四川大学期末考试试题 (A 卷) 参考答案

(2014-2015 学年春)

注意: 满分 100 分, 按题号把解答写在答题纸上. 在以下题目中, $\mathbb F$ 表示一个数域, $\mathbb Q$ 表示有理数域, $\mathbb R$ 表示实数域, $\mathbb C$ 表示复数域, A^T 表示矩阵 A 的转置.

- 1. (55 分) 设 $A = \begin{pmatrix} 2 & 2014 \\ 0 & 2 \end{pmatrix} \in M_2(\mathbb{C})$. 记 $\mathbb{A} : M_2(\mathbb{C}) \longrightarrow M_2(\mathbb{C}), X \mapsto AX XA, X \in M_2(\mathbb{C})$ 为 $M_2(\mathbb{C})$ 为 $M_2(\mathbb{C})$ 上的线性变换. 解答下列各题并说明理由:
 - (1) (15 分) 求线性变换 ▲ 的核空间 ker ▲ 及像空间 Im A 的一个基及维数;
 - (2) (10 分) 求线性变换 A 的特征多项式 $f_{\mathbb{A}}(\lambda)$ 及最小多项式 $m_{\mathbb{A}}(\lambda)$;
 - (3) (15 分) 求线性变换 ▲ 的行列式因子、不变因子及其 Jordan 标准形;
 - (4) (5 分) 求 $M_2(\mathbb{C})$ 的一个子空间 U 使得 $U + \ker \mathbb{A} = U \oplus \ker \mathbb{A} = M_2(\mathbb{C})$;
 - (5) (5 分) 问是否存在线性变换 \mathbb{A} 的不变子空间 W 使得 $W + \ker \mathbb{A} = W \oplus \ker \mathbb{A} = M_2(\mathbb{C})$;
 - (6) (5 分) 令 $f(x_1, x_2) = X^T A X$, 其中 $X = (x_1, x_2)^T$. 求正交替换将实二次型 $f(x_1, x_2)$ 化为标准形.

证明. (1) 由线性变换 A 的定义可知

$$\ker \mathbb{A} = \{ X \in M_2(\mathbb{C}) \mid AX = XA \}.$$

注意到 $A=2E_2+B$, 其中 $B=\begin{pmatrix}0&2014\\0&0\end{pmatrix}$, 则 XA=AX 当且仅当 AB=BA. 直接计算可知

$$\ker \mathbb{A} = \{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \mid \forall a, b \in \mathbb{C} \}.$$

易知 $\epsilon_1 = E_2, \epsilon_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 为 $\ker \mathbb{A}$ 的一个基且 $\dim \ker \mathbb{A} = 2$.

由维数公式知 dim Im $\mathbb{A} = \dim M_2(\mathbb{C}) - \dim \ker \mathbb{A} = 2$.

令 $\epsilon_3 = E_{11}, \epsilon_4 = E_{21}$ 为相应的基本矩阵, 易知 $\epsilon_1, \cdots, \epsilon_4$ 为 $M_2(\mathbb{C})$ 的一个基. 特别地, $\mathbb{A}(\epsilon_3), \mathbb{A}(\epsilon_4)$ 为像空间 Im \mathbb{A} 的一个基. 计算可知

$$\mathbb{A}(\epsilon_3) = \begin{pmatrix} 0 & -2014 \\ 0 & 0 \end{pmatrix}, \mathbb{A}(\epsilon_4) = \begin{pmatrix} 2014 & 0 \\ 0 & -2014 \end{pmatrix},$$

从而 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 为像空间 $\operatorname{Im} \mathbb{A}$ 的一个基.

(2) 显然基本矩阵 $E_{11}, E_{12}, E_{21}, E_{22}$ 为 $M_2(\mathbb{C})$ 的一个基, 直接计算可得

$$\mathbb{A}(E_{11}, E_{12}, E_{21}, E_{22}) = (E_{11}, E_{12}, E_{21}, E_{22}) \begin{pmatrix} 0 & 0 & 2014 & 0 \\ -2014 & 0 & 0 & 2014 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2014 & 0 \end{pmatrix},$$

则
$$f_{\mathbb{A}}(\lambda) = \det(\lambda E_4 - \begin{pmatrix} 0 & 0 & 2014 & 0 \\ -2014 & 0 & 0 & 2014 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2014 & 0 \end{pmatrix}) = \lambda^4.$$

另一方面, $m_{\mathbb{A}}(\lambda)|f_{\mathbb{A}}(\lambda)=\lambda^4$. 由计算可知, $\mathbb{A}^2\neq 0$, $\mathbb{A}^3=0$, 从而 $m_{\mathbb{A}}(\lambda)=\lambda^3$.

