"Matematika" kafedrasi "Matematik analiz(Calculs)" fanida IV semestr uchun TEST SAVOLLARI majmui				
	A (to'gri)	В	С	D
F(x) funksiya $f(x)$ funksiya uchun boshlang`ich funksiya deyiladi, agar:	F'(x) = f(x)	F(x) = f'(x)	F'(x) = C	F'(x) = x
$\left(\int f(x)dx\right)' = ? \text{ integral xossasidan}$ foydalanib toping.	f(x)	f(x)dx	dx	0
Integral jadvalidan foydalanib toping. $\int x^n dx = ?$	$\frac{x^{n+1}}{n+1} + C$	$nx^{n+1} + C$	$x^{n-1} + C$	$\frac{x^{n-1}}{n-1} + C$
Integral jadvalidan foydalanib toping. $\int \frac{1}{\sqrt{x}} dx = ?$	$2\sqrt{x} + C$	$\ln \sqrt{x} + C$	$\frac{2}{\sqrt{x}} + C$	$\frac{\sqrt{x}}{2} + C$
$f(x)=x^2$ funksiyaning M(-1;3) nuqtadan oʻtuvchi boshlangʻich funksiyasini toping.	$F(x) = x^3/3 + 10/3$	$F(x) = x^3 + 5/3$	$F(x) = x^3/3 + 3$	$F(x) = x^3/3$
$f(x) = \cos x + 7$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = \sin x + 7x + C$	$F(x) = -\sin x + 7 + C$	$F(x) = \cos x + 7x + C$	$F(x) = -\sin x + 7x + C$
$f(x) = e^x + 5$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = e^x + 5x + C$	$F(x) = -e^x + 6x + C$	$F(x) = e^x + 7x + C$	$F(x) = e^x - x + C$
$f(x) = \sin x - \frac{5}{x} - 7 \text{ funksiyaning}$ boshlang'ich funksiyasini toping	$F(x) = -\cos x - 5\ln x - 7x + 6$	$F(x) = \cos x + 5 \ln x + C$	$F(x) = -\cos x + 6x + C$	$F(x) = e^x - x + C$

$f(x) = x - \frac{5}{x} + 1$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = \frac{x^2}{2} - 5 \ln x + x + $	$CF(x) = \frac{x^2}{2} + 5\ln x + C$	$F(x) = \frac{x^2}{2} + 6x + C$	$F(x) = \frac{x^2}{2} - x + C$
$f(x) = x^3 - \frac{5}{x^2} + 1 \text{ funksiyaning}$ boshlang'ich funksiyasini toping.	$F(x) = \frac{x^4}{4} + \frac{5}{x} + x + C$	$F(x) = \frac{x^2}{2} + 5\ln x^2 + C$	$F(x) = \frac{x^2}{2} + 5\ln x^2 + C$	$F(x) = \frac{x^2}{2} - x + C$
Integralni hisoblang: $\int \sqrt{x} dx = ?$	$\frac{2}{3}\sqrt{x^3} + C$	$\frac{2}{3}\sqrt{x} + C$	$\frac{1}{2\sqrt{x}} + C$	$-\frac{2}{\sqrt{x}} + C$
Integralni hisoblang: $\int \frac{2}{x^2} dx = ?$	$-\frac{2}{x}+C$	$-\frac{2}{3x^3} + C$	$-\frac{1}{2x} + C$	$\frac{2}{x} + C$
Integralni hisoblang: $\int \frac{1}{2x+3} dx = ?$	$\frac{1}{2}\ln\left(2x+3\right)+C$	$2\ln(2x+3)+C$	$-\frac{1}{\left(2x+3\right)^2}+C$	$\frac{1}{2}(2x+3)+C$
Aniqmas integral jadvalidan $\int \frac{1}{\sqrt{x}} dx = \text{ni aniqlang.}$	$2\sqrt{x} + C$	$\ln \sqrt{x} + C$	$\frac{2}{\sqrt{x}} + C$	$\frac{\sqrt{x}}{2} + C$
Aniqmas integral jadvalidan $\int \frac{1}{\sin^2 x} dx = \text{ni aniqlang.}$	-ctg x + C	$\arcsin x + C$	$ctg \ x + C$	tg x + C
$f(x) = x - \frac{5}{x}$ funksiyaning boshlang'ich funksiyasini toping.	$\frac{x^2}{2} - 5\ln x + C$	$\frac{x^2}{2} + 10x + C$	$\frac{x^2}{2} + 5\ln x + C$	$\frac{x^2}{2} - x + C$
Integralni hisoblang: $\int \frac{1}{\cos^2 3x} dx = ?$	$\frac{1}{3}tg\ 3x + C$	$\arcsin 3x + C$	$-\frac{1}{3}tg\ 3x + C$	$\frac{1}{3}ctg3x + C$

$\int tg^2x dx \text{ integral ni hisoblang.}$	tgx - x + C	ctgx + x + C	2tgx + C	ctgx+1+C
Integralni hisoblang: $\int 2^{3x} dx = ?$	$\frac{2^{3x}}{3\ln 2} + C;$	$3\cdot 2^{3x}\ln 2 + C;$	$2^{3x}\ln 2 + C;$	$\frac{2^{3x}}{\ln 3} + C;$
Integralni hisoblang: $\int e^{4x+1} dx = ?$	$\frac{1}{4}e^{4x+1}+C;$	$4e^{4x+1}+C;$	$\frac{e^{4x+2}}{4x+2}+C;$	$e^{4x+1}+C;$
Integralni hisoblang: $\int \frac{1}{\cos^2 3x} dx = ?$	$\frac{1}{3}tg\ 3x + C;$	$\arcsin 3x + C$;	$\frac{1}{3}ctg\ 3x+C;$	$-\frac{1}{3}tg\ 3x+C\ ;$
Integralni hisoblang: $\int (\sin x - 3\cos x) dx$	$-\cos x - 3\sin x + C$	2tgx + C	$\ln\sin x + \cos x + C$	$2\sin x - 2\cos x + c$
Integralni hisoblang: $\int (2\cos 2x - 7) dx$	$\sin 2x - 7x + C$	$2\cos 2x - x + C$	tgx + C	ctgx + C
Integralni hisoblang: $\int (\sin 2x - 3x) dx$	$-\frac{\cos 2x}{2} - \frac{3x^2}{2} + C$	$2\cos 2x + C$	tgx + C	ctgx + C
Integralni hisoblang: $\int 6\cos 2x dx$	$3\sin 2x + C$	$2\cos 2x + C$	tgx + C	ctgx + C

