INTRO TO DATA SCIENCE LOGISTIC REGRESSION

- **O. BASIC FORM**
- I. INTERPRETATION
- II. EXERCISE: PREDICTING DEFAULT RATES

III. Q&A

O. BASIC FORM

continuous categorical supervised regression classification

supervised unsupervised

regression
dimension reduction

clustering

Q: What is logistic regression?

Q: What is logistic regression?

A: A generalization of the linear regression model to classification problems.

In logistic regression, we use a set of input variables to predict *probabilities* of class membership.

In logistic regression, we use a set of input variables to predict *probabilities* of class membership.

NOTE

Class membership is not always binary, however, that is what we will focus on for this class.

In logistic regression, we use a set of input variables to predict *probabilities* of class membership.

These probabilities can then mapped to *class labels*, thus predicting the class for each observation.

When performing linear regression, we use the following function:

$$y = \beta_0 + \beta_1 x$$

When performing logistic regression, we use the following form:
$$\pi = \Pr(y = 1 \mid x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

When performing linear regression, we use the following function:

$$y = \beta_0 + \beta_1 x$$

When performing logistic regression, we use the following form: $\pi = \Pr(y = 1 \mid x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$

$$\pi = \Pr(y = 1 \mid x) = \frac{e}{1 + e^{\beta_0 + \beta_1 x}}$$

Probability of y = 1, given x

Quiz: Create a plot of the logistic function.

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Quiz: Create a plot of the logistic function.

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

How would you describe the shape of the function?

The logistic function takes on an "S" shape, where y is bounded by [0,1]

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

The logistic function takes on an "S" shape, where y is bounded by [0,1]

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Changing the β_0 value shifts the function horizontally.

Changing the β_1 value changes the slope of the curve

L INTERPRETATION

INTERPRETING RESULTS

In order to interpret the outputs of a logistic function we must understand the difference between probability and odds.

In order to interpret the outputs of a logistic function we must understand the difference between probability and odds.

The odds of an event are given by the ratio of the probability of the event by its complement:

In order to interpret the outputs of a logistic function we must understand the difference between probability and odds.

The odds of an event are given by the ratio of the probability of the event by its complement:

$$Odds = \frac{\pi}{1 - \pi}$$

In order to interpret the outputs of a logistic function we must understand the difference between probability and odds.

The odds of an event are given by the ratio of the probability of the event by its complement:

$$Odds = \frac{\pi}{1 - \pi}$$

QUESTION

What is the range of the odds?

Take 2 minutes and work this out.

Take 2 minutes and work this out.

$$Odds = \frac{\pi}{1 - \pi}$$

Take 2 minutes and work this out.

$$Odds = \frac{\pi}{1 - \pi} = \frac{.3333}{.6666} = \frac{1}{2}$$

Take 2 minutes and work this out.

$$Odds = \frac{\pi}{1 - \pi} = \frac{.3333}{.6666} = \frac{1}{2}$$

NOTE

This means that for every customer that converts you will have two customers that do not convert

What would happen if we took the odds of the logistic function?

$$\frac{\pi}{1-\pi} = \frac{e^{\beta_0 + \beta_1 x} / (1 + e^{\beta_0 + \beta_1 x})}{1 - e^{\beta_0 + \beta_1 x} / (1 + e^{\beta_0 + \beta_1 x})}$$

What would happen if we took the odds of the logistic function?

$$\frac{\pi}{1-\pi} = \frac{e^{\beta_0 + \beta_1 x} / (1 + e^{\beta_0 + \beta_1 x})}{1 - e^{\beta_0 + \beta_1 x} / (1 + e^{\beta_0 + \beta_1 x})}$$

$$= \frac{e^{\beta_0 + \beta_1 x} / (1 + e^{\beta_0 + \beta_1 x})}{(1 + e^{\beta_0 + \beta_1 x}) / (1 + e^{\beta_0 + \beta_1 x}) - e^{\beta_0 + \beta_1 x} / (1 + e^{\beta_0 + \beta_1 x})} = e^{\beta_0 + \beta_1 x}$$

