Manual alignment of MathComp and WikiData Concepts

Authors: Talia Ringer & Stefania Dumbrava

Concept	MathComp	WikiData	WikiData Identifier	Definition
Ring	ssralg.ringType	Ring	Q534381	non-commutative rings (semi rings with an opposite) The HB class is called Ring.
Semiring	ssralg.semiRingTyp e	Semiring	Q1333055	non-commutative semirings (NModule with a multiplication) The HB class is called SemiRing.
Field	ssralg.fieldType	field	Q190109	commutative fields The HB class is called Field.
Finite field	algebra.finalg,finFie ldType	finite field	Q603880	The finite counterpart of fieldType
Monoid			Q208237	
Commutative Ring	algebra.ssralg.com RingType	commutative ring	Q858656	commutative rings The HB class is called ComRing.
Non-commutative Semiring	algebra.ssralg.semi RingType	N/A	N/A	non-commutative semirings (NModule with a multiplication) The HB class is called SemiRing.
Commutative Semiring	algebra.ssralg.com SemiringType	N/A	N/A	commutative semirings The HB class is called ComSemiRing

Commutative/Abelian Monoid	algebra.ssralg.nmo dType	abelian monoid	Q19934355	additive abelian monoid The HB class is called Nmodule.
Additive Abelian Group	algebra.ssralg.zmo dType	N/A	N/A	additive abelian group (Nmodule with an opposite) The HB class is called Zmodule.
Left Algebra	algebra.ssralg.lalgT ype	N/A	N/A	left algebra, ring with scaling that associates on the left The HB class is called Lalgebra.
Algebra	algebra.ssralg.algT ype	algebra	Q1000660	ring with scaling that associates both left and right The HB class is called Algebra.
Commutative Algebra	algebra.ssralg.com AlgType	commutative algebra	Q727659	commutative algType The HB class is called ComAlgebra.
Unit Ring	algebra.ssralg.unit RingType	unit ring	Q118084	Rings whose units have computable inverses The HB class is called UnitRing.
Commutative Unit Ring	algebra.ssralg.com UnitRingType	commutative unit ring	N/A	commutative UnitRing The HB class is called ComUnitRing.
Unit Algebra	algebra.ssralg.unit AlgType	unit algebra	Q2621172	algebra with computable inverses The HB class is called UnitAlgebra.

Integral Domain	algebra.ssralg.idom ainType	integral domain	Q628792	integral, commutative, ring with partial inverses The HB class is called IntegralDomain.
Closed Fields	algebra.ssralg.clos edFieldType	algebraically closed field	Q1047547	algebraically closed fields The HB class is called ClosedField.
Subalgebra	algebra.ssralg.sub AlgType	subalgebra	Q629933	join of algType and subType (P: pred V) such that val is linear The HB class is called SubAlgebra.
Subring	algebra.ssralg.sub RingType	subring	Q929536	join of ringType and subType (P: pred R) such that val is a morphism The HB class is called SubRing.
Subfield	algebra.ssralg.sub Field	subfield	Q91327913	join of fieldType and subType (P: pred R) such that val is a ring morphism The HB class is called SubField.
Linear function	algebra.ssralg.Line ar.type	linear function	Q15854269	linear functions : U -> V
Additive	algebra.ssralg.addit ive	additive function	Q95744479	f of type U -> V is additive, i.e., f maps the Zmodule structure of U to that of V, 0 to 0 - to - and + to + (equivalently,

				binary - to -) := {morph f : u v / u - v}
Multiplicative	algebra.ssralg.multi plicative	multiplicative function	Q1048447	f of type R -> S is multiplicative, i.e., f maps 1 and * in R to 1 and * in S, respectively R and S must have canonical semiRingType instances
Scalar	algebra.ssralg.scal ar	scalar function	Q91108373	scalar f <-> f of type U -> R is a scalar function, i.e., f (a *: u + v) = a * f u + f v
Finite Ring	algebra.finalg.finRi ngType	finite ring	Q2354159	The finite counterpart of ringType
Finite Algebra	algebra.finalg.finAl gType	finite algebra	Q85760939	The finite counterpart of algType
Finite Unit Algebra	algebra.finalg.finUn itAlgType	N/A	N/A	The finite counterpart of unitAlgType
Rational Number	algebra.rat.rat	rational number	Q1244890	the type of rational number, with single constructor Rat
Numerator	algebra.rat.numq	numerator	Q2279584	numerator of (r : rat)
Denominator	algebra.rat.denq	denominator	Q3044574	denominator of (r : rat)
Finite Abelian Group		Finite_abelian_ group	Q181296	

Finite Group	fingroup.fingroup.fi nGroupType	Finite_group	Q1057968	the structure for finite types with a group law The HB class is called FinGroup.
