Marketing Campaign Prediction

A PROJECT REPORT

Submitted by

ABHAY SHAJI [Reg No: RA2112704010006]

Under the Guidance of

Dr. Kalpana A V

(Assistant Professor, Department of Data Science and Business Systems)

In partial fulfillment of the Requirements for the Degree

of

MASTER OF TECHNOLOGY (INTEGRATED)

DEPARTMENT OF DATA SCIENCE AND BUSINESS SYSTEMS

FACULTY OF ENGINEERING AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

NOVEMBER 2022

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY KATTANKULATHUR-603203

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

KATTANKULATHUR-603203

BONAFIDE CERTIFICATE

Certified that this project report titled "MARKETING OUTCOME PREDICTION" is

the bonafide work of "Abhay Shaji Reg No: RA2112704010006" who carried out the

project work under my supervision. Certified further, that to the best of my knowledge the

work reported herein does not form part of any other thesis or dissertation on the basis of

which a degree or award was conferred on an earlier occasion for this or any other candidate.

Dr. A.V.Kalpana **GUIDE**Assistant Professor
Dept. of DSBS

Dr.G Vadivu
PROGRAMME
COORDINATOR
Dept. of DSBS

Dr. M.Lakshmi **HEAD OF DEPARTMENT**Dept. of DSBS

Signature of Internal Examiner

Signature of External Examiner

ABSTRACT

In banks, huge data records information about their customers. This data can be used to create and keep clear relationship and connection with the customers in order to target them individually for definite products or banking offers. Usually, the selected customers are contacted directly through: personal contact, telephone cellular, mail, and email or any other contacts to advertise the new product/service or give an offer, this kind of marketing is called direct marketing. In fact, direct marketing is in the main a strategy of many of the banks and insurance companies for interacting with their customers.

ACKNOWLEDGEMENTS

We express our humble gratitude to **Dr C. Muthamizhchelvan**, Vice-Chancellor, SRM Institute of Science and Technology, for the facilities extended for the project work and his continued support.

We extend our sincere thanks to Dean-CET, SRM Institute of Science and Technology, **Dr T.V.Gopal**, for his invaluable support.

We wish to thank **Dr Revathi Venkataraman**, Professor & Chairperson, School of Computing, SRM Institute of Science and Technology, for her support throughout the project work.

We are incredibly grateful to our Head of the Department, **Dr M. Lakshmi** Professor, Department of Data Science and Business Systems, SRM Institute of Science and Technology, for her suggestions and encouragement at all the stages of the project work.

We want to convey our thanks to our program coordinators **Dr.E.Sasikala**, Professor, Department of Data Science and Business Systems, SRM Institute of Science and Technology, for her inputs during the project reviews and support.

We register our immeasurable thanks to our Faculty Advisor, **Dr K Shantha Kumari**, **Ph.D.**, Assistant Professor, Department of Data Science and Business Systems, SRM Institute of Science and Technology, for leading and helping us to complete our course.

Our inexpressible respect and thanks to my guide, **Dr. Kalpana A V**, Assistant Professor, Department of Data Science and Business Systems, for providing me with an opportunity to pursue my project under his mentorship. She provided us with the freedom and support to explore the research topics of our interest.

We sincerely thank the Data Science and Business Systems staff and students, SRM Institute of Science and Technology, for their help during our project. Finally, we would like to thank parents, family members, and friends for their unconditional love, constant support, and encouragement.

ABHAY SHAJI

TABLE OF CONTENTS

СНАРТЕ	ER NO.	TITLE	PAGE NO.
	ABSTRACT		3
	LIST OF FIGURES		6
1.	INTRODUCTION		7
2	LITERATURE REVIEW		9
3	OBJECTIVES		11
4	WORK FLOW DIAGRAM		12
5	METHODOLOGY		13
6	PROJECT CODE		15
7	REQUIREMENTS 7.1 HARDWARE REQUIREMENTS 7.2 SOFTWARE REQUIREMENTS		41
8	PROJECT FINDINGS		43
9	CONCLUSION		46
10	FUTURE ENHANCEMENTS		47

LIST OF FIGURES

4.0	Work Flow Diagram	16
5.2	Loading Data	
9.0	Confusion Matrix	
9.0	Loss-Accuracy Comparison between models	

INTRODUCTION

1.1 General

Marketing is technique of exposing the target clients to a product via suitable systems and channels. It ultimately facilitates the way to buy the product or service and even helps in determining the need of the product and persuade customers to buy it. The overall aim is to increase sales of products and services for enterprise, business and financial institutions. It also helps to maintain the reputation of the company. Telemarketing is form of direct marketing in which salesperson approaches the customer either face to face or phone call and persuade him to buy the product. Telemarketing attains most popularity in 20th century and still gaining it. Nowadays, telephone (fixed-line or mobile) has been broadly used. It is cost effective and keeps the customers up to date. In Banking sector, marketing is the backbone to sell its product or service. Banking advertising and marketing is mostly based on an intensive knowledge of objective information about the market and the actual client needs for the bank profitable manner. Making right decisions in organizational operations are sometimes proved a great challenge where the quality of decision really matters. Decision Support Systems (DSS) are classified as a particular class of computerized facts and figures that helps the organization or administration into their decision making actions. The concept of DSS originates from a balance which lies between the data generated by computer and the judgment of human. According to Rupnik & Kukar (2007) the objective of decision support systems is to enhance the effectiveness of the decisions. This is a great tool which can analyze the sales data and provide further predictions. The purposes which can be established from the DSS are such as, analysis, optimization, forecasting and simulation. A study by Power (2008) found that research subjects who use DSS for the decision making, come-up with more effective decisions than those who did not use it. Nowadays, DSS is contributing a meaningful role in many fields such as for medical diagnosis, business and management, investment portfolios, command and control of military units, and statistics. DSS uses statistical data to overcome the deficiencies and helps the decision makers to take the right decision. Data mining (DM) plays vital role to support the Decision support systems which are based on the data obtained from the data mining models: rules, patterns and relationship. Data mining is the process of selecting, discovering,

and modeling high volume of data to find and clarify unknown patterns. The objective of data mining in decision support systems is to suggest a tool which is easily accessible for the business users to analyze the data mining models. A specific technology used within the DSS is Machine learning (ML) that combines data and computer applications to accurately predicting the results. The fundamental principle of machine learning is to construct the algorithms that can obtain input data and then predict the results or outputs by using the statistical analysis within satisfactory interval. ML allows the DSS to obtain the new knowledge which helps it to make right decisions. Machine Learning can be mainly classified in 2 categories i.e. supervised learning and unsupervised learning. In supervised learning, the output of algorithm is already known and we use the input data to predict the output. The examples of supervised learning are regression and classification. In contrast, unsupervised learning we only have input data whereas no corresponding output variables are selected. The example of unsupervised learning is clustering.

1.2 MOTIVATION

The main idea behind developing the classification project is to build awareness regarding plant-watching, plant and their identification, especially plants found in India. It also caters to the need of simplifying the plant identification process and thus making plant-watching easier.

