Prima Prova in Itinere

19/04/2023 — versione 1 —

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

' 1 — 1 pt

Per l'insieme dei numeri floating point $\mathbb{F}(2,5,L,U)$ dipendente da due parametri $L,U\in\mathbb{Z}$ tali che L<-2 e U>6, dati la mantissa $m=(10101)_2$, il segno s=0 e l'esponente e=3, si riporti il numero reale x così rappresentato in base 10.

5.25

$2-1~{ m pt}~~(***)~{ m No~Multichance}$

Il metodo di Heron consente di approssimare $\sqrt{5}$ applicando il seguente algoritmo: dato x_0 , porre $x_{n+1} = \frac{x_n + 5/x_n}{2}$ per $n = 0, 1, 2 \dots$; si ottiene $\lim_{n \to +\infty} x_n = \sqrt{5}$. Quante operazioni elementari vengono effettuate per ottenere x_{50} ?

150

3 — 1 pt

Si considerino 10 sistemi lineari $A \mathbf{x}_j = \mathbf{b}_j$ per $j = 1, \dots, 10$, dove la matrice $A \in \mathbb{R}^{90 \times 90}$ è fissata, tridiagonale e a dominanza diagonale stretta per righe, mentre i vettori $\mathbf{b}_j \in \mathbb{R}^{90}$ rappresentano diversi termini noti. Qual è il numero di operazioni richiesto per la risoluzione di tali sistemi lineari per $j = 1, \dots, 10$ attraverso l'uso computazionalmente più efficiente di un metodo diretto?

4727

$$\sqrt{4-2 \; \mathrm{pt}}$$
 (***) No Multichance

Si consideri un sistema sovradeterminato $A\mathbf{x}=\mathbf{b}$, dove $A\in\mathbb{R}^{3\times 2}$ ha rango pieno e $\mathbf{b}=(1,2,2)^T\in\mathbb{R}^3$. La fattorizzazione QR ridotta di A è tale che

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} e R = \begin{bmatrix} 2 & -\gamma \\ 0 & 1 \end{bmatrix}, \text{ dove } \gamma \in \mathbb{R} \text{ è un parametro positivo } (\gamma > 0).$$

Si riporti la soluzione $\mathbf{x}^* \in \mathbb{R}^2$ del sistema nel senso dei minimi quadrati.

$$\mathbf{x}^* = \left(\gamma + 3\sqrt{2}/4, \, 2\right)^T$$

Si consideri la matrice
$$A = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & -1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 9 & -1 \end{bmatrix}$$
. Per quali valori dello shift $s \in \mathbb{R}$ è possibile applicare il metodo delle potenze inverse con shift per l'approssimate.

 $s \in \mathbb{R}$ è possibile applicare il metodo delle potenze inverse con shift per l'approssimazione dell'autovalore 3 di A?

$$1 < s < 4, s \neq 3$$

6 — 1 pt

Si consideri la funzione $f(x) = x - \sqrt{5}$, dotata di uno zero $\alpha \in [0, 5]$. Quante iterazioni $k_{min} > 0$ sono necessarie al metodo di bisezione al fine di garantire un errore inferiore a 10^{-3} ?

12

7 — 2 pt

Si consideri la funzione $\Phi(x) = \frac{x^4}{4} + \frac{x^2}{2} - 3x + 5$. Si applichi il metodo di Newton all'approssimazione del punto di minimo α di Φ partendo dall'iterata iniziale $x^{(0)} = 0$. Si riportino i valori delle iterate $x^{(1)}$, $x^{(2)}$ e $x^{(5)}$ così ottenute con almeno quattro cifre decimali.

 $3.0000,\, 2.0357,\, 1.2144$

8 — 2 pt (***) No Multichance

Si consideri il metodo di Newton modificato per l'approssimazione dello zero $\alpha=3$ della funzione $f(x)=\sin\left(\frac{\pi}{3}x\right)(x-3)^2$. Si applichi opportunamente tale metodo partendo dall'iterata iniziale $x^{(0)}=4$ e si riportino i valori delle iterate $x^{(1)}$ e $x^{(2)}$ così ottenute.

2.8482, 3.0004

9 — 1 pt

Si consideri la funzione di iterazione $\phi(x)=x-\frac{1}{3}\left(1-e^{1-3x}\right)$ e il suo punto fisso $\alpha=\frac{1}{3}$. Qual è l'ordine di convergenza atteso dal metodo delle iterazioni di punto fisso ad α per $x^{(0)}$ "sufficientemente" vicino ad α ?

2

10 — 2 pt

Si consideri la funzione di iterazione $\phi(x)=\gamma\left(x^2-4x-5\right)+5$, dipendente dal parametro $\gamma\in\mathbb{R}$. Relativamente al suo punto fisso $\alpha=5$, per quali valori di γ il metodo delle iterazioni di punto fisso converge ad α per ogni $x^{(0)}$ "sufficientemente" vicino ad α e in modo da garantire che $\left|x^{(k)}-\alpha\right|<\left|x^{(k+1)}-x^{(k)}\right|$ per ogni $k\geq0,1,\ldots$?

 $\gamma \in (-1/6, 0)$

ESERCIZIO - 17 pt

Si consideri il sistema lineare A $\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice simmetrica e definita positiva, e \mathbf{x} , $\mathbf{b} \in \mathbb{R}^n$ per $n \geq 1$. In particolare, si pongano: n = 225, $A \in \mathbb{R}^{225 \times 225}$ assegnata con il comando Matlab[®] seguente

>> A = full(gallery('poisson', 15)) e $\mathbf{b}=(2,\,2,\,\dots,2)^T\in\mathbb{R}^{225}.$

Si verifichi che la matrice A è simmetrica e definita positiva giustificando tutti i passaggi. Quale metodo diretto è computazionalmente conveniente applicare per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ assegnato? Si giustifichi dettagliatamente la risposta e si riporti in numero di operazioni stimato.

Spazio per risposta lunga (O(3'898'125))

Punto 2) — 3 pt

Si applichi tramite Matlab[®] il metodo diretto di cui al Punto 1) alla soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ riportando tutti i passaggi svolti. Dopo aver ottenuto la soluzione numerica $\widehat{\mathbf{x}} \in \mathbb{R}^n$, si stimi l'errore relativo ottenuto $e_{rel} = \frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|}$. Si definisca tutta la notazione usata e si riportino tutti i comandi Matlab[®] utilizzati.

Spazio per risposta lunga $(K_2(A) = 103.0869, e_{rel}^{(N)} = 9.1175e - 13)$

Si consideri ora il metodo di Jacobi per la soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$. Si verifichi che il metodo di Jacobi converge per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^n$ e, senza applicare il metodo, si stimi il fattore di abbattimento dell'errore $\frac{\|\mathbf{x}^{(k)} - \mathbf{x}\|}{\|\mathbf{x}^{(0)} - \mathbf{x}\|}$ dopo k = 100 iterazioni del metodo. Si motivi dettagliatamente la risposta, definendo la notazione e riportando i comandi Matlab[®] usati.

Spazio per risposta lunga $(\rho(B) = 0.9808 < 1, \text{ fatt. abb.} = 0.1437)$

Punto 4) — 2 pt (***) No Multichance

Si consideri ora il metodo del gradiente per la soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ a cui è associata la funzione energia $\Phi: \mathbb{R}^n \to \mathbb{R}$, dove $\Phi(\mathbf{y}) := \frac{1}{2}\mathbf{y}^T A\mathbf{y} - \mathbf{y}^T \mathbf{b}$. Scelta l'iterata inziale $\mathbf{x}^{(0)} = \mathbf{b}$, si calcolino e si riportino i valori $\Phi\left(\mathbf{x}^{(0)}\right)$ e $\Phi\left(\mathbf{x}^{(1)}\right)$, essendo $\mathbf{x}^{(1)}$ l'iterata ottenuta applicando un'iterazione del metodo del gradiente.

Spazio per risposta lunga $\left(\Phi\left(\mathbf{x}^{(0)}\right) = -780, \Phi\left(\mathbf{x}^{(1)}\right) = -1.6603e + 03\right)$

Punto 5) — 3 pt (***) No Multichance

Si consideri ora il metodo del gradiente precondizionato con matrici di precondizionamento

$$P_1 = \text{tridiag}(-1, 4, -1) \in \mathbb{R}^{n \times n}$$

e $P_2 \in \mathbb{R}^{n \times n}$ ottenuta tramite i seguenti comandi Matlab[®] :

Senza applicare esplicitamente il metodo, si determini per quale delle due matrici di precondizionamento il metodo del gradiente precondizionato converge più rapidamente a \mathbf{x} per ogni scelta di $\mathbf{x}^{(0)}$.

Per la matrice di precondizionamento per cui il metodo converge più rapidamente, si *stimi* il fattore di abbattimento dell'errore $\frac{\|\mathbf{x}^{(k)} - \mathbf{x}\|_A}{\|\mathbf{x}^{(0)} - \mathbf{x}\|_A}$ dopo k = 20 iterazioni del metodo. Si motivi dettagliatamente la risposta, definendo la notazione e riportando i comandi Matlab® usati.

Spazio per risposta lunga $(K(P_1^{-1}A)>K(P_2^{-1}A)=10.0966,~{\rm fatt.~abb.~con}~P_2=0.0188)$

Punto 6) — 2 pt

Si consideri il metodo delle potenze per approssimare l'autovalore $\lambda_1(A)$. Si applichi il metodo, a partire dall'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{1} \in \mathbb{R}^n$, modificando opportunamente la funzione eigpower.m per stimare l'ordine e il fattore di convergenza asintotico ottenuti applicando tale metodo iterativo. Si riportino i comandi Matlab® usati e si giustifichi il risultato ottenuto.

Spazio per risposta lunga $(p = 1, \mu = 0.9338)$

Punto 7) — 3 pt

Data una generica matrice $A \in \mathbb{R}^{n \times n}$ simmetrica e definita positiva, i suoi autovalori $\{\lambda_i(A)\}_{i=1}^n \in \mathbb{R}$ si possono approssimare applicando il seguente algoritmo che migliora l'efficienza del metodo delle iterazioni QR.

```
Algorithm 1: Metodo delle iterazioni QR con shift  \begin{array}{l} \text{porre } A^{(0)} = A; \\ \text{porre } \mu^{(0)} = 0; \\ \text{for } k = 0, 1, \ldots, \text{ fino a che un criterio d'arresto è soddisfatto } \mathbf{do} \\ \text{determinare la fattorizzazione QR (ridotta) di } A^{(k)}, \text{ ovvero le } \\ \text{matrici } Q^{(k+1)} \text{ e } R^{(k+1)} \text{ tali che } Q^{(k+1)} R^{(k+1)} = A^{(k)} - \mu^{(k)} I; \\ \text{porre } A^{(k+1)} = R^{(k+1)} Q^{(k+1)} + \mu^{(k)} I; \\ \text{porre } \mu^{(k+1)} = \left(A^{(k+1)}\right)_{n,n}; \\ \lambda_i^{(k+1)} = (A^{(k+1)})_{ii} \text{ per } i = 1, \ldots, n; \\ \text{end} \end{array}
```

Si implementi il precedente algoritmo modificando per esempio la funzione $Matlab^{@}$ qrbasic.m e usando laddove necessario il comando $Matlab^{@}$ qr.

Si applichi l'algoritmo alla matrice A assegnata. Si riportino le approssimazioni $\lambda_2^{(1)}, \, \lambda_2^{(2)}$ e $\lambda_2^{(20)}$ di $\lambda_2(A)$ così ottenute. Si riportino la funzione Matlab[®] implementata e i comandi Matlab[®] usati.

Spazio per risposta lunga $(\lambda_2^{(1)} = 4.5500, \lambda_2^{(2)} = 5.2779, \lambda_2^{(20)} = 7.3791)$