

SEQUENCE LISTING

<110> O'Brien, Timothy J.
<120> TADG-15: An Extracellular Serine Protease
Overexpressed in Carcinomas
<130> D6064CIP
<140> US 09/421,213
<141> 10-20-1999
<150> US 09/027,337
<151> 02-20-1998
<160> 98
<170> Office 98 for Macintosh

B
<210> 1
<211> 3147
<212> DNA
<213> *Homo sapiens*
<220>
<223> TADG-15
<400> 1

tcaagagcg cctcgggta ccatgggag cgatcgccg cgcaggcg gaggggccc 60
gaaggacttc ggcgcgggac tcaagtacaa ctcccgac gagaaggatga atggcttgg 120
ggaaggcgtg gagttcctgc cagtcaacaa cgtcaagaag gtggaaaagc atggcccg 180
gchgctgggtg gtgctggcag ccgtgctgat cggcctcctc ttggctttgc tgggatcg 240
cttcctggtg tggcatttgc agtaccggg cgtgcgtgtc cagaaggct tcaatggcta 300
catgaggatc acaaattgaga attttgtgg tgcctacgag aactccaact ccactgagtt 360
tgtaaggctg gccagcaagg tgaaggacgc gctgaagctg ctgtacagcg gagtcccatt 420
cctggccccc taccacaagg agtcggctgt gacggcctc agcgaggca gcgtcatcgc 480
ctactactgg tctgagttca gcatcccgca gcacctggtg gaggaggccg agcgcgtcat 540
ggccgaggag cgcgtagtc tgctgcccc gcggcgcgc tccctgaagt ctttgggt 600
cacctcagtg gtggctttcc ccacggactc caaaacagta cagaggaccc aggacaacag 660
ctgcagctt ggcctgcacg cccgcgggtg ggagctgatg cgcttccacca cgcccggtt 720
ccctgacagc ccctaccccg ctcatgcccc ctgcgcgtgg gcccgtcggg gggacgccga 780
ctcagtgtg agcctcacct tccgcagctt tgaccttgcg tcctgcgcacg agcgcggcag 840
cgacctggtg acggtgtaca acacccctgag ccccatggag ccccaacgccc tggtgcatgt 900
gtgtggcacc taccctccct cctacaaccc gaccccttccac tcctccaga acgtccctgct 960
catcacactg ataaccaaca ctgagcggcg gcatcccgcc tttgaggcca ctttcttcca 1020
gctgccttagg atgagcagct gtggaggccg cttacgtaaa gcccaggaga cattcaacag 1080
cccctactac ccaggccact acccacccaa cattgactgc acatgaaaca ttgagggtgcc 1140
caacaaccag catgtgaagg tgagcttcaa attttctac ctgctggagc cccgcgtgcc 1200
tgcgggcacc tgcccccaagg actacgtgga gatcaatggg gagaaatact gcggagagag 1260
gtcccagttc gtcgtcacca gcaacagcaa caagatcaca gttcgcttcc actcagatca 1320
gtcctacacc gacaccggct tcttagctga atacccttcc tacgactcca gtgaccatcg 1380

cccggggcag ttcacgtgcc gcacggggcg gtgtatccgg aaggagctgc gctgtgatgg 1440
 ctggccgac tgcaccgacc acagcgatga gctcaactgc agttgcgacg cccggccacca 1500
 gttcacgtgc aagaacaagt tctgcaagcc cctcttctgg gtctgcgaca gtgtgaacga 1560
 ctgcggagac aacagcgacg agcaggggtg cagttgtccg gcccagacac tcaggtgttc 1620
 caatgggaag tgccctctcga aaagccagca gtcaatggg aaggacgact gtggggacgg 1680
 gtccgacgag gcctcctgcc ccaaggtgaa cgtcgtcact tgtaccaaac acacctaccg 1740
 ctgcctcaat gggctctgct tgagcaaggg caaccctgag tgtgacggga aggaggactg 1800
 tagcgacggc tcagatgaga aggactgcga ctgtgggctg cggtcattca cgagacaggc 1860
 tcgtgttgtt gggggcacgg atgcggatga gggcgagtgg ccctggcagg taagcctgca 1920
 tgctctggc cagggccaca tctgcggtgc ttccctcatc tctcccaact ggctggctc 1980
 tgccgcacac tgctacatcg atgacagagg attcaggtac tcagacccca cgcagtgac 2040
 ggccttcctg ggcttgcacg accagagcca ggcgacgcgc cctgggtgc aggagcgcag 2100
 gctcaagcgc atcatctccc accccttctt caatgacttc accttcgact atgacatcgc 2160
 gctgctggag ctggagaaaac cggcagagta cagctccatg gtgcggccca tctgcctgcc 2220
 ggacgcctcc catgtcttcc ctgccggcaa ggccatctgg gtcacgggct ggggacacac 2280
 ccagtatgga ggcactggcg cgctgatcct gcaaaagggt gagatccgcg tcaccaacca 2340
 gaccacctgc gagaacctcc tgccgcagca gatcaacgcgc cgcatgatgt gcgtggctt 2400
 cctcagcggc ggcgtggact cctgccaggg tgattccggg ggaccctgt ccagcgtgga 2460
 ggcggatggg cggatcttcc aggccggtgt ggtgagctgg ggagacggct ggcgtcagag 2520
 gaacaagcca ggcgtgtaca caaggctccc tctgtttcgg gactggatca aagagaacac 2580
 tgggttatag gggccggggc cacccaaatg tgtacacctg cggggccacc catcgccac 2640
 cccagtgtgc acgcctgcag gctggagact ggaccgctga ctgcaccagc gccccagaa 2700
 catacactgt gaactcaatc tccagggctc caaatctgcc tagaaaaacct ctcgcttcct 2760
 cagcctcaa agtggagctg ggaggtagaa ggggaggaca ctgggtgtc tactgaccca 2820
 actggggca aaggtttcaa gacacagcct ccccccggcag ccccaagctg ggccgaggcg 2880
 cgtttgttata tatctgcctc ccctgtctgt aaggagcagc gggAACGGAG cttcggagcc 2940
 tcctcagtga agtggttggg gctgccggat ctgggctgtg gggcccttgg gccacgctct 3000
 tgaggaagcc caggctcgaa ggaccctgga aaacagacgg gtctgagact gaaattttt 3060
 taccagctcc cagggtggac ttcaagtgtgt gtatttgtt aaatggtaa aacaatttat 3120
 ttcttttaa aaaaaaaaaa aaaaaaaaaa 3147

b1
WT
 <210> 2
 <211> 855
 <212> PRT
 <213> *Homo sapiens*
 <220>
 <223> TADG-15
 <400> 2

Met	Gly	Ser	Asp	Arg	Ala	Arg	Lys	Gly	Gly	Gly	Gly	Pro	Lys	Asp
					5				10				15	
Phe	Gly	Ala	Gly	Leu	Lys	Tyr	Asn	Ser	Arg	His	Glu	Lys	Val	Asn
					20				25				30	
Gly	Leu	Glu	Glu	Gly	Val	Glu	Phe	Leu	Pro	Val	Asn	Asn	Val	Lys
					35				40				45	
Lys	Val	Glu	Lys	His	Gly	Pro	Gly	Arg	Trp	Val	Val	Leu	Ala	Ala
					50				55				60	
Val	Leu	Ile	Gly	Leu	Leu	Leu	Val	Leu	Leu	Gly	Ile	Gly	Phe	Leu
					65				70				75	

