Lycée Chateaubriand MPSI 3 • 2024 - 2025

William GREGORY

Colle 10 • INDICATIONS Groupes, Anneaux et corps, Intégrales

Exercice 10.1

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Calculer

$$\frac{n}{\int_{\frac{1}{2n}}^{\frac{1}{n}} \frac{1}{t^n} \, \mathrm{d}t}.$$

résultat

$$\frac{n}{\int_{\frac{1}{2n}}^{\frac{1}{n}} \frac{1}{t^n} \, \mathrm{d}t} = \frac{n-1}{n^{n-2}(2^{n-1}-1)}.$$

Exercice 10.2

Calculer

$$\int_0^1 \frac{e^{2x} + 3e^x + 1}{(e^x + 1)^2} dx.$$

— indication ——

On remarquera que $e^{2x} + 3e^x + 1 = (e^x + 1)^2 + e^x$, et l'on reconnaîtra la primitive de l'inverse.

résultat

$$\int_0^1 \frac{e^{2x} + 3e^x + 1}{(e^x + 1)^2} dx = \frac{3}{2} - \frac{1}{e + 1}.$$

Exercice 10.3

Calculer

$$\int_{-1}^{2} (|x-1| - |4x+2|) \, \mathrm{d}x.$$

— indication -

1

Écrire la valeur de |x-1|-|4x+2| sur les intervalles $\left[-1,-\frac{1}{2}\right]$, $\left[-\frac{1}{2},1\right]$ et [1,2].

$$\int_{-1}^{2} (|x-1| - |4x+2|) \, \mathrm{d}x = -\frac{21}{2}.$$

Exercice 10.4

Calculer

$$\int_1^2 \frac{t}{2t+1} \, \mathrm{d}t.$$

indication -

On a
$$\frac{t}{2t+1} = \frac{1}{2} - \frac{1}{2} \frac{1}{2t+1}$$
.

$$\int_1^2 \frac{t}{2t+1} \, \mathrm{d}t = \frac{1}{2} + \frac{\ln(3) - \ln(5)}{4}.$$

Exercice 10.5

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Calculer

$$\int_2^3 t^{n-1} \sqrt{t^n + 3} \, \mathrm{d}t.$$

— indication ———

On reconnaît la forme $u'\sqrt{u}$.

$$\int_2^3 t^{n-1} \sqrt{t^n + 3} \, \mathrm{d}t = \frac{2}{3n} \Big((3^n + 3)^{\frac{3}{2}} - (2^n + 3)^{\frac{3}{2}} \Big).$$

Exercice 10.6

1. Déterminer $a, b \in \mathbb{R}$ tels que

$$\forall t \in \mathbb{R}, \quad \frac{t+3}{(t+1)(t+2)} = \frac{a}{t+1} + \frac{b}{t+2}.$$

2. Calculer $\int_{-4}^{-3} \frac{t+3}{(t+1)(t+2)} dt$.

2

1.
$$a = 2$$
 et $b = -1$

1.
$$a = 2$$
 et $b = -1$.
2. $\int_{-4}^{-3} \frac{t+3}{(t+1)(t+2)} dt = 3\ln(2) - 2\ln(3)$.

Exercice 10.7

On définit

$$\mathbb{Z}[i] := \{x + iy ; x, y \in \mathbb{Z}\}.$$

- **1.** Montrer que $\mathbb{Z}[i]$ est un anneau.
- **2.** L'anneau $\mathbb{Z}[i]$ est-il isomorphe à l'anneau produit \mathbb{Z}^2 ?
- **3.** Déterminer $\mathbb{Z}[i]^{\times}$.

indication

- **1.** Montrer qu'il s'agit d'un sous-anneau de \mathbb{C} .
- 2. Regarder l'intégrité des deux anneaux.
- **3.** On utilisera l'application $N: z \mapsto |z|^2$.

résultat

- **2.** Non.
- **3.** $\mathbb{Z}[i]^{\times} = \{1, -1, -i, i\}.$

Exercice 10.8

On considère les anneaux

$$\mathbb{Z}[\sqrt{2}] := \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \right\},$$
 $\mathbb{Z}[\sqrt{3}] := \left\{ a + b\sqrt{3} \mid a, b \in \mathbb{Z} \right\}.$

Montrer qu'il n'existe pas de morphisme d'anneaux entre $\mathbb{Z}[\sqrt{2}]$ et $\mathbb{Z}[\sqrt{3}]$.

indication

Si un tel morphisme existait, regarder l'image de $\sqrt{2}$ en remarquant que l'image d'un carré est un carré. Aboutir à une contradiction avec l'irrationalité de $\sqrt{3}$.

Exercice 10.9

Soit $d \in \mathbb{N}^*$. On note

$$A(d) := \left\{ (x, y) \in \mathbb{Z}^2 \mid y \equiv x \ [d] \right\}.$$

- **1.** Montrer que A(d) est un sous-anneau de l'anneau produit \mathbb{Z}^2 .
- **2.** Soit *B* un sous-anneau de \mathbb{Z}^2 .

Montrer que

$$H := \left\{ x \in \mathbb{Z} \mid (x,0) \in B \right\}$$

3

est un sous-groupe de \mathbb{Z} .

- **3.** (a) Soit G un sous-groupe de \mathbb{Z} . Montrer qu'il existe $n \in \mathbb{N}$ tel que $G = n\mathbb{Z}$.
 - **(b)** Montrer que tout sous-anneau de \mathbb{Z}^2 est de la forme A(d).

indication

- 2. On peut raisonner avec l'image réciproque.
- 3. (a) On utilisera notamment la division euclidienne dans \mathbb{Z} .
 - **(b)** Après avoir fixé d tel que $H = d\mathbb{Z}$, utiliser la stabilité par d'un sous-anneau de \mathbb{Z}^2 .

Exercice 10.10

Pour $\alpha \in \mathbb{C}$, on note $\mathbb{Z}[\alpha]$ le plus petit sous-anneau de \mathbb{C} contenant α .

1. A-t-on

$$\mathbb{Z}\left[\frac{1}{\sqrt{2}}\right] = \left\{a + \frac{b}{\sqrt{2}} \mid a, b \in \mathbb{Z}\right\}$$
?

2. Déterminer explicitement $\mathbb{Z}\left[\sqrt[4]{3}\right]$.

indication

- 1. A-t-on $\frac{1}{2}$ dedans?
- **2.** Calculer les puissances de $\sqrt[4]{3}$.

- 1. Non.
- **2.** $\mathbb{Z} \left[\sqrt[4]{3} \right] = \left\{ a + b\sqrt[4]{3} + c\sqrt[4]{9} + d\sqrt[4]{27} \ \middle| \ a, b, c, d \in \mathbb{Z} \right\}.$

Exercice 10.11

Soit A un anneau fini intègre.

Montrer que A est un corps.

Pour $a \neq 0$, montrer que l'application $\begin{vmatrix} A & \longrightarrow & A \\ x & \longmapsto & ax \end{vmatrix}$ est injective. Comme A est fini, elle sera bijective.

Exercice 10.12

Soit A un anneau quelconque. Soit $a \in A$. On note

$$m_a: \left| \begin{array}{ccc} A & \longrightarrow & A \\ x & \longmapsto & ax. \end{array} \right|$$

Montrer que les énoncés suivants sont équivalents :

- (i) $a \in A^{\times}$;
- (ii) $1 \in Im(m_a)$;
- (iii) m_a est surjective;
- (iv) m_a est bijective.