Notice if we take the logarithm of the odds, we return a linear equation

$$\log(\frac{\pi}{1-\pi}) = \log(e^{\beta_0 + \beta_1 x}) = \beta_0 + \beta_1 x$$

Notice if we take the logarithm of the odds, we return a linear equation

$$\log(\frac{\pi}{1-\pi}) = \log(e^{\beta_0 + \beta_1 x}) = \beta_0 + \beta_1 x$$

NOTE

What is the range of the logit function?

Notice if we take the logarithm of the odds, we return a linear equation

$$\log(\frac{\pi}{1-\pi}) = \log(e^{\beta_0 + \beta_1 x}) = \beta_0 + \beta_1 x$$

This simple relationship between the odds ratio and the parameter β is what makes logistic regression such a powerful tool.

INTERPRETING RESULTS

In linear regression, the parameter β_1 represents the change in the response variable for a unit change in x.

In linear regression, the parameter β_1 represents the change in the response variable for a unit change in x.

In logistic regression, β_1 represents the change in the logodds for a unit change in x.

In linear regression, the parameter β_1 represents the change in the response variable for a unit change in x.

In logistic regression, β_1 represents the change in the logodds for a unit change in x.

This means that b^{β_1} gives us the change in the odds for a unit change in x.

Q: How to determine whether a coefficient is significant?

A: This is based off of the model coefficients, just as with the linear regression

INTERPRETING RESULTS

Example: Suppose we are interested in mobile purchase behavior. Let y be a class label denoting purchase/no purchase, and let x denote whether phone was an iPhone.

Example: Suppose we are interested in mobile purchase behavior. Let y be a class label denoting purchase/no purchase, and let x denote whether phone was an iPhone.

We perform a logistic regression, and we get β_1 = 0.693.

Example: Suppose we are interested in mobile purchase behavior. Let y be a class label denoting purchase/no purchase, and let x denote whether phone was an iPhone.

We perform a logistic regression, and we get β_1 = 0.693.

Q: What does this mean?

Example: Suppose we are interested in mobile purchase behavior. Let y be a class label denoting purchase/no purchase, and let x denote whether phone was an iPhone.

We perform a logistic regression, and we get β_1 = 0.693.

In this case the odds ratio is exp(0.693) = 2, meaning the likelihood of purchase is twice as high if the phone is an iPhone.

Once we understand the basic form for logistic regression, we can easily extend the definition to include multiple input

values.

$$\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Once we understand the basic form for logistic regression, we can easily extend the definition to include multiple input values.

$$\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Logistic function

$$\pi = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}$$

II. EXERCISE: PREDICTING DEFAULT

This data set contains 10,000 records associated with credit card accounts with the following four fields:

Default	Binary variable indicating whether the credit card holder defaulted on their credit card obligations
Student	Binary variable indicating whether the credit card holder is a student
Balance	Continuous variable recording the credit card holders current outstanding balance
Income	Continuous variable representing the total annual income for the credit card holder

EXERCISE

Part I: Exploration

- 1) Read in Default.csv and convert all data to numeric
- 2) Split the data into train and test sets
- 3) Create a histogram of all variables
- 4) Create a scatter plot of the income vs. balance
- 5) Mark defaults with a different color (and symbol)
- 6) What can you infer from this plot?

Part II: Logistic Regression

- 1) Run a logistic regression on the balance variable
 - Use the training set
 - Use the statsmodels.formula.api module and smf.logit() function
- 2) Is the β value associated with balance significant?
- 3) Predict the probability of default for someone with a balance of \$1.2k and \$1.5k
- 4) Plot the fitted logistic function overtop of the data points
- 5) Create predictions using the test set
- 6) Compute the overall accuracy, the sensitivity and specificity