МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	Клюкин А.В
Преподаватель	 Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Изучить работу машины Тьюринга и применить алгоритмы на практике.

Задание

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

Напишите программу, которая оборачивает исходную строку. Результат работы алгоритма - исходная последовательность символов в обратном порядке.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит (можно расширять при необходимости):

a

b

C

" " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.
- 6. Нельзя использовать дополнительную ленту, в которую записывается результат.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы обнаружить конец строки.

Выполнение работы

	"a"	"b"	"c"	" "
q0	"a", N, "q1"	"b", N, "q1"	"c", N, "q1"	"", R, "q0"
q1	"", R, "q2"	"", R, "q3"	"", R, "q4"	"", N, "q8"
q2	"a", R, "q2"	"a", R, "q3"	"a", R, "q4"	"", L, "q5"
q3	"b", R, "q2"	"b", R, "q3"	"b", R, "q4"	"", L, "q6"
q4	"c", R, "q2"	"c", R, "q3"	"c", R, "q4"	"", L, "q7"
q5	"a", L, "q5"	"b", L, "q5"	"c", L, "q5"	"a", R, "q1"
q6	"a", L, "q6"	"b", L, "q6"	"c", L, "q6"	"b", R, "q1"
q7	"a", L, "q7"	"b", L, "q7"	"c", L, "q7"	"c", R, "q1"

Стартовое положение q0. Курсор двигается вправо пока не наткнется на какой-либо символ, кроме пробела. Затем он её перезаписывает, чтобы не было потери и не двигает курсор. Переходит на положение q1 и в зависимости от буквы выбирает алгоритм. Удаляет текущую букву и переходит на следующее положение, записывающее удаленную букву в следующую ячейку. Например, была последовательность abc, буква а удалена и записана в ячейку, в которой находилась b, которая в свою очередь переносится на место элемента с. Когда алгоритм упрётся в конец строки, то происходит шаг назад и в зависимости от положения — q2, q3 или q4, идет переход на позицию q5, q6 или q7. В них алгоритм возвращается в начало до символа пробела и записывает символ, определенный на этапе q2/q3/q4 и возвращается в позицию q1. Так алгоритм уже не удалит первый символ и пройдет строку до конца, увидев пробел при позиции q1 и совершив переход на завершение — q8.

Сама программа состоит из считывания строки, занесенной в словарь таблицы положений и цикл состояний.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

No	Входные данные	Выходные данные	Комментарии
п/п			
1.	abc	cba	Верно
2.	abcabc	cbacba	Верно
3.	abacbbc	cbbcaba	Верно

Выводы

Была изучен принцип работы машины Тьюринга и так же был реализован пример использования.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: Klyukin Aleksandr lb4.py
string = list(input())
state = 'q0'
table = {
   'q0': {'a': ['a', 0,
                 'q1'],
        'b': ['b', 0, 'q1'],
        'c': ['c', 0, 'q1'],
'': ['', 1, 'q0']
        },
  },
  },
   'q3': {'a': ['b', 1, 'q2'],
        'b': ['b', 1, 'q3'],
        'c': ['b', 1, 'q4'],
' ': [' ', -1, 'q6']
       },
  },
  },
   },
```

```
}

index = 0
while state != 'q8':
    sign, delta, state = table[state][string[index]]
    string[index] = sign
    index += delta
print(''.join(string))
```