

Dencytee RS485 Sensors

Modbus RTU Programmer's Manual

Firmware version:

CDOUM004

Important Notice

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form without written permission from Hamilton Bonaduz AG.

The contents of this manual are subject to change without notice. Technical changes reserved.

All efforts have been made to ensure the accuracy of the contents of this manual. However, should any errors be detected, Hamilton Bonaduz AG would greatly appreciate being informed of them.

The above notwithstanding, Hamilton Bonaduz AG can assume no responsibility for any errors in this manual or their consequences.

Copyright © 2024 Hamilton Bonaduz AG, Switzerland.

Rev.	Revision Date	Author	Change Description	
00	20.12.2021	GRi	Initial version	
01	23.03.2022	GRi	Update to CDOUM002	
02	20.10.2023	JJ	Update to CDOUM003	
03	19.07.2024	JJ	Update to CDOUM004	

111004638/03 page 2 / 76

Table of Content

1	MODBU	S RTU GENERAL INFORMATION	5
	1.1 INTR	RODUCTION	5
		IILTON ARC SENSORS: MODBUS COMMAND STRUCTURE	
	1.2.1	Modbus RTU: Definitions According to Modbus IDA	
	1.2.2	Command Structure	6
	1.2.3	Modbus RTU Transmission Mode	6
	1.2.4	Modbus RTU Message Framing	7
	1.2.5	Modbus RTU CRC Checking	
	1.3 IMPL	EMENTATION OF MODBUS RTU IN HAMILTON ARC SENSORS	9
		DBUS RTU FUNCTION CODES USED FOR ARC SENSORS	9
	1.4.1	Modbus function code #3: Read Holding Registers	
	1.4.2	Modbus function code #4: Read Input Registers	
	1.4.3	Modbus Function Code #16: Write Multiple Registers	
		A FORMATS USED IN ARC SENSORS	
	1.5.1	Float	
	1.5.2	Character	
	1.5.3	Decimal DBUS RTU ERROR MESSAGES	
	1.6 Mor	DBUS RTU ERROR MESSAGES	. 14
2	DENCYT	EE RS485 COMMANDS IN MODBUS RTU	. 15
	2.1 GEN	IERAL	15
		RATOR LEVELS AND PASSWORDS	
	2.2.1	Reading / Setting Operator Level	
	2.2.2	Changing Passwords for Operator Level	
		IFIGURATION OF THE SERIAL RS485 INTERFACE	
	2.3.1	Device Address	
	2.3.2	Baud Rate	
	2.3.3	Parity and Stop Bits	
	2.4 CON	IFIGURATION OF THE ANALOG INTERFACES	. 18
	2.4.1	Available Analog Interfaces	. 18
	2.4.2	Available Analog Interface Modes	
	2.4.3	Description of the Analog Interfaces 1 and 2	
	2.4.4	Selection of an Analog Interface Mode	
	2.4.5	Configuration of the 4-20 mA Interface	
	2.4.6	Reading the Internally Calculated Output Current	
		SUREMENT	
	2.5.1	Definition of Measurement Channels and Physical Units	
	2.5.2	Primary Measurement Channel 1 (TCD)	
	2.5.3	Primary Measurement Channel 6 (Temperature)	
	2.5.4 2.5.5	Secondary Measurement Channel 7 (Transmission current)	
	2.5.6	Secondary Measurement Channel 10 (Reflection current)	
	2.5.7	Secondary Measurement Channel 14 (Reflection)	
	2.5.8	Secondary Measurement Channel 17 (Nenection)	
	2.5.9	Secondary Measurement Channel 18 (Dark Current Transmission)	
	2.5.10	Definition of the Measurement Status for PMC1 / PMC6	
		IFIGURATION OF THE MEASUREMENT	
	2.6.1	Available Parameters	
	2.6.2	PA1 Factor TCD	
	2.6.3	PA2 Offset TCD	
	2.6.4	PA9: Moving Average	
	2.6.5	PA13: Measurement Interval	
	2.6.6	Cell Type Mode	
	2.6.7	Mark Zero TCD	. 42
	2.6.8	Inoculate	. 43
	2.6.9	Culture Time	
	2.7 VER	IFICATION	. 45

	2.7.1	Verification reference and tolerance values	45
	2.8 Coi	RRELATION	46
	2.8.1	Preview Correlation	
	2.8.2	Available correlation parameters	52
	2.8.3	Saving the preview to the desired user space	
	2.8.4	Correlation Status	
	2.8.5	Storage of correlations	56
	2.8.6	Delete existing correlations	57
	2.9 SEN	ISOR STATUS	58
	2.9.1	Temperature Ranges	58
	2.9.2	Operating Hours, Counters and System Time	60
	2.9.3	Warnings	
	2.9.4	Errors	
	2.9.5	Measurement values - Exceeds Temperature range, and TCD measurement errors	66
	2.9.6	Measurement values – no TCD measurement within the frontend is running	67
	2.9.7	Measurement values – Hardware errors	67
	2.9.8	Reading Definition of SIP and CIP	68
	2.9.9	Quality Indicator	69
	2.10 SEN	ISOR IDENTIFICATION AND INFORMATION	70
	2.10.1	General Information	70
	2.10.2	Sensor Identification	
	2.10.3	Free User Memory Space	71
	2.11 Sys	TEM COMMANDS	72
	2.11.1	Restore Factory Settings	72
3	APPENI	DIX	73
•			
		Γ OF TABLES	
	3.2 Lis	r of figures	74

1 Modbus RTU General Information

1.1 Introduction

This document describes in detail the Dencytee RS485 Modbus RTU interface. It is addressed to software programmers.

The general information about Modbus command structures and its implementation in the Hamilton Arc Sensor family is described in detail in chapter 1.

1.2 Hamilton Arc Sensors: Modbus Command Structure

In the present manual, only the specific command structure for the Dencytee RS485 Sensor is described. It is valid for the firmware:

CDOUM004

Please check the firmware version by reading register 1032.

This present definition of the command structure is an additional document to the Operating Instructions of the specific Dencytee RS485 Sensors. Before reading this manual, the operating instructions of the sensors should be read and understood.

1.2.1 Modbus RTU: Definitions According to Modbus IDA

The definitions in chapter 1.2 Hamilton Arc Sensors: Modbus Command Structure are an excerpt from the documents:

- "Modbus over serial line Specification and Implementation Guide V1.02" and
- "Modbus Application Protocol Specification V1.1b"

For more detailed information please consult http://www.modbus.org.

Attention:

- In this manual the register counting starts per definition at address 1. Some Modbus master
 protocols operate with register-count starting at address 0. Usually, the Modbus master
 software translates the addressing. Thus, the register address of 2088 will be translated by
 Modbus master software to 2087 which is sent to the sensor (Modbus slave). This must be
 observed during programming. Please check the specifications of the Modbus master that you
 are using.
- Representation of data formats in this document:
 - decimal values are displayed as numbers without any prefix, for example 256
 - hexadecimal values are displayed as: 0x2A
 - ASCII-characters or ASCII strings are displayed as: "Text"

111004638/03 page 5 / 76

1.2.2 Command Structure

The Modbus application protocol defines a simple **P**rotocol **D**ata **U**nit (PDU) independent of the underlying communication layers:

Figure 1 Modbus Protocol Data Unit

The mapping of Modbus protocol on a specific bus or network introduces some additional fields on the **P**rotocol **D**ata **U**nit. The client that initiates a Modbus transaction builds the Modbus PDU, and then adds fields in order to build the appropriate communication PDU.

Figure 2 Modbus frame over Serial Line

On Modbus Serial Line, the Address field only contains the <u>slave address</u>.

Note:

Arc Sensors support only slave addresses 1 to 32.

A master addresses a slave by placing the slave address in the address field of the message. When the slave returns its response, it places its own address in the response address field to let the master know which slave is responding.

- The function code indicates to the server what kind of action to perform. The function code can be followed by a data field that contains request and response parameters.
- The CRC field is the result of a "Redundancy Checking" calculation that is performed on the message contents.

1.2.3 Modbus RTU Transmission Mode

When devices communicate on a Modbus serial line using the RTU (Remote Terminal Unit) mode, each 8-bit byte in a message contains two 4-bit hexadecimal characters. The main advantage of this mode is that its greater character density allows better data throughput than ASCII mode for the same baud rate. Each message <u>must</u> be transmitted in a continuous stream of characters.

The format (11bits) for each byte in RTU mode is:

Coding System: 8 bit binary Bits per Byte: 1 start bit

8 data bits, least significant bit sent first

1 bit for parity completion

1 stop bit

Remark: The use of no parity requires 2 stop bits.

How characters are transmitted serially:

Each character or byte is sent in this order (left to right): Least Significant Bit (LSB)...Most Significant Bit (MSB)

Figure 3 Bit sequence in RTU mode

Frame Checking Field:

Cyclical Redundancy Checking (CRC)

Frame description:

Slave Address	Function Code	Data	CRC
1 byte	1 byte	0 up to 252 byte(s)	2 bytes CRC Low CRC Hi

Figure 4 RTU Message Frame

=> The maximum size of a Modbus RTU frame is 256 bytes.

1.2.4 Modbus RTU Message Framing

A Modbus message is placed by the transmitting device into a frame that has a known beginning and ending point. This allows devices that receive a new frame to begin at the start of the message, and to know when the message is completed. Partial messages <u>must</u> be detected and errors <u>must</u> be set as a result.

In RTU mode, message frames are separated by a silent interval of at least 3.5 character times.

Figure 5 Valid frames with silent intervals

Figure 6 RTU Message Frame

The entire message frame <u>must</u> be transmitted as a continuous stream of characters.

HAMILT®N

If a silent interval of more than 1.5 character times occurs between two characters, the message frame is declared incomplete and should be discarded by the receiver.

Figure 7 Data transmission of a frame

1.2.5 Modbus RTU CRC Checking

The RTU mode includes an error-checking field that is based on a Cyclical Redundancy Checking (CRC) method performed on the message contents.

The CRC field checks the contents of the entire message. It is applied regardless of any parity checking method used for the individual characters of the message.

The CRC field contains a 16-bit value implemented as two 8-bit bytes.

The CRC field is appended to the message as the last field in the message. When this is done, the loworder byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte to be sent in the message.

The CRC value is calculated by the sending device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the current value it received in the CRC field. If the two values are not equal, an error results.

The CRC calculation is started by first pre-loading a 16-bit register to all 1's. Then a process begins of applying successive 8-bit bytes of the message to the current contents or the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits and the parity bit do not apply to the CRC.

During generation of the CRC, each 8-bit character is exclusive OR-ed with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is then exclusive OR-ed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eight) shift, the next 8-bit byte is exclusive OR-ed with the register's current value, and the process repeats for eight more shifts as described above. The final content of the register, after all the bytes of the message have been applied, is the CRC value.

When the CRC is appended to the message, the low-order byte is appended first, followed by the highorder byte.

A detailed introduction to CRC generation can be found in the manual "MODBUS over Serial Line, Specification and Implementation Guide, V1.02" in chapter 6.2 "Appendix B - LRC/CRC Generation" form http://www.modbus.org.

111004638/03 page 8 / 76

1.3 Implementation of Modbus RTU in Hamilton Arc Sensors

According to the official Modbus definition, the start of a command is initiated with a pause of ≥ 3.5 characters. Also the end of a command is indicated with a pause of ≥ 3.5 char.

The device address and the Modbus function code have 8 bits.

The data string consists of n*8 bits. The data string contains the starting address of the register and the number of registers to read/write.

The checksum CRC is 16 bits long.

Table 1 Modbus definition for data transmission

	start	device address	function	data	Checksur	n	end
value	no signal during ≥ 3.5 char	1-32	function code according to Modbus specs	data according to Modbus specs	CRC L	CRC H	No signal during ≥ 3.5 char
bytes	≥ 3.5	1	1	n	1	1	≥ 3.5

The RS485 interface is configured as follows:

Table 2 RS485 definitions for Arc Sensors

Modbus RTU implementation in Hamilton Arc Sensors				
Start Bits				
Data Bits	8			
Parity	one			
Stop Bit	2			
String length 11 Bits				
Baud Rate	Baud Rate 19200 (default), other baud rate can be configured			

1.4 Modbus RTU Function Codes Used for Arc Sensors

Arc Sensors use only 3 Modbus function codes:

3: Read Holding Registers# 4: Read Input Registers# 16: Write Multiple Registers

These three function codes are described below in detail using excerpts from "Modbus Application Protocol Specification V1.1b "(http://www.modbus.org).

1.4.1 Modbus function code #3: Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a remote device. The Request PDU specifies the starting register address and the number or registers. The PDU Registers are addressed starting at zero. Therefore registers numbered 1 – 16 are addressed as 0 – 15.

The register data in the response message are packed as two bytes per register. For each register, the first byte contains the high order bits and the second contains the low order bits.

111004638/03 page 9 / 76

Request

Function code	1 Byte	0x03
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	1 to 125 (0x7D)

Response

Function code	1 Byte	0x03
Byte count	1 Byte	2 x N*
Register value	N* x 2 Bytes	

^{*}N = Quantity of Registers

Error

Error code	1 Byte	0x83
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 8 Definition of Holding Registers

Request		Response	
Field Name	(Hex)	Field Name	(Hex)
Function	03	Function	03
Starting Address Hi	00	Byte Count	06
Starting Address Lo	6B	Register value Hi (108)	02
No. of Registers Hi	00	Register value Lo (108)	2B
No. of Registers Lo	03	Register value Hi (109)	00
		Register value Lo (109)	00
		Register value Hi (110)	00
		Register value Lo (110)	64

Figure 9 Example of reading holding registers 108 – 110. The contents of register 108 are read as the two byte values 0x022B. The contents of registers 109 and 110 are 0x0000 and 0x0064

1.4.2 Modbus function code #4: Read Input Registers

The function code is used to read from 1 to 125 contiguous input registers in a remote device. The Request PDU specifies the starting register address and the number of registers. The PDU Registers are addressed starting at zero. Therefore input registers numbered 1 - 16 are addressed as 0 - 15.

The register data in the response message are packed as two bytes per register. For each register, the first byte contains the high order bits and the second contains the low order bits.

Request

Function code	1 Byte	0x04
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Input Registers	2 Bytes	0x0001 to 0x007D

Response

Function code	1 Byte	0x04
Byte count	1 Byte	2 x N*
Input Registers	N* x 2 Bytes	

^{*}N = Quantity of Input Registers

Error

Error code	1 Byte	0x84
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 10 Definition of Input Registers

Request		Response	
Field Name	(Hex)	Field Name	(Hex)
Function	04	Function	04
Starting Address Hi	00	Byte Count	02
Starting Address Lo	08	Input Reg. 9 Hi	00
Quantity of Input Reg. Hi	00	Input Reg. 9 Lo	0A
Quantity of Input Reg. Lo	01		

Figure 11 Example of reading input register 9. The contents of input register 9 are read as the two byte value 0x000A

1.4.3 Modbus Function Code #16: Write Multiple Registers

This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote device. The requested values are specified in the request data field. Data is packed as two bytes per register. The response returns the function code, starting address, and quantity of registers written.

