(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-130267

(43)公開日 平成6年(1994)5月13日

(51)Int.Cl. ⁵

識別記号

FΙ

GO2B 7/02

26/10

F

27/30

9120-2K

審査請求 未請求 請求項の数1 (全9頁)

(21)出願番号

特願平4-300686

(71)出願人 000000527

旭光学工業株式会社

東京都板橋区前野町2丁目36番9号

(22)出願日

平成4年(1992)10月14日

(72)発明者 飯間 光規

東京都板橋区前野町2丁目36番9号 旭光

学工業株式会社内

(74)代理人 弁理士 鈴木 章夫

(54) 【発明の名称】 温度補正型光学装置

(57)【要約】

【目的】 鏡筒とレンズで構成される光学装置におい て、温度変化により鏡筒の長さが変化された場合でも、 光学装置としての焦点位置の変動を防止した温度補正型 光学装置を得る。

【構成】 温度変化により筒長が変化される鏡筒121 と、この鏡筒121内に保持されたレンズ121とで構 成される光学装置(コリメータ)12において、レンズ 122を、温度変化に応じて焦点距離が変化され、かつ その焦点距離の変化と鏡筒121の筒長の長さの変化が 相殺してレンズの焦点位置を一定位置に保持し得る索材 で形成する。

【特許請求の範囲】

【請求項1】 温度変化により筒長が変化される鏡筒 と、この鏡筒内に保持されたレンズとで構成される光学 装置において、前記レンズは、温度変化に応じて焦点距 離が変化され、かつその焦点位置の変化と前記筒長の長 さの変化が相殺して前記レンズの焦点位置と光源位置と の差を任意に設定し得る索材で形成したことを特徴とす る温度補正型光学装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はレンズ光学系を備える光 学装置に関し、特に温度変化に伴う焦点位置の変化を自 動的に補正する光学装置に関する。

[0002]

【従来の技術】図2はレーザプリンタ等に用いられるレ ーザ走査ユニットの一例を示す全体構成図である。同図 のように、レーザ発光部1はレーザ発光源としてのレー ザダイオード11と、このレーザダイオード11で発光 されたレーザ光を平行光束とするコリメータ12とで構 ンズ2を透過された上で回転駆動されるポリゴンミラー 3で反射され、かつf θレンズを含む結像光学系 4 によ り感光ドラム5等の感光面に結像され、かつ走査され る。

【0003】この種のレーザ走査ユニットでは、レーザ ダイオード11で発光されたレーザ光をコリメータ12 及び結像光学系4により感光ドラム5の感光面に正確に 焦点を結ぶことが要求される。しかしながら、実際には 種々の要因により、焦点ずれが生じている。その要因と して、例えば次のものが揚げられる。 (a) 温度変化に 30 より走査光学ユニットを構成するレーザ発光源、光学 系、ポリゴンミラー等の間の機械的な寸法が変動される こと。(b) 温度変化により結像光学系の焦点距離が変 動されること。(c)温度変化によりレーザ発光部のコ リメータレンズの鏡筒の筒長が変動すること。(d)温 度変化によりコリメータレンズの焦点距離が変動される こと。(e)温度変化によりレーザダイオードの発振波 長が変動し、光軸上での色収差が生じること。

【0004】これらの要因のうち、前記(c)の要因が 最も重要となる。図3に光学模式図を示すように、レー 40 ザダイオード11に対向配置されるコリメータ12の焦 点距離をfc、感光ドラム5の感光面に対向配置される 結像光学系4の焦点距離を $f\theta$ とすると、コリメータ及 び結像光学系を含む光学系の縦倍率は(f θ/f c) 2 で表される。通常ではコリメータの焦点距離fcよりも 結像光学系の焦点距離 $f \theta$ が極めて大きいため、コリメ ータ12におけるコリメータレンズの鏡筒長変化による 光源 (レーザ) 位置の移動の変動が縦倍率に大きく影響 することになる。例えば、f θ =150mm、fc=5 mmとすると、 $(f\theta/fc)$ 2=900となるため、

