

Introducción a Modelos Psicométricos Clase 12-13 Los Modelos Logísticos de Dos y Tres Parámetros

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–1

- 1 El modelo logístico de dos parámetros (Birnbaum)
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord)

- 1 El modelo logístico de dos parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Indeterminaciones
 - Estimación de parámetros
 - Función de información
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord

- 1 El modelo logístico de dos parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Indeterminaciones
 - Estimación de parámetros
 - Función de información
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

El modelo logístico de dos parámetros (2PL)

La curva característica en el modelo logístico de dos parámetros

$$f_i(\theta) = \frac{e^{\alpha_i (\theta - \beta_i)}}{1 + e^{\alpha_i (\theta - \beta_i)}}.$$

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$

Interpretación: Grado de dificultad

Ojo: La interpretación de β_i no es uniforme

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad Ojo: La interpretación de β_i no es uniforme

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad Ojo: La interpretación de β_i no es uniforme

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación

Ojo: La interpretación de α_i no es uniforme

Ecuación básica y curva característica del ítem

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación Ojo: La interpretación de α_i no es uniforme

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación Ojo: La interpretación de α_i no es uniforme

El modelo logístico de dos parámetros (2PL)

Interpretación de los parámetros en el modelo logístico de dos parámetros

En el modelo 2PL, cada ítem se caracteriza por dos parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación Ojo: La interpretación de α_i no es uniforme

Indeterminaciones

- 1 El modelo logístico de dos parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Indeterminaciones
 - Estimación de parámetros
 - Función de información
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord

Indeterminaciones

El modelo logístico de dos parámetros (2PL)

Indeterminaciones en el modelo logístico de dos parámetros

La ecuación básica del modelo 2PL es:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_{i}, \alpha_{i}) = \frac{e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}{1 + e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}$$

- Similar al modelo de Rasch, sumar la misma constante a todas las θ_p 's y β_i 's no afecta las probabilidades de acertar.
- Multiplicar todas las α_i 's con una constante y simultáneamente dividir todas las θ_p 's y β_i 's por esta misma constante tampoco afecta las probabilidades de acertar.

Es otra indeterminación, que se suele resolver añadiendo una de las siguientes restricciones:

•
$$\prod_i \alpha_i = 1$$
.

• la varianza de las θ sea 1.

Indeterminaciones

El modelo logístico de dos parámetros (2PL)

Indeterminaciones en el modelo logístico de dos parámetros

La ecuación básica del modelo 2PL es:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_{i}, \alpha_{i}) = \frac{e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}{1 + e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}$$

- Similar al modelo de Rasch, sumar la misma constante a todas las θ_p 's y β_i 's no afecta las probabilidades de acertar.
- Multiplicar todas las α_i 's con una constante y simultáneamente dividir todas las θ_ρ 's y β_i 's por esta misma constante tampoco afecta las probabilidades de acertar.

Es otra indeterminación, que se suele resolver añadiendo una de las siguientes restricciones:

•
$$\prod_i \alpha_i = 1$$
.

• la varianza de las θ sea 1.

_ Indeterminaciones

El modelo logístico de dos parámetros (2PL)

Indeterminaciones en el modelo logístico de dos parámetros

La ecuación básica del modelo 2PL es:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_{i}, \alpha_{i}) = \frac{e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}{1 + e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}$$

- Similar al modelo de Rasch, sumar la misma constante a todas las θ_p 's y β_i 's no afecta las probabilidades de acertar.
- Multiplicar todas las α_i's con una constante y simultáneamente dividir todas las θ_ρ's y β_i's por esta misma constante tampoco afecta las probabilidades de acertar.

Es otra indeterminación, que se suele resolver añadiendo una de las siguientes restricciones:

- $\prod_i \alpha_i = 1$.
- la varianza de las θ sea 1.

Indeterminaciones

El modelo logístico de dos parámetros (2PL)

Indeterminaciones en el modelo logístico de dos parámetros

La ecuación básica del modelo 2PL es:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_{i}, \alpha_{i}) = \frac{e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}{1 + e^{\alpha_{i} (\theta_{\rho} - \beta_{i})}}$$

- Similar al modelo de Rasch, sumar la misma constante a todas las θ_p 's y β_i 's no afecta las probabilidades de acertar.
- Multiplicar todas las α_i 's con una constante y simultáneamente dividir todas las θ_ρ 's y β_i 's por esta misma constante tampoco afecta las probabilidades de acertar.

