FIGURE 1

GTTACTCGGTGGTGGCGGAGTCTACGGAAGCCGTTTTCGCTTCACTTTTCCTGGCTGTAGAGC CACTCTCCTCATCGTTTTTATCTCTGTGTGCACGGCTCTGCTCGCAGAGGGCATAACCTGGGT CCTGGTTTACAGGACAGACAAGTACAAGAGACTGAAGGCAGAAGTGGAAAAACAGAGTAAAAA ATTGGAAAAGAAGAAGAAACAATAACAGAGTCAGCTGGTCGACAACAGAAAAAGAAAATAGA GAGACAAGAAGAGAAACTGAAGAATAACAACAGAGATCTATCAATGGTTCGAATGAAATCCAT GTTTGCTATTGGCTTTTGTTTTACTGCCCTAATGGGAATGTTCAATTCCATATTTGATGGTAG AGTGGTGGCAAAGCTTCCTTTTACCCCTCTTTCTTACATCCAAGGACTGTCTCATCGAAATCT GCTGGGAGATGACACCACAGACTGTTCCTTCATTTTCCTGTATATTCTCTGTACTATGTCGAT $\texttt{TGGATTTCTTGGCCCACCACCTCCTTCTGGGAAGTTCTCT} \textbf{\underline{TGA}} \texttt{ACTCAAGAACTCTTTATTTT}$ CTATCATTCTTTCTAGACACACACACATCAGACTGGCAACTGTTTTGTAGCAAGAGCCATAGG TAGCCTTACTACTTGGGCCTCTTTCTAGTTTTGAATTATTTCTAAGCCTTTTTGGGTATGATTA GAGTGAAAATGGCAGCCAGCAAACTTGATAGTGCTTTTTGGTCCTAGATGATTTTTTATCAAATA AGTGGATTGATTAGTTAAGTTCAGGTAATGTTTATGTAATGAAAAACAAATAGCATCCTTCTT GTTTCATTTACATAAGTATTTTCTGTGGGACCGACTCTCAAGGCACTGTGTATGCCCTGCAAG GTTTGTTTTTTTTTTTTTTCAAGCCAAATACATGACATAAGATCAATAAAGAGGCCA AATTTTTAGCTGTTTTATGTACAAGGAGAGATCTGTTTCATTTTGTTTTTGCCGTATTTCTAGA AAAA

FIGURE 2

MSTMFADTLLIVFISVCTALLAEGITWVLVYRTDKYKRLKAEVEKQSKKLEKKKETITESAGR QQKKKIERQEEKLKNNNRDLSMVRMKSMFAIGFCFTALMGMFNSIFDGRVVAKLPFTPLSYIQ GLSHRNLLGDDTTDCSFIFLYILCTMSIRQNIQKILGLAPSRAATKQAGGFLGPPPPSGKFS

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites.

amino acids 103-109, 163-169

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 53-57

FIGURE 3

AGCCGGGGGCGGTTTGAAGACGCGTCGTTGGGTTTTGGAGGCCGTGAAACAGCCGTTTGAGT ${\tt TTGGCTGCGGGTGGAGAACGTTTGTCAGGGGCCCGGCCAAGAAGGAGGCCCGCCTGTTACG \textbf{AT}}$ **G**GTGTCCATGAGTTTCAAGCGGAACCGCAGTGACCGGTTCTACAGCACCCGGTGCTGCGGCTG TTGCCATGTCCGCACCGGGACGATCATCCTGGGGACCTGGTACATGGTAGTAAACCTATTGAT GGCAATTTTGCTGACTGTGGAAGTGACTCATCCAAACTCCATGCCAGCTGTCAACATTCAGTA TGAAGTCATCGGTAATTACTATTCGTCTGAGAGAATGGCTGATAATGCCTGTGTTCTTTTTGC CGTCTCTGTTCTTATGTTTATAATCAGTTCAATGCTGGTTTATGGAGCAATTTCTTATCAAGT GGGTTGGCTGATTCCATTCTTCTGTTACCGACTTTTTGACTTCGTCCTCAGTTGCCTGGTTGC TATTAGTTCTCTCACCTATTTGCCAAGAATCAAAGAATATCTGGATCAACTACCTGATTTTCC CTACAAAGATGACCTCCTGGCCTTGGACTCCAGCTGCCTCCTGTTCATTGTTCTTGTGTTCTT TGCCTTATTCATCATTTTTAAGGCTTATCTAATTAACTGTGTTTTGGAACTGCTATAAATACAT CAACAACCGAAACGTGCCGGAGATTGCTGTGTACCCTGCCTTTGAAAGCACCTCCTCAGTACG CAGAATGCTGCAATTCAGGGCTCTTCAAACTTGTTTGATATAAAATATGTTGTCTTTTGTTTA AGCATTTATTTTCAAACACTAAGGAGCTTTTTGACATCTGTTAAACGTCTTTTTGTTTTTTT TTAAGTCTTTTACATTTTAATAGTTTTTGAAGACAATCTAGGTTAAGCAAGAGCAAAGTGCCA TTGTTTGCCTTTAATTGGGGGGTGGGAAGGGAAAGAGGGTACTTGCCACATAGTTTCCTTTTT AACTGCACTTTCTTTATATAATCGTTTGCATTTTGTTACTTGCTACCCTGAGTACTTTCAGGA AGACTGACTTAAATATTCGGGGTGAGTAAGTAGTTGGGTATAAGATCTGAACTTTTCATCTGC AGAGGCAAGAAAATATTTGACATTGTGACTTGACTGTGGAAGATGATGGTTGCATGTTTCTA GTTTGTATATGTTTCCATCTTTGTGATAAGATGATTTAATAAATCTCTTTAAATACTAAAAAA AAAAAAAA

MVSMSFKRNRSDRFYSTRCCGCCHVRTGTIILGTWYMVVNLLMAILLTVEVTHPNSMPAVNIQ YEVIGNYYSSERMADNACVLFAVSVLMFIISSMLVYGAISYQVGWLIPFFCYRLFDFVLSCLV AISSLTYLPRIKEYLDQLPDFPYKDDLLALDSSCLLFIVLVFFALFIIFKAYLINCVWNCYKY INNRNVPEIAVYPAFESTSSVRFANL

Important features of the protein:

Transmembrane domain (Possible type II transmembrane protein):

amino acids 30-49, 81-100, 111-131, 158-175

N-glycosylation site.

amino acids 9-13

Tyrosine kinase phosphorylation sites.

amino acids 8-16, 193-202

N-myristoylation site.

amino acids 68-74

ACGCACCCGATGGCGGAGCTGCGGCCTAGCGGCCCCCGGCCCCACCGCGCCCCCGGCCCC TGGCCCGACTGCCCCCCGGCCTTCGCTTCGCTCTTTCCCCCGGGACTGCACGCCATCTACGG AGAGTGCCGCCCTTTACCCTGACCAGCCGAACCCGCTCCAGGTTACCGCTATCGTCAAGTA CTGGTTGGGTGGCCCAGACCCCTTGGACTATGTTAGCATGTACAGGAATGTGGGGAGCCCTTC TGCTAACATCCCCGAGCACTGGCACTACATCAGCTTCGGCCTGAGTGATCTCTATGGTGACAA CAGAGTCCATGAGTTTACAGGAACAGATGGACCTAGTGGTTTTGGCTTTGAGTTGACCTTTCG TCTGAAGAGAGAACTGGGGAGTCTGCCCCACCAACATGGCCCGCAGAGTTAATGCAGGGCTT GGCACGATACGTGTTCCAGTCAGAGAACACCTTCTGCAGTGGGGACCATGTGTCCTGGCACAG CCCTTTGGATAACAGTGAGTCAAGAATTCAGCACATGCTGCTGACAGAGGACCCACAGATGCA GCCCGTGCAGACACCCTTTGGGGTAGTTACCTTCCTCCAGATCGTTGGTGTCTGCACTGAAGA GCTACACTCAGCCCAGCAGTGGAACGGGCAGGGCATCCTGGAGCTGCTGCGGACAGTGCCTAT ACACCTGCAAGAGAGATTGACAAAGGCATCGAGACAGATGGCTCCAACCTGAGTGGTGTCAG TGCCAAGTGTGCCTGGGATGACCTGAGCCGGCCCCCCGAGGATGACGAGGACAGCCGGAGCAT CTGCATCGGCACACAGCCCCGGCGACTCTCTGGCAAAGACACAGAGCAGATCCGGGAGACCCT GAGGAGAGGACTCGAGATCAACAGCAAACCTGTCCTTCCACCAATCAACCCTCAGCGGCAGAA TGGCCTCGCCCACGACCGGGCCCGAGCCGCAAAGACAGCCTGGAAAGTGACAGCTCCACGGC CATCATTCCCCATGAGCTGATTCGCACGCGGCAGCTTGAGAGCGTACATCTGAAATTCAACCA GGAGTCCGGAGCCCTCATTCCTCTCTGCCTAAGGGGCAGGCTCCTGCATGGACGGCACTTTAC ATATAAAAGTATCACAGGTGACATGGCCATCACGTTTGTCTCCACGGGAGTGGAAGGCGCCTT TGCCACTGAGGAGCATCCTTACGCGGCTCATGGACCCTGGTTACAACTC**TGA**ACCTATCCTCG GAGCTCTGCCCTCCCGTCCTGGAACGTCTTTCTGCCCTGAGGAGGGGTAGTCAGCATCTCCA ATTTTCAGCAGCTCAAGAACCTTGGCCCCCACAGGACTTCGCAGATGTCACATTGCCCCTCAG TCCCCTGAATGCCCTTCGGACCCAACCCCAATTCCCCAAGCCCCTGACCCCCTAGCTGCCGGG GTTCCCACTCCCAGTGCCACAACCCCCTCACCTCCCCTGGCAGCCCCTCAGCGAGCCTGAGGC CCAGCACCCGCTGGCTCCCAGCACATGGTCCCCTCCCATGGGCTGTTGCCCAGGGAACCGGG GCGCGGTGGGAACGAGCTGCTGGCCTCGGCATGTTTCAATAAAGTTGCTGTGCTGGGAG

FIGURE 6

MAELRPSGAPGPTAPPAPGPTAPPAFASLFPPGLHAIYGECRRLYPDQPNPLQVTAIVKYWLG GPDPLDYVSMYRNVGSPSANIPEHWHYISFGLSDLYGDNRVHEFTGTDGPSGFGFELTFRLKR ETGESAPPTWPAELMQGLARYVFQSENTFCSGDHVSWHSPLDNSESRIQHMLLTEDPQMQPVQ TPFGVVTFLQIVGVCTEELHSAQQWNGQGILELLRTVPIAGGPWLITDMRRGETIFEIDPHLQ ERVDKGIETDGSNLSGVSAKCAWDDLSRPPEDDEDSRSICIGTQPRRLSGKDTEQIRETLRRG LEINSKPVLPPINPQRQNGLAHDRAPSRKDSLESDSSTAIIPHELIRTRQLESVHLKFNQESG ALIPLCLRGRLLHGRHFTYKSITGDMAITFVSTGVEGAFATEEHPYAAHGPWLQL

Important features:

N-glycosylation site.

amino acids 265-268

FIGURE 7

CGCGAATGAAGTTTGCATTTTCCTCTGTTCTTGAGCCCAGCTTCTTCTCGTCTCCCACCCCAG CTTCCCGGCATTGGAAGAAGGGACCGTCCTCTTCCTTGTCTTGGCCACCCAAATCCTGGTATC GAAAGGGTTGAACGGACCGGAAGTGTGCAGCAGCGACGGGTCCCCAGCTAATCGACGCCGGAA GTAGCAATTACTAGACAAGCATTCCGCCGCCGGCTTCGCT**ATG**GCGGCAATTCCCCCAGATTC CTGGCAGCCACCCAACGTTTACTTGGAGACCAGCATGGGAATCATTGTGCTGGAGCTGTACTG GAAGCATGCTCCAAAGACCTGTAAGAACTTTGCTGAGTTGGCTCGTCGAGGTTACTACAATGG CACAAAATTCCACAGAATTATCAAAGACTTCATGATCCAAGGAGGTGACCCAACAGGGACAGG TCGAGGTGGTGCATCTATCTATGGCAAACAATTTGAAGATGAACTTCATCCAGACTTGAAATT CACGGGGGCTGGAATTCTCGCAATGGCCAATGCGGGGCCAGATACCAATGGCAGCCAGTTCTT TGTGACCCTCGCCCCACCCAGTGGCTTGACGGCAAACACACCATTTTTGGCCGAGTGTGTCA CGACGTGAAGATCATTAAGGCATACCCTTCTGGGT**AG**ACTTGCTACCCTCTTGAGCAGCTCTT CTGAGATGGCCCCAGTGAACCAGCTTCTAGATGACATAGAATGACATGTAATGCTAAATTTCA TTTTGGCTTTGCAAGTCATGAAGCTTAGGAGGCCTGGCATCTTGGGTGAGTTAGAGATGGAAG TACATTTTAATAGGATGCTTCTTTTCTCTCCCCCAGTGCCTAGGTTGCCAGAGCATTTGCAC AAATGCCCCTGTTTATCAATAGGTGACTACTTACTACACATGAACCATAATGCTGCTTCTTGT GCATGTCTGCTCTGATATACGTCGAACAATGTAGCAGCCACTGTCATTTCTCAGTGGTTTTGC CTAACCAAACTTCTTCCTAAGGAGATTTATATTCTGGCCTACACAGCAGTCCTTGATGGCTGA CAGCCACAGAATTCCAAACCAAGTAGTGTCTGTCAGCCCTCTTAACTCTGTGCACGCCCTATT AACCAGAACATCAACAGTGCTGTTTCTGACACTTCAGACATCCCACGCAAAGCCACATTGAAT TTTTGCCAAATGAAAAACACATCCAACAATCAAGTTTCTAAGAAGGTGTCAAGTGGGGAATAA TAATAATGTATAATAATCAAGAAATTAGTTTATTAAAAGGAAGCAGAAGCATTGACCATTTTT TCCCAGAGAAGAGGAGAAATCTGTAGTGAGCAAAGGACCATGAATCCTCCTTGAGAAGT AGTACTCTCAGAAAGGAGAAGCGCCACTCAAGTTCTTTTAACCCAAGACTTTAGAGAAATTAG GTCCAAGATTTTTATATGTTCAGTTGTTTATGTATAAAAATAACTTTCTGGATTTTTGTGGGGA GGAGCAGGAGGAAGGAAGTTAATACCTATGTAATACATAGAAACTTCCACAATAAAATGCC ATTGATGGTTAAAAAAAAAAAAAAAAAAAA

MAAIPPDSWQPPNVYLETSMGIIVLELYWKHAPKTCKNFAELARRGYYNGTKFHRIIKDFMIQ GGDPTGTGRGGASIYGKQFEDELHPDLKFTGAGILAMANAGPDTNGSQFFVTLAPTQWLDGKH TIFGRVCQGIGMVNRVGMVETNSQDRPVDDVKIIKAYPSG

Important features:

N-glycosylation sites:

amino acids 49-52, 108-111

N-myristoylation sites:

amino acids 64-69, 69-74, 143-148

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature:

amino acids 48-65

CGGACGCGTGGGCGCGCGAGCGCAGCGGTGGGAGGCGGCCACCAGCCGGTTGAGGCCCCAG GCTTGGCCTCACCACA**ATG**TGGCACGAGGCTCGGAAGCATGAGCGGAAGCTTCGAGGCATGAT GGTCGACTACAAGAAGAGGGCGGAGCGGAGACGGGAGTATTATGAAAAGATCAAGAAGGACCC AGCCCAGTTCCTGCAGGTACATGGCCGAGCTTGCAAGGTGCACCTGGATTCTGCAGTCGCCCT GGCCGCTGAGAGCCCTGTTAATATGATGCCCTGGCAGGGGGACACCAACAACATGATTGACCG ATTCGATGTCCGTGCCCACCTGGACCACATCCCCGACTACACCCCCCTCTGCTCACCACCAT CTCCCCAGAACAGGAGTCGGACGAACGGAAGTGTAACTACGAGCGCTACAGAGGCCTGGTGCA GAACGACTTTGCCGGCATCTCAGAGGAGCAGTGCCTGTACCAGATCTACATTGATGAGTTGTA CGGAGGCCTCCAGAGACCCAGCGAAGATGAGAAGAAGAAGCTGGCAGAGAAGAAGCTTCCAT CGGTTATACCTACGAGGACAGCACGGTGGCCGAGGTAGAGAAGGCGGCAGAAAAGCCAGAGGA GGAGGAGTCAGCGGCCGAGGAGGAGAGCAACTCGGACGAAGATGAGGTCATCCCCGACATCGA GACTTATGGCATGGCCGACGGTGACTTCGTCAGGATGCTCCGGAAAGACAAGGAGGAGGCAGA GGCCATCAAGCATGCCAAGGCTCTTGAGGAGGAGAAGGCCATGTACTCGGGACGCCGCTCTCG TGCCCGCCGAGACAGCCCCACCTATGACCCCTATAAGCGGTCACCCTCGGAGTCCAGCTCAGA GTCCCGCTCCCGCTCCCCGACCCCGGGCCGCGAGGAGAAGATCACGTTCATCACCAG TTTTGGGGGCAGCGATGAGGAGGCAGCCGCAGCCGCTGCTGCCGCAGCAGCATCAGGAGTCAC CACAGGGAAGCCCCCGCACCTCCCCAGCCTGGCGGCCCCGGGGACGTAATGCCAGCGC CCGCCGCCGCTCCTCCTCCTCCTCCTCTTCTGCCTCGAGGACCTCCAGCTCCCGCTC CAGCTCTCGCTCCAGCTCCCGCTCTCGCCGTGGTGGGGGGCTACTACCGTTCCGGCCGCCACGC CCGCTCCCGGTCCCGCTCCCGCTCCCGCTCCCGGCGCTATTCCCGGTCCCG TAGCCGTGGCCGCGCACTCAGGTGGGGGCTCCCGAGACGGACACCGGTACTCCCGCTCGCC CGCCCGCCTGGTGGTTACGGGCCCCGGCGCAGAAGCAGGAGCCGCTCCCACTCAGGGGACCG CTACAGGCGGGGCCGGGGCCTCAGGCACCACAGCAGTAGCCGCAGCCGCAGCTGGTC CCTCAGCCCGTCCCGCAGTCGCAGCCTGACTCGCAGCCGCAGCCCATAGCCCCAGCCCAGCCA GAGCCGCAGCCGCAGCCGCAGCCAGAGCCCCTCGCCATCACCCGCAAGAGAGAAGCT GACCAGGCCGGCCGCTCCCTGCTGGGGCGAGAAGCTGAAAAAGACCGAACCTGCCGCTGG TAAAGAGACAGGAGCTGCCAAAGTCACCCAAGCTGACGCCTCAGGAGAAGCTGAAACTGAGGA TGCAGAAGGCGCTGAACAGGCAGTTCAAGGCGGA<u>TAA</u>GAAGGCGGCACAAGAAAAGATGATCC AGCAGGAGCATGAGCGGCAGGAGCGGGAAGACGAGCTTCGAGCCATGGCCCGCAAGATCCGCA TGAAGGAGCGGGAACGCCGAGAGAAGGAGAGAGAGTGGGAACGCCAGTACAGCCGGCAGA GCCGCTCACCCTCCCCCGATACAGTCGAGAATACAGCTCTTCTCGAAGGCGCTCAAGGTCCC GATCCCGAAGCCCCCATTACCGACATTAGGCAGAAGAGTGGGGGGTGGGGAGGACAAGGGGGT GGGTAAGGGGCTCAAGCTGTGATGCTGCTGGTTTTATCTCTAGTGAAATAAAGTCAAAAGTTA AAAAAAA

FIGURE 10

Important features:

N-glycosylation site:

amino acids 370-373

Glycosaminoglycan attachment site:

amino acids 443-446

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 159-162, 282-285, 291-294, 374-377, 375-378, 430-433, 440-443, 466-469

Casein kinase II phosphorylation site:

amino acids 149-152, 166-169, 171-174, 187-190, 193-196, 195-198, 303-306, 307-310, 335-338, 571-574

N-myristoylation sites:

amino acids 118-123, 229-234, 350-355, 446-451, 586-591

Amidation sites:

amino acids 263-266, 280-283, 438-441

FIGURE 11

GGTAGGCGCCCAGACCTGAGACGGGTTGGGACTGGGCTGCGTCACGCGCGGGCTCTAAGCG AAGGCCGCCTGGAAACTTAAATCCCGAGGCGGGCGAACCTGCACCAGACCGCGGACGTCTGTA ATCTCAGAGGCTTGTTTGCTGAGGGTGCCTGCGCAGCTGCGACGGCTGCTGGTTTTGAAAC**AT** $\textbf{G} \textbf{AATCTTTCGCTCGTCCTGGCTGCCTTTTGCTTGGGAATAGCCTCCGCTGTTCCAAAATTTGA$ CCAAAATTTGGATACAAAGTGGTACCAGTGGAAGGCAACACAGAAGATTATATGGCGCGAA TGAAGAAGGATGGAGGAGAGCAGTGTGGGAAAAGAATATGAAAATGATTGAACTGCACAATGG GGAATACAGCCAAGGGAAACATGGCTTCACAATGGCCATGAATGCTTTTGGTGACATGACCAA TGAAGAATTCAGGCAGATGATGGGTTGCTTTCGAAACCAGAAATTCAGGAAGGGGAAAGTGTT GCCAGTGAAGAATCAGAAACAGTGTGGTTCTTGTTGGGCTTTTAGTGCGACTGGTGCTCTTGA TTCGCGTCCTCAAGGCAATCAGGGCTGCAATGGTGGCTTCATGGCTAGGGCCTTCCAGTATGT CAAGGAGAACGGAGGCCTGGACTCTGAGGAATCCTATCCATATGTAGCAGTGGATGAAATCTG TAAGTACAGACCTGAGAATTCTGTTGCTAATGACACTGGCTTCACAGTGGTCGCACCTGGAAA GGAGAAGGCCCTGATGAAAGCAGTCGCAACTGTGGGGCCCATCTCCGTTGCTATGGATGCAGG CCATTCGTCCTTCCAGTTCTACAAATCAGGCATTTATTTTGAACCAGACTGCAGCAGCAAAAA CCTGGATCATGGTGTTCTGGTGGTTGGCTACGGCTTTGAAGGAGCAAATTCGAATAACAGCAA GTATTGGCTCGTCAAAAACAGCTGGGGTCCAGAATGGGCTCGAATGGCTATGTAAAAATAGC TGGATGGTGAGGAGGAGGACTTAAGGACAGCATGTCTGGGGAAATTTTATCTTGAAACTGAC CAAACGCTTATTGTGTAAGATAAACCAGTTGAATCATGGAGGATCCAAGTTGAGATTTTAATT CTGTGACATTTTTACAAGGGTAAAATGTTACCACTACTTTAATTATTGTTATACACAGCTTTA TGATATCAAAGACTCATTGCTTAATTCTAAGACTTTTGAATTTTCATTTTTTAAAAAGATGTA CAAAACAGTTTGAAATAAATTTTTAATTCGTATATA

FIGURE 12

MNLSLVLAAFCLGIASAVPKFDQNLDTKWYQWKATHRRLYGANEEGWRRAVWEKNMKMIELHN GEYSQGKHGFTMAMNAFGDMTNEEFRQMMGCFRNQKFRKGKVFREPLFLDLPKSVDWRKKGYV TPVKNQKQCGSCWAFSATGALEGQMFRKTGKLVSLSEQNLVDCSRPQGNQGCNGGFMARAFQY VKENGGLDSEESYPYVAVDEICKYRPENSVANDTGFTVVAPGKEKALMKAVATVGPISVAMDA GHSSFQFYKSGIYFEPDCSSKNLDHGVLVVGYGFEGANSNNSKYWLVKNSWGPEWGSNGYVKI AKDKNNHCGIATAASYPNV

Important features:

Signal sequence

amino acids 1-17

N-glycosylation sites.

amino acids 2-6, 221-225, 292-296

N-myristoylation sites.

amino acids 13-19, 93-99, 136-142, 145-151, 174-180, 177-183, 180-186, 194-200, 288-294, 324-330

Eukaryotic thiol (cysteine) proteases cysteine active site. amino acids 132-144

Eukaryotic thiol (cysteine) proteases histidine active site. amino acids 275-286

FIGURE 13

GGCGGCGTCATGTGATCCGCTTCCCTGCTCCTTTAAGCGTCCACAGGCGGCGGAGCGGCCACA ATCACAGCTCCGGGCATTGGGGGAACCCGAGCCGGCTGCGCGGGGGAATCCGTGCGGGCGCC TTCCGTCCCGGTCCCATCCTCGCCGCGCTCCAGCACCTCTGAAGTTTTGCAGCGCCCAGAAAG GAGGCGAGGAAGGAGGGAGTGTGTGAGAGGAGGAGCAAAAAGCTCACCCTAAAACATTTATT TCAAGGAGAAAAGAAAAGGGGGGGGCGCAAAAAAACATGAGCA CCAAGAAGCTGTGCATTGTTGGTGGGATTCTGCTCGTGTTCCAAATCATCGCCTTTCTGGTGG GAGGCTTGATTGCTCCAGGGCCCACAACGGCAGTGTCCTACATGTCGGTGAAATGTGTGGATG CCCGTAAGAACCATCACAAGACAAAATGGTTCGTGCCTTGGGGACCCAATCATTGTGACAAGA TCCGAGACATTGAAGAGGCAATTCCAAGGGAAATTGAAGCCAATGACATCGTGTTTTCTGTTC ACATTCCCCTCCCCCACATGGAGATGAGTCCTTGGTTCCAATTCATGCTGTTTATCCTGCAGC TGGACATTGCCTTCAAGCTAAACAACCAAATCAGAGAAAATGCAGAAGTCTCCATGGACGTTT CCCTGGCTTACCGTGATGACGCATTTGCTGAGTGGACTGAAATGGCCCATGAAAGAGTACCAC GGAAACTCAAATGCACCTTCACATCTCCCAAGACTCCAGAGCATGAGGGCCGTTACTATGAAT GTGATGTCCTTCCTTTCATGGAAATTGGGTCTGTGGCCCATAAGTTTTACCTTTTAAACATCC GGCTGCCTGTGAATGAGAAGAAGAAATCAATGTGGGGAATTGGGGAGATAAAGGATATCCGGT CGCCCAGCATCTTCATCATTATGGTGTGGTATTGGAGGAGGATCACCATGATGTCCCGACCCC CAGTGCTTCTGGAAAAAGTCATCTTTGCCCTTGGGATTTCCATGACCTTTATCAATATCCCAG TGGAATGGTTTTCCATCGGGTTTGACTGGACCTGGATGCTGTTTTGGTGACATCCGACAGG GCATCTTCTATGCGATGCTTCTGTCCTTCTGGATCATCTTCTGTGGCGAGCACATGATGGATC AGCACGAGCGGAACCACATCGCAGGGTATTGGAAGCAAGTCGGACCCATTGCCGTTGGCTCCT TCTGCCTCTTCATATTTGACATGTGTGAGAGAGGGGGTACAACTCACGAATCCCTTCTACAGTA TCTGGACTACAGACATTGGAACAGAGCTGGCCATGGCCTTCATCATCGTGGCTGGAATCTGCC TCTGCCTCTACTTCCTGTTTCTATGCTTCATGGTATTTCAGGTGTTTCGGAACATCAGTGGGA AGCAGTCCAGCCTGCCAGCTATGAGCCAAAGTCCGGCGGCTACACTATGAGGGGCTAATTTTTA GGTTCAAGTTCCTCATGCTTATCACCTTGGCCTGCGCTGCCATGACTGTCATCTTCTTCATCG ${\tt TTAGTCAGGTAACGGAAGGCCATTGGAAATGGGGCGGCGTCACAGTCCAAGTGAACAGTGCCT}$ TTTTCACAGGCATCTATGGGATGTGGAATCTGTATGTCTTTGCTCTGATGTTCTTGTATGCAC CATCCCATAAAAACTATGGAGAAGACCAGTCCAATGGCGATCTGGGTGTCCATAGTGGGGAAG AACTCCAGCTCACCACCACTATCACCCATGTGGACGGACCCACTGAGATCTACAAGTTGACCC GCAAGGAGGCCCAGGAGTAGGAGGCTGCAGCGCCCGGCTGGGACGGTCTCTCCATACCCCAGC TCTTAGCTGTGGTTTCTTGGACCAGCGGCATGGACATTTGTCAGTTTGCCTTCTGACGGTAGC TTTTGGAGGAAGATTCCTGCAGCCACTAATGCATTGTGTATGATAACAAAAACTCTGGTATGA CACATTTTCTGTGATCATTGTTAATTAGTGACATAGTAACATCTGTAGCAGCTGGTTAGTAAA CCTCATGTGGGGGTGGGGGGTGTATTCCTTGGGGGATGGTTTGGGCCGAATGGGGAGTG GAATATTTGACATTTTTCCTGTTTTAAATTCTAGGATAGATTTTAACATCCTTTGCGGTCCCA GTCCAAGGTAGGCTGGTGTCATAGTCTTCTCACTCCTAATCCATGACCACTGTTTTTTTCCTA TTTATATCACCAGGTAGCCTACTGAGTTAATATTTAAGTTGTCAATAGATAAGTGTCCCTGTT TTGTGGCATAATATAACTGAATTTCATGAGAAGATTTATTCCACCAGGGGTATTTCAGCTTTG AAACCAAATCTGTGTATCTAATACTAACCAATCTGTTGGATGTGGATTTTAAAAAATGTTTGC TAAACTACCCAAGTAAGATTTACTGTATTAAATGGCCTTCGGGTCTGAAAAGCTTTTTTAACC TCTTGCTTAAAATGCGTTTTATTTTGATAAGATACTTCAAATAGCCTCCAAAAGTGTAGATCC

FIGURE 14

MAGAIIENMSTKKLCIVGGILLVFQIIAFLVGGLIAPGPTTAVSYMSVKCVDARKNHHKTKWF
VPWGPNHCDKIRDIEEAIPREIEANDIVFSVHIPLPHMEMSPWFQFMLFILQLDIAFKLNNQI
RENAEVSMDVSLAYRDDAFAEWTEMAHERVPRKLKCTFTSPKTPEHEGRYYECDVLPFMEIGS
VAHKFYLLNIRLPVNEKKKINVGIGEIKDIRLVGIHQNGGFTKVWFAMKTFLTPSIFIIMVWY
WRRITMMSRPPVLLEKVIFALGISMTFINIPVEWFSIGFDWTWMLLFGDIRQGIFYAMLLSFW
IIFCGEHMMDQHERNHIAGYWKQVGPIAVGSFCLFIFDMCERGVQLTNPFYSIWTTDIGTELA
MAFIIVAGICLCLYFLFLCFMVFQVFRNISGKQSSLPAMSKVRRLHYEGLIFRFKFLMLITLA
CAAMTVIFFIVSQVTEGHWKWGGVTVQVNSAFFTGIYGMWNLYVFALMFLYAPSHKNYGEDQS
NGDLGVHSGEELQLTTTITHVDGPTEIYKLTRKEAQE

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 239-253, 269-284, 302-318, 338-352, 377-399, 434-452, 471-488

N-glycosylation sites.

amino acids 8-12, 406-410

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 254-258

N-myristoylation sites.

amino acids 223-229, 274-280, 305-311, 358-364, 374-380, 386-392, 509-515

CACCACTAAGCCGGGCACCATCCCGTGGTGGAGTCAACTTTCTCAATGTAGCCCGGACCTACA TCCCCAACACCAAGGTGGAATGTCACTACACCCTTCCCCCAGGCACCATGCCCAGTGCCAGTG ACTGGATTGGCATCTTCAAGGTGGAGGCTGCCTGTGTTCGGGATTACCACACATTTGTGTGGT CTTCCGTGCCTGAAAGTACAACTGATGGTTCCCCCATTCACACCAGTGTCCAAGCCA GCTACCTGCCCAAACCAGGAGCTCAGCTCTACCAGTTCCGATATGTGAACCGCCAGGGCCAGG TGTGTGGGCAGAGCCCCCTTTCCAGTTCCGAGAGCCAAGGCCCATGGATGAACTGGTGACCC TGGAGGAGGCTGATGGGGGCTCTGACATCCTGCTGGTTGTCCCCAAGGCAACTGTGTTACAGA ACCAGCTCGATGAGAGCCAGCAAGAACGGAATGACCTGATGCAGCTGAAGCTACAGCTGGAGG GACAGGTGACAGAGCTGAGGAGCCGAGTGCAGGAGCTCGAGAGGGCTCTGGCAACTGCCAGGC AGGAGCACACGGAGCTGATGGAACAGTACAAGGGGATTTCCCGGTCCCATGGGGAGATCACAG AAGAGAGGGACATCCTGAGCCGGCAACAGGGAGACCATGTGGCACGCATCCTGGAGCTAGAGG ACACAGTGAAGGCCCTGACTCGGGAACAAGAGAAGCTCCTTGGGCAACTGAAAGAAGTACAAG CAGACAAGGAGCAAAGTGAGGCTGAGCTCCAAGTGGCACAACAGGAGAACCATCACTTAAATT TGGACCTGAAGGAGCGAAGAGCTGGCAAGAGGAGCAGAGTGCTCAGGCTCAGCGACTGAAAG CCTTGAAGGAGCAGCTTCGAGGGGCCCAGGAGCTTGCAGCCTCAAGCCAGCAGAAAGCCACCC TTCTTGGGGAGGAGTTGGCCAGTGCAGCAGCCAGGGACCGCACCATAGCCGAACTACACC GCAGCCGCCTGGAAGTGGAAGTTAACGGCAGGCTGGCTGAGCTCGGTTTGCACTTGAAGG AAGAAAAATGCCAATGGAGCAAGGAGCGGGCAGGGCTGCTGCAGAGTGTGGAGGCAGAGAAGG ACAAGATCCTGAAGCTGAGTGCAGAGATACTTCGATTGGAGAAGGCAGTTCAGGAGGAGAGA CCCAAAACCAAGTGTTCAAGACTGAGCTGGCCCGGGAGAAGGATTCTAGCCTGGTACAGTTGT CAGAAAGTAAGCGGGAGCTGACAGAGCTGCGGTCAGCCCTGCGTGTGCTCCAGAAGGAAAAGG AGCAGTTACAGGAGGAAACAGGAATTGCTAGAGTACATGAGAAAGCTAGAGGCCCGCCTGG AGAAGGTGGCAGATGAGAAGTGGAATGAGGATGCCACCACAGAGGATGAGGAGGCCGCTGTGG GGCTGAGCTGCCGGCAGCTCTGACAGACTCAGAGGACGAGTCCCCAGAAGACATGAGGCTCC CACCCTATGGCCTTTGTGAGCGTGGAGACCCAGGCTCCTCTCCTGCTGGGCCTCGAGAGGCTT CTCCCCTTGTTGTCATCAGCCAGCCGGCTCCCATTTCTCCTCACCTCTCTGGGCCAGCTGAGG GGGGTGAGGAGGCCAACTTACTGCTTCCTGAACTGGGCAGTGCCTTCTATGACATGGCCAGTG GCTTTACAGTGGGTACCCTGTCAGAAACCAGCACTGGGGGCCCTGCCACCCCCACATGGAAGG AGTGTCCTATCTGTAAGGAGCGCTTTCCTGCTGAGAGTGACAAGGATGCCCTGGAGGACCACA ${\tt TGGATGGACACTTCTTTTCAGCACCCAGGACCCCTTCACCTTTGAG} {\tt \underline{TGA}} {\tt TCTTACTCCCTCG}$ TGCCCATTTTCTATCACACTGGGCTCCATGATATTCTGTTCCCTAAGAACTGCTTCTGTGTGC CCTGTTTTCATCCCAAGATTTCTCACTTCATCCTCCTACCTGGCTCTTTTTGTCCCAGGGAG GGGTCCTGTTCGGAAGCAGTGGCTGAATTTATCCCCTGAAAGTGGTTTTTGGAGGAACCGGGAT GGAGGAGCCTTCCCCTGTGGGAATAGAATCGTCCACTCCTAGCCCTGGTTGCTTCTGATACA CAGCCACTGCACACACACTCACACTCCCTTGTCTGATGCCCCAAAGCCAATTCCT GGGGCACCCTACCCTCTTATTTGGAGTTTCCGTTGGTTTACCTGAGTTTTCTCTGGGGTCT GCACAGAGGCAGCATGGACATCATGGCCTCTCAGGTCCCTTTTGGTTCTCAGTTTCATTG GTTCCTCTTTCTGTTCCCCCATTGACTTCTGTGCCCCACCCTAGCCTTTTCCATAACCTTAGG TATTCAGTTTGGAGGGTTTTTTTGTATTTTTGAGGATTCCTGTATTCTGTATCCTCTCCTCGC ATCTCCTCACATGGAAAGAAATAATGTATTTGTGCCTTCTGTGAGGAATGGGGGGAACAAGTG GTCCCAGGTATCCCCATTTCCAAGGCCCCCCTCCCTCTCCAGGTCCCCCACAGCAATAAAAG CTTCCCCCTGATATCCATCCCTTTGTAGTTTGAACAAATATATTTATATGATATGTAA

FIGURE 16

MEESPLSRAPSRGGVNFLNVARTYIPNTKVECHYTLPPGTMPSASDWIGIFKVEAACVRDYHT
FVWSSVPESTTDGSPIHTSVQFQASYLPKPGAQLYQFRYVNRQGQVCGQSPPFQFREPRPMDE
LVTLEEADGGSDILLVVPKATVLQNQLDESQQERNDLMQLKLQLEGQVTELRSRVQELERALA
TARQEHTELMEQYKGISRSHGEITEERDILSRQQGDHVARILELEDDIQTISEKVLTKEVELD
RLRDTVKALTREQEKLLGQLKEVQADKEQSEAELQVAQQENHHLNLDLKEAKSWQEEQSAQAQ
RLKDKVAQMKDTLGQAQQRVAELEPLKEQLRGAQELAASSQQKATLLGEELASAAAARDRTIA
ELHRSRLEVAEVNGRLAELGLHLKEEKCQWSKERAGLLQSVEAEKDKILKLSAEILRLEKAVQ
EERTQNQVFKTELAREKDSSLVQLSESKRELTELRSALRVLQKEKEQLQEEKQELLEYMRKLE
ARLEKVADEKWNEDATTEDEEAAVGLSCPAALTDSEDESPEDMRLPPYGLCERGDPGSSPAGP
REASPLVVISQPAPISPHLSGPAEDSSSDSEAEDEKSVLMAAVQSGGEEANLLLPELGSAFYD
MASGFTVGTLSETSTGGPATPTWKECPICKERFPAESDKDALEDHMDGHFFFSTQDPFTFE

Important features:

Casein kinase II phosphorylation sites:

amino acids 28-31, 43-46, 68-71, 72-75, 129-132, 156-159, 208-211, 239-242, 282-285, 305-308, 376-379, 383-383, 468-471, 520-523, 521-524, 537-540, 539-542, 543-546, 593-596, 595-598, 597-600, 612-615, 639-642, 652-655, 667-670, 683-686

N-myristoylation sites:

amino acids 39-44, 107-112, 204-209, 414-419, 561-566, 613-618

Cell attachment sequence:

amino acids 557-559

Leucine zipper pattern sequence:

amino acids 163-184, 475-496, 482-503

FIGURE 17

GCAAGTTGGGAATTTTAGACTGTCACTGCACATGGACCTCTGGGAAGACGTCTGGCGAGAGCT AGGCCCACTGGCCCTACAGACGGATCTTGCTGGCTCACCTGTCCCTGTGGAGGTTCCCCTGGG AAGGCAAG**ATG**CCCAACAACAGCACTGCTCTGTCATTGGCCAATGTTACCTACATCACCATGG AAATTTTCATTGGACTCTGCGCCATAGTGGGCAACGTGCTGGTCATCTGCGTGGTCAAGCTGA ACCCCAGCCTGCAGACCACCACCTTCTATTTCATTGTCTCTCTAGCCCTGGCTGACATTGCTG TTGGGGTGCTGGTCATGCCTTTGGCCATTGTTGTCAGCCTGGGCATCACAATCCACTTCTACA GCTGCCTTTTTATGACTTGCCTACTGCTTATCTTTACCCACGCCTCCATCATGTCCTTGCTGG CCATCGCTGTGGACCGATACTTGCGGGTCAAGCTTACCGTCAGATTCAGAATTCCTGGGCTCC TACTCTCCTTGGCTCTCATTTCAGATGCCATGGTCATGGATGAAAAGGTCAAGAGAAGCTTTG TGCTGGACACGGCTTCTGCCATCTGCAACTACAATGCCCACTACAAGAATCACCCCAAATACT GGTGCCGAGGCTATTTCCGTGACTACTGCAACATCATCGCCTTCTCCCCTAACAGCACCAATC ACACGGGCTGGTACTGGTGTGGCATCCAGCGGGACTTTGCCAGGGATGACATGGATTTTACAG AGCTGATTGTAACTGACGACAAAGGAACCCTGGCCAATGACTTTTGGTCTGGGAAAGACCTAT CAGGCAACAAACCAGAAGCTGCAAGGCTCCCAAAGTTGTCCGCAAGGCTGACCGCTCCAGGA CGTCCATTCTCATCATTTGCATACTGATCACGGGTTTGGGAATCATCTCTGTAATCAGTCATT TGACCAAAAGGAGAGAGTCAAAGGAATAGAAGGGTAGGCAACACTTTGAAGCCCTTCTCGC $\tt GTGTCCTGACTCCAAAGGAAATGGCTCCTACTGAACAGATG{\color{red} TGA}CTGAAGATTTTTTTAATTT$ AGTTCATAAAGTGATGCTACAACAGAATAATCACCATGACAACTGGCCCACACCTCAGAGACT GATTCTGATCTCCCAGGAATTCTGAAGGACCCTCTATCCTTGACAACAATCATTTGCAGCCAG CTGGATTGGGGACCAGGAAATCACTTGTATTTTGTTAGCCAATAAATTCCTAGCCAGTGTTGA ATGAAAAAAAAAAAA

MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLALADIAVGV LVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYLRVKLTVRFRIPGLPGC ILSFQLKVCFLPVMWLFILLSLALISDAMVMDEKVKRSFVLDTASAICNYNAHYKNHPKYWCR GYFRDYCNIIAFSPNSTNHVALRDTGNQLIVTMSCLTKEDTGWYWCGIQRDFARDDMDFTELI VTDDKGTLANDFWSGKDLSGNKTRSCKAPKVVRKADRSRTSILIICILITGLGIISVISHLTK RRRSQRNRRVGNTLKPFSRVLTPKEMAPTEQM

Important features of the protein:

Transmembrane domains:

amino acids 16-35, 62-80, 89-101, 134-152, 292-311

N-glycosylation sites.

amino acids 3-7, 4-8, 12-16, 204-208, 273-277

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 316-320

N-myristoylation sites.

amino acids 122-128, 125-131, 258-264

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 214-225

G-protein coupled receptors proteins.

amino acids 29-59, 76-116

FIGURE 19

GCAAATGTGTGTGGCTGGAGGCGAGCGCGAGGCTTTCGGCAAAGGCAGTCGAGTGTTTGCAGACCGGGGCGAGTC TTTCCAGCCAAGTGGACCTGATCGATGGCCCTCCTGAATTTATCACGATATTTGATTTATTAGCGATGCCCCCTG GTTTGTGTGTTACGCACACACGTGCACACAAGGCTCTGGCTCGCTTCCCTCGTTTCCAGCTCCTGGGCG AATCCCACATCTGTTTCAACTCTCCGCCGAGGGCGAGCAGGAGCGAGAGTGTGTCGAATCTGCGAGTGAAGAGGG ACGAGGGAAAAGAAACAAAGCCACAGACGCAACTTGAGACTCCCGCATCCCAAAAGAAGCACCAGATCAGCAAAA AAAGAAGATGGGCCCCCGAGCCTCGTGCTGTGCTTGCTGTCCGCAACTGTGTTCTCCCTGCTGGGTGGAAGCTC GGCCTTCCTGTCGCACCACCGCCTGAAAGGCAGGTTTCAGAGGGACCGCAGGAACATCCGCCCCAACATCATCCT GGTGCTGACGGACCAGGATGTGGAGCTGGGTTCCATGCAGGTGATGAACAAGACCCGGCGCATCATGGAGCA GGGCGGGCGCACTTCATCAACGCCTTCGTGACCACCCATGTGCTGCCCCTCACGCTCCTCCATCCTCACTGG GAGCCGCACCTTTGCCGTGTACCTCAATAGCACTGGCTACCGGACAGCTTTCTTCGGGAAGTATCTTAATGAATA GCTGTGTCGGAACGGGGTGAAAGAGAAGCACGGCTCCGACTACTCCAAGGATTACCTCACAGACCTCATCACCAA TGACAGCGTGAGCTTCTTCCGCACGTCCAAGAAGATGTACCCGCACAGGCCAGTCCTCATGGTCATCAGCCATGC AGCCCCCACGGCCCTGAGGATTCAGCCCCACAATATTCACGCCTCTTCCCAAACGCATCTCAGCACATCACGCC GAGCTACAACTACGCGCCCAACCCGGACAAACACTGGATCATGCGCTACACGGGGCCCATGAAGCCCATCCACAT GGAATTCACCAACATGCTCCAGCGGAAGCGCTTGCAGACCCTCATGTCGGTGGACGACTCCATGGAGACGATTTA CAACATGCTGGTTGAGACGGGCGAGCTGGACAACACGTACATCGTATACACCGCCGACCACGGTTACCACATCGG CAACGTGGAAGCCGGCTGTCTGAATCCCCACATCGTCCTCAACATTGACCTGGCCCCCACCATCCTGGACATTGC GTTTCACTTGAAAAAGAAGATGAGGGTCTGGCGGGACTCCTTCTTGGTGGAGAGAGCCAAGCTGCTACACAAGAG AGACAATGACAAGGTGGACGCCCAGGAGGAGAACTTTCTGCCCAAGTACCAGCGTGTGAAGGACCTGTGTCAGCG TGCTGAGTACCAGACGGCGTGTGAGCAGCTGGGACAGAAGTGGCAGTGTGTGGAGGACGCCACGGGGAAGCTGAA GCTGCATAAGTGCAAGGGCCCCATGCGGCTGGGCGGCAGCAGAGCCCTCTCCAACCTCGTGCCCAAGTACTACGG GCAGGGCAGCGAGCCTGCACCTGTGACAGCGGGGACTACAAGCTCAGCCTGGCCGGACGCCGGAAAAAACTCTT ${\tt CAAGAAGAAGTACAAGGCCAGCTATGTCCGCAGTCGCTCCATCCGCTCAGTGGCCATCGAGGTGGACGGCAGGGT}$ GTACCACGTAGGCCTGGGTGATGCCGCCCAGCCCCGAAACCTCACCAAGCGGCACTGGCCAGGGGCCCCTGAGGA CCAAGATGACAAGGATGGTGGGGACTTCAGTGGCACTGGAGGCCTTCCCGACTAGCCGCCAACCCCATTAA AGTGACATCGGTGCTACATCCTAGAGAACGACACAGTCCAGTGTGACCTGGACCTGTACAAGTCCCTGCAGGC CTGGAAAGACCACAAGCTGCACATCGACCACGAGATTGAAACCCTGCAGAACAAAATTAAGAACCTGAGGGAAGT CCGAGGTCACCTGAAGAAAAAGCGGCCAGAAGAATGTGACTGTCACAAAATCAGCTACCACACCCCAGCACAAAGG CCGCCTCAAGCACAGAGGCTCCAGTCTGCATCCTTTCAGGAAGGGCCTGCAAGAAAGGACAAGGTGTGGCTGTT GCGGGAGCAGAAGCACAAGAAGAAACTCCGCAAGCTGCTCAAGCGCCTGCAGAACAACGACACGTGCAGCATGCC AGGCCTCACGTGCTTCACCCACGACAACCAGCACTGGCAGACGGCGCCTTTCTGGACACTGGGGCCTTTCTGTGC CTGCACCAGCGCCAACAATAACACGTACTGGTGCATGAGGACCATCAATGAGACTCACAATTTCCTCTTCTGTGA ATTTGCAACTGGCTTCCTAGAGTACTTTGATCTCAACACAGACCCCTACCAGCTGATGAATGCAGTGAACACACT GGACAGGGATGTCCTCAACCAGCTACACGTACAGCTCATGGAGCTGAGGGAGCTGCAAGGGTTACAAGCAGTGTAA CCCCGGACTCGAAACATGGACCTGGATGGAGGAAGCTATGAGCAATACAGGCAGTTTCAGCGTCGAAAGTGGCC ${\tt AGAAATGAAGAGCCTTCTTCCAAATCACTGGGACAACTGTGGGAAGGCTGGGAAGGT} \underline{{\tt TAA}}{\tt GAAACAACAGAGGT}$ GGACCTCCAAAAACATAGAGGCATCACCTGACTGCACAGGCAATGAAAAACCATGTGGGTGATTTCCAGCAGACC GCAGGAGCAGAGATAACTTCAGGAAGTCCATTTTTGCCCCTGCTTTTGCTTTTGGATTATACCTCACCAGCTGCAC AAAATGCATTTTTTCGTATCAAAAAGTCACCACTAACCCTCCCCCAGAAGCTCACAAAGGAAAACGGAGAGAGCG ${\tt AGCGAGAGAGATTTCCTTGGAAATTTCTCCCAAGGGCGAAAGTCATTGGAATTTTTAAATCATAGGGGAAAAGCA}$ GTCCTGTTCTAAATCCTCTTATTCTTTTGGTTTGTCACAAAGAAGGAACTAAGAAGCAGGACAGAGGCAACGTGG AGAGGCTGAAAACAGTGCAGAGACGTTTGACAATGAGTCAGTAGCACAAAAGAGATGACATTTACCTAGCACTAT AAACCCTGGTTGCCTCTGAAGAACTGCCTTCATTGTATATATGTGACTATTTACATGTAATCAACATGGGAACT TTTAGGGGAACCTAATAAGAAATCCCAATTTTCAGGAGTGGTGGTGTCAATAAACGCTCTGTGGCCAGTGTAAAA GAAAAA

FIGURE 20

MGPPSLVLCLLSATVFSLLGGSSAFLSHHRLKGRFQRDRRNIRPNIILVLTDDQDVELGSMQV
MNKTRRIMEQGGAHFINAFVTTPMCCPSRSSILTGKYVHNHNTYTNNENCSSPSWQAQHESRT
FAVYLNSTGYRTAFFGKYLNEYNGSYVPPGWKEWVGLLKNSRFYNYTLCRNGVKEKHGSDYSK
DYLTDLITNDSVSFFRTSKKMYPHRPVLMVISHAAPHGPEDSAPQYSRLFPNASQHITPSYNY
APNPDKHWIMRYTGPMKPIHMEFTNMLQRKRLQTLMSVDDSMETIYNMLVETGELDNTYIVYT
ADHGYHIGQFGLVKGKSMPYEFDIRVPFYVRGPNVEAGCLNPHIVLNIDLAPTILDIAGLDIP
ADMDGKSILKLLDTERPVNRFHLKKKMRVWRDSFLVERGKLLHKRDNDKVDAQEENFLPKYQR
VKDLCQRAEYQTACEQLGQKWQCVEDATGKLKLHKCKGPMRLGGSRALSNLVPKYYGQGSEAC
TCDSGDYKLSLAGRRKKLFKKKYKASYVRSRSIRSVAIEVDGRVYHVGLGDAAQPRNLTKRHW
PGAPEDQDDKDGGDFSGTGGLPDYSAANPIKVTHRCYILENDTVQCDLDLYKSLQAWKDHKLH
IDHEIETLQNKIKNLREVRGHLKKKRPEECDCHKISYHTQHKGRLKHRGSSLHPFRKGLQEKD
KVWLLREQKRKKKLRKLLKRLQNNDTCSMPGLTCFTHDNQHWQTAPFWTLGPFCACTSANNNT
YWCMRTINETHNFLFCEFATGFLEYFDLNTDPYQLMNAVNTLDRDVLNQLHVQLMELRSCKGY
KQCNPRTRNMDLDGGSYEQYRQFQRRKWPEMKRPSSKSLGQLWEGWEG

Important features:

Signal peptide:

amino acids 1-17

Sulfatases signature 1.

amino acids 86-99

Homologous region to sulfatase:

amino acids 87-106, 133-146, 216-229, 291-320, 365-375

N-glycosylation sites.

amino acids 65-69, 112-116, 132-136, 149-153, 171-175, 198-202, 241-245, 561-565, 608-612, 717-721, 754-758, 764-768

FIGURE 21

GGGCGCGAGAGCTGCTAGGGCGGTTTCTCTGCCTCGGGCCTGTTGGGCAGGGCCGGCT AAGGTGCGCGTGCTCGGTTCTAACCCTTCTGTTGGGCGTTTCTGCTGAGAGGCGGGA GGCGCTGAGAGTCTGTGCGGAGGTCCGTGGACAGACTGCTTTGCTCGTTGTTGCTCTTTCG GAGGCGGCGATCCCCGAAGGCGAGCTGAAATACGGCTGCAGGCTACAATTTGCAGCCGAC GATTATGGAAGACGGAAGCGGGAGAGGTGGCCCACCCTC**ATG**GAGCGCTTGTGCTCGGAT GGCTTCGCATTTCCCCAATACCCCATTAAACCGTATCATCTGAAGAGGATCCACAGAGCT GTCTTACATGGTAATCTAGAGAAACTGAAGTACCTTCTGCTCACGTATTATGACGCCAAT AAGAGACAGGAAGGAAAGGACCGCCCTACATTTGGCCTGTGCCACTGGCCAACCGGAA ATGGTACATCTCCTGGTGTCCAGAAGATGTGAGCTTAACCTCTGCGACCGTGAAGACAGG ACACCTCTGATCAAGGCTGTACAACTGAGGCAGGAGGCTTGTGCAACTCTTCTGCTGCAA AATGGCGCCAATCCAAATATTACGGATTTCTTTGGAAGGACTGCTCTGCACTACGCTGTG TATAATGAAGATACATCCATGATAGAAAAACTTCTTTCACATGGTACAAATATTGAAGAA ACATTGACACATGTAAGGGTCAATTTTTCATATTTTGGAAGCTCAAACATTCCTTGAATGA AAATATTTTGAAATGCCTTAACTGTCTAAGATTTTACTTTAAATATTTGGAACTTTTAAAG AAGCATTATAGGGAACAGCCTTTTTTCATGCACTTATGGTAAATAACTATAAAAAACAAAT GAATTACAATAAATTTATAATTCATGACAACTGAATTTGGGAAAGGTAATAGTTAAGTGT TTTTCCACTAAATTACTTTTT

FIGURE 22

MERLCSDGFAFPQYPIKPYHLKRIHRAVLHGNLEKLKYLLLTYYDANKRDRKERTALHLACAT GQPEMVHLLVSRRCELNLCDREDRTPLIKAVQLRQEACATLLLQNGANPNITDFFGRTALHYA VYNEDTSMIEKLLSHGTNIEECSKV

Important features of the protein:

N-glycosylation site.

amino acids 113-117

N-myristoylation site.

amino acids 109-115

Microbodies C-terminal targeting signal.

amino acids 149-153

FIGURE 23

GAGGCAGAAAGGCAGAAAATTCAGGATAACTCTCCTGAGGGGTGAGCCAAGCCCTG CCATGTAGTGCACGCAGGACATCAACAAACACAGATAACAGGAAATGATCCATTCCCTGTGGT CACTTATTCTAAAGGCCCCAACCTTCAAAGTTCAAGTAGTGATATGGATGACTCCACAGAAAG GGAGCAGTCACGCCTTACTTCTTGCCTTAAGAAAAGAGAAAATGAAACTGAAGGAGTGTGT TTCCATCCTCCCACGGAAGGAAAGCCCCTCTGTCCGATCCTCCAAAGACGGAAAGCTGCTGGC TGCAACCTTGCTGCACTGCTGTCTTGCTGCCTCACGGTGGTGTCTTTCTACCAGGTGGC CGCCCTGCAAGGGGACCTGGCCAGCCTCCGGGCAGAGCTGCAGGGCCACCACGCGGAGAAGCT GCCAGCAGGAGCCCCCAAGGCCGGCCTGGAGGAAGCTCCAGCTGTCACCGCGGGACT GAAAATCTTTGAACCACCAGCTCCAGGAGAAGGCAACTCCAGTCAGAACAGCAGAAATAAGCG TGCCGTTCAGGGTCCAGAAGAACAGTCACTCAAGACTGCTTGCAACTGATTGCAGACAGTGA AACACCAACTATACAAAAAGGATCTTACACATTTGTTCCATGGCTTCTCAGCTTTAAAAGGGG AAGTGCCCTAGAAGAAAAAGAGAATAAAATATTGGTCAAAGAAACTGGTTACTTTTTTATATA ${\tt TGGTCAGGTTTTATATACTGATAAGACCTACGCCATGGGACATCTAATTCAGAGGAAGAAGGT}$ CCATGTCTTTGGGGATGAATTGAGTCTGGTGACTTTGTTTCGATGTATTCAAAATATGCCTGA AACACTACCCAATAATTCCTGCTATTCAGCTGGCATTGCAAAACTGGAAGAAGGAGATGAACT $\texttt{TGCATTGAAACTGCTG} \underline{\textbf{TGA}} \texttt{CCTACTTACACCATGTCTGTAGCTATTTTCCTCCCTTTCTCTGT}$

MDDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPSVRSSKDGKLLAATLLLALLSCCLTV VSFYQVAALQGDLASLRAELQGHHAEKLPAGAGAPKAGLEEAPAVTAGLKIFEPPAPGEGNSS QNSRNKRAVQGPEETVTQDCLQLIADSETPTIQKGSYTFVPWLLSFKRGSALEEKENKILVKE TGYFFIYGQVLYTDKTYAMGHLIQRKKVHVFGDELSLVTLFRCIQNMPETLPNNSCYSAGIAK LEEGDELQLAIPRENAQISLDGDVTFFGALKLL

Transmembrane domain:

amino acids 47-72

N-glycosylation site.

amino acids 124-127, 242-245

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 33-36, 173-176

N-myristoylation site.

amino acids 96-101

TNF family proteins.

amino acids 172-206

FIGURE 25

CTGCTTGGATACCTCCAGTCCCCAAACTGTGTTCCAGGAGTTTTCTTGGCCGAAGCTGCCCGA TGTTTGAGCCTTTTCTTCCCAGAGAAGAAGATGGACTGAAAGCTGCCAGTTGGGGACTTTTTG TGATCACGGCGTTGCAGCGTTTTAAAGGAGGTGATGGGGCTTGCCTTGTCTTCCCACC CAAGTGAAGAGTTGATGTTCACTGGTTATGCTTAGACAATGTGCAGTTTGTGTTAATTTAAAA TTTTGGGTGGGATAGGGCATAGGCTTGTGAAGGGCAGTCCGGATCCGGAGGAACTCGTCTTT GTCCCTGGTAGGAGACACCCCCAGTCTATCCTCGATGCCGTCAGCCTTGGCCATCTTCACT TGCCGCCGAACTCGCACCCGTTTCAGGAGCGTCATGTCTACCTGGACGAGCCCATCAAAATC GGCCGCTCAGTGGCCCGCTGTCGACCAGCGCAGAATAATGCCACTTTTGATTGCAAAGTGCTA TCAAGGAACCACGCTCTCGTCTGGTTTGATCACAAGACGGGCAAGTTTTATCTTCAAGACACT AAAAGTAGTAATGGTACTTTTATAAATAGCCAGAGATTGAGTCGAGGCTCTGAAGAAAGTCCA CCATGTGAAATTCTTTCCGGTGACATTATCCAGTTTGGAGTAGACGTGACAGAGAATACACGG AAAGTTACCCATGGGTGTATTGTTTCCACAATAAAACTTTTTCTACCAGATGGT**ATG**GAAGCC CGGCTCCGCTCAGATGTCATCCATGCACCATTACCAAGTCCTGTTGACAAAGTTGCTGCTAAC ACTCCAAGTATGTACTCTCAGGAACTATTCCAGCTTTCTCAGTATCTACAGGAGGCCTTACAT CGGGAACAATGTTGGAACAGAAGTTAGCCACGCTTCAGCGGCTACTAGCCATCACCCAAGAG GCTTCAGATACCAGTTGGCAGGCTTTAATAGATGAAGATAGACTCTTATCACGGTTAGAAGTT ATGGGAAACCAATTACAGGCATGCTCCAAAAATCAAACAGAAGATAGTTTACGAAAGGAACTT ATAGCATTACAAGAGGATAAACATAACTATGAGACAACAGCCAAAGAGTCCCTGAGGCGGGTT CTTCAGGAGAAAATTGAAGTGGTTAGAAAACTTTCAGAAGTTGAGCGAAGTCTGAGTAATACT GAAGATGAATGTACCCATCTGAAAGAAATGAATGAAGGACTCAGGAAGAATTAAGAGAATTA GCCAACAATATAATGGAGCAGTTAATGAGATTAAAGATTTATCTGATAAATTAAAGGTAGCA GAGGGAAAACAAGAGGAAATCCAACAGAAGGGACAGGCTGAGAAAAAAGAATTACAACATAAA ATAGATGAAATGGAAGAAAAAGAACAGGAGCTCCAGGCAAAAATAGAAGCTTTGCAAGCTGAT AATGATTTCACCAATGAAAGGCTAACAGCTTTACAAGTACGGTTAGAACATCTTCAGGAGAAA ACTCTTAAAGAATGCAGCAGCTTGGCTGATCGTCGAAGGGCATCTAACCAAAGCGGTAGAAGA AACAAAGCTTTCAAAAGGTTTGTTTTCTGTTTTTCTATGTTTTTTGACAGTTCTTTTGGA**TAA** TGAAGGTTAGTGTATATTTTCAAGGTTATAGTATTTTAACCATCAGTTTACTTCTTATAGCTC ACAAAATAGCAAGCCAGTAACAGTATCAGATAATATATAAAATAATCAGACTTCTGTTTTAAG AAGGGTATCGTAACTGGAATGTGTCTTTTTAAGTGGATGTATATTTATGGTTTTTTGAATGTT AGTACTTGATATAGGTTTCTTTAGGTATTAAAGATTTGTTGCAATCTCTGTCATTCCCAGCAT TAATTTCAGCTTTGATCTCAAATTTTAATCAAACACAATGTAAGTCGTTTGTGATACAACTTA AGTGAAACATGCTTGCACTTCTATTTTGGGGGTTACAGTACCTTTAAAATCTCTTATGATGTT TAATATTTCCTTAATTTTTGGCATCTCAGTTTGATTTAAACAAAATTAATGACTTTTGTGAAT GTAGAATCTTCTTATATTTTATGAGTAGTCCAGTAATTGCCCAAAGTAGTTTATTGTGTTAAT TCTGTTACAGTTGTCAGAGAAAAAGTGAGTTTTAAAGCACCATATTGTCAAGTCACTTTTA TACATAGGGAAATTAGGCAAATAAATTTGGTGGCATGTGTTTATCATAGTAGAACTTTCATTA GACTATACCAGTATAAAATTTAAAACTAGATTCACAGTCCTTTTGGCCAATTAAAACATTGAG TTACAAAAGTTTGAGATACTTAATTTTAGTACATTCTATTTTATTAAAGTAACTGGATTCATT TGACTTTTTTAACCATGTAAGAGGATGGTGTTATTTCAAATATCTCGTGGTTTCCATTCTGAA TTTTGTGCACGGCAGATGCCATATTTGGGGAAAAAATGCATAGAATATGCATCATTAATATTG TTTTGGCAAACAGGCATTGAGTTTCAGAACAGTGAACTATTTTTAGTACATATGGCAATTTTT TTCACCTTATTAAAGTGAGATGAGAACAGACCTTAAAATAGCTTTTACCTCACCATCCAAATA CCTATTCAGATTAGTTGGTTGAATAGCCAGCACTTTGAAGTAGAGCCTTAGG

FIGURE 26

MEARLRSDVIHAPLPSPVDKVAANTPSMYSQELFQLSQYLQEALHREQMLEQKLATLQRLLAI TQEASDTSWQALIDEDRLLSRLEVMGNQLQACSKNQTEDSLRKELIALQEDKHNYETTAKESL RRVLQEKIEVVRKLSEVERSLSNTEDECTHLKEMNERTQEELRELANKYNGAVNEIKDLSDKL KVAEGKQEEIQQKGQAEKKELQHKIDEMEEKEQELQAKIEALQADNDFTNERLTALQVRLEHL QEKTLKECSSLADRRRASNQSGRRNKAFKRFVFCFSMFFDSSFG

Important features of the protein:

N-glycosylation sites.

amino acids 98-102, 271-275

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 138-142, 267-271

Amidation site.

amino acids 273-277

Tropomyosins proteins.

amino acids 169-217

FIGURE 27

GAACCTGGCGCCGGAACTGATCGCGGCCTAGTCCCGACGCGTGTGTGCTAGTGAGCCGGA GCCGGCGACGGCGGCAGTGGCGGCCCGGCCTGCAGGAGCCCGACGGGGTCTCTGCCATGGGGG AGTGACGCGCCTGCACCCGCTGTTCCGCGGCAGGCGGCGACATGAGGAGACCCCGCGACAGG GGCAGCGGCGGCTCGTGAGCCCCGGG**ATG**GAGGAGAAATACGGCGGGGACGTGCTGGCCG GCCCGGCGGCGGCGGCCTTGGGCCGGTGGACGTACCCAGCGCTCGATTAACAAAATATA TTGTGTTACTATGTTTCACTAAATTTTTGAAGGCTGTGGGGACTTTTCGAATCATATGATCTCC TAAAAGCTGTTCACATTGTTCAGTTCATTTTTATATTAAAACTTGGGACTGCATTTTTTATGG TTTTGTTTCAAAAGCCATTTTCTTCTGGGAAAACTATTACCAAACACCAGTGGATCAAAATAT TTAAACATGCAGTTGCTGGGTGTATTATTTCACTCTTGTGGTTTTTTTGGCCTCACTCTTTGTG GACCACTAAGGACTTTGCTGCTATTTGAGCACAGTGATATTGTTGTCATTTCACTACTCAGTG TTTTGTTCACCAGTTCTGGAGGAGGACCAGCAAAGACAAGGGGAGCTGCTTTTTTCATTATTG CTGTGATCTGTTTATTGCTTTTTGACAATGATCATCATGGCTAAAATGGCTGAACACCCTG AAGGACATCATGACAGTGCTCTAACTCATATGCTTTACACAGCCATTGCCTTCTTAGGTGTGG CAGATCACAAGGGTGGAGTATTATTGCTAGTACTGGCTTTGTGTTGTAAAGTTGGTTTTCATA CAGCTTCCAGAAAGCTCTCTGTCGACGTTGGTGGAGCTAAACGTCTTCAAGCTTTATCTCATC ATTTCTACGTGGATTCCATTTGTTCAGTCAAAATGGAAGTTTCCAAATGTGCTCGTTATGGAT CCTTTCCCATTTTTATTAGTGCTCTCCTTTTTGGAAATTTTTTGGACACATCCAATAACAGACC AGCTTCGGGCTATGAACAAAGCAGCACCACCAGGAGAGCACTGAACACGTCCTGTCTGGAGGAG TGGTAGTGAGTGCTATATTCTTCATTTTGTCTGCCAATATCTTATCATCTCCCTCTAAGAGAG GACAAAAAGGTACCCTTATTGGATATTCTCCTGAAGGAACACCTCTTTATAACTTCATGGGTG ATGCTTTTCAGCATAGCTCTCAATCGATCCCTAGGTTTATTAAGGAATCACTAAAACAAATTC TTGAGGAGAGTGACTCTAGGCAGATCTTTTACTTCTTGTGCTTGAATCTGCTTTTACCTTTG TTTTTGACTGCTCTGCTTTAGTCATGGGACTTTTTGCTGCCCTGATGAGTAGGTGGAAAGCCA AATTAGACACTCACATGTTAACACCAGTCTCAGTTGGAGGGCTGATAGTAAACCTTATTGGTA TCTGTGCCTTTAGCCATGCCCATGCCCATGGAGCTTCTCAAGGAAGCTGTCACTCAT CTGATCACAGCCATTCACACCATATGCATGGACACAGTGACCATGGGCATGGTCACAGCCACG GATCTGCGGGTGGAGGCATGAATGCTAACATGAGGGGTGTATTTCTACATGTTTTTGGCAGATA ${\tt CACTTGGCAGCATTGGTGTGATCGTATCCACAGTTCTTATAGAGCAGTTTGGATGGTTCATCG}$ CTGACCCACTCTGTTCTCTTCTACTGCTATATTAATATTTCTCAGTGTTGTTCCACTGATTA AAGATGCCTGCCAGGTTCTACTCCTGAGATTGCCACCAGAATATGAAAAAGAACTACATATTG CTTTAGAAAAGATACAGAAAATTGAAGGATTAATATCATACCGAGACCCTCATTTTTGGCGTC ATTCTGCTAGTATTGTGGCAGGAACAATTCATATACAGGTGACATCTGATGTGCTAGAACAAA GAATAGTACAGCAGGTTACAGGAATACTTAAAGATGCTGGAGTAAACAATTTAACAATTCAAG TGGAAAAGGAGCATACTTTCAACATATGTCTGGCCTAAGTACTGGATTTCATGATGTTCTGG CTATGACAAAACAAATGGAATCCATGAAATACTGCAAAGATGGTACTTACATCATG**TGA**GATA ACTCAAGAATTACCCCTGGAGAATAAACAATGAAGATTAAATGACTCAGTATTTGTAATATTG CCAGAAGGATAAAAATTACACATTAACTGTACAGAAACAGAGTTCCCTACTACTGGATCAAGG

MEEKYGGDVLAGPGGGGGLGPVDVPSARLTKYIVLLCFTKFLKAVGLFESYDLLKAVHIVQFI FILKLGTAFFMVLFQKPFSSGKTITKHQWIKIFKHAVAGCIISLLWFFGLTLCGPLRTLLLFE HSDIVVISLLSVLFTSSGGGPAKTRGAAFFIIAVICLLLFDNDDLMAKMAEHPEGHHDSALTH MLYTAIAFLGVADHKGGVLLLVLALCCKVGFHTASRKLSVDVGGAKRLQALSHLVSVLLLCPW VIVLSVTTESKVESWFSLIMPFATVIFFVMILDFYVDSICSVKMEVSKCARYGSFPIFISALL FGNFWTHPITDQLRAMNKAAHQESTEHVLSGGVVVSAIFFILSANILSSPSKRGQKGTLIGYS PEGTPLYNFMGDAFQHSSQSIPRFIKESLKQILEESDSRQIFYFLCLNLLFTFVELFYGVLTN SLGLISDGFHMLFDCSALVMGLFAALMSRWKATRIFSYGYGRIEILSGFINGLFLIVIAFFVF MESVARLIDPPELDTHMLTPVSVGGLIVNLIGICAFSHAHSHAHGASQGSCHSSDHSHSHHMH GHSDHGHSHGSAGGGMNANMRGVFLHVLADTLGSIGVIVSTVLIEQFGWFIADPLCSLSTA ILIFLSVVPLIKDACQVLLLRLPPEYEKELHIALEKIQKIEGLISYRDPHFWRHSASIVAGTI HIQVTSDVLEQRIVQQVTGILKDAGVNNLTIQVEKEAYFQHMSGLSTGFHDVLAMTKQMESMK YCKDGTYIM

Important features of the protein:

Signal peptide:

amino acids 1-46

Transmembrane domains:

amino acids 59-77, 101-119, 150-167, 205-223, 239-258, 267-284, 305-324, 343-360, 421-440, 452-469, 486-505, 522-539, 592-612, 621-641

N-glycosylation site.

amino acids 721-725

Glycosaminoglycan attachment site.

amino acids 143-147

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 225-229

Tyrosine kinase phosphorylation sites.

amino acids 750-758, 756-764

N-myristoylation sites.

amino acids 14-20, 46-52, 102-108, 112-118, 144-150, 317-323, 347-353, 369-375, 372-378, 437-443, 462-468, 529-535, 549-555, 553-559, 579-585, 582-588, 583-589, 584-590, 605-611, 737-743

Multicopper oxidases protein:

amino acids 561-569

FIGURE 29

 ${\tt GGCACGAGGCAGGATATTAGAA} \underline{\textbf{ATG}} {\tt GCTACTCCCCAGTCAATTTTCATCTTTGCAATCTGCA}$ TTTTAATGATAACAGAATTAATTCTGGCCTCAAAAAGCTACTATGATATCTTAGGTGTGCCAA AATCGGCATCAGAGCGCCAAATCAAGAAGGCCTTTCACAAGTTGGCCATGAAGTACCACCCTG ACAAAATAAGAGCCCGGATGCTGAAGCAAAATTCAGAGAGATTGCAGAAGCATATGAAACAC TCTCAGATGCTAATAGACGAAAAGAGTATGATACACTTGGACACAGTGCTTTTACTAGTGGTA AAGGACAAAGAGGTAGTGGAAGTTCTTTTGAGCAGTCATTTAACTTCAATTTTGATGACTTAT TTAAAGACTTTGGCTTTTTTGGTCAAAACCAAAACACTGGATCCAAGAAGCGTTTTGAAAATC ATTTCCAGACACGCCAGGATGGTGGTTCCAGTAGACAAAGGCATCATTTCCAAGAATTTTCTT TTGGAGGTGGATTATTTGATGACATGTTTGAAGATATGGAGAAAATGTTTTCTTTTAGTGGTT **AG**TTCTTATTCTCACTAAATCCAACTGGTTGACTCTTCCTCATTATCTTTGATGCTAA ACAATTTCTGTGAACTATTTTGACAAGTGCATGATTTCACTTTAAACAATTTGATATAGCTA TTAAATATATTTAAGGGTTTTTTTTTTTTGACAAATTCAACATTCAACGAGTAGACAAAATGCT AATTATTTCCCTGATTAGGAAAGTTTCTTTAAAAAACACGTAATTTTGCCTAGTGCTTTTTTCT CTACCTGCCCTTGGGCTCACTAATATCACCAGTATTATTACCAAGAAAATATTGAGTTTACCT GATTAAACTTTAAAAGTTAATTGTAGATTTAAATTGTGTGAACCTAATGATTTTTGCAGTGAA ACCTTTACTAATTCAAAGTTGCATGTTCTATGACATCTGTGACTTGCGTTGCAGAGTGTACAT GAAACTGTATAATTGAGTCATTCAGTAAAGGAGAACAGTATCTTGGTTAATTGCTACTGAAAG GTTGAGAAAGGAATGGTTTGATATTTACCACAGCGCTGTGCCTTTCTACAGTAGAACTGGGGT AAAGGAAATGGTTTTATTGCCCATAGTCATTTAGGCTGGAAAAAGTTGAAAACTTAACGAAA TATTGCCAAGAGATTGTTATGTGTTTGGTTCCAGCCTAAAAATGATTTTGTAGTGTTGAAATC ATAGCTACTTACATAGCTTTTCATATTTCTTTCTTAGTTGTTGGCACTCTTAGGTCTTAGTA GATACCTCATTCTGTTTGTAAAACCAGCCAGTAATTTCTGTGCAACCTTACTATGTGCAATAT TTTTAAATCCTGAGAAATGTGTGCTTTTGTTTTCGGATAGACTTATTTCTTTAGTTCTGCACT TTTCCACATTATACTCCATATGAGTATTAATCCTATGGATACATATTAAAACAAGTGTCTCAT

MATPQSIFIFAICILMITELILASKSYYDILGVPKSASERQIKKAFHKLAMKYHPDKNKSPDA EAKFREIAEAYETLSDANRRKEYDTLGHSAFTSGKGQRGSGSSFEQSFNFNFDDLFKDFGFFG QNQNTGSKKRFENHFQTRQDGGSSRQRHHFQEFSFGGGLFDDMFEDMEKMFSFSGFDSTNQHT VQTENRFHGSSKHCRTVTQRRGNMVTTYTDCSGQ

Important features of the protein:

Signal peptide:

amino acids 1-23

Nt-dnaJ domain signature.

amino acids 27-59, 66-90

Glycosaminoglycan attachment site.

amino acids 96-100

N-myristoylation sites.

amino acids 32-38, 99-105, 102-108, 126-132, 211-217

FIGURE 31

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTGG GCAGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACAAT ATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCAA**ATG** CAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCTACGCA CTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGAAACAGTG TACTATTCTGTCGAATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCTGGATCCCC AGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATCACGGCCACT GTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTGGAGCATCCTG AAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGATCACCAAAGAT GGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTCCTTGTGGCCTAC TGGAGGAGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGGGGGTATTCCAGTG CACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGACATTCGTGAAGGCC ATTGGGAGGTACAGCGCCTTCAGCCAGACAGAATGTGTGGAGGTGCAAGGAGAGGCCATTCCC CTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGTGGTCGTGCCACTGTTC GTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGGTGGTCCTCCCAGACACC TTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGGGAGGAGGTGGATGCCTGT GCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGATCTCA**TAG**GTTTGCGGAAGG GCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACCATGAGGGGGACAAGTTGTGTT TCTGTTTTCCGCCACGGACAAGGGATGAGAGAGTAGGAAGAGCCTGTTGTCTACAAGTCTAG ACCTCTAGACTGGGGGCTGCCACTTGCTGGCTGAGCAACCCTGGGAAAAGTGACTTCATCCCT ACAGAGTCTCTCTATATATACACACGTACACATAAATACACCCAGCACTTGCAAGGCTAGA GGGAAACTGGTGACACTCTACAGTCTGACTGATTCAGTGTTTCTGGAGAGCAGGACATAAATG TATGATGAGAATGATCAAGGACTCTACACACTGGGTGGCTTGGAGAGCCCACTTTCCCAGAAT AATCCTTGAGAGAAAAGGAATCATGGGAGCAATGGTGTTGAGTTCACTTCAAGCCCAATGCCG GTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGTAGGTGACCTGGAGGAAGGTCACAGCCACA CTGAAAATGGGATGTGCATGAACACGGAGGATCCATGAACTACTGTAAAGTGTTGACAGTGTG TGCACACTGCAGACAGCAGGTGAAATGTATGTGTGCAATGCGACGAGAATGCAGAAGTCAGTA ACATGTGCATGTTTGTTGTGCTCCTTTTTTTCTGTTGGTAAAGTACAGAATTCAGCAAATAAAA

FIGURE 32

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGET
VYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAWSI
LKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSGGIP
VHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILVVVPL
FVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation sites.

amino acids 40-44, 134-138

Tissue factor proteins.

amino acids 92-120

Integrins alpha chain proteins.

amino acids 232-263

FIGURE 33

GAGACACGCGAGCGGGGAGACCTCCAAGGCAGCGAGGCATCGGACATGTGTCAGCACATCTGG GGCGCACATCCGTCGAGCCCGAGGGGGAGATTTGCCGGAACAATTCAAACTGCGATATTGATCT TGTGCGAGTGTGTGTGTGTGCCGTGTCGGGCTCCCCCCTTCCCCCCGTTTTCCCGTCGA ${\tt GTGATGCACTTGGAATGAGAATCAGAGG} \underline{{\tt ATG}} {\tt GAAATAGTCTGGGAGGTGCTTTTTCTTCT} {\tt CA}$ AGCCAATTTCATCGTCTGCATATCAGCTCAACAGAATTCACCAAAAATCCATGAAGGCTGGTG CTCAGCTTGGAATCTTTGCTCTGTGGGGAAACGGCAGTCGCCAGTCAACATAGAGACCAGTCA CATGATCTTCGACCCCTTTCTGACACCTCTTCGCATCAACACGGGGGGCAGGAAGGTCAGTGG GACCATGTACAACACTGGAAGACACGTATCCCTTCGCCTGGACAAGGAGCACTTGGTCAACAT ATCTGGAGGCCCATGACATACAGCCACCGGCTGGAGGAGATCCGACTACACTTTGGGAGTGA GGACAGCCAAGGGTCGGAGCACCTCCTCAATGGACAGGCCTTCTCTGGGGAGGTGCAGCTCAT CCACTATAACCATGAGCTATATACGAATGTCACAGAAGCTGCAAAGAGTCCAAATGGATTGGT GGTAGTTTCTATATTATAAAAGTTTCTGATTCATCAAACCCATTTCTTAATCGAATGCTCAA CAGAGATACTATCACAAGAATAACATATAAAAATGATGCATATTTACTACAGGGGCTTAATAT AGAGGAACTATATCCAGAGACCTCTAGTTTCATCACTTACGATGGGTCGATGACTATCCCACC CTGCTATGAGACAGCAAGTTGGATCATAATGAACAAACCTGTCTATATAACCAGGATGCAGAT GCATTCCTTGCGCCTGCTCAGCCAGAACCAGCCATCTCAGATCTTTCTGAGCATGAGTGACAA CTTCAGGCCTGTCCAGCCACTCAACAACCGCTGCATCCGCACCAATATCAACTTCAGTTTACA GGGATTGGCCCTTTCTTCATGAAAAGTGTCTGCGAAACCATGGCAGAGGAATACATCTCTCAC CACACACACTCTCTTACAACCTCCATCATGGGAAGTCAAGTTTCAGAAACAAAGTCTCAT TCATAAGAGGTCTTAGAAGAAAATAACCAGTTAACCTGATTTCAATTTTGATACCGTTTTCCT GAGAGGAGAAAATACAGCTCTGATGGCATCAAACGGACTTTGCATCAAGTAATTTCAGATAGT GTCCTAGGATCCTTTGAGGGTGCTGGTAGCAGGTGAGCAGGACAAGTTGACCAAGGACACTT AAGAGCTACACATTGTATATATCACCACAGACTATAAGGAAATGGAATTATTTCCCTCTTT GTCACATATCTGTAGTAGGATTTGCCAAGATCAGAAATGATCCATTTGCTGTTTTTTC CAAAGGTCATACATTGTGTTTTGGTTATTGTTACCAGCTCAATAAATGTGTTTTAACGAGTTAAT TTCATTTTCTGGCTTTGGTCTGTTCTCCTTCCTTACAGGCTAAGCCCTGGCTCCATGCAACT GCATTCTTTGATTTCACTTGTTCCTTCATCTACATGTTTTGTTCATTTTGCAGCCAGTTTTTAC TGAGTTTGTGGCAATCAGGAATGCATTTGCTAAGCAAGTATGACTTTAATTCCACTCCATGGC TCAATCACTGAGGTGAGCTTCAGCCTGAGATAGCAGGCGACAGACTTCTTGCGTTTCA AAACTGCCATGCCCCCTGTGATGCTCCCGTGAAGGAATGCACTTTGCCTTGTAAGTTCCTGG GAAAGGGGTATGTTTTCTCTCCAGGTGCAGCCAGATCTCACAAAGTACAAAACGAATGCCTTT CTTTTCTTGTTTATAATGGTCACTCACTGTGTTTTGGTTACTGTCAAGAAATCAATAAATGTGT TTAACAAGTTA

FIGURE 34

MEIVWEVLFLLQANFIVCISAQQNSPKIHEGWWAYKEVVQGSFVPVPSFWGLVNSAWNLCSVG KRQSPVNIETSHMIFDPFLTPLRINTGGRKVSGTMYNTGRHVSLRLDKEHLVNISGGPMTYSH RLEEIRLHFGSEDSQGSEHLLNGQAFSGEVQLIHYNHELYTNVTEAAKSPNGLVVVSIFIKVS DSSNPFLNRMLNRDTITRITYKNDAYLLQGLNIEELYPETSSFITYDGSMTIPPCYETASWII MNKPVYITRMQMHSLRLLSQNQPSQIFLSMSDNFRPVQPLNNRCIRTNINFSLQGKDCPNNRA QKLQYRVNEWLLK

Important features:

Signal peptide:

amino acids 1-20

Eukaryotic-type carbonic anhydrases proteins.

amino acids 126-162, 220-269, 43-91

N-glycosylation sites.

amino acids 116-119, 168-171, 302-305

ACAGGACCCTCACTCTGCAGGGATAAGCCAGCTGCGCCTGCAGCCTAGGGTGCCAAGGAGGCTGCTGA TTGTGGCCCACAGCCTCATCTGAACGCCAGGAGACCAGGATACCGAGGCACCGGATCCCCTCTCTGTG $\verb|CCCTGGGGAGCCCCAGTGCTGCCCAGTCACCCCAGGGCTGAGGTCTGCGTCCCTAGTGGTGCAAGGCC| \\$ ${\tt TGGTAGGACCACGGGGCAGGGAATGTGAGCGCCATCCGAGCTCACGGTGTCCTGAGTCGCGGCTTCGT}$ GACTTTGGCAGGGGCCTCCGGACCAGTGACCCCAGTCAAACCCAGAGGGTCTTGGGCGGCAGCGACGA AGGAGGTATTCAGGCTCCAGGCCAGGTGGGGGCCGGACGCCCCCAGCCATCCACCATGGTGGTGGCACA CCCCACCGCCACTGCCACCACCACCGCCCACTGCCACTGTCACGGCCACCGTTGTGATGACCACGGCCA $\verb|CCATGGACCTGCGGGACTGGCTGTTCCTCTGCTACGGGCTCATCGCCTTCCTGACGGAGGTCATCGAC| \\$ AGCACCACCTGCCCTCGGTGTGCCGCTGCGACAACGGCTTCATCTACTGCAACGACCGGGGACTCAC ATCCATCCCCGCAGATATCCCTGATGACGCCACCACCCTCTACCTGCAGAACAACCAGATCAACAACG CCGGCATCCCCAGGACCTCAAGACCAAGGTCAACGTGCAGGTCATCTACCTATACGAGAATGACCTG GATGAGTTCCCCATCAACCTGCCCCGCTCCCTCCGGGAGCTGCACCTGCAGGACAACAATGTGCGCAC CATTGCCAGGGACTCGCTGCATCCCGCTGCTGGAGAAGCTGCACCTGGATGACAACTCCGTGT CCACCGTCAGCATTGAGGAGGACGCCTTCGCCGACAGCAAACAGCTCAAGCTGCTCTTCCTGAGCCGG AACCACCTGAGCAGCATCCCCTCGGGGCTGCCGCACACGCTGGAGGAGCTGCGGCTGGATGACAACCG CATCTCCACCATCCCGCTGCATGCCTTCAAGGGCCTCAACAGCCTGCGGCGCCTGGTGCTGGACGGTA ACCTGCTGGCCAACCAGCGCATCGCCGACGACACCTTCAGCCGCCTACAGAACCTCACAGAGCTCTCG CTGGTGCGCAATTCGCTGGCCGCCCCCCCCCCAACCTGCCAGCGCCCACCTGCAGAAGCTCTACCT GCAGGACAATGCCATCAGCCACATCCCCTACAACACGCTGGCCAAGATGCGTGAGCTGGAGCGGCTGG ACCTGTCCAACAACAACCTGACCACGCTGCCCCGCGGCCTGTTCGACGACCTGGGGAACCTGGCCCAG $\tt CTGCTGCTCAGGAACAACCCTTGGTTTTGTGGCTGCAACCTCATGTGGCTGCGGGACTGGGTGAAGGC$ ACGGGCCGTGGTCAACGTGCGGGGCCTCATGTGCCAGGGCCCTGAGAAGGTCCGGGGCATGGCCA TCAAGGACATTACCAGCGAGATGGACGAGTGTTTTGAGACGGGGCCGCAGGGCGGCGTGGCCAATGCG GCTGCCAAGACCACGGCCAGCAACCACGCCTCTGCCACCACGCCCCAGGGTTCCCTGTTTACCCTCAA GGCCAAAAGGCCAGGGCTGCGCCTCCCCGACTCCAACATTGACTACCCCATGGCCACGGGTGATGGCG CCAAGACCCTGGCCATCCACGTGAAGGCCCTGACGGCAGACTCCATCCGCATCACGTGGAAGGCCACG GGAGACCTTGGTGCAGGGGGACAAGACAGACTACCTGCTGACAGCCCTGGAGCCCAAGTCCACCTACA TCATCTGCATGGTCACCATGGAGACCAGCAATGCCTATGTAGCTGATGAGACACCCGTGTGTGCCAAG GCAGAGACAGCCGACAGCTATGGCCCTACCACCACACTCAACCAGGAGCAGAACGCTGGCCCCATGGC GAGCCTGCCCCTGGCGGGCATCATCGGCGGGGCAGTGGCTCTGGTCTTCCTCTTCCTGGTCCTGGGGG $\verb|CCATCTGCTGGTACGTGCACCAGGCTGGCGAGCTGCTGACCCGGGAGAGGGCCTACAACCGGGGCAGC| \\$ AGGAAAAAGGATGACTATATGGAGTCAGGGACCAAGAAGGATAACTCCATCCTGGAAATCCGCGGCCC TGGGCTGCAGATGCTGCCCATCAACCCGTACCGCGCCAAAGAGAGGAGTACGTGGTCCACACTATCTTCC CCTCCAACGGCAGCACCTCTGCAAGGCCACACACACCATTGGCTACGGCACCACGCGGGGCTACCGG GACGGCGGCATCCCCGACATAGACTACTCCTACACA<u>TGA</u>TGCCCGCCCACCCGGGCTGCCCCGCCTCA GCCCCAGCTGCCCTGGCGTGGCCATGTGGCTTTGCCCAGCCTGCTGCAATCCAAGAGAGCAAGGAAGA GAAATTCCATGGGTGACTTTCCTCCGCAGAAAGCAAAGTTTGGGGGAGGGCTGACGATTTTGTAGAACA GTTTTTTTTTTCCCCCCTGAACTGGAAGGATACTACCTGTACAACATCTGTGGACACCTCATGCTCT GTTCAAGGCCATCACAAAGGAACCGCCAGGGAGAAGCAGCCGGCTCTCAAAGCTCCCACGCAGCTCTC CCGCCACTGGCCACTCGCTGGCGACCCGATGGAAGGTTTTCAGGCTCCTCACAAAGGAGAGAGGGAAG AAAAGATCTTTTGCCCTGGAGATATGGTCCTGAAATCTCTCCCCTGGCTTATTCCATACCATTTCCCT TGCAGATTTGCAGAAACATGGCATCTTTCACTGCATTCTTTGAACAATCATGTAGTCGATTAAAAAAA AAAACAAACTTTTTTTCCTAGGCTGAAGCCCTCTTCAGTTCCATGCACCACGCTCCGTAGAAGCCCC ${\tt TCTCTAAGTACAGATGGGTAGATAGAGCCACATGCACGGTCCTTACCGTTCTTCTTGGGTCAGTTCTT}$ ACCATTTCCTGAACAATAGAATTGTGAAAGTGTTAAAAA

MVVAHPTATATTTPTATVTATVVMTTATMDLRDWLFLCYGLIAFLTEVIDSTTCPSVCRCDNG
FIYCNDRGLTSIPADIPDDATTLYLQNNQINNAGIPQDLKTKVNVQVIYLYENDLDEFPINLP
RSLRELHLQDNNVRTIARDSLARIPLLEKLHLDDNSVSTVSIEEDAFADSKQLKLLFLSRNHL
SSIPSGLPHTLEELRLDDNRISTIPLHAFKGLNSLRRLVLDGNLLANQRIADDTFSRLQNLTE
LSLVRNSLAAPPLNLPSAHLQKLYLQDNAISHIPYNTLAKMRELERLDLSNNNLTTLPRGLFD
DLGNLAQLLLRNNPWFCGCNLMWLRDWVKARAAVVNVRGLMCQGPEKVRGMAIKDITSEMDEC
FETGPQGGVANAAAKTTASNHASATTPQGSLFTLKAKRPGLRLPDSNIDYPMATGDGAKTLAI
HVKALTADSIRITWKATLPASSFRLSWLRLGHSPAVGSITETLVQGDKTEYLLTALEPKSTYI
ICMVTMETSNAYVADETPVCAKAETADSYGPTTTLNQEQNAGPMASLPLAGIIGGAVALVFLF
LVLGAICWYVHQAGELLTRERAYNRGSRKKDDYMESGTKKDNSILEIRGPGLQMLPINPYRAK
EEYVVHTIFPSNGSSLCKATHTIGYGTTRGYRDGGIPDIDYSYT

Important features of the protein:

Transmembrane domain:

amino acids 552-573

N-glycosylation sites.

amino acids 249-252, 305-308, 642-645

Leucine zipper pattern.

amino acids 182-203, 299-320

Phospholipase A2 aspartic acid active site.

amino acids 57-67

GGTGACTGAAGCGAGCCTGGCCTCTTGCATCCTCCGCCTGTGTACCTCCCCTCTCTTTTTTTCCGCCT CTGAGCCTGGGCACAGCCACCATCTCTCCGCCAGAGTCAGGAGAAGAACTGAGAGGCGCATACCCCGG CTGTGGCGGCTGCTCTGGGCTGGGACCGCCTTCCAGGTGACCCAGGGAACGGGACCGGAGCTTCA TGCCTGCAAAGAGTCTGAGTACCACTATGAGTACACGGCGTGTGACAGCACGGGTTCCAGGTGGAGGG TCGCCGTGCCGCATACCCCGGGCCTGTGCACCAGCCTGTCTGACCCCGTCAAGGGCACCGAGTGCTCC TTCTCCTGCAACGCCGGGGAGTTTCTGGATATGAAGGACCAGTCATGTAAGCCATGCGCTGAGGGCCG CTACTCCCTCGGCACAGGCATTCGGTTTGATGAGGTGGGATGAGCTGCCCCATGGCTTTGCCAGCCTCT CAGCCAACATGGAGCTGGATGACAGTGCTGAGTCCACCGGGAACTGTACTTCGTCCAAGTGGGTT CCCCGGGGCGACTACATCGCCTCCAACACGGACGAATGCACAGCCACACTGATGTACGCCGTCAACCT GAAGCAATCTGGCACCGTTAACTTCGAATACTACTATCCAGACTCCAGCATCATCTTTGAGTTTTTCG TTCAGAATGACCAGTGCCAGCCCAATGCAGATGACTCCAGGTGGATGAAGACCACAGAGAAAGGATGG GAATTCCACAGTGTGGAGCTAAATCGAGGCAATAATGTCCTCTATTGGAGAACCACAGCCTTCTCAGT ATGGACCAAAGTACCCAAGCCTGTGCTGGTGAGAAACATTGCCATAACAGGGGTGGCCTACACTTCAG $\verb|AATGCTTCCCCTGCAAACCTGGCACGTATGCAGACAAGCAGGGCTCCTCTTTCTGCAAACTTTGCCCA|$ GCCAACTCTTATTCAAATAAAGGAGAAACTTCTTGCCACCAGTGTGACCCTGACAAATACTCAGAGAA GCGATGCCAACGGAGAGACACTCATGTACAAATGGGCCAAGCCGAAAATCTGTAGCGAGGACCTT GAGGGGGCAGTGAAGCTGCCTCTGGTGTGAAGACCCACTGCCCACCCTGCAACCCAGGCTTCTT GCTGCCCTGCAGGGACTGAACCTGCTGTGGGATTTGAATACAAATGGTGGAACACGCTGCCCACAAAC ATGGAAACGACCGTTCTCAGTGGGATCAACTTCGAGTACAAGGGCATGACAGGCTGGGAGGTGGCTGG GATTTAGACCTCCGCAGTCGGTGATGGCAGACACAGAGAATAAAGAGGTGGCCAGAATCACATTTGTC TCCTGTGGAGACGTGGAAAGGTTCCAAAGGCAAACAGTCCTATACCTACATCATTGAGGAGAACACTA CCACGAGCTTCACCTGGGCCTTCCAGAGGACCACTTTTCATGAGGCAAGCAGGAAGTACACCAATGAC GTTGCCAAGATCTACTCCATCAATGTCACCAATGTTATGAATGGCGTGGCCTCCTACTGCCGTCCCTG TGCCCTAGAAGCCTCTGATGTGGGCTCCTCCTGCACCTCTTGTCCTGCTGGTTACTATATTGACCGAG ATTCAGGAACCTGCCACTCCTGCCCCCTAACACAATTCTGAAAGCCCACCAGCCTTATGGTGTCCAG GCCTGTGTGCCCTGTGGTCCAGGGACCAAGAACAAGATCCACTCTCTGTGCTACAATGATTGCAC CTTCTCACGCAACACCCAGCACTTTCAACTACAACTTCTCCGCTTTGGCAAACACCGTCACTC TTGCTGGAGGGCCAAGCTTCACTTCCAAAGGGTTGAAATACTTCCATCACTTTACCCTCAGTCTCTGT GGAAACCAGGGTAGGAAAATGTCTGTGTGCACCGACAATGTCACTGACCTCCGGATTCCTGAGGGTGA GTCAGGGTTCTCCAAATCTATCACAGCCTACGTCTGCCAGGCAGTCATCATCCCCCCAGAGGTGACAG GCTACAAGGCCGGGGTTTCCTCACAGCCTGTCAGCCTTGCTGATCGACTTATTGGGGTGACAACAGAT ATGACTCTGGATGGAATCACCTCCCCAGCTGAACTTTTCCACCTGGAGTCCTTGGGAATACCGGACGT GATCTTCTTTTATAGGTCCAATGATGTGACCCAGTCCTGCAGTTCTGGGAGATCAACCACCATCCGCG TCAGGTGCAGTCCACAGAAAACTGTCCCTGGAAGTTTGCTGCTGCCAGGAACGTGCTCAGATGGGACC TGTGATGGCTGCAACTTCCACTTCCTGTGGGAGAGCGCGGCTGCTTGCCCGCTCTGCTCAGTGGCTGA CTACCATGCTATCGTCAGCAGCTGTGTGGCTGGGATCCAGANGACTACTTACGTGTGNCGAGAACCCA AGCTATGCTCTGGTGGCATTTCTCTGCCTGAGCAGAGTCACCATCTGCAAAACCATAGATTTCTGG CTGAAAGTGGGCATCTCTGCAGGCACCTGTACTGCCATCCTGCTCACCGTCTTGACCTGCTACTTTTG GAAAAAGAATCAAAAACTAGAGTACAAGTACTCCAAGCTGGTGATGAATGCTACTCTCAAGGACTGTG ACCTGCCAGCAGCTGACAGCTGCGCCATCATGGAAGGCGAGGATGTAGAGGACGACCTCATCTTTACC AGCAAGAAGTCACTTTTTGGGAAGATCAAATCATTTACCTCCAAGAGGACTCCTGATGGATTTGACTC ${ t AGTGCCGCTGAAGACATCCTCAGGAGGCCCAGACATGGACCTG}{ t TGA}{ t GAGGCACTGCCTGCCTCACCTG}$ CCTCCTCACCTTGCATAGCACCTTTGCAAGCCTGCGGCGATTTGGGTGCCAGCATCCTGCAACACCCA

MAEPGHSHHLSARVRRRTERRIPRLWRLLLWAGTAFQVTQGTGPELHACKESEYHYEYTACDS TGSRWRVAVPHTPGLCTSLSDPVKGTECSFSCNAGEFLDMKDQSCKPCAEGRYSLGTGIRFDE WDELPHGFASLSANMELDDSAAESTGNCTSSKWVPRGDYIASNTDECTATLMYAVNLKQSGTV NFEYYYPDSSIIFEFFVQNDQCQPNADDSRWMKTTEKGWEFHSVELNRGNNVLYWRTTAFSVW TKVPKPVLVRNIAITGVAYTSECFPCKPGTYADKQGSSFCKLCPANSYSNKGETSCHQCDPDK YSEKGSSSCNVRPACTDKDYFYTHTACDANGETQLMYKWAKPKICSEDLEGAVKLPASGVKTH CPPCNPGFFKTNNSTCQPCPYGSYSNGSDCTRCPAGTEPAVGFEYKWWNTLPTNMETTVLSGI NFEYKGMTGWEVAGDHIYTAAGASDNDFMILTLVVPGFRPPQSVMADTENKEVARITFVFETL CSVNCELYFMVGVNSRTNTPVETWKGSKGKQSYTYIIEENTTTSFTWAFQRTTFHEASRKYTN DVAKIYSINVTNVMNGVASYCRPCALEASDVGSSCTSCPAGYYIDRDSGTCHSCPPNTILKAH QPYGVQACVPCGPGTKNNKIHSLCYNDCTFSRNTPTRTFNYNFSALANTVTLAGGPSFTSKGL KYFHHFTLSLCGNQGRKMSVCTDNVTDLRIPEGESGFSKSITAYVCQAVIIPPEVTGYKAGVS SQPVSLADRLIGVTTDMTLDGITSPAELFHLESLGIPDVIFFYRSNDVTQSCSSGRSTTIRVR CSPQKTVPGSLLLPGTCSDGTCDGCNFHFLWESAAACPLCSVADYHAIVSSCVAGIQXTTYVX REPKLCSGGISLPEQRVTICKTIDFWLKVGISAGTCTAILLTVLTCYFWKKNQKLEYKYSKLV MNATLKDCDLPAADSCAIMEGEDVEDDLIFTSKKSLFGKIKSFTSKRTPDGFDSVPLKTSSGG PDMDL

Important features of the protein:

N-glycosylation sites:

amino acids 153-156, 390-393, 391-394, 404-407, 544-547, 576-579, 672-675, 717-720, 947-950

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

amino acids 15-18, 563-566, 709-712

Casein kinase II phosphorylation sites:

amino acids 42-45, 59-62, 81-84, 146-149, 168-171, 282-285, 331-334, 340-343, 431-434, 449-452, 465-468, 523-526, 557-560, 761-764, 780-783, 835-838, 860-863, 893-896, 949-952

Tyrosine kinase phosphorylation sites:

amino acids 50-56, 109-116

N-myristoylation sites:

amino acids 77-82, 88-93, 152-157, 268-273, 288-293, 320-325, 400-405, 405-410, 414-419, 463-468, 599-604, 616-621, 634-639, 644-649, 839-844, 874-879, 912-917, 916-921

Amidation site:

amino acids 707-710

Cell attachment sequence:

amino acids 162-164

GGGAAGGGGTTCTGGGCTGCCGCAGGCCACAGGCCAGAGCTTCGTGGATACCTGCAGGGCCC AAAGGTCCCTCCCTGTTTTGAAGAGTGAGTGATGGCTATGAGGTAGCGGCCAGGCTGATCACC $\verb|CCTGCGTTGGCTGGAGGCAGAATTCTGTAAATCCTCGCCAAGTCTTTCTCCAGGCCACTGGTT| \\$ AGCTCATCTCAGCCTCCTCTGGGAGCATCAACACCCAACATGGCACAGGGGACTGCAGTGGTGT GCTTTGGACCTGTGTACCCACCCAAGGCTAAAGGCAGAGCCAGGTGACTTTGCGGGGGTCTCT ACCCACCTTCTTCATGAGAACCACACTAAATTGCAAAAATTATCCCAGTGCTGGAGGAGGGC CTGCTTTGTGCTTTAAAGGAGCCAAGTTACACCCTGTTTAACCCTGCCTTCAAAGGGACGACT $\texttt{CTGTAAGATTCTCTGCTACTTATTCAAGTTGACACG} \underline{\textbf{ATG}} \texttt{CCCTTCACACTCCACCTGAGGTCC}$ CGCCTTCCCTCTGCCATAAGGAGTTTGATTCTACAAAAGAAACCAAACATCAGAAATACATCC AGCATGGCTGGAGAGCTCCGACCAGCCAGCCTGGTGGTCCCAGGTCCCTTGCTCCAGCT TTTGAAAGATTCTGCCAGGTCAACACTGGTCCTCTACCCCTGCTGGGCCAGAGTGAGCCAGAA AAGTGGATGCTGCCCCTCAAGGTGCTATCTCAGAGACCAGGATGGGCCATCCCCAGTTCTGG AAATACGAGTTCGGTGCCTGCACCGGTAGCCTGGCTTCGCTGGAGCAGTACTCGGAGCAGCTG AAGGACATGGTGGCCTTCTTCCTGGGCTGCAGCTTCTCCCTGGAGGAGGCCCTTGGAGAAAGCG GGGCTCCCCAGAAGACCCAGCAGGTCACAGCCAGGCGGGTGCATACAAGACAACAGTGCCT TGTGTTACCCATGCTGGCTTCTGCTGCCCTCTGGTGGTCACGATGAGGCCCCATTCCCAAGGAC AAGCTGGAAGGGCTGGTGCGGGCCTGCTCCCTCGGAGGTGAGCAGGGGCAACCTGTTCAC ATGGGCGACCCAGAACTGTTGGGAATCAAAGAGCTTTCCAAACCTGCCTACGGGGATGCCATG GTGTGTCCCCCAGGGGAGGTTCCAGTGTTCTGGCCTTCTCCGCTGACCAGTCTCGGAGCTGTC AAGGATGCAAAGGCTCCACCTGGTTGTCTCACCCCAGAGAGAATTCCAGAGGTCCATCACATT TCCCAAGATCCTCTGCACTACAGCATCGCGTCAGTCTCTGCTTCTCAGAAGATCAGAGAACTA GAGTCTATGATCGGCATAGACCCAGGGAACCGGGGGATTGGGCACCTGCTCTGTAAAGATGAG CTGCTGAAGGCCTCTCTCTCGCTGTCCCATGCCCGCTCAGTGCTCATCACCACTGGGTTCCCC ACACATTTCAATCATGAGCCTCCAGAAGAGACAGATGGCCCACCAGGAGCTGTTGCTCTGGTT GCCTTCCTGCAGGCCTTGGAGAAGGAGGTCGCCATAATCGTTGACCAGAGAGCCTGGAACTTG CACCAGAAGATTGTTGAAGATGCTGTTGAGCAAGGTGTTCTGAAGACGCAGATCCCGATATTA ACTTACCAAGGTGGATCAGTGGAAGCTGCTCAGGCATTCCTGTGCAAAAATGGGGACCCGCAG ACACCTAGATTTGACCACCTGGTGGCCATAGAGCGTGCCGGAAGAGCTGCTGATGGCAATTAC TACAATGCAAGGAAGATGAACATCAAGCACTTGGTTGACCCCATTGACGATCTTTTTCTTGCT GCGAAGAAGATTCCTGGAATCTCATCAACTGGAGTCGGTGATGGAGGCAACGAGCTTGGGATG GGTAAAGTCAAGGAGGCTGTGAGGAGGCACATACGGCACGGGGATGTCATCGCCTGCGACGTG GAGGCTGACTTTGCCGTCATTGCTGGTGTTTTCTAACTGGGGAGGCTATGCCCTGGCCTGCGCA CTCTACATCCTGTACTCATGTGCTGTCCACAGTCAGTACCTGAGGAAAGCAGTCGGACCCTCC AGGGCACCTGGAGATCAGGCCTGGACTCAGGCCCTCCCGTCGGTCATTAAGGAAGAAAAATG CTGGGCATCTTGGTGCAGCACAAAGTCCGGAGTGGCGTCTCGGGCATCGTGGGCATGGAGGTG GATGGGCTGCCCTTCCACAACACCCCACGCCGAGATGATCCAGAAGCTGGTGGACGTCACCACG ${\tt GCACAGGTG} {\color{red}{\textbf{TAA}}} {\tt CCGTCCATGTTCCGTGTGAGCAGGTCCCTACCAACGGGCAGGTCTGCATC}$ CGGGGAGAATGCAGCTGCTTCTGGCGACAATCCTGCTAGTAAACACTGGTCTTCGGTGAGCAA GTGGACAAAGGACATTTCTCTGGGGCTTTTTAACTTTTATTCCTAAGACTCTAAAGGCGT ${\tt TGATTTCAACCCTTCACTCTGGCTTCTTCAGGCAACCCACGTGGTCTCCTATGAGAATCT}$ TCTCGACAGTTACTTATGGGGACACTTGTGAACAATTAACTGCCAGGGCAGAGCATGAGAACA TTCTGTTACTCATGGTTTCAGTTACTCATAGCCAACTGCAGACCGAAAATACTAAATGAAAAA TTTCAGAAATAAACAACTCTTAAGTTTTAAAAAAAAA

FIGURE 40

MPFTLHLRSRLPSAIRSLILQKKPNIRNTSSMAGELRPASLVVLPRSLAPAFERFCQVNTGPL PLLGQSEPEKWMLPPQGAISETRMGHPQFWKYEFGACTGSLASLEQYSEQLKDMVAFFLGCSF SLEEALEKAGLPRRDPAGHSQAGAYKTTVPCVTHAGFCCPLVVTMRPIPKDKLEGLVRACCSL GGEQGQPVHMGDPELLGIKELSKPAYGDAMVCPPGEVPVFWPSPLTSLGAVSSCETPLAFASI PGCTVMTDLKDAKAPPGCLTPERIPEVHHISQDPLHYSIASVSASQKIRELESMIGIDPGNRG IGHLLCKDELLKASLSLSHARSVLITTGFPTHFNHEPPEETDGPPGAVALVAFLQALEKEVAI IVDQRAWNLHQKIVEDAVEQGVLKTQIPILTYQGGSVEAAQAFLCKNGDPQTPRFDHLVAIER AGRAADGNYYNARKMNIKHLVDPIDDLFLAAKKIPGISSTGVGDGGNELGMGKVKEAVRRHIR HGDVIACDVEADFAVIAGVSNWGGYALACALYILYSCAVHSQYLRKAVGPSRAPGDQAWTQAL PSVIKEEKMLGILVQHKVRSGVSGIVGMEVDGLPFHNTHAEMIQKLVDVTTAQV

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 358-378, 517-539

N-glycosylation site.

amino acids 28-32

Tyrosine kinase phosphorylation site.

amino acids 444-452

N-myristoylation site.

amino acids 98-104, 102-108, 123-129, 149-155, 181-187, 190-196, 238-244, 308-314, 399-405, 413-419, 448-454, 477-483, 482-488, 487-493

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 233-244, 531-542

FIGURE 41

FIGURE 42

MQFHASVPSLMLFLPTGMPSPAPPALSAWQVHLSRSPQRPPPPGRQPLCPSPPGYLCTLSMLL LWHLSHCILLVYMFVSPSRL

Important features of the protein:

Signal peptide:

amino acids 1-22

Microbodies C-terminal targeting signal.

amino acids 81-83

FIGURE 43

 $\tt GTTTCCAACAAGGATGATATGAAGACTTCCCTGAAGAAGTTGTGAAGGGACCTCCTACGAG{\bf A}$ TGATGATGCAGTGTGTCCCGCATGTTGGCCCACCCCCTGCATGTCATCTCAATGCGCTGCA TGGTCCAGTTTGTGGGACGGGAGGCCAAGTACAGTGGTGTGCTGAGCTCCATTGGGAAGATTT TCAAAGAGGAAGGGCTGCTGGGATTCTTCGTTGGATTAATCCCTCACCTCCTGGGCGATGTGG TTTTCTTGTGGGGCTGTAACCTGCTGGCCCACTTCATCAATGCCTACCTGGTGGATGACAGCT TCAGCCAGGCCCTGGCCATCCGGAGCTATACCAAGTTCGTGATGGGGATTGCAGTGAGCATGC TGACCTACCCCTTCCTGCTAGTTGGCGACCTCATGGCTGTGAACAACTGCGGGCTGCAAGCTG GGCTCCCCCTTACTCCCCAGTGTTCAAATCCTGGATTCACTGCTGGAAGTACCTGAGTGTGC AGGGCCAGCTCTTCCGAGGCTCCAGCCTGCTTTTCCGCCGGGTGTCATCAGGATCATGCTTTG $\verb|CCCTGGAG{\textbf{TAA}}| CCTGAATCATCTAAAAAACACGGTCTCAACCTGGCCACTGTGGGTGAGGCCT|$ GCCGGGCTTCAGTTCCATATTTGCCATGTGTCTGTCCAGATGTGGGGTTGAGCGGGGGTGGGG CTGCACCCAGTGGATTGGGTCACCCGGCAGACCTAGGGAAGGTGAGGCGAGGTGGGGAGTTGG CAGAATCCCCATACCTCGCAGATTTGCTGAGTCTGTCTTGTGCAGAGGGCCAGAGAATGGCTT ATGGGGGCCCAGGTTGGATGGGGAAAGGCTAATGGGGTCAGACCCCACCCCGTCTACCCCTCC AGTCAGCCCAGCGCCCATCCTGCAGCTCAGCTGGGAGCATCATTCTCCTGCTTTGTACATAGG GTGTGGTCCCCTGGCACGTGGCCACCATCATGTCTAGGCCTATGCTAGGAGGCAAATGGCCAG GCTCTGCCTGTGTTTTTCTCAACACTACTTTTCTGATATGAGGGCAGCACCTGCCTCTGAATG GGAAATCATGCAACTACTCAGAATGTGTCCTCCTCATCTAATGCTCATCTGTTTAATGGTGAT GCCTCGCGTACAGGATCTGGTTACCTGTGCAGTTGTGAATACCCAGAGGTTGGGCAGATCAGT GTCTCTAGTCCTACCCAGTTTTAAAGTTCATGGTAAGATTTGACCTCATCTCCCGCAAATAAA TGTATTGGTGATTTGGAAAAAAAAAAAAAAAA

FIGURE 44

MMMQCVSRMLAHPLHVISMRCMVQFVGREAKYSGVLSSIGKIFKEEGLLGFFVGLIPHLLGDV VFLWGCNLLAHFINAYLVDDSFSQALAIRSYTKFVMGIAVSMLTYPFLLVGDLMAVNNCGLQA GLPPYSPVFKSWIHCWKYLSVQGQLFRGSSLLFRRVSSGSCFALE

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 51-72, 97-114

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 160-163

N-myristoylation sites.

amino acids 34-39, 100-105, 123-128, 165-170

GAACCCACCAGAAGGAAGAAACTCCAAACACATCCGAACATCAGAAGGAGCAAACTCGTGACA CGCCACCTTTAAGAACCGTGACACTCAACGCTAGGGTCCGCGGCTTCATTCTTGAAGTCAGTG AGACCAAGAACCCACCAATTCCGGACACGGCAAAGTAACATCCTAGAC**ATG**GCTTTAGAGATC CACATGTCAGACCCCATGTGCCTCATCGAGAACTTTAATGAGCAGCTGAAGGTTAATCAGGAA GCTTTGGAGATCCTGTCTGCCATTACGCAACCTGTAGTTGTGGTAGCGATTGTGGGCCTCTAT CGCACTGGCAAATCCTACCTGATGAACAAGCTGGCTGGGAAGAACAAGGGCTTCTCTGTTGCA TCTACGGTGCAGTCTCACACCAAGGGAATTTGGATATGGTGTGTGCCTCATCCCAACTGGCCA AATCACACATTAGTTCTGCTTGACACCGAGGGCCTGGGAGATGTAGAGAAGGCTGACAACAAG AATGATATCCAGATCTTTGCACTGGCACTCTTACTGAGCAGCACCTTTGTGTACAATACTGTG AACAAAATTGATCAGGGTGCTATCGACCTACTGCACAATGTGACAGAACTGACAGATCTGCTC AAGGCAAGAACTCACCTGACCTTGACAGGGTTGAAGATCCTGCTGACTCTGCGAGCTTCTTC CCAGACTTAGTGTGGACTCTGAGAGATTTCTGCTTAGGCCTGGAAATAGATGGGCAACTTGTC ACACCAGATGAATACCTGGAGAATTCCCTAAGGCCAAAGCAAGGTAGTGATCAAAGAGTTCAA AATTTCAATTTGCCCCGTCTGTGTATACAGAAGTTCTTTCCAAAAAAGAAATGCTTTATCTTT GACTTACCTGCTCACCAAAAAAAGCTTGCCCAACTTGAAACACTGCCTGATGATGAGCTAGAG CCTGAATTTGTGCAACAAGTGACAGAATTCTGTTCCTACATCTTTAGCCATTCTATGACCAAG ACTCTTCCAGGTGGCATCATGGTCAATGGATCTCGTCTAAAGAACCTGGTGCTGACCTATGTC AATGCCATCAGCAGTGGGGATCTGCCTTGCATAGAGAATGCAGTCCTGGCCTTGGCTCAGAGA GAGAACTCAGCTGCAGTGCAAAAGGCCATTGCCCACTATGACCAGCAAATGGGCCAGAAAGTG ACTCTACTAGATGCAAAACAGAATGACATTTGTAAACGGAACCTGGAAGCATCCTCGGATTAT TGCTCGGCTTTACTTAAGGATATTTTTGGTCCTCTAGAAGAAGCAGTGAAGCAGGGAATTTAT TCTAAGCCAGGAGGCCATAATCTCTTCATTCAGAAAACAGAAGAACTGAAGGCAAAGTACTAT CGGGAGCCTCGGAAAGGAATACAGGCTGAAGAAGTTCTGCAGAAATATTTAAAGTCCAAGGAG GAGGCACAAGTGAAAGCAGAAGCTGAAAGGCTGAAGCGCAAAGGTTGGCGGCGATTCAAAGG CAGAACGAGCAAATGATGCAGGAGAGGGGAGAGACTCCATCAGGAACAAGTGAGACAAATGGAG ATAGCCAAACAAATTGGCTGGCAGAGCAACAGAAAATGCAGGAACAACAGATGCAGGAACAG GCTGCACAGCTCAGCACATTCCAAGCTCAAAATAGAAGCCTTCTCAGTGAGCTCCAGCAC ${\tt GCCCAGAGGGCTGTTAATAACGATGATCCATGTGTTTTACTC} {\color{red}{\textbf{TAA}}} {\tt AGTGCTAAATATGGGAGT}$ TTCCTTTTTTTACTCTTTGTCACTGATGACACAGAAAAGAAACTGTAGACCTTGGGACAA TCAACATTTAAATAAACTTTATAAATTAATTAAA

MALEIHMSDPMCLIENFNEQLKVNQEALEILSAITQPVVVVAIVGLYRTGKSYLMNKLAGKNK
GFSVASTVQSHTKGIWIWCVPHPNWPNHTLVLLDTEGLGDVEKADNKNDIQIFALALLLSSTF
VYNTVNKIDQGAIDLLHNVTELTDLLKARNSPDLDRVEDPADSASFFPDLVWTLRDFCLGLEI
DGQLVTPDEYLENSLRPKQGSDQRVQNFNLPRLCIQKFFPKKKCFIFDLPAHQKKLAQLETLP
DDELEPEFVQQVTEFCSYIFSHSMTKTLPGGIMVNGSRLKNLVLTYVNAISSGDLPCIENAVL
ALAQRENSAAVQKAIAHYDQQMGQKVQLPMETLQELLDLHRTSEREAIEVFMKNSFKDVDQSF
QKELETLLDAKQNDICKRNLEASSDYCSALLKDIFGPLEEAVKQGIYSKPGGHNLFIQKTEEL
KAKYYREPRKGIQAEEVLQKYLKSKESVSHAILQTDQALTETEKKKKEAQVKAEAEKAEAQRL
AAIQRQNEQMMQERERLHQEQVRQMEIAKQNWLAEQQKMQEQQMQEQAAQLSTTFQAQNRSLL
SELQHAQRAVNNDDPCVLL

Important features of the protein:

Transmembrane domains:

amino acids 31-49, 114-131

N-glycosylation sites.

amino acids 90-94, 144-148, 287-291, 563-567

N-myristoylation sites.

amino acids 45-51, 283-289

Prenyl group binding site.

amino acids 583-588

ATP/GTP-binding site motif A (P-loop).

amino acids 45-53

FIGURE 47

CACTCATTCATTCCAAAGGGTCTCTCAAGGCAATGGTAATGTGCAAGGAGGTGATACCTAAAT TCTCTTGGTAGCCTTTAAATTCCTTGAAGCCCAGGACCATGTCTCACTTACCTTTGTGTTTCC ACTAACTAGTCTACCTCCTGGAATTGGCAGATACTCAGTGAAAGCCTGTGAAATAAGTGATGT CTATTTCTAGCATATTATTCTGAGATTTAATGATAGATTTAGTGATTGAATGAGATTTCCATT ATTAGGTCCTGAGTTAACTAATAATTACCTTTGAAATGTGTGGGGTTATTTGAGGCAATCAGGT GGTGACATTGAGCTCTCAGCCAGAGTTTGTTTCTGGAATTGATTCAGTTCCATTGCATTGATT TTTGTTCTCAGAAGCCAAGGTTTCCCATGAAAAATCATTCCCACTTGAATTGGGCTGTGATTC TTGCTGCGTTTAAGTAAAGGAAGCCTCTTGGTTCTAGTTCTGCAAACTTACACACTGAACTG GACAAGTTTTTGTTTAGAGTAATGGCTGGGAAAAGAGGGAACCTTTCATTTTATTCAGAAGTCA AAAACAAAGGCCTCCCAGCCACCTGGAGATGTTTTGTTGCAGACACCAGCCTGGCTCTGTCTT TATGCCTAACAATTGAGCATCCAGTCTTCTTTGTGCTGGGACCATTGCTCAGCTCTGCAAGGG GAAAAGAGGGAGAAAGCCAGAGCTGCCAGGCTTCTTGCACTGGGGCCGGGGGAGGGTTCCTGG GAAGCAGGTGCTCTCTGGCTTCTTGGTACGTGAGGCTCTCGGAGCTGCCTCTCCTCTGACCCT CAGGTCCTCACCGAGTTTGCTCCAGGAGTATATTGAAAACATACCCAGTGCTCTCTCAAGCAC CCACTGCTTAGAGGGCCCAGATTTCTTTTCCTTCTTTCCCTTGCAGAGCTGGAGACTGCATCG GGCATCTGGTGTTTAAACTAAACAGGAAAACTGACTAAAGGTCCACAGTGCTCATTGTGTAGA $\tt CTAGCTGCCCTCCG{\color{blue} ATG} GGTGCTCTGATTATCAGTGGTTCCAGTGCAGGGCCTGTCACTAAAC$ AGGCCTCACTTCCTCCTTGGGGGCTTTCCCCATGGGAGGTGTGGCTTTTTACTCTACATGGAAA TGACTCTCTGCAGCCACAGAACACAGTCATTTTCTGAATTATCCCAGTCTCTCATGCGCCCTG GATTCCTCCAGATGCCTTATATCTCTTGTGCAAAGTTGTCTAAAATTTGGTTCCCAGCTTCCA ${\tt AAATGATTTGCTTTTGTTTCTTTCATTCCTATTTCCACCCCACATATACACACATGCTTCT{\tt T}}$ **AA**CTTAGGGGATTACATGCCAATAAATCTATTGTTGAAAATGCACTAATACTATCGCAAAGAC GAAAATTCACAGGCTGAACCGTTGTAAGTCCATATGCTCCTCAACTTACATGTGTGATGGAGT TATGCCCAAATAAGTCCATCGTCAAGTTGAAAAATCAAAATCAAGCCATCTTAGGTTGAGGAC CATTTGTTTGTACCTCCAAAGATGTCATATCTTTAAACATACTCCCTAGCTTTTCTTTTTACT TTTTATTTTGAAGTAATTATAGAATCACAGAAAGTTGCAAAAA

MGALIISGSSAGPVTKQASLPPWGLSHGRCGFLLYMEMTLCSHRTQSFSELSQSLMRPGFLQM PYISCAKLSKIWFPASKPCLLAFLEVFLLMSRLSLFSKMICFLFLSFLFPPHIYTHAS

Important features of the protein:

Signal peptide:

amino acids 1-41

Transmembrane domain:

amino acids 88-107

Casein kinase II phosphorylation site.

amino acids 47-50

N-myristoylation site.

amino acids 24-29

TGGCTGTTGCTATGACAACGTGGCCACTGCAGCCGGTCCTCTTGGGGAAGGCTGTGTGGGCCAGCCCAGCCATGC $\tt CTCTGTGGGCCAATGTAACCGCTTCTGGTATGGCGGCTGCCATGGCAATGCCAATAACTTTGCCTCGGAGCAAGA$ $\tt GTGCATGAGCAGCTGCCAGGGATCTCTCC\underline{\textbf{ATG}} \tt GGCCCCGTCGTCCCCAGCCTGGGGGCTTCTGGAAGGAGCACCCA$ CACGGATGGTGGCGGCAGCAGTCCTGCAGGCGAGCAGGAACCCAGCACAGGACAGGGCCGCGGTGCAGAG CTTTGGAGAATGGCCATGGGGCAGGAGCTTGGGTCCAGGGCCCCTGGACTGGGTGGAGATGCCGGATCACCAGC GCCACCCTTCCACAGCTCCTCCTACAGATCTCACTTCCCACCTCTCCAGGATTAGCTTGGCAGGTGTGGAGCCCT $\tt CGTTGGTGCAGGCAGCCCTGGGGCAGTTGGTGCGGCTCTCCTGCTCAGACGACACTGCCCCGGAATCCCAGGCTG$ CCTGGCAGAAAGATGGCCAGCCCATCTCCTCTGACAGGCACAGGCTGCAGTTCGACGGATCCCTGATCATCCACC $\verb|CCCTGCAGGCAGGAGGCCGGGCACCTACAGCTGTGGCAGCACCCGGCCAGGCCGGACTCCCAGAAGATCCAAC| \\$ $\verb|CTCAGGACTTTGGCCAAGCGGGGGCTGCTGGGGGCCCTTGGGGGCCATCCCCTCTTCACACCCACAGCCTGCAAACA| \\$ GGCTGCGTTTGGACCAGAACCAGCCCCGGGTGGTGGATGCCAGTCCAGGCCAGCGGATCCGGATGACCTGCCGTG AGCCTGATGGCTCCCTGGTCATTAGCCGAGTGGCTGTAGAAGATGGCGGCTTCTACACCTGTGTCGCTTTCAATG GGCAGGACCGAGACCAGCGATGGGTCCAGCTCAGAGTTCTGGGGGGAGCTGACAATCTCAGGACTGCCCCCTACTG ${\tt GGAACGGGCTACCTGTGCAGGCTGATGGCCACCGTGTCCACCAGTCCCCAGATGGCACGCTGCTCATTTACAACT}$ TGCGGGCCAGGATGAGGGCTCCTACATGTGCAGTGCCTACCAGGGGAGCCAGGCAGTCAGCCGCAGCACCGAGG $\verb|CCAACTGTGATTTGATCCTGCAGGCCCAGCTTTGTGGCAATGAGTATTACTCCAGCTTCTGCTGTGCCAGCTGTT|\\$ $\texttt{CACGTTTCCAGCCTCAGCCCATCTGGCAG} \underline{\textbf{TAG}} \texttt{GGATGAAGGCTAGTTCCAGCCCCAGTCCAAAATAGTT}$ TACATTAGCTCTTTCAAAAACCCACCCAGTGTTTAGCCTCAACGGCAGCCAGTTACCAGCTTCTCTCTGTAGCCT TCAGCAGTGTTTGCATCTCTGACATAACCACAGGCTGCTGTTTTCAAGAAGAGCAATCTGTTTGGATAAGAAAAA ACGGAGTTTCACTCTTGTTGCCCAGGCTGGAGGGCAATGGCGCGATCTCAGCTCACTGCAACCTCCGTCTCCTGG ${ t GTTCTTGATTCTCCTGTGTCAGCCTTCTGAGTAGCTGGGATTACAGATGCCTATCACCATGCCTGGGTAATTTTT$ GTATTTTTAGTTGAGATGGGGTTTCGCCATGTTGGCCAGGCTGGTCTCGAACTTCTGACCTCAGATGATCTGCCC TTTTTTGAGACAGAGTTTCGCACTTCTTGCCCAGGCTGGAGTACAATGGTGCGATCTTGGCTCACTGCAACCTCC ACCTCCTGGGTTCAAGCGCTTCTCCAGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGTATGTGCCACCATGCCT GGCTAATTTTGTATTTTTGGTGGAGACGGGGTTTCTCCATGTTGGTCAGACTGGTCTTGAACTCCCGACCTCAGG ${\tt TAATCCGCCCGCCTCCCAAAATGCTGGGATTAGAGGTGTGAGCCACTGTGCCCAGCCCATCAATGTGTT}$ ${\tt TTAAAGCTAGCTGTCAGGGTTCCACTTAATTTAAAGCTGGGCAGGGAGATGTGTAATGATTTCAAAGTTAACACC}$ TGTTTGTTTTCTAAAGGGCATGCCAAGTCCTGCTGTATCAGGGAAGTATTCTGTGCTAAAATCAGCGATGGTTCA ACCCTTGTTGGCAAAATGGAATAGATGTTAAGACCTCAAATAGGGATTTGGGATGAAACAGCTGCAGTTAGCACT GTTATCTGAGCATGAAAGAACTGGAAACGCTCCTTACGTCGAGATGTTGGACCTTGAAGCCCTCCTGAGGCCAAC ATGCAAATCTGGCTGTGACGGTTCATCTGACACCTGTGTAAAGCTGACCAGCCTGCTCTGTACAGTGACAATGAG TTAAAAACAGCATTAGCAGGATGAGGATAGCAATGGGGAAGGGTTGTGGGGCAATGCAGTAACAGGGAAATGGCTT CAGAAATGGTTTGAGTTGGAAGACAACATTCTTCATCTCTCAGGACTTCTAATTCCTTGATGCTAAAAGAAGAGG ${\tt CATGGATTCTATGAGCTTCCAAGTCCCTTTCCACTTTAACCTTCTACAAATCTTTCAGAGGACTGCCTAGTAGCA}$ AAGGTTATTCCTGGACACAGGAAAGACGGGCATTACAGGGACCAAAGCTCTGAAAGGTGACTTTTATTACCAACA AAATGTGGGCTGGGGCAGAGGTCTTTTTTCATTTAATACTGGAAAAATATTGAAGAGCATCCATGTTCACTTATG GCTGGTTTTGCTATAGAAATTGGAAAATAAAGGCCACTTTTTTG

FIGURE 50

MGPVVPSLGLLEGAPTRMVAAAVLQASRNPASTGQGPRCRESPGLLVVSGGKTNSLGQGRPPT
PRPLENGHGGRSLGPGPLDWVEMPDHQRHPSTAPPTDLTSHLSRISLAGVEPSLVQAALGQLV
RLSCSDDTAPESQAAWQKDGQPISSDRHRLQFDGSLIIHPLQAEDAGTYSCGSTRPGRDSQKI
QLRIIGGDMAVLSEAELSRFPQPRDPAQDFGQAGAAGPLGAIPSSHPQPANRLRLDQNQPRVV
DASPGQRIRMTCRAEGFPPPAIEWQRDGQPVSSPRHQLQPDGSLVISRVAVEDGGFYTCVAFN
GQDRDQRWVQLRVLGELTISGLPPTVTVPEGDTARLLCVVAGESVNIRWSRNGLPVQADGHRV
HQSPDGTLLIYNLRARDEGSYMCSAYQGSQAVSRSTEVKVVSPAPTAQPRDPGRDCVDQPELA
NCDLILQAQLCGNEYYSSFCCASCSRFQPHAQPIWQ

Important features of the protein:

Signal peptide:

amino acids 1-16

Tyrosine kinase phosphorylation site.

amino acids 392-400

N-myristoylation sites.

amino acids 9-15, 50-56, 112-118, 146-152, 173-179, 195-201, 220-226, 229-235, 280-286, 306-312, 336-342, 397-403

Myelin P0 protein.

amino acids 153-182

FIGURE 51

CAGGCAGAAGACCAAAGACCCAGCAAGAGAAGGCAGAGGCTAAGACCCATCCCGTATCTGC TCTCCTGAAATAATTCTGGAGTC**ATG**CCTGAAATGCCAGAGGACATGGAGCAGGAGGAAGTTA ACATCCCTAATAGGAGGGTTCTGGTTACTGGTGCCACTGGGCTTCTTGGCAGAGCTGTACACA AAGAATTTCAGCAGAATAATTGGCATGCAGTTGGCTGTGGTTTCAGAAGAGCAAGACCAAAAT ATGTTATAGTACATTGTGCAGCAGAGAGAGACCAGATGTTGTAGAAAATCAGCCAGATGCTG CCTCTCAACTTAATGTGGATGCTTCTGGGAATTTAGCAAAGGAAGCAGCTGCTGTTGGAGCAT TTCTCATCTACATTAGCTCAGATTATGTATTTGATGGAACAAATCCACCTTACAGAGAGGAAG ACATACCAGCTCCCCTAAATTTGTATGGCAAAACAAAATTAGATGGAGAAAAGGCTGTCCTGG AGAACAATCTAGGAGCTGCTGTTTTGAGGATTCCTATTCTGTATGGGGAAGTTGAAAAGCTCG AAGAAAGTGCTGTGACTGTTATGTTTGATAAAGTGCAGTTCAGCAACAAGTCAGCAAACATGG ATCACTGGCAGCAGAGGTTCCCCACACATGTCAAAGATGTGGCCACTGTGTGCCGGCAGCTAG CAGAGAAGAATGCTGGATCCATCAATTAAGGGAACCTTTCACTGGTCTGGCAATGAACAGA TGACTAAGTATGAAATGGCATGTGCAATTGCAGATGCCTTCAACCTCCCCAGCAGTCACTTAA GACCTATTACTGACAGCCCTGTCCTAGGAGCACAACGTCCGAGAAATGCTCAGCTTGACTGCT CCAAATTGGAGACCTTGGGCATTGGCCAACGAACACCATTTCGAATTGGAATCAAAGAATCAC TTTGGCCTTTCCTCATTGACAAGAGATGGAGACAAACGGTCTTTCAT**TAG**TTTATTTGTGTTG GGTTCTTTTTTTTTTAAATGAAAAGTATAGTATGTGGCACTTTTTAAAGAACAAAGGAAATA GTTTTGTATGAGTACTTTAATTGTGACTCTTAGGATCTTTCAGGTAAATGATGCTCTTGCACT AGTGAAATTGTCTAAAGAAACTAAAGGGCAGTCATGCCCTGTTTGCAGTAATTTTTCTTTTTA TCATTTTGTTTGTCCTGGCTAAACTTGGAGTTTGAGTATAGTAAATTATGATCCTTAAATATT TGAGAGTCAGGATGAAGCAGATCTGCTGTAGACTTTTCAGATGAAATTGTTCATTCTCGTAAC CTCCATATTTTCAGGATTTTTGAAGCTGTTGACCTTTTCATGTTGATTATTTTAAATTGTGTG AAATAGTATAAAAATCATTGGTGTTCATTATTTGCTTTGCCTGAGCTCAGATCAAAATGTTTG AAGAAAGGAACTTTATTTTTGCAAGTTACGTACAGTTTTTATGCTTGAGATATTTCAACATGT TATGTATATTGGAACTTCTACAGCTTGATGCCTCCTGCTTTTATAGCAGTTTATGGGGAGCAC TTGAAAGAGCGTGTGTACATGTATTTTTTTTCTAGGCAAACATTGAATGCAAACGTGTATTTT TTTAATATAAATATATAACTGTCCTTTTCATCCCATGTTGCCGCTAAGTGATATTTCATATGT GTGGTTATACTCATAATAATGGGCCTTGTAAGTCTTTTCACCATTCATGAATAATAATAATA TGTACTGCTGGCATGTAATGCTTAGTTTTCTTGTATTTACTTCTTTTTTTAAATGTAAGGACC AAACTTCTAAACTAATTGTTCTTTTTTTTTTAAATTTTTTAAAAATTACATTCTTCTGATGTA ACATGTGATACATACAAAAGAATATAGTTTAATATGTATTGAAATAAAACACAATAAAATT

FIGURE 52

MPEMPEDMEQEEVNIPNRRVLVTGATGLLGRAVHKEFQQNNWHAVGCGFRRARPKFEQVNLLD SNAVHHIIHDFQPHVIVHCAAERRPDVVENQPDAASQLNVDASGNLAKEAAAVGAFLIYISSD YVFDGTNPPYREEDIPAPLNLYGKTKLDGEKAVLENNLGAAVLRIPILYGEVEKLEESAVTVM FDKVQFSNKSANMDHWQQRFPTHVKDVATVCRQLAEKRMLDPSIKGTFHWSGNEQMTKYEMAC AIADAFNLPSSHLRPITDSPVLGAQRPRNAQLDCSKLETLGIGQRTPFRIGIKESLWPFLIDK RWRQTVFH

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 105-127

N-glycosylation site.

amino acids 197-201

N-myristoylation site.

amino acids 303-309

Short-chain dehydrogenases/reductases family proteins.

amino acids 18-30

 $\texttt{CACCCCACCCAGCA} \underline{\textbf{ATG}} \texttt{CTGCTGATCTCCCTCTTTGGCAGCCGGGTTGATGCACTCGGATGCCGGCACCAGCT}$ TGCCAATGGACACCCGAAACCTCAGCCTGGCCCACAACCGCATCACAGCAGTGCCGCCTGGCTACCTCACATGCT ACATGGAGCTCCAGGTGCTGGATTTGCACAACACTCCTTAATGGAGCTGCCCCGGGGCCTCTTCCTCCATGCCA AGCGCTTGGCACACTTGGACCTGAGCTACAACAATTTCAGCCATGTGCCAGCCGACATGTTCCAGGAGGCCCATG ${\tt GGCTAGTCCACATCGACCTGAGCCACAACCCCTGGCTGCGGAGGGTGCATCCCCAGGCCTTTCAGGGCCTCATGC}$ TGGTGACCCTGCAGATCGGTGGCAATCCCTGGGTGTGTGGCTGCACCATGGAACCCCTGCTGAAGTGGCTGCGAA ACCGGATCCAGCGCTGTACAGCAGATTCTCAGCTGGCTGAGTGCCGGGGCCCTCCTGAAGTCGAGGGCGCCCCGC TCTTCTCACTGAGGAGGAGGCTTCAAGGCCTGCCACCTGACCCTGACCCTGATTACCTATTCATTGCGT ${\tt TCGTGGGCTTCGTGGTCTCCATTGCTTCTGTGGCCACCAACTTCCTCCTGGGCATCACTGCCAACTGCTGCCACC}$ ${\tt GCTGGAGCAAGGCCAGTGAAGAGAAGAGATC}{{\tt TGA}}{\tt CATGCCTGCCTCTCATCCTTCATGCTGCTGACCGCCACA}$ GCTGCTGGCCACCAGACGCCCTCCCTGATTGCTCACTCTGGTTCCATGGTGACCTGGCTGCCTCAGTCATGGTTC AAGCAAGGTGGGGACACTCATTTTGTATGAGCATCTGCTTTGGGCCAGGCGGCACGCTAGGAATTGGGAACATCA AAGACTATATGTCAGGACTCTGAGCACGTCATTATGGAGGCCCAGAGGAGGAGCCATCATCTGTATCTAGCAATG ${\tt TCCATGAGAATTATAAGATTAGAGTGATTTGTGAACTGGGTCATCAGGAAATATCTACTTTGTCAGGTAGGCAAA}$ ATGCCACAGGGTCTCACCAGGAAAGTGCACTGTGGGCCACAGACCCACAGCCTGGCAGCACCCAGAGCTAAAAGG GGACAAAGGCAGCACAGTTATGACCATATGAGGCTTTGCATTTTCTTCTAAGCAACTTACCCACGTTAAGCATGA GGGTGAGAGAGCTATTAAATACTAAGCCCTTGCCAGTGTCAGGTACTTTGAAAAGCTCTCTGCACAAACCATTCC CAGAGAGGTTAAAGTCACATGCCACTATGAGCAAGATAAAGTCTGTGCTCTTTCTACTGCCCCATCCAAGTTGGG GAACATCACCATTCCCTCTAGAGTTATATAAATTCAAATTCAACTAGAGCTGACAAAGTTCCTCATAAGGTCCAG GCACTCCTCTGGGCACTTTTATATCTATTGACTCACTTCTTTCAATTCTCACAGCAACACTGCCTGGTGGTTTTT ATTATCCCCATTTGACAGATGAATTAATCGTAGAGAGTTGAGTGACTTACCCAAGGTTGTCTGGATAAGCCCTAG ${\tt CAAAGCACAATTATCATCATCGTGGTCTTCTTCATCAGTTTCGTCAGCAGCATCATTATCTTCCCTCTATTTGTT}$ CAGCACCGGATAGTTCATGAGTATTTTTGCATCATTCTCCTTGACTTTTCACATCCCTGTGCAGGAGGTAAATCA AACATCAGTAATCCTGTTTTACAGATGGGGAAAAAAGTCTCAAGGTTGGATATGACTTGCTATGTGGCAAGGTTG GGGCTCAACCCTAACACAGTTCTCTTTCCAGTGCTTTCTCAAGTGCTTGGGGAAGAATGCCTCAGAAGGCTGG GTAGTGGGGCCCTGGAATTCAGCATCCATGAATGTGCTAGTGGATAAGCTAAATAGAAGGCAGCCAAACCCATCT GCTGTACAGATTGAACTATGCTCACGGTAGGGCAAATTGCAGGCTCTGAAACAGAGACTACACAGGTAACACCTG AATAGGAGACTCCTGCTTTACAATGTGTAGATAAAACATCAGCAATGGTGGCCATGGTGGCAGTCATGTGAAAAG TAAGATCTTTGGGAATCAAGAAAGGAAGCTGTGTTAACCACTCCTGCTCAAGCCCTGCTGCGTGTGTTGCAAGAG ATACTAAGAGAGCAAGAAAGCTATAGGTGAGAACCTCTGCAGTTTAGGAGAAGAACATCAAGGCACAGTCCAACA TGCTGATAAGTCTGGCCAGGAGAAATTAAAACAGGGGCTTTCCACACCTCCCTTGCCCCAAGCTCCAGCGGTA TTCTATCAGCCCATCCTCCTGGAAAGCCTGAAAGGAATGAAGGAGGCTAATAAGTCATCTTCCAGGAAGGCATCC $\tt CTCACTCGTGCTTCCCTGAGCTAGTCAACCAAAAGAGTCTTCAGAAACTTTGCTAGACCTGAAGTACTTGAACCT$ GTGTCCCCTGAATCTTTCTTACAACATCTGGGACAAATCCCTGGTCCTGTGACATCCGAAGCAGAACTGTGCCCT GCTCTCTCCTTCTGTGATGACCAAGGATGGTGAACTCAAGTTGTTCTCTACAAGCCAGGCCAGCAACCTAAATAC ${ t AATAACCTCCCAGGAACTATTGTTTGCCAAAATGTAGTTAATATATTTTAAGATATATGCTTTTTTGCATAGGAC$ ${ t TAGAACCAGAAAAGACACCAAATGCCCCCTTGACATCAATGTCCTTTCTAGTGGGACAATTTGGTCTCCATTAAT$ $\verb|GCCAAACCTTTCTGAACAGGATACATGGCTTTTAAAGGACAGATGTTTCTCCTGCTGCTAGAAGTTCCTCAGTTT|$ ACTAGAGCACAATGAGGAAAGTATTCAACCTCCCTACTGCCAAGGAATTCCCTGCTTCTCCCCCACCGCCATCAT CTTGTCCAAGCTATCAGAAGCAACCTTCTAGAGATAATCTAACAATCCTGATTAGAATTGCTCCCATATCCCTGG ${\tt TGGTGCAAAAGTAATTGCGGTTTTTGCCATTAAAAATGATGGCAAAAATCCCAATTACTTTTGCGTCAATCTAATCA$ AAAAAAAAAAAAAAAAAA

MLLISLLLAAGLMHSDAGTSCPVLCTCRNQVVDCSSQRLFSVPPDLPMDTRNLSLAHNRITAV PPGYLTCYMELQVLDLHNNSLMELPRGLFLHAKRLAHLDLSYNNFSHVPADMFQEAHGLVHID LSHNPWLRRVHPQAFQGLMQLRDLDLSYGGLAFLSLEALEGLPGLVTLQIGGNPWVCGCTMEP LLKWLRNRIQRCTADSQLAECRGPPEVEGAPLFSLTEESFKACHLTLTLDDYLFIAFVGFVVS IASVATNFLLGITANCCHRWSKASEEEEI

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 241-260

N-glycosylation sites.

amino acids 52-55, 81-84, 107-110

Tyrosine kinase phosphorylation site.

amino acids 148-154

N-myristoylation sites.

amino acids 11-15, 263-268

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 175-185

Leucine zipper pattern.

amino acids 77-98

GGCTGCGCCCAGGCGGGCCCAGCAGCTGCGAACCGCCGGCGCACCACCTGTTTCCGCGC TGTGCCGCGCTCTGGGCACAGCCTTGGAAAGTCAGGACCGCGACGGCAGCAGAGCAGAAACCT TACAGAAACATGAAGCCCTCAACCATCTGCTACTCAGTTATTCGGGGGCTGACGGCGGCTTCTA GAACATCCAGGTGTTCTGCAGATGCGAGAACTCATCCTGTAGTCACCAGATGGAGTCCCAAAC AGCCAAGCAGATGTAAGGCCTGTGCTGTGGCTCTGAGGCCCTGAATACAGAAGGGTCACTTTC TTAGTGGCCAAAGAGCAGTTGTTGACATTGATGTCTAATTATTGAACACGACCAGTCATTTTA CTGAGCTGCAGTGAGGAAACACTGACCATAGAAGATCAAGCCAAATGAGGGATTGCAAATTTC CTGATTCTTTTGAATTAGGATTCCAGATGGGGGCCTCATTTCTACAGCCCCCAACATTCCTAT AGCCGTTATCACTGCCATCACCACTGCCACCAGCATCTTCTTGCAGATTCCACCCCTGCTCCC CAGAGACTTCCTGCTTTGAAAGTGAGCAGAAAGGGAAGCTCTCAGAAAAATCTCTAGTGGTGGC ${\tt TGCCGTCGCTCCAGACAATCGGAATCCTGCCTTCACCACC} \underline{{\tt ATG}} {\tt GGCTGGCTTTTTCTAAAGGT}$ TTTGTTGGCGGGAGTGAGTTTCTCAGGATTTCTTTATCCTCTTGTGGATTTTTTGCATCAGTGG GAAAACAAGAGGACAGAAGCCAAACTTTGTGATTATTTTGGCCGATGACATGGGGTGGGGTGA CCTGGGAGCAAACTGGGCAGAACAAAGGACACTGCCAACCTTGATAAGATGGCTTCGGAGGG AATGAGGTTTGTGGATTTCCATGCAGCTGCCTCCACCTGCTCACCCTCCCGGGCTTCCTTGCT CACCGGCCGGCTTGGCCATCGCAATGGAGTCACACGCAACTTTGCAGTCACTTCTGTGGGAGG CCTTCCGCTCAACGAGACCACCTTGGCAGAGGTGCTGCAGCAGGCGGGTTACGTCACTGGGAT AATAGGCAAATGGCATCTTGGACACCACGGCTCTTATCACCCCAACTTCCGTGGTTTTGATTA CTACTTTGGAATCCCATATAGCCATGATATGGGCTGTACTGATACTCCAGGCTACAACCACCC TCCTTGTCCAGCGTGTCCACAGGGTGATGGACCATCAAGGAACCTTCAAAGAGACTGTTACAC TGACGTGGCCCTCCTTTATGAAAACCTCAACATTGTGGAGCAGCCGGTGAACTTGAGCAG CCTTGCCCAGAAGTATGCTGAGAAAGCAACCCAGTTCATCCAGCGTGCAAGCACCAGCGGGAG GCCCTTCCTGCTCTATGTGGCTCTGGCCCACATGCACGTGCCCTTACCTGTGACTCAGCTACC AGCAGCGCCACGGGGCAGAAGCCTGTATGGTGCAGGGCTCTGGGAGATGGACAGTCTGGTGGG CCAGATCAAGGACAAAGTTGACCACACAGTGAAGGAAAACACATTCCTCTGGTTTACAGGAGA CAATGGCCCGTGGGCTCAGAAGTGTGAGCTAGCGGGCAGTGTGGGTCCCTTCACTGGATTTTG GCAAACTCGTCAAGGGGGAAGTCCAGCCAAGCAGACGACCTGGGAAGGAGGGCACCGGGTCCC ${f AGCACTGGCTTACTGGCCTGGCAGAGTTCCAGTTAATGTCACCAGCACTGCCTTGTTAAGCGT}$ GCTGGACATTTTCCAACTGTGGTAGCCCTGGCCCAGGCCAGCTTACCTCAAGGACGGCGCTT TGATGGTGTGGACGTCTCCGAGGTGCTCTTTGGCCGGTCACAGCCTGGGCACAGGGTGCTGTT CCACCCAACAGCGGGGCAGCTGGAGAGTTTGGAGCCCTGCAGACTGTCCGCCTGGAGCGTTA CAAGGCCTTCTACATTACCGGTGGAGCCAGGGCGTGTGATGGGAGCATGGTGCCTGAGCTGCA GCATAAGTTTCCTCTGATTTTCAACCTGGAAGACGATACCGCAGAAGCTGTGCCCCTAGAAAG AGGTGGTGCGGAGTACCAGGCTGTGCTGCCCGAGGTCAGAAAGGTTCTTGCAGACGTCCTCCA AGACATTGCCAACGACAACATCTCCAGCGCAGATTACACTCAGGACCCTTCAGTAACTCCCTG $\tt CTGTAATCCCTACCAAATTGCCTGCCGCTGTCAAGCCGCA{\color{red}{\textbf{TAA}}} CAGACCAATTTTTATTCCAC$ GAGGAGGAGTACCTGGAAATTAGGCAAGTTTGCTTCCAAATTTCATTTTTACCCTCTTTACAA ACACACGCTTTAGTTTAGTCTTGGAGTTTAGTTTTTGGAGTTAGCCTTGCATATCCCTTCTGTA TCCTGTCCCCCCTCCACGCCGACCCGAGAGCAGCTGAGCTGCGCTGGCTCTGGGCAGGGAGTG TGCCTTAATGGGAAGCACACGGGCTTTGGAGTCAGGCACAGGTGCCAGCTCCAGCTTTTGAAC AATGCCTGGCAACTTTAAAAAAAAAAAA

