SMART FARMER-IOT ENABLED SMART FARMING **APPLICATION**

SPRINT – 4

Date: 19-11-2022

Team ID: PNT2022TMID34083

Project Name: Smart Farmer-IoT Enabled Smart Farming Application

Receiving commands from IBM cloud using Python program:

```
import time
  import sys
  import ibmiotf.application
  import ibmiotf.device
  import random
 #Provide your IBM Watson Device Credentials
  "orgId": "ck2tfo",
  "typeId": "NodeMLIC",
   "deviceId": "1234"
   "token": "87654321"
# Initialize GPIO
  def myCommandCallback(cmd):
                                        print("Command
  received: %s" % cmd.data['command'])
  status=cmd.data['command'] if status=="motoron": print
  ("motor is on")
                    elif status == "motoroff":
                                               print
  ("motor is off") else:
      print ("please send proper command")
  try:
          deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
  "auth-method": authMethod, "auth-token": authToken} deviceCli
  = ibmiotf.device.Client(deviceOptions)
```

```
#.....
```

```
except Exception as e: print("Caught exception
connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                 def myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on_publish=myOnPublishCallback)
                                              if not success:
      print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
File Edit Format Run Options Window Help
import time
import sys
import ibmio.application
import ibmiotf.device
import random
#provide your IBM Watson Device Credentials
organization = "ck2tfo"
deviceType = "NodeMLIC"
deviceID = "1234"
authMethod = "token"
authToken = "87654321"
#Initialize GPIO
def myCommandCallback(cmd):
   print("message received from IBM Iot Platform: %s" %cmd.data['command'])
   m=cmd.data['command']
   if (m=="motoron"):
       print("motor is switched on")
   elif (m == "motoroff"):
       print("motor is switched OFF")
   else :
print ("please send proper command")
try:
   deviceoptions = ("org": organization, "type":deviceType, "id":deviceId, "auth-method":authme
   devicecli = ibmiotf.device.client(deviceoptions)
#.........
```


Flow Chart

Observations & Results

Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.