Finite Subset		Finite_subset	Q36161	
Finite Union		Finite_union	Q185359	
		First_Isomorphi sm_Theorem	Q1065966	

https://github.com/math-comp/math-comp/blob/master/mathcomp/algebra/ssralg.v https://github.com/math-comp/math-comp/blob/master/mathcomp/algebra/finalg.v https://github.com/math-comp/math-comp/blob/master/mathcomp/algebra/rat.v https://github.com/math-comp/math-comp/blob/master/mathcomp/fingroup/fingroup.v

Q603880

```
****************
        {group gT} == type of groups with elements of type gT
     baseFinGroupType == the structure for finite types with a monoid law *)
                 and an involutive antimorphism; finGroupType is *)
                 derived from baseFinGroupType
                 The HB class is called BaseFinGroup.
   FinGroupType mulVg == the finGroupType structure for an existing
                                                                          *)
                 baseFinGroupType structure, built from a proof of *)
                 the left inverse group axiom for that structure's *)
                 operations
       [group of G] == a clone for an existing {group gT} structure on *)
(*
                 G: {set gT} (the existing structure might be for *)
                 some delta-expansion of G)
(* If gT implements finGroupType, then we can form {set gT}, the type of
(* finite sets with elements of type gT (as finGroupType extends finType).
(* The group law extends pointwise to {set gT}, which thus implements a sub- *)
(* interface baseFinGroupType of finGroupType. To be consistent with the
(* predType interface, this is done by coercion to FinGroup.arg sort, an
(* alias for FinGroup.sort. Accordingly, all pointwise group operations below *)
(* have arguments of type (FinGroup.arg_sort) gT and return results of type *)
(* FinGroup.sort gT.
  The notations below are declared in two scopes:
     group scope (delimiter %g) for point operations and set constructs. *)
     Group_scope (delimiter %G) for explicit {group gT} structures.
```

```
(* These scopes should not be opened globally, although group scope is often *)
(* opened locally in group-theory files (via Import GroupScope).
(* As {group gT} is both a subtype and an interface structure for {set gT}, *)
(* the fact that a given G : {set gT} is a group can (and usually should) be *)
(* inferred by type inference with canonical structures. This means that all *)
(* `group' constructions (e.g., the normaliser 'N G(H)) actually define sets *)
(* with a canonical {group gT} structure; the %G delimiter can be used to
(* specify the actual {group gT} structure (e.g., 'N_G(H)%G).
                                                                          *)
  Operations on elements of a group:
            x * y == the group product of x and y
           x ^+ n == the nth power of x, i.e., x ^* ... ^* x (n times)
            x^{-1} == the group inverse of x
           x ^- n == the inverse of x ^+ n (notation for (x ^+ n)^-1) *)
              1 == the unit element
            x \wedge y == the conjugate of x by y (i.e., y \wedge -1 * (x * y))
         [\sim x, y] == the commutator of x and y (i.e., x^{-1} * x ^ y)
    [\sim x1, ..., xn] == the commutator of x1, ..., xn (associating left) *)
    \prod_(i ...) x i == the product of the x i (order-sensitive)
       commute x y <-> x and y commute
     centralises x A <-> x centralises A
            'C[x] == the set of elements that commute with x
           'C G[x] == the set of elements of G that commute with x
            \langle x \rangle = the cyclic subgroup generated by the element x
            \#[x] == the order of the element x, i.e., \#[x] > 
  Operations on subsets/subgroups of a finite group:
            H * G == \{xy \mid x \in H, y \in G\}
   1 or [1] or [1 gT] == the unit group
        [set: gT]%G == the group of all x : gT (in Group scope)
        group set G == G contains 1 and is closed under binary product; *)
                  this is the characteristic property of the
                                                                *)
                  {group gT} subtype of {set gT}
          [subg G] == the subtype, set, or group of all x \in G: this
                  notation is defined simultaneously in %type, %g
                  and %G scopes, and G must denote a {group gT}
                  structure (G is in the %G scope)
        subg, sqval == the projection into and injection from [subg G]
             H^# == the set H minus the unit element
           repr H == some element of H if 1 \notin H != set0, else 1
                  (repr is defined over sets of a baseFinGroupType, *)
                  so it can be used, e.g., to pick right cosets.)
           x *: H == left coset of H bv x
        Icosets H G == the set of the left cosets of H by elements of G *)
           H : x =  right coset of H by x
        rcosets H G == the set of the right cosets of H by elements of G *)
          #|G: H| == the index of H in G, i.e., #|rcosets G H|
           H :^{\Lambda} x == the conjugate of H by x
                                                                *)
           x ^: H == the conjugate class of x in H
                                                                      *)
         classes G == the set of all conjugate classes of G
           G :^: H == \{G :^x | x \in H\}
```

```
class support G H == \{x \land y \mid x \in G, y \in H\}
      commg set G H == \{[\sim x, y] \mid x \in G, y \in H\}; NOT the commutator! *)
(*
            <<H>> == the subgroup generated by the set H
         [~: G, H] == the commutator subgroup of G and H, i.e.,
                                                                          *)
                  <<commg set G H>>>
    [~: H1, ..., Hn] == commutator subgroup of H1, ..., Hn (left assoc.) *)
          H <*> G == the subgroup generated by sets H and G (H join G) *)
         (H * G)%G == the join of G H : {group gT} (convertible, but not *)
                  identical to (G <*> H)%G)
(* (\prod (i ...) H i)%G == the group generated by the H i
                                                                        *)
(* {in G, centralised H} <-> G centralises H
(* {in G, normalised H} <-> G normalises H
                <-> forall x, x \in G -> H :^ x = H
            'N(H) == the normaliser of H
           'N G(H) == the normaliser of H in G
           H < G <=> H is a normal subgroup of G
            'C(H) == the centraliser of H
           'C_G(H) == the centraliser of H in G
         gcore H G == the largest subgroup of H normalised by G
                                                                           *)
                  If H is a subgroup of G, this is the largest
                  normal subgroup of G contained in H).
         abelian H <=> H is abelian
        subgroups G == the set of subgroups of G, i.e., the set of all
                  H: {group gT} such that H \subset G
(* In the notation below G is a variable that is bound in P.
        [max G | P] <=> G is the largest group such that P holds
    [max H of G | P] <=> H is the largest group G such that P holds
     [max G | P & Q] := [max G | P & Q], likewise [max H of G | P & Q]
        [min G | P] <=> G is the smallest group such that P holds
     [min G | P & Q] := [min G | P & Q], likewise [min H of G | P & Q]
     [min H of G | P] <=> H is the smallest group G such that P holds
(* In addition to the generic suffixes described in ssrbool.v and finset.v, *)
(* we associate the following suffixes to group operations:
   1 - identity element, as in group1: 1 \in G
   M - multiplication, as is invMg : (x * y)^{-1} = y^{-1} * x^{-1}
      Also nat multiplication, for expgM : x^+ (m^* n) = x^+ m^+ n
(* D - (nat) addition, for expgD : x ^+ (m + n) = x ^+ m * x ^+ n
(* V - inverse, as in mulgV : x * x^-1 = 1
(* X - exponentiation, as in conjXg : (x ^+ n) ^ y = (x ^ y) ^+ n
(* J - conjugation, as in orderJ: #[x ^ y] = #[x]
(* R - commutator, as in conjRg : [\sim x, y] ^{\land} z = [\sim x ^{\land} z, y ^{\land} z]
(* Y - join, as in centY : C(G < H) = C(G) : \& C(H)
(* We sometimes prefix these with an 's' to indicate a set-lifted operation, *)
(* e.g., conjsMg : (A * B) :^{A} x = A :^{A} x * B :^{A} x.
```

```
(* This file defines a datatype for rational numbers and equips it with a
(* structure of archimedean, real field, with int and nat declared as closed *)
(* subrings.
       n%:Q == explicit cast from int to rat, ie. the specialization to *)
            rationals of the generic ring morphism n%:~R
                                                                     *)
      numg r == numerator of (r : rat)
      deng r == denominator of (r : rat)
      ratr r == generic embedding of (r : rat) into an arbitrary unit ring.*)
(* [rat x // y] == smart constructor for rationals, definitionally equal
            to x / y for concrete values, intended for printing only *)
            of normal forms. The parsable notation is for debugging. *)
     The algebraic part of the algebraic hierarchy for finite types
(* This file clones the entire ssralg hierarchy for finite types; this
(* allows type inference to function properly on expressions that mix
  combinatorial and algebraic operators, e.g., [set x + y \mid x in A, y in A].*)
   finNmodType, finZmodType, finSemiRingType, finComRingType, *)
   finComSemiRingType, finUnitRingType, finComUnitRingType, finIdomType, *)
  finLmodType, finLalgType
     == the finite counterparts of nmodType, etc
(* Note that a finFieldType is canonically decidable.
   This file also provides direct tie-ins with finite group theory:
    [finGroupMixin of R for +%R] == structures for R
                  {unit R} == the type of units of R, which has a
                         canonical group structure
            FinRing.unit R Ux == the element of {unit R} corresponding *)
                         to x, where Ux : x \in GRing.unit *)
                   'U%act == the action by right multiplication of *)
                         {unit R} on R, via FinRing.unit act *)
                         (This is also a group action.)
Not done vet:
     ImodType R == module with left multiplication by external scalars
              in the ring R
              The HB class is called Lmodule.
                                                                              *)
(*comUnitAlgType R == commutative UnitAlgebra
              The HB class is called ComUnitAlgebra.
    decFieldType == fields with a decidable first order theory
```

```
The HB class is called DecidableField.
                                               *)
(* and their joins with subType:
       subNmodType V P == join of nmodType and subType (P : pred V) such *)
                  that val is semi additive
                  The HB class is called SubNmodule.
       subZmodType V P == join of zmodType and subType (P : pred V)
                  such that val is additive
                  The HB class is called SubZmodule.
    subSemiRingType R P == join of semiRingType and subType (P : pred R) *)
                  such that val is a semiring morphism
                  The HB class is called SubSemiRing.
  subComSemiRingType R P == join of comSemiRingType and subType (P : pred R)*)
                  such that val is a morphism
                  The HB class is called SubComSemiRing.
     subComRingType R P == join of comRingType and subType (P : pred R) *)
                  such that val is a morphism
                  The HB class is called SubComRing.
     subLmodType R V P == join of ImodType and subType (P : pred V)
                  such that val is scalable
                  The HB class is called SubLmodule.
     subLalgType R V P == join of lalgType and subType (P : pred V)
                  such that val is linear
                  The HB class is called SubLalgebra.
    subUnitRingType R P == join of unitRingType and subType (P : pred R) *)
                  such that val is a ring morphism
                  The HB class is called SubUnitRing.
  subComUnitRingType R P == join of comUnitRingType and subType (P : pred R)*)
                  such that val is a ring morphism
(*
                  The HB class is called SubComUnitRing.
     subIdomainType R P == join of idomainType and subType (P : pred R) *)
                  such that val is a ring morphism
                  The HB class is called SubIntegralDomain.
(*
                                                                *)
                                               *)
(* Morphisms between the above structures:
                                                                *)
    Additive.type U V == semi additive (resp. additive) functions between *)
                 nmodType (resp. zmodType) instances U and V
   RMorphism.type R S == semi ring (resp. ring) morphism between
                 semiRingType (resp. ringType) instances R and S *)
   GRing.Scale.law R V == scaling morphism : R -> V -> V
                 The HB class is called GRing.Scale.Law.
(* LRMorphism.type R A B == linear ring morphisms, i.e., algebra morphisms *)
                                                                 *)
(* Closedness predicates for the algebraic structures:
  opprClosed V == predicate closed under opposite on V : zmodType
                                                                          *)
            The HB class is called OppClosed.
```

```
(* addrClosed V == predicate closed under addition on V : nmodType
             The HB class is called AddClosed.
  zmodClosed V == predicate closed under opposite and addition on V
             The HB class is called ZmodClosed.
(* mulr2Closed R == predicate closed under multiplication on R : semiRingType *)
             The HB class is called Mul2Closed.
                                                                *)
  mulrClosed R == predicate closed under multiplication and for 1
                                                                          *)
             The HB class is called MulClosed.
  smulClosed R == predicate closed under multiplication and for -1
             The HB class is called SmulClosed.
(* semiring2Closed R == predicate closed under addition and multiplication
             The HB class is called Semiring2Closed.
(* semiringClosed R == predicate closed under semiring operations
             The HB class is called SemiringClosed.
(* subringClosed R == predicate closed under ring operations
                                                                         *)
             The HB class is called SubringClosed.
   divClosed R == predicate closed under division
             The HB class is called DivClosed.
  sdivClosed R == predicate closed under division and opposite
             The HB class is called SdivClosed.
(* submodClosed R == predicate closed under ImodType operations
             The HB class is called SubmodClosed.
(* subalgClosed R == predicate closed under lalgType operations
                                                                           *)
             The HB class is called SubalgClosed.
(* divringClosed R == predicate closed under unitRing operations
                                                                          *)
             The HB class is called DivringClosed.
(* divalgClosed R S == predicate closed under (S : unitAlg R) operations
             The HB class is called DivalgClosed.
(*
  Canonical properties of the algebraic structures:
                                                                   *)
  * nmodType (additive abelian monoids):
              0 == the zero (additive identity) of a Nmodule
                                                                  *)
            x + y == the sum of x and y (in a Nmodule)
           x *+ n == n \text{ times } x, \text{ with } n \text{ in nat (non-negative), i.e.,}
                 x + (x + ... (x + x)...) (n terms); x *+ 1 is thus *)
                  convertible to x, and x *+ 2 to x + x
      \sum <range> e == iterated sum for a Zmodule (cf bigop.v)
             e` i == nth 0 e i, when e : seg M and M has a zmodType
                  structure
         support f == 0.-support f, i.e., [pred x \mid f \mid x \mid = 0]
       addr_closed S <-> collective predicate S is closed under finite *)
                  sums (0 and x + y in S, for x, y in S)
 [SubChoice isSubNmodule of U by <:] == nmodType mixin for a subType whose *)
                 base type is a nmodType and whose predicate's is *)
(*
                  a nmodClosed
   * zmodType (additive abelian groups):
             -x == the opposite (additive inverse) of x
            x - y == the difference of x and y; this is only notation *)
```

```
for x + (-y)
           x *- n == notation for - (x *+ n), the opposite of x *+ n *)
       oppr_closed S <-> collective predicate S is closed under opposite *)
       zmod_closed S <-> collective predicate S is closed under zmodType *)
                  operations (0 and x - y in S, for x, y in S)
                  This property coerces to oppr pred and addr pred. *)
