

CHAPTER 15

Relational Database Design Algorithms and Further Dependencies

Chapter Outline

- 1. Further topics in Functional Dependencies
 - 1.1 Inference Rules for FDs
 - 1.2 Equivalence of Sets of FDs
 - 1.3 Minimal Sets of FDs
- 2. Properties of Relational Decompositions
- 3. Algorithms for Relational Database Schema Design

1. Functional Dependencies: Inference Rules, Equivalence and Minimal Cover

- We discussed functional dependencies in the last chapter.
- To recollect:

A set of attributes X *functionally determines* a set of attributes Y if the value of X determines a unique value for Y.

 Our goal here is to determine the properties of functional dependencies and to find out the ways of manipulating them.

Defining Functional Dependencies

- X → Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
- X → Y in R specifies a constraint on all relation instances
 r(R)
- Written as X → Y; can be displayed graphically on a relation schema as in Figures in Chapter 14. (denoted by the arrow:).
- FDs are derived from the real-world constraints on the attributes

1.1 Inference Rules for FDs (1)

- **Definition:** An FD X oup Y is **inferred from** or **implied by** a set of dependencies F specified on R if X oup Y holds in *every* legal relation state r of R; that is, whenever r satisfies all the dependencies in F, X oup Y also holds in r.
- Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold

Inference Rules for FDs (2)

- Armstrong's inference rules:
 - IR1. (Reflexive) If Y subset-of X, then X → Y
 - IR2. (Augmentation) If $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - (Notation: XZ stands for X U Z)
 - IR3. (**Transitive**) If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- IR1, IR2, IR3 form a sound and complete set of inference rules
 - These are rules hold and all other rules that hold can be deduced from these

Inference Rules for FDs (3)

- Some additional inference rules that are useful:
 - Decomposition: If X → YZ, then X → Y and X → Z
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Psuedotransitivity: If X → Y and WY → Z, then WX → Z
- The last three inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

Closure

 Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F

- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X
- X⁺ can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F

Algorithm to determine Closure

Algorithm 15.1. Determining X^+ , the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R.

```
X^+ := X;

repeat

\operatorname{old} X^+ := X^+;

for each functional dependency Y \to Z in F do

if X^+ \supseteq Y then X^+ := X^+ \cup Z;

until (X^+ = \operatorname{old} X^+);
```

Example of Closure (1)

CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity).

```
FD1: Classid → Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity;
FD2: Course# → Credit_hrs;
FD3: {Course#, Instr_name} → Text, Classroom;
FD4: Text → Publisher
FD5: Classroom → Capacity
```

Example of Closure (2)

The closures of attributes or sets of attributes for some example sets:

```
{ Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity } = CLASS

{ Course#} + = { Course#, Credit_hrs}

{ Course#, Instr_name } + = { Course#, Credit_hrs, Text, Publisher, Classroom, Capacity }
```

Note that each closure above has an interpretation that is revealing about the attribute(s) on the left-hand-side. The closure of { Classid } ⁺ is the entire relation CLASS indicating that all attributes of the relation can be determined from Classid and hence it is a key.

1.2 Equivalence of Sets of FDs

- Two sets of FDs F and G are equivalent if:
 - Every FD in F can be inferred from G, and
 - Every FD in G can be inferred from F
 - Hence, F and G are equivalent if F⁺ = G⁺
- Definition (Covers):
 - F covers G if every FD in G can be inferred from F
 - (i.e., if G⁺ subset-of F⁺)
- F and G are equivalent if F covers G and G covers F
- There is an algorithm for checking equivalence of sets of FDs

1.3 Finding Minimal Cover of F.D.s (1)

■ Just as we applied inference rules to expand on a set *F* of FDs to arrive at *F*+, its closure, it is possible to think in the opposite direction to see if we could shrink or reduce the set *F* to its *minimal form* so that the minimal set is still equivalent to the original set *F*.

1.3 Finding Minimal Cover of F.D.s (1)

■ **Definition:** An attribute in a functional dependency is considered **extraneous attribute** if we can remove it without changing the closure of the set of dependencies.

Formally, given F, the set of functional dependencies and a functional dependency $X \rightarrow A$ in F, attribute Y is extraneous in X if Y is a subset of X, and F logically implies

$$(F-(X \rightarrow A) \cup \{(X-Y) \rightarrow A\})$$

Minimal Sets of FDs (2)

- A set of FDs is minimal if it satisfies the following conditions:
 - 1. Every dependency in F has a single attribute for its RHS.
 - 2. We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.
 - 3. We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a proper-subset-of X and still have a set of dependencies that is equivalent to F.

Exercise

■ Find the minimum cover for E:

$$E: \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$$

Minimal Sets of FDs (3)

Algorithm 15.2. Finding a Minimal Cover *F* for a Set of Functional Dependencies *E*

Input: A set of functional dependencies E.

