

SEQUENCE LISTING

<110> Fischhoff, et al.

<120> SYNTHETIC PLANT GENES AND METHOD FOR PREPARATION

<130> 28079/41785

<140> US 08/434,105

<141> 1995-05-03

<150> US 07/959,506

<151> 1992-10-09

<150> US 07/476,661

<151> 1990-02-12

<150> US 07/315,355

<151> 1989-02-24

<160> 40

<170> PatentIn version 3.3

<210> 1

<211> 1743

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic nucleotide sequence encoding Btk HD-1 insecticidal protein (cry1Ab), described in Example 1, and set forth in the lower line of Figure 2

<400> 1
atggctataag aaactggta caccctaattt gatatttcct tgcgtcaac gcaatttctt 60
ttgagtgaat ttgtcccg tgctggattt gtgttaggac tagttgatat tatctgggg 120
attttggtc cctctcaatg ggacgcattt cttgtacaaa ttgaacagct catcaaccag 180
agaatcgaag agttcgctag gaatcaagcc atttctagat tagaaggact aagcaatctt 240
tatcaaattt acgcagaatc ttttagagag tggaaagcag atcctactaa tccagcatta 300
agagaagaga tgcgtattca attcaatgac atgaacagtg cccttacaac cgctattcct 360
ctttttgcag ttcaaaattt tcaagttcct ctcctctccg tgtacgttca agctgccaac 420
ctccacctct cagtttgag agatgttca gtgttggac aaaggtgggg atttgatgcc 480
gcgactatca atagtcgtta taatgattt actaggctta ttggcaacta tacagatcat 540
gctgtacgct ggtacaatac gggatttagag cgtgtatggg gaccggattc tagagattgg 600
atcaggtaca accagttcag aagagagctt acactaactg tattagatat cgtttctcta 660
tttccgaact atgatagtag aacgtatcca attcgaacag tttcccaatt aacaagagaa 720
atttatacaa acccagtatt agaaaattt gatggtagtt ttcgaggctc ggctcaggc 780
atagaaggaa gtattaggag tccacattt atggatatac ttaatagtat aaccatctat 840

acggatgctc atagaggaga atactactgg tccggtcacc agatcatggc ttctcctgta	900
gggtttcgg gccagaatt cactttccg ctatatggaa ctatggaaa tgcaagtc当地	960
caacaacgta ttgttgctca actaggtcag ggctgtata gaacatttac gtccacctta	1020
tatagaagac ctttaacat cgggatcaac aaccaacaac tatctgttct tgacgggaca	1080
gaatttgctt atggaacctc ctcaaatttgc catccgctg tatacagaaa aagcgaaacg	1140
gttagattcgc tggatgaaat accgccacag aataacaacg tgccacctag gcaaggattt	1200
agtcatcgat taagccatgt ttcaatgtt cgttcaggct ttagtaatag tagtgtaagt	1260
ataataagag ctcctatgtt ctcttgata catcgtagtg ctgagttcaa caacatcatc	1320
ccttcatcac aaatcaccca aatcccactc accaagtcta ctaatcttgg ctctggaact	1380
tctgtcgtaa aaggaccagg atttacagga ggagatattt ttcgaagaac ttccacctggc	1440
cagatttcaa ccttaagagt aaatattact gcaccattat cacaaagata tcgggtaaga	1500
attcgctacg cttctaccac aaaccttcag ttccacacat caattgacgg aagacctatt	1560
aatcagggga atttttcagc aactatgagt agtgggagta atttacagtc cggaagctt	1620
aggactgttag gtttactac tccgttaac tttcaaatg gatcaagtgt atttacgtta	1680
agtgctcatg tcttcaattc aggcaatgaa gtttatatag atcgaattga atttgttccg	1740
gca	1743

<210> 2
 <211> 1743
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Native Blk HD-1 nucleotide sequence encoding Btk HD-1 toxin protein (Cry1Ab) from amino acid 29-607 as described in Example 1 & set forth in the upper line of Figure 2, & includes synthetic sequence encoding N-terminal Met-Ala

<400> 2 atggctatacg aaactggta caccatac gatatttctt tgctgctaac gcaatttctt	60
tttagtgaat ttgttccgg tgctggattt gtgttaggac tagttgatataatgggaa	120
attttggtc cctctcaatg ggacgcattt cttgtacaaa ttgaacagtt aattaaccaa	180
agaatagaag aattcgctag gaaccaagcc atttctagat tagaaggact aagcaatctt	240
tatcaaattt acgcagaatc ttttagagag tggaaagcag atcctactaa tccagcatta	300
agagaagaga tgcgtattca attcaatgac atgaacagtg cccttacaac cgctattctt	360
cttttgcag ttcaaaatta tcaagttctt ctttatcag tatatgttca agctgcaaatt	420
ttacatttat cagtttgag agatgttca gtgttggac aaaggtgggg atttgatgcc	480
gcgactatca atagtcgtta taatgattta actaggctta ttggcaacta tacagatcat	540

gctgtacgct ggtacaatac gggatttagag cgttatggg gaccggattc tagagattgg	600
ataagatata atcaatttag aagagaatta acactaactg tattagatat cgtttctcta	660
tttccgaact atgatagtag aacgtatcca attcgaacag tttcccaatt aacaagagaa	720
atttatacaa acccagtatt agaaaatttt gatggtagtt ttgcaggctc ggctcagggc	780
atagaaggaa gtattaggag tccacattt atggatatac ttaatagtat aaccatctat	840
acggatgctc atagaggaga atattattgg tcagggcatc aaataatggc ttctcctgta	900
gggtttcgg ggccagaatt cactttccg ctatatggaa ctatggaaa tgcaagctcca	960
caacaacgta ttgttgccta actaggtcag ggcgtgtata gaacatttac gtccacctta	1020
tatagaagac ctttaatat agggataaaat aatcaacaac tatctgttct tgacgggaca	1080
gaatttgctt atggAACCTC ctcaaatttgc ccatccgctg tatacagaaa aagcggAACG	1140
gtagattcgc tggatgaaat accgccacag aataacaacg tgccacctag gcaaggattt	1200
agtcatcgat taagccatgt ttcaatgttt cgttcaggct ttagtaatag tagtgttaat	1260
ataataagag ctcctatgtt ctcttgata catcgtagt ctgaatttaa taatataatt	1320
ccttcatcac aaattacaca aatacctta aaaaaatcta ctaatcttgc ctctggaaact	1380
tctgtcgtaa aaggaccagg atttacagga ggagatattc ttcaagaac ttcacctggc	1440
cagatttcaa ccttaagagt aaatattact gcaccattat cacaaagata tcgggtaaga	1500
attcgctacg cttctaccac aaatttacaa ttccatacat caattgacgg aagacctatt	1560
aatcagggga atttttcagc aactatgagt agtggagta atttacagtc cggaagcttt	1620
aggactgttag gtttactac tccgtttaac ttttcaaatg gatcaagtgt atttacgtta	1680
agtgctcatg tcttcaattc aggcaatgaa gtttatatac atcgaattga atttgttccg	1740
gca	1743

<210> 3
<211> 1845
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic sequence encoding Btk HD-1 insecticidal toxin protein
(Cry1Ab), described in Example 2, and set forth in the lower line of
Figure 3

<400> 3 atggacaaca acccaaacat caacgaatgc attccataca actgcttgag taacccagaa	60
gttgaagtac ttgggtggaga acgcattgaa accggttaca ctccccatcga catctccttg	120
tccttgacac agtttctgct cagcgagttc gtgccaggtg ctgggttcgt tctcgacta	180
gttgacatca tctgggttat ctttgtcca tctcaatggg atgcattcct ggtgcaaatt	240
gagcagttga tcaaccagag gatcgaagag ttgcggcagga accaggccat ctcttaggttgc	300

gaaggattga	gcaatctcta	ccaaatctat	gcagagagct	tcagagagtg	ggaagccgat	360
cctactaacc	cagctctccg	cgaggaaatg	cgtattcaat	tcaacgacat	gaacagcgcc	420
ttgaccacag	ctatcccatt	gttcgcagtc	cagaactacc	aagttcctct	cttgcgcgtg	480
tacgttcaag	cagctaatct	tcacctcagc	gtgcttcgag	acgttagcgt	gtttggcaa	540
aggtggggat	tcgatgctgc	aaccatcaat	agccgttaca	acgaccttac	taggctgatt	600
ggaaaactaca	ccgaccacgc	tgttcgttgg	tacaacactg	gcttgagcg	tgtctggggt	660
cctgattcta	gagattggat	tagatacaac	cagttcagga	gagaattgac	cctcacagtt	720
ttggacatttgc	tgtctctttt	cccgaactat	gactccagaa	cctaccctat	ccgtacagtg	780
tcccaactta	ccagagaaat	ctatactaac	ccagttcttg	agaacttcga	cggtagcttc	840
cgtggttctg	cccaaggtat	cgaaggctcc	atcaggagcc	cacacttgat	ggacatcttgc	900
aacagcataa	ctatctacac	cgatgctcac	agaggagagt	attactggtc	tggacaccag	960
atcatggcctt	ctccagttgg	attcagcggg	cccgagttta	ccttcctct	ctatggaact	1020
atgggaaacg	ccgctccaca	acaacgtatc	gttgctcaac	taggtcaggg	tgtctacaga	1080
accttgcctt	ccaccttgta	cagaagaccc	ttcaatatcg	gtatcaacaa	ccagcaactt	1140
tccggttcttgc	acggaacaga	gttcgcctat	ggaacctctt	ctaacttgcc	atccgctgtt	1200
tacagaaaga	gcggaaccgt	tgattccttg	gacgaaatcc	caccacagaa	caacaatgtg	1260
ccacccaggc	aaggattctc	ccacagggttgc	agccacgtgt	ccatgttccg	ttccggattc	1320
agcaacagtt	ccgtgagcat	catcagagct	cctatgttct	catggattca	tcgttagtgct	1380
gagttcaaca	atatcattcc	ttcctctcaa	atcaccctaaa	tcccattgac	caagtctact	1440
aaccttggat	ctggaacttc	tgtcgtgaaa	ggaccaggct	tcacaggagg	tgatattctt	1500
agaagaactt	ctcctggcca	gattagcacc	ctcagagttta	acatcactgc	accactttct	1560
caaagatatc	gtgtcaggat	tcgttacgca	tctaccacta	acttgcaatt	ccacacctcc	1620
atcgacggaa	ggcctatcaa	tcagggtaac	ttctccgcaa	ccatgtcaag	cggcagcaac	1680
ttgcaatccg	gcagcttcag	aaccgtcggt	ttcactactc	ctttcaactt	ctctaacggaa	1740
tcaagcgttt	tcacccttag	cgctcatgtg	ttcaattctg	gcaatgaagt	gtacattgac	1800
cgtattgagt	ttgtgcctgc	cgaagttacc	ttcgaggctg	agtac		1845

<210> 4
 <211> 1845
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Native Btk HD1 nucleotide sequence encoding Btk HD-1 insecticidal toxin protein (Cry1Ab), described in Example 2, and set forth in the upper line of Figure 3

