

Chapter 22 Capacitance, Dielectrics, Electric Energy Storage

§ 22-1 Capacitance (P525)

- Capacitors
 - Any two conductors separated by an insulator (or a vacuum) form a capacitor, which can store amount of charge.

Capacitance of a capacitor

The capacitance C of a capacitor

$$Q = C\Delta V$$

$$C \equiv \frac{Q}{\Delta V}$$

Farad $pF(10^{-12}F)$ $\mu F(10^{-6}F)$

The capacitance of a capacitor depends on the geometric arrangement of the conductors, and is independent of the charge Q or the potential difference △V. Because the potential difference is proportional to the charge, the ratio Q/∆V is constant for a given capacitor.

§ 22-2 Determination of Capacitance (P526)

Problem-Solving Strategy:

- A convenient charge of magnitude Q is assumed.
- The potential difference △ V is calculated.
- Use $C = Q/\Delta V$ to evaluate the capacitance.

The parallel-plate capacitor (P527)

A parallel-plate capacitor consists of two parallel plates of equal area A, separated by a distance d.

Find the capacitance.

The parallel-plate capacitor

Solution: Assume the two plates have opposite charges +Q and -Q. An uniform electric field is:

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A}$$

The potential difference:

$$\Delta V = \int_{+}^{-} \vec{E} \cdot d\vec{l} = Ed = \frac{Qd}{\varepsilon_0 A}$$

$$C = \frac{Q}{\Delta V} = \frac{\varepsilon_0 A}{d}$$

The parallel-plate capacitor

The capacitance of a parallel-plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation, which are the geometrical factors.

▶ The capacitance has form of $ε_0$ times a quantity with the dimension of length (A/d), which is essential form for all the capacitors.

$$\varepsilon_0 = 8.85 \times 10^{-12} \, \text{F/m} = 8.85 \, \text{pF/m}$$

Area = A

The Cylindrical Capacitor (P528 Ex.22-2)

A cylindrical capacitor consists of a cylindrical conductor of radius *a* coaxial with a larger cylindrical shell of radius *b*. Find the capacitance of this device if its length is *l*.

The Cylindrical Capacitor

Solution: Assume the inner and outer conductors have opposite charges +Q and -Q. In the region a < r < b, we can use Gauss' law to determine:

$$\oint_{S} \vec{E} \cdot d\vec{A} = E2\pi r l = \frac{\lambda l}{\varepsilon_{0}} \qquad E = \frac{\lambda}{2\pi\varepsilon_{0} r}$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

The potential difference:

$$\Delta V = \int_{+}^{-} \vec{E} \cdot d\vec{s} = \int_{a}^{b} \frac{\lambda}{2\pi\varepsilon_{0}} \frac{dr}{r} = \frac{\lambda}{2\pi\varepsilon_{0}} \ln\left(\frac{b}{a}\right)$$

$$Q = \lambda l$$

$$C = \frac{Q}{\Delta V} = \frac{2\pi\varepsilon_0 l}{\ln(b/a)}$$

The Cylindrical Capacitor

$$C = \frac{2\pi\varepsilon_0 l}{\ln(b/a)}$$

- \bullet Has the form of ε_0 times a quantity with dimension of length.
- \bullet When d=b-a << a

$$\ln\left(\frac{b}{a}\right) = \ln\left(\frac{a+d}{a}\right) = \ln\left(1 + \frac{d}{a}\right) \approx \frac{d}{a}$$

$$C = \frac{\varepsilon_0 A}{d} \qquad A = 2\pi a l$$

$$A = 2\pi a l$$

The Spherical Capacitor (P529 Ex. 22-3)

A spherical capacitor in which the inner conductor is a solid sphere of radius *a*, and outer conductor is a hollow spherical shell of inner radius *b*. Find the capacitance.

