Module 1 solutions

Module 2: Solutions to Learning Activities

Activity 2.4

Using the health survey data (Activity_S2.4.xlsx) described in the computing notes of this module, create a new variable, BMI, which is equal to a person's weight (in kg) divided by their height (in metres) squared (i.e. BMI = $\frac{\text{weight (kg)}}{[\text{height (m)}]^2}$. Categorise BMI using the WHO categories:

• Underweight: BMI < 18.5

• Normal weight: $18.5 \le BMI < 25$

• Pre-obesity: $25 \le BMI < 30$

• Obesity Class I: $30 \le BMI < 35$

• Obesity Class II: 35 ≤ BMI < 40

• Obesity Class III: BMI \geq 40

Create a two-way table to display the distribution of BMI categories by sex (sex: 1 = respondent identifies as male; 2 = respondent identifies as female). Does there appear to be a difference in categorised BMI between males and females?

Answers

Table 1: CAPTION

BMI category	Male	Female	Total
Underweight	6 (1.2%)	12 (1.9%)	18 (1.6%)
Normal weight	134 (26.1%)	228 (36.4%)	362 (31.8%)
Pre-obesity	216 (42.1%)	195 (31.1%)	411 (36.1%)
Obesity Class I	95 (18.5%)	106 (16.9%)	201 (17.6%)
Obesity Class II	46 (9.0%)	55 (8.8%)	101 (8.9%)
Obesity Class III	16 (3.1%)	31 (4.9%)	47 (4.1%)
Total	513 (100.0%)	627 (100.0%)	1,140 (100.0%)

From this health survey, it appears that men are more likely to have BMIs indicating Pre-Obesity (men 42% vs women 31%) and Obesity Class I (men 19% vs women 17%), compared to women who are more likely to have BMIs indicating Normal weight (women 36% vs men 26%).

Process

We first read the Excel data into R, using the readxl package. It is useful to examine the dataset - here using the summary() function:

```
library(readxl)
library(jmv)

survey <- read_excel("data/activities/Activity_S2.4-health-survey.xlsx")
summary(survey)</pre>
```

sex	height	weight
Min. :1.00	Min. :1.220	Min. : 22.70
1st Qu.:1.00	1st Qu.:1.630	1st Qu.: 68.00
Median :2.00	Median :1.700	Median : 79.40
Mean :1.55	Mean :1.698	Mean : 81.19
3rd Qu.:2.00	3rd Qu.:1.780	3rd Qu.: 90.70
Max. :2.00	Max. :2.010	Max. :213.20

Note that has been entered as a numeric variable. We should define sex as a factor, and then create BMI. After creating BMI, we should examine its distribution using a histogram and/or a boxplot:

```
# Define sex as a factor
survey$sex <- factor(survey$sex, level=c(1,2), labels=c("Male", "Female"))
# Create BMI
survey$bmi = survey$weight / (survey$height^2)
# Examine the distribution of BMI
hist(survey$bmi, main="Histogram of BMI", xlab="Body mass index (kg/m2)")</pre>
```

Histogram of BMI

boxplot(survey\$bmi, main="Boxplot of BMI", ylab="Body mass index (kg/m2)")

Boxplot of BMI

The boxplot in particular shows that there are some extreme values of BMI. We can examine some records using the subset() function:

subset(survey, bmi<15)</pre>

sex	height	weight	bmi
Female	1.57	22.7	9.21
Female	1.65	40.8	15

subset(survey, bmi>45)

sex	height	weight	bmi
Female	1.52	105	45.4
Male	1.85	174	50.8
Female	1.22	74.8	50.3
Male	1.93	213	57.2
Female	1.63	127	47.8
Female	1.55	115	48
Female	1.65	131	48.2
Female	1.55	109	45.3
Male	1.78	143	45.1
Female	1.65	127	46.6
Female	1.63	132	49.5
Female	1.7	152	52.6
Female	1.6	127	49.6
Female	1.5	106	47.2
Female	1.73	154	51.5
Female	1.6	116	45.4

The smallest BMI of 9.2 kg/m2 is very low, with a weight of 22.7 kg. We should check the recorded height and weight values against the original data (paper records, survey responses) if they were available. However, as a weight of 22.7kg is not impossible, this record will not be deleted. An alternative approach would be to analyse the data including the very low BMI and again excluding the very low BMI as a sensitivity analysis.

The largest BMI values are based on participants with large weights, and none of these seem biologically implausible. Therefore, no changes will be made to participants with small or large values of BMI.

We can use the $\mathtt{cut}()$ function to create the BMI categories. The WHO cutpoints are inclusive of the lower-bound, so we use right=FALSE. After creating the categories, it is good practice to check the resulting categories using $\mathtt{summary}()$:

```
survey$bmi_cat <- cut(survey$bmi, c(0, 18.5, 25, 30, 35, 40, 100), right=FALSE)
summary(survey$bmi_cat)</pre>
```

```
[0,18.5) [18.5,25) [25,30) [30,35) [35,40) [40,100)
18 362 411 201 101 47
```

Finally, we can create a two-way table using the contTables() function within the jmv package. We can define the rows by BMI category, and the columns by sex:

CONTINGENCY TABLES

Contingency Tables

bmi_cat	Male	Female	Total
[0,18.5)	6	12	18
[18.5,25)	134	228	362
[25,30)	216	195	411
[30,35)	95	106	201
[35,40)	46	55	101
[40,100)	16	31	47
Total	513	627	1140

² Tests

```
Value df p

2 22.49802 5 0.0004209
N 1140
```

To assess whether there is a difference in BMI between males and females, we should look at the within-sex relative frequencies. In other words, column percents (for this table), by specifying pcCol = TRUE:

CONTINGENCY TABLES

Contingency Tables

bmi_cat		Male	Female	Total
[0,18.5)	Observed % within column	6 1.16959	12 1.91388	18 1.57895
[18.5,25)	Observed % within column	134 26.12086	228 36.36364	362 31.75439
[25,30)	Observed % within column	216 42.10526	195 31.10048	411 36.05263
[30,35)	Observed % within column	95 18.51852	106 16.90590	201 17.63158
[35,40)	Observed % within column	46 8.96686	55 8.77193	101 8.85965
[40,100)	Observed % within column	16 3.11891	31 4.94418	47 4.12281
Total	Observed % within column	513 100.00000	627 100.00000	1140 100.00000

² Tests

Value df p

N 1140

² 22.49802 5 0.0004209