WL-TR-91-3014

AD-A247 195

FOREIGN OBJECT DAMAGE TO TIRES OPERATING IN A WARTIME ENVIRONMENT

KENNETH P. SCHWARTZ SPECIAL PROJECTS GROUP AIRCRAFT LAUNCH AND RECOVERY BRANCH VEHICLE SUBSYSTEMS DIVISION

NOVEMBER 1991

FINAL REPORT FOR PERIOD JANUARY 1987 - DECEMBER 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

KENNETH P. SCHWARTZ, Project Engineer

Special Projects Group

Aircraft Launch & Recovery Branch

Vehicle Subsystems Division

FOR THE COMMANDER

RICHARD E. COLCLOUGH.

Chie? Vehicle Subsystems Division AIVARS V. PETERSONS, Chief Aircraft Launch and Recovery Branch Vehicle Subsystems Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify $\frac{\text{WL/FIVMB}}{\text{FIVMB}}$, WPAFB, OH 45433-6553 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT I	OCUMENTATIO	N PAGE		Form Approved OMB No. 0704-0188	
1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY		•	/AVAILABILITY OF	_	······································
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE		or Public Rel on is unlimit	-	
4. PERFORMING ORGANIZATION REPORT NUMBE WL-TR-91-3014	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)
6a NAME OF PERFORMING ORGANIZATION Flight Dynamics Directorate Wright Laboratory	6b. OFFICE SYMBOL (If applicable) WL/FIVMB	7a. NAME OF M	ONITORING ORGAN	IIZATION	
6c. ADDRESS (City, State, and ZIP Code)	<u> </u>	7b. ADDRESS (Cit	ty, State, and ZIP C	ode)	
Wright-Patterson AFB OH 45433-6	553				
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICAT	ION NUMBER
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBERS	·	
		PROGRAM ELEMENT NO. 62201F	PROJECT NO. 2402	TASK NO 01	WORK UNIT ACCESSION NO. 57 & 46
11. TITLE (Include Security Classification) Foreign Object Damage to Tir	es Operating in	a Wartime E	nvironment		
12. PERSONAL AUTHOR(S) Kenneth Schw	artz				
13a. TYPE OF REPORT 13b. TIME CO Final FROM Ja	DVERED TO Dec 90	14. DATE OF REPO November	RT (Year, Month, D	ay) 15.	PAGE COUNT 69
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES FIELD GROUP SUB-GROUP	18. SUBJECT TERMS (Continue on revers	e if necessary and	identify l	by block number)
FIELD GROUP SUB-GROUP	Tire Cutting Foreign Obje	ct Damage			
Over the past 5 years, various Damage (FOD) to aircraft operat attack. These efforts include aircraft damage from tire lofte the operability of tires subject preliminary assessment to the temporary. The report summarizes which were tested in a simulate Tests tires included F-16 main included speed, load, size, presize, debris distribution, brak involved cut types, cut depths, aircraft operational impacts.	efforts addressed ing in a debris engine object in deforeign object ted to FOD. The ire cutting FOD the approach and post-attack end nose, and assure, tire typing, and combine	ed the proble strewn environgestion profis report was portion of nd results on the first report with the first report with the first report of the first report of the first report repo	ronment follo bability, en stores FOD, s written to the overall f tests on o nder full sc ire setup. water effect	owing a gine () tire of provide post-a ver 12 ale test v. s, debalysis tire	an airbase FOD) damage, cutting FOD, and de a summary and ttack FOD 6 aircraft tires st conditions. ariables ris type, debris consideration
☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS R	PT. DTIC USERS	Unclassi	fied		
22a NAME OF RESPONSIBLE INDIVIDUAL Kenneth Schwartz		226 TELEPHONE (513-257-21	Include Area Code) 29	22¢ OF WL/	FIÇE SYMBOL FIVMB

FOREWORD

This effort was performed in-house by the Aircraft Launch and Recovery Branch, Vehicle Subsystems Division of the Wright Research and Development Center (now Wright Laboratory). The effort was conducted as part of a jointly funded program, between WRDC and AFESC Tyndall AFB FL, to determine the impact of FOD (Foreign Object Damage) to aircraft operating in a post-attack environment. This part of the program addressed the issues of tire cutting damage sustained as a result of operating an aircraft over post-attack debris and what measures would be needed to overcome any problems disclosed. The effort was conducted under Work Unit Numbers 24020146 and 24020157 entitled "Ground Contacting Systems" and "Vehicle Subsystems Integrity Program" respectfully. The test effort was conducted from 1 June 1986 to 1 November 1988 with data reduction and analysis continuing into October 1989. All of the cutting tests reported in this report were conducted at the Naval Air Engineering Center (NAEC), Lakehurst New Jersey, and the author acknowledges the engineering support provided by Mr. Jack Schaible of the NAEC. The author also acknowledges the technical support provided by Ms Gwen Patterson of WL/FIVMB.

This report was submitted by the author in November 1990.

This report has been reviewed and is approved.

TABLE OF CONTENTS

SI	ECTION		PAGE
	I	INTRODUCTION	1
	II	PROGRAM EVOLUTION	3
	III	TEST PROGRAM SUMMARY	5
	IV	TEST VEHICLE/TEST SETUP	7
	v	PRELIMINARY ANALYSIS	16
	VI	CONCLUSIONS & RECOMMENDATIONS	57
		REFERENCES	60

LIST OF FIGURES

FIGURE		PAGE
Figure 1	Finally Fabricated Tire Cutting Test Vehicle	8
Figure 2	Generic Test Setup	13
Figure 3	F-16 Stone Pattern (Test Setup)	14
Figure 4	F-4 Stone Pattern (Test Setup)	15
Figure 5	Speed Effects for All Cuts	18
Figure 6	Speed Effects (Over Limit Cuts)	18
Figure 7	Yaw Analysis (4 Cut Ranges)	20
Figure 8	Radial Tire Cut Comparisons	23
Figure 9	Pressure Trend Observations	23
Figure 10	Tire Type Damage Comparison (Constant Testbed)	27
Figure 11	Tire Type Damage Comparison (All Testbeds)	27
Figure 12	High Speed Water Comparison	35
Figure 13	Debris Size Effects (All Tire Types)	39
Figure 14	Debris Size Effects (Retread Only)	39
Figure 15 List	Debris Size Effects (Deep Cuts) Table 16 Debris Type Analysis Critical Items (GY Only All Beds)	41
Figure 16	Type Effects (As Is & Size Adjusted)	44
Figure 17	Debris Type Effects (Deep Cuts/Size Adjusted)	44
•		
	Brake Pressure Effects (All Cuts)	49
Figure 19	Brake Pressure Effects (Limit Cuts)	49
Figure 20	Combined Brake Yaw Data (All Cuts)	53
Figure 21	Averaged Brake Yaw Data	53
Figure 22	Combined Brake Yaw Data (Limit Cuts)	55

LIST OF TABLES

TABLE		1	PAGE
Table	1	TCTV System/Subsystem Breakdown	7
Table	2	Speed Trend Analysis Data	17
Table	3	Yaw Effects Analysis	19
Table	4	Radial Tire Analysis	21
Table	5	Tire Pressure Effects Analysis	24
Table	6	Regular/Retread Comparison	25
Table	7	Reg/Ret Analysis List Critical Items (Const/Early Patterns)	26
Table	8	Tire Size Effects Analysis	29
Table	9	F-4 Loads Effects Analysis	30
Table	10	F-16 Loads Analysis List Critical Items	31
Table	11	Low Speed Water Effects (F-16)	33
Table	12	High Speed Water Effects (F-16)	34
Table	13	Water Effects With Yaw	36
Table	14	Debris Size Effects All Data	37
Table	15	Debris Size Effects (Retread Tires Only)	38
Table	16	Debris Type Analysis List Critical Jtems (GY Only All Beds)	42
Table Adju	_	Debris Type Analysis List Critical Items (GY/All Beds Deep Cut	43
Table	18	Braking Analysis List Critical Items (GY only All Size Beds) .	45
Table		a Braking Analysis (Limit Cut DataAll Stones & 1.5 Dia	46
Table	19	Braking Analysis List Critical Items (GY Only 6/4 Beds)	47
Table	19a	Brake/Pressure Drag Relationship	47
Table		Combined Braking/Yaw Analysis List Critical Items (GY 6/4	50

Table 21	Combined Brake/Yaw (All Brake Pressures Included)	51
Table 22	Braking/Yaw Analysis (Pos Brake/ 0 Brake Comparison)	52
Table 23	Distribution Effects	56

LIST OF ACRONYMS & ABBREVIATIONS

ACRONYM	DESCRIPTION
A	Amperes
ADJ	Adjusted
AFESC	Air Force Engineering Services Center
AFFTC	Air Force Flight Test Center
CAM	Camber
CBR	California Bearing Ratio
D	Drag
ENG	Engineer
FOD	Foreign Object Damage/Debris
GY	Goodyear
LTH	Length
MIC	Michelin
MLG	Main Landing Gear
MPH	Miles Per Hour
NASC	Naval Air Systems Command
NLG	Nose Landing Gear
PRO	Propulsion
PSI	Pounds Per Square Inch
RETRD	Retreaded Tire
S	Side
SHRAP	Shrapnel
TCTV	Tire Cutting Test Vehicle
UDRI	University of Dayton Research Institute
V	Vertical
VEH	Vehicle
WL	Wright Laboratory
WRDC	Wright Research & Development Center
	and a late

WTH

Width

SECTION I

INTRODUCTION

The purpose of this effort is to provide a preliminary assessment as to the sensitivity for tire cutting under varied operating conditions. This assessment is limited and non statistical in nature. The objective of the study is to provide preliminary guidance which can be used for both near-term research programs, detailed statistical analysis efforts, and initial operations analysis applications.

The study itself is confined to considering cut depths and numbers of cuts. No analysis considerations are given to cut types, locations, detailed loads, specific cut limits, or other damage. The study cut data are grouped into five cuts areas consisting of Total Cuts, 0-5 (32nds), 6-10 (32nds), 11-15 (32nds), and 16+ (32nds) depth. A total of 22 analysis extractions are derived from the original data base generated from the tire cutting test effort (reference 1). These 22 extractions resulted in the generation of 22 different tables whereby single variables can be looked at while all the remaining parameters remain fixed. A complete summary of the 22 analysis extractions and resulting data files are as follows:

FILE NAME

SUBURCI AREA	FIDE WATE
SPEED EFFECTS ANALYSISFILE	SPEED
YAW EFFECTS ANALYSISFILE	
RADIAL TIRE ANALYSISFILE	RADIAL
PRESSURE EFFECTS ANALYSISFILE	PRESSURE
RETREAD TIRE ANALYSISFILE	RETRDALL
RETREAD TIRE CONST PATT ANALYSISFILE	RETRD
TIRE SIZE ANALYSIS	SIZE
F-4 LOADS EFFECTSFILE	
F-16 LOADS EFFECTSFILE	
F-16 WATER EFFECTS LO SPDFILE	WATER-LO
F-16 WATER EFFECTS HI SPDFILE	
F-16 WATER/YAW EFFECTS HI SPDFILE	
DEBRIS SIZE EFFECTS GY/RETFILE	
DEBRIS SIZE EFFECTS RETREADFILE	
SHRAPNEL (DEBRIS TYPE) EFFECTSFILE	
SHRAP (ABOVE) DEEP CUTS ADJUSTEDFILE	
BRAKING ANALYSIS ALL BEDSFILE	
BRAKING ANALYSIS 6/4 BEDSFILE	
COMBINED YAW/BRAK + PRESSFILE	
COMBINED YAW/BRAK ALL PRESSFILE	
·	
COMBINED (TABLE 21 SEP COMPARE)FILE	
DEBRIS DISTRIBUTION EFFECTSFILE	DISTRIB

SUBJECT AREA

The resulting output consists of various Lotus worksheet files which were then printed out in table form and analyzed both visually and graphically in Section III of this report. A summary of the file contents, resulting table number and

number of tests included in the analysis is as follows:

SPEED EFFECTS ANALYSIS15	TESTS	TABLE	#	2
YAW EFFECTS ANALYSIS13	TESTS	TABLE	#	3
RADIAL TIRE ANALYSIS13	TESTS	TABLE	#	4
PRESSURE EFFECTS ANALYSIS 9	TESTS	TABLE	#	5
RETREAD TIRE ANALYSIS17	TESTS	TABLE	#	6
RETREAD TIRE CONST PATT ANALYSIS10	TESTS	TABLE	#	7
TIRE SIZE ANALYSIS17	TESTS	TABLE	#	8
F-4 LOADS EFFECTS	TESTS	TABLE	#	9
F-16 LOADS EFFECTS14	TESTS	TABLE	#	10
F-16 WATER EFFECTS LO SPD10	TESTS	TABLE	#	11
F-16 WATER EFFECTS HI SPD11	TESTS	TABLE	#	12
F-16 WATER/YAW EFFECTS HI SPD 4	TESTS	TABLE	#	13
DEBRIS SIZE EFFECTS GY/RET29	TESTS	TABLE	#	14
DEBRIS SIZE EFFECTS RETREAD17	TESTS	TABLE	#	15
SHRAPNEL (DEBRIS TYPE) EFFECTS16	TESTS	TABLE	#	16
SHRAP (ABOVE) DEEP CUTS ADJUSTED16	TESTS	TABLE	#	17
BRAKING ANALYSIS ALL BEDS17	TESTS	TABLE	#	18
BRAKING ANALYSIS 6/4 BEDS	TESTS	TABLE	#	19
COMBINED YAW/BRAK + PRESS14	TESTS	TABLE	#	20
COMBINED YAW/BRAK ALL PRESS29	TESTS	TABLE	#	21
COMBINED (TABLE 20 SEP COMPARE)29	TESTS	TABLE	#	22
DEBRIS DISTRIBUTION EFFECTS12	TESTS	TABLE	#	23

Future Studies and Analysis

The original test plan to generate these data was formulated to accommodate detailed operational studies in this area. With all of the above data in statistical form, these operational studies would first generate operational spectrums for specific aircraft/tire combinations and then combine these with expected levels of airfield debris. The resulting spectrum would then be segmented into detailed sub elements conforming to the available statistical form data. Typical sub elements will include taxi, takeoff, landing, and taxi segments each of which would be further segmented into multiple turning and braking segments each at different loading conditions. This model when combined with airfield debris models will permit very detailed and accurate studies of expected tire cutting as a function of aircraft operation and runway cleanliness to be made.

SECTION II

PROGRAM EVOLUTION

Broadbase Program

The tire cutting program discussed in this report is actually an outgrowth of a larger FOD program started in 1984. This original FOD effort consisted of assessing the FOD relationships to aircraft operations in a post attack or debris laden environment. The overall objective of this larger program was to generate test data to fill critical voids so that airfield cleanliness costs could be traded against some acceptable level operational FOD damage to the aircraft.

Original program emphasis was in three principal areas. The first consisted of aircraft engine damage occurring from the lofting of debris from the tires into the engine or direct vortex suction of debris off the ground into the engine. The second area of emphasis involved the lofting of debris by the tires against the aircraft itself resulting in damage to aircraft structures mechanical subsystems or external stores. The final area of concern was that of tire cutting whereby the effects of running high pressure tires over post-attack debris such as rocks and shrapnel would have to be analyzed.

Initial program emphasis was on the first two of these areas in that it was originally theorized that the tire cutting area was the least critical of the three. As a result, an extensive test and evaluation effort was started to study the effects of tire lofting and resulting lofted debris damage. Early in the lefting test effort, however, it was noted that the tires used for lofting tests were being very severely cut up during these tests. As a result, a separate and independent test effort to study tire cutting effects was established. The final results of the tire cutting would ultimately serve to show that the tire cutting area was indeed the most critical of the three areas studied in a post attack environment.

Test results from all three areas were quite interesting with some rather unexpected results occurring from applying wartime criteria rather than peacetime constraints. This report only covers the tire cutting portion and only provides a summary type analysis of that area. Additional details of the tire cutting portion of the effort are contained in references 1 through 5 and reference 12. Additional details of the tire lofting, engine degradation, mechanical subsystem and airframe damage, portions of the effort are contained in references 6 through 9. A report on the operational effects of all of these areas along with the generation of wartime cleanliness criteria is being prepared and will be available in the near future.

Program Participants

All of these previously discussed efforts were jointly undertaken and sponsored by WRDC/FIVMB Wright Patterson AFB, and AFESC/RDCR Tyndall AFB Florida. Support contractors involved in these efforts included the University of Dayton Research Institute, Dayton, Ohio; Physics Applications Inc. Dayton, Ohio; the BDM Corporation located in McLean, Virginia; Sverdrup Technology Inc, Tullahoma, Tennessee; and Commercial Metals Fabricators of Dayton, Ohio. Testing organizations involved in these programs included the Naval Air Systems Command, Lakehurst, NJ; The Air Force Flight Test Center, Edwards AFB, California; the UDRI Impact Dynamics Laboratory, Dayton, Ohio; the Mobility Development Laboratory, Wright Patterson AFB, Ohio and the Landing Gear Development Facility, Wright Patterson AFB, Ohio.

SECTION III

TEST PROGRAM SUMMARY

Purpose

All data and resulting data tables generated in this analysis were the result of an extensive tire cutting test effort conducted over a 2-year period. The subject test program was conducted at the Naval Air Engineering Center (NAEC) jet track facility located at Lakehurst, NJ. and involved over 150 tests specifically targeted for tire cutting studies. Details relating to test vehicle design, vehicle capabilities, facility operation, test methods, instrumentation, and data reduction techniques are quite extensive and are included in references 1, 2, 3, 5, and 12. This section summarizes work done to support the analysis conducted in this report and to outline what data and facilities are available for future efforts. To provide this background, brief summaries of important areas are presented in the following sections. Additionally, Section IV has been included which covers the test vehicle and test setup in further detail.

Test Vehicle

The TCTV (Tire Cutting Test Vehicle) consists of a 20-30 ton vehicle designed to be accelerated to speeds in excess of 200 MPH along a 6000-8000 ft test track. The test tire and/or landing gear is mounted to the vehicle by a hinged cantilevered boom extending forward of the vehicle. Loading of the tire or gear is accomplished with of dead weights mounted directly to the top of the cantilever structure. More detailed descriptions of this arrangement are included in reference 1. Typically tire loads of up to 17,000 lbs can be accommodated involving side and drag loads of 8,000 & 23,000 lbs respectively. The vehicle was qualified to speeds of over 150 MPH. A complete listing of the vehicle's capabilities are also noted in Section IV.

Test Plan

Prior to the implementation of this effort, a fully coordinated test plan was developed. The resulting plan considered user requirements, operational factors, cost trades, available resources, and a parametric analysis of what variables needed to be included along with their associated priority. The results of this planning phase are included in reference 3.

Instrumentation

Instrumentation contained on the test vehicle includes the capability to measure vertical, side, & drag loads throughout the test run. These loads are measured at the axle and through calibration, and conversion techniques can be directly correlated to loads occurring in the tire footprint area. Additional instrumentation includes the measurement of surface speed and brake pressure. Visual data can also be obtained with two on-board cameras capable of both high and low speed visual acquisition.

Data Acquisition

In addition to the dynamic data noted above, field calibration techniques, tire inspection techniques, and test parameter logging techniques had to be developed. Inspection methods required the measurement of severely cut tires in a high pressure inflated mode. Calibrations had to be completed rapidly in the field, and preliminary test results had to be rapidly assessed to permit test schedule changes to optimize the total data acquisition effort. A summary of these methods and activities are included in References 1, 2, 5, and 12.

Additional Tire Testing

One final area of work that was conducted in this program was the dynamic testing of cut tires. This phase of the effort consisted of subjecting severely cut tires to an operational taxi/takeoff load speed profile on an aircraft tire test dynamometer. The goal here was to determine if a damaged tire could still be used in an emergency for at least one or two taxi/takeoff landing/taxi cycles. This effort is not discussed in this report but additional information can be found in references 5 and 12.

SECTION IV

TEST VEHICLE/TEST SETUP

Test vehicle

Fabrication of the TCTV was completed on 3 January 1986. Figure 1 shows the vehicle installed at the NAEC Jet Track Facility and shows the deadload, boom structure, and associated systems. The particular test setup shown consists of an F-16 main wheel and tire installed for a 120-mph run. The TCTV is composed of four primary systems and various subsystems, as shown in Table 1. The first of these involves three options for providing forward speed to the test vehicle itself. The first option consists of using an MRS tractor system for speeds of 0-18 mph. The MRS (model 200) represents a high torque/high rimpull capability for use in high drawbar pull situations such as high yaw angle or soft soils testing. For lower drawbar situations a second option of lower torque capacity can be used for speeds of up to 30 mph. This option consists of utilizing a standard 5-ton truck, and a modified pusher plate system. For speeds in excess of 30 mph, the third system available is the standard NAEC jet car push mode. The pusher system consists of a rear push acceleration to some velocity above the desired test speed, and releasing the TCTV prior to engagement of the test section. This procedure eliminates any pusher bias through the test section and allows the vehicle to stabilize yielding more constant behavior through the testbed and over the entire range of all tests conducted.

Table 1 TCTV System/Subsystem Breakdown

- A. Speed Generation System
 - 1. MRS Tractor (Low Geared)
 - 2. Hi Geared Travels Pushers
 - 3. Jet Car Pusher
- B. Dead Load with Railed Guidance
- C. Test/Support Systems
 - 1. Support Structures
 - 2. Instrumented Axles
 - 3. Instrumentation System
 - 4. Power Supply
 - Load/Lift/Stop System
 - 6. Braking System
- D. Arresting System
 - 1. Cable Catcher
 - 2. Arrestor Brakes

Figure 1 Finally Fabricated Tire Cutting Test Vehicle

The second system noted in Table 1 consists of the deadload, with railed guidance. The deadload is comprised of all the yellow structure shown in Figure 1. This structure is a 40,000-lb steel frame, supported by eight wheels, and is guided on two 10WF49 steel rails.

The third system noted in Table 1 comprises the heart of the entire test vehicle. The majority of subsystems in this area are represented in black in Figure 1. Specific capabilities and operation of all of these systems is contained in reference 1.

The final system noted in Table 1 consists of the arresting system to safely catch and arrest the entire test vehicle following a high speed test. This system is comprised of a cable catcher located on the deadload, and two ground based arrester systems. The ground based arrester system consists of a suspended cable (which engages the cable catchers) attached to an arrester tape leading to a standard M-21 Naval arresting system.

In addition to the four systems previously discussed, several additional capabilities are worth mentioning. Figure 1 only depicts one particular test setup but different aircraft axles can be substituted to include other tires or aircraft types. In addition, the entire axle support structure can be easily removed, and an actual landing gear substituted in its place. This latter change was actually accomplished in this program with an F-4 nose landing gear system. It should be finally noted that the axle/instrumentation calibration system for the vehicle is of field design, and all calibrations can be accomplished on site.