<400> 4	
atggataaca atccgaacat caatgaatgc attccttata attgtttaag taaccctgaa	60
gtagaagtat taggtggaga aagaatagaa actggttaca ccccaatcga tatttccttg	120
tcgctaacgc aatttctttt gagtgaattt gttcccggtg ctggatttgt gtaggacta	180
gttgatataa tatgggaaat ttttggtccc tctcaatggg acgcatttct tgtacaaatt	240
gaacagttaa ttaaccaaag aatagaagaa ttgccttagga accaaggccat ttctagatta	300
gaaggactaa gcaatctta tcaaatttac gcagaatctt ttagagagtg ggaagcagat	360
cctactaattc cagcattaag agaagagatg cgtattcaat tcaatgacat gaacagtgcc	420
cttacaaccg ctattcctct tttgcagtt caaaatttac aagttcctct tttatcagta	480
tatgttcaag ctgcaaattt acatttatca gtttgagag atgtttcagt gtttggacaa	540
aggtggggat ttgatgccgc gactatcaat agtcgttata atgatthaac taggcttatt	600
ggcaactata cagatcatgc tgtacgctgg tacaatacgg gattagagcg tgtatgggaa	660
ccggattcta gagattggat aagatataat caatttagaa gagaattaac actaactgt	720
ttagatatcg tttctctatt tccgaactat gatagtagaa cgtatccaat tcgaacagtt	780
tcccaattaa caagagaaat ttatacaaac ccagtattag aaaatttga tggtagttt	840
cgaggctcgg ctcagggcat agaaggaagt attaggagtc cacatttgc ggatataactt	900
aatagtataa ccatctatac ggtatgctcat agaggagaat attattggc agggcatcaa	960
ataatggctt ctcctgttagg gtttcgggg ccagaattca cttttccgct atatgaaact	1020
atggaaaatg cagctccaca acaacgtatt gttgctcaac taggtcaggg cgtgtataga	1080
acattatcgt ccaccttata tagaagacct ttataatag ggataaataa tcaacaacta	1140
tctgttcttg acggacaga atttgcttat ggaacctcct caaatttgcc atccgctgta	1200
tacagaaaaaa gcggAACGGT agattcgctg gatgaaatac cgccacagaa taacaacgt	1260
ccacctaggc aaggatttag tcatcgatta agccatgtt caatgttgc ttcaaggctt	1320
agtaatagta gtgttaagtat aataagagct cctatgttct cttggataca tcgttagtgct	1380
gaatttaata atataattcc ttcatcacaa attacacaaa taccttaac aaaatctact	1440
aatcttggct ctggaacttc tgtcgttaaa ggaccaggat ttacaggagg agatattctt	1500
cgaagaactt cacctggcca gattcaacc ttaagagtaa atattactgc accattatca	1560
caaagatatac gggtaagaat tcgctacgt tctaccacaa atttacaatt ccatacatca	1620
attgacggaa gacctattaa tcagggaaat tttcagcaa ctatgagtag tgggagtaat	1680
ttacagtccg gaagcttag gactgttagt ttactactc cgtttaactt ttcaaatgg	1740
tcaagtgtat ttacgttaag tgctcatgtc ttcaattcag gcaatgaagt ttatataat	1800
cgaattgaat ttgttccggc agaagtaacc tttgaggcag aatat	1845

```

<210> 5
<211> 1921
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic hybrid of first 1360 bases synthetic HD-1 linked to
      modified HD-73 sequence, described in paragraph bridging pages 53-
      54, and as set forth in the lower line of Figure 4

<400> 5
atggacaaca acccaaacat caacgaatgc attccataca actgcttgag taacccagaa   60
gttgaagtac ttgggtggaga acgcattgaa accggttaca ctcccatcga catctccttg   120
tccttgacac agtttctgct cagcgagttc gtgccaggtg ctgggttcgt tctcggacta   180
gttgacatca tctgggttat ctttggtcca tctcaatggg atgcattcct ggtgcaaatt   240
gagcagttga tcaaccagag gatcgaagag ttcgccagga accaggccat ctcttaggtt   300
gaaggattga gcaatctcta ccaaatttat gcagagagct tcagagagtg ggaagccgat   360
cctactaacc cagctctccg cgaggaaatg cgtattcaat tcaacgcacat gaacagcgcc   420
ttgaccacag ctatcccatt gttcgcagtc cagaactacc aagttcctct cttgtccgtg   480
tacgttcaag cagctaattt tcacctcagc gtgcttcgag acgttagcgt gtttggcaaa   540
aggtggggat tcgatgctgc aaccatcaat agccgttaca acgacacctac taggctgatt   600
ggaaactaca ccgaccacgc tggtcggtgg tacaacactg gcttggagcg tgtctgggg   660
cctgattcta gagattggat tagatacaac cagttcagga gagaattgac cctcacagtt   720
ttggacattt tgcgttctt cccgaactat gactccagaa cctaccctat ccgtacagtg   780
tcccaactta ccagagaaat ctatactaac ccagttctt agaacttcga cggtagctc   840
cgtggttctg cccaaaggat cgaaggctcc atcaggagcc cacacttgat ggacatctt   900
aacagcataa ctatctacac cgatgctcac agaggagagt attactggtc tggacaccag   960
atcatggcct ctccagttgg attcagcggg cccagttta cctttcctct ctatgaaact   1020
atgggaaacg ccgctccaca acaacgtatc gttgctcaac taggtcaggg tgtctacaga  1080
accttgttctt ccaccttgc tacaagaccc ttcaatatcg gtatcaacaa ccagcaactt  1140
tccgttctt acggaacaga gttcgcctat ggaaccttctt ctaacttgcc atccgctgtt  1200
tacagaaaga gcgaaaccgt tgattccttgc gacgaaatcc caccacagaa caacaatgtg  1260
ccacccagggc aaggattctc ccacaggttgc agccacgtgt ccatgttccg ttccggattc 1320
agcaacagtt ccgtgagcat catcagagct cctatgttctt cttggataca ccgttagtgct 1380
gagttcaaca acatcatcgc atccgatagt attactcaaa tccctgcagt gaagggaaac  1440
tttctttca acggttctgt catttcagga ccaggattca ctgggtggaga cctcggtttaga 1500
ctcaacagca gtggaaataa cattcagaat agagggtata ttgaagttcc aattcacttc  1560

```

ccatccacat ctaccagata tagagttcgt gtgaggtatg cttctgtgac ccctattcac 1620
ctcaacgtta attggggtaa ttcattccatc ttctccaata cagttccagc tacagctacc 1680
tccttgata atctccaatc cagcgatttc ggttactttg aaagtgc当地 tgctttaca 1740
tcttcactcg gtaacatcgt ggggtttaga aacttttagtggactgc当地 agtgattatc 1800
gacagattcg agttcattcc agttactgca acactcgagg ctgaatataa tctggaaaga 1860
gcmcagaagg cggttaatgcg ctgtttacgt ctacaaacca gcttggactc aagacaaaatg 1920
g 1921

<210> 6
<211> 1921
<212> DNA
<213> Artificial sequence

<220>
<223> Native Bt nucleotide sequence encoding N-terminal 450 HD-1 (Cry1Ab) amino acids and 451-615 of Bkt HD73 (Cry1Ac) described in Example 3 and as set forth in the upper line of Figure 4

<400> 6
atggataaca atccgaacat caatgaatgc attccttata attgttaag taaccctgaa 60
gtagaagtat taggtggaga aagaatagaa actggttaca ccccaatcga tatttccttg 120
tcgctaacgc aatttctttt gagtgaattt gttcccggtg ctggatttgt gtaggacta 180
gttgatataa tatgggaaat ttttgtccc tctcaatggg acgcatttct tgtacaaatt 240
gaacagttaa ttaaccaaag aatagaagaa ttgccttaga accaagccat ttcttagatta 300
gaaggactaa gcaatctta tcaaatttac gcagaatctt ttagagagtggaaagcagat 360
cctactaattc cagcattaag agaagagatg cgtattcaat tcaatgacat gaacagtgcc 420
cttacaaccg ctattcctct tttgcagtt caaaatttac aagttccctct tttatcagta 480
tatgttcaag ctgcaaattt acatttatca gtttgagag atgtttcagt gtttggacaa 540
aggtggggat ttgatgccgc gactatcaat agtcgttata atgatataac taggcttatt 600
ggcaactata cagatcatgc tgtacgctgg tacaatacgg gattagagcg tgtatgggaa 660
ccggattcttta gagatggat aagatataat caatttagaa gagaatataac actaactgt 720
tttagatatcg tttctcttatt tccgaactat gatagtagaa cgtatccat tcgaacagtt 780
tcccaattaa caagagaaat ttatacaaacc ccagtattttt aaaaatttttttga tggtagttt 840
cgaggctcgg ctcagggcat agaaggaagt attaggagtc cacatttgat ggatataactt 900
aatagtataa ccatctatac ggatgctcat agaggagaat attattggtc agggcatcaa 960
ataatggctt ctccctgtttagg gttttcgcccccccaattca cttttccgct atatggaaact 1020
atggggaaatg cagctccaca acaacgtatt gttgctcaac taggtcaggg cgtgtataga 1080
acattatcgt ccacccattata tagaagaccc ttataatatac ggataaataa tcaacaacta 1140

tctgttcttg acgggacaga atttgcttat ggaacctcct caaattgcc atccgctgta	1200
tacagaaaaaa gcggaacggt agattcgctg gatgaaatac cgccacagaa taacaacgtg	1260
ccacctaggc aaggatttag tcatcgatta agccatgttt caatgttcg ttcaggctt	1320
agtaatagta gtgtaagtat aataagagct cctatgttct cttggataca tcgttagtgct	1380
gaatttaata atataattgc atcgatagt attactaaa tccctgcagt gaaggaaac	1440
tttctttta atggctctgt aatttcagga ccaggattt ctgggtggga ctttagttaga	1500
ttaaatagta gtggaaataa cattcagaat agagggtata ttgaagttcc aattcacttc	1560
ccatcgacat ctaccagata tcgagttcgt gtacggatg cttctgtAAC cccgattcac	1620
ctcaacgtta attgggttaa ttcattccatt tttccaata cagtaccagc tacagctacg	1680
tcatttagata atctacaatc aagtgattt gtttattttg aaagtccaa tgctttaca	1740
tcttcatttag gtaatatagt aggtgttaga aatttttagt ggactgcagg agtgataata	1800
gacagatttg aatttattcc agttactgca acactcgagg ctgaatataa tctggaaaga	1860
gcgcagaagg cggtgaatgc gctgtttacg tctacaaacc aactaggct aaaaacaaat	1920
g	1921

<210> 7
 <211> 1767
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Truncated synthetic sequence encoding a hybrid Btk HD73 (Cry1Ac) from amino acid 29-615 and including codons encoding N-terminal MET-ALA as described in Example 3 and set forth in the lower line of Figure 8

<400> 7	
atggccattt aaaccggtaa cactccatc gacatctcct tgccttgac acagttctg	60
ctcagcgagt tcgtgccagg tgctgggttc gttctggac tagttgacat catctgggt	120
atcttggtc catctcaatg ggtatgcattc ctggtgcaaa ttgagcagtt gatcaaccag	180
aggatcgaag agttcgccag gaaccaggcc atctctaggt tggaaggatt gagcaatctc	240
taccaaatact atgcagagag cttcagagag tggaaagccg atcctactaa cccagctctc	300
cgcgaggaaa tgcgtattca attcaacgac atgaacagcg cttgaccac agctatccca	360
ttgttcgca tccagaacta ccaagttcct ctcttgcgg tgcgtttca agcagctaat	420
cttcacctca gcgtgcttcg agacgttagc gtgtttggc aaagggtggg attcgatgct	480
gcaaccatca atagccgtta caacgaccctt actaggctga ttggaaacta caccgaccac	540
gctgttcgtt ggtacaacac tggcttggag cgtgtctggg gtcctgattc tagagattgg	600
attagataca accagttcag gagagaattt accctcacag tttggacat tgcgtctctc	660

ttccccgaact atgactccag aacctaccct atccgtacag tgtcccaact taccagagaa 720
atctatacta acccagttct tgagaacttc gacggtagct tccgtggttc tgcccaaggt 780
atcgaaggct ccatcaggag cccacacttg atggacatct tgaacagcat aactatctac 840
accgatgctc acagaggaga gtattactgg tctggacacc agatcatggc ctctccagtt 900
ggattcagcg ggcccggagtt tacctttcct ctctatgaa ctatggaaa cgccgctcca 960
caacaacgta tcgttgctca actaggtcag ggtgtctaca gaaccttgtc ttccaccttg 1020
tacagaagac ccttcaatat cggtatcaac aaccagcaac tttccgttct tgacggaaaca 1080
gagttcgcct atggaacctc ttcttaacttg ccatccgctg tttacagaaa gagcggaaacc 1140
gttgtattcct tggacgaaat cccaccacag aacaacaatg tgccacccag gcaaggattc 1200
tcccacaggt tgagccacgt gtccatgttc cgttccggat tcagcaacag ttccgtgagc 1260
atcatcagag ctccatgtt ctcttggata caccgttagtgc tgagttcaa caacatcatc 1320
gcatccgata gtattactca aatccctgca gtgaaggaa actttctctt caacggttct 1380
gtcatttcag gaccaggatt cactggtgga gacctcgta gactcaacag cagtggaaat 1440
aacattcaga atagagggta tattgaagtt ccaattcact tcccatccac atctaccaga 1500
tatagagttc gtgtgaggtt tgcttctgtg acccctattc acctcaacgt taattgggt 1560
aattcatcca tcttctccaa tacagttcca gctacagcta cctccttgaa taatctccaa 1620
tccagcgatt tcggttactt tgaaagtgcc aatgcttttca catcttcact cggttaacatc 1680
gtgggtgtta gaaaactttag tgggactgca ggagtgatta tcgacagatt cgagttcatt 1740
ccagttactg caacactcgaa qqctqaq 1767

```
<210> 8
<211> 1767
<212> DNA
<213> Artificial sequence
```

```

<220>
<223> Native Bt sequence encoding hybrid Btk HD-73 (Cry1Ac), described
      in Example 3 and set forth in the upper line of Figure '8

<400> 8
gaaagaatag aaactggta caccctaattt gatatttcct tgtcgctaac gcaatttctt    60
tttagtgaat ttgttcccggt tgctggattt gtgttaggac tagttgatataatatgggaa   120
atttttggtc cctctcaatggg acgcattt ctgtacaaa ttgaacagtt aattaaccaa   180
agaatagaag aattcgcttag gaaccaagcc atttcttagat tagaaggact aagcaatctt   240
tatcaaattt acgcagaatc ttttagagag tggaaagcag atcctactaa tccagcatta   300
agagaagaga tgcgtattca attcaatgac atgaacagtg cccttacaac cgctattcct   360
ctttttgcag ttcaaaaattt tcaagttcct cttttatcag tataatgttca agctgcaat   420