Es otra indeterminación, que se suele resolver añadiendo una de las siguientes restricciones:

- $\prod_i \alpha_i = 1$.
- la varianza de las θ sea 1.

Estimación de parámetros

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Indeterminaciones
 - Estimación de parámetros
 - Función de información.
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord

Estimación de parámetros

El modelo logístico de dos parámetros (2PL)

Estimación de parámetros en el modelo logístico de dos parámetros

Similar al modelo de Rasch, se suele estimar los parámetros por máxima verosimilitud:

- Primero, se estiman los parámetros de los ítems por
 - Máxima verosimilitud marginal (MML), donde se maximiza:

$$\ell(\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_s, \mu, \sigma^2; \mathbf{Y})$$

- ¡Ojo! No es deseable utilizar máxima verosimilitud conjunta (JML) ya que las estimaciones no son consistentes.
- ¡Ojo! No es posible utilizar máxima verosimilitud condicional ya que el número de aciertos ya no es un estadístico suficiente para
- Segundo, se estima el parámetro θ_p de cada persona, maximizando:

$$\ell(heta_{ extsf{p}}; oldsymbol{lpha}, oldsymbol{eta}, oldsymbol{eta})$$

Estimación de parámetros

El modelo logístico de dos parámetros (2PL)

Estimación de parámetros en el modelo logístico de dos parámetros

Similar al modelo de Rasch, se suele estimar los parámetros por máxima verosimilitud:

- Primero, se estiman los parámetros de los ítems por
 - Máxima verosimilitud marginal (MML), donde se maximiza:

$$\ell(\alpha_1, \alpha_2, \ldots, \alpha_s, \beta_1, \beta_2, \ldots, \beta_s, \mu, \sigma^2; \mathbf{Y})$$

- ¡Ojo! No es deseable utilizar máxima verosimilitud conjunta (JML) ya que las estimaciones no son consistentes.
- ¡Ojo! No es posible utilizar máxima verosimilitud condicional ya que el número de aciertos ya no es un estadístico suficiente para θ .
- **Segundo**, se estima el parámetro θ_p de cada persona, maximizando:

$$\ell(\theta_{\mathcal{p}}; \boldsymbol{lpha}, \boldsymbol{eta}, \mathbf{y})$$

Estimación de parámetros

El modelo logístico de dos parámetros (2PL)

Estimación de parámetros en el modelo logístico de dos parámetros

Similar al modelo de Rasch, se suele estimar los parámetros por máxima verosimilitud:

- Primero, se estiman los parámetros de los ítems por
 - Máxima verosimilitud marginal (MML), donde se maximiza:

$$\ell(\alpha_1, \alpha_2, \ldots, \alpha_s, \beta_1, \beta_2, \ldots, \beta_s, \mu, \sigma^2; \mathbf{Y})$$

- ¡Ojo! No es deseable utilizar máxima verosimilitud conjunta (JML) ya que las estimaciones no son consistentes.
- ¡Ojo! No es posible utilizar máxima verosimilitud condicional ya que el número de aciertos ya no es un estadístico suficiente para θ .
- Segundo, se estima el parámetro θ_p de cada persona, maximizando:

$$\ell(\theta_p; \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{y})$$

Estimación de parámetros

El modelo logístico de dos parámetros (2PL)

Estimación de parámetros en el modelo logístico de dos parámetros

Similar al modelo de Rasch, se suele estimar los parámetros por máxima verosimilitud:

- Primero, se estiman los parámetros de los ítems por
 - Máxima verosimilitud marginal (MML), donde se maximiza:

$$\ell(\alpha_1, \alpha_2, \ldots, \alpha_s, \beta_1, \beta_2, \ldots, \beta_s, \mu, \sigma^2; \mathbf{Y})$$

- ¡Ojo! No es deseable utilizar máxima verosimilitud conjunta (JML) ya que las estimaciones no son consistentes.
- ¡Ojo! No es posible utilizar máxima verosimilitud condicional ya que el número de aciertos ya no es un estadístico suficiente para θ.
- Segundo, se estima el parámetro θ_p de cada persona, maximizando:

$$\ell(\theta_{\mathcal{p}}; \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{y})$$

