П

Problem 1.

a)
$$\ell_i(\Theta) = \frac{1}{2} (X_i^T \Theta - Y_i)^2 = \frac{1}{2} (\sum_{k=1}^{p} X_{ik} \Theta_k - Y_i)^2$$

$$\Rightarrow \frac{9}{90} \int_{\Gamma} f_{\tau}(\theta) = \left(\sum_{k=1}^{p} \chi_{\tau_{k}} Q_{k} - \gamma_{\tau} \right) \chi_{\widetilde{U}}$$

$$\therefore \frac{\partial}{\partial \theta_{k}} \mathcal{L}(\theta) = \frac{1}{2} \sum_{i=1}^{N} \frac{\partial}{\partial \theta_{k}} \left(\frac{1}{2} \sum_{i=1}^{N} \chi_{ij} \theta_{ij} - Y_{i} \right) \chi_{ik}$$

$$= \frac{1}{2} \sum_{i=1}^{N} 2 \left(\sum_{j=1}^{N} \chi_{ij} \theta_{ij} - Y_{i} \right) \chi_{ik}$$

$$= \sum_{i=1}^{N} \left(\sum_{j=1}^{N} \chi_{ij} \theta_{ij} - Y_{i} \right) \chi_{ik} = \sum_{i=1}^{N} (\chi \theta - Y)_{i} \chi_{ik}$$

Problem 2. f'(0) = 0.

$$\Rightarrow \Theta^{k+1} = \Theta^{k} - \alpha \Theta^{k} = (1 - \alpha) \Theta^{k} = (1 - \alpha)^{2} \Theta^{k-1} = \dots = (1 - \alpha)^{k+1} \Theta^{k}$$
if $\alpha > 2$, $\lim_{k \to 0} \Theta^{k+1} = \lim_{k \to 0} (1 - \alpha)^{k+1} \Theta^{k}$ diverges since $|1 - \alpha| > 1$.

Problem 3.
$$f(\theta) = \frac{1}{2} || x \theta - Y ||^2 \Rightarrow \nabla_{\theta} f(\theta) = \chi^{\tau} (\chi \theta - Y)$$

$$\Rightarrow \Theta^{k+1} = \Theta^k - \alpha X^T (X \Theta^k - Y)$$

$$= (I - \alpha x_{\perp} x)(\theta_{r} - \theta_{*})$$

$$= (I - \alpha x_{\perp} x)\theta_{r} - (I - \alpha x_{\perp} x) (x_{\perp} x)_{-1} x_{\perp} x_{\perp}$$

$$= (I - \alpha x_{\perp} x)\theta_{r} - (I - \alpha x_{\perp} x) (x_{\perp} x)_{-1} x_{\perp} x_{\perp}$$

$$= (I - \alpha x_{\perp} x)(\theta_{r} - \theta_{*})$$

$$\Rightarrow \| \Theta^{k-1} - \Theta^{k} \| = \| T_{-k} \chi^{T} \chi \| \| \Theta^{k} - \Theta^{k} \|.$$

Since $\|\cdot\|$ is an inner product, $\|\cdot\|_{L^{\infty}(X,X)} \le \|\cdot\|_{L^{\infty}(X,X)} \le \|\cdot\|_{L^{\infty}(X,X)}$

lemma. $11 \times 11 \le \lambda$ for all eigenvector λ of x.

pf) Let $Xv = \lambda v$. Then, $\|Xv\| = \|X\| \|v\| \le |\lambda| \|v\|$ (submultiplicativity) $\Rightarrow \|X\| \le |\lambda|$ (: $\|v\| > 0$)

Since $\alpha > \frac{2}{\rho(x^Tx)}$ $\alpha ||x^Tx|| > 2$. (: $||x^Tx|| \le \rho(x^Tx)$, by the above lemma)

Therefore, || I-ax^Tx|| < 1-a||x^Tx|| <-1, which causes

Thus, Θ^k duenges for $\alpha > \frac{2}{\rho(x^Tx)}$