

United Arab Emirates University College of Engineering Graduation Project II Course

Designing and building a cooling system with enhanced heat transfer features based on novel ideas utilizing heat transfer cooling media

Presented by:

Muneera Al Hammadi 201103471

Alaa Ahmed Bashir 201150368

Fatima Al Hamlawi 201150593

Project Advisor:

Dr. Salah Addin Al Omari

Outline

- Problem Statement andPurpose
- Project Objectives
- Proposed and SelectedConceptual Designs
- **■** Embodiment Design
- **►** Literature Review
- Detailed level specifications
- Design calculations
- Detailed Design alternatives
- Formal Decision-Making Process

- Analysis and Optimization
- Final Cost Analysis and Discussion
- Methods of realizing final design
- **■** Testing
- Health, Safety, Quality, and Reliability
- Performance evaluation
- Environmental analysis and discussion
- New skills learnt and Way forward

Problem Statement and Purpose

- Technology is a leading industry and is undergoing rapid developments
- UAE computer market was estimated around 15.75 billion AED in 2013
- It is expected that it will grow at a rate of 8.47% until 2018 (Dubai chamber, 2013)
- Computers should be able to:
 - I. process more data in less time
 - II. become smaller in size
 - III. become more accessible
- ► 55% of all computer failures happen due to overheating
- Electronic devices cooling systems most coveted traits include:
 - I. High effectiveness
 - II. Have better performance
 - III. Compact size

Problem Statement and Purpose

■ In older CPUs overheating meant immediate failure, in modern ones it means a much slower system.

Purpose and objectives:

- building an enhanced cooling system for electronic devices
- Explore different configurations of cooling systems along with various cooling fluids that can be utilized within the design

Effect of amount of time the CPU temperature was running at > 99 °C on frequency, courtesy of Intel corporation

Proposed Conceptual Designs

Selected Conceptual Design

Embodiment Design

- The system comprised of
 - Substrate
 - → Heat sink
 - Bubble distributor
 - Pump

8

Relevant Literature Search

Detailed level specifications

The system consists of:

- 1. Gallium container
- 2. Hot water circuit which consists of:
 - a. Hot water pump
 - b. Substrate
 - c. Bubble distributor
- 3. Cooling water circuit which consists of:
 - a. Cooling water pump
 - b. Cooling water network
 - c. Water reservoir

Detailed level specifications

■ Selection criteria:

- 1. Selected pump should consider:
 - The required head
 - The required volumetric flow rate.
 - Noise level (<30dBA)</p>

2. Selected substrate should:

- Absorb the heat effectively
- Maintain the CPU at the operational temperature

3. Selected material should

- Compatible with gallium
- Highly conductive

System design calculations

- Gallium container
 - a. Container dimensions
 - b. Gallium height
- 2. Hot water circuit:
 - a./ Total head required (Hot water pump selection)
 - b. Substrate configuration
 - c. Water flow rate through the substrate
 - d. Bubble distributor's
 - i. Number of holes
 - ii. Number of tubes

- 3. Cooling water circuit:
 - a. Total head required (Cooling water pump selection)
 - b. Cooling water network configuration
 - c. Cooling water flow rate

- Cooling water circuit calculation
 - Given Information:

Inlet temperature (Ti)	20 °C
Outlet temperature (Te)	25 °C
Tube diameter (D)	2 mm (Assumption)
Density (p)	995 kg/m3
Thermal conductivity (k)	0.619 W/m.K
Viscosity (µ)	7.98x10-4 Pa.s
Heat capacity (cp)	4018 W/°C
Prantl Number (Pr)	5.125

Cooling water circuit calculation

Varying the water mass flow rate (\dot{m}_{CW}) from 0.0001 kg/s until 0.06 kg/s

Testing the range for different number of tubes

Finding best
combination of the mass
flow rate and number of
tubes to remove 340 W

System design calculations

- Gallium container
 - a. Container dimensions
 - b. Gallium height
- 2. Hot water circuit:
 - a./ Total head required (Hot water pump selection)
 - b. Substrate configuration
 - c. Water flow rate through the substrate
 - d. Bubble distributor's
 - i. Number of holes
 - ii. Number of tubes

3. Cooling water circuit:

- a. Total head required (Cooling water pump selection)
- b. Cooling water network configuration
- c. Cooling water flow rate

Hot water circuit calculation

- The same procedure was followed to find the mass flow rate in the substrate except:
 - i. Inlet temperature (T_i) = 30 °C
 - ii. Outlet temperature (T_e) = 70 °C
 - 流. Tube length: 4 cm

Hot water and cold water circuit conclusion:

Circuit	Mass flow rate (kg/s)	Volumetric flow rate (LPM)	Number of tubes	
Cooling water circuit	0.0481	2.9	5	
Hot water circuit	0.0376	2.24	5	

