Czy na MuZero można odpalić Doom'a?

Paulina Brzęcka

Marek Borzyszkowski

23 stycznia 2025

Spis treści

1	Jak	działa MuZero	2
2	Info	rmacje na temat eksperymentu	2
	2.1	Literatura	2
	2.2	Przydatne repozytoria	3
	2.3	Framework	3
	2.4	Co będzie przedmiotem eksperymentu	3
	2.5	Metryki i baseline	3
	2.6	Sprzęt użyty w testach	4
	2.7	Podział zadań	4
3	Nap	ootkane problemy	4
4	Wyr	niki	4
	4.1	Cartpole	5
	4.2	Gridworld	6
	4.3	Breakout	7
	4.4	Breakout 5M	8
	4.5	Breakout GPU	9
	4.6		10
	4.7		11
	4.8	· ·	12
	4.9	·	13
	4.10		14
			15
5	Pod	sumowanie	15

1 Jak działa MuZero

MuZero działa w oparciu o zaawansowany model uczenia maszynowego, który łączy w sobie planowanie, uczenie się oraz symulację, aby optymalizować podejmowanie decyzji w różnych środowiskach. Kluczowe cechy działania MuZero to:

- Modelowanie wewnętrzne W przeciwieństwie do wcześniejszych algorytmów (np. AlphaGo czy AlphaZero), MuZero nie wymaga znajomości zasad gry ani pełnego modelu środowiska. Tworzy własną wewnętrzną reprezentację świata na podstawie danych wejściowych.
- Planowanie MuZero wykorzystuje procesy podobne do wyszukiwania Monte Carlo Tree Search (MCTS), aby symulować różne scenariusze i przewidywać najbardziej korzystne działania. Wykorzystuje przy tym trzy modele:
 - Model przewidujący wartość bieżącego stanu.
 - Model przewidujący nagrodę za przejście w kolejny stan.
 - Model przewidujący następny stan na podstawie wykonanej akcji.
- Uczenie się z danych System uczy się na podstawie danych historycznych oraz symulacji, aby ulepszać swoją strategię i lepiej przewidywać skutki akcji.
- Zastosowanie w różnych środowiskach Może być stosowany w grach wideo, takich jak Atari, czy w bardziej złożonych środowiskach, takich jak Doom.

2 Informacje na temat eksperymentu

2.1 Literatura

Do zrozumienia problemu wykorzystano następujące pozycje:

- 1. https://arxiv.org/pdf/1911.08265
- 2. https://www.youtube.com/watch?v=c8SLNEpFSrs

2.2 Przydatne repozytoria

Przykładowe implementacje MuZero:

- 1. https://github.com/johan-gras/MuZero
- 2. https://github.com/opendilab/LightZero
- 3. https://github.com/werner-duvaud/muzero-general

Środowiska:

- 1. https://github.com/Farama-Foundation/Arcade-Learning-Environment
- 2. https://paperswithcode.com/dataset/dqn-replay-dataset
- 3. https://github.com/clvrai/awesome-rl-envs
- 4. https://github.com/Farama-Foundation/ViZDoom

2.3 Framework

Do powtórzenia eksperymentu będziemy korzystać z

- 1. pytorch
- 2. opency
- 3. numpy
- 4. ray

2.4 Co będzie przedmiotem eksperymentu

Przeprowadzenie testów na

- 1. test na prostych środowiskach (cartpole, gridworld),
- 2. test na atari (atlantis, bowling, breakout, crazy climber, pacman, pong),
- 3. test na doom'ie.

2.5 Metryki i baseline

Wyuczenie agentów do poziomu przeciętnego człowieka, który grał parę godzin w grę.

Game	пишап
Atlantis	29028.13
Bowling	160.73
Breakout	30.47
Crazy climber	35829.41
Pacman	6951.60
Pong	14.59

2.6 Sprzęt użyty w testach

Do testów wykorzystano 2 rodzaje komputerów:

- 1. Intel if 13700k + 32GB ram + Nvidia RTX 4070 Ti,
- 2. Intel i5 4590 + 32GB ram.

2.7 Podział zadań

- 1. Marek pisanie dokumentacji + trening/testy + integracja z grami
- 2. Paulina implementacja modelu i pierwsze testy + wsparcie

3 Napotkane problemy

Podczas tworzenia sieci i przeprowadzania testów natrafiono na szereg problemów:

- 1. posiadanie nie zawsze spójnego środowiska,
- 2. Wyłączenie maszyn w losowym momencie,
- 3. Przygotowanie odpowiedniego zestawu pakietów pythonowych, aby środowisko mogło być automatyczne budowane.
- 4. Brak wymaganych bibliotek systemowych i brak odzewu w tej sprawie od zarządzających maszynami.
- Częste przepełnienie ramu, brak możliwości puszczenia tego na odpowiednio mocnym sprzęcie
 mocno ogranicza to model i wpływa na jego wyniki.
- 6. Nawet przy próbie pracy z tymi ograniczeniami, czasem model zapisywał się z błędem.

4 Wyniki

Zapis rozgrywek można obejrzeć w załączonym pliku zip z filmami.

4.1 Cartpole

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.2 Gridworld

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.3 Breakout

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.4 Breakout 5M

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.5 Breakout GPU

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.6 Atlantis

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.7 Bowling

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.8 Crazy climber

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.9 Pacman

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.10 Pong

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

4.11 Doom

1.Total_reward/1.Total_reward tag: 1.Total_reward/1.Total_reward

1.Total_reward/3.Episode_length tag: 1.Total_reward/3.Episode_length

2.Workers/1.Self_played_games tag: 2.Workers/1.Self_played_games

5 Podsumowanie

Mimo że sam pomysł muzero ma bardzo duży potencjał, badaczom nie udało się go w pełni odtworzyć. Większość problemów napotkanych w odtwarzaniu można przypisać niedoborom sprzętowym towarzyszącym podczas prób uczenia. Widać jednak, że metoda ta ma zastosowanie, chociażby w cartpole, czy gridworld, które aż tak dużych wymagań co do danych nie miały. Najbardziej obiecującą okazały się gry crazy climber i atlantis, gdzie agenci wykazywali się pewną inteligencją w ruchach.