1 Изоморфизм

Определение 1.1. Изоморфизм - Пусть Σ - сигнатура, $\mathcal{A}=(A,I),$ $\mathcal{B}=(B,J)$ -

универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathcal{A} и \mathcal{B} - это $h:\mathcal{A}\to\mathcal{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i\in \Sigma$

Пример 1.1. Пример изоморфизма: пусть $\Sigma = (f^{(2)}), \ \mathcal{A} = (\mathbb{R}, +), \ \mathcal{B} = (\mathbb{R}, \cdot)$

Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

Пусть $h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 1.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Доказательство. пусть $b_1, ..., b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1), ..., h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)), ..., h^{-1}(h(a_{n_i}))) = I(f_i)(a_1, ..., a_{n_i})$$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 1.2. Системы, между которыми существует изоморфизм называют **изоморфными**

$$A \simeq B$$

операции в изоморфных системах обладают одними и теми же свойствами

Определение 1.3. $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 1.4. Пусть \mathcal{A} - алгебра, $a_1, ..., a_n$ - элементы алгебры \mathcal{A} , тогда

$$t(a_1, ..., a_n) = \sigma(t), \sigma(x_1) = a_1, ..., \sigma(x_n) = a_n$$

Теорема 1.2. h - изоморфизм между $\mathcal{A} = (A, I)$ и $\mathcal{B} = (B, J)$, то для любого терма $t(x_1, ..., x_n)$ и любых $a_1, ..., a_n$ выполняется

$$h(t^{\mathcal{A}}(a_1, ..., a_n)) = t^{\mathcal{B}}(h(a_1), ..., h(a_n))$$

Доказательство. Индукция по построению терма t

1.
$$t = x$$

$$t^{\mathcal{A}}(a) = a \Leftrightarrow h(t^{\mathcal{A}}(a)) = h(a) \Leftrightarrow t^{\mathcal{B}}(h(a)) = h(a)$$

2. t = c

$$\sigma(c) = I(c) = J(c) \Rightarrow t^{\mathcal{A}} = I(c), t^{\mathcal{B}} = J(c) \Rightarrow h(I(c)) = J(c)$$

по определению гомоморфизма

3.
$$t = f(t_1, ..., t_k)$$

$$h(t^{\mathcal{A}}(a_{1},...,a_{n})) = h(I(f)(t_{1}^{\mathcal{A}}(a_{1},...,a_{n}),...,t_{k}^{\mathcal{A}}(a_{1},...,a_{n}))) = J(f)(h(t_{1}^{\mathcal{A}}(a_{1},...,a_{n})),...,h(t_{k}^{\mathcal{A}}(a_{1},...,a_{n}))) = J(f)(t_{1}^{\mathcal{B}}(h(a_{1}),...,h(a_{n})),...,t_{k}^{\mathcal{B}}(h(a_{1}),...,h(a_{n})) = t^{\mathcal{B}}(h(a_{1}),...,h(a_{n}))$$

Пример 1.2. Доказать что $\mathcal{A} = (\mathbb{R}; \cdot) \ncong \mathcal{B} = (\mathbb{R}^+; \cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{A} \to \mathcal{B},$ тогда

$$h(0) = x, x \in \mathbb{R}^+$$

$$x = h(0) = h(0 \cdot 0) = h(0) \cdot h(0) = x^{2}$$

 $x = x^{2} \Rightarrow x = 1$

$$h(1) = y, y \in \mathbb{R}^+$$

$$y = h(1) = h(1 \cdot 1) = h(1) \cdot h(1) = y^{2}$$

 $y = y^{2} \Rightarrow y = 1$

h(0)=1=h(1) - противоречие (h не биективна). Утверждение не верно. \Box

Пример 1.3. Доказать что $\mathcal{A}=(\mathbb{R};+)\not\cong\mathcal{B}=(\mathbb{R};\cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(0) = x, h(1) = y; x, y \in \mathbb{R}$$
$$x = h(0) = h(0 \cdot 0) = h(0) + h(0) = 2x \Rightarrow x = 2x = 0$$
$$y = h(1) = h(1 \cdot 1) = h(1) + h(1) = 2y \Rightarrow y = 2y = 0$$

Противоречие (*h* должно быть биекцией)

Пример 1.4. Доказать что $\mathcal{A} = (\mathbb{R};\cdot) \cong \mathcal{B} = (\mathbb{C};\cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(x) = -1; x \in \mathbb{C}, -1 \in \mathbb{R}$$

Пример 1.5. Доказать что $\mathcal{A} = (\mathbb{Z}; \min^{(2)}) \ncong \mathcal{B} = (\mathbb{Z}; \max^{(2)})$

Пример 1.6. Доказать что $A = (\omega; +) \not\cong B = (\omega^+; \cdot)$

$$oxed{\it Доказательство}.$$

Пример 1.7. Доказать что $\mathcal{A}=(\mathbb{Q};+)
ot\cong\mathcal{B}=(\mathbb{Q}^+;\cdot)$

$$oxed{eta}$$
оказательство.

Пример 1.8. Доказать что $\mathcal{A} = (\mathbb{Z};\cdot) \not\cong \mathcal{B} = (\mathbb{G};\cdot)$