CELEN037 Seminar 3

Topics

- Parametric Differentiation
- Maclaurin's Series
- Equations of Tangent and Normal Lines
- Newton-Raphson Method
- Increasing and Decreasing Functions

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$
Solution:

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$
Solution:

$$\frac{dx}{dt} = a(1 - \cos t), \quad \frac{dy}{dt} = a\sin t$$

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$
Solution:

$$\frac{dx}{dt} = a(1 - \cos t), \quad \frac{dy}{dt} = a\sin t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\sin t}{a(1-\cos t)}$$

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$
Solution:

$$\frac{dx}{dt} = a(1 - \cos t), \quad \frac{dy}{dt} = a\sin t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$
. Solution:

$$\frac{dx}{dt} = a(1 - \cos t), \quad \frac{dy}{dt} = a\sin t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$

$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}} = \frac{\sin\frac{\pi}{2}}{1 - \cos\frac{\pi}{2}}$$

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$
. Solution:

$$\frac{dx}{dt} = a(1 - \cos t), \quad \frac{dy}{dt} = a \sin t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a \sin t}{a(1 - \cos t)} = \frac{\sin t}{1 - \cos t}$$

$$\frac{dy}{dx}\Big|_{t=\frac{\pi}{2}} = \frac{\sin \frac{\pi}{2}}{1 - \cos \frac{\pi}{2}}$$

$$= \frac{1}{1 - 0}$$

Practice Problems on Worksheet:

- 1: Q1(ii)
- 2: Q1(iv)
- 3: Q1(v)
- 4: Q1(vi)

Practice Problems on Worksheet:

- 1: Q1(ii)
- 2: Q1(iv)
- 3: Q1(v)
- 4: Q1(vi)

Answers:

- 1: -1
- 2: -1
- 3: $\frac{v_0 \sin \alpha gt}{v_0 \cos \alpha}$
- 4: $-\frac{2t}{1-t^2}$

Example: Obtain the Maclaurin's Series expansions of the following

function:

$$f(x) = \frac{1}{1 - x}; \quad -1 < x < 1$$

Example: Obtain the Maclaurin's Series expansions of the following

function:

$$f(x) = \frac{1}{1-x}; -1 < x < 1$$

Example: Obtain the Maclaurin's Series expansions of the following

function:

$$f(x) = \frac{1}{1-x}; -1 < x < 1$$

$$f(0) = 1$$

Example: Obtain the Maclaurin's Series expansions of the following

function:

$$f(x) = \frac{1}{1-x}; \quad -1 < x < 1$$

$$f(0) = 1$$

 $f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \implies f'(0) = 1$

Example: Obtain the Maclaurin's Series expansions of the following

function:

$$f(x) = \frac{1}{1-x}; \quad -1 < x < 1$$

$$f(0) = 1$$

$$f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \implies f'(0) = 1$$

$$f''(x) = \frac{-2}{(1-x)^3} \cdot (-1) = \frac{2}{(1-x)^3} \implies f''(0) = 2$$

Example: Obtain the Maclaurin's Series expansions of the following

function:

$$f(x) = \frac{1}{1 - x}; \quad -1 < x < 1$$

$$f(0) = 1$$

$$f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \implies f'(0) = 1$$

$$f''(x) = \frac{-2}{(1-x)^3} \cdot (-1) = \frac{2}{(1-x)^3} \implies f''(0) = 2$$

$$f'''(x) = \frac{-6}{(1-x)^4} \cdot (-1) = \frac{6}{(1-x)^4} \implies f'''(0) = 6$$

Example: Obtain the Maclaurin's Series expansions of the following function:

$$f(x) = \frac{1}{1 - x}; \quad -1 < x < 1$$

$$f(0) = 1$$

$$f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \implies f'(0) = 1$$

$$f''(x) = \frac{-2}{(1-x)^3} \cdot (-1) = \frac{2}{(1-x)^3} \implies f''(0) = 2$$

$$f'''(x) = \frac{-6}{(1-x)^4} \cdot (-1) = \frac{6}{(1-x)^4} \implies f'''(0) = 6$$

$$f^{(4)}(x) = \frac{-24}{(1-x)^5} \cdot (-1) = \frac{24}{(1-x)^5} \implies f^{(4)}(0) = 24$$

