4. Условия за колинеарност и компланарност на вектори

Дефиниция.1: Казваме, че векторът **a** е колинеарен на правата l, ако **a** има представител \overrightarrow{AB} , който лежи на l.

Друга еквивалентна дефиниция е: всеки представител на ${\bf a}$ да е успореден на l (пишем ${\bf a}\|l).$

Дефиниция.2: Казваме, че векторите $a_1, a_2, ..., a_n$ са колинеарни ако съществува права l, която е колинеарна с всеки един от тях (пишем $a_1 || a_2 || ... || a_n$).

Дефиниция.3: Казваме, че векторът **a** е компланарен с равнината π , ако **a** има представител \overrightarrow{AB} , който лежи в π .

Еквивалентна дефиниция е: всеки представител на \mathbf{a} да е успореден на π (пишем $\mathbf{a} \| \pi$).

Дефиниция.4: Казваме, че векторите $a_1, a_2, ..., a_n$ са компланарни, ако съществува равнина, която е компланарна с всеки един от тях.

Дефиниция.5: Ъгъл между два ненулеви вектора **a**, **b** е ъгълът между произволни техни представители с общо начало.

Ще покажем, че дефиницията е коректна. Ако $\overrightarrow{AB} = \overrightarrow{A'B'} = \mathbf{a}$ и $\overrightarrow{CD} = \overrightarrow{C'D'} = \mathbf{b}$. Тогава $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{A'B'}$ и $\overrightarrow{CD} \uparrow \uparrow \overrightarrow{C'D'}$. Следователно $\angle(\overrightarrow{AB}, \overrightarrow{CD}) = \angle(\overrightarrow{A'B'}, \overrightarrow{C'D'})$.

Теорема. 1: Нека **a**, **b** са вектори и $\mathbf{a}\neq 0$. Тогава **a** и **b** са колинеарни, тогава и само тогава, когато съществува единствено число $\lambda \in \mathbb{R}$, такова че $\mathbf{b}=\lambda \mathbf{a}$. Доказателство:

 \Leftarrow) Нека $\mathbf{b}{=}\lambda\mathbf{a}$. От дефинницията за умножение на вектор с число следва $\mathbf{a}\|\mathbf{b}$.

Също така имаме $|\mathbf{b}| = |\lambda||\mathbf{a}| \Rightarrow |\lambda| = \frac{|\mathbf{b}|}{|\mathbf{a}|}$.

Ако $\mathbf{b}=0$, то $\lambda=0$. Ако $\mathbf{b}\neq 0$ и $\mathbf{b}\uparrow\uparrow \mathbf{a}$, то $\lambda>0$. Ако $\mathbf{b}\neq 0$ и $\mathbf{b}\uparrow\downarrow \mathbf{a}$, то $\lambda<0$. Следователно λ е единствено.

 \Rightarrow) Heka $\mathbf{a} \parallel \mathbf{b}$.

$$\lambda = \begin{cases} 0, & \text{ako } \mathbf{b} = 0. \\ \frac{|\mathbf{b}|}{|\mathbf{a}|}, & \text{ako } \mathbf{b} \neq 0 \text{ m } \mathbf{b} \uparrow \uparrow \mathbf{a}. \\ -\frac{|\mathbf{b}|}{|\mathbf{a}|}, & \text{ako } \mathbf{b} \neq 0 \text{ m } \mathbf{b} \uparrow \downarrow \mathbf{a}. \end{cases}$$
(1)

Тогава, ако $\mathbf{b}=0$, то $\lambda=0$ и $\mathbf{b}=\lambda \mathbf{a}$.

Ако $\mathbf{b} \neq 0$, то $|\mathbf{b}| = |\lambda||\mathbf{a}|$ и при $\lambda > 0 \Rightarrow \mathbf{b} \uparrow \uparrow \mathbf{a}$, при $\lambda < 0 \Rightarrow \mathbf{b} \uparrow \downarrow \mathbf{a}$.

