Numerical Analysis Lecture Notes

Rebekah Dix

October 6, 2018

Contents

1		ution of equations by iteration	2
	1.1	Newton's Method	4
2	Solution of systems of linear equations		
	2.1	Least Squares	4
	2.2	Gram-Schimdt Orthogonalization	5
		QR Factorization	
		2.3.1 Application to Least Squares	5
	2.4	Norms and Condition Numbers	
		2.4.1 Conditioning	9
3	Spe	cial Matrices	11
	3.1	Symmetric Positive Definite Matrices	11
4	Sim	ultaneous nonlinear equations	13
	4.1	•	13
	4.2	Simultaneous iteration	

1 Solution of equations by iteration

Theorem 1. (Existence of Root) Let f be a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line. Assume further, that $f(a)f(b) \leq 0$; then, there exists ξ in [a,b] such that $f(\xi) = 0$.

Proof. The condition $f(a)f(b) \leq 0$ implies that f(a) and f(b) have opposite signs, or one of them is 0. If either f(a) or f(b) is 0, then we've found a root. Suppose that both endpoints are non-zero (in which case they have opposite signs). In this case, 0 must belong to the open interval whose endpoints are f(a) and f(b). The intermediate value theorem gives the existence of a root in the open interval (a,b). Thus, in both cases, a zero is guaranteed.

• The converse of Theorem 1 is clearly false.

Theorem 2. (Brouwer's Fixed Point Theorem) Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line, and let $g(x) \in [a,b]$ for all $x \in [a,b]$. Then, there exists $\xi \in [a,b]$ such that $\xi = g(\xi)$. ξ is called a fixed point of the function g.

Proof. Define a function f(x) = x - g(x). If we find a root ξ of f, then ξ is a fixed point of g. Then,

$$f(a)f(b) = (a - g(a))(b - g(b)) \le 0 \tag{1}$$

By assumption, $a \leq g(a), g(b) \leq b$. Therefore, the first term is negative and the second term is positive. Therefore, $f(a)f(b) \leq 0$. By Theorem 1, there exists a $\xi \in [a,b]$ such that $f(\xi) = 0$. Then, for this $\xi, g(\xi) = \xi$.

Definition 1. (Simple Iteration) Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line, and let $g(x) \in [a,b]$ for all $x \in [a,b]$. Given that $x_0 \in [a,b]$, the recursion defined by

$$x_{k+1} = g(x_k) \tag{2}$$

is called simple iteration; the numbers x_k , $k \ge 0$, are referred to as iterates.

• If this sequence converges, the limit must be a fixed of *g*, since *g* is continuous on a closed interval. Note that

$$\xi = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} g(x_k) = g\left(\lim_{k \to \infty} x_k\right) = g(\xi) \tag{3}$$

Definition 2. (Contraction) Let g be a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line. Then, g is said to be a contraction on [a,b] if there exists a constant L such that 0 < L < 1 and

$$|g(x) - g(y)| \le L|x - y| \quad \forall x, y \in [a, b]$$
(4)

Theorem 3. (Contraction Mapping Theorem) Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line, and let $g(x) \in [a,b]$ for all $x \in [a,b]$. Suppose g is a contraction on [a,b]. Then, g has a unique fixed point ξ in the interval [a,b]. Moreover, the sequence (x_k) defined by simple iteration converges to ξ as $k \to \infty$ for any starting value x_0 in [a,b].

Let $\epsilon > 0$ be a certain tolerance, and let $k_0(\epsilon)$ denote the smallest positive integer such that x_k is no more than ϵ away from the fixed point ξ (i.e. $|x_k - \xi| \le \epsilon$) for all $k \ge k_0(\epsilon)$. Then,

$$k_0(\epsilon) \le \left| \frac{\ln|x_1 - x_0| - \ln(\epsilon(1 - L))}{\ln(1/L)} \right| + 1 \tag{5}$$

Proof. Let $E_k = |x_k - \xi|$ be the error at k. Then

$$|x_{k+1} - \xi| = |g(x_k) - g(\xi)|$$

$$< L|x_k - \xi|$$

Therefore

$$E_k \le L^k E_0 \tag{6}$$

Since L < 1, $L^k \to 0$ as $k \to \infty$.

