

低功耗,I²C接口,2kSPS,16位ADC 内置高精度基准源和可编程比较器

CM1103 数据手册

特征

■ 宽电源范围: 2.5V至5V

■ 低电流消耗: 260µA (连续转换模式) ■ 可编程数据速率: 6.25SPS 至 2kSPS

■ 内部低漂移电压基准

■ 内部振荡器

■ 内部可编程增益放大器(PGA)

■ I²C接口

■ 温度范围: -40°C~125°C■ 4 个单端或 2 个差分输入

应用

■ 手持式仪表

■ 电池电压电流监测

■ 消费电子

■ 工厂自动化及过程控制

概述

CM1103 是一款高精度、低功耗、兼容 I^2C 、16 位 $\Delta\Sigma$ ADC,其内部集成了一个低漂移电压基准、一个振荡器、一个可编程 PGA 和一个数字比较器。

CM1103 能够以 2kSPS 的速率执行转换操作。PGA 提供的可编程输入电压范围为±256mV 至±6.144V,输入多路选择器(MUX)可以提供 4 个单端输入和 2 个差分输入。数字比较器提供了过压检测功能。

CM1103 可工作于单次转换模式或者连续转换模式。 单次转换模式在一个转换完成之后将自动进入断电模 式,从而极大地降低了空闲状态下的电流消耗。

架构框图

| 目录

封页1	
特征1	
应用1	
概述1	
架构框图1	
文档历史3	
管脚配置和功能4	
管脚配置4	
管脚功能4	
绝对最大额定值5	
电气规格6	
时序规格8	
典型特征9	
工作原理12	
多路选择器12	
FSR 和 LSB12	
基准电压12	
振荡器12	
数据速率12	
数字比较器12	
转换就绪管脚12	
噪声性能13	
功能与模式	
り / 月ピー/ / 天 エ/, 1付	

复位	14
转换模式	14
单次转换模式	14
连续转换模式	14
数字接口	15
I ² C 地址选择	
I ² C 时序	
Read 时序	
Write 时序	16
数据格式	
寄存器	
ADDRESS	
CONVERSION	17
CONFIG	
THRESH	
应用	
封装及订购信息	
封装方式	
产品外形图	
MSOP10	
QFN10	
计附信自	24

文档历史

下表中列举了本文档自产品发布后的所有更新。

文档版本	修订日期	内容描述
V1.0	2023-12-04	第一次正式发布

| 管脚配置和功能

管脚配置

以下为 CM1103 封装管脚示意图:

管脚功能

表 1 CM1103 管脚功能描述

编号	名称	类型	说明
1	ADDR	DI	I ² C 从地址选择
2	ALTER/RDY	DO	比较器输出或转换就绪
3	GND	GND	接地
4	AIN0	Al	模拟输入 0
5	AIN1	Al	模拟输入1
6	AIN2	Al	模拟输入 2
7	AIN3	Al	模拟输入3
8	VDD	PWR	电源
9	SDA	DI/O	I ² C 数据
10	SCL	DI	I ² C 时钟

| 绝对最大额定值

参数	最小值	最大值	单位			
温度						
工作温度	-40	125	°C			
存储温度	-60	150	°C			
结温	-40	150	°C			
耐压						
VDD	-0.3	7	V			
模拟输入	GND-0.3	VDD+0.3	V			
数字输入	GND-0.3	5.5	V			
限流	限流					
模拟输入电流	-10	10	mA			
ESD						
НВМ	3000		V			
CDM	750		V			

