

Unit 4.2 Sequential Systems Design

Contents

- Introduction
- Moore machines
- Mealy machines
- Examples

Bibliography

- Digital Design.
 M. Morris Mano. Prentice-Hall
- Introduction to Digital Logic Design.
 John P. Hayes. Addison-Wesley

Introduction

- Systematic way of designing any machine that passes through different states.

Examples: Counter, traffic lights, vending machine...

- Generally called *Finite State Machines/Automatas*
- Two types:

Mealy Machines

Moore Machines

Mealy Machine

Outputs are a function of both inputs and current state

Moore Machine

Outputs are a function of current state only

Steps to design

- 1- Understand specifications of the problem
- 2- Choose Mealy/Moore based on simplicity
- 3- Draw state diagram
- 4- Codify states and outputs and choose flip-flops
- 5- Obtain output function
- 6- Write transition and excitation table
- 7- Obtain and simplify excitation functions
- 8- Implement the circuit

Example 1: Moore (I)

Design a Moore automata that detects a sequence of tree or more "1" in the input: ...111...

Example 1: Moore (II)

Codify states and outputs:

- -There are 4 states so we need two bits to codify them
- -We use two JK flip-flops
- -Codification:

States	Jł	(s	Output
	Q1	Q0	Z
E0	0	0	0
E1	0	1	0
E2	1	0	0
E3	1	1	1

Obtain output function:

$$Z = Q1 Q0$$

Example 1: Moore (III)

Write transition and excitation table:

Current state	Input	Next state	JK exc	itation
Q1 ^t Q0 ^t	Y	Q1 ^{t+1} Q0 ^{t+1}	J1 K1	J0 K0
E0: 0 0	0	0 0	0 X	0 X
E0: 0 0	1	0 1	0 X	1 X
E1: 0 1	0	0 0	0 X	X 1
E1: 0 1	1	1 0	1 X	X 1
E2: 1 0	0	0 0	X 1	0 X
E2: 1 0	1	1 1	X 0	1 X
E3: 1 1	0	0 0	X 1	X 1
E3: 1 1	1	1 1	X 0	X 0

JK Excitation table

Q ^t Q ^{t+1}	J K
0 0	0 X
0 1	1 X
1 0	X 1
1 1	X 0

Obtain and simplify excitation function:

-Obtain J1, K1, J0 and K0 in terms of Q1^{t+1}, Q0^{t+1} and Y using Karnaugh

-Example

$$J1 = Q0 Y$$

Q1 \ Q0Y	00	01	11	10
0			1	
1	X	X	X	Х

Doing the other Karnaugh Maps:

$$K1 = Y!$$

$$J0 = Y$$

$$K0 = Q1! + Y!$$

Example 1: Moore (V)

Implement the circuit:

Example 2: Mealy (I)

Design a Mealy automata that detects a sequence of tree or more "1" in the input: ...111...

State diagram:

Example 2: Mealy (II)

Codify states and outputs:

- -There are 3 states so we need two bits to codify them
- -We use two JK flip-flops
- -Codification:

Obtain output function:

Q1 \ Q0Y	00	01	11	10
0				
1		(1	X	Х

$$Z = Y Q1$$

States	JKs		Input	Output
	Q1	Q0	Y	Z
E0	0	0	0	0
E0	0	0	1	0
E1	0	1	0	0
E1	0	1	1	0
E2	1	0	0	0
E2	1	0	1	1
E3	1	1	0	X
E3	1	1	1	X

Example 2: Mealy (III)

Write transition and excitation table:

Current state	Input	Next state	JK exc	itation
Q1 ^t Q0 ^t	Y	Q1 ^{t+1} Q0 ^{t+1}	J1 K1	J0 K0
E0: 0 0	0	0 0	0 X	0 X
E0: 0 0	1	0 1	0 X	1 X
E1: 0 1	0	0 0	0 X	X 1
E1: 0 1	1	1 0	1 X	X 1
E2: 1 0	0	0 0	X 1	0 X
E2: 1 0	1	1 0	X 0	0 X
E3: 1 1	0	ХХ	x x	x x
E3: 1 1	1	ХХ	x x	ХХ

JK Excitation table

Q ^t Q ^{t+1}	J K
0 0	0 X
0 1	1 X
1 0	X 1
1 1	X 0

Example 2: Mealy (IV)

Obtain and simplify excitation function:

-Obtain J1, K1, J0 and K0 in terms of Q1^{t+1}, Q0^{t+1} and Y using Karnaugh

-Example

$$J1 = Q0 Y$$

Q1 \ Q0Y	00	01	11	10
0			1	
1	X	X	X	Х

Doing the other Karnaugh Maps:

$$K1 = Y!$$

$$J0 = Y Q1!$$

$$K0 = 1$$

Example 2: Mealy (V)

Implement the circuit:

