- (a) Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of the polynomial Exercise 1.1 $f = y - x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k.
 - (b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.
 - (c) Let f be any irreducible quadratic polynomial in k[x,y], and let W be the conic defined by f. Show that A(W) is isomorphic to A(Y) or A(Z). Which one is it when?
 - (a) We have $A(Y) = k[x, y]/(y x^2) \cong k[x, x^2] \cong k[x]$.
 - (b) Similarly we have $A(Z) = k[x,y]/(xy-1) \cong k[x,x^{-1}]$ which is not a polynomial ring in one variable.
 - (c) We consider a quadratic polynomial $f = Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F$. We prove that there exists suitable x', y' which are degree one polynomials in x, y, such that Z(f) = Z(x'y'-1) or $Z(x'^2-y')$, and that x', y', 1 are linearly independent. The second condition guarantees k[x',y'] = k[x,y], and the first condition gives the desired result. We divide into three cases:
 - (i) A = C = 0, then $B \neq 0$. We have f = 2B(x + E/B)(y + D/B) + (F 2DE/B). We take x' = 2B(x + E/B)/(F - 2DE/B) and y' = y + D/B; the denominator of x' is nonzero because f is irreducible.
 - (ii) $B^2 = AC$, then $Ax^2 + 2Bxy + Cy^2 = x'^2$ for a linear polynomial x'. Hence f = $x'^2 + (2Dx + 2Ey + F)$. We know that x', y' = 2Dx + 2Ey + F and 1 are linearly independent, otherwise f would not be irreducble.
 - (iii) $B^2 \neq AC$, without loss of generality $A \neq 0$. Then we could write f in the form $f = g_0(x,y)^2 - g_1(y)^2 - g_2$ where g_1 is a nonconstant polynomial in y and g_2 is a nonzero constant. We take $x' = (g_0 + g_1)/\sqrt{g_2}$ and $y' = (g_0 - g_1)/\sqrt{g_2}$.
- **Exercise 1.2** The Twisted Cubic Curve. Let $Y \subseteq \mathbf{A}^3$ be the set $Y = \{(t, t^2, t^3) | t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric representation x = t, $y = t^2$, $z = t^3$.

For $f \in k[x, y, z]$ that $f(t, t^2, t^3) = 0$ for arbitrary t, we regard f as an element of k[x, y][z], modulo it with $z - x^3$ and get $f = f_1 \cdot (z - x^3) + f_1'$ where $f_1 \in k[x,y][z]$ and $f_1' \in k[x,y]$. The same process with $f_1' \in k[x][y]$ gives us $f_1' = f_2 \cdot (y - x^2) + f_2'$ where $f_2 \in k[x,y]$ and $f_2' \in k[x]$. Now $f(t,t^2,t^3) = 0 \ \forall t \ \text{says} \ f_2'(t) = 0 \ \forall t, \ \text{i.e.} \ f_2' = 0$. Thus $f \in (z - x^3, y - x^2)$. It is then easy to see $I(Y) = (z - x^3, y - x^2)$. Hence $A(Y) = k[x,y,z]/(z - x^3, y - x^2) \cong$

 $k[x, x^2, x^3] = k[x]$ and dim $Y = \dim A(Y) = 1$.

Exercise 1.3 Let Y be the algebraic set in A^3 defined by the two polynomials $x^2 - yz$ and xz - x. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

The irreducible components are $\{(0,0,t)|t\in k\}$, $\{(0,t,0)|t\in k\}$, and $\{(t,t^2,0)|t\in k\}$, corresponding to prime ideals $(x, y), (x, z), (x^2 - y, z)$. These are indeed prime ideals because the quotient of k[x, y, z] on them are all isomorphic to k[x], which is integral.

¹This is because in $k[\alpha]$ the only invertible elements are the nonzero elements of k; but $x \in k[x, x^{-1}]$ is invertible.

Exercise 1.4 If we identify A^2 with $A^1 \times A^1$ in the natural way, show that the Zariski topology on A^2 is not the product topology of the Zariski topologies on the two copies of A^1 .

