```
[ 0.16666667 1.
                     0.25
                               0.25
                                         0.125
                                                 1
[ 0.16666667 1.
                     0.25
                               0.25
                                         0.125
```

Looking at the execution time for our big array, we see that it completes orders of magnitude faster than the Python loop:

```
In[4]: %timeit (1.0 / big array)
100 loops, best of 3: 4.6 ms per loop
```

Vectorized operations in NumPy are implemented via *ufuncs*, whose main purpose is to quickly execute repeated operations on values in NumPy arrays. Ufuncs are extremely flexible—before we saw an operation between a scalar and an array, but we can also operate between two arrays:

```
In[5]: np.arange(5) / np.arange(1, 6)
Out[5]: array([ 0.
                       . 0.5
                                . 0.66666667, 0.75
                                                           . 0.8
                                                                       1)
```

And ufunc operations are not limited to one-dimensional arrays—they can act on multidimensional arrays as well:

```
In[6]: x = np.arange(9).reshape((3, 3))
Out[6]: array([[ 1, 2, 4],
              [ 8, 16, 32],
              [ 64, 128, 256]])
```

Computations using vectorization through ufuncs are nearly always more efficient than their counterpart implemented through Python loops, especially as the arrays grow in size. Any time you see such a loop in a Python script, you should consider whether it can be replaced with a vectorized expression.

Exploring NumPy's UFuncs

Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary ufuncs, which operate on two inputs. We'll see examples of both these types of functions here.

Array arithmetic

NumPy's ufuncs feel very natural to use because they make use of Python's native arithmetic operators. The standard addition, subtraction, multiplication, and division can all be used:

```
In[7]: x = np.arange(4)
       print("x =", x)
       print("x + 5 = ", x + 5)
      print("x - 5 =", x - 5)
      print("x * 2 =", x * 2)
```

```
print("x / 2 =", x / 2)
      print("x // 2 =", x // 2) # floor division
     = [0 1 2 3]
x + 5 = [5 6 7 8]
x - 5 = [-5 -4 -3 -2]
x * 2 = [0 2 4 6]
x / 2 = [0. 0.5 1. 1.5]
x // 2 = [0 0 1 1]
```

There is also a unary ufunc for negation, a ** operator for exponentiation, and a % operator for modulus:

```
In[8]: print("-x = ", -x)
      print("x ** 2 = ", x ** 2)
      print("x % 2 = ", x % 2)
-x = [0 -1 -2 -3]
x ** 2 = [0 1 4 9]
x \% 2 = [0 1 0 1]
```

In addition, these can be strung together however you wish, and the standard order of operations is respected:

```
In[9]: -(0.5*x + 1) ** 2
Out[9]: array([-1. , -2.25, -4. , -6.25])
```

All of these arithmetic operations are simply convenient wrappers around specific functions built into NumPy; for example, the + operator is a wrapper for the add function:

```
In[10]: np.add(x, 2)
Out[10]: array([2, 3, 4, 5])
```

Table 2-2 lists the arithmetic operators implemented in NumPy.

Table 2-2. Arithmetic operators implemented in NumPy

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., $1 + 1 = 2$)
-	np.subtract	Subtraction (e.g., $3 - 2 = 1$)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., 3 / 2 = 1.5)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., $2 ** 3 = 8$)
%	np.mod	Modulus/remainder (e.g., 9 % 4 = 1)

Additionally there are Boolean/bitwise operators; we will explore these in "Comparisons, Masks, and Boolean Logic" on page 70.

Absolute value

Just as NumPy understands Python's built-in arithmetic operators, it also understands Python's built-in absolute value function:

```
In[11]: x = np.array([-2, -1, 0, 1, 2])
        abs(x)
Out[11]: array([2, 1, 0, 1, 2])
```

The corresponding NumPy ufunc is np.absolute, which is also available under the alias np.abs:

```
In[12]: np.absolute(x)
Out[12]: array([2, 1, 0, 1, 2])
In[13]: np.abs(x)
Out[13]: array([2, 1, 0, 1, 2])
```

This ufunc can also handle complex data, in which the absolute value returns the magnitude:

```
In[14]: x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
       np.abs(x)
Out[14]: array([ 5., 5., 2., 1.])
```

Trigonometric functions

NumPy provides a large number of useful ufuncs, and some of the most useful for the data scientist are the trigonometric functions. We'll start by defining an array of angles:

```
In[15]: theta = np.linspace(0, np.pi, 3)
```