The Spherical Capacitor

-Q

Solution: Assume the inner and outer sphere have opposite charges + Q and -Q. In the region a < r < b, we can use Gauss' law to determine:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

The potential difference:

$$\Delta V = \int_{+}^{-} \vec{E} \cdot d\vec{s} = \frac{Q}{4\pi\varepsilon_0} \int_{r_a}^{r_b} \frac{dr}{r^2} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$=\frac{Q}{4\pi\varepsilon_0}\frac{b-a}{ab}$$

$$C = \frac{Q}{\Delta V} = 4\pi\varepsilon_0 \frac{ab}{b-a}$$

The Spherical Capacitor

$$C = 4\pi\varepsilon_0 \frac{ab}{b-a}$$

- ightharpoonup Has the form of $ε_0$ times a quantity with dimension of length.
- When $b\rightarrow \infty$, $C=4\pi\varepsilon_0 a$
- \bullet When b-a<<a, $ab\approx a^2$, d=b-a, A= $4\pi a^2$, C= $\varepsilon_0 A/d$

§ 22-3 Combinations of Capacitor (P529)

Parallel Combination

$$C_1 = \frac{Q_1}{\Delta V_1} \qquad C_2 = \frac{Q_2}{\Delta V_2}$$

$$Q = Q_1 + Q_2$$
 $\Delta V = \Delta V_1 = \Delta V_2$

$$C_{eq} = \frac{Q}{\Lambda V} = C_1 + C_2$$

The equivalent capacitance of a parallel combination of capacitors is the algebraic sum of the individual capacitances.

Combinations of Capacitor

Series Combination

$$C_1 = \frac{Q_1}{\Delta V_1} \qquad C_2 = \frac{Q_2}{\Delta V_2}$$

$$Q = Q_1 = Q_2$$
 $\Delta V = \Delta V_1 + \Delta V_2$

$$\frac{1}{C_{eq}} = \frac{\Delta V}{Q} = \frac{1}{C_1} + \frac{1}{C_2}$$

→ The inverse of the equivalent capacitance is the algebraic sum of the inverse of the individual capacitances.

§ 22-4 Electric Energy Storage (P532)

A capacitor can store charge, and can also store energy!

- The potential energy of a charged capacitor
 - → The energy stored in a capacitor will be equal to the work done to charge it.
 - We evaluate the work of charging that an external agent continuously pulls charge dq from negative plate to positive plate until the capacitor has the opposite charge of ±Q.

The potential energy of a charged capacitor

▶ Suppose that q is the charge on the capacitor at some instant during this charging process, the potential difference across the capacitor is $\Delta V = q/C$. Imaging that the external agent transfers an additional increment of charge dq from the plate of charge -q to the plate of charge q, the resulting small change dU in

the electric potential energy is:
$$dU = \Delta V dq = \frac{q}{C} dq$$

▶If this process is continued until to charge the capacitor from q = 0 to the final charge q = Q, the total potential energy is:

$$U = \int dU = \int_0^Q \frac{q}{C} dq = \frac{Q^2}{2C} \quad U = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$

Where does the potential energy reside?

- **▶** From the equation U=Q²/2C, we conclude that the energy relates to the charging.
- Another point of view:

$$C = \varepsilon_0 \frac{A}{d}$$
, $U = \frac{1}{2}C(\Delta V)^2 = \left(\frac{1}{2}\varepsilon_0 E^2\right)^A (Ad)^B$
 $\Delta V = Ed$,

U is proportional to the volume *Ad* between the two plates.

▶Because the electric field is present in the space between the two plates, the energy is stored in the electric field that is present in this region.

Where does the potential energy reside?

$$U = \left(\frac{1}{2}\varepsilon_0 E^2\right) (Ad)$$

→The energy density:

$$u = \frac{U}{Ad} = \frac{1}{2}\varepsilon_0 E^2$$

▶ If an electric field E exists at any point in empty space, we can think of that point as the site of stored energy in amount of $\frac{1}{2} \varepsilon_0 E^2$.

$$U = \int dU = \iiint_{V} u dV = \iiint_{V} \left(\frac{1}{2}\varepsilon_{0}E^{2}\right) dV$$

Where does the potential energy reside?

