Input file ftmzb48h10; Output File ftmzb48h10.pat
Sequence length 3637

GTC	GACC	CACC	CGT	CCGC#	CTC	ACAA	ATGCC	TGC	CCTC	тстс	ACTO	CAC	GTC	CCGC	ccc	CTG	CCGC	CCC	GCGCC	79
CAA	GCCA	AGTO	GAGO	CGGG	GCG1	TGCC	CACC	GACC	GCAC	AGCC	CTTC	GGC	cccc	CCGGC	SACC	AGGA	GTG/	AGCC	GCGCG	158
~~~	B C B C	CTCC	vava	<b>v:c</b> rc	YC C C C	YZ:TV-T	YENGO	eccc	YCCN	CCTC	cccc	YGCAG	ירכככ	cccc	'C'GAG	M YTA:	H	S	P C CCG	4
																				233
P CCT	_	L CTC	L CTG	A GCG	L CTG	W TGG				V GTG			A GCA		A GCG	R CGC	G GGG	G GGC	S AGC	24 293
D GAC	P	Q	P	G GGC	P	G GGG	R CGT	P	A	C	P	A	P	C TGC	H	C	Q CAG	E	D GAC	44 353
														v	v					
G GGC	I ATC	M ATG	L CTG	S TCC	A GCT	D GAC	C TGC	S TCC	E GAG	L CTC	G GGG	CTC	S TCA		-	P	A GCG	GAC	CTG	64 413
D	P	L	т	A	Y	L	D	L	s	M	N	N	L	T	E	L	Q	P	G	84
GAC	CCC	CTG	ACG	GCT	TAC	CTA	GAC	CTC	AGT	ATG	AAC	AAC	Crc	ACG	GAG	CIT	CAG	CCG	GGT	473
L CTC	F TTC		H CAC	L CTG	R CGC	F TTC	L CTG	E GAG	E GAG	L CTG	R CGG	L CTC	S TCA	G GGG	N AAC	H CAC	L CTC	S TCA	H CAC	104 533
I	P	G	0	A	F	s	G	L	н	S	L	к	I	L	~ M	L	Q	s	N	124
									CAC					CTA	ATG	CTG		AGC	AAC	593
Q	L	R	G	I	P	A	E	A	L	W	E	L	P	s	L	Q	s	L	R	144
CAG	CTC	CGT	GGG	ATC	CCA	GCA	GAG	GCA	CTA	TGG	GAG	CTG	CCC	AGC	CTG	CAG	TCG	CTG	CGC	653
L	D	A	N	L	I	S	L	V	P	E	R	S	F	E	G	L	S	\$ <b>ma</b> c	L	164
CIA	GAT	GCT	AAT	Crc	ATC	TCC	CIG	GIC	CCT	GAG	AGA	AGC	111	GAG	GGG	CIC	100	TCC	Crc	713
R CGC	·H CAC	L CTC	W TGG	L CTG	D GAT	D GAC	N AAT		L CTC	T ACT	E GAG	I ATC	P CCC	V GTC	R AGA	A GCT	L CTC	N AAC	N AAC	184 773
_																				
L CTT	P	A GCC	L CTA	Q CAG	A GCC	M ATG	T ACC	L TTG	A GCT	L CTC	N AAC	H CAT	I ATC	R CGC	H CAC	I ATC	P CCT	D GAC	Y TAT	204 833
A	F	0	N	L	т	s	L	v	v	L	н	L	н	N	N	R	Ι.	Q	н	224
									GTG											893
v	G	T	н	s	F	E	G	L	н	N	L	E	T	L	D	L	N	Y	N	244
GTG	GGG	ACC	CAC	AGC	TTC	GAG	GGG	CTG	CAC	AAT	CTG	GAG	ACA	CTA.	GAC	CTG	AAC	TAT	AAT	953
E	L	Q	E	F	P	L	A	I	R	T	L	G	R	L	Q	E	L	G	F	264
GAG	CIG	CAG	GAG	TTC	ccc	TIG	GCT	ATC	CGG	ACC	CIG	GGC	AGG	CIG	CAG	GAA	TIG	GGT	TTC	1013
H CAT									E GAG			F TTC						L CTG	Q CAG	284 1073
									Q CAG											304 1133
s	ĸ	L	н	т	L	s	L	N	G	A	т	D	I	Q	E	F	P	Ð	L	324
TCT	AAA	CTG	CAT	ACG	CTA	TCT	TTG	AAT	GGT	GCC	ACT	GAT	ATC	CAA	GAG	TTC	CCA	GAC	CTC	1193
	G				L				T			R		G		R	L		P	344
AAA	GGC	ACC	ACT	AGC	CTG	GAG	ATC	CTG	ACC	CTG	ACC	CGT	GCG	GGC	ATC	AGA	CTG	CTC	CCA	1253

Figure 1

E S R L R I L н CCG GGA GTG TGC CAA CAG CTG CCT AGG CTC CGA ATC CTG GAG CTG TCT CAT AAT CAG ATC С Q K L E I Н R E G 384 GAG GAG TTA CCC AGC CTG CAC AGA TGT CAG AAG CTG GAG GAA ATT GGC CTC CGA CAT AAC 1373 S Q E I G D F А Т L S G L 404 AGG ATC AAG GAA ATT GGT GCA GAT ACC TTC AGC CAG CTG GGC TCC TTG CAA GCT TTA GAC A I H P E A F S T L R S 424 CTG AGT TGG AAT GCC ATC CGT GCC ATC CAC CCT GAG GCT TTC TCA ACC CTT CGA TCC TTG N Q L т т P L 444 GTT AAG CTG GAC CTG ACT GAC AAC CAG CTG ACC ACA CTG CCC CTG GCT GGG CTG GGA GGC 1553 LKGN LALS 0 А 464 CTG ATG CAC CTG AAG CTC AAA GGG AAC TTG GCC CTG TCT CAG GCC TTC TCC AAG GAC AGT R I L E V P Y Y 0 484 TTC CCA AAA CTG AGG ATC CTG GAG GTG CCC TAC GCC TAC CAG TGC TGT GCC TAC GGC ATC 1673 K Т S G O* W Q А E D F н TGT GCC AGC TTC TTC AAG ACC TCT GGG CAG TGG CAG GCC GAG GAC TTT CAT CCA GAA GAA P L G L L Α G Q 524 GAG GAG GCA CCA AAG AGG CCC CTG GGT CTC CTT GCT GGA CAA GCT GAG AAC CAC TAT GAC Т М G E ם K P S N CTA GAC CTG GAT GAG CTC CAG ATG GGG ACA GAG GAC TCA AAG CCA AAC CCC AGT GTC CAG 1853 v G P F K P C E н L 564 TGC AGC CCT GTT CCA GGC CCC TTC AAG CCC TGC GAG CAC CTC TTT GAG AGC TGG GGC ATC 1913 L L S C L N G L 584 CGC CTT GCT GTG TGG GCC ATC GTG CTC TCC GTA CTC TGT AAC GGG CTG GTG CTG A S G P S P L S P V K 604 ACA GTC TTT GCC AGC GGA CCC AGC CCG CTG TCC CCC GTC AAG CTT GTG GTG GGT GCG ATG 2033 GISCGLLA 624 GCA GGC GCC AAC GCC CTG ACG GGC ATT TCC TGT GGT CTC CTG GCC TCT GTG GAC GCC TTG 2093 A E Y G A R W E S G L ACC TAT GGT CAG TTC GCT GAG TAT GGA GCC CGC TGG GAG AGC GGT CTG GGC TGC CAG GCT E S L L 664 ACG GGC TTC CTG GCT GTC CTG GGT TCA GAG GCG TCG GTG CTG CTC ACA CTG GCG GCC т C R A Y G ĸ GTG CAG TGC AGC ATC TCT GTG ACC TGC GTC CGA GCC TAC GGG AAG GCG CCG TCG CCT GGC 2273 С G L Α L Α G Α A 704 AGC GTC CGC GCA GGC GCA CTG GGA TGC CTG GCG CTG GCC GGG CTG GCC GCA GCA CTG CCG 2333 G Y E G A S L L 724 CTG GCC TCG GTG GGA GAG TAT GGC GCC TCC CCA CTC TGC CTG CCC TAC GCC CCA CCC GAG G V A L v M N S L С 744 GGC CGG CCG GCC CTG GGC TTC GCT GTA GCC CTG GTG ATG ATG AAC TCG CTC TGC TTC 2453

## Figure 1 (Cont'd)

L	v	v	A	G	A	Y	1	к	L	Y	С	D	L	Р	R	G	D	<b>'</b> F'	E	76
CTC	GTG	GTG	GCC	GGC	GCC	TAC	ATC	AAG	CTC	TAC	TG	r GA	CTC	CC.	A CGC	GG:	r ga	c Tr	r GAG	251
A	v	W	D	С	A	M	v	R	н	v				I		A		G		78
GCC	GTG	TGG	GAC	TGC	GCC	ATG	GTG	CGC	CAC	GTG	GCC	TGG	CTC	ATC	TTI	GC	A GA:	r GG(	CTC	257
_	Y	_		v	A	F		S	F			M	L	G	L	F		v	T	80
CTC	TAC	TGC	CCC	GTG	GCC	TTC	CTC	AGC	TTT	GCC	TCC	: ATG	CTG	GGC	CTC	TTC	cca	GTC	ACC	263
P	E	A	V	K	S	V	L	L		v			L	P			L	N	P	824
ccc	GAG	GCT	GTC	AAG	TCA	GTC	CTT	CTG	GTG	GTG	CTG	CCI	CTG	CCT	GCC	TGC	CTC	: AAC	CCA	2693
L	L	Y	L	L	F	N	P	H	F	R	D	D	L	R	R	L	W	P	s	844
CTG	CTC	TAC	CTG	CTC	TTC	AAC	CCT	CAC	TTC	CGG	GAT	GAC	CTT	CGG	CGG	CTC	TGG	CCA	AGC	2753
P	R	s	P	G			A			A				L	E	K	s	s	С	864
CCT	CGG	TCC	CCA	GGG	CCC	CTA	GCC	TAC	GCT	GCA	GCC	GGT	GAG	CTG	GAG	AAG	AGC	TCC	TGC	2813
D	s	T	Q		L			F	s	D		D	L	I	L	E	A	s	E	884
GAC	TCC	ACC	CAA	GCG	CTG	GTG	GCT	TTC	TCA	GAT	GTG	GAT	CTT	ATT	CTG	GAA	GCT	TCT	GAG	2873
A	G	_	P		-	_						P		v		L		s	R	904
GCT	GGG	CAG	CCT	CCT	GGG	CTA	GAG	ACC	TAT	GGC	TTC	CCT	TCA	GTG	ACC	CTC	ATC	TCC	CGA	2933
Н	Q	P	G	A	T	R	L	E	G	N	н	F	I	E ·		D	G	T	ĸ	924
CAT	CAG	CCG	GGG	GCC	ACC	AGG	CTG	GAG	GGA	AAC	CAT	TTT	ATA	GAG	TCT	GAT	GGA	ACC	AAG	2993
F	-	N					M						L	K	A	E	G.	A		944
TTT	GGG	AAC	CCA	CAA	CCT	CCC	ATG	AAG	GGA	GAA	CTG	CTG	CTG	AAG	GCA	GAG	GGA	GCC	ACT	3053
L				G						A		W						F	A	964
116	GCA	GGC	IGT	GGC	TCT	TCC	GTG	GGT	GGA	GCC	CTC	TGG	ccc	TCT	GGC	TCT	CTC	TTT	GCC	3113
s	H	L	*																	968
TCT	CAC	TTG '	TAA																	3125
ATAT	CCCT	CTCI	GTTT	GTCC	TCTC	CCCA	TCCA	ATGA	TGGC	TGCT	TATA	AAAG	AAAG	ACAA	CTCC	AACT	CCAT	AGCA	AGA	3204
TGGC	CAAC	ACCT	CTGA	CTCC	ATTG	TTCT	CTCT	CCAC	GACC	CCTA	ACCA	ATGA	GTGC	TTCC	aagt	CTTG	CTTT	GTCT	TGG	3283
CCTT	CAGC	TTCA	CTTT	CACC	CTGG	GCCT	TCTC	IGTC	CAAT	CCAA	TACT	TCTG	ACAG.	AGGC	CTGG	GAAA	TTTG	CATA	GGA	3362
GAAA	<b>GGA</b> G.	AAAA	GCAA	AAGA	CAGT	gaag	GTTA	PTGG	GCCC	TGAC	agag	CCAT	GATC	AGTA	agtg	CAGA	GTGA	TGGG	GAG	3441
<b>GTCT</b>	CACA	GAGCI	ATGA	CACT	GGAA	GACA	ACTA	CCAA	AGAC	ATTG	GAGA	GTCT	cccc	rg tg	ACAT!	ATAG	AATA	TAAA	ATG	3520
IGTT	CTGC	GTTC	CATT	AATC	TTGA	CCTA	TGCT	SNGC	CAAA	GTGC	TTCC	TGTT.	AAAA'	TACA	CTTT	GGAA	GACA	TTGA	AAA	3599
AAAA	AAAA	AAAA	LAAAA	AAAA	AAAA	AAAA	GGGC	GCC	3C											3637

## Figure 1 (Cont'd)

ftmzb048h1

```
LRR: domain 1 of 8, from 67 to 114: score 46.0, E = 8.1e-10
           *->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<-*
             +LdLs N+Lt+i pg++++L+ LeeL Ls+N+L+++p ++f++L+
  ftmzb048h1
          67 LTAYLDLSMNNLTELQPGLFHHLRFLEELRLSGNHLSHIPGQAFSGLH 114
