ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 17: TX FIR Equalization

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements

- HW4 due today 5PM
 - Any issues?
- HW5 posted today and due March 24 (2 wks from today)
- Exam 1 is Friday
 - 9:10-10:10AM (10 extra minutes)
 - Closed book w/ one standard note sheet
 - 8.5"x11" front & back
 - Bring your calculator
- Reading
 - Equalization overview paper will be posted

Agenda

TX FIR Equalization

Link with Equalization

Channel Equalization

 Equalization goal is to flatten the frequency response out to the Nyquist Frequency and remove time-domain ISI

TX FIR Equalization – Time Domain

For 10Gbps: $W(z) = -0.131 + 0.595z^{-1} - 0.274z^{-2}$

$$\mathbf{W} = \begin{bmatrix} -0.131 & 0.595 & -0.274 \end{bmatrix}$$

Low Frequency Response (Sum Taps)

$$[\dots \ 1 \ 1 \ 1 \ \dots] * [-0.131 \ 0.595 \ -0.274] = [\dots \ 0.190 \ 0.190 \ 0.190$$

Nyquist Frequency Response (Sum Taps w/ Alternating Polarity)

$$[\dots -1 \ 1 \ -1 \ \dots] * [-0.131 \ 0.595 \ -0.274] = [\dots \ 1 \ -1 \ 1 \ \dots]$$

TX FIR Equalization – Freq. Domain

For 10Gbps: $W(z) = -0.131 + 0.595z^{-1} - 0.274z^{-2}$

$$W(z) = -0.131 + 0.595z^{-1} - 0.274z^{-2}$$

$$\mathbf{w}/\ z = e^{j2\pi f T_s} = \cos(2\pi f T_s) + j\sin(2\pi f T_s)$$

Low Frequency Response (f = 0)

$$z = \cos(0) + j\sin(0) = 1 \Rightarrow W(f = 0) = 0.190 \Rightarrow -14.4dB$$

Nyquist Frequency Response
$$f = \frac{1}{2T_s}$$

$$z = \cos(\pi) + j\sin(\pi) = -1 \Rightarrow W\left(f = \frac{1}{2T_s}\right) = -1 \Rightarrow 0dB$$

- Equalizer has 14.4dB of frequency peaking
 - Attenuates DC at -14.4dB and passes Nyquist frequency at 0dB

Note: Ts=Tb=100ps

TX FIR Coefficient Selection

 One approach to set the TX FIR coefficients is a Minimum Mean-Square Error (MMSE) Algorithm

TX Eq "w" Matrix

Rows = $n+\ell-1$ where n = tap number Columns = $\ell = tap$ input symbol number

channel output vector, y

$$\begin{bmatrix} y(0) \\ y(1) \\ ... \\ y(l+n+k-3) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & 0 & \dots & 0 & 0 \\ h(1) & h(0) & 0 & \dots & 0 & 0 \\ ... & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(k-1) & h(k-2) \\ 0 & 0 & 0 & \dots & 0 & h(k-1) \end{bmatrix} \begin{bmatrix} w(0) & 0 & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ ... & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & w(n-1) & w(n-2) \\ 0 & 0 & 0 & \dots & 0 & w(n-1) \end{bmatrix} \begin{bmatrix} c(0) \\ c(1) \\ ... \\ c(l-1) \end{bmatrix}$$

Channel "h" Matrix Rows = $k+n+\ell-1$ where k= channel pulse model length Columns = $n+\ell-1$

ℓ input symbols, c

TX FIR Coefficient Selection

Total system

$$\begin{bmatrix} y(0) \\ y(1) \\ ... \\ y(l+n+k-3) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & 0 & \dots & 0 & 0 \\ h(1) & h(0) & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & h(k-1) & h(k-2) \\ 0 & 0 & 0 & \dots & 0 & h(k-1) \end{bmatrix} \begin{bmatrix} w(0) & 0 & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & w(n-1) & w(n-2) \\ 0 & 0 & 0 & \dots & 0 & w(n-1) \end{bmatrix} \begin{bmatrix} c(0) \\ c(1) \\ \dots \\ c(l-1) \end{bmatrix}$$

Multiplying input symbols by TX Eq., wc=w*c

$$\begin{bmatrix} y(0) \\ y(1) \\ \dots \\ y(l+n+k-3) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & 0 & \dots & 0 & 0 \\ h(1) & h(0) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(k-1) & h(k-2) \\ 0 & 0 & 0 & \dots & 0 & h(k-1) \end{bmatrix} \begin{bmatrix} wc(0) \\ wc(1) \\ \dots \\ wc(n+l-1) \end{bmatrix}$$

We desire the output vector, y, to be ISI free

$$y_{des} = \begin{cases} y_{des}(n) = 1, n = \text{Channel pre - cursor sample } \# + \text{Eq precursor tap } \# + 1 \\ y_{des}(n) = 0, n \neq \text{Channel pre - cursor sample } \# + \text{Eq precursor tap } \# + 1 \end{cases}$$

TX FIR Coefficient Selection

We can calculate the error w.r.t to a desired output

$$E = Y - Y_{des} = HW_C - Y_{des} = HW - Y_{des}$$
 with pulse input

Squaring this error

$$||E||^2 = W^T H^T H W - 2Y_{des}^T H W + Y_{des}^T Y_{des}$$

Differentiating this error to find minimum

$$\frac{d}{dW} ||E||^2 = 2W^T H^T H - 2Y_{des}^T H = 0$$

$$W^T H^T H = Y_{des}^T H$$

Solving for optimum TX Eq taps, W

$$W_{ls} = (H^T H)^{-1} H^T Y_{des}$$

We will work some examples in a homework

TX FIR Tap Resolution

 Using the above MMSE algorithm for the Refined Server Channel at 10Gb/s

$$W(z) = -0.131 + 0.595z^{-1} - 0.274z^{-2}$$

$$[1pre \ main \ 1post]$$

$$[-0.131 \ 0.595 \ -0.274]$$

- Generally, TX DAC resolution is limited to between 4 to 6bits
- Mapping these equalization coefficients with this resolution may impact performance

TX FIR Circuit Architectures

- Segmented DAC vs Direct FIR
- Segmented DAC
 - Minimum sized output transistors to handle peak output current
 - Lowest output capacitance
 - Most power & complexity
 - Need mapping table (RAM)
 - Very flexible in equalization
- Direct FIR
 - Parallel output drivers for output taps
 - Each parallel driver must be sized to handle its potential maximum current
 - Lower power & complexity
 - Higher output capacitance

Segmented DAC

Segmented DAC Example

[Casper ISSCC 2006]

Direct FIR Equalization

"A Low Power 10Gb/s Serial Link Transmitter in 90-nm CMOS," A. Rylyakov et al., CSICS 2005

Next Time

- RX FIR
- RX CTLE
- RX DFE
- Alternate/Future Approaches