MGWLFLKVLLAGVSFSGFLYPLVDFCISGKTRGQKPNFVIILADDMGWGDLGANWAETKDTAN LDKMASEGMRFVDFHAAASTCSPSRASLLTGRLGLRNGVTRNFAVTSVGGLPLNETTLAEVLQ QAGYVTGIIGKWHLGHHGSYHPNFRGFDYYFGIPYSHDMGCTDTPGYNHPPCPACPQGDGPSR NLQRDCYTDVALPLYENLNIVEQPVNLSSLAQKYAEKATQFIQRASTSGRPFLLYVALAHMHV PLPVTQLPAAPRGRSLYGAGLWEMDSLVGQIKDKVDHTVKENTFLWFTGDNGPWAQKCELAGS VGPFTGFWQTRQGGSPAKQTTWEGGHRVPALAYWPGRVPVNVTSTALLSVLDIFPTVVALAQA SLPQGRRFDGVDVSEVLFGRSQPGHRVLFHPNSGAAGEFGALQTVRLERYKAFYITGGARACD GSMVPELQHKFPLIFNLEDDTAEAVPLERGGAEYQAVLPEVRKVLADVLQDIANDNISSADYT QDPSVTPCCNPYQIACRCQAA

Important features of the protein:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 353-373

N-glycosylation sites.

amino acids 117-120, 215-218, 356-359, 397-500

N-myristoylation sites.

amino acids 12-17, 33-38, 52-57, 97-102, 101-106, 113-118, 158-163, 328-333, 388-393, 418-423, 435-440, 436-441

Amidation site.

amino acids 382-385

Sulfatases signature 2.

amino acids 129-138

FIGURE 57

TGGACAAGACACCTCCAGGAGCCCAGCTCACAGCCACCGGTACCTTCTTCCAGGACAAGCTGG ${\tt GGGCCTCCATGGGCGCCTGAGGGCCCAGGGCCCTGGGCCACGAGT} {\color{red} {\bf ATG}} {\tt GTGAGACACC}$ AGCCCCTGCAGTACTACGAGCCACAGCTGTGCCTCTCCTGCCTCACGGGCATCTACGGCTGCC GTTGGAAGCGCTACCAGCGCTCCCATGATGATACCACACCGGGCACAGCGCCATTCCTGCATG TGGGGGCTGTGGCAGCAGTCACCATGCTCTCCTGGATCGTGGCAGGACAGTTCGCCCGTGCAG AGCGGACCTCCCAGGTGACCATTCTCTGTACCTTCTTCACCGTGGTGTTTTGCCCTCTACC TGGCCCCTCTCACCATCTCCCTGCATCATGGAGAAGAAGACCTCGGCCCCAAGCCTG CTCTCATTGGCCACCGCGGGGCCCCCATGCTGGCTCCAGAGCACACGCTCATGTCCTTCCGGA AGGCCCTCGAGCAGAAGCTGTACGGGCTCCAGGCTGACATTACCATCAGCCTGGACGGCGTGC CCTTCCTCATGCATGACACCACCCTGCGGCGCACCACCAACGTGGAGGAGGAGTTCCCGGAGC TGGCCCGCAGGCCTGCCTCCATGCTTAACTGGACCACCCTGCAGAGACTCAACGCTGGCCAGT GGTTCCTGAAGACTGACCCCTTCTGGACAGCCAGCTCCCTGTCACCCTCCGACCACAGAGAGG CCCAGAACCAGTCCATCTGCAGCCTGGCAGAGCTCCTGGAGCTGGCCAAGGGCAATGCCACAC TGCTGCTCAACCTGCGTGACCCGCCCCGGGAGCACCCCTACCGCAGCAGTTTTATCAACGTGA CTCTGGAGGCCGTGCTCCCGGCTTCCCCCAGCACCAGGTCATGTGGCTGCCTAGCAGGC AGAGGCCCCTGGTGCGGAAGGTGGCTCCCGGCTTCCAACAGACATCAGGCTCCAAGGAGGCAG ${\tt TCGCCAGCCTGCGGAGAGGCCACATCCAGCGGCTGAACCTGCGCTACACTCAGGTGTCCCGCC}$ AGGAGCTCAGGGACTACGCGTCCTGGAACCTGAGTGTGAACCTCTACACAGTCAACGCACCGT GGCTCTTCTCCCTGTGTGTGTGCGGGGGTCCCATCCGTCACCTCTGACAACTCCCACACCC TGTCCCAGGTGCCTTCCCCCCTCTGGATCATGCCCCCGGACGAGTACTGTCTCATGTGGGTCA $\tt CTGCCGACCTGGTCTCACCCTCATCGTGGGCATCTTCGTGCTCCAGAAGTGGCGCCTGG$ GTGGCATACGGAGCTACAACCCTGAGCAGATCATGCTGAGTGCTGCGGTGCGCCGGACCAGCC GGGACGTCAGCATCATGAAGGAGAAGCTTATTTTCTCAGAGATCAGCGATGGTGTAGAGGTCT CCGATGTGCTCTCCGTATGTTCAGACAACAGTTATGACACATATGCCAACAGCACCGCCACCC TGAAGACATGTCTGTCCCACCTGTACCTGACACAGAAGCTGGGGAGCCTAGGAGAGCTGGTGG AAGTGTGTCTGAACTCGGAGTGCTCTGGGAGCGGGCTCCACAGCCTCCTTGTGGGCTCCAGCC CCTTGTCAGCCGCAGCCTCTCTTGAGGGGGGACTCCCTGTCTCCTGAGGCCCAGCTGGGCCAGG ACTCCATCCTTTCAGATGCCCCTGCAGGCCTGGGGCTCCTTCTGGGAAGTATGGGGCCTAGGG CTTGGTCCCCCTCTTCTGAGGCCCTCTCCTGTATCCCGACCTGGAAGCTTTGATGGGTCATGG GCCATGCCATACCCCCTGTGGCAATGGAGTGTGTGGATGCTCACCTGTGCCATCTGTCCTCCT GTCTGTGCCAGGAGGCACCTGAGTTCTCTGCTGTTATCCTGCCCCAAGGGCCTGGGCCGAGCC TCTACCTGAAGCAACTCTGCTCTTCCTGTCAGTCTCAAAGCACAAGGAGGTTCAGCCCAGGAG GAAGCCAGCTGCAATGTGGAGACACGTCCTCCTCCCCAACCCACCTCATGCCACCGCCAACCC CCTGCCCCAGGAGCGGCCTGAGCCACGTCCCCTAGGAGCAGCTGGAGATGGCCAAAAGAGTG AGCTCAGGACTACTGGATCCCATGCCCAGGTGTCCAGCAGACCTCAAGGCAGAAGGGTCACCT AACCCAGGAGTCCACAGACTGATGTGACCTCAGGTTCCCACATCAGTGGCCACAGGGCAGGGC AGGGAACCTAGGGCCCTTGGCCAATGTGATTAAAGCTGCCATCTTGAAA

FIGURE 58

MVRHQPLQYYEPQLCLSCLTGIYGCRWKRYQRSHDDTTPGTAPFLHVGAVAAVTMLSWIVAGQ FARAERTSSQVTILCTFFTVVFALYLAPLTISSPCIMEKKDLGPKPALIGHRGAPMLAPEHTL MSFRKALEQKLYGLQADITISLDGVPFLMHDTTLRRTTNVEEEFPELARRPASMLNWTTLQRL NAGQWFLKTDPFWTASSLSPSDHREAQNQSICSLAELLELAKGNATLLLNLRDPPREHPYRSS FINVTLEAVLHSGFPQHQVMWLPSRQRPLVRKVAPGFQQTSGSKEAVASLRRGHIQRLNLRYT QVSRQELRDYASWNLSVNLYTVNAPWLFSLLWCAGVPSVTSDNSHTLSQVPSPLWIMPPDEYC LMWVTADLVSFTLIVGIFVLQKWRLGGIRSYNPEQIMLSAAVRRTSRDVSIMKEKLIFSEISD GVEVSDVLSVCSDNSYDTYANSTATPVGPRGGGSHTKTLIERSGR

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 47-61, 77-93, 335-350, 380-399

N-glycosylation sites.

amino acids 182-186, 217-221, 233-237, 255-259, 329-333, 462-466

Tyrosine kinase phosphorylation site.

amino acids 130-139

N-myristoylation sites.

amino acids 21-27, 48-54, 294-300, 404-410, 442-448, 473-479

CCTGAGCAAACACAGCCCGAGTGTTCCCAAGGCCAAAATGCTGAGAACGTCCACTCCTAA TCTGTGTGGTGGTCTGCATTGCCGGGCCCCCTGGCTCTCTTCTGGCATTCTCTGCCTCTGCCT CATATTCTTGTTAGGCCAGGTGGGCTTGCTGCAGGGACACCCCCAGTGCCTGGATTACGGGCC CCCTTTCCAGCCCCCTCTGCACCTTGAGTTTTGCTCTGACTATGAGTCCTTCGGCTGCTGTGA TCAGCACAAGGACCGCCGCATCGCTGCCCGGTACTGGGACATCATGGAATATTTTGATCTGAA GAGACATGAGCTGTGTGGAGATTACATTAAAGACATCCTTTGCCAGGAGTGCTCGCCCTACGC AGCCCACCTCTACGACGCCGAAAACACCCAGACGCCTCTCCGGAATCTCCCGGGCCTCTGCTC TGATTACTGCTCTGCCTTCCATTCTAACTGTCACTCAGCCATTTCCCTGCTGACCAATGACCG CGGCCTCCAGGAGTCTCATGGAAGGGACGGTACCCGCTTCTGCCACCTCCTGGACCTTCCTGA CAAGGACTATTGCTTCCCTAATGTCCTGAGGAACGACTATCTCAACCGCCACCTGGGCATGGT GGCCCAAGATCCTCAGGGCTGCCTGCAGCTCTGCCTGAGCGAGGTGGCCAACGGGCTGAGGAA CCCCGTCTCCATGGTCCATGCTGGGGACGCCACCCATCGCTTCTTTGTTGCCGAGCAGGTAGG AGTGGTGTGGGTCTACCTCCCTGATGGGAGTCGCCTGGAGCAACCCTTCCTGGACCTCAAGAA CATCGTGTTGACCACCCCATGGATCGGGGATGAGAGAGGCTTCTTGGGGTTTGCCTTTTCACCC AAAGATCCGAATTAGTGAGATGAAGGTTTCTCGGGCTGATCCTAACAAGCTGACCTGAAATC AGAGAGGGTCATCTTGGAGATTGAAGAACCAGCCTCAAACCATAATGGCGGACAACTTCTTTT TGGCCTGGATGGCTATATGTACATATTCACTGGGGACGGGGGACAGGCTGGAGATCCCTTTGG CCTGTTTGGAAATGCTCAGAACAAAGTTCCCTGCTGGGAAAAGTTTTAAGGATCGATGTGAA CAGGGCAGGCTCACATGGCAAGCGGTACCGAGTCCCCTCGGACAATCCATTTGTTTCTGAGCC AGGGGCCCACCCGCCATCTATGCCTATGGGATCAGGAACATGTGGCGTTGTGCTGTGGACCG AGGGGACCCCATCACGCGCCAGGGCCGAGGCCGGATATTCTGTGGGGACGTGGGCCAGAACAG TGCATGTTATGACAAAAACTTTGTCACAATGCCTCTTTGGATGATGTTCTGCCAATCTATGC TTATGGCCATGCAGTGGGGAAGTCACTGGAGGTTATGTCTATCGTGGTTGTGAATCCCC AAATCTCAATGGCCTGTATATCTTTGGAGACTTCATGAGTGGTCGACTTATGGCTTTGCAGGA AGATAGAAAAACAAGAAATGGAAGAAGCAGGATCTTTGCCTGGGCAGCACCACGTCCTGTGC CTTCCCAGGGCTGATCAGCACCCATAGCAAGTTCATCATCTCCTTTGCTGAAGATGAAGCAGG GGAGCTGTATTTCCTGGCGACCTCTTACCCAAGTGCCTATGCACCACGTGGATCTATTTACAA GTTTGTTGACCCCTCAAGGCGAGCACCCCCAGGCAAGTGCAAATACAAGCCAGTGCCCGTGAG AACCAAGAGTAAGCGGATCCCGTTCAGACCACTCGCCAAGACAGTCTTGGACTTGCTAAAGGA ACAATCAGAGAAAGCTGCTAGAAAATCTTCCAGTGCAACCTTAGCTTCTGGCCCAGCCCAGGG TTTGTCTGAGAAAGGCTCCTCCAAGAAGCTGGCTTCTCCTACAAGCAGCAAGAATACATTGCG GAGCCTGAAAAGCCACAGTGGCAGGATGAGGCCATCAGCAGAGCAGAAGCGAGCTGGCAGAAG $\verb|TCTCCCT| \textbf{TGA} \\ \texttt{CCTATTGGTCAAGGTGGCCGACAGGGTGACGTGAGAGAGGAGAGCCACCTCAT}|$ CAAATGAAAGTCACTGCTGAATAAAGACCTTAGAAGTCTGGGAAGCCAGGGTAGAGGTGGGGC GTATGCAGTGCTTCTGTGGGAGACCATATCCCAGATTGCTGGTGCACCTGGGTTATGGTAAGC ${ t ACTAGTCCATGAGCCTGCTTGGAATCACACTGGATGTCTCCGTTTTGTCTTGTAAATGCCTAC}$ AACCTGAGGTAATAAATCAACATTTGCTCA

MLRTSTPNLCGGLHCRAPWLSSGILCLCLIFLLGQVGLLQGHPQCLDYGPPFQPPLHLEFCSD YESFGCCDQHKDRRIAARYWDIMEYFDLKRHELCGDYIKDILCQECSPYAAHLYDAENTQTPL RNLPGLCSDYCSAFHSNCHSAISLLTNDRGLQESHGRDGTRFCHLLDLPDKDYCFPNVLRNDY LNRHLGMVAQDPQGCLQLCLSEVANGLRNPVSMVHAGDGTHRFFVAEQVGVVWVYLPDGSRLE QPFLDLKNIVLTTPWIGDERGFLGLAFHPKFRHNRKFYIYYSCLDKKKVEKIRISEMKVSRAD PNKADLKSERVILEIEEPASNHNGGQLLFGLDGYMYIFTGDGGQAGDPFGLFGNAQNKSSLLG KVLRIDVNRAGSHGKRYRVPSDNPFVSEPGAHPAIYAYGIRNMWRCAVDRGDPITRQGRGRIF CGDVGQNRFEEVDLILKGGNYGWRAKEGFACYDKKLCHNASLDDVLPIYAYGHAVGKSVTGGY VYRGCESPNLNGLYIFGDFMSGRLMALQEDRKNKKWKKQDLCLGSTTSCAFPGLISTHSKFII SFAEDEAGELYFLATSYPSAYAPRGSIYKFVDPSRRAPPGKCKYKPVPVRTKSKRIPFRPLAK TVLDLLKEQSEKAARKSSSATLASGPAQGLSEKGSSKKLASPTSSKNTLRGPGTKKKARVGPH VRQGKRRKSLKSHSGRMRPSAEQKRAGRSLP

Important features of the protein:

Signal peptide:

amino acids 1-41

Transmembrane domain:

amino acids 17-36

N-glycosylation sites.

amino acids 372-376, 480-484

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 645-649, 699-703

Tyrosine kinase phosphorylation site.

amino acids 81-89

N-myristoylation sites.

amino acids 11-17, 37-43, 156-162, 165-171, 357-363, 365-371, 368-374, 408-414, 459-465, 548-554, 557-563

Amidation sites.

amino acids 391-395, 696-700

Cell attachment sequence.

amino acids 428-431

Leucine zipper pattern.

amino acids 25-47

FIGURE 61

 $\tt CTCCATTAAACCACCACCAGCTCCCCAAGCCACCCCTTCAGCC{\color{red} ATG} AAGTTCCTGCTCCTGGT$ GAGTAACACCCCAGGATACTGCAGGACATGTTGCCACTGGGGGGAGACAGCATTGTTCATGTG CAACGCTTCCAGAAAATGCTGCATCAGCTACTCCTTCCTGCCGAAGCCTGACCTACCACAGCT CATCGGTAACCACTGGCAATCAAGGAGAAGAAGAACACACAAAGGAAAGAAGAAGAACAAAAC GACCGTAACATCATAATAACCACTGCTATCGCCTCCACCAACTCAGAGAAATATCATTTCCAC AGTTCCAATTCCTCCTACATTGCTGAGTACTAGCCAAGGCTCCTCTTTATGGGGCAGATATCT TTTGTATCTTACGAGAACAATCATCATGCAGATTCGTCCACAGGGGATCTGTCAGTTTG GGTCCTCCAAATGAAAAATGTCAAGACAGAATTGGACATGCAAAAGATTGACTGGGAGAACAC CTGGCCTGATACGTGTCAAAGGAGAGAGGGGGATAGAGGGGGGATTGAATAGAAGGAGACTAAGAC TGCAGCTCTAAGAAAGTCTCAGCCAAACAGATGGGGAGGCCCAAAGCAAGGCTTGCCCCTCAG AGGAGCTCACGCAGGGCAGGAATAGCCAGGTTCTCATATCCCAGGGGTTCAGACTTGGCTGAG AACAGCCCCTGGAGAACATGGGGTGACTGCTACCATAGGTCTGGAAGTATGAGGCTGTCCACC AACTATCCCCTTGAAGCAAGTTCTCTTGAAAGGAAATCTAAACAGTGCACCCCCATGGCTGCC ACGGAGTATAAGGAGGAGAAAGGAGCTGAAAGTCTAGGTTTGGCCAGCTAGGTAGACTGA TAGTACACCCCAAAAGCAAGGATGGCATGATGCTGGTGACTCAAACGTGCCTACTCATGGTGT CAAATTGGCATAATCCTCTTGGGAAGCTGTGTGGAAATAAGCACAGAGAAGCAGAACTCTAAT TGCTTAATCCACTAAACATTACTTCTGGGAATTGGCTCATCATAAATTATCCAAGAGAAAGCA CAAAGTTATGGGCACAAAGGTTTTCCATATAATATTATTTAAAATGCTGAGAAAATGAAAAAA TAATGGAACATAATAACATTATTCAAAATTGCATTTATGCTATAGTTGTCAAAATTGTCTCCT CTTCTATCTGAGAAGAACAAACCAAAACACTCAGGCCTAAATAATTAAAAACGGTCCTAAAAA CTAGCAAACCAGATAAGAAAAGATGTTAATGCCCATTCCCTAACTTATGTCTTAGACCAAAAT TAATTCTAGATGGTTTTAAAATGACAGTGTAAAAGTAAAGTATTAAAAGATTGTGTGGTCAAA TATTCAATTTAAGAGCAAGGAAATTCTTATAAATATAACAATAGAGGCAGAACTCATGTAAGA ATTCATCCATCTTATTGGGTATTGCAGGAGTTCATTCCTTTTTGTTTATAAATACTCTTCCGT CATATGAATAGTATTCATTTGTATACTGGTTTGTTGATGGACATTTGGGTTGTTCCCAGTTTA TGGCTATTACAAATAAAGCTTCTATGAACATTTATGTACA

MKFLLLVLAALGFLTQVIPASAGGSKCVSNTPGYCRTCCHWGETALFMCNASRKCCISYSFLP KPDLPQLIGNHWQSRRRNTQRKDKKQQTTVTS

Important features of the protein:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 1-22

N-glycosylation site.

amino acids 50-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 79-82

N-myristoylation site.

amino acids 23-28

GCGGAGCGCCTGGGAGAGAGGAGCCGACCTGCCGAGATGGAGCGACCGGCACCTGGGC GCTGCTGCTGGCGCTGCTGCTGCTGCTGACGCTGTCCGGGGACCAGGGCCCG AGGCCACCTGCCCCCGGGCCCACGCCGCTACCACTGCTGGGAAACCTCCTGCAGCTACGGCC CGGGGCGCTGTATTCAGGGCTCATGCGGCTGAGTAAGAAGTACGGACCGGTGTTCACCATCTA CCTGGGACCCTGGCGGCCTGTGGTGGTCCTGGTTGGGCAGGCCTGTGCGGAGGCCCTGGG AGGTCAGGCTGAGGAGTTCAGCGGCCGGGGAACCGTAGCGATGCTGGAAGGGACTTTTGATGG CCATGGGGTTTTCTTCTCCAACGGGGAGCGGTGGAGGCAGCTGAGGAAGTTTACCATGCTTGC TCTGCGGGACCTGGGCATGGGGAAGCGAGAGGCGAGGCTGATCCAGGCGGAGGCCCGGTG GGCCACCTCCAACGTAGTCTGCTCCCTCTTTTGGCCTCCGCTTCTCCTATGAGGATAAGGA GTTCCAGGCCGTGGTCCGGGCAGCTGGTGGTACCCTGCTGGGAGTCAGCTCCCAGGGGGGTCA GACCTACGAGATGTTCTCCTGGTTCCTGCGGCCCCTGCCAGGCCCCCACAAGCAGCTCCTCCA CCACGTCAGCACCTTGGCTGCCTTCACAGTCCGGCAGGTGCAGCAGCACCAGGGGAACCTGGA TGCTTCGGGCCCCGCACGTGACCTTGTCGATGCCTTCCTGCTGAAGATGGCACAGGAGGAACA TGGGACGATGACGGTCAGCACCACGGTCGGCTATACCCTCCTGCTCCTGATGAAATACCCTCA TGTCCAAAAGTGGGTACGTGAGGAGCTGAATCGGGAGCTGGGGGGCTGGCCAGGCACCAAGCCT AGGGGACCGTACCCGCCTCCCTTACACCGACGCGGTTCTGCATGAGGCGCAGCGGCTGCTGGC GCTGGTGCCCATGGGAATACCCCGCACCCTCATGCGGACCACCCGCTTCCGAGGGTACACCCT GCCCCAGGGCACGGAGGTCTTCCCCCTCCTTGGCTCCATCCTGCATGACCCCAACATCTTCAA GCACCCAGAAGAGTTCAACCCAGACCGTTTCCTGGATGCAGATGGACGGTTCAGGAAGCATGA GGCGTTCCTGCCTTAGGGAAGCGTGTCTGCCTTGGAGAGGGCCTGGCAAAAGCGGA GCTCTTCCTCTTCACCACCATCCTACAAGCCTTCTCCCTGGAGAGCCCGTGCCCGCCGGA CACCCTGAGCCTCAAGCCCACCGTCAGTGGCCTTTTCAACATTCCCCCAGCCTTCCAGCTGCA ${\tt AGTCCGTCCCACTGACCTTCACTCCACCACGCAGACCAGA}$ GTGGGTGCCCAGGGTGCCTCCAGCCTCAACAGTGGGCATGGACAGGGTTAATGTCTCCAG AGTGTACACTGCAGGCAGCCACATTTACACGCCTGCAGTTGTTTTCCGGAGTCTGTCCCACGG CCCACACGCTCACTTGACTCATGCTGCTAAGATGCACAACCGCACACCCATACACAACTACAA GGGCCACAAAGCAACTGCTGGGTTAGCTTTCCACAGACATAAATATAGTCCATCTGCAATCAC AAGCACATAGCCAGGTAACCCACCAACTCCCCTGGATCTGCAGCCCACACGTGGGAGTCTGGC TGTCACCTTCACAAGCCACAGAAACGGCCACACATGTTCACAGCTCACACGCCCTCTCCATTC ATCGAACTTCTCAGTGTCCCTGTCCCTGGTGCCTGGCACAGGGAACAGCATGCCCCCTCCGGG GTCATGCCACCCAGAGACTGTCGCTGTCTATGGCCCCAACTCATGCTCCCTCTCTTGGCTACA CCACTCTCCCAGCCTGTGACCACCGATGTCCACACACCCCCAACCACTTGTCCACACAGCTAC CCACGTACAACATCGTCCTGGCTCCCCAGAGTATCTTCCCACTGAGACACGCCGCCCCCACAG AGGCACAGTCCCCAGCCACCTCTGCAACTGCAGCCCTCAGTCACCCCTTTTTTAAGCACCCTGA TTCTACCAAATGCAAACACATCTGGGTCTGCGATTATGCACAGAGACTTTGGACATACGAGGA CCCTCAGACCGGAGGAACACCTGCCCAACCCCCAACACGTGCTTATGTAACCACGTGGAAAGCG GAGTCCCCACTAGACCCAGTGGAAGGGGTTAGAGACCAAGTAGGGGCCAGTTTCCAATTCACC CTGTCAGGGAGTGAGCCGGATCTGACGTTCCTTGTGACTTAAGGGTCCGGCTTGGGAATTAAA

MEATGTWALLLALALLLLTLALSGTRARGHLPPGPTPLPLLGNLLQLRPGALYSGLMRLSKK YGPVFTIYLGPWRPVVVLVGQEAVREALGGQAEEFSGRGTVAMLEGTFDGHGVFFSNGERWRQ LRKFTMLALRDLGMGKREGEELIQAEARCLVETFQGTEGRPFDPSLLLAQATSNVVCSLLFGL RFSYEDKEFQAVVRAAGGTLLGVSSQGGQTYEMFSWFLRPLPGPHKQLLHHVSTLAAFTVRQV QQHQGNLDASGPARDLVDAFLLKMAQEEQNPGTEFTNKNMLMTVIYLLFAGTMTVSTTVGYTL LLLMKYPHVQKWVREELNRELGAGQAPSLGDRTRLPYTDAVLHEAQRLLALVPMGIPRTLMRT TRFRGYTLPQGTEVFPLLGSILHDPNIFKHPEEFNPDRFLDADGRFRKHEAFLPFSLGKRVCL GEGLAKAELFLFFTTILQAFSLESPCPPDTLSLKPTVSGLFNIPPAFQLQVRPTDLHSTTQTR

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 294-313

Glycosaminoglycan attachment site.

amino acids 99-103

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 128-132

N-myristoylation sites.

amino acids 51-57, 109-115, 115-121, 188-194, 207-213, 257-263, 284-290, 339-345, 370-376, 444-450

Amidation sites.

amino acids 140-144, 435-439

Leucine zipper pattern.

amino acids 32-54, 39-61

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 433-443

FIGURE 65

 $\tt CGGACGCGTGGGGCCGT{\color{red} {\bf ATG}} CGCGGCTCTGTGGAGTGCACCTGGGGTTGGGGGCACTGTGCCC$ CCAGCCCCTGCTCTTTGGACTCTACTTCTGTTTGCAGCCCCATTTGGCCTGCTGGGGGAGA ATATACGGGCAGTGGGCACCAATTCCACACTGCACTATGTGTGGAGCAGCCTGGGGCCTCTGG CAGTGGTAATGGTGGCCACCACACCCCCCACAGCACCCTGAGCATCAACTGGAGCCTCCTGC TATCCCCTGAGCCCGATGGGGGCCTGATGGTGCTCCCTAAGGACAGCATTCAGTTTTCTTCTG CCCTTGTTTTTACCAGGCTGCTTGAGTTTGACAGCACCAACGTGTCCGATACGGCAGCAAAGC CTTTGGGAAGACCATATCCTCCATACTCCTTGGCCGATTTCTCTTGGAACAACATCACTGATT CATTGGATCCTGCCACCTGAGTGCCACATTTCAAGGCCACCCCATGAACGACCCTACCAGGA $\tt CTTTTGCCAATGGCAGCCTGGCCTTCAGGGTCCAGGCCTTTTCCAGGTCCAGCCGACCAGCCC$ AACCCCCTCGCCTCCTGCACACAGCAGACCCTGTCAGCTAGAGGTGGCCCTGATTGGAGCCT $\tt CTCCCGGGGAAACCGTTCCCTGTTTGGGCTGGAGGTAGCCACATTGGGCCAGGGCCCTGACT$ GCCCCTCAATGCAGGAGCACCCCCATCGACGATGAATATGCACCGGCCGTCTTCCAGTTGG ACCAGCTACTGTGGGGCTCCCCATCAGGCTTTGCACAGTGGCGACCAGTGGCTTACTCCC AGAAGCCGGGGGCCGAGAATCAGCCCTGCCCTGCCAAGCTTCCCCTCTTCATCCTGCCTTAG CATACTCTCTCCCCAGTCACCCATTGTCCGAGCCTTCTTTGGGTCCCAGAATAACTTCTGTG CCTTCAATCTGACGTTCGGGGCCTTCCACAGGCCCTGGCTATTGGGACCAACACTACCTCAGCT GGTCGATGCTCCTGGGTGTGGGCCTTCCCTCCAGTGGACGGCTTGTCCCCACTAGTCCTGGGCA ${\tt TGCACCACAAGAAGTACTCAGAGTACCAGTCCATAAAT} \underline{{\tt TAA}}{\tt GGCCCGCTCTCTGGAGGGAAGG}$ ACATTACTGAACCTGTCTTGCTGTGCCTCGAAACTCTGGAGGTTGGAGCATCAAGTTCCAGCC GGCCCCTTCACTCCCCCATCTTGCTTTTCTGTGGAACCTCAGAGGCCAGCCTCGACTTCCTGG ${\tt AGACCCCCAGGTGGGGCTTCCTTCATACTTTGTTGGGGGACTTTGGAGGCGGGCAGGGGACAG}$ GGCTATTGATAAGGTCCCCTTGGTGTTGCCTTCTTGCATCTCCACACATTTCCCTTGGATGGG ACTTGCAGGCCTAAATGAGAGGCATTCTGACTGGTTGGCTGCCCTGGAAGGCAAGAAATAGA TTTATTTTTTTCACAGGGAAAAAAAAAAAA

MRGSVECTWGWGHCAPSPLLLWTLLLFAAPFGLLGEKTRQVSLEVIPNWLGPLQNLLHIRAVG
TNSTLHYVWSSLGPLAVVMVATNTPHSTLSINWSLLLSPEPDGGLMVLPKDSIQFSSALVFTR
LLEFDSTNVSDTAAKPLGRPYPPYSLADFSWNNITDSLDPATLSATFQGHPMNDPTRTFANGS
LAFRVQAFSRSSRPAQPPRLLHTADTCQLEVALIGASPRGNRSLFGLEVATLGQGPDCPSMQE
QHSIDDEYAPAVFQLDQLLWGSLPSGFAQWRPVAYSQKPGGRESALPCQASPLHPALAYSLPQ
SPIVRAFFGSQNNFCAFNLTFGASTGPGYWDQHYLSWSMLLGVGFPPVDGLSPLVLGIMAVAL
GAPGLMLLGGGLVLLLHHKKYSEYQSIN

N-glycosylation sites:

amino acids 65-69, 95-99, 134-138, 159-163, 187-191, 230-234, 333-337

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 397-401

Casein kinase II phosphorylation sites:

amino acids 151-155, 249-253, 255-259

N-myristoylation sites:

amino acids 3-9, 63-69, 235-241, 273-279, 292-298, 324-330

Leucine zipper pattern.

amino acids 371-393

 ${ t CTGGAGAAGGGGTTTCAGCCCCAGGACATTTACTGAGAGTCGGCGAATATTGGGAGCCGCG} { t ATG} { t CCCCCTTCG}$ GGCCCTGTGGTTGGTCTGGGCGCTTCTAGGAGTGGCCGGATCATGCCCGGAGCCGTGCGCCTGCGTGGACAAGTA GTGGCTGGCGCACAATGAGGTGCGCACCGTGGAGCCAGGCGCACTGGCCGTGCTGAGTCAGCTCAAGAACCTCGA TCTGAGCCACAACTTCATATCCAGCTTTCCGTGGAGCGACCTGCGCAACCTGAGCGCGCTGCAGCTGCTCAAAAT GAACCACAACCGCCTGGGCTCTCTGCCCCGGGACGCACTCGGTGCGCTACCCGACCTGCGTTCCCTGCGCATCAA GCCCGACTCCATTGCTTGTGCCTCGCCTCCCGCGCTGCAGGGGGTGCCGGTGTACCGCCTGCCCTGCCCTG TGCACCGCCCAGCGTGCATCTGAGTGCCGAGCCACCGCTTGAAGCACCCGGCACCCCACTGCGCGCAGGACTGGC TGGGGATTTGCTGACGCAGACCCAAGCCCAAACGCCGACTCCAGCACCCGCTTGGCCGGCGCCCCCAGCCACACC $\verb|CCGTGCACACATGAGCTGGGCGCCCAACTCTACGTCAATACGCGTGGCGGTGGCAGCAACCGGGCCCCCAAAACA| \\$ GACCGAGACCGGAGCCGGAGGACACAAGTGAGGGAGAGGAGGCCGAAGACCAGATCCTCGCGGACCCGGCGGA GGAGCAGCGCTGTGGCAACGGGGACCCCTCTCGGTACGTTTCTAACCACGCGTTCAACCAGAGCGCAGAGCTCAA ${\tt GCCGCACGTCTTCGAGCTGGGCGTCATCGCGCTGGATGTGGCGGAGCGCGAGGCGCGGGTGCAGCTCCGCT}$ GGCTGCGCGCGGGGGCCCTGGGCCGGGGGGCTGGCGGAGCCCGGGGCGGCGACCCCTGCGCCTACT ${\tt CCGCGGCCTGCGGGCTACCAACTACTCCGTGTGCCTGGCGCGGGCGAAGCCTGCCACGTGCAAGTGGT}$ GTTTTCCACCAAGAAGGAGCTCCCATCGCTGCTGGTCATAGTGGCAGTGAGCGTATTCCTCCTGGTGCTGGCCAC AGTGCCCCTTCTGGGCCCCCTGCTGCCATCTGCTGGCTAAACACCCGGGCAAGCCCTACCGTCTGATCCTGCG GCCTCAGGCCCCTGACCCTATGGAGAAGCGCATCGCCGCAGACTTCGACCCGCGTGCTTCGTACCTCGAGTCCGA GAAAAGCTACCCGGCAGGCGGCGAGGCGGCGAGGAGGAGCCAGAGGACGTGCAGGGGGAGGGCCTTGATGAAGA GTCCAAGGCCAACCAAGAGGGGGTTCGAGGCGGGCTCTGAGTACAGCGATCGGCTGCCCCTGGGCGCGAGGCGGT $\texttt{CAACATCGCCCAGGAGATTAATGGCAACTACAGGCAGACGGCAGGC} \underline{\textbf{TGA}} \texttt{ACCTCCGCCCGTCCGGCCCCATT}$ ${\tt ACCTACTCCCCCTTACTACTCCCCAACCTTGACTACCAGGGACTTCTATTAGGGAGTGGGCCGATTTCACCA}$ GTCCCTGCTACCCACGGCTGCCATTCTCCCTGCGGGCTGAATCCCCTTCCCCGCCAAGCACAGTGTTTATCTTAC CCCATGCAAGACTCCACCCGCAGACGGTGGGCGATATCTATGTCCCTCCATTCCCGTCGCGATTATCTGCGAAAT CCACCCGCAGCCCGCCCCCCCGTGGGCTCTGGAGCCAGAGGAAACGAGCGAAGACTTTGGAAACCTCGCGGTAA CGCGGTGGTTTCGGGGGCCAGCCAAGGCCAGTGGAGTGCTGTGGGGTCCCACCTCGACCCCTCCTCCCTTTC CAGGCTGGAGTGCAGTGCGCATCTCGGCTCACTGCATCTTCCGCCTCCCGGGTTCAAGCGATTCTCCTGCCTC AGCCTGCCTAGTAGCTGGGACTACAGGCGCGCGCCACCACGACCAGCTAATTTCTTCTATTTTTAGTAGAGACGG CTGGGATTACAGGCGTGAGGCACCGCGCCCGGCCCCTCCTTCCATTCAATCCCTACTCCCAGAAGCCGGGATTCG ${ t TGGCAACCCCTAGTTTTAGTTCCAAAGCCTCCTGCCGGCAGGGAACCAAATCCTTCTGTCCTCCCACCCCACC}$ ${\tt CCACTTCTGGCCAGTTGGAGTCCAGCCCGGTGCCTGGGGGCGCCTTTCAGCTCCGCGCTCAGATTTTCCTGTTTTC}$ GTTGTTTTCAAAGACAGCGACATTTCGGGTCTGGTGCTAACACCCCCTTCCCAGCCTCTGGGAAAATCGAGTGTG ${\tt CCTTGGCGGCTGAGCCTGTGGACTTGGTCGCGGGCCAATTTCGTTGTCCGTGTTGTGGGCTTTCCGGAGGTCTGT}$ GCGCCCAACAGCGCCGCTCCCGCGGCTCCACCCGACCCAGACCCTAGCTGGAAAGCGCCGGAGGCGGAGGAAGCT GACTGTGGCCTCCCGGGCCGCGCTCTCTGGAGGGCTCGCGCCCTAGTTCGCACAAAGCCTGCTCGTGACTGTGC $\tt CCGCCCTGCTTCGGCGGGAATCGTGTTTGCCCGGCGTGTAGTCCCTGACAAGCGTGCCCTGTAGGAGAAAGTC$ GGAGTTTCAGTCCTCGGGATCAGCCCTCTCCGCGAAGCGCACCACAAGCGCGGGCCTGGGACGGAGTAGCCCCCC GGAGCCCGTGCCCTTTTCTAAACGCGTCTGTATGCAGTCAATAAAACAATCGATTTGAAA

MFPLRALWLVWALLGVAGSCPEPCACVDKYAHQFADCAYKELREVPEGLPANVTTLSLSANKI
TVLRRGAFADVTQVTSLWLAHNEVRTVEPGALAVLSQLKNLDLSHNFISSFPWSDLRNLSALQ
LLKMNHNRLGSLPRDALGALPDLRSLRINNNRLRTLAPGTFDALSALSHLQLYHNPFHCGCGL
VWLQAWAASTRVSLPEPDSIACASPPALQGVPVYRLPALPCAPPSVHLSAEPPLEAPGTPLRA
GLAFVLHCIADGHPTPRLQWQLQIPGGTVVLEPPVLSGEDDGVGAEEGEGEGEGDGDLLTQTQAQ
TPTPAPAWPAPPATPRFLALANGSLLVPLLSAKEAGVYTCRAHNELGANSTSIRVAVAATGPP
KHAPGAGGEPDGQAPTSERKSTAKGRGNSVLPSKPEGKIKGQGLAKVSILGETETEPEEDTSE
GEEAEDQILADPAEEQRCGNGDPSRYVSNHAFNQSAELKPHVFELGVIALDVAEREARVQLTP
LAARWGPGPGGAGGAPRPGRRPLRLLYLCPAGGGAAVQWSRVEEGVNAYWFRGLRPGTNYSVC
LALAGEACHVQVVFSTKKELPSLLVIVAVSVFLLVLATVPLLGAACCHLLAKHPGKPYRLILR
PQAPDPMEKRIAADFDPRASYLESEKSYPAGGEAGGEEPEDVQGEGLDEDAEQGDPSGDLQRE
ESLAACSLVESOSKANOEEFEAGSEYSDRLPLGAEAVNIAOEINGNYROTAG

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 587-610

N-glycosylation sites.

amino acids 52-55, 121-124, 337-340, 364-367, 474-477, 563-566 cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 397-400

Casein kinase II phosphorylation sites.

amino acids 19-23, 202-205, 289-292, 246-249, 411-414, 431-434, 433-436, 440-443, 544-547, 583-586, 650-653, 700-703

N-myristoylation sites.

amino acids 15-20, 48-53, 165-170, 296-301, 351-356, 362-367, 390-395, 419-424, 514-519, 536-541, 557-562, 561-566, 610-615, 661-666, 716-721

Amidation site.

amino acids 522-525

Prokaryotic membrane lipoprotein lipid attachment sites.

amino acids 10-20, 603-613

GGCGGCGGAGCGAAGGGGCGCAGGGATCCTCCAGGCTGCCGGCTGGGAAGGCGTGGG CCATTGCTGAACGGAGAGGTAGCCATGATGCCCCACTTGGTGAATGGAGATGCAGCTCAGCAT GTTATTCTCGTTCAAGTTAATCCAGGTGAGACTTTCACAATAAGAGCAGAGGATGGAACACTT CAGTGCATTCAAGGACCTGCTGAAGTTCCCATGATGTCACCCAATGGATCCATTCCTCCCATT CATGTGCCTCCAGGTTATATCTCACAGGTGATTGAAGATAGTACTGGAGTCCGCCGGGTGGTG GTCACACCCCAGTCTCCTGAGTGTTATCCCCCAAGCTACCCCTCAGCCATGTCTCCAACCCAT CATCTCCCTCCCTATCTGACTCACCATCCACATTTTATTCATAACTCACACACGGCTTACTAC CCACCTGTTACCGGACCTGGAGATATGCCGCCTCAGTTTTTTCCCCAGCATCATCTTCCCCAC ACAATATATGGTGAGCAAGAAATTATACCATTTTATGGAATGTCAAGCTACATCACCCGAGAA CTCAACAGCCCTCCTTCTTCTATCTACAAAAGCAGCTGCACAACAGTATACAATGGCTATGGG AAGGGCCATAGTGGTGGAAGTGGCGGAGGGGGCAGCGGTAGTGGTCCCGGAATTAAGAAAACA GAGCGACGAGCAAGAGCCCCAAAGTCGAATGATTCAGACTTGCAAGAATATGAGTTGGAA GTAAAGAGGGTGCAAGACATTCTTTCGGGAATAGAGAAACCACAGGTTTCTAATATTCAGGCA AGAGCAGTTGTGTTGTCCTGGGCTCCCCCTGTTGGACTTTCCTGTGGACCCCACAGTGGTCTT TCCTTCCCCTACAGTTACGAGGTGGCCTTATCAGACAAAGGACGAGATGGAAAATACAAGATA ATTTACAGTGGAGAAGAATTAGAATGTAACCTGAAAGATCTTAGACCAGCAACAGATTATCAT GTGAGGGTGTATGCCATGTACAATTCCGTAAAGGGATCCTGCTCCGAGCCTGTTAGCTTCACC ACCCACAGCTGTGCACCCGAGTGTCCTTTCCCCCCCTAAGCTGGCACATAGGAGCAAAAGTTCA CTAACCCTGCAGTGGAAGGCACCAATTGACAACGGTTCAAAAATCACCAACTACCTTTTAGAG $\tt TGGGATGAGGGAAAAAGAAATAGTGGTTTCAGACAGTGCTTCTTCGGGAGCCAGAAGCACTGC$ AAGTTGACAAAGCTTTGTCCGGCAATGGGGTACACATTCAGGCTGGCCGCTCGAAACGACATT GGCACCAGTGGTTATAGCCAAGAGGTGGTGTGCTACACATTAGGAAATATCCCTCAGATGCCT TCTGCACCAAGGCTGGTTCGAGCTGGCATCACATGGGTCACGTTGCAGTGGAGTAAGCCAGAA GGCTGTTCACCCGAGGAAGTGATCACCTACACCTTGGAAATTCAGGAGGATGAAAATGATAAC CTTTTCCACCCAAAATACACTGGAGAGGATTTAACCTGTACTGTGAAAAATCTCAAAAGAAGC CTTGTTTGTACGACGAGTCCTGACAGGCCTGGACCTCCTACCAGACCGCTTGTCAAAGGCCCA GTTACATCTCATGGCTTTAGTGTCAAATGGGATCCCCCTAAGGACAATGGTGGTTCAGAAATC CTCAAGTACTTGCTAGAGATTACTGATGGAAATTCTGAAGGTGAAGTTTTTTGGCAATTGTTTT ATTCAAATCCAA**TAG**CAAGCTCTGTTTTCTAATATAGTAAATGTCTTTATAGTAATAGTGAGT TTTTTCTATTCAAACACAGCACCAGAGATCAGAGTCTACTTGAAACTTACATTTGTGTTATT TTGGTTTGGTTTTTTTTTTTTTTTTGAGATACGATCTCTGTCACACAGGCTGGAGGGC AGTGGCACAGACATGGCCCATTGCAGTCTCAGACTCCTGGGCTTAAGTGACTCTTCTGCCACA GAAGATGAGGAAGAATACATTTTTCATAGTGATGGGGTCTCACTATGTTATCTAGGCTGGTCT CAAACTCCTGGCCTCAAGCAACCCTCCACCTTGGCCTCCCAAAGTGCTGGGACTATAGACATG TGGTATTTTCATCTCCTAACTTGCCATATGTTTTCTGGAAATTCTTATAAGCAGCCGAGAGTG ATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGTGTGGTG GCAGGCACCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGAAGAATTGCTTGAACCCAGCAG GCGGAGGTTGCAGTGAGCTGAGATTGCACCACTGCACTCCAGCCTGGTGACAGAGTGAGACTC TGTCTCAAAAAAAAAAA

MMMTDQIPLELPPLLNGEVAMMPHLVNGDAAQHVILVQVNPGETFTIRAEDGTLQCIQGPAEV
PMMSPNGSIPPIHVPPGYISQVIEDSTGVRRVVVTPQSPECYPPSYPSAMSPTHHLPPYLTHH
PHFIHNSHTAYYPPVTGPGDMPPQFFPQHHLPHTIYGEQEIIPFYGMSSYITREDQYSKPPHK
KLKDRQIDRQNRLNSPPSSIYKSSCTTVYNGYGKGHSGGSGGGGSGSGPGIKKTERRARSSPK
SNDSDLQEYELEVKRVQDILSGIEKPQVSNIQARAVVLSWAPPVGLSCGPHSGLSFPYSYEVA
LSDKGRDGKYKIIYSGEELECNLKDLRPATDYHVRVYAMYNSVKGSCSEPVSFTTHSCAPECP
FPPKLAHRSKSSLTLQWKAPIDNGSKITNYLLEWDEGKRNSGFRQCFFGSQKHCKLTKLCPAM
GYTFRLAARNDIGTSGYSQEVVCYTLGNIPQMPSAPRLVRAGITWVTLQWSKPEGCSPEEVIT
YTLEIQEDENDNLFHPKYTGEDLTCTVKNLKRSTQYKFRLTASNTEGKSCPSEVLVCTTSPDR
PGPPTRPLVKGPVTSHGFSVKWDPPKDNGGSEILKYLLEITDGNSEGEVFGNCFIQIQ

Important features of the protein:

N-glycosylation sites.

amino acids 69-73, 254-258, 401-405

Glycosaminoglycan attachment sites.

amino acids 229-233, 234-238, 236-240

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 416-420, 535-539

Tyrosine kinase phosphorylation site.

amino acids 319-326

N-myristoylation sites.

amino acids 52-58, 227-233, 228-234, 230-236, 231-237, 232-238, 235-241, 239-245, 402-408, 610-616

Amidation site.

amino acids 414-418

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 290-301

ATP/GTP-binding site motif A (P-loop).

amino acids 546-554

CUB domain proteins profile.

amino acids 294-301

FIGURE 71

AAGTCATTCAGTGGATGTGATCTTGGCTCACAGGGGGACG ATG TCAAGCTCTTCCTGGCTCCTTCTCAGCCTTGTTGCTGTAACTGCTCAGTCCACCATTGAGGAACAGGCCAAGACATTTTTGGACAAGTTTAACCACGAAGCCGAA GACCTGTTCTATCAAAGTTCACTTGCTTCTTGGAATTATAACACCAATATTACTGAAGAGAATGTCCAAAACATG AATAATGCTGGGGACAAATGGTCTGCCTTTTTAAAGGAACAGTCCACACTTGCCCAAATGTATCCACTACAAGAA ATTCAGAATCTCACAGTCAAGCTTCAGCTGCAGGCTCTTCAGCAAAATGGGTCTTCAGTGCTCTCAGAAGACAAG AGCAAACGGTTGAACACAATTCTAAATACAATGAGCACCATCTACAGTACTGGAAAAGTTTGTAACCCAGATAAT ${\tt CCACAAGAATGCTTATTACTTGAACCAGGTTTGAATGAAATAATGGCAAACAGTTTAGACTACAATGAGAGGCTC}$ TGGGCTTGGGAAAGCTGGAGATCTGAGGTCGGCAAGCAGCTGAGGCCATTATATGAAGAGTATGTGGTCTTGAAA AATGAGATGGCAAGAGCAAATCATTATGAGGACTATGGGGGATTATTGGAGGAGGAGACTATGAAGTAAATGGGGTA GATGGCTATGACTACAGCCGCCGCCAGTTGATTGAAGATGTGGAACATACCTTTGAAGAGATTAAACCATTATAT ${\tt GAACATCTTCATGCCTATGTGAGGGCAAAGTTGATGAATGCCTATCCTATATCAGTCCAATTGGATGCCTC}$ $\verb|CCTGCTCATTTGCTTGGTGATATGTGGGGTAGATTTTGGACAAATCTGTACTCTTTGACAGTTCCCTTTGGACAG| \\$ AAACCAAACATAGATGTTACTGATGCAATGGTGGACCAGGCCTGGGATGCACAGAGAATATTCAAGGAGGCCGAG AAGTTCTTTGTATCTGTTGGTCTTCCTAATATGACTCAAGGATTCTGGGAAAATTCCATGCTAACGGACCCAGGA AATGTTCAGAAAGCAGTCTGCCATCCCACAGCTTGGGACCTGGGGAAGGGCGACTTCAGGATCCTTATGTGCACA AAGGTGACAATGGACGACTTCCTGACAGCTCATCATGAGATGGGGCATATCCAGTATGATATGGCATATGCTGCA ${\tt CAACCTTTTCTGCTAAGAAATGGAGCTAATGAAGGATTCCATGAAGCTGTTGGGGAAATCATGTCACTTTCTGCA}$ GCCACACCTAAGCATTTAAAATCCATTGGTCTTCTGTCACCCGATTTTCAAGAAGACAATGAAACAGAAATAAAC GTCTTTAAAGGGGAAATTCCCAAAGACCAGTGGATGAAAAAGTGGTGGGAGATGAAGCGAGAGATAGTTGGGGTG GTGGAACCTGTGCCCCATGATGAAACATACTGTGACCCCGCATCTCTGTTCCATGTTTCTGATGATTACTCATTC ATTCGATATTACACAAGGACCCTTTACCAATTCCAGTTTCAAGAAGCACTTTGTCAAGCAGCTAAACATGAAGGC $\mathtt{CCTCTGCACAAATGTGACATCTCAAACTCTACAGAAGCTGGACAGAAACTGTTG}$ GAACCTCTCCTAGTATTCAGTATTACTCATTTCCATGCCTAGGTTTGTATTTGATTTCTTTGTTCTAAAAAGAAA $\tt CGGTTTAGGGTGGAATATATCTGTTAATATGCATTCTTTTCTTATCTGCCAGAAGCAAATTTAGCCAAGTCAAAG$ AGAAGAAACCATAGATCATAGATGTAAATATGTACATCTGGAACCCCTCAAAAGGCCCTGAACCCCCTTTTTT TGTGTAGCAATATGCTGAGGCTTGGAAAATCAGAACCCTGGACCCTAGCATTGGAAAATGTTGTAGGAGCAAGAA $\hbox{\tt CATGAATGTAAGGCCACTGCTCAACTACTTTGAGCCCTTATTTACCTGGCTGAAAGACCAGAACAAGAATTCTTT}$ TGTGGGATGGAGTACCGACTGGAGTCCATATGCAGACCCAAAGCATCAAAGTGAGGATAAGCCTAAAATCAGCTC TTGGAGATAAAGCATATGAATGGAACGACAATGAAATGTACCTGTTCCGATCATCTGTTGCATATGCTATGAGGC AGTACTTTTTAAAAGTAAAAATCAGATGATTCTTTTTGGGGAGGAGGATGTGCGAGTGGCTAATTTGAAACCAA GAATCTCCTTTAATTTCTTTGTCACTGCACCTAAAAATGTGTCTGATATCATTCCTAGAACTGAAGTTGAAAAGG $\verb|CCATCAGGATGTCCCGGAGCCGTATCAATGATGCTTTCCGTCTGAATGACAACAGCCTAGAGTTTCTGGGGGATAC| \\$ ${ t AGCCAACACTTGGACCTCCTAACCAGCCCCCTGTTTCCATATGGCTGATTGTTTTTTGGAGTTGTGATGGGAGTGA}$ TAGTGGTTGGCATTGTCATCCTGATCTTCACTGGGATCAGAGATCGGAAGAAGAAAAATAAAGCAAGAAGTGGAG AAAATCCTTATGCCTCCATCGATATTAGCAAAGGAGAAAATAATCCAGGATTCCAAAACACTGATGATGTTCAGA AAAATATAAGATGATAAAGATATCATTAAATGTCAAAACTATGACTCTGTTCAGAAAAAAATTGTCCAAAGACA ${ t CTGTTTCTTAATAAGGATTTTGTATTAGAGTATATTAGGGAAAGTGTGTATTTGGTCTCACAGGCTGTTCAGGGA$ ${ t TAATCTAAATGTAAATGTCTGTTGAATTTCTGAAGTTGAAAACAAGGATATATCATTGGAGCAAGTGTTGGATCT$ TGTATGGAATATGGATGGATCACTTGTAAGGACAGTGCCTGGGAACTGGTGTAGCTGCAAGGATTGAGAATGGCA TGCATTAGCTCACTTTCATTTAATCCATTGTCAAGGATGACATGCTTTCTTCACAGTAACTCAGTTCAAGTACTA ${ t TGGTGATTTGCCTACAGTGATGTTTGGAATCGATCATGCTTTCTTCAAGGTGACAGGTCTAAAGAGAGAAAATC}$ CAGGGAACAGGTAGAGGACATTGCTTTTTCACTTCCAAGGTGCTTGATCAACATCTCCCTGACAACACAAAACTA ${\tt GAGCCAGGGGCCTCCGTGAACTCCCCAGAGCATGCCTGATAGAAACTCATTTCTACTGTTCTCTAACTGTGGAGT}$ GAATGGAAATTCCAACTGTATGTTCACCCTCTGAAGTGGGTACCCAGTCTCTTAAATCTTTTGTATTTGCTCACA GTGTTTGAGCAGTGCTGAGCACAAAGCAGACACTCAATAAATGCTAGATTTACAAAA

FIGURE 72

MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMN
NAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTI
YSTGKVCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNE
MARANHYEDYGDYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAY
PSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEAEKFF
VSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILMCTKVTMDDFLTAHHEMGH
IQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNETEINFLLK
QALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDPASLF
HVSDDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLL

Important features of the protein:

Signal peptide:

amino acids 1-17

N-glycosylation sites.

amino acids 53-57, 90-94, 103-107, 322-326, 432-438, 546-550

N-myristoylation sites.

amino acids 260-266, 286-292, 395-401

Cell attachment sequence.

amino acids 204-207

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 371-381

FIGURE 73

 $\verb|CCCACGCGTCCGAGCGGGGTGGACAAGTGGCGTGTGTGCTGCGACCCCGAGGGAAG| \textbf{ATC} \\ \texttt{AACG} \\ \texttt{AAC$ GGACGCGGAACTGGTGTACCCTGGTGGACGTGCACCCAGAGGACCAGGCGGCGGCGGCAGGA AGACCTATGCCATGGTGTCCAGCCACTCAGCTGGTCATTCTCTGGCTTCAGAACTGGTGGAGT CCCATGATGGACATGAGGAGATCATTAAGGTGTACTTGAAGGGGAGGTCTGGAGACAAGATGA TTCACGAGAAGAATATTAACCAGCTGAAGAGTGAGGTCCAGTACATCCAGGAGGCCAGGAACT GCCTACAGAAGCTCCGGGAGGATATAAGTAGCAAGCTTGACAGGAACCTAGGAGATTCTCTCC ATCGACAGGAGATACAGGTGGTGCTAGAAAAGCCAAATGGCTTTAGTCAGAGTCCCACAGCCC TGTACAGCAGCCCACCTGAGGTGGACACCTGTATAAATGAGGATGTTGAGAGCTTGAGGAAGA CGGTGCAGGACTTGCTGGCCAAGCTTCAGGAGGCCAAGCGGCAACACCAGTCAGACTGTGTGG CTTTTGAGGTCACACTCAGCCGGTACCAGAGGGAAGCAGAACAAAGTAATGTGGCCCTTCAGA ${\tt GAGAGGAGACAGATGTCCAGAG} {\bf \underline{TGA}} {\tt TTGGAGAATGTCCTGGGGGGAATGAAGTTCCTTCCACA}$ AACACAGCTCAGTTCTTAGCAACAAACTGTTTGTTTTTCTACTTGCTCCATCTGCAGCCTACG CTGCCCTGGCCTCCTGCAGACAGATAGTGGGGTTACCTGGCAAGGCCTGGTGAGAGCCAGTGA ACCTAAGCTTTGACTGGGTGGCCTTGTCTTTCTGGGGAGGAGGGAATGTACATTCAGGGAGTA GCCTTTTGCGGAAAAATTCTCTAGGGCTACAGACAGTCATGTGTGACTTCTCTCTGCTGTGAA AACTCCCAGAGTCTCTTTAGGGATTTTCCCTAAGGTGTACCACCAGGCACACCTCAGTCTTCT TGACCCAGAGCCTGAAAACTGTTTTCACTGGGTTCCACCAGTCCCAGCAAAATCCTCTTTGTA TATAGCCTTCTCTTGCAGTATTTGGATTTGCTTGAAACCGGGAAAACTGTTCCCATTAGGCTT GTTAATGTCAGAGTGACACTATTATGAATCTTTCTCTCCCCTTTCCTCTGCCTGTTTCTTCTCT CTTTCTCCTTCAAACTTGCTCTGCAGCTAAGGAAGGTGAGTCTACTTTCCCTGAGGCTTTGGG GTCAGAGTATATGTTTGGAGAAAGAGGGCAATCAGGACTCTTCTGGGACCCAGATGAGTT CTTCACTAGCCCTTCTGAACCCCTTGCTCCATAATTGGTCTTTTATCCTGGCTCTGAATGACC CTGTCACCCAGGCTGGAGTGCAGTGGCGCGATCTCAGCTCACTGCAACCTCTGCCTCCCGGAT TTAAGCGATTCTTCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGTGTGCCACCACGCCTG GCTGATTTTTGTATTTTAGTAGAGATGGGGTTTCACCATACTGGCTAGGCTGGTCTCGAATT CCTGACCTCAGGTGATCCACCCACCTCGGCTTCCCAAAGTGCTAGGATTATAGGCTTGAGCTA CTGCGCCCGGCCCATGGTGTTTTTCTTTAGGGCTCTTCCTACAGCCTTGAGAAGTAGATAGGC ATCAGAGTATGGTACTATAGGAATCAGAAAAATTCAAAACAAATGTGGATTAAGTGTTTAGGC TCTATGTGGCTCACGCAGCCAGAATCCTTAAGTCTGTGTGTTTCTGTGTCTCAAGACTGGGCT CACATTCTGGCTTTGTCCATAACAATGCTCTGGGATTTCAGGGAGTTCCCTCATTTGTAAAAT GAGGGGGTCAGAGCAGGTGATATCCATGTTTCTTCCCTTTCTGATATTGTTGTCTGTGGCATA TTCTTTGTATGGCGAATTTAATAAATTATATTAATGTGTCA

FIGURE 74

MNGTRNWCTLVDVHPEDQAAAGRKTYAMVSSHSAGHSLASELVESHDGHEEIIKVYLKGRSGD KMIHEKNINQLKSEVQYIQEARNCLQKLREDISSKLDRNLGDSLHRQEIQVVLEKPNGFSQSP TALYSSPPEVDTCINEDVESLRKTVQDLLAKLQEAKRQHQSDCVAFEVTLSRYQREAEQSNVA LQREEDRCPE

Important features of the protein:

Signal peptide:

amino acids 1-39

N-glycosylation site.

amino acids 2-6

Amidation site.

amino acids 21-25

FIGURE 75

GCTTGCACACATGGCTCCGGAGGCTCCGGTTGCCCATCCGAGCCCCTGCCAGGCTCTAACGTTCCCAACTGACAA CACCAGTAACTAAATATAGGAGCAGATGGTGGGGACGGGCTGTCGCAGCGGCTCCTTTGCAGAGGTCTCCGGACT GCAGATAAGGCTCAGGCCCTTTTGTGAGAAGCAGACCAGCCTGGGGGGCTGGCGGCAGGACACCTGTGTCTGCATG CTGGACCTGGCCGAGTGCAAGCTGGTCTCCTTTCCCATTGGCATCTACAAGGTCCTGCGGAATGTCTCTGGCCAG CGAGAGCTCCACCTGGAGGGGAACTTCCTACACCGCCTCCCAGCGAGGTCAGTGCCCTGCAGCACCTCAAGGCC ATTGACCTGTCCCGGAACCAGTTCCAGGACTTCCCTGAGCAGCTTACCGCCCTGCCGGCGCTGGAGACCATCAAC CTGGAGGAGAACGAGATCGTAGATGTGCCCGTGGAGAAGCTGGCCGCCATGCCAGCCTTGCGCAGCATCAACCTC CGCTTCAACCCACTCAACGCCGAGGTGCGCGTGATCGCCCCGCCGCTCATCAAGTTTGACATGCTCATGTCTCCG GAAGGCGCAAGAGCCCCCTACCT**TAG**GCCACCCTCCTCATGCCCACCCAGCAAGGGACAGAGGCCACAGGCCTG GGTGGGGCCTGCAGCTGGACTCGGCACTCACAGCTGCTGTGCAAACTCAGGCAGATCTCCTGCCCTCTCTGAGC $\verb|CTTGTCACTTGAAAAAAACAGGACCCTTTCCCTCCTTTGGGCTCCCTGGAGGTTTTTAAGCAGTACGTGCCTCCA| \\$ AGTTACCTCCAGATCAGCAGGCACAGGTGGGCATTGCCAGGTATTTTCTGAGCCCCTGCGGGTTTGAGGCCTTGT ACCTGGATGCGGCCCTCTGCAGGGCCCAGTCTTCAGTCCTGTGGTCCCTGGACTGGTGGGAACCTGAACTAGGAG CANCANGCTGGGAATGGGGAGCAAGTCACGTCAGCTCTGTCATTCCCCACAGTTAACAAATTGGCGGGGTGGGAA GTCCTGAGTGCTCCGTCCCTCTAGCATCACTCCTGAGCTGCGGGAGAGGTGGCCCAGAGAACAGCAGAGTCAGTT ACACCTGCAGCTCTTGTCTAAAGTGATTAGATGGCCACCCTCACCACTGTCCAGTCCAGCAGCAGCCTGGCTGCC AGCTGTCCTGGTTTCCCAGGACATGGAACTTTCAATGCTAAAACTGGGACATTACCCAGCAAGTGGGGATGGTTG $\tt GTCCCCTACCAGGAGAGGGCCTGGGGCTCTTGCTTCCCGAGAACGCCTGTGGCTTGAAGAACCTTGACTGCTTGG$ TCCTCAGGTATCTACCTCCCACCTTCTCCTCATCTGTGGAGCCAACTCAGTGCCCCAGACCCCACCTGATC TGCATCTTTGTTTGCTCCAGAGACACCTGAGGCCCCAGAGCTTGAGGCAAAGCCAGGCCGTCCAAATCCTGTGTG $\verb|CCGTGGACGAGTGGCCACTTTACTACTCCTAAGGCTAAGATGTTGAGAGCTCAGACCACTGCTCAGAGCAGTAAT| \\$ GCCATTGTTGGGCCATCACTGAGCGCTCAGTATCTCAAGAGACTCTGTTCATTCTGCTCGTATCCCAAGGCCTGG ${\tt TTGGTCAAACTCTGGGCAAAGGGTTTTCAGGATGAGGAGGTCAAGACAGGATGTCCAGAGCTACCGAGTTCATCT}$ GTGGGTGTTGGGGGCCAAGTGGGGGCTGAAGTCCTGTGCAGGCTGCGCTGGCCCCACCTGCCTTGTGCCCTGGAGT GGGGTTTCTCCTTGTTGAAGAAGAGGCATCCTTCTCTGATGTGCACAAACACAATGTATGACCAGAGCCTTGCAA CTCAAAGTGTGGTCTGTGGACCAGCAGCGGCAGTGACACCTGGGAGCTTGTTAGGAATGCAGAGTCTAGGCCTCA CCCTATACCTCCCGACTCAGACCCTGCATTTTAGCAAGACCCCCAGCTGATTCCTATAAGCACTTTAGAGTTTGA GAAGCAAGGACCTAGGCTGGGGATGTCCTCCGAGCAGAGGGTGAAGTTTCTCTCAGTTCTCTCCCTGCCACTTCC AGGGATCTGAGCCTGTGTTCAGCCTCCCTAACCCACCCTGGGAGACACTTGGCCTGTTAGATTGTTCCAGAG TCTGCATGGCACTCCTGAAGAAGGGAGTGTGACCTGCAGTCACCAGGAGATGAGGGTTAGGTGTGCCCAGCCCTC ${\tt CACAGATGCCCCAAATCAGAGCTCACAGTGAGTGAGCCCCTAAGCTTCAGTCTGCAATAAAGAATGCATTGGTT}$

FIGURE 76

MLKKMGEAVARVARKVNETVESGSDTLDLAECKLVSFPIGIYKVLRNVSGQIHLITLANNELK SLTSKFMTTFSQLRELHLEGNFLHRLPSEVSALQHLKAIDLSRNQFQDFPEQLTALPALETIN LEENEIVDVPVEKLAAMPALRSINLRFNPLNAEVRVIAPPLIKFDMLMSPEGARAPLP

Important features of the protein:
N-glycosylation sites.

amino acids 17-21, 47-51

CACCAACAAGCAATCGTTCATGAGAAAGCCGTGCACCCGCTGCAGTTGGGCCATGTGGTCCGCATCGTATTCCAC GGTGGTGTGAGTGCGCTGCTTTCCTTCCTCGCCTGGACCGGAGCCGTCGCGGGAGGCACCCCCGGGGGTGGAGAA GGCTCCGGCGGCAGCAGCAGCAGCAACGTAAGCGGGATGCTCTCCAGGCTGCTTTTCTGCTCGGTCAGCAA ATGGCTGAGCTGGTACATCTCGCTCTCCAGGTAGGAGATCTCGCGGGCCGTCTCTATGAACTGCCGGTAGTTCTG GTAGACGTTGCGCTTCTGCGCCGTCTCCTCCGCCAGCGCCTGGATGCGCTGCCGGTGCTCCTGGAGGTC $\verb|CCGGTCCCATCCGACTGCTGCGAGAGCTGCTTCACGTACAGCCGCGCCTCAAAACCCCCTGACTCCAGCTGCCG|$ TCGGCGCCGCAGCCGCCGCGGTTCTAGACCCACCCAAGGCCAACCGAGCTCCTGGGCTGAGGAAGCAGGAATG GGAACGAGACGAGTACGCCTGCGCCGGGTCTGAGCGTCAGACACTGCGCCTGCGCAAGTGGGCCGAGCGCAGACA TTGCGCCTGCGCAGCAATGCCATCGGTTAAAGCGCATGCGCAAGATGAGCTATTGCGGAAGTGAGGGGAGGAGA GGCCGAGAGAAATTTCGGTACTGCGCATGAACCGAGCGTGACGTTGAGGTTTGAAATAACCGGCAAAGAGTAAAG GCTGAAACTAGCTTCCTGAAAGCTTCGTAGGGCCCGAGCCCTGTGAGCCCAGGTTCTGCGCCCACTAGGAGGTGT CATGCTGACTGCTTTTTTAAAGCCCTAGAATCCTTGGCTTCGGCGTTTTGGGGTAAGCTCCGTTCTCGAA GCGCGTTTCCGCGAACTCTCGCGGGATTGACGGGCCGTCTCGAGAGCCGGCATCTCCTAGGAGCTAGTCCTGGTC $\tt CTCGGCTAGGCGGCTTGGGGCGTAACTGGGGAGCCAGCCTGACGCCGGCGGACCCCGCCTGTGATCCTG$ GCAACG<u>ATG</u>GATGATGACTTGATGTTGGCACTGCGGCTTCAGGAGGAGTGGAACTTGCAGGAGGCGGAGCGCGAT $\overline{\text{CATGCCCAGGAGTCCCTGTCGCTAGTGGACGCGTCGTGGGAGTTGGTGGACCCCACACCGGACTTGCAGGCACTG}}$ TTTGTTCAGTTTAACGACCAATTCTTCTGGGGCCAGCTGGAGGCCGTCGAGGTGAAGTGGAGCGTGCGAATGACC CTGTGTGCTGGGATATGCAGCTATGAAGGGAAGGGTGGAATGTGTTCCATCCGTCTCAGCGAACCCCTTTTGAAG GACAAAGACCGAGAAGGGCATGGTCCAGAATTTTGTAAACATATGCATCGCATCAACAGCCTGACTGGAGCCAAT ATAACGGTATACCATACTTTTCACGATGAGGTGGATGAGTATCGGCGACACTGGTGGCGCTGCAATGGGCCGTGC CAGCACAGGCCACCGTATTACGGCTATGTCAAACGAGCTACTAACAGGGAACCCTCTGCTCATGACTATTGGTGG GCTGAGCACCAGAAAACCTGTGGAGGCACTTACATAAAAATCAAGGAACCAGAGAATTACTCAAAAAAAGGCAAA ${\tt GGAAAGGCAAAACTAGGAAAGGAACCAGTATTGGCCGCAGAGAATAAAGGTACCTTCGTGTATATTCTTCTGATT}$ GTTTCTGGTGTAGAAGTCTTCAAGTGTAGACTTAAGGAAAAAATCCCACTGTCCATGAAATGATGGTAGGAAAAC CAGTTTCTTTTATTCAAAGAAACAAAATTCAATCTCTGATAATATTTGAGGTAAAGTTCCTTTCCCTATCTTGA CTCACTGAGTTATTAGGAAACAGAAGGCAAAAAGATTGTCAAAATAAAAACAATAATTCAAGTAACAATGCCCGG TTCAAAGAATGGGAAAAGGATATGACATATATTTGCCAGTACTTCATCTTCAAGATTTACCCTTTTCCTGTGAAG TTCAGAGTTACTGAAGATGCTTCTTCCCTTGGGAAGTTGTTGACCCAAGAACATAGGTTATATTTCCCAAATCTT TAATTATTGAGTGAAAGAGCTATAGATGAATTGATATGGAAAGACCGTATCTTCATTTTCGTGAGTAGAAGGAAA GATAAGAATGAGGCAGCAGATTTTCCCTCCTGGAATTACACATAAAGGACACTAAGCAATTTTCAAGGTAAATGT GGCACTTACATAACAATCTTCTTTGCTTTTTTGGCAGATAAACCCAACAGAGGTGAGGCCCAGCTAGTAATCCCT TTTAGTGGGAAAGGATATGTTCTAGGAGAAACAAGCAATTTACCTTCACCTGGGAAACTGATCACTTCACATGCC ATTAATAAAACCCAAGATCTTTTAAATCAAAACCATTCAGCAAATGCTGTAAGACCTAATTCTAAAATCAAGGTG AAATTTGAACAGAATGGTTCAAGTAAAAATTCTCATCTGGTCTCCCCTGCTGTTAGTAACAGTCACCAAAATGTT CTAAGCAACTACTTTCCTAGAGTATCATTTGCCAACCAAAAGGCTTTCAGAGGTGTGAATGGATCTCCAAGGATA AGTGTAACAGTTGGCAACATCCCTAAAAACTCAGTCTCTTAGTTCTCAGAGAAGGGGTTTCATCTTCTAAGATA TCCCTAAGAAATTCTTCAAAAGTAACGGAATCAGCATCTGTGATGCCATCCCAGGATGTGAGTGGGTCTGAAGAT

MDDDLMLALRLQEEWNLQEAERDHAQESLSLVDASWELVDPTPDLQALFVQFNDQFFWGQLEA VEVKWSVRMTLCAGICSYEGKGGMCSIRLSEPLLKLRPRKDLVETLLHEMIHAYLFVTNNDKD REGHGPEFCKHMHRINSLTGANITVYHTFHDEVDEYRRHWWRCNGPCQHRPPYYGYVKRATNR EPSAHDYWWAEHQKTCGGTYIKIKEPENYSKKGKGKAKLGKEPVLAAENKGTFVYILLIFM

Important features of the protein:

Signal peptide:

amino acids 1-41

N-glycosylation sites.

amino acids 148-151, 217-220

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 184-187

Casein kinase II phosphorylation sites.

amino acids 30-33, 121-124, 154-157, 187-190, 192-195

Tyrosine kinase phosphorylation site.

amino acids 211-218

N-myristoylation sites.

amino acids 59-64, 85-90, 146-151

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 108-117

FIGURE 79

CGGACGCGTGGGTGGCAACCAGGAGAAGCCAAACTTGGTCCCCCGGCTCGCGGAGTGCCTGCG AGCGGTGCTC**ATG**GCGCTCTATGAGGTCTTCTCTCACCCGGTCGAGCGCAGTTACCGCGCGGG GCTCTGCTCCAAAGCCGCGCTGTTCCTGCTGCTGCCGCTGCGCTCACGTACATCCCGCCGCT GCTGGTGGCCTTCCGGAGCCACGGGTTTTGGCTGAAGCGGAGCAGCTACGAGGAGCAGCCGAC CGTGCGCTTCCAACACCAGGTGCTGCTCGTGGCCCTGCTCGGACCCGAAAGCGACGGGTTCCT CGCCTGGAGCACGTTCCCCGCCTTCAACCGGCTGCAAGGGGATCGCCTGCGCGTCCCGCTCGT TTCGACTAGAGAAGACAGGAACCAGGATGGGAAGACGGACATGTTACATTTTAAGCTGGA GCTTCCCCTGCAGTCCACGGAGCACGTTCTCGGTGTGCAGCTCATCCTGACTTTCTCCTATCG ATTACACAGGATGGCGACCCTCGTGATGCAGAGCATGGCGTTTCTCCAGTCCTCCTTTCCTGT CCCGGGATCCCAGTTATACGTGAACGGAGACCTGAGGCTGCAGCAGAAGCAGCCGCTGAGCTG TGGTGGCCTAGATGCCCGATACAACATATCCGTGATCAACGGGACCAGCCCCTTTGCCTATGA CTACGACCTCACCCATATTGTTGCTGCCTACCAGGAGGAACGTTACCACCGTCCTGAATGA TCCCAACCCCATCTGGCTGGTGGGCAGGGCCGCAGATGCTCCATTTGTGATTAATGCTATCAT CCGATACCCTGTGGAAGTCATTTCTTATCAGCCAGGATTCTGGGAGATGGTAAAGTTCGCCTG GGTACAGTATGTCAGCATCCTGCTTATCTTCCTCTGGGTGTTTGAAAGAATCAAGATCTTCGT GTTTCAGAATCAGGTGGTGACCACCATTCCTGTGACAGTGACGCCCCGGGGAGACTTGTGTAA $\mathsf{GGAGCACTTATCC}$ TAG $\mathsf{AAAGGCCATTTCTGAAGACTCAGCAGGACCGTGGCTGCCTCATTGTC$ ATCTTCTGGGAACATCTTAGGACCTTTTGAAAGAGCCCAGCGGACACCTGCGGGCTTGTGTGC TTTTCCCTCAGAGACAACGGTTCTTTCCGGTTTTTGCTCTACACAGTTCCGTATCTTCAGAGCT CCTGCAGAATTGTCAGGGACTAGTTTGTGGAAAGGTCTGAGAGTTCCTGGAGGCTATAATTAG ACATCTTGGAAAGAGTCCCATCTCTGGTCAAGCAGAGACTTTTCCTCTGTTGAACTGAGGAAC ACACTGTGCATTTCTTCCTTCTGTGAGCCACTCTTACTCTTTTCAGGGCTCTCTTGTGAC AAACATGCCAATCACTAGCACTTTGCACCCCTGGGCTTCTCCATTTCCCATTCACAGCTTTGA TTTCCAGAGCTGAGGCCTTTAACTGGAGACCTGGAGGGCCAGGGCCCAAGGGCCAAGGGCCGCA TTAGCACAGGCAATCAGGGAGGGCCGCTGAAGGACACTTGGACCGTCCACCTGCCCCAGCCCA ACAGTCAGTCATCTGTCATCAGCTCAGCTGAGCCCCTGGATCTTTGCCGTACTGTGACTGG GCTCTTTGCCCTATTTTTCCCTCTGTCTGTGCCCCTGGATGGCAGGCTGAAGTCAGAGGGGCT GTTTCATTCTCAGCCCCCTCAGCAGCACTGGGGGAAGAAGCATTGTCACAACAGGTTCTTTC TGGCCCTCACCCAACAGCCTGGGCACTTGGCCCTCCTCCTTGACAGCCCTCCCCCTTCCT GCAAAGGACAGGGGCGACAGGGGTTGGTGTTGGGATTGGCTCCCGCTGCCTGACAACCACAAG TTTATTTGGAAGGCTAGCGGGAAGCCCAGCGGCTGCGTTTCCCTTGACTAAGGAACAGGGTG CCCATCAGAGTGGGGCGGCAGCTTTGGGAAGGACACAAGAAGCAGTAAGAGTGTAAAGAGGA TGCTGGCCTGGGCAGCCAGTCCAGCCTGGCCACTAGCAGAATACCAAGCAGTCCAGTGGATT ACCCTCGTGGCTAAGCAAGTGTCTGCAGGAGCAGAGATGGCTGGAAGGGGCCTCTGCACACGG AAGATGGCTTGTTCAGCCCATTCACCTCCTGAGGATGTGGGCAGTCTCCTCCAAGAACACATG GAGCTGCTTCCTGATCCCAAGCAGGTCATTGCCACTGGAAGGACATGGCCCCGGTGATCCATG CTTCATGCCCACCAGAAACACACCCCTCAGTGTGTGCCTCAGTTTACTTTGGAGATCAGTTG TCGTTTTTAGTGCTCCTTTAGGCTTACTAAAACAGTTTTGGAAACAAGCTATTTTGAAGTAT TCAAGCAGAGGAATTCCCTAACACTGACCCCCTTGTCTTTTTTTAATATTCAGGCTGTTTTAT ATGCCTAAATTTTTTTCTTAAGATCTAAACGAAAAATAGTTTCTTGTTTAAATTCACATAAGG CAATGAGATATGGAAAGATGACAAGATACGTATAAACATTGGTTTGCATCTTATTAAATTATT CTAATGCAAATCTTGTATAAAGAACCCATGATGTTTTGTAACTTTCTAATTAAAATGTTCAAA ATGAG

FIGURE 80

MALYEVFSHPVERSYRAGLCSKAALFLLLAAALTYIPPLLVAFRSHGFWLKRSSYEEQPTVRF
QHQVLLVALLGPESDGFLAWSTFPAFNRLQGDRLRVPLVSTREEDRNQDGKTDMLHFKLELPL
QSTEHVLGVQLILTFSYRLHRMATLVMQSMAFLQSSFPVPGSQLYVNGDLRLQQKQPLSCGGL
DARYNISVINGTSPFAYDYDLTHIVAAYQERNVTTVLNDPNPIWLVGRAADAPFVINAIIRYP
VEVISYQPGFWEMVKFAWVQYVSILLIFLWVFERIKIFVFQNQVVTTIPVTVTPRGDLCKEHLS

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 268-284

N-glycosylation sites.

amino acids 194-198, 199-203, 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 51-55

Tyrosine kinase phosphorylation site.

amino acids 250-259

N-myristoylation site.

amino acids 187-193

Cell attachment sequence.

amino acids 307-310

FIGURE 81

 $\tt GCCGGGAGCTTCCCTG{\color{red} ATG} GTGCCGCCGCCTCCGAGCCGGGGAGGAGCTGCCAGGGGCCAGCTGGGCAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGGAGGAGCT{\color{red} CCCGGGGAGGAGCCT{\color{red} CCCGGGAGGAGCCT{\color{red} CCCGGGAGGAGCCT{\color{red} CCCGGAGGAGCCT{\color{red} CCCGGAGGAGCCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGAGGAGCCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGCCGCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGAGGAGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGAGGAGCT{\color{red} CCCGGCGAGGAGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGAGGAGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGGCGCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCT{\color{red} CCCGCCT{\color{red} CCCGCCT{\color{red} CCCT{\color{red} CCCTCCCGCCT{\color{red} CCCTCCT{\color{red} CCCGCCT{\color{red} CCCTCCCT{\color{red} CCCTCCCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCT{\color{red} CCCTCCCT{\color{red} CCCTCT{\color{red} CCCTCT{$ GGGTCCGCTGCTGCTCCTGCGTTGGGACACACGTGGACCTACAGAGAGGAGCCGGAGGACGGCGACAGAGA AATCTGCTCAGAGAGCAAAATCGCGACGACTAAATACCCGTGTCTGAAGTCTTCAGGCGAGCTCACCACATGCTA CAGGAAAAGTGCTGCAAAGGATATAAATTTGTTCTTGGACAATGCATCCCAGAAGATTACGACGTTTGTGCCGA GGCTCCCTGTGAACAGCAGTGCACGGACAACTTTGGCCGAGTGCTGTTATTGTTATCCGGGATACCGATATGA CCGGGAGAGACACCGGAAGCGGGAGAAGCCATACTGTCTGGATATTGATGAGTGTGCCAGCAGCAATGGGACGCT GTGTGCCCACATCTGCATCAATACCTTGGGCAGCTACCGCTGCGAGTGCCGGGAAGGCTACATCCGGGAAGATGA TGGGAAGACATGTACCAGGGGAGACAAATATCCCAATGACACTGGCCATGAGAAGTCTGAGAACATGGTGAAAGC CGGAACTTGCTGTGCCACATGCAAGGAGTTCTACCAGATGAAGCAGACCGTGCTGCAGCTGAAGCAAAAGATTGC CGGTATGCCAGGCCCTCCTGGGCAGCCCGGCCCACGGGGCTCAATGGGACCCATGGGACCATCTCCTGATCTGTC CCACATTAAGCAAGGCCGGAGGGGCCCTGTGGGTCCACCAGGGGCACCAGGAAGAGATGGTTCTAAGGGGGAGAG ACCTCAGGAATTTCCCAGCTACCCAGAAGCCATGGACCTGGGCTCTGGAGATGACCATCCAAGAAGAACTGAGAC AAGAGACTTGAGAGCCCCCAGAGACTTCTACCCA<u>TAG</u>CACATCCCAACACCGTCACGCCAAAGGAAGAGAAAGAT TCTTCTCCTGACGTCTCCACTCCTCTTCTTCCAAATACGATGCTATTTTCAGAGTCCCCTCCTAGGCCTGCAG ACATGAGGGAGTGAATGATTGATTTACCTGCTTCTCACTAAGAGTCCATTGGGGTGGTTTGCATTGTAACTTTTC TTTTACATCCTATTTTTCCAGGAACTTTGGATTTAAGTACTCTCACAGTGTCTTAAATCATAAATTCTTGAAGTT AAATTTGGCAGAGTATCAAAAGGGGGAAAATGACAAAGTGAGCTCTAAGAAATTGTGAGGCTACTTCTAAGATGT GTGTTCACAATAGACCATAACTCCTCTAGTATCAAAATTGGGGCTCTTCAGTTAAAAAGGGGTGGGGAGGACAAA CGTGTCGATGTGCTTTGGTGGAGAATTTTTTCCTTGTGCTTCTAGTAGACTTTAAATATTGTATCCCTTTGTCAA ACCTTGTTTCCCAAATTCAATTAAAGAGAGAGAGAATTGAATGGCGTTTAGAGAAGATAGAAAAGAATCACAGT CATATATTTACTGTTATATAGATTGCCACATTCTAAAATTCAAATACGGTGCTTAAGGTTTCATGCCATGCTTAT CTGTAAGTATCCTATTTAGGGAAGAAGATTAAACTCTCTTTTCAAAAAAACAAAGTGAAATGCCTGGATTCACAT TAAAACAATGGGCTCTCGTTTGCTATAATATTTTAAAGCTGTTTAATCAACAGTGGAGTCTGCTCTATAAATATA GATTATTTGTTCAATAAACTGGCTGAGCTTAGAGAGAGGTGCAGAATTCCTGGTTCTGAGCAGGTGCCCAGAAGG TACCATTAGGTGCCATGATCCAGGCTGAACCAATATACAGTGGGGCTGAAGTCTGCAAGGAGGTTGCTGGCTTGG GCTGACCTCACTAATGCCATCAGCAGCGGTAGGTAAATTTTTTCTCCTTGGGTATTACAAGTTTTTGTCTGGAGC GTGGTTTTCCTTGTTTGCAAAAACTTCCTTCCTATTCTCATTTTTTCTTAATTTTCTTAATTTAGTCCAAGTTC CAGTTCTTTTAGGCCTTCTCTTTGATTTATTTTCCCCTGCATGTGAGAAGCAGTTCAGAAAAAGGTCTATATCTC CACCTCCTAGTGAGTTAGAGTGTTTTCTCAGAGCACCTCTGGGTGGCAAAGGGAAGCATGTTCCTGCCAAGGTTT GCTGTGGATTCAGAAGCACCAGGAGCAAGAGCACAGAAGGATGATCTGCTCCTTTGTAACGTTGTTGAGGGCCCT $\tt CTTGTTTCCAATGAGCAGCTTATAGGTTACTCACAGTCCACTTTCTCACTGGACACACAAAGTGGCTCTTTATCT$ ${\tt TCCTGCCATGTCCTTTCCCATTTTTTTGGCTTTTTTGCCTCCACCTTTTAGCCCACATCATTTAACTCCACTA}$ CTGTGAAAGCTTGCTTAAAGAAAATCCCTCTTGGCCGGGTGTGGTAGCCCACGCCTCTAATCCCAGCACTTTGGG AGGCTGAGGCGGGGAGATCACAAGGTCAGGAGATCGAGACCAGCCTGACCAACATGGTGAAAACCCTGTCTCTACT AAAAATACAAAAATTAGCTGGGCGTGTTGGCACACCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAGAA TTACTTTAACCTGCGGGGGGGGCCTAGATTGCGCTACTGCACTCCAGCCTAGGCAACAGAGGGGAGACTCTGTCTC ATTAAAAA

MVPPPPSRGGAARGQLGRSLGPLLLLALGHTWTYREEPEDGDREICSESKIATTKYPCLKSS
GELTTCYRKKCCKGYKFVLGQCIPEDYDVCAEAPCEQQCTDNFGRVLCTCYPGYRYDRERHRK
REKPYCLDIDECASSNGTLCAHICINTLGSYRCECREGYIREDDGKTCTRGDKYPNDTGHEKS
ENMVKAGTCCATCKEFYQMKQTVLQLKQKIALLPNNAADLGKYITGDKVLASNTYLPGPPGLP
GGQGPPGSPGPKGSPGFPGMPGPPGQPGPRGSMGPMGPSPDLSHIKQGRRGPVGPPGAPGRDG
SKGERGAPGPRGSPGPPGSFDFLLLMLADIRNDITELQEKVFGHRTHSSAEEFPLPQEFPSYP
EAMDLGSGDDHPRRTETRDLRAPRDFYP

Important features of the protein:

Signal peptide:

amino acids 1-34

N-glycosylation sites.

amino acids 142-148, 182-188

Tyrosine kinase phosphorylation site.

amino acids 125-132

N-myristoylation sites.

amino acids 10-16, 143-149, 155-161, 196-202, 250-256

Amidation site.

amino acids 299-303

Aspartic acid and asparagine hydroxylation site.

amino acids 150-162

Cell attachment sequence.

amino acids 176-179

Clq domain proteins.

amino acids 247-280

Calcium-binding EGF-like domain proteins pattern proteins.

amino acids 144-165

FIGURE 83

 ${\tt MKLSGMFLLLSLALFCFLTGVFSQGGQVDCGEFQDPKVYCTRESNPHCGSDGQTYGNKCAFCK}$ ${\tt AIVKSGGKISLKHPGKC}$

Important features of the protein:

Signal peptide:

amino acids 1-23

N-myristoylation sites.

amino acids 26-32, 52-58, 56-62, 69-75

Kazal serine protease inhibitors family signature.

amino acids 40-63

GGAGCAGACACAGACCCGGGCCGGAGGCCCCTCTTCTAGCCCTGCGGGAACCGGACAGTTC TCGCTCCTGTCATTATGAAAGTGGTCACGCCATTCAATATTAAGACTTGGAGGGAATTGGGGA AAGAAAAGAAAGAATCTAAAAGAAGAAGCGACCGGTGCTTTTAAGGGTGTCTAATTTTCAA AAGAGACGTCTGGGAGTATTTTGCTCTGGGCGTTTGGAGCAACTTCGCGGACAGCGGAGCTCG CCCAGCATGGATGTTCCAGGTTCACAGGCGCCTTTCTTCTGAGAACGACCCTGGCCTTGAACG TCAGAGCCGGGGACGAAGGCCCCCGGAGGCTGCTGCGAGCTCCGCGCGTTCCTTCGCGCCCTT CCGCGCCGCTCGCCGGCCGGCCTCCACCCCCGCGCGCCCTCCCACCAGTCCCGATGC AGGCGCCCGGCCGGGGCCACTCGGGCTGCGGCTGATGATGCCCGGGCGCCGGGGGGGCGCTGC GCGAGCCTGCGGCTGCGGATCCTGCCTGGGGGTTGGCCTTGCCTGCTGTTGCTGCTACTGC CCGCCTGCTGCCCGTGCGGGCGCAGAACGACACGGAGCCCATCGTGCTGGAGGGCAAGTGCC ${\tt TGGTGGTGTGCGACTCCAGCCCGTCGGCGGACGGCGCCGTCACCTCCTCCCTAGGCATCTCCG}$ AGATGAGCAACCGCACCATGACCATCTATTTCGACCAGGTATTAGTAAATATTGGCAACCACT TTGATCTTGCTTCCAGTATATTTGTAGCACCGAGAAAAGGGATTTATAGCTTCAGCTTCCACG TGGTCAAAGTGTATAACAGACAAACCATCCAGGTCAGTTTAATGCAGAATGGCTACCCAGTGA TCTCGGCCTTTGCAGGAGACCAGGATGTCACCAGAGAAGCTGCTAGCAATGGCGTGCTGCTGC TCATGGAAAGGGAAGACAAAGTGCATCTCAAACTTGAGAGAGGCAACCTCATGGGGGGCTGGA AATACTCCACATTCTCGGGCTTCTTGGTGTTTCCTCTA**TAA**ACACAGAGCCCCCTAGATGGTG GGGGAATGGCAAACTGGACCCAGGACTCCGCCCTTTAAAACACCCTGAACTTACTGGAATTGG ${\sf ACACCTTGTTTCCAACCTCCGTCAGACTGTTGCAGTAGAAGAATGATTTCCTTTGAAACCTCC}$ AGTACTTTTGTTTTTTTTGGAATACTGACAATTCCTCGGGAACCTGGCCTCTAATTAGT TTTAGATGACAAGGTCTTAAGGAGAAATGAAATTATCGATTTGAGCAATTTGTACCTGTGATT TCGTCCCAACGGAAGGAGACTCCTGACTCCAGGATGGGCTGCAGGTTGCAGTCAGGGCTTGA AGTAGGAGCCCAGCAAAGAACCACCTGCTGGACAGTCCTTGACATGTGTTCTGTGTGTCTG TATAGCCTTAAGAAAAAGAATGGCTTCACTTTCATTCTGTATTCTTCCCCCCACCATGTGGCT GGGAGGACTTGGGAGGGGATGGGGACATTGGGAACCTGTCAAGAAGTGCTTTATCCAGAGAA CTTTACTTTCCTTCCACACTCAGCTCTCCCTCCAACCCCACTTTTATTTTTCTTGCTGGG GTATGTTTTGTTTTAGACGAGACCAAACTAAACAAAAGTATCTGTTTATCAAAGTAAAAGTA ACACAATGGACAATTCTGCTTATTCTCTCAAAGAGATTCTAAGATGCACCTTTAGAACTATTA ATAGCAACCTGCATTTTTTTTTAATTTATACTTCAGAATCCTTTAAGAACCTGGTGTTCCTGA GTGGTCCTGAATCATATAAGTTGGTAATGGAAGCTGTAATGACCAAGTCCCCTAAACATACTA AGTGAGCGCACAGTGATCAGGTGCTTCAAAGCCAACAGACCAGCTCCTCTTCCTCCGGATCCT CCTGAAAGTCACTGTGGTTAAAGATATTGGTGGAGGTACCCCAGGAGCACTGTTACAAATCCT TCTTGTTTTGGCATCTCGTACAACATTATTAAGACACAGCTGAGAGTTGATGGGTGTGTAATG CATATGCCAAGGAAATGTCACTAATCCCAAAGCAATCAAAAAGGAGACCTCAAACCAGATGTT AATTTGTTCTTTGTGTAACAATGTAACCAAAATATTGATGATAAAAGTCATAATTTAAGATTC

MQAPGRGPLGLRLMMPGRRGALREPGGCGSCLGVALALLLLLLPACCPVRAQNDTEPIVLEGK CLVVCDSSPSADGAVTSSLGISVRSGSAKVAFSATRSTNHEPSEMSNRTMTIYFDQVLVNIGN HFDLASSIFVAPRKGIYSFSFHVVKVYNRQTIQVSLMQNGYPVISAFAGDQDVTREAASNGVL LLMEREDKVHLKLERGNLMGGWKYSTFSGFLVFPL

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation sites.

amino acids 53-57, 110-114

N-myristoylation sites.

amino acids 26-32, 27-33, 29-35, 33-39, 76-82, 205-211

Amidation site.

amino acids 16-20

Clq domain signature.

amino acids 117-148

Clq domain proteins.

amino acids 115-149

FIGURE 87

AGGGCCCGCGGGTGGAGAGAGCGACGCCCGAGGGGA**TG**GCGCCAGCGTCCCGGAGCGCCTCTG AGCTGCAGCTGCAGGAGTTCATCAACGAGCGCGGCGTACTGGCCAGTGGGCCGCCTTGCGAGC ${\tt CCGGCTGCCGGACTTTCTTCCGCGTCTGCCTTAAGCACTTCCAGGCGGTCGTCTCGCCCGGAC}$ CCTGCACCTTCGGGACCGTCTCCACGCCGGTATTGGGCACCAACTCCTTCGCTGTCCGGGACG ACAGTAGCGGCGGGGGCGCAACCCTCTCCAACTGCCCTTCAATTTCACCTGGCCGGGTACCT TCTCGCTCATCATCGAAGCTTGGCACGCGCCAGGAGACGACCTGCGGCCAGAGGCCTTGCCAC CAGATGCACTCATCAGCAAGATCGCCATCCAGGGCTCCCTAGCTGTGGGTCAGAACTGGTTAT TGGATGAGCAAACCAGCACCCTCACAAGGCTGCGCTACTCTTACCGGGTCATCTGCAGTGACA ACTACTATGGAGACAACTGCTCCCGCCTGTGCAAGAAGCGCAATGACCACTTCGGCCACTATG TGTGCCAGCCAGATGGCAACTTGTCCTGCCTGCCCGGTTGGACTGGGGAATATTGCCAACAGC CTATCTGTCTTTCGGGCTGTCATGAACAGAATGGCTACTGCAGCAAGCCAGCAGAGTGCCTCT GCCGCCCAGGCTGGCAGGCCGGCTGTGTAACGAATGCATCCCCCACAATGGCTGTCGCCACG GCACCTGCAGCACTCCCTGGCAATGTACTTGTGATGAGGGCTGGGGAGGCCTGTTTTGTGACC AAGATCTCAACTACTGCACCCACCACTCCCCATGCAAGAATGGGGCAACGTGCTCCAACAGTG GGCAGCGAAGCTACACCTGCACCTGTCGCCCAGGCTACACTGGTGTGGACTGTGAGCTGGAGC TCAGCGAGTGTGACAGCAACCCCTGTCGCAATGGAGGCAGCTGTAAGGACCAGGAGGATGGCT ACCACTGCCTGTGTCCTCCGGGCTACTATGGCCTGCACTGTGAACACAGCACCTTGAGCTGCG CCGACTCCCCTGCTTCAATGGGGGCTCCTGCCGGGAGCGCAACCAGGGGGCCAACTATGCTT GTGAATGTCCCCCCAACTTCACCGGCTCCAACTGCGAGAAGAAGTGGACAGGTGCACCAGCA ACCCCTGTGCCAACGGGGGACAGTGCCTGAACCGAGGTCCAAGCCGCATGTGCCGCTGCCGTC CTGGATTCACGGGCACCTACTGTGAACTCCACGTCAGCGACTGTGCCCGTAACCCTTGCGCCC ACGGTGGCACTTGCCATGACCTGGAGAATGGGCTCATGTGCACCTGCCCTGCCGGCTTCTCTG GCCGACGCTGTGAGGTGCGGACATCCATCGATGCCTGTGCCTCGAGTCCCTGCTTCAACAGGG CCACCTGCTACACCGACCTCTCCACAGACACCTTTGTGTGCAACTGCCCTTATGGCTTTGTGG GCAGCCGCTGCGAGTTCCCCGTGGGCTTGCCGCCCAGCTTCCCCTGGGTGGCCGTCTCGCTGG GTGTGGGGCTGCAGTGCTGGTACTGCTGGGCATGGTGGCAGTGGCTGTGCGGCAGCTGC GGCTTCGACGGCCGGACGCAGCAGGGAAGCCATGAACAACTTGTCGGACTTCCAGAAGG ACAACCTGATTCCTGCCGCCCAGCTTAAAAACACAAACCAGAAGAAGGAGCTGGAAGTGGACT GTGGCCTGGACAAGTCCAACTGTGGCAAACAGCAAAACCACACATTGGACTATAATCTGGCCC CAGGGCCCCTGGGGCGGGGACCATGCCAGGAAAGTTTCCCCACAGTGACAAGAGCTTAGGAG AGAAGGCGCCACTGCGGTTACACAGTGAAAAGCCAGAGTGTCGGATATCAGCGATATGCTCCC CCACGGAGGTA**TAA**GGCAGGAGCCTACCTGGACATCCCTGCTCAGCCCCGCGGCTGGACCTTC CTTCTGCATTGTTTACA

MAAASRSASGWALLLLVALWQQRAAGSGVFQLQLQEFINERGVLASGRPCEPGCRTFFRVCLK
HFQAVVSPGPCTFGTVSTPVLGTNSFAVRDDSSGGGRNPLQLPFNFTWPGTFSLIIEAWHAPG
DDLRPEALPPDALISKIAIQGSLAVGQNWLLDEQTSTLTRLRYSYRVICSDNYYGDNCSRLCK
KRNDHFGHYVCQPDGNLSCLPGWTGEYCQQPICLSGCHEQNGYCSKPAECLCRPGWQGRLCNE
CIPHNGCRHGTCSTPWQCTCDEGWGGLFCDQDLNYCTHHSPCKNGATCSNSGQRSYTCTCRPG
YTGVDCELELSECDSNPCRNGGSCKDQEDGYHCLCPPGYYGLHCEHSTLSCADSPCFNGGSCR
ERNQGANYACECPPNFTGSNCEKKVDRCTSNPCANGGQCLNRGPSRMCRCRPGFTGTYCELHV
SDCARNPCAHGGTCHDLENGLMCTCPAGFSGRRCEVRTSIDACASSPCFNRATCYTDLSTDTF
VCNCPYGFVGSRCEFPVGLPPSFPWVAVSLGVGLAVLLVLLGMVAVAVRQLRLRRPDDGSREA
MNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGLDKSNCGKQQNHTLDYNLAPGPLGRGTMPGK
FPHSDKSLGEKAPLRLHSEKPECRISAICSPRDSMYQSVCLISEERNECVIATEV

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 530-552

N-glycosylation sites.

amino acids 108-112, 183-187, 205-209, 393-397, 570-574, 610-614

Glycosaminoglycan attachment site.

amino acids 96-100

Tyrosine kinase phosphorylation site.

amino acids 340-347

N-myristoylation sites.

amino acids 42-48, 204-210, 258-264, 277-283, 297-303, 383-389, 415-421, 461-467, 522-528, 535-541, 563-569, 599-605, 625-631

Amidation site.

amino acids 471-475

Aspartic acid and asparagine hydroxylation site.

amino acids 339-351

EGF-like domain cysteine pattern signature.

amino acids 173-185, 206-218, 239-251, 270-282, 310-322, 348-360, 388-400, 426-438, 464-476, 506-518

Calcium-binding EGF-like:

amino acids 224-245, 255-276, 295-316, 333-354, 373-394, 411-432, 449-470

FIGURE 89

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGAC TTGACTCCCGCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGC ${\tt CGCCCAGTCCCGGCCCTCTCCCGCCCCACACCCTCCTGGCTCTTCCTGTTTTTACTCC}$ TCCTTTTCATTCATAACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCC GAGCGTGGAAGA**TG**GGGTTCCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATT CAAGCTTTCCCCAAACCTGGAGGAAGCCAAGACAAATCTCTACATAATAGAGAATTAAGTGCA GAAAGACCTTTGAATGAACAGATTGCTGAAGCAGAAGAAGACAAGATTAAAAAAACATATCCT CCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTTTGTTGATAACTTGAACCTGCTAAAGGCA ATAACAGAAAAGGAAAAATTGAGAAAGAAAGACAATCTATAAGAAGCTCCCCACTTGATAAT AAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTGATCGATGATTATGACTCT ACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCATCAACTAGACGGG ACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAGAAAATGAC AGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGCCAA GCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAAC AATTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCA GAGAAAGTGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACA GTATCTAACACTTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGAC AACTTTGAGGAACTCCAATATTTCCCAAATTTCTATGCGCTACTGAAAAGTATTGATTCAGAA AAAGAAGCAAAAGAAAAGAAACACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAG ATGATGGTGAAATATGGAACAATATCTCCAGAAGAAGGTGTTTCCTACCTTGAAAACTTGGAT GAAATGATTGCTCTTCAGACCAAAAACAAGCTAGAAAAAAATGCTACTGACAATATAAGCAAG AAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAAGATGATAACTCCAACCCAGGA GGAAAGACAGATGAACCCAAAGGAAAAAACAGAAGCCTATTTGGAAGCCATCAGAAAAAATATT GAATGGTTGAAGAAACATGACAAAAAGGGAAATAAAGAAGATTATGACCTTTCAAAGATGAGA GACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAAGAAGCC GAGGCCATCAAGCGCATTTATAGCAGCCTG**TAA**AAATGGCAAAAGATCCAGGAGTCTTTCAAC TGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTGACCC AAGGGTTATTAGAAAGTGCTGAATTTACAGTAGTTAACCTTTTACAAGTGGTTAAAACATAGC AAA

FIGURE 90

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENK
PGQSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSG
LDHKFQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTL
EDEVAEVLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNT
LTLTNGLERRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVK
YGTISPEEGVSYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEK
EYGSLKDSTKDDNSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFIN
KQADAYVEKGILDKEEAEAIKRIYSSL

Important features:

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

FIGURE 91

 $\mathsf{TGCATCAGTGCCCAGGCAAGCCCAGGAGTTGACATTTCTCTGCCCAGCC\mathbf{ATG}\mathsf{GGCCTCACCCT}$ GCTCTTGCTGCTCCTGGGACTAGAAGGTCAGGGCATAGTTGGCAGCCTCCCTGAGGTGCT GCAGGCACCCGTGGGAAGCTCCATTCTGGTGCAGTGCCACTACAGGCTCCAGGATGTCAAAGC TCAGAAGGTGTGCCGGTTCTTGCCGGAGGGGTGCCAGCCCCTGGTGTCCTCAGCTGTGGA GGAAATGGTTACCCTGCAGGAAGAGGATGCTGGCGAGTATGGCTGCATGGTGGATGGGGCCAG GGGGCCCCAGATTTTGCACAGAGTCTCTCTGAACATACTGCCCCCAGAGGAAGAAGAAGAAGAC GGAACCCAGCCAGGATGAGAAGAGCATCCCCTTGATCTGGGGTGCTGTGCTCCTGGTAGGTCT GCTGGTGGCAGCGGTGGTGCTGTTTGCTGTGATGGCCAAGAGGAAACAAGAATCCCTCCTCAG $\mathsf{TGGTCCACCACGTCAG}$ TGA $\mathsf{CTCTGGACCGGCTGCTGAATTGCCTTTGGATGTACCACACATTA$ GGCTTGACTCACCACCTTCATTTGACAATACCACCTACACCAGCCTACCTCTTGATTCCCCAT CAGGAAAACCTTCACTCCCAGCTCCATCCTCATTGCCCCCCTCTACCTCCTAAGGTCCTGGTCT GGATCCTTAGGATATCTGAGCAACCAGGGACTTTAAGATCTAATCCAATGTCCTAACTTTACT AGGGAAAGTGACGCTCAGACATGACTGAGATGTCTTGGGGAAGACCTCCCTGCACCCAACTCC

FIGURE 92

MGLTLLLLLLGLEGQGIVGSLPEVLQAPVGSSILVQCHYRLQDVKAQKVWCRFLPEGCQPLV SSAVDRRAPAGRRTFLTDLGGGLLQVEMVTLQEEDAGEYGCMVDGARGPQILHRVSLNILPPE EEEETHKIGSLAENAFSDPAGSANPLEPSQDEKSIPLIWGAVLLVGLLVAAVVLFAVMAKRKQ ESLLSGPPRQ

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 161-181

N-myristoylation sites.

amino acids 17-23, 172-178

Amidation site.

amino acids 73-79

GGCGGCGTTGCCGGGCTCTCCGGAAGGAGACGTGGCGGCGGTTGGGCCGGTGATACCCGGGCG CTTTATAGTCCCGCCGCCTCCTCCTCCACCTCCTCCTCCTCCTCCTCCTGGGGCAGAG GAGGTTGTGGCGGTGGCTGGAGAAAGCGGCGGCGGAGGAT**G**GAGGAAGGAGGCGGCGGCGTAC GGAGTCTGGTCCCGGGCGGCCGGTGTTACTGGTCCTCTGCGGCCTCCTGGAGGCGTCCGGCG GCGCCGAGCCCTTCCTCAACTCAGCGATGACATCCCTTTCCGAGTCAACTGGCCCGGCACCG AGTTCTCTCTGCCCACAACTGGAGTTTTATATAAAGAAGATAATTATGTCATCATGACAACTG CACATAAAGAAAATATAAATGCATACTTCCCCTTGTGACAAGTGGGGATGAGGAAGAAAA AGGATTATAAAGGCCCTAATCCAAGAGAGCTTTTTGGAGCCACTATTTAAACAAAGCAGTTGTT CCTACAGAATTGAGTCTTATTGGACTTACGAAGTATGTCATGGAAAACACATTCGGCAGTACC ATGAAGAAAAGAAACTGGTCAGAAAATAAATATTCACGAGTACTACCTTGGGAATATGTTGG CCAAGAACCTTCTATTTGAAAAAGAACGAGAAGCAGAAGAAAAAGGAAAAATCAAATGAGATTC CCACTAAAAATATCGAAGGTCAGATGACACCATACTATCCTGTGGGAATGGGAAATGGTACAC CTTGTAGTTTGAAACAGAACCGGCCCAGATCAAGTACTGTGATGTACATATGTCATCCTGAAT CTAAGCATGAAATTCTTTCAGTAGCTGAAGTTACAACTTGTGAATATGAAGTTGTCATTTTGA CACCACTCTTGTGCAGTCATCCTAAATATAGGTTCAGAGCATCTCCTGTGAATGACATATTTT GTCAATCACTGCCAGGATCTCCATTTAAGCCCCTCACCCTGAGGCAGCTGGAGCAGCAGGAAG AAATACTAAGGGTGCCTTTTAGGAGAAATAAAGAGGGTGTCGGTTGGTGGAAATATGAATTCT GCTATGGCAAACATGTACATCAATACCATGAGGACAAGGATAGTGGGAAAACCTCTGTGGTTG TCGGGACATGGAACCAAGAAGAGCATATTGAATGGGCTAAGAAGAATACTGCTAGAGCTTATC ATCTTCAAGACGATGGTACCCAGACAGTCAGGATGGTGTCACATTTTTATGGAAATGGAGATA TTTGTGATATAACTGACAAACCAAGACAGGTGACTGTAAAACTAAAGTGCAAAGAATCAGATT CACCTCATGCTGTTACTGTATATATGCTAGAGCCTCACTCCTGTCAATATATTCTTGGGGTTG $\texttt{AC} \underline{\textbf{TAA}} \texttt{AGGATATTAAAGTTAGGGGAAAGAAAAGATCATTGAAAGTCATGATAATTTCTGTCCC}$ ACTGTGTCTCATTATAGAGTTCTCAGCCATTGGACCTCTTCTAAAGGATGGTATAAAATGACT CTCAACCACTTTGTGAATACATATGTGTATATAAGAGGTTATTGATAAACTTCTGAGGCAGAC TACTGTGATTCCAAAATAAATCTCATCCAAGCAAGTTAGAGTCCAGCCTAATCAAATGTCATA ATTGTTGTACCTATTGAAAGTTTTTTAAATAATAGATTTATTATGTAAATTATAGTATATGTAA GTAGCTAATGAAGTAAAGATCATGAAGAAAGAAATTGATAGGTGTAAATGAGAGACCATGTAA AATATGTAAATTCTAGTACCTGAAATCCTTTCAACAGATTTTTATATAGCAACTGCTCTCTGC AAGTAGTTAAACTAGAAACTGGGCACATGGTAGAGGCTCACATGGGAGTTGTCCTCACCCTTG TTAATCTCAAGAAACTCTTATTTATAATAGGTTGCTTCTCTCAGAACTTTTATCTATTACT TTCTGAGACTCAGAATGGTTTACTCTAACAAAACACTGTGCTGTCTATCCCTTGTACTTGCCT ATGTCCACAAGCAAAAA

FIGURE 94

MEEGGGGVRSLVPGGPVLLVLCGLLEASGGGRALPQLSDDIPFRVNWPGTEFSLPTTGVLYKE
DNYVIMTTAHKEKYKCILPLVTSGDEEEEKDYKGPNPRELLEPLFKQSSCSYRIESYWTYEVC
HGKHIRQYHEEKETGQKINIHEYYLGNMLAKNLLFEKEREAEEKEKSNEIPTKNIEGQMTPYY
PVGMGNGTPCSLKQNRPRSSTVMYICHPESKHEILSVAEVTTCEYEVVILTPLLCSHPKYRFR
ASPVNDIFCQSLPGSPFKPLTLRQLEQQEEILRVPFRRNKEGVGWWKYEFCYGKHVHQYHEDK
DSGKTSVVVGTWNQEEHIEWAKKNTARAYHLQDDGTQTVRMVSHFYGNGDICDITDKPRQVTV
KLKCKESDSPHAVTVYMLEPHSCQYILGVESPVICKILDTADENGLLSLPN

Important features of the protein:

Signal peptide:

amino acids 1-30

Glycosaminoglycan attachment site.

amino acids 28-32

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 337-341

N-myristoylation sites.

amino acids 6-12, 23-29, 29-35, 49-55, 141-147, 152-158, 192-198, 196-202

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 54-60

TTCCGTTTCTGGGAGGAGTGAGGGGCAACGGGTCGGAGAAAAAGGAAAAAAGAAGGGCTCAGC GCCTCCCCGCCGGGCCGTGGACAGAGGGGCACAGTTTCGGCAGGCGGGTGAGGTCGCTGAGGG CCCGCCGGAG**ATG**TTTTCCTTGTCGAGCACGGTGCAACCCCAGGTTACAGTTCCTCTGAGTCA TCTCATCAATGCCTTCCATACACCAAAAAACACTTCTGTTTCTCTCAGTGGAGTGTCAGTTTC TCAAAACCAGCATCGAGATGTAGTTCCTGAGCATGAGGCTCCCAGCAGTGAGCCTTCACTTAA CTTAAGGGACCTTGGATTATCTGAACTAAAAATTGGACAGATTGATCAGCTGGTAGAAAATCT ACTTCCTGGATTTTGTAAAGGCAAAAACATTTCTTCCCATTGGCATACATCCCATGTCTCTGC ACAATCCTTCTTTGAAAATAAATATGGTAACTTAGATATATTTAGTACATTACGTTCCTCTTG CTTGTATCGACATCATTCAAGAGCTCTTCAAAGCATTTGTTCAGATCTTCAGTACTGGCCAGT TTTCATACAGTCTCGGGGTTTTAAAACTTTGAAATCAAGGACACGACGTCTCCAGTCTACCTC CGAGAGATTAGCTGAAACACAGAATATAGCGCCATCATTCGTGAAGGGGTTTCTTTTGCGGGA CAGAGGATCAGATGTTGAGAGTTTGGACAAACTCATGAAAACCAAAAATATACCTGAAGCTCA CCAAGATGCATTTAAAACTGGTTTTGCGGAAGGTTTTCTGAAAGCTCAAGCACTCACACAAAA AACCAATGATTCCCTAAGGCGAACCCGTCTGATTCTCTTCGTTCTGCTGCTATTCGGCATTTA TGGACTTCTAAAAAACCCATTTTTATCTGTCCGCTTCCGGACAACAACAGGGCTTGATTCTGC AGTAGATCCTGTCCAGATGAAAAATGTCACCTTTGAACATGTTAAAGGGGTGGAGGAAGCTAA ACAAGAATTACAGGAAGTTGTTGAATTCTTGAAAAATCCACAAAAATTTACTATTCTTGGAGG TAAACTTCCAAAAGGAATTCTTTTAGTTGGACCCCCAGGGACTGGAAAGACACTTCTTGCCCG AGCTGTGGCGGAGAAGCTGATGTTCCTTTTTATTATGCTTCTGGATCCGAATTTGATGAGAT GTTTGTGGGTGTGGGAGCCAGCCGTATCAGAAATCTTTTTAGGGAAGCAAAGGCGAATGCTCC TTGTGTTATATTTATTGATGAATTAGATTCTGTTGGTGGGAAGAAATTGAATCTCCAATGCA AGGAGTTATCATAATAGGAGCCACAAACTTCCCAGAGGCATTAGATAATGCCTTAATACGTCC TGGTCGTTTTGACATGCAAGTTACAGTTCCAAGGCCAGATGTAAAAGGTCGAACAGAAATTTT GAAATGGTATCTCAATAAAATAAAGTTTGATCAATCCGTTGATCCAGAAATTATAGCTCGAGG TACTGTTGGCTTTTCCGGAGCAGTTGGAGAATCTTGTGAACCAGGCTGCATTAAAAGCAGC TGTTGATGGAAAAGAAATGGTTACCATGAAGGAGCTGGAGTTTTCCAAAGACAAAATTCTAAT GGGGCCTGAAAGAAGAAGTGTGGAAATTGATAACAAAAACAAAACCATCACAGCATATCATGA ATCTGGTCATGCCATTATTGCATATTACACAAAAGATGCCAATGCCTATCAACAAAGCTACAAT CATGCCACGGGGCCAACACTTGGACATGTGTCCCTGTTACCTGAGAATGACAGATGGAATGA AACTAGAGCCCAGCTGCTTGCACAAATGGATGTTAGTATGGGAGGAAGAGTGGCAGAGGAGCT TATATTTGGAACCGACCATATTACAACAGGTGCTTCCAGTGATTTTGATAATGCCACTAAAAT AGCAAAGCGGATGGTTACCAAATTTGGAATGAGTGAAAAGCTTGGAGTTATGACCTACAGTGA TACAGGGAAACTAAGTCCAGAAACCCAATCTGCCATCGAACAAGAAATAAGAATCCTTCTAAG GGACTCATATGAACGAGCAAAACATATCTTGAAAACTCATGCAAAGGAGCATAAGAATCTCGC AGAAGCTTTATTGACCTATGAGACTTTGGATGCCAAAGAGATTCAAATTGTTCTTGAGGGGAA AAAGTTGGAAGTGAGA**TGA**TAACTCTCTTGATATGGATGCTTGCTGGTTTTATTGCAAGAATA TAAGTAGCATTGCAGTAGTCTACTTTTACAACGCTTTCCCCCTCATTCTTGATGTGGTGTAATT GAAGGGTGTGAAATGCTTTGTCAATCATTTGTCACATTTATCCAGTTTGGGTTATTCTCATTA TGACACCTATTGCAAATTAGCATCCCATGGCAAATATATTTTTGAAAAAATAAAGAACTATCAG GATTGAAAACAAAAAAAAAAA

MFSLSSTVQPQVTVPLSHLINAFHTPKNTSVSLSGVSVSQNQHRDVVPEHEAPSSEPSLNLRD
LGLSELKIGQIDQLVENLLPGFCKGKNISSHWHTSHVSAQSFFENKYGNLDIFSTLRSSCLYR
HHSRALQSICSDLQYWPVFIQSRGFKTLKSRTRRLQSTSERLAETQNIAPSFVKGFLLRDRGS
DVESLDKLMKTKNIPEAHQDAFKTGFAEGFLKAQALTQKTNDSLRRTRLILFVLLLFGIYGLL
KNPFLSVRFRTTTGLDSAVDPVQMKNVTFEHVKGVEEAKQELQEVVEFLKNPQKFTILGGKLP
KGILLVGPPGTGKTLLARAVAGEADVPFYYASGSEFDEMFVGVGASRIRNLFREAKANAPCVI
FIDELDSVGGKRIESPMHPYSRQTINQLLAEMDGFKPNEGVIIIGATNFPEALDNALIRPGRF
DMQVTVPRPDVKGRTEILKWYLNKIKFDQSVDPEIIARGTVGFSGAELENLVNQAALKAAVDG
KEMVTMKELEFSKDKILMGPERRSVEIDNKNKTITAYHESGHAIIAYYTKDAMPINKATIMPR
GPTLGHVSLLPENDRWNETRAQLLAQMDVSMGGRVAEELIFGTDHITTGASSDFDNATKIAKR
MVTKFGMSEKLGVMTYSDTGKLSPETQSAIEQEIRILLRDSYERAKHILKTHAKEHKNLAEAL
LTYETLDAKEIQIVLEGKKLEVR

Important features of the protein:

Transmembrane domain:

amino acids 238-259

N-glycosylation sites.

amino acids 28-32, 90-94, 230-234, 278-282, 535-539, 584-588, 623-627

N-myristoylation sites.

amino acids 35-41, 266-272, 286-292, 325-331, 357-363, 599-605

Amidation site.

amino acids 387-393, 709-713

ATP/GTP-binding site motif A (P-loop).

amino acids 322-330

AAA-protein family proteins

amino acids 315-336, 343-386, 405-451

FIGURE 97

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGG GACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTATATGCGTCAATTCCCCAAA CCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACG ACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAG $\texttt{GCTTGGCAGTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAG} \textbf{\underline{ATG}} \textbf{AAAGCCTCTAGT}$ CTTGCCTTCAGCCTTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAG ACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCT GAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACT GAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTC TATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGC AGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCATGCCCACATGACA TGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTG ${\tt GAGACAGAA} {\color{red}{\textbf{TAG}}} {\tt GAGGAAAGTGATGCTGCTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCT}$ TCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACTGTACTAGTCTTGTGCT GGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGATTGTCTTTATGCATCCCC AATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTTTCTGCTATTGGATATATT AAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAGAGCAGGTGATGTATTTTTAT ACAGTAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCTAGGGGGGTTATTCATTTGTAT TCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGATATTTGAAATTGAACCAATGAC TACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCACATCTACCTTACAATTACTG

MKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNGFSEIRGSVQAKDGNIDIR ILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKISSLANSFLTIKKDLRLC HAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEETE

Signal sequence:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 107-110, 140-143

N-myristoylation site.

amino acids 51-56

Interleukin 10:

amino acids 9-176

FIGURE 99

GCGCCGGCTCCGCGCCCAGTCCGCGGGCCGCCGCCGCCGCCGCCGCCGCCG CTCCCGCAGCCGCCCGCCCGCGCGCGCGCGTCCCTAGGCCTGGCTCCCGCCTGCC ${\tt CGAGACCCGCCAGCCTGCCCCGCTCAGCCGCCAGAGAAG} {\color{red} {\bf ATG}} {\tt CGGCTGCTCCCGGAATGGTT}$ CCTCTTGCTCTTTGGCCCGTGGCTCCTTAGGAAGGCCGTCAGTGCCCAGATACCAGAGTCCGG AAGGCCGCAGTACCTGGGGCTGCGCCCGCCGGCCGGGCCGGGCGGTGCCCCCGGCCAGCAGCT CCCAGAGCCAAGGTCTTCGGACGGCCTAGGCGTGGGCCGCCCTGGAGCTGGCCGAC CAACCACACGGGGCGCTGGCCCGGGCAGGGGCAGCCGGGGGCGTTGCCCGCGCAGCGCACCAA GAGGAAGCCGTCCATCAAGGCGGCGCGCCCAAAAAGATCTTCGGCTGGGGGGACTTCTACTT TCGGGTGCATACCCTCAAGTTTTCGCTGCTGGTGACCGGCAAGATCGTGGACCATGTGAACGG TACCTTCAGTGTGTATTTCCGCCACAACTCGTCCAGCCTGGGCAACCTCAGTGTCAGCATCGT GCCGCCTCCAAGCGTGTCGAGTTCGGAGGAGTCTGGCTGCCCGGGCCTGTCCCCCACCCTCT GCAGTCTACGCTCGCCCTGGAGGGGGTGCTTCCTGGGCTGGGGCCCCCGCTGGGGATGGCAGC AGCAGCGGGGGCCGGGGCTTGGGGGGCTCCCTCGGGGGGCCACTGGCGGGGCCGCTTGGGGG CGCGTTGGGAGTGCCTGGGGCCAAAGAGTCACGCGCTTTCAATTGCCACGTGGAGTATGAGAA GACAAACCGCGCGCAAGCACCGACCGTGCCTGTACGACCCGTCGCAGGTGTTTTCACCGA GCACACGCAGAGCCAGGCCGCCTGGCTCTGTGCCAAGCCCTTCAAAGTCATCTGTATCTTCGT CTCTTTCCTCAGCTTTGACTACAAACTGGTGCAGAAGGTGTGCCCAGACTATAACTTCCAGAG $\mathsf{TGAGCACCCCTACTTCGGA}$ TAG $\mathsf{CGCCCCCCCCCCCAGCCAGTCCTGAGCCTCCCGCCAAATCCCA$ GCCTCACTAGGTGGGACCCCCTTCCCAGTGTTCTGCCGCTCCTGTGGCCATGTCGCCCACTCC TTCCACTCTGGGGGGGGGGGGGGATGGCTTCTCGGGGACCCTCAGCTAGCGTGGGTGCCCTTTT CCTTATGCGGAGTGCCCGCAAGGCTGGGGTAGCCCCCTCCAGTACACCCCAAAGTGAAAGGGA TAAGAGTGCAGCCCCAGAATAGGCGGGGCTTGGAGGCGGTCCCAATGTCCCCTGGGTCCACAG TGGGTCCCCTTTCACCCTTGGCGCTAGGCTGCGCACTCCCTTTCCCCGCAGCTTTAATAACT CCTGGCCTGGCACCCTCACCCCACCCTGACTTTCCCATCCCCAGCGCTTGTCCTGCTTCACC CATATGCCTGTCCCCTTTTCCTCCAAACCCTATTAGGGTACCGGAAGCAGAACCCCTGGGCTG AGGCCCTGCCCCGGCCCCTGCCCCTGCCCCCCCCCCCAGTCCAGGCAGTCGAGC TCCACCTGCCCTCTCCTGCTTCCTCTCGGTGATATTTTTTCTACGCCAAAACAGACGGGA AAAAAAAAAAAAA

FIGURE 100

MRLLPEWFLLLFGPWLLRKAVSAQIPESGRPQYLGLRPAAAGAGAPGQQLPEPRSSDGLGVGR AWSWAWPTNHTGALARAGAAGALPAQRTKRKPSIKAARAKKIFGWGDFYFRVHTLKFSLLVTG KIVDHVNGTFSVYFRHNSSSLGNLSVSIVPPSKRVEFGGVWLPGPVPHPLQSTLALEGVLPGL GPPLGMAAAAAGPGLGGSLGGALAGPLGGALGVPGAKESRAFNCHVEYEKTNRARKHRPCLYD PSQVCFTEHTQSQAAWLCAKPFKVICIFVSFLSFDYKLVQKVCPDYNFQSEHPYFG

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 273-288

N-glycosylation sites.

amino acids 72-76, 133-137, 143-147, 149-153

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 93-97

N-myristoylation sites.

amino acids 35-41, 58-64, 60-66, 81-87, 84-90, 184-190, 194-200, 203-209, 205-211, 206-212, 209-215, 217-223, 221-227, 224-230

Cytochrome b/b6 Qo site signature.

amino acids 5-11

FIGURE 101

GCGTCCGGCCTCAGCCCTCTTCCTCCCCATCAGGGGCAGTGCCCACGTCTTTGGAGCTGCAGC GAGGGACGGATGCCGAACCCTCCAGTCCCCTTCAGAGGCGACTGCAACTCGCCCGGCCGTGC CTGGACTCCCTACAGTGGTCCCTACTCTCGTGACTCCCTCGGCCCCTGGGAATAGGACTGTGG ACCTCTTCCCAGTCTTACCGATCTGTGTCTGTGACTTGACTCCTGGAGCCTGCGATATAAATT GCTGCTGCGACAGGGACTGCTATCTTCTCCATCCGAGGACAGTTTTCTCCTTCTGCCTTCCAG GCAGCGTAAGGTCTTCAAGCTGGGTTTGTGTAGACAACTCTGTTATCTTCAGGAGTAATTCCC CGTTTCCTTCAAGAGTTTTCATGGATTCTAATGGAATCAGGCAGTTTTGTGTCCATGTGAACA CTGCAGAGTTTGGAGGCGAATCATTCACTTCAACATTCCAAACTCAATCACCACCATCTTTTT ACAGGGCTGGGGACCCCATTCTTACTTACTTCCCCAAGTGGTCTGTAATAAGCTTGCTGAGAC AACCTGCAGGAGTTGGAGGGGGGACTCTGTGCTGAAAGCAATCCTGCAGGTTTCCTAGAGA GTAAAAGTACAACTTGCACTCGTTTTTTCAAGAACCTGGCTAGTAGCTGTACCTTGGATTCAG CCCTCAATGCTGCCTCTTACTATAACTTCACAGTCTTAAAGGTTCCAAGAAGCATGACTGATC CACAGAATATGGAGTTCCAGGTTCCTGTAATACTTACCTCACAGGCTAATGCTCCTCTGTTGG CTGGAAACACTTGTCAGAATGTAGTTTCTCAGGTCACCTATGAGATAGAGACCAATGGGACTT CCTTACAGCAACACTTCATCCTTCGCTTCAGGGCTTTTTCAACAGAGCACAGCTGCTTCTCA ATATAAGTTACTCAATGACCCTCTTACAGAGCCAGGGTAATGGAAGTTGCTCTGTTAAAAGAC ATGAAGTGCAGTTTGGAGTGAATGCAATATCTGGATGCAAGCTCAGGTTGAAGAAGGCAGACT GCAGCCACTTGCAGCAGGAGATTTATCAGACTCTTCATGGAAGGCCCAGACCAGAGTATGTTG CCATCTTTGGTAATGCTGACCCAGCCCAGAAAGGAGGGTGGACCAGGATCCTCAACAGGCACT GCAGCATTTCAGCTATAAACTGTACTTCCTGCTGTCTCATACCAGTTTCCCTGGAGATCCAGG TATTGTGGGCATATGTAGGTCTCCTGTCCAACCCGCAAGCTCATGTATCAGGAGTTCGATTCC TATACCAGTGCCAGTCTATACAGGATTCTCAGCAAGTTACAGAAGTATCTTTGACAACTCTTG TGAACTTTGTGGACATTACCCAGAAGCCACAGCCTCCAAGGGGCCAACCCAAAATGGACTGGA AATGGCCATTCGACTTCTTTCCCTTCAAAGTGGCATTCAGCAGAGGAGTATTCTCTCAAAAAT GCTCAGTCTCCCCATCCTTATCCTGTGCCTCTTACTACTTGGAGTTCTCAACCTAGAGACTA TG**TGA**AGAAAAGAAAATAATCAGATTTCAGTTTTCCCTATGAGAAACTCTGAGGCAGCCACTT ATCTTGGCTAAATAGAACCTCACCTGCTCATGACCAGAGAGCATTTAGGATAATAGATGACCT AACTGAAGGAATCCTTGTATATGAAAGGAGTTATTTTAGAAAAGCAATAAAAATATTTTATTC ATCNTAAAAAAAAA

FIGURE 102

MRTPQLALLQVFFLVFPDGVRPQPSSSPSGAVPTSLELQRGTDGGTLQSPSEATATRPAVPGL
PTVVPTLVTPSAPGNRTVDLFPVLPICVCDLTPGACDINCCCDRDCYLLHPRTVFSFCLPGSV
RSSSWVCVDNSVIFRSNSPFPSRVFMDSNGIRQFCVHVNNSNLNYFQKLQKVNATNFQALAAE
FGGESFTSTFQTQSPPSFYRAGDPILTYFPKWSVISLLRQPAGVGAGGLCAESNPAGFLESKS
TTCTRFFKNLASSCTLDSALNAASYYNFTVLKVPRSMTDPQNMEFQVPVILTSQANAPLLAGN
TCQNVVSQVTYEIETNGTFGIQKVSVSLGQTNLTVEPGASLQQHFILRFRAFQQSTAASLTSP
RSGNPGYIVGKPLLALTDDISYSMTLLQSQGNGSCSVKRHEVQFGVNAISGCKLRLKKADCSH
LQQEIYQTLHGRPRPEYVAIFGNADPAQKGGWTRILNRHCSISAINCTSCCLIPVSLEIQVLW
AYVGLLSNPQAHVSGVRFLYQCQSIQDSQQVTEVSLTTLVNFVDITQKPQPPRGQPKMDWKWP
FDFFPFKVAFSRGVFSQKCSVSPILILCLLLLGVLNLETM

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 484-505, 581-600

N-glycosylation sites.

amino acids 78-82, 165-169, 179-185, 279-285, 331-337, 347-351, 410-414, 487-491

N-myristoylation sites.

amino acids 30-36, 41-47, 124-130, 232-238, 236-242, 409-415

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 420-431

FIGURE 103

CCTAATTCTCAAGGTGATGCTATTTAGGAAGTCATAACTCATGTGAGTGGAGCCATGTGGGAT TAAGAAGTGATAGGAGAGCTTGCTGTCTGTCTCTCCTCCACTGTGTGAGGATACAACAGGA AGACAGCCATCTGGTGAGGAAGAGAGGGCCCTCGCCAGATACCGGACCTGCTGACACCTTGAT CTTGGACTTCCCATCTTCCAGGAAGGCCTGACCTCAGTTGTTCCAGGGTAAAGAATTTGGGCA GTGCCCACACCCACGCTGTTGGATAACATTTCTTCACCATACCAGTGAGGGTGAATGTGTACA $\tt CGCCCAGCTTCCTGCCTGTTACTCTCCACAGT{\color{red} \underline{ATG}} \tt CGAAGAATATCCCTGACTTCTAGCCCTG$ CTCTTTGCTTCAACTTCACTATAAAATCATTGTCCAGACCTGGACAGCCCTGGTGTGAAGCGC AGGTCTTCTTGAATAAAATCTTTTCCTTCAGTACAACAGTGACAACAACATGGTCAAACCTC TGGGCCTCCTGGGGAAGAAGGTATATGCCACCAGCACTTGGGGAGAATTGACCCAAACGCTGG GAGAAGTGGGGCGAGACCTCAGGATGCTCCTTTGTGACATCAAACCCCAGATAAAGACCAGTG ATCCTTCCACTCTGCAAGTCGAGATGTTTTGTCAACGTGAAGCAGAACGGTGCACTGGTGCAT CCTGGCAGTTCGCCACCAATGGAGAAATCCCTCCTCTTTGACGCAATGAACATGACCTGGA CAGTAATTAATCATGAAGCCAGTAAGATCAAGGAGACATGGAAGAAGACAGAGGGCTGGAAA AGTATTTCAGGAAGCTCTCAAAGGGAGACTGCGATCACTGGCTCAGGGAATTCTTAGGGCACT $\mathsf{GGGAGGCAATGCCAGAACCGACAGGCAGAAGATCCACC}$ TAG $\mathsf{AGGTGATACCACGGCGGCGCAGAGAGAGATGCAAGAACCAGGCAGAGAAGATCCACC$ AGTTGTTCACCTGTGGTCCTCGATCGCTGACAGCCTTGGCTCCCACTGCTGTGTTTCCCTGA GTCAAGTGGAGGCGGAGCCTGCAATGAGCGGAGATCGCGCCTCTGCATTCCAGTCTTGGCAAC AGAGCAAGACTCCGTCTCAAAAAAAAAAATTTTTTTTCAGTACATATTTTTTAAAAGATAGG GCTGGGCACAGCAGCTCACATCTATAATCCCAACACTTTGGGAGGCCTAGGCAGGAGGATCAC TTGAGCCCAGGAATCTGAAGCTGCAGTGAGCCTTTGCTCGTGAGATTGTGGACCTATGATCCT ACCACCAGCCCACCTGGTTCTAACACCCCCTCCTCTATGTGTGAGAGGGGAGAGAAAAGTG AGGGAGAAAAGAGAGAAAGAACAGAGAGAGAAAATGGAAAATAAGAGGAAATTGGGG GAATTAAACAGAGGGGAGGCATGGATCCCCGGGAGTTAGAAGAGTAGCAGCTTGTGGATTAC CAGTTTTCTGCATTCACCATTTCTCACAGACTAAGTTACTCATAAGCAAACGTGCAATTCACA TTACACTGAAATTCTTCCCTAATACATCATTTGCATTGGAATAAAGTACGGTTTTCAAACAAC TGTTTGTTTTTTGAGACAGAGTCTCACTCTATCTCCCAGGCTGGAGTGTAGTGGTGCGATCC CGGCTCACTGCAACCTCGATCTCCCAGGCTCAAGCGATTCCCCTGCCTCAGCCTCCTGAGTAG CTGGGATTACAGGCATGAGCCACCACGCCCGGCTAATTTTTGTATTTTTAGTAGAGACGGGGT TTCACCCTGTTGGCCAGGCTGGTCTCGAACTACGGACCTCAGGTGATCTGCCCCCCTCAGCCT ACACTTTAACACTGAATGCA

MRRISLTSSPVRLLLFLLLLIALEIMVGGHSLCFNFTIKSLSRPGQPWCEAQVFLNKNLFLQ YNSDNNMVKPLGLLGKKVYATSTWGELTQTLGEVGRDLRMLLCDIKPQIKTSDPSTLQVEMFC QREAERCTGASWQFATNGEKSLLFDAMNMTWTVINHEASKIKETWKKDRGLEKYFRKLSKGDC DHWLREFLGHWEAMPEPTGRRST

Important features of the protein:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 11-30 (possible type II protein)

N-glycosylation site.

amino acids 36-39, 154-157

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 2-5, 182-185, 209-212

Casein kinase II phosphorylation site.

amino acids 86-89, 93-96, 142-145, 185-188

N-myristoylation site.

amino acids 46-51

Amidation site.

amino acids 77-80, 207-210

FIGURE 105

 $\tt TTTTCCGAGTGACCTTCTTG{\color{red} {\bf ATG}} CTGGCTGTTTCTCTCACCGTTCCCCTGCTTGGAGCCATGA$ GTGTTCTGCATCCAAATACGAAGCTGCGACAGGCAGAAAGGCTGTTTGAAAATCAACTTGTTG GACCGGAGTCCATAGCACATATTGGGGATGTGATGTTTACTGGGACAGCAGATGGCCGGGTCG ${ t TAAAACTTGAAAATGGTGAAATAGAGACCATTGCCCGGTTTGGTTCGGGCCCCTTGCAAAACCC}$ GAGATGATGAGCCTGTGTGTGGGAGACCCCTGGGTATCCGTGCAGGGCCCAATGGGACTCTCT TTGTGGCCGATGCATACAAGGGACTATTTGAAGTAAATCCCTGGAAACGTGAAGTGAAACTGC TGCTGTCCTCCGAGACACCCATTGAGGGGAAGAACATGTCCTTTGTGAATGATCTTACAGTCA CTCAGGATGGGAGGAGATTTATTTCACCGATTCTAGCAGCAAATGGCAAAGACGAGACTACC TGCTTCTGGTGATGGAGGGCACAGATGACGGGCGCCTGCTGGAGTATGATACTGTGACCAGGG AAGTAAAAGTTTTATTGGACCAGCTGCGGTTCCCGAATGGAGTCCAGCTGTCTCCTGCAGAAG ACTTTGTCCTGGTGGCAGAAACAACCATGGCCAGGATACGAAGAGTCTACGTTTCTGGCCTGA TGAAGGGCGGGCTGATCTGTTTGTGGAGAACATGCCTGGATTTCCAGACAACATCCGGCCCA GCAGCTCTGGGGGGTACTGGGCCATGTCGACCATCCGCCCTAACCCTGGGTTTTCCATGC TGGATTTCTTATCTGAGAGACCCTGGATTAAAAGGATGATTTTTAAGCTCTTTAGTCAAGAGA CGGTGATGAAGTTTGTGCCGCGGTACAGCCTCGTCCTAGAACTCAGCGACAGCGGTGCCTTCC GGAGAAGCCTGCATGATCCCGATGGGCTGGTGGCCACCTACATCAGCGAGGTGCACGAACACG ATGGGCACCTGTACCTGGGCTCTTTCAGGTCCCCCTTCCTCTGCAGACTCAGCCTCCAGGCTG ${ t TT} {f TAG}$ CCCTCCCAGATAGCTGCCCCTGCCACGCAGGCCCAGGAGTCTTCACACTCAGGCACCAG GCCTGGTCCAGGAGGAGCTGTGGACACAGTCGTGGTTCAAGTGTCCACATGCACCTGTTAGTC CCTGAGAGGTGGTGGGAATGGCTGCTTCATTCCTCGAGGATGCCCGGGCCCCACCTGGGCTTG · TCTTTCTGTTTAGAGGGAAGTGTAACATATCTGCCATGAGGAACATAAATTCATGTAAAGCCA TTTTCTCTTAAACAAAACAAAACTTTCTAAGTACAATCATTCTCTAGGATTTGGGAAGCTCCT TGCACTTGGAACAGGGCTCAGGTGGGTGGAGCAGTAAGGCACTACCCAGAGAGCTTGCTGCTG CGGCCCTGTCCTGCGGCCTCAAAGTTCTTCTTTACTATATAAACGTGCGGTCATACCTTTCT TCGTTGTGGTGGGATGGAAGAGCAGAGGGAGCATGGCCCAGGGGTGTTGAGGCCAGCGGTGA GAGCCGTGTTAGCCAAGACATGGAACTGTGTTCTCAAGGGTTATGTGGGGCGTGGGCTCTCCA GTGAATATCTCCGTGCTGACCATGCTGGAATTGGATGATTCTGCAATTCGGGACCTACTGCAG GGGTCCGTTTAGTAACGTCTTGTCTGTGATCTTTGTTCTTGACCTCTAGACCCCAAGATGTGA ACAGTGCACGTGTTAATGTCATCTTTGCTCATGTGTTATAAGCCCCCAAGTTGCTGTATATTTT CACAAGTATGTCTACACACTGG

FIGURE 106

MLAVSLTVPLLGAMMLLESPIDPQPLSFKEPPLLLGVLHPNTKLRQAERLFENQLVGPESIAH IGDVMFTGTADGRVVKLENGEIETIARFGSGPCKTRDDEPVCGRPLGIRAGPNGTLFVADAYK GLFEVNPWKREVKLLLSSETPIEGKNMSFVNDLTVTQDGRKIYFTDSSSKWQRRDYLLLVMEG TDDGRLLEYDTVTREVKVLLDQLRFPNGVQLSPAEDFVLVAETTMARIRRVYVSGLMKGGADL FVENMPGFPDNIRPSSSGGYWVGMSTIRPNPGFSMLDFLSERPWIKRMIFKLFSQETVMKFVP RYSLVLELSDSGAFRRSLHDPDGLVATYISEVHEHDGHLYLGSFRSPFLCRLSLQAV

Important features of the protein:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 1-21 (possible type II)

N-glycosylation sites.

amino acids 116-119, 152-155

Casein kinase II phosphorylation sites.

amino acids 19-22, 27-30, 98-101, 146-149, 221-224, 286-289, 332-335

N-myristoylation sites.

amino acids 71-76, 92-97, 189-194, 244-249, 338-343

Amidation site.

amino acids 164-167

FIGURE 107

CAGGCCTGAGCTGCCCTCCCACTGCCTTTCCTTCTTCCCGCGAGTCAGAAGCTTCGCGAGGG $\verb|CCCAGAGAGGCGGTGGGGTGGGCGACCCTACGCCAGCTCCGGGGGGGAGAAAGCCCACCCTCT| \\$ $\verb|CCCGCGCCCCAGGAAACCGCCGGCGTTCGGCGCGCAGAGCC| \textbf{ATG} GAATTCTCCTGGCTGG| \\$ AGACGCGCTGGGCCCTTTTACCTGGCGTTCGTGTTCTGCCTGGCCCTGGGGCTGCTGC AGGCCATTAAGCTGTACCTGCGGAGGCAGCGGCTGCTGCGGGACCTGCGCCCCTTCCCAGCGC CCCCCACCCACTGGTTCCTTGGGCACCAGAAGTTTATTCAGGATGATAACATGGAGAAGCTTG AGGAAATTATTGAAAAATACCCTCGTGCCTTCCCTTTCTGGATTGGGCCCTTTCAGGCATTTT TCTGTATCTATGACCCAGACTATGCAAAGACACTTCTGAGCAGAACAGATCCCAAGTCCCAGT ACCTGCAGAAATTCTCACCTCCACTTCTTGGAAAAGGACTAGCGGCTCTAGACGGACCCAAGT GGTTCCAGCATCGTCGCCTACTAACTCCTGGATTCCATTTTAACATCCTGAAAGCATACATTG AGGTGATGGCTCATTCTGTGAAAATGATGCTGGATAAGTGGGAGAAGATTTGCAGCACTCAGG ACACAAGCGTGGAGGTCTATGAGCACATCAACTCGATGTCTCTGGATATAATCATGAAATGCG CTTTCAGCAAGGAGACCAACTGCCAGACAAACAGCACCCATGATCCTTATGCAAAAGCCATAT TTGAACTCAGCAAAATCATATTTCACCGCTTGTACAGTTTGTTGTATCACAGTGACATAATTT TCAAACTCAGCCCTCAGGGCTACCGCTTCCAGAAGTTAAGCCGAGTGTTGAATCAGTACACAG ATACAATAATCCAGGAAAGAAAGAAATCCCTCCAGGCTGGGGTAAAGCAGGATAACACTCCGA AGAGGAAGTACCAGGATTTTCTGGATATTGTCCTTTCTGCCAAGGATGAAAGTGGTAGCAGCT TCTCAGATATTGATGTACACTCTGAAGTGAGCACATTCCTGTTGGCAGGACATGACACCTTGG CAGCAAGCATCTCCTGGATCCTTTACTGCCTGGCTCTGAACCCTGAGCATCAAGAGAGATGCC GGGAGGAGGTCAGGGGCATCCTGGGGGATGGGTCTTCTATCACTTGGGACCAGCTGGGTGAGA ${ t TGGTTCTTAGTATTTGGGGTCTTCACCACAACCCTGCTGTCTGGAAAAACCCAAAGGTCTTTG}$ ACCCCTTGAGGTTCTCTCAGGAGAATTCTGATCAGAGACACCCCTATGCCTACTTACCATTCT CAGCTGGATCAAGGAACTGCATTGGGCAGGAGTTTGCCATGATTGAGTTAAAGGTAACCATTG CCTTGATTCTGCTCCACATTCAGAGTGACTCCAGACCCCACCAGGCCTCTTACTTTCCCCAACC ATTTTATCCTCAAGCCCAAGAATGGGATGTATTTGCACCTGAAGAAACTCTCTGAATGT**TAG**A TCTCAGGGTACAATGATTAAACGTACTTTGTTTTTCGAAGTTAAATTTACAGCTAATGATCCA AGCAGATAGAAAGGGATCAATGTATGGTGGGAGGATTGGAGGTTGGTGGGATAGGGGTCTCTG TGAAGAGATCCAAAATCATTTCTAGGTACACAGTGTGTCAGCTAGATCTGTTTCTATATAACT TTGGGAGATTTTCAGATCTTTTCTGTTAAACTTTCACTACTATTAATGCTGTATACACCAATA GACTTTCATATATTTTCTGTTGTTTTTAAAATAGTTTTTCAGAATTATGCAAGTAATAAGTGCA TGTATGCTCACTGTCAAAAATTCCCCAACACTAGAAAATCATGTAGAATAAAAATTTTAAATCT CACTTCACTTAGCCGACATTCCATGCCCTGACCAATCCTACTGCTTTTCCTAAAAACAGAATA ATTTGGTGTGCATTCTTTCAGACTTTTTCCTATACATTTTATATGTAGAAATGTAGCAATGTA TTTGTATAGATGTGATCATTCCTATATTGTTATTGATTTTTTTCACTTAATAAAAATTCACCT TATTCCTTAAAA

MEFSWLETRWARPFYLAFVFCLALGLLQAIKLYLRRQRLLRDLRPFPAPPTHWFLGHQKFIQD DNMEKLEEIIEKYPRAFPFWIGPFQAFFCIYDPDYAKTLLSRTDPKSQYLQKFSPPLLGKGLA ALDGPKWFQHRRLLTPGFHFNILKAYIEVMAHSVKMMLDKWEKICSTQDTSVEVYEHINSMSL DIIMKCAFSKETNCQTNSTHDPYAKAIFELSKIIFHRLYSLLYHSDIIFKLSPQGYRFQKLSR VLNQYTDTIIQERKKSLQAGVKQDNTPKRKYQDFLDIVLSAKDESGSSFSDIDVHSEVSTFLL AGHDTLAASISWILYCLALNPEHQERCREEVRGILGDGSSITWDQLGEMSYTTMCIKETCRLI PAVPSISRDLSKPLTFPDGCTLPAGITVVLSIWGLHHNPAVWKNPKVFDPLRFSQENSDQRHP YAYLPFSAGSRNCIGQEFAMIELKVTIALILLHFRVTPDPTRPLTFPNHFILKPKNGMYLHLK KLSEC

Important features of the protein:

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 310-330, 397-413, 459-473

N-glycosylation site.

amino acids 206-210

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 265-269, 504-520

N-myristoylation sites.

amino acids 25-31, 298-304, 353-359, 450-456, 456-462

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 447-457

Cytochrome P450 cysteine heme-iron ligand proteins.

