Tutorial 6 (TA. John Ehab)

(t,n)-Secret Sharing:

N is the total number of secret shareholders

T is our threshold, t or more parties can re-construct the secret, t-1 parties have zero info about the secret

Shamir's Secret Sharing:

 $t = k \rightarrow polynomial$ of degree k-1 example: an equation for a line (degree 1), can be constructed using at least 2 points (t=2)

Each secret share is just a point (x,y)

The secret itself is the y-intercept; x = 0

To construct the equation P(x) "that'll be used to find the secret later when substituting x with 0" from given points "shares", we use Lagrange Interpolation.

Lagrange Interpolation:

• P(x) if (2,n):

$$P(x) = y_1 \cdot \frac{x - x_2}{x_1 - x_2} + y_2 \cdot \frac{x - x_1}{x_2 - x_1}$$

(or simply $Y = m \cdot X + c$ m is the slope "(y2-y1) / (x2-x1)"

- → substitute with any point to get c)
 - P(x) if (3,n):

$$P(x) = y_1 \cdot rac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} + y_2 \cdot rac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} + y_3 \cdot rac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$$

Exercise 6–2:

To find the final result, don't forget our modulus 📦

53 / 8 is not division, it's 53 % 17 * 8⁻¹ % 17

a = 17	b = 8
---------------	--------------

Output

This is the output of the **Extended Euclidean Algorithm** using the numbers a=17 and b=8:

a	b	q	r	s1	s2	s3	t1	t2	t3
17	8	2	1	1	0	1	0	1	-2
8	1	8	0	0	1	-8	1	-2	17

$$\rightarrow$$
 53 / 8 (mod 17) = 2 * (-2%17) = 2 * 15 = 30 % 17 = 13

Exercise 6-3:

Same "division under the modulo" concept when finding the results of the slopes

$$AC = -3 / 4 \mod 11 = 8 * 3 = 24 \% 11 = 2$$