LRR: domain 2 of 8, from 115 to 162: score 42.2, E = 1.2e-08
          *->nLeeLdLsnNkLtsippgalsnLpnLeeLdLsnNnLtsippglfqnLk<-*
            +L+ L L+ N+L+++p++ai+ Lp+L++L L+ N ++ +p+++f++L+
 ftmzb048h1
      115 SLKILMLQSNQLRGIPAEALWELPSLQSLRLDANLISLVPERSFEGLS 162
LRR: domain 3 of 8, from 163 to 210: score 49.5, E = 7.7e-11
          *->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<-*
            +L++L+L++N Lt++p al+nLp L+ L N++++p+++fqnL+
 ftmzb048h1
      163 SLRHLWLDDNALTEIPVRALNNLPALQAMTLALNHIRHIPDYAFQNLT 210
LRR: domain 4 of 8, from 211 to 257: score 39.5, E = 7.4e-08
          *->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnL k<-*
            +L +L+L nN+++++ +++++L+nLe+LdL++N+L+++p + + L+ _
 ftmzb048h1
      211 SLVVLHLHNNRIQHVGTHSFEGLHNLETLDLNYNELQEFPL-AIRTLG 257
LRR: domain 5 of 8, from 258 to 305: score 34.1, E = 3.2e-06
          *->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfgnLk<-*
           +L+eL + nN+++ +p+ a+ + p L+++++ +N ++ + ++fq L+
 ftmzb048h1
     258 RLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSAFQYLS 305
LRR: domain 6 of 8, from 306 to 352: score 23.8, E = 0.0041
         *->nLeeLdLsnNk.LtslppgalsnLpnLeeLdLsnNnLtslppglfqn Lk<-*
           +L++L+L++ +++++p+ l++ ++Le L L + ++ lppg++q L+
 ftmzb048h1
     306 KLHTLSLNGATdIQEFPD-LKGTTSLEILTLTRAGIRLLPPGVCQQLP 352
LRR: domain 7 of 8, from 353 to 398: score 47.6, E = 2.8e-10
          *->nLeeLdLsnNkLtsippgalsnLpnLeeLdLsnNnLtsippglfqnLk<-*
           +L+ L+Ls+N++++|p+ |+ +++Lee+ L +N+++++ ++f+ L+
ftmzb048h1
      353 RLRILELSHNQIEELPS-LHRCQKLEEIGLRHNRIKEIGADTFSQLG 398
LRR: domain 8 of 8, from 399 to 446: score 49.4, E = 7.9e-11
          *->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<-*
```

Figure 2

399 SLQALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLM 446

+L+ LdLs N ++ ++p+a+s+L++L +LdL +N+Lt+lp ++L

## Proteins with leucine-rich repeats

Protein (species)*	Function-ligand*	Locations	Repeats	Length	Consonsus sequences	PIR! entry
				1	5 10 15 20 25	
RNase inhibitor (porcine)	RNase inhibitor-RNase	Cytoplasm	15	28 (A)	.LE.L.LCLTCLaL	A31857
				<b>29 (8)</b>	.L.EL.LNLGD.GaLLP	
Leucine-rich @2-GP (human)	7–7	Serum	8	24	.LL.LNLLLL	NBHUA2
RNA1 (Saccharomyces cerevisiae)		Cytoplasm	8	29	.LL.LNa	BVBYN1
U2 snRNP A' (human)	Splicing-U2 snRNP	Nucleus	4	24	.LL.aNaL	S03616
Biglycan (human)	ECM binding-laminin, fibronectin, TGFβ	ECM	8	24	.LL.LNIaa	A40757
Decorin (human)	ECM binding-collagen, fibronectin, thrombospondin, TGF-β	ECM	10	24	.LL.LNIVa	NBHUCS
Fibromodulin (bovine)	ECM binding-collagen, fibronectin	ECM	11	24	.LL.LNaaa	S05390
Lumican (chicken)	Corneal transparency-?	ECM	12	24	.LL.LNLa	A41748
Proteoglycan-Lb (chicken)	7-7	ECM	6	24	.La.LNIa	A41781
Osteoinductive factor (bovine)	Bone morphogenesis-BMP	ECM	6	24	.L.a.L. NaF	A35272
Platelet GP loc (human)	Cell adhesion-vWF, thrombin	PM (EC)	7	24	.LL.LNLLP.GLL	NBHUIA
Platelet GP V (human)	Cell adhesion-GP IX, GP Ib	PM (EC)	14	24	.LL.LNLLPLFL	-
YopM (Yersinia pestis)	Virusience factor-thrombin	IC + EC	12	20	.LL.aNLLPLPP	A33950
lpaH7.8 (Shigetta flexneri)	7-7	?	6	20	.LL.VNLLPLP.	A35149
lpaH4.5 (Shigetta flexneri)	7–7	7	8	20	.LL.aNLLPLP.	S18248
Toll ( <i>Drosophila</i> )	Embryo development-?	PM (EC)	19	24	.LL.LNLF	A29943
Slit (Drosophila)	Axon development-?	EC	19	24	.LL.LNIFL	A36665
Connectin (Drosophila)	Synapse development-?	PM (EC)	7	24	.LLNL N Ia aF L	S28464
Chaoptin ( <i>Drosophil</i> a)	Photoreceptor-cell development-?	PM (EC)	30	24	.LL.LNaaFa	A29944
Rightiess-I (Drosophila)	Embryo development-?	PM (EC)	16 .	2.3	.LL.LS.NLaPaL	_
Oligodendrocyte myelin GP (human)	Myelination-?	PM (EC)	8	24	.LL.LSNNaaL	A34210
CD14 (human)	Cell-surface receptor-LPS-LP8	PM (EC)	8		.aL.LN	TDHUM4
lirk (human)	Receptor protein kinase-NGF	PM (EC)	2		.LL.LS.NL	TVHUTT
TrkB (mouse)	Receptor protein kinase-BDNF, NT-3	PM (EC)	3	23	.LL.aT.NLTST	S06943
TrkC (porcine)	Receptor protein kinase-NT-3	PM (EC)	3	23	.LR.aNLSONLS	A40026
TMK1 (Arabidopsis thaliana)	Receptor protein kinase-?	PM (EC)	11		.La.LNG.aPa.SL	JQ1674
H-CG receptor (rat)	Signal transduction-LH, CG	PM (EC)	5	25	.LL.aTaF	A41343
PSH receptor (rat)	Signal transduction-FSH	PM (EC)	7		.LL.aS.TLPaa	A34548
ISH receptor (dog)	Signal transduction-TSH	PM (EC)	6 :		.aL.a.NNa.S-aa	A40077
Idenylate cyclase (Saccharomyces	Signal transduction-RAS	PM	20		.LL.LNaaaL	OYBY.
corevisiae)	-	(cytoplasm)				
I-LR (Trypanosoma brucel)	?-?	?	18	23	.LL.LSGCaaaL	A36359
WD1 (Saccharomyces cerevisiae)	DNA repair-RAD10	Nucleus	3	23	.a.LaDINLPaN	DOBYD1
AD7 (Saccharomyces cerevisiae)	DNA repair-?	?		26	.LL.aCaaaP	A25226
ORT100 (Arabidopsis thaliana)	Recombination-?	Chloroplast	5	24	.LLNLNL.G.IP.S-a.S	A46260
RR1 (Saccharomyces cerevisiae)	Signal transduction-?	Cytoplasm	9	26	.La.LC.NaTDaLL	A41529
XR4 (Saccharomyces cerevisiae)	Transcription-?	?			.LL.aNLTLP.E-a	S31286
ds22 (Schlzosaccharomyces pombe)	Mitosis-dis2, sds21	Nucleus	11 :	22	.LL.aNIaENaL	A38439
34 ribosome-binding protein (rat)	RM membranes-ribosome	RM membrane (cytoplasm)	4	24	.LLDLNLLPFL	-
Carboxypeptidase N (human)	Stabilization-catalytic subunit	Plasma	12	24	.LL.LNLLPaFL	A34901
nternalin (Listeria monocytogenes)		Cell wall			NLL.L., N-OISDI.PLLT	A39930
nIB (Listeria monocytogenes)	7–7	?			LL.L.NL.DILL 5 10 15 20 25	C39930
RR superfamily					L.L.L.N.a +8+++8++8++	

Figure 3

>human DNA seq. TAATACGACTCACTATAGGGAAAGCTGGTACGCCTGCAGGTACCGGTCCGGAA TTCCCGGGTCGACCCACGCGTCCGTGGAGCGAGCCAGGGTCTGAGCCTGCC GGCTCATCCAGCCTCTTGCTGCCCTAGCGGCCTCCAACACCACCGCATCTG GGAAATTGGAGCT:GACACCTTCAGCCAGCTGAGCTCCCTGCAAGCCCTGGATC TTAGCTGGAACGCCATCCGGTCCATCCACCCTGAGGCCTTCTCCACCCTGCAC TCCCTGGTCAAGCTGGACCTGACAGACAACCAGCTGACCACACTGCCCCTGGC TGGACTTGGGGGCTTGATGCATCTGAAGCTCAAAGGGAACCTTGCTCTCCC AGGCCTTCTCCAAGGACAGTTTCCCAAAACTGAGGATCCTGGAGGTGCCTTATG CCTACCAGTGCTGTCCCTATGGGATGTGTGCCAGCTTCTTCAAGGCCTCTGGG CAGTGGGAGGCTGAAGACCTTCACCTTGATGATGAGGAGTCTTCAAAAAGGCC CCTGGGCCTCCTTGCCAGACAAGCAGAGAACCACTATGACCAGGACCTGGATG AGCTCCAGCTGGAGATGGAGGACTCAAAGCCACACCCCAGTGTCCAGTGTAGC CCTACTCCAGGCCCCTTCAAGCCCTGTGAGTACCTCTTTGAAAGCTGGGGCAT CCGCCTGGCCGTGTGGGCCATCGTGTTGCTCTCCGTGCTCTGCAATGGACTGG TGCTGCTGACCGTGTTCGCTGGCGGGCCTGCCCCCTGCCCCGGTCAAGTTT GTGGTAGGTGCGATTGCAGGCGCCAACACCTTGACTGGCATTTCCTGTGGCCT TCTAGCCTCAGTCGATGCCCTGACCTTTGGTCAGTTCTCTGAGTACGGAGCCC GCTGGGAGACGGGCTAGGCTGCCGGGCCACTGGCTTCCTGGCAGTACTTGG GTCGGAGGCATCGGTGCTGCTCACTCTGGCCGCAGTGCAGTGCAGCGTC AGCAGGGGTCCTAGGCTGCCTGGCACTGCCAGGGCTGGCCGCACTGCCC CACCTGAGGGTCAGCCAGCAGCCCTGGGCTTCACCGTGGCCCTGGTGATGAT GAACTCCTTCTGTTTCCTGGTCGTGGCCGGTGCCTACATCAAACTGTACTGTGA CCTGCCGCGGGCGACTTTGAGGCCGTGTGGGACTGCGCCATGGTGAGGCAC GTGGCCTGGCTCATCTTCGCAGACGGGCTCCTCTACTGTCCCGTGGCCTTCCT CAGCTTCGCCTCCATGCTGGGCCTCTTCCCTGTCACGCCCGAGGCCGTCAAGT CTGTCCTGCTGGTGGTGCCCCCCTGCCTGCCTCAACCCACTGCTGTAC CTGCTCTTCAACCCCCACTTCCGGGATGACCTTCGGCGGGCTTCGGCCCCGCGC AGGGGACTCAGGCCCTAGCCTATGCTGCGGCCGGGGAGCTGGAGAAGAGC TCCTGTGATTCTACCCAGGCCCTGGTAGCCTTCTCTGATGTGGATCTCATTCTG GAAGCTTCTGAAGCTGGGCGCCCCCTGGGCTGGAGACCTATGGCTTCCCCTC AGTGACCCTCATCTCCTGTCAGCCAGCCCAGGCCCCCAGGCTGGAGGGCAGC CATTGTGTAGAGCCAGAGGGGAACCACTTTGGGAACCCCCAACCCTCCATGGA TGGAGAACTGCTGAGGGCAGAGGGATCTACGCCAGCAGGTGGAGGCTTG TCAGGGGGGGGCTTTCAGCCCTCTGGCTTTGGCTTCACACGTGTA GTGAATGATGGCTGCTTCTAAAACAAATACAACCAAAACTCAGCAGTGTGATCT CACCAACGGGTGCCTCTGGCCTTCCCTCAGCTTCACCT TGATACTGGGCCTCTTCCTTGTCATGTCTGAAGCTGTGGACCAGAGACCTGGAC TTTTGTCTGCTTAAGGGAAATGAGGGGAAGTAAAGACAGTGAAGGGGTGGAGGG TTGATCAGGGCACAGTGGACAGGGAGACCTCACAGAGAAAGGCCTGGAAGGT GATTTCCCGTGTGACTCATGGATAGGATACAAAATGTGTTCCATGTACCATTAAT CTTGACATATGCCATGCATAAAGACTTCCTATTAAAATAAGCTTTGGAAGAGATT GCATGCGACGTCATAGCTCTTCTATAGTGTCACCTAAATTCAATT