- In the case of electrostatic field, we can not answer which one is the storehouse of the energy.
 - Because in the case of electrostatic field, the electric field is always accompanied with the charge.
- In the case of time-varying electromagnetism field
 - ◆ The electromagnetic wave can exists in the vacuum, whether the charge exists or not.

Example

Example: How much energy is stored in the electric field of an isolated conducting sphere of radius R and charge Q.

The electric field distribution:
$$E = \begin{cases} 0 & \text{if } r < R \\ \frac{Q}{4\pi\epsilon r^2} & \text{if } r > R \end{cases}$$

$$U = \iiint \left[\frac{1}{2} \varepsilon_0 \left(\frac{Q}{4\pi \varepsilon_0 r^2} \right)^2 \right] dV = \int_R^{\infty} \left[\frac{1}{2} \varepsilon_0 \left(\frac{Q}{4\pi \varepsilon_0 r^2} \right)^2 \right] \left(4\pi r^2 dr \right)$$

$$=\frac{Q^2}{8\pi\varepsilon_0}\int_R^\infty \frac{dr}{r^2} = \frac{Q^2}{8\pi\varepsilon_0 R}$$

Solution (II):

$$U=\frac{Q^2}{2C},$$

$$C=4\pi\varepsilon_0 R$$
,

$$U = \frac{Q^2}{8\pi\varepsilon_0 R}$$

§ 22-5, 22-6 Dielectric Materials (P533, P536)

- Dielectrics vs. conductors
- Polar vs. nonpolar dielectric materials

Polar and nonpolar dielectric materials

→ Polar dielectric material —— its molecule has a permanent electric dipole moment, such as water.

The external electric field exerts a torque on the dipole that tries to align it with the field.

$$\vec{\tau} = \vec{p} \times \vec{E}_0$$

Nonpolar dielectric material its molecule has no permanent electric dipole.

The atom acquires an induced dipole moment when the atom is placed in an external electric field.

The induced surface charge and induced polarization field

▶ When a dielectric material is placed in an external applied field E_0 , induced surface charges q' appear that tend to weaken the original field E_0 by a polarization field E' within the material. For a linear material, the net field inside the material

$$\overrightarrow{E} = \overrightarrow{E}_0 + \overrightarrow{E'}$$

$$\overrightarrow{E'} \text{ is called polarization field.}$$

The induced surface charge and induced polarization field

$$\vec{E} = \vec{E}_0 + \vec{E'}$$

$$E = \frac{1}{\kappa} E_0$$

- ★ is called the dielectric constant, which is greater than 1.
- ▶The charge q_0 , the origin of E_0 , that resides in the conductors is called free charge, and induced charge q that resides in the surface of dielectric materials, that not free to move and bound to a molecule, is called bound charge.

The polarization and the dielectric strength

When either polar or nonpolar

materials are put in an external field, the materials are said to be polarized.

ulletThe dielectric strength: $oldsymbol{E}_{ ext{break}}$

If we apply a large enough electric field to an insulator, we can ionize atoms or molecules of the insulator and thus create a condition for electric charge to flow, as in a conductor. The field necessary for the breakdown of the insulator is called the dielectric strength.

TABLE 20.1

Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

Material	Dielectric Constant κ	Dielectric Strength (V/m)
Vacuum	1.00000	_
Air (dry)	1.00059	3×10^{6}
Bakelite	4.9	24×10^{6}
Fused quartz	3.78	8×10^6
Pyrex glass	5.6	14×10^{6}
Polystyrene	2.56	24×10^{6}
Teflon	2.1	60×10^{6}
Neoprene rubber	6.7	12×10^{6}
Nylon	3.4	14×10^{6}
Paper	3.7	16×10^{6}
Strontium titanate	233	8×10^6
Water	80	_
Silicone oil	2.5	15×10^{6}

^a The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown.