amino acids 444-475

FIGURE 109

GGCGTTCCGGGCCTCAACTTTGGCGTCGTGAGATTCTTGTGAGGCGTCTGCCTGGAAGCCGGC AGCAATTTTGCTTCTTTAAAGAGAAAAAGAAGGCTAGGGACTCAGATTCCTGGATTCTGAGAT $\verb|CCAGACCAGCTCCCAGACCTCTCCAGAAGAAGCC| \textbf{ATG} \\ \texttt{GGAACCCCTCGTATCCAGCATTT}|$ GCTGATCCTCCTGGTCCTAGGAGCCTCCCTCCTGACCTCGGGCCTAGAGCTGTATTGTCAAAA GGGTCTGTCCATGACTGTGGAAGCAGATCCAGCCAATATGTTTAACTGGACCACAGAGGAAGT GGAGACTTGTGACAAAGGGGCACTTTGCCAGGAAACCATACTAATAATTAAAGCAGGGACTGA GACAGCCATTTTGGCCACGAAGGGCTGCATCCCGGAAGGGGAGGAGGCCATAACAATTGTCCA GCACTCTTCACCTCCCGGCCTGATCGTGACCTCCTACAGTAACTACTGTGAGGATTCCTTCTG TAATGACAAAGACAGCCTGTCTCAGTTTTGGGAGTTCAGTGAGACCACAGCTTCCACTGTGTC AACAACCCTCCATTGTCCAACCTGTGTGGGCTTTTGGGGACCTGTTTCAGTGCTCCTTCTCTCC CTGTCCCAATGGTACAACTCGATGCTATCAAGGAAAACTTGAGATCACTGGAGGTGGCATTGA GTCGTCTGTGGAGGTCAAAGGCTGTACAGCCATGATTGGCTGCAGGCTGATGTCTGGAATCTT GACTGAAAATGGGGCCACCTGTCTTCCCATTCCTGTTTGGGGGGTTACAGCTACTGCTGCCATT $\texttt{GCTGCTGCCATCATTTATTCACTTTTCC} \underline{\textbf{TAA}} \texttt{GAAGGCACTTCTGGGCCTGGGTCTGAGGACAT}$ CTTTTTTGACTGGGAGCCTTCTTACTGTTGAGGTTCAACAAGCTGAGGAGTAGATGGGAATTT GAGGGAGAATACAGAGATACTATGAACGTATTTGACATTTTTAATACAATTTCTGCTATAATT TTTGTATGCAGTAGGCGTTACTAATAAACATTTCTGCTGTGA

FIGURE 110

MGTPRIQHLLILLVLGASLLTSGLELYCQKGLSMTVEADPANMFNWTTEEVETCDKGALCQET ILIIKAGTETAILATKGCIPEGEEAITIVQHSSPPGLIVTSYSNYCEDSFCNDKDSLSQFWEF SETTASTVSTTLHCPTCVALGTCFSAPSLPCPNGTTRCYQGKLEITGGGIESSVEVKGCTAMI GCRLMSGILAVGPMFVREACPHQLLTQPRKTENGATCLPIPVWGLQLLLPLLLPSFIHFS

Important features of the protein:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 184-201

N-glycosylation sites.

amino acids 45-49, 159-163

N-myristoylation sites.

amino acids 31-37, 70-76, 99-105, 147-153, 160-166, 174-180, 175-181

FIGURE 111

CGAGAAGAGGACAGAGGAGACTGAGCAAAGGGGGGTGGGCTCCAGGCGACCCCTAGCCCAATTCTGCCCCTCCAT TCTGAGGCCCTGGCTGAACTGCTTCATGGGGCCCTGCTGAGGAGGGGCCCAGAGATGGGCTACCTGCCAGGATCT CCGGGGACAGGGCCTCTGACAACAGCCGTCACCCCTAACGGGGTCAGGGGGGCAGGCCCCACTGCGCCAGAACTG CTGACCCCGCCCCAGGAACCACAGCCCCACCCCACCCTGCCTCCCCAGGGCCTCCCCTTGGGCCTGAG GGAGGAGAGGAGGACGACCACCATCATCACCACGACAACTGTTACCACTACGGTGACCAGCCCAGTTCTG TGTAATAACAACATCTCCGAGGGCGAAGGGTATGTGGAGTCTCCAGATCTGGGGAGCCCCGTCAGCCGCACCCTG GGGCTCCTGGACTGCACTTACAGCATCCATGTCTACCCTGGCTACGGCATTGAGATCCAGGTGCAGACGCTGAAC CAGGGAGAGACCCTCATCTGCCTCAATGGCACCCGGCCATCCTGGAACGGTGAAACCCCCAGCTGCATGGCA AACCTCACCTGCCGTTGGGTCATTGAAGCAGCTGAGGGGCCCGGCTGCACCTGCACTTTGAAAGGGTCTCGCTG GATGAGGACAATGACCGGCTGATGGTGCGCTCAGGGGGGCCCCCCTATCCCCCGTGATCTATGATTCGGACATG GACGATGTCCCCGAGCGGGGTCTCATCAGTGACGCCCAGTCCCTCTACGTGGAGCTGCTGTCAGAGACACCTGCC AATCCCCTGCTGTTAAGCCTTCGATTTGAAGCCTTTGAGGAGGATCGCTGCTTCGCCCCCTTCCTGGCACATGGA AATGTCACTACCACGGACCCTGAGTATCGCCCAGGGGCACTTGGCAACCTTCTCGTGCCTCCCAGGATATGCCCTG GAGCCCCCTGGGCCCCCAATGCCATCGAATGTGTGGATCCCACAGAACCCCACTGGAACGACACAGAGCCGGCC TGCAAAGCCATGTGTGGAGGGGAGCTGTCGGAACCAGCTGGCGTGGTCCTCTCCCCGACTGGCCCCAGAGCTAT AGCCCGGGCCAAGACTGCGTGTGGGGCGTGCACGTCCAGGAAGAAGCGCATCTTGCTCCAAGTTGAGATATTG GGACCTCAGCCGCCGCCGCCTTCTCTCTCTGGGCCCGACCTCACACTGCAGTTTCAGGCACCGGGCCC CCAAATCCAGGCCTGGGCCAGGGCTTCGTATTGCACTTCAAAGAGGTCCCGAGGAACGACACGTGCCCCGAGCTG $\verb|CCACCTCCGGAGTGGGGCTGGAGAACGGCATCCCACGGGGGACCTGATCCGGGGCACGGTGCTCACCTACCAGTGC|\\$ GAGCCTGGCTACGAGCTGCTAGGCTCCGACATTCTCACTTGCCAGTGGGACCTGTCTTGGAGCGCCGCCGCCC GCCTGCCAAAAGATCATGACTTGTGCTGACCCTGGCGAGATTGCCAACGGGCACCGCACCGCCTCGGACGCCGGC TTCCCCGTTGGCTCCACGTCCAGTACCGCTGCCTGCCAGGGTACAGCCTCGAGGGGGCAGCCATGCTCACCTGC TACAGCCGGGACACAGGCACACCCAAGTGGAGCGATAGGGTCCCCAAATGCGCCTTGAAGTACGAGCCGTGCCTG TTCTGCTATGAGGGCTTTGAGCTTATCGGCGAGGTCACCATCACCTGTGTGCCCGGCCCACCCCTCCCAGTGGACC GCCATCCTGCTGCCTCTAGGCTTGGTCATTGTCCTCGGCAGTGGCGTTTACATCTACTACACCAAGCTTCAGGGA AAGTCCCTTTTCGGCTTCTCGGGCTCCCACTCCTACAGCCCCATCACCGTGGAGTCGGACTTCAGCAACCCGCTG CCCTCCCTCATTCGGGCAGAGGGAAATACGGGACCCGGTCTCTGCCTCCTGGCTGCCTCCCTGGCTG CCGCCCAAAAA

FIGURE 112

MGTPRAQHPPPPQLLFLILLSCPWIQGLPLKEEEILPEPGSETPTVASEALAELLHGALLRRG PEMGYLPGSDPDPTLATPPAGQTLAVPSLPRATEPGTGPLTTAVTPNGVRGAGPTAPELLTPP PGTTAPPPPSPASPGPPLGPEGGEEETTTTIITTTTTTTTTTTTTTTTTTTTSPVLCNNNISEGEGYVESPDL GSPVSRTLGLLDCTYSIHVYPGYGIEIQVQTLNLSQEEELLVLAGGGSPGLAPRLLANSSMLG EGQVLRSPTNRLLLHFQSPRVPRGGGFRIHYQAYLLSCGFPPRPAHGDVSVTDLHPGGTATFH CDSGYQLQGEETLICLNGTRPSWNGETPSCMASCGGTIHNATLGRIVSPEPGGAVGPNLTCRW VIEAAEGRRLHLHFERVSLDEDNDRLMVRSGGSPLSPVIYDSDMDDVPERGLISDAQSLYVEL LSETPANPLLLSLRFEAFEEDRCFAPFLAHGNVTTTDPEYRPGALATFSCLPGYALEPPGPPN AIECVDPTEPHWNDTEPACKAMCGGELSEPAGVVLSPDWPQSYSPGQDCVWGVHVQEEKRILL QVEILNVREGDMLTLFDGDGPSARVLAQLRGPQPRRRLLSSGPDLTLQFQAPPGPPNPGLGQG FVLHFKEVPRNDTCPELPPPEWGWRTASHGDLIRGTVLTYQCEPGYELLGSDILTCQWDLSWS AAPPACQKIMTCADPGEIANGHRTASDAGFPVGSHVQYRCLPGYSLEGAAMLTCYSRDTGTPK WSDRVPKCALKYEPCLNPGVPENGYQTLYKHHYQAGESLRFFCYEGFELIGEVTITCVPGHPS QWTSQPPLCKVTQTTDPSRQLEGGNLALAILLPLGLVIVLGSGVYIYYTKLQGKSLFGFSGSH SYSPITVESDFSNPLYEAGDTREYEVSI

Important features of the protein:

Signal peptide:

amino acids 1-27

Transmembrane domain:

amino acids 842-864

N-glycosylation sites.

amino acids 176-180, 222-226, 247-251, 332-336, 355-359, 373-377, 473-477, 517-521, 641-645

Tyrosine kinase phosphorylation site.

amino acids 61-69

N-myristoylation sites.

amino acids 2-8, 84-90, 111-117, 114-120, 190-196, 198-204, 235-241, 309-315, 333-339, 351-357, 472-478, 484-490, 528-534, 626-632, 665-671, 775-781, 842-848

Amidation site.

amino acids 384-388

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 12-23

CUB domain proteins profile.

amino acids 202-218, 376-392, 553-569

FIGURE 113

GGCGCCGCGGAGCAGGAGGCGCCCCGTCGGGGTGCTCGGGCCGCGCGGGAGCCCACTGTGGGGCTCGGGCATG CCGTCGCCGCCGCGGGGCGTGAGCGCCGAGCCACCGCCGCTACCTCAGCCCTTCGCGAAGCGCCGGGCA GCTCGGGAAC**ATG**GCCCTGGAGCGGCTCTGCTCGGTCCTCAAAGTGTTGTTAATAACAGTACTGGTAGTGGAAGG GATTGCCGTGGCCCAAAAAACCCCAAGATGGACAAAATATTGGAATCAAGCATATTCCTGCAACCCAGTGTGGCAT TTGGGTTCGAACCAGCAATGGAGGTCATTTTGCTTCGCCAAATTATCCTGACTCATATCCACCAAACAAGGAGTG TATCTACATTTTGGAAGCTGCTCCACGTCAAAGAATAGAGTTGACCTTTGATGAACATTATTATATAGAACCATC ATTTGAGTGTCGGTTTGATCACTTGGAAGTTCGAGATGGGCCATTTGGTTTCTCTCCTCTTATAGATCGTTACTG TGGCGTGAAAAGCCCTCCATTAATTAGATCAACAGGGAGATTCATGTGGATTAAGTTTAGTTCTGATGAAGAGCT TCCCATTCCAGATTGTCAGTTCGAGCTCTCGGGAGCTGATGGAATAGTGCGCTCTAGTCAGGTAGAACAAGAGGA GTTCCTAGATTATCAAATGGAGCACTCAAATGAATGCAAGAGAAACTTCGTTGCAGTCTATGATGGAAGCAGTTC TATTGAAAACCTGAAGGCCAAGTTTTGCAGCACTGTGGCCAATGATGTAATGCTTAAAACAGGAATTGGAGTGAT ${\tt CACAAGCAGCACTTTCTTTTGCCATAGCAACATGTGCATCAATAATTCTTTAGTCTGTAATGGTGTCCAAAATTG}$ TGGAACAATTATTGGCATTACTTCAGGGATTGTCTTGGTCCTTCTCATTATTTCTATTTTAGTACAAGTGAAACA GCCTCGAAAAAGGTCATGGCTTGCAAAACCGCTTTTAATAAAACCGGGTTCCAAGAAGTGTTTGATCCTCCTCA TTATGAACTGTTTTCACTAAGGGACAAAGAGATTTCTGCAGACCTGGCAGACTTGTCGGAAGAATTGGACAACTA $\verb|CCAGAAGATGCGGCGCTCCCACCGCTGCATCCACGACCACCACTGTGGGTCGCAGGCCTCCAGCGT|\\$ CAAACAAAGCAGGACCAACCTCAGTTCCATGGAACTTCCTTTCCGAAATGACTTTGCACAACCACAGCCAATGAA AACATTTAATAGCACCTTCAAGAAAAGTAGTTACACTTTCAAACAGGGACATGAGTGCCCTGAGCAGGCCCTGGA ACTGTTTCCAGCAGCCAACCCTTTTCTCCCATCACAACTACGAAGACCTTGATTTACCGTTAACCTATTGTATGG TGATGTTTTTTTTCTCTCAGGCAGTCTATATATGTTAAACCAATCAAGGAACTTACTCTATTCAGTGGAAACAAT AATCATCTCTATTGCTTGGTGTCATTTATAGGAAGCACTGCCAGTTAAAGAGCATTAGAAGAGGTGGTTGGATGG AGCCAGGCTCAGGCTGCCTCTTCGTTTTAGCAACAAGAAGACTGCTCTTGACTGATAACAGCTCTGTCAATATTT TGATGCCACAATAAACTTGATTTTTTTTTTACATTCCTTTTATTTTTCCTTTCTCTAAATTTAATTTGTTTTATAA GCCTATCGTTTTACCATTTCATTTTCTTACATAAGTACAAGTGGTTAATGTACCACATACTTCAGTATAGGCATT ${ t TGTTCTTGAGTGTCAAAATACAGCTAGTTACTGTGCCAATTAAGACCCAGTTGTATTTCACCCATCTGTTTCT$ TCTTGGCTAATCTCTGTACTTCTGCCTTTTAATTACTGGGCCCTTATTCCTTATTTCTGTGAGAAATAATAGAT GATATGATTATTACCTTTCAATTATATTTTTCTCAGTTATACTAGAAAATTTCATAATCCTGGGATATATGTAC CATTGTCAGCTATGACTAAAAATTTGAAAAAGATAAAAATTTCTAGCAAGCCTTTGAAGTTTACCAAGTATAGTC TTTGCAATGTTTCTCTTCGCTAGATTGTTACATAGCTCCCATTCTGTTGGTTTTGCTTACAGCATATGGTAACCA AGGTTAGATGCCAGTTAAAATTCCTTAGAAATTGGATGAGCCTTGAGATTGCTTCTTAACTGGGACATGACATTT ${\tt CAATAATTTATAAACATAAAAGCTCATTGTGTTTTTTAGACTTTTGATATTTTGATACTGTACAAACTTTATT}$ AAATCAAGATGAAAGACCTACAGGACAGATTCCTTTCAGTGTTCACATCAGTGGCTTTGTATGCAAATATGCTGT TGTATTTAGTTTGTGATAAATTTTTCACTGTGTGATATTTATGCTCTAAATCACTACACAAATCCCATATTAAAA TATACATTGTACCTGAAAAAAA

FIGURE 114

MALERLCSVLKVLLITVLVVEGIAVAQKTQDGQNIGIKHIPATQCGIWVRTSNGGHFASPNYP
DSYPPNKECIYILEAAPRQRIELTFDEHYYIEPSFECRFDHLEVRDGPFGFSPLIDRYCGVKS
PPLIRSTGRFMWIKFSSDEELEGLGFRAKYSFIPDPDFTYLGGILNPIPDCQFELSGADGIVR
SSQVEQEEKTKPGQAVDCIWTIKATPKAKIYLRFLDYQMEHSNECKRNFVAVYDGSSSIENLK
AKFCSTVANDVMLKTGIGVIRMWADEGSRLSRFRMLFTSFVEPPCTSSTFFCHSNMCINNSLV
CNGVQNCAYPWDENHCKEKKKAGVFEQITKTHGTIIGITSGIVLVLLIISILVQVKQPRKKVM
ACKTAFNKTGFQEVFDPPHYELFSLRDKEISADLADLSEELDNYQKMRRSSTASRCIHDHHCG
SQASSVKQSRTNLSSMELPFRNDFAQPQPMKTFNSTFKKSSYTFKQGHECPEQALEDRVMEEI
PCEIYVRGREDSAQASISIDF

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 348-369

N-glycosylation sites.

amino acids 311-315, 385-389, 453-457, 475-479

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 426-430, 479-483

N-myristoylation sites.

amino acids 22-28, 32-38, 54-60, 186-192, 279-285, 318-324, 348-354, 352-358, 441-447

FIGURE 115

 ${\tt GGTCTCTGTCCTTGGCTGTGGCTCTGGCTGAGCC} {\bf ATG} {\tt TTCTTCTCCTCGCCCTC}$ CTCACTGAGCTTGGAAGACTGCAAGCCCACGAAGGTTCTGAAGGAATATTTCTGCATGTCACA GTTCCACGGAAGATTAAGTCAAATGACAGTGAAGTTTCAGAGAGGAAGATGATTTACATCATT ACAATTGATGGACAACCTTACACTCTACATCTCGGAAAACAATCATTCTTACCCCAGAACTTT TTGGTTTATACATATAATGAAACTGGATCTTTGCATTCTGTGTCTCCATATTTTATGATGCAT TGCCATTACCAAGGATATGCTGCCGAATTTCCAAATTCATTTGTGACACTCAGTATATGTTCT GGTCTCAGGGGATTTCTCCAGTTTGAAAATATCAGTTATGGAATTGAACCAGTAGAATCTTCA GCAAGATTTGAGCATATAATTTATCAAATGAAAAATAATGATCCAAATGTATCCATTTTAGCA GTAAATTACAGTCATATTTGGCAGAAAGACCAGCCCTACAAAGTTCCTTTAAACTCACAGATA AAAAATCTTTCAAAACTATTACCCCAATATCTGGAAATATACATTATAGTGGAAAAAGCTTTG ATGTTTACCCAGTTCAAATTGACTGTTATACTGTCTTCCTTGGAATTGTGGTCAAATGAAAAC CAGATTTCCACCAGTGGGGATGCTGATGATATATTACAAAGATTTTTTGGCATGGAAACGGGAC TATCTCATCCTACGGCCCCATGACATAGCATACTTACTTGTTTACAGGAAACATCCTAAATAT GTGGGAGCAACATTTCCTGGCACCGTATGCAATAAAAGCTATGATGCAGGTATTGCTATGTAT CCAGATGCAATAGGTTTGGAGGGATTTTCGGTTATTATAGCTCAACTGCTTGGCCTTAATGTA GGATTAACATATGATGACATCACTCAGTGTTTCTGTCTGAGAGCTACATGCATCATGAATCAT GAAGCAGTGAGTGCCAGTGGTAGAAAGATTTTTAGCAACTGCAGCATGCACGACTATAGATAT TTTGTTTCAAAATTTGAGACTAAATGCCTTCAGAAGCTTTCAAATTTGCAACCATTACATCAA AATCAACCAGTGTGTGGTAATGGGATTTTGGAATCCAATGAAGAATGTGACTGTGGTAATAAA AATGAATGTCAATTTAAGAAGTGCTGTGATTATAACACATGTAAACTGAAGGGCTCAGTAAAA TGTGGTTCTGGACCATGTTGTACATCAAAGTGTGAGTTGTCAATAGCAGGCACTCCATGTAGA AAGAGTATTGATCCAGAGTGTGATTTTACAGAGTACTGCAATGGAACCTCTAGTAATTGTGTT CCTGACACTTATGCACTGAATGGCCGTTTGTGCAAGTTGGGAACTGCCTATTGCTATAACGGA CAATGTCAAACTACTGATAACCAGTGTGCCAAGATATTTGGAAAAGGTGCTCAAGGTGCTCCA TTTGCCTGTTTTAAAGAAGTTAATTCTCTGCATGAAAGATCTGAAAACTGTGGTTTTAAAAAT TCACAACCATTACCTTGTGAACGGAAGGATGTTCTCTGTGGAAAATTAGCTTGTGTTCAGCCA CATAAAAATGCTAATAAAAGTGACGCTCAATCTACAGTTTATTCATATATTCAAGACCATGTA TGTGTATCTATAGCCACTGGTTCCTCCATGAGATCAGATGGAACAGACAATGCCTATGTGGCT ATGGGATATAACTGTAATGCCACCACAAAATGCAAAGGGAAAGGGATATGTAATAATTTTGGT AATTGTCAATGCTTCCCTGGACATAGACCTCCAGATTGTAAATTCCAGTTTGGTTCCCCAGGG GGTAGTATTGATGATGGAAATTTTCAGAAATCTGGTGACTTTTATACTGAAAAAGGCTACAAT ACACACTGGAACAACTGGTTTATTCTGAGTTTCTGCATTTTTCTGCCGTTTTTCATAGTTTTC ACCACTGTGATCTTTAAAAGAAATGAAATAAGTAAATCATGTAACAGAGAGAATGCAGAGTAT AATCGTAATTCATCCGTTGTATCAGAAAGCGATGACGTGGGACAT**TAA**TATTGCACAGAACTT ATTGTAAATGTCAAACTTTTGGAAAATAAAGCCTGCGTGCCCTCCC

FIGURE 116

MFLLLALLTELGRLQAHEGSEGIFLHVTVPRKIKSNDSEVSERKMIYIITIDGQPYTLHLGKQ
SFLPQNFLVYTYNETGSLHSVSPYFMMHCHYQGYAAEFPNSFVTLSICSGLRGFLQFENISYG
IEPVESSARFEHIIYQMKNNDPNVSILAVNYSHIWQKDQPYKVPLNSQIKNLSKLLPQYLEIY
IIVEKALMFTQFKLTVILSSLELWSNENQISTSGDADDILQRFLAWKRDYLILRPHDIAYLLV
YRKHPKYVGATFPGTVCNKSYDAGIAMYPDAIGLEGFSVIIAQLLGLNVGLTYDDITQCFCLR
ATCIMNHEAVSASGRKIFSNCSMHDYRYFVSKFETKCLQKLSNLQPLHQNQPVCGNGILESNE
ECDCGNKNECQFKKCCDYNTCKLKGSVKCGSGPCCTSKCELSIAGTPCRKSIDPECDFTEYCN
GTSSNCVPDTYALNGRLCKLGTAYCYNGQCQTTDNQCAKIFGKGAQGAPFACFKEVNSLHERS
ENCGFKNSQPLPCERKDVLCGKLACVQPHKNANKSDAQSTVYSYIQDHVCVSIATGSSMRSDG
TDNAYVADGTMCGPEMYCVNKTCRKVHLMGYNCNATTKCKGKGICNNFGNCQCFPGHRPPDCK
FQFGSPGGSIDDGNFQKSGDFYTEKGYNTHWNNWFILSFCIFLPFFIVFTTVIFKRNEISKSC
NRENAEYNRNSSVVSESDDVGH

Important features of the protein:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 665-684

N-glycosylation sites.

amino acids 36-39, 76-79, 122-125, 149-152, 156-159, 177-180, 270-273, 335-338, 441-444, 537-540, 587-590, 601-604, 703-706

Casein kinase II phosphorylation sites.

amino acids 74-77, 208-211, 221-224, 304-307, 337-340, 346-349, 376-380, 415-418, 499-502, 639-642, 708-711

Tyrosine kinase phosphorylation site.

amino acids 243-249

N-myristoylation sites.

amino acids 53-58, 79-84, 266-271, 298-303, 372-377, 403-408, 408-413, 442-447, 462-467, 469-474, 488-493, 567-572, 610-615, 616-621, 634-639

Amidation site.

amino acids 328-331

FIGURE 117

 $\verb|CCCACGCGTCGCGGACGCGTGGGGCTCAGTGGGCGTCGCGCGAAGGCTAAGGGAGTGTGGCG|\\$ GAAGAGCACCTACTGTGCCACCATGGTCCAGCACTGTGAAGCCCTCAACCGGTCTGTCCAAGT TGTAAACCTGGATCCAGCAGCAGAACACTTCAACTACTCCGTGATGGCTGACATCCGGGAACT GATCGAGGTGGATGATGTAATGGAGGATGATTCTCTGCGATTCGGTCCCAACGGAGGATTGGT GAAACATCTGGTCCAGCAGCTCGAGCAGTGGGAGTTCCGAGTCTGTGGAGTTTTTCTTGTTGA TTCTCAGTTCATGGTGGAGTCATTCAAGTTTATTTCTGGCATCTTGGCAGCCCTGAGTGCCAT GATCTCTCTAGAAATTCCGCAAGTCAACATCATGACAAAAATGGATCTGCTGAGTAAAAAAGC AAAAAAGGAAATTGAGAAATTTTTAGATCCAGACATGTATTCTTTATTAGAAGATTCTACAAG CAGCATGGTTCGATTTTTACCTTACGATCAGTCAGATGAAGAAAGCATGAACATTGTATTGCA GCATATTGATTTTGCCATTCAATATGGAGAAGACCTAGAATTTAAAGAACCAAAGGAACGTGA ${ t AGATGAGTCTTCCTCTATGTTTGACGAATATTTTCAAGAATGCCAGGATGAA{ t TGA}}$ ${ t AGAGTTTA}$ CTAAAAGTAACCATCTAAAGAGCTTGTGGCCAAACCAGCAGAACATTCTTCTCTTCAAAGGAT GCAATAGTAGAAAGCTACTTATTTTAATGAAAAAAAGTAAAACTTCGTTCTTTATCAGCCTCA TGCCTGAATCAAATTTTTAATTATTCTGAAACTGCTGCTGTTTAAAGTGGAATCTTTTAGTAT TAAATTAGCACCTGAGCTAAGGTTAAGGCCGGTCTAAACTTATTTTCACTTTTTGTATTATTT TTGAGATGCAGGAATTACTGTAACAAAATATGTATGTCCGAAGGGAAAAAGCTGCAAGGATAT ATAACTTAAAAAGTAAAAATAACTATGTTTTGAGAT

FIGURE 118

MPRYAQLVMGPAGSGKSTYCATMVQHCEALNRSVQVVNLDPAAEHFNYSVMADIRELIEVDDV
MEDDSLRFGPNGGLVFCMEYFANNFDWLENCLGHVEDDYILFDCPGQIELYTHLPVMKHLVQQ
LEQWEFRVCGVFLVDSQFMVESFKFISGILAALSAMISLEIPQVNIMTKMDLLSKKAKKEIEK
FLDPDMYSLLEDSTSDLRSKKFKKLTKAICGLIDDYSMVRFLPYDQSDEESMNIVLQHIDFAI
QYGEDLEFKEPKEREDESSSMFDEYFQECQDE

Important features of the protein:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 151-170

N-glycosylation sites.

amino acids 31-35, 47-51

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 212-216

Tyrosine kinase phosphorylation site.

amino acids 189-197

N-myristoylation sites.

amino acids 13-19, 76-82, 154-160

ATP/GTP-binding site motif A (P-loop).

amino acids 10-18

FIGURE 119

GGGCGCTGGGAGACACCGGACGCCCGCTCGGCTGCGCTCGGGCCCAGGCCCCGCTCGGGCCC GACCCGCTCGGTCACCGCCGGCTCGGGCGCGCACCTGCCGGCTGCGGCCCCAGGGCCATGCGG AGGCCCACGAGGAGGCCGGCGCCACGCGCATCCCGTAGCCCAGGTGGCCCAGGTCTGCACCG CGGCGGCCTCGGCGCCATGGAGCCCCCGTATTCGCTGACGCGCGCACTACGATGAGTTCCAAGA GGTCAAGTACGTGAGCCGCTGCGGCGGGGGGGGGCGCGGGGGCCTCCCTGCCCCGGGCTT CCCGTTGGGCGCTGCGCGCGTCACCGGGGCCCGGTCCGGGCTGCCGCGCTGGAACCGGCG CGAGGTGTGCCTGTCGGGGGCTGTTTCGCCGCCGGCCTCTGCGCCATTCTGGCGGCTAT GCTGGCCCTCAAGTACCTGGGCCGGTCGCGGCCGGCGGCGGCGCCTGTCCCGAGGGCTGCCC TGAGCGCAAGGCCTTCGCGCGCCGCTCGCTTCCTGGCCGCCAACCTGGACGCCAGCATCGA CCCATGCCAGGACTTCTACTCGTTCGCCTGCGGCGGTTGGCTGCGGCCACGCCATCCCCGA CGACAAGCTCACCTATGGCACCATCGCGGCCATCGGCGAGCAAAACGAGGAGCGCCTACGGCG CCTGCTGGCGCGCCCGGGGGTGGGCCTTGCTT CCGCTCGTGCCTCGACATGCGCGAGATCGAGCGACTGGGCCCGCGACCCATGCTAGAGGTCAT CGAGGACTGCGGGGGCTGGGACCTGGGCGCGCGGAGGAGCGTCCGGGGGTCGCGCGATG GGACCTCAACCGGCTGTACAAGGCGCAGGGCGTGTACAGCGCCGCCGCGCTCTTCTCGCT CACGGTCAGCCTGGACGACAGGAACTCCTCGCGCTACGTCATCCGCATTGACCAGGATGGGCT CACCCTGCCAGAGAGGACCCTGTACCTCGCTCAGGATGAGGACAGTGAGAAGATCCTGGCAGC ATACAGGGTGTTCATGGAGCGAGTGCTCAGCCTCCTGGGTGCAGACGCTGTGGAACAGAAGGC CCAAGAGATCCTGCAAGTGGAGCAGCAGCTGGCCAACATCACTGTGTCAGAGTATGACGACCT ACGGCGAGATGTCAGCTCCATGTACAACAAGGTGACGCTGGGGCAGCTGCAGAAGATCACCCC CCACTTGCGGTGGAAGTGGCTGCTAGACCAGATCTTCCAGGAGGACTTCTCAGAGGAAGAGGA GGTGGTGCTGCCGACAGACTACATGCAGCAGGTGTCGCAGCTCATCCGCTCCACACCCCA CCGGGTCCTGCACAACTACCTGGTGTGGCGCGTGGTGGTGGTCCTGAGTGAACACCTGTCCCC GCCATTCCGTGAGGCACTGCACGAGCTGGCACAGGAGTGGAGGGCAGCGACAAGCCACAGGA GCTGGCCCGGGTCTGCTTGGGCCAGGCCAATCGCCACTTTGGCATGGCGCTTTGGCGCCCTCTT TGTACATGAGCACTTCTCAGCCGCCAGCAAAGCCAAGGTGCAGCAGCTAGTGGAAGACATCAA TCGGGCCAAGCTCCAGTACATGATGGTGATGGTCGGCTACCCGGACTTCCTGCTGAAACCCGA TGCTGTGGACAAGGAGTATGAGTTTGAGGTCCATGAGAAGACCTACTTCAAGAACATCTTGAA CAGCATCCCCTTCAGCATCCAGCTCTCAGTTAAGAAGATTCGGCAGGAGGTGGACAAGTCCAC GTGGCTGCTCCCCCCACAGGCGCTCAATGCCTACTATCTACCCAACAAGAACCAGATGGTGTT CCCCGCGGGCATCCTGCAGCCCACCCTGTACGACCCTGACTTCCCACAGTCTCTCAACTACGG GGGCATCGGCACCATCATTGGACATGAGCTGACCCACGGCTACGACGACTGGGGGGGCCAGTA TGACCGCTCAGGGAACCTGCTGCACTGGTGGACGGAGGCCTCCTACAGCCGCTTCCTGCGAAA GGCTGAGTGCATCGTCCGTCTCTATGACAACTTCACTGTCTACAACCAGCGGGTGAACGGGAA ACACACGCTTGGGGAGAACATCGCAGATATGGGCGTCCTCAAGCTGGCCTACCACGCCTATCA GAAGTGGGTGCGGGAGCACCCAGAGCACCCACTTCCCCGGCTCAAGTACACACATGACCA GCTCTTCTTCATTGCCCTTTGCCCAGAACTGGTGCATCAAGCGGCGGTCGCAGTCCATCTACCT GCAGGTGCTGACAAGCATGCCCCTGAGCACTACAGGGTGCTGGGCAGTGTCCCAGTT TGAGGAGTTTGGCCGGGCTTTCCACTGTCCCAAGGACTCACCCATGAACCCTGCCCACAAGTG ${\tt TTCCGTGTGG} \underline{{\tt TGA}} {\tt GCCTGGCTGCCCGCCTGCACGCCCCCACTGCCCCCGCACGAATCACCTCC}$ TGCTGGCTACCGGGGCAGGCATGCACCCGGTGCCAGCCCCGCTCTGGGCACCACCTGCCTTCC AGCCCCTCCAGGACCCGGTCCCCCTGCTGCCCCTCACTTCAGGAGGGGCCTGGAGCAGGGTGA GGCTGGACTTTGGGGGGCTGTGAGGGGAAATATACTGGGGTCCCCAGATTCTGCTCTAAGGGGG CCAGACCCTCTGCCAGGCTGGATTGTACGGGCCCCACCTTCGCTGTGTTCTTGCTGCAAAGTC TGGTCAATAAATCACTGCACTGTTAAAAAAAA

FIGURE 120

MEPPYSLTAHYDEFQEVKYVSRCGAGGARGASLPPGFPLGAARSVTGARSGLPRWNRREVCLL SGLVFAAGLCAILAAMLALKYLGPVAAGGGACPEGCPERKAFARAARFLAANLDASIDPCQDF YSFACGGWLRRHAIPDDKLTYGTIAAIGEQNEERLRRLLARPGGGPGGAAQRKVRAFFRSCLD MREIERLGPRPMLEVIEDCGGWDLGGAEERPGVAARWDLNRLLYKAQGVYSAAALFSLTVSLD DRNSSRYVIRIDQDGLTLPERTLYLAQDEDSEKILAAYRVFMERVLSLLGADAVEQKAQEILQ VEQQLANITVSEYDDLRRDVSSMYNKVTLGQLQKITPHLRWKWLLDQIFQEDFSEEEEVVLLA TDYMQQVSQLIRSTPHRVLHNYLVWRVVVVLSEHLSPPFREALHELAQEMEGSDKPQELARVC LGQANRHFGMALGALFVHEHFSAASKAKVQQLVEDIKYILGQRLEELDWMDAETRAAARAKLQ YMMVMVGYPDFLLKPDAVDKEYEFEVHEKTYFKNILNSIPFSIQLSVKKIRQEVDKSTWLLPP QALNAYYLPNKNQMVFPAGILQPTLYDPDFPQSLNYGGIGTIIGHELTHGYDDWGGQYDRSGN LLHWWTEASYSRFLRKAECIVRLYDNFTVYNQRVNGKHTLGENIADMGVLKLAYHAYQKWVRE HGPEHPLPRLKYTHDQLFFIAFAQNWCIKRRSQSIYLQVLTDKHAPEHYRVLGSVSQFEEFGR AFHCPKDSPMNPAHKCSVW

Important features of the protein:

Transmembrane domain:

amino acids 64-88

N-glycosylation sites.

amino acids 255-259, 322-326, 656-660

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 722-726

N-myristoylation site.

amino acids 24-30, 26-32, 27-33, 40-46, 47-53, 65-71, 148-154, 169-175, 170-176, 237-243, 450-456, 604-610, 607-613

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 85-96

Prenyl group binding site.

amino acids 772-777

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 609-619

Neutral zinc metallopeptidases, zinc-binding region proteins.

amino acids 609-619

FIGURE 121

CGGACTGCCCGGACCGCGATGGAGTCGACCGGCAGCGTCGGGGAGGCCCCGGGCGGACCCC AGCGCTGCTTCGGTGGCGTGGAGGTGGGCGCGCACTGGATCCATGGGCCCTCCCGGGGTA ACCCCGTCTTCCAGCTGCTGAGTACGGGCTGCTGGGGGGAGAAGGAGCTGTCCCAGGAGA ACCAGCTGGTGGAGACCGGGGGTCACGTGGGCCTGCCCTCCGTGAGCTACGCCAGCTCCGGGG $\verb|CCAGCGTGAGCCTCCAGCTGGTGGCGAGATGGCGACTCTGTTCTACGGCCTGATAGACCAGA||$ CCCGGGAGTTCCTGCACGCTGCAGAGACCCCGGTGCCCAGCGTCGGGGAGTACCTCAAGAAGG AGATTGGCCAGCACGTGGCCGGCTGGACAGAGGATGAGGAGCCAGGAAGCTGAAGCTGGCCG TCCTGAACTCCTTCTTCAACCTGGAATGCTGTGTGAGCGGCACCCACAGCATGGACCTGGTGG $\verb|CCCTGGCACCCTTTGGGGAGTATACCGTGCTGCCGGGGCTGGACTGCACCTTTTCTAAGGGCT|\\$ ATCAAGGACTCACAAACTGCATGATGGCCGCCCTGCCGGAGGACACTGTAGTTTTTTGAGAAGC CTGTGAAGACCATCCACTGGAACGGGTCCTTCCAGGAGGCAGCCTTTCCCGGGGAGACCTTTC CAGTGTCGGTAGAGTGTGAGGATGGAGACCGGTTCCCGGCGCACCATGTCATCGTCACCGTGC CAGAAGCAATCAGGAAGATAGGCTTTGGGACCAACAACAAAATCTTCCTGGAGTTTGAGGAGC CCTTCTGGGAGCCAGACTGCCAGCTGATCCAGCTGGTGTGGGAGGACACGTCGCCCCTGGAGG CCTTTGCGTCTGTCCACGTTCTCTGTGGGTTCATTGCCGGACTTGAGTCTGAGTTCATGGAGA CTCTGTCGGATGAAGAAGTACTTCTGTGTCTCACCCAAGTGCTCCGGAGAGTGACAGGAAACC CACGGCTCCCCGCGCCCAAGAGCGTCCTGCGGTCTCGCTGGCACAGCGCCCCGTACACTAGGG TCCCTGCAGACGCCCCGGCCCCAGCTCCAGATCCTGTTTGCGGGGGAAGCCACACATCGCA CGTTTTACTCCACGACGCACGGGGCTCTGCTGTCGGGATGGAGGGGGGGCCGACCGCCTCCTCA $\tt GTCTGTGGGCCCGCAGGTGCAGCCCAGCCCAGGCCGAGGCTC{\color{red}{\textbf{TAG}}} CTGGGCCCAGCCTACTCTG$ TTCCACCCGTGTCGGGGGTAGGCTGGGACCGTCATTTCTTCTGACAGATTTCAGTCTGGCTTG AAATTTGGGGATGTTAATGAGGGTCCTCTGGTTTTTTGGTAACCAGGGCCACCTTCTCAGTTCT TGTGTCTGTTATTGGAGTCTGGCCAGGGTTGACTTGAGCTGAGACACCAGATGCTCACGGAGA

FIGURE 122

MESTGSVGEAPGGPRVLVVGGGIAGLGAAQRLCGHSAFPHLRVLEATARAGGRIRSERCFGGV VEVGAHWIHGPSRGNPVFQLAAEYGLLGEKELSQENQLVETGGHVGLPSVSYASSGASVSLQL VAEMATLFYGLIDQTREFLHAAETPVPSVGEYLKKEIGQHVAGWTEDEETRKLKLAVLNSFFN LECCVSGTHSMDLVALAPFGEYTVLPGLDCTFSKGYQGLTNCMMAALPEDTVVFEKPVKTIHW NGSFQEAAFPGETFPVSVECEDGDRFPAHHVIVTVPLGFLREHLDTFFDPPLPAEKAEAIRKI GFGTNNKIFLEFEEPFWEPDCQLIQLVWEDTSPLEDAAPELQDAWFRKLIGFVVLPAFASVHV LCGFIAGLESEFMETLSDEEVLLCLTQVLRRVTGNPRLPAPKSVLRSRWHSAPYTRGSYSYVA VGSTGGDLDLLAQPLPADGAGAQLQILFAGEATHRTFYSTTHGALLSGWREADRLLSLWAPQV QQPRPRL

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 364-385

N-glycosylation site.

amino acids 253-257

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 408-412

N-myristoylation sites.

amino acids 20-26, 21-27, 25-31, 105-111, 119-125, 164-170, 216-222, 227-233, 443-449, 484-490

Aminooxidase Flavin containing amine oxidase:

amino acids 23-497

FIGURE 123

CGGACGCGTGGGGGAAGATGGATAAATAATTCTGTCACACGTGCCCTGGCCTCTGGAGCTCAGCTGCCAGTCCAC GTCTAGGGAATCTTAGCATCTGGGACCAAGACACTTTACAGCAATCATCACCCTTTGCAGAGGAGGTGAGCTCAC CCTTCAGCCTGGGGAGCCGAGCTCAGAGGTCAAGGTGCTAGGCCCTGAGTATCCCATCCTGGCCCTCGTCGGGGA GGAGGTGGAGTTCCCGTGCCACCTATGGCCACAGCTGGATGCCCAGCAAATGGAGATCCGCTGGTTCCGGAGTCA GACCAAGTTGGTCAAGGACGACATCGCCTATGGCAGCGTGGTCCTGCAGCTTCACAGCATCATCCCCTCTGACAA GGGCACATATGGCTGCCGCTTCCACTCCGACAACTTCTCTGGCGAAGCTCTCTGGGAACTGGAGGTAGCAGGGCT GGATGCCCAGGACCTGTTCAGTCTGGAAACATCTGTGGTTGTCCGAGCGGGAGCCCTCAGCAATGTGTCCGTCTC CATCCAGAATCTCCTCTTGAGCCAGAAGAAGAGTTGGTGGTCCAGATAGCAGACGTGTTCGTACCCGGAGCCTC GAAGCAGCGGAGAAACCCGAGAAAAGCTGAGGAAGCAGGCGGAGAAGAGAACAAGAGAAACTCACTGCAGAGCTGGA AAAGCTTCAGACAGAGCTTGACTGGAGACGGGCTGAAGGCCAGGCTGAGTGGAGAGCAGCCCAAAAATATGCAGT CGGGGCGCCAGGCCCGGCGCCTGGCCACCGCAGCGGTTCTCGGAGCAGACGTGCGCGCTGAGCCTGGAGCG CGAGTACTTCGTCCTGGCCCCGCACCGCGTCGCGCTCACCCTGCGCGTGCCCCCGCGGCGCCCTGGGCGTCTTCCT GGACTACGAGGCCGGAGAGCTGTCCTTCTTCAACGTGTCCGACGGCTCCCACATCTTCACCTTCCACGACACCTT CCCGCTGCCGGTTAGAGGGACGGCCTCCCGAAGAGAACGACAGTGACACCTGGCTACAGCCCTATGAGCCCGC GGACCCCGCCCTGGACTGGTGGTGAGGCCCCCTCGTGGCCGCGGGACTGGCCCCGGGGGGCCCCCTGGATCCCAG GCCAGCGCTTTGCTCCCTGCTCCGTCTGAAGGGAGCAGGTGCACCAGCCAAAATGTCAGCGAGGGGGACAAAGA GAGGGACCTTTGCCTACGTAGATGTGTATGTGTAGTGCGATTTTCTTCAAGGAAAGGAGACAAGTCCAAAGCTCG TTTGTGGATTGTGGGACTGAGCGAAGGAGTACAAATATATCCACGTCGCTCAGAGCTGGGGTGCTCACGGTGGGC GGTGGCCAAGAAGCCAGCATGGAAGAAGAAGGGAGAAAACTTTGGTGACTGCCTTAGAGGGATCAGTTAATTTG TATAGTTTTATATTTTTTGTATATGTTTGCTAGCTCTAAAAAGGTCGAGATGCAATAACACTTCGTAAGCAACGA GTTCACCTAAGTAAGGCTCAGATCCTAGTTTTAAAAACCATTTCCCATTAAAATGAAGTTGGAGGAACAGCTGCT GACGGCAACCCGGCAAAAGGGTAGGGAGCCAGGCCGAAGGGGCCTCACTGACCAATTGTGGGACAATTTGAACAT CAGGATGAATAATGACAGGAGAGATTATAACACACTGAATAAAAACATAATCCATGAGTTCATGCTGATACTCAA ATTTCTTTTTAAAAAGGAGAAACAGGAAGGTTTCTTTTGGAGGTGAAATCTAATTATTGGTGAGAGTCTTGGAGA ACAGGCTGTTTCCAGTCTCAAAGCAGTAACCTTATACACTACTTATAAGTTTGAAAGGGGAAAGGTTACCTTTAC AATGGAGACATCTACCAGATCATCCAAGTGATTAAATTTAACATCATCAATGATGGGACCAAGGACATTATTAGT TTGACAACTGGGGAAAGAAGTGTTCTTCACCCCCTACCCCCAAGACATTCTCTCTGTCGGCCAGGCTGGAGTGCA AGACGGGGGTCTCACTTTGTTACCCAGGCTGGTCTCAAACTCCTGCGCTCAAGCAATCCTCCCACCTGGGCCTCC CAAAATGCTGGGTGTACAGGCATGAGCCGCTGTGCCTGGCTTCATTTTCAGAGTGAGACATTTGTACTGTGGCTA ${f ATGACAACACTTGGTGACTCTAGGTGACTGGTCGACAGATGTTCATTGTACTATCAATGTGGCTTTGCTGTGGGT$ TTGAAATTTTGCAAACTAAGAGTTGGGTGGCGGGGAGAAGGATACACCAAAAAACTAAGTGATTATCTTTGGATG GGAAAATGTTTGGTAATTGCATTCTTAAAATGTCTTCTTTGTATTTTTTAATGTTCAATAATGTATATGTATCAG TTCTGTAATAAAGGGGAAAACACTTTTCA

FIGURE 124

MVDLSVSPDSLKPVSLTSSLVFLMHLLLLQPGEPSSEVKVLGPEYPILALVGEEVEFPCHLWP QLDAQQMEIRWFRSQTFNVVHLYQEQQELPGRQMPAFRNRTKLVKDDIAYGSVVLQLHSIIPS DKGTYGCRFHSDNFSGEALWELEVAGLGSDPHLSLEGFKEGGIQLRLRSSGWYPKPKVQWRDH QGQCLPPEFEAIVWDAQDLFSLETSVVVRAGALSNVSVSIQNLLLSQKKELVVQIADVFVPGA SAWKSAFVATLPLLLVLAALALGVLRKQRRSREKLRKQAEKRQEKLTAELEKLQTELDWRRAE GQAEWRAAQKYAVDVTLDPASAHPSLEVSEDGKSVSSRGAPPGPAPGHPQRFSEQTCALSLER FSAGRHYWEVHVGRRSRWFLGACLAAVPRAGPARLSPAAGYWVLGLWNGCEYFVLAPHRVALT LRVPPRRLGVFLDYEAGELSFFNVSDGSHIFTFHDTFSGALCAYFRPRAHDGGEHPDPLTICP LPVRGTGVPEENDSDTWLQPYEPADPALDWW

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 247-272

N-glycosylation sites.

amino acids 102-106, 139-143, 224-228, 464-468, 516-520

Tyrosine kinase phosphorylation site.

amino acids 105-114

N-myristoylation sites.

amino acids 129-135, 220-226, 399-405, 423-429, 480-486

Amidation site.

amino acids 390-394

ũ

125/550

FIGURE 125

TATAGTCCCAGCTACTCATGGGGCTGATGCAGGTTGAGGCAGGAGGTTCATGAGCCCAGGAGGTTGGAGCTGTAA ACCAATGCTGCAGGAAAAAGCAACATATTTAAGTTATCCAATAACACCTATCCAATAATTGTAAATCATTATCAT CCTAAAGAGTTGGTCCGGATACATGTCCCTAAACCTTTGGACAGGAATGATGGAACATTTTTGATGAGATATAGG ATGTATGAAACTGTCGATGAAGGCCTGAAGATAGAGGTCCTTTATGGTGATGAACATGTGGCTCAGTCTCCCTAT ATTTTGAAAGGACCAGTGTACCATGAGTACTGTGAGTGTCCGGAAGATCCTCAGGCCTGGCAGAAGACTCTTTCT TGTCCAACCAAGGAACCACAGATTGCAAAAGATTTTGCTTCCTTTCCCAGCATCAATCTCCAGCAAATGCTAAAA GAAGTCCCCAAAAGGTTTGGGGATGAGAGAGGTGCCATTGTTCATTACACGATTCTCAATAACCATGTTTACCGG AGATCTTTAGGGAAATACACAGACTTCAAGATGTTCTCTGATGAGATTTTGTTATCATTGACAAGAAAGGTCCTT CTCCCAGATTTAGAATTTTATGTTAATCTTGGAGATTGGCCCTTGGAGCATCGAAAAGTCAATGGAACCCCTAGC CCCATACCTATCATTCATGGTGTGGCTCTCTGGATTCAAGAGATGTTGTCCTTCCAACGTATGACATCACCCAC TCCATGCTTGAAGCCATGCGGGGTGTTACAAATGATCTCCTCTCTATTCAGGGAAATACAGGGCCTTCCTGGATC AATAAAACAGAGAGAGCTTTCTTCAGAGGTAGAGACAGCCGAGAGGAGGGGCTCCAGTTGGTACAGCTGTCCAAA GCCAAGTTGATGGGTTTCTTTGATTTCTTTAAGTACAAGTATCAAGTAAATGTGGATGGGACCGTGGCTGCTTAC AGATATCCATATCTCATGCTGGGCGACAGTCTGGTTTTAAAGCAGGACTCGCCATATTATGAACATTTCTACATG GCACTAGAACCTTGGAAGCATTATGTTCCAATTAAAAGAAATCTGAGTGATTTATTAGAGAAAGTTAAATGGGCT AAGGAAAATGATGAAGAAGCCAAGAAGATTGCAAAAGAAGGACGTTGATGGCTAGGGACCTACTACAGCCACAC AGGCTTTACTGCTACTATTACCAAGTACTGCAGAAATATGCCGAGCGCCAGTCCAGCAAACCCGAAGTACGTGAT GGAATGGAACTTGTTCCTCAGCCAGAAGATAGCACAGCCATCTGCCAGTGCCACAGGAAAAAAGCCTTCAAGAGAA GAACTT**TGA**GTCAGCCCAGAATCACACTCCTGTGTATCCCGGCTACACTTTAAGGAAAGATTGAATCTAAGCTGT GAAGGACAGTATAGAAGACTGCACCAAGTGGACTAGTTCTCCCGGTGGCTTTATATATGTAGATGGATATAGCAG TACTGGTTGAGTATCCCTCATCTGAAATGCTTAGGACCAGGAGTGTTTCAGGCTTCAGATTTTTTAAGATTTGGG AATATTTGCATGTACATAATGAGGTATCTTGGGGATGAGATCCAAGTCTAAACACAAAATTCATTTATATTTAT ATATACCTTGTTCACATACCCTGAAGGTAATTTTATATAATATTTTTAATAATTTGTGCATGAAACAAAGTTTGT ATACATTGAACTGTCAGAAAGCAAAGGTGTCACTATCTTAGCGACCCAAGTGGTGGTGTCAGCACTCAAAAAGTT TTGGATTTTGGGGTATTTCAGATTTTTGTATGAGGAATGTTCAACCTGTATTTGAACAAGCATTACCA AATATCATTGAATATTTAATATCTTTTGCGTAAAAACTGCTATTATCAGCATCATAGTTTCTCTAAAAAGAAAACT TTACATATTTTATTGGTTTATTTCTATCCCCTGTTCACTTTTTCTCTCCACTTCCAATTATGAAGAGAAAATAT TTGTTCAGGGTTGTCCCCCCCCCCCCCCCTCACTGCATAATTTCTCCTCTTACAAGCTGCTTTTGGCTTTCATTAA TAACAGCTTCCTTTTAGAAGGTCTGATAAGGATATTTAAGGAAGAAGAGAATGACTCTGTTATTAAAGGTGGCAT GGAGACTGTGGAGGGAATATTTTTTAAAGCACTACTCATATCCTTTAAACTAAATTTTGCCAAAGCCCGAGACAA TCAGGTGAAAGGCATTCATCATTTTTAAGCTGAAAAGGGGATCCTTGAAAAACACTGAAAAACCTCTACAACAATCT TCAGGAAGCCTGCTATCTTGGGATTCACTAATAATAGGCCAAGAACAAAGGCAAGCATCCATTCCTCACCC ACTTTTCTATTTCAGTGGGTGTCATTGCTACGATGAAGACTTTGGAAATTTCCTTTTCTCTTTTAGGACAGGGTCA GGATTTAGGACTCATAGCCTGAAAGCTCATTACATACTCCTTGTAACCATCAGTCCAAGGTTCAGTTCACTAAAG TGCATGTTCTAAAACAAGAGCTATCCTCATTCCAAATTTTAAAATATGTACTCTGGCCGGTTGCAGTGGCTCACG ACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCAGGCATGGTGGCATTTGCCTGTAATCCCAGCT ACTCGGGAGGCTGAGGCAGGAGAATCACTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATTACACCACTG CACTCCAGCCTGGGTGACAGAGTGAGACTCCATCTCAAAAACTGAAAAATAAAAATAAAAATATGTATTCTCCTAA CTGAAATATTTACTTAATCTGGAAAACAATGTAACTATTTTTAAAGTGGTTACATCTATTCTTGCTGAAGAACAA TAAACAGAATTTTTTGACTAAGCATAACCAAATTTCAGAACAGTCTAATCAATGCCAAGTATCCAAGGCAAACTC TAATACCCATCCATTGTGCAAAACCACAAGCACGCAAGTATTAAATAAGAGCAAGCTGTCCTGAGCCCATACCTA ATGAATTTGTGTCTTAAATATTGTACATTGTGTTTTGAGGCTTGTCAAAACTGGGATTATGGCAAGAAAGGTTGCC TAACTCATACCTTTCTGCCTCAAATTCCAGGTGCTAAAGGCTAATGGCATTTTAAACATCTTACATTTTTAAAAA TTTATATTGCCTCTGCCAAACAGGCCTAATAGTTAAAAGCAAGTTGAGACAAACCAGGCAGATTCAGTGTGGGA ACAGGAAGGATGTGCTTTAAAAAAAAGGTGGAATCCCTCAAAAAATTCTATAGGGAGACAGCAGCCTTAATCTACA TAATTCTTCATCTCGCCAATTCAGCCGCAGCCTTTAAAGAGTTAGTGTTAATGGCTTTCTGGTTTGAAAACAAAA ATGCATCTATGTGGTTGAAAGTTTGGGAGGAGATTCACCAATATCTGAGGAGAAGATGGAGTGAAGGGAATTCTT AAAAATGCCAACCTTAGAAAAGACAATAAATGCACAAAAGATATAAACAGGAACAGCAAATATTTTATTTTTTC ATAAATTTTCTAAATAAAAAGTTG

FIGURE 126

MVELFIFLELGETPFKVVVKSLSPKELVRIHVPKPLDRNDGTFLMRYRMYETVDEGLKIEVL YGDEHVAQSPYILKGPVYHEYCECPEDPQAWQKTLSCPTKEPQIAKDFASFPSINLQQMLKEV PKRFGDERGAIVHYTILNNHVYRRSLGKYTDFKMFSDEILLSLTRKVLLPDLEFYVNLGDWPL EHRKVNGTPSPIPIISWCGSLDSRDVVLPTYDITHSMLEAMRGVTNDLLSIQGNTGPSWINKT ERAFFRGRDSREERLQLVQLSKENPQLLDAGITGYFFFQEKEKELGKAKLMGFFDFFKYKYQV NVDGTVAAYRYPYLMLGDSLVLKQDSPYYEHFYMALEPWKHYVPIKRNLSDLLEKVKWAKEND EEAKKIAKEGQLMARDLLQPHRLYCYYYQVLQKYAERQSSKPEVRDGMELVPQPEDSTAICQC HRKKPSREEL

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 250-254, 363-367

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 444-448

N-myristoylation site.

amino acids 208-214, 319-325, 388-394

Endoplasmic reticulum targeting sequence.

amino acids 448-453

Mitochondrial energy transfer proteins signature.

amino acids 25-34

FIGURE 127

 ${\sf AGCCGTCGGAGGGGGGCGCTTCTCCCGAGTTGGTGATAGATTGGTGGTCATCCAACAT}$ GCAGAAATGAATGAGCAGTGAAAAGCAGCAGAGCCGATGGGTCATGAGGATGTAAGTGCGTTT GAAGGCTTCCACACCCTCTACTCCAGGAATCATGAATAAACTGGAGGATAAGCAGGACCAGAT GATACCATGAAGAAGTTTACAGGCCCTCTATTGCCAACTGTTAAGTTTCCTGCTGATCTTG GCACTGACCGAAGCGCTGGCATTTGCCATCCAGGAACCATCTCCCAGGGAATCTCTTCAGGTC CTCCCTTCAGGCACTCCCCCGGGAACCATGGTGACAGCACCCCACAGCTCTACCAGACATACT TCTGTGGTGATGCTGACCCCCAATCCCGATGGACCCCCTCACAGGCTGCAGCTCCCATGGCA ACACTGACACCCGTGCAGAGGGGCACCCTCCTACGCACCATCTCCACCATCGCTGCGACA GTAACCGCCCCTATTCTGAAAGCTCCCTGTCCACAGGGCCCGCTCCAGCAGCCATGGCAACC ACATCCTCCAAGCCAGAGGGCCGCCCTCGAGGGCAGGCTGCCCCCACCATCCTGCTGACAAAG CCACCGGGGGCCACCAGCCCCCCACCACAGCGCCCCCCGCACTACCACACGCAGGCCCCC AGGCCCCCAGGCTCTTCCCGAAAAGGGGCTGGTAATTCATCACGCCCTGTCCCGCCTGCACCT GGTGGCCACTCCAGGAGTAAAGAAGGACAGCGAGGACGAAATCCAAGCTCCACACCTCTGGGG CAGAAGCGGCCCCTGGGGAAAATCTTTCAGATCTACAAGGGCAACTTCACAGGGTCTGTGGAA CCAGAGCCCTCTACCCTCACCCCCAGGACCCCACTCTGGGGCCTACTCCTCTTCACCACAGCCC GGGCCTGCAAAGGACAAGCCAGGCCTTCGCAGAGCAGCCCAGGGGGGTGGTTCTACCTTCACC AGCCAAGGAGGGACACCAGATGCCACAGCAGCCTCAGGTGCCCCTGTCAGTCCACAAGCTGCC CCAGTGCCTTCTCAGCGCCCCCACCACGGTGACCCACAGGATGGCCCCAGCCATAGTGACTCT TGGCTTACTGTTACCCCTGGCACCAGCAGACCTCTGTCTACCAGCTCTGGGGTCTTCACGGCT GCCACGGGGCCCACCCCAGCTGCCTTCGATACCAGTGTCTCAGCCCCTTCCCAGGGGATTCCT CAGGGAGCATCCACAACCCCACAAGCTCCAACCCATCCCTCCAGGGTCTCAGAAAGCACTATT TCCACAGTGGTATCCACAGCCACAGGCAATTTCCTCAACCGCCTGGTCCCCGCCGGGACCTGG AAGCCTGGGACAGCAGGGAACATCTCCCATGTGGCCGAGGGGGGACAAACCGCAGCACAGAGCC ACCATCTGCCTGAGCAAGATGGATATCGCCTGGGTGATCCTGGCCATCAGCGTGCCCATCTCC TCCTGCTCTGTCCTGCCGGTGTGCTGCATGAAGAGGAAGAAGAAGACCGCCAACCCGGAG AACAACCTGAGCTACTGGAACAACACCATCACCATGGACTACTTCAACAGGCATGCTGTGGAG CTGCCCAGGGAGATCCAGTCCCTTGAAACCTCTGAGGACCAGCTCTCAGAGCCCCGCTCCCCA GCCAATGGCGACTATAGAGACACTGGGATGGTCCTTGTTAACCCCTTCTGTCAAGAAACACTG TGACTTAATGAGAAACATTTTCAGCTTTTTTTCCTATGAATTGTCAACATCTTTTTTACAAGT GTGGTTTAAAAAAAAAAACTTTACAGAATGATCTGTGGCTTTATAAAATAAAGGTATTTCT AAGCAAAAAAAAAAAAAAA

FIGURE 128

MKRSLQALYCQLLSFLLILALTEALAFAIQEPSPRESLQVLPSGTPPGTMVTAPHSSTRHTSV
VMLTPNPDGPPSQAAAPMATLTPRAEGHPPTHTISTIAATVTAPYSESSLSTGPAPAAMATTS
SKPEGRPRGQAAPTILLTKPPGATSRPTTAPPRTTTRRPPRPPGSSRKGAGNSSRPVPPAPGG
HSRSKEGQRGRNPSSTPLGQKRPLGKIFQIYKGNFTGSVEPEPSTLTPRTPLWGYSSSPQPQT
VAATTVPSNTSWAPTTTSLGPAKDKPGLRRAAQGGGSTFTSQGGTPDATAASGAPVSPQAAPV
PSQRPHHGDPQDGPSHSDSWLTVTPGTSRPLSTSSGVFTAATGPTPAAFDTSVSAPSQGIPQG
ASTTPQAPTHPSRVSESTISGAKEETVATLTMTDRVPSPLSTVVSTATGNFLNRLVPAGTWKP
GTAGNISHVAEGDKPQHRATICLSKMDIAWVILAISVPISSCSVLLTVCCMKRKKKTANPENN
LSYWNNTITMDYFNRHAVELPREIQSLETSEDQLSEPRSPANGDYRDTGMVLVNPFCQETLFV
GNDQVSEI

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 469-487

N-glycosylation sites.

amino acids 178-182, 223-227, 261-265, 446-450, 504-508, 509-513

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 495-499

N-myristoylation sites.

amino acids 44-50, 48-54, 175-181, 222-228, 279-285, 286-292, 288-294, 296-302, 351-357, 374-380, 427-433, 442-448

TonB-dependent receptor proteins signature 1.

amino acids 1-44

FIGURE 129

AGGCGAGGCGCGCGCTGCACACACGCACACGGAGCTATGCGCATGTTGCCACCAG CTGCCACGTGGCCTGTTTTGGTGCTGATCTCTGGATGCTGGGGCCAGGTGAACCGGCTGCC CTTCTTCACCAACCACTTCTTTGATACATACCTGCTGATCAGCGAGGACACGCCTGTGGGTTC TTCTGTGACCCAGTTGCTGGCCCAAGACATGGACAATGACCCCCTGGTGTTTTGGCGTGTCTGG GGAGGAGGCCTCTCGCTTCTTTGCAGTGGAGCCTGACACTGGCGTGGTGTGGCTCCGGCAGCC ACTGGACAGAGACCAAGTCAGAGTTCACCGTGGAGTTCTCTGTCAGCGACCACCAGGGGGT GATCACACGGAAGGTGAACATCCAGGTCGGGGATGTGAATGACAACGCGCCCACATTTCACAA TCAGCCCTACAGCGTCCGCATCCCTGAGAATACACCAGTGGGGACGCCCATCTTCATCGTGAA ATTCTTCGCCATTGACAGCGCCCGCGGTATCGTCACAGTGATCCGGGAGCTGGACTACGAGAC CACACAGGCCTACCAGGTCAACGCCACAGATCAAGACAAGACCAGGCCTCTGTCCAC CCTGGCCAACTTGGCCATCATCACCAGATGTCCAGGACATGGACCCCATCTTCATCAACCT GCCTTACAGCACCAACATCTACGAGCATTCTCCTCCGGGCACGACGGTGCGCATCATCACCGC CATAGACCAGGATAAAGGACGTCCCCGGGGCATTGGCTACACCATCGTTTCAGGGAATACCAA CAGCATCTTTGCCCTGGACTACATCAGCGGAGTGCTGACCTTGAATGGCCTGCTGGACCGGGA GAACCCCCTGTACAGCCATGGCTTCATCCTGACTGTGAAGGGCACGGAGCTGAACGATGACCG CACCCCATCTGACGCTACAGTCACCACGACCTTCAATATCCTGGTTATTGACATCAATGACAA TGCCCCGGAGTTCAACAGCTCCGAGTACAGCGTGGCCATCACTGAGCTGGCACAGGTCGGCTT TGCCCTTCCACTCTTCATCCAGGTGGTGGACAAGGATGAGAATTTGGGCCTGAACAGCATGTT TGAGGTGTACTTGGTGGGGAACAACTCCCACCACTTCATCATCTCCCCGACCTCCGTCCAGGG GAAGGCGGACATTCGTATTCGGGTGGCCATCCCACTGGACTACGAGACCGTGGACCGCTACGA CTTTGATCTCTTTGCCAATGAGAGTGTGCCTGACCATGTGGGCTATGCCAAGGTGAAGATCAC CGAGAACGTCACCGTGGGGACCTCTGTGCTGACAGTCCTGGTGAGTCCCCGCTTCACTGCAGG GCCACTGAGCTCTCCAGGGCCGACTGTGGTGAGGCACCCAGAGGGATTTTGTCCAAGGGACCT GTTTTTGGACTCTTCAGGAAGGGGCTCCCTTGACCTAGGTTGCAATATGGAAAAGGAGCCAAC AGAAGGGCAACCCTCTCCATGTGAGCACAGGCACCAGAGAGGGGCAGGCGCCTGGAGGGTACC GGGGCACCCCAGCTGCCCATGGCTGGACTTGCCCTTTGACAAGGGGCCCTCCCAGTGTCATT TGTATCTGTCAGTACTCTTGGTTGCAAGGGACAGAAACCCCTTAAGTAGTTCAAGCAAAAAAGG ATTGGCTCATGTAACTCAAAAGTATAAGTGATTTCAGGCCGGGCTCGGTGGCTCACGCCTGTC ATCCAACACCTTGAGAAAGCCGAGGTGGGCGGATCACTTGAGGTCGGGAGTTTGAGACCAGCC TGGCCAACATGGCAAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGTGTGGTGGCAC ACGCCTGTAGTCCCAGCTACTAGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGG AGGTTGCAGTGAGCCGAGATTGTGTCACTGCCCTCCAGCCTGGGCGACAGAGCCAGATTCTGT CTC

FIGURE 130

MGCHVATSCHVAWLLVLISGCWGQVNRLPFFTNHFFDTYLLISEDTPVGSSVTQLLAQDMDND PLVFGVSGEEASRFFAVEPDTGVVWLRQPLDRETKSEFTVEFSVSDHQGVITRKVNIQVGDVN DNAPTFHNQPYSVRIPENTPVGTPIFIVNATDPDLGAGGSVLYSFQPPSQFFAIDSARGIVTV IRELDYETTQAYQLTVNATDQDKTRPLSTLANLAIIITDVQDMDPIFINLPYSTNIYEHSPPG TTVRIITAIDQDKGRPRGIGYTIVSGNTNSIFALDYISGVLTLNGLLDRENPLYSHGFILTVK GTELNDDRTPSDATVTTTFNILVIDINDNAPEFNSSEYSVAITELAQVGFALPLFIQVVDKDE NLGLNSMFEVYLVGNNSHHFIISPTSVQGKADIRIRVAIPLDYETVDRYDFDLFANESVPDHV GYAKVKITLINENDNRPIFSQPLYNISLYENVTVGTSVLTVLVSPRFTAGPLSSPGPTVVRHP EGFCPRDLSNQGRRHPQIPELCLLVY

Important features of the protein:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 355-374

N-glycosylation sites.

amino acids 155-159, 206-210, 349-353, 393-397, 434-438, 466-470, 472-476

N-myristoylation sites.

amino acids 2-8, 49-55, 162-168, 270-276, 278-284, 316-322

Amidation site.

amino acids 515-519

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

Leucine zipper pattern.

amino acids 298-320

PTS HPR component serine phosphorylation site signature.

amino acids 377-393

Cadherins extracellular repeated domain signature.

amino acids 120-131, 336-347

Cadherins extracellular

amino acids 120-144, 336-360

FIGURE 131

GTGGGCCGCCCTGCTGCCGTCCATGCTGATGTTTGCGGTGATCGTGGCCTCCAGCGGGC GCCGCGAGGGCACAGCCTGGCGCGGGAAAGCCCCCAAGCCTGGGGGCCTGTCCCTCAGGGCTG AGCCAGGCATGCCCCGGGACCCCTGGGACTTGCCGGTGGGGCAGCGGCGCACCCTGCTGCGCC ACATCCTCGTAAGTGACCGTTACCGCTTCCTCTACTGCTACGTCCCCAAGGTGGCCTGCTCTA ACTGGAAGCGGGTGATGAAGGTGCTGGCAGGCGTCCTGGACAGCGTGGACGTCCGCCTCAAGA TGGACCACCGCAGTGACCTGGTGTTCCTGGCCGACCTGCGGCCTGAGGAGATTCGCTACCGCC TGCAGCACTACTTTAAGTTCCTGTTTGTGCGGGAGCCCTTGGAACGCCTCCTCTCTGCCTACC GCAACAAGTTTGGCGAGATCCGAGAGTACCAGCAACGCTATGGGGCTGAGATAGTGAGGCGGT ACAGGGCTGGAGCGCGGCCCTGCAGGCGACGATGTCACATTCCCCGAGTTCCTGAGAT ACCTGGTGGATGAGGCCCTGAGCGCATGAATGAGCATTGGATGCCCGTGTACCACCTGTGCC AGCCTTGTGCCGTGCACTATGACTTTGTGGGCTCCTATGAGAGGCTGGAGGCTGATGCAAATC AGGTGCTGGAGTGCGTACGGCACCTCACGTCCGATTTCCAGCTCGCCAGGCCTGGTACC GGCCAGCCAGCCCGAAAGCCTGCATTACCACTTGTGCAGTGCCCCCGGGCCCTGCTGCAGG ATGTGCTGCCTAAGTATATCCTGGACTTCTCCCTCTTTGCCTACCCACTGCCTAATGTCACCA AGGAGGCGTGTCAGCAG**TGA**CCATGGGTGTGGGGGCCAGCAGCTGGTGGGGACTGGTTTCAACG CCAGCTTTCTGTGCTTCTGCCTGTCATTCGGAGAAACTCTGGCTCTGGGGCTTTGGGGCTTCTC AGGATCCTGGATGGCAGAGACTGCCCTCAGAAGTTCCTTGTCCAGGGTGGGCACCCACAGTGA CTCAGAGGACAGGGCTAGGCAGAGACCTGCTGCTCCTCATTGGGGGGGATCTCTTGGGGGGGCA GACACCAGTTTGCCAATGAAGCAACACATCTGATCTAAAGACTGGCTCCAGACCCCGGGCTGC CAGGATTATGCAGTCCACTTGGTCTACCTTAATTTAACCTGTGGCCAAACTCAGAGATGGTAC CAGCCAGGGCCAAGCATGACCAGAGCCAGGGACCCTGTGGCTCTGATCCCCCATTTATCCACC CCATGTGCCTCAGGACTAGAGTGAGCAATCATACCTTATAAATGACTTTTGTGCCTTTCTGCT CCAGTCTCAAAATTTCCTACACCTGCCAGTTCTTTACATTTTTCCAAGGAAAGGAAAACGGAA GCAGGGTTCTTGCCTGGTAGCTCCAGGACCCAGCTCTGCAGGCACCCAAAGACCCTCTGTGCC TGTACTTTTTGATAGAACCCTTGTAAGGGCTTTGTTTTCCTAATAGCTGACTTTTTAATAAG CAGTTTTATATAT

FIGURE 132

MLMFAVIVASSGLLLMIERGILAEMKPLPLHPPGREGTAWRGKAPKPGGLSLRAGDADLQVRQ DVRNRTLRAVCGQPGMPRDPWDLPVGQRRTLLRHILVSDRYRFLYCYVPKVACSNWKRVMKVL AGVLDSVDVRLKMDHRSDLVFLADLRPEEIRYRLQHYFKFLFVREPLERLLSAYRNKFGEIRE YQQRYGAEIVRRYRAGAGPSPAGDDVTFPEFLRYLVDEDPERMNEHWMPVYHLCQPCAVHYDF VGSYERLEADANQVLEWVRAPPHVRFPARQAWYRPASPESLHYHLCSAPRALLQDVLPKYILD FSLFAYPLPNVTKEACQQ

Important features of the protein:

Signal peptide:

amino acids 1-23

N-glycosylation sites.

amino acids 67-71, 325-329

Tyrosine kinase phosphorylation sites.

amino acids 152-159, 183-183

N-myristoylation sites.

amino acids 89-95, 128-134

FIGURE 133

CGGCAGTTCTGGCCCCTGCAGCTGGAGGTACCCTGAGTTCTGAGGGTCGTAGTGCTGTTTCTG GTATTCTCATCGCGGTCACCTCTACCGGTGTGGACAAGTAAAGTTTGAATCAGCTTCTCCATG GCCTGGGCACCAGTTCCCGGCTGAGCCATTTTCCTTTTGGCTAAAAGTCCCCGCCCAGAGGCC AATTCGTCGCGGCGGCGGTGGAGATCGCAGGTCGCTCAGGCTTGCAGATGGGTCAAGGGTTGT GGAGAGTGGTCAGAAACCAGCAGCTGCAACAAGAAGGCTACAGTGAGCAAGGCTACCTCACCA GAGAGCAGAGCAGGAGATGGATGCGAGCAACATTTCTAACACCAATCATCGTAAACAAGTCC TTAATTTGGAAATGTTGCCTCCTGAGCTAAGCTTTACCATCTTGTCCTACCTGAATGCAACTG ACCTTTGCTTGGCTTCATGTGTTTGGCAGGACCTTGCGAATGATGAACTTCTCTGGCAAGGGT TGTGCAAATCCACTTGGGGTCACTGTTCCATATACAATAAGAACCCACCTTTAGGATTTTCTT TTAGAAAATTGTATATGCAGCTGGATGAAGGCAGCCTCACCTTTAATGCCAACCCAGATGAGG GAGTGAACTACTTTATGTCCAAGGGTATCCTGGATGATTCGCCAAAGGAAATAGCAAAGTTTA TCTTGGATGACCTTGTAACATTGCATAATTTTAGAAATCAGTTCTTGCCAAATGCACTGAGAG AATTTTTTCGTCATATCCATGCCCCTGAAGAGCGTGGAGAGTATCTTGAAACTCTTATAACAA AGTTCTCACATAGATTCTGTGCTTGCAACCCTGATTTAATGCGAGAACTTGGCCTTAGTCCTG ATGCTGTCTATGTACTGTGCTACTCTTTGATTCTACTTTCCATTGACCTCACTAGCCCTCATG TGAAGAATAAAATGTCAAAAAGGGAATTTATTCGAAATACCCGTCGCGCTGCTCAAAATATTA GTGAAGATTTTGTAGGGCATCTTTATGACAATATCTACCTTATTGGCCATGTGGCTGCA**TAA**A AAGCACAATTGCTAGGACTTCAGTTTTTACTTCAGACTAAAGCTACCCAAGGACTTAGCAGAT ATGGGGGTTACATCAGTGCTGGTCATTGTAGCCTGAGTATACAATCAAGCTTCAGTGTGCAAC ATTTTTCCTAATTTTGTTTATCACGTTTTGCACAAAGCAGAGCCACTGTCTAACACAGCTGTT AACGAATGATAAACTGACATTATACTCTAAAAGATGGTGTATTTGTGCATTAGATTTGCCTGA AAAACTTTATCCATTTCCATTCTTTATACAAATACCATGTAATGTGTACATATTTAACTAAAG AGATTTATAGTCATAATTATTTTATTGTAAAGATTTTAACTAAAGTTTTTCCTTTTCTCTC

FIGURE 134

MGQGLWRVVRNQQLQQEGYSEQGYLTREQSRRMDASNISNTNHRKQVQGGIDIYHLLKARKSK EQEGFINLEMLPPELSFTILSYLNATDLCLASCVWQDLANDELLWQGLCKSTWGHCSIYNKNP PLGFSFRKLYMQLDEGSLTFNANPDEGVNYFMSKGILDDSPKEIAKFIFCTRTLNWKKLRIYL DERRDVLDDLVTLHNFRNQFLPNALREFFRHIHAPEERGEYLETLITKFSHRFCACNPDLMRE LGLSPDAVYVLCYSLILLSIDLTSPHVKNKMSKREFIRNTRRAAQNISEDFVGHLYDNIYLIG HVAA

Important features of the protein:

Transmembrane domain:

amino acids 253-272

N-glycosylation sites.

amino acids 37-41, 87-91, 298-302

N-myristoylation site.

amino acids 110-116

FIGURE 135

GGCACGAGGGAGCCTCCGTTAGGGGGGTGGGAAAGGACTTTGCCATAGGTCGCTGAGGCCACCA TCTGCTCTTACTGGCCAAGGGCGTAAAAAGATAGTCTTCCCATTAGCTAGAGAGCAAACCC CAGAAAGCCTATTGGCTGCGCCGTCCGCGGGCCTTGGTCCGCTTTGAAGGCGGGCTGCGGCTG CGAGAGGGGGGGGGGGGGGGCTAGCTGTTGTCGTGGTTGCTCGGAGGCACGTGTGCAGTCC CGGAAGCGGCGAGGGAAACTGCTCCGCGCGCGCGCGGGAGGAGGAACCGCCCGGTCCTTTA GGGTCCGGGCCGGCCGGCCATGGATTCAATGCCTGAGCCCGCGTCCCGCTGTCTTCTGCTT GGAGCTGAGGAGAACGACTGGGTTCGCCTGCCCAGCAAATGCGAAGTGTGTAAATATGTTGCT GTGGAGCTGAAGTCAGCCTTTGAGGAAACCGGCAAGACCAAGGAGGTGATTGGCACGGGCTAT GGCATCCTGGACCAGAAGGCCTCTGGAGTCAAATACACCAAGTCGGACTTGCGGTTAATCGAA GTCACTGAGACCATTTGCAAGAGGCTCCTGGATTATAGCCTGCACAAGGAGAGGACCGGCAGC AATCGATTTGCCAAGGGCATGTCAGAGACCTTTGAGACATTACACAACCTGGTACACAAAGGG GTCAAGGTGGTGATGGACATCCCCTATGAGCTGTGGAACGAGACTTCTGCAGAGGTGGCTGAC CTCAAGAAGCAGTGTGATGTGCTGGTGGAAGAGTTTGAGGAGGTGATCGAGGACTGGTACAGG AACCACCAGGAGGAAGACCTGACTGAATTCCTCTGCGCCAACCACGTGCTGAAGGGAAAAGAC AGGAAGGAGCTGGGTGGCCTTGAGGGAGACCCCCAGCCCCGAGGAGGATGAGGGCATCCAGAAG $\texttt{GCATCCCCTCTCACACACACCCCCCTGATGAGCTC} \underline{\textbf{TGA}} \\ \texttt{GCCCACCCAGCATCCTCTGTCCTG} \\$ AGACCCCTGATTTTGAAGCTGAGGAGTCAGGGGCATGGCTCTGGCAGGCCGGGATGGCCCCGC AGCCTTCAGCCCCTCTTGCCTTGGCTGTGCCCTCTTCTGCCAAGGAAAGACACAAGCCCCAG GAAGAACTCAGAGCCGTCATGGGTAGCCCACGCCGTCCTTTCCCCCCAAGTGTTTCTCTC CTGACCCAGGGTTCAGGCCAGGCCTTGTGGTTTCAGGACTGCAAGGACTCCAGTGTGAACTCAG GAGGGCAGGTGTCAGAACTGGGCACCAGGACTGGAGCCCCCTCCGGAGACCAAACTCACCAT CCCTCAGTCCTCCCCAACAGGGTACTAGGACTGCAGCCCCCTGTAGCTCCTCTCTGCTTACCC CTCCTGTGGACACCTTGCACTCTGCCTGGCCCTTCCCAGAGCCCAAAGAGTAAAAATGTTCTG GTTCTGATTTCTGAAAAAAAAAAAAAAAAAAAATTCCT

FIGURE 136

MDSMPEPASRCLLLLPLLLLLLLLPAPELGPSQAGAEENDWVRLPSKCEVCKYVAVELKSAF EETGKTKEVIGTGYGILDQKASGVKYTKSDLRLIEVTETICKRLLDYSLHKERTGSNRFAKGM SETFETLHNLVHKGVKVVMDIPYELWNETSAEVADLKKQCDVLVEEFEEVIEDWYRNHQEEDL TEFLCANHVLKGKDTSCLAEQWSGKKGDTAALGGKKSKKKSSRAKAAGGRSSSSKQRKELGGL EGDPSPEEDEGIQKASPLTHSPPDEL

Important features of the protein:

Signal peptide:

amino acids 1-26

N-glycosylation site.

amino acids 153-157

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 227-231, 228-232

Tyrosine kinase phosphorylation site.

amino acids 142-150

N-myristoylation sites.

amino acids 36-42, 74-80, 86-92, 125-131, 222-228, 237-243, 250-256, 263-269

Amidation sites.

amino acids 212-216, 222-226

ATP/GTP-binding site motif A (P-loop).

amino acids 62-70

FIGURE 137

CACGCCTCCCGCTGCCAGCCCGGCACCGGGATCTTAATCAGTCACTATGAAAACTCATTAGCT CCACAGCA**ATG**AGTCCTCCACTGCTGAAGCTTGGCGCTGTGCTTAGTACCATGGCAATGATCT CAAACTGGATGTCCCAAACTCTCCCATCCTTGGTGGGGACTGAACACCACGAGGCTGTCGACTC CGGATACCTTAACTCAGATTAGTCCTAAAGAAGGGTGGCAGGTGTACAGCTCAGCTCAGGATC CTGATGGGCGGTGCATTTGCACAGTTGTTGCTCCAGAACAAAACCTGTGTTCCCGGGATGCCA AAAGCAGGCAACTTCGCCAACTACTGGAAAAGGTTCAGAACATGTCCCAGTCTATTGAAGTCT TAAACTTGAGAACTCAGAGAGATTTCCAATATGTTTTAAAAATGGAAACCCAAATGAAAGGGC TGAAGGCAAAATTTCGGCAGATTGAAGATGATCGAAAGACACTTATGACCAAGCATTTTCAGG AGTTGAAAGAGAAAATGGACGAGCTCCTGCCTTTGATCCCCGTGCTGGAACAGTACAAAACAG TTCAGGAGGAAATTGGTGCCTATGACTACGAGGAACTACACCAAAGAGTGCTGAGCTTGGAAA CAAGACTTCGTGACTGCATGAAAAAGCTAACATGTGGCAAACTGATGAAAATCACAGGCCCAG TTACAGTCAAGACATCTGGAACCCGATTTGGTGCTTGGATGACAGACCCTTTAGCATCTGAGA AAAACAACAGAGTCTGGTACATGGACAGTTATACTAACAATAAAATTGTTCGTGAATACAAAT GAACTAACCATGTTGTCTACAATGGCTCACTCTATTTTAACAAGTATCAGAGTAATATCATCA TCAAATACAGCTTTGATATGGGGAGAGTGCTTGCCCAACGAAGCCTGGAGTATGCTGGTTTTC ATAATGTTTACCCCTACACATGGGGTGGATTCTCTGACATCGACCTAATGGCTGATGAAATCG GGCTGTGGGCTGTTATGCAACTAACCAGAATGCAGGCAATATTGTCATCAGCCAACTTAACC AAGATACCTTGGAGGTGATGAAGAGCTGGAGCACTGGCTACCCCAAGAGAAGTGCAGGGGAAT CTTTCATGATCTGTGGGACACTGTATGTCACCAACTCCCACTTAACTGGAGCCAAGGTGTATT ATTCCTATTCCACCAAAACCTCCACATATGAGTACACAGACATTCCCTTCCATAACCAATACT TTCACATATCCATGCTTGACTACAATGCAAGAGATCGAGCTCTCTATGCCTGGAACAATGGCC ACCAGGTGCTGTTCAATGTCACCCTTTTCCATATCATCAAGACAGAGGATGACACA**TAG**GCAA ATGTGACATGTTTTCATTGATTTAAACAGTGTGATTTGTGATAAACTCTATAAGACCCCTTCC GTTTTTTTCTTCACTATTATTTTTCATCATTTCTCCAAAGCAAAGCATTTTTATTGTAAAGTT GGTGTTTCAAAAACATAGCTGAGCTTGTCTAACTTACCATGTTGGAAACACATCTTAACTTCT GGCTAAAGTCATAGTTTTGCAAGAGATTAATGATCTGCCTTATATTAGAGTCAGAGACTAATG GTGGCTTAAATGCACGAATGTCTTTTTTTTAAAACTGTCATTTTTTACTGTCTTTTTGCTCCA TAAAAAATGTAAGGATTTCATTTATATTGAAAAATAATATTAATCATTTTGCTGTTAACACAA TTCTCTGATGCGGTGCTGTACAGTCATTTTTAAATCTCTTGCTAACATTTTATTGGCAGTATG TATTTCTACCATTGTAACCACCATTGTGCTATTGTATCTCTTCACTTCTGTGAAAGTAATATT

FIGURE 138

MSPPLLKLGAVLSTMAMISNWMSQTLPSLVGLNTTRLSTPDTLTQISPKEGWQVYSSAQDPDG
RCICTVVAPEQNLCSRDAKSRQLRQLLEKVQNMSQSIEVLNLRTQRDFQYVLKMETQMKGLKA
KFRQIEDDRKTLMTKHFQELKEKMDELLPLIPVLEQYKTDAKLITQFKEEIRNLSAVLTGIQE
EIGAYDYEELHQRVLSLETRLRDCMKKLTCGKLMKITGPVTVKTSGTRFGAWMTDPLASEKNN
RVWYMDSYTNNKIVREYKSIADFVSGAESRTYNLPFKWAGTNHVVYNGSLYFNKYQSNIIIKY
SFDMGRVLAQRSLEYAGFHNVYPYTWGGFSDIDLMADEIGLWAVYATNQNAGNIVISQLNQDT
LEVMKSWSTGYPKRSAGESFMICGTLYVTNSHLTGAKVYYSYSTKTSTYEYTDIPFHNQYFHI
SMLDYNARDRALYAWNNGHQVLFNVTLFHIIKTEDDT

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 33-37, 95-99, 179-183, 299-303, 465-469

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 215-219

Tyrosine kinase phosphorylation site.

amino acids 106-114

N-myristoylation sites.

amino acids 9-15, 31-37, 235-241, 239-245

FIGURE 139

AGTCCCCGGCTGCTGCTCCGTCTGGGCCCGCTGCCTCCACTGCCTGTATAGCTGCCACTGGA GGAAATGCCCCAGAGAGAGGATGCAAACCAGCAAGTGCGACTGTATCTGGTTTTGGCCTGCTCT TCCTCACCTTCCTCTTTCCCTGAGCTGGCTGTACATCGGGCTCGTCCTTCTCAATGACCTGC ${\tt TGCTGGTCATCTCTACTGGTCACATATGCATCCTTGCTATTGGTCCTGGCCCTGCTCCTGC}$ GGCTTTGTAGACAGCCCCTGCATCTGCACAGCCTCCACAAGGTGCTGCTGCTCCTCATTATGC TGCTTGTGGCGGCTGGCCTTGTGGGACTGGACATCCAATGGCAGCAGGAGTGGCATAGCTTGC GTGTGTCACTGCAGGCCACAGCCCCATTCCTTCATATTGGAGCAGCCGCTGGAATTGCCCTCC TGGCCTGGCCTGTTGCTACCTTCTACCGTATCCACCGAAGAGTCCCAAGATTCTGCTAC TGCTCCTATTTTTTGGAGTTGTCCTGGTCATCTACTTGGCCCCCCTATGCATCTCCTCACCCT GCATCATGGAACCCAGAGACTTACCACCCAAGCCTGGGCTGGGGACACCGAGGGGCCCCCA TGCTGGCTCCCGAGAACACCCTGATGTCCTTGCGGAAGACAGCTGAATGCGGAGCTACTGTGT GCAGGACCACGAATGTAGCCTCTGTATTCCCAACCCGAATCACAGCCCACAGCAGTGACTTCT CCTGGACTGAACTGAAGAGACTCAATGCTGGATCCTGGTTCCTAGAGAGGCGACCCTTCTGGG GGGCCAAACCGCTGGCAGGCCCTGATCAGAAAGAGGCTGAGAGTCAGACGGTACCAGCATTAG AAGAGCTATTGGAGGAAGCTGCAGCCCTCAACCTTTCCATCATGTTCGACTTGCGCCGACCCC CACAGAACCACATACTATGACACTTTTGTGATCCAGACATTGGAGACTGTGCTGAATGCAA GGGTGCCCCAAGCCATGGTCTTTTGGCTACCAGATGAAGATCGGGCTAATGTCCAACGACGG CACCTGGAATGCGCCAGATATATGGACGTCAGGGAGGCCAACAGAACGGAGAGGCCCCAGTTTC TTAACCTCCCCTATCAAGATCTGCCACTATTGGATATCAAGGCATTGCATAAGGATAATGTCT CGGTGAACCTATTTGTAGTGAACAAGCCCTGGCTCTTCTCTCTGCTTTGGTGTGCAGGGGTGG ATTCGGTCACCACCACGACTGCCAGCTGCTGCAGCAGATGCGTTACCCTATCTGGCTTATTA CCCCTCAAACCTACCTAATCATATGGGTCATTACCAATTGTGTTTTCCACCATGCTGCTTTTTGT GGACCTTCCTCCAAAGGAGATTTGTTAAGAAGAGGGGAAAACTGGCTTAGAAACAGCAG ${\tt TGCTGCTGACAAGGATCAACAATTTCATGATGGAG{\tt TGA}{\tt ATGCCCTGCCTGCTTCCCCACCCA}}$ AGCCAGTCTACATTGCCCAAACAGCAAGGGTTGGAGAGTGGCTTAAGTGGAATGCTTCAGGGG ${\tt TGGTGGGTTGCAAGTGGGGGGGGGGCCTTTGCCAACAGGAGGTTTTGAACCATGAGGGCCCTCTGC}$ CCAGGTGATGGGCATTCCCTAAGCTGCTATGGAATCTGCTCCCTTTGGGGTTTTGACCTGAGA TGTTTGGGAAGAGTGAGTAATGAGAAGTTTCTCCTCAAATGAAACTAGAACAGAGGAAGTA AAAGGGAGATTGCTCGGA

FIGURE 140

MAESPGCCSVWARCLHCLYSCHWRKCPRERMQTSKCDCIWFGLLFLTFLLSLSWLYIGLVLLN
DLHNFNEFLFRRWGHWMDWSLAFLLVISLLVTYASLLLVLALLLRLCRQPLHLHSLHKVLLL
IMLLVAAGLVGLDIQWQQEWHSLRVSLQATAPFLHIGAAAGIALLAWPVADTFYRIHRRGPKI
LLLLLFFGVVLVIYLAPLCISSPCIMEPRDLPPKPGLVGHRGAPMLAPENTLMSLRKTAECGA
TVFETDVMVSSDGVPFLMHDEHLSRTTNVASVFPTRITAHSSDFSWTELKRLNAGSWFLERRP
FWGAKPLAGPDQKEAESQTVPALEELLEEAAALNLSIMFDLRRPPQNHTYYDTFVIQTLETVL
NARVPQAMVFWLPDEDRANVQRRAPGMRQIYGRQGGNRTERPQFLNLPYQDLPLLDIKALHKD
NVSVNLFVVNKPWLFSLLWCAGVDSVTTNDCQLLQQMRYPIWLITPQTYLIIWVITNCVSTML
LLWTFLLQRRFVKKRGKTGLETAVLLTRINNFMME

Important features of the protein:

Transmembrane domains:

amino acids 38-60, 83-107, 122-138, 156-173, 189-210, 484-506

N-glycosylation sites.

amino acids 349-353, 362-366, 415-419, 442-446

N-myristoylation sites.

amino acids 163-169, 413-419, 523-529

Leucine zipper pattern.

amino acids 93-115, 109-131

Glutamine amidotransferases class-II active site.

amino acids 1-13

FIGURE 141

GCCGCCGGCCCGGGCTGGAGCCGAGCGAGCCACCGCCGCCGCCGCCAGAAGTTTGGGTTGAACCGGAGC TGCCGGGAGAACTTTTTTCTTTTTCCCCCTCCCTCCCGGGAGGAGGAGGAGGAGGAGGAGGAGGAGCTGCCG CGCGCCCGGGGGCCCCGAGAGGGGGGGTGAGGACCGCGGGCTGCTGCTGCGGCGGCGGCGGCGCGTGTGCCCCG GGTGGCGGGGACAGGGGGTTGGCCGGCTGCGGGCACCTCCTGGTCTCGCTGCTGCGGGGCTGCTGCTGCTGCC GCGCTCCGGCACCCGGGCGCTGGTCTGCCCTGTGACGAGTCCAAGTGCGAGGAGCCCAGGAACTGCCCGGG GTACGAAGCGGGCGTTTGCGAAGATGAGAACTGGACTGATGACCAACTGCTTGGTTTTAAACCATGCAATGAAAA CCTTATTGCTGGCTGCAATATAATCAATGGGAAATGTGAATGTAACACCATTCGAACCTGCAGCAATCCCTTTGA CTGTGAAGTCCAGTTCTCCACGTTGTCCTGAAGATTCTGTTCTGATCGAGGGTTATGCTCCTCCTGGGGAGTG CTGTCCCTTACCCAGCCGCTGCGTGTGCAACCCCGCAGGCTGTCTGCGCAAAGTCTGCCAGCCGGGAAACCTGAA CATACTAGTGTCAAAAGCCTCAGGGAAGCCGGGAGAGTGCTGTGACCTCTATGAGTGCAAACCAGTTTTCGGCGT GGACTGCAGGACTGTGGAATGCCCTCCTGTTCAGCAGACCGCGTGTCCCCCGGACAGCTATGAAACTCAAGTCAG ACTAACTGCAGATGGTTGCTGTACTTTGCCAACAAGATGCGAGTGTCTCTCTGGCTTATGTGGTTTCCCCGTGTG TGTTAATGATACAAAGCCAGCCTGCGTATTTAACAATGTGGAATATTATGATGGAGACATGTTTCGAATGGACAA CTATGCCAATGGCCTGATCCTTGCCCACGGAGACCGGTGGCGGGAAGACGACTGCACATTCTGCCAGTGCGTCAA CCCTGTGTGCGAAGAACCAACCATCATCACAGTTGATCCACCTGCATGTGGGGAGTTATCAAACTGCACTCTGAC AGGGAAGGACTGCATTAATGGTTTCAAACGCGATCACAATGGTTGTCGGACCTGTCAGTGCATAAACACCGAGGA ACTATGTTCAGAACGTAAACAAGGCTGCACCTTGAACTGTCCCTTCGGTTTCCTTACTGATGCCCAAAACTGTGA GATCTGTGAGTGCCGCCCAAGGCCCAAGAAGTGCAGACCCATAATCTGTGACAAGTATTGTCCACTTGGATTGCT GAAGAATAAGCACGGCTGTGACATCTGTCGCTGTAAGAAATGTCCAGAGCTCTCATGCAGTAAGATCTGCCCCTT GGGTTTCCAGCAGGACAGTCACGGCTGTCTTATCTGCAAGTGCAGAGAGGCCTCTGCTTCAGCTGGGCCACCCAT TTGCCACGCCCTGGAGGAGAATACTTTGTGGAAGGAGAAACGTGGAACATTGACTCCTGTACTCAGTGCACCTG CCACAGCGGACGGGTGCTGTGTGAGACAGAGGTGTGCCCACCGCTGCTCTGCCAGAACCCCTCACGCACCCAGGA ${\tt CAAAAATGATGAAGGGGATATATTCCTGGCAGCTGAGTCCTGGAAGCCTGACGTTTGTACCAGCTGCATCTGCAT}$ TGATAGCGTAATTAGCTGTTTCTCTGAGTCCTGCCCTTCTGTATCCTGTGAAAGACCTGTCTTGAGAAAAGGCCA GTGTTGTCCCTACTGCATAGAAGACACAATTCCAAAGAAGGTGGTGTGCCACTTCAGTGGGAAGGCCTATGCCGA CCCAGAACCAACCAATATACCCATTGAGAAGACAAACCATCGAGGAGGGTTGACCTGGAGGTTCCCCTGTGGCC CACGCCTAGTGAAAATGATATCGTCCATCTCCCTAGAGATATGGGTCACCTCCAGGTAGATTACAGAGATAACAG GCTGCACCCAAGTGAAGATTCTTCACTGGACTCCATTGCCTCAGTTGTGGTTCCCATAATTATATGCCTCTCTAT TATAATAGCATTCCTATTCATCAATCAGAAGAAACAGTGGATACCACTGCTTTGCTGGTATCGAACACCAACTAA $\verb|GCCTTCTTCCTTAAATAATCAGCTAGTATCTGTGGACTGCAAGAAAGGAACCAGAGTCCAGGTGGACAGTTCCCA|$ GAGAATGCTAAGAATTGCAGAACCAGATGCAAGATTCAGTGGCTTCTACAGCATGCAAAAACAGAACCATCTACA $\tt CTGCTCTAAAAAGTAAACTAGAATTTGTGCACTTGCTTAGTGGATTGTATTGGATTGTGACTTGATGTACAGCGC$ TAAGACCTTACTGGGATGGGCTCTGTCTACAGCAATGTGCAGAACAAGCATTCCCACTTTTCCTCAAAAAA

FIGURE 142

MYLVAGDRGLAGCGHLLVSLLGLLLLLARSGTRALVCLPCDESKCEEPRNCPGSIVQGVCGCC YTCASQRNESCGGTFGIYGTCDRGLRCVIRPPLNGDSLTEYEAGVCEDENWTDDQLLGFKPCN ENLIAGCNIINGKCECNTIRTCSNPFEFPSQDMCLSALKRIEEEKPDCSKARCEVQFSPRCPE DSVLIEGYAPPGECCPLPSRCVCNPAGCLRKVCQPGNLNILVSKASGKPGECCDLYECKPVFG VDCRTVECPPVQQTACPPDSYETQVRLTADGCCTLPTRCECLSGLCGFPVCEVGSTPRIVSRG DGTPGKCCDVFECVNDTKPACVFNNVEYYDGDMFRMDNCRFCRCQGGVAICFTAQCGEINCER YYVPEGECCPVCEDPVYPFNNPAGCYANGLILAHGDRWREDDCTFCQCVNGERHCVATVCGQT CTNPVKVPGECCPVCEEPTIITVDPPACGELSNCTLTGKDCINGFKRDHNGCRTCQCINTEEL CSERKQGCTLNCPFGFLTDAQNCEICECRPRPKKCRPIICDKYCPLGLLKNKHGCDICRCKKC PELSCSKICPLGFQQDSHGCLICKCREASASAGPPILSGTCLTVDGHHHKNEESWHDGCRECY CLNGREMCALITCPVPACGNPTIHPGQCCPSCADDFVVQKPELSTPSICHAPGGEYFVEGETW NIDSCTQCTCHSGRVLCETEVCPPLLCQNPSRTQDSCCPQCTDQPFRPSLSRNNSVPNYCKND EGDIFLAAESWKPDVCTSCICIDSVISCFSESCPSVSCERPVLRKGQCCPYCIEDTIPKKVVC HFSGKAYADEERWDLDSCTHCYCLQGQTLCSTVSCPPLPCVEPINVEGSCCPMCPEMYVPEPT NIPIEKTNHRGEVDLEVPLWPTPSENDIVHLPRDMGHLQVDYRDNRLHPSEDSSLDSIASVVV PIIICLSIIIAFLFINQKKQWIPLLCWYRTPTKPSSLNNQLVSVDCKKGTRVQVDSSQRMLRI AEPDARFSGFYSMQKQNHLQADNFYQTV

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 940-962

N-glycosylation sites.

amino acids 71-75, 113-117, 330-334, 474-478, 746-750

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 992-996

N-myristoylation site.

amino acids 9-15, 58-64, 61-67, 75-81, 79-85, 362-368, 402-408, 407-413, 439-445, 492-498, 511-517, 551-557, 558-564, 586-592, 606-612, 845-851

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 52-63, 844-855

Cell attachment sequence.

amino acids 314-317

Leucine zipper pattern.

amino acids 3-25

Eukaryotic thiol (cysteine) proteases cysteine active site.

amino acids 57-69

VWFC domain proteins.

amino acids 448-456, 382-390

C-terminal cystine knot proteins

amino acids 60-86

FIGURE 143

GACGTCTGGCCGGCTCCCGGCGAAGGGCAGCGGAGGGCGCCCAGAGCGCGCAGCTAGGGCA CTGGCGAAACCCCGGGACAGTCCCTCTCCGTGCGGGGGCGCGCAGAGCAGTCCCATCCCCGG GGTCCCGGGCGGCTGACTGCCGGCTGGTTCCCTGCGCGCAGTAGCTCCCCGAGCCGGGCTG CACCGGAGGCGGCGAGATGGTCGCGCGCGTCGGCCTCCTGCTGCCGCCCCTGCAGCTGCTACT GTGGGGCCACCTGGACGCCCAGCCGGGAGCGGGGGCCAGGAGCTGCGCAAGGAGGCGGA GGCATTCCTAGAGAAGTACGGATACCTCAATGAACAGGTCCCCAAAGCTCCCACCTCCACTCG ATTCAGCGATGCCATCAGAGCGTTTCAGTGGGTGTCCCAGCTACCTGTCAGCGGCGTGTTGGA CCGCGCCACCCTGCGCCAGATGACTCGTCCCCGCTGCGGGGTTACAGATACCAACAGTTATGC GGCCTGGGCTGAGAGGATCAGTGACTTGTTTGCTAGACACCGGACCAAAATGAGGCGTAAGAA ACGCTTTGCAAAGCAAGGTAACAAATGGTACAAGCAGCACCTCTCCTACCGCCTGGTGAACTG GCCTGAGCATCTGCCGGAGCCGGCAGTTCGGGGGCGCCGTGCGCCGCCTTCCAGTTGTGGAG CAACGTCTCAGCGCTGGAGTTCTGGGAGGCCCCAGCCACAGGCCCCGCTGACATCCGGCTCAC CTTCTTCCAAGGGGACCACAACGATGGGCTGGGCAATGCCTTTGATGGCCCAGGGGGGCGCCCT GGCGCACGCCTTCCTGCCCCGCCGCGGCGAAGCGCACTTCGACCAAGATGAGCGCTGGTCCCT GAGCCGCCGCCGCGGCCAACCTGTTCGTGGTGCTGGCGCACGAGATCGGTCACACGCTTGG CCTCACCCACTCGCCGCGCGCGCGCGCTCATGGCGCCCTACTACAAGAGGCTGGGCCGCGA CGCGCTGCTCAGCTGGACGACGTGCTGGCCGTGCAGAGCCTGTATGGGAAGCCCCTAGGGGG CTCAGTGGCCGTCCAGCTCCCAGGAAAGCTGTTCACTGACTTTGAGACCTGGGACTCCTACAG CACTGTAGACAGCAACAGCAACTGTACATTTTTAAAGGGAGCCATTTCTGGGAGGTGGCAGC TGATGGCAACGTCTCAGAGCCCCGTCCACTGCAGGAAAGATGGGTCGGGCTGCCCCCAACAT TGAGGCTGCGGCAGTGTCATTGAATGATGGAGATTTCTACTTCTTCAAAGGGGGGTCGATGCTG GAGGTTCCGGGGCCCCAAGCCAGTGTGGGGTCTCCCACAGCTGTGCCGGGCAGGGGGCCTGCC CCGCCATCCTGACGCCGCCTCTTCTTCCCTCCTCTGCGCCGCCTCATCCTCTTCAAGGGTGC CCGCTACTACGTGCTGGCCCGAGGGGGACTGCAAGTGGAGCCCTACTACCCCCGAAGTCTGCA GGACTGGGGAGGCATCCCTGAGGAGGTCAGCGGCGCCCTGCCGAGGCCCGATGGCTCCATCAT CTTCTTCCGAGATGACCGCTACTGGCGCCTCGACCAGGCCAAACTGCAGGCAACCACCTCGGG CCGCTGGGCCACCGAGCTGCCTGGATGGGCTGCTGGCCAACTCGGGGAGCGCCCTGTT CTGAAGGCACCTCCTCACCTCAGAAACTGGTGGTGCTCTCAGGGCAAAATCATGTTCCCCACC CCCGGGGCAGAACCCCTCTTAGAAGCCTCTGAGTCCCTCTGCAGAAGACCGGGCAGCAAAGCC

FIGURE 144

MVARVGLLLRALQLLLWGHLDAQPAERGGQELRKEAEAFLEKYGYLNEQVPKAPTSTRFSDAI RAFQWVSQLPVSGVLDRATLRQMTRPRCGVTDTNSYAAWAERISDLFARHRTKMRRKKRFAKQ GNKWYKQHLSYRLVNWPEHLPEPAVRGAVRAAFQLWSNVSALEFWEAPATGPADIRLTFFQGD HNDGLGNAFDGPGGALAHAFLPRRGEAHFDQDERWSLSRRRGRNLFVVLAHEIGHTLGLTHSP APRALMAPYYKRLGRDALLSWDDVLAVQSLYGKPLGGSVAVQLPGKLFTDFETWDSYSPQGRR PETQGPKYCHSSFDAITVDRQQQLYIFKGSHFWEVAADGNVSEPRPLQERWVGLPPNIEAAAV SLNDGDFYFFKGGRCWRFRGPKPVWGLPQLCRAGGLPRHPDAALFFPPLRRLILFKGARYYVL ARGGLQVEPYYPRSLQDWGGIPEEVSGALPRPDGSIIFFRDDRYWRLDQAKLQATTSGRWATE LPWMGCWHANSGSALF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 164-168, 355-359

N-myristoylation sites.

amino acids 92-98, 153-159, 193-199, 202-208, 288-294, 368-374, 509-515

Amidation site.

amino acids 312-316

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 237-247

Matrixins cysteine switch

amino acids 231-262, 271-284

Hemopexin domain protein

amino acids 66-108, 231-262

FIGURE 145

GCCGGCTAGGGCCCGGAGCCGCAGCCGCGGGGCTCCGAGAGGCGCGCACTGGGGCTGGGACTGCGCGGCG CCGCCGCTGCGAGCGCCACTGAGCGGTCGCGCAACTTCGGAGGCACAGCGCGCGGAGCCAGGCGAGCGCTCAGAGA CCCGGAGCCAGAGGGCGCGCGGAGCCTCGTTCGAGAGCCGGCGCCAGGCCACCCGCGCTCCGAGTGCCAGG CGGCCCTCCGCGCAGCGTGGCTTCCGCTGCCCCACGGAAGGCACGGGCTGGCGCTGCCGGGCGCCGGGGAGGAC ACAGGAAGGCCTGGATGAGGCCACCGGCCTGCGGGTGCGCGAGGTGCAGATCGAGGTGTCGCGGCAGCAGGTGGA GGAGCTCTTTGGGCTGGAGGATTACTGGTGCCAGTGCGTGGCCTGGAGCTCCGCAGGCACCACCAAGAGTCGCCG ${\tt AGCCTACGTCCGCATCGCCTACCTGCGCAAGAACTTCGATCAGGAGCCTCTGGGCAAGGAGGTGCCCCTGGACCA}$ $\tt CATCGACCCCAGGACACCAACTTCCTGCTCACCATCGACCACAACCTCATCATCCGCCAGGCCCGCCTGTC$ GGACACTGCCAACTATACCTGCGTGGCCAAGAACATCGTGGCCAAACGCCGGAGCACCACTGCCACCGTCATCGT $\tt CTACGTGAATGGCGGCTGGTCCAGCTGGGCAGAGTGGTCACCCTGCTCCAACCGCTGTGGCCGAGGCTGGCAGAA$ GCGCACCCGGACCTGCACCCCGCTCCACTCAACGGAGGGCCTTCTGCGAGGGCCCAGGCATTCCAGAAGAC CGCCTGCACCACCATCTGCCCAGTCGATGGGGCGTGGACGGAGTGGAGCAAGTGGTCAGCCTGCAGCACTGAGTG TGCCCACTGGCGTAGCCGCGAGTGCATGGCGCCCCCCACCCCAGAACGGAGGCCGTGACTGCAGCGGGACGCTGCT CGACTCTAAGAACTGCACAGATGGGCTGTGCATGCAAAATAAGAAAACTCTAAGCGACCCCAACAGCCACCTGCT GGAGGCCTCAGGGGATGCGGCGCTGTATGCGGGGGCTCGTGGTGGCCATCTTCGTGGTCGTGGCAATCCTCATGGC GGTGGGGGTGGTGTACCGCCGCAACTGCCGTGACTTCGACACAGACATCACTGACTCATCTGCTGCCCTGAC TGGTGGTTTCCACCCCGTCAACTTTAAGACGGCAAGGCCCAGCAACCCGCAGCTCCTACACCCCTCTGTGCCTCC TGACCTGACAGCCAGCGCCGCATCTACCGCGGACCCGTGTATGCCCTGCAGGACTCCACCGACAAAATCCCCAT GACCAACTCTCCTCTGCTGGACCCCTTACCCAGCCTTAAGGTCAAGGTCTACAGCTCCAGCACCACGGGCTCTGG GCCAGGCCTGGCAGATGGGGGCTGACCTGGGGGGTCTTGCCGCCTGGCACATACCCTAGCGATTTCGCCCGGGA CACCCACTTCCTGCACCTGCGCAGCCCAGCCTCGGTTCCCAGCAGCTCTTGGGCCTGCCCCGAGACCCAGGGAG ${\tt CAATGGAGCCATTCCCCAGGGCAAGTTCTACGAGATGTATCTACTCATCAACAAGGCAGAAAGTACCCTCCCGCT}$ TTCAGAAGGGACCCAGACAGTATTGAGCCCCTCGGTGACCTGTGGACCCACAGGCCTCCTGCTGTGCCGCCCCGT $\hbox{\tt CATCCTCACCATGCCCACTGTGCCGAAGTCAGTGCCCGTGACTGGATCTTCAGCTCAAGACCCAGGCCCACCA}$ ${\tt GGCCTGTCACATCCTGGGACCAGCTGGGCACCTACGTGTTCACGGGCGAGTCCTATTCCCGCTCAGCAGTCAA}$ ${\tt GCGGCTCCAGCTGGCCCTCTGCACCTCCCTGGAGTACAGCCTCCGGGTCTACTGCCTGGA}$ ${\tt GGACACGCCTGTAGCACTGAAGGAGGTGCTGGAGCTGGAGCGGACTCTGGGCGGATACTTGGTGGAGGAGCCGAA}$ CAAGCTGCTGGCCAAATACCAGGAGATCCCCTTCTATCACATTTGGAGTGGCAGCCAGAAGGCCCTCCACTGCAC GGGCCAGATATTCCAGCTGCATACCACTCTGGCAGAGACACCTGCTGGCTCCCTGGACACTCTCTGCTCTGCCCC TGGCAGCACTGTCACCACCCAGCTGGGACCTTATGCCTTCAAGATCCCACTGTCCATCCGCCAGAAGATATGCAA ${\tt CAGCCTAGATGCCCCCAACTCACGGGGCAATGACTGGCGGATGTTAGCACAGAAGCTCTCTATGGACCGGTACCT}$ GAATTACTTTGCCACCAAAGCGAGCCCCACGGGTGTGATCCTGGACCTCTGGGAAGCTCTGCAGCAGGACGATGG GGACCTCAACAGCCTGGCGAGTGCCTTGGAGGAGATGGGCAAGAGTGAGATGCTGGTGGCTGTGGCCACCGACGG TCCTGATGGGGATGTTTGGCCTCTGCTTCCTCCCAGTTCACAGCCAGAGTTGCCTCTCCTCCTCCTCCCCAA GGGCGGGCAGGCAGGCCCTCCCTCCACCCCCACCCTCAGCCCGGCAACTTCTGGGTTCCGTGGGTTTTAG $\tt TTCCGTTCTTCGTTTTCTTCCTCCGTTATTGATTTCTCCTTTCTCCCTAAGCCCCCTTCTGCTTCCACGCCCTTT$ TCCTCTTTGAAGAGTCAAGTACAATTCAGACAAACTGCTTTCTCCTGTCCAAAAAGCAAAAAGGCAAAGGAAAGAA AGAAAGCTTCAGACCGCTAGTAAGGCTCAAAGAAGAAGAAAAACACCAAAACCACAAGGGAAAAGAAAAACCCAG TTTCTTAGGAAACGCAAACGATTTATTATCCAGATTATTTGGATAAGTCCTTTTTAAAA

MGARSGARGALLLALLCWDPRLSQAGTDSGSEVLPDSFPSAPAEPLPYFLQEPQDAYIVKNK PVELRCRAFPATQIYFKCNGEWVSQNDHVTQEGLDEATGLRVREVQIEVSRQQVEELFGLEDY WCQCVAWSSAGTTKSRRAYVRIAYLRKNFDQEPLGKEVPLDHEVLLQCRPPEGVPVAEVEWLK NEDVIDPTQDTNFLLTIDHNLIIRQARLSDTANYTCVAKNIVAKRRSTTATVIVYVNGGWSSW AEWSPCSNRCGRGWQKRTRTCTNPAPLNGGAFCEGQAFQKTACTTICPVDGAWTEWSKWSACS TECAHWRSRECMAPPPQNGGRDCSGTLLDSKNCTDGLCMQNKKTLSDPNSHLLEASGDAALYA GLVVAIFVVVAILMAVGVVVYRRNCRDFDTDITDSSAALTGGFHPVNFKTARPSNPQLLHPSV PPDLTASAGIYRGPVYALQDSTDKIPMTNSPLLDPLPSLKVKVYSSSTTGSGPGLADGADLLG VLPPGTYPSDFARDTHFLHLRSASLGSQQLLGLPRDPGSSVSGTFGCLGGRLSIPGTGVSLLV PNGAIPQGKFYEMYLLINKAESTLPLSEGTQTVLSPSVTCGPTGLLLCRPVILTMPHCAEVSA RDWIFQLKTQAHQGHWEEVVTLDEETLNTPCYCQLEPRACHILLDQLGTYVFTGESYSRSAVK RLQLAVFAPALCTSLEYSLRVYCLEDTPVALKEVLELERTLGGYLVEEPKPLMFKDSYHNLRL SLHDLPHAHWRSKLLAKYQEIPFYHIWSGSQKALHCTFTLERHSLASTELTCKICVRQVEGEG QIFQLHTTLAETPAGSLDTLCSAPGSTVTTQLGPYAFKIPLSIRQKICNSLDAPNSRGNDWRM LAQKLSMDRYLNYFATKASPTGVILDLWEALQQDDGDLNSLASALEEMGKSEMLVAVATDGDC

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 374-395

N-glycosylation sites.

amino acids 222-225, 347-350

Glycosaminoglycan attachment site.

amino acids 492-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 233-236, 234-237

Casein kinase II phosphorylation sites.

amino acids 30-33, 87-90, 251-254, 341-344, 359-362, 629-632, 651-654, 706-709, 757-760, 827-830, 925-928, 941-944

Tyrosine kinase phosphorylation sites.

amino acids 216-223, 773-780

N-myristoylation sites.

amino acids 2-7, 6-11, 27-32, 96-101, 137-142, 179-184, 247-252, 281-286, 334-339, 379-384, 491-496, 495-500, 509-514, 542-547, 547-552, 550-555, 553-558, 560-565, 611-616, 785-790, 834-839, 844-849

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 541-551

ATP/GTP-binding site motif A (P-loop).

amino acids 926-933

Growth factor and cytokines receptors family signature 2.

amino acids 306-312

GTCAGCTGGCTGCAGGGGCCACAGACTGCAAGTTCCTTGGCCCGGCAGAGCACCTGACATTCACCCCAGCAGCCA GGGCCCGGTGGCCCCTCGAGTTCGTGCGCCAGGACTCCTGGACTCCCTCTATGGCACCGTGCGCCGCTTCC TGAATGAGGTGGTGCGGTACGAGGCGGGCTACGTGGTATGCGCTGTGATCGCGGGCCTCTACCTGCTGCTGGTGC CGCTGGCCTGTGAGCGCGCGCCCTCATGGTCTTCCTGCTGACCACCCTCTTGCTGCTGATTGGTGTGTCT GTGCCTTTGTCACCAACCAGCGCACGCATGAACAGATGGGCCCCAGCATCGAGGCCCATGCCTGAGACCCTGCTCA $\verb|GCCTCTGGGGCCTGGTCTCTGATGTCCCCCAAGAGCTGCAGGCCGTGGCACAGCAATTCTCCCTGCCCCAGGAGC| \\$ AAGTCTCAGAGGAGCTGGATGGTGTTGGTGTGAGCATTGGGAGCGCGATCCACACTCAGCTCAGGAGCTCCGTGT AGCTGCTGCAGGAGGCCAGGTGCCAGGGAGATTGTGCAGGGGCCCTGAGCTGGGCCCGCACCCTGGAGCTGGGTG CTGACTTCAGCCAGGTGCCCTCTGTGGACCATGTCCTGCACCAGCTAAAAGGTGTCCCCGAGGCCAACTTCTCCA GCATGGTCCAGGAGAGAACAGCACCTTCAACGCCCTTCCAGCCCTGGCTGCCATGCAGACATCCAGCGTGGTGC AAGAGCTGAAGAAGGCAGTGGCCCAGCAGCCGGAAGGGGTGAGGACACTGGCTGAAGGGTTCCCGGGCTTGGAGGCAGCTTCCCGCTGGGCCCAGGCACTGCAGGAGGTGGAGGAGCAGCCGCCCCTACCTGCAGGAGGTGCAGAGAT ACGAGACCTACAGGTGGATCGTGGGCTGCGTGCTGCTCCGTGGTCCTATTCGTGGTGCTCTGCAACCTGCTGG $\tt CCCGCTTCCTCATGGCAGGTGTGGGCCTCAGCTTCCTCTTTGCTGCACCCTCATCCTCCTGGTGTTCGCCACCT$ TCCTGGTGGGTGGCAACGTGCAGACGCTGGTGTGCCGGAGCTGGGAGAACGGCGAGCTCTTTGAGTTTGCAGACA CCCCAGGGAACCTGCCCCGTCCATGAACCTGTCGCAACTTCTTGGCCTGAGGAAGAACATCAGCATCCACCAAG ACCTGGATATCAACCAGTATACCAACAAGCTACGGCAGGAGTTGCAGAGCCTGAAAGTAGACACACAGAGCCTGG ${\tt ACCTGCTGAGCCTCAGCCGCCGGGGACCTGGAGGCCCTGCAGAGCAGTGGGCTTCAGCGCATCCACTACCCCG}$ ACTTCCTCGTTCAGATCCAGAGGCCCGTGGTGAAGACCAGCATGGAGCAGCTGGCCCAGGAGCTGCAAGGACTGG CCCAGGCCCAAGACAATTCTGTGCTGGGGCAGCGGCTGCAGGAGGAGGCCCAAGGACTCAGAAACCTTCACCAGG ${f A}{f G}{f A}{f G}{f G}{f C}{f C}{f$ GAGAGGAGGTGACTCAGCGCATTGCCACCTGCCAGCCCCTCTCCGGAGCCCTGGACAACAGCCGTGTGATCCTGT TCATCTTTGCCGTCAAGACCTCCAAATACTTCCGTCCTATCCGGAAACGCCTCAGCTCCACCAGCTCTGAGGAGA CCTGTCCTCCCCTTTGATTTAGCCTGGGCCACAGGACTTCGGTAGCTCTTGCCCCAGAGCCCAGGCTGGCATCCA GGCCTGGACTGTCCCCAGTTCCGGCTTACCTGGCCCCACCTTGCCTGCTCCTTTCCACCCCTTTCTGCTCACGAC $\verb|CCCCATCATTCACGCTCAGAATCACATGGGACTTCTGTGCAGCTGCAGAGCCAGCAAGTCCCTACAGGTGTCACC| \\$ $\tt CGTTACCCCCATGCTGGTGGCATCCTCACAGGAAGAGCCTGTTCTCCACCTGCTGGAGCCTGGACCCTGGGGTGG$ GACAGAGGCCTCGTCCAACCCCACTCCCCTTCCCGTGTGTCTTCCCCCTGCCAAGCCTCCCCCTGCCAAGCCTCC CCCTGCCCTCTCTGAGCCCCTCGCCCCCACACCGTCCTCATCTGGCCTCCCCCTGGCCCCCACTTCCCTCTT ATGCCCTTCCTGGCCCTTTGCTTCCTCCCTTAGTCCCCTCTTCACCATATCTCCACTGCTACCTTGCTGGCCCCA GGCCAGAACAGGATTTTGCACGGCCCCTTTTATCCTGCGCATGTGGCCTAGGGTCATCCCCAGCCCATCCCTGTG

MKHTLALLAPLLGLGLGLALSQLAAGATDCKFLGPAEHLTFTPAARARWLAPRVRAPGLL
DSLYGTVRRFLSVVQLNPFPSELVKALLNELASVKVNEVVRYEAGYVVCAVIAGLYLLLV
PTAGLCFCCCRCHRRCGGRVKTEHKALACERAALMVFLLLTTLLLLIGVVCAFVTNQRTH
EQMGPSIEAMPETLLSLWGLVSDVPQELQAVAQQFSLPQEQVSEELDGVGVSIGSAIHTQ
LRSSVYPLLAAVGSLGQVLQVSVHHLQTLNATVVELQAGQQDLEPAIREHRDRLLELLQE
ARCQGDCAGALSWARTLELGADFSQVPSVDHVLHQLKGVPEANFSSMVQEENSTFNALPA
LAAMQTSSVVQELKKAVAQQPEGVRTLAEGFPGLEAASRWAQALQEVEESSRPYLQEVQR
YETYRWIVGCVLCSVVLFVVLCNLLGLNLGIWGLSARDDPSHPEAKGEAGARTLMAGVGL
SFLFAAPLILLVFATFLVGGNVQTLVCRSWENGELFEFADTPGNLPPSMNLSQLLGLRKN
ISIHQAYQQCKEGAALWTVLQLNDSYDLEEHLDINQYTNKLRQELQSLKVDTQSLDLLSS
AARRDLEALQSSGLQRIHYPDFLVQIQRPVVKTSMEQLAQELQGLAQAQDNSVLGQRLQE
EAQGLRNLHQEKVVPQQSLVAKLNLSVRALESSAPNLQLETSDVLANVTYLKGELPAWAA
RILRNVSECFLAREMGYFSQYVAWVREEVTQRIATCQPLSGALDNSRVILCDMMADPWNA
FWFCLAWCTFFLIPSIIFAVKTSKYFRPIRKRLSSTSSEETQLFHIPRVTSLKL

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 105-125, 153-173, 428-449, 476-500, 778-797

N-glycosylation sites:

amino acids 270-273, 343-347, 352-356, 530-534, 540-546, 563-567, 684-688, 707-711, 725-729

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 811-815

Tyrosine kinase phosphorylation site.

amino acids 95-103

N-myristoylation sites.

amino acids 13-19, 15-21, 17-23, 26-32, 58-64, 124-130, 168-174, 228-234, 230-236, 320-326, 338-344, 393-399, 429-435, 446-452, 477-483, 500-506, 536-542, 644-650, 761-767

Phospholipase A2 histidine active site.

aminop acids 129-137

4Fe-4S ferredoxins, iron-sulfur binding region signature.

amino acids 126-138

Mitochondrial energy transfer proteins signature.

amino acids 80-89

FIGURE 149

FIGURE 150

MRLLVLSSLLCILLCFSIFSTEGKRRPAKAWSGRRTRLCCHRVPSPNSTNLKGHHVRLCKPC KLEPEPRLWVVPGALPQV

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 48-52

Amidation sites.

amino acids 23-27, 33-37

FIGURE 151

 ${\tt CACCGGAGGCACCTGACGGAGCTGCGCTGCGTTCGCCTCGTTTGCCTCGCGCCCTCCA}$ $\tt CTGGAGCTGTTCGCGCCTCCCGGCTCCCACCGGCAGCCCACCCGGCAGAGGAGTCGCTACCAGC$ GCCCAGTGCGCTCTGTCAGTCCGCAAACTCCTTGCCGCCCCGGGCTGGGCACCAAATAC ${\tt CAGGCTACC} \underline{\textbf{ATG}} \texttt{GTCTACAAGACTCTCTTCGCTCTTTGCATCTTAACTGCAGGATGGAGGGTA}$ CAGAGTCTGCCTACATCAGCTCCTTTGTCTGTTTTCTCTTTCCGACAAACATTGTACCACCGACC ACCATCTGGACTAGCTCTCCACAAAACACTGATGCAGACACTGCCTCCCCATCCAACGGCACT CACAACAACTCGGTGCTCCCAGTTACAGCATCAGCCCCAACATCTCTGCTTCCTAAGAACATT TCCATAGAGTCCAGAGAAGAGAGATCACCAGCCCAGGTTCGAATTGGGAAGGCACAAACACA GACCCCTCACCTTCTGGGTTCTCGTCAACAAGCGGTGGAGTCCACTTAACAACCACGTTGGAG GAACACAGCTCGGGCACTCCTGAAGCAGGCGTGGCAGCTACACTGTCGCAGTCCGCTGCTGAG CCTCCCACACTCATCTCCCCTCAAGCTCCAGCCTCATCACCCTCATCCACCCA CCTGAGGTCTTTTCTGCCTCCGTTACTACCAACCATAGCTCCACTGTGACCAGCACCCAACCC ACTGGAGCTCCAACTGCACCAGAGTCCCCGACAGAGGAGTCCAGCTCTGACCACACACCCACT TCACATGCCACAGCTGAGCCAGTGCCCCAGGAGAAAACACCCCCAACAACTGTGTCAGGCAAA GTGATGTGTGAGCTCATAGACATGGAGACCACCACCACCTTTCCCAGGGTGATCATGCAGGAA GTAGAACATGCATTAAGTTCAGGCAGCATCGCCGCCATTACCGTGACAGTCATTGCCGTGGTG CTGCTGGTGTTTGGAGTTGCAGCCTACCTAAAAATCAGGCATTCCTCCTATGGAAGACTTTTG GACGACCATGACTACGGGTCCTGGGGAAACTACAACAACCCTCTGTACGATGACTCC**TAA**CAA AATAAGTACCTGATGCGCATTGAACGACAATCTTAAGCCCTGTTTTGTTGGTATGGTTGTTT TGTTTTCCTCCTCTCTCTGGCTGCTACAACTTCCCCTTTCTGGTACAAGAAGAACCATTCT CCACCATGGTGAAGGCTTCTTTCCCCACTGCAGGACCCACTTTGAGAAGGATCGAGGAGGAGG ATTTGGGTTGTTTGTTAGGGGTTACTTTCAGGGGAACATTTCATTTGTGTTATTTCTTAAAC TTCTATTTAGGAAATTACATTAAGTATTAATGAGGGGAAAGGAAATGAGCTCTACGAGGATTT CACCTTGCATGGGAGAGAGCAGGGTTTTCTCAGATTCCTTTTTAATCTCTATTTATCTGGTTG TTTCTGACAGGATGCTGCCTTGGCTCTACGAGCTGGAAAGCAGCTTCTTAGCTGCCTAAT TAATGAAAGATGAAAATAGGAAGTGCCCTGGAGGGGCCAGCAGGTCACGGGGCAGAATCTCT CAGGTTGCTGTGGGATCTCAGTGTGCCCCTACCTGTTCTCCCCTCCAGGCCACCTGTCTCTGT AAAGGATGTCTGCTCTGTTCAAAAGGCAGCTGGGATCCCAGCCCACAAGTGATCAGCAGAGTT GCATTTCCAAAGAAAAAGGCTATGAGATGAGCTGAGTTATAGAGAGAAAGGGAGAGGCATGTA CGGTGTGGGGAAGTGGAAGAGCTGGCGGGGGGAGAAGGAGGCTAACCTGCACTGAGTACTT CATTAGGACAAGTGAGAATCAGCTATTGATAATGGCCAGAGATATCCACAGCTTGGAGGAGCC TGGCTGTAAAATGTTTAAAAAC

152/550

FIGURE 152

MVYKTLFALCILTAGWRVQSLPTSAPLSVSLPTNIVPPTTIWTSSPQNTDADTASPSNGTHNN SVLPVTASAPTSLLPKNISIESREEEITSPGSNWEGTNTDPSPSGFSSTSGGVHLTTTLEEHS SGTPEAGVAATLSQSAAEPPTLISPQAPASSPSSLSTSPPEVFSASVTTNHSSTVTSTQPTGA PTAPESPTEESSSDHTPTSHATAEPVPQEKTPPTTVSGKVMCELIDMETTTTFPRVIMQEVEH ALSSGSIAAITVTVIAVVLLVFGVAAYLKIRHSSYGRLLDDHDYGSWGNYNNPLYDDS

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 258-278

N-glycosylation sites.

amino acids 58-61, 62-65, 80-83, 176-179

Casein kinase II phosphorylation sites.

amino acids 49-52, 85-88, 95-98, 100-103, 120-123, 121-124, 141-144, 164-167, 191-194, 195-198, 200-203

Tyrosine kinase phosphorylation site.

amino acids 289-296

N-myristoylation sites.

amino acids 59-64, 115-120, 128-133, 133-138, 257-262, 297-302

FIGURE 153

FIGURE 154

MLVHCVGLLLTGLLLGAGALLASEPIYQPPSAWVPAGGLVGLALLGALLTLRWPRPFTV LGTTLLGSAVLVACVDYFLEGLALGSWLGQRLQTLPALPSLC

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 38-55, 60-78

N-myristoylation sites.

amino acids 7-13, 12-18, 16-22, 22-28, 41-47, 50-56, 84-90, 88-94

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 67-78

FIGURE 155

 ${\tt TGCAATTAAAGGAGTCGGGTCTCTAACTGTTGATCTGTTTTTTTCCCTTCTGAGCA{\color{blue} \textbf{ATG}}{GAGC}}$ TTACCATCTTTATCCTGAGACTGGCCATTTACATCCTGACATTTCCCTTGTACCTGCTGAACT TTCTGGGCTTGTGGAGCTGGATATGCAAAAAATGGTTCCCCTACTTCTTGGTGAGGTTCACTG TGATATACAACGAACAGATGGCAAGCAAGAAGCGGGAGCTCTTCAGTAACCTGCAGGAGTTTG CGGGCCCCTCCGGGAAACTCTCCCTGCTGGAAGTGGGCTGTGGCACGGGGGCCAACTTCAAGT TCTACCCACCTGGGTGCAGGGTGACCTGTATTGACCCCCAACCCCAACTTTGAGAAGTTTTTGA TCAAGAGCATTGCAGAGAACCGACACCTGCAGTTTGAGCGCTTTGTGGTAGCTGCCGGGGAGA ACATGCACCAGGTGGCTGATGGCTCTGTGGATGTGGTGCTCTGCACCCTGGTGCTGTGCTCTG TGAAGAACCAGGAGCGGATTCTCCGCGAGGTGTGCAGAGTGCTGAGACCGGGAGGGGCTTTCT ATTTCATGGAGCATGTGGCAGCTGAGTGTTCGACTTGGAATTACTTCTGGCAACAAGTCCTGG AGCGGGCCAGCTTCTCTAAGCTGAAGCTGCAGCACATCCAGGCCCCACTGTCCTGGGAGTTGG ${\tt TGCGCCCTCATATCTATGGATATGCTGTGAAA} \underline{{\tt TAG}} {\tt TGTGAGCTGGCAGTTAAGAGCTGAATGG}$ CTCAAAGAATTTAAAGCTTCAGTTTTACATTTAAAATGCTAAGTGGGAGAAGAGAAACCTTTT TTGAACCCAGAAGGCGAAGGTTGCAGTGAACCGAGATCATGCCATTGTACTCTAGCCTGGGTG GGGGTCTCACTGTGTTGCCTAGGCCGGTCTTGAACTCCTGGGCTCAAGTGATTCTCCCACCTT GACCTCCTAAATTGTTGGGATTACAGGTGTGAGACAGTGCACCTGGCCGAAATAGCTCAAGTT TCTGAAAAACAAATCTGAATCTATTTGTTATTCTTAGCGTCACTGGTCTGGCTTTCAGAATTA ACATACAAGGTTGCCACACCTAGTTCTGCCCAGCTTTATGTCTTTTTATTCCAGTATTCCACCA AAGTTTGTTTTCCTGCATTCCAGTTCTCAAGTCTTAAGATAAAGATTGTACTTGACAGTTTAG TATATCCATAAAACTATTTGAGGTGGTTAAGGTTCTTGGGTTCATTTTCCTTAATACTTTGCT GAATATTGTAGATTGTAGGCAATGAAAAAGTCTACTAAATTAGGAAAAACCTTGAATAATTAGG TTGGATTATTCTTATCTAATTCCACCCCTGTTGGAAGATGATTTCTTTGTTCTTTGCAACTAT ATATTTTCTGCAATGGTTTGTAGGAATTTTAATAAATGTAGTATATTTTCTGAGATGATTTTG TAAAAGTACTATTTTAAATATCAAATCAACCAATAAATTCACATTTGTGTTAGGAACAAAA

FIGURE 156

MELTIFILRLAIYILTFPLYLLNFLGLWSWICKKWFPYFLVRFTVIYNEQMASKKRELFSNLQ EFAGPSGKLSLLEVGCGTGANFKFYPPGCRVTCIDPNPNFEKFLIKSIAENRHLQFERFVVAA GENMHQVADGSVDVVVCTLVLCSVKNQERILREVCRVLRPGGAFYFMEHVAAECSTWNYFWQQ VLDPAWHLLFDGCNLTRESWKALERASFSKLKLQHIQAPLSWELVRPHIYGYAVK

Signal peptide:

amino acids 1-29

N-glycosylation site.

amino acids 203-207

N-myristoylation sites.

amino acids 78-84, 80-86, 91-97, 201-207

FIGURE 157

CCGCTGAGATGTACGAACTTCCGGTTCTCCGGGCAGCTGCCACTGCTGTAGCTTCTGCCACCT GCCACGACCGGGCCTCTCCCTGGCGTTTGGTCACCTCTGCTTCATTCTCCACCGCGCCTATGG TCCCTCTTGGAGCCAGCGTGGCGGCCTGGCGGCTCCCGGGTGGTGAGAGAGCGGTCCGGGAA $\texttt{CG} \underline{\textbf{ATG}} \texttt{AAGGCCTCGCAGTGCTGCTGCTGTCTCAGCCACCTCTTGGCTTCCGTCCTCCTGC}$ GTCTTGGGCCTCCTGACCCTAGACCACGGACATTACCGCCGCTGCCACCGGGCCCTACCCCTG GCAGCAACCCTGTGGCCGGGCTTGAGACGGACGATCACGGAGGGAAGGCCGGGGAAGGCTCGG TGGGTGGCGGCCTTGCTGTGAGCCCCAACCCTGGCGACAAGCCCATGACCCAGCGGGCCCTGA CCGTGTTGATGGTGAGCGGCGCGGTGCTGGTGTACTTCGTGGTCAGGACGGTCAGGATGA GAAGAAGAACCGAAAGACTAGGAGATATGGAGTTTTTGGACACTAACATAGAAAATATGGAAT TGACACCTTTAGAACAGGATGATGAGGATGATGACAACACGTTGTTTGATGCCAATCATCCTC GAAGA<u>TAA</u>GAATGTGCCTTTTGATGAAAGAACTTTATCTTTCTACAATGAAGAGTGGAATTTC TAACAACCTTTAATTTGCTGTTGCAATAAATACCGTATCCTTTTATTATATCTTTATATGTAT AGAAGTACTCTATTAATGGGCTCAGAGATGTTGGGGGATAAAGTATACTGTAATAATTTATCTG TTTGAAAATTACTATAAAACGGTGTTTTCTGGTCGGTTTTTTGTTTCCTGCTTACCATATGATT GTAAATTGTTTTATGTATTAATCAGTTAATGCTAATTATTTTTTGCTGATGTCATATGTTAAAG AGCTATAAATTCCAACAACCAACTGGTGTGTAAAAATAATTTAAAATTTCCTTTACTGAAAGG TATTTCCCATTTTTGTGGGGAAAAGAAGCCAAATTTATTACTTTGTGTTTGGGGTTTTTAAAAT AAAAA

MKASQCCCCLSHLLASVLLLLLLPELSGPLAVLLQAAEAAPGLGPPDPRPRTLPPLPPGPTPA QQPGRGLAEAAGPRGSEGGNGSNPVAGLETDDHGGKAGEGSVGGGLAVSPNPGDKPMTQRALT VLMVVSGAVLVYFVVRTVRMRRRNRKTRRYGVLDTNIENMELTPLEQDDEDDDNTLFDANHPRR

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 124-140

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 69-75, 78-84, 81-87, 97-103, 103-109, 106-112, 157-160

FIGURE 159

 ${\tt GCTGCAGGCGGCGACGGCTACACC}$ GATGAGCCTGGCCCAGAGGGCCTCACCTCCACCTCCTGCTAGACCTCCTGCTGCCCACTGGC TCTGGCTCAGGCTTCCCCAGCGAAGAGAATGAAGAGTCTCGGATTCTGCAGCCACCACAGTAC TTCTGGGAAGAGGAGGAAGAGCTGAATGACTCAAGTCTGGACCTGGGACCCACTGCAGATTAT GTTTTTCCTGACTTAACTGAGAAGGCAGGTTCCATTGAAGACACTAGCCAGGCTCAAGAGCTG CCAAACCTCCCCTCTCCCTTGCCCAAGATGAATCTGGTTGAGCCTCCCTGGCATATGCCTCCC GAGGAGGAGGAGGAGGAGCTGCTCCCTGTGAATGGATCCCAAGAAGAAGCCAAGCCTCAG GTCCGTGACTTTTCTCTCACCAGCAGCAGCCAGACCCCAGGGGCCACCAAAAGCAGGCATGAA GACTCCGGGGACCAGGCCTCATCAGGTGTGGAGGTGGAGAGCAGCATGGGGCCCCAGCTTGCTG CTGCCTTCAGTCACCCCAACTACAGTGACTCCGGGGGGACCAGGACTCCACCAGCCAAGAGGCA GAGGAAGCCACTGCAGGAGCAGCTGGTTTGTCTGGCCAGCACGAGGAGGTGCCGGCCTTGCCT TCATTCCCTCAAACCACAGCTCCCAGTGGGGCCGAGCACCCAGATGAAGATCCCCTTGGCTCT AGAACCTCAGCCTCTTCCCCACTGGCCCCTGGAGACATGGAACTGACACCTTCCTCTGCTACC ATCATTCTGAACATGACAGAGAACATAGACTGTGAGGTGTTCCGGCAGCACCGGGGGCCACAG ATCTCTCTGAGCAAGCCCAGCGAGAAGGAGCAGCACCTTCTCATGACACTGGTGGGCGAGCAG GGGGTGGTGCCCACTCAAGATGTCCTTTCCATGCTGGGTGACATCCGCAGGAGCCTGGAGGAG GACTACGGCACGCTCTTCGTGGTGCTGGTGGTCATTGGGGCCCATCTGCATCATCATTGCG $\tt CTTGGCCTGCTACAACTGCTGGCAGCGCCGGCTGCCCAAGCTCAAGCACGTGTCGCACGGC$ GAGGAGCTGCGCTTCGTGGAGAACGGCTGCCACGACAACCCCACGCTGGACGTGGCCAGCGAC GGGAGCTGGGGGGCTCATGGGGGGGCAAGCGGGACCCCGAGGACTCGGACGTGTTCGAGGAG ${\tt GACACGCACCTG}$ GACCCCGAAACGGACGCCCGGAGCCCGCACCAGCCCGCGCCCTACCCGGGGCCGCCCCGCGG CCTGGCCCTCGGCGCGCTCCCTTCCCCCGACTTCACACGGCGGCTTCGGACCAAC TCCCTCACTCCCGCCCGAGGGGCAGGCCTCAAAGCCCGCCTTGGCCCCGCTTTCCCGCCCCTG AACCCCGGCCCGGGGCGGCGGCGCGCTTCCTGCGCCCCGGGACTCAATTAAACCCGCCC GGAGACCACGCCGGGCCCAGCAAAA

FIGURE 160

MGRLLRAARLPPLLSPLLLLLVGGAFLGACVAGSDEPGPEGLTSTSLLDLLLPTGLEPLDSEE
PSETMGLGAGLGASGSGFPSEENEESRILQPPQYFWEEEEELNDSSLDLGPTADYVFPDLTEK
AGSIEDTSQAQELPNLPSPLPKMNLVEPPWHMPPREEEEEEEEEEEEEEKEEVEKQEEEEEEL
LPVNGSQEEAKPQVRDFSLTSSSQTPGATKSRHEDSGDQASSGVEVESSMGPSLLLPSVTPTT
VTPGDQDSTSQEAEATVLPAAGLGVEFEAPQEASEEATAGAAGLSGQHEEVPALPSFPQTTAP
SGAEHPDEDPLGSRTSASSPLAPGDMELTPSSATLGQEDLNQQLLEGQAAEAQSRIPWDSTQV
ICKDWSNLAGKNYIILNMTENIDCEVFRQHRGPQLLALVEEVLPRHGSGHHGAWHISLSKPSE
KEQHLLMTLVGEQGVVPTQDVLSMLGDIRRSLEEIGIQNYSTTSSCQARASQVRSDYGTLFVV
LVVIGAICIIIIALGLLYNCWQRRLPKLKHVSHGEELRFVENGCHDNPTLDVASDSQSEMQEK
HPSLNGGGALNGPGSWGALMGGKRDPEDSDVFEEDTHL

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 499-521

N-glycosylation sites.

amino acids 106-110, 193-197, 395-399, 480-484

Glycosaminoglycan attachment site.

amino acids 77-81

N-myristoylation sites.

amino acids 24-30, 28-34, 41-47, 69-75, 71-77, 73-79, 75-81, 216-222, 327-333, 455-461, 519-525, 574-580, 581-587, 584-590

Amidation site.

amino acids 588-592

FIGURE 161

 $\tt CCAGGGCGGAGCGCAGCTGCGCCGGGCTTGGGGCGCCGCCGCCGCCGCCGCTCGTTT$ ${\tt TCCCCACCGAGGCCGAGGCGTCCCGGAGTC} {\tt ATG} {\tt GCCGGCCTGAACTGCGGGGTCTCTATCGCA}$ CTGCTAGGGGTTCTGCTGCTGCGGGGCGCGCGCGCGCGGGGCAGAAGCTTTTGAGATT GCTCTGCCACGAGAAAGCAACATTACAGTTCTCATAAAGCTGGGGACCCCGACTCTGCTGGCA AAACCCTGTTACATCGTCATTTCTAAAAGACATATAACCATGTTGTCCATCAAGTCTGGAGAA AGAATAGTCTTTACCTTTAGCTGCCAGAGTCCTGAGAATCACTTTGTCATAGAGATCCAGAAA AATATTGACTGTATGTCAGGCCCATGTCCTTTTGGGGAGGTTCAGCCTTCAGCCCTCGACATCG TTGTTGCCTACCCTCAACAGAACTTTCATCTGGGATGTCAAAGCTCATAAGAGCATCGGTTTA GAGCTGCAGTTTTCCATCCCTCGCCTGAGGCAGATCGGTCCGGGTGAGAGCTGCCCAGACGGA GTCACTCACTCCATCAGCGCCGAATCGATGCCACCGTGGTCAGGATCGGAACCTTCTGCAGC AATGGCACTGTGTCCCGGATCAAGATGCAAGAAGGAGTGAAAATGGCCTTACACCTCCCATGG TTCCACCCCAGAAATGTCTCCGGCTTCAGCATTGCAAACCGCTCATCTATAAAACGTCTGTGC ATCATCGAGTCTGTGTTTGAGGGTGAAGGCTCAGCAACCCTGATGTCTGCCAACTACCCAGAA GGCTTCCCTGAGGATGAGCTCATGACGTGGCAGTTTGTCGTTCCTGCACACCTGCGGGCCAGC GTCTCCTCCAACTTCAACCTCTCCAACTGTGAGAGGAGGAGGAGGGGGTTGAATACTAC ATCCCGGGCTCCACCACCAACCCCGAGGTGTTCAAGCTGGAGGACAAGCAGCCTGGGAACATG GCGGGGAACTTCAACCTCTCTGCAAGGCTGTGACCAAGATGCCCAAAGTCCAGGGATCCTC ${\tt CGGCTGCAGTTCCAAGTTTTGGTCCAACATCCACAAAATGAAAGCAGTGAG{\color{red}{\bf TGA}}{\tt GCCCCACTT}}$ ${\tt TCCTTTTTCTTCCTCCAGCACCTTCGTTGTTTCCTGGGTAGTCTGCCTGGGTGAGGCTCC}$ CTTCCTGTTTCTCATCTGTGGCTTCTGAAACACTTAGACTCTGGACCCAGCAAGAGTTTCAGG AAGTGGGTTGCTAGGCAGTTAGACAGGCTTGTTGGTGAACACCCGGTATGTAGTTCCATTTCA GCACAATAAAAAGAAATCTTGCATTCAAGATGCTAAATTGTTTTTAACGAAAA

FIGURE 162

MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVISKR HITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNRTFI WDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSRIKMQ EGVKMALHLPWFHPRNVSGFSIANRSSIKRLCIIESVFEGEGSATLMSANYPEGFPEDELMTW QFVVPAHLRASVSFLNFNLSNCERKEERVEYYIPGSTTNPEVFKLEDKQPGNMAGNFNLSLQG CDQDAQSPGILRLQFQVLVQHPQNESSE

Signal peptide:

amino acids 1-29

N-glycosylation sites.

amino acids 39-43, 122-126, 180-184, 205-209, 213-217, 270-274, 310-314, 339-343

Tyrosine kinase phosphorylation site.

amino acids 276-284

N-myristoylation sites.