Test Vehicle Specification Summary:

The resulting TCTV represents a significant advancement for the test and evaluation of aircraft landing gear systems. The range of capabilities extends from low speed (up to 10 mph) soft surface (CBR 3-4) testing, all the way to high speed (200 mph +) testing on actual runway surfaces. The vehicle can be utilized for full scale landing gear component studies involving aircraft up to 40,000 lbs, or a single gear weight of 17,000 lbs. The vehicle capitalizes on a forward mounted design approach to eliminate the effects of carriage airflow interference on the actual test sections. This fact results in a highly controllable test environment and the additional capability to include advanced test articles such as air cushion cells or dynamically scaled models. A summary of the current capabilities of the TCTV, as they relate to aircraft landing gear test and evaluation requirements, is as follows:

Load Limits @ Ground Contact Point

o Side = 8,000 lbs

o Drag = 23,000 lbs

o Vertical = 17,000 lbs (maximum)

4,500 lbs (minimum)

Speed Capabilities (Hard Surface)

- o 0-15 mph without jet car
- o 0-30 mph potential, without jet car
- o 30-200 mph with jet car

Soft Surface Capabilities

- o CBR to 3 or 4
- o 0-10 mph speed

Tire/Wheel/Brake Mountings (Available)

- o F-16/F-4 Nose Axle
- o F-16 Main Axle
- o Adaptable to other specially made axles

Instrumented Capabilities

- o Surface Side Load
- o Surface Drag Load
- o Vertical Load
- o Surface Speed
- o Brake Pressure

Axle Block Positioning Control (Degrees)

- o Camber = $0, \pm 1, \pm 2$
- o Yaw = 0 to \pm (measured)
 - 0 to \pm 5 1/2 (max limit)

Test Surfaces

- o Concrete
- o Asphalt
- o Soils
- o Wet Surfaces
- o Standing Water
- o Debris Laden Hard Surfaces
- o Specialized Sections

Visual Data

- o On-board Camera (high speed)
- o On-board Camera (standard speed)

Environmental Limits

- o 10 to 100 F Ambient (operating range)
- o Operable in Rain/Snow/or Ice

Test Costs/Times/Test Rates

- o Low Speed Shot = Approximately \$ 500
- o High Speed Shot = Approximately \$3,000

```
Test Costs/Times/Test Rates (continued)
     o Wheel Change Time
                            = 10 minutes
     o Low Speed Test Rate = 5-7 per 8 hrs
     o High Speed Test Rate = 3-4 per 8 hrs
Field Calibration Loads (Available Capacity, NOT LIMITS)
     o Locked Wheel (S = 8,000 lbs)
       (with brake) (V = 17,000 lbs)
                     (D = 4,000 lbs)
     o Choked Wheel (S = 8,000 lbs)
                     (V = 17,000 lbs)
                     (D = 2,000 lbs)
Axle Limits
     o F-16 MLG S = 8,000 lbs
                 V = 17,000 lbs
                 D = 23,000 lbs
     o F-4 NLG S = 3,000 lbs
                 V = 6,000 lbs
                 D = 4,000 lbs
Braking System
     o Max Pressure
                        = 1,500-psi capacity
                            600-psi operational limit
     o Pressure Control = Direct or Feedback
                         = 55 million ft lbs
     o Max Energy
                           (from E_k = \frac{1970}{2} v^2), v = ft/s @ 160 mph
Testbed Lengths Available
     0.0-15 \text{ mph} = 5,000 \text{ ft in rail}
                    400 ft nonrail
     o Max mph = 1,500 ft in rail
                    300 ft nonrail
On board Power (2 Generators)
     o 1,800 watts, 120 volt, 60 cycle, 15A
         (Sears Model 580.327111)
     o 2,250 watts, 120 volt, 60 cycle, 15A
Boom Lift Specifications
     o Cylinder Limit = 3000-psi Heavy Duty Service
                          5000-psi Shock
     o Max lift load = 24, 900 lbs @ 3000 psi
     o Cylinder Spec = 3 1/4 HHC13K
```

Test Setup

The test setup utilized for this test effort is noted in the Figure 2 generic arrangement. Specific details relative to the vehicle, track layout, and testing techniques will not be presented in that they are fully covered in references 1 and 2. The data presented in this report contain references to push distances,

push vehicles and tested layouts which should be understood for proper data analysis.

For this test effort, two push modes were utilized. The first is a low speed mode (0-25 mph) where a push distance ranging from 1000 to 2500 feet was required to accelerate to the desired testbed speed. For the higher speed mode (30-200 mph), a jet car was utilized which entailed push distances of up to 6500 ft. The test bed itself ranged from 250 to 500 ft in length. Early in the program, numerous patterns and layout techniques were analyzed which included X patterns, Z patterns, random layouts, straight across rows, in line rows, and diagonals. A disconal pattern was ultimately selected and is shown in Figures 3 and 4 Figure 3 is the F-16 setup and Figure 4 represents the F-4 case. All pertinent data are noted on both the figures with one diagonal representing one tire circumference plus 1 inch to preclude striking the same tire point at each revolution. Horizontal spacing is such that all ribs, grooves, and sidewall points involve a stone contact. Within each figure three beds are noted. leftmost is the original design. After further consideration one stone was added to both edges to assure that any lateral shift would still involve the same number of stone engagements. This revision is noted in the center drawing. The rightmost drawing represents a halving of the density which was required to both reduce tire damage to manageable levels and to add a more random aspect to the layout. Within the data, these layouts are described as a 9, 6/5, or 5/4 pattern as depicted in these figures.

VEHICLE RECOVERY AREA TEST BED PUSH DISTANCE TEST VEHICLE PUSHER JET

Figure 2 Generic Test Setup

CAR

VECH

F-16 9 STONE 13/16 IN SPACING . X X . X . X . X . X . X . X . X . X x	F-16 9 STONE PLUS 2 END 6/5 PATTERN . X . X . X . X . X . X . X . X . X .	520 FT TEST BED 77 COURSES 693 STONES FULL DENSITY 346 STONES 6/5 DENSITY LOADED RADIUS (F-16 MAIN) REG 14300 LBS 275 PSI 11.31 inches 10000 LBS 275 PSI 11.51 inches 7000 LBS 275 PSI 11.73 inches 14300 LBS 225 PSI 10.87 inches LOADED RADIUS (F-16 MAIN) RADIAL 14300 LBS 275 PSI 10.79 inches LOADED RADIUS (F-4 OR F-16 NOSE) 4500 LBS 215 PSI 7.805 inches UNLOADED RADIUS (F-4 OR F-16 NOSE) 4500 LBS 215 PSI 8.852 inches UNLOADED RADIUS (F-16 MAIN) REG 14300 LBS 275 PSI 12.69 inches UNLOADED RADIUS (F-16 MAIN) RADIAL 14300 LBS 275 PSI 12.69 inches
	LINE	TIVE >	-

Figure 3 F-16 Stone Pattern (Test Setup)

F-4	F-4	F-4	
7 STONE	7 STONE	7 STONE	
	PLUS	PLUS	347 FT TEST BED
	2 END	2 END 5/4 PATTERN	77 COURSES
		3/4 PATTERN	539 STONES FULL DENSITY 270 STONES 5/4 DENSITY
. SPACING			LOADED RADIUS (F-16 MAIN) REG
: x		: k	14300 LBS 275 PSI 11.13 inches
X 9 IN APART	. x	:x	10000 LBS 275 PSI 11.51 inches
X X	x x.	x.	7000 LBS 275 PSI 11.73 inches
ix .	x	. x	14300 LBS 225 PSI
X . X	X . X	X .	10.87 inches
.X	-X	i	LOADED RADIUS (F-16 MAIN; RADIAL
X.	X. x	x:	14300 LBS 275 PSI 10.79 inches
x . x	x x x x	, x	LOADED RADIUS (F-4 OR F-16 NOSE)
x	.x	^ :x	4500 LBS 215 PSI
X	X	х.	7.805 inches
X .	X . X X . X	. X	UNLOADED RADIUS (F-4 OR F-16 NOSE)
.x	x . x .	. x	4500 LBS 215 PSI 8.852 inches
x x.	x	x	UNLOADED RADIUS (F-16 MAIN) REG 14300 LBS 275 PSI
x .	X. x	x :	12.69 inches
X . X	X . X	x . X	UNLOADED RADIUS (F-16 MAIN) RADIAL 14300 LBS 275 PSI
.x	x x	.x	12.69 inches
x. x .	X.	x.	
X X	X . X X X X X X X X	x . x	
x x	X .X	. x	
X X	X X	X	
X .	X .	x .	
	x .	x .	
CENT LINE	CENT LINE	CENT Line	
		<u>.</u>	
EFFECTIVE	EFFEC		
WIDTHS	> < TIR WIDT		

Figure 4 F-4 Stone Pattern (Test Setup)

SECTION V

PRELIMINARY ANALYSIS

Speed Effects

A total of 15 tests were evaluated to determine the overall effects of speed on cutting damage. Specific tests included are noted in Table 2 where tests are listed in order of decreasing damage. For this case and all subsequent effects noted in the analysis tables, the highest damage severity is defined to be the lowest number of hits required to generate a cut on the tire. In Table 2 and all subsequent tables, this damage parameter is noted in column AU and is listed in order of increasing values unless stated otherwise.

Figure 5 graphically illustrates the Table 2 data and as expected a significant amount of scatter does exist. A potential trend, however, is evident for the case that higher speeds result in higher cutting. In an attempt to clarify this trend a second plot (Figure 6) was generated limiting the cuts considered to be beyond limit or specifically those only over ten 32nds of an inch. For this case, the scatter was less and the higher speed/higher damage theory becomes even more convincing.

For both Figures 5 and 6, only 13 points are used in that two of the Table 2 tests (items 1 & 2) are failed tires. Subsequent post-failure damage could not be determined to allow for any reliable use of these data points.

Yaw Effects

A total of 13 tests are available for an assessment of the effects of yaw or turning on cutting damage. Specific tests included are noted in Table 3 in order of decreasing yaw angle. From this table, one can observe that Column AU (damage level) follows an apparent trend of decreasing damage with decreasing angle. This fact, however, is misleading in that the AU column is for all cuts. When moving to other types of cuts namely deeper values this trend seems to disappear. Figure 7 graphically illustrates this fact where four curves are plotted for the four types of cut sizes. From these curves the potential trends are for increased low depth damage at higher yaw angles but for limited to zero increased damage for larger deep cuts.

Radial Tire Analysis

This analysis consists of comparing four radial tire tests against nine conventional tire tests. The resulting 13 tests are presented in Table 4 in order of increasing damage. In this case, however, increasing damage is confined solely to cuts beyond the limit noted for that particular tire. These two parameters are noted in the two rightmost columns in Table 4 (Beyond Limit Cut Data). It should be noted, however, that the beyond limit nomenclature may not involve true limits in that cut locations (groove, sidewall, or rib) were not considered. Values presented are simply in 32nds of an inch irrelevant of location.

TABLE 2--SPEED TREND ANALYSIS DATA

_		_			P-10 GT	6		<u>.</u>	?				> >	2	3										BEYON	LIMIT
TABLE	2speed	TREND A	MLYSIS	ATA	ארוב ביילי ארוב	ì		Š		Š		ž	7		FILE	E SPEED	5	c							24	OUT DATA
TABLE	A SEED	₹	LIST CRITICAL ITEMS	= 3	E			PKEPAKED	 E.	<u> </u>	<u> </u>	۲× ۲	MADU/FIVMB/K SUMMAKIZ		¥			.						AD J		S
TEST			8		-	TIRE PA	ZMT PR	NT SURF						3			8	-	0		=	101		HITS FOR		HITS FO
*	DATE	ENG	TEMPA/C	\$	AXLE	WES 1	3 3	PRES L W COND	SIZE TYPE	Æ LTH	5	PAT	PSI YAU	_	LOAD VEH	DIST	SPEED	D CUTS	S S	9	15 14	# HITS	HIT	ā	TOTAL	ā
α		4	-	_	2		٩	8		>	3	×	7	*		1		1	1	¥	A	1 -	AS	₹		
7-	3	SE/SX 98		<u>ح</u> ک		, K	2 5.	8 DRY		50.	7.7	6/5	0	0 14	14300 JET		0.88.0	0 0	0	0	0	9%	%	FAILURE	0	FAILU
, M	=	SE/SX 9	8		5.		•	8 DRY		200	7.7	6/5	0	0 14						0	0		3 46	FAILURE	-	FAILUE
M-	9	87 JS	2	<u>ئ</u>			_	8 DRY		500	7.7	6/5	0	0 14			•	-		ង	9		%	ν. Θ.	55	26.65
· - ·	8	Sr 2	25 F-16	. 5			_	8 DRY		8	7.7	6/5	0	0 14			•			14	7		%	8	80	43.25
] =	SI /SX 2	. 1 F				_			20.00	7.73	6/5	0	0 14						14	M		ž	6.1	~	69.20
<u>ر</u> د د	g	87 JS	67 F-1							8	7.7	6/5	0	0 14			•			œ	9		%	7.2	_	76.43
7-X	8	2 Z	2 2 2	<u>ح</u>			_			800	7.75	6/5	0	0 14			•-			14	•		3	<u>,</u>	٥	38.47
2 2] =	SK KS/15	28	. ა						8	7.7	6/5	0	0 14						9	~		%	10.1	~	115.33
PT - 10	70	SI /SJ 9	^	5 و			_			8	7.7	6/5	0	0 14						ç	7		%	10.4	3 4	88.5
. ~	25.	SF/SJ 98	. 63							8	7.7	6/5	0	0 14						14	2		%	10.8	- 2	17.0
	4		81 F-1	<u>خ</u> د د			_			500	7,7	6/5	0	0 14						Ξ	M		£	10.8	~	115.3
, d	=	S 72	8	ج ج			_			8	7.75	6/5	0	0 14			٠			Ξ	9		3 5	12.8	- 10	¥.
102/12	=	2 /2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	2.7	ج ق د د						500	7.7	6/5	0	0 72						7	7		%	14.4	M	115.3
X-7	=	% KS/18	7.							8	6.5	5/4	0	0 14						2	7		88	16.0	. 5	41.6
1111	31 JUL 8	25 /SI 28	78 F-16	. S		275 10.2	2 5.8		1.50 02	50	7.7	6/5	0	0 14		₹ 2300				Ξ	0		346	20.3	0	ER

SPEED EFFECTS ANALYSIS ALL CUTS

FIGURE 5 SPEED EFFECTS FOR ALL CUTS

SPEED EFFECTS ANALYSIS OVER 10/32 IN CUTS ONLY

FIGURE 6 SPEED EFFECTS (OVER LIMIT CUTS)

TABLE 3 YAW EFFECTS ANALYSIS

					-																		
			D LIMIT	CUT DATA		V O					99.50	86.50	3 43.25	99.50	173.00	173.00	173.00	86.50	115.33	ERR	97.17	173.00	115.33
			BEYON	5				TOTAL			v	7	ω,	'n	~	N	17	4	רא	0	'n	~	(*1
								HITS FOR	5	₹	2.77	5.8	4.33	6.73	6.92	9.89	12.36	10.48	10.81	20.35	16.00	10.81	14.42
								Ş		AS	%	3	%	%	%	%	%	*	*	*	88	ž	%
								10	16+ HITS													93,60	
								Ξ	15 12	₹	Ŋ	7	9	4	-	7	~	4	M	0	7	2	7
								9		Į.	\$											7	
								o ≰			•											2 16	
SPEED<20	8	8	8	8		돖		A TOTA		ı	•											15.0 32	
88	Se	8	SPEE	39E	YAL	t Oct-		줥	SS SS			-											
					YA!	31-00		ESS.	DIST	æ	Ñ	ន	R	ន	ន្ត	ន	ន	ž	ຄື	ន	ន្ត	<u>නූ</u>	ສີ
					FIE	DATE		8	Ē.													PAYM	
14300	5,30	1430	1 30	14300				Æ	8	8	14300	14300	14300	14300	14300	14300	1430	14300	14300	14300	14300	14300	14300
0	0	0	0	0		2		3	3	₹	0	0	0	0	0	0	0	0	0	0	0	0	0
0	+	0 +2	0 +3	o 1		AFWAL/FIEMB/K SCHWARTZ		BRAKE	SI YA⊔	7 7	4	0	0	0	0	0	0	0	0	0	0	0	0
						B/K S		DEB 83		×	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	6/5	5/4	\$/9	6/5
						/FIE		쯦	Ē	3	7.7	7.7	7.7	7.7	7.73	7.7	7.7	7.7	7.73	7.7	6.5	7.7	7.7
						AFE				>	200	200	200	200	8	8	<u>8</u>	8	<u>2</u> 00	<u>8</u>	8	8	50
	_	_	_	_		87:		BRIS	E TYPE													중	
1.5	7.5	7.5	7.5	1.50		PREPARED 8Y:		꿈	SIS OF	-	5.5	3.5	5.5	1.50	5.5	1.5	1.5	7.5	1.50	1.5	1.50	1.50	1.5
DRY	8	₽¥ O¥	DR.	DRY		2		TIRE PRNT PRNT SURF DEBI	8 ₃	S	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY	5.8 DRY
								<u>x</u>	 	۵	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2
23	23	23	23	23				T.R.	PRES	0		275						273	273			273	273
									AXLE	z	F-16R	F-16	7-16	F-16	F-168	F-158	F-168	F-168	F-168	F-16R	F-168	F-16	F-16
QUERY CONSTANTS F-16 GY	F-16 GY	> F-16 GY	F-16 GY	F-16 GY		LYSIS			AC ₹	<u>~</u>	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY	F-16 GY
1	A	1	^	•		S AWA		¥8	TEMPA/C	G	45	3		9	75	7,	75	≨		20		42	
	:	:	:			YAM EFFECTS ANALYSIS	_		ENG ENG	w	KS/JS	86 KS/JS	86 KS/JS	KS/JS	KS/1S	KS/7S	KS/1S	KS/3S	S	-	KS/3S	KS/1S	SL
WTS-	WTS-	WTS	WTS-	WTS-			I DATA			ļ	88	8		DEC 86	DEC 86 KS/	DEC 86 KS/	28 28	± 88	IG 87		٦ 8	ည 8	
CONST	CONSTANTS	QUERY CONSTANTS	CONSTANTS	CONSTANTS		TABLE 3	₹ E1		DATE		24 DEC	Ŋ	ង	*	ង	8	Ŋ	ኔ	8	2	18 14	2	ر ا
LERY	QUERY	JUERY	QUERY	QUERY		₹		TEST	*	&	<u>6-</u>	<u></u> 1	9-5	8- 1	1-5	1-11	7-1	11-19	-3	1/11	(-7	<u></u> 3	02/12
1					<u></u>			==		! ! 9			<u>-</u> -	- <u>-</u> -	<u>-</u> -				<u>ب</u>	ب			.=-

FOUR DIFFERENT CUT RANGES YAW ANALYSIS

TABLE 4 RADIAL TIRE ANALYSIS

				i			7													
1					œ		*	Ξ,	Ŋ	'n	4	M	M	M	~	•	-	_	0	0
1	H	;			ğ			12	ล	8	B	B	p	Þ	8	3	Ю	8	ß	Æ
l	=		:	13	E	5	١	M	8	99.13	8	ħ	ħ	7	12	Ř	ล	Ķ	9	
	2	3			Ŧ			-	'n	'n	4	2	31	3.1	21	0.	~	2	~	0
١	6	OUT DATA	i			Ē.	1	"			-	•	•	•	_	-	_			_
1	00	. 0	'	•	œ		1	စ်	ŧ	9	80	۷.	<u> </u>	~	1 =	50	0	М	м	ю
					ã			6.7	6.4	6.0	0.7	5.9	8.0	4.4	8.0	5.7	6.2	9	2	20.35
ĺ				3	HITS	ኳ	1			_	_		_	_	_	_		~	~	2
ļ				•	_	•	j													
1					_	_	l			~										
l					Ą	H	2	絮	×	8	×	×	×	×	×	ž	×	×	×	×
					ь	E IS	1 -	*												
١					F	_	Z	9	ω M	32	M O	쩐	5	3	9	9	3	Š	9	N)
l						₽	▝		_		_		_		_	_	_	_	_	_
					F		₹	Ξ	S	N	4	~	M	~	~	_	-	-	0	0
					9	9	¥	BK	ŧ	2	5	ଯ	Ξ	4	4	œ	2		^	Ξ
l					0	5	2	4	ß	M	8	Ю	∞	~	2	≌	æ	4	Φ.	9
ļ					€	STJ2	1	2												~
1					-	_	Į.										_			
	•		0ct-9			Ø	س	17.0	6.0	5.5	6.0	2.0	8.0	2.0	5.0	5.5	8.5	8.0	8	6.5
			8			b)		•	-	-	-		_	_	•	-	_	_	_	_
ĺ		₹	31-Oct		풄	ट		8		8	S	8	8	8	8	8	8	8	엻	8
		8	3		3	DIST	€	N	N	N	N	N	N	N	И	N	ĸ	N	ĸ	N
1			PATE		8	*	٥	¥	₹	₹	₹	₹	₹	₹	₹	₹	₹	₹	₹	₹
L	_		ð		_	-														
8	14300				8	8	2	25	묽	욹	S	욹	ន្ត	욹	욹	윩	욹	鮗	윩	8
7	7				_	_	l .	7.	7	7	7	7	7	7	7	7	7	7	7	74
Γ	_				3	~	₹	_	_	٠	G	0	0	0	0	0	0	0	0	0
	0		È			≸	7	0	0	0	0	0	0	0	0	0	0	0	0	0
l٥	0		NP.AN./FIB-B/K SCHAPRIZ		ž	82	>	0	0	0	0	0	0	0	0	0	0	0	0	0
			S		_		•	'n	'n	J	_				ın					
			ğ		贸	Æ		8												
ĺ			FIE			Ē	3	7.7	ĸ	នុ	ĸ	ĸ	ĸ	К	ĸ	ĸ	ĸ	ĸ	ĸ	K
			₹		_	_	ı													
			Æ				>	跃	ĸ	ᅜ	ğ	쭚	쫎	쭚	8	跃	딿	跃	路	路
İ					w	띹		_		4										
_	_		<u>;;</u>		2	H .		형												
8	ਲ		A		DEBRIS	SIZ	-	ន	눥	ਖ਼	S	Ŋ	ĸ	ĸ	ĸ	ĸ	ĸ	ង	ន	જ
Γ	_		PREPARED BY:		35						_	_	•	_	_	_	_	_	_	_
と	8		Ħ			_	S	暑	동	돔	8	Š	8	客	Ē	È	줊	줊	Š	Š
					Ž	3	o	5.8	ις 80	ις α	δ	ω	89	æί	ω	ž	Ņ	Ņ	Ş	æ
					_		•									_	_	_	_	
					Ē	_	٩	10.2	6	6	2	2	2	2	2	ထ	æ;	œ,	ထဲ	9
92	K		1 3 65		<u> </u>	¥	0	B	ĸ	K	ĸ	Ę	Ę	ĸ	6	ĸ	K	Ю	K	K
•	• •		Ξ		_	<u> </u>	l	š	94	94	~ 9¥	ري جو	~ı 9¥	~ 9¥	.∨ 9¥	(N (X	~ œ	ν «	2	% ₩
			₫			\$	2	7	7	F-168	75	2	<u>"</u>	<u>,</u>	72	5	7 2	3	72	<u>.</u>
>=	ដ		RADIAL TIRE AWAL LIST CRITICAL			MAN ANDE			 >-			_	_	_	_	<u> </u>	三 三 三	္	MIC F-16R	_
9	<u>~</u>	Sis	5				~	∂	ઇ જ	9	Ś	S	S	S	9	Z.	Š	ž	₹ ₹	2
Ξ	Ξ	Ì	15			¥ ∣		Ī	I	ī	<u>.</u>	Ī	Ţ	Ī	Ξ.	Ĭ	7	ĭ	Ţ	Ţ
?	^	*	⋠	1	2	TEMPAC	9	19	8	86 F-16 G¥	¥	8	<u>ھ</u>	8	3	2	R	ĸ	16	166
İ	İ	RADIAL TIRE ANALYSIS	₹					Ŋ		Ŋ	SS.	se.			ß					
;	İ	2				200	w	છ	Ó	ğ	ઇ	ઇં	SZ.	Ø	ઇ	5 2	1 2	Σ	Ω	Ø
ģ	ż	텵	æ			_		8	8	8	8	<u>.</u>	, -	, 	<u>.</u>	, ,	, 	, 	, 	ķ
Ē	₹	αž	ğ				ပ	Ē		=	ธั	8	<u>~</u>	~ં	ម	ñ.	ñ	ñ	~ fb	~
5	ğ	4	œ			8		ට ප්		호 :	9	0	8	-3 -3	ත් හ	ダ	ري ح	() ()	oi J	-
2	9	TABLE 4				ן י														M
CLERY CONSTANTS F-16 GY	GLERY CONSTANTS F-16 MIC	Ħ		1	<u> </u>	**	co	Ξ	?	×.	Σ.	4	'n	22	'n.	Ņ.	4	<u>.</u>	Ņ	Ξ
<u> </u>	펀			!	E.			<u> </u>	<u>ũ</u>	×.	5	<u>.</u>	င္ပဲ	8	<u> </u>	±.	±.	±	±	<u>5</u>

Table 4 data are graphically noted in Figure 8 where the radial design shows a marked improvement for reducing deep cuts in that all of the radial (coded MIC in Table 4) are grouped and the right low depth end of the chart. With regard to total cuts, however, no concrete conclusions can be made for the radial case.