```

ttacatttat cagtttgag agatgttca gtgttggac aaagggtggg atttgatgcc	480
gcgactatca atagtcgtta taatgattt actaggctta ttggcaacta tacagatcat	540
gctgtacgct ggtacaatac gggatttagag cgtgtatggg gaccggattc tagagattgg	600
ataagatata atcaatttag aagagaatta acactaactg tattagatat cgtttctcta	660
tttccgaact atgatagtag aacgtatcca attcgaacag tttcccaatt aacaagagaa	720
atttatacaa acccagtatt agaaaatttt gatggtagtt ttcgaggctc ggctcagggc	780
atagaaggaa gtattaggag tccacattt atggatatac ttaatagtat aaccatctat	840
acggatgctc atagaggaga atattattgg tcagggcattc aaataatggc ttctcctgta	900
gggtttcgg gcccagaatt cactttccg ctatatggaa ctatggaaa tgcaagctcca	960
caacaacgta ttgttgcata actaggtcag ggcgtgtata gaacatttac gtccacctta	1020
tatagaagac ctttaatat agggataaaat aatcaacaac tatctgttct tgacgggaca	1080
gaatttgctt atggaacctc ctcaaatttgc ccatccgctg tatacagaaa aagcggaaacg	1140
gtagattcgc tggatgaaat accgccacag aataacaacg tgccacctag gcaaggattt	1200
agtcatcgat taagccatgt ttcaatgtt cgttcaggct ttagtaatag tagtgtaagt	1260
ataataagag ctcctatgtt ctcttgata catcgtatgt ctgaatttaa taatataatt	1320
gcatcgatata gtattactca aatccctgca gtgaaggaa actttcttt taatggttct	1380
gtaatttcag gaccaggatt tactggtggg gacttagtta gattaaatag tagtgaaat	1440
aacattcaga atagaggta tattgaagtt ccaatttact tcccattcgac atctaccaga	1500
tatcgagttc gtgtacggta tgcttctgta accccgattc acctcaacgt taattggggt	1560
aattcatcca tttttccaa tacagttacca gctacagcta cgtcatttata taatctacaa	1620
tcaagtgatt ttggtttattt tgaaagtgcc aatgctttta catcttcatt aggtaatata	1680
gtaggtgtta gaaatttttag tggactgca ggagtgataa tagacagatt tgaatttattt	1740
ccagttactg caacactcga ggctgaa	1767

<210> 9
 <211> 3534
 <212> DNA
 <213> Artificial sequence

<220>
 <223> synthetic/wild-type full length sequence encoding HD-73 (Cry1Ac),
 1st 1845 nucleotides set forth lower line Fig 4, 1846-end is
 native sequence encoding C-terminus of HD73, described in Ex 3, set
 forth in the lower line of Figure 9

<400> 9
 atggacaaca acccaaacat caacgaatgc attccataca actgcttgag taacccagaa 60

gttgaagtac ttggggaga acgcattgaa accggttaca ctcccatcga catctccttg	120
tccttgacac agtttctgct cagcgagttc gtgccaggtg ctgggttgt tctcgacta	180
gttgacatca tctgggtat cttggtcca tctcaatggg atgcattcct ggtgcaaatt	240
gagcagttga tcaaccagag gatcgaagag ttcGCCAGGA accaggccat ctcttaggtt	300
gaaggattga gcaatctcta ccaaatttat gcagagagct tcagagagt ggaagccat	360
cctactaacc cagctctccg cgaggaaatg cgtattcaat tcaacgacat gaacagcgcc	420
ttgaccacag ctatcccatt gttcgagtc cagaactacc aagttcctct cttgtccgt	480
tacgttcaag cagctaatct tcacctcagc gtgcttcgag acgttagcgt gtttggcaa	540
aggtggggat tcgatgctgc aaccatcaat agccgttaca acgaccttac taggctgatt	600
ggaaactaca ccgaccacgc tgTTCTTGG tacaacactg gcttggagcg tgtctgggt	660
cctgattcta gagattggat tagatacaac cagttcagga gagaattgac cctcacagtt	720
ttggacattt tgcgtctctt cccgaactat gactccagaa cctaccatat ccgtacagtg	780
tcccaactta ccagagaaat ctataactaac ccagttcttg agaacttcga cggtagcttc	840
cgtggttctg cccaaaggat cgaaggctcc atcaggagcc cacacttgat ggacatctt	900
aacagcataa ctatctacac cgatgctcac agaggagagt attactggtc tggacaccag	960
atcatggcct ctccagttgg attcagcggg cccgagtttta ctttcctct ctatgaaact	1020
atggaaaacg ccgctccaca acaacgtatc gttgctcaac taggtcaggg tgtctacaga	1080
accttgcctt ccacccgtta cagaagaccc ttcaatatcg gtatcaacaa ccagcaactt	1140
tccgttctt acggaacaga gttcgcttat ggaaccttctt ctaacttgcc atccgctgtt	1200
tacagaaaga gcggAACCGT tgattcctt gacgaaatcc caccacagaa caacaatgt	1260
ccacccaggc aaggattctc ccacaggttgc agccacgtgt ccatgttccg ttccggattc	1320
agcaacagtt ccgtgagcat catcagagct cctatgttct cttggataaca ccgtagtgct	1380
gagttcaaca acatcatcgc atccgatagt attactcaaa tccctgcagt gaaggaaac	1440
tttctttca acggttctgt catttcagga ccaggattca ctgggtggaga cctcggtttaga	1500
ctcaacagca gtggaaataa cattcagaat agagggtata ttgaagttcc aattcacttc	1560
ccatccacat ctaccagata tagagttcgt gtgaggtatg cttctgtgac ccctattcac	1620
ctcaacgtta attggggtaa ttcatccatc ttctccaata cagttccagc tacagctacc	1680
tccttgata atctccaatc cagcgatttc ggtaacttttgc aaagtgcacaa tgcttttaca	1740
tcttcactcg gtaacatcgt gggtgtttaga aacttttagtg ggactgcagg agtgattatc	1800
gacagattcg agttcattcc agttactgca acactcgagg ctgaatataa tctggaaaga	1860
gcgcagaagg cggtgaatgc gctgtttacg tctacaaacc aactagggtt aaaaacaaat	1920
gtaacggatt atcatattga tcaagtgtcc aatttagtta cgtatttatac ggatgaattt	1980

tgtctggatg	aaaagcgaga	attgtccgag	aaagtcaaac	atgcgaagcg	actcagtgat	2040
gaacgcaatt	tactccaaga	ttcaaatttc	aaagacatta	ataggcaacc	agaacgtggg	2100
tggggcggaa	gtacagggat	taccatccaa	ggaggggatg	acgtattnaa	agaaaattac	2160
gtcacactat	caggtacctt	tgatgagtgc	tatccaacat	atttgtatca	aaaaatcgat	2220
gaatcaaaat	taaaagcctt	tacccgttat	caattaagag	ggtatatcga	agatagtcaa	2280
gacttagaaa	tctatttaat	tcgctacaat	gcaaaacatg	aaacagtaaa	tgtgccaggt	2340
acgggttcct	tatggccgct	ttcagccaa	agtccaatcg	gaaagtgtgg	agagccgaat	2400
cgatgcgcgc	cacaccttga	atggaatcct	gacttagatt	gttcgtgtag	ggatggagaa	2460
aagtgtgcc	atcattcgca	tcatttctcc	ttagacattg	atgttaggatg	tacagactta	2520
aatgaggacc	taggtgtatg	ggtgatctt	aagattaaga	cgcaagatgg	gcacgcaaga	2580
ctagggaaatc	tagagtttct	cgaagagaaa	ccattagtag	gagaagcgct	agctcggtg	2640
aaaagagcgg	agaaaaaaatg	gagagacaaa	cgtaaaaat	tggaatgggaa	aacaaatatc	2700
gtttataaaag	aggcaaaaga	atctgttagat	gctttatttg	taaactctca	atatgatcaa	2760
ttacaagcgg	atacgaatat	tgccatgatt	catgcggcag	ataaacgtgt	tcatagcatt	2820
cgagaagctt	atctgcctga	gctgtctgtg	attccgggtg	tcaatgcggc	tatffffgaa	2880
gaattagaag	ggcgtatttt	cactgcattc	tccctatatg	atgcgagaaa	tgtcattaaa	2940
aatggtgatt	ttaataatgg	cttattcctgc	tggAACGTGA	aagggcatgt	agatgttagaa	3000
gaacaaaaca	accaacgttc	ggtccttgg	gttccggat	gggaagcaga	agtgtcacaa	3060
gaagttcgtg	tctgtccggg	tcgtggctat	atccttcgtg	tcacagcgta	caaggaggga	3120
tatggagaag	gttgcgtaac	cattcatgag	atcgagaaca	atacagacga	actgaagttt	3180
agcaactgcg	tagaagagga	aatctatcca	aataacacgg	taacgtgtaa	tgattatact	3240
gtttatcaag	aagaatacgg	aggtgcgtac	acttctcgta	atcgaggata	taacgaagct	3300
ccttcgtac	cagctgatta	tgcgtcagtc	tatgaagaaa	aatcgatatac	agatggacga	3360
agagagaatc	cttgcgtatt	taacagaggg	tataggatt	acacgcccact	accagttgg	3420
tatgtgacaa	aagaattaga	atacttccca	gaaaccgata	aggtatggat	tgagattgga	3480
gaaacggaag	gaacatttat	cgtggacacgc	gtggattac	tccttatgga	ggaa	3534

<210> 10
<211> 3534
<212> DNA
<213> Artificial sequence

<220>
<223> wild type full length HD73 (Cry1Ac) gene, described in Example 3
and set forth in upper line of Figures 9-11