amino acids 3-9, 7-13, 158-164, 175-181, 191-197, 303-309

FIGURE 163

CAACCACACCTGGGGAATTGCTGGCCTGACTTCTGACCCCTGACTCCTCATACCCTTCCTC CAGAGCATGACATTTGACCACCAACTGAAACCTGACCTCTGACCCCAGACCACTGGCCCTTCC CCCGCCCTGTGGTGACTTCATAAAGGTTACTAGCTTCTCCCCTGGCCTTGAGACCCACACG**AT** GCCCGCCTGGGCCTGTCTCCTCTGCTTCACAACCTACTCTGAGCGCCTCCGCATCTGCCAGAT GTTTGTTGGGATGCGGAGCCCCAAGCTTGAAGAGTGTGAGGAGGCCTTCACGGCCGCCTTCCA GGGCCTCTCTGACACCGAAATCAGTGAGGAGACCATCCACACTTCATCAGTGTCCTGGGGAAG CAGAGGAGAAAGGCTCAAAGACCATGAGAACAACAGAGACTTAGGGACAGAGAGACACAGACA GGGGAAGACAGCAGGGCAAAGACTCAGAGAGGGGGAGGATGGAGAGTCAGAGAGGGGAAGATGG GATGGAGACTCAGGAGTATGGAGAGTCAGAGAGGGGAGGATGGACACTCAGGGGAGGATGGAG AGTCAGGAGGATGGAGACTCATAGAAAGGGGAGGATGGAGAGTCAGGAGAGGTTGGAGACTGG AGAGGGAATAGAGACCCAGAAAGGGGGAGGATGGAGACTCAGAGGGTGGAAGATGGAGACTCAA AGAGGATGGAAACCCAGAGAGAGGGGGACAGAGA<mark>TGA</mark>GGCAGAGACTAGGGGAAGCAGGATAG CGACTGGTCGGGGGCAGAGACTCAGGGGAGGATAGAGACTCACAGAGAGGTGAGGATAGAGACT TGGGAGGGACTCAGGAAGCATAGCGACTGTGGGGCAAAGAGTCAGAGAGGGGAGGATACAGAC TTGGGAGGGCAGAGACTCAGAAACAGAATGTTCGCATTAGGGACATGGTGTTGCGGGGAGCTG CCTCCCCAGCCCTGCTCCCTCACCGCCAGACTATGATGAGAGAAGCCACCTGCATGA TGCCTTCCCTGATGCTGCAGAGAAAATGAAGAAGGTCATTACACAGCTTAAAGAAGCCCAGGC TTGCATCCCTCCCTGCGGTCTCCAGGAGTTCGCCCGGCGTTTCCTCTGCAGCGGGTGCTACTC TAGGGTCTGCGACCTCCCGCTGGACTGCCCAGTTCAGGATGTGACAGTGACTCGGGGCGACCA GGCTATGTTTCTTGCATCGTAAACTTCCAGCTGCCAAAGGAGGAGATCACCTATTCCTGGAA GTTCGCAGGAGGTCTCCGGACTCAGGACTTGTCCTATTTCCGAGATATGCCGCGGGCCGA AGGATACCTGGCGGGATCCGGCCGGCTCAGCTCACGCACCGCGGGACGTTCTCCTGCGTGAT CAAGCAAGACCAGCGCCCCTGGCCCGGCTCTACTTCTTTAACGTCCTCGGGGCCCTCGC ATCAGCGAGTGCGACAGTGTTGGCGTGAGTTCTGGGGGACTCCGGAGCCCCAGCATCTAGC TCCCCGCTGTCTCAGATCCCACCGAGAAGTCTGGGTTCCCAGCAACCTCCAACCCAGGAGGAT GTTCTTTCGATGGTACTGCAGTGGCAACTAACAAAGGTATCTTTCCTCCTTCCCTATCCTATT AAAAAAAAAAAA

FIGURE 164

MALLALASAVPSALLALAVFRVPAWACLLCFTTYSERLRICQMFVGMRSPKLEECEEAFTAAF QGLSDTEISEETIHTSSVSWGRCRGRAGEAQRVRLRDRQRETVRGERLKDHENNRDLGTERHR QGKTAGQRLREGRMESQRGEDGDSERGEDGDSEREEDGDSEGKMETQEYGESERGGWTLRGGW RVRRMETHRKGRMESQERLETGEGIETQKGEDGDSEGGRWRLKEDGNPERGGQR

Signal peptide:

amino acids 1-26

N-myristoylation site.

amino acids 65-71

FIGURE 165

CAGAATCGCAGATTGCCAGCCCTTTTCCCGACCCCTACGGAAAGACGAGTCCAGGGGCCGTCC TGGCGAGGTCAAAACATTTAGTCTGGTCTTTTCAGCGTGGACCCTGCCAGCAGCCAGGCCATG GAGCTCTCTGATGTCACCCTCATTGAGGGTGTGGGTAATGAGGTGATGGTGGCAGGTGTG AACCAGCTCCTGGGCGCTATTGTGTCAGCAGGCGACACATCCGTCCTCCACCTGGGGCATGTG AATGATGAGAAGGCTGAAGAGGCGGGTGAAGGTCGGGGAGACTCCACTGGGGAGGCTGGAGCT GGGGGTGGTGTGAGCCCAGCCTTGAGCATCTCCTTGACATCCAAGGCCTGCCCAAAAGACAA GCAGGTGCAGCAGCAGCAGTCCAGAGGCCCCCTGAGATCTGAGGATAGCACCTGCCTCCCT GCTAGGCCAGAGGATACCGTGGGTGCCCTGAAGAGCCAAATACTTCCCTGGACAAGAAAGCCAG ATGAAACTGATCTACCAGGGCCGCCTGCTACAAGACCCAGCCCGCACACTGCGTTCTCTGAAC ATTACCGACAACTGTGTGATTCACTGCCACCGCTCACCCCCAGGGTCAGCTGTTCCAGGCCCC TCAGCCTCCTTGGCCCCCTCGGCCACTGAGCCACCCAGCCTTGGTGTCAATGTGGGCAGCCTC ATGGTGCCTGTCTTTGTGGTGCTGTTGGGTGTCTGGTACTTCCGAATCAATTACCGCCAA TTCTTCACAGCACCTGCCACTGTCTCCCTGGTGGGAGTCACCGTCTTCTTCAGCTTCCTAGTA ${\tt TTTGGGATGTATGGACGA} {\tt TAA} {\tt GGACATAGGAAGAAAATGAAAGGCATGGTCTTTCTCCTTTAT}$ TGTGATGGAAATCTCCTCCATAGGACACAGGAGGCAAGTATGCGGCCTCCCCTTCTCATCCAC AGGAGTACAGATGTCCCTCCCGTGCGAGCACAACTCAGGTAGAAATGAGGATGTCATCTTCCT TCACTTTTAGGGTCCTCTGAAGGAGTTCAAAGCTGCTGGCCAAGCTCAGTGGGGAGCCTGGGC TCTGAGATTCCCTCCCACCTGTGGTTCTGACTCTTCCCAGTGTCCTGCATGTCTGCCCCCAGC ACCCAGGGCTGCCTGCAAGGGCAGCTCAGCATGGCCCCAGCACACTCCGTAGGGAGCCTGGA GTATCCTTCCATTTCTCAGCCAAATACTCATCTTTTGAGACTGAAATCACACTGGCGGGAATG AAGATTGTGCCAGCCTTCTCTTATGGGCACCTAGCCGCCTTCACCTTCTCCTCTACCCCTTA AGAGTCCTTCATAGAGCTCAGTCAGGAAGGGGATGGGGCACCAAGCCAAGCCCCCAGCATTGG GAGCGGCCAGGCCACAGCTGCTCCCGTAGTCCTCAGGCTGTAAGCAAGAGACAGCACTGG CCCTTGGCCAGCGTCCTACCCTGCCCAACTCCAAGGACTGGGTATGGATCGCTGGGCCCTAGG CTCTTGCTTCTGGGGGCTATTGGAGGGTCAGTGTCTGTGACTGAATAAAGTTCCATTTTGTGGA

MELSDVTLIEGVGNEVMVVAGVVVLILALVLAWLSTYVADSGSNQLLGAIVSAGDTSVLHLGH VDHLVAGQGNPEPTELPHPSEGNDEKAEEAGEGRGDSTGEAGAGGGVEPSLEHLLDIQGLPKR QAGAGSSSPEAPLRSEDSTCLPPSPGLITVRLKFLNDTEELAVARPEDTVGALKSKYFPGQES QMKLIYQGRLLQDPARTLRSLNITDNCVIHCHRSPPGSAVPGPSASLAPSATEPPSLGVNVGS LMVPVFVVLLGVVWYFRINYRQFFTAPATVSLVGVTVFFSFLVFGMYGR

Signal peptide:

amino acids 1-36

Transmembrane domains:

amino acids 246-267, 275-301

N-glycosylation sites.

amino acids 162-166, 211-215

N-myristoylation sites.

amino acids 48-54, 105-111, 109-115, 129-135, 177-183, 247-253

Cell attachment sequence.

amino acids 97-100

FIGURE 167

GACTCTATTACCTGGCAGAACTGATAGAAGAATACACAGTGGCCACCAGCAGGATCATAAAATACATGATCTGGT TCTCCACCGCTGTACTGATTGGCCTCTACGTCTTTGAGCGCTTCCCCACCAGCATGATTGGAGTGGGCCTATTCA CCAACCTCGTCTACTTTGGCCTCCTCCAGACCTTCCCCTTCATCATGCTGACCTCGCCTAACTTCATCCTGTCGT $\tt GTGGACTAGTGGTGGAATCATTACCTAGCATTTCAGTTTTTTGCAGAAGAATATTATCCCTTCTCAGAGGTCC$ TGGCCTATTTCACTTTCTGCCTGTGGATAATTCCGTTTTGCGTTTTTTTGTGTCACTTTCGGCCGGGGAGAACGTCC TGCCCTCTACCATGCAGCCAGGAGATGATGTCGTCTCCAATTATTTCACCAAAGGCAAGCGGGGCAAACGCTTAG ${\tt GGATCCTGGTTGTCTTCTCCTTCATCAAAGAGGCCATTCTACCCAGTCGTCAGAAGATATAC } {\tt TGA}{\tt CCCCCATGCA}$ GGCAGGATGTGGGGGGCAAGATCAGGAGAGTCAGGCCCCTGGGCCTCTATGCCAGGTGGGGACCAGAAGTCGGGA AGGCACCTACCACCTGCCTTGCTTTCTCCCCTCAACTCTGGAGCCCCATCCCCACCCTCCTTGGGGGGGCTCAG $\verb|CTTGGCTCAGATCTGATGCTTCAAGAGGCTGTAACCTCAGAGGGCCACCAAGGAGGGTGGCAGAGCCTGCTTAGCC| \\$ GCTTGGCATGTCCAACAGAAATAGTTTTTGCTGTTGAACGGTGATTTCTGTCCAAGTGCAGATTTCCGTTTGAAT GTTCTTGTGGCCCTTAATGGGAAGGGGGCAGGGGTGAGGAGCTGAGCCTGCTCAAGGAGTGGGAAGTGGGGCTAT AGGCAGCCTCTCTGATGCACTCTTCCATCTTTTCCCCAAGGCTCCGTGACTGTCAAACTGGGAGTAGGAGAG GGGACAATTTAGGACTGGGCTAGATTTTCAGAAGAACATCTACAATATCCTATTTATAAATCTTCCTCTGGGAAA AGGAGTGGTTTCTGGCTGAATACTATCTTAGGCTCAAGGAGAAACAAAATAAAAATTAGCTTCCAGGCAGCCTGT TTTTAAAGAAATGGGACTAATGGGAGAAGCTGTTTGTCACTCTAAGAGCATCCAAGCCCTGGCCCGTCTGTGCAC ${\tt CCTTGCACTCCAACTATGGCCTTGCAAGTGCTCAACAGTACATATTGGAATGAAGTCCCTATGAGAGCCATTT}$ $\tt CTGGCCATGTTCTATACCTCAAAGTGAGGCTGGCAGGTACAGAGATGAACTGTACACATGTGATACATTTAAGCC$ ACTGGAAAAACCCCTGTGCTTGAAAATATTTCCTCTATATCATGCCTGGAGTTCCATCATAGCCCTTCATTTCCT CTCTTAGTGTGAACGAGATTGCCAGGCCCTTTTCTCCTATGCACACCAGGATAGACAAGGCAGGGGATACTGGCA GATGTGGCTTCGCCCCTCCACTCTACTGCCAGTGTTCTCCCAGGGGTTGCTAAATCCAGCAGACCCCTTTCCTG TCTTACTAGATCTGGGCAGCATTTGACATGGCTGATCACCCCTTGCTTCTTGGATGGCACCTTCCCTGGCACCTCT GTGGCTAGTTGTCCTACCTCCCTGGCTGTTCCTTTCAGGCTTCCGTGCAGGCTTCTCCACTTGCCCATGCACAGT TTTAGAGTTGACCTCCAGCCCCAACATCCTTCCTGATCACCTGAACCACAGTTTTGCTGCCCTCTAGGTGCACAG ACAATTCAGGTCCATGGCCCAGATGGTACTTGCTGTCTTCTGCAAACCTGCCCCTTCTGGGTACTTCCCTTGACC $\tt CCGAGATCACTCAGGAGCCAGACAGGAAACTTATTCTATTCCTGTTTTCTGTTTCTGCCCACCACATCCAATCTC$ ${ t TCAAAACGGTCAGGTCTACCTTAACATCTCTTGATTTGAGCCACTCCCACTGTCATCAGCTTTCACCTGGATTAT$ CGTGACAGCCTCCTACTGCTTCTCTATCATGTGGCCAGAGCTATCTTCCTAAAATGCATTGCATAGTTGATCAAG TCACTCTCTGGCCTAAAACCTTCCTTGGCTCCCTGCTGCCCTCAGGATAAAGTCTGGACCCCTCAGCATGGCTTG ${\tt TGAGACTCATGGTGTCCTTGTCCCTGCTCACCTCTCTGGTCTCATCACTTGCCTTCTTGCATTCTGGGTCCCAGC}$ ACTTTCTCTGTCAAATCTCAACTTAGACTTGACTTCCTCCAAGGAGCTTTGGCTATACTCTCTCCCGACCCC TCAATAAATGTTTGTTTAATGAA

MWFMYLLSWLSLFIQVAFITLAVAAGLYYLAELIEEYTVATSRIIKYMIWFSTAVLIGLYVFE RFPTSMIGVGLFTNLVYFGLLQTFPFIMLTSPNFILSCGLVVVNHYLAFQFFAEEYYPFSEVL AYFTFCLWIIPFAFFVSLSAGENVLPSTMQPGDDVVSNYFTKGKRGKRLGILVVFSFIKEAIL PSRQKIY

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 126-146

Casein kinase II phosphorylation site.

amino acids 145-148

N-myristoylation sites.

amino acids 73-78, 82-87

Amidation sites.

amino acids 168-171, 171-174

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 91-101

FIGURE 169

CAAAGCCCTACCCTCACCATTCACCAGGTCCTGTGGGAAGAGCAGCGTGGAGGTGGGCTGAGG TTAGAAGGTGCAGAGCGTGGAAGAAGATTGTGAGCTGAGTATTGGACATCTGTTCTTGAATAG TCCCTGGGCCTGCCATAGGAAAGGAAGTTCTCCAGGGTTACAGTTCTTATCCGCGTGAATACA C ATG GCTCTGTTACGAAAAATTAATCAGGTGCTGCTGTTCCTTCTGATCGTGACCCTCTGTGTGATTCTGTATAAGAAAGTTCATAAGGGGACTGTGCCCAAGAATGACGCAGATGATGAATCCGA GACTCCTGAAGAACTGGAAGAAGAGATTCCTGTGGTGATTTGTGCTGCAGCAGGGAGGATGGG TGCCACTATGGCTGCCATCAATAGCATCTACAGCAACACTGACGCCAACATCTTGTTCTATGT AGTGGGACTCCGGAATACTCTGACTCGAATACGAAAATGGATTGAACATTCCAAACTGAGAGA AATAAACTTTAAAATCGTGGAATTCAACCCGATGGTCCTCAAAGGGAAGATCAGACCAGACTC ATCGAGGCCTGAATTGCTCCAGCCTCTGAACTTTGTTCGATTTTATCTCCCTCTACTTATCCA CCAACACGAGAAAGTCATCTATTTGGACGATGATGTAATTGTACAAGGTGATATCCAAGAACT GTATGACACCACCTTGGCCCTGGGCCACGCGGCGGCTTTCTCAGATGACTGCGATTTGCCCTC TGCTCAGGACATAAACAGACTCGTGGGACTTCAGAACACATATATGGGCTATCTGGACTACCG GAAGAAGGCCATCAAGGACCTTGGCATCAGCCCCAGCACCTGCTCTTTCAATCCTGGTGTGAT TGTTGCCAACATGACAGAATGGAAGCACCAGCGCATCACCAAGCAATTGGAGAAATGGATGCA GCTGATTGTGTTTCATGGGAAATATTCCACAATTAACCCCCTGTGGCACATAAGGCACCTGGG CTGGAATCCAGATGCCAGATATTCGGAGCATTTTCTGCAGGAAGCTAAATTACTCCACTGGAA TGGAAGACATAAACCTTGGGACTTCCCTAGTGTTCACAACGACTTATGGGAAAGCTGGTTTGT ATTCCCTGTATAGAAATGTGGAATTGTCCCTTTGTAGCCAACTATAACATTGTTCTTTATGAA TATTACCTTTGATACATATGATCCACAATATAAAAACCAAAAACTACTGTGTGCAAATTATAC CTTGGACCATATAGGCATTGATTAACTTCTTTAAGTACATGTGATAACTATGGAAATCAAGAT TATGTGACTGAAAAACATAAAGGAAGACCCATCTAGATAACAGCAATCAACCTGCTTAATT CTGAATGACAATTATATCCACAAATTTTTAAAACTTCTACATGTATTTTTCACATGAAGATCT CCTTAACAGGTTGCCAACCTTTTCTTTTATAAAACTATTTACATTTAAAAATATGGACGTCTGAA AAATAAAATATTCATCATTTTTAAAA

FIGURE 170

MALLRKINQVLLFLLIVTLCVILYKKVHKGTVPKNDADDESETPEELEEEIPVVICAAAGRMG
ATMAAINSIYSNTDANILFYVVGLRNTLTRIRKWIEHSKLREINFKIVEFNPMVLKGKIRPDS
SRPELLQPLNFVRFYLPLLIHQHEKVIYLDDDVIVQGDIQELYDTTLALGHAAAFSDDCDLPS
AQDINRLVGLQNTYMGYLDYRKKAIKDLGISPSTCSFNPGVIVANMTEWKHQRITKQLEKWMQ
KNVEENLYSSSLGGGVATSPMLIVFHGKYSTINPLWHIRHLGWNPDARYSEHFLQEAKLLHWN
GRHKPWDFPSVHNDLWESWFVPDPAGIFKLNHHS

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 234-238

Tyrosine kinase phosphorylation site.

amino acids 253-261

N-myristoylation sites.

amino acids 63-69, 86-92, 198-204, 218-224, 229-235, 265-271, 266-272

FIGURE 171

FIGURE 172

MEPQLGPEAAALRPGWLALLLWVSALSCSFSLPASSLSSLVPQVRTSYNFGRTFLGLDKCNAC IGTSICKKFFKEEIRSDNWLASHLGLPPDSLLSYPANYSDDSKIWRPVEIFRLVSKYQNEISD RRICASASAPKTCSIERVLRKTERFQKWLQAKRLTPDLVQDCHQGQRELKFLCMLR

Signal peptide:

amino acids 1-28

N-glycosylation site.

amino acids 100-103

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 158-161

N-myristoylation sites.

amino acids 56-61, 65-70

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 18-28

Prenyl group binding site (CAAX box).

amino acids 179-182

Leucine zipper pattern.

amino acids 5-26

FIGURE 173

ACGCGCACGACTAGCCGCTCCCATACAGCACGCCCGGACTCTGTCGTCGCTTAAGGCCACTCC TATTCTACGGCTGACCCCTGGTGGTCACGTGGATCTGTTCGCCACGCAAGTCTGGGTCCTTCG GCGATTGACCGGGGTCCTTGCTGTTCGGGAGCCTCTCCTAAGCTGCCTGTTCGCGCGAGAGTT TGGAGGGCGGGTTTGGGGTCTGATTGGGGCTCGCACCGCAGCACGCTGGAGTCCCG CTTAGGTACCAGTTAGCGTCAGGGGGGGGTCAGGCGGGGCCCCGTGTGTGG CAGGCGGCGAAGCGCTCTGGAGAATCCCGGACAGCCCTGCTCCCTGCAGCCAGGTGTAGTTTC GGGAGCCACTGGGGCCAAAGTGAGAGTCCAGCGGTCTTCCAGCGCTTGGGCCACGGCGGCGGC TGCTTCTGGGGGCCCTGCTGGGAACCGCCTGGGCTCGGAGGAGCCAGGATCTCCACTGTGGAG CATGCAGGGCTCTGGTGGATGAACTAGAATGGGAAATTGCCCAGGTGGACCCCAAGAAGACCA CCCGCTCAGAGGCCCACCTCACAGAGCTGCTGGAGGAGATATGTGACCGGATGAAGGAGTATG AATCCAGTGAACTGGACCTACAAGGCATCCGAATCGACTCAGATATTAGCGGCACCCTCAAGT TTGCGTGTGAGAGCATTGTGGAGGAATACGAGGATGAACTCATTGAATTCTTTTCCCGAGAGG CTGACAATGTTAAAGACAAACTTTGCAGTAAGCGAACAGATCTTTGTGACCATGCCCTGCACA TATCGCATGATGAGCTA**TGA**ACCACTGGAGCAGCCCACACTGGCTTGATGGATCACCCCCAGG AGGGGAAAATGGTGGCAATGCCTTTTATATATTATGTTTTTACTGAAATTAACTGAAAAAATA TGAAACCAAAAGT

FIGURE 174

MKGWGWLALLLGALLGTAWARRSQDLHCGACRALVDELEWEIAQVDPKKTIQMGSFRINPDGS QSVVEVPYARSEAHLTELLEEICDRMKEYGEQIDPSTHRKNYVRVVGRNGESSELDLQGIRID SDISGTLKFACESIVEEYEDELIEFFSREADNVKDKLCSKRTDLCDHALHISHDEL

Signal peptide:

amino acids 1-20

N-myristoylation sites.

amino acids 12-18, 16-22, 29-35

Endoplasmic reticulum targeting sequence.

amino acids 179-184

FIGURE 175

CGCAGCGCGCAGTCCTGATGCCCCGGCATGGGTTACCGCTGCTGCCCCTGCTGTCGCTCCTG GTCGGCGCGTGGCTCAAGCTAGGAAATGGACAGGCTACTAGCATGGTCCAACTGCAGGGTGGG AGATTCCTGATGGGAACAATTCTCCAGACAGCAGAGATGGTGAAGGGCCTGTGCGGGAGGCG ACAGTGAAACCCTTTGCCATCGACATATTTCCTGTCACCAACAAGATTTCAGGGATTTTGTC GTCTCTGATGAGCTGAGAAACAAAGCCACCCAGCCAATGAAGTCTGTACTCTGGTGGCTTCCA CACCCAGTGTTACACGTGAGCTGGAATGACGCCCGTGCCTACTGTGCTTGGCGGGGAAAACGA CTGCCCACGGAGGAGAGTGGGAGTTTGCCGCCCGAGGGGGCTTGAAGGGTCAAGTTTACCCA TGGGGGAACTGGTTCCAGCCAAACCGCACCAACCTGTGGCAGGGAAAGTTCCCCAAGGGAGAC AAAGCTGAGGATGGCTTCCATGGAGTCTCCCCAGTGAATGCTTTCCCCGCCCAGAACAACTAC GGGCTCTATGACCTCCTGGGGAACGTGTGGGGAGTGGACAGCATCACCGTACCAGGCTGCTGAG CAGGACATGCGCGTCCTCCGGGGGGCATCCTGGATCGACACAGCTGATGGCTCTGCCAATCAC CGGGCCCGGGTCACCACCAGGATGGGCAACACTCCAGATTCAGCCTCAGACAACCTCGGTTTC CGCTGTGCTGCAGACGCAGGCCGCCAGGGGAGCTG**TAA**GCAGCCGGGTGGTGACAAGGA GAAAAGCCTTCTAGGGTCACTGTCATTCCCTGGCCATGTTGCAAACAGCGCAATTCCAAGCTC GAGAGCTTCAGCCTCAGGAAAGAACTTCCCCTTCCCTGTCTCCCATCCCTCTGTGGCAGGCGC $\mathtt{CTCTCACCAGGGCAGGAGAGGACTCAGCCTCCTGTGTTTTGGAGAAGGGGCCCAATGTGTGTTT$ GACGATGGCTGGGGGCCAGGTGTTTCTGTTAGAGGCCAAGTATTATTGACACAGGATTGCAAA CACACAAACAGTTGGAACAGAGCACTCTGAAAGGCCATTTTTTAAGCATTTTAAAATCTATTC TCTCCCCCTTTCTCCCTGGATGATTCAGGAAGCTGACATTGTTTCCTCAAGGCAGAATTTTCC GTTTCGTGTCCCTCTGAAGGAAACTAGTTTCCACTGTGTAACAGGCAGACATGTAACTATTTA AAGCACAGTTCAGTCCTAAAAGGGTCTGGGAGAACCAGATGATGTACTAGGTGAAGCATTGCA TTGTGGGAATCACAAAGCAAATAGTACTCCAGAAAGACAAATATCAGAAGCTTCCTATTCTTT TTTTTTTTTTTTTTTTTTTGAGACAGGGTCTTTCTCTGTTGCCCAGGCTAGAGTGCACTG GTGATCACGGCTCACTCTAGCCTTGAATTCCTGGGCCCAAGCAATTCTCCCACCTCAGCCTCC TGAGTAGCTGGGACTACAAGTGTGCACCACCATGCCTGGCTAATTTTTTGAATTTTTTGTAGTG ${\tt ATGGGATCTCGCTCTGTTGCCCAGGGTGGTCTCGAACTCCTGGCCTCAAGCGATCCTCCCACC}$ TCGACCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCTCGCCTGGGCCCCCTTCTCCATA TGCCTCCAAAAACATGTCCCTGGAGAGTAGCCTGCTCCCACACTGTCACTGGATGTCATGGGG AAAAAAAAAA

T.

176/550

FIGURE 176

MARHGLPLLPLLSLLVGAWLKLGNGQATSMVQLQGGRFLMGTNSPDSRDGEGPVREATVKPFA
IDIFPVTNKDFRDFVREKKYRTEAEMFGWSFVFEDFVSDELRNKATQPMKSVLWWLPVEKAFW
RQPAGPGSGIRERLEHPVLHVSWNDARAYCAWRGKRLPTEEEWEFAARGGLKGQVYPWGNWFQ
PNRTNLWQGKFPKGDKAEDGFHGVSPVNAFPAQNNYGLYDLLGNVWEWTASPYQAAEQDMRVL
RGASWIDTADGSANHRARVTTRMGNTPDSASDNLGFRCAADAGRPPGEL

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 191-195

N-myristoylation sites.

amino acids 23-29, 25-31, 175-181

Amidation site.

amino acids 159-163

FIGURE 177

GCCTTCTCGCGCCTGACCATGCACCCCTGCATCTTCCTGCTGGGCCACAGGCGAGCGCTTTAT TTCTGGAGCTGAGGGCTAAAACTTTTTTGACTTTTCTTCTCCTCAACATCTGAATC**ATG**CCAT GTGCCCAGAGGAGCTGGCTTGCAAACCTTTCCGTGGTGGCTCAGCTCCTTAACTTTGGGGCGC TTTGCTATGGGAGACAGCCTCAGCCAGGCCCGGTTCGCTTCCCGGACAGGAGCAAGAGCATT TTATCAAGGGCCTGCCAGAATACCACGTGGTGGGTCCAGTCCGAGTAGATGCCAGTGGGCATT CAGAGGACTGGGTGTACTACAGAATTTCTCACGAGGAGAAGGACCTGTTTTTTAACTTGACGG TCAATCAAGGATTTCTTTCCAATAGCTACATCATGGAGAAGAGATATGGGAACCTCTCCCATG TTAAGATGATGGCTTCCTCTGCCCCCTCTGCCATCTCAGTGGCACGGTTCTACAGCAGGGCA ACATCGTTTACAGGAGGCAGAAGTTCCAGAAACCAAGGAGCCAACCTGTGGATTAAAGGGTA $\tt TTGTGACTCACATGTCCTCCTGGGTTGAAGAATCTGTTTTGTTCTTTTTGG{\bf TAG} \tt TTTATTAAA$ TGACATTCAAATCTCTTCTGTATTCTCTTGCCAGAAAGTGTACATTCTTTTTGCTTGTATAAA CCCTTTCACTTGTC

FIGURE 178

MPCAQRSWLANLSVVAQLLNFGALCYGRQPQPGPVRFPDRRQEHFIKGLPEYHVVGPVRVDAS GHFLSYGLHYPITSSRRKRDLDGSEDWVYYRISHEEKDLFFNLTVNQGFLSNSYIMEKRYGNL SHVKMMASSAPLCHLSGTVLQQGTRVGTAALSACHGLTGFFQLPHGDFFIEPVKKHPLVEGGY HPHIVYRRQKVPETKEPTCGLKGIVTHMSSWVEESVLFFW

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 11-15, 105-109, 125-129

N-myristoylation site.

amino acids 149-155

FIGURE 179

CAGATTTAAAAAGAAAACCTTTACTGAATCAGCTGAGTGTTAATAATACGAATTTCCTTTTCT TGCCAATTCTGATCTGAACAGAAAATCCAAGAACAGGGATATGTGTGGATTACAGTTTTCTCT GCCTTGCCTACGACTGTTTCTGGTTGTTACCTGTTATCTTTTATTATTACTCCACAAAGAAAT ACTTGGATGTTCGTCTGTTTGTCAGCTCTGCACTGGGAGACAAATTAACTGCCGTAACTTAGG CCTTTCGAGTATTCCTAAGAATTTTCCTGAAAGTACAGTTTTTCTGTATCTGACTGGGAATAA TATATCTTATATAAATGAAAGTGAATTAACAGGACTTCATTCTCTTGTAGCATTGTATTTGGA TAATTCTAACATTCTGTATGTATATCCAAAAGCCTTTGTTCAATTGAGGCATCTATATTTTCT ATTTCTAAATAATTTCATCAAACGCTTAGATCCTGGAATATTTAAGGGACTTTTAAATCT TCGTAATTTATATTTACAGTATAATCAGGTATCTTTTGTTCCGAGAGGAGTATTTAATGATCT AGTTTCAGTTCAGTACTTAAATCTACAAAGGAATCGCCTCACTGTCCTTGGGAGTGGTACCTT TGTTGGTATGGTTGCTCTTCGGATACTTGATTTATCAAACAATAACATTTTGAGGATATCAGA ATCAGGCTTTCAACATCTTGAAAACCTTGCTTGTTTGTATTTAGGAAGTAATAATTTAACAAA TATTGAAGCAATACAGCCCTTTGCATTTAAAGGACTTGCCAATCTGGAATACCTCCTCCTGAA AAATTCAAGAATTAGGAATGTTACTAGGGATGGGTTTAGTGGAATTAATAATCTTAAACATTT GATCTTAAGTCATAATGATTTAGAGAATTTAAATTCTGACACATTCAGTTTGTTAAAGAATTT AATTTACCTTAAGTTAGATAGAAACAGAATAATTAGCATTGATAATGATACATTTGAAAATAT GGGAGCATCTTTGAAGATCCTTAATCTGTCATTTAATAATCTTACAGCCTTGCATCCAAGGGT CCTTAAGCCGTTGTCTTCATTGATTCATCTTCAGGCAAATTCTAATCCTTGGGAATGTAACTG CAAACTTTTGGGCCTTCGAGACTGGCTAGCATCTTCAGCCATTACTCTAAACATCTATTGTCA GAATCCCCCATCCATGCGTGGCAGAGCATTACGTTATATTAACATTACAAATTGTGTTACATC TTCAATAAATGTATCCAGAGCTTGGGGCTGTTGTAAAATCTCCTCATATTCATCACAAGACTAC TGCGCTAATGATGGCCTGGCATAAAGTAACCACAAATGGCAGTCCTCTGGAAAATACTGAGAC TGAGAACATTACTTTCTGGGAACGAATTCCTACTTCACCTGCTGGTAGATTTTTTCAAGAGAA TGCCTTTGGTAATCCATTAGAGACTACAGCAGTGTTACCTGTGCAAATACAACTTACTACTTC TGTTACCTTGAACTTGGAAAAAAACAGTGCTCTACCGAATGATGCTGCTTCAATGTCAGGGAA AACATCTCTAATTTGTACACAAGAAGTTGAGAAGTTGAATGAGGCTTTTGACATTTTGCTAGC TTTTTTCATCTTAGCTTGTGTTTTAATCATTTTTTTTGATCTACAAAGTTGTTCAGTTTAAACA AAAACTAAAGGCATCAGAAAACTCAAGGGAAAATAGACTTGAATACTACAGCTTTTATCAGTC AGCAAGGTATAATGTAACTGCCTCAATTTGTAACACTTCCCCAAATTCTCTAGAAAGTCCTGG CTTGGAGCAGATTCGACTTCATAAACAAATTGTTCCTGAAAATGAGGCACAGGTCATTCTTTT TGAACATTCTGCTTTA TAA CTCAACTAAATATTGTCTATAAGAAACTTCAGTGCCATGGACATGATTTAAACTGAAACCTCCTTATATAATTATATATACTTTAGTTGGAAATATAATGAATTATATG

FIGURE 180

MCGLQFSLPCLRLFLVVTCYLLLLHKEILGCSSVCQLCTGRQINCRNLGLSSIPKNFPESTV
FLYLTGNNISYINESELTGLHSLVALYLDNSNILYVYPKAFVQLRHLYFLFLNNNFIKRLDPG
IFKGLLNLRNLYLQYNQVSFVPRGVFNDLVSVQYLNLQRNRLTVLGSGTFVGMVALRILDLSN
NNILRISESGFQHLENLACLYLGSNNLTKVPSNAFEVLKSLRRLSLSHNPIEAIQPFAFKGLA
NLEYLLLKNSRIRNVTRDGFSGINNLKHLILSHNDLENLNSDTFSLLKNLIYLKLDRNRIISI
DNDTFENMGASLKILNLSFNNLTALHPRVLKPLSSLIHLQANSNPWECNCKLLGLRDWLASSA
ITLNIYCQNPPSMRGRALRYINITNCVTSSINVSRAWAVVKSPHIHHKTTALMMAWHKVTTNG
SPLENTETENITFWERIPTSPAGRFFQENAFGNPLETTAVLPVQIQLTTSVTLNLEKNSALPN
DAASMSGKTSLICTQEVEKLNEAFDILLAFFILACVLIIFLIYKVVQFKQKLKASENSRENRL
EYYSFYQSARYNVTASICNTSPNSLESPGLEQIRLHKQIVPENEAQVILFEHSAL

Signal peptide:

amino acids 1-41

Transmembrane domain:

amino acids 530-547

N-glycosylation sites.

amino acids 71-75, 76-80, 215-219, 266-270, 317-321, 331-335, 336-340, 400-404, 410-414, 451-455, 579-583

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 231-235

N-myristoylation sites.

amino acids 3-9, 69-75, 126-132, 174-180

ATP/GTP-binding site motif A (P-loop).

amino acids 506-514

FIGURE 181

GGCCTGGCGCGCGCTCCGGTAAGGCGTGTGTGCGGCAGGGCGGGGACAGAACCGTCCTCTCG GGCTCTGGGCGTGTCCGAGACCGCGCTCCCCGCCGAAATCAAGCTCCGAGTCATCCGTGTGGG AAATTCGCGTCGGTTCTTATTTCTCTCCCTGGCAAGGTCTGAAGACGGGTAGGAGAATAACCT GTGTCAGCGTGTT**ATG**ATGCCGTCCCGTACCAACCTGGCTACTGGAATCCCCAGTAGTAAAGT GAAATATTCAAGGCTCTCCAGCACAGACGATGGCTACATTGACCTTCAGTTTAAGAAAACCCC TCCTAAGATCCCTTATAAGGCCATCGCACTTGCCACTGTGCTGTTTTTTGATTGGCGCCTTTCT CATTATTATAGGCTCCCTCCTGCTGTCAGGCTACATCAGCAAAGGGGGGGCAGACCGGGCCGT TCCAGTGCTGATCATTGGCATTCTGGTGTTCCTACCCGGATTTTACCACCTGCGCATCGCTTA CTATGCATCCAAAGGCTACCGTGGTTACTCCTATGATGACATTCCAGACTTTGATGACTAGCA CCCACCCATAGCTGAGGAGGAGTCACAGTGGAACTGTCCCAGCTTTAAGATATCTAGCAGAA ACTATAGCTGAGGACTAAGGAATTCTGCAGCTTGCAGATGTTTAAGAAAATAATGGCCAGATT TTTTGGGTCCTTCCCAAAGATGTTAAGTGAACCTACAGTTAGCTAATTAGGACAAGCTCTATT TTTCATCCCTGGGCCCTGACAAGTTTTTCCACAGGAATATGTATCATGGAAGAATAGAGGTTA TTCTGTAATGGAAAAGTGTTGCCTGCCACCACCCTCTGTAGAGCTGAGCATTTCTTTTAAATA GTCTTCATTGCCAATTTGTTCTTGTAGCAAATGGAACAATGTGGTATGGCTAATTTCTTATTA TTAAGTAGTTTTTTTTTTAAAAATATCTGAGTATATTATCCTGTACACTTATCCCTACCTTCATG TTCCAGTGGAAGACCTTAGTAAAATCAAAGATCAGTGAGTTCATCTGTAATATTTTTTTACT ATACTTCCTCTGTTTAACAGTCCTTGGACCATTCTGATCCAGTTCACCAGTAGGTTGGACAGC ATATAATTTGCATCATTTTGTCCCTTGTAAATCAAGATGTTCTGCAGATTATTCCTTTAACGG CCGGACTTTTGGCTGTTTCCTAATGAAACATGTAGTGGTTATTATTTAGAGTTTATAGCCGTA TTGCTAGCACCTTGTAGTATGTCATCATTCTGCTCATGATTCCAAGGATCAGCCTGGATGCCT AGAGGACTAGATCACCTTAGTTTGATTCTATTTTTTAGCTTGCAAAAAGTGACTTATATTCCA AAGAAATTAAAATGTTGAAATCCAAATCCTAGAAATAAAATGAGTTTNNTTCCAAAAAAAAA

FIGURE 182

MMPSRTNLATGIPSSKVKYSRLSSTDDGYIDLQFKKTPPKIPYKAIALATVLFLIGAFLIIIG SLLLSGYISKGGADRAVPVLIIGILVFLPGFYHLRIAYYASKGYRGYSYDDIPDFDD

Transmembrane domains:

amino acids 45-66, 79-95

N-myristoylation sites.

amino acids 11-17, 75-81

FIGURE 183

CTAAAAAATACAAAAATTAGCTGGGCGTGGTGTCATGTACCTGTAATCCCAGCTACTCAAGAGGCTGAGGCAGGA GAATCGCTTGAACCCAGGAGGCAGAGGTTGCAGTGAGCCAAGATTAAGTCACTGCACTCCAGCCTGGGTGACAGA GCAAGACTCTGTATCAAAATAAATAAATAAAGTACAACTCTGGATGGGCATGGTGGCTTATGTCTGTAATCCCAG ${\tt CACTTTGGGAACTTGAGGCGGGTAGATTGCTTGAGTCCGGGAGTTTGAGACCAGTCTGGGTAATATGGTAACCCT}$ AAAATTTAAAAAATAAAGTCCAACTCAGCGGTTTTCAGCATATTTACAGAGTTGTACAATCTTCACCACTATCTA ATTTCAGAACATTTTCATCACCCCCAAAAGAAACCTAACCCATTGACTATCTCTCCATTTCCTCCCTAG $\verb|CCTCTGGCAACCACTAATCTCTTTTTTGTCTCTATAGATTTGCCTATTTTGGACAGTTCATATACAAGGAATCAT| \\$ ${\tt ACCACATGTAGCCTTTTGTTCCGGCTTCTTTGATTAATAGAATGTTTTCAAGGCTCATCTATGCTGTAGCCTGT}$ ATCAGCACTTCATTCCTATGGCTGAATAATAGTCCACTGTAGGGATGTGCCATGTTTTTCCACTAGCTGAT ${\tt GGACATTTGGGTTGTTTCCACCTTCTGGCTATTATAAATATTGCTGCTATAAATATTCACTTACAAGTTTTTGTG}$ ACCTGGCAGTTAAACAGAATCCTATGCATGCTGTAGTCCATGAGTTGAAATAAACACTTGACCCATAGTAAGTGC CAGATCATCTTCACTACAGCAACCAGTAATTTCACAGATGAGGAAATGAAGGCTCCCAGAGGTGAACTGGCTT TTCCCATTTGAGCAGTTCCAAGTCAGACAGTTAAAAAGTGGCAGGACCTGGAAGAGAAGCTAGTTCTTTCACCCT GGCATTCAGGGCTGCCTCCTGGGCTACGGGGCTGGCATTTAGAATAGAGCTAAGGTCTGCTGCCAAGGCAGGTGC CCCAGTCTGCCTCTGTGTCCTTATTCCACTTTCTCTGCAGCCCTCCAGGGGACCCCTCTCTCAGCCACCCTC ${\tt TCTCTGGTG}$ GCGGTGTGGGACGCGGGAACAGCAGCAGCAGATCCTGCAGATGGCCATCGTGGAACACCTGTATCAGCAGGGC ATGCTCAGCGTGGCCGAGGAGCTGTGCCAGGAATCAACGCTGAATGTGGACTTGGATTTCAAGCAGCCTTTCCTA GAGTTGAATCGAATCCTGGAAGCCCTGCACGAACAAGACCTGGGTCCTGCGTTGGAATGGGCCGTCTCCCACAGG CAGCGCCTGCTGGAACTCAACAGCTCCCTGGAGTTCAAGCTGCACCGCCTCTCATCCGCCTCTTGGCAGGA GGCCCCGCGAAGCAGCTGGAGGCCCTCAGCTATGCTCGGCACTTCCAGCCCTTTGCTCGGCTGCACCAGCGGGAG ATCCAGGTGATGATGGGCAGCCTGGTGTACCTGCGGCTGGGCTTGGAGAAGTCACCCTACTGCCACCTGCTGGAC AGCAGCCACTGGGCAGAGATCTGTGAGACCTTTACCCGGGACGCCTGTTCCCTGCTGGGGCTTTCTGTGGAGTCC $\verb|CCCCTTAGCGTCAGCTTTGCCTCTGGCTGTGTGGCGCTGTGTTGATGAACATCAAGGCTGTGATTGAGCAG| \\$ CGGCAGTGCACTGGGGTCTGGAATCACAAGGACGAGTTACCGATTGAGATTGAACTAGGCATGAAGTGCTGGTAC ${ t GCTCATCTGTGGCCATGTTATCTCCCGAGATGCACTCAATAAGCTCATTAATGGAGGAAACACTCCGTGTTCGCT$ TGCCCCATCCTCCGCCAGCAGACGTCAGATTCCAACCCTCCCATCAAGCTGAAGTGTCCCTACTGTCCCATGGAG $\texttt{CAGAACCCGGCAGATGGGAAACGCATCATATTC} \underline{\textbf{TGA}} \texttt{TTCCTACCTGGAAGGAATTTTGTTGAAAGGGGTTTTCAC}$ CTGTGAGCCTTGGTCTGTCTCGGTAGGGTGGTCAACTTCAGTGGACTGTGGTTTGGTTTCAGAGCGCCTGGCTGAG GTTTGACTTAGTAGCAACCGACAGAGTGGCAAGGGATTTGGTCTTCAGCAGTAGACATCCTTCCACCCCTGCCCT CACCTCTTCCTCCCACTACAGCCTCAACAGTATGTACCATCTCCCACTGTAAATAGTCCCAGTTAGAACGGAATG CCGTTGTTTTATAACTTTGAACAAATGTATTTACTGCCCTTCTCAAAA

FIGURE 184

QCCRKIKDTVQKLASDHKDIHSSVSRVGKAIDRNFDSEICGVVSDAVWDAREQQQQILQMAIV EHLYQQGMLSVAEELCQESTLNVDLDFKQPFLELNRILEALHEQDLGPALEWAVSHRQRLLEL NSSLEFKLHRLHFIRLLAGGPAKQLEALSYARHFQPFARLHQREIQVMMGSLVYLRLGLEKSP YCHLLDSSHWAEICETFTRDACSLLGLSVESPLSVSFASGCVALPVLMNIKAVIEQRQCTGVW NHKDELPIEIELGMKCWYHSVFACPILRQQTSDSNPPIKLICGHVISRDALNKLINGGKLKCP YCPMEQNPADGKRIIF

Transmembrane domain:

amino acids 222-241

N-glycosylation site.

amino acids 129-133

Tyrosine kinase phosphorylation site.

amino acids 151-159, 184-193

Amidation site.

amino acids 327-331

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 222-233

FIGURE 185

 $\mathsf{GAGCGACGCTGTCTCTAGTCGCTGATCCCAA}$ ATG $\mathsf{CACCGGCTCATCTTTGTCTACACTCTAAT$ TTTGCGCAACGCCAACCTCAGGCGAGATGACTTGTACCGAAGAGATGAGACCATCCAGGTGAA AGGAAACGGCTACGTGCAGAGTCCTAGATTCCCGAACAGCTACCCCAGGAACCTGCTCCTGAC ATGGCGGCTTCACTCTCAGGAGAATACACGGATACAGCTAGTGTTTGACAATCAGTTTGGATT AGAGGAAGCAGAAAATGATATCTGTAGGTATGATTTTTGTGGAAGTTGAAGATATATCCGAAAC CAGTACCATTATTAGAGGACGATGGTGTGGACACAAGGAAGTTCCTCCAAGGATAAAATCAAG AACGAACCAAATTAAAATCACATTCAAGTCCGATGACTACTTTGTGGCTAAACCTGGATTCAA GATTTATTATTCTTTGCTGGAAGATTTCCAACCCGCAGCAGCTTCAGAGACCAACTGGGAATC TGTCACAAGCTCTATTTCAGGGGTATCCTATAACTCTCCATCAGTAACGGATCCCACTCTGAT TGCGGATGCTCTGGACAAAAAATTGCAGAATTTGATACAGTGGAAGATCTGCTCAAGTACTT CAATCCAGAGTCATGGCAAGAAGATCTTGAGAATATGTATCTGGACACCCCTCGGTATCGAGG CAGGTCATACCATGACCGGAAGTCAAAAGTTGACCTGGATAGGCTCAATGATGATGCCAAGCG TTACAGTTGCACTCCCAGGAATTACTCGGTCAATATAAGAGAAGAGCTGAAGTTGGCCAATGT GGTCTTCTTTCCACGTTGCCTCCTCGTGCAGCGCTGTGGAGGAAATTGTGGCTGTGGAACTGT CAACTGGAGGTCCTGCACATGCAATTCAGGGAAAACCGTGAAAAAGTATCATGAGGTATTACA GTTTGAGCCTGGCCACATCAAGAGGGGGGTAGAGCTAAGACCATGGCTCTAGTTGACATCCA GTTGGATCACCATGAACGATGCGATTGTATCTGCAGCTCAAGACCACCTCGA**TAA**GAGAATGT GCACATCCTTACATTAAGCCTGAGAGAA

FIGURE 186

MHRLIFVYTLICANFCSCRDTSATPQSASIKALRNANLRRDDLYRRDETIQVKGNGYVQSPRF
PNSYPRNLLLTWRLHSQENTRIQLVFDNQFGLEEAENDICRYDFVEVEDISETSTIIRGRWCG
HKEVPPRIKSRTNQIKITFKSDDYFVAKPGFKIYYSLLEDFQPAAASETNWESVTSSISGVSY
NSPSVTDPTLIADALDKKIAEFDTVEDLLKYFNPESWQEDLENMYLDTPRYRGRSYHDRKSKV
DLDRLNDDAKRYSCTPRNYSVNIREELKLANVVFFPRCLLVQRCGGNCGCGTVNWRSCTCNSG
KTVKKYHEVLQFEPGHIKRRGRAKTMALVDIQLDHHERCDCICSSRPPR

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 270-274

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 262-266

Tyrosine kinase phosphorylation site.

amino acids 256-265

N-myristoylation sites.

amino acids 94-100, 186-192, 297-303, 298-304

TonB-dependent receptor proteins signature 1.

amino acids 1-56

FIGURE 187

 $\texttt{C} \underline{\textbf{ATG}} \texttt{CCGCTGCCGCTGCTGTTGCTCCTGGCGGCGCCTTGGGGGACGGCCAGTTCCCTG}$ TGTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGAATGT CATATATGGGCAAAAGAAATGGCTGAATAAATCAGAATGCAGAAATATCAATAGAACCTACTG TGATCTTTCTGCTGAAACTTCTGACTACGAACACCAGTATTATGCCAAAGTTAAGGCCATTTG GGGAACAAAGTGTTCCAAATGGGCTGAAAGTGGACGGTTCTATCCTTTTTTAGAAACACAAAT TGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC AGAGAAGTGGAAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCT GAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCCCAGTGTGTGACCAA CCACACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTT CGTCCCAGGGCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTGCCAGGACTTTGAAAGA TCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCATATCTATTACCGT GTTTCTTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAACA CCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGA AAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGA TATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAA CCTGAGGCCCCCTCAGGAGGAGGAGGTGAAACATTTAGGGTATGCTTCGCATTTGATGGA AATTTTTTGTGACTCTGAAGAAACACGGAAGGTACTTCTCTCACCCAGCAAGAGTCCCTCAG CAGAACAATACCCCCGGATAAAACAGTCATTGAATATGAATATGATGTCAGAACCACTGACAT TTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGGAGGAGGTGTCCACACAAGGAACATT ATTGGAGTCGCAGGCAGCGTTGGCAGTCTTGGGCCCGCAAACGTTACAGTACTCATACACCCC TCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCACACAGACTCGGAGGAGGGCCGGAGGA AGAGCCATCGACGACCTGGTCGACTGGGATCCCCAAACTGGCAGGCTGTGTATTCCTTCGCT GTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAGCCTTCTGAGGGGGATGGGCTCGGAGAGGA GGGTCTTCTATCTAGACTCTATGAGGAGCCGGCTCCAGACAGGCCACCAGGAGAAAATGAAAC CTATCTCATGCAATTCATGGAGGAATGGGGGTTATATGTGCAGATGGAAAAC**TGA**TGCCAACA CTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAGTCACCCCTTTGATCCCAGCCATAAA GTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGTCTGTGAGAA

FIGURE 188

MPLPPLLLLLAAPWGRAVPCVSGGLPKPANITFLSINMKNVLQWTPPEGLQGVKVTYTVQYF
IYGQKKWLNKSECRNINRTYCDLSAETSDYEHQYYAKVKAIWGTKCSKWAESGRFYPFLETQI
GPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIYSNLKYNVSVLNTKSNRTWSQCVTN
HTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLKDQSSEFKAKIIFWYVLPISITV
FLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEKIVINFITLNISDDSKISHQD
MSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFCDSEENTEGTSLTQQESLS
RTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQAALAVLGPQTLQYSYTP
QLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEE
GLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 240-260

N-glycosylation sites.

amino acids 31-34, 72-75, 80-83, 171-174, 180-183, 189-192, 304-307, 523-526

Tyrosine kinase phosphorylation site.

amino acids 385-392, 518-526

N-myristoylation sites.

amino acids 53-58, 106-111, 368-373, 492-497

Tissue factor

amino acids 1-278

FIGURE 189

CAGCGGGGCAGCCAGATCGCCTTCCGCCTCCAGGTGCGCACTGCAGGCTACGTGGGCTTCGGC TTCTCGCCCACCGGGGCCATGGCGTCCGCCGACATCGTCGTGGGCGGGGTGGCCCACGGGCGG CCCTACCTCCAGGATTATTTTACAAATGCAAATAGAGAGTTGAAAAAAGATGCTCAGCAAGAT TACCATCTAGAATATGCCATGGAAAATAGCACACACACAATAATTGAATTTACCAGAGAGCTG CATACATGTGACATAAATGACAAGAGTATAACGGATAGCACTGTGAGAGTGATCTGGGCCTAC CACCATGAAGATGCAGGAGAAGCTGGTCCCAAGTACCATGACTCCAATAGGGGCACCAAGAGT TTGCGGTTATTGAATCCTGAGAAAACTAGTGTGCTATCTACAGCCTTACCATACTTTGATCTG GTAAATCAGGACGTCCCCATCCCAAACAAAGATACAACATATTGGTGCCAAATGTTTAAGATT CCTGTGTTCCAAGAAAGCATCATGTAATAAAGGTTGAGCCAGTGATACAGAGAGGCCATGAG AGTCTGGTGCACCACATCCTGCTCTATCAGTGCAGCAACAACTTTAACGACAGCGTTCTGGAG TCCGGCCACGAGTGCTATCACCCCAACATGCCCGATGCATTCCTCACCTGTGAAACTGTGATT TTTGCCTGGGCTATTGGTGGAGAGGGCTTTTCTTATCCACCTCATGTTGGATTATCCCTTGGC ACTCCATTAGATCCGCATTATGTGCTCCTAGAAGTCCATTATGATAATCCCACTTATGAGGAA GGCTTAATAGATAATTCTGGACTGAGGTTATTTTACACAATGGATATAAGGAAATATGATGCT GGGGTGATTGAGGCTGGCCTCTGGGTGAGCCTCTTCCATACCATCCCTCCAGGGATGCCTGAG TTCCAGTCTGAGGGTCACTGCACTTTGGAGTGCCTGGAAGAGGCTCTGGAAGCCGAAAAGCCA CGTCATTTTCGAAAAGGGAAGGAAATGAAATTACTTGCCTATGATGATGATTTTGACTTCAAT TTCCAGGAGTTTCAGTATCTAAAGGAAGAACAAACAATCTTACCAGGAGATAACCTAATTACT GAGTGTCGCTACAACACGAAAGATAGAGCTGAGATGACTTGGGGAGGACTAAGCACCAGGAGT GAAATGTGTCTCTCATACCTTCTTTATTACCCAAGAATTAATCTTACTCGATGTGCAAGTATT CCAGACATTATGGAACAACTTCAGTTCATTGGGGTTAAGGAGATCTACAGACCAGTCACGACC AAGTTTAAATGGACTAAAAAGGAAGGTCTCTCCTTCAACAAGCTGGTCCTCAGCCTGCCAGTG AATGTGAGATGTTCCAAGACAGACAATGCTGAGTGGTCGATTCAAGGAATGACAGCATTACCT CCAGATATAGAAAGACCCTATAAAGCAGAACCTTTGGTGTGTGGCACGTCTTCTTCCTCTTCC CTGCACAGAGATTTCTCCATCAACTTGCTTGTTTGCCTTCTGCTACTCAGCTGCACGCTGAGC ${\tt ACCAAGAGCTTG}$ TCAAAATTCTGTTGGACTTGACAATGTTTTCTATGATCTGAACCTGTC ${ t ATTTGAAGTACAGGTTAAAGACTGTGTCCACTTTGGGCATGAAGAGTGTGGAGACTTTTCTTC}$ CTCTTTCTTAGAAATACCTGATGTTATATATACATGGTCAATAAAATAAAACTGGCCTGACTT AAAAAAA

FIGURE 190

MCCWPLLLLWGLLPGTAAGGSGRTYPHRTLLDSEGKYWLGWSQRGSQIAFRLQVRTAGYVGFG
FSPTGAMASADIVVGGVAHGRPYLQDYFTNANRELKKDAQQDYHLEYAMENSTHTIIEFTREL
HTCDINDKSITDSTVRVIWAYHHEDAGEAGPKYHDSNRGTKSLRLLNPEKTSVLSTALPYFDL
VNQDVPIPNKDTTYWCQMFKIPVFQEKHHVIKVEPVIQRGHESLVHHILLYQCSNNFNDSVLE
SGHECYHPNMPDAFLTCETVIFAWAIGGEGFSYPPHVGLSLGTPLDPHYVLLEVHYDNPTYEE
GLIDNSGLRLFYTMDIRKYDAGVIEAGLWVSLFHTIPPGMPEFQSEGHCTLECLEEALEAEKP
SGIHVFAVLLHAHLAGRGIRLRHFRKGKEMKLLAYDDDFDFNFQEFQYLKEEQTILPGDNLIT
ECRYNTKDRAEMTWGGLSTRSEMCLSYLLYYPRINLTRCASIPDIMEQLQFIGVKEIYRPVTT
WPFIIKSPKQYKNLSFMDAMNKFKWTKKEGLSFNKLVLSLPVNVRCSKTDNAEWSIQGMTALP
PDIERPYKAEPLVCGTSSSSSLHRDFSINLLVCLLLLSCTLSTKSL

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 56-73, 378-393, 583-602

N-glycosylation sites.

amino acids 114-118, 247-251, 476-480, 517-521

N-myristoylation sites.

amino acids 11-17, 15-21, 20-26, 45-51, 68-74, 79-85, 290-296, 316-322, 337-343, 342-348, 456-462, 534-540, 582-588

Copper type II, ascorbate-dependent monooxygenases proteins.

amino acids 271-321, 422-474

FIGURE 191

GCTTCAGCTGAAGAAAGAGAGGGA**ATG**AAGCGCCTTCTGCTTCTGTTTTTTTTTTATAACAT TTTCTTCTGCATTTCCCTTAGTCCGGATGACGGAAAATGAAGAAAATATGCAACTGGCTCAGG CATATCTCAACCAGTTCTACTCTTGAAATAGAAGGGAATCATCTTGTTCAAAGCAAGAATA GGAGTCTCATAGATGACAAAATTCGGGAAATGCAAGCATTTTTTGGATTGACAGTGACTGGAA AACTGGACTCAAACACCCTTGAGATCATGAAGACACCCAGGTGTGGGGTGCCTGATGTGGGCC AGTATGGCTACACCCTCCCTGGGTGGAGAAAATACAACCTCACCTACAGAATAATAAACTATA CTCCGGATATGGCACGAGCTGCTGTGGATGAGGCTATCCAAGAAGGTTTAGAAGTGTGGAGCA AAGTCACTCCACTAAAATTCACCAAGATTTCAAAGGGGATTGCAGACATCATGATTGCCTTTA GGACTCGAGTCCATGGTCGTGTCCTCGCTATTTTGATGGTCCCTTGGGAGTGCTTGGCCATG CCTTTCCTCCTGGTCCGGGTCTGGGTGACACTCATTTTGATGAGGATGAAAACTGGACCA AGGATGGAGCAGGATTCAACTTGTTTCTTGTGGCTGATGAATTTGGTCATGCACTGGGGC TCTCTCACTCCAATGATCAAACAGCCTTGATGTTCCCAAATTATGTCTCCCTGGATCCCAGAA AATACCCACTTTCTCAGGATGATATCAATGGAATCCAGTCCATCTATGGAGGTCTGCCTAAGG TACCTGCTAAGCCAAAGGAACCCACTATACCCCATGCCTGTGACCTGACTTTGACG ATGATATCACGGATGTTGAGTTTGAATTAATTGCTTCATTCTGGCCATCTCTGCCAGCTGATC TGCAAGCTGCATACGAGAACCCCAGAGATAAGATTCTGGTTTTTAAAGATGAAAACTTCTGGA GACGTGTGAAGAAAATAGATGCAGCCGTCTGTGATAAGACCAAGAAAAACCTACTTCTTTG TGGGCATTTGGTGCTGGAGGTTTGATGAAATGACCCAAACCATGGACAAAGGATTCCCGCAGA GAGTGGTAAAACACTTTCCTGGAATCAGTATCCGTGTTGATGCTGCTTTCCAGTACAAAGGAT TCTTCTTTTTCAGCCGTGGATCAAAGCAATTTGAATACAACATTAAGACAAAGAATATTACCC GAATCATGAGAACTAATACTTGGTTTCAATGCAAAGAACCAAAGAACTCCTCATTTGGTTTTG ATATCAACAAGGAAAAAGCACATTCAGGAGGCATAAAGATATTGTATCATAAGAGTTTAAGCT TGTTTATTTTTGGTATTGTTCATTTGCTGAAAAACACTTCTATTTATCAA**TAA**ATTCATAGAC CTAAAATAAACCTCAACAGGTCTTTTAATATAAATTCTGCTTCAAAATAGAATAAAACCATTC TTTAACAAC

FIGURE 192

MKRLLLLFLFFITFSSAFPLVRMTENEENMQLAQAYLNQFYSLEIEGNHLVQSKNRSLIDDKI
REMQAFFGLTVTGKLDSNTLEIMKTPRCGVPDVGQYGYTLPGWRKYNLTYRIINYTPDMARAA
VDEAIQEGLEVWSKVTPLKFTKISKGIADIMIAFRTRVHGRCPRYFDGPLGVLGHAFPPGPGL
GGDTHFDEDENWTKDGAGFNLFLVAAHEFGHALGLSHSNDQTALMFPNYVSLDPRKYPLSQDD
INGIQSIYGGLPKVPAKPKEPTIPHACDPDLTFDAITTFRREVMFFKGRHLWRIYYDITDVEF
ELIASFWPSLPADLQAAYENPRDKILVFKDENFWMIRGYAVLPDYPKSIHTLGFPGRVKKIDA
AVCDKTTRKTYFFVGIWCWRFDEMTQTMDKGFPQRVVKHFPGISIRVDAAFQYKGFFFFSRGS
KQFEYNIKTKNITRIMRTNTWFQCKEPKNSSFGFDINKEKAHSGGIKILYHKSLSLFIFGIVH
LLKNTSIYO

Signal peptide:

amino acids 1-17

N-glycosylation sites.

amino acids 55-59, 110-114, 200-204, 452-456, 470-474, 508-512

N-myristoylation site.

amino acids 71-77, 205-211, 223-229

Hemopexin domain signature.

amino acids 171-202, 207-238, 318-334

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 213-223

Matrixins cysteine switch.

amino acids 89-97, 207-238

FIGURE 193

FIGURE 194

MVLGNGGCHPVSSLPLLVHFLPLLVHFLPLLVYLLPLLGRFLPRLVYLLPLLVHFLPPLMHFL PLLVHFLALLAHFLPLLVHFLALLAHFPAPAGVFPAPAGVLPSPAGALPASAGALLASPGPT

Signal peptide:

amino acids 1-39

N-myristoylation sites.

amino acids 4-10, 109-115, 116-122

Leucine zipper pattern.

amino acids 14-36, 16-38, 17-39, 21-43, 24-46, 28-50, 31-53, 35-57, 38-60, 42-64, 45-67, 49-71, 52-74, 56-78, 59-81, 63-85, 65-87, 66-88

FIGURE 195

GGCAAGGCGGCGGCGGCGGCGCAGCCGCGGTGGCGGCGTGGGGAACATCTCGGCAGCCA CCGCGCTTCTCCCGCTGGAGCGGGCGTCCAGCTTGGCTGCCCTCGGTCCTTCCCTGCCACGTT TCGGGTCGCCCTGCACCCCCCCCCCCCCCTTCTCTCTTCGAAGCGGGAAGGGCGCCTTGCA GGATCCTGCCGCCCCTCCAACCGGATCCTGGGTCTAGAGCTCCCCAGAGCGAGGCGCTCGCCA GGACTCCTGCCCCGCCAACCCTGACCGCCGGGGGTGCCCCCGGGACGTAGCGCCGCGGAGAG GAAGCGGCAAAGGGGACC**ATG**CGGCCTGACTCGTCGGCTGGTTCTGCCAGTCTTCGGGGTG CTCTGGATCACGGTGCTGCTTCTTCTGGGTAACCAAGAGGAAGTTGGAGGTGCCGACGGGA CCTGAAGTGCAGACCCCTAAGCCTTCGGACGCTGACTGGGGACGACCTGTGGGACCAGTTTGAT GAGCGGCGGTATCTGAATGCCAAAAAGTGGCGCGTTGGTGACGACCCCTATAAGCTGTATGCT TTCAACCAGCGGAGAGTGAGCGGATCTCCAGCAATCGGGCCATCCCGGACACTCGCCATCTG AACGAGGCCCGCTCCACGCTCCAGGACCATCCGCAGTGTATTAAACCGCACCCCTACGCAT CTGATCCGGGAAATCATATTAGTGGATGACTTCAGCAATGACCCTGATGACTGTAAACAGCTC ATCAAGTTGCCCAAGGTGAAATGCTTGCGCAATAATGAACGGCAAGGTCTGGTCCGGTCCCGG ATTCGGGGCGCTGACATCGCCCAGGGCACCACTCTGACTTTCCTCGACAGCCACTGTGAGGTG AACAGGGACTGGCTCCAGCCTCTGTTGCACAGGGTCAAAGAGGACTACACGCGGGTGGTGTGC CCTGTGATCGATATCATTAACCTGGACACCTTCACCTACATCGAGTCTGCCTCGGAGCTCAGA GGGGGGTTTGACTGGAGCCTCCACTTCCAGTGGGAGCAGCTCTCCCCAGAGCAGAAGGCTCGG CGCCTGGACCCCACGGAGCCCATCAGGACTCCTATCATAGCTGGAGGGCTCTTCGTGATCGAC AAAGCTTGGTTTGATTACCTGGGGAAATATGATATGGACATGGACATCTGGGGTGGGGAGAAC TTTGAAATCTCCTTCCGAGTGTGGATGTGCGGGGGCAGCCTAGAGATCGTCCCCTGCAGCCGA GTGGGGCACGTCTTCCGGAAGAAGCACCCCTACGTTTTCCCTGATGGAAATGCCAACACGTAT GCCCGGCCATTCGCCCTGGAGAGGCCCTTCGGGAATGTTGAGAGCAGATTGGACCTGAGGAAG AATCTGCGCTGCCAGAGCTTCAAGTGGTACCTGGAGAATATCTACCCTGAACTCAGCATCCCC AAGGAGTCCTCCATCCAGAAGGGCAATATCCGACAGAGACAGAAGTGCCTGGAATCTCAAAGG CAGAACCAAGAAACCCAAACCTAAAGTTGAGCCCCTGTGCCAAGGTCAAAGGCGAAGAT GCAAAGTCCCAGGTATGGGCCTTCACATACACCCAGCAGATCCTCCAGGAGGAGCTGTGCCTG TCAGTCATCACCTTGTTCCCTGGCGCCCCCAGTGGTTCTTGTCCTTTGCAAGAATGGAGATGAC CGACAGCAATGGACCAAAACTGGTTCCCACATCGAGCACATAGCATCCCACCTCTGCCTCGAT ACAGATATGTTCGGTGATGGCACCGAGAACGGCAAGGAAATCGTCGTCAACCCATGTGAGTCC TCACTCATGAGCCAGCACTGGGACATGGTGAGCTCT**TGA**GGACCCCTGCCAGAAGCAGCAAGG GCCATGGGGTGGTGCTTCCCTGGACCAGAACAGACTGGAAACTGGGCAGCAGCAGCCTGCAA CCACCTCAGACATCCTGGACTGGGAGGTGGAGGCAGGAGCCCCCCAGGACAGGAGCAACTGTCT CAGGGAGGACAGAGGAAAACATCACAAGCCAATGGGCTCAAAGACAAATCCCACATGTTCTCA AGGCCGTTAAGTTCCAGTCCTGGCCAGTCATTCCCTGATTGGTATCTGGAGACAGAAACCTAA CCTTCTTTTTCACTAGGCCAGGACTACATTGAGAGATGAAGAATGGAGGTTGTTTCCAAAAGA AAAAAAAAAAAAA

FIGURE 196

MRRLTRRLVLPVFGVLWITVLLFFWVTKRKLEVPTGPEVQTPKPSDADWDDLWDQFDERRYLN
AKKWRVGDDPYKLYAFNQRESERISSNRAIPDTRHLRCTLLVYCTDLPPTSIIITFHNEARST
LLRTIRSVLNRTPTHLIREIILVDDFSNDPDDCKQLIKLPKVKCLRNNERQGLVRSRIRGADI
AQGTTLTFLDSHCEVNRDWLQPLLHRVKEDYTRVVCPVIDIINLDTFTYIESASELRGGFDWS
LHFQWEQLSPEQKARRLDPTEPIRTPIIAGGLFVIDKAWFDYLGKYDMDMDIWGGENFEISFR
VWMCGGSLEIVPCSRVGHVFRKKHPYVFPDGNANTYIKNTKRTAEVWMDEYKQYYYAARPFAL
ERPFGNVESRLDLRKNLRCQSFKWYLENIYPELSIPKESSIQKGNIRQRQKCLESQRQNNQET
PNLKLSPCAKVKGEDAKSQVWAFTYTQQILQEELCLSVITLFPGAPVVLVLCKNGDDRQQWTK
TGSHIEHIASHLCLDTDMFGDGTENGKEIVVNPCESSLMSQHWDMVSS

Transmembrane domain:

amino acids 475-493

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 2-6

Tyrosine kinase phosphorylation sites.

amino acids 68-75, 401-409

N-myristoylation sites.

amino acids 178-184, 186-192, 192-198, 346-352, 383-389, 526-532

FIGURE 197

CGTGGGCAGACTCAGTGGGAGTGCGACCCCGCACCACGGAGCGCCACATCGCCGTACACAAGCGGCTTGTGCTGG GCGGGGCGAGTGCCACGCCAGGCGCCGACGGTGGCCCCTCAGGCTTTCCGGAGCGCGGCGAACGGGAGCCTCC GGACCACGTCGGCCCAGCCGCCGTCGGAGGAGGAGCGGGAGCCGTGGACGCAGCTGCGCCTGTCGG GCCACCTGAAGCCGCTGCACTACAATCTGATGCTCACCGCCTTCATGGAGAACTTCACCTTCTCCGGGGAGGTCA ACGTGGAGATCGCGTGCCGGAACGCCACCCGCTACGTAGTGCTGCACGCTTCCCGAGTGGCGGTGGAGAAAGTGC TGGTGGTGCTGAATAGGACACTGGACGCGCAGAGGAATTACAATCTGAAGATTATCTACAACGCGCTCATCGAGA ATGAGCTCCTGGGCTTCTTCCGCAGCTCCTATGTGCTCCACGGGGAGAGAAGATTCCTTGGTGTTACTCAGTTTT CGCCTACACATGCCAGAAAGGCATTTCCTTGTTTTGATGAGCCAATCTACAAGGCTACTTTCAAAATCAGCATCA AAACTACCACCAAGAGTGGGGTTGTAGTACGATTATATGCAAGACCTGATGCTATCAGAAGAGGATCCGGGGACT ATGCTCTCCATATAACAAAGAGATTAATAGAATTTTATGAAGACTACTTTAAAGTGCCCTATTCCTTGCCAAAAC TAGATCTTTTAGCTGTGCCTAAGCATCCGTATGCTGCTATGGAGAACTGGGGGACTAAGTATTTTTGTGGAACAAA GAATACTGCTGGATCCCAGTGTTTCATCTATTTCTTATTTGCTGGATGTCACCATGGTCATTGTTCATGAGATAT TGCATGAAGTGATGCTGCTGGACGGTTTGGCCAGTTCCCATCCAGTATCACAGGAAGTGCTGCAGGCAACAGATA $\tt TTGACAGGGTGTTTGACTGGATCGCATATAAAAAGGGTGCTGCTTTAATAAGAATGCTGGCTAATTTTATGGGCC$ ATTCAGTTTTCCAGAGGGGTTTGCAAGATTATTTAACCATTCATAAGTATGGTAATGCAGCCAGAAATGATCTCT GGAATACATTATCGGAGGCTTTAAAAAGAAATGGGAAATATGTAAATATACAAGAAGTAATGGATCAGTGGACAC TCCAGATGGGTTATCCTGTTATCACCATCTTGGGAAACACAGCAGAAAATAGAATAATAATTACCCAACAGC ATTTTATCTATGATATCAGTGCTAAAACTAAAGCACTTAAACTTCAGAATAACAGTTACCTGTGGCAGATTCCAT TAACTATTGTGGTAGGAAATAGAAGCCATGTGTCTTCAGAAGCAATTATTTGGGTGTCTAACAAATCAGAGCACC ACAGAATAACTTATTTGGACAAAGGAAGCTGGCTGCTGGGGAACATCAAACTGGCTATTTTAGAGTCAACT GATACCTGTCTGAGGAGAAGGATTTTCTTCCTTGGCATGCTGCCAGCCGAGCTCTTTATCCTCTAGATAAATTAC TGGACCGCATGGAAAACTACAACATTTTCAATGAATATTTTTAAAGCAAGTTGCAACAACATATATCAAGCTTG GGTGGCCGAAAATAATTTTAATGGATCTCTTGTTCAAGCATCCTACCAACATGAAGAACTACGTAGAGAAGTTA TAATGCTGGCCTGCAGTTTTGGCAACAGCACTGTCACCAACAGGCATCAACACTTATTTCAGATTGGATTTCCA GCAACAGGAACAGAATACCACTAAATGTTAGAGACATCGTATACTGTACAGGAGTGTCACTACTGGATGAGGATG TCTGGGAATTCATATGGATGAAATTCCATTCCACCACAGCAGTTTCTGAGAAGAAATATTATTGGAAGCCTTAA ATGCAATTGATGTCATAATCCATGTAGCTCGAAATCCACATGGTCGAGACCTTGCCTGGAAGTTTTTCAGGGATA AATGGAAGATATTAAATACCAGGTATGGAGAAGCATTGTTTATGTATTCCAAACTCATCAGTGGTGTCACAGAAT TTCTTAATACTGAAGGTGAACTCAAAGAGCTCAAGAACTTCATGAAAAACTATGATGGGGTAGCTGCTTCTT TCTCACGAGCTGTGGAAACTGTCGAAGCCAATGTGCGCTGGAAAATGCTTTACCAAGACGAGCTTTTCCAATGGT ${\tt TAGGAAAAGCTCTAAGACAC} {\tt TAAA} {\tt TATATGTATCTTATAAACAAACAATTCAACTCAGAAGTTTATGAGAAGACAC}$ GCTTTTTGTGGAATGAGGAAAATGTACTACCTAGAAAATGGCCAGATTTTCAGTGTTAACGTGTGGGAGGAATTT TGGGTGTTCCTCTAAAGAAACTCTTGCAAGTGAAACTAGCCATGATTGCTTCAGCTGTACATTCCTTGCTGTA ${\tt CAGGACCAAATATGATAGTGATGCATGTTGATGTTACAGTCAATTTGGAAAAACATATTCAGAATATCTGTGCAT}$ GAAATGATATTCTCAATTTTTGGGCAATGTGAGAGGTAAAATAGCCCTTGACATGATGAACATCACTTATTTCAGC ACTTGGATTGTCTGGCAATGATTACTGTGTTGCTAACTCATTTTCTTTGAGTTAAAGCTGTGTATACATTTTAAA AGGCATATAGATAGTGTATGCATATGTATATGTACATAGGGAAGCCCCATATGTATATAGTATGTTGTACACTGC ACATGTACAAAGAATGTCTTCAGATCAAAGAAAATTTATCTCTTTTTATAAACTTAAGGACAGTTGCAAAAGGCT AAAAAAAAA

FIGURE 198

MGEDDAALRAGSRGLSDPWADSVGVRPRTTERHIAVHKRLVLAFAVSLVALLAVTMLAVLLSL RFDECGASATPGADGGPSGFPERGGNGSLPGSARRNHHAGGDSWQPEAGGVASPGTTSAQPPS EEEREPWEPWTQLRLSGHLKPLHYNLMLTAFMENFTFSGEVNVEIACRNATRYVVLHASRVAV EKVQLAEDRAFGAVPVAGFFLYPOTOVLVVVLNRTLDAORNYNLKIIYNALIENELLGFFRSS YVLHGERRFLGVTQFSPTHARKAFPCFDEPIYKATFKISIKHQATYLSLSNMPVETSVFEEDG WVTDHFSQTPLMSTYYLAWAICNFTYRETTTKSGVVVRLYARPDAIRRGSGDYALHITKRLIE FYEDYFKVPYSLPKLDLLAVPKHPYAAMENWGLSIFVEORILLDPSVSSISYLLDVTMVIVHE ICHQWFGDLVTPVWWEDVWLKEGFAHYFEFVGTDYLYPGWNMEKQRFLTDVLHEVMLLDGLAS SHPVSQEVLQATDIDRVFDWIAYKKGAALIRMLANFMGHSVFQRGLQDYLTIHKYGNAARNDL WNTLSEALKRNGKYVNIQEVMDQWTLQMGYPVITILGNTTAENRIIITQQHFIYDISAKTKAL KLQNNSYLWQIPLTIVVGNRSHVSSEAIIWVSNKSEHHRITYLDKGSWLLGNINQTGYFRVNY DLRNWRLLIDQLIRNHEVLSVSNRAGLIDDAFSLARAGYLPQNIPLEIIRYLSEEKDFLPWHA ASRALYPLDKLLDRMENYNIFNEYILKQVATTYIKLGWPKNNFNGSLVQASYQHEELRREVIM LACSFGNKHCHQQASTLISDWISSNRNRIPLNVRDIVYCTGVSLLDEDVWEFIWMKFHSTTAV SEKKILLEALTCSDDRNLLNRLLNLSLNSEVVLDQDAIDVIIHVARNPHGRDLAWKFFRDKWK ILNTRYGEALFMYSKLISGVTEFLNTEGELKELKNFMKNYDGVAAASFSRAVETVEANVRWKM LYODELFOWLGKALRH

Transmembrane domain:

amino acids 44-63

N-glycosylation sites.

amino acids 89-93, 160-164, 175-179, 222-226, 338-342, 605-609, 634-638, 649-653, 663-667, 684-688, 800-804, 906-910

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 362-366

Tyrosine kinase phosphorylation site.

amino acids 520-528

N-myristoylation sites.

amino acids 78-84, 87-93, 90-96, 118-124, 501-507, 604-610, 825-831, 987-993

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 437-447

FIGURE 199

GGCCGGGGCCTCCTCCCTCGCTCCCGCTTCCCCTTTCTCGCTCACCGCCGCCCTCCTTCCCCAGCTCCCTCGCC CGAGGGAGATGCTAGCCCTTTGGGTCCTTACCTCCTGCCCTCAGGAGCCCCGGAGAGAGGCAGTCCTGGCAAAGA GCACCCTGAAGAGAGAGTGGTAACAGCGCCCCCCAGTTCCTCACAGTCGGCGGAAGTGCTGGGCGAGCTGGTGCT GCACGCCTTGCCCCCAAGAAGAACTGCCTTCGCTCAAGCAGGTGAACTCTGCCAGGAAGCAGCTGAGGCCCAA GGCCACCTCCGCAGCCACTGTCCAAAGGGCAGGGTCCCAGCGTCCCAGGGCCTAGATCTCCTCCTCCTC ${\tt CACGGAGAAGCCTGGCCCACCGGGGGACCCGGACCCCATCGTGGCCTCCGAGGAGGCATCAGAAGTGCCCCTTTG}$ GCTGGATCGAAAGGAGAGTGCGGTCCCTACAACACCCGCACCCCTGCAAATCTCCCCCTTCACTTCGCAGCCCTA $\tt CTCCAATCCTGAGGGGTACATTGACTCCAGCGACTACCCACTGCTGCCCCTCAACAACTTTCTGGAGTGCACATA$ CAACGTGACAGTCTACACTGGCTATGGGGTGGAGCTCCAGGTGAAGAGTGTGAACCTGTCCGATGGGGAACTGCT CTCCATCCGCGGGGTGGACGGCCCTACCCTGACCGTCCTGGCCAACCAGACACTCCTGGTGGAGGGGCAGGTAAT TGCCTCCAAGCCGCACTGGAGCAGCCAGGAGCCCATCTGCTCAGCTCCTTGTGGAGGGGCAGTGCACAATGCCAC TCCAGAGGGCCAGAAGCTGCACCTGCACTTTGAGAGGCTGTTGCTGCATGACAAGGACAGGATGACGGTTCACAG CGGGCAGACCAACAAGTCAGCTCTTCTCTACGACTCCCTTCAAACCGAGAGTGTCCCTTTTTGAGGGCCTGCTGAG AGCGTTTGAGAAAGGCCACTGCTATGAGCCCTACATCCAGAATGGGAACTTCACTACATCCGACCCGACCTATAA CATTGGGACTATAGTGGAGTTCACCTGCGACCCCGGCCACTCCCTGGAGCAGGGCCCGGCCATCATCGAATGCAT CAATGTGCGGGACCCATACTGGAATGACACAGAGCCCCTGTGCAGAGCCATGTGTGGTGGGGGAGCTCTCTGCTGT GGCTGGGTTGTTTTCCCCAAACTGGCCCGAGCCCTACGTGGAAGGTGAAGATTGTATCTGGAAGATCCACGT GGGAGAAGAGAAACGGATCTTCTTAGATATCCAGTTCCTGAATCTGAGCAACAGTGACATCTTGACCATCTACGA TGGCGACGAGGTCATGCCCCACATCTTGGGGCAGTACCTTGGGAACAGTGGCCCCCAGAAACTGTACTCCTCCAC GCCAGACTTAACCATCCAGTTCCATTCGGACCCTGCTGGCCTCATCTTTGGAAAGGGCCAGGGATTTATCATGAA CTACATAGAGGTATCAAGGAATGACTCCTGCTCGGATTTACCCGAGATCCAGAATGGCTGGAAAACCACTTCTCA CACGGAGTTGGTGCGGGGAGCCAGAATCACCTACCAGTGTGACCCCGGCTATGACATCGTGGGGAGTGACACCCT CACCTGCCAGTGGGACCTCAGCTGGAGCAGCGACCCCCCATTTTGTGAGAAAATTATGTACTGCACCGACCCCGG AGAGGTGGATCACTCGACCCGCTTAATTTCGGATCCTGTGCTGCTGGTGGGGGACCACCATCCAATACACCTGCAA $\tt CCCCGGTTTTGTGCTTGAAGGGAGTTCTCTTCTGACCTGCTACAGCCGTGAAACAGGGACTCCCATCTGGACGTC$ CCTGTACAAGCGACTCTACCTGCCAGGAGAGTCCCTCACCTTCATGTGCTACGAAGGCTTTGAGCTCATGGGTGA AGTGACCATCCGCTGCATCCTGGGACAGCCATCCCACTGGAACGGGCCCCTGCCCGTGTGTAAAGTTAATCAAGA CAGTTTTGAACATGCTTTAGAAGCAGAAGCGGCAGCAGAGACGTCGCTGGAAGGGGGGAACATGGCCCTGGCTAT $\tt CTTCATCCCGGTCCTCATCATCTCCTTACTGCTGGGAGGAGCCTACATTTACATCACAAGATGTCGCTACTATTC$ AAAAAAAAA

FIGURE 200

MPAARPPAAGLRGISLFLALLLGSPAAALERDALPEGDASPLGPYLLPSGAPERGSPGKEHPE ERVVTAPPSSSQSAEVLGELVLDGTAPSAHHDIPALSPLLPEEARPKHALPPKKKLPSLKOVN SARKQLRPKATSAATVQRAGSQPASQGLDLLSSSTEKPGPPGDPDPIVASEEASEVPLWLDRK ESAVPTTPAPLQISPFTSQPYVAHTLPQRPEPGEPGPDMAQEAPQEDTSPMALMDKGENELTG SASEESQETTTSTIITTTVITTEQAPALCSVSFSNPEGYIDSSDYPLLPLNNFLECTYNVTVY TGYGVELQVKSVNLSDGELLSIRGVDGPTLTVLANOTLLVEGOVIRSPTNTISVYFRTFODDG LGTFQLHYQAFMLSCNFPRRPDSGDVTVMDLHSGGVAHFHCHLGYELQGAKMLTCINASKPHW SSQEPICSAPCGGAVHNATIGRVLSPSYPENTNGSQFCIWTIEAPEGOKLHLHFERLLLHDKD RMTVHSGQTNKSALLYDSLQTESVPFEGLLSEGNTIRIEFTSDQARAASTFNIRFEAFEKGHC YEPYIQNGNFTTSDPTYNIGTIVEFTCDPGHSLEQGPAIIECINVRDPYWNDTEPLCRAMCGG ELSAVAGVVLSPNWPEPYVEGEDCIWKIHVGEEKRIFLDIQFLNLSNSDILTIYDGDEVMPHI LGQYLGNSGPQKLYSSTPDLTIQFHSDPAGLIFGKGQGFIMNYIEVSRNDSCSDLPEIONGWK TTSHTELVRGARITYQCDPGYDIVGSDTLTCQWDLSWSSDPPFCEKIMYCTDPGEVDHSTRLI SDPVLLVGTTIQYTCNPGFVLEGSSLLTCYSRETGTPIWTSRLPHCVSEESLACDNPGLPENG YQILYKRLYLPGESLTFMCYEGFELMGEVTIRCILGQPSHWNGPLPVCKVNQDSFEHALEAEA AAETSLEGGNMALAIFIPVLIISLLLGGAYIYITRCRYYSNLRLPLMYSHPYSOITVETEFDN PIYETGETREYEVSI

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 893-915

N-glycosylation sites.

amino acids 311-315, 328-332, 350-354, 435-439, 458-462, 474-478, 514-518, 576-580, 618-622, 674-678, 742-746

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 188-192

N-myristoylation sites.

amino acids 23-29, 87-93, 146-152, 454-460, 475-481, 575-581, 629-635, 695-701, 723-729, 766-772, 877-883, 953-959

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 383-394

FIGURE 201

G**ATG**GCTACGGCAGGGGGTGGCTCTGGGGCTGACCCGGGAAGTCGGGGTCTCCTTCGCCTTCT CCCCTTAAATAAAACAGCTCCCTGTGTTCGCCTGCTCAACGCCACTCATCAGATTGGCTGCCA GTCTTCAATTAGTGGAGACACAGGGGTTATCCACGTAGTAGAGAAAGAGGAGGACCTACAGTG GGATTTAATGGAGAAGCTGAAAGGGAGAACCAGCCGAATTGCTGGTCTTGCAGTGTCCTTGAC CAAGCCCAGTCCTGCCTCAGGCTTCTCTCCTAGTGTACAGTGCCCAAATGATGGGTTTGGTGT TTACTCCAATTCCTATGGGCCAGAGTTTGCTCACTGCAGAGAAATACAGTGGAATTCGCTGGG CAAAGTCATCAAGCAGTGCTATCAAGATCACAACCTGAGTCAGAATGGCTCAGCACCAACCTT CCCACTATGTGCCATGCAGCTCTTTTCACACATGCATGCTGTCATCAGCACTGCCACCTGCAT GCGGCGCAGCTCCATCCAAAGCACCTTCAGCATCAACCCAGAAATCGTCTGTGACCCCCTGTC TGATTACAATGTGTGGAGCATGCTAAAAGCCTATAAATACAACTGGGACATTAAAGCCTGACGA CAGGGTTGTGGTTGCTGCCACCCGGCTGGATAGTCGTTCCTTTTTCTGGAATGTGGCCCCAGG ACCTGATGTGACCACCCTGCCCCGCAATGTCATGTTTGTCTTTTCAAGGGGAAACTTTTGA CTACATTGGCAGCTCGAGGATGGTCTACGATATGGAGAAGGGCAAGTTTCCCGTGCAGTTAGA GAATGTTGACTCATTTGTGGAGCTGGGACAGGTGGCCTTAAGAACTTCATTAGAGCTTTGGAT GCACACAGATCCTGTTTCTCAGAAAAATGAGTCTGTACGGAACCAGGTGGAGGATCTCCTGGC CACATTGGAGAAGAGTGGTGCTGGTGTCCCTGCTGTCATCCTCAGGAGGCCAAATCAGTCCCA GCCTCTCCCACCATCTTCCCTGCAGCGATTTCTTCGAGCTCGAAACATCTCTGGCGTTGTTCT GGCTGACCACTCTGGTGCCTTCCATAACAAATATTACCAGAGTATTTACGACACTGCTGAGAA CATTAATGTGAGCTATCCCGAATGGCTGAGCCCTGAAGAGGACCTGAACTTTGTAACAGACAC TGCCAAGGCCCTGGCAGATGTGGCCACGGTGCTGGGACGTGCTCTGTATGAGCTTGCAGGAGG AACCAACTTCAGCGACACAGTTCAGGCTGATCCCCAAACGGTTACCCGCCTGCTCTATGGGTT GGGTGACGGCCTCTTCAACATTACATCGCTGTCTCCAGCCCCACCAACACCACTTATGTTGT ACAGTATGCCTTGGCAAATTTGACTGGCACAGTGGTCAACCTCACCCGAGAGCAGTGCCAGGA TCCAAGTAAAGTCCCAAGTGAAAACAAGGATCTGTATGAGTACTCATGGGTCCAGGGCCCTTT GCATTCTAATGAGACGGACCGACTCCCCGGTGTGTGCGTTCTACTGCACGATTAGCCAGGGC CTTGTCTCCTGCCTTTGAACTGAGTCAGTGGAGCTCTACTGAATACTCTACATGGACTGAGAG CCGCTGGAAAGATATCCGTGCCCGGATATTTCTCATCGCCAGCAAAGAGCTTGAGTTGATCAC CCTGACAGTGGGCTTCGGCATCCTCATCTTCTCCCTCATCGTCACCTACTGCATCAATGCCAA ${\tt AGCTGATGTCCTTTTCATTGCTCCCCGGGAGCCAGGAGCTGTGTCATAC} {\tt TGA} {\tt GGAGGACCCCA}$ GCTTTTCTTGCCAGNTCAGCAGTTCACTTCCTAGAGCATCTGTCCCACTGGGACACAACCACT AATTTGTCACTGGAACCTCCCTGGGCCTGTCTCAGATTGGGATTAACATAAAAGAGTGGAACT ATCCAAAAGAGACAGGGAGAAATAAATTACCTCCCTTCCTCCGCTCCCCTTTCCCATCA CCCCTTCCCCATTTCCTCTTCTCTACTCATGCCAGATTTTGGGATTACAAATAGAAGCT TCTTGCTCCTGTTTAACTCCCTAGTTACCCACCCTAATTTGCCCTTCAGGACCCTTCTACTTT TTCCTTCCTGCCCTGTACCTCTCTCTGCTCCTCACCCCACCCTGTACCCAGCCACCTTCCT GACTGGGAAGGACATAAAAGGTTTAATGTCAGGGTCAAACTACATTGAGCCCCTGAGGACAGG GGCATCTCTGGGCTGAGCCTACTGTCTCCTTCCCACTGTCCTTTCTCCAGGCCCTCAGATGGC ACATTAGGGTGGGCGTGCGGGTGGGTATCCCACCTCCAGCCCACAGTGCTCAGTTGTACT TTTTATTAAGCTGTAATATCTATTTTTGTTTTTTGTCTTTTTCCTTTATTCTTTTTTGTAAATAT ATATATAATGAGTTTCATTAAAATAGATTATCCC

FIGURE 202

MATAGGGSGADPGSRGLLRLLSFCVLLAGLCRGNSVERKIYIPLNKTAPCVRLLNATHQIGCQ SSISGDTGVIHVVEKEEDLQWVLTDGPNPPYMVLLESKHFTRDLMEKLKGRTSRIAGLAVSLT KPSPASGFSPSVQCPNDGFGVYSNSYGPEFAHCREIQWNSLGNGLAYEDFSFPIFLLEDENET KVIKQCYQDHNLSQNGSAPTFPLCAMQLFSHMHAVISTATCMRRSSIQSTFSINPEIVCDPLS DYNVWSMLKPINTTGTLKPDDRVVVAATRLDSRSFFWNVAPGAESAVASFVTQLAAAEALQKA PDVTTLPRNVMFVFFQGETFDYIGSSRMVYDMEKGKFPVQLENVDSFVELGQVALRTSLELWM HTDPVSQKNESVRNQVEDLLATLEKSGAGVPAVILRRPNQSQPLPPSSLQRFLRARNISGVVL ADHSGAFHNKYYQSIYDTAENINVSYPEWLSPEEDLNFVTDTAKALADVATVLGRALYELAGG TNFSDTVQADPQTVTRLLYGFLIKANNSWFQSILRQDLRSYLGDGPLQHYIAVSSPTNTTYVV QYALANLTGTVVNLTREQCQDPSKVPSENKDLYEYSWVQGPLHSNETDRLPRCVRSTARLARA LSPAFELSQWSSTEYSTWTESRWKDIRARIFLIASKELELITLTVGFGILIFSLIVTYCINAK ADVLFIAPREPGAVSY

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 671-692

N-glycosylation sites.

amino acids 45-49, 55-59, 187-191, 200-204, 204-208, 264-268, 387-391, 417-421, 435-439, 464-468, 506-510, 530-534, 562-566, 573-577, 580-584, 612-616

Glycosaminoglycan attachment site.

amino acids 404-408

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 232-236

N-myristoylation site.

amino acids 5-11, 6-12, 9-15, 29-35, 61-67, 120-126, 146-152, 168-174, 205-211, 294-300, 438-444, 446-452, 504-510, 576-582

FIGURE 203

GCTAGACCGAGCCCTGGGAGGCTACGGGCTCCCCCGGAAACCCTGCCAGGGGAGCCGGGTTTT GAGCTCAGGCGCCCTCTAGCGGCGCCCCCAGAAATCTGACTCGCGAGGCCAGAGTTGCAGGGA ${\tt CTGAATAGCAAACTGAGGCTGAGTAGGGAACAGACC} {\color{red} {\bf ATG}} {\tt AGGTCAGTGCAGATCTTCCTCCC}$ CAATGCCGTTTGCTCCTTCTACTAGTTCCGACAATGCTCCTTAAGTCTCTTGGCGAAGATGTA ATTTTTCACCCTGAAGGGGAGTTTGACTCGTATGAAGTCACCATTCCTGAGAAGCTGAGCTTC CGGGGAGAGGTGCAGGTGTCAGTCCCGTGTCCTACCTACTGCAGTTAAAAGGCAAGAAG CACGTCCTCCATTTGTGGCCCAAGAGACTTCTGTTGCCCCGACATCTGCGCGTTTTCTCCTTC ACAGAACATGGGGAACTGCTGGAGGATCATCCTTACATACCAAAGGACTGCAACTACATGGGC GTATTTAACATTGATGCCAAACATTACCAAATTGAGCCCCTCAAGGCCTCTCCCAGTTTTGAA CATGTCGTCTATCTCCTGAAGAAAGAGCAGTTTGGGAATCAGGTTTGTGGCTTAAGTGATGAT GAAATAGAATGGCAGATGGCCCCTTATGAGAATAAGGCGAGGCTAAGGGACTTTCCTGGATCC TATAAACACCCAAAGTACTTGGAATTGATCCTACTCTTTGATCAAAGTAGGTATAGGTTTGTG AACAACAATCTTTCTCAAGTCATACATGATGCCATTCTTTTGACTGGGATTATGGACACCTAC TTTCAAGATGTTCGTATGAGGATACACTTAAAGGCTCTTGAAGTATGGACAGATTTTAACAAA ATACGCGTTGGATATCCAGAGTTAGCTGAAGTTTTAGGCAGATTTGTAATATAAAAAAAGT GTATTAAATGCTCGCCTGTCATCAGATTGGGCACATTTATATCTTCAAAGAAAATATAATGAT GCTCTTGCATGGTCGTTTGGAAAAGTGTGTTCTCTAGAATATGCTGGATCAGTGAGTACTTTA CTAGATACAAATATCCTTGCCCCTGCTACCTGGTCTGCTCATGAGCTGGGTCATGCTGTAGGA ATGTCACATGATGAACAATACTGCCAATGTAGGGGTAGGCTTAATTGCATCATGGGCTCAGGA CGCACTGGGTTTAGCAATTGCAGTTATATCTCTTTTTTTAAACATATCTCTTCGGGAGCAACA TGTCTAAATAATATCCCAGGACTAGGTTATGTGCTTAAGAGATGTGGAAACAAAATTGTGGAG GACAATGAGGAATGTGACTGTGGTTCCACAGAGGGGTGTCAGAAAGATCGGTGTTGCCAATCA AATTGTAAGTTGCAACCAGGTGCCAACTGTAGCATTGGACTTTGCTGTCATGATTGTCGGTTT GGGAATTCAAGTTCCTGCCCAAATGACGTTTATAAGCAGGATGGAACCCCTTGCAAGTATGAA GGCCGTTGTTTCAGGAAGGGGTGCAGATCCAGATATATGCAGTGCCAAAGCATTTTTGGACCT GATGCCATGGAGGCTCCTAGTGAGTGCTATGATGCAGTTAACTTAATAGGTGATCAATTTGGT AACTGTGAGATTACAGGAATTCGAAATTTTAAAAAGTGTGAAAGTGCAAATTCAATATGTGGC AGGCTACAGTGTATAAATGTTGAAACCATCCCTGATTTGCCAGAGCATACGACTATAATTTCT ACTCATTTACAGGCAGAAAATCTCATGTGCTGGGGCACAGGCTATCATCTATCCATGAAACCC ATGGGAATACCTGACCTAGGTATGATAAATGATGGCACCTCCTGTGGAGAAGGCCGGGTATGT TTTAAAAAAAATTGCGTCAATAGCTCAGTCCTGCAGTTTGACTGTTTGCCTGAGAAATGCAAT TGTGAGGAAGTGGGGTATGGAGGAAGCATTGACAGTGGGCCTCCAGGACTGCTCAGAGGGGCG ATTCCCTCGTCAATTTGGGTTGTCCATCATAATGTTTCGCCTTATTTTATTAATCCTTTCA GTGGTTTTTGTGTTTTTCCGGCAAGTGATAGGAAACCACTTAAAACCCAAACAGGAAAAAATG CCACTATCCAAAGCAAAAACTGAACAGGAAGAATCTAAAACAAAAACTGTACAGGAAGAATCT AAAACAAAAACTGGACAGGAAGAATCTGAAGCAAAAACTGGACAGGAAGAATCTAAAGCAAAA ACTGGACAGGAAGAATCTAAAGCAAACATTGAAAGTAAACGACCCAAAGCAAAGAGTGTCAAG ACAAGTTTTGATCAGCAAATAAACAGCATTCTTGTTTTTGGAAACAAAAA

FIGURE 204

MRSVQIFLSQCRLLLLLVPTMLLKSLGEDVIFHPEGEFDSYEVTIPEKLSFRGEVQGVVSPVS
YLLQLKGKKHVLHLWPKRLLLPRHLRVFSFTEHGELLEDHPYIPKDCNYMGSVKESLDSKATI
STCMGGLRGVFNIDAKHYQIEPLKASPSFEHVVYLLKKEQFGNQVCGLSDDEIEWQMAPYENK
ARLRDFPGSYKHPKYLELILLFDQSRYRFVNNNLSQVIHDAILLTGIMDTYFQDVRMRIHLKA
LEVWTDFNKIRVGYPELAEVLGRFVIYKKSVLNARLSSDWAHLYLQRKYNDALAWSFGKVCSL
EYAGSVSTLLDTNILAPATWSAHELGHAVGMSHDEQYCQCRGRLNCIMGSGRTGFSNCSYISF
FKHISSGATCLNNIPGLGYVLKRCGNKIVEDNEECDCGSTEECQKDRCCQSNCKLQPGANCSI
GLCCHDCRFRPSGYVCRQEGNECDLAEYCDGNSSSCPNDVYKQDGTPCKYEGRCFRKGCRSRY
MQCQSIFGPDAMEAPSECYDAVNLIGDQFGNCEITGIRNFKKCESANSICGRLQCINVETIPD
LPEHTTIISTHLQAENLMCWGTGYHLSMKPMGIPDLGMINDGTSCGEGRVCFKKNCVNSSVLQ
FDCLPEKCNTRGVCNNRKNCHCMYGWAPPFCEEVGYGGSIDSGPPGLLRGAIPSSIWVVSIIM
FRLILLILSVVFVFFRQVIGNHLKPKQEKMPLSKAKTEQEESKTKTVQEESKTKTGQEESEAK
TGQEESKAKTGQEESKANIESKRPKAKSVKKQKK

Signal peptide:

amino acids 1-27

Transmembrane domain:

amino acids 684-705

N-glycosylation sites.

amino acids 222-226, 372-376, 438-442, 473-477, 625-629

N-myristoylation sites.

amino acids 131-137, 168-174, 235-241, 319-325, 364-370, 436-442, 472-478, 609-615, 642-648, 668-674, 676-680, 680-686, 749-755, 758-764, 767-773

Amidation site.

amino acids 69-73

Disintegrins proteins

amino acids 429-479

EGF-like domain proteins

amino acids 650-662

Neutral zinc metallopeptidases, zinc-binding region proteins

amino acids 335-345

FIGURE 205

AGGGTGACGGGGGCTGGGAAGGGGCCAGCTCATGTTCAGGTTTCCAGGAGGGGGCTACCTGTTGA CTGTCTTTGCAGGAAGAAAACACCTGAGTGACCAGATGTCCCAGCTCCAGGTGCCTTGCC AGATGGCCAGAACCACACCTCTTGAAGAGTGACAGTGCTGTGGAGCATGGTTTCTGCACACCT GGAATGACTGGAACCCCAAAGACTCAAGAAGGAGCTAAAGATCTTGAAGTAGACATGAATAAA ACAGAAGGCTGTGGACCACCTGTCGAGATGGAGAAGTCCTTCTGAGGCTATCCAAACACGGAC CTTATCCAGCCCTCCCATCCAAGAATGGCAAAAAGTGGGAAATTCTGAATTTCAACCAGTACT ATGAGGCTTGTCGGAAGGCTGCAAAATCCTTGATCAAGCTGGGTTTGGAGCGTTTCCACGGAG TTGGTATCCTGGGGTTTAACTCTGCAGAGTGGTTTATCACTGCTGTTGGTGCCATCCTAGCCG GGGGTCTTTGTGTTGGTATTTATGCCACCAACTCTGCCGAGGCTTGTCAATATGTCATCACTC ATGCCAAAGTGAACATCTTGCTGGTTGAGAATGATCAACAGTTACAGAAAATCCTTTCGATTC CACAGAGCAGCCTAGAGCCCCTAAAAGCGATCATCCAGTACAGACTGCCAATGAAGAAGAACA ACAACTTGTACTCTTGGGATGATTTCATGGAACTTGGCAGAAGTATCCCTGACACCCAACTGG AGCAGGTCATCGAGAGCCAGAAGGCGAATCAATGCGCAGTGCTCATCTACACTTCAGGGACCA CAGGCATACCCAAGGGAGTGATGCTCAGTCATGACAACATCACGTGGATTGCAGGAGCAGTGA CAAAGGACTTTAAACTGACAGACAAGCATGAGACGGTGGTTAGCTACCTCCCACTCAGCCATA TTGCAGCACAGATGATGGACATCTGGGTACCCATAAAGATTGGGGCGCTCACATACTTTGCTC AAGCAGATGCTCTCAAGGGCACCTTGGTAAGTACTCTAAAGGAGGTAAAACCTACTGTCTTCA TTGGAGTGCCTCAAATTTGGGAGAAGATACATGAGATGGTGAAGAAAAATAGTGCCAAGTCCA TGGGCTTGAAGAAGGCATTCGTGTGGGCAAGAAACATTGGCTTCAAGGTCAACTCAAAAA AGATGTTGGGGAAATATAATACTCCCGTGAGCTACCGCATGGCTAAGACTCTCGTGTTCAGCA AAGTCAAGACATCCCTTGGCTTGGATCACTGTCACTCTTTTATCAGTGGGACTGCGCCCCTCA ACCAAGAGACTGCCGAGTTCTTTCTAAGCTTGGACATACCTATAGGCGAGTTGTATGGGTTGA GTGAGAGCTCGGGACCCCACACGATATCCAACCAGAATAACTACAGGCTTCTAAGCTGTGGCA ${ t AGATCTTGACTGGGTGTAAGAATATGCTGTTCCAGCAGAACAAGGATGGCATTGGGGAGATCT}$ GCCTCTGGGGTAGGCACATCTTCATGGGCTATCTGGAAAGTGAGACTGAAACTACAGAGGCCA ${ t TCGATGATGAAGGCTGGCTACACTCTGGGGATCTGGGCCAGCTGGACGGTCTGGGTTTCCTCT}$ ATGTCACCGGCCACATCAAAGAAATCCTTATCACTGCTGGTGGTGAAAATGTGCCCCCCATTC CTGTTGAGACCTTGGTTAAGAAGAAGATCCCCATCATCAGTAACGCCATGTTAGTAGGAGATA AACTGAAGTTTCTGAGCATGTTGCTGACGCTGAAGTGTGAGATGAATCAGATGAGCGGAGAAC CTCTGGACAAGCTGAACTTCGAGGCCATCAACTTCTGTCGGGGTCTGGGCAGCCAGGCATCCA CCGTGACTGAGATTGTGAAGCAGCAAGACCCCCTGGTCTACAAGGCCATCCAGCAAGGCATCA ATGCTGTGAACCAGGAAGCCATGAACAATGCACAGAGGATTGAAAAGTGGGTCATCTTGGAGA AGGACTTTTCCATCTATGGTGGAGAGCTAGGTCCAATGATGAAACTTAAGAGACATTTTGTAG $\texttt{CCCAGAAATACAAAACAAATTGATCACATGTACCAC} \textbf{\underline{TGA}} \texttt{CTGCTTTGATGGAGCTGCTCTC}$ AGCTGTTCTGATGCCTTCAGCAGGAAGACCTCATTGCAATAAGTGAAATGCTGCTCTAGGTAG AAGCTCTCCCTGCTGTTTTTAAGAAGCCACATTCCTCATTGGTCAGTTTCTTGATTGTTCGTC TGTTGGAGAGGTGCTCCCTAGAAGAACCTGCCATACGTTTCAAAGCAATAAAATCACTGTATA TCTTTCTAAGGACCTTCAAGTCATGACTCCAGGGAAGCCTATTGGGAAGTCTACTAAAAACTG TCAGACATTAGAAAGAAAAAGCCTCACAGATTTGAAGAACTGGACCCCCAAATCAACTCACCT GCCTGGAAGCAACTGGGAAACCCTTCCAATAAGTCCTGATAATAAAGCACTTCAGGGTCCCAA AAAAAAAA

FIGURE 206

MTIPEFFRESVNRFGTYPALPSKNGKKWEILNFNQYYEACRKAAKSLIKLGLERFHGVGILGF
NSAEWFITAVGAILAGGLCVGIYATNSAEACQYVITHAKVNILLVENDQQLQKILSIPQSSLE
PLKAIIQYRLPMKKNNNLYSWDDFMELGRSIPDTQLEQVIESQKANQCAVLIYTSGTTGIPKG
VMLSHDNITWIAGAVTKDFKLTDKHETVVSYLPLSHIAAQMMDIWVPIKIGALTYFAQADALK
GTLVSTLKEVKPTVFIGVPQIWEKIHEMVKKNSAKSMGLKKKAFVWARNIGFKVNSKKMLGKY
NTPVSYRMAKTLVFSKVKTSLGLDHCHSFISGTAPLNQETAEFFLSLDIPIGELYGLSESSGP
HTISNQNNYRLLSCGKILTGCKNMLFQQNKDGIGEICLWGRHIFMGYLESETETTEAIDDEGW
LHSGDLGQLDGLGFLYVTGHIKEILITAGGENVPPIPVETLVKKKIPIISNAMLVGDKLKFLS
MLLTLKCEMNQMSGEPLDKLNFEAINFCRGLGSQASTVTEIVKQQDPLVYKAIQQGINAVNQE
AMNNAQRIEKWVILEKDFSIYGGELGPMMKLKRHFVAQKYKKQIDHMYH

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 65-86

N-glycosylation site.

amino acids 196-200

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 282-286

Tyrosine kinase phosphorylation sites.

amino acids 547-555, 608-616

N-myristoylation sites.

amino acids 15-21, 74-80, 80-86, 84-90, 185-191, 189-195, 253-259, 337-343, 371-377, 448-454, 536-542

Amidation site.

amino acids 24-28

Putative AMP-binding domain signature.

amino acids 177-189

Putative AMP-binding domain proteins.

amino acids 173-190

FIGURE 207

CCGTCCGGTCCACCCGCCAGCCCGCACAGCCGCCGCCGCCGAGCGTTTCGTGAGCGGCGCT CCGAGGATCAGGAATGGGGCTTCGGGCGCTTGGGCGCGCTCCGAACCCGGCGCACGTAAGAGCC TGGGAGCGCCCGAGCCGCCCGGCTGCCCGGAGCCCCATCGCCTAGGACCGGGAGATGCTGGAA ATGCAACCGCCTGTTCCCCGAGGAGCCGCTGCCCCCGGGACCCCCTGGCACTGTGCGCACCCT GGTCAGCAGCCCCGGAGAAGACGCCCCCAACGCCCGACCCGCGTGGCCGTGGCAGCGCC ACGCGAGCCCTCTAGGCGACCGCAGGGCCACAGCAGCTCAGCCGCCGGTGCCCCCTCGGAAAC ${\tt CATGACCCCGGCGGGGCCCATGGAGCC} \underline{\textbf{ATG}} \texttt{GCCTATAGGGTCCTGGGCCGCGGGGGCCAC}$ CTCAGCCGCGGAGGCGCGCAGGCTGCTCTTCGCCTTCACGCTCTCGCTCTCCTGCACTTACC GCTGCCTCCGCGCCCCAGCGCGGGCGGCCAGAAACTTCTCCAGAAGTCCCGCCCCTGTGATC CTCGCCTCTCCGGTTCCAACCACTCCGGCTCACCCAAGCTGGGTACCAAGCGGTTGCCCCAAG CCCTCATTGTGGGCGTGAAGAAGGGGGGCCACCCGGGCCGTGCTGGAGTTTATCCGAGTACACC CGGACGTGCGGGCCTTGGGCACGGAACCCCACTTCTTTGACAGGAACTACGGCCGCGGGCTGG ATTGGTACAGGAGCCTGATGCCCAGGACCCTCGAGAGCCAGATCACGCTGGAGAAGACGCCCA GCTACTTTGTCACTCAAGAGGCTCCTCGACGCATCTTCAACATGTCCCGAGACACCAAGCTGA TCGTGGTTGTGCGGAACCCTGTGACCCGTGCCATCTCTGATTACACGCAGACACTCTCCAAGA AGCCCGACATCCCGACCTTTGAGGGCCTCTCCTTCCGCAACCGCACCCTGGGCCTGGTGGACG TGGGGCGAGTCCAGGACTTCCTGGGCATTAAGAGATTCATCACGGACAAGCACTTCTATTTCA ACAAGACCAAAGGATTCCCTTGCTTGAAAAAAACAGAATCGAGCCTCCTGCCTCGATGCTTGG GCAAATCAAAAGGGAGAACTCATGTACAGATTGATCCTGAAGTGATAGACCAGCTCCGAGAAT CCCACGAAAGGAAAGGGCTCTCAAGGGCTCTTCTGCTCATCTTCCGTGAGATTTGCTCCCA GACCCTCTGATCTCCCTCCAACAACCCTGGCTCCAGCCCCCTTTCCCAACTTGAGTTGCATC ATCTTGGAACCAGGAAGCCCAGCTAAAGCCAAGAGACCAGAGAGTCCCTGCCACTAGTTTTCA TCAGTCTGTTCAAGCAAAGTTGATCTGCTCCTGGCACGTCCAGTAAATTCCAGAATCATTCTC CTTTCTGCCCATAAAGGGCCCTTGGAGAATTGCTTTAAGAAGAGTGAATGTTCCAATGATGATA GATATTATAAGCGATGATGGTTCTGTTGCTATGAACACAGCAGTCGGTCCCTGTCATTGTCCA CCCAGGAGTGGCCTTGTTAATTCCAAGTGGCATGTATCTTCCCTCTGAGCTTCATTTCTTCAA GATGCTCTGGGTGGGGATGGGAGACCATCCTCAGCCCTCCTCAGACCTTATCAATTCATTG TAAACCAGTGACTTCAGAGCCTATGGTCTCAACTGTGCTTGAAAAACACTGTCTCTGAAAAACA ACTTTGTGATTCTCCCTGCTCCCTGTGGACAAAAGCACATAATTCTGCTGTTACGGGTACTTT GCTCATACGAGCTTTCATGTTCAGCATGCAATGGAATCATGCTTGTCCATGTGAAATAATAT GGCTCTCTCGTGTCCTTAATGCTGGGCTTTTCTCTGTAAGCTGGTTCTGCAGCACAATTCATT AATTAAACTTCTCCCAGTGCAAGAAGGCAGCTGGTGCTGGGGGGTGGTCTGGGGGGTCAGGGAG GAGGGCAAGGACTACATGGGGCAGAGGCAAGGCGGTGGTGGAGATGAGGAAAGAAGTTCTTCT TGGCAGAAGCTGGGGCAGAAGATCACATGAGATCTGTGGGGACACCCTCTATCTGAAACATA AGTCTGTGTTCATTCTCTGCTTAGAAATTTTAGATCTGAAGTGCTACACTGAAGGTCCGAAGG TTGATGGGGCATCAGATATCTTTTTGGTTGGCCAGCATGATATTTTGAAATAACTGTCAACAG AAAAAAAA

FIGURE 208

MAYRVLGRAGPPQPRRARRLLFAFTLSLSCTYLCYSFLCCCDDLGRSRLLGAPRCLRGPSAGG QKLLQKSRPCDPSGPTPSEPSAPSAPAAAVPAPRLSGSNHSGSPKLGTKRLPQALIVGVKKGG TRAVLEFIRVHPDVRALGTEPHFFDRNYGRGLDWYRSLMPRTLESQITLEKTPSYFVTQEAPR RIFNMSRDTKLIVVVRNPVTRAISDYTQTLSKKPDIPTFEGLSFRNRTLGLVDVSWNAIRIGM YVLHLESWLQYFPLAQIHFVSGERLITDPAGEMGRVQDFLGIKRFITDKHFYFNKTKGFPCLK KTESSLLPRCLGKSKGRTHVQIDPEVIDQLREFYRPYNIKFYETVGQDFRWE

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 102-106, 193-197, 235-239, 306-310

Tyrosine kinase phosphorylation site.

amino acids 296-305

N-myristoylation sites.

amino acids 51-57, 100-106, 121-127, 125-131

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 20-31

FIGURE 209

CTTTCCTTATCTGTGTGTACTCTTATCTCACTGTTCTATTTTTTCTCCTCATTTATATTAACT CTTTCTTACCTTTTTTTCTGAACTTCTAGGCCTTCTCTTTCCAGAACTGGTGGAAGACAAATG AAACGGCCAAGATGGTAAGAAACAAGCCGCATTTCTCCTTGGGGAGACTGATAATTTAAAAGG GAGACCACTTACATCCCGAAGCGGACGCGGCAGCTGAAGTCAGGAAACCATGCATCACATTAG ${\tt CAGGAGCCAACTGCAGACTTTAAACTCCGTTCAACATGTGGATGCGGCAGAGAA} \underline{{\tt ATG}} {\tt ACCTGT}$ $\tt CCAGACAAGCCGGGGCAGCTCATAAACTGGTTCATCTGCTCCCTGTGCGTCCCGCGGGTGCGT$ AAGCTCTGGAGCAGCCGGCGTCCAAGGACCCGGAGAAACCTTCTGCTGGGCACTGCGTGTGCC ATCTACTTGGGCTTCCTGGTGAGCCAGGTGGGGGGGCCTCTCTCCAGCATGGACAGGCGGCT GAGAAGGGGCCACATCGCAGCCGCGACACCGCCGAGCCATCCTTCCCTGAGATACCCCTGGAT GGTACCCTGGCCCCTCCAGAGTCCCAGGGCAATGGGTTCCACTCTGCAGCCCAATGTGGTGTAC ATTACCCTACGCTCCAAGCGCAGCAAGCCGGCCAATATCCGTGGCACCGTGAAGCCCAAGCGC AGGAAAAAGCATGCAGTGGCATCGGCTGCCCCAGGGCAGGAGGCTTTGGTCGGACCATCCCTTCAGCCGCAGGAAGCGAAGGGAAGCTGATGCTGTAGCACCTGGGTACGCTCAGGGAGCAAAC TCCTGGCTGAGCAAGATGACATCCGAAGAATGCGACTCTTGGCGGACAGCGCAGTGGCAGGG GTGTTTGCCTTCCACCTAGACAGGATCCTGGGGGCTCAACAGGACCCTGCCGTCTGTGAGCAGG AAAGCAGAGTTCATCCAAGATGGCCGCCCATGCCCCATCATTCTTTGGGATGCATCTTTATCT TCAGCAAGTAATGACACCCATTCTTCTGTTAAGCTCACCTGGGGAACTTATCAGCAGTTGCTG AAACAGAAATGCTGGCAGAATGGCCGAGTACCCAAGCCTGAATCAGGTTGTACTGAAATACAT ${\tt ACAAATTGCTGTGGATTCAGACCTCGCAAGGAAGATGCCTGTGTACAGAATGGATTGAGGCCA}$ AAATGTGATGACCAAGGTTCTGCGGCTCTAGCACACATTATCCAGCGAAAGCATGACCCAAGG CATTTGGTTTTTATAGACAACAAGGGTTTCTTTGACAGGAGTGAAGATAACTTAAACTTCAAA ${\tt TTGTTAGAAGGCATCAAAGAGTTTCCAGCTTCTGCAGTTTCTGTTTTGAAGAGCCAGCACTTA}$ CGGCAGAAACTTCTTCAGTCTCTGTTTCTTGATAAAGTGTATTGGGAAAGTCAAGGAGGTAGA CAAGGAATTGAAAAGCTTATCGATGTAATAGAACACAGAGCCAAAATTCTTATCACCTATATC AATGCACACGGGGTCAAAGTATTACCTATGAATGAA ${f TGA}$ CAAAAGAATCTTCTGGCTAGGGTG TTAGATATATTTATGCATTTTTGGTTTTTTTTTTTAAATCAAGCACATCAACCTCAAGCCCGTT TAGCAATGAGGCAGTGTAGATGAATACGTAAAATAAATGACTTTAACCAAGTAGCTATAAAGG TTATATTTTTCTCTAACATCATGCTATGTGTCAGTCTGAACATCTGACAACAGAAATTTCAGT TATTATTCTAGCTAAGTTTTGAAAACATTTGTCATGCTGTTTAATAGAAAACTGCAAACCAGA GATACTGACTCCATTAATAAACCATATTTTGTGCCGTTTTGACTGTTCTGACCAAATACTAAT ${\tt GGGAACAATTCTTGACGTTTTTCTGTTGCTGATTGTTAACATAGAGCAGTCTCTACACTACCC}$ TGAGGCAACTCTACATTGGAACACTGAGGCTTACAGCCTGCAAGAGCATCAGAGCTGACCATA CATTTAAACAGAAATGCTGGTTTATTTGCAAAATCACCAGTATATTTTCTATTGTGTCTATAA GGTCCAATTTGTATCTAGTGGCTGAGAAATTAAATAATTCTAAAGTATGAAGTTACCTATCTG AAAATGTACTTACAGAGTATCATTTTAAAAATGGATGTCTCTTTAAAAATTTTTGTTACTTTTAC CAACAATGTAATATTTATGTATATTTATTAATAATAGTGAATTCCTTAAAATTTGTTCT ATGTACTTATATTTAATTTGATTTAATGGTTACTGCCCAGATATTGAGAAATGGTTCAAATAT TGAGTGTGTTTCAATAA

FIGURE 210

MTCPDKPGQLINWFICSLCVPRVRKLWSSRRPRTRRNLLLGTACAIYLGFLVSQVGRASLQHG
QAAEKGPHRSRDTAEPSFPEIPLDGTLAPPESQGNGSTLQPNVVYITLRSKRSKPANIRGTVK
PKRRKKHAVASAAPGQEALVGPSLQPQEAAREADAVAPGYAQGANLVKIGERPWRLVRGPGVR
AGGPDFLQPSSRESNIRIYSESAPSWLSKDDIRRMRLLADSAVAGLRPVSSRSGARLLVLEGG
APGAVLRCGPSPCGLLKQPLDMSEVFAFHLDRILGLNRTLPSVSRKAEFIQDGRPCPIILWDA
SLSSASNDTHSSVKLTWGTYQQLLKQKCWQNGRVPKPESGCTEIHHHEWSKMALFDFLLQIYN
RLDTNCCGFRPRKEDACVQNGLRPKCDDQGSAALAHIIQRKHDPRHLVFIDNKGFFDRSEDNL
NFKLLEGIKEFPASAVSVLKSQHLRQKLLQSLFLDKVYWESQGGRQGIEKLIDVIEHRAKILI
TYINAHGVKVLPMNE

Transmembrane domain:

amino acids 40-56

N-glycosylation sites.

amino acids 98-102, 289-293, 322-326

N-myristoylation sites.

amino acids 8-14, 41-47, 97-103, 187-193, 251-257, 252-258, 287-293, 484-490

FIGURE 211

 ${ t GTGGGGTGGTGAGCGCAGCGCCGAGG}$ $\verb|CCTCCTGGTGCGCCACTGCATCGCCCCGACGTGGAAGGCGTGGAAGACGTCAAAGCCTGGAGGC| \\$ $\tt CGGCCCTGTATCTCGCCGCCCTGGACTGTGCTGAGGAGACCAACAGTGCAGTCTGCAGAGACTTCAACATCCCTG$ ACGTGCAGACGCTGCGGGAGAGGCTCATTGACGCCCTGGAGTCCCATCATGACACGTGGCCCCCAGCCTGTCCCC ${\tt CACTGGAGCCTGCCAAGCTGGAGAGATTGATGGATTCTTTGCGAGAAATAACGAAGAGTACCTGGCTCTGATCT}$ TTGAAAAGGGAGGCTCCTACCTGGGTAGAGAGGTGGCTCTGGACCTGTCCCAGCACAAAGGCGTGGCGGTGCGCA GGGTGCTGAACACAGAGGCCAATGTGGTGAGAAAGTTTGGTGTCACCGACTTCCCCTCTTGCTACCTGCTGTTCC ${\tt GGAATGGCTCTGTCTCCCGAGTCCCCGTGCTCATGGAATCCAGGTCCTTCTATACCGCTTACCTGCAGAGACTCT}$ AATTGGCAGATCGCTCCAAGATCTACATGGCTGACCTGGAATCTGCACTGCACTACATCCTGCGGATAGAAGTGG GCAGGTTCCCGGTCCTGGAAGGGCAGCGCCTGGTGGCCCTGAAAAAGTTTGTGGCAGTGCTGGCCAAGTATTTCC ${\tt CCTACAGTTTCTTTAAAACTGCCCTGGACGACAGGAAAGAGGGTGCCGTTCTTGCCAAGAAGGTGAACTGGATTG}$ GCTGCCAGGGGAGTGAGCCGCATTTCCGGGGCTTTCCCTGCTCCTGTGGGTCCTCTTCCACTTCTTGACTGTGC AGGCAGCTCGGCAAAATGTAGACCACTCACAGGAAGCAGCCAAGGCCAAGGAGGTCCTCCCAGCCATCCGAGGCT ${\tt TGGGGAGTCCCAACGCCGCTGTCCTCTGGCTCTGGTCTAGCCACAACAGGGTCAATGCTCGCCTTGCAGGTGCCC}$ $\tt TGGATGTGCCCGTGTGGGAAGCCACCCTCAACTTCCTCAAGGCCCACTTCTCCCCAAGCAACATCATCC$ $\tt TGGACTTCCCTGCAGCTGGGTCAGCTGCCCGGAGGGATGTGCAGAATGTGGCAGCCGCCCCAGAGCTGGCGATGG$ GAGCCCTGGAGCTGGAAAGCCGGAATTCAACTCTGGACCCTGGGAAGCCTGAGATGATGAAGTCCCCCACAAACA TGAGCAAGCGAGACACAGGGGCTGCATTGCTGGCTGAGTCCAGGGCTGAGAAGAACCGCCTCTGGGGCCCTTTGG ${\tt AGGTCAGGCGCGTGGGCCGCAGCTCCAAGCAGCTGGTCGACATCCCTGAGGGCCAGCTGGAGGCCCGAGCTGGAC}$ ${\tt GGGGCCGAGGCCAGTGCTGCAGGTGCTGGGAGGGGGGCTTCTCTTACCTGGACATCAGCCTCTGTGTGGGGGCTCT}$ ATTCCCTGTCCTTCATGGGCCTGCTGGCCATGTACACCTACTTCCAGGCCAAGATAAGGGCCCTGAAGGGCCATG CCTGACCCCATTCCCTCCCCTCCCACCCCTTGCTCCTTGTCTGGCCTAGAAGTGTGGGAAATTCAGGAAAACGAG $\tt TTCCCCTGCTGTGCAGGGGGGGGCAGCCCCGGGCAGTGGGCATAGGGCAGCTCAGTCCCTGGCCTCTTAGCACCAC$ ${\tt ATTCCTGTTTTTCAGCTTATTTGAAGTCCTGCCTCATTCTCACTGGAGCCTCAGTCTCCTGCTTGGTCTTGGC}$ $\tt CCCTCTATGCCTGGCCAGCCTCCAGACCTCCTGGGTGGGGTTTGGCTTCAGGGTGGGGTTTGGAAGC$ GGGACCTGACGAGTTGGCATGGGAAGGATGTGGGTCTCTAGTGCCTTGCCCTGGCTTAGCTGCAGGAGAAGA $\tt CTTCCAGTGTGCAGAAGTTAGAAGGGTCTGGCGGGGGGCAGTGCCTTACACATGCTTGATTCCCACGCTACCCCCT$ GCCTTGGGAGGTGTGTGGAATAAATTATTTTTGTTAAGGCA

FIGURE 212

MRRCNSGSGPPPSLLLLLLWLLAVPGANAAPRSALYSPSDPLTLLQADTVRGAVLGSRSAWAV EFFASWCGHCIAFAPTWKALAEDVKAWRPALYLAALDCAEETNSAVCRDFNIPGFPTVRFFKA FTKNGSGAVFPVAGADVQTLRERLIDALESHHDTWPPACPPLEPAKLEEIDGFFARNNEEYLA LIFEKGGSYLGREVALDLSQHKGVAVRRVLNTEANVVRKFGVTDFPSCYLLFRNGSVSRVPVL MESRSFYTAYLQRLSGLTREAAQTTVAPTTANKIAPTVWKLADRSKIYMADLESALHYILRIE VGRFPVLEGQRLVALKKFVAVLAKYFPGRPLVQNFLHSVNEWLKRQKRNKIPYSFFKTALDDR KEGAVLAKKVNWIGCQGSEPHFRGFPCSLWVLFHFLTVQAARQNVDHSQEAAKAKEVLPAIRG YVHYFFGCRDCASHFEQMAAASMHRVGSPNAAVLWLWSSHNRVNARLAGAPSEDPQFPKVQWP PRELCSACHNERLDVPVWDVEATLNFLKAHFSPSNIILDFPAAGSAARRDVQNVAAAPELAMG ALELESRNSTLDPGKPEMMKSPTNTTPHVPAEGPEASRPPKLHPGLRAAPGQEPPEHMAELQR NEQEQPLGQWHLSKRDTGAALLAESRAEKNRLWGPLEVRRVGRSSKQLVDIPEGQLEARAGRG RGQWLQVLGGGFSYLDISLCVGLYSLSFMGLLAMYTYFQAKIRALKGHAGHPAA

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 705-728

N-glycosylation sites.

amino acids 130-134, 243-247, 575-579

Glycosaminoglycan attachment site.

amino acids 6-10

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 644-648

N-myristoylation sites.

amino acids 52-58, 56-62, 196-202, 381-387, 392-398, 448-454, 468-474, 684-690, 702-708

Cytochrome c family heme-binding site signature.

amino acids 509-515

Thioredoxin family proteins

amino acids 62-78

FIGURE 213

GCACGAGGCCGACTTCCAGACCATCTACAACTGCACGGCCTGGAACAGCTTCGGCTCCGACAC TGAGATCATCCGGCTCAAGGAGCAAGGTTCGGAAATGAAGTCGGGAGCCGGGCTGGAAGCAGA GTCTGTGCCG**ATG**GCCGTCATCATTGGGGTGGCCGTAGGAGCTGGTGTGGCCTTCCTCGTCCT TATGGCAACCATCGTGGCGTTCTGCTGTGCCCGTTCCCAGAGAAATCTCAAAGGTGTTGTGTC AGCCAAAAATGATATCCGAGTGGAAATTGTCCACAAGGAACCAGCCTCTGGTCGGGAGGGTGA GGAGCACTCCACCATCAAGCAGCTGATGATGGACCGGGGTGAATTCCAGCAAGACTCAGTCCT GAAACAGCTGGAGGTCCTCAAAGAAGAGGAGAAAGAGTTTCAGAACCTGAAGGACCCCACCAA TGGCTACTACAGCGTCAACACCTTCAAAGAGCACCACTCAACCCCGACCATCTCCCTCTCCAG CTGCCAGCCCGACCTGCGCGCTAAGCAGCGTGTGCCCACAGGCATGTCCTTCACCAA CATCTACAGCACCCTGAGCGGCCAGGGCCGCCTCTACGACTACGGGCAGCGGTTTGTGCTGGG CATGGGCAGCTCGTCCATCGAGCTTTGTGAGCGGGAGTTCCAGAGAGGCTCCCTCAGCGACAG CAGCTCCTTCCTGGACACGCAGTGTGACAGCAGCGTCAGCAGCAGCAGCAGCAGCAGCATGGCTA TGTGCAGTTCGACAAGGCCAGCAAGGCTTCTGCTTCCTCCTCCCACCACTCCCAGTCCTCGTC CCAGAACTCTGACCCCAGTCGACCCCTGCAGCGGCGGATGCAGACTCACGTC**TAA**GGATCACA CACCGCGGGTGGGGACGGCCAGGGAAGAGGTCAGGGCACGTTCTGGTTGTCCAGGGACGAGG GGTACTTTGCAGAGGACACCAGAATTGGCCACTTCCAGGACAGCCTCCCAGCGCCTCTGCCAC TGCCTTCCTTCGAAGCTCTGATCAAGCACAAATCTGGGTCCCCAGGTGCTGTGTGCCAGAGGT GGGCGGGTGGGAGACAGACAGAGGCTGCGGCTGAGTGCCTGTGCTTAGTGCTGGACACCCG TGTCCCCGGCCCTTTCCTGGAGGCCCCTCTACCACCTGCTCTGCCCACAGGCACAAGTGGCAG $\tt CTATAACTCTGCTTTCATGAAACTGCGGTCCACTCTCTGGTCTCTGTGGGCTCTACCCCTC$ ACTGACCACAAGCTCTACCCTGTGCCTGTGCTCCCATACAGCCCTGGGGAGAAGGGGA TGACGTCTTCCCAGCACTGAGCTGCCCCAGAAACCCCGGCTCCCCACTGCTGCTCATAGCCCA GCCGGGAGCCCACCCCAATTTGTTTGGTGTTTTGTGTCCATACTCTTGCAGTTCTGTCCTTG GACTTGATGCCGCTGAACTCTGCGGTGGGACCGGTCCCGTCAGAGCCTGGTGTACTGGGGGGGA GGGAGGGAGGGAGCCTGTGCTGACGGAGCACCTCGCCGGGTGTGCCCCTCCTGGGCTGTG TGACCCCAGCCTCCCACCCACCTCCTGCTTTGTGTACTCCTCCCCCTCCCCCTCAGCACAATC GGAGTTCATATAAGAAGTGCGGGAGCTTCTCTGGTCAGGGTTCTCTGAACACTTATGGAGAGA GTGCTTCCTGGGAAGTGTGGCGTTTGAAGGGGGCTGGAGGGCAGGTCTTTAAGATGGCGAGACT GCCCTTCTCAGCTGATAAACACAAGAACGGCGATCCTGTCTTCAGTAAGGCTCCACGAGAAGA

FIGURE 214

MAVIIGVAVGAGVAFLVLMATIVAFCCARSQRNLKGVVSAKNDIRVEIVHKEPASGREGEEHS TIKQLMMDRGEFQQDSVLKQLEVLKEEEKEFQNLKDPTNGYYSVNTFKEHHSTPTISLSSCQP DLRPAGKQRVPTGMSFTNIYSTLSGQGRLYDYGQRFVLGMGSSSIELCEREFQRGSLSDSSSF LDTQCDSSVSSSGKQDGYVQFDKASKASASSSHHSQSSSQNSDPSRPLQRRMQTHV

Signal peptide:

amino acids 1-28

Glycosaminoglycan attachment site.

amino acids 150-154

N-myristoylation sites.

amino acids 6-12, 10-16, 36-42, 139-145, 165-171

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 114-125

FIGURE 215

CAGCCTTCCTCCCCCAGCCTGAGTGACTACTCTATTCCTTGGTCCCTGCTATTGTCGGGGACG ${\tt ATTGC} \underline{\textbf{ATG}} {\tt GGCTACGCCAGGAAAGTAGGCTGGGTGACCGCAGGCCTGGTGATTGGGGCTGGCG}$ CCTGCTATTGCATTTATAGACTGACTAGGGGAAGAAAACAGAACAAGGAAAAAATGGCTGAGG GTGGATCTGGGGATGTGATGCTGGGGGACTGTTCTGGGGCCAGGTATAATGACTGGTCTG ATGATGATGACAGCAATGAGAGCAAGAGTATAGTATGGTACCCACCTTGGGCTCGGATTG GGACTGAAGCTGGAACCAGAGCTAGGGCCAGGGCAAGGGCCAGGGCTACCCGGGCACGTCGGG CTGTCCAGAAACGGGCTTCCCCCAATTCAGATGATACCGTTTTGTCCCCTCAAGAGCTACAAA AGGTTCTTTGCTTGAGATGTCTGAAAAGCCTTATATTCTTGAAGCAGCTTTAATTGCTC ${\tt TGGGTAACAATGCTGCTTATGCATTTAACAGAGATATTATTCGTGATCTGGGTGGTCTCCCAA}$ TTGTCGCAAAGATTCTCAATACTCGGGATCCCATAGTTAAGGAAAAGGCTTTAATTGTCCTGA ATAACTTGAGTGTGAATGCTGAAAATCAGCGCAGGCTTAAAGTATACATGAATCAAGTGTGTG ATGACACAATCACTTCTCGCTTGAACTCATCTGTGCAGCTTGCTGGACTGAGATTGCTTACAA ATATGACTGTTACTAATGAGTATCAGCACATGCTTGCTAATTCCATTTCTGACTTTTTCGTT TATTTTCAGCGGGAAATGAAGAAACCAAACTTCAGGTTCTGAAACTCCTTTTGAATTTGGCTG AAAATCCAGCCATGACTAGGGAACTGCTCAGGGCCCAAGTACCATCTTCACTGGGCTCCCTCT TTAATAAGAAGGAGAACAAAGAAGTTATTCTTAAACTTCTGGTCATATTTGAGAACATAAATG ATAATTTCAAATGGGAAGAAATGAACCTACTCAGAATCAATTCGGTGAAGGTTCACTTTTT ${\tt TCTTTTTAAAAGAATTTCAAGTGTGTGCTGATAAGGTTCTGGGAATAGAAAGTCACCATGATT}$ TTTTGGTGAAAGTAAAAGTTGGAAAATTCATGGCCAAACTTGCTGAACATATGTTCCCAAAGA GCCAGGAA**TAA**CACCTTGATTTTGTAATTTAGAAGCAACACACATTGTAAACTATTCATTTTC TCCACCTTGTTTATATGGTAAAGGAATCCTTTCAGCTGCCAGTTTTGAATAATGAATATCATA TTGTATCATCAATGCTGATATTTAACTGAGTTGGTCTTTAGGTTTAAGATGGATAAATGAATA TCACTACTTGTTCTGAAAACATGTTTGTTGCTTTTTTATCTCGCTGCCTAGATTGAAATATTTT GCTATTTCTTCTGCATAAGTGACAGTGAACCAATTCATCATGAGTAAGCTCCCTTCTGTCATT TTCATTGATTTAATTTGTGTATCATCAATAAAATTGTATGTTAATGCTGGAAAGA

FIGURE 216

MGYARKVGWVTAGLVIGAGACYCIYRLTRGRKQNKEKMAEGGSGDVDDAGDCSGARYNDWSDD DDDSNESKSIVWYPPWARIGTEAGTRARARARARATRARRAVQKRASPNSDDTVLSPQELQKV LCLVEMSEKPYILEAALIALGNNAAYAFNRDIIRDLGGLPIVAKILNTRDPIVKEKALIVLNN LSVNAENQRRLKVYMNQVCDDTITSRLNSSVQLAGLRLLTNMTVTNEYQHMLANSISDFFRLF SAGNEETKLQVLKLLLNLAENPAMTRELLRAQVPSSLGSLFNKKENKEVILKLLVIFENINDN FKWEENEPTQNQFGEGSLFFFLKEFQVCADKVLGIESHHDFLVKVKVGKFMAKLAEHMFPKSQE

Signal peptide:

amino acids 1-20

N-glycosylation sites.

amino acids 68-72, 189-193, 217-221, 230-234

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-111

N-myristoylation sites.

amino acids 13-19, 17-23, 19-25, 54-60, 83-89, 147-153, 255-261, 290-296

Amidation site.

amino acids 29-33

FIGURE 217

GAGACACAAAGGCAGGCGGGTTGCGGGAGCAGGCAAAGGGGAAAGCCGAAAGCCGCGCCCCGGC CGGTGACTGGGTGAAGGCCCCGCGCAGCTTTCCCGACGCCGGCTGTACCCGGACCTCCTGGTC ${\tt GAGCCTGGCGCGCGCAGCC} \textbf{ATG} {\tt GCCATCGCTCAACTGGCCACGGAGTACGTGTTCTCGGATT}$ AGATGGTCACGTGCATTGCGGTGGGGCTGCCCCTGCTCATCTCGCTGGCCTTCGCGCAGG CCTTTGTGGATTCATATTGCTGGGCGGCTGTTCAGCAGAAGAACTCACTGCAGAGCGAGTCTG GAAACCTCCCACTGTGGCTGCATAAGTTTTTCCCCTACATCCTGCTGCTCTTTTGCGATCCTCC TGTACCTGCCCCGCTGTTCTGGCGTTTCGCAGCTGCTCCTCATATTTGCTCAGACTTGAAGT TTATCATGGAAGAACTTGACAAAGTTTACAACCGTGCAATTAAGGCTGCAAAGAGTGCGCGTG ACCTTGACATGAGAGTGGAGCCTGCTCAGTTCCAGGTGTTACCGAGAACTTAGGGCAAAGTT TGTGGGAGGTATCTGAAAGCCACTTCAAGTACCCAATTGTGGAGCAGTACTTGAAGACAAAGA AAAATTCTAATAATTTAATCATCAAGTACATTAGCTGCCGCCTGCTGACACTCATCATTATAC TGTTAGCGTGTATCTACCTGGGCTATTACTTCAGCCTCTCCTCACTCTCAGACGAGTTTGTGT GCAGCATCAAATCAGGGATCCTGAGAAACGACAGCACCGTGCCCGATCAGTTTCAGTGCAAAC TCATTGCCGTGGCCATCTTCCAGTTGCTCAGTGTCATTAACCTTGTGGTTTATGTCCTGCTGG CTCCCGTGGTTGTCTACACGCTGTTTGTTCCATTCCGACAGAAGACAGATGTTCTCAAAGTGT ACGAAATCCTCCCCACTTTTGATGTTCTGCATTTCAAATCTGAAGGGTACAACGATTTGAGCC TCTACAATCTCTTCTTGGAGGAAAATATAAGTGAGGTCAAGTCATACAAGTGTCTTAAGGTAC TGGAGAATATTAAGAGCAGTGGTCAGGGGATCGACCCAATGCTACTCCTGACAAACCTTGGCA TGATCAAGATGGATGTTGTTGATGGCAAAACTCCCATGTCTGCAGAGATGAGAGAGGAGCAGG GGAACCAGACGCAGAGCTCCAAGGTATGAACATAGACAGTGAAACTAAAGCAAATAATGGAG ${\tt AGAAGAATGCCCGACAGAGACTTCTGGATTCTTCTTGC} \underline{\textbf{TGA}} \\ {\tt TGATTTTTTTTTTTCCTTGAGCTGT}$ AAATCTGTGACTTCTGCGACATGGGATTTAATTTGGCTAAAGCACCCCTGTTGGTTTCACAGC

FIGURE 218

MAIAQLATEYVFSDFLLKEPTEPKFKGLRLELAVDKMVTCIAVGLPLLLISLAFAQEISIGTQ ISCFSPSSFSWRQAAFVDSYCWAAVQQKNSLQSESGNLPLWLHKFFPYILLLFAILLYLPPLF WRFAAAPHICSDLKFIMEELDKVYNRAIKAAKSARDLDMRDGACSVPGVTENLGQSLWEVSES HFKYPIVEQYLKTKKNSNNLIIKYISCRLLTLIIILLACIYLGYYFSLSSLSDEFVCSIKSGI LRNDSTVPDQFQCKLIAVGIFQLLSVINLVVYVLLAPVVVYTLFVPFRQKTDVLKVYEILPTF DVLHFKSEGYNDLSLYNLFLEENISEVKSYKCLKVLENIKSSGQGIDPMLLLTNLGMIKMDVV DGKTPMSAEMREEQGNQTAELQGMNIDSETKANNGEKNARQRLLDSSC

Transmembrane domains:

amino acids 37-55, 108-126, 216-232, 273-290

N-glycosylation sites.

amino acids 255-259, 338-342, 394-398

Glycosaminoglycan attachment site.

amino acids 357-361

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 203-207

N-myristoylation sites.

amino acids 61-67, 174-180, 251-257, 393-399

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 218-229

FIGURE 219

CTGTGAGTGACACACGCTGAGTGGGGTGAAGGGAA**ATG**CTGGTGAATTTCATTTTGAGGTGTG GTTGTTACCCAAGGGGAACATTGTCCCAAGCTGTTGACGCTCTCTATATCAAAGCAGCATGGC TCAAAGCAACGATTCCAGAAGACCGCATAAAAAATATACGATTATTAAAAAAAGAAAACAAAAA AGCAGTTTATGAAAAACTGTCAATTTCAAGAACAGCTTCTGTCCTTCTTCATGGAAGACGTTT TTGGTCAACTGCAATTGCAAGGCTGCAAGAAAATACGCTTTGTGGAGGACTTTCATAGCCTTA GGCAGAAATTGAGCCACTGTATTTCCTGTGCTTCATCAGCTAGAGAGATGAAATCCATTACCA GGATGAAAAGAATATTTTATAGGATTGGAAACAAAGGAATCTACAAAGCCATCAGTGAACTGG ATATTCTTCTTTCCTGGATTAAAAAATTATTGGAAAGCAGTCAG ${f TAA}$ ACCAAAGCCAAGTACA TTGATTTTACAGTTATTTTGAAATACAATAAGAACTGCTAGAAATATGTTTATAACAGTCTAT TTCTTTTAAAAACTTTTTAACATAATACTGACGGCATGTTAGGTGATTCAGAATAGACAAGAA GGATTTAGTAAATTTAACGTTTTTGGATATAAGTTGTCACTAATTTGCACATTTTCTGTGTTTTC AAATAATGTTTCCATTCTGAACATGTTTTGTCATTCACAAGTACATTGTGTCAACTTAATTTA GGGGAATGACAGATTTCTGGAATGCAATGTAATGTTACTGAGACTTAAATAGATGTTATGTAT ATGATTGTCTGTTTAAGTGTTTGAAAATTGTTAATTATGCCCAGTGTGAACTTAGTACTTAAC AAAAA

FIGURE 220

MLVNFILRCGLLLVTLSLAIAKHKQSSFTKSCYPRGTLSQAVDALYIKAAWLKATIPEDRIKN IRLLKKKTKKQFMKNCQFQEQLLSFFMEDVFGQLQLQGCKKIRFVEDFHSLRQKLSHCISCAS SAREMKSITRMKRIFYRIGNKGIYKAISELDILLSWIKKLLESSQ

Signal sequence:

amino acids 1-21

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 68-71

N-myristoylation site.

amino acids 148-153

Interleukin-10 proteins.

amino acids 58-94, 74-102, 128-170

FIGURE 221

 ${\tt GACCACGGCCCTGCGCCCAGCCAGGCCTGAGGAC} {\tt ATG} {\tt AGGCGGCCGGCGGCGGCGGCGCTCCC}$ TGCTGCTGTGTTTTTGGGTCTCAGAGGGCCAAGGCAACAGCCTGTGGTCGCCCCAGGA TGCTGAACCGAATGGTGGGCGGGCAGGACACGCAGGAGGGCGAGTGGCCCTGGCAAGTCAGCA TCCAGCGCAACGGAAGCCACTTCTGCGGGGGCAGCCTCATCGCGGAGCAGTGGGTCCTGACGG $\tt CTGCGCACTGCTCCGCAACACCTCTGAGACGTCCCTGTACCAGGTCCTGCTGGGGGGCAAGGC$ AGCTAGTGCAGCCGGGACCACACGCTATGTATGCCCGGGTGAGGCAGGTGGAGAGCAACCCCC ${\tt TGTACCAGGGCACGGCCTCCAGCGCTGACGTGGCCCTGGTGGAGCTGGAGGCACCAGTGCCCT}$ TCACCAATTACATCCTCCCCGTGTGCCTGCCTGACCCCTCGGTGATCTTTGAGACGGGCATGA ACTGCTGGGTCACTGGCTGGGGCAGCCCCAGTGAGGAAGACCTCCTGCCCGAACCGCGGATCC TGCAGAAACTCGCTGTGCCCATCATCGACACACCCAAGTGCAACCTGCTCTACAGCAAAGACA CCGAGTTTGGCTACCAACCCAAAACCATCAAGAATGACATGCTGTGCGCCGGCTTCGAGGAGG GCAAGAAGGATGCCTGCAAGGGCGACTCGGGGCGCCCCCTGGTGTGCCTCGTGGGTCAGTCGT GGCTGCAGGCGGGGTGATCAGCTGGGGTGAGGGCTGTGCCCGCCAGAACCGCCCAGGTGTCT ACATCCGTGTCACCGCCCACCACAACTGGATCCATCGGATCATCCCCAAACTGCAGTTCCAGC ${\tt CAGCGAGGTTGGGCGGCCAGAAG} \underline{{\tt TGA}} {\tt GACCCCCGGGGCCCAGGAGCCCCTTGAGCAGGCTCTG}$ CACCCAGCCTGCCCCACACCATCCTGCTGGTCCTCCCAGCGCTGCTGTTGCACCTGTGAG CCCCACCAGACTCATTTGTAAATAGCGCTCCTTCCTCCCCCTCTCAAATACCCTTATTTTATTT

FIGURE 222

MRRPAAVPLLLLCFGSQRAKAATACGRPRMLNRMVGGQDTQEGEWPWQVSIQRNGSHFCGGS LIAEQWVLTAAHCFRNTSETSLYQVLLGARQLVQPGPHAMYARVRQVESNPLYQGTASSADVA LVELEAPVPFTNYILPVCLPDPSVIFETGMNCWVTGWGSPSEEDLLPEPRILQKLAVPIIDTP KCNLLYSKDTEFGYQPKTIKNDMLCAGFEEGKKDACKGDSGGPLVCLVGQSWLQAGVISWGEG CARQNRPGVYIRVTAHHNWIHRIIPKLQFQPARLGGQK

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 55-58, 79-82

Casein kinase II phosphorylation sites.

amino acids 121-124, 165-168, 167-170, 248-251

Tyrosine kinase phosphorylation sites.

amino acids 78-86, 197-203

N-myristoylation sites.

amino acids 16-21, 37-42, 56-61, 62-67, 118-123

Amidation site.

amino acids 219-222

Serine proteases, trypsin family, histidine active site.

amino acids 71-76

FIGURE 223

 ${\tt CAAG} \underline{\textbf{ATG}} \\ {\tt TGGACAGCTCTTGTGCTCATTTGGATTTTCTCCTTGTCCTTATCTGAAAGCCATGC} \\$ GGCATCCAACGATCCACGCAACTTTGTCCCTAACAAAATGTGGAAGGGATTAGTCAAGAGGAA TGCATCTGTGGAAACAGTTGATAATAAAACGTCTGAGGATGTAACCATGGCAGCAGCTTCTCC TGTCACATTGACCAAAGGGACTTCGGCAGCCCACCTCAACTCTATGGAAGTCACAACAGAGGA CACAAGCAGGACAGATGTGAGTGAACCAGCAACTTCAGGAGTTGCAGCTGATGGTGTGACCTC CATTGCTCCCACGGCTGTGGCCTCCAGTACGACTGCGGCCTCCAGTACGACTGCGGCCTCCAG TATGACTGTGGCCTCCAGTGCTCCCACGACTGCAGCCTCCAGTACAACTGTGGCCTCCATTGC TCCCACGACTGCAGCCTCCAGTATGACTGCGGCCTCCAGCACTCCCATGACACTTGCACTCCC CAGCACAGCCCTCGCACAAGTGCCAAAGAGCAGCGCGTTGCCAAGAACAGCAACCCTGGCCAC ATTGGCCACACGTGCTCAGACTGTAGCGACCACAGCAAACACAAGCAGCCCCATGAGCACTCG TCCAAGTCCTTCCAAGCACATGCCCAGTGACACCGCGGCAAGCCCTGTACCCCCTATGCGTCC CCAAGCACAAGGTCCCATTAGCCAGGTGTCAGTGGACCAGCCTGTGGTTAACACAACAAATAA CACCAAGGCACAAGCCAGGCCCAACTGCCAGCCCAGTGCCAGCCCAACTACCACCAGCCCAAT CCCTGAGATGGAGGCCATGTCCCCCACGACACAGCCCAAGCCCCATGCCATATACCCAGAGGGC CGCTGGGCCAGGCACCCAGGCACCGGAGCAGGTAGAGACTGAAGCCACACCAGGTACTGA GCCCAGCACCCAAGGCCAGTACATGGTGGTCACCACTGAGCCCTCACCCAGGCCGTGGTAGA CAAAACTCTCCTTCTGGTGGTGCTGTTACTCGGGGTGACCCTTTTCATCACAGTCTTGGTTTT GTTTGCCCTGCAGGCCTATGAGAGCTACAAGAAGAAGAAGAACTACCCCAGGTGGACTACTTAAT CAACGGGATGTATGCGGACTCAGAAATG**TGA**GGGGGGGGGGGGGGCCTGGCCGGGAGGCCTGGCCC CTTCCTCGTCCTTTTGCCTTTGAGACCAAACCAAGTGCTTCCAAATTCTTTTGGTGCA ATTGAGGAGATATGCCAGATGCTTAAACACATTTAATTGCTGTCAGATTAATTCCATGATCAC TAAAGAGTTGCTGCTTTTTTCATATTTATTTTTGTAAATGATTCTGTGCCCAGGAGCAGCTGG GGGTTCCACCTCAGGGTGGGGCGGGCAGGACCCCGTCTCCCCAGGTGTCGGAGCCTGACCTGA ATTAAAGTACTGACTGCTCGCCA

