Feuille d'exercices n°1 (et 2 aussi en fait)

1 Généralités

Exercice 1 #: questions diverses

- 1. Soient X un ensemble fini et \mathcal{T} une topologie séparée sur X. Que peut-on dire de \mathcal{T} ?
- 2. Soient (X, d) et (Y, δ) deux espaces métriques. Existe-t-il nécessairement une distance D sur $X \sqcup Y$ telle que la distance induite par D sur X soit d et la distance induite par D sur X soit d?
- 3. Montrer qu'une union infinie (même dénombrable) de fermés peut ne pas être fermée.
- 4. Soient A, B deux parties d'un espace topologique X. Quelles relations a-t-on entre :

$$\overline{A \cup B}$$
 et $\overline{A} \cup \overline{B}$? $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$? $\widehat{A \cup B}$ et $\mathring{A} \cup \mathring{B}$? $\widehat{A \cap B}$ et $\mathring{A} \cap \mathring{B}$?

- 5. Une topologie est-elle séparée si et seulement si les singletons sont fermés?
- 6. (**) Trouver une topologie sur N qui n'admette pas de base d'ouverts dénombrable.

Exercice 2 #: Topologie produit

Soit (X_i) une famille d'espaces topologiques. On appelle la topologie produit sur $\prod X_i$ la topologie engendrée par les parties de la forme

$$U = \prod U_i$$

où U_i est un ouvert de X_i et $U_i = X_i$ pour presque tout i. Cest à dire la topologie dont les ouverts sont réunions de parties de cette forme.

- 1. Montrer qu'il s'agit bien là d'une topologie.
- 2. Montrer que les suites convergentes pour cette topologie sont celles qui convergent simplement.
- 3. Montrer que si X et Y sont deux espaces métriques, la topologie produit sur $X\times Y$ est engendrée par la distance

$$d((x,y),(x',y')) := \max((d_X(x,x'),d_Y(y,y')).$$

4. Soit $(X_i)_{i\in I}$ une famille d'espaces topologiques, avec I infini. On note $Y=\prod_{i\in I}X_i$ et on munit cet ensemble de la topologie produit. Pour tout $i\in I$, soit $E_i\subset X_i$. Les égalités suivantes

sont-elles nécessairement vraies?

$$\overline{\prod_{i \in I} E_i} = \prod_{i \in I} \overline{E}_i \qquad \qquad \widehat{\prod_{i \in I} E_i} = \prod_{i \in I} \mathring{E}_i$$

- 5. (*) Montrer que la topologie produit est la moins fine des topologies rendant les projections continues.
- 6. (*) Si (X_n) est une suite d'espaces métriques telle que les distances sont bornées par 1, montrer que

$$d(x,y) := \sum_{n=0}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$$

définit une distance qui engendre la topologie produit sur $\prod X_n$.

Exercice 3 2: topologie et voisinages

- 1. Soit X un espace topologique. On rappelle qu'un voisinage de x est un ensemble contenant un ouvert contenant x. Pour tout x dans X, on note $\mathcal{V}(x)$ l'ensemble des voisinages de x. Montrer que les propriétés suivantes sont satisfaites :
 - Toute partie de X contenant un ensemble de $\mathcal{V}(x)$ appartient à $\mathcal{V}(x)$.
 - Toute intersection finie d'ensembles de $\mathcal{V}(x)$ appartient à $\mathcal{V}(x)$.
 - Le point x appartient à tout ensemble de $\mathcal{V}(x)$.
 - Si V appartient à $\mathcal{V}(x)$, il existe un ensemble W dans $\mathcal{V}(x)$ tel que, pour tout y dans W, V appartienne à $\mathcal{V}(y)$.
- 2. Réciproquement, si X est un ensemble et si l'on se donne, pour tout x dans X, un sousensemble non vide $\mathcal{V}(x)$ des parties de X tel que les quatre axiomes précédents soient vérifiés, montrer qu'il existe une unique topologie sur X pour laquelle $\mathcal{V}(x)$ est l'ensemble des voisinages du point x.

2 Bestiaire Métrique

Exercice 4 \mathscr{U} : espaces l^p , $1 \le p < \infty$.