System design calculations

- 1. Gallium container
 - a. Container dimensions
 - b. Gallium height
- 2. Hot water circuit:
 - a./ Total head required (Hot water pump selection)
 - b. Substrate configuration
 - c. Water flow rate through the substrate
 - d. Bubble distributor's
 - i. Number of holes
 - ii. Number of tubes

3. Cooling water circuit:

- a. Total head required (Cooling water pump selection)
- b. Cooling water network configuration
- c. Cooling water flow rate

Bubbling system Calculation:

Given Information:

Inlet temperature (T _i)	70 C
Outlet temperature (T _e)	30 C
Gravitational acceleration (g)	9.81 m/s ²
Bubble radius (r)	1.5 mm
Water density ($ ho_g$)	985 kg/m ³
Gallium density ($ ho_g$)	5910 kg/m ³
Gallium viscosity (μ_g)	0.0015 Pa.s
Gallium thermal conductivity (k)	40.6 W/m.K

Bubbling system Calculation:

To illustrate bubble motion inside gallium bath, Newton second law is applied:

$$\sum F = ma$$

$$F_B - W - F_D = ma$$

$$\rho_g v_w g - \rho_w v_w g - \frac{1}{2} \rho_g V^2 A C_D = ma$$

$$202x10^3r^3 = 9.3x10^3V^2r^2C_D + 4.2x10^3r^3\dot{V}$$

By using ODE45 and curve-fitting tool in MATLAB, the above equation was solved to get:

$$V = 0.2862 * e^{-0.2269t} - 0.288 * e^{-226t}$$

201150368

Bubbling system Calculation:

Velocity

$$V = 0.2862 * e^{-0.2269t} - 0.288 * e^{-226t}$$

Reynolds Number

$$Re = \frac{\rho_g v D}{\mu_g}$$

Nusselt Number

$$Nu = 2 + \left[0.4Re^{\frac{1}{2}} + 0.06Re^{\frac{2}{3}}\right] \cdot \Pr^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$$

Heat transfer coefficient

$$U = Nu * \frac{D}{k}$$

Heat transfer

$$\dot{Q} = UA_s(T_i - T_e)$$

- Bubbling system Calculation:
 - It found that a single bubble:
 - ✓ Took 0.185 sec to drop its temperature from 70 °C to 30 °C
 - ✓ Losses 2.5 J
 - The total number of bubbles needed is 3430 bubbles/s
 - Single pass, gives minimum container length of 123 mm
 - The total distance travelled by the water bubble through liquid gallium is 50.7 mm

System design calculations

- Gallium container
 - a. Container dimensions
 - b. Gallium height
- 2. Hot water circuit:
 - a./ Total head required (Hot water pump selection)
 - b. Substrate configuration
 - c. Water flow rate through the substrate
 - d. Bubble distributor's
 - i. Number of holes
 - ii. Number of tubes

- 3. Cooling water circuit:
 - a. Total head required (Cooling water pump selection)
 - b. Cooling water network configuration
 - c. Cooling water flow rate

Pump selection

• To select suitable pumps for the system, the total required system head versus the volumetric flow rate must be plotted.

Pump selection

- The head required in this system is due to several factors which are:
 - 1. Major head loss in the tubes:

$$H_{loss_{major}} = f \frac{L}{D} \frac{V^2}{2g}$$

2. Minor head loss due to the pipe fittings:

$$H_{minor} = \sum K_L \frac{V^2}{2g}$$

- 3. Head required due to overcome the gallium height above bubbler
- 4. Head required due to elevation

Pump selection

Intersect the system curves and pump performance curves

Pump selection

Model	Maximum Flow Rate	Maximum Head Pressure	Power Consumption	Voltage	Noise	Weight
PMP 420	11L/min	5.8 m	17W	6 to 12 VDC	<50dBA	284g

Discussion of Detailed Design alternatives

Heat source

- Hot Plate
- Infrared Heater
- Hot water tank

Liquid metal used

Mercury

Gallium

Sodium

Cooling method of the liquid metal

- Air cooling using a fan
- Cooling tubes embedded within the gallium
- Submersion of the system in a water reservoir

bubbling system used

- Distribution plate
- Helical bubbling system
- Distribution tube with several branches

Formal Decision-Making, Heat Source

		Alternatives						
Decision Model		Hot Plate		Infrared Heater		Hot water Tank		
Criterion	Weight	Rating	Score	Rating	Score	Rating	Score	
Availability	5	4	20	4	20	5	25	
Simplicity	5	2	10	3	15	4	20	
Integration	10	3	30	2	20	4	40	
Total	20	9	60	9	55	13	85	

