Výroková a predikátová logika - II

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Jazyk

Výroková logika je *"logikou spojek"*. Vycházíme z (neprázdné) množiny \mathbb{P} *výrokových proměnných* (*prvovýroků*). Např.

$$\mathbb{P} = \{p, p_1, p_2, \dots, q, q_1, q_2, \dots\}$$

Obvykle budeme předpokládat, že Pje spočetná.

Jazyk výrokové logiky (nad ℙ) obsahuje symboly

- výrokové proměnné z P
- logické spojky ¬, ∧, ∨, →, ↔
- závorky (,)

Jazyk je tedy určen množinou \mathbb{P} . Říkáme, že logické spojky a závorky jsou *logické symboly*, zatímco výrokové proměnné jsou *mimologické symboly*.

Budeme používat i konstantní symboly \top (pravda), \bot (spor), jež zavedeme jako *zkratky* za $p \lor \neg p$, resp. $p \land \neg p$, kde p je pevný prvovýrok z \mathbb{P} .

Formule

$V\acute{y}rokov\acute{e}$ formule $(v\acute{y}roky)$ (nad \mathbb{P}) isou dány induktivním předpisem

- (i) každá výroková proměnná z ℙ je výrokovou formulí,
- (*ii*) jsou-li φ , ψ výrokové formule, pak rovněž

$$(\neg \varphi)$$
, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$

jsou výrokové formule,

- (iii) každá výroková formule vznikne konečným užitím pravidel (i), (ii).
- Výrokové formule jsou tedy (dobře vytvořené) konečné posloupnosti symbolů jazyka (řetězce).
- Výrokovou formuli, která je součástí jiné výrokové formule φ nazveme podformulí (podvýrokem) φ .
- Množinu všech výrokových formulí nad P značíme VF_B.
- Množinu všech výrokových proměnných s výskytem ve φ značíme $\overline{\text{var}(\varphi)}$.

Konvence zápisu

Zavedení (obvyklých) *priorit* logických spojek umožňuje v zkráceném zápisu vypouštět závorky okolo podvýroku vzniklého spojkou s vyšší prioritou.

- $(1) \rightarrow, \leftrightarrow$
- $(2) \wedge, \vee$
- (3)

Rovněž vnější závorky můžeme vynechat. Např.

$$(((\neg p) \land q) \to (\neg (p \lor (\neg q)))) \quad \text{lze zkrátit na} \quad \neg p \land q \to \neg (p \lor \neg q)$$

Poznámka Nerespektováním priorit může vzniknout nejednoznačný zápis nebo dokonce jednoznačný zápis neekvivalentní formule.

Další možnosti zjednodušení zápisu vyplývají ze sémantických vlastností spojek (asociativita \vee , \wedge).

Vytvořující strom

Vytvořující strom je konečný uspořádaný strom, jehož vrcholy jsou označeny výroky dle následujících pravidel

- listy (a jen listy) jsou označeny prvovýroky,
- je-li vrchol označen $(\neg \varphi)$, má jediného syna označeného φ ,
- je-li vrchol označen $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ nebo $(\varphi \leftrightarrow \psi)$, má dva syny, přičemž levý syn je označen φ a pravý je označen ψ .

Vytvořující strom výroku φ je vytvořující strom s kořenem označeným φ .

Tvrzení Každý výrok má jednoznačně určený vytvořující strom.

Důkaz Snadno indukcí dle počtu vnoření závorek (odpovídající hloubce vytvořujícího stromu). □

Poznámka Takovéto důkazy nazýváme důkazy indukcí dle struktury formule.

Sémantika

- Uvažujeme pouze dvouhodnotovou logiku.
- Prvovýroky reprezentují atomická tvrzení, jejich význam je určen přiřazením pravdivostní hodnoty 0 (nepravda) nebo 1 (pravda).
- Sémantika logických spojek je dána jejich pravdivostními tabulkami.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Ty jednoznačně určují hodnotu každého výroku z hodnot prvovýroků.

- K výrokům tedy můžeme také přiřadit "pravdivostní tabulky". Říkáme, že reprezentují Booleovské funkce (až na určení pořadí proměnných).
- Booleovská funkce je n-ární operace na $2 = \{0, 1\}$.