Función de información

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Indeterminaciones
 - Estimación de parámetros
 - Función de información
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord

El modelo logístico de dos parámetros (2PL)

La función de información en el modelo logístico de dos parámetros

En el modelo lógistics de dos parámetros, la función de información del test se da por:

$$\mathcal{I}_{\text{test}}(\theta) = \sum_{i=1}^{n} \mathcal{I}_{i}(\theta),$$

donde $\mathcal{I}_i(\theta)$ es la función de información del ítem i, la cual se da por:

$$\mathcal{I}_i(\theta) = \alpha_i^2 \times f_i(\theta) \times (1 - f_i(\theta)).$$

Función de información

El modelo logístico de dos parámetros (2PL)

Representación gráfica de la función de información

Función de información

El modelo logístico de dos parámetros (2PL)

Representación gráfica de la función de información

Función de información

El modelo logístico de dos parámetros (2PL)

Representación gráfica de la función de información

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum)
- 2 El modelo logístico de tres parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Función de información
- 3 Los modelos de la ogiva normal (Lord)

Ecuación básica y curva característica del ítem

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum
- 2 El modelo logístico de tres parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Función de información
- 3 Los modelos de la ogiva normal (Lord)

Clase 12-13 — Los Modelos Logísticos de Dos y Tres Parámetros

El modelo logístico de tres parámetros (Birnbaum)

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

La curva característica en el modelo logístico de tres parámetros

La CCI en el 3PL se da por:

$$f_i(\theta) = \gamma_i + (1 - \gamma_i) \times \frac{e^{\alpha_i(\theta - \beta_i)}}{1 + e^{\alpha_i(\theta - \beta_i)}}.$$

Clase 12-13 — Los Modelos Logísticos de Dos y Tres Parámetros

El modelo logístico de tres parámetros (Birnbaum)

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad Ojo: $\theta = \beta_i \Rightarrow f_i(\theta) = 0.50$.

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad

Ojo: $\theta = \beta_i \Rightarrow f_i(\theta) = 0.50$.

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad

Ojo: $\theta = \beta_i \Rightarrow f_i(\theta) = 0.50$.

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

1. β_i $(-\infty < \beta_i < +\infty)$ Interpretación: Grado de dificultad

Ojo: $\theta = \beta_i \Rightarrow f_i(\theta) = 0.50$.

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

2. α_i (0 < α_i < + ∞) Interpretación: Grado de discriminación

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

Interpretación de los parámetros en el modelo logístico de 3 parámetros

En el modelo 3PL, cada ítem se caracteriza por tres parámetros:

3. γ_i (0 < γ_i < 1) Interpretación: Parámetro de adivinación

Ojo: El valor de γ_i influye en la interpretación de α_i y β_i

Ecuación básica y curva característica del ítem

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sique que

Pr(Respuesta correcta) =
$$f_i \times (1 - h_i) + (1 - f_i) \times g_i$$

= $f_i - (f_i \times h_i) + g_i - (f_i \times g_i)$
= $g_i + f_i \times (1 - g_i) - (f_i \times h_i)$

En el modelo 3PI

- f_i se da por el modelo de dos parámetros
- $g_i = \gamma_i$
- $h_i = 0$

$$\Pr(\text{Respuesta correcta}) = \gamma_i + (1 - \gamma_i) \times \frac{e^{\alpha_i(\theta - \beta_i)}}{1 + e^{\alpha_j(\theta - \beta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sique que

Pr(Respuesta correcta) =
$$f_i \times (1 - h_i) + (1 - f_i) \times g_i$$

= $f_i - (f_i \times h_i) + g_i - (f_i \times g_i)$
= $g_i + f_i \times (1 - g_i) - (f_i \times h_i)$

En el modelo 3PL

- \bullet f_i se da por el modelo de dos parámetros:
- $g_i = \gamma_i$
- $h_i = 0$

$$\Pr(\text{Respuesta correcta}) = \gamma_i \ + \ (1 - \gamma_i) \ \times \ \frac{\mathrm{e}^{\alpha_i(\theta - \beta_i)}}{1 + \mathrm{e}^{\alpha_i(\theta - \beta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta, pero acierta adivinando	Correcta	$(1-f_i) \times g_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sigue que

$$\begin{aligned} \text{Pr}(\text{Respuesta correcta}) &= f_i \times (1 - h_i) + (1 - f_i) \times g_i \\ &= f_i - (f_i \times h_i) + g_i - (f_i \times g_i) \\ &= g_i + f_i \times (1 - g_i) - (f_i \times h_i) \end{aligned}$$