Integralni hisoblang: $\int 5a^x dx$	$\frac{5a^x}{\ln a} + C$	$e^x + C$	$\sin x + C$	$\ln x^a + C$
Integralni hisoblang: $\int 2^{x+1} dx$	$\frac{2^{x+1}}{\ln 2} + C$	$e^x + C$	$2^x + C$	$\ln x^a + C$
Integralni hisoblang: $\int (e^{ax} - 2)dx$	$\frac{e^{ax}}{a} - 2x + C$	$e^{ax} + x^2 + C$	$\sin x + C$	$\ln x^a + C$
Integralni hisoblang: $\int (3x^2 - 2x)dx - ?$	$x^3 - x^2 + C$	x+C	$x^3 + C$	$e^x + C$
Integralni hisoblang: $\int \left(x^3 + \frac{1}{1+x^2}\right) dx - ?$	$\frac{x^4}{4} + arctgx + C$	2x+5+C	$\cos x + 51x + C$	$9x^2 + C$
Integralni hisoblang: $\int \frac{1}{5x+7} dx = ?$	$\frac{1}{5}\ln\left(5x+7\right)+C$	$5\ln(5x+7)+C$	$-\frac{1}{\left(5x+7\right)^2}+C$	$\frac{1}{5}(5x+7)+C$
$\int_{1}^{3} (x+1)^{2} dx$ integralni hisoblang.	56/3	50/3	$\frac{1}{4}$	4
Integralni hisoblang: $\int 7^{9x} dx = ?$	$\frac{7^{9x}}{9\ln 7} + C;$	$9\cdot 7^{9x}\ln 7 + C;$	$7^{9x}\ln 7 + C;$	$\frac{7^{9x}}{\ln 7} + C;$

Integralni hisoblang: $\int e^{7x+5} dx = ?$	$\frac{1}{7}e^{7x+5}+C;$	$7e^{7x+5}+C;$	$\frac{e^{7x+9}}{7x+9}+C;$	$e^{7x+9}+C;$
Integralni hisoblang: $\int (-2\sin x + 5\cos x)dx$	$2\cos x + 5\sin x + C$	2tgx + C	$\ln\sin x + \cos x + C$	$2\sin x - 2\cos x + c$
Integralni hisoblang: $\int (2\sin x - \cos x) dx$	$-2\cos x - \sin x + C$	2tgx + C	$\ln \sin x + \cos x + C$	$2\sin x - 2\cos x + c$
Integralni hisoblang: $\int \left(2x - \frac{1}{\sin^2 x}\right) dx - ?$	$x^2 + ctgx + C$	$\sin x + C$	$x^2 + C$	$\cos e^x + C$
Integralni hisoblang: $\int \left(4x^3 + \frac{1}{1+x^2}\right) dx - ?$	$x^4 + arctgx + C$	2x+5+C	$\cos x + 51x + C$	$9x^2 + C$
Aniqmas integral jadvalidan $\int \frac{1}{\sqrt{x}} dx = \text{ni aniqlang.}$	$2\sqrt{x} + C$	$\ln \sqrt{x} + C$	$\frac{2}{\sqrt{x}} + C$	$\frac{\sqrt{x}}{2} + C$
Aniqmas integral jadvalidan $\int a^x dx =$ ni aniqlang.	$\frac{a^x}{\ln a} + C$	$a^x \ln a + C$	$xa^{x-1} + C$	$\frac{a^x}{\ln x} + C$
Aniqmas integral jadvalidan $\int \frac{1}{\sin^2 x} dx = \text{ni aniqlang}.$	-ctg x + C	$\arcsin x + C$	$ctg \ x + C$	tg x + C
$f(x) = \cos x + 7$ funksiyaning boshlang'ich funksiyasini toping.	$\sin x + 7x + C$	$\cos x + 7x + C$	$-\sin x + 7 + C$	$-\sin x + 7x + C$