(3) 法一: 直接计算可知 $D_1 = D_2 = 1, D_3 = \lambda, D_4 = f_{\mathbb{A}}(\lambda) = \lambda^4$. 由不变因子与行列式因子的关系可知 $d_1 = D_1 = 1, d_2 = \frac{D_2}{D_1} = 1, d_3 = \frac{D_3}{D_2} = \lambda, d_4 = \frac{D_4}{D_3} = \lambda^3$. 易知 \mathbb{A} 的初等因子为 λ, λ^3 , 从而 \mathbb{A} 的 Jordan 标准形为

$$J = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

法二: 显然 $D_1 = D_2 = 1$, $D_4 = \lambda^4$, 从而 $d_1 = d_2 = 1$. 另 $d_4 = m_{\mathbb{A}}(\lambda) = \lambda^3$ 且 $d_1d_2d_3d_4 = f_{\mathbb{A}}(\lambda) = \lambda^4$, 从而 $d_3 = \lambda$. 由 $D_3 = d_3D_2 = \lambda$. 易知 A 的初等因子为 λ, λ^3 , 从而 A 的 Jordan 标准形为

$$J = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

- (4) 由 (1) 知 $U = \langle E_{11}, E_{21} \rangle$ 满足要求.
- (5) 不存在. 否则若存在 W 使得 $W + \ker \mathbb{A} = W \oplus \ker \mathbb{A} = M_2(\mathbb{C})$, 则 dim W = 2, 取 η_1, η_2 为 W 的一个基, η_3, η_4 为 ker \mathbb{A} 的一个基, 则

$$\mathbb{A}(\eta_1, \eta_2, \eta_3, \eta_4) = (\eta_1, \eta_2, \eta_3, \eta_4) \begin{pmatrix} C & 0_{2 \times 2} \\ 0_{2 \times 2} & 0_{2 \times 2} \end{pmatrix},$$

其中 C 为 \mathbb{C} 上的 2 阶方阵. 由 $f_{\mathbb{A}}(\lambda) = \lambda^4$ 知 C 的特征多项式为 λ^2 , 从而 $C^2 = 0$. 由此可知 $\mathbb{A}^2 = 0$ 与 \mathbb{A} 的最小多项式为 λ^3 矛盾.

(6) 令 $B = \begin{pmatrix} 2 & 1007 \\ 1007 & 2 \end{pmatrix}$,则 $f(x_1, x_2) = X^t B X$,其中 $X = (x_1, x_2)^t$.求矩阵 B 的特征多项式可得 $f_B(\lambda) = (\lambda - 2)^2 - 1007^2$,从而 B 的特征值为 $\lambda_1 = 1009$, $\lambda_2 = -1005$. 分别求解特征向量可得, $\eta_1 = (1, 1)^t$ 为 λ_1 的特这向量, $\eta_2 = (-1, 1)^t$ 为 λ_2 的特征向量.分别对向量 η_1, η_2 单位化可得 $\alpha_1 = \frac{\eta_1}{|\eta_1|} = (\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2})^t, \alpha_2 = \frac{\eta_2}{|\eta_2|} = (-\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2})^t$.令

$$P = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix},$$

则 X = PY 为正交替换且相应的标准形为 $f(y_1, y_2) = 1009y_1^2 - 1005y_2^2$.

2. (10 分) 设 $\alpha = (1, 1, 1, 1)^T$, $\beta = (1, 0, 0, 1)^T \in \mathbb{R}^4$. 记 U 表示由向量 α 与 β 生成的欧氏空间 \mathbb{R}^4 的子空间.