LITERATURE REVIEW

2.1. Introduction:

This section explains the previous research work which have been already done in classification using ML techniques. The data which is used in this study work is the data of customers of a Portuguese banking institution. The similar data set has been used in Moro et al. (2011, 2014). In Moro et al. (2011), the aim of this study was to find the model that can increase the success rate of telemarketing for the bank. The statistical techniques of data mining which have been used in their research are Support Vector Machine (SVM), Decision Tree (DT) and Naive Bayes. The performance of these models was checked through the Receiver Operator Characteristics (ROC) curve (detail of ROC curve is given in section 5). Among all these statistical techniques, SVM comes up with the most efficient results. Regarding attributes, Call duration was the most relevant feature which states that longer calls tend increase the success rate. After that month of contact, number of contacts, days since last contact, last contact result and first contact duration attributes respectively. In Moro et al. (2014), objective of the study was to predict the success of bank telemarketing. Data set which they used in their research was consists of 150 attributes and is complete data 3 set of the period 2008 to 2013. They compare the 4 data mining models i.e. Logistic Regression (LR), Decision Tree, Support Vector Machine and Neural Network (NN). The best result was obtained by the neural network while decision trees discloses that probability of success in inbound calls are greater. Statistical learning algorithms have successfully been used in many research problems for classification. For example, Qi et al. (2018) conducted a research to find out the fault diagnosis system for reciprocating compressors. Reciprocating compressors are extensively used in petroleum industry. Data was taken from oil corporation (5 years operational data) and uses the Support Vector Machine to analyze it. They come up with the results that SVM accurately predicts the 80% right classification to find the potential faults in compressor. Similarly, Gil & Johnsson (2010) did a research in medical field for diagnosing the urological dysfunctions using SVM. In this research data was collected from the 381 patients who are suffering from a number of urological dysfunctions to check the overall worth of decision support system. The fivefold cross validation has been utilized for the robustness. The outputs of this study describe that for the purpose of classification SVM attained the accuracy of 84.25%. Nogami et al. (1996) utilized the machine learning in decision support system. In their research they introduce the air traffic management for the future which can manage the flight schedule and flow of air traffic professionally. Their system involves many decision makers and utilized it with the neural network. They require such system which can make the optimal decision in the critical situation. Their simulation studies prove that system which is based on neural network is performed more efficiently than the current air traffic system. Another research by Cramer et al. (2017) the machine learning methods are used in time series for rainfall prediction. Data was derived from the 42 cities including climatic features. They tried Support vector regression, NN, and k nearest neighbors. After performing these methods they come up with the results that machine learning methods have predictive accuracy. Wang & Summers (2012) used the machine learning in field of radiology. They used it for the neurological disease diagnosis images, medical image segmentation and MRI images. They come-up with the results that machine learning identifies the complex patterns. It also helps the radiologists to make right decisions. Furthermore, they suggest that development of technology in machine learning is an asset for long term in the field of radiology. Machine learning algorithms are also used in the field of applied mathematics. For instance, Barboza et al. (2017) did a research to predict the models for developing of bankruptcy by using the SVM and random forest methods. The data was taken from the Salomon Center database & Compustat about North American firms from period 1985 to 2013 with observations of more than 10,000. After applying SVM and RF techniques they compare the results with the ordinary used methods such as discriminant analysis and logistic regression. They concluded that ML techniques are come up with 10% averagely more accurate results than usual methods. To find the risk factors about failure of banks Le & Viviani (2017) conducted a research. In their study, a sample of 3000 US banks was analyzed by using 2 traditional statistical methods i.e. discriminant analysis and logistics regression. Then they compare these methods with the machine learning methods i.e. SVM, ANN and k-nearest neighbors. The results of this study illustrate that ANN and k-neighbors method gives the accurate predictions as compared to the 4 traditional methods.

OBJECTIVES

The purpose of this study is to check the accuracy and performance of several models for classification. The full model which is used in this study consists of 16 independent variables. Feature selection approach has been used to select the best subsets of variables and then different type of classification algorithms have been utilized to check their accuracy and performance. The full model is then compared with the reduced model, obtained through feature selection, in terms of classification accuracy.

WORKFLOW DIAGRAM

Figure 1: Workflow diagram

METHODOLOGY

The main purpose of the code is to predict the outcome of the bank marketing campaign

The proposed approach is divided into four stages—retrieving data from datasets, preprocessing of data to improve the quality, feature extraction and using machine learning algorithms on extracted features for classifying the data patterns

A. BROWSE THROUGH DATA

The Aarhus University Signal Processing group, in collaboration with University of Southern Denmark, has recently released a dataset containing images of approximately 960 unique plants belonging to 12 species at several growth stages. It consists of 11,788 pictures and annotations such as 312 binary attributes, 15 component positions, 1 bounding box.

B. Pre-processing

Pre-processing developed a gray scale image dataset that is used to pixel-by-pixel image recognition and image size reductions. Then, these functions are aggregated and forwarded to the classifier. This increased processing time while retaining quality of the image.

The above fig. visualises target distribution of each plant category

C. Modelling

3 models are deployed- inception_v3, vgg_16, resnet_50. The models are compiled and fitted to the validated data. 10 Epochs are run. Loss and Accuracy are plotted on 2 separate graphs showing train and valid curves. A confusion matrix is displayed for each model.

D. Evaluation

A score sheet is generated on the basis of the models and will be created with the aid of the score sheet output. The Loss and Accuracy curves of each model is compared by plotting them on 2 separate graphs.

PROJECT CODE

6.1 Code

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
Input data files are available in the read-only "/input/" directory
For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list
all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
         print(os.path.join(dirname, filename))
outside of the current session
/kaggle/input/bank-marketing-campaigns-dataset/bank-additional-full.csv
                                                                                    In [2]:
#import required basic libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
                                                                                    In [3]:
filename = '/kaggle/input/bank-marketing-campaigns-dataset/bank-additional-full
.csv'
df = pd.read_csv(filename, sep=";")
df.head()
                                                                                    Out[3]:
                        h
                                                        pr
                                    m
                                        da
                                                ca
                                                    p
                                                            po
                                                                 em
                                                                      co
                                                                           co
                                                                                eu
                                                                                     nr.
               \operatorname{ed}
                    de
                            1
           m
                                co
   a
                                        у_
                                                m
                                                    d
                                                            ut
                                                                 p.v
                                                                      ns.
                                                                           ns.
                                                                                ri
                                                                                     em
                    fa
                                                        vi
       jo
               110
                            0
                                nt
           ar
                        11
                                        of_
                                                pa
                                                                      pri
                                                                           co
                                                                                bo
                                                                                     plo
   g
                                    n
                                                    a
                                                            co
                                                                 ar.
               ati
                    ul
           it
                        si
                            a
                                ac
                                        we
                                                                      ce.i
                                                                           nf.i
                                                                                r3
                                                ig
                                                    y
                                                                 rat
                                                                                     ye
           al
               on
                        n
                            n
                                t
                                                        u
                                        ek
                                                                           dx
                                                n
                                                            e
                                                                 e
                                                                      dx
       ho
                                te
                                                            no
       us
               ba
                                le
                                                                                     51
                                                                      93.
           ar
                                    m
                                                            ne
   5
       e
               sic
                    n
                        n
                                        mo
 0
           ri
                                                1
                                                    9
                                                        0
                                                                 1.1
                                                                      99
                                                                           36.
                                                                                85
                                                                                     91.
                                                            xis
   6
       m
               .4
                        O
                            0
                                h
                                        n
                                                                                          o
           e
                                    у
                                                            te
       ai
               y
                                o
           d
                                                            nt
       d
                                ne
                    u
                                te
               hi
           m
                    n
                                                            no
       se
                                le
               gh
                    k
                                    m
                                                            ne
                                                                      93.
                                                                                4.
                                                                                     51
   5
       rvi
                        n
                            n
                                        mo
                                                                                          n
 1
                                                1
                                                        0
                                                                 1.1
                                                                      99
                                                                           36.
                                                                                85
                                                                                     91.
           ri
               .sc
                    n
                                                            xis
       ce
                            o
                                h
                                        n
                                                                                          o
               ho
           e
                    0
                                                            te
                                o
       S
           d
               ol
                    w
                                                            nt
                                ne
                    n
```

	аыре	jo b	m ar it al	ed uc ati on	de fa ul t	h o u si n g	l o a n	co nt ac t	m o n t	da y_ of_ we ek	 ca m pa ig n	p d a y s	pr e vi o u s	po ut co m e	em p.v ar. rat e	co ns. pri ce.i dx	co ns. co nf.i dx	eu ri bo r3 m	nr. em plo ye d	у
2	3 7	se rvi ce s	m ar ri e d	hi gh .sc ho ol	n o	y e s	n o	te le p h o ne	m a y	mo n	 1	9 9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	n o
3	4 0	ad mi n.	m ar ri e d	ba sic .6 y	n o	n o	n o	te le p h o ne	m a y	mo n	 1	9 9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	n o
4	5 6	se rvi ce s	m ar ri e d	hi gh .sc ho ol	n o	n o	y e s	te le p h o ne	m a y	mo n	 1	9 9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	n o

5 rows × 21 columns

PRIMARY ANALYSIS OF CATEGORICAL FEATURES

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 21 columns):

Data	COTUMNIS (COCAT	ZI COIUIIIIS).	
#	Column	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	job	41188 non-null	object
2	marital	41188 non-null	object
3	education	41188 non-null	object
4	default	41188 non-null	object
5	housing	41188 non-null	object
6	loan	41188 non-null	object
7	contact	41188 non-null	object
8	month	41188 non-null	object
9	day_of_week	41188 non-null	object
10	duration	41188 non-null	int64
11	campaign	41188 non-null	int64
12	pdays	41188 non-null	int64