电气规格

除非另有说明,测试条件为: VDD=3.3V, Data Rate=6.25 SPS, FSR=±2.048V, TA=-40°C~125°C。

参数	测试条件	最小值 典型值	i 最大值	单位	
模拟输入					
共模输入阻抗	全量程范围	13	13		
	FSR = ±6.144V	7		ΜΩ	
	FSR = ±4.096V	5.8		ΜΩ	
>+ / \ + \ \	FSR = ±2.048V	4.3		ΜΩ	
差分输入阻抗 	FSR = ±1.024V	2.7		ΜΩ	
	$FSR = \pm 0.512V$	1.6		ΜΩ	
	$FSR = \pm 0.256V$	0.9		ΜΩ	
+4. \ (C) (C) (C) (C)	单端	63		nA	
输入偏置电流	差分	102	,	nA	
系统性能				1	
分辨率(无失码)		16		Bit	
数据速率		6.25, 12.5, 25, 50, 10	00, 400, 1k, 2k	SPS	
数据速率误差	所有数据速率	-10%	10%		
输出噪声		参见噪声性能部分			
INL			1	LSB	
增益误差	差分输入,FSR = ±2.048V, TA = 25℃	0.01%	0.05%		
增益温度漂移		7	15.2	ppm/°C	
增益长时漂移	FSR = ±2.048V, TA = 25°C, 1000hrs	0.084		%	
增益电源抑制	FSR = ±2.048V, TA = 25°C	0.034		%/V	
增益匹配	任意两个增益之间的匹配 1	0.02%	0.13%		
增益通道匹配	任意两个差分输入之间的匹配,FSR = ±2.048V	0.00059	% 0.002%		
<i>t</i> _ \	FSR = ±2.048V,差分输入	-3 ±0.4	3	LSB	
输入失调误差	FSR = ±2.048V,单端输入	-1.5		LSB	
输入失调电源抑制	直流电源变化	0.5	1.15	LSB/V	
输入失调通道匹配	任意两个差分输入之间的匹配	0.008	0.5	LSB	
共模抑制比	直流电压变化	100		dB	
数据输入/输出				•	
V _{IH}		0.7VDD	VDD+0.3	V	
		-			

参数	测试条件	最小值	典型值	最大值	单位
V _{IL}		GND		0.3VDD	V
V _{OL}		GND	0.15	0.3	V
输入漏电流	GND < V _{DIG} < VDD	-10		10	μΑ
电源					
	断电模式, T _A = 25℃		0.5	2	μΑ
IVDD	断电模式			5	μΑ
IVDD	转换模式,T _A = 25℃		270	300	μΑ
	转换模式			500	μΑ

^{1:}在差分输入通道上的测试结果。

时序规格

除非另有说明,CM1103 测试条件为: VDD = 2.5V~5.5V,TA = 25℃。

₹ ₩h	1#7 *	快速	₩/÷	
参数	描述	MIN	MAX	单位
f _{SCL}	SCL 时钟频率	0.01	1	MHz
t _{BUF}	START 和 STOP 状态之间的总线空闲时间	600		ns
t _{HDSTA}	START 信号的保持时间。在该时段之后,生成第一时钟。			ns
t _{SUSTA}	START 的建立时间	600		ns
t _{SUSTO}	STOP 的建立时间	600		ns
t _{HDDAT}	数据保持时间	0		ns
t _{SUDAT}	数据建立时间	100		ns
t _{LOW}	SCL 时钟管脚的低电平时间	1300		ns
t _{HIGH}	SCL 时钟管脚的高电平时间	600		ns
t _F	SDA 和 SCL 信号的下降时间		300	ns
t _R	SDA 和 SCL 信号的上升时间		300	ns

图112C接口时序

|典型特征

除非另有说明,CM1103 工作在 T_A = 25°C,VDD = 3.3V,FSR = ±2.048V,DR = 6.25SPS。

图 2 单端失调电压 vs 温度

图 3 差分失调电压 vs 温度

图 4 增益误差 vs 温度

图 5 增益误差 vs 电源电压

图 6 INL vs 电源电压

图 7 INL vs 输入电压 (VDD=3.3, FSR=±2.048V)

图 8 INL vs 输入电压 (VDD=3.3V, FSR=±0.512V)

图 10 INL vs 输入电压 (VDD=5V, FSR=±0.512V)

图 12 噪声 vs 输入电压 (FSR=±0.512V)

图 9 INL vs 输入电压 (VDD=5V, FSR=±2.048V)

图 11 INL vs 温度

图 13 噪声 vs 电源电压 (FSR=±2.048V)

图 14 噪声 vs 温度 (FSR=±2.048V)

图 16 失调电压直方图

图 15 增益误差直方图

工作原理

CM1103 是一款低功耗 16 位 $\Delta\Sigma$ ADC,它集成了电压基准、振荡器、可编程增益放大器(PGA)和可编程数字比较器。

多路选择器

CM1103 内置多路选择器(Multiplexer),通过寄存器 MUX[2:0]的不同配置,选择 8 个通道(4 个单端输入和 4 个差分输入配置)的其中之一作为输入进行转换。当单端信号被测量时,ADC 的负端输入将通过MUX 的开关连接到 GND。具体配置信息参考寄存器表中 MUX[2:0]的描述。

FSR 和 LSB

FSR 由 Config 寄存器 PGA[2:0] 来配置,各量程对应 LSB 如下:

FSR	LSB
±6.144 V	187.5μV
±4.096 V	125μV
±2.048 V	62.5μV
±1.024 V	31.25μV
±0.512 V	15.625μV
±0.256 V	7.8125µV

模拟输入电压不得超过绝对最大额定值中给出的模拟输入电压限制,因此当 FSR > VDD+0.3V 时,输入将被钳位在 VDD+0.3V,超过该电压的部分无法测量到。