仮に光源が光軸方向に1µm変化されるだけでも、0.9 mmだけ結像光学系の焦点距離f θによる焦点位置が変 動されることになる。

【0005】そこで、従来ではコリメータの鏡筒を線膨 張係数の異なる索材を組み合わせて形成し、温度変化に よって生じるレーザダイオードとコリメータレンズとの 間の距離の変化を、コリメータレンズの焦点距離の変動 に合わるようにしたものが提案されている。或いは、温 度変化に伴う鏡筒の長さ変動と、レーザダイオードの発 10 振波長の変動による軸上色収差量とが相殺するように構 成したものが提案されている。

[0006]

【発明が解決しようとする課題】しかしながら、前者の 構成では、鏡筒の構成が極めて複雑になるという問題が ある。また、後者の構成ではレーザダイオードの光源温 度と各光学部品の温度とが必ずしも一致するとは限ら ず、かつレーザダイオードの温度による波長変化特性毎 に光学系を設計しなければならない。本発明の目的は、 構造を複雑にすることなく、かつレーザダイオードの特 成される。このレーザ発光部1からの光はビーム整形レ 20 性によらず鏡筒とレンズで構成される光学装置の温度変 化による焦点位置と光源位置の差の変動を防止すること を可能にした温度補正型光学装置を提供することにあ

[0007]

【課題を解決するための手段】本発明は、温度変化によ り筒長が変化される鏡筒内に保持されたレンズを、温度 変化に応じて焦点位置の変化と鏡筒の筒長の長さの変化 が相殺してレンズの焦点位置と光源位置との差を任意に 設定し得る索材で形成する。

[0008]

【実施例】次に、本発明について図面を参照して説明す る。図1は本発明を図2に示したようなレーザプリンタ のレーザ走査ユニットに用いられるレーザ発光部に適用 した例を示し、レーザ発光源としてのレーザダイオード 11と、このレーザダイオードで発光されたレーザ光を 平行光束とするコリメータ12とでレーザ発光部1が構 成される。レーザダイオード11は円形板状のベース1 11に搭載される。また、コリメータ12は、金属、こ こではアルミニウム製の鏡筒121と、この鏡筒内に内 装されたコリメータレンズ122とで構成される。この コリメータでは、例えば温度が上昇したときには、同図 に鎖線で示すようにアルミニウムからなる鏡筒121の 筒長が伸張されるため、レンズ122とレーザダイオー ド11との間の距離が長くなり、レンズのバックフォー カス位置にレーザダイオードが位置されなくなる。この 結果、レーザダイオードとコリメータ間隔よりもバック フォーカスが短くなり、コリメータから出力されるレー ザ光の平行性が劣化され、これにより結像光学系4によ る感光面での結像位置や結像寸法に大きな影響を与える 50 ことになる。

【0009】そこで、本発明では、温度変化によるレン ズ122の焦点距離の変化を、鏡筒121の筒長の変化 と相殺するようにレンズを構成する。レンズの焦点距離 が温度により変化される場合の要因として、レンズの線 膨張による形状の変化、レンズの屈折率の変化がある。

$$1/f = (n-1) (1/R1-1/R2) \cdots (1/R1-1/R2)$$

ここで、nはレンズの屈折率、R1,R2はレンズ面の 曲率半径である。(1)式を用いて、単玉のレンズでコ リメータを構成し、これが熱温度変化によって熱変形し α は、(2)式で示される。

