Tentative Lab Schedule

- 02/20
 - Revision on Lab 1,2 and 3.
 - Lab 4 − 4 Bit Adder/Subtractor
- 02/27 --- Test 1.
- 03/06 Deadlines for Lab 4 implementation
 - No class on (03/06).
- 03/07 Deadlines for Lab 4 report.
- The class will resume on 03/20 with Lab 5- A
- 03/27 Lab 5-B and Final Implementation.
- Final Presentation on April 13.

LAB-4 4 Bit Adder/Subtractor

Deliverables:

- Implement a 4 bit Adder/Subtractor using Quartus II Schematic Block using the 4 bit adder from Lab 3.
 - Use the 2nd complement system to represent negative number and perform addition.
 - Eg. 14 9 ____ 14 + (-9).
- Compilation and Simulation on Quartus II
- Implement a display ckt which displays a negative binary number into a negative decimal number.

• Implement a fully functional the 4 bit Adder/Subtractor with the 7 segment display and test it on DE2 Board.

2nd Complement

- Binary representation of a negative number.
- Eg.

$$5 \longrightarrow 0 \ 1 \ 0 \ 1 \longrightarrow 1 \ 0 \ 1 \ 0 \\ + \quad 1 \\ -5 \boxed{1 \ 0 \ 1 \ 1}$$

- In the 2nd complement system, MSB is used as a sign bit.
 - MSB = 0 represents the binary number is a positive integer.
 - MSB = 1 represents the binary number is a negative integer.
- N Binary Bit can represent $2^{N-1} 1$ positive integer and 2^{N-1} negative integer.
 - Eg. 4 bit binary number can represent up to $(2^{4-1}-1=7)$ and $(-2^{4-1}=-8)$

Example of Negative Number Representation for 4 bit system

	Bi	nary	Integer	
0	0 0		0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	-1
1	0	0	1	-2
1	0	1	0	-3
1	0	1	1	-4
1	1	0	0	-5
1	1	0	1	-6
1	1	1	0	-7
1	1	1	1	-8

•
$$(A_3A_2A_1A_0) - (B_3B_2B_1B_0)$$

- A B
- Design a subtractor such that A-B = A + (-B)
- The max integer we can input from B is 15, 1111.
- To represent (-15) in binary we need a 5 bit binary system.
- Eg.

$$15 \longrightarrow 1 \ 1 \ 1 \ 1 \longrightarrow 0 \ 0 \ 0 \ 0 \\ + \ 1$$
This is wrong!!!!
$$0 \ 0 \ 0 \ 1$$

$$15 \longrightarrow 0 \ 1 \ 1 \ 1 \longrightarrow 10 \ 0 \ 0 \ 0 \\ + 1 \\ -15 \text{ in Binary..} \qquad 10 \ 0 \ 0 \ 1 \\ \hline \\ Sign Bit$$

• In a 4 bit system, add one MSB bit for Sign Bit

- Eg. A = 9, B = 14 : A- B
- $(A_3A_2A_1A_0) = 1001$, $(B_3B_2B_1B_0) = 1110$
- First convert A and B with a 5 bit system.
 - $A_3A_2A_1A_0 \Rightarrow 0 A_3A_2A_1A_0$, $(B_3B_2B_1B_0) = 0 B_3B_2B_1B_0$
- Find the 2nd complement of $0 B_3 B_2 B_1 B_0$.
- 01110 = 10001 which is $(1 \overline{B_3} \overline{B_2} \overline{B_1} \overline{B_0})$.
- Add (00001) and then add $0 A_3 A_2 A_1 A_0$ to get the final answer.

Sign bit tells the result is a negative number.

For 2:1 Mux, search as 21MUX in Quartus Schematic. Connect B to A of the mux of the 2:1 Mux, \overline{B} to B of the mux. A/\overline{S} controls the select line of 2:1 Mux.

- The Sign bit output tells us whether the result is positive or negative.
- If positive (sign out = 0) , then we can directly display $(Q_3Q_2Q_1Q_0)$ using Display Ckt from Lab 2.
- If the result is negative (sign out = 1), we need to convert the negative binary value to minus sign and positive magnitude to display.

• Eg Signout
$$Q_3Q_2Q_1Q_0 = 00101$$

Sign Display Ckt

Input Sign Out	<i>Output</i> S ₆ S ₅ S ₄ S ₃ S ₂ S ₁ S ₀
0	1 1 1 1 1 1
1	0 1 1 1 1 1 1

Magnitude Display

 $R_3R_2R_1R_0$ are connected to $X_3X_2X_1X_0$ of Display ckt from Lab 2.