Definition 3. (Stable, Unstable Fixed Point) Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line, and let $g(x) \in [a,b]$ for all $x \in [a,b]$, and let ξ denote a fixed point of g. ξ is a stable fixed point of g if the sequence (x_k) defined by the iteration $x_{k+1} = g(x_k)$, $k \ge 0$, converges to ξ whenever the starting value x_0 is sufficiently close to ξ . Conversely, if no sequence (x_k) defined by this iteration converges to ξ for any starting value x_0 close to ξ , except for $x_0 = \xi$, then we say that ξ is an unstable fixed point of g.

• With this definition, a fixed point may be neither stable nor unstable.

Definition 4. (Rate of Convergence) Suppose $\xi = \lim_{k \to \infty} x_k$. Define $E_k = |x_k - \xi|$.

• The sequence (x_k) converges to ξ linearly if there exists a number $\mu \in (0,1)$ such that

$$\lim_{k \to \infty} \frac{E_{k+1}}{E_k} = \mu \tag{7}$$

- The sequence (x_k) converges to ξ superlineraly if $\mu = 0$. That is, the sequence of μ_k generated at each step $\to 0$ as $k \to \infty$.
- The sequence (x_k) converges to ξ with order q if there exists a $\mu > 0$ such that

$$\lim_{k \to \infty} \frac{E_{k+1}}{E_k^q} = \mu \tag{8}$$

In particular, if q = 2, then the sequence converges quadratically.

1.1 Newton's Method

Definition 5. (Newton's Method) Newton's method for the solution of f(x) = 0 is defined by

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{9}$$

Geometrically, $(x_{n+1}, 0)$ is the intersection of the *x*-axis and the tangent of the graph of f at $(x_n, f(x_n))$.

Figure 1: Geometric Interpretation of Newton's Method in R

2 Solution of systems of linear equations

2.1 Least Squares

Given a system of equations Ax = b, the least squares problem is

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 \tag{10}$$

We can expand the objective function out as

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$
$$= x^T A^T Ax - 2b^T Ax + b^T b$$

To find the *x* that minimizes this expression we find the *x* that satisfies $\nabla_x F = 0$. That is

$$\nabla_x F = 0 = 2A^T A x - 2A^T b \tag{11}$$

Therefore the minimizer is $x = (A^T A)^{-1} A^T b$. $(A^T A)^{-1} A^T$ is called the pseudo-inverse of A. If A is square and invertible, then the pseudo-inverse equals A^{-1} .

2.2 Gram-Schimdt Orthogonalization

Algorithm: Denote the columns of A by a_i .

- 1. $q_1 = a_1$. Then normalized by $q_1 = \frac{q_1}{\|q_1\|}$.
- 2. $q_2 = a_2 \langle q_1, a_2 \rangle q_1$. Then normalize by $q_2 = \frac{q_2}{\|q_2\|}$. It's simple to verify that $q_2 \perp q_1$.
- 3. For an arbitrary k, $q_k = a_k \langle a_k, q_1 \rangle q_1 \langle a_k, q_2 \rangle q_2 \ldots \langle a_k, q_{k-1} \rangle q_{k-1}$. Then normalize by $q_k = \frac{q_k}{\|q_k\|}$.

We can observe the following properties:

- 1. $||q_i|| = 1$ (this follows directly)
- 2. $q_i \perp q_j$ for all $i \neq j$
- 3. $q_k \in span(a_1, ..., a_k)$ and $a_k \in span(q_1, ..., q_k)$ so that $span(a_1, ..., a_k) = span(q_1, ..., q_k)$. [[Write proof for 2]].

