PCFGs - Inside-outside probabilities

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 4

How to find the most likely parse?: CKY for PCFG

How to find the most likely parse?: CKY for PCFG

a 1	pilot 2	likes 3	flying 4	planes 5

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow VBG NNS$	[0.1]
$VP \rightarrow VBZ VP$	[0.1]
$VP \rightarrow VBZ NP$	[0.3]
$NP \rightarrow DT NN$	[0.3]
$NP \rightarrow JJ \ NNS$	[0.4]
$DT \rightarrow a$	[0.3]
NN → pilot	[0.1]
VBZ → likes	[0.4]
$VBG \rightarrow flying$	[0.5]
JJ → flying	[0.1]
NNS → planes	[.34]

CKY for PCFG

а 1	pilot 2	likes 3	flying 4	planes 5
DT [0.3]	NP [.009]	-	-	S [1.4688×10 ⁻⁵] S [6.12×10 ⁻⁶]
	NN [0.1]	-	-	-
		VBZ [0.4]	-	VP [.001632] VP [.00068]
			JJ [0.1] VBG [0.5]	NP [.0136] VP [.017]
				NNS [.34]

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow VBG NNS$	[0.1]
$VP \rightarrow VBZ VP$	[0.1]
$VP \rightarrow VBZ NP$	[0.3]
$NP \rightarrow DT NN$	[0.3]
$NP \rightarrow JJ NNS$	[0.4]
$DT \rightarrow a$	[0.3]
$NN \rightarrow pilot$	[0.1]
$VBZ \rightarrow likes$	[0.4]
$VBG \rightarrow flying$	[0.5]
$JJ \rightarrow \mathit{flying}$	[0.1]
NNS - nlanes	[34]

 $0.009 \times 0.00068 \times 1.0 = 6.12 \times 10^{-6}$

Probability of a String

$$P(w_{1m}|G)$$

Probability of a String

$$P(w_{1m}|G)$$

- In general, simply summing the probabilities of all possible parse trees is not an efficient way to calculate the string probability
- We use inside algorithm, a dynamic programming algorithm based on inside probabilities.

Inside and Outside Probabilities

Inside and Outside Probabilities

Outside: $\alpha_{j}(p,q) = P(w_{1(p-1)}, N^{j}_{pq}, w_{(q+1)m}|G)$ Inside: $\beta_{j}(p,q) = P(w_{pq}|N^{j}_{pq},G)$

Inside-outside probabilities

Inside-outside probabilities

 $\alpha_{NP}(4,5)$ for "the building"

= $P(\text{The gunman sprayed}, NP_{4,5}, \text{ with bullets } | G)$

 $\beta_{NP}(4,5)$ for "the building" = $P(\text{the building} \mid NP_{4,5}, G)$

7/14

Inside Probabilities: Base Step

$$\beta_j(p,q) = P(w_{pq}|N^j_{pq},G)$$

Inside Probabilities: Base Step

$$\beta_j(p,q) = P(w_{pq}|N^j_{pq},G)$$

Base case

$$\beta_j(k,k) = P(w_{kk}|N^j_{kk},G)$$
$$= P(N^j \to w_k|G)$$

Base case for pre-terminals only

E.g., suppose $N^j=N\!N$ is being considered and $N\!N\to building$ is one of the rules with probability 0.5

$$\beta_{NN}(5,5) = P(building|NN_{5,5},G) = P(NN_{5,5} \rightarrow building|G)$$

Inside Probabilities: Induction Step

Assuming Chomsky Normal Form, the first rule must be of the form $N^j \rightarrow N^r N^s$

$$eta_j(p,q) = \sum_{r,s} \sum_{d=p}^{q-1} P(N^j o N^r N^s) eta_r(p,d) eta_s(d+1,q)$$

Inside Probabilities: Induction Step

Assuming Chomsky Normal Form, the first rule must be of the form $N^j \to N^r N^s$

$$\beta_j(p,q) = \sum_{r,s} \sum_{d=p}^{q-1} P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)$$

- Consider different splits of the words indicated by d
 E.g., the huge building
- Consider different non-terminals to be used in the rule:
 E.g., NP → DT NN, NP → DT NNS

Calculation of inside probabilities

		S → NP VP PP → P NP VP → V NP VP → VP PP P → with V → saw	1.0 0.7 0.3 1.0	NP — NP PP NP — astronomers NP — ears NP — saw NP — stars NP — telescopes	0.4 0.1 0.18 0.04 0.18 0.1
astronomers	saw	stars	with	ears	

Calculation of inside probabilities

	1	2	3	4	5
1 #	$R_{NP} = 0.1$		$\beta_{\rm S} = 0.0126$		$\beta_{\rm S} = 0.0015876$
2		$\beta_{\rm NP} = 0.04$	$\beta_{\rm VP} = 0.126$		$\beta_{\rm VP} = 0.015876$
		$\beta_{\rm V} = 1.0$			
3			$\beta_{\rm NP} = 0.18$		$\beta_{\rm NP} = 0.01296$
4				$\beta_{\rm P} = 1.0$	$\beta_{PP} = 0.18$
5					$\beta_{NP} = 0.18$
	astronomers	saw	stars	with	ears

Compute top-down (after inside probabilities)

Compute top-down (after inside probabilities)

Base Case

Compute top-down (after inside probabilities)

Base Case

$$\alpha_1(1,m)=1$$

$$\alpha_j(1,m)=0, j\neq 1$$

Compute top-down (after inside probabilities)

Base Case

$$\alpha_1(1,m)=1$$

$$\alpha_j(1,m)=0, j\neq 1$$

Induction

Compute top-down (after inside probabilities)

Base Case

$$\alpha_1(1,m)=1$$

$$\alpha_j(1,m)=0, j\neq 1$$

Induction

Week 5: Lecture 4

Outside Probabilities: Induction

$$lpha_j(p,q) = \sum_{f,g} \sum_{e=q+1}^m lpha_f(p,e) P(N^f o N^j N^g) eta_g(q+1,e) + \sum_{f,g} \sum_{e=1}^{p-1} lpha_f(e,q) P(N^f o N^g N^j) eta_g(e,p-1)$$

Product of inside-outside probabilities

$$\alpha_{j}(p,q)\beta_{j}(p,q) = P(w_{1(p-1)}, N^{j}_{pq}, w_{(q+1)m}|G)P(w_{pq}|N^{j}_{pq}, G) = P(w_{1m}, N^{j}_{pq}|G)$$

Product of inside-outside probabilities

$$\alpha_{j}(p,q)\beta_{j}(p,q) = P(w_{1(p-1)},N^{j}_{pq},w_{(q+1)m}|G)P(w_{pq}|N^{j}_{pq},G) = P(w_{1m},N^{j}_{pq}|G)$$

The probability of the sentence and that there is some consistent spanning from word p to q is given by:

$$P(w_{1m}, N_{pq}|G) = \sum \alpha_j(p, q)\beta_j(p, q) = P(N_1 \to w_{1m}, N_{pq} \to w_{pq}|G)$$

Product of inside-outside probabilities

$$\alpha_{j}(p,q)\beta_{j}(p,q) = P(w_{1(p-1)}, N^{j}_{pq}, w_{(q+1)m}|G)P(w_{pq}|N^{j}_{pq}, G) = P(w_{1m}, N^{j}_{pq}|G)$$

The probability of the sentence and that there is some consistent spanning from word p to q is given by:

$$P(w_{1m}, N_{pq}|G) = \sum \alpha_j(p, q)\beta_j(p, q) = P(N_1 \to w_{1m}, N_{pq} \to w_{pq}|G)$$