Pour tout $p \in [1, +\infty[$, on note :

$$l^p = \left\{ (u_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \sum_{k=0}^{+\infty} |u_k|^p < +\infty \right\},\,$$

et pour toute suite $u \in l^p$, on définit $||u||_p = \left(\sum_{k=0}^{+\infty} |u_k|^p\right)^{1/p}$.

- 1. Vérifier que $(l^1, \|\cdot\|_1)$ est un espace vectoriel normé.
- 2. Le but est maintenant de montrer que, plus généralement, $(l^p, \|\cdot\|_p)$ est un espace vectoriel normé pour tout $p \in [1, +\infty[$.

a) Montrer que pour tous a,b>0 et tous $p,q\in]1,+\infty[$ tels que $\frac{1}{p}+\frac{1}{q}=1$, on a

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

b) [Inégalité de Hölder] En déduire que pour $u \in l^p$ et $v \in l^q$ (avec $\frac{1}{p} + \frac{1}{q} = 1$), on a

$$\sum_{k=0}^{+\infty} |u_k v_k| \le ||u||_p ||v||_q.$$

c) En déduire l'inégalité triangulaire pour $\|\cdot\|_p$. Conclure. [Indication : On pourra penser à écrire la majoration $|u_k + v_k|^p \le (|u_k| + |v_k|)|u_k + v_k|^{p-1}$.]

Exercice 5 $\mathscr{M} \mathscr{M}$: Distance ultramétrique Si \mathbb{K} est un corps, on considère l'anneau des séries formelles $\mathbb{K}[[X]]$, c'est à dire l'ensemble des suites muni du produit de convolution. On rappelle que $\mathbb{K}[X]$ en est un sous-anneau. Pour $a=(a_k)_{k\geq 0}$ une série formelle on note $\nu(a)$ le plus petit entier k tel que $a_k\neq 0$ appelé également valuation de a. On pose ensuite

$$d(a,b) := e^{-\nu(a-b)}.$$

1. Montrer que d est une distance sur $\mathbb{K}[[X]]$ qui vérifie l'inégalité ultramétrique :

$$\forall a, b, c : d(a, c) \le \max (d(a, b), d(b, c)).$$

2. Montrer que $\mathbb{K}[X]$ est dense dans $\mathbb{K}[[X]]$ pour cette topologie et justifier l'écriture

$$a = \sum_{0}^{\infty} a_k X^k.$$

3. (**) Soit p un nombre premier. Faire une brève remarque si l'on considère maintenant \mathbb{Z} muni de la distance $d(x,y)=e^{-\nu_p(x-y)}$ et constater la densité de \mathbb{N} . Les complétions de \mathbb{Z} et \mathbb{Q} pour cette distance sont respectivement les anneaux et corps des p-adiques.

Exercice 6 MMM: distance de Hausdorff sur l'ensemble des compacts de \mathbb{R}^n Soit n un entier ≥ 1 . On note d la distance euclidienne usuelle sur \mathbb{R}^n . On note K l'ensemble des parties compactes non vides de \mathbb{R}^n . Étant donné un compact $K \in K$, on note $\phi_K : \mathbb{R}^n \to [0, +\infty[$ la fonction « distance à K » définie par :

$$\phi_K(y) = \inf_{x \in K} d(x, y).$$

Étant donnés deux éléments K_1, K_2 de \mathcal{K} , on note :

$$\delta(K_1, K_2) = \|\phi_{K_1} - \phi_{K_2}\|_{\infty}.$$

1. Montrer que δ définit une distance sur \mathcal{K} . C'est la distance de Hausdorff.

Est-il vrai que δ définit également une distance sur l'ensemble des parties bornées non-vides de \mathbb{R}^n ?

2. Pour tout compact $K \in \mathcal{K}$ et tout réel $\epsilon > 0$, on note

$$V_{\epsilon}(K) = \bigcup_{x \in K} \overline{B(x, \epsilon)},$$

où $B(x,\epsilon)$ désigne la boule ouverte de centre x et de rayon ϵ dans (\mathbb{R}^n,d) . Montrer que, étant donnés deux compacts $K_1, K_2 \in \mathcal{K}$, on a $\delta(K_1, K_2) \leq \epsilon$ si et seulement si $K_1 \subset V_{\epsilon}(K_2)$ et $K_2 \subset V_{\epsilon}(K_1)$.

