PATENT ABSTRACTS OF JAPAN

, (11)Publication number:

2003-006830

(43) Date of publication of application: 10.01.2003

(51)Int.CI.

G11B 5/64 G11B 5/65 G11B 5/738 G11B 5/851

(21)Application number: 2001-184162

(71)Applicant: OKI NOBORU

(22) Date of filing:

18.06.2001

(72)Inventor: KITAGAMI OSAMU

SHIMADA HIROSHI

(54) MAGNETIC RECORDING MEDIUM AND ITS PRODUCTION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a thin film for a high-density recording medium that solves the problem of high-temperature process which a thin-film medium of a CuAu- type regular alloy F1-xMx (F: Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65) has and accordingly is excellent in mass production and reliability, and also provide a production method therefor. SOLUTION: A magnetic recording medium comprises a ferromagnetic thin film formed on a substrate (or on the foundation layer of the substrate), a ferromagnetic particle layer consisting of ferromagnetic particles or a ferromagnetic particle layer formed by the growth of the ferromagnetic particles in a nonmagnetic matrix on the substrate. In this case, characteristically, the ferromagnetic particles have CuAu type regular structure having the composition represented by F1-xMx (F: Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65), and an existing rate for B in F1-xMx is 0.01 to 0.30.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (J,P) . (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-6830 (P2003-6830A)

(43)公開日 平成15年1月10日(2003.1.10)

(51) Int.Cl.7		識別記号	ΡI		テーマコード(参考)
GllB	5/64		G11B	5/64	5 D 0 0 6
	5/65			5/65	5D112
	5/738			5/738	
	5/851			5/851	
			審査請求	: 未請求 請求項の数1	7 OL (全 5 頁)
(21)出願番号	•	特願2001-184162(P2001-184162)	(71)出顧人	501242125	
				大木 登	
(22)出顧日		平成13年6月18日(2001.6.18)		東京都港区芝浦4-9	9 -18グランドパレス
				田町615号SRC事務	局内
			(72)発明者	北上修	
				宫城県仙台市泉区館-	-丁目 6 -16
			(72)発明者	島田寛富	
				宮城県仙台市青葉区村	¥ヶ丘七丁目37−10
			(74)代理人	100088096	
				弁理士 福森 久夫	
					最終頁に続く

(54) 【発明の名称】 磁気記録媒体及びその作成方法

(57)【要約】

【課題】 CuAu型規則合金F_{1-x}M_x(F:Fe, Co, M:Pd, Ir, Pt, 0.35<x<0.65) 薄膜媒体が抱える高温プロセスという問題を解決し、以って量産性に優れかつ信頼性に優れた高密度記録媒体用薄膜及びその作成方法を提供すること。

【解決手段】基体上(あるいは基体上の下地層上)に形成された強磁性薄膜,あるいは強磁性粒子からなる強磁性粒子層、または基体上の非磁性マトリクス中に強磁性粒子が成長してなる強磁性粒子層を有する磁気記録媒体において、強磁性粒子が $F_{1-x}M_x$ (F:Fe,Co,M:Pd,Ir,Pt,0.35<x<0.65)の組成からなる<math>CuAu型規則構造を有し,かつ $F_{1-x}M_x$ 中のB存在率が0.01~0.30であるととを特徴とする。

【特許請求の範囲】

【請求項1】 基体上(あるいは基体上の下地層上)に 形成された強磁性薄膜、または強磁性粒子からなる強磁 性粒子層、または基体上の非磁性マトリクス中に強磁性 粒子が成長してなる強磁性粒子層を有する磁気記録媒体 において、

強磁性体がF_{1-x} M_x (F: Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65)の組成からなる CuAu型規則構造を有し、かつF₁₋M₂中のB存 在率が0.01~0.30であることを特徴とする磁気(10)0ないし13のいずれか1項記載の磁気記録媒体の製造 記錄媒体。