2.3 QR Factorization

Definition 6. (Unitary Matrix) A matrix $Q = [q_1 \dots q_n] \in \mathbb{R}^{m \times n}$ is unitary if and only if $\langle q_i, q_j \rangle = \delta_{ij}$.

Observations about this definition:

- 1. $Q^TQ = I$
- 2. If Q is square, then $Q^T = Q^{-1}$.

2.3.1 Application to Least Squares

Suppose that we can write A = QR, where $A \in \mathbb{R}^{m \times n}$, $Q \in \mathbb{R}^{m \times n}$ and unitary, and $R \in \mathbb{R}^{n \times n}$ and upper triangular. Then the least squares solution to Ax = b is given by

$$x = (A^{T}A)^{-1}A^{T}b$$

$$= (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}b$$

$$= (R^{T}R)^{-1}R^{T}Q^{T}b$$

$$\implies (R^{T}R)x = R^{T}Q^{T}b$$

$$Rx = Q^{T}b \qquad \text{(assume } R \text{ is invertible (i.e. no zeros on the diagonal))}$$

We can then solve for x using back substitution, which is $\mathcal{O}(n^2)$.

2.4 Norms and Condition Numbers

Definition 7. (Norm) Suppose that V is a linear space over the field \mathbb{R} . The nonnegative real-valued function $\|\cdot\|$ is a norm on V if the following axioms are satisfied: Fix $v \in V$

- 1. Positivity: ||v|| = 0 if and only if v = 0
- 2. Scale Preservation: $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbb{R}$
- 3. Triangle Inequality: $||v + w|| \le ||v|| + ||w||$.

Example 1. (Examples of Norms)

1. 1-norm:

$$||v||_1 = \sum_{i=1}^n |v_i| = |v_1| + \dots + |v_n|$$
 (12)

2. 2-norm:

$$||v||_2 = \left(\sum_{i=1}^n v_i^2\right)^{\frac{1}{2}} = \sqrt{v_1^2 + \dots + v_n^2} = \sqrt{v^T v}$$
 (13)

3. ∞-norm

$$||x||_{\infty} = \max_{i=1,\dots,n} |v_i| \tag{14}$$

4. *p*-norm

$$||v||_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}} \tag{15}$$

For the *p*-norm, proving the triangle inequality follows from the Minkowski's inequality.

Definition 8. (Operator Norm) Let A be an $m \times n$ matrix. That is, A is a linear transformation form \mathbb{R}^n to \mathbb{R}^m . Then the operator norm (or subordinate matrix norm) of A is

$$||A||_{p,q} = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_q}{||x||_p}.$$
 (16)

Observations about this definition:

1. It's easy to check that this definition of the operator norm satisfies the properties of a norm given in Definition 7. For the triangle inequality, observe that

$$||(A+B)x||_p \le ||Ax||_p + ||Bx||_p$$

$$\implies \frac{||(A+B)x||_p}{||x||_p} \le \frac{||Ax||_p}{||x||_p} + \frac{||Bx||_p}{||x||_p}$$
(from Minkowski's inequality)

Taking the supremum of both sides over x shows that $||A + B||_p \le ||A||_p + ||B||_p$.

2. The definition immediately implies that for an arbitrary $x \in \mathbb{R}^n$, $x \neq 0$,

$$||Ax||_q \le ||A||_{p,q} ||x||_p \tag{17}$$

We can generalize this inequality to claim that

$$||AB|| \le ||A|| ||B|| \tag{18}$$

for conformable matrices A, B. Indeed, fix $0 \neq x \in R^n$. Then

$$||ABx|| \le ||A|| ||Bx|| \le ||A|| ||B|| ||x|| \tag{19}$$

We can divide all inequalities by ||x|| to see that for all $x \neq 0$,

$$\frac{\|ABx\|}{\|x\|} \le \|A\| \|B\| \tag{20}$$

Taking the supremum over x on the left hand side shows that $||AB|| \le ||A|| ||B||$.

