Thursday, April 4, 2019 5:05 PM

min
$$n_1 + n_2$$

st $n_1^2 + n_2^2 = 2$
 $\lambda = n_1 + n_2 + \lambda \left(n_1^2 + n_2^2 - 2\right)$
Let n^4 , λ^4 be local nin flagrange multiplies
 $\nabla n \lambda = \left(1 + 2\lambda n_1\right) = 0$
 $= \lambda_1 = -\frac{1}{2\lambda} = n_2$
 $= \lambda_1 = -\frac{1}{2\lambda} = n_2$
 $= \lambda_2 = 1$
 $= \lambda_1 = n_2 = 1$

Candidates for optimality $\longrightarrow n_1=1, n_2=1$ $\searrow n_1=-1, n_2=-1$

At
$$(1,1)$$
 $n_1 + n_2 = 2$
At $(-1,-1)$ $n_1 + n_2 = -2$

 $3 \quad n_1 = 1 \quad n_2 = 1 \quad is the unique global naxum in the unique global n$

They are unique : only 2 candidate pts.