【請求項2】 F₁₋ M₂ 中におけるBの原子存在率 が0.01~0.20の範囲にあることを特徴とする請 求項1記載の磁気記録媒体。

【請求項3】 F_{1-x} M_x 中におけるBの原子存在率 が0.02~0.20の範囲にあることを特徴とする請 求項1記載の磁気記録媒体。

【請求項4】 結晶主軸が主に膜面法線方向にあること を特徴とする請求項1ないし3のいずれか1項に記載の 磁気記録媒体。

【請求項5】 前記非磁性マトリクスは炭化物、窒化 物、酸化物またはこれらの混合物からなることを特徴と する請求項1ないし4のいずれか1項に記載の磁気記録 媒体。

【請求項6】 前記非磁性マトリクスはSiO2, Mg O, Al₂O₃, In₂O₃のいずれか1種以上からな ることを特徴とする請求項5記載の磁気記録媒体。

【請求項7】 前記強磁性粒子層の厚さが100mm以 下であることを特徴とする請求項1ないし6のいずれか 1項に記載の磁気記録媒体。

【請求項8】 前記基体は、表面酸化Siウエハ、溶融 石英基体、ガラス基体、アルミニウム基体であることを 特徴とする請求項1ないし7のいずれか1項に記載の磁 気記録媒体。

【請求項9】 前記下地層は、Ni基非晶質, C、S 1、酸化物、炭化物、窒化物からなる層であることを特 徴とする請求項1ないし8のいずれか1項に記載の磁気 記錄媒体。

【請求項10】 F_{1-x} M_x (F: Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65)の組成か らなるCuAu型規則構造を有し、かつF₁₋M₂中 のB存在率が0.01~0.30である強磁性薄膜から なる磁気記録層を基体上(あるいは基体上の下地層上) に形成することを特徴とする磁気記録媒体の作成方法。

【請求項11】 Fı- M. (F:Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65)の組成か らなるCuAu型規則構造を有し、かつF_{1-x} M_x 中 のB存在率が0.01~0.30である強磁性体を非磁 性マトリクス中に含む磁気記録層を基体上(あるいは基 体上の下地層上) に形成することを特徴とする磁気記録 50 なって、メモリー情報の消失という深刻な問題があらわ

媒体の作成方法。

【請求項12】 F_{1-x} M_x 材料、B及び非磁性マト リクス材料を同時に基体上に堆積させることを特徴とす る請求項11記載の磁気記録媒体の製造方法。

【請求項13】 F_{1-x} M_x 膜を形成後、Bを該F 1-xMx膜に添加することを特徴とする請求項11記 載の磁気記録媒体の作成方法。

【請求項14】 基体温度を200℃~600℃として 前記磁気記録層の形成を行うことを特徴とする請求項1

【請求項15】 基体温度を400℃以下として前記磁 気記録層の形成を行うことを特徴とする請求項10ない し13のいずれか1項記載の磁気記録媒体の製造方法。 【請求項16】 磁気記録層の形成後、200℃~60 0℃で熱処理を行うことを特徴とする請求項10ないし 13のいずれか1項に記載の磁気記録媒体の作成方法。 【請求項17】 磁気記録層の形成後、400℃以下で 熱処理を行うことを特徴とする請求項10ないし13の

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は高密度の磁気記録媒体及 びその作成方法に係り、更に詳しくはその熱的および経 時安定性の改善に関する。

20 いずれか1項記載の磁気記録媒体の製造方法。

[0002]

【従来の技術】情報社会の発展に伴い、高密度記録技術 の開発が切望されている。特に、ビット単価が安く、不 揮発かつ大容量記録が可能な磁気記録においては、髙密 30 度記録の可能な磁気記録媒体の開発が強く要求され、種 々の研究開発によりこと数年で著しい高密度化が実現さ れた。しかし、将来的に更なる進化が期待される情報化 社会において、例えば十年、二十年先の市場要求に対応 できる技術的見通しは殆ど得られていない。

