Fundamentals of Database Systems Relational Algebra

Arnab Bhattacharya

Dept. of Computer Science and Engineering,
Indian Institute of Technology, Kanpur

NPTEL

https://onlinecourses.nptel.ac.in/noc15_cs14/

July-September, 2015

Relational algebra

- Procedural language to specify database queries
- Operators are functions from one or two input relations to an output relation
 - **1** Select: σ
 - Project: Π
 - Output
 <
 - Set difference: -
 - Cartesian product: ×
 - \bigcirc Rename: ρ
- Uses propositional calculus consisting of expressions connected by
 - and: ^
 - or: V
 - one of the one of
- Each term is of the form

```
<attribute> comparator <attribute/constant> where comparator is one of =, \neq, >, \geq, <, \leq
```

Select

- $\sigma_p(r) = \{t | t \in r \text{ and } p(t)\}$
- p is called the selection predicate
- Select all tuples from r that satisfies the predicate p
- Does not change the schema
- Applying $\sigma_{A=B \wedge D>5}$ on

	Α	В	С	D	
_	1	1	2	7	-
	1	2	5	7	
	2	2	9	3	
	2	2	8	6	
		Α	В	С	D
returns		1	1	2	7
		2	2	8	6

Project

- $\bullet \ \Pi_{A_1,...,A_k}(r)$
- A_i, etc. are attributes of r
- Select only the specified attributes A_1, \ldots, A_k from all tuples of r
- Duplicate rows are removed, since relations are sets
- Changes the schema
- Applying $\Pi_{A,C}$ on

_A		В		C	
	1	1		5	
	1	2		5	
	2	3	3	5	
	2	4	Ļ	8	
			Α		С
_	turn	_	1		5
C	turns	>	2		5
			2		8

Union

- $r \cup s = \{t | t \in r \text{ or } t \in s\}$
- Relations *r* and *s* must have the same *arity* (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Does not change the schema
- ullet Applying \cup on

Α	В		Α	В
1	1 2	and	1 2	2 3
2	I	Α	В	
		1	1	
re	eturn	s 1	2	
		2	1	
		2	3	

Set difference

- $r s = \{t | t \in r \text{ and } t \notin s\}$
- Relations *r* and *s* must have the same *arity* (i.e., number of attributes)
- They must have same *type* of attribute in each column as well, i.e., attribute domains must be *compatible*
- If attribute names are not same, renaming should be used
- Does not change the schema
- Applying on

Cartesian product

- $r \times s = \{t \ q | t \in r \text{ and } q \in s\}$
- Attributes of relations r and s should be disjoint
- If attributes are not disjoint, renaming should be used
- Changes the schema
- Applying × on

	Α	В			С	D	E
-				- امی	1	2	7
	1	1	a	nd	2	6	8
	2	2			5	7	9
			Α	В	С	D	Ε
			1	1	1	2	7
			1	1	2	6	8
re	turn	s	1	1	5	7	9
			2	2	1	2	7
			2	2	2	6	8
			2	2	5	7	9

Rename

- $\rho_N(E)$ returns E, but under the new name N
- For *n*-ary relations, $\rho_{N(A_1,...,A_n)}(E)$ returns the result of expression E, but under the new name N and the attributes renamed to A_1 , etc.
- Changes the schema but does not change the meaning of it
- Applying $\rho_{s(C,D)}$ on r(A,B)

	Α	В	
	1	1	-
	1	2	
	2	3	
	2	4	
		С	D
		1	1
retu	rns	1	2
		2	3
		2	4

Composition of operators

- Expressions can be built using multiple operators
- Applying $\sigma_{A=C}(r \times s)$ on

Α	В	С	D	Ε						
1	1	1	2	7	-					
1	1	2	6	8		Α	В	С	D	Е
1	1	5	7	9	and finally returns	1	1	1	2	7
2	2	1	2	7		2	2	2	6	8
2	2	2	6	8						
2	2	5	7	9						

Banking example

- branch(bname, bcity, assets)
- customer(cname, cstreet, ccity)
- account(ano, bname, bal)
- loan(lno, bname, amt)
- depositor(cname, ano)
- borrower(cname, Ino)

Example queries

- Find all loans of over Rs 100
 - $\sigma_{amt>100}(loan)$
- Find the loan numbers for each loan of over Rs 100
 - $\Pi_{lno}(\sigma_{amt>100}(loan))$
- Find names of all customers having a loan at "IIT" branch
 - $\Pi_{cname}(\sigma_{bname="IIT"}(\sigma_{borrower.lno=loan.lno}(borrower \times loan)))$
 - $\Pi_{cname}(\sigma_{loan.lno=borrower.lno}(\sigma_{bname="IIT"}(loan)) \times borrower)))$
- Find names of all customers having a loan at "IIT" branch but not any account
 - $\Pi_{cname}(\sigma_{bname}="IIT"(\sigma_{borrower.Ino}=loan.Ino}(borrower \times loan))) \Pi_{cname}(depositor)$

