Linear FIR Adaptive Filtering Gradient based adaptation: Steepest Descent Method

Adaptive filtering: Problem statement

• Consider the family of variable parameter FIR filters, computing their output according to

$$y(n) = w_0(n)u(n) + w_1(n)u(n-1) + \dots + w_{M-1}(n)u(n-M+1)$$

= $\sum_{k=0}^{M-1} w_k(n)u(n-k) = \underline{w}(n)^T \underline{u}(n), \quad n = 0, 1, 2, \dots, \infty$

where parameters $\underline{w}(n)$ are allowed to change at every time step, u(t) is the input signal, d(t) is the desired signal and $\{u(t) \text{ and } d(t)\}$ are jointly stationary.

• Given the parameters $\underline{w}(n) = [w_0(n), w_1(n), w_2(n), \dots, w_{M-1}(n)]^T$, find an adaptation mechanism $\underline{w}(n + 1) = \underline{w}(n) + \delta \underline{w}(n)$, or written componentwise

$$w_0(n+1) = w_0(n) + \delta w_0(n)$$

$$w_1(n+1) = w_1(n) + \delta w_1(n)$$

$$\dots$$

$$w_{M-1}(n+1) = w_{M-1}(n) + \delta w_{M-1}(n)$$

such as the adaptation process converges to the parameters of the optimal Wiener filter, $\underline{w}(n+1) \to \underline{w}_o$, no matter where the iterations are initialized (i.e. $\forall \underline{w}(0)$).

The key of adaptation process is the existence of an error between the output of the filter y(n) and the desired signal d(n):

$$e(n) = d(n) - y(n) = d(n) - \underline{w}(n)^{T}\underline{u}(n)$$

If the parameter vector $\underline{w}(n)$ will be used at all time instants, the performance criterion will be (see last Lecture)

$$J(n) = J_{\underline{w}(n)} = E[e(n)e(n)] = E[(d(n) - \underline{w}^{T}(n)\underline{u}(n))(d(n) - \underline{u}^{T}(n)\underline{w}(n))]$$

$$= E[d^{2}(n)] - 2E[d(n)\underline{u}^{T}(n)]\underline{w}(n) + \underline{w}^{T}(n)E[\underline{u}(n)\underline{u}^{T}(n)]\underline{w}(n)$$

$$= \sigma_{d}^{2} - 2\underline{p}^{T}\underline{w}(n) + \underline{w}^{T}(n)R\underline{w}(n)$$

$$= \sigma_{d}^{2} - 2\sum_{i=0}^{M-1} p(-i)w_{i} + \sum_{l=0}^{M-1} \sum_{i=0}^{M-1} w_{l}w_{i}R_{i,l}$$
(1)

At time n=0, we start the iterations in $(w_0(0), w_1(0))$.

We will move at time n=1 to the next point, $(w_0(1), w_1(1))$ in with a step μ in a direction opposite to that of gradient vector:

$$-\mu\nabla_{w(0)}J$$

Expressions of the gradient vector

The gradient of the criterion J(n) with respect to the parameters $\underline{w}(n)$ is

$$\nabla_{\underline{w}(n)}J(n) = \begin{bmatrix} \frac{\partial J(n)}{\partial w_0(n)} \\ \frac{\partial J(n)}{\partial w_1(n)} \\ \vdots \\ \vdots \\ \frac{\partial J(n)}{\partial w_{M-1}(n)} \end{bmatrix} = \begin{bmatrix} -2p(0) + 2\sum_{i=0}^{M-1} R_{0,i}w_i(n) \\ -2p(-1) + 2\sum_{i=0}^{M-1} R_{1,i}w_i(n) \\ \vdots \\ -2p(-M+1) + 2\sum_{i=0}^{M-1} R_{1,M-1}w_i(n) \end{bmatrix} = -2\underline{p} + 2R\underline{w}(n)$$
(2)
$$\nabla_{\underline{w}(n)}J(n) = \begin{bmatrix} -2Ed(n)u(n) + 2\sum_{i=0}^{M-1} Eu(n)u(n-i)w_i(n) \\ -2Ed(n)u(n-1) + 2\sum_{i=0}^{M-1} Eu(n-1)u(n-i)w_i(n) \\ \vdots \\ \vdots \\ -2Ed(n)u(n-M+1) + 2\sum_{i=0}^{M-1} Eu(n-M+1)u(n-i)w_i(n) \end{bmatrix}$$