$f(x) = x - \frac{5}{x}$ funksiyaning boshlang'ich funksiyasini toping.	$\frac{x^2}{2} - 5\ln x + C$	$\frac{x^2}{2} + 10x + C$	$\frac{x^2}{2} + 5\ln x + C$	$\frac{x^2}{2} - x + C$
$f(x) = e^{-x-1} + \frac{1}{x^2}$ funksiyaning boshlang'ich funksiyasini toping.	$-e^{-x-1}-\frac{1}{x}+C$	$-e^{x+1} + x + C$	$e^{-x-1} + \frac{1}{x} + C$	$e^{-x-1} + \frac{1}{x^2} + C$
Integralni hisoblang: $\int \frac{1}{\sin^2 9x} dx = ?$	$-\frac{1}{9}ctg \ 9x + C$	-9ctg 9x + C	$\arcsin 9 x + C$	$\frac{1}{9}tg \ 9x + C$
Integralni hisoblang: $\int 2^{3x} dx = ?$	$\frac{2^{3x}}{3\ln 2} + C$	$2^{3x}\ln 2 + C$	$\frac{2^{3x}}{\ln 3} + C$	$3 \cdot 2^{3x} \ln 2 + C$
Integralni hisoblang: $\int e^{7x+1} dx = ?$	$\frac{1}{7}e^{7x+1} + C$	$7e^{7x+1} + C$	$\frac{e^{7x+1}}{7x+1} + C$	$e^{7x+1} + C$
Integralni hisoblang: $\int \frac{1}{\cos^2 3x} dx = ?$	$\frac{1}{3}tg\ 3x + C$	$\arcsin 3x + C$	$-\frac{1}{3}tg3x+C$	$\frac{1}{3}ctg3x + C$
∫lnxdx integralni hisoblang.	xlnx-x+C	xlnx+C	xlnx+x+C	$0.5\ln^2 x + C$
$\int xe^x dx \text{ integral ni hisoblang.}$	$(x-1)e^x + C$	$xe^x + C$	$(x+1)e^x + C$	$0.5\ln^2 x + C$
$\int (x+7)\sin x dx \text{ integralni hisoblang.}$	$-(x+7)\cos x + \sin x + C$	$x\cos x + C$	$-(x+7)\sin x + \cos x + C$	$7\cos x + \sin x + C$
$\int x \sin 2x dx \text{ integralni hisoblang.}$	$\frac{\sin 2x}{4} - \frac{x\cos 2x}{2} + C$	$x\cos x + C$	$-\sin 2x + \cos x + C$	$\cos 2x + \sin x + C$

$\int tg^2x dx \text{ integralni hisoblang.}$	tgx - x + C	ctgx + x + C	2tgx + C	ctgx + 1 + C
Aniqmas integrallarning qaysi biri noto'g'ri?	$\int \sin x dx = \cos x + C$	$\int e^{x}dx = e^{x} + C$	$\int \frac{dx}{x} = \ln x + C$	$\int a^{x} dx = \frac{a^{x}}{1na} + C$
Aniqmas integralni bo'laklab integrallash formulasi:	$\int u dv =$ $= uv - \int v du$	$\int f(x)dx = \int f(\varphi(x))\varphi'(x)dx$	хамма жавоб нотўғри	$\int f(x)dx = F(x) + C$
$\int_{0}^{2} (x-1)^{3} dx$ integralni hisoblang.	0	1	$\frac{1}{4}$	4
$\int_{0}^{4} \frac{1}{2\sqrt{x}} dx$ integralni hisoblang.	2	4	1	0
$\int_{1}^{e} \frac{x-1}{x} dx$ integralni hisoblang.	e-2	0	$\frac{e^2}{2}$	1
$\int_{0}^{\pi} \cos^{3} x dx \text{ integralni hisoblang.}$	0	-3	π	1
$\int_{0}^{\frac{\pi}{2}} \sin^2 x dx \text{ integralni hisoblang.}$	$\frac{\pi}{4}$	$\frac{1}{4}$	π	0
$\int_{0}^{\pi/2} \frac{2}{\cos^2 2x} dx \text{ integralni hisoblang.}$	0	π	$\frac{1}{2}$	$\frac{\pi}{4}$
$\int_{1}^{2} \frac{1}{x^2 + x} dx$ integralni hisoblang.	$ln\frac{4}{3}$	$\frac{3}{2}$	ln 4	1

$\int_{0}^{2} \frac{1}{x^2 + 4} dx$ integralni hisoblang.	$\frac{\pi}{8}$	$\frac{1}{2}$	$\frac{\pi}{2}$	$\frac{3}{2}$
Integralni hisoblang: $\int \frac{1}{\sin^2 7x} dx = ?$	$-\frac{1}{7}ctg\ 7x + C$	$-7ctg \ 7x + C$	$\arcsin 7x + C$	$\frac{1}{7}tg\ 7x + C$
Integralni hisoblang: $\int 7^{7x} dx = ?$	$\frac{7^{7x}}{7\ln 7} + C$	$7^{7x}\ln 7 + C$	$\frac{7^{7x}}{\ln 7} + C$	$7 \cdot 7^{7x} \ln 7 + C$
Integralni hisoblang: $\int e^{13x+17} dx = ?$	$\frac{1}{13}e^{13x+17} + C$	$17e^{13x+17} + C$	$\frac{e^{13x+17}}{13x+17} + C$	$e^{13x+17} + C$
$\sum_{n=1}^{\infty} a_n (a_n > 0)$ qator quyidagi shartlarning qaysi biri bajarilganda albatta yaqinlashuvchi bo'ladi?	$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$ bo'lsa	$\frac{a_{n+1}}{a_n} > q > 1$ bo'lsa	$\lim_{n\to\infty} \sqrt[n]{a_n} > 1$ bo'lsa	$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ bo'lsa
$\sum_{n=1}^{\infty} a_n (a_n > 0) - \text{qator quyidagi}$ shartlarning qaysi biri bajarilganda albatta yaqinlashuvchi bo'ladi?	$\lim_{n\to\infty} \sqrt[n]{a_n} < 1$ bo'lsa	$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$ bo'lsa	$\lim_{n\to\infty} \sqrt[n]{a_n} > 1$ bo'lsa	$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ bo'lsa
$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ qator yig'indisini hisoblang.	1	$1\frac{1}{2}$	$\frac{1}{2}$	3
Quyidagi qatorlarning qaysi biri yaqinlashuvchi.	$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1}$	$\sum_{n=1}^{\infty} \frac{1}{2n-1}$	$\sum_{n=1}^{\infty} \frac{1}{\sqrt{(2n-1)(2n+1)}}$