FIGURE 224

MWTALVLIWIFSLSLSESHAASNDPRNFVPNKMWKGLVKRNASVETVDNKTSEDVTMAAASPV
TLTKGTSAAHLNSMEVTTEDTSRTDVSEPATSGVAADGVTSIAPTAVASSTTAASITTAASSM
TVASSAPTTAASSTTVASIAPTTAASSMTAASSTPMTLALPAPTSTSTGRTPSTTATGHPSLS
TALAQVPKSSALPRTATLATLATRAQTVATTANTSSPMSTRPSPSKHMPSDTAASPVPPMRPQ
AQGPISQVSVDQPVVNTTNKSTPMPSNTTPEPAPTPTVVTTTKAQAREPTASPVPVPHTSPIP
EMEAMSPTTQPSPMPYTQRAAGPGTSQAPEQVETEATPGTDSTGPTPRSSGGTKMPATDSCQP
STQGQYMVVTTEPLTQAVVDKTLLLVVLLLGVTLFITVLVLFALQAYESYKKKDYTQVDYLIN
GMYADSEM

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 396-420

N-glycosylation sites.

amino acids 41-44, 49-52, 222-225, 268-271, 271-274

Casein kinase II phosphorylation sites.

amino acids 14-17, 51-54, 80-83, 85-88, 280-283, 434-437

N-myristoylation sites.

amino acids 68-73, 354-359

Aldo/keto reductase family putative active site signature.

amino acids 195-210

FIGURE 225

GGAAGGCGCTCAAGGTGCGCGGCCCGGGGCGCGCTACTGGGGGCGCCCTCCGCGGTGGGCAGC GCGCCAGGGATCGGCCTGGGCAGCCGCGGGGCGCGCAAGGCTGCGCTTTCCCTACGGCCCCC CTCGCTTCCTCCGGCACGGCGCAACGGAGATTTCCTCTCGGGGAAACTACGCGGATCCTTTT CGGGGATCCTCGCCCCAGTTCTCCGCCCCCTTTGCTGGGGCGCCTGGGCTGGC GGCCATCGATTCTCCCCGCCATGTGACGCCGTCCTTAGCCCTGCGACCCCCAGCGCGTCCCGG TGCGCCTCTTCTACTGCACTGTCCTGGTCTGCTCCAAAGAGATCTCAGCGCTCACCGACTTCT CTGGTTACCTAACCAAACTCCTGCAAAACCACCACCTATGCCTGTGATGGGGACTATTTGA ATCTACAGTGCCCTCGGCATTCTACGATAAGTGTCCAATCGGCATTTTATGGGCAAGATTACC AAATGTGTAGTTCCCAGAAGCCTGCCTCCCAGAGGGAAGACAGCTTAACCTGTGTGGCAGCCA CCACCTTCCAGAAGGTGCTGGACGAATGCCAGAACCAGCGGGCCTGCCACCTCCTGGTCAATA GCCGTGTTTTTGGACCTGACCTTTGTCCAGGAAGCAGTAAATACCTCCTGGTCTCCTTTAAAT GCCAACCTAATGAATTAAAAAACAAAACCGTGTGTGAAGACCAGGAGCTGAAACTGCACTGCC ATGAATCCAAGTTCCTCAACATCTACTCTGCGACCTACGGCAGGAGGACCCAGGAAAGGGACA ${\tt TCTGCTCCCAAGGCAGAGCGGCTCCCCCTTTCGATTGCTTACTCAGCTTTGCAAG}$ TCCTATCCCGAAGGTGCTATGGGAAGCAGAGATGCAAAATCATCGTCAACAATCACCATTTTG GAAGCCCCTGTTTGCCAGGCGTGAAAAAATACCTCACTGTGACCTACGCATGTGTTCCCAAGA ACATACTCACAGCGATTGATCCAGCCATTGCTAATCTAAAACCTTCTTTGAAGCAGAAAGATG GTGAATATGGTATAAACTTCGACCCAAGCGGATCGAAGGTTCTGAGGAAAGATGGAATTCTTG TCGTGTCCAGTGTCTGCATCGGCCTGGCCCTCACACTGTGCGCCCTGGTCATCAGAGAGTCCT GTGCCAAGGACTTCCGCGACTTGCAGCTGGGGAGGGAGCAGCTGGTGCCAGGAAGTGACAAGG TCGAGGAGGACAGCGAGGATGAAGAAGAGGAGGAGGACCCCTCTGAGTCTGATTTCCCAGGGG AACTGTCGGGGTTCTGTAGGACTTCATATCCTATATACAGTTCCATAGAAGCTGCAGAGCTCG CAGAAAGGATTGAGCGCAGGGAGCAAATCATTCAGGAAATATGGATGAACAGTGGTTTGGACA $\texttt{CCTCGCTCCCAAGAAACATGGGCCAGTTCTAC} \underline{\textbf{TGA}} \texttt{AAACCACATGCATCTTGATGCGATCGCA}$ CTTTCTGAAGAAGGAAGGATCCCAAATGCCCCTCCAGTTCTGGTTCACCTGTACCTTCTATGA AGGAGAATTCGTCATGTCATCAACACTCGTGAGGCCAGGAAGCTATTAAAGGGATGTTTCAA AAAAAAAAAAAAAAA

FIGURE 226

MLLPGRARQPPTPQPVQHPGLRRQVEPPGQLLRLFYCTVLVCSKEISALTDFSGYLTKLLQNH
TTYACDGDYLNLQCPRHSTISVQSAFYGQDYQMCSSQKPASQREDSLTCVAATTFQKVLDECQ
NQRACHLLVNSRVFGPDLCPGSSKYLLVSFKCQPNELKNKTVCEDQELKLHCHESKFLNIYSA
TYGRRTQERDICSSKAERLPPFDCLSYSALQVLSRRCYGKQRCKIIVNNHHFGSPCLPGVKKY
LTVTYACVPKNILTAIDPAIANLKPSLKQKDGEYGINFDPSGSKVLRKDGILVSNSLAAFAYI
RAHPERAALLFVSSVCIGLALTLCALVIRESCAKDFRDLQLGREQLVPGSDKVEEDSEDEEEE
EDPSESDFPGELSGFCRTSYPIYSSIEAAELAERIERREQIIQEIWMNSGLDTSLPRNMGQFY

Transmembrane domains:

amino acids 32-49, 322-343

N-glycosylation sites.

amino acids 62-66, 165-169

Tyrosine kinase phosphorylation site.

amino acids 280-287

N-myristoylation site.

amino acids 302-308, 333-339, 428-434

Amidation site.

amino acids 191-195

FIGURE 227

GGCACGAGGTGGAAGGGCTTTTACAAACAGATTGCTGGCCCCACCCCCAGAATTTCTCATCA
GGAGTGGCAAGACCAATCATTTGCATTTCTGACAAGTTCCCAGGAGCTGCAGCTGCTGGCCC
TGGAACCACACTTTGAGAACCACTGCTTTAGACCAAACACCAAAGGAAGATGCAGCCACCCTC
CTTTACATGTCACAACGCTCAGGGTCCATGAGTACCTCAGGCTGTCCAGCTGAGCTCCACCTG
CAGCAGCCGAGATTCCCGACTCGCTCCACCATTGGGGGCTAGGAGTGAAGCGTGTCACCATGG
TCAGCTCATGGCCAGCAGAAAGCCTCTCTGCTGTGCAGTTCTTGTTCTTCCCT
GGAGGACTCTTGGATCGCCTGTGATCTTGGCCAGGAGACCAGGTGCCTGGGTCCCTTCCTGGA
AGGGGACAAGTTACACACCCCAGCCCCATTTTCCCACCAACTTCTACATGCCTTGGGAGAACC
TTCTACATGTTGGCTGCCCCCTTCCCCTATTTCAGCAGTGCCCAGTCCTGCTTATAAACCTGA
GGCCTGCTCCCCATACCTTCCCTGTGCAAGTGCCAGCCGTTATTCCAGGCAGCCCAATGTTGT
TGAGGCCAGATGGATTCCTGGAAGCAGCTGGCCCATGGATGTTCTAGA
AACAGAGAAGAGGTCTTAACCTAATGCGCATAGAGAAATTGTTCTCATTGTAAACATACCCCT
GTCCTTAGCTGATCTAGGTGGAAGCCCAGCTTCATGTGCTAGGGGGGCATGATAATGATAATAA
AGGAATTGTATCTAGGACTAA

FIGURE 228

 ${\tt MVSSWPARKASLLCVCAVLVLPWRTLGSPVILARRPGAWVPSWKGTSYTPQPHFPTNFYMPWE} \\ {\tt NLLHVGCPLPLFQQCPVLLINLRPAPHTFPVQVPAVIPGSPMLLRPDGFLEAAGPWM}$

Signal peptide:

amino acids 1-27

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 8-12

Q

229/550

FIGURE 229

GGGAAGGGATGCAAGGAAGCCCTCCGGCGCTGCGCTCCGAGGCGGGAGACAGCGTCCCGCTGA AAATGTGTGTCTGACATGCAAGCTCAGTGGGGCAGAGACCCGTGGATTGCTGTGCCCTGCCCT $\texttt{CCGGACCTGGATC} \underline{\textbf{ATG}} \texttt{AAGGTGTTGGGAAGAAGCTTCTTCTGGGTGCTGTTTCCCGTCCTTCC}$ GCGAGGGTGGCTGCCATGCAGAGCCGGCAGTGGGTCCGGGACAGCTGCAGGAAGCTCTCAGG GCTTCTCCGCCAGAAGAATGCAGTTCTGAACAAACTGAAAACTGCAATTGGAGCAGTGGAGAA AGACGTGGGCCTGTCGGATGAAGAGAAACTGTTTCAGGTGCACACGTTTGAAATTTTCCAGAA AGAGCTGAATGAAAGTGAAAATTCCGTTTTCCAAGCTGTCTACGGACTGCAGAGAGCCCTGCA GGGGGATTACAAAGATGTCGTGAACATGAAGGAGGCCAGCCGGCAGCCCTGGAGGCCCTGAG AGAGGCTGCAATAAAGGAAGAACAGAATATATGGAACTTCTGGCAGCAGAAAAACATCAAGT TGAAGCCCTTAAAAATATGCAACATCAAAACCAAAGTTTATCCATGCTTGACGAGATTCTTGA AGATGTAAGAAAGGCAGCGGATCGTCTGGAGGAAGAGATAGAGGAACATGCTTTTGACGACAA TAAGCAAAATATAACAAAACGAGAAGTGGAGGATGACTTGGGTCTTAGCATGCTGATTGACTC CCAGAACAACCAGTATATTTTGACCAAGCCCAGAGATTCAACCATCCCACGTGCAGATCACCA ${\tt CATAGGATTGCCTACAATGTTTGGTTATTTTTTTTGTGGTGTACTTCTGGGACCTTCAGGACT}$ AAATAGTATTAAGTCTATTGTGCAAGTGGAGACATTAGGAGAATTTGGGGTGTTTTTTACTCT $\tt TTTTCTTGTTGGCTTAGAATTTTCTCCAGAAAAGCTAAGAAAGGTGTGGAAGATTTCCTTACA$ AGGGCCGTGTTACATGACACTGTTAATGATTGCATTTGGCTTGCTGTGGGGGCCATCTCTTGCG GTCCAGGTTCCTCATGGGCAGTGCTCGGGGTGACAAAGAAGGCGACATTGACTACAGCACCGT GCTCCTCGGCATGCTGGTGACGCAGGACGTGCAGCTCGGGCTCTTCATGGCCGTCATGCCGAC TCTCATACAGGCGGGCGCCAGTGCATCTTCTAGCATTGTCGTGGAAGTTCTCCGAATCCTGGT TTTGATTGGTCAGATTCTTTTTCACTAGCGGCGGTTTTTCTTTTATGTCTTGTTATAAAGAA GTATCTCATTGGACCCTATTATCGGAAGCTGCACATGGAAAGCAAGGGGGAACAAAGAAATCCT GATCTTGGGAATATCTGCCTTTATCTTCTTAATGTTAACGGTCACGGAGCTGCTGGACGTCTC GGAGATCGCCACCTCCATCGAACCCATCCGCGACTTCCTGGCCATCGTTTTCTTCGCCTCCAT ${\tt AGGGCTCCACGTGTTCCCCACGTTTGTGGCGTACGAGCTCACGGTGCTGGTGTTCCTCACCTT}$ GTCAGTGGTGGTGATGAAGTTTCTCCTGGCGGCGCTGGTCCTGTCTCTCATTCTGCCGAGGAG ${\tt CAGCCAGTACATCAAGTGGATCGTCTCTGCGGGGCTTGCCCAGGTCAGCGAGTTTTCCTTTGT}$ CCTGGGGAGCCGGGCGAAGAGCGGGCGTCATCTCTCGGGAGGTGTACCTCCTTATACTGAG TGTGACCACGCTCAGCCTCTTGCTCGCCCCGGTGCTGTGGAGAGCTGCAATCACGAGGTGTGT CGTCTGTGGGGAGTGAGCGCTTAGATGGCCAGCAGCTGCTCCTTCTGGGAAGCTCGCACCTTG GCAACAGAACAGCCCTCTAGCAGAGCGTCAGTGCAGTCGTGTTATCCCGGCTTTTACAGAATA TTCTTGTCCTATTTTAGAATTTTCCGGAGTAGTTTATTTGCAGTCTGTTGATTATGTGCAGTA TTTCCCTGAAATTATTATTTATTTCTATTGTGAGTTCATCAGTTCATAGTTTTTTTAGTAAA GAAGCAAAATTAAAAAGGCTTTTAAAAAATGTACAACTTCAGAATTATAATCTGTTAGTCAAATA TTTGTTATTAAACATTTCTGTAATATGAAGTTGTAATCCTGGCCGTGAGCTTGGAAGCTTACT $\tt TTTGATTCTTAAAGCCTATGTTTTCTAAAATGAGACAAATACGGATGTCTATTTGCCTTTTAT$ TGTAACTTTTAAATGAAATAATTTCATGTCAATTTCTATTAGATATATCACTTAAAATATTTG

FIGURE 230

MKVLGRSFFWVLFPVLPWAVQAVEHEEVAQRVIKLHRGRGVAAMQSRQWVRDSCRKLSGLLRQ KNAVLNKLKTAIGAVEKDVGLSDEEKLFQVHTFEIFQKELNESENSVFQAVYGLQRALQGDYK DVVNMKESSRQRLEALREAAIKEETEYMELLAAEKHQVEALKNMQHQNQSLSMLDEILEDVRK AADRLEEEIEEHAFDDNKSVKGVNFEAVLRVEEEEANSKQNITKREVEDDLGLSMLIDSQNNQ YILTKPRDSTIPRADHHFIKDIVTIGMLSLPCGWLCTAIGLPTMFGYIICGVLLGPSGLNSIK SIVQVETLGEFGVFFTLFLVGLEFSPEKLRKVWKISLQGPCYMTLLMIAFGLLWGHLLRIKPT QSVFISTCLSLSSTPLVSRFLMGSARGDKEGDIDYSTVLLGMLVTQDVQLGLFMAVMPTLIQA GASASSSIVVEVLRILVLIGQILFSLAAVFLLCLVIKKYLIGPYYRKLHMESKGNKEILILGI SAFIFLMLTVTELLDVSMELGCFLAGALVSSQGPVVTEEIATSIEPIRDFLAIVFFASIGLHV FPTFVAYELTVLVFLTLSVVVMKFLLAALVLSLILPRSSQYIKWIVSAGLAQVSEFSFVLGSR ARRAGVISREVYLLILSVTTLSLLLAPVLWRAAITRCVPRPERRSSL

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 282-304, 322-337, 354-370, 379-395, 445-474, 501-520, 576-598, 641-660

N-glycosylation sites.

amino acids 104-108, 174-178, 206-210, 230-234

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 55-59, 673-677

Tyrosine kinase phosphorylation site.

amino acids 407-414

N-myristoylation sites.

amino acids 116-122, 327-333, 366-372, 401-407, 419-425, 429-435, 442-448, 525-531, 530-536

Cell attachment sequence.

amino acids 404-407

FIGURE 231

GAGAAAAACAACAGGAAGCAGCTTACAAACTCGGTGAACAACTGAGGGAACCAAACCAGAGAC GCGCTGAACAGAGAATCAGGCTCAAAGCAAGTGGAAGTGGGCAGAGATTCCACCAGGACTG $\tt GTGCAAGGCGAGGCCAGATTTGAGAAGAAGGCAAAAAG{\color{red} \bf ATG} \tt CTGGGGAGCAGAGCTG$ TAATGCTGCTGTTGCTGCCCTGGACAGCTCAGGGCAGAGCTGTGCCTGGGGGCAGCAGCC $\tt CTGCCTGGACTCAGTGCCAGCAGCTTTCACAGAAGCTCTGCACACTGGCCTGGAGTGCACATC$ AAAGGATCCACCAGGGTCTGATTTTTTATGAGAAGCTGCTAGGATCGGATATTTTCACAGGGG ${\tt AGCCTTCTCTGCTCCCTGATAGCCCTGTGGGCCAGCTTCATGCCTCCCTACTGGGCCTCAGCC}$ AACTCCTGCAGCCTGAGGGTCACCACTGGGAGACTCAGCAGATTCCAAGCCTCAGTCCCAGCC AGCCATGGCAGCGTCTCCTTCTCCGCTTCAAAATCCTTCGCAGCCTCCAGGCCTTTGTGGCTG ${\tt TAGCCGCCCGGGTCTTTGCCCATGGAGCAGCAGCCTGAGTCCC} {\color{red}{\bf TAA}} {\tt AGGCAGCAGCTCAAGG}$ ATGGCACTCAGATCTCCATGGCCCAGCAAGGCCAAGATAAATCTACCACCCCAGGCACCTGTG AGCCAACAGGTTAATTAGTCCATTAATTTTAGTGGGACCTGCATATGTTGAAAATTACCAATA

FIGURE 232

MLGSRAVMLLLLPWTAQGRAVPGGSSPAWTQCQQLSQKLCTLAWSAHPLVGHMDLREEGDEE TTNDVPHIQCGDGCDPQGLRDNSQFCLQRIHQGLIFYEKLLGSDIFTGEPSLLPDSPVGQLHA SLLGLSQLLQPEGHHWETQQIPSLSPSQPWQRLLLRFKILRSLQAFVAVAARVFAHGAATLSP

Important features of the protein:

Signal peptide:

amino acids 1-21

Casein kinase II phosphorylation site.

amino acids 64-67

N-myristoylation sites.

amino acids 25-30, 81-86, 122-127

FIGURE 233

 ${\tt CATTAATGGGCCGCTGACATGAATATGGAGTAGTTTTCTCTAGCAAAGAGTA} {\color{red} {\bf ATG}} {\tt TGGGCCATGGAGTCAGGCCA}$ GGGCATCCGGGATGTGCAGTGGAACTATGCTCCCAAGGGAAGAAATGTCATCACGAACCAGCCTCTGGACAGTGA CATAGTGGCTTCCAGCTTCTTAAAGTCTGACAAGAACCGGATAGGGGGAACCTACAAGAAGACCATCTATAAAGA TGAAGTGGGGGATGTCATTCTTATTCACCTGAAGAATTTTGCCACTCGTCCCTATACCATCCACCCTCATGGTGT CTTCTACGAGAAGGACTCTGAAGGTTCCCTATACCCAGATGGCTCCTCTGGGCCACTGAAAGCTGATGACTCTGT $\tt CTGTAAAAGAGGAGCCCTGGATGGGAACTCCCCTCCTCAACGCCAGGATGTAGACCATGATTTCTTCCTCCTCTT$ CAGTGTGGTAGATGAGAACCTCAGCTGGCATCTCAATGAGAACATTGCCACTTACTGCTCAGATCCTGCTTCAGT TGAGCTGAACATGTGTGCACAGAAACGTGTGGCCTGGCACTTGTTTGGCATGGGCAATGAAATTGATGTCCACAC AGCATTTTTCCATGGACAGATGCTGACTACCCGTGGACACCACACTGATGTGGCTAACATCTTTCCAGCCACCTT TGTGACTGCTGAGATGGTGCCCTGGGAACCTGGTACCTGGTTAATTAGCTGCCAAGTGAACAGTCACTTTCGAGA $\tt TGGCATGCAGGCACTCTACAAGGTCAAGTCTTGCTCCATGGCCCCTCCTGTGGACCTGCTCACAGGCAAAGTTCG$ ${f A}{f C}{f A}{f G}{f T}{f C}{f A}{f T}{f G}{f A}{f C}{f C}{f C}{f C}{f C}{f C}{f C}{f G}{f C}{f C}{f$ ${\tt TTTGAGAGAGCCAGGCAGTATCTCAGATAAGTTTTTCCAGAAGAGCTCCAGCCGAATTGGGGGCACTTACTGGAA}$ AGTGCGATATGAAGCCTTTCAAGATGAGACATTCCAAGAGAAGATGCATTTGGAGGAAGATAGGCATCTTGGAAT $\tt CCTGGGGCCAGTGATCCGGGCTGAGGTGGTGACACCATTCAGGTGGTCTTCTACAACCGTGCCTCCCAGCCATT$ ${\tt CAGCATGCACCCCATGGGGTCTTTTATGAGAAAGACTATGAAGGCACTGTGTACAATGATGGCTCATCTTACCC}$ ${\tt TGGCTTGGTTGCCAAGCCCTTTGAGAAAGTAACATACCGCTGGACAGTCCCCCCTCATGCCGGTCCCACTGCTCA}$ GGATCCTGCTTGTCTCACTTGGATGTACTTCTCTGCTGCAGATCCCATAAGAGACACAAATTCTGGCCTGGTGGG TCTCTTCACTGTGTTGGATGAGAACAAGAGCTGGTACAGCAATGCCAATCAAGCAGCTGCTATGTTGGATTTCCG ${ t ACTGCTTTCAGAGGATATTGAGGGCTTCCAAGACTCCAATCGGATGCCATTAATGGGTTTCTGTTCTCTAA}$ $\tt CCTGCCCAGGCTGGACATGTGCAAGGGTGACACAGTGGCCTGGCACCTGGCCTGGGCACAGAGACTGATGT$ GCATGGAGTCATGTTCCAGGGCAACACTGTGCAGCTTCAGGGCATGAGGAAGGGTGCAGCTATGCTCTTTCCTCA AGAAGCAGGGATGAGGGCAATCTATAATGTCTCCCAGTGTCCTGGCCACCAAGCCACCCCTCGCCAACGCTACCA ATACAAGAAAGCTGTATTCAGGGAATACACTGATGGTACATTCAGGATCCCTCGGCCAAGGACTGGACCAGAAGA ${\tt ACACTTGGGAATCTTGGGTCCACTTATCAAAGGTGAAGTTGGTGATATCCTGACTGTGGTATTCAAGAATAATGC}$ $\tt TGAGGTGGTCACTTATCAGTGGAACATCCCAGAGAGGTCTGGCCCTGGGCCCAATGACTCTGCTTGTGTTTCCTG$ ${\tt GATCTATTATTCTGCAGTGGATCCCATCAAGGACATGTATAGTGGCCTGGTGGGGCCCTTGGCTATCTGCCAAAA}$ GGGCATCCTGGAGCCCCATGGAGGACGGAGTGACATGGATCGGGAATTTGCATTGTTGTTCTTGATTTTTGATGA AAATAAGTCTTGGTATTTGGAGGAAAATGTGGCAACCCATGGGTCCCAGGATCCAGGCAGTATTAACCTACAGGA GTACCAAGGAGAACGAGTGGCCTGGTACATGCTGGCCATGGGCCAAGATGTGGATCTACACACCATCCACTTTCA TGCAGAGAGCTTCCTCTATCGGAATGGCGAGAACTACCGGGCAGATGTGGTGGATCTGTTCCCAGGGACTTTTGA GGTTGTGGAGATGGTGGCCAGCAACCCTGGGACATGGCTGATGCACTGTCCATGTCCATGCTGG AAAAGTGCCCCCAGAGACATTGAAGAAGGCAATGTGAAGATGCTGGGCATGCAGATCCCCATAAAGAATGTTGA GATGCTGGCCTCTGTTTTGGTTGCCATTAGTGTCACCCTTCTGCTCGTTGTTCTGGCTCTTTGGTGGAGTGGTTTG $\tt GTACCAACATCGACAGAGAAAGCTACGACGCAATAGGAGGTCCATCCTGGATGACAGCTTCAAGCTTCTGTCTTT$ ${\tt AGTCACTAACCCCACACTCAAAGGGGCATGGGTGGAGAAGCAGAAGGAGCAATCAAGCTTATCTGGATATTT}$ $\tt CTTTCTTTATTTTACATGGAAATAATATGATTTCACTTTTTCTTTAGTTTCTTTGCTCTACGTGGGCACCT$ GGCACTAAGGGAGTACCTTATTATCCTACATCGCAAATTTCAACAGCTACATTATATTTCCTTCTGACACTTGGA ACTTCTTTCAAGGACTCAGGAAATTTCACTTTGAACTGAGGCCAAGTGAGCTGTTAAGATAACCCACACTTAAAC TAAAGGCTAAGAATATAGGCTTGATGGGAAATTGAAGGTAGGCTGAGTATTGGGAATCCAAATTGAATTTGATT $\tt CTCCTTGGCAGTGAACTACTTTGAAGAAGTGGTCAATGGGTTGTTGCTGCCATGAGCATGTACAACCTCTGGAGC$

FIGURE 234

MWAMESGHLLWALLFMQSLWPQLTDGATRVYYLGIRDVQWNYAPKGRNVITNQPLDSDIVASS FLKSDKNRIGGTYKKTIYKEYKDDSYTDEVAQPAWLGFLGPVLQAEVGDVILIHLKNFATRPY TIHPHGVFYEKDSEGSLYPDGSSGPLKADDSVPPGGSHIYNWTIPEGHAPTDADPACLTWIYH SHVDAPRDIATGLIGPLITCKRGALDGNSPPQRQDVDHDFFLLFSVVDENLSWHLNENIATYC SDPASVDKEDETFQESNRMHAINGFVFGNLPELNMCAQKRVAWHLFGMGNEIDVHTAFFHGOM LTTRGHHTDVANIFPATFVTAEMVPWEPGTWLISCQVNSHFRDGMQALYKVKSCSMAPPVDLL TGKVRQYFIEAHEIQWDYGPMGHDGSTGKNLREPGSISDKFFQKSSSRIGGTYWKVRYEAFQD ETFQEKMHLEEDRHLGILGPVIRAEVGDTIQVVFYNRASQPFSMQPHGVFYEKDYEGTVYNDG SSYPGLVAKPFEKVTYRWTVPPHAGPTAQDPACLTWMYFSAADPIRDTNSGLVGPLLVCRAGA LGADGKQKGVDKEFFLLFTVLDENKSWYSNANQAAAMLDFRLLSEDIEGFQDSNRMHAINGFL FSNLPRLDMCKGDTVAWHLLGLGTETDVHGVMFQGNTVQLQGMRKGAAMLFPHTFVMAIMQPD NLGTFEIYCQAGSHREAGMRAIYNVSQCPGHQATPRQRYQAARIYYIMAEEVEWDYCPDRSWE REWHNQSEKDSYGYIFLSNKDGLLGSRYKKAVFREYTDGTFRIPRPRTGPEEHLGILGPLIKG EVGDILTVVFKNNASRPYSVHAHGVLESTTVWPLAAEPGEVVTYQWNIPERSGPGPNDSACVS WIYYSAVDPIKDMYSGLVGPLAICQKGILEPHGGRSDMDREFALLFLIFDENKSWYLEENVAT HGSQDPGSINLQDETFLESNKMHAINGKLYANLRGLTMYQGERVAWYMLAMGQDVDLHTIHFH AESFLYRNGENYRADVVDLFPGTFEVVEMVASNPGTWLMHCHVTDHVHAGMETLFTVFSRTEH LSPLTVITKETEKVPPRDIEEGNVKMLGMQIPIKNVEMLASVLVAISVTLLLVVLALGGVVWY QHRQRKLRRNRRSILDDSFKLLSFKQ

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 1109-1130

N-glycosylation sites.

amino acids 167-171, 239-243, 591-595, 717-721, 761-765, 832-836, 876-880, 934-938

Glycosaminoglycan attachment site.

amino acids 871-875

Tyrosine kinase phosphorylation sites.

amino acids 82-90, 137-145, 494-502, 513-521

N-myristoylation sites.

amino acids 212-218, 313-319, 498-504, 566-572, 672-678, 778-784, 843-849

Multicopper oxidases signature 1.

amino acids 344-365, 696-717, 1043-1064

Multicopper oxidases signature 2.

amino acids 1048-1060

FIGURE 235

GGAAAGAGTGCTGGTACTACAACCAGGAAGTGACAGATAATGTGCTTTAAACTACATTAGAAAAGCTTCTCATAG CAAAACTGAGAGATTGAAGCAGTGATTATTTTTACATAGTTGTCATTAAATATTTTGGAGCTCTGCTGTGCATAGA GATGGCAACATACTTAGAATACACAGCTTTCTGGGCCAGAAATTGATCTTCTGACTTTTGAGCCTTATCTGATTA GAGATGAAAAATTATCCAAGTCAATCAGTTTACCAGTGAATCAATTAGTCGGGTTTCAGAAACAGAGTCATTCG ATGGAAATTCATCAAAAGGAGGAGTTAGGCAAAGAGGGGGTCCCAAAATGAGAAACAGACCAAAAAGAGTCTCTTAC ${\tt CAACTTTGGAAAAGAAGTTAACTAGAGTGCCATCAAAGTCACTGGACTTGAATAAAAATGAATATCTTTCTCTGG}$ ${\tt ACAAAAGCAGCACTTCAGATTCTGTTGATGAAGAAAATGTTCCTGAGAAAGATCTTCATGGAAGACTTTTTATCA}$ ACCGTATTTTCATATCAGTGCTGACAGAATGTTTGAATTGCTCTTTACCAGTTCACGCTTTATGCAGAAATTTG CCAGTTCTAGAAATATAATAGATGTAGTATCTACCCCTTGGACTGCAGAACTTGGAGGTGATCAGCTGAGAACGA TGACCTACACTATAGTCCTTAATAGTCCACTTACTGGAAAATGCACTGCTGCCACTGAAAAGCAGACACTGTATA ${\tt AAGAAAGTCGGGAAGCACGATTTTATTTGGTAGATTCAGAAGTACTGACACATGATGTCCCCTACCATGATTACT}$ TCTATACCGTGAACAGATACTGTATCATCCGATCTTCAAAACAGAAATGCAGGCTAAGAGTTTCCACAGATTTGA AATACAGAAAACAGCCATGGGGCCTTGTCAAATCTTTAATTGAAAAGAATTCCTGGAGTTCTTTGGAGGACTATT TCAAACAGCTTGAATCAGATTTGTTAATTGAAGAATCTGTATTAAATCAGGCCATTGAAGACCCTGGAAAACTTA $\tt CTGGCCTACGAAGGAGAAGGCGAACCTTCAACCGAACAGCAGAAACAGTTCCTAAACTTTCCTCTCAGCATTCCT$ ${\tt TAGAACATGCTGCTCAGTCCTTTTACCGTCTCCGCCTCCAAGAAGAGAAATCTTTAAATTTAGCCTCTGATATGG}$ TGTCAAGAGCAGAAACTATTCAGAAGAATAAAGATCAGGCCCATCGTTTAAAGGGAGTGCTCCGAGACTCCATAG TGATGCTTGAACAGCTGAAGAGCTCACTCATTATGCTTCAGAAAACGTTTGATCTACTAAATAAGAATAAGACTG $\texttt{GCATGGCTGTTGAAAGC} \underline{\textbf{TAG}} \texttt{TGATCTGAAGGACTAAAACCGCAGAGATACTTGGAACTTAAAGAAAATACCTGGA}$ $\overline{\text{AGAAAACCAGACGAATGAAGGATTTTGGCATAGAACATTTCTATGTTTTTTCATTATTGAGATTTCTAATATGAA}$ TATTTTTAAGCTGTGAATTTCTTCAGTGAACCATGAAATATATTATAGAACTGAATTTCTCTGATACAAAAAGAA ${\tt AATGACACCCTGAATTGAGTGGTATGGTCTCATTTCTACAGTGAAGTCTGATGCTTTGTTAGCACAGAATCCG}$ TACATGTCCAATAGGTCGCTTTTGTAACTGAGATAAGACCAAGAGGATAAACAGGACAATATAAGAAGAAACCTC TATGTCATTACTGATTTTAAAGGTTCTGTTTTCAGGCATATAACATTTCCAGGTTTGTGTACTGTAAAGATTATA ATGTCTTCATTTATTTAGCATGCAAATTTAATAGTCAAACTTTTTGAATCTGCATGTTGATGATGATTATCAGAA ${\tt AGGGTCTTCTGCCATGCTGTATCTTTATGAAAGAAATAGTTGTTTTTTCTTAAGGTAACTATCAGAGGTGGGATT}$ ATCTTGCCTCCTCACTTAGAATACCAACAGTCAAAAGGAAGAACCATCCTCTGAGTTTTAAAAACCAGAAGGTTA ${\tt TGTTAAAATCTGGGCATTTAGTGACAGATCAAATGCATACTTGAACTAAGATTGGCTTCAGCTTAGCAGTCTTTC}$ ${\tt CACGTATGTCCCAGTACAAGTGTACTGACTATCAAGTTTTAACTCAGATGCAAGCTTTGGCTCTTTCATAAAAAG}$ TTTTTATGCATATGTGTCTCCATACAAGTGGCTCATTAAAATAAGAACTTTGTAAACTGACTTAAAATCAGATAT $\tt TTTTTCAAGAGTTAGGGAAAGTTGAAGTGTTTTACTGTTTTGTCTCTTGAGCCCTTTCTCTGGGGAAAAAATACA$ TTTCATTTTTCTCCAGAGTCCCCAAAGCCACATGGCATTATTATAGTCATTTTTGAGATGCCTGTAGAGAATGAA ${\tt AGTATTGACTCCGTTAGAGGGAAAATGGGTTTCTCTGGGTGAATTCCAACGAAGCATACCTAGGGGTAACAGTGA}$ ${\tt ACCTACCTGGGTTTGTTTTGGTAAGGATTTATGTAGTGTCTGGCTGTAAGCAAGAATGAGTGGATTATAA}$ ATTTTATAACATACTTCAAGGAAGAGTATCGAAGTAAGTTGCTTTATAAATTAAGACTAAATTCGTATGGATGCA GAATTCAATTAATAAAATTTGAGCCTGTTACGTAAATTGAATATTAATAAAATTGAAAATTTCAAAA

FIGURE 236

MENLSLSIEDVQPRSPGRSSLDDSGERDEKLSKSISFTSESISRVSETESFDGNSSKGGLGKE ESQNEKQTKKSLLPTLEKKLTRVPSKSLDLNKNEYLSLDKSSTSDSVDEENVPEKDLHGRLFI NRIFHISADRMFELLFTSSRFMQKFASSRNIIDVVSTPWTAELGGDQLRTMTYTIVLNSPLTG KCTAATEKQTLYKESREARFYLVDSEVLTHDVPYHDYFYTVNRYCIIRSSKQKCRLRVSTDLK YRKQPWGLVKSLIEKNSWSSLEDYFKQLESDLLIEESVLNQAIEDPGKLTGLRRRRRTFNRTA ETVPKLSSQHSSGDVGLGAKGDITGKKKEMENYNVTLIVVMSIFVLLLVLLNVTLFLKLSKIE HAAQSFYRLRLQEEKSLNLASDMVSRAETIQKNKDQAHRLKGVLRDSIVMLEQLKSSLIMLQK TFDLLNKNKTGMAVES

Transmembrane domain:

amino acids 352-371

N-glycosylation sites.

amino acids 3-7, 54-58, 312-316, 349-353, 367-371, 449-453

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 81-85, 307-311

Tyrosine kinase phosphorylation sites.

amino acids 202-211, 246-254, 341-349

N-myristoylation site.

amino acids 259-265

Amidation site.

amino acids 339-343

FIGURE 237

FIGURE 238

MMSFLLGAILTLLWAPTAQAEVLLQPDFNAEKFSGLWYVVSMASDCRVFLGKKDHLSMSTRAI RPTEEGGLHVHMEFPGADGCNQVDAEYLKVGSEGHFRVPALGYLDVRIVDTDYSSFAVLYIYK ELEGALSTMVQLYSRTQDVSPQALKSFQDFYPTLGLPKDMMVMLPQSDACNPESKEAP

Signal peptide:

amino acids 1-20

Tyrosine kinase phosphorylation site.

amino acids 110-117

N-myristoylation sites.

amino acids 7-13, 79-85, 130-136

Amidation site.

amino acids 50-54

FIGURE 239

GCCAAGTCCGGGGCCCGCGCCGCTGCCTAGCGCGTCCTGGGGGACTCTGTGGGGACGCCCCG GCTCACCCTCCTCCTCCTCATGCCCGCTGTTGTCAGGTGCCAGGAGCAGGCCCAGACCAC CGACTGGAGAGCCACCCTGAAGACCATCCGGAACGGCGTTCATAAGATAGACACGTACCTGAA CGCCGCCTTGGACCTCCTGGGAGGCGAGGACGGTCTCTGCCAGTATAAATGCAGTGACGGATC TAAGCCTTTCCCACGTTATGGTTATAAACCCTCCCCACCGAATGGATGTGGCTCTCCACTGTT CTATGAGACCTGTGGCAAAAGCAAGAATGACTGTGATGAAGAATTCCAGTATTGCCTCTCCAA GATCTGCCGAGATGTACAGAAAACACTAGGACTAACTCAGCATGTTCAGGCATGTGAAACAAC AGTGGAGCTCTTGTTTGACAGTGTTATACATTTAGGTTGTAAACCATATCTGGACAGCCAACG AGCCGCATGCAGGTGTCATTATGAAGAAAAACTGATCTT**TAA**AGGAGATGCCGACAGCTAGT GACAGATGAAGATGGAAGAACATAACCTTTGACAAATAACTAATGTTTTTACAACATAAAACT GTCTTATTTTGTGAAAGGATTATTTTGAGACCTTAAAATAATTTATATCTTGATGTTAAAAC CTCAAAGCAAAAAAGTGAGGGAGATAGTGAGGGGAGGGCACGCTTGTCTCTCAGGTATCTT CCCCAGCATTGCTCCCTTACTTAGTATGCCAAATGTCTTGACCAATATCAAAAACAAGTGCTT GTTTAGCGGAGAATTTTGAAAAGAGGAATATATAACTCAATTTTCACAACCACATTTACCAAA AAAAGAGATCAAATATAAAATTCATCATAATGTCTGTTCAACATTATCTTATTTGGAAAATGG GGAAATTATCACTTACAAGTATTTGTTTACTATGAAATTTTAAATACACATTTATGCCTAGAA GGAACGGACTTTTTTTTTTTTTATTTAATTACACATAATATGTAATTAAAGTACAACATAATAT GTTGTTCTCTGTAGCCCGTTGAGCATATGAGTAAGTCACATTTCTATTAGGACTACTTACAA GGACAAGGTTTCCATTTTCCAGTTGTAAAATTGGAACCATCAGCTGATAACCTCGTAGGGAG CAACCCCAGGATAGCTAAGTGTTATGTAATATGCCTAGAAGGTGATGTGAATGCGATTCAGAA GCATAGCCACTCCCATTTTATGAGCTACTCACATGACAAATGTCATCTTTTGCTATAACCTTT AAAAAAAAAAAAAAA

FIGURE 240

MALLSRPALTLLLLLMAAVVRCQEQAQTTDWRATLKTIRNGVHKIDTYLNAALDLLGGEDGLC QYKCSDGSKPFPRYGYKPSPPNGCGSPLFGVHLNIGIPSLTKCCNQHDRCYETCGKSKNDCDE EFQYCLSKICRDVQKTLGLTQHVQACETTVELLFDSVIHLGCKPYLDSQRAACRCHYEEKTDL

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites:

amino acids 57-63,93-99

Phospholipase A2 histidine active site:

amino acids 106-114

Neuraxin and MAP1B proteins repeat proteins Block:

amino acids 109-137

FIGURE 241

 $\tt CCCTGAGAGTCTGAGCGCTCGCCGCACCCCTTCCGAGCTTCTATTGGCCGTAGCAGACGTCC$ GTCTGCCGCTATCTCCGCCCCAATACGGAAGCGGCCTAGTCCTCCGGCTCCGACAGCTGGGTG TCGTGCTCACCGCGCTGTGGGCCGCGCCGTGGGCCTGGAGCTGGCTTACGTGCTGGTGCTCG $\tt GTCCCGGGCCGCCGCCTGGCCCTGGCCCGGGCCTTGCAGCTGGCCGCCTTCC$ AGCTGCTCAACCTGCGGCAACGTGGGGCTCTTCCTGCGCTCGGATCCCAGCATCCGTGGCG TGATGCTGGCCGGCCGGTCTGGGCCAGGGCTTACTGCTACCAATGCCAAAGCCAGG $\tt TGCCGCCACGCAGCGGACACTGCTCTGCCTGCCGTCTGCATCCTGCGTCGGGACCACCACT$ GCCGCCTGCTGGGCTGCGTGGGCTTCGGCAACTACCGGCCCTTCCTGTGCCTGCTTC ATGCCGCCGGCGTCCTGCACGTCTCTGTGCTGCTGGGCCCTGCACTGTCGGCCCTGCTGC GAGCCCACACGCCCTCCACATGGCTGCCTCCTCCTGCTTCCCTGGCTCATGTTGCTCACAG ${\tt TGCTGTGCGGGGCTGCTCTTCCATGGGATGCTGCTGCGGGGCCAGACCACATGGG}$ GGCCCCGCTGGGCCTCTGGCCTCTGGCCCTTCCTGGCCTCCCCATTGCCTGGGGATGGGA TCACCTTCCAGACCACAGCAGATGTGGGACACACAGCCTCC ${f TGA}$ CTCCAGGAAGAGCCAGAGC ${\tt TGTGCAGGGAGGGGGGGGGGGGCCCCCACACCTAGACTCAGTAAGGAAGTCGGGTT}$ GGGCTGCTCAGGCCGCCTAGCTGCCCCTTTGCCAGGTTAATAAAGCACTGACTTGTTAA

FIGURE 242

MGQPWAAGSTDGAPAQLPLVLTALWAAAVGLELAYVLVLGPGPPPLGPLARALQLALAAFQLL
NLLGNVGLFLRSDPSIRGVMLAGRGLGQGWAYCYQCQSQVPPRSGHCSACRVCILRRDHHCRL
LGRCVGFGNYRPFLCLLLHAAGVLLHVSVLLGPALSALLRAHTPLHMAALLLLPWLMLLTGRV
SLAQFALAFVTDTCVAGALLCGAGLLFHGMLLLRGQTTWEWARGQHSYDLGPCHNLQAALGPR
WALVWLWPFLASPLPGDGITFQTTADVGHTAS

Important features:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 51-66,143-160,174-191,198-214

N-myristoylation sites:

amino acids 2-8,8-14,30-36,81-87,88-94,90-96,206-212

Leucine zipper pattern:

amino acids 143-165,150-172,157-179,164-186

FIGURE 243

CTTGTCTTTGTGTCGGTTGTGATTTTCCTAATCTCTGATTTTCCTTTTCTCTCGGACGCTCTC $\tt CCTCTTCGGACCCATTTCTCCCGTGCTTCATGCCCTGATAGCCTGGCCCCTTCCCGGCTTCC$ CTTCCTCAAGAGTTCGCCCCTCTGGGGGCTCCTCTGTGTAATCGTCGCCTTCTCTGGGTATTT CTGTGAACTCCGTCTCACACCATCCCGCCATCTTCTCTGCCTTGGCCCCTTTTCTCTGTACAG CCAGCTCTGTGTCCTTTTCTTCTCCCCCTCTAAAATCGACTCCTCTTCTCCCTGAGAGCCCCA CAAGGTTCCATTCAATTTGTTTGTCTTTTGTAGGGGTGGCATCCCCTCTGACTACTGCT CCATCCTTTTTTTTTTTTTTTTTTTTTTTTTTTGCTTGAGGATTTCACTTCAATCTTTTCTGGT TGCGTCTCCACTTGTACTCAGCTTGTTAGGTCCAGGTCCAGTTGTTCTGCATCTGAGGCTGGC GTGTGCTGTCTCTGATTGGCCTAATCTCCCTCACCCCGTGAGATCTGTTGTCAGCCTTC GTTTCTCTTTCCTGTGTCCCAGCTTTTCTGCGGGTCTTGGCACCTTTCTTGGCCACAGATTTC TGGGTTACAGAGCATGTGTCTGAGGCATTGCAGGCAGAAAAGGGTGGCCGACGTGACCTCT AGCTGGACTGCTGGGCAGGGGAGCTGTCCTAGATAAAATTGGAAAGAACAGTGACCCAGAGA CAGGTGGACAAGAATTCGGGGACTGATGGGAACTGAGCTTGGGATCCAGACTGAAACTGATT CCAGACTGACCTCTAGCACCCAGGACCCAGACACAGGGCC**ATG**GGACCCCAGCATTTGAGACT TGTGCAGCTGTTCTGCCTTCTAGGGGCCATCCCCACTCTGCCTCGGGCTGGAGCTCTTTTGTG CTATGAAGCAACAGCCTCAAGATTCAGAGCTGTTGCTTTCCATAACTGGAAGTGGCTTCTGAT GAGGAACATGGTGTAAGCTGCAAGAGGGCTGCGAGGAGACGCTAGTGTTCATTGAGACAGG GACTGCAAGGGGAGTTGTGGGCTTTAAAGGCTGCAGCTCGTCTTCGTCTTACCCTGCGCAAAT CTCCTACCTTGTTTCCCCACCCGGAGTGTCCATTGCCTCCTACAGTCGCGTCTGCCGGTCTTA TCTCTGCAACAACCTCACCAATTTGGAGCCTTTTGTGAAACTCAAGGCCAGCACTCCTAAGTC TATCACATCTGCGTCCTGTAGCTGCCCGACCTGTGTGGGGCGAGCACATGAAGGATTGCCTCCC AAATTTTGTCACCACTAATTCTTGCCCCTTGGCTGCTTCTACGTGTTACAGTTCCACCTTAAA ATTTCAGGCAGGGTTTCTCAATACCACCTTCCTCCTCATGGGGTGTGCTCGTGAACATAACCA GCTTTTAGCAGATTTTCATCATATTGGGAGCATCAAAGTGACTGAGGTCCTCAACATCTTAGA GAAGTCTCAGATTGTTGGTGCAGCATCCTCCAGGCAAGATCCTGCTTGGGGTGTCGTCTTAGG CCTCCTGTTTGCCTTCAGGGAC<u>TGA</u>CCATCTAGCTGCACCCGACAAGCACCCAGACTCTTTCA AAAAAAAAA

FIGURE 244

MGPQHLRLVQLFCLLGAIPTLPRAGALLCYEATASRFRAVAFHNWKWLLMRNMVCKLQEGCEE TLVFIETGTARGVVGFKGCSSSSSYPAQISYLVSPPGVSIASYSRVCRSYLCNNLTNLEPFVK LKASTPKSITSASCSCPTCVGEHMKDCLPNFVTTNSCPLAASTCYSSTLKFQAGFLNTTFLLM GCAREHNQLLADFHHIGSIKVTEVLNILEKSQIVGAASSRQDPAWGVVLGLLFAFRD

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation sites:

amino acids 117-121,183-187

N-myristoylation sites:

amino acids 16-22,25-31,60-66,71-77,81-87,100-106,224-230, 235-241,239-245

Prokaryotic membrane lipoprotein lipid attachment site:

amino acids 181-192

FIGURE 245

GTGGAGTTGGGTGTCGGGAGCCTCTCCCTGAGGGGCACCGCGTCTTCAGGAGCTGGGCCTCCAGTGCGGCGC GATGTCAGGCGCGGTGACAGCTCTGTGAGTCCGAGGCCGGGCCGTGGCGGCTGGGGGGCCTGACCGG $\texttt{TCCGCTC} \underline{\textbf{ATG}} \texttt{GTGCCGCCACGACGCCATCGCGGGGCAGGAAGGCCAGGGGTGCTGAGTTCTTCACCTCCTTTTAG}$ ACTGAGATCTGCCAAGTTTTCCGGCATTGCTCTTGAGGATCTCAGAAGGGCTCTTAAGACAAGACTGCAAATGGT $\tt GTGTGTATTTGTCATGAACCGAATGAATTCCCAGAACAGTGGTTTCACTCAGCGCAGGCGAATGGCTCTTGGGAT$ ${ t TGCTTGCACAACAGATACAACTATGAATAGTTCTTTGAGTGAACCTCTGTATGTGCCTGTGAAATTCCATGATCT$ $\tt CTTTGTGTGGTTTTTGGCAAATTTGTCATATCAAGAAGCACTTTCAGACACACAAGTTGCTATAGTTAATATTTT$ $\verb|TTCTAAACTATTAGCTGTAATTTTAAGCATTGGAGGCGTTGTACTGGTAAACCTGGCAGGGTCTGAAAAACCTGC|$ ${\tt TGGAAGAGACACAGTAGGTTCCATTTGGTCTCTTGCTGGAGCCATGCTCTATGCTGTCTATATTGTTATGATTAA}$ ${\tt GAGAAAAGTAGATAGAAAGACAAGTTGGATATTCCAATGTTCTTTGGTTTGTAGGTTTGTTAATCTGCTGCT}$ $\tt CTTATGGCCAGGTTTCTTTTTACTTCATTATACTGGATTTGAGGACTTCGAGTTTCCCAATAAAGTAGTATTAAT$ $\tt GTGCATTATCATTAATGGCCTTATTGGAACAGTACTCTCAGAGTTCCTGTGGTTGTGGGGCTGCTTTCTTACCTC$ ${ t ATCATTGATAGGCACACTTGCACTAAGCCTTACAATACCTCTGTCCATAATAGCTGACATGTGTATGCAAAAGGT$ TTATAATAATTGGGATCCTGTGATGGTGGGAATCAGAAGAATATTTGCTTTTATATGCAGAAAACATCGAATTCA ${\tt GAGAGTTCCAGAAGACAGTGTGAGAGTCTCATTTCTATGCACAGTGTTTCTCAGGAGGATGGAGCTAG}$ $\texttt{T}\underline{\textbf{TAG}} \texttt{CTGTCTGTTGTCTGTAGCCCAGCTTGATAATGGAACTATACAGCGAAGAGACAATCTCTGGCAAGTTTTTG}$ ${\tt TAGAAAAATGTTTCAGTGCCTAGTCTGAAAAATAACAGTTTGAGTTCTTTGAAAACTCTAAAATATTTTTCTC}$ ${ t ATACCTGTTTTCATTTTCATAATGAAGCACTTTGCTATGTAGCTGTGTACATATCACTACAGTTATAGGAAG$ TTTCAGTCTACAGTCCATCCAAAGGACCAACCTGCCTTACACATCTCAAGGAATTCAGCTGTTGAAATCATTTGA ACTAATCAAGGAATAAATCCTAATGTTCTGGGACTTTATTTTCACATGTTAAATGCTGGAATATATTATGAAAAT GTTTTCAAGAAATCACTTAAGTGTTCATAGACCAGTATTTCTGACAGGTAAAATGCTAAAATAAGCTACCTGTAA ${\tt AAGCATGTTTGTGCAAATTTCATGGGACTTTAAAAAGAATAAGTATTTGAGAAAATATCTGGTTCACTTACACTA}$ $\hbox{\tt CATTTACTGTATTATTCTTTATAGCATTAGGTGCCTTGTATTTAAATCTGTGACAAACCATGGCAAATTTTTA}$ AAGGGGAAGTATTATTATAAAATGAAGAAATATGTATTTCTAAAGGCTATATTGCTGTAAACTTAATTGATAAAG $\tt CTCTGTTTAATTTAGAGTTTTGAAGAAATAGTCTCCCTTCAATTAAGAAATTTTCATAATGGAATGATTTAAATT$ GAAGTGACAAAGAGTATTATTAAAATACAATGTTTATAAAAAAA

FIGURE 246

MVPPRRHRGAGRPGVLSSSPPFRLRSAKFSGIALEDLRRALKTRLQMVCVFVMNRMNSQNSGF TQRRRMALGIVILLLVDVIWVASSELTSYVFTQYNKPFFSTFAKTSMFVLYLLGFIIWKPWRQ QCTRGLRGKHAAFFADAEGYFAACTTDTTMNSSLSEPLYVPVKFHDLPSEKPESTNIDTEKTP KKSRVRFSNIMEIRQLPSSHALEAKLSRMSYPVKEQESILKTVGKLTATQVAKISFFFCFVWF LANLSYQEALSDTQVAIVNILSSTSGLFTLILAAVFPSNSGDRFTLSKLLAVILSIGGVVLVN LAGSEKPAGRDTVGSIWSLAGAMLYAVYIVMIKRKVDREDKLDIPMFFGFVGLFNLLLLWPGF FLLHYTGFEDFEFPNKVVLMCIIINGLIGTVLSEFLWLWGCFLTSSLIGTLALSLTIPLSIIA DMCMQKVQFSWLFFAGAIPVFFSFFIVTLLCHYNNWDPVMVGIRRIFAFICRKHRIQRVPEDS EQCESLISMHSVSQEDGAS

Important features:

Transmembrane domain:

amino acids 69-87,105-118,237-256,266-285,300-316,332-346, 364-379,399-419,453-472

N-glycosylation sites:

amino acids 157-161,255-259

N-myristoylation sites:

amino acids 14-20,329-335,404-410,407-413,418-424

FIGURE 247

CGTCTGTAGAGATATCATGAACTTCAACTTAGCTTTGGTACTTTCTTCCCTGAAGACAGAGG ${\tt CAGAACTCTGAGTTCCAGAACCATTTTCAACTGTATTGGGGGACCAATCACTTGACTCTATTCT}$ TGTCTCTGACAGATGACGCTACACTCTCCTCTGAATAATGGACACCATTTCTAAAACTGAA TTAGTTGTTTTCTCTCTCTCTCCCAGTTTTCCAGAGACTGGAGCTAAACTGGGCTTTCAACA $\texttt{TCATC} \underline{\textbf{ATG}} \texttt{AAGTTTATCCTCCTCTGGGCCCTCTTGAATCTGACTGTTGCTTTGGCCTTTAATC}$ CAGATTACACAGTCAGCTCCACTCCCCCTTACTTGGTCTATTTGAAATCTGACTACTTGCCCT GCGCTGGAGTCCTGATCCACCCGCTTTGGGTGATCACAGCTGCACACTGCAATTTACCAAAGC TTCGGGTGATATTGGGGGTTACAATCCCAGCAGACTCTAATGAAAAGCATCTGCAAGTGATTG GCTATGAGAAGATGATTCATCATCCACACTTCTCAGTCACTTCTATTGATCATGACATCATGC TAATCAAGCTGAAAACAGAGGCTGAACTCAATGACTATGTGAAATTAGCCAACCTGCCCTACC ACAAAGAGCCCGATTCACTGCAAACTGTGAACATCTCTGTAATCTCCAAGCCTCAGTGTCGCG GGCAGCCCTGCAAGGAAGTTTCTGCTGCCCCGGCAATCTGCAATGGGATGCTTCAAGGAATCC TGTCTTTTGCGGATGTGTTTTGAGAGCCGATGTTGGCATCTATGCCAAAATTTTTTACT ATATACCCTGGATTGAAAATGTAATCCAAAATAAC ${f TGA}$ GCTGTGGCAGTTGTGGACCATATGA CACAGCTTGTCCCCATCGTTCACCTTTAGAATTAAATATAAATTAACTCCTC

FIGURE 248

MKFILLWALLNLTVALAFNPDYTVSSTPPYLVYLKSDYLPCAGVLIHPLWVITAAHCNLPKLR VILGVTIPADSNEKHLQVIGYEKMIHHPHFSVTSIDHDIMLIKLKTEAELNDYVKLANLPYQT ISENTMCSVSTWSYNVCDIYKEPDSLQTVNISVISKPQCRDAYKTYNITENMLCVGIVPGRRQ PCKEVSAAPAICNGMLQGILSFADGCVLRADVGIYAKIFYYIPWIENVIQNN

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation sites:

amino acids 11-15,156-160,173-177

Tyrosine kinase phosphorylation site:

amino acids 108-117

N-myristoylation sites: amino acids 182-188,203-209

Amidation site:

amino acids 185-189

Serine proteases, trypsin family, histidine active site:

amino acids 52-58

FIGURE 249

FIGURE 250

MWWLSIGALIGLSVAAVVLLAFIVTACVLCYLFISSKPHTKLDLGLSLQTAGPEEVSPDCQGV NTGMAAEVPKVSPLQQSYSCLNPQLESNEGQAVNSKRLLHHCFMATVTTSDIPGSPEEASVPN PDLCGPVP

Important features:

Signal peptide:

Amino acids 1-26

N-myristoylation sites:

Amino acids 7-13,11-17,62-68,93-99

FIGURE 251

GTGGTTTGGATTGAGCCGGGCCCGGGCCGGGCGCCGAGTCGGAGGGGGTGGCAGTGAGCGGCG ACAGGCGCCGCTGTCCACCTCTACTCCGGGGTCTAGTACAGCGCTGGCGCTACGGCAAGGTCT ${\tt GCCTGCGCTCCTGCTCTACAACTCCTTTGGGGGGCAGTGACACCGCTGTTGATGCTGCCTTTG}$ AGCCTGTCTACTGGCTGGTAGACAACGTGATCCGCTGGTTTGGAGTGGTGTTCGTGGTCCTGG ${\tt TGATCGTGCTGACAGGCTCCATTGTAGCTATCGCCTACCTGTGTGTCCTGCCTCTCATCCTCC}$ GAACCTACTCAGTGCCACGACTCTGCTGGCATTTCTTCTATAGCCACTGGAATCTGATCCTGA GCAGCATCTGCAACAGGTGTGTGCTGAAGATGGATCACCACTGCCCCTGGCTAAACAATTGTG ACTGCAGCTATGGAAGTTGGGACCTTTTCCGGGAGGCTTATGCTGCCATTGAGACTTATCACC AGACCCCACCACCCACCTTCTCCTTTCGAGAAAGGATGACTCACAAGAGTCTTGTCTACCTCT GGTTCCTGTGCAGTTCTGTGGCACTTGCCCTGGGTGCCCTAACTGTATGGCATGCTGTTCTCA TCAGTCGAGGTGAGACTAGCATCGAAAGGCACATCAACAAGAAGGAGAGACGTCGGCTACAGG CCAAGGGCAGAGTATTTAGGAATCCTTACAACTACGGCTGCTTGGACAACTGGAAGGTATTCC ${\tt TGGGTGTGGATACAGGAAGGCACTGGCTTACTCGGGTGCTCTTACCTTCTAGTCACTTGCCCC}$ ${\tt CAGTG} \underline{\textbf{TGA}} {\tt GCTGGACTGTGTCAGCCACGACTCGAGCACTCATTCTGCTCCCTATGTTATTTCA}$ GGAGAAATCTTAGGACTGACATCCCTTTACTCAGGCAAACAGAAGTTCCAACCCCAGACTAGG GGTCAGGCAGCTACCTACCTTGCCCAGTGCTGACCCGGACCTCCTCCAGGATACAGCAC TGGAGTTGGCCACCACCTCTTCTACTTGCTGTCTGAAAAAACACCTGACTAGTACAGCTGAGA TCTTGGCTTCTCAACAGGGCAAAGATACCAGGCCTGCTGCTGAGGTCACTGCCACTTCTCACA AAAAAAAAAA

FIGURE 252

MRGQRSLLLGPARLCLRLLLLLGYRRRCPPLLRGLVQRWRYGKVCLRSLLYNSFGGSDTAVDA
AFEPVYWLVDNVIRWFGVVFVVLVIVLTGSIVAIAYLCVLPLILRTYSVPRLCWHFFYSHWNL
ILIVFHYYQAITTPPGYPPQGRNDIATVSICKKCIYPKPARTHHCSICNRCVLKMDHHCPWLN
NCVGHYNHRYFFSFCFFMTLGCVYCSYGSWDLFREAYAAIETYHQTPPPTFSFRERMTHKSLV
YLWFLCSSVALALGALTVWHAVLISRGETSIERHINKKERRRLQAKGRVFRNPYNYGCLDNWK
VFLGVDTGRHWLTRVLLPSSHLPHGNGMSWEPPPWVTAHSASVMAV

Important features:

Transmembrane domain:

amino acids 88-100,202-216,254-274

N-myristoylation sites:

amino acids 55-61,56-62,92-98,210-216,309-315,319-325,340-346

Prokaryotic membrane lipoprotein lipid attachment site:

amino acids 201-212

FIGURE 253

GATCAAGCGCCTTCCTTTCCCTTCCTCTCCTACTTGGCCTTTGCCCTAAGCCAAGACCTGGCCATCAGCCTGGC ${\tt TGCAGGGGCCTGCAGAGCCAGCTGCACTTTTTCAGGTATGGGGGAGGGCCAGGCACC{\tt ATG}{\tt CAGTGTGGGGTC}}$ GCCACCCTTCTGTGGATGCTACTGCTGGTGCCCAGGCTGGGGGCCCCGGAAGGGGTCCCCAGAAGAGGCCTCC TTCTACTATGGAACCTTCCCTCTTGGCTTCTCCTGGGGCGTGGGCAGTTCTGCCTACCAGACGGAGGGCGCCTGG ACGGCAGATGTAGCCTGTGACGGCTACTACAAGGTCCAGGAGGACATCATTCTGCTGAGGGAACTGCACGTCAAC CACTACCGATTCTCCCTGTCTTGGCCCCGGCTCCTGCCCACAGGCATCCGAGCCGAGCAGGTGAACAAGAAGGGA ATCGAATTCTACAGTGATCTTATCGATGCCCTTCTGAGCAGCAACATCACTCCCATCGTGACCTTGCACCACTGG GATCTGCCACAGCTGCTCCAGGTCAAATACGGTGGGTGGCAGAATGTGAGCATGGCCAACTACTTCAGAGACTAC GCCAACCTGTGCTTTGAGGCCTTTGGGGACCGTGTGAAGCACTGGATCACGTTCAGTGATCCTCGGGCAATGGCA GAAAAAGGCTATGAGACGGGCCACCATGCGCCGGGCCTGAAGCTCCGCGGCACCGGCCTGTACAAGGCAGCACAC GGAATTTCACTGAACTGTGACTGGGGGGAACCTGTGGACATTAGTAACCCCAAGGACCTAGAGGCTGCCGAGAGA TACCTACAGTTCTGTGTGTGTTTGCCAACCCCATTTATGCCGGTGACTACCCCCAAGTCATGAAGGACTAC ATTGGAAGAAGAGTGCAGAGCAAGGCCTGGAGATGTCGAGGTTACCGGTGTTCTCACTCCAGGAGAAGAGCTAC ATTAAAGGCACATCCGATTTCTTGGGATTAGGTCATTTTACTACTCGGTACATCACGGAAAGGAACTACCCCTCC CGCCAGGGCCCAGCTACCAGAACGATCGTGACTTGATAGAGCTGGTTGACCCAAACTGGCCAGATCTGGGGTCT $\hbox{\tt AAATGGCTATATTCTGTGCCATGGGGATTTAGGAGGCTCCTTAACTTTGCTCAGACTCAATACGGTGATCCTCCC}$ ATATATGTGATGGAAAATGGAGCATCTCAAAAATTCCACTGTACTCAATTATGTGATGAGTGGAGAATTCAATAC CTTAAAGGATACATAAATGAAATGCTAAAAGCTATAAAAGATGGTGCTAATATAAAGGGGTATACTTCCTGGTCT AATAAGCCTCGCTATCCAAAGGCTTCAGTTCAATATTACAAGAAGATTATCATTGCCAATGGGTTTCCCAATCCA TTGCTAAGTCACATGCAAATGGTTACGGAGATCGTGGTACCCACTGTCTCCCCTCTGTGTCCTCATCACTGCT ${\tt GTTCTACTAATGCTCCTCAGAGAGGCAGAGCT}{\textbf{CATAAGAGAGATCTT}}$ ${\tt CAGGATCTTCCTCCTTTTCTGCTTTGAGGGTTTCCATACATTGCTGTTTTCAGGTTCTACAATAATTACCTTTT}$ TTTCTCTTTTTTGGCTTGTGCTGGGATTTAAGAATTAGAAAATAAAAATAAGCAGAAATTA

FIGURE 254

 ${\tt MKPVWVATLLWMLLLVPRLGAARKGSPEEASFYYGTFPLGFSWGVGSSAYQTEGAWDQDGKGPSIWDVFTHSGKG}$ KVLGNETADVACDGYYKVQEDIILLRELHVNHYRFSLSWPRLLPTGIRAEQVNKKGIEFYSDLIDALLSSNITPI VTLHHWDLPQLLQVKYGGWQNVSMANYFRDYANLCFEAFGDRVKHWITFSDPRAMAEKGYETGHHAPGLKLRGTG LYKAAHHIIKAHAKTWHSYNTTWRSKQQGLVGISLNCDWGEPVDISNPKDLEAAERYLQFCLGWFANPIYAGDYP QVMKDYIGRKSAEQGLEMSRLPVFSLQEKSYIKGTSDFLGLGHFTTRYITERNYPSRQGPSYQNDRDLIELVDPN WPDLGSKWLYSVPWGFRRLLNFAQTQYGDPPIYVMENGASQKFHCTQLCDEWRIQYLKGYINEMLKAIKDGANIK GYTSWSLLDKFEWEKGYSDRYGFYYVEFNDRNKPRYPKASVQYYKKIIIANGFPNPREVESWYLKALETCSINNQ MLAAEPLLSHMQMVTEIVVPTVCSLCVLITAVLLMLLLRRQS

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 541-558

N-glycosylation sites:

amino acids 80-84,171-175,245-249

Glycosaminoglycan attachment site:

amino acids 72-76

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

amino acids 23-27,564-568

Tyrosine kinase phosphorylation sites:

amino acids 203-211,347-355,460-468,507-514

N-myristoylation sites:

amino acids 44-50,79-85,167-173,225-231,257-263,315-321

Amidation site:

amino acids 307-311

Glycosyl hydrolases family 1 active site:

amino acids 407-416

Glycosyl hydrolases family 1 N-terminal signature:

amino acids 41-56

Motif name Glycosyl hydrolases family:

amino acids 37-67

FIGURE 255

 $\tt CGCGAAG \underline{\textbf{ATG}} \tt CGAAAGGTGGTTTTGATCACCGGGGCTAGCAGTGGCATTGGCCTGGCCCTCTG$ CAAGCGGCTGCTGGCGAAGATGATGAGCTTCATCTGTGTTTTGGCGTGCAGGAACATGAGCAA GGCAGAAGCTGTCTGTGCTGCTGCTGGCCTCTCACCCCACTGCTGAGGTCACCATTGTCCA GGTGGATGTCAGCAACCTGCAGTCGGTCTTCCGGGCCTCCAAGGAACTTAAGCAAAGGTTTCA GAGATTAGACTGTATATATCTAAATGCTGGGATCATGCCTAATCCACAACTAAATATCAAAGC ACTTTTCTTTGGCCTCTTTTCAAGAAAAGTGATTCATATGTTCTCCACAGCTGAAGGCCTGCT GACCCAGGGTGATAAGATCACTGCTGATGGACTTCAGGAGGTGTTTGAGACCAATGTCTTTGG CCATTTTATCCTGATTCGGGAACTGGAGCCTCTCCTCTGTCACAGTGACAATCCATCTCAGCT CATCTGGACATCATCTCGCAGTGCAAGGAAATCTAATTTCAGCCTCGAGGACTTCCAGCACAG CAAAGGCAAGGAACCCTACAGCTCTTCCAAATATGCCACTGACCTTTTGAGTGTGGCTTTGAA CAGGAACTTCAACCAGCAGGGTCTCTATTCCAATGTGGCCTGTCCAGGTACAGCATTGACCAA ${\tt TTTGACATATGGAATTCTGCCTCCGTTTATATGGACGCTGTTGATGCCGGCAATATTGCTACT}$ ${\tt TCGCTTTTTTGCAAATGCATTCACTTTGACACCATATAATGGAACAGAAGCTCTGGTATGGCT}$ TTTCCACCAAAAGCCTGAATCTCTCAATCCTCTGATCAAATATCTGAGTGCCACCACTGGCTT TGGAAGAATTATATTATGACCCAGAAGATGGACCTAGATGAAGACACTGCTGAAAAATTTTA TCAAAAGTTACTGGAACTGGAAAAGCACATTAGGGTCACTATTCAAAAAACAGATAATCAGGC ${\tt CAGGCTCAGTGGCTCATGCCTA} {\bf TAA} {\tt TTCCAGCACTTTGGGAGGCCAAGGCAGAAGGATCACTT}$ GAGACCAGGAGTTCAAGACCAGCCTGAGAAACATAGTGAGCCCTTGTCTCTACAAAAAGAAAT AAAAATAATAGCTGGGTGTGGCATGCGCATGTAGTCCCAGCTACTCAGAAGGATGAGGTG GGAGGATCTCTTGAGGCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATTGTGCCACTGCACTCC GAGCTGACAATGACACTCTGGAACATTGCATACCTTCTGTACATTCTGGGGTACATGGATTTC TACTGAGTTGGATAATATGCATTTGTAATAAACTATGAACTATGAA

FIGURE 256

MRKVVLITGASSGIGLALCKRLLAEDDELHLCLACRNMSKAEAVCAALLASHPTAEVTIVQVD
VSNLQSVFRASKELKQRFQRLDCIYLNAGIMPNPQLNIKALFFGLFSRKVIHMFSTAEGLLTQ
GDKITADGLQEVFETNVFGHFILIRELEPLLCHSDNPSQLIWTSSRSARKSNFSLEDFQHSKG
KEPYSSSKYATDLLSVALNRNFNQQGLYSNVACPGTALTNLTYGILPPFIWTLLMPAILLLRF
FANAFTLTPYNGTEALVWLFHQKPESLNPLIKYLSATTGFGRNYIMTQKMDLDEDTAEKFYQK
LLELEKHIRVTIQKTDNQARLSGSCL

Important features:

Transmembrane domain:

amino acids 234-254

N-glycosylation sites:

amino acids 37-41,178-182,229-233,263-267

Glycosaminoglycan attachment site:

amino acids 12-16

N-myristoylation sites:

amino acids 9-15,13-19,15-21,215-221,224-230

FIGURE 257

 $\tt CGGACGCGTGGGGCCGT{\color{red} {\bf ATG}} CGCGGCTCTGTGGAGTGCACCTGGGGGTTGGGGGCACTGTGCCC{\color{red} {\bf CGGACGCGTGGGGGCACTGTGCCC} }$ CCAGCCCCTGCTCCTTTGGACTCTACTTCTGTTTGCAGCCCCATTTGGCCTGCTGGGGGAGA ATATACGGGCAGTGGGCACCAATTCCACACTGCACTATGTGTGGAGCAGCCTGGGGCCTCTGG CAGTGGTAATGGTGGCCACCAACACCCCCCACAGCACCCTGAGCATCAACTGGAGCCTCCTGC TATCCCCTGAGCCCGATGGGGGCCTGATGGTGCTCCCTAAGGACAGCATTCAGTTTTCTTCTG CCCTTGTTTTTACCAGGCTGCTTGAGTTTGACAGCACCAACGTGTCCGATACGGCAGCAAAGC CTTTGGGAAGACCATATCCTCCATACTCCTTGGCCGATTTCTCTTGGAACAACATCACTGATT CATTGGATCCTGCCACCTGAGTGCCACATTTCAAGGCCACCCCATGAACGACCCTACCAGGA CTTTTGCCAATGGCAGCCTGGCCTTCAGGGTCCAGGCCTTTTCCAGGTCCAGCCGACCAGCCC AACCCCCTCGCCTCCTGCACACAGCAGACCCTGTCAGCTAGAGGTGGCCCTGATTGGAGCCT CTCCCCGGGGAAACCGTTCCCTGTTTGGGCTGGAGGTAGCCACATTGGGCCAGGGCCCTGACT GCCCTCAATGCAGGAGCACCACCCATCGACGATGAATATGCACCGGCCGTCTTCCAGTTGG ACCAGCTACTGTGGGGCTCCCTCCCATCAGGCTTTGCACAGTGGCGACCAGTGGCTTACTCCC AGAAGCCGGGGGGCCGAGAATCAGCCCTGCCCTGCCAAGCTTCCCCTCTTCATCCTGCCTTAG CATACTCTCTCCCCAGTCACCCATTGTCCGAGCCTTCTTTGGGTCCCAGAATAACTTCTGTG CCTTCAATCTGACGTTCGGGGCCTTCCACAGGCCCTGGCTATTGGGACCAACACTACCTCAGCT GGTCGATGCTCCTGGGTGTGGGCTTCCCTCCAGTGGACGGCTTGTCCCCACTAGTCCTGGGCA ${\tt TGCACCACAAGAAGTACTCAGAGTACCAGTCCATAAAT} {\color{red}{\bf TAA}} {\tt GGCCCGCTCTCTGGAGGGAAGG}$ ACATTACTGAACCTGTCTTGCTGTGCCTCGAAACTCTGGAGGTTGGAGCATCAAGTTCCAGCC GGCCCCTTCACTCCCCCATCTTGCTTTTCTGTGGAACCTCAGAGGCCAGCCTCGACTTCCTGG AGACCCCCAGGTGGGGCTTCCTTCATACTTTGTTGGGGGGACTTTGGAGGCGGGCAGGGGACAG GGCTATTGATAAGGTCCCCTTGGTGTTGCCTTCTTGCATCTCCACACATTTCCCTTGGATGGG ACTTGCAGGCCTAAATGAGAGGCATTCTGACTGGTTGGCTGCCCTGGAAGGCAAGAAAATAGA TTTATTTTTTTCACAGGGAAAAAAAAAAAA

FIGURE 258

MRGSVECTWGWGHCAPSPLLLWTLLLFAAPFGLLGEKTRQVSLEVIPNWLGPLQNLLHIRAVG
TNSTLHYVWSSLGPLAVVMVATNTPHSTLSINWSLLLSPEPDGGLMVLPKDSIQFSSALVFTR
LLEFDSTNVSDTAAKPLGRPYPPYSLADFSWNNITDSLDPATLSATFQGHPMNDPTRTFANGS
LAFRVQAFSRSSRPAQPPRLLHTADTCQLEVALIGASPRGNRSLFGLEVATLGQGPDCPSMQE
QHSIDDEYAPAVFQLDQLLWGSLPSGFAQWRPVAYSQKPGGRESALPCQASPLHPALAYSLPQ
SPIVRAFFGSQNNFCAFNLTFGASTGPGYWDQHYLSWSMLLGVGFPPVDGLSPLVLGIMAVAL
GAPGLMLLGGGLVLLLHHKKYSEYQSIN

Important features:

Signal peptide:

amino acids 1-35

Transmembrane domain:

amino acids 365-386

N-glycosylation sites:

amino acids 65-69,95-99,134-138,159-163,187-191,230-234,333-337

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 397-401

N-myristoylation sites:

amino acids 3-9,63-69,235-241,273-279,292-298,324-330

Leucine zipper pattern:

amino acids 371-393

FIGURE 259

 $\tt CGTGTCTGCCGTCAACCGCAGGAGGATGAAGCTGCTGCTGGGCATCGCCTTGCTGGCCTACGTCGCCTCTGTTTG$ GGGCAACTTCGTTAATATGAGGTCTATCCAGGAAAATGGTGAACTAAAAATTGAAAGCAAGATTGAAGAGATGGT TGAACCACTAAGAGAGAAAATCAGAGATTTAGAAAAAAGCTTTACCCAGAAATACCCACCAGTAAAGTTTTTATC ${f AGAAAAGGATCGGAAAAGAATTTTGATAACAGGAGGCGCAGGGTTCGTGGGCTCCCATCTAACTGACAAACTCAT}$ GATGGACGGCCACGAGGTGACCGTGGTGGACAATTTCTTCACGGGCAGGAAGAGAAACGTGGAGCACTGGATCGG ${ t ACATGAGAACTTCGAGTTGATTAACCACGACGTGGTGGAGCCCCTCTACATCGAGGTTGACCAGATATACCATCT}$ GGCATCTCCAGCCTCCCCCCCCAAACTACATGTATAATCCTATCAAGACATTAAAGACCAATACGATTGGGACATT AAACATGTTGGGGCTGGCAAAACGAGTCGGTGCCCGTCTGCTCCTGGCCTCCACATCGGAGGTGTATGGAGATCC ${\tt TGAAGTCCACCTCAAAGTGAGGATTACTGGGGCCACGTGAATCCAATAGGACCTCGGGCCTGCTACGATGAAGG}$ ${\tt CAAACGTGTTGCAGAGACCATGTGCCTACATGAAGCAGGAAGGCGTGGAAGTGCGAGTGGCCAGAATCTT}$ CAACACCTTTGGGCCACGCATGCACATGAACGATGGGCGAGTAGTCAGCAACTTCATCCTGCAGGCGCTCCAGGG GGAGCCACTCACGGTATACGGATCCGGGTCTCAGACAAGGGCGTTCCAGTACGTCAGCGATCTAGTGAATGGCCT CGTGGCTCTCATGAACAGCAACGTCAGCAGCCCGGTCAACCTGGGGAACCCAGAAGAACACACAATCCTAGAATT TGCTCAGTTAATTAAAAACCTTGTTGGTAGCGGAAGTGAAATTCAGTTTCTCTCCGAAGCCCAGGATGACCCACA GAAAAGAAAACCAGACATCAAAAAAAGCAAAGCTGATGCTGGGGGTGGGAGCCCGTGGTCCCGCTGGAGGAAGGTTT AAACAAAGCAATTCACTACTTCCGTAAAGAACTCGAGTACCAGGCAAATAATCAGTACATCCCCAAACCAAAGCC ${\tt TGCCAGAATAAAGAAAGGACGGACTCGCCACAGC} {\tt TGA} {\tt ACTCCTCACTTTTAGGACACAAGACTACCATTGTACAC}$ TGGAATTTCATTCTGAAGCTTGCTTTAATGAAATGGATGTGCCTAAAAGCTCCCCTCAAAAAACTGCAGATTTTG CATTAAGCGGGACAAAAAATGCCGATTTTATTATAAAAGTGGGTACTTAATAAAATGAGTCGTTATACTATGCAT AAAGAAAATCCTAGCAGTATTGTCAGGTGGTGGTGCGCCGGCATTGATTTTAGGGCAGATAAAAGAATTCTGTG TGAGAGCTTTATGTTTCTCTTTTAATTCAGAGTTTTTCCAAGGTCTACTTTTGAGTTGCAAACTTGACTTTGAAA TATTCCTGTTGGTCATGATCAAGGATATTTGAAATCACTACTGTGTTTTTGCTGCGTATCTGGGGCGGGGGCAGGT TGGGGGGCACAAAGTTAACATATTCTTGGTTAACCATGGTTAAATATGCTATTTTAATAAAATATTGAAACTCA

FIGURE 260

MVSKALLRLVSAVNRRRMKLLLGIALLAYVASVWGNFVNMRSIQENGELKIESKIEEMVEPLR EKIRDLEKSFTQKYPPVKFLSEKDRKRILITGGAGFVGSHLTDKLMMDGHEVTVVDNFFTGRK RNVEHWIGHENFELINHDVVEPLYIEVDQIYHLASPASPPNYMYNPIKTLKTNTIGTLNMLGL AKRVGARLLLASTSEVYGDPEVHPQSEDYWGHVNPIGPRACYDEGKRVAETMCYAYMKQEGVE VRVARIFNTFGPRMHMNDGRVVSNFILQALQGEPLTVYGSGSQTRAFQYVSDLVNGLVALMNS NVSSPVNLGNPEEHTILEFAQLIKNLVGSGSEIQFLSEAQDDPQKRKPDIKKAKLMLGWEPVV PLEEGLNKAIHYFRKELEYQANNQYIPKPKPARIKKGRTRHS

Important features:

Signal peptide:

amino acids 1-32

N-glycosylation site:

amino acids 316-320

Tyrosine kinase phosphorylation site:

amino acids 235-244

N-myristoylation sites:

amino acids 35-41,101-107,383-389

Amidation sites:

amino acids 123-127,233-237

FIGURE 261

FIGURE 262

MALKNKFSCLWILGLCLVATTSSKIPSITDPHFIDNCIEAHNEWRGKVNPPAADMKYMIWDKG LAKMAKAWANQCKFEHNDCLDKSYKCYAAFEYVGENIWLGGIKSFTPRHAITAWYNETQFYDF DSLSCSRVCGHYTQLVWANSFYVGCAVAMCPNLGGASTAIFVCNYGPAGNFANMPPYARGESC SLCSKEEKCVKNLCRTPQLIIPNQNPFLKPTGRAPQQTAFNPFSLGFLLLRIF

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site:

amino acids 119-123

N-myristoylation sites:

amino acids 103-109,150-156,160-166,161-167,175-181

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1:

amino acids 136-156

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2:

amino acids 166-178

FIGURE 263

CGCCCTCCGACCCGCCCCGCGCGCATTGTGGGATCTGTCGGCTTGTCAGGTGGTGGAGGAAA GTCACTCTGCTCGGCCTGGCTGTGGGCTCCTACTTGGTTCGGAGGTCCCGCCGGCCTCAGGTC ACTCTCCTGGACCCCAATGAAAAGTACCTGCTACGACTGCTAGACAAGACGACTGTGAGCCAC AACACCAAGAGGTTCCGCTTTGCCCTGCCCACCGCCCACCACTCTGGGGCTGCCTGTGGGC AAACATATCTACCTCTCCACCCGAATTGATGGCAGCCTGGTCATCAGGCCATACACTCCTGTC ACCAGTGATGAGGATCAAGGCTATGTGGATCTTGTCATCAAGGTCTACCTGAAGGGTGTGCAC CCCAAATTTCCTGAGGGAGGGAAGATGTCTCAGTACCTGGATAGCCTGAAGGTTGGGGATGTG GTGGAGTTTCGGGGGCCAAGCGGGTTGCTCACTTACACTGGAAAAGGGCATTTTAACATTCAG CCCAACAAGAAATCTCCACCAGAACCCCGAGTGGCGAAGAAACTGGGAATGATTGCCGGCGGG ACAGGAATCACCCCAATGCTACAGCTGATCCGGGCCATCCTGAAAGTCCCTGAAGATCCAACC CAGTGCTTTCTGCTTTTTGCCAACCAGACAGAAAAGGATATCATCTTGCGGGAGGACTTAGAG GAACTGCAGGCCCGCTATCCCAATCGCTTTAAGCTCTGGTTCACTCTGGATCATCCCCCAAAA GATTGGGCCTACAGCAAGGGCTTTGTGACTGCCGACATGATCCGGGAACACCTGCCCGCTCCA GGGGATGATGTGCTGCTTTTGTGGGCCACCCCAATGGTGCAGCTGGCCTGCCATCCC ${\tt AACTTGGACAAACTGGGCTACTCACAAAAGATGCGATTCACCTAC{\color{red}{\bf TGA}}{\tt GCATCCTCCAGCTTC}}$ CCTGGTGCTGTTCGCTGCAGTTCTCCCCATCAGTACTCAAGCACTATAAGCCTTAGATTCCT TTCCTCAGAGTTTCAGGTTTTTCAGTTACATCTAGAGCTGAAATCTGGATAGTACCTGCAGG AACAATATTCCTGTAGCCATGGAAGAGGGCAAGGCTCAGTCACTCCTTGGATGGCCTCCTAAA TCTCCCCGTGGCAACAGGTCCAGGAGAGGCCCATGGAGCAGTCTCTTCCATGGAGTAAGAAGG AAGGGAGCATGTACGCTTGGTCCAAGATTGGCTAGTTCCTTGATAGCATCTTACTCTCACCTT CTTTGTGTCTGTGATGAAAGGAACAGTCTGTGCAATGGGTTTTACTTAAACTTCACTGTTCAA CCTATGAGCAAATCTGTATGTGAGTATAAGTTGAGCATAGCATACTTCCAGAGGTGGTNTT ATGGAGATGGCAAGAAAGGAGGAAATGATTTCTTCAGATNTCAAAGGAGTCTGAAATATCATA $\tt TTTCTGTGTGTGTCTCTCAGCCCCTGCCCAGGCTAGAGGGAAACAGCTACTGATAATCGAA$ AACTGCTGTTTGTGGCANGAACCCCTGGCTGTGCAAATAAATGGGGCCTGAGGCCCCTGTGTGA

FIGURE 264

MGIQTSPVLLASLGVGLVTLLGLAVGSYLVRRSRRPQVTLLDPNEKYLLRLLDKTTVSHNTKR FRFALPTAHHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSDEDQGYVDLVIKVYLKGVHPKFP EGGKMSQYLDSLKVGDVVEFRGPSGLLTYTGKGHFNIQPNKKSPPEPRVAKKLGMIAGGTGIT PMLQLIRAILKVPEDPTQCFLLFANQTEKDIILREDLEELQARYPNRFKLWFTLDHPPKDWAY SKGFVTADMIREHLPAPGDDVLVLLCGPPPMVQLACHPNLDKLGYSQKMRFTY

Important features:

Signal peptide:

amino acids 1-26

N-glycosylation site:

amino acids 214-218

N-myristoylation sites:

amino acids 22-28,76-82,128-134,180-186

FIGURE 265

CCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACTTGGCTTCGTTAGA ACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACACTATAG AATAACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCACCTCGGT CTCTGGGTCTGTGCCTGCAGCGTCTGCAGCGTCCTCAGAGCCTATCCCAATGCC TCCCCACTGCTCGGCTCCAGCTGGGGTGGCCTGATCCACCTGTACACAGCCACAGCCAGGAAC AGCTACCACCTGCAGATCCACAAGAATGGCCATGTGGATGGCGCACCCCATCAGACCATCTAC AGTGCCCTGATGATCAGATCAGAGGATGCTGGCTTTGTGGTGATTACAGGTGTGATGAGCAGA AGATACCTCTGCATGGATTTCAGAGGCAACATTTTTGGATCACACTATTTCGACCCGGAGAAC TGCAGGTTCCAACACCAGACGCTGGAAAACGGGTACGACGTCTACCACTCTCCTCAGTATCAC TCCCAGTTCCTGTCCCGGAGGAACGAGATCCCCCTAATTCACTTCAACACCCCCATACCACGG CGGCACACCCGGAGCGCGAGGACGACTCGGAGCGGGACCCCCTGAACGTGCTGAAGCCCCGG GCCCGGATGACCCCGGCCCCGGCCTCCTGTTCACAGGAGCTCCCGAGCGCCGAGGACAACAGC ACGGGCCCGGAAGGCTGCCGCCCCTTCGCCAAGTTCATC**TAG**GGTCGCTGG

FIGURE 266

MLGARLRLWVCALCSVCSMSVLRAYPNASPLLGSSWGGLIHLYTATARNSYHLQIHKNGHVDG APHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPENCRFQHQTLENGYDV YHSPQYHFLVSLGRAKRAFLPGMNPPPYSQFLSRRNEIPLIHFNTPIPRRHTRSAEDDSERDP LNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRVNTHAGGTGPEGCRPFAKFI

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 175-179

N-myristoylation site.

amino acids 33-39, 100-106, 225-231, 229-235

HBGF/FGF family proteins

amino acids 73-124

FIGURE 267

 $\tt CTGACGCTACTGTGAGGGAAAGAAGGTTGTGAGCAGCCCCGCAGGACCCCTGGCCAGCCCTGGCCCAGCCTCTG$ $\tt CCGGAGCCCTCTGTGGAGCCAGTGGAGCCCAGTGAGGCAGGGCTGCTTGGCAGCCACCGGCCTGCAACT$ ${\tt AGCCAAGCAGGAGGGAAGAGGCTTTCATAGATTCTATTCACAAAGAATAACCACCATTTTGCAAGGACC} {\tt ATG} {\tt AGG}$ $\tt CCACTGTGCGTGACATGCTGGCTGGCTGCCATGGGAGGTGTTGCAGGCCAGGAGGAGGACGGTTTT$ AAGTGCACCTACACCTTCATTGTGCCCCAGCAGCGGGTCACGGGTGCCATCTGCGTCAACTCCAAGGAGCCTGAG GTGCTTCTGGAGAACCGAGTGCATAAGCAGGAGCTAGAGCTGCTCAACAATGAGCTGCTCAAGCAGAAGCGGCAG CGCAACATGAACTCGCGGGTCACGCAGCTCTACATGCAGCTCCTGCACGAGATCATCCGCAAGCGGGACAACGCG GACCTGGAGCACAAGTACCAGCACCTGGCCACACTGGCCCACAACCAATCAGAGATCATCGCGCAGCTTGAGGAG CCCACCTACAACCGCATCATCAACCAGATCTCTACCAACGAGATCCAGAGTGACCAGAACCTGAAGGTGCTGCCA $\tt CCCCCTCTGCCCACTATGCCCACTCTCACCAGCCTCCCATCTTCCACCGACAAGCCGTCGGGCCCATGGAGAGAC$ TGCCTGCAGGCCCTGGAGGATGGCCACGACACCAGCTCCATCTACCTGGTGAAGCCGGAGAACACCAACCGCCTC ${ t ATGCAGGTGTGGTGCGACCAGAGACACGACCCCGGGGGCTGGACCGTCATCCAGAGACGCCTGGATGGCTCTGTT}$ AACATTTACTGGCTGACGAACCAAGGCAACTACAAACTCCTGGTGACCATGGAGGACTGGTCCGGCCGCAAAGTC TTTGCAGAATACGCCAGTTTCCGCCTGGAACCTGAGAGCGAGTATTATAAGCTGCGGCTGGGGCGCTACCATGGC AATGCGGGTGACTCCTTTACATGGCACAACGGCAAGCAGTTCACCACCCTGGACAGAGATCATGATGTCTACACA GGAAACTGTGCCCACTACCAGAAGGGAGGCTGGTGGTATAACGCCTGTGCCCACTCCAACCTCAACGGGGTCTGG TACCGCGGGGGCCATTACCGGAGCCGCTACCAGGACGGAGTCTACTGGGCTGAGTTCCGAGGAGGCTCTTACTCA $\tt CTCAAGAAAGTGGTGATGATCCGACCGAACCCCAACACCTTCCAC{\color{red}{TAA}} GCCAGCTCCCCTCCTGACCTCTC$ GTGGCCATTGCCAGGAGCCCACCCTGGTCACGCTGGCCACAGCACAAAGAACAACTCCTCACCAGTTCATCCTGA GGCTGGGAGGCCGGGATGCTGGATTCTGTTTTCCGAAGTCACTGCAGCGGATGATGGAACTGAATCGATACGGT GTTTTCTGTCCCTCCTACTTTCCTTCACACCAGACAGCCCCTCATGTCTCCAGGACAGGACAGGACTACAGACAA CTCTTTCTTTAAATAAATTAAGTCTCTACAATAAAAAAA

FIGURE 268

MRPLCVTCWWLGLLAAMGAVAGQEDGFEGTEEGSPREFIYLNRYKRAGESQDKCTYTFIVPQQ
RVTGAICVNSKEPEVLLENRVHKQELELLNNELLKQKRQIETLQQLVEVDGGIVSEVKLLRKE
SRNMNSRVTQLYMQLLHEIIRKRDNALELSQLENRILNQTADMLQLASKYKDLEHKYQHLATL
AHNQSEIIAQLEEHCQRVPSARPVPQPPPAAPPRVYQPPTYNRIINQISTNEIQSDQNLKVLP
PPLPTMPTLTSLPSSTDKPSGPWRDCLQALEDGHDTSSIYLVKPENTNRLMQVWCDQRHDPGG
WTVIQRRLDGSVNFFRNWETYKQGFGNIDGEYWLGLENIYWLTNQGNYKLLVTMEDWSGRKVF
AEYASFRLEPESEYYKLRLGRYHGNAGDSFTWHNGKQFTTLDRDHDVYTGNCAHYQKGGWWYN
ACAHSNLNGVWYRGGHYRSRYQDGVYWAEFRGGSYSLKKVVMMIRPNPNTFH

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites:

amino acids 164-168,192-196

cAMP- and cGMP-dependent protein kinase phosphorylation site: amino acids 124-128

Tyrosine kinase phosphorylation sites:

amino acids 177-184,385-393,385-394,461-468

N-myristoylation sites:

amino acids 12-18,18-24,22-28,29-35,114-120,341-347,465-471,473-479

Amidation site:

amino acids 373-377

Fibrinogen beta and gamma chains C-terminal domain signature: amino acids 438-451

Fibrinogen beta and gamma chains C-terminal domain proteins: amino acids 305-343, 365-402, 411-424, 428-458

Trehalase proteins:

amino acids 275-292

FIGURE 269

 ${\tt GCCGAGCTGAGCGGATCCTCAC} \underline{\textbf{ATG}} {\tt ACTGTGATCCGATTCTTTCCAGCGGCTTCTGCAACCAA}$ GCGGGTCTTACCCCCGGTCCTCCGCGTCTCCAGTCCTCGCACCTGGAACCCCAACGTCCCCGA GAGTCCCCGAATCCCCGCTCCCAGGCTACCTAAGAGGATGAGCGGTGCTCCGACGGCCGGGGC AGCCCTGATGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCCGGACCCGTGCAGTC CAAGTCGCCGCGCTTTGCGTCCTGGGACGAGATGAATGTCCTGGCGCACGGACTCCTGCAGCT CGGCCAGGGGCTGCGCGAACACGCGGAGCGCACCCGCAGTCAGCTGAGCGCGCTGGAGCGGCG CCTGAGCGCGTGCGGGTCCGCCTGTCAGGGAACCGAGGGGTCCACCGACCTCCCGTTAGCCCC TGAGAGCCGGGTGGACCCTGAGGTCCTTCACAGCCTGCAGACACAACTCAAGGCTCAGAACAG CAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTGGAGAAGCAGCACCT GCGAATTCAGCATCTGCAAAGCCAGTTTGGCCTCCTGGACCACAAGCACCTAGACCATGAGGT TGTCAGCCGCCTGCACCGGCTGCCCAGGGATTGCCAGGAGCTGTTCCAGGTTGGGGAGAGGCA GAGTGGACTATTTGAAATCCAGCCTCAGGGGTCTCCGCCATTTTTGGTGAACTGCAAGATGAC $\tt CTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCAACCGGCC$ ${\tt GGTGCATAGCATCACGGGGGACCGCAACAGCCGCCTGGCCGTGCAGCTGCGGGACTGGGATGG}$ ACCCTTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAACTGCGCCAAGAGCCT $\tt CTCTGGAGGCTGGTGGTTTGGCACCTGCAGCCATTCCAACCTCAACGGCCAGTACTTCCGCTC$ CATCCCACAGCAGCGGCAGAAGCTTAAGAAGGGAATCTTCTGGAAGACCTGGCGGGGCCGCTA ${\tt TCCTGGCTGGGCCTGGTCCCAGGCCCACGAAAGACGGTGACTCTTGGCTCTGCCCGAGGATGT}$ GGCCGTTCCCTGCCTGGGCAGGGGCTCCAAGGAGGGCCCATCTGGAAACTTGTGGACAGAGAA GAAGACCACGACTGGAGAAGCCCCCTTTCTGAGTGCAGGGGGGGCTGCATGCGTTGCCTCCTGA GATCGAGGCTGCAGGATATGCTCAGACTCTAGAGGCGTGGACCAAGGGGCATGGAGCTTCACT $\tt TGGCGGACTCAGTCACATTGACTGACGGGGACCAGGGCTTGTGTGGGTCGAGAGCGCCCTCAT$ GGTGCTGGTGTGTGTGTGTGGGTCCCCTGGGGACACAAGCAGGCGCCCAATGGTATCTGGGC GGAGCTCACAGAGTTCTTGGAATAAAAGCAACCTCAGAACAC

FIGURE 270

MTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRIPAPRLPKRMSGAPTAGAALMLCAA TAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGSA CQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFHKVAQQQRHLEKQHLRIQHLQS QFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQ PQGSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGD RNSRLAVQLRDWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQ DHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFWKTWRGRYYPLQATT MLIQPMAAEAAS

Important features:

Signal peptide:

Amino acids 1-13

Transmembrane domain:

Amino acids 53-70

N-glycosylation site:

Amino acids 224-228

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 46-50;118-122

N-myristoylation sites:

Amino acids 50-56;129-135;341-347;357-363

Fibrinogen beta and gamma chains C-terminal domain signature:

Amino acids 396-409

FIGURE 271

CGGACGCGTGGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGCTGTGACAGAGGGG AACAAG<u>ATG</u>GCGGCGCCGAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCGCCGCTG CTGCTGCTGACCATGGCCTGGGCGGAGGTTCGGGGGACCGCTTCGGCTGAAGCATTTGACTCG GTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTAC $\verb|CCTAAGGAAGAGGAGTTGTACGCATGTCAGAGGGGTTGCAGGCTGTTTTCAATTTGTCAGTTT| \\$ GTGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCA TATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGCT GAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAACT CTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACCTCTTCATGG ACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCCAGAAATCCAG TACGCACCACATTTGGAGCAGGAGCCTACAAATTTGAGAGAATCATCTCTAAGCAAAATGTCC TATCTGCAAATGAGAAATTCACAAGCGCACAGGAATTTTCTTGAAGATGGAGAAAGTGATGGC $\tt TTTTTAAGATGCCTCTCTTAACTCTGGGTGGATTTTAACTACAACTCTTGTCCTCTCGGTG$ ATGGTATTGCTTTGGATTTGTTGCAACTGTTGCTACAGCTGTGGAGCAGTATGTTCCCTCT GCTTCTTCTCTTGTGGTTGTTAGATCTAAAACTGAAGATCATGAAGAAGCAGGGCCTCTACCT ACAAAAGTGAATCTTGCTCATTCTGAAATT**TAA**GCATTTTTCTTTTAAAAGACAAGTGTAATA GACATCTAAAATTCCACTCCTCATAGAGCTTTTAAAATGGTTTCATTGGATATAGGCCTTAAG AAATCACTATAAAATGCAAATAAAGTTACTCAAATCTGTG

FIGURE 272

MAAPKGSLWVRTQLGLPPLLLLTMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYPK
EEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQLPFAEL
RQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEIQYA
PHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVLSVMV
LLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAGPLPTK
VNLAHSEI

Important features:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 241-260

N-glycosylation site:

amino acids 90-94

N-myristoylation sites:

amino acids 28-34,29-35,31-37,86-92

FIGURE 273

 $\tt CCCACGCGTCCGAACCTCTCCAGCG{\color{blue} \textbf{ATG}} GGAGCCGCCCGCCTGCTGCCCAACCTCACTCTGTG$ CTTACAGCTGCTGATTCTCTGCTGTCAAACTCAGTACGTGAGGGACCAGGGCGCCATGACCGA CCAGCTGAGCAGGCGGCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCACGT GCAGGTCACCGGGGCGTCGCATCTCCGCCACCGCCGAGGACGGCAACAAGTTTGCCAAGCTCAT AGTGGAGACGGACACGTTTGGCAGCCGGGTTCGCATCAAAGGGGCTGAGAGTGAGAAGTACAT CTGTATGAACAAGAGGGGCAAGCTCATCGGGAAGCCCAGCGGGAAGACCAAAGACTGCGTGTT CACGGAGATCGTGCTGGAGAACAACTATACGGCCTTCCAGAACGCCCGGCACGAGGGCTGGTT CATGGCCTTCACGCGGCAGGGCGCCCGCCAGGCTTCCCGCAGCCGCCAGAACCAGCGCGA GGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTTCCCCAACCACGCCGAGAAGCA GAAGCAGTTCGAGTTTGTGGGCTCCGCCCCCCCCCGCCGGACCAAGCGCACACGGCGGCCCCA GCCCCTCACG TAG TCTGGGAGGCAGGGGGGGCAGCCCCTGGGCCGCCTCCCCACCCCTTTCCTGAGGGCCGCGAAGCATCCGAGCCCCCAGCTGGGAAGGGGCAGGCCGGTGCCCCAGGGGCCGC TGGCACAGTGCCCCCTTCCCGGACGGGTGGCAGGCCCTGGAGAGGAACTGAGTGTCACCCTGA TCTCAGGCCACCAGCCTGCCGGCCTCCCAGCCGGGCTCCTGAAGCCCGCTGAAAGGTCAGC GACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCCTCAAAATCTGCTTCTCGGATCT CCCTCAGTCTGCCCCCAGCCCCCAAACTCCTCCTGGCTAGACTGTAGGAAGGGACTTTTGTTT GTTTGTTTCAGGAAAAAGAAAGGGAGAGAGAGAGAAAATAGAGGGTTGTCCACTCCTCA CATTCCACGACCCAGCCCCACCCCCAACTCCCAGCCCCGGAATAAAACCATTTTCC TGC

FIGURE 274

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRIS ATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLENN YTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEFVGS APTRRTKRTRRPQPLT

Important features:

Signal peptide:

Amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 275

TATTTACCATATCAGATTCACATTCAGTCCTCAGCAAAATGAAGGGCTCCATTTTCACTCTGT
TTTTATTCTCTGTCCTATTTGCCATCTCAGAAGTGCGGAGCAAGGAGTCTGTGAGACTCTGTG
GGCTAGAATACATACGGACAGTCATCTATATCTGTGCTAGCTCCAGGTGGAGAAGGCATCTGG
AGGGGATCCCTCAAGCTCAGCAAGCTGAGACAGGAAACCTCCTTCCAGCTCCCACATAAACGTG
AGTTTTCTGAGGAAAATCCAGCGCAAAACCTTCCGAAGGTGGATGCCTCAGGGGAAGACCGTC
TTTGGGGTGGACAGATGCCCACTGAAGAGCTTTGGAAGTCAAAGAAGCATTCAGTGATGTCAA
GACAAGATTTACAAACTTTGTGTTGCACTGATGGCTGTTCCATGACTGATTTGAGTGCTCTTT
GCTAAGACAAGAGCAAATACCCAATGGGTGGCAGAGCTTTATCACATGTTTAATTACAGTGTT
TTACTGCCTGGTAGAACACTAATATTGTGTTATTAAAATGATGGCTTTTTGGGTAGGCAAAACT
TCTTTTCTAAAAAGGTATAGCTGAGCCGTTGAAACCACAGTGATCTCTATTTTCTCCCTTTGCC
AAGGTTAATGAACTGTTCTTTTCAAATTCTACTAATGCTTTGAAATTTCAAATGCTGCGCAAA
ATTGCAATAAAAATGCTATAAA

FIGURE 276

MKGSIFTLFLFSVLFAISEVRSKESVRLCGLEYIRTVIYICASSRWRRHLEGIPQAQQAETGN SFQLPHKREFSEENPAQNLPKVDASGEDRLWGGQMPTEELWKSKKHSVMSRQDLQTLCCTDGC SMTDLSALC

Important features:

Signal sequence:

amino acids 1-18

cAMP- and cGMP-dependent protein kinase phosphorylation site:

amino acids 107-111

N-myristoylation sites:

amino acids 3-9,52-58,96-102,125-131

Insulin family signature:

amino acids 121-136

Insulin family proteins:

amino acids 28-46

FIGURE 277

 ${\tt GCAGCTGGTTACTGCATTTCTCCATGTGGCAGACAGAGCAAAGCCACAACGCTTTCTCTGCTGGATTAAAGACGG}$ CCCACAGACCAGAACTTCCACTATACTACTTAAAATTACATAGGTGGCTTGTCAAATTCAATTGATTAGTATTGT AAAAGGAAAAAGAAGTTCCTTCTTACAGCTTGGATTCAACGGTCCAAAACAAAAATGCAGCTGCCATTAAAGTCT ${\tt CAGATGAACAACTTCTACACTGATTTTTAAAATCAAGAATAAGGGCAGCAAGTTTCTGGATTCACTGAATCAAC}$ AGACACAAAAAGCTGGCAATATAGCAACTATGAAGAGAAAAGCTACTAATAAAATTAACCCAACGCATAGAAGAC $\underline{\mathbf{c}}$ AAGACTTTTACCTGGACCCTAGGTGTGCTATTCTTCCTACTAGTGGACACTGGACATTGCAGAGGTGGACAATT CAAAATTAAAAAAATAAACCAGAGAAGATACCCTCGTGCCACAGATGGTAAAGAGGGAAGCAAAGAAATGTGCATA CACATTCCTGGTACCTGAACAAAGAATAACAGGGCCAATCTGTGTCAACACCAAGGGGCCAAGATGCAAGTACCAT TCTGCAACTGGTGGTGGATGTAGATGGAAACATTGTGAATGAGGTAAAGCTGCTGAGAAAGGAAAGCCGTAACAT GAACTCTCGTGTTACTCAACTCTATATGCAATTATTACATGAGATTATCCGTAAGAGGGATAATTCACTTGAACT $\tt TTCCCAACTGGAAAACAAAATCCTCAATGTCACCACAGAAATGTTGAAGATGGCAACAAGATACAGGGAACTAGA$ GGTGAAATACGCTTCCTTGACTGATCTTGTCAATAACCAATCTGTGATGATCACTTTGTTGGAAGAACAGTGCTT GAGGATATTTCCCGACAAGACACCCATGTGTCTCCCCCACTTGTCCAGGTGGTGCCACAACATATTCCTAACAG $\tt CCAACAGTATACTCCTGGTCTGCTGGGAGGTAACGAGATTCAGAGGGATCCAGGTTATCCCAGAGATTTAATGCC$ ACCACCTGATCTGGCAACTTCTCCCACCAAAAGCCCTTTCAAGATACCACCGGTAACTTTCATCAATGAAGGACC ATTCAAAGACTGTCAGCAAGCAAAAGAAGCTGGGCATTCGGTCAGTGGGATTTATATGATTAAACCTGAAAACAG ${\tt CAATGGACCAATGCAGTTATGGTGTGAAAACAGTTTGGACCCTGGGGGTTGGACTGTTATTCAGAAAAGAACAGA}$ ${\tt CGGCTCTGTCAACTTCTTCAGAAATTGGGAAAATTATAAGAAAGGGTTTGGAAACATTGACGGAGAATACTGGCT}$ TAAAAAAGTCTATGCAGAATACAGCAGCTTTCGTCTGGAACCTGAAAGTGAATTCTATAGACTGCGCCTGGGAAC TTACCAGGGAAATGCAGGGGATTCTATGATGTGGCATAATGGTAAACAATTCACCACACTGGACAGAGATAAAGA TATGTATGCAGGAAACTGCGCCCACTTTCATAAAGGAGGCTGGTGGTACAATGCCTGTGCACATTCTAACCTAAA TGGAGTATGGTACAGAGGAGGCCATTACAGAAGCAAGCACCAAGATGGAATTTTCTGGGCCGAATACAGAGGCGG GTCATACTCCTTAAGAGCAGTTCAGATGATGATCAAGCCTATTGAC ${f TGA}$ AGAGACACTCGCCAATTTAAATGA ${\tt ACAGAAAGTTTTTAAAATGAATTTTACCGTAACTATAAAAGGGAACCTATAAATGTAGTTTCATCTGTCGTCAAT$ $\tt CTTAACAATTTATTTAAAATCTAAGATTGCTCTAACGTCTAGTGAAAAAAATATTTTTTAAATTTCAGCCAAATA$ ATGCATTTTATTATAAAAATACAGACAGAAAATTAGGGAGAAACTTCTAGTTTTGCCAATAGAAAATGTTCTT CCATTGAATAAAAGTTATTTCAAATTGAATTTGTGCCTTTCACACGTAATGATTAAATCTGAATTCTTAATAATA CATATGATATGCTGAACACCAAAATCTCCAGAAATGCATTTTATGTAGTTCTAAAATCAGCAAAATATTGGTATT GAATTCAACAGCTCCAGAGCAGAAGCCACAGGGGCATAGCTTAGTCCAAACTGCTAATTTCATTTTACAGTGTAT GTAACGCTTAGTCTCACAGTGTCTTTAACTCATCTTTGCAATCAACAACTTTACTAGTGACTTTCTGGAACAATT TCCTTTCAGGAATACATATTCACTGCTTAGAGGTGACCTTGCCTTAATATTTTGTGAAGTTAAAATTTTAAAGA AGCTTAATGTGAAGATAATCATTTGGACAACTCAAATCCATCAACATGACCAATGTTTTTCATCTGCCACATCTC

FIGURE 278

MKTFTWTLGVLFFLLVDTGHCRGGQFKIKKINQRRYPRATDGKEEAKKCAYTFLVPEQRITGP
ICVNTKGQDASTIKDMITRMDLENLKDVLSRQKREIDVLQLVVDVDGNIVNEVKLLRKESRNM
NSRVTQLYMQLLHEIIRKRDNSLELSQLENKILNVTTEMLKMATRYRELEVKYASLTDLVNNQ
SVMITLLEEQCLRIFSRQDTHVSPPLVQVVPQHIPNSQQYTPGLLGGNEIQRDPGYPRDLMPP
PDLATSPTKSPFKIPPVTFINEGPFKDCQQAKEAGHSVSGIYMIKPENSNGPMQLWCENSLDP
GGWTVIQKRTDGSVNFFRNWENYKKGFGNIDGEYWLGLENIYMLSNQDNYKLLIELEDWSDKK
VYAEYSSFRLEPESEFYRLRLGTYQGNAGDSMMWHNGKQFTTLDRDKDMYAGNCAHFHKGGWW
YNACAHSNLNGVWYRGGHYRSKHQDGIFWAEYRGGSYSLRAVQMMIKPID

Important features:

Signal sequence:

Amino acids 1-23

N-glycosylation sites:

Amino acids 160-164;188-192

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 120-124

Tyrosine kinase phosphorylation sites:

Amino acids 173-180;387-396

N-myristoylation sites:

Amino acids 70-76;110-116;232-238,343-349;400-406;467-473;475-487

Fibrinogen beta and gamma chains C-terminal domain signature:

Amino acids 440-453

FIGURE 279

CCCACGCGTCCGCGCAGTCTCGCCTGCCAGTCTCGCCCGCGATCCCGGC CCGGAGGAGCTCGGACGCATGCTGAGCCCCCTCCTTTGCTGAAGCCCGAGTGCGGAGAAGCC CGGGCAAACGCAGGCTAAGGAGACCAAAGCGGCGAAGTCGCGAGACAGCGGACAAGCAGCGGA AGAAATCCAACGCCTGCAAGTGTGTCAGCAGCCCCAGCAAAGGCAAGACCAGCTGCGACAAAA ACAAGTTAAATGTCTTTTCCCGGGTCAAACTCTTCGGCTCCAAGAAGAGGCGCAGAAGAAGAC CAGAGCCTCAGCTTAAGGGTATAGTTACCAAGCTATACAGCCGACAAGGCTACCACTTGCAGC TGCAGGCGGATGGAACCATTGATGGCACCAAAGATGAGGACAGCACTTACACTCTGTTTAACC TCATCCCTGTGGGTCTGCGAGTGGTGGCTATCCAAGGAGTTCAAACCAAGCTGTACTTGGCAA TGAACAGTGAGGGATACTTGTACACCTCGGAACTTTTCACACCTGAGTGCAAATTCAAAGAAT CAGTGTTTGAAAATTATTATGTGACATATTCATCAATGATATACCGTCAGCAGCAGTCAGGCC GAGGGTGGTATCTGGGTCTGAACAAAGAAGGAGAGATCATGAAAGGCAACCATGTGAAGAAGA ACAAGCCTGCAGCTCATTTTCTGCCTAAACCACTGAAAGTGGCCATGTACAAGGAGCCATCAC $\tt CTGGCGTGCTGAACGGAGGCAAATCCATGAGCCACAATGAATCAACG{\color{red}{\textbf{TAG}}} CCAGTGAGGGCAA$ AAGAAGGCTCTGTAACAGAACCTTACCTCCAGGTGCTGTTGAATTCTTCTAGCAGTCCTTCA TGCCATTAGACCTTCTTATCATCCATACTAAAGC

FIGURE 280

MAAAIASSLIRQKRQAREREKSNACKCVSSPSKGKTSCDKNKLNVFSRVKLFGSKKRRRRRPE PQLKGIVTKLYSRQGYHLQLQADGTIDGTKDEDSTYTLFNLIPVGLRVVAIQGVQTKLYLAMN SEGYLYTSELFTPECKFKESVFENYYVTYSSMIYRQQQSGRGWYLGLNKEGEIMKGNHVKKNK PAAHFLPKPLKVAMYKEPSLHDLTEFSRSGSGTPTKSRSVSGVLNGGKSMSHNEST

Important Features:

N-glycosylation site:

Amino acids 242-246

Glycosaminoglycan attachment sites:

Amino acids 165-169, 218-222

Tyrosine kinase phosphorylation site:

Amino acids 93-100

N-myristoylation sites:

Amino acids 87-93, 231-237

ATP/GTP-binding site motif A (P-loop):

Amino acids 231-239

HBGF/FGF family proteins:

Amino acids 78-94, 102-153

FIGURE 281

CCAGGATGGAGCTGGGGCCTGTATAGCCATATTATTGTTCTATGCTACTAGACATGGGGGGGA $\tt CTTGGTGAAAAAGGTATTATCCAGCCAGAGGGTCTGGGAGCCCTGTCTTACTGAACCTGGGCA$ ACCTGGATATTCTGAGACATATTTTGGGGGGGATTTCAGTGAAAAAAGTGGGGGATCCCCTCCA AGTAGGGGTGGGATGAGCGAATATTCCCAAAGCTAAAGTCCCACACCCTGTAGATTACAAGAG TGGATTTGGCAGGAGTGTGCCCCAAAATACAGTGGAAAGGTGCCTGAAGATATTTAAACCACG GGGAAAGGGGACGTTTTCAATAGGAGGCAAAACTCGAGGGTGGGATCCACTGAGGAGTACATA CCTGAGCGTCAAGAGCATGCCCTAGTGAGCGGGCTCCTCTGGGGGAGCCCAGCGCGCTCCGGG ${\tt CGCCTGCCGGTTTGGGGGTGTCTCCTCCCGGGGGCGCT}{{\tt ATG}}{\tt GCGGCGCTGGCCAGTAGCCTGAT}$ GTGTCCCCGCGCACCAAGTCCCTTTGCCAGAAGCAGCTCCTCATCCTGCTGTCCAAGGTGCG ACTGTGCGGGGGGGCCGGCCGGGCCGGACCGGAGCCTCAGCTCAAAGGCATCGT CACCAAACTGTTCTGCCGCCAGGGTTTCTACCTCCAGGCGAATCCCGACGGAAGCATCCAGGG CACCCAGAGGATACCAGCTCCTTCACCCACTTCAACCTGATCCCTGTGGGCCTCCGTGTGGT CACCATCCAGAGCGCCAAGCTGGGTCACTACATGGCCATGAATGCTGAGGGACTGCTCTACAG ${\tt TTCGCCGCATTTCACAGCTGAGTGTCGCTTTAAGGAGTGTGTCTTTGAGAATTACTACGTCCT}$ GTACGCCTCTGCTCTACCGCCAGCGTCGTTCTGGCCGGGCCTGGTACCTCGGCCTGGACAA GGAGGGCCAGGTCATGAAGGGAAACCGAGTTAAGAAGACCAAGGCAGCTGCCCACTTTCTGCC CAAGCTCCTGGAGGTGGCCATGTACCAGGAGCCTTCTCTCCACAGTGTCCCCGAGGCCTCCCC ${\tt TTCCAGTCCCCTGCCCCC} \underline{{\tt TGA}} {\tt AATGTAGTCCCTGGACTGGAGGTTCCCTGCACTCCCAGTGA}$ GCCAGCCACCACAACCTGT

FIGURE 282

MAALASSLIRQKREVREPGGSRPVSAQRRVCPRGTKSLCQKQLLILLSKVRLCGGRPARPDRG PEPQLKGIVTKLFCRQGFYLQANPDGSIQGTPEDTSSFTHFNLIPVGLRVVTIQSAKLGHYMA MNAEGLLYSSPHFTAECRFKECVFENYYVLYASALYRQRRSGRAWYLGLDKEGQVMKGNRVKK TKAAAHFLPKLLEVAMYQEPSLHSVPEASPSSPPAP

Important features:

Tyrosine kinase phosphorylation site:

Amino acids 199-207

N-myristoylation sites:

Amino acids 54-60; 89-95; 131-137

HBGF/FGF family signature:

Amino acids 131-155

FIGURE 283

FIGURE 284

MAAAIASGLIRQKRQAREQHWDRPSASRRRSSPSKNRGLCNGNLVDIFSKVRIFGLKKRRLRR QDPQLKGIVTRLYCRQGYYLQMHPDGALDGTKDDSTNSTLFNLIPVGLRVVAIQGVKTGLYIA MNGEGYLYPSELFTPECKFKESVFENYYVIYSSMLYRQQESGRAWFLGLNKEGQAMKGNRVKK TKPAAHFLPKPLEVAMYREPSLHDVGETVPKPGVTPSKSTSASAIMNGGKPVNKSKTT

Important features:

N-glycosylation sites:

Amino acids 100-104, 242-246

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 28-32, 29-33

Tyrosine kinase phosphorylation site:

Amino acids 199-207

N-myristoylation sites:

Amino acids 38-44, 89-95, 118-124, 122-128, 222-228

HBGF/FGF family proteins:

Amino acids 104-155, 171-198

FIGURE 285

 ${\tt TCCTTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCT}$ TTCTCCTGCTGACATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCC AGTTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAAATTATTACTGTGTCTACTAATG GAAGTATTCACAGCCCAAGGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAG $\tt AGGAAAATGTATGGATACAACTTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGT$ ${\tt GAAAACAGATTTCTAAAGGAAATCAAATTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGT}$ ${\tt TCTGCATCCACTACAACATTGTCATGCCACAATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTT}$ ${\tt TGCCACTGGACCTGCTTAATAATGCTATAACTGCCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAG}$ ${f A}{f G}{f A}{f G}{f C}{f A}{f G}{f C}{f T}{f A}{f G}{f G}{f C}{f A}{f A}{f C}{f T}{f C}{f C}{f A}{f C}{f T}{f T}{f G}{f C}{f A}{f G}{f C}{f T}{f T}{f T}{f T}{f T}{f T}{f T}{f G}{f G}{f A}{f A}$ GAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCT ${\tt GAGCTGTGCAGTGCAGTGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCT}$ TCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGGAGACATCAAACAGAATTAGGAGTTGTGCA TAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTC GATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAAC ATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGT GTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAAGAACTACA ${\tt TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTG}$ ${\tt TTTCATTGTGTACATTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCT}$ ATTTTTACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCTAAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA GACTTTTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGA ${\tt AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT}$ A AAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTTGCAGTAGGAACACATCCTATTTA ${\tt GAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGT}$ AAAATGCTTAATATNGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGA

FIGURE 286

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPRF
PHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWCGS
GTVPGKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLLNNA
ITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLYSCTP
RNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQLRPKT
GVRGLHKSLTDVALEHHEECDCVCRGSTGG

Important features:

signal sequence:

Amino acids 1-14

N-glycosylation sites:

Amino acids 25-29;55-59;254-258

N-myristoylation sites:

Amino acids 15-21;117-123;127-133;281-287;282-288;319-325

Amidation site:

Amino acids 229-233

FIGURE 287

CAGCGCTGACTGCGCCGCGGAGAAAGCCAGTGGGAACCCAGACCCATAGGAGACCCGCGTCCC $\texttt{CGCTCGGCCTGGCCAGGCCCGCGCT} \underline{\textbf{ATG}} \texttt{GAGTTCCTCTGGGCCCCTCTCTTGGGTCTGTGCT}$ GCAGTCTGGCCGCTGCTGATCGCCACACCGTCTTCTGGAACAGTTCAAATCCCAAGTTCCGGA ATGAGGACTACACCATACATGTGCAGCTGAATGACTACGTGGACATCATCTGTCCGCACTATG AAGATCACTCTGTGGCAGACGCTGCCATGGAGCAGTACATACTGTACCTGGTGGAGCATGAGG AGTACCAGCTGTGCCAGCCCCAGTCCAAGGACCAAGTCCGCTGGCAGTGCAACCGGCCCAGTG CCAAGCATGGCCCGGAGAAGCTGTCTGAGAAGTTCCAGCGCTTCACACCTTTCACCCTGGGCA AGGAGTTCAAAGAAGGACACAGCTACTACATCTCCAAACCCATCCACCAGCATGAAGACC ATCCACAGGAGAAGACTTGCAGCAGATGACCCAGAGGTGCGGGTTCTACATAGCATCGGTC ACAGTGCTGCCCACGCCTCTTCCCACTTGCCTGGACTGTGCTGCTCCTTCCACTTCTGCTGC ${\tt TGCAAACCCCG} \underline{{\tt TGA}} {\tt AGGTGTGTGCCACACCTGGCCTTAAAGAGGGACAGGCTGAAGAGAGGGGA}$ ${\tt CAGGCACTCCAAACCTGTCTTGGGGCCCACTTTCAGAGCCCCCAGCCCTGGGAACCACTCCCAC}$ CACAGGCATAAGCTATCACCTAGCAGCCTCAAAACGGGTCAATATTAAGGTTTTCAACCGGAA GGAGGCCAACCAGCCGACAGTGCCATCCCCACCTTCACCTCGGAGGGATGGAGAAGAAGTG GAGACAGTCCTTTCCCACCATTCCTGCCTTTAAGCCAAAGAAACAAGCTGTGCAGGCATGGTC CCTTAAGGCACAGTGGGAGCTGAGCTGGAAGGGCCACGTGGATGGGCAAAGCTTGTCAAAGA ${\tt CAAGACCTCATCTGTGGAGCTGCCACAGAGAAGTTTGTAGCCAGGTACTGCATTCTCCCCAT}$ ${\tt TAGCTGTAAGGGCAGTGCCCATGTGTACATTCTGCCTAGAGTGTAGCCTAAAGGGCAGGGCCCC}$ TTTATACAATGTTCTTTGTCTCAAAATAAAGCAATGTGTTTTTTCGG

FIGURE 288

MEFLWAPLLGLCCSLAAADRHTVFWNSSNPKFRNEDYTIHVQLNDYVDIICPHYEDHSADAAM EQYILYLVEHEEYQLCQPQSKDQVRWQCNRPSAKHGPEKLSEKFQRFTPFTLGKEFKEGHSYY YISKPIHQHEDRCLRLKVTVSGKITHSPQAHDNPQEKRLAADDPEVRVLHSIGHSAAPRLFPL AWTVLLLPLLLLQTP

Important features:

Signal sequence:

Amino acids 1-17

N-glycosylation site:

Amino acids 26-30

Tyrosine kinase phosphorylation site:

Amino acids 118-127

N-myristoylation site:

Amino acids 10-16

FIGURE 289

 $\tt CTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGGTAAAG{\color{red} \underline{\textbf{ATG}}} GCCCCATGGCCCCGAAGGGC$ $\tt CTAGTCCCAGCTGTGCTCTGGGGCCTCAGCCTCTTCCTCAACCTCCCAGGACCTATCTGGCTC$ CAGCCCTCTCCACCTCCCAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGTCATACCTGCCGG GGACTGGTTGACAGCTTTAACAAGGGCCTGGAGAGAACCATCCGGGACAACTTTGGAGGTGGA AACACTGCCTGGGAGGAAGAGATTTGTCCAAATACAAAGACAGTGAGACCCGCCTGGTAGAG GAGCTGGTGGAGAGCTGGTTTCACAAGCAGCAGGAGGCCCCGGACCTCTTCCAGTGGCTG TGCTCAGATTCCCTGAAGCTCTGCTGCCCCGCAGGCACCTTCGGGCCCTCCTGCCTTCCCTGT CCTGGGGGAACAGAGGGCCCTGCGGTGGCTACGGGCAGTGTGAAGGAGAAGGGACACGAGGG GGCAGCGGGCACTGTGACTGCCAAGCCGGCTACGGGGGTGAGGCCTGTGGCCAGTGTGGCCTT GGCTACTTTGAGGCAGAACGCCAGCCATCTGGTATGTTCGGCTTGTTTTGGCCCCTGT GCCCGATGCTCAGGACCTGAGGAATCAAACTGTTTGCAATGCAAGAAGGGCTGGGCCCTGCAT CACCTCAAGTGTGTAGACATTGATGAGTGTGGCACAGAGGGAGCCAACTGTGGAGCTGACCAA $\tt ATGGGGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCAGCAGGTGGGCTCCAAG$ TGTCTCGATGTGGATGAGTGTGAGACAGGTGTGTCCGGGAGAGAACAAGCAGTGTGAAAAC ACCGAGGGCGGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAGATGGAAGGCATCTGTGTG AAGGAGCAGATCCCAGAGTCAGCAGGCTTCTTCTCAGAGATGACAGAAGACGAGTTGGTGGTG $\tt CTGCAGCAGATGTTCTTTGGCATCATCTGTGCACTGGCCACGCTGGCTAAGGGCGAC$ ${\tt TTGGTGTTCACCGCCATCTTCATTGGGGGCTGTGGCGGCCATGACTGGCTACTGGTTGTCAGAG}$ $\tt CGCAGTGACCGTGTGCTGGAGGGCTTCATCAAGGGCAGA{\color{red}{\bf TAA}} TCGCGGCCACCACCTGTAGGA$ CCTCCTCCCACCCACGCTGCCCCAGAGCTTGGGCTGCCCTCCTGCTGGACACTCAGGACAGC TTGGTTTATTTTTGAGAGTGGGGTAAGCACCCCTACCTGCCTTACAGAGCAGCCCAGGTACCC AGGCCCGGGCAGACAAGGCCCCTGGGGTAAAAAGTAGCCCTGAAGGTGGATACCATGAGCTCT ${\tt TCACCTGGCGGGGACTGGCAGGCTTCACAATGTGTGAATTTCAAAAGTTTTTCCTTAATGGTG}$ GCTGCTAGAGCTTTGGCCCCTGCTTAGGATTAGGTGGTCCTCACAGGGGTGGGGCCATCACAG CTCCCTCCTGCCAGCTGCATGCTGCCAGTTCCTGTTCTGTGTTCACCACATCCCCACACCCCA AAAAAAAAA

FIGURE 290

MAPWPPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLERT IRDNFGGGNTAWEEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLELSEELVESWWFHKQQE APDLFQWLCSDSLKLCCPAGTFGPSCLPCPGGTERPCGGYGQCEGEGTRGGSGHCDCQAGYGG EACGQCGLGYFEAERNASHLVCSACFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDECGTE GANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVGSKCLDVDECETEVCP GENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFGIIICAL ATLAAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

Important features:

Signal sequence:

Amino acids 1-29

Transmembrane domain:

Amino acids 342-392

N-glycosylation sites:

Amino acids 79-83;205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 290-294

Aspartic acid and asparagine hydroxylation site:

Amino acids 321-333

EGF-like domain cysteine pattern signature:

Amino acids 181-193

FIGURE 291

GCGTCCGAACACAGGTCCTTGTTGCTGCAGAGAAGCAGTTGTTTTTGCTGGAAGGAGGAGTGCGCGGGCTGCCCC ACATCGAAGGTGGGGTGGGACCAGGCTGCCCCTCGCCCCAGCATCCAAGTCCTCCCTTGGGCGCCCGTGGCCCTG ${\tt CAGACTCTCAGGGCTAAGGTCCTCTGTTGCTTTTTGGTTCCACCTTAGAAGAGGCTCCGCTTGACTAAGAGTAGC}$ AGCCCTGCGACTGTGGGGAAAAGTATGGCTTCCAGATCGCCGACTGTGCCTACCGCGACCTAGAATCCGTGCCGC GGGAGGTGCCCTGCTGCAGTCGCTGTGGCTGGCACAATGAGATCCGCACGGTGGCCGCGGAGCCCTGGCCT CTCTGAGCCATCTCAAGAGCCTGGACCTCAGCCACAATCTCATCTCTGACTTTGCCTGGAGCGACCTGCACAACC GTGCTCTGCGCTGCAACTCAACCACAACCGCTTGCACACATTGGCCGAGGGCACCTTCACCCGGCTCACCG CGCTGTCCCACCTGCAGATCAACGAGAACCCCTTCGACTGCACCTGCGGCATCGTGTGGCTCAAGACATGGGCCC AGCTGCGGCCTGGTTTTGTGCTGGCACTGCACTGTGATGTGGACGGCCAGCCGGCCCCTCAGCTTCACTGGCACA $\tt CTGTGGCCAGCCGCGCGTTCCAGGCCTTTGCCAATGGCAGCCTGCTTATCCCCGACTTTGGCAAGCTGG$ AGGAAGGCACCTACAGCTGCCTGGCCACCAATGAGCTGGGCAGTGCTGAGAGCTCAGTGGACGTGGCACTGGCCA CGCCCGGTGAGGGTGGTGAGGACACACTGGGGCGCAGGTTCCATGGCAAAGCGGTTGAGGGAAAGGGCTGCTATA ${\tt CGGTTGACAACGAGGTGCAGCCATCAGGGCCGGAGGACAATGTGGTCATCATCTACCTCAGCCGTGCTGGGAACC}$ TTTAAGTGCTGCAGGGGTCTGGGGTTGGCAACTCCTGAGGCCTGCATGGGTGACTTCACATTTTCCTACCTCTCC TTCTAATCTCTTCTAGAGCACCTGCTATCCCCAACTTCTAGACCTGCTCCAAACTAGTGACTAGGATAGAATTTG ATCCCCTAACTCACTGTCTGCGGTGCTCATTGCTGCTAACAGCATTGCCTGTGCTCTCCTCTCAGGGGCAGCATG CTAACGGGGCGACGTCCTAATCCAACTGGGAGAAGCCTCAGTGGTGGAATTCCAGGCACTGTGACTGTCAAGCTG GCAAGGGCCAGGATTGGGGGAATGGAGCTGGGGCTTAGCTGGAGGTGGTCTGAAGCAGACAGGGAATGGGAGAG GAGGATGGGAAGTAGACAGTGGCTGGTATGGCTCTGAGGCTCCCTGGGGGCCTGCTCAAGCTCCTCCTTG CTGTTTCTGATGATTTGGGGGCTTGGGAGTCCCTTTGTCCTCATCTGAGACTGAAATGTGGGGATCCAGGATGG $\tt CCTTCCTTCCTCCTCCCTCAGCCTGCAACCTCTATCCTGGAACCTGTCCTCCCTTTCTCCCCAACT$ ATGCATCTGTTGTCTGCTCCTCTGCAAAGGCCAGCCAGCTTGGGAGCAGCAGAGAAATAAACAGCATTTCTGATG CCAAAAAAAAAAAAAAAAGGGCGGCCGGACTCTAGAGTCGACCT

FIGURE 292

MQELHLLWWALLLGLAQACPEPCDCGEKYGFQIADCAYRDLESVPPGFPANVTTLSLSANRLP GLPEGAFREVPLLQSLWLAHNEIRTVAAGALASLSHLKSLDLSHNLISDFAWSDLHNLSALQL LKMDSNELTFIPRDAFRSLRALRSLQLNHNRLHTLAEGTFTPLTALSHLQINENPFDCTCGIV WLKTWALTTAVSIPEQDNIACTSPHVLKGTPLSRLPPLPCSAPSVQLSYQPSQDGAELRPGFV LALHCDVDGQPAPQLHWHIQIPSGIVEITSPNVGTDGRALPGTPVASSQPRFQAFANGSLLIP DFGKLEEGTYSCLATNELGSAESSVDVALATPGEGGEDTLGRRFHGKAVEGKGCYTVDNEVQP SGPEDNVVIIYLSRAGNPEAAVAEGVPGQLPPGLLLLGQSLLLFFFLTSF

Important features:

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 403-418

N-glycosylation sites:

Amino acids 51-55,120-124,309-313

Tyrosine kinase phosphorylation site:

amino acids 319-326

N-myristoylation sites:

amino acids 14-20,64-70,92-98,218-224,294-300,323-329,334-340,350-356,394-400

Amidation site:

amino acids 355-359

Leucine Rich Repeat:

amino acids 51-74,75-98, 99-122,123-146,147-170

Leucine rich repeat C-terminal domain:

amino acids 180-230

FIGURE 293

 ${\tt TCGCTTCCCAGGCGCCGGCGGCTGCAGCCTTGCCCCTCTTGCTCGCCTTGAAA} \underline{{\tt ATG}} {\tt GAAAAGATGCTCGCAGGCT}$ TCTTGCAATTCTTGGACATTGGTCCTGATGTCACCCGAGTGGGCCTGCTCCAATATGGCAGCACTGTCAAGAATG AGTTCTCCCTCAAGACCTTCAAGAGGAAGTCCGAGGTGGAGCGTGCTGTCAAGAGGATGCGGCATCTGTCCACGG GCACCATGACTGGGCTGGCCATCCAGTATGCCCTGAACATCGCATTCTCAGAAGCAGAGGGGGCCCGGCCCCTGA GGGAGAATGTGCCACGGGTCATAATGATCGTGACAGATGGGAGACCTCAGGACTCCGTGGCCGAGGTGGCTGCTA AGGCACGGGACACGGGCATCCTAATCTTTGCCATTGGTGTGGGCCAGGTAGACTTCAACACCTTGAAGTCCATTG GGAGTGAGCCCCATGAGGACCATGTCTTCCTTGTGGCCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC GCTCATACGTCTGCAGGTGCAAACAAGGCTACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTGT GTGCCATGGAGGACCACAACTGTGAGCAGCTCTGTGTGAATGTGCCGGGCTCCTTCGTCTGCCAGTGCTACAGTG GCTACGCCCTGGCTGAGGATGGGAAGAGGTGTGTGGCTGTGGACTACTGTGCCTCAGAAAACCACGGATGTGAAC ATGAGTGTGTAAATGCTGATGGCTCCTACCTTTGCCAGTGCCATGAAGGATTTGCTCTTAACCCAGATGAAAAAA CGTGCACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCGTCAACATGGAGGAGAGCT ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGCAAAACCTGCAGCCGAGTGGACCACTGTGCAC ${\tt AGCAGGACCATGGCTGTGAGCAGCTGTGTCTGAACACGGAGGATTCCTTCGTCTGCCAGTGCTCAGAAGGCTTCC}$ ${\tt TCATCAACGAGGACCTCAAGACCTGCTCCCGGGTGGATTACTGCCTGAGTGACCATGGTTGTGAATACTCCT}$ GCCAGTGCTTTGAAGGTTATATACTCCGTGAAGATGGAAAAACCTGCAGAAGGAAAGATGTCTGCCAAGCTATAG ACCATGGCTGTGAACACTTTGTGTGAACAGTGACGACTCATACACGTGCGAGTGCTTGGAGGGATTCCGGCTCG $\tt CTGAGGATGGGAAACGCTGCCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCGAACACATTTGTGTTA$ ATAATGGGAATTCCTACATCTGCAAATGCTCAGAGGGATTTGTTCTAGCTGAGGACGGAAGACGGTGCAAGAAAT GCACTGAAGGCCCAATTGACCTGGTCTTTGTGATCGATGGATCCAAGAGTCTTGGAGAAGAGAATTTTGAGGTCG ${\tt TGAAGCAGTTTGTCACTGGAATTATAGATTCCTTGACAATTTCCCCCAAAGCCGCTCGAGTGGGGCTGCTCCAGT}$ ${\tt ATTCCACAGGGTCCACAGAGGTTCACTCTGAGAAAACTTCAACTCAGCCAAAGACATGAAAAAAGCCGTGGCCC}$ ATGAGATAAGTGAAAAACTCAAGAAAGGCATCTGTGAAGCTCTAGAAGACTCCGATGGAAGACAGGACTCTCCAG CAGGGGAACTGCCAAAAACGGTCCAACAGCCAACAGAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT ${\tt CCTGTTCTAATTTTGCAGTGCAACACAGATATCTGTTTGAAGAAGACAATCTTTTACGGTCTACACAAAAGCTTT}$ CCCATTCAACAAAACCTTCAGGAAGCCCTTTGGAAGAAAAACACGATCAATGCAAATGTGAAAACCTTATAATGT TCCAGAACCTTGCAAACGAAGAAGTAAGAAAATTAACACAGCGCTTAGAAGAAATGACACAGAGAATGGAAGCCC ${\tt GAACGCAGTGCAGAGCCCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGTGAAGTAAAACAATCAGTACTGA}$ GAAACCTGGTTTGCCACAGAACAAGACAAGAAGTATACACTAACTTGTATAAATTTATCTAGGAAAAAAATCCT ${\tt AACTTGCTTCTGCCTCATCCTGCCTTAGTGTGCAATCTCATTTGACTATACGATAAAGTTTGCACAGTCTTACTT}$ ${ t CTGTAGAACACTGGCCATAGGAAATGCTGTTTTTTTGTACTGGACTTTACCTTGATATATGTATATGGATGTATG}$ ${\tt CATAAAATCATAGGACATATGTACTTGTGGAACAAGTTGGATTTTTTATACAATATTAAAATTCACCACTTCAG}$

MEKMLAGCFLLILGQIVLLPAEARERSRGRSISRGRHARTHPQTALLESSCENKRADLVFIID SSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAVKR MRHLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAAKARDTGI LIFAIGVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHNCAHF CINIPGSYVCRCKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNVPGSFVCQCYSGYALAEDG KRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKPGCEHECVN MEESYYCRCHRGYTLDPNGKTCSRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLINEDLKTC SRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRSDGKTCAKLDSCALGDHGCEHSCVSSED SFVCQCFEGYILREDGKTCRRKDVCQAIDHGCEHICVNSDDSYTCECLEGFRLAEDGKRCRRK DVCKSTHHGCEHICVNNGNSYICKCSEGFVLAEDGRRCKKCTEGPIDLVFVIDGSKSLGEENF EVVKQFVTGIIDSLTISPKAARVGLLQYSTQVHTEFTLRNFNSAKDMKKAVAHMKYMGKGSMT GLALKHMFERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKANGITMYAVGVGKA IEEELQEIASEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDSDGRQDSPAGELPKTVQQPT ESEPVTINIQDLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPLEEKHDQCKCENLIM FQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Important features:

Signal sequence:

Amino acids 1-23

N-glycosylation site:

Amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 115-119;606-610;892-896

N-myristoylation sites:

Amino acids 133-139;258-264;299-305;340-346;453-459;494-500;639-645;690-694;752-758;792-798

Amidation sites:

Amino acids 314-318;560-564;601-605

Aspartic acid and asparagine hydroxylation sites:

Amino acids 253-265;294-306;335-347;376-388;417-429;458-470;540-552;581-593

FIGURE 295

GGCCGGAGCACGCCGCAGGACCTGGAGCTCCGGCTGCTCTTCCCGCAGCGCTACCCGC GCCGGAGGCCGCCAAGAAGCCGACGCCCTGCCACCGGTGCCGGGGGCTGGTGGACAAGTTTAA CCAGGGGATGGTGGACACCGCAAAGAAGAACTTTGGCGGCGGGAACACGGCTTGGGAGGAAAA GACGCTGTCCAAGTACGAGTCCAGCGAGATTCGCCTGCTGGAGATCCTGGAGGGGCTGTGCGA GAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGAGCACCTGGAGGCCTGGTG GCTGCAGCTGAAGAGCGAATATCCTGACTTATTCGAGTGGTTTTTGTGTGAAGACACTGAAAGT GTGCTGCTCCCAGGAACCTACGGTCCCGACTGTCTCGCATGCCAGGGCCGGATCCCAGAGGCC CTGCAGCGGAATGGCCACTGCAGCGGAGATGGGAGCAGACAGGGCGACGGGTCCTGCCGGTG CCACATGGGGTACCAGGGCCCGCTGTGCACTGACTGCATGGACGGCTACTTCAGCTCCG GAACGAGACCCACAGCATCTGCACAGCCTGTGACGAGTCCTGCAAGACGTGCTCGGGCCTGAC CAACAGAGACTGCGGCGAGTGTGAAGTGGGCTGGGTGCTGGACGAGGGCGCCTGTGTGGATGT GGACGAGTGTGCGGCCGAGCCCCCCCTGCAGCGCTGCGCAGTTCTGTAAGAACGCCAACGG CTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTGTGGGCTGCACAGGGGAAGGCCCAGGAAA CTGTAAAGAGTGTATCTCTGGCTACGCGAGGGAGCACGGACAGTGTGCAGATGTGGACGAGTG CTCACTAGCAGAAAAACCTGTGTGAGGAAAAACGAAAACTGCTACAATACTCCAGGGAGCTA CGTCTGTGTGTCCTGACGGCTTCGAAGAACGGAAGATGCCTGTGTGCCGCCGGCAGAGGC TGAAGCCACAGAAGGAGAAAGCCCGACACAGCTGCCCTCCCGCGAAGACCTGTAATGTGCCGG ACTTACCCTTTAAATTATTCAGAAGGATGTCCCGTGGAAAATGTGGCCCTGAGGATGCCGTCT CCTGCAGTGGACAGCGGGGGGAGAGGCTGCCTGCTCTAACGGTTGATTCTCATTTGTCCC TTAAACAGCTGCATTTCTTGGTTGTTCTTAAACAGACTTGTATATTTTGATACAGTTCTTTGT

MRLPRRAALGLLPLLLLPPAPEAAKKPTPCHRCRGLVDKFNQGMVDTAKKNFGGGNTAWEEK TLSKYESSEIRLLEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKV CCSPGTYGPDCLACQGGSQRPCSGNGHCSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLR NETHSICTACDESCKTCSGLTNRDCGECEVGWVLDEGACVDVDECAAEPPPCSAAQFCKNANG SYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDECSLAEKTCVRKNENCYNTPGSY VCVCPDGFEETEDACVPPAEAEATEGESPTQLPSREDL

Important features:

Signal peptide:

Amino acids 1-24

N-glycosylation sites:

Amino acids 190-194;251-255

Glycosaminoglycan attachment sites:

Amino acids 149-153;155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 26-30

Tyrosine kinase phosphorylation site:

Amino acids 303-310

N-myristoylation sites:

Amino acids 44-50;54-60;55-61;81-87;150-156;158-164;164-170; 252-258;313-319

Aspartic acid and asparagine hydroxylation site:

Amino acids 308-320

EGF-like domain cysteine pattern signature:

Amino acids 166-178

Leucine zipper pattern:

Amino acids 94-116

FIGURE 297

TTGGACAATGCAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAAACTTTGTGGTTCTATGGCATTCATCATTT ${\tt CCATTACATTTCTGAAGAAGAAGCTAAG} {\tt ATG} {\tt AAGGACATGCCACTCCGAATTCATGTGCTACTTGGCCTAGCTA}$ TCACTACACTAGTACAAGCTGTAGATAAAAAAGTGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTTGGT TTACACCCAGATCCATTTATATGGAAGCATCTACAGTGGATTGTAATGATTTAGGTCTTTTAACTTTCCCAGCCA ${\tt GATTGCCAGCTAACACACAGATTCTTCTCCTACAGACTAACAATATTGCAAAAATTGAATACTCCACAGACTTTC}$ CAGTAAACCTTACTGGCCTGGATTTATCTCAAAACAATTTATCTTCAGTCACCAATATTAATGTAAAAAAGATGC ACTTACAAGAACTCTATATTAATCACAACTTGCTTTCTACAATTTCACCTGGAGCCTTTATTGGCCTACATAATC AGATTCTGATGATTGGGGGAAAATCCAATTATCAGAATCAAAGACATGAACTTTAAGCCTCTTATCAATCTTCGCA TCTCTTTTTACGATAACAGGCTTATTAAAGTACCCCATGTTGCTCTTCAAAAAGTTGTAAATCTCAAATTTTTGG ATCTAAATAAAAATCCTATTAATAGAATACGAAGGGGTGATTTTAGCAATATGCTACACTTAAAAGAGTTGGGGA TAAATAATATGCCTGAGCTGATTTCCATCGATAGTCTTGCTGGATAACCTGCCAGATTTAAGAAAAATAGAAG CTACTAACAACCCTAGATTGTCTTACATTCACCCCAATGCATTTTTCAGACTCCCCAAGCTGGAATCACTCATGC ${\tt TGAACAGCAATGCTCTCAGTGCCCTGTACCATGGTACCATTGAGTCTCTGCCAAACCTCAAGGAAATCAGCATAC}$ ACAGTAACCCCATCAGGTGTGACTGTGTCATCCGTTGGATGAACATGAACAAAACCAACATTCGATTCATGGAGC $\tt TGGAAATTTGTCTCCCTCTTATAGCTCCTGAGAGCTTTCCTTCTAATCTAAATGTAGAAGCTGGGAGCTATGTTT$ $\tt CCTTTCACTGTAGAGCTACTGCAGAACCACAGCCTGAAATCTACTGGATAACACCTTCTGGTCAAAAACTCTTGC$ CTAATACCCTGACAGACAAGTTCTATGTCCATTCTGAGGGAACACTAGATATAAATGGCGTAACTCCCAAAGAAG $\hbox{\tt CTTTTCCACAAGATAACAATGGCTCTTTGAATATTAAAATAAGAGATATTCAGGCCAATTCAGTTTTGGTGTCCT}$ ${\tt CGCAAAGTGCTCGAATACCATCTGATGTCAAGGTATATAATCTTACTCATCTGAATCCATCAACTGAGTATAAAA}$ TTTGTATTGATATTCCCACCATCTATCAGAAAAACAGAAAAAAATGTGTAAATGTCACCACCAAAGGTTTGCACC CTGATCAAAAAGAGTATGAAAAGAATAATACCACAACACTTATGGCCTGTCTTGGAGGCCTTCTGGGGATTATTG GTGTGATATGTCTTATCAGCTGCCTCTCCCAGAAATGAACTGTGATGGTGGACACAGCTATGTGAGGAATTACT TACAGAAACCAACCTTTGCATTAGGTGAGCTTTATCCTCCTCTGATAAATCTCTGGGAAGCAGGAAAAGAAAAAA GTACATCACTGAAAGTAAAAGCAACTGTTATAGGTTTACCAACAAATATGTCC ${f TAA}$ AAACCACCAAGGAAACCTA CTCCAAAAATGAAC

