Week 6 Meeting

2357351G - MSci Half Project

What I've done this week

- Updated Spectrogram-VAE model to take joint input-target audio pairs, stacked across channels.
- Trained Joint-Spectrogram VAE on VTCK dataset with Delay and Overdrive DAFX (fixed settings for each DAFX).
- Created visualisations for trained model including interpolation of latent space.
- Started implementation of simple end-to-end system, without bottleneck.
 - Ran short training session, had some issues with predicting correct settings with dummy values will look more into this next week.

Projection of latent embeddings

Spectrogram Reconstruction (Overdrive)

mda Overdrive

Spectrogram Reconstruction (Delay)

Interpolation (same audio, different FX)

Interpolating between Delay and Overdrive, same Audio source

Interpolation (different audio, same FX)

Interpolating between two different audio sources, Overdrive applied to each

Questions

Now that I have a simple trained Spectrogram-VAE - I'm wondering about the best method to map this down to a low dimensional (2-8D) latent space that can be 'played with' to find similar parameter settings. Would UMAP work, or should I have another bottleneck in a linear network and use similar sampling/KLD as in the autoencoder before mapping to parameter settings?

Plan for next week

- Debug end-to-end system.
- Run training on end-to-end system without bottleneck.
- Implement latent bottleneck for controller network.

Where I am in schedule

- Spectrogram VAE looks like it is performing a little better, should hopefully unblock me for the moment so I can work on the controller network.
- Hopefully end-to-end system should cause fewer issues with sensible embeddings.