Teorías de aislamiento acústico

El aislamiento acústico en edificios emblemáticos

Por Higini Arau Puchades

INDICE

- Comportamiento acústico de una pared simple
 - Por debajo de f_c
 - En f_c
 - Por encima de f_c
- Comportamiento acústico de una pared doble
 - Por debajo de f_c
 - Caso A: Paredes ligeras
 - Caso B: Paredes gruesas
 - En f_c y encima f_c

Comportamiento acústico paredes simples

- El aislamiento acústico R de una pared simple depende principalmente de:
 - su masa unitaria: m [Kg./m²]
 - Su frecuencia crítica fc [Hz.]
 - Su factor de amortiguamiento η

Podemos distinguir 3 zonas según la frecuencia crítica

- a) Zona por debajo de la frecuencia crítica:
- b) Zona de la frecuencia crítica:
- c) Zona por encima de la frecuencia crítica:

• La pared Simple:

a) Para $f < f_c$:

Autor	Expresión	
L. Cremer	$R = R_0 - 10 \log 0.23 R_0$	
	siendo	(F.4.1)
	$R_0 = 20 \log \frac{\omega m}{2 \rho c}$	
A. London	$R = 20 \log A - 10 \log [ln (1 + A^2)]$	
	siendo	(F.4.2)
	$A = \frac{\omega m}{2 \rho c}$	
R. Josse y C. Lamure	$R = 20 \log \frac{\omega m}{2 \rho c} - 10 \log \left[\frac{3}{2} + \ln \frac{2f}{\Delta f} \right]$	(F.4.3)
Price y Crocker	Expresión complicada que Brekke simplifica.	
E.C. Sewell	$R = R_0 - 10 \log^f (\ln k \sqrt{5}) + 20 \log \left[1 - \left(\frac{1}{f_c} \right)^2 \right]$ siendo	
	$R_0 = 20 \log fm - 42$	(E 4 4)
A O Alliana		(F.4.4)
A.C. Nilsson	$R = 20 \log m + 20 \log f - 49$	(F.4.5)
A. Brekke	Obtuvo la misma expresión que Sewell (véase expresión F.4.4).	
H. Arau	Obtuvo la misma expresión que A. London, pero con una corrección so masa: $[1-(f/f_c)^2]$ para la zona comprendida desde $f_c/2 < f < f_c$ (véase expresión	

La pared Simple:

b) Para $f > f_c$:

Autor	Expresión	
I . Cremer	$R_0 = 20 \log \frac{\omega m}{2 pc} - 10 \log \frac{\pi}{2 \eta} - 10 \log \frac{f_c}{f (1 - \frac{f_c}{f})}$ (F.4.6)	6)
A. London	No estudió el caso.	
R. Josse y C. Lamure	Obtuvo la misma expresión que L. Cremer (véase expresión F. 4.6).	
Price y Crocker	Véase la simplificación efectuada por Brekke.	
E.C. Sewell	No disponible.	
A.C. Nilsson	$R = 20 \log m + 30 \log f - 10 \log f_c + 10 \log \eta + 5 \log (1 - \frac{f_c}{f}) - 47 $ (F.4.)	7)
A. Brekke	$R = 20 \log m + 30 \log f - 20 \log \sigma + 10 \log \eta - 10 \log f_c - 44$ siendo σ el factor de radiación de la pared. (F.4.8	8)
H. Arau	Obtuvo la misma expresión que L. Cremer y R. Josse y Lamure (véase expresión F.4.6	3).

• La pared Simple:

c) Para $f \approx f_c$:

Autor	Expresión
L. Cremer	No disponible.
A. London	No estudió el caso.
R. Josse y C. Lamure	$R = 20 \log \omega m/2\rho c + 10 \log \eta/\pi$ (F.4.9)
Price y Crocker	Muy complicada (por eso no la escribimos).
E.C. Sewell	No disponible.
A.C. Nilsson	No analizada por el autor.
A. Brekke	No analizada por el autor.
H. Arau	Obtuvo la misma expresión que R. Josse y C. Lamure efectuando la simplificación $\Delta f/f = 0.25$ (véase expresión F.4.7).

Comportamiento acústico paredes simples – por debajo de f_c

- Cuánto mayor sea la masa unitaria de una pared mayor será el aislamiento acústico R (en dB) en todo el rango de frecuencias
- Ejemplo:

Pared de m=30Kg./m² sin rigidez fc por encima de 4000Hz.

