Primer Certamen Introducción a la Informática Teórica

17 de mayo de 2014

- 1. Determine si son regulares los siguientes lenguajes. Justifique sus aseveraciones.
 - a) Las palabras aceptadas como válidas por la Real Academia Española de la Lengua.
 - *b*) El lenguaje $L_3 = \{a^{n^3} : n \ge 1\}$

(20 puntos)

2. Se define la operación entre palabras:

SHUFFLE(
$$a_1 a_2 ... a_n, b_1 b_2 ... b_n$$
) = $a_1 b_1 a_2 b_2 ... a_n b_n$

La operación se extiende de la forma obvia a lenguajes. Sean L_1 y L_2 lenguajes regulares sobre el alfabeto Σ . ¿Es regular SHUFFLE (L_1, L_2) ?

(20 puntos)

- 3. Considere el lenguaje $L = \{ab^r c^r : r \ge 0\} \cup \{a^r b^s c^t : r \ne 1, s \ge 0, t \ge 0\}.$
 - *a*) Demuestre que todo $\sigma \in L$ puede escribirse $\alpha \beta \gamma$ con $\beta \neq \epsilon$ tal que $\alpha \beta^k \gamma \in L$ para todo $k \in \mathbb{N}_0$.
 - b) Demuestre que L no es regular.

(25 puntos)

4. Dé una gramática de contexto libre para el lenguaje L de la pregunta 3.

(20 puntos)

5. Construya un PDA determinista que acepte el lenguaje $\{a^nb^{2n}: n \ge 1\}$. Explique su construcción.

(15 puntos)

6. Se propone la "forma normal USM" para gramáticas de contexto libre en que las producciones deben ser de las formas $A \to BCD$ con A, B, C, D no-terminales o $A \to a$ con A no-terminal y a terminal. ¿Puede toda gramática de contexto libre llevarse a esta forma?

(20 puntos)