Figure 4

#### >fahr human

NTTHYRESWYACRYRSGIPGSTHASVERSQGLSLPAHPASLAALAASNTTASGKLE DTFSQLSSLQALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHL KLKGNLALSQAFSKDSFPKLRILEVPYAYQCCPYGMCASFFKASGQWEAEDLHLD DEESSKRPLGLLARQAENHYDQDLDELQLEMEDSKPHPSVQCSPTPGPFKPCEYL FESWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFVVGAIAGANTLTGISCG LLASVDALTFGQFSEYGARWETGLGCRATGFLAVLGSEASVLLLTLAAVQCSVSVS CVRAYGKSPSLGSVRAGVLGCLALAGLAAALPLASVGEYGASPLCLPYAPPEGQP AALGFTVALVMMNSFCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFAD GLLYCPVAFLSFASMLGLFPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLR RLRPRAGDSGPLAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGRPPGLETYG FPSVTLISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGGGL SGGGGFQPSGLAFASHV

Figure 5

LRR: domain 1 of 1, from 64 to 111: score 51.0, E = 2.6e-11

*->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnL

+L+ LdLs N ++s++p+a+s+L++L +LdL +N+Lt+lp + +L

fahr 64 SLQALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGL 110

k<-*

fahr 111 M 111

Etweh048h10	1 MESPROLLALMICAVICASAROGSDROB	enempardabrilenciidi	LICKSVVZJELISZCKZ	08 TUTAYUTT
An of sambbooldil2	WISC LITTLE THE WAY AND			
Cahr human				
	81			160
€tmzb048h10	TOGGERHURPLENDRICHUSHING	Wedter The Control	STAVENTWIKT SET GETSKY	amilisinperspec
Aa_of_sambb001d112				
fahr_human	161			240
61	161 LSSLRHIMIDENALTBIPVRALMHDAL	ONHTLALKHIRHIPDYAFOR	UTSLAVIHLHERRIQHV	
ftmzb048h10 Az_of_asmbb001d112				
fahr human				<del></del>
	241			320
£tmzb048h10	LHYNELQEFFLAIRTLGRIQRIGFERRA	INVIDENCE REPORT OF THE	PATRICI (SEVERSAFQYES	STRATESTATES TO THE
As_of_aambb001d112				
Cake Jaman		(17(3))	(RES	
	321		NAV LANGAGE EVENDY DEDNE	400
Etmzb048b10	PPOLECTTSLETLITLIRAGIRLLPPGVC	QQCPKLRCLESSHNQLEEL	STATESTICAL	Trensmit-Sfire
As_of_asebb001d112	HASVERSQCLSLF	AUDIC ANT A COTTO SC.		DTFSQLSSL
Cahr_Imman	<del></del>	AND ASSERTED ASSERT LASE		460
	401 QALIKSIGIATRATHPEAFSTERSLVIKLE	THE SOLES AND THE POWER TO SHORE Y	AT ACCRICALSOA PSEUSE	- • •
fcmzb048h10	QUIZESHATIVITIES STEEDING		AT ACREAL SOAFSKOSE	
Aa_of_sambb001d112 fabr human	OALDLSHOWAIRSTHPEAFSTLHSLVXLL	LIDNOLTH PLAGLOGIASI	AT ACREAL SQAFSKOSE	TELETLEVPYAYQCC
	481			560
<b>fcmzb048h10</b> .	AYGICASFFKTSGONQAEDFHPEEDEAL	REPLEILAGOAENHYDLDCI	DET CHICATERO STEPRIPS VOC	SPVPGPFKPCEHLFE
As of sambb001d112	AYGICASFFKTSGOWOAEDFHPRPEPAL	KRPLGLLAGOAENEYOLDU	<b>SECHOTEUSKERPSVQC</b>	SPVPGPPKPÇEHLFE
fabr_hamon	PYGMCASFFXASGQMEAEDEHI DIDEES	KRPLGIJARQA EVETYDQDIJ	DELOTEMBED SKEHES VOC	
<b>—</b>	561			640
Etmzb048h10	SKCIRLAVKA IVLL SVLCNGLVLL IVF	logpsplspvict.vvghimen	MATGISCGLLASVDALT	YGQFAEYGARWESGL
As of sambb001d112	SHEIRLAVHAIVLLSVLCMELVILLTVF	SCPSPLSPVICLVVGAMAGA	ALSCIECGLIASVIALA	TOURNEYGARDESGL
Cahr Jaman	SIGDRIAWATVILSVICHGINILAVI	711		<i>1912109101213012</i> 720
II.	641 <u>T</u> GCONTGFLAVIGSBASVILLITLAAVQC		il Vertoctataglarrije	
** ** *** **** ***********************	GCONGENALICEERSVILLINGAAVQC	ITSVTCVRAYEKAPSPGSVR	ACALGCLAL ACLARALPI	ASVCEYCASPLCLPY
As of sambb001d112	GCRATGELAVICSEASVILLELAAVQC	VSVSCVRAXGESPSLGSVR	GVIGETALAGLANALET	ASVGBYGASPICILPY
1 1			WINT	
1:7 A grang	721 TM II.		, ,	800
== <b>Ct=zb048h1</b> 0	APPEGREAALGEAVALMERISLCELAVA	MGAY IRLYCOL PROCESSWI	DCALVERVANLIFADGL	. YCTVAFI.SFASHICI.
la of embb001d112	APPECREALGEAVALMENSLCFLVV	AGAY DELYCOLPRODEZNA	DCWASHANATTENDET	XCFVAFI.SFASHIGL
Eahr_Inman	APPROPARIGPTVALVAROISFCELVV	WENT THE REDUCE RECOFFERENCE	DCMAKHANAT LEVICET	MILT B80
<b>€</b> := <b>£</b> :	801 TMV		T1	TV_
Etmeb048b10	FFVTPENVESVLUVUPUPACIARILY FFVTPENVESVLUVUPUPACIARILY	Lenaufriderkandspre	avan bab bever bace. Roktustuumoktuseesse	
An of ambb001d112	PPUTPERVESVILLAVLETENCIARIES	TENDEDONY DOLD DO VA	GCDLAYAAAGELEKSSC	STONLVARSOVOLIL
fahr_human		APAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAP		980
4	881 TM V.L PASEACQPPGLETYCEPSVILLSREQP	CATRIBONEEDESDOTERON	POPPHICELLIKARGAT	LACOCESVOCALARSO
ftmzb048h10 Az_of_azmbb001d112	PASPAGOPPGLETYGFPSVTLISKHOP	GATRIEGHEVESDOTAFG	POPPHRISELLLKARGAT	LACCESSVGEALMPSG
fahr human	PASPAGRPEGLETYGFPSVTLISOQQP	CAPRLECSHCVEPEGNEFGN	POPSMOCELAL RANGEST	PACOCELEGGGE QPSC
- Contraction	961			968
ftmzb048h10	SLFASRIN			
As_of_asmbb001d112	SLFASHIN			
fahr_human	LAFASHVN			

Figure 7

20 . N K N Y Т D L L GGG CTG CAC AAT CTG GAG ACA CTA GAC CTG AAT TAT AAC AAG CTG CAG GAG TTC CCT GTG 60 F N N Ι 40 G Н Q Ε L GCC ATC CGG ACC CTG GGC AGA CTG CAG GAA CTG GGG TTC CAT AAC AAC AAC ATC AAG GCC 120 60 Q Т Т Н F Y G N Ρ L L Α F М ATC CCA GAA AAG GCC TTC ATG GGG AAC CCT CTG CTA CAG ACG ATA CAC TTT TAT GAT AAC 180 80 S s Α F 0 L Ρ K L Н Т R G CCA ATC CAG TTT GTG GGA AGA TCG GCA TTC CAG TAC CTG CCT AAA CTC CAC ACA CTA TCT 240 100 G F Р D L K М D Ι Q E CTG AAT GGT GCC ATG GAC ATC CAG GAG TTT CCA GAT CTC AAA GGC ACC ACC AGC CTG GAG 300 S G 120 P М L G Ι R L ATC CTG ACC CTG ACC CGC GCA GGC ATC CGG CTG CTC CCA TCG GGG ATG TGC CAA CAG CTG 360 140 E Τ, V L L S Н N Q Ι E R Ε  $\mathbb{R}^{P}$  R L R  $\mathbb{R}^{P}$  L E L S H N Q I E E L P S L H  $\mathbb{C}^{P}$  CC AGG CTC CGA GTC CTG GAA CTG TCT CAC AAT CAA ATT GAG GAG CTG CCC AGC CTG CAC 160 W Ĺ ~Q Н N R Ι G ÁGG TGT CAG AAA TTG GAG GAA ATC GGC CTC CAA CAC AAC CGC ATC TGG GAA ATT GGA GCT 480 180 T F S S S L 0 Α L D L. S W N Q Τ. GÁC ACC TTC AGC CAG CTG AGC TCC CTG CAA GCC CTG GAT CTT AGC TGG AAC GCC ATC CGG 540 200 S Т Н S K S I H P E A F S T L H S L V K L D L T D
TCC ATC CAC CCT GAG GCC TTC TCC ACC CTG CAC TCC CTG GTC AAG CTG GAC CTG ACA GAC F L 600 220 P G L G G L М L Т Т Τ. Α L L AAC CAG CTG ACC ACA CTG CCC CTG GCT GGA CTT GGG GGC TTG ATG CAT CTG AAG CTC AAA 660 240 K D S F S Q Α GGG AAC CTT GCT CTC TCC CAG GCC TTC TCC AAG GAC AGT TTC CCA AAA CTG AGG ATC CTG 720 260 С С Ρ Y G М С Α Y Α Y Q GAG GTG CCT TAT GCC TAC CAG TGC TGT CCC TAT GGG ATG TGT GCC AGC TTC TTC AAG GCC 780 Е 280 D D F. Н L E D L TCT GGG CAG TGG GAG GCT GAA GAC CTT CAC CTT GAT GAT GAG GAG TCT TCA AAA AGG CCC 840 300 E Н Y D Q D Τ. D R Q Α Ν L L Α CTG GGC CTC CTT GCC AGA CAA GCA GAG AAC CAC TAT GAC CAG GAC CTG GAT GAG CTC CAG 900 320 С v Q S E D S K Р Н P S CTG GAG ATG GAG GAC TCA AAG CCA CAC CCC AGT GTC CAG TGT AGC CCT ACT CCA GGC CCC 960 340 v W А Ε S W G Ι R L Α Р С E Y L F TTC AAG CCC TGT GAG TAC CTC TTT GAA AGC TGG GGC ATC CGC CTG GCC GTG TGG GCC ATC 1020 360 С N G L GTG TTG CTC TCC GTG CTC TGC AAT GGA CTG GTG CTG CTG ACC GTG TTC GCT GGC GGG CCT 1080 380 G G Α Ν L F V V A Ι Α Р v K GCC CCC CTG CCC CCG GTC AAG TTT GTG GTA GGT GCG ATT GCA GGC GCC AAC ACC TTG ACT 1140