(* [SubChoice isSubZmodule of U by <:] == zmodType mixin for a subType whose *)
                  base type is a zmodType and whose predicate's
(*
                  is a zmodClosed
   * SemiRing (non-commutative semirings):
              R^c == the converse Ring for R: R^c is convertible to R *)
                   but when R has a canonical ringType structure *)
                  R^c has the converse one: if x y : R^c, then
                  x * y = (y : R) * (x : R)
               1 == the multiplicative identity element of a Ring
             n%:R == the ring image of an n in nat; this is just
                   notation for 1 *+ n, so 1%:R is convertible to 1 *)
                  and 2%:R to 1 + 1
           <number> == <number>%:R with <number> a sequence of digits *)
             x * y == the ring product of x and y
      \prod <range> e == iterated product for a ring (cf bigop.v)
            x ^+ n == x to the nth power with n in nat (non-negative), *)
                  i.e., x * (x * .. (x * x)..) (n factors); x ^+ 1 *)
                   is thus convertible to x, and x ^+ 2 to x * x *)
       GRing.comm x y <-> x and y commute, i.e., x * y = y * x
                                                                       *)
        GRing.lreg x <-> x if left-regular, i.e., *%R x is injective
        GRing.rreg x <-> x if right-regular, i.e., *%R x is injective
           [char R] == the characteristic of R, defined as the set of *)
                   prime numbers p such that p%:R = 0 in R
                   The set [char R] has at most one element, and is *)
                   implemented as a pred nat collective predicate *)
                   (see prime.v); thus the statement p \in [char R] *)
                   can be read as `R has characteristic p', while *)
                   [char R] =i pred0 means `R has characteristic 0' *)
                  when R is a field.
    Frobenius aut chRp == the Frobenius automorphism mapping x in R to
                                                                                *)
                  x ^+ p, where chRp : p \in [char R] is a proof *)
(*
                  that R has (non-zero) characteristic p
       mulr_closed S <-> collective predicate S is closed under finite *)
                   products (1 and x * y in S for x, y in S)
     semiring closed S <-> collective predicate S is closed under semiring *)
                   operations (0, 1, x + y \text{ and } x * y \text{ in } S)
(* [SubNmodule isSubSemiRing of R by <:] ==
(* [SubChoice isSubSemiRing of R by <:] == semiRingType mixin for a
                                                                               *)
                  subType whose base type is a semiRingType and *)
(*
(*
                   whose predicate's is a semiringClosed
                                                  *)
  * Ring (non-commutative rings):
                                                               *)
```

```
GRing.sign R b := (-1) ^+ b in R : ringType, with b : bool
(*
                                                                     *)
                  This is a parsing-only helper notation, to be
                                                                 *)
                  used for defining more specific instances.
       smulr closed S <-> collective predicate S is closed under products *)
                  and opposite (-1 and x * y in S for x, y in S) *)
      subring closed S <-> collective predicate S is closed under ring
                                                                         *)
                  operations (1, x - y and x * y in S)
(* [SubZmodule_isSubRing of R by <:] ==
(* [SubChoice isSubRing of R by <:] == ringType mixin for a subType whose base*)
                  type is a ringType and whose predicate's is a
(*
                  subringClosed
  * ComSemiRing (commutative SemiRings):
(* [SubNmodule isSubComSemiRing of R by <:] ==
(* [SubChoice isSubComSemiRing of R by <:] == comSemiRingType mixin for a
                  subType whose base type is a comSemiRingType and *)
                  whose predicate's is a semiringClosed
(*
  * ComRing (commutative Rings):
(* [SubZmodule isSubComRing of R by <:] ==
(* [SubChoice isSubComRing of R by <:] == comRingType mixin for a
                  subType whose base type is a comRingType and
(*
                  whose predicate's is a subringClosed
  * UnitRing (Rings whose units have computable inverses):
    x \is a GRing.unit <=> x is a unit (i.e., has an inverse)
                                                                   *)
             x^{-1} == the ring inverse of x, if x is a unit, else x
             x / y == x divided by y (notation for x * y^{-1})
            x ^- n := notation for (x ^+ n)^-1, the inverse of x ^+ n *)
       invr closed S <-> collective predicate S is closed under inverse *)
       divr closed S <-> collective predicate S is closed under division *)
                  (1 \text{ and } x / y \text{ in } S)
      sdivr closed S <-> collective predicate S is closed under division *)
                  and opposite (-1 and x / y in S, for x, y in S) *)
(*
     divring closed S <-> collective predicate S is closed under unitRing *)
                  operations (1, x - y \text{ and } x / y \text{ in } S)
(* [SubRing isSubUnitRing of R by <:] ==
(* [SubChoice_isSubUnitRing of R by <:] == unitRingType mixin for a subType *)
                  whose base type is a unitRingType and whose
                  predicate's is a divringClosed and whose ring
(*
                  structure is compatible with the base type's
    ComUnitRing (commutative rings with computable inverses):
(* [SubChoice isSubComUnitRing of R by <:] == comUnitRingType mixin for a
                  subType whose base type is a comUnitRingType and *)
                  whose predicate's is a divringClosed and whose *)
                  ring structure is compatible with the base
                  type's
```

```
(* * IntegralDomain (integral, commutative, ring with partial inverses):
(* [SubComUnitRing isSubIntegralDomain R by <:] ==
(* [SubChoice_isSubIntegralDomain R by <:] == mixin axiom for a idomain
                                                                                 *)
                   subType
(*
  * Field (commutative fields):
  GRing.Field.axiom inv == field axiom: x != 0 \rightarrow inv x * x = 1  for all x * 
                   This is equivalent to the property above, but *)
                   does not require a unitRingType as inv is an
                   explicit argument.