Beyond limit cuts seemingly are greater for the radial case in that the radial limit is 5/32 versus 9/32 for the conventional bias case. No observations can be made in this area in that a detailed assessment as to limit reasons, cut locations, and true statistical trends are all required before any conclusions can be drawn.

Pressure Effects

For this survey three low pressure runs (225 psi) were conducted and compared against six operating pressure (275 psi) runs. This comparison is noted in Table 5 in two sections where both total cuts and beyond limit cuts are tabulated. A cursory review of the table does not indicate anything other than the fact that a trend may well exist for greater damage at higher pressures and should be considered in any statistical analysis work. The trend noted is presented graphically in Figure 9 where all cuts and beyond limit cuts are separately plotted at the two pressure points. Average values are also noted for each of these two cut types. Considering the average values, two trendlines are shown for all cuts and limit cuts which show a bias toward increasing probabilities of cutting at higher pressures.

Retread Tire Analysis

A total of eight retreads were compared to nine new tires and are tabulated in Table 6. The database query used to generate Table 6 did not include testbed width as a result two different testbed widths are shown. Theoretically this fact should make no difference but a preliminary analysis of Table 6 indicated that a difference does exist. To preclude any variance in this regard, a second table (Table 7) was generated to independently analyze each width. This table is presented in two sections containing data for each of the two testbed types.

In initially looking at Table 7, it would appear that little insight could be gained as to the behavior of either tire type. Assuming however, that Column AU actually represents some measure of damage resulting, a plotting of the data could be worthwhile. With this in mind, Figures 10 and 11 were generated. From these figures, a case could be made that retreaded tires do exhibit improved performance. This however is only an observation from the table and will require statistical verification.

One important additional parameter to note from these figures is the general data distribution reflecting quality of data. In both cases and with or without retreads included the quality appears excellent and conforms to classical statistical form for an expected distribution.

RADIAL TIRE ANALYSIS

PRESSURE ANALYSIS

TABLE 5 TIRE PRESSURE EFFECTS ANALYSIS

BEYOND LIMIT CUT DATA	/32Hits for	88.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25	3,5,5,0 3,5,0 3,5,0 1,5,1 1,5,
MOT TO	>10/32 TOT/	-204-WW0408	00mm440
Q	HITS FOR >10/32HITS FOR	23.45 24.45 26.09 26.39 26.45 26.45 26.45 26.45 27.75 31.88	20.53 21.45 10.42 10.83 10.83 10.83 10.83 10.83 10.83
	TOT ADJ 15 16+ HITS HIT	* * * * * * * * * * * * * * * * * * *	*********
	₽ ₹	84 84 84 84 84 84 84 84 84 84 84 84 84 8	0 3 2 6 0 3 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0
	= ₀	AK 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 N N M 4 M N
	5 1	ا تنجمن سحد محمد ا	6467
	TOTAL (A = 20	######################################
SPEED<20 SPEED<20 E Nov-91	BED TOTAL Speed Cuts	74.0 14.0 14.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	45.5 5.5 5.5 5.0 5.5 5.0 5.5 5.5 5.5
SPEED< SPEED< PRESSURE 05-Nov Nov-91	PUSH B	8 00 00 00 00 00 00 00 00 00 00 00 00 00	8888888888
PILE	I	AC AC AC AC AC AC AC AC AC AC AC AC AC A	PAYH PAYH PAYH PAYH PAYH LPAY
14300	VERT PRO LOND VE	14300 14300	14300 14300 14300 14300 14300 14300 14300
0 0	5₹	¥00000000	00000000
0 0 1	28 35 <u>18</u>	,00000000	00000000
19·6/K	DEB BROAKE H PAT PSI	× 3 % 3 % 3 % 3 % 3 % 3 % 3 % 3 % 3 % 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 0 0 0 ARML/FIEMB/K SCHAMRTZ	9 ±	> 88 88 88 88 88 88 88 88 88 88 88 88 88	6.7.0 6.7.0 6.7.0 6.7.7.0 6.7.7.0 6.7.7.0 6.7.7.0
	DEBRIS BED SIZE TYPE LTH		8888888888
DRY 1.50 DRY 1.50 PREPARED BY:		- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DRY PREPA	88. 80	Dery Dery Dery Dery Dery Dery Dery Dery	DRY DRY DRY
	T PROVI	0.0 7 6.4 0.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	N 4 4 5 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7
K 12 2	TIRE PINT PRNT WAN AXLE PRES L U	255 10.2 255	23 25 25 25 25 25 25 25 25 25 25 25 25 25
TENS	ANGE P	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
F-16 GY F-16 GY T CRITICAL XB		22222222	222222 2222222 2222222
> F-16 GY > F-16 GY LIST CRITIC NCLIDED	AMB TB/PA/C	28 88 6 1 28 7 7 6 6 9 7 28 7 7 6 6 9 7 27 7 6 9 7 7 7 6 9 7 7 7 6 9 7	8832 2828 2827 2877 2669 2699 2699
MAK L	_ ~	l .aa.a. la	स्र स
NSTANTS> F-16 GY 2 NSTANTS> F-16 GY 2 PRESSLIE AML LIST CRITICAL ITENS NO E1 SERIES INCLUED	ฮิ	है ४४ द द द द द द द	8 & 8 & 4 & 6 & 6 & 6
GLERY CONSTANTS GLERY CONSTANTS EPR PRESSURE A NO E1 SERIE	DATE	C C C C C C C C C C C C C C C C C C C	33 AL AL AL AL AL AL AL AL AL AL AL AL AL
GLERY CONSTANTS GLERY CONSTANTS ERR PRESSLIKE NO E1 SERI	TEST #	# 6 X-7 D1/11 H-5 D2/12 D-3 U-3 BIT-19	11.11 11.3 11.3 12.3 12.3 13.3 14.7 14.7

TABLE 6 REGULAR/RETREAD COMPARISON

Move Nov-91 PUSH RED TOTA 0 6 11 TOT ADJ H DIST SPEED CUTS 5 10 15 16+ HITS HIT COMPANDED TOTO 15:00	QUERY	QLERY CONSTANTS> F-16 GY		6-16 > F-16	6 GY 6 RET		23			98Y	88				00	00	71 O	14300		SPEED<20 SPEED<20					ļ			I
MAS TIRE PRINT PRINT SLAFE DEBRIS BED DEB BRAME CAM VERT PRIO PUSH BED TOTA 0 6 11 TOT ADJ H NOTED BREAKE CAM VERT PRIO PUSH BED TOTA 0 6 11 TOT ADJ H NOTED BREAKE LAND MASS LA	TABLE	6 REG/RE	TREAD A	WL LIST	200		TEKS		۵.	REPARI	ED 8Y:	Ą	¥L/F	1548/K		ART2		PATE		16-70								
C C E G I K N O P O S T U V W X Y Z M AB AC AD AE AI AI AK AL MK AL MAR AS OT OCT 86 KSJ.S 60 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 16.0 70 50 15 5 0 346 346 OT OCT 86 KSJ.S 62 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 51 14 26 11 0 346 346 OC OCT 86 KSJ.S 7 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 51 14 26 11 0 346 346 OC OCT 86 KSJ.S 7 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 51 14 26 11 0 346 346 OC OCT 86 KSJ.S 7 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 15.0 33 19 10 4 0 346 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 31 13 11 17 0 346 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 31 13 11 17 0 346 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 32 18 11 3 0 346 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 Z4 16 4 2 0 286 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 Z4 16 4 2 0 286 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 Z4 16 4 2 2 346 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 17.3 Z7 7 7 4 4 2 346 346 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 17.5 F 7 1 1 1 3 200 200 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 17.5 F 7 1 1 1 3 200 200 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 17.5 F 7 1 1 1 3 20 13 246 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 17.5 F 7 1 1 1 3 20 2 0 400 OC OCT 86 KSJ.S 82 F-16 GY F-148 Z75 NA NA DRY 1.50 CRL 500 6.5	TEST *	DATE	96	ANB TEMPA/C	3	AXLE	71RE PRES		P8Y ≥		DEBRI				_	₹			PUSH D1ST		TOTA STTS	•		\$		STIR PE	- 25 - 52	
07 OCT 86 KS,JS 62 F-16 GF F-16R 275 10.2 5.8 DRY 1.50 ORL 500 7.75 6/5 0 0 0 14300 PAM 2500 16.0 70 50 15 5 0 346 346 07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	٥	lu lu	9	~	=		1		1			1		>	7	5		8	¥	¥	3	¥	₹ ₹	1 -	×		
07 OCT 86 KS/JS 62 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 58 35 20 2 1346 346 40 0 04 0CT 86 KS/JS 76 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 51 14 26 11 0 346 346 246 25 0CT 86 KS/JS 76 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 16.0 32 18 11 3 0 346 346 0 0 0 04 0CT 86 KS/JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 15.0 32 18 11 3 0 346 346 0 0 04 0CT 86 KS/JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 31 13 11 7 0 346 346 0 0 04 0CT 86 KS/JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 31 13 11 7 0 346 346 0 0 04 0CT 86 KS/JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYM 2300 17.0 24 7 14 2 13.46 346 346 0 0 0 14300 PAYM 2300 17.0 17 1 1 1 1 7 0 346 346 0 0 0 14300 PAYM 2300 17.0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E1-2	ğ		8	6 €	F-16R		۸.	_	•-			•		0	0	0 7	_	8	16.0	8	路	₽.	5 0 %		_	7.	
04 OCT 86 KS/JS 76 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 51 14 26 11 0 346 346 346 346 346 85/JS 76 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 346 346 346 346 346 348 3 18 7 10 2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 17 2 0 346 346 346 346 346 348 3 18 3 18 3 18 3 18 3 18 3 18 3 18	F1-4	g		3	&	3	23	۸.	_	_			•		•	0	0 14	_	8 20	17.0	æ	33	2	2 - 3			5.97	
04 OCT 86 KS/JS 7 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2200 15.0 32 19 10 4 0 346 346 346 33 DEC 86 KS/JS 42 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2200 15.0 32 16 14 2 0 346 346 0 0 14300 PAYM 2200 15.0 32 18 11 3 0 346 346 0 0 14300 PAYM 2200 15.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 0 346 346 0 0 14300 PAYM 2200 17.0 31 13 11 7 7 4 4 2 346 346 0 0 14300 PAYM 2200 17.0 31 13 13 5 2 3 208 208 13 JUL 87 18 JUL	<u>E1-1</u>	8		2	_	F-1	ĸ	۰.	_	_			• -		0	0	0 14	_	8 N	17.0	7	14.2	28	1 0 %			6.78	
23 DEC 86 KS/JS 42 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 15.0 32 16 14 2 0 346 346 0 0 14400 RY JS 81 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 18.0 32 18 11 3 0 346 346 0 0 0 14300 PAYM 2500 17.0 31 13 11 7 0 346 346 0 0 0 14300 PAYM 2500 17.0 31 13 11 7 0 346 346 0 0 0 14300 PAYM 2500 17.0 31 13 11 7 0 346 346 18 JLL 86 KS/JS 82 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 17.3 15 5 6 4 0 208 208 13 JLL 87 J	BT-19	QC 0CT		7	չ	F-168	23	۰.	-	_			•		0	0	0 14	_	ន្ត	16.0	ĸ	5	` <u> </u>	4 0 4			84.0	
03 ALG 87 JS 81 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 18.0 32 18 11 3 0 346 346 040 05 05 05 05 05 05 0 14300 PAYN 2500 17.0 31 13 11 7 0 346 346 18.0 05 05 05 05 05 05 05 0 14300 PAYN 2500 17.0 31 13 11 7 0 346 346 18.0 05 05 05 05 05 05 05 05 05 0 14300 PAYN 2500 17.0 13 13 11 7 0 346 346 18.0 05 05 05 05 05 05 05 05 05 0 14300 PAYN 2500 17.0 24 7 14 2 1346 346 040 05 05 05 05 05 05 05 05 05 05 05 05 05	<u>, ,</u>	2		3	Շ	F-1	23	٠.		•			•		0	0	0 14	_	8	15.0	ĸ	16	4	2 0 3			10.81	
04 OCT 86 KS/JS 82 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 17.0 31 13 11 7 0 346 346 18 JJL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYM 2500 17.3 15 5 6 4 0 208 208 31 JJL 87 JS 82 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 17.0 24 7 14 2 1346 346 04 OCT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 13 5 5 3 5 0 3 0 8 21 JJL 87 JS 7 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 13 5 5 2 3 208 208 21 JJL 87 JS 7 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 17 6 11 0 0 346 346 34 JJL 87 JS 7 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.5 9 4 1 1 3 200 200 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.5 9 6 1 1 0 1 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.5 9 5 5 0 400 400 04 OCT 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 LPAY 2500 17.5 9 5 5 0 400 400 04 OCT 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 17.5 6 1 2 2 1 346 346	<u>0</u> -3	03 AUG		<u></u>	5	F-1	23	۸.		_		-	•		0	0	0 14		8 2	18.0	23	8	- -	3 0 %	_		10.81	
18 JJL 86 KS/JS 86 F-16 RET F-168 Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 208 31 JJL 87 JS 82 F-16 CY F-168 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 24 7 14 2 1346 346 18 JJL 86 KS/JS 80 F-16 CY F-168 Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JJL 86 KS/JS 85 F-16 CY F-168 Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JJL 87 JJL 87 JS 7 F-16 RET F-168 Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 7 6 11 0 0 346 346 346 16 MAY 86 KS/JS 72 F-16 RET F-168 Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 16 MAY 86 KS/JS 72 F-16 RET F-168 Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 6 1 1 0 0 346 346 16 MAY 86 KS/JS 72 F-16 RET F-168 Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 5 5 0 400 400 CM CM 2300 17.5 8 F-16 RET F-168 Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 5 5 0 400 400 CM CM 2300 LPAY 2300 17.5 6 1 2 2 1 346 346 240 CM CM 240 CM	<u>×</u>	8	XS/	잃	RET	F-16R	23	_	_	•			•		0	0	0 14	_	8	17.0	⋍	5	· =	7 03			11.16	
31 JUL 87 JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1 346 346 04 00T 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2300 16.5 13 3 5 2 3 208 208 18 JUL 86 KS/JS 85 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 17 6 11 0 0 346 346 16 MAY 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.5 8 5 5 0 400 400 CRL 500 CRL 500 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.5 8 2 1 346 346 246 246 246 246 246 246 246 246 246 2	<u>×</u>	18 JUL 81	XS.	8	RET	F-16R	233	_		_		•			0	0	0 14	_	8 8	17.3	5	'n	9	ام د د			13.87	
04 OCT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYM 2300 16.5 24 16 4 4 0 346 346 18 JUL 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAY 2300 17.3 17 7 4 4 2 346 346 341 N B W 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 16 MAY 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 3 2 3 208 208 16 MAY 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/5 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/5 0 0 0 14300 LPAY 2300 17.5 6 1 2 2 1 346 346	02/12	33		ଅ	₽	F-16R	23	۸,	-	_			•		۰, -	0	0 7	_	8 13	17.0	*	<u>~</u>	<u>*</u>	2 2			14.42	
18 JUL 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2200 17.3 17 7 4 4 2 346 346 31 JUL 87 JS 78 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYH 2500 16.5 17 6 11 0 0 346 346 16 MAY 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 CRL 500 CRL 500 CRL 500 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 CRL 500 CRL 500 CRL 500 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 CRL 500 CRL 500 CRL 500 CRL 500 0 0 14300 LPAY 2300 17.5 6 1 2 2 1 346 346 CRL 500 CRL 500 CRL 500 0 0 14300 LPAY 2300 17.0 6 1 2 2 1 346 346	×-19	20 25		8	Æ	F-16R	273	_		_		•			0	0	0 74	_	8	16.5	Ż	2	4	4 0 W			14.42	
21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 314 JUL 87 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 9 0 0 0 14300 BLD 2300 16.5 15 5 5 0 400 400 04 0CT 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 6 1 2 2 1 346 346	×-7	18 JJL		æ	5	F-16R	273	۸.	_	_					0	0	0 74	_	8	16.5	5	M	Š	2			<u>8.00</u>	
31 JUL B7 JS 78 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 9 0 0 0 14300 BLD 2300 16.5 15 5 5 0 400 400 04 OCT 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 6 1 2 2 1 346 346	۰ ×	21 JUL		4	RET	F-16R	23	Ξ	_	_					0	0	0 14	_	8 13	17.3	1	_	4	₩ 7			8.35	
16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 9 0 0 0 14300 BLD 2300 16.5 15 5 5 0 400 400 04 OCT 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 6 1 2 2 1 346 346	11/10	3 12		20	չ	F-16R	273	۸.	_	-			•		0	0	0 14		8 10 10	16.5	1	•		90			20.35	
18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 9 0 0 0 14300 BLD 2300 16.5 15 5 5 0 400 400 04 0CT 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 6 1 2 2 1 346 346	P-186	16 FAY		2	Æ	F-168	273	_		_					0	0	0 14		8	17.5	٥	4		7 8			2.2	
MAY 86 KS/JIS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 9 0 0 0 14300 BLD 2300 16.5 15 5 5 0 400 400 CCT 86 KS/JIS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 6 1 2 2 1 346 346	7-X	18 JJL		88	Æ	F-16R	23	_		•					0	0	0 14		8	17.5	œ	0	m	2			8.8	
OCT 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 6 1 2 2 1 346 346	P-1¥	Ĭ		2	띭	F-168	23	_		•		•			0	0	0 14	_	8	16.5	5	'n	ιν.	5 0 4			26.67	
	x-12	5		20	RET	F-168	23	_		-			•		0	0	0 14	_	2300	17.0	9	-	2	2 4			27.67	

