Sets 22: Section 6.1, Confidence Intervals for Normal (variance known) and large samples

Statistical inference: understand populations given sample data. We first study confidence intervals.

The Problem: Given a statistical model

e.g. $X \sim \text{Normal}(\mu, \sigma^2), Y \sim \text{Bin}(n, p), W \sim \text{Poisson}(\theta),$

we want to say something about unknown parameters, μ , σ , p, θ , using observed data, X's, Y's, W's.

Idea 1: Estimate the population mean μ with the point estimate \bar{X} .

We want to say more ... quantify the margin of error in our estimate.

Idea 2: Interval estimation involves constructing an interval, eg. (7.3, 12.6), in which we are confident that μ resides.

Consider the simplest scenario. Consider X_1, \ldots, X_n iid $\operatorname{Normal}(\mu, \sigma^2)$ where μ is unknown, σ is known and the observed value of \bar{X} is \bar{x}_{obs} .

Note that this is an unrealistic scenario.

Ignoring the criticism, $\bar{X} \sim \text{Normal}(\mu, \sigma^2/n)$. A 95% confidence interval for μ is obtained via:

More generally,

$$\bar{x}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 is a $(1-\alpha)100\%$ CI for μ .

Interpretation of CI's: The explanation is subtle and you need to pay close attention.

Consider many hypothetical replications of an experiment. ¡applet;

A common but incorrect interpretation for CI'S:

If $\bar{x}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ is a $(1-\alpha)100\%$ CI for μ , it is incorrect to write $P\left(\mu \in \bar{x}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$.

Notes: $\bar{x}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$:

- as n increases, the width of the CI decreases
- as our confidence increases (ie. $1-\alpha$ bigger), the width of the CI increases
- tradeoff: we want narrow CI's with large confidence

The simple but unrealistic CI setting previously presented is extended to more realistic scenarios.

We begin by assuming that our sample X_1, \ldots, X_n is large (ie. $n \ge 30$) as is often the case in practice.

Case 1: Since n is large, we use the CLT where $\bar{X} \approx \text{Normal}(\mu, \sigma^2/n)$. In this case,

$$\bar{x}_{\rm obs} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

is an approximate $(1-\alpha)100\%$ CI for μ where σ is still assumed known.

Case 2: We have the same conditions as Case 1 except that σ is unknown. In this realistic case,

$$\bar{x}_{\rm obs} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

is an approximate $(1-\alpha)100\%$ CI for μ where s is the sample standard deviation.

Example: Consider heat measurements taken in degrees Celsius where $\mu=5$ and $\sigma=4$. A change is made in the process such that μ changes but σ remains the same. We observe $\bar{x}_{\rm obs}=6.1$ based on n=100 observations.

- (a) Construct a 90% CI for μ .
- (b) How big should the sample size be such that the CI is less than 0.6 degrees wide?

Problem: Consider the CI $\bar{x}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$.

- (a) How much should the sample size n increase to reduce the width of by half?
- (b) What is the effect of increasing the sample size by a factor of 25?