TEAM ID: **PNT2022TMID18390** 

TITLE : SMART WASTE MANAGEMENT USING IoT IN METROPOLITAN CITIES

# **Project Report Format**

#### 1. INTRODUCTION:

### 1.1 Project Overview

Recently there are very poor solid waste disposal and collection mechanism for commercial and market areas. The waste/garbage in most these areas are not collected in a proper ways. The greenery does much more than add to the visual attractiveness. The trees clean the air by absorbing the pollutants. Similarly, improperly disposed trash leads to problems of land pollution and contamination apart from a dirtyappearance. Everyone must take the responsibility to keep the city clean and green.

## 1.2 Purpose

The main aim of the project is to keep the metropolitan cities clean so we are building a model ,which is used for detecting garbage levels in the city and gaining the weight of the garbage bin and alerts the authorized person to empty the bin whenever the bins are full and the garbage level of the bins are monitored by the web app.

#### 2. LITERATURE SURVEY

### 2.1 Existing problem

There is no arrangement of door to door collection and segregation of municipalwaste at source in the city. The residents of city dump the household waste outside their residences from where sweepers collect waste by means of handcarts and dump the same into the containers or roadside (open dump). Very poor solid waste disposal and collection mechanism for commercial and market areas. The waste/garbage in most

these areas is collected once in two or three days. The common and prevalent problems faced by general public in markets areas is improper garbage disposal causing the blockage of roads, foul smell, clogging of drains.

#### 2.2 References

https://www.iotforall.com/smart-waste-management

### 2.3 Problem Statement Definition

The main aim of the project is to keep the metropolitan cities clean so we are building a model ,which is used for detecting garbage levels in the city and gaining the weight of the garbage bin and alerts the authorized person to empty the bin whenever the bins are full and the garbage level of the bins are monitored by the web app.

### 3. IDEATION & PROPOSED SOLUTION

## 3.1 Empathy Map Canvas



# 3.2 Ideation & Brainstorming



# 3.3 Proposed Solution

| S.No. | Parameter                               | Description                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.    | Problem Statement (Problem to besolved) | The municipal workers who are engaged in the collection of garbage require a sustainable, streamlined process for an efficient waste collection system and to integrate the databases containing information about waste from each of the municipal offices to design an improvised system where the garbage collectors or municipal workers will be given an alert regarding the availability of waste. |  |  |  |
| 2.    | Idea / Solution description             | Smart waste management helps to <b>reduce the waste</b> , create waste to energy source also it helps to keep the environment clean and neat. All the city's urban local bodies depending upon the available technology have to spend the money and innovate the new concept of waste management that is the main purpose of smart waste management.                                                     |  |  |  |
| 3.    | Novelty / Uniqueness                    | Sensoneo Analytics:  Sensoneo Analytics has a smart process for waste management, which includes placing sensors on garbage collection bins to monitor which of them are full or not. This integrates with their analytics software to help automate and optimize when and how waste is collected in the city                                                                                            |  |  |  |
| 4.    | Social Impact / Customer Satisfaction   | <ol> <li>raisepublicawarenessofutilizingrenewable energy</li> <li>improve street sanitation</li> <li>collect and analyze area-specific data onwaste volumes for better planning</li> </ol>                                                                                                                                                                                                               |  |  |  |

| 5. | Business Model (Revenue Model) | As a result, time and fuel consumption are |  |
|----|--------------------------------|--------------------------------------------|--|
|    |                                | achieved and garbage collection operations |  |
|    |                                | are                                        |  |
|    |                                | performed in a much more fluid way         |  |
| 6. | Scalability of the Solution    | The device can use in all metropolitan     |  |
|    |                                | cities.Major efficiency of device: Easily  |  |
|    |                                | identify the level of waste in garbage     |  |
|    |                                | because it has                             |  |
|    |                                | a sensor                                   |  |

