2012 年第 23 届希望杯初赛

初三年级试题答案

(1)选择题

题号	1	2	3	4	5		
答案	С	A	С	С	D		
题号	6	7	8	9	10		
答案	С	С	A	С	A		

(2) A 组填空题

题号	11	12	13	14	15
答案	4	5	ac+2b+4=0	25π	$1-\sqrt{3}+\frac{\pi}{3}$
题号	16	17	18	19	20
答案	0 <m<7< th=""><th>-5x+4</th><th>m<-15 和 m≥1</th><th>4</th><th>8</th></m<7<>	-5x+4	m<-15 和 m≥1	4	8

(3)B组填空题

题号	21	22	23	24	25
答案	$-2; -\frac{2}{3}; (2,0)$	1; 3	8; -8	$\frac{3}{4}\sqrt{17}$; $2\sqrt{17}$	4; 60° 或 90°

- (1) 第 1-10 题: 答对得 4 分; 答错或不答, 得 0 分。
- (2) 第 11-20 题: 答对得 4 分; 答错或不答, 得 0 分。QQ 2254237433
- (3) 第 21-25 题: 答对得 8 分, (第 21 题, 第 1 空和第 2 空各 3 分, 第 3 空 2 分; 第 22-25 题, 每空 4 分); 答错或不答, 得 0 分。翔文学习提供

初三年级试题详解

- 1. C
- 2. A

【解析】设丙单做所需天数为 x,则
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{x} = \frac{1}{c}$$
,解得: $x = \frac{abc}{ab - ac - bc}$ 选 A

3. C

【解析】x<-1 时,原式=-3; -1<x<0 时,原式=-1; 0<x<1 时,原式=1; x>1 时,原式=3。选 C

4. C

【解析】由己知,
$$S_{\triangle ADE} = S_{\triangle BCE} = \sqrt{ab}$$
. ∴ $S_{\#\# ABCD} = a + b + 2\sqrt{ab} = (\sqrt{a} + \sqrt{b})^2$. 选 C

5. D

【解析】根据数轴表示,不等式组解集为
$$-1 < x < 1$$
,即 $\begin{cases} x > -1 \\ x < 1 \end{cases}$,亦即 $\begin{cases} -x < 1 \\ x < 1 \end{cases}$,

与选项对比知,选D

6. C

【解析】过E向BC作垂线,垂足记为H,则△DEH≌△ABD,

∴BH-EH=BH-BD=DH=AB 为定值,选 C

7. C

【解析】令
$$S=x_1+x_2+x_3+x_4$$
,则方程组变为
$$\begin{cases} s-x_4=a_1\\ s-x_1=a_2\\ s-x_2=a_3\\ s-x_3=a_4 \end{cases}$$

 $a_1 < a_2 < a_3 < a_4$, $\therefore x_4 > x_1 > x_2 > x_3$, 选 C

8. A

【解析】 $2 \le |x| \le 3$, $\therefore -3 \le x \le -2$ 或 $2 \le x \le 3$,由于函数的对称轴为 x=1, x=-3 时,y=16; x=-2 时,y=9; x=2 时,y=1; x=3,y=4. \therefore 函数的取值范围是 $1 \le y \le 4$ 和 $9 \le y \le 16$

9. C

【解析】记梯形高为 h. 则
$$AD = \frac{h}{\sin \alpha}$$
, $BC = \frac{h}{\sin \beta}$, $\therefore AD : BC = \sin \beta : \sin \alpha$. 选 C

10. A

【解析】对于
$$y=x^2-2mx+1$$
,当 $x=-1$ 时, $y=2m+2$;当 $x=3$ 时, $y=10-6m$ 根据题意, $(2m+2-1)(10-6m-4) \le 0$,解得 $m \ge 1$ 或 $m \le -\frac{1}{2}$. 选 A

11. 4

【解析】设两位数为 \overline{ab} ,则 10a+b=7(a+b),有 a=2b,当 b 取 1、2、3、4 时符合题意,共 4 个

12. 5

【解析】由己知,有 a
$$(\frac{c}{2})^2$$
+b× $\frac{c}{2}$ +c=0,即 ac²+2bc+4c=0,c≠0,∴ac+2b+4=0