Note: Explanatory comments are given at the end of some of the steps. They follow the format: (*comment*).

- Set F := E.
- 2. Replace each functional dependency $X \to \{A_1, A_2, ..., A_n\}$ in F by the n functional dependencies $X \to A_1, X \to A_2, ..., X \to A_n$. (*This places the FDs in a canonical form for subsequent testing*)
- 3. For each functional dependency $X \rightarrow A$ in F

for each attribute B that is an element of X

if
$$\{ \{F - \{X \to A\} \} \cup \{ (X - \{B\}) \to A\} \}$$
 is equivalent to F then replace $X \to A$ with $(X - \{B\}) \to A$ in F .

(*This constitutes removal of an extraneous attribute B contained in the left-hand side X of a functional dependency $X \rightarrow A$ when possible*)

4. For each remaining functional dependency X → A in F if {F − {X → A} } is equivalent to F, then remove X → A from F. (*This constitutes removal of a redundant functional dependency X → A from F when possible*)

Computing the Minimal Sets of FDs (4)

We illustrate algorithm 15.2 with the following: Let the given set of FDs be $E: \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$. We have to find the minimum cover of E.

- All above dependencies are in canonical form; so we have completed step 1 of Algorithm 10.2 and can proceed to step 2. In step 2 we need to determine if $AB \rightarrow D$ has any redundant attribute on the left-hand side; that is, can it be replaced by $B \rightarrow D$ or $A \rightarrow D$?
- Since B \rightarrow A, by augmenting with B on both sides (IR2), we have $BB \rightarrow AB$, or $B \rightarrow AB$ (i). However, $AB \rightarrow D$ as given (ii).
- Hence by the transitive rule (IR3), we get from (i) and (ii), $B \rightarrow D$. Hence $AB \rightarrow D$ may be replaced by $B \rightarrow D$.
- We now have a set equivalent to original E, say E': $\{B \to A, D \to A, B \to D\}$. No further reduction is possible in step 2 since all FDs have a single attribute on the left-hand side.
- In step 3 we look for a redundant FD in E'. By using the transitive rule on $B \to D$ and $D \to A$, we derive $B \to A$. Hence $B \to A$ is redundant in E' and can be eliminated.
- Hence the minimum cover of E is $\{B \rightarrow D, D \rightarrow A\}$.

Minimal Sets of FDs (5)

- Every set of FDs has an equivalent minimal set
- There can be several equivalent minimal sets
- There is no simple algorithm for computing a minimal set of FDs that is equivalent to a set F of FDs. The process of Algorithm 15.2 is used until no further reduction is possible.
- To synthesize a set of relations, we assume that we start with a set of dependencies that is a minimal set

DESIGNING A SET OF RELATIONS (1)

- The Approach of Relational Synthesis (Bottom-up Design):
 - Assumes that all possible functional dependencies are known.
 - First constructs a minimal set of FDs
 - Then applies algorithms that construct a target set of 3NF or BCNF relations.
 - Additional criteria may be needed to ensure the the set of relations in a relational database are satisfactory (see Algorithm 15.3).

DESIGNING A SET OF RELATIONS (2)

Goals:

- Lossless join property (a must)
 - Algorithm 15.3 tests for general losslessness.
- Dependency preservation property
 - Observe as much as possible
 - Algorithm 15.5 decomposes a relation into BCNF components by sacrificing the dependency preservation.

Algorithm to determine the key of a relation

Algorithm 15.2(a). Finding a Key K for R Given a Set F of Functional Dependencies

Input: A relation R and a set of functional dependencies F on the attributes of R.

- Set K := R.
- For each attribute A in K
 {compute (K − A)⁺ with respect to F;
 if (K − A)⁺ contains all the attributes in R, then set K := K − {A} };

Properties of Relational Decompositions (1)

- Relation Decomposition and Insufficiency of Normal Forms:
 - Universal Relation Schema:
 - A relation schema R = {A1, A2, ..., An} that includes all the attributes of the database.
 - Universal relation assumption:
 - Every attribute name is unique.

Properties of Relational Decompositions (2)

Decomposition:

 The process of decomposing the universal relation schema R into a set of relation schemas

$$D = \{R1, R2, ..., Rm\}$$

that will become the relational database schema by using the functional dependencies.

Attribute preservation condition:

 Each attribute in R will appear in at least one relation schema R_i in the decomposition so that no attributes are "lost".

Properties of Relational Decompositions (3)

 Another goal of decomposition is to have each individual relation R_i in the decomposition D be in BCNF or 3NF.

