Reminders:

- Remember to review the instructions for Problem Sets before turning in work.
- Individual problems (second section below) that are marked with a star (★) may be included in your Proof Portfolio.

1 Team Problems

The team problems this time all focus on the set $M_{2\times 2}(\mathbb{R})$, which is the set of all 2×2 matrices with real number entries. This set, together with ordinary matrix addition and multiplication, forms a number system that we can explore. This system is described in the text and you worked with it a little on Weekly Practice 7. There are more of these than usual but each one is simpler than usual in the solution.

- 1. Prove that multiplication in $M_{2\times 2}(\mathbb{R})$ is associative, that is, given matrices $A, B, C \in M_{2\times 2}(\mathbb{R})$, we have A(BC) = (AB)C.
- 2. Prove or disprove: Multiplication in $M_{2\times 2}(\mathbb{R})$ is commutative.
- 3. Prove or disprove: $M_{2\times 2}(\mathbb{R})$ has both an additive identity and a multiplicative identity.
- 4. Prove or disprove: Every nonzero element of $M_{2\times 2}(\mathbb{R})$ has a multiplicative inverse.
- 5. Prove or disprove: Multiplicative cancellation of nonzero elements holds in $M_{2\times 2}(\mathbb{R})$. That is, for all nonzero matrices A, B, C, if AB = AC, then B = C.

2 Individual Problems

- 1. Redefine "multiplication" on the integers by replacing ordinary multiplication by the operation \otimes , which is defined by: $a \otimes b = a^b$. For example $2 \otimes 10 = 1024$.
 - (a) Does the set \mathbb{Z} of integers with ordinary addition and \otimes as the multiplication operation form a ring? If so, then prove it; otherwise give specific reasoning as to why not.
 - (b) Does the set $\mathbb{N} = \{1, 2, 3, 4, ...\}$ with ordinary addition and \otimes as the multiplication operation form a ring? If so, then prove it; otherwise give specific reasoning as to why not.
- 2. **Each** of the following are starred problems; **pick exactly one** and do it for this Problem Set. You can choose another one for your Portfolio later.
 - (a) (\star) A **Boolean ring** R is ring in which $x^2 = x$ for all $x \in R$. Two familiar examples of Boolean rings are \mathbb{Z}_2 and \mathcal{P}_n . Prove that every element of a Boolean ring is its own additive inverse.
 - (b) (\star) See above for the definition of a **Boolean ring**. Prove that every Boolean ring is commutative.
 - (c) (\star) Let \mathbb{R}^+ denote the set of positive real numbers. For all $x, y \in \mathbb{R}^+$, define the operations of "addition" (denoted \oplus) and "multiplication" (\otimes) as follows:

$$x \oplus y = xy$$
 and $x \otimes y = x^{\log(y)}$

Reminder: log(y) means the natural logarithm of y.

- i. With these operations, does \mathbb{R}^+ have an additive identity? If so, what is it?
- ii. With these operations, does \mathbb{R}^+ have a multiplicative identity? If so, what is it?
- iii. Is \otimes associative? If so, prove it; otherwise provide a specific counterexample.
- iv. Does \otimes distribute over \oplus ? If so, prove it; otherwise provide a specific counterexample.