 $\Delta f \alpha = f' - f = \alpha \cdot f$... (2) ここで、αはレンズの線膨張率である。

となる。この(4)式を用いてA~Eの異なるガラス索 材を用いたレンズの焦点距離の変化を試算したところ、 文末の(表1)の結果が得られた。

【0011】この結果、ガラスCでは、焦点距離の変化 率が、2.38×10⁻¹となり、コリメータレンズの鏡 筒を構成するアルミニウムの線膨張係数2.3×10⁻¹ と略同じになることが判る。したがって、このガラスC を用いてレンズを形成し、これをアルミニウムで鏡筒を 形成したコリメータに用いれば、温度変化によって鏡筒 の長さが伸張された場合でも、これに伴ってレンズの焦 点距離が略同じだけ長くなり、結果としてコリメータの 焦点位置がレーザダイオードに対して移動されることが なくなる。このため、このコリメータをレーザプリント のレーザ発光部に用いれば、結像光学系によって感光体 面に合焦状態で結像され、良好なプリントが可能とな

【0012】また、ガラスA、Eにおいても、焦点距離 の変化率がそれぞれ16.2×10¹,25.1×10 - *となり、ガラス C 程ではないが、アルミニウムの線膨

$$\Delta f = (f/f1)' \cdot \Delta f 1 + (f/f2)' \cdot \Delta f 2$$

ここで、 $\Delta f 1$, $\Delta f 2$ は、それぞれレンズ 11及びレ ンズ12の焦点距離の変化を前記した式(4)で求めた ものである。この(5)式において、例えば、レンズ1

$$\Delta f = 8.7 \times (f/f1) + 7.5 \times 10^{-4}$$

となる。なお、f2はレンズ組合せの式(7)に基づい て消去している。

1/f = 1/f 1 + 1/f 2 ... (7) 【0014】したがって、Afをアルミニウムの線膨張 係数2. 3×10^{-1} に等しくするためには、 $\Delta f = 23$

f/f1 = 1.8

×10⁻¹とおいて、これを解くと、

となる。換言すれば、レンズ11の焦点距離f1をコリ メータの焦点距離fに対して1/1.8倍のものを用い ればよく、これにより焦点距離の変化量△fをアルミニ ウムの鏡筒の変化量に一致させ、コリメータの焦点位置 を略一定に保つことが可能となる。

ここで、これらの要因を考慮してレンズの温度変化によ る焦点距離の変化を試算する。周知のレンズ焦点距離の 公式を用いると、図4(a)に示すような単玉レンズL 1の焦点距離fは、(1)式で示される。

... (1)

【0010】一方、前記レンズの屈折率nが温度変化に よって変化して焦点距離がf/に変化したとすると、そ の変化量 $\Delta f n d$ 、(3)式で示される。

て焦点距離がf、に変化したとすると、その変化量 $\Delta f = 10 \quad \Delta f n = f \cdot - f = -\Delta n \cdot f / (n-1) \cdots (3)$ ここで、nはレンズの屈折率、Δnは温度変化によるレ ンズの屈折率の変化量である。したがって、両者の要因 による焦点距離の変化は、

$\Delta f total = \Delta f \alpha + \Delta f n = f (\alpha - \Delta n / (n-1)) \cdots (4)$

張率に近い値であり、補正は可能である。即ち、温度変 化に対する屈折率の変化量∆nが負の値のガラスでは、 ガラスの線膨張率による焦点距離の変化量に対して屈折 率による焦点距離の変化量を相加することになるため、 金属の線膨張率に近い値となる。これに対し、ガラス 20 B, Dは、温度変化に対する屈折率の変化量 Δnが正の 値であるため、ガラスの線膨張率による焦点距離の変化 量から屈折率による焦点距離の変化量を差し引くことに なるため、金属の線膨張率とは大きく異なる値となり、 鏡筒の伸張を補正することはできない。そして、多くの ガラスがB、Dのような特性を持つ。因みに、ガラス B, Dの焦点距離の変化率は7.5×10⁻¹,8.3× 10-1であり、アルミニウムの線膨張率とは1桁異な

【0013】次に、複数のレンズを用いた光学系につい 30 て考える。例えば、図4 (b) のように、それぞれ焦点 距離が f 1, f 2のレンズ L 1 1 及びレンズ L 1 2の 2 枚レンズで光学系を構成した場合には、温度変化に対す る光学系の焦点距離の変化Δfは(5)式で示される。