Val Trp His Leu Gln Tyr Arg Asp Val Arg Val Gln Lys Val Phe
80 85 90
Asn Gly Tyr Met Arg Ile Thr Asn Glu Asn Phe Val Asp Ala Tyr
95 100 105
Glu Asn Ser Asn Ser Thr Glu Phe Val Ser Leu Ala Ser Lys Val
110 115 120
Lys Asp Ala Leu Lys Leu Leu Tyr Ser Gly Val Pro Phe Leu Gly
125 130 135
Pro Tyr His Lys Glu Ser Ala Val Thr Ala Phe Ser Glu Gly Ser
140 145 150
Val Ile Ala Tyr Tyr Trp Ser Glu Phe Ser Ile Pro Gln His Leu
155 160 165
Val Glu Glu Ala Glu Arg Val Met Ala Glu Glu Arg Val Val Met
170 175 180
Leu Pro Pro Arg Ala Arg Ser Leu Lys Ser Phe Val Val Thr Ser
185 190 195
Val Val Ala Phe Pro Thr Asp Ser Lys Thr Val Gln Arg Thr Gln
200 205 210
Asp Asn Ser Cys Ser Phe Gly Leu His Ala Arg Gly Val Glu Leu
215 220 225
Met Arg Phe Thr Thr Pro Gly Phe Pro Asp Ser Pro Tyr Pro Ala
230 235 240
His Ala Arg Cys Gln Trp Ala Leu Arg Gly Asp Ala Asp Ser Val
245 250 255
Leu Ser Leu Thr Phe Arg Ser Phe Asp Leu Ala Ser Cys Asp Glu
260 265 270
Arg Gly Ser Asp Leu Val Thr Val Tyr Asn Thr Leu Ser Pro Met
275 280 285
Glu Pro His Ala Leu Val Gln Leu Cys Gly Thr Tyr Pro Pro Ser
290 295 300
B1
Tyr Asn Leu Thr Phe His Ser Ser Gln Asn Val Leu Leu Ile Thr
305 310 315
Leu Ile Thr Asn Thr Glu Arg Arg His Pro Gly Phe Glu Ala Thr
320 325 330
Phe Phe Gln Leu Pro Arg Met Ser Ser Cys Gly Gly Arg Leu Arg
335 340 345
Lys Ala Gln Gly Thr Phe Asn Ser Pro Tyr Tyr Pro Gly His Tyr
350 355 360
Pro Pro Asn Ile Asp Cys Thr Trp Asn Ile Glu Val Pro Asn Asn
365 370 375
Gln His Val Lys Val Ser Phe Lys Phe Phe Tyr Leu Leu Glu Pro
380 385 390
Gly Val Pro Ala Gly Thr Cys Pro Lys Asp Tyr Val Glu Ile Asn
395 400 405
Gly Glu Lys Tyr Cys Gly Glu Arg Ser Gln Phe Val Val Thr Ser
410 415 420
Asn Ser Asn Lys Ile Thr Val Arg Phe His Ser Asp Gln Ser Tyr
425 430 435
Thr Asp Thr Gly Phe Leu Ala Glu Tyr Leu Ser Tyr Asp Ser Ser
440 445 450
Asp Pro Cys Pro Gly Gln Phe Thr Cys Arg Thr Gly Arg Cys Ile
455 460 465

Arg Lys Glu Leu Arg Cys Asp Gly Trp Ala Asp Cys Thr Asp His
470 475 480
Ser Asp Glu Leu Asn Cys Ser Cys Asp Ala Gly His Gln Phe Thr
485 490 495
Cys Lys Asn Lys Phe Cys Lys Pro Leu Phe Trp Val Cys Asp Ser
500 505 510
Val Asn Asp Cys Gly Asp Asn Ser Asp Glu Gln Gly Cys Ser Cys
515 520 525
Pro Ala Gln Thr Phe Arg Cys Ser Asn Gly Lys Cys Leu Ser Lys
530 535 540
Ser Gln Gln Cys Asn Gly Lys Asp Asp Cys Gly Asp Gly Ser Asp
545 550 555
Glu Ala Ser Cys Pro Lys Val Asn Val Val Thr Cys Thr Lys His
560 565 570
Thr Tyr Arg Cys Leu Asn Gly Leu Cys Leu Ser Lys Gly Asn Pro
575 580 585
Glu Cys Asp Gly Lys Glu Asp Cys Ser Asp Gly Ser Asp Glu Lys
590 595 600
Asp Cys Asp Cys Gly Leu Arg Ser Phe Thr Arg Gln Ala Arg Val
605 610 615
Val Gly Gly Thr Asp Ala Asp Glu Gly Glu Trp Pro Trp Gln Val
620 625 630
Ser Leu His Ala Leu Gly Gln Gly His Ile Cys Gly Ala Ser Leu
635 640 645
Ile Ser Pro Asn Trp Leu Val Ser Ala Ala His Cys Tyr Ile Asp
650 655 660
Asp Arg Gly Phe Arg Tyr Ser Asp Pro Thr Gln Trp Thr Ala Phe
665 670 675
Leu Gly Leu His Asp Gln Ser Gln Arg Ser Ala Pro Gly Val Gln
680 685 690
Glu Arg Arg Leu Lys Arg Ile Ile Ser His Pro Phe Phe Asn Asp
695 700 705
Phe Thr Phe Asp Tyr Asp Ile Ala Leu Leu Glu Leu Glu Lys Pro
710 715 720
Ala Glu Tyr Ser Ser Met Val Arg Pro Ile Cys Leu Pro Asp Ala
725 730 735
Ser His Val Phe Pro Ala Gly Lys Ala Ile Trp Val Thr Gly Trp
740 745 750
Gly His Thr Gln Tyr Gly Gly Thr Gly Ala Leu Ile Leu Gln Lys
755 760 765
Gly Glu Ile Arg Val Ile Asn Gln Thr Thr Cys Glu Asn Leu Leu
770 775 780
Pro Gln Gln Ile Thr Pro Arg Met Met Cys Val Gly Phe Leu Ser
785 790 795
Gly Gly Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Ser
800 805 810
Ser Val Glu Ala Asp Gly Arg Ile Phe Gln Ala Gly Val Val Ser
815 820 825
Trp Gly Asp Gly Cys Ala Gln Arg Asn Lys Pro Gly Val Tyr Thr
830 835 840
Arg Leu Pro Leu Phe Arg Asp Trp Ile Lys Glu Asn Thr Gly Val
845 850 855

<210> 3
<211> 256
<212> PRT
<213> *Homo sapiens*
<220>
<223> Hepsin
<400> 3

Arg Ile Val Gly Gly Arg Asp Thr Ser Leu Gly Arg Trp Pro Trp
5 10 15
Gln Val Ser Leu Arg Tyr Asp Gly Ala His Leu Cys Gly Gly Ser
20 25 30
Leu Leu Ser Gly Asp Trp Val Leu Thr Ala Ala His Cys Phe Pro
35 40 45
Glu Arg Asn Arg Val Leu Ser Arg Trp Arg Val Phe Ala Gly Ala
50 55 60
Val Ala Gln Ala Ser Pro His Gly Leu Gln Leu Gly Val Gln Ala
65 70 75
Val Val Tyr His Gly Gly Tyr Leu Pro Phe Arg Asp Pro Asn Ser
80 85 90
Glu Glu Asn Ser Asn Asp Ile Ala Leu Val His Leu Ser Ser Pro
95 100 105
Leu Pro Leu Thr Glu Tyr Ile Gln Pro Val Cys Leu Pro Ala Ala
110 115 120
Gly Gln Ala Leu Val Asp Gly Lys Ile Cys Thr Val Thr Gly Trp
125 130 135
Gly Asn Thr Gln Tyr Tyr Gly Gln Gln Ala Gly Val Leu Gln Glu
140 145 150
Ala Arg Val Pro Ile Ile Ser Asn Asp Val Cys Asn Gly Ala Asp
155 160 165
Phe Tyr Gly Asn Gln Ile Lys Pro Lys Met Phe Cys Ala Gly Tyr
170 175 180
Pro Glu Gly Gly Ile Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro
185 190 195
Phe Val Cys Glu Asp Ser Ile Ser Arg Thr Pro Arg Trp Arg Leu
200 205 210
Cys Gly Ile Val Ser Trp Gly Thr Gly Cys Ala Leu Ala Gln Lys
215 220 225
Pro Gly Val Tyr Thr Lys Val Ser Asp Phe Arg Glu Trp Ile Phe
230 235 240
Gln Ala Ile Lys Thr His Ser Glu Ala Ser Gly Met Val Thr Gln
245 250 255