Theorem 4. (The 1-norm of a matrix is the largest absolute-value column sum) Let $A \in \mathbb{R}^{m \times n}$ and denote the columns of A by a_j , $j=1,\ldots,n$. Then $\|A\|_1=\max_{j=1,\ldots,n}\sum_{i=1}^m|a_{ij}|=\max_{j=1,\ldots,n}\|a_j\|$.

Proof. Fix $x \in \mathbb{R}^n$. Let $C = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|$. First consider the product $A \cdot x$. The ith element is $\sum_{j=1}^n a_{ij}x_j$. Then

$$||Ax||_1 = \sum_{i=1}^m |(Ax)_i| = \sum_{i=1}^m |\sum_{j=1}^n a_{ij}x_j|$$

$$\leq \sum_{i=1}^m \sum_{j=1}^n |a_{ij}||x_j|$$
 (triangle inequality)
$$= \sum_{j=1}^n |x_j| \left(\sum_{i=1}^m |a_{ij}|\right)$$
 (interchange order of summation, assumed finite)
$$\leq C||x||_1$$

Therefore $\frac{\|Ax\|_1}{\|x\|_1} \le C$ for all x. Next, we find an x such we achieve equality with C. Call index J the index such that $\|a_J\|_1 = C = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$. Then let e_J be the n-vector of zeros with a 1 in the Jth entry. Clearly $\|e_J\|_1 = 1$. But then

$$||Ae_I||_1 = ||a_I||_1 = C (21)$$

In sum, we first showed that for all $x \in \mathbb{R}^n$

$$\frac{\|Ax\|_1}{\|x\|_1} \le C \tag{22}$$

We then found an $x \in \mathbb{R}^n$ such that $\frac{\|Ax\|_1}{\|x\|_1} = C$. Therefore

$$||A||_1 = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_1}{||x||_1} = C = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}| = \max_{j=1,\dots,n} ||a_j||$$
(23)

Theorem 5. (The ∞ -norm of a matrix is the largest absolute-value row sum) Let $A \in \mathbb{R}^{m \times n}$ and denote the rows of A by b_i , i = 1, ..., m. Then $||A||_{\infty} = \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}| = \max_{i=1,...,m} ||b_i||$.

Proof. Fix $x \in \mathbb{R}^n$. Let $C = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|$.

$$||Ax||_{\infty} = \max_{i=1,\dots,m} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|$$

$$\leq \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}| |x_{j}| \qquad \text{(by the triangle inequality)}$$

$$\leq \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}| ||x||_{\infty} \qquad \text{(since } |x_{j}| \leq ||x||_{\infty} \text{ for all } j\text{)}$$

$$= C||x||_{\infty}$$

Next, we find an x such we achieve equality with C. Call I the index for which $||b_I||_{\infty} = C$. Define

$$x_j = \begin{cases} 1 & a_{Ij} > 0 \\ -1 & a_{Ij} < 0 \end{cases} \tag{24}$$

Observe that $||x||_{\infty} = 1$. Then

$$|A \cdot x|_{I} = |b_{I}^{T} \cdot x|$$

$$= |\sum_{j=1}^{m} a_{Ij}x_{j}|$$

$$= |\sum_{j=1}^{m} a_{Ij}|$$

$$= C$$

We then found an $x \in \mathbb{R}^n$ such that $\frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = C$. Therefore

$$||A||_{\infty} = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = C = \max_{i=1,\dots,m} \sum_{j=1}^n |a_{ij}| = \max_{i=1,\dots,m} ||b_i||$$
 (25)