Request

_	••		
	Function code	1 Byte	0x10
	Starting Address	2 Bytes	0x0000 to 0xFFFF
	Quantity of Registers	2 Bytes	0x0001 to 0x007B
	Byte Count	1 Byte	2 x N*
	Registers Value	N* x 2 Bytes	value

*N = Quantity of Registers

Response

Function code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	1 to 123 (0x7B)

Error

Error code	1 Byte	0x90
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 12 Definition of Write Multiple Registers

Request	Request		
Field Name	(Hex)	Field Name	(Hex)
Function	10	Function	10
Starting Address Hi	00	Starting Address Hi	00
Starting Address Lo	01	Starting Address Lo	01
Quantity of Registers Hi	00	Quantity of Registers Hi	00
Quantity of Registers Lo	02	Quantity of Registers Lo	02
Byte Count	04		
Registers Value Hi	00		
Registers Value Lo	0A		
Registers Value Hi	01		
Registers Value Lo	02		

Figure 13 Example of writing the value 0x000A and 0x0102 to two registers starting at address 2

1.5 Data Formats Used in Arc Sensors

1.5.1 Float

Definition: Floating point according to IEEE 754 (Single Precision)

Table 3 Definition Floating point Single Precision (4 bytes resp. 2 Modbus registers)

Explanation:	sign	exponent	mantissa	total
Bit:	31	30 to 23	22 to 0	32
Exponent bias	127			

Example: translate the decimal value 62.85 into binary

Step 1: Conversion of the decimal value into binary fixed-point number

```
62 / 2 = 31
            residue 0 LSB
                                0.85 * 2
                                        = 1.70
                                                 => 1 MSB
31 / 2 = 15
            residue 1
                                0.70 * 2 = 1.40
                                                 => 1
15/2 = 7
            residue 1
                                0.40 * 2 = 0.80
                                                 => 0
7/2 = 3
            residue 1
                               0.80 * 2 = 1.60
                                                 => 1
3/2 = 1 residue 1
                                0.60 * 2 = 1.20
                                                 => 1
                               0.20 * 2 = 0.40
1/2 = 0 residue 1 MSB
                                                 => 0
                                0.40 * 2 = 0.80
      = 111110
                                                 => 0 LSB
```

= 0.110110011001100110011001100...

62.85 = 111110.110110011001100110011001100...

Step 2: Normalizing (in order to obtain 1 bit on the left side of the fraction point)

111110.110110011001100110011001100... *2**^0** = 1.11110110110011001100110011001100... *2**^5**

Sep 3: Calculation of the dual exponent

```
2^5 => Exponent 5
Exponent + Exponent bias = 5 + 127 = 132
132 / 2 = 66 residue 0 LSB
66 / 2 = 33 residue 0
33 / 2 = 16 residue 1
16 / 2 = 8 residue 0
8 / 2 = 4 residue 0
4 / 2 = 2 residue 0
2 / 2 = 1 residue 0
1 / 2 = 0 residue 1 MSB
= 10000100
```

Sep 4: Definition of the sign bit

```
Positive = 0
Negative = 1
= 0
```

Step 5: conversion into floating-point

```
1 Bit Sign + 8 Bit Exponent + 23 Bit Mantissa
0 10000100 11110110011001100110 (corresponds to 0x427B6666)
```

One important note for the 23 Bit Mantissa: The first bit (so-called hidden bit) is not represented. The hidden bit is the bit to the left of the fraction point. This bit is per definition always 1 and therefore suppressed.

Step 1: Separating the binary value into Sign, Exponent and Mantissa

0 10000100 11110110110011001100110

1 Bit Sign + 8 Bit Exponent + 23 Bit Mantissa

```
S: 0 binary = 0 (positive sign)
E: 10000100 binary = 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0
= 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0
= 132
```

M: 11110110110011001100110 binary = 8087142

Step 2: Calculate the decimal value

```
D = (-1)^{S} * (1.0 + M/2^{23}) * 2^{E-127}
= (-1)^{0} * (1.0 + 8087142/2^{23}) * 2^{132-127}
= 1 * 1.964062452316284 * 32
= 62.85
```

1.5.2 Character

Definition: The numerical representation of characters is defined in 8-Bit ASCII-Code-Table (ANSI X3.4-1986). Accordingly, each Modbus register in Arc Sensors can store two ASCII characters.

Example: translate the ASCII-string "2076" to Hex representation

The following interpretation is made according to the ASCII Codes-Table:

```
"2" => ASCII code table => 0x32 Low Byte
"0" => ASCII code table => 0x30
"7" => ASCII code table => 0x37
"6" => ASCII code table => 0x36 High Byte
"2076" => 0x36373032
```

1.5.3 Decimal

Example: translate Decimal 2227169 to Hex

```
residue 1 Low Byte
2227169 / 16
              = 139198
139198 / 16
              = 8699
                         residue 14 => E
8699 / 16
              = 543
                         residue 11 => B
              = 33
543 / 16
                         residue 15 => F
33/16
              = 2
                         residue 1
2/16
                         residue 2 High Byte
              = 0
              = 0x21FBE1
```


1.6 Modbus RTU Error Messages

Here are listed the Modbus standard error-codes we have implemented in Arc Sensors.

Table 4 Implemented Error-Codes

Error-Code	Status-Text
Hex	
0x00	OK
0x01	Illegal function
0x02	Illegal data address
0x03	Illegal data value
0x04	Slave device failure

See "Modbus_Application_Protocol_V1.1b" (www.modbus.org) for details.

If a slave device failure exception occurs, try to repeat the command that has thrown the exception. If the exception remains, check the sensor status.

111004638/03 page 14 / 76

2 Dencytee RS485 Commands in Modbus RTU

2.1 General

In order to communicate with a Dencytee RS485 Sensor over Modbus RTU protocol a Modbus master terminal application software is needed. The Modbus RTU is an open standard and a number of free and commercial application toolkits are available.

This manual contains examples and illustrations from WinTECH Modbus Master ActiveX Control tool: WinTECH (www.win-tech.com) "Modbus Master OCX for Visual Basic". The Modbus Organization (www.modbus.org/tech.php) provides other links to a wide variety of Modbus terminal software.

In the present manual the addressing of the Modbus registers starts at 1. But the Modbus master protocol operates with register addresses starting at 0. Usually, the Modbus master software translates the addressing. Thus, the register address of 2090 will be translated by the Modbus master software to 2089 which is sent to the sensor (Modbus slave).

Attention:

When configuring and calibrating the sensor, please limit write operations to a reasonable number. More than 1'000'000 write operations will physically damage the memory of the sensor.

2.2 Operator levels and Passwords

2.2.1 Reading / Setting Operator Level

A Dencytee RS485 Sensor can be operated in three different operator levels. Each operator level allows a defined access to a specific set of commands.

Table 5 Definition of operator level and default passwords

Abbreviation	Description	Code (hex)	Password (default)
			(decimal)
U	User (lowest level)	0x03	0
Α	Administrator	0x0C	18111978
S	Specialist	0x30	16021966

At each power up or processor reset, the operator level falls back to the default level U.

The active operator level can be read and written in register 4288.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4288	4	Operator Level	Password	3, 4, 16	U/A/S	U/A/S

Attention:

If the password is wrong, the operator level falls back to operator level U. To make sure that the operator level switch was successful, read back register 4288.

111004638/03 page 15 / 76 **HAMILT®N**

2.2.2 Changing Passwords for Operator Level

The passwords for accessing the operator levels A and S can be modified by S (Specialist) only. U (User) and A (Administrator) have no right to change any password. If they try anyway, an illegal data address exception (0x02) is returned.

The new password will remain stored after power down.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4292	4	Level	New password	16	None	S

2.3 Configuration of the serial RS485 Interface

Factory settings for the RS485 interface:

Table 6 RS485 factory settings

Start Bits	1
Data Bits	8
Parity	None
Stop Bits	2
Baud Rate	19200

2.3.1 Device Address

2.3.1.1 Reading and Writing the Device Address

The sensor specific device address can be read and written in register 4096.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4096	2	device address	3, 4, 16	U/A/S	S

The device address can be set by S (Specialist), default value is 1. If the address limits are not met when setting a new address, the former address stays active.

Attention:

The device address changes immediately, what means that the next Modbus access has to be done using the new address.

2.3.1.2 Reading the Device Address Limits

The device address limits can be read in register 4098.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4098	4	Min. device	Max. device	3, 4	U/A/S	none
		address	address			

Device address limits are: Minimal device address: 1 Maximal device address: 32

2.3.1.3 Broadcast

111004638/03

Independent from the selected device address, the sensor responds to broadcasted Modbus commands (address 0).

page 16 / 76 **HAMILT®N**

2.3.2 Baud Rate

2.3.2.1 Reading and Writing the Baud Rate

The baud rate can be read and written in register 4102.

Start register	Number of registers	Reg1 / Reg2	Modbus function code	Read access	Write access
4102	2	Baud rate code (see Table 7)	3, 4, 16	U/A/S	S

The code for the baud rate is defined as follows:

Table 7 Code for the baud rates

Baud rate	4800	9600	19200	38400	57600	115200
Code	2	3	4	5	6	7

The baud rate can be set by S (Specialist), default is 19200.

Attention:

If the baud rate limits are not met when setting a new baud rate, the former baud rate stays active. The baud rate **does not** change before the next power up.

2.3.2.2 Reading the Baud Rate Limits

The baud rate limits can be read in register 4104.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4104	4	Min. Baud rate	Max. Baud rate	3, 4	U/A/S	none
		code	code			

The baud rate limits are: Minimal baud rate code: 2 Maximal baud rate code: 7

2.3.3 Parity and Stop Bits

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(hex)	function code	access	access
4108	2	Interface	3, 4, 16	U/A/S	S
		parameter			

The interface parameter is coded as following:

0xAABBCCDD where

AA = no meaning (reading: 0x00)

BB = Parity (0x00: no parity, 0x01: even, 0x02: odd) CC = Stop bits (0x00: 1 stop bit, 0x04: 2 stop bits)

DD = no meaning (reading 0x00)

The interface parameters do not change before the next power up! When writing to register 4108 set Bytes AA and DD to 0x00.

Attention:

If one of the parameter limits is not met, the old configuration stays active! Parity option (even or odd) is only available with one stop bit (max. string length of 11 bits).

The configuration **does not** change before the next power up.

111004638/03

2.4 Configuration of the Analog Interfaces

Note:

The Dencytee RS485 Sensor does not have any analog interfaces itself. They are provided by an Arc Wi 2G Adapter BT. But the registers to configure these interfaces are available on the sensor. That means, that these registers can be read and written with or without Arc Wi 2G Adapter BT.

2.4.1 Available Analog Interfaces

Equipped with an Arc Wi 2G Adapter BT, the Dencytee RS485 Sensor has two individual physical analog interfaces that have identical functionalities, but can be configured independently from each other.

- Analog Output Interface 1 (AO1)
- Analog Output Interface 2 (AO2)

The number of analog interfaces is defined in register 4320.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(uint)	function code	access	access
4320	2	Available analog interfaces	3, 4	U/A/S	none

The answer always is "0x03" meaning that there exists an Analog Interface 1 (AO1) and an Analog Interface 2 (AO2).

2.4.2 Available Analog Interface Modes

With register 4322, the available analog interface modes for AO1 and AO2 are defined

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	(uint)	(uint)	Reg6	Reg8	function	access	access
	registers					code		
4322	8	Available	Available	reserved	reserved	3,4	U/A/S	none
		Analog	Analog					
		Interface	Interface					
		Modes for AO1	Modes for AO2					

Register 4322 defines the analog interface modes available for AO1 and AO2. The analog interface modes are described in Table 8.

Table 8 Definition of the analog interface modes

Code	Analog Interface	Description
(Hex)	Mode	
0x00	4-20 mA inactive	Analog interface is deactivated
0x01	4-20 mA fixed	Set to a constant output value for current loop testing
		See 2.4.5.7 Defining a Constant Current Output for Testing
0x02	4-20 mA linear	Linear output of measurement (PMC1 / 6)

The answer is a bitwise combination (OR) of the available modes defined in Table 8. Reg1/Reg2 and Reg3/Reg4 always return "0x03" meaning that fixed and linear mode are available. Reg5 to Reg8 return 0. How to select or change the analog interface mode, see 2.4.4 Selection of an Analog Interface Mode.

111004638/03 page 18 / 76

2.4.3 Description of the Analog Interfaces 1 and 2

Register 4352 / 4480 contain the descriptions of AO1 / AO2 as plain text ASCII:

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	(16 ASCII characters)	function code	access	access
4352	8	Description of AO1	3, 4	U/A/S	none
4480	8	Description of AO2	3, 4	U/A/S	none

2.4.4 Selection of an Analog Interface Mode

The analog interface mode of AO1 / AO2 is selected by programming the analog interface mode in register 4360 / 4488.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(uint)	function code	access	access
4360	2	Analog interface mode for AO1	3, 4, 16	U/A/S	S
4488	2	Analog interface mode for AO2	3, 4, 16	U/A/S	S

For available interface modes see register 4322.

Only one bit can be set. Using not allowed interface mode codes will leave the selection unchanged.

2.4.5 Configuration of the 4-20 mA Interface

Note:

The configuration of AO1 / AO2 is only effective if register 4360 / 4488 (active analog interface mode) is set to the value 0x01 or 0x02.

2.4.5.1 Reading the Available Primary Measurement Channels to be mapped to the Analog Output

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(uint)	function code	access	access
4362	2	Available Primary Measurement	3, 4	U/A/S	none
		Channels for AO1			
4490	2	Available Primary Measurement	3, 4	U/A/S	none
		Channels for AO2			

Table 9 Code for selection of the primary measurement channel

Code	Primary Measurement Channel (PMC)
(Hex)	
0x01	PMC1
0x20	PMC6

Reading the available Primary Measurement Channels (PMC) always return the hexadecimal value of "0x21" meaning that PMC1 or PMC6 can be mapped to AO1 respectively AO2.

111004638/03 page 19 / 76 **HAMILT®N**

2.4.5.2 Selecting the Primary Measurement Channel to be mapped to the Analog Interface

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(uint)	function	access	access
			code		
4364	2	Selected PMC for AO1	3, 4, 16	U/A/S	S
4492	2	Selected PMC for AO2	3, 4, 16	U/A/S	S

Write this register to change the mapped measurement channel to AO1 respectively AO2. Make sure that only one bit is set, according to Table 9. Writing 0 or an illegal code will leave the selection unchanged. Only one bit can be set!

Reading this register returns the selected PMC for AO1 respectively AO2 according to Table 9.

The factory setting for register 4364 is "0x01" mapping PMC1 to AO1. The factory setting for register 4492 is "0x20" mapping PMC6 to AO2.

2.4.5.3 Reading the Minimal and Maximal Possible Physical Output Current

Register 4366/4494 delivers the limits of the physical output current for AO1/AO2.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(float)	(float)	function code	access	access
4366	4	Min physical	Max physical	3, 4	U/A/S	none
		output current	output current			
		for AO1 [mA]	for AO1 [mA]			
4494	4	Min physical	Max physical	3, 4	U/A/S	none
		output current	output current			
		for AO2 [mA]	for AO2 [mA]			

The limits are fixed to: Minimum is 3.5mA Maximum is 22 mA

Note:

Currents above 20 and below 4 mA indicate erroneous measurements or errors.