14. 25π

【解析】当 D 与圆心重合时,取最小值 S=25π

15. $1-\sqrt{3}+\frac{\pi}{3}$

【解析】阴影部分四个顶点构成的正方形的面积为 $(2\sin 15^\circ)^2$,剩余的 4个弓形的面积每个为 $\frac{1}{12}$ $\pi \times 1^2 - \frac{1}{2} \times 2\sin 15^\circ \times \cos 15^\circ$

∴ 总面积为
$$4\sin^2 15^\circ + 4(\frac{1}{12}\pi \times 1^2 - \frac{1}{2} \times 2\sin 15^\circ \times \cos 15^\circ) = 1 - \sqrt{3} + \frac{\pi}{3}$$

16. $0 \le m \le 7$

【解析】根据题意,BC长的一半大于梯形中位线的长

∴
$$\left\{ \frac{m^2}{2} < \frac{6m+7}{2} \right\}$$
, 解得: 0

17. -5x+4

【解析】由余数定理, f(-1)=3, 2f(2)=-4, 设所求余式为 ax+b

则有
$$\begin{cases} 9 = 3f(-1) = -a + b \\ -6 = 3f(2) = 2a + b \end{cases}$$
, 解得: $\begin{cases} a = -5 \\ b = 4 \end{cases}$, 所以所求余式-5x+4

18. m≤-15 和 m≥1

【解析】 $ab \le (\frac{a+b}{2})^2$, $\therefore (\frac{a+b}{4})^2 + (a+b) \ge 3$. 解得: $a+b \le -6$ 或 $a+b \ge 2$,而 m+3=2(a+b), $\therefore m+3 \le -12$ 或 $m+a \ge 4$. \therefore 范围是 $m \le -15$ 和 $m \ge 1$

19. 4

【解析】设密码有 n 位,则一次猜中的概率为 $\frac{1}{10^{n+1}}$, $\therefore \frac{1}{10^{n+1}} < \frac{1}{2012}$,解得: $n \ge 4$,最少有 4 位

20.8

【解析】
$$m=-\frac{2}{-1}=2$$
, ∴ $A(-1,2)$, ∴ $S_{\text{矩形 ABCD}}=4\times1\times2=8$

21.
$$-2$$
; $-\frac{2}{3}$; (2,0)

【解析】由已知,
$$2=\frac{k_1}{-1}$$
, $\begin{cases} -\frac{2}{3}=3k_2+b\\ 2=-k_2+b \end{cases}$,解得: $k_1=-2$, $k_2=-\frac{2}{3}$, $b=\frac{4}{3}$. 一次

函数的图象交 x 轴于点(2,0)

22. 1; 3

【解析】
$$(a-1)^2 + \sqrt{b-3} = 0$$
, $a=1$, $b=3$

23. 8: -8

【解析】
$$(\sqrt{5}+1)^3-a(\sqrt{5}+1)+b=0$$
 化简得: $(8-a)\sqrt{5}+(16-a+b)=0$ 8-a=0 目 $16-a+b=0$ 解得: $a=8$, $b=-8$

24. $2\sqrt{17}$

【解析】
$$\cos \angle ACD = \frac{8}{9}$$
,∴ $\sin \angle ACD = \frac{\sqrt{17}}{9}$,则 $\frac{AD}{CD} = \frac{\sqrt{17}}{8}$, $AD = \frac{\sqrt{17}}{8} \times 6 = \frac{3\sqrt{17}}{4}$

BE × AC=2S_{\triangle ABc}=CD × AB : BE=
$$\frac{CD \times AB}{AC} = \frac{CD \times 3AD}{AC} = \frac{6 \times 3 \times \frac{3\sqrt{17}}{4}}{\frac{9}{8}} = 2\sqrt{17}$$

25. 4; 60° 或 90°

【解析】由 \angle APB=45°,知 \angle AOB=90°,以AB为底边有两个,AM、BM为底边各有一个,所以共4个;由于以AB为底边的等腰三角形 \triangle ABM总存在,所以当以AM、BM为底边的等腰三角形 \triangle ABM不存在或者与以AB为底边的等腰三角形 \triangle ABM重合的时候,只有两个满足题意的点M,这两种情况对应的 α 分别为90°或60°