Additional operations

- Additional operators have been defined
 - Intersection: ∩
 - ② Join: ⋈
 - Oivision: ÷
 - 4 Assignment: ←
- These do not add any power to the relational algebra
 - They can be defined using the 6 basic operators
- However, they simplify queries

Intersection

- $r \cap s = \{t | t \in r \text{ and } t \in s\}$
- Relations *r* and *s* must have the same *arity* (i.e., number of attributes)
- They must have same *type* of attribute in each column as well, i.e., attribute domains must be *compatible*
- If attribute names are not same, renaming should be used
- Does not change the schema
- Applying ∩ on

returns
$$\frac{A}{1}$$
 $\frac{B}{2}$

$$\bullet$$
 $r \cap s = r - (r - s)$

Join

- $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
- Join is too common a query to not have its own operator
- Has the same schema as $r \times s$ but (potentially) less number of tuples
- The above form is the most general, called the theta join
- Equality join: When the join condition only contains equality
 - $r \bowtie_{B=C} s$
- Natural join: If two relations share an attribute (also its name), equality join on that common attribute
 - Denoted by * or simply ⋈ without any predicate
 - Changes schema by retaining only one copy of common attribute
 - $r * s = r \bowtie s = r \bowtie_{r,A=s,A} s$
- Applying ⋈ on

Α	В		Λ	\sim		Α	В	С
1	1	- - and .	$\frac{1}{4}$	$\stackrel{\circ}{\sim}$	-	1	1	2
1	2	and	1	2	returns	1	2	2
2	1		2	3		2	1	3

Division

- $r \div s = \{t | t \in \Pi_{R-S}(r) \text{ and } \forall u \in s(tu \in r)\}$
- Relation r must have a schema that is a proper superset of the schema of s, i.e., $S \subset R$
- Used for queries of the form "for all"
- Changes the schema to R − S
- Applying ÷ on

Α	В				
1	5	-			
1	6				
1	7		В		Α
2	5	and	5	returns	1
2	6		6		2
3	5				
3	7				
4	5				

Division (contd.)

- It chooses those tuples from r(R S) such that when its Cartesian product is taken with s(S), all the resulting tuples are in r(R)
- $q = r \div s$ is the largest relation satisfying $q \times s \subseteq r$
- Applying ÷ on

	Α	В	С	D						
-	1	5	2	7	_					
	1	5	3	7					Λ	R
	1	6	3	7		С	D			
	2	6	2	7	and	2	7	returns	1	5
	_	U	~	1	anu	_	1	Teturns	2	6
	2	6	3	7		3	7			•
	3	6	2	7					3	6
	J	O	~	1						
	3	6	3	7						
	3	5	3	7						

Assignment

- $s \leftarrow E(r)$ assigns the relation resulting from applying E on r to s
- Useful in complex queries to hold intermediate values
 - Can be used sequentially
- Does not change the schema
- Example
 - $s \leftarrow \Pi_{cname}(\sigma_{bname="IIT"}(\sigma_{borrower.lno=loan.lno}(borrower \times loan)))$
 - $q \leftarrow \Pi_{cname}(depositor)$
 - $r \leftarrow s q$

Banking example

- branch(bname, bcity, assets)
- customer(cname, cstreet, ccity)
- account(ano, bname, bal)
- loan(Ino, bname, amt)
- depositor(cname, ano)
- borrower(cname, Ino)

Example queries

- Find all customers having both a loan and an account
 - $\Pi_{cname}(borrower) \cap \Pi_{cname}(depositor)$
- Find names of all customers having a loan and the corresponding loan amounts
 - $\Pi_{cname.lno.amt}(borrower \bowtie loan)$
- Find all customers who have an account at all branches in "Kanpur"
 - $\Pi_{cname,bname}(depositor \bowtie account) \div \Pi_{bname}(\sigma_{bcity="Kanpur"}(branch))$

Extended relational algebra

- The power of relational algebra can be enhanced by
 - Generalized projection
 - Aggregate operations
 - Outer join

Generalized projection

- Extends project operator by allowing arbitrary arithmetic functions in attribute list
- $\Pi_{F_1,...,F_k}(E)$
- F_i, etc. are arithmetic expressions involving constants and attributes in schema of E
- Applying $\Pi_{B-A,C}$ on r

Aggregate operations

- Aggregate functions that can be used are avg, min, max, sum, count
- Can be applied on groups of tuples as well
- Aggregate operation is of the form $G_1,...,G_k \mathcal{G}_{F_1(A_1),...,F_n(A_n)}(E)$ where
 - G_1, \ldots, G_k is the list of attributes on which to group (may be empty)
 - Each F_i is an aggregate function that operates on the attribute A_i
- Applying $G_{sum(C)}$ on r

Α	В	С		
1	1	5	-	sum(C)
1	2	5	returns	23
2	3	5		23
2	4	8		

Aggregate operations (contd.)