 Additional properties of decomposition are needed to prevent from generating spurious tuples

Properties of Relational Decompositions (4)

2.2 Dependency Preservation Property of a Decomposition:

- Definition: Given a set of dependencies F on R, the projection of F on R_i, denoted by π_{Ri}(F) where R_i is a subset of R, is the set of dependencies X → Y in F⁺ such that the attributes in X υ Y are all contained in R_i.
- Hence, the projection of F on each relation schema R_i in the decomposition D is the set of functional dependencies in F⁺, the closure of F, such that all their left- and right-hand-side attributes are in R_i.

Properties of Relational Decompositions (5)

Dependency Preservation Property:

A decomposition D = {R1, R2, ..., Rm} of R is dependency-preserving with respect to F if the union of the projections of F on each Ri in D is equivalent to F; that is ((π_{R1}(F)) υ . . . υ (π_{Rm}(F)))⁺ = F⁺

Claim 1:

It is always possible to find a dependencypreserving decomposition D with respect to F such that each relation R_i in D is in 3nf.

Properties of Relational Decompositions (6)

2.3 Non-additive (Lossless) Join Property of a Decomposition:

Definition: Lossless join property: a decomposition D = {R1, R2, ..., Rm} of R has the lossless (nonadditive) join property with respect to the set of dependencies F on R if, for every relation state r of R that satisfies F, the following holds, where * is the natural join of all the relations in D:

$$*(\pi_{R1}(r), ..., \pi_{Rm}(r)) = r$$

 Note: The word loss in lossless refers to loss of information, not to loss of tuples. A better term is "addition of spurious information" Algorithm 15.3. Testing for Nonadditive Join Property

Input: A universal relation R, a decomposition $D = \{R_1, R_2, \dots, R_m\}$ of R, and a set F of functional dependencies.

Note: Explanatory comments are given at the end of some of the steps. They follow the format: (*comment*).

- Create an initial matrix S with one row i for each relation R_i in D, and one column j for each attribute A₁ in R.
- Set S(i, j): = b_{ij} for all matrix entries. (*Each b_{ij} is a distinct symbol associated with indices (i, j)*)
- 3. For each row i representing relation schema R_i {for each column j representing attribute A_j {if (relation R_i includes attribute A_j) then set S(i, j): = a_j;};}; (*Each a_j is a distinct symbol associated with index (j)*)
- Repeat the following loop until a complete loop execution results in no changes to S

{for each functional dependency $X \rightarrow Y$ in F

{for all rows in *S* that have the same symbols in the columns corresponding to attributes in *X*

{make the symbols in each column that correspond to an attribute in Y be the same in all these rows as follows: If any of the rows has an a symbol for the column, set the other rows to that $same\ a$ symbol in the column. If no a symbol exists for the attribute in any of the rows, choose one of the b symbols that appears in one of the rows for the attribute and set the other rows to that same b symbol in the column; b; b;

If a row is made up entirely of a symbols, then the decomposition has the nonadditive join property; otherwise, it does not.

Properties of Relational Decompositions (9)

Figure 15.1 Nonadditive join test for n-ary decompositions.

(a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1 and EMP_LOCS fails test.

(a)
$$R = \{ Ssn, Ename, Pnumber, Pname, Plocation, Hours \}$$
 $D = \{ R_1, R_2 \}$ $R_1 = EMP_LOCS = \{ Ename, Plocation \}$ $R_2 = EMP_PROJ1 = \{ Ssn, Pnumber, Hours, Pname, Plocation \}$

 $F = \{Ssn \rightarrow Ename; Pnumber \rightarrow \{Pname, Plocation\}; \{Ssn, Pnumber\} \rightarrow Hours\}$

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	b ₁₁	a_2	b ₁₃	b ₁₄	a_5	b ₁₆
R_2	a ₁	b ₂₂	a_3	a_4	a_5	a_6

(No changes to matrix after applying functional dependencies)

- (b) A decomposition of EMP_PROJ that has the lossless join property.
- (c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.

(b)	EMP		
	Ssn	Ename	

PROJECT						
Pnumber	Pname	Plocation				

WORKS_ON					
Ssn	Pnumber	Hours			

 $D = \{R_1, R_2, R_3\}$

(c) $R = \{ \text{Ssn, Ename, Pnumber, Pname, Plocation, Hours} \}$ $R_1 = \text{EMP} = \{ \text{Ssn, Ename} \}$ $R_2 = \text{PROJ} = \{ \text{Pnumber, Pname, Plocation} \}$ $R_3 = \text{WORKS_ON} = \{ \text{Ssn, Pnumber, Hours} \}$

 $F = \{Ssn \rightarrow Ename; Pnumber \rightarrow \{Pname, Plocation\}; \{Ssn, Pnumber\} \rightarrow Hours\}$

