Introduzione ai Modelli Probabilistici

Corso interno per il I anno della Classe di Scienze Naturali A.A. 2016/2017

Esercizi di fine corso

Esercizio 1. Si consideri la seguente variante del problema del collezionista di figurine. Una raccolta di figurine è formata da N figurine distinte, identificate con l'insieme $\{1,\ldots,N\}$. Supponiamo che le figurine vengano vendute singolarmente e che ad ogni acquisto la probabilità di trovare la figurina k valga p_k , con $k=1,\ldots,N$ e $p_1+\ldots+p_N=1$. Sia T il numero aleatorio di figurine necessarie a concludere la raccolta, e sia Z_k , con $k\in 1,\ldots,N$, il numero di figurine necessarie per acquistare la figurina k.

- (1) Determinare la distribuzione delle Z_k .
- (2) Determinare la distribuzione e la media delle variabili $\min\{Z_{k_1},\ldots,Z_{k_j}\}$, per $(k_1,\ldots k_j)\subset\{2,\ldots N\}$.
- (3) Esprimere T come funzione delle Z_k .
- (4) Dai punti precedenti ed usando la seguente relazione, valida per valori reali x_1, \ldots, x_n ,

$$\max_{i} x_{i} = \sum_{i} x_{i} - \sum_{i < j} \min\{x_{i}, x_{j}\} + \ldots + (-1)^{n+1} \min\{x_{1}, \ldots, x_{n}\}$$

si determini la media di T come funzione di p_1, \ldots, p_N .

Esercizio 2. Si consideri il problema della rovina del giocatore in una serie di scommesse in cui il giocatore A risulti favorito, ovvero abbia probabilità di vincita di una scommessa pari a $p > \frac{1}{2}$.

- (1) Calcolare la probabilità di rovina del giocatore A.
- (2) Determinare il numero medio di scommesse che il giocatore A (e quindi il giocatore B) esegue per terminare il gioco.

(Sugg: Indicare tale tempo come T_x e metterlo in relazione con T_{x+1} e T_{x-1})

(3) Si consideri la passeggiata aleatoria $(S_n)_{n\in\mathbb{N}}$ così definita:

$$S_0 = x \in \mathbf{N}$$
, $S_n = x + \sum_{k=1}^n X_k$ per $n \ge 1$

con $\{X_k\}_{k\in\mathbb{N}}$ variabili aleatorie indipendenti e con distribuzione

$$\mathbf{P}(X_k = +1) = p \quad \mathbf{P}(X_k = -1) = 1 - p, \quad \text{con } p > \frac{1}{2}$$

Usare il punto precedente per calcolare la probabilità che S_n non raggiunga mai lo 0, ovvero posto $T:=\min\{n:S_n=0\}$, determinare $P(T=\infty)$.

Esercizio 3. Si consideri la passeggiata aleatoria simmetrica $(S_n)_{n\in\mathbb{N}}$ con punto iniziale $x\in\mathbf{Z}$, definita come

$$S_0 = x$$
, $S_n = x + \sum_{k=1}^n X_k$ per $n \ge 1$

con $\{X_k\}_{k\in\mathbb{N}}$ variabili aleatorie indipendenti e con distribuzione $\mathbf{P}(X_k=+1)=\mathbf{P}(X_k=-1)=\frac{1}{2}$. Si indichi con \mathbf{P}_x la probabilità relativa ai cammini $(S_n)_{n\in\mathbb{N}}$, con l'usuale convenzione che se x=0, $\mathbf{P}_0\equiv\mathbf{P}$. Provare le seguenti relazioni.