Hodnota výroku

- *Ohodnocení* prvovýroků je funkce $v \colon \mathbb{P} \to \{0,1\}$, tj. $v \in \mathbb{P}2$.
- Hodnota $\overline{v}(\varphi)$ výroku φ při ohodnocení v je dána induktivně

$$\begin{array}{ll} \overline{v}(p) = v(p) \ \ \text{jestliže} \ \ p \in \mathbb{P} & \overline{v}(\neg \varphi) = -_1(\overline{v}(\varphi)) \\ \overline{v}(\varphi \wedge \psi) = \wedge_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \vee \psi) = \vee_1(\overline{v}(\varphi), \overline{v}(\psi)) \\ \overline{v}(\varphi \rightarrow \psi) = \rightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) & \overline{v}(\varphi \leftrightarrow \psi) = \leftrightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) \end{array}$$

 $kde_{-1}, \wedge_1, \vee_1, \rightarrow_1, \leftrightarrow_1$ jsou Booleovské funkce dané tabulkami.

Tvrzení Hodnota výroku φ závisí pouze na ohodnocení $var(\varphi)$.

Důkaz Snadno indukcí dle struktury formule.

Poznámka Jelikož funkce \overline{v} : $\overline{VF}_{\mathbb{P}} \rightarrow 2$ je jednoznačnou extenzí funkce v, můžeme psát v místo \overline{v} aniž by došlo k nedorozumění.

Sémantické pojmy

Výrok φ nad $\mathbb P$ je

- splněn (platí) při ohodnocení $v \in \mathbb{P}^2$, pokud $\overline{v}(\varphi) = 1$. Pak v je splňující ohodnocení výroku φ , značíme $v \models \varphi$.
- $pravdiv\acute{y}$ ((logicky) plati, tautologie), pokud $\overline{v}(\varphi)=1$ pro každé $v\in \mathbb{Z}$, tj. φ je splněn při každém ohodnocení, značíme $\models \varphi$.
- $l\check{z}iv\acute{y}$ (sporn \acute{y}), pokud $\overline{v}(\varphi) = 0$ pro každé $v \in {\mathbb{P}}2$, tj. $\neg \varphi$ je pravdiv \acute{y} .
- nezávislý, pokud $\overline{v_1}(\varphi) = 0$ a $\overline{v_2}(\varphi) = 1$ pro nějaká $v_1, v_2 \in {}^{\mathbb{P}}2$, tj. φ není ani pravdivý ani lživý.
- *splnitelný*, pokud $\overline{v}(\varphi) = 1$ pro nějaké $v \in {}^{\mathbb{P}}2$, tj. φ není lživý.

Výroky φ a ψ jsou (logicky) *ekvivalentní*, psáno $\varphi \sim \psi$, pokud $\overline{\overline{v}}(\varphi) = \overline{\overline{v}}(\psi)$ pro každé $\overline{v} \in \mathbb{F}^2$, tj. výrok $\varphi \leftrightarrow \psi$ je pravdivý.

Modely

Předchozí definice ekvivalentně přeformulujeme v terminologii modelů.

Model jazyka nad Pje ohodnocení z 2. Třída všech modelů jazyka nad P se značí $M(\mathbb{P})$, tedy $M(\mathbb{P}) = \mathbb{P}2$. Výrok φ nad \mathbb{P} (je)

- platí v modelu $\overline{v} \in M(\mathbb{P})$, pokud $\overline{\overline{v}}(\varphi) = 1$. Pak v je model výroku φ , značíme $v \models \varphi$ a $M^{\mathbb{P}}(\varphi) = \{v \in M(\mathbb{P}) \mid v \models \varphi\}$ je třída modelů φ .
- pravdivý ((logicky) platí, tautologie), pokud platí v každém modelu (jazyka), značíme $\models \varphi$.
- Iživý (sporný), pokud nemá model.
- nezávislý, pokud platí v nějakém modelu a neplatí v jiném.
- splnitelný, pokud má model.

Výroky φ a ψ jsou (logicky) *ekvivalentní*, psáno $\varphi \sim \psi$, pokud mají stejné modely.

Univerzálnost spojek

Jazyk výrokové logiky obsahuje *základní* spojky \neg , \wedge , \vee , \rightarrow , \leftrightarrow . Můžeme zavést obecně n-ární spojku pro libovolnou Booleovu funkci. Např.

$$p\downarrow q$$
 "ani p ani q " (NOR, Peirceova spojka) $p\uparrow q$ "ne $(p\ a\ q)$ " (NAND, Shefferova spojka)

Množina spojek je *univerzální*, pokud lze každou Booleovskou funkci reprezentovat nějakým z nich (dobře) vytvořeným výrokem.