3. Soit \mathcal{K}_0 le sous-ensemble de \mathcal{K} constitué des parties finies de \mathbb{R}^n . Montrer que \mathcal{K}_0 est dense dans (\mathcal{K}, δ) .

3 Topologies pas forcément métriques

Exercice 7 #: topologie cofinie

Soit X un ensemble infini. On note \mathcal{C}_0 l'ensemble des parties de X de complémentaire fini : $C \in \mathcal{C}_0$ si et seulement si X - C est fini. Soit \mathcal{C} la réunion de \mathcal{C}_0 et de l'ensemble vide.

- 1. a) Montrer que \mathcal{C} est une topologie sur X.
- b) Cette topologie est-elle séparée? faiblement séparée?
- 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de X telle que, pour tout $y\in X$, $\{n\ \mathrm{tq}\ x_n=y\}$ est fini. Montrer que, pour tout $z\in X,\ x_n\to z$.
- 3. Soit Y un espace topologique séparé. Décrire l'ensemble des fonctions continues $f: X \to Y$.

Exercice 8 ##: topologie de Zariski

Soit k un corps et n un entier ≥ 1 . Si I est un ensemble d'indices et si $(P_i)_{i\in I}$ est une famille de polynômes dans $k[x_1,\ldots,x_n]$, on note

$$V((P_i)_{i \in I}) := \{ x \in k^n \mid \forall i \in I, P_i(x) = 0 \}.$$

- 1. Montrer que les ensembles $V((P_i)_{i\in I})$ sont les fermés d'une topologie (appelée topologie de Zariski) sur k^n .
- 2. Identifier cette topologie pour n = 1.
- 3. Comparer la topologie de Zariski et la topologie produit sur $k^2 = k \times k$, k étant muni de la topologie de Zariski.
- 4. On suppose k infini. Montrer que tout ouvert non vide de k^n est dense. Plus généralement, si F est un fermé de k^n , muni de sa topologie induite, tout ouvert de F est-il nécessairement dense?

Exercice 9 ////: topologie de la convergence simple

Soit $E = [0;1]^{[0;1]}$ (c'est-à-dire l'ensemble des fonctions $f:[0;1] \to [0;1]$). On munit cet espace de la topologie produit.

- 1. Montrer qu'une suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de E converge pour la topologie produit si et seulement si elle converge simplement (au sens de la convergence simple usuelle des fonctions).
- 2. On note F le sous-ensemble de E constitué des fonctions continues par morceaux et muni de la topologie induite par celle de E.

Soit $I: F \to \mathbb{R}$ l'application suivante :

$$I(f) = \int_0^1 f(t)dt$$

- a) Montrer que, si $(f_n)_{n\in\mathbb{N}}$ converge dans F vers une fonction f_∞ , alors $I(f_n)\to I(f_\infty)$.
- b) Montrer que I n'est pas continue en la fonction nulle.
- 3. Montrer que E n'est pas métrisable.

Exercice 10 /// : topologie boîte, ou l'autre topologie produit ...

On munit $\mathbb{R}^{\mathbb{N}}$ de la topologie dont une base est donnée par les ensembles produits de la forme $\prod_{k=0}^{+\infty} U_k$, où les U_k sont des ouverts de \mathbb{R} .

- 1. Montrer que $u^{(k)} \longrightarrow u^{\infty}$ (attention c'est une suite de suites qui converge vers une suite) si et seulement si on a la convergence simple et l'existence d'un rang à partir duquel les suites de la suite ne diffèrent de la limite qu'en dehors d'un ensemble fini d'indices indépendant de celles-ci.
- 2. On définit la suite δ^n de terme général $\delta^n_k = \left\{ \begin{array}{ll} 1 & \text{si } k=n, \\ 0 & \text{sinon} \end{array} \right.$. Considérons l'ensemble :

$$E = \left\{ \frac{1}{n} \delta^0 + x \delta^n, \ n \in \mathbb{N}^*, x \in \mathbb{R}^* \right\}.$$

- a) Montrer que $0 \in \overline{E}$, mais qu'aucune suite de E ne converge vers 0.
- b) En déduire que cette topologie n'est pas métrisable.