Formal Decision-Making, Liquid metal

		Alternatives						
Decision Model		Mercury		Gallium		Sodium		
Criterion	Weight	Rating	Score	Rating	Score	Rating	Score	
Cost	5	2	10	3	15	4	20	
Toxicity	5	1	5	4	20	2	10	
Thermal Conductivity	10	7	70	9	90	8	80	
Thermal Capacity	10	6	60	8	80	9	90	
Melting Temperature	5	4	20	4	20	1	5	
Total	20	20	165	27	225	24	214	

Formal Decision-Making, Cooling method of the liquid metal

		Alternatives						
Decision Model		Fan Cooling water to		ter tubing Submersion		nersion		
Criterion	Weight	Rating	Score	Rating	Score	Rating	Score	
Availability	5	3	15	4	20	5	25	
Simplicity	5	3	15	2	10	4	20	
Integration	10	7	70	8	80	6	60	
Total	20	13	100	14	110	15	105	

Formal Decision-Making, Bubbling system

Decision Model		Distribution plate		Helical bubbling system		Distribution tube	
Criterion	Weight	Rating	Score	Rating	Score	Rating	Score
Manufacturability	5	3	15	2	10	4	20
Number of holes available	5	4	20	3	15	4	20
Heat Dissipation	6	3	18	5	30	5	30
Total	16	10	53	10	55	13	70

Methods of realizing final design

Item purchased

Valves

Fittings

Rubber Tubes

Methods of realizing final design

Item purchased

Pumps

Copper Tubes

Methods of realizing final design

System configuration

Methods of realizing final design

System configuration

Testing

■ Testing setup

Testing

Tested flow rate

Pump	Supplied Voltage (Volt)	Flask volume (mL)	Time (sec)	Flow rate (g/s)	Average flow rate (g/s)
	6.3	250	21.81	11.46	11.26
Hot water			22.61	11.06	
pump	6		23.61	10.59	10.72
			23.05	10.85	
	/ 5		7.81	32.01	33.10
Cold water	6.5		7.31	34.20	
pump	7.5		6.44	38.82	20 50
			6.54	38.23	38.52

Analysis and Optimization

- The designed system was tested under different cases to check its effectiveness. Three different cases were considered to investigate the performance of the designed system as follows:
 - Hot water flow-rate of 11.3 g/s and 12.3 g/s without using the gallium cooling circuit
 - ► Hot water flow-rate of 10.7 g/s with cold water flow rate of 33.1 g/s and 38.5 g/s
 - ► Hot water flow-rate of 11.3 g/s with cold water flow rate of 33.1 g/s and 38.5 g/s

Hot water with flow rate = 11.3 g/s, without cooling circuit for the Gallium

Hot water flow rate = 10.7 g/s with Cold water flow rates = 38.5 g/s

and

Analysis and Optimization

Analysis and Optimization

Case #	Hot water Flow rate (g/s)	Cold water Flow rate (g/s)	Cooled water Temperature difference (°C)	Gallium Temperature difference (°C)	Cold water Temperature difference (°C)	
1	11.3	-	4	32	-	
2	12.3	-	3	40	-	
3	10.7	33.1	10	8	1	
4	11.3	33.1	15	4	1	
5	10.7	38.5	11	3	1	
6	11.3	38.5	20	~0	2	

Final Cost Analysis and Discussion

Component	Quantity	Price (AED)	
Gallium	6 kg	5,700	
Rubber tubes	3 m	53	
Copper tubes	2 m	20	
Gallium cooling pump	1	220	
Electronics cooling pump	1	220	
Valve	2	55	
Fittings	8	60	
Hose clamps	4	4	
Manufacturing	-	1,000	
То	7,332		

Health, Safety, Quality, and Reliability

	Component or process	Failure mode/s	Failure Effect/s	Safety Procedure/s
	Addition of water to the	Slipping risk	Several Injuries including back injury and fractures	 Wearing Personal Protective Equipment (PPE) Clear precautionary signs in case of wet floor
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	system	Spilling of water on electrical components	Electrocution	Immediate shut down of the system in case water reaches the electrical components
	Addition of liquid metal to the system	Spilling or leakage of liquid metal	Contamination	 Wearing Personal Protective Equipment (PPE) Keep away from water, food, animals and children reach
	Pump	Failure of the mechanical components of the pump	Physical harmHarm to system components	 Add separate control switches for the pumps use of data acquisition system to monitor the pumps
	Container and piping system	Ruptureleakage	ElectrocutionSystem shutdown	 Monitoring of leakage in the system Proper leakage prevention through insulation

Health, Safety, Quality, and Reliability

Health, Safety, Quality, and Reliability

For the Hot water circuit:

$$\begin{split} R_{c,1} &= R_{pump}(\mathbf{1000}) \times R_{valve}(\mathbf{1000}) \times R_{pipies}(t) \\ R_{c,1} &= 0.9386 \end{split}$$