2.4.5.4 Reading the Minimal and Maximal Current for Measurement Value Output

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	of				function	access	access
	registers	(float)	(float)	(float)	code		
4370	6	Min output for measurement value for AO1 [mA]	Max output for measurement values for AO1 [mA]	Mid output for measurement values for AO1 [mA]	3, 4	U/A/S	none
4498	6	Min output for measurement value for AO2 [mA]	Max output for measurement values for AO2 [mA]	Mid output for measurement values for AO2 [mA]	3, 4	U/A/S	none

These registers deliver the minimal, maximal and middle output current for AO1 respectively AO2 in mA during normal operation. They are fixed to 4, 20 and 12 mA.

111004638/03 page 20 / 76

2.4.5.5 Reading the Selected Physical Unit for Analog Interface

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(uint)	function	access	access
			code		
4376	2	Selected physical unit of AO1	3, 4	U/A/S	none
		(see Table 14)			
4504	2	Selected physical unit of AO2	3, 4	U/A/S	none
		(see Table 14)			

Read the selected unit of the selected PMC of AO1 respectively AO2. The value returned is an unsigned integer that represents the unit according to Table 14.

The physical unit for the PMC is defined in Reg. 2090 or 2410 and applies automatically for 4-20 mA output.

2.4.5.6 Defining the Measurement Values for 4 and 20 mA Output

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	of	(float)	(float)	(float)	function	access	access
	registers				code		
4378	6	Measurement value at Min Output Current (4 mA) for AO1	Measurement value at Max Output Current (20 mA) for AO1	Measurement value at Mid Output Current (12 mA) for AO1	3, 4, 16	U/A/S	S
4506	6	Measurement value at Min Output Current (4 mA) for AO2	Measurement value at Max Output Current (20 mA) for AO2	Measurement value at Mid Output Current (12 mA) for AO2	3, 4, 16	U/A/S	S

These registers define the relation between measurement value and output current in linear mode. Reg1/Reg2 define the measurement value at 4mA and Reg3/Reg4 define the measurement value at 20mA. Reg5/Reg6 do not affect the 4-20mA output. When writing, write 0 or any random value. When reading, Reg5/Reg6 return half of Min + Max.

The corresponding physical unit can be read in register 4376 / 4504 respectively in the corresponding PMC register (2090 for PMC1 and 2410 for PMC6).

Attention:

When assigning measurement values to 4-20 mA analog output by using register 4378 / 4506, you need to consider the following:

- The PMC you have mapped to AO1 / AO2 (register 4364 / 4492)
- The physical unit currently in use for the selected PMC (register 2090 for PMC1 and register 2410 for PMC6.

Therefore, when the operator redefines any of the above mentioned register, the definitions of the register 4378 / 4506 should be reviewed. If not, the current output at the 4-20 mA interfaces may suddenly be unexpected!

Example:

Register 4364 is set to 1 (PMC1 is mapped to AO1).

Register 2090 is set to 0x00000100 (the unit "g/l" is assigned to PMC1).

Register 4378 is set to 0 and 20 (4 mA = 0 g/l, 20 mA = 20 g/l) as shown in Figure 14.

The measurement parameter 2 Offset TCD is set to 0 g/l.

The sensor reads currently a value of 10 g/l TCD, the output at the 4-20 mA accordingly is 12 mA (10 g/l).

HAMILT®N

111004638/03 page 21 / 76

The operator now changes the measurement parameter 2 Offset TCD to -10 g/l. Therefore, the output of AO1 increases to 20 mA (20 g/l).

Figure 14 Example of linear 4-20mA output characteristics

2.4.5.7 Defining a Constant Current Output for Testing

Note

For constant current output, the AO1 / AO2 must be set to analog interface mode 4-20 mA fixed (0x01) (see Table 8):

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(float)	function code	access	access
4384	2	Constant current output value for AO1 [mA]	3, 4, 16	U/A/S	S
4512	2	Constant current output value for AO2 [mA]	3, 4, 16	U/A/S	S

Values lower than 4mA respectively higher than 20mA will automatically be set within the limits.

2.4.5.8 Defining the Error and Warning Output of the 4-20 mA Interface

Errors and warnings can be mapped to the AO1 / AO2.

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus	Read	Write
register	of	(uint)	(uint)	(uint)	(uint)	function	access	access
	registers					code		
4386	8	Code of	Current in	Current in	Current in	3, 4, 16	U/A/S	S
		warnings and	case of	case of "error"	case of			
		errors for AO1	"warning" for	for AO1 [mA]	"T exceed" for			
			AO1 [mA]		AO1 [mA]			
4514	8	Code of	Current in	Current in	Current in	3, 4, 16	U/A/S	S
		warnings and	case of	case of "error"	case of			
		errors for AO2	"warning" for	for AO2 [mA]	"T exceed" for			
			AO2 [mA]		AO2 [mA]			

111004638/03 page 22 / 76

Table 10 Code for the 4-20 mA interface in case of errors and warnings

Bit #	Code (hex)	Behavior of the 4-20 mA interface in case of errors and warnings
0 (LSB)	0x000001	Error continuous output
1-15		not available
16	0x010000	Warning continuous output
17-30		not available
31 (MSB)		not available

If the corresponding bits for the errors and warnings are not set (=0x00), the respective options are inactive.

"T exceed" is always active. What means that in case of a measurement temperature limit violation, the output current will be as the specified value.

The default settings are:

Code 0x01

current in case of warnings: 3.5 mAcurrent in case of errors: 3.5 mA

current in case of measurement

temperature limits violation: 3.5 mA

Table 11 Example: Read the settings for AO1 in case of warnings and errors

Command: ErrorWarnings AO1		Modbus address:	4386 Length: 8	Type: 3 Read
Parameter:	Warning code	Current in case	Current in case of	Current in case of
		of warning	error	temperature exceed
		[mA]	[mA]	[mA]
Format:	Hex	Float	Float	Float
Value:	0x010001	3.5	3.5	3.5

Warning code 0x010001 corresponds to the continuous output current in case of warning (0x010000) and continuous output current in case of error (0x01) of 3.5 mA. The output current in case of temperature exceed is 3.5 mA.

For more information about warnings, errors and temperature limits, see chapter 2.8 Correlation.

2.4.6 Reading the Internally Calculated Output Current

Reg. 4414 / 4542 provides internal calculated output current of AO1 / AO2. These values are helpful in order to compare against the externally measured electrical current.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(float)	(float)	function code	access	access
4414	4	Set point [mA] AO1	Internally measured [mA] AO1	3, 4	U/A/S	none
4542	4	Set point [mA] AO2	Internally measured [mA] AO2	3, 4	U/A/S	none

Attention:

The current outputs are provided by the Arc Wi 2G Adapter BT. Therefore, the sensor cannot internally measure any output currents. Reg3/Reg4 always deliver the same value than Reg1/Reg2 even though there is no Arc Wi 2G Adapter BT connected. This is due to compatibility to other Arc Sensors.

111004638/03 page 23 / 76 **HAMILT®N**

2.5 Measurement

Note:

For more information about the measurement theory see the Dencytee RS485 Operating Instructions.

2.5.1 Definition of Measurement Channels and Physical Units

The Arc Modbus register structure allows the definition of 6 individual Primary Measurement Channels (PMC) and 16 individual Secondary Measurement Channels (SMC).

Table 12 Definition of PMC1 to 6 and SMC1 to 16

Bit #	Hex value	Description	Definition
0 (LSB)	0x0000001	PMC1	TCD
1	0x00000002	PMC2	not available
2	0x00000004	PMC3	not available
3	0x00000008	PMC4	not available
4	0x0000010	PMC5	not available
5	0x00000020	PMC6	Temperature
6	0x00000040	SMC1	not available
7-11			not available
12	0x00001000	SMC7	Transmission current
13-14			not available
15	0x00008000	SMC10	Reflection current
16-17			not available
18	0x00040000	SMC13	Transmission
19	0x00080000	SMC14	Reflection
20	0x00100000	SMC15	not available
21	0x00200000	SMC16	not available
22	0x00400000	SMC17	Transmission Dark Current
23 (MSB)	0x00800000	SMC18	Reflection Dark Current

In Register 2048, the available PMC and SMC are defined for a specific sensor and a specific operator level.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
2048	2	Available measurement channels	3, 4	U/A/S	none
		PMC and SMC (bitwise set)			

Table 13 Example to read register 2048

Command: A	vail. meas. channels	Modbus address:	2048	Length: 2	Type: 3	Read
Parameter:	Avail. PMC and SMC					
Format:	Hex					
Value:	0x00CC0021					

In case of operator level U or A, the value 0x21 is returned. In other words: PMC1 and PMC6 are available to the operator U or A. In operator level S, the value 0xCC0021 is returned. In other words: PMC1, PMC6, SMC13, SMC14, SMC17 and SMC18 are available to the operator S.

111004638/03 page 24 / 76 **HAMILT®N**

The Dencytee RS485 Modbus register structure uses the following physical units.

Table 14 Definition of physical units

Bit #	Hex value	Physical unit	Start register. (8 ASCII characters, length 4 registers,
0 (1 00)	000000004		Type 3, read for U/A/S)
0 (LSB)	0x00000001	none	1920
1	0x00000002	K	1924
2	0x00000004	°C	1928
3	0x00000008	°F	1932
4	0x00000010	PCV	1936
5	0x00000020	AU	1940
6	0x00000040	arb.Unit	1944
7	0x00000080	NTU	1948
8	0x00000100	g/l	1952
9	0x00000200	uS/cm	1956
10	0x00000400	mS/cm	1960
11	0x00000800	1/cm	1964
12	0x00001000	mS	1968
13	0x00002000	pF	1972
14	0x00004000	kOhm	1976
15	0x00008000	MOhm	1980
16	0x00010000	pΑ	1984
17	0x00020000	nA	1988
18	0x00040000	uA	1992
19	0x00080000	mA	1996
20	0x00100000	uV	2000
21	0x00200000	mV	2004
22	0x00400000	V	2008
23	0x00800000	CFU	2012
24	0x01000000	-	2016
25	0x02000000	Ohm	2020
26	0x04000000	%/K	2024
27	0x08000000	0	2028
28	0x10000000	e6 c/ml	2032
29	0x20000000	pF/cm	2036
30	0x40000000	kHz	2040
31 (MSB)	0x80000000	OD	2044

Table 15 Example to read the physical unit in plain text ASCII in register 1952

Command: Unit text		Modbus address: 1952	Length: 4	Type: 3	Read
Parameter:	Text				
Format:	8 ASCII characters				
Value:	"uS/cm"				

111004638/03 page 25 / 76

2.5.2 Primary Measurement Channel 1 (TCD)

2.5.2.1 Definition of PMC1

Start register	Data size (registers)	Function	Data type	Modbus function code	Read access	Write access
2080	8	Description of PMC1	ASCII	3, 4	U/A/S	none
			chars			
2088	2	Available physical units of PMC1	uint	3, 4	U/A/S	none
2090	2	Selected physical unit for PMC1	uint	16	none	S

In register 2080, a plain text ASCII description of PMC1 is given. PMC1 for Dencytee RS485 is called "TCD".

In register 2088, the available physical units for this channel are defined. The available physical units for PMC1: 0x00000000. The unit of PMC1 can only be changed by selecting the correlation 2.6.6 Cell Type Mode. That is why this register is empty.

Note:

The unit cannot be changed via register 2090. This can only be done via the selection of the correlation 2.6.6.

Attention:

Changing the correlation model 2.6.6 Cell Type Mode of PMC1 has also an influence on the output of the 4-20 mA analog output, as the same physical unit is active for 4-20 mA. All limits of the 4-20 mA analog output have to be redefined after changing the physical unit! See chapter 2.4.5 Configuration of the 4-20 mA Interface for more details.

2.5.2.2 Reading the measurement value of PMC1

Register 2090 is also used to read the measurement values of PMC1.

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Reg9 / Reg10	Modbus function code	Read access	Write access
2090	10	Selected physical unit of the correlation	Measure -ment value of PMC1	Measure -ment status (1)	Min allowed value	Max allowed value	3, 4	U/A/S	none

⁽¹⁾ Definition of the status see chapter 2.5.10 Definition of the Measurement Status for PMC1 / PMC6. All bits set to zero means no problem.

Attention:

You cannot read selectively the registers 3 and 4 for the measurement value only. You have to read the entire length of the command (10 registers) and extract the desired information.

111004638/03 page 26 / 76 **HAMILT®N**

2.5.3 Primary Measurement Channel 6 (Temperature)

The Dencytee RS485 sensor has a built-in temperature sensor (NTC22k Ω). This temperature sensor is to be used only for monitoring the sensor conditions, not for controlling the process temperature.

Definition of PMC6

Start	Data size	Function	Data type	Modbus	Read	Write
register	(registers)			function	access	access
				code		
2400	8	Description of PMC6	ASCII	3, 4	U/A/S	none
			chars			
2408	2	Available physical units of PMC6	uint	3, 4	U/A/S	none
2410	2	Selected physical unit for PMC6	uint	16	none	S

In register 2400, a plain text ASCII description of PMC6 is given. PMC6 is called "T".

In register 2408, the available physical units for this channel are defined. The available physical units for PMC6: 0x0000000E => K, $^{\circ}C$ and $^{\circ}F$

In register 2410, the active physical unit for this channel can be selected, by choosing one of the physical units that are defined in register 2408.

Selecting an invalid unit code will leave the current unit unchanged.

Attention:

Changing the physical unit of PMC6 has also an influence on the output of AO1 / AO2, as the same physical unit is active for the analog outputs. All limits of the 4-20 mA analog output have to be redefined after changing the physical unit! See chapter 2.4.5 Configuration of the 4-20 mA Interface for more details.

2.5.3.1 Reading the measurement value of PMC6

Register 2410 is also used to read the measurement values of PMC6.

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
	reg.						code		
2410	10	Selected physical unit	Measure -ment value of PMC6 (1)	Measure -ment status (2)	Min allowed value (1)	Max allowed value (1)	3, 4	U/A/S	none

⁽¹⁾ Value is always in the physical unit defined in register 2410/2.

Table 16 Example to read register 2410

Command: P	MC6 read	Modbus	address: 2410	Length: 10	Type: 3	Read
Parameter:	Unit	Value	Status	Min limit	Max limit	
Format:	Hex	Float	Hex	Float	Float	
Value:	0x04	27.42447	0x00	-10	140	

Physical unit is set to °C, PMC6 is 27.42 (°C), Status is 0x00, Min allowed value is -10 °C, Max allowed value is 140 °C.

Attention:

You cannot read selectively the registers 3 and 4 for the measurement value only. You have to read the entire length of the command (10 registers) and extract the desired information.

111004638/03 page 27 / 76

⁽²⁾ Definition of the status see chapter 2.5.10 Definition of the Measurement Status for PMC1 / PMC6. All bits set to zero means no problem.

2.5.4 Secondary Measurement Channel 7 (Transmission current)

The first internal measured value is specified as transmission. This measured value is used for the selected correlation to apply the algorithm.

2.5.4.1 Definition of SMC7

Start register	Data size (registers)	Function	Data type	Modbus function code	Read access	Write access
2656	8	Description of SMC7	ASCII chars	3, 4	S	none

In register 2656, a plain text ASCII description of SMC7 is given. SMC7 is called "Trans. current".

Start register	Data size (registers)	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
2664	6	Physical unit	Measurement value of SMC7	0	3, 4	S	none

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
	reg.						code		
2664	10	Selected physical unit	Measure -ment value of SMC7	0	Min allowed value	Max allowed value	3, 4	U/A/S	none

In register 2664, the unit, the measured value and the minimum and maximum value are displayed.