<400> 10

atggataaca atccgaacat caatgaatgc attccttata attgttaag taaccctgaa	60
gtagaagtat taggtggaga aagaatagaa actggttaca ccccaatcga tatttccttg	120
tcgctaacgc aatttctttt gagtgaattt gttcccggtg ctggatttgc gttaggacta	180
gttgatataa tatgggaat ttttggtccc tctcaatggg acgcatttct tgtacaattt	240
gaacagttaa ttaaccaaag aatagaagaa ttgccttagga accaagccat ttctagatta	300
gaaggactaa gcaatctta tcaaatttac gcagaatctt ttagagagtg ggaagcagat	360
cctactaattc cagcattaag agaagagatg cgtattcaat tcaatgacat gaacagtgcc	420
cttacaaccc ctattcctct ttttgcagtt caaaatttac aagttcctct tttatcagta	480
tatgttcaag ctgcaaattt acatttatca gtttgagag atgtttcagt gtttggacaa	540
agtggggat ttgatgccgc gactatcaat agtcgttata atgatttaac taggcttatt	600
ggcaactata cagatcatgc tgtacgctgg tacaatacgg gattagagcg tgtatgggg	660
ccggattctta gagattggat aagatataat caatttagaa gagaattaac actaactgta	720
ttagatatcg tttctctatt tccgaactat gatagtagaa cgtatccaat tcgaacagtt	780
tcccaattaa caagagaaat ttatacaaac ccagtattttag aaaattttga tggtagttt	840
cgaggctcgg ctcagggcat agaaggaagt attaggagtc cacatttgc ggatataactt	900
aatagtataa ccatctatac ggatgctcat agaggagaat attattggtc agggcatcaa	960
ataatggctt ctccctgtttagg gtttcgggg ccagaattca cttttccgct atatgaaact	1020
atggaaatg cagctccaca acaacgtattt gttgctcaac taggtcaggg cgtgtataga	1080
acattatcgcc ccaccttata tagaagacct tttaatatacg ggataaataa tcaacaacta	1140
tctgttcttg acgggacaga atttgcttattt ggaaccttcaat caaatttgcc atccgctgt	1200
tacagaaaaa gcggaacggg agattcgctg gatgaaatac cgccacagaa taacaacgtg	1260
ccaccttaggc aaggatttag tcatcgatca agccatgtttt caatgtttcg ttcaggctt	1320
agtaatagta gtgttaagtat aataagagct cctatgttct cttggatatac tgcgtatgt	1380
gaatttaata atataattgc atcggatagt attactcaaa tccctgcagt gaaggaaac	1440
tttctttta atgggtctgt aatttcagga ccaggattta ctgggtgggg ctttagtttaga	1500
ttaaatagta gtggaaataa cattcagaat agagggtata ttgaagttcc aattcacttc	1560
ccatcgacat ctaccagata tcgagttcgt gtacggatgt cttctgtaac cccgattcac	1620
ctcaacgtta attggggtaa ttcatccatt tttccaata cagtaccagc tacagctacg	1680
tcatttagata atctacaatc aagtgattttt ggttattttg aaagtgcacaa tgctttaca	1740
tcttcatttag gtaatatagt aggtgtttaga aatttttagtgc ggactgcagg agtgataata	1800
gacagatttg aatttattcc agttactgca acactcgagg ctgaatataa tctggaaaga	1860
gcgcagaagg cggtgaatgc gctgtttacg tctacaaacc aactagggt aaaaacaaat	1920

gtaacggatt atcatattga tcaagtgtcc aatttagtta cgtatttatac ggatgaattt	1980
tgtctggatg aaaagcgaga attgtccgag aaagtcaaac atgcgaagcg actcagtgat	2040
gaacgcatt tactccaaga ttcaaatttc aaagacatta ataggcaacc agaacgtggg	2100
tggggcggaa gtacagggat taccatccaa ggagggatg acgtattaa agaaaattac	2160
gtcacactat caggtacctt tgatgagtgc tatccaacat atttgtatca aaaaatcgat	2220
aatcaaaaat taaaagcctt taccgcattt caattaagag ggtatatcga agatagtcaa	2280
gacttagaaa tctatttaat tcgctacaat gcaaaacatg aaacagtaaa tgtgccaggt	2340
acgggttcct tatggccgtt ttcagccaa agtccaatcg gaaagtgtgg agagccgaat	2400
cgtgcgcgc cacacccgttga atggaatcct gacttagatt gttcgtgttag ggatggagaa	2460
aagtgtgccc atcatcgca tcatttctcc ttagacattt gatgttagatg tacagactta	2520
aatgaggacc taggtgtatg ggtgatctt aagattaaga cgcaagatgg gcacgcaga	2580
ctagggaatc tagagtttctt cgaagagaaaa ccatttagtag gagaagcgct agctcgtgt	2640
aaaagagcgg agaaaaaaatg gagagacaaa cgtaaaaat tggaaatgggaa aacaaatatc	2700
gtttataaaag aggcaaaaga atctgtatg gctttatgg taaactctca atatgtatcaa	2760
ttacaagcgg atacgaatat tgccatgatt catgcggcag ataaacgtgt tcatacgatt	2820
cgagaagctt atctgcctga gctgtctgtg attccgggtg tcaatgcggc tattttgaa	2880
gaattagaag ggcgtatccc cactgcattt tccctatatg atgcgagaaaa tgtcattaaa	2940
aatggtgatt ttaataatgg cttatcctgc tggAACGTGA aagggcatgt agatgttagaa	3000
gaacaaaaca accaacgttc ggtccttgg tttccggaaat gggaaagcaga agtgtcacaa	3060
gaagttcgtg tctgtccggg tcgtggctat atccttcgtg tcacagcgta caaggaggaa	3120
tatggagaag gttgcgtaac cattcatgag atcgagaaca atacagacga actgaagttt	3180
agcaactgcg tagaagagga aatctatcca aataaacacgg taacgtgtaa tgattatact	3240
gtttatcaag aagaatacgg aggtgcgtac acttctcgta atcgaggata taacgaagct	3300
cttccgtac cagctgattt tgcgtcagtc tatgaagaaaa aatcgatatac agatggacga	3360
agagagaatc cttgtgaattt taacagaggg tataaggattt acacgcactt accagttgg	3420
tatgtgacaa aagaatttgc aatctccca gaaaccgata aggtatggat tgagattggaa	3480
gaaacggaaag gaacattttat cgtggacacgc gtggaaattac tccttatggaa ggaa	3534

<210> 11
 <211> 3534
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic/modified sequence encoding HD73 (CryAc) described in
 Example 3 and set forth as lower line in Figure 10

<400> 11	
atggacaaca acccaaacat caacgaatgc attccataca actgcttgag taacccagaa	60
gttgaagtac ttggggaga acgcattgaa accggttaca ctcccattcga catctccttg	120
tccttgacac agtttctgct cagcgagttc gtgccaggtg ctgggttcgt tctcgacta	180
gttgacatca tctgggttat ctttggtcca tctcaatggg atgcattcct ggtgcaaatt	240
gagcagttga tcaaccagag gatcgaagag ttcgccagga accaggccat ctctaggtt	300
gaaggattga gcaatctcta ccaaatttat gcagagagct tcagagagt ggaagccgat	360
cctactaacc cagctctccg cgaggaaatg cgtattcaat tcaacgacat gaacagcgcc	420
ttgaccacag ctatcccatt gttcgagtc cagaactacc aagttcctct cttgtccgtg	480
tacgttcaag cagctaatct tcacctcagc gtgcttcgag acgttagcgt gtttggcaa	540
aggtggggat tcgatgctgc aaccatcaat agccgttaca acgacacctac taggctgatt	600
ggaaactaca ccgaccacgc tgttcggttgg tacaacactg gcttggagcg tgtctgggg	660
cctgattcta gagattggat tagatacaac cagttcagga gagaattgac cctcacagtt	720
ttggacattt tgcgtctctt cccgaactat gactccagaa cctaccctat ccgtacagtg	780
tcccaactta ccagagaaat ctatactaac ccagttcttg agaacttcga cggtagcttc	840
cgtggttctg cccaaaggat cgaaggctcc atcaggagcc cacacttgat ggacatctt	900
aacagcataa ctatctacac cgatgctcac agaggagagt attactggtc tggacaccag	960
atcatggcct ctccagttgg attcagcggg cccgagtttta ctttcctct ctatgaaact	1020
atggaaaacg ccgctccaca acaacgtatc gttgctcaac taggtcaggg tgtctacaga	1080
accttgtctt ccaccttgcata cagaagaccc ttcaatatcg gtatcaacaa ccagcaactt	1140
tccgttcttg acggaacaga gttcgcttat ggaaccttctt ctaacttgcc atccgctgtt	1200
tacagaaaga gcggAACCGT tgattccttg gacgaaatcc caccacagaa caacaatgtg	1260
ccacccaggc aaggattctc ccacaggttgc agccacgtgt ccatgttccg ttccggattc	1320
agcaacagtt ccgtgagcat catcagagct cctatgttct cttggataca ccgtagtgct	1380
gagttcaaca acatcatcgc atccgatagt attactcaaa tccctgcagt gaaggaaac	1440
tttctttca acggttctgt catttcagga ccaggattca ctgggtggaga cctcggtttaga	1500
ctcaacagca gtggaaataa cattcagaat agagggtata ttgaagttcc aattcacttc	1560
ccatccacat ctaccagata tagatgttgc gtgaggtatg cttctgtgac ccctattcac	1620
ctcaacgtta attggggtaa ttcatccatc ttctccaata cagttccagc tacagctacc	1680
tccttgata atctccaatc cagcgatttc ggttactttg aaagtccaa tgctttaca	1740
tcttcactcg gtaacatcgt ggggtttaga aacttttagt gggactgcagg agtgattatc	1800
gacagattcg agttcattcc agttactgca acactcgagg ctgaatataa tctggaaaga	1860

gcgcagaagg	cggtaatgc	gctgtttacg	tctacaaacc	agctcgccct	caagaccaat	1920
gtgacggatt	atcatattga	tcaagtgtcc	aacttggtga	cctaccttag	cgatgagttc	1980
tgtctggatg	aaaagcgaga	attgtccgag	aaagtcaaac	atgcgaagcg	actcagtgtat	2040
gaacgcatt	tactccaaga	ttcaaatttc	aaagacatta	ataggcaacc	agaacgtggg	2100
tggggcggaa	gtacagggat	taccatccag	ggaggtgacg	acgtgttcaa	ggagaactac	2160
gtcacactat	caggtacctt	tgatgagtgc	tatccaacat	acctctacca	gaagatcgac	2220
gagtccaaat	tgaaagcctt	tacccgttat	caattaagag	ggtatatcga	agatagtcaa	2280
gacctcgaga	tctacctcat	ccgctacaat	gcaaaacatg	aaacagtaaa	tgtgccaggt	2340
acgggttcct	tatggccgct	ttcagcccaa	agtccaatcg	gaaagtgtgg	agagccgaat	2400
cgatgcgcgc	cacacccatg	atggaatcct	gacttagatt	gttcgtgtag	ggatggagaa	2460
aagtgtgcc	atcattcgca	tcatttctcc	ttagacattg	atgttaggatg	tacagactta	2520
aatgaggacc	taggtgtatg	ggtgatctt	aagattaaga	cgcaagatgg	gcacgcaaga	2580
ctagggaatc	tagagtttct	cgaagagaaaa	ccattagtag	gagaagcgct	agctcgtgt	2640
aaaagagcgg	agaaaaaaatg	gagagacaaa	cgtgagaagt	tggaatggg	gaccaacatc	2700
gtctacaaag	aggcaaaaga	atctgttagat	gctttatttg	taaactctca	atatgtatcaa	2760
ttacaagcgg	atacgaatat	tgccatgatt	catgcggcag	ataaacgtgt	tcatagcatt	2820
cgagaagctt	atctgcctga	gctgtctgt	attccgggtg	tcaatgcggc	tatTTTgaa	2880
gaattagaag	ggcgtatTTT	cactgcattc	tccctctacg	atgccagaaa	cgtcatcaag	2940
aacggtgact	tcaacaatgg	cttattcctgc	tggaacgtga	aagggcatgt	agatgttagaa	3000
gaacaaaaca	accaacgttc	ggtccttgtt	gttccggat	gggaagcaga	agtgtcacaa	3060
gaagttcgtg	tctgtccggg	tcgtggctat	atccttcgtg	tcacagcgta	caaggaggga	3120
tatggagaag	gttgcgtAAC	cattcatgag	atcgagaaca	atacagacga	actgaagttt	3180
agcaactgcg	tagaagagga	aatctatcca	aataacacgg	taacgtgtaa	tgattatact	3240
gtAAatcaag	aagaatacgg	aggtgcgtac	acttctcgta	atcgaggata	taacgaagct	3300
ccttccgtac	cagctgatta	tgcgtcagtc	tatgaagaaa	aatcgataac	agatggacga	3360
agagagaatc	cttgtgaatt	taacagaggg	tataggatt	acacgccact	accagttgg	3420
tatgtgacaa	aagaattaga	atacttccc	gaaaccgata	aggtatggat	tgagattgga	3480
gaaacggaag	gaacatttat	cgtggacagc	gtggattac	tccttatgga	ggaa	3534

