

MOTIVAȚIE

Clasificarea soiurilor și tipurilor de fructe

Dorința de a explora un nou domeniu și de a testa diferite configurații pentru a observa cum se comportă modelele în anumite cazuri

DESCRIERE SOLUȚIE

Scopul este cel de a obține o clasificare cât mai precisă cu diferite seturi de imagini. Modul de rezolvare:

- Arhitecturi
 - Un model de rețea neuronală convoluțională
 - Transfer de învățare prin VGG-16, MobileNetV2 și Xception
- ❖ Set de date
 - 131 categorii de fructe și legume
 - 4 clase de fructe
 - 13 soiuri diferite de măr

STRUCTURĂ REȚEA NEURONALĂ

- ❖ Intrare: imagini cu fructe de dimensiune 100x100 pixeli
- ❖ 4 straturi convoluționale cu activare ReLU
- 4 straturi max-pool între straturile convoluționale
- un strat dens cu activare ReLU
- o funcție dropout
- un strat dens cu activarea softmax

Model: "sequential"			
Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	100, 100, 16)	448
max_pooling2d (MaxPooling2D)	(None,	50, 50, 16)	0
conv2d_1 (Conv2D)	(None,	50, 50, 32)	4640
max_pooling2d_1 (MaxPooling2	(None,	25, 25, 32)	0
conv2d_2 (Conv2D)	(None,	25, 25, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	12, 12, 64)	0
conv2d_3 (Conv2D)	(None,	12, 12, 128)	73856
max_pooling2d_3 (MaxPooling2	(None,	6, 6, 128)	0
flatten (Flatten)	(None,	4608)	0
dense (Dense)	(None,	256)	1179904
dropout (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	13)	3341
Total params: 1.280.685			

Trainable params: 1,280,685

Non-trainable params: 0

TRANSFER DE ÎNVĂȚARE

Transfer de învățare constă în preluarea caracteristicilor învățate cu privire la o problemă și utilizarea acestora într-o nouă problemă similară.

Pasul 1

Obținerea de straturi dintr-un model antrenat anterior

Pasul 2

Înghețarea straturilor

Pasul 3

Adăugarea de straturi noi antrenabile deasupra celor înghețate

Pasul 4

Instruirea noilor straturi pe setul de date

BENEFICII TRANSFER DE ÎNVĂȚARE

Un început mai înalt O pantă mai înaltă O asimptotă mai înaltă

MODELELE PROPUSE

	DIMENSIUNE	TOP-1 ACURATEȚE	TOP-5 ACURATEȚE	ADÂNCIME
Xception	88 MB	0.790	0.945	126
VGG-16	528 MB	0.713	0.901	23
MobileNetV2	14 MB	0.713	0.901	88

SET DE DATE

FRUITS-360

Conține 131 clase cu fructe și este balansat. Fundalul imaginilor este alb uniform.

Este împărțit în 75% set de antrenare și 25% set de testare.

Setul de antrenare este împărțit în 90% set de antrenare și 10% set de validare.

La preprocesarea setului de date am folosit vertical flip și orizontal flip. Am normalizat tot setul de date la valori între 0-1.

SET DE TESTARE

Set de testare care conține imagini cu portocale, mere, pere și banane.

Este împărțit în set de testare cu fructe bine încadrate și set de testare cu fructe neîncadrate.

CONFIGURAȚIE

Toate modelele sunt antrenate cu optimizatorul Adam și callback-ul ReduceLROnPlateau cu rata de așteptare de 3 epoci și factor de reducere a învățării de 0.5.

Modelele CNN sunt antrenate la 50 de epoci.

Modelele cu transfer de învățare sunt antrenate la 50 de epoci în prima etapă, iar în a doua etapă până la un maxim de 75 de epoci cu callback-ul Earlystopping și o rată de învățare foarte mică.

