ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs

Jiteng Mu¹, Shen Sang², Nuno Vasconcelos¹, Xiaolong Wang¹

¹UCSD, ²ByteDance

Highlight: Few-shot Generalization

Category-level Prior

Few-shot Generalization to Novel Actors with Novel Poses

With only a few images from a monocular video, ActorsNeRF synthesizes novel views of a novel person with novel poses.

AIST++ Dataset

Animation

With only a few images (e.g., 30 shots) from a monocular video, ActorsNeRF synthesizes novel views of a novel person with novel poses.

Ours HumanNeRF

Ours HumanNeRF

Ours HumanNeRF

ZJU-MoCap Dataset

Animation

With only a few images (e.g., 30 shots) from a monocular video, ActorsNeRF synthesizes novel views of a novel person with novel poses.

ActorsNeRF Architecture

Sample 3D points in the observation space.

An encoder used to extract features from K images.

Transform to category-level canonical space.

Transform to individual observation spaces through forward warping.

Query pixel aligned features from each image.

Transform to instance-level canonical space through deformation network.

Rendering from instance-level canonical space with pixel-aligned features.