## § 0.1 Tensors and k-forms

### §§ 0.1.1 Basic Definitions, Tensor Product and Wedge Product

**Definition 0.1.1** (Multilinear Functions, Tensors). Let  $\mathcal{V}$  be a real vector space, and take  $\mathcal{V}^k = \mathcal{V} \times \cdots \times \mathcal{V}$  k-times. A function  $T: \mathcal{V}^k \longrightarrow \mathbb{R}$  is called multilinear if  $\forall i = 1, \dots, k, \ \forall a \in \mathbb{R}, \ \forall v, w \in \mathcal{V}$ 

$$T(v_1, \dots, av_i + w_i, \dots, v_k) = aT(v_1, \dots, v_i, \dots, v_k) + T(v_1, \dots, w_i, \dots, v_k)$$

$$\tag{1}$$

A multilinear function of this kind is called k-tensor on  $\mathcal{V}$ . The set of all k-tensors is denoted as  $\mathcal{T}^k(\mathcal{V})$  and is a real vector space.

The tensor T is usually denoted as follows

$$T_{\mu_1\dots\mu_k}$$
 (2)

Where each index indicates a slot of the multilinear application  $T(-, \dots, -)$ 

**Definition 0.1.2** (Tensor Product). Let  $S \in \mathcal{T}^k(V), T \in \mathcal{T}^l(V)$ , we define the tensor product  $S \otimes T \in \mathcal{T}^{k+l}(V)$  as follows

$$(S \otimes T)(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = S(v_1, \dots, v_k)T(v_{k+1}, \dots, v_{k+l})$$
(3)

This product has the following properties

$$(S_1 + S_2) \otimes T = S_1 \otimes T + S_2 \otimes T$$

$$S \otimes (T_1 + T_2) = S \otimes T_1 + S \otimes T_2$$

$$(aS) \otimes T = S \otimes (aT) = a(S \otimes T)$$

$$(S \otimes T) \otimes U = S \otimes (T \otimes U) = S \otimes T \otimes U$$

$$(4)$$

If  $S = S_{\mu_1...\mu_k}$  and  $T = T_{\mu_{k+1}...\mu_{k+l}}$  we have

$$(S \otimes T)_{\mu_1 \dots \mu_k \mu_{k+1} \dots \mu_{k+l}} = S_{\mu_1 \dots \mu_k} T_{\mu_{k+1} \dots \nu_{k+l}}$$
 (5)

**Definition 0.1.3** (Dual Space). We define the *dual space* of a real vector space  $\mathcal{V}$  as the space of all *linear functionals* from the space to the field over it's defined, and it's indicated with  $\mathcal{V}^*$ . I.e. let  $\varphi^{\mu} \in \mathcal{V}^*$ , then  $\varphi^{\mu} : \mathcal{V} \longrightarrow \mathbb{R}$ . It's easy to see how  $\mathcal{V}^* = \mathcal{T}^1(\mathcal{V})$ .

**Theorem 0.1.** Let  $\mathcal{B} = \{v_{\mu_1}, \dots, v_{\mu_n}\}$  be a basis for the space  $\mathcal{V}$ , and let  $\mathcal{B}^* := \{\varphi^{\mu_1}, \dots, \varphi^{\mu_n}\}$  be the basis of the dual space, i.e.  $\varphi^{\mu}v_{\nu} = \delta^{\mu}_{\nu} \ \forall \varphi^{\mu} \in \mathcal{B}^*, \ v_{\mu} \in \mathcal{B}$ , then the set of all k-fold tensor products has basis  $\mathcal{B}_{\mathcal{T}}$ , where

$$\mathcal{B}_{\mathcal{T}} := \{ \varphi^{\mu_1} \otimes \dots \otimes \varphi^{\mu_k}, \ \forall i = 1, \dots, n \}$$
 (6)

**Theorem 0.2** (Linear Transformations on Tensor Spaces). If  $f^{\mu}_{\nu}: \mathcal{V} \longrightarrow \mathcal{W}$  is a linear transformation,  $f^{\nu}_{\mu} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ , one can define a linear transformation  $f^{\star}: \mathcal{T}^{k}(W) \longrightarrow \mathcal{T}^{k}(V)$  as follows

$$f^{\star}T(v_{\mu_1},\cdots,v_{\mu_k}) = T(f^{\mu}_{\nu}v_{\mu_1},\cdots,f^{\mu}_{\nu}v_{\mu_k})$$

