Python script dialogue box will open type your python code here (Make sure you have python installed in your system)

Step 4 code:

import pandas as pd

import numpy as np

data = pd.DataFrame({'values': [10, 20, 30, 40, 50]})

data['Addition'] = data['values'] + 5

data['Multiplication'] = data['values'] * 2

```
data['Subtraction'] = data['values'] - 10
data['Division'] = data['values'] / 5
def square(x):
  return x * x
data['Squared'] = data['values'].apply(square)
statistics = {
  'Sum': [data['values'].sum()],
  'Mean': [data['values'].mean()],
  'Max': [data['values'].max()],
  'Min': [data['values'].min()]
}
stats_df = pd.DataFrame(statistics)
filtered_data = data[data['values'] > 25]
data_with_nan = pd.DataFrame({'values': [10, 20, np.nan, 40, 50]})
data_with_nan['Is_NaN'] = data_with_nan['values'].isna()
data_with_nan['Filled'] = data_with_nan['values'].fillna(0)
data['Sorted_Ascending'] = data['values'].sort_values().reset_index(drop=True)
data['Sorted_Descending'] = data['values'].sort_values(ascending=False).reset_index(drop=True)
output = pd.concat([data, stats_df], axis=1)
```

output:

Practical: Perform Reshaping of the hierarchical data and pivoting data frame data

Step 1: Open Power BI go to Get data and click more

Step 2: Search python and click connect

Step 3: Python script dialogue box will open type your python code here (Make sure you have python installed in your system)

Step 4 code:

```
import pandas as pd
import numpy as np

# Create a MultiIndex DataFrame (Hierarchical Data)
arrays = [
    ['A', 'A', 'B', 'B', 'B'],
    ['X', 'Y', 'Z', 'X', 'Y', 'Z']
]
index = pd.MultiIndex.from_arrays(arrays, names=('Letter', 'Symbol'))
data = pd.DataFrame({
    'Value1': [10, 20, 30, 40, 50, 60],
```

```
'Value2': [15, 25, 35, 45, 55, 65]
}, index=index)
print("Original DataFrame (Hierarchical Data):")
print(data)
print("\n")
# ----- Stack Operation -----
# Stack the DataFrame (Convert Columns to Rows)
stacked = data.stack()
print("Stacked DataFrame:")
print(stacked)
print("\n")
#----- Unstack Operation -----
# Unstack the DataFrame (Convert Rows to Columns)
unstacked = stacked.unstack()
print("Unstacked DataFrame:")
print(unstacked)
print("\n")
# ----- Pivoting Data -----
# Create DataFrame for Pivoting
data_for_pivot = pd.DataFrame({
  'Date': ['2024-01-01', '2024-01-01', '2024-01-02', '2024-01-02'],
  'City': ['New York', 'Los Angeles', 'New York', 'Los Angeles'],
  'Temperature': [32, 75, 30, 77]
})
print("Original Data for Pivoting:")
print(data_for_pivot)
print("\n")
# Pivot the DataFrame to make cities as columns and dates as rows
pivoted data = data for pivot.pivot(index='Date', columns='City', values='Temperature')
print("Pivoted DataFrame (Cities as Columns):")
print(pivoted_data)
print("\n")
# ----- Pivot Table Data -----
# Create DataFrame for Pivot Table
data for pivot table = pd.DataFrame({
  'Date': ['2024-01-01', '2024-01-01', '2024-01-02', '2024-01-02'],
  'City': ['New York', 'Los Angeles', 'New York', 'Los Angeles'],
  'Temperature': [32, 75, 30, 77],
  'Humidity': [80, 20, 85, 18]
})
```

```
print("Original Data for Pivot Table:")
print(data_for_pivot_table)
print("\n")

# Pivot Table to calculate the average temperature and humidity per city and date
pivot_table_data = data_for_pivot_table.pivot_table(
    index='Date',
    columns='City',
    values=['Temperature', 'Humidity'],
    aggfunc=np.mean
)

print("Pivot Table DataFrame (Average Temperature and Humidity):")
print(pivot_table_data)
```

Output:

Practical: Connecting and extracting with various data resources in tableau and Perform calculations and creating parameters in Tableau.

1. Connecting to Data Sources

Steps:

- o Open Tableau:
- On the "Connect" pane, select your data source (e.g., Excel, CSV, SQL Server, etc.).

