Data Preprocessing

Alipio Jorge

October 2020

Data Preprocessing

- Why transforming data?
 - What can be wrong with data?
 - Real World Data (RWD) is never perfect
- Data Quality
 - accuracy, completeness, consistency
 - quality depends on what you want the data for

Figure 1: A Dilbert strip
Data Preprocessing

Major tasks

- Data cleaning
 - filling missing values
 - smoothing noise
 - removing outliers
 - resolving inconsistencies

Data integration

- You want to predict your customers preferences
 - customer data
 - products data
 - sales data
 - reviews
 - images from the products
 - posts on facebook
 - weather data

Data integration

- Tasks
 - matching fields:customer_id vs client_id
 - matching values: Manuel Joaquim Silva vs. manuel j. silva
 - avoid redundancies (product name may be in sales data and in products data)

Data reduction

- So much data
 - may not improve results
 - may be too much for the resources
 - use what you need and what you can cope with
- Dimensionality reduction
 - less variables (columns)
- Numerosity reduction
 - less cases (rows)

- Different scales can be a problem
 - normalization, standardization
- e.g., workers described with age and salary,
 - how to measure a distance between two workers?

$$d(<21,27000>,<40,30000>)=??$$

- Shaping data to be used for certain methods
 - Discretization (youth, adult, senior)
 - Concept Hierarchy Generation
 - Binarization
 - Type conversion in general

Missing Values

- Missing Values is perhaps the most common problem in RWD
- What to do?
 - Nothing
 - Ignore the attribute
 - Ignore the tuple
 - Impute values (fill in)
 - (a lot to be said)

Missing Values

Missing Values

- if the method is robust to missing data and the amount of missing data is not too high
 - do Nothing
- else
 - if only a few cases have problems
 - ignore the cases
 - if the problem is on discardable attributes
 - ignore the attribute
 - if missing values persist
 - try value imputation

Always be **very careful** when you transform the data set

11 / 36

Age	Gender	Position	Salary
25	М	assistant	23000
36	М	manager	59000
27	М	NA	27000
NA	F	manager	58000
48	F	CEO	77500
	25 36 27 NA	25 M 36 M 27 M NA F	25 M assistant 36 M manager 27 M NA NA F manager

- Do Nothing
 - the Name column
 - Gender?

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	М	manager	59000
Rui	27	М	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

• Age?

Use a global constant

• pro: easy

• cons: data bias, may affect inference

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	М	manager	59000
Rui	27	М	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Position, Age
- Use a measure of central tendency
 - mean, median, mode
 - pros: easy, gets the most likely value
 - cons: distorts the distribution
 - e.g.: average keeps average but affects variance

Alipio Jorge Data Preprocessing October 2020 14 / 36

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	М	manager	59000
Rui	27	М	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Age, Position
- Use a measure of central tendency taken from same group or same class
 - pros: varied values imputed
 - cons: may still be too insensitive

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	M	manager	59000
Rui	27	M	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Age, Position
- Use a measure of central tendency using the most likely value for that case
 - e.g.: from *neighbours*, or using **linear regression**
 - pros: varied values imputed,
 - cons: needs processing, depends on distance measure and parameters

Alipio Jorge Data Preprocessing October 2020 16 / 36

Noisy Data

- Noise
 - Random error or variance in a measured variable
- Smoothing
 - assume a value is always similar to neighbors
 - you replace values (stronger than imputation)
- Outliers
 - can be smoothed away if we assume they are noise
- Be very careful
 - do not smooth legitimate data (unless it helps)

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
José	36	М	manager	59000
Rui	41	M	manager	57000
Sofia	105	F	manager	58000
Ana	28	F	assistant	28500

- Age=105 is an outlier
 - Binning: replace each value in group by the group mean
 - average of Age for each Position

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
José	36	M	manager	59000
Rui	41	M	manager	57000
Sofia	105	F	manager	58000
Ana	28	F	assistant	28500

Regression

- try to predict 'Age' from the other attributes
- replace the original values with the predicted ones
- may lose too much information

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
José	36	M	manager	59000
Rui	41	M	manager	57000
Sofia	105	F	manager	58000
Ana	28	F	assistant	28500

- Age=105 is an **outlier**
 - can be detected with clustering or using the IQR rule
 - can be replaced by the mean age of manager
 - i.e., detect outliers and replace them by a sensible mean

Alipio Jorge Data Preprocessing October 2020

20 / 36

- Smoothing with moving average
 - replace each value y_i with $average_{j-n \ge j \le j-n} y_j$
 - the larger the *n*, the smoother the line
 - Above n=1

Alipio Jorge Data Preprocessing

- Smoothing with moving average
 - replace each value y_i with $average_{j-n \ge j \le j-n} y_j$
 - the larger the n, the smoother the line
 - Above n = 3

Alipio Jorge D.