```
13 previous
                   41188 non-null int64
                   41188 non-null object
14 poutcome
                   41188 non-null float64
15
   emp.var.rate
   cons.price.idx 41188 non-null float64
16
   cons.conf.idx
                   41188 non-null float64
17
18 euribor3m
                   41188 non-null float64
                   41188 non-null float64
19 nr.employed
20 y
                   41188 non-null object
```

dtypes: float64(5), int64(5), object(11)

memory usage: 6.6+ MB

#Numerical statistical summary df.describe()

000

0

000

%

00

In [5]:

Out[5]:

		age	duratio n	campai gn	pdays	previou s	emp.var .rate	cons.pri ce.idx	cons.co nf.idx	euribor 3m	nr.empl oyed
	co in	41188. 00000	41188.0 00000	41188.0 00000	41188.0 00000	41188.0 00000	41188.0 00000	41188.0 00000	41188.0 00000	41188.0 00000	41188.0 00000
	ne in	40.024 06	258.285 010	2.56759 3	962.475 454	0.17296 3	0.08188 6	93.5756 64	- 40.5026 00	3.62129 1	5167.03 5911
S	std	10.421 25	259.279 249	2.77001 4	186.910 907	0.49490 1	1.57096 0	0.57884 0	4.62819 8	1.73444 7	72.2515 28
r	ni 1	17.000 00	0.00000	1.00000	0.00000	0.00000	3.40000 0	92.2010 00	- 50.8000 00	0.63400 0	4963.60 0000
	25 %	32.000 00	102.000 000	1.00000 0	999.000 000	0.00000	- 1.80000 0	93.0750 00	- 42.7000 00	1.34400 0	5099.10 0000
	50 %	38.000 00	180.000 000	2.00000	999.000 000	0.00000	1.10000 0	93.7490 00	- 41.8000 00	4.85700 0	5191.00 0000
	75	47.000	319.000	3.00000	999.000	0.00000	1.40000	93.9940	- 36.4000	4.96100	5228.10

0

00

0000

00

	age	duratio n	campai gn	pdays	previou s	emp.var .rate	cons.pri ce.idx	cons.co nf.idx	euribor 3m	nr.empl oyed
ma x	98.000 00	4918.00 0000	56.0000 00	999.000 000	7.00000 0	1.40000	94.7670 00	- 26.9000 00	5.04500 0	5228.10 0000

In [6]:

Categorical statistical summary
df.describe(include=object)

Out[6]:

		,									uc[0].
	job	marit al	education	defa ult	housi ng	loan	conta ct	mon th	day_of_w eek	poutcom e	у
coun t	4118 8	4118 8	41188	4118 8	4118 8	411 88	4118 8	411 88	41188	41188	411 88
uniq ue	12	4	8	3	3	3	2	10	5	3	2
top	admi n.	marri ed	university.de gree	no	yes	no	cellul ar	may	thu	nonexist ent	no
freq	1042	2492 8	12168	3258 8	2157 6	339 50	2614 4	137 69	8623	35563	365 48

In [7]:

Creating histogram
df.hist(figsize= [20,10])
plt.show()

Above primary analysis shows that:

- 1) the data covers age groups from 98 to 17 years with mean of 40 years;30% of the clients are graduates; 52% of clients have taken housing loan and 82% have no personal loan.
- 2) Target variable y is categorical and has two categories- 'Yes' or 'No', hence this is a Classification Project. These two categories can be converted to binary and thus label encoding it. Maximum category found is 'No'.
- 3) Other independent categorical variables- job, marital, education, default, housing, loan, contact, month, day_of_week, poutcome- can be one hot encoded
- 4) Based on count, there are no missing values as such

MISSING VALUE ANALYSIS

df.isnull().sum()

age 0
In [8]:
Out[8]:

age	Ю
job	0
marital	0
education	0
default	0
housing	0
loan	0
contact	0
month	0
day_of_week	0
duration	0
campaign	0
pdays	0
previous	0
poutcome	0
emp.var.rate	0
cons.price.idx	0
cons.conf.idx	0
euribor3m	0
nr.employed	0

y 0 dtype: int64

LABEL ENCODING

In [9]:

Label encoding target variable
converts label/words to numeric form without affecting dimensionality
y- yes=1, no=0
df['y'] = df['y'].replace('yes', 1)
df['y'] = df['y'].replace('no', 0)
df.head()

				I	T	ı	1	1	ı	Π	ı	1	I	ı	Π			I	Out[9]:
	a g e	jo b	m ar it al	ed uc ati on	de fa ul t	h o u si n g	l o a n	co nt ac t	m o n t	da y_ of_ we ek	 ca m pa ig n	p d a y s	pr e vi o u s	po ut co m e	em p.v ar. rat e	con s.p ric e.i dx	co ns. co nf.i dx	eu ri bo r3 m	nr. em plo ye d	у
0	5 6	ho us e m ai d	m ar ri e d	ba sic .4 y	n o	n o	n o	tel ep ho ne	m a y	mo n	1	9 9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	0
1	5 7	se rvi ce s	m ar ri e d	hi gh .sc ho ol	u n k n o w n	n o	n o	tel ep ho ne	m a y	mo n	1	9 9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	0
2	3 7	se rvi ce s	m ar ri e d	hi gh .sc ho ol	n o	y e s	n o	tel ep ho ne	m a y	mo n	 1	9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	0
3	4 0	ad mi n.	m ar ri e d	ba sic .6 y	n o	n o	n o	tel ep ho ne	m a y	mo n	1	9 9 9	0	no ne xis te nt	1.1	93. 99 4	- 36. 4	4. 85 7	51 91. 0	0
4	5 6	se rvi	m ar ri	hi gh .sc	n o	n o	y e s	tel ep	m a y	mo n	 1	9 9 9	0	no ne xis	1.1	93. 99 4	36. 4	4. 85 7	51 91. 0	0

аые	jo b	m ar it al	ed uc ati on	de fa ul t	h o u si n g	l o a n	co nt ac t	m o n t	da y_ of_ we ek	 ca m pa ig n	p d a y s	pr e vi o u s	po ut co m e	em p.v ar. rat e	con s.p ric e.i dx	co ns. co nf.i dx	eu ri bo r3 m	nr. em plo ye d	у
	ce s	e d	ho ol				ho ne						te nt						

5 rows × 21 columns

In [10]:
object datatypes are chosen as categorical datatypes
one hot encoding represents the categorical variables as binary, increasing t
he dimensionality of the dataset
cat_col=[col for col in df.columns.values if df[col].dtype=='object']

sepearting the numerical and categorical feature
df_cat=df[cat_col]
df_num= df.drop(cat_col,axis=1)

In [11]:
#dummy encoding the categorical features
df_cat_dum= pd.get_dummies(df_cat,drop_first=True)

In [12]:
df_features=pd.concat([df_num,df_cat_dum], axis=1)

In [13]:

Out[13]: c p co nr m m m d da da da da pou po co m ns u .e y_ of utc m ri m nt nt nt p. of of_ of_ nt me om pl h h h h we we g ri _w _w _no e_s nf ar o ek ee ee ek y ce nex uc m .id _m k_t k_t _w iste ces d 3 at e ct пe nt Х on m y 1 5 3 1. 0 0 9 6 1 .9 1 0 1 0 6 6. 94 1. 4. 93 1 5 7 1. 0 0 1 1 9 1 1 0 0 0 1 0 4 9 .9 0 6. 94 1.

	a g e	d u r a ti o n	c a m p a i g n	p d a y s	p r e v i o u	e m p. v ar .r at e	co ns .p ri ce .id x	co ns .c o nf .i d x	e u ri b o r 3 m	nr .e m pl o y e d	 m o nt h - m a y	m o nt h - n o v	m o nt h - o ct	m o nt h - s e p	da y_ of_ we ek _m on	da y_ of _w ee k_t hu	da y_ of _w ee k_t ue	da y_ of_ we ek _w ed	pou tco me _no nex iste nt	po utc om e_s uc ces s
2	3 7	2 2 6	1	9 9 9	0	1. 1	93 .9 94	- 3 6. 4	4. 8 5 7	5 1 9 1. 0	 1	0	0	0	1	0	0	0	1	0
3	4 0	1 5 1	1	9 9 9	0	1.	93 .9 94	3 6. 4	4. 8 5 7	5 1 9 1. 0	 1	0	0	0	1	0	0	0	1	0
4	5 6	3 0 7	1	9 9 9	0	1.	93 .9 94	3 6. 4	4. 8 5 7	5 1 9 1. 0	 1	0	0	0	1	0	0	0	1	0

5 rows × 54 columns

In [14]:

df_features.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 54 columns):

Data	columns (total 54 columns):		
#	Column	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	duration	41188 non-null	int64
2	campaign	41188 non-null	int64
3	pdays	41188 non-null	int64
4	previous	41188 non-null	int64
5	emp.var.rate	41188 non-null	float64
6	cons.price.idx	41188 non-null	float64
7	cons.conf.idx	41188 non-null	float64
8	euribor3m	41188 non-null	float64
9	nr.employed	41188 non-null	float64
10	у	41188 non-null	int64
11	job_blue-collar	41188 non-null	uint8
12	job_entrepreneur	41188 non-null	uint8
13	<pre>job_housemaid</pre>	41188 non-null	uint8
14	job_management	41188 non-null	uint8
15	job_retired	41188 non-null	uint8