Example: Obtain the Maclaurin's Series expansions of the following function:

$$f(x) = \frac{1}{1 - x}; \quad -1 < x < 1$$

$$f(0) = 1$$

$$f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \implies f'(0) = 1$$

$$f''(x) = \frac{-2}{(1-x)^3} \cdot (-1) = \frac{2}{(1-x)^3} \implies f''(0) = 2$$

$$f'''(x) = \frac{-6}{(1-x)^4} \cdot (-1) = \frac{6}{(1-x)^4} \implies f'''(0) = 6$$

$$f^{(4)}(x) = \frac{-24}{(1-x)^5} \cdot (-1) = \frac{24}{(1-x)^5} \implies f^{(4)}(0) = 24$$

$$\Rightarrow \frac{1}{1-x} = 1 + x \cdot (1) + \frac{x^2}{2!} \cdot (2) + \frac{x^3}{3!} \cdot (6) + \frac{x^4}{4!} \cdot (24) + \cdots$$

Example: Obtain the Maclaurin's Series expansions of the following function:

$$f(x) = \frac{1}{1 - x}; \quad -1 < x < 1$$

$$f(0) = 1$$

$$f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \implies f'(0) = 1$$

$$f''(x) = \frac{-2}{(1-x)^3} \cdot (-1) = \frac{2}{(1-x)^3} \implies f''(0) = 2$$

$$f'''(x) = \frac{-6}{(1-x)^4} \cdot (-1) = \frac{6}{(1-x)^4} \implies f'''(0) = 6$$

$$f^{(4)}(x) = \frac{-24}{(1-x)^5} \cdot (-1) = \frac{24}{(1-x)^5} \implies f^{(4)}(0) = 24$$

$$\Rightarrow \frac{1}{1-x} = 1 + x \cdot (1) + \frac{x^2}{2!} \cdot (2) + \frac{x^3}{3!} \cdot (6) + \frac{x^4}{4!} \cdot (24) + \cdots$$

$$= 1 + x + x^2 + x^3 + x^4 + \cdots$$

Practice Problems on Workbook:

- 1: Q2(i)
- 2: Q2(iii)
- 3: Q2(vi)
- 4: Q2(vii)

Practice Problems on Workbook:

- 1: Q2(i)
- 2: Q2(iii)
- 3: Q2(vi)
- 4: Q2(vii)

Answers:

1:
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

2:
$$1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

3:
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

4:
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$
, $\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots$

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the euqation of the tangent line and the normal line to the curve at point (-1, -1).

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the euqation of the tangent line and the normal line to the curve at point (-1, -1).

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the euqation of the tangent line and the normal line to the curve at point (-1, -1).

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the euqation of the tangent line and the normal line to the curve at point (-1, -1).

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$\frac{dy}{dx}\Big|_{x=-1} = -\frac{1}{(-1)^2} = -\frac{1}{1} = -1 = m$$

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the equation of the tangent line and the normal line to the curve at point (-1, -1).

Solution:

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$\frac{dy}{dx}\Big|_{x=-1} = -\frac{1}{(-1)^2} = -\frac{1}{1} = -1 = m$$

Equation of tangent line: $y - y_1 = m(x - x_1)$

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the equation of the tangent line and the normal line to the curve at point (-1, -1).

Solution:

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$\frac{dy}{dx}\Big|_{x=-1} = -\frac{1}{(-1)^2} = -\frac{1}{1} = -1 = m$$

Equation of tangent line: $y - y_1 = m(x - x_1)$

$$y + x + 2 = 0$$

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the equation of the tangent line and the normal line to the curve at point (-1, -1).

Solution:

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$\frac{dy}{dx}\Big|_{x=-1} = -\frac{1}{(-1)^2} = -\frac{1}{1} = -1 = m$$

Equation of tangent line: $y - y_1 = m(x - x_1)$

$$y + x + 2 = 0$$

Equation of normal line: $y - y_1 = -\frac{1}{m}(x - x_1)$

Example: The equation of the curve is given by $y = \frac{1}{x}$. Obtain the equation of the tangent line and the normal line to the curve at point (-1, -1).