TABLE 7 REG/RETREAD ANAL LIST CRITICAL ITEMS CONSTANT PATTERN/EARLY PATTERN

CONSTANTS> F-16 RET 275 DRY 1.50 6/5 0 0 REG/RETREAD AMAL LIST CRITICAL ITEMS THE PRANT PRANT SLRF DEBRIS BED DEB BRAME CONSTANT PATTERN/CRAULY PATTERN THE PRANT PRATTERN/FEBRIS L W COND SIZE TYPE LTH WITH PAT PSI YAM C E G I K N O P O S T O V W X Y Z N O C CCT 86 KS/JS 60 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 OC CCT 86 KS/JS 76 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 OC CCT 86 KS/JS 76 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 OC CCT 86 KS/JS 76 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 OC CCT 86 KS/JS 76 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 OC CCT 86 KS/JS 78 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 S ANG 87 JS 82 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 OC CCT 86 KS/JS 78 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 S ANG 87 JS 82 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 S ANG 87 JS 78 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 S ANG 87 JS 78 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 S ANG 87 JS 78 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 S ANG 87 JS 78 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 OC CCT 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 87 F-16 RET F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-16 GT F-16R 275 N/A N/A DRY 1.50 GRL 500 6.5 5/4 0 0 S ANG 87 JS 88 F-	THE ENGLAND LIST CRITICAL ITEMS OCHISTMAT PATTERN CONSTANT PATTERN DATE BIG TEPPA/C MAN ALLES CRITICAL ITEMS OCHISTMAT PROTECULA MAN LIST CRITICAL ITEMS DATE BIG TEPPA/C MAN ALLES CRITICAL ITEMS DATE BIG TEPPA/C MAN ALLES CRITICAL ITEMS DATE BIG TEPPA/C MAN ALLES CRITICAL ITEMS DATE BIG TEPPA/C MAN ALLE PRES. L W COND SIZE TYPE LTH WITH PAT PSI YAM LOND VEH DIST SPEED CLITS 5 10 15 16+ HITS CRITICAL ITEMS OT COTT BE KSS/LS 60 F-16 GT F-164 ZD5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PATH 200 17.0 51 14 26 11 0 146 CR 50 0 14300 PATH 200 17.0 51 14 26 11 0 146 CR 50 0 14300 PATH 200 17.0 51 14 26 11 0 146 CR 50 0 14300 PATH 200 17.0 51 14 26 11 0 14 0 14 0 14 0 14 0 14 0 14 0 14	THE RETION OF THE FIRE THE PAUT POURT 1.50 OF 0 0 14300 MAY SEED CATS STORY 1.50 OF 0 0 14300 MAY SEED CATS STORY 1.50 OF 0 S T T U V V V Y Z M AS M C OF 0 14300 MAY SEED CATS STORY 1.50 OR	LERY	CONSTA	MTS	QUERY CONSTANTS F-16 GY	&	7	ĸ	8	_			\$	0	0	0 1430	8		SEED &	5						
FILE REGINERAL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIBRS MALFIENDAL MALL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALFIENDAL MALL LIBRS MALFIENDAL MALFIENDAL MALL LIST CRITICAL LIBRS MALFIENDAL MALF	FELCETTEEDO MAL LIST CRITICAL ITBNS MECRETALEDO MAL LIST CRITICAL ITBNS MILE PRAIT PART SHET DERNIS BED BED DEB BRANC CAM VERT PRO NASH BED TOTA 0 6 11 TOT CONSTINET PART SHET PRAIT SHET DERNIS BED BED DEB BRANC CAM VERT PRO NASH BED TOTA 0 6 11 TOT DATE CONSTINE SHEALY PARTIEND AND TOTA DE SCALES OF 1-6 OF 1-1	FILE RETIO MALE LIST CRITICAL ITENS THE PRIT PRINT SHIPE PERSON BY: ANAL/FIBE/K SCHART? DATE CA-Nov Nov-91 DATE DATE CA-Nov Nov-91 DATE CA-Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov	LERY	CONSTA	MTS	> F-16	Æ	7	ĸ	8	7 1.50			\$	0		0 1434			200	Ö						
Constitute Day Male Light Folia Prepared BY: APAUL/FIDBOX STAMARTZ DATE OK-Nov Nov-91 ADJ MITS FOR OWEN LIST CHILLOLL ITEMS TIME PROM TSUR DEBRIS BED DEB BRAKE CAN WERT PRO NEW BED TOTA 0 6 11 TOT ADJ HITS FOR MALE PRES L M COMO SIZE TYPE L'H WITH PAT PSI YAM LOAD WEH DIST SPEED CATS 5 10 5 16 HITS HIT CAT	Controlled Name List califical Time pour Pour surf Debard B St.	Course C		~														FILE	RETRO								
CONSTANT PATTERNICARLY PATTERN CONSTANT PATTERN CONS	CONSTINAT PATTERNA CHARLY PATTERN TIRE PRINT PRINT SLAF DEBRIS BED DEB BRANCE CAN VERT PRIO DIST SPEED CLITS 5 10 15 164 HITSD AND TELE BLACK TEMPORAL MAY ALLE PRES 1 4 COND SIZE TYPE LTH WITH PAT PSI YALM LOAD VEH DIST SPEED CLITS 5 10 15 164 HITSD CONT DEBRISS BLACK STAND AND TELE BLACK TEMPORAL BY SEASON TO THE STAND AND TELE BLACK TEMPORAL BY SEASON TO THE STAND AND TELE BLACK TEMPORAL BY SEASON TO THE STAND AND TH	CONSTANT PATTERNICARLY PATTERN AND TREE BLG THROPACK BLY PATTERN THE PORT SLEEP ST 10 CONDITION OF 1 TAIL BY PATTERN THE PORT SLEEP ST 10 CONDITION OF 1 TAIL BY PATTERN THE PORT SLEEP ST 10 CONDITION OF 1 TAIL BY PATTERN C E G 1 K N O P G S T U V N X Y Z M AB NC ND NE ALL BY PATTERN OF COTT SEC KES, 15 GP F-16 GF F-164 Z75 10.2 S.B DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 2500 17.0 S1 15 5 0 35 0 15 5 0 35 0 15 0 35 0 15 0 35 0 15 0 1	i		RETREAD A	WAL LIST CR	TICA	L ITEM	,,	8	EPARED 8		FEE/F	IBB/K		RTZ		DATE	04-1 6 04	16-79						;	
THE PANT PANT PANT PANT PANT PANT PANT PANT	ANSE TIRE PROFESS IN THE PROPERTY PREPRING BEB NAME CAM VERT PRO PLSS NEWS TOWN TOWN THE PROPERTY PROPERTY OF THE PROPERTY PROPERTY OF THE PROPERTY PROPERTY OF THE PROPESS IN THE PROPERTY PROPERTY OF THE PROPESS IN THE PROPERTY OF THE PROPESS IN	C		8	TAMT PATT	ERN/EARLY P	ATTER	*																		Ş	
C E G I K N O P O S T U V W X Y Z M AB AC AD KE DIT STEED CATS 5 10 15 16+ HITS HIT CAT C E G I K N O P O S T U V W X Y Z M AB AC AD KE AI AJ AK AL MAR AS AU OT OCT 86 KSJJS 60 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 16.0 70 51 5 5 0 346 346 OT OCT 86 KSJJS 60 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 51 4 26 11 0 346 346 OT OCT 86 KSJJS 76 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 51 4 26 11 0 346 346 OT OCT 86 KSJJS 76 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 51 4 26 11 0 346 346 OT OCT 86 KSJJS 76 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 15.0 32 18 17 3 0 346 346 OT OCT 86 KSJJS 86 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 15.0 32 18 17 3 0 346 346 OT OCT 86 KSJJS 87 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 15.0 32 18 17 3 0 346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 15.0 32 18 17 3 0 346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 3 1 11 17 0 346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 4 7 1 2 2 1346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 4 7 1 2 2 1346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY 200 17.0 7 7 4 4 0 346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PANY 200 17.3 15 5 6 4 0 346 346 OT OCT 86 KSJJS 82 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PANY 200 17.3 15 5 6 4 0 346 346 OT OCT 86 KSJJS 87 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PANY 200 17.3 15 5 6 4 0 346 346 OT OCT 86 KSJJS 77 F-16 GT F-168 275 NA NA DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PANY 200 17.3 15 7 7 4 4 2 346 346 OT OCT	DATE BIG TBYONG WAN AVIE PRES L U GIND SIZE TYPE LTH WITH PAT PSI YAM LOND WEH DIST SPEED CLITS 5 10 15 16+ HITS CONTROL WENT STATES CONTROL WITH WITH PAT PSI YAM LOND WEH DIST SPEED CLITS 5 10 15 16+ HITS CONTROL WENT STATES CONTROL WENT STATES CONTROL WENT STATES CONTROL WENT STATES CONTROL WENT STATES CONTROL WENT WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH WITH WITH WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH PAT PSI YAM AND REVEALED WATER STATES CONTROL WENT WITH PAT PSI YAM AND REVEALED WATER STATES WAS AND WATER STATES WAS AND REVEALED WATER STATES WAS AND REVER STATES WAS AND REVEALED WATER STATES WAS AND REVER ST	C E G 1 K N O P G S T U V W X Y 2 M AB AC NO NET STEB CATS 5 10 15 16+ HITS C C E G 1 K N O P G S T U V W X Y 2 M AB AC NO NE AI AL M MAR AL MAR AC NO NE AI AL M MAR AL MAR AC NO NE AI AL M MAR AL MAR AC NO NE AI AL M MAR AL MAR AC NO NE AI AL M MAR AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AL M MAR AC NO NE AI AC NE AI AL M MAR AC NO NE AI AC NE AI AC NE AI AC NO NE AI AC N	EST			₹			25 PS	F84	URF DEB	RIS B							3		T01					HITS	Ę
C E G 1 K N O P O S T U V W X Y 2 M MB MC NO RE A1 AJ MC AL MI MR AS MU NO COST 68 KSJ/S 60 F-16 GT F-168 ZT5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY Z500 16.0 T0 50 15 5 0 346 346 5.97 0.00 CD 68 KSJ/S 62 F-166 GT F-168 ZT5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY Z500 16.0 T0 51 14 26 11 0 346 346 5.79 0.00 CD 68 KSJ/S 62 F-166 GT F-168 ZT5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY Z500 16.0 T0 16 11 0 346 346 110.48 25 0 CD 68 KSJ/S 62 F-166 GT F-168 ZT5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY Z500 16.0 T0 16 11 0 10 346 346 110.48 25 0 CD 68 KSJ/S 62 F-166 GT F-168 ZT5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY Z500 16.0 T0 16 11 0 10 346 346 110.48 25 0 CD 68 KSJ/S 62 F-166 GT F-168 ZT5 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANY Z500 17.0 Z5 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C CE E G 1 K N O P Q S T U V W X Y 2 MA MB MC ND ME AI AI AI MM AI MM MR NOT COT 68 KS/1S 60 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYN Z300 16.0 70 50 15 5 0 346 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C E G 1 K N O P Q S T U V W X Y 2 M MB MC ND ME MI MI M M MI M M M M M M M M M M M M	*	DATE				AXLE PA	ES L	3	OND SIZE	TYPE L				X.	3		DIST	8	QTS			<u>\$</u>		5	
07 OCT 86 KS/JS 60 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 17.0 SB 35 20 2 1346 346 5.97 0.0 CR 68 KS/JS 62 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 17.0 SB 35 20 2 1346 346 5.97 0.0 CR 68 KS/JS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 15.0 31 14 25 11 0 346 346 10.81 0.0 CR 68 KS/JS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 15.0 31 14 25 11 0 346 346 10.81 0.0 CR 68 KS/JS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 15.0 32 16 14 2 0 346 346 10.81 0.0 CR 68 KS/JS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 15.0 32 16 14 2 0 346 346 10.81 0.0 CR 68 KS/JS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 17.0 31 13 11 11 1 0 0 346 346 11.81 0.0 CR 68 KS/JS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANH Z300 17.0 31 13 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07 OCT 86 KS,JS 66 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN 2300 16.0 70 50 15 5 0 346 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07 OCT 68 KS/JS 60 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN Z300 16.0 70 50 15 5 0 1346 CG CG CG CG CG CG CG CG CG CG CG CG CG	æ		4	-	7	2			-	1	i		-	7 Z	A		8	¥	¥	1	1	₹	1 ~	₹	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07 OCT 86 KS/JS & F-16 OF F-16K 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN 200 17.0 58 35 20 2 1346 0 0 0 0CT 86 KS/JS & F-16 OF F-16K 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN 200 17.0 51 14 26 11 0 346 0 0 0 0CT 86 KS/JS & R-16 OF F-16K 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN 200 16.0 32 16 14 2 0 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 14300 PAYN 250 17.0 58 35 20 2 1346 0 0 0 0 14300 PAYN 250 17.0 58 35 20 2 1346 0 0 0 0 0 0 14300 PAYN 250 17.0 58 35 20 2 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.	07.00	8	60 F-16	<u>}</u> =			5.8	1.50				0	0	0 143		8	16.0	R			0		4.9	-
06 OCT 66 KS/JS 76 F-16 GT F-168 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN Z900 16.0 35 19 10 4 0 346 346 10.48 Z90 CRT 66 KS/JS 80 RY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN Z900 16.0 35 19 10 4 0 346 346 10.48 Z90 CRT 66 KS/JS 80 RY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN Z900 16.0 35 19 10 4 0 346 346 10.48 Z90 CRT 66 KS/JS 80 RY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PANN Z900 17.0 31 13 11 7 0 346 346 10.81 10.	06 OCT 86 KS/JS 76 F-16 GT F-16R Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 0 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 0 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 0 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 0 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 0 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 0 346 0 0 0 0 14300 PAYN 2300 16.0 32 16 11 3 0 346 0 0 0 0 14300 PAYN 2300 16.0 32 16 11 3 0 346 0 0 0 0 14300 PAYN 2300 16.0 32 16 11 3 0 346 0 0 0 0 14300 PAYN 2300 16.0 32 16 11 3 0 346 0 0 0 0 14300 PAYN 2300 16.0 31 13 11 7 0 346 0 0 0 0 14300 PAYN 2300 16.0 31 13 11 7 0 346 0 0 0 0 14300 PAYN 2300 16.0 31 13 11 7 0 346 0 0 0 0 14300 PAYN 2300 16.0 31 13 11 7 0 346 0 0 0 0 14300 PAYN 2300 16.0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06 OCT 66 KS/JS 76 F-16 OF F-16K 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 51 14 26 11 0 346 0 25 0 0 0 0 14300 PAYN 2300 15.0 35 19 10 4 0 346 0 0 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 0 0 0 0 0 0 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1-4-	6 6	8	5-1-15	; } =			8,	5.5				0	0	0 1434		8 10	17.0	82			-	_	5.9	2
0, OCT 66 KS/AS WAFFIG GT F-16R 275 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 250 16.0 33 19 10 4 0 346 346 10.48 23 OCC 66 KS/AS S 1 F-16 GT F-16R 275 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 250 15.0 32 16 14 2 0 346 346 10.81 10.8 ALE 87 S 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 250 17.0 31 13 11 7 0 346 346 10.81 10.8 ALE 87 S 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 250 17.0 24 7 14 2 1 346 346 10.81 10.8 ALE 87 S 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 250 17.0 24 7 14 2 1 346 346 10.81 10.8 ALE 87 S 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 250 17.0 24 7 14 2 1 346 346 20.35 10.8 ALE 87 S 10.2 5.8 DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 2500 17.0 24 7 14 2 1 346 346 20.35 10.8 ALE 88 S 1-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYR 2300 17.0 24 7 14 2 1 346 346 20.35 18. ALE 86 KS/AS 86 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.3 15 5 6 4 0 346 346 15.07 18. ALE 86 KS/AS 86 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.3 15 7 4 4 2 346 346 20.35 19. ALE 86 KS/AS 86 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.3 17 7 4 4 2 346 346 20.35 19. ALE 86 KS/AS 76 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.3 17 7 4 4 2 346 346 20.35 19. ALE 86 KS/AS 76 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.3 17 7 4 4 2 346 346 20.35 19. ALE 86 KS/AS 76 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.3 17 7 4 4 2 346 346 20.35 19. ALE 86 KS/AS 76 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.5 9 4 1 1 3 200 200 22.22 19. ALE 86 KS/AS 76 F-16 RT F-16R 275 N/A N/A DRT 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYR 2300 17.5 8 0 3 2 3 208 208 16.00 20 20 20 20 20 20 20 20 20 20 20 20 2	04 OCT 86 KS/JS N/AF-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 23 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 0 14300 PAYN 2300 15.0 32 16 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0, OCT 66 KS/JS N/AF-16 GF F-168 Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14300 PANN Z500 16.0 33 19 10 4 0 346 25 0 0 0 14300 PANN Z500 15.0 32 16 14 2 0 346 0 0 0 14300 PANN Z500 15.0 32 16 14 2 0 346 0 0 0 14300 PANN Z500 15.0 32 16 14 2 0 346 0 0 0 14300 PANN Z500 17.0 32 16 14 2 0 346 0 0 0 14300 PANN Z500 17.0 31 13 11 7 0 346 0 0 0 0 14300 PANN Z500 17.0 31 13 11 7 0 346 0 0 0 0 14300 PANN Z500 17.0 31 13 11 7 0 346 0 0 0 0 14300 PANN Z500 17.0 31 13 11 7 0 346 0 0 0 0 14300 PANN Z500 17.0 31 13 11 7 0 346 0 0 0 0 14300 PANN Z500 17.0 31 13 11 7 0 146 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		X	74 F-16	}			8	1.50				0	0	0 1434		8 1	17.0	5			0		6.7	
23 DEC 06 15/J.5 4.2 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 200 15.0 32 16 14 2 0 346 346 10.81 0.81 0.81 0.81 0.81 0.81 0.81 0.8	23 DEC 86 ISS/JS 42 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 0 0 3440 87 JS 81 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 31 13 1 7 1 7 0 346 0 0 0 0 14300 PAYN 2300 17.0 31 13 1 1 7 0 346 0 0 0 0 14300 PAYN 2300 17.0 31 13 1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 DEC 86 K3/JS 42 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 05 446 05 15 0 05 14300 PAYN 2300 15.0 32 18 11 3 0 346 05 05 05 05 05 05 05 05 0 0 14300 PAYN 2300 17.0 32 18 11 3 0 346 05 05 05 05 05 05 05 05 05 05 05 05 05	. <u>c</u>	8	&	N/AF-16	: }-			8	1.50				0	0	0 1434		8 N	16.0	K			0		10.4	
G ALG BY IS, BY F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.0 32 18 11 3 0 346 346 10.81 04.02 31 JL BY JS SP F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1 346 346 11.16 0.44.2 31 JL BY JS RF-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 11.16 0.44.2 31 JL BY JS RF-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 57.67 0.4 0CT 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 208 15.00 18 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 16.00 21 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 16.00 21 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 20.50 15.5 18 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 20.50 15.5 18 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 209 25.2 18 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 200 25.2 18 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 200 25.2 18 JL 86 KS/JS RF-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 200 25.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	G ALG BY JS BY F-16 GT F-16R ZTS 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 18.0 32 18 11 3 0 346 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G ALL BY 15 BF -16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 31 13 11 7 0 346 31 JLL BY 15 BF -16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1346 31 JLL BY 15 BF -16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1346 31 JLL BY 15 BF -16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 6 1 2 2 1346 31 JLL BY 15 BF -16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 PAYN 2300 17.3 15 5 6 4 0 346 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2300 17.3 15 5 6 4 0 346 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2300 17.3 17 7 4 2 346 16 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2300 17.3 17 7 4 2 346 16 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 2 346 16 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 3 2 3 208 18 JLL BA KS/JS 89 F-16 RET F-16R 275 N/A N/	~	K	8	42 F-16	<u>}</u>			5.8	5.5				0	0	D 143		8	15.0	22			0		10.8	
04 OCT 86 KS/JS 82 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 24 7 14 2 1346 346 11.16 31 JLL 87 JS 82 F-16 GY F-14R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 24 7 14 2 1346 346 14.42 31 JLL 87 JS 82 F-16 GY F-14R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.0 6 1 2 2 1346 346 14.42 31 JLL 87 JS 78 F-16 GY F-14R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 17.3 15 5 6 4 0 208 208 13.87 18 JL 86 KS/JS 86 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 24 16 4 0 346 346 14.42 18 JL 86 KS/JS 86 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 13 3 5 2 3 208 208 16.00 13 JL 86 KS/JS 86 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 13 3 5 2 3 208 208 16.00 13 JL 86 KS/JS 86 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 16.5 13 5 5 2 3 208 208 16.00 13 JL 86 KS/JS 77 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2500 17.3 17 7 4 4 2 346 346 16.00 14 JL 86 KS/JS 77 F-16 RET F-14R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 346 20.00 15 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 346 20.00 15 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 346 20.00 15 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 346 25.00 15 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 346 25.00 15 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 208 208 15.00 16 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 208 208 15.00 17 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 1	04 OCT 86 KS/JS 82 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 31 13 11 7 0 346 31 JUL 87 JS 82 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04 OCT 86 KS,JJS 82 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYN 2300 17.0 34 13 11 7 0 346 31 JLL 87 JS 82 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYN 2300 17.0 24 7 14 2 1346 31 JLL 87 JS 87 F-16 GT F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYN 2300 16.5 17 6 11 0 0 346 04 0CT 86 KS,JJS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 346 04 0CT 86 KS,JJS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 18 JLL 86 KS,JJS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 14 LB MAY 86 KS,JJS 87 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 3 2 3 208 18 JLL 86 KS,JJS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18	۱ ۳		8	81 5-16	; };			60	5				0	0	0 1434		200 27	18.0	R			0		10.8	
31 JUL 87 JS RP F-16 GT F-16R ZTS 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 17.0 24 7 14 2 1 346 346 14.42 31 JUL 87 JS RP F-16 GT F-16R ZTS 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 16.5 17 6 11 0 0 346 346 20.35 04 OCT 86 KS/JS RP F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 500 7.75 6/5 0 0 0 14300 LPAY 2300 17.0 6 1 2 2 1 346 346 57.67 18 JUL 86 KS/JS 86 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 346 346 14.42 04 OCT 86 KS/JS 86 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 16.00 21 JUL 86 KS/JS 85 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 16.00 21 JUL 86 KS/JS 77 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 16.00 21 JUL 86 KS/JS 77 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS 77 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 26.00 17.5 8 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 26.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 26.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 26.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 200 16.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 200 16.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 200 16.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 208 200 16.00 18 JUL 86 KS/JS 88 F-16 RET F-16R ZTS N/A N/A DRY 1.50 GRL 300 6.5 5/4 0 0 0 14	31 JUL 87 JS 82 F-16 GT F-16R Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 17.0 24 7 14 2 1 346 31 JUL 87 JS 78 F-16 GT F-16R Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 16.5 17 6 11 0 0 346 04 0CT 86 KS/JS 78 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 LPAY 2300 17.0 6 1 2 2 1 346 18 JUL 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 346 18 JUL 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 24 16 4 4 0 346 18 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 89 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 JUL 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A	31 JLL 87 JS 82 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1 346 31 JLL 87 JS 78 F-16 GT F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 6 1 2 2 1 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, =	8	ž	. 7 . 7	Į.			××××××××××××××××××××××××××××××××××××××	25				0	0	0 1434		200	17.0	31			0	_	==	
31 JL 87 JS 78 F-16 GT F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 7.75 6/5 0 0 0 14300 PAYH Z300 16.5 17 6 11 0 0 346 346 20.35 04 0CT 86 KS/JS 78 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 15 5 6 4 0 346 346 57.67 18 JL 86 KS/JS 86 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 15 5 6 4 0 346 346 14.42 04.027 86 KS/JS 86 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 16.5 13 3 5 2 3 208 208 16.00 21 JL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 16.5 13 3 5 2 3 208 208 16.00 21 JL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 18 0 3 2 3 208 208 26.00 22.22 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208 208 26.00 22.22 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208 208 26.00 200 22.22 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208 208 26.00 200 22.22 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208 208 26.00 22.22 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208 208 26.00 200 22.22 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 5/0 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208 208 208 208 208 208 208 208 208 208	31 JUL 87 JS 78 F-16 GT F-16R Z75 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 16.5 17 6 11 0 0 346 04 0CT 86 KS/JS 78 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 346 18 JUL 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 346 18 JUL 86 KS/JS 85 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 14300 LPAY 2300 16.5 24 16 4 4 0 346 18 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 18 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	31 JUL 87 JS 78 F-16 GT F-16R Z75 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 16.5 17 6 11 0 0 346 04 OCT 86 KS/JS 78 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 346 05 05 05 05 05 05 05 05 05 05 05 05 05	: 2	; ;	8	7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1	i <u>}</u> =			5.8	5.5				0	0	0 1434		8 10 10 10 10 10 10 10 10 10 10 10 10 10	17.0	%			-	_	14.4	
TESTBED DATA 18 JAL 86 KS/JS 78 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2300 17.0 6 1 2 2 1 346 346 57.67 18 JAL 86 KS/JS 86 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYM 2300 17.3 15 5 6 4 0 346 346 14.42 19 JAL 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYM 2300 16.5 24 16 4 4 0 346 346 14.42 19 JAL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 16.00 21 JAL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 20.35 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 22.22 18 JAL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 22.22 18 JAL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208 26.00	TESTBED DATA 18 JAL 86 KS/JS 78 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYA 2300 17.0 6 1 2 2 1 346 18 JAL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 DAYA 2300 17.3 15 5 6 4 0 346 19 JAL 86 KS/JS 85 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 DAYA 2300 16.5 24 16 4 4 0 346 21 JAL 86 KS/JS 85 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 DAY 2300 16.5 13 3 5 2 3 208 21 JAL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JAL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	TESTBED DATA 18 JAL 86 KS/JS 78 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYA Z300 17.0 6 1 2 2 1 346 18 JAL 86 KS/JS 86 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 DAYA Z300 17.3 15 5 6 4 0 346 19 JAL 86 KS/JS 85 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 DAYA Z300 16.5 24 16 4 4 0 346 21 JAL 86 KS/JS 85 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 DAYA Z300 16.5 13 3 5 2 3 208 21 JAL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 9 4 1 1 3 200 18 JAL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208	! 5	F	2	78 F-16	>			5.8	1.50				0	0	0 143		8	16.5	17	•		0		8	
18 JL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 208 16 JL 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYH 2300 16.5 24 16 4 4 0 346 346 21 JL 86 KS/JS 85 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 18 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208	18 JL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 04 oct 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 PAYH 2300 16.5 24 16 4 4 0 346 18 JL 86 KS/JS 85 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	18 JL B6 KS/JS B6 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 04 oct 86 KS/JS B0 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 PAYH 2300 16.5 24 16 4 4 0 346 18 JL B6 KS/JS B5 F-16 GY F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JL B6 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	~	8	8 8	78 F-16	Į.			X	1.50				0	0	0 143		200	17.0	9	~	2	-		57.6	•
18 JL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 208 04 0CT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 24 16 4 4 0 346 346 18 JL 86 KS/JS 85 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 200 18 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208	18 JL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 014300 LPAY 2300 17.3 15 5 6 4 0 208 04 0CT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 014300 PAYH 2300 16.5 24 16 4 4 0 346 18 JL 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 014300 LPAY 2300 16.5 13 3 5 2 3 208 21 JL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 014300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 014300 LPAY 2300 17.5 9 4 1 1 3 200 18 JL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 014300 LPAY 2300 17.5 8 0 3 2 3 208	18 JL B6 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 04 0274 05 05 05 05 05 05 05 05 05 05 05 05 05																									
18 JUL 86 KS/JS 86 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 15 5 6 4 0 208 208 CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG	18 JUL 86 KS/JS 86 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 15 5 6 4 0 20 80 6.5 5/4 0 0 0 14300 LPAY Z300 16.5 24 16 4 4 0 346 18 JUL 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208	18 JUL 86 KS/JS 86 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 15 5 6 4 0 208 04 0CT 86 KS/JS 80 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 PAYH Z300 16.5 24 16 4 4 0 346 18 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R Z75 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY Z300 17.5 8 0 3 2 3 208	ARLY	TESTBE	D DATA																						
04 OCT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYM 2500 16.5 24 16 4 4 0 346 346 18 JR 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 13 3 5 2 3 208 208 21 JR 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.3 17 7 4 4 2 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.5 9 4 1 1 3 200 200 18 JR 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2500 17.5 8 0 3 2 3 208 208	04 OCT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYH 2300 16.5 24 16 4 4 0 346 18 JUL 86 KS/JS 85 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	04 OCT 86 KS/JS 80 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYH 2300 16.5 24 16 4 4 0 346 18 JUL 86 KS/JS 85 F-16 GY F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	*	Ę	á	A 6-14	L		4/1	4 /4	1.50				0	0	0 143		23	17.3	5	v	9			13.8	<u>.</u>
18 JUL 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 BLD 2300 17.3 17 7 4 4 2 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208	18 JUL 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	18 JUL 86 KS/JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2200 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	9	2 2	3 %	80 F-1	1		\$	\$	5.50				0	0	0 144		8 10 10 10 10 10 10 10 10 10 10 10 10 10	16.5	≉	2	7			14.4	Ŋ
21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208	21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	21 JUL 86 KS/JS 77 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 LPAY 2300 17.3 17 7 4 4 2 346 16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	-	\$	8	85 F-16	· >		10.2	5.8	1.50				0	0	0 143		8	16.5	5	m	2			16.0	0
16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BUD 2300 17.5 9 4 1 1 3 200 200 18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208 208	16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 18 JAL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	16 MAY 86 KS/JS 72 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 BLD 2300 17.5 9 4 1 1 3 200 18 JLL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	9	7	8	77 F-16	E		₹	≤	1.50				0	0	0 143		8	17.3	12	~	7			8	Ю
18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2500 17.5 8 0 3 2 3 208 208	18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	18 JUL 86 KS/JS 88 F-16 RET F-16R 275 N/A N/A DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 17.5 8 0 3 2 3 208	<u>#</u>	1	8	72 F-16	Ш		¥	≤	 5				0	0	0 143		8	17.5	Φ.	4	_			2.2	N
	45 DATA DISTRIBUTI	45 DATA DISTRIBUTI	4	₩	8	88 F-16	ш		X	X	5.5				0	0	0 143		2300	17.5	ထ	0	M			28.0	0

TIRE TYPE COMPARISON NEW VS RETREAD (CONSTANT TESTBED)

TIRE TYPE COMPARISON NEW VS RETREAD (ALL TESTBEDS)

Size Effects

Within the existing database, only one comparison becomes available and consists of nine F-16 main tests compared to eight F-14 nose tire tests. Any analysis of this comparison becomes difficult, however, due to other variables which are introduced. The 17 test runs are tabulated in Table 8 in descending damage order. A review of this table immediately suggests that the smaller size is vastly more damage resistant. The question that arises, however, is this improvement more an effect of size or a pressure effect.