Attention:

The unit is fixed and cannot be changed. The unit is nA with the hex value 0x00020000.

2.5.5 Secondary Measurement Channel 10 (Reflection current)

The second internal measured value is specified as reflection current. This measured value is used for the selected correlation to apply the algorithm.

2.5.5.1 Definition of SMC10

Start register	Data size (registers)	Function	Data type	Modbus function code	Read access	Write access
2752	8	Description of SMC10	ASCII chars	3, 4	S	none

In register 2752, a plain text ASCII description of SMC10 is given. SMC10 is called "Refl. current".

Start register	Data size (registers)	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
2760	6	Physical unit	Measurement value of SMC10	0	3, 4	S	none

111004638/03 page 28 / 76 **HAMILT®N**

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
	reg.						code		
2760	10	Selected physical unit	Measure -ment value of SMC10	0	Min allowed value	Max allowed value	3, 4	U/A/S	none

In register 2760, the unit, the measured value and the minimum and maximum value are displayed.

Attention:

The unit is fixed and cannot be changed. The unit is nA with the hex value 0x00020000.

2.5.6 Secondary Measurement Channel 13 (Transmission)

The first internal measured value is specified as transmission. This measured value is used for the selected correlation to apply the algorithm.

2.5.6.1 Definition of SMC13

Start	Data size	Function	Data type	Modbus	Read	Write
register	(registers)			function	access	access
				code		
2848	8	Description of SMC13	ASCII	3, 4	U/A/S	none
			chars			

In register 2848, a plain text ASCII description of SMC13 is given. SMC13 is called "Transmission".

Start register	Data size (registers)	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
2856	6	Physical unit	Measurement value of SMC13	0	3, 4	U/A/S	none

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Reg9 / Reg10	Modbus function code	Read access	Write access
2856	10	Selected physical unit	Measure -ment value of SMC13	0	Min allowed value	Max allowed value	3, 4	U/A/S	none

In register 2856, the unit, the measured value and the minimum and maximum value are displayed.

The unit is fixed and cannot be changed. The unit is arb. Unit with the hex value 0x000040.

111004638/03 page 29 / 76 **HAMILT®N**

2.5.7 Secondary Measurement Channel 14 (Reflection)

The second internal measured value is specified as reflection. This measured value is used for the selected correlation to apply the algorithm.

2.5.7.1 Definition of SMC14

Start register	Data size (registers)	Function	Data type	Modbus function code	Read access	Write access
2880	8	Description of SMC14	ASCII chars	3, 4	U/A/S	none

In register 2880, a plain text ASCII description of SMC14 is given. SMC14 is called "Reflection".

Start register	Data size (registers)	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
2888	6	Physical unit	Measurement value of SMC14	0	3, 4	U/A/S	none

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
	reg.						code		
2888	10	Selected physical unit	Measure -ment value of SMC14	0	Min allowed value	Max allowed value	3, 4	U/A/S	none

In register 2888, the unit, the measured value and the minimum and maximum value are displayed.

Attention:

The unit is fixed and cannot be changed. The unit is arb. Unit with the hex value 0x000040.

2.5.8 Secondary Measurement Channel 17 (Dark Current Transmission)

The first internal measured value is specified as transmission. This measured value is used for the selected correlation to apply the algorithm.

2.5.8.1 Definition of SMC17

Start register	Data size (registers)	Function	Data type	Modbus function code	Read access	Write access
2976	8	Description of SMC17	ASCII chars	3, 4	S	none

In register 2976, a plain text ASCII description of SMC14 is given. SMC14 is called "Reflection".

Start register	Data size (registers)	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
2984	6	Physical unit	Measurement value of SMC17	0	3, 4	S	none

111004638/03 page 30 / 76

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
	reg.						code		
2984	10	Selected	Measure	0	Min	Max	3, 4	S	none
		physical	-ment		allowed	allowed			
		unit	value of		value	value			
			SMC17						

In register 2984, the unit, the measured value and the minimum and maximum value are displayed.

Attention:

The unit is fixed and cannot be changed. The unit is nA with the hex value 0x00020000.

2.5.9 Secondary Measurement Channel 18 (Dark Current Transmission)

The second internal measured value is specified as reflection. This measured value is used for the selected correlation to apply the algorithm.

2.5.9.1 Definition of SMC 18

Start register	Data size (registers)	Function	Data type	Modbus function code	Read access	Write access
3008	8	Description of SMC18	ASCII chars	3, 4	S	none

In register 3008, a plain text ASCII description of SMC18 is given. SMC18 is called "Reflection".

Start register	Data size (registers)	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
3016	6	Physical unit	Measurement value of SMC18	0	3, 4	S	none

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Reg9 / Reg10	Modbus function code	Read access	Write access
3016	10	Selected physical unit	Measure -ment value of SMC18	0	Min allowed value	Max allowed value	3, 4	S	none

In register 3016, the unit, the measured value and the minimum and maximum value are displayed.

Attention:

The unit is fixed and cannot be changed. The unit is nA with the hex value 0x00020000.

111004638/03 page 31 / 76

2.5.10 Definition of the Measurement Status for PMC1 / PMC6

This is the definition of the Measurement Status for the registers 2090 (PMC1) and 2410 (PMC6):

Table 17 Definition of measurement status for Primary Measurement Channels

Bit #	Hex	Description
	value	
0 (LSB)	0x01	Temperature out of user defined measurement temperature range
		(see register 4624 in chapter 2.9.1 Temperature Ranges)
1	0x02	Temperature out of operating range
		(see register 4608 in chapter 2.9.1 Temperature Ranges)
2	0x04	Not available
3	0x08	Warning not zero
		(see register 4736 chapter 2.9.3 Warnings)
4	0x10	Error not zero
		(see register 4800 chapter 2.9.4 Errors)

111004638/03 page 32 / 76

2.6 Configuration of the Measurement

This chapter describes the configuration of PMC1 and PMC6 by means of measurement parameters (PA).

2.6.1 Available Parameters

In register 3072, all available parameters (PA) are given.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3072	2	Available parameters (see Table 18)	3, 4	U/A/S	none

Table 18 Bitwise definition of all parameters PA1 to PA16

Bit #	Hex value	Description	Definition
0 (LSB)	0x0001	PA1	Factor TCD
1	0x0002	PA2	Offset TCD
2	0x0004	PA3	not available
3	0x0008	PA4	not available
4-6			not available
7	0x0080	PA8	not available
8	0x0100	PA9	Moving average
9	0x0200	PA10	not available
10-11			not available
12	0x1000	PA13	Meas. interval
13-14			not available
15 (MSB)	0x8000	PA16	not available

Table 19 Example to read the available Parameters with operator level S

Command: Available parameters		Modbus address: 3	072	Length: 2	Type: 3	Read
Parameter:	Measurement					
	parameters					
Format:	Hex					
Value:	0x1103					

The hex value 0x1102 corresponds to 0x01 (PA01) + 0x02 (PA2) + 0x100 (PA9) + 0x1000 (PA13).

Note:

- PA1 to PA8 use FLOAT as data format for its values
- PA9 to PA16 use UNSIGNED INT as data format for its values

HAMILT®N

111004638/03 page 33 / 76

2.6.2 PA1 Factor TCD

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3104	8	Factor TCD	3, 4	U/A/S	none

In register 3104, a plain ASCII text description of Factor TCD is given. It returns "Factor TCD ".

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3112	2	Available units for Factor TCD	3, 4	U/A/S	none

Register 3112 delivers the available units for the Factor TCD parameter. It is coded according to Table 14 Definition of physical units. The only available unit for this parameter is "none" (0x000000001).

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
reg.	of reg.	Reg2	Reg4	Reg6	Reg8	function	access	access
		(uint)	(float)	(float)	(float)	code		
3114	4	Unit	Value			16	none	S
	8	Unit	Value	Minimal value	Maximal value	3, 4	U/A/S	none

Register 3114 allows reading or changing the current Factor TCD.

Unit always is 0x00000001 meaning that the Factor TCD parameter is in "none". See Table 14 *Definition of physical units*. Writing a different value to Reg1/Reg2 does not have any effect.

The offset value has a direct influence on the TCD value (PMC1). For details see 2.5.2.2 Reading the measurement value of PMC1.

Minimal value is -inf, Maximal value is +inf.

2.6.3 PA2 Offset TCD

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3136	8	Offset TCD	3, 4	U/A/S	none

In register 3136, a plain ASCII text description of Offset TCD is given. It returns "Offset TCD ".

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3144	2	Available units for Offset TCD	3, 4	U/A/S	none

Register 3144 delivers the available units for the Offset TCD parameter. It is coded according to Table 14 Definition of physical units. The only available unit for this parameter is "none" (0x000000001).

Start reg.	Number of reg.	Reg1 / Reg2 (uint)	Reg3 / Reg4 (float)	Reg5 / Reg6 (float)	Reg7 / Reg8 (float)	Modbus function code	Read access	Write access
3146	4	Unit	Value			16	none	S
	8	Unit	Value	Minimal value	Maximal value	3, 4	U/A/S	none

Register 3146 allows reading or changing the current Offset TCD.

Unit always is 0x000000001 meaning that the Offset TCD parameter is in "none". See Table 14 *Definition of physical units*. Writing a different value to Reg1/Reg2 does not have any effect.

The offset value has a direct influence on the TCD value (PMC1). For details see 2.5.2.2 Reading the measurement value of PMC1.

Minimal value is -inf, Maximal value is +inf.

Attention:

Executing Mark Zero respectively Clear Zero (see 2.6.7 Mark Zero TCD) changes the offset value!

111004638/03 page 35 / 76

2.6.4 PA9: Moving Average

Dencytee RS485 calculates new TCD measurement values with the value defined in the measurement interval parameter One has the possibility to smoothen the TCD and Temperature reading (PMC1 and PMC6) by means of a moving average.

Figure 15 shows a comparison between no moving average (n=1) and a moving average over 50 readings at a measurement interval of 3 second.

Figure 15 Comparison of the response of Dencytee RS485 to a change from 38.5 g/l to zero TCD

Using moving average, the short term signal stability can be improved; on the other hand, the response time of the sensor increases with increasing moving average. A moving average over 50 samples results in a response time of at least 50 times the measurement interval of 3 seconds.

Note:

The moving average defined by PA9 is applied to both PMC1 and PMC6.

111004638/03 page 36 / 76

2.6.4.1 Description of PA9 (Moving Average)

In register 3360, a plain text ASCII description of PA9 is given. It returns "Moving average".

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3360	8	Description of PA9	3, 4	U/A/S	none

2.6.4.2 Selecting the Physical Unit and Writing the Value for PA9

In register 3368, the available physical units for PA9 are defined. The only one available here is "none" (0x01). For the definition of the physical units see Table 14.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3368	2	Available physical units for PA9	3, 4	U/A/S	none

By writing to register 3370/4, the active physical unit for PA9 can be selected, by choosing one of the physical units that are defined in register 3368. According to register 3368 only one bit for the physical unit can be set. The value of the parameter can be set as well.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3370	4	Select physical unit	Value for PA9	16	none	S
		for PA9	(1-150, default: 50)			

PA9 can take values between 1 and 150. The value of 1 does not influence the response time of the sensor, the value of 50 increases the response time 50 times the value of the measurement interval.

2.6.4.3 Reading all Values for PA9

By reading register 3370/8, the active physical unit of measurement, the current value, and the min and max values can be read.

The unit is always none (0x01), the min is 1 and the max is 150.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3370	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

HAMILT®N

111004638/03 page 37 / 76

2.6.5 PA13: Measurement Interval

The measurement interval for the Dencytee RS485can be set between 3s and 300s (5min). The TCD measurement can also be deactivated by writing a 0 to the measurement interval register. When the interval is increased, the response time for PMC1 is slower.

Note:

When a correlation is initiated and the current measurement interval is greater than 3s or equals 0s, the measurement interval is temporarily set to 3s. The measurement interval is automatically reset to the original value 10 min after the last correlation command, or after power up. See chapter 2.8 Correlation for more details.

2.6.5.1 Description of PA13 (Measurement Interval)

In register 3488, a plain text ASCII description of PA13 is given.

Table 20: Definition of register 3488

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3488	8	Description of PA13	3, 4	U/A/S	none

Table 21: Example to read the description. It is "Meas. interval".

Command: Meas. interval		Modbus address:	3488	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Meas. interval					

2.6.5.2 Selecting the Physical Unit and Writing the Value for PA13

In register 3496, the available physical units for PA13 are defined.

Table 22: Definition of register 3496

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3496	2	Available physical units for PA13	3, 4	U/A/S	none

Table 23: Example to read the available physical units for PA13. The only one available here is "none" (0x01). For the definition of the physical units see chapter 2.5.1 Definition of Measurement Channels and Physical Units

Command:Meas. Int. available units		Modbus address: 3	3496	Length: 2	Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x01					

By writing to register 3498, the active physical unit of PA13 can be selected, by choosing one of the physical units that are defined in register 3496. Also the value of the parameter can be set.

111004638/03 page 38 / 76

Table 24: Definition of register 3496. Only one bit for the physical unit can be set and the value: 0-300.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3498	4	Select physical unit	Value for PA13	16	none	S
		for PA13	(0-300; default: 3)			

Table 25: Example to set the physical unit of PA13 to "none" (0x01) and the measurement interval to 30.

Command: M	leas. Interval	Modbus address: 3498		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Decimal				
Value:	0x01	30				

Note:

If 1s or 2s is set as the measurement interval, it is automatically set to 3 seconds.

2.6.5.3 Reading all Values for PA13

By reading register 3498, the active physical unit, the selected value, and the min and max values can be read.

Table 26: Definition of register 3498.

Start	Number of	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	registers	Reg2	Reg4	Reg6	Reg8	function	access	access
						code		
3498	8	Physical	Current	Min	Max	3, 4	U/A/S	none
		unit	value	value	value			

Table 27: Example to read PA13. The physical unit is 0x01 ("none"), and the measurement interval is 30 seconds.

Command: N	leas. Interval	Modbus address:	3498	Length: 8	Type: 3	Read
Parameter:	Unit	Value	Min va	llue	Max value	
Format:	Hex	Decimal	Decim	al	Decimal	
Value:	0x01	30	0		300	

Attention:

Setting PA13 to 0 deactivates TCD reading completely. Temperature readings are still active. Bit 31 of "Warning Measurement" is set which means "Measurement not running".

The TCD value is set to an invalid value (-999) on the digital output. At the analog interface the output value goes into saturation.

HAMILT®N

111004638/03 page 39 / 76

2.6.6 Cell Type Mode

The Dencytee RS485 Sensor offers 10 different correlation models that define the coefficients needed to calculate PMC1. Cell Type Mode 1 to 4 (Transmission [AU], Reflection [arb.Unit], CDW Yeast [g/l] and Turbidity Std [NTU]) are fix, whereas Cell Type Mode 5 to 10 are user definable. For more information see chapter 2.8 Correlation.

The Cell Type Mode parameter (Reg. 41218, 41226 and 41228) defines the active Cell Type Mode. The different Cell Type Modes themselves are defined by the registers starting at 44454 (see chapter 2.8.5 Storage of correlations.

2.6.6.1.1 Cell Type Mode Parameter

In register 41218, a plain ASCII text description of the Cell Type Mode parameter is given:

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
41218	8	Cell Type Mode parameter	3, 4	U/A/S	none

Register 41218 returns "Cell Type Mode".

