Permit Numbers 142261 and N254

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission Rates	
No. (1)		Name (3)	lbs/hour	TPY (4)
TK-1601	IFR Storage Tank 1601	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1602	IFR Storage Tank 1602	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1603	IFR Storage Tank 1603	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1604	IFR Storage Tank 1604	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-1605	IFR Storage Tank 1605	VOC	16.02	(6)
	(Phase 1)	H ₂ S	0.03	(6)
TK-803	IFR Storage Tank 803 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-808	IFR Storage Tank 808 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-809	IFR Storage Tank 809 (Phase 1)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-601	IFR Storage Tank 601 (Phase 1)	VOC	26.34	(6)
		H ₂ S	0.06	(6)
TK-201	IFR Storage Tank 201	VOC	3.48	(6)
	(Phase 1)	H ₂ S	0.01	(6)
TK-202	IFR Storage Tank 202	VOC	3.48	(6)
	(Phase 1)	H ₂ S	0.01	(6)
TK-1606	IFR Storage Tank 1606	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1607	IFR Storage Tank 1607	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1608	IFR Storage Tank 1608	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1609	IFR Storage Tank 1609	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)

Project Numbers: 276392

TK-1610	IFR Storage Tank 1610	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1611	IFR Storage Tank 1611 (Phase 2)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1612	IFR Storage Tank 1612	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1613	IFR Storage Tank 1613	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1614	IFR Storage Tank 1614	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1615	IFR Storage Tank 1615	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1616	IFR Storage Tank 1616	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1617	IFR Storage Tank 1617 (Phase 2)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1618	IFR Storage Tank 1618 (Phase 2)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1619	IFR Storage Tank 1619	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1620	IFR Storage Tank 1620	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1621	IFR Storage Tank 1621	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1622	IFR Storage Tank 1622	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1623	IFR Storage Tank 1623	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-1624	IFR Storage Tank 1624	VOC	16.02	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-402	IFR Storage Tank 402	VOC	26.34	(6)
	(Phase 2)	H ₂ S	0.06	(6)
TK-403	IFR Storage Tank 403	VOC	14.42	(6)

		H ₂ S	0.03	(6)
TK-203	IFR Storage Tank 203	VOC	3.48	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-204	IFR Storage Tank 204	VOC	3.48	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-802	IFR Storage Tank 802	VOC	12.52	(6)
	(Phase 2)	H ₂ S	0.03	(6)
TK-101	IFR Storage Tank 101	VOC	4.73	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-102	IFR Storage Tank 102	VOC	4.73	(6)
	(Phase 2)	H ₂ S	0.01	(6)
TK-1625	IFR Storage Tank 1625	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1626	IFR Storage Tank 1626 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1627	IFR Storage Tank 1627 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1628	IFR Storage Tank 1628 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1629	IFR Storage Tank 1629	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1630	IFR Storage Tank 1630	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1631	IFR Storage Tank 1631	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)
TK-1632	IFR Storage Tank 1632	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1633	IFR Storage Tank 1633	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1634	IFR Storage Tank 1634	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1635	IFR Storage Tank 1635	VOC	16.02	(6)
	(Future Phase)	H₂S	0.03	(6)

TK-1636	IFR Storage Tank 1636	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1637	IFR Storage Tank 1637 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1638	IFR Storage Tank 1638 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1639	IFR Storage Tank 1639	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1640	IFR Storage Tank 1640	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1641	IFR Storage Tank 1641 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1642	IFR Storage Tank 1642 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1643	IFR Storage Tank 1643 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1644	IFR Storage Tank 1644 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1645	IFR Storage Tank 1645	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1646	IFR Storage Tank 1646	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1647	IFR Storage Tank 1647	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1648	IFR Storage Tank 1648	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1649	IFR Storage Tank 1649	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1650	IFR Storage Tank 1650	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1651	IFR Storage Tank 1651	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1652	IFR Storage Tank 1652	VOC	16.02	(6)