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	a ₁	a_2	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b_{22}	a ₃	a ₄	a ₅	b_{26}
R_3	a ₁	b ₃₂	a_3	b ₃₄	b ₃₅	a_6

(Original matrix S at start of algorithm)

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	a ₁	a_2	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a_4	a ₅	b ₂₆
R_3	a ₁	b ₃₂ a ₂	a ₃	b ₃₄ a ₄	b ₃₆ a₅	a ₆

(Matrix S after applying the first two functional dependencies; last row is all "a" symbols so we stop)

Test for checking non-additivity of Binary Relational Decompositions (11)

2.4 Testing Binary Decompositions for Non-additive Join (Lossless Join) Property

- Binary Decomposition: Decomposition of a relation R into two relations.
- PROPERTY NJB (non-additive join test for binary decompositions): A decomposition D = {R1, R2} of R has the lossless join property with respect to a set of functional dependencies F on R if and only if either
 - The f.d. ((R1 \cap R2) \rightarrow (R1- R2)) is in F⁺, or
 - The f.d. ((R1 \cap R2) \rightarrow (R2 R1)) is in F⁺.

Properties of Relational Decompositions (12)

2.5 Successive Non-additive Join Decomposition:

- Claim 2 (Preservation of non-additivity in successive decompositions):
 - If a decomposition D = {R1, R2, ..., Rm} of R has the lossless (non-additive) join property with respect to a set of functional dependencies F on R,
 - and if a decomposition Di = {Q1, Q2, ..., Qk} of Ri has the lossless (non-additive) join property with respect to the projection of F on Ri,
 - then the decomposition D2 = {R1, R2, ..., Ri-1, Q1, Q2, ..., Qk, Ri+1, ..., Rm} of R has the non-additive join property with respect to F.

3. Algorithms for Relational Database Schema Design (1)

Input: A universal relation R and a set of functional dependencies F on the attributes of R.

- Find a minimal cover G for F (use Algorithm 15.2).
- 2. For each left-hand-side X of a functional dependency that appears in G, create a relation schema in D with attributes $\{X \cup \{A_1\} \cup \{A_2\} ... \cup \{A_k\}\}\}$, where $X \to A_1, X \to A_2, ..., X \to A_k$ are the only dependencies in G with X as left-hand side (X is the key of this relation).
- If none of the relation schemas in D contains a key of R, then create one
 more relation schema in D that contains attributes that form a key of R.
 (Algorithm 15.2(a) may be used to find a key.)
- 4. Eliminate redundant relations from the resulting set of relations in the relational database schema. A relation R is considered redundant if R is a projection of another relation S in the schema; alternately, R is subsumed by S.⁷

Example 1 page 520

```
U(Emp_ssn, Pno, Esal, Ephone, Pname, Plocation)
```

FD1: Emp_ssn -> {Esal, Ephone, Dno}

FD2: Pno -> {Pname, Plocation}

FD3: Emp_ssn, Pno -> {Emp_ssn, Pno, Esal, Ephone,

Pname, Plocation)

Key: Emp_ssn, Pno

Minimal cover:

FD1: Emp_ssn -> {Esal, Ephone, Dno}

FD2: Pno -> {Pname, Plocation}

Example 1 page 520

The second step of Algorithm 15.4 produces relations R_1 and R_2 as:

R₁ (Emp_ssn, Esal, Ephone, Dno)

 R_2 (Pno, Pname, Plocation)

In step 3, we generate a relation corresponding to the key {Emp_ssn, Pno} of U. Hence, the resulting design contains:

R₁ (Emp_ssn, Esal, Ephone, Dno)

 R_2 (Pno, Pname, Plocation)

 R_3 (Emp_ssn, Pno)

Please workout Example 2 and 3 in Pages 520-521

Algorithms for Relational Database Schema Design (2)

Algorithm 15.5. Relational Decomposition into BCNF with Nonadditive Join Property

Input: A universal relation *R* and a set of functional dependencies *F* on the attributes of *R*.

```
    Set D := {R};
    While there is a relation schema Q in D that is not in BCNF do
        {
                  choose a relation schema Q in D that is not in BCNF;
                 find a functional dependency X → Y in Q that violates BCNF;
                 replace Q in D by two relation schemas (Q - Y) and (X ∪ Y);
                 };
```

Exercise

R(A, B, C, D)

FD1: C -> D

FD2: C -> A

FD3: B -> C

Find the key using Algorithm 15.2 (a)

Key: B

FD1 and FD2 violates BCNF

FD1: C -> D

FD2: C -> A

FD3: B -> C

Exercise

R1(A,B,C), R2(C,D)

R1 violates BCNF because of C-A

Decompose R1 into R11(B, C) and R12(C,A)

Test with NJB