Leu

<210> 4
<211> 225
<212> PRT

<213> *Homo sapiens*

<220>

<223> SCCE

<400> 4

Lys Ile Ile Asp Gly Ala Pro Cys Ala Arg Gly Ser His Pro Trp
5 10 15
Gln Val Ala Leu Leu Ser Gly Asn Gln Leu His Cys Gly Gly Val
20 25 30
Leu Val Asn Glu Arg Trp Val Leu Thr Ala Ala His Cys Lys Met
35 40 45
Asn Glu Tyr Thr Val His Leu Gly Ser Asp Thr Leu Gly Asp Arg
50 55 60
Arg Ala Gln Arg Ile Lys Ala Ser Lys Ser Phe Arg His Pro Gly
65 70 75
Tyr Ser Thr Gln Thr His Val Asn Asp Leu Met Leu Val Lys Leu
80 85 90
Asn Ser Gln Ala Arg Leu Ser Ser Met Val Lys Lys Val Arg Leu
95 100 105
Pro Ser Arg Cys Glu Pro Pro Gly Thr Thr Cys Thr Val Ser Gly
110 115 120
Trp Gly Thr Thr Thr Ser Pro Asp Val Thr Phe Pro Ser Asp Leu
125 130 135
Met Cys Val Asp Val Lys Leu Ile Ser Pro Gln Asp Cys Thr Lys
140 145 150
Val Tyr Lys Asp Leu Leu Glu Asn Ser Met Leu Cys Ala Gly Ile
155 160 165
Pro Asp Ser Lys Lys Asn Ala Cys Asn Gly Asp Ser Gly Gly Pro
170 175 180
Leu Val Cys Arg Gly Thr Leu Gln Gly Leu Val Ser Trp Gly Thr
185 190 195
Phe Pro Cys Gly Gln Pro Asn Asp Pro Gly Val Tyr Thr Gln Val
200 205 210
Cys Lys Phe Thr Lys Trp Ile Asn Asp Thr Met Lys Lys His Arg
215 220 225

B1
B2

<210> 5

<211> 225

<212> PRT

<213> *Homo sapiens*

<220>

<223> Trypsin

<400> 5

Lys Ile Val Gly Gly Tyr Asn Cys Glu Glu Asn Ser Val Pro Tyr
5 10 15
Gln Val Ser Leu Asn Ser Gly Tyr His Phe Cys Gly Gly Ser Leu
20 25 30

Ile	Asn	Glu	Gln	Trp	Val	Val	Ser	Ala	Gly	His	Cys	Tyr	Lys	Ser
35									40					45
Arg	Ile	Gln	Val	Arg	Leu	Gly	Glu	His	Asn	Ile	Glu	Val	Leu	Glu
50									55					60
Gly	Asn	Glu	Gln	Phe	Ile	Asn	Ala	Ala	Lys	Ile	Ile	Arg	His	Pro
65									70					75
Gln	Tyr	Asp	Arg	Lys	Thr	Leu	Asn	Asn	Asp	Ile	Met	Leu	Ile	Lys
80									85					90
Leu	Ser	Ser	Arg	Ala	Val	Ile	Asn	Ala	Arg	Val	Ser	Thr	Ile	Ser
95									100					105
Leu	Pro	Thr	Ala	Pro	Pro	Ala	Thr	Gly	Thr	Lys	Cys	Leu	Ile	Ser
110									115					120
Gly	Trp	Gly	Asn	Thr	Ala	Ser	Ser	Gly	Ala	Asp	Tyr	Pro	Asp	Glu
125									130					135
Leu	Gln	Cys	Leu	Asp	Ala	Pro	Val	Leu	Ser	Gln	Ala	Lys	Cys	Glu
140									145					150
Ala	Ser	Tyr	Pro	Gly	Lys	Ile	Thr	Ser	Asn	Met	Phe	Cys	Val	Gly
155									160					165
Phe	Leu	Glu	Gly	Gly	Lys	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly
170									175					180
Pro	Val	Val	Cys	Asn	Gly	Gln	Leu	Gln	Gly	Val	Val	Ser	Trp	Gly
185									190					195
Asp	Gly	Cys	Ala	Gln	Lys	Asn	Lys	Pro	Gly	Val	Tyr	Thr	Lys	Val
200									205					210
Tyr	Asn	Tyr	Val	Lys	Trp	Ile	Lys	Asn	Thr	Ile	Ala	Ala	Asn	Ser
215									220					225

 <210> 6
 <211> 231
 <212> PRT
 <213> *Homo sapiens*
 <220>
 <223> Chymotrypsin
 <400> 6

Arg	Ile	Val	Asn	Gly	Glu	Asp	Ala	Val	Pro	Gly	Ser	Trp	Pro	Trp
5									10					15
Gln	Val	Ser	Leu	Gln	Asp	Lys	Thr	Gly	Phe	His	Phe	Cys	Gly	Gly
20									25					30
Ser	Leu	Ile	Ser	Glu	Asp	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Gly
35									40					45
Val	Arg	Thr	Ser	Asp	Val	Val	Val	Ala	Gly	Glu	Phe	Asp	Gln	Gly
50									55					60
Ser	Asp	Glu	Glu	Asn	Ile	Gln	Val	Leu	Lys	Ile	Ala	Lys	Val	Phe
65									70					75
Lys	Asn	Pro	Lys	Phe	Ser	Ile	Leu	Thr	Val	Asn	Asn	Asp	Ile	Thr
80									85					90
Leu	Leu	Lys	Leu	Ala	Thr	Pro	Ala	Arg	Phe	Ser	Gln	Thr	Val	Ser
95									100					105

<210> 7

<211> 255

<212> PRT

<213> *Homo sapiens*

<220>

<223> Factor 7

<400> 7

Arg	Ile	Val	Gly	Gly	Lys	Val	Cys	Pro	Lys	Gly	Glu	Cys	Pro	Trp
									5		10			15
Gln	Val	Leu	Leu	Leu	Val	Asn	Gly	Ala	Gln	Leu	Cys	Gly	Gly	Thr
									20		25			30
Leu	Ile	Asn	Thr	Ile	Trp	Val	Val	Ser	Ala	Ala	His	Cys	Phe	Asp
									35		40			45
Lys	Ile	Lys	Asn	Trp	Arg	Asn	Leu	Ile	Ala	Val	Leu	Gly	Glu	His
									50		55			60
Asp	Leu	Ser	Glu	His	Asp	Gly	Asp	Glu	Gln	Ser	Arg	Arg	Val	Ala
									65		70			75
Gln	Val	Ile	Ile	Pro	Ser	Thr	Tyr	Val	Pro	Gly	Thr	Thr	Asn	His
									80		85			90
Asp	Ile	Ala	Leu	Leu	Arg	Leu	His	Gln	Pro	Val	Val	Leu	Thr	Asp
									95		100			105
His	Val	Val	Pro	Leu	Cys	Leu	Pro	Glu	Arg	Thr	Phe	Ser	Glu	Arg
									110		115			120
Thr	Leu	Ala	Phe	Val	Arg	Phe	Ser	Leu	Val	Ser	Gly	Trp	Gly	Gln
									125		130			135
Leu	Leu	Asp	Arg	Gly	Ala	Thr	Ala	Leu	Glu	Leu	Met	Val	Leu	Asn
									140		145			150
Val	Pro	Arg	Leu	Met	Thr	Gln	Asp	Cys	Leu	Gln	Gln	Ser	Arg	Lys
									155		160			165

Val	Gly	Asp	Ser	Pro	Asn	Ile	Thr	Glu	Tyr	Met	Phe	Cys	Ala	Gly
				170					175					180
Tyr	Ser	Asp	Gly	Ser	Lys	Asp	Ser	Cys	Lys	Gly	Asp	Ser	Gly	Gly
				185					190					195
Pro	His	Ala	Thr	His	Tyr	Arg	Gly	Thr	Trp	Tyr	Leu	Thr	Gly	Ile
				200					205					210
Val	Ser	Trp	Gly	Gln	Gly	Cys	Ala	Thr	Val	Gly	His	Phe	Gly	Val
				215					220					225
Tyr	Thr	Arg	Val	Ser	Gln	Tyr	Ile	Glu	Trp	Leu	Gln	Lys	Leu	Met
				230					235					240
Arg	Ser	Glu	Pro	Arg	Pro	Gly	Val	Leu	Leu	Arg	Ala	Pro	Phe	Pro
				245					250					255

