Question 4 (11.21 from the textbook)

Suppose that $Y_1, Y_2, ..., Y_n$ are independent normal random variables with $\mathbb{E}(Y_i) = \beta_0 + \beta_1 x_i$ and $\mathbb{V}(Y_i) = \sigma^2$, for i = 1, 2, ..., n. Find $Cov(\hat{\beta}_0, \hat{\beta}_1)$.

Then, prove that if $\sum_{i=1}^n x_i = 0$ then $\hat{\beta}_0, \hat{\beta}_1$ are independent.

Then Cov (Bo. B.) = Cov (g- B. x, B.)

=
$$Cov(\bar{g}, \hat{\beta}_i) - Cov(\hat{\beta}, \bar{\chi}, \hat{\beta}_i)$$

$$= -\frac{1}{2} \operatorname{Var}(\hat{\beta}_1) = -\frac{1}{2} \cdot \frac{6^2}{S_{xx}}$$

if
$$\sum_{i=1}^{n} \chi_i = 0$$
, then $\bar{\chi} = 0$, which means $Cov(\hat{\beta}_0, \hat{\beta}_i) = 0$.

therefore Bo, B. are independent.