$\sum_{n=0}^{\infty} x^n$ funktsional qator quyidagi oraliqlarning qaysi birida tekis yaqinlashuvchi bo'ladi:	[-q; q], 0 < q < 1	(-1,1]	[-1; 1]	[0, 1]
$\sum_{n=0}^{\infty} \frac{x^n}{n!}$ darajali qatorning yaqinlashish radiusini toping.	∞	0	3	2
Qaysi funktsiyaning Makloren qatori $f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k-1}}{(2k-1)!}$ ko'rinishida bo'ladi?	$f(x) = \sin x$	$f(x) = \cos x$	f(x) = tgx	$f(x) = e^x$
$\sum_{n=1}^{\infty} (-1)^{n-1} c_n(c_n > 0)$ qator yaqinlashuvchi bo'ladi, agar:	c_n - monoton kamayuvchi $\lim_{n\to\infty} c_n = 0$ bo'lib, $n\to\infty$ bo'lsa	<i>C</i> _n - monoton kamayuvchi bo'lsa	$\frac{c_{n+1}}{c_n} \ge 1$ bo'lsa	$\lim_{n\to\infty} c_n = 0$ bo'lsa
Garmonik qatorni ko'rsating.	$\sum_{n=1}^{\infty} \frac{1}{n}$	$\sum_{n=1}^{\infty} a_n q^n$	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$	$n = 12 \infty 2 - 122n22$
$\sum_{n=1}^{\infty} x^{n}, x \in (0,1)$ funktsional qatorning yig'indisini toping:	$f(x) = \frac{x}{1-x}$	f(x) = 0	$f(x) = \frac{x}{x-1}$	$f(x) = \frac{1-x}{x}$
$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ funktsional qator quyidagi oraliqlarning qaysi birida tekis yaqinlashuvchi bo'ladi:	[-1, 1]	(1, 2)	[1, 2]	[-2, -1]

$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots$ qator yig'indisini hisoblang.	1/2	3/7	1/3	2/3
$\sum_{n=0}^{\infty} \frac{1}{2^n}$ qator yig'indisini hisoblang.	2	1	3	0
$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n}$ darajali qatorning yaqinlashish sohasini toping.	-1 <x<3< td=""><td>0<x<3< td=""><td>-2<x<2< td=""><td>$-\infty < x < \infty$</td></x<2<></td></x<3<></td></x<3<>	0 <x<3< td=""><td>-2<x<2< td=""><td>$-\infty < x < \infty$</td></x<2<></td></x<3<>	-2 <x<2< td=""><td>$-\infty < x < \infty$</td></x<2<>	$-\infty < x < \infty$
$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+5)!} \sum_{\text{va}}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}}$ qatoqlarni absolyut yoki shartli yaqinlashuvchilikka tekshiring	1- absolyut yaqinla shuvchi, 2- shartli yaqinla shuvchi	1-absolyut yaqinla shuvchi, 2- uzoqla shuvchi	1- uzoqla shuvchi, 2- uzoqla shuvchi	1- shartli yaqinla shuvchi, 2- absolyut yaqinla shuvchi
Quyidagi qatorlardan qaysilari yaqinlashuvchi bo'ladi? $\sum_{n=1}^{\infty} \left(\frac{4n}{n+3}\right)^n; 2) \sum_{n=1}^{\infty} \frac{2n^4}{(n+1)^4};$ $\sum_{n=1}^{\infty} \frac{1}{(n+2)^7}.$ $\sum_{n=1}^{\infty} \frac{(x-2)^n}{5^n} \text{ darajali qatorning}$	3	1	2	Hammasi yaqinlashuvchi
$\sum_{n=1}^{\infty} \frac{(x-2)^n}{5^n}$ darajali qatorning yaqinlashish sohasini toping.	-3 <x<7< td=""><td>0<x<5< td=""><td>-5<x<5< td=""><td>$-\infty < x < \infty$</td></x<5<></td></x<5<></td></x<7<>	0 <x<5< td=""><td>-5<x<5< td=""><td>$-\infty < x < \infty$</td></x<5<></td></x<5<>	-5 <x<5< td=""><td>$-\infty < x < \infty$</td></x<5<>	$-\infty < x < \infty$
$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots$ qator yig'indisini hisoblang.	1/2	3/7	1/3	2/3
Darajali qatorni yaqinlashish radusini toping. $\sum_{n=1}^{\infty} \frac{x^n}{3n-2}$	1	∞	2	3

$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n}$ darajali qatorning yaqinlashish sohasini toping.	[-3; -1)	(-2; 4)	[-3; 3)	(-2; 4)
$\sum_{n=1}^{\infty} \frac{(x-1)^n}{5n+1}$ darajali qatorning yaqinlashish sohasini toping.	[0; 2)	(-1; 1)	[1; 3)	(-1; 2)
Darajali qatorni yaqinlashish radusini toping. $\sum_{n=1}^{\infty} n! x^n$	0	1	∞	1/2
$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2}$ darajali qatorning yaqinlashish sohasini toping.	[0; 2]	[1; 2)	$\left(-\frac{1}{2};-1\right)$	[-1; 2)
Quyidagi qatorlardan qaysilari yaqinlashuvchi bo'ladi? 1) $\sum_{n=1}^{\infty} \frac{1}{2^n}$, 2) $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$, 3) $\sum_{n=1}^{\infty} 7\left(\frac{4}{5}\right)^n$, 4) $\sum_{n=1}^{\infty} 2^{n-1}$.	1;3	1;2	2;4	3;4
Quyidagi qatorlardan qaysilari yaqinlashuvchi bo'ladi? 1) $\sum_{n=1}^{\infty} \frac{1}{n}$, 2) $\sum_{n=1}^{\infty} \frac{1}{n^3}$, 3) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}$	2	1	3	1;2

