1/30/99

II CLAY- WATER FORCES

t Sheets A ! B

(1.361 Rater.)

1. WATER VAPOR SORPTION ("Adsorbed"Water)

(II2-2.1)

1.1 Water Content vs. Relative Humidity (RH)

1) Relative humidaly, RH(4)

Tible 2.7. Inedland & Kahardjo (1993)
Soil Mech, for Unsaturated Soils, Wiley
textbook

2) adsorption - desorption curves (starting from over dry sal)

3) Velues of water content

\$ = 3 A

a) RH = 50% -> 1-2 molecular

: t=5A Ws(4) = 0.05 x SSA(m3/g)

thechnesses of water

· Empunil data from Ladd | Lambe (1961)

{ t(A) - 100 w(1) | SSA (m2/9) }

Would) = (0.2 +0.05) Ip(2)

b) RH = 99% = t = 10-15A × 3-5 molecular thicknesses
Often referred to as thechous of teglity bound "edsorted" weeks

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

 $RH(1) = 99.9 \quad 99.5 \quad 99 \quad 95 \quad 90$ $W_{c}(bn) = 1.35 \quad 6.77 \quad 13.5^{5} \quad 69 \quad 142$ $PF = 3.1^{5} \quad 4.1^{5} \quad 5.1^{5}$

Engineer's Computation Pad

(1.2 Cont) 2) Water content vs capillary pressure

(1.361 Rg)

Computed from ur so RH date on
Preview (Li) Karlinite with

CEC = 2.7 meq./1009 (SSA= 9 m²/g fn To=0.3)

Adsorption curve for RH = 0 to 95%

(IW VS RN clate by R.V. Martin, 1958,

Proc. 5th Net. Conf. Clays & Clay Minieralogy

NAS INRC Publ. 566, p 23-38

1.3 Machanisms of Water Vapor Adsorption (CCL + Mitchell (1993), Chap6)

Note: H20 molecule 2 depole Oxygen

Oxygen - F

Starting from ovendry sal

Mechanism

Remarks

(I2-2, p6)

1) H-bonding Oxyge
Oxygen or OH

May important for 1st layer

2) Cation hydration

Very important; Hydrated die of cartina

3) Orientation of HaD depole in electric feels

Uncertain importance

(less mobile - less perenny)

4) vanda Waah attraction ...

Carried K+1 Na+1 Ca+2 Mg+2 Li+1,
Hydrated 9±25 135±2 19 21.5 17.5±2.5 (JKM 1993, p122)

1/31/99

(1.361 Ref)

1.4 Measurement of Water Content

- 1) ASTM 2216 T= 110±5°C really docont remove all 1420; need marche 200°C is that of practical seguifusing?
- 2) and have soil in humid enveroment before weighing after ranne from oven
- (Can Uc + 10's to 100's atm. in cohesine sonte? ____)
 - 1) Tabo (1979): thenetical tensule shoroth, Um = -5000 atm.

 However, may small amount of dissolved gas cavetation at

 Um >> thenetical value (Uz 2< 5000 atm). Typical Lab test -?
 - 2) Temperley & Chambers (1946 Phon. Royal Sa., London)

 Carefully degassed, Smooth-walled Chamber > 4w = -500 atm

 H20
 - 3) Conclusion: answer to () is YES, e.g. drying of enertially sat. day to the shundage limit
 (See PB)

2. SOIL SUCTION (S) [also see 1.361 Section 2.6 of Part IE-1]

2.1 Overview

- · Used as a measure of the "free energy" of the bulk pose water in soil to (at constant elevation) relative to pure water at atm pressure at same temperature when this free energy is less than zero.
- · Free energy can be expressed in terms of: potential I/kg

 pressure kle } most common

 head m
- * (2) Physical meaning when low To Set." -> no bulk water?