(* [SubIntegralDomain isSubField of R by <:] == mixin axiom for a field
                   subType
(*
  * DecidableField (fields with a decidable first order theory):
        GRing.term R == the type of formal expressions in a unit ring R *)
                   with formal variables 'X k, k: nat, and
                                                                *)
                   manifest constants x%:T, x:R
                   The notation of all the ring operations is
                   redefined for terms, in scope %T.
      GRing.formula R == the type of first order formulas over R; the %T *)
                   scope binds the logical connectives \Lambda, V, \sim, *)
                   ==>, ==, and != to formulae; GRing.True/False
                   and GRing.Bool b denote constant formulae, and *)
                   quantifiers are written 'forall/'exists 'X k, f *)
                    GRing.Unit x tests for ring units
                    GRing.If p ft fe femulates if-then-else
                    GRing.Pick p ft fe femulates fintype.pick *)
                    foldr GRing.Exists/Forall q f xs can be used *)
                     to write iterated quantifiers
       GRing.eval e t == the value of term t with valuation e : seq R
                   (e maps 'X i to e`i)
  GRing.same env e1 e2 <-> environments e1 and e2 are extensionally equal *)
      GRing.qf form f == f is quantifier-free
      GRing.holds e f == the intuitionistic CiC interpretation of the
                                                                       *)
                   formula f holds with valuation e
     GRing.gf eval e f == the value (in bool) of a quantifier-free f
        GRing.sat e f == valuation e satisfies f (only in a decField)
        GRing.sol n f == a sequence e of size n such that e satisfies f, *)
(*
                   if one exists, or [::] if there is no such e
      'exists 'X_i, u1 == 0 \land ... \land u_m == 0 \land v1 != 0 ... \land v_n != 0 *)
    Lmodule (module with left multiplication by external scalars).
                                                                         *)
            a *: v == v scaled by a, when v is in an Lmodule V and a *)
                   is in the scalar Ring of V
      scaler closed S <-> collective predicate S is closed under scaling *)
      linear closed S <-> collective predicate S is closed under linear *)
                   combinations (a *: u + v in S when u, v in S) *)
       submod closed S <-> collective predicate S is closed under ImodType *)
                   operations (0 and a *: u + v in S)
```

```
(* [SubZmodule isSubLmodule of V by <:] ==
(* [SubChoice isSubLmodule of V by <:] == mixin axiom for a subType of an
                  ImodType
   * Lalgebra (left algebra, ring with scaling that associates on the left): *)
              R^o == the regular algebra of R: R^o is convertible to *)
(*
                  R, but when R has a ringType structure then R^o *)
                  extends it to an lalgType structure by letting R *)
                  act on itself: if x: R and y: R^o then
                  x *: y = x * (y : R)
             k%:A == the image of the scalar k in an L-algebra; this *)
                  is simply notation for k *: 1
      subalg_closed S <-> collective predicate S is closed under lalgType *)
                  operations (1, a *: u + v and u * v in S)
(* [lalgMixin of V by <:] == mixin axiom for a subType of an lalgType
(* [SubRing SubLmodule isSubLalgebra of V by <:] ==
(* [SubChoice isSubLalgebra of V by <:] == mixin axiom for a subType of an *)
                  lalgType
(* * Algebra (ring with scaling that associates both left and right):
(* [SubLalgebra isSubAlgebra of V by <:] ==
(* [SubChoice_isSubAlgebra of V by <:] == mixin axiom for a subType of an
                  algType
  * UnitAlgebra (algebra with computable inverses):
      divalg closed S <-> collective predicate S is closed under all
                  unitAlgType operations (1, a *: u + v and u / v *)
                  are in S fo u, v in S)
   In addition to this structure hierarchy, we also develop a separate,
  parallel hierarchy for morphisms linking these structures:
  * Additive (semi additive or additive functions):
      semi additive f <-> f of type U -> V is semi additive, i.e., f maps *)
                  the Nmodule structure of U to that of V, 0 to 0 *)
                  and + to +
                 := (f 0 = 0) * \{morph f : x y / x + y\}
     {additive U -> V} == the interface type for a Structure (keyed on
                  a function f : U -> V) that encapsulates the
                  semi additive property; both U and V must have *)
                  canonical nmodType instances
                  When both U and V have zmodType instances, it is *)
                  an additive function.
