ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики Им. А.Н.Тихонова НИУ ВШЭ

Департамент компьютерной инженерии

Практическая работа №5 «Идентификация параметров модели диода» по курсу «Автоматизация проектных работ»

Выполнил:

Студент группы БИВ174

Солодянкин Андрей Александрович

Проверил:

Новиков Константин Викторович

Содержание

1				3
2				3
	2.1 2.2	Что та	Что такое идеальный диод?	
		BAX p		
		2.2.1	V_{γ} (гамма) – напряжение порога проводимости	4
		2.2.2	I_{D_MAX} — максимальный ток через диод при прямом включении.	4
		2.2.3	I_{OP} – обратный ток утечки	5
		2.2.4	PIV (Peak Inverse Voltage) – Напряжение пробоя	5
		2.2.5	Паразитическая емкость PN-перехода	5
	2.3	Прибл	Приближенные модели диодов	
		2.3.1	Приближенная модель диода «идеальный диод + V_γ »	6
		2.3.2	Приближенная модель диода «идеальный диод + V_{γ} + r_{D} »	(
3	3 Выполнение работы			,
4	Выводы по работе			8
5	Контрольные вопросы			9

1 Задание

Экспериментально получить вольт – амперную характеристику (BAX) полупроводникового диода. Исследовать влияние температуры на характеристики p-n диодов.

2 Краткие теоретические сведения

2.1 Что такое идеальный диод?

Основная задача обычного выпрямительного диода — проводить электрический ток в одном направлении, и не пропускать его в обратном. Следовательно, идеальный диод должен быть очень хорошим проводником с нулевым сопротивлением при прямом подключении напряжения (плюс - к аноду, минус - к катоду), и абсолютным изолятором с бесконечным сопротивлением при обратном. Вот так это выглядит на графике:

Рис. 1: График зависимости тока от напряжения на идеальном диоде

Такая модель диода используется в случаях, когда важна только логическая функция прибора. Например, в цифровой электронике.

2.2 ВАХ реального полупроводникового диода

Однако на практике, в силу своей полупроводниковой структуры, настоящий диод обладает рядом недостатков и ограничений по сравнению с идеальным диодом. Это можно увидеть на графике, приведенном ниже.

Рис. 2: Зависимость тока от напряжения в настоящем диоде

2.2.1 V_{γ} (гамма) – напряжение порога проводимости.

При прямом включении напряжение на диоде должно достигнуть определенного порогового значения - V_{γ} . Это напряжение, при котором PN-переход в полупроводнике открывается достаточно, чтобы диод начал хорошо проводить ток. До того как напряжение между анодом и катодом достигнет этого значения, диод является очень плохим проводником. V_{γ} у кремниевых приборов примерно 0.7V, у германиевых – около 0.3V.

2.2.2 I_{D_MAX} — максимальный ток через диод при прямом включении.

При прямом включении полупроводниковый диод способен выдержать ограниченную силу тока I_{D_MAX} . Когда ток через прибор превышает этот предел, диод перегревается. В результате разрушается кристаллическая структура полупроводника, и прибор становится непригодным. Величина данной силы тока сильно колеблется в зависимости от разных типов диодов и их производителей.

2.2.3 I_{OP} – обратный ток утечки.

При обратном включении диод не является абсолютным изолятором и имеет конечное сопротивление, хоть и очень высокое. Это служит причиной образования тока утечки или обратного тока I_{OP} . Ток утечки у германиевых приборов достигает до 200 μ A, у кремниевых до нескольких десятков nA. Самые последние высококачественные кремниевые диоды с предельно низким обратным током имеют этот показатель около 0.5 nA.

2.2.4 *PIV* (Peak Inverse Voltage) – Напряжение пробоя.

При обратном включении диод способен выдерживать ограниченное напряжение — напряжение пробоя PIV. Если внешняя разность потенциалов превышает это значение, диод резко понижает свое сопротивление и превращается в проводник. Такой эффект нежелательный, так как диод должен быть хорошим проводником только при прямом включении. Величина напряжения пробоя колеблется в зависимости от разных типов диодов и их производителей.