### 3.4 Problem Solution fit



| Notifying the garbage collector about the overflow of trash containers to empty the garbage container frequently.      Making the environment clean and eco-friendly.      Preventing people from respiratory diseases. | PROBLEM ROOT CAUSE  No proper monitorization of the fill level of garbage in the bins kept for public disposal of waste.  People's lethargicness and irresponsibility. | 7. BEHAVIOUR  Monitoring of waste level by using some technologies and software to dispose if in the correct time.                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. TRIGGERS  Since wastes are collected and disposed properly at a right time, people will be aware of the act and triggered to put the waste only in the trash container.                                              | Proper monitoring of garbage level using sensors to avoid overflow of wastes      Frequent collection of wastes by the                                                 | 8.CHANNELS of BEHAVIOUR  Online:  Advertise or spread news over social media on keeping the environment clean.  Offline:                                                                 |
| 4. EMOTIONS: BEFORE / AFTER  BEFORE : Frustration, fear of health issues like shin diseases and respiratory infections.                                                                                                 | waste collectors by the proper channel of communication.                                                                                                               | <ul> <li>People who actually cares about<br/>the <u>sanitization</u> of environment<br/>conduct awareness campaign as<br/>volunteers, rally.</li> <li>Conduction of awareness</li> </ul> |
| <ul> <li>AFTER: Satisfaction, Calm state of<br/>mind, cleanliness, Eco-friendly</li> </ul>                                                                                                                              | ***************************************                                                                                                                                | programs.  Inclusion of this issue in the schools books to create awareness and making the upcoming young generation with responsibilities and concern towards the society and its       |

# 4. REQUIREMENT ANALYSIS

# **4.1 Functional requirement**

| FR No. | Functional Requirement (Epic) | Sub Requirement (Story / Sub-Task)                                                                                                        |
|--------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| FR-1   | Detailed bin inventory.       | All monitored bins and stands can be seen on the                                                                                          |
|        |                               | map, and you can visit them at any time via the                                                                                           |
|        |                               | Street Viewfeature from Google.                                                                                                           |
|        |                               | Bins or stands are visible on the map as green,                                                                                           |
|        |                               | orangeor red circles.                                                                                                                     |
|        |                               | You can see bin details in the Dashboard –                                                                                                |
|        |                               | capacity, waste type, last measurement, GPS                                                                                               |
|        |                               | location and                                                                                                                              |
|        |                               | collection schedule or pick recognition.                                                                                                  |
| FR-2   | Real time bin monitoring.     | The Dashboard displays real-time data on fill-levels of bins monitored by smart sensors. In addition to the % of fill-level, based on the |
|        |                               | historicaldata, the tool predicts when the bin will                                                                                       |
|        |                               | become full, one of the functionalities that are not                                                                                      |
|        |                               | included even inthe best waste management                                                                                                 |
|        |                               | software                                                                                                                                  |
|        |                               | Sensors recognize picks as well; so you can check when                                                                                    |
|        |                               | the bin was last collected.                                                                                                               |
|        |                               | With real-time data and predictions, you can eliminate                                                                                    |
|        |                               | the overflowing bins and stop collecting half-empty                                                                                       |
|        |                               | ones.                                                                                                                                     |
| FR-3   | Expensive bins.               | We help you identify bins that drive up your                                                                                              |
|        |                               | collection costs. The tool calculates a rating for each                                                                                   |
|        |                               | bin in termsof collection costs.                                                                                                          |
|        |                               | The tool considers the average distance depo-                                                                                             |
|        |                               | bin-discharge in the area. The tool assigns bin a                                                                                         |
|        |                               | rating                                                                                                                                    |
|        |                               | (1-10) and calculates distance from depo-bin discharge.                                                                                   |

| FR-4 | Adjust bin distribution.     | Ensure the most optimal distribution of bins. Identify areas with either dense or |  |  |  |  |
|------|------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|      |                              | sparse bindistribution.                                                           |  |  |  |  |
|      |                              | Make sure all trash types are represented within a                                |  |  |  |  |
|      |                              | stand.                                                                            |  |  |  |  |
|      |                              | Based on the historical data, you can adjust bin                                  |  |  |  |  |
|      |                              | capacityor location where necessary.                                              |  |  |  |  |
| FR-5 | Eliminate inefficient picks. | Eliminate the collection of half-empty                                            |  |  |  |  |
|      |                              | bins.The sensors recognize picks.                                                 |  |  |  |  |
|      |                              | By using real-time data on fill-levels and pick                                   |  |  |  |  |
|      |                              | recognition, we can show you how full the bins you                                |  |  |  |  |
|      |                              | collect are.                                                                      |  |  |  |  |