**Theorem 0.3.** If g is an inner product on V (i.e.  $g: V \times V \longrightarrow \mathbb{R}$ , with the properties of an inner product), there is a basis  $v_{\mu_1}, \dots, v_{\mu_n}$  of V such that  $g(v_{\mu}, v_{\nu}) = g_{\mu\nu} = g(v_{\nu}, v_{\mu}) = \delta_{\mu\nu}$ . This basis is called orthonormal with respect to T. Consequently there exists an isomorphism  $f_{\mu}^{\nu}: \mathbb{R}^{n} \xrightarrow{\sim} V$  such that

$$g(f^{\mu}_{\nu}x^{\nu}, f^{\mu}_{\nu}y^{\nu}) = x_{\mu}y^{\mu} = g_{\mu\nu}x^{\mu}y^{\nu} \tag{7}$$

I.e.

$$f^*g(\cdot,\cdot) = g_{\mu\nu} \tag{8}$$

**Definition 0.1.4** (Alternating Tensor). Let  $\mathcal{V}$  be a real vector space, and  $\omega \in \mathcal{T}^k(\mathcal{V})$ .  $\omega$  is said to be alternating if

$$\omega(v_{\mu_1}, \dots, v_{\mu_i}, \dots, v_{\mu_j}, \dots, v_{\mu_k}) = -\omega(v_{\mu_1}, \dots, v_{\mu_j}, \dots, v_{\mu_i}, \dots, v_{\mu_k}) 
\omega(v_{\mu_1}, \dots, v_{\mu_i}, \dots, v_{\mu_i}, \dots, v_{\mu_k}) = 0$$
(9)

Or, compactly

$$\omega_{\mu\dots\nu\dots\gamma\dots\sigma} = -\omega_{\mu\dots\gamma\dots\nu\dots\sigma} 
\omega_{\mu\dots\nu\dots\nu\dots\gamma} = 0$$
(10)

The space of all alternating k-tensors on  $\mathcal{V}$  is indicated as  $\Lambda^k(\mathcal{V})$ , and we obviously have that  $\Lambda^k(\mathcal{V}) \subset \mathcal{T}^k(\mathcal{V})$ .

We can define an application Alt :  $\mathcal{T}^k(\mathcal{V}) \longrightarrow \Lambda^k(\mathcal{V})$  as follows

$$Alt(T)(v_1^{\mu}, \dots, v_k^{\mu}) = \frac{1}{k!} \sum_{\sigma \in \Sigma_k} sgn(\sigma) T(v_{\sigma(1)}^{\mu}, \dots, v_{\sigma(k)}^{\mu})$$

$$(11)$$

With  $\sigma = (i, j)$  a permutation and  $\Sigma_k$  the set of all permutations of natural numbers  $1, \dots, k$  Compactly, we define an operation on the indices, indicated in square brackets, called the *antisymmetrization* of the indices inside the brackets.

This definition is much more general, since it lets us define a partially antisymmetric tensor, i.e. antisymmetric on only some indices.

$$Alt(T_{\mu_1...\mu_k}) = \frac{1}{k!} T_{[\mu_1...\mu_k]}$$
(12)

As an example, for a 2-tensor  $a_{\mu\nu}$  we can write

$$a_{[\mu\nu]} = \frac{1}{2} (a_{\mu\nu} - a_{\nu\mu}) = \tilde{a}_{\mu\nu} \in \Lambda^2(\mathcal{V})$$
 (13)

This is valid for general tensors. If we define a k-tensor over the product repeated k times for  $\mathcal{V}$  and k for its dual space  $\mathcal{V} \times \cdots \times \mathcal{V}^* \times \cdots \times \mathcal{V}^*$ , we can define the space  $\mathcal{T}^k(\mathcal{V} \times \mathcal{V}^*) = \mathcal{W}$ . Let the basis for this space be the following

$$\mathcal{B}_{\mathcal{W}} := \{ v_{\mu_1} \otimes \cdots \otimes v_{\mu_k} \otimes \varphi^{\nu_1} \otimes \cdots \otimes \varphi^{\nu_k} \}$$

Then an element  $\mathcal{Y}$  of the space  $\mathcal{W}$  can be written as follows

$$\mathcal{Y}(v_{\mu_1},\cdots,v_{\mu_k},\varphi^{\nu_1},\cdots,\varphi^{\nu_k})=\mathcal{Y}_{\mu_1\ldots\mu_k}^{\nu_1\ldots\nu_k}$$

