معمارية الحاسوب

Architecture Computer

ITES 223

د. رمزي القانوني أ. ناجية بن سعود

ITGS 223

خريف 2022- 2023

المحاضرة التحاسة: Arithmetic & Logic Unit الحساب في الحاسب

Binary Digits

العد الثنائي

أن الاساس المستعمل في النظام الثنائي هو 2 ويتكون هذا النظام من رقمين فقط هما 0 و 1 ويسمي كل منهما رقماً ثنائياً Binary Digit

ولتمثيل كل من الرقمين 0،1 فإنه لا يلزم الاخانة واحدة لهذا السبب أصبح من الشائع إطلاق اللهم Bit على الخانة التي يحتلها الرقم داخل العدد الثنائي.

ımzi elghanuni

Binary Number Presentation

تمثيل الاعداد الثنائية

الانظمة العددية:

- النظام العشري.
 - النظام الثنائي.
- النظام الثماني. النظام السادس عشري. النظام السادس عشري.
- فَيِّي النظام الثنائي يتم الحساب...1,2,4,8,16

1x8+1x4+0x2+1x1+1x(1/2)+0x(1/4)+1x(1/8)=13.625 in Decimal

How to Convert

طرق التحويل

من ثنائي إلى العشري

من العشري إلى الثنائي

Arithmetic & Logic Unit وحدة الحساب والمنطق

لله هي ذلك الجزء من الحاسب الذي ينفذ العمليات الحسابية والمنطقية على البيانات. كل العناصر الأخرى المكونة لنظام الحاسب (وحدة التحكم والمسجلات والذاكرة و الله الله الإحضار البيانات إلى وحدة الحساب و المنطق لغرض الله عالجة من ثم العودة بالنتائج.

والمنطق: -

- تتعامل مع أرقام النقطة العائمة.
- ✓ تتعامل مع الاعداد الصحيحة والحقيقة.
 - ◄ تتعامل مع العمليات المنطقية.

ALU Inputs and Outputs

مدخلات ومخرجات وحدة الحساب والمنطق

ح يتم تقديم البيانات إلى وحدة الحساب والمنطق من المسجلات.

Register هي أماكن تخزين مؤقتة داخل المعالج ترتبط بوحدة ALU بواسطة مسارات إشارة.

A Dr. ramzi elghanuni

ALU Inputs and Outputs

مدخلات ومخرجات وحدة الحساب والمنطق

ALU قد تضبط اعلام (Flags) نتيجة لعملية ما.

وحدة التحكم تقدم الاشارات التي تتحكم في عمل ALU وحركة البيانات من والي

ALU

Integer Representation

تمثيل الاعداد الصحيحة

- ﴿ لدينا فقط 0 و 1 لتمثيل كل شيء.
 - تمثيل الاعداد الصحيحة الموجبة.

$$41 = 00101001$$

$$128 = 10000000$$

- ◄ لغرض التخزين والمعالجة بالحاسب ليس هناك داعى:
 - علامة السالب (-).
 - الفاصلة (.).
 - ح طرق التمثيل
- المكمل الثنائي (Two's compliment).
 - إشارة المقدار (Sign-Magnitude).

Sign-Magnitude

اشارة المقدار

ح الخانة في اقصى اليسار هي خانة الاشارة

Sign				
bit				

اذا كانت () تدل على الاشارة الموجبة.

ح اذا كانت 1 تدل على الاشارة السالبة.

ح يتكون العدد الممثل بهذه الطريقة من جزئيين هما: الاشارة والمقدار

المقدار الأشارة

0 00011000

1 10011000

ızi elghap**u**ni

10

Sign-Magnitude

اشارة المقدار

سلبيات تمثيل الإشارة و المقدار (Sign-Magnitude)

الجمع والطرح يتطلب مراعاة اشارات الاعداد و كذلك مقادير ها لتنفيذ العملية المطلوبة.

هناك تمثيلين للصفر: مناك تمثيلين المسفر:

$$-0_{10} = 10000000$$

$$+ 0_{10} = 000000000$$

Two's Complement

المكمل الثنائي

للتغلب على عيوب التمثيل السابق وجد تمثيل المكمل الثناني ، حيث يوجد تمثيل واحد

للصفر (0) و كذلك يمكن إجراء العمليات الحسابية مباشرة بدون مراعاة لإشارة الرقم.

أُمثيل الأرقام الصحيحة يتم بإضافة 1 الى العدد ممثلا بالمكمل الاحادي

المثلا:

$$+3 = 00000011$$

$$+2 = 00000010$$

$$+1 = 00000001$$

$$+0 = 000000000$$

$$-1 = 111111111$$

$$-2 = 111111110$$

$$-3 = 111111101$$

Benefits القوائد

- يوجد تمثيل واحد للصفر (0).
- 🚆 يمكن إجراء العمليات الحسابية مباشرة بدون مراعاة لإشارة الرقم.
- تمثيل المكمل الثنائي يستخدم الخانة الأقوى كخانة اشارة، مما يسهل اختبار ما إذا كان العدد موجب أو سالب.

