EXERCISE 0

[Chapter 0: On Set Theory] Question I: (TRUE OR FALSE) Put (T) for true statement and (F) for false statement.

In ℝ:	
1. $(a, b) = \{x \in \mathbb{R}: a < x < b\}$	2. $(a, b) = \{x \in \mathbb{R}: a \le x < b\}$
3. $(a, b) = \{x \in \mathbb{R}: a < x \le b\}$	4. $(a, b) = \{x \in \mathbb{R}: a \le x \le b\}$
5. $[a, b) = \{x \in \mathbb{R}: a < x < b\}$	6. $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$
7. $[a, b) = \{x \in \mathbb{R}: a < x \le b\}$	8. $[a, b) = \{x \in \mathbb{R} : a \le x \le b\}$
9. $(a, b] = \{x \in \mathbb{R}: a < x < b\}$	10. $(a, b] = \{x \in \mathbb{R}: a \le x < b\}$
11. $(a, b] = \{x \in \mathbb{R}: a < x \le b\}$	12. $(a, b] = \{x \in \mathbb{R}: a \le x \le b\}$
13. $[a, b] = \{x \in \mathbb{R}: a < x < b\}$	14. $[a, b] = \{x \in \mathbb{R}: a \le x < b\}$
15. $[a, b] = \{x \in \mathbb{R}: a < x \le b\}$	16. $[a, b] = \{x \in \mathbb{R}: a \le x \le b\}$

In any universal set X:	
$17. (A \cup B)^c = A^c \cup B^c$	$18. (A \cup B)^c = A^c \cap B^c$
$19. (A \cap B)^c = A^c \cup B^c$	$20. (A \cap B)^c = A^c \cap B^c$
$21. \ (\cup_i A_i)^c = \cup_i A_i^c$	$22. (\cup_i A_i)^c = \cap_i A_i^c$
$23. \ (\cap_i A_i)^c = \cup_i A_i^c$	$24. \ (\cap_i A_i)^c = \cap_i A_i^c$
25.	26.
$A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
27.	28.
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$
$29. A \cup (\cap_i A_i) = \cap_i (A \cup A_i)$	$30. A \cup (\cap_i A_i) = \cup_i (A \cap A_i)$
$31. A \cap (\cup_i A_i) = \cap_i (A \cup A_i)$	32. $A \cap (\cup_i A_i) = \cup_i (A \cap A_i)$

Let $\{D_n: n \in \mathbb{N} \}$ be an indexed fa	mily of sets, wherw $D_n = (0, \frac{1}{n})$.
Then	
$33. D_3 \cup D_7 = D_3$	$34. D_3 \cup D_7 = D_7$
35. $D_3 \cap D_7 = D_3$	$36. D_3 \cap D_7 = D_7$

$37. D_s \cup D_t = D_r, where,$	$38. D_s \cup D_t = D_r, where,$
$r = \min\{s, t\}.$	$r = max\{s, t\}.$
39. $D_s \cap D_t = D_r$, where,	40. $D_s \cap D_t = D_r$, where,
$r = \min\{s, t\}.$	$r = max\{s, t\}.$
$41. \cup \{D_n : n \in M \subset \mathbb{N} \} = D_r,$	$42. \cup \{D_n : n \in M \subset \mathbb{N} \} = D_r,$
where $r = min\{n: n \in M\}$.	where $r = max\{n: n \in M\}$.
$43. \cap \{D_n : n \in M \subset \mathbb{N} \} = D_r,$	$44. \cap \{D_n: n \in M \subset \mathbb{N} \} = D_r,$
where $r = min\{n: n \in M\}$.	where $r = max\{n: n \in M\}$.
$45. \cup \{D_n : n \in \mathbb{N} \} = (0,1).$	$46. \cup \{\mathbf{D}_n : n \in \mathbb{N} \} = \emptyset.$
$47. \cap \{D_n : n \in \mathbb{N} \} = (0,1).$	$48. \cap \{D_n : n \in \mathbb{N} \} = \emptyset.$

Let $\{D_n: n \in \mathbb{N}\}$ be an indexed fa	mily of sets, wherw $D_n =$
(-n,n). Then	
49. $D_3 \cup D_7 = D_3$	50. $D_3 \cup D_7 = D_7$
51. $D_3 \cap D_7 = D_3$	$52. D_3 \cap D_7 = D_7$
53. $D_s \cup D_t = D_r$, where,	$54. D_s \cup D_t = D_r, where,$
$r = min\{s, t\}.$	$r = max\{s, t\}.$
55. $D_s \cap D_t = D_r$, where,	$56. D_s \cap D_t = D_r, where,$
$r = min\{s, t\}.$	$r = max\{s, t\}.$
$57. \cup \{D_n: n \in M \subset \mathbb{N} \} = D_r,$	$58. \cup \{D_n: n \in M \subset \mathbb{N} \} = D_r,$
where $r = min\{n: n \in M\}$.	where $r = max\{n: n \in M\}$.
$59. \cap \{D_n : n \in M \subset \mathbb{N} \} = D_r,$	$60. \cap \{D_n: n \in M \subset \mathbb{N}\} = D_r,$
where, $r = min\{n: n \in M\}$.	where, $r = max\{n: n \in M\}$.
$61. \cup \{D_n : n \in \mathbb{N} \} = \mathbb{R}.$	62. \cup { D_n : n ∈ \mathbb{N} } = (-1, 1).
$63. \cap \{D_n : n \in \mathbb{N} \} = \emptyset.$	64. \cap { D_n : n ∈ \mathbb{N} } = (-1, 1).

ANSWER OF QUESTION I: (TRUE OR FALSE)

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Answer			F			T			F			F			F	

Question	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Answer		T			F			F			T			F		

Questio	n 3		34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Answe	r]	L			T			F			F			T			T

Question	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Answer			T			T			F			F			F	