- 2. Connect to a File:
- Choose Microsoft Excel for an example.
- o Browse to the desired file and click Open.

- 3. Preview the Data:
- o The data preview will appear. Drag the sheet to the canvas.

- 4. Extract Data:
- o In the top-right corner of the data source screen, choose Extract.

o Click on Sheet 1 to proceed.

2. Creating Calculations

Calculations in Tableau are used for custom computations or field transformations.

Example 1: Calculated Field

1. Go to the Data Pane (left sidebar) and right-click.

- 2. Select Create Calculated Field.
- 3. Give it a name (e.g., "Sales Growth").
- 4. Enter the formula:

(SUM([Current Year Sales]) - SUM([Previous Year Sales])) / SUM([Previous Year Sales]) (SUM([Sales]) - LOOKUP(SUM([Sales]), -1)) / LOOKUP(SUM([Sales]), -1)

5. Click OK.

Example 2: Conditional Calculation

- 1. Create another calculated field, name it "Category Performance".
- 2. Use the following formula

IF SUM([Sales]) > 100000 THEN "High"

ELSEIF SUM([Sales]) > 50000 THEN "Medium"

ELSE "Low"

END

3. Creating Parameters

Parameters let users dynamically control values.

Example: Dynamic Sales Filter

- 1. Go to the **Data Pane** and right-click.
- 2. Choose Create Parameter.

- 3. Name the parameter (e.g., "Sales Threshold").
- 4. Set the following:

o **Data Type:** Float

o Current Value: 50000

o Allowable Values: Range

o **Minimum:** 10000

o **Maximum:** 200000

Step Size: 10000

- 5. Click OK.
- 6. Create a calculated field using this parameter:

IF SUM([Sales]) > [Sales Threshold] THEN "Above Threshold"

ELSE "Below Threshold"

END

Add the parameter to your dashboard and observe the interactivity.

4. Visualizing Data

- 1. Drag dimensions and measures to Rows and Columns for visualizations.
- 2. Use filters, marks, and colors to enhance the chart.

Custom fields

- 1. Sales Growth
- 2. Category Performance
- 3. Sales Threshold

Practical: Designing Tableau Dashboards for different displays and devices

- 1. Dashboard Creation Basics
 - 1. Open Tableau Desktop and create a new workbook.
 - 2. Click Dashboard > New Dashboard.

- 3. In the dashboard pane:
 - o Set the Size dropdown to Automatic or a specific size like Desktop (1024 x 768).

2. Adding Content to the Dashboard

- 1. Drag and drop Sheets (visualizations) onto the dashboard canvas.
- 2. Arrange the components (e.g., charts, filters, legends) to fit the design goals.

Dashboard

- 3. Enabling Device-Specific Dashboards
 - 1. In the Dashboard Pane, click Device Preview.
 - 2. Select Add a Device Layout.
 - 3. Choose from the available devices:

o Phone Tablet

Desktop

- 4. Customize each layout:
 - o Phone Layout:
- Adjust for narrow screens by stacking charts vertically.

- Remove unnecessary elements to keep it simple.
 - o Tablet Layout:
- Use moderate-sized elements.

Balance interactivity and detail.

- Desktop Layout:
- Add full-sized visuals and interactive features.

4. Best Practices for Responsive Design

• Use containers (horizontal or vertical) for better alignment and spacing.

- Optimize font sizes and colors for readability across devices.
- Avoid overcrowding the dashboard by prioritizing key metrics.
- Test on actual devices to ensure usability.

5. Exporting and Sharing

1. Save the workbook as a .twbx file to include data.

2. Publish to Tableau Server or Tableau Public for accessibility across devices.

https://public.tableau.com/app/profile/mansi.gotta/viz/prac7_17362759279920/Dashboard1?publish=yes

Practical: Create a Trend model using data, Analyse-it and use it for forecasting.

1. Prepare the Dataset

We will create a simple dataset containing monthly sales data for two years. This data will serve as the foundation for trend analysis.

2. Load Data into the Tool

- **In Tableau**: Import the dataset by connecting to the CSV file.
- In Analyze-it (Excel Add-In): Open the CSV file in Excel and use Analyze-it to build the mode

3. Visualize the Trend

In Tableau:

- 1. Drag **Date** to the Columns shelf (ensure it is set to "Month-Year").
- 2. Drag **Sales** to the Rows shelf.
- 3. Use a **Line Chart** to show the trend over time.

