2

- 4. The GMRES algorithm: An iterative least-squares algorithm
 - We start with some initial approximation (guess) \mathbf{x}_0 (it is arbitrary; it can be zero or random vector). We also have as input the tolerance ϵ (e.g., $\epsilon = 10^{-6}$), and an upper bound of the number of iteration steps to be performed, m_{max} (e.g., $m_{\text{max}} = 50$).
 - We compute the initial residual $\mathbf{r}_0 = \mathbf{b} A\mathbf{x}_0$.
 - We form $\mathbf{p}_1 = \frac{1}{\|\mathbf{r}_0\|} \mathbf{r}_0$.
 - Compute $\mathbf{b}_1 = A\mathbf{p}_1$.
 - Solve the least-squares problem $\|\mathbf{r} t\mathbf{b}_1\| \mapsto \min$, which gives $t = \frac{\mathbf{b}_1^T \mathbf{r}}{\mathbf{b}_1^T \mathbf{b}_1}$
 - (1) The next iterate is

$$\mathbf{x}_1 = \mathbf{x}_0 + t\mathbf{p}_1,$$

and

(2) the next residual is

$$\mathbf{r}_1 = \mathbf{r}_0 - t\mathbf{b}_1 \ (= \mathbf{b} - A\mathbf{x}_1).$$

• Loop: For $m = 2, 3, \ldots$ until convergence and $m \leq m_{\text{max}}$.

At step $m \geq 2$, we construct a vector \mathbf{p}_m which is orthogonal at all previous vectors $\mathbf{p}_1, \ldots, \mathbf{p}_{m-1}$, using \mathbf{r}_{m-1} as follows

$$\widetilde{\mathbf{p}}_m = \mathbf{r}_{m-1} - \beta_1 \mathbf{p}_1 - \beta_2 \mathbf{p}_2 - \dots - \beta_{m-1} \mathbf{p}_{m-1}.$$

The constants β are computed from the orthogonality conditions $\mathbf{p}_i^T \widetilde{\mathbf{p}}_m = 0$, $i = 1, 2, \ldots, m-1$. The latter conditions give,

$$\beta_i = \mathbf{p}_i^T \mathbf{r}_{m-1}, \text{ for } i = 1, \ldots, m-1.$$

Then

$$\mathbf{p}_m = \frac{1}{\|\widetilde{\mathbf{p}}_m\|} \widetilde{\mathbf{p}}_m.$$

- Form $P = [\mathbf{p}_1, \ \mathbf{p}_2, \ \dots, \ \mathbf{p}_m].$
- Compute $\mathbf{b}_m = A\mathbf{p}_m$ and form $B = [\mathbf{b}_1, \ \mathbf{b}_2, \ \dots, \ \mathbf{b}_m] \ (= AP)$.
- Solve the least-quares problem

$$\|\mathbf{r}_{m-1} - B\mathbf{t}\| \mapsto \min.$$

This can be done by using QR factorization of B.

- (1) Compute B = QR.
- (2) Solve $R\mathbf{t} = Q^T \mathbf{r}_{m-1}$ by back substitution.
- The next iterate is

$$\mathbf{x}_m = \mathbf{x}_{m-1} + P\mathbf{t}.$$

• The next residual is

$$\mathbf{r}_m = \mathbf{r}_{m-1} - B\mathbf{t} \ (= \mathbf{b} - A\mathbf{x}_m).$$

• Stopping criterion: Check if $\|\mathbf{r}_m\| < \epsilon$ (ϵ is an input desired tolerance). If yes exit. Otherwise set m := m+1 and if $m \le m_{\text{max}}$ repeat by going to Loop. Otherwise, either exit, or (optionally) go to the beginning of the algorithm to restart by setting $\mathbf{x}_0 = \mathbf{x}_{m_{\text{max}}}$ to compute the restarted initial residual $\mathbf{r}_0 := \mathbf{b} - A\mathbf{x}_0$.

5. Discussion

We go over the algorithm and highlight all the steps and operations needed to implement this algorithm.

Note that by construction, we have the monotinicity property

$$\|\mathbf{r}_m\| = \min_{\mathbf{t}} \|\mathbf{r}_{m-1} - B\mathbf{t}\| \le \|\mathbf{r}_{m-1}\|.$$

I.e.,

$$\|\mathbf{r}_0\| \ge \|\mathbf{r}_1\| \ge \ldots \ge \|\mathbf{r}_m\| \ge \ldots$$

Also, by choosing the size of m_{max} , we control the number of columns of the matrix B, which impacts the work required to compute its QR factorization. A lot of savings can be taken advantage of, using the fact that B at step m, is obtained from B at step m-1 by adding only one new column. This only adds only one step to the Gram-Schmidt algorithm done at the previous iteration (i.e., we do not have to start from the beginning).

The algorithm needs to allocate memory for storing $\mathbf{x} := \mathbf{x}_m$ (one vector), $\mathbf{r} := \mathbf{r}_m = \mathbf{b} - A\mathbf{x}_m$ and m_{max} vectors for $P = [\mathbf{p}_1, \ldots, \mathbf{p}_m]$. We also need to store the m columns of Q (from the QR factorization of B). The matrix R requires small amount of memory, $\frac{m(m+1)}{2}$, which is much smaller than nm (the memory required for P, for example). Compare these values for $n = 10^6$ and m = 50 (1275 versus 50 million).