Tvrzení $\{\neg, \land, \lor\}$ je univerzální.

Důkaz Funkci
$$f \colon {}^{n}2 \to 2$$
 reprezentuje výrok $\bigvee_{v \in f^{-1}[1]} \bigwedge_{i=0}^{n-1} p_i^{v(i)}$, kde $p_i^{v(i)}$ je prvovýrok p_i pokud $v(i) = 1$, jinak výrok $\neg p_i$. Pro $f^{-1}[1] = \emptyset$ zvolíme \bot . \Box

Tvrzení $\{\neg, \rightarrow\}$ je univerzální.

$$\label{eq:discrete_def} \begin{array}{ll} \textit{Důkaz} \ (p \wedge q) \sim \neg (p \rightarrow \neg q), \ (p \vee q) \sim (\neg p \rightarrow q). \end{array} \quad \Box$$

CNF a DNF

- Literál je prvovýrok nebo jeho negace. Je-li p prvovýrok, označme p^0 literál $\neg p$ a p^1 literál p. Je-li l literál, označme \bar{l} literál opačný k l.
- Klauzule je disjunkce literálů, prázdnou klauzulí rozumíme ⊥.
- Výrok je v konjunktivně normálním tvaru (CNF), je-li konjunkcí klauzulí. Prázdným výrokem v CNF rozumíme ⊤.
- Elementární konjunkce je konjunkce literálů, prázdnou konjunkcí je ⊤.
- Výrok je v disjunktivně normálním tvaru (DNF), je-li disjunkcí elementárních konjunkcí. Prázdným výrokem v DNF rozumíme 1.

Poznámka Klauzule nebo elementární konjunkce je zároveň v CNF i DNF.

Pozorování Výrok v CNF je pravdivý, právě když každá jeho klauzule obsahuje dvojici opačných literálů. Výrok v DNF je splnitelný, právě když aspoň jedna jeho elementární konjunkce neobsahuje dvojici opačných literálů.

Převod tabulkou

Tvrzení Nechť $K \subseteq \mathbb{P}2$ pro \mathbb{P} konečné. Označme $\overline{K} = \mathbb{P}2 \setminus K$. Pak

$$M^{\mathbb{P}}\Big(\bigvee_{v\in K}\bigwedge_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(\bigwedge_{v\in\overline{K}}\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

Důkaz První rovnost plyne z $\overline{w}(\bigwedge_{p\in\mathbb{P}}p^{v(p)})=1$ právě když w=v, kde

$$w\in {}^{\mathbb{P}}2$$
. Druhá obdobně z $\overline{w}(\bigvee_{v\in \mathbb{P}}\overline{p^{v(p)}})=1$ právě když $w\neq v$. \square

Např.
$$K = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\}$$
 namodelujeme

$$(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor \neg r)$$

Důsledek Každý výrok je ekvivalentní nějakému výroku v CNF/DNF.

Důkaz Hodnota výroku φ závisí pouze na ohodnocení jeho proměnných, kterých je konečně. Lze tedy použít tvrzení pro $K = M^{\mathbb{P}}(\varphi)$ a $\mathbb{P} = \text{var}(\varphi)$.

Převod úpravami

Tvrzení Nechť φ' je výrok vzniklý z výroku φ nahrazením některých výskytů podvýroku ψ za výrok ψ' . Jestliže $\psi \sim \psi'$, pak $\varphi \sim \varphi'$.

Důkaz Snadno indukcí dle struktury formule.

(1)
$$(\varphi \to \psi) \sim (\neg \varphi \lor \psi)$$
, $(\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$

(2)
$$\neg\neg\varphi\sim\varphi$$
, $\neg(\varphi\wedge\psi)\sim(\neg\varphi\vee\neg\psi)$, $\neg(\varphi\vee\psi)\sim(\neg\varphi\wedge\neg\psi)$

(3)
$$(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$$

(3)'
$$(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$$

Tvrzení Každý výrok lze pomocí (1), (2), (3)/(3)' převést na CNF / DNF.

Důkaz Snadno indukcí dle struktury formule.

Tvrzení Nechť výrok φ obsahuje pouze spojky \neg , \land , \lor . Pak pro výrok φ^* vzniklý z φ záměnou \wedge a \vee a znegováním všech literálů platí $\neg \varphi \sim \varphi^*$.

Důkaz Snadno indukcí dle struktury formule.