### FIGURE 8

G GGC	I ATT	S TCC	C TGT	G GGC	L	L CTA	A GCC	S TCA	V GTC	D GAT	A GCC	L CTG		F T <b>T</b> T	G GGT	Q CAG	F TTC	S TCT	E GAG	400 1200
Y TAC	G GGA	A GCC	R CGC	W TGG	E GAG	T ACG	G GGG	L CTA	G GGC	C TGC	R CGG	A GCC			F TTC	L CTG	A GCA	V GTA	L CTT	420 1260
G	S	E	A	S	V	L	L	L	T	L	A	A	V	Q	C	S	V	S	V	440
GGG	TCG	GAG	GCA	TCG	GTG	CTG	CTG	CTC	ACT	CTG	GCC	GCA	GTG	CAG	TGC	AGC	GTC	TCC	GTC	1320
S	C	V	R	A	Y	G	K	S	P	S	L	G	S	V	R	A	G	V	L	460
TCC	TGT	GTC	CGG	GCC	TAT	GGG	AAG	TCC	CCC	TCC	CTG	GGC	AGC	GTT	CGA	GCA	GGG	GTC	CTA	1380
G	C	L	A	L	A	G	L	A	A	A	L	P		A	S	V	G	E	Y	480
GGC	TGC	CTG	GCA	CTG	GCA	GGG	CTG	GCC	GCC	GCA	CTG	CCC		GCC	TCA	GTG	GGA	GAA	TAC	1440
G GGG	A GCC	S TCC	P CCA	L CTC	C TGC	L CTG	P CCC	Y TAC	A GCG	P CCA		E GAG	G GGT	Q CAG	P CCA	A GCA	A GCC	L CTG	G GGC	500 1500
F	T	V	A	L	V	M	M	N	S	F	C	F	L	V	V	A	G	A	Y	520
TTC	ACC	GTG	GCC	CTG	GTG	ATG	ATG	AAC	TCC	TTC	TGT	TTC	CTG	GTC	GTG	GCC	GGT	GCC	TAC	1560
1,20	K	L	Y	C	D	L	P	R	G	D	F	E	A	V	W	D	C	A	M	540
	AAA	CTG	TAC	TGT	GAC	CTG	CCG	CGG	GGC	GAC	TTT	GAG	GCC	GTG	TGG	GAC	TGC	GCC	ATG	1620
y	R	H	V	A	W	L CTC	I	F	A	D	G	L	L	Y	C	P	V	A	F	560
G1G	AGG	CAC	GTG	GCC	TGG		ATC	T <b>T</b> C	GCA	GAC	GGG	CTC	CTC	TAC	TGT	CCC	GTG	GCC	TTC	1680
orc	S AGC	F TTC	A GCC	S TCC	M ATG	L CTG	G GGC	L CTC	F TTC	P CCT	V GTC	T ACG	CCC	E GAG	A GCC	V GTC	K AAG	S TCT	V GTC	580 1740
L	L	V	V	L	P	L	P	A	C	L	N	P		L	Y	L	L	F	N	600
CTG	CTG	GTG	GTG	CTG	CCC	CTG	CCT	GCC	TGC	CTC	AAC	CCA		CTG	TAC	CTG	CTC	TTC	AAC	1800
P	H	F	R	D	D	L	R	R	L	R	P	R	A	G	D	S	G	P	L	620
CCC	CAC	TTC	CGG	G <b>A</b> T	GAC	CTT	CGG	CGG	CTT	CGG		CGC	GCA	GGG	GAC	TCA	GGG	CCC	CTA	1860
A	Y	A	A	A	G	E	L	E	K	S	S	C	D	S	T	Q	A	L	V	640
GCC	TAT	GCT	GCG	GCC	GGG	GAG	CTG	GAG	AAG	AGC	TCC	TGT	GAT	TCT	ACC	CAG	GCC	CTG	GTA	1920
A	F	S	D	V	D	L	I	L	E	A	S	E	A	G	R	P	P	G	L	660
GCC	TTC	TCT	GAT	GTG	GAT	CTC	ATT	CTG	GAA	GCT	TCT	GAA	GCT	GGG	CGG	CCC	CCT	GGG	CTG	1980
E	T	Y	G	F	P	S	V	T	L	I	S	C	Q	Q	P	G	A	CCC	R	680
GAG	ACC	TAT	GGC	TTC	CCC	TCA	GTG	ACC	CTC	ATC	TCC	TGT	CAG	CAG	CCA	GGG	GCC		AGG	2 <b>04</b> 0
L CTG	E GAG	G GGC	S AGC	H CAT	C TGT	V GTA	E GAG	P CCA	E GAG	G GGG	N AAC	H CAC	F TTT	G GGG	N AAC	CCC	Q CAA	P	S TCC	700 2 <b>10</b> 0
M ATG	D GAT	G GGA	E GAA	L CTG	L CTG	L CTG	R AGG	A GCA	E GAG	G GGA	S TCT	T ACG	P CCA	A GCA	G GGT	G GGA	G GGC	L TTG	S TCA	720 2160
G GGG	G GGT	G GGC	G GGC	F TTT	Q CAG	P	S TCT	G GGC	L TTG	A GCC	F TTT	A GCT	S TCA	H CAC	V GTG	* TAA				737 2211
АТА	TCCC	TCCC	CATT	CTTC	TCTT	cccc	TCTC	TTCC	сттт	CCTC	TCTC	cccc	TCGG	TGAA	TGAT	'GGC'I	GCTT	CTAA	AACA	2290
AAT	ACAA	CCAA	AACI	CAGC	AGTG	TGAT	CTAT	'AGCA	GGAT	GGCC	CAGI	ACCT	'GGC'I	CCAC	TGAT	CACC	тстс	TCCI	GTGA	2369
CCA	TCAC	CAAC	GGGT	GCCI	CTTC	GCCI	GGCI	TTCC	СТТС	GCCI	TCCI	CAGC	TTCA	CCTI	GATA	ACTGG	GCCI	CTTC	CTTG	2448
TCA	TGTC	TGAA	GCT	STGGF	CCAC	SAGAC	CTGC	SACTI	TTGT	CTGC	TTAF	AGGGA	AATG	SAGGO	SAAGI	CAAAC	SACAG	TGA	AGGGG	2527

CONT.

TGGAGGGTTGATCAGGGCACAGTGGACAGGGAGACCTCACAGAGAAAGGCCTGGAAGGTGATTTCCCGTGTGACTCATG	2606
GATAGGATACAAAATGTGTTCCATGTACCATTAATCTTGACATATGCCATGCATAAAGACTTCCTATTAAAATAAGCTT	2685
TGGAAGAGATTAAAAAAAAAAAAA	2711

# FIGURE 8

SIGHTLE CHICK

*5*년 참

```
Searching for complete domains in PFAM
hmmpfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
                 /prod/ddm/seqanal/PFAM/pfam6.2/Pfam
                  /prod/ddm/wspace/orfanal/oa-script.12184.seq
Sequence file:
Query: 15088
Scores for sequence family classification (score includes all domains):
                                     Score E-value N
Model Description
                                         241.4 1.3e-68 16
       Leucine Rich Repeat
LRRNT Leucine rich repeat N-terminal domain 7 transmembrane receptor (rhodopsin family)
                                                 27.2 0.00038 1
                                                         0.14 2
                                                 7.2
Parsed for domains:
Model Domain seq-f seq-t hmm-f hmm-t score E-value
                34 65 .. 1 31 [] 27.2 0.00038
LRRNT
              67 90 .. 1 23 [] 12.4
91 114 .. 1 23 [] 24.2
                                           11
LRR
        1/16
                                   24.2 0.0031
LRR
        2/16
              115 138 .. 1 23 [] 19.9
                                          0.062
LRR
        3/16
              139 162 ..
                              23 []
        4/16
                                    16.4
LRR
LRR
              163 186 ..
                              23 []
                                    27.5 0.00031
        5/16
LRR
        6/16
              187 210 ..
                          1 23 []
                                    12.1
                                            13
              211 234 ..
                              23 []
                                    21.6
                                          0.019
LRR
        7/16
              235 257...
LRR
                              23 []
                                    18.2
                                           0.2
        8/16
                                     19.0
                                           0.11
LRR
              258 281 ..
                           1 23 []
        9/16
LRR
        10/16
              282 305 ..
                           1
                              23 []
                                    10.2
                                             32
              306 328 ..
LRR
        11/16
                              23 []
                                     5.6 1.5e+02
                                     8.8
LRR
        12/16
               329 352 ..
                              23 []
                                            52
                           1
                                           0.097
                                     19.2
LRR
        13/16
               353 374 ..
                            1
                              23 []
        14/16
              375 398 .. 1 23 []
                                    16.9
                                            0.49
LRR
              399 422 ..
                           1 23 []
                                     23.7 0.0042
LRR
        15/16
                                    16.4
                                           0.66
        16/16 423 446 ..
                           1 23 []
LRR
              635 662 .. 51 79 ..
7tm_1
        1/2
                                     3.4
                                           2.2
7tm_1
        2/2
              784 827.. 207 259.]