Register 41226 delivers the available units for the Cell Type Mode parameter:

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
41226	2	Available units for Cell Type Mode	3, 4	U/A/S	none
		parameter			

The available units are coded according to *Table 14*. For this parameter the only unit available is "none" (0x00000001).

Register 41228 allows reading or changing the currently selected Cell Type Mode:

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of reg.	Reg2	Reg4	Reg6	Reg8	function	access	access
		(uint)	(uint)	(uint)	(uint)	code		
41228	4	Unit	СТМ			16	none	S
	8	Unit	СТМ	Minimal value	Maximal value	3, 4	U/A/S	none

Unit always is 0x00000001 meaning that the Cell Type Mode parameter has no unit. See *Table 14*. Writing a different value to Reg1/Reg2 does not have any effect.

The Dencytee RS485Sensor offers 10 Cell Type Modes represented by an index of 0 to 9. Therefore, Minimal value is 0 and Maximal value is 9. If a value outside the value range is entered, either the maximum or the minimum value is taken over

CTM index (Reg3/Reg4):

0 = Cell Type Mode 1: Transmission [AU]

1 = Cell Type Mode 2: Reflection [arb. Unit]

2 = Cell Type Mode 3: CDW Yeast [g/l]

3 = Cell Type Mode 4: Turbidity Std [NTU]

4 = Cell Type Mode 5: User 1

5 = Cell Type Mode 6: User 2

6 = Cell Type Mode 7: User 3

7 = Cell Type Mode 8: User 4

8 = Cell Type Mode 9: User 5

9 = Cell Type Mode 10: User 6

Cell Type Mode 4 to 9 can be defined by the user. See chapter 2.8 Correlation.

2.6.6.2 Definition of the Cell Type Modes

Start register	Number of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
44454 + n * 54	8	Label (16 ASCII	characters)			3, 4 / 3, 4, 16	U/A/S	none / S
44462 + n * 54	6	Unit (uint)	Actice Points (uint)	Status (uint)		3, 4	U/A/S	none
44468 + n * 54	6	Trans- mission CoP1 (uint)	Re- flection CoP1 (uint)	Input value CoP1 (uint)		3, 4	U/A/S	none
44474 + n * 54	6	Trans- mission CoP2 (uint)	Re- flection CoP2 (uint)	Input value CoP2 (uint)		3, 4	U/A/S	none
44480 + n * 54	6	Trans- mission CoP3 (uint)	Re- flection CoP3 (uint)	Input value CoP3 (uint)		3, 4	U/A/S	none
44486 + n * 54	6	Trans- mission CoP4 (uint)	Re- flection CoP4 (uint)	Input value CoP4 (uint)		3, 4	U/A/S	none
44492 + n * 54	6	Trans- mission CoP5 (uint)	Re- flection CoP5 (uint)	Input value CoP5 (uint)		3, 4	U/A/S	none
44498 + n * 54	6	Trans- mission CoP6 (uint)	Re- flection CoP6 (uint)	Input value CoP6 (uint)		3, 4	U/A/S	none

Definition of the Cell Type Modes (n = 0..9)

The definition of Cell Type Mode 1 starts at 44454. With an offset of 54 bytes the definition of the next Cell Type Mode is following.

Cell Type Modes 1 to 4 are read only, whereas CTM 5 to 10 can be overwritten with the mechanism for creating a new correlation.

In register 44454 + n *54, a plain ASCII text description of the Cell Type Mode is given:

```
n=0: Cell Type Mode 1: "Transmission n=1: Cell Type Mode 2: "Reflection " n=2: Cell Type Mode 3: "CDW Yeast " n=3: Cell Type Mode 4: "Turbidity Std " n=4: Cell Type Mode 5: "User Correlation" n=5: Cell Type Mode 6: "User Correlation" n=6: Cell Type Mode 7: "User Correlation" n=7: Cell Type Mode 8: "User Correlation" n=8: Cell Type Mode 9: "User Correlation"
```

n=9: Cell Type Mode 10: "User Correlation"

2.6.7 Mark Zero TCD

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
41236	8	Mark Zero TCD	3, 4	U/A/S	none

In register 41236, a plain ASCII text description of Mark Zero TCD is given. It returns "Mark Zero TCD ".

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
41244	2	Available units for Mark Zero	3, 4	U/A/S	none

The available units are coded according to Table 14. For this parameter the only unit available is "none" (0x0000001).

Start reg.	Number of reg.	Reg1 / Reg2 (uint)	Reg3 / Reg4 (uint)	Reg5 / Reg6 (uint)	Reg7 / Reg8 (uint)	Modbus function code	Read access	Write access
41246	4 Unit Value			16	none	S		
	8	Unit	Value	Minimal value	Maximal value	3, 4	U/A/S	none

Register 41246 allows setting the TCD measurement value to zero (Mark Zero) or to undo this settin (clear Zero). Zeroing the measurement value means that the current measurement value is saved and will be subtracted from the following measurement as an offset (see 2.6.3 PA2 Offset TCD).

Unit alswas is 0x00000001 meaning that the Cell Type Mode parameter has no unit See *Table 14*. Writing a different value to Reg1/Reg2 does not have any effect.

The zeroing functionality is controlled by the Value (Reg3/Reg4)

- 0 Clear zero (zeroing not active)
- 1 Mark zero (zeroing active)

Only 0 and 1 are valid Values. Therefore minimal value is 0 and maximal value is 1.

Mark zero has the effect that the offset TCD (2.6.3 PA2 Offset TCD) is set to the current TCD value, what results in a TCD value (PMC1) of zero. Clear zero sets the offset TCD back to zero.

Attention:

Zeroing the TCD value might have an influence on the output of AO1 / AO2 if PMC1 is mapped to one of it. Define the limits of the 4-20 mA current interface such that the zeroing does not lead to an unintentional behavior of the current output.

HAMILT®N

111004638/03 page 42 / 76

2.6.8 Inoculate

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
41290	8	Inoculation label	3, 4	U/A/S	none

In register 41290, a plain ASCII text description of the Inoculate parameter is given. It returns "Inoculate".

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
41298	2	Available units for Inoculate	3, 4	U/A/S	none

Register 41298 delivers the available units for the Inoculate parameter. It is coded according to *Table 14*.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
reg.	of reg.	Reg2	Reg4	Reg6	Reg8	function	access	access
		(uint)	(uint)	(uint)	(uint)	code		
41300	4	Unit	Value			16	none	S
	8	Unit	Value	Minimal value	Maximal value	3, 4	U/A/S	none

Register 41300 allows marking the inoculation.

Unit always is 0x00000001 meaning that the Inoculate parameter has no unit. See *Table 14*. Writing a different value to Reg1/Reg2 does not have any effect.

The inoculate functionality is controlled by the Value (Reg3/Reg4).

0 = stop culture

1 = inoculate

Only 0 and 1 are valid Values. Therefore, Minimal value is 0 and Maximal value is 1.

The culture time (2.6.9 Culture Time) starts counting from zero when writing a 1 (inoculate) to the register 41300. Repeated writing of a 1 does not have any effect. When writing a 0 (stop culture) the culture time stops counting and is set back to zero.

111004638/03 page 43 / 76

2.6.9 Culture Time

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
41308	8	Culture time label	3, 4	U/A/S	none

In register 41308, a plain ASCII text description of the Inoculate parameter is given. It returns "Culture time".

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
41316	2	Available units culture time	3, 4	U/A/S	none

Register 41316 delivers the available units for the Inoculate parameter. It is coded according to *Table 14*.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
reg.	of reg.	Reg2	Reg4	Reg6	Reg8	function	access	access
		(uint)	(uint)	(uint)	(uint)	code		
41318	8	Unit	Value	Minimal value	Maximal value	3, 4	U/A/S	none

Register 41318 is read only. It delivers the culture time in seconds. The culture time can be controlled by the inoculate command (2.6.8 Inoculate).

Attention:

Although Reg1/Reg2 returns 0x00000001 the unit for the culture time is second.

Minimal value is 0, maximal value is $2^{32} - 1$.

111004638/03 page 44 / 76

2.7 Verification

The main idea of the verification is to verify the current sensor measurement with the last standard calibration (performed by TS). For this purpose, the measured values of transmission (SMC13) and reflection current (SMC10) are compared by the software with the reference values determined during the last successful standard calibration. During verification, the transmission cap must be placed on the sensor. Then the reference value of the transmission as well as its tolerance must be read from the software and compared with the measured value (SMC13). Then this is repeated with the absorber clip, the reference value, and the tolerance of the reflection current as well as the measured value of the reflection current (SMC10). If both measured values are within the tolerances, the verification is successful, otherwise the sensor should be calibrated. This function is not executed by the sensor itself, which means that the function must be integrated into the software. No command code is required to perform the verification.

2.7.1 Verification reference and tolerance values

The reference value and the tolerance for the measurement with the transmission cap of the transmission (SMC13) are stored in register 41830:

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
41830	4	Reference value transmission (transmission cap)	Tolerance value transmission (transmission cap)	3, 4	U/A/S	none

Table 28 Example to read the reference and tolerance of the transmission for the verification

Command: Verification transmission		Modbus address:	41830	Length: 4	Type: 3	Read
Parameter:	Reference value	Tolerance value				
	transmission	transmission				
Format:	Float	Float				
Value:	0.8	0.04				

The reference value and the tolerance for the measurement with the absorber clip of the reflection current are stored in register 41864:

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
41864	4	Reference value reflection current (absorber clip)	Tolerance value reflection current (absorber clip)	3, 4	U/A/S	none

Table 29 Example to read the reference and tolerance of the reflection current for the verification

Command: Verification transmission		Modbus address:	41864	Length: 4	Type: 3	Read
Parameter:	Reference value	Tolerance value				
	reflection	reflection				
Format:	Float	Float				
Value:	50000	2500				

After the transmission cap/absorber clip is placed on the sensor, the transmission (SMC13) or reflection current (SMC10) should be compared to the corresponding reference values. If both are within their tolerance, the verification is successful, otherwise the sensor should be sent to the TS to perform a standard calibration.

Note:

Standard calibration can only be performed by Hamilton Technical Support (TS). The sensor must be sent back for this.

HAMILT®N

2.8 Correlation

The Dencytee RS485 Sensor contains four non-changeable default correlations, which can be selected with the parameter Cell Type Mode 2.6.6 Cell Type Mode. In addition, it is possible to create 6 further user correlations, which can then also be selected via the parameter Cell Type mode 2.6.6 Cell Type Mode. The procedure for creating a user correlation is described in this chapter.

2.8.1 Preview Correlation

2.8.1.1 Naming the preview of the correlation

The preview of the correlation can be assigned a name. If the preview is saved to the user area after successful execution 2.8.1.5.1 Creating a correlation, the name is also stored there. A maximum of 16 characters can be used as a name. The naming is executed via the following register:

Table 30 Example of naming the preview

Command: Current interface text		Modbus address: 44400	Length: 8	Type:	Read/W
				3/16	rite
Parameter:	Text			Read	Write
				access	access
Format:	Character				
Value:	User Corr. 1			U/A/S	S

2.8.1.2 Selection of the number of adjacent correlation points

In register 10260, the available number of Correlation Points (CoP) for Primary Measurement Channel 1 (PMC1) are defined. As shown in Table 31, six individual CoPs are theoretically possible.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
10260	2	Available number of CoP for PMC1 (see Table 31)	3, 4	U/A/S	S

Table 31 Bitwise definition of CoP0 to CoP6

Table 31 bitwise definition of cor o to cor o						
Bit #	Hex value	Description	Definition in Dencytee			
0 (LSB)	0x01	CoP0	not available			
1	0x02	CoP1	Correlation Point 1			
2	0x04	CoP2	Correlation Point 2			
3	0x08	CoP3	Correlation Point 3			
4	0x10	CoP4	Correlation Point 4			
5	0x20	CoP5	Correlation Point 5			
6	0x40	CoP6	Correlation Point 6			

Table 32 Example to read the available CoPs

111004638/03

Command: A	vailable cali points	Modbus address: 10	256	Length: 2	Type: 3	Read
Parameter:	Points					
Format:	Hex					
Value:	0x7E					

The hex value 0x7E in Table 32 corresponds to 0x02 (CoP1) + 0x04 (CoP2) + 0x08 (CoP3) + 0x10 (CoP4) + 0x204 (CoP5) + 0x40 (CoP6).

The Dencytee RS485 Sensors allow 6 correlation points (CoP1 to CoP6) for the correlation. The number of active correlation points can be defined with the write command.

Hex value	Description	Definition in Dencytee
0x06	2 Point Correlation	CoP1 to CoP2 are active
0x0E	3 Point Correlation	CoP1 to CoP3 are active
0x1E	4 Point Correlation	CoP1 to CoP4 are active
0x3E	5 Point Correlation	CoP1 to CoP5 are active
0x7E	6 Point Correlation	CoP1 to CoP6 are active

If such a hex value is written to the sensor, the unselected correlation points are set to inactive. This means that the points are still available but inactive, which means that the hex value 0x7E is always displayed when register 10260 is read.

2.8.1.3 Stability criteria

When initiating the correlation at CoP1 to CoP6, the measured temperature has to be stable for at least 100 seconds. The stability criteria of the correlation are combined with the stability criteria of the standard calibration (performed by TS). With the correlation, however, only the temperature is checked since the measured signal of PMC1 is not defined with a correlation. The stability criteria are defined in register 10278:

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(Float)	(Float)	function code	access	access
10278	4	Max. Drift PMC1	Max. Drift PMC6	3, 4, 16	U/A/S	S
		(calibration only)	Temperature			
		[%/min]	[K/min]			

Table 33 Example to read the calibration and correlation stability

TUDIO OO EXUIT	pio to roda trio odiibration	and corrolation diability				
Command: F	Read calibration and	Modbus address:	10278	Length: 4	Type: 3	Read
correlation s	tability					
Parameter:	Max drift PMC1	Max drift temp				
	[%/min]	[K/min]				
Format:	Float	Float				
Value:	2.0	0.5				

Table 34 Example to set the calibration and correlation stability

Command: Set calibration and correlation stability		Modbus address: 10278	Length: 4	Type: 16	Write
Parameter:	Max drift PMC1 [%/min]	Max drift temp [K/min]			
Format:	Float	Float			
Value:	3.0	0.5			

Attention:

For the correlation only the stability of the temperature is checked

2.8.1.4 Units of correlation

The available units for the correlation are defined in register 10272

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10272	2	Available Units of correlation	3, 4	U/A/S	none

Table 35 Example to read available correlation units

Command: Avail. Corr. Units		Modbus address: 10)272 Lei	ngth: 2	Type: 3	Read
Parameter:	Avail. Corr. Units					
Format:	Hex					
Value:	0x908001F0					

According to Table 14 the available physical units for the correlation are PCV, AU, arb.Unit, NTU, g/l, CFU, e6 c/ml and OD.

