ECO395M Final Project: Impact of Covid-19 on the flight delays and cancellation in California and Texas

Steven Kim and Shreekara Shastry

Abstract

This is our abstract.

Introduction

Methods

Dataset

We have used 2 separate datasets and combined them to form a data frame that we used in the further analysis. The first dataset is from The United States Department of Transportation's (DOT) Bureau of Transportation Statistics tracks the on-time performance of domestic flights operated by large air carriers. The data collected is from January to June 2020 and contains relevant flight information (on-time, delayed, canceled, diverted flights) from the Top 10 United States flight carriers for 11 million flights. The second dataset is from the New York Times[2] which contains the state-wise data on the daily number of new cases and deaths, the seven-day rolling average, and the seven-day rolling average per 100,000 residents. We merged these two datasets based on the date and state to create a new dataset that we used in all the models. This combined dataset has in total of 2745847 observations with data from 375 different airports.

Data Wrangling

Data cleaning and preprocessing for the dataset was a four-step process. 1. Formatting the date field in both the individual datasets to match before performing a left join. 2. Merging the covid case dataset into the flight data based on date and state. 3. Factorizing the categorical variables from this combined dataset. MONTH, DAY_OF_MONTH, DAY_OF_WEEK, MKT_UNIQUE_CARRIER, TAIL_NUM, ORIGIN, ORIGIN_STATE_NM, DEST_DEST_STATE_NM, ARR_DEL15, CANCELLED, CANCELLATION_CODE', these are the categorical variables in the dataset. 4. Removing the variables that are not used in the analysis to have a cleaner dataset.

Let's look at the airlines in specific. In specific which airline has carried the most number of flights.

Airline Carrier Code: AA: American Airlines AS: Alaska Airlines B6: JetBlue DL: Delta Air Lines F9: Frontier Airlines G4: Allegiant Air HA: Hawaiian Airlines NK: Spirit Airlines UA: United Airlines WN: Southwest Airlines

