人工智能中的数学讲义

方聪

北京大学

摘要

本讲义收录了人工智能中的数学课程中的主要概念与课程习题。概率与统计讲义内容摘录于陈家鼎、郑忠国《概率与统计》教材与复熹和张原概率与统计课程课件。图论内容摘录于耿素云、屈婉玲、王捍贫《离散数学教程》。本讲义版权归上述作者,不会出版。讲义仅供于上该课程的同学们学习参考,讲义的错误会不断修正。感谢张乙沐、张海涵对讲义整理的帮助。

1.1 随机事件及其运算

1.1.1 随机事件

样本空间和样本点: 随机实验 E 中所有可能结果组成的集合称为 E 的**样本空间**,记为 Ω 。样本空间中的元素称为样本点,记为 ω

• E_1 : 抛掷硬币, 观察正面 H, 反面 T 出现的情况。

$$\Omega_1 = \{H, T\}.$$

• E_2 : 抛掷一枚硬币 3 次, 观察正面 H, 反面 T 出现的情况。

 $\Omega_2 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

• E₃: 抛掷一枚硬币 3 次, 观察正面出现的次数。

$$\Omega_3 = \{0, 1, 2, 3\}.$$

随机现象的某些样本点组成的集合称为**随机事件**,简称为事件,常用 A, B, C, \cdots 表示

例如,E 为抛掷一枚骰子,事件 A = "出现奇数点",即 A = $\{1,3,5\}$,是样本空间 Ω = $\{1,2,3,4,5,6\}$ 的一个子集

事件的频率:设 μ 是 n 次实验中事件 A 发生的次数,则事件 A 发生的频率 $\frac{\mu}{n}$,随着实验次数 n 增大,频率会在某一数值 p 附近摆动,称为该事件的概率,记为 P(A)=p

由于频率 $\frac{\mu}{n}$ 总在 0,1 之间, 我们有:

$$0 \leqslant P(A) \leqslant 1$$

例如投一枚硬币 n 次,出现 μ 次正面,则 $\frac{\mu}{n} \stackrel{n \to \infty}{\to} p$ 。其中,主观概率 p 为事件的置信度,概率是可能性大小的度量。大概率事情易发生,小概率事情不易发生。

1.1.1.1 事件的交和并

定义 2.1 设有事件 A 和事件 B, 如果 A 发生,则 B 必发生,那么称事件 B 包含事件 A (或称事件 A 在 B 中),并记为

$$A \subset B \ (\vec{\mathbf{x}} \ B \supset A)$$

定义 2.2 如果事件 A 包含事件 B, 同时事件 B 包含事件 A, 则事件 A 和事件 B 相等, 并记为

$$A = B$$

定义 2.3 设 A 和 B 都是事件,则 "A 或 B" 表示这样的事件 C: C 发生当且仅当 A 或 B 中至少有一个发生,该事件 C 叫做 A 与 B 的并,记为 $A \cup B$ 。

例 2.1 (对应郑书例 2.1) 在桌面上,投掷两枚匀称的硬币,A 表示"恰好一枚国旗朝上",B 表示"两枚国旗朝上",C 表示"至少一枚国旗朝上",则 $C = A \cup B$.

对于并运算,有以下性质,我们恒记必然事件为U,不可能事件为V:

$$A \cup B = B \cup A$$

$$A \cup U = U \,, \ A \cup V = V$$

定义 2.4 设 A 和 B 都是事件,则 "A 且 B" 表示这样的事件 C: C 发生当且仅当 A 和 B 都发生,该事件 C 叫做 A 与 B 的交,记为 $A \cap B$,也简记为 AB。

在例 2.1 中, $A \cap C = A$, $B \cap C = C$, $A \cap B = V$

对于交运算,有以下性质:

$$A \cap B = B \cap A$$
$$A \cap U = A, \ A \cap V = V$$

1.1.1.2 事件的余和差

定义 2.5 设 A 是事件,称"非 A"是 A 的对立事件(或称余是事件),其含义为,"非 A"发生当且仅当 A 不发生,常常用 \overline{A} 表示"非 A",也用 A^c 表示"非 A"。