<210> 12
 <211> 3534
 <212> DNA
 <213> Artificial sequence

~ <220>

<223> Fully synthetic sequence encoding insecticidal toxin encoding HD-73
(Cry1Ac) described in Example 3 and set forth in the lower line of
Figure 11

<400> 12
atggacaaca acccaaacat caacgaatgc attccataca actgcttgag taacccagaa 60
gttgaagtac ttgggtgaga acgcattgaa accggttaca ctccccatcga catctcccttg 120
tccttgacac agtttctgct cagcgagttc gtgccaggtg ctgggttcgt tctcggacta 180
gttgacatca tctgggttat ctttggtcca tctcaatggg atgcattcct ggtgcaaatt 240
gagcagttga tcaaccagag gatcgaagag ttcgccagga accaggccat ctctaggttg 300
gaaggattga gcaatctcta ccaaatttat gcagagagct tcagagagtg ggaagccgat 360
cctactaacc cagctctccg cgaggaaatg cgtattcaat tcaacgcacat gaacagcgcc 420
ttgaccacag ctatcccatt gttcgagtc cagaactacc aagttcctct cttgtccgtg 480
tacgttcaag cagctaatct tcacccatcgt acgttagcgt gtttgggcaa 540
aggtggggat tcgatgctgc aaccatcaat agccgttaca acgacattac taggctgatt 600
ggaaaactaca ccgaccacgc tgttcggtgg tacaacactg gcttggagcg tgtctggggt 660
cctgattcta gagattggat tagatacaac cagttcagga gagaattgac cctcacagtt 720
ttggacattt tgcgtctctt cccgaactat gactccagaa cctaccctat ccgtacagtg 780
tcccaactta ccagagaaat ctataactaac ccagttcttg agaacttcga cggtagcttc 840
cgtggttctg cccaaaggat cgaaggctcc atcaggagcc cacacttgat ggacatctt 900
aacagcataa ctatctacac cgatgctcac agaggagagt attactggtc tggacaccag 960
atcatggcct ctccagttgg attcagcggtt cccgagtttta ctttcctct ctatggaaact 1020
atgggaaacg ccgctccaca acaacgtatc gttgctcaac taggtcaggg tgtctacaga 1080
accttgttctt ccacccatgtt cagaagaccc ttcaatatcg gtatcaacaa ccagcaactt 1140
tccgttcttg acggaacaga gttcgcttat ggaaccttctt ctaacttgcc atccgctgtt 1200
tacagaaaga gcggaaccgt tgattccttg gacgaaatcc caccacagaa caacaatgtg 1260
ccacccaggc aaggattctc ccacagggtt agccacgtgt ccatgttccg ttccggattc 1320
agcaacagtt ccgtgagcat catcagagct cctatgttct cttggataca ccgtagtgct 1380
gagttcaaca acatcatcgc atccgatagt attactcaaa tccctgcagt gaaggaaac 1440
tttctttca acggttctgt catttcagga ccaggattca ctgggtggaga cctcggtttaga 1500
ctcaacagca gtggaaataa cattcagaat agagggtata ttgaagttcc aattcacttc 1560
ccatccacat ctaccagata tagagttcgt gtgaggtatg cttctgtgac ccctattcac 1620
ctcaacgtta attggggtaa ttcatccatc ttctccaata cagttccagc tacagctacc 1680
tccttgata atctccaatc cagcgatttc ggttactttt aaagtgc当地 tgctttaca 1740

tcttcactcg gtaacatcg gggtgttaga aacttttagtg ggactgcagg agtgattatc 1800
gacagattcg agttcattcc agttactgca acactcgagg ctgagtacaa ccttgagaga 1860
gcccagaagg ctgtgaacgc cctcttacc tccaccaatc agcttggctt gaaaactaac 1920
gttactgact atcacattga ccaagtgtcc aacttggtca cctaccttag cgatgagttc 1980
tgcctcgacg agaagcgtga actctccgag aaagttaaac acgccaagcg tctcagcgac 2040
gagaggaatc tcttgcaaga ctccaacttc aaagacatca acaggcagcc agaacgtggt 2100
tggggtgaa gcaccggat caccatccaa ggaggcgacg atgtgttcaa ggagaactac 2160
gtcaccctct ccggaaacttt cgacgagtgc taccctacct acttgtacca gaagatcgat 2220
gagtccaaac tcaaagcctt caccaggtat caacttagag gctacatcga agacagccaa 2280
gaccttggaaa tctactcgat caggtacaat gccaaagcacg agaccgtgaa tgtcccaggt 2340
actggttccc tctggccact ttctgccccaa tctcccattg ggaagtgtgg agagcctaac 2400
agatgcgctc cacacccatcg gtggaaatcct gacttggact gctcctgcag ggtatggcgag 2460
aagtgtgccc accattctca tcacttctcc ttggacatcg atgtgggatg tactgacctg 2520
aatgaggacc tcggagtcg ggtcatcttc aagatcaaga cccaaagacgg acacgcaaga 2580
cttggcaacc tttagtttct cgaagagaaa ccattggcg gtgaagctct cgctcgatgt 2640
aagagagcag agaagaagtg gagggacaaa cgtgagaaac tcgaatggga aactaacatc 2700
gtttacaagg aggccaaaga gtccgtggat gctttgttcg tgaactccca atatgatcag 2760
ttgcaagccg acaccaacat cgccatgatc cacgcccgcag acaaacgtgt gcacagcatt 2820
cgtgaggcctt acttgcctga gttgtccgtg atccctggtg tgaacgctgc catcttcgag 2880
gaacttgagg gacgtatctt taccgcattc tccttgcacg atgccagaaa cgtcatcaag 2940
aacggtgact tcaacaatgg cctcagctgc tggaaatgtga aaggtcatgt ggacgtggag 3000
gaacagaaca atcagcgttc cgtcctggtt gtgcctgagt gggaaagctga agtgtcccaa 3060
gaggtagag tctgtccagg tagaggctac attctccgtg tgaccgctta caaggaggga 3120
tacggtgagg gttgcgtgac catccacgag atcgagaaca acaccgacga gcttaagttc 3180
tccaaactgcg tcgaggaaga aatctatccc aacaacacccg ttacttgcaa cgactacact 3240
gtgaatcagg aagagtacgg aggtgcctac actagccgta acagagggtt caacgaagct 3300
ccttccgttc ctgctgacta tgcctccgtg tacgaggaga aatcctacac agatggcaga 3360
cgtgagaacc cttgcgagtt caacagaggt tacagggact acacaccact tccagttggc 3420
tatgttacca aggagcttga gtactttcct gagaccgaca aagtgtggat cgagatcggt 3480
gaaaccgagg gaaccttcat cgtggacagc gtggagcttc tcttgatgga ggaa 3534

<210> 13
<211> 3531

<212> DNA
 <213> Artificial sequence

 <220>
 <223> Nucleotide sequence described as HD-73 (Cry1Ac) in Example 3
 (page 59, lines 13-16), nucleotide 1-1830 as set forth in lower line
 of Figure 11

<400> 13						
atggacaaca	acccaaacat	caacgaatgc	attccataca	actgcttgag	taacccagaa	60
gttgaagtac	ttgggtggaga	acgcattgaa	accggttaca	ctcccatcga	catctccttg	120
tccttgcacac	agtttctgct	cagcgagttc	gtgccaggtg	ctgggttcgt	tctcggacta	180
gttgacatca	tctgggttat	ctttggtcca	tctcaatggg	atgcattcct	ggtgcaaatt	240
gaggcagttga	tcaaccagag	gatcgaagag	ttcgccagga	accaggccat	ctcttaggttg	300
gaaggattga	gcaatctcta	ccaaatctat	gcagagagct	tcagagagtg	ggaagccgat	360
cctactaacc	cagctctccg	cgaggaaatg	cgtattcaat	tcaacgacat	gaacagcgcc	420
ttgaccacag	ctatcccatt	gttcgcagtc	cagaactacc	aagttcctct	cttgtccgtg	480
tacgttcaag	cagctaattct	tcacctcagc	gtgcttcgag	acgtagcgt	gtttgggcaa	540
aggtggggat	tcgatgctgc	aaccatcaat	agccgttaca	acgacacctac	taggctgatt	600
ggaaactaca	ccgaccacgc	tgttcgttgg	tacaacactg	gcttggagcg	tgtctggggt	660
cctgattcta	gagattggat	tagatacaac	cagttcagga	gagaattgac	cctcacagtt	720
ttggacattg	tgtctctctt	cccgaactat	gactccagaa	cctaccctat	ccgtacagtg	780
tcccaactta	ccagagaaaat	ctatactaac	ccagttcttg	agaacttcga	cggtagcttc	840
cgtggttctg	cccaaggat	cgaaggctcc	atcaggagcc	cacacttgat	ggacatcttg	900
aacagcataa	ctatctacac	cgatgctcac	agaggagagt	attactggtc	tggacaccag	960
atcatggcct	ctccagttgg	attcagcggg	cccagttta	ccttcctct	ctatggaact	1020
atggaaacg	ccgctccaca	acaacgtatc	gttgctcaac	taggtcaggg	tgtctacaga	1080
accttgcctt	ccaccttgta	cagaagaccc	ttcaatatcg	gtatcaacaa	ccagcaactt	1140
tccgttctt	acggaacaga	gttcgcctat	ggaacctctt	ctaaactgcc	atccgctgtt	1200
tacagaaaaga	gccaaccgt	tgattcctt	gacgaaatcc	caccacagaa	caacaatgtg	1260
ccacccaggc	aaggattctc	ccacaggtt	agccacgtgt	ccatgttccg	ttccggattc	1320
agcaacagtt	ccgtgagcat	catcagagct	cctatgttct	catggattca	tcgttagtgc	1380
gagttcaaca	atatcattcc	ttcctctcaa	atcacccaaa	tcccattgac	caagtctact	1440
aaccttggat	ctggaacttc	tgtcgtaaaa	ggaccaggct	tcacaggagg	tgatattctt	1500
agaagaactt	ctcctggcca	gattgcacc	ctcagagtt	acatcactgc	accactttct	1560
caaagatatac	gtgtcaggat	tcgttacgca	tctaccacta	acttgcaatt	ccacacctcc	1620