<210> 8

<211> 253

<212> PRT

<213> *Homo sapiens*

<220>

<223> Tissue plasminogen activator

<400> 8

Arg	Ile	Lys	Gly	Gly	Leu	Phe	Ala	Asp	Ile	Ala	Ser	His	Pro	Trp
				5					10					15
Gln	Ala	Ala	Ile	Phe	Ala	Lys	His	Arg	Arg	Ser	Pro	Gly	Glu	Arg
				20					25					30
Phe	Leu	Cys	Gly	Gly	Ile	Leu	Ile	Ser	Ser	Cys	Trp	Ile	Leu	Ser
				35					40					45
Ala	Ala	His	Cys	Phe	Gln	Glu	Arg	Phe	Pro	Pro	His	His	Leu	Thr
				50					55					60
Val	Ile	Leu	Gly	Arg	Thr	Tyr	Arg	Val	Val	Pro	Gly	Glu	Glu	
				65					70					75
Gln	Lys	Phe	Glu	Val	Glu	Lys	Tyr	Ile	Val	His	Lys	Glu	Phe	Asp
				80					85					90
Asp	Asp	Thr	Tyr	Asp	Asn	Asp	Ile	Ala	Leu	Leu	Gln	Leu	Lys	Ser
				95					100					105
Asp	Ser	Ser	Arg	Cys	Ala	Gln	Glu	Ser	Ser	Val	Val	Arg	Thr	Val
				110					115					120
Cys	Leu	Pro	Pro	Ala	Asp	Leu	Gln	Leu	Pro	Asp	Trp	Thr	Glu	Cys
				125					130					135
Glu	Leu	Ser	Gly	Tyr	Gly	Lys	His	Glu	Ala	Leu	Ser	Pro	Phe	Tyr
				140					145					150
Ser	Glu	Arg	Leu	Lys	Glu	Ala	His	Val	Arg	Leu	Tyr	Pro	Ser	Ser
				155					160					165
Arg	Cys	Thr	Ser	Gln	His	Leu	Leu	Asn	Arg	Thr	Val	Thr	Asp	Asn
				170					175					180
Met	Leu	Cys	Ala	Gly	Asp	Thr	Arg	Ser	Gly	Gly	Pro	Gln	Ala	Asn
				185					190					195
Leu	His	Asp	Ala	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Val	Cys
				200					205					210

Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly
 215 220 225
 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val
 230 235 240
 Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro
 245 250

<210> 9
 <211> 2900
 <212> DNA
 <213> *Homo sapiens*
 <220>
 <223> SNC-19; GeneBank Accession No. #U20428
 <400> 9

cgctgggtgg tgctggcagc cgtgctgatc ggccttcctt tggtcttgct ggggatcgac 60
 ttcctgggtt ggcatattca gtaccggac gtgcgtgtcc agaaggctt caatggctac 120
 atgaggatca caaatgagaa ttttgtggat gcctacgaga actccaactc cactgagtt 180
 gtaaggcctgg ccagcaaggt gaaggacgac ctgaagctgc tgtacagcgg agtcccattc 240
 ctggggccctt accacaagga gtcggctgtg acggccttca gcgagggcag cgtcatcgcc 300
 tactacttgtt ctgagttcag catcccgac cacctgggtt aggaggccga gcgcgtcatg 360
 gccaggagcg ctagtcatg ctgcccccgcc gggcgcgc cctgaagtcc tttgtggtca 420
 cctcagtgtt ggctttcccc acggactcca aaacagtaca gaggaccac gacaacagct 480
 gcagcttgg cctgcacgcc gcggtgtgg gctgatgcgc ttcaccacgc cggctccct 540
 gagagccctt accccgctca tgcccgctgc cagtggttgc cggggacgc acgcagtgct 600
 gagctactcg agctgactcg cagttgact ggcgcctcgac gagcgcggca ggcacctgg 660
 gacgtgtaca acacccttag cccatggag cccacgcct ggtgagtgtg tggcacctac 720
 cctccctctt acaacactgac ctccactcc ctcccacgaa cgtcctgctc atcacactga 780
 taaccaacac tgacgcggca tcccgctt gaggccaccc tcttccagct gccttaggatg 840
 agcagctgtg gaggccgc tt acgtaaagcc cagggacat tcaacagccc ctactacca 900
 ggccactacc caccacat tgactgcaca tggaaaattt aggtgccc caaccagcat 960
 gtgaagggtgc gcttcaaatt ctcttacactt ctggagcccg cgggtcctgc gggcacctgc 1020
 cccaaggact acgtggagat caatggggag aaatactgcg gagagaggc ccagttcgtc 1080
 gtcaccagca acagcaacaa gatcacagtt cgcttccact cagatcagtc ctacacccgac 1140
 accggcttct tagctgaata cctctcctac gactccagtg acccatgccc gggcagttc 1200
 acgtgcccga cggggcgggtg tatccggaag gagctgcgcgt gtatggctg ggcactgca 1260
 ccgaccacag ctagtgcgtc aactgcagtt gcgacgccc caccagttc acgtgcaaga 1320
 gcaagttctg caagctttc tgggtctgcg acagtgtgaa cgagtgcga gacaacagcg 1380
 acgagcagggtt tgcatattgt ccggacccag accttcaggt gttccaatgg gaagtgcctc 1440
 tcgaaaagcc agcagtgcac tggaaaggac gactgtgggg acgggtccga cgaggcctcc 1500
 tgccccaaagg tgaacgtcgt cacttgtacc aaacacaccc accgctgcct caatgggctc 1560
 tgcttgagca agggcaaccc tgagtgtgac gggaggagg actgtagcga cggctcagat 1620
 gagaaggact gcgactgtgg gctgcggta ttcacgagac aggctcgtt tttgggggc 1680
 acggatgcgg atgaggccga gtggccctgg caggtaaagcc tgcacgtct gggccaggc 1740
 cacatctgcg gtgttccct catctctccc aactggctgg tctctgcgc acactgctac 1800
 atcgatgaca gaggattcag gtactcagac cccacgcagg acggcctcc tgggcttgca 1860
 cgaccagagc cagcgcaggc cctgggggtgc aggagcgcag gctcaagcgc atcatctccc 1920
 acccccttctt caatgcactt accttcgact atgacatgcg gctgctggag ctggagaaac 1980
 cggcagagta cagctccatg gtgcggccca tctgcctgccc ggacgcctgc catgttcc 2040

ctgccggcaa ggccatctgg gtcacgggct ggggacacac ccagtatgga ggcactggcg 2100
 cgctgatcct gcaaaagggt gagatccgcg tcatacaacca gaccacctgc gagaacctcc 2160
 tgccgcagca gatcacgcgc cgcatgatgt gcgtggcct cctcagcggc ggcgtggact 2220
 cctgccaggg tgattccggg ggacccctgt ccagcgtgga ggcggatggg cggatctcc 2280
 aggccggtgt ggtgagctgg ggagacgctg cgctcagagg aacaagccag gcgtgtacac 2340
 aaggctccct ctgtttcggg aatggatcaa agagaacact ggggtatagg ggccggggcc 2400
 acccaaatgt gtacacctgc ggggccaccc atcgtccacc ccagtgtgca cgcctgcagg 2460
 ctggagactc ggcgaccgtg acctgcacca ggcgcggcaga acataactg tgaactcatc 2520
 tccaggctca aatctgctag aaaacctctc gcttcctcag cctccaaagt ggagctggga 2580
 gggtagaagg ggaggaacac tgggggttct actgacccaa ctggggcaag gtttgaagca 2640
 cagctccggc agcccaagtg ggcgaggacg cgtttgcata tactcccctg ctctatacac 2700
 ggaagacctg gatctctagt gagggtgact gccgatctg gctgtggtcc ttggccacgc 2760
 ttcttgagga agcccaggtt cgaggaccg tggaaaacag acgggtctga gactgaaaaat 2820
 ggtttaccag ctcccaggtt acttcagtgt gtgtattgtg taaatgagta aaacatttta 2880
 tttctttta aaaaaaaaaa 2900

<210> 10
 <211> 902
 <212> PRT
 <213> *Mus musculus*
 <220>
 <223> Epithin
 <400> 10

B1
WT

Met	Gly	Ser	Asn	Arg	Gly	Arg	Lys	Ala	Gly	Gly	Gly	Ser	Gln	Asp
									5	10				15
Phe	Gly	Ala	Gly	Leu	Lys	Tyr	Asp	Ser	Arg	Leu	Glu	Asn	Met	Asn
									20	25				30
Gly	Phe	Glu	Glu	Gly	Val	Glu	Phe	Leu	Pro	Ala	Asn	Asn	Ala	Lys
									35	40				45
Lys	Val	Glu	Lys	Arg	Gly	Pro	Arg	Arg	Trp	Val	Val	Leu	Val	Ala
									50	55				60
Val	Leu	Phe	Ser	Phe	Leu	Leu	Leu	Ser	Leu	Met	Ala	Gly	Leu	Leu
									65	70				75
Val	Trp	His	Phe	His	Tyr	Arg	Asn	Val	Arg	Val	Gln	Lys	Val	Phe
									80	85				90
Asn	Gly	His	Leu	Arg	Ile	Thr	Asn	Glu	Ile	Phe	Leu	Asp	Ala	Tyr
									95	100				105
Glu	Asn	Ser	Thr	Ser	Thr	Glu	Phe	Ile	Ser	Leu	Ala	Ser	Gln	Val
									110	115				120
Lys	Glu	Ala	Leu	Lys	Leu	Leu	Tyr	Asn	Glu	Val	Pro	Val	Leu	Gly
									125	130				135
Pro	Tyr	His	Lys	Lys	Ser	Ala	Val	Thr	Ala	Phe	Ser	Glu	Gly	Ser
									140	145				150
Val	Ile	Ala	Tyr	Tyr	Trp	Ser	Glu	Phe	Ser	Ile	Pro	Pro	His	Leu
									155	160				165
Ala	Glu	Glu	Val	Asp	Arg	Ala	Met	Ala	Val	Glu	Arg	Val	Val	Thr
									170	175				180

BWA
Leu Pro Pro Arg Ala Arg Ala Leu Lys Ser Phe Val Leu Thr Ser
185 190 195
Val Val Ala Phe Pro Ile Asp Pro Arg Met Leu Gln Arg Thr Gln
200 205 210
Asp Asn Ser Cys Ser Phe Ala Leu His Ala His Gly Ala Ala Val
215 220 225
Thr Arg Phe Thr Thr Pro Gly Phe Pro Asn Ser Pro Tyr Pro Ala
230 235 240
His Ala Arg Cys Gln Trp Val Leu Arg Gly Asp Ala Asp Ser Val
245 250 255
Leu Ser Leu Thr Phe Arg Ser Phe Asp Val Ala Pro Cys Asp Glu
260 265 270
His Gly Ser Asp Leu Val Thr Val Tyr Asp Ser Leu Ser Pro Met
275 280 285
Glu Pro His Ala Val Val Arg Leu Cys Gly Thr Phe Ser Pro Ser
290 295 300
Tyr Asn Leu Thr Phe Leu Ser Ser Gln Asn Val Phe Leu Val Thr
305 310 315
Leu Ile Thr Asn Thr Gly Arg Arg His Leu Gly Phe Glu Ala Thr
320 325 330
Phe Phe Gln Leu Pro Lys Met Ser Ser Cys Gly Gly Val Leu Ser
335 340 345
Asp Thr Gln Gly Thr Phe Ser Ser Pro Tyr Tyr Pro Gly His Tyr
350 355 360
Pro Pro Asn Ile Asn Cys Thr Trp Asn Ile Lys Val Pro Asn Asn
365 370 375
Arg Asn Val Lys Val Arg Phe Lys Leu Phe Tyr Leu Val Asp Pro
380 385 390
Asn Val Pro Val Gly Ser Cys Thr Lys Asp Tyr Val Glu Ile Asn
395 400 405
Gly Glu Lys Gly Ser Gly Glu Arg Ser Gln Phe Val Val Ser Ser
410 415 420
Asn Ser Ser Lys Ile Thr Val His Phe His Ser Asp His Ser Tyr
425 430 435
Thr Asp Thr Gly Phe Leu Ala Glu Tyr Leu Ser Tyr Asp Ser Asn
440 445 450
Asp Pro Cys Pro Gly Met Phe Met Cys Lys Thr Gly Arg Cys Ile
455 460 465
Arg Lys Glu Leu Arg Cys Asp Gly Trp Ala Asp Cys Pro Asp Tyr
470 475 480
Ser Asp Glu Arg Tyr Cys Arg Cys Asn Ala Thr His Gln Phe Thr
485 490 495
Cys Lys Asn Gln Phe Cys Lys Pro Leu Phe Trp Val Cys Asp Ser
500 505 510
Val Asn Asp Cys Gly Asp Gly Ser Asp Glu Glu Gly Cys Ser Cys
515 520 525
Pro Ala Gly Ser Phe Lys Cys Ser Asn Gly Lys Cys Leu Pro Gln
530 535 540
Ser Gln Lys Cys Asn Gly Lys Asp Asn Cys Gly Asp Gly Ser Asp
545 550 555
Glu Ala Ser Cys Asp Ser Val Asn Val Val Ser Cys Thr Lys Tyr
560 565 570

Thr Tyr Arg Cys Gln Asn Gly Leu Cys Leu Ser Lys Gly Asn Pro
 575 580 585
 Glu Cys Asp Gly Lys Thr Asp Cys Ser Asp Gly Ser Asp Glu Lys
 590 595 600
 Asn Cys Asp Cys Gly Leu Arg Ser Phe Thr Lys Gln Ala Arg Val
 605 610 615
 Val Gly Gly Thr Asn Ala Asp Glu Gly Glu Trp Pro Trp Gln Val
 620 625 630
 Ser Leu His Ala Leu Gly Gln Gly His Leu Cys Gly Ala Ser Leu
 635 640 645
 Ile Ser Pro Asp Trp Leu Val Ser Ala Ala His Cys Phe Gln Asp
 650 655 660
 Asp Lys Asn Phe Lys Tyr Ser Asp Tyr Thr Met Trp Thr Ala Phe
 665 670 675
 Leu Gly Leu Leu Asp Gln Ser Lys Arg Ser Ala Ser Gly Val Gln
 680 685 690
 Glu Leu Lys Leu Lys Arg Ile Ile Thr His Pro Ser Phe Asn Asp
 695 700 705
 Phe Thr Phe Asp Tyr Asp Ile Ala Leu Leu Glu Leu Glu Lys Ser
 710 715 720
 Val Glu Tyr Ser Thr Val Val Arg Pro Ile Cys Leu Pro Asp Ala
 725 730 735
 Thr His Val Phe Pro Ala Gly Lys Ala Ile Trp Val Thr Gly Trp
 740 745 750
 Gly His Thr Lys Glu Gly Gly Thr Gly Ala Leu Ile Leu Gln Lys
 755 760 765
 Gly Glu Ile Arg Val Ile Asn Gln Thr Thr Cys Glu Asp Leu Met
 770 775 780
 Pro Gln Gln Ile Thr Pro Arg Met Met Cys Val Gly Phe Leu Ser
 785 790 795
 Gly Gly Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Ser
 800 805 810
 Ser Ala Glu Lys Asp Gly Arg Met Phe Gln Ala Gly Val Val Ser
 815 820 825
 Trp Gly Glu Gly Cys Ala Gln Arg Asn Lys Pro Gly Val Tyr Thr
 830 835 840
 Arg Leu Pro Cys Ser Ser Gly Leu Asp Gln Arg Ala His Trp Gly
 845 850 855
 Ile Ala Ala Trp Thr Asp Ser Arg Pro Gln Thr Pro Thr Gly Met
 860 865 870
 Pro Asp Met His Thr Trp Ile Gln Glu Arg Asn Thr Asp Asp Ile
 875 880 885
 Tyr Ala Val Ala Ser Pro Pro Gln His Asn Pro Asp Cys Glu Leu
 890 895 900
 His Pro

<210> 11

<211> 23

<212> DNA

<213> Artificial sequence
<220>
<221> n=Inosine
<222> 6, 9, 12, 15, 18
<223> Degenerate oligonucleotide primer
<400> 11
tgggtngtna cngcngcnca ytg

23

<210> 12
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<221> n=Inosine
<222> 3, 6, 9, 12, 18
<223> Degenerate oligonucleotide primer
<400> 12
arnggnccnc cnswrtncc

20

B1
WT
<210> 13
<211> 12
<212> PRT
<213> *Homo sapiens*
<220>
<223> Fragment of TADG-15
<400> 13
Leu Phe Arg Asp Trp Ile Lys Glu Asn Thr Gly Val

5

10

<210> 14
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> TADG-15 forward oligonucleotide primer

SEQ 14

<400> 14

atgacagagg attcaggtac

20

<210> 15

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> TADG-15 reverse oligonucleotide primer

<400> 15

gaaggtgaag tcattgaaga

20

<210> 16

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> β -tubulin forward oligonucleotide primer

<400> 16

cgcataaca tgcactacaa

20

B1
WJ
<210> 17

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> β -tubulin reverse oligonucleotide primer