                                      1.1
Alignments of top-scoring domains:
LRRNT: domain 1 of 1, from 34 to 65: score 27.2, E = 0.00038
          *->aCpreCtCsp..fglvVdCsgrgLtlevPrdlP<-*
            aCp++C+C +++ I+ dCs++gL +vP dl
    15088 34 ACPAPCHCQEdgIMLSADCSELGLS-AVPGDLD 65
LRR: domain 1 of 16, from 67 to 90: score 12.4, E = 11
          *->nLeeLdLsnN.LtslppglfsnLp<-*
             +LdLs N+Lt+l pglf++L+
    15088 67 LTAYLDLSMNnLTELQPGLFHHLR 90
LRR: domain 2 of 16, from 91 to 114: score 24.2, E = 0.0031
          *->nLeeLdLsnN.LtslppglfsnLp<-*
            LeeL+Ls+N+L+++p +fs+L
    15088 91 FLEELRLSGNhLSHIPGQAFSGLY 114
LRR: domain 3 of 16, from 115 to 138: score 19.9, E = 0.062
           *->nLeeLdLsnN.LtslppglfsnLp<-*
    +L+ L L+nN+L ++p +++ Lp
15088 115 SLKILMLQNNqLGGIPAEALWELP 138
LRR: domain 4 of 16, from 139 to 162: score 16.4, E = 0.7
           *->nLeeLdLsnN.LtslppglfsnLp<-*
            +L++L+L+ N ++ +p+ +f++L+
    15088 139 SLQSLRLDANIISLVPERSFEGLS 162
```

LRR: domain 5 of 16, from 163 to 186: score 27.5, E = 0.00031 *->nLeeLdLsnN.LtslppglfsnLp<-* +L++L++N Lt++p +++nLp

#### 15088 163 SLRHLWLDDNaLTEIPVRALNNLP 186

LRR: domain 6 of 16, from 187 to 210: score 12.1, E = 13

*->nLeeLdLsnN.LtslppglfsnLp<-*

L+ L N+++++p++f+nL+

15088 187 ALQAMTLALNrISHIPDYAFQNLT 210

LRR: domain 7 of 16, from 211 to 234: score 21.6, E = 0.019

*->nLecLdLsnN.LtslppglfsnLp<-*

+L +L+L+nN++++| ++f++L

15088 211 SLVVLHLHNNrIQHLGTHSFEGLH 234

LRR: domain 8 of 16, from 235 to 257: score 18.2, E = 0.2

*->nLeeLdLsnN.LtslppglfsnLp<-*

nLe+LdL++N+L+++p ++++ L

15088 235 NLETLDLNYNKLQEFPV-AIRTLG 257

LRR: domain 9 of 16, from 258 to 281: score 19.0, E = 0.11

*->nLeeLdLsnN.LtslppglfsnLp<-*

+L+eL ++nN+++++p+++f+p

15088 258 RLQELGFHNNnIKAIPEKAFMGNP 281

LRR: domain 10 of 16, from 282 to 305: score 10.2, E = 32

*->nLeeLdLsnN.LtslppglfsnLp<-*

L+++++ +N+++ + ++f+ Lp

15088 282 LLQT1HFYDNpIQFVGRSAFQYLP 305

LRR: domain 12 of 16, from 329 to 352: score 8.8, E = 52

*->nLeeLdLsnN.LtslppglfsnLp<-*

+Le L L + +++ lp+g +++Lp

15088 329 SLEILTLTRAGIRLLPSGMCQQLP 352

LRR: domain 13 of 16, from 353 to 374: score 19.2, E = 0.097

*->nLeeLdLsnN.LtslppglfsnLp<-*

+L++L Ls+N++++lp+ ++ ++

15088 353 RLRVLELSHNqIEELPS--LHRCQ 374

LRR: domain 14 of 16, from 375 to 398: score 16.9, E = 0.49

*->nLeeLdLsnN.LtslppglfsnLp<-*

+Lee+ L++N++ ++ ++fs+L+

15088 375 KLEEIGLQHNrIWEIGADTFSQLS 398

LRR: domain 15 of 16, from 399 to 422: score 23.7, E = 0.0042

*->nLeeLdLsnN.LtslppglfsnLp<-*

+L+ LdLs N ++s++p++fs L

15088 399 SLQALDLSWNaIRSIHPEAFSTLH 422

LRR: domain 16 of 16, from 423 to 446: score 16.4, E = 0.66

*->nLeeLdLsnN.LtslppglfsnLp<-*

+L +LdL +N+Lt+lp ++L

15088 423 SLVKLDLTDNqLTTLPLAGLGGLM 446

7tm_1: domain 1 of 2, from 635 to 662: score 3.4, E = 2.2

*->dWpfGsalCklvtaldvvnmyaSillLta<-*

+W G++C++++| v+ + aS+||Lt+

15088 635 RWETG-LGCRATGFLAVLGSEASVLLLTL 662

15088 784 LLYCPVAFLSFASMLGIFPV------TPEAVKSVLLVVLPLPA 820

clNPilY<-* clNP++Y 15088 821 CLNPLLY 827

Query: 15088

Scores for sequence family classification (score includes all domains): Score E-value N Model Description 247.2 2.3e-70 14 LRR_typ_2 LRR_PS_2 1.8e-19 13 78.1 33.5 4.9e-06 LRR_sd22_2 25.7 0.0011 lrrnt1 11.8 3 LRR_bac_2 7.7 4 LRR_RI_2 5.4

Parsed for	domains	:						_
Model	Domain	seq-f	seq-t	hmm-f			score	E-value
lgrnt1	1/1	34		 1	38		25.7	0.0011
LRR_PS_2	1/13	64		 1	24		1.9	1.2e+02
LRR_typ_2	1/14	64	88 .	1	24		12.6	2.1
LRR bac_2	1/7	89	108	 1	20		0.9	80
LRR PS 2	2/13	89	111 .	1	24	[]	17.2	0.4
LRR typ 2	2/14	89	112	 1	24		32.1	1.3e-05
LRR RI 2	1/4	89	115	1	28		3.6	14
LRR bac 2	2/7	113	132	 1	20	[]	1.6	· 66
LRR_PS_2	3/13	113	136	 1	24	[]	1.1	1.5e+02
LRR typ 2	3/14	113	136	 1	24	[]	19.2	0.1
LRR bac 2	3/7	137	156	 1	20	[]	0.1	1e+02
LRR PS 2	4/13	137	159	 1	24	[]	7.1	24
LRR typ 2	4/14	137	160	 1	24	[]	25.9	0.00095
LRR PS 2	5/13	161	183	 1	24	[]	11.4	6.6
LRR typ 2	5/14	161	184	 1	24	[]	27.5	0.00031
LRR sd22 2	1/5	161	187	 1	22	[]	5.3	31
LRR RI 2	2/4	161	190	 1	28	[]	5.3	8
LRR PS 2	6/13	185	207	 1	24	[]	7.0	25
LRR typ 2	6/14	185	208	 1	24	[]	23.2	0.0062
LRR_PS_2	7/13	209	232	 1	24	[]	3.1	79
LRR typ 2	7/14	209	232	 1	24	[]	28.1	0.0002
LRR RI 2	3/4	209	235	 1	28	[]	1.2	31
LRR sd22 2	2/5	209	235	 1	22	[]	13.5	3
LRR_bac_2	4/7	233	252	 1	20	[]	10.7	4.1
LRR typ 2	8/14	233	255	 1	24	[]	16.1	0.76
LRR PS 2	8/13	233	255	 1	24	[]	17.1	0.43
LRR bac 2	5/7	256	275	 1	20	[]	0.2	1e+02
LRR PS 2	9/13	256	278	 1	24	[]	2.9	85
LRR_typ_2	9/14	256	279	 1	24	[]	24.4	0.0026
LRR typ 2	10/14	327	350	 1	24	[]	3.1	29
LRR_bac_2	6/7	351	370	 1	20	[]	14.6	1.3
LRR PS 2	10/13	351	372	 1	24	[]	10.8	8
LRR sd22 2		351	372	 1	22	[]	7.6	16
LRR typ 2	11/14	351	373	 1	24	[]	18.8	0.13
LRR RI 2	4/4	351	378	 1	28	[]	2.6	19
LRR PS 2	11/13	373	396	 1	24	[]	2.3	1e+02
LRR typ 2	12/14	374	396	 1	24	[]	6.8	10
LRR sd22 2		397	418	 1	22	[]	7.0	19
LRR PS 2	12/13	397	419	 1	24	[]	13.6	3.4
LRR typ 2	13/14	397		1	24	[]	30.4	4.3e-05
LRR bac 2	7/7	421		1	20	[]	5.8	18
LRR sd22_2		421		1		[]	3.7	49
LRR PS 2	13/13	421				[]	5.5	39
LRR typ 2	14/14	421		1		[]	21.6	0.018
	,							

Alignments of top-scoring domains:

```
lrrnt1: domain 1 of 1, from 34 to 70: score 25.7, E = 0.0011
                   *->qCPapCtCsp.dfgtaVdCsgrgLttlevPldlPadttl<-*
                      +CPapC+C ++ ++ dCs++gL +vP dl + t +
                      ACPAPCHCQEdGIMLSADCSELGLS--AVPGDLDPLTAY
                                                                 70
       15088
LRR_PS_2: domain 1 of 13, from 64 to 87: score 1.9, E = 1.2e+02
                   *->LtsL.qvLdLsnNnLsGeIPsslgn<-*
                   L L+ +LdLs NnL+ e+ + 1+
                      LDPLtAYLDLSMNNLT-ELQPGLFH
       15088
LRR_typ_2: domain 1 of 14, from 64 to 88: score 12.6, E = 2.1
                   *->LpnL.reLdLsnNqLtsLPpgaFqg<-*
                      L L+ LdLs N+Lt+L pg+F++
       15088
                      LDPLtAYLDLSMNNLTELQPGLFHH
                64
LRR_bac_2: domain 1 of 7, from 89 to 108: score 0.9, E = 80
                   *->PpsLkeLnvsnNrLteLPeL<-*
                        +L+eL+ s+N+L+ P
       15088
                89
                      LRFLEELRLSGNHLSHIPGQ
LRR_PS_2: domain 2 of 13, from 89 to 111: score 17.2, E = 0.4
                   *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      L+ L++L+Ls+N+Ls +IP + ++
                      LRFLEELRLSGNHLS-HIPGQAFS
       15088
                89
LRR_typ_2: domain 2 of 14, from 89 to 112: score 32.1, E = 1.3e-05
                   *->LpnLreLdLsnNqLtşLPpgaFqg<-*
                      L+ L+eL+Ls+N+L+++P +aF+q
                      LRFLEELRLSGNHLSHIPGQAFSG
       15088
                89
LRR_RI_2: domain 1 of 4, from 89 to 115: score 3.6, E = 14
                   *->npsLreLdLsnNkl.gdeGaraLaeaLks<-*</pre>
                      ++ L+eL+Ls+N+l+++ G + ++L s
                      LRFLEELRLSGNHLSHIPG--QAFSGLYS
       15088
LRR_bac_2: domain 2 of 7, from 113 to 132: score 1.6, E = 66
                   *->PpsLkeLnvsnNrLteLPeL<-*
                        sLk+L +nN+L P+
               113
                      LYSLKILMLQNNQLGGIPAE
                                              132
       15088
LRR_PS_2: domain 3 of 13, from 113 to 136: score 1.1, E = 1.5e+02
                   *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      L sL++L L+nN+L G + 1+
                      LYSLKILMLQNNQLGGIPAEALWE
       15088
               113
LRR_typ_2: domain 3 of 14, from 113 to 136: score 19.2, E = 0.1
                    *->LpnLreLdLsnNqLtsLPpgaFqg<-*</pre>
                      L +L+ L L+nNqL +P++a++
                      LYSLKILMLQNNQLGGIPAEALWE
       15088
               113
LRR_bac_2: domain 3 of 7, from 137 to 156: score 0.1, E = 1e+02
                   *->PpsLkeLnvsnNrLteLPeL<-*
                       psL++L+ + N ++ Pe
                      LPSLQSLRLDANLISLVPER
       15088
               137
LRR_PS_2: domain 4 of 13, from 137 to 159: score 7.1, E = 24
                    *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      L+sLq+L+L N +s +P+ +
       15088
               137
                      LPSLQSLRLDANLIS-LVPERSFE
                                                   159
LRR_typ_2: domain 4 of 14, from 137 to 160: score 25.9, E = 0.00095
                    *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      Lp+L++L+L+ N ++ +P++ F+g
                      LPSLQSLRLDANLISLVPERSFEG
       15088
               137
LRR_PS_2: domain 5 of 13, from 161 to 183: score 11.4, E = 6.6
                    *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      L+sL++L L +N L+ eIP
                      LSSLRHLWLDDNALT-EIPVRALN
               161
       15088
```

LRR_typ_2: domain 5 of 14, from 161 to 184: score 27.5, E = 0.00031

```
*->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      L++Lr+L L++N+Lt++P +a+++
                      LSSLRHLWLDDNALTEIPVRALNN
       15088
               161
LRR_sd22_2: domain 1 of 5, from 161 to 187: score 5.3, E = 31
                   *->LtnLeeLdLsqNkI....kkiENLde<-*
                      L+ L++L+L +N +++ + + NL
                      LSSLRHLWLDDNALteipvRALNNLPA
       15088
               161
LRR_RI_2: domain 2 of 4, from 161 to 190: score 5.3, E = 8
                    *->npsLreLdLsnNklgdeGaraL..aeaLks<-*
                      ++sLr L+L +N 1++ +raL++ aL++
                      LSSLRHLWLDDNALTEIPVRALnnLPALQA
       15088
               161
LRR_PS_2: domain 6 of 13, from 185 to 207: score 7.0, E = 25
                   *->LtsLqvLdLsnNnLsGeIPsslgn<-*
L+ Lq L+ N++s +IP+ ++
                      LPALQAMTLALNRIS-HIPDYAFQ
       15088
               185
LRR_typ_2: domain 6 of 14, from 185 to 208: score 23.2, E = 0.0062
                    *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      Lp+L+ L N++++P+ aFq+
                      LPALQAMTLALNRISHIPDYAFQN
               185
       15088
LRR_PS_2: domain 7 of 13, from 289 to 232: score 3.1, E = 79
                    *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      LtsL+vL+L+nN++
                                         s+
                      LTSLVVLHLHNNRIQHLGTHSFEG
                                                   232
               209.