En el modelo 3PL

- \bullet f_i se da por el modelo de dos parámetros:
- $g_i = \gamma_i$
- $h_i = 0$

$$\Pr(\mathsf{Respuesta correcta}) = \gamma_i \ + \ (1 - \gamma_i) \ \times \ \frac{\mathrm{e}^{\alpha_i(\theta - \beta_i)}}{1 + \mathrm{e}^{\alpha_i(\theta - \beta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta, pero acierta adivinando	Correcta	$(1-f_i) \times g_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sigue que:

$$\begin{aligned} \text{Pr}(\text{Respuesta correcta}) &= f_i \times (1 - h_i) + (1 - f_i) \times g_i \\ &= f_i - (f_i \times h_i) + g_i - (f_i \times g_i) \\ &= g_i + f_i \times (1 - g_i) - (f_i \times h_i) \end{aligned}$$

En el modelo 3PL

- f_i se da por el modelo de dos parámetros;
- $g_i = \gamma_i$
- $h_i = 0$

$$\Pr(\text{Respuesta correcta}) = \gamma_i + (1 - \gamma_i) \times \frac{e^{\alpha_i(\theta - \beta_i)}}{1 + e^{\alpha_i(\theta - \beta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta, pero acierta adivinando	Correcta	$(1-f_i) \times g_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sigue que:

Pr(Respuesta correcta) =
$$f_i \times (1 - h_i) + (1 - f_i) \times g_i$$

= $f_i - (f_i \times h_i) + g_i - (f_i \times g_i)$
= $g_i + f_i \times (1 - g_i) - (f_i \times h_i)$

En el modelo 3PL

- f_i se da por el modelo de dos parámetros;
- $g_i = \gamma_i$
- $h_i = 0$

Entonces

$$\Pr(\mathsf{Respuesta\ correcta}) = \gamma_i \ + \ (1 - \gamma_i) \ \times \ \frac{\mathrm{e}^{\alpha_i(\theta - \beta_i)}}{1 + \mathrm{e}^{\alpha_i(\theta - \beta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta, pero acierta adivinando	Correcta	$(1-f_i) \times g_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sigue que:

$$\begin{aligned} \text{Pr}(\text{Respuesta correcta}) &= f_i \times (1 - h_i) + (1 - f_i) \times g_i \\ &= f_i - (f_i \times h_i) + g_i - (f_i \times g_i) \\ &= g_i + f_i \times (1 - g_i) - (f_i \times h_i) \end{aligned}$$

En el modelo 3PL

- f_i se da por el modelo de dos parámetros;
- $g_i = \gamma_i$
- $h_i = 0$

Entonces

$$Pr(Respuesta correcta) = \gamma_i + (1 - \gamma_i) \times \frac{e^{\alpha_i(\theta - \beta_i)}}{1 + e^{\alpha_i(\theta - \beta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta, pero acierta adivinando	Correcta	$(1-f_i) \times g_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sigue que:

$$\begin{aligned} \text{Pr}(\text{Respuesta correcta}) &= f_i \times (1 - h_i) + (1 - f_i) \times g_i \\ &= f_i - (f_i \times h_i) + g_i - (f_i \times g_i) \\ &= g_i + f_i \times (1 - g_i) - (f_i \times h_i) \end{aligned}$$

En el modelo 3PL:

- f_i se da por el modelo de dos parámetros;
- $g_i = \gamma_i$;
- $h_i = 0$.