		H₂S	0.03	(6)
TK-1653	IFR Storage Tank 1653 (Future Phase)	VOC	16.02	(6)
		H ₂ S	0.03	(6)
TK-1654	IFR Storage Tank 1654	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1655	IFR Storage Tank 1655	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1656	IFR Storage Tank 1656	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-1657	IFR Storage Tank 1657	VOC	16.02	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-801	IFR Storage Tank 801 (Future Phase)	VOC	12.52	(6)
		H₂S	0.03	(6)
TK-804	IFR Storage Tank 804 (Future Phase)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-805	IFR Storage Tank 805 (Future Phase)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-806	IFR Storage Tank 806 (Future Phase)	VOC	12.52	(6)
		H ₂ S	0.03	(6)
TK-807	IFR Storage Tank 807	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-810	IFR Storage Tank 810	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-811	IFR Storage Tank 811	VOC	12.52	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-602	IFR Storage Tank 602	VOC	14.42	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-603	IFR Storage Tank 603	VOC	14.42	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-404	IFR Storage Tank 404	VOC	14.42	(6)
	(Future Phase)	H ₂ S	0.03	(6)
TK-205	IFR Storage Tank 205	VOC	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)

TK-206	IFR Storage Tank 206 (Future Phase)	VOC	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)
TK-207	IFR Storage Tank 207	VOC	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)
TK-208	IFR Storage Tank 208	VOC	3.48	(6)
	(Future Phase)	H₂S	0.01	(6)
IFRCAP (6)	IFR Storage Tank Annual Cap	VOC	-	15.11
	(Phase 1)	H₂S	-	0.03
	IFR Storage Tank Annual Cap	VOC	-	43.64
	(Phases 1 & 2)	H ₂ S	-	0.07
	IFR Storage Tank Annual Cap	VOC	-	106.25
	(All Phases)	H ₂ S	-	0.17
ADD-1	Additive Storage Tank (Phase 2)	VOC	0.92	(7)
ADD-2	Additive Storage Tank (Phase 2)	VOC	0.35	(7)
ADD-3	Additive Storage Tank (Phase 2)	VOC	8.30	(7)
ADD-4	Additive Storage Tank (Phase 2)	VOC	0.14	(7)
ADD-5	Additive Storage Tank (Phase 2)	VOC	7.42	(7)
ADD-6	Additive Storage Tank (Phase 2)	VOC	1.13	(7)
ADD-7	Additive Storage Tank (Phase 2)	VOC	22.13	(7)
ADD-8	Additive Storage Tank (Phase 2)	VOC	0.06	(7)
ADD-9	Additive Storage Tank (Phase 2)	VOC	0.02	(7)
ADD-10	Additive Storage Tank (Phase 2)	VOC	1.36	(7)
ADD-11	Additive Storage Tank (Phase 2)	VOC	0.14	(7)
ADD-12	Additive Storage Tank (Future Phase)	VOC	1.13	(7)
ADD-13	Additive Storage Tank (Future Phase)	VOC	1.13	(7)

ADDCAP (7)	Additive Storage Tank Annual Cap (Phase 2)	VOC	-	0.18
	Additive Storage Tank Annual Cap (All Phases)	VOC	-	0.19
TK-51	Biodiesel Storage Tank (Phase 2)	VOC	4.19	0.35
TK-151	Biodiesel Storage Tank (Future Phase)	VOC	4.19	1.03
TK-152	Biodiesel Storage Tank (Future Phase)	VOC	4.19	1.03
MLVRU-1	Marine Loading VRUs 1 & 2	VOC	10.51	(8)
MLVRU-2	(Ship Dock 1) (Phase 1)	H ₂ S	0.02	(8)
MLVRU-3	Marine Loading VRUs 3 & 4	VOC	10.51	(8)
MLVRU-4	(Ship Dock 2 & Barge Dock 1) (Phase 2)	H ₂ S	0.02	(8)
MLVRU-5	Marine Loading VRUs 5 & 6	VOC	10.51	(8)
MLVRU-6	(Ship Dock 3) (Future Phase)	H ₂ S	0.02	(8)
MLVRU-7	Marine Loading VRUs 7 & 8 (Ship Dock 4) (Future Phase)	VOC	10.51	(8)
MLVRU-8		H ₂ S	0.02	(8)
MLVRUCAP (8)	Marine Loading VRU Annual Cap	VOC	-	9.59
	(Phase 1)	H ₂ S	-	0.02
	Marine Loading VRU Annual Cap (Phases 1 & 2)	VOC	-	21.29
		H ₂ S	-	0.04
	Marine Loading VRU Annual Cap	VOC	-	40.48
	(All Phases)	H₂S	-	0.08
MLOAD	Marine Loading Fugitives	VOC	18.32	3.38
	(Phase 1)	H₂S	<0.01	<0.01
	Marine Loading Fugitives	VOC	36.64	6.76
	(Phases 1 & 2)	H ₂ S	0.01	0.01
	Marine Loading Fugitives	VOC	73.28	13.52
	(All Phases)	H₂S	0.02	0.02
TLVRU	Tank Truck Loading VRU (Phase 2)	VOC	0.40	1.28
	Tank Truck Loading VRU (All Phases)	VOC	1.00	3.20