2.2.5 Паразитическая емкость PN-перехода.

Даже если на диод подать напряжение значительно выше V_{γ} , он не начнет мгновенно проводить ток. Причиной этому является паразитическая емкость PN перехода, на наполнение которой требуется определенное время. Это сказывается на частотных характеристиках прибора.

Рис. 3: Паразитическая емкость

2.3 Приближенные модели диодов

В большинстве случаев, для расчетов в электронных схемах, не используют точную модель диода со всеми его характеристиками. Нелинейность этой функции слишком усложняет задачу. Предпочитают использовать, так называемые, приближенные модели.

2.3.1 Приближенная модель диода «идеальный диод + V_{γ} »

Самой простой и часто используемой является приближенная модель первого уровня. Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости V_{γ} .

Рис. 4: Приближенная модель диода «идеальный диод + V_{γ} »

2.3.2 Приближенная модель диода «идеальный диод + $V_{\gamma} + r_{D}$ »

Иногда используют чуть более сложную и точную приближенную модель второго уровня. В этом случае добавляют к модели первого уровня внутреннее сопротивление диода, преобразовав его функцию из экспоненты в линейную.

Рис. 5: Приближенная модель диода «идеальный диод + $V_{\gamma}+r_{D}$ »

3 Выполнение работы

На рис. 6 изображена ВАХ диода при значении тока $I_o=1.5uA$. По информации из таблицы, данный диод — КД204А. На рис. 7 и 8 представлены ВАХ диода при $T=0^{\circ}C$ и $T=75^{\circ}C$ соответственно. При увеличении температуры можно наблюдать, как график ВАХ сдвигается вправо. Это происходит по причине уменьшения контактной разности потенциалов, возрастания энергии основных носителей заряда, расту диффузионной составляющей тока и увеличению прямого тока.

Рис. 6: ВАХ диода при $T=25^{\circ}C$

Рис. 7: ВАХ диода при $T=0^{\circ}C$

Рис. 8: ВАХ диода при $T=75^{\circ}C$

4 Выводы по работе

В ходе выполнения лабораторной работы было получено экспериментальным путем ВАХ полупроводникового диода. Найдено значение обратного тока, при котором возможно совпадение графиков ВАХ экспериментального и рассматриваемого диода. Исследовано влияние температуры на вольтамперные характеристики диодов.

5 Контрольные вопросы

1. Что такое полупроводниковый диод.

Полупроводниковый диод – это полупроводниковый прибор, во внутренней структуре которого сформирован один p-n-переход.

2. Влияние температуры на характеристики р-п диодов.

При большей температуре p-n-перехода тот же прямой ток достигается при меньшем смещении.

3. Способ снятия ВАХ диодов с помощью амперметра и вольтметра.

Вольтметр подключается параллельно диоду, а амперметр – последовательно.

4. Работа р-п перехода при прямом и обратном включении.

При прямом включении р-п-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально. Повышенная диффузия носителей зарядов через переход приводит к повышению концентрации дырок в области п-типа и электронов в области р-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей.

Для неосновных носителей поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется. Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремится к предельному значению I_S , которое называется током насыщения.

5. Основные параметры диода.

- $U_{obr.max.}$ максимально-допустимое постоянное обратное напряжение диода;
- $U_{obr.i.max.}$ максимально-допустимое импульсное обратное напряжение диода;
- $I_{f.max.}$ максимальный средний прямой ток за период;
- $I_{f.i.max.}$ максимальный импульсный прямой ток за период;
- $I_{over.max.}$ ток перегрузки выпрямительного диода;
- f_{max} максимально-допустимая частота переключения диода;
- f_{work} рабочая частота переключения диода;
- $U_f|I_f$ постоянное прямое напряжения диода при токе Іпр;
- I_{obr} постоянный обратный ток диода;
- $T_{k.max.}$ максимально-допустимая температура корпуса диода;
- $T_{p.max.}$ максимально-допустимая температура перехода диода.

6. ВАХ идеального диода.

Рис. 9: График зависимости тока от напряжения на идеальном диоде