```
16 job_self-employed 41188 non-null uint8
17 job_services 41188 non-null uint8
18 job_student 41188 non-null uint8
19 job_technician 41188 non-null uint8
20 job_unemployed 41188 non-null uint8
21 job_unknown 41188 non-null uint8
22 marital_married 41188 non-null uint8
23 marital_single 41188 non-null uint8
24 marital_unknown 41188 non-null uint8
25 education_basic.6y 41188 non-null uint8
26 education_basic.9y 41188 non-null uint8
27 education_high.school 41188 non-null uint8
28 education_illiterate 41188 non-null uint8
29 education_professional.course 41188 non-null uint8

        28
        education_lliterate
        41188 non-null
        uint8

        29
        education_professional.course
        41188 non-null
        uint8

        30
        education_university.degree
        41188 non-null
        uint8

        31
        education_unknown
        41188 non-null
        uint8

        32
        default_unknown
        41188 non-null
        uint8

        33
        default_yes
        41188 non-null
        uint8

        34
        housing_unknown
        41188 non-null
        uint8

        35
        housing_yes
        41188 non-null
        uint8

        36
        loan_unknown
        41188 non-null
        uint8

        37
        loan_yes
        41188 non-null
        uint8

        38
        contact_telephone
        41188 non-null
        uint8

        39
        month_aug
        41188 non-null
        uint8

        40
        month_dec
        41188 non-null
        uint8

        41
        month_jul
        41188 non-null
        uint8

        42
        month_mar
        41188 non-null
        uint8

        45
        month_may
        41188 non-null
        uint8

        46</t
       29 education_professional.course 41188 non-null uint8
dtypes: float64(5), int64(6), uint8(43)
memory usage: 5.1 MB
FEATURE SELECTION USING RANDOM CLASSIFIER
```

In [15]: # splitting the data into 70% training data and 30% test data from sklearn.model_selection import train_test_split X = df_features.drop(['y'], axis=1) y = df_features['y'] trainx, testx, trainy, testy = train_test_split(X, y, test_size=0.3, random_sta te=0) In [16]: # Use randomforest classifier

from sklearn.ensemble import RandomForestClassifier

```
rfc = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1)
# Train the classifier
rfc.fit(trainx, trainy)
                                                                       Out[16]:
RandomForestClassifier(n estimators=10000, n jobs=-1, random state=0)
                                                                       In [17]:
# Print the name and gini importance of each feature
feat_labels = X.columns.values
feature_importance = []
for feature in zip(feat_labels, rfc.feature_importances_):
   feature importance.append(feature)
                                                                       In [18]:
feature_importance
                                                                       Out[18]:
[('age', 0.08618566386398764),
 ('duration', 0.29015602499077386),
 ('campaign', 0.04178199369579807),
 ('pdays', 0.03353857431900278),
 ('previous', 0.013738961767318078),
 ('emp.var.rate', 0.02341289011754231),
 ('cons.price.idx', 0.023455586654047598),
 ('cons.conf.idx', 0.026641943503223915),
 ('euribor3m', 0.10042013017159576),
 ('nr.employed', 0.052001436527475416),
 ('job_blue-collar', 0.00912955901482597),
  'job_entrepreneur', 0.00408065698430441),
 ('job_housemaid', 0.0034507775674576468),
 ('job_management', 0.007619194267427778),
 ('job_retired', 0.006231741559246316),
 ('job_self-employed', 0.004297209231449068),
   job_services', 0.007059908897013911),
 ('job_student', 0.004545515313735655),
 ('job_technician', 0.011362997000859581),
 ('job_unemployed', 0.004234164752530876),
 ('job_unknown', 0.0017352275969970802),
 ('marital_married', 0.013703674878066122),
 ('marital_single', 0.011980118740034),
 ('marital_unknown', 0.0004681802865129859),
 ('education_basic.6y', 0.004533082261449234),
 ('education_basic.9y', 0.00841360183841855),
 ('education_high.school', 0.011911672920323208),
 ('education_illiterate', 0.0001954725043764719),
 ('education_professional.course', 0.008862687930887311),
 ('education_university.degree', 0.013145967023621927),
 ('education_unknown', 0.005204166737204258),
 ('default_unknown', 0.008828277503150218),
 ('default yes', 7.4083525258815036e-09),
 ('housing_unknown', 0.002209251379755515),
 ('housing_yes', 0.019947814943109477),
 ('loan unknown', 0.0022258111044771538),
 ('loan_yes', 0.013294383844967334),
 ('contact_telephone', 0.010349589587515364),
 ('month_aug', 0.002542882713933205),
```