... (5)

1にガラスAを用い、レンズ12にガラスDを用いて計 算すると、

... (6)

【0015】以下、本発明の実施例を説明する。

(第1実施例) 図5 (a) は第1実施例を示しており、 単玉レンズでコリメータを構成した例である。曲率半径 R1, R2、厚さD1のレンズを、屈折率n1、アッペ 数 ν 1、1℃当たりの屈折率の変化量 Δ N 1、ガラスの 1℃当たりの線膨張係数11のガラスを用いて構成して いる。これらのデータを文末の(表2)の第1実施例の 欄に示している。このレンズとアルミニウムの鏡筒とで コリメータを構成すれば、パックフォーカスは(表2) に記載の値となり、かつレンズにおける1℃当たりのレ ーザダイオードと焦点位置との間隔移動量 ΔP/DEG 50 は(表2)に記載の通りとなり、またレーザダイオード

フリントが可能となる。

の波長が0.2nm変化したときの焦点移動量 AP/ 0.2nmも(表2)に記載の通りとなる。なお、これ はレーザダイオードで発光されるレーザ光の波長が、1 **℃の温度変化により略0.2nm変化されることに基づ** いている。これから、温度変化に対する焦点移動量を抑 制し、例えばレーザプリンタにこのコリメータを用いた ときの感光面における焦点位置の変動を抑制し、好適な

係数K, A4, A6, A8をそれぞれ設定している。こ れらの非球面係数は、図6に示すようにレンズ面の曲が

【0016】なお、この第1実施例では、結像位置にお ける収差を補正するために、表1に記載のように非球面

り量を式(8)で表したときの係数である。

$$\Delta = c \times / (1 + \sqrt{(1 - (K+1) c' x')}) + A 4 x' + A 6 x' + A 8 x' \cdots (8)$$

この収差補正を行った結果を図5(b), (c)に示 す。

【0017】(第2実施例)図7は本発明の第2実施例 を示し、第1実施例と同様に単玉レンズで構成した例で ある。このレンズの各データを (表2) の第2 実施例の 欄に示している。この構成においても、 $\Delta P / D E G$ 、 $\Delta P/0$. 2 nmを低減することができる。 $\boxtimes 7$

(a), (b)はこの第2実施例における収差補正を行 った例を示す図であり、非球面係数は(表2)に示され る。

【0018】(第3実施例)図8(a)は2枚のレンズ 20 を張り合わせて単玉レンズを構成した本発明の第3実施 例のレンズであり、各レンズのデータを(表2)の第3 実施例の欄に示している。この第3実施例でも非球面係 数を表1のように設定し、図8(b),(c)に示すよ うな収差補正を行っている。このように、2つのレンズ を張り合わせてレンズを構成することで、特に△P/ 0.2 nmが改善されることが判る。つまり、単玉と比 較し、レーザダイオードの温度による波長変動の影響を うけなくなる。

10 を張り合わせたレンズと、これと同軸に配置したレンズ とで所謂2群3枚の光学系を構成した本発明の第4実施 例である。各レンズのデータを文末の(表3)の第4実 施例の欄に示している。このように、2群3枚の構成と することで、各レンズを構成するガラス素材の選定やそ の設計の自由度が高くなり、温度変化に対する焦点距離 の補正や収差補正等を積極的に行うことができる。した がって、従来問題とされていた要因(a),(b)の補 正量を吸収することができると共に、非球面を使用しな くても明るいレンズを達成することができる。図9

(b), (c)はその収差補正を行った例を示す図であ る。

【0020】(第5実施例~第8実施例)第5実施例乃 至第8実施例は、第4実施例と同じレンズ構成である が、各レンズ1~3のデータはそれぞれ相違させてい る。各実施例のレンズのデータを(表3)の第5実施例 ~第8実施例の各欄に示している。また、各実施例にお ける収差補正を図10~図13の各(a),(b)にそ れぞれ示している。

[0021]

【0019】(第4実施例)図9(a)は2枚のレンズ 30 【表1】

(第4天) 日 日 日 日 日 日 日 日 日									
ガラス	α (線形展深数)	n (屈折率) 〔643.85mm〕	Δn	$\left[\alpha-\Delta n/(n-1)\right]$					
A	10. 2×10 ⁻⁸	1. 61551	-3.7×10 ⁻⁶	16.2×10 ⁻⁶					
В	8. 9×10 ⁻⁸	1. 83807	1. 2×10 ⁻⁶	7.5×10 ⁻⁶					
С	12.7×10 ⁻⁸	1. 49543	-5. 5×10 ^{−8}	23.8×10 ⁻⁸					
D	9. 1×10 ⁻⁸	1. 79751	0. 6×10 ⁻⁶	8. 3×10 ⁻⁸					
E	13. 4×10 ⁻⁶	1. 45470	-5.3×10 ⁻⁸	25. 1×10⁻⁵					

【表2】

[0022]

7

D t 50.000 50.000 50 R 2 -176.290 -116.881 -41 D 2 - - 16 R 3 - - -144	
D I 50.000 50.000 50 R 2 -176.290 -116.881 -41 D 2 - - 16 R 3 - - -144 f B 73.377 80.424 63 第上面 非球血係数 K -0.940 0.000 A 4 0.000 -6.03x10 ⁻⁷ A 6 0.000 -1.20x10 ⁻¹⁰	
R 2 -176.290 -116.881 -41 D 2 16 R 3144 f B 73.377 80.424 63 第1章 保數 K -0.940 0.000 A 4 0.000 -6.03x10-7 A 6 0.000 -1.20x10-10	. 667
D 2 - - 16 R 3 - - -144 f B 73.377 80.424 63 第上面 非球面係数 K -0.940 0.000 A 4 0.000 -6.03x10 ⁻⁷ A 6 0.000 -1.20x10 ⁻¹⁰	. 000
R 3	. 667
R 5 144 f B 73.377 80.424 63 第上面 非球面係数	. 667
第1面 非球面係数 K -0.940 0.000 A 4 0.000 -6.03x10 ⁻⁷ A 6 0.000 -1.20x10 ⁻¹⁰	.017
K -0.940 0.000 A 4 0.000 -6.03x10 ⁻⁷ A 6 0.000 -1.20x10 ⁻¹⁰	. 422
K -0.940 0.000 A 4 0.000 -6.03x10 ⁻⁷ A 6 0.000 -1.20x10 ⁻¹⁰	
A 4 0.000 -6.03x10 ⁻⁷ A 6 0.000 -1.20x10 ⁻¹⁰	
A 6 0.000 -1.20x10 ⁻¹⁰	
A 8 0.000 -3.00x10 ⁻¹⁴	
N 1 1. 49282 1. 45252 1. 6	1139
ν 1 81.600 90.300 63	. 400
ΔN 1 -0.0000055 -D.0000053 -0.000	0037
1 1 0. 0000127 D. 0000134 0. 000	0102
N 2 – 1.8	2484
ν 2 – – 23	800
ΔN 2 - 0.000	0012
1 2 - 0.000	0089
f 190.00 100.00 10	
	0. 00
ΔP/DEG 0.00018 0.00028 0.00	0. 00
Δ P / 0. 2nm 0. 00054 0. 00049 0. 00	0.00

[0023] [表3]