We can define a new element  $Y \in \Lambda^k(\mathcal{V} \times \mathcal{V}^*)$  using the antisymmetrization brackets

$$Y_{\mu_1...\mu_k}^{\nu_1...\nu_k} = \mathcal{Y}_{[\mu_1...\mu_k]}^{[\nu_1...\nu_k]}$$

We can define also partially antisymmetric parts as follows

$$R^{\nu_1\dots\nu_k}_{\mu_1\dots\mu_k} = \mathcal{Y}^{\nu_1\dots[\nu_i\nu_{i+1}]\dots\nu_k}_{\mu_1\dots[\mu_l\mu_{l+1}]\dots\mu_k} = \frac{1}{4!} \left( \mathcal{Y}^{\nu_1\dots\nu_i\nu_{i+1}\dots\nu_k}_{\mu_1\dots\mu_l\mu_{l+1}\dots\mu_k} - \mathcal{Y}^{\nu_1\dots\nu_{i+1}\nu_i\dots\nu_k}_{\mu_1\dots\mu_l\mu_{l+1}\dots\mu_k} + \mathcal{Y}^{\nu_1\dots\nu_i\nu_{i+1}\dots\nu_k}_{\mu_1\dots\mu_l\mu_{l+1}\dots\mu_k} - \mathcal{Y}^{\nu_1\dots\nu_i\nu_{i+1}\dots\nu_k}_{\mu_1\dots\mu_l\mu_{l+1}\dots\mu_k} - \mathcal{Y}^{\nu_1\dots\nu_i\nu_{i+1}\dots\nu_k}_{\mu_1\dots\mu_l\mu_{l+1}\dots\mu_k} \right)$$

Note how the indexes in the expressions with the label i and l simply got switched, and in the new definition, the tensor R is antisymmetric in both the *covariant* (lower) indexes  $\mu_l, \mu_{l+1}$  and in the *contravariant* (upper) indexes  $\nu_i, \nu_{i+1}$ , where obviously  $i, l \leq k$ 

**Theorem 0.4.** Let  $T \in \mathcal{T}^k(\mathcal{V})$  and  $\omega \in \Lambda^k(\mathcal{V})$ . Then

$$T_{[\mu_1...\mu_k]} \in \Lambda^k(\mathcal{V})$$

$$\omega_{[\mu_1...\mu_k]} = \omega_{\mu_1...\mu_k}$$

$$T_{[[\mu_1...\mu_k]]} = T_{[\mu_1...\mu_k]}$$

$$(14)$$

**Definition 0.1.5** (Wedge Product). Let  $\omega \in \Lambda^k(\mathcal{V})$ ,  $\eta \in \Lambda^l(\mathcal{V})$ . In general  $\omega \otimes \eta \notin \Lambda^{k+l}(\mathcal{V})$ , hence we define a new product, called the *wedge product*, such that  $\omega \wedge \eta \in \Lambda^{k+l}(\mathcal{V})$ 

$$\omega_{\mu_1...\mu_k} \wedge \eta_{\nu_1...\nu_k} = \frac{(k+l)!}{k!l!} \omega_{[\mu_1...\mu_k} \eta_{\nu_1...\nu_l}]$$
(15)

With the following properties

 $\forall \omega, \omega_1, \omega_2 \in \Lambda^k(\mathcal{V}), \ \forall \eta, \eta_1, \eta_2 \in \Lambda^l(\mathcal{V}), \ \forall a \in \mathbb{R}, \forall f^\star \in \mathcal{L}: \mathcal{T}^k(\mathcal{V}) \longrightarrow \mathcal{T}^l(\mathcal{V}) \ \forall \theta \in \Lambda^m(\mathcal{V})$ 

$$(\omega_{1} + \omega_{2}) \wedge \eta = \omega_{1} \wedge \eta + \omega_{2} \wedge \eta$$

$$\omega \wedge (\eta_{1} + \eta_{2}) = \omega \wedge \eta_{1} + \omega \wedge \eta_{2}$$

$$(\omega \wedge \eta) \wedge \theta = \omega \wedge (\eta \wedge \theta)$$

$$a\omega \wedge \eta = \omega \wedge a\eta = a(\omega \wedge \eta)$$

$$\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$$

$$f^{*}(\omega \wedge \eta) = f^{*}(\omega) \wedge f^{*}(\eta)$$

$$(16)$$

Theorem 0.5. The set

$$\{\varphi^{\mu_1} \wedge \dots \wedge \varphi^{\mu_k}, \ k < n\} \subset \Lambda^k(\mathcal{V})$$
 (17)

Is a basis for the space  $\Lambda^k(\mathcal{V})$ , and therefore

$$\dim(\Lambda^k(\mathcal{V})) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Where  $\dim(\mathcal{V}) = n$ .