atcgacggaa ggcctatcaa tcaggtaac ttctccgcaa ccatgtcaag cggcagcaac	1680
ttgcaatccg gcagcttcag aaccgtcggt ttcactactc ctttcaactt ctctaacgga	1740
tcaagcgtt tcacccttag cgctcatgtg ttcaattctg gcaatgaagt gtacattgac	1800
cgtattgagt ttgtgcctgc cgaagttacc ctcgaggctg agtacaacct tgagagagcc	1860
cagaaggctg tgaacgcccct ctttacctcc accaatcagc ttggcttgaa aactaacgtt	1920
actgactatac acattgacca agtgtccaac ttggtcacct accttagcga tgagttctgc	1980
ctcgacgaga agcgtgaact ctccgagaaa gttaaacacg ccaagcgtct cagcgacgag	2040
aggaatctct tgcaagactc caacttcaaa gacatcaaca ggcagccaga acgtggttgg	2100
ggtggaaagca ccgggatcac catccaagga ggcgacgatg tttcaagga gaactacgtc	2160
accctctccg gaactttcga cgagtgtac cctacctact tgtaccagaa gatcgatgag	2220
tccaaactca aagccttcac caggtatcaa ctttagaggct acatcgaaga cagccaagac	2280
cttgaatct actcgatcag gtacaatgcc aagcacgaga ccgtaatgt cccaggtact	2340
ggttccctct ggccactttc tgcccaatct cccattggga agtgtggaga gcctaacaga	2400
tgcgctccac accttgagtg gaatcctgac ttggactgct cctgcaggaa tggcgagaag	2460
tgtgcccacc attctcatca ctttccttg gacatcgatg tggatgtac tgacctgaat	2520
gaggacctcg gagtctgggt catttcaag atcaagaccc aagacggaca cgcaagactt	2580
ggcaacccttg agtttctcga agagaaacca ttggtcggtg aagctctcgc tcgtgtgaag	2640
agagcagaga agaagtggag ggacaaacgt gagaaactcg aatggaaac taacatcgaa	2700
tacaaggagg ccaaagagtc cgtggatgct ttgtcgtga actccccata tgatcagtt	2760
caagccgaca ccaacatcgc catgatccac gccgcagaca aacgtgtgca cagcattcgt	2820
gaggcttact tgcctgagtt gtccgtgatc cctgggtgtga acgctccat cttcgaggaa	2880
cttgagggac gtatcttac cgcattctcc ttgtacgtg ccagaaacgt catcaagaac	2940
ggtgacttca acaatggcct cagctgctgg aatgtgaaag gtcatgtgga cgtggaggaa	3000
cagaacaatc agcgccccgt cctgggtgtg cctgagtgaa aagctgaagt gtcccaagag	3060
gttagagttct gtccaggtag aggctacatt ctccgtgtga ccgcttacaa ggagggatac	3120
ggtgagggtt gcgtgaccat ccacgagatc gagaacaaca ccgacgagct taagttctcc	3180
aactgcgtcg aggaagaaat ctatccaaac aacaccgtta cttgcaacga ctacactgt	3240
aatcaggaag agtacggagg tgcctacact agccgtaaaca gaggttacaa cgaagctcct	3300
tccgttcctg ctgactatgc ctccgtgtac gaggagaaat cctacacaga tggcagacgt	3360
gagaaccctt gcgagttcaa cagaggttac agggactaca caccacttcc agttggctat	3420
gttaccaagg agcttgagta ctttcctgag accgacaaag tgtggatcga gatcggtgaa	3480
accgagggaa cttcatcgt ggacagcgtg gagttctct tgatggagga a	3531

```

<210> 14
<211> 1791
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic nucleotide sequence encoding a Btt toxin (Cry3Aa),
described in Example 5 and set forth in the lower line in Figure
12

<400> 14
atgactgcag acaacaacac cgaaggccctc gacagttcta ccactaagga tgttatccag      60
aagggtatct ccgttgtggg agaccttctt ggcgtgggtt gatttcctt cggtgaggcc      120
ctcgtgagct tctatacaaaa ct当地caac accatttggc caagcgagga cccttggaaa      180
gcattcatgg agcaagttga agctcttatg gatcagaaga ttgcagatta tgccaagaac      240
aaggcttgg cagaactcca gggccttcag aacaatgtgg aggactacgt gagtgcattt      300
tccagctggc agaagaaccc tggtagctcc agaaatcctc acagccaagg taggatcaga      360
gagttgttct ctcaagccga atcccacttc agaaattcca tgcctagctt tgctatctcc      420
ggttacgagg ttctttcct cactacctat gctcaagctg ccaacaccca ctgtttctc      480
cttaaggacg ctcaaattctt tggagaagag tggggatacg agaaagagga cattgctgag      540
ttctacaagc gtcaacttaa gtcacccaa gagtacactg accattgcgt gaaatggat      600
aacgttggtc tcgataagct cagaggctct tcctacgagt cttgggtgaa cttcaacaga      660
tacaggagag agatgacctt gactgtgctc gatcttatcg cactcttcc ctgtacgtat      720
gtgagactct acccaaagga agtggaaact gagcttacca gagacgtgct cactgaccct      780
attgtcgag tcaacaacct taggggttat ggaactacct tcagcaatat cgaaaactac      840
ataggaaac cacatcttt cgactatctt cacagaattt aattccacac aagggttcaa      900
ccaggatact atggtaacga ct当地caac tattggtccg gtaactatgt ttccaccaga      960
ccaaaggattt gatctaatga catcatcaca tctcccttctt atggtaacaa gtcctgtgaa      1020
cctgtgcaga accttgagtt caacggcgag aaagtctata gagccgtcgc aaacaccaat      1080
ctcgctgtgt ggccatccgc agtttactca gggttcacaa aggtggagtt tagtcaatgt      1140
aacgatcaga ccgatgaggc cagcacccag acttacgact ccaaacgtaa cgttggcgca      1200
gtctcttggg attctatcga ccaattgcct ccagaaacca cagacgaacc attggagaag      1260
ggctacagcc accaacttaa ctatgtgatg tgcttcttga tgcaaggttc cagagggacc      1320
atccagttgt tgacctggac acacaagtcc gtggacttct tcaacatgtat cgatagcaag      1380
aagatcactc aacttccctt ggtgaaagcc tacaagctgc aatctggtgc ttccgttgc      1440
gcaggtcccc gattcaactgg aggtgacatc atccagtgca cagagaacgg cagcgcagct      1500
actatctacg tgacacctga tgggtttac tctcagaagt acagggcacg tattcattac      1560

```

gcatctacca	gccagatcac	cttcacactc	agcttggatg	gagcaccctt	caaccagtat	1620
tactttgaca	agaccatcaa	caaaggtgac	actctcacat	acaatagctt	caacttggca	1680
agtttcagca	caccatttga	actctcaggc	aacaatcttc	agatcggcgt	caccggtctc	1740
agcgccggag	acaaaagtcta	catcgacaag	atttagttca	tcccagtcaa	c	1791

<210>	15					
<211>	1791					
<212>	DNA					
<213>	Artificial sequence					
<220>						
<223>	Btt toxin (Cry3Aa), Example 5 and upper line in Figure 12					
<400>	15					
atgactgcag	ataataatac	ggaagcacta	gatagctcta	caacaaaaaga	tgtcattcaa	60
aaaggcattt	ccgttagttagg	tgatctccta	ggcgttagtag	gtttcccggt	tggggagcg	120
cttggggcg	tttatacaaaa	ctttttaaat	actatggc	caagtgaaga	cccggtgaaag	180
gcttttatgg	aacaagtaga	agcattgatg	gatcagaaaa	tagctgatta	tgcaaaaaat	240
aaagctcttgc	cagagttaca	gggccttcaa	aataatgtcg	aagattatgt	gagtgcattg	300
agttcatggc	aaaaaaatcc	tgtgagttca	cgaaatccac	atagccaggg	gcggataaga	360
gagctgtttt	ctcaagcaga	aagtcatttt	cgttaattcaa	tgccttcggt	tgcaatttct	420
ggatacggagg	ttcttatttct	aacaacatat	gcacaagctg	ccaacacaca	tttattttta	480
ctaaaagacg	ctcaaattta	tggagaagaa	tggggatacg	aaaaagaaga	tattgctgaa	540
ttttataaaaa	gacaactaaa	acttacgcaa	gaatatactg	accattgtgt	caaattggat	600
aatgttggat	tagataaatt	aagaggttca	tcttatgaat	cttgggtaaa	ctttaaccgt	660
tatcgccagag	agatgacatt	aacagtatta	gatttaatttgc	cactatttcc	attgtatgt	720
gttcggctat	acccaaaaga	agttaaaacc	gaattaacaa	gagacgtttt	aacagatcca	780
attgtcggag	tcaacaacct	tagggctat	ggaacaacct	tctctaataat	agaaaaattat	840
attcgaaaac	cacatctatt	tgactatctg	catagaattc	aatttcacac	gcgggttccaa	900
ccaggatatt	atggaaatga	ctctttcaat	tattggtccg	gtaattatgt	ttcaactaga	960
ccaagcatag	gatcaaata	tataatcaca	tctccattct	atggaaataa	atccagtgaa	1020
cctgtacaaa	atttagaatt	taatggagaa	aaagtctata	gagccgtac	aaataacaaat	1080
cttgcggtct	ggccgtccgc	tgtatattca	ggtgttacaa	aagtggatt	tagccaatat	1140
aatgatcaaa	cagatgaagc	aagtacacaa	acgtacgact	aaaaaagaaa	tgttggcgcg	1200
gtcagctggg	attctatcga	tcaattgcct	ccagaaacaa	cagatgaacc	tctagaaaag	1260
ggatatagcc	atcaactcaa	ttatgtatg	tgcttttaa	tgcaggtag	tagaggaaca	1320
atccccagtgt	taacttggac	acataaaagt	gtagactttt	ttaacatgtat	tgattcgaaa	1380

aaaattacac aacttccgtt agtaaaggca tataagttac aatctggtgc ttccgttgc	1440
gcaggtccta ggtttacagg aggagatatc attcaatgca cagaaaatgg aagtgcggca	1500
actatttacg ttacaccgga tgtgtcgta tctaaaaat atcgagctag aattcattat	1560
gcttctacat ctcagataac atttacactc agttagacg gggcaccatt taatcaatac	1620
tatttcgata aaacgataaa taaaggagac acattaacgt ataattcatt taatttagca	1680
agtttcagca caccattcga attatcaggg aataacttac aaataggcgt cacaggatta	1740
agtgctggag ataaagtttata tagacaatatttata ttccagtgaa t	1791

<210> 16
 <211> 1902
 <212> DNA
 <213> Artificial sequence

 <220>
 <223> Synthetic nucleotide sequence encoding *Bacillus thuringiensis kurstaki HD-1* insecticidal toxin P2 (Cry2Aa) described in Example 6 and set forth in the lower line in Figure 13

<400> 16	
atggacaaca acgtcttcaa ctctggtaga acaaccatct gcgacgcata caacgtcg	60
gctcacgatc cattcagctt cgaacacaag agcctcgaca ctattcagaa ggagtggatg	120
gaatggaaac gtactgacca ctctctctac gtcgcacctg tgggttggAAC agtgtccagc	180
ttccttctca agaaggctgg ctctctcatc ggaaaacgta tcttgtccga actctgggg	240
atcatcttccatctgggtc cactaatctc atgcaagaca tcttgaggga gaccgaacag	300
tttctcaacc agcgctctcaa cactgatacc ttggcttagag tcaacgctga gttgatcggt	360
ctccaagcaa acattcgtga gttcaaccag caagtggaca acttcttgc tccaaactcag	420
aatcctgtgc ctcttccat cacttcttcc gtgaacacta tgcaact ctccctcaac	480
agattgcctc agttcagat tcaaggctac cagttgctcc ttcttccact ctttgctcag	540
gctgccaaca tgcacttgc cttcatacgt gacgtgatcc tcaacgctga cgaatgggg	600
atctctgcag ccactcttag gacatacaga gactacttga ggaactacac tcgtgattac	660
tccaaactatt gcatcaaacat ttatcagact gccttcgtg gactcaatac taggcttcac	720
gacatgcttg agttcaggac ctacatgttc cttaacgtgt ttgagtgact cagcatttgg	780
agtctcttca agtaccagag cttgatggtg tcctctggag ccaatctcta cgccctctgg	840
agtggaccac agcaaactca gagcttcaca gctcagaact ggccattctt gtatagcttgc	900
ttccaaagtca actccaaacta cattctcagt ggtatctctg ggaccagact ctccataacc	960
tttcccaaca ttgggtggact tccaggctcc actacaaccc atagccttaa ctctgccaga	1020
gtgaactaca gtggaggtgt cagctctgga ttgattggtg caactaactt gaaccacaac	1080
ttcaattgct ccaccgtctt gccacctctg agcacaccgt ttgtgaggcgt ctggcttgc	1140

agcggtaactg atcgcgaaagg agttgttacc tctacaaaact ggcaaaaccga gtccttccaa 1200
accactctta gccttcggtg tggagcttgc tctgcacgtg ggaattcaaa ctactttcca 1260
gactacttca ttaggaacat ctctgggttt cctctcgta tcaggaatga agacacctacc 1320
cgtccacttc attacaacca gattaggaac atcgagtctc catccggtaac tccaggaggt 1380
gcaagagctt acctcggttc tgtccataac aggaagaaca acatctacgc tgccaaacgag 1440
aatggcacca tgattcacct tgcaccagaa gattacactg gattcaccat ctctccaatc 1500
catgctaccc aagtgaacaa tcagacacgc accttcatct ccggaaaagtt cgaaaaatcaa 1560
ggtgactcct tgagggtcga gcaatccaaac actaccgcta ggtacacttt gagaggcaat 1620
ggaaaacagct acaaaccttta cttgagagtt agctccattt gtaactccac catccgttgc 1680
accatcaacg gacgtgttta cacagtctct aatgtgaaca ctacaacgaa caatgatggc 1740
gttaacgaca acggagccag attcagcgac atcaacattt gcaacatcgt ggcctctgac 1800
aacactaacg ttacttttggaa catcaatgtg accctcaattt ctggaaactcc atttgatctc 1860
atgaacatca tggttgtgcc aactaaccttc cctccattgtt ac 1902