FIGURE 298

MKDMPLRIHVLLGLAITTLVQAVDKKVDCPRLCTCEIRPWFTPRSIYMEASTVDCNDLGLLTF
PARLPANTQILLLQTNNIAKIEYSTDFPVNLTGLDLSQNNLSSVTNINVKKMPQLLSVYLEEN
KLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLLRLHLNSNRLQMINSKWFDALPN
LEILMIGENPIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRLIKVP
HVALQKVVNLKFLDLNKNPINRIRRGDFSNMLHLKELGINNMPELISIDSLAVDNLPDLRKIE
ATNNPRLSYIHPNAFFRLPKLESLMLNSNALSALYHGTIESLPNLKEISIHSNPIRCDCVIRW
MNMNKTNIRFMEPDSLFCVDPPEFQGQNVRQVHFRDMMEICLPLIAPESFPSNLNVEAGSYVS
FHCRATAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLDINGVTPKEGGLYTCIATNLVGA
DLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSWKASSKILKSSVKWTAFVKTENSHAAQ
SARIPSDVKVYNLTHLNPSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKEYEKNNTTTLM
ACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPPLINLWEAGKEKSTS
LKVKATVIGLPTNMS

Important features:

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583, 608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443, 491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 299

GCTGTGGGAACCTCTCCACGCGCACGAACTCAGCCAACGATTTCTGATAGATTTTTGGGAGTT TGACCAGAGATGCAAGGGGTGAAGGAGCGCTTCCTACCGTTAGGGAACTCTGGGGACAGAGCG $\tt CCCCGGCCTGATGGCCGAGGCAGGGTGCGACCCAGGACCGAGGCGTCGGGAACCAT$ GTCCTAGCTTACTCTGCCACCACTGCCCGGCAGGAGGAGGTTCCCCAGCAGCAGACAGTGGCCCCA CAGCAACAGAGGCACAGCTTCAAGGGGGGAGGAGTGTCCAGGAGGATCTCATAGATCAGAACAT ACTGGAGCCTGTAACCCGTGCACAGAGGGTGTGGATTACACCAACGCTTCCAACAATGAACCT TCTTGCTTCCCATGTACAGTTTGTAAATCAGATCAAAAACATAAAAGTTCCTGCACCATGACC AGAGACACAGTGTGTCAGTGTAAAGAAGGCACCTTCCGGAATGAAAACTCCCCAGAGATGTGC CGGAAGTGTAGCAGGTGCCCTAGTGGGGAAGTCCAAGTCAGTAATTGTACGTCCTGGGATGAT ATCCAGTGTGTGAAGAATTTGGTGCCAATGCCACTGTGGAAACCCCAGCTGCTGAAGAGACA ATGAACACCAGCCCGGGGACTCCTGCCCCAGCTGCTGAAGAGACAATGAACACCAGCCCAGGG ${\tt ACTCCTGCCCCAGCTGCAGAGAGAGACAATGACCACCAGCCGGGGACTCCTGCCCCAGCTGCT}$ GAAGAGACAATGACCACCCGGGGGACTCCTGCCCCAGCTGCTGAAGAGACAATGACCACC AGCCCGGGGACTCCTCTCTCTCATTACCTCTCATGCACCATCGTAGGGATCATAGTTCTA ${\tt ATTGTGCTTCTGATTGTTTTTTT} \underline{{\tt TGA}} {\tt AAGACTTCACTGTGGAAGAATTCCTTACCTG}$ CTGCTGTTTCCCACAGACAGAAACGCCTGC

FIGURE 300

MARIPKTLKFVVVIVAVLLPVLAYSATTARQEEVPQQTVAPQQQRHSFKGEECPAGSHRSEHT GACNPCTEGVDYTNASNNEPSCFPCTVCKSDQKHKSSCTMTRDTVCQCKEGTFRNENSPEMCR KCSRCPSGEVQVSNCTSWDDIQCVEEFGANATVETPAAEETMNTSPGTPAPAAEETMNTSPGT PAPAAEETMTTSPGTPAPAAEETMTTSPGTPAPAAEETMTTSPGTPASSHYLSCTIVGIIVLI VLLIVFV

Important features:

Signal peptide:

Amino acids 1-29

Transmembrane domain:

Amino acids 240-259

N-glycosylation site:

Amino acids 77-81;140-144;156-160

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 126-130

N-myristoylation sites:

Amino acids 56-62;72-78;114-120;154-160;233-239

FIGURE 301

CACAAGCATCTTAATTTGAATCCACAAAGTTTCATGTAATGAAAAGAAATACATAATTTTAAT TCAACCCGAGTGTTTTCCAAGAAGATTGTATTTGCTTAAATTGCTACAGTAATTCAAGAGACA GCCCTGTCTGGACACAGAGTTACTGTGGATTTTTAAGAGACTCAGTTAAAGAATTTAGGAATT TCTGATTCATTTAAAGGATTTACAAATTCATCAACCCCTGAAAACTAAAGCAAATTGAACAGG AAAGTACATTGCCAATATGAAACTTATCAGTGGGATGAAGACTATGACCAAGAGCCAGATGAT GATTACCAAACAGGATTCCCATTTCGTCAAAATGTAGACTACGGAGTTCCTTTTCATCAGTAT AATCGCAAACTCAAGACTATCCCAAATATTCCGATGCACATTCAGCAACTCTACCTTCAGTTC AATGAAATTGAGGCTGTGACTGCAAATTCATTCATCAATGCAACTCATCTTAAAGAAATTAAC CTCAGCCACAACAAATTAAATCTCAAAAGATTGATTATGGTGTGTTTGCTAAGCTTCCAAAT CTACTACAACTTCATCTAGAGCATAATAATTTAGAAGAATTTCCATTTCCTCTTCCTAAATCT CTAGTAAACTTGACCATGCTTGATCTCTGTTATAATTATCTTCATGATTCTCTGCTAAAAGAC AAAATCTTTGCCAAAATGGAAAAACTAATGCAGCTCAACCTCTGCAGTAACAGATTAGAATCA ATGCCTCCTGGTTTGCCTTCTTCACTTATGTATCTGTCTTTAGAAAATAATTCAATTTCTTCT ATACCCGAAAAATACTTCGACAAACTTCCAAAACTTCATACTCTAAGAATGTCACACAACAA CTACAAGACATCCCATATAATATTTTTAATCTTCCCAACATTGTAGAACTCAGTGTTGGACAC AACAAATTGAAGCAAGCATTCTATATTCCAAGAAATTTGGAACACCTATACCTACAAAATAAT GAAATAGAAAAGATGAATCTTACAGTGATGTGTCCTTCTATTGACCCACTACATTACCACCAT TTAACATACATTCGTGTGGACCAAAATAAACTAAAAGAACCAATAAGCTCATACATCTTCTTC TGCTTCCCTCATATACACACTATTTATTATGGTGAACAACGAAGCACTAATGGTCAAACAATA CAACTAAAGACACAAGTTTTCAGGAGATTTCCAGATGATGATGAAGATGAAGATCACGAT GATCCTGACAATGCTCATGAGAGCCCAGAACAAGAAGGAGCAGAAGGGCACTTTGACCTTCAT TATTATGAAAATCAAGAA ${f TAG}$ CAAGAAACTATATAGGTATACACTTACGACTTCACAAAACCTA TACTTAATATAGTAAATCTAAGTAAACATGTATTACTCAAAGTAATATATTTAGAATTATGTA TTAGTATAAGATCAGAATTGAATTTAAGTTGTTGGTGACATCTGCATCATTTCATAGGATTAG AACTTACTCAAAATAATGTAAATCTTTAAAAAATATAAATTAGAATGACAAGTGGGAATCATAA ATTAAACGTTAATGGTTTCTTATGCTCTTTTTTAAATATAGAAATATCATGTTAAAGAAAAAA AAAAAA

MGFLSPIYVIFFFFGVKVHCQYETYQWDEDYDQEPDDDYQTGFPFRQNVDYGVPFHQYTLGCV SECFCPTNFPSSMYCDNRKLKTIPNIPMHIQQLYLQFNEIEAVTANSFINATHLKEINLSHNK IKSQKIDYGVFAKLPNLLQLHLEHNNLEEFPFPLPKSLERLLLGYNEISKLQTNAMDGLVNLT MLDLCYNYLHDSLLKDKIFAKMEKLMQLNLCSNRLESMPPGLPSSLMYLSLENNSISSIPEKY FDKLPKLHTLRMSHNKLQDIPYNIFNLPNIVELSVGHNKLKQAFYIPRNLEHLYLQNNEIEKM NLTVMCPSIDPLHYHHLTYIRVDQNKLKEPISSYIFFCFPHIHTIYYGEQRSTNGQTIQLKTQ VFRRFPDDDDESEDHDDPDNAHESPEQEGAEGHFDLHYYENQE

Important feastures:

N-glycosylation sites:

Amino acids 113-117;121-125; 187-191;242-246;316-320

Tyrosine kinase phosphorylation sites:

Amino acids 268-275;300-307

N-myristoylation site:

Amino acids 230-236

Leucine zipper patterns:

Amino acids 146-168;217-239

FIGURE 303

GCCCGGGACTGGCGCAAGGTGCCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAGC TGCAGCCTTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTTACCA CGCTTGTTGGAGTAGATGAGGAATGGGCTCGTGATTATGCTGACATTCCAGC**ATG**AATCTGGT AGACCTGTGGTTAACCCGTTCCCTCTCCATGTGTCTCCTCCTACAAAGTTTTGTTCTTATGAT ACTGTGCTTTCATTCTGCCAGTATGTGTCCCAAGGGCTGTCTTTGTTCTTCCTCTGGGGGTTT AAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTTCCTCCTGAAACAGT CTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCCAATGAAATTTTTAAGGACCTCCA TCAACTGAGAGTTCTCAACCTGTCCAAAAATGGCATTGAGTTTATCGATGAGCATGCCTTCAA AGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTCCGACAATCGGATTCAAAGTGTGCACAA AAATGCCTTCAATAACCTGAAGGCCAGGGCCAGAATTGCCAACAACCCCTGGCACTGCGACTG TACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCACAACGTGATCTG TAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCCTCAATGCTGCCAACGACGCTGA CCTTTGTAACCTCCCTAAAAAACTACCGATTATGCCATGCTGGTCACCATGTTTGGCTGGTT CACTATGGTGATCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAGGATGCCCGGAGACA CCTCGAATACTTGAAATCCCTGCCAAGCAGGCAGAAGAAAGCAGATGAACCTGATGATATTAG ${\tt CACTGTGGTA} \underline{\textbf{TAG}} {\tt TGTCCAAACTGACTGTCATTGAGAAAGAAAGAAAGTAGTTTGCGATTGCA}$ GTAGAAATAAGTGGTTTACTTCTCCCATCCATTGTAAACATTTGAAACTTTGTATTTCAGTTT GTGATCCACCCCTTAATTGTACCCCCGATGGTATATTTCTGAGTAAGCTACTATCTGAACATT

FIGURE 304

MNLVDLWLTRSLSMCLLLQSFVLMILCFHSASMCPKGCLCSSSGGLNVTCSNANLKEIPRDLP PETVLLYLDSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDLSDNRIQ SVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPFLNAA NDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKKADEP DDISTVV

Important features:

Signal sequence:

Amino acids 1-33

Transmembrane domain:

Amino acids 204-219

N-glycosylation sites:

Amino acids 47-51;94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation sites:

Amino acids 37-43;45-51;110-116

FIGURE 305

CGCCACCACTGCGGCCACCGCCAATGAAACGCCTCCCGCTCCTAGTGGTTTTTTCCACTTTGTTGAATTGTTCCT ATACTCAAAATTGCACCAAGACACCTTGTCTCCCAAATGCAAAATGTGAAATACGCAATGGAATTGAAGCCTGCT GCAGTAACCAAGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACTGCCATTTAG ATAATGTCTGTATAGCTGCAAATATTAATAAAACTTTAACAAAAATCAGATCCATAAAAGAACCTGTGGCTTTGC TACAAGAAGTCTATAGAAATTCTGTGACAGATCTTTCACCAACAGATATAATTACATATATAGAAATATTAGCTG AATCATCTTCATTACTAGGTTACAAGAACAACACTATCTCAGCCAAGGACACCCTTTCTAACTCAACTCTTACTG AATTTGTAAAAACCGTGAATAATTTTGTTCAAAGGGATACATTTGTAGTTTGGGACAAGTTATCTGTGAATCATA GGAGAACACATCTTACAAAACTCATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTCCAAAAGA CCACAGAGTTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTTCTTTTTTTGATTCATATAACATGAAACATA ${ t TTCATCCTCATATGAATATGGATGGAGACTACATAAATATATTTCCAAAGAGAAAAGCTGCATATGATTCAAATG$ GCAATGTTGCAGTTGCATTTTTATATTATAAGAGTATTGGTCCTTTGCTTTCATCATCTGACAACTTCTTATTGA AACCTCAAAATTATGATAATTCTGAAGAGGGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAA ACCCACCCACATTATATGAACTTGAAAAAATAACATTTACATTAAGTCATCGAAAGGTCACAGATAGGTATAGGA GTCTATGTGCATTTTGGAATTACTCACCTGATACCATGAATGGCAGCTGGTCTTCAGAGGGCTGTGAGCTGACAT ACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACATTTTGCAATTTTGATGTCCTCTGGTCCTT CCATTGGTATTAAAGATTATAATATTCTTACAAGGATCACTCAACTAGGAATAATTATTTCACTGATTTGTCTTG $\verb|CCATATGCATTTTTACCTTCTGGTTCTTCAGTGAAATTCAAAGCACCAGGACAACAATTCACAAAAATCTTTGCT| \\$ GTAGCCTATTTCTTGCTGAACTTGTTTTTCTTGTTGGGATCAATACAAATACTAATAAGCTCTTCTGTTCAATCA $\tt TTGCCGGACTGCTACACTTCTTTTTAGCTGCTTTTGCATGGATGTGCATTGAAGGCATACATCTCTATCTCA$ TTGTTGTGGGTGTCATCTACAACAAGGGATTTTTGCACAAGAATTTTTATATCTTTGGCTATCTAAGCCCAGCCG TGGTAGTTGGATTTTCGGCAGCACTAGGATACAGATATTATGGCACAACCAAAGTATGTTGGCTTAGCACCGAAA ACAACTTTATTTGGAGTTTTATAGGACCAGCATGCCTAATCATTCTTGTTAATCTCTTGGCTTTTGGAGTCATCA GAGGAGCCCTCGCTCTTCTGTTCCTTCTCGGCACCACCTGGATCTTTGGGGGTTCTCCATGTTGTGCACGCATCAG $\tt CTAGAAAGATTCAAGAAGAATATTACAGATTGTTCAAAAATGTCCCCTGTTGTTTTTGGATGTTTAAGGT{AA}CAT$ AGAGAATGGTGGATAATTACAACTGCACAAAAATAAAAATTCCAAGCTGTGGATGACCAATGTATAAAAATGACT ${\tt CATCAAATTATCCAATTATTAACTACTAGACAAAAAGTATTTTAAATCAGTTTTTCTGTTTATGCTATAGGAACT}$ GTAGATAATAAGGTAAAATTATGTATCATATAGATATACTATGTTTTTCTATGTGAAAATAGTTCTGTCAAAAATA ACACGAGAAGTATATGAATGTCCTGAAGGAAACCACTGGCTTGATATTTCTGTGACTCGTGTTGCCTTTGAAACT AGTCCCCTACCACCTCGGTAATGAGCTCCATTACAGAAAGTGGAACATAAGAGAATGAAGGGGCAGAATATCAAA AAAATAAAGAATTGAAGAAACACATTTTACCATTTTGTGAATTGTTCTGAACTTAAATGTCCACTAAAACAACTT

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNECGNLTQSCGENANC
TNTEGSYYCMCVPGFRSSSNQDRFITNDGTVCIENVNANCHLDNVCIAANINKTLTKIRSIKEPVALLQEVYRNS
VTDLSPTDIITYIEILAESSSLLGYKNNTISAKDTLSNSTLTEFVKTVNNFVQRDTFVVWDKLSVNHRRTHLTKL
MHTVEQATLRISQSFQKTTEFDTNSTDIALKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAVAFL
YYKSIGPLLSSSDNFLLKPQNYDNSEEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDRYRSLCAFWNY
SPDTMNGSWSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNILTRITQLGIIISLICLAICIFTFW
FFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCSIIAGLLHYFFLAAFAWMCIEGIHLYLIVVGVIYN
KGFLHKNFYIFGYLSPAVVVGFSAALGYRYYGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHT
AGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEY
YRLFKNVPCCFGCLR

Important features:

Signal peptide:

Amino acids 1-19

Transmembrane domain:

Amino acids 431-450;494-515;573-594;619-636;646-664

N-glycosylation sites:

Amino acids 15-19;21-25;64-68;74-78;127-131;177-181; 188-192;249-253;381-385;395-399

Glycosaminoglycan attachment site:

Amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 360-364

Tyrosine kinase phosphorylation sites:

Amino acids 36-44;670-677

N-myristoylation sites:

Amino acids 38-44;50-56;52-58;80-86;382-388;388-394; 434-440;480-486;521-527

Aspartic acid and asparagine hydroxylation site:

Amino acids 75-87

FIGURE 307

GGCCGGGCCGCAGGAGAGCCTGTACCTATGGATCGATGCTCACCAGGCAAGAGTACTCATAGGATTTGA AGAAGATATCCTGATTGTTTCAGAGGGGAAAATGGCACCTTTTACACATGATTTCAGAAAAGCGCAACAGAGAAT ATTCCTGTCCTTGCGCTCCCTGGATAAAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGGAACAGT GCCTCACAAGGCATCAGTTGTTCAAGTTGGTTTCCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTTGAAGT GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCCAAAACACCTCAAAATGCTATCTTCTTTAAAACATG TCAACAAGCTGAGTGCCCAGGCGGTGCCGAAATGGAGGCTTTTGTAATGAAAGACGCATCTGCGAGTGTCCTGA TGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTTGTACCCCACGATGTATGAATGGTGGACTTTGTGTGACTCC TGGTTTCTGCATCTGCCCACCTGGATTCTATGGAGTGAACTGTGACAAAGCAAACTGCTCAACCACCTGCTTTAA TGGAGGGACCTGTTTCTACCCTGGAAAATGTATTTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAGCAA ATGCCCACAACCCTGTCGAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGTTCCAAAGGTTACCAGGG AGACCTCTGTTCAAAGCCTGTCTGCGAGCCTGGCTGTGGTGCACATGGAACCTGCCATGAACCCAACAAATGCCA AGGCGCCCAGCTCAGGCAGCACACGCCTTCACTTAAAAAGGCCGAGGAGCGGCGGGATCCACCTGAATCCAATTA $\texttt{CATCTGG} \underline{\textbf{TGA}} \texttt{ACTCCGACATCTGAAACGTTTTAAGTTACACCAAGTTCATAGCCTTTGTTAACCTTTCATGTGTT}$ GAATGTTCAAATAATGTTCATTACACTTAAGAATACTGGCCTGAATTTTATTAGCTTCATTATAAATCACTGAGC TGATATTTACTCTTCCTTTTAAGTTTTCTAAGTACGTCTGTAGCATGATGGTATAGATTTTCTTGTTTCAGTGCT TTGGGACAGATTTTATATTATGTCAATTGATCAGGTTAAAATTTTCAGTGTGTAGTTGGCAGATATTTTCAAAAT TACAATGCATTTATGGTGTCTGGGGGCAGGGGAACATCAGAAAGGTTAAATTGGGCAAAAATGCGTAAGTCACAA ATTTTTAAAAATTGCTCTTAATTTTTAAACTCTCAATACAATATTTTTGACCTTACCATTATTCCAGAGATTCA GTATTAAAAAAAAAAAATTACACTGTGGTAGTGGCATTTAAACAATATAATATATTCTAAACACAATGAAATAG GGAATATAATGTATGAACTTTTTGCATTGGCTTGAAGCAATATAATATTGTAAACAAAACACAGCTCTTACCT AAAAAAA

MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGKM
APFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPLLGT
VPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGCRNG
GFCNERRICECPDGFHGPHCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCSTTCFN
GGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKCIGKSKCKCSKGYQGDLCSKPVCEPGCG
AHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDPPESNYIW

Important features:

Signal sequence:

Amino acids 1-28

N-glycosylation sites:

Amino acids 88-92;245-249

Tyrosine kinase phosphorylation site:

Amino acids 370-378

N-myristoylation sites:

Amino acids 184-190;185-191;189-195;315-321

ATP/GTP-binding site motif A (P-loop):

Amino acids 285-293

EGF-like domain cysteine pattern signatures:

Amino acids 198-210;230-242;262-274;294-306;326-338

FIGURE 309

CCCACGCGTCCGGTCGCTCGCGCGCGCGGCGGCAGAGGTCGCGCACAGATGCGGG ATGGATTTCTAGAGCAGCAGCAGCAGCAGCAGCAGCCTCAGTCCCCCAGAGACTCTTGGCCG ACCTTCAAGTGTGTGCTGACCCCGGCATTCCCGAGAATGGCTTCAGGACCCCCAGCGGAGGGG $\tt TTTTCTTTGAAGGCTCTGTAGCCCGATTTCACTGCCAAGACGGATTCAAGCTGAAGGGCGCTA$ CAAAGAGACTGTGTTTGAAGCATTTTAATGGAACCCTAGGCTGGATCCCAAGTGATAATTCCA TCTGTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTCATAACAAGACAT ATAGACATGGAGAGAAGCTAATCATCACTTGTCATGAAGGATTCAAGATCCGGTACCCCGACC TACACAATATGGTTTCATTATGTCGCGATGATGGAACGTGGAATAATCTGCCCATCTGTCAAG GCTGCCTGAGACCTCTAGCCTCTTAATGGCTATGTAAACATCTCTGAGCTCCAGACCTCCT TCCCGGTGGGGACTGTGATCTCCTATCGCTGCTTTCCCGGATTTAAACTTGATGGGTCTGCGT ATCTTGAGTGCTTACAAAACCTTATCTGGTCGTCCAGCCCACCCCGGTGCCTTGCTCTGGAAG CCCAAGTCTGTCCACTACCTCCAATGGTGAGTCACGGAGATTTCGTCTGCCACCCGCGGCCTT GCGACTACAAGTACACCTGCCAGTATGGAGAGTGGTTTCCTTCTTATCAAGTCTACTGCA TCAAATCAGAGCAAACGTGGCCCAGCACCCATGAGACCCTCCTGACCACGTGGAAGATTGTGG CGTTCACGGCAACCAGTGTGCTGCTGGTGCTGCTCGTCATCCTGGCCAGGATGTTCCAGA ${\tt CCAAGTTCAAGGCCCACTTTCCCCCCAGGGGGCCTCCCCGGAGTTCCAGCAGTGACCCTGACT}$ TTGTGGTGGTAGACGCCGTCCCTATGCTCCCGTCCTATGACGAAGCTGTGAGTGGCGGCT TGAGTGCCTTAGGCCCCGGGTACATGGCCTCTGTGGGCCCAGGGCTGCCCCTTACCCGTGGACG ACCAGAGCCCCCAGCATACCCCGGCTCAGGGGACACGGACACAGGCCCAGGGGAGTCAGAAA $\verb|CCTGTGACAGCGTCTCAGGCTCTTCTGAGCTGCTCCAAAGTCTGTATTCACCTCCCAGGTGCC| \\$ AAGAGAGCACCCACCCTGCTTCGGACAACCCTGACATAATTGCCAGCACGGCAGAGGAGGTGG ${\tt CATCCACCAGCCCAGGCATCCATCATGCCCACTGGGTGTTGTTCCTAAGAAAC} {\bf \underline{TGA}} {\tt TTGATTA}$ AAAAATTTCCCAAAGTGTCCTGAAGTGTCTCTTCAAATACATGTTGATCTGTGGAGTTGATTC ${\tt CTTTCCTTGGTTTTAGACAAATGTAAACAAAGCTCTGATCCTTAAAATTGCTATGCTG}$ ATAGAGTGGTGAGGGCTGGAAGCTTGATCAAGTCCTGTTTCTTCTTGACACAGACTGATTAAA AATTAAAAGNAAAAA

FIGURE 310

MYHGMNPSNGDGFLEQQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGIP ENGFRTPSGGVFFEGSVARFHCQDGFKLKGATKRLCLKHFNGTLGWIPSDNSICVQEDCRIPQ IEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLASSNG YVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPPRCLALEAQVCPLPPMVS HGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQTWPSTH ETLLTTWKIVAFTATSVLLVLLLVILARMFQTKFKAHFPPRGPPRSSSSDPDFVVVDGVPVML PSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDSVSGSSEL LQSLYSPPRCQESTHPASDNPDIIASTAEEVASTSPGIHHAHWVLFLRN

Important features:

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366, 364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424, 478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 311

 ${\tt CAGCGCGTGGCCGCCGCTGTGGGGACAGC} \underline{\textbf{ATG}} \\ \texttt{AGCGCGGTTGGATGGCGCAGGTTGGAG} \\$ $\tt CGTGGCGAACAGGGGCTCTGGGCCTGGCTGCTGCTGCTGGCCTCGGACTAGGCCTGG$ AGGCCGCCGAGCCCGACCTCTGCCCAGGCCGCAGGCCCAGCTCAGGCT CGTGCCCACCAAGTTCCAGTGCCGCACCAGTGGCTTATGCGTGCCCCTCACCTGGCGCT GCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCCATGTA CCCAGAAAGGGCAATGCCCACCGCCCCTGGCCTCCCCTGCCCCTGCACCGGCGTCAGTGACT GCTCTGGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCCTGGCCTAGCAGGCGAGC ${\tt TCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCACCCAGACT}$ GTCCCGACTCCAGCGACGAGCTCGGCTGTGGAACCAATGAGATCCTCCCGGAAGGGGATGCCA CAACCATGGGGCCCCCTGTGACCCTGGAGAGTGTCACCTCTCTCAGGAATGCCACAACCATGG GGCCCCTGTGACCCTGGGAGAGTGTCCCCTCTGTCGGGAATGCCACATCCTCTGCCGGAG ACCAGTCTGGAAGCCCAACTGCCTATGGGGTTATTGCAGCTGCTGCGGTGCTCAGTGCAAGCC TGGTCACCGCCACCCTCCTTTTGTCCTGGCTCCGAGCCCAGGAGCGCCTCCGCCCACTGG ${\tt GGTTACTGGTGGCCATGAAGGAGTCCCTGCTGCTGTCAGAACAGAAGACCTCGCTGCCC} {\color{red}{\bf TGA}} {\tt GA} {\tt G$ GACAAGCACTTGCCACCACCGTCACTCAGCCCTGGGCGTAGCCGGACAGGAGGAGAGCAGTGA TGCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGTTCTTCTGGCCACGTGGAACC TCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCCTGGACACTCCCTATGGA GATCCGGGGAGCTAGGATGGGGAACCTGCCACAGCCAGAACTGAGGGGCTGGCCCCAGGCAGC TCCCAGGGGGTAGAACGGCCCTGTGCTTAAGACACTCCCTGCTGCCCCGTCTGAGGGTGGCGA TTAAAGTTGCTTC

MSGGWMAQVGAWRTGALGLALLLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCRT SGLCVPLTWRCDRDLDCSDGSDEEECRIEPCTQKGQCPPPPGLPCPCTGVSDCSGGTDKKLRN CSRLACLAGELRCTLSDDCIPLTWRCDGHPDCPDSSDELGCGTNEILPEGDATTMGPPVTLES VTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLLLLSW LRAQERLRPLGLLVAMKESLLLSEQKTSLP

Important features:

Signal sequence:

Amino acids 1-30

Transmembrane domain:

Amino acids 231-248

N-glycosylation sites:

Amino acids 126-130;195-199;213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation sites:

Amino acids 3-9;10-16;26-32;30-36;112-118;166-172;212-218; 224-230;230-236;263-269

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 44-55

Leucine zipper pattern:

Amino acids 17-39

FIGURE 313

CGGACGCGTGGGCGTCCGGCGGAGGCCAGGAGGCGGAGGCGGGGCCAGCCTGGGCCCAGCCCACAC TACTGGGACAACTGTAACCGTTGCACCTGCCAGGAGAACAGGCAGTGGCATGGTGGATCCAGACATGATCAAAGC $\tt CATCAACCAGGGCAACTATGGCTGGCAGGCTGGGAACCACAGCGCCTTCTGGGGCATGACCCTGGA{\color{red}{TGA}}GGGCAT$ AGGGGAGGTGCTTCCCACAGCCTTCGAGGCCTCTGAGAAGTGGCCCAACCTGATTCATGAGCCTCTTGACCAAGG ${ t CAACTGTGCAGGCTCCTGGGCCTTCTCCACAGCAGCTGTGGCATCCGATCGTGTCTCAATCCATTCTCTGGGACA}$ TCTCGATGGTGCCTGGTGGTCCCTGCGTCGCCGAGGGGTGTCTGACCACTGCTACCCCTTCTCGGGCCGTGA ${ t ACGAGACGAGGCTGGCCCCCCCTGTATGATGCACAGCCGAGCCATGGGTCGGGGCAAGCGCCAGGCCAC}$ TGCCCACTGCCCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCTCGGCTCCAA CGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGGTGCATGAGGACTTCTT CCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGCCTTGGGAGGCCAGAGAGATACCGCCGGCATGGGAC $\verb|CCACTCAGTCAAGATCACAGGATGGGGAGGAGGACGCTGCCAGATGGAAGGACGCTCAAATACTGGACTGCGGC|\\$ CAACTCCTGGGGCCCAGCCTGGGGCGAGAGGGGCCACTTCCGCATCGTGCGCGGCGTCAATGAGTGCGACATCGA GAGCTTCGTGCTGGGCGTCTGGGGCCGCGTGGGCATGGAGGACATGGGTCATCACTGAGGCTGCGGGCACCACGC ${\tt GGGGTCCGGCCTGGGATCCAGGCTAAGGGCCGGGAAGAGGCCCCAATGGGGCGGTGACCCCAGCCTCGCCCGA}$ CAGAGCCCGGGGGCGCAGGGCGCCAGGGCGCTAATCCCGGCGGGGTTCCGCTGACGCAGCGCCCCGCCTGGG AGCCGCGGGCAGGCCGAGACCCCCAGACCTCCCAGTGGGGACGGGCCAGGCCTGGCCTGGGAAGAG CACAGCTGCAGATCCCAGGCCTCTGGCGCCCCCACTCAAGACTACCAAAGCCAGGACACCTCAAGTCTCCAGCCC ${\tt CAATACCCCAATCCCGTATTCTTTTTTTTTTTTTTAGACAGGGTCTTGCTCCGTTGCCCAGGTTGGAG}$ $\tt TGCCCAGGCTGGTTTCGAACTCCTGGGCTCAAGCGGTCCACCTGCCTCCCCAAAGTGCTGGGATTGCAGG$ CCAAAGTATTGATAAAAAAAA

MWRCPLGLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQDLCCRGRADDCA LPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQGCMHGGRIYPVLGTYWDNCNRCT CQENRQWHGGSRHDQSHQPGQLWLAGWEPQRLLGHDPG

Important features:

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300, 411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230, 269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 315

 $\texttt{CGGACGCGTGGGCCCTGGTGGGCCCAGCAAG} \underline{\textbf{ATG}} \texttt{GATCTACTGTGGATCCTGCCCTGT}$ GGCTTCTCCTGCTTGGGGGGCCTGCCTGAAGACCCAGGAACACCCCAGCTGCCCAGGAC $\tt CCAGGGAACTGGAAGCCAGCAAAGTTGTCCTCCTGCCCAGTTGTCCCGGAGCTCCAGGAAGTC$ CTGGGGAGAAGGGAGCCCAGGTCCTCAAGGGCCACCTGGACCACCAGGCAAGATGGGCCCCA AGGGTGAGCCAGGCCCCAGAAACTGCCGGGAGCTGTTGAGCCAGGGCGCCACCTTGAGCGGCT GGTACCATCTGTGCCTACCTGAGGGCCAGGGCCCTCCCAGTCTTTTGTGACATGGACACCGAGG GGGGCGGCTGGTGTTTCAGAGGCGCCAGGATGGTTCTGTGGATTTCTTCCGCTCTTGGT ACCAGCTTACTCTCCAGGGTAACTGGGAGCTGCGGGTAGAGCTTGGAAGACTTTAATGGTAACC GTACTTTCGCCCACTATGCGACCTTCCGCCTCCTCGGTGAGGTAGACCACTACCAGCTGGCAC ${\tt TGGGCAAGTTCTCAGAGGGCACTGCAGGGGGATTCCCTGAGCCTCCACAGTGGGAGGCCCTTTA}$ $\tt CCACCTATGACGCTGACCACGATTCAAGCAACAGCAACTGTGCAGTGATTGTCCACGGTGCCT$ GGTGGTATGCATCCTGTTACCGATCAAATCTCAATGGTCGCTATGCAGTGTCTGAGGCTGCCG $\verb|CCCACAAATATGGCATTGACTGGGCCTCAGGCCGTGGTGTGGGCCACCCCTACCGCAGGGTTC| \\$ ${\tt GGATGATGCTTCGA} \underline{{\tt TAG}} {\tt GGCACTCTGGCAGCCAGTGCCCTTATCTCCTGTACAGCTTCCGG}$ ATCGTCAGCCACCTTGCCTTTGCCAACCACCTCTGCTTGCCTGTCCACATTTAAAAATAAAAT CATTTTAGCCCTTTCA

FIGURE 316

MDLLWILPSLWLLLLGGPACLKTQEHPSCPGPRELEASKVVLLPSCPGAPGSPGEKGAPGPQG PPGPPGKMGPKGEPGPRNCRELLSQGATLSGWYHLCLPEGRALPVFCDMDTEGGGWLVFQRRQ DGSVDFFRSWSSYRAGFGNQESEFWLGNENLHQLTLQGNWELRVELEDFNGNRTFAHYATFRL LGEVDHYQLALGKFSEGTAGDSLSLHSGRPFTTYDADHDSSNSNCAVIVHGAWWYASCYRSNL NGRYAVSEAAAHKYGIDWASGRGVGHPYRRVRMMLR

Important features:

Signal peptide:

Amino acids 1-16

N-glycosylation site:

Amino acids 178-182

Glycosaminoglycan attachment site:

Amino acids 272-276

Tyrosine kinase phosphorylation site:

Amino acids 188-197

N-myristoylation sites:

Amino acids 16-22;89-95;144-150;267-273

Fibrinogen beta and gamma chains C-terminal domain signature:

Amino acids 242-255

FIGURE 317

 $\tt CCCAAGCCGAGCCGCGAGCCGCGGGGCCGGGGGTGTCGCGGGCCCAACCCCAGG{\color{red} \bf AT}$ $\underline{\mathbf{G}}$ CTCCCTGCGCCTCCTGCCTACCCGGGTCTCTACTGCTCTGGGCGCTGCTACTGTTGCTCTT GGGATCAGCTTCTCCTCAGGATTCTGAAGAGCCCGACAGCTACACGGAATGCACAGATGGCTA TGAGTGGGACCCAGACAGCCAGCACTGCCGGGATGTCAACGAGTGTCTGACCATCCCTGAGGC CTGCAAGGGGGAAATGAAGTGCATCAACCACTACGGGGGCTACTTGTGCCCTGCCCCGCTCCGC TGCCGTCATCAACGACCTACATGGCGAGGGACCCCCGCCACCAGTGCCTCCCGCTCAACACCC CAACCCCTGCCCACCAGGCTATGAGCCCGACGATCAGGACAGCTGTGTGGATGTGGACGAGTG TGCCCAGGCCCTGCACGACTGTCGCCCCAGCCAGGACTGCCATAACTTGCCTGGCTCCTATCA GTGCACCTGCCCTGATGGTTACCGCAAGATCGGGCCCGAGTGTGTGGACATAGACGAGTGCCG CTACCGCTACTGCCAGCACCGCTGCGTGAACCTGCCTGGCTCCTTCCGCTGCCAGTGCGAGCC GGGCTTCCAGCTGGGGCCTAACAACCGCTCCTGTGTTGATGTGAACGAGTGTGACATGGGGGC CCCATGCGAGCAGCGCTGCTTCAACTCCTATGGGACCTTCCTGTGTCGCTGCCACCAGGGCTA TGAGCTGCATCGGGATGGCTTCTCCTGCAGTGATATTGATGAGTGTAGCTACTCCAGCTACCT CTGTCAGTACCGCTGCGTCAACGAGCCAGGCCGTTTCTCCTGCCACTGCCCACAGGGTTACCA GCTGCTGGCCACGCCTCTGCCAAGACATTGATGAGTGTGAGTCTGGTGCGCACCAGTGCTC CGAGGCCCAAACCTGTGTCAACTTCCATGGGGGCTACCGCTGCGTGGACACCAACCGCTGCGT GGAGCCCTACATCCAGGTCTCTGAGAACCGCTGTCTCTGCCCGGCCTCCAACCCTCTATGTCG AGAGCAGCCTTCATCCATTGTGCACCGCTACATGACCATCACCTCGGAGCGGAGCGTGCCCGC TGACGTGTTCCAGATCCAGGCGACCTCCGTCTACCCCGGTGCCTACAATGCCTTTCAGATCCG TGCTGGAAACTCGCAGGGGGACTTTTACATTAGGCAAATCAACAACGTCAGCGCCATGCTGGT CCTCGCCCGGCCGGTGACGGCCCCCGGGAGTACGTGCTGGACCTGGAGATGGTCACCATGAA TTCCCTCATGAGCTACCGGGCCAGCTCTGTACTGAGGCTCACCGTCTTTGTAGGGGCCTACAC GGGGCAGAATGAGAAAGGCAATAAAGGGAGAAAGAAAGTCCTGGTGGCTGAGGTGGGCGGGTC AATGGGGGTCTCTATATGTTCAGGCCCAGGGGCCCCCATTGACAGGAGCTGGGAGCTCTGCAC CCAGAGATTTGGACTTGGCTGGCTTGCAGGGGTCCTAAGAAACTCCACTCTGGACAGCGCCAG GAGGCCCTGGGTTCCATTCCTAACTCTGCCTCAAACTGTACATTTGGATAAGCCCTAGTAGTT

FIGURE 318

MLPCASCLPGSLLLWALLLLLGSASPQDSEEPDSYTECTDGYEWDPDSQHCRDVNECLTIPE
ACKGEMKCINHYGGYLCLPRSAAVINDLHGEGPPPPVPPAQHPNPCPPGYEPDDQDSCVDVDE
CAQALHDCRPSQDCHNLPGSYQCTCPDGYRKIGPECVDIDECRYRYCQHRCVNLPGSFRCQCE
PGFQLGPNNRSCVDVNECDMGAPCEQRCFNSYGTFLCRCHQGYELHRDGFSCSDIDECSYSSY
LCQYRCVNEPGRFSCHCPQGYQLLATRLCQDIDECESGAHQCSEAQTCVNFHGGYRCVDTNRC
VEPYIQVSENRCLCPASNPLCREQPSSIVHRYMTITSERSVPADVFQIQATSVYPGAYNAFQI
RAGNSQGDFYIRQINNVSAMLVLARPVTGPREYVLDLEMVTMNSLMSYRASSVLRLTVFVGAYTF

Important features:

Signal sequence:

Amino acids 1-25

N-glycosylation sites:

Amino acids 198-202;394-398

N-myristoylation sites:

Amino acids 76-82;145-151;182-188;222-228;290-296;305-311; 371-377;381-387

Aspartic acid and asparagine hydroxylation sites:

amino acids 140-152;177-189;217-229;258-270

FIGURE 319

TCAAAGGTGCGTACCCAGCTGTGCCCGACACCATGTACCTGCCCCTGGCCACCTCCCCGATGC CCGCTGGGAGTACCCCTGGTGCTGGATGGCTGTGGCTGCCGGGTATGTGCACGGCGGCTG GCAGGACCCGGTGGCCGGGGGCCCTGTGCCTCTTGGCAGAGGACGACAGCAGCTGTGAGGTG AACGGCCGCCTGTATCGGGAAGGGGAGACCTTCCAGCCCCACTGCAGCATCCGCTGCCGCTGC GAGGACGGCGGCTTCACCTGCGTGCCGCTGTGCAGCGAGGATGTGCGGCTGCCCAGCTGGGAC TGCCCCCACCCAGGAGGGTCGAGGTCCTGGGCAAGTGCTGCCCTGAGTGGGTGTGCGGCCAA GGAGGGGGACTGGGGCCCAGCCCCTTCCAGCCCAAGGACCCCAGTTTTCTGGCCTTGTCTCT TCCCTGCCCCTGGTGTCCCCTGCCCAGAATGGAGCACGGCCTGGGGGACCCTGCTCGACCACC TGTGGGCTGGGCATGGCCACCCGGGTGTCCAACCAGAACCGCTTCTGCCGACTGGAGACCCAG CGCCGCCTGTGCCAGGCCCTGCCCACCCTCCAGGGGTCGCAGTCCACAAAACAGTGCC $\verb|TTCTAG| AGCCGGGCTGGGAATGGGGACACGGTGTCCACCATCCCCAGCTGGTGGCCCTGTGCC| \\$ TGGGCCCTGGGCTGATGGAAGATGGTCCGTGCCCAGGCCCTTGGCTGCAGGCAACACTTTAGC TGGCAGAGGTGCAAGACCTAGTCCCCTTTCCTCTAACTCACTGCCTAGGAGGCTGGCCAAGGT GTCCAGGGTCCTCTAGCCCACTCCCTGCCTACACACAGCCTATATCAAACATGCACACGGG CGAGCTTTCTCCCGACTTCCCCTGGGCAAGAGATGGGACAAGCAGTCCCTTAATATTGAGGC TGCAGCAGGTGCTGGGCTGGACTGGCCATTTTTCTGGGGGGTAGGATGAAGAGAAGGCACACAG AGATTCTGGATCTCCTGCTGCCTTTTCTGGAGTTTGTAAAATTGTTCCTGAATACAAGCCTAT GCGTGA

MRGTPKTHLLAFSLLCLLSKVRTQLCPTPCTCPWPPPRCPLGVPLVLDGCGCCRVCARRLGEP CDQLHVCDASQGLVCQPGAGPGGRGALCLLAEDDSSCEVNGRLYREGETFQPHCSIRCRCEDG GFTCVPLCSEDVRLPSWDCPHPRRVEVLGKCCPEWVCGQGGGLGTQPLPAQGPQFSGLVSSLP PGVPCPEWSTAWGPCSTTCGLGMATRVSNQNRFCRLETQRRLCLSRPCPPSRGRSPQNSAF

Important features:

Signal sequence:
Amino acids 1-23

N-myristoylation sites:

Amino acids 3-9;49-55;81-87;85-91;126-132;164-170;166-172; 167-173;183-189;209-215

Insulin-like growth factor binding proteins signature:

Amino acids 49-65

von Willebrand C1 domain:

Amino acids 107-124

Thrombospondin 1 Homology Block:

Amino acids 201-216

IGF binding protein site:

Amino acids 49-58

FIGURE 321

FIGURE 322

 ${\tt MMGLSLASAVLLASLLSLHLGTATRGSDISKTCCFQYSHKPLPWTWVRSYEFTSNSCSQRAVIFTTKRGKKVCTHPRKKWVQKYISLLKTPKQL}$

Important features:

Signal peptide:

amino acids 1-23

N-myristoylation sites.

amino acids 3-9, 26-32

Amidation site.

amino acids 68-72

Small cytokines (intecrine/chemokine).

amino acids 23-88

FIGURE 323

 ${ t ACCGAGCCGAGCGGACCGAAGGCGCCCGAG}$ ${\tt TGCCCAGCCCCTCCTGGCCTGCTGGCAGCCCATCCTCCTGCTGGTGCTGGGCTCAGTGCTGTCAGGCTCGGCCA}$ CGGGCTGCCCGCCCGCTGCGAGTGCTCCGCCCAGGACCGCGCTGTGCTGTGCCACCGCAAGTGCTTTGTGGCAG TCCCCGAGGGCATCCCCACCGAGACGCGCCTGCTGGACCTAGGCAAGAACCGCATCAAAACGCTCAACCAGGACG $A {\tt GTTCGCCAGCTTCCCGCACCTGGAGGAGCTGGAGCTCAACGAGAACATCGTGAGCGCCGTGGAGCCCGGCGCCCT}$ TCAACAACCTCTTCAACCTCCGGACGCTGGGTCTCCGCAGCAACCGCCTGAAGCTCATCCCGCTAGGCGTCTTCA $\tt CTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCGAGAACAAGATCGTTATCCTACTGGACTACATGTTTCAGG$ GACTCAAGGTCTTGGAGATCTCCCACTGGCCCTACTTGGACACCATGACACCCAACTGCCTCTACGGCCTCAACC TGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCCCTACCTGGCCGTCCGCCACCTAGTCTATCTCC GCTTCCTCAACCTCTCCTACAACCCCATCAGCACCATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGG ${\tt AGATCCAGCTGGTGGGCGGGCAGCTGGCGTGGAGCCCTATGCCTTCCGCGGCCTCAACTACCTGCGCGTGC}$ ${ t TCAATGTCTCTGGCAACCAGCTGACCACACTGGAGGAATCAGTCTTCCACTCGGTGGGCAACCTGGAGACACTCA}$ TCCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCCTGTGGGTGTTCCGGCGCCCGCTGGCGGCTCAACTTCA ${\tt ACCGGCAGCCCACGTGCGCCCGAGTTTGTCCAGGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTAC}$ TGGTCTCAGCCAAGAGCAATGGGCGGCTCACAGTCTTCCCTGATGGCACGCTGGAGGTGCGCTACGCCCAGGTAC GCAGCTACTCGCCCGACTGGCCCCATCAGCCCAACAAGACCTTCGCTTTCATCTCCAACCAGCCGGGCGAGGGAG AGGCCAACAGCACCCGCGCCACTGTGCCTTTCCCCTTCGACATCAAGACCCTCATCATCGCCACCACCATGGGCT TCATCTCTTTCCTGGGCGTCGTCCTCTTCTGCCTGGTGCTGTTTCTCTGGAGCCGGGGCAAGGGCAACACAA AGCACAACATCGAGATCGAGTATGTGCCCCGAAAGTCGGACGCAGGCATCAGCTCCGCCGACGCCCCCCCAAGT ${\tt TCCGTCCCTGCTGCCCCCGCCAGCCTCACCACCTGCCCTCCTTCTACCAGGACCTCAGAAGCCCAGACCTGG}$ TCAATAAAAAGTTACGAACTTTCTCTGTAACTTGGGTTTCAATAATTATGGATTTTTATGAAAACTTGAAATAA

FIGURE 324

MQVSKRMLAGGVRSMPSPLLACWQPILLIVLGSVLSGSATGCPPRCECSAQDRAVLCHRKCFVAVPEGIPTETRL LDLGKNRIKTLNQDEFASFPHLEELELNENIVSAVEPGAFNNLFNLRTLGLRSNRLKLIPLGVFTGLSNLTKQDI SENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRAFSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHL NINAIRDYSFKRLYRLKVLEISHWPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFLNLSYNPIS TIEGSMLHELLRLQEIQLVGGQLAVVEPYAFRGLNYLRVLNVSGNQLTTLEESVFHSVGNLETLILDSNPLACDC RLLWVFRRRWRLNFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQVFVDEGHTVQFVCRADG DPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLEVRYAQVQDNGTYLCIAANAGGNDSMPAHLHVRSYSPDWPHQP NKTFAFISNQPGEGEANSTRATVPFPFDIKTLIIATTMGFISFLGVVLFCLVLLFLWSRGKGNTKHNIEIEYVPR KSDAGISSADAPRKFNMKMI

Important features:

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345, 492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353, 607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143, 262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 325

GAGATGCGGGATGGAGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAACGGAG AGGAGGTGTGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGAGTAGG AAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGAGAAAAGAC ACAGAGAGAGAGAGAGAGAGAGAGGTGGGTTTGAAGGGCGGATCTCAGTCCCTGGCTGCTT TGGCATTTGGGGAACTGGGACTCCCTGTGGGGGAGGAGAGGGAAAGCTGGAAGTCCTGGAGGGAC AGGGTCCCAGAAGGAGGGACAGAGGAGGCTGAGAGAGGGGGGCAGGGGGTCC $\tt CTCGGAGGCCTCCTGGGGAT{G}GGGCTGCAGCTCGTCTGAGCGCCCCTCGAGCGCTGGTACTC$ TGGGCTGCACTGGGGCAGCAGCTCACATCGGACCAGCACCTGACCCCGAGGACTGGTGGAGC TACAAGGATAATCTCCAGGGAAACTTCGTGCCAGGGCCTCCTTTCTGGGGCCTGGTGAATGCA GCGTGGAGTCTGTGTGCTGTGGGGAAGCGGCAGAGCCCCGTGGATGTGGAGCTGAAGAGGGTT CTTTATGACCCCTTTCTGCCCCCATTAAGGCTCAGCACTGGAGGAGAAGCTCCGGGGAACC TTGTACAACACCGGCCGACATGTCTCCTTCCTGCCTGCACCCCGACCTGTGGTCAATGTGTCT GGAGGTCCCCTCCTTTACAGCCACCGACTCAGTGAACTGCGGCTGCTGTTTGGAGCTCGCGAC GGAGCCGGCTCGGAACATCAGATCAACCACCAGGGCTTCTCTGCTGAGGTGCAGCTCATTCAC TTCAACCAGGAACTCTACGGGAATTTCAGCGCTGCCTCCCGCGGCCCCAATGGCCTGGCCATT $\tt CTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAACCCATTCCTCAGTCGCCTCCTTAACCGC$ GACACCATCACTCGCATCTCCTACAAGAATGATGCCTACTTTCTTCAAGACCTGAGCCTGGAG CTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGGGCTCTCTCAGCACCCCGCCCTGC TCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAATATCACCTCCCTTCAGATGCAC TCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCTTCCAGAGCCTCAGCGGTAACAGC CGGCCCTGCAGCCCTTGGCCCACAGGGCACTGAGGGGCAACAGGGACCCCCGGCACCCCGAG AGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGATGGTGTCCCCCATGGTCGC**TGA**GAC TCCCCTTCGAGGATTGCACCCGCCCGTCCTAAGCCTCCCCACAAGGCGAGGGGAGTTACCCCT AAAACAAAGCTATTAAAGGGACAGAATACTTA

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLCA VGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPLLY SHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSLFVN VASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSETVTW ILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPERRCRGP NYRLHVDGVPHGR

Important features:

Signal peptide:

Amino acids 1-23

Transmembrane domain:

Amino acids 177-199

N-glycosylation sites:

Amino acids 118-122;170-174;260-264

Eukaryotic-type carbonic anhydrases proteins:

Amino acids 222-271;128-165;45-93

FIGURE 327

 ${\tt GGACTAATCTGTGGGAGCAGTTTATTCCAGTATCACCCAGGGTGCAGCCACACCAGGACTGTTGAAGGGTGTT}$ $\verb|TTTTTTTTTTAAATGTAATACCTCCTCATCTTTTCTTCTTACACAGTGTCTGAGAACATTTACATTATAGATAA|$ GTAGTACATGGTGGATAACTTCTACTTTTAGGAGGACTACTCTCTTCTGACAGTCCTAGACTGGTCTTCTACACT AAGACACCACATCGCACTGAAGAATATGATGCTGAAGGATATGGAAGACACAGATGATGATGATGATGATGATGATGATGATGATG ATGATGATGAGGACAACTCTCTTTTTCCAACAAGAGAGCCAAGAAGCCATTTTTTCCATTTGATCTGTTTCCAA TGTGTCCATTTGGATGTCAGTGCTATTCACGAGTTGTACATTGCTCAGATTTAGGTTTGACCTCAGTCCCAACCA ACATTCCATTTGATACTCGAATGCTTGATCTTCAAAACAATAAAATTAAGGAAATCAAAGAAAATGATTTTAAAG GACTCACTTCACTTTATGGTCTGATCCTGAACAACAACAAGCTAACGAAGATTCACCCAAAAGCCTTTCTAACCA CAAAGAAGTTGCGAAGGCTGTATCTGTCCCACAATCAACTAAGTGAAATACCACTTAATCTTCCCAAATCATTAG TTTTGGAAATGAGTGCAAACCCTCTTGATAATAATGGGATAGAGCCAGGGGCATTTGAAGGGGTGACGGTGTTCC ATATCAGAATTGCAGAAGCAAAACTGACCTCAGTTCCTAAAGGCTTACCACCAACTTTATTGGAGCTTCACTTAG ATTATAAAAATTTCAACAGTGGAACTTGAGGATTTTAAACGATACAAAGAACTACAAAGGCTGGGCCTAGGAA ACAACAAAATCACAGATATCGAAAATGGGAGTCTTGCTAACATACCACGTGTGAGAGAAATACATTTGGAAAACA TTGCAAGAGTGGGAGTAAATGACTTCTGTCCAACAGTGCCAAAGATGAAGAAATCTTTATACAGTGCAATAAGTT TATTCAACAACCCGGTGAAATACTGGGAAATGCAACCTGCAACATTTCGTTGTGTTTTTGAGCAGAATGAGTGTTC ${\tt AGCTTGGGAACTTTGGAATG}$ TAATTAGTAATTTGGTAATGTCCATTTAATATAAGATTCAAAAATCCCTACAT ACTGACTTATTTTATGACAAGAAATTTCAACGGAATTTTGCCAAACTATTGATACATAAGGGGTTGAGAGAAACA AGCATCTATTGCAGTTTCCTTTTTGCGTACAAATGATCTTACATAAATCTCATGCTTGACCATTCCTTTCTTCAT AACAAAAAGTAAGATATTCGGTATTTAACACTTTGTTATCAAGCACATTTTAAAAAGAACTGTACTGTAAATGG AATGCTTGACTTAGCAAAATTTGTGCTCTTTCATTTGCTGTTAGAAAAACAGAATTAACAAAGACAGTAATGTGA AGAGTGCATTACACTATTCTTATTCTTTAGTAACTTGGGTAGTACTGTAATATTTTTTAATCATCTTAAAGTATGA TTTGATATATCTTATTGAAATTACCTTATCATGTCTTAGAGCCCGTCTTTATGTTTAAAACTAATTTCTTAAAA TAAAGCCTTCAGTAAATGTTCATTACCAACTTGATAAATGCTACTCATAAGAGCTGGTTTGGGGGCTATAGCATAT GCTTTTTTTTTTTTAATTACTTGATTAAAAATCTCTGTAAAAACGTGTAGTGTTTCATAAAATCTGTAACT CGCATTTTAATGATCCGCTATTATAAGCTTTTAATAGCATGAAAATTGTTAGGCTATATAACATTGCCACTTCAA AAATTGTCTCTTCAAATACGTATGGACTGGATAACTCTGAGAAACACATCTAGTATAACTGAATAAGCAGAGCAT CAAATTAAACAGACAGAAACCGAAAGCTCTATATAAATGCTCAGAGTTCTTTATGTATTTCTTATTGGCATTCAA CATATGTAAAATCAGAAAACAGGGAAATTTTCATTAAAAATATTGGTTTGAAAT

FIGURE 328

Important features:

Signal sequence.

amino acids 1-15

N-glycosylation site.

amino acids 281-285

N-myristoylation sites.

amino acids 129-135, 210-216, 214-220, 237-243, 270-276, 282-288

Leucine zipper pattern.

amino acids 154-176

FIGURE 329

TCCGCAGGTTCCCGCGGACTTGGGGGCCCCGCTGAGCCCCGGCGCCCCGCAGAAGACTTGTGT $\tt TTGCCTCCTGCAGCCTCAACCCGGAGGGCCAGCGAGGGCCTACCACC \underline{\textbf{ATG}} \texttt{ATCACTGGTGTTT}$ GCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCGATGGCCAGTGTCCGGTCGACCGCAGCCTGCT GAAGTTGAAAATGGTGCAGGTCGTGTTTCGACACGGGGCTCGGAGTCCTCTCAAGCCGCTCCC GCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCCAAACTCAGTTTGA TTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATATTCTCCTTACGACTCTCAATACCA TGAGACCACCCTGAAGGGGGGCATGTTTGCTGGGCAGCTGACCAAGGTGGGCATGCAGCAAAT GTTTGCCTTGGGAGAGACTGAGGAAGAACTATGTGGAAGACATTCCCTTTCTTCACCAAC CTTCAACCCACAGGAGGTCTTTATTCGTTCCACTAACATTTTTCGGAATCTGGAGTCCACCCG TTGTTTGCTGGCTGGGCTTTTCCAGTGTCAGAAAGAAGACCCATCATCATCACACACTGATGA AGCAGATTCAGAAGTCTTGTATCCCAACTACCAAAGCTGCTGGAGCCTGAGGCAGAGAACCAG AGGCCGGAGGCAGACTGCCTCTTTACAGCCAGGAATCTCAGAGGATTTGAAAAAGGTGAAGGA CAGGATGGGCATTGACAGTAGTGATAAAGTGGACTTCTTCATCCTCCTGGACAACGTGGCTGC CGAGCAGGCACACCTCCCAAGCTGCCCCATGCTGAAGAGATTTGCACGGATGATCGAACA GAGAGCTGTGGACACATCCTTGTACATACTGCCCAAGGAAGACAGGGAAAGTCTTCAGATGGC AGTAGGCCCATTCCTCCACATCCTAGAGAGCCAACCTGCTGAAAGCCATGGACTCTGCCACTGC CCCCGACAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATGTGACCTTCATACCGCTCTT AATGACCCTGGGGATTTTTGACCACAAATGGCCACCGTTTGCTGTTGACCTGACCATGGAACT TTACCAGCACCTGGAATCTAAGGAGTGGTTTGTGCAGCTCTATTACCACGGGAAGGAGCAGGT GCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGTTCTTGAATGCCATGTCAGTTTA TACCTTAAGCCCAGAAAATACCATGCACTCTGCTCTCAAACTCAGGTGATGGAAGTTGGAAA TGAAGAG<mark>TAA</mark>CTGATTTATAAAAGCAGGATGTGTTGATTTTAAAATAAAGTGCCTTTATACAATG

TOPECTE LETGOL

FIGURE 330

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGARSPLKPLPLEEQVE WNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQLTKVGMQQMFALGERLRKNYVEDIPFL SPTFNPQEVFIRSTNIFRNLESTRCLLAGLFQCQKEGPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQ PGISEDLKKVKDRMGIDSSDKVDFFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMA VGPFLHILESNLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEWFVQ LYYHGKEQVPRGCPDGLCPLDMFLNAMSVYTLSPEKYHALCSQTQVMEVGNEE

Important features:

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 331

CGAGGGCTTTTCCGGCTCCGGAATGCCACATGTGGGAATCCCAGTCTTGTTGGCTACAACATTTTTCCCTTTCCT AGCAGGGCACTCTCACTCAGGGTGACCAGCTCCTTGCCTCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGAT CCTGGAGAGCCTGGGGAGGGCCTGCCTAACAAGCTTTCAAAAAACAGGAGCGACTTCCACTGGGCTGGGATAAG TTTAACCTCTCTGGGAGATGAAAACGATGGCTTAAGGGGCCAGAAATAGAGATGCTTTGTAAAATAAAATTTTAA AAAAAGCAAGTATTTTATAGCATAAAGGCTAGAGACCAAAATAGATAACAGGATTCCCTGAACATTCCTAAGAGG ${\tt GAGAAAGTATGTTAAAAATAGAAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAAACCAGG{\tt ATG}{\tt GGGACC}$ $\tt CTGGGTCAGGCCAGCCTCTTTGCTCCTCCCGGAAATTATTTTTGGTCTGACCACTCTGCCTTGTGTTTTTGCAGAA$ TCATGTGAGGGCCAACCGGGGAAGGTGGAGCAGATGAGCACACAGGAGCCGTCTCCTCACCGCCGCCCCTCTC AGCATGGAACAGAGGCAGCCCTGGCCCCGGGCCCTGGAGGTGGACAGCCGCTCTGTGGTCCTCAGTGGTC TGGGTGCTGCTCGCCCCCAGCAGCCGCATGCCTCAGTTCAGCACCTTCCACTCTGAGAATCGTGACTGGACC TTCAACCACTTGACCGTCCACCAAGGGACGGGGGCCGTCTATGTGGGGGGCCATCAACCGGGTCTATAAGCTGACA GGCAACCTGACCATCCAGGTGGCTCATAAGACAGGGCCAGAAGAGGACAACAAGTCTCGTTACCCGCCCCTCATC GTGCAGCCCTGCAGCGAAGTGCTCACCCTCACCAACAATGTCAACAAGCTGCTCATCATTGACTACTCTGAGAAC CGCCTGCTGGCCTGTGGGAGCCTCTACCAGGGGGTCTGCAAGCTGCTGCGGCTGGATGACCTCTTCATCCTGGTG GAGCCATCCCACAGAAGAAGGAGCACTACCTGTCCAGTGTCAACAAGACGGGCACCATGTACGGGGTGATTGTGCGC TCTGAGGGTGAGGATGGCAAGCTCTTCATCGGCACGGCTGTGGATGGGAAGCAGGATTACTTCCCGACCCTGTCC AGCCGGAAGCTGCCCCGAGACCTGAGTCCTCAGCCATGCTCGACTATGAGCTACACAGCGATTTTGTCTCCTCT $\tt CTCATCAAGATCCCTTCAGACACCCTGGCCCTGGTCTCCCACTTTGACATCTTCTACATCTACGGCTTTGCTAGT$ GGGGGCTTTGTCTACTTCTCACTGTCCAGCCCGAGACCCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTC TTCTACACCTCACGCATCGTGCGGCTCTGCAAGGATGACCCCAAGTTCCACTCATACGTGTCCCTGCCCTTCGGC TGCACCCGGGCCGGGTGGAATACCGCCTCCTGCAGGCTGCTTACCTGGCCAAGCCTGGGGGACTCACTGGCCCAG GCCTTCAATATCACCAGCCAGGACGATGTACTCTTTGCCATCTTCTCCAAAGGGCAGAAGCAGTATCACCACCCG $\tt CCCGATGACTCTGCCCTGTGCCCTTCCCTATCCGGGCCATCAACTTGCAGATCAAGGAGCGCCTGCAGTCCTGC$ ${\tt TACCAGGGCGAGGGCAACCTGGAGCTCAACTGGCTGCTGGGGAAGGACGTCCAGTGCACGAAGGCGCCTGTCCCC}$ ATCGATGATAACTTCTGTGGACTGGACATCAACCAGCCCCTGGGAGGCTCAACTCCAGTGGAGGGCCTGACCCTG TACACCACCAGCAGGACCGCATGACCTCTGTGGCCTCCTACGTTTACAACGGCTACAGCGTGGTTTTTTGTGGGG ACTAAGAGTGGCAAGCTGAAAAAAGGTAAGAGTCTATGAGTTCAGATGCCCAATGCCATTCACCTCCTCAGCAAA GAGTCCCTCTTGGAAGGTAGCTATTGGTGGAGATTTAACTATAGGCAACTTTATTTTCTTGGGGAACAAAGG**TGA** AATGGGGAGGTAAGAAGGGGTTAATTTTGTGACTTAGCTTCTAGCTACTTCCTCCAGCCATCAGTCATTGGGTAT GTAAGGAATGCAAGCGTATTTCAATATTTCCCAAACTTTAAGAAAAACTTTAAGAAGGTACATCTGCAAAAGCAAA

FIGURE 332

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWPR
ALEVDSRSVVLLSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRVYK
LTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLACGSLYQG
VCKLLRLDDLFILVEPSHKKEHYLSSVNKTGTMYGVIVRSEGEDGKLFIGTAVDGKQDYFPTL
SSRKLPRDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFASGGFVYFLTVQPE
TPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKPGDSLAQ
AFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGNLELNWLL
GKDVQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNGYSVVFVGT
KSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWRFNYRQLYFLGEQR

Important features:

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387, 384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 333

GCTGAGTCTGCTGCTGCTGCTGCTCCAGCCTGTAACCTGTGCCTACACCACGCCAGG $\tt CCCCCCAGAGCCCTCACCACGCTGGGCGCCCCCAGAGCCCACACCATGCCGGGCACCTACGC$ TCCCTCGACCACTCAGTAGTCCCAGCACCCAGGGCCTGCAAGAGCAGGCACGGGCCCTGAT GCGGGACTTCCCGCTCGTGGACGGCCACAACGACCTGCCCCTGGTCCTAAGGCAGGTTTACCA GAAAGGGCTACAGGATGTTAACCTGCGCAATTTCAGCTACGGCCAGACCAGCCTGGACAGGCT TAGAGATGGCCTCGTGGGCCCCAGTTCTGGTCAGCCTATGTGCCATGCCAGACCCAGGACCG GGATGCCCTGCGCCTCACCCTGGAGCAGATTGACCTCATACGCCGCATGTGTGCCTCCTATTC CGGTGTAGAGGGTGGCCACTCGCTGGACAATAGCCTCTCCATCTTACGTACCTTCTACATGCT GGGAGTGCGCTACCTGACGCTCACCCACACCTGCAACACCCTGGGCAGAGAGCTCCGCTAA AGAAATGAACCGCCTGGGCATGATGGTAGACTTATCCCATGTCTCAGATGCTGTGGCACGGCG GGCCCTGGAAGTGTCACAGGCACCTGTGATCTTCTCCCACTCGGCTGCCCGGGGTGTGTGCAA CAGTGCTCGGAATGTTCCTGATGACATCCTGCAGCTTCTGAAGAAGAACGGTGGCGTCGTGAT GGTGTCTTTGTCCATGGGAGTAATACAGTGCAACCCATCAGCCAATGTGTCCACTGTGGCAGA TCACTTCGACCACATCAAGGCTGTCATTGGATCCAAGTTCATCGGGGATTGGTGGAGATTATGA TGGGGCCGGCAAATTCCCTCAGGGGCTGGAAGACGTGTCCACATACCCGGTCCTGATAGAGGA GTTGCTGAGTCGTGGCTGGAGTGAGGAAGAGCTTCAGGGTGTCCTTCGTGGAAACCTGCTGCG GGTCTTCAGACAAGTGGAAAAGGTACAGGAAGAAAACAAATGGCAAAGCCCCTTGGAGGACAA GTTCCCGGATGAGCAGCTGAGCAGTTCCTGCCACTCCGACCTCTCACGTCTGCGTCAGAGACA GAGTCTGACTTCAGGCCAGGAACTCACTGAGATTCCCATACACTGGACAGCCAAGTTACCAGC CAAGTGGTCAGTCTCAGAGTCCTCCCCCCACATGGCCCCAGTCCTTGCAGTTGTGGCCACCTT $\tt CCCAGTCCTTATTCTGTGGCTC{\color{red}{\textbf{TGA}}} TGACCCAGTTAGTCCTGCCAGATGTCACTGTAGCAAGC$ GGACATAG

MPGTYAPSTTLSSPSTQGLQEQARALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYGQ
TSLDRLRDGLVGAQFWSAYVPCQTQDRDALRLTLEQIDLIRRMCASYSELELVTSAKALNDTQ
KLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTLTHTCNTPWAESSAKGVHSFYNNISGLTDF
GEKVVAEMNRLGMMVDLSHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQLLKK
NGGVVMVSLSMGVIQCNPSANVSTVADHFDHIKAVIGSKFIGIGGDYDGAGKFPQGLEDVSTY
PVLIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQSPLEDKFPDEQLSSSCHSDLS
RLRQRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHMAPVLAVVATFPVLILWL

Important features:

N-glycosylation sites.

amino acids 58-62, 123-127, 182-186, 273-277

N-myristoylation sites.

amino acids 72-78, 133-139, 234-240, 264-270, 334-340, 389-395

Renal dipeptidase active site.

amino acids 134-157

FIGURE 335

CCCAGAAGTTCAAGGGCCCCCGGCCTCCTGCCGCTCCTGCCCGGGGACCCTCGACCTCCTCAG ${\tt AGCAGCCGGCTGCCCCGGGAAG} \textbf{ATG} \textbf{GCGAGGAGGAGCCGCCACCGCCTCCTGCTGCT}$ GCTGCGCTACCTGGTCGCCCTGGGCTATCATAAGGCCTATGGGTTTTCTGCCCCAAAAGA CCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTTAGCCTGCAAAAACCCCCAAAGAA GACTGTTTCCTCCAGATTAGAGTGGAAGAAACTGGGTCGGAGTGTCTCCTTTGTCTACTATCA ACAGACTCTTCAAGGTGATTTTAAAAATCGAGCTGAGATGATAGATTTCAATATCCGGATCAA AAATGTGACAAGAAGTGATGCGGGGAAATATCGTTGTGAAGTTAGTGCCCCATCTGAGCAAGG CCAAAACCTGGAAGAGGATACAGTCACTCTGGAAGTATTAGTGGCTCCAGCAGTTCCATCATG TGAAGTACCCTCTTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGACAAAGAAG GAATCCAGCTCCTGAATACACATGGTTTAAGGATGGCATCCGTTTGCTAGAAAATCCCAGACT TGGCTCCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAACTCTGCAATTTAA TACTGTTTCCAAACTGGACACTGGAGAATATTCCTGTGAAGCCCGCAATTCTGTTGGATATCG CAGGTGTCCTGGGAAACGAATGCAAGTAGATGATCTCAACATAAGTGGCATCATAGCAGCCGT AGTAGTTGTGGCCTTAGTGATTTCCGTTTGTGGCCTTGGTGTATGCTATGCTCAGAGGAAAGG CTACTTTCAAAAGAAACCTCCTTCCAGAAGAGTAATTCTTCATCTAAAGCCACGACAATGAG ACGAGGTCAGGAGTTC \underline{TAG} ACCAGTCTGGCCAATATGGTGAAACCCCATCTCTACTAAAATACAAAAATTAGCTGGGCATGGTGCCTGCCTGCAGTTCCAGCTGCTTGGGAGACAGGAGAATC ACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGCCACTGCAGTCCAGCCTGGG TGTAGAATTCTTACAATAAATATAGCTTGATATTC

MARRSRHRLLLLLRYLVVALGYHKAYGFSAPKDQQVVTAVEYQEAILACKTPKKTVSSRLEW
KKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEEDTV
TLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKDGIRLLENPRLGSQSTNSS
YTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVVALVIS
VCGLGVCYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKAAAGGSRGQEF

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

GGAGCCGCCTGGGTGTCAGCGGCTCGGCTCCCGCGCACGCTCCGGCCGCAGCCTCGG CCCTCGCGCCCCCTCGCGGGCCCAGCTGCAACTGCACTTGCCCGCCAACCGGTTGCAGGCGG TGGAGGGAGGGAAGTGGTGCTTCCAGCGTGGTACACCTTGCACGGGGAGGTGTCTTCATCCC ${\tt TGTCCTACATCAATGGGGTCACAACAAGCAAACCTGGAGTATCCTTGGTCTACTCCATGCCCT}$ CCCGGAACCTGTCCCTGCGGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCCTACAGCTGCT CCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCACAGCATCAAAACCTTAGAACTCA ATGTACTGGTTCCTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCCATGTGGGGGGCAA ACGTGACCCTGAGCTGCCAGTCTCCAAGGAGTAAGCCCGCTGTCCAATACCAGTGGGATCGGC AGCTTCCATCCTTCCAGACTTTCTTTGCACCAGCATTAGATGTCATCCGTGGGTCTTTAAGCC TCACCAACCTTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCCACAATGAGGTGGGCA CTGCCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCCTGGAGCTGCAGTGGTTGCTGGAG $\tt CTGTTGTGGGTACCCTGGTTGGACTGGGGTTGCTGGGCTGGTCCTCTTGTACCACCGCC$ GGGGCAAGGCCCTGGAGGAGCCAATGATATCAAGGAGGATGCCATTGCTCCCCGGACCC TGCCCTGGCCCAAGAGCTCAGACACAATCTCCAAGAATGGGACCCTTTCCTCTGTCACCTCCG CACGAGCCCTCCGGCCACCCCATGGCCCTCCCAGGCCTGGTGCATTGACCCCCACGCCCAGTC TCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCCACGACAGATGGGGCCCACCCTCAACCAA ${\tt TGGTGCCTGCCCAGAGTCAAGCTGGCTCTCTGGTA} \underline{{\tt TGA}} {\tt TGACCCCACCACTCATTGGCTAAAG}$ GATTTGGGGTCTCCTTTCCTATAAGGGTCACCTCTAGCACAGAGGCCTGAGTCATGGGAAAG AGTCACACTCCTGACCCTTAGTACTCTGCCCCCACCTCTCTTTACTGTGGGAAAACCATCTCA GTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAGAGGAAGTGGATCTGGAATTGGGAGGAGC CTCCACCCACCCTGACTCCTTATGAAGCCAGCTGCTGAAATTAGCTACTCACCAAGAGT GAGGGGCAGAGACTTCCAGTCACTGAGTCTCCCAGGCCCCCTTGATCTGTACCCCACCCCTAT GTTAGGTTTTACTGGGGCAGAGGATAGGGAATCTCTTATTAAAACTAACATGAAATATGTGTT GTTTTCATTTGCAAATTTAAATAAAGATACATAATGTTTGTATGAAAAA

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSSS QPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDSGPYSC SVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQWDR QLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGPGAAVVAG AVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTLSSVTS ARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSRMGAVPV MVPAQSQAGSLV

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262, 262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

 $\verb|CCCTTCTC| \textbf{ATG} | \texttt{GGGACTTGGGGGGCACAAAGCGTCCCGACCGCCTCGAGCGCTCGAGCGGCGCTATCCAGGAGCCA}| \\$ GGACAGCGTCGGGAACCAGACCATGGCTCCTGGACCCCAAGATCCTTAAGTTCGTCGTCTTCATCGTCGCGGTTC AACAGAGGCGCAGCCTCAAGGAGGAGGAGTGTCCAGCAGGATCTCATAGATCAGAATATACTGGAGCCTGTAACC ${\tt CGTGCACAGAGGGTGTGGATTACACCATTGCTTCCAACAATTTGCCTTCTTGCCTGCTATGTACAGTTTGTAAAT}$ CAGGTCAAACAAATAAAAGTTCCTGTACCACGACCAGAGACACCGTGTGTCAGTGTGAAAAAGGAAGCTTCCAGG ATAAAAACTCCCCTGAGATGTGCCGGACGTGTAGAACAGGGTGTCCCAGAGGGATGGTCAAGGTCAGTAATTGTA CGCCCCGGAGTGACATCAAGTGCAAAAATGAATCAGCTGCCAGTTCCACTGGGAAAACCCCAGCAGCGGAGGAGA ${\tt CAGTGACCATCCTGGGGGATGCTTGCCTCTCCCTATCACTACCTTATCATCATGTGGTTTTAGTCATCATTT}$ TAGCTGTGGTTGTGGCTTTTCATGTCGGAAGAAATTCATTTCTTACCTCAAAGGCATCTGCTCAGGTGGTG GAGGAGGTCCCGAACGTGTGCACAGAGTCCTTTTCCGGCGGCGTTCATGTCCTTCACGAGTTCCTGGGGCGGAGG CTGAAGGGTGTCAGAGGAGGAGGCTGCTGGTTCCAGTGAATGACGCTGACTCCGCTGACATCAGCACCTTGCTGG ATGCCTCGGCAACACTGGAAGAAGGACATGCAAAGGAAACAATTCAGGACCAACTGGTGGGCTCCGAAAAGCTCT CATTTACCTTTTCTCCTACAAAGGGAAGCAGCCTGGAAGAACAGTCCAGTACTTGACCCATGCCCCAACAAACT CTACTATCCAATATGGGGCAGCTTACCAATGGTCCTAGAACTTTGTTAACGCACTTGGAGTAATTTTTATGAAAT ACTGCGTGTGATAAGCAAACGGGAGAAATTTATATCAGATTCTTGGCTGCATAGTTATACGATTGTGTATTAAGG GTCGTTTTAGGCCACATGCGGTGGCTCATGCCTGTAATCCCAGCACTTTGATAGGCTGAGGCAGGTGGATTGCTT GAGCTCGGGAGTTTGAGACCAGCCTCATCAACACAGTGAAACTCCATCTCAATTTAAAAAGAAAAAAAGTGGTTT CTACTGGTGTGTGCATTTAATGACATCTAACTACAGATGCCGCACAGCCACAATGCTTTGCCTTATAGTTTTTTA ACTTTAGAACGGGATTATCTTGTTATTACCTGTATTTTCAGTTTCGGATATTTTTGACTTAATGATGAGATTATC AAGACGTAGCCCTATGCTAAGTCATGAGCATATGGACTTACGAGGGTTCGACTTAGAGTTTTGAGCTTTAAGATA GGATTATTGGGGGCTTACCCCCACCTTAATTAGAGAAACATTTATATTGCTTACTACTGTAGGCTGTACATCTCTT TTCCGATTTTTGTATAATGATGTAAACATGGAAAAACTTTAGGAAATGCACTTATTAGGCTGTTTACATGGGTTG ATTTATAAGTAGATGTTTACATATGCCCAGGATTTTGAAGAGCCTGGTATCTTTGGGAAGCCATGTGTCTGGTTT GTCGTGCTGGGACAGTCATGGGACTGCATCTTCCGACTTGTCCACAGCAGATGAGGACAGTGAGAATTAAGTTAG ${\tt ATCCGAGACTGCGAAGAGCTTCTCTTTCAAGCGCCATTACAGTTGAACGTTAGTGAATCTTGAGCCTCATTTGGG}$ ${\tt AATGGTGTGAAATGGTTGCCGACTCAGGCATGGATGGGCCCCTCTCGCTTCTGGTGGTCTGTGAACTGAGTCCCT}$ ${\tt GGGATGCCTTTTAGGGCAGAGATTCCTGAGCTGCGTTTTAGGGTACAGATTCCCTGTTTGAGGAGCTTGGCCCCT}$ $\tt TTTGTCCTTGTGTCACGTTCCATTATTTTATTTAAAAACCTCAGTAATCGTTTTAGCTTCTTTCCAGCAAACTCT$ ${\tt AAGGCATTGTGTTTTGTTCCGGGACTGGTTTGGCTGGGACAAAGTTAGAACTGCCTGAAGTTCGCACATTCAG}$ $\hbox{\tt ATTGTTGTCCATGGAGTTTTAGGAGGGGATGGCCTTTCCGGTCTTCGCACTTCCATCCTCCCACTTCCATC}$ TGGCGTCCCACACCTTGTCCCCTGCACTTCTGGATGACACAGGGTGCTGCTGCCTCCTAGTCTTTGCCTTTGCTG AGAGGCCTTCCTTGAAGATGCATCTAGACTACCAGCCTTATCAGTGTTTAAGCTTATTCCTTTAACATAAGCTTC AAAAAAAAAAAAAAAAAAAAAAA

A. H. Marsh H. And

340/550

FIGURE 340

MGLWGQSVPTASSARAGRYPGARTASGTRPWLLDPKILKFVVFIVAVLLPVRVDSATIPRQDEVPQQTVAPQQQR RSLKEEECPAGSHRSEYTGACNPCTEGVDYTIASNNLPSCLLCTVCKSGQTNKSSCTTTRDTVCQCEKGSFQDKN SPEMCRTCRTGCPRGMVKVSNCTPRSDIKCKNESAASSTGKTPAAEETVTTILGMLASPYHYLIIIVVLVIILAV VVVGFSCRKKFISYLKGICSGGGGPERVHRVLFRRRSCPSRVPGAEDNARNETLSNRYLQPTQVSEQEIQGQEL AELTGVTVESPEEPQRLLEQAEAEGCQRRRLLVPVNDADSADISTLLDASATLEEGHAKETIQDQLVGSEKLFYE EDEAGSATSCL

Important features:

Transmembrane domains:

amino acids 35-52, 208-230

N-glycosylation sites.

amino acids 127-131, 182-186, 277-281

Glycosaminoglycan attachment site.

amino acids 245-249

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 260-264

N-myristoylation sites.

amino acids 21-27, 86-92, 102-108, 161-167, 242-248, 270-276, 297-303, 380-386

ATP/GTP-binding site motif A (P-loop).

amino acids 185-193

TNFR/NGFR cysteine-rich region.

amino acids 99-139

FIGURE 341

GCCTCTGAATTGTTGGGCAGTCTGGCAGTGGAGCTCTCCCCGGTCTGACAGCCACTCCAGAGG $\texttt{CC} \underline{\textbf{ATG}} \texttt{CTTCGTTTCTTGCCAGATTTGGCTTTCAGCTTCCTGTTAATTCTGGCCTTTGGGCCAGG}$ CAGTCCAATTTCAAGAATATGTCTTTCTCCAATTTCTGGGCTTAGATAAGGCGCCTTCACCCC AGAAGTTCCAACCTGTGCCTTATATCTTGAAGAAAATTTTCCAGGATCGCGAGGCAGCAGCAA CCACTGGGGTCTCCCGAGACTTATGCTACGTAAAGGAGCTGGGCGTCCGCGGGAATGTACTTC GCTTTCTCCCAGACCAAGGTTTCTTTCTTTACCCAAAGAAAATTTCCCAAGCTTCCTCCTGCC AGCTGGGCCTGGACTTGGGGCCCAATTCTTACTATAACCTGGGACCAGAGCTGGAACTGGCTC TGTTCCTGGTTCAGGAGCCTCATGTGTGGGGCCAGACCACCCCTAAGCCAGGTAAAATGTTTG TGTTGCGGTCAGTCCCATGGCCACAAGGTGCTGTTCACTTCAACCTGCTGGATGTAGCTAAGG ATTGGAATGACAACCCCCGGAAAAATTTCGGGTTATTCCTGGAGATACTGGTCAAAGAAGATA GAGACTCAGGGGTGAATTTTCAGCCTGAAGACACCTGTGCCAGACTAAGATGCTCCCTTCATG CTTCCCTGCTGGTGGTGACTCTCAACCCTGATCAGTGCCACCCTTCTCGGAAAAGGAGAGCAG CCATCCCTGTCCCCAAGCTTTCTTGTAAGAACCTCTGCCACCGTCACCAGCTATTCATTAACT TCCGGGACCTGGGTTGGCACAAGTGGATCATTGCCCCCAAGGGGTTCATGGCAAATTACTGCC ATGGAGAGTGTCCCTTCTCACTGACCATCTCTCTCAACAGCTCCAATTATGCTTTCATGCAAG CCCTGATGCATGCCGTTGACCCAGAGATCCCCCAGGCTGTGTGTATCCCCACCAAGCTGTCTC CCATTTCCATGCTCTACCAGGACAATAATGACAATGTCATTCTACGACATTATGAAGACATGG ${\tt TAGTCGATGAATGTGGGTGTGGG} \underline{{\tt TAG}} {\tt GATGTCAGAAATGGGAATAGAAGGAGTGTTCTTAGGG}$ TAAATCTTTTAATAAAACTACCTATCTGGTTTATGACCACTTAGATCGAAATGTC

MLRFLPDLAFSFLLILALGQAVQFQEYVFLQFLGLDKAPSPQKFQPVPYILKKIFQDREAAAT TGVSRDLCYVKELGVRGNVLRFLPDQGFFLYPKKISQASSCLQKLLYFNLSAIKEREQLTLAQ LGLDLGPNSYYNLGPELELALFLVQEPHVWGQTTPKPGKMFVLRSVPWPQGAVHFNLLDVAKD WNDNPRKNFGLFLEILVKEDRDSGVNFQPEDTCARLRCSLHASLLVVTLNPDQCHPSRKRRAA IPVPKLSCKNLCHRHQLFINFRDLGWHKWIIAPKGFMANYCHGECPFSLTISLNSSNYAFMQA LMHAVDPEIPQAVCIPTKLSPISMLYQDNNDNVILRHYEDMVVDECGCG

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 112-116, 306-310

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 96-100

N-myristoylation site.

amino acids 77-83

TGF-beta family proteins.

amino acids 264-299, 327-341, 345-364

 ${\tt GCTCAGTGCTTGCACTTATCTGCCTAGGTACATCGAAGTCTTTTGACCTCCATACAGTGATTATGCCTGTC}$ $\tt ATCGCTGGTGGTATCCTGGCGGCCTTGCTCCTGCTGATAGTTGTCGTGCTCTTTACTTCAAAATACACAAC$ $\verb|GCGCTAAAAGCTGCAAAGGAACCTGAAGCTGTGGCTGTAAAAAATCACAACCCAGACAAGGTGTGGGGCCAAG|$ ${ t AGTTTTGATTCCCTGCCACCTTGCTGTTGCGACATAAATGAGGGCCTCTGAGTTAGGAAAGGCTCCCTTCTCAAA}$ GCAGAGCCCTGAAGACTTCAATGATGTCAATGAGGCCACCTGTTTGTGATGTGCAGGCACAGAAGAAAGGCACAG $\tt CTCCCCATCAGTTTCATGGAAAATAACTCAGTGCCTGCTGGGAACCAGCTGCTGGAGATCCCTACAGAGAGCTTC$ ${\tt CACAGCTGCTCTATTCTCACACAAATCTACCCCTTGCGTGGCTGGAACTGACGTTTCCCTGGAGGTGTCCAGAAA}$ ${\tt GCTGATGTAACACAGAGCCTATAAAAGCTGTCGGTCCTTAAGGCTGCCCAGCGCCTTGCCAAA{\tt ATG}{\tt GAGCTTGTA}$ AGAAGGCTCATGCCATTGACCCTCTTAATTCTCTCCTGTTTGGCGGAGCTGACAATGGCGGAGGCTGAAGGCAAT GCAAGCTGCACAGTCAGGGGGGGGGCCAATATGGCAGAGACCCACAAAGCCATGATCCTGCAACTCAATCCC ${ t AGTGAGAACTGCACCTGGACAATAGAAAGACCAGAAAAAGCATCAGAATTATCTTTTCCTATGTCCAGCTT}$ GATCCAGATGGAAGCTGTGAAAAGTGAAAACATTAAAGTCTTTGACGGAACCTCCAGCAATGGGCCTCTGCTAGGG ${\tt CAAGTCTGCAGTAAAAACGACTATGTTCCTGTATTTGAATCATCATCCAGTACATTGACGTTTCAAATAGTTACT}$ GACTCAGCAAGAATTCAAAGAACTGTCTTTGTCTTCTACTACTTCTTCTCTCCTAACATCTCTATTCCAAACTGT ${\tt GGCGGTTACCTGGAAGGATCCTTCACCAGCCCCAATTACCCAAAGCCGCATCCTGAGCTGGCTTAT}$ AAACAGTGCAAATTTGATTTTCTTGCCATCTATGATGGCCCCTCCACCAACTCTGGCCTGATTGGACAAGTCTGT GGCCGTGTGACTCCCACCTTCGAATCGTCATCAAACTCTCTGACTGTCGTGTTGTCTACAGATTATGCCAATTCT ${\tt TACCGGGGATTTTCTGCTTCCTACACCTCAATTTATGCAGAAAACATCAACACTACATCTTTAACTTGCTCTTCT}$ GACAGGATGAGAGTTATTATAAGCAAATCCTACCTAGAGGCTTTTAACTCTAATGGGAATAACTTGCAACTAAAA GACCCAACTTGCAGACCAAAATTATCAAATGTTGTGGAATTTTCTGTCCCTCTTAATGGATGTGGTACAATCAGA ${\tt AAGGTAGAAGATCAGTCAATTACACCAATATAATCACCTTTTCTGCATCCTCAACTTCTGAAGTGATCACC}$ CGTCAGAAACAACTCCAGATTATTGTGAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATACATAACA GAAGATGATGTAATACAAAGTCAAAATGCACTGGGCAAATATAACACCAGCATGGCTCTTTTTGAATCCAATTCA ${\tt TTTGAAAAGACTATACTTGAATCACCATATTATGTGGATTTGAACCAAACTCTTTTTGTTCAAGTTAGTCTGCAC}$ ACCTCAGATCCAAATTTGGTGGTGTTTCTTGATACCTGTAGAGCCTCTCCCACCTCTGACTTTGCATCTCCAACC ${ t TACGACCTAATCAAGAGTGGATGTAGTCGAGATGAAACTTGTAAGGTGTATCCCTTATTTGGACACTATGGGAGA$ ${ t TTCCAGTTTAATGCCTTTAAATTCTTGAGAAGTATGAGCTCTGTGTATCTGCAGTGTAAAGTTTTGATATGTGAT$ ${\tt AGCAGTGACCACCAGTCTCGCTGCAATCAAGGTTGTGTCTCCAGAAGCAAACGAGACATTTCTTCATATAAATGG}$ AAAACAGATTCCATCATAGGACCCATTCGTCTGAAAAGGGATCGAAGTGCAAGTGGCAATTCAGGATTTCAGCATGAAACACATGCGGAAGAAACTCCAAACCAGCCTTTCAACAGTGTGCATCTGTTTTCCTTCATGGTTCTAGCTCTG AATGTGGTGACTGTAGCGACAATCACAGTGAGGCATTTTGTAAATCAACGGGCAGACTACAAATACCAGAAGCTG $\texttt{CAGAACTAT} \underline{\textbf{TAA}} \texttt{CTAACAGGTCCAACCCTAAGTGAGACATGTTTCTCCAGGATGCCAAAGGAAATGCTACCTCGT}$ GGCTACACATATTATGAATAAATGAGGAAGGGCCTGAAAGTGACACACAGGCCTGCATGTAAAAAAA

MELVRRLMPLTLLILSCLAELTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTIE
RPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLGQVCSKNDYVPVFESSSSTLTFQ
IVTDSARIQRTVFVFYYFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQVEKD
YKIKLNFKEIFLEIDKQCKFDFLAIYDGPSTNSGLIGQVCGRVTPTFESSSNSLTVVLSTDYA
NSYRGFSASYTSIYAENINTTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRPKLSNV
VEFSVPLNGCGTIRKVEDQSITYTNIITFSASSTSEVITRQKQLQIIVKCEMGHNSTVEIIYI
TEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPNLVVFLDT
CRASPTSDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNAFKFLRSMSSVYLQCKVLICD
SSDHQSRCNQGCVSRSKRDISSYKWKTDSIIGPIRLKRDRSASGNSGFQHETHAEETPNQPFN
SVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Important features:

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374, 394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383, 408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

 $\tt TGGGGGCCCCCAGGCTCGCGCGTGGAGCGAAGCAGC\underline{ATG} GGCAGTCGGTGCGCGCTGGCCCTGGCGGTGCTCTC$ $\overline{\mathsf{GGCCTTGCTGTGTCAGGTCTGGAGCTCTGGGGGTGTTCGAAGCTGAAGCTGCAGGAGTTCGTCAACAAGAAGGGGGCT}$ $\tt CTTCACCTGGCCGGGCACCTTCTCTGATTATTGAAGCTCTCCACACAGATTCTCCTGATGACCTCGCAACAGA$ AAACCCAGAAAGACTCATCAGCCGCCTGGCCACCCAGAGGCACCTGACGGTGGGCGAGGAGTGGTCCCAGGACCT GCACAGCAGCGGCCCCCGGACCTCAAGTACTCCTACCGCTTCGTGTGACGAACACTACTACGGAGAGGGCTG CTCCGTTTTCTGCCGTCCCCGGGACGATGCCTTCGGCCACTTCACCTGTGGGGAGCGTGGGGAGAAAGTGTGCAA CAAACCAGGGGAATGCAAGTGCAGAGTGGGCTGGCAGGGCCGGTACTGTGACGAGTGTATCCGCTATCCAGGCTG TCTCCATGGCACCTGCCAGCAGCCCTGGCAGTGCAACTGCCAGGAAGGCTGGGGGGGCCCTTTTCTGCAACCAGGA CCTGAACTACTGCACACACCATAAGCCCTGCAAGAATGGAGCCACCTGCACCAACACGGGCCAGGGGAGCTACAC TTGCTCTTGCCGGCCTGGGTACACAGGTGCCACCTGCGAGCTGGGGATTGACGAGTGTGACCCCAGCCCTTGTAA GAACGGAGGGAGCTGCACGGATCTCGAGAACAGCTACTCCTGTACCTGCCCACCCGGCTTCTACGGCAAAATCTG ${ t TGAATTGAGTGCCATGACCTGTGCGGACGGCCCTTGCTTTAACGGGGGTCGGTGCTCAGACAGCCCCGATGGAGG}$ GTACAGCTGCCGCTGCCCCGTGGGCTACTCCGGCTTCAACTGTGAGAAGAAAATTGACTACTGCAGCTCTTCACC ${ t CTGTTCTAATGGTGCCAAGTGTGTGGACCTCGGTGATGCCTACCTGTGCCGCTGCCAGGCCGGCTTCTCGGGGAG}$ GCACTGTGACGACAACGTGGACGACTGCGCCTCCCCCGTGCGCCAACGGGGGCACCTGCCGGGATGGCGTGAA CGACTTCTCCTGCACCTGCCCGGCCTGGCTACACGGGCAGGAACTGCAGTGCCCCCGTCAGCAGGTGCGAGCACGC ACCCTGCCACAATGGGGCCACCTGCCACGAGAGGGGCCACCGCTATGTGTGCGGAGTGTGCCCGAGGCTACGGGGG TCCCAACTGCCAGTTCCTGCTCCCCGAGCTGCCCCCGGGCCCAGCGGTGGTGGACCTCACTGAGAAGCTAGAGGG CGCTGTGGTGGTCTGCGTCCGGCTGAGGCTGCAGAAGCACCGGCCCCAGCCGACCCCTGCCGGGGGGAGACGGA GAACACCAACAAGAAGGCGGACTTCCACGGGGACCACAGCGCCGACAAGAATGGCTTCAAGGCCCGCTACCCAGC GGTGGACTATAACCTCGTGCAGGACCTCAAGGGTGACGACACCGCCGTCAGGGACGCGCACAGCAAGCGTGACAC CAAGTGCCAGCCCCAGGGCTCCTCAGGGGAGAGGAGGGGCCCCGACCACACTCAGGGGTGGAGAAGCATCTGA ${\tt AAGAAAAAGGCCGGACTCGGGCTGTTCAACTTCAAAAGACACCAAGTACCAGTCGGTGTACGTCATATCCGAGGA}$ ${\tt GAAGGATGAGTGCATAGCAACTGAGGTG} {\color{red}{\textbf{TAA}}} {\tt AATGGAAGTGAGATGGCAAGACTCCCGTTTCTCTTAAAATA}$ GAACTGAATTACGCATAAGAAGCATGCACTGCCTGAGTGTATATTTTGGATTCTTATGAGCCAGTCTTTTCTTGA ${ t ATTAGAAACACAAACACTGCCTTTATTGTCCTTTTTGATACGAAGATGTGCTTTTTCTAGATGGAAAAGATGTGT$ GTTATTTTTGGATTTGTAAAAATATTTTTCATGATATCTGTAAAGCTTGAGTATTTTGTGATGTTCGTTTTTTA ${\tt TTATGGAATATTGTGCAAATGTTATTTGAGTTTTTTACTGTTTATTGAAGAAATTCCTTTTTAAAATATTT}$ AAAAAAA

MGSRCALALAVLSALLCQVWSSGVFELKLQEFVNKKGLLGNRNCCRGGAGPPPCACRTFFRVC LKHYQASVSPEPPCTYGSAVTPVLGVDSFSLPDGGGADSAFSNPIRFPFGFTWPGTFSLIIEA LHTDSPDDLATENPERLISRLATQRHLTVGEEWSQDLHSSGRTDLKYSYRFVCDEHYYGEGCS VFCRPRDDAFGHFTCGERGEKVCNPGWKGPYCTEPICLPGCDEQHGFCDKPGECKCRVGWQGR YCDECIRYPGCLHGTCQQPWQCNCQEGWGGLFCNQDLNYCTHHKPCKNGATCTNTGQGSYTCS CRPGYTGATCELGIDECDPSPCKNGGSCTDLENSYSCTCPPGFYGKICELSAMTCADGPCFNG GRCSDSPDGGYSCRCPVGYSGFNCEKKIDYCSSSPCSNGAKCVDLGDAYLCRCQAGFSGRHCD DNVDDCASSPCANGGTCRDGVNDFSCTCPPGYTGRNCSAPVSRCEHAPCHNGATCHERGHRYV CECARGYGGPNCQFLLPELPPGPAVVDLTEKLEGQGGPFPWVAVCAGVILVLMLLLGCAAVVV CVRLRLQKHRPPADPCRGETETMNNLANCQREKDISVSIIGATQIKNTNKKADFHGDHSADKN GFKARYPAVDYNLVQDLKGDDTAVRDAHSKRDTKCQPQGSSGEEKGTPTTLRGGEASERKRPD SGCSTSKDTKYQSVYVISEEKDECVIATEV

Important features:

Signal sequence:

Amino acids 1-21

Transmembrane domain:

Amino acids 546-566

N-glycosylation site:

Amino acids 477-481

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 660-664

Tyrosine kinase phosphorylation sites:

Amino acids 176-185;252-261

N-myristoylation sites:

Amino acids 2-8;37-43;40-46;98-104;99-105;262-268;281-287; 282-288;301-307;310-316;328-334;340-344;378-384;387-393;512-518; 676-682;683-689;695-701

Aspartic acid and asparagine hydroxylation sites:

Amino acids 343-355;420-432;458-470

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 552-563

EGF-like domain cysteine pattern signature:

Amino acids 243-255;274-286;314-326;352-364;391-403;429-441;467-479;505-517

FIGURE 347

 $\verb|CCCACGCGTCCGCACCTCGGCCCCGGGCTCCGAAGCGGCTCGGGGGGCGCCCTTTCGGTCAACA||$ $\mathsf{GGAGCCGGCCGGGAAGCGCGAT}_{\mathsf{GGGGGCCCCAGCCGCCTCGCTCCTGCTCCTGCTGCT}$ CTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTGCTCAAGTGCCAAGTGAAAGATCACGAGG ACTCATCCCTGCAATGGTCTAACCCTGCTCAGCAGACTCTCTACTTTGGGGAGAAGAGAGCCC TTCGAGATAATCGAATTCAGCTGGTTACCTCTACGCCCCACGAGCTCAGCATCAGCA ATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCTGTGCGAACTG CCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAAGCCCATCATCACTGGTTATAAATCTT CATTACGGGAAAAAGACACCCCTAAACTGTCAGTCTTCTGGGAGCAAGCCTGCAGCCC CCAATGGTAAAACCTTCACTGTCAGCAGCTCGGTGACATTCCAGGTTACCCGGGAGGATGATG GGGCGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGACAGATCCACCTCTC AACGCATTGAAGTTTTATACACACCAACTGCGATGATTAGGCCAGACCCTCCCCATCCTCGTG AGGGCCAGAAGCTGTTGCTACACTGTGAGGGTCGCGGCAATCCAGTCCCCCAGCAGTACCTAT GGGAGAAGGAGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGTGCCCTGATCTTCCCTT TCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCAGCAACATGGGCAGCTACA AGGCCTACTACACCCTCAATGTTAATGACCCCAGTCCGGTGCCCTCCTCCTCCAGCACCTACC ACGCCATCATCGGTGGGATCGTGGCTTTCATTGTCTTCCTGCTGCTCATCATGCTCATCTTCC TTGGCCACTACTTGATCCGGCACAAAGGAACCTACCTGACACATGAGGCAAAAGGCTCCGACG ATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCGGGCAGTCAGGAGGGGACGACA AGAAGGAATATTTCATC**TAG**AGGCGCCTGCCCACTTCCTGCGCCCCCAGGGGCCCTGTGGGG ACTGCTGGGGCCGTCACCAACCCGGACTTGTACAGAGCAACCGCAGGGCCGCCCCTCCCGCTT GCTCCCCAGCCCACCCCCCTGTACAGAATGTCTGCTTTGGGTGCGGTTTTGTACTCGGT CTCTGCATTTGGGTTATTATTTTTTTGTAACAATCCCAAATCAAATCTGTCTCCAGGCTGGA

MGAPAASLLLLLLLFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSLQWS
NPAQQTLYFGEKRALRDNRIQLVTSTPHELSISISNVALADEGEYTCSIFTMPVRTAKSLVTV
LGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGKTFT
VSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQKLLL
HCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKAYYTLN
VNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDDAPDADT
AIINAEGGQSGGDDKKEYFI

Important features:

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304, 306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 349

ACTTGCCATCACCTGTTGCCAGTGTGGAAAAATTCTCCCTGTTGAATTTTTTGCACATGGAGGACAGCAAAG AGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTTACCATACGCCCTCAGGACGTTCCCTCTA $\tt CTTTTTTCCTGAAGTCTTGGCTTATCATTTCCCTGGGGCTCTACTCACAGGTGTCCAAACTCCTGGCCTGCCCTA$ GTGTGTGCCGCTGCGACAGGAACTTTGTCTACTGTAATGAGCGAAGCTTGACCTCAGTGCCTCTTGGGATCCCGG AGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGCTGGATTTCCTGCAGAACTGCACAATGTAC AGTCGGTGCACACGGTCTACCTGTATGGCAACCAACTGGACGAATTCCCCATGAACCTTCCCAAGAATGTCAGAG $\verb|TTCTCCATTTGCAGGAAAACAATATTCAGACCATTTCACGGGCTGCTCTTGCCCAGCTCTTGAAGCTTGAAGAGC| \\$ TGCACCTGGATGACAACTCCATATCCACAGTGGGGGTGGAAGACGGGGCCTTCCGGGAGGCTATTAGCCTCAAAT TGTTGTTTTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGGCTTCCTGTGGACTTGCAAGAGCTGAGAGTGG ATGAAAATCGAATTGCTGTCATATCCGACATGGCCTTCCAGAATCTCACGAGCTTGGAGCGTCTTATTGTGGACG GGAACCTCCTGACCAACAAGGGTATCGCCGAGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTTCAATTG TACGTAATTCGCTGTCCCACCCTCCTCCCGATCTCCCAGGTACGCATCTGATCAGGCTCTATTTGCAGGACAACC TGCGGATGCTGACTCAAGGGGTTTTTGATAATCTCTCCAACCTGAAGCAGCTCACTGCTCGGAATAACCCTTGGT $\tt TTTGTGACTGCAGTATTAAATGGGTCACAGAATGGCTCAAATATATCCCTTCATCTCTCAACGTGCGGGGTTTCA$ TGTGCCAAGGTCCTGAACAAGTCCGGGGGATGGCCGTCAGGGAATTAAATATGAATCTTTTGTCCTGTCCCACCA CGACCCCGGCCTGCCTCTCTCACCCCAGCCCCAAGTACAGCTTCTCCGACCACCTCAGCCTCCCACCCTCTCTA TTCCAAACCCTAGCAGAAGCTACACGCCTCCAACTCCTACCACATCGAAACTTCCCACGATTCCTGACTGGGATG GCAGAGAAAGAGTGACCCCACCTATTTCTGAACGGATCCAGCTCTCTATCCATTTTGTGAATGATACTTCCATTC AAGTCAGCTGGCTCTCTCTCTCACCGTGATGGCATACAAACTCACATGGGTGAAAATGGGCCACAGTTTAGTAG GGGGCATCGTTCAGGAGCGCATAGTCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCA CCTATCGGATTTGTTTAGTGCCACTGGATGCTTTTAACTACCGCGCGGTAGAAGACACCATTTGTTCAGAGGCCA $\verb|CCACCCATGCCTCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGGACGTCCCACAGCATGG|\\$ ${\tt GCTCCCCTTTCTGCTGGGGGGCTTGATCGGGGGGCGCGGTGATATTTGTGCTGGTGGTCTTGCTCAGCGTCTTTT}$ GCTGGCATATGCACAAAAAGGGGCGCTACACCTCCCAGAAGTGGAAATACAACCGGGGCCGGCGGAAAGATGATT ATTGCGAGGCAGCACCAAGAAGGACAACTCCATCCTGGAGATGACAGAAACCAGTTTTCAGATCGTCTCCTTAA ${\tt ACTGCCATATCCCCAACAACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGCACTGCCATACG{\tt TGA}CAGC$ CAGAGGCCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAACACACTCGTGTGTGCACATAAAGACACGCAG ATTACATTTGATAAATGTTACACAGATGCATTTGTGCATTTGAATACTCTGTAATTTATACGGTGTACTATATAA TGGGATTTAAAAAAAAGTGCTATCTTTTCTATTTCAAGTTAATTACAAACAGTTTTGTAACTCTTTGCTTTTTAAA TCTT

MGLQTTKWPSHGAFFLKSWLIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIPE GVTVLYLHNNQINNAGFPAELHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTISR AALAQLLKLEELHLDDNSISTVGVEDGAFREAISLKLLFLSKNHLSSVPVGLPVDLQELRVDE NRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKLKEFSIVRNSLSHPPPDLPGT HLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARNNPWFCD CSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGMAVRELNMNLLSCPTTTPGLPLFTPAPSTAS PTTQPPTLSIPNPSRSYTPPTPTTSKLPTIPDWDGRERVTPPISERIQLSIHFVNDTSIQVSW LSLFTVMAYKLTWVKMGHSLVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPLDAFNYRAV EDTICSEATTHASYLNNGSNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLVVLLSVFCWHMH KKGRYTSQKWKYNRGRRKDDYCEAGTKKDNSILEMTETSFQIVSLNNDQLLKGDFRLQPIYTP NGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Important features:

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300, 522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

 $A \verb|GCCGACGCTGCTCAAGCTGCAACTCTGTTGCAGTTGGCAGTTCTTTTCGGTTTCCCTCCTGCTGTTTGGGGGGCA|$ ${\tt GAGGGCGGGCGTGCACCTCGGCTGGAAGTTTGTGCCGGGCCCCGAGCGCGCCGGCTGGGAGCTTCGGGTAGA}$ $\verb|GCGGTGCTGGGCGGTCCGACAGCGGCGGTCGCGGGGAACTCGGGCAGCCCTCTGGGGTAGCCGCC||$ ${\tt GAGCGCCCATGCCCACTACCTGCCGCTGCCTCGGGGACCTGCTGCAGTCGTAAGCGGCTAGCGCGTCTT}$ $\tt CCCGAGCCACTCCCGTCCTGGGTCGCTCGGCTGGACTTAAGTCACAACAGATTATCTTTCATCAAGGCAAGTTCC$ ATGAGCCACCTTCAAAGCCTTCGAGAAGTGAAACTGAACAACAATGAATTGGAGACCATTCCAAATCTGGGACCA GTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGAACATCTGAAAGAG TTTCAGTCCCTTGAAACTTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATTTCCAGCCCTACAG CTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTTTGACAATTTGGCCAACACA CATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGGTGCTCTGAAGTCT CTCAGCCAAAATGCCATCAACAGGATCAGCCCTGATGCCTGGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA ${ t ACTTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATACACTGCACATTGGG$ AACAACAGAGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGCTTTCCAGTTTAAAGACTTTGGATCTGAAGAAC AATGAAATTTCCTGGACTATTGAAGACATGAATGGTGCTTTCTCTGGGCTTGACAAACTGAGGCGACTGATACTC ${\tt CAAGGAAATCGGATCCGTTCTATTACTAAAAAAGCCTTCACTGGTTTGGATGCATTGGAGCATCTAGACCTGAGT}$ GACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATTGCATTTAAATACA GATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTCCAATTTGAGTTTC ATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCCAATGACTTTTGCTTGGAAAAAAGACAATGAACTACTGCATGAT GCTGAAATGGAAAATTATGCACACCTCCGGGCCCAAGGTGGCGAGGTGATGGAGTATACCACCATCCTTCGGCTG $\tt CGCGAGGTGGAATTTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCCAATCACTTTGGTTCATCCTACTCTGTC$ ATGGCACGCTTGGAGTGTGCTGTGGGGGCACCCAGCCCCCAGATAGCCTGGCAGAAGGATGGGGGCACAGAC $\tt TTCCCAGCTGCACGGGAGACGCATGCATGTGATGCCCGAGGATGACGTGTTCTTTATCGTGGATGTGAAGATA$ ${\tt GAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGCAACTCTGACTGTC}$ ${ t CTAGAAACACCATCATTTTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAAACAGCCGTCCTACAGTGC}$ ATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGTGGTAACCGAGAGGCAC TTTTTTGCAGCAGCAATCAGCTTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGGAAATACACATGTGAG ATGTCTAACACCCTTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCCACTCCAACCTGCGACTCCCCT ${\tt CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGCCGTGGTTTGCTGT}$ GTGGTGGGCACGTCACTCGTGTGGGTGGTCATCATATACCACACAAGGCGGAGGAATGAAGATTGCAGCATTACC AACACAGATGAGACCAACTTGCCAGCAGATATTCCTAGTTATTTGTCATCTCAGGGAACGTTAGCTGACAGGCAG GATGGGTACGTGTCTTCAGAAAGTGGAAGCCACCACCAGTTTGTCACATCTTCAGGTGCTGGATTTTTCTTACCA CAACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGCCACAGATCTGTTC CTTTGTCCGTTTTTGGGATCCACAGGCCCTATGTATTTGAAGGGAAATGTGTATGGCTCAGATCCTTTTGAAACA TATCATACAGGTTGCAGTCCTGACCCAAGAACAGTTTTAATGGACCACTATGAGCCCAGTTACATAAAGAAAAAG ${\tt GAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATCGTGGCCTTCACAT}$ GTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTGTCTAAACAAGTCC TCTTTAGATTTTAGTGCAAATCCAGAGCCAGCGTCGGTTGCCTCGAGTAATTCTTTCATGGGTACCTTTGGAAAA GCTCTCAGGAGACCTCACCTAGATGCCTATTCAAGCTTTGGACAGCCATCAGATTGTCAGCCAAGAGCCTTTTAT GAAAATCACATTTGTACCTTTAAACAGACTTTAGAAAACTACAGGACTCCAAATTTTCAGTCTTATGACTTGGAC AAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTATTTTTAACTTTG TTTTATGCAAAAAAGTATCTTACGTAAATTAATGATATAAATCATGATTATTTTATGTATTTTATAATGCCAGA $\verb|TTTCTTTTTATGGAAAATGAGTTACTAAAGCATTTTAAATAATACCTGCCTTGTACCATTTTTTAAATAGAAGTT|$

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGQPSGVAAERPCPTTCRCLGDLLDCSRKRLARLPEPLPSW VARLDLSHNRLSFIKASSMSHLQSLREVKLNNNELETIPNLGPVSANITLLSLAGNRIVEILPEHLKEFQSLETL DLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGYFDNLANTLLVLKLNRNRISAIPPKMFKLPQLQHLELNRN KIKNVDGLTFQGLGALKSLKMQRNGVTKLMDGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAIN RISPDAWEFCQKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNEISWTI EDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMKKLQQLHLNTSSLLCDC QLKWLPQWVAENNFQSFVNASCAHPQLLKGRSIFAVSPDGFVCDDFPKPQITVQPETQSAIKGSNLSFICSAASS SDSPMTFAWKKDNELLHDAEMENYAHLRAQGGEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVN MLPSFTKTPMDLTIRAGAMARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYS CTAQNSAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKLNWTKDDSPLVVTERHFFAAGNQ LLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPQMTAPSLDDDGWATVGVVIIAVVCCVVGTSLV WVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRQDGYVSSESGSHHQFVTSSGAGFFLPQHDSSGT CHIDNSSEADVEAATDLFLCPFLGSTGPMYLKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSH PSEESCERSFSNISWPSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHL DAYSSFGQPSDCQPRAFYLKAHSSPDLDSGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQSYDLDT

Important features:

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519, 688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378, 383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735, 799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022, 1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433, 513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 353

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCAAACCCTTTTCTTCTTCTTCTTGGCTTCGGACATTGG ${\tt AGCACTAAATGAACTTGAATTGTGTCTGTGGCGAGCAGGATGGTCGCTGTTACTTTGTGATGAGATCGGGGGATGA}$ ${\tt ATTGCTCGCTTTAAAA} \underline{{\tt ATG}} {\tt CTGCTTTGGATTCTGTTGCTGGAGACGTCTCTTTGTTTTGCCGCTGGAAACGTTAC$ AGGGGACGTTTGCAAAGAGATCTGTTCCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAA CACTCGACTTTTCCCTAATGAGTTCGCTAACTTTTATAATGCGGTTAGTTTGCACATGGAAAACAATGGCTTGCA TGAAATCGTTCCGGGGGCTTTTCTGGGGCTGCAGCTGGTGAAAAGGCTGCACATCAACAACAACAAGATCAAGTC TTTTCGAAAGCAGACTTTTCTGGGGCTGGACGATCTGGAATATCTCCAGGCTGATTTTAATTTATTACGAGATAT AGACCCGGGGGCCTTCCAGGACTTGAACAAGCTGGAGGTGCTCATTTTAAATGACAATCTCATCAGCACCCTACC TGCCAACGTGTTCCAGTATGTGCCCATCACCCACCTCGACCTCCGGGGTAACAGGCTGAAAACGCTGCCCTATGA GGAGGTCTTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCTTGGGACTGCACCTGTGATCT GCTCTCCCTGAAAGAATGGCTGGAAAACATTCCCAAGAATGCCCTGATCGGCCGAGTGGTCTGCGAAGCCCCCAC CAGACTGCAGGGTAAAGACCTCAATGAAACCACCGAACAGGACTTGTGTCCTTTGAAAAAACCGAGTGGATTCTAG TCTCCCGGCGCCCCTGCCCAAGAAGAGACCTTTGCTCCTGGACCCCTGCCAACTCCTTTCAAGACAAATGGGCA AGAGGATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGATCAAAATCAG ${\tt CAGCTGCGACCACATCCCAGGGTCGGGTTTAAAGATGAACTGCAACAACAGGAACGTGAGCAGCTTGGCTGATTT}$ GAAGCCCAAGCTCTCTAACGTGCAGGAGCTTTTCCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTT TGTGGATTACAAGAACCTCATTCTGTTGGATCTGGGCAACAATAACATCGCTACTGTAGAGAACAACACTTTCAA GAACCTTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCCGGGAGAAATTCGCGGG GCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCATCCTCCCGGGCACTTTCAATGCCAT ${\tt ACGCTTGGGTTCCGAAGTGCTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACTTCTTTAGAAAGGATTTCAT}$ GCTCCTCCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCTCGCCCACGTTAACTTCGCACAGTAAAAA GGTCCCGGGACTGCTGCTGGTGTTTGTCACCTCCGCCTTCACCGTGGTGGGCATGCTCGTGTTTATCCTGAGGAA $\tt TTCCTACTGGCACAATGGGCCTTACAACGCAGATGGGGCCCACAGAGTGTATGACTGTGGCTCTCACTCGCTCTC$ GCGCAGCCAGCTCGCTCTTTGCTGAGAGCCCCTTTTGACAGAAAGCCCAGCACGACCCTGCTGGAAGAACTGACA GTGCCCTCGCCCTCGGCCCCGGGGCCTGTGGGGTTGGATGCCGCGGTTCTATACATATACATATATCCACATC ${\tt TATATAGAGAGATAGCTATTTTTCCCCTGTGGATTAGCCCCGTGATGGCTCCCTGTTGGCTACGCAGGGAT}$ GGGCAGTTGCACGAAGGCATGAATGTATTGTAAATAAGTAACTTTGACTTCTGAC

MLLWILLLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYHL
FLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFLGLQLVKRLHINNNKIKSFRKQTF
LGLDDLEYLQADFNLLRDIDPGAFQDLNKLEVLILNDNLISTLPANVFQYVPITHLDLRGNRL
KTLPYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVVCEAPTRLQGKDL
NETTEQDLCPLKNRVDSSLPAPPAQEETFAPGPLPTPFKTNGQEDHATPGSAPNGGTKIPGNW
QIKIRPTAAIATGSSRNKPLANSLPCPGGCSCDHIPGSGLKMNCNNRNVSSLADLKPKLSNVQ
ELFLRDNKIHSIRKSHFVDYKNLILLDLGNNNIATVENNTFKNLLDLRWLYMDSNYLDTLSRE
KFAGLQNLEYLNVEYNAIQLILPGTFNAMPKLRILILNNNLLRSLPVDVFAGVSLSKLSLHNN
YFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPFKQWAERLGSEVLMSDLKCETPVNFFRK
DFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVLVPGLLLVFVT
SAFTVVGMLVFILRNRKRSKRRDANSSASEINSLQTVCDSSYWHNGPYNADGAHRVYDCGSHS
LSD

Important features:

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577, 608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349, 354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 337-348

FIGURE 355

AGTCGACTGCGTCCCCTGTACCCGGCCCCAGCTGTTCCTGACCCCAGAATAACTCAGGGCTGCACCGGGCCTG GGCGGTGACCGCGCTCCAGACACAGCTCTGCGTCCTCGAGCGGGACAGATCCAAGTTGGGAGCAGCTCTGCGTGC CGAACACCCCACTGCCGACCGTGCTGGCTGCTCGGGCGCCTGCTACAGCCTGCACCACGCTACCATGAA CGCTGTGCTCGCGCTCCTGCGGGCCAGGGCCCGGAGGGGGGCTCCAAAGACCTGCTGTTCTGGGTCGCACT GGAGCGCAGGCGTTCCCACTGCACCCTGGAGAACGAGCCTTTGCGGGGTTTCTCCTGGCTGTCCTCCGACCCCGG CGGTCTCGAAAGCGACACGCTGCAGTGGGTGGAGGAGCCCCAACGCTCCTGCACCGCGCGGAGATGCGCGGTACT CCAGGCCACCGGTGGGGTCGAGCCCGCAGGCTGGAAGGAGATGCGATGCCACCTGCGCGCCAACGGCTACCTGTG ${\tt CAAGTACCAGTTTGAGGTCTTGTGTCCTGCGCCGCGCCCCGGGGCCGCCTTAACTTGAGCTATCGCGCGCCCTT}$ CCCCGGGAGGTACCTCCGTGCTGGCAAATGCGCAGAGCTCCCTAACTGCCTAGACGACTTGGGAGGCTTTGCCTG CGAATGTGCTACGGGCTTCGAGCTGGGGAAGGACGGCCGCTCTTGTGTGACCAGTGGGGAAGGACAGCCGACCCT TGGGGGGACCGGGGTGCCCACCAGGCGCCGCCGGCCACTGCAACCAGCCCCGTGCCGCAGAGAACATGGCCAAT CAGGGTCGACGAGAAGCTGGGAGAGACACCACTTGTCCCTGAACAAGACAATTCAGTAACATCTATTCCTGAGAT TCCTCGATGGGGATCACAGAGCACGATGTCTACCCTTCAAATGTCCCTTCAAGCCGAGTCAAAGGCCACTATCAC $\tt CCCATCAGGGAGCGTGATTTCCAAGTTTAATTCTACGACTTCCTCTGCCACTCCTCAGGCTTTCGACTCCTCCTC$ $\tt TGCCGTGGTCTTCATATTTGTGAGCACAGCAGTAGTAGTGTTGGTGATCTTGACCATGACAGTACTGGGGCTTGT$ ${\tt GCGGGACAGAGGGGGGGGGCCTTGCTGGCGGAGTCCCCTCTTGGCTCTAGTGATGCA{\tt TAG}{\tt GGAAACAGGGGACA}}$ TTTCTGCAGAAATCCCCCTTCCTCTAAATTCCCTTTACTCCACTGAGGAGCTAAATCAGAACTGCACACTCCTTC $\verb|CCTGATGATAGAGGAAGTGCCTTTAGGATGGTGATACTGGGGGACCGGGTAGTGCTGGGGAGAGATATT| \\$ $\verb|TTCTTATGTTTATTCGGAGAATTTGGAGAAGTGATTGAACTTTTCAAGACATTGGAAACAAATAGAACACAATAT|$ TTCGAAATCCCAGGGAAAAAATAAAAATAAAAAATTAAAGGATTGTTGAT

MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALST VRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRRSHCTLENEPLRGFSWLSSDPGGLESD TLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPGAASN LSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPGRYLR AGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATATSPVP QRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITPSGSVIS KFNSTTSSATPQAFDSSSAVVFIFVSTAVVVLVILTMTVLGLVKLCFHESPSSQPRKESMGPP GLESDPEPAALGSSSAHCTNNGVKVGDCDLRDRAEGALLAESPLGSSDA

Important features:

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157, 185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469, 477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 357

 $\tt CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTGCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGA$ ${\tt AGACTAAAA}$ ATCCTTTTCCAATGTGGACACTGAAGAGACAAATTCTTATCCTTTTTAACATAATCCTAATTTCC $\overline{\mathtt{AAACTCCTTGGGGGCTAGATGGTTTCCTAAAACTCTGCCCTGTGATGTCACTCTGGATGTTCCAAAGAACCATGTG}$ ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTC ACCATTAACCACATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGA TGCAACTGTGTACCTATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGC CCTAGCTTACAGCTTCTCAGCCTTGAGGCCAACAACATCTTTTCCATCAGAAAAGAGAAATCTAACAGAACTGGCC AACATAGAAATACTCTACCTGGGCCAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAA GATGCCTTCCTAAACTTGACAAAGTTAAAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTT TTGCCATCTACTTTAACAGAACTATATCTCTACAACAACATGATTGCAAAAATCCAAGAAGATGATTTTAATAAC $\tt CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCG$ ${ t TGTAAAAATAATTCTCCCCTACAGATCCCTGTAAATGCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTA$ CACAGTAACTCTCTTCAGCATGTGCCCCCAAGATGGTTTAAGAACATCAACAAACTCCAGGAACTGGATCTGTCC ${ t CAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTGCATTTTCTCCCCAGCCTCATCCAATTGGATCTG}$ ${ t TCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTATCACAAGCATTTTCTTCACTGAAAAGCCTG$ AAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTTAACCTCTCGCCATTACATAATCTTCAA AATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTCAGCATGTTTAAAACAATTTAAAAGA $\tt CTGAAAGTCATAGATCTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGTGAAGTTGGCTTCTGCTCAAAT$ GCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTCAGATATGATAAGTATGCA AGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTACAAGTATGGGCAGACC AATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTGAGATATTTG GACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTTCTGGAT ATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAGGTT ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAAGGTGATAACAGATACTTACAATTATTCAAG ${\tt AATCTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTGATGGT}$ ATGCCTCCAAATCTAAAGAATCTCTCTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGT AGAAGCCTCAAGAATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTC CAGTTGCGATATCTGGATCTCAGCTCAAATAAAATCCAGATGATCCAAAAGACCAGCTTCCCAGAAAATGTCCTC AACAATCTGAAGATGTTGCTTTTGCATCATAATCGGTTTCTGTGCACCTGTGATGCTGTGTGGTTTGTCTGGTGG GTTAACCATACGGAGGTGACTATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCCAGGAGCACACAAGGGC CAAAGTGTGATCTCCCTGGATCTGTACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA ${\tt TCTGTATCTCTTTTCTCATGGTGATGATGACAGCAAGTCACCTCTATTTCTGGGATGTGTGGTATATTTACCAT}$ TTCTGTAAGGCCAAGATAAAGGGGTATCAGCGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTAT GACACTAAAGACCCAGCTGTGACCGAGTGGGTTTTTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAAA ${\tt CATTTAATTTATGTCTCGAGGAAAGGGACTGGTTACCAGGGCAGCCAGTTCTGGAAAACCTTTCCCAGAGCATA}$ ${\tt CAGCTTAGCAAAAAGACAGTGTTTGTGATGACAGACAAGTATGCAAAGACTGAAAATTTTAAGATAGCATTTTAC}$ ${\tt TCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTCCTTGAGTGGCCAACAAACCCGCAAGCTCAC}$ $\verb|CCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCCTATAGTCAGGTGTTCAAGGAA| \\$ $\texttt{ACGGTC} \underline{\textbf{TAG}} \texttt{CCCTTCTTTGCAAAACACAACTGCCTAGTTTACCAAGGAGAGGCCTGGC}$

FIGURE 358

MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGGI PTNTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKPRSFSGL TYLKSLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLGQNCYYRNPC YVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNLNQLQ ILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSNSLQHVPPRWFKNINK LQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASMNLSQAFSSLKSLKILRIR GYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQFKRLKVIDLSVNKISPSGDSSE VGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQTLDLSKNS IFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLHSTAFEELHK LEVLDISSNSHYFQSEGITHMLNFTKNLKVLQKLMMNDNDISSSTSRTMESESLRTLEFRGNH LDVLWREGDNRYLQLFKNLLKLEELDISKNSLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWK KLQCLKNLETLDLSHNQLTTVPERLSNCSRSLKNLILKNNQIRSLTKYFLQDAFQLRYLDLSS NKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGA HKGQSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQ RLISPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQ SIQLSKKTVFVMTDKYAKTENFKIAFYLSHQRLMDEKVDVIILIFLEKPFQKSKFLQLRKRLC GSSVLEWPTNPQAHPYFWQCLKNALATDNHVAYSQVFKETV

Important features:

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

FIGURE 359

TGCTGGTGGCCACACAGGCCCCGTTGGAGCCCTCACAGATGAGGAGAAACGTTTGATGGTGG AGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTGCACATGAGAT GGGACGAGGAGCTGGCCGCCTTCGCCAAGGCCTACGCACGGCAGTGCGTGTGGGGCCACAACA ${f AGGAGCGCGGGCGCGGCGAGAATCTGTTCGCCATCACAGACGAGGGCATGGACGTGCCGC}$ TGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGCGCCGCCACCTGCAGCC CAGGCCAGATGTGCGCCACTACACGCAGGTGGTATGGGCCAAGACAGAGAGGATCGGCTGTG GTTCCCACTTCTGTGAGAAGCTCCAGGGTGTTGAGGAGACCAACATCGAATTACTGGTGTGCA ACTATGAGCCTCCGGGGAACGTGAAGGGGAAACGGCCCTACCAGGAGGGGACTCCGTGCTCCC AATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGCCCGGAAGATG CTCAGGATTTGCCTTACCTGGTAACTGAGGCCCCATCCTTCCGGGCGACTGAAGCATCAGACT CTAGGAAAATGGGTACTCCTTCTTCCCTAGCAACGGGGATTCCGGCTTTCTTGGTAACAGAGG TCTCAGGCTCCCTGGCAACCAAGGCTCTGCCTGTGGAAACCCAGGCCCCAACTTCCTTAG CAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTTGCGTAACAACTGAGGTCCCTT CCATTTTGGCAGCTCACAGCCTGCCCTCCTTGGATGAGGAGCCAGTTACCTTCCCCAAATCGA CCCATGTTCCTATCCCAAAATCAGCAGACAAAGTGACAAAACAAAAGTGCCCTCTAGGA GCCCAGAGAACTCTCTGGACCCCAAGATGTCCCTGACAGGGGCAAGGGAACTCCTACCCCATG $\tt CCCAGGAGGCTGAGGCTGAGGTTGCCTCCTTCCAGTGAGGTCTTGGCCTCAGTTT$ TTCCAGCCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGACCACACGGGGCACACCTCCT CCAAGTCCCTGCCCAATTCCCCAATACCTCTGCCACCGCTAATGCCACGGGTGGGCGTGCCC TGAACTCGGGCCCTGGTCATGTGTGGGGCCCTCTCCTGGGACTACTGCTCCTGCCTCCTCTGG $\texttt{TGTTGGCTGGAATCTTC} \underline{\textbf{TGA}} \texttt{ATGGGATACCACTCAAAGGGTGAAGAGGTCAGCTGTCCTCCTG}$ TCATCTTCCCCACCCTGTCCCCAGCCCCTAAACAAGATACTTCTTGGTTAAGGCCCTCCGGAA GCTGCGAGCTCAGGAGGCCGCCTGAGGACTGCACACCGGGCCCACACCTCTCCTGCCCCTCCC GCCCACACAGCATGTGCGCTCTCCCTGAGTGCCTGTGTAGCTGGGGATGGGGATTCCTAGGGG CAGATGAAGGACAAGCCCCACTGGAGTGGGGTTCTTTGAGTGGGGGAGGCAGGGAAA GGAAAGTAACTCCTGACTCTCCAATAAAAACCTGTCCAACCTGTGAAA

FIGURE 360

MHGSCSFLMLLLPLLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEEL
AAFAKAYARQCVWGHNKERGRRGENLFAITDEGMDVPLAMEEWHHEREHYNLSAATCSPGQMC
GHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPYQEGTPCSQCPSG
YHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEVSGSL
ATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAAHSLPSLDEEPVTFPKSTHVPI
PKSADKVTDKTKVPSRSPENSLDPKMSLTGARELLPHAQEEAEAEAELPPSSEVLASVFPAQD
KPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVVSGLNSGP
GHVWGPLLGLLLPPLVLAGIF

Important features:

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237, 250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 361

GACTAGTTCTCTTGGAGTCTGGGAGGAGGGAAGCGGAGCGGAGCGAACCAGGACTGG GGTGACGGCAGGGCAGGGCCCTGGCCGGGGGAGAAGCGCGGGGGCTGGAGCACCACCAACT GGAGGGTCCGGAGTAGCGAGCGCCCCGAAGGAGGCCATCGGGGAGCCGGGAGGGGGGACTGCG CCTGGGCCTGGCCGGCTCGCCCCACTGGACGACAAGATCCCCAGCCTCTGCCCGGG GCACCCCGGCCTTCCAGGCACGCCGGGCCACCATGGCAGCCAGGGCTTGCCGGGCCGCGATGG ACTGCCGGGACCTCGAGGGGACCCCGGGGCCGAGGAGGAGGCGGGACCCGCGGGGCCCACCGG GCCTGCCGGGGAGTGCTCGGTGCCTCCGCGATCCGCCTTCAGCGCCCAAGCGCTCCGAGAGCCG GGTGCCTCCGCCGTCTGACGCACCCTTGCCCTTCGACCGCGTGCTGGTGAACGAGCAGGGACA TTACGACGCCGTCACCGGCAAGTTCACCTGCCAGGTGCCTGGGGTCTACTACTTCGCCGTCCA TGCCACCGTCTACCGGGCCAGCCTGCAGTTTGATCTGGTGAAGAATGGCGAATCCATTGCCTC GCTGGAGCCTGAGGACCAAGTGTGGGTGCAGGTGGGTGTGGGTGACTACATTGGCATCTATGC CAGCATCAAGACAGCACCTTCTCCGGATTTCTGGTGTACTCCGACTGGCACAGCTCCCC AGTCTTTGCT**TAG**TGCCCACTGCAAAGTGAGCTCATGCTCTCACTCCTAGAAGGAGGGTGTGA GGCTGACAACCAGGTCATCCAGGAGGGCTGGCCCCCCTGGAATATTGTGAATGACTAGGGAGG TGGGGTAGAGCACTCTCCGTCCTGCTGCTGGCAAGGAATGGGAACAGTGGCTGTCTGCGATCA GGTCTGGCAGCATGGGCAGTGGCTGGATTTCTGCCCAAGACCAGAGGAGTGTGCTGTGCTGG ${\tt CAAGTGTAAGTCCCCCAGTTGCTCTGGTCCAGGAGCCCACGGTGGGGTGCTCTCTTCCTGGTC}$

FIGURE 362

MRPLLVLLLLGLAAGSPPLDDNKIPSLCPGHPGLPGTPGHHGSQGLPGRDGRDGAPGAPG EKGEGGRPGLPGPRGDPGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSDAPLPFD RVLVNEQGHYDAVTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQFFGGWPKPA SLSGGAMVRLEPEDQVWVQVGVGDYIGIYASIKTDSTFSGFLVYSDWHSSPVFA

Important features:

Signal sequence.

amino acids 1-15

N-myristoylation sites.

amino acids 11-17, 68-74, 216-222

Cell attachment sequence.

amino acids 77-80

FIGURE 363

 ${\tt GGAGAGCGGAGCTGGATAACAGGGGACCG} \underline{\textbf{ATG}} \texttt{ATGTGGCGACCATCAGTTCTGCTGCT}$ TCTGTTGCTACTGAGGCACGGGGCCCAGGGGCAAGCCATCCCCAGACGCAGGCCCTCATGGCCA GGGGAGGGTGCACCAGGCGCCCCCTGAGCGACGCTCCCCATGATGACGCCCACGGGAACTT CCAGTACGACCATGAGGCTTTCCTGGGACGGGAAGTGGCCAAGGAATTCGACCAACTCACCCC AGAGGAAAGCCAGGCCCGTCTGGGGCGGATCGTGGACCGCATGGACCGCGCGGGGGACGGCGA CGGCTGGGTGTCGCCGAGCTTCGCGCGTGGATCGCGCACACGCAGCAGCGCACATACG GGACTCGGTGAGCGCGGCCTGGGACACGTACGACACGGACCGCGACGGCGTGTGGGTTGGGA GGAGCTGCGCAACGCCACCTATGGCCACTACGCGCCCGGTGAAGAATTTCATGACGTGGAGGA TGCAGAGACCTACAAAAAGATGCTGGCTCGGGACGAGCGGCGTTTCCGGGTGGCCGACCAGGA TGGGGACTCGATGGCCACTCGAGAGGAGCTGACAGCCTTCCTGCACCCCGAGGAGTTCCCTCA CATGCGGGACATCGTGATTGCTGAAACCCTGGAGGACCTGGACAGAAACAAGATGGCTATGT CCAGGTGGAGGAGTACATCGCGGATCTGTACTCAGCCGAGCCTGGGGAGGAGGAGCCGGCGTG GGTGCAGACGGAGGGCAGCTTCCGGGACTTCCGGGATCTGAACAAGGATGGGCACCTGGA TGGGAGTGAGGTGGCCACTGGGTGCTGCCCCTGCCCAGGACCAGCCCCTGGTGGAAGCCAA CCACCTGCTGCACGAGAGCGACACGGACAAGGATGGGCGGCTGAGCAAAGCGGAAATCCTGGG TAATTGGAACATGTTTGTGGGCAGTCAGGCCACCAACTATGGCGAGGACCTGACCCGGCACCA CGATGAGCTG**TGA**GCACCGCGCACCTGCCACAGCCTCAGAGGCCCGCACAATGACCGGAGGAG GGGCCGCTGTGGCCCCCTCCCTGTCCAGGCCCCGCAGGAGGCAGATGCAGTCCCAGGC ATCCTCCTGCCCCTGGGCTCTCAGGGACCCCCTGGGTCGGCTTCTGTCCCTGTCACACCCCCA GCCTGGCCTGGGACACCTCCTCTCTGCCAGGAGGCAATAAAAGCCAGCGCCGGGACCTTGAAA

MMWRPSVLLLLLLRHGAQGKPSPDAGPHGQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGRE VAKEFDQLTPEESQARLGRIVDRMDRAGDGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDTYD TDRDGRVGWEELRNATYGHYAPGEEFHDVEDAETYKKMLARDERRFRVADQDGDSMATREELT AFLHPEEFPHMRDIVIAETLEDLDRNKDGYVQVEEYIADLYSAEPGEEEPAWVQTERQQFRDF RDLNKDGHLDGSEVGHWVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFVGSQAT NYGEDLTRHHDEL

Important features:

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293, 291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

GTCTGTTCCCAGGAGTCCTTCGGCGGCTGTTGTGTCAGTGGCCTGATCGCGATGGGGACAAAG GCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCCCTGGCA TTGGGCAGTGTTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCCTGAGAATAATCCTGTG AAGTTGTCCTGTGCCTACTCGGGCTTTTCTTCTCCCCGTGTGGAGTGGAAGTTTGACCAAGGA GACACCACCAGACTCGTTTGCTATAATAACAAGATCACAGCTTCCTATGAGGACCGGGTGACC TTCTTGCCAACTGGTATCACCTTCAAGTCCGTGACACGGGAAGACACTGGGACATACACTTGT ATGGTCTCTGAGGAAGGCGGCAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGTGCTTGTG CCTCCATCCAAGCCTACAGTTAACATCCCCTCCTCTGCCACCATTGGGAACCGGGCAGTGCTG ACATGCTCAGAACAAGATGGTTCCCCACCTTCTGAATACACCTGGTTCAAAGATGGGATAGTG ATGCCTACGAATCCCAAAAGCACCCGTGCCTTCAGCAACTCTTCCTATGTCCTGAATCCCACA ACAGGAGAGCTGGTCTTTGATCCCCTGTCAGCCTCTGATACTGGAGAATACAGCTGTGAGGCA CGGAATGGGTATGGGACACCCATGACTTCAAATGCTGTGCGCATGGAAGCTGTGGAGCGGAAT GTGGGGGTCATCGTGGCAGCCGTCCTTGTAACCCTGATTCTCCTGGGAATCTTGGTTTTTGGC GTGATTTACAGCCAGCCTAGTGCCCGAAGTGAAGGAGAATTCAAACAGACCTCGTCATTCCTG $\mathtt{GTG} \underline{\mathbf{TGA}} \mathtt{GCCTGGTCGGCTCACCGCCTATCATCTGCATTTGCCTTACTCAGGTGCTACCGGACT}$ CTGGCCCCTGATGTCTGTAGTTTCACAGGATGCCTTATTTGTCTTCTACACCCCACAGGGCCC CCTACTTCTTCGGATGTTTTTTAATAATGTCAGCTATGTGCCCCATCCTCCTTCATGCCCTC $\tt CCTCCCTTTCCTACCACTGCTGAGTGGCCTGGAACTTGTTTAAAGTGTTTATTCCCCATTTCT$ TTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCCTTCTAAGTAGACAGCAAAAA TATCTTGAGCTTGGTTCTGGGCTCTTTCCTTGTGTACTGACGACCAGGGCCAGCTGTTCTAGA GCGGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTTGGTGATGACACTGGGGTCCTTCCAT CTCTGGGGCCCACTCTCTTCTGTCTTCCCATGGGAAGTGCCACTGGGATCCCTCTGCCCTGTC CTCCTGAATACAAGCTGACTGACATTGACTGTGTCTGTGGGAAAATGGGAGCTCTTGTTGTGGA GAGCATAGTAAATTTTCAGAGAACTTGAAGCCAAAAGGATTTAAAACCGCTGCTCTAAAGAAA CACCTGAGGTCGGGAGTTCGGGATCAGCCTGACCAACATGGAGAAACCCTACTGGAAATACAA AGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTCCCAGCTGCTCAGGAGCCTGGCAACAAGAG CAAAACTCCAGCTCAAAAAAAAAAAAAAAAA

FIGURE 366

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEWK FDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKVKL IVLVPPSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYTWFKDGIVMPTNPKSTRAFSNSSYV LNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLILLGI LVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Important features:

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158, 193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 367

GAAGCTTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA CCACCCCAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAAGTATGTTCATTTTCTC TATAAAGGAGAAAGTGAGCCAAGGAGATATTTTTGGAATGAAAAGTTTGGGGGCTTTTTTAGTAAAGTAAAGAACT GGTGTGGTGGTGTTTTCCTTTTTTGAATTTCCCACAAGAGGGAGAGAATTAATAATACATCTGCAAAGAAA ${ t TTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTCTTCATCAACCTCCTTTTTTTAAAT$ TTTTATTCCTTTTGGTATCAAGATCATGCGTTTTCTCTTGTTCTTAACCACCTGGATTTCCATCTGGATGTTGCT GTGATCAGTCTGAAATACAACTGTTTGAATTCCAGAAGGACCAACACCAGATAAATTATGA ${f a}{f T}{f G}$ TTGAACAAGAT GACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCTGCTTGTGGTGCT ${\tt GCTGGCTCTTCAACTTCTTGTGGTGGCTGGTGCGGGCTCAGACCTGCCCTTCTGTGTGCTCCTGCAGCAA}$ ${\tt CCAGTTCAGCAAGGTGATTTGTGTTCGGAAAAACCTGCGTGAGGTTCCGGATGGCATCTCCACCAACACGGCT}$ GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAGGCACTTGGAAATCCT ${\tt ACTCTTTGACAATCGTCTTACTACCATCCCGAATGGAGCTTTTGTATACTTGTCTAAACTGAAGGAGCTCTGGTT}$ GCGAAACAACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTTGCGCCGACTAGACTTAGG GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACTTGAGGTATTTGAACCTTGC CATGTGCAACCTTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAGCTGGATCTTTCTGGGAATCA ${\tt TTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACTGTGGATGATACAGTCCCAGAT}$ ${\tt TCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCAACCTGGCACACAATAATCTAAC}$ ATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACATTTACATCACAACCCTTGGAACTG TAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTCGAACACAGCTTGTTGTGCCCGGTG TAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGAATTACTTCACATGCTATGCTCCGGT GATTGTGGAGCCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCTGAGCTGAAATGTCGGGCCTCCACATC CCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACATGGGGCGTACAAAGTGCGGATAGCTGT ${\tt GCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATACAGGCATGTACACATGTATGGTGAGTAA}$ $\tt TTCCGTTGGGAATACTACTGCTTCAGCCACCCTGAATGTTACTGCAGCAACCACTACTCCTTTCTCTTACTTTTC$ ${\tt AACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACGGACCACAGATAACAATGTGGGTCCCACTCC}$ AGTGGTCGACTGGGAGACCACCAATGTGACCACCTCTCTCACACCACAGAGCACAAGGTCGACAGAGAAAACCTT CACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATTGATGAGGGTCATGAAGACTACCAAAATCATCAT $\tt TGGGTGTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCTGGTCATTTTCTACAAGATGAGGAAGCAGCACCA$ CATGGAAAGCCACCTGCCCATGCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATACAAATCTCCCTT CAACCACACAACAACAGTTAACACAATAAATTCAATACACAGTTCAGTGCATGAACCGTTATTGATCCGAATGAA GACAGTTTATTAAAAATGACACAAATGACTGGGCTAAATCTACTGTTTCAAAAAAGTGTCTTTACAAAAAACAA AAAAGAAAAGAAATTTATTTATTAAAAATTCTATTGTGATCTAAAGCAGACAAAAA

FIGURE 368

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVICVRKNLREVPDGIS
TNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLANLNTLELFDNRLTTIPNGAFVYLSKL
KELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLSYISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELD
LSGNHLSAIRPGSFQGLMHLQKLWMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHH
NPWNCNCDILWLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAELKC
RASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGNTTASATLNVTAATTTP
FSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQSTRSTEKTFTIPVTDINSGIPGIDEVMKT
TKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQNHHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNS
YKSPFNHTTTVNTINSIHSSVHEPLLIRMNSKDNVQETQI

Important features:

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537

TGGGGGAGCGCGTTCGGCCTGTGGGGCGCCGCTCGGCGCGGGGCGCAGCAGGGAAGGGGAAGCTGTGGTCTGCC CTGCTCCACGAGGCGCCACTGGTGTGAACCGGGAGAGCCCCTGGGTGGTCCCGTCCCCTATCCCTCCTTTATATA GAAACCTTCCACACTGGGAAGGCAGCGGCGAGGCAGGAGGGCTCATGGTGAGCAAGGAGGCCGGCTGATCTGCAG ${ t GCGCACAGCATTCCGAGTTTACAGATTTTTACAGATACCAA} { t ATG} { t GAAGGCGAGGAGCAGAACAGCCTGCCTGGT}$ TCCATCAGCCCTGGCGCCCAGGCGCATCTGACTCGGCACCCCTGCAGGCACCATGGCCCAGAGCCGGGTGCTGC TGCTCCTGCTGCTGCCGCCACAGCTGCACCTGGGACCTGTGCTTGCCGTGAGGGCCCCAGGATTTGGCCGAA GTGGCGGCCACAGCCTGAGCCCCGAAGAGAACGAATTTGCGGAGGAGGAGCCGGTGCTGGTACTGAGCCCTGAGG $\tt TGGAAAAGATCTACCCTGAGGAGCTCTCCCGGCTGCACCGGCTGGAGACATGAACCTGCAAAACAACCGCCTGA$ $\tt CTTCCCGAGGGCTCCCAGAGAGGCGTTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAACAAGC$ $\tt TGACCTTGGCACCCCGCTTCCTGCCAAACGCCCTGATCAGTGTGGACTTTGCTGCCAACTATCTCACCAAGATCT$ $\tt TGCCGGACAACATGTTCAACGGCTCCAGCAACGTCGAGGTCCTCATCCTGTCCAGCAACTTCCTGCGCCACGTGC$ $\verb|CCAAGCACCTGCCCTGTCCAAGACCTCAAGAACAAGCTGGAGAAGATCCCCCCGGGGGCCT|\\$ $\verb|CCTTCTGGAAGCTCTCCAGCCTGGAGTACCTGGATCTGTCCAGCAACAACCTGTCTCGGGTCCCAGCTGGGCTGC| \\$ $\tt CGCGCAGCCTGGTGCTGCACTTGGAGAAGAACGCCATCCGGAGCGTGGACGCGAATGTGCTGACCCCCATCC$ GCACCCTCATGATCCTGCACAACCAGATCACAGGCATTGGCCGCGAAGACTTTGCCACCACCTACTTCCTGGAGG AGCTCAACCTCAGCTACAACCGCATCACCAGCCCACAGGTGCACCGCGACGCCTTCCGCAAGCTGCGCCTGCTGC GCTCGCTGGACCTGTCGGGCAACCGGCTGCACACGCTGCCACCTGGGCTGCCTCGAAATGTCCATGTGCTGAAGG ${\tt TCAAGCGCAATGAGCTGGCTGCCTTGGCACGAGGGGCGCTGGCGGGGCATGGCTCAGCTGCGTGAGCTGTACCTCA}$ TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGGCTCCCCGAGTCACTTGAGTACCTGTACCTGCAGAACAACA ${ t A}{ t G}{ t A}{ t G}{ t C}{ t$ ${\tt TGGCTGTGGGCTCCGTGGTGGACAGTGCCTTCCGGAGGCTGAAGCACCTGCAGGTCTTGGACATTGAAGGCAACT}$ ${\tt AGGAAGAGGAAACAAGA}{\tt TAG}{\tt TGACAAGGTGATGCAGATGTGACCTAGGATGATGGACCGCCGGACTCTTTTCTGC}$ AGCACACGCCTGTGTGCTGAGCCCCCCACTCTGCCGTGCTCACACAGACACACCCAGCTGCACACATGAGGCA TCCCACATGACACGGCTGACACAGTCTCATATCCCCACCCCTTCCCACGGCGTGTCCCACGGCCAGACACATGC GTTCTTCAGGCCTGTGGGGGAAGTTCCGGGTGCCTTTATTTTTTATTCTTTTCTAAGGAAAAAAATGATAAAAAT

FIGURE 370

MEGEEAEQPAWFHQPWRPGASDSAPPAGTMAQSRVLLLLLLLPPQLHLGPVLAVRAPGFGRSG
GHSLSPEENEFAEEEPVLVLSPEEPGPGPAAVSCPRDCACSQEGVVDCGGIDLREFPGDLPEH
TNHLSLQNNQLEKIYPEELSRLHRLETLNLQNNRLTSRGLPEKAFEHLTNLNYLYLANNKLTL
APRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNVEVLI
LSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDNETFWK
LSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSVDANVLTPIRSLEYLLLHSNQLREQG
IHPLAFQGLKRLHTVHLYNNALERVPSGLPRRVRTLMILHNQITGIGREDFATTYFLEELNLS
YNRITSPQVHRDAFRKLRLLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNELAALARGALAGMA
QLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYLQNNKISAVP
ANAFDSTPNLKGIFLRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKDRGRLGKEKEE
EEEEEEEEEEE

Important features:

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341, 477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493, 535-557

FIGURE 371

CACTTTCTCCCTCTCTCTTTACTTTCGAGAAACCGCGCTTCCGCTTCTGGTCGCAGAGACCTCGGAGACCGCG CCGGGGAGACGGAGGTGCTGTGGGGGGGGGACCTGTGGCTGCTCGTACCGCCCCCCACCCTCCTCTTCTGCAC TGCCGTCCTCCGGAAGACCTTTTCCCCTGCTCTGTTTCCTTCACCGAGTCTGTGCATCGCCCCGGACCTGGCCGG GAGTCGTGTGCCCCATGTCCAGGGGGAACAGCAGGAGTGGGAGGGGACTGAGGAGCTGCCGTCGCCTCCGGACCA TGCCGAGAGGGCTGAAGAACAACATGAAAAATACAGGCCCAGTCAGGACCAGGGGCTCCCTGCTTCCCGGTGCTT GCGCTGCTGTGACCCCGGTACCTCCATGTACCCGGCGACCGCCGTGCCCCAGATCAACATCACTATCTTGAAAGG GGAGAAGGGTGACCGCGGAGATCGAGGCCTCCAAGGGAAATATGGCAAAACAGGCTCAGCAGGGGCCAGGGGCCA CACTGGACCCAAAGGGCAGAAGGGCTCCATGGGGGGCCCCTGGGGAGCGGTGCAAGAGCCACTACGCCGCCTTTTC GGTGGCCGGAAGAAGCCCATGCACAGCAACCACTACTACCAGACGGTGATCTTCGACACGGAGTTCGTGAACCT CTACGACCACTTCAACATGTTCACCGGCAAGTTCTACTGCTACGTGCCCGGCCTCTACTTCTTCAGCCTCAACGT GCACACCTGGAACCAGAAGGAGACCTACCTGCACATCATGAAGAACGAGGAGGAGGTGGTGATCTTGTTCGCGCA GGTGGGCGACCGCAGCATCATGCAAAGCCAGAGCCTGATGCTGGAGCTGCGAGAGCAGGACCAGGTGTGGGTACG CCTCTACAAGGGCGAACGTGAGAACGCCATCTTCAGCGAGGAGCTGGACACCTACATCACCTTCAGTGGCTACCT GGTCAAGCACGCCACCGAGCCC<u>TAG</u>CTGGCCGGCCACCTCCTTTCCTCTCGCCACCTTCCACCCCTGCGCTGTGC TGACCCCACCGCTCTTCCCCGATCCCTGGACTCCGACTCCCTGGCTTTGGCATTCAGTGAGACGCCCTGCACAC ACAGAAAGCCAAAGCGATCGGTGCTCCCAGATCCCGCAGCCTCTGGAGAGAGCTGACGGCAGATGAAATCACCAG GGCGGGGCACCCGCGAGAACCCTCTGGGACCTTCCGCGGCCCTCTCTGCACACATCCTCAAGTGACCCCGCACGG CGAGACGCGGGTGGCGGCAGGGCGTCCCAGGGTGCGGCACCGCGCTCCAGTCCTTGGAAATAATTAGGCAAATT $\verb|CCTGCTGGCTCCCAAGAGAGGGCCTTTTCAGTTGAGACTCTGCTTAAGAGAAGATCCAAAGTTAAAGCTCTGGG|$ GTCAGGGGAGGGCCGGGGCAGGAACTACCTCTGGCTTAATTCTTTTAAGCCACGTAGGAACTTTCTTGAGGG ATAGGTGGACCCTGACATCCCTGTGGCCTTGCCCAAGGGCTCTGCTGGTCTTTCTGAGTCACAGCTGCGAGGTGA TGGGGGCTGGGGCCCCAGGCGTCAGCCTCCCAGAGGGACAGCTGAGCCCCCTGCCTTGGCTCCAGGTTGGTAGAA GCAGCCGAAGGGCTCCTGACAGTGGCCAGGGACCCCTGGGTCCCCCAGGCCTGCAGATGTTTCTATGAGGGGCAG AGCTCCTTGGTACATCCATGTGTGGCTCTGCTCCACCCCTGTGCCACCCCAGAGCCCTGGGGGGTGGTCTCCATG CCTGCCACCCTGGCATCGGCTTTCTGTGCCGCCTCCCACACAATCAGCCCCAGAAGGCCCCGGGGCCTTGGCTT CTGTTTTTTATAAAACACCTCAAGCAGCACTGCAGTCTCCCATCTCCTCGTGGGCTAAGCATCACCGCTTCCACG TGTGTTGTGTTGGCAGCAAGGCTGATCCAGACCCCTTCTGCCCCCACTGCCCTCATCCAGGCCTCTGACCA GTAGCCTGAGAGGGGCTTTTTCTAGGCTTCAGAGCAGGGGGAGAGCTGGAAGGGGCTAGAAAGCTCCCGCTTGTCT GTTTCTCAGGCTCCTGTGAGCCTCAGTCCTGAGACCAGAGTCAAGAGGAAGTACACGTCCCAATCACCCGTGTCA GGATTCACTCTCAGGAGCTGGGTGGCAGGAGAGGCAATAGCCCCTGTGGCAATTGCAGGACCAGCTGGAGCAGGG TTGCGGTGTCTCCACGGTGCTCTCGCCCTGCCCATGGCCACCCCAGACTCTGATCTCCAGGAACCCCATAGCCCC TCTCCACCTCACCCCATGTTGATGCCCAGGGTCACTCTTGCTACCCGCTGGGCCCCCAAACCCCGCTGCCTCTC TTCCTTCCCCCATCCCCACCTGGTTTTGACTAATCCTGCTTCCCTCTCTGGGCCTGGCTGCCGGGATCTGGGG TCCCTAAGTCCCTCTCTTTAAAGAACTTCTGCGGGTCAGACTCTGAAGCCGAGTTGCTGTGGGCGTGCCCGGAAG CAGAGCGCCACACTCGCTGCTTAAGCTCCCCCAGCTCTTTCCAGAAAACATTAAACTCAGAATTGTGTTTTCAA

MGSRGQGLLLAYCLLLAFASGLVLSRVPHVQGEQQEWEGTEELPSPPDHAERAEEQHEKYRPS
QDQGLPASRCLRCCDPGTSMYPATAVPQINITILKGEKGDRGDRGLQGKYGKTGSAGARGHTG
PKGQKGSMGAPGERCKSHYAAFSVGRKKPMHSNHYYQTVIFDTEFVNLYDHFNMFTGKFYCYV
PGLYFFSLNVHTWNQKETYLHIMKNEEEVVILFAQVGDRSIMQSQSLMLELREQDQVWVRLYK
GERENAIFSEELDTYITFSGYLVKHATEP

Important features:

Signal sequence.

amino acids 1-25

N-glycosylation site.

amino acids 93-97

N-myristoylation sites.

amino acids 7-13, 21-27, 67-73, 117-123, 129-135

Amidation site.

amino acids 150-154

Cell attachment sequence.

amino acids 104-107

FIGURE 373

CGGAGTGGTGCCCAACGTGAGAGGAAACCCGTGCGCGGCTGCGCTTTCCTGTCCCCAAGCCG TTCTAGACGCGGGAAAA**ATG**CTTTCTGAAAGCAGCTCCTTTTTGAAGGGTGTGATGCTTGGAA GCATTTTCTGTGCTTTGATCACTATGCTAGGACACATTAGGATTGGTCATGGAAATAGAATGC ACCACCATGAGCATCATCACCTACAAGCTCCTAACAAAGAAGATATCTTGAAAATTTCAGAGG ATGAGCGCATGGAGCTCAGTAAGAGCTTTCGAGTATACTGTATTATCCTTGTAAAACCCAAAG ATGTGAGTCTTTGGGCTGCAGTAAAGGAGACTTGGACCAAACACTGTGACAAAGCAGAGTTCT TCAGTTCTGAAAATGTTAAAGTGTTTGAGTCAATTAATATGGACACAAATGACATGTGGTTAA TGATGAGAAAAGCTTACAAATACGCCTTTGATAAGTATAGAGACCAATACAACTGGTTCTTCC TTGCACGCCCCACTACGTTTGCTATCATTGAAAAACCTAAAGTATTTTTTGTTAAAAAAGGATC CATCACAGCCTTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATATGTGGGTATGG AAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTTCTCAATATCCCAG AAAAGTGTCCTGAACAGGGAGGGATGATTTGGAAGATATCTGAAGATAAACAGCTAGCAGTTT GCCTGAAATATGCTGGAGTATTTGCAGAAAATGCAGAAGATGCTGATGGAAAAGATGTATTTA ATACCAAATCTGTTGGGCTTTCTATTAAAGAGGCAATGACTTATCACCCCAACCAGGTAGTAG TGATGTATGGGGTATACCGCCTTAGGGCATTTGGGCATATTTTCAATGATGCATTGGTTTTCT ${\tt TACCTCCAAATGGTTCTGACAATGAC} {\tt TGA} {\tt GAAGTGGTAGAAAAGCGTGAATATGATCTTTGTA}$ TAGGACGTGTGTTGTCATTATTTGTAGTAGTAACTACATATCCAATACAGCTGTATGTTTCTT TTTCTTTTCTAATTTGGTGGCACTGGTATAACCACACATTAAAGTCAGTAGTACATTTTTAAA TGAGGGTGGTTTTTTTTTTTAAAACACATGAACATTGTAAATGTGTTGGAAAGAAGTGTTTTA AGAATAATTTTTGCAAATAAACTATTAATAAATATTATATGTGATAAATTCTAAATTATGA ACATTAGAAATCTGTGGGGCACATATTTTTGCTGATTGGTTAAAAAATTTTTAACAGGTCTTTA GCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATTTGTGATTAAAGTAAAACTTTTAG CTGTGTGTTCCCTTTACTTCTAATACTGATTTATGTTCTAAGCCTCCCCAAGTTCCAATGGAT TTGCCTTCTCAAAATGTACAACTAAGCAACTAAAGAAAATTAAAGTGAAAGTTGAAAAAT

FIGURE 374

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERMELSKSFRVYCIILV KPKDVSLWAAVKETWTKHCDKAEFFSSENVKVFESINMDTNDMWLMMRKAYKYAFDKYRDQYNWFFLARPTTFAI IENLKYFLLKKDPSQPFYLGHTIKSGDLEYVGMEGGIVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAV CLKYAGVFAENAEDADGKDVFNTKSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFG HIFNDALVFLPPNGSDND

Important features:

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389, 399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550, 558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 375

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAAT CTATCAGGAAAGAAAGAAAAAACCGAACCTGACAAAAAAGAAGAAAAAGAAGAAGAAGAAAA AAAAATC**ATG**AAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCACGGG GCTGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCCCCAA AGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATTGACAA CCGGGTCACCCGGGTGGCCTAAACCGCAGCACCATCCTCTATGCTGGGAATGACAAGTG GTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCGAGATCCA GACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCCAAAATTGTAGAGATTTCTTCAGATAT CTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGACCAGAGCCTAC AATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTCCAATGACGTGGC CGCGCCCGTGGTACGGAGGTAAAGGTCACCGTGAACTATCCACCATACATTTCAGAAGCCAA GGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCCTCAGCAGTCCCCTC GGAAAACAGACCTTTCCTCCAAAACTCATCTTCTTCAATGTCTCTGAACATGACTATGGGAA $\tt CTACACTTGCGTGGCCTCCAACAAGCTGGGCCACCCAATGCCAGCATCATGCTATTTGGTCC$ $\texttt{TCTTCTGGTCTTGCACCTGCTTCTCAAATTT} \underline{\textbf{TGA}} \texttt{TGTGAGTGCCACTTCCCCACCCGGGAAAG}$ GCTGCCGCCACCACCACCAACACACAGCAATGGCAACACCGACAGCAACCAATCAGATA GAATACTTTGGGGGGAAAAGAGTTTTAAAAAAAGAAATTGAAAATTGCCTTGCAGATATTTAGG TACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACACCACCCGGCTTGGACCCACTGCA AGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAAGGGCTCAGCCTCTCTGCCCACAGA GTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCAAATTCAATCAGTCCATAGAGACGAA ${\tt CAGAATGAG\underline{A}CCTTCCGGCCCAAGCGTGGCGCTGCGGGCACTTTGGTAGACTGTGCCACCACG}$

FIGURE 376

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNRV
TRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPKTS
RVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYLEIQ
GITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAVPSAE
FQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIMLFGPGA
VSEVSNGTSRRAGCVWLLPLLVLHLLLKF

Important features:

Signal peptide:

amino acids 1-28

TU

T.