Therefore,  $\dim(\Lambda^n(\mathcal{V})) = 1$ 

**Theorem 0.6.** Let  $v_{\mu_1}, \dots, v_{\mu_n}$  be a basis for  $\mathcal{V}$ , and take  $\omega \in \Lambda^n(\mathcal{V})$ , then, if  $w_{\mu} = a^{\nu}_{\mu} v_{\nu}$ 

$$\omega(w_{\mu_1}\cdots w_{\mu_n}) = \det_{\mu\nu}(a^{\mu}_{\nu})\omega(v_{\mu_1},\dots,v_{\mu_n})$$
(18)

Or using the basis representation of a vector  $t^{\mu}=t^{\mu}w_{\mu}=t^{\mu}a_{\mu}^{\nu}v_{\nu}$  we have

$$\omega_{\mu_1...\mu_n} t^{\mu_1} \cdots t^{\mu_n} = \det_{\mu\nu} (a^{\mu}_{\nu}) \omega_{\nu_1...\nu_n} t^{\nu_1} \cdots t^{\nu_n}$$
(19)

*Proof.* Define  $\eta_{\mu_1...\mu_n} \in \mathcal{T}^n(\mathbb{R}^n)$  as

$$\eta_{\mu_1\dots\mu_n} a_{\nu_1}^{\mu_1} a_{\nu_2}^{\mu_2} \cdots a_{\nu_n}^{\mu_n} = \omega_{\mu_1\dots\mu_n} a_{\nu_1}^{\mu_1} \cdots a_{\nu_n}^{\mu_n}$$

Hence  $\eta \in \Lambda^n(\mathbb{R}^n)$  so  $\eta = \lambda \det(\cdot)$  for some  $\lambda$ , and

$$\lambda = \eta_{\mu_1 \dots \mu_n} e^{\mu_1} \cdots e^{\mu_n} = \omega_{\mu_1 \dots \mu_n} v^{\mu_1} \cdots v^{\mu_n}$$

### §§ 0.1.2 Volume Elements and Orientation

**Definition 0.1.6** (Orientation). The previous theorem shows that a  $\omega \in \Lambda^n(\mathcal{V})$ ,  $\omega \neq 0$  splits the bases of  $\mathcal{V}$  in two disjoint sets.

Bases for which  $\omega(\mathcal{B}_v) > 0$  and for which  $\omega(\mathcal{B}_w) < 0$ . Defining  $w^{\mu} = a^{\mu}_{\nu}v^{\nu}$  we have that the two bases belong to the same group iff  $\det_{\mu\nu}(a^{\mu}_{\nu}) > 0$ . We call this the *orientation* of the basis of the space. The *usual orientation* of  $\mathbb{R}^n$  is

$$[e_{\mu}]$$

Given another two basis of  $\mathbb{R}^n$  we can define (taking the first two examples)

$$\begin{bmatrix} v_{\mu} \\ -[w_{\mu}] \end{bmatrix}$$

**Definition 0.1.7** (Volume Element). Take a vector space  $\mathcal{V}$  such that  $\dim(\mathcal{V}) = n$  and it's equipped with an inner product g, such that there are two bases  $(v^{\mu_1}, \dots, v^{\mu_n}), (w^{\mu_1}, \dots, w^{\mu_n})$  that satisfy the *orthonormality condition* with respect to this scalar product

$$g_{\mu\nu}v^{\mu_i}v^{\nu_j} = g_{\sigma\gamma}w^{\sigma_i}w^{\gamma_j} = \delta_{ij} \tag{20}$$

Then

$$\omega_{\mu_1...\mu_n} v^{\mu_1} \cdots v^{\mu_n} = \omega_{\mu_1...\mu_n} w^{\mu_1} \cdots w^{\mu_n} = \det_{\mu\nu} (a^{\mu}_{\nu}) = \pm 1$$

Where

$$w^{\mu} = a^{\mu}_{\nu} v^{\nu}$$

Therefore

$$\exists!\omega\in\Lambda^n(\mathcal{V}):\exists![w^{\mu_1},\cdots,w^{\mu_n}]=O$$

Where O is the *orientation* of the vector space.

**Definition 0.1.8** (Cross Product). Let  $v_1^{\mu}, \dots, v_n^{\mu} \in \mathbb{R}^{n+1}$  and define  $\varphi_{\nu} w^{\nu}$  as follows

$$\varphi_{\nu}w^{\nu} = \det \begin{pmatrix} v^{\mu_1} \\ \vdots \\ v^{\mu_n} \\ w^{\nu} \end{pmatrix}$$

Then  $\varphi \in \Lambda^1(\mathbb{R}^{n+1})$ , and

$$\exists! z^{\mu} \in \mathbb{R}^{n+1} : z^{\mu} w_{\mu} = \varphi_{\nu} w^{\nu}$$

 $z^{\mu}$  is called the *cross product*, and it's indicated as

$$z^{\mu} = v^{\nu_1} \times \dots \times v^{\nu_n} = \epsilon^{\mu}_{\nu_1 \dots \nu_n} v^{\nu_1} \dots v^{\nu_n}$$

# § 0.2 Tangent Space and Differential Forms

**Definition 0.2.1** (Tangent Space). Let  $p \in \mathbb{R}^n$ , then the set of all pairs  $\{(p, v^{\mu}) | v^{\mu} \in \mathbb{R}^n\}$  is denoted as  $T_p\mathbb{R}^n$  and it's called the *tangent space* of  $\mathbb{R}^n$  (at the point. This is a vector space defining the following operations

$$(p, av^{\mu}) + (p, aw^{\mu}) = (p, a(v^{\mu} + w^{\mu})) = a(p, v^{\mu} + w^{\mu}) \quad \forall v^{\mu}, w^{\mu} \in \mathbb{R}^{n}, \ a \in \mathbb{R}$$

Remark. If a vector  $v^{\mu} \in \mathbb{R}^n$  can be seen as an arrow from 0 to the point v, a vector  $(p, v^{\mu}) \in T_p \mathbb{R}^n$  can be seen as an arrow from the point p to the point p + v. In concordance with the usual notation for vectors in physics, we will write  $(p, v^{\mu}) = v^{\mu}$  directly, or  $v_p^{\mu}$  when necessary to specify that we're referring to the vector  $v^{\mu} \in T_p \mathbb{R}^n$ . The point p + v is called the *end point* of the vector  $v_p^{\mu}$ .

**Definition 0.2.2** (Inner Product in  $T_p\mathbb{R}^n$ ). The usual inner product of two vectors  $v_p^{\mu}, w_p^{\mu} \in T_p\mathbb{R}^n$  is defined as follows

$$\langle \cdot, \cdot \rangle_p : T_p \mathbb{R}^n \times T_p \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$v_p^{\mu} w_{\mu}^p = v^{\mu} w_{\mu} = k$$
(21)

Analogously, one can define the usual orientation of  $T_n\mathbb{R}^n$  as follows

$$[(e^{\mu_1})_p, \cdots, (e^{\mu_n})_p]$$

**Definition 0.2.3** (Vector Fields, Again). Although we already stated a definition for a vector field, we're gonna now state the actual precise definition of vector field

Let  $p \in \mathbb{R}^n$  be a point, then a function  $f^{\mu}(p) : \mathbb{R}^n \longrightarrow T_p \mathbb{R}^n$  is called a vector field, if  $\forall p \in A \subseteq \mathbb{R}^n$  we can define

$$f^{\mu}(p) = f^{\mu}(p)(e_{\mu})_{p} \tag{22}$$

Where  $(e_{\mu})_p$  is the canonical basis of  $T_p\mathbb{R}^n$ 

All the previous (and already stated) considerations on vector fields hold with this definition.