<210> 17
<211> 1899
<212> DNA
<213> Artificial sequence

<220>
<223> P2 (Cry2Aa), Example 6 and set forth in upper line in Figure 13

<400> 17 atgaataatg tattgaatacg tggaagaaca actatttgatc atgcgtataa tgttagtagcc 60
catgatccat ttagtttgc acataaaatca ttagataccat cccaaaaaga atggatggag 120
tggaaaagaa cagatcatag tttatatgtat gctcctgtat tcgaaactgt gtctatgttt 180
ttgctaaaga aagtggggag tcttatttggaa aaaaggatat tgagtgaatt atgggggata 240
atatttccta gtggtagtac aaatctaatacg caagatattt taagggagac agaacaattc 300
ctaaatcaaa gacttaatacg agataccctt gctcgtgtaa atgcagaatt gatagggttc 360
caagcgaata taagggagtt taatcaacaa gtagataatt ttttaaaccc tactcaaaac 420
cctgttcctt tatcaataac ttcttcggtt aatacaatgc agcaattattt tctaaataga 480
ttaccccaat tccagataca aggataccag ttgttattt tacctttt tacccatggca 540
gccaaatatgc atctttctt tattagat gttattctt atgcagatga atgggttattt 600
tcagcagcaa cattacgtac gtatcgatgat tacctgagaa attatacaag agattattct 660
aattattgtat taaatacgta tcaaactgcg ttttagagggt taaacaccccg tttacacgtat 720
atgttagaat tttagaacata tatgttttta aatgtatttgc aatatgtatc catttggta 780
ttgtttaaat atccagatgttctt ttttgttatct tctggcgctt atttatatgc tagcggtat 840

ggaccacagc agacacaatc atttacagca caaaaactggc cattttata ttctctttc	900
caagttaatt cgaattatat attatctggt attagtggta ctaggcttc tattaccttc	960
cctaataattg gtggttacc gggtagtact acaactcatt cattgaatag tgccagggtt	1020
aattatagcg gaggagttc atctggtctc atagggcga ctaatctaa tcacaactt	1080
aattgcagca cggtcctccc tccttatca acaccattt gtagaagttg gctggattca	1140
ggtagatc gagagggcgt tgctacctc acgaattggc agacagaatc ctttcaaaca	1200
actttaagtt taagggtgtgg tgcttttca gcccgtagaa attcaaacta tttcccagat	1260
tatTTTATCC gtaatatttc tggggttctt ttagttatta gaaacgaaga tctaacaaga	1320
ccgttacact ataaccaaata aagaaatata gaaagtcctt cgggaacacc tggtaggac	1380
cgggcctatt tggtatctgt gcataacaga aaaaataata tctatgccgc taatgaaaat	1440
ggtagatc tccatttggc gccagaagat tatacaggat ttactatatac gccaatacat	1500
gccactcaag tgaataatca aactcgaaca tttatttctg aaaaatttgg aaatcaaggt	1560
gattccttaa gatttgaaca aagcaacacg acagctcggtt atacgcttag agggaatgga	1620
aatagttaca atcttattt aagagtatct tcaataggaa attcaactat tcgagttact	1680
ataaacggta gagttatac tgtttcaaat gttataccca ctacaaataa cgatggagtt	1740
aatgataatg gagctcggtt ttcagatatt aatatcggtt atatagtagc aagtgataat	1800
actaatgtaa cgctagatata aatgtgaca ttAAactccg gtactccatt tgatctcatg	1860
aatattatgt ttgtgccaaac taatcttcca ccactttat	1899

<210> 18
 <211> 3567
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic nucleotide sequence encoding Bt entomocidus
 insecticidal protein (Cry1Ca), described in Example 7 and set
 forth in the lower line of Figure 14

<400> 18	
atggaggaga acaaccaaaa ccaatgcatt ccatacaact gcttgagtaa cccagaagag	60
gtattgcttg atggagaacg catttcaacc ggtaactctt ccatcgacat ctccttgtcc	120
ttggtccagt ttctggtcag caacttcgtg ccaggtggtg ggttccttgtt cggactaatt	180
gacttcgtct ggggtatcgt tggtccatct caatggatg cattccttgtt gcaaattttag	240
cagttgatca acgagaggat cgctgagttc gccaggaacg ctgccatcgc taacttggaa	300
ggattggca ataacttcaa catctatgtg gaggcattca aagagtggaa agaggaccct	360
aacaacccag agacccgcac tagggtgatc gacagattca gaatcttggaa cggccttttgc	420
gagagagata tcccatcctt cagaatctctt ggcttcgaag ttccctctttt gtccgtgtac	480

gctcaaggcag ctaatttca cctcgctatc ctccgagaca gtgtcatctt tggggaaagg	540
tggggattga ccactatcaa cgtcaatgag aattacaaca gacttatcag gcacattgac	600
gagtacgccc accactgtgc taacacctac aaccgtggct tgaacaatct ccctaagtct	660
acttatcaag attggattac ctacaacagg ttgaggagag acttgaccct cacagtttg	720
gacattgcag ctttcttccc gaactatgac aacaggagat accctatcca accagtgggt	780
caacttacca gagaagtcta tactgaccct cttatcaact tcaaccctca gttgcaaagt	840
gtcgcccaac ttcccacatt caacgtcatg gagtcagcc gtatcagggaa cccacacttg	900
tttgacatct tgaacaacct tactatcttc accgattgggt tcagcgttgg gctgtacttc	960
tattggggtg gacacagggt catctcctct cttattggag gtggaaacat tacctctcct	1020
atctatggac gtgaggcaaa ccaggagcca ccacgttagt tcaccttcaa cggtccagtc	1080
ttcagaacct tgcataaccc taccttgaga ttgctccagc aacctggcc agtcccacct	1140
ttcaacctta gaggtgttga gggcgtttag ttctctactc ctaccaactc cttcaacttac	1200
agaggttagag gaaccgttga ttccttgacc gaactcccac cagaggacaa tagcgtgcca	1260
cccagggaaag gctactccca caggttgtgc cacgcaacct tcgtgcagcg ttccggaaact	1320
ccattcctca ctacaggagt tgtgttctca tggactgatc gtagtgctac tctcaactat	1380
accattgatc ccgagaggat caatcaaactc ccattggtca agggttccg tgtgtgggaa	1440
ggaacttctg tcatcacagg accaggcttc acaggaggtg atattcttag aagaaaacact	1500
tttggcgact ttgtgagcct ccaagttaac atcaactctc caattactca aagatatcgt	1560
ctcaggtttc gttacgcattt ttccctgtac gctagagtca tcgtgcac cggagcagct	1620
tctaccggtg tcgggtggaca agtctccgtg aacatgccac tccagaagac tatggagatc	1680
ggcgagaact tgacatccag gacccatcaga tacaccgact tctctaaccc tttcagtttc	1740
cgtgccaacc ctgacatcat tggcatttagc gaacaacctc tctttggagc tggtagcatc	1800
tcatctggcg aattgtacat tgacaagatt gagatcatc ttgccgacgc taccttcgag	1860
gctgagtctg accttgagag agcccagaag gctgtgaacg ccctctttac ctcccttaat	1920
cagattggct tgaaaactga cgttactgac tatcacattt accaagtgtc caacttggtc	1980
gactgcctta gcgtatggattt ctgcctcgac gagaagcgtg aactctccga gaaagttaaa	2040
cacgccaagc gtctcagcga cgagaggaat ctcttgcag accccaaactt cagaggcattc	2100
aacaggcagc cagaccgtgg ttggagagga agcaccgaca tcaccatcca aggaggcgcac	2160
gatgtgttca aggagaacta cgtcaccctc ccaggaactg tggacgagtg ctaccctacc	2220
tacttgttacc agaagatcga tgagtccaaa ctcaaagcct acaccaggta tgaacttaga	2280
ggctacatcg aagacagcca agacccatgaa atctacactca tcaggtacaa tgccaaagcac	2340
gagatcgtga atgtcccagg tactgggttcc ctctggccac tttctgcccc aatgcccatt	2400

ggaaagtgtg gagagcctaa cagatgcgct ccacaccccttg agtggaatcc tgacttggac	2460
tgcctcgca gggatggcga gaagtgtgcc caccattctc atcacttcac cttggacatc	2520
gatgtggat gtactgacct gaatgaggac ctggaggct gggtcatctt caagatcaag	2580
acccaagacg gacacgcaag acttggcaac ctttagttc tcgaagagaa accattgctc	2640
ggtaagctc tcgctcgtgt gaagagagca gagaagaagt ggagggacaa acgtgagaaa	2700
ctccaactcg agactaacat cgttacaag gaggccaaag agtccgtga tgctttgttc	2760
gtgaactccc aatatgatag gttgcaagt gacaccaaca tcgccatgtat ccacgctgca	2820
gacaaacgtg tgcacaggat tcgtgaggct tacttgctg agttgtccgt gatccctgg	2880
gtgaacgctg ccatcttcga ggaacttgag ggacgtatct ttaccgcata ctccctgtac	2940
gatgccagaa acgtcatcaa gaacggtgac ttcaacaatg gcctcttgtg ctgaaatgtg	3000
aaaggtcatg tggacgtgga ggaacagaac aatcaccgtt ccgtccctgg tatccctgag	3060
tggaaagctg aagtgtccca agaggttaga gtctgtccag gtagaggcta cattctccgt	3120
gtgaccgctt acaaggaggg atacggtgag gttgcgtga ccatccacga gatcgaggac	3180
aacaccgacg agcttaagtt ctccaactgc gtcgaggaag aagtctatcc caacaacacc	3240
gttacttgca acaactacac tgggaccctag gaagagtacg aaggtaccta cactagccgt	3300
aaccaagggtt acgacgaagc ttacggaaac aatccttccg ttccctgctga ctatgcctcc	3360
gtgtacgagg agaaatccta cacagatggc agacgtgaga acccttgcga gtccaaacaga	3420
ggttacggtg actacacacc acttccagca ggctatgtt ccaaggaccc ttagtacttt	3480
cctgagaccc acaaagtgtg gatcgagatc ggtgaaaccc agggAACCTT catcggtggac	3540
agcgtggagc ttctcttgat ggaggaa	3567