【0003】この技術的行き詰まりの最も大きな原因の 一つに、現行磁気記録媒体が抱える以下のような原理的 問題がある。現行の磁気記録媒体用薄膜は、CoCrを 主体とする合金薄膜であり、この薄膜を構成する個々の 微粒子内では磁気相分離により、Coリッチ強磁性領域 40 の中心部を非磁性Cェリッチの殼が取り囲む構造をとっ ている。この構造は、強磁性粒子間の磁気的結合を低減 させ、その結果優れたS/Nの実現を可能にしている。 【0004】一方、このような孤立構造は、磁性粒子の 体積を減らすため、磁化の熱擾乱(記録状態の不安定 化)を顕著にする。磁性体が有する磁気異方性エネルギ -をK、強磁性粒子の体積をvとすると、それらの積K vが磁化の安定性の指標となる。熱エネルギーは kT (k:ボルツマン定数、T:温度)と表されるから、こ の量がKvに比べ無視できなくなると、熱擾乱が顕著と

3

れてくる。

【0005】以上述べたように高密度記録媒体では、S /Nの面から磁化単位 vの微小化が求められ、熱安定性 の面からはKvの増加が求められている。如何にして、 これら相反する要求を両立させるかが大きな課題であ る。最も単純には、小さい vを保ちながら異方性エネル ギーKを増加させることが有効と考えられる。上記Co Cr合金系のKの値は高々10°erg/cc程度であ るため、100オングストロームという粒子サイズでも 著しい熱擾乱を受ける。

【0006】とうした熱擾乱の問題を避けるため、Sm -Co, Nd-Fe-Bなどの高い異方性エネルギーの 永久磁石材料が検討され始めている。中でも、CuAu 型構造を有するFePt、CoPtなどの規則合金は1 0⁷~10⁸ erg/ccの高い異方性を有し、かつ 化学的にも安定であることから、最近活発に研究されて いる。

【0007】しかし、こうした合金に対して、規則/不 規則変態を生じせしめて規則合金とするには、600℃ C以上もの高い熱処理温度を必要とする。こうした高温 20 プロセスは量産に適さず、プロセス温度の低減が切望さ れていた。

[0008]

【発明が解決しようとする課題】本発明は,従来研究さ れてきたCuAu型規則合金F_{1-x}M_x(F:Fe, Co, M: Pd, Ir, Pt, 0. 35 < x < 0.65) 薄膜媒体が抱える高温プロセスという問題を解決 し、以って量産性に優れかつ信頼性に優れた髙密度記録 媒体用薄膜及びその作成方法を提供することを目的とす る。

[0009]

【課題を解決するため手段】本発明の磁気記録媒体は、 基体上(あるいは基体上の下地層上)に形成された強磁 性体からなる強磁性層、または基体上の非磁性マトリク ス中に強磁性粒子が成長してなる強磁性粒子層を有する 磁気記録媒体において、強磁性体がF_{1-x} M_x (F: Fe, Co, M:Pd, Ir, Pt, 0. 35 < x <0.65)の組成からなるCuAu型規則構造を有し、 かつF₁- M₂中のB存在率が0.01~0.30で あることを特徴とする。

【0010】本発明の磁気記録媒体の作成方法は、F $_{1-x}M_{x}$ (F:Fe, Co, M:Pd, Ir, Pt, 0.35<x<0.65)の組成からなるCuAu型規 則構造を有し、かつFı-、M、中のB存在率がO.O 1~0.30である強磁性体からなる磁気記録層を基体 上(あるいは基体上の下地層上)に形成することを特徴 とする。

【0011】本発明の磁気記録媒体の作成方法は、F 1 - x Mx (F: Fe, Co, M: Pd, Ir, Pt, 0.35 < x < 0.65) の組成からなるCuAu型規 50 物またはこれらの混合物からなることが好ましく、より