基准电压

CM1103 集成了一个低温漂电压基准,只提供内部电压参考,不能对外输出。

振荡器

CM1103 内置了 500kHz 的振荡器,芯片的输出数据速率与内部时钟频率成正比。

数据速率

CM1103 提供了可编程的数据速率,可通过 Config 寄存器 DR[2:0] 来配置数据速率。

数字比较器

CM1103 内置了一个可编程数字比较器(Digital Comparator),其将输入转换结果与内部预先设定的值进行比较,从而可以在达到特定条件时触发警报,并通过 ALERT/RDY 管脚进行响应。Config 寄存器中的COMP_MODE 位将比较器配置为常规比较器或窗口比较器。在常规比较器模式中,当转换数据超过Hi_thresh 寄存器设置的限制时,ALERT/RDY 管脚会产生置位响应(默认低电平响应)。只有当转换数据低于Lo_thresh 寄存器中设置的限制时,置位响应取消。在窗口比较器模式下,当转换数据超过 Hi_thresh 寄存器或低于 Lo_thresh 寄存器值时,ALERT/RDY 管脚会产生置位响应。置位响应电平极性可以通过 Config 寄存器中的 COMP_POL 位配置。

在常规比较器或窗口比较器模式下,比较器输出可以通过配置 Config 寄存器中的 COMP_LAT 位进行锁存。这个锁存只能通过读取 Conversion 寄存器来清除。

比较器也可以配置为仅在连续多次读数都超出比较器 阈值时才产生置位响应,超出阈值次数由 Config 寄存 器中的 COMP_QUE[1:0] 位进行设置。

COMP_QUE[1:0]位也可以禁用比较器功能,并将ALERT/RDY 管脚置于高阻态。

转换就绪管脚

ALERT/RDY 管脚也可以配置为转换就绪管脚。将Hi_thresh 寄存器的最高有效位设置为 1,Lo_thresh 寄存器的最高有效位设置为 0,以使该管脚成为转换就 绪管脚。转换就绪响应电平同样由 COMP_POL 位进行配置。将 COMP_QUE[1:0] 位设置为 0b11 以外的任何 2 位值以保持 ALERT/RDY 管脚启用。COMP_MODE 和 COMP_LAT 位不再控制任何功能。当配置为转换就绪管脚时,ALERT/RDY 仍然需要一个上拉电阻。在连续转换模式下,每次转换结束时在 ALERT/RDY 管脚上提供大约 8μs 的转换就绪脉冲,如图 17 所示;在单次转换模式下,如果 COMP_POL 位设置为 0,ALERT/RDY 管脚在转换结束后变为低电平。

图 17 连续转换时的转换就绪脉冲

噪声性能

 Δ - Σ ADC 基于过采样原理,输入信号以高频采样,随后进行滤波和提取。采样频率和输出数据速率的比值

被称为过采样比(OSR)。通过提高过采样比,可以 优化 ADC 的噪声性能,这在测量小信号时非常有用。

表 2 VDD=3.3V 时均方根和峰峰值噪声 μV_{RMS}(μV_{PP})

数据速率	FSR(满量程范围)					
(SPS)	±6.144V	±4.096V	±2.048V	±1.024V	±0.512V	±0.256V
6.25	187.5(187.5)	125(125)	62.5(62.5)	31.25(31.25)	15.62(15.62)	7.81(7.81)
12.5	187.5(187.5)	125(125)	62.5(62.5)	31.25(31.25)	15.62(15.62)	7.81(7.81)
25	187.5(187.5)	125(125)	62.5(62.5)	31.25(31.25)	15.62(15.62)	7.81(7.81)
50	187.5(187.5)	125(125)	62.5(62.5)	31.25(31.25)	15.62(15.62)	7.81(7.81)
100	187.5(190.15)	125(125)	62.5(62.5)	31.25(33.92)	15.62(17.56)	7.81(7.81)
400	187.5(326.12)	125(213.98)	62.5(114.51)	31.25(61.99)	15.62(31.38)	7.81(18.53)
1000	187.5(472.02)	125(303.99)	62.5(157.68)	31.25(81.15)	15.62(46.76)	7.81(30.04)
2000	187.5(931.15)	125(597.77)	62.5(306.25)	31.25(164.59)	31.25(97.59)	15.62(60.44)