$\sum_{n=1}^{\infty} \frac{n}{1+n^2} \text{ va } \sum_{n=1}^{\infty} \frac{n+1}{5n+3} \text{ qatoqlarni}$ yaqinlashishga tekshiring.	1- uzoqla shuvchi, 2- uzoqla shuvchi	1- yaqinla shuvchi, 2- uzoqlashuvchi	1- uzoqla shuvchi, 2- yaqinla shuvchi	1- yaqinla shuvchi, 2- yaqinla shuvchi
Quyidagi qatorlarning qaysi biri shartli yaqinlashuvchi:	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$	$\sum_{n=1}^{\infty} \cos n$	$\sum_{n=1}^{\infty} \sin n$	$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n^2}$
$f(x) = e^x$ funktsiyaning Makloren qatoriga yoilmasini aniqlang.	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	$1 - x - \frac{x^2}{2!} - \frac{x^3}{3!} - \dots$	$x - \frac{x^3}{3!} - \frac{x^5}{5!} + \dots$	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
$\frac{1}{5} + \frac{2}{11} + \frac{3}{29} + \dots + \frac{n}{3^n + 2} + \dots$ Dalamber alomatidan foydalanib qator yaqinlashishi tekshirilsin.	Yaqinlashuvchi. $l = \frac{1}{3}$	Uzoqlashuvchi $l=1$	Yaqinlashuvchi. $l = \frac{1}{4}$	Uzoqlashuvchi $l=2$
Darajali qatorni yaqinlashish sohasi topilsin. $\sum_{n=1}^{\infty} \frac{\left(x-1\right)^n}{n \cdot 3^{n-1}}$	[-2;4)	(-2;4)	[-3; 3)	(-3;4)
Darajali qatorni yaqinlashish sohasi topilsin. $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^{n-1}}$	[-3; 3)	(0;3)	(-3;0)	(-2; 4)
$f(x) = 3\cos 5x$ funksiyaning boshlang`ichini toping.	$\frac{3}{5}\sin 5x + C$	$\sin x + C$	$\frac{3}{5}\sin 4x + C$	$\frac{3}{5}\sin 2x + C$
Berilgan qatorning umumiy hadini aniqlang. $\frac{2}{5} + \frac{4}{8} + \frac{6}{11} + \frac{8}{14} + \cdots$	$\frac{2n}{3n+2}$	$\frac{2n}{2n+1}$	$\frac{2n}{3n-1}$	$\frac{2^n}{3n+2}$

Integralni hisoblang: $\int \frac{3 dx}{x^2}$	$-\frac{3}{x}+C$	$\frac{3}{x^4} + C$	$\frac{1}{x} + C$	$-\frac{1}{x^2} + C$
Integralni hisoblang $\int \frac{dx}{3x+4}$	$\frac{1}{3}\ln\left 3x+4\right +C$	$\frac{1}{\left(3x+2\right)^3} + C$	$\frac{1}{(x-4)^2} + C$	$\ln x+1 +C$
Integralni hisoblang $\int (\cos 2x + 1) dx$	$\frac{1}{2}\sin 2x + x + C$	$\frac{1}{2}\sin x + C$	$\frac{1}{3}\cos(3x-2) + C$	$\cos 2x + x + C$
Integralni hisoblang $\int (\sqrt{x} + \cos 3x) dx$	$\frac{2}{3}x^{\frac{3}{2}} + \frac{1}{3}\sin 3x + C$	$x^2 + x^{\frac{3}{2}} + \cos 3x + C$	$x^{\frac{3}{2}} + \cos x + C$	$x^2 + \frac{2}{3}x^{\frac{3}{2}} + C$
Integralni hisoblang: $\int_{0}^{a} (x^{3} - a^{2}x + 1) dx$	$-\frac{1}{4}a^4 + a$	$a^3 + a$	a^4	$-\frac{1}{2}a^4$
$\int_{0}^{5} e^{\frac{x}{5}} dx$ Integralni hisoblang:	5(<i>e</i> -1)	5e	e+1	3+ <i>e</i>
$f(x) = e^{x} + \cos x + 3$ funksiyaning boshlang`ichini toping:	$F(x) = e^x + \sin x + 3x + C$	$F(x) = \sin x + 5x + C$	$F(x) = e^x + \sin 2x + C$	$F(x) = \sin 3x + C$
Integralni hisoblang: $\int_{1}^{\sqrt{3}} \frac{dx}{x^2 + 1}$	$\frac{\pi}{12}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$
Sonli qatorning yig'ndisini toping: $\sum_{n=1}^{\infty} \frac{1}{2^n}$	1	0	3	-1

Sonli qatorning yig'ndisini toping: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$	1	-1	0	-2
Agar sonli qator yaqinlashuvchi bo'lsa, uning umumiy hadi qaysi songa intilishi zarur?	0	3	-1	2
Integralni hisoblang: $\int_{0}^{2} x^{3} dx = ?$	4	1	2	0
Integralni hisoblang: $\int_{0}^{4} \frac{1}{2\sqrt{x}} dx = ?$	2	1	0	4
Integralni hisoblang: $\int_{1}^{e} \frac{1}{x} dx = ?$	1	е	$\frac{e^2}{2}$	0
Integralni hisoblang: $\int_{0}^{1} a^{x} dx = ?$	$\frac{a-1}{\ln a}$	$\frac{a}{\ln a}$	a-1	a
Integralni hisoblang: $\int_{0}^{\pi} \cos x dx = ?$	0	π	1	-1
Integralni hisoblang: $\int_{0}^{\pi} \sin x dx = ?$	2	π	1	-1