Theorem 6. (The 2-norm of a symmetric positive definite matrix is the maximum absolute value of its eigenvalues) Let A be a positive definite $n \times n$ matrix. Then

$$||A||_2 = \max_{i=1,\dots,n} |\lambda_i| \tag{26}$$

Proof. Since *A* is positive definite, *A* has *n* distinct eigenvalues, which implies that it has *n* linearly independent eigenvectors. Therefore, for an arbitrary $x \in \mathbb{R}^n$, we can write *x* as a linearly combination of the eigenvectors x_1, \ldots, x_n . Then

$$x = c_1 x_1 + \dots + c_n x_n$$

$$Ax = c_1 A x_1 + \dots + c_n A x_n$$

$$= c_1 \lambda_1 x_2 + \dots + c_n \lambda_n x_n$$

We can normalize the eigenvectors of A so that $x_i^T x_i = 1$. Then $||Ax||_2 = \sqrt{\sum_{i=1}^n c_i^2 \lambda_i^2}$ and $||x||_2 = \sqrt{\sum_{i=1}^n c_i^2}$. Therefore

$$\frac{\|Ax\|_2}{\|x\|_2} = \sqrt{\frac{\sum_{i=1}^n c_i^2 \lambda_i^2}{\sum_{i=1}^n c_i^2}} \le \max_i |\lambda_i| = |\lambda_I|$$
 (27)

Now we'll find an x such that we actually achieve equality. Call I the index of the maximum absolute value of an eigenvalue. Then, consider the eigenvector associated with this eigenvalue, called x_i . Then

$$\frac{\|Ax_I\|_2}{\|x_I\|_2} = \frac{|\lambda_I|\|x_I\|}{\|x_I\|} = |\lambda_I|$$
 (28)

This shows that $||A||_2 = \max_i |\lambda_i|$.

Theorem 7. (The 2-norm of a matrix $A_{m \times n}$ equals its largest singular value) Let A be an $m \times n$ matrix and denote the eigenvalues of the matrix $B = A^T A$ by λ_i , i = 1, ..., n. Then

$$||A||_2 = \max_i \sqrt{\lambda_i} \tag{29}$$

The square roots of the (nonnegative) eigenvalues of A^TA are referred to as the singular values of A.

2.4.1 Conditioning

Conditioning helps us quantify the sensitivity of the output to perturbations of the input. In what follows, let f be a mapping from a subset D of a normed linear space \mathcal{V} to another normed linear space \mathcal{W} .

Definition 9. (Absolute Condition Number)

$$Cond(f) = \sup_{x,y \in D, x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$
 (30)

Definition 10. (Absolute Local Condition Number)

$$Cond_{x}(f) = \sup_{x+\delta x \in D, \delta x \neq 0} \frac{\|f(x+\delta x) - f(x)\|}{\|\delta x\|}$$
(31)

The previous two definitions depend on the magnitudes of f(x) and x. In applications, it's often better to rescale as follows

Definition 11. (*Relative Local Condition Number*)

$$cond_{x}(f) = \sup_{x + \delta x \in D, \delta x \neq 0} \frac{\|f(x + \delta x) - f(x)\| / \|f(x)\|}{\|\delta x\| / \|x\|}$$
(32)

In these definitions, if f is differentiable then we can replace the differences with the appropriate derivatives.

Example 2. (Example of conditions numbers) Let D be a subinterval of $[0, \infty)$ and $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$.

- 1. If D = [1, 2], then $Cond(f) = \frac{1}{2}$.
- 2. If *D* = [0,1], then Cond(f) = ∞.
- 3. If $D = (0, \infty)$, then the absolute local condition number of f at $x \in D$ is

$$Cond_x(f) = \frac{1}{2\sqrt{x}} \tag{33}$$

Thus as $x \to$, $Cond_x(f) \to \infty$, and as $x \to \infty$, $Cond_x(f) \to 0$.

4. If $D = (0, \infty)$, then the relative local condition number of f is $cond_x(f) = 1/2$ for all $x \in D$.

Definition 12. (Condition Number of a Nonsingular Matrix) The condition number of a nonsingular matrix A is defined by

$$\kappa(A) = ||A|| ||A^{-1}|| \tag{34}$$

If $\kappa(A) \gg 1$, the matrix is said to be ill-conditioned.