If we go back to our pressure analysis (Table 5, Figure 9) and do a minor extrapolation back to 215 psi, which is the pressure used in the smaller sized tire, we see that tire size may well have a significant effect on damage resistance. For this earlier pressure analysis with extrapolation to 215 psi we can show an average of 15.72 total cuts or 22.01 hits to cut occurring for this case. Looking at Table 8, however, we see that damage levels on the smaller tire all fall well below this average. In fact when we combine pressure with size variance, maximum differences of up to 1700% improvement for the smaller tire can be derived. Without the luxury of further analysis in this area, little can be done other than to note the above observations. It may be that size is a highly influencing parameter or that pressure/loads effects may be far greater than projected earlier. Whatever the case further, investigations in this area would be very worthwhile.

Load Analysis

Loads effects require consideration from two significantly different points of view. If the load varies substantially, the net effect is to decrease the tire footprint width. From a tire mechanics point of view, one can consider the relationship of cut probability as a simple hit/damage relationship. From an operational point of view, however, the probability of hitting an object can be reduced substantially at lower loads in that a narrower footprint results in less area traversed during taxi/takeoff/landing/taxi segments. From this then if one were to rank test in order of severity, two distinctly different orders should result depending on if the ranking is in a form of total cutting damage or the number of hits required to generate cutting damage.

The loads survey was conducted by extracting two separate tables from the program database. The tables consist of an F-4 data analysis (Table 9) and F-16 data analysis (Table 10). Each of these tables are discussed separately in the following sections:

F-4 Loads

A total of nine tests were extracted which matched the criteria needed for this survey. However, only one of these nine represented a load different from the remaining eight. In addition the single comparative test available was from an early test vehicle trial run and no footprint data were recorded. Although little can be drawn from this data set, it has nevertheless been included as Table 9 for record purposes. About all that can be derived from this information is that the single comparative point (Item 3, Table 9) does not exhibit any significant increase or decrease in damage from either a total cut or hits to

TABLE 8 TIRE SIZE EFFECTS ANALYSIS

							;-·,																	
				3	HITS FOR	5	₹	7.	5.97	6.3	10.48	10.81	10.81	14.42	16.00	20.35	8.8	27.00	8.8	135.00	270.00	270.00		
						HIT	S	%	ž	3	ž	%	8	ž	8	ž	23	23	23	23	23	23	23	23
					Σ	16+ HITS	M AR	3,50	7,86	9%	9%	9% 0	9%	- %	388	9%	0 23	0 230	2 2 0	0 230	23 0	0 230	0 23	0 230
					=	₹.	2	S	7	=	4	m	~	~	~	0	_	0	0	0	0	0	0	0
					•	5	¥	5	ଯ	8	5	=	4	14	'n	Ξ	0		~	_	-	0	0	0
					0	5	3	S	ĸ	7	6	ഇ	2	7	M	9	Ξ	٥	-	•	0	-	0	0
					ТQ	agrs.	₹	R	8	꼰	ĸ	R	R	*	5	17	2	9	M	7	-	-	0	0
-	-		Nov-91			SEED	¥	16.0	17.0	17.0	16.0	18.0	15.0	17.0	16.5	16.5	18.5	18.5	5.5	16.5	9.0	8.0	18.0	19.5
		SIZE	Q4-10V		35	DIST	5	8 13	80 23	8 20 20	8 13	8 10	8 10	8 13	8 1	8	8	88	88	8 10	8 8	8	8 8	2300
			DATE		8	Ē				PATH														
200	4500				VERT	8	2	6300	4300	7300	905	4300	4300	4300	4300	88	4500	4500	4500	4500	4500	4500	4500	4500
0	0				₹		₹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0		RT2			₹	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0		SCHART2		BRAD	<u>8</u>	>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						PAT	×	\$	Ş	\$	Ş	\$	Ş	Ş	2/4	\$	2/4	2/4	2/4	2,4	2/4	5/4	2/4	2/4
			NFWL/FIBB/K			Ē	3	7.7	7.73	7.73	7.7	7.7	7.73	7.73	6.5	7.7	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
			AFE		_	E	>	8	8	8	8	8	8	<u>8</u>	8	똲	320	320	320	320	320	350	320	320
			<u></u>		SIS	13E	5	Ř	矣	ಕ	矣	젊	≓	≅	럹	矣	矣	컱	矣	矣	矣	矣	矣	롰
ĸ	S.		ED 87:			SIZE 1				8.					_	-		_	_	_		_	_	_
Γ	7		PREPARED		SLRF	8	s		PR √	₩	D₹	DR √	DRY	DRY 1	DR ₹	₩.	g Š	ORY 1	DRY 1	DRY 1	₩.	₩.	DRY 1	DRY 1
					\$	3	0	5.8	5.8	5.8	٦. ص	ι. 80	5.8	5.8	ۍ. ش	5.8	M.	3.3	3.3	3.3	3.3	3.3	3.3	3.3
						_	۵	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
E	215				TIRE	PRES				ĸ							212	215	215	215	215	215	215	215
			w			AXILE	=	₹ 25	£ 15	£ 5	2 5	-1 \$	₹	₹.	₹ 2	₹	4-	9-:	7-:	7-:	7.	7-:	7-	7-:
5			<u>6</u>			₹	_	5	5		_		_		_	_	BFG	BFG I	BFG L	BFG I	BFG	BFG	BFG I	BFG I
2	*		3				_	9:	2:	F-16	-19	9-	9	-19	-19	-1	_ •	•	•	4-	4	7-	•	7-
Ŷ	^		E	VARIES	3	TEMPA/C	ی	8	3	20	7	2	3	8	78	20	7	7	8	8	8	8	7	8
QLERY CONSTANTS F-16 GY	CONSTANTS F-4		SIZE AWAL LIST CRITICAL ITEMS	PRESSURE ALSO VI	-		l w	KS/7S	KS/3S	KS/JS	SL/SX	S	KS/JS	SS	_	S		Ş	KS/JS	KS/JS	_	KS/JS	S	KS/JS
SE	MTS-		₹	SLRE				− 88	88	88	7 88	6 87	88	1 87	8	187	28 5	2 87	88	88	88	88	5 87	8
CONSTA	CONSTA			PRES		DATE	٥	_	_	8 00	S SCT													
PERV	QERY	3		-	TEST	*	6	E1-2	E1-4	E1-1	BT-19	<u>0</u> -3	3 -3	02/12	×-7	11/10	i,	7-32	F2-10	F2-6	F2-6	F2-9	F-31	F2-5

TABLE 9 F-4 LOADS EFFECTS ANALYSIS

GLERY CONSTANTS> F-4 215 DRY 1.50 ERR	215 DRY	15 DRY	15 DRY	15 DRY			1.50						0	0		FILE	SONOTH	SPEED<20 S							
F-4 LONDS AWAL LIST CRITICAL ITEMS PREPARED BY: AFLAL/FIEMB/K SCHAMRTZ	PREPARED BY:	PREPARED BY:	PREPARED BY:	PREPARED BY:	8X:	8X:	8X:	_	AFIJAL/FIEM	/F1694	-	3X SC	HAR.	2		DATE	: 04-Nov N	tov-91							5
AMB TIRE PRINT PRINT SURF DEBRIS BED BED	TIRE PRNT PRNT SURF DEBRIS BED BED	TIRE PRNT PRNT SURF DEBRIS BED BED	PRNT PRNT SURF DEBRIS BED BED	PRNT PRNT SURF DEBRIS BED BED	PRINT SURF DEBRIS BED BED	SURF DEBRIS BED BED	DEBRIS BED BED					DEB BR	PRAKE	₹	VERT	8	35	<u> </u>	Ιď	0	9	=	TOT A	P	HITS FOR
L W COND SIZE TYPE LTH WTH	MAN AXLE PRES L 4 COND SIZE TYPE LTH WTH	MAN AXLE PRES L 4 COND SIZE TYPE LTH WTH	L W COND SIZE TYPE LTH WTH	L W COND SIZE TYPE LTH WTH	W COND SIZE TYPE LTH WITH	COND SIZE TYPE LTH WITH	SIZE TYPE LTH WITH	F 4	Ē		~		₹ ?	3	8	-	DIST	88EE	STLS.	•		5 1¢		<u> </u>	 ਙ
T A O P O S O W M I	T A O P O S O W M I	TA A D A O N	A A A S B A	A A A S B A	3 A O L S O	3 A D F S	3 A	3	3				<u>۷</u>	\$	\$	¥C	8	¥	١	3	¥	₹	1 -		₹
JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5			7	0	0	4500	PAYM	80 20 20	18.5	2	=	0	0	270 2	23	22.50
F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5	_		2	0	0	4 500	PAYM	8	18.5	은	٥	_	0		R	27.00
KS/JS 70 F-4 BFG F-4 215 N/A N/A DRY 1.50 CRL 350 4.5	70 F-4 BFG F-4 215 N/A N/A DRY 1.50 CRL 350 4.5	F-4 215 N/A N/A DRY 1.50 CRL 350 4.5	N/A N/A DRY 1.50 CRL 350 4.5	N/A N/A DRY 1.50 CRL 350 4.5	N/A DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5	_		*	0	0	55	PAYM	8 13 13 13 13 13 13 13 13 13 13 13 13 13	3	4	m	_	0	270 2	R	67.50
KS/JS 86 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	86 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5	_	.>	4	0	0	4500	PAYM	8 8	5.5	M	_	~	0		R	8.
KS/JS 84 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	84 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5		.>	4	0	o -	4500	PAYM	8 13	16.5	~	_	_	0		R	135.00
KS/JS 82 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	82 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5	_	>	•	0	o -	4500	PAYE	8	8.0	-	_	0	0		R	20.00
KS/JS 83 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350	83 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	215 5.5 3.3 ORY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5		>	•	0	0	4500	PAM	8	9.0	-	0		0		R	20.00
JS 77 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5		.>	4	0	0	4500	PAM	8 2	18.0	0	0	0	0		R	-
KS/JS 82 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	82 F-4 BFG F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	F-4 215 5.5 3.3 DRY 1.50 CRL 350 4.5	215 5.5 3.3 DRY 1.50 CRL 350 4.5	5.5 3.3 DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	DRY 1.50 CRL 350 4.5	CRL 350 4.5	350 4.5	4.5		.>	4	0	0	4500	PAYM	230	19.5	0	0	0	0		R	****

TABLE 10 F-16 LOADS ANAL LIST CRITICAL ITEMS

THE F-LEGUON AND LIST CRITICAL TIPS PREDAMED BY: AND LIPS FOR BY: AND	CLERY	8	STANT	CLERY CONSTANTS		¥ F.1	F-16 GY		273			DRY 1.	1.50				6	0											
MATE BIG 1999/LC WAN ALLE PREST LE HOLD STEE TIPE LIM WITH PAT PSET YAN LOAD VERT PROD REST BED TOTAL O 6 11 TOT ADJ HAR REST LE HALD STEE TIPE LIM WITH PAT PSET YAN LOAD VERT PROD REST STEED TOTAL O 6 11 TOTAL ADJ HAR REST LE HALD STEE TIPE LIM WITH PAT PSET YAN LOAD VERT PROD REST STEED TOTAL O 6 11 TOTAL ADJ HAR REST LE HALD STEE TIPE LIM WITH PAT PSET YAN LOAD VERT PROD REST STEED TOTAL O 6 11 TOTAL ADJ HAR REST STEED TOTAL O 6 11 TOTAL ADJ	TABLE			SOMO?	S AWAL	LIST	8	3	TENS		Ó.	REPARE		AFIAN	/FIBX	8/K S	CHAME	21		FILE	F-16.04	D Oct-91							
C E E G I I K N O P O S I T U V W K Y 2 M AB AC NO ME AI AI AI AI AI AI AI AI AI AI AI AI AI	TEST **				. ₹ 2	E FPA/C	3	AXLE		•	8. ™ >	SUR SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB	DEBRIS		0 £	DEB B	RAKE PSI (v	. ₹			PUSH DIST				۵ 5				
THE BEST SET OF THE STATE AS DRY 1.50 CHI. SOU 7.76 67 0 0 7300 PAIR 200 17.5 41 13 18 9 136 9 1					i																								
20 MLG 87.18	œ ½	7	د ع			- 1		3 5	οĶ	۳ ر	ر م «	•		> ફ	3	×	- C	8 °	2 5		9 5	4 C		₹ 5	¥≉	₹°	¥ ? ₹ ?	•	₹ ₹
0 CCC B6 KSYLS 66 F-16 GF F-146 ZPS 10.2 S.S BORT 1.50 CRL SGO 7.75 6/5 0 0 0 14300 PANN 2000 1.60 ZP 15 6/5 9/5 9/5 9/5 9/5 9/5 9/5 9/5 9/5 9/5 9	2,50		3 4			 		4	ŠĶ		0 00			8 6	; K	; ¿		, ,	3 5		3 8	, K		ī Ļ	2 2	٠ ‹	()		8
9. CCT 86 KS/15 & 25 +16 or 1-148 ZP 10.2 5.8 Bret 150 CR	E1-2		8					1 2	ξĶ	10.2	8 6	_		8 8	, K	35		, 0	25.7		8	16.0		<u> </u>	. 1	Š	× ×		3
0. CCT 08. 55/18	1-4	0	8			T.		F-16	K	10.2	5.80	_		200	7.3	\$	0	0	153		8	17.0		ĸ	8	~	1 346		5.37
0 ALIS 87.18 (AF-16 or F-164 275 9.7 5.2 bits) 0 CR1. 500 7.75 6/5 0 0 0 10300 PANN 200 16.0 31 9 6 6 7 0 346 289 0 CR1 86 8/5 10.2 5.8 bits 1.50 CR1. 500 7.75 6/5 0 0 0 14300 PANN 200 16.0 31 9 10 14 0 346 346 249 0 CR1 86 8/5 10.2 5.8 bits 1.50 CR1. 500 7.75 6/5 0 0 0 14300 PANN 200 16.0 31 9 10 14 0 346 346 249 0 CR1 86 8/5 10.2 5.8 bits 1.50 CR1. 500 7.75 6/5 0 0 0 14300 PANN 200 16.0 31 9 10 14 0 346 346 249 249 249 249 249 249 249 249 249 249	<u>-1</u>	ઠ	8			76 F-1		F-16	23	10.2	5.80	_		8	7.7	6/S	0	0	1430		8	17.0		7	8	=	0 346		6.78
0. CT 08 KKS/JS 64 F-16 CT F-164 Z75 7.2 4.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 18.5 19 6 6 7 0 346 192 0. CT 08 KKS/JS 44 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 15.0 37 19 10 4 0 346 346 25 DEC 08 KS/JS 44 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 15.0 37 19 10 4 0 346 346 26 ALG 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 2 5 14 4 0 346 289 31 JL 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 2 5 14 4 0 346 289 31 JL 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 2 7 17 6 11 0 0 346 346 31 JL 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 16.5 17 6 11 0 0 346 346 31 JL 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 16.5 17 6 11 0 0 346 346 31 JL 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 16.5 17 6 11 0 0 346 346 31 JL 87 JS 87 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 8 35 20 2 1346 346 32 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 8 35 20 2 1346 346 32 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 8 35 20 2 1346 346 33 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 8 35 10 4 0 346 346 34 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 8 35 10 4 0 346 346 35 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 8 35 10 4 0 346 346 35 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 17.0 35 10 4 0 346 346 36 OCT 58 KKS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 RNW 200 18.5 10 1 0 0 346 346 37 OCT 58 KS/JS 62 F-16 CT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.7	05/13	0	A.			Ε. Ε.		F-16	23	7.6	5.2 D	-		8	7.7	6/5	0	0	200		8	14.0		•	*	7	7 7		8.68
90 ECC 88 KS/JS 62 F-16 OF F-168 275 10.2 5.8 BRY 1.50 ORL 550 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 1, 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 32 16 1, 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 3 16 1 1 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 3 16 1 1 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 3 16 1 1 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 3 1 1 1 1 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 3 1 1 1 1 1 2 0 346 346 0 0 0 14300 PAYN 2300 15.0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27/7g	2/3	¥			K F-1		F-16	23	7.2	4.8 D	_		8	7.7	8/9	0	0	8		8	18.5		9	9	7	3,4		10.11
20 DEC 8K KSJAS 42 F-16 or P-1648 275 10.2 5.8 DRY 15.0 CRL 500 7.75 6/7 0 0 0 16300 PANN 2200 15.0 32 16 14 2 0 346 346 00 AMAG 87 JS 81 F-16 or P-1648 275 10.2 5.8 DRY 15.0 CRL 500 7.75 6/7 0 0 0 16300 PANN 2200 15.0 3 5 14 4 0 346 289 00 AMAG 87 JS 82 F-16 or P-1648 275 10.2 5.8 DRY 15.0 CRL 500 7.75 6/7 0 0 0 16300 PANN 2200 15.0 3 5 14 4 0 346 289 13.1 UL 87 JS 82 F-16 or P-1648 275 10.2 5.8 DRY 15.0 CRL 500 7.75 6/7 0 0 0 16300 PANN 2200 16.5 17 6 11 0 0 346 326 31 JLL 87 JS 82 F-16 or P-1648 275 10.2 5.8 DRY 15.0 CRL 500 7.75 6/7 0 0 0 16300 PANN 2200 16.5 17 6 11 0 0 346 346 346 346 346 346 346 346 346 346	BT-19	8	8			1/AF-1		F-15	22	10.2	5.80	_		20	7.7	6 /3	0	0	1430		8 10 10 10 10 10 10 10 10 10 10 10 10 10	16.0		2	2	4	ž	_	10.48
8 MALE BY 15 BT F-166 OF F-166 Z75 10.2 5.8 BBY 1.50 CRL 500 7.75 6/7 0 0 0 10300 PANN 200 14.0 25 18 11 3 0 364 346 346 346 346 ALL BY 15.0 CRL 500 7.75 6/7 0 0 0 10300 PANN 200 14.0 25 5 14 2 1364 346 346 31 3 1 3 5 2 3 208 208 31 JUL 87 JS 28 F-16 OF F-166 Z75 10.2 5.8 BBY 1.50 CRL 500 7.75 6/7 0 0 0 14300 PANN 200 16.5 17 6 11 0 0 346 346 346 346 31 JUL 87 JS 28 F-16 OF F-166 Z75 10.2 5.8 BBY 1.50 CRL 500 7.75 6/7 0 0 0 14300 PANN 200 16.5 17 6 11 0 0 346 346 346 346 346 346 346 346 346 346	<u>۲-۲</u>	K)	SEC DEC			λ. Τ.		F-16	ĸ	10.2	5.8 0	_		Š	7.73	\$	0	0	1430		8	15.0		. م	*	~	K	_	10.8
13 JAL 67 S 76 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 Z 5 14 4 0 346 289 18.0 JAL 68 KS/JS 68 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 346 31 JAL 67 S 76 F-16 GT F-164 Z75 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 346 346 346 346 346 346 346 346	<u>0-3</u>	ន	¥	-		1 F-1		F-1	23	10.2	5.80	_		<u>2</u>	7	\$	0	0	1430		8	18.0		<u>∞</u>	=	M	ž	_	10.81
13 JUL 87 JS 82 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 0 143300 PAYM 2300 16.5 17 6 11 0 0 346 346 18 JUL 86 KS/JS 85 F-16 GY F-148 Z75 10.2 5.8 DRY 1.50 GRL 500 7.75 6/5 0 0 0 143300 PAYM 2300 16.5 17 6 11 0 0 346 346 LOND	12/11	8	¥	_		7-1-0		F-16	23	6.7	5.20	_		<u>2</u>	7.73	6/3	0	0	1030		8	14.0		Ŋ	4	4	ž	_	1. 8
18 JUL 66 KS/JS 65 F-16 GY F-168 275 10.2 5.8 DRY 1.50 CRL 500 R.5 5/4 0 0 0 14300 DAYN 2300 16.5 13 3 5 2 3 208 208 31 JUL 87 JS R-16 GY F-168 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 DAYN 2300 16.0 75 6 11 0 0 346 346 AVENUAR STAND ST	02/12	M	₹	ş		12 1-1		F-16	23	10.2	5.80	_		20	ሌ.	6/3	0	0	1430		8 2 2	17.0		~	4	7	ž Ž	_	14.45
AVERNACE NO LINIT CUTS	×-4	₩ ;	텇	જે	S	7. 1.1		F- 16	273	10.2	5.80	_		8	6.5	2/4	0	0	1430		8	16.5		M .	n ;	~	200		16.00
AVERAGE NO LIMIT QLTS	<u>5</u>	M	텇			∞ F-1		F- 168	23	10.2	5.80	_		လ လ	K .	6/3	0	0	1430		88	16.5		9	Ξ	0	ž		20.35
AVERAGE NO LIMIT CUTS																	=	8		0 1030	1								
AVENAGE NO ALL CLITS. AVENAGE NO ALL CLITS.																t		•	9		ı								
07 OCT 86 KS/JS 60 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYH 2300 16.0 70 50 15 5 0 346 346 346 346 07 OCT 86 KS/JS 62 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 14300 PAYH 2300 17.0 51 14 2 1 346 346 346													AVER. AVERA	원 원 윤 윤	F F F			Î	χ 2 Ω										
77 OCT 86 KS/JS 62 F-16 GY F-148 275 10.2 5.8 BRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 17.0 58 35 20 2 1 346 346 04. OCT 86 KS/JS 62 F-16 GY F-148 275 10.2 5.8 BRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 17.5 41 13 18 9 1 346 192 04. OCT 86 KS/JS 72 F-16 GY F-148 275 7.2 4.8 BRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 17.5 41 13 18 9 1 346 192 04. OCT 86 KS/JS 86 F-16 GY F-168 275 7.2 4.8 BRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 18.5 39 13 19 10 4 0 346 346 04. OCT 86 KS/JS 42 F-16 GY F-168 275 7.2 5.8 BRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYH 2300 18.0 32 18 11 3 18 9 1 346 346 346 346 346 346 346 346 346 346	E1-2	07	8		- 1	0 F-1	6 GV	F-160	K	10,01	8	-	•	505	7.7	5/9	0	٥	14300		2300	16.0	- 1	25	15	~	972	- 1	7
04 OCT 86 KS/JS 76 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 51 14 26 11 0 346 346 192 20 ALG 87 JS 86 F-16 GY F-16R 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 7300 PAYN 2300 17.5 41 13 18 9 1 346 192 20 ALG 87 JS 86 F-16 GY F-16R 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.5 39 13 19 6 1 346 346 346 346 346 346 346 346 346 346	£1-4	6	8			2 F	. 60	. <u>3</u>	3	10.2	8.8	_		8	ζ.	?	. 0	. 0	1430		8	17.0		8	ଯ	~	7		5.97
14 AUG 87 JS 77 F-16 GY F-15R 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 7300 PAYN 2300 17.5 41 13 18 9 1 346 192 20 AUG 87 JS 86 F-16 GY F-15R 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.5 39 13 19 6 1 346 192 04 OCT 86 KS/JS 42 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.0 32 18 11 3 0 346 346 346 345 345 345 345 345 345 345 345 345 345	E1-1	ሄ	8			76 F-1	₩	F-16R	275	10.2	5.8	_		8	7.7	\$	0	0	1430		200	17.0		7	8	=	0 346		6.73
20 ALG 87 JS 86 F-16 GY F-16R 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 7300 PAYN 2300 18.5 39 13 19 6 1346 192 04, oct 86 KS/JS N/AF-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 346 346 346 346 347 15.0 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.0 32 18 11 3 0 346 346 346 345 32 DEC 86 KS/JS 42 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 14.0 31 6 14 7 4 246 346 346 346 346 345 31 JUL 87 JS 82 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 14.0 31 6 14 7 4 2 1346 346 346 346 345 31 JUL 87 JS 84 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 14.0 31 6 14 0 346 346 346 346 346 348 31 JUL 87 JS 84 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 14.0 31 6 14 0 0 346 346 346 346 348 31 JUL 87 JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.5 17 6 11 0 0 346 346 346 346 348 31 JUL 87 JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.5 17 6 11 0 0 346 346 346 346 348 31 JUL 87 JS 85 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 6.5 5/4 0 0 0 14300 PAYN 2300 18.5 17 6 11 0 0 346 346 346 346 346 346 346 346 346 346	72-6	4	Ą			7 F-1	6 G	F-168	23	7.2	4.8 D	_		200	7.7	6/5	0	0	200		8	17.5		5	8	0	- %		4.68
04 OCT 86 KS/JS N/AF-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.0 33 19 10 4 0 346 346 03 ALG 87 JS 81 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 18.0 32 18 11 3 0 346 346 346 346 346 345 345 345 345 345 345 345 345 345 345	08/12	ଥ	¥	S		7 1 1 1	6 G₹	F-168	23	7.2	4.8 D	-		<u>2</u>	7.7	6/ 2	0	0	8		88	18.5		7	5	9	7,8		4.92
US ALIG BY JS BI F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 18.0 32 18 11 3 0 346 346 346 325 DEC 86 KS/JS 42 F-16 GY F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 15.0 32 16 14 2 0 346 346 346 377 ALIG BY JS 82 F-16 GY F-16R 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 14.0 31 6 14 7 4 346 269 31 JUL 87 JS 82 F-16 GY F-16R 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 14.0 24 7 14 2 1 346 346 346 346 ALIG BY JS 79 F-16 GY F-16R 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2500 14.0 24 7 14 2 1 346 249 346 346 346 346 346 346 346 346 346 346	BT-19	B	8	Š	SS	/AF-1	∑ 9	F-16R	23	10.2	5.8 0	_		50 20	7.73	6/ 2	0	0	1430		8	16.0		4	2	4	3		10.48
23 DEC 86 KS/JS 42 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 15.0 32 16 14 2 0 346 346 346 378 ALS 87 L-16 GY F-164 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 10300 PAYN 2300 14.0 31 6 14 7 4 346 269 31 JUL 87 JS 82 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 17.0 24 7 14 2 1 346 246 06 AUG 87 JS 75 F-16 GY F-164 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 14.0 23 5 14 4 0 346 269 06 AUG 87 JS 75 F-16 GY F-164 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/6 0 0 0 14300 PAYN 2300 18.5 19 6 6 7 0 346 192 31 JUL 87 JS 78 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYN 2300 16.5 17 6 11 0 0 346 346 346 348 JS 78 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208	<u>0-3</u>	B	¥			1 F	و 5	F- 168	23	10.2	5.80	_		8	7 .	6/5	0	0	1430		8	18.0		8	Ξ	M	ž o		10.81
U/ AUG 87, JS 82 F-16 OF F-1648 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 10300 PAYM 2500 14.0 51 6 14 7 4 546 269 251 JUL 87 JS 82 F-16 OF F-1648 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 17.0 24 7 14 2 1 346 346 06 AUG 87 JS 75 F-16 OF F-1648 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 10300 PAYM 2500 14.0 23 5 14 4 0 346 269 20 AUG 87 JS 84 F-16 OF F-1648 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/8 0 0 0 7300 PAYM 2500 18.5 19 6 6 7 0 346 192 31 JUL 87 JS 78 F-16 OF F-1648 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 16.5 17 6 11 0 0 346 346 336 318 JUL 86 KS/JS 85 F-16 OF F-1648 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 13 3 5 2 3 208 208	۲- ۲-	10	<u> </u>		S,	ν. Τ.	<u>ئ</u> وو	F. 1	23	10.2	5.80	_		Š	K.	\$	0	0	1430		8	5.0		5.	2:	ا ح	*		10.81
31 JUL 87 JS 82 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 17.0 24 7 14 2 1 346 346 06 AUG 87 JS 79 F-16 GY F-164 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/5 0 0 0 10300 PAYM 2500 14.0 23 5 14 4 0 346 269 20 AUG 87 JS 84 F-16 GY F-164 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/8 0 0 0 7300 PAYM 2500 18.5 19 6 6 7 0 346 192 31 JUL 87 JS 78 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PAYM 2500 16.5 17 6 11 0 0 346 346 336 JR JUL 86 KS/JS 85 F-16 GY F-164 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 13 3 5 2 3 208 208	05/18	à i	3				ر و	-7 -22	23	6.7	5.20	_		8	7.73	\$	0	0	1030		200	14.0		9	7	_	3		× ;
US AUG 87 JS 77 F-16 GT F-16K 275 9.7 5.2 DRY 1.50 CRL 500 7.75 6/8 0 0 0 10300 PATH 2500 14.0 25 5 14 4 0 546 2697 20 AUG 87 JS 84 F-16 GT F-16K 275 7.2 4.8 DRY 1.50 CRL 500 7.75 6/8 0 0 0 7300 PATH 2300 18.5 19 6 6 7 0 346 192 31 JUL 87 JS 78 F-16 GT F-16K 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 0 14300 PATH 2300 16.5 17 6 11 0 0 346 346 336 JR JUL 86 KS/JS 85 F-16 GT F-16K 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208	02/12	<u>ج</u> ج	₹ \$			2 . 	ક ક જ	25	ĸ	10.2	2.8	-		8	ν. Κ.	Ş;	0	0	2,50		88	12.0		٠,	2 :	η,	ž.		7.42 1.42
25 AND 57 35 CFF 10 UT F-10K 275 7.2 4.8 DKT 1.30 UKL 500 7.75 6/5 0 0 0 14300 PAYN 2500 16.5 17 6 11 0 0 346 346 35 3 JUL 87 35 F-16 GY F-166 275 10.2 5.8 DKY 1.50 CKL 500 6.5 5/4 0 0 0 14300 LPAY 2500 16.5 13 3 5 2 3 208 208	/ / / / / / / / / / / / / / / / / / /	9 8	3 5				5 2	25 5	2	۲.	5.20	- •		8 8	ς. Κ.	<u>چ</u> چ	- \ - c	-	3 6		3 8	7. 0		^ <	2 1	4 L	¥ ;		5:
18 JUL 86 KS/JS 85 F-16 GY F-164 275 10.2 5.8 DRY 1,50 CRL 300 6.5 5/4 0 0 0 14300 LPAY 2300 16.5 13 3 5 2 3 208 208	77.7	3 5	3 =			 	5 6	5 9	C K	7.5				3 8	; k	0 v) C	3 5		3 8	 		0 4	ء ٥	۰ ح			
10 July 10 10 11 11 10 11 12 11 12 11 12 11 11 11 11 11 11 11	. ^ .	, 4	\$ =	3 5	<u>u</u>		5 6	5	Sk	4.0		- •		3 8		33		,	727		3 8	2 2		۰ د	- 4	، د	8		45.55
	<u> </u>	9	ξ	Ž	S	Ĺ	5	2	ς	70.7				₹	0.0	7/4	-	5	200		3	Ö.		7	^	7	Š		8

