- 1. Дать определение линейного (векторного) пространства.
- 2. Дать определение линейно зависимой и линейно независимой системы векторов.
- 3. Дать определение базиса и размерности линейного пространства.
- 4. Дать определение матрицы перехода от одного базиса к другому.
- Записать формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.
- Дать определение подпространства линейного пространства и линейной оболочки системы векторов.
 - 7. Дать определение скалярного произведения и евклидова пространства.
 - Записать неравенство Коши Буняковского и неравенство треугольника.
- Дать определение ортогональной системы векторов и ортонормированного базиса евклидова пространства.
- Сформулировать теорему о связи линейной зависимости и ортогональности системы векторов.
 - 11. Дать определение линейного оператора и матрицы линейного оператора.
- Записать формулу преобразования матрицы линейного оператора при переходе к новому базису.
- 13. Дать определение характеристического уравнения, собственного числа и собственного вектора линейного оператора.
- Сформулировать теорему о собственных векторах самосопряжённого оператора, отвечающих разным собственным значениям.
- 15. Дать определение самосопряжённого линейного оператора на евклидовом пространстве и сформулировать теорему о виде матрицы самосопряжённого оператора в ортонормированном базисе.
- Сформулировать теорему о корнях характеристического уравнения самосопряжённого оператора.
- Сформулировать теорему о собственных векторах самосопряжённого оператора, отвечающих разным собственным значениям.
- 18. Сформулировать теорему о существовании ортонормированного базиса, в котором матрица заданного самосопряженного оператора имеет простой вид.
 - 19. Дать определение ортогонального линейного оператора и ортогональной матрицы.
- Дать определение квадратичной формы, матрицы и канонического вида квадратичной формы.
- Записать формулу преобразования матрицы квадратичной формы при переходе к новому базису.
- Дать определение положительно определённой, отрицательно определённой и неопределённой квадратичной формы.
- **23.** Сформулировать критерий Сильвестра положительной определённости квадратичной формы и его следствия для отрицательно определённых и неопределённых форм.
 - 24. Сформулировать закон инерции квадратичных форм.

- **1.** Множество **L** элементов х,у, z называется линейным пространством, если:
- 1. Для \forall x∈L и у∈L определена операция сложения;
- 2. Для $\forall x \in \mathbf{L}$ и любого числа α определена операция умножения элемента x на число α ;
- 3. Определено равенство элементов из L;
- 4. Операции (1) и (2) удовлетворяют условиям:

x+y=y+x; (x+y)+z=x+(y+z); $\alpha(\beta x)=(\alpha\beta)x$; $(\alpha+\beta)x=\alpha x+\beta x$; $\alpha(x+y)=\alpha x+\alpha y$; $\exists x$, : x+0=x; $\forall x\in L: x\cdot 1=1\cdot x=x$; $\forall x\in L: x\cdot 1=1\cdot x=x$; $\forall x\in L: x\cdot 1=1\cdot x=x$;

2. Если для системы k векторов a_1 , a_1 , a_3 равенство $\sum_{i}^{\infty} \lambda_i a_i = 0$ верно только при $\lambda_i = 0$ (i = 1,...,k), то эта система называется <u>линейно независимой</u>. В ином случае система ЛЗ: если векторы a_1,a_2 , a_3 <u>линейно зависимы</u>, то хотя бы один из них можно представить в виде линейной комбинации остальных и наоборот.

3. \forall совокупность n ЛН3 векторов e_1 , e_2 , e_3 называется $\underline{6aзисом}$ пространства $\mathbf{R}^{\mathbf{n}}$, если каждый из векторов пространства $\mathbf{R}^{\mathbf{n}}$ можно представить в виде линейной комбинации векторов этой совокупности, т.е. $x=x_1$ e_1 + x_2 e_2 + x_3 e_3 .

Размерностью пространства R^{n} называется число векторов в любом его базисе.

- 4. Матрица перехода от В к B' наз матрицу векторов базиса B' в матрице B'
- 5. Формула преобразования координат при преобразовании базиса: Если х− произвольный вектор из L_n , X и X'– столбцы его координат в базисах B и B' соответственно то имеет место равенство $X'=(T_{B\to B'})^{-1}X$
- 6. Подмножество Н линейного пространства L называют <u>линейным</u> <u>подпространством</u>, если выполнены следующие два условия: 1) $x,y \in H \Rightarrow x+y \in H$; 2) $x \in H$, $x \in H$. Описанное линейное подпространство называют <u>линейной оболочкой</u> системы векторов e₁, e₂, ..., e_k и обозначают span{e₁, e₂, ..., e_k}.
- 7. Линейное пространство называется <u>евклидовым</u>, если в нем определена операция, ставящая в соответствие любым двум элементам $x \in L$ и $y \in L$ число, называемое <u>скалярным произведением</u> и обозначаемое (x, y), для которого выполняется: (x,y)=(y,x); (x+y,z)=(x,z)+(y,z); (αx,y)=α(x,y); (x,x)≥0,причем (x,x)=0⇔x=0.
- 8. нер-во Коши Буняковского для \forall x,y: (x, x)(y, y) ≥ (x, y) для \forall x,y: $\|x+y\| \le \|x\|+\|y\|$ (нер-во треугольника)
- 9. <u>Систему векторов</u> евклидова пространства называют <u>ортогональной</u>, если любые два вектора из этой системы ортогональны. <u>Ортогональный базис</u> называют <u>ортонормированным</u>, если каждый вектор этого базиса имеет норму (длину), равную единице.
- 10. Любая ортогональная система ненулевых векторов линейно независима
- 11. Отображение A: L → L из линейного пространства L в линейное пространство L называют <u>линейным</u> оператором, если выполнены следующие условия:

- а) A(x + y) = A(x) + A(y) для ∀ векторов x, y ∈ L;
- б) $A(\lambda x) = \lambda A(x)$ для \forall вектора $x \in L$ и любого числа $\lambda \in R$.