Entonces

$$\mathsf{Pr}(\mathsf{Respuesta}\,\mathsf{correcta}) = \gamma_i \ + \ (1-\gamma_i) \ imes \ rac{\mathrm{e}^{lpha_i(heta-eta_i)}}{1 \ + \ \mathrm{e}^{lpha_i(heta-eta_i)}}$$

El modelo logístico de tres parámetros (3PL)

El modelo cognitivo que subyace el modelo logístico de tres parámetros

Consideramos las siguientes cuatro posibilidades:

	Respuesta	Probabilidad
Conoce la respuesta, pero se equivoca	Incorrecta	$f_i \times h_i$
Conoce la respuesta y no se equivoca	Correcta	$f_i \times (1-h_i)$
No conoce la respuesta, pero acierta adivinando	Correcta	$(1-f_i) \times g_i$
No conoce la respuesta y falla adivinando	Incorrecta	$(1-f_i)\times(1-g_i)$

Sigue que:

$$\begin{aligned} \text{Pr}(\text{Respuesta correcta}) &= f_i \times (1 - h_i) + (1 - f_i) \times g_i \\ &= f_i - (f_i \times h_i) + g_i - (f_i \times g_i) \\ &= g_i + f_i \times (1 - g_i) - (f_i \times h_i) \end{aligned}$$

En el modelo 3PL:

- f_i se da por el modelo de dos parámetros;
- $g_i = \gamma_i$;
- $h_i = 0$.

Entonces:

$$\Pr(\text{Respuesta correcta}) = \gamma_i \; + \; (1 - \gamma_i) \, \times \, \frac{\mathrm{e}^{\alpha_i(\theta - \beta_i)}}{1 + \mathrm{e}^{\alpha_i(\theta - \beta_i)}}.$$

El modelo logístico de tres parámetros (Birnbaum)

Función de información

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum
- 2 El modelo logístico de tres parámetros (Birnbaum)
 - Ecuación básica y curva característica del ítem
 - Función de información
- 3 Los modelos de la ogiva normal (Lord)

El modelo logístico de tres parámetros (3PL)

La función de información en el modelo logístico de tres parámetros

En el modelo 3PL, la función de información del test para el parámetro θ se da por:

$$\mathcal{I}_{\text{test}}(\theta) = \sum_{i=1}^{n} \mathcal{I}_{i}(\theta)$$

$$\mathcal{I}_i(\theta) = \alpha_i^2 \times \frac{1 - f_i(\theta)}{f_i(\theta)} \times \left(\frac{f_i(\theta) - \gamma_i}{1 - \gamma_i}\right)^2$$

El modelo logístico de tres parámetros (3PL)

La función de información en el modelo logístico de tres parámetros

En el modelo 3PL, la función de información del test para el parámetro θ se da por:

$$\mathcal{I}_{\text{test}}(\theta) = \sum_{i=1}^{n} \mathcal{I}_{i}(\theta)$$

$$\mathcal{I}_i(\theta) = \alpha_i^2 \times \frac{1 - f_i(\theta)}{f_i(\theta)} \times \left(\frac{f_i(\theta) - \gamma_i}{1 - \gamma_i}\right)^2$$

El modelo logístico de tres parámetros (3PL)

La función de información en el modelo logístico de tres parámetros

En el modelo 3PL, la función de información del test para el parámetro θ se da por:

$$\mathcal{I}_{\text{test}}(\theta) = \sum_{i=1}^{n} \mathcal{I}_{i}(\theta)$$

$$\mathcal{I}_i(\theta) = \alpha_i^2 \times \frac{1 - f_i(\theta)}{f_i(\theta)} \times \left(\frac{f_i(\theta) - \gamma_i}{1 - \gamma_i}\right)^2$$

El modelo logístico de tres parámetros (3PL)

La función de información en el modelo logístico de tres parámetros

En el modelo 3PL, la función de información del test para el parámetro θ se da por:

$$\mathcal{I}_{\text{test}}(\theta) = \sum_{i=1}^{n} \mathcal{I}_{i}(\theta)$$

$$\mathcal{I}_{i}(\theta) = \alpha_{i}^{2} \times \frac{1 - f_{i}(\theta)}{f_{i}(\theta)} \times \left(\frac{f_{i}(\theta) - \gamma_{i}}{1 - \gamma_{i}}\right)^{2}$$

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord)
 - Introducción: La ogiva normal
 - Los modelos de 1, 2 y 3 parámetros de la ogiva normal
 - Relación entre los modelos logísticos y de la ogiva normal

Clase 12-13 — Los Modelos Logísticos de Dos y Tres Parámetros

Los modelos de la ogiva normal (Lord)