TUNLOAD	Tank Truck Unloading Fugitives (Phase 1)	VOC	2.68	7.91
	Tank Truck Unloading Fugitives (Phases 1 & 2)	VOC	3.00	8.61
	Tank Truck Unloading Fugitives (All Phases)	VOC	5.67	16.52
FUG	Process Fugitives (5)	VOC	0.31	1.36
	(Phase 1)	H₂S	<0.01	<0.01
	Process Fugitives (5)	VOC	0.79	3.47
	(Phases 1 & 2)	H₂S	<0.01	0.01
	Process Fugitives (5)	VOC	1.59	6.98
	(All Phases)	H ₂ S	<0.01	0.02
ENG-1	Fire Water Pump Engine 1	VOC	3.78	0.19
	(Phase 1)	NO _x	3.78	0.19
		СО	3.32	0.17
		PM	0.20	0.01
		PM ₁₀	0.20	0.01
		PM _{2.5}	0.20	0.01
		SO ₂	0.01	<0.01
ENG-2	Fire Water Pump Engine 2 (Phase 1)	VOC	3.78	0.19
		NO _x	3.78	0.19
		СО	3.32	0.17
		PM	0.20	0.01
		PM ₁₀	0.20	0.01
		PM _{2.5}	0.20	0.01
		SO ₂	0.01	<0.01
ENG-3	Fire Water Pump Engine 3	VOC	5.26	0.26
	(Phase 2)	NO _x	5.26	0.26
		СО	4.62	0.23
		PM	0.28	0.01
		PM ₁₀	0.28	0.01
		PM _{2.5}	0.28	0.01
		SO ₂	0.01	<0.01

SUMP	Sumps (Phase 1)	VOC	2.45	0.30
	Sumps (Phase 1 & 2)	VOC	7.34	0.89
	Sumps (All Phases)	VOC	9.78	1.18
TKVCU-1	Tank VCU (10)	VOC	39.77	(9)
	(Phase 1)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H₂S	0.07	(9)
TKVCU-2	Tank VCU (10) (Phase 2)	VOC	39.77	(9)
		NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H₂S	0.07	(9)
TKVCU-3	Tank VCU (10)	VOC	39.77	(9)
	(Future Phase)	NO _x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM ₁₀	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H ₂ S	0.07	(9)

TKVCU-4	Tank VCU (10)	VOC	39.77	(9)
	(Future Phase)	NO_x	25.89	(9)
		СО	111.02	(9)
		PM	0.16	(9)
		PM_{10}	0.16	(9)
		PM _{2.5}	0.16	(9)
		SO ₂	0.15	(9)
		H ₂ S	0.07	(9)
TKVCUCAP (9)	Tank VCU Annual Cap (10)	VOC	-	1.85
	(Phase 1)	NO_x	-	2.28
		CO	-	5.93
		PM	-	0.09
		PM_{10}	-	0.09
		$PM_{2.5}$	-	0.09
		SO ₂	-	0.01
		H ₂ S	-	<0.01
	Tank VCU Annual Cap (10) (Phases 1 & 2)	VOC	-	6.86
		NO_x	-	8.47
		CO	-	22.00
		PM	-	0.34
		PM_{10}	-	0.34
		PM _{2.5}	-	0.34
		SO ₂	-	0.05
		H ₂ S	-	0.01
	Tank VCU Annual Cap (10)	VOC	-	17.57
	(All Phases)	NO_x	-	22.14
		СО	-	56.66
		PM	-	0.91
		PM_{10}	-	0.91
		$PM_{2.5}$	-	0.91
		SO_2	-	0.13