- (1) (5 分) 求 U 在 \mathbb{R}^4 中的正交补空间 U^{\perp} 的一个标准正交基;
- (2) (5 分) 求向量 $\gamma = (1, 2, 3, 5)$ 在子空间 U 上的正交投影.
- 证明. (1) 由定义知 $U^{\perp} = \{X \in \mathbb{R}^4 \mid \alpha \perp X, \beta \perp X\}$. 令 $X = (x_1, x_2, x_3, x_4)^t$,则 $X \in U^{\perp}$ 当切仅当

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0; \\ x_1 + x_4 = 0. \end{cases}$$

求解上述线性方程可得基础解系 $\eta_1 = (-1,0,0,1)^t$, $\eta_2 = (0,-1,1,0)^t$. 对向量组 η_1,η_2 进行 Schmidt 正交化可得

$$\epsilon_1 = (-\frac{\sqrt{2}}{2}, 0, 0, \frac{\sqrt{2}}{2})^t, \epsilon_2 = (0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)^t$$

为 U^{\perp} 的一个标准正交基.

(2) 记 $\gamma_{U^{\perp}}$ 表示向量 γ 在子空间 U^{\perp} 上的正交投影, 则

$$\gamma_{U^{\perp}} = (\gamma, \epsilon_1)\epsilon_1 + (\gamma, \epsilon_2)\epsilon_2 = (-2, -1/2, 1/2, 2)^t.$$

从而 γ 在 U 上的正交投影 $\gamma_U = \gamma - \gamma_{U^{\perp}} = (3, 5/2, 5/2, 3)^t$.

- 3. (10 分) 设 $A_1, A_2 \in M_n(\mathbb{F}), B_1, B_2 \in M_m(\mathbb{F}).$
 - (1) (5 分) 证明: 若矩阵 A_1 与 A_2 相似且 B_1 与 B_2 相似,则矩阵 $\begin{pmatrix} A_1 & 0 \\ 0 & B_1 \end{pmatrix}$ 与 $\begin{pmatrix} A_2 & 0 \\ 0 & B_2 \end{pmatrix}$ 相似;
 - (2) (5 分) 若矩阵 $\begin{pmatrix} A_1 & 0 \\ 0 & B_1 \end{pmatrix}$ 与 $\begin{pmatrix} A_2 & 0 \\ 0 & B_2 \end{pmatrix}$ 相似且矩阵 A_1 与 A_2 相似,问矩阵 B_1 与 B_2 是否相似,请说明理由.
 - **证明.** (1) 由 A_1 与 A_2 相似知存在 n 阶可逆矩阵 $P \in M_n(\mathbb{F})$ 使得 $A_2 = P^{-1}A_1P_1$. 同理存在 m 阶可逆矩阵 $Q \in M_m(\mathbb{F})$ 使得 $B_2 = Q^{-1}B_1Q$.

$$\diamondsuit X = \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}$$
. 显然 X 为可逆矩阵且

$$\left(\begin{array}{cc} A_2 & 0\\ 0 & B_2 \end{array}\right) = X^{-1} \left(\begin{array}{cc} A_1 & 0\\ 0 & A_2 \end{array}\right) X,$$

从而
$$\begin{pmatrix} A_2 & 0 \\ 0 & B_2 \end{pmatrix}$$
 与 $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ 相似.

(2) 相似.

记 X_i 表示矩阵 A_i 的初等因子的集合 (允许元素相等), Y_i 表示矩阵 B_i 的初等因子的集合, 其中 i=1,2. 由条件可知集合 $X_1=X_2$ 且 $X_1\cup Y_1=X_2\cup Y_2$, 从而 $Y_1=Y_2$. 特别地 B_1 与 B_2 具有相同的初等因子, 因此 B_1 与 B_2 相似.

4. $(10 \, \text{分})$ 设 $A = A^T \in M_n(\mathbb{Q})$. 证明: 矩阵 A 为正定矩阵当且仅当对任意的非零向量 $\alpha \in \mathbb{Q}^n$, $\alpha^T A \alpha > 0$.

证明. 必要性:由 A 为正定矩阵知对任意的非零向量 $\alpha \in \mathbb{R}^n$ 都有 $\alpha^t A \alpha > 0$,从而对任意的非零向量 $\alpha \in \mathbb{Q}^n$, $\alpha^T A \alpha > 0$.

