

- Water conservation is a critical concern in today's world.
- There is an increasing water scarcity and hence the importance of sustainable water management.
- This project aims to develop an automatic water level control system for a water tank to prevent overflow and wastage.

bigstock.com

- Design and implement an automatic water control system.
- Programming a submersible pump to pump water until it reaches a predetermined level (the top of the tank).
- Automatically turn off the pump to prevent overflow when the water reaches the predetermined level.
- Design a subsystem which can clean the internal walls of the tank

COMPONENTS USED

- Mini submersible water pump
- Water sensor
- Microcontroller (Arduino)
- Water tank (small scale)
- Buzzer
- **LED**
- Jumper wires
- Breadboard
- Resistors
- DC motor
- Improvised shaft

METHODOLOGY

Setup and Assembly

- The mini water pump connected to the water tank inlet.
- The water sensor is attached to the tip of the tank.
- The microcontroller is then programmed to receive input from the water sensor and control the pump operation, i.e. either to turn it on or off.

PROGRAMMING THE MICROCONTROLLER

The microcontroller activates the water pump when the water level is below the predetermined level.

The water sensor then sends a signal to the microcontroller to turn off the water pump when the water level reaches the predetermined level.

ASSEMBLY OF THE BREADBOARD

- Two LEDs and a buzzer were connected to different digital pins of the Arduino board.
- The sketches written (the code) was so as to accept input from the water sensor in values ranging from 0 to about 800. The higher the value, the greater the area of water that covers the water sensor.
- The resistors are in place to protect the LEDs.

- The automatic water pump system successfully controls the water level in the tank.
- The pump is activated when the water level is below the predetermined level.
- Pump is automatically turned off when the water level reaches the predetermined level, preventing overflow and conserving water.

HOW ISTHIS PROJECT INNOVATIVE?

AUTOMATION: THE
SYSTEM OPERATES
AUTONOMOUSLY,
REDUCING THE NEED
FOR MANUAL
MONITORING AND
INTERVENTION. THUS, IT
DOES NOT NEED A
HUMAN PRESENCE.

PRECISION CONTROL:
IT UTILIZES A WATER
SENSOR TO
ACCURATELY DETECT
AND CONTROL THE
WATER LEVEL, ENSURING
EFFICIENT USE OF WATER.

SCALABILITY: THE
SYSTEM CAN BE SCALED
UP AND IMPLEMENTED IN
LARGER WATER STORAGE
SYSTEMS FOR BROADER
WATER CONSERVATION
EFFORTS.

REAL-LIFE
APPLICATION: THE
SYSTEM ADDRESSES A
REAL-LIFE PROBLEM OF
WATER WASTAGE
DURING TANK FILLING,
PROVIDING A PRACTICAL
SOLUTION FOR WATER
CONSERVATION.

CONCLUSION

The developed system demonstrates an effective method for conserving water by preventing overflow and wastage.

FUTURE IMPROVEMENTS

- Integration of a more advanced water level sensor for improved accuracy and reliability.
- Mobile App Integration: Develop a mobile application to remotely monitor the water level, control the pump, and receive alerts when the water level reaches the predetermined level or in case of any malfunctions.
- Water Quality Monitoring: Integrate a water quality sensor to monitor and alert about the water quality, ensuring the water being pumped into the tank is clean and safe for use.