- Smoothing with moving average
 - replace each value y_i with $average_{j-n \ge j \le j-n} y_j$
 - the larger the n, the smoother the line
 - Above n = 5

Alipio Jorge Data Preprocessing

Data integration

- The same object can have different representations
 - customer in social network an in sales data
 - two companies merging
 - entity identification problem
- There may be redundant variables
 - detect redundancy
 - remove redundant variables

Redundancy analysis

- We can measure the "similarity" of two variables
 - Nominal: χ^2 statistical test
 - if the null hypothesis is accepted, one of the variables is redundant
 - if rejected the variables are independent

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

- o is the observed frequencies, e are the expected - high values of the χ_2 statistic mean **independence**

$$e_{ij} = \frac{\#(A=a_i) \times \#(B=b_j)}{n}$$

Redundancy analysis

- We can measure the "similarity" of two variables
 - Numerical: Pearson correlation

Other operations in data integration

- Eliminate duplicate tuples
 - the same customer appears in the DB (from two different sources)
- Detect conflicting values
 - different representations, units, encondings
 - e.g. sales in Euros and in Dollars
 - e.g. sales per day and sales per week

Data reduction: Dimensionality reduction

- reduce the number of variables
- Principal Components Analysis (PCA)
 - finds new variables that
 - are much fewer than original ones
 - each is a linear combination of the original ones
 - explain most but not all of what is observed
 - cons: new variables may not be interpretable

Data Reduction: Dimensionality reduction

- reduce the number of variables
- Feature selection
 - e.g. we want to predict if a customer is leaving a mobile operator (churn)
 - not all features are relevant for this problem
 - a good feature is correlated with the target variable
- Techniques
 - Eliminate features with low correlation
 - does not consider joint effects of variables
 - Stepwise forward selection
 - start with zero features, add the best feature, keep adding
 - stop when improvement stops
 - Stepwise backward elimination
 - start with all the features, ...
 - (among others)

Data Reduction: Numerosity reduction

- Sampling
 - very important technique
- Types of sampling
 - random without replacement
 - random with replacement
 - stratified
 - data is divided in groups (e.g. by gender and age)
 - random sampling is done in the groups
 - warrants representaion of groups
 - important when groups have different sizes (e.g. do you often go to the stadium?)

Sampling

- Easy to control
 - we can reduce the data size almost arbitrarily
- We can determine the minimum size of the sample
 - under certain conditions
- We must be careful with the sampling methodology
 - avoid bias
 - e.g. asking about smoking habits to people at the door of buildings

Alipio Jorge Data Preprocessing October 2020 30 / 36

Normalization

- Some methods are sensitive to the range of variables
 - distance/similarity measures
 - neural networks
- Solution: scale all variables to the same range
- Typical normalized ranges
 - [0,1] and [-1,1]

Min-max normalization

$$x_i' = \frac{x_i - \min_x}{\max_x - \min_x}$$

- May have out of bound future values
 - in that case, clip if needed

Standardization

- is a kind of normalization
 - but without a closed boundary

$$x_i' = \frac{x_i - mean_x}{std_x}$$

Discretization

- transform a numerical variable into a categorical one
 - e.g.: salary → {low,medium,high}
- necessary for some methods (e.g. association rules)
- may improve interpretability
- Techniques
 - domain expert
 - binning: divide data in bins of equal width or equal frequency

$$Age = <20, 21, 21, 24, 25, 25, 27, 27, 28, 29, 35, 35>$$

Equal width

$$Junior = [20, 25], Advanced = [26, 30], Senior = [31, 35]$$

Equal depth (frequency)

$$Junior = [20, 24], \ Advanced = [25, 27], \ Senior = [28, 35]$$

34 / 36

Alipio Jorge Data Preprocessing October 2020

Binarization

- transform a multi valued categorical variable into binary variables
- usually increase the number of veriables
- important (necessary) for some techniques
- Use a categorical variable in linear regression
 - Age = Junior, Advanced, Senior
 - solution: create three (dummy) binary variables:
 - Junior, Advanced, Senior

References

- Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
- García-Laencina, P.J., Sancho-Gómez, J. & Figueiras-Vidal, A.R.
 Pattern classification with missing data: a review. Neural Comput & Applic 19, 263–282 (2010).
- Pavel Horbonos, A brief guide to data imputation with Python and R:
 Make the data clean, Towards Data Science (2020)