Integralni hisoblang: $\int_{0}^{\pi/2} \frac{1}{\cos^2 x} dx = ?$	∞	π	1	-1
Integralni hisoblang: $\int_{1}^{2} \frac{1}{x^2} dx = ?$	$\frac{1}{2}$	$-\frac{1}{2}$	1	2
Integralni hisoblang: $\int \frac{1}{\sin^2 5x} dx = ?$	$-\frac{1}{5}ctg5x+C$	-5ctg 5x + C	$\arcsin 5x + C$	$\frac{1}{5}tg\ 5x + C$
Integralni hisoblang: $\int \frac{1}{\cos^2 3x} dx = ?$	$\frac{1}{3}tg\ 3x + C$	$\arcsin 3x + C$;	$\frac{1}{3}ctg3x+C;$	$-\frac{1}{3}tg\ 3x+C\ ;$
Integralni hisoblang: $\int e^{4x+1} dx = ?$	$\frac{1}{4}e^{4x+1}+C;$	$4e^{4x+1}+C;$	$\frac{e^{4x+2}}{4x+2}+C;$	$e^{4x+1}+C;$
Integralni hisoblang: $\int 2^{3x} dx = ?$	$\frac{2^{3x}}{3\ln 2} + C;$	$3\cdot 2^{3x}\ln 2 + C;$	$2^{3x}\ln 2 + C;$	$\frac{2^{3x}}{\ln 3} + C;$
Integralni hisoblang: $\int \frac{1}{2x+3} dx = ?$	$\frac{1}{2}\ln\left(2x+3\right)+C;$	$2\ln(2x+3)+C;$	$-\frac{1}{(2x+3)^2} + C;$	$\frac{1}{2}(2x+3)+C;$
Integralni hisoblang: $\int \frac{2}{x^2} dx = ?$	$-\frac{2}{x}+C$;	$-\frac{2}{3x^3}+C;$	$-\frac{1}{2x}+C;$	$\frac{2}{x}+C;$

Integralni hisoblang: $\int \sqrt{x} dx = ?$	$\frac{2}{3}\sqrt{x^3}+C;$	$\frac{2}{3}\sqrt{x}+C;$	$\frac{1}{2\sqrt{x}} + C;$	$-\frac{2}{\sqrt{x}}+C;$
$f(x) = x^3 - \frac{5}{x^2} + 1$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = \frac{x^4}{4} + \frac{5}{x} + x + C$	$F(x) = \frac{x^2}{2} + 5\ln x^2 + C$	$F(x) = \frac{x^2}{2} + 5 \ln x^2 + C$	$F(x) = \frac{x^2}{2} - x + C$
$f(x) = x - \frac{5}{x} + 1 \text{ funksiyaning}$ boshlang'ich funksiyasini toping.	$F(x) = \frac{x^2}{2} - 5\ln x + x + C$	$F(x) = \frac{x^2}{2} + 5\ln x + C$	$F(x) = \frac{x^2}{2} + 6x + C$	$F(x) = \frac{x^2}{2} - x + C$
$f(x) = \sin x - \frac{5}{x} - 7 \text{ funksiyaning}$ boshlang'ich funksiyasini toping.	$F(x) = -\cos x - 5\ln x - 7x + C$	$F(x) = \cos x + 5\ln x + C$	$F(x) = -\cos x + 6x + C$	$F(x) = e^x - x + C$
$f(x) = e^x + 5$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = e^x + 5x + C$	$F(x) = -e^x + 6x + C$	$F(x) = e^x + 7x + C$	$F(x) = e^x - x + C$
$f(x) = \cos x + 7$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = \sin x + 7x + C$	$F(x) = \cos x + 7x + C$	$F(x) = -\sin x + 7 + C$	$F(x) = -\sin x + 7x + C$
Integralni hisoblang: $\int x^3 e^{-x^2} dx - ?$	$-\frac{x^2 + 1}{2}e^{-x^2} + c$	$-\frac{x^2+1}{2}e^x+c$	$\frac{x^3 + 1}{2}e^{-x^2} + c$	$\frac{x^2-1}{2}e^{x^2}+c$
Integralni hisoblang: $\int \frac{dx}{\left(x^2 + 1\right)}$	arctgx+c	$\arcsin x + c$	$\cos x + c$	arcctgx+c

$\int ctgx dx \text{integralni hisoblang.}$	$\ln \left \sin x \right + C$	tgx	$ctg^2x + C$	$\ln x + C$
$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$ integralni hisoblang.	π	3	0	$\pi/2$
Ushbu $\sum_{n=1}^{\infty} \frac{x^4}{n^2}$ qatorni yaqinlashish sohasini toping.	<i>x</i> ≤1	$ x \ge 1$	x=1	X = R
$f(x) = x^4 + \frac{7}{x^3} + \lg 8$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = \frac{x^5}{5} - \frac{7}{2x^2} + \lg 8x + C$	$F(x) = \frac{x^2}{2} + 7\ln x^2 + C$	$F(x) = \frac{x^3}{2} + 7\ln x^2 + C$	$F(x) = \frac{x^2}{2} - \lg 8x + C$
Integralni hisoblang: $\int 2\sqrt{x}dx = ?$	$\frac{4}{3}\sqrt{x^3} + C$	$\frac{2}{3}\sqrt{x}+C$	$\frac{1}{2\sqrt{x}} + C$	$-\frac{2}{\sqrt{x}} + C$
Integralni hisoblang: $\int \frac{5}{x^2} dx = ?$	$-\frac{5}{x}+C$	$-\frac{2}{3x^3} + C$	$-\frac{1}{2x}+C$	$\frac{2}{x} + C$
Integralni hisoblang: $\int \frac{1}{x+10} dx = ?$	$\ln(x+10)+C$	$2\ln(2x+3)+C$	$-\frac{1}{(2x+3)^2}+C$	$\frac{1}{2}(2x+3)+C$
$\int \cos(3x-2)dx \text{ integralni hisoblang.}$	$\frac{1}{3}\sin(3x-2) + C$	$\sin(3x-2)+C$	$\frac{1}{3}\cos(3x-2) + C$	$\cos(3x-2)+C$
$\int (x + \sqrt{x} - \sin 3x) dx$ integralni hisoblang.	$\frac{1}{2}x^2 + \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{3}\cos 3x + C$	$x^2 + x^{\frac{3}{2}} + \cos 3x + C$	$\frac{1}{2}x^2 + x^{\frac{3}{2}} + \cos 3x + C$	$x^2 + \frac{2}{3}x^{\frac{3}{2}} + \cos 3x + C$