Frecuencia (Hz)	125	250	500	1000	2000	4000	R _A	$\mathbf{R}_{\mathbf{w}}$
R dB, masa = $m = 30$	23.56	28.72	34.04	39.46	44.96	50.47	36.08	38
R dB, masa = $2m = 60$	28.72	34.04	39.47	44.96	50.51	56.07	43.45	44
R dB, masa = 4m= 120	34.04	39.47	44.96	50.52	56.11	61.72	48.92	49

Tabla 1: Ley de masas en la zona por debajo de la frecuencia crítica

Comportamiento acústico paredes simples – por debajo de f_c

Conclusiones:

- Al doblar la masa, los valores de aislamiento acústico R aumentan 6dB en la misma frecuencia (Ley de masas)
- Al doblar la frecuencia, los valores de aislamiento acústico R también aumentan en 6dB
- Lo ideal seria una pared que tuviera la frecuencia de coincidencia fuera del rango audible i la masa unitaria infinita, cosa que no existe

Comportamiento acústico paredes simples – en f_c

- En f_c, existe un punto de inflexión del aislamiento acústico R en fc
- f_c depende de:
 - Rigidez dinámica del material constituyente de la pared
 - Densidad de ésta
- El factor de amortiguamiento η es la capacidad que tienen los cuerpos en dejar de vibrar una vez han sido sometidos a una excitación (sonora)

 La caída de R es más elevada cuánto menor sea el factor de amortiguamiento η y viceversa.

Figura 2: Declive del aislamiento R en la zona de la frecuencia crítica

Frecuencia (Hz)

Comportamiento acústico paredes simples – por encima de f_c

- Análisis de una misma pared duplicando m con el mismo factor η:
 - $-m = 100 \text{ Kg./m}^2$, $f_c = 500 \text{ Hz. y } \eta = 0.005$
- Al doblar el espesor de la pared la fc disminuye a la mitad del valor anterior

Frecuencia (Hz)	125	250	500	1000	2000	4000	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{w}}$
R dB, masa = m	31.55	36.23	28.42	41.29	47.79	55.24	36.96	38
R dB, masa = 2m	32.36	23.19	41.29	48.01	55.48	62.87	37.55	40
R dB, masa = $4m$	25.23	41.29	48.01	55.48	62.87	69.87	46.42	49

Tabla 2: Comportamiento acústico de R en f_c y por encima de ésta

- El incremento en dB en la primera octava por encima de fc es es muy elevado dependiendo del declive presente en fc según el factor de amortiguamiento
- En octavas posteriores el aumento de R es de 7dB al doblar la frecuencia

Comportamiento acústico paredes simples – por encima de f_c

Comportamiento acústico paredes simples – por encima de f_c

• Análisis ídem pared caso anterior de masa = 2m con amortiguamiento por 10 (η x 10 = 0.05)

Frecuencia (Hz)	125	250	500	1000	2000	4000	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{w}}$
R dB, $\eta = 0.005$	32.36	23.19	41.29	48.01	55.48	62.87	37.55	40
R dB, $\eta = 0.05$	36.83	29.34	47.07	53.20	59.44	65.5	43.60	46

Tabla 3: Influencia del amortiguamiento por encima de la frecuencia crítica

- En la zona de fc, el declive de R es menos grande y el incremento del factor de amortiguamiento ha producido un incremento de R entre 6 a 3 dB correlativamente con el aumento de la frecuencia
- En octavas posteriores el aumento de R es de 7dB al doblar la frecuencia

Comportamiento acústico paredes simples – por encima de fc

Comportamiento acústico paredes dobles

- Compuesto por dos paredes simples y una cavidad de aire entre medio (que se puede rellenar con fibra mineral)
 - El material absorbente no aísla nada debido a su ligereza
- Existe un efecto masa muelle masa
 - El efecto muelle es debido a la elasticidad del aire, dónde se establece una frecuencia de resonancia f₀ que es inversamente proporcional a la raíz cuadrada del espesor de la cavidad y proporcional a la raíz de la masa reducida de las dos masas unitarias.
 - También existe una frecuencia límite f_L que es inversamente proporcional al espesor de la cavidad del aire. Para evitar el efecto de estas frecuencias se inserta material absorbente en la cavidad.

a) Para $f < f_c$:

Autor	Expresión
A. London	$\tau=1+4a^2\cos^2(\cos\beta-a\cos\sin)^2$, donde tg β =1/a \cos = ángulo de incidencia y $a=\omega m/2\rho c$, $\tau=2\int_0^{\pi/2}\cos send\varphi$ (F.4.10) (Esta expresión sólo es válida para paredes dobles simétricas.)
R. Josse	 Este autor distingue dos casos: 1. El de paredes rigurosamente iguales. 2. Paredes de la misma composición, pero de distintos espesores. Así, para el caso 1, obtiene que la diferencia ΔR que existe entre el aislamiento acústico de la pared doble R₁₊₂ en relación a la pared simple R, en el caso de que sean rigurosamente iguales:
	$\Delta R = R_{1+2} - R_1 = 20 \log \frac{\sqrt{nm\omega}}{\rho c^2} (\omega_c - \omega) d$ siendo d el espesor de la cámara de aire. Y para el caso 2, donde las paredes son de distinto espesor tenemos: $\Delta R = R_{1+2} - R_1 = 20 \log \frac{\sqrt{2m\omega}}{\rho c^2} (\omega_c - \omega)^2 d^2 \left(\frac{h_2}{h} - 1\right)^2 $ (F.4.12)
	$\Delta R = R_{1+2} - R_1 = 20 \log \frac{\sqrt{-1}}{\rho c^2} (\omega_c - \omega)^2 d^2 \left(\frac{m_2}{h_1} - 1 \right)$ donde h_1 y h_2 son los espesores de cada pared. (F.4.12)

(Continúa)

Autor	Expresión						
Métodos SEA aproximación Brekke	Para $f \ge f_1 = c/2d$; $d = \text{espesor de la cavidad}$. $R = R_1 + R_2 + 10 \log \alpha + 10 \log d + 10 \log (l_1 + l_2) l_1 l_2 + 3$ (F.4.13) Para frecuencias inferiores a la frecuencia de resonancia: $f < f_0/2$ tenemos: $R = 20 \log [(m_1 + m_2)f] - 48 \text{ dB}$. Donde son: ($\alpha = el coeficiente de absorción del material absorbente a incidencia aleatoria del$						
	sonido. $R_{0i} = 20 \log f m_i - 42$; $R_i = R_{0i} - 10 \log (0.23 R_{0i})$ para $i = 1.2$. I_1 y I_2 son las dimensiones rectangulares de la pared.)	(F.4.14)					
H. Arau	$τ = 2Δ^2 \int_0^1 x dx \left\{ (1 + AΔx / 2 - Cx^2)^2 + (Ax - Δ)^2 \right\}^{-1}$ $x = \cos φ$ $A = ω (m_1 + m_2)/ρc$ $C = ω^2 m_1 m_2 / (ρc)^2$ $Δ = 2c/ωL$ (L es el espesor de la cavidad)	(F.4.15)					
	Siendo la solución de la integral para el caso $m_1 = m_2$, la que sigue: $\tau = \frac{2\Delta^2}{\Delta^2 + 4} \left[\frac{1}{2A^2} \ln (A^2 + 1) - \frac{2}{A^2 \Delta} t g^{-1} A - \frac{1}{2A^2} \ln \left[\frac{\left (A - \Delta)^2 + 1 \right }{\Delta^2 + 1} \right] \right]$						
	$\left -\frac{1}{A^2} \left[\Delta - \frac{2 \left(\Delta^2 + 1 \right)}{\Delta} \right] \left tg^{-1} \left(A - \Delta \right) + tg^{-1} \Delta \right \right]$	(F.4.16)					

2) Para $f > f_c$:

Autor	Expresión
A. London	Caso no analizado.
R. Josse	Para el caso 1: $\Delta R = R_{1+2} - R_1 = 20 \log \frac{\sqrt{\pi m \omega \eta}}{\rho c} \operatorname{sen}(\omega d/c) $ (F. 4.17) Para el caso 2: $\Delta R = 20 \log \frac{\sqrt{2m\omega}}{\rho c} A - 1 \operatorname{sen}(\omega d/c) $ (F. 4.18) $\operatorname{donde} A = h_2/h_1$
Métodos SEA aproximación Brekke	$R = 20 \log (m_1 m_2) - 10 \log (f_{c1} f_{c2}) + 50 \log f - 10 \log S$ $+10 \log \left(\frac{c(l_1 + l_2) \alpha_0}{2\pi l_1 l_2 f}\right) + 10 \log \left(\frac{2\pi l_1 l_2 f}{c^2}\right) + 10 \log \eta_1 \eta_2 \qquad (F. 4.19)$ $-10 \log (\sigma_{21} \sigma_{23} \sigma_{43} \sigma_{45}) - 35$ siendo η_i el factor de pérdidas de cada panel y σ_{ij} los factores de radiación de cada subsistema.