<400> 17

tacgagctgg tggactgaga

20

<210> 18

<211> 3147

<212> RNA

<213> Artificial sequence

<220>

<223> Antisense of TADG-15

<400> 18

B1
WK

uuuuuuuuuuuu	uuuuuuuuuuua	aaaagaaaaa	aauuguuuuua	cccauuuuaca	50
caaauacaca	cacugaaguc	cacccuggga	gcugguaaaa	caauuucagu	100
cucagacccg	ucuguuuuucc	aggguccucc	gagccugggc	uuccucaaga	150
gcguggccca	agggccccac	agcccagauc	cggcagcccc	accaccuuca	200
cugaggaggc	uccgaagcuc	cguuccccgcu	gcuccuuaca	gacaggggag	250
gcagauauac	acaaacgcgc	cucggcccaag	cuuggggcug	gcgggggagg	300
cugugucuuc	aaaccuuuugc	ccccaguugg	gucaguagaa	ccaccagugu	350
ccuuccccuuc	uaccucccag	cuccacuuug	gaggcugagg	aagcgagagg	400
uuuuucuaggc	agauuuggag	cccuggagau	ugaguucaca	guguauguuc	450
uggggggcgcu	ggugcaguca	gcgguccagu	cuccagccug	caggcgugca	500
cacuggggug	gacgaugggu	ggccccgcag	guguacacau	uuggguggcc	550
ccggccccua	uaccccagug	uucucuuuga	uccagucccg	aaacagaggg	600
agccuugugu	acacgccugg	cuuguuccuc	ugagcgcagc	cgucucccca	650
gcucaccaca	ccggccugga	agauccgccc	auccgcccuc	acgcuggaca	700
gggguccccc	ggaaucaccc	uggcaggagu	ccacgcccgc	gcugaggaag	750
cccacgcaca	ucaugcgcgg	cgugaucugc	ugcggcagga	gguucucgca	800
gguggucugg	uugaugacgc	ggaucucacc	cuuuggcagg	aucagcgcbc	850
cagugccucc	auacuggggug	ugucccccagc	ccgugacccca	gauggccuug	900
ccggcagggg	agacauggga	ggcgccccgc	aggcagaugg	gccgcaccau	950
ggagcuguac	ucugccgguu	ucuccagcuc	cagcagcgcg	augucauagu	1000
cgaaggugaa	gucauugaag	aagggguggg	agaugaugcg	cuugagccug	1050
cgcuccugca	ccccaggggc	gcugcgcugg	cucuggucgu	gcaagcccag	1100
gaaggccguc	cacugcggugg	ggucugagua	ccugaauccu	cugucaucga	1150
uguagcagug	ugcggcagag	accagccagu	ugggagagau	gagggaagca	1200
ccgcagaaugu	ggcccugggc	cagagcaugc	aggcuuaccu	gccaggggca	1250
cucgcccucu	uccgcauccg	ugcccccaac	aacacgagcc	ugucucguga	1300
augaccgcag	cccacagucg	caguucciuu	caucugagcc	gucgcuacag	1350
uccuccuucc	cgucacacuc	aggguugccc	uugcucaagc	agagcccauu	1400
gaggcagcg	uagguguguu	ugguacaagu	gacgacguuc	acciuggggc	1450
aggaggccuc	gucggaccgg	uccccacagu	cguccuuccc	auugcacugc	1500
uggcuuuiucg	agaggcacuu	cccauuggaa	caccugaagg	ucuggggccgg	1550
acaacugcac	cccugcucgu	cgcuguuguc	uccgcagucg	uucacacugu	1600
cgcagaccca	gaagaggggc	uugcagaacu	ugiuuucugca	cgugaacugg	1650
uggccggcgu	cgcaacugca	guugagcuca	ucgcuguggu	cggugcaguc	1700
ggcccagcca	ucacagcgca	gcuccuuccg	gauacaccgc	cccugcggc	1750
acgugaacug	ccccgggcau	gggucacugg	agucguagga	gagguaauca	1800
gcuaagaagc	cggugucgg	guaggacuga	ucugagugga	agcgaacugu	1850
gaucuuguug	cuguuggcugg	ugacgacgaa	cugggaccuc	ucuccgcagu	1900
auuuucuccc	auugaucucc	acguaguccu	uggggcaggu	gcccgcaggc	1950
acgccgggcu	ccagcaggua	gaagaauuug	aagcucaccu	ucacaugcug	2000
guuguugggc	accucaaugu	uccaugugca	gucaauguug	gguggguagu	2050
ggccuggggua	guagggggcug	uugaaugucc	ccuggggcuuu	acquaagcgg	2100
ccuccacagc	ugcucauccu	aggcagcugg	aagaaggugg	ccucaaagcc	2150
gggaugccgc	cgcucagugu	ugguuaucag	ugugaugagc	aggacguucu	2200
gggaggagug	gaaggucagg	uuguaggagg	gaggguaggu	gccacacacaac	2250
ugcaccaggg	cgugggggcuc	caugggggcuc	aggguguugu	acaccgucac	2300
caggucgcug	ccgcgcucgu	cgcaggacgc	aaggucaaag	cugcggaaagg	2350
ugagggcucag	cacugagucg	gcguccccc	gcagggccca	cuggcagcgg	2400
gcaugagcgg	gguaggggcu	gucagggaaag	ccgggcgugg	ugaagcgcau	2450

cagcucccaca	ccgcgggcccgu	gcaggccaaa	gcugcagcug	uuguccuggg	2500
uccucuguac	uguuuuggag	uccguggggga	aagccaccac	ugaggugacc	2550
acaaaggacu	ucagggagcg	cgccccgggg	ggcagcauga	cuacgcgcuc	2600
cucggccaug	acgcgcucgg	ccuccuccac	caggugcugc	gggaugcuga	2650
acucagacca	guaguaggcg	augacgcugc	ccucgcugaa	ggccgucaca	2700
gccgacuccu	ugugguaggg	gcccaggaau	gggacuccgc	uguacagcag	2750
cuucagcgcg	uccuucaccu	ugcuggccag	gcuuacaaac	ucaguggagu	2800
uggaguuucuc	guaggcaucc	acaaaaauucu	cauuugugau	ccucauguag	2850
ccauugaaga	cciuucuggac	acgcacgucc	cgguacugca	aaugccacac	2900
caggaagccg	auccccagca	agaccaagag	gaggccgauc	agcacggcug	2950
ccagcaccac	ccagcgcccc	gggcuaugcu	uuuccaccuu	cuugacgug	3000
uugacuggca	ggAACUCCAC	gccuuccucc	aagccauuca	cuuucucugug	3050
ccgggaguug	uacuugaguc	ccgcGCCGAA	guccuucggg	cccccuCCGC	3100
ccuugcgggc	ccgaucgcuc	cccaugguac	cccaggccg	cucuuga	3147

<210> 19

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 68-76 of the TADG-15 protein

<400> 19

Val Leu Leu Gly Ile Gly Phe Leu Val

5

<210> 20

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 126-134 of the TADG-15 protein

<400> 20

Leu Leu Tyr Ser Gly Val Pro Phe Leu

5

<210> 21

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 644-652 of the TADG-15 protein

<400> 21

Ser Leu Ile Ser Pro Asn Trp Leu Val

5

<210> 22

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 379-387 of the TADG-15 protein

<400> 22

Lys Val Ser Phe Lys Phe Phe Tyr Leu

5

<210> 23

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 386-394 of the TADG-15 protein

<400> 23

Tyr Leu Leu Glu Pro Gly Val Pro Ala

5

<210> 24

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 257-265 of the TADG-15 protein

<400> 24

Ser Leu Thr Phe Arg Ser Phe Asp Leu

5

<210> 25

<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 762-770 of the TADG-15 protein
<400> 25
Ile Leu Gln Lys Gly Glu Ile Arg Val

5

<210> 26
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 841-849 of the TADG-15 protein
<400> 26
Arg Leu Pro Leu Phe Arg Asp Trp Ile

5

B1
<210> 27
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 64-72 of the TADG-15 protein
<400> 27
Gly Leu Leu Leu Val Leu Leu Gly Ile

5

<210> 28
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 57-65 of the TADG-15 protein

<400> 28

Val Leu Ala Ala Val Leu Ile Gly Leu

5

<210> 29

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 67-75 of the TADG-15 protein

<400> 29

Leu Val Leu Leu Gly Ile Gly Phe Leu

5

<210> 30

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 379-387 of the TADG-15 protein

<400> 30

Lys Val Ser Phe Lys Phe Phe Tyr Leu

5

b1
b2
<210> 31

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 126-134 of the TADG-15 protein

<400> 31

Leu Leu Tyr Ser Gly Val Pro Phe Leu

5

<210> 32

<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 88-96 of the TADG-15 protein
<400> 32

Lys Val Phe Asn Gly Tyr Met Arg Ile

5

<210> 33
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 670-678 of the TADG-15 protein
<400> 33