Observations about this definition:

1.
$$\kappa(A) = \kappa(A^{-1})$$

2. For all A, $\kappa(A) \ge 1$. This follows because

$$1 = ||I|| = ||AA^{-1}|| \le ||A|| ||A^{-1}||$$
(35)

- 3. The condition number of a matrix is unaffected by scaling all its elements by multiplying by a nonzero constant.
- 4. There is a condition number for each norm, and the size of the condition number is strongly dependent on the choice of norm.

3 Special Matrices

3.1 Symmetric Positive Definite Matrices

Definition 13. (Symmetric, Positive Definite, spd) The real matrix A is said to be symmetric if $A = A^{T}$. A square $n \times n$ matrix is called positive definite if

$$\boldsymbol{x}^T A \boldsymbol{x} > 0 \tag{36}$$

for all $x \in \mathbb{R}^n$, $x \neq 0$.

Theorem 8. (Properties of spd matrices) Let A be an $n \times n$ real, spd matrix. Then

- 1. $a_{ii} > 0$ for all i = 1, ..., n (the diagonal elements of A are positive).
- 2. $Ax_i = \lambda_i x_i \implies \lambda_i \in \mathbb{R}_{>0}, x \in \mathbb{R}^n \setminus \{0\}$ (the eigenvalues of A are real and positive, and the eigenvectors of A belong to $\mathbb{R}^n \setminus \{0\}$).
- 3. $x_i \perp x_j$ if $\lambda_i \neq \lambda_j$ (the eigenvectors of distinct eigenvalues of A are orthogonal)
- 4. det(A) > 0 (the determinant of A is positive)
- 5. Every submatrix B of A obtained by deleting any set of rows and the corresponding set of columns from A is symmetric and positive definite (in particular, every principal submatrix is positive definite).

Proof. We prove each claim in the theorem as follows

1. Let e_i be the *i*th canonical basis vector in \mathbb{R}^n . Then

$$a_{ii} = e_i^T A e_i > 0 (37)$$

since A is pd. A few observations: this only relies on A being pd. $e_i^T A$ picks out the ith row of A. Ae_i picks out the ith column of A.

2. We'll first show that the eigenvalues of A are real. Suppose λ , x are an eigenvalue/vector pair of A. Thus $Ax = \lambda x$. We can conjugate this equation to find that $\bar{A}\bar{x} = A\bar{x} = \bar{\lambda}\bar{x}$ (thus complex eigenvalues of real valued matrices come in conjugate pairs). Then

$$oldsymbol{x}^T A ar{oldsymbol{x}} = ar{\lambda} oldsymbol{x}^T ar{oldsymbol{x}} \ oldsymbol{x}^T A^T ar{oldsymbol{x}} = (A oldsymbol{x})^T ar{oldsymbol{x}} = \lambda oldsymbol{x}^T ar{oldsymbol{x}}$$

Since $A = A^T$, we know that $\lambda x^T \bar{x} = \lambda x^T \bar{x}$. As long as $x \neq 0$, then $x^T \bar{x} \neq 0$. Therefore $\bar{\lambda} = \lambda$, which shows $\lambda \in \mathbb{R}$.

The fact that the eigenvector associated with λ has real elements follows by noting that all elements of the singular matrix $A - \lambda I$ are real numbers. Therefore, the columns of $A - \lambda I$ are linearly dependent in \mathbb{R}^n . Hence there exists an $x \in \mathbb{R}^n$ such that $(A - \lambda I)x = 0$.

This proof only requires that *A* is symmetric – therefore any real, symmetric matrix has real eigenvalues/vectors.

Next we'll show the eigenvalues of A are positive. Suppose λ , x are an eigenvalue/vector pair of A. Then

$$0 < \boldsymbol{x}^T A \boldsymbol{x} = \lambda \boldsymbol{x}^T \boldsymbol{x} \tag{38}$$

Since $x \neq 0$ and $x^T x$ is positive (it's actually the squared 2-norm of x), then $\lambda > 0$. Note that this part of the proves requires A be pd.