Magnitude Display

Positive Number

Sign									
Out	Q3	Q2	Q1	Q0	Magnitude	R3	R2	R1	R0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	2	0	0	1	0
0	0	0	1	1	3	0	0	1	1
0	0	1	0	0	4	0	1	0	0
0	0	1	0	1	5	0	1	0	1
0	0	1	1	0	6	0	1	1	0
0	0	1	1	1	7	0	1	1	1
0	0	0	0	0	8	0	0	0	0
0	0	0	0	1	9	0	0	0	1
0	0	0	1	0	10	0	0	1	0
0	0	0	1	1	11	0	0	1	1
0	0	1	0	0	12	0	1	0	0
0	0	1	0	1	13	0	1	0	1
0	0	1	1	0	14	0	1	1	0
0	0	1	1	1	15	0	1	1	1

- When the result Q3Q2Q1Q0 is positive number, R3R2R1R0 = Q3Q2Q1Q0
- We can get the magnitude value of negative binary number
- 1. Flip 0 to 1 and 1 to 0. Eg 11011 => 00100
- 2. Add with 00001
 - 00100 + 00001 => 00101 which is 5.
 - If Sign Bit = 0
 - R = Q
 - Else
 - R = not(Q) + 00001
 - End if;

Magnitude Display Ckt

Toplevel Ckt - 4 Bit Add/Sub and Display Ckt

Project Flow Chart

- 1. Implement 4 bit Add/Subtractor
- 2. Simulation waveform on Quartus II
- 3. Implement Sign Display Ckt and Magnitude Display Ckt.
- 4. Implement Top Level Ckt.
- 5. Pin Assignment
- 6. Download the Top Level ckt to DE2 Board.

DE 2 Pin Table

Signal Name	FPGA Pin No.
SW[0]	PIN_N25
SW[1]	PIN_N26
SW[2]	PIN_P25
SW[3]	PIN_AE14
SW[4]	PIN_AF14
SW[5]	PIN_AD13
SW[6]	PIN_AC13
SW[7]	PIN_C13
SW[8]	PIN_B13
SW[9]	PIN_A13
SW[10]	PIN_N1
SW[11]	PIN_P1
SW[12]	PIN_P2
SW[13]	PIN_T7
SW[14]	PIN_U3
SW[15]	PIN_U4
SW[16]	PIN_V1
SW[17]	PIN_V2

Signal Name	FPGA Pin No.
LEDR[0]	PIN_AE23
LEDR[1]	PIN_AF23
LEDR[2]	PIN_AB21
LEDR[3]	PIN_AC22
LEDR[4]	PIN_AD22
LEDR[5]	PIN_AD23
LEDR[6]	PIN_AD21
LEDR[7]	PIN_AC21
LEDR[8]	PIN_AA14
LEDR[9]	PIN_Y13
LEDR[10]	PIN_AA13
LEDR[11]	PIN_AC14
LEDR[12]	PIN_AD15
LEDR[13]	PIN_AE15
LEDR[14]	PIN_AF13
LEDR[15]	PIN_AE13
LEDR[16]	PIN_AE12
LEDR[17]	PIN_AD12
LEDG[0]	PIN_AE22
LEDG[1]	PIN_AF22
LEDG[2]	PIN_W19
LEDG[3]	PIN_V18
LEDG[4]	PIN_U18
LEDG[5]	PIN_U17
LEDG[6]	PIN_AA20
LEDG[7]	PIN_Y18
LEDG[8]	PIN_Y12

7 Segment Pin Table

7	HEX0[0]	PIN AF10
	HEX0[1]	PIN_AP10
3		
<u> </u>	HEX0[2]	PIN_AC12
_	HEX0[3]	PIN_AD11
	HEX0[4]	PIN_AE11
,	HEX0[5]	PIN_V14
	HEX0[6]	PIN_V13
	HEX1[0]	PIN_V20
8	HEX1[1]	PIN_V21
8	HEX1[2]	PIN_W21
,	HEX1[3]	PIN_Y22
	HEX1[4]	PIN_AA24
	HEX1[5]	PIN_AA23
	HEX1[6]	PIN_AB24
	HEX2[0]	PIN_AB23
	HEX2[1]	PIN_V22
	HEX2[2]	PIN AC25
	HEX2[3]	PIN AC26
	HEX2[4]	PIN AB26
	HEX2[5]	PIN AB25
	HEX2[6]	PIN_Y24
	HEX3[0]	PIN_Y23
100	HEX3[1]	PIN_AA25
26	HEX3[2]	PIN_AA26
8	HEX3[3]	PIN_Y26
60 51	HEX3[4]	PIN_Y25
	HEX3[5]	PIN U22
	HEX3[6]	PIN W24

	-			
HEX4[0]	PIN_U9			
HEX4[1]	PIN_U1			
HEX4[2]	PIN_U2			
HEX4[3]	PIN_T4			
HEX4[4]	PIN_R7			
HEX4[5]	PIN_R6			
HEX4[6]	PIN_T3			
HEX5[0]	PIN_T2			
HEX5[1]	PIN_P6			
HEX5[2]	PIN_P7			
HEX5[3]	PIN_T9			
HEX5[4]	PIN_R5			
HEX5[5]	PIN_R4			
HEX5[6]	PIN_R3			
HEX6[0]	PIN_R2			
HEX6[1]	PIN_P4			
HEX6[2]	PIN_P3			
HEX6[3]	PIN_M2			
HEX6[4]	PIN_M3			
HEX6[5]	PIN_M5			
HEX6[6]	PIN_M4			
HEX7[0]	PIN_L3			
HEX7[1]	PIN_L2			
HEX7[2]	PIN_L9			
HEX7[3]	PIN_L6			
HEX7[4]	PIN_L7			
HEX7[5]	PIN_P9			
HEX7[6]	PIN_N9			

Report

- Lab Description
- Design (Boolean expression and truth table).
- Schematic diagram from Quartus II.
- Quartus II simulation waveform.
- Photo of lab running on DE2 board.
- Conclusion.