Логика и алгоритмы

Задачи семинаров 1

Теория множеств Цермело-Френкеля с аксиомой выбора.

- (Аксиома экстенсиональности) $\forall x \ \forall y \ (x = y \leftrightarrow \forall z \ (z \in x \leftrightarrow z \in y))$
- (Аксиома равенства) $\forall x \ \forall y \ \forall z \ (x=y \to (x \in z \leftrightarrow y \in z))$
- (Аксиома пары) Для любых множеств x и y найдется множество $\{x,y\}$, элементами которого являются в точности x и y.
- (Аксиома объединения) Для любого множества X существует множество $\bigcup X$, содержащее в точности те элементы, которые принадлежат хотя бы одному из элементов множества X.
- (Аксиома степени) Для любого множества X существует множество $\mathcal{P}(X)$ всех подмножеств X.
- (Аксиома пустого множества) Существует пустое множество Ø, т.е. такое множество, которое не содержит элементов.

- (Аксиома бесконечности) Существует множество S такое, что $\varnothing \in S$ и $\forall x \ (x \in S \to x \cup \{x\} \in S).$
- (Схема аксиом выделения) Для любого свойства множеств φ и множества Y существует множество $Z = \{x \in Y \mid \varphi(x)\}.$
- (Схема аксиом подстановки) Пусть свойство $\varphi(x,y)$ такое, что для любого множества x найдется не более одного множества y, для которого $\varphi(x,y)$. Тогда для любого X найдется множество $Y = \{y \mid \exists x \in X \ \varphi(x,y)\}.$
- (Аксиома регулярности) Любое непустое множество X содержит элемент y, для которого $y \cap X = \emptyset$.
- (Аксиома выбора) Для любого семейства непустых множеств S существует функция выбора на S, т.е. такая функция $f: S \to \bigcup S$, что $\forall x \in S \ (f(x) \in x)$.
- 1. Как, используя только пустое множество \varnothing , составить множество состоящие из 1 элемента? из 2 элементов? из n элементов?
- 2. Может ли такое быть, что $A \subset B$ и $A \in B$ одновременно?
- 3. Для двух множеств A и B докажите, что существует их упорядоченная пара по Куратовскому, их декартово произведение.
- 4. Даны множества A, B и соответствие $R \subset A \times B$. Докажите, что существуют множества dom R, ran R и B^A .
- 5. Для индексированного семейства множеств $(A_i)_{i \in I}$ определите произведение элементов этого семейства. Почему оно существует?
- 6. Выведите аксиомы выделения из аксиом подстановки.
- 7. Для множеств A, B и C таких, что $A \cap B = \emptyset$, постройте биекцию $f: C^{A \cup B} \to C^A \times C^B$. Какое условие на функцию f нарушается, инъективности или сюръективности, если $A \cap B \neq \emptyset$.
- 8. Для всякой сюръекции $f: A \to B$ существует правое обратное отображение, т.е. такое отображение $g: B \to A$, что $f \circ g = \mathrm{id}_B$. Сформулируйте аналогичное утверждение для инъекции и проверьте, верно ли оно?

- 9. Докажите, что для любого множества A не существует сюръекции из A на $\mathcal{P}(A)$.
- 10. Существует ли множество всех множеств? А множество всех одноэлементных множеств?
- 11. Существует ли множество $A \in A$? Существует ли \in -убывающая последовательность множеств?

Множество T называется mpанзитивным, если $\bigcup T \subset T$.

- 12. Существует ли множество всех транзитивных множеств? нетранзитивных множеств?
- 13. Пусть $A \subset \mathbb{R}^2$. Докажите, что A или $\mathbb{R}^2 \setminus A$ имеет мощность континуума, т.е. равномощно \mathbb{R} .
- 14. Верно ли, что для каждого семейства S непустых множеств существует такое множество A, что $A \cap X$ множество из одного элемента для всякого $X \in S$?
- 15. Докажите теорему Кантора—Бернштейна (Шрёдера—Бернштейна), не используя индукцию: если $f: X \to X$ инъекция и $X \supset A \supset f(X)$, то $f(X) \sim A$.
 - (a) Назовём множество $B \subset X$ хорошим, если $X \setminus A \subset B$ и $f(B) \subset B$. Докажите, что пересечение C всех хороших множеств хорошее.
 - (b) Докажите, что $C = (X \setminus A) \cup f(C)$.
 - (с) Положим

$$g(x) = \begin{cases} f(x), & \text{если } x \in C \\ x, & \text{иначе.} \end{cases}$$

Докажите, что $g: X \to A$ является биекцией.

- 16. Докажите, что $2^{\mathbb{N}} \sim k^{\mathbb{N}} \sim \mathbb{N}^{\mathbb{N}}$, где $k \in \mathbb{N}$ и $k \geq 2$.
- 17. Докажите, что множество $2^{\mathbb{N}}$ имеет мощность континуума.
- 18. Являются ли следующие множества счётными (равномощными \mathbb{N})? континуальными (равномощными \mathbb{R})? имеющими иную мощность?
 - а) Множество всех бесконечных возрастающих последовательностей натуральных чисел.
 - б) Множество всех бесконечных невозрастающих последовательностей натуральных чисел.
 - в) Множество всех биекций из № в №.
 - г) Множество всех последовательностей рациональных чисел, стремящихся к 0.
 - д) Множество всех монотонно убывающих последовательностей рациональных чисел, стремящихся к 0 справа.
 - е) Множество всех монотонно убывающих последовательностей действительных чисел, стремящихся к 0 справа.

- ж) Множество всех отображений из \mathbb{Q} в \mathbb{R} .
- з) Множество всех непрерывных отображений из \mathbb{R} в \mathbb{R} .
- и) Множество всех отображений из \mathbb{R} в \mathbb{R} .
- 19. Пусть A некоторое множество непересекающихся кругов на плоскости. Что можно сказать о мощности множества A?
- 20. Пусть A некоторое множество непересекающихся восьмерок (пар касающихся окружностей) на плоскости. Что можно сказать о мощности множества A?
- 21. Дано счетное множество A. Докажите, что в A существует счетная строго возрастающая последовательность подмножеств $A_0 \subsetneq A_1 \subsetneq \ldots \subsetneq A_n \subsetneq \ldots$, в которой все множества $A_{n+1} \setminus A_n$ бесконечны.
- 22. Существует ли множество $X \subset \mathcal{P}(\mathbb{N})$ мощности континуума такое, что для всех $A, B \in X$ либо $A \subset B$, либо $B \subset A$?