Járműirányítás I.

2. házi feladat

Adott az alábbi egyszerűsített vertikális negyedjármű modell:

A rendszer egy útgerjesztésen keresztül kerül kapcsolatba a környezetével, r(t) az útfelület geometriáját meghatározó függvény. A kerék és az út kapcsolatát $f(\Delta l)$ karakterisztikájú rugó jellemzi, mely a következőként határozható meg:

$$f(\Delta l) = k_{w1} \Delta l + k_{w3} (\Delta l)^3,$$

ahol Δl a rugó hosszváltozása, azaz kerék és úttest elmozdulásának különbsége. Ezek alapján a mozgást leíró differenciálegyenlet rendszer a következő:

$$m_w \ddot{x}_w = k(x_c - x_w) + b(\dot{x}_c - \dot{x}_w) + f(\Delta l)$$

 $m_c \ddot{x}_c = -k(x_c - x_w) - b(\dot{x}_c - \dot{x}_w).$

1. Alakítsa át a fenti differenciálegyenlet rendszert állapottér modell alakba, ahol az állapotok, illetve a kimenetek a következők:

$$x = \begin{bmatrix} x_w & \dot{x}_w & x_c & \dot{x}_c \end{bmatrix}^{\mathrm{T}} ,$$

$$y = \begin{bmatrix} x_w & x_c \end{bmatrix}^{\mathrm{T}} ,$$

és a **lineáris** tagokból képezhető állapottér modellt készítse el *Simulink*-ben, majd a **nemlineáris** hatást egy külső visszacsatoláson keresztül érvényesítse!

- 2. Készítsen egy ábrát, melyen a nemlineáris rugókarakterisztikát ábrázolja (erő-elmozdulás grafikon a $\Delta l \in [-0, 01; 0, 01]$ m intervallumon)!
- 3. Hasonlítsa össze rendszer válaszait azzal az esettel, amikor mindegyik rugókarakterisztika lineáris, azaz $k_{w3} = 0$ (de $k_{w1} \neq 0$!)! Próbáljon ki különböző frekvenciájú és amplitúdójú tiszta szinuszos bemeneteket, ugrásfüggvényt stb.! Ábrázolja x_c -t, a kocsiszekrény elmozdulását a lineáris és a nemlineáris esetekben egy közös grafikonban! A bemeneteket válassza meg annak figyelembevételével, hogy egyes paraméterkombinációk esetén a rugókarakterisztika instabillá válhat!

A feladat során készült ábrákat mentsék el és csatolják a megoldáshoz! A Simulink fájl verziója max. 2023a. Határidő: 10. oktatási hét, vasárnap éjfél!

A feladatban szereplő paraméterek numerikus értékei a következő oldali táblázatban találhatóak.