In Analyze-it:

- 1. Highlight the date and sales columns.
- 2. Use **Analyze-it** > **Regression** to analyze the trend.

4. Add a Trend Line

In Tableau:

- 1. Right-click on the chart and select **Trend Line** > **Show Trend Lines**.
- 2. Choose the type of trend model (Linear, Logarithmic, or Polynomial).

In Analyze-it:

1. After running the regression, view the output for the trend equation (e.g., y = mx + c).

5. Forecast Future Values

In Tableau:

- 1. Right-click on the chart and choose **Forecast** > **Show Forecast**.
- 2. Customize the forecast length (e.g., 6 months).
- 3. Analyze the confidence interval and projected values.

Options Used to Create Forecasts

Time series: Year of Month

Measures: Sum of Sales

Forecast forward:

Forecast based on: January 2022 – November 2023

Ignore last: 1 month (December 2023)

Seasonal pattern: None (Not enough data to search for a seasonal pattern recurring every 12 Months)

Sum of Sales

Initial	Change From Initial	Seasonal Effect	Contribution	
December 2023	December 2023 – December 2024	High Low	Trend Season	Quality
4,086 ± 1,551	516	None	100.0% 0.0%	OK

In Analyze-it:

- 1. Use the trend equation from the regression output.
- 2. Add future dates in Excel and compute forecasts using the equation.

4	Α	В
_ 1	Month	Sales
2	01-01-2022	2960
3	01-02-2022	3411
4	01-03-2022	3264
5	01-04-2022	3247
5	01-05-2022	3807
7	01-06-2022	4355
В	01-07-2022	2670
9	01-08-2022	3459
0	01-09-2022	2569
1	01-10-2022	3738
2	01-11-2022	4408
3	01-12-2022	5210
4	01-01-2023	2438
5	01-02-2023	4011
6	01-03-2023	3112
7	01-04-2023	4751
8	01-05-2023	3893
9	01-06-2023	5248
0	01-07-2023	4846
1	01-08-2023	3645
2	01-09-2023	3402
3	01-10-2023	4789
4	01-11-2023	3666
5	01-12-2023	2959
6	01-01-2024	4186.420419
7	01-02-2024	4186.698188
8	01-03-2024	4213.962132
9	01-04-2024	4225.934118
0	01-05-2024	4226.928512
1	01-06-2024	4271.228727

RESIDUAL OUTPUT				PROBABILI	TY OUTPUT
Observation	Predicted 44562	Residuals	Standard Residuals	Percentile	44562
1	44902.40926	-309.4092603	-1.551067044	2.173913	44593
2	44892.89496	-271.8949571	-1.363008034	6.521739	44621
3	44891.79466	-239.7946635	-1.202089426	10.86957	44652
4	44928.03963	-246.0396282	-1.233395402	15.21739	44682
5	44963.50792	-250.5079151	-1.255794901	19.56522	44713
6	44854.44941	-111.4494053	-0.5586953	23.91304	44743
7	44905.51597	-131.5159716	-0.659288895	28.26087	44774
8	44847.91237	-42.91236699	-0.215119477	32.6087	44805
9	44923.57373	-88.57373079	-0.444019661	36.95652	44835
10	44966.93824	-100.9382421	-0.506002893	41.30435	44866
11	45018.84621	-122.8462094	-0.615827421	45.65217	44896
12	44839.43363	87.56636582	0.438969745	50	44927
13	44941.24315	16.75684892	0.084001998	54.34783	44958
14	44883.05704	102.9429619	0.516052543	58.69565	44986
15	44989.13828	27.861717	0.139670645	63.04348	45017
16	44933.60582	113.3941808	0.56844445	67.3913	45047
17	45021.30569	56.69431083	0.284208291	71.73913	45078
18	44995.28698	112.7130176	0.565029783	76.08696	45108
19	44917.55448	221.4455223	1.110105274	80.43478	45139
20	44901.82675	268.173248	1.344351125	84.78261	45170
21	44991.59776	208.4022372	1.044719353	89.13043	45200
22	44918.91366	312.0863361	1.564487212	93.47826	45231
23	44873.1544	387.845604	1.944268035	97.82609	45261

=FORECAST(x, known_y's, known_x's

6. Interpret the Results

- Observe the overall trend (e.g., increasing or decreasing).
- Discuss the reliability of the forecast based on historical data.