則構造を有し、かつFı-、M、中のB存在率が0.0 1~0.30である強磁性粒子を非磁性マトリクス中に 含む磁気記録層を基体上(あるいは基体上の下地層上) に形成することを特徴とする。

[0012]

【作用及び発明の実施の形態】本発明者は、上記従来技 術が抱える記録状態の熱的および経時的不安定性という 問題を解決するために鋭意検討した結果, F₁₋ M_x (F:Fe, Co, M:Pd, Ir, Pt)の組成から 10 なるCuAu型規則構造の強磁性薄膜あるいはグラニュ ラー構造を作製する際、非磁性元素Bを所定量添加する ことにより、磁気特性を劣化させること無く規則化温度 を著しく低減できることを発見した。

【0013】これにより、高い結晶磁気異方性のF 1-x Mx 規則合金微粒子集合体を, 量産化レベルの低 い温度(凡そ400℃以下)でも合成することが可能に なった。

【0014】上記非磁性元素Bの添加量について、磁気 特性を損なわない範囲で規則化温度の低減が顕著に認め られるのは、 F ₁ - **x** M **x** に対する B の原子存在比率が 0.01~0.3であった。より望ましい比率としては 0.01~0.2であり、更に望ましくは0.02~ 0. 2であった。Bの添加量がこれより少ない場合は、 規則化温度の低減効果は弱く、過剰の場合には飽和磁化 などの磁気特性が劣化する。

【0015】以上のような少量のB添加により、F 1 - x Mx の規則化温度は、無添加の場合に比べ100 ℃以上低減した。

【0016】X線回折及び電子線回折を用いた精密な構 30 造解析によれば、Bは面心正方晶(FCT)構造のF 1 - x Mx 規則合金格子中に侵入し、しかも正方晶主軸 (c軸) 方向を引き伸ばすように侵入型元素として取り 込まれていることが判明した。このようなBの効果は、 同様の原子半径を有する侵入型元素Cには認められず、 全くB特有の効果であることがわかった。ちなみに規則 合金格子内でのBとCの挙動の違いは、母合金構成元素 に対する混合エンタルビーの違いにより理解できた。

【0017】F₁₋ M_{*} - Bの形成法は、成膜法によ らずいかなる手法によってもF₁ - M 中にBを混入 40 させることができれば、所望の効果が得られる。例え ば、スパッタ法でF₁₋ M₂ 合金を形成する際、F 1-x Mx 合金ターゲット上にBを所定量配置して、ス パッタすればよい。また、F_{1-x} M_x を形成後、例え ば、イオン注入法などによりBを注入し、その後、熱処 理を行ってもよい。

【0018】また、もしこの材料を垂直磁気記録媒体に 応用するならば、結晶主軸が主に強磁性粒子層面の法線 方向にあることが好ましい。

【0019】非磁性マトリクスは炭化物、窒化物、酸化

具体的には、Si〇₂,Mg〇,Al₂〇₃, In₂ 〇 3 のいずれか1種以上からなることが好ましい。

 $\{0020\} x = 0.30 \sim 0.65$ $\{0.5000 \times 0.0000 \times 0.00000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.00000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.00000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.00000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000 \times 0.0000$ 型規則構造が形成され、さらに熱的、経時的安定性がよ り一層向上する。

【0021】磁気記録層の厚さは100nm以下が好ま しく、50nm以下がより好ましい。

【0022】基体としては、表面酸化Siウエハ(~2 ×10⁻⁶ /℃)、溶融石英基体(0.4×10⁻⁶ / °C)、ガラス基体(3~15×10⁻⁶/°C)、アルミ 10 ニウム基体等が好適に用いられる。これら基体に50n m以下のFePt-Ag/SiO2 膜を形成熱処理を施 すと、基体の熱膨張係数の小さいものほど規則度及び (001)配向の顕著な改善が認められる。これは基体