Let's analyse which airport has the most delays

focusing on california

 $\begin{array}{c|c} & 0 \\ \hline 0 & 46658 \\ 1 & 4448 \\ \end{array}$

[1] 0.9129652

 $\begin{array}{c|c}
 & 0 \\
\hline
 0 & 45517 \\
 1 & 5739
\end{array}$

[1] 0.8880326

[1] 0.8974714

[1] 0.8875893

[1] NaN


```
## [1] NaN
##
## Call:
  lm(formula = ARR_DELAY_NEW ~ MONTH + DAY_OF_WEEK + MKT_UNIQUE_CARRIER +
##
       DISTANCE + cases_avg_per_100k, data = airport_covid_California_train,
##
       na.action = na.omit)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
   -19.85
           -8.46
                    -5.28
                             -1.74 2448.26
##
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
                        12.0743688  0.3281102  36.800  < 2e-16 ***
## (Intercept)
## MONTH2
                        -1.0876161 0.2100580 -5.178 2.25e-07 ***
## MONTH3
                        -3.0369516  0.2166941  -14.015  < 2e-16 ***
                        -6.6555102  0.4343211  -15.324  < 2e-16 ***
## MONTH4
## MONTH5
                        -7.2907144
                                    0.5431907 -13.422 < 2e-16 ***
## MONTH6
                        -6.7338921
                                    0.8741388 -7.703 1.33e-14 ***
                                               -2.151 0.031493 *
## DAY_OF_WEEK2
                        -0.6149916
                                    0.2859356
## DAY_OF_WEEK3
                        -1.0784439
                                    0.2830749 -3.810 0.000139 ***
## DAY_OF_WEEK4
                         0.9951280
                                    0.2807329
                                                3.545 0.000393 ***
## DAY_OF_WEEK5
                                                8.215 < 2e-16 ***
                         2.3069201
                                    0.2808228
## DAY_OF_WEEK6
                         0.7335559
                                    0.2966442
                                                2.473 0.013405 *
## DAY_OF_WEEK7
                         0.9875795
                                    0.2851250
                                                3.464 0.000533 ***
## MKT_UNIQUE_CARRIERAS -2.9390253 0.2903774 -10.121 < 2e-16 ***
```

```
## MKT_UNIQUE_CARRIERB6 -2.7271487 0.5056591 -5.393 6.93e-08 ***
## MKT_UNIQUE_CARRIERDL -2.0629765 0.2943464 -7.009 2.41e-12 ***
## MKT UNIQUE CARRIERF9 -1.7145425 0.8743083 -1.961 0.049877 *
## MKT_UNIQUE_CARRIERG4 5.7020463 1.1127428
                                              5.124 2.99e-07 ***
## MKT_UNIQUE_CARRIERHA -2.8714709
                                   0.9511590 -3.019 0.002537 **
## MKT UNIQUE CARRIERNK -1.8322000 0.6859458 -2.671 0.007562 **
## MKT UNIQUE CARRIERUA -0.6002482 0.2609938 -2.300 0.021457 *
## MKT UNIQUE CARRIERWN -6.4179120
                                   0.2504224 -25.628 < 2e-16 ***
## DISTANCE
                       -0.0008816 0.0001116 -7.902 2.75e-15 ***
## cases_avg_per_100k
                        0.1550709 0.0883141
                                               1.756 0.079107 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 34.64 on 204144 degrees of freedom
     (23785 observations deleted due to missingness)
## Multiple R-squared: 0.01101,
                                   Adjusted R-squared: 0.0109
## F-statistic: 103.3 on 22 and 204144 DF, p-value: < 2.2e-16
## [1] 35.59012
## [1] 30.88132
Beta coefficient = 0.1170830. The partial effect of cases_avg_per_100k on the airline delay.
##
## Call:
## zeroinfl(formula = ARR DELAY NEW ~ MONTH + DAY OF WEEK + MKT UNIQUE CARRIER +
      DISTANCE + cases_avg_per_100k | cases_avg_per_100k, data = airport_covid_California_train,
##
      na.action = na.omit)
##
## Pearson residuals:
       Min
                 10
                      Median
                                   30
                                           Max
##
   -0.5175 -0.5130 -0.5060 -0.3504 184.9713
##
## Count model coefficients (poisson with log link):
##
                        Estimate Std. Error z value Pr(>|z|)
                        3.846e+00 3.393e-03 1133.464 < 2e-16 ***
## (Intercept)
## MONTH2
                        5.598e-03 2.114e-03
                                                2.648 0.008092 **
## MONTH3
                       -2.842e-02 2.365e-03
                                              -12.016 < 2e-16 ***
## MONTH4
                        5.806e-02 7.332e-03
                                                7.918 2.42e-15 ***
                                   9.376e-03
## MONTH5
                       -5.015e-01
                                              -53.485 < 2e-16 ***
## MONTH6
                       -8.763e-01 1.495e-02 -58.631 < 2e-16 ***
## DAY_OF_WEEK2
                        2.366e-02 3.511e-03
                                                6.737 1.61e-11 ***
## DAY OF WEEK3
                       -1.256e-01
                                   3.532e-03 -35.557 < 2e-16 ***
## DAY_OF_WEEK4
                       -3.408e-02 3.209e-03 -10.619 < 2e-16 ***
## DAY_OF_WEEK5
                        7.111e-02 3.093e-03
                                              22.991 < 2e-16 ***
## DAY_OF_WEEK6
                        1.204e-01 3.399e-03
                                               35.436 < 2e-16 ***
## DAY_OF_WEEK7
                        7.665e-02
                                   3.254e-03
                                               23.553 < 2e-16 ***
## MKT_UNIQUE_CARRIERAS -3.833e-01
                                   3.035e-03 -126.301 < 2e-16 ***