       15088
LRR_typ_2: domain 7 of 14, from 209 to 232: score 28.1, E = 0.0002
                    *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      L++L +L+L+nN++++L
                      LTSLVVLHLHNNRIQHLGTHSFEG
                                                   232
       15088
               209
LRR_RI_2: domain 3 of 4, from 209 to 235: score 1.2, E = 31
                    *->npsLreLdLsnNklgdeGaraLaeaLks<-*
                       ++sL +L+L nN + G + e+L+
                       LTSLVVLHLHNNRIQHLGTHSF-EGLHN
                209
        15088
LRR_sd22_2: domain 2 of 5, from 209 to 235: score 13.5, E = 3
                    *->LtnLeeLdLsqNkI....kkiENLde<-*
                       Lt L++L L +N+I++ ++++E+L++
                       LTSLVVLHLHNNRIqhlgtHSFEGLHN
        15088
                209
 LRR_bac_2: domain 4 of 7, from 233 to 252: score 10.7, E = 4.1
                    *->PpsLkeLnvsnNrLteLPeL<-*
                        ++L++L+ ++N+L e+P
                                               252
        15088
                233
                       LHNLETLDLNYNKLQEFPVA
 LRR_typ_2: domain 8 of 14, from 233 to 255: score 16.1, E = 0.76
                    *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                       L+nL++LdL++N+L++P++
                                                    255
                       LHNLETLDLNYNKLQEFPVAI-RT
        15088
                233
 LRR_PS_2: domain 8 of 13, from 233 to 255: score 17.1, E = 0.43
                     *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                       L++L++LdL++N+L e+P +
                       LHNLETLDLNYNKLQ-EFPVAIRT
        15088
                233
 LRR_bac_2: domain 5 of 7, from 256 to 275: score 0.2, E = 1e+02
                     *->PpsLkeLnvsnNrLteLPeL<-*
                         +L+eL+ nN+++ Pe
                        LGRLQELGFHNNNIKAIPEK
        15088
                 256
 LRR_PS_2: domain 9 of 13, from 256 to 278: score 2.9, E = 85
                     *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                        L +Lq+L ++nNn+ IP+ +
                        LGRLQELGFHNNNIK-AIPEKAFM
        15088
                 256
 LRR_typ_2: domain 9 of 14, from 256 to 279: score 24.4, E = 0.0026
                     *->LpnLreLdLsnNqLtsLPpgaFqg<-*
```

```
L+ L+eL +nN++++P+ aF g
                      LGRLOELGFHNNNI KAI PEKAFMG
       15088
              256
LRR_typ_2: domain 10 of 14, from 327 to 350: score 3.1, E = 29
                   *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      ++L+ L L + ++ LP+g++q
                      TTSLEILTLTRAGIRLLPSGMCQQ
       15088
               327
LRR_bac_2: domain 6 of 7, from 351 to 370: score 14.6, E = 1.3
                  '*->PpsLkeLnvsnNrLteLPeL<-*
                       p+L+ L s+N+++eLP L
                      LPRLRVLELSHNQIEELPSL
       15088
LRR_PS_2: domain 10 of 13, from 351 to 372: score 10.8, E = 8
                   *->LtsLqvLdLsnNnLsGeIPsslgn<-
                      L++L+vL+Ls+N++ e+Ps 1 +
                      LPRLRVLELSHNQIE-ELPS-LHR
       15088
               351
LRR_sd22_2: domain 3 of 5, from 351 to 372: score 7.6, E = 16
                   *->LtnLeeLdLsqNkIkkiENLde<-*
                      L +L++L+Ls+N+I+ + L+
                      LPRLRVLELSHNQIEELPSLHR
       15088
               351
LRR_typ_2: domain 11 of 14, from 351 to 373: score 18.8, E = 0.13
                   *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      Lp Lr+L Ls+Nq+++LP + ++.
                      LPRLRVLELSHNQIEELP-SLHRC
       15088
               351
LRR_RI_2: domain 4 of 4, from 351 to 378: score 2.6, E_{c} = 19
                   *->npsLreLdLsnNklgdeGaraLaeaLks<-*
+p+Lr+L Ls+N + + + ++ L++
                      LPRLRVLELSHNQIEELPSLHRCQKLEE
     15088
               351
LRR PS_2: domain 11 of 13, from 373 to 396: score 2.3, E = 1e+02
                    *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      +++L+++ L++N++
                                       +++++
                      CQKLEEIGLQHNRIWEIGADTFSQ
       15088
LRR_typ_2: domain 12 of 14, from 374 to 396: score 6.8, E = 10
                   *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                        +L+e L++N++ ++ +++F+
                       -QKLEEIGLQHNRIWEIGADTFSQ
       15088
               374
LRR_sd22_2: domain 4 of 5, from 397 to 418: score 7.0, E = 19
                    *->LtnLeeLdLsqNkIkkiENLde<-*
                      L+ L+ LdLs+N I++i
               397
                      LSSLQALDLSWNAIRSIHPEAF
                                                 418
       15088
LRR_PS_2: domain 12 of 13, from 397 to 419: score 13.6, E = 3.4
                    *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                      L+sLq LdLs+N + +I ++ ++
                      LSSLQALDLSWNAIR-SIHPEAFS
       15088
               397
LRR_typ_2: domain 13 of 14, from 397 to 420: score 30.4, E = 4.3e-05
                    *->LpnLreLdLsnNqLtsLPpgaFqg<-*
                      L++L+ LdLs+N+++s++p+aF+
                      LSSLQALDLSWNAIRSIHPEAFST
        15088
                397
LRR_bac_2: domain 7 of 7, from 421 to 440: score 5.8, E = 18
                    *->PpsLkeLnvsnNrLteLPeL<-*
                       +sL +L+ +N+Lt+LP
                       LHSLVKLDLTDNQLTTLPLA
                                              440
                421
        15088
LRR sd22_2: domain 5 of 5, from 421 to 441: score 3.7, E = 49
                    *->LtnLeeLdLsqNkIkkiENLde<-*
                      L+ L+ LdL +N+++ + L +
                       LHSLVKLDLTDNQLTTL-PLAG
        15088
                421
LRR_PS_2: domain 13 of 13, from 421 to 442: score 5.5, E = 39
                    *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                       L+sL+ LdL +N+L+ ++P
```

LHSLVKLDLTDNQLT-TLPL-AGL 15088

LRR_typ_2: domain 14 of 14, from 421 to 444: score 21.6, E = 0.018

*->LpnLreLdLsnNqLtsLPpgaFqg<-*
L++L +LdL +NqLt+LP ++g
421 LHSLVKLDLTDNQLTTLPLAGLGG 15088

//

The left will be and the first first first

h. Last day that the last that

```
GAP of: FrGcgManager_101_HTAUB3ha_ check: 2817 from: 1 to: 3637
mLGR6 - 1 (analysis only) - Import - complete
to: FrGcgManager_101_ITAOfLsO_ check: 3059 from: 1 to: 2711
corrected human LGR6 (analysis o - Import - complete
Symbol comparison table:
/ddm_local/gcg/gcg 9.1/gcgcore/data/rundata/nwsgapdna.cmp
CompCheck: 8760
    Gap Weight: 12 Average Match: 10.000
Length Weight: 4 Average Mismatch: 0.000
                                         3688
         Quality: 21826
                                 Length:
           Ratio: 8.051
                                       20
                                  Gaps:
Percent Similarity: 84.248 Percent Identity: 84.211
     Match display thresholds for the alignment(s):
                | = IDENTITY
                    5
FrGcgManager_101_HTAUB3ha_ x FrGcgManager_101_ITA0fLs0_
    901 CCCACAGCTTCGAGGGGCTGCACAATCTGGAGACACTAGACCTGAACTAT 950
                                                      MOUSE
                  1 ......GGGCTGCACAATCTGGAGACACTAGACCTGAATTAT 36
                                                       HUMAN
    951 AATGAGCTGCAGGAGTTCCCCTTGGCTATCCGGACCCTGGGCAGACTGCA 1000
       37 AACAAGCTGCAGGAGTTCCCTGTGGCCATCCGGACCCTGGGCAGACTGCA 86
   1001 AGAATTGGGTTTCCATAACAACAACATCAAGGCTATCCCAGAGAAAGCCT 1050
        87 GGAACTGGGGTTCCATAACAACATCAAGGCCATCCCAGAAAAGGCCT 136
   1051 TCATGGGCAACCCTCTCCTGCAGACAATACATTTTTATGACAACCCAATC 1100
       137 TCATGGGGAACCCTCTGCTACAGACGATACACTTTTATGATAACCCAATC 186
   1101 CAGTTTGTGGGAAGGTCAGCATTCCAGTACCTGTCTAAACTGCATACGCT 1150
       187 CAGTTTGTGGGAAGATCGGCATTCCAGTACCTGCCTAAACTCCACACACT 236
   1151 ATCTTTGAATGGTGCCACTGATATCCAAGAGTTCCCAGACCTCAAAGGCA 1200
       1144 1114414444 11 1144 1444 1444 1444 1441
    237 ATCTCTGAATGGTGCCATGGACATCCAGGAGTTTCCAGATCTCAAAGGCA 286
   1201 CCACTAGCCTGGAGATCCTGACCCTGACCCGTGCGGGCATCAGACTGCTC 1250
       287 CCACCAGCCTGGAGATCCTGACCCTGACCCGCGCAGGCATCCGGCTGCTC 336
   1251 CCACCGGGAGTGTGCCAACAGCTGCCTAGGCTCCGAATCCTGGAGCTGTC 1300