$f(x) = 2x - \frac{4}{x}$ funksiyaning	$x^2 - 4\ln x + C$	$\frac{x^2}{2} + 10x + C$	$\frac{x^2}{2} + 5\ln x + C$	$\frac{x^2}{2} - x + C$
boshlang'ich funksiyasini toping.				
Integralni hisoblang $\int \frac{1}{\cos^2 7x} dx = ?$	$\frac{1}{7}tg\ 7x + C$	$\arcsin 7x + C$	$-\frac{1}{3}tg\ 7x + C$	$\frac{1}{3}ctg\ 7x + C$
$\int tg^2 x dx \text{ integralni hisoblang.}$	tgx - x + C	ctgx + x + C	2tgx + C	ctgx + 1 + C
Integralni hisoblang: $\int 3^{3x} dx = ?$	$\frac{3^{3x}}{3\ln 3} + C;$	$3\cdot 3^{3x}\ln 2 + C;$	$2^{3x}\ln 2 + C;$	$\frac{2^{3x}}{\ln 3} + C;$
Integralni hisoblang: $\int e^{x+1} dx = ?$	$e^{x+1}+C$;	$4e^{4x+1}+C;$	$\frac{e^{4x+2}}{4x+2}+C;$	$e^{4x+1}+C;$
Integralni hisoblang: $\int \frac{1}{\cos^2 5x} dx = ?$	$\frac{1}{5}tg\ 5x+C\ ;$	$\arcsin 5 x + C$;	$\frac{1}{5}ctg\ 5x+C\ ;$	$-\frac{1}{5}tg\ 5x+C\ ;$
$\int (2x-1)^{10} dx$ integralni hisoblang.	$\frac{1}{22}(2x-1)^{11} + C$	$\frac{1}{11}(2x-1)^{11} + C$	$\frac{1}{22}(2x+1)^{11} + C$	$\frac{1}{11}(2x+1)^{11} + C$
Integralni hisoblang: $\int_{0}^{2} x^{2} dx$	$\frac{8}{3}$	-4	4	$\frac{16}{3}$
Integralni hisoblang: $\int_{-1}^{0} 3(2x+1)^2 dx$	1	2	$\frac{1}{2}$	$\frac{1}{3}$

Integralni hisoblang: $\int_{-1}^{0} e^{-x} dx$	-1+ <i>e</i>	e	$\frac{1}{e}$ - 1	5
Integralni hisoblang: $\int_{1}^{2} \frac{dx}{x+1}$	$\ln \frac{3}{2}$	0	ln3	ln3-1
Integralni hisoblang: $\int_{0}^{\pi} \sin x dx$	2	1	-1	-2
Integralni hisoblang: $\int_{0}^{2} x^{3} dx$	4	2	5	1
Integralni hisoblang: $\int_{0}^{\pi} \sin 2x dx$	0	-1	1	2
Integralni hisoblang: $\int_{\pi/2}^{\pi} \cos x dx$	-1	0	1	-2
Integralni hisoblang: $\int_{3}^{5} \frac{dx}{x-1}$	ln 2	$\ln \frac{3}{2}$	$\ln \frac{4}{3}$	1
Integralni hisoblang: $\int_{-1}^{0} (2x+1)^2 dx$	$\frac{1}{3}$	1	-3	-1

Integralni hisoblang: $\int_{-1}^{0} 2e^{-x} dx$	-2 + 2e	e	$\frac{1}{e}$ -1	5
Integralni hisoblang: $\int \left(2x^3 - \frac{1}{1+x^2}\right) dx - ?$	$\frac{x^4}{2} - arctgx + C$	2x+5+C	$\cos x + 51x + C$	$9x^2 + C$
Integralni hisoblang: $3\int_{-1}^{0} (2x+1)^2 dx$	1	0	-3	-1
Integralni hisoblang: $\int_{-1}^{0} 2e^{-x} dx$	-2 + 2e	e	$\frac{1}{e}$ - 1	5
Integralni hisoblang: $\int_{0}^{\pi/2} \cos x dx$	1	-1	0	$\frac{\pi}{2}$
Integralni hisoblang: $\int_{0}^{1} \frac{dx}{1+x^2}$	$\frac{\pi}{4}$	-1	1	2
Integralni hisoblang: $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$	$\frac{\pi}{2}$	0	1	1
Quyidagi tengliklardan qaysi biri oʻrinli?	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$	$\int_{a}^{-b} f(x)dx = \int_{a}^{b} f(x)dx$	$\int_{-a}^{a} f(x)dx = 0$	$\int_{-a}^{-b} f(x)dx = -\int_{a}^{b} f(x)dx$

