Module 2 - The LP Model Assignment by Christian U. Osadebe

Solution to Problem 1: Back Savers Backpack Production

a. Decision Variables

Let:

- X₁ = number of Collegiate backpacks produced per week
- X₂ = number of Mini backpacks produced per week

b. Objective Function

Maximize weekly profit:

Each Collegiate generates a unit profit of \$32, and Mini generates a unit profit of \$24.

 \triangleright Maximize Z = 32X₁+24X₂

c. Constraints

- 1. Nylon Availability
- Collegiate uses 3 sq ft
- Mini uses 2 sq ft
- Total available: 5,000 sq ft (received each week)
- $> 3X_1 + 2X_2 \le 5000$

2. Labor Time

- Collegiate: 45 minutes
- Mini: 40 minutes
- Total labor: 35 laborers × 40 hours/week = 1,400 hours = 84,000 minutes
- \rightarrow 45X₁ + 40X₂ \leq 84,000

3. Sales Forecast Limits

- $> X_1 \le 1,000$
- $> X_2 \le 1,200$

4. Non-Negativity

$$Y_1 \ge 0, X_2 \ge 0$$

d. Full Mathematical Formulation

Maximize
$$Z = 32X_1 + 24X_2$$

ST: $3X_1 + 2X_2 \le 5000$ (Nylon)
 $45X_1 + 40X_2 \le 84,000$ (Labor)
 $X_1 \le 1000$ (Collegiate demand)
 $X_2 \le 1200$ (Mini demand)
 $X_1, X_2 \ge 0$

Solution to Problem 2: Weigelt Corporation Production Allocation

Table 1. Product data

Sizes	Profit per Unit (\$)	Storage Space (sq ft/day)	Sales Forecasts (units/day)
Large	420	20	900
Medium	360	15	1,200
Small	300	12	750

Table 2. Plant data

Plants	Storage Capacity (sq ft/day)	Excess Production Capacity (units/day)
1	13,000	750
2	12,000	900
3	5,000	450

a. Decision Variables

Let:

- j = L, M, S (Large, Medium, Small)
- i = 1, 2, 3 (plant 1, 2, and 3)
- X_{ij} = number of units of each size

> At Plant 1: X_{1L}, X_{1M}, X_{1S}

➤ At Plant 2: X_{2L}, X_{2M}, X_{2S}

➤ At Plant 3: X₃L, X₃M, X₃S

b. Objective Function

Maximize total profit:

Arr Maximize Z = 420(X_{1L} + X_{2L} + X_{3L}) + 360(X_{1M} + X_{2M} + X_{3M}) + 300(X_{1S} + X_{2S} + X_{3S})

c. Constraints

1. Production Capacity

> $X_{1L} + X_{1M} + X_{1S} \le 750$

 \rightarrow X_{2L} + X_{2M} + X_{2S} \leq 900

 \rightarrow X₃₁ + X_{3M} + X_{3S} \leq 450

2. Storage Space

- \triangleright 20X_{1L} + 15X_{1M} + 12X_{1S} \leq 13000
- \triangleright 20X_{2L} + 15X_{2M} + 12X_{2S} \leq 12000
- \triangleright 20X_{3L} + 15X_{3M} + 12X_{3S} \leq 5000

3. Sales Forecasts

- \rightarrow $X_{1L} + X_{2L} + X_{3L} \le 900$
- $> X_{1M} + X_{2M} + X_{3M} \le 1200$
- > $X_{1S} + X_{2S} + X_{3S} \le 750$

4. Equal Utilization of Capacity

Let p = percentage of excess capacity used at each plant

i.e.:
$$p = (X_{1L} + X_{1M} + X_{1S})/750 = (X_{2L} + X_{2M} + X_{2S})/900 = (X_{3L} + X_{3M} + X_{3S})/450$$

Therefore:

$$X_{1L} + X_{1M} + X_{1S} = 750p$$

$$X_{2L} + X_{2M} + X_{2S} = 900p$$

$$X_{3L} + X_{3M} + X_{3S} = 450p$$

5. Non-Negativity

$$X_{ij} \ge 0$$