Introducción: La ogiva normal

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord)
 - Introducción: La ogiva normal
 - Los modelos de 1, 2 y 3 parámetros de la ogiva normal
 - Relación entre los modelos logísticos y de la ogiva normal

La función de enlace en los modelos logísticos

La función logística

En el modelo de Rasch y los modelos 2PLM y 3PLM, se utiliza la función logística para transformar valores reales cualesquiera a probabilidades entre 0 y 1:

$$logistic(x) = \frac{e^x}{1 + e^x}$$

La función de enlace en los modelos logísticos

La función logística

■ En el modelo de Rasch y los modelos 2PLM y 3PLM, se utiliza la función logística para transformar valores reales cualesquiera a probabilidades entre 0 y 1:

$$logistic(x) = \frac{e^x}{1 + e^x}$$

La función de enlace en los modelos logísticos

La función logística en los modelos de Rasch, 2PLM y 3PLM

■ En este sentido, para el modelo de Rasch se tiene, para cualquier persona *p* y cualquier ítem *i*:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = logistic(\theta_p - \beta_i)$$

Para el modelo logístico de dos parámetros:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i) = Iogistic [\alpha_i (\theta_p - \beta_i)]$$

Para el modelo logístico de tres parámetros:

$$\Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i, \gamma_i) = \gamma_i + (1 - \gamma_i) \log \operatorname{istic} [\alpha_i (\theta_p - \beta_i)]$$

La función de enlace en los modelos logísticos

La función logística en los modelos de Rasch, 2PLM y 3PLM

■ En este sentido, para el modelo de Rasch se tiene, para cualquier persona *p* y cualquier ítem *i*:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = Iogistic(\theta_p - \beta_i)$$

Para el modelo logístico de dos parámetros:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i) = Iogistic [\alpha_i (\theta_p - \beta_i)]$$

Para el modelo logístico de tres parámetros:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i, \gamma_i) = \gamma_i + (1 - \gamma_i) logistic [\alpha_i (\theta_p - \beta_i)]$$

La función de enlace en los modelos logísticos

La función logística en los modelos de Rasch, 2PLM y 3PLM

■ En este sentido, para el modelo de Rasch se tiene, para cualquier persona *p* y cualquier ítem *i*:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = Iogistic(\theta_p - \beta_i)$$

Para el modelo logístico de dos parámetros:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i) = Iogistic [\alpha_i (\theta_p - \beta_i)]$$

■ Para el modelo logístico de tres parámetros:

$$\Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i, \gamma_i) \ = \ \gamma_i \ + \ (1 - \gamma_i) \ \text{logistic} \left[\alpha_i \ (\theta_p - \beta_i)\right]$$

La ogiva normal

Una función de enlace alternativa: la ogiva normal

 Existe una familia de modelos TRI muy similares a los modelos logísticos, que utilizan como función de enlace—en vez de la función logística—la función acumulada de la densidad normal estandarizada:

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

La ogiva normal

Una función de enlace alternativa: la ogiva normal

 Existe una familia de modelos TRI muy similares a los modelos logísticos, que utilizan como función de enlace—en vez de la función logística—la función acumulada de la densidad normal estandarizada:

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Los modelos de la ogiva normal (Lord)

Introducción: La ogiva normal

La distribución normal acumulada

Los modelos de la ogiva normal (Lord)

Introducción: La ogiva normal

La distribución normal acumulada

La distribución normal acumulada

La distribución normal acumulada

.00

Introducción: La ogiva normal

La distribución normal acumulada

Nota: La distribución normal acumulada

0

La distribución normal acumulada

Los modelos de la ogiva normal (Lord)

Introducción: La ogiva normal

La distribución normal acumulada

Los modelos de la ogiva normal (Lord)

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord)
 - Introducción: La ogiva normal
 - Los modelos de 1, 2 y 3 parámetros de la ogiva normal
 - Relación entre los modelos logísticos y de la ogiva normal

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Los modelos TRI de la ogiva normal

Utilizando la ogiva normal como función de enlace, Lord propuso los siguientes modelos de 1, 2 y 3 parámetros:

En el modelo de un parámetro de la ogiva normal, se tiene, para cualquier persona p y cualquier ítem i:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = \Phi(\theta_p - \beta_i)$$

Para el modelo de dos parámetros de la ogiva normal:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i) = \Phi[\alpha_i (\theta_p - \beta_i)]$$