Solution:

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$\frac{dy}{dx}\Big|_{x=-1} = -\frac{1}{(-1)^2} = -\frac{1}{1} = -1 = m$$

Equation of tangent line: $y - y_1 = m(x - x_1)$

$$y + x + 2 = 0$$

Equation of normal line: $y - y_1 = -\frac{1}{m}(x - x_1)$

$$y = x$$

Practice Problems on Workbook:

- 1: Q3(ii)
- 2: Q3(iii)

Practice Problems on Workbook:

- 1: Q3(ii)
- 2: Q3(iii)

Answers:

- 1: Tangent line y 2x + 3 = 0Normal line 2y + x + 1 = 0
- 2: Tangent line 2y + 3x 6 = 0Normal line 3y - 2x - 9 = 0

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

Steps on calculator

(i) Set calculator to RADIAN mode:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

Steps on calculator

(i) Set calculator to RADIAN mode: **Shift Mode 4**

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to 7 digits:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to **7** digits: **Shift Mode 6 7**

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to **7** digits: **Shift Mode 6 7**
- (iii) Press **1.5** and \equiv on calculator

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to **7** digits: **Shift Mode 6 7**
- (iii) Press **1.5** and $\boxed{=}$ on calculator $(x_0 = 1.5)$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

Steps on calculator

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to **7** digits: **Shift Mode 6 7**
- (iii) Press **1.5** and $\boxed{=}$ on calculator $(x_0 = 1.5)$

(iv) Enter the formula on calculator as:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

Steps on calculator

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to **7** digits: **Shift Mode 6 7**
- (iii) Press **1.5** and $\boxed{=}$ on calculator $(x_0 = 1.5)$

(iv) Enter the formula on calculator as:

$$\mathbf{Ans} - \frac{\left(\mathbf{Ans}^4 - \sin(\mathbf{Ans}) - 1\right)}{\left(4 \times \mathbf{Ans}^3 - \cos(\mathbf{Ans})\right)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Example: Use the Newton-Raphson method to approximate the root of $x^4 - \sin x = 1$, correct to 7 d.p., by starting with $x_0 = 1.5$.

Solution:

$$f(x) = x^4 - \sin x - 1;$$
 $f'(x) = 4x^3 - \cos x;$ $x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$

Steps on calculator

- (i) Set calculator to RADIAN mode: **Shift Mode 4**
- (ii) Fix calculator to **7** digits: **Shift Mode 6 7**
- (iii) Press **1.5** and \blacksquare on calculator $(x_0 = 1.5)$

(iv) Enter the formula on calculator as:

$$\mathsf{Ans} - rac{\left(\mathsf{Ans}^4 - \sin(\mathsf{Ans}) - 1
ight)}{\left(4 imes \mathsf{Ans}^3 - \cos(\mathsf{Ans})
ight)}$$

(v) Press \equiv button successively, and write down all x_n in a table

$$x_{n+1} = x_i \frac{f(x_n)}{\text{Calculation results}}, 2, 3, \cdots)$$

Example: Use the Newton $x^4 - \sin x = 1$, correct to Solution:

$$f(x) = x^4 - \sin x - 1;$$

Steps on calculator

- (i) Set calculator to RA mode: Shift Mο
- (ii) Fix calculator to 7 d Shift Mode 6
- (iii) Press 1.5 and $\boxed{=}$ on calculator $(x_0 = 1.5)$

arearation resurts		
n	x_n	
0	1.5000000	
1	1.2717667	
2	1.1885303	
3	1.1778677	
4	1.1777035	
5	1.1777035	

pproximate the root of $x_0 = 1.5.$

$$x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$$

the formula on calculator

$$\frac{\left(\mathsf{Ans}^4 - \sin(\mathsf{Ans}) - 1\right)}{\left(4 \times \mathsf{Ans}^3 - \cos(\mathsf{Ans})\right)}$$

and write down all x_n in a table

$$x_{n+1} = x_i \frac{f(x_n)}{\text{Calculation results}}, 2, 3, \cdots)$$

Example: Use the Newto $x^4 - \sin x = 1$, correct to **Solution:**

$$f(x) = x^4 - \sin x - 1;$$

Steps on calculator

- (i) Set calculator to RA mode: **Shift Mo**
- (ii) Fix calculator to **7** d **Shift Mode 6**
- (iii) Press **1.5** and $\boxed{=}$ on calculator $(x_0 = 1.5)$

arediation results		
n	x_n	
0	1.5000000	
1	1.2717667	
2	1.1885303	
3	1.1778677	
4	1.1777035	
5	1.1777035	

Thus, the root is $x^* = 1.1777035$

pproximate the root of $x_0 = 1.5$.

$$x_{n+1} = x_n - \frac{x_n^4 - \sin x_n - 1}{4x_n^3 - \cos x_n}$$

the formula on calculator

$$\frac{\left(\mathsf{Ans}^4 - \sin(\mathsf{Ans}) - 1\right)}{\left(4 \times \mathsf{Ans}^3 - \cos(\mathsf{Ans})\right)}$$