فقتلا

-3 = 00000011 المكمل الاحادي 11111100 المكمل الاحادي 11111101

Benefits

الفوائد

	Example 1	Example 2
إيجاد المكمل المنطقي لكل خانة من العدد الصحيح بما في ذلك خانة الاشارة ، بمعنى تغيير كل 1 الى 0 و كل 0 الى 1	0101001	0101100
معالجة النتيجة كعدد ثنائي صحيح بدون اشارة ، إضافة 1	1010111	1010100

Dr. ramzi elghani العداد

(Unsigned)
$$0 \sim (2^8 - 1)$$

$$0 \sim 255$$

(Signed) -
$$2^7 \sim + (2^7 - 1)$$

$$-128 \sim 127$$

2 complement negation: Special Case-1

المكمل الثنائي: الحالة الخاصة الاولي

هناك حالتين يجب اخذهما في الاعتبار، اولا، S=0 ، في حالة كلمة S=0

يوجد حمل ناتج من الخانة الاقوى و تم تجاهله. والنتيجة هي أن معكوس 0 هو 0 كما ينبغي أن يكون.

يتي تجاهل الفائض (Overflow).

2 complement negation: Special Case-2

المكمل الثنائي: الحالة الخاصة الثانية

وهي أكثر من معضلة ، لو أخذنا معكوس لنمط من الخانات يبدأ 1 يتبعه اصفار بالكامل السيل المثال، كلمة من 8 خانات:

$$(-128)_{10} = 10000000$$

(المكمل الأول) = 01111111 $\frac{+ 1}{10000000}$ (المكمل الثاني) = $(-128)_{10}$

مثل هذا الشدود لا مفر منه.

Addition الجمع

الجمع باستخدام المكمل الثاني.

إلجمع يتم كما لو ان العددان صحيحان بدون اشارة.

لو كان ناتج العملية موجب سوف نحصل على رقم موجب في شكل صحيح.

- الوكان ناتج العملية سالب سوف نحصل على رقم سالب في شكل المكمل الثنائي .
 - في بعض الحالات يوجد حمل ناتج.

في أي عملية جمع فإنه من الممكن أن يكون الناتج أكبر من حجم الكلمة المستخدمة لحمله وهذا ما يسمى بالقيض. عندما يحدث فيض ، يجب وحدة الحساب و المنطق أن تؤشر لهذا

. ramzı elghanı

Addition Example

جمع الأرقام بصيغة المكمل الثاني

$ \begin{array}{r} 1001 = -7 \\ +0101 = 5 \\ \hline 1110 = -2 \end{array} $	$ \begin{array}{rcl} 1100 & = & -4 \\ +0100 & = & 4 \\ \hline 10000 & = & 0 \end{array} $
(a) (-7) + (+5)	(b) (-4) + (+4)
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 +1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + $0100 = 4$ 1001 = Overflow	1001 = -7 + $1010 = -6$ 10011 = Overflow
(e) (+5) + (+4)	(f) (-7) + (-6)

Subtraction Example

طرح الأرقام بصيغة المكمل الثاني

قاعدة الطرح: لطرح عدد واحد (المطروح S) من آخر (الطارح M) ، نأخذ المكمل الثاني للمطروح و نجمعه مع الطارح.

$ \begin{array}{rcl} 0010 & = & 2 \\ +\underline{1001} & = & -7 \\ 1011 & = & -5 \end{array} $	$ \begin{array}{rcl} 0101 & = & 5 \\ +1110 & = & -2 \\ \hline 10011 & = & 3 \end{array} $
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ \begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ \hline 1001 = -7 \end{array} $	$ \begin{array}{rcl} 0101 &=& 5 \\ +\underline{0010} &=& 2 \\ 0111 &=& 7 \end{array} $
(c) $M = -5 = 1011$	(d) M = 5 = 0101
S = 2 = 0010	S =-2 = 1110
-S = 1110	-S = 0010
0111 = 7 + $0111 = 7$ 1110 = Overflow	$ \begin{array}{r} 1010 = -6 \\ +1100 = -4 \\ \hline 10110 = Overflow \end{array} $
(e) $M = 7 = 0111$	(f) M = -6 = 1010
S = -7 = 1001	s = 4 = 0100
-S = 0111	-s = 1100

Dr. ramzi elghanun

Dr. ramzi elghanuni

Hardware for Addition and Subtraction

مكونات الكيان المادي الخاص بعملية الجمع والطرح

OF = overflow bit SW = Switch (select addition or subtraction)

Multiplication الضرب

- الضرب عملية معقدة .
- سواء أجريت بالكيان المادي أو برنامج .
- استخدمت مجموعة واسعة من الخوار زميات لهذا الغرض.

