PROJECT : DIABETES PREDICTION SYSTEM SUBMITTED BY : HEMAPRIYAA.L

Mail ID: hpriyaa2004@gmail.com

Phase-03

Loading and Pre-Processing the Dataset

ABOUT THIS PHASE:

In this phase we need to do loading and pre-processing the datasets. Here I explain about what are the process to do this phase.

Step 1:

Import the dependencies

In this step we import the library files which are required to run this program code, like modules (numpy, pandas, sklearn, matpltlib, seaborn)

Step 2:

Impoting the dataset

In this step I import PIMA diabetes dataset form the sklearn module it is used to fetch the data and the data is used as the input of this project.

Step 3:

Statical measure of data

In this step I want know some statics about my dataset like mean, count, avg etc,.. and this is the important step in data preprocessing

Step4:

Data standardization:

In this step I standardized my dataset with the help of scaler function

Import the dependencies

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

Data collection and analysis

PIMA Diabetes Dataset

loading the dataset to the pandas dataframe
diabetes_dataset = pd.read_csv('/content/diabetes.csv')

pd.read_csv?

printing the first 5 rows of the dataset
diabetes_dataset.head()

\rightarrow		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1

number of rows and column in this dataset
diabetes_dataset.shape

(768, 9)

getting the statistical measures of the data
diabetes_dataset.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	1
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4						,	>

diabetes_dataset['Outcome'].value_counts()

0 500 1 268

Name: Outcome, dtype: int64

0--> Non-Diabetic

1--> Diabetic

diabetes_dataset.groupby('Outcome').mean()

```
Pregnancies
                          Glucose BloodPressure SkinThickness
                                                               Insulin
                                                                            BMI
# seperating the data and labels
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
Y = diabetes_dataset['Outcome']
               4.805072 141.257403
                                                 ZZ.104179 100.3358Z1 35.14Z537
print(X)
         Pregnancies Glucose BloodPressure SkinThickness Insulin
                                                               BMI \
    0
                 6
                       148
                                     72
                                                   35
                                                              33.6
    1
                 1
                        85
                                      66
                                                   29
                                                            0 26.6
    2
                 8
                        183
                                      64
                                                    0
                                                            0
                                                              23.3
                        89
                                                           94 28.1
    4
                 0
                        137
                                     40
                                                   35
                                                          168 43.1
    763
                10
                        101
                                      76
                                                   48
                                                          180 32.9
    764
                       122
                                     70
                                                   27
                                                           0 36.8
                 2
    765
                 5
                        121
                                     72
                                                   23
                                                          112 26.2
    766
                                      60
                                                           0
                 1
                        126
                                                    0
                                                              30.1
                                                            0 30.4
    767
                 1
                                      70
                                                   31
                        93
         DiabetesPedigreeFunction Age
    0
                         0.351
    2
                         0.672
                                32
    3
                         0.167
    4
                         2.288
                                33
                         0.171
    763
                                63
                         0.340
    764
                                27
    765
                         0.245
                                30
    766
                         0.349
                                47
    767
                         0.315
                                23
    [768 rows x 8 columns]
print(Y)
    0
          1
    1
          0
    2
          1
    3
          a
    4
          1
    763
          0
    764
    765
    767
    Name: Outcome, Length: 768, dtype: int64
Data Standardization
scaler = StandardScaler()
scaler.fit(X)
     ▼ StandardScaler
     StandardScaler()
standardized_data = scaler.transform(X)
print(standardized_data)
    [[ \ 0.63994726 \ \ 0.84832379 \ \ 0.14964075 \ \dots \ \ 0.20401277 \ \ 0.46849198
       1.4259954 ]
     [-0.84488505 \ -1.12339636 \ -0.16054575 \ \dots \ -0.68442195 \ -0.36506078
      -0.19067191]
     -0.10558415]
     -0.27575966]
     [-0.84488505 \quad 0.1597866 \quad -0.47073225 \ \dots \ -0.24020459 \ -0.37110101
       1.17073215]
     -0.87137393]]
```

```
X = standardized_data
Y = diabetes_dataset['Outcome']
print(X)
print(Y)
     [[\ 0.63994726\ \ 0.84832379\ \ 0.14964075\ \dots\ \ 0.20401277\ \ 0.46849198
       1.4259954 ]
      [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078
       -0.19067191]
      [ 1.23388019 1.94372388 -0.26394125 ... -1.10325546 0.60439732
      -0.10558415]
      [ \ 0.3429808 \quad 0.00330087 \quad 0.14964075 \ \dots \ -0.73518964 \ -0.68519336
       -0.27575966]
      [-0.84488505 \quad 0.1597866 \quad -0.47073225 \quad \dots \quad -0.24020459 \quad -0.37110101
       1.17073215]
      -0.87137393]]
     0
     1
            0
     2
            1
     3
            0
     4
           1
     763
           0
     764
           0
     765
           0
     766
     Name: Outcome, Length: 768, dtype: int64
```