generate cut point of view.

F-16 Loads

As a result of the two points of view noted initially in this loads analysis section, Table 10 consists of two different listings to show two orders of damage. The upper table ranks the data in a hits to cut order while the lower table ranks the same data in a total cuts order. As expected two significantly different rankings do result. A quick look at both of these orders does not disclose any apparent load effect. The distribution appears totally random and will require further statistical analysis to see if any trends exist. These observations are somewhat surprising in that it was originally thought that high loads would have an observable impact.

Water Effects

Low Speed

Only one low speed water run was available and is compared against nine matching dry runs in Table 11. For this case, no conclusions or trends can be cited due to both insufficient data and the fact that the one run falls in the median of all the other data.

High Speed

For the high speed water case, two tests can be extracted and are shown in Table 12. In viewing this chart a potential trend becomes evident so a bar plot was generated covering each of the ten tests included in Table 12. This plot is noted as Figure 12 and shows that the flooded tests were the top two damage products for both all cuts and limit cut categories. In fact on an average basis, the water runs resulted in an approximate 100% increase in damage in both cases. Based on this observation, future statistical reviews should include this factor and apply this to an operational environment.

Yaw Effects (water)

A third area where water effects were investigated related to yaw where four tests are available for comparison. These tests noted in Table 13 yield a rather unexpected trend. For this case when yaw angles were introduced the level of damage was almost cut in half from a total cuts perspective. From a limit cut prospective, however, the trend is less apparent in that the one lower speed test exhibited a comparable level of damage. Because of the wide divergences in tire damage shown in Table 13, significant trends are probable and it should be verified through statistical reviews or additional testing.

Debris Size/Type

Two different debris size tables were extracted from the available data. Table 14 includes all data and Table 15 includes retread tires only. Overall damage effects are illustrated in figures 13 and 14 for all tires and retreads only. A resulting average curve is shown in both figures. All tables and curves are for F-16 main tires only and no nose tire effects were considered.

TABLE 11 LOW SPEED WATER EFFECTS (F-16)

			5		Ī	<u></u>	-	100	ĸ	د -	==	<u>۔۔</u>	3	8	
		Ş	HITS	5	₹	4	5.97	•	~	9	5.5	2	14.	76.	ଯ
				S HIT	•		8								
			70	16+ HITS	₹	9%	- 35	0 346	- 35	0 3%	0 346	9%	- 3%	300	9%
			=	5	뒽	'n	~	Ξ	S	4	~	m	~	~	0
			•	9	1		ଯ								
			V	S S			2								
_				ours	l		82								
	Nov-9			SPEED		-	17.0	•	•	•	•	•	•	•	•
1.44.750	04-Nov Nov-91		S.	DIST	S	80 23	800	8 2 2	8	8	8 13	8	8 2	8	2300
	PATE		8	EH.	¥	PAYM	PAYM	PAYM	PAYM	PAYM	PAYM	PAYM	PAYM	LPAY	PAYM
			Æ	8	8	800	14300	00E	8	905	8	905	9	800	300
0			₹	_	₹	0	0	0	0	0	0	0	0	0	0
0	WRT2			¥	7	0	0	0	0	0	0	0	0	0	0
0	SCE		BRAZ	8	>	0	0	0	0	0	0	0	0	0	0
	8/X		贸	PAT	×	\$	\$	\$	\$	6 /5	6/5	Ş	\$	2/4	\$
	AFLAL/FIEMB/K SCHLARTZ			Ē	3	7.7	7.33	ζ.	7.3	7.3	7.7	7.7	7.7	6.5	7.7
	AFI			Ę	>	8	8	8	8	8	8	8	8	8	50
20	PREPARED BY:		DEBRIS	SIZE TYPE			.50 CRL								
1.50	PARE			S QNOO	1	•	•-	•	•	•	•	•	•	•	•
	8						3 DRY		3 F.G	3 DRY					
			_	3	ı	41	5.8	L	2.	2.			5.8		
				ر ا	٩	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2
272			IR	PRES	0		273								
				TEMPA/C MAN AXLE	2	F-168	F-1&	£ 1	F-1	F-7	F-1	F-1	£ 7	F-168	F-168
5				₹	<u>~</u>	5	5	5	5	5	5	5	ծ	5	5
F-16				χÇ	-	F-16	F-16 GY	F-16	F-16	F-16	F-16	F-16	F-16	F-16	F-16
1			\$			8	3	2	8	7	7	₩	8	8	2
BLERY CONSTANTS> F-16 GY		LO SPEED ONLY		ENG	u	36 KS/JS	SC KS/JS	36 KS/JS	37 JS	36 KS/JS	36 KS/JS	37 JS	Sf 28	36 KS/JS	SI 2
XXXXXXXXX		36 9		DATE	ပ		5	덩		5	SEC.	3	컺		2
QUERY (E8		TEST	*	<u>_</u>	E1-2	£1-4								

TABLE 12 HI SPEED WATER EFFECTS (F-16)

À.	QLERY CONSTANTS F-16	s	F	-16 GY		272			٠. تخ	ይ				0		0 14300		₽.		_								
																_	FILE WA	WATER H			•							
8								€	PREPARED	. BY:	\$	NFWL/FIEMB/K SCHWRTZ	B/K S	CHAR.	2	_	DATE OF	.¥6₹.	쥿									
																									§			
			\$			176	PRINT			CERTS		6	88	PRACE	₹	KERT F	85 ≅	- EST	盈	ΔĮ	0	6		TOT A	ADJ HITS	<u>5</u>		
	DATE	96	TBPA/C		MAN ANGE	PRES	ب	۵ ∡	S ONCO	SIZE TIPE		_		₹ 23	₹	-	_	•		37 12			₫					
1	٠	-	٥	×	2	0	۵	S			>		×	-	₩ 2		1	ł	ı	1	ı	1	₹					Ī
	3 11 8	86 KS/JS	26	-16 GY	F-168	K		5.8 DR	•		8		\$	0	0								0			H		
		St 72	R	-16 67	_	S		5.8 FL	•		8		Ş	0	0				-				•			ક	-	<u></u> -
	8	St. 72		-16 57		12		5.8 FL	•		8		Ş	0	0				-				9			8	2	2
	8	St. 72	_	-16 G	F-168	12		5.8	•		쫎		ટ્ટ	0	0								M			8	2	m
	8	S 78	R	-16 67	_	R		5.8 DR		25	ä	7.7	Ş	0	0 0	14300	Ē	6600	101.4	ጽ	34	, z	7	35 35	5.86			80
	1	-	8	-16 GY	_	12		5.8 08	•		8		Ş	0	0								~					~
	8	4	13	-16 GY	_	K		5.8 DR	•		8		Ş	0	0								_				ø	~
	8	S S		-16 GY	_	K		5.8 08	•		쫎		Ş	0	0								M					6
	=	_	8	-16 97		K		5.8 08	•		8		S	0	0								_					m
	=	86 KS/JS	8	75 57	_	12		5.8 08	•		8		Ş	0	0								0					<u></u>
		Ø	8	F-16 GY	F-16R	K	10.2	5.8 DRY	•	S. S.	쫎		Ş	0	0						Ó	~ 0			۲,			
		•		!		i																						

HI SPEED WATER EFFECTS FLOODED RUNWAY

TABLE 13 WATER EFFECTS WITH YAW

0	QLERY CONSTANTS> F-16 GY		> F-	16 GY	}	23		Œ	FL00 1.50	S S				Ξ.	0	2	9	1 5 11	S MATP YAL		-								
3	MATER ANAL LIST CRITICAL	K LIST	2		£			Æ	REPARE	PREPARED BY:		¥L/F	AFLAL/FIENB/K SCHLARTZ	SC	WRTZ		_	ATE	DATE 04-NOV NOV-91	ov-91							:		
	YAN AWAL HI SPEED ONLY AMB	85	EED ONLY	>		TIRE		Z.	ž	DEBR15	 9					3		8	PUSH		TOTA		9	0 6 11	T 0	₹	HITS	75 75	
	DATE	ENG	TEPA	¥ ∪	TEMPA/C MAN AXLE	PRES	_	3	98	SIZE TYPE	re ctr		WTH PAT	184	YAW	_	8	Ŧ	DIST	SPEED	eurs		9	₹ ₹	፰ ኤ	S HIT	3	· -	
	اد	u	-	7	2	0	۵	-	1) -		1		1	Y 2 A	*	8	Ş	8	¥	¥	Į₹	l¥	يرا	₹ ₹	AS			
	g		, E	16 67	F-168	23		5.8 F	8	20.02					0	<u>-</u>	800	Æ	6500	161.4	13	전	ኤ	S	₹ %	, ¥6		3.8 8.8	
, ,,	9		2	<u>5</u>		27		5.8	8	8					0	0	8	ᄪ	6500	168.2	112	ន្ត	8	<u>9</u>	₹	3,46		3.8	
	8		8	F-16 GY		K	10.2	5.8 F	8	1.50 GR		500 7.	7.75 6/5		7	0	14300	ET	6500	47.8	2	5	ĸ	ĸ	9,76	38		5.67	
	28 63 62 38 63 63 38 63 58 58 58 58 58 58 58 58 58 58 58 58 58	Sr 2	8	F-16 GY		23		5.8 FLOD	8	50 03					Ŧ	0	98 130	벌	6500	160.3	22	83	8	~	¥	× ×		% %	
																												-	

TABLE 14 DEBRIS SIZE EFFECTS ALL DATA

GERY	CLERY CONSTANTS	ANTS -	:	> F-16 RET	<u>.</u>	7. RET		2	К		8	<u>~</u>	ಕ	_4			0	0	•	14300 14300				R							
QLERY	CLERY CONSTANTS	-AMTS-		> F-16 GY	F- 16	<u>ح</u> و.		~	Ю		ă	_	8				0			14300	0	0	PEBA	೫							
TABLE		RIS S	DEBRIS SIZE ANAL LIST CRITICAL ITEMS	7	STC	XI.	3	100													FILE	DEB_S1Z/	_								
- -	ABLE 1	30 25	TABLE 14 DEBRIS SIZE EFFECTS ALL DATA	17E E	FFE	A ST.	2	X.			×	EPAR	REPARED BY:	¥	¥/	AFLANL/FIEMB/K	SCHAMRTZ	MRTZ				31-0ct	5								į
	5	₩	GY & RET / ALL BEDS					i											3		ş	Š	Ę		•	*	;	٤		_	
IESI			ŝ	2	5			= 1	11RE 7	=			DEBRIS			9 2 9 2	20	Š	5 .	¥ 6	2			3 5	< 4	0 \$	= ¥	7 7		.	
k	DAIR		2		TEMPAVC	Ĭ	¥F.	ri Z	- CE				- Z				Š	₹			Ž Ž	ž Č		3	n	2	0			_	<u> </u>
<u> </u>		ا د	۳	9	-	7	2	ľ		٦		1			1	1	>	7	\$	8	¥	2	¥	1	1	¥	₹	A A	~		₹
P-12	8	MAY 86	KS/MS	R	F-16	FE	F-16R	N	X X			•			_		0	0	0	1530	3	8	15.0	_	_		-	3		0	FAIUR
P-12A	8			8	F-16	S RET	F-168				N/A DRY	•••	2.00 CRL		_	6.59	0	0	0	14300	3	2300	15.5	¥	118		=	3	00 7 00	0	FAILLRE
E1-2	0	2CT 286	KS/JS	8	F-16		F-168		275 10.2			•			_		0	0	0	14300	PAYM	8	16.0	_	_	5	S	9	_	9	3.
E1-4		OCT 88	KS/3S	8	F-16	ે દ	F-14					•			_		0	0	0	14300	PAYN	8	17.0	_		•	~	Ž	_	9	5.97
P-13		₩¥ 88	KS/MS	8	F-16	S RET	F-1					•					0	0	0	14300	3	8	15.0	_	7	S	S	کر م		0	6.67
E1-1	ሄ	OCT 86	KS/JS	%	F-16		F-16R		275 10.			•			_		0	0	0	14300	PAYM	8	17.0	_	7	8	=	0	_	9	6.3
BT-19	ර්	OCT 88	KS/JS	7	F-16	5	F-168		₹.			•			•		0	0	0	14300	PAYM	8 2 2	16.0		4	2	4	M O		•	10.48
٣-٢	Ŋ	DEC 86	KS/JS	3	F-16	₹	F-168		κ 5			•			-		0	0	0	14300	PAYM	8 2	15.0		2	*	~	0	_	ø	10.8
<u>0</u> -3	8	AUG 87	Ş		F-16	_	F-		275 10.			•			_		0	0	0	14300	PAYM	9 2 2	18.0		2	F	M	9	_	9	10.8
×-1	ර්	OCT 88	KS/JS	Ø	F-16		F-168		₹			•			_		0	0	0	14300	PAYM	2300	17.0	_	7	F	7	9	_	•	11.16
9-X	₩		KS/JS	88	F-16	5	F-168		275 10.			•					•	0	0	14300	LPAY	8	16.3	_	'n	9	4	ス へ		80	12.24
۲-X	₩	12.88	KS/3S	8	F-16		F-168		₹			•					0	0	0	14300	LPAY	8	17.3		'n	•	4	ಸ ೦		ထ	13.87
02/12	۳		S		F-16		F-168					•			•		0	0	0	14300	PAYM	8	17.0	4	~	7	~	<u>~</u>	_	9	14.42
은 소	ර්	OCT 88	KS/JS	8	F-16		F-15					•			_		0	0	0	14300	PAYM	8	16.5		2	4	4	9	_	9	14.42
X-7	₽	35 38	KS/JS	88	F-16	չ	F-16R		275 10.2			•			_		0	0	0	14300	LPAY	8	16.5		M 	S	~	ಸ ಌ		80	16.00
<u>P-1</u>	8	MAY 8%	KS/MS	R	F-16	S RET	F-16R					•			_		0	0	0	14300	2	8	15.0	_	4	2	~	2 4	_	0	16.67
6-X	2			1	F-16		F-16R					•			_		0	0	0	14300	LPAY	8	17.3	_	_	4	4	%	_	9	8
11/10	ž	JUL 87	S.		F-16		F-1					•			_		•	0	0	14300	PAYM	8	16.5		9	=	0	9	_	9	8.33
8-X	8			8	F-16		F-1		275 10.			•			_		0	0	0	14300	LPAY	8	17.1	2	9	_	M	ನ 0		80	න න
2 - 4	2		Š	2	F-16		F-1					•			_		0	0	0	14300	2	8	17.5		4	_	_	ا ا		0	27.73
4-X	∞			88	F-16		F-158					•			_		0	0	0	14300	LPAY	8	17.5		0	M	~	ス		~	8.8
<u>¥</u> -4	2	MAY 86	KS/JS	2	F-16	. RET	F-168					•					0	0	0	14300	2	8	16.5		2	S	'n	9	_	0	28.67
×-5	2	12 88	KS/JS	88	F-16	ે	F-168		275 10.2			•			_		0	0	0	14300	LPAY	8	17.3	_	M	4	0	ಸ 0		80	۲. %
×-2		JH. 86	KS/JS	8	F-36	S RET	F-168					•					o	0	0	14300	LPAY	8 10 10	10.0	_		M	7	<u>۲</u>		80	<u>ج</u>
P-1		MAY 86	KS/JS	8	F-16	S RET	F-1		275 N/A			•						0	0	14300	2	8	16.5	Ω.	M	~	0	۲ 0	_		00.04 0.04
<u>×</u>		25 28	KS/3S	ଞ	F-16	RET	F-					•					0	0	0	14300	PAYM	8	16.5	Ŋ	~	-	~	ನ 0		ထ	41.60
হ- <u>×</u>	19	第 以	KS/7S	8	F-16	RET	F-168	¥ 275				•					0	0	0	14300	LPAY	8	16.5	4	_	-	~	ಸ 0	_	œ	25.00
x-12		OCT 88	KS/7S	20	F-16	RET	F-1					•					0	0	0	14300	PAYM	8	17.0	9	—	~	~	7	_	•	57.67
8- -					F-16	RET	F-16	2	₹.			_			_		0	0	0	14300	3	8	14.5	S	0	4	0	<u>-</u>	_	0	89.08
																i															

TABLE 15.-DEBRIS SIZE EFFECTS (RETREAD TIRES ONLY)

			- ·	16 R	 	275	 		DRY	ਵਿੱ ਤੋਂ ਵ	۔ را			0	0 0	2,0	14300	SPEED<20	SEED S	 2								1
CONSINANTS	SIZE FFFECTS (8	FFECTS (P		o 1.	EFAD	C/2 TIRES	3 2		ž		_			>				E DEB SI		3								
DEBRIS SIZE ANAL LIST CRITICAL ITEMS	SIZE AWAL LIST CR	WAL LIST OF	IST CF		2	T. 1	2		PREPARED	ED 87:		AFLAL/FIEMB/K	IBMB/K	SCHAMRTZ	RTZ		DAT	E 31-0ct	0ct-91									
RETREAD CHLY ALL BEDS	MLY ALL BEDS	L REDS	S			i													į		•		3	1	;	§	•	
2	9	*				=								_	3				3		>	0	=		₹	E S E	×	-
DATE ENG TEMPA/C M	TB/PA/C				¥ ¥	AXLE PRES	S L	3	8	SIZE TYPE		¥		2	YA	ĭ	LOND VEH	DIST	S	ens ens	N.		5 2	HITS	HIT	5		
C E G 1 K	E G 1 K	- Y	<u>_</u>	1	*	0	۵	1	ì			l		>	7	2		1	¥				₹	*	S	₹		
HAY 86 KS/NS 70 F-16 F				**	RET F-16R	68 273	¥/×		•					0	0	0 14			5.5			_	8	_	Ş	INFIN		
MAY 86 KS/MS 70 F-16	F-16	F-16		Æ	_			N N	DRY 2	2.00 CRL	288	0 6.5	5.9	0	0	0 74	14300 BUD	88	15.0	× ×	T.RE	FAILE	A	9	9	INFIN		
HAY 86 KS/MS 70 F-16	F-16	F-16		E	_				•					0	0	0 14			15.0			'n	2 6		8	79.9	Ξ	
86 KS/JS 82			9		_	-16R 275	N/A					•		0	0	0 7			17.0			=	7	_	%	11.16	7	
JUL 86 KS/JS 86			2	쓛	T F-1				-					0	0	0 14			17.3			9	0 7	_	88	13.87	4	
OCT 86 KS/JS 80			÷	꾿	T F-1									0	0	0 14			16.5		4	4	4	_	3 56	14.42	4	
HAY 86 KS/NS 70	KS/NS 70 F-16	20 F-16	<u>.</u>	쒿	IT F-1				-					0	0	0 14			15.0				2 2		8	16.67	4	
JUL 86 KS/JS 77	KS/JS 77 F-16	77 F-16	9	2	IT F-16R	GR 275			•					0	0	0 14			17.3				4	_	346	29.33	•	
_	KS/JS 72 F-16	2 F-16	5	Ħ	11 F-1	-			•					0		0 14			17.5				1 3	_	8	27.73	4	
86 KS/JS 88	KS/JS 88 F-16	88 F-16	<u>.</u>	8	Ξ				-					0	0				17.5		0		2		8	8 .00	2	
MAY 86 KS/JS 72			-19	æ	Ξ									٥	0				16.5		'n		5	_	8	26.67	~	
JUL 86 KS/JS 82			9	꾿	IT F-1				-					0	0				10.0		-		2		82	2.7	M	-
MAY 86 KS/JS 78			-19	æ	1-1-1	_								0	0	0 14			16.5		M		0	_	8	60.0 9	0	
JUL 86 KS/JS 82			2	썵	T F-1	-			-					0	0			_	16.5		~		0 ~		8	41.60	~	
JUL 86 KS/JS 83			9	z	II F-1				-					0	0				16.5		-		0 2	_	88	25.00	~	-
_	KS/JS 78 F-16	78 F-16	9	껉	IT F-1				-			•		0	0				17.0		- -		2		8	57.67	M	
MAY 86 KS/DM 70	KS/DM 70 F-16	20 F-16	9-	Z	1-1 E	16R 275			_					0	0				14.5		0		0	_	9	8 8	_	
																												-

DEBRIS SIZE COMPARISON ALL TIRE TYPES

DEBRIS SIZE COMPARISON RETREAD TIRES ONLY

The results are as expected with larger debris causing a greater level of damage. Effects appear to be fairly linear with a stone size of 1.5 to 2.0 inches becoming a limiting size. As noted in Table 14, two of the three 2-inch runs resulted in tire blowouts. Through observation of these two failed runs it is estimated that failure occurred at 10% and 50% into the testbeds for tests P-12 and P-12A respectively. Although no 1.5-inch failures are noted in these tables, it should be noted that at least one such failure did occur with the introduction of a braking variable.