Practical: Creating Geospatial feature maps in Tableau using Geospatial Data.

Steps to Create Geospatial Maps in Tableau

1. Prepare Your Data:

- Use a dataset that includes geospatial data, such as latitude, longitude, or geographical regions (e.g., city names, states, or countries).
- o Ensure the data is clean and organized in a CSV or Excel format.

4	Α	В	С	D	E	F	G
	City	Country	Latitude	Longitud e	Sales (\$)	Populati on	
	New York	USA	40.7128	-74.006	1500000	8419600	
	London	UK	51.5074	-0.1278	1200000	8982000	
Ļ	Tokyo	Japan	35.6895	139.6917	2000000	37400068	
	Mumbai	India	19.076	72.8777	900000	20411000	
,							

2. Load Data into Tableau:

 Open Tableau and connect to your dataset by clicking Connect > Text File or Microsoft Excel, then select your file.

3. Assign Geographic Roles:

Tableau often automatically assigns geographic roles based on column names (e.g., "City,"
 "Country"). If it doesn't, right-click the field in the Data pane, select Geographic Role, and choose the appropriate role.

4. Create a Map View:

- o Drag the geographic field (e.g., City or Country) onto the **Rows** or **Columns** shelf.
- o Tableau will automatically generate a map with data points.

5. Enhance the Map with Data:

 Drag a measure (e.g., Sales, Population) to Color or Size on the Marks card to visualize data distribution.

o Use the **Filter** card to focus on specific regions or categories.

6. Customize the Map:

- Click Map > Map Layers to adjust map styles, such as borders, terrain, or dark mode.
- o Add tooltips, labels, or additional measures for a richer display.

7. Analyze Geospatial Features:

- O Use Tableau's **Analytics pane** to overlay trends or clusters.
- o Implement filters to allow interactive exploration of the data.

8. Save and Share:

o Save your workbook or export it as a packaged workbook (.twbx) to include data and visualization.

Practical: Create Dashboard and Storytelling using tableau.

1. Prepare Your Data

• Use a dataset with multiple dimensions and measures (e.g., sales, region, category, profit). Example dataset: Sales_Performance_Data.xlsx

Region	Product Category	Sales (\$)	Profit (\$)	Month
North	Electronics	150000	30000	January 2024
South	Furniture	90000	10000	February 2024
East	Apparel	120000	25000	March 2024
West	Electronics	170000	35000	April 2024

2. Load the Data

- 1. Open Tableau and click **Connect > Microsoft Excel** or another format.
- 2. Choose your file and load the data.

3. Create Sheets for the Dashboard

- Sheet 1: Sales by Region
 - Drag Region to Rows and Sales to Columns.
 - o Add Sales to the **Color** shelf for a heat map effect.
 - Use a bar or pie chart.

• Sheet 2: Profit by Product Category

- Drag Product Category to Rows and Profit to Columns.
- o Choose a tree map for better visualization.

• Sheet 3: Monthly Trends

- o Drag Month to Columns and Sales to Rows.
- o Choose a line chart to show trends over time.

4. Build the Dashboard

- 1. Go to the **Dashboard** tab.
- 2. Drag and drop your created sheets (e.g., Sheet 1, Sheet 2) into the dashboard.
- 3. Add filters (e.g., Region filter) for interactivity:
 - o Drag the filter to the dashboard for user input.
- 4. Customize:
 - o Add text boxes, titles, or images.

Adjust the layout for clarity.

Steps to Create a Story in Tableau

1. Prepare a Story

- 1. Click **Story** in the Tableau toolbar.
- 2. Select New Story.

2. Add Sheets to the Story

- 1. Drag dashboard views or individual sheets to the story area.
- 2. Add captions to explain insights for each step.

3. Customize the Story

- 1. Adjust the size and layout of each story point.
- 2. Add annotations to highlight key findings.

4. Save and Share

1. Save the workbook as .twbx to include data and visuals.

2. Export as PDF or share on Tableau Public for easy access.

 $https://public.tableau.com/app/profile/mansi.gotta/viz/Book1_17363377098700/Story1?publish=yes$