- Výrok je v k-CNF, je-li v CNF a každá jeho klauzule má nejvýše k literálů.
- k-SAT je následující problém (pro pevné k > 0) INSTANCE: $Výrok \varphi v k$ -CNF.

Oτázκa: <mark>Jeφsplnitelný</mark>?

Zatímco už pro k=3 jde o NP-úplný problém, ukážeme, že 2-SAT lze řešit v *lineárním* čase (vzhledem k délce φ).

Vynecháme implementační detaily (výpočetní model, reprezentace v paměti) a využijeme následující znalosti, viz [ADS I].

Tvrzení Rozklad orientovaného grafu (V, E) na silně souvislé komponenty lze nalézt v čase $\mathcal{O}(|V| + |E|)$.

- Orientovaný graf G je silně souvislý, pokud pro každé dva vrcholy u a v
 existují v G orientované cesty jak z u do v, tak i z v do u.
- ullet Silně souvislá *komponenta* grafu G je maximální silně souvislý podgraf G.

Implikační graf

Implikační graf výroku φ v 2-CNF je orientovaný graf G_{ω} , v němž

- vrcholy jsou proměnné výroku φ nebo jejich negace,
- klauzuli $l_1 \vee l_2$ výroku φ reprezentujeme dvojicí hran $l_1 \rightarrow l_2, l_2 \rightarrow l_1$,
- klauzuli l_1 výroku φ reprezentujeme hranou $\overline{l_1} \to l_1$.

Tvrzení φ je splnitelný, právě když **žádná silně souvislá komponenta** v G_{ω} neobsahuje dvojici opačných literálů.

Důkaz Každé splňující ohodnocení ohodnotí všechny literály ze stejné komponenty stejně. Implikace zleva doprava tedy platí.

Nalezení ohodnocení

Naopak, označme G_{φ}^* graf vzniklý z G_{φ} kontrakcí silně souvislých komponent.

Pozorování G_{φ}^{*} je acyklický, má tedy topologické uspořádání <.

- Orientovaný graf je acyklický, neobsahuje-li orientovaný cyklus.
- Lineární uspořádání < vrcholů orientovaného grafu je topologické, pokud p < q pro každou hranu z p do q.

Nyní pro každou komponentu v rostoucím pořadí dle <, nejsou-li její literály dosud ohodnocené, nastav je na 0 a literály v opačné komponentě na 1.

Zbývá ukázat, že takto získané ohodnocení v splňuje φ . Kdyby ne, existovaly by v G_{φ}^* hrany $p \to q$ a $\overline{q} \to \overline{p}$ s v(p) = 1 a v(q) = 0. To je ve sporu s pořadím nastavení komponent na 0 resp. 1, neboť p < q a $\overline{q} < \overline{p}$.

Důsledek 2-SAT je řešitelný v lineárním čase.

Horn-SAT

- Jednotková klauzule je klauzule obsahující jediný literál,
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál,

$$\neg p_1 \lor \cdots \lor \neg p_n \lor q \quad \sim \quad (p_1 \land \cdots \land p_n) \to q$$

- Hornův výrok je konjunkcí Hornových klauzulí,
- Horn-SAT je problém splnitelnosti daného Hornova výroku.

Algoritmus

- (1) obsahuje-li φ dvojici jednotkových klauzulí l a \bar{l} , není splnitelný,
- (2) obsahuje-li φ jednotkovou klauzuli l, nastav l na 1, odstraň všechny klauzule obsahující l, odstraň \bar{l} ze všech klauzulí a opakuj od začátku,
- (3) neobsahuje-li φ jednotkovou klauzuli, je splnitelný ohodnocením 0 všech zbývajících proměnných.

Krok (2) se nazývá jednotková propagace.

Jednotková propagace

$$\begin{array}{ll} (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s & \nu(s) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land \neg r & \nu(\neg r) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q) & \nu(p) = \nu(q) = \nu(t) = 0 \end{array}$$

Pozorování Nechť φ^l je výrok získaný z φ jednotkovou propagací. Pak φ^l je splnitelný, právě když φ je splnitelný.

Důsledek Algoritmus je korektní (řeší Horn-SAT).

Důkaz Korektnost 1. kroku je zřejmá, v 2. kroku plyne z pozorování, v 3.kroku díky Hornově tvaru, neboť každá zbývající klauzule obsahuje negativní literál.

Poznámka Přímočará implementace vyžaduje kvadratický čas, při vhodné reprezentaci v paměti lze dosáhnout lineárního času (vzhledem k délce φ).