Thr Gln Trp Thr Ala Phe Leu Gly Leu

5

51
<210> 34
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 119-127 of the TADG-15 protein
<400> 34

Lys Val Lys Asp Ala Leu Lys Leu Leu

5

<210> 35
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 60-68 of the TADG-15 protein

<400> 35

Ala Val Leu Ile Gly Leu Leu Leu Val

5

<210> 36

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 62-70 of the TADG-15 protein

<400> 36

Leu Ile Gly Leu Leu Leu Val Leu Leu

5

<210> 37

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 57-65 of the TADG-15 protein

<400> 37

Val Leu Ala Ala Val Leu Ile Gly Leu

5

B
wf
<210> 38

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 61-69 of the TADG-15 protein

<400> 38

Val Leu Ile Gly Leu Leu Leu Val Leu

5

<210> 39

<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 146-154 of the TADG-15 protein
<400> 39

Phe Ser Glu Gly Ser Val Ile Ala Tyr

5

<210> 40
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 658-666 of the TADG-15 protein
<400> 40

Tyr Ile Asp Asp Arg Gly Phe Arg Tyr

5

B
Y
n
<210> 41
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 449-457 of the TADG-15 protein
<400> 41

Ser Ser Asp Pro Cys Pro Gly Gln Phe

5

<210> 42
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 401-409 of the TADG-15 protein

<400> 42

Tyr Val Glu Ile Asn Gly Glu Lys Tyr

5

<210> 43

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 387-395 of the TADG-15 protein

<400> 43

Leu Leu Glu Pro Gly Val Pro Ala Gly

5

<210> 44

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 553-561 of the TADG-15 protein

<400> 44

Gly Ser Asp Glu Ala Ser Cys Pro Lys

5

B1
Nt
<210> 45

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 97-105 of the TADG-15 protein

<400> 45

Thr Asn Glu Asn Phe Val Asp Ala Tyr

5

<210> 46

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 110-118 of the TADG-15 protein
<400> 46
Ser Thr Glu Phe Val Ser Leu Ala Ser

5

<210> 47
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 811-819 of the TADG-15 protein
<400> 47
Ser Val Glu Ala Asp Gly Arg Ile Phe

5

B
<210> 48
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 666-674 of the TADG-15 protein
<400> 48
Tyr Ser Asp Pro Thr Gln Trp Thr Ala

5

<210> 49
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 709-717 of the TADG-15 protein
<400> 49

Asp Tyr Asp Ile Ala Leu Leu Glu Leu

5

<210> 50

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 408-416 of the TADG-15 protein

<400> 50

Lys Tyr Cys Gly Glu Arg Ser Gln Phe

5

<210> 51

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 754-762 of the TADG-15 protein

<400> 51

Gln Tyr Gly Gly Thr Gly Ala Leu Ile

5

B1
v <210> 52

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 153-161 of the TADG-15 protein

<400> 52

Ala Tyr Tyr Trp Ser Glu Phe Ser Ile

5

<210> 53

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 722-730 of the TADG-15 protein
<400> 53
Glu Tyr Ser Ser Met Val Arg Pro Ile

5

<210> 54
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 326-334 of the TADG-15 protein
<400> 54
Gly Phe Glu Ala Thr Phe Phe Gln Leu

5

<210> 55
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 304-312 of the TADG-15 protein
<400> 55

Thr Phe His Ser Ser Gln Asn Val Leu

5

B
W
<210> 56
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 707-715 of the TADG-15 protein
<400> 56

Thr Phe Asp Tyr Asp Ile Ala Leu Leu

5

<210> 57

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 21-29 of the TADG-15 protein

<400> 57

Lys Tyr Asn Ser Arg His Glu Lys Val

5

<210> 58

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 665-673 of the TADG-15 protein

<400> 58

Arg Tyr Ser Asp Pro Thr Gln Trp Thr

5

B1
b |
h <210> 59

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 686-694 of the TADG-15 protein

<400> 59

Ala Pro Gly Val Gln Glu Arg Arg Leu

5

<210> 60

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 12-20 of the TADG-15 protein
<400> 60
Gly Pro Lys Asp Phe Gly Ala Gly Leu

5

<210> 61
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 668-676 of the TADG-15 protein
<400> 61
Asp Pro Thr Gln Trp Thr Ala Phe Leu

5

<210> 62
<211> 9
BX
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 461-469 of the TADG-15 protein
<400> 62
Thr Gly Arg Cys Ile Arg Lys Glu Leu

5

<210> 63
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 59-67 of the TADG-15 protein

<400> 63

Ala Ala Val Leu Ile Gly Leu Leu Leu

5

<210> 64

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 379-387 of the TADG-15 protein

<400> 64

Lys Val Ser Phe Lys Phe Phe Tyr Leu

5

<210> 65

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 119-127 of the TADG-15 protein

<400> 65

Lys Val Lys Asp Ala Leu Lys Leu Leu

5

B/T
<210> 66

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 780-788 of the TADG-15 protein

<400> 66

Leu Pro Gln Gln Ile Thr Pro Arg Met

5

<210> 67

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 67-75 of the TADG-15 protein
<400> 67
Leu Val Leu Leu Gly Ile Gly Phe Leu

5

<210> 68
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 283-291 of the TADG-15 protein
<400> 68
Ser Pro Met Glu Pro His Ala Leu Val

5

<210> 69
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 12-20 of the TADG-15 protein
<400> 69
Gly Pro Lys Asp Phe Gly Ala Gly Leu

5

B/1
<210> 70
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 257-265 of the TADG-15 protein
<400> 70

Ser Leu Thr Phe Arg Ser Phe Asp Leu

5

<210> 71

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 180-188 of the TADG-15 protein

<400> 71

Met Leu Pro Pro Arg Ala Arg Ser Leu

5

<210> 72

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 217-225 of the TADG-15 protein

<400> 72

Gly Leu His Ala Arg Gly Val Glu Leu

5

B1
B2
<210> 73

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 173-181 of the TADG-15 protein

<400> 73

Met Ala Glu Glu Arg Val Val Met Leu

5

<210> 74

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 267-275 of the TADG-15 protein
<400> 74
Ser Cys Asp Glu Arg Gly Ser Asp Leu

5

<210> 75
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 567-575 of the TADG-15 protein
<400> 75
Cys Thr Lys His Thr Tyr Arg Cys Leu

5

BW
<210> 76
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 724-732 of the TADG-15 protein
<400> 76
Ser Ser Met Val Arg Pro Ile Cys Leu

5

<210> 77
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 409-417 of the TADG-15 protein
<400> 77

Tyr Cys Gly Glu Arg Ser Gln Phe Val

5

<210> 78

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 495-503 of the TADG-15 protein

<400> 78

Thr Cys Lys Asn Lys Phe Cys Lys Pro

5

<210> 79

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 427-435 of the TADG-15 protein

<400> 79

Val Arg Phe His Ser Asp Gln Ser Tyr

5

B1
mt

<210> 80

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 695-703 of the TADG-15 protein

<400> 80

Lys Arg Ile Ile Ser His Pro Phe Phe

5

<210> 81

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 664-672 of the TADG-15 protein
<400> 81
Phe Arg Tyr Ser Asp Pro Thr Gln Trp

5

<210> 82
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 220-228 of the TADG-15 protein
<400> 82
Ala Arg Gly Val Glu Leu Met Arg Phe

5

B1
w/
<210> 83
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 492-500 of the TADG-15 protein
<400> 83

His Gln Phe Thr Cys Lys Asn Lys Phe

5

<210> 84
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 53-61 of the TADG-15 protein
<400> 84

Gly Arg Trp Val Val Leu Ala Ala Val

5

<210> 85

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 248-256 of the TADG-15 protein

<400> 85

Leu Arg Gly Asp Ala Asp Ser Val Leu

5

<210> 86

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 572-580 of the TADG-15 protein

