

Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur

Bases de Datos

Segundo Cuatrimestre de 2017

Trabajo Práctico Nº 9

Sistemas de bases de datos distribuidos

Ejercicios

- 1. Explique las ventajas y desventajas de contar con un sistema de bases de datos distribuido.
- 2. Dadas las siguientes situaciones, determine en cada caso si conviene tener repetición de datos, fragmentación horizontal, fragmentación vertical o alguna combinación de ellas:
 - a) La base de datos de un buscador como *Yahoo!* o *Google*. El requerimiento principal es el servicio ininterrumpido, de manera que las fallas en el sistema sean transparentes a los usuarios conectados.
 - b) La base de datos de un supermercado con varias sucursales. El requerimiento principal es agilizar las consultas sobre la tabla

stock(articulo_codigo, articulo_cantidad, sucursal_codigo)

teniendo en cuenta que la mayoría de las consultas son locales a cada sucursal.

- 3. Analice las siguientes afirmaciones acerca del manejo de información utilizando bases de datos distribuidas:
 - a) Existe una mejor utilización de los datos: los datos pueden compartirse y el control de los mismos distribuirse entre los distintas sitios.
 - b) Los sistemas distribuidos son más confiables.
 - c) El procesamiento de las consultas se ve agilizado.
 - d) Aumentan las dificultades de comunicación.
- 4. Considere el siguiente escenario en un sistema distribuido: Hay cuatro sitios S_1 , S_2 , S_3 y S_4 conectados en red. Del ítem de dato B se tiene una copia en S_1 , S_2 y S_3 . Suponga que una transaccion T_1 está ejecutándose en el sitio S_1 . Para los protocolos ROWA, Mayoría y 2-de-3 indique:
 - a) Sobre cuantas copias debe obtener un bloqueo la transaccion T_1 , para obtener:
 - 1) un bloqueo exclusivo sobre el ítem de dato B.
 - 2) un bloqueo compartido sobre el ítem de dato B.
 - b) Cual es la cantidad mínima (mejor caso) de mensajes de control que se necesitan, (considerando que no es necesario enviar mensajes de un sitio a si mismo) para que la transacción T_1 obtenga:
 - 1) un bloqueo exclusivo sobre el ítem de dato B.
 - 2) un bloqueo compartido sobre el ítem de dato B.

- 5. Considere el escenario planteado en el ejercicio 4.
 - a) Siguiendo el protocolo de *sitio primario* y siendo S_2 el sitio primario para el ítem de dato B, indique cuantos mensajes de control se necesitan para que la transacción T_1 obtenga:
 - 1) un bloqueo exclusivo sobre el ítem de dato B.
 - 2) un bloqueo compartido sobre el ítem de dato B.
 - b) Suponga que los sitios S_3 y S_4 poseen un read-token para el dato B. Siguiendo el protocolo de tokens de copia primaria, indique cual es la cantidad mínima de mensajes de control que se necesitan para que la transacción T_1 obtenga:
 - 1) un bloqueo exclusivo sobre el ítem de dato B.
 - 2) un bloqueo compartido sobre el ítem de dato B.
 - c) Siguiendo el protocolo de nodo central y siendo S_4 el nodo encargado de conceder los bloqueos, indique cual es la cantidad de mensajes de control que se necesitan para que la transacción T_1 obtenga:
 - 1) un bloqueo exclusivo sobre el ítem de dato B.
 - 2) un bloqueo compartido sobre el ítem de dato B.
- 6. Considere el siguiente escenario en un sistema distribuido: Hay seis sitios S_1 , S_2 , S_3 , S_4 , S_5 y S_6 conectados en red. Del ítem de dato A existen 5 copias: A_1 ubicada en S_1 , A_2 en S_2 , A_3 en S_3 , A_4 en S_4 y A_5 en S_5 . Cuatro transacciones T1, T2, T3 y T6 están ejecutándose en S_1 , S_2 , S_3 y S_6 respectivamente.

Complete la siguiente tabla indicando si es posible que las situaciones planteadas ocurran en cada uno de los protocolos. Justifique adecuadamente las respuestas dadas.

Observación: recuerde la diferencia que existe entre una copia del dato y el item de dato. Para obtener un bloqueo sobre una copia, alcanza con que esa copia no este bloqueada en un modo incompatible. Para obtener un bloqueo sobre el item de dato A, es necesario obtener un bloqueo sobre una cantidad de copias de A, que varia según en protocolo utilizado. Considere además que un sitio caído no puede enviar ni recibir mensajes.

Situación	Rowa	Mayoría	4 de 5
T2 y T3 obtuvieron un R-lock sobre el ítem de dato A y			
T1 obtuvo un W-lock sobre tres copias del dato A.			
T2 obtuvo un W-lock sobre el ítem de dato A y			
T1 obtuvo un R-lock sobre una copia del dato A.			
T1 obtuvo un W-lock sobre el ítem de dato A			
mientras 2 sitios estaban caídos			
Deadlock entre las transacciones T1 y T2			

- 7. Considere el siguiente escenario planteado en el ejercicio 6. Indique si las siguientes situaciones pueden ocurrir en los protocolos mencionados justificando su respuesta.
 - El nodo central es S_6 : T1 obtiene un R-lock sobre el item de dato A mientras 4 sitios están caídos.
 - El nodo central es S₆: T1 obtiene un W-lock sobre el item de dato A mientras 4 sitios están caídos
 - El sitio primario de A es S_1 : T1 obtiene un R-lock sobre el item de dato A mientras 5 sitios están caídos

- El sitio primario de A es S_1 : T1 obtiene un W-lock sobre el item de dato A mientras 5 sitios están caídos
- Tokens de copia primaria: T_2 logrará obtener un R-lock sobre el item de dato A mientras 3 sitios están caídos y S_1 posee un Write-Token de A que esta dispuesto a conceder.
- Tokens de copia primaria: T_1 logrará obtener un W-lock sobre el item de dato A mientras el sitio S_6 está caído y S_2 posee un Read-Token de A que esta dispuesto a conceder.
- 8. Analice la siguiente afirmación: "Que las planificaciones locales para las transacciones que se ejecutan en una localidad sean localmente serializables no garantiza que las planificaciones globales sean serializables".