

NT219- Cryptography

Week 8: Modern Asymmetric Ciphers

PhD. Ngoc-Tu Nguyen

tunn@uit.edu.vn

Outline

- Why asymmetric cryptography?
- Factoring Based Cryptography (P1)
- Logarithm Based Cryptography (P2)
 - ElGamal cipher;
 - Diffie-Hellman key exchange;
- Elliptic Curve Cryptography (P3)
- Some advanced cryptography system (quantum resistance)

Why Public-Key Cryptosystems?

To overcome two of the most difficult problems associated with symmetric encryption:

- Key distribution (key for sysmetric encryption)
 - How to have secure communications in general without having to trust a KDC with your key
- Digital signatures
 - > How to verify that a message comes intact from the claimed sender

Whitfield Diffie and Martin Hellman: proposed a method that addressed both problems (1976)

Moden Asymmetric ciphers

Symmetric cipher vs Asymmetric cipher

RSA: Confidentiality

- Protect secret key?
- Distribute public keys?

RSA: Authentication

- Protect secret key?
- Distribute public keys?

RSA: Authentication and Secrecy

Decrypt and verify the secret key k

Limitation?

$$C_{1}^{d_{B}} \mod n_{B} = (k^{e_{B}})^{n_{B}} \mod n_{B} = k;$$

$$S_{1}^{d_{B}} \mod n_{B} = (S^{e_{B}})^{n_{B}} \mod n_{B} = S;$$

$$S^{e_{A}} \mod n_{A} = (k^{d_{A}})^{e_{A}} \mod n_{A} = k' = ? k$$

Encryption Using Optimal Asymmetric Encryption Padding (OAEP)

Outline

- Why asymmetric cryptography?
- Factoring Based Cryptography (P1,2)
- Logarithm Based Cryptography (P3)
 - ElGamal cipher;
 - Diffie-Hellman key exchange;
- Elliptic Curve Cryptography (P4)
- Some advanced cryptography system (quantum resistance)

Discrete Logarithm problem

Finitemultiplicative group $(G,.) = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}$ Example: $G = \mathbb{Z}_p \setminus \{0\} = \{1,2,...,p-1\} = \langle g \rangle$

$$g, n \xrightarrow{\text{Easy to compute}} y_0 = g^n \mod p$$

$$g^n = y_0 \mod p$$
 Hard to solve n g, y_0, p

Hard to solve equation $g^x = a \mod p$ in finite field!

Outline

- Why asymmetric cryptography?
- Factoring Based Cryptography (P1)
 - RSA signature;
- Logarithm Based Cryptography (P2)
 - > ElGamal cipher
 - Diffie-Hellman key exchange;
- Elliptic Curve Cryptography (P3)
- Some advanced cryptography system (quantum resistance)

ElGamal cipher

ElGamal parameters

Large prime number: *p* Multiplicative group

$$G = \langle g \rangle = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$$

Key generation (

Secret key: $x \in_R [1, p-1]$

Public key: $h = g^x \mod p \in \mathbb{Z}_p$

ElGamal cipher

- \triangleright Encryption message m < p-1 (using public key $h = q^x$)
 - Choose a random number: $r \in_R [1, p-1]$
 - Compute $C_1 = g^r \mod p$;
 - Computer $C_2 = m.h^r \mod p$
 - Output cipher message (C_1, C_2)
- \triangleright Decryption (C_1, C_2) (using secret key x)

 - Compute $(C_1)^x \mod p = g^{r,x} \mod p$; Computer $\frac{C_2}{(C_1)^x} \mod p = \frac{m.g^{x,r}}{g^{r,x}} \mod p$ = m
 - Output message m

ElGamal cipher

 (C_1, C_2)

Input: M < p

Select a random number: r

Compute:
$$C_1 = g^r \mod p$$

 $C_2 = m. h_B^r \mod p$

$$\frac{C_2}{(C_1)^{x_B}} \mod p$$

$$= \frac{m \cdot g^{x_B \cdot r}}{g^{r \cdot x_B}} \mod p = m$$

Compute:

Outline

- Why asymmetric cryptography?
- Factoring Based Cryptography (P1)
 - RSA signature;
- Logarithm Based Cryptography (P2)
 - > ElGamal cipher
 - Diffie-Hellman key exchange;
- Elliptic Curve Cryptography (P3)
- Some advanced cryptography system (quantum resistance)

Diffie-Hellman key exchange

- A and B never met and share no secrets;
- Public info: the prime number p and g
 - > p is a large prime number, g is a generator of Z_p^*
 - $Z_{p}^{*} = \{1, 2 \dots p-1: \forall a \in Z_{p}^{*} \exists i \text{ such that } a = g^{i} \bmod p \}$

Pick secret, random x

Pick secret, random y

$$X = g^{x} \mod p$$

$$Y = g^{y} \mod p$$

Compute

Compute

$$k_A = Y^x \mod p = (g^y)^x \mod p$$

= $g^{y,x} \mod p$

$$k_B = X^y = (g^x)^y \mod p$$
$$= g^{xy} \mod p$$

Session key $K = k_A = k_B = g^{x,y}$ Symmetric key

Diffie-Hellman exchange Protocol (DHE)

p = 1606938044258990275541962092341162602522202993782792835301301

$$g = 123456789$$

 $g^a \mod p =$ 78467374529422653579754596319852702575499692980085777948593

 $g^b \mod p =$

560048104293218128667441021342483133802626271394299410128798

685408003627063 761059275919665 781694368639459 362059131912941 987637880257325

527871881531452

269696682836735

524942246807440

 $(q^b)^a \mod p$

 $g^{ab} \mod p =$ 437452857085801785219961443000 845969831329749878767465041215

 $(g^a)^b mod p$

Why Is Diffie-Hellman Secure?

- Discrete Logarithm (DL) problem: given g^x mod p, it's hard to extract x
 - > There is no known efficient algorithm for doing this
 - > This is not enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem:
 given g^x and g^y, it's hard to compute g^{xy} mod p
 - > ... unless you know x or y, in which case it's easy
- Decisional Diffie-Hellman (DDH) problem: given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between the established key and a random value
 - Can use the new key for symmetric cryptography
- Basic Diffie-Hellman protocol does not provide authentication
 - ➤ IPsec combines Diffie-Hellman with signatures, anti-DoS cookies, etc.

Man-in-the middle attacks the DHE

man-in-the-middle attack!

A(Putin)

Advantages of Pblic-Key Crypto

- Confidentiality without shared secrets
 - > Very useful in open environments
 - Can use this for key establishment, avoiding the "chicken-or-egg" problem
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- Authentication without shared secrets
- Encryption keys are public, but must be sure that Alice's public key is really <u>her</u> public key
 - > This is a hard problem... Often solved using public-key certificates

Disadvantages of Public-Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - > Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - SSL, IPsec, most other systems based on public crypto
- Keys are longer
 - > 3072 bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - Factoring, RSA problem, discrete logarithm problem, decisional Diffie-Hellman problem...