Матрицу $A = (a_1 \dots a_n)$, составленную из координатных столбцов векторов

 Ab_1, \ldots, Ab_n в базисе $b = (b_1 \ldots b_n)$ называют матрицей линейного оператора A в базисе b.

- 12. Матрицы A_b и A_e линейного оператора A: L o L, записанные в базисах b и e линейного пространства L, связаны друг с другом соотношением $A_e = U^{-1}A_bU$, где $U = U_b \rightarrow_e - M$ матрица перехода от базиса b к базису е.
- 13. Уравнение $\chi_A(\lambda) = 0$ характеристическим уравнением матрицы А. Ненулевой вектор х в линейном пространстве L называют собственным вектором линейного оператора A: L \rightarrow L, если для некоторого действительного числа λ выполняется соотношение $Ax = \lambda x$. При этом число λ называют собственным числом линейного оператора А.
- **14.** Пусть собственные значения $\lambda_1, \ldots, \lambda_r$ линейного оператора А попарно различны. Тогда система соответствующих им собственных векторов е1, . . . , ег линейно независима.
- 15. Линейный оператор A^* : E → E называют сопряженным к линейному оператору A: E → E, если для любых векторов x, y \in E верно равенство (Ax, y) = (x, A*y)
- Т: Любому линейному оператору A: $E \to E$ соответствует единственный сопряженный оператор A^* , причем его матрицей в любом ортонормированном базисе е является матрица А^Т, транспонированная матрице А линейного оператора А в том же базисе е.
- 16. Все корни характеристического уравнения самосопряженного оператора действительны.
- 17. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.
- **18.** Если собственные значения $\lambda_1, \ldots, \lambda_n$ самосопряженного оператора А, дей- ствующего в n-мерном евклидовом пространстве Е, попарно различны, то в Е существует ортонормированный базис, в котором матрица этого линейного оператора А имеет диагональ- ный вид, причем диагональными элементами такой матрицы являются собственные значения $\lambda_1, ..., \lambda_n$.
- 19. Квадратную матрицу О называют ортогональной, если она удовлетворяет условию $O^TO = E$, где Eединичная матрица

Линейный оператор A: $E \to E$, действующий в евклидовом пространстве E, называют ортогональным оператором, если он сохраняет скалярное произведение в Е, т.е. для любых векторов х, у ∈ Е выполняется равенство (Ax, Ay) = (x, y)

20. Однородный многочлен второй степени от n переменных с действительными коэффициентами

$$\sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j , a_{ij} \in R$$

 $\sum_{i=1}^{n} a_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} a_{ij} x_{i} x_{j}$, $a_{ij} \in R$ называют <u>квадратичной формой</u>. А = (ajj) — симметрическая матрица порядка n, называется матрицей квадратичной формы. Квадратичную форму $\alpha_1 x^2_1 + ... + \alpha_n x^2_n$, $\alpha_i \in \mathbb{R}$, і=1,п, не имеющую попарных произведений переменных, называют квадратичной формой канонического вида.

- **21.** матрица A квадратичной формы при переходе к новому базису изменяется по формуле $A' = U^T A U$, где U M перехода.
- **22.** Квадратичную форму $f(x) = x^{T}Ax$, $x = (x_1 x_2 ... x_n)^{T}$, будем называть:
- -положительно (отрицательно) определенной, если для любого ненулевого столбца x выполняется неравенство f(x) > 0 (f(x) < 0);
- неотрицательно (неположительно) определенной, если $f(x) \ge 0$ ($f(x) \le 0$) для любого столбца x, причем существует ненулевой столбец x, для которого f(x) = 0;
- знакопеременной (неопределенной), если существуют такие столбцы x и y, что f(x) > 0 и f(y) < 0.
- 23. (критерий Сильвестра). Для того чтобы квадратичная форма от n ne- ременных была положительно определена, необходимо и достаточно, чтобы выполнялись нера- венства $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0, ..., \Delta_n > 0$.

<u>Следствие</u> Для того чтобы квадратичная форма n переменных была отрицательно определена, необходимо и достаточно, чтобы выполнялись неравенства $-\Delta_1 > 0$, $\Delta_2 > 0$, $-\Delta_3 > > 0$, . . . , $(-1)^{\text{II}}\Delta_{\text{II}} > 0$ (знаки угловых миноров чередуются начиная с минуса).

24. Закон инерции квадратичных форм гласит: число положительных, отрицательных и нулевых канонических коэфициентов квадратичной формы не зависит от преобразования, с помощью которого квадатичная форма приводится к каноническому виду. (НЕ ИЗ ЛЕКЦИЙ!)

Законом инерции. (из лекции)

Ранг квадратичной формы не меняется при невырожденных линейных заменах переменных и равен:

- а) числу отличных от нуля коэффициентов в любом ее каноническом виде;
- б) количеству ненулевых собственных значений матрицы квадратичной формы (с учетом их кратности). В различных канонических видах данной квадратичной формы остается неизменным не только количество ненулевых коэффициентов, но и количество положительных и соответственно отрицательных коэффициентов. законом инерции.