The Zariski topology of \mathbf{A}^1 is not Hausdorff, so the diagonal $\{(t,t)|t\in\mathbf{A}^1\}\subseteq\mathbf{A}^1\times\mathbf{A}^1$ (using the product topology) is not closed. But the diagonal is indeed closed in the Zariski topology of \mathbf{A}^2 , being the zero set of the polynomial y-x.

Exercise 1.5 Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbf{A}^n , for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

A finitely generated k-algebra is naturally of the form $k[x_1, \ldots, x_n]/I$ for some n and ideal $I \subseteq k[x_1, \ldots, x_n]$. Hence it is an affine coordinate ring of an algebraic set iff I is radical, iff B has no nilpotents.

Exercise 1.6 Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Suppose A is a nonempty open subset of an irreducible topological space X. As X cannot be written as a union of proper closed subsets, any two nonempty open subsets must intersect, making A dense. The irreducibility of A inherits that of X naturally. For the second claim, see Atiyah-Macdonald Exercise 20 i) of Chapter 1.

- Exercise 1.7 (a) Show that the following conditions are equivalent for a topological space X:

 (i) X is noetherian; (ii) every nonempty family of closed subsets has a minimal element; (iii) X satisfies the ascending chain condition for open subsets; (iv) every nonempty family of open subsets has a maximal element.
 - (b) A noetherian topological space is *quasi-compact*, i.e., every open cover has a finite subcover.
 - (c) Any subset of a noetherian topological space is noetherian in its induced topology.
 - (d) A neotherian space which is also Hausdorff must be a finite set with the discrete topology.
 - (a) Essentially Atiyah-Macdonald Proposition 6.1.
 - (b) (c) Atiyah-Macdonald Exercise 5 of Chapter 6.
 - (d) Noetherian spaces are the disjoint union of its irreducible components, but irreducible Hausdorff spaces can only be singletons $\{\cdot\}$.
- **Exercise 1.8** Let Y be an affine variety of dimension r in \mathbf{A}^n . Let H be a hypersurface in \mathbf{A}^n , and assume that $Y \not\subseteq H$. Then every irreducible component of $Y \cap H$ has dimension r-1. (See (7.1) for a generalization.)

Denote $\mathfrak{a} = I(Y)$ and I(H) = (f) where $f \in A = k[x_1, \dots, x_n]$ is irreducible. The condition that $Y \not\subseteq H$ says $f \notin \mathfrak{a}$.

Notice that $Y \cap H = Z((\mathfrak{a}, f))$, hence $A(Y \cap H) = A/\sqrt{(\mathfrak{a}, f)}$, which is isomorphic to $A/(\mathfrak{a})$ quotienting the image of (f) and then quotienting its nilpotents. An irreducible component V of $Y \cap H$ corresponds to a minimal prime ideal of $A(Y \cap H)$, which in turn correspond to a minimal prime ideal \mathfrak{p}_V of $A/(\mathfrak{a})$ containing (f). As prime ideals all contain the nilpotents, we have

$$\dim V = \dim A(V) = \dim(A/(\mathfrak{a}))/\mathfrak{p}_V = \dim Z(\mathfrak{a}) - 1 = r - 1$$

as height $\mathfrak{p}_V = 1$ from minimality.

Exercise 1.9 Let $\mathfrak{a} \subseteq A = k[x_1, \dots, x_n]$ be an ideal which can be generated by r elements. Then every irreducible component of $Z(\mathfrak{a})$ has dimension $\geq n - r$.

It suffices to prove that every minimal prime ideal containing \mathfrak{a} has height $\leq r$, which is equivalent to saying $\dim A/\mathfrak{a} \geq \dim A - r$. This is proven by induction on r, as Krull's Hauptidealsatz implies $\dim A/(f) \geq \dim A - 1$ for any non-unit $f \in A$.