<400> 86

Tyr Arg Cys Leu Asn Gly Leu Cys Leu

5

B'1
2/
3/
4/
5/
6/
7/
8/
9/
10/
11/
12/
13/
14/
15/
16/
17/
18/
19/
20/
21/
22/
23/
24/
25/
26/
27/
28/
29/
30/
31/
32/
33/
34/
35/
36/
37/
38/
39/
40/
41/
42/
43/
44/
45/
46/
47/
48/
49/
50/
51/
52/
53/
54/
55/
56/
57/
58/
59/
60/
61/
62/
63/
64/
65/
66/
67/
68/
69/
70/
71/
72/
73/
74/
75/
76/
77/
78/
79/
80/
81/
82/
83/
84/
85/
86/
87/
88/
89/
90/
91/
92/
93/
94/
95/
96/
97/
98/
99/
100/
101/
102/
103/
104/
105/
106/
107/
108/
109/
110/
111/
112/
113/
114/
115/
116/
117/
118/
119/
120/
121/
122/
123/
124/
125/
126/
127/
128/
129/
130/
131/
132/
133/
134/
135/
136/
137/
138/
139/
140/
141/
142/
143/
144/
145/
146/
147/
148/
149/
150/
151/
152/
153/
154/
155/
156/
157/
158/
159/
160/
161/
162/
163/
164/
165/
166/
167/
168/
169/
170/
171/
172/
173/
174/
175/
176/
177/
178/
179/
180/
181/
182/
183/
184/
185/
186/
187/
188/
189/
190/
191/
192/
193/
194/
195/
196/
197/
198/
199/
200/
201/
202/
203/
204/
205/
206/
207/
208/
209/
210/
211/
212/
213/
214/
215/
216/
217/
218/
219/
220/
221/
222/
223/
224/
225/
226/
227/
228/
229/
230/
231/
232/
233/
234/
235/
236/
237/
238/
239/
240/
241/
242/
243/
244/
245/
246/
247/
248/
249/
250/
251/
252/
253/
254/
255/
256/
257/
258/
259/
260/
261/
262/
263/
264/
265/
266/
267/
268/
269/
270/
271/
272/
273/
274/
275/
276/
277/
278/
279/
280/
281/
282/
283/
284/
285/
286/
287/
288/
289/
290/
291/
292/
293/
294/
295/
296/
297/
298/
299/
300/
301/
302/
303/
304/
305/
306/
307/
308/
309/
310/
311/
312/
313/
314/
315/
316/
317/
318/
319/
320/
321/
322/
323/
324/
325/
326/
327/
328/
329/
330/
331/
332/
333/
334/
335/
336/
337/
338/
339/
340/
341/
342/
343/
344/
345/
346/
347/
348/
349/
350/
351/
352/
353/
354/
355/
356/
357/
358/
359/
360/
361/
362/
363/
364/
365/
366/
367/
368/
369/
370/
371/
372/
373/
374/
375/
376/
377/
378/
379/
380/
381/
382/
383/
384/
385/
386/
387/
388/
389/
390/
391/
392/
393/
394/
395/
396/
397/
398/
399/
400/
401/
402/
403/
404/
405/
406/
407/
408/
409/
410/
411/
412/
413/
414/
415/
416/
417/
418/
419/
420/
421/
422/
423/
424/
425/
426/
427/
428/
429/
430/
431/
432/
433/
434/
435/
436/
437/
438/
439/
440/
441/
442/
443/
444/
445/
446/
447/
448/
449/
450/
451/
452/
453/
454/
455/
456/
457/
458/
459/
460/
461/
462/
463/
464/
465/
466/
467/
468/
469/
470/
471/
472/
473/
474/
475/
476/
477/
478/
479/
480/
481/
482/
483/
484/
485/
486/
487/
488/
489/
490/
491/
492/
493/
494/
495/
496/
497/
498/
499/
500/
501/
502/
503/
504/
505/
506/
507/
508/
509/
510/
511/
512/
513/
514/
515/
516/
517/
518/
519/
520/
521/
522/
523/
524/
525/
526/
527/
528/
529/
530/
531/
532/
533/
534/
535/
536/
537/
538/
539/
540/
541/
542/
543/
544/
545/
546/
547/
548/
549/
550/
551/
552/
553/
554/
555/
556/
557/
558/
559/
560/
561/
562/
563/
564/
565/
566/
567/
568/
569/
570/
571/
572/
573/
574/
575/
576/
577/
578/
579/
580/
581/
582/
583/
584/
585/
586/
587/
588/
589/
590/
591/
592/
593/
594/
595/
596/
597/
598/
599/
600/
601/
602/
603/
604/
605/
606/
607/
608/
609/
610/
611/
612/
613/
614/
615/
616/
617/
618/
619/
620/
621/
622/
623/
624/
625/
626/
627/
628/
629/
630/
631/
632/
633/
634/
635/
636/
637/
638/
639/
640/
641/
642/
643/
644/
645/
646/
647/
648/
649/
650/
651/
652/
653/
654/
655/
656/
657/
658/
659/
660/
661/
662/
663/
664/
665/
666/
667/
668/
669/
670/
671/
672/
673/
674/
675/
676/
677/
678/
679/
680/
681/
682/
683/
684/
685/
686/
687/
688/
689/
690/
691/
692/
693/
694/
695/
696/
697/
698/
699/
700/
701/
702/
703/
704/
705/
706/
707/
708/
709/
710/
711/
712/
713/
714/
715/
716/
717/
718/
719/
720/
721/
722/
723/
724/
725/
726/
727/
728/
729/
730/
731/
732/
733/
734/
735/
736/
737/
738/
739/
740/
741/
742/
743/
744/
745/
746/
747/
748/
749/
750/
751/
752/
753/
754/
755/
756/
757/
758/
759/
760/
761/
762/
763/
764/
765/
766/
767/
768/
769/
770/
771/
772/
773/
774/
775/
776/
777/
778/
779/
780/
781/
782/
783/
784/
785/
786/
787/
788/
789/
790/
791/
792/
793/
794/
795/
796/
797/
798/
799/
800/
801/
802/
803/
804/
805/
806/
807/
808/
809/
810/
811/
812/
813/
814/
815/
816/
817/
818/
819/
820/
821/
822/
823/
824/
825/
826/
827/
828/
829/
830/
831/
832/
833/
834/
835/
836/
837/
838/
839/
840/
841/
842/
843/
844/
845/
846/
847/
848/
849/
850/
851/
852/
853/
854/
855/
856/
857/
858/
859/
860/
861/
862/
863/
864/
865/
866/
867/
868/
869/
870/
871/
872/
873/
874/
875/
876/
877/
878/
879/
880/
881/
882/
883/
884/
885/
886/
887/
888/
889/
890/
891/
892/
893/
894/
895/
896/
897/
898/
899/
900/
901/
902/
903/
904/
905/
906/
907/
908/
909/
910/
911/
912/
913/
914/
915/
916/
917/
918/
919/
920/
921/
922/
923/
924/
925/
926/
927/
928/
929/
930/
931/
932/
933/
934/
935/
936/
937/
938/
939/
940/
941/
942/
943/
944/
945/
946/
947/
948/
949/
950/
951/
952/
953/
954/
955/
956/
957/
958/
959/
960/
961/
962/
963/
964/

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 24-32 of the TADG-15 protein
<400> 88
Ser Arg His Glu Lys Val Asn Gly Leu

5

<210> 89
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 147-155 of the TADG-15 protein
<400> 89
Ser Glu Gly Ser Val Ile Ala Tyr Tyr

5

B1
WT
<210> 90
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 715-723 of the TADG-15 protein
<400> 90
Leu Glu Leu Glu Lys Pro Ala Glu Tyr

5

<210> 91
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 105-113 of the TADG-15 protein
<400> 91

Tyr Glu Asn Ser Asn Ser Thr Glu Phe

5

<210> 92

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 14-22 of the TADG-15 protein

<400> 92

Lys Asp Phe Gly Ala Gly Leu Lys Tyr

5

<210> 93

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 129-137 of the TADG-15 protein

<400> 93

Ser Gly Val Pro Phe Leu Gly Pro Tyr

5

<210> 94

<211> 9

<212> PRT

<213> *Homo sapiens*

<220>

<223> Residues 436-444 of the TADG-15 protein

<400> 94

Thr Asp Thr Gly Phe Leu Ala Glu Tyr

5

<210> 95

<211> 9

<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 766-774 of the TADG-15 protein
<400> 95
Gly Glu Ile Arg Val Ile Asn Gln Thr

5

<210> 96
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 402-410 of the TADG-15 protein
<400> 96
Val Glu Ile Asn Gly Glu Lys Tyr Cys

5

B /
w/
<210> 97
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 482-490 of the TADG-15 protein
<400> 97
Asp Glu Leu Asn Cys Ser Cys Asp Ala

5

<210> 98
<211> 9
<212> PRT
<213> *Homo sapiens*
<220>
<223> Residues 82-90 of the TADG-15 protein
<400> 98

B
cat

Arg Asp Val Arg Val Gln Lys Val Phe

5

SEQ 40