|      |                               | The report shows how full the bin was when picked. You immediately see any inefficient picks below 80% |
|------|-------------------------------|--------------------------------------------------------------------------------------------------------|
|      |                               | full.                                                                                                  |
| FR-6 | Plan waste collection routes. | The tool semi-automates waste collection route                                                         |
|      |                               | planning. Based on current bin fill-levels and                                                         |
|      |                               | predictionsof reaching full capacity, you are ready to                                                 |
|      |                               | respond and schedule waste collection.                                                                 |
|      |                               | You can compare planned vs. executed routes                                                            |
|      |                               | toidentify any inconsistencies.                                                                        |

# **4.2 Non-Functional requirement**

| FR No. | Non-Functional Requirement | Description                                         |  |
|--------|----------------------------|-----------------------------------------------------|--|
| NFR-1  | Usability                  | loT device verifies that usability is a special and |  |
|        |                            | important perspective to analyze user               |  |
|        |                            | requirements, which can further improve the         |  |
|        |                            | design quality. In thedesign process with user      |  |
|        |                            | experience as the core, theanalysis of users'       |  |
|        |                            | product usability can indeed help                   |  |
|        |                            | designers better understand users' potential needs  |  |
|        |                            | in waste management, behavior and experience.       |  |

| NFR-2 | Security     | Use a reusable bottles                                 |
|-------|--------------|--------------------------------------------------------|
|       |              | Use reusable grocery                                   |
|       |              | bags                                                   |
|       |              | Purchase wisely and recycle                            |
|       |              | Avoid single use food and drink containers.            |
| NFR-3 | Reliability  | Smart waste management is also about creating          |
|       |              | better working conditions for waste collectors and     |
|       |              | drivers. Instead of driving the same collection        |
|       |              | routesand servicing empty bins, waste collectors       |
|       |              | will spend                                             |
|       |              | their time more efficiently, taking care of bins that  |
|       |              | need servicing.                                        |
| NFR-4 | Performance  | The Smart Sensors use ultrasound technology to         |
|       |              | measure the fill levels (along with other data) in     |
|       |              | binsseveral times a day. Using a variety of IoT        |
|       |              | networks ((NB-IoT,GPRS), the sensors send the          |
|       |              | data to Sensoneo's Smart Waste Management              |
|       |              | Software System, a powerful cloud-based                |
|       |              | platform, for data- driven daily operations,           |
|       |              | available also as a waste management app.              |
|       |              | Customers are hence provided data-driven decision      |
|       |              | making, and optimization of waste collection routes,   |
|       |              | frequencies, and vehicle loads resulting in route      |
|       |              | reduction by at least 30%.                             |
| NFR-5 | Availability | By developing & deploying resilient hardware and       |
|       |              | beautiful software we empower cities, businesses,      |
|       |              | and countries to manage waste smarter.                 |
| NFR-6 | Scalability  | Using smart waste bins reduce the number of bins       |
|       |              | inside town , cities because we able to monitor cities |

## 5. PROJECT DESIGN

## **5.1 Data Flow Diagrams**



### 5.2 Solution & Technical Architecture



# **Components and technologies**

| S.No | Component                | Description                | Technology            |
|------|--------------------------|----------------------------|-----------------------|
| 1.   | User Interface           |                            | Node Red              |
|      |                          | Web Application            |                       |
| 2.   | Application Logic        | Logic for a process in the | python                |
|      |                          | application                |                       |
| 3.   | Cloud Database           | Database Service on Cloud  | IBM Cloud             |
|      |                          |                            |                       |
| 4.   | File Storage             | File storage requirements  | Local File system and |
|      |                          |                            | IBM cloud             |
| 5.   | Infrastructure (Server / | Application Deployment on  | Local and Kubernetes  |
|      | Cloud)                   | Cloud                      |                       |
|      |                          | Local Server Configuration |                       |