と膜との熱膨張係数の差により膜が歪み(引張応力)を 受け、この応力の存在により規則度そして配向が向上す るのではないかと推測される。

【0023】また、下地層についても基体の場合と同様 に熱膨張係数の小さいものほど好ましい。下地層として は、C、Si、酸化物 (SiO2、MgO、Al2O3 等)、炭化物(SiW、WC等)、窒化物(BN 等))、NiPからなる層であることが好ましい。特に アルミニウム基板にNiPなどの非晶質下地層を設ける 場合は製造コストの低減を図ることができる。

【0024】磁気特性を劣化させること無く規則化温度 を著しく低減できることを発見した。これにより、高い 結晶磁気異方性のF₁₋ M₂ 規則合金薄膜媒体を、量 産化レベルの低い温度で合成することが可能になった。 すなわち、従来は650℃以上の温度が必要であった が、本発明においては、200~600℃の温度におい 30 ても規則化が達成される。ただ、200℃未満では条件 によっては良好な規則が達成されない場合がある。20 0~600℃の範囲において、400℃以下がより好ま しい。

【0025】本発明の効果は、特に次のような場合に顕 著に現れる。第一は、下地層を介すかあるいは介さない で基体上にF_{1-x} M_x 規則合金膜を形成する場合であ る。特に膜厚が100mm以下と薄い場合に、元素B添 加による規則化温度の低下は著しい。ここでF₁- , M * の規則化は、成長時の基体温度を高くすることによっ ても実現されるし、不規則相を形成した後の熱処理によ っても可能である。いずれの場合にも元素Bの添加によ る規則化温度の低下が顕著に認められる。

【0026】本発明の効果が顕著に認められる第二のケ -スは、F_{1-x} M_x と非磁性マトリクス材料を同時に 基体上に堆積させる、いわゆるグラニュラ-膜の場合で ある。この場合には、膜中に元素Bを所定量添加すれ ば、先の例と同様に顕著な規則化温度の低減を実現でき る。このケースでは、磁性合金F_{1-x}M_x 微粒子が非 磁性マトリクス中に分散した形態となるが、このような 50 0°Cで0.5時間熱処理をおこなった。 膜中のBの原

相分離及び規則化を進行させる手段として、上記第一の 場合と同様に成長時の基体加熱あるいは成膜後の熱処理 のいずれをも選択できる。熱処理の温度は、膜の厚さに もよるが堆積時の基体温度と同様の温度を適用すればよ

【0027】本発明の検討中に見出された更に有用かつ 興味深い現象として、元素Bの添加によるF₁₋M₂ 規則合金の優先配向がある。以下にその内容を述べる。 $F_{1-x}M_{x}$ (F: Fe, Co, M: Pd, Ir, P t) 合金は、x~0.5付近でCuAu型規則構造をと る。この時にF、Mがランダムに配列した面心立方構造 (fcc)の不規則相から、一軸方向に伸縮した面心正 方構造(fct)の規則相に規則-不規則変態を起こ す。この伸縮した結晶軸方向(「001]方向)には、 一原子層毎にFとMが交互に積層されたいわゆる原子レ ベルでの超格子が形成される。

【0028】とのような原子配列の異方性は、一般に極

めて強い磁気異方性を生み出す。従って、F_{1-x} M_x 規則合金微粒子の結晶軸の配向状態は磁気特性を支配す 20 るため、結晶配向の制御は極めて重要な課題となる。F ePtあるいはCoPt規則合金などを例にとれば、 [001]が磁化容易軸となり、その磁気エネルギーは 10⁷ erg/cc台にも達する。今回我々が新たに見 出した現象は、少量の非磁性Bの添加により、特に膜厚 50nmという薄い領域において、前記二つのケースい ずれの場合にも、ほぼ理想に近い f c t (001)配向 が実現されることである。つまりfct[001]軸は 膜面法線方向に向き、その結果面直方向に強い磁気異方 性が現れる。