## MKT_UNIQUE_CARRIERB6 -1.165e-01 5.631e-03 -20.688 < 2e-16 ***
## MKT_UNIQUE_CARRIERDL -1.469e-01 3.005e-03
                                              -48.890 < 2e-16 ***
## MKT_UNIQUE_CARRIERF9 -1.522e-01 8.908e-03
                                              -17.081 < 2e-16 ***
## MKT_UNIQUE_CARRIERG4 1.385e-01 8.389e-03
                                               16.513 < 2e-16 ***
## MKT_UNIQUE_CARRIERHA -4.191e-02 1.152e-02
                                               -3.638 0.000275 ***
## MKT_UNIQUE_CARRIERNK -1.226e-01 7.118e-03 -17.229 < 2e-16 ***
## MKT_UNIQUE_CARRIERUA 9.285e-02 2.491e-03
                                             37.276 < 2e-16 ***
```

```
## MKT_UNIQUE_CARRIERWN -7.418e-01 3.025e-03 -245.260 < 2e-16 ***
## DISTANCE
                       -1.356e-04 8.564e-07 -158.386 < 2e-16 ***
## cases_avg_per_100k
                                             36.235 < 2e-16 ***
                        5.048e-02 1.393e-03
## Zero-inflation model coefficients (binomial with logit link):
                     Estimate Std. Error z value Pr(>|z|)
##
                                0.006114 211.97
## (Intercept)
                     1.296026
                                                   <2e-16 ***
## cases_avg_per_100k 0.111545
                                0.002519
                                          44.28
                                                   <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Number of iterations in BFGS optimization: 1
## Log-likelihood: -1.332e+06 on 25 Df
## [1] 35.51814
##
## Call:
  zeroinfl(formula = ARR_DELAY_NEW ~ MONTH + DAY_OF_WEEK + MKT_UNIQUE_CARRIER +
      DISTANCE + cases_avg_per_100k | cases_avg_per_100k, data = airport_covid_Texas_train,
##
##
      na.action = na.omit)
##
## Pearson residuals:
##
       Min
                 1Q
                                   3Q
                      Median
                                           Max
   -0.5637 -0.5590 -0.5514 -0.4566 117.7892
##
## Count model coefficients (poisson with log link):
                         Estimate Std. Error z value Pr(>|z|)
##
                        3.657e+00 2.727e-03 1340.716 < 2e-16 ***
## (Intercept)
## MONTH2
                       -1.320e-01 2.073e-03 -63.703 < 2e-16 ***
## MONTH3
                       -7.932e-02 2.214e-03 -35.831 < 2e-16 ***
## MONTH4
                       -3.431e-01 4.773e-03 -71.881 < 2e-16 ***
## MONTH5
                       -3.762e-01 4.486e-03 -83.867 < 2e-16 ***
## MONTH6
                       -5.321e-01 7.175e-03 -74.161 < 2e-16 ***
## DAY_OF_WEEK2
                       -1.666e-01 3.248e-03 -51.290 < 2e-16 ***
## DAY OF WEEK3
                       -1.169e-01
                                   3.089e-03
                                             -37.839 < 2e-16 ***
                                              -7.012 2.36e-12 ***
## DAY_OF_WEEK4
                       -1.998e-02 2.850e-03
## DAY OF WEEK5
                        4.488e-02 2.809e-03
                                              15.979 < 2e-16 ***
## DAY_OF_WEEK6
                        1.171e-02 3.130e-03
                                               3.742 0.000182 ***
## DAY OF WEEK7
                       -3.954e-02 3.023e-03 -13.077 < 2e-16 ***
## MKT_UNIQUE_CARRIERAS -1.931e-01 7.783e-03 -24.812 < 2e-16 ***
## MKT UNIQUE CARRIERB6 2.186e-01 1.162e-02
                                             18.813 < 2e-16 ***
## MKT UNIQUE CARRIERDL 1.710e-01 3.682e-03
                                              46.441 < 2e-16 ***
## MKT_UNIQUE_CARRIERF9 3.831e-01 9.809e-03
                                              39.054 < 2e-16 ***
## MKT_UNIQUE_CARRIERG4 3.118e-01 1.111e-02
                                              28.064 < 2e-16 ***
## MKT_UNIQUE_CARRIERNK 1.004e-01 5.711e-03
                                              17.581 < 2e-16 ***
## MKT_UNIQUE_CARRIERUA 7.508e-02
                                               37.790 < 2e-16 ***
                                  1.987e-03
## MKT_UNIQUE_CARRIERWN -4.269e-01
                                   2.605e-03 -163.918 < 2e-16 ***
## DISTANCE
                       -3.763e-05 1.416e-06 -26.582 < 2e-16 ***
## cases_avg_per_100k
                        2.035e-02 5.590e-04
                                              36.408 < 2e-16 ***
## Zero-inflation model coefficients (binomial with logit link):
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     1.123907
                                0.005714 196.68
                                                  <2e-16 ***
## cases avg per 100k 0.028292
                                0.001567
                                          18.05
                                                  <2e-16 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 1
## Log-likelihood: -1.473e+06 on 24 Df
## [1] 30.88815
```

For the zero-inflated poisson model, the first process generates zeros and the second process is governed by a Poisson distribution that generates counts, some of which may be zero. In this model building, the assumption is that the covid cases would generate the non-zero counts.

[1] 35.22869

[1] 30.32028

[1] 98.84347

rfCalifornia_delayed

Partial Dependence on "cases_avg_per_100k"

[1] 82.96199

rfTexas_delayed

Partial Dependence on "cases_avg_per_100k"

Including <code>ORIGIN</code> only reduced the rMSE from 97.35954 to 97.20708. removing the variable for the entire country analysis, as there are too many levels.