§ 7 Capacitors with Dielectrics (P534)

Two identical capacitors, filling one with a dielectric material and leaving the other with air between its plates

 When both capacitors are connected to batteries with the same potential difference.

$$\Delta V = \Delta V' \implies E = E'$$

$$E = \frac{Q}{\varepsilon_0 A}, \quad E' = \frac{1}{\kappa} \frac{Q'}{\varepsilon_0 A}$$

$$Q' = \kappa Q$$

$$C' = \frac{Q'}{\Lambda V'} = \frac{\kappa Q}{\Lambda V} \implies C' = \kappa C \implies C' = \frac{\kappa \varepsilon_0 A}{d} = \frac{\varepsilon A}{d}$$

$$\varepsilon = \kappa \varepsilon_0$$
 permittivity

Capacitors With Dielectrics

•When both are disconnected the batteries with the same charge

The electric field energy stored in a capacitor with dielectric

 $+\sigma'$

The electric field energy stored in a capacitor with

dielectric

$$U = \frac{Q^2}{2C} = \frac{Q^2 d}{2\kappa \varepsilon_0 A} = \frac{1}{2} \kappa \varepsilon_0 \left(\frac{Q}{\kappa \varepsilon_0 A}\right)^2 (Ad)$$

$$E = \frac{E_0}{\kappa} = \frac{1}{\kappa} \frac{\sigma}{\varepsilon_0} = \frac{Q}{\kappa \varepsilon_0 A}, \quad U = \frac{1}{2} \kappa \varepsilon_0 E^2(Ad) \Big|_{+}^{+} \Big|_{+}^{+}$$

■The electric field energy density in dielectric materials

$$u = \frac{1}{2} \kappa \varepsilon_0 E^2 = \frac{1}{2} \varepsilon E^2$$

Example

In following two cases, find the electric field energy stored in a parallel-plate capacitor before and after the dielectric is inserted. The capacitor without dielectric is C_0 , and dielectric material has dielectric constant κ .

- (1) From beginning to end, the capacitor is always connected to the battery of voltage ΔV ;
- (2) At beginning, the capacitor, with empty, is connected to the battery of voltage ΔV . The battery is then removed, and the capacitor is fill with the dielectric material.

Solution:

(1) Before inserting the dielectric:

$$U_{before} = \frac{1}{2}C_0 \left(\Delta V\right)^2$$

After inserting the dielectric:

$$U_{after} = \frac{1}{2}C(\Delta V)^{2} = \frac{1}{2}\kappa C_{0}(\Delta V)^{2} = \kappa U_{before}$$

$$\Delta U = U_{after} - U_{before} = (\kappa - 1)U_{before} > 0$$

Example cont'd

(2) Before and after removing the battery, the charges in the capacitor are the same and the voltage across the plates decreases after removing the battery $\Delta V ' = \Delta V / \kappa$.

$$E = \frac{Q}{\varepsilon_0 A}, \quad E' = \frac{Q}{\kappa \varepsilon_0 A} = \frac{E}{\kappa}$$

$$\Delta V = Ed, \quad \Delta V' = E'd$$

$$\Delta V' = \frac{\Delta V}{\kappa}$$

Before inserting the dielectric:
$$U_{before} = \frac{1}{2}C_0 \left(\Delta V\right)^2$$

After inserting the dielectric:

$$U_{after} = \frac{1}{2}C(\Delta V')^2 = \frac{1}{2}\kappa C_0 \left(\frac{\Delta V}{\kappa}\right)^2 = \frac{U_{before}}{\kappa}$$

$$\Delta U = U_{after} - U_{before} = (1 - \kappa)U_{before} < 0$$

Ch22 Prob. 49, 50, 85 (P543)

Ch22 Prob. 65, 87 (P544)