【0029】例えば、FePtやCoPt規則合金など ではほぼ理想的な垂直磁化膜となり、垂直磁気記録にも 好適な材料となる。

[0030]

【実施例】以下、本発明を実施例により説明する。

【0031】 [実施例1] Bチップを配置したCo-5 Oat. %Ptターゲットをスパッタリングし、溶融石 英基板上に全体膜厚が約40nmとなるよう同時堆積し た。その後、1×10⁻⁶ Torr以下の真空中で3 50°Cで0.5時間熱処理をおこなった。膜中のBの原 40 子含有率 R は光電子分光法 (X P S) により決定し、 R を0.01~0.3の範囲で変化させた。結晶構造及び 規則化パラメターSはX線回折から決定した。磁気特性 はSQUID(最大印加磁場9T)により測定した。測 定結果を表1にまとめる。表中、Sは規則化度の尺度で ある規則化バラメターを、Hcは保磁力を示す。

【 0 0 3 2 】 [実施例2] Bチップを配置したFe-5 Oat. %Ptターゲットをスパッタリングし、溶融石 英基板上に全体膜厚が約50mmとなるよう同時堆積し た。その後、1×10⁻⁶ Torr以下の真空中で35 7

子含有率Rは光電子分光法(XPS)により決定し、Rを0~0.35の範囲で変化させた。結晶構造及び規則 化度はX線回折から決定した。磁気特性はSQUID

(最大印加磁場9T)により測定した。測定結果を表2にまとめる。表中、Sは規則化度の尺度である規則化パラメターを、Hcは保磁力を示す。

【0033】[比較例1]実施例1と同様の条件下で、 Rを0~0.01の範囲で変化させた。

【0034】[比較例2]実施例1と同様の条件下で、*

*Rを0.3~0.5の範囲で変化させた。ただし、この 場合はCo-50at.%Ptチップを配置したBター ゲットを用いた。

【0035】 [比較例3] Cチップを配置したCo-50at. %Ptターゲットをスパッタリングし、溶融石英基板上に全体膜厚が約40nmとなるよう同時堆積した。Rを0.01~0.1の範囲で変化させた。

[0036]

【表1】

	試料	R	s	H c (k O e)
	1	0. 01	0. 2	3. 2
	2	0. 02	0. 7	6. 5
	3	0.03	0. 9	7. 5
	4	0.05	1. 0	8.6
実施例 1	5	0. 1	1. 0	7. 4
	6	0.14	0. 9	7. 0
	7	0. 19	0. 6	5. 9
	8	0. 23	0.4	3. 4
	9	0.30	0. 3	2. 6
Lander Park	10	0	0	< 0. 1
比較例1	1.1	< 0. 01	0	< 0. 1
LL PT-MI O	12	0.35	0. 1	< 0. 1
比較例2	13	0.40	0	< 0.1
	13	0.02	0	< 0. 1
比較例3	14	0.04	0	< 0. 1
	15	0. 1	0	< 0. 1

[0037]

※ ※【表2】

	••••				
	科技	R	s	Hc (kOe)	
	10	0	0	< 0. 1	
	11	0.01_	0. 1	2. 7	
	12	0.02	0. 5	6. 3	
	13	0.03	1. 0	8. 2	
実施例 2	1 4	0.05	1. 0	8. 7	
	1.5	0. 1	1. 0	7. 3	
	16	0.18	0. 5	5. 0	
	17	0.23	0. 2	3. 5	
	18	0.35	0. 2	< 0. 1	

[0038]

★こと無く規則化温度を著しく低減できる。

【発明の効果】本発明によれば、磁気特性を劣化させる★30

フロントページの続き

Fターム(参考) 5D006 BB01 BB06 BB07 EA03 EA05

FA00

5D112 AA03 AA05 BA02 BA03 BA04 BA06 BB01 BB02 BB05 FA04 GB01