**Definition 0.2.4** (Differential Form). Analogously to vector fields, one can define k-forms on the tangent space. These are called *differential* (k-)forms and "live" on the space  $\Lambda^k(T_p\mathbb{R}^n)$ . Let  $\varphi_p^{\mu_1}, \dots, \varphi_p^{\mu_k} \in (T_p\mathbb{R}^n)^*$  be a basis on such space, then the differential form  $\omega \in \Lambda^k(T_p\mathbb{R}^n)$  is defined as follows

$$\omega_{\mu_1...\mu_k}(p) = \omega_{\mu_1...\mu_k} \varphi_p^{[\mu_1} \cdots \varphi_p^{\mu_k]} \to \sum_{i_1 < ... < i_k} \omega_{i_1...i_k}(p) \varphi_{i_1}(p) \wedge \cdots \wedge \varphi_{i_k}(p)$$
(23)

A function  $f: T_p\mathbb{R}^n \longrightarrow \mathbb{R}$  is defined as  $f \in \Lambda^0(T_p\mathbb{R}^n)$ , or a 0-form. In general, so, we can write without incurring in errors

$$f(p)\omega = f(p) \wedge \omega = f(p)\omega_{\mu_1\dots\mu_k} \tag{24}$$

### §§ 0.2.1 External Differentiation, Closed and Exact Forms

**Definition 0.2.5** (Differential). Now we will omit that we're working on a point  $p \in \mathbb{R}^n$  and we'll use the usual notation.

Let  $f:T_p\mathbb{R}^n\longrightarrow\mathbb{R}$  be a smooth (i.e. continuously differentiable) function, where  $f\in C^\infty$ , then,

using operatorial notation we have that  $\partial_{\mu} f(v) \in \Lambda^{1}(\mathbb{R}^{n})$ , therefore, with a small modification, we can define

$$df(v_p^{\nu}) = \partial_{\mu} f(v^{\nu}) \tag{25}$$

It's obvious how  $dx^{\mu}(v_p^{\nu}) = \partial_{\nu}x^{\mu}(v^{\nu}) = v^{\mu}$ , therefore  $dx^{\mu}$  is a basis for  $\Lambda^1(T_p\mathbb{R}^n)$ , which we will indicate as  $dx^{\mu}$ , therefore  $\forall \omega \in \Lambda^k(T_p\mathbb{R}^n)$ 

$$\omega_{\mu_1\dots\mu_k} = \omega_{\mu_1\dots\mu_k} \, \mathrm{d}x^{[\mu_1} \cdots \mathrm{d}x^{\mu_k]} \to \sum_{i_1 < \dots < i_k} \omega_{i_1\dots i_k}(p) \, \mathrm{d}x^{i_1} \wedge \dots \wedge \mathrm{d}x^{i_k}$$
(26)

Basically, the vectors  $\mathrm{d}x^{\mu}$  are the dual basis with respect to the canonical basis  $(e_{\mu})_{p}$ 

**Theorem 0.7.** Since  $df(v_p^{\nu}) = \partial_{\nu} f(v^{\nu})$  we have, expressing the differential of a function with the basis vectors,

$$df = \frac{\partial f}{\partial x^{\mu}} dx^{\mu} = \partial_{\mu} f dx^{\mu}$$
 (27)

**Definition 0.2.6.** Having defined a smooth linear transformation  $f^{\mu}_{\nu}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ , it induces another linear transformation  $\partial_{\gamma} f^{\mu}_{\nu}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ , which with some modifications becomes the application  $(f_{\star})^{\mu}_{\nu}: T_{p}\mathbb{R}^{n} \longrightarrow T_{f(p)}\mathbb{R}^{m}$  defined such that

$$(f_{\star})^{\mu}_{\nu}(v^{\nu}) = \left( df|_{f(p)} \right)^{\mu}_{\nu}(v^{\nu}) \tag{28}$$

Which, in turn, also induces a linear transformation  $f^*: \Lambda^k(T_{f(p)}\mathbb{R}^m) \longrightarrow \Lambda^k(T_p\mathbb{R}^n)$ , defined as follows. Let  $\omega_p \in \Lambda^k(\mathbb{R}^m)$ , then we can define  $f^*\omega \in \Lambda^k(T_{f(p)}\mathbb{R}^n)$  as follows

$$(f^*\omega_p)(v_{\mu_1},\dots,v_{\mu_k}) = \omega_{f(p)}\left((f_*)_{\nu_1}^{\mu_1}v_{\mu_1},\dots,(f_*)_{\nu_k}^{\mu_k}v_{\mu_k}\right)$$
(29)

(Just remember that in this way we are writing explicitly the chosen base, watch out for the indexes!)

