# Randomized SVD Algorithm<sup>1</sup>

Given an  $m \times n$  matrix  $\bf A$ , a target number k of singular vectors, and an exponent q (say, q=1 or q=2), this procedure computes an approximate rank-2k factorization  $\bf U\Sigma V^*$ , where  $\bf U$  and  $\bf V$  are orthonormal, and  $\bf \Sigma$  is nonnegative and diagonal. Stage  $\bf A$ :

- **1** Generate an  $n \times 2k$  Gaussian test matrix  $\Omega$ .
- 2 Form  $\mathbf{Y}_0 = \mathbf{A} \boldsymbol{\Omega}$  and compute its QR factorization  $\mathbf{Y}_0 = \mathbf{Q}_0 \mathbf{R}_0$
- ① Let  $\mathbf{Q} = \mathbf{Q}_q$ , so that the columns of  $\mathbf{Q}$  form an orthonormal basis for the range of  $\mathbf{Y}$ .

### Stage B:

- **6** Compute an SVD of the small matrix:  $\mathbf{B} = \widetilde{\mathbf{U}} \mathbf{\Sigma} \mathbf{V}^*$
- $\bigcirc$  Set  $U = Q\widetilde{U}$ .

<sup>&</sup>lt;sup>1</sup>Halko N, Martinsson P-G and Tropp J A 2011 Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions *SIAM* Rev. **53** 217–88



#### Randomized SVD

## Serial R

```
randSVD <- function (A, k, q=3)
2
3
        ## Stage A
4
        Omega <- matrix(rnorm(n*2*k).
5
               nrow=n. ncol=2*k)
        Y <- A %*% Omega
6
7
        Q \leftarrow qr.Q(qr(Y))
8
        At < -t(A)
        for(i in 1:q)
10
             Y <- At %*% Q
11
             Q \leftarrow qr.Q(qr(Y))
12
13
             Y <- A %*% Q
             Q \leftarrow qr.Q(qr(Y))
14
15
16
17
        ## Stage B
        B <- t(Q) %*% A
18
19
        U <- La.svd(B)$u
20
        U <- Q %*% U
        U[, 1:k]
21
22
```

# Parallel pbdR

```
randSVD \leftarrow function(A, k, q=3)
2
3
         ## Stage A
 4
         Omega <- ddmatrix("rnorm", nrow=n,
                ncol=2*k
         Y <- A %*% Omega
6
 7
        Q \leftarrow qr.Q(qr(Y))
         At \leftarrow t(A)
9
         for(i in 1:q)
10
11
              Y <- At %*% Q
12
              Q \leftarrow qr.Q(qr(Y))
13
              Y <- A %*% Q
              Q \leftarrow qr.Q(qr(Y))
14
15
16
17
        ## Stage B
18
         B < - t(Q) \% A
19
         U <- La.svd(B)$u
20
         U <- Q %*% U
21
         U[, 1:k]
22
```