ramzi elghanuni

Dr. ramzi elghanuni

Multiplication Example

ضرب الأرقام الثنائية الصحيحة بدون اشارة

 $\begin{array}{c}
1011 \\
\times 1101 \\
\hline
1011 \\
0000 \\
1011 \\
\underline{1011} \\
10001111
\end{array}
\begin{array}{c}
Multiplicand (11) \\
Multiplier (13)
\end{array}$ Partial products $\begin{array}{c}
1011 \\
10001111
\end{array}$ Product (143)

Flowchart for Unsigned Binary Multiplication

المخطط الانسيابي لضرب الارقام الثنائية الصحيحة بدون اشارة

Dr. ramzi elghanuni

Dr. ramzi elghanuni

Unsigned Binary Multiplication

ضرب الارقام الثنائية الصحيحة بدون اشارة

Multiplying Negative Numbers ضرب الارقام السالبة

أن الضرب لن يعمل إذا كان المضروب سالب . هناك عدد من الطرق للخروج من هذه المعضلة:

خوارزمية "بووث" Booth's algorithm.

هذه الخوارزمية لديها ميزة تسريع عملية الضرب مقارنة بالطريقة التقليدية.

Division

القسمة

العملية تنطوي على الازاحة المتكررة والجمع أو الطرح.

- الأرقام السالبة صعبة جدا.
 - بناء القسمة المطولة.

Division of Unsigned Binary Integers

مثال على التقسيم الارقام الثنائية الصحيحة بدون اشارة

Dr. ramzi elghanuni

Flowchart for Unsigned Binary Division

المخطط الانسيابي للتقسيم الارقام الثنائية الصحيحة بدون اشارة

Ex		$(7)_{10}/(3)$ $(0111)_{2}/(3)$	
n	Α	Q	M=0011
3	0000	1110	Shift
	1101 0000	1110	Subtract restore
1	0011 0000	1000	Shift Subtract

Dr. ramzi elghanuni

الشكل (4.9) – المخطط الأنسيابي لعملية القسمة للأعداد الثنانية الصحيحة بدون إشارة

Α (Q M=0011 (772)
	مثال على القسمة: (تقسيم 10(7/3)) ، M=0011 مثال على القسمة:
0000 01	منان على المدنية المدنية المدنية المدنية
0000	الأواحة 110
1101	
0000	للطرح نستخدام المكمل الثاني للعند 1001 طرح مارح ما مادة قيمة 10
0001	$\frac{10}{4}$ منع $Q_0 = 0$ ، أعادة قيمة $Q_0 = 0$
1101	
0001 116	سرح م
0011	$Q_0 = Q_0$ اعلاءَ آمِینَ $Q_0 = Q_0$ اعلاءَ آمِینَ $Q_0 = Q_0$
1101 100 0000	ازاحة 00
100	
0001	ضع Qo = 1 طرح ا
1101 0010 1110	(Las 0
001	مارح
0016	A Lystal , Qo = O en

Floating Point

النقطة العائمة

الهدف من النقطة العائمة:

ح تصغير حيز التمثيل للأعداد.

﴿ تمثيل أعداد كثير جدا.

إلى تمثيل أعداد صغيره جدا

﴿ الدقة في العمليات الحسابية وتقليل الأخطاء التراكمية.

الذاكرة. ﴿ يُوفير في الذاكرة.

أي عدد يكتب على شكل خانات الكسر (S=Significand) خانة القوة E=Exponent) القاعدة (B=Base) القاعدة (القاعدة وفق العلاقة التالية (القاعدة للرقم الثنائي).

Dr. ramzi elghanuni

Floating Point Examples

مثال النقطة العائمة

تمثيل النقطة العائمة للإعداد بصيغة 1EEE-754

من أشهر تمثيلات النقطة العائمة للإعداد هي صيغة 754-JEEE أحادية الدقة [32 خانة] ويتم تمثيل العدد على شكل الصيغة القياسية التالية:

(-1) X (1.Fraction)X2

Exponent-Bias

أرقام محدودة قد يكون أساسها 2 (ثنائي) أو 10 (عشري). يمكن وصف أي رقم

محدود ببساطة من خلال ثلاثة أعداد صحيحة:

حيث [إشارة العدد (صفر أو واحد)

Fraction قيمة الكسر

Exponent-Bias قيمة الاس مضاف إليها 127

تمثيل النقطة العائمة للإعداد بصيغة 1EEE-754

مثال:

```
(-353.625)10 العدد
      تحويل العدد إلى النظام الثنائي 2 (101100001.101)
                                (1)_2 ullus later (1)_2
      تعديل العدد للصيغة القياسية (2*1.01100001101)
                    بعد التعديل 2(01100001101)
(10000111)_2 = 135 = 127 + 8 إيجاد قيمة الأس بالثنائي
```

تمثيل النقطة العائمة للإعداد بصيغة 1EEE-754

```
مثال:
                             العدد (0.09375) العدد
             تحويل العدد إلى النظام الثنائي (0.00011)
                              العدد موجب (0)
                 تعديل العدد للصيغة القياسية (2*1.1)
                           بعد التعديل الكسر 1(2)
(01111011)_2 = 123 = 127 + -4 إيجاد قيمة الأس بالثنائي
```