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

CCL tentature defendament

2.4 Direct Lab Measurements of Soil Suction (Shut A)

1) Experimental set-up for . Suction plate (ua=0) "axis translation"

. Pressure plate (ua>0) - Reguiris continuos
di voido

Miniature prezimeta (4a=0) à la Redley & Berland (1993) with 4b=15bar & Germaine - Sjoblom MIT research

Saturated Fine porous stone with

Por fleid in stone thine (treasument system)

buttling pressure (46) >S to be measured

2) Test conditions { measured soil suction = (4a-4w)

Sample	Caise	System Pore Fluid	Does Stone Act As Semi-Perm, Membrane?	Meas, Soil Suction	Remarks
Clay with Salt in bulk pore Huia	·	Same as soil pore fluid	Both Yes & No, is makes no difference	Matric	-
. //	2 a	Pure He O	Yes	Total	7
	26	A	No	Total Matric	} ***

At whether or mot 15 box stone will sthetest a segrepicant "osmotic efficiency" (it; act as partial semi-permeable membrane) is somewhat controversial. For example, discussion to Ridley & Burland concludes that 15 box store approaches total suction, whereas authors disapec. Kurt Goblom's data indicate that orders we market suction

(1) Jeokehnique 1994, 44(3), 551-556

1/31/99

2.5 Soil Suction Measurement Techniques

- 1) See Sheet A for overvier of schematic of desict measurements
- 2) " " B for info. on filler paper technique *
- 3) See Stannard [1992: ASTM, GTI, 15(1)] for SOA paper on full measurement technique
- * Note that calchabin cure becomes very flat (hence very propercise) at low suctions. also exact details of "contact" ve "noncontact" very important pleas may have definint calebration curves for these 2 conditions (RSB, 1994 closus)
- 3. NATURE OF ADSORBED WATER

Double Layer

adonted H20

- 3.1 Fotaliers. Pressure Head and attraction Pressure
 - Total head head (total per energy)

 Total head h = he = he + hp + hs + hv + hpc undin drubbelage (DL)

 -Sm four bulk water begand! DL (JKM 1993

 The at he = hs = h = 0 Section 9.5)
 - 2) Attraction presonne, us distance, from particle surface

 NOTE: CCC don't know (asper wishig) shope of counc
- Discussion of actual pressure in HoD >
 "Camb have very high 5m, but shill have
 burge top in adopted water

 Values of p within adopted to

 d=10-15 A = 10's atm

 built water d=3-6 A = 100's-1000's atm.
 - 3) Discussions what is meaning of ht, hp, som etc. when low 20 sat. > no bulk water?

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

(Salahan)

22-141 22-142 22-144

ON DEPTH DEP

3.2 Physical Properties of Adsorbed Water

(1.361 Ref) (II2,p6)

1) bo " kie - like"

· Very high viscosity

- · Causes cohesion & creep (c.s., Tergoshi, Byennin 1973)
- · Point get mineral minard contacts (in greatly inhabits) in clay
- 2) Like 2-D legard (R.T. Martin)
 - · Like ball bearings on magnet
 - · Does not cause sheigh, but does inhelit min, - min. contact

- 3) Discussini -
 - . Strug of discussion at 1961 ICSMFE, Paris (Gueze of Holland: "aclanted 120 + clay shough + cruep. TWL reply =
 - · Preducted unconfined su of initially saturated clay during drying

- . From 1,361
 - Stringth of over dreid BBC S what happined when put in water
 - Part IV-1, p5 + Ont = 70 bar at shrinkage limit of BBC

Adapted from RIDLEY AND BURLAND (1993)

Suction Measurement Techniques

	Suction Value [#]	Principal Usage	Direct/ Indirect	Range: kPa	Equilibrium Time
V D :	T. (.1	T 1	T 1'	103-106	M (1
Vacuum Desiccator	Total	Lab.	Indirect	105-100	Months
Psychrometer	Total	Field	Indirect	300-7000	Months
Filter Paper	Total	Field	Indirect	1000-30000	Weeks
	Matrix	Lab.	Indirect	30-30000	1 week
Porous Block	Matrix	Field	Indirect	30-3000	Weeks
Thermal Block	Matrix	Field	Indirect	0-175	Days
Suction Plate	Matrix	Lab.	Direct	0-90	Hours
Tensiometer	Matrix	Field	Direct	0-90	Hours
Pressure Plate	Matrix	Lab.	Direct	0-5000	Hours
Osmotic Tensiometer	Matrix	Field	Direct	0-1500	Days

[#] As defined by Aitchison and Richards (1965).

Direct Measurement of Soil Suction: a) Tensiometer; b) Pressure Plate Apparatus

Figure by MIT OCW.

Adapted from:

Bookehneque (1993) 43(2), 321-324

applied suctions.

Adapted from Fredlund & Rahardjo (1993) Soil Mechanics for Unsaherated Soil,

John Wiley & Sons

Contact and noncontact filter paper methods for measuring matric and total suction, respectively.

technique

Figure by MIT OCW.

Figure by MIT OCW.

