1. (a) Relational Algebra

1. Find the titles of the Novel books which use Chinese as the language.

$$\pi_{title}\Big(\sigma_{genre=\prime\prime Novel\prime\prime \wedge language=\prime\prime Chinese\prime\prime}(Book)\Big)$$

2. Retrieve the names of female customers who have borrowed Novel books and are due for return on 01-01-2025.

```
\pi_{name}\Big(\sigma_{gender=\textit{"IMS."}}(Customer)\bowtie_{Customer.cID=Borrow.cID} \sigma_{dueDate=\textit{"IO}1-01-2025"}(Borrow)\bowtie_{Borrow.bID=Book.bID} \sigma_{genre=\textit{"INoveln}}(Book)\Big)
```

1. (b) SQL Queries

1. Display the distinct genres of books borrowed by Mr. customers whose ages are between 40 and 60.

```
SELECT DISTINCT B.genre

FROM Customer AS C

JOIN Borrow AS BR ON C.cID = BR.cID

JOIN Book AS B ON BR.bID = B.bID

WHERE C.gender = 'Mr.'

AND C.age BETWEEN 40 AND 60;
```

2. For each genre of books, display the genre and the average age of customers.

```
SELECT B.genre, AVG(C.age) AS avg_age

FROM Customer AS C

JOIN Borrow AS BR ON C.cID = BR.cID

JOIN Book AS B ON BR.bID = B.bID

GROUP BY B.genre;
```

2

Table 1: please fill your steps of finding your desired building into this table

Figure 1: (left) spatial building points and enclosing rectangles; (right) corresponding R-tree

Building	a	b	С	d	e	f	g	h	i	j ·
Rating	6	7	7	5	5	7	8	6	4	7

Table 2: ratings of the ten buildings

Node	Q	oNN	dist(q, oNN)
Root	M1(1), M2(2), M3(4)	null	inf
M1	$m2(\sqrt{2})$, $m1(2)$, $M2(2)$, $M3(4)$	null	inf
m2	m1(2), M2(2), M3(4)	b	$\sqrt{5}$
m1	M2(2), M3(4)	b	$\sqrt{5}$
M2	m3(2), m4(4), M3(4)	b	$\sqrt{5}$
m3	m4(4), M3(4)	f	2

Result

oNN = f

dist(q, oNN) = 2