Verify the compatibility condition (AB).v = A.(B.v) by using the properties of matrix multiplication. \Diamond

Example 23.1.11. Let G be a group and \mathcal{E}_n be the set of all subsets of G with n elements where n is a positive integer and $n \leq |G|$. Let $S \in \mathcal{E}_n$, meaning S is a subset of G with n elements. Then G acts on \mathcal{E}_n by $g.S := \{gs \mid s \in S\}$. Note that g.S is a subset of G with n elements. Let's verify that this is an action:

- (1) Check the identity condition: $e.S = \{es \mid s \in S\} = S$
- (2) Check the compatibility condition: Let $g, h \in G$, then $(gh).S = \{(gh)s \mid s \in S\} = \{g(hs) \mid s \in S\} = g.(h.S)$

Parts (1) and (2) verify that \mathcal{E}_n is a G-set.

To show that (G, X) is *not* an action (in other words X is not a G-set), one may show any one of the following:

- $g.x \notin X$ for some $g \in G$ and $x \in X$;
- the identity condition fails $e.x \neq x$ for some $x \in X$; or
- the compatibility condition fails: $(g_1g_2).x \neq g_1.(g_2.x)$ for some $x \in X$ and some $g_1, g_2 \in G$.

Usually the easiest way to show one of the above items is by a counterexample.

Exercise 23.1.12.

- (a) Let $G = 2\mathbb{Z}$ and let $X = \mathbb{Z}$. Show that X is a G-set.
- (b) Let $X = 2\mathbb{Z}$. Show that X is not a \mathbb{Z} -set. (*Hint*)
- (c) Let $G = H_6$ (the complex 6-th roots of unity (see Section 4.4.1 in Chapter 4) and let $X = \mathbb{C}$. Show that X is a G-set.
- (d) Let $X = H_8$. Is X a C-set? Explain. (*Hint*)