<210> 19
 <211> 3567
 <212> DNA
 <213> Artificial sequence

<220>
 <223> BTent (CylCa), Example 7 and set forth in upper line in Figure 14

<400> 19	
atggagggaaa ataatcaaaa tcaatgcata ctttacaatt gtttaagtaa tcctgaagaa	60
gtactttgg atggagaacg gatataact ggtaattcat caattgatat ttctctgtca	120
cttggcgtt taactttgtt ccagggggag gatTTTGTG tggattaata	180
gatTTTGTAT gggaaatagt tggcccttct caatggatg catttctatgt acaaattgaa	240
caattaatta atgaaagaat agctgaattt gcttaggaatg ctgctattgc taatTTGAA	300
ggatttagaa acaatttcaa tatatatgtg gaagcattt aagaatggg agaagatcct	360
aataatccag aaaccaggac cagagtaatt gatcgcttgc gtataacttga tggctactt	420

gaaaggaca ttccttcgtt tcgaatttct ggatttgaag taccctttt atccgttat	480
gctcaagcg ccaatctgca tctagctata ttaagagatt ctgtaatttt tggagaaaaga	540
tggggattga caacgataaa tgtcaatgaa aactataata gactaattag gcatattgat	600
gaatatgctg atcactgtgc aaatacgtat aatcggggat taaataattt accgaaatct	660
acgtatcaag attggataac atataatcga ttacggagag acttaacattt gactgttatta	720
gatatcgccg ctttcttcc aaactatgac aataggagat atccaattca gccagtttgt	780
caactaaca gggaaagtta tacggaccca ttaattaatt ttaatccaca gttacagtct	840
gtagctcaat tacctacttt taacgttatg gagagcagcc gaatttagaaa tcctcattta	900
tttgatatat tgaataatct tacaatctt acggatttgtt ttagtgttgg acgcaatttt	960
tattggggag gacatcgagt aatatctagc cttataggag gtggtaacat aacatctccct	1020
atatatggaa gagaggcgaa ccaggagcct ccaagatcct ttactttaa tggaccggta	1080
tttaggactt tatcaaatcc tactttacga ttattacagc aaccttggcc agcgccacca	1140
tttaatttac gtgggtttga aggagtagaa ttttctacac ctacaaatag ctttacgtat	1200
cgaggaagag gtacgggtga ttctttaact gaattaccgc ctgaggataa tagtgtgcc	1260
cctcgcgaag gatatagtca tcgttatgt catgcaactt ttgttcaaag atctggaaaca	1320
cctttttaa caactgggtgt agtattttct tggaccgatc gtagtgcaac tcttacaaat	1380
acaattgatc cagagagaat taatcaaata ccttttagtga aaggattnag agtttggggg	1440
ggcacctctg tcattacagg accaggattt acaggagggg atatcctcg aagaaaatacc	1500
tttggtgatt ttgtatctct acaagtcaat attaattcac caattaccca aagataaccgt	1560
ttaagatttc gttacgcttc cagtagggat gcacgagttt tagtattaac aggagcggca	1620
tccacaggag tgggaggcca agtttgta aatatgcctc ttcagaaaac tatggaaata	1680
ggggagaact taacatctag aacattttaga tataccgatt ttagtaatcc tttttcattt	1740
agagctaattc cagatataat tggataagt gaacaacctc tatttggtgc agttctatt	1800
agtagcggtg aacttttat agataaaattt gaaatttttc tagcagatgc aacatttggaa	1860
gcagaatctg atttagaaag agcacaaaag gcggtaatg ccctgttac ttcttccaaat	1920
caaatacggtt taaaaaccga tggacggat tatcatattt atcaagtatc caatttagtg	1980
gattgtttat cagatgaatt ttgtctggat gaaaagcggag aattgtccga gaaagtcaaa	2040
catgcgaagc gactcagtga tgagcggat ttacttcaag atccaaactt cagagggatc	2100
aatagacaac cagaccgtgg ctggagagga agtacagata ttaccatcca aggaggagat	2160
gacgtattca aagagaatta cgtcacacta ccgggttaccg ttgtatgatgt ctatccaacg	2220
tatttatatc agaaaataga tgagtcgaaa ttaaaagctt ataccgtta tgaattaaga	2280
gggtatatcg aagatagtca agacttagaa atctatttga tccgttacaa tgcaaaacac	2340

gaaatagtaa atgtgccagg cacgggttcc ttatggccgc tttcagccca aatgccaatc	2400
ggaaaagtgtg gagaaccgaa tcgatgcgcg ccacaccttg aatggaatcc tgatctagat	2460
tgttcctgca gagacgggga aaaatgtgca catcattccc atcatttcac cttggatatt	2520
gatgttggat gtacagactt aaatgaggac ttaggtgtat gggtgatatt caagattaag	2580
acgcaagatg gccatgcaag actaggaaat ctagagttc tcgaagagaa accattatta	2640
gggaaagcac tagctcgtgt gaaaagagcg gagaagaagt ggagagacaa acgagagaaa	2700
ctgcagttgg aaacaaatat tgtttataaa gaggcaaaag aatctgtaga tgctttattt	2760
gtaaaactctc aatatgatag attacaagtg gatacgaaca tcgccatgat tcatgcggca	2820
gataaacgcg ttcatagaat ccgggaagcg tatctgccag agttgtctgt gattccaggt	2880
gtcaatgcgg ccattttcga agaatttagag ggacgtattt ttacagcgta ttcttatat	2940
gatgcgagaa atgtcattaa aaatggcgat ttcaataatg gcttattatg ctggAACGTG	3000
aaaggtcatg tagatgtaga agagaaaaac aaccaccgtt cggtccttgt tatcccagaa	3060
tgggaggcag aagtgtcaca agaggttcgt gtctgtccag gtcgtggcta tatccttcgt	3120
gtcacagcat ataaagaagg atatggagag ggctgcgtaa cgatccatga gatcgaagac	3180
aatacagacg aactgaaatt cagcaactgt gtagaagagg aagtatatcc aaacaacaca	3240
gtAACGTGTA ataattatac tgggactcaa gaagaatatg agggtacgta cacttctcgt	3300
aatcaaggat atgacgaagc ctatggtaat aacccttccg taccagctga ttacgcttca	3360
gtctatgaag aaaaatcgta tacagatgga cgaagagaga atccttgtga atctaacaga	3420
ggctatgggg attacacacc actaccggct ggttatgtaa caaaggattt agagtacttc	3480
ccagagaccg ataaggtatg gattgagatc ggagaaacag aaggaacatt catcgtggat	3540
agcgtggaat tactccttat ggaggaa	3567

<210> 20
 <211> 762
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic sequence encoding PLRV coat protein, disclosed in Example 9 and set forth in lower line of Figure 16

<400> 20	
agatcttagag gtaattgtta tgagtactgt cgtggtaag ggaaacgtga acgggtggtgt	60
tcaacaacct agaaggagaa gaaggcaatc ctttcgttagg agagctaaca gagttcagcc	120
agtggttatg gtcactgctc ctgggcaacc aagaaggaga agaaggagaa gaggaggtaa	180
tcgcagatca agaagaactg gagttccag aggaagaggt tcaagcgaga cattcgtgtt	240
tacaaaggac aacctcgtgg gcaactcccc aggaagtttc accttcggac caagtgtttc	300

agactgtcca	gcattcaagg	atggaatact	caaggcttac	catgagtaca	agatcacaag	360
tatcttgctt	cagttcgta	gcgaggcctc	ttccacctct	ccaggctcca	tcgcttatga	420
gttagatcca	cattgcaaag	tttcatccct	ccagtcctac	gtcaacaagt	tccaaatcac	480
aaagggtgg	gctaagacct	atcaagctcg	tatgatcaac	ggagttgaat	ggcacgattc	540
ttctgaggat	cagtgcagaa	tccttggaa	aggaaatgga	aagtcttcag	atccagctgg	600
atcttcaga	gttaccatca	gagttgctct	tcaaaaaccc	aagtaataga	attcggatca	660
gagcctggtc	caagcccaca	accaacaccc	actccaactc	ccccaaagca	tgagcgattt	720
attgcttacg	tcggcataacc	tatgctgacc	attcaagaat	tc		762

<210> 21
<211> 762
<212> DNA
<213> Artificial sequence

<220>
<223> Wild type PLRV coat protein coding sequence (nt 20-643), described in Example 9 paragraph 2, and as set forth in upper line of Figure 16

<400> 21	agatcttagag	gtaattgtta	tgagtactgt	cgtggtaag	ggaaacgtca	acgggtggtgt	60
	acaacaacct	agaaggagga	gaaggcaatc	ccttcgcagg	agggctaaaca	gagtacagcc	120
	agtggttatg	gtcactgctc	ctggcgaacc	caggaggagg	agacgcagaa	gaggaggcaa	180
	tcgcaggtca	agaagaactg	gagttccca	gggaaggggc	tcaagcgaga	cattcgtgtt	240
	tacaaaggac	aacctcg	gcaactccca	aggaagtttc	accttcggac	caagtgtatc	300
	agactgtcca	gcattcaagg	atggaatact	caaggcttac	catgagtaca	agatcacaag	360
	tatccttctt	cagttcgta	gcgaggcctc	ttccacctca	ccaggatcca	tcgcttatga	420
	gttggaccca	cattgcaaag	tatcatccct	ccagtcctac	gtcaacaagt	tccaaatcac	480
	aaagggagga	gctaagacct	atcaagctcg	gatgatcaac	ggagttgaat	ggcacgattc	540
	atctgaggat	cagtgcagga	tacttggaa	aggaagtgg	aaatcttcag	acccagcagg	600
	atcttcaga	gtcaccatca	gagttgctct	tcaaaaaccc	aagtaataga	ctccggatca	660
	gagcctggtc	caagcccaca	accaacaccc	actccaactc	ccccaaagca	tgagcgattt	720
	attgcttacg	tcggcataacc	tatgctgacc	attcaagaat	tc		762

<210> 22
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> BTK185 primer, Example 1, Table III

<400> 22		
tccccagata atatcaac		18
<210> 23		
<211> 48		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK240 primer, Example 1, Table III		
<400> 23		
ggcttgattc ctagcgaact cttcgattct ctggttgatg agctgttc		48
<210> 24		
<211> 54		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK462 primer, Example 1, Table III		
<400> 24		
caaaaactgag aggtggaggt tggcagcttg aacgtacacg gagaggagag gaac		54
<210> 25		
<211> 48		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK669 primer, Example 1, Table III		
<400> 25		
agttagtgta agctctttc tgaactggtt gtacctgatc caatctct		48
<210> 26		
<211> 39		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK930 primer, Example 1, Table III		
<400> 26		
agccatgatc tggtgaccgg accagtagta ttctcctct		39
<210> 27		
<211> 32		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK1110 primer, Example 1, Table III		
<400> 27		
agttgttgggt tgttgatccc gatgtaaaa gg		32

<210> 28		
<211> 37		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK1380A primer, Example 1, Table III		
<400> 28		
gtgatgaagg gatgatgttgg ttgaactcag cactacg	37	
<210> 29		
<211> 100		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK1380T primer, Example 1, Table III		
<400> 29		
cagaagttcc agagccaaga ttagtagact tggtgagtgg gatttgggtg atttgtgatg	60	
aagggatgat gttgttgaac tcagcactac gatgtatcca	100	
<210> 30		
<211> 27		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK1600 primer, Example 1, Table III		
<400> 30		
tgatgtgtgg aactgaaggt ttgtgg	27	
<210> 31		
<211> 51		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> BTK1363 primer, Example 3, Table VI		
<400> 31		
aatactatcg gatgcgatga tgttgttgaa ctcagcacta cggtgtatcc a	51	
<210> 32		
<211> 33		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> 73K1437 primer, Example 3, Table VI		
<400> 32		
tcctgaaaatg acagaaccgt tgaagagaaa gtt	33	
<210> 33		

```

<211> 48
<212> DNA
<213> Artificial sequence

<220>
<223> 73K1471 primer, Example 3, Table VI

<400> 33
atttccactg ctgttgagtc taacgaggc tccaccagtg aatcctgg          48

<210> 34
<211> 61
<212> DNA
<213> Artificial sequence

<220>
<223> 73K1561 primer, Example 3, Table VI

<400> 34
gtgaataggg gtcacagaag catacctcac acgaactcta tatctggtag atgttggatg      60
g                                         61

<210> 35
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> 73K1642 primer, Example 3, Table VI

<400> 35
ttagctgga actgtattgg agaagatgga tga                           33

<210> 36
<211> 48
<212> DNA
<213> Artificial sequence

<220>
<223> 73K1675 primer, Example 3, Table VI

<400> 36
ttcaaagtaa ccgaaatcgc tggattggag attatccaag gaggtgc          48

<210> 37
<211> 39
<212> DNA
<213> Artificial sequence

<220>
<223> 73K1741 primer, Example 3, Table VI

<400> 37
actaaagttt ctaacaccca cgatgttacc gagtgaaga                  39

<210> 38
<211> 36

```

```
<212> DNA
<213> Artificial sequence

<220>
<223> 73K1797 primer, Example 3, Table VI

<400> 38
aactggaatg aactcgaatc tgtcgataat cactcc                                36

<210> 39
<211> 54
<212> DNA
<213> Artificial sequence

<220>
<223> 73KTERM primer, Example 3, Table VI

<400> 39
ggacactaga tcttagtgat aatcggtcac atttgtcttg agtccaaagct ggtt                                54

<210> 40
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> RUBISCO SSU CTP cleavage site sequence, described in Example 10

<400> 40

Gly Gly Arg Val Asn Cys Met Gln Ala Met
1                      5                  10
```