   RMorphism (semiring or ring morphisms):
                                                                                           *)
    {rmorphism R -> S} == the interface type for semiring morphisms; both *)
                  R and S must have semiRingType instances
                  When both R and S have ringType instances, it is *)
                  a ring morphism.
                                                         *)
```

```
-> If R and S are UnitRings the f also maps units to units and inverses *)
    of units to inverses; if R is a field then f is a field isomorphism *)
    between R and its image.
  -> Additive properties (raddf suffix, see below) are duplicated and
    specialised for RMorphism (as rmorph suffix). This allows more
    precise rewriting and cleaner chaining: although raddf lemmas will
                                                                           *)
    recognize RMorphism functions, the converse will not hold (we cannot *)
    add reverse inheritance rules because of incomplete backtracking in *)
    the Canonical Projection unification), so one would have to insert a *)
    /= every time one switched from additive to multiplicative rules.
   Linear (linear functions):
         scalable f <-> f of type U -> V is scalable, i.e., f morphs *)
                  scaling on U to scaling on V, a *: _ to a *: _ *)
                  U and V must both have ImodType R structures, *)
                  for the same ringType R.
     scalable_for s f <-> f is scalable for scaling operator s, i.e.,
                                                                    *)
                  f morphs a *: to s a ; the range of f only
                  need to be a zmodType
                  The scaling operator s should be one of *:%R
                  (see scalable, above), *%R or a combination
                  nu \; *%R or nu \; *:%R with nu : {rmorphism }; *)
                  otherwise some of the theory (e.g., the linearZ *)
                  rule) will not apply.
           linear f <-> f of type U -> V is linear, i.e., f morphs
                  linear combinations a *: u + v in U to similar *)
                  linear combinations in V; U and V must both have *)
                  ImodType R structures, for the same ringType R *)
                 := forall a, {morph f: u v / a *: u + v}
       linear for s f <-> f is linear for the scaling operator s, i.e., *)
                  f(a *: u + v) = s a (f u) + f v
                  The range of f only needs to be a zmodType, but *)
                  s MUST be of the form described in the
                  scalable for paragraph above for this predicate *)
                  to type check.
         Imorphism f <-> f is both additive and scalable
                  This is in fact equivalent to linear f, although *)
                  somewhat less convenient to prove.
     Imorphism for s f <-> f is both additive and scalable for s
      {linear U -> V} == the interface type for linear functions, i.e., a *)
                  Structure that encapsulates the linear property *)
                  for functions f : U -> V; both U and V must have *)
(*
                  ImodType R structures, for the same R
         {scalar U} == the interface type for scalar functions, of type *)
                  U -> R where U has an ImodType R structure
    {linear U -> V | s} == the interface type for functions linear for s
       (a *: u)%Rlin == transient forms that simplify to a *: u, a * u, *)
        (a * u)%Rlin nu a *: u, and nu a * u, respectively, and are *)
```

```
(a *: ^nu u)%Rlin created by rewriting with the linearZ lemma
       (a *^nu u)%Rlin
                        The forms allows the RHS of linearZ to be matched*)
                   reliably, using the GRing.Scale.law structure. *)
(* -> Similarly to Ring morphisms, additive properties are specialized for
    linear functions.
(* -> Although {scalar U} is convertible to {linear U -> R^o}, it does not *)
    actually use R<sup>o</sup>, so that rewriting preserves the canonical structure *)
    of the range of scalar functions.
(* -> The generic linearZ lemma uses a set of bespoke interface structures to *)
    ensure that both left-to-right and right-to-left rewriting work even in *)
    the presence of scaling functions that simplify non-trivially (e.g.,
    idfun \; *%R). Because most of the canonical instances and projections *)
    are coercions the machinery will be mostly invisible (with only the
    {linear ...} structure and %Rlin notations showing), but users should *)
    beware that in (a *: f u)%Rlin, a actually occurs in the f u subterm. *)
  -> The simpler linear LR, or more specialized linearZZ and scalarZ rules *)
    should be used instead of linearZ if there are complexity issues, as
    well as for explicit forward and backward application, as the main
                                                                           *)
    parameter of linearZ is a proper sub-interface of {linear fUV | s}.
                                                                         *)
   LRMorphism (linear ring morphisms, i.e., algebra morphisms):
        Irmorphism f <-> f of type A -> B is a linear Ring (Algebra)
                                                                       *)
                   morphism: f is both additive, multiplicative and *)
                   scalable; A and B must both have lalgType R
(*
                   canonical structures, for the same ringType R
    Irmorphism for s f <-> f a linear Ring morphism for the scaling
                                                                          *)
                   operator s: f is additive, multiplicative and *)
                   scalable for s; A must be an lalgType R, but B *)
                   only needs to have a ringType structure
    {Irmorphism A -> B} == the interface type for linear morphisms, i.e., a *)
                   Structure that encapsulates the Irmorphism
(*
                   property for functions f: A -> B; both A and B *)
                   must have lalgType R structures, for the same R *)
(* {Irmorphism A -> B | s} == the interface type for morphisms linear for s
  -> Linear and rmorphism properties do not need to be specialized for
     as we supply inheritance join instances in both directions.