With regard to larger cuts, some additional analysis was done. Figure 15 shows the results of extracting all of the cuts over 10/32 inch deep from Table 15. Although a similar trend exists, it may be that at larger diameters, the trend becomes increasingly nonlinear.

Within the test effort, shrapnel tests became a problem due to a limited availability of uniform sized shrapnel for use. It was possible, however, to obtain about 250 pieces of uniform sized shrapnel representing a 1.25-inch stone comparison. Four tests were then conducted utilizing this debris on a 250-ft testbed. These results could then be compared to 12 stone runs involving a 1.50-The results of this comparison are presented in Table 16 in in stone size. increasing order of damage. Table 16 data can be assessed in two ways, either as it stands or by application of the size effects data noted in Figures 13 and 14. As the data stands, an argument exists for higher levels of damage with shrapnel, because in general the shrapnel runs fall into the upper 50 percentile However, if size effects are applied, an even greater level of of the data. damage can be noted. More specifically from Tables 10 and 11, an approximate 1/3 reduction in damage can be realized in going from a 1.5 to a 1.25-inch size or a 150% increase for the larger size. Introducing these adjustments into the Table 16 data, it can be seen that of all tests falling into the upper 31 percentile of damage, four of them are shrapnel runs.

For the larger cut case, a second table (Table 17) is presented with a new column added. This column adjusts large cut data for both size and testbed length and presents it in order of increasing damage. Size effects adjustments were made based on the Figure 15 nonlinear size effects for deep cutting. Overall the results for large cuts are similar to the previous findings for all cuts. Two runs comprising the upper 12.5 percentile were both shrapnel. Out of the eight runs comprising the upper 50 percentile, 50% were shrapnel, and of the eight runs comprising the lower 50 percentile, none were shrapnel.

Results of both the total cuts and deep cuts data are presented graphically in Figures 16 and 17. Figure 16 presents both adjusted and unadjusted results while Figure 17 is only the size adjusted data.

Braking Analysis

A total of 17 tests were available for the braking analysis and are presented in Tables 18, 18a, 19 and 19a. Twelve of these points, however, are 0 psi baseline points, so any statistical conclusions in this area will be difficult.

The reason for the limited number of positive pressure tests can be attributed

DEBRIS SIZE COMPARISON RETREAD TIRES ONLY

TABLE 16 DEBRIS TYPE ANAL LIST CRITICAL ITEMS

						•	- (~ •	n ·	4	v.	•	^	∞	0	5	Ξ	잗	Į,	20.35 14 20.35	₽	5
			Q	ADJ HITS	⊋	•														3,6		
				107 107	5															0 346		
0	8			TOTA 0 6	^	₹	8 8		₽ 83	2 4	%	80	K	P	R	1				17 6 11		
SPEED<20			04-Nov Nov-91	PUSH BBD		8	88	23 23 23 23 23 23 23 23 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	8	2300	8	90	5	} {	3 8	2	8	5	}	3 8	} {	2300 17.3
14300	0 14300 0	FILE	_	M VERT PRO		A AB AC	0 14300 PAYM	0 14300 PAYM	0 14300 PAYM	O 14300 PAYM	0 14300 PAYM	MAN 00271 0	MAG 00271 0	MAG 002/1 0	1/200 PAYM	1/200 I DAY	1/200 PAYE	1/200 page	VAC 102%	14200 CP71 0	0 1/200 PAIN	0 14300 LPAY
6	0		K SCHAWRTZ	_	PAT PSI YAU	X X X	ص د		, c	2) (2	2		2 Y		ء د د	> c		2/4
			APJAL/FIBAB/K SCHAWRTZ		LTH WITH	>	K 7 X	3 S	3 K	3 K	5 K		2 i	8 i	8 8 8 8	֚֚֚֚֓֞֜֝֜֝֜֝֝֟ ֓֓֞֞֓֞֓֞֞֞֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	S .	21	בי פי	S .	2; 3;	
		•	PREPARED BY:		COLD SIZE TYPE	-	- 5	Ŗ	Ŗ,	ġ S	સ્ !	0 1	9	<u>۔</u> ک	3	3	8	0	 S	٠ ک	2.	8 6 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7
1	E E	Š	£		3	1	• :	, r	0 0	, 0	φ, (λ S	ν. 80	က ဆ	ς. Ω	လ ဆ	λ. S	ιν. eo	λ. Ø	5.8	ۍ ش	10.2 5.8 DRY
	S k	C/3		180	ANTE PRES		o ≥ !	SI	SI	S	F-16R 275	K	K	ß	K	ĸ	F-168 275	ĸ	F-168 275	S	F-168 275	S
	÷ ;	75 OL-4 <		g	TEMPAC MAN		~	60 F-16	ઝ	7-	29				81 F-16 GY	3				S 85 F-16 GY		S 86 F-16 GY
	CONSTANTS	STANTS		Y CHLY ALL BEDS	7E 84G		Ü	OCT 86 KS/JS	OCT 86 ICS/JS	St. 78 48	OCT 86 KS/JS	SE 87 JS	SEP 80 AS	OCT 86 KS/JS	ALC 87	88	88	8	8	8	21 87 JS	3 JL 86 KS/JS
	GLERY CON		9	5	TEST DATE		•	E1-2 07	E1-4 07	C-34 11	E1-1 04	11 11	11 47-3	RT-10 06	1-d	2	8. 9-X	1-2	15 51/50	1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	101/11	×-8-×

TABLE 17 DEBRIS TYPE ANAL LIST CRITICAL ITEMS GY ONLY ALL BEDS (DEEP CUTS ADJUSTED)

Court All BESS Court All BESS DRY CORT CO
THE PRINT PRINT SLAF DERIN STAND 0 0 14300 0 9FEB-20 THE STAND DATE OCCURS 0 0 14300 0 9FEB-20 THE STAND DATE OCCURS 0 0 14300 0 9FEB-20 THE STAND DATE OCCURS 0 0 14300 0 1430
THE PROM PROFILE STRAP OF LESS OF 14,300 O \$PEB-20 THE PROPOSED BY: A FAMILY FIDBLYK SCHARRTZ AND SIZE TYPE LTH WITH PAIR PSI YAM LOND VEH DIST SPEBD CUTS 5 10 15 for HITS HIT OUT AND HITS FIRE ZTS 10.2 5.8 DRY 1.25 SFRAP ZSO 7.75 6/5 O 0 14,300 DAW ZSO 19.0 29 11 3 0 173 173 8.4 F. HR ZTS 10.2 5.8 DRY 1.25 SFRAP ZSO 7.75 6/5 O 0 14,300 DAW ZSO 19.0 20 6 11 3 0 173 173 8.4 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 19.0 20 6 11 3 0 173 173 8.4 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 16.3 17 5 6 4 2 208 208 12.2 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 16.3 17 5 6 4 2 208 208 12.2 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 16.3 17 5 6 4 2 208 208 12.2 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 16.3 17 5 6 7 0 1173 173 12.3 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 16.5 17 5 6 7 0 1173 173 173 12.3 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 19.0 18 10 7 0 1173 173 173 12.3 F. HR ZTS 10.2 5.8 DRY 1.50 CRL SO 7.75 6/5 O 0 14,300 DAW ZSO 19.0 18 10 7 0 1173 173 173 173 173 173 173 173 173 17
THE PRIM PRIM TABLE DEBRIS BED DEB BRANCE CAM VERT PRO PLSM BED TOTA 0 6 11 TOT ADJ H LIGHT ZTS 10.2 5.8 DRY 1.55 SRAP ZSO 7.75 6.5 0 0 14300 PANN ZSO 19.5 20 11 13 3 2 173 173 F-16k ZTS 10.2 5.8 DRY 1.55 SRAP ZSO 7.75 6.5 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 7.75 6.5 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 7.75 6.5 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 16.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 SRAP ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 ZSO 2 1346 ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 ZSO 2 1346 ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 ZSO 2 1346 ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 ZSO 2 1346 ZSO 17.5 6.5 0 0 0 14300 PANN ZSO 17.0 6.0 70 50 15 ZSO 2 1346 ZSO 17.5 6.
The Print Sar Coll. Sar Co
275 DRY O'RL SPRAP O 0 0 14300 O SPEBD-20
THE PRINT PRINT SLAF O'RL
The print sure delices Dry Syrap Dry O'CR Dry Dry D'CR
275 DRY O'RL PREFINEED BY: AFUAL/FIB-BACK SCHARRT2 ITHE PRAIT PRAIT SURF DEBRIS BED BEB BROWE CAM VERT PRO PLESH BED TOTA O AND P Q S T U V W X Y Z MA AB AC AD 15:00 16:30 17:00 11:00 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:3 17 5 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:3 17 5 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:3 17 5 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:3 17 5 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:3 17 5 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 13 3 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 16:3 17 5 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 18 10 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 33 19 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 33 19 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 33 19 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 33 19 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 33 19 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 16:0 32 18 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 17:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 17:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 17:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 17:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 17:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 15:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 15:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 15:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 CRL SOO 7.75 6/5 0 0 0 14:300 PAYN Z500 15:0 8 35 F-16k Z75 10.2 5.8 DRY 1.50 C
275 DRY SYRAP 0 0 0 14300 0 9FEB-20
275 DRY SRAP 0 0:0:0 0 14300 0 0 9FEBD-2 275 DRY 0 CRL
275 DRY SRAP PREPARED BY: AFMAL/FIBBL/K SCHARRTZ DATE 04-16200 0 0 14300 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
275 DRY SRAP PREPARED BY: AFMAL/FIBBL/K SCHARRTZ DATE 04-16200 0 0 14300 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 14300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
275 DRY SYRUP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
275 DRY SRAP 0 0.0 0 0 14300 275 DRY 0 0.0 0.0 14300 275 DRY 0 0.0 0.0 14300 11RE PRAIT PRAIT SLAF DEBRIS BED BED DEB BRANCE CAM VERT 1 ALLE PRES L W COMD SIZE TYPE LTH WITH PAIT PSI YM LOWD 1 F-16k 275 10.2 5.8 DRY 1.25 SHAPP 250 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 SHAPP 250 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.35 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300 1 F-16k 275 10.2 5.8 DRY 1.30 CRL 500 7.75 6/5 0 0 0 14300
275 DRY SRAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
275 DRY SRAP 0 00 0 0 0 0 0 0 0 0 2 275 DRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
275 DRY SRAP PREPARED BY: ANAL/FIDBB/K SCHAWRT TIRE PRAIT PRAIT SLAF DEBRIS BED DEB BROME I AVE PRES L W COND SIZE TYPE LTH WITH PAIT PSI YA N O P Q S T U V W X Y Z F-16R 275 10.2 5.8 DRY 1.55 SHRAP 250 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 300 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0 F-16R 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 0 0
275 DRY SHRAP 275 DRY O CRL PREPARED BY: AFAAL/FIBBBAX TIRE PRAIT PRAIT SLRF DEBRIS BED DEB (AALE PRES L W COND SIZE TYPE LTH WITH PAIT N D P Q S T U V W X F-16k 275 10.2 5.8 DRY 1.25 SHRAP 250 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 6.5 5/4 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 300 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5 F-16k 275 10.2 5.8 DRY 1.50 CRL 500 7.75 6/5
275 DRY SRAP 275 DRY 0 CRL PREPARED BY: 1 THE PRAIT PRAIT SLAF DEBRIS I AVLE PRES L W COND SIZE TYPE I F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL
275 DRY SRAP 275 DRY 0 CRL PREPARED BY: 1 THE PRAIT PRAIT SLAF DEBRIS I AVLE PRES L W COND SIZE TYPE I F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL
275 DRY SRAP 275 DRY 0 CRL PREPARED BY: 1 THE PRAIT PRAIT SLAF DEBRIS I AVLE PRES L W COND SIZE TYPE I F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL F-16k 275 10.2 5.8 DRY 1.50 CRL
275 DRY SNRWED BY: THE PRAIT PRAIT SLRF DEBRIS A ALE PRES L W COND SIZE TYPE N D P Q S T U F-16k 275 10.2 5.8 DRY 1.25 SNRWEP F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU F-16k 275 10.2 5.8 DRY 1.50 CRU
275 DRY 0 C C C C C C C C C C C C C C C C C C
275 275 275 277 277 277 278 277 278 278 278 278 278
275 275 275 277 277 277 278 277 278 278 278 278 278
275 275 275 275 276 276 276 277 277 277 277 277 277 277
2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3

S
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
I!! 🖨
EPG EPG EPG EPG EPG EPG EPG EPG EPG EPG
\$ 88 8 9 9 8 8 8 9 9 9 8 8 8 8 8 8 8 8 8
GY ONLY ALL BEDS GY ONLY ALL BEDS GY ONLY ALL BEDS GY ONLY ALL BEDS 11 SEP 87 JS 12 SEP 87 JS 13 SEP 87 JS 14 SEP 87 JS 14 SEP 87 JS 15 SEP 87 JS 16 SEP 87 JS 17 SEP 87 JS 17 SEP 87 JS 18
20
04.687 04.687 116.51 116.51 116.51 117.51

<u>DEBRIS TYPE EFFECTS</u> REG & ADJUSTED

DEBRIS TYPE EFFECTS GY ONLY ALL BEDS (SIZE ADJUSTED)

FIG 17 DEB TYPE EFFECTS-DEEP CUTS-SZ ADJ

TABLE 18 BRAKING ANAL LIST CRITICAL ITEMS (GY ONLY ALL SIZE BEDS)

OUERY O	QUERY CONSTANTS	: :	61:1 4:	<u>-</u> 5	N N	S K2		DR.Y	O CRL			ió .	BRAKE 0 0 0	00	14300		'	SPEED<20	ន្តន							
TABL	TABLE 18 BRAKING ANAL LIST CRITICAL ITEMS	NG ANA	L LIST C	RITIC	AL ITEM	w	_	PREPARED BY:	.D BY:	WRDC	WRDC/FIVMB/K SCHWARTZ	/K SCH	1WAR T Z			FILE B	BRAKE17 31-0ct 0	Oct-91								
	GY ONLY ALL	ILL SIZE	E BEDS																						ą	
TEST			AMB		-	IRE PRNT		SE.	DEBRIS				ZAKE	₹	VERT	P80	SS	80	TOTA	0		=	70		HITS	
.	DATE	ENG	TEMPA/C	ž	AXLE P	PRES L	3	QNOS	SIZE TYPE	۳ د ۲۲	E	PAT	PSI YAW	_	COAD	VEH	DIST	SPEED	CUTS .	2	5	15 16+	+ HITS	S HIT	508 CU	_
_	J	w	-	~		9	G			>		×	2 X	≨	8	AC	8	ĄĒ	Ā	R	¥	AL &	1 -	AS		
	OCT 88	KS/JS	60 F-16	ъ		-	5.8	DRY 1		200			0	0	14300	PAYM	2300	16.0	2	Տ	5	'n	9760	346		
81-17	OCT 86	KS/3S	78 F-16	չ		-	5.8	DRY 1		58		•	0 07	0	14300	PAYM	2300	16.0	29	82	9	12	1 346	346		
	OCT 86	Sr/SX	62 F-16	5			5.8	DRY 1		8			0	0	14300	PAYM	2300	17.0	82	33	೭	7	1 346	346		
	oc₁ 86	KS/1S	76 F-16	չ			5.8	DRY 1		8			0	0	14300	PAYM	2300	17.0	5	7	92	<u></u>	975 0	346		
- 19	8	KS/1S	7 F-16	ъ	F-16R 27	275 10.2	5.8	DRY 1	.50 CRL	200	7.7		0	0	14300	PAYM	2300	16.0	ĸ	<u>\$</u>	5	4	0 346	3,76	10.48	
_	AUG 87	SS		5			5.8	DRY 1		200			0	0	14300	PAYM	2300	18.0	32	∞	=	m	975 0	346		
	DEC 86	KS/3S		5			5.8	DRY 1		200			0	0	14300	PAYM	2300	15.0	35	2	<u>4</u>	Ň	0 346	346		
	AUG 87	S		5		-	5.8	DRY 1		200		•	0	0	14300	PAYM	80 80 80 80 80 80 80 80 80 80 80 80 80 8	17.0	ጼ	Ξ	5	7	1 346	346		
	AUG 87	S		_		-	5.8	DRY 1		200		•	0	0	14300	PAYM	2300	18.0	8	7	은	4	1 346	346		
9-x	36 101 88	KS/JS		5	F-16R 27	-	5.8	DRY 1		300			0	0	14300	LPAY	2300	16.3	17	S	9	4	2 208	208		
	JUL 87	SL	91 F-16	_			5.8	DRY 1		200			200	0	14300	PAYM	2300	14.0	8	5	•	'n	9750	346		
02/12	₹	SS		_ 6		-	5.8	DRY 1		200			0	0	14300	PAYM	2300	17.0	57	^	7	~	1 346	346		
	₹	S		_ 5	F-16R 27	-	5.8	DRY 1		500		•	0 00	0	14300	PAYM	2300	10.3	22	∞	=	m	0 346	346		
	JUL 86	KS/JS		- გ		-	5.8	DRY 1		300			0	0	14300	LPAY	2300	16.5	13	m	~	2	3 208	208		
Ε	JUL 87	SC		_ 5		•	5.8	JRY 1		200			0	0	14300	PAYM	2300	16.5	17	•	=	0	0 346	346		
_	ಕ	KS/JS		_		•	5.8	JRY 1		300			0	0	14300	LPAY	2300	17.1	5	9	-	m	0 208	208		
	₫	KS/3S		٠	F-168 27	•	ς.	NAC 1		300			c	c	7.300	PAY	2400	17 3	7	~	7	<u>-</u>	200	800		

TABLE 18a BRAKING ANAL -- LIMIT CUT DATA (ALL STONES & 1.5 DIA STONES)

5	
3	
	2.5.2.1.1.2.1.1.2.1.1.1.1.1.1.1.1.1.1.1.
ALL CUTS 1050	5. 16
ALL CUTS 500 1	
₹38	13.31
ALL CUTS 200	8.8.
7 5 ''	<u> </u>
ALL CUTS ZERO	6.78 6.78 10.81 10.81 10.81 12.24 14.42 16.00 20.35 20.35 20.35
	4 7. 50 50 51 4 4 50 50 50 50 50 50 50 50 50 50 50 50 50
1.5 CUTS ZERO	2 C88222 C S
	4 10 10 4 00 10 10 10 10 10 10 10 10 10 10 10 10
g 2 _	
ADJ HITS FOR CU	AU 4.94 5.16 5.76 6.78 6.78 110.81 11.93 1
2	
E &	AS 246 246 246 246 246 246 246 246

1.5 IN LIMIT ADJ HITS TO CUT AVGS		173.0			69.5	31.5		115.3	0.0	115.3		86.5		69.5	2 115.3 92.26		69.5		
LIMIT ADJ HITS TO CUT AVGS		173.0	69.3	0.0	2.69	31.5	34.7	115.3	0.0	115.3	41.6	86.5	115.3 70.9		115.3 92.2	115.3		26.6 26.6	
		0	0	0	0	0	0								200	200	200		
TEST		£-L	8-X	X-5	E1-2	E1-1	9-X	0-3	1/10	E1-4	X-7	1-18	02/12	7-1	1-3	9-1	1-5	181-17	
= = = = = = = = = = = = = = = = = = = =	Ī	'n	ŭ	M	Ξ	4	m	~	M	S	9	~	M	m	'n	0	m	0	_
! 		13.61	5.16	13.61	13.61	13.61	13.61	13.61	11.93	11.93	13.61	14.52	13.61	14.52	13.61	13.61	13.61	13.61	
ALL ALL CUTS CUTS 500 1050			5.16									13.31		15.73					
۰ ا										_		-		-					

TABLE 19--BRAKING ANAL LIST CRITICAL ITEMS (GY ONLY 6/4 BEDS)

	ことにつきつい	A	^::	- 10 5	ć	/2	ν.		2				6/5		0	0	300		SPEED<20	~ 50							
QUERY	CONSTANT	CONSTANTS>	A	F-16	ĕ	275	ν.		DR.	0 CRL			6/5	0	0	0 14	14300			<20							
																	FILE		<u>1</u> 61								
TABL	E 19BR	AKING AN	AL LI	ST CRI	TICAL	ITEMS			PREPAR	ARED BY:	AF	JAL/FI	AFWAL/FIEMB/K	SCHWARTZ	ARTZ		DAT		31-Oct Oct-91	_							
	GY ONLY 6/4 BEDS	¥ 6/4 BE	DS																							ADJ	
TEST			AMB			I	RE PRI	IT PRNT		DEBRIS	BED			_		CAM			BED		0	•	=	2		HITS	ş
*	DATE	ENG	TEMP	TEMP A/C	¥	AXLE PRES L	ES L	3	COND	SIZE TY	ب س	¥ .	+ PAT	PSI	YAW	ت	LOAD VEH	DIST	SPEED	CUTS	S.	9	15 16	16+ HITS	TS HIT		
80	ပ	w	9	-	1		1	i	S			İ			1	3		8	AE	1	-	¥	Ar /	AM AR	1	₽	
E1-2	8			_	_		•	-	DRY 1		-	_			0	0 14						15	Ŋ	0 346		6.7	*
BT-17	2			_	_		•		DRY 1			_		_	0	0 14						9	12	1 34		5.1	۰
E1-4	07 OCT 8	86 KS/JS	62	F-16	GY F-	:-16R 275	5 10.2	5.8	DRY 1	.50 CRL	. 20	7.7	75 6/5	0	0	0 14	4300 PAYM	M 2300	17.0	0 58	33	20	2	1 346	9 346	5.97	7
<u> </u>	5			_	_		•		DRY 1		<u> </u>	_			0	0 14						5 8	Ξ	0 34		6.7	œ
BT-19	엉		Z	_	_		-	_	DRY.			_			0	0 14						9	4	0 34		10.4	œ
0-3	AUG				-		•	_	DRY		-·	_			0	0 14.		_				=	M	0 34		10.8	=
ب- س-		36 KS/JS		_	_		•	-	DRY 1			_			0	0 14		_				14	7	0 34		10.8	=
1 3		37 JS		_	_		•		DRY 1	-	-	•			0	0 14		_				15	~	1 34(11.9	Ñ
7-1		37 JS	8	_	_		•		DRY 1		-	•	_		0	0 14						5	4	1 346		11.9	Ñ
1-5		37 JS		_	_		•		DRY 1	-	<u> </u>	•	_		0	0 14						9	'n	0 346		13.3	<u> </u>
D2/12		37 JS		_	_		•		DRY 1		•	•	_		0	0 14						14	~	1 346		14.4	Ņ
9-1		37 JS		_	_	_	•		DRY 1	_	•	•			0	0 14						=	M	0 34(15.7	'n
1/11		37 JS		-	•		•	-	DRY 1	_	•	•	_		0	71 0						=	0	0 344		20.3	'n

TABLE 19a BRAKE PRESSURE/DRAG RELATIONSHIP

PRESS	AVERAGE OF PEAK DRAG	AVAVERAGE OF
0	1321	142
200	1729	522
200	1979	1085
1000	3770	2751

to difficulties encountered in the brake control system and the non-representative mass of the test vehicle. For the F-16 aircraft, two brakes are utilized to arrest a 25,000 to 35,000 pound vehicle. In the test setup, however, a single brake is utilized to arrest a mass of 50,000 to 60,000 lbs or almost four times the real requirement.