Q

377/550

FIGURE 377

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTCTGCATTTGCCCCCTTTAGATTGTGAA TATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTTGAGAGACCCCACACA ATGCCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTTCCTGACTTGGAATACCAACAC AAGTTCACCATGATGCCACCCAATGCATCTCTGCTTATCAACCCACTGCAGTTCCCTGATGAA GGCAATTACATCGTGAAGGTCAACATTCAGGGAAATGGAACTCTATCTGCCAGTCAGAAGATA $\tt GTGGAGTATGTGGGGAACATGACCCTGACATGCCATGTGGAAGGGGGCACTCGGCTAGCTTAC$ CAATGGCTAAAAATGGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTTCTCCCCAAAAC AATACCCTTCATATTGCTCCAGTAACCAAGGAAGACATTGGGAATTACAGCTGCCTGGTGAGG AACCCTGTCAGTGAAATGGAAAGTGATATCATTATGCCCCATCATATATTATGGACCTTATGGA CTTCAAGTGAATTCTGATAAAGGGCTAAAAGTAGGGGAAGTGTTTACTGTTGACCTTGGAGAG GCCATCCTATTTGATTGTTCTGCTGATTCTCATCCCCCCAACACCTACTCCTGGATTAGGAGG ACTGACAATACTACATATCATTAAGCATGGGCCTCGCTTAGAAGTTGCATCTGAGAAAGTA ACTCATTTCACAGTTATCATCACTTCCGTAGGACTGGAGAAGCTTGCACAGAAAGGAAAATCA TTGTCACCTTTAGCAAGTATAACTGGAATATCACTATTTTTGATTATATCCATGTGTCTTCTC ACAGAATACAGGAAAGCTCAAACATTTTCAGGCCATGAAGATGCTCTGGATGACTTCGGAATA TATGAATTTGTTGCTTTTCCAGATGTTTCTGGTGTTTCCAGGATTCCAAGCAGGTCTGTTCCA GCCTCTGATTGTGTATCGGGGCAAGATTTGCACAGTACAGTGTATGAAGTTATTCAGCACATC ATTCTGAAGAAACATTTTAAGGAAAAACAGTGGAAAAGTATATTAATCTGGAATCAGTGAAGA AACCAGGACCAACACCTCTTACTCATTATTCCTTTACATGCAGAATAGAGGCATTTATGCAAA TTGAACTGCAGGTTTTTCAGCATATACACAATGTCTTGTGCAACAGAAAAACATGTTGGGGAA ATATTCCTCAGTGGAGAGTCGTTCTCATGCTGACGGGGAGAACGAAAGTGACAGGGGTTTCCT CATAAGTTTTGTATGAAATATCTCTACAAACCTCAATTAGTTCTACTCTACACTTTCACTATC ATCAACACTGAGACTATCCTGTCTCACCTACAAATGTGGAAACTTTACATTGTTCGATTTTTC AGCAGACTTTGTTTTATTAAATTTTTTTTTTTTATTAAGAATGCTAAATTTATGTTTCAATTTT ATTTCCAAATTTCTATCTTGTTATTTGTACAACAAAGTAATAAGGATGGTTGTCACAAAAACA AAACTATGCCTTCTTTTTTTTCAATCACCAGTAGTATTTTTGAGAAGACTTGTGAACACTTATTCTGTTTTTGCTTTTAAAAAAAAAAAAAA

FIGURE 378

MWLKVFTTFLSFATGACSGLKVTVPSHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPHTMPKYLLGSVNKS VVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGTLSASQKIQVTVDDPVTKPVVQIHPPSGAVEY VGNMTLTCHVEGGTRLAYQWLKNGRPVHTSSTYSFSPQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPII YYGPYGLQVNSDKGLKVGEVFTVDLGEAILFDCSADSHPPNTYSWIRRTDNTTYIIKHGPRLEVASEKVAQKTMD YVCCAYNNITGRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQKLEG RPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSVPASDCVSGQDLHSTVYEVIQHIPAQQQDHPE

Important features:

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208, 276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237, 239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 379

MYRHKNSWRLGLKYPPSSKEETQVPKTLISGLPGRKSSSRVGEKLQSAHKMPLSPGLLLLLLS GATATAALPLEGGPTGRDSEHMQEAAGIRKSSLLTFLAWWFEWTSQASAGPLIGEEAREVARR QEGAPPQQSARRDRMPCRNFFWKTFSSCK

Important features:

Transmembrane domain:

amino acids 51-69

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 35-39, 92-96

N-myristoylation sites.

amino acids 64-70, 75-81, 90-96

Amidation site.

amino acids 33-37

FIGURE 381

GGCGCCGGTGCACCGGGCGGGCTGAGCGCCTCCTGCGGCCCGGCCTGCGCCCCGGCCCGGCC GCGCCGCCCACGCCCCAACCCCGGCCCGCGCCCCTAGCCCCCGCGCCCGGGCCCGCGCCCGCGC CGGCCGGCGGGGAACCGGGCGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAACATTC TGCGCCCTGCGCGCCCCGCGCCCGAGCCCAGCCAGAGCCGGGCGGAGCGAGCG CGCCGAGCCTCGTCCCGCGGCCGGGCCGGGCCGGGCCGTAGCGGCGCCTGGATGCGGAC ACCCCTACGATGAAGAGGGCGTCCGCTGGAGGGAGCCGGCTGCTGGCATGGGTGCTGTGGCTG CAGGCCTGGCAGGTGCCCATGCCCAGGTGCCTGCGTATGCTACAATGAGCCCAAGGTG AACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCCGAATTGATGCGGCTGCCTTCACT GGCCTGGCCCTCCTGGAGCAGCTCAGCGATAATGCACAGCTCCGGTCTGTGGACCCT GCCACATTCCACGGCCTGGGCCGCCTACACACGCTGCACCTGGACCGCTGCGGCCTGCAGGAG CTGGGCCCGGGCTGTTCCGCGGCCTGGCTGCCTGCAGTACCTCTACCTGCAGGACAACGCG CTGCAGGCACTGCCTGATGACACCTTCCGCGACCTGGGCAACCTCACACACCTCTTCCTGCAC GGCAACCGCATCTCCAGCGTGCCCGAGCGCGCCTTCCGTGGGCTGCACAGCCTCGACCGTCTC CTACTGCACCAGAACCGCGTGGCCCATGTGCACCCGCATGCCTTCCGTGACCTTGGCCGCCTC ATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCTGCCCACTGAGGCCCTGGCCCCCTG ${\tt CGTGCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGGTGTGTGACTGCCGGGCACGCCCA}$ CTCTGGGCCTGCAGAAGTTCCGCGGCTCCTCCTCCGAGGTGCCCTGCAGCCTCCCGCAA ACCGGCCCTTACCATCCCATCTGGACCGGCAGGGCCACCGATGAGGAGCCGCTGGGGCTTCCC AAGTGCTGCCAGCCAGATGCCGCTGACAAGGCCTCAGTACTGGAGCCTGGAAGACCAGCTTCG CCACGGCACATCAATGACTCACCCTTTGGGACTCTGCCTGGCTCTGAGCCCCCGCTCACT GCAGTGCGGCCCGAGGCTCCGAGCCACCACGTCGGGCCCTCGCCGGAGGCCA GGCGGGACTGGTGACTCAGAAGGCTCAGGTGCCCTACCCAGCCTCACCTGCAGCCTCACCCCC $\mathtt{CTGGGCCTGGCGGTGCTGTGGACAGTGCTTGGGCCCTGC}$ $\mathtt{CCCCAGCGGACACAGAGA}$ GCGGCCGACCCGTGGGGCCAGGCCAGGTCCTCCCTGATGGACGCCTGCCGCCACC CCCATCTCCACCCCATCATGTTTACAGGGTTCGGCGGCAGCGTTTGTTCCAGAACGCCGCCTC CCACCCAGATCGCGGTATATAGAGATATGCATTTTATTTTACTTGTGTAAAAATATCGGACGA CGTGGAATAAAGAGCTCTTTTCTTAAAAAAA

FIGURE 382

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRIF LHGNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPATF HGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLHGNR ISSVPERAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAPLRAL QYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCAVATGP YHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGNGSGPRH INDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRRPGCSRKNRTRSHCRLGQAGSGGGT GDSEGSGALPSLTCSLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

FIGURE 383

TTCGTGACCCTTGAGAAAAGAGTTGGTGGTAAATGTGCCACGTCTTCTAAGAAGGGGGGAGTCCTGAACTTGTCTG ${\tt AAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCGAGGGACCTTTCGCTGCTTTTGTAGGG}$ ${\tt TTGGGGCTTTGATCCCTGAACCAGAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCA}$ AAGGAGGGGATTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTCACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCATCCTGGAGGCTCTCAAAGGTTGGGACCAGGGCTTGA AAGGAATGTGTGTAGGAGAGAAGGAAAAGCTCATCATTCCTCCTGCTCTGGGCTATGGAAAAGAAGGAAAAGGTA AAATTCCCCCAGAAAGTACACTGATATTTAATATTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAAT CATTCCAAGAAATGGATCTTAATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGT TTGAAAAACATGGTGCGGTGGAATGAAAGTCATCATGATGCTTTGGTGGAGGATATTTTTGATAAAGAAGATG $\texttt{AAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA} \textbf{\underline{TAG}} \texttt{AGATACATCTACCCTT}$ $\tt CTTTCTGATAAGTTATTGGGAAGAAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTC$ ${ t ACAGATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTTAAAATGTTGCAACTGGGAATATACCACGACATGA$ GACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTCTCCAAGTTAGAGGTCAACATTT GAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCATGTTATAATGAAATAGTTTATGTGTAACTGGCTCTG ${ t AGTCTCTGCTTGAGGACCAGAGGAAAATGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGAT$ GTGCAATGCTGAAGTTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGA GGCTGAGGCGGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAACCCTATCTCTAC TAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCTACCCAGGAAGGCTGAGGCGGCAGAA TCACTTGAACCCGAGGCCGAGGTTGCGGTAAGCCGAGATCACCTNCAGCCTGGACACTCTGTCTCGAAAAAAGAA AAGAACACGGTTAATACCATATNAATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGG $\tt CTCCTAGTGATTGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGTGAGTTTCTTTGTAATAAATGTA$ ${\tt TCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGCTAGCGGAATATCCTT$ CCTGGTTCTTTAATGGGTAGTCTATAGTATATTATACTACAATAACATTGTATCATAAGATAAAGTAGTAAACCA GTCTACATTTCCCATTTCTGTCTCATCAAAAACTGAAGTTAGCTGGGTGTGGTGGCTCATGCCTGTAATCCCAG ${\tt CACTTTGGGGGCCAAGGAGGTGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCT}$ TGTCTCTACTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAGGCTGA TCCTGGATTTT

FIGURE 384

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLF HSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPESTLI FNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVEDIFD KEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

FIGURE 385

CCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGTCC CTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGTGGG ATCCTCTTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGGCCAGGAGACAATGAAG GGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGAACCTC ACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAGTCTTTA CTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTTCTCCCACCTTCCAG CCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCCCAGGATTG ACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGGGCTGAGGCC CCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACACAGGAACCTCT CCTCACCCAGCGACCTCTCCTGCAGGGAGCTCCCGCCCCCCATGCAGCTGGACTCCACC TCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGGGTGTCCATCCCG ATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGAGCCTTCTGTCAGCCGCAGGCCTGATC GCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCACGGAGACACAGAGG AACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCCCCTTCCCAGGCCCCT GAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGAGCTGGGCTTCTCGAAG TGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAGTCCAGCTGCCCGGACTCC AGGGCTCTCCCCACCCTCCCCAGGCTCTCCTCTTGCATGTTCCAGCCTGACCTAGAAGCGTTT GTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTGGAGACTGGGACATCCCTGAT AGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCAGCAGGGCCAGACAAGGCTCAG $\tt TGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGCCTCATGCCCAGTGTCGGACCCT$ GCCTTCCTCCCAGACCCCACCTTGTCTTCCCTCCCTGGCGTCCTCAGACTTAGTCCCA $\tt CGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCTGGGGTGAGACTGGGATTCTGGCTT$ CTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCTGTGAAAAACGTGATTCCTGGCCCCA CCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAGGACTCTGAATTCTAACAATGCCCAGT GACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTGATGAACGCTCACACCCCTTCAGCTTAG GATCCACGTGGGGACTCCCCTGAGGCCTGCTAAGTCCAGGCCTTGGTCAGGTCAGGTGCACAT TGCAGGATAAGCCCAGGACCGGCACAGAAGTGGTTGCCTTTNCCATTTGCCCTCCCTGGNCCA TTACTTGCCTATGGGTTCTGGTGGCTAGAGAGAAAAGTAGAAAACCAGAGTGCACGTAGGTGT $\verb|CTAACACAGAGGAGAGTAGGAACAGGGCGGATACCTGAAGGTGACTCCGAGTCCAGCCCCTG|\\$ ATTGTTTTTTAAGACAGAATCTCGTGCTGCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCA AACTCCGCCTCCTGGGTTCAAGTGATTCTTCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAG GCACGCACCACCACCTGGCTAATTTTTGTACTTTTAGTAGAGATGGGGTTTCACCATGTTG GCCAGGCTGGTCTTGAACTCCTGACCTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCG GGATTACAGGCATGAGCCACTGTGTCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTG ACATAATTTGCCGGTGTTCTTTTTACAGAGCAATTATCTTGTATACAACTTTGTATCCTGC CTTTTCCACCTTATCGTTCCATCACTTTATTCCAGCACTTCTCTGTGTTTTACAGACCTTTTT

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCSG
TIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFVFP
GPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPGTSQ
YGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRILAPV
LVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGDVISMP
PLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128

GCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGAGG CGCCCGGCCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATCGGG **ATG**TCCCTCCTCCTTCTCCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCACACT GAGATCAAGAGAGTGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGCTTCCA GAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAAGTGGTG ATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCGAGTGGCC TTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGCCCAGTGAT GAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCATGTCATCTTA GACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATTACTGGCAGCGA ATCCGAGAGAAAGAGGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATTGACTACAACCAC CCTGGACGAGTTCTGCAGAATCTTACCATGTCCTACTCTGGACTGTACCAGTGCACAGCA GGCAACGAAGCTGGGAAGGAAAGCTGTGTGGTGCGAGTAACTGTACAGTATGTACAAAGCATC GGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTGATTTTCCTCTTGGTG TGGCTGCTAATCCGAAGGAAAGACAAAGAAGATATGAGGAAGAAGAGAGACCTAATGAAATT CGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCTCCTCTTCCTCAGGCTCT CGGAGCTCACGCTCTCCTCCACTCGCTCCACAGCAAATAGTGCCTCACGCAGCCAG CGGACACTGTCAACTGACGCAGCCCCAGCCAGGCCTGGCCACCCAGGCATACAGCCTAGTG GGGCCAGAGGTGAGAGGTTCTGAACCAAAGAAGTCCACCATGCTAATCTGACCAAAGCAGAA ${\tt ACCACCCAGCATGATCCCCAGCCAGAGCAGAGCCTTCCAAACGGTC}$ ${\tt TTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTCTTCTCGTCATTGGAGCTCAAGT}$ CACCAGCCACACCAGATGAGAGGTCATCTAAGTAGCAGTGAGCATTGCACGGAACAGATT CAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAAAGGATGTAAGCTGATTCATCTGTA AAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGGAAAGCAGGAGTCCAAATCTATTTGT TGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTGAGGTGAATATACCTAAAACTTTTAAT GTGGGATATTTTGTATCAGTGCTTTGATTCACAATTTTCAAGAGGAAATGGGATGCTGTTTGT AAATTTTCTATGCATTTCTGCAAACTTATTGGATTATTAGTTATTCAGACAGTCAAGCAGAAC CCACAGCCTTATTACACCTGTCTACACCATGTACTGAGCTAACCACTTCTAAGAAACTCCAAA AAAGGAAACATGTGTCTTCTTATTCTGACTTAACTTCATTTGTCATAAGGTTTGGATATTAATT TCAAGGGGAGTTGAAATAGTGGGAGATGGAGAAGAGTGAATGAGTTTCTCCCACTCTATACTA ATCTCACTATTTGTATTGAGCCCAAAATAACTATGAAAGGAGACAAAAATTTGTGACAAAGGA TTGTGAAGAGCTTTCCATCTTCATGATGTTATGAGGATTGTTGACAAACATTAGAAATATATA ATGGAGCAATTGTGGATTTCCCCTCAAATCAGATGCCTCTAAGGACTTTCCTGCTAGATATTT ATGTGAAACCAGAATTGCAAGACTGGGTGGACTAGAAAGGGAGATTAGATCAGTTTTCTCTTA ATATGTCAAGGAAGGTAGCCGGGCATGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAG GTTGCAGTGAGCCGAGATTATGCCATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

FIGURE 388

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKVV
ITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHVIL
KVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRIDYNH
PGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLIFLLV
WLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANSASRSQ
RTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Important freatures:

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

FIGURE 389

 $\tt GCGGCACCTGGAAG{\color{red} {\bf ATG}} CGCCCATTGGCTGGTGGCCTGCTCAAGGTGGTGTTCGTGGTCTTCG{\color{red} {\bf CTCAAGGTGGTGTTCGTGGTCTTCG} }$ $\tt CCTCCTTGTGTGCCTGGTATTCGGGGTACCTGCTCGCAGAGCTCATTCCAGATGCACCCCTGT$ CCAGTGCTGCCTATAGCATCCGCAGCATCGGGGAGAGGCCTGTCCTCAAAGCTCCAGTCCCCA AAAGGCAAAAATGTGACCACTGGACTCCCTGCCCATCTGACACCTATGCCTACAGGTTACTCA GCGGAGGTGGCAGAAGTACGCCAAAATCTGCTTTGAGGATAACCTACTTATGGGAGAAC AGCTGGGAAATGTTGCCAGAGGAATAAACATTGCCATTGTCAACTATGTAACTGGGAATGTGA CAGCAACACGATGTTTTGATATGTATGAAGGCGATAACTCTGGACCGATGACAAAGTTTATTC AGAGTGCTCCCAAAATCCCTGCTCTTCATGGTGACCTATGACGACGGAAGCACAAGACTGA ATAACGATGCCAAGAATGCCATAGAAGCACTTGGAAGTAAAGAAATCAGGAACATGAAATTCA GGTCTAGCTGGGTATTTATTGCAGCAAAAGGCTTGGAACTCCCTTCCGAAATTCAGAGAGAAA ${\tt AAGGCTGCATACCCAAAGAACGAAGC} \underline{{\tt TGA}} {\tt CACTGCAGGGTCCTGAGTAAATGTGTTCTGTATA}$ AACAAATGCAGCTGGAATCGCTCAAGAATCTTATTTTTCTAAATCCAACAGCCCATATTTGAT GAGTATTTTGGGTTTGTTAAACCAATGAACATTTGCTAGTTGTATCAAATCTTGGTACGCA AAATTCTTAAAAAAAAAA

FIGURE 390

MRPLAGGLLKVVFVVFASLCAWYSGYLLAELIPDAPLSSAAYSIRSIGERPVLKAPVPKRQKC DHWTPCPSDTYAYRLLSGGGRSKYAKICFEDNLLMGEQLGNVARGINIAIVNYVTGNVTATRC FDMYEGDNSGPMTKFIQSAAPKSLLFMVTYDDGSTRLNNDAKNAIEALGSKEIRNMKFRSSWV FIAAKGLELPSEIQREKINHSDAKNNRYSGWPAEIQIEGCIPKERS

Important features:

Signal sequence.

amino acids 1-20

N-glycosylation sites.

amino acids 120-124, 208-212

Glycosaminoglycan attachment site.

amino acids 80-84

N-myristoylation sites.

amino acids 81-87, 108-114, 119-125

FIGURE 391

GGGGGCTTTCTTGGGCTTGGCTTGGAACACCTGCCTCCAAGGACCGGCCTCGGAGGGGTCGCCGGGAAAGGG $\tt CTGTGCCCTGCGCCCTTGCCCCGCGCCAGCTTCTGCGCCCGCAGCCCGGCGCCCCGGTGACCGTGACCCT$ GGAGTGGGAGCGCCCCCAGGAGCCCAAGGCCCCAAGAGGCCCAAGAAAGCTCCCAAGAGGGA GAAGTCGGCTCCGGAGCCGCCTCCACCAGGTAAACACAGCAACAAAAAAGTTATGAGAACCAAGAGCTCTGAGAA AACCTTAAAAATCACAGACTTCCAGCTCCATGCCTCCACGGTGAAGCGCTATGGCCTGGGGGGCACATCGAGGGAG ACTCAACATCCAGGCGGCATTAATGAAAATGATTTTTATGACGGAGCGTGGTGCGCGGGAAGAAATGACCTCCA GCAGTGGATTGAAGTGGATGCTCGGCCCTGACCAGATTCACTGGTGTCATCACTCAAGGGAGGAACTCCCTCTG GCTGAGTGACTGGGTGACATCCTATAAGGTCATGGTGAGCAATGACAGCCACACGTGGGTCACTGTTAAGAATGG ${ t ATCTGGAGACATGATATTTGAGGGAAACAGTGAGAAGGAGATCCCTGTTCTCAATGAGCTACCCGTCCCCATGGT$ GGCCCGCTACATCCGCATAAACCCTCAGTCCTGGTTTGATAATGGGAGCATCTGCATGAGAATGGAGATCCTGGG CTGCCCACTGCCAGATCCTAATAATTATTATCACCGCCGGAACGAGATGACCACCACTGATGACCTGGATTTTAA CAACATTGGAAAAAGCCACCAGGGCCTGAAGCTGTATGCTGTGGAGATCTCAGATCACCCTGGGGAGCATGAAGT ${\tt GGTGCAGTTCGTGTGAGGAGTACTTGGCCCGGAATGCGCGCATCGTCCACCTGGTGGAGGAGACGCGGATTCA}$ $\tt CGTCCTCCCTCAACCCCGATGGCTACGAGAAGGCCTACGAAGGGGGGCTCGGAGCTGGGAGGCTGGTCCCT$ GGGACGCTGGACCCACGATGGAATTGACATCAACAACATTTCCTGATTTAAACACGCTGCTCTGGGAGGCAGA GGATCGACAGAATGTCCCCAGGAAAGTTCCCAATCACTATATTGCAATCCCTGAGTGGTTTCTGTCGGAAAATGC GGGCGGCGAGCTGGTGGTGGCGTATCCCTACGACCTGGTGCGGTCCCCCTGGAAGACGCAGGAACACACCCCCAC CCCCGATGACCACGTGTTCCGCTGGCCTGCCTACTCCTATGCCTCCACACCCCCCTCATGACAGACGCCCGGAG GAGGGTGTGCCACACGGAGGACTTCCAGAAGGAGGAGGGCACTGTCAATGGGGCCTCCTGGCACACCGTCGCTGG AAGTCTGAACGATTTCAGCTACCTTCATACAAACTGCTTCGAACTGTCCATCTACGTGGGCTGTGATAAATACCC ACATGAGAGCCAGCTGCCCGAGGAGTGGGAGAATAACCGGGAATCTCTGATCGTGTTCATGGAGCAGGTTCATCG ${ t TGGCATTAAAGGCTTGGTGAGAGATTCACATGGAAAAGGAATCCCAAACGCCATTATCTCCGTAGAAGGCATTAA$ CCATGACATCCGAACAGCCAACGATGGGGGATTACTGGCGCCTCCTGAACCCTGGAGAGTATGTGGTCACAGCAAA GGCCGAAGGTTTCACTGCATCCACCAAGAACTGTATGGTTGGCTATGACATGGGGGCCCACAAGGTGTGACTTCAC ACTTAGCAAAACCAACATGGCCAGGATCCGAGAGATCATGGAGAAGTTTGGGAAGCAGCCCGTCAGCCTGCCAGC $\texttt{CAGGCGGCTGAAGCTGCGGGGGGGGGAAGAGACGACAGCGTGGG} \\ \underline{\textbf{TGA}} \texttt{CCCTCCTGGGCCCTTGAGACTCGTCTGGG}$ ${\tt AAGTGCCTGGAAGAGGGTGCATTGTGAGGCAGGTCCCAAAAGGGAAGGCTGGAGGCTGTTTTCTTTT}$ ATTCTGGTGCTTCCCCTGTTTGCGTGGCAGCAAGGGTTCCACGTGCATTTGCAATTTGCACAGCTAAAATTGCAG CATTTCCCCAGCTGGGCTGTCCCAAATGTTACCATTTGAGATGCTCCCAGGCGTCCTAAGAGAATCCACCCTCTC ${\tt TGGCCCTGGGACATTGCAAGCTGCTACAAATAAATTCTGTGTTCTTTTGACAATAGCGTCATTGCCAAGTGCACA}$ GATCATTCAGGAGTTTGTTGGGCAGCAAGCATGGAGCTTCTTGCACAAATTCTGGGTCCATAAACAACCCCCAAA GTCCCTGCTGATCCAGTAGCCCTGGAGGTTCCCCAGGTAGGGAGGCCAGAGGTGCCAGCCTTCCTGAAGGGCCA ${\tt GAAAATTTAGCCTGGATCTCCTCTTTTACCTGCTAGGACTGGAAAGAGCCAGAAGTGGGGTGGCCTGAAGCCCTC}$ ${ t TCTCTGCTTGAGGTATTGCCCCTGTGTGGAATTGAGTGCTCATGGGTTGGCCTCATATCAGCCTGGGAGTTATTT$ TTGATATGTAGAATGCCAGATCTTCCAGATTAGGCTAAATGTAATGAAAACCTCTTAGGATTATCTGTGGAGCAT ${\sf CAGTTTGGGAAGAATTATTGAATTATCTTGCAAGAAAAAGTATGTCTCACTTTTTGTTAATGTTGCTGCCTCAT}$ AAAAAAAAAAAAAAAAA

FIGURE 392

MSRPGTATPALALVLLAVTLAGVGAQGAALEDPDYYGQEIWSREPYYARPEPELETFSPPLPA
GPGEEWERRPQEPRPPKRATKPKKAPKREKSAPEPPPPGKHSNKKVMRTKSSEKAANDDHSVR
VAREDVRESCPPLGLETLKITDFQLHASTVKRYGLGAHRGRLNIQAGINENDFYDGAWCAGRN
DLQQWIEVDARRLTRFTGVITQGRNSLWLSDWVTSYKVMVSNDSHTWVTVKNGSGDMIFEGNS
EKEIPVLNELPVPMVARYIRINPQSWFDNGSICMRMEILGCPLPDPNNYYHRRNEMTTTDDLD
FKHHNYKEMRQLMKVVNEMCPNITRIYNIGKSHQGLKLYAVEISDHPGEHEVGEPEFHYIAGA
HGNEVLGRELLLLLVQFVCQEYLARNARIVHLVEETRIHVLPSLNPDGYEKAYEGGSELGGWS
LGRWTHDGIDINNNFPDLNTLLWEAEDRQNVPRKVPNHYIAIPEWFLSENATVAAETRAVIAW
MEKIPFVLGGNLQGGELVVAYPYDLVRSPWKTQEHTPTPDDHVFRWLAYSYASTHRLMTDARR
RVCHTEDFQKEEGTVNGASWHTVAGSLNDFSYLHTNCFELSIYVGCDKYPHESQLPEEWENNR
ESLIVFMEQVHRGIKGLVRDSHGKGIPNAIISVEGINHDIRTANDGDYWRLLNPGEYVVTAKA
EGFTASTKNCMVGYDMGATRCDFTLSKTNMARIREIMEKFGKQPVSLPARRLKLRGRKRRQRG

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAAC TAGTTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTGGACATCTCAGATCGCTTCCAATGAAGA AAGGAGCACGGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTT $\verb|CTACTTATTTCTTTTAGGGGATTGTCAGGAGGTGACCACTCTCACGGTGAAATACCAAGTGTCAGAGGAAGTGCC|$ ${\tt GGCTCTGATCCATGTGGAGATCCAAGTGCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGA}$ $\verb|CTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTTGGTCAAGGTCAACGTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCAATGACAATAGCTCTTGGACAATGACAATAGCTCTTGGACAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACTCCAATGACAATAGCTCTTGGACAATAGACAATAGCTCTTGGACAATGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAGACAATAG$ $\tt CCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACGCTTCTCATAAAACT$ GACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTTCTTCCTCAGTAAGCACATGCCTCCAGAGGT GCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCGTCGACCTCTAGACTATGAAAAGAACCC TGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCCAGCCCATTGCAAAGTTCTCATCAA GGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCAGCCATCACTGGTGTCAGAAGC TCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACACAATGGTTTGGTCCACTG CACACTGGACAGAGAGCAGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACTCCAGCCCTTATC AGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTGAGAAAAGCAGGTATGA AGTCTCCACGCGGGAAAACAACTTACCCTCTCTTCACCTCATTACCATCAAGGCTCATGATGCAGACTTGGGCAT TAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGGAGA GGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCAATGATAATGCCCCAGAGGTGGT ${\tt CCAGCCTGTGCTCAGCGATGGAAAAGCCAGCCTCTCCGTGCTTGTGAATGCCTCCACAGGCCACCTGCTGGTGCC}$ CATCGAGACTCCCAATGGCTTGGGCCCAGCGGGCACTGACACCCTCCACTGGCCACTCACAGCTCCCGGCCATT $\verb|CCTTTTGACAACCATTGTGGCAAGAGATGCAGACTCGGGGGGCAAATGGAGGCCCCTCTACAGCATCCGCAATGG| \\$ ${\tt AAATGAAGCCCACCTCTTCATCCTCAACCCTCATACGGGGCAGCTGTTCGTCAATGTCACCAATGCCAGCAGCCT}$ ${\tt CATTGGGAGTGGGAGCTGGAGATAGTAGTAGAGGACCAGGGAAGCCCCCCTTACAGACCCGAGCCCTGTT}$ GAGGGTCATGTTTGTCACCAGTGTGGACCACCTGAGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGAT GCTGACGGTGATCTGCCTGGCTGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCG $\verb|CCACCTCACCCCGACCCTGTACAGGACGCTGCGTAATCAAGGCAACCAGGGAGGCACCGGCGGAGAGCCGAGAGGT| \\$ GCTGCAAGACACGGTCAACCTCCTTTTCAACCATCCCAGGCAGAGGAATGCCTCCCGGGGAGAACCTGAACCTTCC TGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGCCTCCTCTGCAACCCTGAGACGGCAGCGACATCT TGCCTTCGCCGAGCGGAACCCCGTGGAGGAGCTCACTGTGGATTCTCCTGTTCAGCAAATCTCCCAGCTGCT AGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGCTGTCAAGTCTGCTGGACCC CACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTTCCAGACGTTCGG ${\tt CAAGGCAGAGCCAGAGCTGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGATGAGCTCACT}$ GCTGGAGATGCTGCAGCACAGCATGCCCGTGGAGGCCCTCCGAGGCGCTGCGGCGCTCTCGGT $\tt CTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGGTGG$ $AAAGACGGGGACTGAGGGCAGGAGGCAGCAGCAGCAGCAGGTGCCTG{\color{red}{\textbf{TGA}}}ACATACCTCAGACGCCT$ $\tt TGACCAAAGCAGCCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTT$ A AAAGGGTGGCCTTCTTGGGTAGCAGGAGTCAGGGGGGCTGTACCCTGGGGGGTGCCAGGAAATGCTCTCTGACCTAT

FIGURE 394

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQAG AAFQVLQLPQALPIQVDSEEGLLSTGRRLDREQLCRQWDPCLVSFDVLATGDLALIHVEIQVL DINDHQPRFPKGEQELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIVGPD ETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESSLALE IQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPLDYEKN PAYEVDVQARDLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASQPSLVSEALPKDSFIALVMA DDLDSGHNGLVHCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQDQGLQPLS AKKQLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVSYRIQDSPV AHLVAIDSNTGEVTAQRSLNYEEMAGFEFQVIAEDSGQPMLASSVSVWVSLLDANDNAPEVVQ PVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTTIVARDADSGA NGEPLYSIRNGNEAHLFILNPHTGQLFVNVTNASSLIGSEWELEIVVEDQGSPPLQTRALLRV MFVTSVDHLRDSARKPGALSMSMLTVICLAVLLGIFGLILALFMSICRTEKKDNRAYNCREAE STYRQQPKRPQKHIQKADIHLVPVLRGQAGEPCEVGQSHKDVDKEAMMEAGWDPCLQAPFHLT PTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENLNLPEPQPATGQPRSRPLKV AGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKESGPRQILRSLVRLSVAAFAE RNPVEELTVDSPPVQQISQLLSLLHQGQFQPKPNHRGNKYLAKPGGSRSAIPDTDGPSARAGG QTDPEQEEGPLDPEEDLSVKQLLEEELSSLLDPSTGLALDRLSAPDPAWMARLSLPLTTNYRD NVISPDAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSLLEMLLEQRSSMPVEAASE ALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGTEGKSRGSSSSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

FIGURE 395

CCCAGGCTCTAGTGCAGGAGGAGGAGGAGGAGGAGGAGGTGGAGATTCCCAGTTAAAAGG CTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAATC ${\tt AGTAGGTGACCCCGCCCTGGATTCTGGAAGACCTCACC} {\color{blue} \textbf{ATG}} {\tt GGACGCCCCGACCTCGTGCG}$ GAGGACAAGGTGCTGGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGGCCTTG $\tt TTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTTACAGCT$ GCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAATAAAGAT GGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACAGCAGCGAT GTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCCCTGGGGTCC AAAGTGAAGCCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTGCACCGTCTCA GGCTGGGGCACTGTCACCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACTGTGCAGAAGTA AAAATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGGCAGATCACAGATGGCATGGTC TGTGCAGGCAGCAAAGGGGCTGACACGTGCCAGGGCGATTCTGGAGGCCCCCTGGTGTGT GATGGTGCACTCCAGGGCATCACATCCTGGGGGCTCAGACCCCTGTGGGAGGTCCGACAAACCT GGCGTCTATACCAACATCTGCCGCTACCTGGACTGGATCAAGAAGATCATAGGCAGCAAGGGC **TGA**TTCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCTCTGGTTC

FIGURE 396

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVLV GGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLLQL RDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCEDAYP GQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRYLDWI KKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

FIGURE 397

GGCGGCTGCTGAGCTGCCTTGAGGTGCAGTGTTGGGGATCCAGAGCC**ATG**TCGGACCTGCTAC TACTGGGCCTGATTGGGGGCCTGACTCTTACTGCTGCTGACGCTGCTGGCCTTTGCCGGGT ACTCAGGGCTACTGGGTGGAAGTGAGTGCTGGGTCACCCCCCATCCGCAACGTCACTG TGGCCTACAAGTTCCACATGGGGCTCTATGGTGAGACTGGGCGGCTTTTCACTGAGAGCTGCA GCATCTCTCCCAAGCTCCGCTCCATCGCTGTCTACTATGACAACCCCCACATGGTGCCCCCTG ATAAGTGCCGATGTGCCGTGGGCAGCATCCTGAGTGAAGGTGAGGAATCGCCCTCCCCTGAGC TCATCGACCTCTACCAGAAATTTGGCTTCAAGGTGTTCTCCTTCCCGGCACCCAGCCATGTGG CTGCCTTGGACACCTACATCAAGGAGCGGAAGCTGTGTGCCTATCCTCGGCTGGAGATCTACC AGGAAGACCAGATCCATTTCATGTGCCCACTGGCACGGCAGGGAGACTTCTATGTGCCTGAGA TGAAGGAGACAGAGTGGAAATGGCGGGGGCTTGTGGAGGCCATTGACACCCAGGTGGATGGCA CAGGAGCTGACAATGAGTGACACGAGTTCTGTAAGCTTGGAAGTGAGCCCTGGCAGCCGGG AGACTTCAGCTGCCACACTGTCACCTGGGGCGAGCAGCCGTGGCTGGGATGACGGTGACACCC GCAGCGAGCACAGCTACAGCGAGTCAGGTGCCAGCGGCTCCTCTTTTGAGGAGCTGGACTTGG AGGGCGAGGGCCCTTAGGGGAGTCACGGCTGGACCCTGGGGACTGAGCCCCTGGGGACTACCA ${\tt AGTGGCTCTGGGAGCCCACTGCCCCTGAGAAGGGCAAGGAG}$ TGCAGTGCAGTTGCTGAGGAACTGAGCAGACTCTCCAGCAGACTCTCCAGCCCTCTTCCTCCT TCCTCTGGGGGAGGGGGTTCCTGAGGGACCTGACTTCCCCTGCTCCAGGCCTCTTGCTAAG CCTTCTCCTCACTGCCCTTTAGGCTCCCAGGGCCAGAGGAGCCAGGGACTATTTTCTGCACCA GCCCCCAGGGCTGCCCCCTGTTGTGTCTTTTTTTCAGACTCACAGTGGAGCTTCCAGGACC

FIGURE 398

MSDLLLLGLIGGLTLLLLLTLLAFAGYSGLLAGVEVSAGSPPIRNVTVAYKFHMGLYGETGRL FTESCSISPKLRSIAVYYDNPHMVPPDKCRCAVGSILSEGEESPSPELIDLYQKFGFKVFSFP APSHVVTATFPYTTILSIWLATRRVHPALDTYIKERKLCAYPRLEIYQEDQIHFMCPLARQGD FYVPEMKETEWKWRGLVEAIDTQVDGTGADTMSDTSSVSLEVSPGSRETSAATLSPGASSRGW DDGDTRSEHSYSESGASGSSFEELDLEGEGPLGESRLDPGTEPLGTTKWLWEPTAPEKGKE

FIGURE 399

GGACGAGGCCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGGC TCCGTGCCGCCAAGTTTTCCATTTTCCACCTTCTCTGCCTCCAGTCCCCCAGCCCCTGGCCGAG AGAAGGGTCTTACCGGCCGGGATTGCTGGAAACACCAAGAGGTGGTTTTTTGTTTTTAAAACT $ext{TCTGTTTCTTGGGAGGGGTGTGGCGGGGGGAGG}$ TGGAGCCTCTGCTATTGCTTTGCTGCGGGGAGCCCCGTACCTTTTGGTCCAGAGGGACGGCTG GAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGGTTTAAC TTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATTCACGGATGGACGATG AGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACACAAGAGAGAAAAGAC GCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGATGCGGTCAAT AATACCAGGGTGGTGGGACACAGCATTGCCAGGATGCTCGACTGGCTGCAGGAGAAGGACGAT TTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTGGCCGGGTATGCA GGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGCCGGGCCCATGTTT GAAGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTGTGGATGTCCTCCAC ACCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTGGGCCACATTGACATC TACCCCAATGGGGGTGACTTCCAGCCAGGCTGTGGACTCAACGATGTCTTGGGATCAATTGCA TCTCTGGTGAATCAGGACAAGCCGAGTTTTGCCTTCCAGTGCACTGACTCCAATCGCTTCAAA AAGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCATTGGCTACAATGCCAAGAAA ${\tt AACCTTCAGTCCCTGGAGTGTCCC}{{\tt TGA}}{\tt GGAAGGCCCTTAATACCTCCTTCTTAATACCATGCT}$ GCAGAGCAGGCACATCCTAGCCCAGGAGAAGTGGCCAGCACAATCCAATCAAATCGTTGCAA ATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTTACAAAATAAACAGTGTGGACCCC

FIGURE 400

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHEG
CYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWLPL
AHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTVGRI
TGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDFQPGC
GLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLSCRKNR
CNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

ronsars arago

FIGURE 401

FIGURE 402

MACRCLSFLLMGTFLSVSQTVLAQLDALLVFPGQVAQLSCTLSPQHVTIRDYGVSWYQQRAGS APRYLLYYRSEEDHHRPADIPDRFSAAKDEAHNACVLTISPVQPEDDADYYCSVGYGFSP

FIGURE 403

CGCGCCGGGCGCAGGGAGCTGAGTGGACGGCTCGAGACGGCGCGCGTGCAGCAGCTCCAGAAAGCAGCGAGTTG GCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCTCACAACAAGATGCTCAAGGTGTCAGC CGTACTGTGTGTGTGCAGCCGCTTGGTGCAGTCAGTCTCTCGCAGCTGCCGCGGCGGTGGCTGCAGCCGGGG ${\tt GCGGTCGGACGGCGGTAATTTTCTGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGG}$ ACAGTGGAACAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGCCCAGGAAAACCCTTCGATCA GGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTATGCATTGCTCAAGATTC TCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATGAAAGAAGCAGGAGTAGACCATAGGCAGTG GAGGGGTCCCATATTATCCACCTGCAAGCAGTGCCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCA TACCTACTCTTTTCAGTGCAAACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTCAGTCAAATGTGAAGG ACATTGCCCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCTGGAGTT CAGGGAAGTGGCAAACAGATTGCGGGACTGGTTCAAGGCCCTTCATGAAAGTGGAAGTCAAAACAAGAAGACAAA AACATTGCTGAGGCCTGAGAGAAGCAGATTCGATACCAGCATCTTGCCAATTTGCAAGGACTCACTTGGCTGGAT GTTTAACAGACTTGATACAAACTATGACCTGCTATTGGACCAGTCAGAGCCTCAGAAGCATTTACCTTGATAAGAA TGAACAGTGTACCAAGGCATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATAATGAGTGGTG CTACTGCTTCCAGAGACAGCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCAAGGGGTAAA GAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGCCAACACAATGTCATGGCAGTGT TGGACAGTGCTGGTGTTGACAGATATGGAAATGAAGTCATGGGATCCAGAATAAATGGTGTTGCAGATTGTGC TATAGATTTTGAGATCTCCGGAGATTTTGCTAGTGGCGATTTTCATGAATGGACTGATGATGAGGATGATGAAGA CCATGATGTATACATT**TGA**TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTTACAAAAATGATAG CCTATTTAAAATTATCTTCTCCCCAATAACAAAATGATTCTAAACCTCACATATATTTTGTATAATTATTTTGAA AAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAATAAGAATCATTTGCTTTGAGTTTTTATATTCCTTACACA AAAAGAAATACATATGCAGTCTAGTCAGACAAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGA ACAAACTTTGTAAATCTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAGAT TTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAGGATAACAGAGAGATACCACATGACTCCA AAAAAAAAAAA

FIGURE 404

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFRD EVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEAGV DHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCPSDK PTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPICKDS LGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQRQQDP PCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGSRINGVA DCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

FIGURE 405

GGAAGGGGAGGACCACACAGGCACAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCA ${\tt TCAGCCTCCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAA{\tt ATG}{\tt CCCCAG}{\tt CCCCCAG}{\tt CCCCAG}{\tt CCCCCAG}{\tt CCCCAG}{\tt CCCCCAG}{\tt CCCCAG}{\tt CCCCCAG}{\tt CCCCAG}{\tt CCCCCAG}{\tt CCCCAG}{\tt CCCCAG}{\tt CCCCAG}{\tt CCCCAG}{\tt CCCCAG}{\tt CCCCAG}{\tt CCCCCAG}{\tt CCCCAG}{\tt CC$ GAAGACTTTCGCTTCTGCAGCCAGCGGAACCAGACACAGGGGGCGCCTCCACTACAAACCCACACCAGACCTG CGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGA TCCTTCCCTGACCCCAGGGGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTC TATGGCAAGCGTGACTTCTTGCTGAGTGACAAAGCCTCTAGCCTCCTCTGCTTCCAGCACCAGGAGGAGAGCCTG GCTCAGGGCCCCCGCTGTTAGCCACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATCAGCCTGCCCAGTGCC GCCAGCTTCACCTTCTCCTTCCACAGTCCTCCCCACACGGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTC GCCAGCCAGCAGTTGCAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCGGCCTCCAGGACCTGCACATCCACTCCCGG CAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTGCTGCCTCGAACACTCTTCCAGAGGACGAAAGGC CGGAGCGGGAGGCTGAGAAGAGACTCCTCCTGGTGGACTTCAGCAGCCCAAGCCCTGTTCCAGGACAAGAATTCC AGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTGTTCTGGGTTGAAGACCCCACA TTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTCAGGAGAGAAACCCAAACATCCTGCTTCTGC AACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGC GTGCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTGCTGCTGGCCGTCTTC ATCTTCCTGCACTTCTCCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGGTACAACCTCTACCGACTCGTG GTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTT GGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC AAGTGGTCACATGTGCTGACACTGCTGGGCCTCAGCCTGGTCCTTGGCCTGCGCCTTGATCTTCTTCTCCC TTTGCTTCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCATCACCTCCTTCCAAGGCTTCCTCATC AGGCTCCCCATCAGCTCGGGCAGCACCTCGTCCAGCCGCATCTAGCCCCAGCCCACCTGCCCATGTGATGAAG GCCTTGGGGACTACTCGGCTCTCACTCAGCTCCCACGGGACTCAGAAGTGCGCCCCCATGCTGCCTAGGGTACTG GTTGCTCTGTCTCTCGTGGTCACCCTGAGGGCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGG CGAATGGGGCCCAGGGCAGACCTTCAGGGCCAGAGCCCTGGCGGAGGAGGCCCTTTGCCAGGAGCACAGCAGC TCCTCCTCTCCCAGGGCCTCCTTGCTCCTTCGTTCACAGCTGGGGGTCCCCGATTCCAATGCTGTTTTTTTGGGGA GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGGCCTGCCCCTGAGCCA GGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATCTGGGCCTTTGTATGAGCTGCATTGCCCTTG CTCACCCTGACCAAGCACACGCCTCAGAGGGGCCCTCAGCCTCTCCTGAAGCCCTCTTGTGGCAAGAACTGTGGA CCATGCCAGTCCGTCTGGTTTCCATCCCACCACTCCAAGGACTGAGACTGACCTCCTCTGGTGACACTGGCCTA GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCTCGGCCGCCCATCATGGT GGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCATTGTAGAGA

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSEE
ALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQHQE
ESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLLSQF
LKHPQKASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQDLHIH
SRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGEKVLGI
VVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRETQTSCF
CNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPCRRKPRDY
TIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLEGYNLYRLV
VEVFGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIYPSMCWIRDS
LVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLGLPWALIFFSF
ASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLPISSGSTSSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

FIGURE 407

TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGGCGTGGGGGTGGCAGGAG CCGCAGAGCCAGAGCAGACAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTCGC TCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCTGGA CTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAAGCCC TGTTTCTCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAAAGCTC AGCTCTGAGCCAGAGTGGTGGTGGCTCCACCTCTGCCGCCGGCATAGAAGCCAGGAGCAGGGC TCTCAGAAGGCGGTGGTGCCCAGCTGGGATC**ATG**TTGTTGGCCCTGGTCTGTCTGCTCAGCTG CCTGCTACCCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTGCTACATGA $\tt CTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGCTTATTTCAC$ AAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACAACGGGATCTT CCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAACGTGTGCCGGAT GTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGCCATGAAGATAAC CCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCCAGGGAAAAGACCT ATGTGGTTTGGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATAAAGGATGGTTGAACG TGAAA

FIGURE 408

MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALDY EADGSTNNGIFQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQEPQGLGYWE AWRHHCQGKDLTEWVDGCDF

Important features:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C proteins.

amino acids 34-58 (catalytic domain), 111-132 and 66-107

FIGURE 409

GCTCTGCCTCCGGTGCTGCCTGGGGCGGCCGGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTT CCCGCCGGCCAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTA GATGGAGCAGGATTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTTGAACAAAGAAAA TCAGATGGAGTTCACACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATT TCTGAGAAGGTGATTTTCTTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAG AAATATTACTGGCACAGATATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCC AGACTAAGCAAAAGTGGGCACATACAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGC AACTTTGATAGAGTCAATTTCTGGTCTATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTAT $\tt ATGCTGAAGAGTCTGTTTGAAGATAAGAGGAAAAGTAGAACT<math>\underline{TAA}$ AACTCCAAACTAGAGTACGTAACATTGAAA AATGAGGCATAAAAATGCAATAAACTGTTACAGTCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATA AAAGTAGGAAACAGGTATAATTTTAATGTGAAAATTAAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAG ${\tt AGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAATGCGGCAGTTACAAATTAACTGTGGAAGTTT}$ TCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGGATTGAATAAATCTTTAGACTACAAAAGCCCAA CTTTTCTCTATTTACATATGCATCTCTCCTATAATGTAAATAGAATAATAGCTTTGAAATACAATTAGGTTTTTG AGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGTCTTTGTACTTTGCTTACATTC CCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAATTAGGACATGTTTTCTCTTTG AAATGAAGAATATAGTTTAAAAGCTTCCTCCTCCATAGGGACACATTTTCTCTAACCCTTAACTAAAGTGTAGGA TTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCTGTCAACAGTTAA TAATCATGTTATGTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATGAAGGAAATA TTGCTAAAATGATCTGGGCCTACCATAAATAAATATCTCCTTTTCTGAGCTCTAAGAATTATCAGAAAACAGGAA AAACTTTGGCTGTAGGTTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTGTAAGCAGGTACATTTTATA ${\tt TAAAATGGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCAAGTTTTAAA}$ CACCTAAATGTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGGTCTTAC TCAAGTACTAGTAATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTAT ${\tt GACTACATTGTGAGTTAGAAACAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT}$ CTTGATGAGCAATAATGATAACCAGAGAGTGATTTCATTTACACTCATAGTAGTATAAAAAGAGATACATTTCCC TCTTAGGCCCCTGGGAGAAGAGCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTAT ATGATCAATTACCTTAATTGGCCAAGAAAATGCTTCAGGTGTCTAGGGGTATCCTCTGCAACACTTGCAGAACAA AGGTCAATAAGATCCTTGCCTATGAATACCCCTCCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACA GTACCATAACTAATAAAGCAGGGTACAGATATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTA ${\tt CCTCTCTGTATGGCTGTTACTGTACTGTACTCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCT}$ ACATGTATGATTTGTGCCACTGATCTTAAACCTATGATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTT TATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATTTTTATAGACAAAGTAAAAAGACAGATATTTAAGAGG CATAACCAAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTTTAATATTTCTAAAGACATACTGTTTATCTGCTT CATATGCTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTTATCACTT AACAGCTCATTTTGTCTTTTTCAATATACAAATTTTTAAAAATACTACAATATTTAACTAAGGCCCAACCGATTTC CATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCTCTGATATGCATTTGGATGATTAAT GTTATGCTGTTCTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTATGGTAAAATTAATCCTTCTTA CACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCTCAAATGAAGATTCTTTAT GTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAATGCACAATCAGTGTTG CTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATAA AAATTATCAAAGGAAAA

FIGURE 410

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEYQ VLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFELIL DNMGEQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRNIQE SNFDRVNFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

TOOPECTE LETSO

CCCAGCTGAGGAGCCCTGCTCAAGACACGGTCACTGGATCTGAGAAACTTCCCAGGGGACCGCATTCCAGAGTCA TCTCCCTGGAGCAAGTGCTCAGCTGCCTGTGGTCAGACTGGGGTCCAGACTCGCACACGCATTTGCTTGGCAGAG ATGGTGTCGCTGTGCAGTGAGGCCAGCGAAGAGGGTCAGCACTGCATGGGCCAGGACTGTACAGCCTGTGACCTG ACCTGCCAATGGGCCAGGTGAATGCTGACTGTGATGCCTGCATGTGCCAGGACTTCATGCTTCATGGGGCTGTC
TCCCTTCCCGGAGGTGCCCAGCCTCAGGGGCTGCTATCTACCTCCTGACCAAGACGCCGAAGCTGCTGACCCAG
ACAGACAGTGATGGGAGATTCCGAATCCCTGGCTTGTGCCCTGATGGCAAAAGCATCCTGAAGATCACAAAGGTC AAGTTTGCCCCCATTGTACTCACAATGCCCAAGACTAGCCTGAAGGCAGCCACCATCAAGGCAGAGTTTGTGAGG GCAGAGACTCCATACATGGTGATGAACCCTGAGACAAAAGCACGGAGAGCTGGGCAGAGCGTGTCTCTGTGCTGT AAGGCCACAGGGAAGCCCAGGCCAGACAAGTATTTTTTGGTATCATAATGACACATTGCTGGATCCTTCCCTCTAC
AAGCATGAGAGCAAGCTGGTGCTGAGGAAACTGCAGCACCACGCTGGGGAGTACTTTTGCAAGGCCCAGAGT
GATGCTGGGGCTGTGAAGTCCAAGGTTGCCCAGCTGATTGTCACAGCATCTGATGAGACTCCTTGCAACCCAGTT AAGCTCAACTACCGTCGGACGGACCATGAGGATCCÁCGGGTTAAAÁÁGACAGCTTTCCÁGATTÁGCATGGCCAAG CCAAGGCCCAACTCAGCTGAGGAGAGCAATGGGCCCATCTATGCCTTTGAGAACCTCCGGGCATGTGAAGAGGCA CCACCCAGTGCAGCCCACTTCCGGTTCTACCAGATTGAGGGGGATCGATATGACTACAACACAGTCCCCTTCAAC GAAGATGACCCTATGAGCTGGACTGAAGACTATCTGGCATGGTGGCCAAAGCCGATGGAATTCAGGGCCTGCTAT ATCAAGGTGAAGATTGTGGGGCCACTGGAAGTGAATGTGCGATCCCGCAACATGGGGGGCACTCATCGGCGGACAGTGGGGAAGCTGTATGGAATCCGAGATGTGAGGAGCACTCGGGACAGGGACCAGCCCAATGTCTCAGCTGCCTGT AACGACACCAGTGAGTACACCATGCTGGCACCCTTGGACCCACTGGGCCACAACTATGGCATCTACACTGTCACT GACCAGGACCCTCGCACGGCCAAGGAGATCGCGCTCGGCCGGTGCTTTGATGGCACATCCGATGGCTCCTCCAGA ATCATGAAGAGCAATGTGGGAGTAGCCCTCACCTTCAACTGTGTAGAGAGGCAAGTAGGCCGCCAGAGTGCCTTC CAGTACCTCCAAAGCACCCCAGCCCAGTCCCCTGCTGCAGGCACTGTCCAAGGAAGAGTGCCCTCGAGGAGGCAG CAGCGAGCGAGCAGGGGTGGCCAGCGCCAGGGTGGAGTGGTGGCCTCTCTGAGATTTCCTAGAGTTGCTCAACAG TGTTCTTGCTAGAAACCCAGTGTAGCCCAGGGCAGATGTCAATAAATGCATACTCTGTATTTCGAAAAAA

FIGURE 412

MVGTKAWVFSFLVLEVTSVLGROTMLTOSVRRVOPGKKNPSIFAKPADTLESPGEWTTWFNID YPGGKGDYERLDAIRFYYGDRVCARPLRLEARTTDWTPAGSTGOVVHGSPREGFWCLNREORP GQNCSNYTVRFLCPPGSLRRDTERIWSPWSPWSKCSAACGQTGVQTRTRICLAEMVSLCSEAS EEGQHCMGQDCTACDLTCPMGQVNADCDACMCQDFMLHGAVSLPGGAPASGAAIYLLTKTPKL LTQTDSDGRFRIPGLCPDGKSILKITKVKFAPIVLTMPKTSLKAATIKAEFVRAETPYMVMNP ETKARRAGQSVSLCCKATGKPRPDKYFWYHNDTLLDPSLYKHESKLVLRKLOOHOAGEYFCKA QSDAGAVKSKVAQLIVTASDETPCNPVPESYLIRLPHDCFQNATNSFYYDVGRCPVKTCAGQQ DNGIRCRDAVONCCGISKTEEREIOCSGYTLPTKVAKECSCORCTETRSIVRGRVSAADNGEP MRFGHVYMGNSRVSMTGYKGTFTLHVPODTERLVLTFVDRLOKFVNTTKVLPFNKKGSAVFHE IKMLRRKEPITLEAMETNIIPLGEVVGEDPMAELEIPSRSFYRQNGEPYIGKVKASVTFLDPR NISTATAAQTDLNFINDEGDTFPLRTYGMFSVDFRDEVTSEPLNAGKVKVHLDSTOVKMPEHI STVKLWSLNPDTGLWEEEGDFKFENQRRNKREDRTFLVGNLEIRERRLFNLDVPESRRCFVKV RAYRSERFLPSEQIQGVVISVINLEPRTGFLSNPRAWGRFDSVITGPNGACVPAFCDDOSPDA YSAYVLASLAGEELQAVESSPKFNPNAIGVPOPYLNKLNYRRTDHEDPRVKKTAFOISMAKPR PNSAEESNGPIYAFENLRACEEAPPSAAHFRFYQIEGDRYDYNTVPFNEDDPMSWTEDYLAWW PKPMEFRACYIKVKIVGPLEVNVRSRNMGGTHRRTVGKLYGIRDVRSTRDRDQPNVSAACLEF KCSGMLYDQDRVDRTLVKVIPQGSCRRASVNPMLHEYLVNHLPLAVNNDTSEYTMLAPLDPLG HNYGIYTVTDQDPRTAKEIALGRCFDGTSDGSSRIMKSNVGVALTFNCVERQVGRQSAFQYLQ STPAQSPAAGTVQGRVPSRRQQRASRGGQRQGGVVASLRFPRVAQQPLIN

FIGURE 413

FIGURE 414

 ${\tt MGPSSCLLLILIPLLQLINPGSTQCSLDSVMDKKIKDVLNSLEYSPSPISKKLSCASVKS} \\ {\tt QGRPSSCPAGMAVTGCACGYGCGSWDVQLETTCHCQCSVVDWTTARCCHLT} \\$

FIGURE 415

CAGAAGAGGGGGCTAGCTAGCTGTCTCTGCGGACCAGGGAGACCCCCGGGCCCCCCGGTGTG AGGCGGCCTCACAGGGCCGGGTGGGCTGGCGAGCCGACGCGGCGGCGGAGGAGGCTGTGAGGA GTGTGTGGAACAGGACCCGGGACAGAGGAACC**ATG**GCTCCGCAGAACCTGAGCACCTTTTGCC TGTTGCTGCTATACCTCATCGGGGCGGTGATTGCCGGACGAGATTTCTATAAGATCTTGGGGG TGCCTCGAAGTGCCTCTATAAAGGATATTAAAAAGGCCTATAGGAAACTAGCCCTGCAGCTTC ATCCCGACCGGAACCCTGATGATCCACAAGCCCAGGAGAAATTCCAGGATCTGGGTGCTG ATGAGGTTCTGTCAGATAGTGAGAAACGGAAACAGTACGATACTTATGGTGAAGAAGGATTAA AAGATGGTCATCAGAGCTCCCATGGAGACATTTTTTCACACTTCTTTGGGGATTTTTGGTTTCA TGTTTGGAGGAACCCCTCGTCAGCAAGACAGAAATATTCCAAGAGGAAGTGATATTATTGTAG CTGTGGCAAGGCAGGCTCCTGGCAAACGGAAGTGCAATTGTCGGCAAGAGATGCGGACCACCC AGCTGGGCCCTGGGCGCTTCCAAATGACCCAGGAGGTGGTCTGCGACGAATGCCCTAATGTCA AACTAGTGAATGAAGAACGAACGCTGGAAGTAGAAATAGAGCCTGGGGTGAGAGACGGCATGG AGTACCCCTTTATTGGAGAAGGTGAGCCTCACGTGGATGGGGAGCCTGGAGATTTACGGTTCC CAATCTCATTAGTTGAGTCACTGGTTGGCTTTGAGATGGATATTACTCACTTGGATGGTCACA AGGTACATATTTCCCGGGATAAGATCACCAGGCCAGGAGCGAAGCTATGGAAGAAAGGGGAAG GGCTCCCCAACTTTGACAACAACAATATCAAGGGCTCTTTGATAATCACTTTTGATGTGGATT TTCCAAAAGAACAGTTAACAGAGGAAGCGAGAGAGGTATCAAACAGCTACTGAAACAAGGGT CAGTGCAGAAGGTATACAATGGACTGCAAGGATAT**TGA**GAGTGAATAAAATTGGACTTTGTTT TTTTCAATATGCAAGTTAGGCTTAATTTTTTTATCTAATGATCATCATGAAATGAATAAGAGG GCTTAAGAATTTGTCCATTTGCATTCGGAAAAGAATGACCAGCAAAAGGTTTACTAATACCTC TCCCTTTGGGGATTTAATGTCTGGTGCTGCCGCCTGAGTTTCAAGAATTAAAGCTGCAAGAGG CCAACTGGAGAAGTCTGTTTTTAAATACATTTTGTTGTTATTTTTA

FIGURE 416

MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDDPQAQEKFQDLGAAYE VLSDSEKRKQYDTYGEEGLKDGHQSSHGDIFSHFFGDFGFMFGGTPRQQDRNIPRGSDIIVDLEVTLEEVYAGNF VEVVRNKPVARQAPGKRKCNCRQEMRTTQLGPGRFQMTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFI GEGEPHVDGEPGDLRFRIKVVKHPIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAKLW KKGEGLPNFDNNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVQKVYNGLQGY

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 254-257

Nt-dnaJ domain signature.

amino acids 67-87

Homologous region to Nt-dnaJ domain proteins.

amino acids 26-58

N-glycosylation site.

amino acids 5-9, 261-265

Tyrosine kinase phosphorylation site.

amino acids 253-260

N-myristoylation site.

amino acids 18-24, 31-37, 93-99, 215-221

Amidation site.

amino acids 164-168

FIGURE 417

CGGCGGCGGCTGCGGGCGCGAGGTGAGGGGCGCGAGGTGAGGGCGCGAGGTTCCCAGCAGGA GATGACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGGTCGGTGTTCATGATCCTGCT GATCATCGTGTACTGGGACAGCGCAGGCGCGCGCACTTCTACTTGCACACGTCCTTCTCTAG GCCGCACACGGGGCCGCCGCCCACGCCCGGGCCGGACAGGGACAGGGACTCACGGCCGA CTCCGATGTCGACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGACCTTCC CAGAAAGGAGACGGAGCAGCCGCCTGCGCCGGGGAGCATGGAGAGAGCGTGAGAGGCTACGA CGTGCTGCGGGGCTTCTGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCGCGCATTCGA CGACATCCCCAACTCGGAGCTGAGCCACCTGATCGTGGACGACCGGCACGGGGCCATCTACTG CTACGTGCCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGATGATCGTGCTGAGCGGAAGCCT GCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCCGCGCGAGCACGTGCACAACGC CAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCCGCTACGGGAAGCTCTCCCGCCACCTCAT GAAGGTCAAGCTCAAGAAGTACACCAAGTTCCTCTTCGTGCGCGACCCCTTCGTGCGCCTGAT CTCCGCCTTCCGCAGCAGCTCGAGCTGGAGAACGAGGAGTTCTACCGCAAGTTCGCCGTGCC CATGCTGCGGCTGTACGCCAACCACCAGCCTGCCCGCCTCGGCGCGCGAGGCCTTCCGCGC TGGCCTCAAGGTGTCCTTCGCCAACTTCATCCAGTACCTGCTGGACCCGCACACGGAGAAGCT GGCGCCTTCAACGAGCACTGGCGGCAGGTGTACCGCCTCTGCCACCCGTGCCAGATCGACTA CGACTTCGTGGGGAAGCTGGAGACTCTGGACGAGGACGCCGCGCAGCTGCTGCAGCTACTCCA GGTGGACCGCCAGCTCCCCCCCGAGCTACCGGAACAGGACCGCCAGCAGCTGGGAGGA GGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCTGTATAAACTCTACGAGGCCGA CTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCCGAGACTGAAAGCTTTCGCGTTG CTTTTTCTCGCGTGCCTGGAACCTGACGCACGCGCACTCCAGTTTTTTTATGACCTACGATTT TGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCCATTGAGTACTGTATCGATATTGTT TTTTAAGATTAATATTTCAGGTATTTAATACGA

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTAD SDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAERRS VLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLSGSL LHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPFVRLI SAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDPHTEKL APFNEHWRQVYRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRTASSWEE DWFAKIPLAWRQQLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein

amino acids 329-332

FIGURE 419

GGCACGAGGCTGAACCCAGCCGGCTCCATCTCAGCTTCTGGTTTCTAAGTCCATGTGCCAAAG $\tt GTGGGTAGTTATTTCTGAATAAGAGCGTCCACGCATC \textbf{ATG} GACCTCGCGGGACTGCTGA$ AGTCTCAGTTCCTGTGCCACCTGGTCTTCTGCTACGTCTTTATTGCCTCAGGGCTAATCATCA ACACCATTCAGCTCTTCACTCTCCTCTCTGGCCCATTAACAAGCAGCTCTTCCGGAAGATCA ACTGCAGACTGTCCTATTGCATCTCAAGCCAGCTGGTGATGCTGCTGGAGTGGTCGGGCA TGGTTCTCAACCACAAGTTTGAAATTGACTTTCTGTGTGGGCTGGAGCCTGTCCGAACGCTTTG GGCTGTTAGGGGGCTCCAAGGTCCTGGCCAAGAAAGAGCTGGCCTATGTCCCAATTATCGGCT GGATGTGGTACTTCACCGAGATGGTCTTCTGTTCGCGCAAGTGGGAGCAGGATCGCAAGACGG TTGCCACCAGTTTGCAGCACCTCCGGGACTACCCCGAGAAGTATTTTTTCCTGATTCACTGTG AGGGCACACGGTTCACGGAGAAGAAGCATGAGATCAGCATGCAGGTGGCCCGGGCCAAGGGGC TGCCTCGCCTCAAGCATCACCTGTTGCCACGAACCAAGGGCTTCGCCATCACCGTGAGGAGCT TGAGAAATGTAGTTTCAGCTGTATATGACTGTACACTCAATTTCAGAAATAATGAAAATCCAA CACTGCTGGGAGTCCTAAACGGAAAGAAATACCATGCAGATTTGTATGTTAGGAGGATCCCAC TGGAAGACATCCCTGAAGACGATGACGAGTGCTCGGCCTGCTGCACAAGCTCTACCAGGAGA AGGATGCCTTTCAGGAGGAGTACTACAGGACGGGCACCTTCCCAGAGACGCCCATGGTGCCCC $\verb|CCCGGCGGCCCTGGACCTCGTGAACTGGCTGTTTTTGGGCCTCGCTGGTGCTCTACCCTTTCT| \\$ TCCAGTTCCTGGTCAGCATGATCAGGAGCGGGTCTTCCCTGACGCTGGCCAGCTTCATCCTCG TCTTCTTTGTGGCCTCCGTGGGAGTTCGATGGATGATTGGTGTGACGGAAATTGACAAGGGCT $\tt CTGCCTACGGCAACTCTGACAGCAAGCAGAAACTGAATGAC{\color{blue}{\textbf{TGA}}}CTCAGGGAGGTGTCACCA{\color{blue}{\textbf{TGA}}}CTCAGGAGAGAACTCAGGAGAGAACTCAGAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAGAACTCAGAACTCAGAGAACTCAGAGAACTCAGAACTCAGAACTCAGAACTCAGAGAACTCAGAAC$ CCGAAGGGAACCTTGGGGAACTGGTGGCCTCTGCATATCCTCCTTAGTGGGACACGGTGACAA CTCAAGGCCGGATGGGGAGGAAGATGTTTTGTAATCTTTTTTTCCCCATGTGCTTTAGTGGGC TGTGATCATAGAAAGGGTATTTTAGGCTGCAGGGGAGGGCAGGGCTGGGGACCGAAGGGGACA AGTTCCCCTTTCATCCTTTGGTGCTGAGTTTTCTGTAACCCTTGGTTGCCAGAGATAAAGTGA GGGTCAAAAAAAAAAAA

FIGURE 420

MDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLLWPINKQLFRKINCRLSYCISSQLVM LLEWWSGTECTIFTDPRAYLKYGKENAIVVLNHKFEIDFLCGWSLSERFGLLGGSKVLAKKEL AYVPIIGWMWYFTEMVFCSRKWEQDRKTVATSLQHLRDYPEKYFFLIHCEGTRFTEKKHEISM QVARAKGLPRLKHHLLPRTKGFAITVRSLRNVVSAVYDCTLNFRNNENPTLLGVLNGKKYHAD LYVRRIPLEDIPEDDDECSAWLHKLYQEKDAFQEEYYRTGTFPETPMVPPRRPWTLVNWLFWA SLVLYPFFQFLVSMIRSGSSLTLASFILVFFVASVGVRWMIGVTEIDKGSAYGNSDSKQKLND

FIGURE 421

CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCTGCGTGCATC GCC**ATG**GACACCACCAGGTACAGCAAGTGGGGCGGCAGCTCCGAGGAGGTCCCCGGAGGGCCC TGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCCTGGTCACC CTGCTTGACGGCCACGACCTGCTGAGGACAAACGCCTCGAAGCAGACGGCGGCGCTGGGTGCC CTGAAGGAGGAGGTCGGAGACTGCCACAGCTGCTGCTCGGGGACGCAGGCGCAGCTGCAGACC ACGCGCGCGGAGCTTGGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGAGCGCCCTGCGGGAA CTGCGTGAGCGCGTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACGTCCGCACT GAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCGTGCCCCACG TCGTGGCTGTCCTTCGAGGGCTCCTGCTACTTTTTCTCTGTGCCAAAGACGACGTGGGCGGCG GCGCAGGATCACTGCGCAGATGCCAGCGCGCACCTGGTGATCGTTGGGGGGCCTGGATGAGCAG CAGGGAGAGCCCAATGACGCTTGGGGGCCGAGAACTGTGTCATGATGCTGCACACGGGGCTG TGGAACGACGCACCGTGTGACAGCGAGAAGGACGGCTGGATCTGTGAGAAAAGGCACAACTGC **TGA**CCCCGCCCAGTGCCCTGGAGCCGCCCCATTGCAGCATGTCGTATCCTGGGGGCTGCTCA TCTCAGAAACACTTGGCCCAACATAGCCCTGTCCAGCCCAGTGCCTGGGCTCTGGGACCTCCA TGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAACCTCCACTAGCTCCAAAATCC CTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAACCAAGGTTAGGTGACTGAGG ACTGGAGCTGTTTGGTTTTCTCGCATTTTCCACCAAACTGGAAGCTGTTTTTTGCAGCCTGAGG AAGCATCAATAAATATTTGAGAAATGAAAAA

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAAL LDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALREL RERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTWAAA QDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFSHWNQ GEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

GCGCCGCCAGGCGTAGGCGGGGGGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGGGC GCCCAAC**ATG**GCGGGTGGGCGCTGCGGCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGATCGC GGCTGTGGCGGCGACGGCAGGCCCCGAGGAGGCCGCGCTGCCGCCGGAGCAGAGCCGGGTCCA GCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTTTACGC CCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAATGGTGA AATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTGGCCGCTT CTTTGTCACCACTCTCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGTTATCGTGG CCCAGGAATCTTCGAAGACCTGCAGAATTATATCTTAGAGAAAATGGCAATCAGTCGAGCC TCTGACTGGCTGGAAATCCCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTCTTTTTAGCAT CTCTGGCAAGATATGGCATCTTCACAACTATTTCACAGTGACTCTTGGAATTCCTGCTTGGTG TTCTTATGTGTTTTTCGTCATAGCCACCTTGGTTTTTTGGCCTTTTTTATGGGTCTGGTCTTGGT GGTAATATCAGAATGTTTCTATGTGCCACTTCCAAGGCATTTATCTGAGCGTTCTGAGCAGAA TCGGAGATCAGAGGGCTCATAGAGCTGAACAGTTGCAGGATGCGGAGGAGGAAAAAGATGA TTCAAATGAAGAAGAAAACAAAGACAGCCTTGTAGATGATGAAGAAGAAGAAGAAGATCTTGG CGATGAGGATGAAGCAGGAGGAAGAAGAGGAGGAGGACAACTTGGCTGCTGGTGTGGATGAGGA GAGAAGTGAGGCCAATGATCAGGGGCCCCCAGGAGGAGGACGGTGTGACCCGGGAGGAAGTAGA GCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGCTGACACAGAGGTGGTGGA ${ t AGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGACTG}{ t TAGATTTAATGATGCGT}$ TTTCAAGAATACACACCAAAACAATATGTCAGCTTCCCTTTGGCCTGCAGTTTGTACCAAATC CTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCTCTCTAGTCATTTGGTCTCATG GCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGTGACAATCAGGATATAGAAAAAC GAGAGTCTCGACCAGAGGGGCCATTCCCAGTCCTAATCAGCACCTTCCAGAGACAAGGCTGC AGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCTCCTGAGCATCCCCAAAGTGTAACGT AGAAGCCTTGCATCCTTTTCTTGTGTAAAGTATTTATTTTTTGTCAAATTGCAGGAAACATCAG GCACCACAGTGCATGAAAAATCTTTCACAGCTAGAAATTGAAAGGGCCTTGGGTATAGAGAGC AGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTGTGCTATGTTTTATTTCTTACCTTTAATT TTTCCAGCATTTCCACCATGGGCATTCAGGCTCTCCACACTCTTCACTATTATCTCTTGGTCA AGATAATCAGTAACCATAACCCCTGAAGCTGTGACTGCCAAACATCTCAAATGAAATGTTGTG CCAAAATATAGTTGTTGATTTTTTTTTAAGTTTTCTAAGCAATATTTTTCAAGCCAGAAG TCCTCTAAGTCTTGCCAGTACAAGGTAGTCTTGTGAAGAAAAGTTGAATACTGTTTTGTTTTC ATCTCAAGGGGTTCCCTGGGTCTTGAACTACTTTAATAATAACTAAAAAACCACTTCTGATTT TCCTTCAGTGATGTGCTTTTGGTGAAAGAATTAATGAACTCCAGTACCTGAAAGTGAAAGATT TGATTTTGTTTCCATCTTCTGTAATCTTCCAAAGAATTATATCTTTGTAAATCTCTCAATACT CAATCTACTGTAAGTACCCAGGGAGGCTAATTTCTTT

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAPW CPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRGPG IFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAWCSY VFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEKDDSN EEENKDSLVDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTREEVEPE EAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins

amino acids 173-187

GAGGAACCTACCGGTACCGCCGCCGCTGGTAGTCGCCGGTGTGGCTGCACCTCACCAATCCCGTGCGCCGCG GGGTTTGAGGATGGGGGGGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTGTGGAATGAAAAGGA AGTATTAGAAATGAGCTGAAGACCATTCACAGATTAATATTTTTGGGGACAGATTTGTGATGCTTGATTCACCCT TGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCAC TTAAATCAGAACTTGCATAAGAAAGAGA ${f ATG}$ GGAGTCTGGTTAAATAAAGATGACTATATCAGAGACTTGAAAAG GATCATTCTCTGTTTTCTGATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGG AGTGTCCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA ${ t TCTACGGAAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAA$ $\verb|CTATTATCGTTATGATTTTGGTATTTATGATGATGATCCTGAAATCATAACATTGGAAAGAAGAAGAATTTGATGC| \\$ ${ t TGCTGTTAATTCTGGAGAACTGTGGTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC}$ CACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAAT GCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATA TCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAACTCATTGGATGCTAA AGAAATATATTTGGAAGTAATACATAATCTTCCAGATTTTGAACTACTTTCGGCAAACACACTAGAGGATCGTTT GGCTCATCATCGGTGGCTGTTATTTTTCATTTTGGAAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACT AAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACCAAAGGAACCAAAGAATATGAAATTCATCATGGAAA GAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAAGTGTGAATTCTCATGTTACCACGCTTGGACCTCAAAA TTTTCCTGCCAATGACAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACT ACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGAGTA TGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTG GTGTCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG CAGTATAGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTT TCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAAT CTGGGGTCTAGGATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGG GAAAAATCATTGGGTGATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT CTTGGCTAGGATGATTAAAGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAA AGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCA GATAAATACCAGAGATGCAAAAGCAATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAA ${ t GAGGAATAAGGATGAACTT}$ ${ t TGA}$ ${ t TAATGTTGAAGATGAAGAAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG$ GAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTTTCTGTAAAGGGCCGGTTTATAAATATTTTA GACTTTGCAGGCTATAATATATGGTTCACACATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCT TTTAACAACCTTTAAAAAATATTAAAACGATTCTTAGCTCAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATG ATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCACGTTTTTTTGGCTGACCTGAAAAGAGGTAACT TAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATATTTATATTTCGTTTTAAAAACACCCAT AAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTATCATCCAGGAAAACCTGAGGGAAAAAAATTA TAGCAATTAACTGGGCATTGTAGAGTATCCTAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATA TGTGTTCATGTATTTTCTGAAATTGCTTTCATAGAAATTTTCCCACTGATAGTTGATTTTTGAGGCATCTAATAT ${ t TTTTCACTCCTGTCCAGTCTATTTATTATTCAAATAGGAAAAATTACTTTACAGGTTGTTTTACTGTAGCTTAT$ ${ t AATGATACTGTAGTTATTCCAGTTACTAGTTTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATA}$ ACTGAAGTTATTTTATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTTTAGA ${ t CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTACAGAATGGTAAAAATT$

FIGURE 426

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKLH
PDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGIYD
DDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNCGDD
RMLCRMKGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNSIQTA
FAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSANTLEDR
LAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQPSLAVFK
GQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWCPPCRALL
PELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHSAEQILEFI
EDLMNPSVVSLTPTTFNELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMARTLTGLINVGS
IDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLGFLPQVSTDLT
PQTFSEKVLQGKNHWVIDFYAPWCGPCQNFAPEFELLARMIKGKVKAGKVDCQAYAQTCQKAG
IRAYPTVKFYFYERAKRNFQEEQINTRDAKAIAALISEKLETLRNQGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

FIGURE 427

CTGCAGTCAGGACCTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGCA $\tt CGGTTTCGTGGGGACCCAGGCTTGCAAAGTGACGGTCATTTTCTCTTTTCTCTCTTTGA$ $\tt GTCCTTCTGAG{\bf AT}{\underline{\bf C}} ATGGCTCTGGGCGCAGCGGGAGCTACCCGGGTCTTTGTCGCGATGGTAG$ CGGCGGCTCTCGGCGCCCCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTCAATT CCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGCGCTGCGGGGCACCCAGGCTCTGCAG TCAGCGCCGCGCGGAATCCTGTACCCGGGCGGAATAAGTACCAGACCATTGACAACTACC AGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGTCCCACCC GCGGAGGGGACGCAGGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACGCTGCATGC GTCACGCTATGTGCCCCCGGGAATTACTGCAAAAATGGAATATGTGTGTCTTCTGATCAAA ATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGATCATAGCACCT TGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAAAGGACAAGAAG GTTCTGTTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTAGACACTTCTGGT CCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCATAGGAGAAAAGGCT AAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGAGACACATCCAAATGCAGTGAACTCCTTTTATATAATAGATGCTATGAAAACCTTTTATGACCTTCATC AACTCAATCCTAAGGATATACAAGTTCTGTGGTTTCAGTTAAGCATTCCAATAACACCTTCCA AAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATGGAACTCCCCTGTGATTGCAGTAAATTACT GTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGAAACTTTTAATTATTTTTCT CTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATTTCAGCTTATAGTTCTTAAAAG CATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCAAGGATCTCTTGGAATGACAAAT GATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATTTTCTGAAATGTACTATCTTAATG CTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGAAATAAAATTTAACATTTAAAAAAA AAAAA

FIND FINE

428/550

FIGURE 428

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSAA PGILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRHAM CCPGNYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVC LRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQKDHH QASNSSRLHTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain

amino acids 110-126

FIGURE 429

GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAGCCC TTTCCTAACCCAACCTAGCCCAGTCCCAGCCGCCAGCGCCTGTCCCTGTCACGGACCC CAGCGTTACC ATG CATCCTGCCGTCTTCCTATCCTTACCCGACCTCAGATGCTCCCTTCTGCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGCTACAGAGAATAT AGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGCTGACTGGTGTCGTTT CAGTCAGATGTTGCATCCAATTTTTGAGGAAGCTTCCGATGTCATTAAGGAAGAATTTCCAAA TGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCCAGAGATA CAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATGGGATGATGATGAAGAGAGAATA CAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAAGTGACCCCAT TCAAGAAATTCGGGACTTAGCAGAAATCACCACTCTTGATCGCAGCAAAAGAAATATCATTGG ATATTTTGAGCAAAAGGACTCGGACAACTATAGAGTTTTTGAACGAGTAGCGAATATTTTGCA TGATGACTGTGCCTTTCTTCTGCATTTGGGGATGTTTCAAAACCGGAAAGATATAGTGGCGA CAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACTTGGGAGCTATGAC AAATTTTGATGTGACTTACAATTGGATTCAAGATAAATGTGTTCCTCTTGTCCGAGAAATAAC ATTTGAAAATGGAGAGGAATTGACAGAAGAAGGACTGCCTTTTCTCATACTCTTTCACATGAA AGAAGATACAGAAAGTTTAGAAATATTCCAGAATGAAGTAGCTCGGCAATTAATAAGTGAAAA AGGTACAATAAACTTTTTACATGCCGATTGTGACAAATTTAGACATCCTCTTCTGCACATACA AGACTTCAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCGTATTTGACTTACATTCTGG AAAACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGATACAGCCCCAGGAGAGCAAGC CCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTTCCAGAAACTAGCACCCAGTGAATATAG GTATACTCTATTGAGGGATCGAGATGAGCTT**TAA**AAACTTGAAAAACAGTTTGTAAGCCTTTC AACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTATATTTTCATAATTCTATGTGTAT AAAAAAAAAA

FIGURE 430

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQM LHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYRGQ RSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFERVANILHDDC AFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREITFEN GEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLHIQKTP ADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDPTDTAPGEQAQDV ASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

FIGURE 431

GAGCAGGACGGAGCCATGACCCCGCCAGGAAAGCAGGTGCCCAGGCCATGATCTGGACTGCA GGCTGCTGCTGCTGCTGCTGCGGAGGAGCGCAGGCCCTGGAGTGCTACAGCTGCGTG CAGAAAGCAGATGACGGATGCTCCCCGAACAAGATGAAGACAGTGAAGTGCGCGCCGGGCGTG GACGTCTGCACCGAGGCCGTGGGGGCGGTGGAGACCATCCACGGACAATTCTCGCTGGCAGTG CGGGGTTGCGGTTCGGGACTCCCCGGCAAGAATGACCGCGGCCTGGATCTTCACGGGCTTCTG GCGTTCATCCAGCTGCAGCAATGCGCTCAGGATCGCTGCAACGCCAAGCTCAACCTCACCTCG CGGGCGCTCGACCCGGCAGGTAATGAGAGTGCATACCCGCCCAACGGCGTGGAGTGCTACAGC TGTGTGGGCCTGAGCCGGGAGGCGTGCCAGGGTACATCGCCGCCGGTCGTGAGCTGCTACAAC GCCAGCGATCATGTCTACAAGGGCTGCTTCGACGGCAACGTCACCTTGACGGCAGCTAATGTG ACTGTGTCCTTGCCTGTCCGGGGCTGTGTCCAGGATGAATTCTGCACTCGGGATGGAGTAACA GGCCCAGGGTTCACGCTCAGTGGCTCCTGTTGCCAGGGGTCCCGCTGTAACTCTGACCTCCGC AACAAGACCTACTTCTCCCCTCGAATCCCACCCCTTGTCCGGCTGCCCCCTCCAGAGCCCACG ACTGTGGCCTCAACCACATCTGTCACCACTTCTACCTCGGCCCCAGTGAGACCCACATCCACC ACCAAACCCATGCCAGCGCCAACCAGTCAGACTCCGAGACAGGGAGTAGAACACGAGGCCTCC CAGTATCCTGCAAAAGGGGGGCCCCAGCAGCCCCATAATAAAGGCTGTGTGGCTCCCACAGCT ${\tt GGATTGGCAGCCCTTCTGTTGGCCGTGGCTGCTGGTGTCCTACTG} {\color{red}{\bf TGA}} {\tt GCTTCTCCACCTGGA}$ AATTTCCCTCTCACCTACTTCTCTGGCCCTGGGTACCCCTCTTCTCATCACTTCCTGTTCCCA CCACTGGACTGGCCCAGCCCCTGTTTTTCCAACATTCCCCAGTATCCCCAGCTTCTGC TGCGCTGGTTTGCGGCTTTGGGAAATAAAATACCGTTGTATATATTCTGCCAGGGGTGTTCTA GCTTTTTGAGGACAGCTCCTGTATCCTTCTCATCCTTGTCTCTCCGCTTGTCCTCTTGTGATG ACTCTAAGCACTGCCTCCCCTACTCCCCGCATCTTTGGGGGAATCGGTTCCCCATATGTCTTCC TTACTAGACTGTGAGCTCCTCGAGGGGGGGCCCGGTACCCAATTCGCCCTATAGTGAGTCGTA

FIGURE 432

MDPARKAGAQAMIWTAGWLLLLLRGGAQALECYSCVQKADDGCSPNKMKTVKCAPGVDVCTE
AVGAVETIHGQFSLAVRGCGSGLPGKNDRGLDLHGLLAFIQLQQCAQDRCNAKLNLTSRALDP
AGNESAYPPNGVECYSCVGLSREACQGTSPPVVSCYNASDHVYKGCFDGNVTLTAANVTVSLP
VRGCVQDEFCTRDGVTGPGFTLSGSCCQGSRCNSDLRNKTYFSPRIPPLVRLPPPEPTTVAST
TSVTTSTSAPVRPTSTTKPMPAPTSQTPRQGVEHEASRDEEPRLTGGAAGHQDRSNSGQYPAK
GGPQQPHNKGCVAPTAGLAALLLAVAAGVLL

FIGURE 433

 $\tt CGGGACTCGGCGGTCCTCCTGGGAGTCTCGGAGGGGACCGGCTGTGCAGACGCC{\bf ATG}GAGTT$ GGTGCTGGTCTTCCTCTGCAGCCTGCTGGCCCCCATGGTCCTGGCCAGTGCAGCTGAAAAGGA GAAGGAAATGGACCCTTTTCATTATGATTACCAGACCCTGAGGATTGGGGGACTGGTGTTCGC TGTGGTCCTCTTCTCGGTTGGGATCCTCCTTATCCTAAGTCGCAGGTGCAAGTGCAGTTTCAA TCAGAAGCCCCGGGCCCCAGGAGATGAGGAAGCCCAGGTGGAGAACCTCATCACCGCCAATGC AACAGAGCCCCAGAAGCAGAGAACTGAAGTGCAGCCATCAGGTGGAAGCCTCTGGAACCTGAG GCGGCTGCTTGAACCTTTGGATGCAAATGTCGATGCT**TAA**GAAAACCGGCCACTTCAGCAACA GCCCTTTCCCCAGGAGAAGCCAAGAACTTGTGTGTCCCCCACCCTATCCCCTCTAACACCATT CCTCCACCTGATGATGCAACTAACACTTGCCTCCCCACTGCAGCCTGCGGTCCTGCCCACCTC CCGTGATGTGTGTGTGTGTGTGTGTGTGTGTGTTTTGCTAACTGTGGTCTTTGTGG GCTGAGCCACATGGCCATCTGCTCCTGCCCCGTGGCCCTCCATCACCTTCTGCTCCTA GGAGGCTGCTTGTTGCCCGAGACCAGCCCCCTCCCCTGATTTAGGGATGCGTAGGGTAAGAGC ACGGGCAGTGGTCTTCAGTCGTCTTGGGGACCTGGGAAGGTTTGCAGCACTTTGTCATCATTCT TCATGGACTCCTTTCACTCCTTTAACAAAACCTTGCTTCCTTATCCCACCTGATCCCAGTCT GAAGGTCTCTTAGCAACTGGAGATACAAAGCAAGGAGCTGGTGAGCCCAGCGTTGACGTCAGG CAGGCTATGCCCTTCCGTGGTTAATTTCTTCCCAGGGGGCTTCCACGAGGAGTCCCCATCTGCC CCGCCCCTTCACAGAGCGCCCGGGGATTCCAGGCCCAGGGCTTCTACTCTGCCCCTGGGGAAT GTGTCCCCTGCATATCTTCTCAGCAATAACTCCATGGGCTCTGGGACCCTACCCCTTCCAACC TTCCCTGCTTCTGAGACTTCAATCTACAGCCCAGCTCATCCAGATGCAGACTACAGTCCCTGC AATTGGGTCTCTGGCAGGCAATAGTTGAAGGACTCCTGTTCCGTTGGGGCCCAGCACCCGGGA TGGATGGAGGGAGAGCAGAGGCCTTTGCTTCTCTGCCTACGTCCCCTTAGATGGGCAGCAGAG GCAACTCCCGCATCCTTTGCTCTGCCTGTCGGTGGTCAGAGCGGTGAGCGAGGTGGGTTGGAG ACTCAGCAGGCTCCGTGCAGCCCTTGGGAACAGTGAGAGGTTGAAGGTCATAACGAGAGTGGG GCTGTGACCCATTGCTGTTCTCTGTATCGTGATCTATCCTCAACAACAACAGAAAAAAGGAAT AAAATATCCTTTGTTTCCT

FIGURE 434

 ${\tt MELVLVFLCSLLAPMVLASAAEKEKEMDPFHYDYQTLRIGGLVFAVVLFSVGILLILSRRCKC}\\ SFNQKPRAPGDEEAQVENLITANATEPQKQRTEVQPSGGSLWNLRRLLEPLDANVDA$

FIGURE 435

 ${\tt GGTCCTTA} \underline{\textbf{ATG}} {\tt GCAGCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCCTGC}$ TGTCCGGCTGGTCCCGGGCTGGGCCGACCCTCACTCTCTTTGCTATGACATCACCGTCA ${\tt TCCCTAAGTTCAGACCTGGACCACGGTGGTGTGCGGTTCAAGGCCAGGTGGATGAAAAGACTT}$ TTCTTCACTATGACTGTGGCAACAAGACAGTCACCTGTCAGTCCCCTGGGGAAGAACTAA ATGTCACAACGGCCTGGAAAGCACAGAACCCAGTACTGAGAGAGGTGGTGGACATACTTACAG AGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGAACCCCTCACCCTGCAGGCAA GGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGATCTTGGCAGTTCAGTTTCGATG GGCAGATCTTCCTCCTCTTTGACTCAGAGAAGAGAATGTGGACAACGGTTCATCCTGGAGCCA GAAAGATGAAAAGTGGGAGAATGACAAGGTTGTGGCCATGTCCTTCCATTACTTCTCAA TGGGAGACTGTATAGGATGGCTTGAGGACTTCTTGATGGGCATGGACAGCACCCTGGAGCCAA TCATCCTTTGCTGCCTCCTCATCATCCTCCCCTGCTTCATCCTCCCTGGCATCTGAGGAGAGT CCTTTAGAGTGACAGGTTAAAGCTGATACCAAAAGGCTCCTGTGAGCACGGTCTTGATCAAAC TCGCCCTTCTGTCTGGCCAGCTGCCCACGACCTACGGTGTATGTCCAGTGGCCTCCAGCAGAT CATGATGACATCATGGACCCAATAGCTCATTCACTGCCTTGATTCCTTTTTGCCAACAATTTTA CCAGCAGTTATACCTAACATATTATGCAATTTTCTCTTGGTGCTACCTGATGGAATTCCTGCA TCAAGTACTTCTTTGAATGATGATCTCTTTCTTGCAAATGATATTGTCAGTAAAATAATCACG TTAGACTTCAGACCTCTGGGGATTCTTTCCGTGTCCTGAAAGAGAATTTTTTAAATTATTTAAT AAGAAAAATTTATATTAATGATTGTTTCCTTTAGTAATTTATTGTTCTGTACTGATATTTAA ATAAAGAGTTCTATTTCCCAAAAAAAAAAAAAAAAAA

FIGURE 436

MAAAAATKILLCLPLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRWCAVQGQVDEKTFLH YDCGNKTVTPVSPLGKKLNVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLTLQARMS CEQKAEGHSSGSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAMSFHYFSMGD CIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPCFILPGI

FIGURE 437

 $\tt GTTCTCCTTTCCGAGCCAAAATCCCAGGCGATGGTGAATTATGAACGTGCCACACC{\color{red} ATG}{\color{blue} AAGCTCTTGTGGCAGG}$ TAACTGTGCACCACCACCTGGAATGCCATCCTGCTCCCGTTCGTCTACCTCACGGCGCAAGTGTGGATTCTGT GTGCAGCCATCGCTGCCGCCTCAGCCGGGCCCCAGAACTGCCCCTCCGTTTGCTCGTGCAGTAACCAGTTCA GCAAGGTGGTGCACGCGCGGGGCCTCTCCGAGGTCCCGCAGGGTATTCCCTCGAACACCCGGTACCTCAACC ${\tt TCATGGAGAACATCCAGATGATCCAGGCCGACACCTTCCGCCACCTCCACCACCTGGAGGTCCTGCAGTTGG}$ ACAACTGGCTGACAGTCATCCCTAGCGGGGCCTTTGAATACCTGTCCAAGCTGCGGGAGCTCTGGCTTCGCAACA AGAAGCTGGAGTATATCTCTGAGGGAGCTTTTGAGGGGCTGTTCAACCTCAAGTATCTGAACTTGGGCATGTGCA ACATTAAAGACATGCCCAATCTCACCCCCTGGTGGGGGCTGGAGGAGCTGGAGATGTCAGGGAACCACTTCCCTG AGATCAGGCCTGGCTCCTTCCATGGCCTGAGCTCCCTCAAGAAGCTCTGGGTCATGAACTCACAGGTCAGCCTGA ${\tt TTGAGCGGAATGCTTTTGACGGGCTGGCTTCACTTGTGGAACTCAACTTGGCCCACAATAACCTCTTCTTTGC}$ CCCATGACCTCTTTACCCCGCTGAGGTACCTGGTGGAGTTGCATCTACACCACAACCCTTGGAACTGTGATTGTG ACATTCTGTGGCTAGCCTGGTGGCTTCGAGAGTATATACCCACCAATTCCACCTGCTGTGGCCGCTGTCATGCTC $\tt CCATGCACATGCGAGGCCGCTACCTCGTGGAGGTGGACCAGGCCTCCTTCCAGTGCTCTGCCCCCTTCATCATGG$ ACGCACCTCGAGACCTCAACATTTCTGAGGGTCGGATGGCAGAACTTAAGTGTCGGACTCCCCCTATGTCCTCCG TGAAGTGGTTGCTGCCCAATGGGACAGTGCTCAGCCACGCCTCCCGCCACCCAAGGATCTCTGTCCTCAACGACG ACTCCAACGCCTCGGCCTACCTCAATGTGAGCACGGCTGAGCTTAACACCTCCAACTACAGCTTCTTCACCACAG GTTACCAGCCGGCATATACCACCTCTACCACGGTGCTCATTCAGACTACCCGTGTGCCCAAGCAGGTGGCAGTAC $\tt CCGCGACAGACACCACTGACAAGATGCAGACCAGCCTGGATGAAGTCATGAAGACCACCAAGATCATTGGCT$ GCTTTGTGGCAGTGACTCTGCTAGCTGCCGCCATGTTGATTGTCTTCTATAAACTTCGTAAGCGGCACCAGCAGC GGAGTACAGTCACAGCCGCCCGGACTGTTGAGATAATCCAGGTGGACGAAGACATCCCAGCAGCAACATCCGCAG CAGCAACAGCAGCTCCGTCCGGTGTATCAGGTGAGGGGGGGCAGTAGTGCCCCACAATTCATGACCATATTAACT ACAACACCTACAAACCAGCACATGGGGCCCACTGGACAGAAAACAGCCTGGGGAACTCTCTGCACCCCACAGTCA $\tt CCACTATCTCTGAACCTTATATAATTCAGACCCATACCAAGGACAAGGTACAGGAAACTCAAATA{\color{red}{TGA}}CTCCCCT$ CCCCCAAAAAACTTATAAAATGCAATAGAATGCACACAAAGACAGCAACTTTTGTACAGAGTGGGGAGAGACTTT AGTCAAAACA

FIGURE 438

MKLLWQVTVHHHTWNAILLPFVYLTAQVWILCAAIAAAASAGPQNCPSVCSCSNQFSKVVCTR
RGLSEVPQGIPSNTRYLNLMENNIQMIQADTFRHLHHLEVLQLGRNSIRQIEVGAFNGLASLN
TLELFDNWLTVIPSGAFEYLSKLRELWLRNNPIESIPSYAFNRVPSLMRLDLGELKKLEYISE
GAFEGLFNLKYLNLGMCNIKDMPNLTPLVGLEELEMSGNHFPEIRPGSFHGLSSLKKLWVMNS
QVSLIERNAFDGLÅSLVELNLAHNNLSSLPHDLFTPLRYLVELHLHHNPWNCDCDILWLAWWL
REYIPTNSTCCGRCHAPMHMRGRYLVEVDQASFQCSAPFIMDAPRDLNISEGRMAELKCRTPP
MSSVKWLLPNGTVLSHASRHPRISVLNDGTLNFSHVLLSDTGVYTCMVTNVAGNSNASAYLNV
STAELNTSNYSFFTTVTVETTEISPEDTTRKYKPVPTTSTGYQPAYTTSTTVLIQTTRVPKQV
AVPATDTTDKMQTSLDEVMKTTKIIIGCFVAVTLLAAAMLIVFYKLRKRHQQRSTVTAARTVE
IIQVDEDIPAATSAAATAAPSGVSGEGAVVLPTIHDHINYNTYKPAHGAHWTENSLGNSLHPT
VTTISEPYIIQTHTKDKVQETQI

FIGURE 439

GTCGAATCCAAATCACTCATTGTGAAAGCTGAGCTCACAGCCGAATAAGCCACCATGCTGTGTCTGC
TCAGTGTGTCTCCTGATGGTCTCGCTGGCCCTTTGCTGCTACCAGGCCCATGCTCTTGTCTGC
CCAGCTGTTGCTTCTGAGATCACAGTCTTCTTATTCTTAAGTGACGCTGCGGTAAACCTCCAA
GTTGCCAAACTTAATCCACCTCCAGAAGCTCTTGCAGCCAAGTTGGAAGTGAAGCACTGCACC
GATCAGATATCTTTTAAGAAACGACTCTCATTGAAAAAGTCCTGGTGGAAAAAAAT
GTGGTGTGTGACATGTAAAAATGCTCAACCTGGTTTCCAAAGTCTTTCAACGACACCCTGATC
TTCACTAAAAATTGTAAAGGTTTCAACACGTTGCTTTAATAAATCACTTGCCCTGC

FIGURE 440

MRLSVCLLMVSLALCCYQAHALVCPAVASEITVFLFLSDAAVNLQVAKLNPPPEALAAKLEVK HCTDQISFKKRLSLKKSWWK

FIGURE 441

FIGURE 442

 ${\tt MPSPGTVCSLLLLGMLWLDLAMAGSSFLSPEHQRVQQRKESKKPPAKLQPRALAGWLRPEDGG}$ ${\tt QAEGAEDELEVRFNAPFDVGIKLSGVQYQQHSQALGKFLQDILWEEAKEAPADKO}$

FIGURE 443

CGGCCACAGCTGGCATGCTCGATCGCCATCCTGCTGTATGTCCTCGTCCAGTACCTCG ${\tt TGAACCCCGGGGTGCTCCGCACGGACCCCAGATGTCAAGAAT} {\color{red} {\bf ATG}} {\tt AACACGTGGCTGCTGTTC}$ CTCCCCTGTTCCCGGTGCAGGTGCAGACCCTGATAGTCGTGATCATCGGGGATGCTCGTGCTC CTGCTGGACTTTCTTGGCTTGGTGCACCTGGGCCAGCTGCTCATCTTCCACATCTACCTGAGT ATGTCCCCCACCCTAAGCCCCCGATCCCCCCAAGGCTGGTGGTCAGAGCTGCTCATCTTACA CCTCTACTTGAGTATGTCCCTAACCCTGAGCCCCCACGCCTGGGGCCAGAGTCTTTGTCCCC CGTGTGCGCATGTTCAGGGTCAGCCTCTCCCAGAAGTGAGATCATGGACAAAAAGGGCAAA TCACAGGAAGAATTAAATCCATGAGGACCCAGCAGGCCCAGCAAGAAGCTGAACTCACGCCG AGACCTGCAGGAGTGGTGCCAGGTGCT**TGA**AGTAACAAGTTTAAAATGTTCAGAGACAATGGA ATGGAATCTATTAGGCAAGAACAGGACATTATGAAATAAGGACAGGTGGACTTCCAAAAACAC AAGTAGAAATTCTAACAATGAAATATATTACAGGCAGGTCACCCACTAACCAAACAACTGAAG GAACGACGGAGGGTAAACTCCCCAGCCCCAAGAAAACCTGTGTTGGAAGTAACAACCACCTCC CTGCTCCTGGCACCAGCCGTTTTGGTCATGGTGGGCCAGCTGCAAAGCGTCTTCCATTCTCTG GGCAGTGGTGGCCCCGAGGCTGTGGCCTCTCAGGGGGGTTTCTGTGGACACGGGCAGCAGAGTG TGTCCAGGCCAGCCCCAAGAATGCCCTGCTCCTGACAGCTTGGCCAACCCCTGGTCAGGGCA TTGTGGCAAGAACGCCCAGCTCAGAATGAACACCCCCACCAAGAGCCTCCTTGTTCATAACC AAAAAAAA

FIGURE 444

MNTWLLFLPLFPVQVQTLIVVIIGMLVLLLDFLGLVHLGQLLIFHIYLSMSPTLSPRSPQGWV VRAAHLTPLLEYVPNPEPPTPGARVFVPRVRMCSGSASPRSEIMDKKGKSQEEIKSMRTQQAQ QEAELTPRPAGVVPGA

FIGURE 445

FIGURE 446

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEYE RNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCLGC VNPFTMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17

amino acids 96-180.

FIGURE 447

GGAGTGCAGATGGCATCCTTCGGTTCTTCCAGACAAGCTGCAAGACGCTGACC**ATG**GCCAAGA TGGAGCTCTCGAAGGCCTTCTCTGGCCAGCGGACACTCCTATCTGCCATCCTCAGCATGCTAT CACTCAGCTTCTCCACAACATCCCTGCTCAGCAACTACTGGTTTGTGGGCACACAGAAGGTGC CCAAGCCCCTGTGCGAGAAAGGTCTGGCAGCCAAGTGCTTTGACATGCCAGTGTCCCTGGATG GAGATACCAACACATCCACCCAGGAGGTGGTACAATACAACTGGGAGACTGGGGATGACCGGT TCTCCTTCCGGAGCTTCCGGAGTGGCATGTGGCTATCCTGTGAGGAAACTGTGGAAGAACCAG GGGAGAGGTGCCGAAGTTTCATTGAACTTACACCACCAGCCAAGAGAGGGTGAGAAAGGACTAC TGGAATTTGCCACGTTGCAAGGCCCATGTCACCCCACTCTCCGATTTGGAGGGAAGCGGTTGA TGGAGAAGGCTTCCCTCCCCTCCCTTGGGGCTTTGTGGCAAAAATCCTATGGTTATCC CTGGGAACGCAGATCACCTACATCGGACTTCAATTCATCAGCTTCCTCCTGCTACTAACAGAC TTGCTACTCACTGGGAACCCTGCCTGTGGGCTCAAACTGAGCGCCTTTGCTGCTGTTTCCTCT GTCCTGTCAGGTCTCCTGGGGATGGTGGCCCACATGATGTATTCACAAGTCTTCCAAGCGACT GTCAACTTGGGTCCAGAAGACTGGAGACCACATGTTTGGAATTATGGCTGGGCCTTCTACATG GCCTGGCTCCTTCACCTGCTGCATGGCGTCGGCTGTCACCACCTTCAACACGTACACCAGG ATGGTGCTGGAGTTCAAGTGCAAGCA**TAG**TAAGAGCTTCAAGGAAAACCCGAACTGCCTACCA ${\tt CATCACCATCAGTGTTTCCCTCGGCGGCTGTCAAGTGCAGCCCCCACCGTGGGTCCTTTGACC}$ AGCTACCACCAGTATCATAATCAGCCCATCCACTCTGTCTCTGAGGGAGTCGACTTCTACTCC GAGCTGCGGAACAAGGGATTTCAAAGAGGGGCCAGCCAGGAGCTGAAAGAAGCAGTTAGGTCA TCTGTAGAGGAAGAGCAGTGTTAGGAGTTAAGCGGGTTTGGGGAGTAGGCTTGAGCCCTACCT TACACGTCTGCTGATTATCAACATGTGCTTAAGCCAACATCCGTCTCTTGAGCATGGTTTTTTA GAGGCTACGAATAAGGCTATGAATAAGGGTTATCTTTAAGTCCTAAGGGATTCCTGGGTGCCA TTCCCTTCTTTACTGATAGTTTCTGTGCCAGGTTCTGGGCTAAACCATGGAGATAAAAAGAAG AGTAAAATACACTTCCCGACCTTAAGGATCTGAAA

FIGURE 448

MAKMELSKAFSGQRTLLSAILSMLSLSFSTTSLLSNYWFVGTQKVPKPLCEKGLAAKCFDMPV SLDGDTNTSTQEVVQYNWETGDDRFSFRSFRSGMWLSCEETVEEPGERCRSFIELTPPAKRGE KGLLEFATLQGPCHPTLRFGGKRLMEKASLPSPPLGLCGKNPMVIPGNADHLHRTSIHQLPPA TNRLATHWEPCLWAQTERLCCCFLCPVRSPGDGGPHDVFTSLPSDCQLGSRRLETTCLELWLG LLHGLALLHLLHGVGCHHLQHVHQDGAGVQVQA

FIGURE 449

FIGURE 450

MDFLLLGLCLYWLLRRPSGVVLCLLGACFQMLPAAPSGCPQLCRCEGRLLYCEALNLTEAPHN
LSGLLGLSLRYNSLSELRAGQFTGLMQLTWLYLDHNHICSVQGDAFQKLRRVKELTLSSNQIT
QLPNTTFRPMPNLRSVDLSYNKLQALAPDLFHGLRKLTTLHMRANAIQFVPVRIFQDCRSLKF
LDIGYNQLKSLARNSFAGLFKLTELHLEHNDLVKVNFAHFPRLISLHSLCLRRNKVAIVVSSL
DWVWNLEKMDLSGNEIEYMEPHVFETVPHLQSLQLDSNRLTYIEPRILNSWKSLTSITLAGNL
WDCGRNVCALASWLSNFQGRYDGNLQCASPEYAQGEDVLDAVYAFHLCEDGAEPTSGHLLSAV
TNRSDLGPPASSATTLADGGEGQHDGTFEPATVALPGGEHAENAVQIHKVVTGTMALIFSFLI
VVLVLYVSWKCFPASLRQLRQCFVTQRRKQKQKQTMHQMAAMSAQEYYVDYKPNHIEGALVII
NEYGSCTCHQQPARECEV

FIGURE 451

TTGAGCGCAGGTGAGCTCCTGCGCGTTCCGGGGGGCGTTCCTCCAGTCACCCTCCCGCCGTTAC CCGCGCGCCCCGAGGGAGTCTCCTCCAGACCCTCCCTTCCCGTTGCTCCAAACTAATACGGA AAATTTATCTTGGTGTCCTTCATACTTGCTGCACTGAGTCTTTCAACCACCTTTTCTCTCCAA CTAGACCAGCAAAAGGTTCTACTAGTTTCTTTTGATGGATTCCGTTGGGATTACTTATAAAA GTTCCAACGCCCCATTTTCATTATATTATGAAATATGGTGTTCACGTGAAGCAAGTTACTAAT GTTTTTATTACAAAAACCTACCCTAACCATTATACTTTGGTAACTGGCCTCTTTGCAGAGAAT CATGGGATTGTTGCAAATGATATGTTTGATCCTATTCGGAACAAATCTTTCTCCTTGGATCAC ATGAATATTTATGATTCCAAGTTTTGGGAAGAAGCGACACCAATATGGATCACAAACCAGAGG GCAGGACATACTAGTGGTGCAGCCATGTGGCCCGGAACAGATGTAAAAATACATAAGCGCTTT CCTACTCATTACATGCCTTACAATGAGTCAGTTTCATTTGAAGATAGAGTTGCCAAAATTGTT GAATGGTTTACGTCAAAAGAGCCCATAAATCTTGGTCTTCTCTATTGGGAAGACCCTGATGAC ATGGGCCACCATTTGGGACCTGACAGTCCGCTCATGGGGCCTGTCATTTCAGATATTGACAAG AAGTTAGGATATCTCATACAAATGCTGAAAAAGGCAAAGTTGTGGAACACTCTGAACCTAATC ATCACAAGTGATCATGGAATGACGCAGTGCTCTGAGGAAAGGTTAATAGAACTTGACCAGTAC CTGGATAAAGACCACTATACCCTGATTGATCAATCTCCAGTAGCAGCCATCTTGCCAAAAGAA GGTAAATTTGATGAAGTCTATGAAGCACTAACTCACGCTCATCCTAATCTTACTGTTTACAAA AAAGAAGACGTTCCAGAAAGGTGGCATTACAAATACAACAGTCGAATTCAACCAATCATAGCA GTGGCTGATGAAGGGTGGCACATTTTACAGAATAAGTCAGATGACTTTCTGTTAGGCAACCAC GGTTACGATAATGCGTTAGCAGATATGCATCCAATATTTTTAGCCCATGGTCCTGCCTTCAGA AAGAATTTCTCAAAAGAAGCCATGAACTCCACAGATTTGTACCCACTACTATGCCACCTCCTC AATATCACTGCCATGCCACACAATGGATCATTCTGGAATGTCCAGGATCTGCTCAATTCAGCA ATGCCAAGGGTGGTCCCTTATACACAGAGTACTATACTCCTCCCTGGTAGTGTTAAACCAGCA GAATATGACCAAGAGGGGTCATACCCTTATTTCATAGGGGGTCTCTCTTGGCAGCATTATAGTG ATTGTATTTTTGTAATTTCATTAAGCATTTAATTCACAGTCAAATACCTGCCTTACAAGAT ${\tt ATGCATGCTGAAATAGCTCAACCATTATTACAAGCC} {\color{red}{\bf TAA}} {\tt TGTTACTTTGAAGTGGATTTGCAT}$ ATTGAAGTGGAGATTCCATAATTATGTCAGTGTTTAAAGGTTTCAAATTCTGGGAAACCAGTT CACATACACACACGGACCAAAATACTTACACCTGCAAAGGAATAAAGATGTGAGAGTATGT CTCCATTGTTCACTGTAGCATAGGGATAGATAAGATCCTGCTTTATTTGGACTTGGCGCAGAT AATGTATATTTTAGCAACTTTGCACTATGTAAAGTACCTTATATATTGCACTTTAAATTTCT CTCCTGATGGGTACTTTAATTTGAAATGCACTTTATGGACAGTTATGTCTTATAACTTGATTG AAAATGACAACTTTTTGCACCCATGTCACAGAATACTTGTTACGCATTGTTCAAACTGAAGGA GGTGATAAGTGTTGAAAATTAAATGTGATAACCTTTGAACCTTGAATTTTTGGAGATGTATTCC TTTATTTTTCCCTCAAAAGAGAGTCAAATACTGACAGATTCGTTCTAAATATATTGTTTCTGT CATAAAATTATTGTGATTTCCTGATGAGTCATATTACTGTGATTTTCATAATAATGAAGACAC CATGAATATACTTTTCTTCTATATAGTTCAGCAATGGCCTGAATAGAAGCAACCAGGCACCAT CTCAGCAATGTTTTCTCTTGTTTGTAATTATTTGCTCCTTTGAAAATTAAATCACTATTAATT

FIGURE 452

MTSKFILVSFILAALSLSTTFSLQLDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVHVKQ
VTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIYDSKFWEEATPIWIT
NQRAGHTSGAAMWPGTDVKIHKRFPTHYMPYNESVSFEDRVAKIVEWFTSKEPINLGLLYWED
PDDMGHHLGPDSPLMGPVISDIDKKLGYLIQMLKKAKLWNTLNLIITSDHGMTQCSEERLIEL
DQYLDKDHYTLIDQSPVAAILPKEGKFDEVYEALTHAHPNLTVYKKEDVPERWHYKYNSRIQP
IIAVADEGWHILQNKSDDFLLGNHGYDNALADMHPIFLAHGPAFRKNFSKEAMNSTDLYPLLC
HLLNITAMPHNGSFWNVQDLLNSAMPRVVPYTQSTILLPGSVKPAEYDQEGSYPYFIGVSLGS
IIVIVFFVIFIKHLIHSQIPALQDMHAEIAQPLLQA

Important features:

Signal Peptide:

amino acids 1-22

Transmembrane Domain:

amino acids 429-452

N-glycosylation sites:

amino acids 101-104, 158-161, 292-295, 329-332, 362-365, 369-372, 382-385, 389-392

Somatomedin B Domain:

amino acids 69-85

Sulfatase protein Region:

amino acids 212-241

FIGURE 453

GGCCGCCTGGAATTGTGGGAGTTGTCTGCCACTCGGCTGCCGGAGGCCGAAGGTCCGTGAC ${\bf TATG} {\tt GCTCCCCAGAGCCTGCCTTCATCTAGGATGGCTCCTCTGGGCATGCTGCTTGGGCTGCT}$ GATGGCCGCCTGCTTCACCTTCTGCCTCAGTCATCAGAACCTGAAGGAGTTTGCCCTGACCAA $\tt TGCCGAAGTCCTGGAGGTGTTCCACCCGACGCATGAGTGGCAGGCCCTTCAGCCAGGGCAGGC$ ATATGAGGACAAGTTCCGAAATAATTTGAAAGGCAAAAGGCTGGATATCAACACCAACACCTA CACATCTCAGGATCTCAAGAGTGCACTGGCAAAATTCAAGGAGGGGGGCAGAGATGGAGAGTTC AAAGGAAGACAAGGCAAGGCTGAGGTAAAGCGGCTCTTCCGCCCCATTGAGGAACTGAA GAAAGACTTTGATGAGCTGAATGTTGTCATTGAGACTGACATGCAGATCATGGTACGGCTGAT CAACAAGTTCAATAGTTCCAGCTCCAGTTTGGAAGAGAAGATTGCTGCGCTCTTTGATCTTGA ATATTATGTCCATCAGATGGACAATGCGCAGGACCTGCTTTCCTTTGGTGGTCTTCAAGTGGT GATCAATGGGCTGAACAGCACAGAGCCCCTCGTGAAGGAGTATGCTGCGTTTGTGCTGGGCGC TGCCTTTTCCAGCAACCCCAAGGTCCAGGTGGAGGCCATCGAAGGGGGAGCCCTGCAGAAGCT GCTGGTCATCCTGGCCACGGAGCAGCCGCTCACTGCAAAGAAGAAGATCCTGTTTGCACTGTG CTCCCTGCTGCGCCACTTCCCCTATGCCCAGCGGCAGTTCCTGAAGCTCGGGGGGGCTGCAGGT CCTGAGGACCCTGGTGCAGGAGAAGGGCACGGAGGTGCTCGCCGTGCGCGTGGTCACACTGCT CCCAGAGAAGCTGCAGCAGTATCGCCAGGTACACCTCCTGCCAGGCCTGTGGGAACAGGGCTG GTGCGAGATCACGGCCCACCTCCTGGCGCTGCCCGAGCATGATGCCCGTGAGAAGGTGCTGCA GACACTGGGCGTCCTCCTGACCACCTGCCGGGACCGCTACCGTCAGGACCCCCAGCTCGGCAG GACACTGGCCAGCCTGCAGGCTGAGTACCAGGTGCTGGCCAGCCTGGAGCTGCAGGATGGTGA ${\sf GGACGAGGGCTACTTCCAGGAGCTGCTGGGCTCTGTCAACAGCTTGCTGAAGGAGCTGAGA}$ **A**GGCCCCACACCAGGACTGGGATGCCGCTAGTGAGGCTGAGGGGTGCCAGCGTGGGTG GGCTTCTCAGGCAGGAGGACATCTTGGCAGTGCTGGCCTTGGCCATTAAATGGAAACCTGAAGG

FIGURE 454

MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEEELD AEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLDINTNTY TSQDLKSALAKFKEGAEMESSKEDKARQAEVKRLFRPIEELKKDFDELNVVIETDMQIMVRLI NKFNSSSSSLEEKIAALFDLEYYVHQMDNAQDLLSFGGLQVVINGLNSTEPLVKEYAAFVLGA AFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHFPYAQRQFLKLGGLQV LRTLVQEKGTEVLAVRVVTLLYDLVTEKMFAEEEAELTQEMSPEKLQQYRQVHLLPGLWEQGW CEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLGRTLASLQAEYQVLASLELQDGE DEGYFQELLGSVNSLLKELR

Important features:

Signal peptide:

amino acids 1-29

Hypothetical YJL126w/YLR351c/yhcX family protein.

amino acids 364-373

N-glycosylation site.

amino acids 193-197, 236-240

N-myristoylation site.

amino acids 15-21, 19-25, 234-240, 251-257, 402-408, 451-457

Homologous region SLS1 protein.

amino acids 68-340

FIGURE 455

GCCCCAGGGAGCAGTGGTTATAACTCAGGCCCGGTGCCCAGAGCCCAGGAGGAGGCAGT GGCCAGGAAGGCACAGGCCTGAGAAGTCTGCGGCTGAGCTGGGAGCAAATCCCCCACCCCTA CTGTGCGTCCTGCACCCACATCTTTCTCTGTCCCCTCCTTGCCCTGTCTGGAGGCTGCTAGAC TCCTATCTTCTGAATTCTATAGTGCCTGGGTCTCAGCGCAGTGCCGATGGTGGCCCGTCCTTG ${\tt TGGTTCCTCTACCTGGGGAAATAAGGTGCAGCGGCC} \underline{\textbf{ATG}} \texttt{GCTACAGCAAGACCCCCCTGGA}$ TGTGGGTGCTCTGTGCTCTGATCACAGCCTTGCTTCTGGGGGGTCACAGAGCATGTTCTCGCCA ACAATGATGTTTCCTGTGACCACCCCTCTAACACCGTGCCCTCTGGGAGCAACCAGGACCTGG GAGCTGGGGCCGGGAAGACGCCCGGTCGGATGACAGCAGCCGCCATCATCAATGGATCCG ACTGCGATATGCACACCCAGCCGTGGCAGGCCGCGCTGTTGCTAAGGCCCAACCAGCTCTACT GCGGGGCGGTGTTGGTGCATCCACAGTGGCTGCTCACGGCCGCCCACTGCAGGAAGAAGTTT TCAGAGTCCGTCTCGGCCACTACTCCCTGTCACCAGTTTATGAATCTGGGCAGCAGATGTTCC AGGGGGTCAAATCCATCCCCACCCTGGCTACTCCCACCCTGGCCACTCTAACGACCTCATGC TCATCAAACTGAACAGAAGAATTCGTCCCACTAAAGATGTCAGACCCATCAACGTCTCCTCTC TGCACTTCCCTAAGGTCCTCCAGTGCTTGAATATCAGCGTGCTAAGTCAGAAAAGGTGCGAGG ATGCTTACCCGAGACAGATAGATGACACCATGTTCTGCGCCGGTGACAAAGCAGGTAGAGACT CCTGCCAGGGTGATTCTGGGGGGCCTGTGGTCTGCAATGGCTCCCTGCAGGGACTCGTGTCCT GGGGAGATTACCCTTGTGCCCGGCCCAACAGACCGGGTGTCTACACGAACCTCTGCAAGTTCA ${\tt CCAAGTGGATCCAGGAAACCATCCAGGCCAACTCC}$ TGTTGAGAATGTTCATCTCCAGCCCCTGACCCCATGTCTCCTGGACTCAGGGTCTGCTTCC CCCACATTGGGCTGACCGTGTCTCTAGTTGAACCCTGGGAACAATTTCCAAAACTGTCCAG ${\tt GGCGGGGGTTGCGTCTCAATCTCCCTGGGGCACTTTCATCCTCAAGCTCAGGGCCCATCCCTT}$

FIGURE 456

MATARPPWMWVLCALITALLLGVTEHVLANNDVSCDHPSNTVPSGSNQDLGAGAGEDARSDDS SSRIINGSDCDMHTQPWQAALLLRPNQLYCGAVLVHPQWLLTAAHCRKKVFRVRLGHYSLSPV YESGQQMFQGVKSIPHPGYSHPGHSNDLMLIKLNRRIRPTKDVRPINVSSHCPSAGTKCLVSG WGTTKSPQVHFPKVLQCLNISVLSQKRCEDAYPRQIDDTMFCAGDKAGRDSCQGDSGGPVVCN GSLQGLVSWGDYPCARPNRPGVYTNLCKFTKWIQETIQANS

FIGURE 457

GCAGTCAGAGACTTCCCCTGCCCCTCGCTGGGAAAGAACATTAGGAATGCCTTTTAGTGCCTTGCTTCCTGAACT AGCTCACAGTAGCCCGGCGGCCCAGGGCAATCCGACCACATTTCACTCTCACCGCTGTAGGAATCCAGATGCAGG CCAAGTACAGCACGAGGGACATGCTGGATGATGATGGGGACACCACCATGAGCCTGCATTCTCAAGCCTCTG CCACAACTCGGCATCCAGAGCCCCGGCGCACAGAGCACAGGGCTCCCTCTTCAACGTGGCGACCAGTGGCCCTGA $\tt CCCTGCTGACTTGTGCTTGGTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTCAGTACTACCAGC$ TCTCCAATACTGGTCAAGACACCATTTCTCAAATGGAAGAAGATTAGGAAATACGTCCCAAGAGTTGCAATCTC TTCAAGTCCAGAATATAAAGCTTGCAGGAAGTCTGCAGCATGTGGCTGAAAAACTCTGTCGTGAGCTGTATAACA AAGCTGGAGCACACAGGTGCAGCCCTTGTACAGAACAATGGAAATGGCATGGAGACAATTGCTACCAGTTCTATA AAGAAGACCTGGAATTTGCCGCGTCTCAGAGCTACTCTGAGTTTTTCTACTCTTATTGGACAGGGCTTTTGCGCCCTGACAGTGGCAAGGCCTGGCTGTGGATGGAACCCCTTTCACTTCTGAACTGTTCCATATTATAATAGATG TCACCAGCCCAAGAAGCAGAGACTGTGTGGCCATCCTCAATGGGATGATCTTCTCAAAGGACTGCAAAGAATTGA AGCGTTGTGTCTGTGAGAGAGGGCAGGAATGGTGAAGCCAGAGAGCCTCCATGTCCCCCCTGAAACATTAGGCG AAGGTGAC<u>TGA</u>TTCGCCCTCTGCAACTACAAATAGCAGAGTGAGCCAGGCGGTGCCAAAGCAAGGGCTAGTTGAG ACATTGGGAAATGGAACATAATCAGGAAAGACTATCTCTCTGACTAGTACAAAATGGGTTCTCGTGTTTCCTGTT ${\tt CAGGATCACCAGCATTTCTGAGCTTGGGTTTATGCACGTATTTAACAGTCACAAGAAGTCTTATTTACATGCCAC}$ CAACCAACCTCAGAAACCCATAATGTCATCTGCCTTCTTGGCTTAGAGATAACTTTTAGCTCTCTTTCTCTCAA TGTCTAATATCACCTCCCTGTTTTCATGTCTTCCTTACACTTGGTGGAATAAGAAACTTTTTGAAGTAGAGGAAA TACATTGAGGTAACATCCTTTTCTCTGACAGTCAAGTAGTCCATCAGAAATTGGCAGTCACTTCCCAGATTGTAC ${\tt CAGCAAATACACAAGGAATTCTTTTTGTTTGTTTCAGTTCATACTAGTCCCTTCCCAATCCATCAGTAAAGACCC}$ CATCTGCCTTGTCCATGCCGTTTCCCAACAGGGATGTCACTTGATATGAGAATCTCAAATCTCAATGCCTTATAA ATCCCCATCTCCGTTTCATATCAGAACTACCGTCCCCGATATTCCCTTCAGAGAGATTAAAGACCAGAAAAAAGT GAGCCTCTTCATCTGCACCTGTAATAGTTTCAGTTCCTATTTTCTTCCATTGACCCATATTTATACCTTTCAGGT ACTGAAGATTTAATAATAATAATGTAAATACTGTGAAAAA

FIGURE 458

MQAKYSSTRDMLDDDGDTTMSLHSQASATTRHPEPRRTEHRAPSSTWRPVALTLLTLCLVLLI GLAALGLLFFQYYQLSNTGQDTISQMEERLGNTSQELQSLQVQNIKLAGSLQHVAEKLCRELY NKAGAHRCSPCTEQWKWHGDNCYQFYKDSKSWEDCKYFCLSENSTMLKINKQEDLEFAASQSY SEFFYSYWTGLLRPDSGKAWLWMDGTPFTSELFHIIIDVTSPRSRDCVAILNGMIFSKDCKEL KRCVCERRAGMVKPESLHVPPETLGEGD

FIGURE 459

GTTGATGGCAAACTTCCTCAAAGGAGGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCCAC TGGCGGCCCGCAACACTCCGTCTCACCCTCTGGGCCCACTGCATCTAGAGGAGGGCCGTCTGT GAGGCCACTACCCCTCCAGCAACTGGGAGGTGGGACTGTCAGAAGCTGGCCCAGGGTGGTGGT CAGCTGGGTCAGGGACCTACGGCACCTGCTGGACCACCTCGCCTTCTCCATCGAAGCAGGGAA GTGGGAGCCTCGGGTGGAAGCTGACCCCAAGCCACCCTTCACCTGGACAGGATGA GAGTGTCAGGTGTGCCTCCTGGCCCTCATCTTTGCCATAGTCACGACATGGATGTTTA CCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCCCAGCCAACT ACTTTGCGTTTAAAATCTGCAGTGGGGCCCCAACGTCGTGGGCCCTACTATGTGCTTTGAAG ACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGGCAGAGGCCTAAACATCGCCCTGGTGA ATGGAACCACGGGAGCTGTGCTGGGACAGAAGGCATTTGACATGTACTCTGGAGATGTTATGC ACCTAGTGAAATTCCTTAAAGAAATTCCGGGGGGGTGCACTGGTGGCTGGTGGCCTCCTACGACG ATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTTCTCTGACTTGGGGAGTTCCTACG CAAAACAACTGGGCTTCCGGGACAGCTGGGTCTTCATAGGAGCCAAAGACCTCAGGGGTAAAA ${\tt TGCTGGAGATGGAGGCTGCATGCCCCCGAAGCCATTT} {\tt {\tt TAG}} {\tt GGTGGCTGTGGCTCTTCCTCAG}$ CCAGGGGCCTGAAGAAGCTCCTGCCTGACTTAGGAGTCAGAGCCCGGCAGGGGCTGAGGAGA GGAGCAGGGGGTGCTGCGAGGTGCTGCAGGTCCTTGCACGCTGTGTCGCGCCTCTCCTC CTCGGAAACAGAACCCTCCCACAGCACATCCTACCCGGAAGACCAGCCTCAGAGGGTCCTTCT GGAACCAGCTGTCTGTGGAGAGAATGGGGTGCTTTCGTCAGGGACTGCTGACGGCTGGTCCTG AGGAAGGACAAACTGCCCAGACTTGAGCCCAATTAAATTTTATTTTTTGCTGGTTTTGAAAAAA AAAAAAAAAAA

FIGURE 460

MRVSGVLRLLALIFAIVTTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCPA NYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSGDV MHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKDLRG KSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 461

AAACTCAGCACTTGCCGGAGTGGCTCATTGTTAAGACAAAGGGTGTGCACTTCCTGGCCAGGA AACCTGAGCGGTGAGACTCCCAGCTGCCTACATCAAGGCCCCAGGACATGCAGAACCTTCCTC TAGAACCCGACCCACCACGAGGGTCCTGCCTGTGGAGATGCAGGCACCTGAGCCAAGGCGT CCAGTGGTCCTTGCTTCTGGCTGTCTTGTTTTTTTCTCTTCTCGCCTTTGCCCTCTTTTATTAA GCCAGCGCCAGAGACAATGCCCTCAACACACAAACCCAGCCCAAGGCCCACACCACCGGAGA CAGAGGAAAGGAGCCAACCAGGCACCGCCGGAGGAGCAGGACAAGGTGCCCCACACAGCACA GAGGGCAGCATGGAAGAGCCCAGAAAAAGAGAAAACCATGGTGAACACTGTCACCCAGAGG GCAAGATGCAGGGATGGCCTCTGGCAGGACAGAGGCACAATCATGGAAGAGCCAGGACACAAA GACGACCCAAGGAAATGGGGGCCAGACCAGGAAGCTGACGGCCTCCAGGACGGTGTCAGAGAA GCACCAGGGCAAAGCGCCAACCACAGCCAAGACGCTCATTCCCAAAAGTCAGCACAGAATGCT GGCTCCCACAGGAGCAGTGTCAACAAGGACGAGAAAGGAGTGACCACAGCAGTCATCCC ACCTAAGGAGAAGAACCTCAGGCCACCCCACCCCTGCCCCTTTCCAGAGCCCCACGACGCA GAGAAACCAAAGACTGAAGGCCGCCAACTTCAAATCTGAGCCTCGGTGGGATTTTGAGGAAAA ATACAGCTTCGAAATAGGAGGCCTTCAGACGACTTGCCCTGACTCTGTGAAGATCAAAGCCTC CAAGTCGCTGTGGCTCCAGAAACTCTTTCTGCCCAACCTCACTCTTCCTGGACTCCAGACA $\verb|CTTCAACCAGAGTGAGTGGGACCGCCTGGAACACTTTGCACCACCCTTTGGCTTCATGGAGCT| \\$ CAACTACTCCTTGGTGCAGAAGGTCGTGACACGCTTCCCTCCAGTGCCCCAGCAGCAGCTGCT CCTGGCCAGCCTCCCGCTGGGAGCCTCCGGTGCATCACCTGTGCCGTGGTGGGCAACGGGGG CATCCTGAACAACTCCCACATGGGCCAGGAGATAGACAGTCACGACTACGTGTTCCGATTGAG CGGAGCTCTCATTAAAGGCTACGAACAGGATGTGGGGGACTCGGACATCCTTCTACGGCTTTAC CGCCTTCTCCCTGACCCAGTCACTCCTTATATTGGGCAATCGGGGTTTCAAGAACGTGCCTCT TGGGAAGGACGTCCGCTACTTGCACTTCCTGGAAGGCACCCGGGACTATGAGTGGCTGGAAGC ACTGCTTATGAATCAGACGGTGATGTCAAAAAACCTTTTCTGGTTCAGGCACAGACCCCAGGA AGCTTTTCGGGAAGCCCTGCACATGGACAGGTACCTGTTGCTGCACCCAGACTTTCTCCGATA CATGAAGAACAGGTTTCTGAGGTCTAAGACCCTGGATGGTGCCCACTGGAGGATATACCGCCC CACCACTGGGGCCCTCCTGCTGCTCACTGCCCTTCAGCTCTGTGACCAGGTGAGTGCTTATGG CTTCATCACTGAGGGCCATGAGCGCTTTTCTGATCACTACTATGATACATCATGGAAGCGGCT ${f AGGGATAATCCGGCTGTACCAGCGTCCTGGTCCCGGAACTGCCAAAGCCAAGAAC{f TGA}CCGGG}$ GCCAGGGCTGCCATGGTCTCCTTGCCTGCTCCAAGGCACAGGATACAGTGGGAATCTTGAGAC TCTTTGGCCATTTCCCATGGCTCAGACTAAGCTCCAAGCCCTTCAGGAGTTCCAAGGGAACAC TTGAACCATGGACAAGACTCTCTCAAGATGGCAAATGGCTAATTGAGGTTCTGAAGTTCTTCA CCACAATTCCTGCTGAAAAACACTCTTCCAGTCCAAAAGCTTCTTGATACAGAAAAAAGAGCC TGGATTTACAGAAACATATAGATCTGGTTTGAATTCCAGATCGAGTTTACAGTTGTGAAATCT TGAAGGTATTACTTAACTTCACTACAGATTGTCTAGAAGACCTTTCTAGGAGTTATCTGATTC TAGAAGGGTCTATACTTGTCCTTGTCTTTAAGCTATTTGACAACTCTACGTGTTGTAGAAAAC AAAAAAA

FIGURE 462

MRSCLWRCRHLSQGVQWSLLLAVLVFFLFALPSFIKEPQTKPSRHQRTENIKERSLQSLAKPK SQAPTRARRTTIYAEPAPENNALNTQTQPKAHTTGDRGKEANQAPPEEQDKVPHTAQRAAWKS PEKEKTMVNTLSPRGQDAGMASGRTEAQSWKSQDTKTTQGNGGQTRKLTASRTVSEKHQGKAA TTAKTLIPKSQHRMLAPTGAVSTRTRQKGVTTAVIPPKEKKPQATPPPAPFQSPTTQRNQRLK AANFKSEPRWDFEEKYSFEIGGLQTTCPDSVKIKASKSLWLQKLFLPNLTLFLDSRHFNQSEW DRLEHFAPPFGFMELNYSLVQKVVTRFPPVPQQQLLLASLPAGSLRCITCAVVGNGGILNNSH MGQEIDSHDYVFRLSGALIKGYEQDVGTRTSFYGFTAFSLTQSLLILGNRGFKNVPLGKDVRY LHFLEGTRDYEWLEALLMNQTVMSKNLFWFRHRPQEAFREALHMDRYLLLHPDFLRYMKNRFL RSKTLDGAHWRIYRPTTGALLLLTALQLCDQVSAYGFITEGHERFSDHYYDTSWKRLIFYINH DFKLEREVWKRLHDEGIIRLYQRPGPGTAKAKN

Important features:

Cytoplasmic Domain:

amino acids 1-10

Type II Transmembrane Domain:

amino acids 11-35

Lumenal catalytic Domain:

amino acids 36-600

Ribonucleotide Reductase small subunit Signature:

amino acids 481-496

N-glycosylation Sites:

amino acids 300-303, 311-314, 331-334, 375-378, 460-463

FIGURE 463

GGGGGAGCTAGGCCGGCGGCAGTGGTGGTGGCGGCGCGCAAGGGTGAGGGCGCCCCAGAAC ATTTCTACTTTCCTCACTGTTGGCTCTCTTAACTGTGTCCACTCCTTCATGGTGTCAGAGCAC TGAAGCATCTCCAAAACGTAGTGATGGGACACCATTTCCTTGGAATAAAATACGACTTCCTGA GTACGTCATCCCAGTTCATTATGATCTCTTGATCCATGCAAACCTTACCACGCTGACCTTCTG GGGAACCACGAAAGTAGAAATCACAGCCAGTCAGCCCACCAGCACCATCATCCTGCATAGTCA CCACCTGCAGATATCTAGGGCCACCCTCAGGAAGGGAGCTGGAGAGAGGCTATCGGAAGAACC CCTGCAGGTCCTGGAACACCCCCTCAGGAGCAAATTGCACTGCTGGCTCCCGAGCCCCTCCT TGTCGGGCTCCCGTACACAGTTGTCATTCACTATGCTGGCAATCTTTCCGGAGACTTTCCACGG ATTTTACAAAAGCACCTACAGAACCAAGGAAGGGGAACTGAGGATACTAGCATCAACACAATTTGAACCCACTGCAGCTAGAATGGCCTTTCCCTGCTTTGATGAACCTGCCTTCAAAGCAAGTTT CTCAATCAAAATTAGAAGAGAGCCAAGGCACCTAGCCATCTCCAATATGCCATTGGTGAAATC TGTGACTGTTGCTGAAGGACTCATAGAAGACCATTTTGATGTCACTGTGAAGATGAGCACCTA TCTGGTGGCCTTCATCATTTCAGATTTTGAGTCTGTCAGCAAGATAACCAAGAGTGGAGTCAA GGTTTCTGTTTATGCTGTGCCAGACAAGATAAATCAAGCAGATTATGCACTGGATGCTGCGGT GACTCTTCTAGAATTTTATGAGGATTATTTCAGCATACCGTATCCCCTACCCAAACAAGATCT TGCTGCTATTCCCGACTTTCAGTCTGGTGCTATGGAAAACTGGGGACTGACAACATATAGAGA ${ t ATCTGCTCTGTTGTTTGATGCAGAAAAGTCTTCTGCATCAAGTAAGCTTGGCATCACAGTGAC}$ TGAACTGAAAGTTGGAGATTATTTCTTTGGCAAATGTTTTGACGCAATGGAGGTAGATGCTTT AAATTCCTCACACCCTGTGTCTACACCTGTGGAAAATCCTGCTCAGATCCGGGAGATGTTTGA TGATGTTTCTTATGATAAGGGAGCTTGTATTCTGAATATGCTAAGGGAGTATCTTAGCGCTGA GAGGAATGTACACATGAAGCAAGAGCACTACATGAAGGGCTCTGACGGCGCCCCGGACACTGG GTACCTGTGGCATGTTCCATTGACATTCATCACCAGCAAATCCAACATGGTCCATCGATTTTT GCTAAAAACAAAAACAGATGTGCTCATCCTCCCAGAAGAGGTGGAATGGATCAAATTTAATGT TTTAAAAGGAACACACAGCAGTCAGCAGTTAATGATCGGGCAAGTCTCATTAACAATGCATT TCAGCTCGTCAGCATTGGGAAGCTGTCCATTGAAAAGGCCTTGGATTTATCCCTGTACTTGAA ACATGAAACTGAAATTATGCCCGTGTTTCAAGGTTTGAATGAGCTGATTCCTATGTATAAGTT AATGGAGAAAAGAGATATGAATGAAGTGGAAACTCAATTCAAGGCCTTCCTCATCAGGCTGCT AAGGGACCTCATTGATAAGCAGACATGGACAGACGAGGGCTCAGTCTCAGAGCAAATGCTGCG GAGTGAACTACTCCTCGCCTGTGTGCACAACTATCAGCCGTGCGTACAGAGGGCAGAAGG AGTGTTTGCTGTGGGGGCCCAGAGCACAGAAGGCTGGGATTTTCTTTATAGTAAATATCAGTT TTCTTTGTCCAGTACTGAGAAAAGCCAAATTGAATTTGCCCTCTGCAGAACCCAAAATAAGGA AAAGCTTCAATGGCTACTAGATGAAAGCTTTAAGGGAGATAAAATAAAAACTCAGGAGTTTCC ACAAATTCTTACACTCATTGGCAGGAACCCAGTAGGATACCCACTGGCCTGGCAATTTCTGAG GAAAAACTGGAACAAACTTGTACAAAAGTTTGAACTTGGCTCATCTTCCATAGCCCACATGGT AATGGGTACAACAAATCAATTCTCCACAAGAACACGGCTTGAAGAGGTAAAAGGATTCTTCAG CTCTTTGAAAGAAAATGGTTCTCAGCTCCGTTGTGTCCAACAGACAATTGAAACCATTGAAGA ${ t AAACATCGGTTGGATGGATAAGAATTTTGATAAAATCAGAGTGTGGCTGCAAAGTGAAAAGCT}$ TGAACGTATG<u>TAA</u>AAATTCCTCCCTTGCCCGGTTCCTGTTATCTCTAATCACCAACATTTTGT TGAGTGTATTTTCAAACTAGAGATGGCTGTTTTTGGCTCCAACTGGAGATACTTTTTTCCCTTC AACTCATTTTTTGACTATCCCTGTGAAAAGAATAGCTGTTAGTTTTTCATGAATGGGCTTTTT CATGAATGGGCTATCGCTACCATGTGTTTTGTTCATCACAGGTGTTGCCCTGCAACGTAAACC AAAAAAAAAA

