Check your calculations and results by using LTSpice to simulate the circuits

1.

- **a.** Using the characteristics shown below , determine ID and VD for the circuit shown below .

- b. Repeat part (a) with R = 0.47 k_.
 c. Repeat part (a) with R = 0.68 k_.
 d. Is the level of V_D relatively close to 0.7 V in each case?

How do the resulting levels of *ID* compare? Comment accordingly.

- 2.
- **a.** Using the approximate characteristics for the Si diode, determine V_D , I_D , and V_R for the circuit shown below.
- **b.** Perform the same analysis as part (a) using the ideal model for the diode.
- **c.** Do the results obtained in parts (a) and (b) suggest that the ideal model can provide a good approximation for the actual response under some conditions?

3. Determine the current *I* for each of the configurations shown below, using the approximate equivalent model for the diode.

4. Determine the level of $V \circ$ for each network shown below

5. Determine $V \circ$ and I for the networks shown below.