3. Let λ_i , λ_j be distinct eigenvalues of A, and x_i , x_j the corresponding eigenvectors. Then

$$egin{aligned} oldsymbol{x}_i^T A oldsymbol{x}_j & \lambda_j oldsymbol{x}_i^T A^T oldsymbol{x}_j & (A oldsymbol{x}_i)^T oldsymbol{x}_j & \lambda_i oldsymbol{x}_i^T oldsymbol{x}_j \end{aligned}$$

Since *A* is symmetric, these two string of equalities must be equal. We can subtract them to find that

$$(\lambda_i - \lambda_j) \boldsymbol{x}_i^T \boldsymbol{x}_j = 0 \tag{39}$$

Since we assumed $\lambda_i \neq \lambda_j$, then it must be that $x_i^T x_j$. Therefore $x_i \perp x_j$. This proof again only relies on the symmetry of A.

4. This follows from the fact that the determinant of *A* is equal to the product of its eigenvalues.

5.

4 Simultaneous nonlinear equations

4.1 Analysis Preliminaries

Definition 14. (Cauchy Sequence) A sequence $(x^{(k)}) \subset \mathbb{R}^n$ is called a Cauchy sequence in \mathbb{R}^n if for any $\epsilon > 0$ there exists a positive integer $k_0 = k_0(\epsilon)$ such that

$$\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(m)}\|_{\infty} < \epsilon \quad \forall k, m \ge k_0(\epsilon)$$
 (40)

Remark 1. \mathbb{R}^n is **complete** in the sense that every Cauchy sequence $(x^{(k)})$ converges to some $\xi \in \mathbb{R}^n$.

Definition 15. (Continuous function) Let $D \subset \mathbb{R}^n$ be nonempty and $f: D \to \mathbb{R}^n$. Given $\xi \in D$, f is continuous at ξ if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that for every $x \in B(\xi; \delta) \cap D$

$$||f(x) - f(\xi)||_{\infty} < \epsilon \tag{41}$$

Lemma 1. Let $D \subset \mathbb{R}^n$ be nonempty and $f: D \to \mathbb{R}^n$ be defined and continuous on D. If $(\boldsymbol{x}^{(k)}) \subset D$ converges in \mathbb{R}^n to $\boldsymbol{\xi} \in D$, then $f(\boldsymbol{x}^{(k)})$ also converges to $f(\boldsymbol{\xi})$.

4.2 Simultaneous iteration

Definition 16. (Lipschitz condition, constant, and contraction) Let D be a closed subset of \mathbb{R}^n and $g: D \to D$. If there exists a positive constant L such that

$$||g(x) - g(y)||_{\infty} \le L||x - y||_{\infty}$$
 (42)

for all $x,y \in D$, then g satisfies the Lipschitz condition on D in the ∞ -norm. L is called the Lipschitz constant. If $L \in (0,1)$, then g is called a contraction on D in the ∞ -norm.

Observations about this definition:

- Any function g that satisfies the Lipschitz condition on D is continuous on D (to see this, set $\delta = \frac{\epsilon}{L}$).
- If g satisfies the Lipschitz condition on D in the ∞ -norm, then it also does in the p-norm for $p \in [1, \infty)$ and vice-versa. However the size of L depends on the choice of norm.

Theorem 9. (Contraction Mapping Theorem in \mathbb{R}^n) Suppose D is a closed subset of \mathbb{R}^n and $g: \mathbb{R}^n \to \mathbb{R}^n$ is defined on D, and $g(D) \subset D$. Suppose further that g is a contraction on D in the ∞ -norm. Then,

- 1. g has a unique fixed point $\xi \in D$
- 2. The sequence $(\mathbf{x}^{(k)})$ defined by $\mathbf{x}^{(k+1)} = g(\mathbf{x}^k)$ converges to $\boldsymbol{\xi}$ for any starting value $x^{(0)} \in D$.