	m_c [kg]	m_w [kg]	b [Ns/m]	k [N/m]	k_{w1} [N/m]	$k_{w3} [\mathrm{N/m^3}]$
Bakonyvári Bence	300	15	5000	10000	$1 \cdot 10^{5}$	$1 \cdot 10^{9}$
Barakonyi Fanni Kata	300	15	5000	10000	$1 \cdot 10^{5}$	$2 \cdot 10^9$
Bene Ádám	300	15	5000	10000	$1 \cdot 10^{5}$	$5 \cdot 10^9$
Biró Ádám	300	15	6000	10000	$1 \cdot 10^{5}$	$-1 \cdot 10^{8}$
Boros Iván	300	15	6000	10000	$1 \cdot 10^{5}$	$-2 \cdot 10^{8}$
Bürger Boldizsár	300	20	6000	10000	$1 \cdot 10^{5}$	$-5 \cdot 10^{8}$
Czili Aladár	300	20	7500	10000	$2 \cdot 10^{5}$	$1 \cdot 10^{9}$
Csaba Áron Farkas	300	20	7500	10000	$2 \cdot 10^{5}$	$2 \cdot 10^{9}$
Cseke Barna	300	20	7500	10000	$2 \cdot 10^{5}$	$5 \cdot 10^9$
Ferenczi Csongor	300	20	8000	10000	$2 \cdot 10^{5}$	$-1 \cdot 10^{8}$
Gelicz Gergő József	400	15	8000	12000	$2 \cdot 10^{5}$	$-2 \cdot 10^9$
Gosztola Balázs	400	15	8000	12000	$2 \cdot 10^{5}$	$-5 \cdot 10^{9}$
Hódi Balassa	400	15	4500	12000	$5 \cdot 10^{5}$	$1 \cdot 10^{9}$
Iloskity Gábor	400	15	4500	12000	$5 \cdot 10^{5}$	$2 \cdot 10^9$
Iwuafor Edward	400	15	4500	12000	$5 \cdot 10^{5}$	$5 \cdot 10^9$
Karsai Réka	400	20	6000	12000	$5 \cdot 10^{5}$	$-1 \cdot 10^{8}$
Kónyi Árpád Benjamin	400	20	6000	12000	$5 \cdot 10^{5}$	$-2 \cdot 10^9$
Kovács Krisztián Márk	400	20	6000	12000	$5 \cdot 10^{5}$	$-5 \cdot 10^{9}$
Kövér Bálint	400	20	9000	12000	$1 \cdot 10^4$	$1 \cdot 10^{9}$
Kurucz Sándor	400	20	9000	12000	$1 \cdot 10^{4}$	$2 \cdot 10^{9}$
Lengyel Zsolt	500	20	9000	15000	$1 \cdot 10^{4}$	$5 \cdot 10^9$
Lőrincz Lili	500	20	3000	15000	$1 \cdot 10^{4}$	$-1 \cdot 10^{8}$
Magyar Zsombor	500	20	3000	15000	$1 \cdot 10^{4}$	$-2 \cdot 10^9$
Mándoki Kristóf	500	20	3000	15000	$1 \cdot 10^{4}$	$-5 \cdot 10^{9}$
Nyvelt Tamás	500	20	4000	15000	$2 \cdot 10^4$	$1 \cdot 10^9$
Propp Kristóf	500	25	4000	15000	$2 \cdot 10^4$	$2 \cdot 10^{9}$
Réthy Ádám	500	25	4000	15000	$2 \cdot 10^{4}$	$5 \cdot 10^{9}$
Simon Rebeka	500	25	5500	15000	$2 \cdot 10^4$	$-1 \cdot 10^{8}$
Simon Zalán	500	25	5500	15000	$2 \cdot 10^4$	$-2 \cdot 10^9$
Szalai Mór	500	25	5500	15000	$2 \cdot 10^{4}$	$-5 \cdot 10^{9}$
Szirotka Balázs	600	30	9500	20000	$5 \cdot 10^4$	$1 \cdot 10^9$
Sztojcsev Mercédesz	600	30	9500	20000	$5 \cdot 10^4$	$2 \cdot 10^9$
Sztrinkó Máté László	600	30	9500	20000	$5 \cdot 10^4$	$5 \cdot 10^9$
Takács Imre	600	30	8000	20000	$5 \cdot 10^4$	$-1 \cdot 10^{8}$
Tárnyik Dániel Tamás	600	30	8000	20000	$5 \cdot 10^4$	$-2 \cdot 10^9$
Tóth Máté	600	25	8000	20000	$5 \cdot 10^4$	$-5 \cdot 10^9$
Várnagy Blanka Flóra	600	25	7000	20000	$8 \cdot 10^{4}$	$1 \cdot 10^{9}$
Verebély Nándor	600	25	7000	20000	$8 \cdot 10^{4}$	$2 \cdot 10^{9}$
Vidák Bálint	600	25	7000	20000	$8 \cdot 10^4$	$5 \cdot 10^9$
Vincze Dávid Máté	600	25	7500	20000	$8 \cdot 10^{4}$	$-1 \cdot 10^{8}$