CONFIGURAȚII

- Un strat dens cu funcția softmax cu 13 unități
- Un strat dens cu funcția de activare ReLU cu 256 de unități
- ❖ Dropout de 20%
- Un strat dens cu funcția softmax cu 13 unități
- Un strat dens cu funcția de activare ReLU cu 512 de unități
- ❖ Dropout de 20%
- Un strat dens cu funcția de activare ReLU cu 256 de unități
- ❖ Dropout de 20%
- Un strat dens cu funcția softmax cu 13 unități

Model	Simplu	Un strat	Două straturi
CNN	0.9724	0.9813	0.9709
VGG-16	0.9827	0.9902	0.9799
VGG-16 FT	0.9986	0.9836	0.9855
MobileNetV2	0.9072	0.9545	0.9428
MobileNetV2 FT	0.9442	0.9700	0.9574
Xception	0.9128	0.9063	0.9096
Xception FT	0.9110	0.9274	0.9063

Model	Simplu	Un strat	Două straturi
CNN	0.9724	0.9813	0.9709
VGG-16	0.9827	0.9902	0.9799
VGG-16 FT	0.9986	0.9836	0.9855
MobileNetV2	0.9072	0.9545	0.9428
MobileNetV2 FT	0.9442	0.9700	0.9574
Xception	0.9128	0.9063	0.9096
Xception FT	0.9110	0.9274	0.9063

Mărul golden cu fundal alb este clasificat corect cu acuratețe între 95%-100%.

Cele mai multe mere au fost clasificate corect de către MobileNetV2 și CNN.

CNN a prezis aceeași categorie în cele 3 imagini cu același măr.

Modelele Xception și VGG-16 clasifică incorect mărul golden de pe masă cu un măr roșu galben.

Modelul VGG-16 clasifică incorect mărul roșu delicios cu mărul roșu galben.

SET DE DATE

CONFIGURAȚIE

- ❖ Un strat dens cu funcția de activare ReLU cu 256 de unități
 - ❖ Dropout de 20%
 - ❖ Un strat dens cu funcția softmax cu 13 unități

Seturi de testare:

- ❖ Cu fructe bine încadrate
 - ❖ Cu fructe neîncadrate

		Set de testare		Set de testare	Set de testare
			Nebalansat	neîncadrat	bine încadrat
	Simplu	1.000		0.2195	0.5122
CNN	Undersampling	1 -41 10	0.9884	0.4390	0.9756
	Nebalansat		0.9903	0.4878	0.9756
	Simplu	1.000	0.7642	0.8293	0.8049
MobileNetV2	Undersampling	1.000	0.9919	0.8537	0.9512
	Nebalansat	1.000	0.9986	0.9024	0.9756
Malalana (0	Simplu	1.000	0.7245	0.7561	0.8293
MobileNetV2	Undersampling	1.000	0.9909	0,7561	0.8780
fine-tuned	Nebalansat	1.000	0.9982	0.8293	0.9512

		Set de	Set de testare		Set de testare
		Simplu	Nebalansat	neîncadrat	bine încadrat
	Simplu	1.000		0.2195	0.5122
CNN	Undersampling	1 - 1 - 1 1	0.9884	0.4390	0.9756
	Nebalansat	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.9903	0.4878	0.9756
	Simplu	1.000	0.7642	0.8293	0.8049
MobileNetV2	Undersampling	1.000	0.9919	0.8537	0.9512
	Nebalansat	1.000	0.9986	0.9024	0.9756
MahilaNatVO	Simplu	1.000	0.7245	0.7561	0.8293
MobileNetV2	Undersampling	1.000	0.9909	0,7561	0.8780
fine-tuned	Nebalansat	1.000	0.9982	0.8293	0.9512

		Set de	Set de testare		Set de testare
		Simplu	Nebalansat	neîncadrat	bine încadrat
	Simplu	1.000		0.2195	0.5122
CNN	Undersampling	- 11	0.9884	0.4390	0.9756
	Nebalansat		0.9903	0.4878	0.9756
	Simplu	1.000	0.7642	0.8293	0.8049
MobileNetV2	Undersampling	1.000	0.9919	0.8537	0.9512
	Nebalansat	1.000	0.9986	0.9024	0.9756
MahilaNatVO	Simplu	1.000	0.7245	0.7561	0.8293
MobileNetV2	Undersampling	1.000	0.9909	0.7561	0.8780
fine-tuned	Nebalansat	1.000	0.9982	0.8293	0.9512