Para el modelo de tres parámetros de la ogiva normal:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i, \gamma_i) = \gamma_i + (1 - \gamma_i) \Phi [\alpha_i (\theta_p - \beta_i)]$$

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Los modelos TRI de la ogiva normal

Utilizando la ogiva normal como función de enlace, Lord propuso los siguientes modelos de 1, 2 y 3 parámetros:

En el modelo de un parámetro de la ogiva normal, se tiene, para cualquier persona p y cualquier ítem i:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = \Phi(\theta_p - \beta_i)$$

Para el modelo de dos parámetros de la ogiva normal:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i) = \Phi[\alpha_i (\theta_p - \beta_i)]$$

Para el modelo de tres parámetros de la ogiva normal:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i, \gamma_i) = \gamma_i + (1 - \gamma_i) \Phi [\alpha_i (\theta_p - \beta_i)]$$

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Los modelos de 1, 2 y 3 parámetros de la ogiva normal

Los modelos TRI de la ogiva normal

Utilizando la ogiva normal como función de enlace, Lord propuso los siguientes modelos de 1, 2 y 3 parámetros:

En el modelo de un parámetro de la ogiva normal, se tiene, para cualquier persona p y cualquier ítem i:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = \Phi(\theta_p - \beta_i)$$

Para el modelo de dos parámetros de la ogiva normal:

$$Pr(Y_{pi} = 1 | \theta_p, \alpha_i, \beta_i) = \Phi[\alpha_i (\theta_p - \beta_i)]$$

Para el modelo de tres parámetros de la ogiva normal:

$$\Pr(Y_{\rho i} = 1 | \theta_{\rho}, \alpha_{i}, \beta_{i}, \gamma_{i}) = \gamma_{i} + (1 - \gamma_{i}) \Phi \left[\alpha_{i} (\theta_{\rho} - \beta_{i})\right]$$

Los modelos de la ogiva normal (Lord)

Relación entre los modelos logísticos y de la ogiva normal

Índice

- 1 El modelo logístico de dos parámetros (Birnbaum
- 2 El modelo logístico de tres parámetros (Birnbaum)
- 3 Los modelos de la ogiva normal (Lord)
 - Introducción: La ogiva normal
 - Los modelos de 1, 2 y 3 parámetros de la ogiva normal
 - Relación entre los modelos logísticos y de la ogiva normal

Los modelos de la ogiva normal (Lord)

Relación entre los modelos logísticos y de la ogiva normal

La relación entre la función logística y la ogiva normal

La función logística vs la ogiva normal

■ La función logística y la ogiva normal son funciones diferentes.

La relación entre la función logística y la ogiva normal

La función logística vs la ogiva normal

- La función logística y la ogiva normal son funciones diferentes.
- Sin embargo, si utilizamos la función logistic(1.702x), las dos funciones son muy similares.

Relación entre los modelos logísticos y de la ogiva normal

Algunas conclusiones

• Recuérdese que en algunas publicaciones se presenta el modelo de Rasch como:

$$\Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_{i}) = \frac{e^{D(\theta_{\rho} - \beta_{i})}}{1 + e^{D(\theta_{\rho} - \beta_{i})}},$$

- De esta forma
 - Se meten los parámetros en el modelo de Rasch en la métrica normal.
 - El modelo de Rasch y el modelo de un parámetro de la ogiva normal de Lord, para muchos fines prácticos, son muy similares.
- Sin embargo, es importante reconocer algunas ventajas del modelo de Rasch sobre el modelo de un parámetro de la ogiva normal de Lord, como:
 - El número de aciertos que tiene una persona en una prueba de n ítems es un estadístico suficiente para estimar su parámetro θ_n .
 - Posibilidad de estimación CML de los parámetros de los ítems en el modelo de Rasch.