(v) Press \equiv button successively, and write down all x_n in a table

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Practice Problems on Workbook:

- 1: Q4(ii)
- 2: Q4(iii)
- 3: Q4(iv)
- 4: Q4(vi)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, \dots)$

Practice Problems on Workbook:

- 1: Q4(ii)
- 2: Q4(iii)
- 3: Q4(iv)
- 4: Q4(vi)

Answers:

- 1: x = 1.895494
- 2: x = 1.021690
- 3: x = -1.272020
- 4: x = 2.09455148

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$: f is always decreasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

$$f'(x) = 3x^2 - 5 = 0 \implies x = \pm \sqrt{\frac{5}{3}}$$

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

Solution:

$$f'(x) = 3x^2 - 5 = 0 \implies x = \pm \sqrt{\frac{5}{3}}$$

For $x < -\sqrt{\frac{5}{3}}, \quad f'(x) > 0$ $\therefore f$ is increasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

$$f'(x) = 3x^2 - 5 = 0 \implies x = \pm \sqrt{\frac{5}{3}}$$

For
$$x < -\sqrt{\frac{5}{3}}$$
, $f'(x) > 0$ $\therefore f$ is increasing.

For
$$-\sqrt{\frac{5}{3}} < x < \sqrt{\frac{5}{3}}$$
, $f'(x) < 0$: f is decreasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

$$f'(x) = 3x^2 - 5 = 0 \implies x = \pm \sqrt{\frac{5}{3}}$$

For
$$x < -\sqrt{\frac{5}{3}}$$
, $f'(x) > 0$ $\therefore f$ is increasing.

For
$$-\sqrt{\frac{5}{3}} < x < \sqrt{\frac{5}{3}}, \quad f'(x) < 0 \quad \therefore f \text{ is decreasing.}$$

For
$$x > \sqrt{\frac{5}{3}}$$
, $f'(x) > 0$: f is increasing.

Example: Show that $f(x) = e^{-2x} + 1$ is always decreasing.

Solution:

$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$ $\therefore f$ is always decreasing.

Example: Given $f(x) = x^3 - 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.

Solution:

$$f'(x) = 3x^2 - 5 = 0 \implies x = \pm \sqrt{\frac{5}{3}}$$

For
$$x < -\sqrt{\frac{5}{3}}$$
, $f'(x) > 0$: f is increasing.

For
$$-\sqrt{\frac{5}{3}} < x < \sqrt{\frac{5}{3}}$$
, $f'(x) < 0$: f is decreasing.

For
$$x > \sqrt{\frac{5}{3}}$$
, $f'(x) > 0$: f is increasing.

Therefore,
$$x\in(-\infty,-\sqrt{\frac{5}{3}})$$
 and $(\sqrt{\frac{5}{3}},+\infty)$ f is increasing;

Seminar 3, 2022

$$x \in (-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}})$$
 f is decreasing.

Practice Problems on Workbook:

- 1: Q5(i)
- 2: Q5(ii)
- 3: Q5(iv)
- 4: Q5(vi)

Practice Problems on Workbook:

- 1: Q5(i)
- 2: Q5(ii)
- 3: Q5(iv)
- 4: Q5(vi)

Answers:

- 1: $f' = \sec^2 x > 0$ for all $x \in \mathbb{R}$
- 2: $f' = -\sin x > 0$ for all $x \in \text{Fourth Quadrant}$
- 3: 2x + 2 < 0 for all $x \in (-\infty, -1)$
- 4: $x \in (-\infty, \frac{-3\sqrt{73}-9}{16}), f$ is decreasing; $x \in (\frac{-3\sqrt{73}-9}{16}, 0), f$ is increasing; $x \in (0, \frac{3\sqrt{73}-9}{16}), f$ is decreasing; $x \in (\frac{3\sqrt{73}-9}{16}, +\infty), f$ is increasing:

Office Hours

Day	Time	Venue
Tuesday	12:00 to 14:00	Trent 314a
Tuesday	13:00 to 14:00	Trent 322
Thursday	16:30 to 17:30	TB 417
Thursday	17:00 to 18:00	IAMET 315
Fridox	14:00 to 15:00	PB 330
Friday	17:00 to 18:00	TB 417

Weekly drop-in Session: Wednesdays 16:00-17:00 at PB115+.