In register 10274, the active physical correlation unit can be selected, by choosing one of the physical units that are defined in register 10272. Only one bit can be set.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10274	2	Selected active physical unit for correlation	16	U/A/S	S

Table 36 Example to set the physical correlation unit to g/l (0x00000100)

Command: Correlation set unit		Modbus address: 1027	2 Length: 2	Type: 16	Write
Parameter:	Unit				
Format:	Hex				
Value:	0x00000100				

2.8.1.5 Correlation procedure

Table 37 Correlation points register

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Modbus function code	Read access	Write access
10314	4	Correlation command code for CoP1, see Table 38	Correlation value or dummy value (depends on command code)	16	none	A/S
11034	4	Correlation command code for CoP2, see Table 38	Correlation value or dummy value (depends on command code)	16	none	A/S
11754	4	Correlation command code for CoP3, see Table 38	Correlation value or dummy value (depends on command code)	16	none	A/S
12474	4	Correlation command code for CoP4, see Table 38	Correlation value or dummy value (depends on command code)	16	none	A/S
13194	4	Correlation command code for CoP5, see Table 38	Correlation value or dummy value (depends on command code)	16	none	A/S
13914	4	Correlation command code for CoP6, see Table 38	Correlation value or dummy value (depends on command code)	16	none	A/S

Table 38 Correlation command code

Bit #	Hex value	Description
none	0x00000000	·
0 (LSB)	0x0000001	
1	0x00000002	Not valid (leads to a modbus exception)
2	0x00000004	
3	0x00000008	
4	0x0000010	Initialization of the correlation
5	0x00000020	Assignment of the input value of the
		correlation
6	0x00000040	Active setting of the correlation point
7	0x00000080	Not valid (leads to a modbus exception)
8	0x00000100	Inactive setting of the correlation point
9	0x00000200	Not valid (leads to a modbus exception)
10	0x00000400	Initialization of the ring buffer
11	0x00000800	
3-30		Not valid (leads to a modbus exception)
31 (MSB)	0x80000000	

The individual command codes are described in the chapter 2.8.1.6 Command Codes and given with an example.

111004638/03 page 48 / 76

2.8.1.5.1 Creating a correlation

Table 39 Initialization of the preview

Bit #	Hex value	Description
none	0x00000000	Delete the preview
0 (LSB)	0x00000001	Not valid (leads to a modbus exception)
1	0x00000002	Not valid (leads to a modbus exception)
2	0x00000004	Not valid (leads to a modbus exception)
3	0x00000008	Not valid (leads to a modbus exception)
4	0x0000010	Copy of user correlation 1 into the preview
5	0x00000020	Copy of user correlation 2 into the preview
6	0x00000040	Copy of user correlation 3 into the preview
7	0x00000080	Copy of user correlation 4 into the preview
8	0x00000100	Copy of user correlation 5 into the preview
9	0x00000200	Copy of user correlation 6 into the preview
9	0x00000400	
11-30		Not valid (leads to a modbus exception)
31 (MSB)	0x80000000	

2.8.1.5.2 Creating a new correlation

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10264	2	Initialization of the preview, see Table 39	16	none	S

Table 40 Example of initializing the preview

Command: Initialization of the preview		Modbus address: 102	64 Length: 2	Type: 16	Write
Parameter:	Command Code				
Format:	Hex				
Value:	0x00000000				

If a correlation is to be created from scratch, the existing correlation can be deleted in the preview. This is done with the command code 0x00000000. If this is executed, all correlation points will be reinitialized.

2.8.1.5.3 Use template of an existing correlation

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10264	2	Initialization of the preview, see Table 39	16	none	S

Table 41 Example of initializing the preview with user correlation 1

Command: Initialization of the preview		Modbus address: 10	264	Length: 2	Type: 16	Write
Parameter:	Command Code					
Format:	Hex					
Value:	0x00000010					

It is also possible to use an existing user correlation (one created by the customer at an earlier time) as a template. This is done with the command code in Table 39.

Attention:

Only user correlations and no default correlations can be used as templates. If there are no user correlations, this function cannot be executed.

111004638/03 page 49 / 76

2.8.1.6 Command Codes

2.8.1.6.1 Initialization ring buffer

Table 42 Example of initialization of the ring buffer for correlations point 1

Command: Initialization of the ringbuffer for CoP1		Modbus address: 10314		Length: 4	Type: 16	Write
Parameter:	Command Code	Dummy Value				
Format:	Hex	Hex				
Value:	0x00000400	0x00000000				

Since the stability of the signal cannot be checked in a correlation (air bubbles, stirring rate, etc.), a mean/median filter is applied over the measured signal. To activate this filter, the command code 0x00000400 is written in the desired CoP. This fills the ring buffer with 32 values. At the initialization 2.8.1.6.2 Initialization ring buffer the content of the ring buffer is deleted and must be reinitialized at the next point.

2.8.1.6.2 Initialization correlation point

Table 43 Example of initializing the preview for correlations point 1

Command: Initialization of CoP1		Modbus address: 10314		Length: 4	Type: 16	Write
Parameter:	Command Code	Dummy Value				
Format:	Hex	Hex				
Value:	0x00000010	0x00000000				

After initializing the ring buffer, you have to wait 100 seconds until the ring buffer has the desired 32 values. After this waiting time the correlation point can be initialized, whereby all necessary measuring values, which are specified in 2.8.2 Available correlation parameters, are stored.

Note:

When a correlation is initiated and the current measurement interval is greater than 3s or equals 0s, the measurement interval is temporarily set to 3s. The measurement interval is automatically reset to the original value 10 min after the last correlation command, or after power up.

2.8.1.6.3 Assigning the offline value

Table 44 Example of assigning the input value for correlations point 1

Command: Assignment of CoP1		Modbus address: 10314		Length: 4	Type: 16	Write
Parameter:	Command Code	Input Value				
Format:	Hex	float				
Value:	0x00000020	0.432				

After the correlation point has been initialized, the offline value determined externally can be assigned to the particular point.

2.8.1.6.4 Switching the correlation point active/inactive

Table 45 Example to inactivate the correlation point 1

Command: Inactivation of CoP1		Modbus address: 10314		Length: 4	Type: 16	Write
Parameter:	Command Code	Dummy Value				
Format:	Hex	Hex				
Value:	0x00000040	0x00000000				

There is also a possibility to make correlation points inactive, which will cause the point to be ignored when creating a correlation.

Table 46 Example to activate the correlation point 1

rable to Example to delitate the contract point :							
Command: Activation of CoP1		Modbus address: 10314		Length: 4	Type: 16	Write	
Parameter:	Command Code	Dummy Value					
Format:	Hex	Hex					
Value:	0x00000100	0x00000000					

This inactivation of a point can be undone with the command code 0x000040.

2.8.1.7 Status correlation point preview

Table 47 Correlation points status register

Table 47 CC	rrelation points	s status register				
Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
10312	4	Correlation Status for CoP1, see Table 48	Correlation value	3, 4	U/A/S	none
11032	4	Correlation Status for CoP2, see Table 48	Correlation value	3, 4	U/A/S	none
11752	4	Correlation Status for CoP3, see Table 48	Correlation value	3, 4	U/A/S	none
12472	4	Correlation Status for CoP4, see Table 48	Correlation value	3, 4	U/A/S	none
13192	4	Correlation Status for CoP5, see Table 48	Correlation value	3, 4	U/A/S	none
13912	4	Correlation Status for CoP6, see Table 48	Correlation value	3, 4	U/A/S	none

Table 48 Meaning Status bits of the correlation points

Bit #	Hex value	Definition
None	0x00000000	Not available
0 (LSB)	0x00000001	Not available
1-14		Not available
15	0x00008000	Out of range
16-18		Not available
19	0x00080000	Temperature too high
20	0x00100000	Temperature too low
21	0x00200000	Drift temperature
22	0x00400000	Not available
23	0x00800000	Invalid input value
24	0x01000000	Reflection too low
25-27		Not available
28	0x10000000	Correlation Point active
29	0x20000000	Correlation Point initialized
30	0x40000000	Correlation Point assigned
31	0x80000000	Not available

111004638/03

Attention:

In the status of point 1 to point 5, the status of the standard calibration (performed by TS) and the status of the correlation are indicated. Bit 0 to bit 13 is reserved for the standard calibration Bit 14 to bit 31 is reserved for the correlation.

page 51 / 76 **HAMILT®N**

2.8.2 Available correlation parameters

The available correlation parameters are defined in the following registers:

Table 49 Bitmask of available correlation parameters.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10326	2	Bitmask of the available correlation parameters for correlation point 1, see Table 50.	3, 4	U/A/S	none
11046	2	Bitmask of the available correlation parameters for correlation point 2, see Table 50.	3, 4	U/A/S	none
11766	2	Bitmask of the available correlation parameters for correlation point 3, see Table 50.	3, 4	U/A/S	none
12486	2	Bitmask of the available correlation parameters for correlation point 4, see Table 50.	3, 4	U/A/S	none
13206	2	Bitmask of the available correlation parameters for correlation point 5, see Table 50.	3, 4	U/A/S	none
13926	2	Bitmask of the available correlation parameters for correlation point 6, see Table 50.	3, 4	U/A/S	none

Table 50 Bitwise definition of available correlation parameters.

Bit #	Hex value	Definition
0 (LSB)	0x00000001	not available
1	0x00000002	Calibration parameter index 2
2	0x00000004	Calibration parameter index 3
3-9		Not available
10	0x00000010	Calibration parameter index 11
11	0x00000020	Calibration parameter index 12
12-31		Not available

Table 51 Example to read available correlation parameters for Correlation Point 1

Command: A	vail. Cali. Param. for	Modbus address: 10326	Length: 2	Type: 3	Read
Correlation F	Point 1				
Format:	Hex				
Value:	0x00000C06				

Table 52 Description of the available correlation parameters

Calibration	Definition
parameter	
index#	
2	The assigned correlation value is stored within parameter index 2.
3	At the time of a valid initialization of a correlation point, the current temperature value is stored within parameter index 3.
11	At the time of a valid initialization of a correlation point, the current transmission value is stored within correlation parameter index 11.
12	At the time of a valid initialization of a correlation point, the current reflection value is stored within correlation parameter index 12.

111004638/03 page 52 / 76

2.8.2.1.1 Description of the parameters

The value and unit of the available correlation preview parameter for all correlation points, can be read out via the following register:

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4 (fix)	Reg5 / Reg6	Calibration Parameter Index and description,	Modbus function code	Read access	Write access
10374 + (CoPx -1) *720	6	Not relevant	Unit	Value	2	3, 4	U/A/S	none
10412 + (CoPx -1) *720	6	Not relevant	Unit	Value	3	3, 4	U/A/S	none
10662 + (CoPx -1) *720	6	Not relevant	Unit	Value	11	3, 4	U/A/S	none
10694+ (CoPx -1) *720	6	Not relevant	Unit	Value	12	3, 4	U/A/S	none

The description of correlation parameter 2, 3, 11 and 12, can be read out via the following register:

Start	Number	Reg1 to Reg8	Calibration Parameter	Modbus	Read	Write
register	of	16 ASCII characters	Index and description	function	access	access
	registers			code		
10360 + (CoPx -1) *720	8	Assigned value	2	3, 4	U/A/S	none
10392 + (CoPx -1) *720	8	Temperature	3	3, 4	U/A/S	none
10648 + (CoPx -1) *720	8	Transmission	11	3, 4	U/A/S	none
10680+ (CoPx -1) *720	8	Reflection	12	3, 4	U/A/S	none

Note:

Up to 22 parameters are reserved. The Dencytee RS485 sensor, on the other hand, only needs four. The available parameters are specified with the bit mask in Table 49. The base address is 10328 + (CoPx - 1) * 720 for the naming and 10342 + (CoPx - 1) * 720 for the values.

Table 53 Example to read the unit "none" and Assigned value of correlation point 1

Command: Corr. Parameter 2		Modbus address: 10374		Length: 6	Type: 3	Read
Parameter:	Corr. Par.2 - Not relevant	Corr. Par.2 - Unit	Corr. P	ar.2 - Value		
Format:	Hex	Hex	Float			
Value:	0x00000000	0x00000100	0.23			

Table 54 Example to read the description of parameter 2 of correlation point 1

Command: Current interface text		Modbus address: 1036	60 Length: 8	Type: 3	Read
Parameter:	Text				
Format:	Character				
Value:	Assigned value				

2.8.3 Saving the preview to the desired user space

After the correlation is fully initialized and assigned in the preview, it can be saved to a user area. On the whole, the sensor provides space for six correlations created by the user. The memory space for the default correlations cannot be overwritten. This memory function is executed with register 10266 with the command codes specified in Table 55.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10266	2	Saving the preview to the user space/	16	U/A/S	S
		correlation status			

Table 55 Command codes for saving the preview of the correlation to the desired user space

Bit #	Hex value	Description
none	0x00000000	Delete the preview
0 (LSB)	0x0000001	Not valid (leads to a modbus exception)
		Reserved for default correlation 1
1	0x00000002	Not valid (leads to a modbus exception)
		Reserved for default correlation 2
2	0x00000004	Not valid (leads to a modbus exception)
		Reserved for default correlation 3
3	0x00000008	Not valid (leads to a modbus exception)
		Reserved for default correlation 4
4	0x0000010	Saving the preview in user space 1
5	0x00000020	Saving the preview in user space 2
6	0x00000040	Saving the preview in user space 3
7	0x00000080	Saving the preview in user space 4
8	0x00000100	Saving the preview in user space 5
9	0x00000200	Saving the preview in user space 6
9	0x00000400	
11-30		Not valid (leads to a modbus exception)
31 (MSB)	0x80000000	

As an example, the correlation is placed in user area 1. This is done as follows:

Table 56 Example of saving the preview in user space 1

Command: Initialization of the preview		Modbus address: 10266	Length: 2	Type: 16	Write
Parameter:	Command Code				
Format:	Hex				
Value:	0x00000010				

Only at this moment the individual points can be considered together. It is checked whether the units of the individual points are identical, whether the states of the individual points are OK, whether the offline input values and the measured values are monotonous, whether all offline values are assigned and whether enough points are active.

To check if everything has worked correctly, the status must be read. This is defined as a read function of register 10266. This is described in detail in 2.8.4 Correlation Status.

111004638/03 page 54 / 76

2.8.4 Correlation Status

In addition to saving the preview to the desired user area, register 10266 contains the correlation status as a read function. The meaning of the status bits is described in Table 58.

Table 57 Reading the correlation status

Command: Initialization of the preview		Modbus address: 1	0266	Length: 2	Type: 16	Write
Parameter:	Command Code					
Format:	Hex					
Value:	0x00000000					

Table 58 Meaning Status bits of the correlation

Bit #	Hex value	Definition
None	0x00000000	Correlation successful
0 (LSB)	0x0000001	Units of correlation points not identical
1	0x00000002	Subordinate status of the individual points not ok
2	0x00000004	Assigned offline values not monotonously increasing
3	0x00000008	Not all offline values are assigned
4	0x0000010	Sensor measured values not monotonous
5	0x00000020	Too less correlation points active
6	0x00000040	No valid correlation

Note:

Status bit 6 is only used to indicate whether a correlation is present in the user area. When saving the preview to a user area, this bit is never set.

111004638/03 page 55 / 76

2.8.5 Storage of correlations

To have an overview of the individual correlations, the components can be read via Modbus. In a block is the name, the unit, the bit mask of the active correlation points, the correlation status, as also the input values and measured values of the respective correlation points.