- First, the tuples are grouped according to G_1, \ldots, G_k
- Then, aggregate functions $F_1(A_1), \ldots, F_n(A_n)$ are applied on each group
- Schema changes to $(G_1, \ldots, G_k, F_1(A_1), \ldots, F_n(A_n))$
- Applying ${}_{A}\mathcal{G}_{sum(C)}$ on r

Α	В	С			
1	1	5	=	Α	sum(C)
1	2	5	returns	1	10
2	3	5		2	13
2	4	8			

Outer join

- Extension of the join to retain more information
- Computes join and then adds tuples to result that do not match
- Requires use of null values
- Left outer join $r \bowtie_{\theta} s$ retains *every* tuple from left or first relation
 - If no matching tuple is found in right or second relation, values are padded with *null*
- Right outer join $r \bowtie_{\theta} s$ is defined analogously
- Full outer join $r \Rightarrow \neg_{\theta} s$ retains all tuples from both relations
 - Non-matching fields are filled with null values
- Consequently, ordinary join is sometimes called inner join
- "Outer" word is sometimes dropped from join yielding left join, right join and full join
- When no θ condition is specified, it is natural outer join

Outer join examples

3

9

null

9

Outer join examples (contd.)

Null values

- Null denotes an unknown or missing value
- Arithmetic expressions involving null evaluate to null
- Aggregate functions ignore null
- Duplicate elimination and grouping treats null as any other value, i.e., two null values are same
 - null = null evaluates to true

Null values (contd.)

- Comparison with null otherwise returns unknown, not false
- If false is used, consider two expressions not(A < 5) and $A \ge 5$ and when attribute contains null
 - They will not be the same
- Three-valued logic with unknown
 - Or
 - unknown or true = true
 - unknown or false = unknown
 - unknown or unknown = unknown
 - And
 - unknown and true = unknown
 - unknown and false = false
 - unknown and unknown = unknown
 - Not
 - not unknown = unknown
- Select operation treats unknown as false

Database modification

- Contents of a database may be modified by
 - Deletion
 - Insertion
 - Updating
- Assignment operator is used to express these operations

Deletion

- r ← r E deletes tuples in the result set of the query E from the relation r
- Only whole tuples can be deleted, not some attributes
- Applying $r \leftarrow r \sigma_{A=1}(r)$ on

Α	В	С				
1	1	5	-	Α	В	С
1	2	5	returns	2	3	5
2	3	5		2	4	8
2	4	8				

Insertion

- r ← r ∪ E inserts tuples in the result set of the query E into the relation r
- Only whole tuples can be inserted, not some attributes
- If a specific tuple needs to be inserted, E is specified as a relation containing only that tuple
- Applying $r \leftarrow r \cup \{(1, 2, 5)\}$ on

Α	R	С		Α	В	С
			-	1	1	5
1	1	5				•
2	3	5	returns	2	3	5
_	J	5		2	4	8
2	4	8		-		_
		_		1	2	5

Updating

- Updates allow values of only some attributes to change
- $r \leftarrow \Pi_{F_1,...,F_n}(r)$ where each F_i is
 - Either the ith attribute of r if it is not to be changed
 - Or the result of the expression F_i involving constants and attributes resulting in the new value of the *i*th attribute
- Applying $r \leftarrow \Pi_{A,2*B,C}(r)$ on

• Applying $r \leftarrow \Pi_{A,2*B,C}(\sigma_{A=1}(r))$ on

Α	В	С		Λ	В	С
1	2	5	returns	$\overline{}$	ט	U
•	_	_		1	4	5
1	1	5		Ċ		_
_	4	^		1	2	5
2	4	8				

Integrity constraints violations

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate
 - Referential integrity: If a foreign key is inserted, the corresponding primary referenced key must be present
 - Should be restricted
 - Domain constraint: Value is outside the domain
 - Should be restricted or domain updated
 - Key constraint: If an insertion violates the property of being a key
 - Should be restricted or design modified
 - Entity integrity: If the primary key of the inserted tuple is null
 - Should be restricted
- Updating may violate
 - Referential integrity
 - Domain constraint
 - Key constraint
 - Entity integrity

Drawbacks of relational algebra

- First-order propositional logic
- Do not support recursive closure operations
 - Find supervisors of A at all levels
- Needs specifying multiple queries, each solving only one level at a time