FIGURE 464

MVFLPLKWSLATMSFLLSSLLALLTVSTPSWCQSTEASPKRSDGTPFPWNKIRLPEYVIPVHY
DLLIHANLTTLTFWGTTKVEITASQPTSTIILHSHHLQISRATLRKGAGERLSEEPLQVLEHP
PQEQIALLAPEPLLVGLPYTVVIHYAGNLSETFHGFYKSTYRTKEGELRILASTQFEPTAARM
AFPCFDEPAFKASFSIKIRREPRHLAISNMPLVKSVTVAEGLIEDHFDVTVKMSTYLVAFIIS
DFESVSKITKSGVKVSVYAVPDKINQADYALDAAVTLLEFYEDYFSIPYPLPKQDLAAIPDFQ
SGAMENWGLTTYRESALLFDAEKSSASSKLGITVTVAHELAHQWFGNLVTMEWWNDLWLNEGF
AKFMEFVSVSVTHPELKVGDYFFGKCFDAMEVDALNSSHPVSTPVENPAQIREMFDDVSYDKG
ACILNMLREYLSADAFKSGIVQYLQKHSYKNTKNEDLWDSMASICPTDGVKGMDGFCSRSQHS
SSSSHWHQEGVDVKTMMNTWTLQRGFPLITITVRGRNVHMKQEHYMKGSDGAPDTGYLWHVPL
TFITSKSNMVHRFLLKTKTDVLILPEEVEWIKFNVGMNGYYIVHYEDDGWDSLTGLLKGTHTA
VSSNDRASLINNAFQLVSIGKLSIEKALDLSLYLKHETEIMPVFQGLNELIPMYKLMEKRDMN
EVETQFKAFLIRLLRDLIDKQTWTDEGSVSEQMLRSELLLLACVHNYQPCVQRAEGYFRKWKE
SNGNLSLPVDVTLAVFAVGAQSTEGWDFLYSKYQFSLSSTEKSQIEFALCRTQNKEKLQWLLD
ESFKGDKIKTQEFPQILTLIGRNPVGYPLAWQFLRKNWNKLVQKFELGSSSIAHMVMGTTNQF
STRTRLEEVKGFFSSLKENGSQLRCVQQTIETIEENIGWMDKNFDKIRVWLQSEKLERM

Important features:

Signal peptide:

amino acids 1-34

N-glycosylation sites:

amino acids 70-74, 154-158, 414-418, 760-764, 901-905

Neutral zinc metallopeptidases, zinc-binding region signature:

amino acids 350-360

FIGURE 465

 ${\tt CAGCCACAGACGGGTC} \underline{\textbf{ATG}} \\ \texttt{AGCGCGGTATTACTGCTGGCCCTCCTGGGGTTCATCCTCCCACT}$ GCCAGGAGTGCAGGCGCTGCTCTGCCAGTTTGGGACAGTTCAGCATGTGTGGAAGGTGTCCGA CCTACCCCGGCAATGGACCCCTAAGAACACCAGCTGCGACAGCGGCTTGGGGTGCCAGGACAC GTTGATGCTCATTGAGAGCGGACCCCAAGTGAGCCTGGTGCTCTCCAAGGGCTGCACGGAGGC CAAGGACCAGGAGCCCCGCGTCACTGAGCACCGGATGGGCCCCCGGCCTCTCCCTGATCTCCTA CCCACAGCCCCAGCAGACCCAGGATCCTTGAGGTGCCCAGTCTGCTTGTCTATGGAAGGCTG TCTGGAGGGGACAACAGAAGAGATCTGCCCCAAGGGGACCACACACTGTTATGATGGCCTCCT TTGCAACCTGCTCAATGGGACACAGGAAATTGGGCCCGTGGGTATGACTGAGAACTGCAATAG GAAAGATTTTCTGACCTGTCATCGGGGGACCACCATTATGACACACGGAAACTTGGCTCAAGA ACCCACTGATTGGACCACATCGAATACCGAGATGTGCGAGGTGGGGGCAGGTGTGTCAGGAGAC GCTGCTGCTCATAGATGTAGGACTCACATCAACCCTGGTGGGGACAAAAGGCTGCAGCACTGT TGGGGCTCAAAATTCCCAGAAGACCACCATCCACTCAGCCCCTCCTGGGGTGCTTGTGGCCTC CTATACCCACTTCTGCTCCTCGGACCTGTGCAATAGTGCCAGCAGCAGCAGCGTTCTGCTGAA CTCCCTCCTCAAGCTGCCCCTGTCCCAGGAGACCGGCAGTGTCCTACCTGTGTGCAGCC CCTTGGAACCTGTTCAAGTGGCTCCCCCGAATGACCTGCCCCAGGGGCGCCACTCATTGTTA TGATGGGTACATTCATCTCTCAGGAGGTGGGCTGTCCACCAAAATGAGCATTCAGGGCTGCGT GGCCCAACCTTCCAGCTTCTTGTTGAACCACCAGACAAATCGGGATCTTCTCTGCGCGTGA TCTCACTTGGGGGGTGGGGCTGGCACTGGCCCCAGCGCTGTGGTGGGGAGTGGTTTGCCCTTC TGACCTCATAACCTAATGGCCTTGGACACCAGATTCTTTCCCATTCTGTCCATGAATCATCTT CCCCACACACATCATTCATATCTACTCACCTAACAGCAACACTGGGGAGAGCCTGGAGCATC CGGACTTGCCCTATGGGAGAGGGGACGCTGGAGGAGTGGCTGCATGTATCTGATAATACAGAC CCTGTCCTTTCA

FIGURE 466

MSAVLLLALLGFILPLPGVQALLCQFGTVQHVWKVSDLPRQWTPKNTSCDSGLGCQDTLMLIE
SGPQVSLVLSKGCTEAKDQEPRVTEHRMGPGLSLISYTFVCRQEDFCNNLVNSLPLWAPQPPA
DPGSLRCPVCLSMEGCLEGTTEEICPKGTTHCYDGLLRLRGGGIFSNLRVQGCMPQPGCNLLN
GTQEIGPVGMTENCNRKDFLTCHRGTTIMTHGNLAQEPTDWTTSNTEMCEVGQVCQETLLLID
VGLTSTLVGTKGCSTVGAQNSQKTTIHSAPPGVLVASYTHFCSSDLCNSASSSSVLLNSLPPQ
AAPVPGDRQCPTCVQPLGTCSSGSPRMTCPRGATHCYDGYIHLSGGGLSTKMSIQGCVAQPSS
FLLNHTRQIGIFSAREKRDVQPPASQHEGGGAEGLESLTWGVGLALAPALWWGVVCPSC

FIGURE 467

GAGGATTTGCCACAGCAGCAGCAGAGCAGCAGGAGCACCACCGGAGCCCTTGAGACATCCTTG AGAAGAGCCACAGCATAAGAGACTGCCCTGCTTGGTGTTTTTGCAGG**ATG**ATGGTGGCCCTTCG ${\tt AGGAGCTTCTGCATTGCTGGTTCTGTTCCTTGCAGCTTTTCTGCCCCCGCCGCAGTGTACCCA}$ GGACCCAGCCATGGTGCATTACATCTACCAGCGCTTTCGAGTCTTGGAGCAAGGGCTGGAAAA ATGTACCCAAGCAACGAGGGCATACATTCAAGAATTCCAAGAGTTCTCAAAAAATATATCTGT CATGCTGGGAAGATGTCAGACCTACACAAGTGAGTACAAGAGTGCAGTGGGTAACTTGGCACT GAGAGTTGAACGTGCCCAACGGGAGATTGACTACATACAATACCTTCGAGAGGCTGACGAGTG CATCGTATCAGAGGACAAGACACTGGCAGAAATGTTGCTCCAAGAAGCTGAAGAAGAAAAAA GATCCGGACTCTGCTGAATGCAAGCTGTGACAACATGCTGATGGGCATAAAGTCTTTGAAAAT AGTGAAGAAGATGATGGACACATGGCTCTTGGATGAAAGATGCTGTCTATAACTCTCCAAA GGTGTACTTATTAATTGGATCCAGAAACAACACTGTTTGGGGAATTTGCAAACATACGGGCATT CATGGAGGATAACACCAAGCCAGCTCCCCGGAAGCAAATCCTAACACTTTCCTGGCAGGGAAC AGGCCAAGTGATCTACAAAGGTTTTCTATTTTTCATAACCAAGCAACTTCTAATGAGATAAT CAAATATAACCTGCAGAAGAGGACTGTGGAAGATCGAATGCTGCTCCCAGGAGGGGTAGGCCG AGCATTGGTTTACCAGCACTCCCCCTCAACTTACATTGACCTGGCTGTGGATGAGCATGGGCT CTGGGCCATCCACTCTGGGCCAGGCACCCATAGCCATTTGGTTCTCACAAAGATTGAGCCGGG CACACTGGGAGTGGAGCATTCATGGGATACCCCATGCAGAAGCCAGGATGCTGAAGCCTCATT CCTCTTGTGTGGGGTTCTCTATGTGGTCTACAGTACTGGGGGCCCAGGGCCCTCATCGCATCAC CTGCATCTATGATCCACTGGGCACTATCAGTGAGGAGGACTTGCCCCAACTTGTTCTTCCCCAA GAGACCAAGAAGTCACTCCATGATCCATTACAACCCCAGAGATAAGCAGCTCTATGCCTGGAA TGAAGGAAACCAGATCATTTACAAACTCCAGACAAAGAGAAAGCTGCCTCTGAAG**TAA**TGCAT TACAGCTGTGAGAAAGAGCACTGTGGCTTTGGCAGCTGTTCTACAGGACAGTGAGGCTATAGC CCCTTCACAATATAGTATCCCTCTAATCACACAGGAAGAGTGTGTAGAAGTGGAAATACGT ATGCCTCCTTTCCCAAATGTCACTGCCTTAGGTATCTTCCAAGAGCTTAGATGAGAGCATATC ATCAGGAAAGTTTCAACAATGTCCATTACTCCCCCAAACCTCCTGGCTCTCAAGGATGACCAC ATTCTGATACAGCCTACTTCAAGCCTTTTGTTTTACTGCTCCCCAGCATTTACTGTAACTCTG CCATCTTCCCTCCCACAATTAGAGTTGTATGCCAGCCCCTAATATTCACCACTGGCTTTTCTC TCCCCTGGCCTTTGCTGAAGCTCTTCCCTCTTTTTCAAATGTCTATTGATATTCTCCCATTTT CTCACTATGTTGCCCAGGCTGGTCTCAAACTCCAGAGCTCAAGAGATCCTCCTGCCTCAGCCT CCTAAGTACCTGGGATTACAGGCATGTGCCACCACACCTGGCTTAAAATACTATTTCTTATTG AGGTTTAACCTCTATTTCCCCTAGCCCTGTCCTTCCACTAAGCTTGGTAGATGTAATAAA GTGAAAATATTAACATTTGAATATCGCTTTCCAGGTGTGGAGTGTTTGCACATCATTGAATTC TCGTTTCACCTTTGTGAAACATGCACAAGTCTTTACAGCTGTCATTCTAGAGTTTAGGTGAGT AACACAATTACAAAGTGAAAGATACAGCTAGAAAATACTACAAATCCCATAGTTTTTCCATTG CCCAAGGAAGCATCAAATACGTATGTTTGTTCACCTACTCTTATAGTCAATGCGTTCATCGTT TCAGCCTAAAAATAATAGTCTGTCCCTTTAGCCAGTTTTCATGTCTGCACAAGACCTTTCAAT AGGCCTTTCAAATGATAATTCCTCCAGAAAACCAGTCTAAGGGTGAGGACCCCAACTCTAGCC TCCTCTTGTCTTGCTGTCCTCTGTTTCTCTCTTTTCTGCTTTAAATTCAATAAAAGTGACACTG AGCAAAAAAAAAAAAA

FIGURE 468

MMVALRGASALLVLFLAAFLPPPQCTQDPAMVHYIYQRFRVLEQGLEKCTQATRAYIQEFQEF SKNISVMLGRCQTYTSEYKSAVGNLALRVERAQREIDYIQYLREADECIVSEDKTLAEMLLQE AEEEKKIRTLLNASCDNMLMGIKSLKIVKKMMDTHGSWMKDAVYNSPKVYLLIGSRNNTVWEF ANIRAFMEDNTKPAPRKQILTLSWQGTGQVIYKGFLFFHNQATSNEIIKYNLQKRTVEDRMLL PGGVGRALVYQHSPSTYIDLAVDEHGLWAIHSGPGTHSHLVLTKIEPGTLGVEHSWDTPCRSQ DAEASFLLCGVLYVVYSTGGQGPHRITCIYDPLGTISEEDLPNLFFPKRPRSHSMIHYNPRDK QLYAWNEGNQIIYKLQTKRKLPLK

FIGURE 469

TGGCCTCCCCAGCTTGCCAGGCACAAGGCTGAGCGGAGGAGGCAAGCGAGAGCATCTAAGCAGGC AGTGTTTTGCCTTCACCCCAAGTGACC**ATG**AGAGGTGCCACGCGAGTCTCAATCATGCTCCTC CTAGTAACTGTGTCTGACTGTGTGATCACAGGGGCCTGTGAGCGGGATGTCCAGTGTGGG GCAGGCACCTGCTGTGCCATCAGCCTGTGGCTTCGAGGGCTGCGGATGTGCACCCCGCTGGGG CGGGAAGGCGAGGAGTGCCACCCGGCAGCCACAAGGTCCCCTTCTTCAGGAAACGCAAGCAC CACACCTGTCCTTGCCCAACCTGCTGTGCTCCAGGTTCCCGGACGCAGGTACCGCTGC ${\tt TCCATGGACTTGAAGAACATCAATTTT{\color{red}{\textbf{TAG}}}{\tt GCGCTTGCCTGGTCTCAGGATACCCACCATCCT}}$ TTTCCTGAGCACAGCCTGGATTTTTATTTCTGCCATGAAACCCAGCTCCCATGACTCTCCCAG TCCCTACACTGACTACCCTGATCTCTTTGTCTAGTACGCACATATGCACACAGGCAGACATA CCTCCCATCATGACATGGTCCCCAGGCTGGCCTGAGGATGTCACAGCTTGAGGCTGTGGTGTG AAAGGTGGCCAGCCTGGTTCTCTCCCTGCTCAGGCTGCCAGAGAGGTGGTAAATGGCAGAAA GGACATTCCCCCTCCCCAGGTGACCTGCTCTCTTTCCTGGGCCCTGCCCCTCTCCCCA CATGTATCCCTCGGTCTGAATTAGACATTCCTGGGCCACAGGCTCTTGGGTGCATTGCTCAGAG TCCCAGGTCCTGGCCTGACCCTCAGGCCCTTCACGTGAGGTCTGTGAGGACCAATTTGTGGGT AGTTCATCTTCCCTCGATTGGTTAACTCCTTAGTTTCAGACCACAGACTCAAGATTGGCTCTT CCCAGAGGGCAGCAGACAGTCACCCCAAGGCAGGTGTAGGGAGCCCAGGGAGGCCAATCAGCC CCCTGAAGACTCTGGTCCCAGTCAGCCTGTGGCTTGTGGCCTGTGACCTTCTGCCA GAATTGTCATGCCTCTGAGGCCCCCTCTTACCACACTTTACCAGTTAACCACTGAAGCCCCCA ATTCCCACAGCTTTTCCATTAAAATGCAAATGGTGGTGGTTCAATCTAATCTGATATTGACAT ATTAGAAGGCAATTAGGGTGTTTCCTTAAACAACTCCTTTCCAAGGATCAGCCCTGAGAGCAG GTTGGTGACTTTGAGGAGGCAGTCCTCTGTCCAGATTGGGGTGGGAGCAAGGGACAGGGAGC AGGGCAGGGCTGAAAGGGGCACTGATTCAGACCAGGGAGGCAACTACACACCAACATGCTGG CTTTAGAATAAAAGCACCAACTGAAAAA

FIGURE 470

MRGATRVSIMLLLVTVSDCAVITGACERDVQCGAGTCCAISLWLRGLRMCTPLGREGEECHPG SHKVPFFRKRKHHTCPCLPNLLCSRFPDGRYRCSMDLKNINF

Important feratures:

Signal peptide:

amino acids 1-19

Tyrosine kinase phosphorylation site:

amino acids 88-95

N-myristoylation sites:

amino acids 33-39, 35-41, 46-52

FIGURE 471

AGCGCCCGGGCGTCGGGGCGTAAAAGGCCGGCAGAAGGGAGGCACTTGAGAA**ATG**TCTTTCC TCCAGGACCCAAGTTTCTTCACCATGGGGATGTGGTCCATTGGTGCAGGAGCCCTGGGGGGCTG CTGCCTTGGCATTGCTGCCAACACAGACGTGTTTCTGTCCAAGCCCCAGAAAGCGGCCC TGGAGTACCTGGAGGATATAGACCTGAAAACACTGGAGAAGGAACCAAGGACTTTCAAAGCAA AGGAGCTATGGGAAAAAAATGGAGCTGTGATTATGGCCGTGCGGAGGCCAGGCTGTTTCCTCT GTCGAGAGGAAGCTGCGGATCTGTCCTCCCTGAAAAGCATGTTGGACCAGCTGGGCGTCCCCC TCTATGCAGTGGTAAAGGAGCACATCAGGACTGAAGTGAAGGATTTCCAGCCTTATTTCAAAG GAGAAATCTTCCTGGATGAAAAGAAAAAGTTCTATGGTCCACAAAGGCGGAAGATGATGTTTA TGGGATTTATCCGTCTGGGAGTGTGGTACAACTTCTTCCGAGCCTGGAACGGAGGCTTCTCTG GAAACCTGGAAGGAGGAGCTTCATCCTTGGGGGAGTTTTCGTGGTGGGATCAGGAAAGCAGG GCATTCTTCTTGAGCACCGAGAAAAAGAATTTGGAGACAAAGTAAACCTACTTTCTGTTCTGG AAGCTGCTAAGATGATCAAACCACAGACTTTGGCCTCAGAGAAAAAA**TGA**TTGTGTGAAACTG CCCAGCTCAGGGATAACCAGGGACATTCACCTGTGTTCATGGGATGTATTGTTTCCACTCGTG TCCCTAAGGAGTGAGAAACCCATTTATACTCTACTCTCAGTATGGATTATTAATGTATTTTAA TATTCTGTTTAGGCCCACTAAGGCAAAATAGCCCCAAAACAAGACTGACAAAAATCTGAAAAA CTAATGAGGATTATTAAGCTAAAACCTGGGAAATAGGAGGCTTAAAATTGACTGCCAGGCTGG GTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGAGCAAGTCACTTGAG GTCGGGAGTTCGAGACCAGCCTGAGCAACATGGCGAAACCCCGTCTCTACTAAAAATACAAAA ATCACCCGGGTGTGGTGGCAGGCACCTGTAGTCCCAGCTACCCGGGAGGCTGAGGCAGGAGAA TCACTTGAACCTGGGAGGTGGAGGTTGCGGTGAGCTGAGATCACACCACTGTATTCCAGCCTG GGTGACTGAGACTCTAACTAA

FIGURE 472

MSFLQDPSFFTMGMWSIGAGALGAAALALLLANTDVFLSKPQKAALEYLEDIDLKTLEKEPRT FKAKELWEKNGAVIMAVRRPGCFLCREEAADLSSLKSMLDQLGVPLYAVVKEHIRTEVKDFQP YFKGEIFLDEKKKFYGPQRRKMMFMGFIRLGVWYNFFRAWNGGFSGNLEGEGFILGGVFVVGS GKQGILLEHREKEFGDKVNLLSVLEAAKMIKPOTLASEKK

FIGURE 473

FIGURE 474

MTFFLSLLLLLVCEAIWRSNSGSNTLENGYFLSRNKENHSQPTQSSLEDSVTPTKAVKTTGKG IVKGRNLDSRGLILGAEAWGRGVKKNT

FIGURE 475

GACAGTGGAGGGCAGTGGAGAGGACCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACACCAT $\tt CTCCCACCGAGAGTC{\color{red} ATC} GCCCCATTGGCCCTGCACCTCCTCGTCCTCGTCCCCATCCTCCTC$ AGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAGAAATGCATG CAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGCTCAATCGGACCCTGAAG CCCCAGAGGGTGATTGTGGTTGGCGGTGTGGCCGGGCTGGTGGCCGCCAAGGTGCTCAGC GATGCTGGACACAAGGTCACCATCCTGGAGGCAGATAACAGGATCGGGGGCCGCATCTTCACC TACCGGGACCAGAACACGGGCTGGATTGGGGAGCCTGGGGAGCCATGCCCAGCTCTCAC AGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGCTCAACCTGACCAAGTTCACCCAGTACGAC AAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAGAAGGTGCCC GAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAAAAGGGCCACTCGCCCGAAGACATCTACCAG ATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGGCTGCAGAAAGGCGATGAAGAAG CAGCTTCTGGGAGACGTGATGTCCGAGGATGGCTTCTTCTATCTCAGCTTCGCCGAGGCCCTC $\tt CTGCCGCGCGCTGTGAGCTCGCTGTCCGGGCTTGTTGAACGCGCCCGTGGTGGCG$ ATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCCCCCGGCGCGGAATCTG AAGGTGCTGAAGGCCGACGTGGTGCTGACGGCGAGCGGACCGGCGGTGAAGCGCATCACC TTCTCGCCGCCGCCGCCACATGCAGGAGGCGCTGCGGAGGCTGCACTACGTGCCGGCC ACCAAGGTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGAGCACATTGAAGGCGGCCAC CTGGCCTCGTACACGTGGTCGGACGCGGCGGCGCTTCGCCGGCTTGAGCCGGGAAGAGGCG TTGCGCTTGGCGCTCGACGACGTGGCGGCCATTGCACGGGCCTGTCGTGCGCCAGCTCTGGGAC GGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACAGCCAGGGTGGCTTTGTGGTACAG CCGCCGGCGCTCTGGCAAACCGAAAAGGATGACTGGACGGTCCCTTATGGCCGCATCTACTTT GCCGGCGAGCACCGCCTACCCGCACGGCTGGGTGGAGACGGCGGTCAAGTCGGCGCTGCGC GCCGCCATCAAGATCAACAGCCGGAAGGGGCCTGCATCGGACACGGCCAGCCCCGAGGGGCAC GCATCTGACATGGAGGGCCAGGGGCATGTGCATGGGGTGGCCAGCAGCCCCTCGCATGACCTG GCAAAGGAAGAAGCCACCCTCCAGTCCAAGGCCAGTTATCTCTCCAAAACACGACCCAC AAAAAAAAAAAAA

FIGURE 476

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRVI
VVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRILHK
LCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPEDIYQMALNQ
ALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALRAHSC
LSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNLKVLKA
DVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFRRPFWREEHIEGGHSNTDR
PSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLALDDVAALHGPVVRQLWDGTGVV
KRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAGEHTAYPHGWVETAVKSALRAAIKI
NSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHDLAKEEGSHPPVQGQLSLQNTTHTRTSH

Important features:

Signal peptide:

amino acids 1-21

FIGURE 477

GAACTCAGAGCCGGGAAGCCCCCATTCACTAGAAGCACTGAGAGATGCGGCCCCCTCGCAGGGTCTGAATTTCCT GCTGCTGTTCACAAAGATGCTTTTTATCTTTAACTTTTTGTTTTCCCCACTTCCGACCCCGGCGTTGATCTGCAT CCTGACATTTGGAGCTGCCATCTTCTTGTGGCTGATCACCAGACCTCAACCCGTCTTACCTCTTCTTGACCTGAA CAATCAGTCTGTGGGAATTGAGGGAGGAGCACGGAAGGGGGTTTCCCAGAAGAACAATGACCTAACAAGTTGCTG CTTCTCAGATGCCAAGACTATGTATGAGGTTTTCCAAAGAGGACTCGCTGTGTCTGACAATGGGCCCTGCTTGGG ATATAGAAAACCAAACCAGCCCTACAGATGGCTATCTTACAAACAGGTGTCTGATAGAGCAGAGTACCTGGGTTC CTGTCTCTTGCATAAAGGTTATAAATCATCACCAGACCAGTTTGTCGGCATCTTTGCTCAGAATAGGCCAGAGTG GATCATCTCCGAATTGGCTTGTTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACCTTGGGACCAGAAGC CATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGATCTGTGACACACCCCAAAAGGCATTGGTGCTGAT $\verb|GCAAAGAGGGGAGAAGAGTGGAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCAAAGAGCACTTCAG|$ AAAACCTGTGCCTCCTAGCCCAGAAGACCTGAGCGTCATCTGCTTCACCAGTGGGACCACAGGTGACCCCAAAGG AGCCATGATAACCCATCAAAATATTGTTTCAAATGCTGCTGCCTTTCTCAAATGTGTGGAGCATGCTTATGAGCC CACTCCTGATGATGTGGCCATATCCTACCTCCCTCTGGCTCATATGTTTGAGAGGATTGTACAGGCTGTTGTGTA CACATTGTTTCCCGCGGTGCCTCGACTCCTTAACAGGATCTACGATAAGGTACAAAATGAGGCCAAGACACCCTT GAAGAAGTTCTTGTTGAAGCTGGCTGTTTCCAGTAAATTCAAAGAGCTTCAAAAGGGGTATCATCAGGCATGATAG TTTCTGGGACAAGCTCATCTTTGCAAAGATCCAGGACAGCCTGGGCGGAAGGGTTCGTGTAATTGTCACTGGAGC TGCCCCCATGTCCACTTCAGTCATGACATTCTTCCGGGCAGCAATGGGATGTCAGGTGTATGAAGCTTATGGTCA TTGCAATTACGTGAAGCTGGAAGATGTGGCTGACATGAACTACTTTACAGTGAATAATGAAGGAGGGTCTGCAT CAAGGGTACAAACGTGTTCAAAGGATACCTGAAGGACCCTGAGAAGACACAGGAAGCCCTGGACAGTGATGGCTG $\verb|GCTTCACACAGGAGACATTGGTCGCTGGCTCCCGAATGGAACTCTGAAGATCATCGACCGTAAAAAGAACATTTT|$ CAAGCTGGCCCAAGGAGAATACATTGCACCAGAGAGATAGAAAATATCTACAACAGGAGTCAACCAGTGTTACA AATTTTTGTACACGGGGAGAGCTTACGGTCATCCTTAGTAGGAGTGGTGGTTCCTGACACAGATGTACTTCCCTC ATTTGCAGCCAAGCTTGGGGTGAAGGGCTCCTTTGAGGAACTGTGCCAAAACCAAGTTGTAAGGGAAGCCATTTT A GAAGACTTGCAGAAAATTGGGAAAGAAGTGGCCTTAAAACTTTTGAACAGGTCAAAGCCATTTTTCTTCATCCAGAGCCATTTTCCATTGAAAATGGGCTCTTGACACCAACATTGAAAGCCAAAGCGAGGAGAGCTTTCCAAATACTT $\verb"TCGGACCCAAATTGACAGCCTGTATGAGCACATCCAGGAT" {\color{red} \textbf{TAG}} \texttt{GATAAGGTACTTAAGTACCTGCCGGCCCACTG}$ ATCCTGTCTTTCCCATCTTCGATGTTGCTAATATTAAGGCTTCAGGGCTACTTTTATCAACATGCCTGTCTTCAA GATCCCAGTTTATGTTCTGTGTCCTTCCTCATGATTTCCAACCTTAATACTATTAGTAACCACAAGTTCAAGGGT CAAAGGGACCCTCTGTGCCTTCTTCTTTGTTTTGTGATAAACATAACTTGCCAACAGTCTCTATGCTTATTTACA TCTTCTACTGTTCAAACTAAGAGATTTTTAAATTCTGAAAAACTGCTTACAATTCATGTTTTCTAGCCACTCCAC AAACCACTAAAATTTTAGTTTTAGCCTATCACTCATGTCAATCATATCTATGAGACAAATGTCTCCGATGCTCTT CTGCGTAAATTAAATTGTGTACTGAAGGGAAAAGTTTGATCATACCAAACATTTCCTAAACTCTCTAGTTAGATA TCTGACTTGGGAGTATTAAAAATTGGGTCTATGACATACTGTCCAAAAGGAATGCTGTTCTTAAAGCATTATTTA CAGTAGGAACTGGGGGGGTAAATCTGTTCCCTACAGTTTGCTGCTGAGCTGGAAGCTGTGGGGGAAGGAGTTGACA GGTGGGCCCAGTGAACTTTTCCAGTAAATGAAGCAAGCACTGAATAAAAACCTCCTGAACTGGGAACAAAGATCT ACAGGCAAGCAAGATGCCCACACAACAGGCTTATTTTCTGTGAAGGAACCAACTGATCTCCCCCACCCTTGGATT AGAGTTCCTGCTCTACCTTACCCACAGATAACACATGTTGTTTCTACTTGTAAATGTAAAGTCTTTAAAATAAAC TATTACAGATAAAAA

FIGURE 478

MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFNF
LFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTSCC
FSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSSPDQ
FVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKALVLIG
NVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPEDLSVIC
FTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQAVVYSC
GARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYDKVQNEAKTPLKKFLLKLAVSSKFKE
LQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMTFFRAAMGCQVYEAYGQTEC
TGGCTFTLPGDWTSGHVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFKGYLKDPEKT
QEALDSDGWLHTGDIGRWLPNGTLKIIDRKKNIFKLAQGEYIAPEKIENIYNRSQPVLQIFVH
GESLRSSLVGVVVPDTDVLPSFAAKLGVKGSFEELCQNQVVREAILEDLQKIGKESGLKTFEQ
VKAIFLHPEPFSIENGLLTPTLKAKRGELSKYFRTQIDSLYEHIQD

Important features:

Type II transmembrane domain:

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

FIGURE 479

GGAGGCGGAGCCGGCGAGCCGGCCGAGCAGTGAGGGCCCTAGCGGGGCCCGAGCGGGCC CCGGGGCCCCTAAGCCATTCCTGAAGTCATGGGCTGGCCAGGACATTGGTGACCCGCCAATCC GGT**ATG**GACGACTGGAAGCCCAGCCCCTCATCAAGCCCTTTGGGGCTCGGAAGAAGCGGAGC TGGTACCTTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCAGACA GGGGCCGTGCTTTTCCTGCTGGTGACTGTCATTGTCAATATCAAGTTGATCCTGGACACTCGG CGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGATGAGGCCCTAGGC CGCCTGGAGCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGGTCCTGGACGTAGAGGTGTAT TCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCACGGTGCTGGAGGATGAGGCCCGG GAGCAGGGCCGGGCCATCCATGTCCTCCACCAGGCCACGGGCCACGTGATGGCAAAA CGTGTGTTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGCTATTCCTCAACATGGTA GCGCCCGGCCGAGTGCTCATCTGCACTGTCAAGGATGAGGGCTCCTTCCACCTCAAGGACACA GCCAAGGCTCTGCTGAGGAGCCTGGGCAGCCAGGCTGGCCCTGGGCTGGAGGGACACA TGGGCCTTCGTGGGACGAAAAGGAGGTCCTGTCTTCGGGGAGAAACATTCTAAGTCACCTGCC CTCTCTTCCTGGGGGGACCCAGTCCTGCTGAAGACAGATGTGCCATTGAGCTCAGCAGAAGAG GCAGAGTGCCACTGGGCAGACACAGAGCTGAACCGTCGCCGCCGCGCTTCTGCAGCAAAGTT GAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCCACACCCATCGAGTTCAGCCCTGACCCA CTCCCAGACAACAAGGTCCTCAATGTGCCTGTGGCTGTCATTGCAGGGAACCGACCCAATTAC CTGTACAGGATGCTCCCTCTCTGCTTTCAGCCCAGGGGGTGTCTCCTCAGATGATAACAGTT TTCATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACTGTTTGGTCTGAGGGGCATC CAGCATACTCCCATCAGCATCAAGAATGCCCGCGTGTCTCAGCACTACAAGGCCAGCCTCACT GCCACTTTCAACCTGTTTCCGGAGGCCAAGTTTGCTGTGGTTCTGGAAGAGGACCTGGACATT GCTGTGGATTTTTCAGTTTCCTGAGCCAATCCATCCACCTACTGGAGGAGGATGACAGCCTG TACTGCATCTCTGCCTGGAATGACCAGGGGTATGAACACACGGCTGAGGACCCAGCACTACTG TACCGTGTGGAGACCATGCCTGGGCTGGGCTGGTGCTCAGGAGGTCCTTGTACAAGGAGGAG CTTGAGCCCAAGTGGCCTACACCGGAAAAGCTCTGGGATTGGGACATGTGGATGCGGATGCCT GAACAACGCCGGGGCCGAGAGTGCATCATCCCTGACGTTTCCCGATCCTACCACTTTGGCATC GTCGGCCTCAACATGAATGGCTACTTTCACGAGGCCTACTTCAAGAAGCACAAGTTCAACACG GTTCCAGGTGTCCAGCTCAGGAATGTGGACAGTCTGAAGAAGAAGCTTATGAAGTGGAAGTT CACAGGCTGCTCAGTGAGGCTGAGGTTCTGGACCACAGCAAGAACCCTTGTGAAGACTCTTTC CTGCCAGACACAGAGGGCCACACCTACGTGGCCTTTATTCGAATGGAGAAAGATGATGACTTC ACCACCTGGACCCAGCTTGCCAAGTGCCTCCATATCTGGGACCTGGATGTGCGTGGCAACCAT CGGGGCCTGTGGAGATTGTTTCGGAAGAACCACTTCCTGGTGGTGGGGGGTCCCGGCTTCC CCCTACTCAGTGAAGAAGCCACCCTCAGTCACCCCAATTTTCCTGGAGCCACCCCCAAAGGAG GAGGGAGCCCCAGGAGCCCCAGAACAGACATCCTCCTCCAGGACCCTGCGGGGCTGGGT ACTGTGTACCCCCAGGCTGGCTAGCCCTTCCCTCCATCCTGTAGGATTTTGTAGATGCTGGTA GGGGCTGGGGCTACCTTGTTTTTAACATGAGACTTAATTACTAACTCCAAGGGGAGGGTTCCC AGGAGAGTACCTGGGAATCATTACGATCCCTAGCAGCTCATCCTGCCCTTTGAATACCCTCAC TTTCCAGGCCTGGCTCAGAATCTAACCTATTTATTGACTGTCCTGAGGGCCTTGAAAACAGGC CGAACCTGGAGGGCCTGGATTTCTTTTTGGGCTGGAATGCTGCCCTGAGGGTGGGGCTGCCTC TTACTCAGGAAACTGCTGTGCCCAACCCATGGACAGGCCCAGCTGGGGCCCACATGCTGACAC AGACTCACTCAGAGACCCTTAGACACTGGACCAGGCCTCCTCTCAGCCTTCTCTTTTGTCCAGA AAAAAAAAAAAA

FIGURE 480

MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTVIVNIKLILDTRR
AISEANEDPEPEQDYDEALGRLEPPRRRGSGPRRVLDVEVYSSRSKVYVAVDGTTVLEDEARE
QGRGIHVIVLNQATGHVMAKRVFDTYSPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLKDTA
KALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSSAEEA
ECHWADTELNRRRRFCSKVEGYGSVCSCKDPTPIEFSPDPLPDNKVLNVPVAVIAGNRPNYL
YRMLRSLLSAQGVSPQMITVFIDGYYEEPMDVVALFGLRGIQHTPISIKNARVSQHYKASLTA
TFNLFPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTAEDPALLY
RVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMWMRMPEQRRGRECIIPDVSRSYHFGIV
GLNMNGYFHEAYFKKHKFNTVPGVQLRNVDSLKKEAYEVEVHRLLSEAEVLDHSKNPCEDSFL
PDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGLWRLFRKKNHFLVVGVPASP
YSVKKPPSVTPIFLEPPPKEEGAPGAPEQT

Important features:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

FIGURE 481

GAAAGA**TG**TTGTGGCTGCTCTTTTTTCTGGTGACTGCCATTCATGCTGAACTCTGTCAACCA GGTGCAGAAAATGCTTTTAAAGTGAGACTTAGTATCAGAACAGCTCTGGGAGATAAAGCATAT GCCTGGGATACCAATGAAGAATACCTCTTCAAAGCGATGGTAGCTTTCTCCATGAGAAAAGTT CCCAACAGAGAAGCAACAGAAATTTCCCATGTCCTACTTTGCAATGTAACCCAGAGGGTATCA TTCTGGTTTGTGGTTACAGACCCTTCAAAAAATCACACCCTTCCTGCTGTTGAGGTGCAATCA TTTTTAAAAATCCCTTCCACACTTGCACCACCCATGGACCCATCTGTGCCCATCTGGATTATT ATATTTGGTGTGATATTTTGCATCATCATAGTTGCAATTGCACTACTGATTTTATCAGGGATC TGGCAACGTAGAAGAAGAACAAGAACCATCTGAAGTGGATGACGCTGAAGATAAGTGTGAA AACATGATCACAATTGAAAATGGCATCCCCTCTGATCCCCTGGACATGAAGGGGGGCATATTA ${\tt ATGATGCCTTCA} {\tt \underline{TGA}} {\tt CAGAGGATGAGAGGCTCACCCCTCTCTGAAGGGCTGTTGTTCTGCTTC}$ CTCAAGAAATTAAACATTTGTTTCTGTGTGACTGCTGAGCATCCTGAAATACCAAGAGCAGAT CATATATTTTGTTTCACCATTCTTCTTTGTAATAATTTTGAATGTGCTTGAAAGTGAAAAG CAATCAATTATACCCACCAACACCACTGAAATCATAAGCTATTCACGACTCAAAATATTCTAA AATATTTTTCTGACAGTATAGTGTATAAATGTGGTCATGTGGTATTTGTAGTTATTGATTTAA GCATTTTTAGAAATAAGATCAGGCATATGTATATATTTTCACACTTCAAAGACCTAAGGAAAA ATAAATTTTCCAGTGGAGAATACATATAATATGGTGTAGAAATCATTGAAAATGGATCCTTTT TGACGATCACTTATATCACTCTGTATATGACTAAGTAAACAAAAGTGAGAAGTAATTATTGTA AATGGATGGATAAAAATGGAATTACTCATATACAGGGTGGAATTTTATCCTGTTATCACACCA ACAGTTGATTATATTTTCTGAATATCAGCCCCTAATAGGACAATTCTATTTGTTGACCATT TCTACAATTTGTAAAAGTCCAATCTGTGCTAACTTAATAAAGTAATAATCATCTCTTTTTAAA AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 482

MLWLLFFLVTAIHAELCQPGAENAFKVRLSIRTALGDKAYAWDTNEEYLFKAMVAFSMRKVPN REATEISHVLLCNVTQRVSFWFVVTDPSKNHTLPAVEVQSAIRMNKNRINNAFFLNDQTLEFL KIPSTLAPPMDPSVPIWIIIFGVIFCIIIVAIALLILSGIWQRRRKNKEPSEVDDAEDKCENM ITIENGIPSDPLDMKGGILMMPS

FIGURE 483

CGTCTCTGCGTTCGCCATGCGTCCCGGGGCGCCAGGGCCACTCTGGCCTCTGCCCTGGGGGGGC CCTGGCTTGGGCCGTGGGCTTCGTGAGCTCCATGGGCTCGGGGGAACCCCGCCGCGGTGGTGT TTGCTGGCTCCAGCAGGGCCAGGAGGCCACCTGCAGCCTGGTGCTCCAGACTGATGTCACCCG CAAGATCAACCTCCTCGGCTTCTTGGGCCTTGTCCACTGCCTTCCCTGCAAAGATTCGTGCGA CGCGCCCGACTGCTCGGGGCTCCCGGCGCGCTGCAGGTCTGCGGCTCAGACGGCGCCACCTA CCGCGACGAGTGCGAGCTGCGCGCGCGCGCGCGGCCACCCGGACCTGAGCGTCATGTA $\tt CCGGGGCCGCTGCCGCAAGTCCTGTGAGCACGTGGTGTGCCCGCGGCCACAGTCGTGCGTCGT$ GGACCAGACGGCCACCCCCCTGCGTGTGTCTCGAGCGGCGCCCTGCCCTGTGCCCTCCAG CCCCGCCAGGAGCTTTGCGGCAACAACAACGTCACCTACATCTCCTCGTGCCACATGCGCCA GGCCACCTGCTTCCTGGGCCGCTCCATCGGCGTGCGCCACGCGGGCAGCTGCGCAGGCACCCC TGAGGAGCCGCCAGGTGGTGAGTCTGCAGAAGAGGAAGAGAACTTCGTG**TGA**GCCTGCAGGAC TAATTTATATGCCACGGACACTCCTTAGAGCCCGGATTCGGACCACTTGGGGATCCCAGAACC AGACCTGCGTTCCGGACACTGAGCGCCTGATTTAGGGCCCCTTCTCTAGGATGCCCCAGCCCCT ACCCTAAGACCTATTGCCGGGGGGGGGTTCCACACTTCCGCTCCTTTGGGGGATAAACCTATTAA TTATTGCTACTATCAAGAGGGCTGGGCATTCTCTGCTGGTAATTCCTGAAGAGGCATGACTGC TTTTCTCAGCCCCAAGCCTCTAGTCTGGGTGTGTACGGAGGGTCTAGCCTGGGTGTGTACGGA GGGTCTAGCCTGGGTGAGTACGGAGGGTCTAGCCTGGGTGAGTACGGAGGGTCTAGCCTGGGT GAGTACGGAGGGTCTAGCCTGGGTGTGTATGGAGGATCTAGCCTGGGTGAGTATGGAGGGTCT AGCCTGGGTGAGTATGGAGGGTCTAGCCTGGGTGTGTATGGAGGGTCTAGCCTGGGTGAGTAT GGAGGGTCTAGCCTGGGTGTATGGAGGGTCTAGCCTGGGTGAGTATGGAGGGTCTAGCCTG GGTGTGTACGGAGGGTCTAGTCTGAGTGCGTGTGGGGACCTCAGAACACTGTGACCTTAGCCC AGCAAGCCAGGCCCTTCATGAAGGCCAAGAAGGCTGCCACCATTCCCTGCCAGCCCAAGAACT CCAGCTTCCCCACTGCCTCTGTGTGCCCCTTTGCGTCCTGTGAAGGCCATTGAGAAATGCCCA GTGTGCCCCTGGGAAAGGGCACGGCCTGTGCTCCTGACACGGGCTGTGCTTGGCCACAGAAC CACCCAGCGTCTCCCCTGCTGCTGTCCACGTCAGTTCATGAGGCAACGTCGCGTGGTCTCAGA CGTGGAGCAGCCAGCGCAGCTCAGAGCAGGGCACTGTGTCCGGCGGAGCCAAGTCCACTCTG GGGGAGCTCTGGCGGGGACCACGGGCCACTGCTCACCCACTGGCCCCGAGGGGGGTGTAGACG CCAAGACTCACGCATGTGTGACATCCGGAGTCCTGGAGCCGGGTGTCCCAGTGGCACCACTAG GTGCCTGCTCCACAGTGGGGTTCACACCCAGGGCTCCTTGGTCCCCCACAACCTGCCCC GGCCAGGCCTGCAGACCCAGACTCCAGCCAGACCTGCCTCACCCAATGCAGCCGGGGCTG GCGACACCAGCCAGGTGCTGGTCTTGGGCCAGTTCTCCCACGACGGCTCACCCTCCCCTCCAT CTGCGTTGATGCTCAGAATCGCCTACCTGTGCCTGCGTGTAAACCACAGCCTCAGACCAGCTA TGGGGAGAGACACACGGAGGATATCCAGCTTCCCCGGTCTGGGGTGAGGAATGTGGGGAGC TTGGGCATCCTCCAGCCTCCTCCAGCCCCCAGGCAGTGCCTTACCTGTGGTGCCCAGAAA AGTGCCCCTAGGTTGGTGGGTCTACAGGAGCCTCAGCCAGGCAGCCCACCCCACCCTGGGGCC CTGCCTCACCAAGGAAATAAAGACTCAAGCCATAAAAAAA

FIGURE 484

MRPGAPGPLWPLPWGALAWAVGFVSSMGSGNPAPGGVCWLQQGQEATCSLVLQTDVTRAECCA SGNIDTAWSNLTHPGNKINLLGFLGLVHCLPCKDSCDGVECGPGKACRMLGGRPRCECAPDCS GLPARLQVCGSDGATYRDECELRAARCRGHPDLSVMYRGRCRKSCEHVVCPRPQSCVVDQTGS AHCVVCRAAPCPVPSSPGQELCGNNNVTYISSCHMRQATCFLGRSIGVRHAGSCAGTPEEPPG GESAEEEENFV

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation sites.

amino acids 73-77, 215-219

Osteonectin domain proteins.

amino acids 97-130, 169-202

FIGURE 485

GCTCGAGGCCGGCGGCGGGGGAGAGCGACCCGGGCGCCTCGTAGCGGGGCCCCGGATCCCC GAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTTGAG**ATG**ATGGGCTTGGGA ${\tt AACGGGCGTCGCAGCATGAAGTCGCCGCCCTCGTGGTGGCCGCCCTGGTGGCCTGCATCATC}$ GTCTTGGGCTTCAACTACTGGATTGCGAGCTCCCGGAGCGTGGACCTCCAGACACGGATCATG GAGTTCCAGGGAGAGCTGGAGAAGCAGCGGGAGCAGCTTGACAAAATCCAGTCCAGCCACAAC TTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTTGGTGAATAACATC ACCACAGGTGAGAGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCTGCAGAGGAATTAC GGCAGGCTGCAGCAGGATGTCCTCCAGTTTCAGAAGAACCAGACCAACCTGGAGAGGAAGTTC TCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTGTGAGGAGCGA ATAGAAGAGGTCACCAAAAAGGGGAATGAAGCTGTAGCTTCCAGAGACCTGAGTGAAAACAAC CCACACAGAGGTGCCACAAGGGAAGGGAAACGTGCTTGGTAACAGCAAGTCCCAGACACCA GCCCCCAGTTCCGAAGTGGTTTTGGATTCAAAGAGACAAGTTGAGAAAGAGGAAACCAATGAG ATCCAGGTGGTGAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAGCCAGGCCGGGAGCAG GTGGTGGAAGACAGACCTGTAGGTGGAAGAGGCTTCGGGGGAGACCGGAGAACTGGGCCAGACC CCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGATGGAGGGCCCTGAGCGA GACCAGCTTGTCATCCCCGACGGACAGGAGGAGGAGCAGGAAGCTGCCGGGGAAGGGAGAAAC CAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAATGAAGCAGAATCTGAGACA GACAAGCAAGCCCTGGCAGGGAATGACAGAAACATAGATGTTTTAATGTTGAAGATCAG AAAAGAGACACCATAAATTTACTTGATCAGCGTGAAAAGCGGAATCATACACTC**TGA**ATTGAA CTGGAATCACATATTTCACAACAGGGCCGAAGAGATGACTATAAAATGTTCATGAGGGACTGA ATACTGAAAACTGTGAAATGTACTAAATAAAATGTACATCTGA

FIGURE 486

MMGLGNGRRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGAV ELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLYQDEKAVLVNNITTGERLIRVLQDQLKT LQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVASRD LSENNDQRQQLQALSEPQPRLQAAGLPHTEVPQGKGNVLGNSKSQTPAPSSEVVLDSKRQVEK EETNEIQVVNEEPQRDRLPQEPGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQENPEM EGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGNDRNIDVF NVEDQKRDTINLLDQREKRNHTL

Important features:

Signal peptide:

amino acids 1-29

FIGURE 487

AACTCAAACTCCTCTCTGGGAAAACGCGGTGCTTGCTCCTCCCGGAGTGGCCTTGGCAGGG ${\tt TGTTGGAGCCCTCGGTCTGCCCCGTCCGGTCTCTGGGGCCAAGGCTGGGTTTCCCTC} \underline{{\tt ATG}} {\tt TAT}$ GGCAAGAGCTCTACTCGTGCGGTGCTTCTTCTCCTTGGCATACAGCTCACAGCTCTTTGGCCT ATAGCAGCTGTGGAAATTTATACCTCCCGGGTGCTGGAGGCTGTTAATGGGACAGATGCTCGG TTAAAATGCACTTTCTCCAGCTTTGCCCCTGTGGGTGATGCTCTAACAGTGACCTGGAATTTT CGTCCTCTAGACGGGGGACCTGAGCAGTTTGTATTCTACTACCACATAGATCCCTTCCAACCC ATGAGTGGGCGGTTTAAGGACCGGGTGTCTTGGGATGGGAATCCTGAGCGGTACGATGCCTCC ATCCTTCTCTGGAAACTGCAGTTCGACGACAATGGGACATACACCTGCCAGGTGAAGAACCCA CCTGATGTTGATGGGGTGATAGGGGAGATCCGGCTCAGCGTCGTGCACACTGTACGCTTCTCT GAGATCCACTTCCTGGCTCTGGCCATTGGCTCTGCCTGTGCACTGATGATCATAATAGTAATT GTAGTGGTCCTCTTCCAGCATTACCGGAAAAAGCGATGGGCCGAAAGAGCTCATAAAGTGGTG GACACAGAC**TAA**CAATTTTAGATGGAAGCTGAGATGATTTCCAAGAACAAGAACCCTAGTATT TCTTGAAGTTAATGGAAACTTTTCTTTGGCTTTTCCAGTTGTGACCCGTTTTCCAACCAGTTC TGCAGCATATTAGATTCTAGACAAGCAACACCCCTCTGGAGCCAGCACAGTGCTCCTCCATAT CACCAGTCATACACAGCCTCATTATTAAGGTCTTATTTAATTTCAGAGTGTAAATTTTTTCAA GTGCTCATTAGGTTTTATAAACAAGAAGCTACATTTTTGCCCTTAAGACACTACTTACAGTGT TATGACTTGTATACACATATATTGGTATCAAAGGGGATAAAAGCCAATTTGTCTGTTACATTT CCTTTCACGTATTTCTTTTAGCAGCACTTCTGCTACTAAAGTTAATGTGTTTACTCTCTTTCC TTCCCACATTCTCAATTAAAAGGTGAGCTAAGCCTCCTCGGTGTTTCTGATTAACAGTAAATC TTGTTTTACTGAATTTCTTTCAATATTCCAGGTGATAGATTTTTGTCG

FIGURE 488

MYGKSSTRAVLLLLGIQLTALWPIAAVEIYTSRVLEAVNGTDARLKCTFSSFAPVGDALTVTW
NFRPLDGGPEQFVFYYHIDPFQPMSGRFKDRVSWDGNPERYDASILLWKLQFDDNGTYTCQVK
NPPDVDGVIGEIRLSVVHTVRFSEIHFLALAIGSACALMIIIVIVVVLFQHYRKKRWAERAHK
VVEIKSKEEERLNOEKKVSVYLEDTD

FIGURE 489

AAGCAACCAAACTGCAAGCTTTGGGAGTTGTTCGCTGTCCCTGCCCTGCTCTGCTAGGGAGAG AACGCCAGAGGGAGGCGGCTGGCCCGGCGGCAGGCTCTCAGAACCGCTACCGGCG**ATG**CTACT GCTGTGGGTGTCGCTGCCAGCCTTGGCGCTGCCGTACTGGCCCCCGGAGCAGGGGAGCA GAGGCGGAGAGCCCAAAGCGCCCAATGTGGTGCTGGTCGTGAGCGACTCCTTCGATGGAAG GTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCCTTTTATCAACTTTATGAAGACACG TGGGACTTCCTTTCTGAATGCCTACACAAACTCTCCAATTTGTTGCCCATCACGCGCAGCAAT GTGGAGTGGCCTCTTCACTCACTTAACAGAATCTTGGAATAATTTTAAGGGTCTAGATCCAAA TTATACAACATGGATGGATGTCATGGAGAGGCATGGCTACCGAACACAGAAATTTGGGAAACT GGACTATACTTCAGGACATCACTCCATTAGTAATCGTGTGGAAGCGTGGACAAGAGATGTTGC TTTCTTACTCAGACAAGAAGGCAGGCCCATGGTTAATCTTATCCGTAACAGGACTAAAGTCAG AGTGATGGAAAGGGATTGGCAGAATACAGACAAAGCAGTAAACTGGTTAAGAAAGGAAGCAAT TAATTACACTGAACCATTTGTTATTTACTTGGGATTAAATTTACCACACCCTTACCCTTCACC ATCTTCTGGAGAAAATTTTGGATCTTCAACATTTCACACATCTCTTTATTGGCTTGAAAAAGT GTCTCATGATGCCATCAAAATCCCAAAGTGGTCACCTTTGTCAGAAATGCACCCTGTAGATTA TTACTCTTCTTATACAAAAACTGCACTGGAAGATTTACAAAAAAAGAAATTAAGAATATTAG AGCATTTTATTATGCTATGTGTGCTGAGACAGATGCCATGCTTGGTGAAATTATTTTGGCCCT TCATCAATTAGATCTTCTTCAGAAAACTATTGTCATATACTCCTCAGACCATGGAGAGCTGGC CATGGAACATCGACAGTTTTATAAAATGAGCATGTACGAGGCTAGTGCACATGTTCCGCTTTT GATGATGGGACCAGGAATTAAAGCCGGCCTACAAGTATCAAATGTGGTTTCTCTTGTGGATAT TTACCCTACCATGCTTGATATTGCTGGAATTCCTCTGCCTCAGAACCTGAGTGGATACTCTTT GTTGCCGTTATCATCAGAAACATTTAAGAATGAACATAAAGTCAAAAACCTGCATCCACCCTG GATTCTGAGTGAATTCCATGGATGTAATGTGAATGCCTCCACCTACATGCTTCGAACTAACCA CTGGAAATATATAGCCTATTCGGATGGTGCATCAATATTGCCTCAACTCTTTGATCTTTCCTC GGATCCAGATGAATTAACAAATGTTGCTGTAAAATTTCCAGAAATTACTTATTCTTTGGATCA GAAGCTTCATTCCATTATAAACTACCCTAAAGTTTCTGCTTCTGTCCACCAGTATAATAAAGA GCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAATTATTCAAACGTTATAGCAAATCTTAG GTGGCACCAAGACTGGCAGAAGGAACCAAGGAAGTATGAAAATGCAATTGATCAGTGGCTTAA AACCCATATGAATCCAAGAGCAGTT**TGA**ACAAAAAGTTTAAAAATAGTGTTCTAGAGATACAT ATAAATATATTACAAGATCATAATTATGTATTTTAAATGAAACAGTTTTAATAATTACCAAGT TTTGGCCGGGCACAGTGGCTCACACCTGTAATCCCAGGACTTTGGGAGGCTGAGGAAAGCAGA TCACAAGGTCAAGAGATTGAGACCATCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAA TACAAAAATTAGCTGGGCGCGGTGGTGCACACCTATAGTCTCAGCTACTCAGAGGCTGAGGCA GGAGGATCGCTTGAACCCGGGAGGCAGCAGTTGCAGTGAGCTGAGATTGCGCCACTGTACTCC TTTTTCATTATTTTGTAAGAATGTAGTGTATTTTAAGATAAAATGCCAATGATTATAAAATCA CATATTTCAAAAATGGTTATTATTTAGGCCTTTGTACAATTTCTAACAATTTAGTGGAAGTA TCAAAAGGATTGAAGCAAATACTGTAACAGTTATGTTCCTTTAAATAATAGAGAATATAAAAT AAAAAAAAAAAAAA

FIGURE 490

MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINFM
KTRGTSFLNAYTNSPICCPSRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQKF
GKLDYTSGHHSISNRVEAWTRDVAFLLRQEGRPMVNLIRNRTKVRVMERDWQNTDKAVNWLRK
EAINYTEPFVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLSEMHP
VDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQLDLLQKTIVIYSSDHG
ELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPLPQNLSG
YSLLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGASILPQLFD
LSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWKQSIGQNYSNVIA
NLRWHQDWQKEPRKYENAIDQWLKTHMNPRAV

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416, 498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 491

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGA GCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCC**ATG**GC $\tt CTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACTGGT$ TGCCATGCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGT CATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGAC ATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTT $\tt CTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTCATCCTTGG$ AGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTC ACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTC TTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCG CTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGG $\mathsf{TCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGTATGTG\mathbf{TGA}$ AGAAC CAGGGGCCAGAGCTGGGGTGGCTGGGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCA CCATTGGATTGAGCAAAGGCAGAAATGGGGGCTAGTGTAACAGCATGCAGGTTGAATTGCCAA GGATGCTCGCCATGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTCCCCTGCCCTAAGTCCCC AACCCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGGATCCCTTTGCCCTCTGGT AGACCCTCTCTCGGCTGAGGTTGGCTCTTAGCTCATTGCTGGGGATGGGAAGGAGAAGCAGT GGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCCTCCAAAGAAACTGATTGGCCC TGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCAGACTAATTTGTGCATGAACTG AAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATGCAGGATGGGAGGACAGGAA GGCAGCCTGGGACATTTAAAAAAAATA

FIGURE 492

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQ CDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFI LGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQR NRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 493

GCACTGCTGCTGTCCCATCAGCTGCTCTGAAGCTCCATGGTGCCCAGAATCTTCGCTCCTGCT
TATGTGTCAGTCTGTCTCCTCCTCTTGTGTCCAAGGGAAGTCATCGCTCCCGCTGGCTCAGAA
CCATGGCTGTGCCAGCCGGCACCCAGGTGTGGAGACAAGATCTACAACCCCTTGGAGCAGTGC
TGTTACAATGACGCCATCGTGTCCCTGAGCGAGACCCGCCAATGTGGTCCCCCCCTGCACCTTC
TGGCCCTGCTTTGAGCTCTGCTGTCTTGATTCCTTTGGCCTCACAAACGATTTTGTTGTGAAG
CTGAAGGTTCAGGGTGTGAATTCCCAGTGCCACTCATCTCCCATCTCCAGTAAATGTGAAAGC
AGAAGACGTTTTCCCTGAAGAAAAAAAAATCAACTTTCACTAAGGCATCTCAGAAA
CATAGGCTAAGGTAATATGTGTACCAGTAGAAAGCCTGAGGAAATTACAAAATGATGCAGCT
CCAAGCCATTGTATGGCCCATGTGGGAGACTGATGGAGAATGACAGTAGATTATCA
GGAAATAAATAAAGTGGTTTTTCCAATGTACACACCTGTAAAA

FIGURE 494

 $\label{thm:predict} {\tt MVPRIFAPAYVSVCLLLLCPREVIAPAGSEPWLCQPAPRCGDKIYNPLEQCCYNDAIVSLSET} \\ {\tt RQCGPPCTFWPCFELCCLDSFGLTNDFVVKLKVQGVNSQCHSSPISSKCESRRRFP}$

Important features:

Signal peptide:

amino acids 1-25

FIGURE 495

CTCCACTGCAACCACCCAGAGCCATGCTTCCCCGAGGCTGCATCGTAGCTGTCTTTGCCATTT

TCTGCATCTCCAGGCTCCTCTGCTCACACGGAGCCCCAGTGGCCCCCATGACTCCTTACCTGA

TGCTGTGCCAGCCACACAAGAGATGTGGGGACCAGAGTTCTACGACCCCCTGCAGCACTGTTGCT

ATGATGATGCCGTCGTGCCCTTGGCCAGGACCCAGACGTGTGGAAACTGCACCTTCAGAGTCT

GCTTTGAGCAGTGCTGCCCCTGGACCTTCATGGTGAAGCTGATAAACCAGAACTGCGACTCAG

CCCGGACCTCGGATGACAGGCTTTGTCGCAGTGTCAGCTAATTGGAACATCAGGGGAACGATGA

CTCCTGGATTCTCCTTCCTGGGTGGGCCTGGAGAAAGAGGCTGGTGTTACCTGAGATCTGGGA

TGCTGAGTGGCTGTTTGGGGGCCAGAGAAACACACACTCAACTGCCCACTTCATTCTGTGACC

TGTCTGAGGCCCACCCTGCAGCTGCCCTGAGGAGGCCCACAGGTCCCCTTCTAGAATTCTGGA

CAGCATGAGATGCGTGTGCTGATGGGGGCCCAGGGACCCTCCAGCTCCCTATG

GCCAACATCAACCCGGCACCACCCCAAGGCTGGCTGGGGAACCCTTCACCCTTCTGTGAGATT

TTCCATCATCTCAAGTTCTCTTCTATCCAGGAGCAAAGCACAGGATCATAATAAATTATGTA

CTTTATAAATGAAAA

FIGURE 496

 ${\tt MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAVVPL} \\ {\tt ARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS}$

Important features:

Signal peptide:

amino acids 1-24

FIGURE 497

TGAAGGACTTTTCCAGGACCCAAGGCCACACACTGGAAGTCTTGCAGCTGAAGGGAGGCACTC ACAGGTGTGGCTGGTACCCGGCTTGGCCCCAGTCCTCAGTCGCCAGAGACCCCAGCCCCTCA GAACCAGACCAGCAGGGTAGTGCAGGCTCCCAGGGAGGAAGAGAGATGAGCAGGAGGCCAG CGAGGAGAAGGCCGGTGAGGAAGAGAAAGCCTGGCTGATGGCCAGCAGCAGCAGCTTGCCAA GGAGACTTCAAACTTCGGATTCAGCCTGCTGCGAAAGATCTCCATGAGGCACGATGGCAACAT GGTCTTCTCCCATTTGGCATGTCCTTGGCCATGACAGGCTTGATGCTGGGGGCCCACAGGGCC GACTGAAACCCAGATCAAGAGAGGGCTCCACTTGCAGGCCCTGAAGCCCACCAAGCCCGGGCT CCTGCCTTCCCTCTTTAAGGGACTCAGAGAGCCCTCTCCCGCAACCTGGAACTGGGCCTCTC ACAGGGGAGTTTTGCCTTCATCCACAAGGATTTTGATGTCAAAGAGACTTTCTTCAATTTATC CAAGAGGTATTTTGATACAGAGTGCGTGCCTATGAATTTTCGCAATGCCTCACAGGCCAAAAG GCTCATGAATCATTACATTAACAAAGAGACTCGGGGGAAAATTCCCAAACTGTTTGATGAGAT TAATCCTGAAACCAAATTAATTCTTGTGGATTACATCTTGTTCAAAGGGAAATGGTTGACCCC ATTTGACCCTGTCTTCACCGAAGTCGACACTTTCCACCTGGACAAGTACAAGACCATTAAGGT GCCCATGATGTACGGTGCAGGCAAGTTTGCCTCCACCTTTGACAAGAATTTTCGTTGTCATGT CCTCAAACTGCCCTACCAAGGAAATGCCACCATGCTGGTGGTCCTCATGGAGAAAATGGGTGA CCACCTCGCCCTTGAAGACTACCTGACCACAGACTTGGTGGAGACATGGCTCAGAAACATGAA AACCAGAAACATGGAAGTTTCTTTCCGAAGTTCAAGCTAGATCAGAAGTATGAGATGCATGA GCTGCTTAGGCAGATGGGAATCAGAAGAATCTTCTCACCCTTTGCTGACCTTAGTGAACTCTC AGCTACTGGAAGAATCTCCAAGTATCCAGGGTTTTACGAAGAACAGTGATTGAAGTTGATGA AAGGGGCACTGAGGCAGTGGCAGGAATCTTGTCAGAAATTACTGCTTATTCCATGCCTCCTGT CATCAAAGTGGACCGGCCATTTCATTTCATGATCTATGAAGAAACCTCTGGAATGCTTCTGTT TCTGAGGGGGATACATTCAAAGACCCCCAGCAGATGCCTGAAACGGTGGACAGTGCTGAACCT TATATATATTTTTCCTACACATACATACCTATGATAAAGTTTAATTTATAAATTAGGCACAG TAAGAGATTAACAATAACAACATTAAGTAAAATGAGTTACTTGAACGCAAGCACTGCAAT ACCATAACAGTCAAACTGATTATAGAGAAGGCTACTAAGTGACTCATGGGCGAGGAGCATAGA AAGATTCCATCCCACTACTCAGAATGGCATGCTGCTTAAGACTTTTAGATTGTTTATTTCTGG AATTTTTCATTTAATGTTTTTGGACCATGGTTGACCATGGTTAACTGAGACTGCAGAAAGCAA AAAAAAAA

FIGURE 498

MKVVPSLLLSVLLAQVWLVPGLAPSPQSPETPAPQNQTSRVVQAPREEEEDEQEASEEKAGEE
EKAWLMASRQQLAKETSNFGFSLLRKISMRHDGNMVFSPFGMSLAMTGLMLGATGPTETQIKR
GLHLQALKPTKPGLLPSLFKGLRETLSRNLELGLSQGSFAFIHKDFDVKETFFNLSKRYFDTE
CVPMNFRNASQAKRLMNHYINKETRGKIPKLFDEINPETKLILVDYILFKGKWLTPFDPVFTE
VDTFHLDKYKTIKVPMMYGAGKFASTFDKNFRCHVLKLPYQGNATMLVVLMEKMGDHLALEDY
LTTDLVETWLRNMKTRNMEVFFPKFKLDQKYEMHELLRQMGIRRIFSPFADLSELSATGRNLQ
VSRVLRRTVIEVDERGTEAVAGILSEITAYSMPPVIKVDRPFHFMIYEETSGMLLFLGRVVNP

FIGURE 499

FIGURE 500

MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLLAT LQEAATTQENVAWRKNWMVGGEGGASGRSP

Important features:

Signal peptide:

amino acids 1-18

FIGURE 501

CAGGAGAGAGGCACCGCCCCCCCCCCCCCCCAAAGCTAACCCTCGGGCTTGAGGGGAAGAG GCTGACTGTACGTTCCTTCTACTCTGGCACCACTCTCCAGGCTGCC**ATG**GGGCCCAGCACCCC TCTCCTCATCTTGTTCCTTTTGTCATGGTCGGGACCCCTCCAAGGACAGCAGCACCACCTTGT GGAGTACATGGAACGCCGACTAGCTGCTTTAGAGGAACGGCTGGCCCAGTGCCAGGACCAGAG TAGTCGGCATGCTGAGCTGCGGGACTTCAAGAACAAGATGCTGCCACTGCTGGAGGTGGC AGAGAAGGAGCGGAGGCACTCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGATCGTCT GGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTGTAGAGTTTGATGA GAAGGTGACTGGAGGCCCTGGGACCAAAGGCAAGGGAAGAAGGAATGAGAAGTACGATATGGT GACAGACTGTGGCTACACAATCTCTCAAGTGAGATCAATGAAGATTCTGAAGCGATTTGGTGG CCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACGTGTTAGATGG GACACAGAATGACACAGCCTTTGTCTTCCCAAGGCTGCGTGACTTCACCCTTGCCATGGCTGC CCGGAAAGCTTCCCGAGTCCGGGTGCCCTTCCCCTGGGTAGGCACAGGGCAGCTGGTATATGG TGGCTTTCTTTATTTTGCTCGGAGGCCTCCTGGAAGACCTGGTGGAGGTGGTGAGATGGAGAA CACTTTGCAGCTAATCAAATTCCACCTGGCAAACCGAACAGTGGTGGACAGCTCAGTATTCCC AGCAGAGGGGCTGATCCCCCCCTACGGCTTGACAGCAGACACCTACATCGACCTGGTAGCTGA TGAGGAAGGTCTTTGGGCTGTCTATGCCACCCGGGAGGATGACAGGCACTTGTGTCTGGCCAA GTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGGACACCCATGTCCCAGAGAGAATGC TGAGGCTGCCTTTGTCATCTGTGGGACCCTCTATGTCGTCTATAACACCCGTCCTGCCAGTCG GGCCCGCATCCAGTGCTCCTTTGATGCCAGCGGCACCCTGACCCCTGAACGGGCAGCACTCCC TTATTTTCCCCGCAGATATGGTGCCCATGCCAGCCTCCGCTATAACCCCCGAGAACGCCAGCT GGTT**TGA**GGAGCTAGCCTTGTTTTTTGCATCTTTCTCACTCCCATACATTTATATTATATCCC CACTAAATTTCTTGTTCCTCATTCTTCAAATGTGGGCCAGTTGTGGCCTCAAATCCTCTATATT TTTAGCCAATGGCAATCAAATTCTTTCAGCTCCTTTGTTTCATACGGAACTCCAGATCCTGAG TAATCCTTTTAGAGCCCGAAGAGTCAAAACCCTCAATGTTCCCTCCTGCTCCTGCCCCATG TCAACAAATTTCAGGCTAAGGATGCCCCAGACCCAGGGCTCTAACCTTGTATGCGGGCAGGCC CAGGGAGCAGCAGTGTTCTTCCCCTCAGAGTGACTTGGGGAGGAGAAATAGGAGGAGA CGTCCAGCTCTGTCCTCTCTCTCACTCCTCCCTTCAGTGTCCTGAGGAACAGGACTTTCTC

FIGURE 502

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKML PLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGRRN EKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRLRDF TLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGEMENTLQLIKFHLANRTVV DSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQQWDTP CPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAHASLRYN PRERQLYAWDDGYQIVYKLEMRKKEEEV

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 503

TGCGGCGCAGTGTAGACCTGGGAGGATGGGCCCTGCTGCTGCTGCTTTTCTGGCTTTGGT
CTCGGTGCCCAGGCCCAGGCCGTGTGGTTGGGAAGACTGGACCCTGAGCAGCTTCTTGGGCC
CTGGTACGTGCTTGCGGTGGCCTCCCGGGAAAAGGGCTTTTGCCATGGAGAAGGACATGAAGAA
CGTCGTGGGGGTGGTGACCCTCACTCCAGAAAACAACCTGCGGACGCTGTCCTCTCAGCA
CGGGCTGGGAGGGTGTGACCAGAGTGTCATGGACCTGATAAAGCGAAACTCCGGATGGGTGT
TGAGAATCCCTCAATAGGCGTGCTGGAGCTCTGGGTGCTGCCACCAACTTCAGAGACTATGC
CATCATCTTCACTCAGCTGGAGTTCGGGGACCCTTCAACACCGTGGAGCTGTACAGTCT
GACGGAGACAGCCAGCCAGGAGGCCATGGGGCTCTTCACCAAGTGGAGCCTGGGCTT
CCTGTCACAGTAGCCCAGCCAGCAGAAGGACCTCACCTGTGCTCACAAGATCCTTCTGTG
AGTGCTGCGTCCCCAGTAGGGATGGCGCCCACAGGGTCCTGTGACCTCGGCCAGTGTCCACCC
ACCTCGCTCAGCGGCCCCGGGGCCCAGCACCAGCTCAGAATAAAGCGATTCCACAGCA

FIGURE 504

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVTL TPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQLEF GDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Important features:

Signal peptide:

amino acids 1-20

FIGURE 505

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCACA ${\tt GCAGCCAAGGAACCTGGGGCCCGCTCCTCCCCCCTCCAGGCC} \textbf{ATG} {\tt AGGATTCTGCAGTTAATC}$ CTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGAGACCAGGATCATCAAGGGGTTCGAGTGC AAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGGGGCG ACGCTCATCGCCCCCAGATGGCTCCTGACAGCCACCCACTGCCTCAAGCCCCGCTACATAGTT CACCTGGGGCAGCACCTCCAGAAGGAGGAGGGCTGTGAGCCAGACCCGGACAGCCACTGAG TCCTTCCCCCACCCGGCTTCAACAACAGCCTCCCCAACAAGACCACCGCAATGACATCATG CTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCCTCTCA CGCTGTGTCACTGCTGGCACCAGCTGCCTCATTTCCGGCTGGGGCAGCACGTCCAGCCCCCAG TTACGCCTGCCTCACACCTTGCGATGCGCCAACATCACCATCATTGAGCACCAGAAGTGTGAG AACGCCTACCCCGGCAACATCACAGACACCATGGTGTGTGCCAGCGTGCAGGAAGGGGGCAAG GACTCCTGCCAGGGTGACTCCGGGGGCCCTCTGGTCTGTAACCAGTCTCTTCAAGGCATTATC TCCTGGGGCCAGGATCCGTGTGCGATCACCCGAAAGCCTGGTGTCTACACGAAAGTCTGCAAA TCACCCTCCATTTCCACTTGGTGTTTGGTTCCTGTTCACTCTGTTAATAAGAAACCCTAAGCC AAGACCCTCTACGAACATTCTTTGGGCCTCCTGGACTACAGGAGATGCTGTCACTTAATAATC AACCTGGGGTTCGAAATCAGTGAGACCTGGATTCAAATTCTGCCTTGAAATATTGTGACTCTG GGAATGACAACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCAAAGACAGCTCCTGGCCAT AAAAAA

FIGURE 506

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTAAHC LKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITWAV RPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPGNITDTMVCA SVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site.

amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 507

FIGURE 508

 $\label{thmovkhwpseqdpekawgarvveppekddqlvvlf} $$ PVQKPKLLTTEEKPRGQGRGPILPGTKAWMETEDTLGRVLSPEPDHDSLYHPPPEEDQGEERP $$ RLWVMPNHQVLLGPEEDQDHIYHPQ $$$

FIGURE 509

GCGGAGCCGGCGCGCCGCCAGCTGGGAGCCC ${ t ACGAGGCTGCCGCATCCTGCCCTCGGAACA}$ CTGCTCCTGGGGACGCTGCAGGTGCTAGCGCTGCTGGGGGGCCCCATGAAAGCGCAGCCATG GCGGCATCTGCAAACATAGAGAATTCTGGGCTTCCACACAACTCCAGTGCTAACTCAACAGAG ACTCTCCAACATGTGCCTTCTGACCATACAAATGAAACTTCCAACAGTACTGTGAAACCACCA ACTTCAGTTGCCTCAGACTCCAGTAATACAACGGTCACCACCATGAAACCTACAGCGGCATCT AATACAACACCAGGGATGGTCTCAACAAATATGACTTCTACCACCTTAAAGTCTACACCC AAAACAACAAGTGTTTCACAGAACACATCTCAGATATCAACATCCACAATGACCGTAACCCAC AATAGTTCAGTGACATCTGCTGCTTCATCAGTAACAATCACAACAACTATGCATTCTGAAGCA AAGAAAGGATCAAAATTTGATACTGGGAGCTTTGTTGGTGGTATTGTATTAACGCTGGGAGTT ${\tt TTATCTATTCTTTACATTGGATGCAAAATGTATTACTCAAGAAGAGGCATTCGGTATCGAACC}$ ATAGATGAACATGATGCCATCATT**TAA**GGAAATCCATGGACCAAGGATGGAATACAGATTGAT GCTGCCCTATCAATTAATTTTGGTTTATTAATAGTTTAAAAACAATATTCTCTTTTTTGAAAATA GTATAAACAGGCCATGCATATAATGTACAGTGTATTACGTAAATATGTAAAGATTCTTCAAGG TAACAAGGGTTTGGGATTTTGAAATAAACATCTGGATCTTATAGACCGTTCATACAATGGTTTT TCACATATGACCAGTAATTGAAAGACGTCATCACTGAAAGACAGAATGCCATCTGGGCATACA AATAAGAAGTTTGTCACAGCACTCAGGATTTTGGGTATCTTTTGTAGCTCACATAAAGAACTT CAGTGCTTTTCAGAGCTGGATATATCTTAATTACTAATGCCACACAGAAATTATACAATCAAA CTAGATCTGAAGCATAATTTAAGAAAAACATCAACATTTTTTTGTGCTTTAAACTGTAGTAGTT **GGTCTAGAAACAAAATACTCC**

FIGURE 510

MGLGARGAWAALLLGTLQVLALLGAAHESAAMAASANIENSGLPHNSSANSTETLQHVPSDHT NETSNSTVKPPTSVASDSSNTTVTTMKPTAASNTTTPGMVSTNMTSTTLKSTPKTTSVSQNTS QISTSTMTVTHNSSVTSAASSVTITTTMHSEAKKGSKFDTGSFVGGIVLTLGVLSILYIGCKM YYSRRGIRYRTIDEHDAII

FIGURE 511

 ${\tt GACTTTGCTTGAATGTTTACATTTTCTGCTCGCTGTCCTACATATCACAATATAGTGTTCACGTTTTGTTAAAAC}$ ${\tt TGTGAAATTCGTCCCTGGTTTACCCCACAGTCAACTTACAGAGAAGCCACCACTGTTGATTGCAATGACCTCCGC}$ TTAACAAGGATTCCCAGTAACCTCTCTAGTGACACACAAGTGCTTCTCTTACAGAGCAATAACATCGCGAAGACT GTGGATGAGCTGCAGCAGCTTTTCAACTTGACTGAACTAGATTTCTCCCCAAAACAACTTTACTAACATTAAGGAG GTCGGGCTGCAAACCTAACCCAGCTCACAACGCTGCATTTGGAGGAAAATCAGATTACCGAGATGACTGATTAC TGTCTACAAGACCTCAGCAACCTTCAAGAACTCTACATCAACCACAACCAAATTAGCACTATTTCTGCTCATGCT TTTGCAGGCTTAAAAAATCTATTAAGGCTCCACCTGAACTCCAACAAATTGAAAGTTATTGATAGTCGCTGGTTT GATTCTACACCCAACCTGGAAATTCTCATGATCGGAGAAAACCCTGTGATTGGAATTCTGGATATGAACTTCAAA CCCCTCGCAAATTTGAGAAGCTTAGTTTTGGCAGGAATGTATCTCACTGATATTCCTGGAAATGCTTTGGTGGGT $\tt CTGGATAGCCTTGAGAGCCTGTCTTTTTATGATAACAAACTGGTTAAAGTCCCTCAACTTGCCCTGCAAAAAGTT$ CCAAATTTGAAATTCTTAGACCTCAACAAAAACCCCATTCACAAAAATCCAAGAAGGGGGACTTCAAAAATATGCTT $\tt CGGTTAAAAGAACTGGGAATCAACAATATGGGCGAGCTCGTTTCTGTCGACCGCTATGCCCTGGATAACTTGCCT$ GAACTCACAAAGCTGGAAGCCACCAATAACCCTAAACTCTCTTACATCCACCGCTTGGCTTTCCGAAGTGTCCCT $\tt CTGCGTGAGATCCATAGCAATCCCCTCAGGTGTGACTGTGATCCACTGGATTAACTCCAACAAAACC$ AACATCCGCTTCATGGAGCCCCTGTCCATGTTCTGTGCCATGCCGCCCGAATATAAAGGGCACCAGGTGAAGGAA GTTTTAATCCAGGATTCGAGTGAACAGTGCCTCCCAATGATATCTCACGACAGCTTCCCAAATCGTTTAAACGTG GATATCGGCACGACGGTTTTCCTAGACTGTCGAGCCATGGCTGAGCCAGAACCTGAAATTTACTGGGTCACTCCC ATTGGAAATAAGATAACTGTGGAAACCCTTTCAGATAAATACAAGCTAAGTAGCGAAGGTACCTTGGAAATATCT AACATACAAATTGAAGACTCAGGAAGATACACATGTGTTGCCCAGAATGTCCAAGGGGCAGACACTCGGGTGGCA ${ t TCCATCTTAGTGTCCTGGAAAGTTAATTCCAATGTCATGACGTCAAACTTAAAATGGTCGTCTGCCACCATGAAG$ ATTGATAACCCTCACATAACATATACTGCCAGGGTCCCAGTCGATGTCCATGAATACAACCTAACGCATCTGCAG CCTTCCACAGATTATGAAGTGTCTCACAGTGTCCAAATATTCATCAGCAGACTCAAAAGTCATGCGTAAATGTC ACAACCAAAAATGCCGCCTTCGCAGTGGACATCTCTGATCAAGAAACCAGTACAGCCCTTGCTGCAGTAATGGGG ${\tt TCTATGTTTGCCGTCATTAGCCTTGCGTCCATTGCTGTGTACTTTGCCAAAAGATTTAAGAGAAAAAACTACCAC}$ CACTCATTAAAAAAGTATATGCAAAAAACCTCTTCAATCCCACTAAATGAGCTGTACCCACCACTCATTAACCTC TGGGAAGGTGACAGCGAGAAAGACAAAGATGGTTCTGCAGACACCCAAGCCAACCCAGGTCGACACATCCAGAAGC $\texttt{TATTACATGTGG} \underline{\textbf{TAA}} \texttt{CTCAGAGGATATTTTGCTTCTGGTAGTAAGGAGCACAAAGACGTTTTTGCTTTATTCTGC}$ AAAAGTGAACAAGTTGAAGACTTTTGTATTTTTGACTTTGCTAGTTTGTGGCAGAGTGGAGAGGACGGGTGGATA $\tt TTTCAAATTTTTTTAGTATAGCGTATCGCAAGGGTTTGACACGGCTGCCAGCGACTCTAGGCTTCCAGTCTGTGT$

FIGURE 512

MARMSFVIAACQLVLGLLMTSLTESSIQNSECPQLCVCEIRPWFTPQSTYREATTVDCNDLRL
TRIPSNLSSDTQVLLLQSNNIAKTVDELQQLFNLTELDFSQNNFTNIKEVGLANLTQLTTLHL
EENQITEMTDYCLQDLSNLQELYINHNQISTISAHAFAGLKNLLRLHLNSNKLKVIDSRWFDS
TPNLEILMIGENPVIGILDMNFKPLANLRSLVLAGMYLTDIPGNALVGLDSLESLSFYDNKLV
KVPQLALQKVPNLKFLDLNKNPIHKIQEGDFKNMLRLKELGINNMGELVSVDRYALDNLPELT
KLEATNNPKLSYIHRLAFRSVPALESLMLNNNALNAIYQKTVESLPNLREISIHSNPLRCDCV
IHWINSNKTNIRFMEPLSMFCAMPPEYKGHQVKEVLIQDSSEQCLPMISHDSFPNRLNVDIGT
TVFLDCRAMAEPEPEIYWVTPIGNKITVETLSDKYKLSSEGTLEISNIQIEDSGRYTCVAQNV
QGADTRVATIKVNGTLLDGTQVLKIYVKQTESHSILVSWKVNSNVMTSNLKWSSATMKIDNPH
ITYTARVPVDVHEYNLTHLQPSTDYEVCLTVSNIHQQTQKSCVNVTTKNAAFAVDISDQETST
ALAAVMGSMFAVISLASIAVYFAKRFKRKNYHHSLKKYMQKTSSIPLNELYPPLINLWEGDSE
KDKDGSADTKPTQVDTSRSYYMW

Important features:

Signal peptide:

Amino acids 1-25

Transmembrane domain:

Amino acids 508-530

N-glycosylation sites:

Amino acids 69-73;96-100;106-110;117-121;385-389;517-521; 582-586;611-615

Tyrosine kinase phosphorylation site:

Amino acids 573-582

N-myristoylation sites:

Amino acids 16-22;224-230;464-470;637-643;698-704

FIGURE 513

GGGAGAGAGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTCC CAGCAAT<u>ATG</u>CATCTTGCACGTCTGGTCGGCTCCTGCTCCTTCTGCTACTGGGGGCCCT GTCTGGATGGCCGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGGGCT GAGCAATGCAGAGAGAGAGGTGGGCAAGGCCCTGGATGGCATCAACAGTGGAATCACGCATGC CGGAAGGGAAGTGGAGAAGGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGCAAGGA GTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGATCAACCA TGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTTGGCCATGGGGTCAACAACGCTGCTGG ACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGGTCCACCAGGCTGG GAAGGAAGCAGAGAAACTTGGCCAAGGGGTCAACCATGCTGACCAGGCTGGAAAGGAAGT GGAGAAGCTTGGCCAAGGTGCCCACCATGCTGCCGGCCAGGCCGGGAAGGAGCTGCAGAATGC TCATAATGGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGCAACCATCAAAG CGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGGGGCCTCAGTCAA $\texttt{CACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCATGCCC} \underline{\textbf{TAA}} \texttt{ACTGG}$ CATCCGGCCTTGCTGGGAGAATAATGTCGCCGTTGTCACATCAGCTGACATGACCTGGAGGGG TTGGGGGTGGGGACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTGGGATTTGTGAATAAA CTTGATACACCA

FIGURE 514

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAGR EVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAGQA GKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQNAHN GVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

FIGURE 515

TTCCCTCCGACGCCCACGCTGCCCAGACATTCCGGCTGCCGGGTCTGGAGAGCTCCCCGAA $\verb|CCCTCCGCGGAGAGGCGAGGCGCCCCGGGGCGCGCTTGGTCTCGGAG| \\$ AAGCGGGGACGAGGCCGAGGTTGAGCGACTGAGGGCGACTGACGCGAGTTGGGG CCGCGACTACCGGCAGCTGACAGCGCGATGAGCCCCAGAGACGCCCTAGCCCGGTGTG CGCGCCAGGCGGAGCGCCAGGTGGGGCTGGGCTGTTAGTGGTCCGCCCCACGCGGGTCGCCG GCCGGCCCAGGATGGGCGCTGCCAACCCGGGCCCGCCGCCGCCGCTGCTACCCCTGCGCCCGC TGCGAGCCCGGCGTCCGGCCCCTGCGCTCATGGACGGCGGCTCCCGGCTGGCGGCGGC GACGTGGTAGGGG<mark>ATG</mark>CCCAGCTCCACTGCGATGGCAGTTGGCGCGCTCTCCAGTTCCCTCCT GGTCACCTGCTGCTGATGGTGGCTCTGTGCAGTCCGAGCATCCCGCTGGAGAAGCTGGCCCA GGCACCAGAGCAGCCGGGCCAGGAGAAGCGTGAGCACGCCACTCGGGACGGCCCGGGGCGGGT GAACGAGCTCGGGCGCCGGCGAGGGACGAGGGCGGCGGCAGCGGCCGGGACTGGAAGAGCAAGAG CGGCCGTGGGCCTGAGCCGTGAGCCAGGCTGAAGCAGGCCTGGGTCTCCCAGGG CGGGGGCCCAAGGCCGGGGATCTGCAGGTCCGGCCCGCGGGGACACCCCGCAGGCGGAAGC CCTGGCCGCAGCCCCAGGACGCGATTGGCCCGGAACTCGCGCCCACGCCCGAGCCACCCGA GGAGTACGTGTACCCGGACTACCGTGGCAAGGGCTGCGTGGACGAGAGCGGCTTCGTGTACGC GATCGGGGAGAAGTTCGCCCGGGCCCTCGGCCTGCCCGTGCCTGTGCACCGAGGAGGGGCC GCTGTGCGCGCAGCCCGAGTGCCCGAGGCTGCACCCGCGCTGCATCCACGTCGACACGAGCCA GTGCTGCCCGCAGTGCAAGGAGGAAGAACTACTGCGAGTTCCGGGGCAAGACCTATCAGAC TTTGGAGGAGTTCGTGGTGTCTCCATGCGAGAGGTGTCGCTGTGAAGCCAACGGTGAGGTGCT ATGCACAGTGTCAGCGTGTCCCCAGACGGAGTGTGTGGACCCTGTGTACGAGCCTGATCAGTG CTGTCCCATCTGCAAAATGGTCCAAACTGCTTTGCAGAAACCGCGGTGATCCCTGCTGGCAG AGAAGTGAAGACTGACGAGTGCACCATATGCCACTGTACTTATGAGGAAGGCACATGGAGAAT CGAGCGGCAGGCCATGTGCACGAGACATGAATGCAGGCAAATG**TAG**ACGCTTCCCAGAACACA AACTCTGACTTTTTCTAGAACATTTTACTGATGTGAACATTCTAGATGACTCTGGGAACTATC AGTCAAAGAAGACTTTTGATGAGGAATAATGGAAAATTGTTGGTACTTTTCCTTTGATA ACAGTTACTACAACAGAAGGAAATGGATATATTTCAAAACATCAACAAGAACTTTGGGCATAA CAAATGTATTTCTATAATCCCTCCATTAGAGAGCTTATATAAGTGTTTTCTATAGATGCAGAT

FIGURE 516

MPSSTAMAVGALSSSLLVTCCLMVALCSPSIPLEKLAQAPEQPGQEKREHATRDGPGRVNELG RPARDEGGSGRDWKSKSGRGLAGREPWSKLKQAWVSQGGGAKAGDLQVRPRGDTPQAEALAAA AQDAIGPELAPTPEPPEEYVYPDYRGKGCVDESGFVYAIGEKFAPGPSACPCLCTEEGPLCAQ PECPRLHPRCIHVDTSQCCPQCKERKNYCEFRGKTYQTLEEFVVSPCERCRCEANGEVLCTVS ACPQTECVDPVYEPDQCCPICKNGPNCFAETAVIPAGREVKTDECTICHCTYEEGTWRIERQA MCTRHECRQM

Important features:

Signal peptide:

amino acids 1-27

Transmembrane domain:

amino acids 11-30

Glycosaminoglycan attachment site.

amino acids 80-83

N-myristoylation sites.

amino acids 10-15, 102-107, 103-108

Cell attachment sequence.

amino acids 114-117

EGF-like domain cysteine pattern signature.

amino acids 176-187

FIGURE 517

GGACAACCGTTGCTGGGTGTCCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCCT TTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGACGTTCCGGTCGCATGGCAGAGTGCTAC ${\tt GGACGACGCCT} {\bf ATG} {\tt AAGCCCTTAGTCCTTCTAGTTGCGCTTTTTGCTATGGCCTTCGTCTGTGC}$ CGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATACAAG TTTTAGAGAACCTAGTACGAAGTGTTCCCTCTGGGGAGCCAGGTCGTGAGAAAAAATCTAACT CTCCAAAACATGTTTATTCTATAGCATCAAAGGGATCAAAATTTAAGGAGCTAGTTACACATG GAGACGCTTCAACTGAGAATGATGTTTTAACCAATCCTATCAGTGAAGAAACTACAACTTTCC CTACAGGAGGCTTCACACCGGAAATAGGAAAGAAAAAACACACGGAAAGTACCCCATTCTGGT CGATCAAACCAAACAATGTTTCCATTGTTTTGCATGCAGAGGAACCTTATATTGAAAATGAAG AGCCAGAGCCAGAGCCGGAGCCAGCTGCAAAACAAACTGAGGCACCAAGAATGTTGCCAGTTG TTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCACCACTTTAGATA AGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCTCAGCTCTCAGGTGAAACTG CGATAGAAAACCCGAAGAGTTTGGAAAGCACCCAGAGAGTTGGAATAATGATGACATTTTGA AAAAAATTTTAGATATTAATTCACAAGTGCAACAGGCACTTCTTAGTGACACCAGCAACCCAG CATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAAACGAAGCCTTGCTCTAGCAGCAG CAGCAGAACATAAATTAAAAACAATGTATAAGTCCCAGTTATTGCCAGTAGGACGAACAAGTA ATAAAATTGATGACATCGAAACTGTTATTAACATGCTGTGTAATTCTAGATCTAAACTCTATG AATATTTAGATATTAAATGTGTTCCACCAGAGATGAGAGAAAAAGCTGCTACAGTATTCAATA CATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTAAAAGTTTAT**TAA**ACAATAA TATAAAAATTTTAAACCTACTTGATATTCCATAACAAAGCTGATTTAAGCAAACTGCATTTTT TCACAGGAGAAATAATCATATTCGTAATTTCAAAAGTTGTATAAAAATATTTTCTATTGTAGT TCAAATGTGCCAACATCTTTATGTGTCATGTGTTATGAACAATTTTCATATGCACTAAAAACC TAATTTAAAATAAAATTTTTGGTTCAGGAAAAA

FIGURE 518

MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSVPSGEPGREKKSNSPKH
VYSIASKGSKFKELVTHGDASTENDVLTNPISEETTTFPTGGFTPEIGKKKHTESTPFWSIKP
NNVSIVLHAEEPYIENEEPEPEPAAKQTEAPRMLPVVTESSTSPYVTSYKSPVTTLDKSTG
IEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDDILKKILDINSQVQQALLSDTSNPAYRE
DIEASKDHLKRSLALAAAAEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKLYEYLD
IKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY

Important features:

Signal peptide:

amino acids 1-19

FIGURE 519

CGGCTCGAGTGCAGCTGTGGGGAGATTTCAGTGCATTGCCTCCCCTGGGTGCTCTTCATCTTG GATTTGAAAGTTGAGAGCAGC**ATG**TTTTGCCCACTGAAACTCATCCTGCTGCCAGTGTTACTG GATTATTCCTTGGGCCTGAATGACTTGAATGTTTCCCCGCCTGAGCTAACAGTCCATGTGGGT GATTCAGCTCTGATGGGATGTTTTTCCAGAGCACAGAAGACAAATGTATATTCAAGATAGAC TGGACTCTGTCACCAGGAGAGCACGCCAAGGACGAATATGTGCTATACTATTACTCCAATCTC AGTGTGCCTATTGGGCGCTTCCAGAACCGCGTACACTTGATGGGGGGACATCTTATGCAATGAT GGCTCTCTCCTGCTCCAAGATGTGCAAGAGGCTGACCAGGGAACCTATATCTGTGAAATCCGC AAAGAGCTCATGGTCCATGTGGGTGGATTGATTCAGATGGGATGTTTTTCCAGAGCACAGAA GTGAAACACGTGACCAAGGTAGAATGGATATTTTCAGGACGGCGCGCAAAGGAGGAGATTGTA TTTCGTTACTACCACAAACTCAGGATGTCTGTGGAGTACTCCCAGAGCTGGGGCCACTTCCAG AATCGTGTGAACCTGGTGGGGGACATTTTCCGCAATGACGGTTCCATCATGCTTCAAGGAGTG AGGGAGTCAGATGGAGGAAACTACACCTGCAGTATCCACCTAGGGAACCTGGTGTTCAAGAAA ACCATTGTGCTGCATGTCAGCCCGGAAGAGCCTCGAACACTGGTGACCCCGGCAGCCCTGAGG CCTCTGGTCTTGGGTGATCAGTTGGTGATCATTGTGGGAATTGTCTGTGCCACAATCCTG CTGCTCCCTGTTCTGATATTGATCGTGAAGAAGACCTGTGGAAATAAGAGTTCAGTGAATTCT ACAGTCTTGGTGAAGAACACGAAGAAGACTAATCCAGAGATAAAAGAAAACCCTGCCATTTT GAAAGATGTGAAGGGGAGAAACACATTTACTCCCCAATAATTGTACGGGAGGTGATCGAGGAA GAAGAACCAAGTGAAAAATCAGAGGCCACCTACATGACCATGCACCCAGTTTGGCCTTCTCTG AGGTCAGATCGGAACAACTCACTTGAAAAAAAGTCAGGTGGGGGAATGCCAAAAACACAGCAA $\texttt{GCCTTT} \underline{\textbf{TGA}} \texttt{GAAGAATGGAGAGTCCCTTCATCTCAGCAGCGGTGGAGACTCTCTCCTGTGTGT}$ GTCCTGGGCCACTCTACCAGTGATTTCAGACTCCCGCTCTCCCAGCTGTCCTCCTGTCTCATT GTTTGGTCAATACACTGAAGATGGAGAATTTGGAGCCTGGCAGAGAGACTGGACAGCTCTGGA GGAACAGGCCTGCTGAGGGGAGGGGAGCATGGACTTGGCCTCTGGAGTGGGACACTGGCCCTG GGAACCAGGCTGAGCTGGCCTCAAACCCCCCGTTGGATCAGACCCTCCTGTGGGCAGGG

FIGURE 520

MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLSPGE
HAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRLKGESQV
FKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEEIVFRYYHKL
RMSVEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGNLVFKKTIVLHVS
PEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTCGNKSSVNSTVLVKNT
KKTNPEIKEKPCHFERCEGEKHIYSPIIVREVIEEEEPSEKSEATYMTMHPVWPSLRSDRNNS
LEKKSGGGMPKTQQAF

FIGURE 521

CTATGAAGAAGCTTCCTGGAAAACAATAAGCAAAGGAAAACAAATGTGTCCCATCTCACATGG TTCTACCCTACTAAAGACAGGAAGATCATAAACTGACAGATACTGAAAATTGTAAGAGTTGGAA ACTACATTTTGCAAAGTCATTGAACTCTGAGCTCAGTTGCAGTACTCGGGAAGCC**ATG**CAGGA TGAAGATGGATACATCACCTTAAATATTAAAACTCGGAAACCAGCTCTCGTCTCCGTTGGCCC TGCATCCTCCTGGTGGCGTGTGATGGCTTTGATTCTGCTGATCCTGTGCGTGGGGATGGT ${\tt TGTCGGGCTGTGGGGATTTGGTCTGTCATGCAGCGCAATTACCTACAAGATGAGAA}$ TGAAAATCGCACAGGAACTCTGCAACAATTAGCAAAGCGCTTCTGTCAATATGTGGTAAAACA ATCAGAACTAAAGGGCACTTTCAAAGGTCATAAATGCAGCCCCTGTGACACAAACTGGAGATA TTATGGAGATAGCTGCTATGGGTTCTTCAGGCACAACTTAACATGGGAAGAGAGTAAGCAGTA CTGCACTGACATGAATGCTACTCTCCTGAAGATTGACAACCGGAACATTGTGGAGTACATCAA AGCCAGGACTCATTTAATTCGTTGGGTCGGATTATCTCGCCAGAAGTCGAATGAGGTCTGGAA GTGGGAGGATGGCTCGGTTATCTCAGAAAATATGTTTGAGTTTTTGGAAGATGGAAAAGGAAA ${\tt TTTAATGTGTGAGAGGCAGGCTGGCATGACCAAGGTGGACCAACTACCT} {\color{red}{\textbf{TAA}}} {\tt TGCAAAGAGGT}$ GCTGAAAAAAAAAAAAA

FIGURE 522

MQDEDGYITLNIKTRKPALVSVGPASSSWWRVMALILLILCVGMVVGLVALGIWSVMQRNYLQ DENENRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYGDSCYGFFRHNLTWEES KQYCTDMNATLLKIDNRNIVEYIKARTHLIRWVGLSRQKSNEVWKWEDGSVISENMFEFLEDG KGNMNCAYFHNGKMHPTFCENKHYLMCERKAGMTKVDQLP

FIGURE 523

 ${\tt CAGCAGTGGTCTCTCAGTCCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACC{\color{red} {\bf ATG}}{\tt GC}} \\$ AAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAA GAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTTGGTATCCTGGCCCTAACTCTAAT TGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACATGGA GCACACTTTCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTGACCAG AACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAA CGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGT GATTCCTGAATTTTCTGAACCAGAAGAGGAAATAGATGAGAATGAAGAAATTACCACAACTTT CTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAA AAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAAT ATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGAAGATCTTCACTTTCCTGCCAACGA AAAAAAAGGGATTGAACAAAATGAACAGTGGGTGGTCCCTCAAGTGAAAGTAGAGAAGACCCG TCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTGAAAATGGAATAGA ATTTGATCCCATGCTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTA TTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATACTGCTACCAAGGAGG CAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCTCTCCAGAATTACTTGTAG

FIGURE 524

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYD
MEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQI
KVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPT
LISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENG
IEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

Important features:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 525

FIGURE 526

MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGNE CHLCTESLKSNGRVQFLHDGSC

Important features:

Signal peptide:

amino acids 1-19

FIGURE 527

 $\texttt{CGACG} \underline{\textbf{ATG}} \texttt{CTACGCGCCCCGGCTGCCTCCTCCGGACCTCCGTAGCGCCCTGCCGGCCCTGG}$ $\tt CTGCGGCGCTGCTCGTCGCTGCTGCTCTCTTCTAGAGCCGAGGGACCCGGTGGCCT$ $\tt CGTCGCTCAGCCCCTATTTCGGCACCAAGACTCGCTACGAGGATGTCAACCCCGTGCTATTGT$ TGGTCGCCCTCATTCGCCACGGCACCCGCTACCCCACGGTCAAACAGATCCGCAAGCTGAGGC AGCTGCACGGGTTGCTGCAGGCCCGCGGGTCCAGGGATGGCGGGGCTAGTAGTACCGGCAGCC TAGTAGAGAAGGGACGGCAGGATATGCGACAGCTGGCGTGGCGTCTGGCCTCGCTCTTCCCGG CCCTTTTCAGCCGTGAGAACTACGGCCGCCTGCGGCTCATCACCAGTTCCAAGCACCGCTGCA TGGATAGCAGCGCCCTTCCTGCAGGGGCTGTGGCAGCACTACCACCCTGGCTTGCCGCCGC CGGACGTCGCAGATATGGAGTTTGGACCTCCAACAGTTAATGATAAACTAATGAGATTTTTTG ATCACTGTGAGAAGTTTTTAACTGAAGTAGAAAAAAATGCTACAGCTCTTTATCACGTGGAAG CAGTAAATGATTTAAATGCAGATTTAATTCAAGTAGCCTTTTTTCACCTGTTCATTTGACCTGG CAATTAAAGGTGTTAAATCTCCTTGGTGTGATGTTTTTTGACATAGATGATGCAAAGGTATTAG AATATTTAAATGATCTGAAACAATATTGGAAAAGAGGATATGGGTATACTATTAACAGTCGAT CCAGCTGCACCTTGTTTCAGGATATCTTTCAGCACTTGGACAAAGCAGTTGAACAGAAACAAA GGTCTCAGCCAATTTCTTCTCCAGTCATCCTCCAGTTTGGTCATGCAGAGACTCTTCTTCCAC TGCTTTCTCTCATGGGCTACTTCAAAGACAAGGAACCCCTAACAGCGTACAATTACAAAAAAC AAATGCATCGGAAGTTCCGAAGTGGTCTCATTGTACCTTATGCCTCGAACCTGATATTTGTGC TTTACCACTGTGAAAATGCTAAGACTCCTAAAGAACAATTCCGAGTGCAGATGTTATTAAATG AAAAGGTGTTACCTTTGGCTTACTCACAAGAAACTGTTTCATTTTATGAAGATCTGAAGAACC ACTACAAGGACATCCTTCAGAGTTGTCAAACCAGTGAAGAATGTGAATTAGCAAGGGCTAACA $\tt GTACATCTGATGAACTA{\color{red}}{\color{blue}{\textbf{TGA}}}{\color{blue}{\textbf{GTAACTGAAGAACATTTTTAATTCTTTAGGAATCTGCAATGAG}$ TGATTACATGCTTGTAATAGGTAGGCAATTCCTTGATTACAGGAAGCTTTTATATTACTTGAG TATTTCTGTCTTTCACAGAAAACATTGGGTTTCTCTCTGGGTTTGGACATGAAATGTAAGA AAAGATTTTTCACTGGAGCAGCTCTCTTAAGGAGAAACAAATCTATTTAGAGAAACAGCTGGC CCTGCAAATGTTTACAGAAATGAAATTCTTCCTACTTATATAAGAAATCTCACACTGAGATAG AATTGTGATTTCATAATAACACTTGAAAAGTGCTGGAGTAACAAAATATCTCAGTTGGACCAT $\verb| CCTTAACTTGATTGAACTGTCTAGGAACTTTACAGATTGTTCTGCAGTTCTCTTTTTCC| \\$ TCAGGTAGGACAGCTCTAGCATTTTCTTAATCAGGAATATTGTGGTAAGCTGGGAGTATCACT CTGGAAGAAGTAACATCTCCAGATGAGAATTTGAAACAAGAACAGAGTGTTGTAAAAGGAC ATATTTGAACATTTTTTCAATAATTCCTTTTTACTTCTAGGAAGTCTCAAAAGACCATCTTAA ATTATTATATGTTTGGACAATTAGCAACAAGTCAGATAGTTAGAATCGAAGTTTTTCAAATCC ATTGCTTAGCTAACTTTTTCATTCTGTCACTTGGCTTCGATTTTTATATTTTCCTATTATATG

FIGURE 528

MLRAPGCLLRTSVAPAAALAAALLSSLARCSLLEPRDPVASSLSPYFGTKTRYEDVNPVLLSG
PEAPWRDPELLEGTCTPVQLVALIRHGTRYPTVKQIRKLRQLHGLLQARGSRDGGASSTGSRD
LGAALADWPLWYADWMDGQLVEKGRQDMRQLALRLASLFPALFSRENYGRLRLITSSKHRCMD
SSAAFLQGLWQHYHPGLPPPDVADMEFGPPTVNDKLMRFFDHCEKFLTEVEKNATALYHVEAF
KTGPEMQNILKKVAATLQVPVNDLNADLIQVAFFTCSFDLAIKGVKSPWCDVFDIDDAKVLEY
LNDLKQYWKRGYGYTINSRSSCTLFQDIFQHLDKAVEQKQRSQPISSPVILQFGHAETLLPLL
SLMGYFKDKEPLTAYNYKKQMHRKFRSGLIVPYASNLIFVLYHCENAKTPKEQFRVQMLLNEK
VLPLAYSQETVSFYEDLKNHYKDILQSCQTSEECELARANSTSDEL

Important features:

Signal sequence

amino acids 1-30

N-glycosylation sites.

amino acids 242-246, 481-485

N-myristoylation sites.

amino acids 107-113, 113-119, 117-123, 118-124, 128-134

Endoplasmic reticulum targeting sequence.

amino acids 484-489

FIGURE 529

GGAGAGCCGCGGCTGGGACCGGAGTGGGAGCGCGGGGTGGAGGTGCCACCCGGCGCGGGTGG CGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCTCAGGGA GTGATTGCAGCCCCAGACAGCCGGCGCTGGCTGGTGGTCGGTGCTGGCGGCGCGCTTGGGCTC TTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATCTTCGTGGCAAATGGT ACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACCTCAGTC TCCTGGAGCTTCCAGCCAGAGGGGCCGACACTACTGTGTCGTTTTTCCACTACTCCCAAGGG CAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGAATCAGCTGGGCTGGAGACCTTGAC AAGAAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACAATGGCACCTATATCTGT GATGTCAAAAACCCTCCTGACATCGTTGTCCAGCCTGGACACATTAGGCTCTATGTCGTAGAA AAAGAGAATTTGCCTGTGTTTCCAGTTTGGGTAGTGGTGGCCATAGTTACTGCTGTGGTCCTA GGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCTCTATAGAAGGAAAAACTCTAAACGG GATTACACTGGCTGCAGTACATCAGAGAGTTTGTCACCAGTTAAGCAGGCTCCTCGGAAGTCC CCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTTCTGGATCTCACCAGGGCCCAGTCATA TATGCACAGTTAGACCACTCCGGCGGACATCACAGTGACAAGATTAACAAGTCAGAGTCTGTG $\operatorname{GTGTATGCGGATATCCGAAAGAATAAGAAATACCTAGAACATATCCTCAGCAAGAAACAAA$ ACCAAACTGGACTCTCGTGCAGAAAATGTAGCCCATTACCACATGTAGCCTTGGAGACCCAGG CAAGGACAAGTACACGTGTACTCACAGAGGGAGAGAAGATGTGTACAAAGGATATGTATAAA TATTCTATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGATGAAAAGATGGTATGATTC TACATATGTACCCATTGTCTTGCTGTTTTTGTACTTTTCTTTTCAGGTCATTTACAATTGGGAG ATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTGCCTTAATGGAGACAATAGCAG ATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAGGGCTTAAGACTGATTAGTCTTA ${\tt GCATTTACTGTAGTTGGAGGATGGAGGATGCTATGATGGAAGCATACCCAGGGTGGCCTTTAGC}$ ACAGTATCAGTACCATTTATTTGTCTGCCGCTTTTAAAAAATACCCATTGGCTATGCCACTTG AAAACAATTTGAGAAGTTTTTTGAAGTTTTTCTCACTAAAATATGGGGCAATTGTTAGCCTT ACATGTTGTGTAGACTTACTTTAAGTTTGCACCCTTGAAATGTGTCATATCAATTTCTGGATT CATAATAGCAAGATTAGCAAAGGATAAATGCCGAAGGTCACTTCATTCTGGACACAGTTGGAT CAATACTGATTAAGTAGAAAATCCAAGCTTTGCTTGAGAACTTTTGTAACGTGGAGAGTAAAA AGTATCGGTTTTA

FIGURE 530

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKST STTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIENMQ FIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLTLLISMILAV LYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVIYAQLDHSGGHHS DKINKSESVVYADIRKN

Important features:

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 531

 $\tt TTGCTGATGGCGGTAGCAGCCCCAGTCGAGCCCGGGGCAGCGGCCGGGCCGGGACTGGT$ GCGCGAGGGCTGGGGCGAAGGTCGAGAGGCCGAGGCCTGTGGCACGGTGGGGCTGCTG GAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGCTCACTGCTCTGGAAC CAGCAGGATGGTACCTTGTCCCTGTCACAGCGGCCAGCTCAGCGAGGAGGAGCGGGGCCGACTC CGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCAAGGCGACCCGGGGCCCTG GATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTCCCTGCGTGCTCCCTGGTGGAGTCG GTGACGCACCCCGGGGGCTGCCGGGGCCATGAGGTGGAGCTGGAGCTGTTCAAC ACCTCGGTGCAGCCGCCCACCACCACCAGGCCCTGAGACGGCGGCCTTCATTGAG CGCCTGGAGATGGAACAGGCCCAGAAGGCCCAAGAACCCCCAGGAGCAGAAGTCCTTCTTCGCC AAATACTGGATGTACATCATTCCCGTCGTCCTGTTCCTCATGATGTCAGGAGCGCCAGACACC GGGGGCCAGGGTGGGGGGTGGGGGGTGGTGGGGGGTAGTGGCCTTTGCTGTGTGCCA $\mathsf{CCCTCCCTG}$ TAA GTCTATTTAAAAACATCGACGATACATTGAAATGTGTGAACGTTTTGAAAA GCTACAGCTTCCAGCAGCCAAAAGCAACTGTTGTTTTGGCAAGACGGTCCTGATGTACAAGCT TGATTGAAATTCACTGCTCACTTGATACGTTATTCAGAAACCCAAGGAATGGCTGTCCCCATC $\tt CTCATGTGGGGTGTGGGGGGTTTATTAAACTGTCCCCCAGATC$ GACACGCAAAAAAAA

FIGURE 532

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSFEID DSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALDGLEAGG YVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLELFNTSVQLQP PTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMSGAPDTGGQGGGG GGGGGGGSGLCCVPPSL

Important features:

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 533

FIGURE 534

MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDWC CQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVIYLENEDSE

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 535

GCTGAGCGTGTGCGCGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTG AACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCC $\verb|CCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTTTTT| \\$ TTTTTAACCGCCCCCCCCCCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCAT GTTCTTGGAGTGTTCTGCGTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAG GGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGG CTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAA ACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAA ${\tt GGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGT}$ TGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGG CTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATATTGACGAAAATGCT ${\tt TTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTT}$ AACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCCTATAATCAGCTGCAT ${\tt TCTCTGGGATCTGAACAGTTTCGGGGGCTTGCGGAAGCTGCTGAGTTTACATTTACGGTCTAAC}$ TCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACCTGGAACTTTTGGACCTG GGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGCATGATCAGACTCAAAGAA $\tt CTTCACCTGGAGCACAATCAATTTTCCAAGCTCAACCTGGCCCTTTTTCCAAGGTTGGTCAGC$ $\tt CTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAGGACAGACCATGTCCTGGACC$ TGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATCGAAGCTTTCAGTGGACCCAGT GTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGATTCCAACAAGCTCACATTTATT GGTCAAGAGATTTTGGATTCTTGGATATCCCTCAATGACATCAGTCTTGCTGGGAATATATGG GAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTTTTAAAGGTCTAAGGGAG AATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTGATCGATGCAGTGAAG AACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGTTTGATCTGGCCAGGGCTCTCCCAAAG CCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTTTGCCCCCGACG GTGGGAGCCACAGAGCCCGGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCTTTCCATAAA ATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTATCTACGTG TCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCGCTCCCTCATGCGAAGGCAC AGGAAAAAGAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCAGGAATTTTATGTAGAT TATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTAT ${\tt AACAAATCGGGCTCCAGGGAGTGTGAGGTA} \underline{{\tt TGA}} {\tt ACCATTGTGATAAAAGAGCTCTTAAAAGC}$ ${\tt TGGGAAATAAGTGGTGCTTTATTGAACTCTGGTGACTATCAAGGGAACGCGATGCCCCCCTC}$ $\tt CCCTTCCCTCTCACTTTGGTGGCAAGATCCTTCCTTGTCCGTTTTAGTGCATTCATA$ GAAGCTTGAACTCCGGTTTAATATAATACCTATTGTATAAGACCCTTTACTGATTCCATTAAT

FIGURE 536

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGC LGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLN NTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLG YNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTW SSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWE CSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKP TFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVS WKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYN KSGSRECEV

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 537

 $\texttt{GGGACTACAAGCCGCGCGCGCTGCCGCTGGCCCCTCAGCAACCCTCGAC} \textbf{\underline{ATG}} \texttt{GCGCTGAGGCGGCCACCGCGAC}$ ${\tt TCCGGCTCTGCGCTGCCTGACTTCTTCCTGCTGCTTTTCAGGGGGCTGCCTGATAGGGGCTGTAAATC}$ TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTTGAAAGTGTGGAACTGTCTTGCATCATTACGGATTCGC AGACAAGTGACCCCAGGATCGAGTGGAAGAAAATTCAAGATGAACAAACCACATATGTGTTTTTTGACAACAAAA ACTCAGCCCTTTATCGCTGTGAGGTCGTTGCTCGAAATGACCGCAAGGAAATTGATGAGATTGTGATCGAGTTAA CTGTGCAAGTGAAGCCAGTGACCCCTGTCTGTAGAGTGCCGAAGGCTGTACCAGTAGGCAAGATGGCAACACTGC ACTGCCAGGAGAGTGAGGGCCACCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCCACGGATT ${\tt CCAGAGCCAATCCCAGATTTCGCAATTCTTTCCACTTAAACTCTGAAACAGGCACTTTGGTGTTCACTGCTG}$ TTCACAAGGACGACTCTGGGCAGTACTACTGCATTGCTTCCAATGACGCAGGCTCAGCCAGGTGTGAGGAGCAGG ${ t TGATC}$ ${ t TGATC}$ ${ t GATCCTGTGGGTGTGGCTGAGAGCGCACAGAGCGCACATACCTCTGCTAGAAACTCCTGTCAA}$ GGCAGCGAGAGCTGATGCACTCGGACAGAGCTAGACACTCATTCAGAAGCTTTTCGTTTTGGCCAAAGTTGACCA $\tt CTACTCTTACTCTAACAAGCCACATGAATAGAAGAATTTTCCTCAAGATGGACCCGGTAAATATAACCACAA$ $\tt GGAAGCGAAACTGGGTTCACTGAGTTGGGTTCCTAATCTGTTTCTGGCCTGATTCCCGCATGAGTATTAGG$ GTGATCTTAAAGAGTTTGCTCACGTAAACGCCCGTGCTGGGCCCTGTGAAGCCAGCATGTTCACCACTGGTCGTT CAGCAGCCACGACAGCACCATGTGAGATGGCGAGGTGGCTGGACAGCACCAGCAGCGCATCCCGGCGGAACCCA GAAAAGGCTTCTTACACAGCAGCCTTACTTCATCGGCCCACAGACACCACCGCAGTTTCTTCTTAAAGGCTCTGC GTAAATTGGTTGCTGGAAGAGGGATCTTGCCTGAGGAACCCTGCTTGTCCAACAGGGTGTCAGGATTTAAGGAAA ACCTTCGTCTTAGGCTAAGTCTGAAATGGTACTGAAATATGCTTTTCTATGGGTCTTGTTTATTATAAAATTT ${ t TACATCTAAATTTTTGCTAAGGATGTATTTTGATTATTGAAAAGAAAATTTCTATTTAAACTGTAAATATATTTGT$ CATACAATGTTAAATAACCTATTTTTTTAAAAAAGTTCAACTTAAGGTAGAAGTTCCAAGCTACTAGTGTTAAAT TGGAAAATATCAATAATTAAGAGTATTTTACCCAAGGAATCCTCTCATGGAAGTTTACTGTGATGTTCCTTTTCT ${\tt CACACAAGTTTTAGCCTTTTTCACAAGGGAACTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT}$ ${\tt TAAAAATTCCAGTTAAGCAATGTTGAAATCAGTTTGCATCTCTAAAAGAAACCTCTCAGGTTAGCTTTGAACT}$ GCCATCCTTGGGCCCTGGCAGTGGCTGTCCCAGTGAGCTTTACTCACGTGGCCCTTGCTTCATCCAGCACAGC ${ t TCTCAGGTGGGCACTGGACACTGGTGTCTTCCATGTAGCGTCCCAGCTTTGGGCTCCTGTAACAGACCTCT}$ AAGATTGTCTAAGGCCAAAGGCAATTGCGAAATCAAGTCTGTCAAGTACAATAACATTTTTAAAAGAAAATGGAT GGAGTGGCGGCCAGTCCAGCCTTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCCTGGCGGGGAGGAAAG ${\tt TGAAACGCCTGAATCAAAAGCAGTTTTCTAATTTTGACTTTAAATTTTTCATCCGCCGGAGACACTGCTCCCATT}$ TGTGGGGGGACATTAGCAACATCACTCAGAAGCCTGTGTTCTTCAAGAGCAGGTGTTCTCAGCCTCACATGCCCT GCCGTGCTGGACTCAGGACTGAAGTGCTGTAAAGCAAGGAGCTGCTGAGAAGGAGCACTCCACTGTGTGCCTGGA AATTGCATACATGAGACTGTGTTGACTTTTTTTAGTTATGTGAAACACTTTGCCGCAGGCCGCCTGGCAGAGGCA $\tt CCTCCATCATTGCCACCTTGGTAGAGAGGGATGGCTCCCACCCTCAGCGTTGGGGATTCACGCTCCAGCCTCCT$ TCTTGGTTGTCATAGTGATAGGGTAGCCTTATTGCCCCCTCTTCTTATACCCTAAAACCTTCTACACTAGTGCCA CGGAAAAGGAATACTCGTGTATTTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT GCCTTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTTGGCATTTGTTTAAC CTCATTTATAAAAGCTTCAAAAAAACCCA

FIGURE 538

MALRRPPRLRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSDP RIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLKIWNVTRRDSALYRCEVVARNDRKEI DEIVIELTVQVKPVTPVCRVPKAVPVGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRANPR FRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGGVLVV LAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSSFVI

Important features:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267

FIGURE 539

GCAACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAA CTTCAGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGG CACAGGCGCGGCAGGCCAGGTCCCGGCCGAAGGCGATGCGCGAGGGGGTCGGGCAGCTGG GCTCGGGCGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTCGCGG ${f TG}$ AGCCGCGTGGTCTCGCTGCTGCTGGGCCCCGCGCTGCTCTGCGGCCACGGAGCCTTCTGCC GCCGCGTGGTCAGCGGCCAAAAGGTGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGG CCTACTTCCATGAACTGTCCAGCCGAGTGAGCTTTCAGGAGGCACGCCTGGCTTGTGAGAGTG AGGGAGGAGTCCTCCTCAGCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGC AAAACCTGACAAAACCCGGGACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGA ATGGAGATGGGCAAACATCTGGTGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATT CCCAGTACCGAAACTGGTACACAGATGAACCTTCCTGCGGAAGTGAAAAGTGTGTTGTGATGT ATCACCAACCAACTGCCAATCCTGGCCTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACA GGTGTAACATGAAGCACAATTATATTTGCAAGTATGAACCAGAGATTAATCCAACAGCCCCTG TAGAAAAGCCTTATCTTACAAATCAACCAGGAGACACCCATCAGAATGTGGTTGTTACTGAAG CAGGTATAATTCCCAATCTAATTTATGTTGTTATACCAACAATACCCCTGCTCTTACTGATAC TGGTTGCTTTTGGAACCTGTTGTTTCCAGATGCTGCATAAAAGTAAAGGAAGAACAAAAACTA **AA**TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCTGGATCTGTATAAGGAATGGCATCAG AACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGCAAGATGAACTGTAAGCTCCCCCT TGAGGCAAATATTAAAGTAATTTTTATATGTCTATTATTTCATTTAAAGAATATGCTGTGCTA ATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAAACTTCAAACTTCAAGCAAA TGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTATGTGTTAGAAGCAAT ${\tt TCCTTTTATTTCTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAATGTATTTGTATTGA}$ AATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAAATGAACTGTTCTA ATATTTATTTTTATGGCATCTCATTTTTCAATACATGCTCTTTTGATTAAAGAAACTTATTAC ATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGAAATAAGA AGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGATTGTCT AATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTAGCTTAAAATTAAACAGATTTTG TAATAATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAGT GACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTG AGGGTTCTGAAATCAATGTGGTCCCTCTCTTGCCCACTAAACAAAGATGGTTGTTCGGGGTTT ${\tt GGGATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGC}$ CTCTGACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAG TGTGGAGACAAGCACACACAGACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAA ATGGGTTGGAACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATG AAGTTGTAACTCTCTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTG

FIGURE 540

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACES EGGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSN SQYRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAP VEKPYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKT SPNQSTLWISKSTRKESGMEV

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89 and 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145 and 212-217

FIGURE 541

GCGTGAAGGGCACAGACCGCCTTGTGAATGTCTTTCTGGGCATTCCATTTGCCCAGCCGCCACTGGGCCCTGACC GGTTCTCAGCCCCACACCCAGCACAGCCCTGGGAGGGTGTGCGGGATGCCAGCACTGCGCCCCCAATGTGCCTAC AAGACGTGGAGAGCATGAACAGCAGATTTGTCCTCAACGGAAAACAGCAGATCTTCTCCGTTTCAGAGGACT ${\tt GCCTGGTCCTCAACGTCTATAGCCCAGCTGAGGTCCCCGCAGGGTCCGGTAGGCCGGTCATGGTATGGGTCCATGGTCATGGTCCATGGTCATGGTCCATGGTCATGT$ GAGGCGCTCTGATAACTGGCGCTGCCACCTCCTACGATGGATCAGCTCTGGCTGCCTATGGGGATGTGGTCGTGG ACAGAGCCATCACACAGAGTGGGGTCATCACCACCCCAGGGATCATCGACTCTCACCCTTGGCCCCTAGCTCAGA GCCCCAAGGAACTCCTGAAGGAGAAGCCCTTCCACTCTGTGCCCTTCCTCATGGGTGTCAACAACCATGAGTTCA GCTGGCTCATCCCCAGGGGCTGGGGTCTCCTGGATACAATGGAGCAGATGAGCCGGGAGGACATGCTGGCCATCT CAACACCCGTCTTGACCAGTCTGGATGTGCCCCCTGAGATGATGCCCACCGTCATAGATGAATACCTAGGAAGCA $\tt GTTTTTCAAGATACCTTCGAGATTCTGGAAGCCCTGTCTTTTTCTATGAGTTCCAGCATCGACCCAGTTCTTTTG$ AGTGGACCCACTTTGCCCGGACAGGGGACCCCAATAGCAAGGCTCTGCCTCCTTGGCCCCAATTCAACCAGGCGG AGACGCTCCCCAGCAAGATACAACAGTGGCACCAGAAGCAGAAGAACAGGAAGGCCCAGGAGGACCTC $\overline{\text{AGGCCTGAACCTTCTTGGCTGGGGCAAACCACTCTTCAAGTGGTGGCAGAGTCCCAGCACGGCAGCCCGCCTCTC}}$ $\tt ATGTCACAAGGCCGCCTCCCACCTCTGGGGCATTGTACAAGTTCTTCCCTCTCCTGAAGTGCCTTTCCTGCTTT$ CCCCCTCAGAGGAGCTCTCTCAAAATGGGGATTAGCCTAACCCCACTCTGTCACCCACACCAGGATCGGGTGGGA $\tt CCTGGAGCTAGGGGGTGTTTGCTGAGTGAGTGAACACAGAATATGGGAATGGCAGCTGCTGAACTTGAAC$ CCAGAGCCTTCAGGTGCCAAAGCCATACTCAGGCCCCACCGACATTGTCCACCCTGGCCAGAAGGGTGCATGCC AATGGCAGAGACCTGGGGAGAGAGTCCTGGGGCGCCAGGGGATCCAGCCTAGAGCAGACCTTAGCCCCTGAC ATCCATCAGGGCCATGAGTGTCACCCAGACCTGACCCTCACCAATTCCAGCCCCTGACCCTCAGGACGCTGGATG $\tt CCAGCTCCCAGTGCCGGGTCCTCCCTTCCTTGGTTGGGGAGACCAGTTTCTGGGGAGCTTCCAAG$ AGCACCCACCAAGACACAGCAGGACAGGCCAGGGGAGGGCATCTGGACCAGGGCATCCGTCGGGCTATTGTCACA GAGAAAAGAAGAGACCCACCCACTCGGGCTGCAAAAGGTGAAAAGCACCAAGAGGTTTTCAGATGGAAGTGAGAG GTGACAGTGTGCTGGCAGCCCTCACAGCCCTCGCTTGCTCTCCCTGCCTCTGCCTGGGCTCCCACTTTGGCA GCACTTGAGGAGCCCTTCAACCCGCCGCTGCACTGTAGGAGCCCCTTTCTGGGCTGGCCAAGGCCGGAGCCAGCT ${\tt TAGCACCTGGGCCAGCAGCTGCTGTGCTCGATTTCTCGCTGGGCCTTAGCTGCCTCCCGCGGGGCAGGGCTCGG}$ GACCTGCAGCCCTCCATGCCTGACCCTCCCCCACCCCCGTGGGCTCCTGTGCGGCCGGAGCCTCCCCAAGGAG CGCCGCCCCTGCTCCACAGCGCCCAGTCCCATCGACCACCCAAGGGCTGAGGAGTGCGGGTGCACAGCGCGGGA CTGGCAGGCAGCTCCACCTGCCCCCAGTGCTGGATCCACTGGGTGAAGCCAGCTGGGCTCCTGAGTCTGGTGG GGACTTGGAGAACCTTTATGTCTAGCTAAGGGATTGTAAATACACCGATGGGCACTCTGTATCTAGCTCAAGGTT ${\tt TGTAAACACCAATCAGCACCCTGTGTCTAGCTCAGTGTTTGTGAATGCACCAATCCACACTCTGTATCTGGCT}$ ACTCTGGTGGGGACTTGGAGAACCTTTGTGTCCACACTCTGTATCTAGCTAATCTAGTGGGGATGTGGAGAACCT TTGTGTCTAGCTCAGGGATCGTAAACGCACCAATCAGCACCCTGTCAAAACAGACCACTTGACTCTCTGTAAAAT GGACCAATCAGCAGGATGTGGGTGGGGCGAGACAAGAGAATAAAAGCAGGCTGCCTGAGCCAGCAGTGACAACCC. ${\tt CCCTCGGGTCCCCTCCCACGCCGTGGAAGCTTTGTTCTTTCGCTCTTTGCAATAAATCTTGCTACTGCCCAAAA}$

FIGURE 542

MERAVRVESGVLVGVVCLLLACPATATGPEVAQPEVDTTLGRVRGRQVGVKGTDRLVNVFLGI
PFAQPPLGPDRFSAPHPAQPWEGVRDASTAPPMCLQDVESMNSSRFVLNGKQQIFSVSEDCLV
LNVYSPAEVPAGSGRPVMVWVHGGALITGAATSYDGSALAAYGDVVVVTVQYRLGVLGFFSTG
DEHAPGNQGFLDVVAALRWVQENIAPFGGDLNCVTVFGGSAGGSIISGLVLSPVAAGLFHRAI
TQSGVITTPGIIDSHPWPLAQKIANTLACSSSSPAEMVQCLQQKEGEELVLSKKLKNTIYPLT
VDGTVFPKSPKELLKEKPFHSVPFLMGVNNHEFSWLIPRGWGLLDTMEQMSREDMLAISTPVL
TSLDVPPEMMPTVIDEYLGSNSDAQAKCQAFQEFMGDVFINVPTVSFSRYLRDSGSPVFFYEF
QHRPSSFAKIKPAWVKADHGAEGAFVFGGPFLMDESSRLAFPEATEEEKQLSLTMMAQWTHFA
RTGDPNSKALPPWPQFNQAEQYLEINPVPRAGQKFREAWMQFWSETLPSKIQQWHQKQKNRKA
QEDL

Important features:

Signal peptide:

amino acids 1-27

Transmembrane domain:

amino acids 226-245

N-glycosylation site.

amino acids 105-109

N-myristoylation sites.

amino acids 10-16, 49-55, 62-68, 86-92, 150-156, 155-161, 162-168, 217-223, 227-233, 228-234, 232-238, 262-268, 357-363, 461-467

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 12-23

Carboxylesterases type-B serine active site.

amino acids 216-232

FIGURE 543

 $\overline{\text{CTGGGGGGCGCCCACGGCTTTTCCTGAGGAGCCGCCGCCTTAGCGTGGCCCCCAGGGACTACCTGAACCAC}}$ TATCCCGTGTTTGTGGGCAGCGGGCCCGGACGCCTGACCCCCGCAGAAGGTGCTGACGACCTCAACATCCAGCGA GTCCTGCGGGTCAACAGGACGCTGTTCATTGGGGACAGGGACAACCTCTACCGCGTAGAGCTGGAGCCCCCCACG TCCACGGAGCTGCGGTACCAGAGGAAGCTGACCTGGAGATCTAACCCCAGCGACATAAACGTGTGTCGGATGAAG ${\tt GGTATGGCCCGCTGCCCGTACGACCCCAAGCACGCCAATGTTGCCCTCTTCTCTGACGGGATGCTCTTCACAGCT}$ ACTGTTACCGACTTCCTAGCCATTGATGCTGTCATCTACCGCAGCCTCGGGGACAGGCCCACCCTGCGCACCGTG ${\tt AAACATGACTCCAAGTGGTTCAAAGAGCCTTACTTTGTCCATGCGGTGGAGTGGGGCAGCCATGTCTACTTCTTC}$ $\tt TTCCGGGAGATTGCGATGGAGTTTAACTACCTGGAGAAGGTGGTGGTGTCCCGCGTGGCCCGAGTGTGCAAGAAC$ GTCCTGGCCGTTTTTTCCACGCCCAGCAACAGCATCCCTGGCTCGGCTGTCTGCGCCTTTGACCTGACACAGGTG GCAGCTGTGTTTGAAGGCCGCTTCCGAGAGCAGAAGTCCCCCGAGTCCATCTGGACGCCGGTGCCGGAGGATCAG GTGCCTCGACCCCGGGCCCGGGTGCTGCGCAGCCCCCGGGATGCAGTACAATGCCTCCAGCGCCTTGCCGGATGAC $\tt ATCCTCAACTTTGTCAAGACCCACCCTCTGATGGACGAGGCGGTGCCCTCGCTGGGCCCTGGATCCTG$ GTCTTCCTGGGTTCTGAGGCGGGGACGGTCCTCAAGTTCCTCGTCCGGCCCAATGCCAGCACCTCAGGGACGTCT CGAGTGCCTGTGGCTGCCAGCAGTACTCGGGGTGTATGAAGAACTGTATCGGCAGTCAGGACCCCTACTGC GGGTGGGCCCCGACGGCTCCTGCATCTTCCTCAGCCCGGGCACCAGAGCCGCCTTTGAGCAGGACGTGTCCGGG GCCAGCACCTCAGGCTTAGGGGACTGCACAGGACTCCTGCGGGGCCAGCCTCTCCGAGGACCGCGGGGGCTGGTG TGGTTCGTGGGCCTCCGTGAGCGGCGGGAGCTGGCCCGGCGCAAGGACAAGGAGGCCATCCTGGCGCACGGGGCG GGCGAGGCGGTGCTGAGCCTCAGCCGCCTGGGCGAGCGCAGGGCCAGGGTCCCGGGGGGCCGGGGCGGAGGCGGT GGCGGTGGCGCCGGGGGTTCCCCCGGAGGCCCTGCTGGCGCCCCTGATGCAGAACGGCTGGGCCAAGGCCACGCTG CTGCAGGGCGGGCCCCACGACCTGGACTCGGGGCTGCTGCCCACGCCGAGCAGACGCCGCTGCCGCAGAAGCGC CTGCCCACTCCGCACCCGCACCCCCACGCCCTGGGCCCCGCGCCTGGGACCACGGCCACCCCTGCTCCCGGCC CCCGACGGCCGCCTCTATGCTGCCCGGCCCGGCCGCCTCCCACGCGACTTCCCGCTCACCCCCCACGCCAGC CCGGACCGCCGGGGTGGTGTCCGCGCCCACGGGCCCCTTGGACCCAGCCTCAGCCGCCGATGGCCTCCCGCGG CCCTGGAGCCCGCCCGACGGCCAGCCTGAGGAGGCCACTGGGCCCCACGCCCTCCGGCCGCCACCCTGCGC $\texttt{GACTTGGCCCACCTCCTCTCTCTATGGGGGGGGCGGACAGGACTGCGCCCCGTGCCC} \underline{\textbf{TAG}} \texttt{GCCGGGGGGCCCCCCG}$ AGTGGGTGCTCAAGTCCCCCCCGCGACCCACCCGCGGAGTGGGGGGCCCCCTCCGCCACAAGGAAGCACCAG TGGGCGTGTGTCAAGTGGGCCACGCGTGCAGGGTGTGTCCACGAGCGACGATCGTGGTGGCCCCAGCGGCC ${\tt TGGGCGTTGGCTGAGCCGACGCTTGGGGCTTCCAGAAGGCCCGGGGGTCTCCGAGGTGCCGGTTAGGAGTTTGAAC}$ ATACGGCCCCAGGGTGAGAGAGTCCCATGCCACCGTCCCCTTGTGACCTCCCCCCTATGACCTCCAGCTGA $\tt CCATGCATGCCACGTGGCTGGGTCCTCTGCCCTCTTTGGAGTTTGCCTCCCCAGCCCCCTCCCCATCAAT$

FIGURE 544

MQTPRASPPRPALLLLLLLGGAHGLFPEEPPPLSVAPRDYLNHYPVFVGSGPGRLTPAEGAD DLNIQRVLRVNRTLFIGDRDNLYRVELEPPTSTELRYQRKLTWRSNPSDINVCRMKGKQEGEC RNFVKVLLLRDESTLFVCGSNAFNPVCANYSIDTLQPVGDNISGMARCPYDPKHANVALFSDG MLFTATVTDFLAIDAVIYRSLGDRPTLRTVKHDSKWFKEPYFVHAVEWGSHVYFFFREIAMEF NYLEKVVVSRVARVCKNDVGGSPRVLEKQWTSFLKARLNCSVPGDSHFYFNVLQAVTGVVSLG GRPVVLAVFSTPSNSIPGSAVCAFDLTQVAAVFEGRFREQKSPESIWTPVPEDQVPRPRPGCC AAPGMQYNASSALPDDILNFVKTHPLMDEAVPSLGHAPWILRTLMRHQLTRVAVDVGAGPWGN QTVVFLGSEAGTVLKFLVRPNASTSGTSGLSVFLEEFETYRPDRCGRPGGGETGQRLLSLELD AASGGLLAAFPRCVVRVPVARCQQYSGCMKNCIGSQDPYCGWAPDGSCIFLSPGTRAAFEQDV SGASTSGLGDCTGLLRASLSEDRAGLVSVNLLVTSSVAAFVVGAVVSGFSVGWFVGLRERREL ARRKDKEAILAHGAGEAVLSVSRLGERRAQGPGGRGGGGGGGAGVPPEALLAPLMQNGWAKAT LLQGGPHDLDSGLLPTPEQTPLPQKRLPTPHPHPHALGPRAWDHGHPLLPASASSSLLLLAPA RAPEQPPAPGEPTPDGRLYAARPGRASHGDFPLTPHASPDRRRVVSAPTGPLDPASAADGLPR PWSPPPTGSLRRPLGPHAPPAATLRRTHTFNSGEARPGDRHRGCHARPGTDLAHLLPYGGADR TAPPVP

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 318-339, 598-617

N-glycosylation sites.

amino acids 74-78, 155-159, 167-171, 291-295, 386-390, 441-445, 462-466

Glycosaminoglycan attachment sites.

amino acids 51-55, 573-577

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 102-106

N-myristoylation sites.

```
amino acids 21-27, 50-56, 189-195, 333-339, 382-388, 448-454, 490-496, 491-497, 508-514, 509-515, 531-537, 558-564, 569-575, 574-580, 580-586, 610-616, 643-649, 663-669, 666-672, 667-673, 668-674, 669-675, 670-676, 868-874, 879-885
```

FIGURE 545

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGG GACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT**ATG**CGTCAATTCCCCAAA CCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACG ACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAG GCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGT CTTGCCTTCAGCCTTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAG ACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCT GAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACT GAGTCTTTGCAAGACACAAGCCTGCGAATCGATGCTCCTGCGCCCATTTGCTAAGACTC TATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGC AGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCATGCCCACATGACA TGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTG GAGACAGAA<u>TAG</u>GAGGAAAGTGATGCTGCTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCT TCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTTTTACTGTACTAGTCTTGTGCT GGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGATTGTCTTTATGCATCCCC AATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTTTCTGCTATTGGATATATT AAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAGAGCAGGTGATGTATTTTTAT ACAGTAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCTAGGGGGGGTTATTCATTTGTAT TCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGATATTTGAAATTGAACCAATGAC TACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTTGCACATCTACCATTACAATTACTG

FIGURE 546

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPE
IFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQE
IRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHY
TLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDI
LLQWMEETE

Important features:

Signal peptide:

amino acids 1-42

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} \mathtt{dependent}$ protein kinase phosphorylation sites.

amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 547

AGCAACTCAAGTTCATCATTGTCCTGAGAGAGAGGAGCAGCGGGTTCTCGGCCGGGACAGCA GAACGCCAGGGGACCCTCACCTGGGCGCGCGCGGGCACGGGCTTTGATTGTCCTGGGGTCGCG GAGACCCGCGCGCCTGCCCTGCACGCCGGCCGCCAACCTTTGCAGTCGCGTTGGCTGCTGCGA TCGGCCGGCGGTCCCTGCCGAAGGCTCGGCTGCTTCTGTCCACCTCTTACACTTCTTCATTT ATCGGTGGATCATTTCGAGAGTCCGTCTTGTAA**ATG**TTTGGCACTTTGCTACTTTATTGCTTC TTTCTGGCGACAGTTCCAGCACTCGCCGAGACCGGCGGAGAAGGCAGCTGAGCCCGGAGAAG CAGGCAGTGGATACATCAGGGAATAAATTCACATCTTCTCCAGGCGAAAAGGTCTTCCAGGTG AAAGTCTCAGCACCAGAGGAGCAATTCACTAGAGTTGGAGTCCAGGTTTTAGACCGAAAAGAT GGGTCCTTCATAGTAAGATACAGAATGTATGCAAGCTACAAAAATCTGAAGGTGGAAATTAAA TTCCAAGGGCAACATGTGGCCAAATCCCCATATATTTTAAAAGGGCCGGTTTACCATGAGAAC ${\tt TGTGACTGTCCTCTGCAAGATAGTGCAGCCTGGCTACGGGAGATGAACTGCCCTGAAACCATT}$ GCTCAGATTCAGAGAGATCTGGCACATTTCCCTGCTGTGGATCCAGAAAAGATTGCAGTAGAA ATCCCAAAAAGATTTGGACAGAGGCAGAGCCTATGTCACTACACCTTAAAGGATAACAAGGTT TATATCAAGACTCATGGTGAACATGTAGGTTTTAGAATTTTCATGGATGCCATACTACTTTCT TTGACTAGAAAGGTGAAGATGCCAGATGTGGAGCTCTTTGTTAATTTGGGAGACTGGCCTTTG GAAAAAAGAAATCCAATTCAAACATCCATCCGATCTTTTCCTGGTGTGGCTCCACAGATTCC AAGGATATCGTGATGCCTACGTACGATTTGACTGATTCTGTTCTGGAAACCATGGGCCGGGTA AGTCTGGATATGATGTCCGTGCAAGCTAACACGGGTCCTCCCTGGGAAAGCAAAAATTCCACT GCCGTCTGGAGAGGGCGAGACAGCCGCAAAGAGAGACTCGAGCTGGTTAAACTCAGTAGAAAA CACCCAGAACTCATAGACGCTGCTTTCACCAACTTTTTCTTCTTTAAACACGATGAAAACCTG ATCGATGGCACTGTAGCAGCTTATCGCCTGCCATATTTGCTAGTTGGTGACAGTGTTGTGCTG AAGCAGGATTCCATCTACTATGAACATTTTTACAATGAGCTGCAGCCCTGGAAACACTACATT CCAGTTAAGAGCAACCTGAGCGATCTGCTAGAAAAACTTAAATGGGCGAAAGATCACGATGAA GAGGCCAAAAAGATAGCAAAAGCAGGACAAGAATTTGCAAGAAATAATCTCATGGGCGATGAC ATCCGAGAGGCATGAAAAGGGTAGAACCACAGACTGAGGACGACCTCTTCCCTTGTACTTGC CATAGGAAAAAGACCAAAGATGAACTC**TGA**TATGCAAAATAACTTCTATTAGAATAATGGTGC TCTGAAGACTCTTCTTAACTAAAAAGAAGAATTTTTTTTAAGTATTAATTCCATGGACAATATA AAATCTGTGTGATTGTTTGCAGTATGAAGACACATTTCTACTTATGCAGTATTCTCATGACTG TACTTTAAAGTACATTTTTAGAATTTTATAATAAAACCACCTTTATTTTAAAGGAAAAAAA

FIGURE 548

MFGTLLLYCFFLATVPALAETGGERQLSPEKSEIWGPGLKADVVLPARYFYIQAVDTSGNKFT
SSPGEKVFQVKVSAPEEQFTRVGVQVLDRKDGSFIVRYRMYASYKNLKVEIKFQGQHVAKSPY
ILKGPVYHENCDCPLQDSAAWLREMNCPETIAQIQRDLAHFPAVDPEKIAVEIPKRFGQRQSL
CHYTLKDNKVYIKTHGEHVGFRIFMDAILLSLTRKVKMPDVELFVNLGDWPLEKKKSNSNIHP
IFSWCGSTDSKDIVMPTYDLTDSVLETMGRVSLDMMSVQANTGPPWESKNSTAVWRGRDSRKE
RLELVKLSRKHPELIDAAFTNFFFFKHDENLYGPIVKHISFFDFFKHKYQINIDGTVAAYRLP
YLLVGDSVVLKQDSIYYEHFYNELQPWKHYIPVKSNLSDLLEKLKWAKDHDEEAKKIAKAGQE
FARNNLMGDDIFCYYFKLFQEYANLQVSEPOIREGMKRVEPOTEDDLFPCTCHRKKTKDEL

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation sites.

amino acids 302-306, 414-418

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 243-247, 495-499

Tyrosine kinase phosphorylation site.

amino acids 341-348

N-myristoylation sites.

amino acids 59-65, 118-124, 184-190, 258-264, 370-376, 439-445

Endoplasmic reticulum targeting sequence.

amino acids 499-504

FIGURE 549

GGGTGATTGAACTAAACCTTCGCCGCACCGAGTTTGCAGTACGGCCGTCACCCGCACCGCTGC CTGCTTGCGGTTGGAGAAATCAAGGCCCTACCGGGCCTCCGTAGTCACCTCTCTATAGTGGGC $\tt GTGGCCGAGGCCGGGGTGACCCTGCCGGAGCCTCCGCTGCCAGCGAC{\color{red} ATG}{\color{blue} TTCAAGGTAATTC}$ AGAGGTCCGTGGGGCCAGCCAGCCTGAGCTTGCTCACCTTCAAAGTCTATGCAGCACCAAAAA AGGACTCACCTCCCAAAAATTCCGTGAAGGTTGATGAGCTTTCACTCTACTCAGTTCCTGAGG GTCAATCGAAGTATGTGGAGGAGGCAAGGAGCCAGCTTGAAGAAAGCATCTCACAGCTCCGAC ACTATTGCGAGCCATACACAACCTGGTGTCAGGAAACGTACTCCCAAACTAAGCCCAAGATGC AAAGTTTGGTTCAATGGGGGTTAGACAGCTATGACTATCTCCAAAATGCACCTCCTGGATTTT TTCCGAGACTTGGTGTTATTGGTTTTGCTGGCCTTATTGGACTCCTTTTTGGCTAGAGGTTCAA AACAAGCCATCGTGTTTGCCCAGGTCAGTGGGGAGAGATTATATGACTGGGGTTTACGAGGAT ATATAGTCATAGAAGATTTGTGGAAGGAGAACTTTCAAAAGCCAGGAAATGTGAAGAATTCAC ${\tt CTGGAACTAAG} {\color{red}{\textbf{TAG}}} {\color{blue}{\textbf{AAAACTCCATGCTCTGCCATCTTAATCAGTTATAGGTAAACATTGGAAA}}$ CTCCATAGAATAAATCAGTATTTCTACAGAAAAATGGCATAGAAGTCAGTATTGAATGTATTA AATTGGCTTTCTTCAGGAAAAACTAGACCAGACCTCTGTTATCTTCTGTGAAATCATCCT ACAAGCAAACTAACCTGGAATCCCTTCACCTAGAGATAATGTACAAGCCTTAGAACTCCTCAT AAAAAAAAAAAA

FIGURE 550

MFKVIQRSVGPASLSLLTFKVYAAPKKDSPPKNSVKVDELSLYSVPEGQSKYVEEARSQLEES ISQLRHYCEPYTTWCQETYSQTKPKMQSLVQWGLDSYDYLQNAPPGFFPRLGVIGFAGLIGLL LARGSKIKKLVYPPGFMGLAASLYYPQQAIVFAQVSGERLYDWGLRGYIVIEDLWKENFQKPG NVKNSPGTK

Important features:

Signal peptide:

Amino acids 1-23

Transmembrane domain:

Amino acids 111-130

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 26-30

Tyrosine kinase phosphorylation site:

Amino acids 36-44

N-myristoylation sites:

Amino acids 124-130;144-150;189-195