       337 CCATCGGGGATGTGCCAACAGCTGCCCAGGCTCCGAGTCCTGGAACTGTC 386
```

1301		1350
387	TCACAATCAAATTGAGGAGCTGCCCAGCCTGCACAGGTGTCAGAAATTGG	436
1351	AGGAAATTGGCCTCCGACATAACAGGATCAAGGAAATTGGTGCAGATACC	1400
437	AGGAAATCGGCCTCCAACACCACCATCTGGGAAATTGGAGCTGACACC	486
1401	TTCAGCCAGCTGGGCTCCTTGCAAGCTTTAGACCTGAGTTGGAATGCCAT	1450
487	TTCAGCCAGCTGAGCTCCTGCAAGCCCTGGATCTTAGCTGGAACGCCAT	536
1451	CCGTGCCATCCACCCTGAGGCTTTCTCAACCCTTCGATCCTTGGTTAAGC	1500
537	CCGGTCCATCCACCCTGAGGCCTTCTCCACCCTGCACTCCCTGGTCAAGC	586
1501	TGGACCTGACAACCAGCTGACCACACTGCCCCTGGCTGGGCTGGGA	1550
587	TGGACCTGACAGACAACCAGCTGACCACACTGCCCCTGGCTGG	636
1551	GGCCTGATGCACCTGAAGCTCAAAGGGAACTTGGCCCTGTCTCAGGCCTT	1600
637	GGCTTGATGCATCTGAAGCTCAAAGGGAACCTTGCTCTCCCAGGCCTT	686
1601	CTCCAAGGACAGTTTCCCAAAACTGAGGATCCTGGAGGTGCCCTACGCCT	1650
687	CTCCAAGGACAGTTTCCCAAAACTGAGGATCCTGGAGGTGCCTTATGCCT	736
1651	ACCAGTGCTGTGCCTACGGCATCTGTGCCAGCTTCTTCAAGACCTCTGGG	1700
737	ACCAGTGCTGTCCCTATGGGATGTGTGCCAGCTTCTTCAAGGCCTCTGGG	786
1701	CAGTGGCAGGCCGAGGACTTTCATCCAGAAGAAGAGGAGGCACCAAAGAG	1750
787	CAGTGGGAGGCTGAAGACCTTCACCTTGATGATGAGGAGTCTTCAAAAAG	836
1751	GCCCTGGGTCTCCTTGCTGGACAAGCTGAGAACCACTATGACCTAGACC	1800
837	GCCCCTGGGCCTCCTTGCCAGACAAGCAGAACCACTATGACCAGGACC	886
	TGGATGAGCTCCAGATGGGGACAGAGGACTCAAAGCCCAGTGTC	1850
	TGGATGAGCTCCAGCTGGAGATGGAGGACTCAAAGCCACACCCCAGTGTC	936
1851	CAGTGCAGCCCTGTTCCAGGCCCCTTCAAGCCCTGCGAGCACCTCTTTGA	1900
937	CAGTGTAGCCCTACTCCAGGCCCCTTCAAGCCCTGTGAGTACCTCTTTGA	986
1901	GAGCTGGGGCATCCGCCTTGCTGTGTGGGCCATCGTGCTCTCCGTAC	1950
987	AAGCTGGGGCATCCGCCTGGCCGTGTGGGCCATCGTGTTGCTCTCCGTGC	1036
1951	TCTGTAACGGGCTGGTGCTGACAGTCTTTGCCAGCGGACCCAGCCCG	2000
1037	TCTGCAATGGACTGGTGCTGACCGTGTTCGCTGGCGGGCCTGCCCCC	1086
2001		2050
1087	THE CTGCCCCGGTCAAGTTTGTGGTAGGTGCGATTGCAGGCGCCAACACCTT	1136

	GACGGGCATTTCCTGTGGTCTCCTGGCCTCTGTGGACGCCTTGACCTATG	
2101	GTCAGTTCGCTGAGTATGGAGCCCGCTGGGAGAGCGGTCTGGGCTGCCAG	2150
1187		1236
2151	GCTACGGGCTTCCTGGCTGCTGGGTTCAGAGGCGTCGGTGCTGCTGCT	2200
1237	GCCACTGGCTTCCTGGCAGTACTTGGGTCGGAGGCATCGGTGCTGCT	1286
	CACACTGGCGGCCGTGCAGTGCAGCATCTCTGTGACCTGCGTCCGAGCCT	<ul><li>2250</li><li>1336</li></ul>
	ACGGGAAGGCGCCGTCGCCTGGCAGCGTCCGCGCAGGCGCACTGGGATGC	2300
		1386
2301	CTGGCGCTGGCCGGGCTGGCCGCAGCACTGCCGCTGGCCTCGGTGGAGA	2350
1387	CTGGCACTGGCAGGGCTGGCCGCACTGCCCTGGCCTCAGTGGGAGA	1436
2351	GTATGGCGCCTCCCCACTCTGCCTACGCCCCACCCGAGGGCCGGC	2400
	ATACGGGGCCTCCCCACTCTGCCTGCCCTACGCGCCACCTGAGGGTCAGC	1486
	CGGCCGCCCTGGGCTTCGCTGTAGCCCTGGTGATGAACTCGCTCTGC	<ul><li>2450</li><li>1536</li></ul>
2451	TTCCTGGTGGTGGCCGGCGCCTACATCAAGCTCTACTGTGACCTGCCACG	2500
1537		1586
2501	GGGTGACTTTGAGGCCGTGTGGGACTGCGCCATGGTGCGCCACGTGGCCT	2550
1587		1636
2551	GGCTCATCTTTGCAGATGGCCTCCTCTACTGCCCCGTGGCCTTCCTCAGC	2600
1637	GGCTCATCTTCGCAGACGGGCTCCTCTACTGTCCCGTGGCCTTCCTCAGC	1686
	TTTGCCTCCATGCTGGGCCTCTTCCCTGTCACCCCCGAGGCTGTCAAGTC	
	TTCGCCTCCATGCTGGGCCTCTTCCCTGTCACGCCCGAGGCCGTCAAGTC	
	AGTCCTTCTGGTGGTGCTGCCTCTGCCTGCCTGCCTCAACCCACTGCTCT	
	TGTCCTGCTGGTGGTGCCCCCCCCCCTGCCTGCCTCAACCCACTGCTGT	
	ACCTGCTCTTCAACCCTCACTTCCGGGATGACCTTCGGCGGCTCTGGCCA	
	ACCTGCTCTTCAACCCCCACTTCCGGGATGACCTTCGGCGGCTTCGGCCC	
	AGCCCTCGGTCCCCAGGGCCCCTAGCCTACGCTGCAGCCGGTGAGCTGGA	
1077	C	T000

2801	GAAGAGCTCCTGCGACTCCACCCAAGCGCTGGTGGCTTTCTCAGATGTGG	2850
1887		1936
2851	ATCTTATTCTGGAAGCTTCTGAGGCTGGGCAGCCTCCTGGGCTAGAGACC	2900
1937		1986
2901	TATGGCTTCCCTTCAGTGACCCTCATCTCCCGACATCAGCCGGGGCCAC	2950
1987	TATGGCTTCCCCTCAGTGACCCTCATCTCCTGTCAGCAGCCAGGGGCCCC	2036
2951	CAGGCTGGAGGGAAACCATTTTATAGAGTCTGATGGAACCAAGTTTGGGA	3000
2037	CAGGCTGGAGGCCACCATTGTGTAGAGCCAGAGGGGAACCACTTTGGGA	2086
3001	ACCCACAACCTCCCATGAAGGGAGAACTGCTGCTGAAGGCAGAGGGAGCC	3050
2087	ACCCCCAACCCTCCATGGATGGAGAACTGCTGCTGAGGGCAGAGGGATCT	2136
3051	ACTTTGGCAGGCTGTGGCTCTTCCGTGGGTGGAGCCCTCTGGCCCTCTGG	3100
	ACGCCAGCAGGTGGAGGCTTGTCAGGGGGTGGCGGCTTTCAGCCCTCTGG	
3101	CTCTCTCTTTGCCTCTCACTTGTAAATATCCCT	3133
2187	CTTGGCCTTTGCTTCACACGTGTAAATATCCCTCCCCATTCTTCTCTCC	2236
3134	.CTCTGTTTGTCCTCTCCCCATCCAATGATGGCTGCTTATAA	3174
	$\tt CCTCTCTTCCCTTTCCTCTCCCCCTCGGTGAATGATGGCTGCTTCTAA$	
3175	AAGAAAGACAACTCCAACTCCATAGCAAGATGGCCAAC	3212
2287	AACAAATACAACCAAAACTCAGCAGTGTGATCTATAGCAGGATGGCCCAG	2336
3213	ACCTCTGACTCCATTGTTCTCTCTCCACGACCCCTAACCAATGAGTG	3259
2337	TAC.CTGGCTCCACTGATCACCTCTCTCTGTGACCATCACCAACGGGTG	2385
3260	CTTCCAAGTCTTGCTTTGTCTTGGCCTTCAGCTTCACCTTTCACCCTG	3306
2386	CCTCTTGGCCTTGGCCTTCCTCAGCTTCACCTTGATACTG	2435
3307	GGCCTTCTCTGTCCAATCCAATACTTCTGA.CAGAGGCCTGGGAAATT	3353
2436	GGCCTCTTCCTTGTCATGTCTGAAGCTGTGGACCAGAGACCTGGACTTTT	2485
	TGCATAGGAGAAAGGAGAAAAGCAAAAGACAGTGAAGGTTATTGGGC	
2486	GTCTGCTTAAGGGAAATGAGGGAAG.TAAAGACAGTGAAGGGG.	2527
3401	CCTGACAGAGCCATGATCAGTAAGTGCAGAGT.GATGGGGAGGTCTCACA	3449
2528	TGGAGGGTTGATCAGGGCACAGTGGACAGGGAGACCTCACA	2568
	GAGCATGACACTGGAAGACAACTACCAAAGACATTGGAGAGTCTCCCCTG	
2569	GAGAAAGGC CTGGAAGGTGATTTCC	2603

3500	TGACATATAGAATATAAAATGTGTTCTGCGTTCCATTAATCTTGACCTAT	3549
2604	ATGGATAGGATACAAAATGTGTTCCATGTACCATTAATCTTGACATAT	2651
3550	GCTGNGCCAAAGTGCTTCCTGTTAAAATACACTTTGGAAGACATTGAAAA	3599
	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	
2652	GCCATGCATAAAGACTTCCTATTAAAATAAGCTTTGGAAGAGATTAAAAA	2701
3600	ААДААДААДААДААДААДААДААДАДАДАДССССССССС	
2702	ААААААААА	

# FIGURE 12

COCKATOR ORGANIA

```
GAP of: FrGcgManager_102_MTAOuXMaE check: 8470 from: 1 to: 968
mLGR6.aa (analysis only) - Import - complete
to: FrGcgManager 102 NTAf7nCl check: 5092 from: 1 to: 737
corrected hLGR6.aa (analysis onl - Import - complete
Symbol comparison table: /prod/ddm/seqanal/BLAST/matrix/aa/BLOSUM62
CompCheck: 1102
 Matrix made by matblas from blosum62.iij
                          Average Match: 2.778
       Gap Weight: 12
    Length Weight:
                       Average Mismatch: -2.248
                 3424
         Quality:
                                 Length: 968
           Ratio: 4.646
                                  Gaps:
Percent Similarity: 90.773 Percent Identity: 89.281
      Match display thresholds for the alignment(s):
                | = IDENTITY
                     2
                     1
FrGcgManager_102_MTA0uXMaE x FrGcgManager 102_NTAf7nCl
   201 IPDYAFQNLTSLVVLHLHNNRIQHVGTHSFEGLHNLETLDLNYNELQEFP 250
                                                     MOUSE
                                ....GLHNLETLDLNYNKLQEFP 19
                                                      HUMAN
   251 LAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSA 300
       20 VAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSA 69
   301 FQYLSKLHTLSLNGATDIQEFPDLKGTTSLEILTLTRAGIRLLPPGVCQQ 350
       70 FQYLPKLHTLSLNGAMDIQEFPDLKGTTSLEILTLTRAGIRLLPSGMCQQ 119
   351 LPRLRILELSHNQIEELPSLHRCQKLEEIGLRHNRIKEIGADTFSOLGSL 400
       120 LPRLRVLELSHNQIEELPSLHRCQKLEEIGLQHNRIWEIGADTFSQLSSL 169
   401 QALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLMHLKL 450
      170 QALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHLKL 219
   451 KGNLALSQAFSKDSFPKLRILEVPYAYQCCAYGICASFFKTSGQWQAEDF 500
      220 KGNLALSQAFSKDSFPKLRILEVPYAYQCCPYGMCASFFKASGQWEAEDL 269
   501 HPEEEEAPKRPLGLLAGQAENHYDLDLDELQMGTEDSKPNPSVQCSPVPG 550
      1 :: 11. | 1111111 | 1111111 | 111111: | 11111.1111111 | 11
   270 HLDDEESSKRPLGLLARQAENHYDQDLDELQLEMEDSKPHPSVQCSPTPG 319
   551 PFKPCEHLFESWGIRLAVWAIVLLSVLCNGLVLLTVFASGPSPLSPVKLV 600
      320 PFKPCEYLFESWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFV 369
```

601	VGAMAGANALTGISCGLLASVDALTYGQFAEYGARWESGLGCQATGFLAV	650
370	VGAIAGANTLTGISCGLLASVDALTFGQFSEYGARWETGLGCRATGFLAV	419
651	LGSEASVLLLTLAAVQCSISVTCVRAYGKAPSPGSVRAGALGCLALAGLA	700
420	LGSEASVLLLTLAAVQCSVSVSCVRAYGKSPSLGSVRAGVLGCLALAGLA	469
701	AALPLASVGEYGASPLCLPYAPPEGRPAALGFAVALVMMNSLCFLVVAGA	750
	AALPLASVGEYGASPLCLPYAPPEGQPAALGFTVALVMMNSFCFLVVAGA	
751	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	800
	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	
801	FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLWPSPRSPGP	850
		619
		900
	LAYAAAGELEKSSCDSTQALVAFSDVDL1LEASEAGRPPGLETYGFPSVT	669
•	LISRHQPGATRLEGNHFIESDGTKFGNPQPPMKGELLLKAEGATLAGCGS	950
	LISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGGGL .	719
	SVGGALWPSGSLFASHL* 968	
720	SGGGGFQPSGLAFASHV* 737	