H. Arau

Caso paredes simétricas:

$$R = 40 \log \frac{\omega m}{\rho c} + 10 \log \frac{\eta^3}{2\pi} \frac{f (1 - f_c/f)}{f_c}$$
 (F.4.20)

Caso paredes asimétricas:

$$R = R_1 + R_2 + 10 \log \frac{(\eta_1 + \eta_2) \eta_1 \eta_2}{2\pi} + 10 \log \left(\frac{f_{c2}^3 f}{f_{c1}^4}\right) + 10 \log (1 - f_{c2}/f) \text{ (F.4.20 bis)}$$

donde
$$R_i = 20 \log \left(\frac{\omega m_i}{\rho c} \right)$$
 para $i = 1.2$.

No presentamos en este texto las soluciones obtenidas para el caso de $f_{c1} < f < f_{c2}$.

- La ley de masas que obedece es diferente de la correspondiente a la de la pared simple.
- Examinamos el siguiente ejemplo con L = 10cm sin absorción:

125	250	500	1000	2000	4000	R _A	$\mathbf{R}_{\mathbf{w}}$
23.98	30.37	37.68	45.77	53.18	63.86	40.89	41
30.71	38.45	46.69	55.50	63.24	74.47	48.85	49
38.71	47.61	56.69	65.97	79.03	85.38	57.78	58
	23.98	23.98 30.37 30.71 38.45	23.98 30.37 37.68 30.71 38.45 46.69	23.98 30.37 37.68 45.77 30.71 38.45 46.69 55.50	23.98 30.37 37.68 45.77 53.18 30.71 38.45 46.69 55.50 63.24	23.98 30.37 37.68 45.77 53.18 63.86 30.71 38.45 46.69 55.50 63.24 74.47	125 250 500 1000 2000 4000 R _A 23.98 30.37 37.68 45.77 53.18 63.86 40.89 30.71 38.45 46.69 55.50 63.24 74.47 48.85 38.71 47.61 56.69 65.97 79.03 85.38 57.78

Tabla 4: Ley de masas en la zona por debajo de la frecuencia crítica

- f₁ se encuentra en 1700Hz
- El aumento de R con la frecuencia oscila de 6 a 11dB a medida que la frecuencia incrementa
- El aumento de R cada vez que duplicamos la masa unitaria es similar

CASO A: CON PAREDES LIGERAS \rightarrow qué pasa si doblamos cavidad?

• L=20cm y m1=m2=15 Kg./m² comparado con L=10,20 y 40cm

Frecuencia (Hz)	125	250	500	1000	2000	4000	$\dot{\mathbf{R}}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{w}}$
R dB, L= 10 cm	23.98	30.37	37.68	45.77	53.18	63.86	40.89	41
R dB, L = 20 cm	27.48	34.98	43.83	52.03	62.09	72.77	45.61	46
R dB, $L = 40 \text{ cm}$	32.09	41.12	50.23	60.06	71.05	81.73	51.24	58

Tabla 5: Análisi del aumento de espesor a iguldad de m y sin absorción en la cavidad

- $f_L = 1700$ Hz (por L1), 850Hz (por L2) y 425 (por L3)
- El aumento de R con la frecuencia va de 4 a 11dB
- El máximo aislamiento de una pared doble se producirá cuánto mayor sea la longitud de la cavidad

EFECTO DE LA COLOCACIÓN DE FIBRA MINERAL EN LA CAVIDAD

L=10cm, m1=m2=15Kg./m² por diferentes alfa:

Frecuencia (Hz)	125	250	500	1000	2000	4000	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{w}}$
R dB, alfa $o = 0$ (aire)	23.98	30.37	37.68	45.77	53.18	63.86	40.89	41
R dB, alfa	25.83	35.27	44.89	53.16	60.90	71.60	45.19	46.9
R dB, 2 x alfa	27.44	37.77	47.67	56.01	63.78	74.52	47.25	48
R dB, 4 x alfa	29.51	40.51	50.53	58.90	65.90	76.66	49.61	51

Tabla 7: Influencia de la absorción en una cavidad de aire en paredes gruesas

- Se producen aumentos de R entre 5 10dB al poner absorción
- Cada vez que doblamos el alfa el incremento de R es de 3dB

Comportamiento acústico paredes dobles — ley de masas por debajo de ${\rm f_c}$

CASO B: CON PAREDES GRUESAS

- L=20cm, m1=m2=300Kg./m² \rightarrow f_c=90Hz.
- Comparado con pared simple de m_{unitaria}=300Kg./m² y f_c =45Hz

Frecuencia (Hz)	125	250	500	1000	2000	4000	R _A	$\mathbf{R}_{\mathbf{w}}$
R dB, $L = 5$ cm	49.19	58.51	67.99	78.21	88.92	98.22	68.54	69
R dB, L= 10 cm	49.19	58.51	67.99	78.21	88.92	98.22	68.54	69