(1) Per ogni $x, y \in \mathbf{Z}$ vale che

$$\mathbf{P}(S_n = y) = \mathbf{P}_x(S_n = x + y)$$

$$\mathbf{P}(S_n = y, S_j \neq 0 \,\forall j < n) = \mathbf{P}_x(S_n = x + y, S_j \neq x \,\forall j \leq n)$$

(2) Per ogni $x \in \mathbb{N}$ e $y \in \mathbb{N} \cup \{0\}$, vale che

$$\mathbf{P}_x(S_n = y, \exists k < n : S_k = 0) = \mathbf{P}_{-x}(S_n = y)$$
 (Principio di riflessione)

(Sugg: Se la passeggiata ritorna in 0 entro il passo n, allora avrà un primo ritorno in 0 entro il passo n. Usare quindi la formula delle probabilità totali e la formula al punto precedente.)

(3) Per ogni $x, y \in \mathbb{N}$, vale che

$$P(S_n = x, S_k > -y \,\forall k < n) = P(S_n = x) - P(S_n = x + 2y)$$

Per ogni $y \ge x \in \mathbb{N}$, vale che

$$\mathbf{P}(S_n = x, S_k < y \,\forall k < n) = \mathbf{P}(S_n = x) - \mathbf{P}(S_n = 2y - x)$$

Esercizio 4. Sia $\{X_n\}_{n\in\mathbb{N}}$ una catena di Markov a valori in $V=\{1,2,3,4,5\}$ definita tramite la seguente matrice di transizione

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{1}{6} & 0 & \frac{5}{6} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(1) Sia $\tau = \min\{n \geq 0 : X_n \in \{1, 5\}\}$, e per ogni $k \in V$ definiamo $p_A(k)$ come la probabilità che la catena di Markov con stato iniziale k raggiunga lo stato 1 prima di arrivare allo stato 5, ovvero

$$p_A(k) := P(X_\tau = 1 | X_0 = k), \quad \forall k \in V$$

Con una procedura analoga al problema della rovina del giocatore, calcolare $p_A(k)$ al variare di $k \in V$.

Esercizio 5. Si consideri una catena di Markov $\{X_n\}_{n\in\mathbb{N}}$ a valori in $V=\{1,2,\ldots,M\}$, con $M\in\mathbb{N}$, definita tramite le seguenti probabilità di transizione

$$p_{k,j} = \begin{cases} p & \text{se } j = k+1\\ 1-p & \text{se } j = k-1\\ 0 & \text{altrimenti} \end{cases} \quad \forall k \in \{2,\dots,M-1\}$$

$$p_{1,j} = \left\{ \begin{array}{ll} p & \text{se } j = 2 \\ 1-p & \text{se } j = N \\ 0 & \text{altrimenti} \end{array} \right. \quad p_{M,j} = \left\{ \begin{array}{ll} p & \text{se } j = 0 \\ 1-p & \text{se } j = M-1 \\ 0 & \text{altrimenti} \end{array} \right.$$

con $p \in (0,1)$ fissato.

- (1) Calcolare la misura invariante di tale catena.
- (2) Assumendo che $P(X_0 = 1) = 1$, calcolare la media del tempo di primo ritorno in 1, ovvero E(T), con $T := \min\{n \ge 1 : X_n = 1\}$.

Esercizio 6.

- (1) Si consideri un processo di ramificazione con distribuzione della progenie \mathbf{p} tale che $p_0+p_1=1$ e $p_0\neq 0,1$. Indicando con X_n il numero di individui nella n-esima generazione, calcolare $P(X_n=0)$ e quindi la probabilità di estinzione π_0 del processo.
- (2) Nel modello di Bernoulli Laplace per la dinamica dei fluidi, vi sono due stanze comunicanti, A e B, contenenti globalmente 2K palline di cui K bianche e K nere, con $K \in \mathbb{N}$. Il modello è definito tramite la seguente dinamica discreta: ad ogni passo viene scelta una pallina da A ed una da B, in modo uniforme, e vengono scambiate tra loro. Sia X_n , $n \in \mathbb{N}$, il numero di palline bianche in A dopo l'ennesimo passo. Mostrare che $(X_n)_{n \in \mathbb{N}}$ è una catena di Markov, determinare la probabilità di transizione tra gli stati, e calcolare la misura stazionaria del sistema.