```
('month_dec', 0.00089080425655123),
 ('month_jul', 0.0026645019351060383),
 ('month_jun', 0.0029011522955605406),
 ('month_mar', 0.004887583078879729),
 ('month_may', 0.005116610052046957),
 ('month_nov', 0.0022956282126332097),
 ('month_oct', 0.005765904989179848), ('month_sep', 0.002176686695096346),
 ('day_of_week_mon', 0.01204060407787753),
 ('day_of_week_thu', 0.01225680296198673),
 ('day_of_week_tue', 0.01190380175245775),
 ('day_of_week_wed', 0.01185356865483465),
 ('poutcome_nonexistent', 0.008630332656024656),
 ('poutcome_success', 0.02371921697899626)]
                                                                          In [19]:
# Create a selector object that will use the random forest classifier to identi
fу
# features that have an importance of more than 0.01
from sklearn.feature_selection import SelectFromModel
sfm = SelectFromModel(rfc, threshold=0.01)
# Train the selector
sfm.fit(trainx, trainy)
                                                                          Out[19]:
SelectFromModel(estimator=RandomForestClassifier(n_estimators=10000, n_jobs=
-1,
                                                     random state=0),
                 threshold=0.01)
                                                                          In [20]:
# Print the names of the most important features
selected_features = []
for feature_list_index in sfm.get_support(indices=True):
    selected_features.append(feat_labels[feature_list_index])
                                                                          In [21]:
selected features
                                                                          Out[21]:
['age',
 'duration',
 'campaign',
 'pdays',
 'previous',
 'emp.var.rate',
 'cons.price.idx',
 'cons.conf.idx',
 'euribor3m',
 'nr.employed',
 'job_technician',
 'marital_married',
 'marital_single',
 'education high.school',
 'education_university.degree',
 'housing_yes',
 'loan_yes',
 'contact_telephone',
 'day_of_week_mon',
```

```
'day_of_week_thu',
'day_of_week_tue',
'day_of_week_wed',
'poutcome_success']
23 features have been selected using RandomForestClassifier for further modelling
```

In [22]:

data_selected = df_features[selected_features]
data_selected.head()

Out[22]:

_																			Out	[22]:
	a on e	d u r a ti o n	c a m p a i g	p d a y s	p r e v i o u	e m p. v ar .r at e	co ns .p ri ce .i d	c o ns .c o nf .i d x	e u ri b o r 3 m	nr .e m pl o y e d	edu cati on_ hig h.s cho ol	educ atio n_u nive rsity .deg ree	h o u si n g - y es	l o a n — y e s	co nta ct_ tel ep ho ne	da y_ of _w ee k_ mo n	da y_ of - we ek _t hu	da y_ of - we ek _t ue	da y_ of _w ee k_ we d	po utc o me _s uc ce ss
0	5 6	2 6 1	1	9 9 9	0	1. 1	9 3. 9 9	- 3 6. 4	4 8 5 7	5 1 9 1. 0	0	0	0	0	1	1	0	0	0	0
1	5 7	1 4 9	1	9 9 9	0	1. 1	9 3. 9 9	- 3 6. 4	4 8 5 7	5 1 9 1. 0	 1	0	0	0	1	1	0	0	0	0
2	3 7	2 2 6	1	9 9 9	0	1.	9 3. 9 9	- 3 6. 4	4 8 5 7	5 1 9 1. 0	1	0	1	0	1	1	0	0	0	0
3	4 0	1 5 1	1	9 9 9	0	1. 1	9 3. 9 9	- 3 6. 4	4 8 5 7	5 1 9 1. 0	0	0	0	0	1	1	0	0	0	0
4	5 6	3 0 7	1	9 9 9	0	1. 1	9 3. 9 9	- 3 6. 4	4 8 5 7	5 1 9 1. 0	1	0	0	1	1	1	0	0	0	0

```
In [23]:
data selected.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 23 columns):
#
    Column
                                 Non-Null Count Dtype
    ----
                                 -----
                                                ----
                                 41188 non-null int64
0
    age
                                 41188 non-null int64
 1
    duration
                                41188 non-null int64
 2
    campaign
                          41188 non-null int64
41188 non-null float64
41188 non-null float64
41188 non-null
 3
    pdays
 4
    previous
 5
    emp.var.rate
 6
    cons.price.idx
    cons.conf.idx
 7
 8
    euribor3m
                               41188 non-null float64
 9
    nr.employed
                               41188 non-null float64
 10 job_technician
                               41188 non-null uint8
                               41188 non-null uint8
 11 marital married
                               41188 non-null uint8
 12 marital single
 13 education high.school 41188 non-null uint8
 14 education university.degree 41188 non-null uint8
                                 41188 non-null uint8
 15 housing_yes
                                 41188 non-null uint8
 16 loan_yes
    contact_telephone
                                41188 non-null uint8
 17
 18 day_of_week_mon
                                41188 non-null uint8
                               41188 non-null uint8
 19 day of week thu
 20 day of week tue
                               41188 non-null uint8
 21 day of week wed
                                41188 non-null uint8
                                 41188 non-null uint8
 22 poutcome success
dtypes: float64(5), int64(5), uint8(13)
memory usage: 3.7 MB
```

STANDARDIZING THE DATA USING MINMAXSCALER

Since the features have different ranges, it needs to be scaled for building a better model. MinMaxScaler of skcit library scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one. Default range is zero and one, which is being used below.

```
In [24]:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(data_selected)
data_standardised = scaler.fit_transform(data_selected)

In [25]:
data_std= pd.DataFrame(data_standardised)
data_std.head()
Out[25]:
```

	0	1	2	3	4	5	6	7	8	9		1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2	2 2
0	0.4 814 81	0.0 530 70	0 . 0	1 0	0 . 0	0.9 37 5	0.6 987 53	0.6 02 51	0.9 573 79	0.8 597 35		0 . 0	0 . 0	0 . 0	0 . 0	1 0	1 0	0 . 0	0 . 0	0 . 0	0 . 0
1	0.4 938 27	0.0 302 97	0 . 0	1 0	0 . 0	0.9 37 5	0.6 987 53	0.6 02 51	0.9 573 79	0.8 597 35		1 0	0 . 0	0 . 0	0 . 0	1 0	1 0	0 . 0	0 . 0	0 . 0	0 . 0
2	0.2 469 14	0.0 459 54	0 . 0	1 0	0 . 0	0.9 37 5	0.6 987 53	0.6 02 51	0.9 573 79	0.8 597 35		1 0	0 . 0	1 0	0 . 0	1 0	1 0	0 . 0	0 . 0	0 . 0	0 . 0
3	0.2 839 51	0.0 307 04	0 . 0	1 0	0 . 0	0.9 37 5	0.6 987 53	0.6 02 51	0.9 573 79	0.8 597 35		0 . 0	0 . 0	0 . 0	0 . 0	1 0	1 0	0 . 0	0 . 0	0 . 0	0 . 0
4	0.4 814 81	0.0 624 24	0 . 0	1 . 0	0 . 0	0.9 37 5	0.6 987 53	0.6 02 51	0.9 573 79	0.8 597 35	•	1 . 0	0 . 0	0 . 0	1 0	1 . 0	1 . 0	0 . 0	0 . 0	0 . 0	0 . 0

5 rows × 23 columns

In [26]:

data_std.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 23 columns):

Data	COTUMITS	(total 25 columns).	
#	Column	Non-Null Count Dtype	
0	0	41188 non-null float64	4
1	1	41188 non-null float64	4
2	2	41188 non-null float64	4
3	3	41188 non-null float64	1
4	4	41188 non-null float64	4
5	5	41188 non-null float64	4
6	6	41188 non-null float64	1
7	7	41188 non-null float64	4
8	8	41188 non-null float64	4
9	9	41188 non-null float64	4
10	10	41188 non-null float64	4
11	11	41188 non-null float64	1
12	12	41188 non-null float64	1
13	13	41188 non-null float64	4