由定义知 $\overline{(A)} = A$, $\overline{U} = V$, $\overline{V} = U$

定义 2.6 设 A 和 B 都是事件,则两个事件的差 "A 减去 B" 表示这样的事件 C: C 发生当且仅 当 A 发生而 B 不发生,该事件 C 记为 A-B (或 $A \setminus B$)

由定义知, $A - B = A \cap \overline{B}$ 画图法确定关系。

1.1.1.3 事件运算的性质

事件的基本运算还有以下性质:

- $A \cup (B \cup C) = (A \cup B) \cup C$ "并"的结合律
- $A \cap (B \cap C) = (A \cap B) \cap C$ "交"的结合律
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 分配律
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 分配律
- $A \cup A = A$, $A \cap A = A$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 对偶律
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 对偶律

多个事件的交和并:

设 A_1,A_2,\cdots,A_n 是 n 个事件,则 " A_1,A_2,\cdots,A_n " 的并是指这样的事件:它发生当且仅当 A_1,A_2,\cdots,A_n 中至少一个发生,常常用 $\mathop{\cup}_{i=1}^n A_i$ 表示 A_1,A_2,\cdots,A_n 的并

设 A_1, A_2, \dots, A_n 是 n 个事件,则 " A_1, A_2, \dots, A_n " 的交是指这样的事件: 它发生当且仅当 A_1, A_2, \dots, A_n 这 n 个事件都发生,常常用 $\bigcap_{i=1}^n A_i$ 表示 A_1, A_2, \dots, A_n 的交,也用 $A_1A_2 \dots A_n$ 表示这个 "交"

实际应用中, 还需定义无穷多事件的并与交

设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 B 是指这样的事件:B 发生当且仅当这些 $A_i(i=1,2,\cdots)$ 中至少一个发生,这个 B 叫做诸 A_i 的并,记为 $\underset{i=1}{\overset{\infty}{\cup}}A_i$,有时也写为 $A_1\cup A_2\cup\cdots$ 设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i(i=1,2,\cdots)$

设 $A_1, A_2, \dots, A_i, \dots$ 是一列事件,则 C 是指这样的事件: C 发生当且仅当这些 $A_i (i = 1, 2, \dots)$ 都发生,这个 C 叫做诸 A_i 的交,记为 $\bigcap_{i=1}^{\infty} A_i$,有时也写为 $A_1 A_2 \dots$

例: 取 $X \in \mathbb{R}$, 事件 A_i 为 $X \in [\frac{1}{i+1}, \frac{1}{i}]$, 事件 B_i 为 $X \in [0, \frac{1}{i}]$ 。则事件 $\overset{n}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in [\frac{1}{n+1}, 1]$,事件 $\overset{n}{\underset{i=1}{\cap}} B_i$ 发生等价于 $X \in [0, \frac{1}{n}]$ 。进而当 $n \to \infty$ 时事件 $\overset{\infty}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in (0, 1]$,事件 $\overset{\infty}{\underset{i=1}{\cap}} B_i$ 发生等价于 X = 0。

并的更一般定义是,设 $\{A_a, a \in \Gamma\}$ 是一族事件(其中 Γ 是任何非空集,每个 $a \in \Gamma$ 对应一个事件 A_a),这些事件 A_a 的 "并" 是指这样的事件 B: B 发生当且仅当至少一个 A_a 发生,这个 B 常常 记为 $\bigcup_{a \in \Gamma} A_a$,类似可以定义一族事件的交 $\bigcap_{a \in \Gamma} A_a$

例 2.3: (对应郑书例 2.3) 一射手向一个目标连续射击,设 A_1 = "第一次射击,命中", A_i = "前 i-1 次射击都未命中,第 i 次射击命中"($i=2,3,\cdots$),B= "终于命中",则 $B= \underset{i=1}{\overset{\infty}{\cup}} A_i$ **例 2.4:** (对应郑书例 2.4) 一射手向一个目标连续射击,设 A_i = "第 i 次射击,未命中目标"($i=2,3,\cdots$)则 $\underset{i=1}{\overset{\infty}{\cap}} A_i$ = "每次均未命中目标" 不难验证,对可列个事件的并和交有以下规律:

- $A \cup (\bigcap_{i=1}^{\infty} B_i) = \bigcap_{i=1}^{\infty} (A \cup B_i)$ 分配律
- $A \cap (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A \cap B_i)$ 分配律
- $\overline{(\bigcup_{i=1}^{\infty} A_i)} = \bigcap_{i=1}^{\infty} \overline{A_i}$ 对偶律
- $(\bigcap_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} \overline{A_i}$ 对偶律

1.1.1.4 互斥事件

互不相容的事件

如果事件 A 和事件 B 不能都发生,即 $A \cap B = V$,则称 A 和 B 是互不相容的事件(也称互斥的事件)

称事件 $A_1, \cdots A_n$ 互不相容,若对任何 $i \neq j (i, j = 1, \cdots n)$, A_i 与 A_j 互不相容

例如,抛掷两枚硬币,事件"恰好一枚国徽朝上"和事件"两枚都是国徽朝上"是互不相容的。不难看出,对任何事件 A,A 和 \overline{A} 是互不相容的

• 加法公式: A_1, A_2, \ldots 互不相容, 则:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

• $P(A \cup B) = P(A) + P(B) - P(AB)$

1.2 概率的公理化定义

概率空间子类: 设 Ω 为样本空间, \mathcal{F} 为 Ω 的一些子集构成的集类。若 \mathcal{F} 满足以下三个条件: (1) $\Omega \in \mathcal{F}$, (2) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, (3) $\{A_n\}_{n \in \mathbb{N}} \subsetneq \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, 则称 \mathcal{F} 为概率空间子类

例:

- $\mathcal{F} = \{\emptyset, \Omega\}$ 平凡概率空间子类
- $\mathcal{F} = \{\emptyset, \Omega, A, \overline{A}\}$ 包含 A 的最小概率空间子类
- $\mathcal{F} = \{A | A \subset \Omega\}$ Ω 上的最大概率空间子类
- $\Omega = \{\omega_1, \dots, \omega_n\}$,则 Ω 所有子集构成的概率空间子类共有 2^n 个元素

定义:设 \mathcal{F} 是满足上述条件的概率空间子集类。概率 $P = P(\cdot)$ 是 \mathcal{F} 上面定义的实值函数,满足:

- 非负性: $P(A) \ge 0$ 对于一切 $A \in \mathcal{F}$
- 规范性: P(Ω) = 1
- 可列可加性: 若 $A_n \in \mathcal{F}(n=1,2,\cdots)$ 两两不相交,则

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

 (Ω, \mathcal{F}, P) 为概率空间

例 1: 假定 $\Omega = \{\omega_1, \dots, \omega_n\}$, \mathcal{F} 为全体子集构成的概率空间子类。 设 p_1, \dots, p_n 为 n 个非负实数,且满足 $\sum_{i=1}^n p_i = 1$ 。 令

$$\mathbb{P}(\emptyset) = 0, \quad \mathbb{P}(A) = \sum_{j=1}^{k} p_{i_j}, \quad A = \{\omega_{i_1}, \dots, \omega_{i_k}\}, k = 1, \dots, n$$

则 \mathbb{P} 为 (Ω, \mathcal{F}) 上概率。

概率 P 有以下性质:

- $(1) P(\emptyset) = 0;$
- (2) 若 $A \in \mathcal{F}$, 则 $P(A^c) = 1 P(A)$;
- (3) 若 A_1, \dots, A_n 都属于 \mathcal{F} 且两两不相交,则

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
 (1.2.1)

 $(4) ~ \\ \hbox{ \'{E}} ~ A \subset B, ~ A \in \mathcal{F}, ~ B \in \mathcal{F}, ~ 则 ~ P(A) \leqslant P(B), ~ \\ \hbox{ $\underline{ \mathbb{H}}$} ~$

$$P(B - A) = P(B) - P(A)$$
(1.2.2)

(5) 若 $A_n \subset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.3)

(6) 若 $A_n \supset A_{n+1}, A_n \in \mathcal{F}(n=1,2,\cdots),$ 则

$$P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.4)

$$P(\bigcup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} P(A_n)$$
 (1.2.5)