Tabla 6: Influencia de la cavidad de aire en paredes gruesas

• El efecto de la cavidad no mejora R cuando las paredes son gruesas

Comportamiento acústico paredes dobles – ley de masas a f_c y por encima

PARED DOBLE ASIMÉTRICA

L=10cm, m1=30Kg./m² y m2=25Kg./m² por diferentes alfa:

Frecuencia (Hz)	125	250	500	1000	2000	4000	R _A	$\mathbf{R}_{\mathbf{w}}$
R dB, $L = 10 \text{ cm}$	31.03	38.32	45.75	48.14	52.24	64.44	47.56	48
R dB, L= 20 cm	34.53	42.92	51.88	47.77	55.58	66.69	50.24	51

Tabla 8: Pared doble con difentes L para f>f_c

- Para frecuencias superiores a f_c se producen aumentos de R entre 7 10dB
- Para f<fc el aumento de la cavidad supone un aumento de R aunque cuando llega a f_c se produce lo contrario

Comportamiento acústico paredes dobles – ley de masas a f_c y por encima

Comportamiento acústico paredes triples

- Compuesto por tres paredes simples y dos cavidades de aire, una en medio de la pared 1 y 2 y otra entre la 2 y la 3 (que se puede rellenar con fibra mineral)
- Existe un efecto masa muelle masa- muelle masa
 - El efecto muelle es debido a la elasticidad del aire, dónde se establecen dos frecuencias de resonancia f₀.
 - También existen dos frecuencias límites f_L, que son inversamente proporcional al espesor de cada cavidad del aire. Para evitar el efecto de estas frecuencias se inserta material absorbente en la cavidad.

La pared Triple: a) Para $f < f_c$:

Autor	Expresión
SEA Simplificación Brekke	$R = R_1 + R_2 + R_3 + 10 \log d_1 d_2 + 10 \log \alpha_1 \alpha_2 + 20 \log \frac{I_1 + I_2}{I_1 I_2} + 6$ (F.4.21) donde: d_1 y d_2 = los espesores de cavidad; α_1 y α_2 = los coeficientes de absorción del material de la cavidad
	R_i para $i = 1$ a 3 los aislamientos acústicos calculados de acuerdo con lo indicado en paredes dobles.
H. Arau	$\tau = \frac{1}{2} \Delta_1^2 \Delta_2^2 \int_0^1 \frac{x dx}{I}; R = 10 \log \frac{1}{\tau}$
	$I = \left[\left(A_3 x - \frac{1}{2} \Delta_2 \right)^2 + 1 \right] \left\{ \left[A_1 + A_2 \right] x - \frac{1}{2} \left(2 + \frac{L_1}{L_2} \right) \Delta_1 \right\}^2 $ (F.4.22)
	$+ \left[1 + \left[\frac{A_1}{2} \left(1 + \frac{L_1}{L_2} \right) + \frac{A_2}{2} \right] \Delta_1 x - A_1 A_2 x^2 \right]^2 \right\}$
	donde: $A_i = \omega m_i / \rho c$, para $i = 1, 2, 3$. $\Delta_i = 2c/\omega L_i$, para $j = 1.2$.
	$L_{\rm j} = {\rm los} \; {\rm espesores} \; {\rm de} \; {\rm la} \; {\rm cavidad} \; {\rm de} \; {\rm aire}.$ $x = {\rm cos} \; \phi$, donde $\phi \; {\rm es} \; {\rm el} \; {\rm ángulo} \; {\rm de} \; {\rm incidencia} \; {\rm del} \; {\rm sonido}.$

La pared Triple:

b) Para**≁>t。**

Autor	Expresión
SEA	Brekke no estudió este caso y la exposición de resultados de H. Arau o bien M. Ohta son inapropiados para su presentación en este texto.
H. Arau	Presentamos sólo el caso de triples paredes simétricas, ya que la expresión de caso asimétrico es muy extensa.
	$\tau = 2\pi \left(\frac{f_c}{f}\right) \left[\left(\frac{\omega m}{\rho c}\right)^6 \eta^5 \left(1 - \frac{f_c}{f}\right) \right]^{-1} $ (F.4.23)
	$R=10\log 1/ au$ Tampoco presentamos las soluciones de $ au$ para los casos: $f_{c1} < f < f_{c2} < f_{c3}, f_{c1} < f_{c2} < f < f_{c3}$ por la misma razón de espacio indicada antes.

