Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Організація циклічних процесів. Складні цикли» Варіант 30

Виконав ст	удент ІП-12	2 Тарасюк Євгеній	Сергійович
Перевірив			

Київ 2021

Лабораторна робота 5.

Організація циклічних процесів. Складні цикли.

Мета: дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача 30 (варіант 30).

30. Дано натуральне число m. Знайти таке натуральне число n, що двійковий запис n отримується із двійкового запису m зміною порядку цифр на зворотний.

Розв'язок.

1. Постановка задачі.

Початкові дані - це натуральне число, додаткових змінних для розв'язку не потрібно. Додаткових умов не потрібно. Для обчислення використовуватимемо два ітеративних цикли: перший - знаходження результату в двійковій формі способом ділення, другий - переведення його в десяткову форму. Результатом розв'язку є натуральне число. Використовуватимемо стандартні логічні та арифметичні операції (степінь числа позначаємо як ^, цілочисельне ділення як /, знаходження остачі як %.

2. Побудова математичної моделі

Таблиця змінних та функцій:

Змінні	Тип	Ім'я	Призначення
Число num	Натуральне число	num	Збереження початкових даних

Результат	Натуральне число	res	Збереження результату
Двійкова форма	Натуральне число	binary	Збереження результату в двійковій формі
Степінь двох	Натуральне число	power	Допоміжна змінна для переведення результату в десяткову форму

3. Псевдокод алгоритму

Кінець

<u>Крок 1</u>		
Початок	<u>Крок 3</u>	
Введення пит	Початок	
{Пошук результату в двійковій формі}	Введення х	
{Переведення результату в десяткову форму}	binary = 0	
Виведення res Кінець.	Повторити поки $num > 0$ $binary = binary * 10$	
	binary = binary + num % 2 $num = num # 2$	
<u>Крок 2</u>	Все повторити	
Початок	power = 0	
$\mathbf{B}\mathbf{B}\mathbf{e}\mathbf{д}\mathbf{e}\mathbf{H}\mathbf{n}\ x$ $binary = 0$	res = 0	
Повторити поки <i>пит > 0</i>	Повторити поки binary > 0	
binary = binary * 10	Якщо binary % 2 != 0	
binary = binary + num % 2	$res = res + 2 \land power$	
num = num // 2	Все якщо	
Все повторити	power = power + 1	
{Переведення результату в десяткову форму}	binary = binary // 10	

Кінець

Все повторити

4. Блок схема алгоритму

5. Випробування алгоритму.

Перевіримо правильність алгоритму для різних вхідних даних:

	Tecm 1	Tecm 2	Tecm 3
Введення num	num = 32	num = 63	num = 54
Повторити поки num > 0 (початок ітерації 1)	num = 32	num = 63	num = 54
	binary = 0	binary = 0	binary = 0
Початок ітерації	num = 16	num = 63	num = 27
2:	binary = 0	binary = 0	binary = 0
Початок ітерації	num = 8	num = 31	num = 13
3:	binary = 0	binary = 1	binary = 1
Початок ітерації 4:	num = 4	num = 15	num = 6
	binary = 0	binary = 11	binary = 11
Початок ітерації	num = 2	num = 7	num = 3
5:	binary = 0	binary = 111	binary = 110
Початок ітерації	num = 1	num = 3	num = 1
6:	binary = 0	binary = 1111	binary = 1101
Початок ітерації 7:	-	num = 1 binary = 11111	-
Все повторити	num = 0	num = 0	num = 0
	binary = 1	binary = 111111	binary = 11011
Повторити поки binary > 0 (початок ітерації 1)	binary = 1	binary = 111111	binary = 11011
	res = 0	res = 0	res = 0
Початок ітерації	-	binary = 11111	binary = 1101
2:		res = 1	res = 1
Початок ітерації 3:	-	binary = 1111 res = 3	binary = 110 res = 3

Початок ітерації	-	binary = 111	binary = 11
4:		res = 7	res = 3
Початок ітерації	-	binary = 11	binary = 1
5:		res = 15	res = 1
Початок ітерації 6:	-	binary = 1 res = 31	-
Все повторити	binary = 0	binary = 0	binary = 0
	res = 1	res = 63	res = 27
Виведення res	1	63	27

Висновки

Було досліджено особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.