■ For the Cooling water circuit:

$$\begin{split} R_{c,2} &= R_{pump} (\mathbf{1000}) \times R_{pipies} (t) \\ R_{c,2} &= 0.9575 \end{split}$$

► For the system:

$$R_s(t) = 1 - (1 - R_{c,1})(1 - R_{c,2})$$

 $R_s(t) = 0.9974$

Requirement	Design Specification			Achievement
	Metric	Value	Units	
Good temperature control	CPU operational temperature limit	< 75	°C	Yes
Cost	Within the rang if current cooling system price	<3000	DHs	No
Reasonable cost	Benefit to Cost ratio	≥ 1.3	-	No
Safe to use	Safety Factor	>1.5	-	Yes
Eco- friendly	Use materials with low toxicity levelsSystem Can be easily recycled	-	-	Yes
Quiet with Low vibration	Appropriate Noise levels	<30	dBA	No
Availability of spare parts	Use standard parts as advised by ASTM and IEEE -SA	-	-	Yes
Effective heat removal	Heat Absorbed	>340	W	Yes
Reasonable life cycle	Design life	25	Years	Yes
Low power consumption	Power usage effectiveness	<1.18	-	Not applicable

- Comparison between the proposed cooling system (case 3) and the traditional cooling system:
- System parameters:

$$T_{HW_{in}} = 60^{\circ}C$$

•
$$T_{HW_{out}} = 40^{\circ}C$$

•
$$T_{CW_{in}} = 22^{\circ}C$$

•
$$\dot{m}_{HW} = 11.3 \ g/s$$

•
$$\dot{m}_{CW} = 38.5 \ g/s$$

•
$$C_p = 4.18 \frac{kW}{K}$$

•
$$U=455\frac{W}{m^2}.K$$

•
$$\dot{m}_{HW_{one\ hole}} = \frac{11.3}{58} = 0.195\ g/s$$

•
$$\dot{m}_{CW_{one\ hole}} = \frac{38.5}{58} = 0.66\ g/s$$

The hot and cold fluids heat capacity rates can be found from:

$$C_h = \dot{m}_{HW}C_p = 0.195 * 4.18 = 0.82 W/K$$

$$C_c = \dot{m}_{CW}C_p = 0.66 * 4.18 = 2.76 W/K$$

Therefore

$$C_{min}=0.82\frac{W}{K}$$

$$c = \frac{C_{min}}{C_{max}} = \frac{0.82}{2.76} = 0.3$$

Maximum heat transfer rate is determined from:

$$\dot{Q}_{max} = C_{min} * (T_{HW_{in}} - T_{CW_{in}}) = 0.82 * (60 - 22) = 31.2 W$$

■ The actual rate of heat transfer in the heat exchanger is:

$$\dot{Q} = \dot{m}_{HW}C_p * (T_{HW_{in}} - T_{HW_{out}}) = 0.195 * 4.18 * (60 - 40) = 16.3 W$$

■ The effectiveness of the heat exchanger is

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{max}} = \frac{16.3}{31.2} = 0.52$$

■ The number of transfer unit (NTU) can be found as follows:

$$NTU = \frac{1}{c-1} \ln \left(\frac{(\varepsilon-1)}{\varepsilon c - 1} \right) = \frac{1}{0.3-1} \ln \left(\frac{(0.52-1)}{0.3*0.52-1} \right) = 0.81$$

The required surface area is

$$A_s = \frac{NTU}{U} C_{min} = \frac{0.81}{455} * 0.82 = 1.46 \times 10^{-3} m^2$$

Using a tube diameter of 3 mm which is like the bubble hole diameter yield to a heat exchanger tubing length of:

$$L = \frac{A_s}{\pi D} = \frac{1.46 \times 10^{-3}}{\pi \times 3 \times 10^{-3}} = 15.5 cm$$

■ The needed length in the traditional cooling method is 13% longer than the proposed design

Environmental Analysis and Discussion

Several environmental issues that might arise;

- Pollution
- heavy metal toxicity
- electronic waste

Solutions:

- Insure that the final product is sustainable
- Insure that there is no direct exposure of the users to the gallium in the heat sink
- include a leakage detection system in the final product
- Providing clients with the right channels to dispose their products

New skills learnt

- Integration of the numerous engineering skills in a single project
- Great opportunity to learn more about the engineering design process
- Great networking opportunity
- introduced to new topics in Mechanical engineering and state of the art cooling methods
- Enhanced problem solving skills
- Enhanced our Design of Experiment (DOE) skills

Way forward Final Discussion and remarks

- Conduct further studies in the field of noble cooling systems for electronic devices
- More exploration of various bubbler geometries and their effect on heat removal
- Several improvements can be implemented to the system including:
 - Addition of a dynamic control system
 - Several sensors, on/off controllers and check valves can be added
 - Sizing down the system
 - Decrease the overall cost of the system

Thank You

Any Questions?