Integralni hisoblang: $\int_{0}^{\pi/2} \cos 2x dx$	0	-1	5	$\frac{1}{2}$
Aniq integralni hisoblang $\int_{0}^{1} \frac{dx}{\sqrt{x}}$	2	0	-1	-3
Aniq integralni hisoblang $\int_{0}^{1} \frac{dx}{\sqrt[3]{x}}$	$\frac{3}{2}$	-1	-2	0
α ning qanday qiymatida $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ xosmas integral yaqinlashuvchi bo'ladi?	<i>α</i> > 1	$\alpha = -1$	α<1	$\alpha = 0$
α ning qanday qiymatida $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ xosmas integral uzoqlashuvchi bo'ladi?	<i>α</i> ≤1	$\alpha > 1$	$\alpha = 2$	$\alpha = 3$
α ning qanday qiymatida $\int_{0}^{1} \frac{dx}{x^{\alpha}}$ xosmas integral yaqinlashuvchi bo'ladi?	α<1	$\alpha > 1$	$\alpha = 2$	$\alpha = 1$
α ning qanday qiymatida $\int_{0}^{1} \frac{dx}{x^{\alpha}}$ xosmas integral uzoqlashuvchi bo'ladi?	<i>α</i> ≥1	$\alpha = 2$	$\alpha = 3$	α < 1
Sonli qatorning yig'ndisini toping $\sum_{n=1}^{\infty} \frac{1}{2^n}$	1	0	3	-1

Sonli qatorning yig'ndisini toping $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$	1	-1	0	-2
Agar sonli qator yaqinlashuvchi bo'lsa, uning umumiy hadi qaysi songa intilishi zarur?	0	3	-1	2
Nuqtalar o'rniga zarur so'zlarni qo'ying: Tashlab yuborilgan hadlar qatorning yaqinlashuviga yoki uzoqlashuviga ta'sir qilmaydi.	chekli sondagi	cheksiz sondagi	juft o'rinda turgan barcha	toq o'rinda turgan barcha
Nuqtalar o'rniga zarur so'zlarni qo'ying: Agar musbat hadli qator uchun $\lim_{n\to\infty} \sqrt[n]{a_n} = p$ limit mavjud va bo'lsa, u holda bu qator yaqinlashadi	<i>p</i> < 1	p > 1	p = 1	p = 2
Ko'rsatilgan qatorlardan qaysi biri yaqinlashuvchi ?	$\sum_{n=1}^{\infty} \frac{1}{n^3}$	$\sum_{n=1}^{\infty} \frac{1}{n}$	$\sum_{n=1}^{\infty} \frac{n+2}{n+1}$	$\sum_{n=1}^{\infty} (-1)^n$
Ko'rsatilgan qatorlardan qaysi biri uzoqlashuvchi?	$\sum_{n=1}^{\infty} \frac{1}{n}$	$\sum_{n=1}^{\infty} \frac{1}{n^3}$	$\sum_{n=1}^{\infty} \frac{n+1}{n^3+2}$	$\sum_{n=1}^{\infty} \frac{1}{2^n}$
Qanday α da $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ sonli qator yaqinlashuvchi?	$\alpha > 1$	$\alpha = 1$	α<1	$\alpha = 0$
Qanday α da $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ sonli qator uzoqlashuvchi?	<i>α</i> ≤1	$\alpha > 1$	$\alpha = 2$	$\alpha = 3$

Ko'rsatilgan qatorlardan qaysi biri yaqinlashuvchi ?	$\sum_{n=1}^{\infty} \frac{2^n}{n!}$	$\sum_{n=1}^{\infty} \frac{n+2}{n+1}$	$\sum_{n=1}^{\infty} \frac{1}{n}$	$\sum_{n=1}^{\infty} (-1)^n$
Ko'rsatilgan qatorlardan qaysi biri yaqinlashuvchi ?	$\sum_{n=1}^{\infty} \left(\frac{2}{n+1}\right)^n$	$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n+2}$	$\sum_{n=1}^{\infty} \frac{1}{n}$	$\sum_{n=1}^{\infty} n^2$
Ko'rsatilgan qatorlardan qaysi biri absolyut yaqinlashuvchi?	$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$	$\sum_{n=1}^{\infty} (-1)^n$	$\sum_{n=1}^{\infty} \sin n$	$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$
Ko'rsatilgan qatorlardan qaysi biri shartli yaqinlashuvchi ?	$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$	$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$	$\sum_{n=1}^{\infty} \sin n$	$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{1}{n^2}$
α ning qanday qiymatlarida $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{\alpha}}$ sonli qator absolyut yaqinlashuvchi bo'ladi?	$\alpha > 1$	$\alpha = 1$	α<1	$\alpha = 0$
Tasdiqni davom ettiring: Agar sonli qator $\sum_{n=1}^{\infty} a_n $ yaqinlashsa, u holda $\sum_{n=1}^{\infty} a_n$	ham yaqinlashadi	uzoqlashadi	manfiy yig'indiga ega	uzoqlashishi ham yaqinlashishi ham mumkin
Absolyut yaqinlashuvchi qatorning hadlarining o'rnini almashtirganda, hosil bo`lgan yangi qator	ham yaqinlashadi	uzoqlashadi	ba'zida yaqinlashadi	yaqinlashishi ham va uzoqlashishi ham mumkin
$f(x) = 1 + \cos 3x$ funksiyaning boshlang'ich funksiyasini toping.	$F(x) = x + \frac{1}{3}\sin 3x + C$	$F(x) = x + \sin 3x + C$	$F(x) = \frac{1}{3}\sin 3x + C$	$F(x) = \sin 3x + C$

Integralni hisoblang: $\int x \ln x dx$ toping	$\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$	$\frac{1}{2}x^2\ln x + C$	$x \ln x + x^2 + C$	$x^2 \ln x - \frac{1}{2}x^2 + C$
$\int_{0}^{2} \frac{dx}{x^2 + 4}$ integralni hisoblang.	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\int_{0}^{3} e^{\frac{x}{3}} dx$ integralni hisoblang.	3(<i>e</i> – 1)	3 <i>e</i>	е	3+ <i>e</i>

Fan boʻyicha mas'ul: Matematika kafedrasi