# Project 6: Time Series Forecasting

# Import Data

## Import

```
# Import data
ms <- read.csv('data/monthly-sales-clean.csv')</pre>
```

#### Convert Data to Time Series

```
# Load dependencies
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
\# Convert bookings_df to time series object
ts_train <- ts(ms$monthly_sales, start=c(2008, 1), end=c(2013, 5), frequency=12)
ts_full <- ts(ms$monthly_sales, start=c(2008, 1), end=c(2013, 9), frequency=12)
plot(ts_full)
```



# **Determine ETS Components**

```
# Fit time series decomposition
fit <- stl(ts_train, s.window='period')</pre>
# Plot
plot(fit)
      1e+05 5e+05
data
remainder trend seasonal
                                                                                                                        -150000 100000
      150000 350000
                                                                                                                        -50000
             2008
                               2009
                                                 2010
                                                                    2011
                                                                                      2012
                                                                                                         2013
                                                             time
                                                                                                                           As the above
```

time series decomposition plot shows, the time series displays:

Error: Multiplicative Trend: Additive

• Seasonality: Multiplicative

## ETS Model

## **Build Model**

#### Manual ETS Model

```
# Load dependencies
library(forecast)

# Holt-Winters Seasonal Model
fit_ets_manual <- ets(ts_train, model='MAM')
plot(forecast(fit_ets_manual))</pre>
```

# Forecasts from ETS(M,Ad,M)



### **Automated ETS Model**

```
# ETS Model with train dataset
fit_ets_auto <- ets(ts_train)
plot(forecast(fit_ets_auto))</pre>
```

# Forecasts from ETS(M,Ad,M)



# Forecast/Test Accuracy

## Manual ETS Model

```
# fit_ets is the model prediction
# ts is the actual time series object
accuracy(forecast(fit_ets_manual, 4), ts_full[66:69])
                              RMSE
                                        MAE
                                                  MPE
                                                           MAPE
                                                                      MASE
                  3243.47 31474.37 24188.22 -0.572395 10.305204 0.4019854
## Training set
## Test set
                -33469.61 53828.48 41542.76 -6.347585 9.326605 0.6904015
                       ACF1
##
## Training set 0.008740233
## Test set
# Plot accuracy
# Fitted in Red
plot(fit_ets_manual$fitted, col='red')
# Actual in Blue
lines(ts_full, col='blue')
```



#### **Automated ETS Model**

```
\# fit_ets is the model prediction
# ts is the actual time series object
accuracy(forecast(fit_ets_auto, 4), ts_full[66:69])
##
                       ME
                              RMSE
                                        MAE
                                                   MPE
                                                            MAPE
                                                                      MASE
                  3243.47 31474.37 24188.22 -0.572395 10.305204 0.4019854
## Training set
                -33469.61 53828.48 41542.76 -6.347585 9.326605 0.6904015
## Test set
##
                       ACF1
## Training set 0.008740233
## Test set
# Plot accuracy
# Fitted in Red
plot(fit_ets_auto$fitted, col='red')
# Actual in Blue
lines(ts_full, col='blue')
```



the manual and automated ets model, yield an MAPE of 9.326605%.

# ARIMA Model

## Build Model

Manual ARIMA Model

### Stationarize Dataset

Plot the data to check if stationary

# Plot data to check if constant mean/variance
plot(ts\_train)



data is not stationary and is seasonal, so let's seasonally stationarize the data.

```
# First Seasonal Difference
ms$first_difference <- c(rep(NA,12), diff(ms$monthly_sales, lag=12))</pre>
```

Plot the data again, to check if stationary

```
# Make first_difference time series
ts_fd <- ts(ms$first_difference, start=c(2008, 1), end=c(2013, 5), frequency=12)
# Plot first_difference
plot(ts_fd)</pre>
```



The

first\_difference does not appear seasonal, but is still not stationary. Let's take a second, non-seasonal difference.

```
# Second, non-seasonal difference
ms$second_difference <- c(NA, diff(ms$first_difference, lag=1))</pre>
```

Plot the data again, to check if stationary

```
# Make first_difference time series
ts_sd <- ts(ms$second_difference, start=c(2008, 1), end=c(2013, 5), frequency=12)
# Plot first_difference
plot(ts_sd)</pre>
```



the time series displays a constant mean and variance, without any seasonality.

The model structure thus far, after taking a seasonal (D=1) difference and non-seasonal difference (d=1) to stationarize the data, with a period of 12 is: - ARIMA(0,1,0)(0,1,0)[12]

Now,

### AR and MA Terms

### **ACF Plot**

```
# Plot the ACF of second_difference
ggAcf(ms$second_difference[1:65], lag.max=48)
```

# Series: ms\$second\_difference[1:65]



##### PACF Plot

# Plot the PACF of second\_difference
ggPacf(ms\$second\_difference[1:65], lag.max=48)



The ACF and PACF have negative values at lag 1, suggesting a non-seasonal MA Term, signified as q=1. The ACF and PACF show little AC and PAC at the first seasonal lag, lag 12, suggesting Q=0.