Relación entre los modelos logísticos y de la ogiva normal

Algunas conclusiones

■ Recuérdese que en algunas publicaciones se presenta el modelo de Rasch como:

$$Pr(Y_{pi} = 1 | \theta_p, \beta_i) = \frac{e^{D(\theta_p - \beta_i)}}{1 + e^{D(\theta_p - \beta_i)}},$$

- De esta forma:
 - Se meten los parámetros en el modelo de Rasch en la métrica normal.
 - El modelo de Rasch y el modelo de un parámetro de la ogiva normal de Lord, para muchos fines prácticos, son muy similares.
- Sin embargo, es importante reconocer algunas ventajas del modelo de Rasch sobre el modelo de un parámetro de la ogiva normal de Lord, como:
 - El número de aciertos que tiene una persona en una prueba de n ítems es un estadístico suficiente para estimar su parámetro θ_n.
 - Posibilidad de estimación CML de los parámetros de los ítems en el modelo de Rasch.

Relación entre los modelos logísticos y de la ogiva normal

Algunas conclusiones

■ Recuérdese que en algunas publicaciones se presenta el modelo de Rasch como:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_i) = \frac{e^{D(\theta_{\rho} - \beta_i)}}{1 + e^{D(\theta_{\rho} - \beta_i)}},$$

- De esta forma:
 - Se meten los parámetros en el modelo de Rasch en la métrica normal.
 - El modelo de Rasch y el modelo de un parámetro de la ogiva normal de Lord, para muchos fines prácticos, son muy similares.
- Sin embargo, es importante reconocer algunas ventajas del modelo de Rasch sobre el modelo de un parámetro de la ogiva normal de Lord, como:
 - El número de aciertos que tiene una persona en una prueba de n ítems es un estadístico suficiente para estimar su parámetro θ_n.
 - Posibilidad de estimación CML de los parámetros de los ítems en el modelo de Rasch.

Relación entre los modelos logísticos y de la ogiva normal

Algunas conclusiones

■ Recuérdese que en algunas publicaciones se presenta el modelo de Rasch como:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_i) = \frac{e^{D(\theta_{\rho} - \beta_i)}}{1 + e^{D(\theta_{\rho} - \beta_i)}},$$

- De esta forma:
 - Se meten los parámetros en el modelo de Rasch en la métrica normal.
 - El modelo de Rasch y el modelo de un parámetro de la ogiva normal de Lord, para muchos fines prácticos, son muy similares.
- Sin embargo, es importante reconocer algunas ventajas del modelo de Rasch sobre el modelo de un parámetro de la ogiva normal de Lord, como:
 - El número de aciertos que tiene una persona en una prueba de n ítems es un estadístico suficiente para estimar su parámetro θ_p .
 - Posibilidad de estimación CML de los parámetros de los ítems en el modelo de Rasch.

Relación entre los modelos logísticos y de la ogiva normal

Algunas conclusiones

■ Recuérdese que en algunas publicaciones se presenta el modelo de Rasch como:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_i) = \frac{e^{D(\theta_{\rho} - \beta_i)}}{1 + e^{D(\theta_{\rho} - \beta_i)}},$$

- De esta forma:
 - Se meten los parámetros en el modelo de Rasch en la métrica normal.
 - El modelo de Rasch y el modelo de un parámetro de la ogiva normal de Lord, para muchos fines prácticos, son muy similares.
- Sin embargo, es importante reconocer algunas ventajas del modelo de Rasch sobre el modelo de un parámetro de la ogiva normal de Lord, como:
 - El número de aciertos que tiene una persona en una prueba de n ítems es un estadístico suficiente para estimar su parámetro θ_D .
 - Posibilidad de estimación CML de los parámetros de los ítems en el modelo de Rasch.

Relación entre los modelos logísticos y de la ogiva normal

Algunas conclusiones

■ Recuérdese que en algunas publicaciones se presenta el modelo de Rasch como:

$$Pr(Y_{\rho i} = 1 | \theta_{\rho}, \beta_i) = \frac{e^{D(\theta_{\rho} - \beta_i)}}{1 + e^{D(\theta_{\rho} - \beta_i)}},$$

- De esta forma:
 - Se meten los parámetros en el modelo de Rasch en la métrica normal.
 - El modelo de Rasch y el modelo de un parámetro de la ogiva normal de Lord, para muchos fines prácticos, son muy similares.
- Sin embargo, es importante reconocer algunas ventajas del modelo de Rasch sobre el modelo de un parámetro de la ogiva normal de Lord, como:
 - El número de aciertos que tiene una persona en una prueba de n ítems es un estadístico suficiente para estimar su parámetro θ_p.
 - Posibilidad de estimación CML de los parámetros de los ítems en el modelo de Rasch.