                                                                        *)
(* Finally we supply some helper notation for morphisms:
                                                                         *)
                                                                      *)
              x^f == the image of x under some morphism
(*
                   This notation is only reserved (not defined)
                   here; it is bound locally in sections where some *)
                   morphism is used heavily (e.g., the container
                   morphism in the parametricity sections of poly
                   and matrix, or the Frobenius section here)
               \0 == the constant null function, which has a
                                                                   *)
                   canonical linear structure, and simplifies on
                   application (see ssrfun.v)
            f + g == the additive composition of f and g, i.e., the *)
                   function x \rightarrow f x + g x; f \rightarrow g is canonically
                   linear when f and g are, and simplifies on
```

```
application (see ssrfun.v)
            f - g = the function x - g x, canonically
                  linear when f and g are, and simplifies on
                  application
             when f is, and simplifies on application
                                                               *)
           k ': f == the function x |-> k *: f x, which is
                  canonically linear when f is and simplifies on *)
                  application (this is a shorter alternative to *)
                  *:%R k \o f)
       GRing.in alg A == the ring morphism that injects R into A, where A *)
                  has an lalgType R structure; GRing.in alg A k *)
                  simplifies to k%:A
           a \*o f == the function x \mid-> a * f x, canonically linear *)
                  when f is and its codomain is an algType
                  and which simplifies on application
           a \ o* f == the function x |-> f x * a, canonically linear *)
                  when f is and its codomain is an lalgType
                  and which simplifies on application
            f = f x g = f x g x; f g x
                                                            *)
                  simplifies on application
(* The Lemmas about these structures are contained in both the GRing module *)
(* and in the submodule GRing. Theory, which can be imported when unqualified *)
(* access to the theory is needed (GRing.Theory also allows the unqualified *)
(* use of additive, linear, Linear, etc). The main GRing module should NOT be *)
(* imported.
(* Notations are defined in scope ring scope (delimiter %R), except term *)
(* and formula notations, which are in term scope (delimiter %T).
(* This library also extends the conventional suffixes described in library *)
(* ssrbool.v with the following:
                                                           *)
                                                            *)
(* 0 -- ring 0, as in addr0 : x + 0 = x
(* 1 -- ring 1, as in mulr1 : x * 1 = x
(* D -- ring addition, as in linearD : f (u + v) = f u + f v
                                                                *)
(* B -- ring subtraction, as in opprB : -(x - y) = y - x
(* M -- ring multiplication, as in invfM : (x * y)^{-1} = x^{-1} * y^{-1}
(* Mn -- ring by nat multiplication, as in raddfMn : f(x *+ n) = f(x *+ n) *)
(* N -- ring opposite, as in mulNr : (-x) * y = -(x * y)
(* V -- ring inverse, as in mulVr : x^{-1} * x = 1
(* X -- ring exponentiation, as in rmorphXn : f(x^+ n) = f(x^+ n)
(* Z -- (left) module scaling, as in linearZ : f (a *: v) = s *: f v
(* The operator suffixes D, B, M and X are also used for the corresponding
(* operations on nat, as in natrX : (m ^ n)%:R = m%:R ^+ n. For the binary
(* power operator, a trailing "n" suffix is used to indicate the operator
(* suffix applies to the left-hand ring argument, as in
  expr1n : 1 ^+ n = 1 vs. expr1 : x ^+ 1 = x.
                                                                *)
```

Comments (Kazuhiko):

HB means Hierarchy Builder: https://doi.org/10.4230/LIPIcs.FSCD.2020.34

- The header document of each .v file in MathComp is supposed to include the description of any user-facing structure (e.g., rings), data type (e.g., polynomials), and definitions (functions and constants). On the other hand, most theorems and lemmas are not documented.
- There was a proposal to add a docstring feature to Coq: https://github.com/coq/coq/wiki/Coq-Call-2021-05-05

 https://github.com/math-comp/hierarchy-builder/issues/230.
 - Without such a feature, syncronizing this database with the latest version of MathComp seems to require a lot of work. In theory, if there is a docstring feature that allows us to embed sufficient metadata in .v files, we should be able to generate this database automatically.
 - This work (MathComp/Wikidata alignment) would be useful to signal the need for a
 docstring feature to the Coq developers. Some contributors of this work would also be
 able to contribute to the design of this docstring feature, e.g., a field to write a Wikidata
 identifier as a part of docstring.
 - Cons: the entire process (adding a docstring feature and then annotating the definitions in MathComp using this feature) may take a long time.