```
41188 non-null float64
 15 15
             41188 non-null float64
 16 16
 17 17
             41188 non-null float64
             41188 non-null float64
 18 18
             41188 non-null float64
 19 19
 20 20
             41188 non-null float64
             41188 non-null float64
 21
    21
 22 22
             41188 non-null float64
dtypes: float64(23)
memory usage: 7.2 MB
BUILDING SUPERVISED MODELS
                                                                     In [27]:
X= data std
                                                                     In [28]:
X.shape
                                                                     Out[28]:
(41188, 23)
                                                                     In [29]:
y= pd.DataFrame(df_features['y'])
                                                                     In [30]:
y.shape
                                                                     Out[30]:
(41188, 1)
                                                                     In [31]:
y.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 1 columns):
 # Column Non-Null Count Dtype
            -----
 0
   У
             41188 non-null int64
dtypes: int64(1)
memory usage: 321.9 KB
                                                                     In [32]:
# spilting the dataset into training and testing
trainx, testx, trainy, testy = train_test_split(X, y, test_size = 0.30, random_
state=10)
print("trainx ",trainx.shape)
print("testx ",testx.shape)
print("trainy ",trainy.shape)
print("testy ",testy.shape)
trainx (28831, 23)
testx (12357, 23)
trainy (28831, 1)
testy (12357, 1)
SIMPLE LOGISTIC REGRESSION
```

logistic regression performs binary classifications, and gives probability ou

14 14

tput

41188 non-null float64

import statsmodels.api as sm from sklearn.linear_model import LogisticRegression log_reg_model = sm.Logit(trainy, trainx).fit() print(log_reg_model.summary())
Optimization terminated successfully.

Current function value: 0.212454

Iterations 8

Logit Regression Results

==	=========	=======	:=======	=====		======	=======	======
Model: Logit Df Residuals: 288 08 MLE Df Model: 22 22 Date: Sun, 20 Nov 2022 Pseudo R-squ.: 0.39 28 Time: 12:37:05 Log-Likelihood: -6125 .3 Converged: True LL-Null: -1008 7. Covariance Type: nonrobust LLR p-value: 0.0 00 O O 0.0 0.0 2 P> z [0.025] 0.97 5 O 0.3918 0.182 2.153 0.031 0.035 0.7 48 0.3918 0.182 2.153 0.031 0.035 0.7 48 0.3918 0.182 2.153 0.001 21.680 23.3 62 2.2010 0.429 52.490 0.000 21.680 23.3 62 2.20690 0.761 -2.717 0.007 -3.561 -0.5 7 4 -2.3960 0.311	Dep. Variable	:		у	No. Obse	rvations:		288
Method: MLE Df Model: 22 Date: Sun, 20 Nov 2022 Pseudo R-squ.: 0.39 1sme: 12:37:05 Log-Likelihood: -6125 .3 -6125 -1008 7. Covariance Type: nonrobust LL-Null: -1008 7. Covariance Type: nonrobust LLR p-value: 0.0 00 0.0 0.0 0.0 2 P> z [0.025 0.97 5] 0.0 0.0 0.0 0.0 1 22.5210 0.429 52.490 0.000 21.680 23.3 62 2 -2.0690 0.761 -2.717 0.007 -3.561 -0.5 77 3 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47			Lo	git	Df Resid	uals:		288
22								
28 Time: 12:37:05 Log-Likelihood: -6125 .3 converged: True LL-Null: -1008 7. Covariance Type: nonrobust LLR p-value: 0.0 00			I	MLE	Df Model	:		
Time: 12:37:05 Log-Likelihood: -6125 .3		Sur	, 20 Nov 2	022	Pseudo R	-squ.:		0.39
converged: True LL-Null: -1008 7. nonrobust LLR p-value: 0.0 00 e====================================	Time:		12:37	:05	Log-Like	lihood:		-6125
Covariance Type: nonrobust LLR p-value: 0.0	converged:		Т	rue	LL-Null:			-1008
== coef std err z P> z [0.025 0.97 5] 0 0.3918 0.182 2.153 0.031 0.035 0.7 48 1 22.5210 0.429 52.490 0.000 21.680 23.3 62 2 -2.0690 0.761 -2.717 0.007 -3.561 -0.5 77 73 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 4 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 5 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 6 2.1751 0.288 7.562 0.000 1.611 2.7 39 7 0.6590 0.141 4.676 0.000 0.383 0.9 35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010	Covariance Ty	pe:	nonrob	ust	LLR p-va	lue:		0.0
coef std err z P> z [0.025] 0.97	=========	=======		=====		======	=======	======
5]	==	coof	ctd one		_	D. -	[0, 02F	0.07
0 0.3918 0.182 2.153 0.031 0.035 0.7 48 1 22.5210 0.429 52.490 0.000 21.680 23.3 62 2 -2.0690 0.761 -2.717 0.007 -3.561 -0.5 77 3 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 4 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 5 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 6 2.1751 0.288 7.562 0.000 1.611 2.7 9 0.6590 0.141 4.676 0.000 0.383 0.9 7 0.6590 0.141 4.676 0.000 0.383 0.9 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8	5]	соет	sta err		Z	P> 2	[0.025	0.97
0 0.3918 0.182 2.153 0.031 0.035 0.7 48 22.5210 0.429 52.490 0.000 21.680 23.3 62 -2.0690 0.761 -2.717 0.007 -3.561 -0.5 77 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 0.6590 0.141 4.676 0.000 0.383 0.9 35 1.8401 0.369 4.986 0.000 1.117 2.5 63 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 0.1221 0.067 1.811 0.070 -0.010 0.2								
48 1 22.5210 0.429 52.490 0.000 21.680 23.3 62 -2.0690 0.761 -2.717 0.007 -3.561 -0.5 77 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 -6 2.1751 0.288 7.562 0.000 1.611 2.7 39 -7 0.6590 0.141 4.676 0.000 0.383 0.9 35 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 -2.5501 0.067 1.811 0.070 -0.010 0.2		0.3918	0.182	2.	153	0.031	0.035	0.7
62 2								
2 -2.0690 0.761 -2.717 0.007 -3.561 -0.5 77 3 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 4 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 0.288 7.562 0.000 1.611 2.7 39 0.6590 0.141 4.676 0.000 0.383 0.9 35 1.8401 0.369 4.986 0.000 1.117 2.5 63 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 0.1221 0.067 1.811 0.070 -0.010 0.2		22.5210	0.429	52.	490	0.000	21.680	23.3
3 -1.8481 0.195 -9.464 0.000 -2.231 -1.4 65 4 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 6 2.1751 0.288 7.562 0.000 1.611 2.7 39 7 0.6590 0.141 4.676 0.000 0.383 0.9 35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		-2.0690	0.761	-2.	717	0.007	-3.561	-0.5
65 4								
4 -2.3960 0.311 -7.708 0.000 -3.005 -1.7 87 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 -6 2.1751 0.288 7.562 0.000 1.611 2.7 39 -7 0.6590 0.141 4.676 0.000 0.383 0.9 35 -8 1.8401 0.369 4.986 0.000 1.117 2.5 63 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 -10 0.1221 0.067 1.811 0.070 -0.010 0.2		-1.8481	0.195	-9.	464	0.000	-2.231	-1.4
87 5 -4.1217 0.395 -10.431 0.000 -4.896 -3.3 47 6 2.1751 0.288 7.562 0.000 1.611 2.7 39 7 0.6590 0.141 4.676 0.000 0.383 0.9 35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		-2.3960	0.311	-7.	708	0.000	-3.005	-1.7
47 6 2.1751 0.288 7.562 0.000 1.611 2.7 39 7 0.6590 0.141 4.676 0.000 0.383 0.9 35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2								
6 2.1751 0.288 7.562 0.000 1.611 2.7 39 7 0.6590 0.141 4.676 0.000 0.383 0.9 35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		-4.1217	0.395	-10.	431	0.000	-4.896	-3.3
7 0.6590 0.141 4.676 0.000 0.383 0.9 35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		2.1751	0.288	7.	562	0.000	1.611	2.7
35 8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2	39							
8 1.8401 0.369 4.986 0.000 1.117 2.5 63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		0.6590	0.141	4.	676	0.000	0.383	0.9
63 9 -2.5501 0.365 -6.990 0.000 -3.265 -1.8 35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		1 8401	0.369	4	986	0 000	1 117	2.5
35 10 0.1221 0.067 1.811 0.070 -0.010 0.2		210.02	0.303	. •		0.000	_,_,	,
10 0.1221 0.067 1.811 0.070 -0.010 0.2		-2.5501	0.365	-6.	990	0.000	-3.265	-1.8
		a 1221	0 067	1	011	0 070	0 010	0.2
J 4	54	6.1771	0.007	1.	OTT	0.0/0	-0.010	0.2
11 -0.1101 0.077 -1.422 0.155 -0.262 0.0	11	-0.1101	0.077	-1.	422	0.155	-0.262	0.0
42				_				
12 0.0806 0.087 0.923 0.356 -0.091 0.2 52		0.0806	0.087	0.	.923	0.356	-0.091	0.2

13	-0.0009	0.064	-0.014	0.989	-0.126	0.1
24						
14	0.2482	0.056	4.405	0.000	0.138	0.3
59						
15	-0.0016	0.048	-0.034	0.973	-0.096	0.0
93						
16	-0.0456	0.068	-0.676	0.499	-0.178	0.0
87						
17	-0.8051	0.074	-10.894	0.000	-0.950	-0.6
60						
18	-0.0851	0.077	-1.101	0.271	-0.236	0.0
66						
19	0.0647	0.075	0.859	0.390	-0.083	0.2
12						
20	0.0908	0.077	1.177	0.239	-0.060	0.2
42						
21	0.0932	0.077	1.207	0.228	-0.058	0.2
45						
22	0.1414	0.201	0.702	0.483	-0.253	0.5
36						
=======		=======	========	=======	=========	======

It is noticed that 8 iterations were performed, p value near zero or low indicates the model is statistically alright. Moving forward with prediicting y and then evaluation matrix