4 Inclassables

Exercice 11 #: sur l'infinité des nombres premiers

On munit \mathbb{Z} de la topologie où un voisinage d'un point $n \in \mathbb{Z}$ est un ensemble qui contient une progression arithmétique centrée sur ce point. En d'autre termes,

$$V \in \mathcal{V}(n) \iff \exists a \in \mathbb{N}^* \ n + a\mathbb{Z} \subset V.$$

- 1. Montrer qu'il s'agit bien d'une topologie. Il s'agit en fait de la topologie engendrée par les progressions arithmétiques.
- 2. Montrer que les $n + a\mathbb{Z}$ sont ouverts et fermés.
- 3. En raisonnant par l'absurde, montrer qu'il existe une infinité de nombres premiers.

Exercice 12 ${\mathscr {II}}$: théorème de plongement d'Arens-Fells

Soit (X, d) un espace métrique.

On va montrer qu'il existe (V, N) un \mathbb{R} -espace vectoriel normé et $F \subset V$ un fermé de V tel que (X, d) et (F, N) sont isométriques.

- 1. Montrer que la fonction $\varphi_a: x \longmapsto (y \mapsto d(y,x) d(y,a)) \in L^{\infty} \cap \mathcal{C}^0(X)$ convient si l'on ne veut pas que l'image soit fermée.
- 2. On note \mathcal{F} l'ensemble des parties finies non vides de X et $\mathcal{B}(\mathcal{F})$ l'espace vectoriel des fonctions bornées de \mathcal{F} dans \mathbb{R} , muni de la norme uniforme. On fixe un point $a \in X$, et, pour chaque $x \in X$, on définit :

$$f_x: A \in \mathcal{F} \mapsto d(x, A) - d(a, A).$$

- a) Montrer que, pour tout $x, f_x \in \mathcal{B}(\mathcal{F})$.
- b) Montrer que l'application $x \to f_x$ est une isométrie.
- c) En déduire le résultat voulu.
- 3. Montrer qu'en revanche, il existe des espaces métriques qui ne sont isométriques à aucun sous-ensemble d'un espace préhilbertien (c'est-à-dire un espace vectoriel normé dont la norme provient d'un produit scalaire).

Exercice 13 // // : sur les intérieurs et adhérences

Soit X un espace topologique (par exemple \mathbb{R}) et $A \subset X$. Quelles relations a-t-on entre $A, \mathring{A}, \overline{A}, \dots$?

Exercice 14 ///: Un exercice Picard (Une fois vu la complétude)

- 1. Montrer le petit théorème de Picard : si X est un espace métrique complet et f une application k-contractante, elle admet un unique point fixe.
- 2. On considère de nouveau l'espace des compacts muni de la distance de Hausdorff. Soit f_1, \ldots, f_p des k-contractions de X. On pose alors, pour $K \subset X$ un compact, $T(X) := \bigcup_{1}^{p} f_i(K)$. Montrer qu'il existe un unique compact K tel que T(K) = K.
- 3. Retrouver l'ensemble de Cantor de cette manière pour des fonctions f_1 et f_2 bien choisies.

Exercice 15 ##: Cantor-Bernstein topologique

On va dans cet exercice dé-montrer le théorème de Cantor-Berstein topologique : si X et Y sont deux espaces topologiques tels qu'il existe une injection continue de X dans Y et une injection continue de Y dans X, alors X et Y sont homéomorphes.

Pour une version sans spoiler, passer directement à la dernière question.

- 1. Montrer qu'il existe une bijection continue entre $]0;1]\cup]2;3[$ et]0;2[.
- 2. Montrer qu'il existe une bijection continue entre]0;1[\cup {2} et]0;1].
- 3. Montrer qu'il existe des bijections continues entre les ensembles

$$X:=\bigcup_{n\in \mathbb{N}^*}]3n; 3n+1[\cup \{3n+2\} \text{ et } Y:=X\cup]0;1].$$

4. Conclure.