,	第4 実施例	第5 夷施例	第6 実施例	第7実施例	第8実施例
RI	94. 326	145. 010	92. 549	92. 596	91. 232
DI	11.667	10.000	11. 667	11. 667	11.667
R 2	-76. 163	-88. 610	-76. 033	-80. 326	-81.040
D 2	6, 000	6. 667	6.000	6. 000	6.000
R 3	-265, 088	-536. 227	-297. 966	-298. 305	-266. 947
D 3	21. 667	21. 667	21. 667	21. 667	21.667
R 4	88. 465	68. 447	81. 281	79. 093	82. 839
D 4	8. 333	8. 333	8. 333	8. 333	8. 333
R 5	-378, 923	379. 660	-839. 455	-1, 255. 650	-737. 790
f B	81.731	83. 559	80. 650	80. 424	80. 619
N 1	1.49538	1. 61139	1. 49282	1. 49282	1.49282
ν 1	56. 400	63. 400	81. 600	81. 600	81.600
ΔΝ1	-0.0000015	-0. 0000037	-0.0000055	-0.0000055	-0.0000055
1 1	0. 0000092	0.0000102	00000127	0.0000127	0.0000127
N 2	1. 82484	1. 82484	1. 78565	1. 78565	1. 83360
ν 2	23. 800	23. 800	25. 400	25. 400	32, 300
ΔN 2	0.0000012	0.0000012	0.0000006	0.0000006	0.0000041
1 2	0. 0000089	0.0000089	0.0000091	0.0000091	0.0000074
N 3	1. 49538	1. 61139	1. 49538	1. 49282	1.49282
ν 3	56. 400	63. 400	56. 400	81. 600	81. 600
ΔN3	-0. 0000015	-0. 0000037	-0. 0000015	-0. 0000055	-0. 0000055
1 3	0. 0000092	0. 0000102	0. 0000092	0.0000127	0.0000127
f	100.00	100. 00	100. 00	100. 00	100. 00
•					
△ P / DEG	-0. 00068	-0. 00004	0. 00034	0.00090	0.00116
∆ P ∕ 0. 2am	0. 00016	-0. 00001	-0. 00003	-0.00013	0.00007

[0024]

【発明の効果】以上説明したように本発明は、レーザダ イオードの波長変化には左右されず、かつ温度変化に応 じて焦点距離が変化されたときに、その焦点位置の変化 と鏡筒の筒長の長さの変化が相殺してレンズの焦点位置 と光源位置の差を任意に設定し得る索材でレンズを構成 40 しているので、温度変化によって鏡筒の寸法が変化され た場合でも、これに追従してレンズの焦点位置を変化さ せて正しく光源に一致させるので、結果として、鏡筒の 寸法変化を相殺させ、温度変化やレーザダイオードの波 長変化に関わらず走査光学系の焦点位置が変動しない光 学装置を得ることができる。

【図面の簡単な説明】

【図1】本発明を適用するコリメータを含むレーザ発光 部の概略断面構成図である。

【図2】レーザ発光部をレーザプリンタに適用した構成 50 【図11】本発明の第6実施例の収差特性図である。

の概略斜視図である。

【図3】コリメータと結像光学系の模式的な光学構成図 である。

【図4】本発明を適用する単玉レンズ及び2枚玉レンズ の構成図である。

【図5】本発明の第1実施例のレンズ構成図及び収差特 性図である。

【図6】非球面係数を説明するための図である。

【図7】本発明の第2実施例のレンズ構成図及び収差特 性図である。

【図8】本発明の第3実施例のレンズ構成図及び収差特 性図である。

【図9】本発明の第4実施例のレンズ構成図及び収差特 性図である。

【図10】本発明の第5実施例の収差特性図である。

12

【図12】本発明の第7実施例の収差特性図である。

【図13】本発明の第8実施例の収差特性図である。

【符号の説明】

1 レーザ発光部

11 レーザダイオード

12 コリメータ

121 鏡筒

122 レンズ

[図1]

【図2】

【図4】

【図3】

【図5】

【図6】

 $\Delta = \frac{CX}{1 + \sqrt{1 - (K + 1) C^{2} X^{2}}} + A4X' + A6X' + A8X'$

(b)

球面収**差** 正弦条件

球面収差 色収差

【図11】

[図12]

【図13】