Table 59 Modbus addresses of the individual components of a correlation

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
44454 + (n -1) *54	8	Correlation	Name			3, 4, 16	U/A/S	S
44462 + (n -1) *54	6	Unit	Bit mask available Corr. Points	Corr. Status		3, 4	U/A/S	S for n > 4
44468 + (n -1) *54	6	Value Trans- mission CoP1	Value Reflection CoP1	Input value CoP1		3, 4	U/A/S	S for n > 4
44474 + (n -1) *54	6	Value Trans- mission CoP2	Value Reflection CoP2	Input value CoP2		3, 4	U/A/S	S for n > 4
44480 + (n -1) *54	6	Value Trans- mission CoP3	Value Reflection CoP3	Input value CoP3		3, 4	U/A/S	S for n > 4
44486 + (n -1) *54	6	Value Trans- mission CoP4	Value Reflection CoP4	Input value CoP4		3, 4	U/A/S	S for n > 4
44492+ (n -1) *54	6	Value Trans- mission CoP5	Value Reflection CoP5	Input value CoP5		3, 4	U/A/S	S for n > 4
44498+ (n -1) *54	6	Value Trans- mission CoP6	Value Reflection CoP6	Input value CoP6		3, 4	U/A/S	S for n > 4

Note:

n = 1-4 contain the information of the default correlations. n = 5-10 contain the information of the user correlations. An empty user area is marked in the status with the status bit 6.

111004638/03 page 56 / 76

2.8.6 Delete existing correlations

Existing correlations can be overwritten using the process described in 2.8.3 Saving the preview to the desired user space. There is also the possibility to delete existing correlations. This is done with the same Modbus register that is used for copying an existing correlation to the preview 2.8.1.5.3 Use template of an existing correlation. The command codes are different. This is done with the same Modbus register that is used to copy an existing correlation to the preview. The command codes are different. When deleting a correlation, the bitmask is ored with 0x10000000 Table 61.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
10264	2	Delete existing correlations	16	U/A/S	S

Table 60 Example delete user correlation 1

Command: C	Correlation set unit	Modbus address: 102	62 Length: 2	Type: 16	Write
Parameter:	Unit				
Format:	Hex				
Value:	0x10000010				

Table 61 Command codes for deleting user correlations

Bit #	Hex value	Description
4	0x10000010	Deleting the user correlation 1
5	0x10000020	Deleting the user correlation 2
6	0x10000040	Deleting the user correlation 3
7	0x10000080	Deleting the user correlation 4
8	0x10000100	Deleting the user correlation 5
9	0x10000200	Deleting the user correlation 6

Note:

Only the user correlations can be deleted. If a try is made to delete a default correlation, a Modbus exception is returned.

HAMILT®N

2.9 Sensor Status

2.9.1 Temperature Ranges

In registers 4608, 4612, 4616 and 4624 four different temperature ranges are defined:

- Operation is the maximum temperature range to which the sensor can be exposed to during operation and storage. If the current temperature is out of
- Measurement is the maximum allowable range where TCD measurement is possible.
- Calibration in this range the sensor can be calibrated.
- User defined Measurement the specialist (operator level S) can adjust the range in which TCD reading is active. The user defined measurement temperature range is a sub range of the measurement temperature range.

Note:

When performing a correlation, the user defined measurement temperature range is temporarily set to the values of the measurement temperature range from register 4612. After 10 minutes after the last correlation command or after a power up, the user defined measurement temperature range in register 4624 is reset to the values the user has defined.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function	access	access
				code		
4608	4	Operating	Operating	3, 4	U/A/S	none
		temperature min [°C]*	temperature max [°C]*			
4612	4	Measurement	Measurement	3, 4	U/A/S	none
		temperature min [°C]*	temperature max			
			[°C]*			
4616	4	Calibration	Calibration	3, 4	U/A/S	none
		temperature min [°C]*	temperature max			
			[°C]*			
4624	4	User defined	User defined	3, 4, 16	U/A/S	S
		measurement	measurement			
		temperature min [°C]*	temperature max			
			[°C]*			

Table 62 Example to read the operating temperature values min and max

Command: Operating T range		Modbus address: 4608		Length: 4	Type: 3	Read
Parameter:	Operating T min [°C]*	Operating T max [°C]*				
Format:	Float	Float				
Value:	-10	140		•		

Table 63 Example to read the measurement temperature values min and max

	leasurement T range	Modbus address:	Lenath: 4	Type: 3	Read
Parameter:	Measurement T min [°C]*	Measurement T max [°C]*	 	, ypo. c	
Format:	Float	Float			
Value:	0	80			

Table 64 Example to read the calibration temperature values min and max

Table of Examp	Table of Example to read the edibration temperature values min and max									
Command: Calibration T range		Modbus address: 4616		Length: 4	Type: 3	Read				
Parameter:	Calibration T min [°C]*	Calibration T max [°C]*								
Format:	Float	Float								
Value:	5	50								

111004638/03 page 58 / 76

Table 65 Example set the user defined measurement temperature

Table de Example det tile deel delined medeanement temperature									
Command: User measurement T		Modbus address: 4624		Length: 4	Type: 16	Write			
Parameter:	User measurement	User measurement							
	T min [°C]*	T max [°C]*							
Format:	Float	Float							
Value:	0	80							

Note:

Temperature reading is active at any time, regardless of the current temperature.

111004638/03 page 59 / 76

^{*}The unit of the temperatures is according to the selected unit of PMC6 (see 2.5.3 Primary Measurement Channel 6 (Temperature))

2.9.2 Operating Hours, Counters and System Time

In register 4676 are stored:

- total operating hours
- operating hours above max measurement temperature (see chapter 2.9.1 Temperature Ranges)
- the operating hours above max operating temperature (see chapter 2.9.1 Temperature Ranges)

In register 4682 are stored:

- number of power ups
- · number of watchdog resets
- · number of writing cycles to flash memory

In register 4688 are stored:

- number of sterilization in place (SIP) (see chapter 2.9.8 Reading Definition of SIP and CIP)
- number of cleaning in place (CIP) (see chapter 2.9.8 Reading Definition of SIP and CIP)

In register 4692 is stored

number of autoclavings

Note:

The register 4692 has no effect for the sensor and is only for the user to trace the record for himself.

In register 8232 is stored

system time counter.

Note:

When the sensor is powered up, the system time is set to 0. A value between 0 and 2³² can be written into this register. From this value, the sensor increments this value every second.

We recommend to use as base date the so-called UNIX timestamp (hint: www.epochconverter.com) which starts at 1st of January 1970 GMT. When a calibration is performed the system time value will be copied to the register 10488 for CoP1, 11208 for CoP2 and 104088 for CoP6 (after the action "initial measurement"). With this copied value, the absolute time of calibration can be recovered, even if the sensor has powered down in the meantime.

Be sure to update this register if needed after every power up of the sensor.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg3 / Reg4	Modbus function code	Read access	Write access
4676	6	Operating hours [h]	Operating hours above max measurement temperature [h]	Operating hours above max operating temperature [h]	3, 4	U/A/S	none
4682	6	Number of Power ups	Number of Watchdog resets	Number of Writing cycles to flash memory	3, 4	U/A/S	none
4688	4	Number of SIP cycles	Number of CIP cycles	-	3, 4	U/A/S	none
4692	2	No of autoclavings			3, 4, 16	U/A/S	S
8232	2	System Time Counter			3, 4, 16	U/A/S	S

111004638/03 page 60 / 76

Table 66 Example to read the operating hours

	Operating hours	Modbus address	: 4676 Length: 6	Type: 3	Read
Parameter:	Operating hours [h]	Operating hours above max measurement temperature [h]	Operating hours above max operating temperature [h]		
Format:	Float	Float	Float		
Value:	168.3667	0	0		

Table 67 Example to read Power ups and Watchdog

Command: P	ower & Watchdog	Modbus address:	4682 Length: 6	Type: 3	Read
Parameter:	Number of Power	Number of	Number of Writing		
	ups	Watchdog resets	cycles to flash		
			memory		
Format:	Decimal	Decimal	Decimal		
Value:	34	1	16		

Table 68 Example to read SIP and CIP cycles

Command: SIP & CIP		Modbus address: 4688		Length: 4	Type: 3	Read
Parameter:	SIP cycles	CIP cycles				
Format:	Decimal	Decimal				
Value:	0	0				

Table 69 Example to read the number of autoclavings

Command: Autoclaving		Modbus address:	Modbus address: 4692		Type: 3	Read
Parameter:	Autoclavings					
Format:	Decimal					
Value:	7					

Table 70 Example to write the number of autoclavings

Command: Autoclaving		Modbus address: 4	1692	Length: 2	Type: 16	Write
Parameter:	Autoclavings					
Format:	Decimal					
Value:	14					

Table 71 Example to write the system time into the sensor

Command: S	ystem Time	Modbus address:	8232	Length: 2	Type: 16	Write
Parameter:	System Time					
Format:	Decimal					
Value:	1614147385					

Table 72 Example to read the system time

- a.c		. •			
Command: System Time		Modbus address: 823	2 Length: 2	Type: 3	Read
Parameter:	System Time				
Format:	Decimal				
Value:	1614178800				

Note:

The deviation of the system time, if not updated by the operator, is less than one minute per 24h.

111004638/03 page 61 / 76 **HAMILT®N**

2.9.3 Warnings

A "Warning" is a notification message which still allows further functioning of the system. This message alerts the operator of a possible problem that could lead to uncertain results.

2.9.3.1 Currently Active Warnings

The currently active warnings are stored in register 4736.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
4736	8	Active warnings measurement (bitwise defined)	Active warnings calibration (bitwise defined)	Active warnings interface (bitwise defined)	Active warnings hardware (bitwise defined)	3, 4	U/A/S	none

Table 73 Example to read the active warnings

Command: V	Varning active	Modbus address:	4736	Length: 8	Type: 3	Read
Parameter:	W Measurement	W Calibration	W Inte	rface	W Hardware	
Format:	Hex	Hex	Hex		Hex	
Value:	0x00000000	0x00000000	0x000	00000	0x00000000	

2.9.3.2 Definition of Warnings

Table 74 Definition of warnings "measurement"

Bit #	Hex code	Description		
0 (LSB)	0x00000001	TCD reading below lower limit		
	The TCD reading is too low. Make a new correlation.			
1	0x00000002	TCD reading above upper limit		
	The TCD read	ding is too high. Make a new correlation.		
25	0x02000000	T reading below lower limit		
	The temperature is below the user defined measurement temperature range (see register 4624). If outside this range, the sensor will not perform TCD readings.			
26	0x04000000	T reading above upper limit		
	The temperature is above the user defined measurement temperature range (see register 4624). If outside this range, the sensor will not perform TCD readings.			
31	0x80000000	Measurement not running		
	Causes that trigger this warning:			
	1.) Sensor operating voltage range is not between 10-27 VDC or			
	The temperature measurement is outside the user defined temperature range.			
	3.) The n	neasurement is switched off via the parameter measurement interval.		

Table 75 Definition of warnings "calibration"

Bit #	Hex code	Description			
0 (LSB)	0x00000001	TCD calibration recommended			
	Send to HAM	AM Technical Support (TS) for standard calibration			

111004638/03 page 62 / 76

Table 76 Definition of warnings "interface"

Bit #	Hex code	Description
		Not available

Table 77 Definition of warnings "hardware"

Bit #	Hex code	Description		
0 (LSB)	0x00000001	Sensor supply voltage too low		
	The sensor su	ensor supply voltage is below 10V. Please check your power supply.		
1	0x00000002	Sensor supply voltage too high		
	The sensor supply voltage is above 27V. Please check your power supply.			
9	0x00000200	Replace sensor recommended		
		The Sensor Quality Indicator is below 40%. The quality of the sensor is sufficient for reliable measurement, but replacement of the sensor will be needed in near future.		
10	0x00000400	0x00000400 Sensor deviation high		
	If the sensor s	signal deviates more than 20% during calibration.		

2.9.4 Errors

An "Error" message indicates a serious problem of the sensor which does not allow further proper functioning of the sensor. This problem must be solved.

2.9.4.1 Currently Active Errors

The currently active errors are stored in register 4800.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
4800	8	Active errors measure- ment (bitwise defined)	Active errors calibration (bitwise defined)	Active errors interface (bitwise defined)	Active errors hardware (bitwise defined)	3, 4	U/A/S	none

Table 78 Example to read the active errors

Command: E	rrors current	Modbus address:	4800 Length: 8	Type: 3 Read
Parameter:	E Measurement	E Calibration	E Interface	E Hardware
Format:	Hex	Hex	Hex	Hex
Value:	0x00000000	0x00000000	0x00000000	0x0000000

2.9.4.2 Definition of Errors

Table 79 Definition of errors "measurement"

Table 13 Delli	mon or chors me	on or enors measurement				
Bit #	Hex code	Description				
0 (LSB)	0x0000001	TCD reading failure				
	TCD algorithm	TCD algorithm error				
25	0x02000000	T sensor defective				
	The internal te	The internal temperature sensor is defective.				

Table 80 Definition of errors "calibration"

100000000000000000000000000000000000000		
Bit #	Hex code	Description
		Not available

Table 81 Definition of errors "interface"

Bit #	Hex code	Description
		Not available

111004638/03 page 64 / 76

Table 82 Definition of errors "hardware"

Bit #	Hex code	Description				
2	0x00000004	Temperature reading far below min				
	The measured	d temperature is below the operation temperature (Reg. 4608)				
3	0x00000008	Temperature reading far above max				
	The measured	temperature is above the operation temperature (Reg. 4608)				
9	0x00000200	Sensor Defective				
	Sensor is defective or Sensor Quality Indicator is below 10%. The quality sensor is not sufficient for reliable measurement. Sensor needs to be replaced to the sensor is not sufficient for reliable measurement.					
10	0x00000400	Sensor deviation too high				
	If the sensor s	signal deviates more than 40% during calibration.				
11	0x00000800	Negative dark current				
	If the dark current is too low.					
12	0x00001000	Reflection current too low				
	If the reflection current is too low.					
22	0x00400000	EEPROM comm. (I2C) error Userend				
	EEPROM communication error					
	Reset the sensor and try again					
24	0x01000000	Internal communication (I2C) failure Userend				
	Internal I2C communication error					
	Reset the sensor and try again					
25	0x02000000	Internal communication failure (frontend)				
	No communication between Frontend and Userend.					
	Reset the sen	sor and try again				
26	0x04000000	Stackoverflow				
	Internal memo	•				
	Reset the sen	Reset the sensor and try again				

2.9.5 Measurement values - Exceeds Temperature range, and TCD measurement errors

In case that the current measurement temperature exceeds the user defined temperature range following warning bits are set:

Category	Hex Code	Description
Measurement Warning	0x02000000	T reading below lower limit OR
	0x04000000	T reading above upper limit AND
	0x80000000	Measurement not running

In case that the current measurement temperature exceeds the operating temperature range, following error / warning bits has to be set:

Category	Hex Code	Description
Hardware Error	0x00000004	Temperature reading far below min OR
	0x00000008	Temperature reading far above max AND
Measurement Error	0x00000001	TCD reading failure

The measurement output values for these cases are defined in Table 83.

