省选 2024 模拟赛 Day 1

时间: 2024年2月

题目名称	弹性碰撞	连通	树上二维偏序问题
题目类型	传统题	传统题	传统题
目录	physics	connect	partial
可执行文件名	physics	connect	partial
输入文件名	physics.in	connect.in	partial.in
输出文件名	physics.out	connect.out	partial.out
每个测试点时限	1 秒	1秒	5 秒
内存限制	1024 MB	512 MB	1024 MB
子任务数目	8	100	6
测试点是否等分	否	是	否

提交源程序文件名

对于 C++ 语言	physics.cpp	connect.cpp	partial.cpp
-----------	-------------	-------------	-------------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 只提供 Linux 格式附加样例文件。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

弹性碰撞 (physics)

【题目描述】

数轴上有 n 个小球,相邻两个小球的间距相同。每个小球有两种属性:量子 (A) 和虚数 (B),带有正电荷或者负电荷。一开始所有的小球都是量子 (A) 属性。

通过某种方式给所有的小球初速度,使得带正电荷的小球向左,反之则向右运动。我们认为所有小球的速度相同,且均沿直线运动。

当两个小球到达同一位置时,会发生弹性碰撞,沿着相反的方向按照原有速度继续运动。同时,这两个小球的电性会发生反转,属性也会发生反转。

例如: A^- 和 B^+ 相撞后, A^- 会变成 B^+ , B^+ 会变成 A^- ,并各自沿着相反的方向运动。

定义一种摆放方式的权值为,经过足够长的时间后,在左侧收集到的虚数 (B) 小球个数。

现在已经确定了一些小球的电性,剩下的小球可能带正电,也有可能带负电。请求 出对于所有可能方案的权值之和。你需要将答案对 998244353 取模。

【输入格式】

从文件 physics.in 中读入数据。

输入一行一个长为n的字符串s,代表从左到右小球的电性。具体而言:

- 若 s_i 为 +, 则第 i 个小球带正电;
- 若 s_i 为 -,则第 i 个小球带负电;

【输出格式】

输出到文件 physics.out 中。

输出一行一个数表示答案。

【样例 1 输入】

+;+-

【样例1输出】

1 1

【样例1解释】

如果初始局面是 +++-,最终将会收集到三个量子(A)小球,不会造成贡献;如果初始局面是 +-+-,则会收集到一个量子(A)和一个虚数(B)小球,造成 1 点贡献。所以总的答案是 1。

【样例 2 输入】

1 ??+-?-+

【样例 2 输出】

1 12

【样例 3 输入】

1 -????-?+?--????

【样例3输出】

1 3675

【样例 $4\sim11$ 】

见选手目录下的 $physics/physics4 \sim 11.in$ 与 $physics/physics4 \sim 11.ans$ 。 对于 $i \in [1,8]$,第 i+3 个样例满足子任务 i 的限制。

【数据范围】

对于 100% 的数据, $1 \le n \le 2 \times 10^6$ 。

子任务编号	$n \leq$	特殊性质	子任务分值
1	10		10
2	2×10^6	s 中没有?	10
3	5×10^3	s 中 ? 不超过 15 个	10
4	40		10
5	300		10
6	5×10^3		20
7	2×10^{5}		10
8	2×10^6		20

连通 (connect)

【题目描述】

给定一棵 n 个点的树, 第 i 个节点有权值 a_i 。一个非空连通块合法当且仅当:

- 连通块内点权值的最大公约数等于 X:
- 连通块内点权值的最小公倍数等于 Y。

求合法非空连通块个数对 109+7 取模后的结果。

【输入格式】

从文件 connect.in 中读入数据。

第一行三个整数 n, X, Y。

第二行n个整数ai。

接下来 n-1 行每行两个数 u, v,描述树上的一条边。

【输出格式】

输出到文件 connect.out 中。

一行一个数,表示合法的连通块个数对 109+7 取模后的结果。

【样例 1 输入】

```
1 3 1 2
```

2 1 2 2

3 1 2

4 1 3

【样例 1 输出】

1 3

【样例1解释】

有三种方案 {1,2}, {1,3}, {1,2,3}。

【样例 2】

见选手目录下的 *connect/connect2.in* 与 *connect/connect2.ans*。

【样例 3】

见选手目录下的 connect/connect3.in 与 connect/connect3.ans。

【样例 4】

见选手目录下的 connect/connect4.in 与 connect/connect4.ans。

【样例 5】

见选手目录下的 connect/connect5.in 与 connect/connect5.ans。

【数据范围】

对于 10% 的数据, $Y \leq 1$;

对于 21% 的数据, $Y \le 10^3$;

对于 27% 的数据, $Y < 10^5$;

对于 35% 的数据, $Y \le 10^7$;

对于 50% 的数据, $Y \le 10^{10}$;

对于 100% 的数据, $1 \le n \le 10^3, 1 \le a_i, X, Y \le 10^{18}, X \mid a_i, a_i \mid Y, \mu(Y) \ne 0$ 且 Y 不存在大于 50 的质因子。

树上二维偏序问题 (partial)

【题目描述】

给定一棵 n 个节点的有根树,根节点是 1 号。每个点有一个权值 $a_i \in \{0,1,?\}$,问号可以替换成 0 或 1。

如果两个点 i, j 满足 $i \neq j$ 的祖先且 $a_i < a_j$,则会造成一点贡献。现在你想知道,对于所有问号取值的方案中,贡献和的最大值是多少。

除此之外,还有q次修改操作,每次会修改一个点的 a_i 。你需要在每次修改后回答上述问题。

【输入格式】

从文件 partial.in 中读入数据。

第一行两个整数 n,q,意义如题面所示。

第二行一个长为 n 的字符串 a。

第三行输入 n-1 个数, 其中第 i 个数 fa_{i+1} 表示 i+1 的父亲。

接下来 q 行,每行一个正整数 u 和字符 c,表示将 a_u 修改为 c。

【输出格式】

输出到文件 partial.out 中。

共 q 行,表示每次修改后的最大贡献和。

【样例 1 输入】

```
5 9
  0?1?1
2
  1 2 3 3
3
  5 0
  1 0
5
  2 0
6
  2 ?
7
  1 1
8
9 4 0
  1 1
10
   5 0
11
```

```
12 4 ?
```

【样例1输出】

```
4
1
2
  4
3
  4
  4
4
5
  2
  1
7
  1
8
  1
  2
```

【样例 2 输入】

```
10 9
1
  0001?0?101
3 1 2 3 4 1 1 4 5 6
   2 ?
4
  8 ?
5
  9 0
6
7 4 0
  3 ?
8
9
  10 ?
10
   1 ?
   2 1
11
12
   2 1
```

【样例 2 输出】

```
1 12
2 12
3 12
```

```
4 11
5 11
6 11
7 11
8 10
9 10
```

【样例 $3 \sim 8$ 】

见选手目录下的 $partial/partial3 \sim 8.in$ 与 $partial/partial3 \sim 8.ans$ 。 对于 $i \in [1,6]$,第 i+2 个样例满足子任务 i 的限制。

【数据范围】

对于 100% 的数据, $1 \le n, q \le 2 \times 10^5, 1 \le fa_i < i, 1 \le u \le n, a_i, c \in \{0, 1, ?\}$ 。

子任务编号	$n \leq$	$q \leq$	特殊性质	子任务分值
1	10	10		10
2	2×10^5	2×10^5	$fa_i = 1$	10
3	2×10^5	2×10^5	任何时刻没有问号	15
4	10^{3}	10^{3}		15
5	2×10^5	2×10^5	$fa_i = i - 1$	25
6	2×10^5	2×10^5		25