STAT 408 Applied Regression Analysis

Nan Miles Xi

Department of Mathematics and Statistics
Loyola University Chicago

Fall 2022

Linear Regression and Causal Inference

Two Levels of Model Interpretation

Support we build a linear model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

- After we estimate the model parameter \hat{eta}_1 , it has two levels of interpretation
- The first level is <u>association</u> One unit increase in X_1 with the other predictors held constant will change $\hat{\beta}_1$ in the response Y on average
- This interpretation may be unrealistic in some cases, and it does not provide causal relation

Causality

- Causal effect is the second level of model interpretation
 - The causal effect of an action is the <u>difference between the outcomes</u> where the action was or was not taken

- Suppose a study applied drug to patients
 - T = 0 for the control (placebo); T = 1 for the treatment (drug)
 - Let y_i^0 be the control response for patient i
 - Let y_i^1 be the treatment response for patient i
- The causal effect for patient i is then defined as

$$\delta_i = y_i^1 - y_i^0$$

Causality

- The challenge in causal inference is that we can only apply treatment or control to patient i the same time,
 - Only y_i^0 or y_i^1 can be observed
- The unobserved outcome is called counterfactual outcome or potential outcome

This challenge cannot be solved in real word

Randomly Controlled Experiment

- Pseudo-optimal solution is to conduct randomly controlled experiment
 - Randomly assign treatment and control groups
 - Calculate the average difference of response between two groups

- Randomization (almost) guarantees the balance of other variables in treatment and control groups
 - Control and treatment group are "similar" except the assignment

- To avoid unbalance due to randomness, we further use <u>stratified randomization</u>
 - Randomly assign treatment and control separately in male and female to balance the gender

Observational Study

- In most cases, it is not practical or ethical to conduct a controlled experiment
 - Cannot randomly assign smoking, education, ...

- We have to rely on observation study
 - Cannot control the assignment of treatment or control

- The balance of two groups are not guaranteed due to the possible existence of confounder
 - Exercise vs no-exercise: healthy people tend to do more exercise
 - College vs no-college: wealthy families more likely send children to college

Observational Study

Confounder affects both treatment/control and response Y

• The change of Y is "caused" by Z, not X

Observational Study: Example

- Let's explore if different voting methods have <u>causal effects</u> on election result
- The data is about the 2008 Dem primary election in New Hampshire

^	votesys [‡]	Obama [‡]	Clinton [‡]	dem [‡]	povrate [‡]	pci [‡]	Dean [‡]	Kerry [‡]	white [‡]	absentee [‡]	population	pObama [‡]
Hinsdale	Н	256	331	759	0.0637	16611	0.36610	0.34915	0.97232	0.040836	4213.0	0.3372859
Jaffrey	D	460	462	1223	0.0784	21412	0.24975	0.40967	0.96896	0.070138	5573.0	0.3761243
KeeneWard1	D	416	233	891	0.1072	20544	0.36375	0.29250	0.97132	0.043137	4567.4	0.4668911
KeeneWard2	D	588	402	1433	0.1072	20544	0.36239	0.28073	0.97132	0.054213	4567.4	0.4103280
KeeneWard3	D	503	427	1283	0.1072	20544	0.33471	0.30062	0.97132	0.068720	4567.4	0.3920499
KeeneWard4	D	503	436	1330	0.1072	20544	0.29429	0.32857	0.97132	0.041597	4567.4	0.3781955
KeeneWard5	D	544	424	1347	0.1072	20544	0.37594	0.29041	0.97132	0.076056	4567.4	0.4038604
Marlborough	Н	305	188	651	0.0354	19967	0.32768	0.29002	0.98059	0.049813	2064.0	0.4685100

- Each row is one district
- Votesys: ballot counted by hand (H); ballot counted by machine (D)
- We are interested in Obama vs. Clinton

Observational Study: Example

Among hand-counted ballots, Obama had more votes

```
colSums(newhamp[newhamp$votesys == 'H', c('Obama','Clinton')])
Obama Clinton
16926    14471
```

Among machine-counted ballots, Clinton had more votes

```
colSums(newhamp[newhamp$votesys == 'D', c('Obama','Clinton')])
Obama Clinton
86353 96890
```