**Theorem 0.8.** Let  $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$  be a smooth function, then

- 1.  $(f^*)^{\mu}_{\nu}(\mathrm{d}x^{\nu}) = \mathrm{d}f = \partial_{\nu}f^{\mu}\,\mathrm{d}x^{\nu}$
- 2.  $f^*(\omega_1 + \omega_2) = f^*\omega_1 + f^*\omega_2$
- 3.  $f^*(q\omega) = (q \circ f)f^*\omega$
- 4.  $f^*(\omega \wedge \eta) = f^*\omega \wedge f^*\eta$
- 5.  $f^*(h dx^{[\mu_1} \cdots dx^{\mu_n]}) = h \circ f \det_{\mu\nu}(\partial_{\nu} f^{\mu}) dx^{[\mu_1} \cdots dx^{\mu_n]}$

**Definition 0.2.7** (Exterior Derivative). We define the operator d as an operator  $\Lambda^k(T_p\mathcal{V}) \stackrel{\mathrm{d}}{\longrightarrow} \Lambda^{k+1}(T_p\mathcal{V})$  for some vector space  $\mathcal{V}$ . For a differential form  $\omega$  it's defined as follows

$$(\mathrm{d}\omega)_{\nu\mu_1\dots\mu_k} = \partial_{[\nu}\omega_{\mu_1\dots\mu_k]} \tag{30}$$

This, using the classical mathematical notation can be written as follows

$$d\omega = \sum_{i_1 < \dots < i_k} d\omega_{i_1,\dots,i_k} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

$$d\omega = \sum_{i_1 < \dots < i_k} \sum_{i=1}^n \frac{\partial}{\partial x^j} \omega_{i_1,\dots,i_k} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
(31)

**Theorem 0.9** (Properties of d). 1.  $d(\omega + \eta) = d\omega + d\eta$ 

2. 
$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$
 for  $\omega \in \Lambda^k(\mathcal{V}), \ \eta \in \Lambda^l(\mathcal{V})$ 

3. 
$$dd\omega = d^2 \omega = 0$$

4. 
$$f^*(d\omega) = d(f^*\omega)$$

**Definition 0.2.8** (Closed and Exact Forms). A form  $\omega$  is called *closed* iff

$$d\omega = 0 \tag{32}$$

It's called exact iff

$$\omega = \mathrm{d}\eta \tag{33}$$

**Theorem 0.10.** Let  $\omega$  be an exact differential form. Then it's closed

*Proof.* The proof is quite straightforward. Since  $\omega$  is exact we can write  $\omega = d\rho$  for some differential form  $\rho$ , therefore

$$d\omega = dd\rho = d^2 \rho = 0$$

Hence  $d\omega = 0$  and  $\omega$  is closed.

Example 0.2.1. Take  $\omega \in \Lambda^1(\mathbb{R}^2)$ , where it's defined as follows

$$\omega_{\mu} = p \, \mathrm{d}x + q \, \mathrm{d}y \tag{34}$$

The external derivative will be of easy calculus by remembering the mnemonic rule  $d \to \partial_{\mu} \wedge dx^{\mu}$ , or also as  $\partial_{\nu}$  then we have

$$d\omega_{\mu\nu} = \partial_{[\nu}\omega_{\mu]}$$

But

$$\partial_{\nu}\omega_{\mu} = \begin{pmatrix} \partial_{1}\omega_{1} & \partial_{1}\omega_{2} \\ \partial_{2}\omega_{1} & \partial_{2}\omega_{2} \end{pmatrix}_{\mu\nu}$$

And

$$\partial_{[\nu}\omega_{\mu]} = \frac{1}{2}(\partial_{\nu}\omega_{\mu} - \partial_{\mu}\omega_{\nu}) = \frac{1}{2}(\partial\omega - \partial\omega^{T})$$

Therefore

$$d\omega_{\mu\nu} = \frac{1}{2} \begin{pmatrix} 0 & \partial_x q - \partial_y p \\ \partial_y p - \partial_x q & 0 \end{pmatrix}_{\mu\nu}$$

Which, expressed in terms of the basis vectors of  $\Lambda^2(\mathbb{R}^2)$ ,  $dx \wedge dy$ , we get

$$d\omega = \frac{1}{2}(\partial_x q - \partial_y p) dx \wedge dy + \frac{1}{2}(\partial_y p - \partial_x q) dy \wedge dx = (\partial_x q - \partial_y p) dx \wedge dy$$
 (35)

Therefore

$$d\omega = 0 \iff \partial_x q - \partial_y p = 0 \tag{36}$$

**Definition 0.2.9** (Star Shaped Set). A set A is said to be star shaped with respect to a point a iff  $\forall x \in A$  the line segment  $[a, x] \subset A$ 

**Lemma 0.2.1** (Poincaré's). Let  $A \subset \mathbb{R}^n$  be an open star shaped set, with respect to 0. Then every closed form on A is exact

# § 0.3 Chain Complexes and Manifolds

### $\S\S 0.3.1$ Singular n-cubes and Chains

**Definition 0.3.1** (Singular n-cube). A singular n-cube is an application  $c:[0,1]^n \longrightarrow A \subset \mathbb{R}^n$ . In general. A singular 0-cube is a function  $f:\{0\}\longrightarrow A$  and a singular 1-cube is a curve.