Lag

Thus, the model structure after taking a non-seasonal MA Term (q=1) is: - ARIMA(0,1,1)(0,1,0)[12]

## **Build Model**

```
# ARIMA Model
fit_arima_manual <- Arima(ts_train, order=c(0,1,1), seasonal=c(0,1,0))
plot(forecast(fit_arima_manual))</pre>
```

# Forecasts from ARIMA(0,1,1)(0,1,0)[12]



#### Automated ARIMA Model

```
# Build Auto Arima Model
fit_arima_auto <- auto.arima(ts_train)</pre>
fit_arima_auto
## Series: ts_train
## ARIMA(0,1,1)(0,1,0)[12]
##
## Coefficients:
##
         -0.3780
## s.e.
          0.1462
##
## sigma^2 estimated as 1.722e+09: log likelihood=-626.3
               AICc=1256.84
## AIC=1256.6
                               BIC=1260.5
```

## Forecast/Test Accuracy

### Manual ARIMA Model

```
## Test set NA

# Plot accuracy
# Fitted in Blue
plot(forecast(fit_arima_manual))
# Actual in Red
lines(ts_full, col='red')
```

# Forecasts from ARIMA(0,1,1)(0,1,0)[12]



# Forecasts from ARIMA(0,1,1)(0,1,0)[12]



# Choose Best Model

The Holt-Winters Seasonal model yields the highest accuracy.

# Build ARIMA Model

Build the Holt-Winters Seasonal Model with all data.

```
# Holt-Winters Seasonal Model with all data
fit_bm <- ets(ts_full, model='MAM')
plot(forecast(fit_bm))</pre>
```

# Forecasts from ETS(M,A,M)



The forecasts for the next 4 periods are: - Oct 2013: \$747,868 - Nov 2013: \$805,244 - Dec 2013: \$578,736 - Jan 2014: \$573,014 It is odd that December and January forecasts are lower than October and November forecasts, but upon checking the data, this is consistent with previous patterns.

## Conclusions

## Step 1: Plan Your Analysis

### Time Series Criteria

The dataset meets the time series dataset criteria because: - the data is continuous, with monthly sales values from January 2008 to September 2013 - the values are ordered - the values are equally spaced a month apart - there is only one value per each month ### Holdout Sample Because we are attempting to predict four months in the future, we should use monthly sales for the most recent four months as the holdout sample.

## Step 2: Determine Trend, Seasonal, and Error Components

Per the time series decomposition graph below:

Error: MultiplicativeTrend: Additive

### • Seasonality: Multiplicative



Step 3: Build Your Models

### ETS Model

#### **Model Terms**

Per the time series decomposition graph, the model terms for ETS are additive error, additive trend, and additive seasonality: - ETS(M,A,M) #### In-Sample Error Per the table of errors below: - Root Mean Square Error (RMSE) is 31,474.37 - Mean Absolute Scaled Error (MASE) is 0.3528697 - Mean Absolute Percentage Error (MAPE) is 10.3052

```
## ME RMSE MAE MPE MAPE MASE
## Training set 3243.47 31474.37 24188.22 -0.572395 10.3052 0.3528697
## ACF1
## Training set 0.008740233
```

### **ARIMA Model**

#### **Model Terms**

### Differencing the Dataset

Per the ACF and PACF graphs of time series data below, the large auto-correlations and partial auto-correlations suggest the data must be differenced both seasonally and non-seasonally, signified as d=1 for non-seasonal differencing and D=1 for seasonal differencing.





# ACF Graph

# Series: ts\_train



PACF Graph

## AR and MA Terms

Per the ACF and PACF graphs of stationary data below:

- The ACF and PACF have negative values at lag 1, suggesting a non-seasonal MA Term, signified as q=1.
- The ACF and PACF show little AC and PAC at the first seasonal lag, lag 12, suggesting no seasonal AR or MA Terms, signified as Q=0.







 ${\bf PACF\;Graph}$ 

Thus, the model structure is:

• ARIMA(0,1,1)(0,1,0)[12]

#### **In-Sample Error**

Per the table of errors below:

- Root Mean Square Error (RMSE) is 36,761.53
- Mean Absolute Scaled Error (MASE) is 0.3646109
- Mean Absolute Percentage Error (MAPE) is 9.824411

```
## ME RMSE MAE MPE MAPE MASE
## Training set -356.2665 36761.53 24993.04 -1.802137 9.824411 0.3646109
## ACF1
## Training set 0.01641446
```

## Step 4:

#### Choose Best Model

Per the table's of ETS and ARIMA Holdout Sample Error below, the ARIMA Model displays a lower MAPE and MASE. As such, the ARIMA Model was used to forecast the next four months of video game sales.

ETS Holdout Sample Error

## ME RMSE MAE MPE MAPE MASE ## Training set 3243.47 31474.37 24188.22 -0.572395 10.305204 0.4019854

```
## Test set
                -33469.61 53828.48 41542.76 -6.347585 9.326605 0.6904015
##
                       ACF1
## Training set 0.008740233
## Test set
                         NA
ARIMA Holdout Sample Error
                        ME
                               RMSE
                                         MAE
                                                   MPE
                                                           MAPE
                                                                      MASE
## Training set -356.2665 36761.53 24993.04 -1.802137 9.824411 0.4153609
## Test set
                27271.5199 33999.79 27271.52 6.183294 6.183294 0.4532270
##
                      ACF1
## Training set 0.01641446
## Test set
                        NA
```

### Forecast Results

Per the table below, the forecasted monthly video game sales for the next four months are:

Oct 2013: \$747,868
Nov 2013: \$805,244
Dec 2013: \$578,736
Jan 2014: \$573,014

```
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Oct 2013 747868.1 608137.7 887598.4 534168.9 961567.2
## Nov 2013 805244.4 623012.4 987476.3 526544.7 1083944.1
## Dec 2013 578735.9 428216.8 729255.0 348536.8 808935.0
## Jan 2014 573014.4 406742.6 739286.3 318723.6 827305.3
```