• Let's fit a linear model with voting system as the predictor, and Obama's votes proportion as response

$$Y = \beta_0 + \beta_1 T + \epsilon$$

Observational Study: Example

lmod <- lm(pObama ~ votesys, data = newhamp)
summary(lmod)</pre>

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 0.352517   0.005173   68.148  < 2e-16 *** votesysH   0.042487   0.008509   4.993 1.06e-06 ***
```

- The hand voting increases Obama's vote share by 4% on average
- The result is significant
- Is it a causal effect?

- We suspect variable Z relates to both response (Obama votes) and treatment (machine or hand)
- We use linear model to model these two relations

$$Y = \beta_0^* + \beta_1^* T + \beta_2^* Z + \epsilon$$

$$Z = \gamma_0^* + \gamma_1^* T + \epsilon'$$

- If β_2^* is significant, β_1^* is insignificant, γ_1^* is significant, then Z is a confounder
 - Any change of T causes Z, and Z causes Y

- The identification of confounder Z relies on domain knowledge
- In this example political scientists propose Z as the variable Dean, the votes for Howard Dean in 2004 primary

$$Y = \beta_0^* + \beta_1^* T + \beta_2^* Z + \epsilon$$
 Imod <- Im(pObama ~ votesys + Dean, newhamp) summary(Imod)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.221119 0.011250 19.655 <2e-16 ***
votesysH -0.004754 0.007761 -0.613 0.541
Dean 0.522897 0.041650 12.555 <2e-16 ***
```

• β_2^* is significant and treatment (counting method) is no longer significant

• Next, let's model the relationship between Z and treatment

$$Z = \gamma_0^* + \gamma_1^* T + \epsilon'$$

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.251289   0.005985   41.986   <2e-16 ***
votesysH   0.090345   0.009845   9.177   <2e-16 ***
```

- $\gamma_1 > 0$ is significant
- We show that Z is a confounder in this problem

- Dean's voters prefer hand-counted ballot
 - $\ln Z = \gamma_0^* + \gamma_1^* T + \epsilon'$, $\gamma_1^* > 0$
- Dean's voters also vote for Obama

• In
$$Y = \beta_0^* + \beta_1^* T + \beta_2^* Z + \epsilon, \beta_2^* > 0$$

 Without knowing confounder, we observe hand-counted "causes" more Obama votes

But this is association: two variables happen to move simultaneously

- The previous linear model for causal inference is called covariate adjustment
 - With covariate Z fixed, how treatment affect response Y

$$Y = \beta_0^* + \beta_1^* T + \beta_2^* Z + \epsilon$$

- Covariate adjustment replies on the correct model specification
- A model-free way to infer causal effects is matching
 - Find observation pairs in treatment and control group with similar covariates, especially similar confounders
 - In clinical trials, match patients from two groups with same gender, age, income, health condition ...

• In our election data, we try to match based on the Dean variable

```
library(Matching)
newhamp$trt <- ifelse(newhamp$votesys == 'H',1,0)
mm <- GenMatch(newhamp$trt, newhamp$Dean, ties=FALSE)
match <- mm$matches[,1:2]</pre>
```

Match matrix save the indices of matched pairs

^	V1 [‡]	V2 [‡]
1	4	213
2	17	20
3	18	6
4	19	91
5	21	246
6	22	221
7	23	166

 We compute the difference of Obama votes among matched pairs and perform a one sample t-test to test the mean of difference

pdiff <- newhamp\$pObama[match[,1]] - newhamp\$pObama[match[,2]]</pre>

t.test(pdiff)

```
data: pdiff
t = -0.2337, df = 101, p-value = 0.8157
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   -0.01910950    0.01508153
sample estimates:
   mean of x
-0.002013984
```

Statistically, there is no difference of Obama votes among matched pairs

• We plot the vote difference vs. matched variable Dean

pdiff <- newhamp\$pObama[match[,1]] - newhamp\$pObama[match[,2]]</pre>

t.test(pdiff)

 The matched pairs show no clear preference for hand or digital voting condition on Dean vote

• Matching is essentially a model-free covariate adjustment

• If matching seems very good, then why we still use linear regression?