Afternoon

Properties of CFL

- Pumping lemma for CFL
- Closure properties

Pumping lemma for CFL

$$R = \{ S \rightarrow 0B, B \rightarrow 1 \mid 0BC, C \rightarrow 1 \}$$
 $L = \{ 0^n1^n \mid n \geq 0 \}$

Pumping lemma for CFL

Let L be a CFL . Then there exists some positive integer n such that any $w \in L$ with $|w| \ge n$ can be decomposed as

w=uvxyz

with

|vxy|≤n

and

 $|vy| \geq 1$

such that

 $uv^ixy^iz \in L$

for all i=0,1,2,.....

Proof

L is a CFL \Rightarrow There is a CFG G=(V,T,R,S) generating L. V is finite \Rightarrow m=|V| $|\alpha|$ is finite for all $A \rightarrow \alpha \Rightarrow$ k=max{ $|\alpha|$ for all $A \rightarrow \alpha$ } Let n=k^m

For any $w \in L$ with $|w| \ge n$, there must be some variable A that appears at least two times in the parse tree.

That is: $S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} w$

 $S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} w$

where

$$W_1, W_2, ..., W_m, V_1, V_2, ..., V_m \in T^*, S_1, S_2, ..., S_m \in V_T$$

Example 1 Show L is not CFL

$$L = \{ a^n b^n c^n \mid n \ge 0 \}$$

Example 2 Show L is not CFL

$$L = \{ ww \mid w \in \{ 0,1 \}^* \}$$

Example 2 Show L is not CFL

$$L = \{ O^{n}1^{m} \mid n=m^{2} \}$$

- \rightarrow union : $L \cup M$
- > concatenation
- > closure(star)
- > reversal
- \rightarrow intersection : $L \cap M$
- > complement
- > difference: L M
- > homomorphism
- > inverse homomorphism

Union

If L_1 and L_2 are CFL, then so is $L_1 \cup L_2$.

Let
$$G(L_1)=(V_1,T_1,R_1,S_1)$$
, $G(L_2)=(V_2,T_2,R_2,S_2)$

Then
$$G(L_1 \cup L_2) = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, R, S)$$

$$R = \{S \rightarrow S_1 \mid S_2\} \cup R_1 \cup R_2$$

Concatenation

If L_1 and L_2 are CFL, then so is L_1L_2 .

Let
$$G(L_1)=(V_1,T_1,R_1,S_1)$$
, $G(L_2)=(V_2,T_2,R_2,S_2)$

Then
$$G(L_1 L_2) = (V_1 \cup V_2 \cup \{ S \}, T_1 \cup T_2, R, S)$$

$$R = \{S \rightarrow S_1 S_2\} \cup R_1 \cup R_2$$

• Star

If L is a CFL, then so is L*.

Let
$$G(L)=(V,T,R,S)$$

Then
$$G(L^*)=(V,T, \{S\rightarrow SS|\epsilon\} \cup R,S)$$

Reversal

If L is a CFL, then so is L^R .

Let
$$G(L)=(V,T,R,S)$$

Then
$$G(L^R)=(V,T, \{A\rightarrow \alpha^R | A\rightarrow \alpha\in R\},S)$$

Intersection

CFL is not closed under intersection.

$$L_1 = \{ a^n b^n c^m \mid n \ge 0, m \ge 0 \}$$

$$L_2 = \{ a^n b^m c^m \mid n \ge 0, m \ge 0 \}$$

$$L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$$

Intersection

If L_1 is a CFL and L_2 is a RL , then $L_1 \cap L_2$ is CFL.

$$P(L_1) = (Q_1, \Sigma_1, \Gamma, \delta_1, q_1, z_0, F_1)$$

 $A(L_2) = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$

$$P(L_1 \cap L_2) = (Q_1 \times Q_2, \Sigma_1 \cap \Sigma_2, \Gamma, \delta, (q_1,q_2), z_0, F_1 \times F_2)$$

$$\delta((q,p),a,X)=((r,s),\alpha)$$

where
$$\delta_1(q,a,X)=(r,\alpha)$$
, $\delta_2(p,a)=s$

Example 4 Show that the language

$$L = \{ 0^n1^n | n \ge 0, n \ne 100 \}$$

is context-free.

Example 5 Show that the language

L = {
$$w \mid w \in \{a,b,c\}^*$$
, $n_a(w) = n_b(w) = n_c(w)$ } is not context-free.

MATHEMATICAL PROOFS

A good proof should be:

Clear -- easy to understand

Correct

Here's an example.

Suppose
$$A \subseteq \{1, 2, ..., 2n\}$$
 with $|A| = n+1$

TRUE or FALSE?

There are always two numbers in A such that one number divides the other number

TRUE

Example: $A \subseteq \{1, 2, 3, 4\}$ 1 divides every number. If 1 isn't in A then $A = \{2,3,4\}$, and 2 divides 4 In writing mathematical proofs, it can be very helpful to provide three levels of detail

◆ The first level: a short phrase/sentence giving a 'hint' of the proof

(e.g. "Proof by contradiction," "Proof by induction," "Follows from the pigeonhole principle")

- ◆ The second level: a short, one paragraph description of the main ideas
- ◆ The third level: the full proof (and nothing but)

Level 1

Hint 1:

THE PIGEONHOLE PRINCIPLE

If you drop n+1 pigeons in n holes then at least one hole will have more than one pigeon

Hint 2:

Every integer a can be written as $a = 2^k m$, where m is an odd number (k is an integer) Call m the "odd part" of a

Level 2

Proof Idea

Given $A \subseteq \{1, 2, ..., 2n\}$ with |A| = n+1

Using the pigeonhole principle, we'll show there are elements $a_1 \neq a_2$ of A

such that $a_1 = 2^i m$ and $a_2 = 2^k m$ for some odd m and integers i and k

Level 2

Proof

Suppose $A \subseteq \{1, 2, ..., 2n\}$ with |A| = n+1

- Write each element of A in the form $a = 2^k m$ where m is an odd number in $\{1,..., 2n\}$
- Observe there are nodd numbers in {1, ..., 2n}
- Since |A| = n+1, there must be two distinct numbers in A with the same odd part
- Let a_1 and a_2 have the same odd part m. Then $a_1 = 2^i m$ and $a_2 = 2^k m$, so one must divide the other (e.g., if k > i then a_1 divides a_2)

Good good still!
Good good up !
day day up !