For the test itself, only a comparative attempt was introduced whereby various brake pressures were applied just prior to testbed entry and released at testbed exit. This requirement in conjunction with a poor brake control system setup resulted in questionable brake pressure values. A number of trail tests were conducted noting deceleration and testbed speed behavior, and it was concluded that brake pressure values could be off as much as 175 psi. To help offset this fact, loads data was analyzed to note drag effects as related to brake pressure. The objective here is to make drag rather than pressure an available comparison for anticipated future statistical studies. A summary of this drag analysis is noted in Table 19a where the average of all tests for peak and mean drag values were computed. A limited analysis of the Table 18 and 19 data was conducted in this report and is summarized in Figures 18 and 19. The results presented represent all cuts and no conclusive trend becomes apparent although one might conclude that at drag loads above 1100 lbs significantly increased cutting does result. For beyond limit cuts it was originally thought that a significant trend would result toward more cuts and higher braking. However, as Figure 19 illustrates limit cuts seem to hold constant up to some value beyond 500 psi (approx. 1100 lbs drag) at which point original thinking may hold true. 19 data for only 1.5 in debris have been included on Figure 18. For this case, a trend toward reduced cutting up to 500 psi brake pressure exists followed by increased cutting beyond 500 psi.

Considering the previously noted trends several notes of caution are in order. First the potential + 175 psi pressure scatter has not been factored into any data and should be considered in any future analysis. Also the amount of data generated at certain points may or may not hold statistical significance and must be considered accordingly in anticipated future statistical studies. Finally future tire cutting T&E programs should include further braking runs to permit firm conclusions to be drawn in the area.

Combined Braking/Yaw

Data for a combined braking/yaw trend analysis was extracted and is presented in Tables 20, 21, and 22. Data points are noted graphically in figures 20 and 21. From these figures, the effects of increasing damage at higher yaw angles is apparent, with 30-50% reductions being noted with the addition of braking. This fact reinforces the findings of the previous section in that braking may not be as critical as originally anticipated. The fact that braking may serve to actually reduce damage could well be true in that theories can be offered as to why this might occur. Typical theories might include localized heating effects or a tendency for the tire to generate a rolling effect on debris when encountered. It should also be noted that these effects apply only to the 200 and 500 psi values tested and for hard braking, the resulting trend may well reverse itself. Several potential trends can be noted from the data; however, additional testing with a refined brake control system will be required if a firm grasp of these effects is to be attained.

BRAKING EFFECTS ALL BEDS GY ONLY

FIG 18 BRAKE PRESS EFECTS -- ALL CUTS

BRAKE PRESSURE EFFECTS LIMIT CUTS

TABLE 20 COMBINED BRAKING/YAW ANAL LIST CRITICAL ITEMS (GY 6/4 BEDS INC POS PRESSURE ONLY)

Q.ERY		CONSTANTS> F-16	5	ß		8			3	S 88€	ш	0 20 20 20 20 20 20 20 20 20 20 20 20 20	_	σ		<u></u>								
	CONSTANTS	> F-16	5	8		₩	8		Ş	5 BRAKE	ш	0.14300		0	SZ HIPS	_								
														COMBO BR										
	TABLE 20 COMBINED BROWLING/YAW			AM LIST	<u>8</u>	E	CAL PREPARED BY:	A	ARML/FIBBAX SCHWRTZ	¥SX	PR12		DATE 3	to E	et-9									
	GY 6/4 BEDS INC POS PRESSURE	E POS PRE		OLY OLY									8	85							Ş			
EST		£		18	Ē	-	FORBRIS				₹ ₩	_	8	EST		ΔĮ	9		₫		HITS FOR			
*	DATE BIG	TBPA/C	3	ANCE PRES	_	9 3	D SIZE TYPE	¥.		186	¥	9	₫	DIST	-	STS.	5 10	Æ	16+ HITS	S HIT				
80	G C	2	_	0	۵	S		>		1	2 4	8	æ	8	¥	1	1	4	₹	1 ~	JO DE	EG 1 DEC	3 286	
1-17	04 OCT 86 KS/JS	3 78 F-16	5	16 275 275		5.8 DRY	3. 8	옰	7.75 6/5	5 1040	0	0 14300	PAM	8	16.0	67	38	2	13%	88	5.16 5	5.16		1.6
2	ALG 87	Ø	5			5.8 DRY	_	8	-		M	0 14300	PAM	8	3.8	_	•	0	0 3%6		6.18		6.18	6.9
Ŗ	04 ALG 87 JS	NA F-16	5	168 275	10.2	5.8 DRY	_	8	_		m	0 14300	PAM	88	3.0		•	∞	0 3%		6.73		6.73	6.9
\$	ALG 87	36 F-16	₹			5.8 DRY		8	_		M	0 14300	PAYM	8	70.5	_	•	9	23.6		2.08		7.06	6.9
₹	ALG 87	な F-7	ъ			5.8 DRY		욼	_		M	0 14300	PAYE	8	1.0		•	4	13%		7.21		7.21	6.9
-11-	ALG 87	88 F-16	5			5.8 DRY		8	_		M	0 14300	PAYM	8	5.0		•••	M	3,36		7.36		7.36	6.9
÷	ALG 87	35 F-15	5			5.8 DRY		쫎	_		_	0 14300	PAYE	8	7.5		•	•	13%		9.61	9.61		1.3
5	¥	88 F-16	5			5.8 DRY		8	_		_	0 14300	PAYM	88	11.3		7 12	9	0 3%		6.6	6.8		1.3
*	å	22 F-16	5	_		5.8 DRY	_	8	_		_	0 14300	PAYM	8	10.5		2 17	m	0 3%		10.81	10.8 ਬ		=
4	¥	8 F-18	6			5.8 DRY	_	쫎	_		0	0 14300	PAYM	88	18.0		4	4	- 38		11.93 11.			11.6
1-3	ALC 87	87 F-16	5			5.8 DRY	_	8	_		0	0 14300	PAY	8	17.0	8	÷	~	- 38		11.83 11.83	ĸ		1.6
ķ	11 87	9 F-7	5	-		5.8 DRY	_	8	_		0	0 14300	PAY	88	14.0	7	5	'n	0 3%		13.31 13.	≈		1.6
ö	å	8 F-16	5			5.8 DRY	_	8	_		-	0 14300	PAYE	8	12.5	В	2	'n	0 3%			15.Q		1.3
· •	ALC 87	80 F-16	5			5.8 DRY	_	8	_		0	0 14300	PAM	8	10.3	8	8 1	M	03%		15.73 15.73			11.6

TABLE 21 COMBINED BRAKE/YAW (ALL BRAKE PRESSURES INCLUDED)

QERY	CLERY CONSTANTS-		> F-16 GY		275	DRY	.x	İ		9/2	BRAKE>0	0	14300		Ø	SPEED<20						
QERY	CONSTANTS-	:	> F-16 GY		ĸ	ă		ر م م		\$	0	0	14300	0	В	EE \$20						
TABLE	둤	ED BRAK	COMBINED BRAKE/YAW (ALL BRAKE PRESSURES	BRAKE PRE	SSURES	INCLUDED)	_	!		•				FILE C	09400							
						*	PREPARED BY:		AFIMAL/I	FIEMB/K	/FIEWB/K SCHAMRTZ	21			31-oct 0	Oct-91						
	GY 6/4 B	EDS INC	GY 6/4 BEDS INC ZERO B PRESSURE																			₹
TEST			A B	_	TIRE PRI	T PRNT					\$	₹	Æ	8	ES.		TOTA	9 0	Ξ	ŢŌ	₹	HITS FOR
*	DATE	S E	TEMPA/C MAN	ACLE	PRES L	3		SIZE TYPE	_		8	YAL	8	_						₹		5
60	J	w	- E	2	0				1		>	₹	8	SK.	٩	1		1	₹	AM AR	1	₹
<u>-</u>	2	S	42 F-16 GY	F-16R Z	275 10.2	5.8	_	ಕ				0	14300	PAYM	88	•	•		'n	3,4		2.77
9-7			F-16	F-168	75 10.2	5.8	₹ 1.50	ಕ				3 0	14300	PAYM	88 80	15.0		53 19	•	ž ~		4.33
E1-2	g		F-16	F-168		5.8		ਛ		_		0	14300	PAYM	00 23 20 20				S	3,4		¥.4
7-6	390		F-16	F-168	275 10.2	5.8	_	ಕ		_		3	14300	PAYM	2300				~	2,3%		5.03
E1-4	8	KS/JS	F-16	F-168		5. 8	_	ਛ		_		0	14300	PAYM	8 20 20			2	2	78		5.97
- 19	05 AUG 87	SIS	82 F-16 GY	F-168 2		5.8	_	ಕ				3	14300	PAYM	200			•	0	3,5		6.18
E1-1	Q4 OCT 88	KS/JS	76 F-16 GY	F-168 2		5.8	_	ಕ		_		0	14300	PAYM	200 23				Ξ	ž		6.38
<u>ب</u> ھ	24 DEC 86	KS/JS	40 F-16 GY	F-168 2		5.8	_	ಕ				3	14300	PAYM	2300				4	<u>~</u>		6.73
5-5	_	KS/3S	_			5.8	_	ಕ				2	14300	PAYM	2300				_	- ¥		6.92
J-16	04 AUG 87	SL	_	F-16R 2		5.8	_	 8				3	14300	PAYM	8 20 20				9	₹ ~		7.06
J-18	04 AUG 87	S		F-16R 2		5.8	_	ಕ			9	3	14300	PAYM	2300				4	<u>~</u>		7.21
7-1-	04 AUG 87	SL	_	F-16R 2		5.8	_	ਛ				3	14300	PAYM	00 23 00 23				M	3K M		7.36
<u>-</u> -15		-		F-16R 2		5.8	_	ಕ			§	0	14300	PAYM	2300			5 75	9	- ¥		9.61
J-12	¥	S	88 F-16 GY	F-168		5.8	-	ಕ				0	14300	PAYM	80 13				•	ž		68.6
		KS/3S	42 F-16 GY	F-16R 2		5.8	_	ಕ				0 2	14300	PAYM	8 20 20			4	~	¥,		68.6
BT-19		SF/SX	N/AF-16 GY			5.8	_	ಕ				0	14300	PAYM	80 23			9	4	3,5		10.48
<u></u>	일	KS/JS	42 F-16 GY		75 10.2	5.8	-	ಕ			0	0	14300	PAYM	00 23 20 20			•	~	¥,		10.81
<u>0</u> -3			81 F-16 GY	F-168		5. 8.	_	ಕ			0	0	14300	PATM	80 23 20 20			•	M	ž		10.81
7-7	Ą	s S	22 F-16 GY	F-168 2		ۍ 8	_	ᇙ			8	0	14300	PAYM	8 20 20			2 17	M	× 0		10.81
7-1			90 F-16 GY	F-16R 2		5.8	_	ಕ			8	0	14300	PAYM	90 20			•		ž Ž		11.93
<u>-1-3</u>	₹	S		F-16R 2		5.8	_	ಕ			8	0	14300	PAYM	8 20 20			•		¥ -		11.93
4-C	ည္ထ	KS/JS		F-16R 2		5.8	_	ಕ			0	0	14300	PAYM	8 20 20 20			7	7	ž		12.36
1-5	30 JUL 87	SL		F-168 2		5.8	_	둉			50	0	14300	PAYM	00 20 20			5	ب	3,4		13.31
7-5	23 DEC 86		F-16			5.8	_	ಕ			0	0	14300	PAYM	00 23 00 23			3	0	× 0		13.84
02/12			82 F-16 GY			5.8	•	ಕ			0	0	14300	PAYM	2300			7 14	~	- ¥		14.42
J-13	AUG.			F-168 2		5.8	_	ಕ			8	0	14300	PAYM	2300			2	7	× 0		15.04
9-1	-	-	F-16		275 10.2	5.8 DRY	₹ 1.50	ਛੱ	500 7.	7.75 6/5	500	0	14300	PAYM	90 20 20	10.3	22	8 11	M	9%	% %	15.73
<u>-</u>	23 DEC 86	KS/JS		F-168 2		5.8	-	క			0	0 2	14300	PAYM	23 20 20 20			5	0	9,4		19.22
01/11		S				5.8	_	ਛ			0	0	14300	PAYM	8 2			6 11	0	*		20.35
								!														

TABLE 22 BRAKING/YAW ANALYSIS (POS BRAKE/0 BRAKE COMPARISON)

COMBINED BRAKE AND YAW DATA PER COMBOA FILE

YAW EFFECTS AND BRAKING VARYING BRAKE PRESS NOTED AT DATA POINT

A second analysis was also conducted relative to limit cuts only and is graphically illustrated in Figure 22. For the limit case, the addition of braking behaves as expected when the fitted trend lines are compared. More specifically an increase in damage of from 50% and 0 degree yaw to 60% at 3 degree yaw can be derived. Increasing damage at higher yaw angles with braking is also confirmed.

<u>Distribution Analysis</u>

An attempt was made at a limited distribution survey to see if any effects were apparent. The results of this data base extraction are noted in Table 23. In reviewing this table, no apparent effects could be noted since only one test at the same stone size with a nonstandard distribution was found. Data for this test does fall near the edge of the expected range; however, it is still within an expected value and no conclusions can be made.

COMBINED BRAKE AND YAW LIMIT CUTS ONLY (PER COMBOA)

TABLE 23 DISTRIBUTION EFFECTS

GLERY	GLERY CONSTANTS F-16 GY		51-14	5	7	275		DRY	0 08				0 0	0 14300	8	0	SPEED<20	8						
1	TABLE 23 DISTRIBUTION EFFECTS	RIBUTIC	N EFFECT	Ş											FILE		~							
TABLE	DISTRIBL	TION E	DISTRIBUTION EFFECTS ANAL LIST CRITICAL	7	IST CRIT	_	TEMS	PREPAR	PREPARED 8Y:	AFIAL	AFWAL/FIEMB/K SCHAMRTZ	¥ S ¥	MRTZ		DATE	31-0ct	0ct-91							
	F-16/GY NAX LOND	ă ¥	9																					ş
TEST			8		_	TRE PRIT	_	SE	DEBRIS		850 058	B BRAKE	₹ ₩		_	ESE.		TOTA	0	9	=	TO	₹	HITS FO
*	DATE	ENG	TEMPA/C MAN AXLE	₹	AXLE P	PRES L	3	8	SIZE TYPE		AT HT		¥¥.	2	OND VEH	DIST	SPEED	CUTS	2	•	15 1 4		#1	ā
8	U	l w	- 5	×	z	0	σ	S		>		>	7 A	¥		\$	Æ	¥	l	¥	2	_	2	₹
£1-2	07 OCT 86	KS/JS	8	5	F-16R 2	9	•	DRY 1		8		ک	0	0 143			16.0	8		5	2		%	3.
E1-4	07 OCT 86	KS/JS	8	5	F-16R 2	유	5.8	DRY 1		8		λ	0	0 143		_	17.0	፠		೩	~		%	2.67
E1-1		KS/JS	76 F-16	5	F-16R 2	275 10.2		DRY 1	.50 GE	엻	7.75 6/5	Š	0	0 14300	DO PAYN	88	17.0	2	*	8) 	3,50	8	6.73
BT-19	हें हें	KS/3S	^	5		2	5.8	DRY 1		8		ð.	0	0 143		_	16.0	ĸ		은	7		%	10.48
۲- د-۲	띮	KS/JS	3	ફ	F-16R 2	9	5.8	DRY 1		8		δ	0	0 143		_	15.0	R		7	7		3 5	10.81
<u>6</u> -3	¥	S.	2	ે દ		유	5.8	DRY 1		8		δ.	0	0 143		_	18.0	8		=	<u>ب</u>		3 48	10.81
9- <u>×</u>	18 JUL 86	_		5		은		DRY 1		8		9.5	0	0 143		_	16.3	17		•	7		8	12.24
02/12		S		5		₽		DRY 1		2 2 2		λ O	0	0 143	_		17.0	*	7	2	۰.		%	14.42
×-7	컺			5		9		DRY 1		8		0 4	0	0 143			16.5	5	M	'n	2		8	9.9
11/10	컺	S		₹		5		DRY 1		8		'n	0	0 143		_	16.5	1	9	=	0		3 46	8.3
φ ×	18 JUL 86		86 F-16	5	F-16R 2	유	5.8	DRY 1		8		9	0	0 143			17.1	9	9	-	M M		8	20.80
<u>×</u> -	₹	KS/JS	æ	5		9		ORY 1		8		9	0	0 143			17.3	7	M	4	0		8	K.
										į														•

SECTION VI

CONCLUSIONS & RECOMMENDATIONS

CONCLUSIONS:

Test Methods and Data Generation:

Overall the data from this effort proved to be of high quality. The method of testing devised was the closest possible to actual flight test data and represents a first to determine the effects of tire cutting in a hostile situation. Several critical testing barriers were successfully overcome and the method of testing employed can now be confidently used for future test needs of this type.

Data Analysis Conclusions:

As a result of this preliminary analysis, the following conclusions observations or trends were noted for the various parameters tested and analyzed:

Speed (All Cuts):

Tire cutting damage increases moderately at higher speeds.

Speed (Deep Cuts):

Tire cutting damage increases substantially at higher speeds.

Vaw (All Cuts) .

A trend toward higher cutting damage at higher yaw angles exists.

Yaw (Deep Cuts):

Only minor increases in damage were noted for this case.

Radial (All Cuts):

No significant differences were noted in the total number of cuts occurring in the radial as opposed to the bias ply case.

Radial (Deep Cuts):

The radial tire data showed a significant reduction in the number of deep cuts occurring. This is offset, however, by the lower cut limit associated with the particular design tested.

Pressure Effects:

A trend exists for increasing tire cutting at higher tire pressure values.

Retread Effects:

A minor trend toward less damage for a retreaded tire may exist.

<u>Tire Size</u>: Due to pressure differences tested an assessment of this parameter is difficult. However, in extrapolating pressure data, smaller size tires may have a very significantly higher resistances to tire cutting.

Loads Effects:

Based on the data studied the effects of load seems insignificant relative to tire cutting damage.

Water Effects:

The effects of running over flooded surfaces appears to be very significant and damage increases of over 100% can be expected.

Yaw/Water Effects:

Limited testing in this area lead to a preliminary conclusion that the introduction of yaw on a wet surface could serve to reduce the amount of cutting damage occurring.

Debris Size:

Of all the areas investigated, size disclosed one of the most significant findings of the program. Specifically cut size and overall damage increases dramatically with increasing debris size. It also was disclosed that for the 275 psi tire tested that transversing debris sizes over 1.5 inches results in a very high probability of tire failure.

Debris Type:

The type of debris encountered (stone vs. steel) also proved to be a significant parameter. For the steel case, cutting damage can increase significantly.

Braking Effects:

With regard to braking effects no quantitive conclusions can be derived. In general, however, it appears that no significant effects occur until high brake torques are applied. In terms of drag load, a value of 1100 lbs was calculated whereby increased cutting damage comes into play.

Brake/Yaw Effects:

The effects of combining braking with yaw were not as expected. Increasing yaw angles and braking tend to increase the resulting damage. However, the combination of the two parameters does not appear to introduce significantly higher damage levels.

RECOMMENDATIONS:

Detailed Operational Models

The results of the tire cutting test effort along with this preliminary analysis and subsequent statistical studies have shown that realistic tire damage models can be developed through the addition of aircraft operational data. It is therefore recommended that airfield cleanliness models be combined with detailed aircraft operational models to obtain the improved tire reliability required in either peacetime situations or wartime postattack situations.

Additional Testing of Different Tire Sizes

This particular test effort was confined to one aircraft involving only two tire sizes and one operational spectrum. To better understand the full impact of tire cutting, more sizes involving more variations in load, speed, turning, and braking conditions are required. With the current strong baseline in hand, lower cost testing methods could be developed for such testing, and it is recommended that these approaches be pursued.

High Pressure Effects Expansion

Pressure effects is one area where the data were limited, but a trend was exhibited toward increased cutting at increased pressure. Additionally this trend could become highly significant at pressures beyond those tested. With current design trends going toward higher pressures, the influence of cutting on operations and safety could become quite significant even in a peacetime scenario. It is therefore recommended that additional tests be conducted on an F-16 main tire at pressures up to 350 psi.

LIST OF REFERENCES

- 1. Landing Gear & Tire Cutting Test Vehicle (Design & Capabilities Report), Ken Schwartz, WRDC/FIVMB Wright-Patterson AFB OH, TM- , April 1990.
- 2. Tire Cutting Test Program (Test Report), Ken Schwartz, WRDC/FIVMB, Wright-Patterson AFB OH, TM- , April 1990.
- 3. Air Base Survivability Tire Cutting Test Plan & Program Development, WRDC/FIVMB Wright-Patterson AFB OH, TM- , April 1990.
- 4. Tire Cutting Assessment Report, Ken Schwartz, WRDC/FIVMB Wright-Patterson AFB OH, Internal Memo Report for AFESC/RDCR, August 1984.
- 5. Cut Tire Inspection Procedure, Peter C. Vorum, WRDC/FIVMB Wright-Patterson AFB OH, WRDC-TM-90-319-FIVM, April 1990.
- 6. UDRI Piekutowski Report.
- 7. Foreign Object Damage Field Test (Revised Draft Test Report), the BDM Corporation, BDM/W-84-0291-TR.
- 8. Post-Attack Debris Clearance Program Tire Cutting Test Analysis, Draft Technical Report, June 6 1988, The BDM Corporation, BDM/MCL-88-0200-TR.
- 9. Cleanliness Requirements for Aircraft Operating Surfaces, Draft Technical Report, The BDM Corporation, BDM/MCL-87-0112-TR.
- 10. FOD Generation by Aircraft Tires, S J Bliss, L Cross, A J. Piekutowski, H F Swift, University of Dayton Research Institute, for AFESC/RDCR Tyndall AFB Florida, ESL-TR-82-47.
- 11. Design Analysis Report Tire Lofting Test Boom, Contract N68335-82-C-1389, Sverdrup Technology Inc., Tullahoma, Tennessee, Oct 1982, Tire Cutting Modification, May 1985.
- 12. Cut Progression During Dynamometer Testing of Foreign Object Damaged Type VII Extra High Pressure Aircraft Tires, Peter C. Vorum, WL/FIVMB Wright-Patterson AFB OH, to be released Jan 1991.