$$= \begin{bmatrix} -2Eu(n)\left(d(n) - \sum_{i=0}^{M-1} u(n-i)w_i(n)\right) \\ -2Eu(n-1)\left(d(n) - \sum_{i=0}^{M-1} u(n-i)w_i(n)\right) \\ \vdots \\ \vdots \\ -2Eu(n-M+1)\left(d(n) - \sum_{i=0}^{M-1} u(n-i)w_i(n)\right) \end{bmatrix}$$

$$= \begin{bmatrix} -2E(u(n)e(n)) \\ -2E(u(n-1)e(n)) \\ \vdots \\ -2E(u(n-M+1)e(n)) \end{bmatrix} = -2E \begin{bmatrix} u(n) \\ u(n-1) \\ \vdots \\ \vdots \\ u(n-M+1) \end{bmatrix} e(n) = -2E\underline{u}(n)e(n)$$
(3)

((2) and (3) give the solution of exercise 7, page 229 [Haykin 2002]).

Steepest descent algorithm

$$\underline{w}(n+1) = \underline{w}(n) - \frac{1}{2}\mu\nabla_{\underline{w}(n)}J(n)$$
$$= \underline{w}(n) + \mu E\underline{u}(n)e(n)$$

SD ALGORITHM

Steepest descent search algorithm for finding the Wiener FIR optimal filter Given

- the autocorrelation matrix $R = E\underline{u}(n)\underline{u}^T(n)$
- the cross-correlation vector $\underline{p}(n) = E\underline{u}(n)d(n)$

Initialize the algorithm with an arbitrary parameter vector $\underline{w}(0)$.

Iterate for $n = 0, 1, 2, 3, ..., n_{max}$

$$\underline{w}(n+1) = \underline{w}(n) + \mu[\underline{p} - R\underline{w}(n)]$$

Stop iterations if $\|\underline{p} - R\underline{w}(n)\| < \varepsilon$

Designer degrees of freedom: $\mu, \varepsilon, n_{max}$

Equivalent forms of the adaptation equations We have the following equivalent forms of adaptive equations, each showing one facet (or one interpretation) of the adaptation process.

1. Solving $p = R\underline{w}_o$ for \underline{w}_o using iterative schemes:

$$\underline{w}(n+1) = \underline{w}(n) + \mu[p - R\underline{w}(n)]$$

2. or componentwise

$$w_0(n+1) = w_0(n) + \mu(p(0) - \sum_{i=0}^{M-1} R_{0,i} w_i(n))$$

$$w_1(n+1) = w_1(n) + \mu(p(-1) - \sum_{i=0}^{M-1} R_{1,i} w_i(n))$$
...
$$w_{M-1}(n+1) = w_{M-1}(n) + \mu(p(-M+1) - \sum_{i=0}^{M-1} R_{M-1,i} w_i(n))$$

3. Error driven adaptation process (See Figure at page 2'):

$$\underline{w}(n+1) = \underline{w}(n) + \mu[Ee(n)\underline{u}(n)]$$

4. or componentwise

$$w_0(n+1) = w_0(n) + \mu(Ee(n)u_0(n))$$

$$w_1(n+1) = w_1(n) + \mu(Ee(n)u_1(n))$$
...
$$w_{M-1}(n+1) = w_{M-1}(n) + \mu(Ee(n)u_{M-1}(n))$$

Example: Running SD algorithm to solve for the Wiener filter derived in the example of Lecture 2.

$$R\underline{w} = p;$$

$$\begin{bmatrix} r_u(0) & r_u(1) \\ r_u(1) & r_u(0) \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} Ed(n)u(n) \\ Ed(n)u(n-1) \end{bmatrix}$$

$$\begin{bmatrix} 1.1 & 0.5 \\ 0.5 & 1.1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 0.5271 \\ -0.4458 \end{bmatrix}$$

with the solution

$$\left[\begin{array}{c} w_0 \\ w_1 \end{array}\right] = \left[\begin{array}{c} 0.8362 \\ -0.7854 \end{array}\right]$$

We will use the Matlab code

Figure 1: Adaptation Step $\mu = 0.01$. Left: Adaptation process starts from an arbitary point $\underline{w}(0) = [-1, -1]^T$ – marked with a cross – and converges to Wiener filter parameters $\underline{w}(0) = [0.8362 - 0.7854]^T$ ("x" point, in the center of ellipses). Right The convergence rate is exponential (note the logarithmic scale for the parametric error). In 1000 iterations the parameter error reaches 10^{-3} .