```
In [34]:
# let 'y_pred_prob' be the predicted values of y
y_pred_prob = log_reg_model.predict(testx)
# print the y_pred_prob
y_pred_prob.head()
                                                                          Out[34]:
29773
         0.062592
14070
         0.068129
39364
         0.450767
         0.061301
29279
         0.003388
11888
dtype: float64
                                                                          In [35]:
# convert probabilities to 0 and 1 using 'if_else'
predy = ['0' if x < 0.5 else '1' for x in y_pred_prob]
# convert the predicted values to type 'float32'
predy = np.array(predy, dtype=np.float32)
# print the first five predictions
predy[0:5]
                                                                          Out[35]:
array([0., 0., 0., 0., 0.], dtype=float32)
The above process of considering probability is done because confusion matrix doesnot
```

provide result when continuos and binary data is fed into it.

```
In [36]:
# Evaluation Metrics 1- Confusion matrics
from sklearn import metrics
from sklearn.metrics import confusion_matrix
cf1=pd.DataFrame(confusion_matrix(testy,predy),columns=['Predicted 0','Predicte
d 1'], index =['Actual 0','Actual 1'])
```

cf1

						Out[36]:
	Predicted 0	Predicted 1				
Actual 0	10657	278				
Actual 1	859	563				
from skl test_rep	earn.metr oort1 = cla est_report:	ics import assificati	classifi on_report	ng Classifi cation_repo (testy,pred		In [37]:
	·					
	0 1	0.93 0.67	0.97 0.40	0.95 0.50	10935 1422	
	uracy o avg d avg	0.80 0.90	0.69 0.91	0.91 0.72 0.90	12357 12357 12357	
from skl kappa_va print(ka	earn.metr	ics import hen_kappa_ 1)	cohen_ka	using Kappa ppa_score sty, predy)	score	In [38]:
# Evalua	ntion metr	ics 4- Plo	t the ROC	curve to g	et AUC score	In [39]:
		ics import ics import		•		
	thresho		curve(tes	sty,y_pred_p	rob)	
plt.xlab	el('False		rate (1-9	pecificity)	', fontsize = fontsize = 15)	
plt.text _prob),4		, y = 0.9,	s = ('Al	JC Score:',r	ound(roc_auc_s	score(testy, y_pred
Text(0.	02, 0.9, '	'('AUC Sco	re:', 0.	9248)")		Out[39]:

In [40]:

```
# tabulate the results
score_card = pd.DataFrame(columns=['Model', 'AUC Score', 'Precision Score', 'Re
call Score', 'Accuracy Score',
                                    'Kappa Score', 'f1-score'])
score_card = score_card.append({'Model': 'Logistic Regresion',
                                     'AUC Score' : roc_auc_score(testy, y_pred_p
rob),
                                     'Precision Score': metrics.precision_score(
testy, predy),
                                     'Recall Score': metrics.recall score(testy,
predy),
                                     'Accuracy Score': metrics.accuracy_score(te
sty, predy),
                                     'Kappa Score': cohen_kappa_score(testy, pre
dy),
                                     'f1-score': metrics.f1_score(testy, predy)}
                                    ignore_index = True)
score_card
```

Out[40]:

	Model	AUC Score	Precision Score	Recall Score	Accuracy Score	Kappa Score	f1-score
0	Logistic Regresion	0.924839	0.669441	0.395921	0.907987	0.450576	0.49757

ADABOOST

In [41]:

```
# build the model
adaboost = AdaBoostClassifier(random state=10)
# fit the model
adaboost.fit(trainx, trainy)
```

from sklearn.ensemble import AdaBoostClassifier

/opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py:993: Data
ConversionWarning: A column-vector y was passed when a 1d array was expected
. Please change the shape of y to (n_samples,), for example using ravel().
 y = column_or_1d(y, warn=True)

AdaBoostClassifier(random_state=10)

In [42]:

Out[41]:

y_pred_adaboost = adaboost.predict(testx)

In [43]:

Evaluation Metrics 1- Confusion matrics
cf2=pd.DataFrame(confusion_matrix(testy,y_pred_adaboost),columns=['Predicted 0'
,'Predicted 1'], index =['Actual 0','Actual 1'])
cf2

Out[43]:

	Predicted 0	Predicted 1
Actual 0	10688	247
Actual 1	915	507

In [44]:

Evaluation Metrics 2- Accuracy using Classification Report
test_report2 = classification_report(testy,y_pred_adaboost)
print(test_report2)

	precision	recall	f1-score	support
0 1	0.92 0.67	0.98 0.36	0.95 0.47	10935 1422
accuracy macro avg weighted avg	0.80 0.89	0.67 0.91	0.91 0.71 0.89	12357 12357 12357

In [45]:

Evaluation Metrics 3- Cohen value using Kappa score
kappa_value2 = cohen_kappa_score(testy, y_pred_adaboost)
print(kappa_value2)
0.4197151070930797

In [46]:

```
# Evaluation metrics 4- Plot the ROC curve to get AUC score
fpr, tpr, thresholds = roc_curve(testy, y_pred_adaboost)
plt.plot(fpr, tpr)
```

```
plt.title('ROC Curve', fontsize = 15)
plt.xlabel('False positive rate (1-Specificity)', fontsize = 15)
plt.ylabel('True positive rate (Sensitivity)', fontsize = 15)
```

plt.text(x = 0.02, y = 0.9, s = ('AUC Score:',round(roc_auc_score(testy, y_pred
 _adaboost),4)))

Out[46]:

```
Text(0.02, 0.9, "('AUC Score:', 0.667)")
```


	,		,		,		Out[47]:
	Model	AUC Score	Precision Score	Recall Score	Accuracy Score	Kappa Score	f1-score
0	Logistic Regresion	0.924839	0.669441	0.395921	0.907987	0.450576	0.497570
1	AdaBoost	0.666976	0.672414	0.356540	0.905964	0.419715	0.465993

K-NEAREST NEIGHBOUR(KNN)

```
In [48]:
# KNN is classification algorithm that provides class output, default value of
n-neighbours = 5
from sklearn.neighbors import KNeighborsClassifier
knn_model=KNeighborsClassifier(n_neighbors=5).fit(trainx,trainy.values.ravel())
In [49]:
predy=knn_model.predict(testx)
In [50]:
# Evaluation Metrics 1- Confusion matrics
```

cf3=pd.DataFrame(confusion_matrix(testy,predy),columns=['Predicted 0','Predicte
d 1'], index =['Actual 0','Actual 1'])
cf3

	Predicted 0	Predicted 1
Actual 0	10631	304
Actual 1	1050	372

Out[50]:

In [51]:

Evaluation Metrics 2- Accuracy using Classification Report
test_report3 = classification_report(testy,predy)
print(test_report3)

	precision	recall	f1-score	support
0 1	0.91 0.55	0.97 0.26	0.94 0.35	10935 1422
accuracy macro avg weighted avg	0.73 0.87	0.62 0.89	0.89 0.65 0.87	12357 12357 12357

In [52]:

Evaluation Metrics 3- Cohen value using Kappa score
kappa_value3 = cohen_kappa_score(testy, predy)
print(kappa_value3)
0.3029301768545051

In [53]:

```
# Evaluation metrics 4- Plot the ROC curve to get AUC score
fpr, tpr, thresholds = roc_curve(testy, predy)
plt.plot(fpr, tpr)
```

```
plt.title('ROC Curve', fontsize = 15)
plt.xlabel('False positive rate (1-Specificity)', fontsize = 15)
plt.ylabel('True positive rate (Sensitivity)', fontsize = 15)
```

plt.text(x = 0.02, y = 0.9, s = ('AUC Score:',round(roc_auc_score(testy, predy)
,4)))

Out[53]:

Text(0.02, 0.9, "('AUC Score:', 0.6169)")

Out[54]: AUC Precision Recall Accuracy Kappa Model f1-score Score Score Score Score Score Logistic 0 0.907987 0.497570 0.924839 0.669441 0.395921 0.450576 Regresion 1 AdaBoost 0.666976 0.672414 0.356540 0.905964 0.419715 0.465993 0.261603 2 KNN 0.616901 0.550296 0.890426 0.302930 0.354623

SUPPORT VECTOR MACHINE(SVM)

```
In [55]:
# provides class output
from sklearn.svm import SVC
from sklearn import linear_model
svm_lin_model= SVC(kernel='linear').fit(trainx,trainy.values.ravel())
In [56]:
predy=svm_lin_model.predict(testx)
In [57]:
```

cf4=pd.DataFrame(confusion_matrix(testy,predy),columns=['Predicted 0','Predicte
d 1'], index =['Actual 0','Actual 1'])
cf4

	Predicted 0	Predicted 1
Actual 0	10750	185
Actual 1	1091	331

Out[57]:

In [58]:

Evaluation Metrics 2- Accuracy using Classification Report
test_report4 = classification_report(testy,predy)
print(test_report4)

	precision	recall	f1-score	support
0	0.91 0.64	0.98 0.23	0.94 0.34	10935 1422
1	0.04	0.23	0.54	1422
accuracy			0.90	12357
macro avg weighted avg	0.77 0.88	0.61 0.90	0.64 0.87	12357 12357

In [59]:

Evaluation Metrics 3- Cohen value using Kappa score
kappa_value4 = cohen_kappa_score(testy, predy)
print(kappa_value4)
0.29860862560843104

In [60]:

```
# Evaluation metrics 4- Plot the ROC curve to get AUC score
fpr, tpr, thresholds = roc_curve(testy, predy)
plt.plot(fpr, tpr)
```

```
plt.title('ROC Curve', fontsize = 15)
plt.xlabel('False positive rate (1-Specificity)', fontsize = 15)
plt.ylabel('True positive rate (Sensitivity)', fontsize = 15)
```

plt.text(x = 0.02, y = 0.9, s = ('AUC Score:',round(roc_auc_score(testy, predy)
,4)))

Out[60]:

Text(0.02, 0.9, "('AUC Score:', 0.6079)")

Out[61]:

	Model	AUC Score	Precision Score	Recall Score	Accuracy Score	Kappa Score	f1-score
0	Logistic Regresion	0.924839	0.669441	0.395921	0.907987	0.450576	0.497570
1	AdaBoost	0.666976	0.672414	0.356540	0.905964	0.419715	0.465993
2	KNN	0.616901	0.550296	0.261603	0.890426	0.302930	0.354623
3	SVM	0.607926	0.641473	0.232771	0.896739	0.298609	0.341589

AUC score of Logistic Regression is high which makes it a good model for prediction. But higher precision, recall, accuracy, kappa and f1 score makes Adaboost the better model in comparision with all the others.

REQUIREMENTS

7.1 Hardware requirements

Processor: Intel Multicore Processor (i3 or i5 or i7)

RAM: 4GB or Above

Hard Disk: 100GB or Above

7.2 Software Requirements

Programming Language: Python

Operating System: Windows or Linux

Tools: Anaconda Navigator, Tensorflow, Keras

TENSORFLOW:

The standard name for Machine Learning in the Data Science industry is TensorFlow. It facilitates building of both statistical Machine Learning solutions as well as deep learning through its extensive interface of CUDA GPUs. The most basic data type of TensorFlow is a tensor which is a multi-dimensional array.

It is an open-source toolkit that can be used for build machine learning pipelines so that you can build scalable systems to process data. It provides support and functions for various applications of ML such as Computer Vision, NLP and Reinforcement Learning. TensorFlow is one of the must-know tools of Machine Learning for beginners.

KERAS:

Keras is an open-source neural network library that provides support for Python. It is popular for its modularity, speed, and ease of use. Therefore, it can be used for fast experimentation as well as rapid prototyping. It provides support for the implementation of convolutional neural networks, Recurrent Neural Networks as well as both. It is capable of running seamlessly on the CPU and GPU. Compared to more widely popular libraries like

TensorFlow and Pytorch, Keras provides user-friendliness that allows the users to readily implement neural networks without dwelling over the technical jargon.

PROJECT FINDINGS

ROC CURVE OF - LOGISTIC REGRISSON

ROC CURVE OF - ADABOOST

ROC CURVE OF – KNN

44

	Model	AUC Score	Precision Score	Recall Score	Accuracy Score	Kappa Score	f1-score
0	Logistic Regresion	0.924839	0.669441	0.395921	0.907987	0.450576	0.497570
1	AdaBoost	0.666976	0.672414	0.356540	0.905964	0.419715	0.465993
2	KNN	0.616901	0.550296	0.261603	0.890426	0.302930	0.354623
3	SVM	0.607926	0.641473	0.232771	0.896739	0.298609	0.341589

AUC score of Logistic Regression is high which makes it a good model for prediction. But higher precision, recall, accuracy, kappa and f1 score makes Adaboost the better model in comparision with all the others.

THE GIVEN TABLE GIVE THE ACCURACY OUTCOME OF ALL THE MODLES USED.

CONCLUSION

Predition of outcome of bank marketing outcome is obtained using different models and the accuracy and outcome of different models is obtained.

FUTURE ENHANCEMENTS

- 1) Create an android/iOS app which will be more convenient to user.
- 2) System can be implemented using cloud which can store large amount of data for comparison and provide high computing power for processing).