**Definition 0.3.2** (Standard n-cube). We define a standard n-cube as a function  $I^n:[0,1]^n \longrightarrow \mathbb{R}^n$  such that  $I^n(x^\mu)=x^\mu$ .

**Definition 0.3.3** (Face). Given a standard n-cube  $I^n$  we define the  $(i, \alpha)$ -face of the cube as

$$I_{(i,\alpha)}^n = (x^1, \dots, x^{i-1}, \alpha, x^i, \dots, x^{n-1}) \quad \alpha = 0, 1$$
 (37)

**Definition 0.3.4** (Chain). Given n k-cubes  $c_i$ , we define a n-chain s as follows

$$s = \sum_{i=1}^{n} a_i c_i \quad a_i \in \mathbb{R}$$
 (38)

**Definition 0.3.5** (Boundary). Given an n-cube  $c_i$  we define the boundary as  $\partial c_i$ . For a standard n-cube we have

$$\partial I^n = \sum_{i=1}^n \sum_{\alpha=0,1} (-1)^{i+\alpha} I^n_{(i,\alpha)}$$
 (39)

For a k-chain s we define

$$\partial s = \partial(\sum_{i} a_{i} c_{i}) = \sum_{i} a_{i} \partial c_{i} \tag{40}$$

Where  $\partial s$  is a (k-1)-chain

**Theorem 0.11.** For a chain c, we have that  $\partial \partial c = \partial^2 c = 0$ 

#### §§ 0.3.2 Manifolds

**Definition 0.3.6** (Manifold). Given a set  $M \subset \mathbb{R}^n$ , it is said to be a k-dimensional manifold if  $\forall x^{\mu} \in M$  we have that

- 1.  $\exists U \subset \mathbb{R}^k$  open set  $x^{\mu} \in U$  and  $V \subset \mathbb{R}^n$  and  $\varphi$  a diffeomorphism such that  $U \simeq V$  and  $\varphi(U \cap M) = V \cap (\mathbb{R}^k \times \{0\})$ , i.e.  $U \cap M \simeq \mathbb{R}^k \cap \{0\}$
- 2.  $\exists U \subset \mathbb{R}^k$  open and  $W \subset \mathbb{R}^k$  open,  $x^{\mu} \in U$  and  $f: W \longrightarrow \mathbb{R}^n$  a diffeomorphism
  - (a)  $f(W) = M \cap U$
  - (b) rank  $(f) = k \ \forall x^{\mu} \in W$
  - (c)  $f^{-1} \in C(f(W))$

The function f is said to be a coordinate system in M

**Definition 0.3.7** (Half Space). We define the k-dimensional half space  $\mathbb{H}^k \subset \mathbb{R}^k$  as

$$\mathbb{H}^k := \left\{ \left. x^\mu \in \mathbb{R}^k \right| \, x^i \ge 0 \right\} \tag{41}$$

**Definition 0.3.8** (Manifold with Boundary). A manifold with boundary (MWB) is a manifold M such that, given a diffeomorphism h, an open set  $U \supset M$  and an open set  $V \subset \mathbb{R}^n$ 

$$h(U \cap V) = V \cap (\mathbb{H}^k \cap \{0\}) \tag{42}$$

The set of all points that satisfy this forms the set  $\partial M$  called the boundary of M

**Definition 0.3.9** (Tangent Space). Given a manifold M and a coordinate set f around  $x^{\mu} \in M$ , we define the *tangent space of* M at  $x^{\mu} \in M$  as follows

$$f: W \subset \mathbb{R}^k \longrightarrow \mathbb{R}^n \implies f_{\star} \left( T_x \mathbb{R}^k \right) = T_x M$$
 (43)

**Definition 0.3.10** (Vector Field on a Manifold). Given a vector field  $f^{\mu}$  we identify it as a vector field on a manifold M if  $f^{\mu}(x^{\nu}) \in T_x M$ . Analogously we define a k-differential form