NUME:	
PRENUME:	
GRUPA:	

Examen Analiză Numerică & Metode Numerice Matematică-Informatică și Matematică Aplicată, Anul III

I. Ecuații neliniare (1 punct din oficiu):

- a) Prezentați algoritmul corespunzător metodei bisecției pentru rezolvarea numerică a ecuației $f(x) = 0, x \in [a, b],$ unde $f: [a, b] \longrightarrow \mathbb{R}$ este o funcție continuă a.i. f(a) f(b) < 0. (2 puncte)
- b) Demonstrați că șirul de aproximări generat de metoda bisecției converge către soluția exactă, $x^* \in [a,b]$, a ecuației f(x) = 0, $x \in [a,b]$, unde $f:[a,b] \longrightarrow \mathbb{R}$ este o funcție continuă a.i. f(a) f(b) < 0. (2 puncte)
- c) Câte iterații, $n \in \mathbb{N}$, sunt necesare pentru ca soluția numerică, x_n , obținută prin metoda bisecției, să aproximeze cu o eroare absolută de cel mult 10^{-5} soluția exactă, x^* , a ecuației $x^3 + x 1 = 0$ în intervalul [0, 1]. Folosiți aproximarea $\log_2 10 \approx 3, 32$. (2 puncte)
- d) Enumerați avantajele și dezavantajele *metodei secantei* (i.e. cerințele, dependența de prima aproximare, izolarea soluției, viteza de convergență a metodei). (2 puncte)
- e) Propuneți o metodă iterativă de punct fix pentru aproximarea numărului $\sqrt{3}$ și justificați răspunsul dat. (2 puncte)

II. Interpolare polinomială (1 punct din oficiu):

Fie funcția

$$f: [-1,1] \longrightarrow \mathbb{R}, \qquad f(x) = e^x,$$
 (1)

nodurile/punctele de interpolare $x_0 = -1$, $x_1 = 0$ și $x_2 = 1$.

- a) Determinați setul de date, D, și gradul n al polinomului de interpolare Lagrange, $P_n(x)$, asociate funcției f dată de (1) și nodurilor/punctelor de interpolare $x_0 = -1$, $x_1 = 0$ și $x_2 = 1$. (1 punct)
- b) Determinați diferențele divizate $f[x_0]$, $f[x_1]$, $f[x_2]$, $f[x_0, x_1]$, $f[x_1, x_2]$ și $f[x_0, x_1, x_2]$. (2 puncte)
- c) Determinați polinomul de interpolare Lagrange de grad n, P_n , asociat funcției f dată de (1) și nodurilor/punctelor de interpolare $x_0 = -1$, $x_1 = 0$ și $x_2 = 1$, folosind metoda lui Newton fără diferențe divizate. (3 puncte)
- d) Presupunând că polinomul de interpolare Lagrange de grad n, P_n , asociat funcției f dată de (1) și nodurilor/punctelor de interpolare $x_0 = -1$, $x_1 = 0$ și $x_2 = 1$, se calculează folosind metoda naivă, determinați numărul de operații elementare efectuate în acest caz fără a aplica efectiv metoda naivă. (2 puncte)
- e) Fie nodurile/punctele de interpolare $x_j = j$, $j = \overline{0,3}$. Ştiind că au loc relațiile $P_{0,1}(x) = x + 1$, $P_{1,2}(x) = 3x 1$ și $P_{1,2,3}(3/2) = 4$, să se determine $P_{0,1,2,3}(3/2)$. (2 puncte)

III. Derivare numerică. Integrare numerică (1 punct din oficiu):

Fie
$$f: [a, b] \longrightarrow \mathbb{R}, f \in C^2([a, b]).$$

- a) Folosind dezvoltarea în serie Taylor a funcției f în raport cu $x \in (a, b)$, determinați formula de aproximare prin diferențe finite descendente pentru f'(x) și eroarea de trunchiere corespunzătoare, notată prin $e_t(x)$. (2 puncte)
- b) Estimați eroarea de trunchiere, $e_t(x)$, determinată la punctul a). (2 puncte)
- c) Presupunând că evaluarea valorii f(x) conține eroarea de rotunjire, notată prin $e_r(x)$, datorată reprezentării în virgulă mobilă a numerelor reale, i.e. în fapt, în locul lui f(x) se evaluează

$$\widetilde{f}(x) = f(x) + e_r(x), \quad \forall \ x \in [a, b], \quad \text{unde} \quad |e_r(x)| \le \varepsilon, \quad \forall \ x \in [a, b],$$

cu $\varepsilon > 0$ cunoscut, să se estimeze eroarea de aproximare, notată cu e(x), obținută prin aproximarea lui f'(x) prin formula de diferențe finite descendente obținută la punctul a). (2 puncte)

- d) Notând cu h > 0 distanța de la punctul $x \in (a, b)$, în care se aproximează f'(x) prin formula de diferențe finite descendente, la punctul adițional folosit în această formulă, să se determine valoarea sa optimă, h_{opt} , pentru care eroarea de aproximare, e(x), este minimă. (2 puncte)
- e) Fie $g:[0,2]\longrightarrow\mathbb{R}$ o funcție integrabilă și integrala $I(g)=\int_0^2g(x)\,\mathrm{d}x$. Cu notațiile folosite la curs, dacă au loc relațiile $I_1(g)=4$ și $I_2(g)=2$, să se determine g(1). (2 puncte)

IV. Sisteme de ecuații liniare. Metode numerice pentru EDO (1 punct din oficiu):

a) Folosind metoda de eliminare Gauss fără pivotare, să se rezolve sistemul liniar:

$$\begin{cases} \varepsilon x_1 + x_2 = 1\\ x_1 + x_2 = 2 \end{cases} \tag{3}$$

unde $\varepsilon = O\left(10^{-20}\right) \ll 1$. Verificați rezultatul obținut și identificați punctul slab al metodei în acest caz. Menționați, fără a efectua calculele, cum se poate remedia metoda de eliminare Gauss fără pivotare pentru a obține soluția corectă. (2 puncte)

- b) Enunţaţi teorema de existenţă şi unicitate a factorizării LU fără pivotare. Demonstraţi unicitatea factorizării LU fără pivotare. (2 puncte)
- c) Deduceți metoda explicită a lui Euler pentru rezolvarea numerică a problemei Cauchy

$$\begin{cases} y'(t) = f(t, y(t)), & t \in (t_0, t_f] \\ y(t_0) = y_0 \end{cases}$$

$$(4)$$

unde $f:[t_0,t_f]\times\mathbb{R}\longrightarrow\mathbb{R}$ este o funcție continuă în raport cu ambele argumente și Lipschitz continuă în raport cu al doilea argument. (2 puncte)

- d) Definiți eroarea globală/eroarea de convergență, convergența, eroarea de trunchiere locală/eroarea de consistență, consistența și eroarea de discretizare locală ale unei metode numerice de aproximare a problemei Cauchy (4). (2 puncte)
- e) Determinați eroarea de trunchiere locală/eroarea de consistență a metodei explicite a lui Euler pentru problema Cauchy (4). (2 puncte)

TIMP DE LUCRU: 180 minute