充分性: 由矩阵 A 为对称矩阵知存在 \mathbb{Q} 上的可逆矩阵 P 使得 $P^tAP = \operatorname{diag}\{d_1, \dots, d_n\}$, 其中 $d_1, \dots, d_n \in \mathbb{Q}$.

我们断言 $d_i > 0, i = 1, \dots, n$. 否则存在 $d_k \leq 0$, 记 ϵ_k 表示 \mathbb{Q}^n 的第 k 个单位向量,令 $\alpha = P\epsilon_k$,则 $\alpha^t A \alpha = d_k$ 与条件矛盾. 因此矩阵 A 的正惯性指数等于 n,所以 A 为正定矩阵.

- 5. (15 分) 设 $f(x) \in \mathbb{Q}[x]$ 在 \mathbb{Q} 上不可约且 $\deg f(x) = n$, 其中 n > 1. 设 $A \in M_n(\mathbb{Q})$ 满足 f(A) = 0.
 - (1) (5 分) 问矩阵 A 在数域 \mathbb{Q} 上是否可对角化, 请说明理由;
 - (2) (5 分) 记 $V := \{h(A) \mid h(x) \in \mathbb{Q}[x]\}$ 为所有能表示为矩阵 A 的多项式的矩阵构成的 $M_n(\mathbb{Q})$ 的子空间. 试求子空间 V 的维数.
 - (3) (5 分) 设 $C(A) := \{X \in M_n(\mathbb{Q}) \mid XA = AX\}$ 表示所有与矩阵 A 乘法交换的矩阵构成的 $M_n(\mathbb{Q})$ 的子空间. 试求子空间 C(A) 的维数.

证明. (1) 不可对角化.

设 $m_A(\lambda)$ 为矩阵 A 的最小多项式, 由条件知 $m_A(\lambda)|f(\lambda)$ 且 $f(\lambda)|m(\lambda)$. 因此 $m(\lambda)$ 在 $\mathbb Q$ 上不能分解为互不相同的一次多项式的乘积, 从而 A 在 $\mathbb Q$ 上不可对角化.

(2) 断言 E_n, A, \dots, A^{n-1} 为线性空间 V 的一个基. 记 m(x) 表示矩阵 A 的最小多项式,由 (1) 知 m(x) 为 $\mathbb Q$ 上的 n 次不可约首一多项式. 对任意的 $B = h(A) \in V, h(x) \in \mathbb Q[x]$. 由带余除法知存在多项式 $g(x), r(x) \in \mathbb Q[x]$ 且 $\deg r(x) < \deg m(x)$ 使得

$$h(x) = m(x)q(x) + r(x).$$

特别地, B = h(A) = r(A), 从而 B 可以由向量组 E, A, \dots, A^{n-1} 线性表示. 若 E_n, A, \dots, A^{n-1} 线性相关,则存在不全为零的数 k_0, k_1, \dots, k_{n-1} 使得

$$k_0 E_n + k_1 A + \dots + k_n A^{n-1} = 0.$$

令 $g(x) = \sum_{i=0}^{n-1} k_i x^i$, 则 $g(x) \neq 0$ 且 g(A) = 0 与 A 的最小多项式为 n 次矛盾. 所以 E, A, \dots, A^{n-1} 为线性空间 V 的一个基,特别地 $\dim V = n$.

(3) 由 A 的最小多项式为 $\mathbb Q$ 上的 n 次不可约多项式知 A 在复数域 $\mathbb C$ 上可对角化. 记 W 表示所有与 A 乘法交换的 n 阶复矩阵构成的 $M_n(\mathbb C)$ 上的线性子空间, 则 $\dim_{\mathbb C} W = n$. 易知 $V \subseteq C(A) \subset W$,从而 $\dim_{\mathbb Q} C(A) \geqslant \dim_{\mathbb Q} V = n$. 若 $\dim_{\mathbb Q} C(A) = m > n$,则存在 m 个有理数矩阵 $\alpha_1, \cdots, \alpha_m \in C(A)$ 在 $\mathbb Q$ 上线性无关. 易知 $\alpha_1, \cdots, \alpha_m$ 在 $\mathbb C$ 上也 线性无关,与 $\dim_{\mathbb C} W = n$ 矛盾. 因此 $\dim C(A) = n$.