表 3 VDD=3.3V 时的有效分辨率

数据速率	FSR(满量程范围)					
(SPS)	±6.144V	±4.096V	±2.048V	±1.024V	±0.512V	±0.256V
6.25	16(16)	16(16)	16(16)	16(16)	16(16)	16(16)
12.5	16(16)	16(16)	16(16)	16(16)	16(16)	16(16)
25	16(16)	16(16)	16(16)	16(16)	16(16)	16(16)
50	16(16)	16(16)	16(16)	16(16)	16(16)	16(16)
100	16(15.98)	16(16)	16(16)	16(15.88)	16(15.83)	16(15.56)
400	16(15.20)	16(15.22)	16(15.13)	16(15.01)	16(14.99)	16(14.75)
1000	16(14.67)	16(14.72)	16(14.66)	16(14.62)	16(14.42)	16(14.06)
2000	16(13.69)	16(13.74)	16(13.71)	16(13.60)	15.94(13.36)	15.63(13.05)

力能与模式

复位

CM1103 在上电时复位,并将 Config 寄存器中的所有位设置为默认值。在完成复位后进入断电模式,芯片接口和数字模块处于活动状态但不执行数据转换。

CM1103 也可以通过 I²C 的复位指令进行复位。当芯片接收到 general call reset(06h)命令时,即执行内部复位,该复位与上电复位有同样的效果。

转换模式

CM1103 具有两种转换模式:单次转换模式和连续转换模式,可通过 Config 寄存器 MODE 位来选择运行模式。

单次转换模式

当 Config 寄存器的 MODE 位为 1,芯片进入断电模式,断电模式下芯片仍然能响应命令。Config 寄存器

的 OS 位写入 1 之前,芯片将保持在断电模式。当 OS 位被置 1 时,芯片大约在 30μs 内启动,将 OS 位自动清 0,并开始一次单次转换。当 AD 数据转换完成后,芯片再次进入断电模式。

转换正在进行时,向 OS 位写入 1 无效。要切换到连续转换模式,需要在 Config 寄存器的 MODE 位中写入 0。

连续转换模式

当 Config 寄存器 MODE 位为 0,芯片进入连续转换模式。当一次 AD 转换完成后,芯片将转换结果放入 Conversion 寄存器然后立即开始下一个转换。想要切换到单次转换模式,需要向 Config 寄存器中的 MODE 位写入 1。

数字接口

CM1103 采用 I^2C 协议进行通信,如果 I^2C 总线保持空闲超过 30ms 将超时。

I²C 地址选择

CM1103的 ADDR 管脚用于配置 I 2C 地址,可连接至 GND、VDD、SDA、SCL,对应地址如下表所示。

表 4 ADDR 地址选择

ADDR 连接	SLAVE 地址
GND	1001000
VDD	1001001
SDA	1001010
SCL	1001011

I²C 时序

Read 时序

图 18 Read 时序

Write 时序

数据格式

CM1103 提供了 16 bits 二进制数据,表 5 总结了不同输入信号的理想输出码值。

表5输出码字

输入	输出
≥+FS(2 ¹⁵ -1)/2 ¹⁵	7FFFh
+FS/2 ¹⁵	0001h
0	0000h
-FS/2 ¹⁵	FFFFh
≤-FS	8000h

寄存器

ADDRESS

位	名称	访问类型	复位	描述
7:2	Reserved	W	0h	只可写 0h
1:0	P[1:0]	W	0h	寄存器地址 00: CONVERSION 01: CONFIG 10: Lo_THRESH 11: Hi_THRESH

CONVERSION

位	名称	访问类型	复位	描述
15:0	D[15:0]	R	0000h	16 位转换数据

CONFIG

位	名称	访问类型	复位	描述
15	OS	R/W	1h	该位只能在断电模式下写入,在转换模式下写无效。 当写入时: 0: 无效 1: 启动单次转换(断电模式下) 当读取时: 0: 芯片正在执行转换 1: 芯片未执行转换
14:12	MUX[2:0]	R/W	0h	输入多路选择器配置 000: AINP = AIN0, AINN = AIN1 (默认值) 001: AINP = AIN0, AINN = AIN3 010: AINP = AIN1, AINN = AIN3 011: AINP = AIN2, AINN = AIN3 100: AINP = AIN0, AINN = GND 101: AINP = AIN1, AINN = GND 110: AINP = AIN2, AINN = GND 111: AINP = AIN3, AINN = GND