Figure 2: Adaptation Step $\mu = 1$. Left: Stable oscillatory adaptation process starting from an arbitary point $\underline{w}(0) = [-1, -1]^T$ – marked with a cross – and **convergence** to Wiener filter parameters $\underline{w}(0) = [0.8362 - 0.7854]^T$ ("x" point, in the center of ellipses). Right The convergence rate is exponential. In about 70 iterations the parameter error reaches 10^{-16} .

Figure 3: Adaptation Step $\mu = 4$. Left: Unstable oscillatory adaptation process starting from an arbitary point $\underline{w}(0) = [-1, -1]^T$ – marked with a cross – and divergence from Wiener filter parameters $\underline{w}(0) = [0.8362 - 0.7854]^T$ ("x" point, in the center of ellipses). Right The divergence rate is exponential. In about 400 iterations the parameter error reaches 10^{30} .

Figure 4: Adaptation Step $\mu = 0.001$ Left: Very slow adaptation process, starting from an arbitary point $\underline{w}(0) = [-1, -1]^T$ marked with a cross. It will eventually converge to Wiener filter parameters $\underline{w}(0) = [0.8362 - 0.7854]^T$ ("x", point in the center of ellipses). Right The convergence rate is exponential (note the logarithmic scale for the parametric error). In 1000 iterations the parameter error reaches 0.7.

Stability of Steepest – Descent algorithm

Write the adaptation algorithm as

$$\underline{w}(n+1) = \underline{w}(n) + \mu[\underline{p} - R\underline{w}(n)] \tag{4}$$

But from Wiener-Hopf equation $p = R\underline{w}_o$ and therefore

$$\underline{w}(n+1) = \underline{w}(n) + \mu[R\underline{w}_o - R\underline{w}(n)] = \underline{w}(n) + \mu R[\underline{w}_o - \underline{w}(n)]$$
(5)

Now subtract Wiener optimal parameters, \underline{w}_o , from both members

$$\underline{w}(n+1) - \underline{w}_o = \underline{w}(n) - \underline{w}_o + \mu R[\underline{w}_o - \underline{w}(n)] = (I - \mu R)[\underline{w}(n) - \underline{w}_o]$$

and introducing the vector $\underline{c}(n) = \underline{w}(n) - \underline{w}_o$, we have

$$\underline{c}(n+1) = (I - \mu R)\underline{c}(n)$$

Let $\lambda_1, \lambda_2, \dots, \lambda_M$ be the (real and positive) eigenvalues and let $\underline{q}_1, \underline{q}_2, \dots, \underline{q}_M$ be the (generally complex) eigenvectors of the matrix R, thus satisfying

$$R\underline{q}_i = \lambda_i \underline{q}_i \tag{6}$$

Then the matrix $Q = [\underline{q}_1 \ \underline{q}_2 \ \dots \ \underline{q}_M]$ can transform R to diagonal form $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_M)$

$$R = Q\Lambda Q^H \tag{7}$$

where the superscript H means complex conjugation and transposition.

$$\underline{c}(n+1) = (I - \mu R)\underline{c}(n) = (I - \mu Q\Lambda Q^H)\underline{c}(n)$$

Left- multiplying by Q^H

$$\underline{Q}^{H}c(n+1) = Q^{H}(I - \mu Q \Lambda Q^{H})\underline{c}(n) = (Q^{H} - \mu Q^{H}Q \Lambda Q^{H})\underline{c}(n) = (I - \mu \Lambda)\underline{Q}^{H}c(n)$$