## **Application Characteristics:**

| S.No | Characteristics        | Description                                                                                                | Technology               |
|------|------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|
| 1.   | Open-Source Frameworks | GitHub, Node red, Ibmiot                                                                                   | Internet hosting service |
| 2.   | Scalable Architecture  | It provides the room for expansion more database of smart bins added additionally can be updated.          | Cloud storage            |
| 3    | Availability           | As the system control is connected to web server it is available 24*7 and can be accessed whenever needed. | IBM                      |
| 4    | Performance            | Performance is high it uses 5mb caches                                                                     | Wireless Sensor Network  |

### **5.3 Users Stories**



## 6. PROJECT PLANNING & SCHEDULING

# **6.1 Sprint Planning & Estimation**

| Sprint  | Functional  | User   | User Story / Task     | Story Points | Priority | Team          |
|---------|-------------|--------|-----------------------|--------------|----------|---------------|
|         | Requirement | Story  |                       |              |          | Members       |
|         | (Epic)      | Number |                       |              |          |               |
| Sprint- | Login       | USN-1  | As a                  | 1            | High     |               |
| 1       |             |        | Administrator, I      | 0            |          | Lokeshwar P   |
|         |             |        | need to give user     |              |          | Lokesiiwai i  |
|         |             |        | id andpasscode        |              |          |               |
|         |             |        | for ever workers      |              |          |               |
|         |             |        | over there in         |              |          |               |
|         |             |        | municipality          |              |          |               |
| Sprint- | Login       | USN-2  | As a Co-Admin,        | 1            | High     |               |
| 1       |             |        | I'll control the      | 0            |          | Lokeshwar P   |
|         |             |        | waste level by        |              |          | Lokesiiwai i  |
|         |             |        | monitoring them       |              |          |               |
|         |             |        | real time web         |              |          |               |
|         |             |        | portal. Once the      |              |          |               |
|         |             |        | filling happens, I'll |              |          |               |
|         |             |        | notify trash truck    |              |          |               |
|         |             |        | with                  |              |          |               |
|         |             |        | location of bin with  |              |          |               |
|         |             |        | bin ID                |              |          |               |
| Sprint- | Dashboard   | USN-3  | As a Truck Driver,    | 2            | Low      |               |
| 2       |             |        | I'll follow Co-       | 0            |          | Madhankumar R |
|         |             |        | Admin's Instruction   |              |          |               |
|         |             |        | to reach the filling  |              |          |               |
|         |             |        | bin in short roots    |              |          |               |
|         |             |        | and save time         |              |          |               |

| Sprint-3 | Dashboard | USN- | As a Local Garbage         | 2 | Medium | Kancharla vengababu |
|----------|-----------|------|----------------------------|---|--------|---------------------|
|          |           | 4    | Collector, I'll gather all | 0 |        |                     |
|          |           |      | the                        |   |        |                     |
|          |           |      | waste from the             |   |        |                     |
|          |           |      | garbage, load it onto a    |   |        |                     |
|          |           |      | garbagetruck, and          |   |        |                     |
|          |           |      | deliver it to Landfills    |   |        |                     |

| Sprint-4 | Dashboard | USN- | As a                 | 2 | High |               |
|----------|-----------|------|----------------------|---|------|---------------|
|          |           | 5    | Municipality         | 0 |      | Manoj kumar A |
|          |           |      | officer, I'll        |   |      |               |
|          |           |      | make sure            |   |      |               |
|          |           |      | everything is        |   |      |               |
|          |           |      | proceeding as        |   |      |               |
|          |           |      | planned and          |   |      |               |
|          |           |      | without any problems |   |      |               |

## **6.2 Sprint Delivery Schedule**

| Sprint-1 | 20 | 6 Days | 24 Oct 2022 | 29 Oct 2022 | 20 | 29 Oct 2022 |
|----------|----|--------|-------------|-------------|----|-------------|
| Sprint-2 | 20 | 6 Days | 31 Oct 2022 | 05 Nov 2022 | 20 | 05 Nov 2022 |
| Sprint-3 | 20 | 6 Days | 07 Nov 2022 | 12 Nov 2022 | 20 | 12 Nov 2022 |
| Sprint-4 | 20 | 6 Days | 14 Nov 2022 | 19 Nov 2022 | 20 | 19 Nov 2022 |
|          |    |        |             |             |    |             |
|          |    |        |             |             |    |             |
|          |    |        |             |             |    |             |
|          |    |        |             |             |    |             |