Now we can compute some trigonometric functions on these values:

```
In[16]: print("theta = ", theta)
       print("sin(theta) = ", np.sin(theta))
       print("cos(theta) = ", np.cos(theta))
       print("tan(theta) = ", np.tan(theta))
         = [0.
                          1.57079633 3.14159265]
sin(theta) = [ 0.00000000e+00 1.00000000e+00 1.22464680e-16]
cos(theta) = [ 1.00000000e+00 6.12323400e-17 -1.00000000e+00]
tan(theta) = [ 0.00000000e+00 1.63312394e+16 -1.22464680e-16]
```

The values are computed to within machine precision, which is why values that should be zero do not always hit exactly zero. Inverse trigonometric functions are also available:

```
In[17]: x = [-1, 0, 1]
               = ", x)
       print("x
       print("arcsin(x) = ", np.arcsin(x))
       print("arccos(x) = ", np.arccos(x))
       print("arctan(x) = ", np.arctan(x))
        = [-1, 0, 1]
arcsin(x) = [-1.57079633 0. 1.57079633]
arccos(x) = [ 3.14159265 1.57079633 0. ]
arctan(x) = [-0.78539816 \ 0. \ 0.78539816]
```

Exponents and logarithms

Another common type of operation available in a NumPy ufunc are the exponentials:

```
In[18]: x = [1, 2, 3]
        print("x =", x)
        print("e^x =", np.exp(x))
        print("2^x =", np.exp2(x))
        print("3^x =", np.power(3, x))
     = [1, 2, 3]
e^x = \begin{bmatrix} 2.71828183 & 7.3890561 & 20.08553692 \end{bmatrix}
    = [ 2. 4. 8.]
3^x = [3 \ 9 \ 27]
```

The inverse of the exponentials, the logarithms, are also available. The basic np.log gives the natural logarithm; if you prefer to compute the base-2 logarithm or the base-10 logarithm, these are available as well:

```
In[19]: x = [1, 2, 4, 10]
      print("x =", x)
      print("ln(x) =", np.log(x))
      print("log2(x) =", np.log2(x))
      print("log10(x) =", np.log10(x))
   = [1, 2, 4, 10]
ln(x) = [ 0. 0.69314718 1.38629436 2.30258509]
log2(x) = [0.
                   1. 2. 3.32192809]
log10(x) = [0.
                   0.30103 0.60205999 1.
```

There are also some specialized versions that are useful for maintaining precision with very small input:

```
In[20]: x = [0, 0.001, 0.01, 0.1]
        print("exp(x) - 1 = ", np.expm1(x))
        print("log(1 + x) = ", np.log1p(x))
\exp(x) - 1 = [0.
                           0.0010005
                                       0.01005017 0.10517092]
\log(1 + x) = [0.
                           0.0009995
                                       0.00995033 0.09531018]
```

When x is very small, these functions give more precise values than if the raw np.log or np.exp were used.

Specialized ufuncs

NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise arithmetic, comparison operators, conversions from radians to degrees, rounding and remainders, and much more. A look through the NumPy documentation reveals a lot of interesting functionality.

Another excellent source for more specialized and obscure ufuncs is the submodule scipy.special. If you want to compute some obscure mathematical function on your data, chances are it is implemented in scipy. special. There are far too many functions to list them all, but the following snippet shows a couple that might come up in a statistics context:

```
In[21]: from scipy import special
In[22]: # Gamma functions (generalized factorials) and related functions
       x = [1, 5, 10]
       print("gamma(x)
                       =", special.gamma(x))
       print("ln|gamma(x)| =", special.gammaln(x))
       print("beta(x, 2) =", special.beta(x, 2))
gamma(x)
         = [ 1.00000000e+00 2.40000000e+01 3.62880000e+05]
ln|gamma(x)| = [0. 3.17805383 12.80182748]
In[23]: # Error function (integral of Gaussian)
       # its complement, and its inverse
       x = np.array([0, 0.3, 0.7, 1.0])
       print("erf(x) =", special.erf(x))
print("erfc(x) =", special.erfc(x))
       print("erfinv(x) =", special.erfinv(x))
erf(x) = [0.
                    0.32862676 0.67780119 0.84270079]
erfc(x) = [1.
                    0.67137324 0.32219881 0.15729921]
erfinv(x) = \begin{bmatrix} 0. & 0.27246271 & 0.73286908 \end{bmatrix}
```

There are many, many more ufuncs available in both NumPy and scipy.special. Because the documentation of these packages is available online, a web search along the lines of "gamma function python" will generally find the relevant information.

Advanced Ufunc Features

Many NumPy users make use of ufuncs without ever learning their full set of features. We'll outline a few specialized features of usuncs here.

Specifying output

For large calculations, it is sometimes useful to be able to specify the array where the result of the calculation will be stored. Rather than creating a temporary array, you can use this to write computation results directly to the memory location where you'd