- **Exercise 1.10** (a) If Y is any subset of a topological space X, then $\dim Y \leq \dim X$.
 - (b) If X is a topological space which is covered by a family of open subsets $\{U_i\}$, then dim $X = \sup \dim U_i$.
 - (c) Give an example of a topological space X and a dense open subset U with $\dim U < \dim X$.
 - (d) If Y is a closed subset of an irreducible finite-dimensional topological space X, and if dim $Y = \dim X$, then Y = X.
 - (e) Give an example of a noetherian topological space of infinite dimension.
 - (a) A chain $Z_0 \subset Z_1 \subset \cdots \subset Z_{\dim Y}$ of irreducible closed subsets of Y give rise to a chain of irreducible closed subsets $\overline{Z_0} \subseteq \cdots \subseteq \overline{Z_{\dim Y}}$ of X, cf. exercise 1.6. The equalities can never hold because $\overline{Z_i} \cap Y = Z_i \neq Z_{i+1} = \overline{Z_{i+1}} \cap Y$. By definition we have dim $Y \leq \dim X$.
 - (b) For any chain $Z_0 \subset \cdots \subset Z_n$ of irreduible closed subsets of X, we can pick one U_i such that $U_i \cap Z_0 \neq \emptyset$ (otherwise not covered). If $U_i \cap Z_i = U_i \cap Z_{i+1}$, then $(X \setminus Z_i) \cap X_{i+1}$ and $U_i \cap Z_{i+1}$ are nonempty open subsets of Z_{i+1} which have no intersection, contradicting irreducibility; thus the chain restricts to a chain of irreducible closed subsets of U_i , which forces dim $X \leq \sup \dim U_i$. The other direction is (a).
 - (c) We pick $X = \{x, y\}$ where the closed sets are \emptyset , $\{y\}$, X. The open dense subset $\{x\}$ has dimension 1 but dim X = 2.
 - (d) Irreducible closed subsets of Y are also irreducible closed subsets of X, therefore we can add X to the end of any chain of irreducible closed subsets of Y making dim $Y < \dim X$ unless Y = X.
 - (e) We have dim $\mathbf{A}^n = n$. Consider the space $\prod_{i=1}^{\infty} \mathbf{A}^i$, the disjoint union of \mathbf{A}^i , with its closed sets defined to be the finite unions of the closed sets of some \mathbf{A}^i . The chains of irreducible closed subsets can be of arbitrary length.
- **Exercise 1.11** Let $Y \subseteq \mathbf{A}^3$ be the curve given parametrically by $x = t^3$, $y = t^4$, $z = t^5$. Show that I(Y) is a prime ideal of height 2 in k[x, y, z] which cannot be generated by 2 elements. We say Y is not a local complete intersection—cf.(Ex. 2.17).

It is natural to get an identification $A(Y) \cong k[x,y,z,t]/(x-t^3,y-t^4,z-t^5) \cong k[t^3,t^4,t^5,t] \cong k[t]$ which is integral, so I(Y) is prime. Also height $I(Y) = \dim k[x,y,z] - \dim k[t] = 2$.

In the ideal I(Y), there is no degree 1 polynomials. A simple analysis show that $f_1 = xz - y^2$ is the only degree 2 polynomial in I(Y) (up to a constant factor). For degree 3, we have the polynomials $f_2 = x^3 - yz$, $f_3 = x^2y - z^2$. If I(Y) can be generated by 2 elements, one of them must be a multiple of f_1 ; but neither of f_2 , f_3 can be reduced to degree 2 or below by multiples of f_1 , so the other element must be of degree 3. Then notice that no linear combination of f_2 , f_3 is a multiple of f_1 , contradiction.

Exercise 1.12 Give an example of an irreducible polynomial $f \in \mathbf{R}[x, y]$, whose zero set Z(f) in $\mathbf{A}^2_{\mathbf{R}}$ is not irreducible (cf. 1.4.2).

Take $f = x^2 + y^2 + 1$; \varnothing is not considered irreducible.