Tutorstvo iz Fizike I, 24.10.2012

Posebni primer: Za to nalogo velja posebni primer - paket pade ravno v vogal kotanje. V splošnem primeru bi bilo reševanje drugačno, saj bi vpeljali še parameter $\alpha \in [0,1]$ in bi s tem pomnožili l_x . Nato bi poiskali minimalno višino podobno kot v naši rešitvi.

Rešitev: Da paket pade v kotanjo mora ravno preleteti vogal le-te. To se zgodi ko preleti višino $h = v_{y0}t + \frac{gt^2}{2}$. Zanima nas le pozitiven čas:

$$t' = \frac{-v_{y0} + \sqrt{2hg + v_{y0}^2}}{q} \tag{1}$$

V tem času preleti tudi določeno pot v smeri x od začetne lokacije, kar pa nas v tej nalogi ne zanima. Paket pade v vogal kotanje, zato je celoten čas leta $t=t'+\frac{l_x}{v_{x0}}$, kjer je t' čas leta pred kotanjo, $\frac{l_x}{v_{x0}}$ pa čas, ki ga potrebuje za prelet kotanje. Enačba za h se tako glasi:

$$h = \frac{gt^2}{2} - l_y = \frac{g(t' + \frac{l_x}{v_{x0}})^2}{2} - l_y \tag{2}$$

Še preostali podatki, ki nas zanimajo:

$$v_k = \sqrt{v_x^2 + v_y^2} = \sqrt{v_{x0}^2 + (v_{y0} + gt)^2}$$
 (3)

$$\alpha = \arctan \frac{v_y}{v_x} = \arctan \frac{v_{y0} + gt}{v_{x0}} \tag{4}$$

Rezultati: Opazimo, da je v obeh primerih ista parabola, le začetni položaj meta je drugačen. Letalo se ob koncu nahaja nad paketom, saj imata isto hitrost v smeri x. V spodnji tabeli so še številčni rezultati.

Rezultati:	(a)	(b)
h	886.5 m	840.6 m
v_k	167.8 m/s	167.8 m/s
α	53.4 °	53.4 °