## 6.3 Reports from JIRA



### 7. CODING & SOLUTIONING (Explain the features added in the project along with code)

#### **7.1 Feature 1**



```
scr.py
      scr.py 9 X
       Users > manojkumar > @ scr.py >
                    deviceOptions={"org": organization, "type": devicType,"id": deviceId,"auth-method":authMethod,"auth-tok
deviceCli = ibmiotf.device.Client(deviceOptions)
             except Exception as e:
                   print("caught exception connecting device %s" %str(e))
                    sys.exit()
             deviceCli.connect()
                    distance= random.randint(10,70)
                    loadcell= random.randint(5,15)
                   data= {'dist':distance,'load':loadcell}
                    if loadcell >= 13 and loadcell <= 15:</pre>
                           load = "90 %"
                    elif loadcell >= 8 and loadcell <= 12:
                           load = "60 %"
                    elif loadcell >= 5 and loadcell <= 7:
                          load = "40 %"
                           load = "0 %"
⊗1 1 8
                                                        Ln 7, Col 11 Spaces: 6 UTF-8 LF () Python 3.7.6 64-bit © Go Live ✓ Prettier 👂 🚨
```

```
scr.py
                                                                                                                           e scr.py 7 ×
       Users > manojkumar > 🔁 scr.py > [❷] dist
                  if distance < 15:
dist = "17 %"
                   elif distance < 40 and distance >16:
                        dist = "40 %"
                   elif distance < 60 and distance > 41:
                        dist = "60 %"
                        dist = "90 %"
                   if load == "90 %" or distance == "90 %":
                   | warn = 'Alert : Dumpster poundage getting high, Time to collect :)'
elif load == "60 %" or distance == "60 %":
                        warn = 'Alert : Dumpster is above 60%'
                         warn = 'Alert : No need to collect right now'
                   data['alert'] = warn
                   def myOnPublishCallback(lat=10.678991,long=78.177731):
                         print("Location: Junction, Salem")
                         print("published distance = %s " %distance,"loadcell:%s " %loadcell,"lon = %s " %long,"lat = %s" print("Load %: ", load)
print("dist %: ", dist)
                         print(warn)
                                                   ⊗ 0 △ 7
```













### 7.2 Feature 2





#### 8 TESTING

#### 8.1 Test Cases



## 9. RESULT

### **9.1 Performance Metrics**



### 10. ADVANTAGES AND DISADVANTAGES

#### **ADVANTAGES:**

- 1) It saves time and money by using smart waste collection bins and systems equipped with fill level sensors.
- 2) It further reduces manpower requirements to handle the garbage collection process.
- 3) It keeps our surroundings clean and green and free from bad odour of wastes, emphasizes on healthy environment and keep cities more beautiful.
- 4) It helps administration to generate extra revenue by advertisements on smart devices.

#### **DISADVANTAGES:**

- 1) System requires more number of waste bins for separate waste collection as per population in the city. This results into high initial cost due to expensive smart dustbins compare to other methods.
- 2) Sensor nodes used in the dustbins have limited memory size.
- 3) It reduces man power requirements which results into increase in unemployments for unskilled people.
- 4) The trainining has to be provided to the people involved in the management.

#### 11. CONCLUSION

Smart waste management is a idea where we can control lots of problems which disturbs the society in pollution and diseases. The waste management has to be done instantly else it leads to irregular management which will have adverse effect on nature. The Smart waste management is compatible mainly with concept of smart cities

### 12. FUTURE SCOPE

The future of IoT is virtually unlimited due to advances in technology and consumers desire to integrate devices such as smart phones with household machines. As we done for the random values from the sensor, there is a idea for developing Iot devices with physical devices to more number of smart bins across the cities.

## 13. APPENDIX

## **Source Code:**

## Github:

https://github.com/IBM-EPBL/IBM-Project-26429-1660026551

## Video Demo Link:

https://drive.google.com/file/d/1mc0-LyUMYh4WGtPyikpffZBdzM2U9N3R/view?usp=drivesdk