## FIGURE 13 CONT.

>15088 > Fbh150881 - Import - vector trimmed CCGCCSGCGGTGCAGCCCGCCGGGACCGGGAGGCGGCAGCTGCGGCCACCGCGCCGTGCG TCCGCGCCCGGCCAGGTGCCCCAGTAGCCCGACCGCCGAGATGCCCAGCCCGCCGGG GCTCCGGGCGCTATGGCTTTGCGCCGCGCTGTGCGCTTCCCGGAGGGCCGGCGCGCCCCC CCAGCCCGGCCCGGGCCCACCGCCTGCCCGGCCCCTGCCACTGCCAGGAGGACGGCAT CATGCTGTCTGCCGACTGCTCTGAGCTCGGGGCTGTCCGCCGTTCCGGGGGACCTGGACCC CCTGACGGCTTACCTGGACCTCAGCATGAACAACCTCACAGAGCTTCAGCCTGGCCTCTT CCACCACCTGCGCTTCTTGGAGGAGCTGCGTCTCTCTGGGAACCATCTCTCACACATCCC AGGACAAGCATTCTCTGGTCTCTACAGCCTGAAAATCCTGATGCTGCAGAACAATCAGCT GGGAGGAATCCCCGCAGAGGCGCTGTGGGAGCTGCCGAGCCTGCAGTCGCTGCGCCTAGA CCTCTGGCTGGACGACAATGCACTCACGGAGATCCCTGTCAGGGCCCTCAACAACCTCCC TGCCCTGCAGGCCATGACCCTGGCCCTCAACCGCATCAGCCACATCCCCGACTACGCGTT CCAGAATCTCACCAGCCTTGTGGTGCTGCATTTGCATAACAACCGCATCCAGCATCTGGG GACCCACAGCTTCGAGGGGCTGCACAATCTGGAGACACTAGACCTGAATTATAACAAGCT GCAGGAGTTCCCTGTGGCCATCCGGACCCTGGGCAGACTGCAGGAACTGGGGTTCCATAA CAACAACATCAAGGCCATCCCAGAAAAGGCCTTCATGGGGAACCCTCTGCTACAGACGAT ACACTTTTATGATAACCCAATCCAGTTTGTGGGAAGATCGGCATTCCAGTACCTGCCTAA ACTCCACACACTATCTCTGAATGGTGCCATGGACATCCAGGAGTTTCCAGATCTCAAAGG CACCACCAGCCTGGAGATCCTGACCCTGACCCGCGCAGGCATCCGGCTGCTCCCATCGGG GATGTGCCAACAGCTGCCCAGGCTCCGAGTCCTGGAACTGTCTCACAATCAAATTGAGGA GCTGCCCAGCCTGCACAGGTGTCAGAAATTGGAGGAAATCGGCCTCCAACACAACCGCAT CTGGGAAATTGGAGCTGACACCTTCAGCCAGCTGAGCTCCCTGCAAGCCCTGGATCTTAG CTGGAACGCCATCCGGTCCATCCACCCTGAGGCCTTCTCCACCCTGCACTCCCTGGTCAA GCATCTGAAGCTCAAAGGGAACCTTGCTCTCTCCCAGGCCTTCTCCAAGGACAGTTTCCC AAAACTGAGGATCCTGGAGGTGCCTTATGCCTACCAGTGCTGTCCCTATGGGATGTGTGC CAGCTTCTTCAAGGCCTCTGGGCAGTGGGAGGCTGAAGACCTTCACCTTGATGATGAGGA GTCTTCAAAAAGGCCCCTGGGCCTCCTTGCCAGACAAGCAGAAACCACTATGACCAGGA CCTGGATGAGCTCCAGCTGGAGATGGAGGACTCAAAGCCACACCCCAGTGTCCAGTGTAG CCCTACTCCAGGCCCCTTCAAGCCCTGTGAGTACCTCTTTGAAAGCTGGGGCATCCGCCT GGCCGTGTGGGCCATCGTGTTGCTCTCCGTGCTCTGCAATGGACTGGTGCTGCTGACCGT GTTCGCTGGCGGGCCTGCCCCCTGCCCCCGGTCAAGTTTGTGGTAGGTGCGATTGCAGG CGCCAACACCTTGACTGGCATTTCCTGTGGCCTTCTAGCCTCAGTCGATGCCCTGACCTT TGGTCAGTTCTCTGAGTACGGAGCCCGCTGGGAGACGGGGCTAGGCTGCCGGGCCACTGG CTTCCTGGCAGTACTTGGGTCGGAGGCATCGGTGCTGCTGCTCACTCTGGCCGCAGTGCA TCGAGCAGGGGTCCTAGGCTGCCTGGCACTGGCAGGGCTGGCCGCACTGCCCCTGGC CTCAGTGGGAGAATACGGGGCCTCCCCACTCTGCCTGCCCTACGCGCCACCTGAGGGTCA GCCAGCAGCCCTGGGCTTCACCGTGGCCCTGGTGATGAACTCCTTCTGTTTCCTGGT CGTGGCCGGTGCCTACATCAAACTGTACTGTGACCTGCCGCGGGGCGACTTTGAGGCCGT GTGGGACTGCGCCATGGTGAGGCACGTGGCCTGGCTCATCTTCGCAGACGGGCTCCTCTA CTGTCCCGTGGCCTTCCTCAGCTTCGCCTCCATGCTGGGCCTCTTCCCTGTCACGCCCGA GTACCTGCTCTTCAACCCCCACTTCCGGGATGACCTTCGGCGGCTTCGGCCCCGCGCAGG GGACTCAGGGCCCCTAGCCTATGCTGCGGCCGGGGAGCTGGAGAAGAGCTCCTGTGATTC TACCCAGGCCCTGGTAGCCTTCTCTGATGTGGATCTCATTCTGGAAGCTTCTGAAGCTGG GCGGCCCCTGGGCTGGAGACCTATGGCTTCCCCTCAGTGACCCTCATCTCCTGTCAGCA GCCAGGGCCCCCAGGCTGGAGGGCAGCCATTGTGTAGAGCCAGAGGGGAACCACTTTGG GAACCCCCAACCCTCCATGGATGGAGAACTGCTGCTGAGGGCAGAGGGATCTACGCCAGC AGGTGGAGGCTTGTCAGGGGGTGGCGGCTTTCAGCCCTCTGGCTTTGGCCTTCACA GGTGAATGATGGCTGCTTCTAAAACAAATACAACCAAAACTCAGCAGTGTGATCTATAGC GCCTCTTGGCCTGGCCTTCCCTTGGCCTTCACCTTGATACTGGGCCTCTTC CTTGTCATGTCTGAAGCTGTGGACCARAGACCTGGACTTTTGTCTGCTTAAGGGAAATGA GGGAAGTAAAGACAGTGAAGGGGTGGAGGGTTGATCAGGGCACAGTGGACAGGGAGACCT

CACARAAAAAGGCCTGGAAGGKGATTTCCCGTGTGACTCATGGRTAGGAWACAAAATGTG TTCCATGTACCATTAATCTTGACATATGCCATGCATAAARACTTCCTATTAAAATAAGCT

TTGGRAGAGATT

>15088
MPSPPGLRALWLCAALCASRRAGGAPQPGPGPTACPAPCHCQEDGIMLSADCSELGLSAVPGDLDPLTAYLDLSMNNLT
ELQPGLFHHLRFLEELRLSGNHLSHIPGQAFSGLYSLKILMLQNNQLGGIPAEALWELPSLQSLRLDANLISLVPERSFEGLS
SLRHLWLDDNALTEIPVRALNNLPALQAMTLALNRISHIPDYAFQNLTSLVVLHLHNNRIQHLGTHSFEGLHNLETLDLNYNK
LQEFPVAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSAFQYLPKLHTLSLNGAMDIQEFPDLKGTT
SLEILTLTRAGIRLLPSGMCQQLPRLRVLELSHNQIEELPSLHRCQKLEEIGLQHNRIWEIGADTFSQLSSLQALDLSWNAIR
SIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHLKLKGNLALSQAFSKDSFPKLRILEVPYAYQCCPYGMCASFFKASG
QWEAEDLHLDDEESSKRPLGLLARQAENHYDQDLDELQLEMEDSKPHPSVQCSPTPGPFKPCEYLFESWGIRLAVWAIVL
LSVLCNGLVLLTVFAGGPAPLPPVKFVVGAIAGANTLTGISCGLLASVDALTFGQFSEYGARWETGLGCRATGFLAVLGSE
ASVLLLTLAAVQCSVSVSCVRAYGKSPSLGSVRAGVLGCLALAGLAAALPLASVGEYGASPLCLPYAPPEGQPAALGFTVA
LVMMNSFCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGLFPVTPEAVKSVLLVVL
PLPACLNPLLYLLFNPHFRDDLRRLRPRAGDSGPLAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGRPPGLETYGFP
SVTLISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGGGLSGGGGFQPSGLAFASHV*

```
protein alignment between mouse and human
> LGR6.
15088m(analysis only) - Import - complete
to: FrGcgManager_9_QBAsD4iW_ check: 8637 from: 1 to: 968
15088h(analysis only) - Import - complete
Symbol comparison table: /prod/ddm/seqanal/BLAST/matrix/aa/BLOSUM62
CompCheck: 1102
 Matrix made by matblas from blosum62.iij
                    12
                          Average Match: 2.778
       Gap Weight:
    Length Weight:
                        Average Mismatch: -2.248
                 4495
                                Length:
                                         968
         Quality:
           Ratio: 4.653
                                  Gaps:
                                           2
                        Percent Identity: 89.855
Percent Similarity: 91.097
      Match display thresholds for the alignment(s):
                | = IDENTITY
                    2
FrGcgManager 9 PBA0KgkFJ x FrGcgManager 9 QBAsD4iW March 15, 19101 15:24
     1 MHSPPGLLALWLCAVLCASARGGSDPQPGPGRPACPAPCHCQEDGIMLSA 50
                                                   Mouse
       1 MPSPPGLRALWLCAALCASRRAGGAPQPGPGPTACPAPCHCQEDGIMLSA 50
                                                   Human
    51 DCSELGLSVVPADLDPLTAYLDLSMNNLTELQPGLFHHLRFLEELRLSGN 100
       51 DCSELGLSAVPGDLDPLTAYLDLSMNNLTELQPGLFHHLRFLEELRLSGN 100
   101 HLSHIPGOAFSGLHSLKILMLOSNOLRGIPAEALWELPSLQSLRLDANLI 150
       101 HLSHIPGOAFSGLYSLKILMLONNOLGGIPAEALWELPSLQSLRLDANLI 150
   151 SLVPERSFEGLSSLRHLWLDDNALTEIPVRALNNLPALQAMTLALNHIRH 200
       151 SLVPERSFEGLSSLRHLWLDDNALTEIPVRALNNLPALQAMTLALNRISH 200
   201 IPDYAFONLTSLVVLHLHNNRIQHVGTHSFEGLHNLETLDLNYNELQEFP 250
       201 IPDYAFONLTSLVVLHLHNNRIQHLGTHNFEGLHNLEPLDLNYNKLQEFP 250
   251 LAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSA 300
       251 VAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSA 300
   301 FQYLSKLHTLSLNGATDIQEFPDLKGTTSLEILTLTRAGIRLLPPGVCQQ 350
       301 FQYLPKLHTLSLNGAMDIQEFPDLKGTTSLEILTLTRAGIRLLPSGMCQQ 350
```

### FIGURE 16

351	LPRLRILELSHNQIEELPSLHRCQKLEEIGLRHNRIKEIGADTFSQLGSL	400
351	LPRLRVLELSHNQIEELPSLHRCQKLEEIGLQHNRIWEIGADTFSQLSSL	400
401	QALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLMHLKL	450
401	QALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHLKL	450
451	KGNLALSQAFSKDSFPKLRILEVPYAYQCCAYGICASFFKTSGQWQAEDF	500
451		500
501	HPEEEEAPKRPLGLLAGQAENHYDLDLDELQMGTEDSKPNPSVQCSPVPG	550
501	::  .	550
551	PFKPCEHLFESWGIRLAVWAIVLLSVLCNG.VLLTVFASGPSPLSP.KLV	598
551	PFKPCEYLFESWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFV	600
599	VGAMAGANALTGISCGLLASVDALTYGQFAEYGARWESGLGCQATGFLAV	648
601	VGAIAGANTLTGISCGLLASVDALTFGQFSEYGARWETGLGCRATGFLAV	650
649	LGSEASVLLLTLAAVQCSISVTCVRAYGKAPSPGSVRAGALGCLALAGLA	698
651	LGSEASVLLLTLAAVQCSVSVSCVRAYGKSPSLGSVRAGVLGCLALAGLA	700
699	AALPLASVGEYGASPLCLPYAPPEGRPAALGFAVALVMMNSLCFLVVAGA	748
701		750
749	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	798
751	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	800
799	FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLWPSPRSPGP	848
801	FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLRPRAGDSGP	850
849	LAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGQPPGLETYGFPSVT	898
851	LAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGRPPGLETYGFPSVT	900
899	LISRHQPGATRLEGNHFIESDGTKFGNPQPPMKGELLLKAEGATLAGCGS	948
901	LISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGGGL	950
949	SVGGALWPSGSLFASHL* 966	
951	SGGGGFQPSGLAFASHV* 968	