		H₂S	-	0.03
PORTVCU	Portable VCU (11)	VOC	2.35	0.18
		NO _x	1.33	0.13
		CO	2.61	0.22
		PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		SO ₂	0.01	<0.01
		H ₂ S	<0.01	<0.01
	Portable VCU (11)	VOC	2.35	0.37
		NO _x	1.33	0.26
		CO	2.61	0.44
		PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		SO ₂	0.01	<0.01
		H ₂ S	<0.01	<0.01
TKVENT	Tank MSS Fugitives (12)	VOC	52.76	0.90
		H ₂ S	<0.01	<0.01
	Tank MSS Fugitives (12)	VOC	52.76	1.02
		H₂S	<0.01	<0.01
	Tank MSS Fugitives (12)	VOC	52.76	1.04
		H₂S	<0.01	<0.01

				,	
(1) F	PPRISGITRUMINT	identification Pertables Florind 1-2 uipment desig	VOC	541.76 t number from ple	0.27
(2) (3)		ource name. For fugitive sources, use area na	ame or fught the source n	ame. 73.49	0.04
(3)	VOC NO _x	 volatile organic compounds as defined in total oxides of nitrogen 	Title 30 Texas Administ	rative Code § 10 146.72	0.07
	SO ₂	- sulfur dioxide - total particulate គេដីមេខុ វៀទីpended in the	VOC	541.76	0.54
	PM PM ₁₀	 total particulate matter equal to or less that 	an 10 micr\delta Rs in diamet	er, inc/13c/149g PM ₂	.5, as 0.08
	PM _{2.5}	represented - particulate matter equal to or less than 2.!	microns in diameter	146.72	0.14
	CO H₂S	- carbon monoxide - hydrogen Stimble Flare (13)	VOC	541.76	0.66
(4)	Compliance wi	th annual emission limits (tons per year) is bas	ed on a 1প্রক্রিonth rollin	g peri ð 3. 49	0.09
(5)	Emission rate i permit applicat	s an estimate and is enforceable through com on representations.	pliance with the applica CO	ble special condi 146.72	ion(s) and 0.18
(6)	√ I cotalooutine a	nnual emissionshor http://stosagagtenks are limit	ed to the votes represe	nted under EPN I	FRCA _{0:03}
(7) (8)	Total routine ai Total annual er	nnual emissions for packlitive tanks are limited t missions for marine loading VRU's are limited	o the rates represented to the rateਤੋ ਕੋਊpresented	under EPN ADD I under ŒPN MLV	CAP. (RUCAP:01
(9)	Total annual er	nissions for tank VCU's are limited to the rates	represented under EP	N ТКVÇЫСАР.	0.06
(10)	maintenance ta	illed tank Y∂6f4kMdTrigGehi93fðing (કી&hding idle ink roof landings.	H₂S	<0.01	< 0.01
(11)	Includes contro	lled tank roof landing emissions (standing idlengs and elastions landing emissions (standing idlengs and elastions landing emissions (standing idlengs and elastions landing emissions idlengs and elastions landing emissions (standing idlengs idlen	, degassing cleaning, a	ınd refilliឡូ្ម) from	maintenance
(12)	Includes uncon	trolled tank roof landing emissions (standing i	dle degaststiκSα post-cou	ntrolve60t0m1a and	refillir@. @
(1.2)	routine and ma	intenance tank roof landings. Also includes p	ost-control venting emis	sions from press	ure tanks 0.21
(13) (14)		lled deg assing:efritsionsମାଫମନ୍ତି ୧\$\$ ùre tanks ions from loading of vacuum trucks and vacuu		0.01	<0.01
(15)		ions from draining and venting process equipr Process Equipment MSS (15)			0.42
		(Phases 1 & 2)	H ₂ S	0.01	<0.01
		Process Equipment MSS (15)	VOC Date	: 5.36 _{ebruar}	y 20, 2 0 8
			H₂S	0.01	<0.01