# CS & IT



GRAPH THEORY
Types of Graphs
Part 3
Lecture No. 5



SATISH YADAV SIR

TOPICS TO BE COVERED





Consider a graph where vertices are represented as n-bit signal, Two vertices are connected, when between them I bit changes, what will be total not of vertices in a graph?

n=2 2 bit signal  $\sqrt{2}$ 



$$\bigcirc$$

Total no of

Q1.







Q3

n-bit signal.

Total no of vertices = 2<sup>n</sup>

Degree gleachverten = n.

$$\sum d(vi) = 2e$$
  
 $n \times 2^{n} = 2e$ 

$$e = n \times 2^{n-1}$$

$$\frac{n \times 2^n}{2} = c$$



Hypercube (Qn)
n-bit signal.

Total vertices = 2"

$$e(G) + e(G) = \frac{n(n-1)}{2} (n-Totalvertices)$$

#### Hypercube.:

$$e(c_1) + e(c_2) = v(v-1) \quad v = Total vertices = 2^n$$

$$n \times 2^{n-1} + e(\bar{c}_1) = 2^{n}(2^{n-1})$$

$$e(\bar{z}_1) = \frac{2^n(2^{n-1})}{2} - n \cdot 2^{n-1}$$



5 2<sup>-1-n</sup>, 2<sup>-1-n</sup>, 2<sup>-1-n</sup>.

\_ I all Hypercubes are regular Graph.

2. all Hypercubes are bipartite Graph.



$$\sqrt{5}$$
  $\sqrt{1-n}$ ,  $\sqrt{1-n}$   $\sqrt{2}$   $\sqrt{1-n}$   $\sqrt{2}$   $\sqrt{2}$ 

Pw





$$G_3 = (V_3, E_3)$$

$$V3 = V1 \cup V2 = \{1, 2, 3, 4\}$$

$$E3 = E1 \cup E2 = \{12, 23, 34\}$$





$$9 + = (4, E+)$$
 $9 + = (4, E+)$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 
 $9 + = 61062$ 











# edge disjoint Graphs

GI. Gz such that
they are not having
any common edges.
G2





#### verten disjoin Graphs

Si G2 are two graphs
Such that they are not
having any common
vertices:

61







- 1) GCG.
- 2) single verten C G.
- 3) single edge C G.
- 4) acbcs acs.

Subgraph of a subgraph of a Graph is subgraph of a Graph.



verten are represented as numbers 1 ..... 100.

two vertices are Connected with each other

$$e(G) = 9$$
.  $e(G) = 9$ .



$$e(G) + e(G) = \frac{100\times99}{2}$$



$$4 \times | + 4 \times |$$

$$+ 92 \times 2 = 2e$$

$$(e = 96)$$