We notate $\underline{\nu}(n)$ the rotated and translated version of $\underline{w}(n)$

$$\underline{\nu}(n) = Q^{H}\underline{c}(n) = Q^{H}(\underline{w}(n) - \underline{w}_{o}) \tag{8}$$

and now we have

$$\underline{\nu}(n+1) = (I - \mu\Lambda)\underline{\nu}(n)$$

where the initial value $\nu(0) = Q^H(\underline{w}(0) - \underline{w}_o)$. We can write componentwise the recursions for $\underline{\nu}(n)$

$$\nu_k(n+1) = (1 - \mu \lambda_k) \nu_k(n)$$
 $k = 1, 2, \dots, M$

which can be solved easily to give

$$\nu_k(n) = (1 - \mu \lambda_k)^n \nu_k(0)$$
 $k = 1, 2, \dots, M$

For the stability of the algorithm

$$-1 < 1 - \mu \lambda_k < 1$$
 $k = 1, 2, \dots, M$

or

$$0 < \mu < \frac{2}{\lambda_k} \quad k = 1, 2, \dots, M$$

or

$$0 < \mu < \frac{2}{\lambda_{max}}$$
 STABILITYCONDITION!

where λ_{max} is the maximum eigenvalue of autocovariance matrix R.

If the stability condition is respected, this will result in

$$\nu_k(n) \to 0$$
, i.e. $w_k(n) \to w_{ok}$ when $n \to \infty$, $k = 1, 2, \dots, M$

Notating $\tau_k = \frac{-1}{\log(|1-\mu\lambda_k|)}$, we have

$$|1 - \mu \lambda_k| = exp(-\frac{1}{\tau_k})$$

and therefore

$$|\nu_k(n)| = |1 - \mu \lambda_k|^n |\nu_k(0)| = exp(-\frac{n}{\tau_k}) |\nu_k(0)|$$

which is a decreasing exponential, which needs approximately $4\tau_k$ steps to reduce $\nu_k(0)$ to 2% of its value.

Thus, we have obtained

* a condition of stability,

* information about the transient behavior and speed of convergence of parameters $\nu_k(n)$.

We can transfer back to the original parameters the results of analysis: The matrix $Q=[\underline{q}_1\ \underline{q}_2\ \dots\ \underline{q}_M]$ obeys $Q^HQ=QQ^H=I$ and multiplying by Q the extreme terms of the equalities

$$\underline{\nu}(n) = Q^H \underline{c}(n) = Q^H (\underline{w}(n) - \underline{w}_o)$$

$$Q\underline{\nu}(n) = \underline{w}(n) - \underline{w}_o$$

$$\underline{w}(n) = \underline{w}_o + Q\underline{\nu}(n) = \underline{w}_o + [\underline{q}_1 \ \underline{q}_2 \ \dots \ \underline{q}_M]\underline{\nu}(n) = \underline{w}_o + \sum_{k=1}^M \underline{q}_k \nu_k(n)$$

Writing componentwise the equality, we have

$$w_i(n) = w_{o,i} + \sum_{k=1}^{M} q_{k,i} \nu_k(0) (1 - \mu \lambda_k)^n$$

The fastest rate of convergence is obtained for the eigenvalue λ_k which gives the least term $|1 - \mu \lambda_k|$, while the slowest rate of convergence results for the eigenvalue λ_k which gives the largest term $|1 - \mu \lambda_k|$.

If we limit μ such that $0 < 1 - \mu \lambda_k < 1$, then

$$\frac{-1}{\log(1-\mu\lambda_{max})} \le \tau_a \le \frac{-1}{\log(1-\mu\lambda_{min})}$$

Transient behavior of the Mean -squared error

In Lecture 2 we obtained the canonical form of the quadratic form which expresses the mean square error:

$$J_{\underline{w}(n)} = J_{\underline{w}_o} + \sum_{i=1}^{M} \lambda_i |\nu_i|^2$$

where $\underline{\nu}$ was defined as

$$\underline{\nu}(n) = Q^H \underline{c}(n) = Q^H (\underline{w}(n) - \underline{w}_o) \tag{9}$$

Taking into account that

$$\nu_k(n) = (1 - \mu \lambda_k)^n \nu_k(0)$$
 $k = 1, 2, \dots, M$

we have finally

$$J_{\underline{w}(n)} = J_{\underline{w}_o} + \sum_{i=1}^{M} \lambda_i (1 - \mu \lambda_i)^{2n} |\nu_i(0)|^2$$

The convergence

$$J_{\underline{w}(n)} \to J_{\underline{w}_o}$$
 (10)

takes place under the same conditions as parameter convergence, and the rate of convergence is bounded, similarly, by

$$\frac{-1}{2\log(1-\mu\lambda_{max})} \le \tau_a \le \frac{-1}{2\log(1-\mu\lambda_{min})} \tag{11}$$