Следнте твърдения следват от горната теорема:

Следствие. 1: Два вектора са линейно зависими, точно когато са колинеарни.

Следствие. 2: Векторите, колинеарни с дадена права, образуват едномерно реално линейно пространство.

Теорема.2: Нека **a**, **b**, **c** са вектори, като **a** и **b** са неколинеарни. Тогава **a**, **b**, **c** са компланарни, тогава и само тогава, когато съществуват единствени числа λ и $\mu \in \mathbb{R}$, такива че $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$.

 \Leftarrow) Нека $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$. Нека $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$.

От следствие. 1 следва, че ${\bf a}$ и ${\bf b}$ са линейно независими. Ако един вектор е представен като линейна комбинация на линейно независими вектори, то коефициентите са еднозначно определени. ${\bf c}$ е изразен чрез линейна комбинация на векторите ${\bf a}$ и ${\bf b}$, следователно λ и μ са единствени.

⇒) Нека **a,b,c** са компланарни.

Нека т.O е произволна точка, $\overrightarrow{OA}={\bf a},$ $\overrightarrow{OB}={\bf b},$ $\overrightarrow{OC}={\bf c}.$ Оттук следва ,че O,A,B,C лежат в една равнина.

Нека A' е пресечната точка на правата минаваща през т.C, успоредна е на OB и пресича правата OA, а B' е пресечната точка на правата минаваща през C, успоредна е на OA и пресича правата OB.

 $\mathbf{a'}=\overrightarrow{OA'}$ е колинеарен с $\mathbf{a}=\mathbf{OA}$ и от Теорема.1 следва, че съществува $\lambda \in \mathbb{R}$, такова че $\mathbf{a'}=\lambda\mathbf{a}$. $\mathbf{b'}=\overrightarrow{OB'}$ е колинеарен с $\mathbf{b}=\mathbf{OB}$ и от Теорема.1 следва, че съществува $\mu \in \mathbb{R}$, такова че $\mathbf{b'}=\mu\mathbf{b}$.

Оттук следва $\mathbf{c} = \mathbf{a'} + \mathbf{b'} = \lambda \mathbf{a} + \mu \mathbf{b}$.

Следствие.3: Три вектора в пространството са компланарни, тогава и само тогава, когато са линейно зависими.

 ${\it Cnedcmbue.4:}\ {\it Beкторите},\ {\it компланарни}\ {\it c}\ {\it дадена}\ {\it pавнина},\ {\it образуват}\ {\it двумерно}\ {\it реално}$ линейно пространство.

Теорема.3: Нека **a,b,c** са некомпланарни вектори. Тогава за всеки вектор **d** съществуват единствени числа $\lambda, \mu, \nu \in \mathbb{R}$, такива че $\mathbf{d} = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}$.

Доказателство:

 \overrightarrow{OA} е произволна точка, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, $\overrightarrow{OD} = \mathbf{d}$.

Нека т.E е пресечната точка на правата l с равнината OAB, минаваща през т.D и е успоредна на OC.

Нека $d_1 = \overrightarrow{OE}$ и $d_2 = \overrightarrow{ED}$. d_1 е компланарен с ${\bf a}$ и] ${\bf b}$. По Теорема.2 следва, че съществуват

 $\lambda, \mu \in \mathbb{R}$, такива че $d_1 = \lambda \mathbf{a} + \mu \mathbf{b}$.

 d_2 е колинеарен с **c**. По Теорема.1 следва че съществува $\nu \in \mathbb{R}$, такова че $d_2 = \nu \mathbf{c}$. Следователно $\overrightarrow{OE} + \overrightarrow{ED} = \overrightarrow{OD} = \mathbf{d} = d_1 + d_2 = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}$.

От следствие.3 следва, че **a,b,c**, са линейно независими. **b** е тяхна линейна комбинация, следователно, λ, μ, ν са единствени.

Следствие. 5: Всеки четири вектора в пространтсвото са линейно зависими.

Следствие. 6: Векторите в пространството образуват тримерно реално линейно пространство.