Table 83 Measurement values (PMCs) in case of exceeding the user defined- or operating temperature range

1 4510 00 101	able de inicaeurement values (i inice) in caes of exceeding the deer defined of epotating temperature range						
Bit #	Hex code	Description	Definition	Measurement output values			
0 (LSB)	0x00000001	PMC1	TCD	-999.0			
5	0x00000020	PMC6	T (temperature	Current temp. value			
			measurement value)				

111004638/03 page 66 / 76

2.9.6 Measurement values – no TCD measurement within the frontend is running

In case that the current supply voltage is not within the defined supply voltage range, following warning bits are set:

Category	Hex Code	Description
Hardware Warning	0x00000001	Sensor supply voltage too low OR
	0x00000002	Sensor supply voltage too high AND
Measurement Warning	0x80000000	Measurement not running

In case the frontend measurement is not running, following warning bit is set:

Category	Hex Code	Description
Measurement Warning	0x80000000	Measurement not running

The measurement output values for this cases, are defined in Table 84.

Table 84 Measurement values (PMCs) in case no communication within the frontend is running

Bit #	Hex code	Description	Definition	Measurement output values
0 (LSB)	0x00000001	PMC1	TCD	-999.0
5	0x00000020	PMC6	T (temperature	-999.0
			measurement value)	

2.9.7 Measurement values - Hardware errors

The measurement output values for this cases, are defined in Table 85.

Table 85 Measurement values (PMCs) in case Hardware errors

Bit #	Hex code	Description	Definition	Measurement output values
0 (LSB)	0x00000001	PMC1	TCD	-999.0
5	0x00000020	PMC6	T (temperature	-999.0
			measurement value)	

111004638/03 page 67 / 76

2.9.8 Reading Definition of SIP and CIP

The Dencytee RS485 Sensor is counting special cleaning events such as sterilizations or cleaning cycles by means of tracking typical temperature profiles (see chapter 2.9.2 Operating Hours, Counters and System Time).

Register 4988 defines the temperature profile for SIP (sterilization in place) and register 4996 the temperature profile for CIP (cleaning in place). For the explanation the following values are given:

CIP / SIP time maximum values: 180 min

Figure 16 Definition of CIP and SIP cycles

Explanation of Figure 16:

- 1) no SIP-cycle counted, because time in defined SIP temperature range too short (less than 30 minutes).
- 2) CIP-cycle counted, because time greater than 30 minutes and in CIP temperature range.
- 3) SIP-cycle counted, because time greater than 30 minutes and in SIP temperature range.
- 4) no CIP-cycle counted, because above CIP max temperature.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
4988	8	SIP Tempera- ture min	SIP Tempera- ture max	SIP Process time min [min]	Empty	3, 4	U/A/S	S
4996	8	CIP Tempera- ture min	CIP Tempera- -ture max	CIP Process time min [min]	Empty	3, 4	U/A/S	S

The unit of the temperatures is according to the selected unit of PMC6 (see 2.5.3 Primary Measurement Channel 6 (Temperature))

2.9.9 Quality Indicator

2.9.9.1 Reading the Sensor Quality Indicator

In register 5472 with a command length of 2, the sensor quality (0-100%) is given in 10% percent steps. Hamilton recommends the replacement of the sensor at a value less than 40 % (see Table 77).

Start	Number	Reg1 / Reg2	Modbus	Read	Write
register	of		function	access	access
	registers		code		
5472	2	Sensor quality [%]	3, 4	U/A/S	none

Table 86 Example to read the Sensor Quality Indicator with a command length of 2

Command: Sensor cap quality		Modbus address: 5	472	Length: 2	Type: 3	Read
Parameter:	Sensor quality [%]					
Format:	Float					
Value:	100					

2.9.9.2 Reading the Measurement Quality Indicator

In register 5472 with a command length of 6, the sensor quality (0-100%) in 10% percent steps and the measurement quality is given.

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	of				function	access	access
	registers				code		
5472	6	Sensor	Not used	Measurement	3, 4	U/A/S	none
		quality [%]		quality, see			
				Table 87			

Table 87 Definition of measurement quality values

Value	Description
100	Good sensor quality (no actions)
50	Poor sensor quality (maintenance required)
0	Bad sensor quality (sensor defective)

Table 88 Example to read the sensor- and measurement quality with a command length of 6

Table de Examp	Table de Example to read the concer and medearement quality with a command longer of c							
Command: M	leasurement quality	Modbus address:	5472 Length: 6	Type: 3	Read			
Parameter:	Sensor quality [%]	Not used	Measurement quality					
Format:	Float	Float	Float					
Value:	100	-999	100					

111004638/03 page 69 / 76

2.10 Sensor Identification and Information

2.10.1 General Information

General information about the sensor is available as shown in the Table below.

Start	Number	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	of	16 ASCII characters		function	access	access
	registers			code		
1024	8	Userend FW Date	2024-07-19	3, 4	U/A/S	none
1032	8	Userend FW	CDOUM004	3, 4	U/A/S	none
1040	8	Userend BL Date	2018-05-07	3, 4	U/A/S	none
1048	8	Userend BL	BL5UX001	3, 4	U/A/S	none
1056	8	Userend Ref	10075122/00	3, 4	U/A/S	none
1064	8	Userend SN	9999	3, 4	U/A/S	none
1072	8	Userend (space holder)	not available	3, 4	U/A/S	none
1080	8	Userend (space holder)	not available	3, 4	U/A/S	none
1088	8	Frontend FW Date	2021-11-22	3, 4	U/A/S	none
1096	8	Frontend FW	CDOFJ001	3, 4	U/A/S	none
1104	8	Frontend BL Date	not available	3, 4	U/A/S	none
1112	8	Frontend BL	not available	3, 4	U/A/S	none
1120	8	Frontend Ref	237680/00	3, 4	U/A/S	none
1128	8	Frontend SN	9999	3, 4	U/A/S	none
1136	8	Frontend (space holder)	not available	3, 4	U/A/S	none
1144	8	Frontend (space holder)	not available	3, 4	U/A/S	none

2.10.2 Sensor Identification

Definition of registers containing sensor identification:

Start	Number	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	of	16 ASCII characters		function	access	access
	registers			code		
1280	8	Sensor Ref	10064919-11/00	3, 4	U/A/S	none
1288	8	Sensor name	Dencytee RS485	3, 4	U/A/S	none
1296	8	Sensor Lot	1354271	3, 4	U/A/S	none
1304	8	Sensor Lot date	2021-03-16	3, 4	U/A/S	none
1312	8	Sensor SN	2076	3, 4	U/A/S	none
			HAMILTON	3, 4	U/A/S	none
1320	8	Manufacturer part 1	Bonaduz			
1328	8	Manufacturer part 2	AG Switzerland	3, 4	U/A/S	none
1336	8	Sensor type	ARC TCD Sensor	3, 4	U/A/S	none
1344	8	Power supply	10 - 27V 1.5W	3, 4	U/A/S	none
1352	8	Pressure range	1012000mbar	3, 4	U/A/S	none
1360	8	Sensor ID	1006491911-2076	3, 4	U/A/S	none
1368	8	a-length	120	3, 4	U/A/S	none
1376	8	Sensor technology state	TS2.00	3, 4	U/A/S	none
1384	8	Electrical connection	VP 8.0	3, 4	U/A/S	none
1392	8	Process connection	PG 13.5	3, 4	U/A/S	none
1400	8	Sensing material	NIR optics	3, 4	U/A/S	none

111004638/03 page 70 / 76

2.10.3 Free User Memory Space

These registers can be used to store any customer specific information in the sensor. There are different registers which can be read by everybody, but only specific operators can write them.

Start	Number	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	of	16 ASCII characters		function	access	access
	registers			code		
1536	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1544	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1552	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1560	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1568	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1576	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1584	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1592	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1600	8	Measuring Point	10064919-11-2076	3, 4, 16	U/A/S	S
1608	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1616	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1624	8	Userspace	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1632	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1640	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1648	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1656	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
		ext. OEM Sensor		3, 4		
1664	8	Name	*FREE_USERSPACE*		U/A/S	none
		ext. OEM		3, 4		
1672	8	PartNumber	*FREE_USERSPACE*		U/A/S	none
		ext. OEM Customer		3, 4		
1680	8	1	*FREE_USERSPACE*		U/A/S	none
		ext. OEM Customer		3, 4		
1688	8	2	*FREE_USERSPACE*		U/A/S	none
1696	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1704	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1712	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1720	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1728	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1736	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1744	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none
1752	8	Userspace	*FREE_USERSPACE*	3, 4	U/A/S	none

An important register is 1600, as it is the description of the measuring point. The information of this register is to identify individual sensors.

111004638/03

Attention:

The Free User Memory Space is located in a memory which allows in total max 1'000'000 write operations.

page 71 / 76

2.11 System Commands

2.11.1 Restore Factory Settings

Using register 8192 you can recall the sensor manufacturer values (interfaces, passwords etc), except the SIP and CIP data, calibration data and correlation data which remain unchanged. By sending the recall value "911", all configuration values will be set to default.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
8192	2	Recall by value "911"	16	none	S

111004638/03 page 72 / 76

3 Appendix

3.1 List of tables

Table 1 Modbus definition for data transmission	9
Table 2 RS485 definitions for Arc Sensors	9
Table 3 Definition Floating point Single Precision (4 bytes resp. 2 Modbus registers)	
Table 4 Implemented Error-Codes	
Table 5 Definition of operator level and default passwords	15
Table 6 RS485 factory settings	
Table 7 Code for the baud rates	
Table 8 Definition of the analog interface modes	
Table 9 Code for selection of the primary measurement channel	
Table 10 Code for the 4-20 mA interface in case of errors and warnings	
Table 11 Example: Read the settings for AO1 in case of warnings and errors	
Table 12 Definition of PMC1 to 6 and SMC1 to 16	
Table 13 Example to read register 2048	
Table 14 Definition of physical units	
Table 15 Example to read the physical unit in plain text ASCII in register 1952	
Table 16 Example to read register 2410	
Table 17 Definition of measurement status for Primary Measurement Channels	
Table 18 Bitwise definition of all parameters PA1 to PA16	33
Table 19 Example to read the available Parameters with operator level S	
Table 20: Definition of register 3488	
Table 21: Example to read the description. It is "Meas. interval "	38
Table 22: Definition of register 3496	
Table 23: Example to read the available physical units for PA13. The only one available here is "nor	
(0x01). For the definition of the physical units see chapter 2.5.1 Definition of Measurement Channel	
and Physical Units	38
Table 24: Definition of register 3496. Only one bit for the physical unit can be set and the value: 0-3	00.
Table 25: Example to set the physical unit of PA13 to "none" (0x01) and the measurement interval to	0
30.	39
Table 26: Definition of register 3498	
Table 27: Example to read PA13. The physical unit is 0x01 ("none"), and the measurement interval	is
30 seconds.	39
Table 28 Example to read the reference and tolerance of the transmission for the verification	
Table 29 Example to read the reference and tolerance of the reflection current for the verification	
Table 30 Example of naming the preview	
Table 31 Bitwise definition of CoP0 to CoP6	
Table 32 Example to read the available CoPs	
Table 33 Example to read the calibration and correlation stability	
Table 34 Example to set the calibration and correlation stability	
	41
Table 35 Example to read available correlation units	
Table 35 Example to read available correlation units	48
Table 35 Example to read available correlation units	48 48
Table 35 Example to read available correlation units	48 48 48
Table 35 Example to read available correlation units	48 48 48 49
Table 35 Example to read available correlation units	48 48 49 49
Table 35 Example to read available correlation units	48 48 49 49 49
Table 35 Example to read available correlation units	48 48 49 49 49
Table 35 Example to read available correlation units	48 48 49 49 49
Table 35 Example to read available correlation units	48 48 49 49 50
Table 35 Example to read available correlation units	48 48 49 49 50 50
Table 35 Example to read available correlation units	48 48 49 49 50 50
Table 35 Example to read available correlation units	48 48 49 49 50 50 50
Table 35 Example to read available correlation units	48 48 49 49 50 50 50
Table 35 Example to read available correlation units	4848494950505151

111004638/03 page 73 / 76

Table 52 Description of the available correlation parameters	
Table 53 Example to read the unit "none" and Assigned value of correlation point 1	
Table 54 Example to read the description of parameter 2 of correlation point 1	
Table 55 Command codes for saving the preview of the correlation to the desired user space	
Table 56 Example of saving the preview in user space 1	
Table 57 Reading the correlation status	
Table 59 Modbus addresses of the individual components of a correlation	
Table 60 Example delete user correlation 1	
Table 61 Command codes for deleting user correlations	57 57
Table 62 Example to read the operating temperature values min and max	
Table 63 Example to read the measurement temperature values min and max	
Table 64 Example to read the calibration temperature values min and max	
Table 65 Example set the user defined measurement temperature	
Table 66 Example to read the operating hours	
Table 67 Example to read Power ups and Watchdog	
Table 68 Example to read SIP and CIP cycles	
Table 69 Example to read the number of autoclavings	
Table 70 Example to write the number of autoclavings	
Table 71 Example to write the system time into the sensor	
Table 72 Example to read the system time	
Table 73 Example to read the active warnings Table 74 Definition of warnings "measurement"	62
Table 74 Definition of warnings ineasurement	
Table 75 Definition of warnings calibration	
Table 77 Definition of warnings "herrace"	
Table 78 Example to read the active errors	
Table 79 Definition of errors "measurement"	
Table 80 Definition of errors "calibration"	
Table 81 Definition of errors "interface"	
Table 82 Definition of errors "hardware"	65
Table 83 Measurement values (PMCs) in case of exceeding the user defined- or operating temp	
range	66
Table 84 Measurement values (PMCs) in case no communication within the frontend is running	
Table 85 Measurement values (PMCs) in case Hardware errors	67
Table 86 Example to read the Sensor Quality Indicator with a command length of 2	
Table 87 Definition of measurement quality values	
3.2 List of figures	
Figure 1 Modbus Protocol Data Unit	6
Figure 2 Modbus frame over Serial Line	
Figure 3 Bit sequence in RTU mode	
Figure 4 RTU Message Frame	7
Figure 5 Valid frames with silent intervals	7
Figure 6 RTU Message Frame	
Figure 7 Data transmission of a frame	
Figure 8 Definition of Holding Registers	
Figure 9 Example of reading holding registers 108 – 110. The contents of register 108 are read	
two byte values 0x022B. The contents of registers 109 and 110 are 0x0000 and 0x0064	
Figure 10 Definition of Input Registers	
Figure 11 Example of reading input register 9. The contents of input register 9 are read as the type 1200000	
value 0x000A	
Figure 12 Definition of Write Multiple RegistersFigure 13 Example of writing the value 0x000A and 0x0102 to two registers starting at address 2	
Figure 13 Example of writing the value 0x000A and 0x0102 to two registers starting at address . Figure 14 Example of linear 4-20mA output characteristics	
Figure 15 Comparison of the response of Dencytee RS485 to a change from 38.5 g/l to zero TC	
	.) ՀԻ

Abbreviations

AO Analog Output Interface
AU Absorbance Unit
CDW Cell Dry Weight
CIP Cleaning In Place
CoP Correlation Point

CRC Cyclical Redundancy Checking IDA Interface for distributed automation

LSB Least Significant Bit
MC Measurement Channel
MSB Most Significant Bit
OD Optical Density
PA Parameter

PDU Protocol Data Unit

PMC Primary Measurement Channel

RTU Remote Terminal Unit

SMC Secondary Measurement Channel

SIP Sterilization In Place TCD Total Cell Density TS Technical Support

Hamilton Bonaduz AG Via Crusch 8 CH-7402 Bonaduz Switzerland

Tel. +41 58 610 10 10

contact.pa.ch@hamilton.ch www.hamiltoncompany.com July 2024 P/N: 111004638/03