		Set de testare		Set de testare	Set de testare
		Simplu	Nebalansat	neîncadrat	bine încadrat
	Simplu	1.000		0.2195	0.5122
CNN	Undersampling	1 - 1 -	0.9884	0.4390	0.9756
	Nebalansat		0.9903	0.4878	0.9756
	Simplu	1.000	0.7642	0.8293	0.8049
MobileNetV2	Undersampling	1.000	0.9919	0.8537	0.9512
	Nebalansat	1.000	0.9986	0.9024	0.9756
M L'I N IVO	Simplu	1.000	0.7245	0.7561	0.8293
MobileNetV2	Undersampling	1.000	0.9909	0,7561	0.8780
fine-tuned	Nebalansat	1.000	0.9982	0.8293	0.9512

		Set de	Set de testare		Set de testare
		Simplu	Nebalansat	neîncadrat	bine încadrat
	Simplu	1.000		0.2195	0.5122
CNN	Undersampling	- 1 - 1	0.9884	0.4390	0.9756
	Nebalansat	<u>-</u>	0.9903	0.4878	0.9756
	Simplu	1.000	0.7642	0.8293	0.8049
MobileNetV2	Undersampling	1.000	0.9919	0.8537	0.9512
	Nebalansat	1.000	0.9986	0.9024	0.9756
Malalanawo	Simplu	1.000	0.7245	0.7561	0.8293
MobileNetV2	Undersampling	1.000	0.9909	0.7561	0.8780
fine-tuned	Nebalansat	1.000	0.9982	0.8293	0.9512

CLASIFICĂRI INCORECTE

Nebalansat

Undersampling

CNN

Prima imagine prezisă incorect de modelul antrenat pe setul nebalansat. A doua imagine prezisă incorect de modelul antrenat pe setul cu metoda undersampling.

MobileNetV2

Prima imagine prezisă incorect de modelul antrenat pe setul nebalansat. Ultimele două imagini prezise incorect de modelul antrenat pe setul cu metoda undersampling.

CONFIGURAȚIE

Configurație

- ❖ Un strat dens cu funcția de activare ReLU cu 256 de unități
 - ❖ Dropout de 20%
 - ❖ Un strat dens cu funcția softmax cu 13 unități

Modele	loss	accuracy
CNN cu 50 de epoci	0.1985	0.9833
VGG-16 cu 50 de epoci	0.1496	0.9759
VGG-16 cu 54 de epoci	0.1478	0.9721
Xception cu 50 de epoci	0.5435	0.9485
Xception cu 68 de epoci	0.1627	0.9784
MobileNetV2 cu 50 de epoci	0.3572	0.9680
MobileNetV2 cu 56 de epoci	0.2329	0.9726

Modele	loss	accuracy
CNN cu 50 de epoci	0.1985	0.9833
VGG-16 cu 50 de epoci	0.1496	0.9759
VGG-16 cu 54 de epoci	0.1478	0.9721
Xception cu 50 de epoci	0.5435	0.9485
Xception cu 68 de epoci	0.1627	0.9784
MobileNetV2 cu 50 de epoci	0.3572	0.9680
MobileNetV2 cu 56 de epoci	0.2329	0.9726

Modele	loss	accuracy
CNN cu 50 de epoci	0.1985	0.9833
VGG-16 cu 50 de epoci	0.1496	0.9759
VGG-16 cu 54 de epoci	0.1478	0.9721
Xception cu 50 de epoci	0.5435	0.9485
Xception cu 68 de epoci	0.1627	0.9784
MobileNetV2 cu 50 de epoci	0.3572	0.9680
MobileNetV2 cu 56 de epoci	0.2329	0.9726

Modele	loss	accuracy
CNN cu 50 de epoci	0.1985	0.9833
VGG-16 cu 50 de epoci	0.1496	0.9759
VGG-16 cu 54 de epoci	0.1478	0.9721
Xception cu 50 de epoci	0.5435	0.9485
Xception cu 68 de epoci	0.1627	0.9784
MobileNetV2 cu 50 de epoci	0.3572	0.9680
MobileNetV2 cu 56 de epoci	0.2329	0.9726

VA MULŢUMESC!