位	名称	访问类型	复位	描述
11:9	PGA[2:0]	R/W	2h	可编程增益放大器配置 000: FSR = ±6.144 V 001: FSR = ±4.096 V 010: FSR = ±2.048 V (默认值) 011: FSR = ±1.024 V 100: FSR = ±0.512 V 101: FSR = ±0.256 V 111: FSR = ±0.256 V
8	MODE	R/W	1h	芯片运行模式 0: 连续转换模式 1: 单次转换模式或者断电模式(默认值)
7:5	DR[2:0]	R/W	数据速率配置 000: 6.25 SPS 001: 12.5 SPS 010: 25 SPS 010: 25 SPS 4h 011: 50 SPS 100: 100 SPS (默认值) 101: 400 SPS 110: 1000 SPS 111: 2000 SPS	
4	COMP_MODE	R/W	0h	比较器模式 0:常规比较器(默认值) 1:窗口比较器
3	COMP_POL	R/W	比较器极性 Oh 0:低电平响应(默认值) 1:高电平响应	
2	COMP_LAT	R/W	0h	比较器输出锁存配置 0: ALERT/RDY 管脚被置位后不锁存(默认值)。 1: ALERT/RDY 管脚被置位后被锁存,若要解除该置位 状态,必须读取 ADC 的转换结果。
1:0	COMP_QUE[1:0]	R/W	3h	当设置为 11 时,比较器被禁用,并且 ALERT/RDY 管脚被设置为高阻状态。当设置为其它值时,启用ALERT/RDY 管脚和比较器功能,并且设置值决定了置位 ALERT/RDY 管脚前超过上下阈值时的连续转换次数。00:一次转换后置位01:两次转换后置位10:四次转换后置位11:禁用比较器并设置 ALERT/RDY 管脚为高阻态(默认值)

THRESH

位	名称	访问类型	复位	描述
15:00	Lo_thresh[15:0]	R/W	8000h	比较器低门限值
15:00	Hi_thresh[15:0]	R/W	7FFFh	比较器高门限值

应用

以下介绍了 CM1103 的典型应用示例,典型连接如图 20 所示。芯片通过 I²C 接口与主机通信。主机在 SCL 管脚上提供时钟信号,数据使用 SDA 管脚传输。主机发送的第一个字节为芯片地址,第二个字节是寄存器地址。主机发送的第三和第四个字节被写入寄存器地址指针位 P[1:0] 所指示的寄存器中。读写操作时序图分别见图 18 和图 19。

以下举例说明如何完成连续转换模式的设置和数据读取:

1. 写入 Config 寄存器

• 第一个字节: 0b10010000(前7位为I²C地址,最后一位R/W置低)

・ 第二个字节: 0b0000001(Config 寄存器地址)

・ 第三个字节: 0b10000100 (Config 寄存器数据的 MSB)

• 第四个字节: 0b10000011 (Config 寄存器数据的 LSB)

2. 切换 Address Pointer 至 Conversion 寄存器

・ 第一个字节: 0b10010000(前7位为 I²C 地址, 最后一位 R/W 置低)

• 第二个字节: 0b00000000(切换至 Conversion 寄存器地址)

3. 读取 Conversion 寄存器

・ 第一个字节: 0b10010001(前7位 I²C 地址, 最后一位 R/W 置高)

第二个字节: 芯片返回 Conversion 寄存器的 MSB第三个字节: 芯片返回 Conversion 寄存器的 LSB

图 20 典型连接

| 封装及订购信息

封装方式

CM1103 采用 MSOP10 和 QFN10 封装。

产品外形图

MSOP10

产品外形图如下图所示。

Comple al	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min Max		Min	Max	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
D1	1.700	1.900	0.067	0.075	
е	0.50(BSC)	0.020	(BSC)	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
E2	1.450	1.650	1.650 0.057		
L	0.400	0.800	0.016	0.028	
L1	0.950	(REF)	0.037(REF)		
L2	0.250	(BSC)	0.010(BSC)		
θ	0°	6°	0° 6°		

QFN10

产品外形图如下图所示。

SIDE VIEW

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS			0.5	0.55	0.6
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.398	
L/F THICKNESS		A3	0.152 REF		
LEAD WIDTH		b	0.15	0.2	0.25
		b1	0.25	0.3	0.35
		b2	0.2	0.25	0.3
BODY SIZE	Χ	D	1.5 BSC		
	Υ	Е		2 BSC	
LEAD PITCH		е	0.5 BSC		
LEAD LENGTH		L	0.3	0.35	0.4
		L1	0.35	0.40	0.45
LEAD TIP TO EXPOSED PAD EDGE		К	0.25 REF		
PACKAGE EDGE TOLERANCE			0.1		
MOLD FLATNESS			0.1		
COPLANARITY			0.05		
LEAD OFFSET				0.1	

订购信息

型号	温度范围	封装	包装
CM1103-SOPTA	-40°C~125°C	MSOP10	Reel
CM1103-QFNTA	-40°C~125°C	QFN10	Reel